TEB Package 0.1

Generated by Doxygen 1.8.6

Thu Mar 5 2015 14:26:41

Contents

1	Time	ed-Elastic-Band Package Documentation	1
	1.1	Overview	1
	1.2	TEB Optimization Problem	1
		1.2.1 Problem Formulation	1
		1.2.2 Solution of the TEB Optimization Problem	2
	1.3	Further Information	2
		1.3.1 Download	2
		1.3.2 Installation	2
2	Dow	nload TEB-Package	3
3	Insta	all TEB-Package	7
4	Solv	ver Overview	9
5	Matla	ab Interface	11
6	Test	List	15
7	Todo	o List	17
8	Bug	List	21
9	Mod	ule Index	23
	9.1	Modules	23
10	Nam	nespace Index	25
	10.1	Namespace List	25
11	Hiera	archical Index	27
	11.1	Class Hierarchy	27
12	Clas	es Index	29
	12.1	Class List	29
13	File I	Index	31

iv CONTENTS

	13.1	File Lis	t			 	 	 	 	 31
14	Mod	ule Doc	umentatio	n						33
	14.1	Control	ller			 	 	 	 	 33
		14.1.1	Detailed I	Description .		 	 	 	 	 34
		14.1.2	Typedef E	ocumentation		 	 	 	 	 34
			14.1.2.1	EdgeControlB	ounds	 	 	 	 	 34
			14.1.2.2	EdgePositiveT	ime	 	 	 	 	 35
			14.1.2.3	EdgeStateBou	ınds	 	 	 	 	 35
	14.2	Solver				 	 	 	 	 36
		14.2.1	Detailed I	Description .		 	 	 	 	 36
	14.3	Simula	tion			 	 	 	 	 37
		14.3.1	Detailed I	Description .		 	 	 	 	 37
	14.4	Visualiz	zation			 	 	 	 	 38
		14.4.1	Detailed I	Description .		 	 	 	 	 38
15	Nom		Desumen	tation						39
15			Documen							39
	15.1			deference						
		15.1.1		Occumentation						41 41
				BackupStackT						
			15.1.1.2	EigenScalar						41
		4540		EigenScalarD						42
		15.1.2		ion Type Docur						42
			15.1.2.1	BOUND_TYPI						42
			15.1.2.2	BOUND_VAR						42
				FiniteDifference						42
				FUNCT_TYPE						42
				HessianInit .						42
				HessianMetho						43
			15.1.2.7	NloptAlgorithm						43
			15.1.2.8	NumericalInte	grators	 	 	 	 	 43
16	Clas	s Docur	mentation							45
	16.1	teb::Ba	seControll	er Class Refere	ence	 	 	 	 	 45
		16.1.1	Detailed I	Description .		 	 	 	 	 46
		16.1.2	Member I	- unction Docun	nentation	 	 	 	 	 46
			16.1.2.1	firstControl .		 	 	 	 	 46
			16.1.2.2	firstState		 	 	 	 	 46
			16.1.2.3	getAbsoluteTir	meVec	 	 	 	 	 46
			16.1.2.4	getDt		 	 	 	 	 47
			16.1.2.5	getN		 	 	 	 	 47

CONTENTS

	16.1.2.6	getStateCtrlInfoMat	47
	16.1.2.7	lastState	47
	16.1.2.8	resetController	47
	16.1.2.9	returnControlInputSequence	47
	16.1.2.10) step	48
16.2 teb::Ba	aseEdge<	D, FuncType, Vertices > Class Template Reference	49
16.2.1	Detailed	Description	51
16.2.2	Member	Typedef Documentation	51
	16.2.2.1	EdgeContainer	51
	16.2.2.2	ValueVector	52
	16.2.2.3	ValueVectorMap	52
16.2.3	Construc	tor & Destructor Documentation	52
	16.2.3.1	BaseEdge	52
	16.2.3.2	BaseEdge	52
	16.2.3.3	~BaseEdge	52
16.2.4	Member	Function Documentation	52
	16.2.4.1	allocateMemory	52
	16.2.4.2	backupJacobian	52
	16.2.4.3	calculateVertexDimensions	52
	16.2.4.4	computeHessian	53
	16.2.4.5	computeJacobian	53
	16.2.4.6	computeValues	54
	16.2.4.7	dimension	54
	16.2.4.8	discardJacobianBackup	54
	16.2.4.9	functType	54
	16.2.4.10	getCustomData	54
	16.2.4.11	getJacobianBackup	54
	16.2.4.12	getVertex	55
	16.2.4.13	getVertex	55
	16.2.4.14	hessians	55
	16.2.4.15	hessians	55
	16.2.4.16	isBoundConstraint	55
	16.2.4.17	' jacobians	55
	16.2.4.18	giacobians	55
	16.2.4.19	noVertices	55
	16.2.4.20	restoreJacobian	55
	16.2.4.21	values	56
	16.2.4.22	2 values	56
	16.2.4.23	3 valuesData	56
	16.2.4.24	valuesData	56

vi CONTENTS

		16.2.4.25	valuesMap	. 56
		16.2.4.26	vertices	. 56
	16.2.5	Member D	rata Documentation	. 56
		16.2.5.1	_hessians	. 56
		16.2.5.2	_jacob_backup	. 57
		16.2.5.3	_jacobians	. 57
		16.2.5.4	_values	. 57
		16.2.5.5	_vertices	. 57
		16.2.5.6	_vertices_dim	. 57
		16.2.5.7	Dimension	. 57
		16.2.5.8	NoVertices	. 58
16.3	teb::Ba	seEdge<	D, FuncType > Class Template Reference	. 58
	16.3.1	Detailed D	escription	. 60
	16.3.2	Member Ty	ypedef Documentation	. 61
		16.3.2.1	EdgeContainer	. 61
		16.3.2.2	ValueVector	. 61
		16.3.2.3	ValueVectorMap	. 61
	16.3.3	Constructo	or & Destructor Documentation	. 61
		16.3.3.1	BaseEdge	. 61
		16.3.3.2	~BaseEdge	. 61
	16.3.4	Member F	unction Documentation	. 61
		16.3.4.1	allocateMemory	. 61
		16.3.4.2	backupJacobian	. 62
		16.3.4.3	calculateVertexDimensions	. 62
		16.3.4.4	computeHessian	. 62
		16.3.4.5	computeJacobian	. 62
		16.3.4.6	computeValues	. 63
		16.3.4.7	dimension	. 63
		16.3.4.8	discardJacobianBackup	. 63
		16.3.4.9	functType	. 63
		16.3.4.10	getCustomData	. 63
		16.3.4.11	getJacobianBackup	. 63
		16.3.4.12	getVertex	. 64
		16.3.4.13	getVertex	. 64
		16.3.4.14	hessians	. 64
		16.3.4.15	hessians	. 64
		16.3.4.16 i	isBoundConstraint	. 64
		16.3.4.17 j	jacobians	. 64
		16.3.4.18 j	jacobians	. 64
		16.3.4.19	noVertices	. 64

CONTENTS vii

	16.3.4.20 resizeVertexContainer	. 65
	16.3.4.21 restoreJacobian	. 65
	16.3.4.22 setVertex	. 65
	16.3.4.23 values	. 65
	16.3.4.24 values	. 65
	16.3.4.25 valuesData	. 65
	16.3.4.26 valuesData	. 65
	16.3.4.27 valuesMap	. 66
	16.3.4.28 vertices	. 66
	16.3.4.29 vertices	. 66
16.3.	Member Data Documentation	. 66
	16.3.5.1 _hessians	. 66
	16.3.5.2 _jacob_backup	. 66
	16.3.5.3 _jacobians	. 66
	16.3.5.4 _values	. 67
	16.3.5.5 _vertices	. 67
	16.3.5.6 _vertices_dim	. 67
	16.3.5.7 Dimension	. 67
16.4 teb::E	BaseSolver Class Reference	. 67
16.4.	1 Detailed Description	. 69
16.4.	2 Member Typedef Documentation	. 69
	16.4.2.1 EdgeContainer	. 69
	16.4.2.2 VertexContainer	. 69
16.4.	3 Constructor & Destructor Documentation	. 69
	16.4.3.1 BaseSolver	. 69
	16.4.3.2 ~BaseSolver	. 70
16.4.	4 Member Function Documentation	. 70
	16.4.4.1 applyIncrement	. 70
	16.4.4.2 applyOptVec	. 70
	16.4.4.3 backupVertices	. 70
	16.4.4.4 discardBackupVertices	. 70
	16.4.4.5 getDimEqualities	. 71
	16.4.4.6 getDimInequalities	. 71
	16.4.4.7 getDimObjectives	. 71
	16.4.4.8 getOptVecCopy	. 71
	16.4.4.9 getOptVecDimension	. 71
	16.4.4.10 initWorkspaces	. 72
	16.4.4.11 restoreVertices	. 72
	16.4.4.12 restoreVerticesButKeepBackup	. 72
	16.4.4.13 setConfig	. 72

viii CONTENTS

	16.4.4.14 solve	72
	16.4.4.15 solveImpl	73
16.4.5	Member Data Documentation	73
	16.4.5.1 _active_vertices	73
	16.4.5.2 _equalities	73
	16.4.5.3 _equalities_dim	73
	16.4.5.4 _graph_structure_modified	74
	16.4.5.5 _inequalities	74
	16.4.5.6 _inequalities_dim	74
	16.4.5.7 _no_vert_backups	74
	16.4.5.8 _objective_dim	74
	16.4.5.9 _objectives	74
	16.4.5.10 _opt_vec_dim	75
	16.4.5.11 cfg	75
	16.4.5.12 EIGEN_MAKE_ALIGNED_OPERATOR_NEW	75
16.5 teb::Ba	laseSolverLeastSquares Class Reference	75
16.5.1	Detailed Description	78
16.5.2	2 Member Typedef Documentation	78
	16.5.2.1 EdgeContainer	78
	16.5.2.2 VertexContainer	78
16.5.3	3 Constructor & Destructor Documentation	78
	16.5.3.1 BaseSolverLeastSquares	78
16.5.4	4 Member Function Documentation	78
	16.5.4.1 adaptWeights	78
	16.5.4.2 applyIncrement	79
	16.5.4.3 applyOptVec	79
	16.5.4.4 backupVertices	79
	16.5.4.5 buildValueVector	80
	16.5.4.6 discardBackupVertices	80
	16.5.4.7 getChi2	81
	16.5.4.8 getDimEqualities	81
	16.5.4.9 getDimInequalities	81
	16.5.4.10 getDimObjectives	81
	16.5.4.11 getOptVecCopy	81
	16.5.4.12 getOptVecDimension	82
	16.5.4.13 getValueDimension	82
	16.5.4.14 initWorkspaces	82
	16.5.4.15 restoreVertices	82
	16.5.4.16 restoreVerticesButKeepBackup	83
	16.5.4.17 setConfig	83

CONTENTS

	16.5.4.18 solve	3
	16.5.4.19 solveImpl	3
16.5.5	Member Data Documentation	4
	16.5.5.1 _active_vertices	4
	16.5.5.2 _equalities	4
	16.5.5.3 _equalities_dim	4
	16.5.5.4 _graph_structure_modified	4
	16.5.5.5 _inequalities	4
	16.5.5.6 _inequalities_dim	5
	16.5.5.7 _no_vert_backups	5
	16.5.5.8 _objective_dim	5
	16.5.5.9 _objectives	5
	16.5.5.10 _opt_vec_dim	5
	16.5.5.11 _val_dim	6
	16.5.5.12 _values	6
	16.5.5.13 _weight_adapt_count	6
	16.5.5.14 _weight_equalities	6
	16.5.5.15 _weight_inequalities	6
	16.5.5.16 cfg	6
	16.5.5.17 EIGEN_MAKE_ALIGNED_OPERATOR_NEW	6
	seSolverNonlinearProgramDense Class Reference	7
16.6.1	Detailed Description	9
16.6.2	Member Typedef Documentation	0
	16.6.2.1 EdgeContainer	0
	16.6.2.2 MatMapRowMajor	0
	16.6.2.3 VertexContainer	0
16.6.3	Constructor & Destructor Documentation	0
	16.6.3.1 BaseSolverNonlinearProgramDense	0
16.6.4	Member Function Documentation	0
	16.6.4.1 applyIncrement	0
	16.6.4.2 applyOptVec	0
	16.6.4.3 backupVertices	1
	16.6.4.4 buildEqualityConstraintJacobian	1
	16.6.4.5 buildEqualityConstraintValueVector	1
	16.6.4.6 buildInequalityConstraintJacobian	1
	16.6.4.7 buildInequalityConstraintValueVector	1
	16.6.4.8 buildObjectiveGradient	1
	16.6.4.9 buildObjectiveValue	2
	16.6.4.10 calculateLagrangianGradient	2
	16.6.4.11 calculateLagrangianHessian	2

X CONTENTS

	16.6.4.12 calculateLagrangianHessianFullBFGS	92
	16.6.4.13 calculateLagrangianHessianNumerically	92
	16.6.4.14 discardBackupVertices	93
	16.6.4.15 getDimEqualities	93
	16.6.4.16 getDimInequalities	93
	16.6.4.17 getDimObjectives	93
	16.6.4.18 getOptVecCopy	93
	16.6.4.19 getOptVecDimension	94
	16.6.4.20 initHessianBFGS	94
	16.6.4.21 initializeLagrangeMultiplier	94
	16.6.4.22 initSolverWorkspace	94
	16.6.4.23 initWorkspaces	94
	16.6.4.24 restoreVertices	94
	16.6.4.25 restoreVerticesButKeepBackup	95
	16.6.4.26 setConfig	95
	16.6.4.27 solve	95
	16.6.4.28 solveImpl	96
16.6.5	Member Data Documentation	97
	16.6.5.1 _active_vertices	97
	16.6.5.2 _equalities	97
	16.6.5.3 _equalities_dim	97
	16.6.5.4 _equality_jacobian	97
	16.6.5.5 _equality_values	97
	16.6.5.6 _graph_structure_modified	98
	16.6.5.7 _inequalities	98
	16.6.5.8 _inequalities_dim	98
	16.6.5.9 _inequality_jacobian	98
	16.6.5.10 _inequality_values	98
	16.6.5.11 _lagrangian_gradient	98
	16.6.5.12 _lagrangian_gradient_backup	98
	16.6.5.13 _lagrangian_hessian	99
	16.6.5.14 _multiplier_eq	99
	16.6.5.15 _multiplier_ineq	99
	16.6.5.16 _no_vert_backups	99
	16.6.5.17 _objective_dim	99
	16.6.5.18 _objective_gradient	99
	16.6.5.19 _objective_value	99
	16.6.5.20 _objectives	99
	16.6.5.21 _opt_vec_dim	100
	16.6.5.22 cfg	100

CONTENTS xi

		16.6.5.23 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
16.7	teb::Bo	undConstraint< Bound_type, Vertex, Bound_vars, Index > Class Template Reference 10
	16.7.1	Detailed Description
	16.7.2	Member Typedef Documentation
		16.7.2.1 EdgeContainer
		16.7.2.2 ValueVector
		16.7.2.3 ValueVectorMap
	16.7.3	Constructor & Destructor Documentation
		16.7.3.1 BoundConstraint
	16.7.4	Member Function Documentation
		16.7.4.1 allocateMemory
		16.7.4.2 backupJacobian
		16.7.4.3 calculateVertexDimensions
		16.7.4.4 computeHessian
		16.7.4.5 computeJacobian
		16.7.4.6 computeValues
		16.7.4.7 dimension
		16.7.4.8 discardJacobianBackup
		16.7.4.9 functType
		16.7.4.10 getBounds
		16.7.4.11 getCustomData
		16.7.4.12 getJacobianBackup
		16.7.4.13 getVertex
		16.7.4.14 getVertex
		16.7.4.15 hessians
		16.7.4.16 hessians
		16.7.4.17 isBoundConstraint
		16.7.4.18 jacobians
		16.7.4.19 jacobians
		16.7.4.20 noVertices
		16.7.4.21 restoreJacobian
		16.7.4.22 setBounds
		16.7.4.23 setBounds
		16.7.4.24 setBounds
		16.7.4.25 setBounds
		16.7.4.26 setBounds
		16.7.4.27 setBounds
		16.7.4.28 values
		16.7.4.29 values
		16.7.4.30 valuesData

xii CONTENTS

	16.7.4.31	valuesData	. 110
	16.7.4.32	valuesMap	. 110
	16.7.4.33	vertices	. 110
16.7.5	Member D	ata Documentation	. 110
	16.7.5.1	_bounds	. 110
	16.7.5.2	_hessians	. 110
	16.7.5.3	_jacob_backup	. 111
	16.7.5.4	_jacobians	. 111
	16.7.5.5	_values	. 111
	16.7.5.6	_vertices	. 111
	16.7.5.7	_vertices_dim	. 111
	16.7.5.8	BoundType	. 111
	16.7.5.9	Dimension	. 112
	16.7.5.10	NoBounds	. 112
	16.7.5.11	NoVertices	. 112
16.8 teb::C	onfig Class F	Reference	. 112
16.8.1	Detailed D	Pescription	. 113
16.8.2	2 Member D	ata Documentation	. 113
	16.8.2.1	optim	. 113
	16.8.2.2	teb	. 113
	16.8.2.3	util	. 113
16.9 teb::C	ontrolVertex-	< q $>$ Class Template Reference	. 113
16.9.1	Detailed D	Pescription	. 116
16.9.2	2 Member Ty	ypedef Documentation	. 116
	16.9.2.1	BackupStackType	. 116
	16.9.2.2	ControlVector	. 116
	16.9.2.3	FixedCtrls	. 116
	16.9.2.4	ScalarType	. 117
	16.9.2.5	VertexContainer	. 117
16.9.3	3 Constructo	or & Destructor Documentation	. 117
	16.9.3.1	ControlVertex	. 117
	16.9.3.2	ControlVertex	. 117
	16.9.3.3	ControlVertex	. 117
16.9.4	Member F	unction Documentation	. 117
	16.9.4.1	controls	. 117
	16.9.4.2	controls	. 117
	16.9.4.3	dimension	. 118
	16.9.4.4	dimensionFree	. 118
	16.9.4.5	discardTop	. 118
	16.9.4.6	fixed_ctrls	. 118

CONTENTS xiii

	16.9.4.7 getData	18
	16.9.4.8 getDataFree	18
	16.9.4.9 getOptVecIdx	18
	16.9.4.10 isFixedAll	19
	16.9.4.11 isFixedAny	19
	16.9.4.12 isFixedComp	19
	16.9.4.13 operator=	19
	16.9.4.14 plus	19
	16.9.4.15 plus	20
	16.9.4.16 plusFree	20
	16.9.4.17 pop	20
	16.9.4.18 push	20
	16.9.4.19 setControls	20
	16.9.4.20 setControls	20
	16.9.4.21 setFixedAll	20
	16.9.4.22 setFixedCtrl	21
	16.9.4.23 setFixedCtrls	21
	16.9.4.24 setFixedCtrls	21
	16.9.4.25 setFixedCtrls	21
	16.9.4.26 setFree	
	16.9.4.27 setOptVecIdx	22
	16.9.4.28 stackSize	23
	16.9.4.29 top	23
16.9.5	Friends And Related Function Documentation	23
	16.9.5.1 operator!=	23
	16.9.5.2 operator <<	123
	16.9.5.3 operator==	23
16.9.6	Member Data Documentation	
	16.9.6.1 _backup	23
	16.9.6.2 _controls	24
	16.9.6.3 _dimension	24
	16.9.6.4 _fixed_ctrls	24
	16.9.6.5 _opt_vec_idx	24
	16.9.6.6 DimControls	24
	16.9.6.7 Dimension	24
16.10teb::Cu	stomBoundData Struct Reference	24
	Detailed Description	
16.10.2	Member Data Documentation	
	16.10.2.1 EIGEN_MAKE_ALIGNED_OPERATOR_NEW	
	16.10.2.2 index	25

XIV

16.10.2.3 lower	125
16.10.2.4 no_lower	125
16.10.2.5 no_upper	125
16.10.2.6 upper	125
16.11teb::EdgeMinimizeTime Class Reference	126
16.11.1 Detailed Description	128
16.11.2 Member Typedef Documentation	128
16.11.2.1 EdgeContainer	128
16.11.2.2 ValueVector	128
16.11.2.3 ValueVectorMap	128
16.11.3 Constructor & Destructor Documentation	129
16.11.3.1 EdgeMinimizeTime	129
16.11.4 Member Function Documentation	129
16.11.4.1 allocateMemory	129
16.11.4.2 backupJacobian	129
16.11.4.3 calculateVertexDimensions	129
16.11.4.4 computeHessian	129
16.11.4.5 computeJacobian	130
16.11.4.6 computeValues	130
16.11.4.7 dimension	130
16.11.4.8 discardJacobianBackup	130
16.11.4.9 functType	130
16.11.4.10getCustomData	130
16.11.4.11getJacobianBackup	130
16.11.4.12getVertex	130
16.11.4.13getVertex	131
16.11.4.14hessians	131
16.11.4.15hessians	131
16.11.4.16sBoundConstraint	131
16.11.4.17jacobians	131
16.11.4.18jacobians	131
16.11.4.19no Vertices	131
16.11.4.20 restore Jacobian	131
16.11.4.21setData	132
16.11.4.22values	132
16.11.4.23values	132
16.11.4.24valuesData	132
16.11.4.25valuesData	132
16.11.4.26valuesMap	132
16.11.4.27vertices	132

CONTENTS xv

16.11.5 Member Data Documentation	133
16.11.5.1 _data	133
16.11.5.2 _hessians	133
16.11.5.3 _jacob_backup	133
16.11.5.4 _jacobians	133
16.11.5.5 _values	133
16.11.5.6 _vertices	133
16.11.5.7 _vertices_dim	133
16.11.5.8 Dimension	133
16.11.5.9 NoVertices	134
16.12teb::EdgeQuadraticForm< p, q > Class Template Reference	134
16.12.1 Detailed Description	136
16.12.2 Member Typedef Documentation	137
16.12.2.1 EdgeContainer	137
16.12.2.2 StateVector	137
16.12.2.3 ValueVector	137
16.12.2.4 ValueVectorMap	137
16.12.3 Constructor & Destructor Documentation	137
16.12.3.1 EdgeQuadraticForm	137
16.12.4 Member Function Documentation	138
16.12.4.1 allocateMemory	138
16.12.4.2 backupJacobian	138
16.12.4.3 calculateVertexDimensions	138
16.12.4.4 computeHessian	138
16.12.4.5 computeJacobian	139
16.12.4.6 computeValues	139
16.12.4.7 dimension	139
16.12.4.8 discardJacobianBackup	139
16.12.4.9 functType	139
16.12.4.10getCustomData	139
16.12.4.11getJacobianBackup	140
16.12.4.12getVertex	140
16.12.4.13getVertex	140
16.12.4.14hessians	140
16.12.4.15hessians	140
16.12.4.16sBoundConstraint	140
16.12.4.17jacobians	140
16.12.4.18jacobians	140
16.12.4.19noVertices	141
16.12.4.20restoreJacobian	141

xvi CONTENTS

16.12.4.21setReference	 141
16.12.4.22setWeights	 141
16.12.4.23setWeights	 141
16.12.4.24setWeights	 141
16.12.4.25values	 141
16.12.4.26values	 141
16.12.4.27valuesData	 142
16.12.4.28valuesData	 142
16.12.4.29valuesMap	 142
16.12.4.30vertices	 142
16.12.5 Member Data Documentation	 142
16.12.5.1 _hessians	 142
16.12.5.2 _jacob_backup	 142
16.12.5.3 _jacobians	 142
16.12.5.4 _Q	 143
16.12.5.5 _R	 143
16.12.5.6 _ref_state	 143
16.12.5.7 _values	 143
16.12.5.8 _vertices	 143
16.12.5.9 _vertices_dim	 143
16.12.5.1@imension	 143
16.12.5.11NoVertices	 143
16.13 teb :: Edge System Dynamics < p, q, central > Class Template Reference 	 144
16.13.1 Detailed Description	 146
16.13.2 Member Typedef Documentation	 147
16.13.2.1 EdgeContainer	 147
16.13.2.2 ValueVector	 147
16.13.2.3 ValueVectorMap	 147
16.13.3 Constructor & Destructor Documentation	 147
16.13.3.1 EdgeSystemDynamics	 147
16.13.4 Member Function Documentation	 147
16.13.4.1 allocateMemory	 147
16.13.4.2 backupJacobian	 148
16.13.4.3 calculateVertexDimensions	 148
	148
16.13.4.4 computeHessian	
16.13.4.4 computeHessian	
	 149
16.13.4.5 computeJacobian	 149 149
16.13.4.5 computeJacobian	 149 149 149 149

CONTENTS xvii

16.13.4.10getCustomData	149
16.13.4.11getJacobianBackup	150
16.13.4.12getVertex	150
16.13.4.13getVertex	150
16.13.4.14hessians	150
16.13.4.15hessians	150
16.13.4.16sBoundConstraint	150
16.13.4.17jacobians	150
16.13.4.18jacobians	150
16.13.4.19noVertices	151
16.13.4.20restoreJacobian	151
16.13.4.21setSystemDynamics	151
16.13.4.22values	151
16.13.4.23values	151
16.13.4.24valuesData	151
16.13.4.25valuesData	151
16.13.4.26valuesMap	151
16.13.4.27vertices	152
16.13.5 Friends And Related Function Documentation	152
16.13.5.1 SystemDynamics	152
16.13.6 Member Data Documentation	152
16.13.6.1 _hessians	152
16.13.6.2 _jacob_backup	152
16.13.6.3 _jacobians	152
16.13.6.4 _system	152
16.13.6.5 _values	152
16.13.6.6 _vertices	153
16.13.6.7 _vertices_dim	153
16.13.6.8 Dimension	153
16.13.6.9 NoVertices	153
6.14teb::EdgeType Class Reference	153
16.14.1 Detailed Description	155
16.14.2 Member Typedef Documentation	155
16.14.2.1 EdgeContainer	155
16.14.2.2 ValueVectorMap	155
16.14.3 Constructor & Destructor Documentation	155
16.14.3.1 EdgeType	155
16.14.3.2 ∼EdgeType	
16.14.4 Member Function Documentation	
16.14.4.1 allocateMemory	156

xviii CONTENTS

16.14.4.2 backupJacobian	156
16.14.4.3 computeHessian	156
16.14.4.4 computeJacobian	156
16.14.4.5 computeValues	156
16.14.4.6 dimension	156
16.14.4.7 discardJacobianBackup	156
16.14.4.8 functType	157
16.14.4.9 getCustomData	157
16.14.4.10getJacobianBackup	157
16.14.4.11getVertex	157
16.14.4.12getVertex	157
16.14.4.13hessians	157
16.14.4.14hessians	157
16.14.4.15sBoundConstraint	157
16.14.4.16jacobians	157
16.14.4.17jacobians	158
16.14.4.18noVertices	158
16.14.4.19 restore Jacobian	158
16.14.4.20valuesData	158
16.14.4.21valuesData	158
16.14.4.22valuesMap	158
16.14.5 Member Data Documentation	158
16.14.5.1 _hessians	158
16.14.5.2 _jacob_backup	159
16.14.5.3 _jacobians	159
$16.15 teb:: Explicit Euler < p, q > Class Template Reference \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	159
16.15.1 Detailed Description	160
16.15.2 Member Typedef Documentation	160
16.15.2.1 ControlVector	160
16.15.2.2 StateVector	160
16.15.3 Constructor & Destructor Documentation	160
16.15.3.1 ExplicitEuler	160
16.15.3.2 ~ExplicitEuler	160
16.15.4 Member Function Documentation	160
16.15.4.1 integrate	161
16.16teb::Config::Optim::Solver::NonlinearProgram::Hessian Struct Reference	161
16.16.1 Detailed Description	161
16.16.2 Member Data Documentation	162
16.16.2.1 bfgs_damped_mode	162
16.16.2.2 hessian_init	162

CONTENTS xix

16.16.2.3 hessian_init_identity_scale	62
16.16.2.4 hessian_method	62
16.17teb::HessianWorkspace Class Reference	62
16.17.1 Detailed Description	63
16.17.2 Member Typedef Documentation	64
16.17.2.1 WorkspaceMatrix	64
16.17.3 Constructor & Destructor Documentation	64
16.17.3.1 HessianWorkspace	64
16.17.3.2 ~HessianWorkspace	64
16.17.4 Member Function Documentation	64
16.17.4.1 allocate	64
16.17.4.2 getWorkspace	64
16.17.5 Member Data Documentation	65
16.17.5.1 _workspace	65
16.18teb::HyperGraph Class Reference	65
16.18.1 Detailed Description	66
16.18.2 Member Typedef Documentation	67
16.18.2.1 EdgeContainer	67
16.18.2.2 VertexContainer	67
16.18.3 Member Function Documentation	67
16.18.3.1 activeVertices	67
16.18.3.2 activeVertices	67
16.18.3.3 addActiveVertex	67
16.18.3.4 addEdgeEquality	67
16.18.3.5 addEdgeInequality	68
16.18.3.6 addEdgeObjective	169
16.18.3.7 clearActiveVertices	69
16.18.3.8 clearEdges	69
16.18.3.9 clearGraph	69
16.18.3.10equalities	69
16.18.3.11equalities	70
16.18.3.12nequalities	70
16.18.3.13nequalities	70
16.18.3.14isGraphModified	70
16.18.3.15notifyGraphModified	70
16.18.3.16objectives	71
16.18.3.17objectives	71
16.18.4 Member Data Documentation	
16.18.4.1 _active_vertices	
16.18.4.2 _constraints_eq	71

CONTENTS

16.18.4.3 _constraints_ineq
16.18.4.4 _graph_modified
16.18.4.5 _objectives
16.19teb::JacobianWorkspace Class Reference
16.19.1 Detailed Description
16.19.2 Member Typedef Documentation
16.19.2.1 WorkspaceMatrix
16.19.3 Constructor & Destructor Documentation
16.19.3.1 JacobianWorkspace
16.19.3.2 ~JacobianWorkspace
16.19.4 Member Function Documentation
16.19.4.1 allocate
16.19.4.2 getWorkspace
16.19.5 Member Data Documentation
16.19.5.1 _workspace
16.20teb::Config::Optim::Solver::NonlinearProgram::LineSearch Struct Reference
16.20.1 Detailed Description
16.20.2 Member Data Documentation
16.20.2.1 alpha_init
16.20.2.2 beta
16.20.2.3 sigma
16.21teb::Config::Optim::Solver::Lsq Struct Reference
16.21.1 Detailed Description
16.21.2 Member Data Documentation
16.21.2.1 soft_constr_epsilon
16.21.2.2 weight_adaptation_factor
16.21.2.3 weight_equalities
16.21.2.4 weight_inequalities
16.22teb::Config::Optim::Solver::Nlopt Struct Reference
16.22.1 Detailed Description
16.22.2 Member Data Documentation
16.22.2.1 algorithm
16.22.2.2 max_optimization_time
16.22.2.3 stopping_criteria_ftol_abs
16.22.2.4 stopping_criteria_ftol_rel
16.22.2.5 stopping_criteria_xtol_abs
16.22.2.6 stopping_criteria_xtol_rel
16.22.2.7 tolerance_equalities
16.22.2.8 tolerance_inequalities
16.23teb::Config::Optim::Solver::NonlinearProgram Struct Reference

CONTENTS xxi

16.23.1 Detailed Description	78
16.23.2 Member Data Documentation	78
16.23.2.1 hessian	78
16.23.2.2 linesearch	78
16.24teb::NumericalIntegrator< p, q > Class Template Reference	78
16.24.1 Detailed Description	79
16.24.2 Member Typedef Documentation	30
16.24.2.1 ControlVector	30
16.24.2.2 StateVector	30
16.24.3 Constructor & Destructor Documentation	30
16.24.3.1 NumericalIntegrator	30
16.24.3.2 ~NumericalIntegrator	30
16.24.4 Member Function Documentation	30
16.24.4.1 integrate	30
16.25teb::Config::Optim Struct Reference	31
16.25.1 Detailed Description	31
16.25.2 Member Data Documentation	31
16.25.2.1 force_rebuild_optim_graph	31
16.25.2.2 solver	31
16.26teb::PlotOptions Struct Reference	31
16.26.1 Detailed Description	32
16.26.2 Member Data Documentation	32
16.26.2.1 legend	32
16.26.2.2 legend_entries	32
16.26.2.3 skip_last_value_right_column	32
16.26.2.4 title	33
16.26.2.5 ylabels	33
$16.27 teb:: Runge Kutta 5 th Order < p, q > Class Template Reference \ldots \ldots \ldots \ldots \ldots \ldots 18 th Order < p, q > Class Template Reference \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	33
16.27.1 Detailed Description	34
16.27.2 Member Typedef Documentation	34
16.27.2.1 ControlVector	34
16.27.2.2 StateVector	34
16.27.3 Constructor & Destructor Documentation	34
16.27.3.1 RungeKutta5thOrder	34
16.27.3.2 ~RungeKutta5thOrder	34
16.27.4 Member Function Documentation	34
16.27.4.1 integrate	35
$16.28 teb:: Runge Kutta Classic < p, q > Class Template Reference \dots \dots \dots \dots \dots \dots \dots \dots \dots $	35
16.28.1 Detailed Description	36
16.28.2 Member Typedef Documentation	36

xxii CONTENTS

16.28.2.1 ControlVector	186
16.28.2.2 StateVector	186
16.28.3 Constructor & Destructor Documentation	186
16.28.3.1 RungeKuttaClassic	186
16.28.3.2 ~RungeKuttaClassic	187
16.28.4 Member Function Documentation	187
16.28.4.1 integrate	187
16.29teb::SimResults Class Reference	187
16.29.1 Detailed Description	188
16.29.2 Member Function Documentation	188
16.29.2.1 allocateMemory	188
16.29.2.2 allocateMemory	189
16.29.2.3 conservativeResize	189
16.29.2.4 conservativeResize	189
16.29.3 Friends And Related Function Documentation	189
16.29.3.1 Simulator	189
16.29.4 Member Data Documentation	189
16.29.4.1 series	190
$16.30 teb:: Simulator < p, q > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	190
16.30.1 Detailed Description	192
16.30.2 Member Typedef Documentation	192
16.30.2.1 ControlVector	192
16.30.2.2 IntegatorPtr	192
16.30.2.3 StateVector	193
16.30.3 Constructor & Destructor Documentation	193
16.30.3.1 Simulator	193
16.30.3.2 Simulator	193
16.30.3.3 ~Simulator	193
16.30.4 Member Function Documentation	193
16.30.4.1 plotResults	193
16.30.4.2 sampleTime	193
16.30.4.3 saturateControl	194
16.30.4.4 setControlInputSaturation	194
16.30.4.5 setIntegrator	194
16.30.4.6 setIntegrator	194
16.30.4.7 setPlotter	194
16.30.4.8 setPostStepCallback	195
16.30.4.9 setPreSimCallback	195
16.30.4.10setPreStepCallback	195
16.30.4.11setSampleTime	196

CONTENTS xxiii

16.30.4.12simClosedLoop	196
16.30.4.13simClosedLoop	197
16.30.4.14simOpenAndClosedLoop	197
16.30.4.15simOpenLoop	198
16.30.4.16simOpenLoop	198
16.30.4.17systemStep	199
16.30.5 Friends And Related Function Documentation	199
16.30.5.1 SimResults	199
16.30.5.2 SystemDynamics	199
16.30.6 Member Data Documentation	199
16.30.6.1 _callback_sim_pre	199
16.30.6.2 _callback_step_post	199
16.30.6.3 _callback_step_pre	199
16.30.6.4 _control_bounds	199
16.30.6.5 _controller	199
16.30.6.6 _integrator	200
16.30.6.7 _plotter	200
16.30.6.8 _sample_time	200
16.30.6.9 _system	200
16.31teb::Config::Optim::Solver Struct Reference	200
16.31.1 Detailed Description	201
16.31.2 Member Data Documentation	201
16.31.2.1 lsq	201
16.31.2.2 nlopt	201
16.31.2.3 nonlin_prog	201
16.31.2.4 solver_iter	201
16.32teb::SolverLevenbergMarquardtEigenDense Class Reference	201
16.32.1 Detailed Description	204
16.32.2 Member Typedef Documentation	204
16.32.2.1 EdgeContainer	204
16.32.2.2 VertexContainer	204
16.32.3 Constructor & Destructor Documentation	204
16.32.3.1 SolverLevenbergMarquardtEigenDense	204
16.32.4 Member Function Documentation	204
16.32.4.1 adaptWeights	204
16.32.4.2 applyIncrement	205
16.32.4.3 applyOptVec	205
16.32.4.4 backupVertices	205
16.32.4.5 buildJacobian	206
16.32.4.6 buildValueVector	206

xxiv CONTENTS

	16.32.4.7 discardBackupVertices	207
	16.32.4.8 getChi2	207
	16.32.4.9 getDimEqualities	207
	16.32.4.1@etDimInequalities	207
	16.32.4.11getDimObjectives	208
	16.32.4.12getOptVecCopy	208
	16.32.4.13getOptVecDimension	208
	16.32.4.14getValueDimension	208
	16.32.4.15nitWorkspaces	209
	16.32.4.1& estore Vertices	209
	16.32.4.17restoreVerticesButKeepBackup	209
	16.32.4.18setConfig	209
	16.32.4.19solve	210
	16.32.4.20solveImpl	210
16.32.	5 Member Data Documentation	210
	16.32.5.1 _active_vertices	210
	16.32.5.2 _equalities	210
	16.32.5.3 _equalities_dim	211
	16.32.5.4 _graph_structure_modified	211
	16.32.5.5 _inequalities	211
	16.32.5.6 _inequalities_dim	211
	16.32.5.7 _jacobian	211
	16.32.5.8 _no_vert_backups	212
	16.32.5.9 _objective_dim	212
	16.32.5.10_objectives	212
	16.32.5.11_opt_vec_dim	212
	16.32.5.12_val_dim	212
	16.32.5.13_values	212
	16.32.5.14_weight_adapt_count	212
	16.32.5.15_weight_equalities	213
	16.32.5.16_weight_inequalities	213
	16.32.5.17cfg	213
	16.32.5.18EIGEN_MAKE_ALIGNED_OPERATOR_NEW	213
16.33teb::Sc	olverLevenbergMarquardtEigenSparse Class Reference	213
16.33.	1 Detailed Description	216
16.33.2	2 Member Typedef Documentation	216
	16.33.2.1 EdgeContainer	216
	16.33.2.2 VertexContainer	
16.33.0	3 Constructor & Destructor Documentation	
	16.33.3.1 SolverLevenbergMarquardtEigenSparse	217

CONTENTS xxv

16.33.4 Member Function Documentation
16.33.4.1 adaptWeights
16.33.4.2 allocateSparseJacobian
16.33.4.3 applyIncrement
16.33.4.4 applyOptVec
16.33.4.5 backupVertices
16.33.4.6 buildJacobian
16.33.4.7 buildValueVector
16.33.4.8 countJacobianColNNZ
16.33.4.9 discardBackupVertices
16.33.4.10getChi2
16.33.4.11getDimEqualities
16.33.4.12getDimInequalities
16.33.4.13getDimObjectives
16.33.4.14getOptVecCopy
16.33.4.15getOptVecDimension
16.33.4.16getValueDimension
16.33.4.17nitWorkspaces
16.33.4.1&restoreVertices
16.33.4.19restoreVerticesButKeepBackup
16.33.4.20setConfig
16.33.4.21solve
16.33.4.22solveImpl
16.33.5 Member Data Documentation
16.33.5.1 _active_vertices
16.33.5.2 _equalities
16.33.5.3 _equalities_dim
16.33.5.4 _graph_structure_modified
16.33.5.5 _inequalities
16.33.5.6 _inequalities_dim
16.33.5.7 _jacobian
16.33.5.8 _nnz_per_col
16.33.5.9 _no_vert_backups
16.33.5.10_objective_dim
16.33.5.11_objectives
16.33.5.12_opt_vec_dim
16.33.5.13_sparse_solver
16.33.5.14_val_dim
16.33.5.15_values
16.33.5.16_weight_adapt_count

XXVI

16.33.5.17_weight_equalities	225
16.33.5.18_weight_inequalities	226
16.33.5.19cfg	226
16.33.5.20EIGEN_MAKE_ALIGNED_OPERATOR_NEW	226
16.34teb::SolverNloptPackage Class Reference	226
16.34.1 Detailed Description	229
16.34.2 Member Typedef Documentation	229
16.34.2.1 EdgeContainer	229
16.34.2.2 VertexContainer	229
16.34.3 Constructor & Destructor Documentation	229
16.34.3.1 SolverNloptPackage	229
16.34.4 Member Function Documentation	229
16.34.4.1 applyIncrement	229
16.34.4.2 applyOptVec	230
16.34.4.3 backupVertices	230
16.34.4.4 constraintsEq	230
16.34.4.5 constraintsInEq	230
16.34.4.6 discardBackupVertices	230
16.34.4.7 equalityConstraintFunction	231
16.34.4.8 getBoundConstrDimFromStorage	231
16.34.4.9 getDimEqualities	231
16.34.4.10getDimInequalities	231
16.34.4.11getDimObjectives	231
16.34.4.12getEqConstrDimFromStorage	231
16.34.4.13getInEqConstrDimFromStorage	231
16.34.4.14getOptVecCopy	231
16.34.4.15getOptVecDimension	232
16.34.4.1&getOptVecDimFromStorage	232
16.34.4.17inequalityConstraintFunction	232
16.34.4.18nitWorkspaces	232
16.34.4.19objectiveFunction	232
16.34.4.20bjectives	232
16.34.4.21restoreVertices	232
16.34.4.22restoreVerticesButKeepBackup	233
16.34.4.23seperateInequalitiesAndBounds	233
16.34.4.24setConfig	233
16.34.4.25solve	233
16.34.4.26solveImpl	234
16.34.5 Member Data Documentation	234
16.34.5.1 _active_vertices	234

CONTENTS xxvii

16.34.5.2 _bound_constraints	. 234
16.34.5.3 _bound_constraints_dim	. 234
16.34.5.4 _ctol_eq	. 234
16.34.5.5 _ctol_ineq	. 234
16.34.5.6 _equalities	. 234
16.34.5.7 _equalities_dim	. 234
16.34.5.8 _graph_structure_modified	. 235
16.34.5.9 _inequalities	. 235
16.34.5.10_inequalities_dim	. 235
16.34.5.11_inequalities_without_bounds	. 235
16.34.5.12_inequalities_without_bounds_dim	. 235
16.34.5.13_lower_bounds	. 235
16.34.5.14_no_vert_backups	. 235
16.34.5.15_objective_dim	. 236
16.34.5.16_objectives	. 236
16.34.5.17_opt_vec_dim	. 236
16.34.5.18_upper_bounds	. 236
16.34.5.19cfg	. 236
16.34.5.20EIGEN_MAKE_ALIGNED_OPERATOR_NEW	. 236
16.35teb::SolverSQPDense Class Reference	. 237
16.35.1 Detailed Description	. 240
16.35.2 Member Typedef Documentation	. 240
16.35.2.1 EdgeContainer	. 240
16.35.2.2 MatMapRowMajor	. 240
16.35.2.3 VertexContainer	. 240
16.35.3 Constructor & Destructor Documentation	. 240
16.35.3.1 SolverSQPDense	. 240
16.35.3.2 SolverSQPDense	. 240
16.35.4 Member Function Documentation	. 241
16.35.4.1 applyIncrement	. 241
16.35.4.2 applyOptVec	. 242
16.35.4.3 backupVertices	. 242
16.35.4.4 buildEqualityConstraintJacobian	. 242
16.35.4.5 buildEqualityConstraintValueVector	. 242
16.35.4.6 buildInequalityConstraintJacobian	. 243
16.35.4.7 buildInequalityConstraintValueVector	. 243
16.35.4.8 buildObjectiveGradient	. 243
16.35.4.9 buildObjectiveValue	. 243
16.35.4.1@alculateLagrangianGradient	. 243
16.35.4.11calculateLagrangianHessian	. 243

xxviii CONTENTS

CONTENTS xxix

16.35.5.17_lagrangian_gradient_backup	253
16.35.5.18_lagrangian_hessian	253
16.35.5.19_lb	253
16.35.5.20_merit_alpha	253
16.35.5.21_merit_grad	253
16.35.5.22_multiplier_eq	253
16.35.5.23_multiplier_ineq	253
16.35.5.24_no_vert_backups	253
16.35.5.25_objective_dim	254
16.35.5.26_objective_gradient	254
16.35.5.27_objective_value	254
16.35.5.28_objectives	254
16.35.5.29_opt_vec_dim	254
16.35.5.30_qdual	254
16.35.5.31_qsolver	254
16.35.5.32_ub	255
16.35.5.33cfg	255
16.35.5.34EIGEN_MAKE_ALIGNED_OPERATOR_NEW	255
$16.36 teb :: State Vertex Class \ Template \ Reference \\ \ \ldots \\ \ \ldots \\ \ \ldots \\ \ \ldots$	255
16.36.1 Detailed Description	258
16.36.2 Member Typedef Documentation	258
16.36.2.1 BackupStackType	258
16.36.2.2 FixedStates	258
16.36.2.3 ScalarType	258
16.36.2.4 StateVector	258
16.36.2.5 VertexContainer	258
16.36.3 Constructor & Destructor Documentation	259
16.36.3.1 StateVertex	259
16.36.3.2 StateVertex	259
16.36.3.3 StateVertex	259
16.36.3.4 StateVertex	259
16.36.4 Member Function Documentation	259
16.36.4.1 dimension	259
16.36.4.2 dimensionFree	259
16.36.4.3 discardTop	259
16.36.4.4 fixed_states	260
16.36.4.5 getData	260
16.36.4.6 getDataFree	260
16.36.4.7 getOptVecldx	260

CONTENTS

16.36.4.9 isFixedAny	 260
16.36.4.10sFixedComp	 261
16.36.4.11operator=	 261
16.36.4.12plus	 261
16.36.4.13plus	 261
16.36.4.14plusFree	 261
16.36.4.15pop	 261
16.36.4.1 c push	 262
16.36.4.17setFixedAll	 262
16.36.4.18setFixedState	 262
16.36.4.19setFixedStates	 262
16.36.4.20setFixedStates	 262
16.36.4.21setFixedStates	 262
16.36.4.22setFree	
16.36.4.23setOptVecldx	
16.36.4.24setStates	 263
16.36.4.25setStates	 263
16.36.4.26stackSize	 263
16.36.4.27states	
16.36.4.28states	
16.36.4.29top	
16.36.5 Friends And Related Function Documentation	
16.36.5.1 operator!=	
16.36.5.2 operator <<	
16.36.5.3 operator==	
16.36.6 Member Data Documentation	
16.36.6.1 _backup	
16.36.6.2 _dimension	
16.36.6.3 _fixed_states	
16.36.6.4 _opt_vec_idx	
16.36.6.5 _states	
16.36.6.6 Dimension	
16.36.6.7 DimStates	
16.37teb::SystemDynamics< p, q > Class Template Reference	
16.37.1 Detailed Description	
16.37.2 Member Typedef Documentation	
16.37.2.1 ControlVector	
16.37.2.2 StateVector	
16.37.3 Constructor & Destructor Documentation	
16.37.3.1 SystemDynamics	 ∠७/

CONTENTS xxxi

16.37.3.2 ~SystemDynamics	267
16.37.4 Member Function Documentation	267
16.37.4.1 finiteElemCentralDiff	267
16.37.4.2 finiteElemFwdEuler	268
16.37.4.3 stateSpaceModel	268
16.37.5 Friends And Related Function Documentation	269
16.37.5.1 EdgeSystemDynamics	269
16.37.5.2 Simulator	269
16.37.6 Member Data Documentation	269
16.37.6.1 DimControls	269
16.37.6.2 DimStates	269
16.38teb::Config::Teb Struct Reference	269
16.38.1 Detailed Description	270
16.38.2 Member Data Documentation	270
16.38.2.1 diff_method	270
16.38.2.2 dt_hyst	270
16.38.2.3 dt_min	270
16.38.2.4 dt_ref	270
16.38.2.5 goal_dist_force_reinit	270
16.38.2.6 n_max	270
16.38.2.7 n_min	270
16.38.2.8 n_pre	271
16.38.2.9 teb_iter	271
$16.39 teb:: Teb Controller < p, q > Class Template Reference \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	271
16.39.1 Detailed Description	275
16.39.2 Member Typedef Documentation	276
16.39.2.1 ControlSequence	276
16.39.2.2 ControlVector	276
16.39.2.3 EdgeContainer	276
16.39.2.4 FixedStates	276
16.39.2.5 StateSequence	276
16.39.2.6 StateVector	277
16.39.2.7 VertexContainer	277
16.39.3 Constructor & Destructor Documentation	277
16.39.3.1 TebController	277
16.39.3.2 TebController	277
16.39.3.3 ~TebController	277
16.39.4 Member Function Documentation	277
16.39.4.1 activateControlBounds	277
16.39.4.2 activateControlBounds	278

xxxii CONTENTS

16.39.4.3 activateObjectiveQuadraticForm
16.39.4.4 activateObjectiveTimeOptimal
16.39.4.5 activateStateBounds
16.39.4.6 activateStateBounds
16.39.4.7 buildOptimizationGraph
16.39.4.8 controlSequence
16.39.4.9 customOptimizationGraph
16.39.4.1@ustomOptimizationGraphHotStart
16.39.4.11dt
16.39.4.12irstControl
16.39.4.13irstControlRef
16.39.4.14firstControlSaturated
16.39.4.15 irst State
16.39.4.16 irst State Ref
16.39.4.17getAbsoluteTimeVec
16.39.4.18getActiveVertices
16.39.4.19getDt
16.39.4.20getM
16.39.4.21getN
16.39.4.22getSampleOptVecldxVMat
16.39.4.23getStateCtrlInfoMat
16.39.4.24getTEBFixedMap
16.39.4.25graph
16.39.4.26nitOptimization
16.39.4.27initTrajectory
16.39.4.28nsertStateControlInputPair
16.39.4.29astState
16.39.4.30astStateRef
16.39.4.31optimizeTEB
16.39.4.32predictControl
16.39.4.33pushBackStateControlInputPair
16.39.4.34pushFrontStateControlInputPair
16.39.4.35removeStateControlInputPair
16.39.4.36 esample Trajectory
16.39.4.37resetController
16.39.4.38resizeTrajectory
16.39.4.39returnControlInputSequence
16.39.4.40setFixedDt
16.39.4.41setFixedGoal
16.39.4.42setFixedGoal

CONTENTS xxxiii

	16.39.4.43setFixedGoal	291
	16.39.4.44setFixedStart	291
	16.39.4.45setFixedStart	291
	16.39.4.46setGoalStatesFixedOrUnfixed	292
	16.39.4.47setGoalStatesFixedOrUnfixed	293
	16.39.4.48setGoalStatesFixedOrUnfixed	293
	16.39.4.49setSolver	293
	16.39.4.50setSystemDynamics	294
	16.39.4.51setupHorizon	294
	16.39.4.52stateSequence	295
	16.39.4.53step	295
	16.39.4.54step	295
	16.39.4.55updateGoal	295
	16.39.4.5@pdateStart	296
16.39.5	Member Data Documentation	296
	16.39.5.1 _active_control_bounds	296
	16.39.5.2 _active_quadratic_form	297
	16.39.5.3 _active_state_bounds	297
	16.39.5.4 _active_system_dynamics	297
	16.39.5.5 _active_time_optimal	298
	16.39.5.6 _cfg_owned	298
	16.39.5.7 _ctrl_seq	298
	16.39.5.8 _dt	298
	16.39.5.9 _dt_ref	298
	16.39.5.10_fixed_goal_states	298
	16.39.5.11_goal_backup	298
	16.39.5.12_graph	298
	16.39.5.13_no_samples	299
	16.39.5.14_optimized	299
	16.39.5.15_solver	299
	16.39.5.16_state_seq	299
	16.39.5.17cfg	299
	16.39.5.18NoControls	299
	16.39.5.19NoStates	299
16.40teb::Teb	Plotter Class Reference	300
16.40.1	Detailed Description	301
	Member Enumeration Documentation	
	16.40.2.1 FileFormat	301
	Constructor & Destructor Documentation	
	16.40.3.1 TebPlotter	302

CONTENTS

CONTENTS XXXV

16.41.4.7 getDataFree	 312
16.41.4.8 getOptVecIdx	 312
16.41.4.9 isFixedAll	 312
16.41.4.1@sFixedAny	 312
16.41.4.11isFixedComp	 312
16.41.4.12operator()	 312
16.41.4.13perator=	 313
16.41.4.14plus	 313
16.41.4.15plus	 313
16.41.4.1¢plusFree	 313
16.41.4.17pop	 313
16.41.4.18push	 313
16.41.4.19setFixedAll	 313
16.41.4.20setFree	 314
16.41.4.21setOptVecldx	 314
16.41.4.22stackSize	 314
16.41.4.23op	 314
16.41.5 Friends And Related Function Documentation	 314
16.41.5.1 operator<<	 314
16.41.6 Member Data Documentation	 314
16.41.6.1 _backup	
16.41.6.2 _dt	
16.41.6.3 _fixed	 315
16.41.6.4 _opt_vec_idx	
16.41.6.5 Dimension	 315
16.42teb::SimResults::TimeSeries Struct Reference	 315
16.42.1 Detailed Description	 315
16.42.2 Member Data Documentation	 316
16.42.2.1 controls	 316
16.42.2.2 dt	 316
16.42.2.3 states	 316
16.42.2.4 time	
16.43teb::Config::Utilities Struct Reference	
16.43.1 Detailed Description	
16.44teb::VertexType Class Reference	 316
16.44.1 Detailed Description	
16.44.2 Member Typedef Documentation	
16.44.2.1 VertexContainer	
16.44.3 Member Function Documentation	
16.44.3.1 dimension	 318

xxxvi CONTENTS

16.44.3.2 dimensionFree	318
16.44.3.3 discardTop	319
16.44.3.4 getData	319
16.44.3.5 getDataFree	319
16.44.3.6 getOptVecldx	319
16.44.3.7 isFixedAll	319
16.44.3.8 isFixedAny	319
16.44.3.9 isFixedComp	319
16.44.3.10plus	320
16.44.3.11plus	320
16.44.3.12plusFree	320
16.44.3.13pop	320
16.44.3.14push	320
16.44.3.15setFree	320
16.44.3.16setOptVecldx	320
16.44.3.17stackSize	320
16.44.3.18top	321
16.44.4 Member Data Documentation	321
16.44.4.1 _opt_vec_idx	321
File Decumentation	323
_ ·	
_	
	329
	329
•	329
17.18mainpage.dox File Reference	329
	329
	16.44.3.3 discardTop 16.44.3.4 getData 16.44.3.5 getDataFree 16.44.3.6 getOptVecIdx 16.44.3.7 isFixedAll 16.44.3.9 isFixedComp 16.44.3.10plus 16.44.3.11plus 16.44.3.12plusFree 16.44.3.13pop 16.44.3.14push 16.44.3.15setFree 16.44.3.15setFree 16.44.3.17stackSize 16.44.3.18top 16.44.3.18top

CONTENTS xxxvii

17.20matlab_interface.md File Reference	29
17.21 measure_cpu_time.h File Reference	30
17.21.1 Macro Definition Documentation	30
17.21.1.1 START_TIMER	30
17.21.1.2 STOP_TIMER	30
17.22misc.h File Reference	30
17.22.1 Function Documentation	31
17.22.1.1 norm_angle	31
17.22.1.2 norm_angle_vec	32
17.23simulator.h File Reference	32
17.24simulator.hpp File Reference	33
17.25solver_levenbergmarquardt_eigen_dense.cpp File Reference	33
17.26solver_levenbergmarquardt_eigen_dense.h File Reference	33
17.27solver_levenbergmarquardt_eigen_sparse.cpp File Reference	33
17.28solver_levenbergmarquardt_eigen_sparse.h File Reference	34
17.29solver_nlopt_package.cpp File Reference	34
17.30solver_nlopt_package.h File Reference	34
17.31 solver_overview.md File Reference	34
17.32solver_sqp_dense.h File Reference	34
17.32.1 Macro Definition Documentation	35
17.32.1.1SUPPRESSANYOUTPUT	35
17.33solver_sqp_dense_backup.h File Reference	35
17.34system_dynamics.h File Reference	35
17.35teb_controller.h File Reference	36
17.36teb_controller.hpp File Reference	36
17.37teb_plotter.cpp File Reference	36
17.38teb_plotter.h File Reference	37
17.39teb_plotter.hpp File Reference	37
17.40teb_vertices.h File Reference	37
17.41 typedefs.h File Reference	38
17.41.1 Macro Definition Documentation	39
17.41.1.1 INF	39
17.41.1.2 INPUT_STREAM	39
17.41.1.3 Pl	39
17.41.1.4 PRINT_DEBUG	39
17.41.1.5 PRINT_DEBUG_COND	39
17.41.1.6 PRINT_DEBUG_COND_ONCE	39
17.41.1.7 PRINT_DEBUG_ONCE	10
17.41.1.8 PRINT_ERROR	10
17.41.1.9 PRINT_INFO	10

xxxviii CONTENTS

17.41.1.10PRINT_INFO_COND	340
17.41.1.11PRINT_INFO_COND_ONCE	340
17.41.1.12PRINT_INFO_ONCE	340
17.42utilities.h File Reference	340
17.43workspaces.h File Reference	341
18 Example Documentation	343
18.1 integrator_system1.cpp	343
18.2 integrator_system2.cpp	345
18.3 integrator_system_classic_mpc.cpp	347
18.4 integrator_system_mex.cpp	349
18.5 integrator_system_sfun.cpp	351
18.6 linear_system_ode.cpp	353
18.7 linear_system_ode_ctrl_comparison.cpp	355
18.8 linear_system_state_space.cpp	357
18.9 mobile_robot_teb.cpp	359
18.10rocket_system.cpp	368
18.11van_der_pol_system.cpp	370
Bibliography	372
Index	374

Timed-Elastic-Band Package Documentation

1.1 Overview

This project contains the implementation of a predictive controller and trajectory planner based on Timed-Elastic-Bands (TEB) (see [5]).

The TEB merges the states, control inputs and time intervals into a joint trajectory representation which enables planning of time-optimal trajectories in the context of model predictive control. Model predictive control integrates the planning of the optimal trajectory with state feedback in the control loop. The TEB approach formulates the fixed horizon optimal control problem for point-to-point transitions as a nonlinear program.

1.2 TEB Optimization Problem

1.2.1 Problem Formulation

The TEB joint trajectory representation is defined as follows:

$$\mathscr{B} := \{\mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, \mathbf{u}_2, \dots, \mathbf{x}_{n-1}, \mathbf{u}_{n-1}, \mathbf{x}_n, \Delta T\}$$

 $\mathbf{x}_i \in \mathbb{R}^p$ and $\mathbf{u}_i \in \mathbb{R}^q$ are the discretized state and control input vectors respectively. ΔT denotes the time difference required to transit from the *i-th* state to the consecutive one. Currently, this time difference is obtained from applying finite differences to the system dynamics equation (by replacing continuous derivatives).

This project considers nonlinear programs of the following form to optimize the TEB sequence \mathscr{B} .

$$V^*(\mathscr{B}) = \min f(\mathscr{B}) \tag{1.1}$$

s.t.:

$$\mathbf{x}_1 = \mathbf{x}_s \tag{1.2}$$

$$\mathbf{x}_n \approx \mathbf{x}_f$$
 (1.3)

$$\mathbf{h}_k(\mathscr{B}) = \mathbf{0} \quad k \in \mathscr{E} \tag{1.4}$$

$$\mathbf{g}_k(\mathscr{B}) \le \mathbf{0} \quad k \in \mathscr{I} \tag{1.5}$$

in which $f(\mathscr{B})$ denotes the objective/cost function. Equation (2) ensures that the nonlinear program constitutes at least an initial value problem. The final constrained equation (3) is not mendatory. But if it is not provided, the final state behavior should be specified using dedicated final state costs as part of $f(\mathscr{B})$. \mathscr{E} and \mathscr{I} denote the indices sets of equality and inequality constraints respectively.

For many problems the structure of the underlying optimization problem is sparse. To exploit these local relationships between states and control inputs, the optimization problem is formulated as a hyper-graph according to the formulism in [2]. The user has to define edges that represent "local" cost functions according to teb::BaseEdge and its subclasses. They can be added to the TEB controller by overriding teb::TebController::customOptimization-Graph(). A lot of common optimization and model predictive control problems are already implemented as Edge (especially for nonlinear dynamic systems in state-space representation. Refer to teb::SystemDynamics and the example programs for further information.

1.2.2 Solution of the TEB Optimization Problem

Solving the nonlinear program (1)-(5) requieres the utilization of dedicated solvers that support constraints. The solver classes are constantly expanded as subclasses of teb::BaseSolver.

An approximation to the solution can by computed efficiently using "Least Squares Solvers" and "Soft Constraints". Least Square Optimziation Problem require squared objectives. The solver class teb::BaseSolverLeastSquares transforms equation (1) to $V^*(\mathscr{B}) = \min f(\mathscr{B})^2$. Hard constraints (4) and (5) are transformed to soft constraints. Refer to the specific class description. teb::SolverLevenbergMarquardtEigenDense optimizes this transformed "least-squares" problem using the Levenberg-Marquardt algorithm (Dense means, that no sparse structure is exploited for the solution of the linear system. But only for the calculation of Jacobians due to the hyper-graph representation).

1.3 Further Information

Fore more detailed information about the Timed-Elastic-Band approach and applications refer to [3] [4] [1] [2].

1.3.1 Download

Refer to the download section.

1.3.2 Installation

Refer to the installation instructions.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Remarks

For research only.

Download TEB-Package

For Users

The project source code is managed by a subversion control system (SVN). Find the svn repository at https-://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/.

To get the newest (experimental and maybe unstable) version checkout the trunk folder using:

```
svn co https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/trunk teb_package
```

Find versions tagged as stable or working and tested with windows in the tags folder.

They can be checked out in a similar way (**Warning**: Never commit changes to an existing tagged version, copy it to your own branch instead).

To check out a specific branch of the project, consider the branches folder.

For Developers

Work on the trunk

Checkout the trunk:

```
\verb|svn| co| \verb|https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/trunk | teb\_package| \\
```

Modify or add code and check if you can compile the code successfully. Check the status of your changes:

svn st

Check files marked with a question mark, whether they should be added to the repository (use svn add <path/filename>).

Never add build files and temporary files to the repository!

Afterwards commit your changes to the trunk:

```
svn ci \mbox{-m} "This should be a comprehensive commit message for the \log"
```

Next time you continue working on the trunk, don't forget to call svn_up to get the latest updates.

In case of conflicts, please resolve them by merging the code or contact the author of the previous (conflicting) commit!

Create your own branch

Way 1:

Create the branch directly on the server:

 $\label{lem:syn_timedelasticBand/C++/trunk https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/trunk https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/branches/mybranc$

Now checkout your newly created branch. If you have no working copy of the project yet, use:

 $\verb|sun| co| \texttt| https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/branches/mybranch| teb_mybranch| teb_mybranch| teb_mybranch|$

If you already have a working copy (e.g. the trunk folder) call

svn switch https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/branches/mybranch

in the root of your trunk folder.

Way 2:

In case you checked out the complete project (including all branches and tags) using:

svn co https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/ teb_package

Now create a new branch while copying all project files (internally svn is smart enough to prevent double disk space usage):

```
mkdir branches/mybranch
svn add branches/mybranch
svn cp trunk branches/mybranch # Or copy a tag from the tags folder instead of the trunk to switch to the branches/mybranch
```

Synchronizing your branch with the trunk

To merge the most recent updates from the trunk into your own branch do the following.

First check what files have been changed compared to your branch:

svn st -u

Merge the diferences in your local working directory:

```
svn merge https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/trunk
```

Often it is recommended to add --dry-run to the argument list in order to check for possible conflicts. See the remarks below on manually resolving conflicts.

Finally commit your merged code to your branch.

Merging a branch into the trunk

First synchronize your branch with the trunk and commit changes like mentioned before.

Now checkout the trunk to a dedicated directory.

Make sure that you do not have any local changes on the trunk (svn up; svn st).

Merge the (already synchronized) branch "mybranch" into the trunk using:

```
svn merge --reintegrate https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/branches/mybranch
```

Finally, commit your merged trunk to the server.

Click here and here for more information about merging.

Information about your working directory

Get information on your current revision and if you are working on the trunk or a branch using

svn info

Reverting local changes

Undo changes that are not yet committed:

```
svn revert <file>
```

Or undo everything (switch to the main directory first):

```
svn revert --recursive .
```

Correcting commit log messages

If you want to correct a previously made commit message, call:

```
svn propedit svn:log --revprop -r <REV-NR> https://svc.rst.e-technik.tu-dortmund.de/svn/TimedElasticBand/C++/
```

where <REV-NR> denotes the revision number (you can get revision numbers via svn log).

Resolving conflicts

If svn was not able to solve conflicts automatically, try to open the files marked as conflicted and searh for lines starting with "<<<<<<<" and ">>>>>>". Edit them manually and afterwards call

```
svn resolved <file>
```

Useful symbolic revision names

For some revisions, special symbolic names can be utilized:

- · HEAD: latest (youngest) revision on the server
- · BASE: the revision your checkout was last updated against
- · COMMITTED: last revision a file or directory was changed
- PREV: the last revision the file or directory was changed immediatley before COMMITTED

6	Download TEB-Package

Install TEB-Package

Ubuntu

Prerequisites:

- CMake: Required to create the platform depenent build files (sudo apt-get install cmake).
- *Gnuplot* (optional, but recommanded): Required for plotting and visualization (sudo apt-get install gnuplot gnuplot-x11).
- *Doxygen* (optional): Necessary, if the documentation should be compiled (sudo apt-get install doxygen).
- Tex Live (optional): Only necessary to create a pdf documentation from the latex source generated by doxygen.
- Matlab (optional): Necessary only if the user wants to create mex-files and s-functions for the usage in Matlab and Simulink.
- *kDevelop* (optional): IDE for developers. It supports the import CMakeLists.txt directly (sudo apt-get install kdevelop).
- SuiteSparse (optional): Enables the usage of a wider range of sparse direct linear solvers (sudo apt-get install libsuitesparse-dev).

Usage:

TODO

Doxygen:

After the project is generated using CMake, cd into the ./build folder and call make doc from the terminal. Now a HTML and a LATEX folder should be created inside the doc folder. To create a PDF from the LATEX source directly, cd to ./doc/LATEX and type in your terminal: make pdf (Tex Live including pdflatex required!).

Mac OSX

Prerequisites:

- XCode: Download the newest x-code version from the app store or from the OS X developer page.
- CMake: Required to create the platform depenent build files (http://www.cmake.org).
- Gnuplot (optional, but recommanded): Required for plotting and visualization (http://gnuplot.info)
- Doxygen (optional): Necessary, if the documentation should be compiled (http://www.stack.-nl/~dimitri/doxygen/download.html).

8 Install TEB-Package

 MacTex (optional): Only necessary to create a pdf documentation from the latex source generated by doxygen.

 Matlab (optional): Necessary only if the user wants to create mex-files and s-functions for the usage in Matlab and Simulink.

Remarks: For me (Christoph), x11 (xquartz) was not working if gnuplot was called from default terminal. It worked only in xterm. Since xcode starts the default terminal, I decided to use aguaterm in the TEBPlotter class:

```
install xcode with command line tools
install homebrew
install aquaterm
terminal: brew install gnuplot --with-aquaterm
test installation:
terminal: gnuplot
plot x
```

Usage:

Open CMake and select the CMakeLists.txt inside the project folder. Select x-code as the underlying compiler, configure and generate the project into a "build" folder. You can find the x-code project files now inside the newly created build folder.

Doxygen:

After the project is generated using CMake, cd into the ./doc folder and call <code>doxygen doxygen.config</code> from the terminal. Now a HTML and a LATEX folder should be created inside the doc folder. To create a PDF from the LATEX source directly, cd to ./doc/LATEX and type in your terminal: <code>make pdf</code> (MacTex including pdflatex required!).

Windows

Prerequisites:

- Visual Studio 2013+: Download Visual Studio (At least Version 12 / 2013)
- CMake: Required to create the platform depenent build files (http://www.cmake.org).
- Gnuplot (optional, but recommanded): Required for plotting and visualization (http://gnuplot.info)
- Doxygen (optional): Necessary, if the documentation should be compiled (http://www.stack.-nl/~dimitri/doxygen/download.html).
- MikTex (optional): Only necessary to create a pdf documentation from the latex source generated by doxygen.
- Matlab (optional): Necessary only if the user wants to create mex-files and s-functions for the usage in Matlab and Simulink.

Remarks: Gnuplot has to be included in Windows Path variable:

• Windows 8: System Control -> Extended System Settings -> Advanced -> Environment variables. Modify the "System Variable" PATH and append the Gnuplot binary directory. E.g.: PATH;C:\Program Files\gnuplot\bin\

Usage:

Open CMake and select the C++ project folder. Select Visual Studio 12 (2013) 64 Bit as the underlying compiler, configure and generate the project into a specified "build" folder. **Caution:** We observed problems using 32 Bit, therefore we recommend to select 64 Bit Visual Studio!! You can find the Visual-Studio project files now inside the newly created build folder.

Solver Overview

The following list contains descriptions and small guidances about the solver backends implemented or interfaced within this package.

Least-Squares Solver

Least-Square solvers minimize only quadratic functions without constraints $V^*(\mathscr{B}) = \min f^2(\mathscr{B})$.

Advantages of the least-squares solver are the amazing performance, the robustness (Levenberg-Marquardt) and even after a few iterations, a suitable solution is found often. A drawback is the lack of hard constraints. This implementation transforms equality and inequality constraints automatically into soft constraints (refer to the class description).

Due to the prequisite that only squared function can be minimized, we need to keep the following important definitions/conventions in mind:

- The objective functions are always defined without squaring the values: $f(\mathcal{B})$ than $f^2(\mathcal{B})$.
- The solver will square the values internally (this definition is much more efficient than specifying the squared values).
- Constraints are squared internally as well using the soft-constraint approximation.
- To make the MPC optimization problem simultaneously compatible to Non-Linear Program Solvers (see below), the designer of an objective function (given as an edge type for the hyper-graph, see the mobile robot example) can specify some information about the function type (see Enumeration teb::FUNCT_TYPE). This can be helpful for the hessian calculation as well, since a linear function has a zero hessian. The function types are defined as follow:
 - Nonlinear. The function is nonlinear (it will be squared by LeastSquares solver, but not by other solvers)
 - Nonlinear Squared: The function is nonlinear (it will be squared by all solvers)
 - Nonlinear_Once_Diff: The hessian of this function is always zero (and it will be squared only by Least-Square solvers)
 - Quadratic: The function will be squared only by LeastSquares solvers (-> Power of 4 !!!)
 - Linear: The function will be squared only by LeastSquares solvers (zero hessian)
 - LinearSquared: The function will be squared by all solvers (zero hessian)

Levenberg-Marquardt Dense (teb::SolverLevenbergMarquardtEigenDense)

This solver constitutes a robust least-squares optimization algorithm. The Levenberg-Marquardt algorithm is similar to the one used in [2]. The underlying linear system is solved using the Eigen framework.

Levenberg-Marquardt Sparse (teb::SolverLevenbergMarquardtEigenSparse)

10 Solver Overview

This solver implements the sparse version of the Levenberg-Marquardt algorithm mentioned above. Jacobians and Hessians are internally treaten as sparse matrices, that are efficiently constructed using the hyper-graph formulation of the underlying optimization problem. The resulting sparse linear system is solved using the Eigen framework (sparse modules). If CMake is able to find SuiteSparse/Cholmod libraries (see Install TEB-Package), the cholmod solver is utilized for solving the sparse linear system as long as !defined(FORCE_EIGEN_SOLVER).

Nonlinear Program Solver

Sequential-Quadratic-Programming (SQP) Dense with qpOASES (teb::SolverSQPDense)

The solver implementation is still in progress, documantation will be added in the future.

NLOPT Solver Interface (teb::SolverNloptPackage)

The solver implementation is still in progress, documantation will be added in the future.

Matlab Interface

The following instructions give you an introduction on how to interface this package with Matlab and Matlab Simulink. The procedure is still experimental, please inform us about bugs and/or possible solutions.

Way 1: Compile MEX and S-Function wrapper using CMAKE

Advantages:

- · Simple solution
- Allows the library teb_package.lib to be compiled either in Debug or Release mode

Disadvantages:

• In order to use the wrappers within *Matlab's/Simulink's RealTime Workshop*, the code must be compilable with Matlab. In this case refer to *Way 2* instead.

You can directly include MEX or S-Function wrapper functions (defined in separate *.cpp files) into the CMAKE build progress. See the *CMakeLists.txt* for examples.

If the projects are stored in the example folder, add them to:

```
SET(MEX_EXAMPLE_NAMES # matlab mex example files
   matlab_interface/integrator_system_mex
   # Add files without .cpp extension here, attach folder name as a prefix
)

SET(SFUN_EXAMPLE_NAMES # matlab simulink mex example files
   matlab_interface/integrator_system_sfun
   # Add files without .cpp extension here, attach folder name as a prefix
)
```

If you use a separate project, add them using ADD_MEX_FILE macro (see *cmake/macros* directory) and link against the *teb_library.lib*. You need to include Matlabs source and libs (see *FindMatlab.cmake* in *cmake/modules* and its application in *CMakeLists.txt*).

For information about the MEX wrapper source and the S-Function wrapper source themselves, please refer to the example section.

The TEB library *teb_package.lib* and the compiled MEX files are stored somewhere inside the build folder, depending on the platform used. Please check *build/bin/lib* and */build/lib/* first.

Way 2: Compile MEX and S-Function wrapper using Matlab itself

Advantages:

12 Matlab Interface

 Avoids copying the MEX file from the build path to the working directory, since Matlab creates it directly in the current directory.

· Allows compiling with Matlab's/Simulink's Realtime Workshop

Disadvantages:

- Allows the library teb package. lib to be compiled only in Release mode.
- A second independent build process needs to be specified that requires information about libraries, include directories and additional source files.

Choosing this way requires the user to define settings for compiling a MEX wrapper in Matlab. First make sure to have at least *Visual Studio 2013* installed. Check if you set up your compiler in Matlab correctly:

```
mex -setup
```

Now switch to your working directory containing the MEX wrapper source file (For the sake of simplicity, we assume that additional header files are stored in the same folder, otherwise add the corresponding path to build process).

Compile your source code using mex '-IC:\path-to-include' '-LC:\path-to-library' '-ILibName' 'source-file-name.cpp'. If you want to use variables, use the following syntax and exchange the strings with variables:

If everything was successful you should now see a compiled MEX-file in your working directory. Please refer to the example section for more details on how to use the MEX/S-Function interface.

Use your code in Simulink

Create your model and add the S-Function block where you can specify the name of your compiled MEX S-Function. You can use your model in *Simulink Normal Mode* without Compiling

Compile your code in Simulink

If you want to compile your code in Simulink, go to *Simulation/Model Configuration Paramters/Code Generation* and switch the Language to C++. Select the *Interface* subsection and deselect *MAT-file logging*. Finally, you need to provide all build informations that was required by the mex compiler. Goto the *Custom Code* subsection. In the fragment *Include list of additional* add all paths and files that are required (find here the integrator example):

· Include directories:

C:\teb_package\include

C:\teb_package\extern\eigen3

· Libraries:

C:\teb package\build\lib\Release\teb package.lib

Instead of linking the *teb_package.lib*, you can add the C++ source files (e.g. to avoid *error LNK2038* (see below)) of the package directly:

• Source files: C:\teb_package\src\base\base_controller.cpp

C:\teb_package\src\base\base_solver_least_squares.cpp

C:\teb_package\src\base\workspaces.cpp

C:\teb package\src\solver\solver levenbergmarquardt eigen dense.cpp

C:\teb package\src\solver\solver levenbergmarquardt eigen sparse.cpp

Now you can compile your code directly within Simulink. If you have any troubles, please check the *Troubleshooting* section first.

Compile your code for Simulink xPC Target

Go to Simulation/Model Configuration Paramters/Code Generation and change the target to Simulink Real-Time. Afterwards follow the steps mentioned in Compile your code in Simulink above. But use the source files method instead of linking the precompiled library teb_package.lib before.

Simulink xPC Target does not support IO. Therefore you have to define *RTW* before compiling the teb_package / model. Define it using the CXX Flag *-DRTW* or uncomment the line '#define RTW' in the file *typedefs.h*.

Now you can compile you should be able to compile your model for xPC target.

Compile your code for Simulink Real-Time Windows Target

Compilation for RTWIN is currently only supported in *Normal Mode*. Compiling in *External Mode* invokes a dedicated Real-Time Kernel that does not support dynamic memory allocation and exceptions. Those are both utilized in the C++ standard library (STL) which is widely used within this project.

Troubleshooting

- error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '2' doesn't match value '0'
 Try to compile the TEB package in Release mode: Check first lines in CMakeLists.txt!
- error LNK2038: Konflikt ermittelt für "RuntimeLibrary": Der Wert "MD_DynamicRelease" stimmt nicht mit dem Wert "MT StaticRelease" xxx sfun.obj überein.

Simulink compiles determines that some parts are compiled as static and some other parts as dynamic, therefore the linker cannot link them. For me it remains unclear, since the teb_package.lib is compiled statically and the mex compiler is Visual Studio in both cases. You can bypass this error by modifying the compiler settings in *Simulation/Model Configuration Paramters/Code Generation* by changing the *Build configuration* to *Specify* and append the */MD* flag to the C++ Compiler flags. If you have still problems, try to exchange /*MD* with */MT*. See the image below: An alternative way to solve the problem is to directly compile the whole teb_package by providing the *.cpp source files instead of the library *teb_package.lib*.

14 **Matlab Interface**

Test List

Class teb::SolverNloptPackage

This class needs more testing (different solvers etc.)

Member teb::TebPlotter::plotTwoCol (const Eigen::Ref< const Eigen::VectorXd > &col1_time, const Eigen::Ref< const Eigen::MatrixXd > &col1_data, const Eigen::Ref< const Eigen::VectorXd > &col2_time, const Eigen::Ref< const Eigen::MatrixXd > &col2_data, PlotOptions *options=nullptr)

What happens if the right column contains more rows than the left one? (Alignment)

16 **Test List**

Todo List

Class teb::BaseController

Implement complete API (abstract functions, etc.) to allow a generic controller usage for teb::Simulator and teb::TebPlotter

Member teb::BaseEdge < D, FuncType >::allocateMemory (bool skip_hessian=false)

Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian If no hessian calculation is required by the solver skip memory allocation.

Member teb::BaseEdge < D, FuncType >::calculateVertexDimensions ()

Maybe implement another strategy to store the dimensions.

Member teb::BaseEdge< D, FuncType, Vertices >::allocateMemory (bool skip_hessian=false)

Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian If no hessian calculation is required by the solver skip memory allocation.

Member teb::BaseEdge < D, FuncType, Vertices >::calculateVertexDimensions ()

Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-in

Member teb::BaseSolver::solve (HyperGraph *optimizable_graph)

Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Member teb::BaseSolverLeastSquares::getChi2 () const

Maybe switch to the formulation $f(\mathcal{B}) = \mathbf{f}(\mathcal{B})^T \Omega \mathbf{f}(\mathcal{B})$ similar to g2o and Teb-Matlab.

Class teb::BaseSolverNonlinearProgramDense

The documentation of this class, after this class passed a couple of more tests

Class teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >

Maybe use a special representation or zero Hessians to avoid processing a lot of zeros (same for other edges)

Class teb::EdgeQuadraticForm< p, q >

Currently the Levenberg-Marquardt solver take the cost function squared by itself, therefore we need to implement the sqrt here: For other solvers this cost function will be problematic without taking the square.

Class teb::HessianWorkspace

TebVertex::dimension() is used at the moment. Acutally only a number of TebVertex::dimensionFree() non-zeros may appear. Test if it speeds up the optimization to skip those values by using the fixed-mask. But for common MPC problems only the first or/and the final state are fixed partially.

18 Todo List

Class teb::JacobianWorkspace

TebVertex::dimension() is used at the moment. Acutally only a number of TebVertex::dimensionFree() non-zeros may appear. Test if it speeds up the optimization to skip those values by using the fixed-mask. But for common MPC problems only the first or/and the final state are fixed partially.

Class teb::NumericalIntegrator < p, q >

Implement and test Runge Kutta with derivatives http://www.emis.de/journals/EJDE/conf-proc/02/g1/goekepdf

Class teb::PlotOptions

Extend functionality

Class teb::Simulator < p, q >

Add disturbance models.

Add reference trajectory or multiple reference steps for closed-loop control.

Member teb::Simulator < p, q >::setSampleTime (double sample_time)

Allow different sample times for controller and plant simulation (the TEB sample time ΔT might be higher ...)

Class teb::SolverLevenbergMarquardtEigenSparse

Consider only the upper diagonal part of the hessian?

Member teb::SolverLevenbergMarquardtEigenSparse::buildJacobian ()

Check if implemented ordering of column and row iterations fits Eigen's column major representation best.

Class teb::SolverSQPDense

The documentation of this class, after the SQP sovler passed a couple of remaining (robustness) tests

Class teb::SystemDynamics < p, q >

Methods/Intefrace for jacobian and hessian calculation

Class teb::TebController< p, q >

Using the TebController inside a standard container (e.g. vector) does not work as supposed to do.

Create copy and move constructors.

Member teb::TebController< p, q >::activateControlBounds (unsigned int control_idx, double u_min, double u_max, bool activate=true)

Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

Member teb::TebController< p, q >::activateStateBounds (unsigned int state_idx, double x_min, double x max, bool activate=true)

Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

$\label{lem:emberteb::TebController} \begin{tabular}{ll} Member teb::TebController< p, q>::activateStateBounds (const Eigen::Ref< const StateVector> &x_min, const Eigen::Ref< const StateVector> &x_max, bool activate=true) \end{tabular}$

Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

Member teb::TebController< p, q >::buildOptimizationGraph ()

Here we need to fix the last control input since it undefined (no control is needed to go to state n+1). Maybe we can change the code somewhere else, that the contorl sequence is always getN()-1.

Member teb::TebController< p, q >::firstControlSaturated () const

Support multiple control input bounds (now its scalar for all elements of u).

Returns

Saturated control input u_k [q x 1].

Member teb::TebController< p, q >::getActiveVertices ()

Add case for different state and control input sequence lengths (e.g. for move blocking)

Member teb::TebController< p, q >::initTrajectory (const Eigen::Ref< const StateVector > &x0, const Eigen::Ref< const StateVector > &xf, unsigned int n)

More efficient implementation that keeps previously allocated memory

Member teb::TebController< p, q >::optimizeTEB ()

The current implementation is really inefficient, since in each outer-loop-iteration all hyper-graph edges are deleted and afterwards reinstantiated. Create a dedicated update function in the future to hot-start from a previous hyper-graph.

Member teb::TebController< p, q >::resampleTrajectory (unsigned int n_new)

More efficient strategy without copying the complete sequences.

: later this should be n_new-1

Member teb::TebController< p, q >::returnControllnputSequence () const

Here we assume, that the last control input is invalid - We need to change this, if we have different sizes for state and control input sequences

20 **Todo List**

Bug List

Member teb::Config::Optim::Solver::Lsq::soft constr epsilon

Do not use at the moment, because it is not implemented correctly

Class teb::EdgeSystemDynamics < p, q, central >

Central differences do not seem to work as expected at the moment.

Member teb::Simulator< p, q >::simClosedLoop (const double *const x0, const double *const xf, double sim_time, bool manual_stepping=false, bool plot_result=true, bool plot_steps=true, BaseController *ctrl=nullptr)

If we set a title or legend in the plot options for stepping (!), than the plot won't be rendered correctly.

Class teb::TebPlotter

EPS and PDF export are not working as expected. No text is displayed and after importing to Inskape, the plot is blank (noticed on Ubuntu 14.04).

22 **Bug List**

Module Index

9.1 Modules

Hara	ic a	liet of	all	modi	عمار

Controller												 										 		??
Solver												 										 		??
Simulation												 										 		??
Visualization	on											 										 		??

24 **Module Index**

Namespace Index

10.1	1 Namespace List	
Here is	e is a list of all namespaces with brief descriptions:	
teb	teb	

26 Namespace Index

Hierarchical Index

11.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

teb::BaseController	??
$teb:: Teb Controller < p, q > \ \ \ldots \ \ \ \ldots \ \ \ \ \ldots \ \ \ \ldots \ \ \ \ \ldots \ \ \ \ \ \ \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \$??
teb::BaseSolver	??
teb::BaseSolverLeastSquares	??
teb::SolverLevenbergMarquardtEigenDense	??
teb::SolverLevenbergMarquardtEigenSparse	??
teb::BaseSolverNonlinearProgramDense	??
teb::SolverSQPDense	??
teb::SolverSQPDense	??
teb::SolverNloptPackage	??
teb::Config	??
teb::CustomBoundData	??
teb::EdgeType	??
teb::LINEAR, Vertex >	
teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >	
teb::EdgeMinimizeTime	
$teb:: Base Edge < 1, FUNCT_TYPE:: LINEAR_SQUARED, State Vertex < p >, Control Vertex < q >> . \ .$??
$teb:: Edge Quadratic Form < p, q > \dots \dots$??
teb::BaseEdge $<$ p, FUNCT_TYPE::NONLINEAR, StateVertex $<$ p $>$, ControlVertex $<$ q $>$, State-	
$\label{eq:Vertex} \textit{Vertex} < p >, TimeDiff > \ \dots \dots$??
teb::EdgeSystemDynamics< p, q, central >	??
teb::BaseEdge< D, FuncType, Vertices >	??
$teb:: Bound Constraint < Bound_type, \ Vertex, \ Bound_vars, \ Index > $??
teb::BaseEdge < D, FuncType >	??
teb::Config::Optim::Solver::NonlinearProgram::Hessian	??
teb::HessianWorkspace	??
teb::HyperGraph	??
	??
9	??
	??
	??
9 -	??
3 171	
teb::ExplicitEuler< p, q >	
toh::RungoKuttabth()rdor/n g \	-
teb::RungeKutta5thOrder< p, q >	
teb::RungeKuttaClassic $<$ p, q $>$	

28 Hierarchical Index

Pb::Config::Optim	??
b::PlotOptions	??
b::SimResults	??
b ::Simulator< p, q > \dots	??
b::Config::Optim::Solver	??
b ::SystemDynamics $<$ p, q $>$ \dots	??
b::Config::Teb	??
b::TebPlotter	??
b::SimResults::TimeSeries	??
b::Config::Utilities	??
b::VertexType	??
teb::ControlVertex< q >	. ??
teb::StateVertex	
teb::TimeDiff	

Class Index

12.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

teb::BaseController	
Base controller class (General Controller API)	??
teb::BaseEdge < D, FuncType, Vertices >	
Templated base edge class that stores an arbitary number of values	??
teb::BaseEdge < D, FuncType >	
Templated base edge class that stores an arbitary number of values (Partial template specializa-	
tion that allows changing vertices dimensions at runtime)	??
teb::BaseSolver	
Base class for solver implementations	??
teb::BaseSolverLeastSquares	
Extended base solver class for least squares optimizations	??
teb::BaseSolverNonlinearProgramDense	
Extended base solver class for nonlinear programs (dense version)	??
teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >	
This class captures general bound constraints on optimization variables / vertices	??
teb::Config	
Configurations for Controller and Solver classes	??
teb::ControlVertex< q >	
Vertex that contains the ControlVector	??
teb::CustomBoundData	
Datastruct for custom bound data that can be queried from the BoundConstraint class	??
teb::EdgeMinimizeTime	
Objective edge: minimize ΔT	??
teb::EdgeQuadraticForm< p, q >	
Objective edge: quadratic form for states and control input	??
teb::EdgeSystemDynamics< p, q, central >	
Equality constraint edge for satisfying continious system dynamics specified by an System-	
Dynamics object	??
teb::EdgeType	
Generic interface class for edges	??
teb::ExplicitEuler< p, q >	
Simple explicit euler method for integration	??
teb::Config::Optim::Solver::NonlinearProgram::Hessian	
Configurations for the hessian of the lagrangian calculation	??
teb::HessianWorkspace	
Memory management and accessor functions for the Block-Hessian (for each edge)	??
teb::HyperGraph	
Graph object that stores pointers to active vertices and edges	??

30 Class Index

teb::JacobianWorkspace	
Memory management and accessor functions for the Block-Jacobians (for each edge)	??
teb::Config::Optim::Solver::NonlinearProgram::LineSearch	
Settings for the line-search algorithm (force merit function descent)	??
teb::Config::Optim::Solver::Lsq	
Configurations especially for least-squares-solvers	??
teb::Config::Optim::Solver::Nlopt	
Configurations especially for the nlopt solver wrapper	??
teb::Config::Optim::Solver::NonlinearProgram	
Settings for constrained optimiziation solver (nonlinear program solver)	??
teb::NumericalIntegrator $<$ p, q $>$	
Interface for numerical integration methods used in simulation	??
teb::Config::Optim	
Configurations related to the trajectory optimization	??
teb::PlotOptions	
Customize plots and figures	??
teb::RungeKutta5thOrder< p, q >	
Runge Kutta method (fifth order, slighly modified)	??
teb::RungeKuttaClassic< p, q >	
Classic Runge Kutta method (fourth order)	??
teb::SimResults	~
Simulation results are stored and combined in this container class	??
teb::Simulator< p, q >	0.0
Simulator for dynamic systems controlled by a TebController	??
teb::Config::Optim::Solver	0.0
Configurations related to solvers	??
teb::SolverLevenbergMarquardtEigenDense	
Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Dense matrices	2.0
version)	??
teb::SolverLevenbergMarquardtEigenSparse Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Sparse matri-	
ces version)	??
teb::SolverNloptPackage	• •
This class wraps the optimization problem to allow solving by NLOPT	??
teb::SolverSQPDense	• •
Dense sequential quadratic programming (SQP) solver for nonlinear programs	??
teb::StateVertex	•
Vertex that contains the StateVector	??
teb::SystemDynamics< p, q >	•
Helper class for modeling nonlinear dynamic systems	??
teb::Config::Teb	
Configurations related to the TEB algorithm	??
teb::TebController< p, q >	
Main Timed-Elastic-Band controller class	??
teb::TebPlotter	
Provides useful visualization and plotting functions	??
teb::TimeDiff	
Vertex that contains the time information of the TEB: ΔT	??
teb::SimResults::TimeSeries	
Store measurements of dynamic systems (states and control inputs) w.r.t	??
teb::Config::Utilities	
Configurations for helper miscellaneous and utilities	??
teb::VertexType	
Generic interface class for vertices	??

File Index

13.1 File List

Here is a list of all files with brief descriptions:

base_controller.h
base_edge.h
base_edge.hpp
base_edge_dynamics.h
base_solver.h
base_solver_least_squares.cpp
base_solver_least_squares.h
base_solver_nonlinear_program_dense.cpp
base_solver_nonlinear_program_dense.h
bound_constraints.h
common_teb_edges.h
config.h
graph.h
integrators.h
matlab_class_handle.hpp
measure_cpu_time.h
misc.h
simulator.h
simulator.hpp
solver_levenbergmarquardt_eigen_dense.cpp
solver_levenbergmarquardt_eigen_dense.h
solver_levenbergmarquardt_eigen_sparse.cpp
solver_levenbergmarquardt_eigen_sparse.h
solver_nlopt_package.cpp
solver_nlopt_package.h
solver_sqp_dense.h
solver_sqp_dense_backup.h
system_dynamics.h
teb_controller.h
teb_controller.hpp
teb_plotter.cpp
teb_plotter.h
teb_plotter.hpp
teb_vertices.h
typedefs.h
utilities.h
workspaces.h

32 File Index

Module Documentation

14.1 Controller

Collaboration diagram for Controller:

```
teb::Config
teb::VertexType
teb::EdgeType
teb::HyperGraph
teb::JacobianWorkspace
Controller ____teb::HessianWorkspace ____ Solver
```

Classes

· class teb::BaseController

Base controller class (General Controller API)

class teb::BaseEdge
 D, FuncType, Vertices

Templated base edge class that stores an arbitary number of values.

class teb::BaseEdge
 D, FuncType

Templated base edge class that stores an arbitary number of values (Partial template specialization that allows changing vertices dimensions at runtime).

class teb::EdgeSystemDynamics< p, q, central >

Equality constraint edge for satisfying continious system dynamics specified by an SystemDynamics object.

class teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >

This class captures general bound constraints on optimization variables / vertices.

· class teb::EdgeMinimizeTime

Objective edge: minimize ΔT .

class teb::EdgeQuadraticForm< p, q >

Objective edge: quadratic form for states and control input.

· class teb::Config

Configurations for Controller and Solver classes.

34 Module Documentation

class teb::VertexType

Generic interface class for vertices.

class teb::EdgeType

Generic interface class for edges.

class teb::HyperGraph

Graph object that stores pointers to active vertices and edges.

class teb::SystemDynamics< p, q >

Helper class for modeling nonlinear dynamic systems.

class teb::TebController< p, q >

Main Timed-Elastic-Band controller class.

class teb::StateVertex

Vertex that contains the StateVector.

class teb::ControlVertex< q >

Vertex that contains the ControlVector.

class teb::TimeDiff

Vertex that contains the time information of the TEB: ΔT .

class teb::JacobianWorkspace

Memory management and accessor functions for the Block-Jacobians (for each edge).

class teb::HessianWorkspace

Memory management and accessor functions for the Block-Hessian (for each edge).

Typedefs

using teb::EdgePositiveTime = BoundConstraint< BOUND_TYPE::LOWER, TimeDiff, BOUND_VARS::SIN-GLE, 0 >

Bound constraint edge for the time difference: $\Delta T \geq \varepsilon$.

template<int q>

 $using \ teb:: Edge Control Bounds = Bound Constraint < BOUND_TYPE:: LOWERUPPER, \ Control Vertex < q>, \\ BOUND_VARS:: ALL>$

Bound constraint edge for control inputs: $\mathbf{u}_{min} \leq \mathbf{u}_k \leq \mathbf{u}_{max}$.

template<int p>

 $using \ teb:: Edge State Bounds = Bound Constraint < BOUND_TYPE:: LOWERUPPER, \ State Vertex < p>, BOUND_VARS:: ALL>$

Bound constraint edge for states: $\mathbf{x}_{min} \leq \mathbf{x}_{k} \leq \mathbf{x}_{max}$.

14.1.1 Detailed Description

14.1.2 Typedef Documentation

14.1.2.1 template<int q> using teb::EdgeControlBounds = typedef BoundConstraint<BOUND_TYPE::LOWERUPPER, ControlVertex<q>, BOUND_VARS::ALL>

The following two inequality constraints are implemented:

$$\mathbf{u}_k \ge \mathbf{u}_{min} \tag{14.1}$$

$$\mathbf{u}_{k} \le \mathbf{u}_{max} \tag{14.2}$$

 \mathbf{u}_{min} and \mathbf{u}_{max} are the lower and upper bounds on the control input \mathbf{u}_k .

Vertices required (connect the edge with the following vertices):

1. ControlVertex \mathbf{u}_k

14.1 Controller 35

Template Parameters

p	Number of state variables
q	Number of input variables

Definition at line 111 of file common_teb_edges.h.

14.1.2.2 using teb::EdgePositiveTime = typedef BoundConstraint<BOUND_TYPE::LOWER, TimeDiff, BOUND_VARS::SINGLE, 0>

The following inequality constraint is implemented:

$$\Delta T \geq \varepsilon$$

 ${m \epsilon}$ denotes an offset.

Set the offset ε using setBounds().

Vertices required (connect the edge with the following vertices):

1. TimeDiff ΔT

Definition at line 89 of file common_teb_edges.h.

14.1.2.3 template<int p> using teb::EdgeStateBounds = typedef BoundConstraint<BOUND_TYPE::LOWERUPPER, StateVertex<p>, BOUND_VARS::ALL>

The following two inequality constraints are implemented:

$$\mathbf{x}_k \ge \mathbf{x}_{min} \tag{14.3}$$

$$\mathbf{x}_k \le \mathbf{x}_{max} \tag{14.4}$$

 \mathbf{x}_{min} and \mathbf{x}_{max} are the lower and upper bounds on the state vector \mathbf{x}_k .

Vertices required (connect the edge with the following vertices):

1. StateVertex \mathbf{x}_k

Template Parameters

p	Number of state variables
q	Number of input variables

Definition at line 133 of file common_teb_edges.h.

36 Module Documentation

14.2 Solver

Collaboration diagram for Solver:

Classes

· class teb::BaseSolver

Base class for solver implementations.

class teb::BaseSolverLeastSquares

Extended base solver class for least squares optimizations.

· class teb::Config

Configurations for Controller and Solver classes.

class teb::VertexType

Generic interface class for vertices.

class teb::EdgeType

Generic interface class for edges.

· class teb::HyperGraph

Graph object that stores pointers to active vertices and edges.

• class teb::JacobianWorkspace

Memory management and accessor functions for the Block-Jacobians (for each edge).

· class teb::HessianWorkspace

Memory management and accessor functions for the Block-Hessian (for each edge).

class teb::BaseSolverNonlinearProgramDense

Extended base solver class for nonlinear programs (dense version).

• class teb::SolverLevenbergMarquardtEigenDense

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Dense matrices version).

• class teb::SolverLevenbergMarquardtEigenSparse

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Sparse matrices version).

· class teb::SolverNloptPackage

This class wraps the optimization problem to allow solving by NLOPT.

· class teb::SolverSQPDense

Dense sequential quadratic programming (SQP) solver for nonlinear programs.

14.2.1 Detailed Description

14.3 Simulation 37

14.3 Simulation

Classes

• class teb::NumericalIntegrator < p, q >

Interface for numerical integration methods used in simulation.

class teb::ExplicitEuler< p, q >

Simple explicit euler method for integration.

class teb::RungeKuttaClassic< p, q >

Classic Runge Kutta method (fourth order)

class teb::RungeKutta5thOrder< p, q >

Runge Kutta method (fifth order, slighly modified)

· class teb::SimResults

Simulation results are stored and combined in this container class.

class teb::Simulator< p, q >

Simulator for dynamic systems controlled by a TebController.

14.3.1 Detailed Description

38 Module Documentation

14.4 Visualization

Classes

• struct teb::PlotOptions

Customize plots and figures.

• class teb::TebPlotter

Provides useful visualization and plotting functions.

14.4.1 Detailed Description

Chapter 15

Namespace Documentation

15.1 teb Namespace Reference

General project namespace for all library functions and objects.

Classes

class BaseController

Base controller class (General Controller API)

class BaseEdge

Templated base edge class that stores an arbitary number of values.

class BaseEdge
 D, FuncType

Templated base edge class that stores an arbitary number of values (Partial template specialization that allows changing vertices dimensions at runtime).

class EdgeSystemDynamics

Equality constraint edge for satisfying continious system dynamics specified by an SystemDynamics object.

· class BaseSolver

Base class for solver implementations.

class BaseSolverLeastSquares

Extended base solver class for least squares optimizations.

· struct CustomBoundData

Datastruct for custom bound data that can be queried from the BoundConstraint class.

class BoundConstraint

This class captures general bound constraints on optimization variables / vertices.

· class EdgeMinimizeTime

Objective edge: minimize ΔT .

class EdgeQuadraticForm

Objective edge: quadratic form for states and control input.

· class Config

Configurations for Controller and Solver classes.

class VertexType

Generic interface class for vertices.

class EdgeType

Generic interface class for edges.

· class HyperGraph

Graph object that stores pointers to active vertices and edges.

class SystemDynamics

Helper class for modeling nonlinear dynamic systems.

class TebController

Main Timed-Elastic-Band controller class.

class StateVertex

Vertex that contains the StateVector.

· class ControlVertex

Vertex that contains the ControlVector.

class TimeDiff

Vertex that contains the time information of the TEB: ΔT .

· class JacobianWorkspace

Memory management and accessor functions for the Block-Jacobians (for each edge).

class HessianWorkspace

Memory management and accessor functions for the Block-Hessian (for each edge).

· class NumericalIntegrator

Interface for numerical integration methods used in simulation.

class ExplicitEuler

Simple explicit euler method for integration.

· class RungeKuttaClassic

Classic Runge Kutta method (fourth order)

· class RungeKutta5thOrder

Runge Kutta method (fifth order, slighly modified)

class SimResults

Simulation results are stored and combined in this container class.

· class Simulator

Simulator for dynamic systems controlled by a TebController.

class BaseSolverNonlinearProgramDense

Extended base solver class for nonlinear programs (dense version).

• class SolverLevenbergMarquardtEigenDense

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Dense matrices version).

class SolverLevenbergMarquardtEigenSparse

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Sparse matrices version).

class SolverNloptPackage

This class wraps the optimization problem to allow solving by NLOPT.

• class SolverSQPDense

Dense sequential quadratic programming (SQP) solver for nonlinear programs.

struct PlotOptions

Customize plots and figures.

class TebPlotter

Provides useful visualization and plotting functions.

Typedefs

using EdgePositiveTime = BoundConstraint< BOUND_TYPE::LOWER, TimeDiff, BOUND_VARS::SINGLE,
 0 >

Bound constraint edge for the time difference: $\Delta T \geq \varepsilon$.

template<int q>

 $\mbox{using EdgeControlBounds} = \mbox{BoundConstraint} < \mbox{BOUND_TYPE::LOWERUPPER, ControlVertex} < \mbox{\mathfrak{q}} >, \mbox{BOUND VARS::ALL} >$

Bound constraint edge for control inputs: $\mathbf{u}_{min} \leq \mathbf{u}_{k} \leq \mathbf{u}_{max}$.

```
    template<int p>
        using EdgeStateBounds = BoundConstraint< BOUND_TYPE::LOWERUPPER, StateVertex< p >, BOUND_VARS::ALL >
        Bound constraint edge for states: x<sub>min</sub> ≤ x<sub>k</sub> ≤ x<sub>max</sub>.
    template<typename T >
        using EigenScalar = Eigen::Matrix< T, 1, 1 >
        Define 1x1 Eigen::Matrix.
    using EigenScalarD = EigenScalar< double >
        Define 1x1 Eigen::Matrix of type double.
    template<typename T >
        using BackupStackType = std::stack< T, std::deque< T >>
        Backup stack type.
```

Enumerations

enum BOUND_TYPE { BOUND_TYPE::LOWER, BOUND_TYPE::UPPER, BOUND_TYPE::LOWERUPPER }

Enumerator class that stores all types of bounds for consideration in BoundConstraint class.

enum BOUND VARS { BOUND VARS::ALL, BOUND VARS::SINGLE }

Enumerator class that stores all types of variables that can be bounded using BoundConstraint class.

enum FiniteDifferences { FiniteDifferences::FORWARD, FiniteDifferences::CENTRAL }

Enumeration for different finite difference types used especially for dynamic system discretization.

enum HessianMethod {

HessianMethod::NUMERIC, HessianMethod::BLOCK_BFGS, HessianMethod::FULL_BFGS, HessianMethod::FULL_BFGS_WITH_STRUCTURE_FILTER, HessianMethod::ZERO_HESSIAN }

Enumeration for different hessian calculation methods (not necessary for least-squares solver)

• enum HessianInit { HessianInit::ZERO, HessianInit::IDENTITY, HessianInit::NUMERIC }

Enumeration for the hessian initialization (relevant for BFGS hessian approximations)

enum NloptAlgorithms { NloptAlgorithms::SLSQP }

Enumeration for different solver algorithms supported by the Nlopt library (only those that are working here)

• enum FUNCT TYPE {

FUNCT_TYPE::NONLINEAR, FUNCT_TYPE::NONLINEAR_SQUARED, FUNCT_TYPE::NONLINEAR_ON-CE_DIFF, FUNCT_TYPE::QUADRATIC, FUNCT_TYPE::LINEAR_SQUARED, FUNCT_TYPE::LINEAR }

Enum for different function types (see EdgeType class)

 enum NumericalIntegrators { NumericalIntegrators::EXPLICIT_EULER, NumericalIntegrators::RUNGE_KU-TTA_CLASSIC, NumericalIntegrators::RUNGE_KUTTA_5TH }

Enumeration for different numerical integration methods.

15.1.1 Typedef Documentation

15.1.1.1 template < typename T > using teb::BackupStackType = typedef std::stack < T, std::deque < T > >

Definition at line 52 of file typedefs.h.

15.1.1.2 template < typename T > using teb::EigenScalar = typedef Eigen::Matrix < T,1,1 >

Definition at line 45 of file typedefs.h.

15.1.1.3 using teb::EigenScalarD = typedef EigenScalar < double >

Definition at line 48 of file typedefs.h.

15.1.2 Enumeration Type Documentation

15.1.2.1 enum teb::BOUND_TYPE [strong]

Enumerator

LOWER UPPER

LOWERUPPER

Definition at line 14 of file bound_constraints.h.

15.1.2.2 enum teb::BOUND_VARS [strong]

Enumerator

ALL

SINGLE

Definition at line 16 of file bound_constraints.h.

15.1.2.3 enum teb::FiniteDifferences [strong]

Enumerator

FORWARD Forward differences: $\dot{x}(t) = \frac{x_{k+1} - x_k}{\Delta T}$. **CENTRAL** Central differences: $\dot{x}(t) = \frac{x_{k+1} - x_k}{2\Delta T}$.

Definition at line 11 of file config.h.

15.1.2.4 enum teb::FUNCT_TYPE [strong]

Enumerator

NONLINEAR General nonlinear function that is at least two times differentiable.

NONLINEAR_SQUARED General nonlinear function that will be squared within the solver.

NONLINEAR_ONCE_DIFF Nonlinear function that is only differentiable once: the hessian is zero.

QUADRATIC Quadratic function (hessian is constant)

LINEAR_SQUARED Linear function that will be squared by the compiler.

LINEAR Linear function (hessian is zero)

Definition at line 79 of file graph.h.

15.1.2.5 enum teb::HessianInit [strong]

Enumerator

ZERO Use the zero matrix for initialization.

IDENTITY Use the identity matrix for hessian initialization (scale it via seperate config parameter)

NUMERIC Calculate the initialization of the hessian numerically using the original problem.

Definition at line 29 of file config.h.

15.1.2.6 enum teb::HessianMethod [strong]

Enumerator

NUMERIC Calculate hessian numerically via difference quotients (based on graph structure)

BLOCK_BFGS Calculate hessian for each block (defined by the graph) via BFGS.

FULL_BFGS Calculate the hessian via BFGS quasi-netwon method without considering strucutre.

FULL_BFGS_WITH_STRUCTURE_FILTER Calculate hessian like with FULL_BFGS but consider structure for non-zeros.

ZERO_HESSIAN Set Hessian to zero.

Definition at line 19 of file config.h.

15.1.2.7 enum teb::NloptAlgorithms [strong]

Enumerator

SLSQP Sequential quadratic programming approach.

Definition at line 38 of file config.h.

15.1.2.8 enum teb::NumericalIntegrators [strong]

Enumerator

EXPLICIT_EULER Forward Euler.

See Also

ExplicitEuler

RUNGE_KUTTA_CLASSIC Runge Kutta 4th Order.

See Also

RungeKuttaClassic

RUNGE_KUTTA_5TH Runge Kutta 5th Order.

See Also

RungeKutta5thOrder

Definition at line 12 of file integrators.h.

Namespace Doc	cumentatio	n
---------------	------------	---

Chapter 16

Class Documentation

16.1 teb::BaseController Class Reference

Base controller class (General Controller API)

#include <base_controller.h>

Inheritance diagram for teb::BaseController:

Public Member Functions

• virtual double getDt () const =0

Get the time difference ΔT between two discrete samples within the horizon.

• virtual unsigned int getN () const =0

Get the horizon length, resp.

• virtual void step (const double *const x0, const double *const xf, double *ctrl_out=nullptr)=0

Perform complete MPC step (initialization if necessary or update and optimization)

virtual Eigen::MatrixXd getStateCtrlInfoMat () const =0

Get a matrix containing all state and control input sequences.

virtual Eigen::VectorXd getAbsoluteTimeVec () const =0

Get the vector of absolute times for the complete horizon.

• virtual Eigen::VectorXd firstState () const =0

Access the first state \mathbf{x}_0 of the horizon.

• virtual Eigen::VectorXd lastState () const =0

Access the last state \mathbf{x}_n of the horizon.

virtual Eigen::VectorXd firstControl () const =0

Access the first control input \mathbf{u}_1 of the horizon.

virtual Eigen::MatrixXd returnControlInputSequence () const =0

Return the complete control input sequence u_k , k = 1, ..., n - 1.

• virtual void resetController ()=0

Reset the controller.

16.1.1 Detailed Description

This abstract class defines the general controller interface.

Todo Implement complete API (abstract functions, etc.) to allow a generic controller usage for teb::Simulator and teb::TebPlotter

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

teb::TebController

Definition at line 27 of file base_controller.h.

16.1.2 Member Function Documentation

16.1.2.1 virtual Eigen::VectorXd teb::BaseController::firstControl() const [pure virtual]

Returns

Copy of the first state

Implemented in teb::TebController< p, q >.

Referenced by teb::Simulator< p, q >::simClosedLoop().

16.1.2.2 virtual Eigen::VectorXd teb::BaseController::firstState() const [pure virtual]

Returns

Copy of the first state

Implemented in teb::TebController< p, q >.

Referenced by teb::Simulator< p, q >::simOpenLoop().

16.1.2.3 virtual Eigen::VectorXd teb::BaseController::getAbsoluteTimeVec() const [pure virtual]

In case of a uniform step width / time difference (see getDt()) the vector corresponds to $t = [0, \Delta T, 2\Delta T, \dots, n\Delta T]$.

Returns

vector of absolute times starting with t=0s.Get vector of absolute times $t = [0, \Delta T, 2\Delta T, \dots, n\Delta T]$.

Implemented in teb::TebController< p, q >.

Referenced by teb::Simulator< p, q >::simOpenLoop().

```
16.1.2.4 virtual double teb::BaseController::getDt() const [pure virtual]
It can also be interpreted as the step width.
Returns
     \Delta T
Implemented in teb::TebController< p, q >.
Referenced by teb::Simulator < p, q > ::simClosedLoop(), and teb::Simulator < p, q > ::simOpenLoop().
16.1.2.5 virtual unsigned int teb::BaseController::getN() const [pure virtual]
the number of discrete samples.
Returns
     Number of discrete samples
Implemented in teb::TebController< p, q >.
Referenced by teb::Simulator< p, q >::simOpenLoop().
16.1.2.6 virtual Eigen::MatrixXd teb::BaseController::getStateCtrlInfoMat( ) const [pure virtual]
The purpose of this function is mainly for debugging and visualization stuff.
Returns
     [p+q x n] matrix with p states, q control inputs and n=getN().
Implemented in teb::TebController< p, q >.
Referenced by teb::Simulator< p, q >::simOpenLoop().
16.1.2.7 virtual Eigen::VectorXd teb::BaseController::lastState( )const [pure virtual]
Returns
     Copy of the last state
Implemented in teb::TebController< p, q >.
16.1.2.8 virtual void teb::BaseController::resetController() [pure virtual]
Implemented in teb::TebController< p, q >.
Referenced by teb::Simulator < p, q > ::simClosedLoop(), and teb::Simulator < p, q > ::simOpenLoop().
16.1.2.9 virtual Eigen::MatrixXd teb::BaseController::returnControllnputSequence() const [pure virtual]
Returns
     Matrix containing all planned control inputs [q x n-1]
Implemented in teb::TebController< p, q >.
Referenced by teb::Simulator< p, q >::simOpenLoop().
```


Parameters

x0	x0 double array containing start state x0 with p components [p x 1]	
xf	double array containing final state xf with p components [p x 1]	
ctrl_out [output] store control input (firstControl()) to control the plant [q x 1]		

Implemented in teb::TebController< p, q >.

Referenced by teb::Simulator< p, q >::simClosedLoop(), and teb::Simulator< p, q >::simOpenLoop().

The documentation for this class was generated from the following file:

· base_controller.h

16.2 teb::BaseEdge < D, FuncType, Vertices > Class Template Reference

Templated base edge class that stores an arbitary number of values.

#include <base_edge.h>

Inheritance diagram for teb::BaseEdge < D, FuncType, Vertices >:

Public Types

using ValueVector = Eigen::Matrix< double, D, 1 >

Typedef to represent the static Eigen::Vector of cost/constraint values.

using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map< Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

• virtual int dimension () const

Return edge dimension by function call.

• BaseEdge ()=delete

Delete default constructor.

• template<class... VerticesT>

BaseEdge (VerticesT &...args)

virtual ∼BaseEdge ()

< Construct edge by passing all vertices references.

virtual FUNCT_TYPE functType () const

Return function typed given by template parameter FuncType.

virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

• virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

· virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

• virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

• virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

· virtual const std::array

```
< VertexType *, NoVertices > & vertices () const
```

Return vertex container of the edge.

· virtual void computeValues ()

Actual cost function or constraint function. For constraints it is compute Values() <= 0.

virtual void computeJacobian ()

Actual cost function or constraint function. For constraints it is compute Values() <= 0.

virtual void computeHessian ()

Compute Block-Hessian and store it to EdgeType::_hessians according to the description in HessianWorkspace.

virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

• virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

• virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

• virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

• virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

- static constexpr const int NoVertices = sizeof...(Vertices)
- static const int Dimension = D

Edge dimension as static member variable.

Protected Attributes

ValueVector _values = ValueVector::Zero()

Actual cost/constraint value data object (initialized to zero).

- const std::array
 VertexType
 - *, NoVertices > _vertices

Container that stores all attached vertices.

std::array< int, NoVertices > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

• JacobianWorkspace jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

16.2.1 Detailed Description

template<int D, FUNCT_TYPE FuncType, class... Vertices>class teb::BaseEdge< D, FuncType, Vertices>

This class defines the basis for nearly all edges. The dimension has to be known at compile time and is set by the template parameter \mathbb{D} .

Remarks

Call allocateMemory() before using the edge for optimization.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

EdgeType

Template Parameters

D Dimension of the edge (value vector).	
FuncType Function type of the underlying cost function (according to FUNC_TYPE e	
Vertices An arbitary number of vertex types that are attached to this edge	

Definition at line 41 of file base edge.h.

16.2.2 Member Typedef Documentation

16.2.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.2.2.2 template<int D, FUNCT_TYPE FuncType, class... Vertices> using teb::BaseEdge< D, FuncType, Vertices >::ValueVector = Eigen::Matrix<double, D, 1>

Definition at line 54 of file base_edge.h.

16.2.2.3 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.2.3 Constructor & Destructor Documentation

```
16.2.3.1 template < int D, FUNCT_TYPE FuncType, class... Vertices > teb::BaseEdge < D, FuncType, Vertices > ::BaseEdge ( ) [delete]
```

16.2.3.2 template < int D, FUNCT_TYPE FuncType, class... Vertices > template < class... VerticesT > teb::BaseEdge < D, FuncType, Vertices > ::BaseEdge (VerticesT & ... args) [inline]

Definition at line 60 of file base_edge.h.

```
16.2.3.3 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual teb::BaseEdge < D, FuncType, Vertices > ::~BaseEdge ( ) [inline], [virtual]
```

Empty Destructor

Definition at line 66 of file base_edge.h.

16.2.4 Member Function Documentation

16.2.4.1 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual void teb::BaseEdge < D, FuncType, Vertices >::allocateMemory (bool skip_hessian = false) [inline], [virtual]

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 84 of file base_edge.h.

```
16.2.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual], [inherited]
```

Definition at line 162 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

```
16.2.4.3 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual void teb::BaseEdge < D, FuncType, Vertices > ::calculateVertexDimensions ( ) [inline], [virtual]
```

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-

Definition at line 110 of file base edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), and teb::BaseEdge< D, FuncType >::allocateMemory().

```
16.2.4.4 template < int D, FUNCT_TYPE FuncType, class... Vertices > void teb::BaseEdge < D, FuncType, Vertices > ::computeHessian ( ) [virtual]
```

This implementation calculates the Block-Hessians for all statically allocated vertices and cost/constraint values numerically using forward differences.

For more information about the Hessian structure refer to HessianWorkspace.

If the FuncType template parameter is set to FUNCT_TYPE::LINEAR or FuncType == FUNCT_TYPE::NONLINEA-R_ONCE_DIFF the hessian is set to zero.

The results are stored to the class member BaseEdgeBinary::_hessians.

Feel free to reimplement this function in child classes in order to provide analytical Hessians.

Remarks

This function assumes that computeJacobian() was called before! It is used as reference for calculating the forward-differences.

See Also

computeJacobian(), HessianWorkspace

Implements teb::EdgeType.

Reimplemented in teb::EdgeQuadraticForm< p, q >, teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >, and teb::EdgeMinimizeTime.

Definition at line 165 of file base_edge.hpp.

References teb::VertexType::dimension(), teb::JacobianWorkspace::getWorkspace(), teb::VertexType::isFixedAll(), teb::LINEAR, teb::LINEAR_SQUARED, teb::NONLINEAR_ONCE_DIFF, teb::VertexType::plus(), teb::VertexType::pop(), and teb::VertexType::push().

```
16.2.4.5 template<int D, FUNCT_TYPE FuncType, class... Vertices> void teb::BaseEdge< D, FuncType, Vertices >::computeJacobian ( ) [virtual]
```

This implementation calculates the Block-Jacobians for all statically allocated vertices numerically using central differences.

Compute Block-Jacobian and store it to EdgeType:: jacobians according to the description in JacobianWorkspace.

For more information about the Jacobian structure refer to JacobianWorkspace.

The results are stored to the class member BaseEdgeBinary::_jacobians.

The implementation is similar to [2].

Feel free to reimplement this function in child classes in order to provide analytical Jacobians.

```
See Also
```

computeHessian(), JacobianWorkspace

Implements teb::EdgeType.

Reimplemented in teb::EdgeQuadraticForm< p, q >, teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >, and teb::EdgeMinimizeTime.

Definition at line 24 of file base_edge.hpp.

References teb::VertexType::dimension(), teb::VertexType::isFixedAll(), teb::VertexType::plus(), teb::VertexType::pop(), and teb::VertexType::push().

 $\label{lem:Referenced} \textbf{Referenced by teb::} \\ \textbf{BaseEdge} < \textbf{D}, \\ \textbf{FuncType} > :: \\ \textbf{computeHessian()}. \\$

```
16.2.4.6 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual void teb::BaseEdge < D, FuncType, Vertices >::computeValues ( ) [inline], [virtual]
```

Implements teb::EdgeType.

 $\label{lem:bound_constraint} Reimplemented \ in \ teb::EdgeQuadraticForm<p, \ q>, \ teb::BoundConstraint< Bound_type, \ Vertex, \ Bound_vars, \\ Index>, \ teb::EdgeSystemDynamics<p, \ q, \ central>, \ and \ teb::EdgeMinimizeTime.$

Definition at line 125 of file base_edge.h.

Referenced by teb::BaseEdge < D, FuncType >::computeJacobian().

```
16.2.4.7 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual int teb::BaseEdge < D, FuncType, Vertices > ::dimension ( ) const [inline], [virtual]
```

Implements teb::EdgeType.

Definition at line 51 of file base edge.h.

```
16.2.4.8 virtual void teb::EdgeType::discardJacobianBackup( ) [inline], [virtual], [inherited]
```

Definition at line 171 of file graph.h.

References teb::EdgeType::_jacob_backup.

```
16.2.4.9 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual FUNCT_TYPE teb::BaseEdge< D, FuncType, Vertices>::functType( ) const [inline], [virtual]
```

Implements teb::EdgeType.

Definition at line 69 of file base_edge.h.

```
16.2.4.10 virtual void* teb::EdgeType::getCustomData( ) [inline], [virtual], [inherited]
```

Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.

Definition at line 154 of file graph.h.

Definition at line 173 of file graph.h.

References teb::EdgeType::_jacob_backup.

```
16.2.4.12 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual VertexType* teb::BaseEdge < D, FuncType,
         Vertices >::getVertex ( unsigned int idx ) [inline], [virtual]
Implements teb::EdgeType.
Definition at line 98 of file base edge.h.
16.2.4.13 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const VertexType* teb::BaseEdge < D,
         FuncType, Vertices >::getVertex ( unsigned int idx ) const [inline], [virtual]
Implements teb::EdgeType.
Definition at line 99 of file base_edge.h.
16.2.4.14 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType::_hessians.
16.2.4.15 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual],
          [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType::_hessians.
16.2.4.16 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.2.4.17 virtual Jacobian Workspace & teb::EdgeType::jacobians() [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType::_jacobians.
16.2.4.18 virtual const JacobianWorkspace& teb::EdgeType::jacobians( ) const [inline], [virtual],
          [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType::_jacobians.
16.2.4.19 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual unsigned int teb::BaseEdge < D, FuncType,
         Vertices >::noVertices ( ) const [inline], [virtual]
Implements teb::EdgeType.
Definition at line 101 of file base_edge.h.
16.2.4.20 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual], [inherited]
Definition at line 165 of file graph.h.
```

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

16.2.4.21 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual const ValueVector& teb::BaseEdge< D, FuncType, Vertices>::values() const [inline], [virtual]

Definition at line 74 of file base edge.h.

16.2.4.22 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual ValueVector& teb::BaseEdge < D, FuncType, Vertices >::values() [inline], [virtual]

Definition at line 75 of file base_edge.h.

16.2.4.23 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const double* teb::BaseEdge < D, FuncType, Vertices >::valuesData () const [inline], [virtual]

Implements teb::EdgeType.

Definition at line 72 of file base_edge.h.

16.2.4.24 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual double* teb::BaseEdge< D, FuncType, Vertices>::valuesData() [inline], [virtual]

Implements teb::EdgeType.

Definition at line 73 of file base_edge.h.

16.2.4.25 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]

return Eigen::Vector type that maps to the actual cost/constraints values

Definition at line 150 of file graph.h.

References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().

16.2.4.26 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const std::array < VertexType *, No Vertices > & teb::BaseEdge < D, FuncType, Vertices > ::vertices () const [inline], [virtual]

Returns

(Read-only) reference to the vertex container.

Definition at line 122 of file base_edge.h.

16.2.5 Member Data Documentation

16.2.5.1 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and teb::EdgeType::hessians().

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

16.2.5.3 JacobianWorkspace teb::EdgeType:: jacobians [protected], [inherited]

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< D, FuncType >::compute-Hessian(), teb::BdgeMinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::computeJacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

16.2.5.4 template<int D, FUNCT_TYPE FuncType, class... Vertices> ValueVector teb::BaseEdge< D, FuncType, Vertices >::_values = ValueVector::Zero() [protected]

Definition at line 139 of file base edge.h.

Referenced by teb::BaseEdge < D, FuncType >::computeJacobian(), teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::computeValues(), teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::values(), teb::BaseEdge < D, FuncType >::valuesData(), and teb::BaseEdge < D, FuncType >::valuesData().

16.2.5.5 template < int D, FUNCT_TYPE FuncType, class... Vertices > const std::array < VertexType*, No Vertices > teb::BaseEdge < D, FuncType, Vertices >::_vertices [protected]

Definition at line 141 of file base_edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::calculateVertexDimensions(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeValues(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData(), teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::getVertex(), teb::BaseEdge< D, FuncType >::getVertex(), teb::BaseEdge< D, FuncType >::resizeVertexContainer(), teb::BaseEdge< D, FuncType >::setVertex(), teb::BaseEdge< D, FuncType >::vertices(), and teb::BaseEdge< D, FuncType >::vertices().

16.2.5.6 template<int D, FUNCT_TYPE FuncType, class... Vertices> std::array<int, NoVertices> teb::BaseEdge< D, FuncType, Vertices>::_vertices_dim [protected]

Definition at line 142 of file base edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::calculateVertex-Dimensions(), and teb::BaseEdge< D, FuncType >::calculateVertexDimensions().

16.2.5.7 template < int D, FUNCT_TYPE FuncType, class... Vertices > const int teb::BaseEdge < D, FuncType, Vertices > ::Dimension = D [static]

Definition at line 50 of file base_edge.h.

16.2.5.8 template<int D, FUNCT_TYPE FuncType, class... Vertices> constexpr const int teb::BaseEdge< D, FuncType, Vertices>::NoVertices = sizeof...(Vertices) [static]

Definition at line 48 of file base_edge.h.

Referenced by teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::noVertices().

The documentation for this class was generated from the following files:

- base_edge.h
- base edge.hpp

16.3 teb::BaseEdge < D, FuncType > Class Template Reference

Templated base edge class that stores an arbitary number of values (Partial template specialization that allows changing vertices dimensions at runtime).

```
#include <base_edge.h>
```

Inheritance diagram for teb::BaseEdge < D, FuncType >:

Public Types

- using ValueVector = Eigen::Matrix< double, D, 1 >
 - Typedef to represent the static Eigen::Vector of cost/constraint values.
- using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map< Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

· virtual int dimension () const

Return edge dimension by function call.

• BaseEdge ()

Empty Constructor.

virtual ∼BaseEdge ()

Empty Destructor.

virtual FUNCT_TYPE functType () const

Return function typed given by template parameter FuncType.

virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

· virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

virtual void setVertex (unsigned int idx, VertexType *pvertex)

Attach a new vertex of type TebVertex* with index idx to the edge.

- · virtual const std::vector
 - < VertexType * > & vertices () const

Return vertex container of the edge.

- · virtual std::vector
 - < VertexType * > & vertices ()

Return vertex container of the edge.

• virtual void computeJacobian ()

Compute Block-Jacobian and store it to EdgeType::_jacobians according to the description in JacobianWorkspace.

• virtual void computeHessian ()

Compute Block-Hessian and store it to EdgeType::_hessians according to the description in HessianWorkspace.

· virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

• virtual void computeValues ()=0

Actual cost function or constraint function. For constraints it is $compute Values() \le 0$.

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

• virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

• virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

· virtual void discardJacobianBackup ()

Discard current jacobian backup.

virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

static const int Dimension = D

Edge dimension as static member variable.

Protected Member Functions

void resizeVertexContainer (unsigned int n)

Set number n of vertices attached to this edge.

Protected Attributes

• ValueVector _values = ValueVector::Zero()

Actual cost/constraint value data object (initialized to zero).

std::vector< VertexType * > _vertices

Container that stores all attached vertices.

std::vector< int > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

• JacobianWorkspace _jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

• HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

16.3.1 Detailed Description

template<int D, FUNCT_TYPE FuncType>class teb::BaseEdge< D, FuncType>

This class defines the basis for nearly all edges. The dimension has to be known at compile time and is set by the template parameter D.

Remarks

Call allocateMemory() before using the edge for optimization.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

EdgeType

Template Parameters

D Dimension of the edge (value vector).	
FuncType	Function type of the underlying cost function (according to FUNC_TYPE enum)

Definition at line 172 of file base edge.h.

16.3.2 Member Typedef Documentation

16.3.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.3.2.2 template<int D, FUNCT_TYPE FuncType> using teb::BaseEdge< D, FuncType>::ValueVector = Eigen::Matrix<double, D, 1>

Definition at line 180 of file base_edge.h.

16.3.2.3 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.3.3 Constructor & Destructor Documentation

16.3.3.1 template < int D, FUNCT_TYPE FuncType > teb::BaseEdge < D, FuncType >::BaseEdge () [inline]

Definition at line 183 of file base_edge.h.

16.3.3.2 template < int D, FUNCT_TYPE FuncType > virtual teb::BaseEdge < D, FuncType > :: \sim BaseEdge () [inline], [virtual]

Definition at line 184 of file base_edge.h.

16.3.4 Member Function Documentation

16.3.4.1 template < int D, FUNCT_TYPE FuncType > virtual void teb::BaseEdge < D, FuncType > ::allocateMemory (bool skip_hessian = false) [inline], [virtual]

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian	If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 202 of file base_edge.h.

References teb::EdgeType::_hessians, teb::EdgeType::_jacobians, teb::BaseEdge< D, FuncType, Vertices >::-_vertices_dim, teb::JacobianWorkspace::allocate(), teb::HessianWorkspace::allocate(), and teb::BaseEdge< D, FuncType, Vertices >::calculateVertexDimensions().

```
16.3.4.2 virtual void teb::EdgeType::backupJacobian() [inline],[virtual],[inherited]
```

Definition at line 162 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

```
16.3.4.3 template < int D, FUNCT_TYPE FuncType > virtual void teb::BaseEdge < D, FuncType > ::calculateVertexDimensions
( ) [inline], [virtual]
```

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement another strategy to store the dimensions.

Definition at line 227 of file base edge.h.

References teb::BaseEdge < D, FuncType, Vertices >::_vertices, and teb::BaseEdge < D, FuncType, Vertices >::_vertices_dim.

```
16.3.4.4 template < int D, FUNCT_TYPE FuncType > void teb::BaseEdge < D, FuncType > ::computeHessian ( ) [virtual]
```

This implementation calculates the Block-Hessians for all dynamically allocated vertices and cost/constraint values numerically using forward differences.

For more information about the Hessian structure refer to HessianWorkspace.

If the FuncType template parameter is set to FUNCT_TYPE::LINEAR or FuncType == FUNCT_TYPE::NONLINEA-R_ONCE_DIFF the hessian is set to zero.

The results are stored to the class member BaseEdgeBinary:: hessians.

Feel free to reimplement this function in child classes in order to provide analytical Hessians.

Remarks

This function assumes that computeJacobian() was called before! It is used as reference for calculating the forward-differences.

See Also

computeJacobian(), HessianWorkspace

Implements teb::EdgeType.

Definition at line 277 of file base edge.hpp.

References teb::EdgeType::_hessians, teb::EdgeType::_jacobians, teb::BaseEdge< D, FuncType, Vertices >::_vertices, teb::BaseEdge< D, FuncType, Vertices >::computeJacobian(), teb::VertexType::dimension(), teb::JacobianWorkspace::getWorkspace(), teb::HessianWorkspace::getWorkspace(), teb::VertexType::isFixedAll(), teb::LINEAR, teb::LINEAR_SQUARED, teb::NONLINEAR_ONCE_DIFF, teb::VertexType::plus(), teb::VertexType::pop(), and teb::VertexType::push().

```
16.3.4.5 template < int D, FUNCT_TYPE FuncType > void teb::BaseEdge < D, FuncType >::computeJacobian ( ) [virtual]
```

This implementation calculates the Block-Jacobians for all dynamically allocated vertices numerically using central differences.

For more information about the Jacobian structure refer to JacobianWorkspace.

The results are stored to the class member BaseEdgeBinary:: jacobians.

The implementation is similar to [2].

Feel free to reimplement this function in child classes in order to provide analytical Jacobians.

See Also

computeHessian(), JacobianWorkspace

Implements teb::EdgeType.

Definition at line 92 of file base edge.hpp.

```
16.3.4.6 virtual void teb::EdgeType::computeValues() [pure virtual], [inherited]
```

```
16.3.4.7 template<int D, FUNCT_TYPE FuncType> virtual int teb::BaseEdge< D, FuncType >::dimension ( ) const [inline], [virtual]
```

Implements teb::EdgeType.

Definition at line 177 of file base_edge.h.

```
16.3.4.8 virtual void teb::EdgeType::discardJacobianBackup( ) [inline], [virtual], [inherited]
```

Definition at line 171 of file graph.h.

References teb::EdgeType::_jacob_backup.

```
16.3.4.9 template < int D, FUNCT_TYPE FuncType > virtual FUNCT_TYPE teb::BaseEdge < D, FuncType >::functType ( ) const [inline], [virtual]
```

Implements teb::EdgeType.

Definition at line 187 of file base_edge.h.

```
16.3.4.10 virtual void* teb::EdgeType::getCustomData() [inline], [virtual], [inherited]
```

Reimplemented in teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >.

Definition at line 154 of file graph.h.

Definition at line 173 of file graph.h.

```
References teb::EdgeType::_jacob_backup.
16.3.4.12 template < int D, FUNCT_TYPE FuncType > virtual VertexType* teb::BaseEdge < D, FuncType >::getVertex (
         unsigned int idx ) [inline], [virtual]
Implements teb::EdgeType.
Definition at line 215 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_vertices.
16.3.4.13 template < int D, FUNCT_TYPE FuncType > virtual const VertexType* teb::BaseEdge < D, FuncType
         >::getVertex (unsigned int idx) const [inline], [virtual]
Implements teb::EdgeType.
Definition at line 216 of file base edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_vertices.
16.3.4.14 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType:: hessians.
16.3.4.15 virtual const HessianWorkspace& teb::EdgeType::hessians ( ) const [inline], [virtual],
         [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType:: hessians.
16.3.4.16 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.3.4.17 virtual Jacobian Workspace & teb::EdgeType::jacobians() [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType:: jacobians.
16.3.4.18 virtual const JacobianWorkspace& teb::EdgeType::jacobians() const [inline], [virtual],
         [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType::_jacobians.
16.3.4.19 template < int D, FUNCT_TYPE FuncType > virtual unsigned int teb::BaseEdge < D, FuncType >::noVertices ( )
         const [inline],[virtual]
Implements teb::EdgeType.
```

Definition at line 218 of file base_edge.h.

References teb::BaseEdge < D, FuncType, Vertices >:: vertices.

Definition at line 282 of file base_edge.h.

References teb::BaseEdge < D, FuncType, Vertices >:: vertices.

16.3.4.21 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual], [inherited]

Definition at line 165 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

16.3.4.22 template < int D, FUNCT_TYPE FuncType > virtual void teb::BaseEdge < D, FuncType >::setVertex (unsigned int idx, VertexType * pvertex) [inline], [virtual]

Make sure that memory is allocated before using resizeVertexContainer() or that it is controlled by a specific child class.

Parameters

idx	index of the vertex inside this edge. Start with 0.	
pvertex pointer to the TebVertex object or to one of its children.		

Definition at line 246 of file base_edge.h.

 $References\ teb:: BaseEdge < D,\ FuncType,\ Vertices > ::_vertices.$

16.3.4.23 template < int D, FUNCT_TYPE FuncType > virtual const ValueVector& teb::BaseEdge < D, FuncType >::values (
) const [inline], [virtual]

Definition at line 192 of file base edge.h.

References teb::BaseEdge < D, FuncType, Vertices >::_values.

16.3.4.24 template<int D, FUNCT_TYPE FuncType> virtual ValueVector& teb::BaseEdge< D, FuncType>::values() [inline], [virtual]

Definition at line 193 of file base edge.h.

References teb::BaseEdge < D, FuncType, Vertices >::_values.

16.3.4.25 template < int D, FUNCT_TYPE FuncType > virtual const double* teb::BaseEdge < D, FuncType >::valuesData () const [inline], [virtual]

Implements teb::EdgeType.

Definition at line 190 of file base edge.h.

References teb::BaseEdge < D, FuncType, Vertices >::_values.

16.3.4.26 template < int D, FUNCT_TYPE FuncType > virtual double* teb::BaseEdge < D, FuncType >::valuesData () [inline], [virtual]

Implements teb::EdgeType.

Definition at line 191 of file base_edge.h.

References teb::BaseEdge < D, FuncType, Vertices >:: values.

16.3.4.27 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]

return Eigen::Vector type that maps to the actual cost/constraints values

Definition at line 150 of file graph.h.

References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().

16.3.4.28 template < int D, FUNCT_TYPE FuncType > virtual const std::vector < VertexType *> & teb::BaseEdge < D, FuncType >::vertices () const [inline], [virtual]

Returns

(Read-only) reference to the vertex container.

Definition at line 256 of file base_edge.h.

References teb::BaseEdge < D, FuncType, Vertices >:: vertices.

16.3.4.29 template<int D, FUNCT_TYPE FuncType> virtual std::vector< VertexType*>& teb::BaseEdge< D, FuncType
>::vertices() [inline], [virtual]

Returns

Reference to the vertex container.

Definition at line 262 of file base_edge.h.

References teb::BaseEdge < D, FuncType, Vertices >::_vertices.

16.3.5 Member Data Documentation

16.3.5.1 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), computeHessian(), and teb::EdgeType::hessians().

16.3.5.2 BackupStackType<JacobianWorkspace> teb::EdgeType::_jacob_backup [protected], [inherited]

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

16.3.5.3 JacobianWorkspace teb::EdgeType::_jacobians [protected], [inherited]

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), allocateMemory(), teb::EdgeType::backupJacobian(), computeHessian(), teb::EdgeMinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), computeJacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

16.3.5.4 template<int D, FUNCT_TYPE FuncType> ValueVector teb::BaseEdge< D, FuncType >::_values = ValueVector::Zero() [protected]

Definition at line 276 of file base_edge.h.

16.3.5.5 template < int D, FUNCT_TYPE FuncType > std::vector < VertexType *> teb::BaseEdge < D, FuncType >:: vertices [protected]

Definition at line 278 of file base edge.h.

16.3.5.6 template < int D, FUNCT_TYPE FuncType > std::vector < int > teb::BaseEdge < D, FuncType >::_vertices_dim [protected]

Definition at line 279 of file base edge.h.

16.3.5.7 template<int D, FUNCT_TYPE FuncType> const int teb::BaseEdge< D, FuncType >::Dimension = D [static]

Definition at line 176 of file base_edge.h.

The documentation for this class was generated from the following files:

- base_edge.h
- · base_edge.hpp

16.4 teb::BaseSolver Class Reference

Base class for solver implementations.

#include <base_solver.h>

Inheritance diagram for teb::BaseSolver:

Public Types

using VertexContainer = HyperGraph::VertexContainer

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

• BaseSolver ()

Empty Constructor.

virtual ∼BaseSolver ()

Empty Destructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

• const Config * cfg = nullptr

Store pointer to Config object.

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Member Functions

virtual bool solveImpl ()=0

Solve the actual optimization problem.

• virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

• int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

• int getDimInequalities () const

Get dimension of the inequality constraints.

void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

• EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

int _opt_vec_dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

int _objective_dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int equalities dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

int _inequalities_dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

• unsigned int _no_vert_backups = 0

Track number of vertices backups made.

bool _graph_structure_modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.4.1 Detailed Description

This abstract class defines the interface for general solvers that are suited for solving the TebController optimization problem.

The solver needs to handle the optimization problem as a hyper-graph (see EdgeType and VertexType).

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Examples:

integrator_system_sfun.cpp.

Definition at line 29 of file base solver.h.

16.4.2 Member Typedef Documentation

16.4.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer

Definition at line 36 of file base_solver.h.

16.4.2.2 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer

Definition at line 34 of file base solver.h.

16.4.3 Constructor & Destructor Documentation

16.4.3.1 teb::BaseSolver::BaseSolver() [inline]

Definition at line 39 of file base_solver.h.

```
16.4.3.2 virtual teb::BaseSolver::~BaseSolver( ) [inline], [virtual]
```

Definition at line 42 of file base_solver.h.

16.4.4 Member Function Documentation

```
16.4.4.1 void teb::BaseSolver::applyIncrement ( const Eigen::Ref < const Eigen::VectorXd > & delta ) [inline], [protected]
```

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments.	The length euquals the dimension of all free vari-
	ables.	

Definition at line 127 of file base_solver.h.

References _active_vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.4.4.2 void teb::BaseSolver::applyOptVec ( const Eigen::Ref< const Eigen::VectorXd > & opt_vec ) [inline], [protected]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt vec	Eigen::Vector containing all values.	The length equals the dimension of all free variables.

Definition at line 144 of file base solver.h.

References _active_vertices.

```
16.4.4.3 void teb::BaseSolver::backupVertices() [inline], [protected]
```

See Also

VertexType::push()

Definition at line 223 of file base solver.h.

References active vertices, and no vert backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.4.4.4 void teb::BaseSolver::discardBackupVertices() [inline], [protected]
```

See Also

VertexType::discardTop()

Definition at line 229 of file base solver.h.

References _active_vertices, and _no_vert_backups.

Referenced by solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.4.4.5 int teb::BaseSolver::getDimEqualities ( ) const [inline], [protected]
The dimension is obtained by checking each edge dimension.
Definition at line 202 of file base solver.h.
References _equalities.
Referenced by solve().
16.4.4.6 int teb::BaseSolver::getDimInequalities ( ) const [inline], [protected]
The dimension is obtained by checking each edge dimension.
Definition at line 214 of file base_solver.h.
References _inequalities.
Referenced by solve().
16.4.4.7 int teb::BaseSolver::getDimObjectives ( ) const [inline], [protected]
The dimension is obtained by checking each edge dimension.
Definition at line 190 of file base solver.h.
References _objectives.
Referenced by solve().
16.4.4.8 Eigen::VectorXd teb::BaseSolver::getOptVecCopy( )const [inline], [protected]
This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.
Remarks
     Make sure BaseSolver::_opt_vec_dim is valid (see solve()).
Returns
     Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-
     Dimension()).
Definition at line 162 of file base_solver.h.
References _active_vertices, and _opt_vec_dim.
16.4.4.9 int teb::BaseSolver::getOptVecDimension() const [inline], [protected]
The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.
See Also
```

Definition at line 180 of file base solver.h. References _active_vertices.

Referenced by solve().

TebController::getActiveVertices(), getValueDimension()

```
16.4.4.10 virtual void teb::BaseSolver::initWorkspaces() [inline], [protected], [virtual]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented in teb::BaseSolverNonlinearProgramDense, teb::SolverNloptPackage, and teb::BaseSolverLeast-Squares.

Definition at line 115 of file base_solver.h.

Referenced by solve().

```
16.4.4.11 void teb::BaseSolver::restoreVertices() [inline], [protected]
```

See Also

VertexType::pop()

Definition at line 225 of file base solver.h.

References _active_vertices, and _no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.4.4.12 void teb::BaseSolver::restoreVerticesButKeepBackup() [inline], [protected]
```

See Also

VertexType::top()

Definition at line 227 of file base_solver.h.

References _active_vertices.

Referenced by teb::SolverSQPDense::solveImpl().

```
16.4.4.13 void teb::BaseSolver::setConfig ( const Config * config ) [inline]
```

Remarks

This function is called from the TEB class within setSolver method.

Parameters

```
config Pointer to Config object.
```

Definition at line 49 of file base_solver.h.

References cfg.

Referenced by teb::TebController< p, q >::setSolver().

```
16.4.4.14 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

optimizable	pointer to the HyperGraph that should be solved
graph	

Definition at line 61 of file base solver.h.

References _active_vertices, _equalities, _equalities_dim, _graph_structure_modified, _inequalities, _inequalities-_dim, _no_vert_backups, _objective_dim, _objectives, _opt_vec_dim, teb::HyperGraph::activeVertices(), discard-BackupVertices(), teb::HyperGraph::equalities(), getDimEqualities(), getDimInequalities(), getDimObjectives(), getOptVecDimension(), teb::HyperGraph::inequalities(), initWorkspaces(), teb::HyperGraph::isGraphModified(), teb::HyperGraph::objectives(), and solveImpl().

16.4.4.15 virtual bool teb::BaseSolver::solveImpl() [protected], [pure virtual]

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implemented in teb::SolverSQPDense, teb::SolverNloptPackage, teb::SolverSQPDense, teb::BaseSolverNonlinear-ProgramDense, teb::SolverLevenbergMarquardtEigenSparse, teb::BaseSolverLeastSquares, and teb::SolverLevenbergMarquardtEigenDense.

Referenced by solve().

16.4.5 Member Data Documentation

16.4.5.1 VertexContainer* **teb::BaseSolver::_active_vertices = nullptr** [protected]

Definition at line 233 of file base_solver.h.

Referenced by applyIncrement(), applyOptVec(), backupVertices(), discardBackupVertices(), getOptVecCopy(), getOptVecDimension(), restoreVertices(), restoreVerticesButKeepBackup(), and solve().

16.4.5.2 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected]

Definition at line 235 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), getDimEqualities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and solve().

16.4.5.3 int teb::BaseSolver::_equalities_dim = -1 [protected]

Definition at line 240 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverNloptPackage::getEqConstrDimFromStorage(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinear-ProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), solve(), and teb::-SolverSQPDense::solvelmpl().

```
16.4.5.4 bool teb::BaseSolver::_graph_structure_modified = true [protected]
```

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::init-Workspaces(), solve(), and teb::SolverSQPDense::solveImpl().

```
16.4.5.5 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected]
```

Definition at line 236 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::countJacobianColNNZ(), getDimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and solve().

```
16.4.5.6 int teb::BaseSolver::_inequalities_dim = -1 [protected]
```

Definition at line 241 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::solvelmpl().

```
16.4.5.7 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected]
```

Definition at line 243 of file base_solver.h.

Referenced by backupVertices(), discardBackupVertices(), restoreVertices(), and solve().

```
16.4.5.8 int teb::BaseSolver::_objective_dim = -1 [protected]
```

Definition at line 239 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::getValueDimension(), and solve().

```
16.4.5.9 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected]
```

Definition at line 234 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardt-EigenSparse::countJacobianColNNZ(), getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::SolverNloptPackage::objectives(), and solve().

16.4.5.10 int teb::BaseSolver::_opt_vec_dim = -1 [protected]

Definition at line 238 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequality-ConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), getOptVecCopy(), teb::SolverNonlinearProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.4.5.11 const Config* teb::BaseSolver::cfg = nullptr

See Also

setConfig()

Definition at line 95 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), teb::BaseSolverLeastSquares::build-Jacobian(), teb::BaseSolverLeastSquares::build-ValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), teb::SolverSQPDense::initSolverWorkspace(), setConfig(), and teb::SolverSQPDense::solveImpl().

16.4.5.12 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following file:

· base solver.h

16.5 teb::BaseSolverLeastSquares Class Reference

Extended base solver class for least squares optimizations.

#include <base_solver_least_squares.h>

Inheritance diagram for teb::BaseSolverLeastSquares:

Public Types

- using VertexContainer = HyperGraph::VertexContainer

 Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).
- using EdgeContainer = HyperGraph::EdgeContainer
 Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

• BaseSolverLeastSquares ()

Empty Constructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

const Config * cfg = nullptr

Store pointer to Config object.

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Member Functions

• virtual bool solveImpl ()=0

Solve the actual optimization problem.

• virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

void buildValueVector ()

Build value / cost vector including all objectives and constraints.

int getValueDimension () const

Get dimension of the composed value/cost vector (including objectives and constraints).

· double getChi2 () const

Calculate the χ^2 error of the optimization problem.

· void adaptWeights ()

Automatic weight adaptation that increases soft constraint weights after each outer teb iteration.

void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

• Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

• int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

• int getDimInequalities () const

Get dimension of the inequality constraints.

void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

• void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

• Eigen::VectorXd values

Store the value vector computed in buildValueVector().

int _weight_adapt_count = 0

Store current state of the weight adaptation method adaptWeights().

• double _weight_equalities = 1

Store current weight for equality soft-constraints.

double _weight_inequalities = 1

Store current weight for inequality soft-constraints.

• int val dim = -1

Store dimension of the value vector here (see getValueDimension()).

VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

• EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

• int _opt_vec_dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

• int _objective_dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int _equalities_dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

• int inequalities dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

• unsigned int _no_vert_backups = 0

Track number of vertices backups made.

bool _graph_structure_modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.5.1 Detailed Description

This abstract class extends the BaseSolver class by routines and methods required by dedicated least squares solvers.

It transforms inequality and equality constraints into soft constraints that are added to the objective functions. objective functions are squared.

The jacobian calculation is based on the new transformed objective function and used for quasi-newton hessian approximation $\mathbf{H} = \mathbf{J}^T \mathbf{J}$. However, the actual hessian calculation using the computeHessian() functions of each edge is ommitted.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 29 of file base solver least squares.h.

16.5.2 Member Typedef Documentation

```
16.5.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]
```

Definition at line 36 of file base_solver.h.

16.5.2.2 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]

Definition at line 34 of file base_solver.h.

16.5.3 Constructor & Destructor Documentation

```
16.5.3.1 teb::BaseSolverLeastSquares::BaseSolverLeastSquares() [inline]
```

Definition at line 34 of file base_solver_least_squares.h.

16.5.4 Member Function Documentation

```
16.5.4.1 void teb::BaseSolverLeastSquares::adaptWeights() [protected]
```

This method increases the soft constraint weights for inequalities and equalities after each outer TEB optimization loop (see TebController::optimizeTEB()).

After the outer TEB loop is completed (Config::Teb::teb_iter), the weights are set back to Config::Optim::Solver::Lsq::weight_equalities and Config::Optim::Solver::Lsq::weight_inequalities.

The weights are increased by $\sigma = \sigma_{init} \cdot \gamma^i$. γ denotes the increasement factor Config::Optim::Solver::Lsq::weight_adaptation_factor. i denotes the current iteration number. σ_{init} is obtained from the config (see above).

Call this method at the beginning of solveImpl()!

Remarks

This procedere forces the optimization result to first contract the trajectory in sense of the objective, and afterwards trying to satisfy the constraints. Starting with very high weights in advance could lead to abrupt gradients for the solver. In addition the effect for the objectives (e.g. time optimallity) could be slow, if the corresponding gradients are extremly small in comparision to constraint gradients.

See Also

TebController::optimizeTEB()

Definition at line 100 of file base_solver_least_squares.cpp.

References _weight_adapt_count, _weight_equalities, _weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config::Optim::Solver::Lsq::weight_adaptation_factor, teb::Config::Optim::Solver::Lsq::weight_equalities, and teb::Config::Optim::Solver::Lsq::weight_inequalities.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.5.4.2 void teb::BaseSolver::applyIncrement ( const Eigen::Ref< const Eigen::VectorXd > & delta ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments.	The length euquals the dimension of all free vari-
	ables.	

Definition at line 127 of file base_solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.5.4.3 void teb::BaseSolver::applyOptVec ( const Eigen::Ref< const Eigen::VectorXd > & opt_vec ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt_vec	Eigen::Vector containing all values. The length equals the dimension of all free variables.

Definition at line 144 of file base solver.h.

References teb::BaseSolver::_active_vertices.

```
16.5.4.4 void teb::BaseSolver::backupVertices() [inline], [protected], [inherited]
```

See Also

VertexType::push()

Definition at line 223 of file base solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.5.4.5 void teb::BaseSolverLeastSquares::buildValueVector() [protected]
```

This method constructs the full value/cost vector \mathbf{f} (not \mathbf{f}^2) for the underlying least-squares optimization problem.

The lenght of the vector can be obtained using getValueDimension().

Constraints are transformed into costs/objectives using soft constraints:

- Equality constraints c(x)=0.

 These constraints are directly taken as objectives since $c^2(x)$ has a local minima at x=0.
- Inequality constraints $c(x) \le 0$

These constraints are transformed using $f = \max(c(x), 0)$ (component-wise).

This notation is similar to: $c(x) \le e^{-1}$ epsilon ? 0 : c(x).

Afterwards (in the actual solvelmpl() method, the cost function will be squared, that leads to twice differentiable costs for the constraints, if f is piecewise differentiable once and if it intersectects with the abscissa.

In addition the weights BaseSolverLeastSquares::_weight_equalities and BaseSolverLeastSquares::_weight_inequalities are taken into account in order to weight the "soft constraint objectives". To make the weights comparable to [2] and our Matlab TEB version, we take the square root of both weights, since the least-square problem here is formulated as $f^2(x,\sigma)$ instead of $\sigma f^2(x)$. σ denotes the weight.

The results are stored internally to BaseSolverLeastSquares:: values.

See Also

adaptWeights(), getValueDimension()

Definition at line 31 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, _val_dim, _values, _weight_equalities, _weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config:

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.5.4.6 void teb::BaseSolver::discardBackupVertices() [inline],[protected],[inherited]
```

See Also

VertexType::discardTop()

Definition at line 229 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.5.4.7 double teb::BaseSolverLeastSquares::getChi2() const [inline], [protected]

The χ^2 error is the scalar cost value of the least-squares optimization problem since the total cost function is composed of weighted terms:

$$f(\mathscr{B}) = \mathbf{f}(\mathscr{B})^T \mathbf{f}(\mathscr{B})$$

Weights are included in $\mathbf{f}(\mathcal{B})$. In this case it is $\chi^2 = f(\mathcal{B})$.

Todo Maybe switch to the formulation $f(\mathcal{B}) = \mathbf{f}(\mathcal{B})^T \Omega \mathbf{f}(\mathcal{B})$ similar to g2o and Teb-Matlab.

Definition at line 82 of file base_solver_least_squares.h.

References values.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.5.4.8 intteb::BaseSolver::getDimEqualities() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 202 of file base solver.h.

References teb::BaseSolver::_equalities.

Referenced by teb::BaseSolver::solve().

16.5.4.9 int teb::BaseSolver::getDimInequalities () const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 214 of file base solver.h.

References teb::BaseSolver::_inequalities.

Referenced by teb::BaseSolver::solve().

16.5.4.10 int teb::BaseSolver::getDimObjectives () const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 190 of file base_solver.h.

References teb::BaseSolver:: objectives.

Referenced by teb::BaseSolver::solve().

16.5.4.11 Eigen::VectorXd teb::BaseSolver::getOptVecCopy()const [inline], [protected], [inherited]

This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.

Remarks

Make sure BaseSolver:: opt vec dim is valid (see solve()).

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_opt_vec_dim.

```
16.5.4.12 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]
```

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

TebController::getActiveVertices(), getValueDimension()

Definition at line 180 of file base solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::BaseSolver::solve().

```
16.5.4.13 int teb::BaseSolverLeastSquares::getValueDimension() const [protected]
```

This method returns the dimension of the full cost/value vector including all objective and constraints.

In particular it sums up all dimensions of single edges stored in the given hyper-graph.

Remarks

Make sure BaseSolver::_objective_dim, BaseSolver::_equalities_dim and BaseSolver::_inequalities_dim are valid (see solve()).

Returns

dimension of the complete value/cost vector.

See Also

buildValueVector(), getOptVecDimension(), getDimObjectives(), getDimEqualities(), getDimInequalities()

Definition at line 73 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities_dim, teb::BaseSolver::_inequalities_dim, and teb::BaseSolver::_objective-dim

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.5.4.14 virtual void teb::BaseSolverLeastSquares::initWorkspaces() [inline], [protected], [virtual]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 43 of file base_solver_least_squares.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, PRINT_DEBUG_COND_ONCE, and teb::QUADRATIC.

```
16.5.4.15 void teb::BaseSolver::restoreVertices ( ) [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.5.4.16 void teb::BaseSolver::restoreVerticesButKeepBackup() [inline],[protected],[inherited]

See Also

VertexType::top()

Definition at line 227 of file base_solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::SolverSQPDense::solveImpl().

16.5.4.17 void teb::BaseSolver::setConfig (const Config * config) [inline], [inherited]

Remarks

This function is called from the TEB class within setSolver method.

Parameters

```
config | Pointer to Config object.
```

Definition at line 49 of file base solver.h.

References teb::BaseSolver::cfg.

Referenced by teb::TebController< p, q >::setSolver().

```
16.5.4.18 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual], [inherited]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

```
optimizable_- pointer to the HyperGraph that should be solved graph
```

Definition at line 61 of file base solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_no_vert_backups, teb::BaseSolver::_objective_dim, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::initWorkspaces(), teb::BaseSolver::solve-limpl().

```
16.5.4.19 virtual bool teb::BaseSolverLeastSquares::solvelmpl() [protected], [pure virtual]
```

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolver.

Implemented in teb::SolverLevenbergMarquardtEigenSparse, and teb::SolverLevenbergMarquardtEigenDense.

16.5.5 Member Data Documentation

16.5.5.1 VertexContainer* **teb::BaseSolver::_active_vertices = nullptr** [protected], [inherited]

Definition at line 233 of file base solver.h.

Referenced by teb::BaseSolver::applyIncrement(), teb::BaseSolver::applyOptVec(), teb::BaseSolver::backup-Vertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::getOptVecCopy(), teb::BaseSolver::getOptVecDimension(), teb::BaseSolver::restoreVertices(), teb::BaseSolver::restoreVerticesButKeepBackup(), and teb::BaseSolver::solve().

16.5.5.2 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]

Definition at line 235 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraints-Eq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimEqualities(), initWorkspaces(), teb::SolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

16.5.5.3 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverNloptPackage::get-EqConstrDimFromStorage(), getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrange-Multiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.5.5.4 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base solver.h.

Referenced by initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.5.5.5 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]

Definition at line 236 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraints-InEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimInequalities(), initWorkspaces(), teb::SolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

```
16.5.5.6 int teb::BaseSolver:: inequalities dim = -1 [protected], [inherited]
```

Definition at line 241 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

```
16.5.5.7 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]
```

Definition at line 243 of file base solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

```
16.5.5.8 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]
```

Definition at line 239 of file base_solver.h.

Referenced by getValueDimension(), and teb::BaseSolver::solve().

```
16.5.5.9 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]
```

Definition at line 234 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobian-ColNNZ(), teb::BaseSolver::getDimObjectives(), initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::SolverNloptPackage::objectives(), and teb::BaseSolver::solve().

```
16.5.5.10 intteb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]
```

Definition at line 238 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getOptVecCopy(), teb::SolverNonlinearProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.5.5.11 int teb::BaseSolverLeastSquares::_val_dim = -1 [protected]

Definition at line 96 of file base_solver_least_squares.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::SolverLevenberg-MarquardtEigenDense::buildJacobian(), buildValueVector(), teb::SolverLevenbergMarquardtEigenDense::solve-Impl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.5.5.12 Eigen::VectorXd teb::BaseSolverLeastSquares::_values [protected]

Definition at line 90 of file base_solver_least_squares.h.

Referenced by buildValueVector(), getChi2(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::-SolverLevenbergMarquardtEigenSparse::solveImpl().

16.5.5.13 int teb::BaseSolverLeastSquares::_weight_adapt_count = 0 [protected]

Definition at line 92 of file base solver least squares.h.

Referenced by adaptWeights().

16.5.5.14 double teb::BaseSolverLeastSquares::_weight_equalities = 1 [protected]

Definition at line 93 of file base_solver_least_squares.h.

Referenced by adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), and buildValueVector().

16.5.5.15 double teb::BaseSolverLeastSquares::_weight_inequalities = 1 [protected]

Definition at line 94 of file base_solver_least_squares.h.

Referenced by adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), and buildValueVector().

16.5.5.16 const Config* teb::BaseSolver::cfg = nullptr [inherited]

See Also

setConfig()

Definition at line 95 of file base_solver.h.

Referenced by adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFG-S(), teb::BaseSolverNonlinearProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::setConfig(), and teb::SolverSQPDense::solvelmpl().

16.5.5.17 teb::BaseSolver::EIGEN MAKE ALIGNED OPERATOR NEW [inherited]

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following files:

- · base_solver_least_squares.h
- base_solver_least_squares.cpp

16.6 teb::BaseSolverNonlinearProgramDense Class Reference

Extended base solver class for nonlinear programs (dense version).

#include <base_solver_nonlinear_program_dense.h>

Inheritance diagram for teb::BaseSolverNonlinearProgramDense:

Public Types

- using VertexContainer = HyperGraph::VertexContainer
 - Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).
- using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

BaseSolverNonlinearProgramDense ()

Empty Constructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

- const Config * cfg = nullptr
 - Store pointer to Config object.
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Types

using MatMapRowMajor = Eigen::Map< Eigen::Matrix< double,-1,-1, Eigen::RowMajor >>

Protected Member Functions

• virtual bool solveImpl ()=0

Solve the actual optimization problem.

virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

- virtual void initSolverWorkspace ()=0
- void initializeLagrangeMultiplier ()
- void buildObjectiveValue ()

Get the sum of all objective values since we solve $f = \min \sum f_k$.

void buildEqualityConstraintValueVector ()

Build value / cost vector including all equality constraints.

void buildInequalityConstraintValueVector ()

Build value / cost vector including all inequality constraints.

- void buildObjectiveGradient ()
- void buildEqualityConstraintJacobian ()
- void buildInequalityConstraintJacobian ()
- void calculateLagrangianGradient ()
- void calculateLagrangianHessian (Eigen::VectorXd *increment=nullptr)
- void calculateLagrangianHessianNumerically ()
- void initHessianBFGS ()
- void calculateLagrangianHessianFullBFGS (Eigen::VectorXd *increment)
- void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

· int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

• int getDimInequalities () const

Get dimension of the inequality constraints.

• void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

• void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

• void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

· double objective value

Store the sum of all values computed in buildObjectiveValueVector() since we solve $f = \min \sum f_k$.

Eigen::VectorXd _equality_values

Store the value vector computed in buildEqualityConstraintValueVector().

Eigen::VectorXd _inequality_values

Store the value vector computed in buildInequalityConstraintValueVector().

· Eigen::VectorXd objective gradient

Store the gradient of the objective value computed in buildObjectiveGradient().

MatMapRowMajor _equality_jacobian = MatMapRowMajor(nullptr,0,0)

Store the jacobian matrix of the equality constraint computed in buildEqualityConstraintJacobian().

• MatMapRowMajor_inequality_jacobian = MatMapRowMajor(nullptr,0,0)

Store the jacobian matrix of the inequality constraint computed in buildInequalityConstraintJacobian().

- Eigen::VectorXd _lagrangian_gradient
- Eigen::VectorXd lagrangian gradient backup

The gradient from the last step has to be stored for BFGS.

Eigen::Matrix< double,-1,-1,

Eigen::RowMajor > _lagrangian_hessian

Store the hessian of the lagrangian $\nabla^2 L = \nabla^2 (f - \mu^T \mathbf{ceq} - \lambda^T \mathbf{c})$.

- Eigen::VectorXd _multiplier_ineq
- Eigen::VectorXd multiplier eq
- VertexContainer * active vertices = nullptr

Pointer to active vertex container (active = non-fixed)

EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

• int _opt_vec_dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

• int objective dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int _equalities_dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

• int _inequalities_dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

unsigned int _no_vert_backups = 0

Track number of vertices backups made.

• bool graph structure modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.6.1 Detailed Description

This abstract class extends the BaseSolver class by routines and methods required by dedicated nonlinear program solvers

Inequality and equality constraints are treaten as hard constraints. This class provides methods to calculate objective and constraint gradients/jacobians and as well as the Hessian of the Lagrangian.

The actual solveImpl() implementation has to be done in a seperate subclass, e.g. depending if the underlying nonlinear-program solver is a newton-type solver, interior-point, barrier, sqp, ... solver.

Todo The documentation of this class, after this class passed a couple of more tests

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 32 of file base_solver_nonlinear_program_dense.h.

16.6.2 Member Typedef Documentation

```
16.6.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]
```

Definition at line 36 of file base_solver.h.

16.6.2.2 using teb::BaseSolverNonlinearProgramDense::MatMapRowMajor = Eigen::Map<Eigen::Matrix<double,1,-1,Eigen::RowMajor>> [protected]

Definition at line 110 of file base_solver_nonlinear_program_dense.h.

16.6.2.3 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]

Definition at line 34 of file base_solver.h.

16.6.3 Constructor & Destructor Documentation

16.6.3.1 teb::BaseSolverNonlinearProgramDense::BaseSolverNonlinearProgramDense() [inline]

Definition at line 37 of file base_solver_nonlinear_program_dense.h.

16.6.4 Member Function Documentation

```
16.6.4.1 void teb::BaseSolver::applyIncrement ( const Eigen::Ref < const Eigen::VectorXd > & delta ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments.	The length euquals the dimension of all free vari-
	ables.	

Definition at line 127 of file base solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.6.4.2 void teb::BaseSolver::applyOptVec ( const Eigen::Ref< const Eigen::VectorXd > & opt_vec ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt_vec | Eigen::Vector containing all values. The length equals the dimension of all free variables.

Definition at line 144 of file base solver.h.

References teb::BaseSolver:: active vertices.

16.6.4.3 void teb::BaseSolver::backupVertices() [inline], [protected], [inherited]

See Also

VertexType::push()

Definition at line 223 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.6.4.4 void teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian () [protected]

Definition at line 154 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, _equality_jacobian, _equality_values, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::is-FixedAny(), and teb::VertexType::isFixedComp().

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.5 void teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector() [protected]

Definition at line 30 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, and _equality_values.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.6 void teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian () [protected]

Definition at line 200 of file base solver nonlinear program dense.cpp.

References teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, _inequality_jacobian, _inequality_values, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::isFixedAny(), and teb::VertexType::isFixedComp().

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.7 void teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector() [protected]

Definition at line 54 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, and _inequality_values.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.8 void teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient() [protected]

Definition at line 82 of file base_solver_nonlinear_program_dense.cpp.

References _objective_gradient, teb::BaseSolver::_objectives, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::isFixedAny(), teb::VertexType::isFixedComp(), teb::LINEAR SQUARED, and teb::NONLINEAR SQUARED.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.9 void teb::BaseSolverNonlinearProgramDense::buildObjectiveValue() [protected]

Definition at line 7 of file base_solver_nonlinear_program_dense.cpp.

References _objective_value, teb::BaseSolver::_objectives, teb::LINEAR_SQUARED, and teb::NONLINEAR_SQUARED.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.10 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianGradient() [inline].[protected]

Definition at line 98 of file base_solver_nonlinear_program_dense.h.

References _equality_jacobian, _inequality_jacobian, _lagrangian_gradient, _multiplier_eq, _multiplier_ineq, and objective gradient.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.11 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian (Eigen::VectorXd * increment = nullptr) [protected]

Definition at line 245 of file base solver nonlinear program dense.cpp.

References teb::BLOCK_BFGS, calculateLagrangianHessianFullBFGS(), calculateLagrangianHessianNumerically(), teb::BaseSolver::cfg, teb::FULL_BFGS, teb::FULL_BFGS_WITH_STRUCTURE_FILTER, teb::Config::Optim::Solver::NonlinearProgram::hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_method, teb::Config::Optim::Solver::nonlin_prog, teb::NUMERIC, teb::Config::optim, PRINT_ERROR, PRINT_INFO, teb::Config::Optim::solver, and teb::ZERO_HESSIAN.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.12 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS (Eigen::VectorXd * increment)

[protected]

Definition at line 520 of file base_solver_nonlinear_program_dense.cpp.

References _lagrangian_gradient, _lagrangian_gradient_backup, _lagrangian_hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::bfgs_damped_mode, teb::BaseSolver::cfg, teb::Config::Optim::Solver::Nonlinear-Program::hessian, teb::Config::Optim::Solver::nonlin_prog, teb::Config::optim, PRINT_DEBUG, and teb::Config::Optim::solver.

Referenced by calculateLagrangianHessian().

16.6.4.13 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically() [protected]

Definition at line 273 of file base solver nonlinear program dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, _equality_values, teb::BaseSolver::_inequalities_dim, _inequality_values, _lagrangian_hessian, _multiplier_eq, _-multiplier_ineq, teb::BaseSolver::_objectives, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::isFixedAny(), teb::VertexType::isFixedComp(), teb::LINEAR, teb::LINEAR SQUARED, teb::NONLINEAR ONCE DIFF, and teb::NONLINEAR SQUARED.

Referenced by calculateLagrangianHessian(), and initHessianBFGS().

16.6.4.14 void teb::BaseSolver::discardBackupVertices() [inline], [protected], [inherited]

See Also

VertexType::discardTop()

Definition at line 229 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.6.4.15 int teb::BaseSolver::getDimEqualities () const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 202 of file base_solver.h.

References teb::BaseSolver::_equalities.

Referenced by teb::BaseSolver::solve().

16.6.4.16 int teb::BaseSolver::getDimlnequalities() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 214 of file base solver.h.

References teb::BaseSolver::_inequalities.

Referenced by teb::BaseSolver::solve().

16.6.4.17 int teb::BaseSolver::getDimObjectives () const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 190 of file base_solver.h.

References teb::BaseSolver:: objectives.

Referenced by teb::BaseSolver::solve().

16.6.4.18 Eigen::VectorXd teb::BaseSolver::getOptVecCopy() const [inline], [protected], [inherited]

This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.

Remarks

Make sure BaseSolver::_opt_vec_dim is valid (see solve()).

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_opt_vec_dim.

```
16.6.4.19 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]
```

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

TebController::getActiveVertices(), getValueDimension()

Definition at line 180 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::BaseSolver::solve().

16.6.4.20 void teb::BaseSolverNonlinearProgramDense::initHessianBFGS() [protected]

Definition at line 489 of file base_solver_nonlinear_program_dense.cpp.

References _lagrangian_gradient, _lagrangian_gradient_backup, _lagrangian_hessian, teb::BaseSolver::_opt_vec_dim, calculateLagrangianHessianNumerically(), teb::BaseSolver::cfg, teb::Config::Optim::Solver::NonlinearProgram::hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_init, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_init, teb::Config::Optim::Solver::nonlin_prog, teb::NUMERIC, teb::Config::optim, PRINT_ERROR, teb::Config::Optim::solver, and teb::ZERO.

Referenced by teb::SolverSQPDense::solveImpl().

```
16.6.4.21 void teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier( ) [inline], [protected]
```

Definition at line 70 of file base solver nonlinear program dense.h.

References teb::BaseSolver::_equalities_dim, teb::BaseSolver::_inequalities_dim, _multiplier_eq, and _multiplier_ineq.

Referenced by teb::SolverSQPDense::solveImpl().

```
16.6.4.22 virtual void teb::BaseSolverNonlinearProgramDense::initSolverWorkspace( ) [protected], [pure virtual]
```

Implemented in teb::SolverSQPDense, and teb::SolverSQPDense.

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 46 of file base_solver_nonlinear_program_dense.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, teb::LINEAR_SQUARED, teb::NONLINEAR_SQUARED, and PRINT-DEBUG COND ONCE.

```
16.6.4.24 void teb::BaseSolver::restoreVertices() [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base_solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.6.4.25 void teb::BaseSolver::restoreVerticesButKeepBackup() [inline], [protected], [inherited]

See Also

VertexType::top()

Definition at line 227 of file base_solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::SolverSQPDense::solveImpl().

16.6.4.26 void teb::BaseSolver::setConfig (const Config * config) [inline], [inherited]

Remarks

This function is called from the TEB class within setSolver method.

Parameters

config	Pointer to Config object.
--------	---------------------------

Definition at line 49 of file base_solver.h.

References teb::BaseSolver::cfg.

 $\label{lem:controller} Referenced \ by \ teb:: TebController < p, \ q > ::setSolver().$

```
16.6.4.27 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual], [inherited]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

```
optimizable_- pointer to the HyperGraph that should be solved graph
```

Definition at line 61 of file base_solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_no_vert_backups, teb::BaseSolver::_objective_dim, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLeq

16.6.4.28 virtual bool teb::BaseSolverNonlinearProgramDense::solveImpl() [protected], [pure virtual]

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolver.

Implemented in teb::SolverSQPDense, and teb::SolverSQPDense.

16.6.5 Member Data Documentation

16.6.5.1 VertexContainer* **teb::BaseSolver::_active_vertices = nullptr** [protected], [inherited]

Definition at line 233 of file base solver.h.

Referenced by teb::BaseSolver::applyIncrement(), teb::BaseSolver::applyOptVec(), teb::BaseSolver::backup-Vertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::getOptVecCopy(), teb::BaseSolver::getOptVecDimension(), teb::BaseSolver::restoreVertices(), teb::BaseSolver::restoreVerticesButKeepBackup(), and teb::BaseSolver::solve().

16.6.5.2 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]

Definition at line 235 of file base solver.h.

Referenced by buildEqualityConstraintJacobian(), buildEqualityConstraintValueVector(), teb::SolverLevenberg-MarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::Base-SolverLeastSquares::buildValueVector(), calculateLagrangianHessianNumerically(), teb::SolverNloptPackage-::constraintsEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::get-DimEqualities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), init-Workspaces(), and teb::BaseSolver::solve().

16.6.5.3 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base solver.h.

Referenced by buildEqualityConstraintJacobian(), buildEqualityConstraintValueVector(), calculateLagrangian-HessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverNloptPackage::getEqConstr-DimFromStorage(), teb::BaseSolverLeastSquares::getValueDimension(), initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.6.5.4 MatMapRowMajor teb::BaseSolverNonlinearProgramDense::_equality_jacobian = MatMapRowMajor(nullptr,0,0) [protected]

Definition at line 117 of file base_solver_nonlinear_program_dense.h.

 $Referenced \ by \ build Equality Constraint Jacobian (), \ calculate Lagrangian Gradient (), \ teb:: Solver SQPD ense:: calculate Merit Derivative (), \ and \ teb:: Solver SQPD ense:: init Solver Workspace ().$

16.6.5.5 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_equality_values [protected]

Definition at line 113 of file base_solver_nonlinear_program_dense.h.

Referenced by buildEqualityConstraintJacobian(), buildEqualityConstraintValueVector(), calculateLagrangian-HessianNumerically(), teb::SolverSQPDense::calculateMerit(), teb::SolverSQPDense::calculateMerit(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solverSQP

16.6.5.6 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), initWorkspaces(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.6.5.7 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]

Definition at line 236 of file base solver.h.

Referenced by buildInequalityConstraintJacobian(), buildInequalityConstraintValueVector(), teb::SolverLevenberg-MarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::Base-SolverLeastSquares::buildValueVector(), calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsInEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::get-DimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), initWorkspaces(), and teb::BaseSolver::solve().

16.6.5.8 int teb::BaseSolver::_inequalities_dim = -1 [protected], [inherited]

Definition at line 241 of file base solver.h.

Referenced by buildInequalityConstraintJacobian(), buildInequalityConstraintValueVector(), calculateLagrangian-HessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValue-Dimension(), initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.6.5.9 MatMapRowMajor teb::BaseSolverNonlinearProgramDense::_inequality_jacobian = MatMapRowMajor(nullptr,0,0) [protected]

Definition at line 118 of file base solver nonlinear program dense.h.

Referenced by buildInequalityConstraintJacobian(), calculateLagrangianGradient(), teb::SolverSQPDense::calculateMeritDerivative(), and teb::SolverSQPDense::initSolverWorkspace().

16.6.5.10 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_inequality_values [protected]

Definition at line 114 of file base solver nonlinear program dense.h.

Referenced by buildInequalityConstraintJacobian(), buildInequalityConstraintValueVector(), calculateLagrangian-HessianNumerically(), teb::SolverSQPDense::calculateMerit(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solveImpl().

16.6.5.11 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient [protected]

Definition at line 120 of file base_solver_nonlinear_program_dense.h.

Referenced by calculateLagrangianGradient(), calculateLagrangianHessianFullBFGS(), teb::SolverSQPDense::checkConvergence(), and initHessianBFGS().

16.6.5.12 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient_backup [protected]

Definition at line 121 of file base_solver_nonlinear_program_dense.h.

 $Referenced \ by \ calculate Lagrangian Hessian Full BFGS (), \ and \ in it Hessian BFGS ().$

16.6.5.13 Eigen::Matrix < double,-1,-1, Eigen::RowMajor > teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian [protected]

Definition at line 122 of file base_solver_nonlinear_program_dense.h.

Referenced by calculateLagrangianHessianFullBFGS(), calculateLagrangianHessianNumerically(), initHessianBF-GS(), and teb::SolverSQPDense::solveImpl().

16.6.5.14 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_multiplier_eq [protected]

Definition at line 125 of file base solver nonlinear program dense.h.

Referenced by calculateLagrangianGradient(), calculateLagrangianHessianNumerically(), initializeLagrange-Multiplier(), and teb::SolverSQPDense::solveImpl().

16.6.5.15 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_multiplier_ineq [protected]

Definition at line 124 of file base solver nonlinear program dense.h.

Referenced by calculateLagrangianGradient(), calculateLagrangianHessianNumerically(), initializeLagrange-Multiplier(), and teb::SolverSQPDense::solveImpl().

16.6.5.16 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]

Definition at line 243 of file base solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

16.6.5.17 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]

Definition at line 239 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::solve().

16.6.5.18 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_objective_gradient [protected]

Definition at line 116 of file base_solver_nonlinear_program_dense.h.

Referenced by buildObjectiveGradient(), calculateLagrangianGradient(), teb::SolverSQPDense::calculateMerit(), teb::SolverSQPDense::calculateMeritDerivative(), and teb::SolverSQPDense::solveImpl().

16.6.5.19 double teb::BaseSolverNonlinearProgramDense:: objective value [protected]

Definition at line 112 of file base_solver_nonlinear_program_dense.h.

Referenced by buildObjectiveValue(), and teb::SolverSQPDense::calculateMerit().

16.6.5.20 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]

Definition at line 234 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), buildObjectiveGradient(), buildObjectiveValue(), teb::BaseSolverLeastSquares::buildValueVector(), calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(),

teb::SolverNloptPackage::initWorkspaces(), initWorkspaces(), teb::SolverNloptPackage::objectives(), and teb::-BaseSolver::solve().

```
16.6.5.21 int teb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]
```

Definition at line 238 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), buildEqualityConstraintJacobian(), buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), buildObjectiveGradient(), calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getOptVecCopy(), teb::SolverNloptPackage::getOptVecDimFromStorage(), initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.6.5.22 const Config* teb::BaseSolver::cfg = nullptr [inherited]
```

See Also

setConfig()

Definition at line 95 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), teb::BaseSolverLeastSquares::build-Jacobian(), teb::BaseSolverLeastSquares::build-ValueVector(), calculateLagrangianHessian(), calculateLagrangianHessianFullBFGS(), initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::setConfig(), and teb::SolverSQPDense::solverImpl().

```
16.6.5.23 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW [inherited]
```

Definition at line 253 of file base solver.h.

The documentation for this class was generated from the following files:

- base solver nonlinear program dense.h
- base_solver_nonlinear_program_dense.cpp

16.7 teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index > Class Template Reference

This class captures general bound constraints on optimization variables / vertices.

```
#include <bound_constraints.h>
```

Inheritance diagram for teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >:

Public Types

- using ValueVector = typename BaseEdge < NoBounds, FUNCT_TYPE::LINEAR, Vertex >::ValueVector Typedef to represent the static Eigen::Vector of cost/constraint values.
- using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map< Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

BoundConstraint (Vertex &vertex)

Construct edge and attach the corresponding vertex.

· virtual const bool isBoundConstraint () const

Override this method to specify this edge as a bound constraint since it can be handled seperately by some solvers to speed up optimization.

virtual void computeValues ()

Actual cost function or constraint function. For constraints it is compute Values() <= 0.

• virtual void computeJacobian ()

Specification of the analytic block jacobian.

• virtual void computeHessian ()

Specification of the analytic block hessian.

void setBounds (const double *bounds)

Set bounds for either BOUND TYPE::LOWER or BOUND TYPE::UPPER.

void setBounds (const Eigen::Ref< const Eigen::Matrix< double, NoBounds, 1 >> &bounds)

Set bounds for either BOUND_TYPE::LOWER or BOUND_TYPE::UPPER.

void setBounds (double bound)

Set single bound for either BOUND_TYPE::LOWER or BOUND_TYPE::UPPER.

• void setBounds (double lb, double ub)

Set single bound for BOUND_TYPE::LOWERUPPER.

void setBounds (const double *lb, const double *ub)

Set lower and upper bounds for BOUND_TYPE::LOWERUPPER.

void setBounds (const Eigen::Ref< const Eigen::Matrix< double, NoBounds/2, 1 >> &lb, const Eigen::Ref< const Eigen::Matrix< double, NoBounds/2, 1 >> &ub)

Set lower and upper bounds for BOUND TYPE::LOWERUPPER.

• const double * getBounds () const

get a constant pointer to bound data.

virtual void * getCustomData ()

Return bound information.

• virtual int dimension () const

Return edge dimension by function call.

virtual FUNCT_TYPE functType () const

Return function typed given by template parameter FuncType.

virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

• virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

· virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

· virtual const std::arrav

```
< VertexType *, NoVertices > & vertices () const
```

Return vertex container of the edge.

• virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

• virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

· virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

• virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

• virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

```
    static const int NoBounds = Index >= 0 ? (Bound_type == BOUND_TYPE::LOWERUPPER ? 2 : 1) : (Bound_type == BOUND_TYPE::LOWERUPPER ? 2 * Vertex::Dimension : Vertex::Dimension)
```

Store number of bounds.

static const BOUND_TYPE BoundType = Bound_type

Store type of bound (lower, upper, or both);.

- static constexpr const int NoVertices = sizeof...(Vertices)
- static const int Dimension = D

Edge dimension as static member variable.

Protected Attributes

Eigen::Matrix< double,
 NoBounds, 1 > bounds

Store bounds: first lower and then upper bound, depending on Bound_type parameter.

• ValueVector values = ValueVector::Zero()

Actual cost/constraint value data object (initialized to zero).

const std::array
 VertexType

*, NoVertices > _vertices

Container that stores all attached vertices.

std::array< int, NoVertices > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

• JacobianWorkspace jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

16.7.1 Detailed Description

template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1 > class teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >

Use this class to create bound constraints $\mathbf{x}_{min} \leq \mathbf{x} \leq \mathbf{x}_{max}$

Remarks

Call allocateMemory() before using the edge for optimization.

Todo Maybe use a special representation or zero Hessians to avoid processing a lot of zeros (same for other edges)

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

ConstraintEdgeUnary, ConstraintEdgeBinary, ConstraintEdgeMulti, ObjectiveEdgeUnary, ObjectiveEdgeBinary, ObjectiveEdgeMulti

Template Parameters

Bound_type	Lower or upper bound corresponding to BOUND_TYPE enum
Vertex	Type of the attached vertex.
Bound_vars	Specify whether a single state or all components of the VertexType should be
	bounded (See BOUND_VARS enum).
Index	If Bound_vars==BOUND_VARS::SINGLE then this Index specifies the ele-
	ment/component, otherwise set Index to -1.

Definition at line 55 of file bound_constraints.h.

16.7.2 Member Typedef Documentation

16.7.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.7.2.2 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> using teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::ValueVector = typename BaseEdge < NoBounds, FUNCT_TYPE::LINEAR, Vertex >::ValueVector

Definition at line 70 of file bound_constraints.h.

16.7.2.3 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.7.3 Constructor & Destructor Documentation

16.7.3.1 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::BoundConstraint (Vertex & vertex) [inline]

Parameters

```
vertex Reference to the vertex that should be bounded
```

Definition at line 76 of file bound constraints.h.

16.7.4 Member Function Documentation

16.7.4.1 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual void teb::BaseEdge < D, FuncType, Vertices >::allocateMemory (bool skip_hessian = false) [inline], [virtual], [inherited]

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip hessian	If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 84 of file base edge.h.

```
16.7.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual], [inherited]
```

Definition at line 162 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

```
16.7.4.3 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual void teb::BaseEdge < D, FuncType, Vertices >::calculateVertexDimensions ( ) [inline], [virtual], [inherited]
```

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-

Definition at line 110 of file base_edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), and teb::BaseEdge< D, FuncType >::allocateMemory().

Reimplemented from teb::BaseEdge < D, FuncType, Vertices >.

Definition at line 163 of file bound_constraints.h.

References teb::EdgeType:: hessians, and teb::HessianWorkspace::getWorkspace().

Reimplemented from teb::BaseEdge < D, FuncType, Vertices >.

Definition at line 125 of file bound constraints.h.

References teb::EdgeType::_jacobians, teb::JacobianWorkspace::getWorkspace(), teb::LOWER, teb::LOWERUP-PER, and teb::SINGLE.

Reimplemented from teb::BaseEdge < D, FuncType, Vertices >.

Definition at line 85 of file bound constraints.h.

References teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::_bounds, teb::BaseEdge< D, FuncType, Vertices >::_vertices, teb::LOWER, teb::LOWERUPPER, and teb::SINGLE.

16.7.4.7 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual int teb::BaseEdge < D, FuncType, Vertices >::dimension() const [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 51 of file base edge.h.

16.7.4.8 virtual void teb::EdgeType::discardJacobianBackup() [inline], [virtual], [inherited]

Definition at line 171 of file graph.h.

References teb::EdgeType::_jacob_backup.

16.7.4.9 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual FUNCT_TYPE teb::BaseEdge < D, FuncType, Vertices >::functType () const [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 69 of file base edge.h.

16.7.4.10 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1 > const double* teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::getBounds () const [inline]

See setBounds() overloads for more information about the length. In summary:

```
• BOUND_TYPE::LOWER / BOUND_TYPE::UPPER && BOUND_VARS::SINGLE: 1
```

• BOUND TYPE::LOWER / BOUND TYPE::UPPER && BOUND VARS::ALL : Vertex::Dimension

BOUND_TYPE::LOWERUPPER && BOUND_VARS::SINGLE: 2

BOUND_TYPE::LOWERUPPER && BOUND_VARS::ALL : 2*Vertex::Dimension

In case of BOUND TYPE::LOWERUPPER first all lower bounds are stored and then all upper ones.

Returns

constant pointer to bound data

Definition at line 283 of file bound constraints.h.

References teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::_bounds.

This function overwrites the default interface to share custom data with edges. It avoids dynamic casting with known (!!!) template parameters. Cast the output to a CustomBoundData struct:

```
EdgeType* edge = new BoundConstaint<>(); // Do not forget to set bounds afterwards ...
CustomBoundData* bound_data = static_cast<CustomBoundData*>(edge->getCustomData());
// Do something with bound_data.
delete bound_data;
```

Do not forget to delete the bound_data object later

The bound data returned shares always the same size like vertex->dimensionFree.

All Bounds that are not considered in this class (like for Index>0) are set to -INF or INF depending on ther type.

Returns

Void-pointer to CustomBoundData object on the heap.

Reimplemented from teb::EdgeType.

Definition at line 308 of file bound_constraints.h.

References teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::_bounds, teb::BaseEdge< D, Func-Type, Vertices >::_vertices, teb::CustomBoundData::index, INF, teb::LOWER, teb::LOWERUPPER, teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::NoBounds, and teb::UPPER.

```
16.7.4.12 virtual JacobianWorkspace& teb::EdgeType::getJacobianBackup( ) [inline], [virtual], [inherited]
```

Definition at line 173 of file graph.h.

References teb::EdgeType::_jacob_backup.

```
16.7.4.13 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual VertexType* teb::BaseEdge < D, FuncType, Vertices >::getVertex ( unsigned int idx ) [inline], [virtual], [inherited]
```

Implements teb::EdgeType.

Definition at line 98 of file base_edge.h.

```
16.7.4.14 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const VertexType* teb::BaseEdge < D,
         FuncType, Vertices >::getVertex ( unsigned int idx ) const [inline], [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 99 of file base_edge.h.
16.7.4.15 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType:: hessians.
16.7.4.16 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual],
         [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType::_hessians.
16.7.4.17 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1 > virtual const
         bool teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::isBoundConstraint ( ) const
         [inline],[virtual]
Reimplemented from teb::EdgeType.
Definition at line 83 of file bound constraints.h.
16.7.4.18 virtual Jacobian Workspace & teb::EdgeType::jacobians() [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType::_jacobians.
16.7.4.19 virtual const JacobianWorkspace& teb::EdgeType::jacobians( ) const [inline], [virtual],
         [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType:: jacobians.
16.7.4.20 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual unsigned int teb::BaseEdge < D, FuncType,
         Vertices >::noVertices ( ) const [inline], [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 101 of file base_edge.h.
16.7.4.21 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual], [inherited]
Definition at line 165 of file graph.h.
References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.
```

16.7.4.22 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::setBounds (const double * bounds) [inline]

Set an array of the bounds. The length depends on the class' template arguments BOUND_TYPE $Bound_type$ and BOUND VARS $Bound_vars$:

- BOUND TYPE::LOWER / BOUND TYPE::UPPER && BOUND VARS::SINGLE: 1
- BOUND_TYPE::LOWER / BOUND_TYPE::UPPER && BOUND_VARS::ALL : Vertex::Dimension
 Parameters

bounds pointer to the bound-array.

Definition at line 182 of file bound constraints.h.

 $References\ teb:: BoundConstraint < Bound_type,\ Vertex,\ Bound_vars,\ Index > ::_bounds,\ and\ teb:: LOWERUPPER.$

Referenced by teb::TebController< p, q >::buildOptimizationGraph().

template<BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::setBounds (const Eigen::Ref< const Eigen::Matrix< double, NoBounds, 1>> & bounds) [inline]

Set an array of the bounds. The length depends on the class' template arguments BOUND_TYPE $Bound_type$ and BOUND_VARS $Bound_vars$:

- BOUND_TYPE::LOWER / BOUND_TYPE::UPPER && BOUND_VARS::SINGLE : 1
- BOUND_TYPE::LOWER / BOUND_TYPE::UPPER && BOUND_VARS::ALL : Vertex::Dimension
 Parameters

bounds Eigen Vector containing the bound.

Definition at line 196 of file bound_constraints.h.

References teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::_bounds, and teb::LOWERUPPER.

16.7.4.24 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::setBounds (double bound) [inline]

Set a single bound. BOUND_VARS::SINGLE and Index>=0 template parameter is required!

Parameters

bound bound-value

Definition at line 207 of file bound constraints.h.

 $References\ teb:: BoundConstraint < Bound_type,\ Vertex,\ Bound_vars,\ Index >::_bounds,\ teb:: LOWERUPPER,\ and\ teb:: SINGLE.$

16.7.4.25 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::setBounds (double *lb*, double *ub*) [inline]

Set a single bound. BOUND_VARS::SINGLE and Index>=0 template parameter are required!

Parameters

lb	lower bound-value
ub	upper bound-value

Definition at line 219 of file bound constraints.h.

 $References\ teb:: BoundConstraint < Bound_type,\ Vertex,\ Bound_vars,\ Index >::_bounds,\ teb:: LOWERUPPER,\ and\ teb:: SINGLE.$

16.7.4.26 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::setBounds (const double * *lb*, const double * *ub*) [inline]

Set an array of the bounds. The length depends on the class' template arguments BOUND_TYPE $Bound_type$ and BOUND VARS $Bound_vars$:

- BOUND_TYPE::LOWERUPPER && BOUND_VARS::SINGLE : 2
- BOUND_TYPE::LOWERUPPER && BOUND_VARS::ALL : 2*Vertex::Dimension

Parameters

lb	pointer to the lower bound-array.
ub	pointer to the upper bound-array.

Definition at line 235 of file bound constraints.h.

References teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::_bounds, teb::LOWERUPPER, and teb::SINGLE.

16.7.4.27 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1> void teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::setBounds (const Eigen::Ref < const Eigen::Matrix < double, NoBounds/2, 1 >> & Ib, const Eigen::Ref < const Eigen::Matrix < double, NoBounds/2, 1 >> & Ib, const Eigen::Matrix < double, NoBounds/2, 1 >> & Ib) [inline]

Set an array of the bounds. The length depends on the class' template arguments BOUND_TYPE $Bound_type$ and BOUND VARS $Bound_vars$:

- BOUND_TYPE::LOWERUPPER && BOUND_VARS::SINGLE : 2
- BOUND_TYPE::LOWERUPPER && BOUND_VARS::ALL : 2*Vertex::Dimension

Parameters

lb	Eigen::Vector [NoBounds x 1] for the lower bound.
ub	Eigen::Vector [NoBounds x 1] for the upper bound.

Definition at line 262 of file bound constraints.h.

 $References\ teb:: BoundConstraint < Bound_type,\ Vertex,\ Bound_vars,\ Index >::_bounds,\ teb:: LOWERUPPER,\ and\ teb:: BoundConstraint < Bound_type,\ Vertex,\ Bound_vars,\ Index >::NoBounds.$

16.7.4.28 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const ValueVector& teb::BaseEdge < D, FuncType, Vertices >::values () const [inline], [virtual], [inherited]

Definition at line 74 of file base_edge.h.

16.7.4.29 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual ValueVector& teb::BaseEdge< D, FuncType, Vertices>::values() [inline], [virtual], [inherited]

Definition at line 75 of file base_edge.h.

16.7.4.30 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual const double* teb::BaseEdge< D, FuncType, Vertices>::valuesData() const [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 72 of file base_edge.h.

16.7.4.31 template<int D, FUNCT_TYPE FuncType, class... Vertices> virtual double* teb::BaseEdge< D, FuncType, Vertices>::valuesData() [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 73 of file base edge.h.

16.7.4.32 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]

return Eigen::Vector type that maps to the actual cost/constraints values

Definition at line 150 of file graph.h.

References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().

16.7.4.33 template < int D, FUNCT_TYPE FuncType, class... Vertices > virtual const std::array < VertexType*, No Vertices > & teb::BaseEdge < D, FuncType, Vertices > ::vertices () const [inline], [virtual], [inherited]

Returns

(Read-only) reference to the vertex container.

Definition at line 122 of file base_edge.h.

16.7.5 Member Data Documentation

Definition at line 377 of file bound constraints.h.

Referenced by teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeValues(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getBounds(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData(), and teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::setBounds().

16.7.5.2 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and teb::EdgeType::hessians().

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

16.7.5.4 JacobianWorkspace teb::EdgeType::_jacobians [protected], [inherited]

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< D, FuncType >::compute-Hessian(), teb::BaseEdge< D, FuncType >::compute-Hessian(), teb::BdgeMinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::computeJacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

16.7.5.5 template<int D, FUNCT_TYPE FuncType, class... Vertices> ValueVector teb::BaseEdge< D, FuncType, Vertices >::_values = ValueVector::Zero() [protected], [inherited]

Definition at line 139 of file base_edge.h.

Referenced by teb::BaseEdge < D, FuncType >::computeJacobian(), teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::computeValues(), teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::values(), teb::BaseEdge < D, FuncType >::values(), teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::valuesData(), and teb::BaseEdge < D, FuncType >::valuesData().

16.7.5.6 template < int D, FUNCT_TYPE FuncType, class... Vertices > const std::array < VertexType *, No Vertices > teb::BaseEdge < D, FuncType, Vertices >::_vertices [protected], [inherited]

Definition at line 141 of file base edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::calculateVertexDimensions(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeValues(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData(), teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::getVertex(), teb::BaseEdge< D, FuncType >::getVertex(), teb::BaseEdge< D, FuncType >::resizeVertexContainer(), teb::BaseEdge< D, FuncType >::vertices(), and teb::BaseEdge< D, FuncType >::vertices().

16.7.5.7 template<int D, FUNCT_TYPE FuncType, class... Vertices> std::array<int, NoVertices> teb::BaseEdge< D, FuncType, Vertices>::_vertices_dim [protected], [inherited]

Definition at line 142 of file base edge.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::calculateVertex-Dimensions(), and teb::BaseEdge< D, FuncType >::calculateVertexDimensions().

16.7.5.8 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1 > const BOUND_TYPE teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::BoundType = Bound_type [static]

Definition at line 66 of file bound_constraints.h.

16.7.5.9 template<int D, FUNCT_TYPE FuncType, class... Vertices> const int teb::BaseEdge< D, FuncType, Vertices >::Dimension = D [static], [inherited]

Definition at line 50 of file base_edge.h.

16.7.5.10 template < BOUND_TYPE Bound_type, typename Vertex, BOUND_VARS Bound_vars, int Index = -1 > const int teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >::NoBounds = Index >= 0 ? (Bound_type == BOUND_TYPE::LOWERUPPER ? 2 * Vertex::Dimension : Vertex::Dimension) [static]

Definition at line 65 of file bound constraints.h.

Referenced by teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData(), and teb::BoundConstraint< Bound type, Vertex, Bound vars, Index >::setBounds().

16.7.5.11 template < int D, FUNCT_TYPE FuncType, class... Vertices > constexpr const int teb::BaseEdge < D, FuncType, Vertices >::NoVertices = sizeof...(Vertices) [static], [inherited]

Definition at line 48 of file base_edge.h.

Referenced by teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::noVertices().

The documentation for this class was generated from the following file:

· bound constraints.h

16.8 teb::Config Class Reference

Configurations for Controller and Solver classes.

#include <config.h>

Classes

struct Optim

Configurations related to the trajectory optimization.

• struct Teb

Configurations related to the TEB algorithm.

struct Utilities

Configurations for helper miscellaneous and utilities.

Public Attributes

• struct teb::Config::Teb teb

Configurations related to the TEB algorithm.

• struct teb::Config::Optim optim

Configurations related to the trajectory optimization.

· struct teb::Config::Utilities util

Configurations for helper miscellaneous and utilities.

16.8.1 Detailed Description

This class defines the main config for controller and solver classes.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

BaseController TebController BaseSolver

Examples:

integrator_system1.cpp, integrator_system_classic_mpc.cpp, linear_system_ode_ctrl_comparison.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Definition at line 55 of file config.h.

16.8.2 Member Data Documentation

16.8.2.1 struct teb::Config::Optim teb::Config::optim

Examples:

integrator_system_classic_mpc.cpp, linear_system_ode_ctrl_comparison.cpp, mobile_robot_teb.cpp, and rocket system.cpp.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverLeastSquares::buildJacobian(), teb::BaseSolverLeastSquares::buildJacobian(), teb::BaseSolverLeastSquares::buildJacobian(), teb::BaseSolverLeastSquares::build-ValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solvelmpl().

16.8.2.2 struct teb::Config::Teb teb::Config::teb

Examples:

mobile robot teb.cpp.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::TebController< p, q >::resetController(), and teb::TebController< p, q >::setupHorizon().

16.8.2.3 struct teb::Config::Utilities teb::Config::util

The documentation for this class was generated from the following file:

· config.h

16.9 teb::ControlVertex < q > Class Template Reference

Vertex that contains the ControlVector.

#include <teb_vertices.h>

Inheritance diagram for teb::ControlVertex< q >:

Public Types

• using ControlVector = Eigen::Matrix< double, q, 1 >

Typedef for control input vector with q controls $[q \times 1]$.

using ScalarType = Eigen::Matrix< double, 1, 1 >

Typedef for a 1D-scalar value represented as Eigen::Matrix type [1 x 1].

using FixedCtrls = Eigen::Matrix< bool, q, 1 >

Typedef for logical mask that stores fixed and unfixed controls $[q \times 1]$.

using BackupStackType = std::stack< ControlVector, std::vector< ControlVector, Eigen::aligned_allocator
 ControlVector > > >

Typdef for the backup stack.

using VertexContainer = std::vector< VertexType * >

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

Public Member Functions

• ControlVertex ()

Default constructor: control vector initialized to zero.

ControlVertex (const Eigen::Ref< const ControlVector > &controls)

Construct ControlVertex with given control inputs.

• ControlVertex (const ControlVertex< q > &obj)

Copy constructor.

• virtual int dimension () const

Return number of elements/values/components stored in this vertex.

virtual int dimensionFree () const

Return only the dimension of free (unfixed) variables.

virtual void plus (const VertexType *rhs)

Define the increment for the vertex: x = x + rhs.

virtual void plus (const double *rhs)

Define the increment for the vertex: x = x + rhs (rhs[] with dimension()=p+q values)

• virtual void plusFree (const double *rhs)

Define the increment for the vertex: x = x + rhs (But only add FREE variables, rhs[] with dimensionFree() values).

virtual void setFree (const double *rhs)

Overwrite all free variables with the values given by rhs (rhs[] with dimensionFree() values).

virtual void getDataFree (double *target_vec) const

Return a copy of the free (unfixed) values as a single array (length: dimensionFree()).

virtual const double & getData (unsigned int idx) const

Return pointer to data with the index idx).

const ControlVector & controls () const

Get ControlVector (read-only).

• ControlVector & controls ()

Get ControlVector.

virtual void setControls (const Eigen::Ref< const ControlVector > &c)

Set or update ControlVector.

virtual void setControls (double control)

Set or update only first component of the ControlVector (useful for 1d controls).

const FixedCtrls & fixed_ctrls () const

Get logical map that defines fixed and unfixed controls (fixed = true).

void setFixedAll (bool fixed)

Set all controls of this object fixed or unfixed.

void setFixedCtrl (unsigned int ctrl_idx, bool fixed)

Set a single component of the ControlVector to fixed/unfixed.

void setFixedCtrls (bool fixed)

Set all controls of the ControlVector to fixed/unfixed.

void setFixedCtrls (const Eigen::Ref< const FixedCtrls > &fixed ctrls)

Set selected controls of the ControlVector to fixed/unfixed at once (Eigen version).

void setFixedCtrls (const bool *fixed)

Set selected components of the ControlVector to fixed/unfixed at once.

virtual bool isFixedAll () const

return true, if ALL values of this vertex are fixed and therefore are not necessary for optimization.

bool isFixedAny () const

return true, if ANY element/value/component of this vertex is fixed and therefore the vertex is relevant for optimization.

virtual bool isFixedComp (int idx) const

return true, if element/value/component with index idx of this vertex is fixed.

virtual void push ()

This function should store all values into a internal backup stack.

· virtual void pop ()

This function should restore the previously stored values of the backup stack and remove them from the stack.

virtual void top ()

This function should restore the previously stored values of the backup stack WITHOUT removing them from the stack.

virtual void discardTop ()

This function should delete the previously made backup from the stack without restoring it.

• virtual unsigned int stackSize () const

This function should return the current size/number of backups of the backup stack.

- ControlVertex< q > & operator= (const ControlVertex< q > &rhs)
- void setOptVecIdx (int opt_vec_idx)

Update the position of the first value of this vertex inside the optimization vector / Hessian.

• int getOptVecIdx () const

Get the position of the first value of this Vertex inside the optimization vector / Hessian.

Static Public Attributes

• static const int DimControls = q

Number of control inputs / Size of the control vector as static variable.

static const int Dimension = q

Number of total values stored in this vertex (number of control input vector components).

Protected Attributes

ControlVector _controls

Control input vector with q controls $[q \times 1]$.

• BackupStackType _backup

backup stack (store and restore control input).

int _dimension = q

Store dimension for all values stored (q controls)

FixedCtrls _fixed_ctrls = FixedCtrls::Constant(false)

Mask that stores fixed and unfixed controls [q x 1] true: fixed, false: free.

• int _opt_vec_idx = -1

Start-index in optimization vector (idx in hessian (row/column) and jacobian (column))

Friends

- bool operator== (const ControlVertex< q > &lhs, const ControlVertex< q > &rhs)
- bool operator!= (const ControlVertex< q > &lhs, const ControlVertex< q > &rhs)
- $\bullet \ \, std::ostream \ \& \ operator << (std::ostream \ \& os, \ const \ Control Vertex < \ q > \& control)\\$

Print control vector using std::ostream.

16.9.1 Detailed Description

template<int q>class teb::ControlVertex< q>

This class wraps the discrete control input vector $\mathbf{u}_k \in \mathbb{R}^q$ into a vertex for the hyper-graph.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

StateVertex, VertexType, TimeDiff, BaseEdge

Template Parameters

q Number of control inputs / Size of the control vector

Definition at line 281 of file teb vertices.h.

16.9.2 Member Typedef Documentation

16.9.2.1 template<int q> using teb::ControlVertex< q>::BackupStackType = std::stack<ControlVector, std::vector<ControlVector, Eigen::aligned_allocator<ControlVector>>>

Definition at line 298 of file teb_vertices.h.

16.9.2.2 template < int q > using teb::ControlVertex < q >::ControlVector = Eigen::Matrix < double, q, 1 >

Definition at line 288 of file teb_vertices.h.

16.9.2.3 template<int q> using teb::ControlVertex< q>::FixedCtrls = Eigen::Matrix<bool, q, 1>

Definition at line 292 of file teb_vertices.h.

16.9.2.4 template < int q > using teb::ControlVertex < q >::ScalarType = Eigen::Matrix < double, 1, 1 >

Definition at line 290 of file teb_vertices.h.

16.9.2.5 using teb::VertexType::VertexContainer = std::vector < VertexType* [inherited]

Definition at line 33 of file graph.h.

16.9.3 Constructor & Destructor Documentation

```
16.9.3.1 template<int q> teb::ControlVertex< q>::ControlVertex() [inline]
```

Definition at line 306 of file teb_vertices.h.

16.9.3.2 template<int q> teb::ControlVertex< q>::ControlVertex (const Eigen::Ref< const ControlVector > & controls) [inline]

Parameters

```
controls | Eigen::Vector with q control inputs.
```

Definition at line 312 of file teb_vertices.h.

16.9.3.3 template < int q> teb::ControlVertex < q>::ControlVertex < const ControlVertex < q> & obj) [inline]

Parameters

```
obj | Object of type ControlVertex
```

Definition at line 318 of file teb_vertices.h.

 $References\ teb:: Control Vertex < q > :: fixed_ctrls,\ and\ teb:: Control Vertex < q > :: fixed_ctrls().$

16.9.4 Member Function Documentation

16.9.4.1 template < int q > const ControlVector& teb::ControlVertex < q >::controls () const [inline]

Returns

```
control vector [q x 1]
```

Definition at line 397 of file teb_vertices.h.

References teb::ControlVertex< q >:: controls.

Referenced by teb::ControlVertex< q >::operator=(), and teb::ControlVertex< q >::plus().

16.9.4.2 template < int q> ControlVector& teb::ControlVertex< q>::controls() [inline]

Returns

control vector [q x 1]

Definition at line 398 of file teb_vertices.h.

References teb::ControlVertex< q >::_controls.

```
16.9.4.3 template < int q > virtual int teb::ControlVertex < q >::dimension() const [inline], [virtual]
Implements teb::VertexType.
Definition at line 327 of file teb vertices.h.
16.9.4.4 template < int q > virtual int teb::ControlVertex < q >::dimensionFree( ) const [inline], [virtual]
Implements teb::VertexType.
Definition at line 329 of file teb_vertices.h.
References teb::ControlVertex< q >::_fixed_ctrls.
16.9.4.5 template < int q > virtual void teb::ControlVertex < q >::discardTop( ) [inline], [virtual]
Implements teb::VertexType.
Definition at line 456 of file teb vertices.h.
References teb::ControlVertex< q >::_backup.
16.9.4.6 template < int q > const FixedCtrls& teb::ControlVertex < q >::fixed_ctrls( ) const [inline]
Returns
            logical map (q x 1 vector of booleans)
Definition at line 401 of file teb_vertices.h.
References teb::ControlVertex< q >::_fixed_ctrls.
Referenced by teb::ControlVertex< q >::ControlVertex< q >::ontrolVertex< q >:ontrolVertex< q >:ontrolVertex< q >:ontrolVertex< q >:ontrolVertex< q >:ontrolVertex< q >:ontrolVertex< q >
Vertex< q >::setFixedCtrls().
16.9.4.7 template<int q> virtual const double& teb::ControlVertex< q>::getData (unsigned int idx) const
                    [inline],[virtual]
Implements teb::VertexType.
Definition at line 388 of file teb_vertices.h.
References teb::ControlVertex< q >:: controls.
16.9.4.8 template < int q > virtual void teb::ControlVertex < q >::getDataFree ( double * target_vec ) const [inline],
                    [virtual]
Implements teb::VertexType.
Definition at line 375 of file teb_vertices.h.
References teb::ControlVertex< q >::_controls, and teb::ControlVertex< q >::isFixedComp().
16.9.4.9 int teb::VertexType::getOptVecldx( ) const [inline], [inherited]
```

Returns

position of the first element of this vertex.

Definition at line 59 of file graph.h.

References teb::VertexType:: opt vec idx.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), and teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ().

16.9.4.10 template < int q > virtual bool teb::ControlVertex < q >::isFixedAll() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 438 of file teb_vertices.h.

References teb::ControlVertex< q >::_fixed_ctrls.

16.9.4.11 template < int q > bool teb::ControlVertex < q >::isFixedAny() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 439 of file teb_vertices.h.

References teb::ControlVertex< q >:: fixed ctrls.

16.9.4.12 template < int q > virtual bool teb::ControlVertex < q >::isFixedComp (int idx) const [inline], [virtual]

Parameters

idx component index

Implements teb::VertexType.

Definition at line 441 of file teb_vertices.h.

References teb::ControlVertex< q >:: fixed ctrls.

Referenced by teb::ControlVertex< q >::getDataFree(), teb::ControlVertex< q >::plusFree(), and teb::ControlVertex< q >::setFree().

16.9.4.13 template < int q > Control Vertex < q > & teb::Control Vertex < q > ::operator= (const Control Vertex < q > & rhs) [inline]

Definition at line 461 of file teb_vertices.h.

References teb::ControlVertex< q >::_controlS(), and teb::ControlVertex< q >::_fixed_ctrls, teb::ControlVertex< q >::controlS(), and teb::ControlVertex< q >::fixed_ctrls().

16.9.4.14 template < int q> virtual void teb::ControlVertex< q>::plus (const VertexType * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 332 of file teb vertices.h.

References teb::ControlVertex< q>::_controls, and teb::ControlVertex< q>::controls().

```
16.9.4.15 template < int q> virtual void teb::ControlVertex< q>::plus ( const double * rhs ) [inline], [virtual]
```

Implements teb::VertexType.

Definition at line 339 of file teb_vertices.h.

References teb::ControlVertex< q >:: controls.

```
16.9.4.16 template < int q> virtual void teb::ControlVertex< q>::plusFree ( const double * rhs ) [inline], [virtual]
```

Implements teb::VertexType.

Definition at line 345 of file teb_vertices.h.

References teb::ControlVertex< q >::_controls, and teb::ControlVertex< q >::isFixedComp().

```
16.9.4.17 template < int q > virtual void teb::ControlVertex < q >::pop( ) [inline], [virtual]
```

Implements teb::VertexType.

Definition at line 446 of file teb_vertices.h.

References teb::ControlVertex< q >::_backup, and teb::ControlVertex< q >::top().

```
16.9.4.18 template < int q > virtual void teb::ControlVertex < q >::push( ) [inline], [virtual]
```

Implements teb::VertexType.

Definition at line 445 of file teb vertices.h.

References teb::ControlVertex< q >::_backup, and teb::ControlVertex< q >::_controls.

```
16.9.4.19 template < int q> virtual void teb::ControlVertex< q>::setControls ( const Eigen::Ref< const ControlVector > & c ) [inline], [virtual]
```

Parameters

```
c control vector [p x 1]
```

Definition at line 399 of file teb_vertices.h.

References teb::ControlVertex< q >:: controls.

Parameters

```
control single control component.
```

Definition at line 400 of file teb_vertices.h.

References teb::ControlVertex< q >::_controls.

16.9.4.21 template < int q > void teb::ControlVertex < q >::setFixedAll (bool fixed) [inline]

Parameters

fixed	set to true in order to fix all q controls.
-------	---

Definition at line 407 of file teb_vertices.h.

References teb::ControlVertex< q >::_fixed_ctrls.

16.9.4.22 template < int q > void teb::ControlVertex < q >::setFixedCtrl (unsigned int ctrl_idx, bool fixed) [inline]

Parameters

ctrl_idx	index of the underlying ControlVector component that should be fixed.
fixed	set to true in order to fix the selcted control.

Definition at line 418 of file teb_vertices.h.

References teb::ControlVertex< q >::_fixed_ctrls.

16.9.4.23 template < int q > void teb::ControlVertex < q >::setFixedCtrls (bool fixed) [inline]

Parameters

fixed	set to true in order to fix all a controls
tixed	set to true in order to fix all q controls.

Definition at line 424 of file teb vertices.h.

 $\label{lem:controlVertex} References\ teb:: Control Vertex < q>::_fixed_ctrls.$

16.9.4.24 template < int q > void teb::ControlVertex < q >::setFixedCtrls (const Eigen::Ref < const FixedCtrls > & fixed_ctrls) [inline]

Parameters

fixed_ctrls	Eigen::Vector with q booleans in which each true sets the corresponding control of the
	ControlVector to fixed.

Definition at line 430 of file teb vertices.h.

References teb::ControlVertex< q>::_fixed_ctrls, and teb::ControlVertex< q>::fixed_ctrls().

16.9.4.25 template<int q> void teb::ControlVertex< q>::setFixedCtrls (const bool * fixed) [inline]

Parameters

fixed	boolean array with q elements in which each true sets the corresponding control of the
	ControlVector to fixed.

Definition at line 436 of file teb_vertices.h.

References teb::ControlVertex< q >::_fixed_ctrls.

16.9.4.26 template < int q> virtual void teb::ControlVertex< q>::setFree (const double * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 360 of file teb_vertices.h.

References teb::ControlVertex< q >::_controls, and teb::ControlVertex< q >::isFixedComp().

16.9.4.27 void teb::VertexType::setOptVecldx(int opt_vec_idx) [inline],[inherited]

Parameters

opt_vec_idx	index of the first value
-------------	--------------------------

Definition at line 53 of file graph.h.

References teb::VertexType::_opt_vec_idx.

16.9.4.28 template < int q > virtual unsigned int teb::ControlVertex < q >::stackSize () const [inline], [virtual]

Implements teb::VertexType.

Definition at line 457 of file teb_vertices.h.

References teb::ControlVertex< q >:: backup.

16.9.4.29 template < int q > virtual void teb::ControlVertex < q >::top() [inline], [virtual]

Implements teb::VertexType.

Definition at line 451 of file teb_vertices.h.

References teb::ControlVertex< q >::_backup, and teb::ControlVertex< q >::_controls.

Referenced by teb::ControlVertex< q >::pop().

16.9.5 Friends And Related Function Documentation

16.9.5.1 template<int q> bool operator!= (const ControlVertex< q > & Ihs, const ControlVertex< q > & rhs) [friend]

Definition at line 479 of file teb_vertices.h.

16.9.5.2 template < int q> std::ostream & operator << (std::ostream & os, const Control Vertex < q> & control) [friend]

Parameters

	os	output stream object
ĺ	control	specific ControlVertex object

Returns

output stream object including a formatted string containing control input vector.

Definition at line 489 of file teb_vertices.h.

16.9.5.3 template < int q> bool operator== (const ControlVertex< q> & Ihs, const ControlVertex< q> & rhs) [friend]

Definition at line 474 of file teb vertices.h.

16.9.6 Member Data Documentation

16.9.6.1 template<int q> BackupStackType teb::ControlVertex< q>::_backup [protected]

Definition at line 497 of file teb_vertices.h.

Referenced by teb::ControlVertex< q >::discardTop(), teb::ControlVertex< q >::pop(), teb::ControlVertex< q >::push(), teb::ControlVertex< q >::top().

16.9.6.2 template < int q > Control Vector teb::Control Vertex < q >::_controls [protected]

Definition at line 496 of file teb_vertices.h.

Referenced by teb::ControlVertex< q >::controlS(), teb::ControlVertex< q >::getData(), teb::ControlVertex< q >::getDataFree(), teb::ControlVertex< q >::plus(), teb::ControlVertex< q >::plusFree(), teb::ControlVertex< q >::plusFree(), teb::ControlVertex< q >::setControlS(), teb::ControlVertex< q >::setFree(), and teb::ControlVertex< q >::top().

16.9.6.3 template < int q > int teb::ControlVertex < q >::_dimension = q [protected]

Definition at line 499 of file teb vertices.h.

16.9.6.4 template < int q > FixedCtrls teb::ControlVertex < q >::_fixed_ctrls = FixedCtrls::Constant(false) [protected]

Definition at line 500 of file teb vertices.h.

Referenced by teb::ControlVertex< q >::ControlVertex< q >::GontrolVertex< q >::GontrolVertex< q >::GontrolVertex< q >::GontrolVertex< q >::isFixedAll(), teb::ControlVertex< q >::isFixedAny(), teb::ControlVertex< q >::isFixedAny(), teb::ControlVertex< q >::gontrolVertex< q >::gontrolVe

16.9.6.5 int teb::VertexType::_opt_vec_idx = -1 [protected], [inherited]

Definition at line 69 of file graph.h.

Referenced by teb::VertexType::getOptVecldx(), and teb::VertexType::setOptVecldx().

16.9.6.6 template < int q > const int teb::ControlVertex < q >::DimControls = q [static]

Definition at line 284 of file teb_vertices.h.

16.9.6.7 template < int q > const int teb::ControlVertex < q >::Dimension = q [static]

Definition at line 285 of file teb_vertices.h.

The documentation for this class was generated from the following file:

teb_vertices.h

16.10 teb::CustomBoundData Struct Reference

Datastruct for custom bound data that can be queried from the BoundConstraint class.

#include <bound_constraints.h>

Public Attributes

• int index = -1

Index for the bound (-1 for multiple components)

• int no_lower = 0

Number of lower bounds.

• Eigen::VectorXd lower

[no_lower x 1] lower bounds vector

• int no_upper = 0

Number of upper bounds.

• Eigen::VectorXd upper

[no_upper x 1] upper bounds vector

• EIGEN_MAKE_ALIGNED_OPERATOR_NEW

16.10.1 Detailed Description

Definition at line 23 of file bound_constraints.h.

16.10.2 Member Data Documentation

16.10.2.1 teb::CustomBoundData::EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Definition at line 31 of file bound_constraints.h.

16.10.2.2 int teb::CustomBoundData::index = -1

Definition at line 25 of file bound_constraints.h.

Referenced by teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData().

16.10.2.3 Eigen::VectorXd teb::CustomBoundData::lower

Definition at line 27 of file bound_constraints.h.

16.10.2.4 int teb::CustomBoundData::no_lower = 0

Definition at line 26 of file bound_constraints.h.

16.10.2.5 int teb::CustomBoundData::no_upper = 0

Definition at line 28 of file bound_constraints.h.

16.10.2.6 Eigen::VectorXd teb::CustomBoundData::upper

Definition at line 29 of file bound_constraints.h.

The documentation for this struct was generated from the following file:

· bound_constraints.h

16.11 teb::EdgeMinimizeTime Class Reference

Objective edge: minimize ΔT .

#include <common_teb_edges.h>

Inheritance diagram for teb::EdgeMinimizeTime:

Public Types

using ValueVector = Eigen::Matrix< double, D, 1 >

Typedef to represent the static Eigen::Vector of cost/constraint values.

• using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map < Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

• EdgeMinimizeTime (TimeDiff &dt vertex)

Construct edge and attach the corresponding TimeDiff vertex.

· virtual void computeValues ()

Actual cost function or constraint function. For constraints it is computeValues() <= 0.

• virtual void computeJacobian ()

Specification of the analytic block jacobian.

· virtual void computeHessian ()

Specification of the analytic block hessian.

• void setData (double data)

Set weight σ for the cost function.

· virtual int dimension () const

Return edge dimension by function call.

virtual FUNCT TYPE functType () const

Return function typed given by template parameter FuncType.

virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

· virtual const std::array

< VertexType *, NoVertices > & vertices () const

Return vertex container of the edge.

· virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

· virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

• virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

• virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

- · static constexpr const int NoVertices
- · static const int Dimension

Edge dimension as static member variable.

Protected Attributes

double _data = 1

Weight of the objective function.

ValueVector values

Actual cost/constraint value data object (initialized to zero).

- const std::array
 VertexType
 - *, NoVertices > _vertices

Container that stores all attached vertices.

std::array< int, NoVertices > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

JacobianWorkspace _jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

16.11.1 Detailed Description

The following cost function is implemented:

$$v = \sigma \Delta T$$

 σ denotes the weight. Choosing (n -1) has performed fine in the past, since $T = (n-1)\Delta T$.

Set the weight σ using setData().

Vertices required (connect the edge with the following vertices):

1. TimeDiff ΔT

Remarks

Call allocateMemory() before using the edge for optimization.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 32 of file common_teb_edges.h.

16.11.2 Member Typedef Documentation

16.11.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.11.2.2 using teb::BaseEdge< D, FuncType, Vertices >::ValueVector = Eigen::Matrix<double, D, 1> [inherited]

Definition at line 54 of file base_edge.h.

16.11.2.3 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.11.3 Constructor & Destructor Documentation

16.11.3.1 teb::EdgeMinimizeTime::EdgeMinimizeTime (TimeDiff & dt_vertex) [inline]

Parameters

```
dt_vertex Reference to the TimeDiff vertex
```

Definition at line 40 of file common_teb_edges.h.

16.11.4 Member Function Documentation

```
16.11.4.1 virtual void teb::BaseEdge < D, FuncType, Vertices >::allocateMemory ( bool skip_hessian = false )
[inline], [virtual], [inherited]
```

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian | If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 84 of file base_edge.h.

References teb::EdgeType::_hessians, teb::EdgeType::_jacobians, teb::BaseEdge< D, FuncType, Vertices >::-_vertices_dim, teb::JacobianWorkspace::allocate(), teb::HessianWorkspace::allocate(), and teb::BaseEdge< D, FuncType, Vertices >::calculateVertexDimensions().

```
16.11.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual], [inherited]
```

Definition at line 162 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

```
16.11.4.3 virtual void teb::BaseEdge < D, FuncType, Vertices >::calculateVertexDimensions ( ) [inline], [virtual], [inherited]
```

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-

Definition at line 110 of file base_edge.h.

References teb::BaseEdge< D, FuncType, Vertices >::_vertices, and teb::BaseEdge< D, FuncType, Vertices >::_vertices_dim.

```
16.11.4.4 virtual void teb::EdgeMinimizeTime::computeHessian() [inline], [virtual]
```

Reimplemented from teb::BaseEdge < 1, FUNCT TYPE::LINEAR, TimeDiff >.

Definition at line 59 of file common_teb_edges.h.

References teb::EdgeType::_hessians, and teb::HessianWorkspace::getWorkspace().

```
16.11.4.5 virtual void teb::EdgeMinimizeTime::computeJacobian() [inline], [virtual]
Reimplemented from teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >.
Definition at line 52 of file common teb edges.h.
References _data, teb::EdgeType::_jacobians, and teb::JacobianWorkspace::getWorkspace().
16.11.4.6 virtual void teb::EdgeMinimizeTime::computeValues() [inline], [virtual]
Reimplemented from teb::BaseEdge< 1, FUNCT TYPE::LINEAR, TimeDiff >.
Definition at line 45 of file common teb edges.h.
References _data, teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >::_values, teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, teb::BaseEdge <
 _TYPE::LINEAR, TimeDiff >::_vertices, and teb::TimeDiff::dt().
16.11.4.7 virtual int teb::BaseEdge < D, FuncType, Vertices >::dimension() const [inline], [virtual],
                    [inherited]
Implements teb::EdgeType.
Definition at line 51 of file base_edge.h.
16.11.4.8 virtual void teb::EdgeType::discardJacobianBackup() [inline], [virtual], [inherited]
Definition at line 171 of file graph.h.
References teb::EdgeType::_jacob_backup.
16.11.4.9 virtual FUNCT_TYPE teb::BaseEdge < D, FuncType, Vertices >::functType ( ) const [inline],
                    [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 69 of file base_edge.h.
16.11.4.10 virtual void* teb::EdgeType::getCustomData() [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint< Bound type, Vertex, Bound vars, Index >.
Definition at line 154 of file graph.h.
16.11.4.11 virtual JacobianWorkspace& teb::EdgeType::getJacobianBackup( ) [inline], [virtual],
                      [inherited]
Definition at line 173 of file graph.h.
References teb::EdgeType::_jacob_backup.
16.11.4.12 virtual VertexType* teb::BaseEdge < D, FuncType, Vertices >::getVertex (unsigned int idx) [inline],
                      [virtual],[inherited]
Implements teb::EdgeType.
Definition at line 98 of file base edge.h.
```

References teb::BaseEdge < D, FuncType, Vertices >::_vertices.

```
16.11.4.13 virtual const VertexType* teb::BaseEdge< D, FuncType, Vertices >::getVertex ( unsigned int idx ) const
          [inline], [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 99 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_vertices.
16.11.4.14 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType::_hessians.
16.11.4.15 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual],
          [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType::_hessians.
16.11.4.16 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.11.4.17 virtual JacobianWorkspace& teb::EdgeType::jacobians( ) [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType::_jacobians.
16.11.4.18 virtual const JacobianWorkspace& teb::EdgeType::jacobians() const [inline], [virtual],
          [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType::_jacobians.
16.11.4.19 virtual unsigned int teb::BaseEdge < D, FuncType, Vertices >::noVertices ( ) const [inline],
          [virtual],[inherited]
Implements teb::EdgeType.
Definition at line 101 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::NoVertices.
16.11.4.20 virtual void teb::EdgeType::restoreJacobian( ) [inline], [virtual], [inherited]
Definition at line 165 of file graph.h.
References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.
```

```
16.11.4.21 void teb::EdgeMinimizeTime::setData ( double data ) [inline]
Definition at line 64 of file common_teb_edges.h.
References data.
Referenced by teb::TebController< p, q >::buildOptimizationGraph().
16.11.4.22 virtual const ValueVector& teb::BaseEdge < D, FuncType, Vertices >::values ( ) const [inline],
          [virtual],[inherited]
Definition at line 74 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_values.
16.11.4.23 virtual Value Vector & teb::Base Edge < D, FuncType, Vertices >::values ( ) [inline], [virtual],
          [inherited]
Definition at line 75 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >:: values.
16.11.4.24 virtual const double* teb::BaseEdge < D, FuncType, Vertices >::valuesData ( ) const [inline],
          [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 72 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_values.
16.11.4.25 virtual double* teb::BaseEdge < D, FuncType, Vertices >::valuesData( ) [inline], [virtual],
          [inherited]
Implements teb::EdgeType.
Definition at line 73 of file base_edge.h.
References teb::BaseEdge < D, FuncType, Vertices >::_values.
16.11.4.26 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]
return Eigen::Vector type that maps to the actual cost/constraints values
Definition at line 150 of file graph.h.
References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().
16.11.4.27 virtual const std::array < VertexType *, No Vertices > & teb::BaseEdge < D, FuncType, Vertices > ::vertices ( )
          const [inline],[virtual],[inherited]
Returns
     (Read-only) reference to the vertex container.
Definition at line 122 of file base_edge.h.
```

References teb::BaseEdge < D, FuncType, Vertices >::_vertices.

16.11.5 Member Data Documentation

16.11.5.1 double teb::EdgeMinimizeTime::_data = 1 [protected]

Definition at line 67 of file common teb edges.h.

Referenced by computeJacobian(), computeValues(), and setData().

16.11.5.2 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and teb::EdgeType::hessians().

```
16.11.5.3 BackupStackType<JacobianWorkspace> teb::EdgeType::_jacob_backup [protected], [inherited]
```

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

```
16.11.5.4 JacobianWorkspace teb::EdgeType::_jacobians [protected], [inherited]
```

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< D, FuncType >::compute-Hessian(), computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::compute-Jacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::compute-Jacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

```
16.11.5.5 ValueVector teb::BaseEdge < D, FuncType, Vertices >:: values [protected], [inherited]
```

Definition at line 139 of file base_edge.h.

Referenced by computeValues().

```
16.11.5.6 const std::array < VertexType*, No Vertices > teb::BaseEdge < D, FuncType, Vertices >::_vertices [protected], [inherited]
```

Definition at line 141 of file base edge.h.

Referenced by computeValues().

```
16.11.5.7 std::array<int, NoVertices> teb::BaseEdge< D, FuncType, Vertices>::_vertices_dim [protected], [inherited]
```

Definition at line 142 of file base_edge.h.

```
16.11.5.8 const int teb::BaseEdge < D, FuncType, Vertices >::Dimension [static], [inherited]
```

Definition at line 50 of file base_edge.h.

16.11.5.9 constexpr const int teb::BaseEdge < D, FuncType, Vertices >::NoVertices [static], [inherited]

Definition at line 48 of file base_edge.h.

The documentation for this class was generated from the following file:

common_teb_edges.h

16.12 teb::EdgeQuadraticForm < p, q > Class Template Reference

Objective edge: quadratic form for states and control input.

```
#include <common_teb_edges.h>
```

Inheritance diagram for teb::EdgeQuadraticForm< p, q >:

Public Types

using ValueVector = Eigen::Matrix< double, D, 1 >

Typedef to represent the static Eigen::Vector of cost/constraint values.

using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map< Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

EdgeQuadraticForm (StateVertex &state_vertex, ControlVertex< q > &control_vertex)

Construct edge and attach the corresponding state and control vertex.

• virtual void computeValues ()

Actual cost function or constraint function. For constraints it is computeValues() <= 0.

• virtual void computeJacobian ()

Specification of the analytic block jacobian.

· virtual void computeHessian ()

Specification of the analytic block hessian.

void setWeights (const Eigen::DiagonalMatrix< double, p > &Q, const Eigen::DiagonalMatrix< double, q > &R)

Set weights Q and R for the cost function.

• void setWeights (const Eigen::Ref< const Eigen::Matrix< double, p, 1 >> &Q, const Eigen::Ref< const Eigen::Matrix< double, q, 1 >> &R)

Set diagonal weights Q and R for the cost function.

• void setWeights (double Q, double R)

Set weights Q and R for the cost function using uniform diagonal elements.

• void setReference (const Eigen::Ref< const Eigen::Matrix< double, p, 1 >> &xf)

Set reference state.

virtual int dimension () const

Return edge dimension by function call.

virtual FUNCT_TYPE functType () const

Return function typed given by template parameter FuncType.

virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

· virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

· virtual const std::array

< VertexType *, NoVertices > & vertices () const

Return vertex container of the edge.

virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

• virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

• virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

• virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

• virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

- static constexpr const int NoVertices
- · static const int Dimension

Edge dimension as static member variable.

Protected Types

 typedef Eigen::Matrix< double, p, 1 > StateVector

Typedef for a StateVector type (required here to avoid gcc bug within the next line)

Protected Attributes

Eigen::DiagonalMatrix< double, p > _Q

Weight for the state vector \mathbf{x}_k .

Eigen::DiagonalMatrix< double, q > _R

Weight for the control input \mathbf{u}_k .

• StateVector _ref_state = StateVector::Zero()

Store reference state (final/goal state)

· ValueVector _values

Actual cost/constraint value data object (initialized to zero).

- const std::array
 VertexType
 - *, NoVertices > _vertices

Container that stores all attached vertices.

• std::array< int, NoVertices > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

• JacobianWorkspace _jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

· HessianWorkspace hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

16.12.1 Detailed Description

template<int p, int q>class teb::EdgeQuadraticForm< p, q>

The following cost function is implemented:

$$J_k = (\mathbf{x}_k - \mathbf{x}_{ref})^T \mathbf{Q} (\mathbf{x}_k - \mathbf{x}_{ref}) + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k$$

 \mathbf{Q} denotes the weight for the state vector \mathbf{x}_k . and \mathbf{R} denotes the weight for the control input vector \mathbf{u}_k .

If this edge is added to all samples (states and control inputs) while composing the hyper-graph, it generates the following cost-function for the underlying optimization problem:

$$J = (\mathbf{x}_n - \mathbf{x}_{ref})^T \mathbf{Q}_n (\mathbf{x}_n - \mathbf{x}_{ref}) + \sum_{k=0}^{n-1} ((\mathbf{x}_k - \mathbf{x}_{ref})^T \mathbf{Q} (\mathbf{x}_k - \mathbf{x}_{ref}) + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k)$$

The weight for the final constraint (and for all others) can be choosen by specifying different weights. Set the weights \mathbf{Q} and \mathbf{R} using setWeights().

Vertices required (connect the edge with the following vertices):

- 1. StateVertex x_k
- 2. ControlVertex \mathbf{u}_k

If you only want to apply the quadratic form to either only states or control inputs, set q=0 or p=0. A specialized template is provided.

Todo Currently the Levenberg-Marquardt solver take the cost function squared by itself, therefore we need to implement the sqrt here: For other solvers this cost function will be problematic without taking the square.

Remarks

We decided to allow only diagonal matrices for the weights at the moment in order to improve speed. Call allocateMemory() before using the edge for optimization.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 168 of file common_teb_edges.h.

16.12.2 Member Typedef Documentation

16.12.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.12.2.2 template < int p, int q > typedef Eigen::Matrix < double,p,1 > teb::EdgeQuadraticForm < p, q >::StateVector [protected]

Definition at line 265 of file common teb edges.h.

16.12.2.3 using teb::BaseEdge< D, FuncType, Vertices >::ValueVector = Eigen::Matrix<double, D, 1> [inherited]

Definition at line 54 of file base edge.h.

16.12.2.4 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.12.3 Constructor & Destructor Documentation

16.12.3.1 template < int p, int q> teb::EdgeQuadraticForm< p, q>::EdgeQuadraticForm(StateVertex< p> & state_vertex, ControlVertex< q> & control_vertex> (inline)

Parameters

state_vertex Reference to the StateVertex

control vertex Reference to the ControlVertex

Definition at line 177 of file common teb edges.h.

16.12.4 Member Function Documentation

16.12.4.1 virtual void teb::BaseEdge < D, FuncType, Vertices >::allocateMemory (bool skip_hessian = false)
[inline], [virtual], [inherited]

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 84 of file base_edge.h.

16.12.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual], [inherited]

Definition at line 162 of file graph.h.

References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.

16.12.4.3 virtual void teb::BaseEdge < D, FuncType, Vertices >::calculateVertexDimensions () [inline], [virtual], [inherited]

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-

Definition at line 110 of file base edge.h.

16.12.4.4 template < int p, int q> virtual void teb::EdgeQuadraticForm < p, q>::computeHessian () [inline], [virtual]

The hessian w.r.t. a symmetric weight matrix A is defined by

$$\frac{\partial^2}{\partial \mathbf{x} \cdot \partial \mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x} = 2\mathbf{A}$$

Applying this formular to the states and control inputs with respect to weights Q and R implies a block diagonal matrix (even a diagonal matrix, since the blocks are diagonal as well).

Reimplemented from teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p > , ControlVertex< q > >.

Definition at line 217 of file common_teb_edges.h.

References teb::EdgeType::_hessians, teb::EdgeQuadraticForm< p, q >::_Q, teb::EdgeQuadraticForm< p, q >::_R, and teb::HessianWorkspace::getWorkspace().

16.12.4.5 template < int p, int q > virtual void teb::EdgeQuadraticForm < p, q >::computeJacobian () [inline], [virtual]

It is:

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{A} + \mathbf{A}^T = 2\mathbf{x}^T \mathbf{A}$$

The last step is allowed since A is symmetric. This comutation is now performed for both states and control inputs w.r.t Q and R.

Reimplemented from teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p > . ControlVertex< q > > .

Definition at line 200 of file common_teb_edges.h.

References teb::EdgeType::_jacobians, teb::EdgeQuadraticForm< p, q>::_Q, teb::EdgeQuadraticForm< p, q>::-R, and teb::JacobianWorkspace::getWorkspace().

16.12.4.6 template < int p, int q> virtual void teb::EdgeQuadraticForm < p, q>::computeValues () [inline], [virtual]

Reimplemented from teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p > . ControlVertex< q > > .

Definition at line 182 of file common teb edges.h.

References teb::EdgeQuadraticForm< p, q >::_Q, teb::EdgeQuadraticForm< p, q >::_R, teb::EdgeQuadraticForm< p, q >::_ref_state, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p >, Control-Vertex< q > >::_values, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p >, Control-Vertex< q > >::_vertices, and teb::StateVertex::states().

16.12.4.7 virtual int teb::BaseEdge< D, FuncType, Vertices >::dimension() const [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 51 of file base_edge.h.

16.12.4.8 virtual void teb::EdgeType::discardJacobianBackup() [inline], [virtual], [inherited]

Definition at line 171 of file graph.h.

References teb::EdgeType:: jacob backup.

16.12.4.9 virtual FUNCT_TYPE teb::BaseEdge < D, FuncType, Vertices >::functType () const [inline], [virtual], [inherited]

Implements teb::EdgeType.

Definition at line 69 of file base edge.h.

16.12.4.10 virtual void* teb::EdgeType::getCustomData() [inline], [virtual], [inherited]

Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.

Definition at line 154 of file graph.h.

```
16.12.4.11 virtual JacobianWorkspace& teb::EdgeType::getJacobianBackup() [inline], [virtual],
          [inherited]
Definition at line 173 of file graph.h.
References teb::EdgeType::_jacob_backup.
16.12.4.12 virtual VertexType* teb::BaseEdge < D, FuncType, Vertices >::getVertex (unsigned int idx) [inline],
           [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 98 of file base_edge.h.
16.12.4.13 virtual const VertexType* teb::BaseEdge< D, FuncType, Vertices >::getVertex ( unsigned int idx ) const
          [inline],[virtual],[inherited]
Implements teb::EdgeType.
Definition at line 99 of file base edge.h.
16.12.4.14 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType::_hessians.
16.12.4.15 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual],
          [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType::_hessians.
16.12.4.16 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.12.4.17 virtual Jacobian Workspace & teb::Edge Type::jacobians ( ) [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType::_jacobians.
16.12.4.18 virtual const JacobianWorkspace& teb::EdgeType::jacobians() const [inline], [virtual],
           [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType::_jacobians.
```

```
16.12 teb::EdgeQuadraticForm< p, q > Class Template Reference
16.12.4.19 virtual unsigned int teb::BaseEdge < D, FuncType, Vertices >::noVertices ( ) const [inline],
           [virtual],[inherited]
Implements teb::EdgeType.
Definition at line 101 of file base_edge.h.
16.12.4.20 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual], [inherited]
Definition at line 165 of file graph.h.
References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.
16.12.4.21 template < int p, int q > void teb::EdgeQuadraticForm < p, q >::setReference ( const Eigen::Ref < const
          Eigen::Matrix < double, p, 1 >> & xf ) [inline]
Definition at line 246 of file common_teb_edges.h.
References teb::EdgeQuadraticForm< p, q >::_ref_state.
Referenced by teb::TebController< p, q >::buildOptimizationGraph().
16.12.4.22 template<int p, int q> void teb::EdgeQuadraticForm< p, q>::setWeights ( const Eigen::DiagonalMatrix<
          double, p > \& Q, const Eigen::DiagonalMatrix< double, q > \& R) [inline]
Definition at line 225 of file common teb edges.h.
References teb::EdgeQuadraticForm< p, q >::_Q, and teb::EdgeQuadraticForm< p, q >::_R.
Referenced by teb::TebController< p, q >::buildOptimizationGraph().
16.12.4.23 \quad template < int \ p, \ int \ q > void \ teb:: Edge Quadratic Form < p, \ q > :: set Weights \ ( \ const \ Eigen:: Ref < const
           Eigen::Matrix< double, p, 1 >> & Q, const Eigen::Ref< const Eigen::Matrix< double, q, 1 >> & R)
           [inline]
Definition at line 232 of file common teb edges.h.
References teb::EdgeQuadraticForm< p, q >:: Q, and teb::EdgeQuadraticForm< p, q >:: R.
16.12.4.24 template<int p, int q> void teb::EdgeQuadraticForm< p, q>::setWeights ( double Q, double R )
           [inline]
Definition at line 239 of file common_teb_edges.h.
References teb::EdgeQuadraticForm< p, q >::_Q, and teb::EdgeQuadraticForm< p, q >::_R.
```

Definition at line 74 of file base_edge.h.

16.12.4.26 virtual Value Vector & teb::Base Edge < D, FuncType, Vertices >::values () [inline], [virtual], [inherited]

Definition at line 75 of file base_edge.h.

```
16.12.4.27 virtual const double* teb::BaseEdge< D, FuncType, Vertices >::valuesData( ) const [inline], [virtual], [inherited]
```

Implements teb::EdgeType.

Definition at line 72 of file base edge.h.

Implements teb::EdgeType.

Definition at line 73 of file base_edge.h.

```
16.12.4.29 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]
```

return Eigen::Vector type that maps to the actual cost/constraints values

Definition at line 150 of file graph.h.

References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().

```
16.12.4.30 virtual const std::array < VertexType*,NoVertices > & teb::BaseEdge < D, FuncType, Vertices > ::vertices ( ) const [inline], [virtual], [inherited]
```

Returns

(Read-only) reference to the vertex container.

Definition at line 122 of file base_edge.h.

16.12.5 Member Data Documentation

```
16.12.5.1 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]
```

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and teb::EdgeType::hessians().

```
16.12.5.2 BackupStackType<JacobianWorkspace> teb::EdgeType::_jacob_backup [protected], [inherited]
```

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

```
16.12.5.3 JacobianWorkspace teb::EdgeType::_jacobians [protected], [inherited]
```

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeType::backupJacobian(), teb::BaseEdge< D, FuncType >::compute-Hessian(), teb::EdgeMinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars,

Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::computeJacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

16.12.5.4 template < int p, int q > Eigen::DiagonalMatrix < double,p > teb::EdgeQuadraticForm < p, q >::_Q [protected]

Definition at line 262 of file common teb edges.h.

Referenced by teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeValues(), and teb::EdgeQuadraticForm< p, q >::set-Weights().

16.12.5.5 template < int p, int q > Eigen::DiagonalMatrix < double,q > teb::EdgeQuadraticForm < p, q >::_R [protected]

Definition at line 263 of file common_teb_edges.h.

Referenced by teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeValues(), and teb::EdgeQuadraticForm< p, q >::set-Weights().

16.12.5.6 template < int p, int q > State Vector teb::EdgeQuadraticForm < p, q >::_ref_state = State Vector::Zero()

[protected]

Definition at line 266 of file common_teb_edges.h.

Referenced by teb::EdgeQuadraticForm< p, q >::computeValues(), and teb::EdgeQuadraticForm< p, q >::set-Reference().

16.12.5.7 ValueVector teb::BaseEdge < D, FuncType, Vertices >::_values [protected], [inherited]

Definition at line 139 of file base_edge.h.

Referenced by teb::EdgeQuadraticForm< p, q >::computeValues().

16.12.5.8 const std::array < VertexType*, NoVertices > teb::BaseEdge < D, FuncType, Vertices >::_vertices [protected], [inherited]

Definition at line 141 of file base_edge.h.

Referenced by teb::EdgeQuadraticForm< p, q >::computeValues().

16.12.5.9 std::array<int, NoVertices> teb::BaseEdge< D, FuncType, Vertices >::_vertices_dim [protected], [inherited]

Definition at line 142 of file base_edge.h.

16.12.5.10 const int teb::BaseEdge < D, FuncType, Vertices >::Dimension [static], [inherited]

Definition at line 50 of file base_edge.h.

16.12.5.11 constexpr const int teb::BaseEdge < D, FuncType, Vertices >::NoVertices [static], [inherited]

Definition at line 48 of file base_edge.h.

The documentation for this class was generated from the following file:

· common_teb_edges.h

16.13 teb::EdgeSystemDynamics < p, q, central > Class Template Reference

Equality constraint edge for satisfying continious system dynamics specified by an SystemDynamics object.

```
#include <base_edge_dynamics.h>
```

Inheritance diagram for teb::EdgeSystemDynamics< p, q, central >:

Public Types

using ValueVector = Eigen::Matrix< double, D, 1 >

Typedef to represent the static Eigen::Vector of cost/constraint values.

using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using ValueVectorMap = Eigen::Map< Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

EdgeSystemDynamics (SystemDynamics< p, q > *system, StateVertex &px1, ControlVertex< q > &pu1, StateVertex &px2, TimeDiff &pdt)

Constructor that requires a pointer to a SystemDynamics object.

• virtual void computeValues ()

Actual cost function or constraint function. For constraints it is compute Values() <= 0.

void setSystemDynamics (SystemDynamics< p, q > *system)

Set SystemDynamics object.

virtual int dimension () const

Return edge dimension by function call.

virtual FUNCT_TYPE functType () const

Return function typed given by template parameter FuncType.

• virtual const double * valuesData () const

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()

Return pointer to cost/constraint values [dimension() x 1].

• virtual const ValueVector & values () const

Return cost/constraint values as static Eigen::Vector (read-only).

virtual ValueVector & values ()

Return cost/constraint values as static Eigen::Vector.

virtual void allocateMemory (bool skip_hessian=false)

Allocate memory for JacobianWorkspace and HessianWorkspace and get vertices dimensions.

virtual VertexType * getVertex (unsigned int idx)

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const

Access attached vertex with index idx (read-only).

· virtual unsigned int noVertices () const

Return the number of attached vertices.

virtual void calculateVertexDimensions ()

Return the number of attached vertices.

virtual const std::array

```
< VertexType *, NoVertices > & vertices () const
```

Return vertex container of the edge.

• virtual void computeJacobian ()

Actual cost function or constraint function. For constraints it is computeValues() <= 0.

virtual void computeHessian ()

Compute Block-Hessian and store it to EdgeType::_hessians according to the description in HessianWorkspace.

· virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

• virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

• virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

• virtual JacobianWorkspace & getJacobianBackup ()

Static Public Attributes

• static const int Dimension = p

Dimension of this edge equals always the number of system equations.

static constexpr const int NoVertices

Protected Attributes

SystemDynamics< p, q > * _system = nullptr

Pointer to the system dynamics object.

· ValueVector values

Actual cost/constraint value data object (initialized to zero).

- const std::array
 VertexType
 - *, NoVertices > vertices

Container that stores all attached vertices.

std::array< int, NoVertices > _vertices_dim

Store dimensions for all vertices (EdgeType::_vertices, calculateVertexDimensions())

JacobianWorkspace _jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

• HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackType

< JacobianWorkspace > _jacob_backup

Friends

 template<int pf, int qf> class SystemDynamics

16.13.1 Detailed Description

template<int p, int q, bool central = false>class teb::EdgeSystemDynamics< p, q, central >

This edge creates an equility constraint based on nonlinear system-dynamics equations. System dynamics can be specified using a SystemDynamics object. The pointer to the system dynamics must be passed to the constructor of this object or by calling setSystemObject(). See SystemDynamics for more information about how to model a specific system.

This edge approximates the continuous-timde derivatives that appear in each system equation by finite differences (see teb::FiniteDifferences). Two different types of finite differences are supported by this edge at the moment.

- Forward differences: $\dot{x}(t) = \frac{x_{k+1} x_k}{\Delta T}$
- Central differences: $\dot{x}(t) = \frac{x_{k+1} x_{k-1}}{2\Delta T}$

The number of vertices required by this edge depend on whether central differences are enabled or not:

- · Forward differences:
 - 1. StateVertex \mathbf{x}_k
 - 2. ControlVertex u_k
 - 3. StateVertex \mathbf{x}_{k+1}
 - 4. TimeDiff ΔT
- · Central differences:
 - 1. StateVertex \mathbf{x}_{k-1}
 - 2. StateVertex \mathbf{x}_k
 - 3. ControlVertex \mathbf{u}_k
 - 4. StateVertex \mathbf{x}_{k+1}
 - 1. TimeDiff ΔT

Remarks

Call allocateMemory() before using the edge for optimization.

Bug Central differences do not seem to work as expected at the moment.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

p	Number of state variables
q	Number of input variables
central	Enable central differences (make sure to read the info text -> vertex type may
	change)

Definition at line 52 of file base_edge_dynamics.h.

16.13.2 Member Typedef Documentation

16.13.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*> [inherited]

Definition at line 114 of file graph.h.

16.13.2.2 using teb::BaseEdge< D, FuncType, Vertices >::ValueVector = Eigen::Matrix<double, D, 1>
[inherited]

Definition at line 54 of file base_edge.h.

16.13.2.3 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd > [inherited]

Definition at line 116 of file graph.h.

16.13.3 Constructor & Destructor Documentation

16.13.3.1 template<int p, int q, bool central = false> teb::EdgeSystemDynamics< p, q, central >::EdgeSystemDynamics (SystemDynamics< p, q > * system, StateVertex & px1, ControlVertex< q > & pu1, StateVertex & px2, TimeDiff & pdt) [inline]

Parameters

system	Pointer to a SystemDynamics object
px1	Pointer to a StateVertex related to \mathbf{x}_{k-1}
pu1	Pointer to a ControlVertex related to \mathbf{u}_k
px2	Pointer to a StateVertex related to \mathbf{x}_k
pdt	Pointer to a TimeDiff ΔT

Definition at line 71 of file base_edge_dynamics.h.

16.13.4 Member Function Documentation

16.13.4.1 virtual void teb::BaseEdge < D, FuncType, Vertices >::allocateMemory (bool skip_hessian = false) [inline], [virtual], [inherited]

Remarks

Before calling, call resizeVertexContainer() edge and add all vertices (setVertex()) first.

Todo Implement automatic memory allocation instead calling this function manually.

Parameters

skip_hessian | If no hessian calculation is required by the solver skip memory allocation.

Implements teb::EdgeType.

Definition at line 84 of file base_edge.h.

```
16.13.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual], [inherited]
```

Definition at line 162 of file graph.h.

References teb::EdgeType:: jacob backup, and teb::EdgeType:: jacobians.

Query dimensions of all vertices attached to this edge and store them internally.

Stores dimensions to class container EdgeType::_vertices_dim. This function is called within BaseEdge::allocate-Memory().

Todo Maybe implement static/constexpr version of collecting all dimensions since they are nown at compile-time (maybe http://stackoverflow.com/questions/19019252/c11-create-0-to-n-constexpr-array-

Definition at line 110 of file base_edge.h.

```
16.13.4.4 virtual void teb::BaseEdge < D, FuncType, Vertices >::computeHessian() [virtual], [inherited]
```

This implementation calculates the Block-Hessians for all statically allocated vertices and cost/constraint values numerically using forward differences.

For more information about the Hessian structure refer to HessianWorkspace.

If the FuncType template parameter is set to FUNCT_TYPE::LINEAR or FuncType == FUNCT_TYPE::NONLINEAR ONCE DIFF the hessian is set to zero.

The results are stored to the class member BaseEdgeBinary::_hessians.

Feel free to reimplement this function in child classes in order to provide analytical Hessians.

Remarks

This function assumes that computeJacobian() was called before! It is used as reference for calculating the forward-differences.

See Also

computeJacobian(), HessianWorkspace

Implements teb::EdgeType.

```
16.13.4.5 virtual void teb::BaseEdge < D, FuncType, Vertices >::computeJacobian ( ) [virtual], [inherited]
```

This implementation calculates the Block-Jacobians for all statically allocated vertices numerically using central differences.

Compute Block-Jacobian and store it to EdgeType::_jacobians according to the description in JacobianWorkspace.

For more information about the Jacobian structure refer to JacobianWorkspace.

The results are stored to the class member BaseEdgeBinary::_jacobians.

The implementation is similar to [2].

Feel free to reimplement this function in child classes in order to provide analytical Jacobians.

See Also

```
computeHessian(), JacobianWorkspace
```

Implements teb::EdgeType.

```
16.13.4.6 template<int p, int q, bool central = false> virtual void teb::EdgeSystemDynamics< p, q, central >::computeValues( ) [inline], [virtual]
```

Reimplemented from teb::BaseEdge< p, FUNCT_TYPE::NONLINEAR, StateVertex< p >, ControlVertex< q >, StateVertex>, TimeDiff >.

Definition at line 76 of file base edge dynamics.h.

References teb::EdgeSystemDynamics< p, q, central >::_system, teb::BaseEdge< p, FUNCT_TYPE::NONLINE-AR, StateVertex< p >, ControlVertex< q >, StateVertex, TimeDiff >::_values, teb::BaseEdge< p, FUNCT_TYPE::NONLINEAR, StateVertex< p >, ControlVertex< q >, StateVertex, TimeDiff >::_vertices, and teb::StateVertex::states().

```
16.13.4.7 virtual int teb::BaseEdge < D, FuncType, Vertices >::dimension() const [inline], [virtual], [inherited]
```

Implements teb::EdgeType.

Definition at line 51 of file base_edge.h.

```
16.13.4.8 virtual void teb::EdgeType::discardJacobianBackup( ) [inline], [virtual], [inherited]
```

Definition at line 171 of file graph.h.

References teb::EdgeType:: jacob backup.

```
16.13.4.9 virtual FUNCT_TYPE teb::BaseEdge < D, FuncType, Vertices >::functType ( ) const [inline], [virtual], [inherited]
```

Implements teb::EdgeType.

Definition at line 69 of file base_edge.h.

```
16.13.4.10 virtual void* teb::EdgeType::getCustomData() [inline], [virtual], [inherited]
```

Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.

Definition at line 154 of file graph.h.

```
16.13.4.11 virtual JacobianWorkspace& teb::EdgeType::getJacobianBackup( ) [inline], [virtual],
          [inherited]
Definition at line 173 of file graph.h.
References teb::EdgeType::_jacob_backup.
16.13.4.12 virtual VertexType* teb::BaseEdge < D, FuncType, Vertices >::getVertex (unsigned int idx) [inline],
           [virtual], [inherited]
Implements teb::EdgeType.
Definition at line 98 of file base_edge.h.
16.13.4.13 virtual const VertexType* teb::BaseEdge< D, FuncType, Vertices >::getVertex ( unsigned int idx ) const
          [inline],[virtual],[inherited]
Implements teb::EdgeType.
Definition at line 99 of file base edge.h.
16.13.4.14 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual], [inherited]
Definition at line 159 of file graph.h.
References teb::EdgeType::_hessians.
16.13.4.15 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual],
          [inherited]
Definition at line 160 of file graph.h.
References teb::EdgeType::_hessians.
16.13.4.16 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual], [inherited]
Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.13.4.17 virtual Jacobian Workspace & teb::Edge Type::jacobians() [inline], [virtual], [inherited]
Definition at line 157 of file graph.h.
References teb::EdgeType::_jacobians.
16.13.4.18 virtual const JacobianWorkspace& teb::EdgeType::jacobians() const [inline], [virtual],
           [inherited]
Definition at line 158 of file graph.h.
References teb::EdgeType::_jacobians.
```

```
16.13.4.19 virtual unsigned int teb::BaseEdge < D, FuncType, Vertices >::noVertices ( ) const [inline],
          [virtual],[inherited]
Implements teb::EdgeType.
Definition at line 101 of file base_edge.h.
16.13.4.20 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual], [inherited]
Definition at line 165 of file graph.h.
References teb::EdgeType::_jacob_backup, and teb::EdgeType::_jacobians.
16.13.4.21 template<int p, int q, bool central = false> void teb::EdgeSystemDynamics< p, q, central
          >::setSystemDynamics ( SystemDynamics < p, q > * system ) [inline]
Parameters
           system
                    Pointer to a SystemDynamics object
Definition at line 93 of file base edge dynamics.h.
References teb::EdgeSystemDynamics< p, q, central >::_system.
16.13.4.22 virtual const ValueVector& teb::BaseEdge < D, FuncType, Vertices >::values ( ) const [inline],
          [virtual],[inherited]
Definition at line 74 of file base_edge.h.
16.13.4.23 virtual Value Vector & teb::Base Edge < D, FuncType, Vertices >::values ( ) [inline], [virtual],
          [inherited]
Definition at line 75 of file base_edge.h.
16.13.4.24 virtual const double* teb::BaseEdge < D, FuncType, Vertices >::valuesData ( ) const [inline],
          [virtual],[inherited]
Implements teb::EdgeType.
Definition at line 72 of file base_edge.h.
16.13.4.25 virtual double* teb::BaseEdge < D, FuncType, Vertices >::valuesData ( ) [inline], [virtual],
          [inherited]
Implements teb::EdgeType.
Definition at line 73 of file base_edge.h.
16.13.4.26 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual], [inherited]
return Eigen::Vector type that maps to the actual cost/constraints values
Definition at line 150 of file graph.h.
References teb::EdgeType::dimension(), and teb::EdgeType::valuesData().
```

16.13.4.27 virtual const std::array < VertexType*,NoVertices > & teb::BaseEdge < D, FuncType, Vertices > ::vertices () const [inline], [virtual], [inherited]

Returns

(Read-only) reference to the vertex container.

Definition at line 122 of file base_edge.h.

16.13.5 Friends And Related Function Documentation

16.13.5.1 template < int p, int q, bool central = false > template < int pf, int qf > friend class SystemDynamics [friend]

Definition at line 55 of file base edge dynamics.h.

16.13.6 Member Data Documentation

16.13.6.1 HessianWorkspace teb::EdgeType::_hessians [protected], [inherited]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and teb::EdgeType::hessians().

Definition at line 180 of file graph.h.

Referenced by teb::EdgeType::backupJacobian(), teb::EdgeType::discardJacobianBackup(), teb::EdgeType::get-JacobianBackup(), and teb::EdgeType::restoreJacobian().

```
16.13.6.3 JacobianWorkspace teb::EdgeType::_jacobians [protected], [inherited]
```

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::BaseEdge< D, FuncType >::compute-Hessian(), teb::BdgeMinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::computeJacobian(), teb::EdgeType::jacobians(), and teb::EdgeType::restoreJacobian().

```
16.13.6.4 template < int p, int q, bool central = false> SystemDynamics< p, q>* teb::EdgeSystemDynamics< p, q, central >::_system = nullptr [protected]
```

Definition at line 102 of file base_edge_dynamics.h.

Referenced by teb::EdgeSystemDynamics< p, q, central >::computeValues(), and teb::EdgeSystemDynamics< p, q, central >::setSystemDynamics().

```
16.13.6.5 ValueVector teb::BaseEdge < D, FuncType, Vertices >::_values [protected], [inherited]
```

Definition at line 139 of file base edge.h.

 $Referenced\ by\ teb:: Edge System Dynamics < p,\ q,\ central >:: compute Values ().$

16.13.6.6 const std::array < VertexType*, No Vertices > teb::BaseEdge < D, FuncType, Vertices >::_vertices [protected], [inherited]

Definition at line 141 of file base_edge.h.

Referenced by teb::EdgeSystemDynamics< p, q, central >::computeValues().

16.13.6.7 std::array<int, NoVertices> teb::BaseEdge< D, FuncType, Vertices >::_vertices_dim [protected], [inherited]

Definition at line 142 of file base_edge.h.

16.13.6.8 template < int p, int q, bool central = false > const int teb::EdgeSystemDynamics < p, q, central >::Dimension = p [static]

Definition at line 59 of file base_edge_dynamics.h.

16.13.6.9 constexpr const int teb::BaseEdge < D, FuncType, Vertices >::NoVertices [static], [inherited]

Definition at line 48 of file base edge.h.

The documentation for this class was generated from the following file:

· base_edge_dynamics.h

16.14 teb::EdgeType Class Reference

Generic interface class for edges.

#include <graph.h>

Inheritance diagram for teb::EdgeType:

Public Types

using EdgeContainer = std::vector< EdgeType * >

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

• using ValueVectorMap = Eigen::Map < Eigen::VectorXd >

Typedef for an Eigen::Vector wrapper that points to the actual data somewhere else.

Public Member Functions

virtual FUNCT TYPE functType () const =0

Store edge function type information according to the members of enum FUNCT_TYPE.

· virtual const bool isBoundConstraint () const

Override this method in a subclass that constitutes a bound constraint since it can be handled seperately by some solvers to speed up optimization.

• EdgeType ()

Constructor that updates the internal edge_type.

- virtual ~EdgeType ()
- virtual int dimension () const =0

Empty destructor.

virtual void allocateMemory (bool skip hessian=false)=0

Allocate memory to store cost/constraint values, jacobians and hessians.

virtual void computeValues ()=0

Actual cost function or constraint function. For constraints it is compute Values() <= 0.

virtual void computeJacobian ()=0

Compute Block-Jacobian and store it to EdgeType::_jacobians according to the description in JacobianWorkspace.

• virtual void computeHessian ()=0

Compute Block-Hessian and store it to EdgeType:: hessians according to the description in HessianWorkspace.

virtual const double * valuesData () const =0

Return pointer to cost/constraint values [dimension() x 1] (read-only).

virtual double * valuesData ()=0

Return pointer to cost/constraint values [dimension() x 1].

• virtual unsigned int noVertices () const =0

Return the number of attached vertices.

virtual VertexType * getVertex (unsigned int idx)=0

Access attached vertex with index idx.

virtual const VertexType * getVertex (unsigned int idx) const =0

Access attached vertex with index idx (read-only).

virtual ValueVectorMap valuesMap ()

Get cost/constraints values as Eigen type matrix.

virtual void * getCustomData ()

Use this function to return a pointer to custom data that can be used by the solver without knowing template parameters e.g.

• virtual JacobianWorkspace & jacobians ()

Access the jacobian workspace of this edge.

• virtual const JacobianWorkspace & jacobians () const

Access the jacobian workspace of this edge (read-only).

• virtual HessianWorkspace & hessians ()

Access the hessian workspace of this edge.

· virtual const HessianWorkspace & hessians () const

Access the jacobian workspace of this edge (read-only).

virtual void backupJacobian ()

Make a backup of the current jacobian block matrix.

• virtual void restoreJacobian ()

Restore jacobian block matrix from the backup stack.

virtual void discardJacobianBackup ()

Discard current jacobian backup.

virtual JacobianWorkspace & getJacobianBackup ()

Protected Attributes

• JacobianWorkspace _jacobians

Block-Jacobians of the edge (see JacobianWorkspace).

HessianWorkspace _hessians

Block-Hessians of the edge (see HessianWorkspace)

BackupStackTypeJacobianWorkspace > _jacob_backup

16.14.1 Detailed Description

This abstract class defines the interface for dedicated edges. The underlying TEB optimization problem is formulated as a hyper-graph in which state vectors (StateVertex), control input vectors (ControlVertex) and a TimeDiff are represented as vertices. Cost functions and constraints (that depend on vertices) are formulated as multi-edges. Multi-edges can connect an arbitary number of vertices. The result graph is therefore called hyper-graph. If the number of vertices attached to a single edge is low, the resulting optimization problem will be sparse probably. Block-Jacobians and Block-Hessians can be calculated for each edge independently and may be combined afterwards by the solver.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

HyperGraph, VertexType, BaseEdge

Definition at line 109 of file graph.h.

16.14.2 Member Typedef Documentation

16.14.2.1 using teb::EdgeType::EdgeContainer = std::vector<EdgeType*>

Definition at line 114 of file graph.h.

16.14.2.2 using teb::EdgeType::ValueVectorMap = Eigen::Map < Eigen::VectorXd >

Definition at line 116 of file graph.h.

16.14.3 Constructor & Destructor Documentation

```
16.14.3.1 teb::EdgeType::EdgeType( ) [inline]
```

Definition at line 127 of file graph.h.

```
16.14.3.2 virtual teb::EdgeType::~EdgeType( ) [inline], [virtual]
```

Definition at line 131 of file graph.h.

16.14.4 Member Function Documentation

```
16.14.4.1 virtual void teb::EdgeType::allocateMemory ( bool skip_hessian = false ) [pure virtual]
```

 $\label{local-problem} \begin{tabular}{ll} Implemented in teb::BaseEdge< D, FuncType>, teb::BaseEdge< D, FuncType, Vertices>, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p>, ControlVertex< q>>, teb::BaseEdge< p, FUNCT_TYPE::NONLINEAR, StateVertex< p>, ControlVertex< q>, StateVertex, TimeDiff>, teb::LINEAR, Vertex>, and teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff>. \\ \end{tabular}$

16.14.4.2 virtual void teb::EdgeType::backupJacobian() [inline], [virtual]

Definition at line 162 of file graph.h.

References jacob backup, and jacobians.

16.14.4.3 virtual void teb::EdgeType::computeHessian () [pure virtual]

16.14.4.4 virtual void teb::EdgeType::computeJacobian() [pure virtual]

Implemented in teb::BaseEdge< D, FuncType >, teb::EdgeQuadraticForm< p, q >, teb::BaseEdge< D, FuncType, Vertices >, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p >, ControlVertex< q > >, teb::BaseEdge< p, FUNCT_TYPE::NONLINEAR, StateVertex< p >, ControlVertex< q >, StateVertex, TimeDiff >, teb::LINEAR, Vertex >, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >, teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >, and teb::EdgeMinimizeTime.

16.14.4.5 virtual void teb::EdgeType::computeValues() [pure virtual]

16.14.4.6 virtual int teb::EdgeType::dimension() const [pure virtual]

Return number of scalar cost/constraint values covered by this edge.

 $\label{local-loc$

Referenced by valuesMap().

16.14.4.7 virtual void teb::EdgeType::discardJacobianBackup() [inline], [virtual]

Definition at line 171 of file graph.h.

References _jacob_backup.

```
16.14.4.8 virtual FUNCT_TYPE teb::EdgeType::functType( ) const [pure virtual]
Implemented in teb::BaseEdge< D, FuncType >, teb::BaseEdge< D, FuncType, Vertices >, teb::BaseEdge< 1,
FUNCT_TYPE::LINEAR_SQUARED, StateVertex, ControlVertex< q > >, teb::BaseEdge< p, FUNCT_TY-
PE::NONLINEAR, StateVertex , ControlVertex < q >, StateVertex , TimeDiff >, teb::LINEAR, Vertex >,
and teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >.
16.14.4.9 virtual void* teb::EdgeType::getCustomData() [inline], [virtual]
Reimplemented in teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >.
Definition at line 154 of file graph.h.
16.14.4.10 virtual Jacobian Workspace & teb::Edge Type::get Jacobian Backup ( ) [inline], [virtual]
Definition at line 173 of file graph.h.
References jacob backup.
16.14.4.11 virtual VertexType* teb::EdgeType::getVertex ( unsigned int idx ) [pure virtual]
Implemented in teb::BaseEdge< D, FuncType >, teb::BaseEdge< D, FuncType, Vertices >, teb::BaseEdge< 1,
FUNCT TYPE::LINEAR SQUARED, StateVertex, ControlVertex< q > >, teb::BaseEdge< p, FUNCT TY-
PE::NONLINEAR, StateVertex , ControlVertex < q >, StateVertex , TimeDiff >, teb::LINEAR, Vertex >,
and teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >.
16.14.4.12 virtual const VertexType* teb::EdgeType::getVertex ( unsigned int idx ) const [pure virtual]
Implemented in teb::BaseEdge< D, FuncType >, teb::BaseEdge< D, FuncType, Vertices >, teb::BaseEdge< 1,
FUNCT_TYPE::LINEAR_SQUARED, StateVertex, ControlVertex< q > >, teb::BaseEdge< p, FUNCT_TY-
PE::NONLINEAR, StateVertex , ControlVertex < q >, StateVertex , TimeDiff >, teb::LINEAR, Vertex >,
and teb::BaseEdge < 1, FUNCT_TYPE::LINEAR, TimeDiff >.
16.14.4.13 virtual HessianWorkspace& teb::EdgeType::hessians() [inline], [virtual]
Definition at line 159 of file graph.h.
References _hessians.
16.14.4.14 virtual const HessianWorkspace& teb::EdgeType::hessians() const [inline], [virtual]
Definition at line 160 of file graph.h.
References hessians.
16.14.4.15 virtual const bool teb::EdgeType::isBoundConstraint() const [inline], [virtual]
Reimplemented in teb::BoundConstraint < Bound_type, Vertex, Bound_vars, Index >.
Definition at line 124 of file graph.h.
16.14.4.16 virtual Jacobian Workspace & teb::EdgeType::jacobians() [inline], [virtual]
Definition at line 157 of file graph.h.
```

References _jacobians.

16.14.4.17 virtual const JacobianWorkspace& teb::EdgeType::jacobians() const [inline], [virtual]

Definition at line 158 of file graph.h.

References _jacobians.

16.14.4.18 virtual unsigned int teb::EdgeType::noVertices() const [pure virtual]

Implemented in teb::BaseEdge< D, FuncType >, teb::BaseEdge< D, FuncType, Vertices >, teb::BaseEdge< 1, FUNCT_TYPE::LINEAR_SQUARED, StateVertex< p >, ControlVertex< q > >, teb::BaseEdge< p, FUNCT_TY-PE::NONLINEAR, StateVertex< p >, ControlVertex< q >, StateVertex, TimeDiff >, teb::LINEAR, Vertex >, and teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >.

16.14.4.19 virtual void teb::EdgeType::restoreJacobian() [inline], [virtual]

Definition at line 165 of file graph.h.

References _jacob_backup, and _jacobians.

16.14.4.20 virtual const double* teb::EdgeType::valuesData() const [pure virtual]

 $\label{local_loc$

Referenced by valuesMap().

16.14.4.21 virtual double* teb::EdgeType::valuesData() [pure virtual]

 $\label{local_loc$

16.14.4.22 virtual ValueVectorMap teb::EdgeType::valuesMap() [inline], [virtual]

return Eigen::Vector type that maps to the actual cost/constraints values

Definition at line 150 of file graph.h.

References dimension(), and valuesData().

16.14.5 Member Data Documentation

16.14.5.1 HessianWorkspace teb::EdgeType::_hessians [protected]

Definition at line 178 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), and hessians().

16.14.5.2 BackupStackType<JacobianWorkspace> teb::EdgeType::_jacob_backup [protected]

Definition at line 180 of file graph.h.

Referenced by backupJacobian(), discardJacobianBackup(), getJacobianBackup(), and restoreJacobian().

16.14.5.3 JacobianWorkspace teb::EdgeType::_jacobians [protected]

Definition at line 173 of file graph.h.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), teb::BaseEdge< D, FuncType >::allocateMemory(), backupJacobian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::Edge-MinimizeTime::computeJacobian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::compute-Jacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), teb::BaseEdge< D, FuncType >::compute-Jacobian(), jacobians(), and restoreJacobian().

The documentation for this class was generated from the following file:

• graph.h

16.15 teb::ExplicitEuler < p, q > Class Template Reference

Simple explicit euler method for integration.

#include <integrators.h>

Inheritance diagram for teb::ExplicitEuler< p, q >:

Public Types

- using StateVector = typename NumericalIntegrator < p, q >::StateVector
 Typedef for state vector with p states [p x 1].
- using ControlVector = typename NumericalIntegrator< p, q >::ControlVector

 Typedef for control input vector with q controls [q x 1].

Public Member Functions

• ExplicitEuler ()

Empty Constructor.

virtual ~ExplicitEuler ()

Empty Destructor.

 virtual StateVector integrate (const Eigen::Ref< const StateVector > &x_k, const Eigen::Ref< const Control-Vector > &u_k, SystemDynamics< p, q > *system_equation, double dt) const

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

.

16.15.1 Detailed Description

template < int p, int q > class teb::ExplicitEuler < p, q >

For more information please refer to http://en.wikipedia.org/wiki/Euler_method

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

p	Number of state variables
q	Number of input variables

Definition at line 81 of file integrators.h.

16.15.2 Member Typedef Documentation

16.15.2.1 template<int p, int q> using teb::ExplicitEuler< p, q>::ControlVector = typename NumericalIntegrator<p,q>::ControlVector

Definition at line 87 of file integrators.h.

16.15.2.2 template<int p, int q> using teb::ExplicitEuler< p, q>::StateVector = typename NumericalIntegrator<p,q>::StateVector

Definition at line 85 of file integrators.h.

16.15.3 Constructor & Destructor Documentation

16.15.3.1 template < int p, int q > teb::ExplicitEuler < p, q >::ExplicitEuler () [inline]

Definition at line 89 of file integrators.h.

16.15.3.2 template < int p, int q > virtual teb::ExplicitEuler < p, q > ::~ExplicitEuler () [inline], [virtual]

Definition at line 90 of file integrators.h.

16.15.4 Member Function Documentation

16.15.4.1 template < int p, int q > virtual State Vector teb::Explicit Euler < p, q >::integrate (const Eigen::Ref < const State Vector > & x_k , const Eigen::Ref < const Control Vector > & u_k , System Dynamics < p, q > * system_equation, double dt) const [inline], [virtual]

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

w.r.t. \mathbf{x} . In particular, it relies on discrete states. The method calculates \mathbf{x}_{k+1} based on \mathbf{x}_k , \mathbf{u}_k and the duration ΔT . The dedicated system dynamics equations may be specified using a SystemDynamics object.

Parameters

x_k	Current state vector \mathbf{x}_k [p x 1]
u_k	Current state vector \mathbf{u}_k [q x 1]
system_equation	Pointer to the SystemDynamics object that stores the system equations.
dt	Time interval for the integration

Returns

Integrated state vector \mathbf{x}_{k+1} [p x 1]

Implements teb::NumericalIntegrator < p, q >.

Definition at line 93 of file integrators.h.

References teb::SystemDynamics< p, q >::stateSpaceModel().

The documentation for this class was generated from the following file:

· integrators.h

16.16 teb::Config::Optim::Solver::NonlinearProgram::Hessian Struct Reference

Configurations for the hessian of the lagrangian calculation.

#include <config.h>

Public Attributes

HessianMethod hessian_method = HessianMethod::NUMERIC

Define the hessian calcuation methods (numeric, bfgs quasi-newton, ...)

HessianInit hessian_init = HessianInit::NUMERIC

Define which hessian initialization should be used in BFGS methods.

double hessian_init_identity_scale = 1

Scale the hessian initialization matrix if hessian_init is set to HessianInit::IDENTITY.

• bool bfgs_damped_mode = true

Specify if BFGS damped mode should be used (slower, but more robust).

16.16.1 Detailed Description

Definition at line 96 of file config.h.

16.16.2 Member Data Documentation

16.16.2.1 bool teb::Config::Optim::Solver::NonlinearProgram::Hessian::bfgs_damped_mode = true

Definition at line 101 of file config.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS().

16.16.2.2 HessianInit teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_init = HessianInit::NUMERIC

Definition at line 99 of file config.h.

Referenced by teb::BaseSolverNonlinearProgramDense::initHessianBFGS().

16.16.2.3 double teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_init_identity_scale = 1

Definition at line 100 of file config.h.

Referenced by teb::BaseSolverNonlinearProgramDense::initHessianBFGS().

16.16.2.4 HessianMethod teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_method = HessianMethod::NUMERIC

Definition at line 98 of file config.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solvelmpl().

The documentation for this struct was generated from the following file:

· config.h

16.17 teb::HessianWorkspace Class Reference

Memory management and accessor functions for the Block-Hessian (for each edge).

```
#include <workspaces.h>
```

Public Types

 using WorkspaceMatrix = std::vector< Eigen::MatrixXd, Eigen::aligned_allocator< Eigen::-MatrixXd >>>

Typedef for the BlockHessian container.

Public Member Functions

- HessianWorkspace ()
- ∼HessianWorkspace ()

Empty constructor.

template<typename T >

bool allocate (int edge_dim, const T &vertices_dim)

Empty destructor.

• Eigen::MatrixXd & getWorkspace (int vertex idx, int value idx)

Access Block-Hessian for TebVertex with index vertex_idx.

Protected Attributes

WorkspaceMatrix _workspace

Block-Hessian container.

16.17.1 Detailed Description

This class controls the memory management of Block-Hessians that are calculated for each edge (depends on the BaseSolver subclass, if Hessians are required). Each edge instantiates its own HessianWorkspace and allocates the memory required to store all entries. Since the size depends on the type and number of attached vertices, it is not known a-priori. This workspace helps managing memory and accessing elements at run-time.

Remarks

For each vertex attached to a subclass of BaseEdge and addition for each cost-value (!), a single Hessian of the size [TebVertex::dimension() x TebVertex::dimension()] is required.

Assume that there exist a vertex1 with the following unfixed variables: [x1, x2, x3]. In addition let vertex2 be a vertex with the unfixed variables: [x4,x5]. For the an edge with two cost/constraint values [v1, v2], the corresponding Block-Hessians are as follow:

$$\mathbf{H}_{block1,vertex1} = \begin{bmatrix} \partial_{x1,x1}^2 & v1 & \partial_{x1,x2}^2 & v1 & \partial_{x1,x3}^2 & v1 \\ \partial_{x2,x1}^2 & v1 & \partial_{x2,x2}^2 & v1 & \partial_{x2,x3}^2 & v1 \\ \partial_{x3,x1}^2 & v1 & \partial_{x3,x2}^2 & v1 & \partial_{x3,x3}^2 & v1 \end{bmatrix}$$

$$\mathbf{H}_{block1,vertex2} = \begin{bmatrix} \partial_{x4,x4}^2 \ v1 & \partial_{x4,x5}^2 \ v1 \\ \partial_{x5,x4}^2 \ v1 & \partial_{x5,x5}^2 \ v1 \end{bmatrix}$$

$$\mathbf{H}_{block2,vertex1} = \begin{bmatrix} \partial_{x1,x1}^2 & v2 & \partial_{x1,x2}^2 & v2 & \partial_{x1,x3}^2 & v2 \\ \partial_{x2,x1}^2 & v2 & \partial_{x2,x2}^2 & v2 & \partial_{x2,x3}^2 & v2 \\ \partial_{x3,x1}^2 & v2 & \partial_{x3,x2}^2 & v2 & \partial_{x3,x3}^2 & v2 \end{bmatrix}$$

$$\mathbf{H}_{block2,vertex2} = \begin{bmatrix} \partial_{x4,x4}^{2} & v2 & \partial_{x4,x5}^{2} & v2 \\ \partial_{x5,x4}^{2} & v2 & \partial_{x5,x5}^{2} & v2 \end{bmatrix}$$

The above Block-Hessians can be stored from the edge class (after calling allocate() once) as follows:

Todo TebVertex::dimension() is used at the moment. Acutally only a number of TebVertex::dimensionFree() non-zeros may appear. Test if it speeds up the optimization to skip those values by using the fixed-mask. But for common MPC problems only the first or/and the final state are fixed partially.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

BaseEdge, JacobianWorkspace

Definition at line 153 of file workspaces.h.

16.17.2 Member Typedef Documentation

16.17.2.1 using teb::HessianWorkspace::WorkspaceMatrix = std::vector<std::vector<Eigen::MatrixXd,
Eigen::aligned_allocator<Eigen::MatrixXd>>>

A single block-matrix per attached TebVertex and per Cost-value is required.

Definition at line 157 of file workspaces.h.

16.17.3 Constructor & Destructor Documentation

16.17.3.1 teb::HessianWorkspace::HessianWorkspace() [inline]

Definition at line 159 of file workspaces.h.

16.17.3.2 teb::HessianWorkspace::~HessianWorkspace() [inline]

Definition at line 160 of file workspaces.h.

16.17.4 Member Function Documentation

16.17.4.1 template < typename T > bool teb::HessianWorkspace::allocate (int edge_dim, const T & vertices_dim) [inline]

Allocate memory for all block-Jacobians.

Parameters

edge_dim	Dimension of the edge. Typically BaseEdge::Dimension().
vertices_dim	Vector of dimensions of the attached vertices. Typically TebVertex::dimension() each.

Template Parameters

T	storage class (std::vector, std::array, std::deque)

Return values

true	Status flag. Currently it returns only true.

Definition at line 170 of file workspaces.h.

References _workspace.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), and teb::BaseEdge< D, FuncType >::allocateMemory().

16.17.4.2 Eigen::MatrixXd& teb::HessianWorkspace::getWorkspace(int vertex_idx, int value_idx) [inline]

Parameters

vertex_idx	Index of the corresponding vertex.
value_idx	Index of the corresponding cost-value.

Returns

Reference to Block-Jacobian of vertex with index vertex_idx and cost value with index value_idx.

Definition at line 188 of file workspaces.h.

References _workspace.

Referenced by teb::EdgeMinimizeTime::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeHessian(), teb::EdgeQuadraticForm< p, q >::computeHessian(), and teb::BaseEdge< D, FuncType >::computeHessian().

16.17.5 Member Data Documentation

16.17.5.1 WorkspaceMatrix teb::HessianWorkspace::_workspace [protected]

Definition at line 188 of file workspaces.h.

Referenced by allocate(), and getWorkspace().

The documentation for this class was generated from the following file:

· workspaces.h

16.18 teb::HyperGraph Class Reference

Graph object that stores pointers to active vertices and edges.

```
#include <graph.h>
```

Public Types

- using EdgeContainer = EdgeType::EdgeContainer
- using VertexContainer = VertexType::VertexContainer

Public Member Functions

• EdgeContainer & objectives ()

Access objective container.

const EdgeContainer & objectives () const

Access all edges containing objectives (read-only)

EdgeContainer & equalities ()

Access equality constraint container.

const EdgeContainer & equalities () const

Access all edges containing inequality constraints (read-only)

• EdgeContainer & inequalities ()

Access inequality constraint container.

· const EdgeContainer & inequalities () const

Access all edges containing equality constraints (read-only)

VertexContainer & activeVertices ()

Access container that stores only the active vertices of the hyper-graph.

const VertexContainer & activeVertices () const

Access all active vertices (read-only)

· void clearEdges ()

Clears all existing edges and frees memory.

• void clearActiveVertices ()

Clears all active vertices (the actual vertices remain untouched).

void clearGraph ()

Clear the complete graph.

void addActiveVertex (VertexType *vertex)

Add new vertex to the graph.

void addEdgeObjective (EdgeType *edge)

Add new objective edge to the graph.

void addEdgeInequality (EdgeType *edge)

Add new inequality constraint edge to the graph.

void addEdgeEquality (EdgeType *edge)

Add new equality constraint edge to the graph.

void notifyGraphModified (bool modified=true)

Set status of the graph to modified.

· bool isGraphModified () const

Return status that tracks if the graph has been modified The status is tracked in order to allow the controller class and the solver to hotstart from previous settings.

Protected Attributes

· EdgeContainer _objectives

Store all edges containing local objective/cost functions (see buildOptimizationGraph()).

EdgeContainer constraints eq

Store all edges containing equality constraints (see buildOptimizationGraph()).

EdgeContainer _constraints_ineq

Store all edges containing inequality constraints (see buildOptimizationGraph()).

VertexContainer _active_vertices

Store all active vertices (active = at least one unfixed variable, see getActiveVertices()).

bool graph modified = true

Store status flag if the graph structure is changed or not.

16.18.1 Detailed Description

This class stores pointer to all active vertices and edges in the optimizable hyper-graph. An instance of this class needs to be created inside the controller class and afterwards it is passed to a dedicated solver class via Base-Solver::solve(). The solver solves the optimization problem based on the hyper-graph specified within this class.

Note: Active vertices are all vertices with at least one degree of freedom.

Remarks

The graph takes ownership for the memory management of the edges. Vertices remain untouched, since they are pointing to real states in the controller class (and only to the active ones, only the vector of pointers will be cleared).

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

VertexType, EdgeType, StateVertex, ControlVertex, TimeDiff, BaseEdge

Definition at line 205 of file graph.h.

16.18.2 Member Typedef Documentation

16.18.2.1 using teb::HyperGraph::EdgeContainer = EdgeType::EdgeContainer

Definition at line 208 of file graph.h.

16.18.2.2 using teb::HyperGraph::VertexContainer = VertexType::VertexContainer

Definition at line 209 of file graph.h.

16.18.3 Member Function Documentation

```
16.18.3.1 VertexContainer& teb::HyperGraph::activeVertices() [inline]
```

Active vertices are vertices that store at least one free optimization variable. That means, that iff a vertex (e.g. StateVertex, ControlVertex or TimeDiff) is completly fixed, than it is not active. In that case the vertex could be skipped during optimization to speed up optimization time.

Returns

Reference to the active vertices container.

Definition at line 264 of file graph.h.

References _active_vertices.

Referenced by teb::BaseSolver::solve().

16.18.3.2 const VertexContainer& teb::HyperGraph::activeVertices () const [inline]

Definition at line 266 of file graph.h.

References _active_vertices.

16.18.3.3 void teb::HyperGraph::addActiveVertex (VertexType * vertex) [inline]

The graph does not take over memory management for vertices.

Parameters

vertex Pointer to the VertexType subclass.

Definition at line 312 of file graph.h.

References active vertices.

16.18.3.4 void teb::HyperGraph::addEdgeEquality (EdgeType * edge) [inline]

The graph takes care about memory management for this edge.

Parameters

edge Pointer to the EdgeType subclass.

Definition at line 344 of file graph.h.

References _constraints_eq.

16.18.3.5 void teb::HyperGraph::addEdgeInequality (EdgeType * edge) [inline]

The graph takes care about memory management for this edge.

Parameters

edge Pointer to the EdgeType subclass.

Definition at line 333 of file graph.h.

References _constraints_ineq.

16.18.3.6 void teb::HyperGraph::addEdgeObjective (EdgeType * edge) [inline]

The graph takes care about memory management for this edge.

Parameters

edge Pointer to the EdgeType subclass.

Definition at line 322 of file graph.h.

References _objectives.

16.18.3.7 void teb::HyperGraph::clearActiveVertices() [inline]

Definition at line 288 of file graph.h.

References _active_vertices, and _graph_modified.

Referenced by clearGraph().

16.18.3.8 void teb::HyperGraph::clearEdges() [inline]

Clears all edges (objectives, inequality constraints and equality constraints). All memory will be freed.

Definition at line 274 of file graph.h.

References _constraints_eq, _constraints_ineq, _graph_modified, and _objectives.

Referenced by clearGraph().

16.18.3.9 void teb::HyperGraph::clearGraph() [inline]

Clears all edges (objectives, inequality constraints and equality constraints). All memory for the edges will be freed. The actual vertices remain untouched.

Definition at line 300 of file graph.h.

References clearActiveVertices(), and clearEdges().

 $Referenced \ by \ teb:: TebController < p, \ q > :: resetController(), \ and \ teb:: TebController < p, \ q > :: \sim TebController().$

16.18.3.10 EdgeContainer& teb::HyperGraph::equalities() [inline]

Equality constraints (subclasses of BaseEdge) are inserted within TebController::buildOptimizationGraph() and TebController::customOptimizationGraph().

Returns

Reference to the equality constraint container.

Definition at line 240 of file graph.h.

References _constraints_eq.

Referenced by teb::BaseSolver::solve().

16.18.3.11 const EdgeContainer& teb::HyperGraph::equalities () const [inline]

Definition at line 242 of file graph.h.

References _constraints_eq.

16.18.3.12 EdgeContainer& teb::HyperGraph::inequalities() [inline]

Inequality constraints (subclasses of BaseEdge) are inserted within TebController::buildOptimizationGraph() and TebController::customOptimizationGraph().

Returns

Reference to the inequality constraint container.

Definition at line 251 of file graph.h.

References constraints ineq.

Referenced by teb::BaseSolver::solve().

16.18.3.13 const EdgeContainer& teb::HyperGraph::inequalities () const [inline]

Definition at line 253 of file graph.h.

References constraints ineq.

16.18.3.14 bool teb::HyperGraph::isGraphModified () const [inline]

If the structure of the optimization problem remains unchanged, one do not need to collect all active edges again. Therefore check the status using this function whenever vertices and edges are processed.

Returns

true if the graph has been modified

Definition at line 373 of file graph.h.

References _graph_modified.

Referenced by teb::BaseSolver::solve().

16.18.3.15 void teb::HyperGraph::notifyGraphModified (bool modified = true) [inline]

The status is tracked in order to allow the controller class and the solver to hotstart from previous settings. If the structure of the optimization problem remains unchanged, one do not need to collect all active edges again. Therefore call this function whenever the graph structure is changed (e.g. by adding/removing edges or vertices).

Parameters

modified | If true the graph is modified, otherwise reset the status.

Definition at line 359 of file graph.h.

References _graph_modified.

Referenced by teb::TebController< p, q >::activateControlBounds(), teb::TebController< p, q >::activateObjective-QuadraticForm(), teb::TebController< p, q >::activateObjective-TimeOptimal(), teb::TebController< p, q >::activate-StateBounds(), teb::TebController< p, q >::setFixedDt(), teb::TebController< p, q >::setFixedGoal(), teb::TebController< p, q >::setFixedStart(), teb::TebController< p, q >::setFixedStart(), and teb::TebController< p, q >::setSystemDynamics().

```
16.18.3.16 EdgeContainer& teb::HyperGraph::objectives() [inline]
```

Objectives (subclasses of BaseEdge) are inserted within TebController::buildOptimizationGraph() and Teb-Controller::customOptimizationGraph() for instance.

Returns

Reference to the objective container.

Definition at line 229 of file graph.h.

References _objectives.

Referenced by teb::BaseSolver::solve().

16.18.3.17 const EdgeContainer& teb::HyperGraph::objectives () const [inline]

Definition at line 231 of file graph.h.

References objectives.

16.18.4 Member Data Documentation

16.18.4.1 VertexContainer teb::HyperGraph::_active_vertices [protected]

Definition at line 216 of file graph.h.

Referenced by activeVertices(), addActiveVertex(), and clearActiveVertices().

16.18.4.2 EdgeContainer teb::HyperGraph::_constraints_eq [protected]

Definition at line 214 of file graph.h.

Referenced by addEdgeEquality(), clearEdges(), and equalities().

16.18.4.3 EdgeContainer teb::HyperGraph::_constraints_ineq [protected]

Definition at line 215 of file graph.h.

Referenced by addEdgeInequality(), clearEdges(), and inequalities().

16.18.4.4 bool teb::HyperGraph::_graph_modified = true [protected]

Definition at line 218 of file graph.h.

Referenced by clearActiveVertices(), clearEdges(), isGraphModified(), and notifyGraphModified().

16.18.4.5 EdgeContainer teb::HyperGraph::_objectives [protected]

Definition at line 213 of file graph.h.

Referenced by addEdgeObjective(), clearEdges(), and objectives().

The documentation for this class was generated from the following file:

• graph.h

16.19 teb::JacobianWorkspace Class Reference

Memory management and accessor functions for the Block-Jacobians (for each edge).

#include <workspaces.h>

Public Types

using WorkspaceMatrix = std::vector< Eigen::MatrixXd, Eigen::aligned_allocator< Eigen::MatrixXd >>
 Typedef for the BlockJacobian container.

Public Member Functions

- JacobianWorkspace ()
- ∼JacobianWorkspace ()

Empty constructor.

• template<typename T >

bool allocate (int edge dim, const T &vertices dim)

Empty destructor.

Eigen::MatrixXd & getWorkspace (int vertex_idx)

Access Block-Jacobian for TebVertex with index vertex_idx.

Protected Attributes

WorkspaceMatrix workspace

Block-Jacobian container.

16.19.1 Detailed Description

This class controls the memory management of Block-Jacobians that are calculated for each edge. Each edge instantiates its own JacobianWorkspace and allocates the memory required to store all entries. Since the size depends on the type and number of attached vertices and the error dimension, it is not known a-priori. This workspace helps managing memory and accessing elements at run-time.

Remarks

For each vertex attached to a subclass of BaseEdge, a single Jacobian of the size [BaseEdge::Dimension x TebVertex::dimension()] is required.

Assume that a vertex has the following unfixed variables: [x1, x2, x3] and an edge has the cost values [v1, v2]:

$$\mathbf{J}_{block} = \begin{bmatrix} \partial_{x1} & v1 & \partial_{x2} & v1 & \partial_{x3} & v1 \\ \partial_{x1} & v2 & \partial_{x2} & v2 & \partial_{x3} & v2 \end{bmatrix}$$

Let the vertex be the first one of the corresponding edge. The above Block-Jacobian can be stored from an edge (after calling allocate() once) as follows:

```
this->getWorkspace(0) = J_block; // exchange "this" by a pointer/ref to a valid workspace
   instance with allocated and reserved memory.
```

Todo TebVertex::dimension() is used at the moment. Acutally only a number of TebVertex::dimensionFree() non-zeros may appear. Test if it speeds up the optimization to skip those values by using the fixed-mask. But for common MPC problems only the first or/and the final state are fixed partially.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

BaseEdge, HessianWorkspace

Definition at line 48 of file workspaces.h.

16.19.2 Member Typedef Documentation

16.19.2.1 using teb::JacobianWorkspace::WorkspaceMatrix = std::vector<Eigen::MatrixXd,
Eigen::aligned_allocator<Eigen::MatrixXd>>

A single block-matrix per attached TebVertex is required.

Definition at line 52 of file workspaces.h.

16.19.3 Constructor & Destructor Documentation

16.19.3.1 teb::JacobianWorkspace::JacobianWorkspace() [inline]

Definition at line 54 of file workspaces.h.

16.19.3.2 teb::JacobianWorkspace::~JacobianWorkspace() [inline]

Definition at line 55 of file workspaces.h.

16.19.4 Member Function Documentation

16.19.4.1 template < typename T > bool teb::JacobianWorkspace::allocate (int edge_dim, const T & vertices_dim) [inline]

Allocate memory for all block-Jacobians.

Parameters

edge_dim	Dimension of the edge. Typically BaseEdge::Dimension().
vertices_dim	Vector of dimensions of the attached vertices. Typically TebVertex::dimension() each.

Template Parameters

T	storage class (std::vector, std::array, std::deque)

Return values

true	Status flag. Currently it returns only true.

Definition at line 65 of file workspaces.h.

References _workspace.

Referenced by teb::BaseEdge< 1, FUNCT_TYPE::LINEAR, TimeDiff >::allocateMemory(), and teb::BaseEdge< D, FuncType >::allocateMemory().

16.19.4.2 Eigen::MatrixXd& teb::JacobianWorkspace::getWorkspace(int vertex_idx) [inline]

Parameters

vertex_idx	Index of the corresponding vertex.
------------	------------------------------------

Returns

Reference to Block-Jacobian of vertex with index vertex_idx.

Definition at line 82 of file workspaces.h.

References workspace.

Referenced by teb::BaseEdge< D, FuncType, Vertices >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::computeJacobian(), teb::EdgeQuadraticForm< p, q >::computeJacobian(), and teb::BaseEdge< D, FuncType >::computeJacobian().

16.19.5 Member Data Documentation

16.19.5.1 WorkspaceMatrix teb::JacobianWorkspace::_workspace [protected]

Definition at line 82 of file workspaces.h.

Referenced by allocate(), and getWorkspace().

The documentation for this class was generated from the following file:

· workspaces.h

16.20 teb::Config::Optim::Solver::NonlinearProgram::LineSearch Struct Reference

Settings for the line-search algorithm (force merit function descent)

```
#include <config.h>
```

Public Attributes

- double sigma = 0.5
- double beta = 0.5
- double alpha_init = 0.1

16.20.1 Detailed Description

Definition at line 105 of file config.h.

16.20.2 Member Data Documentation

16.20.2.1 double teb::Config::Optim::Solver::NonlinearProgram::LineSearch::alpha_init = 0.1

Definition at line 109 of file config.h.

 $Referenced\ by\ teb:: Solver SQPD ense:: in it Solver Work space ().$

16.20.2.2 double teb::Config::Optim::Solver::NonlinearProgram::LineSearch::beta = 0.5

Definition at line 108 of file config.h.

Referenced by teb::SolverSQPDense::solveImpl().

16.20.2.3 double teb::Config::Optim::Solver::NonlinearProgram::LineSearch::sigma = 0.5

Definition at line 107 of file config.h.

Referenced by teb::SolverSQPDense::solveImpl().

The documentation for this struct was generated from the following file:

· config.h

16.21 teb::Config::Optim::Solver::Lsq Struct Reference

Configurations especially for least-squares-solvers.

```
#include <config.h>
```

Public Attributes

• double soft_constr_epsilon = 0.

Add a bigger margin to soft-constraints.

double weight_equalities = 2

Soft-constraint weight for equality constraints.

• double weight_inequalities = 2

Soft-constraint weight for inequality constraints.

double weight_adaptation_factor = 2

Factor for soft-constraint weight adapation (see BaseSolverLeastSquares::adaptWeights()).

16.21.1 Detailed Description

Definition at line 83 of file config.h.

16.21.2 Member Data Documentation

16.21.2.1 double teb::Config::Optim::Solver::Lsq::soft_constr_epsilon = 0.

Bug Do not use at the moment, because it is not implemented correctly

Examples:

```
rocket_system.cpp.
```

Definition at line 85 of file config.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardt-EigenSparse::buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

```
16.21.2.2 double teb::Config::Optim::Solver::Lsq::weight_adaptation_factor = 2
```

Examples:

integrator_system_classic_mpc.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Definition at line 88 of file config.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

16.21.2.3 double teb::Config::Optim::Solver::Lsq::weight_equalities = 2

Examples:

integrator system classic mpc.cpp, linear system ode ctrl comparison.cpp, and mobile robot teb.cpp.

Definition at line 86 of file config.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

16.21.2.4 double teb::Config::Optim::Solver::Lsq::weight_inequalities = 2

Examples:

integrator_system_classic_mpc.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Definition at line 87 of file config.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

The documentation for this struct was generated from the following file:

· config.h

16.22 teb::Config::Optim::Solver::Nlopt Struct Reference

Configurations especially for the nlopt solver wrapper.

```
#include <config.h>
```

Public Attributes

- NloptAlgorithms algorithm = NloptAlgorithms::SLSQP
- double tolerance_equalities = 0.001

Stop optimization depending of the equality constraint satisfaction tolerance.

• double tolerance_inequalities = 0.001

Stop optimization depending of the inequality constraint satisfaction tolerance.

double stopping_criteria_ftol_abs = 0.0001

Stop optimization depending on the absolute value of the objective function.

• double stopping_criteria_ftol_rel = 0.0001

Stop optimization depending on the relative change of the objective function value.

• double stopping criteria xtol abs = 0.0001

Stop optimization depending on the absolute values of the optimization vector.

• double stopping_criteria_xtol_rel = 0.0001

Stop optimization depending on the relative change of values of the optimization vector.

double max_optimization_time = 5

Stop optimization after a given duration in seconds.

16.22.1 Detailed Description

Definition at line 115 of file config.h.

16.22.2 Member Data Documentation

16.22.2.1 NloptAlgorithms teb::Config::Optim::Solver::Nlopt::algorithm = NloptAlgorithms::SLSQP

Definition at line 117 of file config.h.

16.22.2.2 double teb::Config::Optim::Solver::Nlopt::max_optimization_time = 5

Definition at line 126 of file config.h.

16.22.2.3 double teb::Config::Optim::Solver::Nlopt::stopping_criteria_ftol_abs = 0.0001

Definition at line 122 of file config.h.

16.22.2.4 double teb::Config::Optim::Solver::Nlopt::stopping_criteria_ftol_rel = 0.0001

Definition at line 123 of file config.h.

16.22.2.5 double teb::Config::Optim::Solver::Nlopt::stopping_criteria_xtol_abs = 0.0001

Definition at line 124 of file config.h.

16.22.2.6 double teb::Config::Optim::Solver::Nlopt::stopping_criteria_xtol_rel = 0.0001

Definition at line 125 of file config.h.

16.22.2.7 double teb::Config::Optim::Solver::Nlopt::tolerance_equalities = 0.001

Definition at line 119 of file config.h.

 $16.22.2.8 \quad double \ teb:: Config:: Optim:: Solver:: Nlopt:: tolerance_inequalities = 0.001$

Definition at line 120 of file config.h.

The documentation for this struct was generated from the following file:

· config.h

16.23 teb::Config::Optim::Solver::NonlinearProgram Struct Reference

Settings for constrained optimiziation solver (nonlinear program solver)

#include <config.h>

Classes

struct Hessian

Configurations for the hessian of the lagrangian calculation.

struct LineSearch

Settings for the line-search algorithm (force merit function descent)

Public Attributes

struct

teb::Config::Optim::Solver::NonlinearProgram::Hessian hessian

Configurations for the hessian of the lagrangian calculation.

struct

teb::Config::Optim::Solver::NonlinearProgram::LineSearch linesearch

Settings for the line-search algorithm (force merit function descent)

16.23.1 Detailed Description

Definition at line 93 of file config.h.

16.23.2 Member Data Documentation

16.23.2.1 struct teb::Config::Optim::Solver::NonlinearProgram::Hessian teb::Config::Optim::Solver::Nonlinear-Program::hessian

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solvelmpl().

16.23.2.2 struct teb::Config::Optim::Solver::NonlinearProgram::LineSearch teb::Config::Optim::Solver::Nonlinear-Program::linesearch

Referenced by teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solveImpl().

The documentation for this struct was generated from the following file:

· config.h

16.24 teb::NumericalIntegrator < p, q > Class Template Reference

Interface for numerical integration methods used in simulation.

#include <integrators.h>

Inheritance diagram for teb::NumericalIntegrator< p, q >:

Public Types

- using StateVector = Eigen::Matrix< double, p, 1 >
 - Typedef for state vector with p states [$p \times 1$].
- using ControlVector = Eigen::Matrix< double, q, 1 >

Typedef for control input vector with q controls $[q \times 1]$.

Public Member Functions

• NumericalIntegrator ()

Empty Constructor.

• virtual \sim NumericalIntegrator ()

Empty Destructor.

virtual StateVector integrate (const Eigen::Ref< const StateVector > &x_k, const Eigen::Ref< const Control-Vector > &u_k, SystemDynamics< p, q > *system_equation, double dt) const =0

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

.

16.24.1 Detailed Description

template < int p, int q > class teb::NumericalIntegrator < p, q >

This class defines the interface for numerical integration schemes.

Todo Implement and test Runge Kutta with derivatives http://www.emis.de/journals/EJD-E/conf-proc/02/g1/goeken.pdf

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

р	Number of state variables
q	Number of input variables

Definition at line 36 of file integrators.h.

16.24.2 Member Typedef Documentation

16.24.2.1 template < int p, int q > using teb::NumericalIntegrator < p, q >::ControlVector = Eigen::Matrix < double,q,1 >

Definition at line 43 of file integrators.h.

 $16.24.2.2 \quad template < int\ p,\ int\ q > using\ teb:: Numerical Integrator < p,\ q > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Eigen:: Matrix < double, p, 1 > :: State\ Vector = Ei$

Definition at line 41 of file integrators.h.

16.24.3 Constructor & Destructor Documentation

 $\textbf{16.24.3.1} \quad template < int \ p, \ int \ q > teb:: Numerical Integrator < p, \ q > :: Numerical Integrator (\) \quad [\verb|inline||| \\$

Definition at line 45 of file integrators.h.

16.24.3.2 template < int p, int q > virtual teb::NumericalIntegrator < p, q >::~NumericalIntegrator () [inline], [virtual]

Definition at line 46 of file integrators.h.

16.24.4 Member Function Documentation

16.24.4.1 template < int p, int q > virtual State Vector teb::Numerical Integrator < p, q >::integrate (const Eigen::Ref < const State Vector > & x_k , const Eigen::Ref < const Control Vector > & u_k , System Dynamics < p, q > * system_equation, double dt) const [pure virtual]

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

w.r.t. \mathbf{x} . In particular, it relies on discrete states. The method calculates \mathbf{x}_{k+1} based on \mathbf{x}_k , \mathbf{u}_k and the duration ΔT . The dedicated system dynamics equations may be specified using a SystemDynamics object.

Parameters

x_k	Current state vector \mathbf{x}_k [p x 1]
u_k	Current state vector \mathbf{u}_k [q x 1]
system_equation	Pointer to the SystemDynamics object that stores the system equations.
dt	Time interval for the integration

Returns

Integrated state vector \mathbf{x}_{k+1} [p x 1]

 $Implemented \ in \ teb::RungeKutta5thOrder<\ p,\ q>,\ teb::RungeKuttaClassic<\ p,\ q>,\ and\ teb::ExplicitEuler<\ p,\ q>.$

The documentation for this class was generated from the following file:

· integrators.h

16.25 teb::Config::Optim Struct Reference

Configurations related to the trajectory optimization.

```
#include <config.h>
```

Classes

struct Solver

Configurations related to solvers.

Public Attributes

· struct teb::Config::Optim::Solver solver

Configurations related to solvers.

bool force rebuild optim graph = false

Disable hot-starting from previous graph structers even if no changes to the graph are made.

16.25.1 Detailed Description

Definition at line 75 of file config.h.

16.25.2 Member Data Documentation

16.25.2.1 bool teb::Config::Optim::force_rebuild_optim_graph = false

Definition at line 133 of file config.h.

16.25.2.2 struct teb::Config::Optim::Solver teb::Config::Optim::solver

Examples:

integrator_system_classic_mpc.cpp, linear_system_ode_ctrl_comparison.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverLeastSquares::buildJacobian(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solvelmpl().

The documentation for this struct was generated from the following file:

· config.h

16.26 teb::PlotOptions Struct Reference

Customize plots and figures.

#include <teb_plotter.h>

Public Attributes

• std::string title = ""

Window title.

· bool legend = false

Show legend if true.

std::vector< std::string > legend entries

Vector of strings defining the names for the legend.

- bool skip_last_value_right_column = false
- std::vector< std::string > ylabels

< If true, the last value of the right column for each plot will be ignored (use to supress plotting the invalid control for time n)

16.26.1 Detailed Description

This option class can be used to customize figures and plots, if they are supported by the plot function.

Todo Extend functionality

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 27 of file teb_plotter.h.

16.26.2 Member Data Documentation

16.26.2.1 bool teb::PlotOptions::legend = false

Definition at line 30 of file teb plotter.h.

Referenced by teb::TebPlotter::plotTwoCol(), teb::Simulator< p, q>::simClosedLoop(), teb::Simulator< p, q>::simOpenAndClosedLoop(), and teb::Simulator< p, q>::simOpenLoop().

16.26.2.2 std::vector<std::string> teb::PlotOptions::legend_entries

Remarks

legend should be enabled.

Definition at line 31 of file teb_plotter.h.

Referenced by teb::TebPlotter::plotTwoCol(), teb::Simulator< p, q >::simClosedLoop(), teb::Simulator< p, q >::simOpenAndClosedLoop(), and teb::Simulator< p, q >::simOpenLoop().

16.26.2.3 bool teb::PlotOptions::skip_last_value_right_column = false

Definition at line 32 of file teb_plotter.h.

 $\label{lem:condition} Referenced by teb::TebPlotter::plotTwoCol(), teb::Simulator < p, q > ::simClosedLoop(), teb::Simulator < p, q > ::simClosedLoop(), and teb::Simulator < p, q > ::simOpenLoop().$

16.26.2.4 std::string teb::PlotOptions::title = ""

Definition at line 29 of file teb_plotter.h.

Referenced by teb::TebPlotter::plotTwoCol(), teb::Simulator< p, q>::simClosedLoop(), teb::Simulator< p, q>::simOpenAndClosedLoop(), and teb::Simulator< p, q>::simOpenLoop().

16.26.2.5 std::vector<std::string> teb::PlotOptions::ylabels

Vector of strings to define the y labels (Column-Major Order) - leave blank in order to use default names

Definition at line 33 of file teb plotter.h.

Referenced by teb::TebPlotter::plotTwoCol().

The documentation for this struct was generated from the following file:

· teb plotter.h

16.27 teb::RungeKutta5thOrder < p, q > Class Template Reference

Runge Kutta method (fifth order, slighly modified)

#include <integrators.h>

Inheritance diagram for teb::RungeKutta5thOrder< p, q >:

Public Types

- using StateVector = typename NumericalIntegrator < p, q >::StateVector
 Typedef for state vector with p states [p x 1].
- using ControlVector = typename NumericalIntegrator < p, q >::ControlVector
 Typedef for control input vector with q controls [q x 1].

Public Member Functions

• RungeKutta5thOrder ()

Empty Constructor.

virtual ∼RungeKutta5thOrder ()

Empty Destructor.

virtual StateVector integrate (const Eigen::Ref< const StateVector > &x_k, const Eigen::Ref< const Control-Vector > &u k, SystemDynamics< p, q > *system equation, double dt) const

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

.

16.27.1 Detailed Description

template<int p, int q>class teb::RungeKutta5thOrder< p, q>

For more information please refer to http://www.jstor.org/stable/pdfplus/2027775.-pdf?acceptTC=true&jpdConfirm=true(Equation 2)

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

р	Number of state variables
q	Number of input variables

Definition at line 157 of file integrators.h.

16.27.2 Member Typedef Documentation

16.27.2.1 template<int p, int q> using teb::RungeKutta5thOrder< p, q>::ControlVector = typename NumericalIntegrator<p,q>::ControlVector

Definition at line 163 of file integrators.h.

 $16.27.2.2 \quad template < int\ p,\ int\ q > using\ teb:: Runge Kutta 5 th Order < \ p,\ q > :: State Vector = typename \\ Numerical Integrator < p,q > :: State Vector$

Definition at line 161 of file integrators.h.

16.27.3 Constructor & Destructor Documentation

16.27.3.1 template < int p, int q > teb::RungeKutta5thOrder < p, q >::RungeKutta5thOrder () [inline]

Definition at line 166 of file integrators.h.

16.27.3.2 template < int q> virtual teb::RungeKutta5thOrder < p, q>:: \sim RungeKutta5thOrder () [inline], [virtual]

Definition at line 167 of file integrators.h.

16.27.4 Member Function Documentation

16.27.4.1 template < int p, int q > virtual State Vector teb::Runge Kutta 5 th Order < p, q >::integrate (const Eigen::Ref < const State Vector > & x_k , const Eigen::Ref < const Control Vector > & u_k , System Dynamics < p, q > * system_equation, double dt) const [inline], [virtual]

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

w.r.t. \mathbf{x} . In particular, it relies on discrete states. The method calculates \mathbf{x}_{k+1} based on \mathbf{x}_k , \mathbf{u}_k and the duration ΔT . The dedicated system dynamics equations may be specified using a SystemDynamics object.

Parameters

x_k	Current state vector \mathbf{x}_k [p x 1]
u_k	Current state vector \mathbf{u}_k [q x 1]
system_equation	Pointer to the SystemDynamics object that stores the system equations.
dt	Time interval for the integration

Returns

Integrated state vector \mathbf{x}_{k+1} [p x 1]

Implements teb::NumericalIntegrator < p, q >.

Definition at line 171 of file integrators.h.

References teb::SystemDynamics< p, q >::stateSpaceModel().

The documentation for this class was generated from the following file:

· integrators.h

16.28 teb::RungeKuttaClassic < p, q > Class Template Reference

Classic Runge Kutta method (fourth order)

#include <integrators.h>

Inheritance diagram for teb::RungeKuttaClassic < p, q >:

Public Types

using StateVector = typename NumericalIntegrator < p, q >::StateVector

Typedef for state vector with p states [$p \times 1$].

• using ControlVector = typename NumericalIntegrator < p, q >::ControlVector

Typedef for control input vector with q controls $[q \times 1]$.

Public Member Functions

• RungeKuttaClassic ()

Empty Constructor.

virtual ∼RungeKuttaClassic ()

Empty Destructor.

 virtual StateVector integrate (const Eigen::Ref< const StateVector > &x_k, const Eigen::Ref< const Control-Vector > &u_k, SystemDynamics< p, q > *system_equation, double dt) const

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

.

16.28.1 Detailed Description

template<int p, int q>class teb::RungeKuttaClassic< p, q>

For more information please refer to http://en.wikipedia.org/wiki/Runge-Kutta methods

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

p	Number of state variables
q	Number of input variables

Definition at line 115 of file integrators.h.

16.28.2 Member Typedef Documentation

16.28.2.1 template < int q> using teb::RungeKuttaClassic < p, q>::ControlVector = typename NumericalIntegrator < p,q>::ControlVector

Definition at line 121 of file integrators.h.

16.28.2.2 template<int p, int q> using teb::RungeKuttaClassic< p, q>::StateVector = typename NumericalIntegrator<p,q>::StateVector

Definition at line 119 of file integrators.h.

16.28.3 Constructor & Destructor Documentation

16.28.3.1 template < int p, int q > teb::RungeKuttaClassic < p, q >::RungeKuttaClassic () [inline]

Definition at line 124 of file integrators.h.

16.28.3.2 template < int p, int q> virtual teb::RungeKuttaClassic < p, q>:: \sim RungeKuttaClassic () [inline], [virtual]

Definition at line 125 of file integrators.h.

16.28.4 Member Function Documentation

16.28.4.1 template < int p, int q> virtual StateVector teb::RungeKuttaClassic< p, q>::integrate (const Eigen::Ref< const StateVector > & x_k , const Eigen::Ref< const ControlVector > & u_k , SystemDynamics< p, q> * system_equation, double dt) const [inline], [virtual]

Integrate a nonlinear state-space model

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

w.r.t. \mathbf{x} . In particular, it relies on discrete states. The method calculates \mathbf{x}_{k+1} based on \mathbf{x}_k , \mathbf{u}_k and the duration ΔT . The dedicated system dynamics equations may be specified using a SystemDynamics object.

Parameters

x_k	Current state vector \mathbf{x}_k [p x 1]
u_k	Current state vector \mathbf{u}_k [q x 1]
system_equation	Pointer to the SystemDynamics object that stores the system equations.
dt	Time interval for the integration

Returns

Integrated state vector \mathbf{x}_{k+1} [p x 1]

Implements teb::NumericalIntegrator < p, q >.

Definition at line 129 of file integrators.h.

References teb::SystemDynamics< p, q >::stateSpaceModel().

The documentation for this class was generated from the following file:

· integrators.h

16.29 teb::SimResults Class Reference

Simulation results are stored and combined in this container class.

#include <simulator.h>

Classes

struct TimeSeries

Store measurements of dynamic systems (states and control inputs) w.r.t.

Public Attributes

• std::vector< TimeSeries > series

Container for multiple time series (e.g. to perform store different experiments or closed- and open-loop sim results).

Protected Member Functions

void conservativeResize (unsigned int id, int p, int q, int n)

Resize time series, but preserve data with indices below n.

• void allocateMemory (unsigned int id, int p, int q, int n, bool set_zero=true)

Allocate memory for all matrices and vectors of the underlying TimeSeries object.

Static Protected Member Functions

• static void conservativeResize (TimeSeries &data, int p, int q, int n)

Resize time series, but preserve data with indices below n.

• static void allocateMemory (TimeSeries &data, int p, int q, int n, bool set_zero=true)

Allocate memory for all matrices and vectors of the underlying TimeSeries object.

Friends

 template<int pf, int qf> class Simulator

16.29.1 Detailed Description

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

p	Number of state variables
q	Number of input variables

Definition at line 26 of file simulator.h.

16.29.2 Member Function Documentation

16.29.2.1 static void teb::SimResults::allocateMemory (TimeSeries & data, int p, int q, int n, bool set_zero = true) [inline], [static], [protected]

This method can be used to resize the underlying matrices without preserving data.

See Also

conservativeResize()

Parameters

data	TimeSeries object for which the memory should be allocated.
р	Size of the state vector.
q	Size of the control input vector.
n	Number of discrete samples.
set_zero	if true, all matrices and vectors are initialized to zero.

Definition at line 89 of file simulator.h.

References teb::SimResults::TimeSeries::controls, teb::SimResults::TimeSeries::states, and teb::SimResults::TimeSeries::time.

Referenced by allocateMemory(), and teb::Simulator< p, q >::simOpenLoop().

16.29.2.2 void teb::SimResults::allocateMemory (unsigned int id, int p, int q, int n, bool set_zero = true) [inline], [protected]

This method can be used to resize the underlying matrices without preserving data.

See Also

conservativeResize()

Parameters

id	Id/index of the time series object stored in SimResults::series
р	Size of the state vector.
q	Size of the control input vector.
n	Number of discrete samples.
set_zero	if true, all matrices and vectors are initialized to zero.

Definition at line 118 of file simulator.h.

References allocateMemory(), and series.

16.29.2.3 static void teb::SimResults::conservativeResize (TimeSeries & data, int p, int q, int n) [inline], [static], [protected]

Parameters

data	TimeSeries object which should be resized.
р	Size of the state vector.
q	Size of the control input vector.
n	New number of discrete samples.

Definition at line 56 of file simulator.h.

References teb::SimResults::TimeSeries::controls, teb::SimResults::TimeSeries::states, and teb::SimResults::TimeSeries::time.

Referenced by conservativeResize(), and teb::Simulator< p, q >::simClosedLoop().

16.29.2.4 void teb::SimResults::conservativeResize (unsigned int id, int p, int q, int n) [inline], [protected]

Parameters

id	Id/index of the time series object stored in SimResults::series
р	Size of the state vector.
q	Size of the control input vector.
n	New number of discrete samples.

Definition at line 70 of file simulator.h.

References conservativeResize(), and series.

16.29.3 Friends And Related Function Documentation

16.29.3.1 template<int pf, int qf> friend class Simulator [friend]

Definition at line 29 of file simulator.h.

16.29.4 Member Data Documentation

16.29.4.1 std::vector<TimeSeries> teb::SimResults::series

Definition at line 45 of file simulator.h.

Referenced by allocateMemory(), conservativeResize(), teb::Simulator< p, q >::simClosedLoop(), teb::Simulator< p, q >::simOpenAndClosedLoop(), and teb::Simulator< p, q >::simOpenLoop().

The documentation for this class was generated from the following file:

simulator.h

16.30 teb::Simulator < p, q > Class Template Reference

Simulator for dynamic systems controlled by a TebController.

```
#include <simulator.h>
```

Public Types

using StateVector = Eigen::Matrix< double, p, 1 >

Typedef for state vector with p states $[p \times 1]$.

using ControlVector = Eigen::Matrix< double, q, 1 >

Typedef for control input vector with q controls $[q \times 1]$.

using IntegatorPtr = std::unique_ptr< NumericalIntegrator< p, q >>

Typedef for a smart pointer that points to the prefered numerical integration method object.

Public Member Functions

Simulator (BaseController *controller, SystemDynamics< p, q > &system, TebPlotter *plotter=nullptr)

Construct the simulator by accepting a TebController object, a SystemDynamics object and the TebPlotter object.

 $\bullet \ \, \text{Simulator (SystemDynamics} < p,\, q > \& \text{system, TebPlotter} * \text{plotter} = \text{nullptr}) \\$

Construct the simulator using a SystemDynamics object and the TebPlotter object.

∼Simulator ()

Empty Destructor.

• void setSampleTime (double sample time)

Set the sample time for the simulation.

• double sampleTime ()

Get the sample time of the simulator.

void setPlotter (TebPlotter *plotter)

Pass a TebPlotter object to the Simulator class in order to enable visualization.

• void setIntegrator (IntegatorPtr integrator)

Set a custom numerical integration method for simulation as subclass of NumericalIntegrator.

void setIntegrator (NumericalIntegrators int_type)

Set a predined numerical integration method for simulation (select from teb::NumericalIntegrators)

• std::unique_ptr< SimResults > simOpenLoop (const double *const x0, const double *const xf, bool plot=true, BaseController *ctrl=nullptr)

Perform an open-loop simulation of the system in combination with the TebController.

• std::unique_ptr< SimResults > simClosedLoop (const double *const x0, const double *const xf, double sim_time, bool manual_stepping=false, bool plot_result=true, bool plot_steps=true, BaseController *ctrl=nullptr)

Perform a closed-loop simulation of the system in combination with the TebController.

• std::unique_ptr< SimResults > simOpenAndClosedLoop (const double *const x0, const double *const xf, double sim_time, bool manual_stepping=false, bool plot_steps=true)

Perform both an open-loop and a closed-loop simulation of the system in combination with the TebController.

void simOpenLoop (std::vector< std::pair< BaseController *, std::string >> &controllers, const double *const x0, const double *const xf, bool plot=true)

Perform an open-loop simulation of the system for different TebControllers.

void simClosedLoop (std::vector< std::pair< BaseController *, std::string >> &controllers, const double *const x0, const double *const xf, double sim_time, bool plot_result=true, bool plot_steps=true)

Perform a closed-loop simulation of the system for different TebControllers.

- StateVector systemStep (const Eigen::Ref< const StateVector > &x_k, const Eigen::Ref< const Control-Vector > &u k, double dt)
- void setControlInputSaturation (const double *u min, const double *u max)

Set bounds on the control inputs for simulatin (saturation).

void setPreStepCallback (const std::function< void(BaseController *, SystemDynamics< p, q > *, Simulator *)> &callback)

Set a pointer to a function that is called at the beginning of each control step.

void setPostStepCallback (const std::function < void(BaseController *, SystemDynamics < p, q > *, Simulator *)> &callback)

Set a pointer to a function that is called after each control step.

void setPreSimCallback (const std::function< void(BaseController *, SystemDynamics< p, q > *, Simulator *)> &callback)

Set a pointer to a function that is called at the beginning of each complete simulation.

Protected Member Functions

void plotResults (const std::vector < SimResults::TimeSeries > &time_series, teb::PlotOptions *options=nullptr)

Plot a container of SimResults::TimeSeries objects.

void saturateControl (Eigen::Ref< ControlVector > u)

Saturate the control inputs **u** specified by setControlInputSaturation().

Protected Attributes

• BaseController * controller = nullptr

Pointer to the Controller used for controlling the system.

SystemDynamics< p, q > * _system = nullptr

Pointer to the SystemDynamics object that specifies the state space equations of the dynamic system.

IntegatorPtr _integrator = IntegatorPtr(new RungeKutta5thOrder<p,q>())

Numerical integration method (default: RungeKutta5thOrder)

• TebPlotter * plotter = nullptr

Pointer to a TebPlotter object used for visualization.

• double <u>_sample_time</u> = -1.

Sample time for simulation (-1: inherit variable dt from teb)

std::pair < ControlVector,

ControlVector > _control_bounds = std::make_pair(ControlVector::Constant(-INF), ControlVector::Constant(INF))

Store hard control input bounds \mathbf{u}_{min} and \mathbf{u}_{max} for simulation (saturation).

- std::function < void(BaseController
 - *, SystemDynamics< p, q >
 - *, Simulator *)> _callback_step_pre

Store a pointer to a function that is called at the beginning of each control step Use this function to make user-defined changes a-priori to each step.

- std::function < void(BaseController
 - *, SystemDynamics < p, q >
 - *, Simulator *)> _callback_step_post

Store a pointer to a function that is called after each control step Use this function to make user-defined changes a-posteriori to each step.

- std::function < void(BaseController
 - *, SystemDynamics< p, q >
 - *, Simulator *)> _callback_sim_pre

Store a pointer to a function that is called at the beginning of each simulation Use this function to make user-defined changes a-priori to the complete simulation.

Friends

- template<int pf, int qf> class SystemDynamics
- class SimResults

16.30.1 Detailed Description

template<int p, int q>class teb::Simulator< p, q>

This simulator supports open-loop and closed-loop simulations for systems specified using the SystemDynamics object.

Results can be visualized using the TebPlotter class.

Todo Add disturbance models.

Add reference trajectory or multiple reference steps for closed-loop control.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

р	Number of state variables
q	Number of input variables

Examples:

integrator_system2.cpp, integrator_system_classic_mpc.cpp, linear_system_ode_ctrl_comparison.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Definition at line 145 of file simulator.h.

16.30.2 Member Typedef Documentation

16.30.2.1 template < int p, int q > using teb::Simulator < p, q >::ControlVector = Eigen::Matrix < double, q, 1 >

Definition at line 157 of file simulator.h.

16.30.2.2 template<int p, int q> using teb::Simulator< p, q>::IntegatorPtr = std::unique_ptr<Numerical-Integrator<p,q>>

Definition at line 159 of file simulator.h.

16.30.2.3 template < int p, int q > using teb::Simulator < p, q >::StateVector = Eigen::Matrix < double,p,1 >

Definition at line 155 of file simulator.h.

16.30.3 Constructor & Destructor Documentation

```
16.30.3.1 template<int p, int q> teb::Simulator< p, q>::Simulator ( BaseController * controller, SystemDynamics< p, q > & system, TebPlotter * plotter = nullptr ) [inline]
```

Parameters

controller	Reference to the Controller
system	Reference to the underlying dynamic system.
plotter	Pointer to a TebPlotter object that enables visualization.

Definition at line 169 of file simulator.h.

```
16.30.3.2 template < int q> teb::Simulator < p, q>::Simulator ( SystemDynamics < p, q> & system, TebPlotter * plotter = nullptr ) [inline]
```

Usually you want to use the other constructor and pass a controller object. Use this constructor only, if you want to call simulations, that accept the controller object directly.

Parameters

system	Reference to the underlying dynamic system.
plotter	Pointer to a TebPlotter object that enables visualization.

Definition at line 181 of file simulator.h.

```
16.30.3.3 template < int p, int q > teb::Simulator < p, q >::~Simulator( ) [inline]
```

Definition at line 184 of file simulator.h.

16.30.4 Member Function Documentation

```
16.30.4.1 template<int p, int q> void teb::Simulator< p, q>::plotResults ( const std::vector< SimResults::TimeSeries > & time_series, teb::PlotOptions * options = nullptr ) const [protected]
```

This method prepares a container of multiple time_series object in order to allow the utilization of the TebPlotter for visualization.

Customize the plot by optionally passing a PlotOptions object to this method.

Parameters

time_series	Container of time series.
options	Custom plot options.

Definition at line 390 of file simulator.hpp.

References PRINT_INFO.

```
16.30.4.2 template < int p, int q > double teb::Simulator < p, q >::sampleTime( ) [inline]
```

See Also

setSampleTime()

Returns

Simulator sample time.

Definition at line 203 of file simulator.h.

References teb::Simulator< p, q >::_sample_time.

16.30.4.3 template < int p, int q> void teb::Simulator < p, q>::saturateControl (Eigen::Ref< ControlVector > u) [protected]

Parameters

и	The control input that should be bounded. The result will be stored directly to u.

Definition at line 373 of file simulator.hpp.

16.30.4.4 template < int q> void teb::Simulator < p, q>::setControlInputSaturation (const double * u_min, const double * u_max) [inline]

Parameters

u_min	pointer to the minimum control bounds [q x 1]
u_max	pointer to the maximum control bounds [q x 1]

Definition at line 250 of file simulator.h.

References teb::Simulator< p, q >::_control_bounds.

16.30.4.5 template<int p, int q> void teb::Simulator< p, q>::setIntegrator (IntegatorPtr integrator) [inline]

Parameters

integrator	Unique pointer to a NumericalIntegrator subclass.

Definition at line 215 of file simulator.h.

References teb::Simulator< p, q >::_integrator.

 $16.30.4.6 \quad template < int \ p, \ int \ q > void \ teb:: Simulator < p, \ q > :: setIntegrator \ (\ NumericalIntegrators \ int_type \)$

Parameters

int_type	Integrator type selected from teb::NumericalIntegrators.

Definition at line 352 of file simulator.hpp.

 $References\ teb:: EXPLICIT_EULER,\ teb:: RUNGE_KUTTA_5TH,\ and\ teb:: RUNGE_KUTTA_CLASSIC.$

16.30.4.7 template < int q> void teb::Simulator < p, q>::setPlotter (TebPlotter * plotter) [inline]

Parameters

plotter | Pointer to the plotter object (no memory will be freed).

Definition at line 209 of file simulator.h.

References teb::Simulator< p, q >:: plotter.

16.30.4.8 template < int q> void teb::Simulator < p, q>::setPostStepCallback (const std::function < void(BaseController *, SystemDynamics < p, q> *, Simulator < p, q> *)> & callback) [inline]

The callback function should have the following arguments:

- · BaseController* ctrl Pointer to the current controller object
- SystemDynamics* system Pointer to the current system object
- Simulator* sim Pointer to the caller (TebSimulator class) itself

Remarks

Use std::bind() in order to pass class methods

Parameters

callback function (object) that should be called

Definition at line 279 of file simulator.h.

References teb::Simulator< p, q >::_callback_step_post.

16.30.4.9 template<int p, int q> void teb::Simulator< p, q>::setPreSimCallback (const std::function< void(BaseController *, SystemDynamics< p, q> *, Simulator< p, q> *)> & callback) [inline]

The callback function should have the following arguments:

- · BaseController* ctrl Pointer to the current controller object
- SystemDynamics* system Pointer to the current system object
- Simulator* sim Pointer to the caller (TebSimulator class) itself

Remarks

Use std::bind() in order to pass class methods

Parameters

callback function (object) that should be called

Definition at line 294 of file simulator.h.

References teb::Simulator< p, q >::_callback_sim_pre.

16.30.4.10 template<int p, int q> void teb::Simulator< p, q>::setPreStepCallback (const std::function< void(BaseController *, SystemDynamics< p, q > *, Simulator< p, q > *)> & callback) [inline]

The callback function should have the following arguments:

- · BaseController* ctrl Pointer to the current controller object
- SystemDynamics* system Pointer to the current system object
- Simulator* sim Pointer to the caller (TebSimulator class) itself

Remarks

Use std::bind() in order to pass class methods

Parameters

callback	function (object) that should be called

Definition at line 265 of file simulator.h.

References teb::Simulator< p, q >:: callback step pre.

16.30.4.11 template < int p, int q > void teb::Simulator < p, q >::setSampleTime (double sample time) [inline]

The system is simulated for the duration sample_time [sec] until a new control is applied. If sample_time == -1, the sample time is inherited from the TebController.

Todo Allow different sample times for controller and plant simulation (the TEB sample time ΔT might be higher ...)

Parameters

sample_time	Specified sample time.

Definition at line 196 of file simulator.h.

References teb::Simulator< p, q >:: sample time.

16.30.4.12 template < int p, int q > std::unique_ptr < SimResults > teb::Simulator < p, q >::simClosedLoop (const double *const x0, const double *const xf, double sim_time, bool manual_stepping = false, bool plot_result = true, bool plot_steps = true, BaseController * ctrl = nullptr)

This method performs a closed-loop simulation of the system controlled by the TebSimulator, both specified in the constructor of this class.

The TEB optimization is solved in each sampling-interval specified by setSampleTime() to determine the next optimal control for the point to point transition from the most recent measurement of the state vector \mathbf{x}_{ℓ} to the final state vector \mathbf{x}_{f} . As a starting point, the first state vector is given by \mathbf{x}_{0} .

Bug If we set a title or legend in the plot options for stepping (!), than the plot won't be rendered correctly.

Parameters

х0	Double array with p values representing the start state vector
xf	Double array with p values representing the final state vector
sim_time	Total simulation time (duration of the simulation)
manual	if true, the simulation is paused after each sampling interval. During pause, the user can
stepping	type in the desired number of steps until the next pause will be instantiated. If the user
	chooses "-1" steps, the simulation will be proceeded until sim_time is exceeded.
plot_result	if true, the results at the end of the simulation are plotted into a figure using TebPlotter.
plot_steps	if true, the results after each sample_inteveral are plotted into a figure using TebPlotter
	(shows the progress of the control).
ctrl	Pointer to an external controller: set to nullptr in order to use the class member _controller.

Returns

SimResults containing the time series of the closed-loop control.

Definition at line 119 of file simulator.hpp.

References teb::SimResults::conservativeResize(), teb::BaseController::firstControl(), teb::BaseController::getDt(), INPUT_STREAM, teb::PlotOptions::legend, teb::PlotOptions::legend_entries, PRINT_INFO, PRINT_INFO_ONCE, teb::BaseController::resetController(), teb::SimResults::series, teb::PlotOptions::skip_last_value_right_column, teb::BaseController::step(), and teb::PlotOptions::title.

This method performs an closed-loop simulation of the system controlled by different Controllers passed to this method.

The system is specified using the constructor of this class.

The TEB optimization is solved in each sampling-interval specified by setSampleTime() to determine the next optimal control for the point to point transition from the most recent measurement of the state vector \mathbf{x}_{ℓ} to the final state vector \mathbf{x}_{f} . As a starting point, the first state vector is given by \mathbf{x}_{0} .

Parameters

controllers	array of different TebControllers with augmented name as string
x0	Double array with <i>p</i> values representing the start state vector
xf	Double array with p values representing the final state vector
sim_time	Total simulation time (duration of the simulation)
plot_result	if true, the results at the end of the simulation are plotted into a figure using TebPlotter.
plot_steps	if true, the results after each sample_inteveral are plotted into a figure using TebPlotter
	(shows the progress of the control).

Definition at line 328 of file simulator.hpp.

References teb::PlotOptions::legend, teb::PlotOptions::legend_entries, teb::SimResults::series, teb::PlotOptions::iskip_last_value_right_column, and teb::PlotOptions::title.

16.30.4.14 template < int p, int q > std::unique_ptr < SimResults > teb::Simulator < p, q >::simOpenAndClosedLoop (const double *const x0, const double *const xf, double sim_time, bool manual_stepping = false, bool plot_steps = true)

This method performs both, an open-loop simulation of the system controlled by the TebSimulator and the closed-loop simulation of the system.

Refer to simOpenLoop() and simClosedLoop() for details.

The results are combined and shown in a single figure using TebPlotter.

Parameters

x0	Double array with <i>p</i> values representing the start state vector
xf	Double array with <i>p</i> values representing the final state vector
sim_time	Total simulation time for the closed-loop simulation (duration of the simulation)
manual	if true, the closed-loop simulation is paused after each sampling interval. During pause, the
stepping	user can type in the desired number of steps until the next pause will be instantiated. If the
	user chooses "-1" steps, the simulation will be proceeded until sim_time is exceeded.
plot_steps	if true, the results after each sample_inteveral of the closed-loop control are plotted into a
	figure using TebPlotter (shows the progress of the control).

Returns

SimResults containing the time series of the open-loop control, the closed-loop control and the states and controls planned by the controller.

Definition at line 249 of file simulator.hpp.

References teb::PlotOptions::legend, teb::PlotOptions::legend_entries, teb::SimResults::series, teb::PlotOptions::iskip last value right column, and teb::PlotOptions::title.

16.30.4.15 template < int p, int q > std::unique_ptr < SimResults > teb::Simulator < p, q >::simOpenLoop (const double *const x0, const double *const xf, bool plot = true, BaseController * ctrl = nullptr)

This method performs an open-loop simulation of the system controlled by the TebSimulator, both specified in the constructor of this class.

The TEB optimization is solved once to determine the optimal control for the point to point transition from the start state vector \mathbf{x}_0 to the final state vector \mathbf{x}_f .

The determined control is applied to the simulated plant. In the abscence of model mismatch and disturbances the output should be similar to the planned one by the TEB, if the system dynamics equations are satisfied.

Parameters

х0	Double array with p values representing the start state vector
xf	Double array with p values representing the final state vector
plot	if true, the results are plotted into a figure using TebPlotter.
ctrl	Pointer to an external controller: set to nullptr in order to use the class member _controller.

Returns

SimResults containing the time series of the open-loop control and the states and controls planned by the controller.

Definition at line 28 of file simulator.hpp.

References teb::SimResults::allocateMemory(), teb::BaseController::firstState(), teb::BaseController::getAbsolute-TimeVec(), teb::BaseController::getDt(), teb::BaseController::getStateCtrlInfoMat(), teb::PlotOptions::legend, teb::PlotOptions::legend_entries, teb::BaseController::resetController(), teb::BaseController::resetController(), teb::BaseController::returnControllnputSequence(), teb::SimResults::series, teb::BaseController::step(), and teb::PlotOptions::title.

16.30.4.16 template < int p, int q > void teb::Simulator < p, q >::simOpenLoop (std::vector < std::pair < BaseController *, std::string >> & controllers, const double *const x0, const double *const xf, bool plot = true)

This method performs an open-loop simulation of the system controlled by different Controllers passed to this method.

The system is specified using the constructor of this class.

The TEB optimization is solved once to determine the optimal control for the point to point transition from the start state vector \mathbf{x}_0 to the final state vector \mathbf{x}_f .

Parameters

controllers	array of different TebControllers with augmented name as string
х0	Double array with <i>p</i> values representing the start state vector
xf	Double array with <i>p</i> values representing the final state vector
plot	if true, the results are plotted into a figure using TebPlotter.

Definition at line 289 of file simulator.hpp.

References teb::PlotOptions::legend, teb::PlotOptions::legend_entries, teb::SimResults::series, teb::PlotOptions::itile.

16.30.4.17 template < int p, int q > StateVector teb::Simulator < p, q >::systemStep (const Eigen::Ref < const StateVector > & x_k, const Eigen::Ref < const ControlVector > & u_k, double dt) [inline]

Definition at line 238 of file simulator.h.

References teb::Simulator< p, q >::_integrator, and teb::Simulator< p, q >::_system.

16.30.5 Friends And Related Function Documentation

16.30.5.1 template < int p, int q > friend class SimResults [friend]

Definition at line 150 of file simulator.h.

16.30.5.2 template < int p, int q > template < int pf, int qf > friend | friend |

Definition at line 148 of file simulator.h.

16.30.6 Member Data Documentation

16.30.6.1 template<int p, int q> std::function<void(BaseController*,SystemDynamics<p,q>*, Simulator*)> teb::Simulator< p, q>::_callback_sim_pre [protected]

Definition at line 334 of file simulator.h.

Referenced by teb::Simulator< p, q >::setPreSimCallback().

 $\label{lem:controller} \begin{tabular}{ll} 16.30.6.2 & template < int p, int q > std::function < void (BaseController*, SystemDynamics < p, q > *, Simulator*) > \\ & teb::Simulator < p, q > ::_callback_step_post & [protected] \\ \end{tabular}$

Definition at line 329 of file simulator.h.

16.30.6.3 template<int p, int q> std::function<void(BaseController*,SystemDynamics<p,q>*, Simulator*)> teb::Simulator<p, q>::_callback_step_pre [protected]

Definition at line 324 of file simulator.h.

Referenced by teb::Simulator < p, q >::setPreStepCallback().

 $16.30.6.4 \quad template < int \ p, \ int \ q > std::pair < Control Vector, Control Vector > teb::Simulator < p, \ q > ::_control_bounds = std::make_pair(Control Vector::Constant(-INF), Control Vector::Constant(INF)) \quad [protected]$

Definition at line 318 of file simulator.h.

Referenced by teb::Simulator< p, q >::setControlInputSaturation().

16.30.6.5 template < int p, int q > BaseController* teb::Simulator < p, q >::_controller = nullptr [protected]

Definition at line 310 of file simulator.h.

16.30.6.6 template < int q> IntegatorPtr teb::Simulator< p, q>::_integrator = IntegatorPtr(new RungeKutta5thOrder<p,q>()) [protected]

Definition at line 312 of file simulator.h.

Referenced by teb::Simulator < p, q > ::setIntegrator(), and teb::Simulator < p, q > ::systemStep().

16.30.6.7 template < int p, int q > TebPlotter* teb::Simulator < p, q >::_plotter = nullptr [protected]

Definition at line 314 of file simulator.h.

Referenced by teb::Simulator< p, q >::setPlotter().

16.30.6.8 template < int p, int q > double teb::Simulator < p, q >::_sample_time = -1. [protected]

Definition at line 315 of file simulator.h.

Referenced by teb::Simulator< p, q >::sampleTime(), and teb::Simulator< p, q >::setSampleTime().

16.30.6.9 template < int p, int q > SystemDynamics < p,q > * teb::Simulator < p, q >::_system = nullptr [protected]

Definition at line 311 of file simulator.h.

Referenced by teb::Simulator< p, q >::systemStep().

The documentation for this class was generated from the following files:

- · simulator.h
- · simulator.hpp

16.31 teb::Config::Optim::Solver Struct Reference

Configurations related to solvers.

#include <config.h>

Classes

struct Lsq

Configurations especially for least-squares-solvers.

struct Nlopt

Configurations especially for the nlopt solver wrapper.

• struct NonlinearProgram

Settings for constrained optimiziation solver (nonlinear program solver)

Public Attributes

- unsigned int solver_iter = 5
- struct

teb::Config::Optim::Solver::Lsq lsq

Configurations especially for least-squares-solvers.

struct

teb::Config::Optim::Solver::NonlinearProgram nonlin_prog

Settings for constrained optimiziation solver (nonlinear program solver)

struct

teb::Config::Optim::Solver::Nlopt nlopt

16.31.1 Detailed Description

Definition at line 78 of file config.h.

16.31.2 Member Data Documentation

16.31.2.1 struct teb::Config::Optim::Solver::Lsq teb::Config::Optim::Solver::lsq

Examples:

integrator_system_classic_mpc.cpp, linear_system_ode_ctrl_comparison.cpp, mobile_robot_teb.cpp, and rocket_system.cpp.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

16.31.2.2 struct teb::Config::Optim::Solver::Nlopt teb::Config::Optim::Solver::nlopt

16.31.2.3 struct teb::Config::Optim::Solver::NonlinearProgram teb::Config::Optim::Solver::nonlin_prog

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), teb::SolverSQPDense::initSolverWorkspace(), and teb::SolverSQPDense::solvelmpl().

16.31.2.4 unsigned int teb::Config::Optim::Solver::solver_iter = 5

Definition at line 80 of file config.h.

The documentation for this struct was generated from the following file:

· config.h

16.32 teb::SolverLevenbergMarguardtEigenDense Class Reference

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Dense matrices version).

#include <solver_levenbergmarquardt_eigen_dense.h>

Inheritance diagram for teb::SolverLevenbergMarquardtEigenDense:

Public Types

using VertexContainer = HyperGraph::VertexContainer
 Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

• using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

• SolverLevenbergMarquardtEigenDense ()

Empty Constructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

const Config * cfg = nullptr

Store pointer to Config object.

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Member Functions

• virtual bool solveImpl ()

Solve the actual optimization problem.

void buildJacobian ()

Construct the jacobian of the complete least-squares optimziation problem.

• virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

• void buildValueVector ()

Build value / cost vector including all objectives and constraints.

• int getValueDimension () const

Get dimension of the composed value/cost vector (including objectives and constraints).

· double getChi2 () const

Calculate the χ^2 error of the optimization problem.

· void adaptWeights ()

Automatic weight adaptation that increases soft constraint weights after each outer teb iteration.

void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

• int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

• int getDimInequalities () const

Get dimension of the inequality constraints.

• void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

· void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

· Eigen::MatrixXd jacobian

Store the jacobian matrix of the complete least-squares optimziation problem.

Eigen::VectorXd _values

Store the value vector computed in buildValueVector().

• int _weight_adapt_count = 0

Store current state of the weight adaptation method adaptWeights().

double _weight_equalities = 1

Store current weight for equality soft-constraints.

double _weight_inequalities = 1

Store current weight for inequality soft-constraints.

• int _val_dim = -1

Store dimension of the value vector here (see getValueDimension()).

VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

• EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

• EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

• int opt vec dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

int _objective_dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int _equalities_dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

• int inequalities dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

unsigned int no vert backups = 0

Track number of vertices backups made.

• bool _graph_structure_modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.32.1 Detailed Description

This solver implements the Levenberg-Marquardt algorithm also implemented in [2]. The underlying linear system is solved using Eigens Dense Matrix algebra (http://eigen.tuxfamily.org/dox/group___Tutorial-LinearAlgebra.html).

The jacobian required for the optimization routine is stored in a dense matrix. Therefore no exploitation of the sparse structure for solving the linear system is taken into account.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 25 of file solver_levenbergmarquardt_eigen_dense.h.

16.32.2 Member Typedef Documentation

16.32.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]

Definition at line 36 of file base solver.h.

16.32.2.2 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]

Definition at line 34 of file base_solver.h.

16.32.3 Constructor & Destructor Documentation

16.32.3.1 teb::SolverLevenbergMarquardtEigenDense::SolverLevenbergMarquardtEigenDense() [inline]

Definition at line 30 of file solver_levenbergmarquardt_eigen_dense.h.

16.32.4 Member Function Documentation

16.32.4.1 void teb::BaseSolverLeastSquares::adaptWeights() [protected], [inherited]

This method increases the soft constraint weights for inequalities and equalities after each outer TEB optimization loop (see TebController::optimizeTEB()).

After the outer TEB loop is completed (Config::Teb::teb_iter), the weights are set back to Config::Optim::Solver::Lsq::weight_equalities and Config::Optim::Solver::Lsq::weight_inequalities.

The weights are increased by $\sigma = \sigma_{init} \cdot \gamma^i$. γ denotes the increasement factor Config::Optim::Solver::Lsq::weight_adaptation_factor. i denotes the current iteration number. σ_{init} is obtained from the config (see above).

Call this method at the beginning of solveImpl()!

Remarks

This procedere forces the optimization result to first contract the trajectory in sense of the objective, and afterwards trying to satisfy the constraints. Starting with very high weights in advance could lead to abrupt gradients for the solver. In addition the effect for the objectives (e.g. time optimallity) could be slow, if the corresponding gradients are extremly small in comparision to constraint gradients.

See Also

TebController::optimizeTEB()

Definition at line 100 of file base_solver_least_squares.cpp.

References teb::BaseSolverLeastSquares::_weight_adapt_count, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config::Optim::Solver::lsq, teb::Config::Optim::Solver::Lsq::weight_adaptation_factor, teb::Config::Optim::Solver::Lsq::weight_equalities, and teb::Config::Optim::Solver::Lsq::weight_inequalities.

Referenced by solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.32.4.2 void teb::BaseSolver::applyIncrement ( const Eigen::Ref < const Eigen::VectorXd > & delta ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments. The length euquals the dimension of all free vari-
	ables.

Definition at line 127 of file base_solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.32.4.3 void teb::BaseSolver::applyOptVec ( const Eigen::Ref < const Eigen::VectorXd > & opt_vec ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt_vec	Eigen::Vector containing all values. The length equals the dimension of all free variables.

Definition at line 144 of file base solver.h.

References teb::BaseSolver::_active_vertices.

```
16.32.4.4 void teb::BaseSolver::backupVertices() [inline], [protected], [inherited]
```

See Also

VertexType::push()

Definition at line 223 of file base_solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.32.4.5 void teb::SolverLevenbergMarquardtEigenDense::buildJacobian() [protected]

This method constructs the jacobian of the complete optimziation problem.

The size of the jacobian is [getValueDimension() x getOptVecDimension()]. This method queries the EdgeType:::computeJacobian() of each edge. The column index for each entry is determined using TebVertex::getOptVecIdx and the number of free dimensions for each vertex.

Since this solver relies on soft-constraints for equality and inequality constraints, the chain-rule for calculating derivatives is utilized. Equality constraints are treaten as usual objective, therefore the jacobian does not need to be changed.

For inequality constraints, the derivative of $\max(c(x), 0)$ is

$$\begin{cases} \frac{\partial}{\partial x} c_i(x) & \text{if } c_i(x) > 0 \\ 0 & \text{otherwise} \end{cases} = \mathbf{J}_{ineq}(:, j = 1:n). * \frac{1}{\mathbf{c}(x)}. * \max{(\mathbf{c}(x), \mathbf{0})}$$

The max operator is applicated component-wise. '.*' corresponds to Matlab's component-wise multiplication.

The resulting jacobian matrix is stored to SolverLevenbergMarquardtEigenDense:: jacobian;

Definition at line 157 of file solver_levenbergmarquardt_eigen_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, _jacobian, teb::BaseSolver::_objectives, teb::BaseSolver::_opt_vec_dim, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, teb::BaseSolver::cfg, teb::VertexType:::dimension(), teb::VertexType::isFixedAny(), teb::VertexType::isFixedComp(), teb::Config::Optim::Solver::lsq, teb::Config::Optim::Solver::Lsq::soft_constr_epsilon, and teb::Config::Optim::solver.

Referenced by solveImpl().

```
16.32.4.6 void teb::BaseSolverLeastSquares::buildValueVector() [protected], [inherited]
```

This method constructs the full value/cost vector \mathbf{f} (not \mathbf{f}^2) for the underlying least-squares optimization problem.

The lenght of the vector can be obtained using getValueDimension().

Constraints are transformed into costs/objectives using soft constraints:

- Equality constraints c(x) = 0. These constraints are directly taken as objectives since $c^2(x)$ has a local minima at x = 0.
- Inequality constraints $c(x) \le 0$

These constraints are transformed using $f = \max(c(x), 0)$ (component-wise).

This notation is similar to: $c(x) \le e^0$ epsilon ? 0 : c(x).

Afterwards (in the actual solvelmpl() method, the cost function will be squared, that leads to twice differnetiable costs for the constraints, if *f* is piecewise differentiable once and if it intersectects with the abscissa.

In addition the weights BaseSolverLeastSquares::_weight_equalities and BaseSolverLeastSquares::_weight_inequalities are taken into account in order to weight the "soft constraint objectives". To make the weights

comparable to [2] and our Matlab TEB version, we take the square root of both weights, since the least-square problem here is formulated as $f^2(x, \sigma)$ instead of $\sigma f^2(x)$. σ denotes the weight.

The results are stored internally to BaseSolverLeastSquares::_values.

See Also

adaptWeights(), getValueDimension()

Definition at line 31 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_values, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config::Optim::Solver::Lsq; teb::Config::Optim::Solver::Config::Optim::Solver::Lsq; teb::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Solver::Config::Optim::Config::Optim::Config::Optim::Config::Optim::Config::Optim::Config::Optim::Conf

Referenced by solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.32.4.7 void teb::BaseSolver::discardBackupVertices() [inline], [protected], [inherited]

See Also

VertexType::discardTop()

Definition at line 229 of file base solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by teb::BaseSolver::solve(), solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.32.4.8 double teb::BaseSolverLeastSquares::getChi2()const [inline],[protected],[inherited]

The χ^2 error is the scalar cost value of the least-squares optimization problem since the total cost function is composed of weighted terms:

$$f(\mathscr{B}) = \mathbf{f}(\mathscr{B})^T \mathbf{f}(\mathscr{B})$$

Weights are included in $\mathbf{f}(\mathscr{B})$. In this case it is $\chi^2 = f(\mathscr{B})$.

Todo Maybe switch to the formulation $f(\mathscr{B}) = \mathbf{f}(\mathscr{B})^T \Omega \mathbf{f}(\mathscr{B})$ similar to g2o and Teb-Matlab.

Definition at line 82 of file base solver least squares.h.

References teb::BaseSolverLeastSquares::_values.

Referenced by solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.32.4.9 int teb::BaseSolver::getDimEqualities () const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 202 of file base_solver.h.

References teb::BaseSolver:: equalities.

Referenced by teb::BaseSolver::solve().

16.32.4.10 int teb::BaseSolver::getDimlnequalities()const [inline],[protected],[inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 214 of file base solver.h.

References teb::BaseSolver::_inequalities.

Referenced by teb::BaseSolver::solve().

16.32.4.11 int teb::BaseSolver::getDimObjectives() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 190 of file base solver.h.

References teb::BaseSolver::_objectives.

Referenced by teb::BaseSolver::solve().

16.32.4.12 Eigen::VectorXd teb::BaseSolver::getOptVecCopy() const [inline],[protected],[inherited]

This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.

Remarks

Make sure BaseSolver:: opt vec dim is valid (see solve()).

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_opt_vec_dim.

16.32.4.13 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

TebController::getActiveVertices(), getValueDimension()

Definition at line 180 of file base_solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::BaseSolver::solve().

16.32.4.14 int teb::BaseSolverLeastSquares::getValueDimension() const [protected], [inherited]

This method returns the dimension of the full cost/value vector including all objective and constraints.

In particular it sums up all dimensions of single edges stored in the given hyper-graph.

Remarks

Make sure BaseSolver::_objective_dim, BaseSolver::_equalities_dim and BaseSolver::_inequalities_dim are valid (see solve()).

Returns

dimension of the complete value/cost vector.

See Also

buildValueVector(), getOptVecDimension(), getDimObjectives(), getDimEqualities(), getDimInequalities()

Definition at line 73 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities_dim, teb::BaseSolver::_inequalities_dim, and teb::BaseSolver::_objective-dim.

Referenced by solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.32.4.15 virtual void teb::BaseSolverLeastSquares::initWorkspaces() [inline], [protected], [virtual], [inherited]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 43 of file base solver least squares.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, PRINT_DEBUG_COND_ONCE, and teb::QUADRATIC.

```
16.32.4.16 void teb::BaseSolver::restoreVertices() [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

 $Referenced \ by \ solveImpl(), \ and \ teb::SolverLevenbergMarquardtEigenSparse::solveImpl().$

```
16.32.4.17 void teb::BaseSolver::restoreVerticesButKeepBackup( ) [inline], [protected], [inherited]
```

See Also

VertexType::top()

Definition at line 227 of file base_solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::SolverSQPDense::solveImpl().

```
16.32.4.18 void teb::BaseSolver::setConfig ( const Config * config ) [inline], [inherited]
```

Remarks

This function is called from the TEB class within setSolver method.

Parameters

```
config Pointer to Config object.
```

Definition at line 49 of file base_solver.h.

References teb::BaseSolver::cfg.

Referenced by teb::TebController< p, q >::setSolver().

```
16.32.4.19 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual], [inherited]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

optimizable	pointer to the HyperGraph that should be solved
graph	

Definition at line 61 of file base solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_objective, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::getDimSupple:
Graph::equalities(), teb::BaseSolver::getDimEqualities(), teb::BaseSolver::getDimInequalities(), teb::BaseSolver::getDimObjectives(), teb::BaseSolver::getOptVecDimension(), teb::HyperGraph::inequalities(), teb::BaseSolver::solve-initWorkspaces(), teb::HyperGraph::isGraphModified(), teb::HyperGraph::objectives(), and teb::BaseSolver::solve-Impl().

```
16.32.4.20 bool teb::SolverLevenbergMarquardtEigenDense::solvelmpl() [protected], [virtual]
```

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolverLeastSquares.

Definition at line 8 of file solver levenbergmarquardt eigen dense.cpp.

References _jacobian, teb::BaseSolver::_opt_vec_dim, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::adaptWeights(), teb::BaseSolver::applyIncrement(), teb::BaseSolver::backupVertices(), buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverLeastSquares::getChi2(), teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::restoreVertices().

16.32.5 Member Data Documentation

```
16.32.5.1 VertexContainer* teb::BaseSolver::_active_vertices = nullptr [protected], [inherited]
```

Definition at line 233 of file base_solver.h.

Referenced by teb:: BaseSolver:: applyIncrement(), teb:: BaseSolver:: applyOptVec(), teb:: BaseSolver:: backup-Vertices(), teb:: BaseSolver:: discardBackupVertices(), teb:: BaseSolver:: getOptVecCopy(), teb:: BaseSolver:: getOptVecDimension(), teb:: BaseSolver:: restoreVertices(), teb:: BaseSolver:: restoreVerticesButKeepBackup(), and teb:: BaseSolver:: solve().

```
16.32.5.2 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]
```

Definition at line 235 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), buildJacobian(), teb::SolverLevenbergMarquardt-

EigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimEqualities(), teb::BaseSolver-LeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgram-Dense::initWorkspaces(), and teb::BaseSolver::solve().

16.32.5.3 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculate-LagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverNloptPackage::get-EqConstrDimFromStorage(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinear-ProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver-::solve(), and teb::SolverSQPDense::solvelmpl().

16.32.5.4 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.32.5.5 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]

Definition at line 236 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), buildJacobian(), teb::SolverLevenbergMarquardt-EigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsInEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

16.32.5.6 int teb::BaseSolver::_inequalities_dim = -1 [protected], [inherited]

Definition at line 241 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initiSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.32.5.7 Eigen::MatrixXd teb::SolverLevenbergMarquardtEigenDense::_jacobian [protected]

Definition at line 40 of file solver levenbergmarquardt eigen dense.h.

Referenced by buildJacobian(), and solveImpl().

16.32.5.8 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]

Definition at line 243 of file base_solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

16.32.5.9 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]

Definition at line 239 of file base_solver.h.

 $Referenced \ by \ teb:: Base Solver Least Squares:: get Value Dimension (), \ and \ teb:: Base Solver:: solve ().$

16.32.5.10 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]

Definition at line 234 of file base solver.h.

Referenced by buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinear-ProgramDense::initWorkspaces(), teb::SolverNloptPackage::objectives(), and teb::BaseSolver::solve().

16.32.5.11 int teb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]

Definition at line 238 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequality-ConstraintJacobian(), buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardt-EigenSparse::countJacobianColNNZ(), teb::BaseSolver::getOptVecCopy(), teb::SolverNonlinearProgramDense::initHessianBFGS(), teb::SolverSQPDense::init-SolverWorkspace(), teb::BaseSolver::solve(), solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

16.32.5.12 int teb::BaseSolverLeastSquares:: val dim = -1 [protected], [inherited]

Definition at line 96 of file base_solver_least_squares.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), buildJacobian(), teb::Base-SolverLeastSquares::buildValueVector(), solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.32.5.13 Eigen::VectorXd teb::BaseSolverLeastSquares::_values [protected], [inherited]

Definition at line 90 of file base solver least squares.h.

Referenced by teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverLeastSquares::getChi2(), solve-Impl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.32.5.14 int teb::BaseSolverLeastSquares::_weight_adapt_count = 0 [protected], [inherited]

Definition at line 92 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

16.32.5.15 double teb::BaseSolverLeastSquares::_weight_equalities = 1 [protected], [inherited]

Definition at line 93 of file base solver least squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), buildJacobian(), teb::SolverLevenbergMarquardt-EigenSparse::buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

16.32.5.16 double teb::BaseSolverLeastSquares::_weight_inequalities = 1 [protected], [inherited]

Definition at line 94 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), buildJacobian(), teb::SolverLevenbergMarquardt-EigenSparse::buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

16.32.5.17 const Config* teb::BaseSolver::cfg = nullptr [inherited]

See Also

setConfig()

Definition at line 95 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), buildJacobian(), teb::SolverLevenbergMarquardt-EigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangian-HessianFullBFGS(), teb::BaseSolverNonlinear-ProgramDense::initHessianBFGS(), teb::SolverSQPDense::init-SolverWorkspace(), teb::BaseSolver::setConfig(), and teb::SolverSQPDense::solveImpl().

16.32.5.18 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW [inherited]

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following files:

- solver_levenbergmarquardt_eigen_dense.h
- solver_levenbergmarquardt_eigen_dense.cpp

16.33 teb::SolverLevenbergMarquardtEigenSparse Class Reference

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Sparse matrices version).

#include <solver_levenbergmarquardt_eigen_sparse.h>

Inheritance diagram for teb::SolverLevenbergMarquardtEigenSparse:

Public Types

using VertexContainer = HyperGraph::VertexContainer
 Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

• using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

• SolverLevenbergMarquardtEigenSparse ()

Empty Constructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

const Config * cfg = nullptr

Store pointer to Config object.

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Member Functions

virtual bool solveImpl ()

Solve the actual optimization problem.

void allocateSparseJacobian ()

Allocate sparse jacobian.

• void buildJacobian ()

Construct the jacobian of the complete least-squares optimziation problem.

void countJacobianColNNZ ()

Count number of non-zeros per column in order to intialize jacobain sparse matrix.

virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

void buildValueVector ()

Build value / cost vector including all objectives and constraints.

• int getValueDimension () const

Get dimension of the composed value/cost vector (including objectives and constraints).

• double getChi2 () const

Calculate the χ^2 error of the optimization problem.

void adaptWeights ()

Automatic weight adaptation that increases soft constraint weights after each outer teb iteration.

void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

• int getDimInequalities () const

Get dimension of the inequality constraints.

• void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

· void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

• Eigen::SparseMatrix< double > _jacobian

Store the jacobian matrix of the complete least-squares optimziation problem.

• Eigen::VectorXi nnz per col

Store number of non-zeros per column of the jacobian matrix.

• Eigen::SimplicialLDLT

< Eigen::SparseMatrix< double >

, Eigen::Upper > _sparse_solver

Eigens sparse solver wrapper.

• Eigen::VectorXd _values

Store the value vector computed in buildValueVector().

• int _weight_adapt_count = 0

Store current state of the weight adaptation method adaptWeights().

double _weight_equalities = 1

Store current weight for equality soft-constraints.

• double _weight_inequalities = 1

Store current weight for inequality soft-constraints.

• int val dim = -1

Store dimension of the value vector here (see getValueDimension()).

VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

• EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

• int _opt_vec_dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

• int objective dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int _equalities_dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

• int _inequalities_dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

unsigned int _no_vert_backups = 0

Track number of vertices backups made.

bool _graph_structure_modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.33.1 Detailed Description

This solver implements the Levenberg-Marquardt algorithm also implemented in [2]. The underlying linear system is solved using Eigens Sparse Matrix algebra (http://eigen.tuxfamily.org/dox/group__Topic-SparseSystems.html).

The jacobian required for the optimization routine is stored in a sparse matrix.

Todo Consider only the upper diagonal part of the hessian?

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Examples:

integrator_system1.cpp, integrator_system2.cpp, integrator_system_classic_mpc.cpp, integrator_system-_mex.cpp, integrator_system_sfun.cpp, linear_system_ode.cpp, linear_system_ode_ctrl_comparison.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, rocket_system.cpp, and van_der_pol_system.cpp.

Definition at line 31 of file solver_levenbergmarquardt_eigen_sparse.h.

16.33.2 Member Typedef Documentation

16.33.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]

Definition at line 36 of file base_solver.h.

16.33.2.2 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]

Definition at line 34 of file base_solver.h.

16.33.3 Constructor & Destructor Documentation

16.33.3.1 teb::SolverLevenbergMarquardtEigenSparse::SolverLevenbergMarquardtEigenSparse() [inline]

Definition at line 36 of file solver_levenbergmarquardt_eigen_sparse.h.

16.33.4 Member Function Documentation

```
16.33.4.1 void teb::BaseSolverLeastSquares::adaptWeights() [protected], [inherited]
```

This method increases the soft constraint weights for inequalities and equalities after each outer TEB optimization loop (see TebController::optimizeTEB()).

After the outer TEB loop is completed (Config::Teb::teb_iter), the weights are set back to Config::Optim::Solver::Lsq::weight_equalities and Config::Optim::Solver::Lsq::weight_inequalities.

The weights are increased by $\sigma = \sigma_{init} \cdot \gamma^i$. γ denotes the increasement factor Config::Optim::Solver::Lsq::weight_adaptation_factor. i denotes the current iteration number. σ_{init} is obtained from the config (see above).

Call this method at the beginning of solveImpl()!

Remarks

This procedere forces the optimization result to first contract the trajectory in sense of the objective, and afterwards trying to satisfy the constraints. Starting with very high weights in advance could lead to abrupt gradients for the solver. In addition the effect for the objectives (e.g. time optimallity) could be slow, if the corresponding gradients are extremly small in comparision to constraint gradients.

See Also

TebController::optimizeTEB()

Definition at line 100 of file base solver least squares.cpp.

References teb::BaseSolverLeastSquares::_weight_adapt_count, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config::optim, teb::Config::Optim::Solver::Lsq::weight_adaptation_factor, teb::Config::Optim::Solver::Lsq::weight_equalities, and teb::Config::Optim::Solver::Lsq::weight_inequalities.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

```
16.33.4.2 void teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian() [inline], [protected]
```

Definition at line 44 of file solver_levenbergmarquardt_eigen_sparse.h.

References _jacobian, _nnz_per_col, teb::BaseSolver::_opt_vec_dim, teb::BaseSolverLeastSquares::_val_dim, and countJacobianColNNZ().

Referenced by buildJacobian().

```
16.33.4.3 void teb::BaseSolver::applyIncrement ( const Eigen::Ref < const Eigen::VectorXd > & delta ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments. The length euquals the dimension of all free vari-
	ables.

Definition at line 127 of file base solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), solveImpl(), and teb::SolverSQPDense::solveImpl().

16.33.4.4 void teb::BaseSolver::applyOptVec (const Eigen::Ref < const Eigen::VectorXd > & opt_vec) [inline], [protected], [inherited]

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt_vec | Eigen::Vector containing all values. The length equals the dimension of all free variables.

Definition at line 144 of file base solver.h.

References teb::BaseSolver::_active_vertices.

16.33.4.5 void teb::BaseSolver::backupVertices() [inline], [protected], [inherited]

See Also

VertexType::push()

Definition at line 223 of file base_solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), solveImpl(), and teb::SolverSQPDense::solveImpl().

16.33.4.6 void teb::SolverLevenbergMarquardtEigenSparse::buildJacobian() [protected]

This method constructs the jacobian of the complete optimziation problem.

The size of the jacobian is [getValueDimension() x getOptVecDimension()]. This method queries the EdgeType:::computeJacobian() of each edge. The column index for each entry is determined using TebVertex::getOptVecIdx and the number of free dimensions for each vertex.

Since this solver relies on soft-constraints for equality and inequality constraints, the chain-rule for calculating derivatives is utilized. Equality constraints are treaten as usual objective, therefore the jacobian does not need to be changed.

For inequality constraints, the derivative of $\max(c(x), 0)$ is

$$\begin{cases} \frac{\partial}{\partial x} c_i(x) & \text{if } c_i(x) > 0 \\ 0 & \text{otherwise} \end{cases} = \mathbf{J}_{ineq}(:, j = 1:n). * \frac{1}{\mathbf{c}(x)}. * \max{(\mathbf{c}(x), \mathbf{0})}$$

The max operator is applicated component-wise. '.*' corresponds to Matlab's component-wise multiplication.

The resulting jacobian matrix is stored to SolverLevenbergMarquardtEigenSparse::_jacobian;

Todo Check if implemented ordering of column and row iterations fits Eigen's column major representation best.

Definition at line 162 of file solver levenbergmarquardt eigen sparse.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, _jacobian, teb::BaseSolver::_objectives, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, allocate-SparseJacobian(), teb::BaseSolver::cfg, teb::VertexType::dimension(), teb::VertexType::getOptVecldx(), teb::VertexType::isFixedAny(), teb::VertexType::isFixedComp(), teb::Config::Optim::Solver::lsq, teb::Config::optim, teb::Config::Optim::Solver::lsq; teb::Config::Optim::

Referenced by solveImpl().

```
16.33.4.7 void teb::BaseSolverLeastSquares::buildValueVector() [protected], [inherited]
```

This method constructs the full value/cost vector \mathbf{f} (not \mathbf{f}^2) for the underlying least-squares optimization problem.

The length of the vector can be obtained using getValueDimension().

Constraints are transformed into costs/objectives using soft constraints:

- Equality constraints c(x) = 0. These constraints are directly taken as objectives since $c^2(x)$ has a local minima at x = 0.
- Inequality constraints $c(x) \le 0$

These constraints are transformed using $f = \max(c(x), 0)$ (component-wise).

This notation is similar to: $c(x) \le epsilon ? 0 : c(x)$.

Afterwards (in the actual solvelmpl() method, the cost function will be squared, that leads to twice differentiable costs for the constraints, if f is piecewise differentiable once and if it intersectects with the abscissa.

In addition the weights BaseSolverLeastSquares::_weight_equalities and BaseSolverLeastSquares::_weight_inequalities are taken into account in order to weight the "soft constraint objectives". To make the weights comparable to [2] and our Matlab TEB version, we take the square root of both weights, since the least-square problem here is formulated as $f^2(x,\sigma)$ instead of $\sigma f^2(x)$. σ denotes the weight.

The results are stored internally to BaseSolverLeastSquares:: values.

See Also

```
adaptWeights(), getValueDimension()
```

Definition at line 31 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_values, teb::BaseSolverLeastSquares::_weight_equalities, teb::BaseSolverLeastSquares::_weight_inequalities, teb::BaseSolver::cfg, teb::Config::Optim::Solver::lsq, teb::Config::Optim::solver::

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

```
16.33.4.8 void teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ( ) [protected]
```

The results are stored to the class member variable SolverLevenbergMarquardtEigenSparse::_nnz_per_col.

Remarks

```
: Make sure that BaseSolverLeastSquares::_opt_vec_dim is valid!
```

Definition at line 311 of file solver levenbergmarquardt eigen sparse.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, __nnz_per_col, teb::BaseSolver::_objectives, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), and teb::VertexType::isFixedComp().

Referenced by allocateSparseJacobian().

16.33.4.9 void teb::BaseSolver::discardBackupVertices() [inline], [protected], [inherited]

See Also

VertexType::discardTop()

Definition at line 229 of file base_solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), solveImpl(), and teb::SolverSQPDense::solveImpl().

16.33.4.10 double teb::BaseSolverLeastSquares::getChi2() const [inline], [protected], [inherited]

The χ^2 error is the scalar cost value of the least-squares optimization problem since the total cost function is composed of weighted terms:

 $f(\mathscr{B}) = \mathbf{f}(\mathscr{B})^T \mathbf{f}(\mathscr{B})$

Weights are included in $\mathbf{f}(\mathcal{B})$. In this case it is $\chi^2 = f(\mathcal{B})$.

Todo Maybe switch to the formulation $f(\mathcal{B}) = \mathbf{f}(\mathcal{B})^T \Omega \mathbf{f}(\mathcal{B})$ similar to g2o and Teb-Matlab.

Definition at line 82 of file base solver least squares.h.

References teb::BaseSolverLeastSquares::_values.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

16.33.4.11 intteb::BaseSolver::getDimEqualities() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 202 of file base_solver.h.

References teb::BaseSolver:: equalities.

Referenced by teb::BaseSolver::solve().

16.33.4.12 int teb::BaseSolver::getDimlnequalities() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 214 of file base_solver.h.

References teb::BaseSolver:: inequalities.

Referenced by teb::BaseSolver::solve().

16.33.4.13 int teb::BaseSolver::getDimObjectives() const [inline], [protected], [inherited]

The dimension is obtained by checking each edge dimension.

Definition at line 190 of file base_solver.h.

References teb::BaseSolver:: objectives.

Referenced by teb::BaseSolver::solve().

16.33.4.14 Eigen::VectorXd teb::BaseSolver::getOptVecCopy()const [inline],[protected],[inherited]

This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.

Remarks

Make sure BaseSolver::_opt_vec_dim is valid (see solve()).

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_opt_vec_dim.

```
16.33.4.15 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]
```

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

TebController::getActiveVertices(), getValueDimension()

Definition at line 180 of file base solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::BaseSolver::solve().

```
16.33.4.16 int teb::BaseSolverLeastSquares::getValueDimension() const [protected], [inherited]
```

This method returns the dimension of the full cost/value vector including all objective and constraints.

In particular it sums up all dimensions of single edges stored in the given hyper-graph.

Remarks

Make sure BaseSolver::_objective_dim, BaseSolver::_equalities_dim and BaseSolver::_inequalities_dim are valid (see solve()).

Returns

dimension of the complete value/cost vector.

See Also

buildValueVector(), getOptVecDimension(), getDimObjectives(), getDimEqualities(), getDimInequalities()

Definition at line 73 of file base_solver_least_squares.cpp.

References teb::BaseSolver::_equalities_dim, teb::BaseSolver::_inequalities_dim, and teb::BaseSolver::_objective-_dim.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

```
16.33.4.17 virtual void teb::BaseSolverLeastSquares::initWorkspaces() [inline], [protected], [virtual], [inherited]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 43 of file base_solver_least_squares.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, PRINT_DEBUG_COND_ONCE, and teb::QUADRATIC.

```
16.33.4.18 void teb::BaseSolver::restoreVertices() [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: no vert backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

16.33.4.19 void teb::BaseSolver::restoreVerticesButKeepBackup() [inline], [protected], [inherited]

See Also

VertexType::top()

Definition at line 227 of file base_solver.h.

References teb::BaseSolver:: active vertices.

Referenced by teb::SolverSQPDense::solveImpl().

16.33.4.20 void teb::BaseSolver::setConfig (const Config * config) [inline], [inherited]

Remarks

This function is called from the TEB class within setSolver method.

Parameters

```
config Pointer to Config object.
```

Definition at line 49 of file base solver.h.

References teb::BaseSolver::cfg.

Referenced by teb::TebController< p, q >::setSolver().

```
16.33.4.21 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual], [inherited]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

```
optimizable_- pointer to the HyperGraph that should be solved graph
```

Definition at line 61 of file base_solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_no_vert_backups, teb::BaseSolver::_objective_dim, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities

16.33.4.22 bool teb::SolverLevenbergMarquardtEigenSparse::solvelmpl() [protected], [virtual]

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolverLeastSquares.

Definition at line 8 of file solver_levenbergmarquardt_eigen_sparse.cpp.

References _jacobian, teb::BaseSolver::_opt_vec_dim, _sparse_solver, teb::BaseSolverLeastSquares::_val_dim, teb::BaseSolverLeastSquares::_values, teb::BaseSolverLeastSquares::adaptWeights(), teb::BaseSolver::applyIncrement(), teb::BaseSolver::backupVertices(), buildJacobian(), teb::BaseSolverLeastSquares::buildValue-Vector(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolverLeastSquares::getChi2(), teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::restoreVertices().

16.33.5 Member Data Documentation

16.33.5.1 VertexContainer* teb::BaseSolver::_active_vertices = nullptr [protected], [inherited]

Definition at line 233 of file base_solver.h.

Referenced by teb::BaseSolver::applyIncrement(), teb::BaseSolver::applyOptVec(), teb::BaseSolver::backup-Vertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::getOptVecCopy(), teb::BaseSolver::getOptVecDimension(), teb::BaseSolver::restoreVertices(), teb::BaseSolver::restoreVerticesButKeepBackup(), and teb::BaseSolver::solve().

16.33.5.2 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]

Definition at line 235 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsEq(), count-JacobianColNNZ(), teb::BaseSolver::getDimEqualities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), and teb::BaseSolver::solve().

16.33.5.3 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculate-LagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::SolverNloptPackage::get-EqConstrDimFromStorage(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinear-ProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver-::solve(), and teb::SolverSQPDense::solvelmpl().

16.33.5.4 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.33.5.5 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]

Definition at line 236 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsInEq(), count-JacobianColNNZ(), teb::BaseSolver::getDimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

16.33.5.6 int teb::BaseSolver::_inequalities_dim = -1 [protected], [inherited]

Definition at line 241 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initiSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

16.33.5.7 Eigen::SparseMatrix<double> teb::SolverLevenbergMarquardtEigenSparse::_jacobian [protected]

Definition at line 61 of file solver_levenbergmarquardt_eigen_sparse.h.

Referenced by allocateSparseJacobian(), buildJacobian(), and solveImpl().

16.33.5.8 Eigen::VectorXi teb::SolverLevenbergMarquardtEigenSparse::_nnz_per_col [protected]

Definition at line 63 of file solver_levenbergmarquardt_eigen_sparse.h.

Referenced by allocateSparseJacobian(), and countJacobianColNNZ().

16.33.5.9 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]

Definition at line 243 of file base solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

16.33.5.10 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]

Definition at line 239 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::solve().

16.33.5.11 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]

Definition at line 234 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), countJacobianColNNZ(), teb::BaseSolver::getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::SolverNloptPackage::objectives(), and teb::BaseSolver::solve().

```
16.33.5.12 int teb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]
```

Definition at line 238 of file base solver.h.

Referenced by allocateSparseJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenberg-MarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), countJacobianColNNZ(), teb::BaseSolver::getOptVecCopy(), teb::SolverNloptPackage::getOptVecDimFromStorage(), teb::BaseSolverNonlinear-ProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.33.5.13 Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, Eigen::Upper> teb::SolverLevenbergMarquardtEigen-
Sparse:: sparse solver [protected]
```

Check http://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html for further information and different solvers. The second template parameter specifies, whether the upper or lower triangular part should be used. If CHOLMOD was found by CMake, the cholmod supernodal llt version is used rathar than Eigens simplicial ldlt. Define FORCE_EIGEN_SOLVER if the default LDLT should sill be used even if CHOLMOD is found.

Definition at line 75 of file solver_levenbergmarquardt_eigen_sparse.h.

Referenced by solveImpl().

```
16.33.5.14 int teb::BaseSolverLeastSquares::_val_dim = -1 [protected], [inherited]
```

Definition at line 96 of file base_solver_least_squares.h.

 $Referenced\ by\ allocateSparseJacobian(),\ teb::SolverLevenbergMarquardtEigenDense::buildJacobian(),\ teb::Base-SolverLeastSquares::buildValueVector(),\ teb::SolverLevenbergMarquardtEigenDense::solveImpl(),\ and\ solveImpl().$

```
16.33.5.15 Eigen::VectorXd teb::BaseSolverLeastSquares:: values [protected],[inherited]
```

Definition at line 90 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverLeastSquares::getChi2(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and solveImpl().

```
16.33.5.16 int teb::BaseSolverLeastSquares::_weight_adapt_count = 0 [protected], [inherited]
```

Definition at line 92 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

```
16.33.5.17 double teb::BaseSolverLeastSquares::_weight_equalities = 1 [protected], [inherited]
```

Definition at line 93 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

16.33.5.18 double teb::BaseSolverLeastSquares::_weight_inequalities = 1 [protected], [inherited]

Definition at line 94 of file base_solver_least_squares.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), buildJacobian(), and teb::BaseSolverLeastSquares::buildValueVector().

16.33.5.19 const Config* teb::BaseSolver::cfg = nullptr [inherited]

See Also

setConfig()

Definition at line 95 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::setConfig(), and teb::SolverSQPDense::solveImpl().

16.33.5.20 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW [inherited]

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following files:

- solver_levenbergmarquardt_eigen_sparse.h
- solver_levenbergmarquardt_eigen_sparse.cpp

16.34 teb::SolverNloptPackage Class Reference

This class wraps the optimization problem to allow solving by NLOPT.

#include <solver_nlopt_package.h>

Inheritance diagram for teb::SolverNloptPackage:

Public Types

using VertexContainer = HyperGraph::VertexContainer

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

SolverNloptPackage ()

Empty Constructor.

· virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

• EdgeContainer * objectives ()

Return pointer to the edges containing objectives.

EdgeContainer * constraintsEq ()

Return pointer to the edges containing equalities.

EdgeContainer * constraintsInEq ()

Return pointer to the edges containing inequalities.

• int getOptVecDimFromStorage () const

Return dimension of the optimization vector (call getOptVecDimension() before)

int getEqConstrDimFromStorage () const

Return dimension of the equality constraint vector.

void seperateInequalitiesAndBounds ()

Seperate constraintsInEq to bound constraints and general nonlinear inequality constraints and store results internally.

· int getBoundConstrDimFromStorage () const

Return dimension of the equality constraint vector.

• int getInEqConstrDimFromStorage () const

Return dimension of the inequality constraint vector.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Static Public Member Functions

static double objectiveFunction (unsigned n, const double *x, double *grad, void *solver object this)

Objective function wrapper that iterates all objective edges.

• static void equalityConstraintFunction (unsigned m, double *result, unsigned n, const double *x, double *grad, void *solver_object_this)

Equality constraint function wrapper that iterates all equality constraint edges.

 static void inequalityConstraintFunction (unsigned m, double *result, unsigned n, const double *x, double *grad, void *solver object this)

Inequality constraint function wrapper that iterates all inequality constraint edges (excluding bound constraints).

Public Attributes

const Config * cfg = nullptr

Store pointer to Config object.

EIGEN_MAKE_ALIGNED_OPERATOR_NEW

Protected Member Functions

virtual bool solveImpl ()

Solve the actual optimization problem.

void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

int getDimObjectives () const

Get dimension of the objective function.

int getDimEqualities () const

Get dimension of the equality constraints.

int getDimInequalities () const

Get dimension of the inequality constraints.

void backupVertices ()

Backup all active vertices.

• void restoreVertices ()

Restore all values of active vertices from the backup stacks.

void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

EdgeContainer _bound_constraints

 $Store\ bound\ constraints\ using\ seperateInequalities And Bounds().$

EdgeContainer _inequalities_without_bounds

Store general nonlinear constraints using seperateInequalitiesAndBounds().

int _bound_constraints_dim = 0

Store dimension of bound constraints using seperateInequalitiesAndBounds().

int _inequalities_without_bounds_dim = 0

Store dimension of general nonlinear constraints using seperateInequalitiesAndBounds().

• Eigen::VectorXd _lower_bounds

Store lower bounds according to the optimization vector.

Eigen::VectorXd <u>upper_bounds</u>

Store upper bounds according to the optimization vector.

Eigen::VectorXd _ctol_eq

Store tolerances for the equality constraints (stopping criteria)

Eigen::VectorXd <u>_ctol_ineq</u>

Store tolerances for the inequality constraints (stopping criteria)

VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

```
    EdgeContainer * _inequalities = nullptr
```

Pointer to edges representing inequality constraints.

• int _opt_vec_dim = -1

Store dimension of the optimziation vector here (see getOptVecDimension()).

• int objective dim = -1

Store dimension of the objective function (see getDimObjectives()).

• int _equalities_dim = -1

Store dimension of the equality constraints (see getDimEqualities()).

• int inequalities dim = -1

Store dimension of the inequality constraints (see getDimInequalities()).

• unsigned int _no_vert_backups = 0

Track number of vertices backups made.

bool graph structure modified = true

Mark if a new graph structure is available, thus we need to reinitialze all workspaces.

16.34.1 Detailed Description

Wrapper function for the NLopt optimization library (http://ab-initio.mit.edu/wiki/index.php/-NLopt) The purpose of this solver is not to perform an efficient and fast real-time optimization, rather than having alternative constraint solvers for debugging and testing.

Refer to Config::Optim::Solver::Nlopt for configuration parameters.

Test This class needs more testing (different solvers etc.)

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Definition at line 29 of file solver_nlopt_package.h.

16.34.2 Member Typedef Documentation

```
16.34.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]
```

Definition at line 36 of file base_solver.h.

```
16.34.2.2 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]
```

Definition at line 34 of file base solver.h.

16.34.3 Constructor & Destructor Documentation

```
16.34.3.1 teb::SolverNloptPackage::SolverNloptPackage( ) [inline]
```

Definition at line 34 of file solver_nlopt_package.h.

16.34.4 Member Function Documentation

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments. The length euquals the dimension of all free vari-
	ables.

Definition at line 127 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.34.4.2 void teb::BaseSolver::applyOptVec ( const Eigen::Ref < const Eigen::VectorXd > & opt_vec ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

```
opt_vec | Eigen::Vector containing all values. The length equals the dimension of all free variables.
```

Definition at line 144 of file base solver.h.

References teb::BaseSolver::_active_vertices.

```
16.34.4.3 void teb::BaseSolver::backupVertices ( ) [inline], [protected], [inherited]
```

See Also

VertexType::push()

Definition at line 223 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.34.4.4 EdgeContainer* teb::SolverNloptPackage::constraintsEq( ) [inline]
```

Definition at line 55 of file solver_nlopt_package.h.

References teb::BaseSolver:: equalities.

```
16.34.4.5 EdgeContainer* teb::SolverNloptPackage::constraintsInEq( ) [inline]
```

Definition at line 56 of file solver nlopt package.h.

References teb::BaseSolver:: inequalities.

```
16.34.4.6 void teb::BaseSolver::discardBackupVertices() [inline], [protected], [inherited]
```

See Also

VertexType::discardTop()

Definition at line 229 of file base solver.h.

 $References\ teb:: Base Solver::_active_vertices,\ and\ teb:: Base Solver::_no_vert_backups.$

Referenced by teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and teb::SolverSQPDense::solveImpl().

```
16.34.4.7 static void teb::SolverNloptPackage::equalityConstraintFunction (unsigned m, double * result, unsigned n, const
         double * x, double * grad, void * solver_object_this ) [static]
16.34.4.8 int teb::SolverNloptPackage::getBoundConstrDimFromStorage( ) const [inline]
Definition at line 62 of file solver_nlopt_package.h.
References bound constraints dim.
16.34.4.9 int teb::BaseSolver::getDimEqualities ( ) const [inline], [protected], [inherited]
The dimension is obtained by checking each edge dimension.
Definition at line 202 of file base_solver.h.
References teb::BaseSolver::_equalities.
Referenced by teb::BaseSolver::solve().
16.34.4.10 int teb::BaseSolver::getDimlnequalities() const [inline], [protected], [inherited]
The dimension is obtained by checking each edge dimension.
Definition at line 214 of file base_solver.h.
References teb::BaseSolver::_inequalities.
Referenced by teb::BaseSolver::solve().
16.34.4.11 int teb::BaseSolver::getDimObjectives() const [inline], [protected], [inherited]
The dimension is obtained by checking each edge dimension.
Definition at line 190 of file base solver.h.
References teb::BaseSolver::_objectives.
Referenced by teb::BaseSolver::solve().
16.34.4.12 int teb::SolverNloptPackage::getEqConstrDimFromStorage( ) const [inline]
Definition at line 58 of file solver_nlopt_package.h.
References teb::BaseSolver::_equalities_dim.
16.34.4.13 int teb::SolverNloptPackage::getInEqConstrDimFromStorage() const [inline]
Definition at line 63 of file solver_nlopt_package.h.
References _inequalities_without_bounds_dim.
16.34.4.14 Eigen::VectorXd teb::BaseSolver::getOptVecCopy() const [inline], [protected], [inherited]
This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.
Remarks
     Make sure BaseSolver:: opt vec dim is valid (see solve()).
```

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base_solver.h.

References teb::BaseSolver:: active vertices, and teb::BaseSolver:: opt vec dim.

```
16.34.4.15 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]
```

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

```
TebController::getActiveVertices(), getValueDimension()
```

Definition at line 180 of file base_solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::BaseSolver::solve().

```
16.34.4.16 int teb::SolverNloptPackage::getOptVecDimFromStorage() const [inline]
```

Definition at line 57 of file solver_nlopt_package.h.

References teb::BaseSolver:: opt vec dim.

```
16.34.4.17 static void teb::SolverNloptPackage::inequalityConstraintFunction ( unsigned m, double * result, unsigned n, const double * x, double * grad, void * solver_object_this ) [static]
```

```
16.34.4.18 virtual void teb::SolverNloptPackage::initWorkspaces() [inline], [virtual]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 46 of file solver_nlopt_package.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_inequalities, and teb::BaseSolver::_objectives.

```
16.34.4.19 static double teb::SolverNloptPackage::objectiveFunction ( unsigned n, const double * x, double * grad, void * solver_object_this ) [static]
```

```
16.34.4.20 EdgeContainer* teb::SolverNloptPackage::objectives( ) [inline]
```

Definition at line 54 of file solver_nlopt_package.h.

References teb::BaseSolver:: objectives.

```
16.34.4.21 void teb::BaseSolver::restoreVertices() [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

16.34.4.22 void teb::BaseSolver::restoreVerticesButKeepBackup() [inline], [protected], [inherited]

See Also

VertexType::top()

Definition at line 227 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::SolverSQPDense::solveImpl().

16.34.4.23 void teb::SolverNloptPackage::seperateInequalitiesAndBounds ()

16.34.4.24 void teb::BaseSolver::setConfig (const Config * config) [inline], [inherited]

Remarks

This function is called from the TEB class within setSolver method.

Parameters

config	Pointer to Config object.

Definition at line 49 of file base_solver.h.

References teb::BaseSolver::cfg.

Referenced by teb::TebController< p, q >::setSolver().

```
16.34.4.25 virtual bool teb::BaseSolver::solve ( HyperGraph * optimizable_graph ) [inline], [virtual], [inherited]
```

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

```
optimizable_- pointer to the HyperGraph that should be solved graph
```

Definition at line 61 of file base_solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_no_vert_backups, teb::BaseSolver::_objective_dim, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLeq

16.34.4.26 virtual bool teb::SolverNloptPackage::solvelmpl() [protected], [virtual]

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolver.

16.34.5 Member Data Documentation

16.34.5.1 VertexContainer* **teb::BaseSolver::_active_vertices** = **nullptr** [protected], [inherited]

Definition at line 233 of file base_solver.h.

Referenced by teb::BaseSolver::applyIncrement(), teb::BaseSolver::applyOptVec(), teb::BaseSolver::backup-Vertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::getOptVecCopy(), teb::BaseSolver::get-OptVecDimension(), teb::BaseSolver::restoreVertices(), teb::BaseSolver::restoreVerticesButKeepBackup(), and teb::BaseSolver::solve().

16.34.5.2 EdgeContainer teb::SolverNloptPackage::_bound_constraints [protected]

Definition at line 70 of file solver_nlopt_package.h.

16.34.5.3 int teb::SolverNloptPackage::_bound_constraints_dim = 0 [protected]

Definition at line 72 of file solver_nlopt_package.h.

Referenced by getBoundConstrDimFromStorage().

16.34.5.4 Eigen::VectorXd teb::SolverNloptPackage::_ctol_eq [protected]

Definition at line 77 of file solver_nlopt_package.h.

16.34.5.5 Eigen::VectorXd teb::SolverNloptPackage::_ctol_ineq [protected]

Definition at line 78 of file solver_nlopt_package.h.

16.34.5.6 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]

Definition at line 235 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), constraints-Eq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimEqualities(), teb::BaseSolverLeastSquares::initWorkspaces(), initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

16.34.5.7 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::calculate-LagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), getEqConstrDimFrom-Storage(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solvelmpl().

```
16.34.5.8 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]
```

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

```
16.34.5.9 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]
```

Definition at line 236 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), constraintsInEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), and teb::BaseSolver::solve().

```
16.34.5.10 int teb::BaseSolver::_inequalities_dim = -1 [protected], [inherited]
```

Definition at line 241 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverSQPDense::calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), teb::SolverSQPDense::initiSolverWorkspace(), teb::BaseSolver::solve(), and teb::SolverSQPDense::solveImpl().

```
16.34.5.11 EdgeContainer teb::SolverNloptPackage::_inequalities_without_bounds [protected]
```

Definition at line 71 of file solver_nlopt_package.h.

```
16.34.5.12 int teb::SolverNloptPackage::_inequalities_without_bounds_dim = 0 [protected]
```

Definition at line 73 of file solver_nlopt_package.h.

Referenced by getInEqConstrDimFromStorage().

```
16.34.5.13 Eigen::VectorXd teb::SolverNloptPackage::_lower_bounds [protected]
```

Definition at line 75 of file solver_nlopt_package.h.

```
16.34.5.14 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]
```

Definition at line 243 of file base_solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

```
16.34.5.15 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]
```

Definition at line 239 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::solve().

```
16.34.5.16 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]
```

Definition at line 234 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardt-EigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(), initWorkspaces(), objectives(), and teb::BaseSolver::solve().

```
16.34.5.17 int teb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]
```

Definition at line 238 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequality-ConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessian-Numerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getOptVec-Copy(), getOptVecDimFromStorage(), teb::BaseSolverNonlinear-ProgramDense::initHessianBFGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solve-Impl(), and teb::SolverSQPDense::solveImpl().

```
16.34.5.18 Eigen::VectorXd teb::SolverNloptPackage::_upper_bounds [protected]
```

Definition at line 76 of file solver_nlopt_package.h.

```
16.34.5.19 const Config* teb::BaseSolver::cfg = nullptr [inherited]
```

See Also

setConfig()

Definition at line 95 of file base solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinearProgramDense::initHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianB-FGS(), teb::SolverSQPDense::initSolverWorkspace(), teb::BaseSolver::setConfig(), and teb::SolverSQPDense::solvelmpl().

```
16.34.5.20 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW [inherited]
```

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following file:

• solver_nlopt_package.h

16.35 teb::SolverSQPDense Class Reference

Dense sequential quadratic programming (SQP) solver for nonlinear programs.

```
#include <solver_sqp_dense.h>
```

Inheritance diagram for teb::SolverSQPDense:

Public Types

• using VertexContainer = HyperGraph::VertexContainer

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

• using EdgeContainer = HyperGraph::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

Public Member Functions

• SolverSQPDense ()

Solver Constructor.

• SolverSQPDense ()

Empty Constructor.

void setConfig (const Config *config)

Set config including solver settings.

virtual bool solve (HyperGraph *optimizable_graph)

Solve an optimization problem defined by an hyper-graph.

Public Attributes

const Config * cfg = nullptr

Store pointer to Config object.

· EIGEN MAKE ALIGNED OPERATOR NEW

Protected Types

using MatMapRowMajor = Eigen::Map< Eigen::Matrix< double,-1,-1, Eigen::RowMajor >>

Protected Member Functions

- virtual void initSolverWorkspace ()
- virtual bool solveImpl ()

Solve the actual optimization problem.

- bool checkConvergence ()
- double calculateMerit (double alpha) const
- · double calculateMeritDerivative (double alpha) const
- virtual void initSolverWorkspace ()
- virtual bool solveImpl ()

Solve the actual optimization problem.

- double calculateMerit (double rho, double *merit_derivative_out=nullptr) const
- virtual void initWorkspaces ()

Initialize workspaces for the block jacobians and hessians.

- void initializeLagrangeMultiplier ()
- void buildObjectiveValue ()

Get the sum of all objective values since we solve $f = \min \sum f_k$.

void buildEqualityConstraintValueVector ()

Build value / cost vector including all equality constraints.

• void buildInequalityConstraintValueVector ()

Build value / cost vector including all inequality constraints.

- void buildObjectiveGradient ()
- · void buildEqualityConstraintJacobian ()
- void buildInequalityConstraintJacobian ()
- void calculateLagrangianGradient ()
- void calculateLagrangianHessian (Eigen::VectorXd *increment=nullptr)
- · void calculateLagrangianHessianNumerically ()
- void initHessianBFGS ()
- void calculateLagrangianHessianFullBFGS (Eigen::VectorXd *increment)
- void applyIncrement (const Eigen::Ref< const Eigen::VectorXd > &delta)

Apply a new increment optained by a local optimization to the active vertices.

void applyOptVec (const Eigen::Ref< const Eigen::VectorXd > &opt_vec)

Overwrite TEB states and control inputs with new values.

Eigen::VectorXd getOptVecCopy () const

Get a copy of the optimization vector (TEB states, control inputs and dt)

• int getOptVecDimension () const

Get dimension of the optimization vector (that equals the number of cols and rows in the Hessian).

int getDimObjectives () const

Get dimension of the objective function.

• int getDimEqualities () const

Get dimension of the equality constraints.

int getDimInequalities () const

Get dimension of the inequality constraints.

void backupVertices ()

Backup all active vertices.

void restoreVertices ()

Restore all values of active vertices from the backup stacks.

void restoreVerticesButKeepBackup ()

Restore all values of active vertices from the backup stacks WITHOUT discarding the backup.

void discardBackupVertices ()

Discard all values of active vertices from the backup stacks.

Protected Attributes

```
    qpOASES::SQProblem _qsolver
```

• Eigen::Matrix< double,-1,-1,

Eigen::RowMajor > _A

- Eigen::VectorXd lb
- Eigen::VectorXd ub
- Eigen::VectorXd delta
- Eigen::VectorXd _qdual
- Eigen::Map< Eigen::VectorXd > _dmultiplier_eq = Eigen::Map<Eigen::VectorXd>(nullptr,0)
- Eigen::Map < Eigen::VectorXd > dmultiplier ineq = Eigen::Map < Eigen::VectorXd > (nullptr,0)
- Eigen::VectorXd _merit_grad
- Eigen::VectorXd increment
- double _merit_alpha = 0
- · double _objective_value

Store the sum of all values computed in buildObjectiveValueVector() since we solve $f = \min \sum f_k$.

Eigen::VectorXd _equality_values

Store the value vector computed in buildEqualityConstraintValueVector().

• Eigen::VectorXd _inequality_values

Store the value vector computed in buildInequalityConstraintValueVector().

· Eigen::VectorXd objective gradient

Store the gradient of the objective value computed in buildObjectiveGradient().

MatMapRowMajor _equality_jacobian = MatMapRowMajor(nullptr,0,0)

 $Store \ the \ jacobian \ matrix \ of \ the \ equality \ constraint \ computed \ in \ build \ Equality \ Constraint Jacobian().$

MatMapRowMajor _inequality_jacobian = MatMapRowMajor(nullptr,0,0)

Store the jacobian matrix of the inequality constraint computed in buildInequalityConstraintJacobian().

- Eigen::VectorXd _lagrangian_gradient
- Eigen::VectorXd _lagrangian_gradient_backup

The gradient from the last step has to be stored for BFGS.

Eigen::Matrix< double,-1,-1,

Eigen::RowMajor > _lagrangian_hessian

Store the hessian of the lagrangian $\nabla^2 L = \nabla^2 (f - \mu^T \mathbf{ceq} - \lambda^T \mathbf{c})$.

- Eigen::VectorXd multiplier ineq
- Eigen::VectorXd _multiplier_eq
- VertexContainer * _active_vertices = nullptr

Pointer to active vertex container (active = non-fixed)

• EdgeContainer * _objectives = nullptr

Pointer to edges representing objective functions.

EdgeContainer * _equalities = nullptr

Pointer to edges representing equality constraints.

EdgeContainer * _inequalities = nullptr

Pointer to edges representing inequality constraints.

```
• int _opt_vec_dim = -1
         Store dimension of the optimziation vector here (see getOptVecDimension()).
    • int _objective_dim = -1
         Store dimension of the objective function (see getDimObjectives()).
    int _equalities_dim = -1
         Store dimension of the equality constraints (see getDimEqualities()).
    • int inequalities dim = -1
         Store dimension of the inequality constraints (see getDimInequalities()).
    • unsigned int _no_vert_backups = 0
         Track number of vertices backups made.
    • bool graph structure modified = true
         Mark if a new graph structure is available, thus we need to reinitialze all workspaces.
16.35.1 Detailed Description
Todo The documentation of this class, after the SQP sovler passed a couple of remaining (robustness) tests
Author
     Christoph Rösmann (christoph.roesmann@tu-dortmund.de)
Definition at line 24 of file solver_sqp_dense.h.
16.35.2 Member Typedef Documentation
16.35.2.1 using teb::BaseSolver::EdgeContainer = HyperGraph::EdgeContainer [inherited]
Definition at line 36 of file base_solver.h.
16.35.2.2 using teb::BaseSolverNonlinearProgramDense::MatMapRowMajor =
         Eigen::Map<Eigen::Matrix<double,-1,-1,Eigen::RowMajor>> [protected], [inherited]
Definition at line 110 of file base solver nonlinear program dense.h.
16.35.2.3 using teb::BaseSolver::VertexContainer = HyperGraph::VertexContainer [inherited]
Definition at line 34 of file base_solver.h.
16.35.3 Constructor & Destructor Documentation
16.35.3.1 teb::SolverSQPDense::SolverSQPDense() [inline]
Definition at line 29 of file solver_sqp_dense.h.
References _qsolver.
16.35.3.2 teb::SolverSQPDense::SolverSQPDense( ) [inline]
```

Definition at line 19 of file solver_sqp_dense_backup.h.

16.35.4 Member Function Documentation

16.35.4.1 void teb::BaseSolver::applyIncrement (const Eigen::Ref < const Eigen::VectorXd > & delta) [inline], [protected], [inherited]

This method iterates the active vertices container and calls VertexType::plusFree() for each vertex.

Parameters

delta	Eigen::Vector containing all increments. 1	The length euquals the dimension of all free vari-
	ables.	

Definition at line 127 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and solveImpl().

```
16.35.4.2 void teb::BaseSolver::applyOptVec ( const Eigen::Ref < const Eigen::VectorXd > & opt_vec ) [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::setFree() for each vertex.

Parameters

opt_vec	Eigen::Vector containing all values.	The length equals the dimension of all free variables.
---------	--------------------------------------	--

Definition at line 144 of file base solver.h.

References teb::BaseSolver:: active vertices.

```
16.35.4.3 void teb::BaseSolver::backupVertices() [inline], [protected], [inherited]
```

See Also

VertexType::push()

Definition at line 223 of file base_solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and solveImpl().

```
16.35.4.4 void teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian() [protected], [inherited]
```

Definition at line 154 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolverNonlinearProgram-Dense::_equality_jacobian, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolver::_opt_-vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::isFixedAny(), and teb::-VertexType::isFixedComp().

Referenced by solveImpl().

```
16.35.4.5 void teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector( ) [protected], [inherited]
```

Definition at line 30 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, and teb::BaseSolverNonlinearProgram-Dense::_equality_values.

Referenced by solveImpl().

16.35.4.6 void teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian () [protected], [inherited]

Definition at line 200 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolverNonlinearProgram-Dense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_values, teb::BaseSolver::_opt-_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::isFixedAny(), and teb::VertexType::isFixedComp().

Referenced by solveImpl().

16.35.4.7 void teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector() [protected], [inherited]

Definition at line 54 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, and teb::BaseSolverNonlinear-ProgramDense::_inequality_values.

Referenced by solveImpl().

16.35.4.8 void teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient() [protected], [inherited]

Definition at line 82 of file base solver nonlinear program dense.cpp.

References teb::BaseSolverNonlinearProgramDense::_objective_gradient, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_obt_vec_dim, teb::VertexType::dimension(), teb::VertexType::getOptVecIdx(), teb::VertexType::is-FixedAny(), teb::VertexType::is-FixedComp(), teb::LINEAR_SQUARED, and teb::NONLINEAR_SQUARED.

Referenced by solveImpl().

16.35.4.9 void teb::BaseSolverNonlinearProgramDense::buildObjectiveValue() [protected], [inherited]

Definition at line 7 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolverNonlinearProgramDense::_objective_value, teb::BaseSolver::_objectives, teb::LINEA-R_SQUARED, and teb::NONLINEAR_SQUARED.

Referenced by solveImpl().

16.35.4.10 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianGradient() [inline], [protected], [inherited]

Definition at line 98 of file base_solver_nonlinear_program_dense.h.

References teb::BaseSolverNonlinearProgramDense::_equality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient, teb::BaseSolverNonlinearProgramDense::_multiplier_eq, teb::BaseSolverNonlinearProgramDense::_multiplier_ineq, and teb::BaseSolverNonlinearProgramDense::_objective_gradient.

Referenced by solveImpl().

16.35.4.11 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian (Eigen::VectorXd * increment = nullptr) [protected], [inherited]

Definition at line 245 of file base_solver_nonlinear_program_dense.cpp.

References teb::BLOCK_BFGS, teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBF-GS(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::BaseSolver::cfg,

teb::FULL_BFGS, teb::FULL_BFGS_WITH_STRUCTURE_FILTER, teb::Config::Optim::Solver::NonlinearProgram::hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_method, teb::Config::Optim::Solver::nonlin_prog, teb::NUMERIC, teb::Config::optim, PRINT_ERROR, PRINT_INFO, teb::Config::Optim::solver, and teb::ZERO_HESSIAN.

Referenced by solveImpl().

16.35.4.12 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS (Eigen::VectorXd * increment) [protected], [inherited]

Definition at line 520 of file base solver nonlinear program dense.cpp.

References teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient, teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient_backup, teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::bfgs_damped_mode, teb::BaseSolver::cfg, teb::Config::Optim::Solver::NonlinearProgram::hessian, teb::Config::Optim::Solver::nonlin_prog, teb::Config::optim, PRINT_DEBUG, and teb::Config::Optim::solver.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian().

16.35.4.13 void teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically() [protected], [inherited]

Definition at line 273 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolverNonlinearProgramDense::_inequality_values, teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian, teb::BaseSolverNonlinearProgramDense::_multiplier_eq, teb::BaseSolverNonlinearProgramDense::_multiplier_ineq, teb::BaseSolver::_objectives, teb::BaseSolver::_opt_vec_dim, teb::VertexType::dimension(), teb::VertexType::get-OptVecIdx(), teb::VertexType::isFixedAny(), teb::VertexType::isFixedComp(), teb::LINEAR, teb::LINEAR_SQUARED, teb::NONLINEAR_ONCE_DIFF, and teb::NONLINEAR_SQUARED.

 $Referenced \ by \ teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Hessian (), \ and \ teb:: Base Solver Nonlinear Program Dense:: init Hessian BFGS ().$

16.35.4.14 double teb::SolverSQPDense::calculateMerit (double *rho*, double * *merit_derivative_out =* nullptr) const [inline], [protected]

Definition at line 205 of file solver_sqp_dense_backup.h.

References _delta, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolverNonlinearProgramDense::_objective_gradient, and teb::BaseSolverNonlinearProgramDense::_objective_gradient, and teb::BaseSolverNonlinearProgramDense::_objective_value.

16.35.4.15 double teb::SolverSQPDense::calculateMerit (double alpha) const [inline], [protected]

Definition at line 234 of file solver_sqp_dense.h.

References teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolverNonlinearProgramDense:: inequality_values, and teb::BaseSolverNonlinearProgramDense:: objective value.

Referenced by solveImpl().

16.35.4.16 double teb::SolverSQPDense::calculateMeritDerivative (double alpha) const [inline], [protected]

Definition at line 243 of file solver_sqp_dense.h.

References __delta, __teb::BaseSolver::_equalities_dim, __teb::BaseSolverNonlinearProgramDense::_equality_jacobian, __teb::BaseSolverNonlinearProgramDense::_equality_values, __teb::BaseSolver::_inequalities_dim, __teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, __teb::BaseSolverNonlinearProgramDense::_inequality_values, and teb::BaseSolverNonlinearProgramDense::_objective_gradient.

Referenced by solveImpl().

```
16.35.4.17 bool teb::SolverSQPDense::checkConvergence() [inline], [protected]
```

Definition at line 228 of file solver_sqp_dense.h.

References teb::BaseSolverNonlinearProgramDense::_equality_values, and teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient.

Referenced by solveImpl().

```
16.35.4.18 void teb::BaseSolver::discardBackupVertices() [inline], [protected], [inherited]
```

See Also

VertexType::discardTop()

Definition at line 229 of file base_solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and solveImpl().

```
16.35.4.19 int teb::BaseSolver::getDimEqualities ( ) const [inline], [protected], [inherited]
```

The dimension is obtained by checking each edge dimension.

Definition at line 202 of file base_solver.h.

References teb::BaseSolver:: equalities.

Referenced by teb::BaseSolver::solve().

```
16.35.4.20 int teb::BaseSolver::getDimlnequalities ( ) const [inline], [protected], [inherited]
```

The dimension is obtained by checking each edge dimension.

Definition at line 214 of file base solver.h.

References teb::BaseSolver::_inequalities.

Referenced by teb::BaseSolver::solve().

```
16.35.4.21 int teb::BaseSolver::getDimObjectives() const [inline], [protected], [inherited]
```

The dimension is obtained by checking each edge dimension.

Definition at line 190 of file base_solver.h.

References teb::BaseSolver::_objectives.

Referenced by teb::BaseSolver::solve().

```
16.35.4.22 Eigen::VectorXd teb::BaseSolver::getOptVecCopy() const [inline], [protected], [inherited]
```

This method iterates the active vertices container and calls VertexType::getDataFree() for each vertex.

Remarks

Make sure BaseSolver::_opt_vec_dim is valid (see solve()).

Returns

Eigen::Vector containing all values. The length equals the dimension of all free variables (getOptVec-Dimension()).

Definition at line 162 of file base solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_opt_vec_dim.

```
16.35.4.23 int teb::BaseSolver::getOptVecDimension() const [inline], [protected], [inherited]
```

The dimension is obtained by checking the previously determined index of the last active vertice stored in the graph.

See Also

TebController::getActiveVertices(), getValueDimension()

Definition at line 180 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by teb::BaseSolver::solve().

16.35.4.24 void teb::BaseSolverNonlinearProgramDense::initHessianBFGS() [protected], [inherited]

Definition at line 489 of file base_solver_nonlinear_program_dense.cpp.

References teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient, teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient_backup, teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian, teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian, teb::BaseSolver::_opt_vec_dim, teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::BaseSolver::cfg, teb::Config::Optim::Solver::NonlinearProgram::hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian_init_identity_scale, teb::IDENTITY, teb::Config::Optim::Solver::nonlin_prog, teb::NUMERIC, teb::Config::Optim, PRINT_ERROR, teb::Config::Optim::solver, and teb::ZERO.

Referenced by solveImpl().

```
16.35.4.25 void teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier() [inline], [protected], [inherited]
```

Definition at line 70 of file base_solver_nonlinear_program_dense.h.

References teb::BaseSolver::_equalities_dim, teb::BaseSolver::_inequalities_dim, teb::BaseSolverNonlinear-ProgramDense::_multiplier_eq, and teb::BaseSolverNonlinearProgramDense::_multiplier_ineq.

Referenced by solveImpl().

```
16.35.4.26 virtual void teb::SolverSQPDense::initSolverWorkspace() [inline], [protected], [virtual]
```

Implements teb::BaseSolverNonlinearProgramDense.

Definition at line 24 of file solver_sqp_dense_backup.h.

References _A, _delta, _dmultiplier_eq, _dmultiplier_ineq, teb::BaseSolver::_equalities_dim, teb::BaseSolver.NonlinearProgramDense::_equality_jacobian, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolver::_inequalities_dim, teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_values, _lb, _merit_grad, teb::BaseSolver::_opt_vec_dim, _qdual, _ub, and INF.

```
16.35.4.27 virtual void teb::SolverSQPDense::initSolverWorkspace() [inline], [protected], [virtual]
```

Implements teb::BaseSolverNonlinearProgramDense.

Definition at line 37 of file solver_sqp_dense.h.

References _A, _delta, _dmultiplier_eq, _dmultiplier_ineq, teb::BaseSolver::_equalities_dim, teb::BaseSolver.NonlinearProgramDense::_equality_values, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_jacobian, teb::BaseSolverNonlinearProgramDense::_inequality_values, _lb, _merit_alpha, _merit_grad, teb::BaseSolver::_opt_vec_dim, _qdual, _qsolver, _ub, teb::Config::Optim::Solver::NonlinearProgram::LineSearch::alpha_init, teb::BaseSolver::cfg, teb::Config::Optim::Solver::NonlinearProgram::Hessian-::hessian_method, INF, teb::Config::Optim::Solver::NonlinearProgram::linesearch, teb::Config::Optim::Solver::nonlin_prog, teb::Config::Optim, teb::Config::Optim::solver, and teb::ZERO_HESSIAN.

Referenced by solveImpl().

```
16.35.4.28 virtual void teb::BaseSolverNonlinearProgramDense::initWorkspaces() [inline], [protected], [virtual], [inherited]
```

Implement this function to allocate new memory for the jacobian and hessian workspaces (as part of each Edge-Type) or map to existing memory.

Reimplemented from teb::BaseSolver.

Definition at line 46 of file base_solver_nonlinear_program_dense.h.

References teb::BaseSolver::_equalities, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_objectives, teb::LINEAR_SQUARED, teb::NONLINEAR_SQUARED, and PRINT_DEBUG_COND_ONCE.

```
16.35.4.29 void teb::BaseSolver::restoreVertices() [inline], [protected], [inherited]
```

See Also

VertexType::pop()

Definition at line 225 of file base_solver.h.

References teb::BaseSolver::_active_vertices, and teb::BaseSolver::_no_vert_backups.

Referenced by teb::SolverLevenbergMarquardtEigenDense::solveImpl(), and teb::SolverLevenbergMarquardtEigenSparse::solveImpl().

```
16.35.4.30 void teb::BaseSolver::restoreVerticesButKeepBackup( ) [inline], [protected], [inherited]
```

See Also

VertexType::top()

Definition at line 227 of file base solver.h.

References teb::BaseSolver::_active_vertices.

Referenced by solveImpl().

```
16.35.4.31 void teb::BaseSolver::setConfig ( const Config * config ) [inline], [inherited]
```

Remarks

This function is called from the TEB class within setSolver method.

Parameters

config	Pointer to Config object.
--------	---------------------------

Definition at line 49 of file base solver.h.

References teb::BaseSolver::cfg.

Referenced by teb::TebController< p, q >::setSolver().

The method copies pointers to the active vertices and edges (objectives, equality constraints and inequality constraints) and calls the actual solver with solvelmpl().

Todo Split initWorkspaces into init and update phase in order to hot-start from previous initializations.

Parameters

optimizable	pointer to the HyperGraph that should be solved
graph	

Definition at line 61 of file base solver.h.

References teb::BaseSolver::_active_vertices, teb::BaseSolver::_equalities, teb::BaseSolver::_equalities_dim, teb::BaseSolver::_graph_structure_modified, teb::BaseSolver::_inequalities, teb::BaseSolver::_inequalities_dim, teb::BaseSolver::_no_vert_backups, teb::BaseSolver::_objective_dim, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives, teb::BaseSolver::_objectives(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::getDimLequalities(), teb::BaseSolver::initWorkspaces(), teb::BaseSolver::solve-limpl().

```
16.35.4.33 virtual bool teb::SolverSQPDense::solvelmpl() [inline], [protected], [virtual]
```

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolverNonlinearProgramDense.

Definition at line 63 of file solver_sqp_dense_backup.h.

References _A, _delta, _dmultiplier_eq, _dmultiplier_ineq, teb::BaseSolver::_equalities_dim, teb::BaseSolverNonlinearProgramDense::_equality_values, teb::BaseSolverNonlinearProgramDense::_inequality_values, teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian, _lb, teb::BaseSolverNonlinearProgramDense::_multiplier_eq, teb::BaseSolverNonlinearProgramDense::_multiplier_ineq, teb::BaseSolverNonlinearProgramDense::_objective_gradient, teb::BaseSolver::_opt_vec_dim, _qdual, _ub, teb::BaseSolver::applyIncrement(), teb::BaseSolver::backupVertices(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), calculateMerit(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), initSolverWorkspace(), PRINT_DEBUG, and teb::BaseSolver::restoreVerticesButKeepBackup().

16.35.4.34 virtual bool teb::SolverSQPDense::solveImpl() [inline], [protected], [virtual]

Store results to the vertices of the active vertices container.

Return values

true	optimization was successfull.
false	optimization was not successfull.

Implements teb::BaseSolverNonlinearProgramDense.

Definition at line 86 of file solver_sqp_dense.h.

References _A, _delta, _dmultiplier_eq, _dmultiplier_ineq, teb::BaseSolver::_equalities_dim, teb::BaseSolver-NonlinearProgramDense:: equality values, teb::BaseSolver:: graph structure modified, increment, teb::Base-Solver:: inequalities dim, teb::BaseSolverNonlinearProgramDense:: inequality values, teb::BaseSolverNonlinear-ProgramDense::_lagrangian_hessian, _lb, _merit_alpha, teb::BaseSolverNonlinearProgramDense::_multiplier_eq, teb::BaseSolverNonlinearProgramDense::_multiplier_ineq, teb::BaseSolverNonlinearProgramDense::_objective_gradient, _qdual, _qsolver, _ub, teb::BaseSolver::applyIncrement(), teb::BaseSolver::backupVertices(), teb::Config-::Optim::Solver::NonlinearProgram::LineSearch::beta, teb::BLOCK BFGS, teb::BaseSolverNonlinearProgram-Dense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValue-Vector(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::buildObjective-Gradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverNonlinearProgram-Dense::calculateLagrangianGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), calculateMerit(), calculateMeritDerivative(), teb::BaseSolver::cfg, checkConvergence(), teb::BaseSolver::discard-BackupVertices(), teb::FULL_BFGS, teb::FULL_BFGS_WITH_STRUCTURE_FILTER, teb::Config::Optim::Solver-::NonlinearProgram::hessian, teb::Config::Optim::Solver::NonlinearProgram::Hessian::hessian method, teb::Base-SolverNonlinearProgramDense::initHessianBFGS(), teb::BaseSolverNonlinearProgramDense::initializeLagrange-Multiplier(), initSolverWorkspace(), teb::Config::Optim::Solver::NonlinearProgram::linesearch, teb::Config::Optim-::Solver::nonlin_prog, teb::Config::optim, PRINT_DEBUG, PRINT_DEBUG ONCE, teb::BaseSolver::restore-VerticesButKeepBackup(), teb::Config::Optim::Solver::NonlinearProgram::LineSearch::sigma, and teb::Config::-Optim::solver.

16.35.5 Member Data Documentation

16.35.5.1 Eigen::Matrix < double,-1,-1, Eigen::RowMajor > teb::SolverSQPDense::_A [protected]

Definition at line 284 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.2 VertexContainer* **teb::BaseSolver::_active_vertices** = **nullptr** [protected], [inherited]

Definition at line 233 of file base_solver.h.

Referenced by teb:: BaseSolver:: applyIncrement(), teb:: BaseSolver:: applyOptVec(), teb:: BaseSolver:: backup-Vertices(), teb:: BaseSolver:: discardBackupVertices(), teb:: BaseSolver:: getOptVecCopy(), teb:: BaseSolver:: getOptVecDimension(), teb:: BaseSolver:: restoreVertices(), teb:: BaseSolver:: restoreVerticesButKeepBackup(), and teb:: BaseSolver:: solve().

16.35.5.3 Eigen::VectorXd teb::SolverSQPDense::_delta [protected]

Definition at line 288 of file solver_sqp_dense.h.

Referenced by calculateMerit(), calculateMeritDerivative(), initSolverWorkspace(), and solveImpl().

16.35.5.4 Eigen::Map < Eigen::VectorXd > teb::SolverSQPDense::_dmultiplier_eq = Eigen::Map < Eigen::VectorXd > (nullptr,0) [protected]

Definition at line 290 of file solver_sqp_dense.h.

 $Referenced \ by \ in it Solver Work space (), \ and \ solve Impl().$

16.35.5.5 Eigen::Map < Eigen::VectorXd > teb::SolverSQPDense::_dmultiplier_ineq = Eigen::Map < Eigen::VectorXd > (nullptr,0) [protected]

Definition at line 291 of file solver sqp dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.6 EdgeContainer* teb::BaseSolver::_equalities = nullptr [protected], [inherited]

Definition at line 235 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimEqualities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), and teb::BaseSolver::solve().

16.35.5.7 int teb::BaseSolver::_equalities_dim = -1 [protected], [inherited]

Definition at line 240 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculate-LagrangianHessianNumerically(), calculateMeritDerivative(), teb::SolverNloptPackage::getEqConstrDimFrom-Storage(), teb::BaseSolverLeastSquares::getValueDimension(), teb::BaseSolverNonlinearProgramDense-::initializeLagrangeMultiplier(), initSolverWorkspace(), teb::BaseSolver::solve(), and solveImpl().

16.35.5.8 MatMapRowMajor teb::BaseSolverNonlinearProgramDense::_equality_jacobian = MatMapRowMajor(nullptr,0,0) [protected], [inherited]

Definition at line 117 of file base_solver_nonlinear_program_dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianGradient(), calculateMeritDerivative(), and initSolverWorkspace().

16.35.5.9 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_equality_values [protected], [inherited]

Definition at line 113 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculate-LagrangianHessianNumerically(), calculateMerit(), calculateMeritDerivative(), checkConvergence(), initSolver-Workspace(), and solveImpl().

16.35.5.10 bool teb::BaseSolver::_graph_structure_modified = true [protected], [inherited]

In addition some solver can implement hotstarting and decide whether hotstart or not using this flag. It is obtained from the graph passed to the solve() method.

Definition at line 250 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::init-Workspaces(), teb::BaseSolverNonlinearProgramDense::init-Works

```
16.35.5.11 Eigen::VectorXd teb::SolverSQPDense::_increment [protected]
```

Definition at line 294 of file solver_sqp_dense.h.

Referenced by solveImpl().

```
16.35.5.12 EdgeContainer* teb::BaseSolver::_inequalities = nullptr [protected], [inherited]
```

Definition at line 236 of file base_solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverNloptPackage::constraintsInEq(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimInequalities(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolver::solve().

```
16.35.5.13 int teb::BaseSolver::_inequalities_dim = -1 [protected], [inherited]
```

Definition at line 241 of file base solver.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), calculateMeritDerivative(), teb::BaseSolverLeastSquares::getValue-Dimension(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), initSolverWorkspace(), teb::BaseSolver::solve(), and solveImpl().

```
16.35.5.14 MatMapRowMajor teb::BaseSolverNonlinearProgramDense::_inequality_jacobian = MatMapRowMajor(nullptr,0,0) [protected], [inherited]
```

Definition at line 118 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianGradient(), calculateMeritDerivative(), and initSolverWorkspace().

```
16.35.5.15 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_inequality_values [protected], [inherited]
```

Definition at line 114 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), calculateMerit(), calculateMeritDerivative(), initSolverWorkspace(), and solveImpl().

```
16.35.5.16 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient [protected], [inherited]
```

Definition at line 120 of file base_solver_nonlinear_program_dense.h.

Referenced by teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Gradient (), teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Hessian Full BFGS (), check Convergence (), and teb:: Base Solver Nonlinear Program Dense:: init Hessian BFGS ().

16.35.5.17 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_lagrangian_gradient_backup [protected], [inherited]

Definition at line 121 of file base_solver_nonlinear_program_dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS(), and teb::BaseSolverNonlinearProgramDense::initHessianBFGS().

16.35.5.18 Eigen::Matrix<double,-1,-1,Eigen::RowMajor> teb::BaseSolverNonlinearProgramDense::_lagrangian_hessian [protected], [inherited]

Definition at line 122 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::BaseSolverNonlinearProgramDense::initHessianBFGS(), and solveImpl().

16.35.5.19 Eigen::VectorXd teb::SolverSQPDense::_lb [protected]

Definition at line 285 of file solver sqp dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.20 double teb::SolverSQPDense::_merit_alpha = 0 [protected]

Definition at line 296 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.21 Eigen::VectorXd teb::SolverSQPDense::_merit_grad [protected]

Definition at line 292 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace().

16.35.5.22 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_multiplier_eq [protected], [inherited]

Definition at line 125 of file base_solver_nonlinear_program_dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::BaseSolverNonlinearProgramDense::initializeLagrangeMultiplier(), and solveImpl().

16.35.5.23 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_multiplier_ineq [protected], [inherited]

Definition at line 124 of file base_solver_nonlinear_program_dense.h.

Referenced by teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Gradient (), teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Hessian Numerically (), teb:: Base Solver Nonlinear Program Dense:: initialize Lagrange Multiplier (), and solve Impl().

16.35.5.24 unsigned int teb::BaseSolver::_no_vert_backups = 0 [protected], [inherited]

Definition at line 243 of file base_solver.h.

Referenced by teb::BaseSolver::backupVertices(), teb::BaseSolver::discardBackupVertices(), teb::BaseSolver::restoreVertices(), and teb::BaseSolver::solve().

16.35.5.25 int teb::BaseSolver::_objective_dim = -1 [protected], [inherited]

Definition at line 239 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::getValueDimension(), and teb::BaseSolver::solve().

16.35.5.26 Eigen::VectorXd teb::BaseSolverNonlinearProgramDense::_objective_gradient [protected], [inherited]

Definition at line 116 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianGradient(), calculateMerit(), calculateMeritDerivative(), and solveImpl().

16.35.5.27 double teb::BaseSolverNonlinearProgramDense::_objective_value [protected], [inherited]

Definition at line 112 of file base solver nonlinear program dense.h.

Referenced by teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), and calculateMerit().

16.35.5.28 EdgeContainer* teb::BaseSolver::_objectives = nullptr [protected], [inherited]

Definition at line 234 of file base_solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::buildObjectiveValue(), teb::BaseSolverLeastSquares::buildValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::SolverLevenbergMarquardt-EigenSparse::countJacobianColNNZ(), teb::BaseSolver::getDimObjectives(), teb::BaseSolverLeastSquares::initWorkspaces(), teb::SolverNloptPackage::initWorkspaces(), teb::BaseSolverNonlinearProgramDense::initWorkspaces(), teb::SolverNloptPackage::objectives(), and teb::BaseSolver::solve().

16.35.5.29 int teb::BaseSolver::_opt_vec_dim = -1 [protected], [inherited]

Definition at line 238 of file base solver.h.

Referenced by teb::SolverLevenbergMarquardtEigenSparse::allocateSparseJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequality-ConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ(), teb::BaseSolver::getOpt-VecCopy(), teb::SolverNonlinearProgramDense::init-HessianBFGS(), initSolverWorkspace(), teb::BaseSolver::solve(), teb::SolverLevenbergMarquardtEigenDense::solveImpl(), teb::SolverLevenbergMarquardtEigenSparse::solveImpl(), and solveImpl().

16.35.5.30 Eigen::VectorXd teb::SolverSQPDense::_qdual [protected]

Definition at line 289 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.31 qpOASES::SQProblem teb::SolverSQPDense::_qsolver [protected]

Definition at line 282 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace(), solveImpl(), and SolverSQPDense().

16.35.5.32 Eigen::VectorXd teb::SolverSQPDense::_ub [protected]

Definition at line 286 of file solver_sqp_dense.h.

Referenced by initSolverWorkspace(), and solveImpl().

16.35.5.33 const Config* teb::BaseSolver::cfg = nullptr [inherited]

See Also

setConfig()

Definition at line 95 of file base_solver.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights(), teb::SolverLevenbergMarquardtEigenDense::build-Jacobian(), teb::BaseSolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverLeastSquares::build-ValueVector(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::BaseSolverNonlinear-ProgramDense::calculateLagrangianHessianFullBFGS(), teb::BaseSolverNonlinearProgramDense::initHessianBF-GS(), initSolverWorkspace(), teb::BaseSolver::setConfig(), and solveImpl().

16.35.5.34 teb::BaseSolver::EIGEN_MAKE_ALIGNED_OPERATOR_NEW [inherited]

Definition at line 253 of file base_solver.h.

The documentation for this class was generated from the following files:

- solver_sqp_dense.h
- solver_sqp_dense_backup.h

16.36 teb::StateVertex Class Template Reference

Vertex that contains the StateVector.

#include <teb_vertices.h>

Inheritance diagram for teb::StateVertex:

Public Types

- using StateVector = Eigen::Matrix < double, p, 1 >
 Typedef for state vector with p states [p x 1].
- using ScalarType = Eigen::Matrix< double, 1, 1 >

Typedef for a 1D-scalar value represented as Eigen::Matrix type [1 x 1].

using FixedStates = Eigen::Matrix< bool, p, 1 >

Typedef for logical mask that stores fixed and unfixed states [p x 1].

using BackupStackType = std::stack< StateVector, std::vector< StateVector, Eigen::aligned_allocator<
 StateVector > > >

Typdef for the backup stack.

using VertexContainer = std::vector< VertexType * >

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

Public Member Functions

· StateVertex ()

Default constructor: states vector initialized to zero.

StateVertex (const Eigen::Ref< const StateVector > &states)

Construct StateVertex with predefined state values.

• StateVertex (const double *states)

Construct StateVertex with predefined state values and predefined control inputs.

StateVertex (const StateVertex &obj)

Copy constructor.

• virtual int dimension () const

Return number of elements/values/components stored in this vertex.

virtual int dimensionFree () const

Return only the dimension of free (unfixed) variables.

virtual void plus (const VertexType *rhs)

Define the increment for the vertex: x = x + rhs.

virtual void plus (const double *rhs)

Define the increment for the vertex: x = x + rhs (rhs[] with dimension()=p+q values)

virtual void plusFree (const double *rhs)

Define the increment for the vertex: x = x + rhs (But only add FREE variables, rhs[] with dimensionFree() values).

virtual void setFree (const double *rhs)

Overwrite all free variables with the values given by rhs (rhs[] with dimensionFree() values).

virtual void getDataFree (double *target_vec) const

Return a copy of the free (unfixed) values as a single array (length: dimensionFree()).

virtual const double & getData (unsigned int idx) const

Return pointer to data with the index i dx).

const StateVector & states () const

Get StateVector (read-only).

• StateVector & states ()

Get StateVector.

virtual void setStates (const Eigen::Ref< const StateVector > &s)

Set or update StateVector.

• virtual void setStates (double state)

Set or update only first component of the StateVector (useful for 1d states).

const FixedStates & fixed_states () const

Get logical map that defines fixed and unfixed states (fixed = true).

void setFixedAll (bool fixed)

Set all states of this object fixed or unfixed.

void setFixedState (unsigned int state_idx, bool fixed)

Set a single component of the StateVector to fixed/unfixed.

• void setFixedStates (bool fixed)

Set all states of the StateVector to fixed/unfixed.

void setFixedStates (const bool *fixed)

Set selected states of the StateVector to fixed/unfixed at once.

void setFixedStates (const Eigen::Ref< const FixedStates > &fixed_states)

Set selected states of the StateVector to fixed/unfixed at once (Eigen version).

virtual bool isFixedAll () const

return true, if ALL values of this vertex are fixed and therefore are not necessary for optimization.

• bool isFixedAny () const

return true, if ANY element/value/component of this vertex is fixed and therefore the vertex is relevant for optimization.

virtual bool isFixedComp (int idx) const

Check if selected element of the StateVector is fixed.

• virtual void push ()

This function should store all values into a internal backup stack.

· virtual void pop ()

This function should restore the previously stored values of the backup stack and remove them from the stack.

virtual void top ()

This function should restore the previously stored values of the backup stack WITHOUT removing them from the stack.

virtual void discardTop ()

This function should delete the previously made backup from the stack without restoring it.

virtual unsigned int stackSize () const

This function should return the current size/number of backups of the backup stack.

- StateVertex & operator= (const StateVertex &rhs)
- void setOptVecIdx (int opt_vec_idx)

Update the position of the first value of this vertex inside the optimization vector / Hessian.

int getOptVecIdx () const

Get the position of the first value of this Vertex inside the optimization vector / Hessian.

Static Public Attributes

• static const int DimStates = p

Number of states / Size of the state vector as static variable.

• static const int Dimension = p

Number of total values stored in this vertex (number of state vector components).

Protected Attributes

StateVector _states

State vector with p states [p x 1].

BackupStackType backup

backup stack (store and restore states).

• int _dimension = p

Store dimension for all values stored (p states)

• FixedStates _fixed_states = FixedStates::Constant(false)

Mask that stores fixed and unfixed states [p x 1] true: fixed, false: free.

• int opt vec idx = -1

Start-index in optimization vector (idx in hessian (row/column) and jacobian (column))

Friends

- bool operator== (const StateVertex &lhs, const StateVertex &rhs)
- bool operator!= (const StateVertex &lhs, const StateVertex &rhs)
- std::ostream & operator<< (std::ostream &os, const StateVertex< p > &state)

Print state vector using std::ostream.

16.36.1 Detailed Description

template<int p>class teb::StateVertex

This class wraps the discrete state vector $\mathbf{x}_k \in \mathbb{R}^p$ into a vertex type for the hyper-graph.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

ControlVertex, VertexType, TimeDiff, BaseEdge

Template Parameters

р	Number of states / Size of the state vector

Definition at line 25 of file teb vertices.h.

16.36.2 Member Typedef Documentation

16.36.2.1 template<int p> using teb::StateVertex::BackupStackType = std::stack<StateVector, std::vector<StateVector, Eigen::aligned_allocator<StateVector>>>

Definition at line 42 of file teb_vertices.h.

 $16.36.2.2 \quad template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: State Vertex :: Fixed States = Eigen:: Matrix < bool, \ p, \ 1 > template < int \ p > using \ teb:: States using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix using \ teb:: States :: Fixed States = Eigen:: Matrix :: Fixed States = Eigen:: Matrix :: Fixed States = Eigen:: Matrix : Fixed States = Eigen::$

Definition at line 36 of file teb_vertices.h.

16.36.2.3 template < int p > using teb::StateVertex ::ScalarType = Eigen::Matrix < double, 1, 1>

Definition at line 34 of file teb vertices.h.

16.36.2.4 template < int p > using teb::StateVertex ::StateVector = Eigen::Matrix < double, p, 1 >

Definition at line 32 of file teb_vertices.h.

16.36.2.5 using teb::VertexType::VertexContainer = std::vector < VertexType* > [inherited]

Definition at line 33 of file graph.h.

16.36.3 Constructor & Destructor Documentation

16.36.3.1 template<int p> teb::StateVertex::StateVertex() [inline]

Definition at line 50 of file teb vertices.h.

16.36.3.2 template < int p> teb::StateVertex< p>::StateVertex(const Eigen::Ref< const StateVector> & states) [inline]

Parameters

states Eigen::Vector with p states.

Definition at line 56 of file teb_vertices.h.

16.36.3.3 template < int p > teb::StateVertex ::StateVertex (const double * states) [inline]

Parameters

states double array with p states.

Definition at line 62 of file teb_vertices.h.

16.36.3.4 template < int p > teb::StateVertex ::StateVertex (const StateVertex & obj) [inline]

Parameters

obj Object of type StateVertex *

Definition at line 70 of file teb_vertices.h.

 $References\ teb::StateVertex ::_fixed_states,\ and\ teb::StateVertex ::fixed_states().$

16.36.4 Member Function Documentation

16.36.4.1 template < int p > virtual int teb::StateVertex ::dimension() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 79 of file teb vertices.h.

16.36.4.2 template < int p > virtual int teb::StateVertex ::dimensionFree() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 81 of file teb vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.3 template < int p > virtual void teb::StateVertex ::discardTop() [inline], [virtual]

Implements teb::VertexType.

Definition at line 213 of file teb_vertices.h.

 $References\ teb::StateVertex ::_backup.$

16.36.4.4 template < int p > const FixedStates& teb::StateVertex ::fixed_states() const [inline]

Returns

logical map (p x 1 vector of booleans

Definition at line 152 of file teb_vertices.h.

References teb::StateVertex::_fixed_states.

 $\label{lem:stateVertex} Referenced \ by \ teb::StateVertex ::setFixedStates(), \ and \ teb::StateStates(), \ and \ teb::StateStates(), \ and \ teb::States(), \ and \ teb::States$

16.36.4.5 template < int p > virtual const double& teb::StateVertex ::getData (unsigned int idx) const [inline], [virtual]

Implements teb::VertexType.

Definition at line 139 of file teb_vertices.h.

References teb::StateVertex::_states.

16.36.4.6 template < int p > virtual void teb::StateVertex ::getDataFree (double * target_vec) const [inline], [virtual]

Implements teb::VertexType.

Definition at line 126 of file teb_vertices.h.

References teb::StateVertex ::_states, and teb::StateVertex ::isFixedComp().

16.36.4.7 int teb::VertexType::getOptVecldx()const [inline],[inherited]

Returns

position of the first element of this vertex.

Definition at line 59 of file graph.h.

References teb::VertexType::_opt_vec_idx.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), and teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ().

16.36.4.8 template < int p > virtual bool teb::StateVertex ::isFixedAll() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 190 of file teb_vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.9 template < int p > bool teb::StateVertex ::isFixedAny() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 191 of file teb vertices.h.

References teb::StateVertex::_fixed_states.

```
16.36.4.10 template<int p> virtual bool teb::StateVertex::isFixedComp( int idx ) const [inline], [virtual]
```

Parameters

idx	index to element in the StateVector

Returns

true if element with index state idx is fixed.

Implements teb::VertexType.

Definition at line 198 of file teb vertices.h.

References teb::StateVertex::_fixed_states.

Referenced by teb::StateVertex::getDataFree(), teb::StateVertex::setFree(), and teb::StateVertex::setFree().

16.36.4.11 template < int p> StateVertex< p> & teb::StateVertex< p>::operator=(const StateVertex< p> & rhs) [inline]

Definition at line 218 of file teb_vertices.h.

References teb::StateVertex::_fixed_states, teb::StateVertex::_states, teb::StateVertex::fixed_states(), and teb::StateVertex::states().

16.36.4.12 template<int p> virtual void teb::StateVertex< p>::plus (const VertexType * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 84 of file teb_vertices.h.

References teb::StateVertex::_states, and teb::StateVertex::states().

16.36.4.13 template < int p > virtual void teb::StateVertex ::plus (const double * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 91 of file teb vertices.h.

References teb::StateVertex::_states.

16.36.4.14 template < int p> virtual void teb::StateVertex< p>::plusFree (const double * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 97 of file teb_vertices.h.

References teb::StateVertex::_states, and teb::StateVertex::isFixedComp().

16.36.4.15 template < int p > virtual void teb::StateVertex ::pop() [inline], [virtual]

Implements teb::VertexType.

Definition at line 203 of file teb vertices.h.

References teb::StateVertex< p>::_backup, and teb::StateVertex< p>::top().

16.36.4.16 template < int p > virtual void teb::StateVertex ::push() [inline], [virtual]

Implements teb::VertexType.

Definition at line 202 of file teb_vertices.h.

References teb::StateVertex:: backup, and teb::StateVertex:: states.

16.36.4.17 template<int p> void teb::StateVertex::setFixedAll(bool fixed) [inline]

Parameters

fixed	set to true in order to fix all p states

Definition at line 158 of file teb_vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.18 template<int p> void teb::StateVertex::setFixedState (unsigned int state_idx, bool fixed) [inline]

Parameters

state_idx	index of the underlying StateVector component that should be fixed.
fixed	set to true in order to fix the selected state.

Definition at line 169 of file teb_vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.19 template < int p > void teb::StateVertex ::setFixedStates (bool fixed) [inline]

Parameters

fixed	set to true in order to fix all p states.

Definition at line 175 of file teb vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.20 template < int p > void teb::StateVertex ::setFixedStates (const bool * fixed) [inline]

Parameters

fixed	boolean array with p elements in which each true sets the corresponding state of the State-
	Vector to fixed.

Definition at line 181 of file teb_vertices.h.

References teb::StateVertex::_fixed_states.

16.36.4.21 template<int p> void teb::StateVertex::setFixedStates (const Eigen::Ref< const FixedStates > & fixed_states) [inline]

Parameters

fixed_states | Eigen::Vector with p booleans in which each true sets the corresponding state of the State-Vector to fixed.

Definition at line 187 of file teb vertices.h.

References teb::StateVertex ::_fixed_states, and teb::StateVertex ::fixed_states().

Implements teb::VertexType.

Definition at line 111 of file teb_vertices.h.

 $References\ teb::StateVertex ::_states,\ and\ teb::StateVertex ::isFixedComp().$

16.36.4.23 void teb::VertexType::setOptVecIdx (int opt_vec_idx) [inline], [inherited]

Parameters

```
opt_vec_idx | index of the first value
```

Definition at line 53 of file graph.h.

References teb::VertexType::_opt_vec_idx.

16.36.4.24 template < int p> virtual void teb::StateVertex< p>::setStates (const Eigen::Ref< const StateVector> & s) [inline], [virtual]

Parameters

```
s state vector [p x 1]
```

Definition at line 150 of file teb_vertices.h.

References teb::StateVertex::_states.

 $16.36.4.25 \quad template < int \ p > virtual \ void \ teb::State Vertex ::setStates (\ double \ \textit{state}\) \quad \text{[inline], [virtual]}$

Parameters

```
state | single state component.
```

Definition at line 151 of file teb_vertices.h.

 $References\ teb::StateVertex ::_states.$

Implements teb::VertexType.

Definition at line 214 of file teb_vertices.h.

References teb::StateVertex::_backup.

16.36.4.27 template<int p> const StateVector& teb::StateVertex::states() const [inline]

Returns

state vector [p x 1]

Definition at line 148 of file teb_vertices.h.

References teb::StateVertex:: states.

Referenced by teb::EdgeSystemDynamics< p, q, central >::computeValues(), teb::EdgeQuadraticForm< p, q >::computeValues(), teb::StateVertex::plus().

16.36.4.28 template < int p > State Vector & teb::State Vertex ::states () [inline]

Returns

state vector [p x 1]

Definition at line 149 of file teb_vertices.h.

References teb::StateVertex::_states.

16.36.4.29 template <int p > virtual void teb::StateVertex ::top() [inline], [virtual]

Implements teb::VertexType.

Definition at line 208 of file teb vertices.h.

References teb::StateVertex::_states.

Referenced by teb::StateVertex::pop().

16.36.5 Friends And Related Function Documentation

16.36.5.1 template < int p> bool operator!= (const StateVertex< p> & Ihs, const StateVertex< p> & rhs) [friend]

Definition at line 235 of file teb_vertices.h.

16.36.5.2 template < int p > std::ostream & os, const StateVertex & state) [friend]

Parameters

os	output stream object
state	vector specific StateVertex object

Returns

output stream object including a formatted string containing the state vector.

Definition at line 246 of file teb_vertices.h.

16.36.5.3 template < int p> bool operator== (const StateVertex< p> & Ihs, const StateVertex< p> & rhs) [friend]

Definition at line 230 of file teb_vertices.h.

16.36.6 Member Data Documentation

16.36.6.1 template < int p > BackupStackType teb::StateVertex ::_backup [protected]

Definition at line 254 of file teb vertices.h.

Referenced by teb::StateVertex::discardTop(), teb::StateVertex::pop(), teb::StateVertex::push(), teb::StateVertex::stackSize(), and teb::StateVertex::top().

16.36.6.2 template < int p > int teb::StateVertex ::_dimension = p [protected]

Definition at line 256 of file teb vertices.h.

16.36.6.3 template < int p > FixedStates teb::StateVertex ::_fixed_states = FixedStates::Constant(false)

[protected]

Definition at line 257 of file teb_vertices.h.

Referenced by teb::StateVertex::dimensionFree(), teb::StateVertex::fixed_states(), teb::StateVertex::isFixedAll(), teb::StateVertex::isFixedAny(), teb::StateVertex::operator=(), teb::StateVertex::setFixedAll(), teb::StateVertex::setFixedState(), teb::StateVertex::setFixedState(), teb::StateVertex::setFixedState(), and teb::StateVertex::setFixedState().

16.36.6.4 int teb::VertexType::_opt_vec_idx = -1 [protected], [inherited]

Definition at line 69 of file graph.h.

Referenced by teb::VertexType::getOptVecIdx(), and teb::VertexType::setOptVecIdx().

 $\textbf{16.36.6.5} \quad \textbf{template} < \textbf{int p} > \textbf{StateVector teb::StateVertex} < \textbf{p} > \textbf{::_states} \quad \texttt{[protected]}$

Definition at line 253 of file teb_vertices.h.

Referenced by teb::StateVertex::getData(), teb::StateVertex::getDataFree(), teb::StateVertex::operator=(), teb::StateVertex::plus(), teb::StateVertex::plusFree(), teb::StateVertex::push(), teb::StateVertex::sta

16.36.6.6 template < int p > const int teb::StateVertex ::Dimension = p [static]

Definition at line 29 of file teb vertices.h.

16.36.6.7 template<int p> const int teb::StateVertex::DimStates = p [static]

Definition at line 28 of file teb_vertices.h.

The documentation for this class was generated from the following file:

· teb vertices.h

16.37 teb::SystemDynamics < p, q > Class Template Reference

Helper class for modeling nonlinear dynamic systems.

#include <system_dynamics.h>

Public Types

• using StateVector = Eigen::Matrix< double, p, 1 >

Typedef for state vector with p states [$p \times 1$].

using ControlVector = Eigen::Matrix< double, q, 1 >

Typedef for control input vector with q controls $[q \times 1]$.

Public Member Functions

• SystemDynamics ()

Empty Constructor.

virtual ∼SystemDynamics ()

Empty Destructor.

 virtual StateVector stateSpaceModel (const Eigen::Ref< const StateVector > &x, const Eigen::Ref< const ControlVector > &u) const =0

Implement the nonlinear state space model $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$ here.

Static Public Attributes

• static const int DimStates = p

Store number of states as static variable.

• static const int DimControls = q

Store number of control inputs as static variable.

Protected Member Functions

StateVector finiteElemFwdEuler (const Eigen::Ref< const StateVector > &x1, const Eigen::Ref< const StateVector > &x2, double dt)

xdot = stateSpaceModel(x,u)

 StateVector finiteElemCentralDiff (const Eigen::Ref< const StateVector > &x_km1, const Eigen::Ref< const StateVector > &x_kp1, double dt)

Central difference approximation for continuous-time derivatives.

Friends

- template<int pf, int qf, bool cf> class EdgeSystemDynamics
- template<int pf, int qf> class Simulator

16.37.1 Detailed Description

template<int p, int q>class teb::SystemDynamics< p, q>

This abstract class provides an interface for modeling dynamic systems utilizing nonlinear state space equations:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

 $\mathbf{x} \in \mathbb{R}^p$ denotes the state vector and $\mathbf{u} \in \mathbb{R}^q$ denotes the control input vector. The system dynamics are modeled in continuous time-domain and discretized by the program itself.

- E.g.the TebController class discretizes the system equations using teb::FiniteDifferences (see EdgeSystem-Dynamics, finiteElemFwdEuler() and finiteElemCentralDiff()).
- And the Simulator class is able to apply different numerical integration schemes to the state space model implemented here (see NumericalIntegrator).

Todo Methods/Intefrace for jacobian and hessian calculation

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Template Parameters

p	Number of state variables
q	Number of input variables

Examples:

integrator_system1.cpp, integrator_system2.cpp, integrator_system_classic_mpc.cpp, integrator_system-_mex.cpp, integrator_system_sfun.cpp, linear_system_ode.cpp, linear_system_ode_ctrl_comparison.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, rocket_system.cpp, and van_der_pol_system.cpp.

Definition at line 34 of file system dynamics.h.

16.37.2 Member Typedef Documentation

16.37.2.1 template < int p, int q > using teb::SystemDynamics < p, q >::ControlVector = Eigen::Matrix < double, q, 1 >

Definition at line 50 of file system_dynamics.h.

16.37.2.2 template < int p, int q > using teb::SystemDynamics < p, q >::StateVector = Eigen::Matrix < double, p, 1 >

Definition at line 48 of file system_dynamics.h.

16.37.3 Constructor & Destructor Documentation

16.37.3.1 template < int p, int q > teb::SystemDynamics < p, q >::SystemDynamics () [inline]

Definition at line 52 of file system_dynamics.h.

16.37.3.2 template < int p, int q> virtual teb::SystemDynamics < p, q>:: \sim SystemDynamics () [inline], [virtual]

Definition at line 53 of file system dynamics.h.

16.37.4 Member Function Documentation

Approximate derivatives using $\dot{x}(t) = \frac{x_{k+1} - x_{k-1}}{2\Delta T}$

Parameters

x_km1	Discrete state vector \mathbf{x}_{k-1} [p x 1]
x_kp1	Discrete state vector \mathbf{x}_{k+1} [p x 1]
dt	Time interval / discretization step width ΔT

Returns

Finite difference approximation

Definition at line 107 of file system_dynamics.h.

```
16.37.4.2 template < int p, int q > StateVector teb::SystemDynamics < p, q >::finiteElemFwdEuler ( const Eigen::Ref < const StateVector > & x1, const Eigen::Ref < const StateVector > & x2, double dt ) [inline], [protected]
```

Forward difference approximation for continuous-time derivatives

Approximate derivatives using $\dot{x}(t) = \frac{x_{k+1} - x_k}{\Delta T}$

Parameters

x1	Discrete state vector \mathbf{x}_k [p x 1]
x2	Discrete state vector \mathbf{x}_{k+1} [p x 1]
dt	Time interval / discretization step width ΔT

Returns

Finite difference approximation

Definition at line 91 of file system_dynamics.h.

```
16.37.4.3 template < int p, int q > virtual StateVector teb::SystemDynamics < p, q >::stateSpaceModel ( const Eigen::Ref < const StateVector > & x, const Eigen::Ref < const ControlVector > & u ) const  [pure virtual]
```

This method defines the state space model of the dedicated dynamic system.

Implement only the right hand side $f(\cdot)$ of $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$ and return the equation as a StateVector type.

```
E.g. \dot{x} = x + u \ x, u \in \mathbb{R} (with p = 1 and q = 1)
```

Parameters

X	State vector x [p x 1]
и	Control input vector u [q x 1]

Returns

```
f(\mathbf{x}, \mathbf{u}) as vector [p x 1]
```

Examples:

integrator_system1.cpp, integrator_system2.cpp, integrator_system_classic_mpc.cpp, integrator_system-_mex.cpp, integrator_system_sfun.cpp, linear_system_ode.cpp, linear_system_ode_ctrl_comparison.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, rocket_system.cpp, and van_der_pol_system.cpp. Referenced by teb::ExplicitEuler < p, q >::integrate(), teb::RungeKuttaClassic < p, q >::integrate(), and teb::RungeKutta5thOrder < p, q >::integrate().

16.37.5 Friends And Related Function Documentation

16.37.5.1 template < int p, int q> template < int pf, int qf, bool cf> friend class EdgeSystemDynamics [friend]

Definition at line 37 of file system dynamics.h.

16.37.5.2 template < int p, int q > template < int pf, int qf > friend class Simulator [friend]

Definition at line 40 of file system_dynamics.h.

16.37.6 Member Data Documentation

16.37.6.1 template < int p, int q > const int teb::SystemDynamics < p, q >::DimControls = q [static]

Definition at line 45 of file system_dynamics.h.

16.37.6.2 template < int p, int q > const int teb::SystemDynamics < p, q >::DimStates = p [static]

Definition at line 44 of file system_dynamics.h.

The documentation for this class was generated from the following file:

· system dynamics.h

16.38 teb::Config::Teb Struct Reference

Configurations related to the TEB algorithm.

#include <config.h>

Public Attributes

• unsigned int n_min = 3

Minimum number of samples (states and control input pairs) allowed.

• unsigned int n pre = 20

Initial number of samples (used in TebController::updateGoal()).

unsigned int n_max = 150

Maximum number of samples allowed.

• double dt min = 0.01

Minimum dt (only considered if EdgePositiveTime is activated).

double dt_ref = 0.1

Desired reference sampling time (the TEB tries to converge towards dt_ref) (make sure dt_ref>0).

• double dt_hyst = 0.01

Sampling time hysteresis used in resizeTEB to avoid oscillations (default: 0.1*dt_ref).

double goal_dist_force_reinit = 0.5

Force reinit of the trajectory if distance between current and new goal is above threshold.

• unsigned int teb_iter = 5

Number of outer-loop TEB iterations (used for guiding ΔT towards dt_ref, see TebController::optimizeTEB()).

FiniteDifferences diff_method = FiniteDifferences::FORWARD

Select finite difference method for discretizing system dynamics and obtaining ΔT .

```
16.38.1 Detailed Description
```

Definition at line 60 of file config.h.

16.38.2 Member Data Documentation

16.38.2.1 FiniteDifferences teb::Config::Teb::diff_method = FiniteDifferences::FORWARD

Definition at line 70 of file config.h.

16.38.2.2 double teb::Config::Teb::dt_hyst = 0.01

Definition at line 67 of file config.h.

16.38.2.3 double teb::Config::Teb::dt_min = 0.01

Examples:

mobile_robot_teb.cpp.

Definition at line 65 of file config.h.

Referenced by teb::TebController< p, q >::setupHorizon().

16.38.2.4 double teb::Config::Teb::dt_ref = 0.1

Definition at line 66 of file config.h.

Referenced by teb::TebController< p, q >::resetController(), and teb::TebController< p, q >::setupHorizon().

16.38.2.5 double teb::Config::Teb::goal_dist_force_reinit = 0.5

Definition at line 68 of file config.h.

16.38.2.6 unsigned int teb::Config::Teb::n_max = 150

Examples:

mobile_robot_teb.cpp.

Definition at line 64 of file config.h.

16.38.2.7 unsigned int teb::Config::Teb::n_min = 3

Examples:

mobile_robot_teb.cpp.

Definition at line 62 of file config.h.

Referenced by teb::TebController< p, q >::setupHorizon().

16.38.2.8 unsigned int teb::Config::Teb::n_pre = 20

Examples:

mobile_robot_teb.cpp.

Definition at line 63 of file config.h.

Referenced by teb::TebController< p, q >::setupHorizon().

16.38.2.9 unsigned int teb::Config::Teb::teb_iter = 5

Definition at line 69 of file config.h.

Referenced by teb::BaseSolverLeastSquares::adaptWeights().

The documentation for this struct was generated from the following file:

· config.h

16.39 teb::TebController< p, q > Class Template Reference

Main Timed-Elastic-Band controller class.

#include <teb controller.h>

Inheritance diagram for teb::TebController< p, q >:

Public Types

- using StateVector = Eigen::Matrix< double, p, 1 >
 Typedef for state vector with p states [p x 1].
- using ControlVector = Eigen::Matrix< double, q, 1 >

Typedef for control input vector with q controls $[q \times 1]$.

using StateSequence = std::deque < StateVertex < p > >

Typedef for the state sequence that contains all state vertices.

using ControlSequence = std::deque< ControlVertex< q > >

Typedef for the control sequence that contains all control vertices.

• using EdgeContainer = typename EdgeType::EdgeContainer

Typedef for edge containers that stores all edges required for the optimization (Hyper-Graph).

using VertexContainer = typename VertexType::VertexContainer

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

using FixedStates = Eigen::Matrix< bool, p, 1 >

Typedef to represent a fixed/unfixed boolean vector w.r.t. states (StateVector) [p x 1].

Public Member Functions

• TebController (BaseSolver *solver=nullptr)

Default constructor.

TebController (const Config *config, BaseSolver *solver=nullptr)

Extended constructor with config pointer.

virtual ~TebController ()

!

• virtual Eigen::VectorXd firstState () const

Access first state of the TEB sequence.

· const StateVector & firstStateRef () const

Access first state of the TEB sequence.

virtual Eigen::VectorXd lastState () const

Access last state of the TEB sequence.

· const StateVector & lastStateRef () const

Access last state of the TEB sequence.

• virtual Eigen::VectorXd firstControl () const

Access first control input of the TEB sequence (used for MPC)

const ControlVector & firstControlRef () const

Access first control input of the TEB sequence (used for MPC)

• Eigen::VectorXd firstControlSaturated () const

Access saturated first control inputs of the TEB sequence (used for MPC)

const StateSequence & stateSequence () const

Access complete state sequence container.

• const ControlSequence & controlSequence () const

Access complete control input sequence container.

const TimeDiff & dt () const

Access vertex that stores the TEB time difference ΔT .

virtual double getDt () const

Return the TEB time difference ΔT .

virtual unsigned int getN () const

Get current number of discrete state vectors in the state sequence.

· virtual unsigned int getM () const

Get current number of discrete control vectors in the control input sequence.

virtual Eigen::MatrixXd returnControlInputSequence () const

Return the complete control input sequence u_k , k = 1, ..., n - 1.

• const HyperGraph & graph () const

Access optimizable hyper-graph instance (read-only).

virtual void initTrajectory (const Eigen::Ref< const StateVector > &x0, const Eigen::Ref< const StateVector > &xf, unsigned int n)

Initialize trajectory between start x0 and goal xf with n discrete samples.

void resizeTrajectory ()

Resize existing trajectory according to current sample time ΔT .

void resampleTrajectory (unsigned int n_new)

Resample trajectory using linear interpolation.

virtual void updateStart (const Eigen::Ref< const StateVector > &x0)

Set new start state.

virtual void updateGoal (const Eigen::Ref< const StateVector > &xf)

Set new final state.

void removeStateControlInputPair (unsigned int sample_no, bool predict_control=true)

Remove StateVector and ControlVector at index sample_no from the state and control sequences.

void insertStateControlInputPair (unsigned int sample_idx, const Eigen::Ref< const StateVector > &state, const Eigen::Ref< const ControlVector > &control, bool predict_control=true)

Insert State Vector and Control Vector to the state and control sequences at index sample_idx.

• void predictControl (Eigen::Ref< ControlVector > ctrl_out, const Eigen::Ref< const StateVector > &x1, const Eigen::Ref< const StateVector > &x2)

Predict control u that corresponds to the transition from x1 to x2.

void pushBackStateControlInputPair (const Eigen::Ref< const StateVector > &state, const Eigen::Ref< const ControlVector > &control)

Add a state vector \mathbf{x}_k and a control input \mathbf{u}_k to the end of the state and control sequences.

void pushFrontStateControlInputPair (const Eigen::Ref< const StateVector > &state, const Eigen::Ref< const ControlVector > &control)

Add a state vector \mathbf{x}_k and a control input \mathbf{u}_k to the beginning of the state and control sequences.

void setGoalStatesFixedOrUnfixed (const bool *fixed_goal_states)

Set individual goal state vector components fixed or unfixed for optimization.

void setGoalStatesFixedOrUnfixed (const Eigen::Ref< const Eigen::Matrix< bool, p, 1 >> &fixed_goal_states)

Set individual goal state vector components fixed or unfixed for optimization (Eigen version)

void setGoalStatesFixedOrUnfixed (bool all_goal_states_fixed)

Set all goal state vector components fixed or unfixed for optimization.

void setupHorizon (bool fixed goal, bool fixed resolution, int no samples=-1, double dt=-1)

Setup horizon for the underlying optimal control problem.

virtual void resetController ()

Delete all Vertices (State and control input sequences), all Edges (Hyper-Graph, clearEdges()) and reset ΔT to Config::Teb::dt_ref.

virtual void buildOptimizationGraph ()

Build Hyper-Graph for graph based optimization.

virtual void customOptimizationGraph ()

Override to add or modify the hyper-graph created in buildOptimizationGraph()

virtual void customOptimizationGraphHotStart ()

Use this method to apply some changes before hot-starting from previous graph structures.

void initOptimization ()

 ${\it Initialize \ optimiziation - run \ before \ calling \ optimizieTEB()}.$

void optimizeTEB ()

TEB optimization function (includes outer loop and BaseSolver calls).

virtual void step (const double *const x0, const double *const xf, double *ctrl_out=nullptr)

Perform complete MPC step (initialization if necessary or update and optimization)

 void step (const Eigen::Ref< const StateVector > &x0, const Eigen::Ref< const StateVector > &xf, Eigen::-Map< ControlVector > *ctrl_out=nullptr)

Perform complete MPC step (initialization if necessary or update and optimization) (Eigen version)

void activateObjectiveTimeOptimal (bool activate=true)

Activate predefined edge for time-optimal control.

• void activateObjectiveQuadraticForm (double Q, double R, double Qf, bool activate=true)

Activate predefined edge for minimizing the quadratic form.

• void activateControlBounds (const Eigen::Ref< const ControlVector > u_min, const Eigen::Ref< const ControlVector > u_max, bool activate=true)

Activate predefined edge for control input bounds.

• void activateControlBounds (unsigned int control_idx, double u_min, double u_max, bool activate=true)

Activate predefined edge for control input bounds (single component version)

void activateStateBounds (const Eigen::Ref< const StateVector > &x_min, const Eigen::Ref< const StateVector > &x_max, bool activate=true)

Activate predefined edge for state bounds.

void activateStateBounds (unsigned int state idx, double x min, double x max, bool activate=true)

Activate predefined edge for state bounds (single component version)

void setFixedDt (bool fixed)

Fix the TimeDiff ΔT during optimization.

void setSystemDynamics (SystemDynamics < p, q > *system, bool activate=true)

Set system dynamics and activate the predifined equality-constraint-edge.

void setSolver (BaseSolver *solver)

Set algorithm to solve the underlying optimization problem.

Eigen::VectorXd getAbsoluteTimeVec () const

Get vector of absolute times $t = [0, \Delta T, 2\Delta T, \dots, n\Delta T]$.

Eigen::MatrixXd getStateCtrlInfoMat () const

Get TEB states and control inputs in matrix form (Use for debugging).

• Eigen::Matrix< bool, p+q,-1 > getTEBFixedMap () const

Get TEB matrix as bool matrix: true: fixed, false = free (Use for debugging).

Eigen::Matrix< double,-1, 2 > getSampleOptVecldxVMat () const

Get Hessian index (col 1) and number of free variables (col 2) for each VertexType (StateVertex, ControlVertex, TimeDiff) (rowwise).

Public Attributes

const Config * cfg

Store pointer to the Config class.

Static Public Attributes

• static const unsigned int NoStates = p

Store number of states as static variable.

static const unsigned int NoControls = q

Store number of control inputs as static variable.

Protected Member Functions

void setFixedStart (bool fixed)

Fix the complete first StateVector of the state sequence (start state vector).

void setFixedStart (const bool *fixed)

Fix selected components of the first StateVector of the state sequence (start state vector).

void setFixedGoal (bool fixed)

Fix the complete last StateVector of the state sequence (final/goal state vector).

void setFixedGoal (const bool *fixed)

Fix selected components of the last StateVector of the state sequence (final state vector).

void setFixedGoal (const Eigen::Ref< const Eigen::Matrix< bool, p, 1 >> &fixed)

Fix selected components of the last StateVector of the state sequence (final state vector).

void getActiveVertices ()

Collect active vertices and determine the Hessian start index for each vertex (StateVertex, ControlVertex and Time-Diff).

Protected Attributes

StateSequence state seq

Store the complete sequence of state vectors (represented as StateVertex for the representation in a hyper-graph)

ControlSequence ctrl seq

Store the complete sequence of control input vectors (represented as Control Vertex for the representation in a hypergraph)

· TimeDiff _dt

TimeDiff vertex that represents the required transition time between consecutive states and control inputs.

StateVector _goal_backup

Store and backup goal vector (should be changed in all functions that set the goal point).

• int _no_samples = -1

Number of samples for trajectory initialization (if -1, Config::Teb::n_pre is used, see setupHorizon()).

• double dt ref = -1

Reference time difference (discretization) (if -1, Config::Teb::dt_ref is used, see setupHorizon()).

bool optimized

Status flag that is true, if at least one optimization step in optimizeTEB() is performed before.

· HyperGraph graph

Instance of the optimization hyper-graph to store all active vertices and edges (interface for the solver)

FixedStates _fixed_goal_states = FixedStates::Constant(true)

Store information about (un-)/fixed components of the goal StateVector (initialized to fixed, see buildOptimization-Graph()).

• BaseSolver * _solver = nullptr

Pointer to solver class specified using setSolver() or TebController().

• bool <u>_cfg_owned</u> = false

If true, the Config TebController::cfg is owned by this class, that requires its deletion inside ~TebController().

• bool _active_time_optimal = false

if true, EdgeMinimizeTime is activated (see activateObjectiveTimeOptimal()).

• std::tuple < bool, double,

```
double, double > _active_quadratic_form = std::make_tuple(false,1,1,1)
```

Stores activation status of EdgeQuadraticForm.

std::pair< bool,

```
SystemDynamics < p, q > * > _active_system_dynamics = std::make_pair(false,nullptr)
```

Stores activation status of EdgeSystemDynamics and a pointer to the problem specific SystemDynamics object.

std::tuple< bool,

ControlVector, ControlVector > _active_control_bounds = std::make_tuple(false,ControlVector::Constant(IN-F),ControlVector::Constant(-INF))

Stores activation status of EdgeControlBounds and mininum/maximum bounds on each ControlVector.

std::tuple< bool, StateVector,

```
StateVector > _active_state_bounds = std::make_tuple(false, StateVector::Constant(-INF), StateVector::Constant(INF))
```

Stores activation status of EdgeStateBounds and mininum/maximum bounds on each StateVector.

16.39.1 Detailed Description

template<int p, int q>class teb::TebController< p, q>

This class defines the main TEB controller functions required to controll a dynamic system.

The underlying optimization problem is defined as a hyper-graph in which edges define cost/objective functions (see TebController::buildOptimizationGraph and TebController::customOptimizationGraph class methods).

To overcome the creation of custom hyper-graphs, one can use the SystemDynamics class and pass the system to this class using TebController::setSystemDynamics. Other predifined edges are listed below.

The TEB controller requires a dedicated solver (inherited from BaseSolver) that can be passed using the setSolver method.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Todo Using the TebController inside a standard container (e.g. vector) does not work as supposed to do. Create copy and move constructors.

See Also

TebController::buildOptimizationGraph, TebController::customOptimizationGraph, SystemDynamics, TebController::setSystemDynamics, TebController::activateObjectiveTimeOptimal, TebController::activateControlBounds, TebController::activateStateBounds, TebController::setSolver BaseSolver

Template Parameters

р	Number of states / Size of the state vector
q	Number of control inputs / Size of the control vectorp: number of states, q: number
	of control inputs

Examples:

integrator_system1.cpp, integrator_system2.cpp, integrator_system_classic_mpc.cpp, integrator_system_mex.cpp, integrator_system_stun.cpp, linear_system_ode.cpp, linear_system_ode_ctrl_comparison.cpp, linear_system_state_space.cpp, rocket_system.cpp, and van_der_pol_system.cpp.

Definition at line 54 of file teb controller.h.

16.39.2 Member Typedef Documentation

Definition at line 71 of file teb_controller.h.

16.39.2.2 template<int p, int q> using teb::TebController< p, q>::ControlVector = Eigen::Matrix<double, q, 1>

Definition at line 67 of file teb_controller.h.

16.39.2.3 template<int p, int q> using teb::TebController< p, q>::EdgeContainer = typename EdgeType::EdgeContainer

Definition at line 73 of file teb_controller.h.

16.39.2.4 template<int p, int q> using teb::TebController< p, q>::FixedStates = Eigen::Matrix
bool,p,1>

Definition at line 77 of file teb controller.h.

16.39.2.5 template<int p, int q> using teb::TebController< p, q>::StateSequence = std::deque< StateVertex<p>>

Definition at line 69 of file teb_controller.h.

16.39.2.6 template<int p, int q> using teb::TebController< p, q>::StateVector = Eigen::Matrix<double,p,1>

Definition at line 65 of file teb_controller.h.

16.39.2.7 template<int p, int q> using teb::TebController< p, q>::VertexContainer = typename VertexType::VertexContainer

Definition at line 75 of file teb_controller.h.

16.39.3 Constructor & Destructor Documentation

16.39.3.1 template < int p, int q > teb::TebController < p, q >::TebController (BaseSolver * solver = nullptr) [inline]

This constructor creates a default Config object for TEB and solver settings.

Parameters

solver	Register solver type as subclass of BaseSolver. If not passed, you must use setSolver() later.
--------	--

Definition at line 101 of file teb controller.h.

References teb::TebController< p, q >::_cfg_owned.

16.39.3.2 template < int p, int q > teb::TebController < p, q >::TebController (const Config * config, BaseSolver * solver = nullptr) [inline]

Pass config class to controller and solver. TebController does not free Config afterwards.

Parameters

config	Set user-defined config for the controller and solver.
solver	Register solver type as subclass of BaseSolver. If not passed, you must use setSolver() later.

Definition at line 111 of file teb_controller.h.

References teb::TebController< p, q >::setSolver().

16.39.3.3 template < int p, int q> virtual teb::TebController < p, q>:: \sim TebController () [inline], [virtual]

Destructor. Memory is freed if necessary.

Definition at line 119 of file teb_controller.h.

References teb::TebController< p, q >::_graph, teb::TebController< p, q >::_graph, teb::TebController< p, q >::cfg, and teb::HyperGraph::clearGraph().

16.39.4 Member Function Documentation

16.39.4.1 template < int p, int q > void teb::TebController < p, q >::activateControlBounds (const Eigen::Ref < const ControlVector > u_max, bool activate = true)

[inline]

Adds the following inequality constraints to the optimization problem:

- $\mathbf{u}_k \leq u_{max}$
- $\mathbf{u}_k \geq u_{min}$

Parameters

	u_min	minimum bound on the control input \mathbf{u}_k
ĺ	u_max	maximum bound on the control input \mathbf{u}_k
ĺ	activate	if set to true than the edge is activated.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateStateBounds(), setSystemDynamics()

Definition at line 481 of file teb controller.h.

References teb::TebController< p, q >::_active_control_bounds, teb::TebController< p, q >::_graph, and teb::-HyperGraph::notifyGraphModified().

16.39.4.2 template < int p, int q > void teb::TebController < p, q >::activateControlBounds (unsigned int *control_idx*, double *u_min*, double *u_max*, bool activate = true) [inline]

Adds the following inequality constraints to the optimization problem:

- $\mathbf{u}_k \leq \mathbf{u}_{max}$ (component-wise)
- $\mathbf{u}_k \geq \mathbf{u}_{min}$ (component-wise)

The default initialization of the bounds is -INF and INF respectively, if this predefined edge is activated. This version of activateControlBounds() makes use of the default initialization and just updates the bounds for index $state_index$. All other bounds remain untouched (and if not changed before, they are bound to -INF and INF.

Parameters

control_idx	selected component of \mathbf{x}_k that should be bounded to x_min and x_max.
u_min	minimum bound on the component with index $control_idx$ of control input \mathbf{u}_k .
u_max	maximum bound on the component with index $control_idx$ of the control input \mathbf{u}_k .
activate	if set to true than the edge is activated.

Todo Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateControlBounds(), setSystemDynamics()

Definition at line 510 of file teb_controller.h.

References teb::TebController< p, q >::_active_control_bounds, teb::TebController< p, q >::_graph, and teb::-HyperGraph::notifyGraphModified().

16.39.4.3 template<int p, int q> void teb::TebController< p, q>::activateObjectiveQuadraticForm (double Q, double R, double Qf, bool activate = true) [inline]

Adds the following cost function

$$J = (\mathbf{x}_n - \mathbf{x}_f)^T \mathbf{Q}_f (\mathbf{x}_n - \mathbf{x}_f + \sum_{k=0}^{n-1} ((\mathbf{x}_k - \mathbf{x}_f)^T \mathbf{Q} (\mathbf{x}_k - \mathbf{x}_f) + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k)$$

to the global cost/objective function.

The weight matrices are assumed to be diagonal matrices with unifrom values Q, R and Qf.

See EdgeQuadraticForm for further details.

Parameters

Q	Uniform scalar weight for minimizing the squared state error
R	Uniform scalar weight for minimizing the squared control input
Qf	Uniform scalar weight for minimizing the squared state error for the final state (last state of
	the horizon)
activate	if set to true than the edge is activated.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateControlBounds(), activateStateBounds(), setSystemDynamics()

Definition at line 460 of file teb_controller.h.

References teb::TebController< p, q >::_active_quadratic_form, teb::TebController< p, q >::_graph, and teb::HyperGraph::notifyGraphModified().

16.39.4.4 template < int p, int q > void teb::TebController < p, q >::activateObjectiveTimeOptimal (bool activate = true) [inline]

Adds the following cost function $V(\mathcal{B}) = (n-1)\Delta T$ to the global cost/objective function.

Additionally, the inequality constraint $\Delta T > \Delta T_{min}$ is added. ΔT_{min} can be changed in Config::Teb::teb_min.

Parameters

activate	if set to true than the edge is activated.

See Also

buildOptimizationGraph(), activateObjectiveQuadraticForm(), activateControlBounds(), activateState-Bounds(), setSystemDynamics()

Definition at line 435 of file teb_controller.h.

References teb::TebController< p, $q >::_active_time_optimal$, teb::TebController< p, $q >::_graph$, and teb::Hyper-Graph::notifyGraphModified().

16.39.4.5 template < int p, int q > void teb::TebController < p, q >::activateStateBounds (const Eigen::Ref < const StateVector > & x_max, bool activate = true)

[inline]

Adds the following inequality constraints to the optimization problem:

- $\mathbf{x}_k \leq \mathbf{x}_{max}$ (component-wise)
- $\mathbf{x}_k \geq \mathbf{x}_{min}$ (component-wise)

To just bound a subset of components of the state \mathbf{x}_k , set unbounded components to -Inf $\leq x_k \leq$ Inf using the INF macro. Or see overloaded function activateStateBounds().

Parameters

x_min	minimum bounds on the state \mathbf{x}_k [p x 1].
x_max	maximum bounds on the state \mathbf{x}_k [p x 1].

activate	if set to true than the edge is activated.

Todo Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateControlBounds(), setSystemDynamics()

Definition at line 539 of file teb controller.h.

References teb::TebController< p, q>::_active_state_bounds, teb::TebController< p, q>::_graph, and teb::HyperGraph::notifyGraphModified().

16.39.4.6 template < int p, int q> void teb::TebController< p, q>::activateStateBounds (unsigned int state_idx, double x_min , double x_min , bool activate = true) [inline]

Adds the following inequality constraints to the optimization problem:

- $\mathbf{x}_k \leq \mathbf{x}_{max}$ (component-wise)
- $\mathbf{x}_k \geq \mathbf{x}_{min}$ (component-wise)

The default initialization of the bounds is <code>-INF</code> and <code>INF</code> respectively, if this predefined edge is activated. This version of activateStateBounds() makes use of the default initialization and just updates the bounds for index <code>state-_index</code>. All other bounds remain untouched (and if not changed before, they are bound to <code>-INF</code> and <code>INF</code>.

Parameters

state_idx	selected component of \mathbf{x}_k that should be bounded to x_{\min} and x_{\max} .
x_min	minimum bound on the component with index state_idx of state \mathbf{x}_k .
x_max	maximum bound on the component with index state_idx of the state \mathbf{x}_k .
activate	if set to true than the edge is activated.

Todo Avoid unnecessary calculations for unbounded values (Jacobian, Hessian, ...). Maybe change edge-dimension dynamically in that case.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateControlBounds(), setSystemDynamics()

Definition at line 568 of file teb_controller.h.

References teb::TebController< p, q>::_active_state_bounds, teb::TebController< p, q>::_graph, and teb::HyperGraph::notifyGraphModified().

16.39.4.7 template < int p, int q > void teb::TebController < p, q >::buildOptimizationGraph() [virtual]

Construct the hyper-graph for the underlying optimization problem.

Instantiate edges as subclasses of BaseEdge and add them to the corresponding containers.

- Add objective/cost function edges to TebController::_graph via HyperGraph::addEdgeObjective().
- equality constraints to TebController::_graph via HyperGraph::addEdgeEquality().
- and inequality constraints to TebController::_graph via HyperGraph::addEdgeInequality().

Example for the objective EdgeMinimizeTime that is derived from BaseEdge:

```
EdgeMinimizeTime* to_edge = new EdgeMinimizeTime; // Instantiate new edge object.
to_edge->setVertex(&_dt); // Connect edge with vertex TimeDiff.
to_edge->setData(getN()-1); // Set weight/data (only for EdgeMinimizeTime).
_graph.addEdgeObjective(to_edge); // Store pointer to the container.
```

The implementation contains a few default edges commonly used in MPC and Optimal Control scenarios. See:

- activateObjectiveTimeOptimal()
- activateObjectiveQuadraticForm()
- activateControlBounds()
- activateStateBounds()
- setSystemDynamics()

After checking and adding activated default edges, the function calls customOptimizationGraph() for extended user supplied edges.

This method is called within initOptimization().

See Also

customOptimizationGraph, customOptimizationGraphHotStart, HyperGraph, BaseEdge

Todo Here we need to fix the last control input since it undefined (no control is needed to go to state n+1). Maybe we can change the code somewhere else, that the contorl sequence is always getN()-1.

Definition at line 590 of file teb_controller.hpp.

References teb::FORWARD, teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::setBounds(), teb::EdgeMinimizeTime::setData(), teb::EdgeQuadraticForm< p, q >::setReference(), and teb::EdgeQuadraticForm< p, q >::setWeights().

```
16.39.4.8 template < int p, int q > const ControlSequence& teb::TebController < p, q >::controlSequence( ) const [inline]
```

Returns

Reference to the control input sequence (read-only)

Definition at line 186 of file teb_controller.h.

References teb::TebController< p, q >::_ctrl_seq.

```
16.39.4.9 template < int p, int q > virtual void teb::TebController < p, q >::customOptimizationGraph ( ) [inline], [virtual]
```

Derive TEB class and override customOptimizationGraph() to manually construct the hyper-graph or add edges in addition to activated common edges in buildOptimizationGraph(). See the description of buildOptimizationGraph() for more information on how to add edges.

See Also

buildOptimizationGraph, customOptimizationGraphHotStart, HyperGraph, BaseEdge, initOptimization()

Definition at line 375 of file teb_controller.h.

```
16.39.4.10 template<int p, int q> virtual void teb::TebController< p, q>::customOptimizationGraphHotStart( )
[inline], [virtual]
```

Depending on HyperGraph::isGraphModified() the graph is either cleared and constructed again or the previous graph is used. In the latter case customOptimizationGraph(), buildOptimizationGraph() and getActiveVertices() are not called. If you wish to apply changes without recreating the strucutre add them to this function. It is called inside initOptimization().

See Also

customOptimizationGraph, buildOptimizationGraph, HyperGraph, BaseEdge, initOptimization()

Definition at line 386 of file teb_controller.h.

```
16.39.4.11 template<int p, int q> const TimeDiff& teb::TebController< p, q>::dt() const [inline]
```

Returns

Reference to time-diff vertex (read-only)

Definition at line 191 of file teb_controller.h.

References teb::TebController< p, q >:: dt.

Referenced by teb::TebController< p, q >::setupHorizon().

```
16.39.4.12 template < int p, int q > virtual Eigen::VectorXd teb::TebController < p, q >::firstControl( ) const [inline], [virtual]
```

Returns

Copy of the first control input (read-only)

Implements teb::BaseController.

Definition at line 150 of file teb_controller.h.

References teb::TebController< p, q >::_ctrl_seq.

 $Referenced \ by \ teb:: TebController < p, \ q > :: firstControlSaturated(), \ and \ teb:: TebController < p, \ q > :: step().$

```
16.39.4.13 template < int q> const ControlVector& teb::TebController< p, q>::firstControlRef ( ) const [inline]
```

Returns

Reference to the first control input (read-only)

Definition at line 155 of file teb_controller.h.

References teb::TebController< p, q >::_ctrl_seq.

```
16.39.4.14 template < int q> Eigen::VectorXd teb::TebController < p, q>::firstControlSaturated ( ) const [inline]
```

This function saturates / bounds the returned control input \mathbf{u} to $[\mathbf{u}_{min}, \mathbf{u}_{max}]$.

The saturation could be helpful in case of soft constraints, that are violated for the planning and prediction, but that should be satisfied for the real system.

Specify the bounds via activateControlBounds().

Todo Support multiple control input bounds (now its scalar for all elements of \mathbf{u}).

Returns

Saturated control input u_k [q x 1].

Definition at line 168 of file teb controller.h.

References teb::TebController< p, q >::_active_control_bounds, and teb::TebController< p, q >::firstControl().

16.39.4.15 template < int p, int q > virtual Eigen::VectorXd teb::TebController < p, q >::firstState() const [inline], [virtual]

Returns

Copy of the first state

Implements teb::BaseController.

Definition at line 130 of file teb controller.h.

References teb::TebController< p, q >::_state_seq.

16.39.4.16 template < int q> const State Vector & teb::TebController < p, q>::first State Ref () const [inline]

Returns

Reference to the first state (read-only)

Definition at line 135 of file teb_controller.h.

References teb::TebController< p, q >::_state_seq.

16.39.4.17 template < int p, int q> Eigen::VectorXd teb::TebController< p, q>::getAbsoluteTimeVec () const [virtual]

Calculate vector of absolute times $t = [0, \Delta T, 2\Delta T, \dots, n\Delta T]$.

Returns

Row vector containing time information [n x 1].

Implements teb::BaseController.

Definition at line 780 of file teb_controller.hpp.

```
16.39.4.18 template < int p, int q > void teb::TebController < p, q >::getActiveVertices( ) [protected]
```

Iterate through the TEB sequence/trajectory and determine if a vertex (StateVertex, ControlVertex or TimeDiff) is completely fixed.

In that case the corresponding vertex is not active and can be skipped during optimization (Jacobian calculation, Hessian, ...). All active vertices (pointers) are stored into TebController::_active_vertices.

While iterating all vertices, the hessian index is determined and stored inside the corresponding vertex (see Teb-Vertex::setOptVecIdx() and TebVertex::getOptVecIdx()). For example:

• The final state (goal state) is fixed for many problems, in that case it does not appear in the optimization vector and therefore it is not part of the Hessian. But if at least a single component is unfixed, the complete vertex (TebSample in this case) becomes active. It's hessian or optimization vector index is zero. The number of free/unfixed variables is *q*.

• The second sample has no fixed components. It's hessian or optimization vector index is *q* since the last vertex starts at zero and has *q* free variables.

- The following vertex starts at 2 * q + p and so on ...
- The TimeDiff ΔT is stored at the end (and therefore it has the largest index if unfixed).

Todo Add case for different state and control input sequence lengths (e.g. for move blocking)

Definition at line 729 of file teb_controller.hpp.

```
16.39.4.19 template < int p, int q> virtual double teb::TebController < p, q>::getDt ( ) const [inline], [virtual]
```

Returns

 ΔT

Implements teb::BaseController.

Definition at line 196 of file teb controller.h.

References teb::TebController< p, q >::_dt, and teb::TimeDiff::dt().

```
16.39.4.20 template < int q> virtual unsigned int teb::TebController < p, q>::getM ( ) const [inline], [virtual]
```

Returns

number of control vectors.

Definition at line 206 of file teb controller.h.

References teb::TebController< p, q >::_ctrl_seq.

 $Referenced \ by \ teb:: TebController < p, \ q > :: returnControllnputSequence().$

```
16.39.4.21 template<int p, int q> virtual unsigned int teb::TebController< p, q>::getN ( ) const [inline], [virtual]
```

Returns

number of state vectors.

Implements teb::BaseController.

Definition at line 201 of file teb controller.h.

References teb::TebController< p, q >::_state_seq.

```
16.39.4.22 template < int p, int q> Eigen::Matrix< double,-1, 2> teb::TebController< p, q>::getSampleOptVecldxVMat ( ) const
```

Get info matrix that contains the Hessian index (first column) and the number of free variables (second column) for all states and control inputs (row-wise).

This function is used for debugging purposes, e.g. to test getActiveVertices().

Remarks

The Hessian index correspond to the row/col index of the first component of the current VertexType (State-Vertex and ControlVertex). With the number of free variables, the position of the current VertexType inside the "big" composed Hessian is determined completely.

Returns

a copy of the hessian-idx-info-matrix [n x 2]

Definition at line 536 of file teb_controller.hpp.

```
16.39.4.23 template < int p, int q > Eigen::MatrixXd teb::TebController < p, q >::getStateCtrlInfoMat ( ) const [virtual]
```

Convert TEB to a full (p+q by n) matrix.

The new matrix is composed as follows:

- size: [p+q x n] (double), n=getN()
- rows 1:p -> states
- rows p+1:p+q -> control inputs
- columns 1:n -> discrete samples

Returns

new copy of the TEB matrix [p+q x n]

Implements teb::BaseController.

Definition at line 479 of file teb_controller.hpp.

```
16.39.4.24 template<int p, int q> Eigen::Matrix< bool, p+q,-1 > teb::TebController< p, q>::getTEBFixedMap ( ) const
```

Show fixed states of the TEB as a (p+q by n) matrix for debugging purposes.

The matrix is composed as follows:

- size: [p+q x n] (double)
- rows 1:p -> states
- rows p+1:p+q -> control inputs
- columns 1:n -> samples

Returns

a copy of the fixed state TEB info matrix [p+q x n]

Definition at line 508 of file teb_controller.hpp.

```
16.39.4.25 template<int p, int q> const HyperGraph& teb::TebController< p, q>::graph() const [inline]
```

The hyper-graph stores all active vertices and edges (objectives and constraints) and is passed to the dedicated solver class. The hyper-graph is created within buildOptimizationGraph(). Users can add custom edges by subclassing and overriding customOptimizationGraph(). All active vertices are collected within getActiveVertices().

Returns

Read-only reference to the hyper-graph instance.

Definition at line 236 of file teb controller.h.

References teb::TebController< p, q >::_graph.

```
16.39.4.26 template<int p, int q> void teb::TebController< p, q>::initOptimization ( )
```

Do everything what is necessary before calling the actual optimization optimizeTEB().

This wrapper function calls buildOptimizationGraph() to construct the hyper-graph. Afterwards it collects all active vertices using getActiveVertices().

In addition a few undesired config settings are checked (only if compiled in Debug mode).

Definition at line 689 of file teb controller.hpp.

References teb::CENTRAL, and PRINT_DEBUG_COND_ONCE.

```
16.39.4.27 template < int p, int q> void teb::TebController< p, q>::initTrajectory ( const Eigen::Ref< const StateVector > & x0, const Eigen::Ref< const StateVector > & xf, unsigned int n ) [virtual]
```

This basic implementation linearly interpolates the trajectory between start \mathbf{x}_0 and final state \mathbf{x}_f .

Control inputs \mathbf{u}_i are intialized to zero. This method also updates the number of discrete samples (state and control input vector pairs) n.

All existing states and control inputs of the sequences TebController::_state_seq and TebController::_ctrl_seq are deleted first.

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside.

Parameters

x0	copy of the current start state vector [p x 1]
xf	current final state vector [p x 1]
n	number of discrete samples (state and control input vector pairs) between start and goal

Todo More efficient implementation that keeps previously allocated memory

Definition at line 22 of file teb_controller.hpp.

16.39.4.28 template<int p, int q> void teb::TebController< p, q>::insertStateControllnputPair (unsigned int sample_idx, const Eigen::Ref< const StateVector > & state, const Eigen::Ref< const ControlVector > & control, bool predict_control = true)

Insert a new discrete StateVector ControlInput pair to $TebController::_state_seq$ and $TebController::_ctrl_seq$ at position $sample_idx$.

Existing elements between idx+1 and n (getN()) are shifted to the interval idx+1 and n+1.

if predict_u is true, a new control input u at position sample_idx is predicted using the class method predictControl().

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside

Parameters

sample_idx	position at which the StateVertex and ControlVertex should be inserted
state	State vector [p x 1] to be added to _state_seq
control	Control input vector [q x 1] to be added _ctrl_seq
predict_control	if true, the control is not taken from sample, but it is calculated using the method predict-
	Control() [default= true];

Definition at line 400 of file teb_controller.hpp.

16.39.4.29 template < int p, int q> virtual Eigen::VectorXd teb::TebController < p, q>::lastState () const [inline], [virtual]

Returns

Copy of the last state

Implements teb::BaseController.

Definition at line 140 of file teb_controller.h.

References teb::TebController< p, q >::_state_seq.

16.39.4.30 template < int p, int q > const StateVector& teb::TebController < p, q >::lastStateRef() const [inline]

Returns

Reference to the last state (read-only)

Definition at line 145 of file teb controller.h.

References teb::TebController< p, q >::_state_seq.

16.39.4.31 template<int p, int q> void teb::TebController< p, q>::optimizeTEB ()

Start the actual TEB optimization routine.

The outer-loop resizes the trajectory (refer to resizeTrajectory() for infos), initializes the optimization problem (e.g. by creating the hyper-graph), and it calls the BaseSolver::solve() routine of the selected solver. The number of outer-loop iterations can be set in Config::Teb::teb_iter.

Todo The current implementation is really inefficient, since in each outer-loop-iteration all hyper-graph edges are deleted and afterwards reinstantiated. Create a dedicated update function in the future to hot-start from a previous hyper-graph.

See Also

initOptimization(), resizeTrajectory(), BaseSolver::solve(), setSolver()

Definition at line 312 of file teb_controller.hpp.

Referenced by teb::TebController< p, q >::step().

16.39.4.32 template < int p, int q > void teb::TebController < p, q >::predictControl (Eigen::Ref < ControlVector > ctrl_out, const Eigen::Ref < const StateVector > & x1, const Eigen::Ref < const StateVector > & x2)

[inline]

This method can be used to predict the plant input \mathbf{u}_i that transite drive the system from \mathbf{x}_i to \mathbf{x}_{i+1} .

The method can be used e.g. in the trajectory initialization phase, or inseration/deletion of new discrete samples.

The current implementation just copies the previous prediction (which is set to 0 inside the method initTrajectory()). Problem specific subclasses can override this function and can use the inverse of the discrete system dynamics to derive a function for \mathbf{u}_i with respect \mathbf{x}_i and \mathbf{x}_{i+1} .

E.g. for linear scalar systems:

$$\dot{x} = Ax + bu \tag{16.1}$$

$$x_{k+1} = x_k + \Delta T A x_k + \Delta T b u_k \tag{16.2}$$

$$u_k = \frac{x_{k+1} - x_k - \Delta TA}{\Delta T b} \tag{16.3}$$

Parameters

ctrl_out	[output] predicted control input vector \mathbf{u}_i [q x 1]
x1	vector state \mathbf{x}_i at discrete time $i[p \times 1]$
x2	vector state \mathbf{x}_{i+1} at discrete time $i+1$ [$p \times 1$]

Definition at line 462 of file teb_controller.hpp.

16.39.4.33 template<int p, int q> void teb::TebController< p, q>::pushBackStateControllnputPair (const Eigen::Ref< const StateVector > & state, const Eigen::Ref< const ControlVector > & control) [inline]

Parameters

state	State vector [p x 1] to be added to _state_seq
control	Control input vector [q x 1] to be added _ctrl_seq

Definition at line 253 of file teb controller.h.

References teb::TebController< p, q >::_ctrl_seq, and teb::TebController< p, q >::_state_seq.

16.39.4.34 template<int p, int q> void teb::TebController< p, q>::pushFrontStateControllnputPair (const Eigen::Ref< const StateVector > & state, const Eigen::Ref< const ControlVector > & control) [inline]

Parameters

state	State vector [p x 1] to be added to _state_seq
control	Control input vector [q x 1] to be added _ctrl_seq

Definition at line 264 of file teb controller.h.

References teb::TebController< p, q >::_ctrl_seq, and teb::TebController< p, q >::_state_seq.

16.39.4.35 template<int p, int q> void teb::TebController< p, q>::removeStateControllnputPair (unsigned int sample_idx, bool predict_control = true)

Remove an existing discrete state control input pair from the object properties TebController::_state_seq and TebController::_state_seq and TebController:: ctrl seq at position sample idx.

Existing elements between $sample_idx+1$ and n (getN()) are shifted to the interval idx and n-1.

If predict_control is true A new control input u at position sample_idx is predicted using the class method predictControl().

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside.

Parameters

sample_idx	index in TebController::_state_seq and TebController::_ctrl_seq to be deleted
predict_control	if true, the control for the new interval is calculated using the method predictControl()
	[default=true];

Definition at line 351 of file teb_controller.hpp.

```
16.39.4.36 template < int p, int q> void teb::TebController < p, q>::resampleTrajectory (unsigned int n\_new)
```

This function changes the number of samples by resampling the complete trajectories TebController::_state_seq and TebController::_ctrl_seq (\mathbf{x}_i , \mathbf{u}_i , ΔT).

Currently only linear interpolation is implemented.

This function may called withing resizeTrajectory() that is part of the TEB optimization loop (see optimizeTEB()).

To add/remove a single state refer to insertSample() / removeSample().

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside.

Parameters

n_new

Todo More efficient strategy without copying the complete sequences.

@ todo If someone freezes states within the sequence (in addition to start and goal), it is not set to unfreezed here... But we do not want to force all states to be unfreezed due to lack of efficiency...

Todo: later this should be n new-1

Definition at line 120 of file teb_controller.hpp.

```
16.39.4.37 template<int p, int q> virtual void teb::TebController< p, q>::resetController( ) [inline], [virtual]
```

Implements teb::BaseController.

Definition at line 357 of file teb_controller.h.

References teb::TebController< p, q >::_ctrl_seq, teb::TebController< p, q >::_dt, teb::TebControl

```
16.39.4.38 template<int p, int q> void teb::TebController< p, q>::resizeTrajectory ( )
```

Resizing the trajectory is helpful e.g.

for the following scenarios:

Large disturbances or obstacles requires the teb to be extended in order to satisfy the given sample rate
and avoid undesirable behavior due to a large/small discretization step width ΔT. After clearance of disturbances/obstacles the teb should contract to its (time-)optimal trajectory again.

If the distance to the goal state is getting smaller, dt is decreasing as well. This leads to a heavily fine-grained discretization in combination with many discrete samples. Thus, the computation time will be/remain high and in addition numerical instabilities can appear (e.g. due to the division by a small ΔT).

The implemented stragety observes the timediff ΔT . and

- inserts a new sample if $\Delta T > \Delta T_{ref} + \Delta T_{hyst}$
- removes a sample if $\Delta T < \Delta T_{ref} \Delta T_{hyst}$

 ΔT_{ref} and ΔT_{hyst} can be changed in Config::teb.

Since the ΔT is currently chosen uniformly, no information about a possible position (at which the new sample should be inserted) can be obtained. This function resamples linearly the whole trajectory using resampleTrajectory().

If the time difference vertex TimeDiff is fixed during optimization ($TimeDiff::_fixed == true$, TimeDiff::isFixedAll()), this method returns without any changes.

Definition at line 86 of file teb_controller.hpp.

```
16.39.4.39 template<int p, int q> virtual Eigen::MatrixXd teb::TebController< p, q>::returnControllnputSequence( ) const [inline], [virtual]
```

Returns

Matrix containing all planned control inputs [q x n-1]

Todo Here we assume, that the last control input is invalid - We need to change this, if we have different sizes for state and control input sequences

Implements teb::BaseController.

Definition at line 211 of file teb controller.h.

References teb::TebController< p, q >::_ctrl_seq, and teb::TebController< p, q >::getM().

```
16.39.4.40 template < int p, int q > void teb::TebController < p, q >::setFixedDt ( bool fixed ) [inline]
```

See Also

setupHorizon(), setGoalStatesFixedOrUnfixed()

Parameters

```
fixed Set to true in order to fix TebController::_dt.
```

Definition at line 583 of file teb_controller.h.

References teb::TebController< p, q >::_dt, teb::TebController< p, q >::_graph, teb::HyperGraph::notifyGraph-Modified(), and teb::TimeDiff::setFixedAll().

Referenced by teb::TebController< p, q >::setupHorizon().

```
16.39.4.41 template < int q> void teb::TebController < p, q>::setFixedGoal ( bool fixed ) [inline], [protected]
```

Parameters

fixed	Set to true in order to fix the states.
-------	---

Definition at line 672 of file teb_controller.h.

References teb::TebController< p, q >::_graph, teb::TebController< p, q >::_state_seq, and teb::HyperGraph::notifyGraphModified().

16.39.4.42 template < int p, int q> void teb::TebController< p, q>::setFixedGoal (const bool * fixed) [inline], [protected]

Parameters

fixed	Boolean array with p components. Set i-th component to true in order to fix the correspond-
	ing state.

Definition at line 684 of file teb_controller.h.

References teb::TebController< p, q >::_graph, teb::TebController< p, q >::_state_seq, and teb::HyperGraph::notifyGraphModified().

16.39.4.43 template < int p, int q> void teb::TebController < p, q>::setFixedGoal (const Eigen::Ref < const Eigen::Matrix < bool, p, 1 >> & fixed) [inline], [protected]

Parameters

fixed	Eigen::Vector with p booleans. Set i-th component to true in order to fix the corresponding
	state.

Definition at line 696 of file teb_controller.h.

References teb::TebController< p, q >::_graph, teb::TebController< p, q >::_state_seq, and teb::HyperGraph::notifyGraphModified().

16.39.4.44 template < int p, int q> void teb::TebController < p, q>::setFixedStart (bool fixed) [inline], [protected]

Parameters

fixed	Set to true in order to fix the states.

Definition at line 648 of file teb_controller.h.

 $\label{lem:controller:p} References\ teb:: TebController<\ p,\ q>::_state_seq,\ and\ teb:: HyperGraph:::notifyGraphModified().$

16.39.4.45 template < int p, int q> void teb::TebController < p, q>::setFixedStart (const bool * fixed) [inline], [protected]

Parameters

fixed	Boolean array with p components. Set i-th component to true in order to fix the correspond-
	ing state.

Definition at line 660 of file teb_controller.h.

References teb::TebController< p, q >::_graph, teb::TebController< p, q >::_state_seq, and teb::HyperGraph::notifyGraphModified().

16.39.4.46 template < int p, int q> void teb::TebController < p, q>::setGoalStatesFixedOrUnfixed (const bool * fixed_goal_states) [inline]

Parameters

fixed_goal	boolean array of size p. Each component of lastState() is set to fixed() if fixed_goal]
states	states[i] == true.	

Definition at line 273 of file teb controller.h.

References teb::TebController< p, q >::_fixed_goal_states, teb::TebController< p, q >::_graph, and teb::Hyper-Graph::notifyGraphModified().

Referenced by teb::TebController< p, q >::setupHorizon().

16.39.4.47 template<int p, int q> void teb::TebController< p, q>::setGoalStatesFixedOrUnfixed (const Eigen::Ref< const Eigen::Matrix< bool, p, 1>> & fixed_goal_states) [inline]

Parameters

fixed_goal	Eigen::Vector of size p containing booleans. Each component of lastState() is set to fixed() if
states	fixed_goal_states[i] == true.

Definition at line 283 of file teb_controller.h.

References teb::TebController< p, q >::_fixed_goal_states, teb::TebController< p, q >::_graph, and teb::Hyper-Graph::notifyGraphModified().

16.39.4.48 template<int p, int q> void teb::TebController< p, q>::setGoalStatesFixedOrUnfixed (bool all_goal_states_fixed) [inline]

See Also

setupHorizon(), setFixedDt()

Parameters

all_goal_states	if true, all components of lastState() are set to fixed()
fixed	

Definition at line 294 of file teb_controller.h.

References teb::TebController< p, q >::_fixed_goal_states, teb::TebController< p, q >::_graph, and teb::Hyper-Graph::notifyGraphModified().

16.39.4.49 template < int p, int q > void teb::TebController < p, q >::setSolver (BaseSolver * solver) [inline]

Set subclasses of BaseSolver here. Solver classes are frequently expanded.

Remarks

Subclasses of BaseSolverLeastSquares are least-squares solvers that are efficient, but originally not suited for hard constraints. In addition, the objective function must be a quadratic function. In order to allow similar functionalities, the cost/objective function is squared $\min V^2(\mathscr{B})$ and equality/inequality constraints are approximated by quadratic soft-constraints [5].

Parameters

solver Pointer to subclass of BaseSolver. TebController does not free memory of the solver class.

See Also

BaseSolver BaseSolverLeastSquares

Definition at line 626 of file teb_controller.h.

References teb::TebController< p, q >:: solver, teb::TebController< p, q >::cfg, and teb::BaseSolver::setConfig().

Referenced by teb::TebController< p, q >::TebController().

16.39.4.50 template<int p, int q> void teb::TebController< p, q>::setSystemDynamics (SystemDynamics< p, q> * system, bool activate = true) [inline]

Add system dynamics equations to the optimization problem. System equations are defined as a equality constraints since they should be satisfied all the time.

See SystemDynamics class for more details.

Parameters

system	pointer to the SystemDynamics (sub-)class that stores the system dynamics equations.
activate	if set to true than the edge is activated.

See Also

buildOptimizationGraph(), activateObjectiveTimeOptimal(), activateStateBounds(), activateControlBounds()

Definition at line 604 of file teb controller.h.

References teb::TebController< p, q >::_active_system_dynamics, teb::TebController< p, q >::_graph, and teb::-HyperGraph::notifyGraphModified().

16.39.4.51 template < int p, int q> void teb::TebController< p, q>::setupHorizon (bool fixed_goal, bool fixed_resolution, int no_samples = -1, double dt = -1) [inline]

Use this function to setup different common horizon settings at once instead of changing config parameters and class members individually.

Common horizons:

- Receding/moving horizon: unfixed goal and fixed resolution of samples (fixed dt)
- · Fixed end-point: fixed goal and fixed resolution of samples (fixed dt)
- TEB default: fixed goal and unfixed resolution (unfixed dt, in order to minimize time)

If you choose an unfixed resolution (fixed_resolution == false) make sure that there are objectives considering the time difference ΔT , otherwise the problam will probably be ill-posed.

If you want to fix or unfix only a subset of goal states, use the method setGoalStatesFixedOrUnfixed() after calling setupHorizon or without calling setupHorizon.

See Also

setFixedDt(), setGoalStatesFixedOrUnfixed()

Parameters

fixed_goal	Set to true in order to fix or unfix all goal state variables.	
fixed_resolution	Set to true in order to fix the resolution (the time difference ΔT between consecutive sam-	
	ples).	
no_samples	Set default/initial number of samples (it remains constant, if the resolution is fixed as well). If	
	-1, Config::Teb::n_pre is used.	
dt	Set reference time difference for discretization (it remains constant, if the resolution is fixed	
	as well). If -1, Config::Teb::dt_ref is used.	

Definition at line 327 of file teb_controller.h.

References teb::TebController< p, q >::_dt, teb::TebController< p, q >::_dt_ref, teb::Config::Teb::dt_ref, teb::Config::Teb::n_pre, teb::TebController< p, q >::setFixedDt(), teb::TebController< p, q >::setFixedDt(), teb::TebController< p, q >::setGoalStatesFixedOrUnfixed(), and teb::Config::teb.

16.39.4.52 template < int p, int q> const StateSequence & teb::TebController < p, q>::stateSequence () const [inline]

Returns

Reference to the state sequence (read-only)

Definition at line 181 of file teb controller.h.

References teb::TebController< p, q >::_state_seq.

16.39.4.53 template<int p, int q> virtual void teb::TebController< p, q>::step (const double *const x0, const double *const x1, double * ctrl_out = nullptr) [inline], [virtual]

Parameters

х0	double array containing start state $x0$ with p components [p x 1]
xf	double array containing final state xf with p components [p x 1]
ctrl_out	[output] store control input (firstControl()) to control the plant [q x 1]

Implements teb::BaseController.

Definition at line 398 of file teb_controller.h.

16.39.4.54 template < int p, int q > void teb::TebController < p, q >::step (const Eigen::Ref < const StateVector > & x0, const Eigen::Ref < const StateVector > & xf, Eigen::Map < ControlVector > * $ctrl_out = nullptr$) [inline]

Calls updateStart(), updateGoal(), optimizeTEB() and firstControl().

Parameters

x0 StateVector containing start state x0 with p components [p x 1]	
xf	StateVector containing final state xf with p components [p x 1]
ctrl_out	[output] store control input (firstControl()) to ControlVector-Map [q x 1]

Definition at line 412 of file teb_controller.h.

References teb::TebController< p, q >::firstControl(), teb::TebController< p, q >::optimizeTEB(), teb::TebController< p, q >::updateGoal(), and teb::TebController< p, q >::updateStart().

16.39.4.55 template<int p, int q> void teb::TebController< p, q>::updateGoal (const Eigen::Ref< const StateVector > & xf) [virtual]

Update goal/final StateVector.

If getN()==1 (that is if only start state exists after setting updateStart()) than initTrajectory() is called to initialize a trajectory between previously defiend start and xf.

If an existing goal (lastState()) is far away (Config::Teb::goal_dist_force_reinit), the trajectory is reinitialized using initTrajectory() as well.

If the goal is not completely fixed during optimization, only unfixed components of the final state are updated.

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside.

Parameters

```
xf | new final state vector [p x 1]
```

Definition at line 261 of file teb_controller.hpp.

Referenced by teb::TebController< p, q >::step().

```
16.39.4.56 template<int p, int q> void teb::TebController< p, q>::updateStart ( const Eigen::Ref< const StateVector > & x0 ) [virtual]
```

Update first/start StateVector (start of the trajectory) with a new one (x_start).

This can be obtained from the most recent measurements. The teb vector is pruned if a state with idx i>0 is found, that has a smaller distance (I2-norm) to the new x0 in comparance to firstState().

If the TEB vector is empty, the start state is added anyway (as single state trajectory).

Warning

Be careful, if you override this function in a subclass make sure to call HyperGraph::notifyGraphModified() inside.

Parameters

х0	new start state vector [p x 1]

See Also

updateGoal(), initTrajectory()

Definition at line 203 of file teb_controller.hpp.

Referenced by teb::TebController< p, q >::step().

16.39.5 Member Data Documentation

16.39.5.1 template < int p, int q > std::tuple < bool, ControlVector, ControlVector > teb::TebController < p, q >::_active_control_bounds = std::make_tuple(false,ControlVector::Constant(INF),ControlVector::Constant(-INF)) [protected]

- First type (bool): if true, EdgeControlBounds is activated.
- Second type (ControlVector): lower bound on each ControlVector umin (component-wise).
- Third type (ControlVector): upper bound on each ControlVector u_{max} (component-wise).

See Also

EdgeControlBounds, buildOptimizationGraph()

Definition at line 770 of file teb controller.h.

Referenced by teb::TebController < p, q > ::activateControlBounds(), and teb::<math>TebController < p, q > ::firstControlSaturated().

```
16.39.5.2 template<int p, int q> std::tuple<bool, double, double, double> teb::TebController< p, q >::_active_quadratic_form = std::make_tuple(false,1,1,1) [protected]
```

- First type (bool): if true, EdgeQuadraticForm is activated (quadratic cost on states and control inputs).
- Second type (Weight Q): Weight for the state vectors (uniform weight here)
- Third type (Weight R): Weight for the control input vectors (uniform weight here)
- Fourth type (Weight Qf): Weight for the final state vector (uniform weight here)

See Also

activateObjectiveQuadraticForm(), EdgeControlBounds, buildOptimizationGraph()

Definition at line 752 of file teb controller.h.

Referenced by teb::TebController< p, q >::activateObjectiveQuadraticForm().

```
16.39.5.3 template < int p, int q > std::tuple < bool, StateVector, StateVector > teb::TebController < p, q >::_active_state_bounds = std::make_tuple(false, StateVector::Constant(-INF), StateVector::Constant(INF)) 

[protected]
```

- First type (bool): if true, EdgeStateBounds is activated.
- Second type (StateVector): lower bound on each StateVector x_{min} (component-wise).
- Third type (StateVector): upper bound on each StateVector x_{max} (component-wise).

See Also

EdgeStateBounds, buildOptimizationGraph()

Definition at line 779 of file teb_controller.h.

Referenced by teb::TebController< p, q >::activateStateBounds().

```
16.39.5.4 template<int p, int q> std::pair<bool,SystemDynamics<p, q>*> teb::TebController< p, q
>::_active_system_dynamics = std::make_pair(false,nullptr) [protected]
```

- First type (bool): if true, EdgeSystemDynamics is activated.
- Second type (SystemDynamics): pointer to SystemDynamics object.

See Also

setSystemDynamics(), SystemDynamics, EdgeSystemDynamics, buildOptimizationGraph()

Definition at line 761 of file teb controller.h.

Referenced by teb::TebController< p, q >::setSystemDynamics().

16.39.5.5 template < int p, int q > bool teb::TebController < p, q >::_active_time_optimal = false [protected]

Definition at line 742 of file teb_controller.h.

Referenced by teb::TebController< p, q >::activateObjectiveTimeOptimal().

16.39.5.6 template < int p, int q > bool teb::TebController < p, q >::_cfg_owned = false [protected]

Definition at line 737 of file teb controller.h.

Referenced by teb::TebController< p, q >::TebController(), and teb::TebController< p, q >::~TebController().

16.39.5.7 template < int p, int q > ControlSequence teb::TebController < p, q >::_ctrl_seq [protected]

Definition at line 712 of file teb_controller.h.

Referenced by teb::TebController< p, q >::controlSequence(), teb::TebController< p, q >::firstControl(), teb::TebController< p, q >::getM(), teb::TebController< p, q >::getM(), teb::TebController< p, q >::pushBackStateControllnputPair(), teb::TebController< p, q >::pushFrontStateControllnputPair(), teb::TebController< p, q >::resetController(), and teb::TebController< p, q >::returnControllnputSequence().

16.39.5.8 template<int p, int q> TimeDiff teb::TebController< p, q>::_dt [protected]

Stores ΔT . Another interpretation: discretization step width. This implementation supports currently a uniformly distributed dt only.

Definition at line 720 of file teb_controller.h.

Referenced by teb::TebController< p, q >::dt(), teb::TebController< p, q >::getDt(), teb::TebController< p, q >::resetController< p, q >::setFixedDt(), and teb::TebController< p, q >::setupHorizon().

16.39.5.9 template < int p, int q > double teb::TebController < p, q >::_dt_ref = -1 [protected]

Definition at line 726 of file teb controller.h.

Referenced by teb::TebController< p, q >::resetController(), and teb::TebController< p, q >::setupHorizon().

16.39.5.10 template<int p, int q> FixedStates teb::TebController< p, q>::_fixed_goal_states = FixedStates::Constant(true) [protected]

Definition at line 733 of file teb controller.h.

Referenced by teb::TebController< p, q >::setGoalStatesFixedOrUnfixed().

16.39.5.11 template<int p, int q> StateVector teb::TebController< p, q>::_goal_backup [protected]

Definition at line 723 of file teb controller.h.

16.39.5.12 template < int p, int q> HyperGraph teb::TebController < p, q >::_graph [protected]

Definition at line 731 of file teb_controller.h.

Referenced by teb::TebController< p, q >::activateControlBounds(), teb::TebController< p, q >::activateObjectiveQuadraticForm(), teb::TebController< p, q >::activateObjectiveTimeOptimal(), teb::TebController< p, q >::activateStateBounds(), teb::TebController< p, q >::graph(), teb::TebController< p, q >::setFixedDot(), teb::

>::setFixedStart(), teb::TebController< p, q >::setGoalStatesFixedOrUnfixed(), teb::TebController< p, q >::set-SystemDynamics(), and teb::TebController< p, q >:: \sim TebController().

16.39.5.13 template<int p, int q> int teb::TebController< p, q>::_no_samples = -1 [protected]

Definition at line 725 of file teb_controller.h.

Referenced by teb::TebController< p, q >::setupHorizon().

16.39.5.14 template<int p, int q> bool teb::TebController< p, q>::_optimized [protected]

Definition at line 729 of file teb_controller.h.

16.39.5.15 template < int p, int q > BaseSolver* teb::TebController < p, q >::_solver = nullptr [protected]

Definition at line 735 of file teb controller.h.

Referenced by teb::TebController< p, q >::setSolver().

16.39.5.16 template < int p, int q > StateSequence teb::TebController < p, q >::_state_seq [protected]

Definition at line 711 of file teb controller.h.

Referenced by teb::TebController< p, q >::firstState(), teb::TebController< p, q >::firstStateRef(), teb::TebController< p, q >::lastStateRef(), teb::TebController< p, q >::lastStateRef(), teb::TebController< p, q >::lastStateRef(), teb::TebController< p, q >::pushBackStateControllnputPair(), teb::TebController< p, q >::pushFrontStateController(), teb::TebController< p, q >::setFixedGoal(), teb::TebController< p, q >::setFixedGoal(), and teb::TebController< p, q >::stateSequence().

16.39.5.17 template<int p, int q> const Config* teb::TebController< p, q>::cfg

If the Config class is provided via TebController::TebController() than the memory management is not touched by this class. If no Config class is provided manually, memory management is owned by this class.

See Also

TebController::TebController(), TebController::_cfg_owned

Definition at line 90 of file teb controller.h.

Referenced by teb::TebController< p, q >::resetController(), teb::TebController< p, q >::setSolver(), teb::TebController< p, q >::setupHorizon(), and teb::TebController< p, q >:: \sim TebController().

16.39.5.18 template<int p, int q> const unsigned int teb::TebController< p, q>::NoControls = q [static]

Definition at line 60 of file teb_controller.h.

16.39.5.19 template < int p, int q > const unsigned int teb::TebController < p, q >::NoStates = p [static]

Definition at line 59 of file teb controller.h.

The documentation for this class was generated from the following files:

- teb_controller.h
- teb_controller.hpp

16.40 teb::TebPlotter Class Reference

Provides useful visualization and plotting functions.

```
#include <teb_plotter.h>
```

Public Types

enum FileFormat {
 FileFormat::PNG, FileFormat::JPEG, FileFormat::SVG, FileFormat::PDF,
 FileFormat::EPS, FileFormat::TIKZ }

Supported file formats for figure export.

Public Member Functions

• TebPlotter ()

Constructor.

∼TebPlotter ()

Destructor.

void plot1DVector (const Eigen::Ref< const Eigen::VectorXd > &data)

Plot a single vector over the range 0 .. n.

void plot (const Eigen::Ref< const Eigen::VectorXd > &x, const Eigen::Ref< const Eigen::VectorXd > &y, std::string title="", std::string xlabel="")

Create a common 2D plot.

void spyMatrix (const Eigen::Ref< const Eigen::MatrixXd > &matrix)

Plot the sparsity pattern of a given matrix.

• template<typename StateSeq , typename ControlSeq >

void plotTEB (const StateSeq &state_seq, ControlSeq &ctrl_seq, double dt)

Plot TEB states and control inputs.

template<typename TebCtrl >

void plotTEB (const TebCtrl &teb)

Plot TEB states and control inputs.

void plotTwoCol (const Eigen::Ref< const Eigen::VectorXd > &col1_time, const Eigen::Ref< const Eigen::MatrixXd > &col1_data, const Eigen::Ref< const Eigen::VectorXd > &col2_time, const Eigen::Ref< const Eigen::MatrixXd > &col2_data, PlotOptions *options=nullptr)

Create a two column multiplot with a single line for each plot.

void plotTwoCol (const std::vector< const Eigen::VectorXd * > &col1_time, const std::vector< const Eigen::MatrixXd * > &col1_data, const std::vector< const Eigen::VectorXd * > &col2_time, const std::vector< const Eigen::MatrixXd * > &col2_data, PlotOptions *options=nullptr)

Create a two column multiplot with multiple lines for each plot.

 void plotMulti (const Eigen::Ref< const Eigen::VectorXd > &col1_time, const Eigen::Ref< const Eigen::-MatrixXd > &col1_data, PlotOptions *options=nullptr)

Create a one column multiplot with a single line for each plot.

 void plotMulti (const std::vector< const Eigen::VectorXd * > &col1_time, const std::vector< const Eigen::-MatrixXd * > &col1_data, PlotOptions *options=nullptr)

Create a one column multiplot with multiple lines for each plot.

· void clearWindow ()

Clear current gnuplot window.

void switchWindow (int window_id, bool reset=true)

Switch gnuplot window or create a new one.

• void closeWindow (int window id=0)

Close gnuplot window with id window_id.

void setOutputToFile (std::string filename, FileFormat format=FileFormat::PNG)

Change output to file.

void completePdfExport ()

Use this function to complete the pdf export after plotting.

void setOutputToWindow ()

Change output to a common gnuplot window.

bool isExportToFileEnabled ()

Query status if export to file is enabled.

Protected Member Functions

void plotCustomKey (const std::vector< std::string > &keys)

Plot a legend into a multiplot environment.

Protected Attributes

```
• bool _pdf_flag = false
```

true if PDF export is enabled.

• bool _file_export = false

true if export to file is desired

FILE * pipe = nullptr

16.40.1 Detailed Description

This class provides visualization and plot functions for dynamic systems and the TebController. In addition this class defines plot functions for custom data specified by Eigen::Vector types.

Requirements: This class needs gnuplot installed correctly and it must be determined by cmake first (GNUPLOT_-PATH needs to be valid).

Bug EPS and PDF export are not working as expected. No text is displayed and after importing to Inskape, the plot is blank (noticed on Ubuntu 14.04).

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

Examples:

integrator_system1.cpp, integrator_system2.cpp, integrator_system_classic_mpc.cpp, linear_system_ode.cpp, linear_system_ode_ctrl_comparison.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, rocket_system.cpp, and van_der_pol_system.cpp.

Definition at line 56 of file teb_plotter.h.

16.40.2 Member Enumeration Documentation

16.40.2.1 enum teb::TebPlotter::FileFormat [strong]

Enumerator

PNG

JPEG

SVG PDF

EPS

TIKZ

Definition at line 61 of file teb_plotter.h.

```
16.40.3 Constructor & Destructor Documentation
```

```
16.40.3.1 teb::TebPlotter::TebPlotter()
```

Constructs a new TebPlotter object.

A new pipe to gnuplot is initialized. The default output is set to a new window.

Definition at line 13 of file teb_plotter.cpp.

References pipe, PRINT_INFO, and setOutputToWindow().

```
16.40.3.2 teb::TebPlotter::∼TebPlotter( )
```

Destructs the TebPlotter object.

The pipe to gnuplot is closed.

Definition at line 38 of file teb_plotter.cpp.

References completePdfExport(), and pipe.

16.40.4 Member Function Documentation

```
16.40.4.1 void teb::TebPlotter::clearWindow( ) [inline]
```

Definition at line 121 of file teb_plotter.h.

References pipe.

16.40.4.2 void teb::TebPlotter::closeWindow(int window_id = 0) [inline]

Parameters

```
window_id that should be closed.
```

Definition at line 146 of file teb_plotter.h.

References pipe.

```
16.40.4.3 void teb::TebPlotter::completePdfExport() [inline]
```

Definition at line 216 of file teb_plotter.h.

References _pdf_flag, and pipe.

Referenced by \sim TebPlotter().

16.40.4.4 bool teb::TebPlotter::isExportToFileEnabled() [inline]

Returns

true, if export to file is enabled

Definition at line 243 of file teb_plotter.h.

References _file_export.

16.40.4.5 void teb::TebPlotter::plot (const Eigen::Ref< const Eigen::VectorXd > & x, const Eigen::Ref< const Eigen::VectorXd > & y, std::string title = " ", std::string xlabel = " ", std::string ylabel = " ")

Create a simple 2D plot using two different n-dim vectors for x and y.

Parameters

X	x x-data vector (abscissa): Eigen::Vector [n x 1]	
У	y y-data vector (ordinate): Eigen::Vector [n x 1]	
title	String defining the title of the plot (optional)	
xlabel	String defining the label of the x-axis (optional)	
ylabel	String defining the label of the y-axis (optional)	

disable legend

show grid

plot title

plot xlabel

plot ylabel

plot type

loop over the data

data terminated with

termination character

flush the pipe

Definition at line 81 of file teb_plotter.cpp.

References pipe, and PRINT_INFO.

16.40.4.6 void teb::TebPlotter::plot1DVector (const Eigen::Ref < const Eigen::VectorXd > & data)

Plot a single vector.

The abscissa is chosen uniformly to 0 .. n

Parameters

data	Y data wrapped into an Eigen::Vector [n x 1]

disable legend

show grid

plot type

loop over the data

data terminated with

termination character

flush the pipe

Definition at line 55 of file teb_plotter.cpp.

References pipe, and PRINT_INFO.

16.40.4.7 void teb::TebPlotter::plotCustomKey(const std::vector < std::string > & keys) [protected]

Use this function to plot a custom legend into a multicol environment.

\ Specify location before calling this function by setting gnuplot margins tmargin, bmargin, lmargin and rmargin.

Parameters

keys	Vector of legend strings (for each line)

WORKS ONLY IN MULTI PLOT ENVIRONMENT!

terminate

Definition at line 574 of file teb_plotter.cpp.

References pipe.

Referenced by plotTwoCol().

16.40.4.8 void teb::TebPlotter::plotMulti (const Eigen::Ref< const Eigen::VectorXd > & col1_time, const Eigen::Ref< const Eigen::MatrixXd > & col1_data, PlotOptions * options = nullptr) [inline]

Definition at line 103 of file teb_plotter.h.

References plotTwoCol().

16.40.4.9 void teb::TebPlotter::plotMulti (const std::vector < const Eigen::VectorXd * > & col1_time, const std::vector < const Eigen::MatrixXd * > & col1_data, PlotOptions * options = nullptr) [inline]

Definition at line 111 of file teb_plotter.h.

References plotTwoCol().

16.40.4.10 template < typename StateSeq , typename ControlSeq > void teb::TebPlotter::plotTEB (const StateSeq & state_seq, ControlSeq & ctrl_seq, double dt)

Use this function to plot the state and control input sequence of the TebController given as TebController::TEBVector type.

Remarks

Based on http://stackoverflow.com/questions/14712251/place-key-below-multiplot-graph-in and extended to two column multiplots

Parameters

state_seq	tate_seq State sequence (Vectors of type StateVertex)	
ctrl_seq	Ccontrol input sequence (Vectors of type ControlVertex)	
dt	Time interval between two consecutive states and control inputs ΔT .	

Template Parameters

TebVec	Type of the TebVec (deduced by the compiler).

Examples:

integrator_system1.cpp, linear_system_ode.cpp, linear_system_state_space.cpp, and van_der_pol_system.cpp.

Definition at line 19 of file teb_plotter.hpp.

References pipe, and PRINT_INFO.

Referenced by plotTEB().

16.40.4.11 template < typename TebCtrl > void teb::TebPlotter::plotTEB (const TebCtrl & teb) [inline]

Parameters

teb	Reference to a TebController object

Template Parameters

Туре	of the TebController object (deduced by the compiler)

Definition at line 87 of file teb_plotter.h.

References plotTEB().

16.40.4.12 void teb::TebPlotter::plotTwoCol (const Eigen::Ref< const Eigen::VectorXd > & col1_time, const Eigen::Ref< const Eigen::MatrixXd > & col1_data, const Eigen::Ref< const Eigen::VectorXd > & col2_time, const Eigen::Ref< const Eigen::MatrixXd > & col2_data, PlotOptions * options = nullptr)

The number of rows for each column may differ.

Remarks

No legend options implemented

Test What happens if the right column contains more rows than the left one? (Alignment)

Parameters

col1_time	time axis for the left column [n1 x 1]
col1_data	data for the left column: Each row corresponds to a single plot [rows1 x n1]
col2_time	time axis for the right column [n2 x 1]
col2_data	data for the right column: Each row corresponds to a single plot [rows2 x n2]
options	Pointer to customized plot options given by a PlotOptions object.

Definition at line 122 of file teb_plotter.cpp.

References pipe, PRINT_INFO, teb::PlotOptions::skip_last_value_right_column, teb::PlotOptions::title, and teb::PlotOptions::ylabels.

Referenced by plotMulti().

16.40.4.13 void teb::TebPlotter::plotTwoCol (const std::vector< const Eigen::VectorXd * > & col1_time, const std::vector< const Eigen::MatrixXd * > & col1_data, const std::vector< const Eigen::VectorXd * > & col2_time, const std::vector< const Eigen::MatrixXd * > & col2_data, PlotOptions * options = nullptr)

The number of rows for each column may differ.

One element of the col1 arguments stores the complete information for all subplots. Other elements extend each plot by new lines. E.g:

- coll_data.at(0) contains 3 rows, that results 3 subplots / rows for the left column. Each row specifies one line for each plot.
- coll_data.at(1) contains 3 rows as well. Each line is added to its corresponding subplots.

 This requires the same number of samples (columns) between coll_data.at(i) and coll_time.at(i).

Parameters

col1_time	container of time data for the lines in the left column
col1_data	container of y-data for the lines in the left colum
col2_time	container of time data for the lines in the right column
col2_data	container of y-data for the lines in the right colum
options	Pointer to customized plot options given by a PlotOptions object.

Definition at line 276 of file teb_plotter.cpp.

References teb::PlotOptions::legend, teb::PlotOptions::legend_entries, pipe, plotCustomKey(), PRINT_INFO, teb::PlotOptions::skip_last_value_right_column, teb::PlotOptions::title, and teb::PlotOptions::ylabels.

16.40.4.14 void teb::TebPlotter::setOutputToFile (std::string filename, FileFormat format = FileFormat::PNG)
[inline]

Parameters

filename	Export figure to a file called filename into the current working directory or specify complete
	path.
format	Fileformat chosen from TebPlotter::FileFormat enum.

Examples:

integrator_system_classic_mpc.cpp.

Definition at line 158 of file teb plotter.h.

References _file_export, _pdf_flag, EPS, JPEG, PDF, pipe, PRINT_DEBUG, PRINT_DEBUG_ONCE, SVG, and TIKZ.

16.40.4.15 void teb::TebPlotter::setOutputToWindow() [inline]

Definition at line 226 of file teb plotter.h.

References pipe.

Referenced by TebPlotter().

16.40.4.16 void teb::TebPlotter::spyMatrix (const Eigen::Ref< const Eigen::MatrixXd > & matrix)

This function visualizes the non-zeros of a given sparse matrix with a marker at the specific non-zero position.

Parameters

matrix	Matrix given as an Eigen::Matrix data type.

Definition at line 529 of file teb plotter.cpp.

References pipe, and PRINT_INFO.

16.40.4.17 void teb::TebPlotter::switchWindow(int window_id, bool reset = true) [inline]

Parameters

window id ∣ Swi	ch to anuplot window with id wi	ndow id. If it does not exist	. create new window.
-----------------	---------------------------------	-------------------------------	----------------------

reset Reset window settings (recommand after switching from multiplots with extra sizes)

Examples:

linear_system_ode_ctrl_comparison.cpp.

Definition at line 133 of file teb_plotter.h.

References _file_export, and pipe.

16.40.5 Member Data Documentation

```
16.40.5.1 bool teb::TebPlotter::_file_export = false [protected]
```

Definition at line 251 of file teb_plotter.h.

Referenced by isExportToFileEnabled(), setOutputToFile(), and switchWindow().

```
16.40.5.2 bool teb::TebPlotter::_pdf_flag = false [protected]
```

Definition at line 250 of file teb plotter.h.

Referenced by completePdfExport(), and setOutputToFile().

```
16.40.5.3 FILE* teb::TebPlotter::pipe = nullptr [protected]
```

Definition at line 253 of file teb_plotter.h.

Referenced by clearWindow(), closeWindow(), completePdfExport(), plot(), plot1DVector(), plotCustomKey(), plotTeB(), plotTwoCol(), setOutputToWindow(), spyMatrix(), switchWindow(), TebPlotter(), and \sim TebPlotter().

The documentation for this class was generated from the following files:

- · teb plotter.h
- · teb_plotter.hpp
- · teb_plotter.cpp

16.41 teb::TimeDiff Class Reference

Vertex that contains the time information of the TEB: ΔT .

```
#include <teb_vertices.h>
```

Inheritance diagram for teb::TimeDiff:

Public Types

using VertexContainer = std::vector< VertexType * >

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

Public Member Functions

• TimeDiff (bool fixed=false)

Construct new TimeDiff and optinally set vertex fixed.

TimeDiff (double dt, bool fixed=false)

Construct new TimeDiff with specified initial value and optinally set vertex fixed.

TimeDiff (double *dt, bool fixed=false)

Construct new TimeDiff with specified initial value and optinally set vertex fixed.

TimeDiff (const TimeDiff &obj)

Copy constructor.

- ∼TimeDiff ()
- · virtual bool isFixedAll () const

return true, if ALL values of this vertex are fixed and therefore are not necessary for optimization.

virtual void setFixedAll (bool fixed)

set VertexType fixed.

· virtual bool isFixedAny () const

return true, if ANY element/value/component of this vertex is fixed and therefore the vertex is relevant for optimization.

virtual bool isFixedComp (int) const

return true, if element/value/component with index idx of this vertex is fixed.

· double & dt ()

return current ΔT .

· const double & dt () const

return current ΔT (read-only).

virtual void push ()

This function should store all values into a internal backup stack.

• virtual void pop ()

This function should restore the previously stored values of the backup stack and remove them from the stack.

virtual void top ()

This function should restore the previously stored values of the backup stack WITHOUT removing them from the stack.

virtual void discardTop ()

This function should delete the previously made backup from the stack without restoring it.

• virtual unsigned int stackSize () const

This function should return the current size/number of backups of the backup stack.

· virtual int dimension () const

Return number of elements/values/components stored in this vertex.

• virtual int dimensionFree () const

Return only the dimension of free (unfixed) variables.

virtual void plus (const VertexType *rhs)

Define the increment for the vertex: x = x + rhs.

virtual void plus (const double *rhs)

Define the increment for the vertex: x = x + rhs (rhs[] with dimension()=p+q values)

virtual void plusFree (const double *rhs)

Define the increment for the vertex: x = x + rhs (But only add FREE variables, rhs[] with dimensionFree() values).

virtual void setFree (const double *rhs)

Overwrite all free variables with the values given by rhs (rhs[] with dimensionFree() values).

virtual void getDataFree (double *target_vec) const

Return a copy of the free (unfixed) values as a single array (length: dimensionFree()).

virtual const double & getData (unsigned int) const

Return pointer to data with the index i dx).

- TimeDiff & operator= (const TimeDiff &rhs)
- void operator() (double &dt)
- void setOptVecIdx (int opt_vec_idx)

Update the position of the first value of this vertex inside the optimization vector / Hessian.

• int getOptVecIdx () const

Get the position of the first value of this Vertex inside the optimization vector / Hessian.

Static Public Attributes

• static const int Dimension = 1

The dimension of the TimeDiff vertex is always 1.

Protected Attributes

- double dt = 0.1
- bool <u>_fixed</u> = false
- std::stack< double > _backup
- int _opt_vec_idx = -1

Start-index in optimization vector (idx in hessian (row/column) and jacobian (column))

Friends

• std::ostream & operator<< (std::ostream &os, const TimeDiff &dt)

Print ΔT using std::ostream.

16.41.1 Detailed Description

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

VertexType, StateVertex, ControlVertex, BaseEdge

Definition at line 518 of file teb_vertices.h.

16.41.2 Member Typedef Documentation

16.41.2.1 using teb::VertexType::VertexContainer = std::vector<VertexType*> [inherited]

Definition at line 33 of file graph.h.

16.41.3 Constructor & Destructor Documentation

```
16.41.3.1 teb::TimeDiff::TimeDiff (bool fixed = false ) [inline]
```

Parameters

fixed | if true, the TimeDiff is fixed during optimization (no time-optimal control possible).

Definition at line 527 of file teb_vertices.h.

References _fixed.

16.41.3.2 teb::TimeDiff::TimeDiff (double dt, bool fixed = false) [inline]

Parameters

dt	initial ΔT
fixed	if true, the TimeDiff is fixed during optimization (no time-optimal control possible).

Definition at line 534 of file teb_vertices.h.

16.41.3.3 teb::TimeDiff::TimeDiff (double * dt, bool fixed = false) [inline]

Parameters

dt	Pointer to initial ΔT (will be copied)
fixed	if true, the TimeDiff is fixed during optimization (no time-optimal control possible).

Definition at line 541 of file teb_vertices.h.

16.41.3.4 teb::TimeDiff::TimeDiff (const TimeDiff & obj) [inline]

Parameters

```
obj | TimeDiff object
Definition at line 547 of file teb_vertices.h.
16.41.3.5 teb::TimeDiff::~TimeDiff() [inline]
Definition at line 549 of file teb_vertices.h.
16.41.4 Member Function Documentation
16.41.4.1 virtual int teb::TimeDiff::dimension ( ) const [inline], [virtual]
Implements teb::VertexType.
Definition at line 574 of file teb_vertices.h.
16.41.4.2 virtual int teb::TimeDiff::dimensionFree() const [inline], [virtual]
Implements teb::VertexType.
Definition at line 575 of file teb_vertices.h.
References _fixed.
16.41.4.3 virtual void teb::TimeDiff::discardTop() [inline], [virtual]
Implements teb::VertexType.
Definition at line 571 of file teb vertices.h.
References _backup.
16.41.4.4 double& teb::TimeDiff::dt() [inline]
Definition at line 556 of file teb_vertices.h.
References _dt.
Referenced by teb::EdgeMinimizeTime::computeValues(), teb::TebController< p, q >::getDt(), operator()(), operator(
tor=(), plus(), teb::TebController< p, q >::resetController(), and teb::TebController< p, q >::setupHorizon().
16.41.4.5 const double& teb::TimeDiff::dt( ) const [inline]
Definition at line 557 of file teb_vertices.h.
References _dt.
16.41.4.6 virtual const double& teb::TimeDiff::getData (unsigned idx) const [inline], [virtual]
Implements teb::VertexType.
Definition at line 609 of file teb_vertices.h.
References _dt.
```

```
16.41.4.7 virtual void teb::TimeDiff::getDataFree ( double * target_vec ) const [inline], [virtual]
Implements teb::VertexType.
Definition at line 600 of file teb vertices.h.
References _dt, and _fixed.
16.41.4.8 int teb::VertexType::getOptVecldx() const [inline], [inherited]
Returns
     position of the first element of this vertex.
Definition at line 59 of file graph.h.
References teb::VertexType::_opt_vec_idx.
Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolver-
NonlinearProgramDense::buildInequalityConstraintJacobian(),
                                                                    teb::SolverLevenbergMarquardtEigenDense-
                     teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(),
                                                                                       teb::BaseSolverNonlinear-
ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-
Numerically (), and \ teb:: Solver Levenberg Marquard t Eigen Sparse:: count Jacobian ColNNZ ().
16.41.4.9 virtual bool teb::TimeDiff::isFixedAll() const [inline], [virtual]
Implements teb::VertexType.
Definition at line 551 of file teb_vertices.h.
References _fixed.
Referenced by operator=().
16.41.4.10 virtual bool teb::TimeDiff::isFixedAny( ) const [inline], [virtual]
Implements teb::VertexType.
Definition at line 553 of file teb_vertices.h.
References fixed.
16.41.4.11 virtual bool teb::TimeDiff::isFixedComp ( int idx ) const [inline], [virtual]
Parameters
               idx
                     component index
Implements teb::VertexType.
Definition at line 554 of file teb_vertices.h.
References _fixed.
16.41.4.12 void teb::TimeDiff::operator() ( double & dt ) [inline]
Definition at line 625 of file teb_vertices.h.
```

References _dt, and dt().

```
16.41.4.13 TimeDiff& teb::TimeDiff::operator=( const TimeDiff & rhs ) [inline]
Definition at line 615 of file teb_vertices.h.
References _dt, _fixed, dt(), and isFixedAll().
16.41.4.14 virtual void teb::TimeDiff::plus ( const VertexType * rhs ) [inline], [virtual]
Implements teb::VertexType.
Definition at line 578 of file teb vertices.h.
References _dt, and dt().
16.41.4.15 virtual void teb::TimeDiff::plus ( const double * rhs ) [inline], [virtual]
Implements teb::VertexType.
Definition at line 584 of file teb_vertices.h.
References _dt.
16.41.4.16 virtual void teb::TimeDiff::plusFree ( const double * rhs ) [inline], [virtual]
Implements teb::VertexType.
Definition at line 589 of file teb_vertices.h.
References _dt, and _fixed.
16.41.4.17 virtual void teb::TimeDiff::pop( ) [inline], [virtual]
Implements teb::VertexType.
Definition at line 561 of file teb_vertices.h.
References _backup, and top().
16.41.4.18 virtual void teb::TimeDiff::push() [inline], [virtual]
Implements teb::VertexType.
Definition at line 560 of file teb_vertices.h.
References _backup, and _dt.
16.41.4.19 virtual void teb::TimeDiff::setFixedAll(bool fixed) [inline], [virtual]
Parameters
              fixed | if true TimeDiff is fixed.
Definition at line 552 of file teb_vertices.h.
References _fixed.
```

Referenced by teb::TebController< p, q >::setFixedDt().

16.41.4.20 virtual void teb::TimeDiff::setFree (const double * rhs) [inline], [virtual]

Implements teb::VertexType.

Definition at line 594 of file teb_vertices.h.

References _dt, and _fixed.

16.41.4.21 void teb::VertexType::setOptVecldx (int opt_vec_idx) [inline], [inherited]

Parameters

opt_vec_idx	index of the first value
-------------	--------------------------

Definition at line 53 of file graph.h.

References teb::VertexType::_opt_vec_idx.

16.41.4.22 virtual unsigned int teb::TimeDiff::stackSize() const [inline], [virtual]

Implements teb::VertexType.

Definition at line 572 of file teb_vertices.h.

References _backup.

16.41.4.23 virtual void teb::TimeDiff::top() [inline], [virtual]

Implements teb::VertexType.

Definition at line 566 of file teb_vertices.h.

References _backup, and _dt.

Referenced by pop().

16.41.5 Friends And Related Function Documentation

16.41.5.1 std::ostream& operator<< (std::ostream & os, const TimeDiff & dt) [friend]

Parameters

os	output stream object
dt	specific TimeDiff object

Returns

output stream object including a formatted string containing state and control vector.

Definition at line 637 of file teb_vertices.h.

16.41.6 Member Data Documentation

16.41.6.1 std::stack<double>teb::TimeDiff::_backup [protected]

Definition at line 646 of file teb_vertices.h.

Referenced by discardTop(), pop(), push(), stackSize(), and top().

```
16.41.6.2 double teb::TimeDiff::_dt = 0.1 [protected]
```

Definition at line 644 of file teb_vertices.h.

Referenced by dt(), getData(), getDataFree(), operator()(), operator=(), plus(), plusFree(), push(), setFree(), and top().

```
16.41.6.3 bool teb::TimeDiff::_fixed = false [protected]
```

Definition at line 645 of file teb vertices.h.

Referenced by dimensionFree(), getDataFree(), isFixedAll(), isFixedAny(), isFixedComp(), operator=(), plusFree(), setFixedAll(), setFree(), and TimeDiff().

```
16.41.6.4 int teb::VertexType::_opt_vec_idx = -1 [protected], [inherited]
```

Definition at line 69 of file graph.h.

Referenced by teb::VertexType::getOptVecIdx(), and teb::VertexType::setOptVecIdx().

```
16.41.6.5 const int teb::TimeDiff::Dimension = 1 [static]
```

Definition at line 521 of file teb vertices.h.

The documentation for this class was generated from the following file:

· teb vertices.h

16.42 teb::SimResults::TimeSeries Struct Reference

Store measurements of dynamic systems (states and control inputs) w.r.t.

```
#include <simulator.h>
```

Public Attributes

Eigen::MatrixXd states

Contains state vectors [p x n].

Eigen::MatrixXd controls

Contains control input vectors [q x n].

Eigen::VectorXd time

Time vector [0 .. T] [n x 1].

· double dt

Store time difference ΔT of the current TEB.

16.42.1 Detailed Description

time The time is discretized into n discrete time samples

Definition at line 37 of file simulator.h.

16.42.2 Member Data Documentation

16.42.2.1 Eigen::MatrixXd teb::SimResults::TimeSeries::controls

Definition at line 40 of file simulator.h.

Referenced by teb::SimResults::allocateMemory(), and teb::SimResults::conservativeResize().

16.42.2.2 double teb::SimResults::TimeSeries::dt

Definition at line 42 of file simulator.h.

16.42.2.3 Eigen::MatrixXd teb::SimResults::TimeSeries::states

Definition at line 39 of file simulator.h.

Referenced by teb::SimResults::allocateMemory(), and teb::SimResults::conservativeResize().

16.42.2.4 Eigen::VectorXd teb::SimResults::TimeSeries::time

Definition at line 41 of file simulator.h.

Referenced by teb::SimResults::allocateMemory(), and teb::SimResults::conservativeResize().

The documentation for this struct was generated from the following file:

simulator.h

16.43 teb::Config::Utilities Struct Reference

Configurations for helper miscellaneous and utilities.

```
#include <config.h>
```

16.43.1 Detailed Description

Definition at line 138 of file config.h.

The documentation for this struct was generated from the following file:

· config.h

16.44 teb::VertexType Class Reference

Generic interface class for vertices.

```
#include <graph.h>
```

Inheritance diagram for teb::VertexType:

Public Types

using VertexContainer = std::vector< VertexType * >

Typedef for vertex containers that stores all vertices required for the optimization (Hyper-Graph).

Public Member Functions

virtual bool isFixedAll () const =0

return true, if ALL values of this vertex are fixed and therefore are not necessary for optimization.

virtual bool isFixedAny () const =0

return true, if ANY element/value/component of this vertex is fixed and therefore the vertex is relevant for optimization.

virtual bool isFixedComp (int idx) const =0

return true, if element/value/component with index idx of this vertex is fixed.

virtual void push ()=0

This function should store all values into a internal backup stack.

• virtual void pop ()=0

This function should restore the previously stored values of the backup stack and remove them from the stack.

virtual void top ()=0

This function should restore the previously stored values of the backup stack WITHOUT removing them from the stack.

virtual void discardTop ()=0

This function should delete the previously made backup from the stack without restoring it.

• virtual unsigned int stackSize () const =0

This function should return the current size/number of backups of the backup stack.

virtual int dimension () const =0

Return number of elements/values/components stored in this vertex.

• virtual int dimensionFree () const =0

Return only the dimension of free (unfixed) variables.

void setOptVecIdx (int opt_vec_idx)

Update the position of the first value of this vertex inside the optimization vector / Hessian.

• int getOptVecIdx () const

Get the position of the first value of this Vertex inside the optimization vector / Hessian.

virtual void plus (const VertexType *rhs)=0

Define the increment for the vertex: x = x + rhs.

• virtual void plus (const double *rhs)=0

Define the increment for the vertex: x = x + rhs (rhs[] with dimension()=p+q values)

virtual void plusFree (const double *rhs)=0

Define the increment for the vertex: x = x + rhs (But only add FREE variables, rhs[] with dimensionFree() values).

virtual void setFree (const double *rhs)=0

Overwrite all free variables with the values given by rhs (rhs[] with dimensionFree() values).

virtual void getDataFree (double *target_vec) const =0

Return a copy of the free (unfixed) values as a single array (length: dimensionFree()).

virtual const double & getData (unsigned int idx) const =0

Return pointer to data with the index i dx).

Protected Attributes

• int opt vec idx = -1

Start-index in optimization vector (idx in hessian (row/column) and jacobian (column))

16.44.1 Detailed Description

This abstract class defines the interface for dedicated vertices. The underlying TEB optimization problem is formulated as a hyper-graph in which state vectors (StateVertex), control input vectors (ControlVertex) and a TimeDiff are represented as vertices. That means, vertices have to be considered by the solver as changeable quantities.

Author

Christoph Rösmann (christoph.roesmann@tu-dortmund.de)

See Also

HyperGraph, EdgeType, StateVertex, ControlVertex, TimeDiff, BaseEdge

Definition at line 29 of file graph.h.

16.44.2 Member Typedef Documentation

16.44.2.1 using teb::VertexType::VertexContainer = std::vector<VertexType*>

Definition at line 33 of file graph.h.

16.44.3 Member Function Documentation

```
16.44.3.1 virtual int teb::VertexType::dimension() const [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically(), teb::BaseEdge< D, FuncType, Vertices >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType >::computeJacobian(), and teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ().

```
16.44.3.2 virtual int teb::VertexType::dimensionFree() const [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

position of the first element of this vertex.

Definition at line 59 of file graph.h.

References _opt_vec_idx.

Returns

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinear-ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), and teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ().

```
16.44.3.7 virtual bool teb::VertexType::isFixedAll() const [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

Referenced by teb::BaseEdge< D, FuncType, Vertices >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType, Vertices >::computeJacobian(), and teb::BaseEdge< D, FuncType >::computeJacobian().

```
16.44.3.8 virtual bool teb::VertexType::isFixedAny() const [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::BaseSolverNonlinearProgramDense::buildObjectiveGradient(), and teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianNumerically().

16.44.3.9 virtual bool teb::VertexType::isFixedComp (int idx) const [pure virtual]

Parameters

```
idx | component index
```

Implemented in teb::TimeDiff, teb::ControlVertex< q >, and teb::StateVertex.

Referenced by teb::BaseSolverNonlinearProgramDense::buildEqualityConstraintJacobian(), teb::BaseSolverNonlinearProgramDense::buildInequalityConstraintJacobian(), teb::SolverLevenbergMarquardtEigenDense::buildJacobian(), teb::SolverLevenbergMarquardtEigenSparse::buildJacobian(), teb::BaseSolverNonlinear-

ProgramDense::buildObjectiveGradient(), teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian-Numerically(), and teb::SolverLevenbergMarquardtEigenSparse::countJacobianColNNZ().

```
16.44.3.10 virtual void teb::VertexType::plus ( const VertexType * rhs ) [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q >, and teb::StateVertex.

Referenced by teb::BaseEdge < D, FuncType, Vertices >::computeHessian(), teb::BaseEdge < D, FuncType >::computeHessian(), teb::BaseEdge < D, FuncType, Vertices >::computeJacobian(), and teb::BaseEdge < D, FuncType >::computeJacobian().

```
16.44.3.11 virtual void teb::VertexType::plus ( const double * rhs ) [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

```
16.44.3.12 virtual void teb::VertexType::plusFree ( const double * rhs ) [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q >, and teb::StateVertex.

```
16.44.3.13 virtual void teb::VertexType::pop() [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< g >, and teb::StateVertex.

Referenced by teb::BaseEdge< D, FuncType, Vertices >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType, Vertices >::computeJacobian(), and teb::BaseEdge< D, FuncType >::computeJacobian().

```
16.44.3.14 virtual void teb::VertexType::push() [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

Referenced by teb::BaseEdge< D, FuncType, Vertices >::computeHessian(), teb::BaseEdge< D, FuncType >::computeHessian(), teb::BaseEdge< D, FuncType, Vertices >::computeJacobian(), and teb::BaseEdge< D, FuncType >::computeJacobian().

```
16.44.3.15 virtual void teb::VertexType::setFree( const double * rhs ) [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q >, and teb::StateVertex.

```
16.44.3.16 void teb::VertexType::setOptVecldx (int opt_vec_idx ) [inline]
```

Parameters

```
opt_vec_idx | index of the first value
```

Definition at line 53 of file graph.h.

References _opt_vec_idx.

```
16.44.3.17 virtual unsigned int teb::VertexType::stackSize( ) const [pure virtual]
```

Implemented in teb::TimeDiff, teb::ControlVertex< q>, and teb::StateVertex< p>.

```
16.44.3.18 virtual void teb::VertexType::top( ) [pure virtual]
Implemented in teb::TimeDiff, teb::ControlVertex < q >, and teb::StateVertex .
16.44.4 Member Data Documentation
16.44.4.1 int teb::VertexType::_opt_vec_idx = -1 [protected]
```

Definition at line 69 of file graph.h.

Referenced by getOptVecIdx(), and setOptVecIdx().

The documentation for this class was generated from the following file:

• graph.h

Chapter 17

File Documentation

17.1 base_controller.h File Reference

```
#include <teb_package/base/config.h>
#include <memory>
#include <cmath>
#include <deque>
```

Classes

· class teb::BaseController

Base controller class (General Controller API)

Namespaces

• teb

General project namespace for all library functions and objects.

17.2 base_edge.h File Reference

```
#include <teb_package/base/graph.h>
#include <teb_package/base/teb_vertices.h>
#include <teb_package/utilities/misc.h>
#include <array>
#include <teb_package/base/base_edge.hpp>
```

Classes

class teb::BaseEdge< D, FuncType, Vertices >

Templated base edge class that stores an arbitary number of values.

class teb::BaseEdge
 D, FuncType

Templated base edge class that stores an arbitary number of values (Partial template specialization that allows changing vertices dimensions at runtime).

Namespaces

• teb

General project namespace for all library functions and objects.

17.3 base_edge.hpp File Reference

```
#include <teb_package/base/base_edge.h>
```

Namespaces

• teb

General project namespace for all library functions and objects.

17.4 base_edge_dynamics.h File Reference

```
#include <teb_package/base/base_edge.h>
#include <teb_package/base/system_dynamics.h>
```

Classes

class teb::EdgeSystemDynamics< p, q, central >

Equality constraint edge for satisfying continious system dynamics specified by an SystemDynamics object.

Namespaces

• teb

General project namespace for all library functions and objects.

17.5 base_solver.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <teb_package/base/config.h>
#include <teb_package/base/graph.h>
#include <memory>
#include <cmath>
#include <deque>
#include <Eigen/Core>
#include <Eigen/StdVector>
```

Classes

· class teb::BaseSolver

Base class for solver implementations.

Namespaces

• teb

General project namespace for all library functions and objects.

17.6 base_solver_least_squares.cpp File Reference

```
#include <teb_package/base/base_solver_least_squares.h>
```

Namespaces

• teb

General project namespace for all library functions and objects.

17.7 base_solver_least_squares.h File Reference

```
#include <teb_package/base/base_solver.h>
#include <Eigen/Dense>
```

Classes

• class teb::BaseSolverLeastSquares

Extended base solver class for least squares optimizations.

Namespaces

teb

General project namespace for all library functions and objects.

17.8 base_solver_nonlinear_program_dense.cpp File Reference

```
#include <teb_package/solver/base_solver_nonlinear_program_dense.h>
```

Namespaces

• teb

General project namespace for all library functions and objects.

17.9 base_solver_nonlinear_program_dense.h File Reference

```
#include <teb_package/base/base_solver.h>
#include <Eigen/Dense>
```

Classes

· class teb::BaseSolverNonlinearProgramDense

Extended base solver class for nonlinear programs (dense version).

Namespaces

• teb

General project namespace for all library functions and objects.

17.10 bound_constraints.h File Reference

```
#include <teb_package/base/base_edge.h>
#include <type_traits>
#include <tuple>
```

Classes

· struct teb::CustomBoundData

Datastruct for custom bound data that can be queried from the BoundConstraint class.

class teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >

This class captures general bound constraints on optimization variables / vertices.

Namespaces

• teb

General project namespace for all library functions and objects.

Enumerations

enum teb::BOUND_TYPE { teb::BOUND_TYPE::LOWER, teb::BOUND_TYPE::UPPER, teb::BOUND_TYPE::LOWERUPPER }

Enumerator class that stores all types of bounds for consideration in BoundConstraint class.

enum teb::BOUND_VARS { teb::BOUND_VARS::ALL, teb::BOUND_VARS::SINGLE }

Enumerator class that stores all types of variables that can be bounded using BoundConstraint class.

17.11 common_teb_edges.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <teb_package/base/bound_constraints.h>
#include <teb_package/base/base_edge_dynamics.h>
#include <teb_package/base/system_dynamics.h>
```

Classes

· class teb::EdgeMinimizeTime

Objective edge: minimize ΔT .

class teb::EdgeQuadraticForm< p, q >

Objective edge: quadratic form for states and control input.

Namespaces

• teb

General project namespace for all library functions and objects.

Typedefs

using teb::EdgePositiveTime = BoundConstraint< BOUND_TYPE::LOWER, TimeDiff, BOUND_VARS::SIN-GLE, 0 >

Bound constraint edge for the time difference: $\Delta T \geq \varepsilon$.

template<int q>

 $\mbox{using teb::} \mbox{EdgeControlBounds} = \mbox{BoundConstraint} < \mbox{BOUND_TYPE::} \mbox{LOWERUPPER, ControlVertex} < \mbox{$q >$,} \\ \mbox{BOUND VARS::} \mbox{ALL} >$

Bound constraint edge for control inputs: $\mathbf{u}_{min} \leq \mathbf{u}_{k} \leq \mathbf{u}_{max}$.

template<int p>

 $\mbox{using teb::} \mbox{EdgeStateBounds} = \mbox{BoundConstraint} < \mbox{BOUND_TYPE::} \mbox{LOWERUPPER, StateVertex} < p >, \mbox{BOUND_VARS::} \mbox{ALL} >$

Bound constraint edge for states: $\mathbf{x}_{min} \leq \mathbf{x}_{k} \leq \mathbf{x}_{max}$.

17.12 config.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <cstdint>
```

Classes

· class teb::Config

Configurations for Controller and Solver classes.

• struct teb::Config::Teb

Configurations related to the TEB algorithm.

struct teb::Config::Optim

Configurations related to the trajectory optimization.

struct teb::Config::Optim::Solver

Configurations related to solvers.

struct teb::Config::Optim::Solver::Lsq

Configurations especially for least-squares-solvers.

• struct teb::Config::Optim::Solver::NonlinearProgram

Settings for constrained optimiziation solver (nonlinear program solver)

struct teb::Config::Optim::Solver::NonlinearProgram::Hessian

Configurations for the hessian of the lagrangian calculation.

• struct teb::Config::Optim::Solver::NonlinearProgram::LineSearch

Settings for the line-search algorithm (force merit function descent)

· struct teb::Config::Optim::Solver::Nlopt

Configurations especially for the nlopt solver wrapper.

· struct teb::Config::Utilities

Configurations for helper miscellaneous and utilities.

Namespaces

• teb

General project namespace for all library functions and objects.

Enumerations

enum teb::FiniteDifferences { teb::FiniteDifferences::FORWARD, teb::FiniteDifferences::CENTRAL }

Enumeration for different finite difference types used especially for dynamic system discretization.

enum teb::HessianMethod {
 teb::HessianMethod::NUMERIC, teb::HessianMethod::BLOCK_BFGS, teb::HessianMethod::FULL_BFGS, teb::HessianMethod::FULL_BFGS WITH STRUCTURE FILTER,

Enumeration for different hessian calculation methods (not necessary for least-squares solver)

• enum teb::HessianInit { teb::HessianInit::ZERO, teb::HessianInit::IDENTITY, teb::HessianInit::NUMERIC }

Enumeration for the hessian initialization (relevant for BFGS hessian approximations)

enum teb::NloptAlgorithms { teb::NloptAlgorithms::SLSQP }

Enumeration for different solver algorithms supported by the Nlopt library (only those that are working here)

17.13 download.md File Reference

teb::HessianMethod::ZERO HESSIAN }

17.14 graph.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <teb_package/base/workspaces.h>
#include <Eigen/Core>
#include <stack>
#include <vector>
#include <memory>
```

Classes

class teb::VertexType

Generic interface class for vertices.

class teb::EdgeType

Generic interface class for edges.

· class teb::HyperGraph

Graph object that stores pointers to active vertices and edges.

Namespaces

teb

General project namespace for all library functions and objects.

Enumerations

enum teb::FUNCT_TYPE {
 teb::FUNCT_TYPE::NONLINEAR, teb::FUNCT_TYPE::NONLINEAR_SQUARED, teb::FUNCT_TYPE::NONLINEAR_ONCE_DIFF, teb::FUNCT_TYPE::QUADRATIC,
 teb::FUNCT_TYPE::LINEAR_SQUARED, teb::FUNCT_TYPE::LINEAR }

Enum for different function types (see EdgeType class)

17.15 groups.dox File Reference

17.16 install.md File Reference

17.17 integrators.h File Reference

```
#include <teb_package/base/system_dynamics.h>
#include <Eigen/Core>
#include <queue>
```

Classes

• class teb::NumericalIntegrator< p, q >

Interface for numerical integration methods used in simulation.

class teb::ExplicitEuler< p, q >

Simple explicit euler method for integration.

- class teb::RungeKuttaClassic< p, q >

Classic Runge Kutta method (fourth order)

class teb::RungeKutta5thOrder< p, q >

Runge Kutta method (fifth order, slighly modified)

Namespaces

teb

General project namespace for all library functions and objects.

Enumerations

 enum teb::NumericalIntegrators { teb::NumericalIntegrators::EXPLICIT_EULER, teb::NumericalIntegrators:: RUNGE_KUTTA_CLASSIC, teb::NumericalIntegrators::RUNGE_KUTTA_5TH }

Enumeration for different numerical integration methods.

- 17.18 mainpage.dox File Reference
- 17.19 matlab_class_handle.hpp File Reference
- 17.20 matlab interface.md File Reference

17.21 measure_cpu_time.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <chrono>
```

Macros

- #define START_TIMER auto start = std::chrono::high_resolution_clock::now();
- #define STOP TIMER(name)

17.21.1 Macro Definition Documentation

17.21.1.1 #define START_TIMER auto start = std::chrono::high_resolution_clock::now();

Examples:

integrator_system1.cpp, linear_system_ode.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, and van_der_pol_system.cpp.

Definition at line 12 of file measure_cpu_time.h.

```
17.21.1.2 #define STOP_TIMER( name )
```

Value:

```
PRINT_INFO("RUNTIME of " << name << ": " << \
    std::chrono::duration_cast<std::chrono::milliseconds>( \
        std::chrono::high_resolution_clock::now()-start \
    ).count() << " ms " << "(Compiled in Debug mode)");</pre>
```

Examples:

integrator_system1.cpp, linear_system_ode.cpp, linear_system_state_space.cpp, mobile_robot_teb.cpp, and van_der_pol_system.cpp.

Definition at line 19 of file measure_cpu_time.h.

17.22 misc.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <math.h>
#include <functional>
#include <tuple>
```

Functions

• double norm_angle (double angle)

Normalize angle to interval [-pi, pi)

void norm_angle_vec (Eigen::Ref< Eigen::MatrixXd > angles)

Normalize vector or matrix of angles to interval [-pi, pi)

17.22.1 Function Documentation

17.22.1.1 double norm_angle (double angle) [inline]

Parameters

angle	angle in radiant
-------	------------------

Returns

normalized angle to [-pi, pi) in rad

Examples:

```
mobile_robot_teb.cpp.
```

Definition at line 15 of file misc.h.

References PI.

Referenced by norm_angle_vec().

```
17.22.1.2 void norm_angle_vec ( Eigen::Ref < Eigen::MatrixXd > angles ) [inline]
```

Parameters

angles angle vector/matrix in radiant [all values will be replaced by its normalized version]

Examples:

```
mobile robot teb.cpp.
```

Definition at line 35 of file misc.h.

References norm_angle().

17.23 simulator.h File Reference

```
#include <teb_package/base/base_controller.h>
#include <teb_package/base/system_dynamics.h>
#include <teb_package/simulation/integrators.h>
#include <teb_package/visualization/teb_plotter.h>
#include <functional>
#include <teb_package/simulation/simulator.hpp>
```

Classes

· class teb::SimResults

Simulation results are stored and combined in this container class.

• struct teb::SimResults::TimeSeries

Store measurements of dynamic systems (states and control inputs) w.r.t.

class teb::Simulator< p, q >

Simulator for dynamic systems controlled by a TebController.

Namespaces

• teb

General project namespace for all library functions and objects.

17.24 simulator.hpp File Reference

#include <teb_package/simulation/simulator.h>

Namespaces

• teb

General project namespace for all library functions and objects.

17.25 solver_levenbergmarquardt_eigen_dense.cpp File Reference

#include <teb_package/solver/solver_levenbergmarquardt_eigen_dense.h>
#include <iostream>

Namespaces

• teb

General project namespace for all library functions and objects.

17.26 solver_levenbergmarquardt_eigen_dense.h File Reference

#include <teb_package/base/base_solver_least_squares.h>

Classes

• class teb::SolverLevenbergMarquardtEigenDense

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Dense matrices version).

Namespaces

teb

General project namespace for all library functions and objects.

17.27 solver_levenbergmarquardt_eigen_sparse.cpp File Reference

#include <teb_package/solver/solver_levenbergmarquardt_eigen_sparse.h>
#include <iostream>

Namespaces

• teb

General project namespace for all library functions and objects.

17.28 solver_levenbergmarquardt_eigen_sparse.h File Reference

```
#include <teb_package/base/base_solver_least_squares.h>
#include <Eigen/Sparse>
```

Classes

• class teb::SolverLevenbergMarquardtEigenSparse

Levenberg-Marquardt Solver that uses Eigen to solve the resulting linear system (Sparse matrices version).

Namespaces

• teb

General project namespace for all library functions and objects.

17.29 solver_nlopt_package.cpp File Reference

17.30 solver_nlopt_package.h File Reference

```
#include <teb_package/base/base_solver.h>
```

Classes

• class teb::SolverNloptPackage

This class wraps the optimization problem to allow solving by NLOPT.

Namespaces

• teb

General project namespace for all library functions and objects.

17.31 solver_overview.md File Reference

17.32 solver_sqp_dense.h File Reference

```
#include <teb_package/solver/base_solver_nonlinear_program_dense.h>
#include <qpOASES.hpp>
```

Classes

· class teb::SolverSQPDense

Dense sequential quadratic programming (SQP) solver for nonlinear programs.

Namespaces

• teb

General project namespace for all library functions and objects.

Macros

```
    #define __SUPPRESSANYOUTPUT__
```

17.32.1 Macro Definition Documentation

```
17.32.1.1 #define __SUPPRESSANYOUTPUT__
```

Definition at line 6 of file solver_sqp_dense.h.

17.33 solver_sqp_dense_backup.h File Reference

```
#include <teb_package/solver/base_solver_nonlinear_program_dense.h>
#include <qpOASES.hpp>
```

Classes

• class teb::SolverSQPDense

Dense sequential quadratic programming (SQP) solver for nonlinear programs.

Namespaces

• teb

General project namespace for all library functions and objects.

17.34 system_dynamics.h File Reference

```
#include <Eigen/Core>
#include <Eigen/Dense>
```

Classes

• class teb::SystemDynamics< p, q >

Helper class for modeling nonlinear dynamic systems.

Namespaces

• teb

General project namespace for all library functions and objects.

17.35 teb_controller.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <teb_package/base/base_controller.h>
#include <teb_package/base/teb_vertices.h>
#include <teb_package/base/common_teb_edges.h>
#include <teb_package/base/base_solver.h>
#include <Eigen/Core>
#include <Eigen/StdDeque>
#include "algorithm"
#include <teb_package/base/teb_controller.hpp>
```

Classes

class teb::TebController< p, q >

Main Timed-Elastic-Band controller class.

Namespaces

• teb

General project namespace for all library functions and objects.

17.36 teb_controller.hpp File Reference

```
#include <teb_package/base/teb_controller.h>
```

Namespaces

teb

General project namespace for all library functions and objects.

17.37 teb_plotter.cpp File Reference

```
#include <teb_package/visualization/teb_plotter.h>
```

Namespaces

• teb

General project namespace for all library functions and objects.

17.38 teb_plotter.h File Reference

```
#include <teb_package/base/typedefs.h>
#include <teb_package/base/teb_controller.h>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <teb_package/visualization/teb_plotter.hpp>
```

Classes

• struct teb::PlotOptions

Customize plots and figures.

· class teb::TebPlotter

Provides useful visualization and plotting functions.

Namespaces

• teb

General project namespace for all library functions and objects.

17.39 teb_plotter.hpp File Reference

```
#include <teb_package/visualization/teb_plotter.h>
```

Namespaces

teb

General project namespace for all library functions and objects.

17.40 teb_vertices.h File Reference

```
#include <teb_package/base/graph.h>
```

Classes

class teb::StateVertex

Vertex that contains the StateVector.

class teb::ControlVertex< q >

Vertex that contains the ControlVector.

· class teb::TimeDiff

Vertex that contains the time information of the TEB: ΔT .

Namespaces

• teb

General project namespace for all library functions and objects.

17.41 typedefs.h File Reference

```
#include <limits.h>
#include <iostream>
#include <vector>
#include <Eigen/Core>
#include <Eigen/StdVector>
#include <stack>
#include <deque>
```

Namespaces

• teb

General project namespace for all library functions and objects.

Macros

#define PI 3.14159265358979323846264

Define π .

• #define INF HUGE VAL

Define Inifity ∞.

#define PRINT DEBUG(msg) std::cout << "Debug: " << msg << std::endl;

Print msg-stream only if project is compiled in Debug-mode.

#define PRINT_DEBUG_ONCE(msg) { static const auto debugOnce = [&] { std::cout << "Debug: " << msg << std::endl; return true;}(); (void)debugOnce; }

Print msg-stream only once and only if project is compiled in Debug-mode.

#define PRINT_DEBUG_COND(cond, msg) if (cond) std::cout << "Debug: " << msg << std::endl;

Print msg-stream only if cond == true and only if project is compiled in Debug-mode.

• #define PRINT_DEBUG_COND_ONCE(cond, msg) { static const auto debugOnce = [&] { if (cond) std::cout << "Debug: " << msg << std::endl; return true;}(); (void)debugOnce; }

Print msq-stream only if cond == true, only once and only if project is compiled in Debug-mode.

#define PRINT_INFO(msg) std::cout << "Info: " << msg << std::endl;

Print msg-stream.

#define PRINT_INFO_ONCE(msg) { static const auto infoOnce = [&] { std::cout << "Info: " << msg << std::endl; return true;}(); (void)infoOnce; }

Print msg-stream only once.

#define PRINT INFO COND(cond, msg) if (cond) std::cout << "Info: " << msg << std::endl;

Print msg-stream only if cond == true.

• #define PRINT_INFO_COND_ONCE(cond, msg) { static const auto infoOnce = [&] { if (cond) std::cout << "Info: " << msg << std::endl; return true;}(); (void)infoOnce; }

Print msg-stream only if cond == true, only once.

#define PRINT_ERROR(msg) std::cerr << "Error: " << msg << std::endl;

Print msg-stream as error msg.

#define INPUT_STREAM(variable, default_val) std::cin >> variable;

Typedefs

```
    template<typename T >
        using teb::EigenScalar = Eigen::Matrix< T, 1, 1 >
        Define 1x1 Eigen::Matrix.
    using teb::EigenScalarD = EigenScalar< double >
        Define 1x1 Eigen::Matrix of type double.
    template<typename T >
        using teb::BackupStackType = std::stack< T, std::deque< T > >
        Backup stack type.
```

17.41.1 Macro Definition Documentation

17.41.1.1 #define INF HUGE_VAL

Definition at line 39 of file typedefs.h.

Referenced by teb::BoundConstraint< Bound_type, Vertex, Bound_vars, Index >::getCustomData(), and teb::-SolverSQPDense::initSolverWorkspace().

17.41.1.2 #define INPUT_STREAM(*variable*, *default_val*) std::cin >> variable;

Definition at line 105 of file typedefs.h.

Referenced by teb::Simulator< p, q >::simClosedLoop().

17.41.1.3 #define PI 3.14159265358979323846264

Definition at line 36 of file typedefs.h.

Referenced by norm_angle().

17.41.1.4 #define PRINT_DEBUG(msg) std::cout << "Debug: " << msg << std::endl;

Definition at line 63 of file typedefs.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessianFullBFGS(), teb::TebPlotter::setOutputToFile(), and teb::SolverSQPDense::solvelmpl().

17.41.1.5 #define PRINT_DEBUG_COND(cond, msg) if (cond) std::cout << "Debug: " << msg << std::endl;

Definition at line 69 of file typedefs.h.

17.41.1.6 #define PRINT_DEBUG_COND_ONCE(cond, msg) { static const auto debugOnce = [&] { if (cond) std::cout << "Debug: " << msg << std::endl; return true;}(); (void)debugOnce; }

Definition at line 72 of file typedefs.h.

 $Referenced \ by \ teb:: TebController < p, \ q > :: initOptimization(), \ teb:: BaseSolverLeastSquares:: initWorkspaces(), \ and \ teb:: BaseSolverNonlinearProgramDense:: initWorkspaces().$

17.41.1.7 #define PRINT_DEBUG_ONCE(*msg*) { static const auto debugOnce = [&] { std::cout << "Debug: " << msg << std::endl; return true;}(); (void)debugOnce; }

Definition at line 66 of file typedefs.h.

Referenced by teb::TebPlotter::setOutputToFile(), and teb::SolverSQPDense::solveImpl().

```
17.41.1.8 #define PRINT_ERROR( msg ) std::cerr << "Error: " << msg << std::endl;
```

Definition at line 103 of file typedefs.h.

 $Referenced \ by \ teb:: Base Solver Nonlinear Program Dense:: calculate Lagrangian Hessian (), \ and \ teb:: Base Solver Nonlinear Program Dense:: init Hessian BFGS ().$

```
17.41.1.9 #define PRINT_INFO( \mathit{msg} ) std::cout << "Info: " << msg << std::endl;
```

Examples:

integrator_system1.cpp, integrator_system_classic_mpc.cpp, linear_system_ode.cpp, linear_system_state_space.cpp, and van_der_pol_system.cpp.

Definition at line 91 of file typedefs.h.

Referenced by teb::BaseSolverNonlinearProgramDense::calculateLagrangianHessian(), teb::TebPlotter::plot(), teb::TebPlotter::plot1DVector(), teb::Simulator< p, q >::plotResults(), teb::TebPlotter::plotTEB(), teb::TebPlotter::plotTwoCol(), teb::Simulator< p, q >::simClosedLoop(), teb::TebPlotter::spyMatrix(), and teb::TebPlotter::TebPlotter().

```
17.41.1.10 #define PRINT_INFO_COND( cond, msg) if (cond) std::cout << "Info: " << msg << std::endl;
```

Definition at line 97 of file typedefs.h.

```
17.41.1.11 #define PRINT_INFO_COND_ONCE( cond, msg ) { static const auto infoOnce = [&] { if (cond) std::cout << "Info: " << msg << std::endl; return true;}(); (void)infoOnce; }
```

Definition at line 100 of file typedefs.h.

```
17.41.1.12 #define PRINT_INFO_ONCE( msg ) { static const auto infoOnce = [&] { std::cout << "Info: " << msg << std::endl; return true;}(); (void)infoOnce; }
```

Examples:

```
mobile_robot_teb.cpp.
```

Definition at line 94 of file typedefs.h.

Referenced by teb::Simulator< p, q >::simClosedLoop().

17.42 utilities.h File Reference

```
#include "misc.h"
#include "measure_cpu_time.h"
```

17.43 workspaces.h File Reference

```
#include <Eigen/Core>
#include <Eigen/StdVector>
#include <vector>
```

Classes

• class teb::JacobianWorkspace

Memory management and accessor functions for the Block-Jacobians (for each edge).

• class teb::HessianWorkspace

Memory management and accessor functions for the Block-Hessian (for each edge).

Namespaces

• teb

General project namespace for all library functions and objects.

Chapter 18

Example Documentation

18.1 integrator_system1.cpp

The following example shows the TEB controller applied to an integrator system with p integrator states:

$$Tx^{(p)} = u$$

The control input u should be bounded to the interval [-1, 1].

Considering the particular case p = 4. The state vector is defined by $\mathbf{x} = [x, \dot{x}, \ddot{x}, \ddot{x}]^T$. Transforming ODE (1) into a state space corresponding to \mathbf{x} leads to:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \vdots \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \ddot{x} \\ \vdots \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1/T \end{bmatrix} u$$

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0,0,0]^T$ to the final state $\mathbf{x}_f = [1,0,0,0]^T$.

The system dynamics are specified using the Integrator System class. See the following header file how to add the state space model mentioned above for an integrator with p states.

File integrator_system.h:

```
#ifndef __teb_package__examples_integrator_system_
#define __teb_package__examples_integrator_system_

#include <teb_package_h>

template <int p>
class IntegratorSystem : public teb::SystemDynamics<p,1>
{
public:
    using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
    using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
    ;

inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
    Eigen::Ref<const ControlVector>& u) const
{
    StateVector state_equations;
    const int no_int = p-1;
    if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^(1:n-1) = x^(2:n)

    // add last equation containing control u
    state_equations[no_int] = u[0] / _time_constant; // x^(n) = u / T
    return state_equations;
```

```
void setTimeConstant(double time_constant) {_time_constant = time_constant;};
protected:
   double _time_constant = 1;
};
#endif /* defined(__teb_package__examples_integrator_system__) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the IntegratorSystem object specified in integrator_system.h.

The example program solves the optimization problem once without actually controlling the system. See other examples for open-loop and closed-loop control applications.

The output of the program is as follows:

Figure 18.1: Result of integrator_system1.cpp

File integrator_system1.cpp

```
#include "integrator_system.h"
int main()
{
    const int p = 4;
    double x0[] = {0,0,0,0};
    double xf[] = {1,0,0,0};
    double u = 0;

    // Setup solver and controller
    teb::SolverLevenbergMarquardtEigenSparse solver;

    // test SQP solver
    teb::Config cfg;
    //cfg.teb.teb_iter = 1;
    //cfg.optim.solver.nonlin_prog.hessian.hessian_method = teb::HessianMethod::FULL_BFGS;
    //cfg.optim.solver.nonlin_prog.hessian.hessian_init = teb::HessianInit::IDENTITY;
    //cfg.optim.solver.nonlin_prog.hessian.hessian_init_identity_scale = 0.5;
    //teb::SolverSQPDense solver;

teb::TebController<p,1> teb(&cfg, &solver);
```

```
// System specific settings
IntegratorSystem system;
system.setTimeConstant(1.0);
teb.setSystemDynamics(&system);
teb.activateObjectiveTimeOptimal();
teb.activateControlBounds(0, -1.0, 1.0);
// Perform open-loop planning
START_TIMER;
teb.step(x0, xf, &u);
STOP_TIMER("TEB optimization loop");
// Print determined control for the current sampling interval
PRINT_INFO("Control u: " << u);</pre>
// Plot states and control input
teb::TebPlotter plotter;
// optional: plotter.setOutputToFile("teb_opt_int",teb::TebPlotter::FileFormat::PNG);
return 0;
```

18.2 integrator_system2.cpp

The following example shows the TEB controller applied to an integrator system with p integrator states:

$$Tx^{(p)} = u$$

The control input u should be bounded to the interval [-1, 1].

Considering the particular case p = 2. The state vector is defined by $\mathbf{x} = [x, \dot{x}]^T$. Transforming ODE (1) into a state space corresponding to \mathbf{x} leads to:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/T \end{bmatrix} u$$

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0]^T$ to the final state $\mathbf{x}_f = [1,0]^T$.

The system dynamics are specified using the Integrator System class. See the following header file how to add the state space model mentioned above for an integrator with p states.

File integrator_system.h:

```
#ifndef __teb_package__examples_integrator_system__
#define __teb_package__examples_integrator_system_
#include <teb_package.h>
template <int p>
class IntegratorSystem : public teb::SystemDynamics<p,1>
  using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
  using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
  inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
      Eigen::Ref<const ControlVector>& u) const
      StateVector state_equations;
      const int no_int = p-1;
      if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^{(1:n-1)} = x^{(2:n)}
      // add last equation containing control u
      tate_{quations[no_int]} = u[0] / _time_{quations[no_int]} = u / T
      return state_equations;
    void setTimeConstant(double time_constant) {_time_constant = time_constant;};
```

```
protected:
    double _time_constant = 1;
};

#endif /* defined(__teb_package__examples_integrator_system__) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the IntegratorSystem object specified in integrator_system.h.

Additionally, a Simulator object is initialized in order to perform closed-loop and open-loop simulations.

The example program compares the result for the open-loop control and the simulated closed-loop control. In addition the first optimziation result (red) is shown. If the system dynamic equation (equality constraint) is fully satisfied, red and green should be similar. They can only be identical, if the integrator method NumericalIntegrators:ForwardEuler is used in simulation, since the TEB relies on the very same integration model.

The output of the program is as follows:

Figure 18.2: Result of integrator system2.cpp

File integrator_system2.cpp

```
#include "integrator_system.h"
int main()
    const int p = 2; // number of states
    double x0[] = {0,0}; // start state
    double xf[] = \{1,0\}; // goal state
    \ensuremath{//} Setup solver and controller
    teb::SolverLevenbergMarquardtEigenSparse solver;
teb::TebController<p,1> teb(&solver);
    // System specific settings
    IntegratorSystem system;
    teb.setSystemDynamics(&system);
    // Optional: smooth control input trajectory
    // with small weighted quadratic cost
    //teb.activateObjectiveQuadraticForm(0,0.1,0);
    teb.activateObjectiveTimeOptimal();
    teb.activateControlBounds(0, -1.0, 1.0);
    // Create simulator
    teb::TebPlotter plotter;
    teb::Simulator<p,1> sim(&teb, system, &plotter);
    // Set simulation sample time
    sim.setSampleTime(0.1);
    // Simulate 3 seconds
    sim.simOpenAndClosedLoop(x0,xf,3);
```

```
return 0;
```

18.3 integrator_system_classic_mpc.cpp

The following example shows a classic MPC controller (with a quadratic cost functional and a receding horizon) applied to an integrator system with *p* integrator states:

$$Tx^{(p)} = u$$

The control input u should be bounded to the interval [-1, 1].

Considering the particular case p = 3. The state vector is defined by $\mathbf{x} = [x, \dot{x}, \ddot{x}]^T$. Transforming ODE (1) into a state space corresponding to \mathbf{x} leads to:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \ddot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/T \end{bmatrix} u$$

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0]^T$ to the final state $\mathbf{x}_f = [1,0]^T$ while minimizing the quadratic control effort and control energy:

$$J = (\mathbf{x}_n - \mathbf{x}_f)^T \mathbf{Q}_f (\mathbf{x}_n - \mathbf{x}_f) + \sum_{k=0}^{n-1} [(\mathbf{x}_k - \mathbf{x}_f)^T \mathbf{Q} (\mathbf{x}_k - \mathbf{x}_f) + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k]$$

The receding/moving horizon is set to n = 10. The system dynamics are descretized using finite differences and with a uniform and fixed resolution ($\Delta T = 0.1$ s).

The continuous system dynamics are specified using the IntegratorSystem class. See the following header file how to add the state space model mentioned above for an integrator with p states.

File integrator_system.h:

```
#ifndef __teb_package__examples_integrator_system_
 #define __teb_package__examples_integrator_system_
#include <teb_package.h>
template <int p>
class IntegratorSystem : public teb::SystemDynamics<p,1>
public:
      using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
       in line \ virtual \ StateVector \ stateSpaceModel (const \ Eigen:: Ref < const \ StateVector > \& \ x, \ const \ x, \ const \ StateVector > \& \ x, \ const \ x, 
                    Eigen::Ref<const ControlVector>& u) const
                     StateVector state equations:
                     const int no_int = p-1;
                     if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^(1:n-1) = x^(2:n)
                     // add last equation containing control \boldsymbol{u}
                     state_equations[no_int] = u[0] / _time_constant; // x^{n} = u / T
                     return state equations;
              void setTimeConstant(double time_constant) {_time_constant = time_constant;};
protected:
              double _time_constant = 1;
 #endif /* defined(__teb_package__examples_integrator_system__) */
```

The following cpp-file shows how to create the TebController object with common MPC characteristics, how to add control bounds and how to add the IntegratorSystem object specified in integrator_system.h.

Additionally, a Simulator object is initialized in order to perform closed-loop and open-loop simulations.

The example program compares the result for the open-loop control and the simulated closed-loop control. In addition the first optimization result (red) is shown (the first horizon!).

The output of the program is as follows:

Figure 18.3: Result of integrator_system_classic_mpc.cpp

File integrator_system_classic_mpc.cpp

```
#include "integrator_system.h"
int main()
    const int p = 3;
double x0[] = \{0,0,0\};
double xf[] = \{1,0,0\};
    //double u; //! store control
    // Setup soft constraint weights
    teb::Config cfg;
    cfg.optim.solver.lsq.weight_equalities = 2;
    cfg.optim.solver.lsq.weight_inequalities = 2;
    cfg.optim.solver.lsq.weight_adaptation_factor = 5;
    \ensuremath{//} Setup solver and controller
    teb::SolverLevenbergMarquardtEigenSparse solver;
teb::TebController<p,1> teb(&cfg, &solver);
    // Setup receding horizon T = n * dt = 10 * 0.1
    // Common setting: unfixed goal and fixed resolution
    teb.setupHorizon(false, true, 10, 0.1);
    // Setup optimization problem
    teb.activateObjectiveQuadraticForm(0.5,0.1,50); // parameters: Q, R, Qf
    teb.activateControlBounds(0, -1.0, 1.0);
    IntegratorSystem system;
    system.setTimeConstant(1.0);
    teb.setSystemDynamics(&system);
    // Create simulator
    teb::TebPlotter plotter;
    teb::Simulator<p,1> sim(&teb, system, &plotter);
    // Set simulation sample time
```

```
sim.setSampleTime(0.1);

// Simulate 12 seconds and save image to file (look in the folder of the binary)
plotter.setOutputToFile("mpc_control_integrator",
    teb::TebPlotter::FileFormat::PNG);

PRINT_INFO("Simulation running...");
sim.simOpenAndClosedLoop(x0, xf, 12, false, false);
PRINT_INFO("Simulation finished. Find the output file in your current working folder.");
return 0;
```

18.4 integrator_system_mex.cpp

The following examples clarifies, how to prepare the TEB Controller (in particular the Controller of the Integrator-System example) for the usage in Matlab as a mex function.

The header file remains unchainged. File integrator_system.h:

```
#ifndef __teb_package__examples_integrator_system_
 #define __teb_package__examples_integrator_system_
#include <teb package.h>
template <int p>
class IntegratorSystem : public teb::SystemDynamics<p,1>
public:
      using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
       in line \ virtual \ State Vector \ state Space Model (const Eigen:: Ref < const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vector > \& \ x, \ const \ State Vect
                    Eigen::Ref<const ControlVector>& u) const
                    StateVector state equations;
                     const int no int = p-1;
                     if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^(1:n-1) = x^(2:n)
                    // add last equation containing control \boldsymbol{u}
                    state_equations[no_int] = u[0] / _time_constant; // x^(n) = u / T
                    return state_equations;
             void setTimeConstant(double time_constant) {_time_constant = time_constant;};
protected:
              double _time_constant = 1;
#endif /* defined(__teb_package__examples_integrator_system__) */
```

The following cpp-file shows how embed the TebController object into Matlab's function wrapper mexFunction. The example also wraps the mex function into a Matlab class. The controller class object is transformed to a Matlab handle using a small help (undocumented) helper class teb::matlab::matlabClassHandle(). See the Matlab class control_interface.cpp in examples/matlab_interface directory for more details on how to use it in Matlab.

An alternate approach without the helper class would be to store a persistent object (and its pointer) within the file (like for the Solver and System class). **Note**, the wrapper class can be easily adapted to other controllers by just changing the typedefs at the top of the file. Controller settings can be modified below the comment // Setup Controller.

File integrator_system_mex.cpp

```
#include "mex.h"
#include <iostream>
#include "integrator_system.h"
```

```
// support helper class to define a pointer suited for matlabs handle object
// @see teb::matlab::matlabClassHandle
using namespace teb::matlab;
// Create typedef for our controller, solver and system type
typedef teb::TebController<2, 1> ControllerType;
typedef teb::SolverLevenbergMarquardtEigenSparse SolverType;
typedef IntegratorSystem<2> SystemType;
// Create global variables
std::unique_ptr<SolverType> solver; // Solver
std::unique_ptr<SystemType> dynamics; // System dynamics
void mexFunction(int nlhs, mxArray *plhs[],
    int nrhs, const mxArray *prhs[])
    // Get command string
    char cmd[64];
    if (nrhs < 1 || mxGetString(prhs[0], cmd, sizeof(cmd)))</pre>
        mexErrMsgTxt("First input should be a command string with less than 64 characters.");
    // Create new obejct if command equals "new"
    if (!strcmp("new", cmd))
        // Check parameters
        if (nlhs != 1)
            mexErrMsgTxt("New: One output expected.");
        // Instantiate new objects
        solver = std::unique_ptr<SolverType>(new SolverType);
        dynamics = std::unique_ptr<SystemType>(new SystemType);
        ControllerType* ctrl = new ControllerType(solver.get());
        // Setup controller
        ctrl->setSystemDynamics(dynamics.get()); // Satisfy system dynamics
        ctrl->activateObjectiveTimeOptimal(); // Minimum time control
        ctrl->activateControlBounds(0, -1.0, 1.0); // Control input bounds
        // Return handle to the new controller instance
        plhs[0] = convertPtr2Mat< ControllerType >(ctrl);
        return;
    }
    // For further work, we need a second input (class instance handle)
        mexErrMsgTxt("Second input should be a class instance handle.");
    // Delete object
if (!strcmp("delete", cmd))
        destroyObject<ControllerType>(prhs[1]);
        if (nlhs != 0 || nrhs != 2)
           mexWarnMsgTxt("Delete: Unexpected arguments ignored.");
        return:
    }
    // For further work, retrieve the class instance pointer from the second input
    ControllerType* ctrl = convertMat2Ptr<ControllerType>(prhs[1]);
    // Now start calling desired class method
    // Call teb::BaseController::step()
    if (!strcmp("step", cmd))
        // Check inputs and outputs
        if (nrhs != 4) mexErrMsgIdAndTxt("teb_package:step:nrhs", "Four inputs required: cmd, obj, x0 and
       xf [2x1].");
        if (nlhs != 1) mexErrMsgIdAndTxt("teb_package:step:nlhs", "One output required: u [1x1]//"); //
       teb [3 x n_max], dt [1x1].");
        double* x0 = mxGetPr(prhs[2]); // start state
        double* xf = mxGetPr(prhs[3]); // goal state
        double u = 0; // store control
        // Perform open-loop planning
        ctrl->step(x0, xf, &u);
        // create output (control input u)
        plhs[0] = mxCreateDoubleScalar(u);
        return;
    }
```

```
// Return TEB matrix teb::BaseController::getStateCtrlInfoMat()
if (!strcmp("tebmatrix", cmd))
{
    // Check inputs and outputs
    if (nrhs != 2) mexErrMsgTxt("No more input parameter allowed.");
    if (nlhs != 1) mexErrMsgTxt("One output for the teb matrix required.");

    // Size of the mat: [p+q+1 x n] // +1: add time vector
    int m = ctrl->NoStates + ctrl->NoControls + 1;
    int n = ctrl->getN();
    plhs[0] = mxCreateNumericMatrix(m, n, mxDOUBLE_CLASS, mxREAL);

    // Get values
    // Wrap mxArray into an Eigen::Matrix
    Eigen::Map<Eigen::Matrix<br/>
    Eigen::Map<Eigen::Matrix<br/>
        Eigen::Map<Eigen::Matrix<br/>
        Eigen::Map>Eigen::Matrix<br/>
        Eigen::Map>DottomRows(1) = ctrl->getAbsoluteTimeVec().transpose();
        mat_map.bottomRows(m-1) = ctrl->getStateCtrlInfoMat();
    return;
}

// If this line is reached, the command is not recognized
mexErrMsgTxt("Command noch recognized.");
```

18.5 integrator_system_sfun.cpp

The following examples clarifies, how to prepare the TEB Controller (in particular the Controller of the Integrator-System example) for the usage in Matlab Simulink as a S-Function block.

The header file remains unchainged. File integrator_system.h:

```
#ifndef __teb_package__examples_integrator_system_
#define __teb_package__examples_integrator_system__
#include <teb package.h>
template <int p>
class IntegratorSystem : public teb::SystemDynamics<p,1>
public:
  using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
  using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
  inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
      Eigen::Ref<const ControlVector>& u) const
      StateVector state_equations;
      const int no_int = p-1;
      if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^(1:n-1) = x^(2:n)
      // add last equation containing control u
      state\_equations[no\_int] = u[0] / _time\_constant; // x^(n) = u / T
      return state_equations;
  }
    void setTimeConstant(double time constant) { time constant = time constant;};
    double _time_constant = 1;
};
#endif /* defined(__teb_package__examples_integrator_system__) */
```

The following cpp-file shows how embed the TebController object into Matlab's S-Function wrappers.

File integrator_system_sfun.cpp

```
#include "integrator_system.h"
```

```
#ifdef __cplusplus
extern "C" { // use the C fcn-call standard for all functions
#endif // defined within this scope
#define S_FUNCTION_NAME integrator_system_sfun /* Defines and Includes */
#define S_FUNCTION_LEVEL 2
\star Need to include simstruc.h for the definition of the SimStruct and
* its associated macro definitions.
#include "simstruc.h"
#define MDL_INITIAL_SIZES
static void mdlInitializeSizes(SimStruct *S)
    // Reserve elements in the pointer work vector to store C++ objects
    // (see mdlStart function for object instantiation)
    ssSetNumPWork(S, 3); // Assume 3 objects (controller, solver, system)
    // Check inputs and outputs
    ssSetNumSFcnParams(S, 0);
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
        return; /\star Parameter mismatch reported by the Simulink engine \star/
    if (!ssSetNumInputPorts(S, 2)) return;
    // input 1: xf
    ssSetInputPortWidth(S, 0, 2);
    ssSetInputPortDirectFeedThrough(S, 0, 1);
    // input 2: x0
    ssSetInputPortWidth(S, 1, 2);
    ssSetInputPortDirectFeedThrough(S, 1, 1);
    if (!ssSetNumOutputPorts(S,1)) return;
    ssSetOutputPortWidth(S, 0, 1);
    ssSetNumSampleTimes(S, 1): // TODO
    /\star Take care when specifying exception free code - see sfuntmpl.doc \star/
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
#define MDL_INITIALIZE_SAMPLE_TIMES
static void mdlInitializeSampleTimes(SimStruct *S)
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); // TODO
    ssSetOffsetTime(S, 0, 0.0);
}
#define MDL_START
static void mdlStart(SimStruct *S)
    // Instantiate persistent objects (delete objects in mdlTerminate)
    teb::BaseSolver* solver = new
      teb::SolverLevenbergMarquardtEigenSparse;
    teb::TebController<2, 1>* ctrl = new
  teb::TebController<2,1>(solver);
    IntegratorSystem<2>* int_sys = new IntegratorSystem<2>;
    // Store void pointers in simulinks work vector for persistent variables.
    ssGetPWork(S)[0] = (void*) solver; // solver
ssGetPWork(S)[1] = (void*) ctrl; // controller
    ssGetPWork(S)[2] = (void*) int_sys; // system
    // setup controller
    ctrl->setSystemDynamics(int_sys);
    ctrl->activateObjectiveTimeOptimal();
    ctrl->activateControlBounds(0, -1.0, 1.0);
}
#define MDL_INITIALIZE_CONDITIONS
static void mdlInitializeConditions(SimStruct *S)
    // reset trajectrov
    teb::TebController<2, 1>* ctrl = (
      teb::TebController<2, 1>*) ssGetPWork(S)[1];
    ctrl->resetController();
#define MDL_OUTPUTS
static void mdlOutputs(SimStruct *S, int T tid)
```

```
// Retrieve persistent controller object
    teb::TebController<2, 1>* ctrl =
      teb::TebController<2, 1>*) ssGetPWork(S)[1];
    // Get input and output parameters
    InputRealPtrsType xfPtrs = ssGetInputPortRealSignalPtrs(S,0);
    InputRealPtrsType x0Ptrs = ssGetInputPortRealSignalPtrs(S,1);
    real_T *uPtr = ssGetOutputPortRealSignal(S,0);
    // Perform MPC step
    ctrl->step(*x0Ptrs, *xfPtrs, uPtr);
static void mdlTerminate(SimStruct *S)
    // Destroy persistent objects
teb::BaseSolver* solver = (teb::BaseSolver*) ssGetPWork(S)[0];
    teb::TebController<2, 1>* ctrl = (
      teb::TebController<2, 1>*) ssGetPWork(S)[1];
    IntegratorSystem<2>* int_sys = (IntegratorSystem<2>*) ssGetPWork(S)[2];
    delete solver;
    delete ctrl:
    delete int_sys;
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cq_sfun.h" /* Code generation registration function */
#endif
#ifdef __cplusplus
} // end of extern "C" scope
#endif
```

18.6 linear_system_ode.cpp

The following example shows the TEB controller applied to a common linear system described by an ordinary differential equation of the p-th order:

$$a_{p}x^{(p)}(t) + a_{p-1}x^{(p-1)}(t) + \dots + a_{1}\dot{x}(t) + a_{0}x(t) = bu(t)$$

The control input u should be bounded to the interval [-1, 1].

Let p = 2, b = 1 and $\mathbf{a} = [a_2, a_1, a_0] = [0.8, 0.9, 1.0]$ that leads to the following ode:

$$0.8\ddot{x}(t) + 0.9\dot{x}(t) + 1.0x(t) = u(t)$$

The state vector is defined by $\mathbf{x} = [x, \dot{x}]^T$.

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0]^T$ to the final state $\mathbf{x}_f = [1,0]^T$.

The system dynamics are specified using the LinearSystemODE class. See the following header file how to add the state space model mentioned above.

File linear system ode.h:

```
#ifndef __teb_package__examples_linear_system_ode__
#define __teb_package__examples_linear_system_ode__

#include <teb_package.h>

template <int p>
class LinearSystemODE : public teb::SystemDynamics<p,1>
{
public:
    using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
    using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
    ;

inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
    Eigen::Ref<const ControlVector>& u) const
{
```

```
StateVector state_equations;
      const int no_int = p-1;
      // integrator states -> control normal form
      if (p>1) state_equations.head(no_int) = x.segment(1,no_int); // x^(1:n-1) = x^(2:n)
      // add last equation containing ODE coefficients
      state_equations[no_int] = _coeff_b*u[0]; // u
for (int i = 0; i < p; ++i) // add all other ode coefficients</pre>
           state\_equations[no\_int] -= \_coeff\_a[p-i] * x[i];
      state_equations[no_int] /= _coeff_a[0];
      return state_equations;
void setODECoefficients(const double* coeff_a, double coeff_b)
    _coeff_a = coeff_a;
    _coeff_b = coeff_b;
protected:
    const double* _coeff_a = nullptr;
    double _coeff_b = 1;
#endif /* defined(__teb_package__examples_linear_system_ode__) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the LinearSystemODE object specified in linear system ode.h.

The example program solves the optimization problem once without actually controlling the system. See other examples for open-loop and closed-loop control applications.

The output of the program is as follows:

Figure 18.4: Result of linear_system_ode.cpp

File linear system ode.cpp

```
#include "linear_system_ode.h"

int main()
{

   const int p = 2; // number of states
   // ode: a_2 * xddot + a_1 * xdot + a_0 * x = b * u;
   const double coeff_a[] {0.8,0.9,1}; // a_2, a_1, a_0
   const double coeff_b = 1; // no derivatives of the input supported atm.

   double x0[] = {0,0}; // start state
   double xf[] = {1,0}; // goal state
   double u; // store control

   // Setup solver and controller
   teb::SolverLevenbergMarquardtEigenSparse solver;
   teb::TebController<p, 1> teb(&solver);
```

```
// System specific settings
LinearSystemODE system;
system.setODECoefficients(coeff_a, coeff_b);

teb.setSystemDynamics(&system);

teb.activateObjectiveTimeOptimal();
teb.activateControlBounds(0, -1.0, 1.0);

// Perform open-loop planning
START_TIMER;
teb.step(x0, xf, &u);
STOP_TIMER("TEB optimization loop");

// Print determined control for the current sampling interval
PRINT_INFO("Control u: " << u);

// Plot states and control input
teb::TebPlotter plotter;
plotter.plotTEB(teb);
return 0;</pre>
```

18.7 linear_system_ode_ctrl_comparison.cpp

The following example compares the time-optimal TEB controller with the common quadratic form MPC.

The controlled system is specified using an (unstable) ordinary differential equation (refer to other examples for more details).

The system dynamics are specified using the LinearSystemODE class. See the following header file how to add the state space model mentioned above.

File linear_system_ode.h:

```
#ifndef __teb_package__examples_linear_system_ode_
#define __teb_package__examples_linear_system_ode_
#include <teb_package.h>
template <int p>
class LinearSystemODE : public teb::SystemDynamics<p,1>
  using StateVector = typename teb::SystemDynamics<p,1>::StateVector;
  using ControlVector = typename teb::SystemDynamics<p,1>::ControlVector
  inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
      Eigen::Ref<const ControlVector>& u) const
      StateVector state_equations;
      const int no_int = p-1;
      // integrator states -> control normal form
      if (p>1) state_equations.head(no_int) = x.seqment(1,no_int); // <math>x^*(1:n-1) = x^*(2:n)
      // add last equation containing ODE coefficients
      state_equations[no_int] = _coeff_b*u[0]; // u for (int i = 0; i < p; ++i) // add all other ode coefficients
          state equations[no int] -= coeff a[p-i] * x[i];
      state_equations[no_int] /= _coeff_a[0];
      return state_equations;
void setODECoefficients(const double* coeff_a, double coeff_b)
    _coeff_a = coeff_a;
    _coeff_b = coeff_b;
protected:
    const double* _coeff_a = nullptr;
    double _coeff_b = 1;
```

};

```
#endif /* defined(__teb_package__examples_linear_system_ode__) */
```

The following cpp-file shows how to create both controllers, how to add control bounds and how to add the Linear-SystemODE object specified in linear_system_ode.h.

The output of the program is as follows (closed-loop results only):

Figure 18.5: Result of linear system ode ctrl comparison.png

File linear_system_ode_ctrl_comparison.cpp

```
#include "linear_system_ode.h"
int main()
    const int p = 2; // number of states // ode: a_2 * xddot + a_1 * xdot + a_0 * x = b * u; const double coeff_a[] {1, -0.1, 1}; // a_2, a_1, a_0
    const double coeff_b = 1; // no derivatives of the input supported atm.
    double x0[] = \{0, 0\}; // \text{ start state}
double xf[] = \{1, 0\}; // \text{ goal state}
     // System specific settings
    LinearSystemODE system;
    system.setODECoefficients(coeff_a, coeff_b);
    // Setup controller 1
    teb::SolverLevenbergMarquardtEigenSparse solver1;
    teb::TebController<p,1> teb(&solver1);
    teb.setSystemDynamics(&system);
    teb.activateObjectiveTimeOptimal();
    teb.activateControlBounds(0, -1.0, 1.0);
    // Setup controller 2
    teb::Config mpc_cfg;
    mpc_cfg.optim.solver.lsq.weight_equalities = 4;
     teb::SolverLevenbergMarquardtEigenSparse solver2;
    teb::TebController<p,1> mpc(&mpc_cfg, &solver2);
    mpc.setSystemDynamics(&system);
    // Setup receding horizon T = n \star dt = 10 \star 0.1
     // Common setting: unfixed goal and fixed resolution
    mpc.setupHorizon(false, true, 10, 0.1);
    mpc.activateObjectiveQuadraticForm(1, 0.1, 100); // Parameters: Q, R, Qf
mpc.activateControlBounds(0, -1.0, 1.0);
```

```
// Create simulator
teb::TebPlotter plotter;
teb::Simulator<p,1> sim(system,&plotter);
// Set simulation sample time
sim.setSampleTime(0.05);

//sim.setIntegrator(teb::NumericalIntegrators::EXPLICIT_EULER);

// Create container storing the controllers that should be compared
std::vector<std::pair<teb::BaseController*, std::string>> controllers;
controllers.emplace_back(&teb, "TEB - Time Optimal");
controllers.emplace_back(&mpc, "MPC - Quadratic Form");

// Closed-loop sim
sim.simClosedLoop(controllers, x0, xf, 8);

// Open-loop sim
// create new figure with id 1
plotter.switchWindow(1,true);
sim.simOpenLoop(controllers, x0, xf);

return 0;
```

18.8 linear_system_state_space.cpp

The following example shows the TEB controller applied to a common linear system described by a continuous-time state space model of the p-th order:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \qquad \mathbf{x} \in \mathbb{R}^p, \ \mathbf{u} \in \mathbb{R}^q$$

For this example, let p=2 and q=1. We define $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ and $\mathbf{b} = [0,1]^T$.

The control input u should be bounded to the interval [-1, 1].

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0]^T$ to the final state $\mathbf{x}_f = [1,0]^T$.

The system dynamics are specified using the LinearSystemStateSpace class. See the following header file how to add the state space model mentioned above.

File linear system state space.h:

```
#ifndef __teb_package__examples_linear_system_state_space__
#define __teb_package__examples_linear_system_state_space_
#include <teb_package.h>
template <int p, int q>
class LinearSystemStateSpace : public teb::SystemDynamics<p,q>
public:
  using StateVector = typename teb::SystemDynamics<p,q>::StateVector;
  using ControlVector = typename teb::SystemDynamics<p,q>::ControlVector
  inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
      Eigen::Ref<const ControlVector>& u) const
      return _A * x + _B * u;
  }
  void setStateSpaceModel(const Eigen::Ref<const Eigen::Matrix<double,p,p>>& A, const Eigen::Ref<const
      Eigen::Matrix<double,p,q>>& B)
   _A = A;
   _B = B;
protected:
    Eigen::Matrix<double,p,p> _A;
    Eigen::Matrix<double,p,q> _B;
#endif /* defined(__teb_package__examples_linear_system_state_space__) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the LinearSystemStateSpace object specified in linear_system_state_space.h.

The example program solves the optimization problem once without actually controlling the system. See other examples for open-loop and closed-loop control applications.

The output of the program is as follows:

Figure 18.6: Result of linear_system_state_space.cpp

File linear system state space.cpp

```
#include "linear_system_state_space.h"
int main()
    const int p = 2; const int q = 1;
    Eigen::Matrix2d A;
    A(0,0) = 0;

A(0,1) = 1;

A(1,0) = 0;
    A(1,1) = 1;
    Eigen::Vector2d b;
    b(0) = 0;

b(1) = 1;
    double x0[] = \{0,0\};
    double xf[] = \{1,0\};
    double u;
    teb::SolverLevenbergMarquardtEigenSparse solver;
teb::TebController<p,1> teb(&solver);
    LinearSystemStateSpace<p,q> system;
    system.setStateSpaceModel(A,b);
    teb.setSystemDynamics(&system);
    teb.activateObjectiveTimeOptimal();
    teb.activateControlBounds(0, -1.0, 1.0);
    START_TIMER;
    teb.step(x0, xf, &u);
STOP_TIMER("TEB optimization loop");
    PRINT_INFO("Control u: " << u);
    teb::TebPlotter plotter;
    plotter.plotTEB(teb);
    return 0;
```

18.9 mobile_robot_teb.cpp

This example shows how to build a customized controller that minimizes a used-defined optimization problem rather than using default optimization functions.

Part of the example is a mobile robot trajectory planning and control application. The optimization problem is given by the original timed-elastic-band presented in [3].

For the sake of simplicity, we ignore some optional cost-functions like constraints on accelerations and the forward drive direction. In addition, we apply only a uniform ΔT .

We first start by introducing the optimization problem. The robot pose is defined by $\mathbf{x} = [x, y, \beta]^T$. The robot trajectory is than given by the sequence of $n \in \mathbb{N}$ poses $\mathbf{x}_i, i = 1, \dots, n$. Between two consecutive poses $\{\mathbf{x}_i, \mathbf{x}_{i+1}\}$ we define the time difference ΔT , that the robot requires to transit from the a configuration to the subsequent one in the sequence.

The robot hardware interface accepts translational and rotational velocities $\mathbf{u} = [v, \omega]^T$ as control inputs.

Figure 18.7: Mobile robot trajectory representation

In conrast to common MPC approaches, the sequence of poses and the time difference are part of the optimization rather than the control inputs \mathbf{u} , because they are implicitly part of the pose sequence and they can be derived via difference quotients.

The joint trajectory respentation is than defined as follows:

$$\mathscr{B} := \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-1}, \mathbf{x}_n, \Delta T\}$$

In the following we construct the optimization problem.

A general cost function can often be decomposed into the sum of *z* "local" cost terms:

$$V(\mathcal{B}) = f(\mathcal{B}) = \sum_{i}^{z} f_i(\mathcal{B}_i)$$

 f_i denotes a local cost term and $\mathscr{B}_i \subseteq \mathscr{B}, i = 1, \dots, z$ denotes a (small) subset of \mathscr{B} .

Obviously, if the subset of depending optimization variables is low for each local cost term, the resuling optimization problem has a sparse structure. To exploit this structure later, a hyper-graph (like mentioned) is ideally suited to capture this property already during the problem formulation phase.

Optimization problems in this package are formulated as hyper-graphs (according to [2]) with additional distinction between constraints and objective functions. A hyper-graph is a graph, in which edges connect an arbitary number of vertices (not just two). In sense of optimization, edges represent local cost function terms $f_k(\mathcal{B}_i)$ and vertices represent the optimization variables (in this package commonly $\mathbf{x}_k, \mathbf{u}_k, \Delta T$). Consequently for the mobile robot problem, vertices are: \mathbf{x}_k and ΔT (see the image a few lines below for an example hyper-graph).

The considered mobile robot has two wheels connected with a differential drive. The formulation of the optimization problem in [3] does not take a common robot motion model into account. The kinodynamic motion behavior (constraints on robot / wheel velocities / accelerations and the non-holonomic kinematic) is captured using the superposition of dedicated cost functions for each objective or constraint. For the sake of simplicity we reduce the

optimization task to just limit velocities of the center of the robot, to satisfy non-holonomic kinematics and to avoid obstacles:

$$V(\mathcal{B}) = f(\mathcal{B}) = f_{mintime}(\Delta T) + \sum_{i=1}^{n-1} [f_{i,vel}(\mathcal{B}) + f_{i,kin}(\mathcal{B}) + f_{i,obst}(\mathcal{B})]$$

Each cost term above is a squared function and hence the optimization problem can be solved using the Levenberg-Marquardt algorithm. Bounding the velocity, satisfying a minimum distance to obstacles and satisfying the kinematic constraints are implemented using soft-constraints in [?].

Within this MPC package, we have the oppertunity to specify constraints in a more genalized way. And if the selected solver is a least-squares solver (like teb::SolverLevenbergMarquardtEigenSparse), than the soft-constraint approach is applied in similar way like in [3]. As a result, we can generalize the above optimization problem for the mobile robot to:

$$V^*(\mathscr{B}) = \min f_{mintime}(\Delta T) \tag{18.1}$$

s.t.:

$$\mathbf{x}_1 = \mathbf{x}_s \tag{18.2}$$

$$\mathbf{x}_n = \mathbf{x}_f \tag{18.3}$$

$$\mathbf{h}_{i,kin}(\mathscr{B}) = \mathbf{0} \quad i \in 1, \dots, n-1 \tag{18.4}$$

$$\mathbf{g}_{i,vel}(\mathscr{B}) \le \mathbf{0} \quad i \in 1,\dots,n-1 \tag{18.5}$$

$$\mathbf{g}_{i,obst}(\mathscr{B}) \le \mathbf{0} \quad i \in 1, \dots, n-1 \tag{18.6}$$

 \boldsymbol{h} and \boldsymbol{g} denote the equality and inequality constraints without squared soft-constraint approximations.

According to [3] the cost terms are as follows (without soft-constraint approx and without taking squared):

- Minimum transition time: $f_{mintime}(\Delta T) = (n-1)\Delta T$ (Note, least-square solvers square all objectives later!)
- · Limit velocity:

$$\Delta \mathbf{s} = \begin{bmatrix} \left\| \begin{bmatrix} x_{i+1} - x_i \\ y_{i+1} - y_i \end{bmatrix} \right\| \\ \text{normAngle}(\beta_{i+1} - \beta_i) \end{bmatrix}$$

$$\mathbf{g}_{i,vel}(\mathcal{B}) = \frac{1}{\Delta T} \begin{bmatrix} \Delta \mathbf{s} \\ -\Delta \mathbf{s} \end{bmatrix} + \begin{bmatrix} -v_{max} \\ -\omega_{max} \\ v_{min} \\ \omega_{min} \end{bmatrix}$$

· Nonholonomic Kinematics:

$$\mathbf{d}_{i} = \begin{bmatrix} x_{i+1} - x_{i} \\ y_{i+1} - y_{i} \\ 0 \end{bmatrix}$$

$$\mathbf{h}_{i,kin} = \begin{bmatrix} \begin{bmatrix} \cos \beta_{i} \\ \sin \beta_{i} \\ 0 \end{bmatrix} + \begin{bmatrix} \cos \beta_{i+1} \\ \sin \beta_{i+1} \\ 0 \end{bmatrix} \times \mathbf{d}_{i} \end{bmatrix}$$

• Obstacle avoidance (State constraint):

$$\mathbf{g}_{i,obst} = -\left| \left| \begin{bmatrix} x_i - x_{obst} \\ y_i - y_{obst} \end{bmatrix} \right| + d_{min}$$

Please note, that using a least-squares soft-constrained solver (as mentioned above), all constraints and objectives are incorporated in a weighted objective/cost function and are becoming squared. The above optimization problem can easily be transferred to a hyper-graph. See the following figure for the resulting example graph. All indices are increased by one subsequently per constraint/objective type.

Figure 18.8: Example hyper-graph of the mobile robot application

The first state \mathbf{x}_1 is marked with a double circle. That means the state is fixed during optimization (to define the current/initial state). The goal state is fixed as well (according to a fixed horizon). Fixing these values implicitly satisfies $\mathbf{x}_1 = \mathbf{x}_s$ and $\mathbf{x}_n = \mathbf{x}_f$ of the problem definition above.

In contrast to [3] we are using a single ΔT that is part of all velocity edges (note the connection of $\mathbf{g}_1,\mathbf{g}_3$ and ΔT in the example graph. Formulating the optimization problem as a hyper-graph immediately indicates the structure of the underlying hessian/jabian matrix. For example, considering the ordering of the optimization variables of \mathcal{B} , than the hessian of the Lagrangian or the hessian of a least-square cost-function with soft-constraints would contain a band diagonal (since the maximum number of connected states \mathbf{x}_i is at least two. Only the velocity bound edges that include always the same ΔT would lead to a dense last row and column in the matrix.

The following header-file demonstrates how to implement the "local" cost functions mentioned above (please refer to teb::BaseEdge for an overview of possible edges to derive from):

File rob_cost_edges.h:

```
#ifndef __teb_package__examples_rob_cost_edges_
#define __teb_package__examples_rob_cost_edges_
#include <teb_package.h>
namespace teb
    // Declarations for cost functions / hyper edges
    // Non-holonomic-Kinematics
    class EdgeKinematics : public BaseEdge<1, FUNCT_TYPE::NONLINEAR, StateVertex<3>, StateVertex<3>, //
       Cost vector dimension: 1, Vertices: StateVertex
    public:
        EdgeKinematics(StateVertex<3>& state1, StateVertex<3>& state2) : BaseEdge<1, FUNCT_TYPE::NONLINEAR,
       StateVertex<3>, StateVertex<3>>(state1, state2) {}
        virtual void computeValues() // See EdgeType::computeValues()
            StateVertex<3>* sample_i = static_cast<StateVertex<3>*>(_vertices[0]);
            StateVertex<3>* sample_ip1 = static_cast<StateVertex<3>*>(_vertices[1]);
              Direction vector between two samples:
            Eigen::Vector2d deltaS = sample_ip1->states().head(2) - sample_i->states().head(2);
            double angle_i = sample_i->states()[2];
            double angle_ip1 = sample_ip1->states()[2];
            // Nonholonomic Kinematics
            _values[0] = fabs( ( cos(angle_i)+cos(angle_ip1) ) * deltaS[1] - ( sin(angle_i)+sin(angle_ip1)
          deltaS[0] );
        // Hessian and Jacobians are calculated numerically, otherwise add implementation here.
        EIGEN MAKE ALIGNED OPERATOR NEW
    // Limit Velocity
    class EdgeLimitVelocity : public BaseEdge<4, FUNCT_TYPE::NONLINEAR, StateVertex<3>, StateVertex<3>, Tim
     eDiff> // Cost vector dimension: 4, Vertices: StateVertex, StateVertex, TimeDiff
```

```
public:
        EdgeLimitVelocity(StateVertex<3>& state1, StateVertex<3>& state2, TimeDiff& dt): BaseEdge<4,
       FUNCT_TYPE::NONLINEAR, StateVertex<3>, StateVertex<3>, TimeDiff>(state1, state2, dt)
        virtual void computeValues() // See EdgeType::computeValues()
            StateVertex<3>* sample_i = static_cast<StateVertex<3>*>(_vertices[0]);
            StateVertex<3>* sample_ip1 = static_cast<StateVertex<3>*>(_vertices[1]);
TimeDiff* dt = static_cast<TimeDiff*>(_vertices[2]);
             // Direction vector between two samples:
            Eigen::Vector2d deltaS = sample_ip1->states().head(2) - sample_i->states().head(2);
            double vel = deltaS.norm() / dt->dt();
            double omega = norm_angle( sample_ip1->states()[2] - sample_i->states()[2] ) / dt->dt
      ();
            // Velocity limits: c(x) < 0
            _values[0] = vel - v_max;
_values[1] = -vel + v_min;
            _values[2] = omega - omega_max;
_values[3] = -omega + omega_min;
        // Hessian and Jacobians are calculated numerically, otherwise add implementation here.
        double v_max = 1;
        double v_min = -1;
        double omega_max = 0.5;
        double omega_min = -0.5;
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    };
    // Obstacle-Avoidance (point-representation)
    class EdgeObstacle : public BaseEdge<1, FUNCT_TYPE::NONLINEAR, StateVertex<3>> // Cost vector
       dimension: 1, Vertices: StateVertex
    public:
        EdgeObstacle(StateVertex<3>& state) : BaseEdge<1, FUNCT_TYPE::NONLINEAR, StateVertex<3>>(state) {}
        virtual void computeValues() // See EdgeType::computeValues()
            StateVertex<3>* sample_i = static_cast<StateVertex<3>*>(_vertices[0]);
             // Direction vector between sample and obstacle:
            Eigen::Vector2d deltaS = sample_i->states().head(2) - obstacle_position;
            //double angle_i = sample_i->states()[2];
            // Projection of the distance deltaS orthogonal to the TEB
        //double angdiff = atan2(deltaS[1], deltaS[0]) - angle_i;
        double proj_dist = deltaS.norm();//*fabs(sin(angdiff));
        // Constraint proj_dist > min_distance -> -proj_dist + min_distance < 0
            _values[0] = -proj_dist + min_distance;
        // Hessian and Jacobians are calculated numerically, otherwise add implementation here.
        Eigen::Vector2d obstacle_position; // DO NOT FORGET TO SET VALUE
        double min_distance = 0.5;
        EIGEN MAKE ALIGNED OPERATOR NEW
    };
} // end namespace teb
#endif /* defined(__teb_package__examples_rob_cost_edges__) */
```

In order to add the hyper-graph to the TebController, you can derive the class teb::TebController an override the method teb::TebController::customOptimizationGraph(). This ensures that the default edges like teb::EdgeMinimize-Time or teb::EdgeQuadraticForm can be added as well using the controller API. You can change states to fixed or unfixed as well. (Please note, that the default fixing and unfixing of the start and goal state as well as the default edges for the hyper-graph are applied in teb::TebController::buildOptimizationGraph().

The derived class for the mobile-robot example is defined as follows. (**Note**, since the problem is defined with only implicit control inputs, by means of q=0, the teb::TebController::firstControl() and teb::TebController::return-ControllnputSequence() are overridden as well. Additionally, we extend the new controller API with more debug and visualization functions.

File rob_controller.h:

```
#ifndef __teb_package__examples_rob_controller_
#define teb package examples rob controller
#include <teb_package.h>
#include "rob_cost_edges.h"
namespace teb
        \ // \ {\tt Controller \ implementation}
        class RobController : public TebController<3,0>
        public:
#ifdef WIN32 // VS2013 does not support constructor inheritance (only starting from Nov 2013 CTP)
                RobController(BaseSolver* solver = nullptr) : TebController(solver) {};
                {\tt RobController(const\ Config*\ config,\ BaseSolver*\ solver\ =\ nullptr)\ :\ TebController(config,\ solver)\ } \{tolder(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(toller(tolle
            };
#else
                using TebController<3,0>::TebController; // inherite base constructors
#endif
                // Overload {\tt customOptimizationGraph}\, \mbox{()} to define a {\tt custom\ hyper-graph}
                // and thus preserve the option to add predifined edges like time-optimality
                virtual void customOptimizationGraph()
                        for (unsigned int i=0; i < getN()-1; ++i)
                                 // Add non-holonomic kinematics
                                EdgeKinematics* kinematics_edge = new EdgeKinematics(_state_seq.at(i), _state_seq.at(i + 1)
            );
                                _graph.addEdgeEquality(kinematics_edge);
                                 // Add velocity limits (translational and rotational)
                                EdgeLimitVelocity* vel_edge = new EdgeLimitVelocity(_state_seq.at(i), _state_seq.at(i + 1),
              _dt);
                                _graph.addEdgeInequality(vel_edge);
                                // Add single obstacle edge
                                EdgeObstacle* obst_edge = new EdgeObstacle(_state_seq.at(i));
obst_edge->min_distance = 0.5;
                                obst_edge->obstacle_position = _obstacle_pos;
                                _graph.addEdgeInequality(obst_edge);
                };
          void setObstaclePosition(const Eigen::Ref<const Eigen::Vector2d>& obstacle_pos) {_obstacle_pos =
          void setObstaclePosition(const double* obstacle_pos) {_obstacle_pos = Eigen::Vector2d(obstacle_pos);};
          void setCurrentVelocity(const Eigen::Ref<const Eigen::Vector2d>& curr_velocity) {_curr_velocity =
            curr velocity; };
          void setCurrentVelocity(double v, double omega) {_curr_velocity[0]=v; _curr_velocity[1]=omega;};
          // Get all velocities (implicit from states)
          // This method is not efficient, but it is only used for visualization here. // Returns a [2 \times n-1] matrix in which each column denotes: [sqrt(vx^2+vy^2), omega]^T
          Eigen::MatrixXd getVelocities()
                    unsigned int n = getN(); // Number of states
                    Eigen::MatrixXd teb_mat = getStateCtrlInfoMat(); // inefficient here, but comfortable
Eigen::Matrix<double,3,-1> vel3 = (teb_mat.topRightCorner(3,n-1) - teb_mat.topLeftCorner(3,n-1));
                    // Normalize angle differnece
norm_angle_vec(vel3.bottomRows(0));
                    vel3 /= dt().dt(); // scale to actual velocities
                    Eigen::MatrixXd vel2(2,vel3.cols());
                    vel2.row(0) = vel3.topRows(2).colwise().norm();
vel2.row(1) = vel3.row(2);
                    return vel2:
          }
```

```
// Override original function to return the current control input, since
 // we use an implicit control input model (as a function of the states)
 Eigen::VectorXd firstControl() const
     Eigen::VectorXd u(2,1);
     u[0] = (_state_seq.at(1).states().head(2) - _state_seq.at(0).states().head(2)).norm() / dt().dt();
   // transl. velocity
   u[1] = norm\_angle((\_state\_seq.at(1).states()[2] - \_state\_seq.at(0).states()[2])) \ / \ dt(). dt(); \ // \ rot. \ velocity 
 // Check if Goal reached:
 if ( (firstStateRef() - lastStateRef() ).norm() < 0.1)</pre>
   PRINT_INFO_ONCE("RobController: Goal Reached.");
     return u;
 \ensuremath{//} Override this function as well to get all implicit controls at once
 virtual Eigen::MatrixXd returnControlInputSequence() const
     Eigen::MatrixXd states = getStateCtrlInfoMat();
     unsigned int m = getN()-1;
     Eigen::MatrixXd u_seq(2,m);
     u_seq.row(0) = ( states.topRightCorner(2,m) - states.topLeftCorner(2,m) ).colwise().norm() / getDt
  ();
     u_seq.row(1) = states.bottomRightCorner(1, m) - states.bottomLeftCorner(1, m);
     norm_angle_vec(u_seq.bottomRows(0));
     u_seq.row(1) /= getDt();
     return u_seq;
 }
  // Update current velocity after each step to initialize the subsequent step
  void robSaveVelocityAfterStep(BaseController* ctrl, SystemDynamics<3,2>* system, Simulator<3,2>* sim)
setCurrentVelocity(firstControl());
  // We need some additional visualization
  void plotRobotStuff()
// Plot states and control input
TebPlotter plotter;
plotter.plotTEB(*this);
// Create x-y plot
plotter.switchWindow(1,true); // Create new window
Eigen::MatrixXd teb_mat = getStateCtrlInfoMat(); // Get all TEB states in a single matrix
plotter.plot(teb_mat.row(0).transpose(), teb_mat.row(1).transpose(), "X-Y Trajectory", "x [m]", "y [m]");
// Get velocity from the states
Eigen::MatrixXd vel = getVelocities();
// plot resulting translational velocity
plotter.switchWindow(2,true);
PlotOptions options;
options.title = "Robot velocities";
options.ylabels.emplace_back("trans. vel [m/s]"); options.ylabels.emplace_back("rot. vel [rad/s]");
plotter.plotMulti(getAbsoluteTimeVec().head(getN()-1), vel, &options);
protected:
  Eigen::Vector2d _curr_velocity = Eigen::Vector2d::Zero(); // [v, omega]^T
  Eigen::Vector2d _obstacle_pos = Eigen::Vector2d::Zero();
// Velocity bounds
```

```
} // end namespace teb
#endif /* defined(__teb_package__examples_rob_controller__) */
```

Furthermore, for simulation purposes we define a teb::SystemDynamics model with simple integrator dynamics and the non-holonomic kinematics:

File mobile_robot_teb.h:

```
#ifndef __teb_package__examples_mobile_robot_teb__
#define __teb_package__examples_mobile_robot_teb_
#include <teb_package.h>
#include "rob_controller.h" // include customized controller
// Specify system model (here for simulation only, but could be used for the controller as well (as an
      alternative))
// We use a simple kinematic model here with integrator dynamics
class MobileRobot : public teb::SystemDynamics<3,2>
public:
  using StateVector = teb::SystemDynamics<3,2>::StateVector;
 using ControlVector = teb::SystemDynamics<3,2>::ControlVector;
  inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
      Eigen::Ref<const ControlVector>& u) const
      StateVector state_equations;
      // kinematic motion constraints
      // states = [x y theta]
      // inputs = [v, omega]
      state\_equations[0] = u[0] * std::cos(x[2]); // xdot = v*cos(theta)
      state_equations[1] = u[0] * std::sin(x[2]); // ydot = v*sin(theta)
state_equations[2] = norm_angle(u[1]); // thetadot = omega
      return state_equations;
};
#endif /* defined(__teb_package__examples_mobile_robot_teb__) */
```

Finally, the main function that creates all objects, defines the optimization weights an initializes the simulation can be found in **mobile_robot_teb.cpp** (see below at the end).

The output of the program is as follows (the **obstacle** is placed at $x_{obst} = 2.5 \,\mathrm{m}$ and $y_{obst} = 0.1 \,\mathrm{m}$):

Figure 18.9: TEB States after the first open-loop optimization

Figure 18.10: X-Y Trajectory after the first open-loop optimization

Figure 18.11: Velocity profile after the first open-loop optimization

Figure 18.12: Closed-loop simulation of the mobile robot

File mobile_robot_teb.cpp:

```
#include "mobile_robot_teb.h"
int main()
     teb::Config cfg;
     cfg.optim.solver.lsq.weight_equalities = 500;
     cfg.optim.solver.lsq.weight_inequalities = 50;
cfg.optim.solver.lsq.weight_adaptation_factor = 2;
cfg.teb.dt_min = 0.05;
     cfg.teb.n_pre = 50;
     cfg.teb.n_max = 150;
cfg.teb.n_min = 2;
     double x0[] = \{0,0,0\};
double xf[] = \{5,0,0\};
     double obst_pos[] = {2.5, 0.1};
     \ensuremath{//} Setup solver and controller
     teb::SolverLevenbergMarquardtEigenSparse solver;
teb::RobController teb(&cfg, &solver);
     teb.activateObjectiveTimeOptimal();
     teb.setObstaclePosition(obst_pos);
     // Perform open-loop planning
START_TIMER;
     teb.step(x0, xf);
STOP_TIMER("TEB optimization loop");
     // Plot open-loop results
     teb.plotRobotStuff();
     // Perform closed-loop sim
     teb::TebPlotter plotter;
     MobileRobot robot; // Motion model for simulation
     teb::Simulator<3,2> sim(&teb,robot,&plotter);
     // Set simulation sample time
     sim.setSampleTime(0.1);
     using namespace std::placeholders;
     \verb|sim.setPostStepCallback| (std::bind(\&teb::RobController::robSaveVelocityAfterStep, \&line(&teb::RobController::robSaveVelocityAfterStep, &line(&teb::RobController::robSaveVelocityAfterStep)| |
       teb, _1, _2, _3));
     // Start simulation
     sim.simOpenAndClosedLoop(x0,xf,7);
     return 0;
```

18.10 rocket_system.cpp

The following example shows the TEB controller applied to a simple free space rocket model with three differential states s, v and m.(http://acado.sourceforge.net/doc/html/d9/d65/example_001.html)

$$\dot{s}(t) = v(t) \tag{18.7}$$

$$\dot{v}(t) = \frac{u(t) - 0.02v^2(t)}{m(t)} \tag{18.8}$$

$$\dot{m}(t) = -0.01u^2(t) \tag{18.9}$$

The control input u should be bounded to the interval [-1.1, 1.1]. In addition the state v should be bounded to the interval [-0.5, 1.7].

The state vector is defined by $\mathbf{x} = [s, v, m]^T$.

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0,1]^T$ to the final state $\mathbf{x}_f = [10,0,-]^T$.

In addition to the other examples, the third state of the final state vector is not fixed. The final mass is not known a-prioi and can be chosen by the optimizer in order to minimze the objective function. But we initialize/estimate the final value to $m_f = 0.5$.

The system dynamics are specified using the FreeSpaceRocketSystem class. See the following header file how to add the nonlinear state space model mentioned above.

File rocket_system.h:

```
#ifndef _teb_package_examples_rocket_system_
#define _teb_package_examples_rocket_system_
#include <teb_package_examples_rocket_system_
#include <teb_package.h>

class FreeSpaceRocketSystem : public teb::SystemDynamics<3,1>
{
   public:
        using StateVector = teb::SystemDynamics<3,1>::StateVector;
        using ControlVector = teb::SystemDynamics<3,1>::ControlVector;

   inline virtual StateVector stateSpaceModel(const Eigen::Ref<const StateVector>& x, const
        Eigen::Ref<const ControlVector>& u) const
{
        StateVector state_equations;
        state_equations[0] = x[1]; // sdot = v
        state_equations[0] = x[1]; // sdot = v
        state_equations[1] = (u[0] - 0.02 * x[1] * x[1]) / x[2]; // (u-0.02*v^2)/m
        state_equations[2] = -0.01 * u[0] * u[0]; // -0.01 * u^2

        return state_equations;
}

#endif /* defined(_teb_package_examples_rocket_system_) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the FreeSpaceRocketSystem object specified in van_der_pol_system.h.

The example program solves the optimization problem once without actually controlling the system. See other examples for open-loop and closed-loop control applications.

The output of the program is as follows (**Note**, the number of iterations and weights of the soft constraints is too low using the default settings, therefore the constraints are not satisfied completely after the first optimization):

Figure 18.13: Result of rocket system.cpp

File rocket_system.cpp

```
#include "rocket_system.h"
int main()
    const int p = 3; // number of states
    // Change default config, since default soft constraint weights are too low.
    teb::Config cfg;
    cfg.optim.solver.lsq.weight_inequalities = 50;
    cfg.optim.solver.lsq.weight_adaptation_factor = 1.1;
cfg.optim.solver.lsq.soft_constr_epsilon = 0;
    // Define start and goal
    double x0[] = \{0,0,1\}; // start state double xf[] = \{10,0,0.5\}; // goal state
    bool goal_fixed[] = {true,true,false}; // mass is not fixed
    // Setup solver and controller
    teb::SolverLevenbergMarquardtEigenSparse solver;
    teb::TebController<p,1> teb(&cfg, &solver);
    // System specific settings
    FreeSpaceRocketSystem system;
    teb.setSystemDynamics(&system);
    teb.activateObjectiveTimeOptimal();
    teb.activateControlBounds(0, -1.1, 1.1);
teb.activateStateBounds(1,-0.5,1.7);
    teb.setGoalStatesFixedOrUnfixed(goal_fixed);
    // Create simulator
    teb::TebPlotter plotter;
    teb::Simulator<p,1> sim(&teb,system,&plotter);
    // Set simulation sample time
    sim.setSampleTime(-1); // Inherit from TEB (asynchronous control)
    // Simulate 9 seconds
    sim.simOpenAndClosedLoop(x0,xf,9);
    return 0;
```

18.11 van_der_pol_system.cpp

The following example shows the TEB controller applied to the Van der Pol oscillator (http://en.-wikipedia.org/wiki/Van_der_Pol_oscillator)

$$\ddot{x}(t) - a(1 - x^2(t))\dot{x}(t) + x(t) = u(t)$$

The control input u should be bounded to the interval [-1, 1].

The state vector is defined by $\mathbf{x} = [x, \dot{x}]^T$. In this example it is a = 1.

The objective of the control task is to transite the system from the start state $\mathbf{x}_s = [0,0]^T$ to the final state $\mathbf{x}_f = [1,0]^T$.

The system dynamics are specified using the VanDerPolSystem class. See the following header file how to add the nonlinear state space model mentioned above.

File van_der_pol_system.h:

```
#ifndef __teb_package__examples_van_der_pol_system__
         _teb_package__examples_van_der_pol_system_
#include <teb_package.h>
class VanDerPolSystem : public teb::SystemDynamics<2,1>
  using StateVector = teb::SystemDynamics<2,1>::StateVector;
  using ControlVector = teb::SystemDynamics<2,1>::ControlVector;
  in line \ virtual \ State Vector \ state Space Model (const \ Eigen:: Ref < const \ State Vector > \& \ x, \ const
      Eigen::Ref<const ControlVector>& u) const
      StateVector state_equations;
      state_equations[0] = x[1]; // xdot = xdot
      state\_equations[1] = - _a * (x[0] - 1) * x[1] - x[0] + u[0];
      return state_equations;
    void setParameters(double a) {_a = a;};
protected:
    double _a = 1;
#endif /* defined(__teb_package__examples_van_der_pol_system__) */
```

The following cpp-file shows how to create the TebController object, how to add control bounds and how to add the VanDerPolSystem object specified in van der pol system.h.

The example program solves the optimization problem once without actually controlling the system. See other examples for open-loop and closed-loop control applications.

The output of the program is as follows:

Figure 18.14: Result of van_der_pol_system.cpp

File van_der_pol_system.cpp

```
#include "van_der_pol_system.h"
int main()
    const int p = 2; // number of states
    // Define start and goal
    double x0[] = \{0,0\}; // start state double xf[] = \{1,0\}; // goal state
    double u;
    // Setup solver and controller
    teb::SolverLevenbergMarquardtEigenSparse solver;
    teb::TebController<p,1> teb(&solver);
    // System specific settings
    VanDerPolSystem system;
    system.setParameters(1.0);
    teb.setSystemDynamics(&system);
    teb.activateObjectiveTimeOptimal();
    teb.activateControlBounds(0, -1.0, 1.0);
    // Perform open-loop planning
    START_TIMER;
    teb.step(x0, xf, &u);
STOP_TIMER("TEB optimization loop");
    // Print determined control for the current sampling interval PRINT_INFO("Control u: " << u);
    // Plot states and control input
    teb::TebPlotter plotter;
plotter.plotTEB(teb);
    return 0;
```

Exam	ole	Do	cur	ner	ıtati	or

Bibliography

- [1] Martin Keller, Frank Hoffmann, Torsten Bertram, Carsten Hass, and Alois Seewald. Planning of optimal collision avoidance trajectories with timed elastic bands. In 19th World Congress of the International Federation of Automatic Control, pages 9822–9827, 2014. 2
- [2] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. G2o: A general framework for graph optimization. In *IEEE International Conference on Robotics and Automation*, pages 3607–3613, 2011. 2, 9, 53, 63, 80, 149, 204, 207, 216, 219, 359
- [3] Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram. Trajectory modification considering dynamic constraints of autonomous robots. In *7th German Conference on Robotics* (*ROBOTIK*), pages 74–79, Berlin and Offenbach, 2012. VDE-Verl. 2, 359, 360, 361
- [4] Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram. Efficient trajectory optimization using a sparse model. In *European Conference on Mobile Robots*, pages 138–143, 2013.
- [5] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Prädiktive regelung mit timed-elastic-bands. *at Automatisierungstechnik*, 62(10):720–731, 2014. 1, 293

Index

o BasaEdga	teb::HyperGraph, 171
~BaseEdge teb::BaseEdge, 52	teb:://solverLevenbergMarquardtEigenDense, 210
teb::BaseEdge< D, FuncType >, 61	teb::SolverLevenbergMarquardtEigenSparse, 220
~BaseSolver	• . • . •
	teb::SolverNloptPackage, 234
teb::BaseSolver, 69	teb::SolverSQPDense, 250
~EdgeType	_backup
teb::EdgeType, 155	teb::ControlVertex, 123
~ExplicitEuler	teb::StateVertex, 265
teb::ExplicitEuler, 160	teb::TimeDiff, 314
\sim HessianWorkspace	_bound_constraints
teb::HessianWorkspace, 164	teb::SolverNloptPackage, 234
\sim JacobianWorkspace	_bound_constraints_dim
teb::JacobianWorkspace, 173	teb::SolverNloptPackage, 234
\sim NumericalIntegrator	_bounds
teb::NumericalIntegrator, 180	teb::BoundConstraint, 110
~RungeKutta5thOrder	_callback_sim_pre
teb::RungeKutta5thOrder, 184	teb::Simulator, 199
~RungeKuttaClassic	_callback_step_post
teb::RungeKuttaClassic, 186	teb::Simulator, 199
~Simulator	_callback_step_pre
teb::Simulator, 193	teb::Simulator, 199
~SystemDynamics	_cfg_owned
teb::SystemDynamics, 267	teb::TebController, 298
~TebController	_constraints_eq
teb::TebController, 277	teb::HyperGraph, 171
~TebPlotter	_constraints_ineq
teb::TebPlotter, 302	teb::HyperGraph, 171
\sim TimeDiff	_control_bounds
teb::TimeDiff, 311	teb::Simulator, 199
_A	_controller
teb::SolverSQPDense, 250	teb::Simulator, 199
_Q	_controls
teb::EdgeQuadraticForm, 143	teb::ControlVertex, 124
_R	_ctol_eq
teb::EdgeQuadraticForm, 143	teb::SolverNloptPackage, 234
_active_control_bounds	_ctol_ineq
teb::TebController, 296	teb::SolverNloptPackage, 234
_active_quadratic_form	ctrl seq
teb::TebController, 297	teb::TebController, 298
_active_state_bounds	data
teb::TebController, 297	teb::EdgeMinimizeTime, 133
active system dynamics	_delta
· - ·	teb::SolverSQPDense, 250
teb::TebController, 297	•
_active_time_optimal	_dimension
teb::TebController, 297	teb::ControlVertex, 124
_active_vertices	teb::StateVertex, 265
teb::BaseSolver, 73	_dmultiplier_eq
teb::BaseSolverLeastSquares, 84	teb::SolverSQPDense, 250
teb::BaseSolverNonlinearProgramDense, 97	_dmultiplier_ineq

toh::SalvarSOBDanca 250	teb::EdgeSystemDynamics, 152
teb::SolverSQPDense, 250	
_dttob::TobController_200	teb::EdgeType, 158
teb::TebController, 298	_increment
teb::TimeDiff, 314	teb::SolverSQPDense, 251
_dt_ref	_inequalities
teb::TebController, 298	teb::BaseSolver, 74
_equalities	teb::BaseSolverLeastSquares, 84
teb::BaseSolver, 73	teb::BaseSolverNonlinearProgramDense, 98
teb::BaseSolverLeastSquares, 84	teb::SolverLevenbergMarquardtEigenDense, 211
teb::BaseSolverNonlinearProgramDense, 97	teb::SolverLevenbergMarquardtEigenSparse, 224
teb::SolverLevenbergMarquardtEigenDense, 210	teb::SolverNloptPackage, 235
teb::SolverLevenbergMarquardtEigenSparse, 223	teb::SolverSQPDense, 252
teb::SolverNloptPackage, 234	_inequalities_dim
teb::SolverSQPDense, 251	teb::BaseSolver, 74
_equalities_dim	teb::BaseSolverLeastSquares, 85
teb::BaseSolver, 73	teb::BaseSolverNonlinearProgramDense, 98
teb::BaseSolverLeastSquares, 84	teb::SolverLevenbergMarquardtEigenDense, 211
teb::BaseSolverNonlinearProgramDense, 97	teb::SolverLevenbergMarquardtEigenSparse, 224
teb::SolverLevenbergMarquardtEigenDense, 211	teb::SolverNloptPackage, 235
teb::SolverLevenbergMarquardtEigenSparse, 223	teb::SolverSQPDense, 252
teb::SolverNloptPackage, 234	inequalities without bounds
teb::SolverSQPDense, 251	teb::SolverNloptPackage, 235
_equality_jacobian	_inequalities_without_bounds_dim
teb::BaseSolverNonlinearProgramDense, 97	teb::SolverNloptPackage, 235
teb::SolverSQPDense, 251	_inequality_jacobian
_equality_values	teb::BaseSolverNonlinearProgramDense, 98
teb::BaseSolverNonlinearProgramDense, 97	teb::SolverSQPDense, 252
teb::SolverSQPDense, 251	_inequality_values
_file_export	teb::BaseSolverNonlinearProgramDense, 98
teb::TebPlotter, 307	teb::SolverSQPDense, 252
_fixed	_integrator
_fixed teb::TimeDiff, 315	_integrator teb::Simulator, 199
_fixed teb::TimeDiff, 315 _fixed_ctrls	_integrator teb::Simulator, 199 _jacob_backup
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolverLeastSquares, 84	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverNonlinearProgramDense, 97	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverLeastSquares, 84 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 223	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverLeastSquares, 84 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 223 teb::SolverNonliptPackage, 235	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 159
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverLeastSquares, 84 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 223 teb::SolverNloptPackage, 235 teb::SolverSQPDense, 251	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 159 _lagrangian_gradient
_fixed	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 159 _lagrangian_gradient teb::BaseSolverNonlinearProgramDense, 98
_fixed	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 159 _lagrangian_gradient teb::BaseSolverNonlinearProgramDense, 98 teb::SolverSQPDense, 252
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverLeastSquares, 84 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 223 teb::SolverNloptPackage, 235 teb::SolverSQPDense, 251 _hessians teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeQuadraticForm, 142 teb::EdgeType, 159 _lagrangian_gradient teb::BaseSolverNonlinearProgramDense, 98 teb::SolverSQPDense, 252 _lagrangian_gradient_backup
_fixedteb::TimeDiff, 315 _fixed_ctrlsteb::ControlVertex, 124 _fixed_goal_statesteb::TebController, 298 _fixed_statesteb::StateVertex, 265 _goal_backupteb::TebController, 298 _graphteb::TebController, 298 _graph_modifiedteb::HyperGraph, 171 _graph_structure_modifiedteb::BaseSolver, 73teb::BaseSolverLeastSquares, 84teb::BaseSolverNonlinearProgramDense, 97teb::SolverLevenbergMarquardtEigenDense, 211teb::SolverLevenbergMarquardtEigenSparse, 223teb::SolverNoptPackage, 235teb::SolverSQPDense, 251hessiansteb::BaseEdge < D, FuncType >, 66teb::BoundConstraint, 110	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge < D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeQuadraticForm, 142 teb::EdgeType, 159 _lagrangian_gradient teb::BaseSolverNonlinearProgramDense, 98 teb::SolverSQPDense, 252 _lagrangian_gradient_backup teb::BaseSolverNonlinearProgramDense, 98
_fixed teb::TimeDiff, 315 _fixed_ctrls teb::ControlVertex, 124 _fixed_goal_states teb::TebController, 298 _fixed_states teb::StateVertex, 265 _goal_backup teb::TebController, 298 _graph teb::TebController, 298 _graph_modified teb::HyperGraph, 171 _graph_structure_modified teb::BaseSolver, 73 teb::BaseSolverLeastSquares, 84 teb::BaseSolverNonlinearProgramDense, 97 teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 223 teb::SolverNloptPackage, 235 teb::SolverSQPDense, 251 _hessians teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66	_integrator teb::Simulator, 199 _jacob_backup teb::BaseEdge, 56 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 110 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeSystemDynamics, 152 teb::EdgeType, 158 _jacobian teb::SolverLevenbergMarquardtEigenDense, 211 teb::SolverLevenbergMarquardtEigenSparse, 224 _jacobians teb::BaseEdge, 57 teb::BaseEdge< D, FuncType >, 66 teb::BoundConstraint, 111 teb::EdgeMinimizeTime, 133 teb::EdgeQuadraticForm, 142 teb::EdgeQuadraticForm, 142 teb::EdgeType, 159 _lagrangian_gradient teb::BaseSolverNonlinearProgramDense, 98 teb::SolverSQPDense, 252 _lagrangian_gradient_backup

teb::BaseSolverNonlinearProgramDense, 98	teb::SolverSQPDense, 254
teb::SolverSQPDense, 253	_opt_vec_idx
_lb	teb::ControlVertex, 124
teb::SolverSQPDense, 253	teb::StateVertex, 265
_lower_bounds	teb::TimeDiff, 315
teb::SolverNloptPackage, 235	teb::VertexType, 321
_merit_alpha	_optimized
teb::SolverSQPDense, 253	teb::TebController, 299
_merit_grad	_pdf_flag
teb::SolverSQPDense, 253	teb::TebPlotter, 307
_multiplier_eq	plotter
teb::BaseSolverNonlinearProgramDense, 99	teb::Simulator, 200
teb::SolverSQPDense, 253	_qdual
_multiplier_ineq	teb::SolverSQPDense, 254
teb::BaseSolverNonlinearProgramDense, 99	_qsolver
teb::SolverSQPDense, 253	teb::SolverSQPDense, 254
_nnz_per_col	_ref_state
teb::SolverLevenbergMarquardtEigenSparse, 224	teb::EdgeQuadraticForm, 143
_no_samples	_sample_time
teb::TebController, 299	teb::Simulator, 200
_no_vert_backups	_solver
teb::BaseSolver, 74	teb::TebController, 299
teb::BaseSolverLeastSquares, 85	_sparse_solver
teb::BaseSolverNonlinearProgramDense, 99	teb::SolverLevenbergMarquardtEigenSparse, 225
teb::SolverLevenbergMarquardtEigenDense, 211	_state_seq
teb::SolverLevenbergMarquardtEigenSparse, 224	teb::TebController, 299
teb::SolverNloptPackage, 235	_states
teb::SolverSQPDense, 253	teb::StateVertex, 265
_objective_dim	_system
teb::BaseSolver, 74	teb::EdgeSystemDynamics, 152
teb::BaseSolverLeastSquares, 85	teb::Simulator, 200
teb::BaseSolverNonlinearProgramDense, 99	_ub
teb::SolverLevenbergMarquardtEigenDense, 212	teb::SolverSQPDense, 254
teb::SolverLevenbergMarquardtEigenSparse, 224	_upper_bounds
teb::SolverNloptPackage, 236	teb::SolverNloptPackage, 236
teb::SolverSQPDense, 253	_val_dim
_objective_gradient	teb::BaseSolverLeastSquares, 85
teb::BaseSolverNonlinearProgramDense, 99	teb::SolverLevenbergMarquardtEigenDense, 212
teb::SolverSQPDense, 254	teb::SolverLevenbergMarquardtEigenSparse, 225
_objective_value	_values
teb::BaseSolverNonlinearProgramDense, 99	teb::BaseEdge, 57
•	
teb::SolverSQPDense, 254	teb::BaseEdge < D, FuncType >, 67
_objectives	teb::BaseSolverLeastSquares, 86
teb::BaseSolver, 74	teb::BoundConstraint, 111
teb::BaseSolverLeastSquares, 85	teb::EdgeMinimizeTime, 133
teb::BaseSolverNonlinearProgramDense, 99	teb::EdgeQuadraticForm, 143
teb::HyperGraph, 171	teb::EdgeSystemDynamics, 152
teb::SolverLevenbergMarquardtEigenDense, 212	teb::SolverLevenbergMarquardtEigenDense, 212
teb::SolverLevenbergMarquardtEigenSparse, 224	teb::SolverLevenbergMarquardtEigenSparse, 225
teb::SolverNloptPackage, 236	_vertices
teb::SolverSQPDense, 254	teb::BaseEdge, 57
_opt_vec_dim	teb::BaseEdge < D, FuncType >, 67
teb::BaseSolver, 74	teb::BoundConstraint, 111
teb::BaseSolverLeastSquares, 85	teb::EdgeMinimizeTime, 133
teb::BaseSolverNonlinearProgramDense, 100	teb::EdgeQuadraticForm, 143
teb::SolverLevenbergMarquardtEigenDense, 212	teb::EdgeSystemDynamics, 152
teb::SolverLevenbergMarquardtEigenSparse, 225	_vertices_dim
teb::SolverNloptPackage, 236	teb::BaseEdge, 57
•	= '

11 D E1 1DE T 107	" . 0
teb::BaseEdge< D, FuncType >, 67	allocateSparseJacobian
teb::BoundConstraint, 111	teb::SolverLevenbergMarquardtEigenSparse, 217
teb::EdgeMinimizeTime, 133	alpha_init
teb::EdgeQuadraticForm, 143	teb::Config::Optim::Solver::NonlinearProgram::-
teb::EdgeSystemDynamics, 153	LineSearch, 174
_weight_adapt_count	applyIncrement
teb::BaseSolverLeastSquares, 86	teb::BaseSolver, 70
teb::SolverLevenbergMarquardtEigenDense, 212	teb::BaseSolverLeastSquares, 79
teb::SolverLevenbergMarquardtEigenSparse, 225	teb::BaseSolverNonlinearProgramDense, 90
_weight_equalities	teb::SolverLevenbergMarquardtEigenDense, 205
teb::BaseSolverLeastSquares, 86	teb::SolverLevenbergMarquardtEigenSparse, 217
teb::SolverLevenbergMarquardtEigenDense, 213	teb::SolverNloptPackage, 229
teb::SolverLevenbergMarquardtEigenSparse, 225	teb::SolverSQPDense, 241
_weight_inequalities	applyOptVec
teb::BaseSolverLeastSquares, 86	teb::BaseSolver, 70
teb::SolverLevenbergMarquardtEigenDense, 213	
- · · · · · · · · · · · · · · · · · · ·	teb::BaseSolverLeastSquares, 79
teb::SolverLevenbergMarquardtEigenSparse, 225	teb::BaseSolverNonlinearProgramDense, 90
_workspace	teb::SolverLevenbergMarquardtEigenDense, 205
teb::HessianWorkspace, 165	teb::SolverLevenbergMarquardtEigenSparse, 218
teb::JacobianWorkspace, 174	teb::SolverNloptPackage, 230
ALL	teb::SolverSQPDense, 242
	DLOCK DECC
teb, 42	BLOCK_BFGS
activateControlBounds	teb, 43
teb::TebController, 277, 278	BOUND_TYPE
activateObjectiveQuadraticForm	teb, 42
teb::TebController, 278	BOUND_VARS
activateObjectiveTimeOptimal	teb, 42
teb::TebController, 279	backupJacobian
activateStateBounds	teb::BaseEdge, 52
teb::TebController, 279, 280	teb::BaseEdge < D, FuncType >, 61
activeVertices	teb::BoundConstraint, 104
teb::HyperGraph, 167	teb::EdgeMinimizeTime, 129
adaptWeights	teb::EdgeQuadraticForm, 138
teb::BaseSolverLeastSquares, 78	teb::EdgeSystemDynamics, 148
teb::SolverLevenbergMarquardtEigenDense, 204	teb::EdgeType, 156
teb::SolverLevenbergMarquardtEigenSparse, 217	BackupStackType
addActiveVertex	teb, 41
teb::HyperGraph, 167	teb::ControlVertex, 116
addEdgeEquality	teb::StateVertex, 258
teb::HyperGraph, 167	backupVertices
addEdgeInequality	teb::BaseSolver, 70
teb::HyperGraph, 167	teb::BaseSolverLeastSquares, 79
• • • • • • • • • • • • • • • • • • • •	· ·
addEdgeObjective	teb::BaseSolverNonlinearProgramDense, 91
teb::HyperGraph, 169	teb::SolverLevenbergMarquardtEigenDense, 205
algorithm	teb::SolverLevenbergMarquardtEigenSparse, 218
teb::Config::Optim::Solver::Nlopt, 177	teb::SolverNloptPackage, 230
allocate	teb::SolverSQPDense, 242
teb::HessianWorkspace, 164	base_controller.h, 323
teb::JacobianWorkspace, 173	base_edge.h, 323
allocateMemory	base_edge.hpp, 324
teb::BaseEdge, 52	base_edge_dynamics.h, 324
teb::BaseEdge< D, FuncType >, 61	base_solver.h, 324
teb::BoundConstraint, 104	base_solver_least_squares.cpp, 325
teb::EdgeMinimizeTime, 129	base_solver_least_squares.h, 325
teb::EdgeQuadraticForm, 138	base_solver_nonlinear_program_dense.cpp, 325
teb::EdgeSystemDynamics, 147	base_solver_nonlinear_program_dense.h, 325
teb::EdgeType, 156	BaseEdge
teb::SimResults, 188	teb::BaseEdge, 52
,	<u> </u>

teb::BaseEdge< D, FuncType >, 61	teb::SolverSQPDense, 244
BaseSolver	calculateMerit
teb::BaseSolver, 69	teb::SolverSQPDense, 244
BaseSolverLeastSquares	calculateMeritDerivative
teb::BaseSolverLeastSquares, 78	teb::SolverSQPDense, 244
BaseSolverNonlinearProgramDense	calculateVertexDimensions
teb::BaseSolverNonlinearProgramDense, 90	teb::BaseEdge, 52
beta	
	teb::BaseEdge< D, FuncType >, 62
teb::Config::Optim::Solver::NonlinearProgram::- LineSearch, 174	teb::BoundConstraint, 104
	teb::EdgeMinimizeTime, 129
bfgs_damped_mode	teb::EdgeQuadraticForm, 138
teb::Config::Optim::Solver::NonlinearProgram::-	teb::EdgeSystemDynamics, 148
Hessian, 162	cfg
bound_constraints.h, 326	teb::BaseSolver, 75
BoundConstraint	teb::BaseSolverLeastSquares, 86
teb::BoundConstraint, 104	teb::BaseSolverNonlinearProgramDense, 100
BoundType	teb::SolverLevenbergMarquardtEigenDense, 213
teb::BoundConstraint, 111	teb::SolverLevenbergMarquardtEigenSparse, 226
buildEqualityConstraintJacobian	teb::SolverNloptPackage, 236
teb::BaseSolverNonlinearProgramDense, 91	teb::SolverSQPDense, 255
teb::SolverSQPDense, 242	teb::TebController, 299
buildEqualityConstraintValueVector	checkConvergence
teb::BaseSolverNonlinearProgramDense, 91	teb::SolverSQPDense, 245
teb::SolverSQPDense, 242	
buildInequalityConstraintJacobian	clearActiveVertices
teb::BaseSolverNonlinearProgramDense, 91	teb::HyperGraph, 169
teb::SolverSQPDense, 242	clearEdges
buildInequalityConstraintValueVector	teb::HyperGraph, 169
teb::BaseSolverNonlinearProgramDense, 91	clearGraph
	teb::HyperGraph, 169
teb::SolverSQPDense, 243	clearWindow
buildJacobian	teb::TebPlotter, 302
teb::SolverLevenbergMarquardtEigenDense, 206	closeWindow
teb::SolverLevenbergMarquardtEigenSparse, 218	teb::TebPlotter, 302
buildObjectiveGradient	common_teb_edges.h, 326
teb::BaseSolverNonlinearProgramDense, 91	completePdfExport
teb::SolverSQPDense, 243	teb::TebPlotter, 302
buildObjectiveValue	computeHessian
teb::BaseSolverNonlinearProgramDense, 92	teb::BaseEdge, 53
teb::SolverSQPDense, 243	teb::BaseEdge< D, FuncType >, 62
buildOptimizationGraph	
teb::TebController, 280	teb::BoundConstraint, 104
buildValueVector	teb::EdgeMinimizeTime, 129
teb::BaseSolverLeastSquares, 80	teb::EdgeQuadraticForm, 138
teb::SolverLevenbergMarquardtEigenDense, 206	teb::EdgeSystemDynamics, 148
teb::SolverLevenbergMarquardtEigenSparse, 219	teb::EdgeType, 156
tobco.voi zovoi borginai quaratzigon opaioo, zvo	computeJacobian
CENTRAL	teb::BaseEdge, 53
teb, 42	teb::BaseEdge< D, FuncType >, 62
calculateLagrangianGradient	teb::BoundConstraint, 105
teb::BaseSolverNonlinearProgramDense, 92	teb::EdgeMinimizeTime, 129
teb::SolverSQPDense, 243	teb::EdgeQuadraticForm, 138
calculateLagrangianHessian	teb::EdgeSystemDynamics, 148
teb::BaseSolverNonlinearProgramDense, 92	teb::EdgeType, 156
teb::SolverSQPDense, 243	computeValues
calculateLagrangianHessianFullBFGS	teb::BaseEdge, 54
	teb::BaseEdge< D, FuncType >, 63
teb::BaseSolverNonlinearProgramDense, 92	
teb::SolverSQPDense, 244	teb::BoundConstraint, 105
calculateLagrangianHessianNumerically	teb::EdgeMinimizeTime, 130
teb::BaseSolverNonlinearProgramDense, 92	teb::EdgeQuadraticForm, 139

teb::EdgeSystemDynamics, 149	teb::BoundConstraint, 105
teb::EdgeType, 156	teb::ControlVertex, 117
config.h, 327	teb::EdgeMinimizeTime, 130
conservativeResize	teb::EdgeQuadraticForm, 139
teb::SimResults, 189	teb::EdgeSystemDynamics, 149
constraintsEq	teb::EdgeType, 156
teb::SolverNloptPackage, 230	teb::StateVertex, 259
constraintsInEq	teb::TimeDiff, 311
teb::SolverNloptPackage, 230	teb::VertexType, 318
ControlSequence	dimensionFree
teb::TebController, 276	teb::ControlVertex, 118
controlSequence	teb::StateVertex, 259
teb::TebController, 281	teb::TimeDiff, 311
ControlVector	teb::VertexType, 318
	- ·
teb::ControlVertex, 116	discardBackupVertices
teb::ExplicitEuler, 160	teb::BaseSolver, 70
teb::NumericalIntegrator, 180	teb::BaseSolverLeastSquares, 80
teb::RungeKutta5thOrder, 184	teb::BaseSolverNonlinearProgramDense, 92
teb::RungeKuttaClassic, 186	teb::SolverLevenbergMarquardtEigenDense, 207
teb::Simulator, 192	teb::SolverLevenbergMarquardtEigenSparse, 219
teb::SystemDynamics, 267	teb::SolverNloptPackage, 230
teb::TebController, 276	teb::SolverSQPDense, 245
ControlVertex	discardJacobianBackup
teb::ControlVertex, 117	teb::BaseEdge, 54
Controller, 33	teb::BaseEdge < D, FuncType >, 63
EdgeControlBounds, 34	teb::BoundConstraint, 105
EdgePositiveTime, 35	teb::EdgeMinimizeTime, 130
EdgeStateBounds, 35	teb::EdgeQuadraticForm, 139
controls	teb::EdgeSystemDynamics, 149
teb::ControlVertex, 117	teb::EdgeType, 156
teb::SimResults::TimeSeries, 316	discardTop
countJacobianColNNZ	•
	teb::ControlVertex, 118
teb::SolverLevenbergMarquardtEigenSparse, 219	teb::StateVertex, 259
customOptimizationGraph	teb::TimeDiff, 311
teb::TebController, 281	teb::VertexType, 318
customOptimizationGraphHotStart	download.md, 328
teb::TebController, 281	dt
الم ما داد من الماثان	teb::SimResults::TimeSeries, 316
diff_method	teb::TebController, 282
teb::Config::Teb, 270	teb::TimeDiff, 311
DimControls	dt_hyst
teb::ControlVertex, 124	teb::Config::Teb, 270
teb::SystemDynamics, 269	dt_min
DimStates	teb::Config::Teb, 270
teb::StateVertex, 265	dt_ref
teb::SystemDynamics, 269	teb::Config::Teb, 270
Dimension	3
teb::BaseEdge, 57	EPS
teb::BaseEdge < D, FuncType >, 67	teb::TebPlotter, 302
teb::BoundConstraint, 111	EXPLICIT_EULER
teb::ControlVertex, 124	teb, 43
teb::EdgeMinimizeTime, 133	EdgeContainer
teb::EdgeQuadraticForm, 143	teb::BaseEdge, 51
teb::EdgeSystemDynamics, 153	teb::BaseEdge< D, FuncType >, 61
teb::StateVertex, 265	teb::BaseSolver, 69
teb::TimeDiff, 315	teb::BaseSolverLeastSquares, 78
dimension	•
	teb::BaseSolverNonlinearProgramDense, 90
teb::BaseEdge, 54	teb::BoundConstraint, 103
teb::BaseEdge< D, FuncType >, 63	teb::EdgeMinimizeTime, 128

teb::EdgeQuadraticForm, 137	teb::BaseController, 46
teb::EdgeSystemDynamics, 147	teb::TebController, 283
teb::EdgeType, 155	firstStateRef
teb::HyperGraph, 167	teb::TebController, 283
teb::SolverLevenbergMarquardtEigenDense, 204	fixed_ctrls
teb::SolverLevenbergMarquardtEigenSparse, 216	teb::ControlVertex, 118
teb::SolverNloptPackage, 229	fixed_states
teb::SolverSQPDense, 240	teb::StateVertex, 259
teb::TebController, 276	FixedCtrls
EdgeControlBounds	teb::ControlVertex, 116
Controller, 34	FixedStates
EdgeMinimizeTime	teb::StateVertex, 258
teb::EdgeMinimizeTime, 129	teb::TebController, 276
EdgePositiveTime	force_rebuild_optim_graph
Controller, 35	teb::Config::Optim, 181
EdgeQuadraticForm	functType
teb::EdgeQuadraticForm, 137	teb::BaseEdge, 54
EdgeStateBounds	teb::BaseEdge< D, FuncType >, 63
Controller, 35	teb::BoundConstraint, 105
EdgeSystemDynamics	teb::EdgeMinimizeTime, 130
teb::EdgeSystemDynamics, 147	teb::EdgeQuadraticForm, 139
teb::SystemDynamics, 269	teb::EdgeSystemDynamics, 149
EdgeType	teb::EdgeType, 156
teb::EdgeType, 155	tobEage type, 100
EigenScalar	getAbsoluteTimeVec
teb, 41	teb::BaseController, 46
EigenScalarD	teb::TebController, 283
teb, 41	getActiveVertices
	teb::TebController, 283
equalities	getBoundConstrDimFromStorage
teb::HyperGraph, 169	teb::SolverNloptPackage, 231
equalityConstraintFunction	getBounds
teb::SolverNloptPackage, 230	teb::BoundConstraint, 105
ExplicitEuler	getChi2
teb::ExplicitEuler, 160	teb::BaseSolverLeastSquares, 80
FORWARD	teb::SolverLevenbergMarquardtEigenDense, 207
teb, 42	teb::SolverLevenbergMarquardtEigenSparse, 220
FULL_BFGS	getCustomData
teb, 43	teb::BaseEdge, 54
FULL_BFGS_WITH_STRUCTURE_FILTER	teb::BaseEdge< D, FuncType >, 63
teb, 43	teb::BoundConstraint, 106
FUNCT_TYPE	teb::EdgeMinimizeTime, 130
teb, 42	teb::EdgeQuadraticForm, 139
FileFormat	teb::EdgeSystemDynamics, 149
teb::TebPlotter, 301	teb::EdgeType, 157
FiniteDifferences	getData
teb, 42	teb::ControlVertex, 118
finiteElemCentralDiff	teb::StateVertex, 260
teb::SystemDynamics, 267	teb::TimeDiff, 311
finiteElemFwdEuler	teb::VertexType, 319
teb::SystemDynamics, 268	getDataFree
firstControl	teb::ControlVertex, 118
teb::BaseController, 46	teb::StateVertex, 260
teb::TebController, 40	teb::TimeDiff, 311
firstControlRef	teb::VertexType, 319
teb::TebController, 282	getDimEqualities
firstControlSaturated	teb::BaseSolver, 70
teb::TebController, 282	teb::BaseSolverLeastSquares, 81
firstState	teb::BaseSolverNonlinearProgramDense, 93
mototato	tobbascoontoffninearr rogrambense, 33

teb::SolverLevenbergMarquardtEigenDense, 207 teb::SolverLevenbergMarquardtEigenSparse, 220 teb::SolverNloptPackage, 231 teb::SolverSQPDense, 245 getDimInequalities teb::BaseSolver, 71 teb::BaseSolverLeastSquares, 81 teb::BaseSolverNonlinearProgramDense, 93 teb::SolverLevenbergMarquardtEigenDense, 207 teb::SolverLevenbergMarquardtEigenSparse, 220 teb::SolverNloptPackage, 231 teb::SolverSQPDense, 245	getOptVecIdx teb::ControlVertex, 118 teb::StateVertex, 260 teb::TimeDiff, 312 teb::VertexType, 319 getSampleOptVecIdxVMat teb::TebController, 284 getStateCtrlInfoMat teb::BaseController, 47 teb::TebController, 285 getTEBFixedMap teb::TebController, 285
getDimObjectives	getValueDimension
teb::BaseSolver, 71	teb::BaseSolverLeastSquares, 82
teb::BaseSolverLeastSquares, 81	teb::SolverLevenbergMarquardtEigenDense, 208
teb::BaseSolverNonlinearProgramDense, 93	teb::SolverLevenbergMarquardtEigenSparse, 221
teb::SolverLevenbergMarquardtEigenDense, 208	getVertex
teb::SolverLevenbergMarquardtEigenSparse, 220	teb::BaseEdge, 54, 55
teb::SolverNloptPackage, 231	teb::BaseEdge < D, FuncType >, 64
teb::SolverNiopti adkage, 251 teb::SolverSQPDense, 245	teb::BoundConstraint, 106
getDt	teb::EdgeMinimizeTime, 130
teb::BaseController, 46	teb::EdgeQuadraticForm, 140
teb::TebController, 284	teb::EdgeSystemDynamics, 150
getEqConstrDimFromStorage	teb::EdgeType, 157
teb::SolverNloptPackage, 231	getWorkspace
getInEqConstrDimFromStorage	teb::HessianWorkspace, 164
teb::SolverNloptPackage, 231	teb::JacobianWorkspace, 173
getJacobianBackup	goal_dist_force_reinit
teb::BaseEdge, 54	teb::Config::Teb, 270
teb::BaseEdge< D, FuncType >, 63	graph
teb::BoundConstraint, 106	teb::TebController, 285
teb::EdgeMinimizeTime, 130	graph.h, 328
teb::EdgeQuadraticForm, 139	groups.dox, 329
teb::EdgeSystemDynamics, 149	hessian
teb::EdgeType, 157	teb::Config::Optim::Solver::NonlinearProgram, 178
getM	hessian_init
teb::TebController, 284	teb::Config::Optim::Solver::NonlinearProgram::-
getN	Hessian, 162
teb::BaseController, 47	hessian_init_identity_scale
teb::TebController, 284	teb::Config::Optim::Solver::NonlinearProgram::-
getOptVecCopy	Hessian, 162
teb::BaseSolver, 71	hessian_method
teb::BaseSolverLeastSquares, 81	teb::Config::Optim::Solver::NonlinearProgram::-
teb::BaseSolverNonlinearProgramDense, 93	Hessian, 162
teb::SolverLevenbergMarquardtEigenDense, 208	HessianInit
teb::SolverLevenbergMarquardtEigenSparse, 220	teb, 42
teb::SolverNloptPackage, 231	HessianMethod
teb::SolverSQPDense, 245	teb, 42
getOptVecDimFromStorage	HessianWorkspace
teb::SolverNloptPackage, 232	teb::HessianWorkspace, 164
getOptVecDimension	hessians
teb::BaseSolver, 71	teb::BaseEdge, 55
teb::BaseSolverLeastSquares, 81	teb::BaseEdge < D, FuncType >, 64
teb::BaseSolverNonlinearProgramDense, 93	teb::BoundConstraint, 107
teb::SolverLevenbergMarquardtEigenDense, 208	teb::EdgeMinimizeTime, 131
teb::SolverLevenbergMarquardtEigenSparse, 221	teb::EdgeQuadraticForm, 140
teb::SolverNloptPackage, 232	teb::EdgeSystemDynamics, 150
teb::SolverSQPDense, 246	teb::EdgeType, 157

IDENTITY	teb::VertexType, 319
teb, 42	isFixedAny
INF	teb::ControlVertex, 119
typedefs.h, 339	teb::StateVertex, 260
INPUT_STREAM	teb::TimeDiff, 312
typedefs.h, 339	teb::VertexType, 319
index	isFixedComp
teb::CustomBoundData, 125	teb::ControlVertex, 119
inequalities	teb::StateVertex, 260
teb::HyperGraph, 170	teb::TimeDiff, 312
inequalityConstraintFunction	teb::VertexType, 319
teb::SolverNloptPackage, 232	isGraphModified
initHessianBFGS	teb::HyperGraph, 170
teb::BaseSolverNonlinearProgramDense, 94	IDEC
teb::SolverSQPDense, 246	JPEG
initOptimization	teb::TebPlotter, 301
teb::TebController, 286	JacobianWorkspace
initSolverWorkspace	teb::JacobianWorkspace, 173
teb::BaseSolverNonlinearProgramDense, 94	jacobians
teb::SolverSQPDense, 246	teb::BaseEdge, 55
initTrajectory	teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107
teb::TebController, 286	teb::EdgeMinimizeTime, 131
initWorkspaces	teb::EdgeQuadraticForm, 140
teb::BaseSolver, 71	teb::EdgeSystemDynamics, 150
teb::BaseSolverLeastSquares, 82	teb::EdgeType, 157, 158
teb::BaseSolverNonlinearProgramDense, 94	tebLugeType, 137, 130
teb::SolverLevenbergMarquardtEigenDense, 209	LINEAR
teb::SolverLevenbergMarquardtEigenSparse, 221	teb, 42
teb::SolverNloptPackage, 232	LINEAR_SQUARED
teb::SolverSQPDense, 247	teb, 42
initializeLagrangeMultiplier	LOWER
teb::BaseSolverNonlinearProgramDense, 94	teb, 42
teb::SolverSQPDense, 246	LOWERUPPER
insertStateControlInputPair	teb, 42
teb::TebController, 286	lastState
install.md, 329	teb::BaseController, 47
IntegatorPtr	teb::TebController, 287
teb::Simulator, 192	lastStateRef
integrate	teb::TebController, 287
teb::ExplicitEuler, 160	legend
teb::NumericalIntegrator, 180	teb::PlotOptions, 182
teb::RungeKutta5thOrder, 184	legend_entries
teb::RungeKuttaClassic, 187	teb::PlotOptions, 182
integrators.h, 329	linesearch
isBoundConstraint	teb::Config::Optim::Solver::NonlinearProgram, 178
teb::BaseEdge, 55	lower
teb::BaseEdge< D, FuncType >, 64	teb::CustomBoundData, 125
teb::BoundConstraint, 107	lsq
teb::EdgeMinimizeTime, 131	teb::Config::Optim::Solver, 201
teb::EdgeQuadraticForm, 140	
teb::EdgeSystemDynamics, 150	mainpage.dox, 329
teb::EdgeType, 157	MatMapRowMajor
isExportToFileEnabled	teb::BaseSolverNonlinearProgramDense, 90
teb::TebPlotter, 302	teb::SolverSQPDense, 240
isFixedAll	matlab_class_handle.hpp, 329
teb::ControlVertex, 119	matlab_interface.md, 329
teb::StateVertex, 260	max_optimization_time
teb::TimeDiff, 312	teb::Config::Optim::Solver::Nlopt, 177

measure_cpu_time.h, 330	NumericalIntegrators
START TIMER, 330	teb, 43
STOP TIMER, 330	100, 10
misc.h, 330	objectiveFunction
	teb::SolverNloptPackage, 232
norm_angle, 331	objectives
norm_angle_vec, 332	teb::HyperGraph, 170, 171
NONLINEAR	**
	teb::SolverNloptPackage, 232
teb, 42	operator<<
NONLINEAR_ONCE_DIFF	teb::ControlVertex, 123
teb, 42	teb::StateVertex, 264
NONLINEAR_SQUARED	teb::TimeDiff, 314
teb, 42	operator()
NUMERIC	teb::TimeDiff, 312
teb, 42, 43	operator=
n_max	teb::ControlVertex, 119
teb::Config::Teb, 270	teb::StateVertex, 261
n min	teb::TimeDiff, 312
teb::Config::Teb, 270	operator==
n_pre	teb::ControlVertex, 123
teb::Config::Teb, 270	
	teb::StateVertex, 264
nlopt	optim
teb::Config::Optim::Solver, 201	teb::Config, 113
NloptAlgorithms	optimizeTEB
teb, 43	teb::TebController, 287
no_lower	
teb::CustomBoundData, 125	PDF
no_upper	teb::TebPlotter, 302
teb::CustomBoundData, 125	PNG
NoBounds	teb::TebPlotter, 301
teb::BoundConstraint, 112	PI
NoControls	typedefs.h, 339
teb::TebController, 299	PRINT_DEBUG
NoStates	typedefs.h, 339
teb::TebController, 299	PRINT_DEBUG_COND
NoVertices	typedefs.h, 339
teb::BaseEdge, 57	PRINT_DEBUG_ONCE
teb::BoundConstraint, 112	typedefs.h, 339
	PRINT ERROR
teb::EdgeMinimizeTime, 133	_
teb::EdgeQuadraticForm, 143	typedefs.h, 340
teb::EdgeSystemDynamics, 153	
N	PRINT_INFO
noVertices	typedefs.h, 340
teb::BaseEdge, 55	typedefs.h, 340 PRINT_INFO_COND
teb::BaseEdge, 55 teb::BaseEdge< D, FuncType >, 64	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE
teb::BaseEdge, 55 teb::BaseEdge< D, FuncType >, 64	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE
teb::BaseEdge, 55 teb::BaseEdge< D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340
teb::BaseEdge, 55 teb::BaseEdge< D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonllin_prog teb::Config::Optim::Solver, 201	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303
teb::BaseEdge, 55 teb::BaseEdge< D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec misc.h, 332	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303 plotMulti
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec misc.h, 332 notifyGraphModified	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303 plotMulti teb::TebPlotter, 304
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec misc.h, 332 notifyGraphModified teb::HyperGraph, 170	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303 plotMulti teb::TebPlotter, 304 plotResults
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec misc.h, 332 notifyGraphModified teb::HyperGraph, 170 NumericalIntegrator	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303 plotMulti teb::TebPlotter, 304 plotResults teb::Simulator, 193
teb::BaseEdge, 55 teb::BaseEdge < D, FuncType >, 64 teb::BoundConstraint, 107 teb::EdgeMinimizeTime, 131 teb::EdgeQuadraticForm, 140 teb::EdgeSystemDynamics, 150 teb::EdgeType, 158 nonlin_prog teb::Config::Optim::Solver, 201 norm_angle misc.h, 331 norm_angle_vec misc.h, 332 notifyGraphModified teb::HyperGraph, 170	typedefs.h, 340 PRINT_INFO_COND typedefs.h, 340 PRINT_INFO_ONCE typedefs.h, 340 pipe teb::TebPlotter, 307 plot teb::TebPlotter, 303 plot1DVector teb::TebPlotter, 303 plotCustomKey teb::TebPlotter, 303 plotMulti teb::TebPlotter, 304 plotResults

teb::TebPlotter, 304, 305 plotTwoCol teb::TebPlotter, 305	teb::BaseSolverNonlinearProgramDense, 94 teb::SolverLevenbergMarquardtEigenDense, 209 teb::SolverLevenbergMarquardtEigenSparse, 221
plus	teb::SolverNloptPackage, 232
teb::ControlVertex, 119	teb::SolverSQPDense, 247
teb::StateVertex, 261	restoreVerticesButKeepBackup
teb::TimeDiff, 313	teb::BaseSolver, 72
teb::VertexType, 320	teb::BaseSolverLeastSquares, 82
plusFree	teb::BaseSolverNonlinearProgramDense, 95
teb::ControlVertex, 120	teb::SolverLevenbergMarquardtEigenDense, 209
teb::StateVertex, 261	teb::SolverLevenbergMarquardtEigenSparse, 222
teb::TimeDiff, 313	teb::SolverNloptPackage, 233
teb::VertexType, 320	teb::SolverSQPDense, 247
pop	returnControlInputSequence
teb::ControlVertex, 120	teb::BaseController, 47
teb::StateVertex, 261	teb::TebController, 290
teb::TimeDiff, 313	RungeKutta5thOrder
teb::VertexType, 320	teb::RungeKutta5thOrder, 184
predictControl	RungeKuttaClassic
teb::TebController, 287	teb::RungeKuttaClassic, 186
push	ge entre to a general to a constant of the con
teb::ControlVertex, 120	SINGLE
teb::StateVertex, 261	teb, 42
teb::TimeDiff, 313	SLSQP
teb::VertexType, 320	teb, 43
pushBackStateControlInputPair	SVG
teb::TebController, 288	teb::TebPlotter, 301
pushFrontStateControlInputPair	START_TIMER
teb::TebController, 288	measure_cpu_time.h, 330
	STOP_TIMER
QUADRATIC	measure_cpu_time.h, 330
teb, 42	sampleTime
	teb::Simulator, 193
RUNGE_KUTTA_5TH	saturateControl
teb, 43	teb::Simulator, 194
RUNGE_KUTTA_CLASSIC	ScalarType
teb, 43	teb::ControlVertex, 116
removeStateControlInputPair	teb::StateVertex, 258
teb::TebController, 288	seperateInequalitiesAndBounds
resampleTrajectory	teb::SolverNloptPackage, 233
teb::TebController, 289	series
resetController	teb::SimResults, 189
teb::BaseController, 47	setBounds
teb::TebController, 289	teb::BoundConstraint, 107-109
resizeTrajectory	setConfig
teb::TebController, 289	teb::BaseSolver, 72
resizeVertexContainer	teb::BaseSolverLeastSquares, 83
teb::BaseEdge< D, FuncType >, 65	teb::BaseSolverNonlinearProgramDense, 95
restoreJacobian	teb::SolverLevenbergMarquardtEigenDense, 209
teb::BaseEdge, 55	teb::SolverLevenbergMarquardtEigenSparse, 222
teb::BaseEdge < D, FuncType >, 65	teb::SolverNloptPackage, 233
teb::BoundConstraint, 107	teb::SolverSQPDense, 247
teb::EdgeMinimizeTime, 131	setControlInputSaturation
teb::EdgeQuadraticForm, 141	teb::Simulator, 194
teb::EdgeSystemDynamics, 151	setControls
teb::EdgeType, 158	teb::ControlVertex, 120
restoreVertices	setData
teb::BaseSolver, 72	teb::EdgeMinimizeTime, 131
teb::BaseSolverLeastSquares, 82	setFixedAll

teb::ControlVertex, 120	setupHorizon
teb::StateVertex, 262	teb::TebController, 294
teb::TimeDiff, 313	sigma
setFixedCtrl	teb::Config::Optim::Solver::NonlinearProgram::-
teb::ControlVertex, 121	LineSearch, 175
setFixedCtrls	simClosedLoop
teb::ControlVertex, 121	teb::Simulator, 196, 197
setFixedDt	simOpenAndClosedLoop
teb::TebController, 290	teb::Simulator, 197
setFixedGoal	simOpenLoop
teb::TebController, 290, 291	teb::Simulator, 198
setFixedStart	SimResults
teb::TebController, 291	teb::Simulator, 199
setFixedState	Simulation, 37
teb::StateVertex, 262	Simulator
setFixedStates	teb::SimResults, 189
teb::StateVertex, 262	teb::Simulator, 193
setFree	teb::SystemDynamics, 269
teb::ControlVertex, 121	simulator.h, 332
teb::StateVertex, 263	simulator.hpp, 333
teb::TimeDiff, 313	skip_last_value_right_column
teb::VertexType, 320	teb::PlotOptions, 182
setGoalStatesFixedOrUnfixed	soft_constr_epsilon
teb::TebController, 291, 293	teb::Config::Optim::Solver::Lsq, 175
setIntegrator	solve
teb::Simulator, 194	teb::BaseSolver, 72
setOptVecIdx	teb::BaseSolverLeastSquares, 83
teb::ControlVertex, 121	teb::BaseSolverNonlinearProgramDense, 95
teb::StateVertex, 263	teb::SolverLevenbergMarquardtEigenDense, 209
teb::TimeDiff, 314	teb::SolverLevenbergMarquardtEigenSparse, 222
teb::VertexType, 320	teb::SolverNloptPackage, 233
setOutputToFile	teb::SolverSQPDense, 248
teb::TebPlotter, 306	solveImpl
setOutputToWindow	teb::BaseSolver, 73
teb::TebPlotter, 306	teb::BaseSolverLeastSquares, 83
setPlotter	teb::BaseSolverNonlinearProgramDense, 95
teb::Simulator, 194	teb::SolverLevenbergMarquardtEigenDense, 210
setPostStepCallback	teb::SolverLevenbergMarquardtEigenSparse, 222
teb::Simulator, 195	teb::SolverNloptPackage, 233
setPreSimCallback	teb::SolverSQPDense, 248
teb::Simulator, 195	Solver, 36
setPreStepCallback	solver
teb::Simulator, 195	teb::Config::Optim, 181
setReference	solver_iter
teb::EdgeQuadraticForm, 141	teb::Config::Optim::Solver, 201
setSampleTime	solver_levenbergmarquardt_eigen_dense.cpp, 333
teb::Simulator, 196	solver_levenbergmarquardt_eigen_dense.h, 333
setSolver	solver_levenbergmarquardt_eigen_sparse.cpp, 333
teb::TebController, 293	solver_levenbergmarquardt_eigen_sparse.h, 334
setStates	solver_nlopt_package.cpp, 334
teb::StateVertex, 263	solver_nlopt_package.h, 334
setSystemDynamics	solver_overview.md, 334
teb::EdgeSystemDynamics, 151	solver_sqp_dense.h, 334
teb::TebController, 294	solver_sqp_dense_backup.h, 335
setVertex	SolverLevenbergMarquardtEigenDense
teb::BaseEdge< D, FuncType >, 65	teb::SolverLevenbergMarquardtEigenDense, 204
setWeights	SolverLevenbergMarquardtEigenSparse
teb::EdgeQuadraticForm, 141	teb::SolverLevenbergMarquardtEigenSparse, 217
.son_ago addaration offit, 111	tooco.ror.eoronborgivia.quarateigonoparse, 217

SolverNloptPackage	BOUND_VARS, 42
teb::SolverNloptPackage, 229	BackupStackType, 41
SolverSQPDense	CENTRAL, 42
teb::SolverSQPDense, 240	EXPLICIT_EULER, 43
spyMatrix	EigenScalar, 41
teb::TebPlotter, 306	EigenScalarD, 41
stackSize	FORWARD, 42
teb::ControlVertex, 123	FULL BFGS, 43
teb::StateVertex, 263	FULL_BFGS_WITH_STRUCTURE_FILTER, 43
teb::TimeDiff, 314	FUNCT TYPE, 42
teb::VertexType, 320	FiniteDifferences, 42
StateSequence	HessianInit, 42
teb::TebController, 276	HessianMethod, 42
stateSequence	IDENTITY, 42
teb::TebController, 295	LINEAR, 42
stateSpaceModel	LINEAR_SQUARED, 42
teb::SystemDynamics, 268	LOWER, 42
StateVector	LOWERUPPER, 42
teb::EdgeQuadraticForm, 137	NONLINEAR, 42
teb::ExplicitEuler, 160	NONLINEAR_ONCE_DIFF, 42
teb::NumericalIntegrator, 180	NONLINEAR_SQUARED, 42
teb::RungeKutta5thOrder, 184	NUMERIC, 42, 43
teb::RungeKuttaClassic, 186	NloptAlgorithms, 43
teb::Simulator, 192	NumericalIntegrators, 43
teb::StateVertex, 258	QUADRATIC, 42
teb::SystemDynamics, 267	RUNGE_KUTTA_5TH, 43
teb::TebController, 276	RUNGE_KUTTA_CLASSIC, 43
StateVertex	SINGLE, 42
teb::StateVertex, 259	SLSQP, 43
states	teb::Config, 113
teb::SimResults::TimeSeries, 316	UPPER, 42
teb::StateVertex, 263, 264	ZERO, 42
step	ZERO, 42 ZERO HESSIAN, 43
teb::BaseController, 47	reb::TebPlotter
teb::TebController, 295	
stopping_criteria_ftol_abs	EPS, 302 JPEG, 301
teb::Config::Optim::Solver::Nlopt, 177	
stopping_criteria_ftol_rel	PDF, 302
teb::Config::Optim::Solver::Nlopt, 177	PNG, 301 SVG, 301
stopping_criteria_xtol_abs	
teb::Config::Optim::Solver::Nlopt, 177	TIKZ, 302
stopping_criteria_xtol_rel	reb::BaseController, 45
teb::Config::Optim::Solver::Nlopt, 177	firstControl, 46
switchWindow	firstState, 46
teb::TebPlotter, 306	getAbsoluteTimeVec, 46
system_dynamics.h, 335	getDt, 46
SystemDynamics	getN, 47
teb::EdgeSystemDynamics, 152	getStateCtrlInfoMat, 47
teb::Simulator, 199	lastState, 47
teb::SystemDynamics, 267	resetController, 47
systemStep	returnControlInputSequence, 47
teb::Simulator, 198	step, 47
	eb::BaseEdge
TIKZ	∼BaseEdge, 52
teb::TebPlotter, 302	_hessians, 56
teb, 39	_jacob_backup, 56
ALL, 42	_jacobians, 57
BLOCK_BFGS, 43	_values, 57
BOUND_TYPE, 42	_vertices, 57

_vertices_dim, 57	ValueVector, 61
allocateMemory, 52	ValueVectorMap, 61
backupJacobian, 52	values, 65
BaseEdge, 52	valuesData, 65
calculateVertexDimensions, 52	valuesMap, 66
computeHessian, 53	vertices, 66
computeJacobian, 53	teb::BaseEdge < D, FuncType, Vertices >, 49
computeValues, 54	teb::BaseSolver, 67
Dimension, 57	∼BaseSolver, 69
dimension, 54	active vertices, 73
discardJacobianBackup, 54	_equalities, 73
EdgeContainer, 51	_equalities_dim, 73
functType, 54	_graph_structure_modified, 73
getCustomData, 54	_inequalities, 74
getJacobianBackup, 54	_inequalities_dim, 74
getVertex, 54, 55	_no_vert_backups, 74
hessians, 55	_objective_dim, 74
isBoundConstraint, 55	objectives, 74
jacobians, 55	_opt_vec_dim, 74
NoVertices, 57	applyIncrement, 70
noVertices, 55	applyOptVec, 70
restoreJacobian, 55	backupVertices, 70
ValueVector, 51	BaseSolver, 69
ValueVectorMap, 52	cfg, 75
values, 56	discardBackupVertices, 70
valuesData, 56	EdgeContainer, 69
valuesMap, 56	getDimEqualities, 70
vertices, 56	getDimInequalities, 71
teb::BaseEdge< D, FuncType >, 58	getDimObjectives, 71
~BaseEdge, 61	getOptVecCopy, 71
_hessians, 66	getOptVecDimension, 71
_iacob_backup, 66	initWorkspaces, 71
_jacobians, 66	restore Vertices, 72
_values, 67	restoreVerticesButKeepBackup, 72
_vertices, 67	setConfig, 72
_vertices_dim, 67	solve, 72
allocateMemory, 61	solvelmpl, 73
backupJacobian, 61	VertexContainer, 69
BaseEdge, 61	teb::BaseSolverLeastSquares, 75
calculateVertexDimensions, 62	_active_vertices, 84
computeHessian, 62	_equalities, 84
computeJacobian, 62	_equalities_dim, 84
computeValues, 63	_graph_structure_modified, 84
Dimension, 67	_inequalities, 84
dimension, 63	_inequalities_dim, 85
discardJacobianBackup, 63	_no_vert_backups, 85
EdgeContainer, 61	objective dim, 85
functType, 63	objectives, 85
getCustomData, 63	_opt_vec_dim, 85
getJacobianBackup, 63	_val_dim, 85
getVertex, 64	_values, 86
hessians, 64	_weight_adapt_count, 86
isBoundConstraint, 64	_weight_equalities, 86
jacobians, 64	_weight_inequalities, 86
noVertices, 64	adaptWeights, 78
resizeVertexContainer, 65	applyIncrement, 79
restoreJacobian, 65	applyOptVec, 79
setVertex, 65	backupVertices, 79
Solverion, So	backap voi 11000, 10

	BaseSolverLeastSquares, 78	getDimEqualities, 93
	buildValueVector, 80	getDimInequalities, 93
	cfg, 86	getDimObjectives, 93
	discardBackupVertices, 80	getOptVecCopy, 93
	EdgeContainer, 78	getOptVecDimension, 93
	getChi2, 80	initHessianBFGS, 94
	getDimEqualities, 81	initSolverWorkspace, 94
	getDimInequalities, 81	initWorkspaces, 94
	getDimObjectives, 81	initializeLagrangeMultiplier, 94
	getOptVecCopy, 81	MatMapRowMajor, 90
	getOptVecDimension, 81	restoreVertices, 94
	getValueDimension, 82	restoreVerticesButKeepBackup, 95
	initWorkspaces, 82	setConfig, 95
	restoreVertices, 82	solve, 95
	restoreVerticesButKeepBackup, 82	solveImpl, 95
	setConfig, 83	VertexContainer, 90
	solve, 83	teb::BoundConstraint
	solveImpl, 83	_bounds, 110
	VertexContainer, 78	_hessians, 110
teb:	:BaseSolverNonlinearProgramDense, 87	_jacob_backup, 110
	_active_vertices, 97	_jacobians, 111
	_equalities, 97	values, 111
	_equalities_dim, 97	_vertices, 111
	_equality_jacobian, 97	_vertices_dim, 111
	_equality_values, 97	allocateMemory, 104
	_graph_structure_modified, 97	backupJacobian, 104
	_inequalities, 98	BoundConstraint, 104
	_inequalities_dim, 98	BoundType, 111
	_inequality_jacobian, 98	calculateVertexDimensions, 104
	_inequality_values, 98	computeHessian, 104
	_lagrangian_gradient, 98	computeJacobian, 105
	_lagrangian_gradient_backup, 98	computeValues, 105
	_lagrangian_hessian, 98	Dimension, 111
	multiplier eq, 99	dimension, 105
	_multiplier_ineq, 99	discardJacobianBackup, 105
	_no_vert_backups, 99	EdgeContainer, 103
	objective dim, 99	functType, 105
	_objective_gradient, 99	getBounds, 105
	objective value, 99	getCustomData, 106
	_objectives, 99	getJacobianBackup, 106
	_opt_vec_dim, 100	getVertex, 106
	applyIncrement, 90	hessians, 107
	applyOptVec, 90	isBoundConstraint, 107
	backupVertices, 91	jacobians, 107
	BaseSolverNonlinearProgramDense, 90	NoBounds, 112
	buildEqualityConstraintJacobian, 91	NoVertices, 112
	buildEqualityConstraintValueVector, 91	noVertices, 107
	buildInequalityConstraintJacobian, 91	restoreJacobian, 107
	buildInequalityConstraintValueVector, 91	setBounds, 107–109
	buildObjectiveGradient, 91	ValueVector, 103
	buildObjectiveValue, 92	Value VectorMap, 103
	calculateLagrangianGradient, 92	values, 109
	calculateLagrangianHessian, 92	valuesData, 110
	calculateLagrangianHessianFullBFGS, 92	valuesMap, 110
	calculateLagrangianHessianNumerically, 92	vertices, 110
	cfg, 100	teb::BoundConstraint< Bound_type, Vertex, Bound
	discardBackupVertices, 92	vars, Index >, 100
	EdgeContainer, 90	teb::Config, 112

optim, 113	ControlVertex, 117
teb, 113	controls, 117
util, 113	DimControls, 124
teb::Config::Optim, 181	Dimension, 124
force_rebuild_optim_graph, 181	dimension, 117
solver, 181	dimensionFree, 118
teb::Config::Optim::Solver, 200	discardTop, 118
lsq, 201	fixed_ctrls, 118
nlopt, 201	FixedCtrls, 116
nonlin_prog, 201	getData, 118
solver_iter, 201	getDataFree, 118
teb::Config::Optim::Solver::Lsq, 175	getOptVecIdx, 118
soft_constr_epsilon, 175	isFixedAll, 119
weight_adaptation_factor, 175	isFixedAny, 119
weight_equalities, 176	isFixedComp, 119
weight_inequalities, 176	operator<<, 123
teb::Config::Optim::Solver::Nlopt, 176	operator=, 119
algorithm, 177	operator==, 123
max_optimization_time, 177	plus, 119
stopping criteria ftol abs, 177	plusFree, 120
stopping_criteria_ftol_rel, 177	pop, 120
stopping criteria xtol abs, 177	push, 120
stopping_criteria_xtol_rel, 177	ScalarType, 116
tolerance_equalities, 177	setControls, 120
tolerance_inequalities, 177	setFixedAll, 120
teb::Config::Optim::Solver::NonlinearProgram, 177	setFixedCtrl, 121
hessian, 178	setFixedCtrls, 121
linesearch, 178	setFree, 121
teb::Config::Optim::Solver::NonlinearProgram::Hessian,	setOptVecIdx, 121
161	stackSize, 123
bfgs_damped_mode, 162	top, 123
hessian init, 162	VertexContainer, 117
hessian_init_identity_scale, 162	teb::ControlVertex< q >, 113
hessian_method, 162	teb::CustomBoundData, 124
teb::Config::Optim::Solver::NonlinearProgram::Line-	index, 125
Search, 174	lower, 125
alpha_init, 174	no_lower, 125
beta, 174	no_upper, 125
sigma, 175	upper, 125
teb::Config::Teb, 269	teb::EdgeMinimizeTime, 126
diff method, 270	data, 133
dt_hyst, 270	_uata, 133 _hessians, 133
·	jacob backup, 133
dt_min, 270	- - · ·
dt_ref, 270	_jacobians, 133
goal_dist_force_reinit, 270	_values, 133
n_max, 270	_vertices, 133
n_min, 270	_vertices_dim, 133
n_pre, 270	allocateMemory, 129
teb_iter, 271	backupJacobian, 129
teb::Config::Utilities, 316	calculateVertexDimensions, 129
teb::ControlVertex	computeHessian, 129
_backup, 123	computeJacobian, 129
_controls, 124	computeValues, 130
_dimension, 124	Dimension, 133
_fixed_ctrls, 124	dimension, 130
_opt_vec_idx, 124	discardJacobianBackup, 130
BackupStackType, 116	EdgeContainer, 128
ControlVector, 116	EdgeMinimizeTime, 129

functType, 130	teb::EdgeSystemDynamics
getCustomData, 130	_hessians, 152
getJacobianBackup, 130	_jacob_backup, 152
getVertex, 130	_jacobians, 152
hessians, 131	_system, 152
isBoundConstraint, 131	_values, 152
jacobians, 131	_vertices, 152
NoVertices, 133	_vertices_dim, 153
noVertices, 131	allocateMemory, 147
restoreJacobian, 131	backupJacobian, 148
setData, 131	calculateVertexDimensions, 148
ValueVector, 128	computeHessian, 148
ValueVectorMap, 128	computeJacobian, 148
values, 132	computeValues, 149
valuesData, 132	Dimension, 153
valuesMap, 132	dimension, 149
vertices, 132	discardJacobianBackup, 149
teb::EdgeQuadraticForm	EdgeContainer, 147
_Q, 143	EdgeSystemDynamics, 147
_R, 143	functType, 149
hessians, 142	getCustomData, 149
_iacob_backup, 142	getJacobianBackup, 149
_jacobians, 142	getVertex, 150
_ref_state, 143	hessians, 150
_values, 143	isBoundConstraint, 150
_vertices, 143	jacobians, 150
_vertices_dim, 143	NoVertices, 153
allocateMemory, 138	noVertices, 150
backupJacobian, 138	restoreJacobian, 151
calculateVertexDimensions, 138	setSystemDynamics, 151
computeHessian, 138	SystemDynamics, 152
computeJacobian, 138	ValueVector, 147
computeValues, 139	ValueVectorMap, 147
Dimension, 143	values, 151
dimension, 139	valuesData, 151
discardJacobianBackup, 139	valuesMap, 151
EdgeContainer, 137	vertices, 151
EdgeQuadraticForm, 137	teb::EdgeSystemDynamics< p, q, central >, 144
functType, 139	teb::EdgeType, 153
getCustomData, 139	~EdgeType, 155
getJacobianBackup, 139	_hessians, 158
getVertex, 140	jacob backup, 158
hessians, 140	_jacobians, 159
isBoundConstraint, 140	allocateMemory, 156
jacobians, 140	backupJacobian, 156
NoVertices, 143	computeHessian, 156
noVertices, 140	computeJacobian, 156
restoreJacobian, 141	computeValues, 156
setReference, 141	dimension, 156
setWeights, 141	discardJacobianBackup, 156
StateVector, 137	EdgeContainer, 155
ValueVector, 137	EdgeType, 155
ValueVectorMap, 137	functType, 156
values, 141	getCustomData, 157
valuesData, 141, 142	getJacobianBackup, 157
valuesData, 141, 142 valuesMap, 142	getVertex, 157
vertices, 142	
	hessians, 157
teb::EdgeQuadraticForm< p, q >, 134	isBoundConstraint, 157

jacobians, 157, 158	skip_last_value_right_column, 182
noVertices, 158	title, 182
restoreJacobian, 158	ylabels, 183
ValueVectorMap, 155	teb::RungeKutta5thOrder
valuesData, 158	\sim RungeKutta5thOrder, 184
valuesMap, 158	ControlVector, 184
teb::ExplicitEuler	integrate, 184
\sim ExplicitEuler, 160	RungeKutta5thOrder, 184
ControlVector, 160	StateVector, 184
ExplicitEuler, 160	teb::RungeKutta5thOrder< p, q >, 183
integrate, 160	teb::RungeKuttaClassic
StateVector, 160	~RungeKuttaClassic, 186
teb::ExplicitEuler< p, q >, 159	ControlVector, 186
teb::HessianWorkspace, 162	integrate, 187
~HessianWorkspace, 164	RungeKuttaClassic, 186
_workspace, 165	StateVector, 186
allocate, 164	teb::RungeKuttaClassic< p, q >, 185
getWorkspace, 164	teb::SimResults, 187
HessianWorkspace, 164	allocateMemory, 188
WorkspaceMatrix, 164	conservativeResize, 189
teb::HyperGraph, 165	series, 189
_active_vertices, 171	Simulator, 189
_constraints_eq, 171	teb::SimResults::TimeSeries, 315
_constraints_ineq, 171	controls, 316
_graph_modified, 171	dt, 316
_objectives, 171	states, 316
activeVertices, 167	time, 316
addActiveVertex, 167	teb::Simulator
addEdgeEquality, 167	~Simulator, 193
addEdgeInequality, 167	_callback_sim_pre, 199
addEdgeObjective, 169	_callback_step_post, 199
clearActiveVertices, 169	_callback_step_post, 199
clearEdges, 169	_caliback_step_pre, 199 _control_bounds, 199
clearGraph, 169	controller, 199
EdgeContainer, 167	_integrator, 199
equalities, 169	
•	_plotter, 200
inequalities, 170	_sample_time, 200
isGraphModified, 170	_system, 200
notifyGraphModified, 170	ControlVector, 192
objectives, 170, 171	IntegatorPtr, 192
VertexContainer, 167	plotResults, 193
teb::JacobianWorkspace, 172	sampleTime, 193
~JacobianWorkspace, 173	saturateControl, 194
_workspace, 174	setControlInputSaturation, 194
allocate, 173	setIntegrator, 194
getWorkspace, 173	setPlotter, 194
JacobianWorkspace, 173	setPostStepCallback, 195
WorkspaceMatrix, 173	setPreSimCallback, 195
teb::NumericalIntegrator	setPreStepCallback, 195
~NumericalIntegrator, 180	setSampleTime, 196
ControlVector, 180	simClosedLoop, 196, 197
integrate, 180	simOpenAndClosedLoop, 197
NumericalIntegrator, 180	simOpenLoop, 198
StateVector, 180	SimResults, 199
teb::NumericalIntegrator< p, q >, 178	Simulator, 193
teb::PlotOptions, 181	StateVector, 192
legend, 182	SystemDynamics, 199
legend_entries, 182	systemStep, 198

teb::Simulator $< p, q >$, 190	_weight_adapt_count, 225
teb::SolverLevenbergMarquardtEigenDense, 201	_weight_equalities, 225
_active_vertices, 210	_weight_inequalities, 225
_equalities, 210	adaptWeights, 217
_equalities_dim, 211	allocateSparseJacobian, 217
_graph_structure_modified, 211	applyIncrement, 217
_inequalities, 211	applyOptVec, 218
_inequalities_dim, 211	backupVertices, 218
_jacobian, 211	buildJacobian, 218
_no_vert_backups, 211	buildValueVector, 219
_objective_dim, 212	cfg, 226
_objectives, 212	countJacobianColNNZ, 219
_opt_vec_dim, 212	discardBackupVertices, 219
_val_dim, 212	EdgeContainer, 216
_values, 212	getChi2, 220
_weight_adapt_count, 212	getDimEqualities, 220
_weight_equalities, 213	getDimInequalities, 220
_weight_inequalities, 213	getDimObjectives, 220
adaptWeights, 204	getOptVecCopy, 220
applyIncrement, 205	getOptVecDimension, 221
applyOptVec, 205	getValueDimension, 221
backupVertices, 205	initWorkspaces, 221
buildJacobian, 206	restoreVertices, 221
buildValueVector, 206	restoreVerticesButKeepBackup, 222
cfg, 213	setConfig, 222
discardBackupVertices, 207	solve, 222
EdgeContainer, 204	solveImpl, 222
getChi2, 207	SolverLevenbergMarquardtEigenSparse, 217
getDimEqualities, 207	VertexContainer, 216
getDimInequalities, 207	teb::SolverNloptPackage, 226
getDimObjectives, 208	_active_vertices, 234
getOptVecCopy, 208	_bound_constraints, 234
getOptVecDimension, 208	_bound_constraints_dim, 234
getValueDimension, 208	_ctol_eq, 234
initWorkspaces, 209	_ctol_ineq, 234
restoreVertices, 209	_equalities, 234
restoreVerticesButKeepBackup, 209	_equalities_dim, 234
setConfig, 209	_graph_structure_modified, 235
solve, 209	_inequalities, 235
solvelmpl, 210	_inequalities_dim, 235
SolverLevenbergMarquardtEigenDense, 204	_inequalities_without_bounds, 235
VertexContainer, 204	_inequalities_without_bounds_dim, 235
teb::SolverLevenbergMarquardtEigenSparse, 213	_lower_bounds, 235
_active_vertices, 223	_no_vert_backups, 235
_equalities, 223	_objective_dim, 236
_equalities_dim, 223	_objectives, 236
_graph_structure_modified, 223	_opt_vec_dim, 236
_inequalities, 224	_upper_bounds, 236
_inequalities_dim, 224	applyIncrement, 229
_jacobian, 224	applyOptVec, 230
_nnz_per_col, 224	backupVertices, 230
_no_vert_backups, 224	cfg, 236
_objective_dim, 224	constraintsEq, 230
_objectives, 224	constraintsInEq, 230
_opt_vec_dim, 225	discardBackupVertices, 230
_sparse_solver, 225	EdgeContainer, 229
_val_dim, 225	equalityConstraintFunction, 230
_values, 225	getBoundConstrDimFromStorage, 231

	getDimEqualities, 231	buildInequalityConstraintJacobian, 242
	getDimInequalities, 231	buildInequalityConstraintValueVector, 243
	getDimObjectives, 231	buildObjectiveGradient, 243
	getEqConstrDimFromStorage, 231	buildObjectiveValue, 243
	getInEqConstrDimFromStorage, 231	calculateLagrangianGradient, 243
	getOptVecCopy, 231	calculateLagrangianHessian, 243
	getOptVecDimFromStorage, 232	calculateLagrangianHessianFullBFGS, 244
	getOptVecDimension, 232	calculateLagrangianHessianNumerically, 244
	inequalityConstraintFunction, 232	calculateMerit, 244
	initWorkspaces, 232	calculateMeritDerivative, 244
	objectiveFunction, 232	cfg, 255
	objectives, 232	checkConvergence, 245
	restoreVertices, 232	discardBackupVertices, 245
	restoreVerticesButKeepBackup, 233	EdgeContainer, 240
	seperateInequalitiesAndBounds, 233	getDimEqualities, 245
	•	- · · · · · · · · · · · · · · · · · · ·
	setConfig, 233	getDimInequalities, 245
	solve, 233	getDimObjectives, 245
	solvelmpl, 233	getOptVecCopy, 245
	SolverNloptPackage, 229	getOptVecDimension, 246
	VertexContainer, 229	initHessianBFGS, 246
teb::	SolverSQPDense, 237	initSolverWorkspace, 246
	_A, 250	initWorkspaces, 247
	_active_vertices, 250	initializeLagrangeMultiplier, 246
	_delta, 250	MatMapRowMajor, 240
	_dmultiplier_eq, 250	restoreVertices, 247
	_dmultiplier_ineq, 250	restoreVerticesButKeepBackup, 247
	_equalities, 251	setConfig, 247
	_equalities_dim, 251	solve, 248
	equality_jacobian, 251	solveImpl, 248
	_equality_values, 251	SolverSQPDense, 240
	_graph_structure_modified, 251	VertexContainer, 240
	_increment, 251	teb::StateVertex
	_inequalities, 252	_backup, 265
	_inequalities_dim, 252	_dimension, 265
	_inequality_jacobian, 252	_fixed_states, 265
	_inequality_values, 252	_opt_vec_idx, 265
	_inequality_values, 252 _lagrangian_gradient, 252	
		_states, 265
	_lagrangian_gradient_backup, 252	BackupStackType, 258
	_lagrangian_hessian, 253	DimStates, 265
	_lb, 253	Dimension, 265
	_merit_alpha, 253	dimension, 259
	_merit_grad, 253	dimensionFree, 259
	_multiplier_eq, 253	discardTop, 259
	_multiplier_ineq, 253	fixed_states, 259
	_no_vert_backups, 253	FixedStates, 258
	_objective_dim, 253	getData, 260
	_objective_gradient, 254	getDataFree, 260
	_objective_value, 254	getOptVecIdx, 260
	_objectives, 254	isFixedAll, 260
	_opt_vec_dim, 254	isFixedAny, 260
	_qdual, 254	isFixedComp, 260
	_qsolver, 254	operator<<, 264
	_ub, 254	operator=, 261
	applyIncrement, 241	operator==, 264
	applyOptVec, 242	plus, 261
	backupVertices, 242	plusFree, 261
	buildEqualityConstraintJacobian, 242	pop, 261
	• •	• •
	buildEqualityConstraintValueVector, 242	push, 261

ScalarType, 258	firstControl, 282
setFixedAll, 262	firstControlRef, 282
setFixedState, 262	firstControlSaturated, 282
setFixedStates, 262	firstState, 283
setFree, 263	firstStateRef, 283
setOptVecIdx, 263	FixedStates, 276
setStates, 263	getAbsoluteTimeVec, 283
stackSize, 263	getActiveVertices, 283
StateVector, 258	getDt, 284
StateVertex, 259	getM, 284
states, 263, 264	getN, 284
top, 264	getN, 204 getSampleOptVecIdxVMat, 284
VertexContainer, 258	getStateCtrlInfoMat, 285
	-
teb::StateVertex , 255	getTEBFixedMap, 285
teb::SystemDynamics	graph, 285
~SystemDynamics, 267	initOptimization, 286
ControlVector, 267	initTrajectory, 286
DimControls, 269	insertStateControlInputPair, 286
DimStates, 269	lastState, 287
EdgeSystemDynamics, 269	lastStateRef, 287
finiteElemCentralDiff, 267	NoControls, 299
finiteElemFwdEuler, 268	NoStates, 299
Simulator, 269	optimizeTEB, 287
stateSpaceModel, 268	predictControl, 287
StateVector, 267	pushBackStateControlInputPair, 288
SystemDynamics, 267	pushFrontStateControlInputPair, 288
teb::SystemDynamics< p, q >, 265	removeStateControlInputPair, 288
teb::TebController	resampleTrajectory, 289
\sim TebController, 277	resetController, 289
_active_control_bounds, 296	resizeTrajectory, 289
_active_quadratic_form, 297	returnControlInputSequence, 290
_active_state_bounds, 297	setFixedDt, 290
_active_system_dynamics, 297	setFixedGoal, 290, 291
_active_time_optimal, 297	setFixedStart, 291
_cfg_owned, 298	setGoalStatesFixedOrUnfixed, 291, 293
_ctrl_seq, 298	setSolver, 293
_dt, 298	setSystemDynamics, 294
_dt_ref, 298	setupHorizon, 294
_fixed_goal_states, 298	StateSequence, 276
_goal_backup, 298	stateSequence, 295
_graph, 298	StateVector, 276
_graph, 250 _no_samples, 299	step, 295
_no_samples, 299	TebController, 277
_ ·	updateGoal, 295
_solver, 299	•
_state_seq, 299	updateStart, 296
activateControlBounds, 277, 278	VertexContainer, 277
activateObjectiveQuadraticForm, 278	teb::TebController< p, q >, 271
activateObjectiveTimeOptimal, 279	teb::TebPlotter, 300
activateStateBounds, 279, 280	∼TebPlotter, 302
buildOptimizationGraph, 280	_file_export, 307
cfg, 299	_pdf_flag, 307
ControlSequence, 276	clearWindow, 302
controlSequence, 281	closeWindow, 302
ControlVector, 276	completePdfExport, 302
customOptimizationGraph, 281	FileFormat, 301
customOptimizationGraphHotStart, 281	isExportToFileEnabled, 302
dt, 282	pipe, 307
EdgeContainer, 276	plot, 303

plot1DVector, 303	stackSize, 320
plotCustomKey, 303	top, 320
plotMulti, 304	VertexContainer, 318
plot/TEB, 304, 305	teb_controller.h, 336
plotTvoCol, 305	teb_controller.hpp, 336
setOutputToFile, 306	teb_iter
•	teb::Config::Teb, 271
setOutputToWindow, 306	teb_plotter.cpp, 336
spyMatrix, 306	teb_plotter.cpp, 330 teb_plotter.h, 337
switchWindow, 306	_
TebPlotter, 302	teb_plotter.hpp, 337 teb vertices.h, 337
teb::TimeDiff, 307	TebController
~TimeDiff, 311	
_backup, 314	teb::TebController, 277
_dt, 314	TebPlotter
_fixed, 315	teb::TebPlotter, 302
_opt_vec_idx, 315	time
Dimension, 315	teb::SimResults::TimeSeries, 316
dimension, 311	TimeDiff
dimensionFree, 311	teb::TimeDiff, 310
discardTop, 311	title
dt, 311	teb::PlotOptions, 182
getData, 311	tolerance_equalities
getDataFree, 311	teb::Config::Optim::Solver::Nlopt, 177
getOptVecldx, 312	tolerance_inequalities
isFixedAll, 312	teb::Config::Optim::Solver::Nlopt, 177
isFixedAny, 312	top
isFixedComp, 312	teb::ControlVertex, 123
operator<<, 314	teb::StateVertex, 264
operator(), 312	teb::TimeDiff, 314
operator=, 312	teb::VertexType, 320
plus, 313	typedefs.h, 338
plusFree, 313	INF, 339
•	INPUT_STREAM, 339
pop, 313	PI, 339
push, 313	PRINT_DEBUG, 339
setFixedAll, 313	PRINT DEBUG COND, 339
setFree, 313	PRINT_DEBUG_ONCE, 339
setOptVecldx, 314	PRINT ERROR, 340
stackSize, 314	PRINT INFO, 340
TimeDiff, 310	PRINT INFO COND, 340
top, 314	PRINT INFO ONCE, 340
VertexContainer, 310	
teb::VertexType, 316	UPPER
_opt_vec_idx, 321	teb, 42
dimension, 318	updateGoal
dimensionFree, 318	teb::TebController, 295
discardTop, 318	updateStart
getData, 319	teb::TebController, 296
getDataFree, 319	upper
getOptVecldx, 319	teb::CustomBoundData, 125
isFixedAll, 319	util
isFixedAny, 319	teb::Config, 113
isFixedComp, 319	utilities.h, 340
plus, 320	adiidosii, oto
plusFree, 320	ValueVector
pop, 320	teb::BaseEdge, 51
push, 320	teb::BaseEdge< D, FuncType >, 61
•	teb::BoundConstraint, 103
setCntVector, 320	teh::EdgeMinimizeTime 128

teb::EdgeMinimizeTime, 128

setOptVecldx, 320

teb::EdgeQuadraticForm, 137	teb::Config::Optim::Solver::Lsq, 176
teb::EdgeSystemDynamics, 147	weight_inequalities
ValueVectorMap	teb::Config::Optim::Solver::Lsq, 176
teb::BaseEdge, 52	WorkspaceMatrix
teb::BaseEdge < D, FuncType >, 61	teb::HessianWorkspace, 164
teb::BoundConstraint, 103	teb::JacobianWorkspace, 173
teb::EdgeMinimizeTime, 128	workspaces.h, 341
teb::EdgeQuadraticForm, 137	
teb::EdgeSystemDynamics, 147	ylabels
teb::EdgeType, 155	teb::PlotOptions, 183
values	
teb::BaseEdge, 56	ZERO
teb::BaseEdge < D, FuncType >, 65	teb, 42
teb::BoundConstraint, 109	ZERO_HESSIAN
teb::EdgeMinimizeTime, 132	teb, 43
teb::EdgeQuadraticForm, 141	
teb::EdgeSystemDynamics, 151	
valuesData	
teb::BaseEdge, 56	
teb::BaseEdge< D, FuncType >, 65	
teb::BoundConstraint, 110	
teb::EdgeMinimizeTime, 132	
teb::EdgeQuadraticForm, 141, 142	
teb::EdgeSystemDynamics, 151	
teb::EdgeType, 158	
valuesMap	
teb::BaseEdge, 56	
teb::BaseEdge< D, FuncType >, 66	
teb::BoundConstraint, 110	
teb::EdgeMinimizeTime, 132	
teb::EdgeQuadraticForm, 142	
teb::EdgeSystemDynamics, 151	
teb::EdgeType, 158	
VertexContainer	
teb::BaseSolver, 69	
teb::BaseSolverLeastSquares, 78	
teb::BaseSolverNonlinearProgramDense, 90	
teb::ControlVertex, 117	
teb::HyperGraph, 167	
teb::SolverLevenbergMarquardtEigenDense, 204	
teb::SolverLevenbergMarquardtEigenSparse, 216	
teb::SolverNloptPackage, 229	
teb::SolverSQPDense, 240	
teb::StateVertex, 258	
teb::TebController, 277	
teb::TimeDiff, 310	
teb::VertexType, 318	
vertices	
teb::BaseEdge, 56	
teb::BaseEdge< D, FuncType >, 66	
teb::BoundConstraint, 110	
teb::EdgeMinimizeTime, 132	
teb::EdgeQuadraticForm, 142	
teb::EdgeSystemDynamics, 151	
Visualization, 38	
weight_adaptation_factor	
teb::Config::Optim::Solver::Lsq, 175	

weight_equalities