⑩ 公 開 特 許 公 報 (A) 平1-101316

@Int _. Cl _{.⁴}	識別記号	庁内整理番号		43公開	平成1年(1989	9)4月19日
C 08 F 220/20 299/06	MMV MRX	8620-4 J 7445-4 J		,			
G 02 B 1/04	101	7915 -2H	審査請求	未請求	発明の数	1	(全9頁)

光学用材料 63発明の名称

> 21)特 願 昭62-257221

願 昭62(1987)10月14日 22出

神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 亮 勿発 明者 須 所生產技術研究所内 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 明者 小 詖 72発 所生産技術研究所内 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 広 眲 72発 明者 所生產技術研究所內 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 哲 夫 72)発 明 者 所生産技術研究所内 東京都千代田区神田駿河台4丁目6番地 **犯出** 願人 株式会社日立製作所 大阪府茨木市丑寅1丁目1番88号 日立マクセル株式会社 ODH: 願 人 外1名 弁理士 小川 勝男

発明の名称

光学用材料

64代 理 人

- 特許請求の範囲
 - 1. 一般式(1)で表される(メタ)アクリレート化 合物90~20重量%と、一般式(11)で表される(メ タ)アクリレート化合物10~80重量%とをラジ カル共重合させて得られた光学用材料。

$$CH_2 = C - C - O - CH_2 - CH$$

(式中、nは1~6、R₁は-H又は-CH₃、R₂ は - CH - CH₂ - 又は - CH₂ - CH - ここで、R₅ は R5

- H 又は炭素数1~5のアルキル基又は
- CH₂-O-(O)、R₃は炭素数 6~16 の炭化水素

基、R4は炭累数2~300の炭化水紧基)

- 発明の詳細な説明
 - [産業上の利用分野]

本発明は高耐熱性、高強度、低吸湿性を有する 硬化物を与える透明の光学用材料に関する。

〔従来の技術〕

光ディスク基板、各種レンズ、ブリズム、回折 格子など光学用途に用いる透明材料としては、ガ ラスの他、成形性が良く、軽量であるプラステッ ク材料が用いられている。特開昭60-152515号や 特 開 昭 61 - 287913 号 に 従 来 の プ ラ ス チ ッ ク 材 料 が 開示されている。

[発明が解決しようとする問題点] 従来のブラスチック材料としては、ポリカーボ ネート樹脂・ポリスチレン樹脂・ポリメチルメタクリレート樹脂など熱可塑性樹脂があるが、これらは、射出成形時に分子配向を生じ、光学的歪や機械的歪を完全に除くことが難しく、また、耐熱性が不足しているため、熱変形を生じ易く、吸運により変形する問題も有していた。

成形時の分子配向を解消するために、液状の架橋型樹脂の成形が試みられるようになった。例えば、ジェチレングリコールピスアリルカーボネート樹脂は、メガネレンズなどに用いられているが、反応速度が受けため、成形加工性が劣り、耐熱性、耐湿性も十分でなかった。また、これを解決するため、特開昭60-152515など脂環式骨格を有するため、特開昭60-152515など脂環式骨格を有する。また、特別の硬化物は、機械的強度が不足するが、吸湿性が増大するほか、機械的強度が未だ不十分であった。

本発明の目的は、上記した従来技術の欠点をなくし、光学的異方性が小さく、機械的強度が有り、

ととで、

 $n : 1 \sim 6$

R1: - H 又は - CH3

R5は-H 又は炭素数1~5のアルキル基又

$$12 - CH_2 - O - \langle O \rangle$$

R3: 炭素数 6~16 の炭化水素基であり、例えば

熱変形温度が高く、高湿度下での安定性が優れた 光学用材料を提供するにある。

[問題点を解決するための手段]

本発明は、一般式(1)で表される(メタ)アクリレート化合物90~20重量%と、一般式(E)で表される(メタ)アクリレート化合物10~80重量%とをラジカル共重合させて光学用材料を得ることを目的としている。

などがあり、好ましくは、

R4: 炭素数 2 ~ 300 の炭化水素基であり、例えば

$$\begin{array}{c} & \text{H} \\ \leftarrow \text{CH}_2 \rightarrow_2 & , & -\text{CH}_2 - \text{C} - & , & \leftarrow \text{CH}_2 \rightarrow_4 , \\ & \text{CH}_3 & & \\ \leftarrow \text{CH}_3 & & & \\ \leftarrow \text{CH}_2 \rightarrow_5 & , & -\text{CH}_2 - \text{C} - \text{CH}_2 - , & \leftarrow \text{CH}_2 \rightarrow_6 , \\ & \text{CH}_3 & & \\ \leftarrow \text{CH}_2 - \text{CII} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - , & \leftarrow \text{CH}_2 \rightarrow_6 , \end{array}$$

$$- CH_2 - CH_1 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

$$+ \text{ CH}_2 \rightarrow_{10}$$
 , $+ \text{ CH}_2 \rightarrow_{12}$, $+ \text{ CH}_2 \rightarrow_{14}$, $+ \text{ CH}_2 \rightarrow_{20}$, $- \text{ CH}_2 - \text{ H}$ $- \text{ CH}_2 - \text{ H}$ $+ \text{ CH}_2 - \text{ CH}_1 \rightarrow_{1 \sim 75}$, $+ \text{ CH}_2 - \text{ CH}_1 \rightarrow_{1 \sim 75}$, $- \text{ CH}_2 - \text{ CH}_2 \rightarrow_{11} \rightarrow_{12}$, $- \text{ CH}_3 - \text{ CH}_3$, $- \text{ CH}_2 \rightarrow_{10}$, $- \text{ CH}_2 \rightarrow_{12}$, $- \text{ CH}_2 \rightarrow_{14}$, $- \text{ CH}_2 \rightarrow_{20}$, $- \text{ CH}_2 - \text{ CH}_2 \rightarrow_{12}$, $- \text{ CH}_2 \rightarrow_{14}$, $- \text{ CH}_2 \rightarrow_{20}$, $- \text{ CH}_2 - \text{ CH}_3 \rightarrow_{5 \sim 60}$, $- \text{ CH}_3$, $- \text{ CH$

(作用)

一般式(1)で表される(メタ)アクリレート化合物は、本発明に係る光学用材料の中で熱変形温度

ピス (メタクリロキシメチル) トリシクロ [5.2.1.0^{2,6}] デカン

ビス (アクリロキシメチル) ベンタシクロ [6 . 5 . 1 . 1^{3 , 6} . 0^{2 , 7} . 0^{9 , 13}] ベンタデカン

ビス(メタクリロキシメチル)ベンタシクロ [6.5.1.1^{3.6}.0^{2.7}.0^{9,13}] ベンタデカン

ピス(アクリロキシメチル)へブタシクロ 〔10.5.1.1^{3,10}.1^{5,8}.0^{2,11}.0^{4,9}.0^{13,17}〕 エイコサン を上昇せしめ、弾性率を上昇して優質化し表面硬度を向上させ、耐湿性を増す。一般式(1)で表される(メタ)アクリレート化合物はnが大きくなるはど耐湿性が向上するが、nが7以上では、化合物の粘度が上昇し、使用しにくくなる。本発明に係る光学用材料の中で一般式(1)で表される(メタ)アクリレート化合物の配合量は、20~90重量%が適当である。20重量%以下になると、光学用材料の熱変形温度が保ち難しくなり、90重量%以上になると、光学用材料の機械的強度が低下したり、光学歪が大きくなる。

一般式(1)の化合物としては、

[5.2.1.0^{2・6}] デカン

$$\begin{array}{c|ccccc} CH_2 = C - C - O - CH_2 & CH_2 - O - C - C = CH_2 \\ \hline & | & | & | & | & | \\ & CH_3O & O & CH_3 \end{array}$$

ピス(メタクリロキンメチル)へアクシクロ (10.15.1.1^{3,10}.1^{5,8}.0^{2,11}.0^{4,9}.0^{13,17}) エイコサン

などが挙げられる。

一般式(2)で浸される(メタ)アクリレート化合物は、本発明に係わる光学用材料の中で所要の機械的強度を確保するものである。本発明に係る光学用材料の中で一般式(2)で表される(メタ)アクリレート化合物の配合数は、10~70重量%が適当である。10重量%以下になると上記の効果が十分でなく、80重量%以上になると該光学用材料の硬化物の粘度が高くなり作業しにくくなると共に硬化物の耐熱性などが劣るようになる。

一般式(2)で表される(メタ)アクリレート化合物は1分子中に4個のウレタン結合を有し、これが本発明の光学用材料の機械的強度の向上に役立っていると考えられる。一方、ウレタン結合は吸

水し易い弱点を有するが、本発明においては一般式(2)中のR4の炭素数を大きくすることによって、化合物全体の吸水率を小さくできた。R4の炭素数を大きくすると、化合物の機械的強度が向上する利点もあり、さらに、一般式(1)で表される(メタ)アクリレート化合物との相溶性が良くなる。

前記一般式(2)の化合物を合成するには、例えば、 ジオール1 モルにジイソシアネート 2 モルを反応 せしめ、残余のイソシアネート基にモノとせられる。これらの化合物は、そのままでもし反に するが時として、トルエン・キシレンなどの アネートに対して不活性な有機部中で反応 でも良い。また、反応促進剤として、ジラウン といるのに際し、50~70℃に保温しても良い。

ここで使用するジォールは、例えば、次のもの がある。

エチレングリコール、プロピレングリコール、1,4-プタンジオール、1,5-ペンタンジオール

2-ヒドロキシエチル(メタ)アクリレート、
2-ヒドロキシブロビル(メタ)アクリレート、
2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシベンチル(メタ)アクリレート、2-ヒドロキシー3-フェノキシブロビル(メタ)アクリレート。

本発明の光学用材料は、一般式(1)と一般式(2)で表される(メタ)アクリレート化合物 100 重量部にラジカル重合開始剤を0.1~5 重量部添加して得られる。ラジカル重合開始剤が0.1重量部以上になると樹脂硬化物の機械的強度が低下する傾向がある。ラジカル重合開始剤は、上配の(メタ)リレート化合物中でラジカルを生成し、酸化合物中のアクリル基、メタクリル基をラジカル重合をしいならば、特に限定するものでないが、一般に加熱重合開始剤又は光重合開始剤がある。

加熱重合開始剤としては、例えば、過酸化ベン ゾイル、ジイソプロビルバーオキシカーポネート、 ラウロイルバーオキサイド、ジーターシャソーブ ネオペンチルグリコール、1,6 - ヘキサンジオール、2 - エチルヘキシルジオール、1,10 - デカンジオール、1,14-テトラデカンジオール、1,20 - エイコサンジオール、1,4 - シクロヘキシルジメタノール、ポリ1,2 - ブタジエンジオール、水素添加ポリ1,2 - ブタジエンジオール、ポリプデンジオール。また、ここで使用するジイソシアネートは、例えば、次のものがある。

2,4ートリレンジイソシアネート、4,4[']ージフェニルメタンジイソシアネート、2,2[']ージフェニルプロパンー4,4[']ージイソシアネート、メチレンピス(4ーシクロヘキシルイソシアネート)、2,2[']ープロピレンピス(4ーシクロヘキシルイソシアネート)、イソホロンジイソシアネート、1,6ーヘキサメチレンジイソシアネート。

また、ここで使用できるモノヒドロキシ化(メ
タ)アクリレートは、例えば、次のものがある。

チルバーオキサイド等の過酸化物、アソイソプチロニトリル等のアゾ化合物が有用である。また、必要に応じ、上記加熱重合開始剤のラジカル生成を促進する目的で、ナフテン酸コバルト、ジメチルアニリン等の反応促進剤を用いても良い。

光重合開始剤としては、例えば、ベンジル類、ベンゾイン、ベンソインエテル、ベンソインイソプチルエーテル、ベンソインイソプチルエーテル、ベンソフェノン類、ベンソフェノンなどのベンソフェノン類、アセトアントフェノン類、2ーメチルアントラキノンなどのアントラキノンなどのアントラキノンなどのアントラキノンなどのアントラキノンなどのアントラキノンなどのアントラキーシンとフェメチルアントラキーン、2ーメチルアントラニーン、1ーヒトローン、1ー(4ーイソプロピルフェニル)-2ーヒドロキシー2ーメチルプロペン-1ーオン等が有用で

ある。

本発明の光学用材料は、一般式(1) 及び一般式(2) で表される(メタ)アクリレート化合物に前述のラジカル重合開始剤を加えただけで十分にその目的を達成できるが、粘度調節、硬度調節を目的として、光学用材料の優れた特性を低下させない範囲で一般のラジカル重合性モノマーを20重量%以下だけ、本発明の光学用材料に添加することが可能である。

一般のラジカル重合性モンマーとしては、例えば、次のものが有用である。

1 官能モノマー:

シクロヘキシル(メタ)アクリレート、ポルニル(メタ)アクリレート、イソボルニル(メタ) アクリレート、ジシクロベンテニル(メタ)アク リレート、トリシクロデカニル(メタ)アクリレート、ホーペキシル(メタ)アクリレート、ユーエチルヘキシル (メタ)アクリレート、ユーエチルペキシル (メタ)アクリレート、ホーデシル(メタ)アク リレート、ラウリル(メタ)アクリレート、トリ

さらに、一般モノマーとして、1,10 - デカンジ オールジアクリレート (化合物 3)を用意した。

化合物(1)と化合物(2)とを組み合わせて実施例の組成物、化合物(1)と化合物(2)とを組み合わせて、比較例の組成物を作り、それぞれ100重量部に対して、光重合開始剤ペンゾインインプロピルエーテルを2重量部加えて混合、溶解せしめ、光硬化性傾脂を調合した。

厚さ1 mmの石英ガラス板2枚を1.1 mmの間隔をあけて平行に配置し、この中へ、先に調合した光硬化性樹脂を注入し、365 mmにおける光強度が100 mW/cnlの紫外線を高圧水銀灯により30秒間照射し、

デシル(メタ) アクリレート。

2 官能モノマー:

ネオベンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート。

[奥施例]

以下、本発明を実施例により詳述する。

寒 施 例 1

一般式(1)で表される化合物として、ビス(アクリロキシメチル)トリンクロ(5,2,1,0^{2.6})デカン(化合物1)を用意した。また、一般式(2)で表される化合物として、1,10ーデカンジオール1モルとイソホロンジイソシアネート2モルとを反応せしめた後、2ーヒドロキシブチルメタクリレート2モルを加えた反応生成物(化合物2)、

該樹脂を硬化せしめた。この硬化物を石英ガラス板から取りはずし、さらに、100℃,1時間の熱処理後、下記の特性を測定し、第1図の結果を得た。

- (1) 熱変形温度:試料板(15×5×1 mm)の長手方向に0.5gの荷重をかけたままで、昇温し、試料板の伸びを検知する。温度一伸び関係線の変曲点より熱変形温度を求めた。光学用材料の熱変形温度は 100 ℃以上であることが望ましい。
- (2) 衝撃強さ:鋼製台座の上に配した厚さ 1 mmの 試料板上に、先端に直径10 mmの鋼球を有する重 りを所定の高さから垂直に落下させ、試料板に 割れが生じ始める高さをcm単位で表した。光学 用材料の衝撃強さは30 cm以上であることが望ま

一般式(1)で表される化合物(1)は、熱変形温度が 高いが、機械的衝撃に対して弱い。また、一般式 (2)で表される化合物(2)は、熱変形温度は低目であ るが、機械的衝撃に対して強い。化合物(1)と化合 物(2)を組み合わせると、熱変形温度と衝撃強さの 両方を向上した光学用材料を得ることが可能である。

一方、化合物(1)に対して一般モノマーである化合物(3)を添加した比較例の組成物においては、衝撃強さの向上の効果が認められない。

実施例の組成物において、化合物(2)の配合量を10重量%以上にすると、衝撃強さを光ディスクやレンズ類などで実用可能な30㎝以上に保つことが可能となる。この場合、化合物(2)の配合量を80重量%以上にすると、組成物の粘度が25℃において600ポイズ以上になり、注形時の作業性が低下する。

実施例2

一般式(1)の化合物として、

$$CH_2 = CH - C - O - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$$

一般式(2)の化合物として。

=NHなど吸水性極性基濃度を減らすことが可能となる。

実施例3

一般式(1)の化合物として、ビス(アクリロキシメチル)ペンタシクロ〔6.5.1^{2.6},0^{2.7}.0^{9,3}〕ペンタデカン(化合物 4)を用意した。また、一般式(2)の化合物として、実施例 2 で用いたもののうち、R4が + CH₂ - CH₂ - CH₃のもの(化合物 6)を用意してH₂ - CH₃

た。

化合物(4)と化合物(5)を組み合わせて組成物A, 化合物(4)と化合物(6)を組み合わせて組成物Bを作り、それぞれ100重量部に対して光重合開始剤1 ーヒドロキシシクロヘキシルフェニルケトンを1 重量部加えて混合,溶解せしめ、光硬化性樹脂を 調合した。

実施例1と同様の方法で、光硬化性樹脂を硬化 し、熱変形温度と衝撃強さを測定して第2図の結 果を得た。

を選び、それぞれ n とR4を変えた材料を用意した。 これらを重量比で1:1 に配合し、相溶性を第1 表のように評価した。

一般式(1)の n が小さいものは、一般式(2)のR4の 炭素数の小さいものと相溶する。相溶するものは、 ジカル重合開始剤を加えて硬化物としたとき、 透明な材料となるが、相溶しないものは、濁りや 相分離を起し光学用材料として使用できない。

一般式(1)の n が大きな化合物、一般式(2)のR4の 炭素数が大きな化合物同志を組み合わせると、相 溶する組成物が得られ、しかも、 -C-, -O-,

熱変形温度と衝撃強さが光ディスクやレンズ類の目標値(100℃以上,30cm以上)を満たす領域が組成物 A ,組成物 B とも存在している。

実施例 4

一般式(1)の化合物と一般式(2)の化合物と一般モノマーを組み合わせて混合し、第2表の組成物を作った。それぞれの組成物100重量部に対して光重合開始剤2ーヒドロキシー2ーメチルー1ーフェニルブロバンー1ーオンを1重量部加えて混合、溶解せしめ、光硬化性樹脂を調合した。

実施例1と同様の方法で、光硬化性樹脂を硬化し、熱変形温度、衝撃強さに加えて、さらに次の 特性を測定し、第3表の結果を得た。

- (3) 作業性:液状の樹脂を成形用型内へ注入する 際、25℃における粘度が 600 ポイズを越えると、 圧力を加えても作業は著しく困難となるため、 この粘度を作業性の良否の目安とした。
- (4) 吸水率: 厚さ 1 mmの平板を25℃の水中に浸漬 し、7日放置後の重量増加より求めた。吸水率 が小さいほど、材料は吸湿により、寸法変化,

変形を生じ難くなる。光学用材料としては吸水率が1.2%以下が良く、さらに望ましくは0.5%以下が良い。

(5) レタデーション: 波長 830 nm におけるシングルパスのレタデーション[R = d(n1-n2)]、ここで、dは透明板の厚さ、n1 、n2は主応力方向1、2の屈折率]。レタデーションは、10 nm以下が良く、さらに望ましくは 5 nm 以下が良い。

作業性が優れ、熱変形温度が 100 ℃以上・衝撃 強さが30 cm以上,吸水率が1.2 %以下・レタデーションが10 nm以下という光学用材料としての目標を同 時に満たすものは、比較例の組成 Na. 1 ~ 6 の中に は認められない。それに対して実施例の組成 Na. 1 ~14はいずれも目標を満たしている。

さらに、実施例の組成Na.4~8,12~14は吸水率が0.5%以下であり、特に耐湿性を必要とする分野に適している。

実施例の組成No. 1~14 は、屈折率が 1.49~1.52。 光弾性係数が 1~2×10⁻⁴ ml/kg 光透過性が 90~ 98%であり、いずれも光学用材料として優れた性 質を有している。

実施例5

第2表に示した組成物各100重量部に過酸化ヘンゾイルを1.5重量部加えて混合、溶解せしめ、熱硬化性樹脂を調合した。

厚さ1 mmのソーダガラス板 2 枚を1.1 mmの間隔をあけて平行に配置し、この中へ、先に調合した熱硬化性樹脂を注入し、100 ℃で 2 時間かけて硬化せしめた。この硬化物をソーダガラス板からはずして試料とし、熱変形温度,衝撃強さ吸水率に関して、第 3 表と同様の結果を得た。また、実施例の組成 No.1~14 のレタデーションは、いずれも5mm以下で光学用材料として優れていた。

以下余白

第 1 聚

	一般式(1) の化合物		n.	
一般	式(2) 合物	1	2	4`
	+ CH ₂ → ₆	相溶	やや谷	不容
	+ CH ₂ → 10	相俗	相溶	やや浴
	+ CH ₂ → 20	相容	相溶	相容
R4	+ CH ₂ − CH → ₁₈ CH ₂ CH ₃	不格	相容	相溶
	+ CH ₂ -CH → ₅₄ CH ₂ CH ₃	不裕	相答	相 掙

算 2 表

	99	Ι.	比	*	ŧ	例				実	Ę		ħ	i.		Ø	PIJ .			
成分物	質 組成No.	1	2	3	4	5	6	1	2	3	1	5	6	7	8	9	10	11	12	13
	CH2=CH-6-0-CH2-0-CH2-0-6-CH-CH2	100	-	-	-	50	70	50	50	-	-	=	-	-	-	-	48	-	-	-
一般式 (1)の 化合物	CH2 = CH - G - O - CH2 - O - CH2 - O - G - CH = CH2	-	100	-	-	-	1	-	1	50	50	-	90	70	50	20		48	48	45
10 0 100	CH ₂ - C - C - CH ₂ - (1) (1) - CH ₂ - O - C - C - CH ₂ CH ₃	-	-		-	-	1	-	,	-	-	50	-	-	-	-	-	-		-
	CH2 = CH - C - O - CH2 - C O - C - N - C - CH2 - CH2 - N - C - O - C - N - C - CH2 - CH2 - N - C - O - C - CH2 - N - C - O - C - CH2 - N - C - O - C - CH2 - N - C - O - C - CH2 - N - C - O - C - CH2 - N - C - O - C - C - C - C - C - C - C - C	-	-	-	-	-	-	50	1	-	-	-	-	-	1	-	48	-	-	
一般式 (2)の 化合物	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	100	-	-	_	-	50	50	-	-	-	-	1	80	1	48	-	-
	(CH ₂ =CH-G-O-CH ₂ -G-O-G-N-TO-CH ₃ O CH ₂ -G-CH ₃) (CH ₂ =CH-G-O-CH ₂ -G-O-G-N-TO-CH ₃ O N-C-O-CH ₃ CH ₃) (CH ₂ -G-CH ₂ -G-CH ₃) (CH ₂ -G-CH ₃) (CH ₃	-	-	-	-	-	-	-	-	-	50	-	-	-	_	-	-	-	-	-
	$ \begin{array}{c} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		-	100	-	-	-	-	-	-	50	10	30	50	-	-	-	48	45
	CH ₂ = Ç - Ç - O ← CH ₂ → O − Ç - Ç = CH ₂ CH ₃ O CH ₃	-	-	-	-	50	-	-	-	-	-	-	1	_	-	-	4	-	-	-
-#X ≠/▼- CH₂ = CH - C - O + CH₂	CH2=CH-5-0+CH2+100-5-CH=CH2	-	-	-	-	-	_	-	-	-	+	-	-	-	-	-	_	4	4	_
	CH ₂ =C-C-O CH ₃ CH ₃ CH ₃ (YAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-	-	-	-	-	30	-	-	-	-	-	-	-	-	-	-	-	-	10

第 3 表

例	Н		數		例	j j					庚	ξ	族	į	Ø	1				
特性	1	2	3	4	5	6	1	2	3	4	5	6	7	8	9	10	11	12	13	14
作業性	良好	良好	4 5	劣	負好		良好	良好		良好	良 好	良好	良 好	良 好						
熱変形温度(℃)	210	213	110	0	190	190	155	150	150	110	101	190	140	101	140	160	161	115	105	101
衝撃強さ(cm)	10	10	100 以上	100 以上	5	5	65	60	70	65	65	30	52	65	90	65	65	60	63	60
吸水率(%) (25°C,7日)	1.2	0.5	2.5	0.2	1.5	0.9	12	1.2	0.9	0.3	0.2	0.4	0.3	0.3	1.1	1.2	0.9	0.3	0.3	0.3
レタデーション(nm) (830 nm,1 m厚)	10	10	3	1	20	1	4	3	3	2	2	5	3	3	4	5	4	3	1	1

[発明の効果]

本発明によれば、光学的歪が小さく、機械的特性、耐熱性、耐湿性が優れた光学用材料を提供することができる。そのため、光ディスク基板、レンズ類、ブリズム、回折格子などの高性能化が達成できる。

4 図面の簡単な説明

第1図と第2図は、本発明に係る光学用材料の 組成範囲を説明する図である。

実施化

比较伊

街擊隊 (cm)

80

60 40 20

0

第 1 図

化合物(2)えは化合物(3)(重量%)

60

80

100

代理人弁理士 小 川 勝 男

第2図

