

动力总成简介 第一节

BYDSAEV车型前驱动力总成主要配备比亚迪宋纯电动汽车。采用单挡无级变速。

1、技术参数

性能参数:

动力总成技术参数

电动机最大输出扭矩: 310N.m/(0~

4929rpm)/30s

电动机额定扭矩: 160N.m/(0~4775rpm)/持

续

电动机最大输入功率: 160kW/(4929~

12000rpm)/30s

电动机额定功率: 80kW/(4775~12000rpm)/持

续

电动机最大输出转速(包括驱动最高输入转速和随动最高输入转速):

12000rpm

电动力总成重量: 105kg

总减速比: 10.2

一级传动比:

3.217

主减速传动比:

3.174

电机轴中心与差速器中心的距离:

239mm

变速箱润滑油量: 1.8~1.9L

变速箱润滑油类型: 齿轮油 SAE80W-

(冬季环境温度低于-15℃地区推荐换用 SAE75W-90)

电动机油量: 无 无

电机用油型号:

速度传感器技术参数

NT31-3A 机型无车速传感器

2、维修说明:

- (1) 电动总成
- 1) 单挡变速箱采用浸油润滑方式,润滑油采用齿轮油 SAE80W-90; 对于环境温度低于-15 ℃时, 推荐使用 SAE75W-90 齿轮油。
- 2) 动力系统总成在分解修理后,再重新装到车上,变速箱需要加入1.8~1.9L润滑油。(油 量按要求加注)
- (2) 螺栓、螺母

电机端盖和总成合箱壳体上的螺栓或螺母,按对角线松开和拧紧,如果螺栓有裂纹或 者损坏, 请及时更换。

维修时检察螺栓漆标是否完整或错位,如漆标错位应重新打力矩后画漆标。

3、动力总成外形结构简图

表 1 前驱动力系统总成主要零部件

编号	名称	数量	单位	规格	备注
1	变速器总成	1	PCS	BYDNT31-3A-2146010	无挡变速器
2	六角法兰面螺栓-加大系列	8	PCS	Q1861250TF6P1.25	有一个安装方向相反
3	驱动电机总成	1	PCS	BYD2217TZB-2103010H	7

动力总成尺寸:

SAEV 动力总成外观尺寸大小: A×B×C=565mm×402mm×557mm (见下图)

第二节 前驱动力系统总成的拆卸与维修

一、动力总成的拆卸与维修

在拆分过程中,请注意保护好所有零部件,(做好部件收纳。)防止零部件被意外损坏。

(1) 拆卸前:

在动力总成从整车拆卸前,打开放油螺塞组件(如图),将变速箱体内的润滑油排放干净,拧紧放油螺塞组件于箱体上,拧紧力矩30N.m,防止在拆卸过程中,异物掉入变速箱腔体内;(注意:不要扭得太紧,以免0型密封圈压断。)

(2) 拆卸:

交错拧开用于固定变速箱箱体与电动机的六角法兰面螺栓,(紧固力矩85N.m。)将变速箱与电动机分离;

动力系统总成拆卸完毕后就可以对其中的电动机或变速箱进行维修。另外,请注意保管好电机定位销,其安装位置如下图所示(电机和差速器半轴组件及变速器前后箱合箱面螺栓等,未做显示):

二、变速器的拆卸与维修

- (1) BYDSAEV前驱变速器简介
- 1.1 无挡变速器外观尺寸: 382mm×557mm×302mm(见图1)

(2) BYDSAEV前驱变速器的技术参数

传动比	输入最大 功率	输入转速	最大输入扭矩	输入输出轴连线 与水平面夹角
10.2	160kW	0~12000 r/min	310 N.m	6.084°

(3)、变速箱内齿轮油的排放、加注

BYDSAEV前驱变速器采用浸油润滑方式,润滑油采用齿轮润滑油SAE80W-90;对于环境温度低于-15℃时,推荐使用SAE75W-90齿轮油。

分别打开放、注油塞(如下图示),将箱体内的润滑油排放干净,同时请检查放油螺塞 组件和O型圈是否完好,如果已损坏,请更换完好的零件; (见图2)

注油时按1.8-1.9L加注(过量加油,通气帽会有冒油风险)。

图2

(4) 螺栓、螺母力矩限值

维修时应检查螺栓力矩,各螺栓力矩如下表:

序 号	用途	螺栓/螺 母规格	物料描述	单用量	紧固力矩 (N•m)
1	1 公斤放江北	M8X45	Q1840845T1F6_六角法兰面螺栓	17/16	25
1	前后箱连接	M8X60	Q1840860TF2_六角法兰面螺栓	1	25
2	电机和前箱体连	M12X50	Q1861250TF6P1.25_六角法兰面螺栓-	8	85

动力总成

SAEV 轿车维修手册

	接		加大系列		
3	差速器压板组件 与前箱体(或 A 型前箱体)锁紧		Q32006T2F6C_六角法兰面螺母或 Q32006T13F6	6	12
4	注、放油螺塞	M15X12	6T25-1701680_放油螺塞组件_M00000	2	30

(5) 变速器异响、顿挫

第三节 BYD-2217TZB 电机维修

一、 驱动电机总成简介.

1、技术参数

电动机最大输出扭矩: 310N. m 电动机最大输出功率: 160kW 电动机最大输出转速: 12000r/min 电机散热方式: 水冷 电机重量: 65kg 螺纹胶型号: 赛特 242 密封胶型号: 耐油硅酮密封胶 M-1213 型

2、电动机外形尺寸:

 $A \times B \times C = 360 \text{mm} \times 358 \text{mm} \times 377.4 \text{mm}$

二、电机的拆卸与检测

2.1 拆装注意事项:

- 1、电机拆卸前,要熟悉电机结构特点和检修技术要领,准备好拆卸所需工具和设备。 另外,需保证整车已切断电源:
- 2、在拆卸总成悬置螺栓时,为防止悬置孔滑丝,必须先用手动扳手将螺栓拧松,再使用气动扳手进行松动;
 - 3、在合装总成悬置螺栓时,为防止悬置孔滑丝,拧紧悬置螺栓不应使用气动扳手,必须使用扭矩扳手进行拧紧;
 - 4、总成在拆解时,需要注意防止电机接插件磕碰(特别是旋变和绕组温度传感器接插件),防止尘土杂质、水迹油污进入接插件端。在接插件装配时需使用气枪进行清理。

2.2 检测前的准备工作:

- 1. 向用户了解电机运行情况;
- 2. 对漏水等无法长期保持的故障现象,需详细记录判断过程及检测数据;
- 3. 故障确认过程,需准确记录电机温度、冷却水温度,并描述故障时整车运行工况(电机是冷态或热态/故障时是否有剧烈震动/是否急加、急减速工况等);
- 4. 确认故障前电机、变速器、高低压线束等与电机匹配的部件是否有升级、整改等操作:
- 5. 详细记录整车故障现象、故障里程、电机编号、车架号等基本车辆信息。 注意事项: 检测过程不得破坏任何电机零部件, 完成检测后需恢复产品状态。

2.3 外观检查

2.3.1 检查电机外观是否正常,记录下是否存在磕碰或烧蚀等痕迹;

2.3.2 检查三相线接线盒处通气阀是否有缺失、损坏,是否有明显凸起、松动等,需进行拍照记录;

2.3.3 检查密封盖是否缺失、损伤,用手轻按密封盖与端盖相邻位置,确认密封盖与端盖是否保持平齐,需进行拍照记录;

2.3.4 检查旋变接插件、绕组温度传感器接插件、水温传感器接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物;

2.4 电机线电阻检测

2.4.1 所需设备:

M6 套筒、棘轮扳手、低电阻测试仪/毫欧表

2.4.2 测试步骤

1、使用M6套筒和棘轮扳手取下图示四颗锁紧螺栓, 轻轻用力可从控制器上取下三相线接插件插头;

2、检查三相线端子是否有水、油污、杂质及烧蚀变色等异常;端子对应绕组关系如图所示(A-黄,B-绿,C-红);

3、选择量程为200m Ω 的检测设备或器具,如低电阻测试仪/毫欧表;设备调零,准备测量;

4、如下图所示依次测量AB/AC/BC端的阻值,并反复测量(最少3次),分别记录数据。 判断标准: 温度为 25℃时,阻值范围: 29.4 ± 2.5 m Ω ,且三相阻值偏差不超过 1 m Ω ; 注意: 三相阻值测试需要冷态下进行测试,且需要多次测量。

2.5 测量三相绕组对机壳绝缘

2.5.1 所需设备:

绝缘耐压测试仪/兆欧表

2.5.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至1000V电压(无1000V电压情况下需选择设备最大电压选项):
- 2、将火线端子接三相端子任意一相,零线端子接机壳裸露处;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下通直流电压 1000V, 通电时间 10s, 绝缘阻值大于 $20M\Omega$ 。

注意: 绝缘阻值测试结果受电机温度影响较大, 因此需注意电机测试温度及温度传感器阻值。

※ 在使用绝缘耐压测试仪/兆欧表的过程中, 需注意做好人员绝缘保护!

2.6 测量旋变阻值

2.6.1 所需设备:

六芯接插件(母端)工装、万用表

2.6.2 测试步骤

1、下图箭头所示棕色接插件为旋变信号接插件; 检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

旋变接插件 (棕色)

端口定义₽

引脚号₽

2、旋变引脚定义如下图所示;

3、使用图示简易工装(若无工装,可以直接使用测试探头进行接触测量),对准防错槽装配到电机接插件上,听到卡扣"咔"一声,表示接插件装配到位,按下图分别理出三股引出线;

4、将万用表调至电阻档,通过分别测量引出线sin+与sin-,cos+与cos-,exc+与exc-之间的阻值,从而得到旋变正弦、余弦、励磁的阻值,并记录数据。

判断标准: $\sin 13.3 \pm 4 \Omega$ / $\cos 13.3 \pm 4 \Omega$ / $\exp 6.3 \pm 2 \Omega$

注意: 此步骤需多次测量并详细记录数据。

2.7测量旋变对绕组绝缘

2.7.1 所需设备:

六芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.7.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接三相端子 任意一相;若无工装,可通过使用测试探头,分别测试正弦与三相线、余弦与三相线、励 磁与三相线之间的绝缘实现;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 **判断标准:** 常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意:此步骤需对三相线ABC相分别进行多次测量,并详细记录数据。

三相端子 任意一相

六股旋变引出 线拧成一股

2.8 测量旋变对机壳绝缘

2.8.1 所需设备:

六芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.8.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接机壳任意裸露处;若无工装,可通过使用测试探头,分别测试正弦与机壳、余弦与机壳、励磁与机壳之间的绝缘实现;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 判断标准:常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

机壳任意 裸露处

六股旋变引 出线拧成一

2.9 测量绕组温度传感器阻值

2.9.1 所需设备:

六芯接插件(母端)工装、万用表

2.9.2 测试步骤

1、下图所示为绕组温度传感器接插件(黑色),检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

绕组温度传 感器接插件 (黑色)

2、温度传感器引脚定义如下图所示,3、6脚为温度传感器,其余为空脚;使用温度传感器接插件母端作为简易工装,对准防错槽装配到电机绕组温度传感器接插件上,听到卡扣"咔"一声,表示接插件装配到位;若无工装,可直接测量引脚;

Ĺ	
引脚号₽	端口定义↩
1↔	/÷
2₽	/+
3₽	温度传感器:红+
تب 4	/+>
5;7	/;1
6₽	温度传感器:黑-

防错槽

有效引脚

3、将万用表调至电阻档,在常温下使用测试探头多次测量绕组温度传感器有效引脚阻值, 并记录数据。

判断标准: -10℃~50℃时, 阻值为30.84-604.5kΩ

注意: 判断温度传感器阻值是否正常时,请在电机冷却后进行。

2.10 测量绕组温度传感器对机壳绝缘

2.10.1 所需设备:

六芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.10.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、从温度传感器的有效引脚引出2根引出线,并拧成一股,将仪表测试探头一端接拧成一股的温度传感器引出线,另一端接机壳任意裸露处;若无工装,可用导线将引脚引出,拧成一股后,使用测试探头测试引出线与机壳之间的绝缘;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 判断标准:常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.11 测量绕组温度传感器对三相绕组绝缘

2.11.1 所需设备:

六芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.11.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、从温度传感器的有效引脚引出2根引出线,并拧成一股,将仪表一端接拧成一股的温度 传感器引出线,另一端接ABC三相任意一相;若无工装,可用导线将引脚引出,拧成一股 后,使用测试探头测试引出线与三相线之间的绝缘;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下直流电压 500V, 通电时间 10s, 绝缘阻值大于 $20M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.12 测量水温传感器阻值

2.12.1 所需设备:

六芯接插件 (母端) 工装、万用表

2.12.2 测试步骤:

1、下图标识接插件为水温传感器信号接插件; 检测前拔出母端接插件露出图示接插件 引脚:

引脚号↩	端口定义↩	线束接法。
A+2	接地↩	A⇔
B₽	空脚₽	В₽
C↔	信号输入 5∀ ↩	C↔

2、选择适当仪表量程,使用测试探头多次测量水温传感器阻值,并记录数据。

电脑通道电阻(A-C)				
温度	标准电阻	电阻精力	温度精用	
(,C)	(Ω)	(±%)	(.c)	
-40	100,865	4.87	0.7	
-35	72,437	4.64	0.7	
-30	52,594	4.43	0.7	
-25	38,583	4.21	0.7	
-20	28,582	4.00	0.7	
-15	21,371	3.80	0.7	
-10	16,120	3.60	0.6	
-5	12,261	3.40	0.6	
0	9,399	3.21	0.6	
5	7,263	3.06	0.6	
10	5,658	2.92	0.6	
15	4,441	2.78	0.6	
20	3,511	2.64	0.6	
25♦	2,795	2.50	0.6	
30	2,240	2.45	0.6	
35	1,806	2.40	0.6	
40	1,465	2.36	0.6	
45	1,195	2.31	0.6	
50	980	2.27	0.6	
55	809	2.23	0.6	
60	671	2.19	0.6	
65	559	2.15	0.6	
70	469	2.11	0.6	
75	395	2.07	0.6	
80	334	2.04	0.6	
85♦	283	2.00	0.6	
90	241.8	2.10	0.7	

注意: 记录测量水温传感器阻值时需记录电机的冷热状态。

三、电机的常见故障及检测手段

3.1 旋变故障

对于报旋变故障的电机,可通过如下测试进行判定:

- 1、外观上,需检查电机表面是否有磕碰痕迹,电机端盖处黑色密封盖与端面是否保持高度平齐,详见 2.3.1, 2.3.3;
- 2、检查旋变接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物,如有请先清除,详见 2.3.4;
- 3、测量旋变阻值,旋变对绕组绝缘,旋变对机壳绝缘,详见 2.6, 2.7, 2.8, 若任一阻值 绝缘不合格,请将电机及测试数据一起反馈到总部进行处理。

3.2 电机漏电

对于报严重漏电故障的电机,可通过如下测试进行判定:

- 1、 外观上,需检查电机三相线接线盒处通气阀是否有缺失、损坏,是否有明显凸起、松动等异常,详见 2.3.2:
- 2、 检查绕组温度传感器接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物,如有请先清除,详见2.3.4;
- 3、 测量三相绕组对机壳绝缘,绕组温度传感器对机壳绝缘,绕组温度传感器对三相绕组 绝缘,详见 2.5, 2.10, 2.11, 若任一绝缘不合格,请将电机及测试数据一起反馈到总 部进行处理。

3.3 电机过温

对于报过温的电机,可通过如下测试进行判定:

1、将电机冷却到常温后,测试绕组温度传感器阻值,详见 2.9,若阻值不与温度阻值表对应,请将电机及测试数据一起反馈到总部进行处理。

3.4 电机异响

对于报异响的电机,请将电机及故障信息一起反馈到总部进行处理。