Building the RISC-V Software Ecosystem

Arun Thomas, BAE Systems 3rd RISC-V Workshop, January 2016

Where I'm Coming From

- On the hardware side
 - Cut teeth on OpenCores, OpenRISC, OpenSPARC
 - Designed an ISA that fourth-year CpE students were forced to implement
 - Worked on DARPA CRASH/SAFE project
 - Now, working on RISC-V security (tagging) extensions

Where I'm Coming From

- On the software side
 - Gentoo Linux developer
 - MINIX 3 developer
 - Low-level kernel hacking on x86/amd64 and ARMv7/v8
 - Now, FreeBSD/RISC-V

2016 is the Year of RISC-V

2016 is the Year of RISC-V **Software**

Current Software Landscape

- Several OS ports in progress
 - Linux (Yocto/OpenEmbedded, Gentoo), FreeBSD, NetBSD, seL4
- Support primary open source toolchains
 - Binutils, GCC, clang/LLVM
- Multiple software simulators
 - Spike, QEMU, Angel

Landscape as of 12/31/16 (With Your Help)

- Upstreamed GNU toolchain and QEMU
- More mature clang/LLVM support
- Upstreamed OS support
- Debian/RISC-V port
- Start thinking about Android and a real-time OS

How do we get there?

How We Get There (My Take)

- Recruit more RISC-V developers
- Reduce startup costs for new developers
- More docs, more specs

We need more people writing RISC-V software.

Who is Contributing Now?

48 contributors to RISC-V GitHub from:

Universities	Companies	OSS Projects
University of California, Berkeley University of Cambridge	Bluespec Google	Gentoo Debian
Texas Tech University	LG Electronics	FreeBSD
ETH Zurich	BAE Systems	NetBSD
Cornell University North Carolina State University	SRI VectorBlox	
University of Erlangen-Nuremberg	VCCtOLDIOX	

Also, many individual contributors

Attracting Developers

- Present talks/tutorials at developer conferences and local user group meetings
 - Potential targets: OSCon, Linuxcon, BSD events, LLVM Developer Summit
 - My efforts: EuroBSDCon, BLU, ESC (if accepted)
- Encourage current RISC-V users to submit pull requests
 - Including PRs for in-house patches

How many of you have sent a GitHub pull request?

My First Pull Request

Attracting Developers

- Fund developers/projects via the Foundation
 - Possible models: Linaro, Linux Foundation, FreeBSD Foundation
- Apply to be a Google Summer of Code 2016 mentoring organization
- Update the list of open bugs and feature requests in GitHub
- Track contribution statistics (See Linux Kernel survey)

Reducing new developer startup costs

Setting up ARMv8

Install cross-toolchain and QEMU

\$ sudo apt-get install gcc-aarch64-linux-gnu qemu-system-arm qemu-user-static

Download OpenEmbedded LAMP stack VM image from Linaro

\$ wget http://releases.linaro.org/openembedded/aarch64/latest/vexpress64-openembedded_lamp-armv8-gcc-5.2_20151120-735.img.gz

Boot OpenEmbedded in QEMU (system mode)

\$ qemu-system-aarch64 ... -drive if=none,id=image,file=vexpress64-openembedded_lamp-armv8-gcc-5.2_20151120-735.img

Cross-build and run ARMv8 binary in QEMU (user mode)

\$ aarch64-linux-unknown-gnu-gcc -static -o hello hello.c && ./hello

Improving RISC-V Setup

- Debian packages for toolchain and QEMU
- Upstream everything: Toolchain, kernel, QEMU,
 OpenEmbedded, Gentoo, various packages
- Regular snapshots of OS images
- Near term: Switch GCC, Binutils, and Linux kernel over to git repos tracking upstream

QEMU vs Spike

- Spike is great for prototyping hardware features
- QEMU is a better tool for software development
 - Solid device support (e.g., network, disk)
 - Handy debugging features (e.g., GDB stub, monitor console)
 - More familiar to software folks
 - Faster emulation
 - Advanced features (e.g., snapshots)

More docs, more specs

Defining the RISC-V Platform

- Devices
- Interrupt controller BERI PIC as start?
- DMA
- IOMMU
- Performance counters
- Debugging (e.g., JTAG, trace)
- Power management

Specifying RISC-V Systems

- Platform specification
 - Critical for OS developers
 - ARMv8 Server Base System Architecture (SBSA) worth a skim
- Boot architecture
 - ARMv8 Server Base Boot Requirements (SBBR) worth a skim
 - Device configuration: Device Tree, ACPI
 - Bootloader/firmware: u-boot, coreboot, UEFI (TianoCore)
- RISC-V ABI
- Hypervisor and Security

Documentation Needed

- RISC-V Assembly Guide
- Something like ARM Cortex-A Programmer's Guide
- New Contributors Guide

Let's make 2016 the year of RISC-V software

Where You Can Help

- Recruiting developers
- Upstreaming
- clang/LLVM
- QEMU
- OS ports
- Docs and platform specs

Questions?

- Contact: <u>arun.thomas@acm.org</u>
- See you in Boston for the 4th RISC-V workshop!