НТЦ СИТ

СХЕМЫ ШИМ-КОНТРОЛЛЕРОВ

ОБЩЕЕ ОПИСАНИЕ

Микросхемы К1156EУ2хх, К1156EУ3хх являются ШИМ-контроллерами и предназначены в первую очередь для использования в качестве схем управления импульсными источниками вторичного электропитания, работающими в расширенном диапазоне температур на частотах до 1 МГц.

Ближайшими аналогами микросхемы K1156EУ2хх являются микросхемы UC2825, а K1156EУ3хх - UC2823 фирмы "Unitrode".

Корпус DIP-16 (2103.16-2) Типономиналы К1156ЕУ2Р, К1156ЕУ3Р

Корпус 4112.16-3.04Н Типономиналы К1156ЕУ2(А,Б,В,Г)Т, К1156ЕУ3(А,Б,В,Г)Т

ОСОБЕННОСТИ

- Управление мощными МОПтранзисторами (двухтактное - К1156ЕУ2Р, К1156ЕУ2хТ; однотактное - К1156ЕУ3Р, К1156ЕУ3хТ).
- Работа в устройствах с обратной связью по напряжению и току
- Функционирование на частотах до 1 МГп.
- Задержка прохождения сигнала через схему 50 нс.
 - Полумостовые выходы на ток до 1,5 А.
 - Широкополосный усилитель ошибки.
 - Наличие ШИМ-защелки.
 - Ограничение тока в каждом периоде.
- Плавный запуск. Ограничение величины максимальной длительности выходного импульса

- Защита от пониженного напряжения питания с гистерезисом.
- Синхронизация от внешнего сигнала.
- Выключение схемы по внешнему сигналу.
- Низкий ток потребления в состоянии "Выключено" (1,1 мА).
- Прецизионный источник опорного напряжения (5,1 B ± 1 %).
- Обозначение группы в зависимости от диапазона рабочих температур

для корпуса 2103.16-2

- минус 10°C ...+70°С,

для корпуса 4112.16-3.04Н

А – минус 60°С ...+125°С

Б – минус 60°С ...+85°С

В - минус 40°С ...+85°С

Г – минус 10°С ...+85°С

НАЗНАЧЕНИЕ ВЫВОДОВ К1156ЕУ2

Номер	Наименование вывода	Номер	Наименование вывода
вывода		вывода	
1	Инвертирующий вход операционного	9	Вывод ограничения тока или
	усилителя		останов
2	Неинвертирующий вход операционного усилителя	10	Общий вывод
3	Выход операционного усилителя, инверт. вход ШИМ-компаратора	11	Выход драйвера А
4	Вход/выход синхронизации	12	Эмиттеры драйверов А и В
5	Вывод подключения времязадающего резистора	13	Коллекторы драйверов А и В
6	Вывод подключения времязадающего конденсатора	14	Выход драйвера В
7	Неинвертирующий вход ШИМ- компаратора	15	Вывод питания
8	Вывод плавного запуска	16	Выход источника опорного напряжения

ФУНКЦИОНАЛЬНАЯ СХЕМА К1156ЕУ2

НАЗНАЧЕНИЕ ВЫВОДОВ К1156ЕУЗ

Номер	Наименование вывода	Номер	Наименование вывода
вывода		вывода	
1	Инвертирующий вход операционного	9	Вывод ограничения тока или
	усилителя		останова
2	Неинвертирующий вход операционного	10	Общий вывод
	усилителя		
3	Выход операционного усилителя,	11	Выход драйвера А (инверсный
	инверт. вход ШИМ-компаратора		выход)
4	Вход/выход синхронизации	12	Эмиттеры драйверов А и В
5	Вывод подключения времязадающего	13	Коллекторы драйверов А и В
	резистора		
6	Вывод подключения времязадающего	14	Выход драйвера В (прямой
	конденсатора		выход)
7	Неинвертирующий вход ШИМ-	15	Вывод питания
	компаратора		
8	Вывод плавного запуска	16	Выход источника опорного
	-		напряжения

ФУНКЦИОНАЛЬНАЯ СХЕМА К1156ЕУЗ

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ							
Буквен.	•		Режим	Приме			
обозна	а не менее не более		измерения	чание			
чение							
Источник опорного напряжения							
Uref			Io=1MA				
	5.05	5.15	T=25°C				
	5.00	5.20	Tmin < T < Tmax				
	5.00	5.20	T=25°C				
Kui	_	0.02	10 < Vcc < 30B				
Kio	_	0.07	1 < I ₀ < 10 MA				
αUref	-	0.02	Tmin < T< Tmax	4			
Uref(t)	-	25	T=125°C.	4			
			,				
Ios	-100	-15					
105	100	10	,				
л наппаж	 Рения		III I OM				
_		440	Т=25°С С=1µФ				
15	200	110					
Kfi	_	0.1					
KII	-	0.1	10 × VCC × 30D				
o fo		0.07	Tmin < T< Tmay	4			
aig	_	0.07		7			
Hob4	2.0		II/_AD				
U0II4	3.9	-	U0-4D				
Hald		2.0	IIA-UD				
0014	-	2.9	UU-UD				
Hithe	2.6	2 0		4			
Uitho	2.0	3.0		4			
TISALC	0.7	1 1		4			
UITIO	U./	1.1		4			
по выводу 6, В Усилитель ошибки							
T T.º -	<u> </u>	1.5		4			
U10	-	15		4			
Iiav	-	3		4			
Iio	-	1		4			
Au	60	-	$1 < U_0 < 4B$	4			
	Буквен. обозна чение ряжения Uref Kui Kio αUref Uref(t) Ios о напряж fg Kfi αfg Uoh4 Uith6 Uith6 Uito Iiav Iio	Буквен. обозна чение Но не менее чение ояжения 5.05 5.00 5.00 Kui - Kio - Uref(t) - Ios -100 о напряжения fg fg 360 Kfi - uoh4 3.9 Uoh4 - Uith6 2.6 Uith6 0.7	Буквен. обозна чение Норма не менее не более ряжения 5.05 5.00 5.20 5.20 5.00 5.0	Буквен. обозна чение Норма не менее чение Режим измерения обозна чение 10=1мА обозна чение 5.05 5.15 T=25°C 5.00 5.20 Tmin < T < Tmax T=25°C			

Наименование параметра, единица измерения				Режим	Приме	
1 1	Буквен. <u>Норма</u> обозначе не менее не более		измерения	чание		
	ние	110 11101100		- T		
Коэффициент ослабления	Kemr	75	_	1.5 <ucm<5.5b< td=""><td>4</td></ucm<5.5b<>	4	
синфазных входн.						
напряжений, dB						
Коэффициент влияния	Ksvr	85	_	10 < Ucc < 30B	4	
нестабильности источн.						
питания, dB						
Выходной ток низкого	Iol3	1	_	U3 = 1B		
уровня по выводу 3,мА						
Выходной ток высокого	Ioh3	-	-0.5	U3 = 4B		
уровня по выводу 3,мА						
Выходное напряжение	Uoh3	4.0	_	I3 = -0.5 MA		
высокого уровня по выводу		. · ·				
3, B						
Выходное напряжение	Uol3	0	1.0	I3 = 1mA		
низкого уровня по выводу 3,						
B						
Частота единичного	f1	3	_		4	
усиления, МГц						
	Suom(sr)	6	_		4	
напряжен, В/мкС	()					
Схема отключения при п	ониженн	ом напряж	кении пита	ния		
Напряжение срабатывания,	Uitp	8.6	9.9			
B	1					
Напряжение гистерезиса, В	Uh	0.4	1.2			
Схема плавного запуска						
Ток заряда, мкА	Ich	-20	-3	U8 = 0.5B		
Ток разряда, мА	Idch	1	-	U8 = 1B		
Отношение длительности	Npwm	40	60	U8=3.15B, U6=U7		
вых. Импульса к макс.	1			,		
Длительности выходного						
импульса, %						
ШИМ компаратор						
Входной ток низкого уровня	Iil7	-5	-	U7 = 0B		
по выв. 7, мкА						
Отношение макс.	Nmax	85	-		5	
длительности вых.						
импульса к полупериоду, %						
Входное пороговое	Uit3	1.1	-	U7 = 0B		
напряжение по выв. 3, В						
Время выключения по	toff3	-	80		4	
выводу 3, нсек						

Наименование	Буквен.	_		Режим	Приме		
параметра,	обозна	не менее не более		измерения	чание		
единица измерения	чение	110 111011	110 000100				
Компараторы ограничения тока и выключения схемы							
Входной ток по выв. 9, мкА	Ii9	-10	15	0 < U9 < 4 B			
Входное пороговое	Uitl9	0.9	1.1				
напряжение компаратора							
ограничения тока, В							
Входное пороговое	Uits9	1.25	1.55				
напряжение компаратора							
выключения, В							
Время выключения по	toff9	-	80		4		
выводу 9, нсек							
Выходные драйверы							
Выходное напряжение	Uol1	-	0.4	Is = 20 mA			
низкого уровня, В	Uol2		2.2	Is = 200 MA			
Выходное напряжение	Uoh1	13.0	-	Is = -20 MA			
высокого уровня, В	Uoh2	12.0		$I_S = -200 \text{MA}$			
Ток утечки, мкА	Il	-	200	Us = 30B			
Время нарастания и спада	tr, tf	-	60	$Cl = 1H\Phi$	4		
сигнала, нсек							
Схема в целом							
Ток потребления, мА	Icc	-	35	U1=U7=U9=0B			
				U2=1B			
Ток потребления в сост.	Iccz	-	2	Ucc=8B			
"Выключено", мА							
Тепловое сопротивление	Rt						
кристалл-окр. среда, °С/Вт,							
корпус 2103.16-2			100				
корпус 4112.16-3.04Н			125				

Примечания:

- 1. Все напряжения даны относительно общего вывода.
- 2. Положительным считается ток, втекающий в схему.
- 3. Все параметры, если не оговорено особо, даны при R=3,65кОм, C=1н, Ucc=15В во всем диапазоне температур, оговоренном для каждой группы.
 - 4. Допускается при приемке поставке параметры не измерять.
- 5. Для К1156ЕУЗ "Отношение максимальной длительности выходного импульса к периоду".

ПРЕДЕЛЬНО-ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Наименование параметра,	Буквенное обозна-	Предельно- допустимый режи	
единица измерения		·	
	чение	не менее	не более
Напряжение питания, В	Ucc	10	30
Коммутируемое	Us	-	30
напряжение, В			
Коммутируемый ток, А	Is		
-постоянный			
-импульсный		-	0.5
(twh=0.5мксек)		-	1.5
Напряжение на выводах 1,	U1,U2,U7	-0.3	7.0
2, 7, B			
Напряжение на выводах 8,	U8, U9	-0.3	6.0
9, B			
Ток по выводам 3, 4, 5, мА	I3 , I4 , I5	-	5
Ток по выводу 8, мА	18	1	20
Рассеиваемая мощность до	Ptot	-	1
Токр.среды=150-Т _{Rt} , Вт			
(прим.1)			
Температура перехода, °С	Tj	-	150

Примечания:

1. При температуре Токр. среды большей T_{Rt} рассеиваемая мощность падает по линейному закону

 $Ptot = 1 - (Токр.среды - (150 - T_{Rt})) / Rt ja, где$

Rt ja – тепловое сопротивление кристалл - окружающая среда,

T_{Rt} - константа численно равная значению Rt ja.

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

Типовая схема включения ИС К1156ЕУ2

ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА DIP-16 (2103.16-2)

	Миллиметры				
	Мин.	Тип.	Макс.		
Α	20.16		21.0		
В	6.42		7.0		
С	4.25		5.0		
D	0.41		0.55		
F	1.02		1.5		
ტ		2.5			
H		1.25			
J	0.24		0.34		
K	3.26		3.74		
L	8.00		8.30		
\mathbf{M}	5°		15°		
S	0.51		1.01		

ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА 4112.16-3.04Н

миллиметры						
	ΜΩΚΕ					
А	1	0.7				
В	-	10.4				
C	0.31	0.45				
D	9.1	9.4				
E	-	<i>9.5</i>				
F	29.10	31.40				
G	1	1.25				
/	ı	<i>8.75</i>				
J	11.00	11.06				
K	0.14	0.09				
L	_	2.8				