

Preliminary Technical Information

TrenchMV[™] Power MOSFET

IXTF200N10T

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Ratings
V _{DSS}	T _J = 25°C to 175°C	100	V
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$	100	V
V _{GSM}	Transient	± 30	V
I _{D25}	T _c = 25°C	90	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	500	Α
I _A	T _c = 25°C	40	A
E _{AS}	$T_{c} = 25^{\circ}C$	1.5	J
$\overline{\mathbf{P}_{\scriptscriptstyle D}}$	T _c = 25°C	156	W
T		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	1.6mm (0.062in.) from Case for 10s Plastic Body for 10 seconds	300 260	°C
V _{ISOL}	50/60Hz, t = 1 minute, I _{ISOL} < 1mA, RMS	2500	V
M _d	Mounting Force	120120 / 4.527	N/lb.
Weight		6	g

Symbol (T _J = 25°C l	Test Conditions Unless Otherwise Specified)		racteris Typ.	stic Val	
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.5		4.5	V
GSS	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			5	μΑ
	T _J = 150°C	;		250	μΑ
R _{DS(on)}	V _{GS} = 10V, I _D = 50A, Notes 1			7	mΩ

 $V_{DSS} = 100V$ $I_{D25} = 90A$ $R_{DS(on)} \le 7m\Omega$

ISOPLUS i4-Pak™ (5-lead)

G = Gate D = Drain S = Source

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- Avalanche Rated
- 2500V Electrical Isolation

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Automotive
 - Motor Drives
 - High Side Switch
 - 12V Battery
 - ABS Systems
- DC/DC Converters and Off-Line UPS
- Primary Side Switch
- High Current Switching Applications

•	.,		acteristic Values		
$(T_{J} = 25)$	5°C, ι	Jnless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	60	96	S
C _{iss})			9400	pF
\mathbf{C}_{oss}	}	$V_{gs} = 0V, V_{DS} = 25V, f = 1MHz$		1087	pF
C _{rss}				140	pF
t _{d(on)})	Basistina Quitabia a Timas		35	ns
t _r		Resistive Switching Times		31	ns
t _{d(off)}		$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 50A$ $R_{G} = 3.3\Omega$ (External)		45	ns
t _f	J	(<i></i>		34	ns
Q _{g(on)})			152	nC
Q_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 50A$		47	nC
\mathbf{Q}_{gd}	J			47	nC
R _{thJC}					0.96 °C/W
R _{thCH}				0.21	°C/W

Source-Drain Diode

Symbol Test Conditions	Characteristic Values			
(T _J = 25°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
$V_{gS} = 0V$			200	Α
${f I}_{\rm SM}$ Repetitive, Pulse Width Limited by ${f T}_{_{\rm JM}}$			500	Α
V_{SD} $I_{F} = 50A, V_{GS} = 0V, \text{ Note 1}$			1.0	V
$ \begin{cases} \textbf{t}_{rr} \\ \textbf{Q}_{RM} \\ \textbf{I}_{RM} \end{cases} \qquad \begin{cases} \textbf{I}_{F} = 100\text{A}, \ \textbf{V}_{GS} = 0\text{V}, -\text{di/dt} = 100\text{A}/\mu\text{S} \\ \textbf{V}_{R} = 50\text{V} \end{cases} $		76 205 5.4		ns nC A

Notes: 1. Pulse Test, $t \le 300 \mu s$; Duty Cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

ERS IAX 5.21 3.00 2.16
5.21 3.00
3.00
2.16
1.40
1.73
2.79
).74
1.34
0.29
1.34
2.59
5.20
1.57
7.53
5.75
2.03

All leads and tab are tin plated.

LIXYS

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 100A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 100A$ Value

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance 250 225 200 175 Amperes 150 125 $T_J = 150$ °C 25°C 100 - 40°C 75 50 25 0 7.5 3.5 4.0 4.5 5.0 6.0 6.5 7.0 5.5 V_{GS} - Volts

Fig. 8. Transconductance 160 $T_J = -40$ °C 140 120 25°C gfs-Siemens 100 150°C 80 60 40 20 25 0 50 75 100 125 150 175 200 225 250 I_D - Amperes

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Gate Charge 10 $V_{DS} = 50V$ 9 I_D = 25A 8 I _G = 10mA 7 V_{GS} - Volts 6 5 3 2 0 0 20 40 60 80 100 120 140 160 Q_G - NanoCoulombs

Fig. 11. Capacitance

 $\underline{\mathsf{IXYS}}\,\mathsf{Reserves}\,\mathsf{the}\,\mathsf{Right}\,\mathsf{to}\,\mathsf{Change}\,\mathsf{Limits}, \mathsf{Test}\,\mathsf{Conditions}, \mathsf{and}\,\mathsf{Dimensions}.$

LIXYS

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

