MAT389 Fall 2013, Problem Set 6

The exponential

- **6.1** Suppose that a function f(z) = u(x,y) + iv(x,y) satisfies the following two conditions:
 - (1) $f(x+i0) = e^x$, and
 - (2) f is entire, with derivative f'(z) = f(z).

Follow the steps below to show that f(z) must be the function

$$f(z) = e^x(\cos\theta + i\sin\theta)$$

(1) Obtain the equations $u_x = u$ and $v_x = v$ and then use them to show that there exist real-valued functions ϕ and ψ of the real variable y such that

$$u(x,y) = e^x \phi(y)$$
, and $v(x,y) = e^x \psi(y)$.

- (2) Use the fact that u is harmonic to obtain the differential equation $\phi''(y) + \phi(y) = 0$ and thus show that $\phi(y) = A \cos y + B \sin y$, where A and B are complex numbers.
- (3) After pointing out why $\psi(y) = A \sin y B \cos y$ and noting that

$$u(x,0) + iv(x,0) = e^x,$$

find A and B. Conclude that

$$u(x,y) = e^x \cos y$$
, and $v(x,y) = e^x \sin y$.

- **6.2** If e^z is purely imaginary, what restriction is placed on z?
- **6.3** Describe the behavior of e^z as
 - (1) $x \to -\infty$, with y fixed; and
 - (2) $y \to +\infty$, with x fixed.

Trigonometric and hyperbolic functions

- **6.4** Show that $e^{iz} = \cos z + i \sin z$ for every complex number z.
- **6.5** Use the identities

$$\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2, \qquad \cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$$

and the relationship between trigonometric and hyperbolic functions,

$$-i\sinh(iz) = \sin z$$
, $-i\sin(iz) = \sinh z$, $\cosh(iz) = i\cos z$, $\cos(iz) = \cosh(z)$

to deduce expressions for $\sinh(z_1 \pm z_2)$ and $\cosh(z_1 \pm z_2)$.

6.6 Find all the zeros and singularities of the function $f(z) = \tanh z = \sinh z / \cosh z$,

6.7 Find all roots of the equations

(i)
$$\cosh z = 1/2$$
,

(ii)
$$\sinh z = i$$
,

(iii)
$$\cosh z = -2$$
.

6.8 Show that the image of the line segment given by

$$-\pi \le x \le \pi$$
, and $y = c$

for some fixed c > 0 under the transformation $w = \sin z$ is given by the ellipse with equation

$$\left(\frac{u}{\cosh c}\right)^2 + \left(\frac{v}{\sinh c}\right)^2 = 1.$$

6.9 Find a conformal transformation w = f(z) that takes the semi-infinite strip $0 < x < \pi/2$, y > 0 onto the upper half-plane, $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im } z > 0\}.$

Hint: start by considering the image of the domain given under $Z = \sin z$. Do you know of a conformal transformation w = q(Z) that takes the resulting domain to the entire upper half-plane?

The logarithm

6.10 Find the image under Log of the following complex numbers:

(ii)
$$-ei$$

(iii)
$$1 - i$$

(ii)
$$-ei$$
, (iii) $1 - i$, (iv) $-1 + i\sqrt{3}$.

- **6.11** Find the image under $\log_{(\pi/2)}$ of the wedge $\{z \in \mathbb{C}^{\times} \mid 0 < \operatorname{Arg} z < \pi/4\}$.
- **6.12** Find the image of the (open) upper half-plane H under the transformation

$$w = \operatorname{Log} \frac{z - 1}{z + 1}$$

Hint: break up the transformation above as follows:

$$Z = \frac{z-1}{z+1}, \quad w = \text{Log } Z,$$

and notice that the first of these is a Möbius transformation