Shiven Srivastava and James Russo Ss2654 and jdr289 CS 4320 HW3

Question 1

- a) If $F \subseteq G$ then $F^+ \subseteq G^+$.
 - 1) Assume an arbitrary functional dependency $X \rightarrow Y \in F^+$
 - 2) By completeness, $X \rightarrow Y \in F$
 - 3) Since $F \subseteq G$, $X \rightarrow Y \in G$ by Reflexivity
 - 4) By soundness, $X \rightarrow Y \in G^+$
- b) $F^+ = (F^+)^+$.
 - 1) $F^+ \subseteq (F^+)^+$ by the definition of a closure
 - 2) Let there be an arbitrary f.d. $X \rightarrow Y \in (F^+)^+$
 - 3) By completeness, $X \rightarrow Y \in F^+$
- c) If for all $f \in F$, $G \models f$ then $F^+ \subseteq G^+$.
 - 1) If for all $f \in F$, $G \models f$, $F \subseteq G$ by Reflexivity
 - 2) By a), $F^+ \subseteq G^+$
- d) The reflexivity and augmentation Armstrong axioms are sound (we proved soundess of the transitivity axiom in class).

Reflexivity: Prove that if $Y \subseteq X$, then $X \to Y$ for arbitrary attribute sets X and Y

- 1) Take arbitrary relation R
- 2) For arbitrary tuples s & $t \in R$, s(X) = t(X)
- 3) Since s & t agree on all attributes in X and $Y \subseteq X$, then they agree on all attributes in Y
- 4) s(Y) = t(Y), QED

Augmentation: Prove that if $X \rightarrow Y$, then $XZ \rightarrow YZ$ for arbitrary attribute sets X, Y, and Z

- 1) Assume an arbitrary relation R with arbitrary tuples s & t
- 2) Assume s(XZ) = t(XZ)
- 3) Thus, s(X) = t(X) and s(Z) = t(Z)
- 4) Since R satisfies $X \to Y$, s(X) = t(X) implies s(Y) = t(Y) by reflexivity
- 5) Thus, s(YZ) = t(YZ), QED
- e) Consider the criterion for testing whether a decomposition of a relation is dependency-preserving, on page 621 of your textbook. Let X, Y, F, FX, FY be as in your textbook. The criterion given in the textbook is (FX ∪ FY)⁺=F⁺. Show that the forward direction always holds, i.e. it is always true that (FX ∪ FY)⁺⊆ F⁺.
 - 1) FX is the projection of F on X, which is the set of FD's in the closure F^+ that involve only attributes in X therefore by definition $FX \subseteq F^+$.
 - 2) FY is the projection of F on Y, which is the set of FD's in the closure F^+ that involve only attributes in Y therefore by definition $FY \subseteq F^+$.

- 3) $FX \cup FY$ is by the definition of union the set composed of everything in the two sets, therefore $FX \cup FY \subseteq F^+$.
- 4) By 1b we know $F^+ = (F^+)^+$ so all using these we can prove that $FX \cup FY = (FX \cup FY)^+$ and $(FX \cup FY)^+ \subseteq F^+$.

Question 2

The above graph shows our ER diagram. Employee is an entity with primary key composed of E_ID and attributes name and salary. Project is an entity with primary key composed of Start Year and Name and attribute Total_Budget. Both Employee and Project are subclasses of the superclass Owner that has a key of Owner_ID. The relationship of the subclasses to the super class is many to one because each employee and project can only have one Owner_ID. There is also an entity Equipment whose key is composed of ID_Num and Name. Equipment and Owner form a relationship Owns where Equipment has a strong many to one relationship because each piece of equipment needs exactly one owner. Then the Record relationship keeps track of the record every time a piece of equipment is used. A Record takes in a piece of equipment, an employee, and a project, and also has a time attribute. This keeps track of the equipment used, the employees responsible, the active project, and the time.

Question 3

The first thing to accomplish is to find the keys for each set of functional dependencies. The following is the algorithm we used to do so:

- 1) Find all attributes not in one of the functional dependencies (f.d.)
- 2) Find all attributes present only on the right side of a f.d.
- 3) Find all attributes present only on the left side of a f.d.
- 4) Combine the attributes from 1) and 3)
- 5) Look for closures amongst the attributes from 4) and those present on both sides of some f.d.(s)
- a) ABCDE, with $A \rightarrow B$, BC $\rightarrow E$, ED $\rightarrow A$
 - I. Keys are ACD, BCD, CDE
 - II. Since $A \rightarrow B$ has A on the left, which is not a key, this relation is not in BCNF
 - III. Since all of the right hand sides are part of some key ($B \in BCD$, $E \in CDE$, $A \in ACD$) this relation is in 3NF
 - IV. The relation is in 3NF (but not in BCNF)
- b) ABCDE, with $A \rightarrow BC$, $C \rightarrow DE$, $CE \rightarrow A$
 - I. Keys are A and C
 - II. Since $CE \rightarrow A$ has CE on the left, which is not a key, this relation is not in BCNF
 - III. Since $C \rightarrow DE$ has DE on the right, which is not part of some key, this relation is not in 3NF
 - IV. The relation is in neither 3NF nor BCNF