Thématique 2 : Gestion de la production

Groupe 12.64

Séance 2:30/09/2015Dernière mise à jour: 30 septembre 2015

1 Set de paramètres

Parameter	Value	Unit	Ref.	Comment
$ ho_2/\mathrm{CH}_4$	0.6	-		Molar feed ratio
$\mathrm{H_2O/CH_4}$	1.5	-		Molar feed ratio
Temperature in the ATR reforming zone	1200	K		Optimal temperature for kinetic/catalyst operation (assumed constant for the whole zone)
Pressure in the ATR	50	bar		Assumed constant (no pressure drop)

Table 1 – Nominal operating conditions in simplified NH_3 flow sheet

2 Bilan de matière

2.1 1A Zone de combustion

	CH_4	+	$2O_2$	\longrightarrow	CO_2	+	$2\mathrm{H_2O}$
Masse molaire (g/mol)	16.0		32.0		44.0		18.0
Avant réaction							
Débit molaire (Mmol/j)	50.0		30.0		-		-
Débit massique (t/j)	800		960		-		-
Après réaction							
Débit molaire (Mmol/j)	35.0		0		15.0		30.0
Débit massique (t/j)	560		0		660		540

Table 2 – Bilan de la réaction (dans la zone de combustion 1A)

Raisonnement

Le débit massique du CH_4 est donné. En convertissant ce débit en débit molaire et en multipliant par le ratio $\mathrm{O}_2/\mathrm{CH}_4$, nous obtenons le débit molaire de l' O_2 .

$$D_{n,{\rm O}_2} = \frac{D_{m,{\rm CH}_4}}{M_{{\rm CH}_4}} \cdot 0.6 = 30 \, {\rm Mmol/j}$$