

SAS for Forecasting Time Series –

Chapter 3: The General ARIMA Model - 3

Charlie Hallahan February 24, 2010

SAS for Forecasting Time Series", 2nd edition by Brocklebank & Dickey, 2003

Note that we'll only use data up to March, 1980 – before the obvious upward trend begins.

Recalling the graph on the previous page and the strong upward trending after the period used for testing for a unit root, the false conclusion of stationarity would lead to unduly optimistic forecast error bounds.

Treating the series as nonstationary leads to much more realistic forecast error bounds.

To illustrate the effects of trends, we'll now look at the logarithm of the closing price of Amazon.com stock.

As seen in the following graph, the series is tightly clustered around a linear trend.

Here is the **ACF** for the levels of **CLOSE**.

Autocorrelations

Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	Std Error
0	1.507838	1.00000	***********	0
1	1.499991	0.99480	. ************	0.044324
2	1.491712	0.98931	. ************	0.076506
3	1.482859	0.98343	**********	0.098482
4	1.473232	0.97705	. ************	0.116185
5	1.463401	0.97053	. ***********	0.131339
6	1.453959	0.96427	**********	0.144745
7	1.444492	0.95799	**********	0.156858
8	1.435207	0.95183	**********	0.167960
9	1.425840	0.94562	**********	0.178243
10	1.416339	0.93932	**********	0.187840
11	1.406670	0.93291	**********	0.196852
12	1.396887	0.92642	**********	0.205355
13	1.387059	0.91990	*********	0.213408
14	1.377306	0.91343	*********	0.221061
15	1.367502	0.90693	*********	0.228356
16	1.357946	0.90059	*********	0.235326
17	1.347846	0.89389	*********	0.242002
18	1.337100	0.88677	*********	0.248404

Here is the **ACF** for the first differences of **CLOSE**.

Autocorrelations

Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	Std Error
0	0.0037493	1.00000	**********	0
1	0.00017619	0.04699	. * .	0.044368
2	0.00007870	0.02099		0.044466
3	0.00017190	0.04585	. *.	0.044485
4	-0.0001363	03635	.* .	0.044578
5	-0.0000161	00431	. .	0.044636
6	0.00005285	0.01409	. .	0.044637
7	-0.0002315	06176	.* .	0.044646
8	-0.0001189	03171	.* .	0.044814
9	-0.0000900	02400	. .	0.044858
10	0.00002114	0.00564	. .	0.044883
11	0.00001634	0.00436		0.044885
12	0.00007216	0.01925	. .	0.044885
13	0.00015685	0.04183	. *.	0.044902
14	0.00005506	0.01469	. .	0.044978
15	-0.0001558	04155	.* .	0.044988
16	0.00008757	0.02336		0.045063
17	0.00007530	0.02008	. .	0.045087
18	0.00017094	0.04559	. * .	0.045105

Here is the **PACF** for the first differences of **CLOSE**.

Partial Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
1	0.04699											;	* .									1
2	0.01882																					
3	0.04411	İ										ή,	* .									ĺ
4	-0.04103	İ									. ,	k										ĺ
5	-0.00245	İ										İ										į
6	0.01389	İ										ĺ										İ
7	-0.05977	İ									. ,	٠ j										į
8	-0.02794	İ									. ,	٠ j										į
9	-0.02067	İ										ĺ										İ
10	0.01553	İ										İ										į
11	0.00243	İ										ĺ										İ
12	0.01788	İ										İ										į
13	0.03960	İ										ή,	* .									İ
14	0.00813	İ										ĺ										İ
15	-0.04885	İ									. ,	٠ j										į
16	0.02114	İ										İ										İ
17	0.02201	İ										İ										İ
18	0.04841											;	* .									İ

Autocorrelation Check for White Noise

To Lag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations		
6	3.22	6	0.7803	0.047	0.021	0.046	-0.036	-0.004	0.014
12	6.24	12	0.9037	-0.062	-0.032	-0.024	0.006	0.004	0.019
18	9.77	18	0.9391	0.042	0.015	-0.042	0.023	0.020	0.046
24	12.28	24	0.9766	-0.010	-0.005	-0.035	-0.045	0.008	-0.035

So taking first differences transforms the series into white noise, i.e., the first differences are definitely stationary.

The question is: Is the series **stationary around a linear trend** or does it have a **unit root** (and thus require first differencing)?

So far we've been only using the **ACF** and **PACF** to help identify an **ARIMA**(p, d, q) model.

A third function used in the identification step is the inverse autocorrelation function, IACF.

It can be particulary useful in determing whether or not a series has been **overdifferenced**.

Given the ARMA(p,q) model $\phi(B)Y_t = \theta(B)e_t$, recall that Y_t is **stationary** if the roots of $\phi(B)$ are all outside the unit circle and is **invertible** if the roots of $\theta(B)$ are all outside the unit circle.

If both conditions hold, then the so-called **dual model** $\theta(B)Y_t = \phi(B)e_t$ is also stationary and invertible.

Being stationary, the **ACF** of the dual model, called the **IACF** of Y, should exponentially decline.

Note that if Y_t is a pure **AR** series, then the **IACF** of Y_t is the same as the **ACF** of a pure **MA** process and will cut off after a few lags, i.e. the **IACF** behaves like the **PACF** of Y_t .

On the other hand, if Y_t is a pure **MA** series, then the **IACF** of Y_t is the same as the **ACF** of a pure **AR** process and will decline exponentially, i.e. the **IACF** again behaves like the **PACF** of Y_t .

The **IACF** is estimated in **PROC ARIMA** as follows: 1^{st} , a high-order **AR** model is fit to the data by means of the **Yule - Walker equations**. This step results in an estimated polynomial $\phi(B)$. The **IACF** is then calculated as the **ACF** of a pure **MA** process defined by the polynomial $\phi(B)$.

Here is the **IACF** for the levels of **CLOSE**.

Inverse Autocorrelations

Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1	-0.49317	*******
2	0.00012	. .
3	-0.02366	
4	-0.00355	
5	0.03411	. *.
6	-0.02025	· i · i ·
7	0.01472	· i ·
8	-0.00604	· i ·
9	-0.00172	i i
10	-0.00142	· i · i ·
11	-0.00087	i i
12	-0.00469	· i · i ·
13	0.01064	· i ·
14	-0.01339	· i · i ·
15	0.03416	. *.
16	-0.02223	· i · i ·
17	-0.02395	· i · i ·
18	0.03719	. * .

This looks like the **ACF** of an **MA(1)** model, i.e., the original series could be an **AR(1)** model.

Here is the **IACF** for the first difference of **CLOSE**.

Inverse Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
1	-0.04365											*										
2	-0.01691																					
3	-0.04750											*										
4	0.03442												* .									
5	-0.00135	ĺ										ĺ										ĺ
6	-0.02547											*										
7	0.06211												* .									
8	0.02538												* .									
9	0.01200																					
10	-0.01610	ĺ										ĺ										ĺ
11	-0.00202																					
12	-0.01726																					
13	-0.03674											*										
14	-0.00937											ĺ										ĺ
15	0.06007											ĺ	* .									ĺ
16	-0.01998										•		•									

This looks like the **ACF** of white noise.

In contrast, look at the same picture for the **volume** of Amazon stock.

If a series Y_t has a (near) unit root on the **MA** side, i.e., is not invertible, then the **IACF** of Y_t would be the **ACF** for a (near) nonstationary series and will die off slowly.

IACF of the levels of volume.

Inverse Autocorrelations

Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	
1	-0.46787	******	
2	0.06602	. *.	
3	-0.05657	.* .	
4	0.00131	i . i . i	
5	-0.03400	.* .	
6	-0.00470	i . i .	
7	0.04408	. *.	
8	-0.00976	· i . i .	
9	-0.09283	**	
10	0.11628	. **	
11	-0.04616	.* .	
12	-0.06186	.* .	
13	0.08452	. **	
14	-0.03373	.* .	
15	-0.01124	i . i .	
16	0.01678	i . i .	
17	0.01158	· i . i .	
18	0.00119	i i	

IACF of the first differences of volume

Inverse Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1	
1	0.48216	I									•	;	* * *	**	* * >	* * :	* *						
2	0.44816											;	* * 1	**	* * *	* * :	*						
3	0.34266	İ										ή,	* * 1	**	* * *	k							ĺ
4	0.30682	j										į,	* * 1	* * *	* *								İ
5	0.25213	İ										į,	* * 1	**	k								İ
6	0.24854	İ										į,	* * 1	**	<i>k</i>								İ
7	0.23624	İ										į,	* * 1	**	k								İ
8	0.18675	İ										į,	* * 1	* *									İ
9	0.14088	j										į,	* * 1	k									İ
10	0.20330	İ										ή,	* * 1	* *									ĺ
11	0.13295	İ										į,	* * 1	k									İ
12	0.11437	İ										ή,	* *										ĺ
13	0.15524	İ										į,	* * 1	k									İ
14	0.11829	İ										į,	* *										ĺ
15	0.09978	ĺ										į,	* *										İ
16	0.10919	ĺ										j,	* *										

What are we to make of this behavior of the **IACF** for the first differences of volume?

Chang and **Dickey (1993)** give a detailed proof of what happens to the **IACF** when a series is **overdifferenced**.

They find that an essentially linear descent in the **IACF** is consistent with overdifferencing.

It's important to distinguish between a **trend stationary series** (one that is stationary around a deterministic trend) and a **difference stationary series** (one with a unit root that must be differenced).

In the first case, **forecasts** will converge to the long run trend line, while in the second case, forecasts of levels will wander unpredictably.

For series with obvious trend, such as **CLOSE** and **VOLUME**, should use the third form of the **ADF** unit root test.

ADF test for **CLOSE**

Augmented Dickey-Fuller Unit Root Tests

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	1	0.8393	0.8841	1.90	0.9867		
Single Mean	1	-0.9880	0.8871	-0.83	0.8081	3.20	0.2496
Trend	1	-17.0203	0.1231	-2.78	0.2046	3.92	0.3884

ADF test for **VOLUME**

Augmented Dickey-Fuller Unit Root Tests

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean Single Mean	2	0.0144 -14.2100	0.6861 0.0474	0.02 -2.60	0.6909 0.0944	3.42	0.1920
Trend	2	-85.7758	0.0007	-6.35	<.0001	20.18	0.0010

Conclusion: CLOSE is difference stationary and VOLUME is trend stationary.

Even though **CLOSE** hovers close to its trend line and **VOLUME** wanders quite a bit, pictures don't tell all the story.

A linear trend can always be removed by taking a difference.

For example, if $Y_t = \alpha + \beta t + e_t$ where e_t is white noise, then $\Delta Y_t = \beta + e_t - e_{t-1}$.

But, in the process of removing the trend $\alpha + \beta t$, we have introduced a non-invertible **MA** term into the model, i.e., the **IACF** of ΔY_t will be the **ACF** of a unit root process and, hence, decline very slowly.

In this way, the **IACF** can detect when a series has been over-differenced.

Since the original series Y_t is not stationary, the correct approach in this instance to removing the trend is to regress Y_t on 1 and t and work with the residuals \hat{e}_t .

If e_t is not white noise, but instead is a nonstationary series whose difference Δe_{t9} is stationary, then taking first differences of Y_t is appropriate.

Consider the following data series of nonproduction workers in the publishing and printing business (BLS, 1977).

Augmented Dickey-Fuller Unit Root Tests

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	1	0.2542	0.7348	1.89	0.9837		
Single Mean	1	0.9881	0.9853	0.67	0.9894	1.87	0.6055
Trend	1	-6.5467	0.6645	-1.88	0.6397	3.18	0.5589

Unit root tests for the **levels** definitely **accept** a unit root.

Augmented Dickey-Fuller Unit Root Tests

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	1	-17.4139	0.0016	-2.89	0.0053		
Single Mean	1	-33.1413	0.0002	-3.97	0.0044	7.89	0.0010
Trend	1	-48.9346	<.0001	-4.34	0.0088	9.81	0.0010

While unit root tests for the **first differences reject** a unit root.

Autocorrelations

Lag	Covariance	Correlation	-1 9 8	7 6 5 4 3	3 2 1 (0 1 2 3 4 5 6 7 8 9 1	Std Error
0	0.263930	1.00000	1			* * * * * * * * * * * * * * * * * * *	0
1	0.082387	0.31216	j			*****	0.174078
2	-0.025565	09686	j	•	* *		0.190285
3	0.0079422	0.03009	j			*	0.191774
4	0.034691	0.13144	j			***	0.191917
5	0.010641	0.04032	j			*	0.194626
6	-0.014492	05491	j		*	į . į	0.194879
7	-0.028101	10647	j	•	* *		0.195347
8	-0.018074	06848	j	•	*	į . į	0.197098

[&]quot;." marks two standard errors

Inverse Autocorrelations

22

Lag	Correlation	-1 9	8 7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1	
1	-0.41859					* *	**	**	* * 7	۲											
2	0.23512									;	* * *	* * *	٠,								
3	-0.09418								* *	۲											
4	-0.06272								,	۲											
5	0.02405																				
6	-0.01591																				
7	0.05923	ĺ								ή,	k									ĺ	
8	0.02180									İ										j	

Partial Autocorrelations

Lag	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1	
1	0.31216	1							•			;	* * ;	* * *	**	•							
2	-0.21528									* :	* * *	۲											
3	0.15573	İ							•			ή,	* * *	k									ĺ
4	0.05219	İ							•			j,	k										İ
5	-0.00997	İ							•			İ											İ
6	-0.03898	İ									,	۱ ا											İ
7	-0.09630	İ									* >	۱											İ
8	-0.02738	İ									,	۱											İ

The diagnostic plots point to a **MA(1)** model.

```
proc arima data = ffc2010.WORKERS;
    identify var = nonpub(1) noprint;
    estimate q = 1;
    forecast lead = 10;
run;
```

Conditional Least Squares Estimation

		Standard		Approx	
Parameter	Estimate	Error	t Value	Pr > t	Lag
MU	0.30330	0.12294	2.47	0.0193	0
MA1,1	-0.46626	0.16148	-2.89	0.0070	1
	Constant	Estimate	0.3033		
	Variance	Estimate	0.238422		
	Std Erro	r Estimate	0.488284		
	AIC		48.27419		
	SBC		51.2672		
	Number of	f Residuals	33		

^{*} AIC and SBC do not include log determinant.

Autocorrelation Check of Residuals

To Lag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations		
6	1.01	5	0.9619	-0.033	-0.089	0.020	0.119	-0.032	-0.036
12	3.80	11	0.9754	-0.054	-0.114	0.157	-0.093	0.072	-0.057
18	7.41	17	0.9776	0.064	0.001	-0.175	-0.108	-0.027	0.085
24	10.07	23	0.9909	0.007	-0.023	0.067	-0.003	-0.123	0.057 24

Forecasts for variable NONPUB

Obs	Forecast	Std Error	95% Confidence I	Limits
35	43.5635	0.4883	42.6065	44.5206
36	43.8668	0.8666	42.1683	45.5654
37	44.1701	1.1241	41.9669	46.3733
38	44.4734	1.3327	41.8613	47.0855
39	44.7767	1.5129	41.8116	47.7419
40	45.0800	1.6737	41.7996	48.3605
41	45.3833	1.8204	41.8154	48.9513
42	45.6866	1.9562	41.8526	49.5206
43	45.9899	2.0831	41.9072	50.0727
44	46.2932	2.2027	41.9761	50.6104

The estimated parameter **MU** represents the mean of the first difference and is called the **drift**.

Note that if $Y_t - Y_{t-1} = \mu + e_t$, then $Y_t = Y_{t-1} + \mu + e_t = Y_{t-2} + \mu + e_{t-1} + \mu + e_t$ and by repeatedly back-substituting we can write $Y_t = Y_0 + \mu t + \sum_{j=0}^t e_j$, so μ becomes the slope of a deterministic trend.

We also see that
$$Var(Y_t) = Var\left(\sum_{j=0}^t e_j\right) = (t+1)\sigma^2$$
, so that Y_t has infinite variance.

Other Identification Techniques

The book goes on to discuss three other identification tools called **ESACF**, **SCAN**, and **MINIC**. I won't cover these here.