

Knapsack problem 2.0

Cost: 10 | Solved: 69

Memory	limit:	256	MBs
--------	--------	-----	-----

Time limit: 1 s

Input: input.txt

Output: output.txt

Task:

A robber sneaked into a bank and found n gold bars with weights of $w_1, w_2, ..., w_n$ kgs and values of $p_1, p_2, ..., p_n$. The robber can't get away with all bars, for his knapsack can only hold the weight not greater than W kgs.

Find the optimal set of bars that will allow the robber to get away with maximal value.

Input:

The first line contains a natural n ($1 \le n \le 10^3$) – the quantity of gold bars and an integer W – the maximal sum the robber can get away with.

The second line contains bars' weights $(w_1, w_2, ..., w_n)$.

The third line contains bars' values $(p_1, p_2, ..., p_n)$.

Output:

The total value of the gold bars the robber should grab.

Example:

Input Output	
--------------	--

Report a bug (/en/webform-feedback/nojs?submittedfrom=tasks/task/15790)

2 10	
100 80	100
10 9	
5100	
1000 550 550 550 550	1100
80 50 50 50 50	