Introduction to Logic Assignment 3

King Mongkut's Institute of Technology Ladkrabang

August 28, 2021

Problem 1

Determine whether each sentence below can be translated into a formula in Propositional Logic using the given propositional letters and their specified meanings. If so, provide a formula that has the closest meaning to the sentence; otherwise, state that there is no translation.

Example. "If you have not paid your tuition fee, you will not be allowed to graduate."

p =You have paid your tuition fee.

g =You are allowed to graduate.

Ans. Yes. $\neg p \rightarrow \neg g$

(a) "Sweden and Norway will both not adopt the Euro."

s = Sweden will adopt the Euro.

n =Norway will adopt the Euro.

75177

(b) "Sweden and Norway will not both adopt the Euro."

s = Sweden will adopt the Euro.

n =Norway will adopt the Euro.

7 (5 MM)

(c) "Our leader doesn't dye his hair, use makeup, or wear a wig."

h = Our leader dyes his hairs.

m =Our leader uses makeup.

7 h A 7 m A 7 W

w =Our leader wears a wig.

(d) "By signing this document, you agree to the terms and conditions of this software."

s =You sign this document.

a =You agree to the terms and conditions of this software.

5 -> a

(e) "Unless I see it with my own eyes, and hear it with my own ears, I never will believe it." (Charles Dicken)

s = I see it with my own eyes.

h = I hear it with my own ears.

7b → (51h)

b = I believe it.

(f) "The message was sent from an unknown system but it was not scanned for viruses."

u= The message was sent from an unknown system.

s = The message was scanned for virus.

U -> - 5

(g) "Access is granted whenever the user has paid the subscription fee and enters a valid password."

a = Access is granted.

f = The user has paid the subscription fee.

fnpa

p = The user enters a valid password.

(h) "John has a belief that both Mary and Tom lied."

j =John has a belief.

President of the United States."

m = Mary lied.t = Tom lied.

 $j \rightarrow (M \Lambda +)$

(i) "Being affiliated with a major political party is not sufficient for you to become the

a =You are affiliated with a major political party.

 $\neg (a \rightarrow p)$

p =You are becoming the President of the United States.

(j) "High public debt and a sharp rise in consumer prices are necessary and sufficient conditions for an economic crises to happen in the country."

d = The country has high public debt.

p = There is a sharp rise in consumer prices in the country. c = There is going to be an economic crisis in the country.

(prc) >d

(k) John and Mary are friends.

j =John is a friend. m =Mary is a friend.

No

Problem 2

Suppose SE-Rocks is a popular rock band at KMITL, whose members are the following students in the Software Engineering program: Alex, Beth, and Carl. Let p_1 , p_2 , p_3 , q_1 , q_2 and q_3 be the following propositions:

 p_1 : Alex is a lead singer.

 p_2 : Beth is a lead singer.

 p_3 : Carl is a lead singer.

 q_1 : Alex plays guitar.

q2: Both plays guitar.

 q_3 : Carl plays guitar.

Write the following propositions about the band using p_1 , p_2 , p_3 , q_1 , q_2 , q_3 and logical connectives.

(a) Beth does not play guitar and Carl is not a lead singer. $\neg q2 \land \neg p3$

7 (P2 V 93) (b) Neither Beth nor Carl is a lead singer.

(c) The band's lead singers also play guitar. (P1 \(91 \) \(\(\) \(\

P117 P2 17 P3 (d) There is one lead singer in the band.

91 1 92 (e) At least two members of the band play guitar.

Problem 3

Rewrite the following formulas by inserting all the omitted parentheses.

(a)
$$p \vee \neg q \vee r \wedge p \vee q \wedge \neg r$$
 $(p \vee \neg q) \vee (r \wedge p) \vee (q \wedge \neg r)$
(b) $p \wedge \neg q \rightarrow p \vee q$ $(p \vee \neg q) \rightarrow (p \vee q)$

Problem 4

Suppose $\phi = ((p \land q) \to r) \leftrightarrow ((p \to r) \land (q \to r))$

- (a) Describe a truth assignment which makes φ true.
- (b) Describe a truth assignment which makes φ false.

Problem 5

Show by means of a truth table that the formulas $p \leftrightarrow q$ and $(p \lor \neg q) \land (\neg p \lor q)$ are logically equivalent.

						(PV-9) N (- PV9)	PHO
Т	Т	F	F	T	Т	Τ	T
T	F	F	T	F	Т		F
F	Т	Т	F	Т	F	F	F
F	F	Т	T	Т	Т	T ₃	Т

Problem 6

Table 1 lists some well-known logical equivalences in propositional logic.

Theorem 1 (Replacement Theorem) Suppose ϕ is a formula and ψ is a subformula of ϕ . And suppose ψ' is a formula such that $\psi \equiv \psi'$. If ϕ' denotes the formula resulted from replacing an occurrence of ψ in ϕ by ψ' , then $\phi \equiv \phi'$.

The Replacement Theorem allows us to convert a formula into an equivalent one by replacing some subformula ψ in the original formula by any formula equivalent to ψ . The following example shows that the formulas $\neg(\neg p \land \neg q)$ and $p \lor q$ are logically equivalent by using repeated applications of the Replacement Theorem and the logical equivalences in Table 1.

Example 1

$$\neg(\neg p \land \neg q) \equiv \neg(\neg p) \lor \neg(\neg q)$$

$$\equiv p \lor \neg(\neg q)$$

$$\equiv p \lor q$$
by E9
by E9

By applying the Replacement Theorem and the logical equivalences listed in Table 1, show (as in the previous example) that each pair of formulas below are logically equivalent.

(a)
$$\neg (p \rightarrow q)$$
 and $p \land \neg q$

(b)
$$(p \land q) \lor (\neg p \land \neg q)$$
 and $(\neg p \lor q) \land (p \lor \neg q)$

(c)
$$p \to (q \to r)$$
 and $q \to (p \to r)$

(d)
$$(q \vee \neg p) \rightarrow (q \wedge p)$$
 and $p \wedge (r \rightarrow p)$

a)
$$\neg (p \rightarrow q) = \neg (\neg p \vee q)$$
 by E20 c) $P \rightarrow (q \rightarrow r) = P \rightarrow (\neg q \vee r)$ by E20
 $= p \vee \neg q$ by E17 $= \neg p \vee \neg q \vee r$ by E20
 $= \neg q \vee \neg q \vee r$ by E7
 $= q \rightarrow (p \rightarrow r)$ by E20

d)