Química

Formulario

Contents

Conversiones	2
Peso	. 2
Longitud	
Gases	
Termodinámica	. 2
Propiedades intensivas	2
Estequiometría	2
Unidades de cantidad	. 2
Isótopo	
Composición porcentual	. 2
Fórmulas químicas	. 2
Reacciones	2
Rendimiento	
Rendmicitio	_
Soluciones	2
Molaridad (M)	
Molalidad (η)	
Fracción molar (X)	
Porcentaje en masa $(m_\%)$	
Porcentaje en volumen $(V_\%)$	
Partes por millón (ppm)	. 2
Gases	2
Ley de los gases ideales	. 2
Ecuación de estado	
Densidad de un gas	
Ley de Dalton	
Volumen molar de un gas	
Termodinámica	3
Trabajo y energía	_
Entalpía	
Calor	_
Cálculos de un sistema	
Entalpía de una solución	
Cambio de fases	
Propiedades coligativas	
Tropicadaes congulivas	. 3
Equilibrio químico	3

Conversiones

Peso

1 lb = 453.6 g

1 kg = 2.2 lb

1 oz = 28,35 g

Longitud

1 mi = 1,61 km

1 m = 3.28 ft

 $1 \text{ m} = 39.4^{\circ}$

1'' = 2,54 cm

Gases

1 atm = 760 mmHg

1 atm = 101,3 kPa

1 atm = 14,696 psi

1 torr = 1 mmHg

1 torr = 133,32 Pa

 $1 \text{ bar} = 10^5 \text{ Pa}$

Termodinámica

1 cal = 4.18 J

1 atmL = 101,3 J

Propiedades intensivas

m = dv

(s), (l) =
$$g/cm^3$$
; (g) = g/m^3

 $^{\circ}$ C = $(F - 32)\frac{5}{9}$

 $F = \frac{9}{5}$ °C + 32

 $K = {^{\circ}C} + 273,15$

Estequiometría

Unidades de cantidad

 $1uma = \frac{g}{mol}$

El peso atómico se mide en uma's.

 $1g = 6,022 \cdot 10^{23} uma$

 $N_A/L = 6,022 \cdot 10^{23}$ partículas

Isótopo

 $\bar{m} = m_1 A b_1 + \dots + m_n A b_n$

Composición porcentual

 $Mr = \Sigma Ar$

 $\%X = \frac{nAr}{Mr}100\%$

Fórmulas químicas

FM = nFE

m = nMr

Reacciones

Rendimiento

$$%r = \frac{\text{real}}{\text{teórico}} 100\%$$

Soluciones

 $C_1V_1 = C_2V_2$

 $m_{\text{solución}} = m_{soluto} + m_{solvente}$

 $V_{\text{solución}} = V_{soluto} + V_{solvente}$

Molaridad (M)

$$M = \frac{n_{soluto}}{\langle 1 \rangle dm^3_{solución}}$$

Molalidad (η)

$$\eta = \frac{n_{soluto}}{\langle 1 \rangle kg_{solvente}}$$

Fracción molar (X)

 $X_A = \frac{n_A}{\langle 1 \rangle n_{\text{solución}}}$

 $X_B = \frac{n_B}{\langle 1 \rangle n_{\text{solución}}}$

 $X_A + X_B = 1$

Porcentaje en masa $(m_{\%})$

$$m_{\%} = \frac{g_{soluto}}{\langle 100 \rangle g_{solución}} \cdot 100\%$$

Porcentaje en volumen $(V_{\%})$

$$V_{\%} = \frac{V_{soluto}}{V_{solución}} \cdot 100\%$$

Partes por millón (ppm)

$$m_{\%} = \frac{m_{soluto}}{m_{solución}} \cdot 10^6$$

Gases

$$R = 8,314 \frac{J}{K \cdot mol}$$
 $R = 0,0821 \frac{atm \cdot L}{K \cdot mol}$

Condiciones normales (CNTP): 1 atm, 0°C

Condiciones estándar (TPE): 1 atm, 25°C (temperatura ambiente)

Ley de los gases ideales

PV = nRT

Ecuación de estado

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

Densidad de un gas

$$\rho = \frac{MrP}{RT}$$

Ley de Dalton

$$P_A = X_A P_T$$

$$P_A = \frac{n_A RT}{V}$$

Volumen molar de un gas

 $1mol = 22,7dm^3$

Posible a CNTP.

Termodinámica

Trabajo y energía

$$W = -P\Delta V \Leftrightarrow W = -\Delta nRT$$

$$\Delta U = Q + W$$

Entalpía

$$\Delta H = H_{productos} - H_{reactivos}$$

Entalpía estándar de formación

 ΔH_f°

Entalpía estándar de reacción

$$\Delta H_{rxn}^{\circ} = \left[c \Delta H_f^{\circ}(C) + d \Delta H_f^{\circ}(D) \right] - \left[a \Delta H_f^{\circ}(A) + b \Delta H_f^{\circ}(B) \right]$$

Calor

$$-Q_1 = Q_2$$

$$Q = mc\Delta T$$

$$C = mc$$

$$c_{H_2O} = 4,184 \frac{J}{g^{\circ}C}$$

Cálculos de un sistema

 $Q_{sis} = \Sigma Q_{\text{Componentes}}$

Componentes

 $Q_{sis} = 0 \Leftrightarrow \text{ningún calor entra o sale}$

$$Q_{H_2O} = mc\Delta T$$

$$Q_{\rm aparato} = C_{\rm aparato} \Delta T$$

Reacción a P constante

$$Q_{\rm rxn} = \Delta H$$

Reacción a V constante

$$Q_{\rm rxn} = \Delta U$$

Entalpía de una solución

$$\Delta H_{\text{soln}} = E + \Delta H_{\text{hidratación}}$$

$$\Delta H_{\text{soln}} = H_{\text{solución}} - H_{\text{componentes}}$$

$$\Delta H_{\text{soln}} = \Sigma \Delta H$$

$$\Delta H > \Delta E \rightarrow \text{compresión}$$

$$\Delta H < \Delta E \rightarrow \text{expansión}$$

$$\Delta H = \Delta E \rightarrow \text{rxn}$$
 que no produce cambio en moles

$$\Delta H_{\rm soln} = 0 \rightarrow {
m solución}$$
 ideal

Cambio de fases

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$$

Propiedades coligativas

 $_1$ = solvente

 $_2$ = soluto

Factor de Van't Hoff (i) =
$$\frac{\text{\# partículas productos}}{\text{\# partículas reactivos}}$$

Para no electrolitos es igual a uno.

Disminución de presión de vapor

$$P_1 = X_1 P_1^{\circ}$$

$$\Delta P = X_2 P_1^{\circ}$$

$$\Delta P = P_1^{\circ} - P_1$$

Elevación del punto de ebullición

$$\Delta T_b = i k_{b_1} \eta$$

$$\Delta T_b = T_{b_2} - T_{b_1}^{\circ}$$

$$T_b > T_b^{\circ} \rightarrow \Delta T_b > 0$$

Disminución del punto de ebullición

$$\Delta T_f = i k_{f_1} \eta$$

$$\Delta T_f = T_{f_2}^{\circ} - T_{f_1}$$

$$T_f^{\circ} > T_f \rightarrow \Delta T_f > 0$$

Presión osmótica

$$\pi = iMRT$$

Equilibrio químico

$$K_c = \frac{[C]^c [D^d]}{[A]^a [B]^b}$$

$$K_P = \frac{P_C^c P_D^d}{P_A^a P_D^b}$$

$$K_P = K_c (RT)^{\Delta n}$$

$$K_c = K_c' K_c''$$

$$n(rxn) = K_c^n$$

cambio de dirección
$$(rxn) = \frac{1}{K_c}$$

se favorece los productos $Q_c < K_c$ rxn está en equilibrio $Q_c = K_c$ se favorece los reactivos $Q_c > K_c$