10 Publication number:

01 0119 A1

-	
4	۱
n2	1

EUROPEAN PATENT APPLICATION

Application number: 83201040.9

@ int. CL*: C 07 D 301/12, C 07 D 303/04

@ Date of filing: 13.07.83

30 Priority: 28.07.82 IT 2280882

Applicant: ANIC S.p.A., Via Ruggero Settimo, 55, 1-80139 Palermo (IT)

Date of publication of application: 08.02.84
 Bulletin 84/6

inventor: Nerl, Carlo, Via Europa 32, I-20097 S.Donato
Milanese (Milan) (IT)
Inventor: Anfossi, Bartolomeo, Via Ravenna 64, I-20139 Milan (IT)
Inventor: Esposito, Antonio, Via Libertà 70,
I-20097 S.Donato Milanese (Milan) (IT)
Inventor: Buonomo, Franco, Via Trento 4,
I-20097 S.Donato Milanese (Milan) (IT)

Designated Contracting States: AT BE CH DE FR GB LI LU NL SE

Representative: Roggero, Sergio et al, Ing. Barzanò & Zanardo Milano S.p.A. Via Borgonuovo 10, I-20121 Milano (IT)

Process for the epoxidation of claffinic compounds.

A process for the epoxidation of olefinic compounds, consisting of reacting said compounds with hydrogen peroxide either introduced as such or produced by substances capable of generating it under the reaction conditions, in the presence of synthetic zeolites containing titanium atoms, of general formula:

xTiO2-(1-x)SIO2.

where x lies between 0.0001 and 0.04, and possibly in the presence of one or more solvents, operating at a temperature of between 0° and 150°C, and at a pressure of between 1 and 100 ats.

EP 0 100

This invention relates to a process for the epoxidation of olefinic compounds by means of hydrogen peroxide either introduced as such or produced by substances capable of generating it under the reaction conditions, in the presence of synthetic zeolites containing titanium atoms.

5

25

Hydrogen peroxide when in the presence of suitable derivatives of transition metals (Mo, V, W, Ti etc.) is known to be able to attack olefinic double bonds, with the formation of epoxides and/or glycols.

The glycol quantity present is a function of the quantity of water introduced with the hydrogen peroxide, and consequently in order to obtain high epoxide selectivity it is necessary to use very concentrated hydrogen peroxide (>, 70%), with obvious safety problems due to the violent decomposition of the hydrogen peroxide, or to

use solvent mixtures able to azeotropically remove the water accompanying the H₂O₂ and the water of reaction.

It is likewise known that polar solvents (of which water is one) kinetically retard the epoxidation reaction.

We have surprisingly found that a synthetic zeolite containing

titanium atoms is able to selectively epoxidise the olefins with
high epoxide yields even though working with hydrogen peroxide in
aqueous solution, and even when diluted to a low concentration

such as 10% (the usual being 10-70%).

The subject matter of the present invention is a process for the epoxidation of olefinic compounds consisting of reacting said compounds with hydrogen peroxide either introduced as such or pr duced by substances capable of gener ting it under the reaction c nditions, in the presence f synthetic zeolites containing

titanium atoms (titanium silicalites), of the f llowing gen ral formula:

xTiQ . (1-x)SiQ,

5

where x lies between 0.0001 and 0.04, and possibly in the presence of one or more solvents.

The synthetic zeolites used for the epoxidation reaction are described in Belgian patent 886,812, of which we repeat some points illustrating the material and relative method of preparation.

The composition range of the titanium silicalite expressed in terms

of molar ratios of the reagents is as follows:

	Molar ratio of reagents	•	preferably
	sig,/Tig	5-200	35-65
	OH /S10 ₂	0.1-1.0	0.3-0.6
	H ₂ 0/S10 ₂	20-2.00	60-100
15	Me/S10,	0.0-0.5	0
	RN ⁺ /S10 ₂	0.1-2.0	0.4-1.0
	•	0.1-2.0	0.4-1.

RR⁺ indicates the nitrogenated organic cation deriving from the organic base used for the preparation of the titanium silicalite (TS-1).

- 20 Me is an alkaline ion, preferably Na or K.

 The final TS-1 has a composition satisfying the formula

 xTiO₂ · (1-x)SiO₂, where x lies between 0.0001 and 0.04, and preferably between 0.01 and 0.025. The TS-1 is of the silicalite type, and all the titanium substitutes the silicon.
- The synthetic material has characteristics which are shown up by X-ray and infrared examination.

Th X-ray examination is carried out by means of a powder diffractometer provided with an electronic pulse counting system, using the radiation

Cukd. The titanium silicalites (TS-1) are characterised by X-ray diffraction spectrum as shown in Figure 1b. This spectrum is similar overall to the typical spectrum of silicalite (Figure 1a), however it has certain clearly "single" reflections where double reflections are evident in the pure silicalite spectrum.

Because the spectral differences between TS-1 and silicalite are relatively small, special accuracy is required in the spectral determination. For this reason TS-1 and silicalite were examined by the same apparatus, using $\mathrm{Al}_2\mathrm{O}_3$ as the internal standard.

5

15

Table 1 shows the most significant spectral data of a TS-1 where . x = 0.017, and of a pure silicalite.

The constants of the elementary crystalline cell were determined by the minimum square method, on the basis of the interplanar distances of 7-8 single reflections lying within the range of 10-40° 20.

A large proportion of the interplanar distances of TS-1 are tendentially greater than the corresponding distances of pure silicalite, although only slightly, which is in accordance with the larger predictable value of the Ti-0 bond distance relative to that

of the Si-O bond distance.

Passage from a double reflection to a single reflection is interpreted as a change from a monoclinic symmetry (pseudo orthorhombic)

(silicalite) to an effective orthorhombic symmetry, "titanium silicalite" (TS-1). In Figure 1, the most apparent aforesaid spectral differences are indicated by arrows.

INFRARED EXAMINATION. TS-1 shows a characteristic absorption band at about 950 cm⁻¹ (see Figure 2, spectra B, C and D) which is not

present in the pure silicalite spectrum (Figure 2, spectrum A), and is also absent in titanium oxides (rutile, anastase) and in alkaline titanates.

Spectrum B is that of TS-1 with 5 mol% of TiQ, spectrum C-is that of TS-1 with 8 molZ of TiO,, and spectrum D is that of TS-1 with 2.3 mol% of TiO,.

As can be seen from Figure 2, the band intensity at approximately 950 cm increases with the quantity of titanium which substitutes the silicon in the silicalite structure.

From a morphological aspect, TS-1 is in the form of 10 parallelepipeds with chamfered edges. A X-ray microprobe examination has shown that the titanium distribution within the crystal is perfectly uniform, thus confirming that the titanium substitutes the silicon in the silicalite structure, and is not present in other

15 forms.

20

25

5

The process for preparing titanium silicalite comprises the preparation of a reaction mixture consisting of sources of silicon oxida, titanium oxide and possibly an alkaline oxide, a nitrogenated organic base and water, the composition in terms of the molar reagent ratios being as heretofore defined.

The silicon oxide source can be a tetraalkylorthosilicate, preferably tetraethylorthosilicate, or simply a silicate in colloidal form, or again a silicate of an alkaline metal, preferably Wa or K. The titanium oxide source is a hydrolysable titanium compound preferably chosen from TiCl4, TiOCl2 and Ti(alkoxy)4, preferably

T1(0C, H,)4 .

Th organic base is tetraalkylammonium hydroxide, and in particular

tetrapropylammonium hydr xide.

5

The reagent mixture is subjected to hydrothermal treatment in an autoclave at a temperature of between 130 and 200°C under its own developed pressure, for a time of 6-30 days until the crystals of the TS-1 precursor are formed. These are separated from the mother solution, carefully washed with water and dried. When in the anhydrous state they have the following composition:

xTiO₂ · (1-x)SiO₂ · 0.04(RN⁺)₂O₂

The precursor crystals are heated for between 1 and 72 hours in air

at 550°C to completely eliminate the nitrogenated organic base. The

final TS-1 has the following composition:

xTiQ.(1-x)SiQ, where x is as heretofore defined.

Chemical and physical examinations are carried out on the products
thus obtained.

The epoxidation reaction between olefin and hydrogen peroxide is conducted at a temperature of between 0° and 150°C, at a pressure of between 1 and 100 ata.

Moreover, the epoxidation reaction can be carried out in batch or in a fixed bed, in a monophase or biphase system.

The catalyst is stable under the reaction conditions, and can be totally recovered and reused.

The solvents which can be used include all polar compounds such as alcohols, ketones, ethers, glycols and acids, with a number of carbon atoms which is not too high and is preferably less than

25 or equal to 6.

Methanol or tert.butanol is the most preferred of the alcohols, acetone the most preferred of the ketones, and acetic r propionic

acid the most preferred f the acids.

5

The olefinic compounds which can be epoxidated according to the invention are of general formula

where R₁, R₂, R₃ and R₄, which can be the same or different, can be H, or an alkyl, alkylaryl, cycloalkyl or alkylcycloalkyl radical, the alkyl radical having between 1 and 20 carbon atoms, the alkylaryl radical having between 7 and 20 carbon atoms, the cycloalkyl radical having between 6 and 10 carbon atoms, and the alkylcycloalkyl radical having between 7 and 20 carbon atoms. The radicals R₁, R₂, R₃ and R₄ can constitute saturated or unsaturated rings in pairs.

Finally, the radicals R₁, R₂, R₃ and R₄ can contain halogen atoms, preferably Cl, Br or I, and nitro, sulphonic, carbonyl, hydroxyl, carboxyl and ether groups.

By way of example, the olefins which can be epoxidated by this process are ethylene, propylene, allyl chloride, butene-2, 1-octene,

1-tridecene, mesityl oxide, isoprene, cyclooctene and cyclohexene.

Operating at a pressure exceeding atmospheric pressure is useful if gaseous olefins are used, so as to allow them to be solubilised or liquefied under the reaction conditions. Operating at a temperature exceeding 0°C has an effect on the reaction rate, although this is high even at temperatures close to 0°C.

The manner of operating the process according to the present invention and its advantages will be more apparent from an examination of the

: . : : : : :

f llowing illustrative exampl s, which however are not limitative of the invention.

EXAMPLES 1-20

5

1.5 g of powdered catalyst, 45 cc of solvent and 1 mole of olefin are fed into a 250 cc glass autoclave (olefins which are gaseous at ambient temperature are fed with the autoclave sub-cooled). The autoclave is immersed into a bath temperature-controlled at the required temperature, and 0.3 to 0.6 moles of aqueous H202 (36% w/v) are fed by a metering pump over a period of 5-10 minutes, under magnetic agitation. 10

The residual $^{\mathrm{H}_2\mathrm{O}}_2$ is checked periodically by withdrawing a solution sample and iodometrically titrating it. When it has practically disappeared, the autoclave is returned to ambient temperature, and the solution analysed by qualitative and quantitative gas chromato-

15 graphy.

The results obtained with various olefinic substrates and the relative reaction conditions are listed in Table 2.

The same epoxidation reactions can also be conducted in a fixed bed, as indicated in the following examples.

EXAMPLES 21-31 20

25

3.5 g of catalyst having a particle size distribution of 25-60 mesh are placed in a 6 x 4 mm steel tube 45 cm long and having a volume of 5 cc. A solution containing 200 ml of solvent and 20-40 g of olefin is prepared in a steel autoclave (in the cae of olefins which are gaseous at ambient temperature, the autoclave is pressurised at 15°C with the same olefin until the required weight quantity has been attained). The tube containing the catalyst is immersed in a

temperature-controlled bath, and pumping of the olefin solution is commenced simultaneously with the pumping of the aqueous ${\rm H_2O_2}$ solution by means of two metering pumps, the throughputs being regulated so that the molar ${\rm H_2O_2}$ olefin feed ratio is between 10 and 90%.

The operating pressure is regulated by means of a suitable valve at the catalytic reactor outlet to a pressure of between 1.5 and 15 ata and in any case greater than the pressure in the autoclave containing the olefin. The effluent is percolated through a condenser at 10°C in order to condense all the condensable products, and is then collected and analysed by gas chromatography.

The results obtained are shown in Table 3.

EXAMPLES 32-34

5

10

15

20

25

To demonstrate that the H₂O₂ concentration has no effect on the epoxide-glycol distribution, Table 4 shows by way of example the results obtained with allyl chloride in methanol, under the operating conditions of Examples 1-20.

EXAMPLE 35

40 cc of isopropanol and 10 cc of water are fed into a 250 cc steel autoclave lined with teflon.

The autoclave is immersed in a bath temperature-controlled at 135°C, and pressurised to 35 ata with oxygen, the quantity absorbed being continuously made up.

After an O_2 absorption of 0.2 moles (4.48 normal litres) the mixture is cooled, depressurised and the quantity of H_2O_2 and peroxides in the solution titrated. It contains 0.155 moles of peroxide oxygen (evaluated as H_2O_2).

40 cc of said solution are transferred to a glass autoclave together with 10 cc of H₂O and 1 gram of titanium silicalite. 5 g of propylene are fed by sub-cooling the autoclave. The autoclave is then immersed under magnetic agitation into a bath temperature-controlled at 20°C. After 35 minutes the solution is analysed by gas chromatography and titrated to obtain the peroxide content. The following results are obtained:

residual peroxides (as H202)

5.5 mmoles

propylene oxide

110 mmoles

propylene glycol

8,5 mmoles

and thus:

5

10

 H_2O_2 conversion (peroxides) = 95.56%

propylene oxide selectivity = 92.83%

TS - 1		' Sil	licalit (a)
Inter-	Rel. Int.	2 Q -,'	Inter-	Rel. Int
planar		(Cuka)	planar-	
distance d	(Å)		distance d	(Å)
11,14	VS	7.94	11,14	VB
9,99	8 .	8,85	9,99	5
9,74	m ·	9.08	9,74	· m ·
6.702	w ·	13,24	6.687	w •
6,362	mw .	13,95	6,348	ww.
5,993	mw ·	14,78	5,993	mw
5.698	W	15.55	5,698	*W#
5.574	٧	15,90	5,574	··· w
5.025	w	27,65	5,025	W
4,980	. w	17.83	4.975	w .
4,360	w	20,39	4.355	Α
4.260	mw	20,87	4,256	51A
3.855	s	23,08	3.853	s
		23.28	3,821	, ns
3.819	S			
•		23,37	3.806	ns
•		23,71	3.753	_ ns
3,751	5			
		23,80	3.739	សន
3.720	. s	23,94	3.717	5
	Inter- planar distance d 11,14 9,99 9.74 6.702 6.362 5.993 5.698 5.574 5.025 4.980 4.360 4.260 3.855	Inter—Rel. Int. (b) planar distance d(A) 11.14 vs 9.99 s 9.74 m 6.702 w 6.362 mw 5.993 mw 5.698 w 5.574 w 5.025 w 4.980 w 4.260 mw 3.855 s 3.819 s	Inter—Rel. Int. (b) 2 6 (Cuk x) planar (Cuk x) distance d(x) 11.14 vs 7.94 9.99 s 8.85 9.74 m 9.08 6.702 w 13.24 6.362 mw 13.95 5.993 mw 14.78 5.698 w 15.55 5.574 w 15.90 5.025 w 17.65 4.980 w 17.83 4.360 w 20.39 4.260 mw 20.87 3.855 s 23.08 23.28 3.819 s 23.71 3.751 s	Inter— Rel. Int. (b) 2 6 Inter— planar (Cuko) planar distance d(A) distance d 11.14 vs 7.94 11.14 9.99 s 8.85 9.99 9.74 m 9.08 9.74 6.702 w 13.24 6.687 6.362 mw 13.95 6.348 5.993 mw 14.78 5.993 5.698 w 15.55 5.698 5.574 w 15.90 5.574 5.025 w 27.65 5.025 4.980 w 17.83 4.975 4.360 w 20.39 4.355 4.260 mw 20.87 4.256 3.855 s 23.08 3.853 23.28 3.821 3.819 s 23.37 3.806 23.71 3.753

		•		24.35	3,655	mw
24,41	3,646	<u>a</u>				
		•	•	24,60	3.619	mw
•		•	٠.	25.84	3,448	; . · ' ₩
25.87	3.444	w				. •
		•		25.97	3.431	w .
26.87	3,318	w ^{it}		26.95	3.308	v*
				29,23	3.055	w, ·
29.27	3.051	άw	•			
				29,45	3,033	¥
29,90	2.988	mw	÷, 1	29,90	2,988	ww
30,34	2,946	W	•	30.25	2.954	. v
45,00	2.014			45,05	2,012	mw ⁴
45,49	1.994	mw*		45.60°	1,989	mw*

- a) Prepared by the method of U.S. Patent 4,061,724; product calcined at 550°C.
- b) vs: very strong; s: strong; ms: medium-strong; m: medium;
 mw: medium-weak; w: weak; *: multiplet.

TABLES 2

	•		,					12	•			.1		U	70	IU.	17:	9
	OTHERS	ich as glyme .	10% as ketal	:	9% as ether	10% as ketal.				. as ketal∵	. as other	. as ketal .		as ether	as ketal	٠		
•	۲. کر	φ.	10		67	10		-	4 %	გ ჯ	10%	%		102	,			:
	GLYCOL SELECT. OTHERS	. 5%	10%	***	% %	. 10%	. 4	28%	, .	3 5	ж й	10%	3º 00	15%	10%	178	34 80	
	EPOXIDE SELECT.	. 83%	80%	%96	86%	808 808	%96 %96	72%	95%	305	82%	8228	75%	85%	85%	, 83%	92%	
	H202 CONV.	%66	% 66	8/6	. 100%	97%	%06°	%86	100%	846	100%	98 18	88 88 80	100%	100%	100%	\$36	
	* # #	50%	20%	20%	58%	%0	50%	% 00 %	58%	50%	40%	80%	45%	35%	35 35 36	30%	30g	
	7.0	0.0	25∙€	20•€	ວຸດ	40°C	40°C	20.02	2,04	200€	, 20°C	40°C	25•€	55•€	D.09	75°C	3•08	
•	t(hours)	0.5	0.5	P. 10		8°0	. 8.0	# 4	0.0	0.5	0.5	8.0	-1	ન	ᆏ	Ø	1,5	
	SOLVENT	SH, OK	ACETONE	t-butyl ale.	CH OH.	ACETONE	t-butyl ala.	H ₂ 0	มอะหว	ACETONE	RO HO	ACETONE	o H	ck, ox	ACETONS	1	: ACETONE	
	olepin.	· BTHYLENE	: -		PROPYLENE CHOOK	2	=		Allyl Chioride Ch _a on	2	BUTENE-2	" ACETONE	s	OCTENE 1	ACETONE		1-TRIDECENE ACETONE	
	. ×	ન	Ø	ო	4	ស	စ		ω	Ø	9	11	12	13	4	15	18	

(contd.)
ķ
TABLE

10%

17	MESITYL. OXIDE :	ACETONE	1.5	3•08	25%	97%	94%
18	ISOPRENE	но но	0.5	ე•06	45%	83%	80 80 80
13	瓦	ACETONE	1.5	3 . 08	30%	%86	826
8	CYCLO HEXENE ACETONE	ACETONE	1.5	2,5℃	35%	. %66	%85 85
	- • ··					.,	
	# #	Ħ	feed ratio		moles H ₂ 0 ₂ fed moles olefins fed	fed ns fed	

										. .	.~	1.4	עיִ
	٠ ، ، .	is glycol monomethylether	as glycol ketal	as glycol monomethylether	as glycol ketal		as glycol mono, eth r		as glycol monosther	as ketal	as ketal	10% ' As Elvaol	monomethylether
	OTHERS	8	8	10%	% %		7,	ŧ	₩	30	28	5	8 1
	.crxcor seiecr.	ы Ж	22	1.5%	% 9	4 %	11	**	20%	15%	15%	3	ę.
	BPOXIDE .	88 %	919 %	88.5%	92%	₹96	88%	98%	71%	75%	80 80 80		Š Š Š
•	H202, CONVERS.	%66	92%	. 80 60	% 06	85%	100%	92%	88 %	. 92%	200	3	ድ ዕገ ዕገ
	PRODUCTIV.	3.02	2,00	4,15	1.55	2.20	8.52	4,53	ະ ວິດ	3.70		66.3	2,12
-	F. K.	45 %	50 %	68 %	က အို	10 10 16	80	8 8	45 25	. ¥	2 3	የ ດ ን	4 4 4
	O H	10	10	15	15	50	8	70	- 64	Ç	2	ဓ္ဓ	80
	SOLVENT.	носнэ	ACETONE	ногно	ACETONE	t-butyl alo. 20	HOEHO	ACETONE	но но		ACETONE	ACETONE	HOEHD.
	olrfin.	RANGERME		PROPYLENE	±		ALLYL . Chloride	=	BUTENE-2		=	OCTENE-1	C KILO HEXENE CH ₃ OH
	z •	21	22	ន្ត	. 42	25	26	5	58 58	•	23		31

TABLE:

*
- -
ë
•

OTHERS	%E*6	7.8%	10.5%
GLYCOL SEL.	5.5%	6.2%	4.8%
· TES SELYOGE	85.2%	86.0%	84.7%
F D	15°C	15°C	15°¢
t(hours)	0.5	0.5	9.5
	80%	%04	40%
OKC.	. 10		, %09 , %09
SOLVENT H ₂ O ₂ C	HO H3		# # # # # # # # # # # # # # # # # # #
•	- 150 - 150	1 10	2 .4 2 .4

CLAIMS:

- 1. A process for the epoxidation of olefinic compounds, characterised by reacting said compounds with hydrogen peroxide either introduced as such or produced by substances capable of
- 5 generating it under the reaction conditions, in the presence of synthetic zeolites containing titanium atoms, of the following general formula:

xTiO2.(1-x)SiO2

of one or more solvents.

10

where x lies between 0.0001 and 0.04, and possibly in the presence

- 2. A process as claimed in claim 1, characterised in that
 the epoxidation reaction is conducted at a temperature of between
 0° and 150°C, and at a pressure of between 1 and 100 ata.
- 3. A process as claimed in claim 1, wherein the hydrogen peroxide15 is in dilute aqueous solution.
 - 4. A process as claimed in claim 1, wherein the hydrogen peroxide in the aqueous solution is between 10 and 70% w/v.
 - 5. A process as claimed in claim 1, wherein the solvent is polar.
- 20 6. A process as claimed in claim 5, wherein the polar solvent is chosen from alcohols, glycols, ketones, ethers and acids, having a number of carbon atoms less than or equal to 6.
 - 7. A process as claimed in claim 6, wherein the alcohol is methanol or tert.butanol.
- 25 8. A process as claimed in claim 6, wherein the ketone is acetone.
 - 9. A process as claimed in claim 6, wherein the acid is acetic

acid or propionic acid.

5

10. A process as claimed in claim 1, wherein the olefinic compound is chosen from ethylene, propylene, allyl chloride, butene-2, 1-octene, 1-tridecene, mesityl oxide, isoprene, cyclooctene and cyclohexene.

****/2

EUROPEAN SEARCH REPORT

0100119 Application number

EP 83 20 1040

	DOCUMENTS CONSI	DERED TO BE	RELEVANT				
ategory	Citation of document with of releva	t Indication, where appr ant passages	opriste,		elevant o claim	CLASSIFICATION APPLICATION	
Y	GB-A-1 583 398 CHIMIQUES UGINE * Whole document	KUHLMANN)		1	-10	C 07 D	
Y	GB-A-2 083 816 * Whole document			1	-10		
Y	US-A-2 870 171 * Whole document		S)	ַן	10		
		, up 04	•				
						TECHNICA SEARCHED	
						C 07 D	301/0 303/0
			-		•		
	The present search report has t			L			
	Place of search THE HAGUE	Date of completi 28-10	on of the search		ALLAI	Examiner RD M.S.	
X : p: Y : p: d: A : te	CATEGORY OF CITED DOCL articularly relevant if taken alone articularly relevant if combined w ocument of the same category schnological background		after the fi D: document L: document	ling cite cite	date d in the ap d for other		
X: pa Y: pa di A: te O: na P: in	ocument of the same category schnological background on-written disclosure itermediat document			f the		ent family, corre	sponding