

Course > Week... > 2.4 R... > 2.4.4 ...

2.4.4 Rotations and Reflections, Revisited 2.4.4 Rotations and Reflections, Revisited

Discussion

Hide Discussion

Topic: Week 2 / 2.4.4

Add a Post

Show all posts	▼	by recent activity ▼	
There are no posts in this topic yet.			
×			

Homework 2.4.4.1

6/6 points (graded)

A reflection with respect to a 45 degree line is illustrated by

Think of the dashed green line as a mirror. Let $M:\mathbb{R}^2\to\mathbb{R}^2$ be the vector function that maps a vector to its mirror image. Evaluate (by examining the picture)

$$\left(egin{array}{c} \chi_0 \ \chi_1 \end{array}
ight) = M(\left(egin{array}{c} 1 \ 0 \end{array}
ight)$$

$$\left(egin{array}{c} \chi_0 \ \chi_1 \end{array}
ight) = M(\left(egin{array}{c} 0 \ 3 \end{array}
ight)$$

$$\chi_0$$
 3 \checkmark Answer: 3 χ_1 0 \checkmark Answer: 0

$$inom{\chi_0}{\chi_1} = M(inom{1}{2})$$

$$\chi_0$$
 2 \checkmark Answer: 2 χ_1 1 \checkmark Answer: 1

Explanation

Submit

Answers are displayed within the problem

Homework 2.4.4.2

4/4 points (graded)

A reflection with respect to a 45 degree line is illustrated by

Again, think of the dashed green line as a mirror and let $M:\mathbb{R}^2 \to \mathbb{R}^2$ be the vector function that maps a vector to its mirror image. Compute the matrix that represents M (by examining the picture)

	0	1
$M = \checkmark$ Answer: 0		✓ Answer: 1
	1	0
	✓ Answer: 1	✓ Answer: 0

Explanation

Answer:

$$\bullet \ M(\left(\begin{array}{c} 1 \\ 0 \end{array}\right)) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right):$$

Hence the matrix is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Submit

• Answers are displayed within the problem

© All Rights Reserved