第22条军规

500

不要说话。

MENU

数字音频接口

By Xiaomin | October 30, 2014 |技术

概述

数字音频接口**DAI**,即Digital Audio Interfaces,顾名思义,DAI表示在板级或板间传输数字 音频信号的方式。相比于模拟接口,数字音频接口抗干扰能力更强,硬件设计简单,DAI在 音频电路设计中得到越来越广泛的应用。图1和图2对比传统的音频信号和数字音频信号链 的区别。

在传统的音频电路(图1)中有麦克风、前置放大器、模/数转换器ADC、数/模转换器 DAC、输出放大器,以及扬声器,它们之间使用模拟信号连接。随着技术的发展和对性能 考虑,模拟电路逐渐被推到链路的两端(集成到设备内部),信号链中各集成电路间将出 现更多的数字接口形式。DSP通常都是数字接口的:换能器(Transducers, i.e. Mic & Speaker)、放大器一般而言只有模拟接口,但现在也正在逐渐集成数字接口功能。 目前, 集成电路设计人员正在将换能器内的ADC、DAC和调制器集成到信号链一端,这样就不必 在PCB上走任何模拟音频信号,并且减少了信号链中的器件数量。图2给出了一个完整数字 音频接口的例子。

图1. 传统的音频信号链路

www.wangdali.net/i2s/ 1/46

图2. 数字音频信号链路

数字音频信号的传输标准,如**I²S、PCM** (Pulse Code Modulation) 和**PDM** (Pulse Density Modulation)主要用于同一块电路板上芯片之间音频信号的传输;**Intel HDA** (Intel High Definition Audio) 用于PC的Audio子系统(声卡)应用;**S/PDIF**和**Ethernet AVB**主要应用于板间长距离及需要电缆连接的场合。

本文主要介绍 I^2S , PCM和PDM数字音频接口,其它几种接口将另文说明。

I₂S接口

1. I₂S简介

I²S全称**Inter-IC Sound**, **Integrated Interchip Sound**, 或简写**IIS**, 是飞利浦在1986年定义(1996年修订)的数字音频传输标准,用于数字音频数据在系统内部器件之间传输,例如编解码器CODEC、DSP、数字输入/输出接口、ADC、DAC和数字滤波器等。除了都是由飞利浦定义外,I2S和<u>I2C</u>没有任何关系。

I²S是比较简单的数字接口协议,没有地址或设备选择机制。在I²S总线上,只**能同时存在**一个主设备和发送设备。主设备可以是发送设备,也可以是接收设备,或是协调发送设备和接收设备的其它控制设备。在I²S系统中,提供时钟(SCK和WS)的设备为主设备。图 3是常见的I²S系统框图。在高端应用中,CODEC经常作为I²S的主控设备以精确控制I²S的数据流。

www.wangdali.net/i2s/ 2/46

图3. I²S设备连接示意图

I²S包括两个声道(Left/Right)的数据,在主设备发出声道选择/字选择(WS)控制下进行左右声道数据切换。通过增加I²S接口的数目或其它I²S设备可以实现多声道(Multi-Channels)应用。

2. 信号定义

在 I^2 S传输协议中,数据信号、时钟信号以及控制信号是分开传输的。 I^2 S协议只定义三根信号线:时钟信号SCK、数据信号SD和左右声道选择信号WS。

时钟信号 Serial Clock

SCK是模块内的同步信号,从模式时由外部提供,主模式时由模块内部自己产生。不同厂家的芯片型号,时钟信号叫法可能不同,也可能称BCLK/Bit Clock或SCL/Serial Clock

数据信号 Serial Data

SD是串行数据,在I²S中以二进制补码的形式在数据线上传输。在WS变化后的第一个SCK 脉冲,先传输最高位(*MSB*, Most Significant Bit)。先传送MSB是因为发送设备和接收设备的字长可能不同,当系统字长比数据发送端字长长的时候,数据传输就会出现截断的现象/Truncated,即如果数据接收端接收的数据位比它规定的字长长的话,那么规定字长最低位(LSB: Least Significant Bit)以后的所有位将会被忽略。如果接收的字长比它规定的字长短,那么空余出来的位将会以0填补。通过这种方式可以使音频信号的最高有效位得到传输,从而保证最好的听觉效果。

左右声道选择信号 Word Select

WS是声道选择信号,表明数据发送端所选择的声道。当:

√ ws=0,表示选择左声道 √ ws=1,表示选择右声道

www.wangdali.net/i2s/ 3/46

WS也称帧时钟,即LRCLK/Left Right Clock。WS频率等于声音的采样率。WS既可以在SCK的上升沿,也可以在SCK的下降沿变化。从设备在SCK的上升沿采样WS信号。数据信号MSB在WS改变后的第二个时钟(SCK)上升沿有效(即延迟一个SCK),这样可以让从设备有足够的时间以存储当前接收的数据,并准备好接收下一组数据。

3. 电气特性

输出电平

 $V_{L} < 0.4V$ $V_{H} > 2.4V$

满足驱动TTL电平 I_{IL} =-1.6mA 和 I_{IH} = 0.04mA

输入电平

 $V_{IL} < 0.4V$ $V_{IH} > 2.4V$

注:

1986的SPEC电平定义为TTL,实际应用参考具体器件手册。

4. 时序要求

 ${
m EI}^2$ S总线中,任何设备都可以通过提供时钟成为 ${
m I}^2$ S的主控设备。考虑到SCK、SD和WS的时延, ${
m I}^2$ S总线上总的时延包括:

外部时钟SCK由主设备到从设备的时延; 内部时钟和SD及WS的时延

外部时钟SCK到内部时钟的延迟对于数据和左右声道信号WS的输入没有影响,因为这段延迟只增加有效的建立时间(Setup time),如图4所示。需要注意的是发送延迟和接收设备建立时间是否有足够的裕量。所有的时序要求和时钟周期或设备允许的最低时钟周期有关。不同器件的Datasheet都有单独部分说明其时序要求,以下部分截取自I2S Bus Specification。

www.wangdali.net/i2s/ 4/46

T = clock period

T_{tr} = minimum allowed clock period for transmitter

T > Ttr

* t_{RC} is only relevant for transmitters in slave mode.

图4. 发送设备时序

图5. 接收设备时序

注:

图4和图5的时序要求因发送设备的时钟速率不同而有所区别。接收设备的性能指标需要匹配发送设备的性能。表1说明 I^2 S发送和接收时序的要求。

	TRANSMITTER				RECEIVER				
	LOWER LIMIT		UPPER LIMIT		LOWER LIMIT		UPPER LIMIT		
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	NOTES
Clock period T	T _{tr}				Tr				1
MASTER MODE: clock generated by transmitter or receiver: HIGH t _{HC} LOW t _{LC}	0.35T _{tr} 0.35T _{tr}				0.35T _{tr} 0.35T _{tr}				2a 2a
SLAVE MODE: clock accepted by transmitter or receiver: HIGH t _{HC} LOW t _{LC} rise-time t _{RC}		0.35T _{tr} 0.35T _{tr}	0.15T _{tr}			0.35T _r 0.35T _r			2b 2b 3
TRANSMITTER: delay t _{dtr} hold time t _{htr}	0			0.8T					4 3
RECEIVER: set-up time $t_{\rm Sr}$ hold time t_{hr}						0.2T _r 0			⁵ / ₅

www.wangdali.net/i2s/ 5/46

图6是SPEC对于时钟上升时间的定义。

5. I₂S操作模式

根据SD相对于SCK和WS位置的不同, I^2 S分为三种不同的操作模式,分别为标准 I^2 S模式、左对齐模式和右对齐模式:

 I^2 S Phillips Standard I^2 S格式 Left Justified Standard 左对齐格式 Right Justified Standard 右对齐格式

I²S模式属于左对齐中的一种特例,也叫PHILIPS模式,是由标准左对齐格式再延迟一个时钟位变化来的。时序如图7所示,左声道的数据MSB在WS下降沿之后第二个SCK/BCLK上升沿有效,右声道数据的MSB在WS上升沿之后第二个SCK/BCLK上升沿有效。

图7. I²S PHILIPS操作模式

www.wangdali.net/i2s/ 6/46

标准左对齐较少使用,图8为左对齐时序图,和PHILIPS格式(图6)对比可以看出,标准左对齐格式的数据的MSB没有相对于BCLK延迟一个时钟。左对齐格式的左声道的数据MSB在WS上升沿之后SCK/BCLK的第一个上升沿有效;右声道的数据MSB在WS下降沿之后SCK/BCLK第一个上升沿有效。标准左对齐格式的优点在于,由于在WS变化后的第一个SCK上升沿就开始采样,它不需要关心左右声道数据的字长,只要WS的时钟周期足够长,左对齐的方式支持16-32bit字长格式。

图8. 左对齐操作模式

标准右对齐也叫日本格式,EIAJ (Electronic Industries Association of Japan) 或SONY格式,图9为右对齐时序图。右对齐格式左声道的数据LSB在WS下降沿的前一个SCK/BCLK上升沿有效,右声道的数据LSB在WS上升沿的前一个SCK/BCLK上升沿有效。相比于标准左对齐格式,标准右对齐的不足在于接收设备必须事先知道待传数据的字长。这也解释了为什么许多CODEC都会提供多种右对齐格式选择功能。

图9. 右对齐操作模式

以上不同 I^2 S对齐方式时序图来源,详见链接TI CODEC_器件手册。

注:

www.wangdali.net/i2s/ 7/46

标准左对齐和标准右对齐模式的LRCK/WS高低电平对应的左右声道与标准I²S模式的规定<mark>恰好相反!</mark>标准左右对齐LRCK/WS高电平对应左声道,LRCK/WS低电平对应右声道;而I²S低电平对应左声道,LRCK/WS高电平对应右声道!

6. I₂S数据时钟(SCK)频率计算

例如:设声音的<u>采样频率</u>为44.1 kHz,即声道选择信号(帧时钟)WS的频率必须也为44.1 kHz;左/右2个声道的量化深度均为16 bit,则 I^2 S的SCK的频率为:44.1 kHz×16×2=1.4112 MHz

如果需要传输20 bit、24 bit或32 bit的左右声道的数据,可以提高SCK的频率,由上式可以 计算出需要的SCK的频率。

7. Master Clock

在 I^2 S/PCM接口的ADC/DAC系统中,除了SCK和WS外,CODEC经常还需要控制器提供 *MCLK* (Master Clock),这是由CODEC内部基于*Delta-Sigma* ($\Delta\Sigma$)的架构设计要求使然。 MCLK时钟频率一般为256*WS,具体参考特定器件手册。图10示意Nuvoton的NAU8822L CODEC内部PLL框图,可以清晰地看出MCLK作用的区域。

图10. CODEC内部PLL示意图

PCM接口

www.wangdali.net/i2s/

1. PCM简介

PCM (Pulse Code Modulation) 是通过等时间隔(即采样率时钟周期)采样将模拟信号数字化的方法。图11为4 bit 采样深度的PCM数据量化示意图。

图11. 4-bit PCM的采样量化

PCM数字音频接口,即说明接口上传输的音频数据通过PCM方式采样得到的,以区别于PDM方式。在音频领域,PCM接口常用于板级音频数字信号的传输,与I²S相似。PCM和I²S的区别于数据相对于帧时钟(FSYNC/WS)的位置、时钟的极性和帧的长度。其实,I²S上传输的也是PCM类型的数据,因此可以说I²S不过是PCM接口的特例。

相比于I²S接口,PCM接口应用更加灵活。通过时分复用(<u>TDM</u>, Time Division Multiplexing)方式,PCM接口支持同时传输多达N个(N>8)声道的数据,减少了管脚数目(实际上是减少I²S的"组"数,因为每组I²S只能传输两声道数据嘛)。TDM不像I²S有统一的标准,不同的IC厂商在应用TDM时可能略有差异,这些差异表现在时钟的极性、声道配置的触发条件和对闲置声道的处理等。

TDM/PCM数字音频接口的硬件拓扑结构也与I²S相近。图12表示应用DSP作为主设备控制 ADC和DAC间数字音频流的例子。

综合不少厂商的数据手册,笔者发现,在应用PCM音频接口传输单声道数据(如麦克风)时,其接口名称为**PCM**;双声道经常使用**I^2S**;而**TDM**则表示传输两个及以上声道的数据,同时区别于 I^2S 特定的格式。

www.wangdali.net/i2s/ 9/46

图12. TDM系统框图

2. 信号定义

PCM接口与I²S相似,电路信号包括:

PCM_CLK 数据时钟信号 PCM_SYNC 帧同步时钟信号 PCM_IN 接收数据信号

PCM_OUT 发送数据信号

TDM/PCM与I²S接口对应关系见表2:

PCM Interface	I ² S Interface
PCM_OUT	SD_OUT
PCM_IN	SD_IN
PCM_SYNC	ws
PCM_CLK	SCK

表2. PCM vs I²S接口

3. 操作模式

根据 SD相对帧同步时钟FSYNC的位置, TDM分两种基本模式:

Mode A: 数据在FSYNC有效后,BCLK的第**2**个上升沿有效(图13) Mode B: 数据在FSYNC有效后,BCLK的第**1**个上升沿有效(图14)

www.wangdali.net/i2s/ 10/46

图13. TDM Mode A

图14. TDM Mode B

注:

由于没有统一标准,不同厂商对Mode A和Mode B定义可能有所差别。

在实际应用中,总是以帧同步时钟FSYNC的上升沿表示一次传输的开始。帧同步时钟的频率总是等于音频的采样率,比如44.1 kHz,48 kHz等。多数应用只用到FSYNC的上升沿,而忽略其下降沿。根据不同应用FSYNC脉冲宽度的差别,PCM帧同步时钟模式大致分为两种:

长帧同步 Long Frame Sync 短帧同步 Short Frame Sync

长帧同步,短帧同步时序模式如下图16和图17所示。

注:

a. 长帧同步,如图15所示,FSYNC脉冲宽度等于1个*Slot*的长度。Slot在TDM中表示的是传输单个声道所占用的位数。如图15所示TI McASP接口的TDM包括6个Slots,即它最多可包括6声道数据。注意,Slot的位数并不一定等于音频的量化深度。比如Slot可能为*32 bit*,其中包括*24 bit*有效数据位(Audio Word) + *8 bit*零填充(Zero Padding)。不同厂商对Slot的叫法可能有所区别,比如Circus Logic称之为Channel Block;

www.wangdali.net/i2s/ 11/46

图15. 长帧同步模式

b. 短帧同步, FSYNC脉冲宽度等于1个BCLK周期长度;

c. 由于没有统一标准,不同厂商对FSYNC脉冲宽度及触发边沿的设置可能不同,以器件手册为准。

图16. 8-bit长帧同步模式

图17.16-bit短帧同步模式

关于长短帧同步、MSB/LSB和量化深度的区别,对应的PCM时序模式,请参考附件CSRBC06工具: pcmconfigv2 1

www.wangdali.net/i2s/ 12/46

通过这个工具很容易理解这些变量的含义。

4. 模式设置

通过寄存器或者管脚电平设置,可以配置CODEC的**DAI**工作在不同的操作模式。以AKM的 24bit 4ch DAC <u>AK4413</u>为例,如表3所示,通过设置**TDM[1:0]**和**DIF[2:0]**等5个寄存器的值,可以选择其SDT1接口工作于20种不同模式,在Datasheet中详细说明了每种模式的时序框图。

Mod	e	TDM1	TDM0	DIF2	DIF1	DIF0	SDTI Format	LRCK	BICK
	0		0	0	0	0	16-bit LSB justified	H/L	≥32fs
	1			0	0	1	20-bit LSB justified	H/L	≥40fs
	2			0	1	0	24-bit MSB justified	H/L	≥48fs
Normal	3			0	1	1	24-bit I ² S compatible	L/H	≥48fs
Nomiai	4	_		1	0	0	24-bit LSB justified	H/L	≥48fs
	5			1	0	1	32-bit LSB justified	H/L	≥64fs
	6			1	1	0	32-bit MSB justified	H/L	≥64fs
	7			1	1	1	32-bit I ² S compatible	L/H	≥64fs
				0	0	0	N/A		
			1	0	0	1	N/A		
	8			0	1	0	24-bit MSB justified	1	256fs
TDM256	9	0		0	1	1	24-bit I ² S compatible	\	256fs
	10	0		1	0	0	24-bit LSB justified	↑	256fs
	11			1	0	1	32-bit LSB justified	1	256fs
	12			1	1	0	32-bit MSB justified	1	256fs
	13			1	1	1	32-bit I ² S compatible	\	256fs
				0	0	0	N/A		
			1	0	0	1	N/A		
TDM128	14			0	1	0	24-bit MSB justified	1	128fs
	15	1		0	1	1	24-bit I ² S compatible	↓	128fs
	16	1		1	0	0	24-bit LSB justified	1	128fs
	17			1	0	1	32-bit LSB justified	1	128fs
	18			1	1	0	32-bit MSB justified	1	128fs
	19			1	1	1	32-bit I ² S compatible	↓	128fs

表3. 数字音频接口模式选择

5. 时钟(BCLK)频率的计算

FSYNC的频率等于音频的采样率(例如44.1 kHz, 48 kHz等)。Frame每次传输包括所有声道的数据。PCM采样音频数据量化深度一般在16-32bit(最常见为16/24bit)。那么对于8 声道,每个声道32bit音频数据,采样率48kHz的系统,TDM的系统时钟速率为:

 $8 \times 32 \times 48 \text{kHz} = 12.288 \text{ MHz}$

在器件Datasheet中可以见到TDM**128**/TDM**256**/TDM**384**/TDM**512**等说法,数字的含义为单个TDM数据帧包含数据的比特数(即帧长)。如上例8声道(Channels)32bit的音频数据,

www.wangdali.net/i2s/ 13/46

亦称为TDM**256**(=8*32)。TDM系统时钟速率就可以简单地用采样率乘以TDM帧长计算得出。相同的例子,TDM系统时钟速率: 48kHz × 256 = 12.288 MHz

下表4列出系统时钟SCK/BCI	K和采样率fs及TDM帧长的关系:

SAMPLING FREQUENCY	SYSTEM CLOCK FREQUENCY (f _{SCK}), MHz									
	128 f _S	192 f _S	256 f _S	384 f _S	512 f _S	768 f _S	1152 f _S			
8 kHz	1.024	1.536	2.048	3.072	4.096	6.144	9.216			
16 kHz	2.048	3.072	4.096	6.144	8.192	12.288	18.432			
32 kHz	4.096	6.144	8.192	12.288	16.384	24.576	36.864			
44.1 kHz	5.6448	8.4672	11.2896	16.9344	22.5792	33.8688	(1)			
48 kHz	6.144	9.216	12.288	18.432	24.576	36.864	(1)			
88.2 kHz	11.2896	16.9344	22.5792	33.8688	(1)	(1)	_(1)			
96 kHz	12.288	18.432	24.576	36.864	_(1)	(1)	_(1)			
192 kHz	24.576	36.864	(1)	(1)	(1)	(1)	(1)			

表4. 常见音频采样率对应的系统时钟

6. 数据格式

在PCM/TDM传输的数据帧(Slots)中,可能还包括音频数据之外的信息。比如在CSR BC06 器件Datasheet说明,其设置为16 bit Slot字长时,3或8 bit未使用bit可以用作标签位(Sign Extension)、零填充(Zeros Padding)或是兼容Motorola编解码器的3 bit音频衰减值,如图18所示。

A 16-bit slot with 8-bit companded sample and sign extension selected.

A 16-bit slot with 8-bit companded sample and zeros padding selected.

A 16-bit slot with 13-bit linear sample and sign extension selected.

A 16-bit slot with 13-bit linear sample and audio gain selected.

图18.16-bit位采样字格式

www.wangdali.net/i2s/ 14/46

7. 协议分析

以R&S的音频分析仪<u>UPV Audio Analyzer</u>为例,在其DAI协议分析面板,如图19,可以选择每帧包含的Slots数(**No of Slots**,对于I²S选2),Slot的长度,**Lead Bits**表示有效数据相对于Slot开始位置的OFFSET(比如,Slot Length = 32, Audio Leads = 8,则表示每个Slot起始后的第9位为有效数据)。如果选择为左对齐方式(LSB),设备会自动修正Audio Leads值以得到正确的幅值测量结果。

图19. DAI协议分析设置面板

PDM接口

PDM (Pulse Density Modulation)是一种用数字信号表示模拟信号的调制方法。同为将模拟量转换为数字量的方法,PCM使用等间隔采样方法,将每次采样的模拟分量幅度表示为N位的数字分量(N = 量化深度),因此PCM方式每次采样的结果都是Nbit字长的数据。PDM则使用远高于PCM采样率的时钟采样调制模拟分量,只有1位输出,要么为0,要么为1。因此通过PDM方式表示的数字音频也被称为Oversampled 1-bit Audio。相比PDM一连串的0和1,PCM的量化结果更为直观简单。

www.wangdali.net/i2s/ 15/46

在以**PDM**方式作为模数转换方法的应用接收端,需要用到抽取滤波器(Decimation Filter)将密密麻麻的0和1代表的密度分量转换为幅值分量,而**PCM**方式得到的就已经是幅值相关的数字分量。图20示意为通过PDM方式数字化的正弦波。

图20. PDM方式表示的正弦波

PCM方式的逻辑更加简单,但需要用到数据时钟,采样时钟和数据信号三根信号线;**PDM**方式的逻辑相对复杂,但它只需要两根信号线,即时钟和数据。**PDM**在诸如手机和平板等对于空间限制严格的场合有着广泛的应用前景。在<u>数字麦克风</u>领域,应用最广的就是PDM接口,其次为I²S接口。PDM格式的音频信号可以在比如LCD屏这样Noise干扰强的电路附近走线(等于没说,这里指数字信号抗干扰能力相比于模拟信号更强,同样PCM也具有此优势)。

通过PDM接口方式,传输双声道数据只要用到两根信号线。如图21示意两个PDM接口的发送设备与同一个接收设备的连接情况,比如Source 1/2分别作为左右声道的麦克风,通过这种方式可以将采集到的双声道数据传送到接收设备。主设备(此例中作为接收设备)为两个从设备提供时钟,分别在时钟的上升沿和下降沿触发选择Source 1/2作为数据输入。图22为Maxim的Class-D类型功放MAX98358对PDM接口时序的要求,可以看到它在PDM_CLK的上升沿采样左声道数据,在PDM_CLK下降沿采样右声道数据。

www.wangdali.net/i2s/ 16/46

PDM Source 1 PDM Receiver Clock (Processor, codec, amplifier) Modulator Data Output Decimation Filter & Clock Clock PDM Source 2 Data Input Generator Clock Modulator Data Output

图21. PDM连接示意图(2发送设备+1接收设备)

图22. PDM时序框图

基于PDM的架构不同于I²S和TDM之处在于,抽取滤波器(Decimation Filter)不在发送设备,而在接收设备内部。源端输出是原始的高采样率(oversample)调制数据,如Sigma-Delta调制器的输出,而不是像I²S中那样的抽取数据(An I²S output digital microphone includes the decimation filter, so its output is already at a standard audio sample rate that's easy to interface to and process.)。基于PDM接口的应用降低了发送设备的复杂性,由于作为接收设备的CODEC内部集成抽取滤波器,因此系统整体复杂度大大降低。对于数字麦克风而言,通过使用面向CODEC或处理器制造的更精细硅工艺,而非传统麦克风使用的工艺,可以实现更高效率的抽取滤波器。

其它接口

S/PDIF: Sony/Philips Digital Interface Format

Intel HDA: Intel High Definition Audio

Ethernet AVB: Audio Video Bridging

免责声明

笔者刚开始接触音频方面的设计,知识体系并不完善。求助于Google和Wiki,把相关的资料在这里以笔者认为容易懂的方式组织,是为此文。当然,本文必然存在不足和失当之处,欢迎各位朋友赐教指正。文章内容作者可能随时更新!

参考资料

- 1. I2S Bus Specification Philips
- 2. Pulse Code Modulation Wikipedia
- 3. Pulse Density Modulation Wikipedia
- 4. MS-2275: Common Inter-IC Digital Interfaces for Audio Data Transfer Analog
- 5. AN282: The 2-Channel Serial Audio Interface Cirrus Logic
- 6. AN301: Time Division Multiplexed Audio Interface Cirrus Logic
- 7. WM8778: 24-bit, 192kHz Stereo CODEC -Cirrus Logic
- 8. TLV320AIC31: Low-power Stereo Audio Codec For Portable Audio/Telephony -TI
- 9. ANA-123: Audio CODEC Application Note Nuvoton
- 10. NAU85L40: Quad Audio ADC with Integrated FLL and Microphone Preamplifier Nuvoton
- 11. AK4413: High Performance 120dB 24-Bit 4ch DAC -AKM
- 12. R&S®UPV User Manual -R&S
- 13. <u>Understanding PDM Digital Audio</u> -Audio Precision
- 14. Analog and Digital MEMS Microphone Design Considerations Analog

www.wangdali.net/i2s/ 18/46

15. MAX98358: PDM Input Class D Audio Power Amplifier - Maxim

点击

下载文章(百度网盘)

密码: hrkt

下载文章 (本地下载)

Post Views:10,302

Tagged audio, i2s, pcm, pdm, spdif. Bookmark the permalink.

About Xiaomin

"Real generosity towards the future lies in giving all to the present."

— Albert Camus

View all posts by Xiaomin →

« OrCAD Capture主界面不显示

OrCAD自动生成Symbol »

21 Responses to 数字音频接口

yw JULY 28, 2017 AT 2:00 PM

非常赞! 通俗易懂, 找了很久的好文。

Reply

夏美君 NOVEMBER 10, 2017 AT 11:10 AM

能分享一下这篇文章到我的邮箱吗,做硬件设计参考一下。

Reply

夏美君 NOVEMBER 10, 2017 AT 11:11 AM

我的邮箱2508746498@qq.com, 谢谢

www.wangdali.net/i2s/

Reply

Xiaomin NOVEMBER 11, 2017 AT 4:32 PM

发了,:-)

Reply

卢华东 NOVEMBER 15, 2017 AT 11:58 PM

文章很好,可是下载不了,麻烦博主也发我一份呗,谢谢哈! luhuadong@163.com

Reply

Xiaomin NOVEMBER 16, 2017 AT 12:36 AM

分享到百度盘了: https://pan.baidu.com/s/1c19pcJY

Reply

river chen JANUARY 24, 2018 AT 2:31 PM

very good, thanks for sharing.

Reply

liu chy FEBRUARY 2, 2018 AT 2:11 PM

网盘链接失效了,能否补上,或者发我邮箱一份,谢谢!

Reply

Xiaomin FEBRUARY 2, 2018 AT 9:22 PM

ok

Reply

Xiaomin FEBRUARY 2, 2018 AT 9:24 PM

链接: https://pan.baidu.com/s/1gg7hVjl 密码: hrkt

Reply

shetty MARCH 19, 2018 AT 5:52 PM

www.wangdali.net/i2s/ 20/46

還是無法下載,是否網址有誤?請抽空確認一下,謝謝!

Reply

Xiaomin MARCH 19, 2018 AT 9:56 PM

文章最后增加了本地下载链接,应该可以了。

Reply

yuanqiyun AUGUST 3, 2018 AT 9:54 AM

膜拜楼主

Reply

unun AUGUST 31, 2018 AT 11:25 AM

拜读了楼主的文章,总结的相当不错,为广大初学者提供了很好的参考,再 次感谢楼主的搜集与总结和共享精神,谢谢!

Reply

Morgan NOVEMBER 26, 2018 AT 3:42 PM

謝謝您的分享,寫的很詳細

Reply

Jacob NOVEMBER 27, 2018 AT 7:41 PM

6666

Reply

Anonymous APRIL 16, 2019 AT 5:09 PM

professional

Reply

Anonymous JUNE 14, 2019 AT 6:44 PM

非常赞!

Reply

www.wangdali.net/i2s/ 21/46

2	clack NOVEMBER 5, 2019 AT 10:55 AM	
	通俗易懂,非常好的文章,感谢感谢	
		Reply
	CHANN NOVEMBER 8, 2019 AT 9:16 PM	
2	太优秀了,好文章	
		Reply
	Justy NOVEMBER 22, 2019 AT 4:08 PM	
	感谢	
		Reply

Leave a Reply

Your email address will not be published.

Comment		
Name		
Email		
Website		
□ Notify me of fo	llow-up comments by email.	
Notify me of ne	ew posts by email.	
		Post Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

www.wangdali.net/i2s/ 22/46

Categories

影音 (5)

技术 (34)

故事 (7)

读书 (22)

转载 (4)

随笔 (56)

Meta

Log in

Entries RSS

Comments RSS

WordPress.org

站内搜索

Search

www.wangdali.net/i2s/ 23/46

www.wangdali.net/i2s/ 24/46

www.wangdali.net/i2s/ 25/46

www.wangdali.net/i2s/ 26/46

www.wangdali.net/i2s/ 27/46

www.wangdali.net/i2s/ 28/46

www.wangdali.net/i2s/ 29/46

www.wangdali.net/i2s/ 30/46

www.wangdali.net/i2s/ 31/46

www.wangdali.net/i2s/ 32/46

www.wangdali.net/i2s/ 33/46

www.wangdali.net/i2s/ 34/46

www.wangdali.net/i2s/ 35/46

www.wangdali.net/i2s/ 36/46

www.wangdali.net/i2s/ 37/46

www.wangdali.net/i2s/ 38/46

www.wangdali.net/i2s/ 39/46

www.wangdali.net/i2s/ 40/46

www.wangdali.net/i2s/ 41/46

www.wangdali.net/i2s/ 42/46

www.wangdali.net/i2s/ 43/46

www.wangdali.net/i2s/

44/46

www.wangdali.net/i2s/ 45/46

第22条军规 | Powered by Mantra & WordPress. 沪ICP备13015943号

