ESP32-C3 系列芯片

技术规格书版本 2.0

搭载 RISC-V 32 位单核处理器的极低功耗 SoC 支持 2.4 GHz Wi-Fi (802.11b/g/n) 和 Bluetooth® 5 (LE) 封装内可叠封 4 MB flash QFN32 (5×5 mm) 封装

包括:

ESP32-C3

ESP32-C3FN4 - 停产

ESP32-C3FH4

ESP32-C3FH4AZ - <u>不推荐用于新设计 (NRND)</u>

ESP32-C3FH4X - 推荐

产品概述

ESP32-C3 是一款低功耗、高集成度的 MCU 系统级芯片 (SoC),集成 2.4 GHz Wi-Fi 和低功耗蓝牙 (Bluetooth® LE) 无线通信。

芯片的功能框图如下图所示。

ESP32-C3 功能框图

更多关于功耗的信息,请参考章节 4.1.3.6 电源管理单元。

ESP32-C3 芯片系列是 ESP32-C3 芯片系列合集的成员。更多关于该芯片系列合集的信息,请查看 ESP32-C3 芯片系列合集概览。

产品特性

Wi-Fi

- 支持 IEEE 802.11b/g/n 协议
- 在 2.4 GHz 频带支持 20 MHz 和 40 MHz 频宽
- 支持 1T1R 模式,数据速率高达 150 Mbps
- 无线多媒体 (WMM)
- 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU)
- 立即块确认 (Immediate Block ACK)
- 分片和重组 (Fragmentation and defragmentation)
- 传输机会 (Transmit opportunity, TXOP)
- Beacon 自动监测 (硬件 TSF)
- 4 个虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模式
 - 请注意 ESP32-C3 系列芯片在 Station 模式下扫描时,SoftAP 信道会同时改变
- 天线分集
- 802.11mc FTM

蓝牙

- 低功耗蓝牙 (Bluetooth LE): Bluetooth 5、Bluetooth mesh
- 高功率模式 (20 dBm)
- 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps
- 广播扩展 (Advertising Extensions)
- 多广播 (Multiple Advertisement Sets)
- 信道选择 (Channel Selection Algorithm #2)
- Wi-Fi 与蓝牙共存, 共用同一个天线

CPU 和存储

- 32 位 RISC-V 单核处理器, 主频高达 160 MHz
- CoreMark® 分数:
 - 单核 160 MHz: 407.22 CoreMark; 2.55 CoreMark/MHz
- 384 KB ROM
- 400 KB SRAM (其中 16 KB 专用于 cache)
- 8 KB RTC SRAM

- 封装内 flash (不同型号有差异,详见章节 1 ESP32-C3 系列型号对比)
- SPI、Dual SPI、Quad SPI、QPI 接口连接多个封装外 flash
- 通过 cache 加速 flash 访问
- 支持 flash 在线编程 (ICP)

高级外设接口

- 22 或 16 个 GPIO 口
- 数字接口:
 - 3个SPI
 - 2个UART
 - **-** I2C
 - **-** I2S
 - 红外收发器, 2个发送通道和2个接收通道
 - LED PWM 控制器, 多达 6 个通道
 - 全速 USB 串口/JTAG 控制器
 - 通用 DMA 控制器 (简称 GDMA), 3 个接收通道和 3 个发送通道
 - TWAI® 控制器,兼容 ISO11898-1 (CAN 规范 2.0)
- 模拟接口:
 - 2个12位 SAR 模/数转换器, 多达6个通道
 - 温度传感器
- 定时器:
 - 2个54位通用定时器
 - 3个数字看门狗定时器
 - 模拟看门狗定时器
 - 52 位系统定时器

功耗管理

- 通过选择时钟频率、占空比、Wi-Fi 工作模式和单独控制内部器件的电源,实现精准电源控制
- 针对典型场景设计的四种功耗模式: Active、Modem-sleep、Light-sleep、Deep-sleep
- Deep-sleep 模式下功耗低至 5 μA
- Deep-sleep 模式下 RTC 存储器仍保持工作

安全机制

- 安全启动 内部和外部存储器的权限控制
- Flash 加密 加密和解密存储器
- 4096 位 OTP, 用户可用的高达 1792 位
- 加密硬件加速器:
 - AES-128/256 (FIPS PUB 197)
 - SHA 加速器 (FIPS PUB 180-4)
 - RSA 加速器
 - 随机数生成器 (RNG)
 - HMAC
 - 数字签名

RF 模块

- 天线开关、射频巴伦 (balun)、功率放大器、低噪声放大器
- 802.11b 传输功率高达 +21 dBm
- 802.11n 传输功率高达 +20 dBm
- 低功耗蓝牙接收器灵敏度 (125 Kbps) 高达 -105 dBm

应用

低功耗芯片 ESP32-C3 专为物联网 (IoT) 设备而设计,应用领域包括:

- 智能家居
- 工业自动化
- 医疗保健
- 消费电子产品
- 智慧农业

- POS 机
- 服务机器人
- 音频设备
- 通用低功耗 IoT 传感器集线器
- 通用低功耗 IoT 数据记录器

说明:

点击链接或扫描二维码确保您使用的是最新版本的文档:

https://www.espressif.com/documentation/esp32-c3_datasheet_cn.pdf

目录

产品。应用	品做述 特性	2 3 5
1 1.1 1.2	ESP32-C3 系列型号对比 ^{命名规则} 型号对比	12 12 12
2 2.1 2.2 2.3	管脚布局 管脚概述 IO 管脚 2.3.1 IO MUX 功能 2.3.2 模拟功能 2.3.3 GPIO 的限制 2.3.4 外设管脚分配	13 13 15 18 18 20 21
2.4	2.3.4 外设管脚分配 模拟管脚	24
2.5	电源 2.5.1 电源管脚 2.5.2 电源管理 2.5.3 芯片上电和复位 芯片与 flash 的管脚对应关系	25 25 25 26 27
3 3.1 3.2	启动配置项 芯片启动模式控制 ROM 日志打印控制	28 29 29
4 .1	功能描述 系统 4.1.1 微处理器和主控 4.1.1.1 高性能处理器 4.1.1.2 GDMA 控制器 4.1.2 存储器组织结构 4.1.2.1 内部存储器 4.1.2.2 封装外 flash	31 31 31 31 31 32 33
	4.1.2.3 Cache	33

		4.1.2.4	eFuse 控制器	33
	4.1.3	系统组件		34
		4.1.3.1	IO MUX 和 GPIO 交换矩阵	34
		4.1.3.2	复位	34
		4.1.3.3	时钟	34
		4.1.3.4	中断矩阵	35
		4.1.3.5	系统定时器	35
		4.1.3.6	电源管理单元	36
		4.1.3.7	定时器组	37
		4.1.3.8	看门狗定时器	37
		4.1.3.9	权限控制	38
		4.1.3.10	系统寄存器	38
		4.1.3.11	辅助调试	39
	4.1.4	加密和安	全组件	39
		4.1.4.1	AES 加速器	39
		4.1.4.2	HMAC 加速器	40
		4.1.4.3	RSA 加速器	40
		4.1.4.4	SHA 加速器	40
		4.1.4.5	数字签名	41
		4.1.4.6	片外存储器加密与解密	41
		4.1.4.7	随机数生成器	41
4.2	外设			43
	4.2.1	通讯接口		43
		4.2.1.1	UART 控制器	43
		4.2.1.2	SPI 控制器	43
		4.2.1.3	I2C 控制器	44
		4.2.1.4	I2S 控制器	44
		4.2.1.5	USB 串口/JTAG 控制器	45
		4.2.1.6	双线汽车接口	45
		4.2.1.7	LED PWM 控制器	46
		4.2.1.8	红外遥控	46
	4.2.2	模拟信号	处理	46
		4.2.2.1	SAR ADC	46
		4.2.2.2	温度传感器	47
4.3	无线通	i信		48
	4.3.1	无线电		48
		4.3.1.1	2.4 GHz 接收器	48
		4.3.1.2	2.4 GHz 发射器	48
		4.3.1.3	时钟生成器	48
	4.3.2	Wi-Fi		48
		4.3.2.1	Wi-Fi 无线电和基带	49
		4.3.2.2	Wi-Fi MAC	49
		4.3.2.3	网络特性	49
	4.3.3	蓝牙 LE		50
		4.3.3.1	低功耗蓝牙物理层	50
		4.3.3.2	低功耗蓝牙链路控制器	50

_	The Property California	
5	电气特性	51
5.1	绝对最大额定值	51
5.2	建议工作条件	51
5.3	VDD_SPI 输出特性	52
5.4	直流电气特性 (3.3 V, 25 °C)	52
5.5	ADC 特性	53
5.6	功耗特性	53
	5.6.1 Active 模式下的 RF 功耗	53
	5.6.2 其他功耗模式下的功耗	54
5.7	可靠性	54
6	射频特性	
		55 55
6.1	Wi-Fi 射频 6.1.1 Wi-Fi 射频发射器 (TX) 特性	55 55
	6.1.2 Wi-Fi 射频接收器 (RX) 特性	56
6.2	低功耗蓝牙射频	57
0.2	6.2.1 低功耗蓝牙射频发射器 (TX) 特性	57
	6.2.2 低功耗蓝牙射频接收器 (RX) 特性	59
	5.2.12	00
7	封装	62
附表	录 A - ESP32-C3 管脚总览	63
ES	P32-C3 芯片系列合集概览	64
词	仁表	65
相	关文档和资源	66
修 ¹	订历史	67
		0/

表格

1-1	ESP32-C3 系列芯片对比	12
2-1	管脚概述	15
2-2	芯片上电过程中的管脚毛刺	16
2-3	通过 IO MUX 连接的外设信号	18
2-4	IO MUX 管脚功能	18
2-5	连接模拟功能的模拟信号	20
2-6	模拟功能	20
2-7	外设管脚分配	23
2-8	模拟管脚	24
2-9	电源管脚	25
2-10	电压稳压器	25
2-11	上电和复位时序参数说明	26
2-12	芯片与封装内 flash 的管脚对应关系	27
3-1	Strapping 管脚的默认配置	28
3-2	Strapping 管脚的时序参数说明	28
3-3	芯片启动模式控制	29
3-4	UARTO ROM 日志打印控制	30
3-5	USB 串口/JTAG ROM 日志打印控制	30
4-1	模块和电源域	37
5-1	绝对最大额定值	51
5-2	建议工作条件	51
5-3	VDD_SPI 内部和输出特性	52
5-4	直流电气特性 (3.3 V, 25 °C)	52
5-5	ADC 特性	53
5-6	ADC 校准结果	53
5-7	不同 RF 模式下的 Wi-Fi 功耗	53
	Modem-sleep 模式下的功耗	54
	低功耗模式下的功耗	54
	可靠性认证	54
6-1	Wi-Fi 频率	55
6-2	频谱模板和 EVM 符合 802.11 标准时的发射功率	55
	发射 EVM 测试	55
	接收灵敏度	56
6-5	最大接收电平	56
6-6	接收邻道抑制	57
6-7	低功耗蓝牙频率	57
	发射器特性 - 低功耗蓝牙 1 Mbps	57
	发射器特性 - 低功耗蓝牙 2 Mbps	57
	发射器特性 - 低功耗蓝牙 125 Kbps	58
	发射器特性 - 低功耗蓝牙 500 Kbps	59
	接收器特性 - 低功耗蓝牙 1 Mbps	59
	接收器特性 - 低功耗蓝牙 2 Mbps	59
6-14	接收器特性 - 低功耗蓝牙 125 Kbps	60

6-15 接收器特性 - 低功耗蓝牙 500 Kbps

60

插图

1-1	ESP32-C3 系列芯片命名规则	12
2-1	ESP32-C3、ESP32-C3FH4、ESP32-C3FN4 管脚布局(俯视图)	13
2-2	ESP32-C3FH4X、ESP32-C3FH4AZ 管脚布局(俯视图)	14
2-3	ESP32-C3 电源管理	26
2-4	上电和复位时序参数图	26
3-1	Strapping 管脚的时序参数图	29
4-1	地址映射结构	32
4-2	模块和电源域	36
7-1	QFN32 (5×5 mm) 封装	62

1 ESP32-C3 系列型号对比

1.1 命名规则

图 1-1. ESP32-C3 系列芯片命名规则

1.2 型号对比

表 1-1. ESP32-C3 系列芯片对比

订购代码 1	封装内 flash ⁶	环境温度 ² (℃)	封装 (mm)	GPIO 数量 ⁴	芯片版本5
ESP32-C3 ³	_	−40 ~ 105	QFN32 (5*5)	22	v0.4
ESP32-C3FN4 (停产)	4 MB	−40 ~ 85	QFN32 (5*5)	22	v0.4
ESP32-C3FH4	4 MB	−40 ~ 105	QFN32 (5*5)	22	v0.4
ESP32-C3FH4AZ (NRND)	4 MB	−40 ~ 105	QFN32 (5*5)	16	v0.4
ESP32-C3FH4X (推荐)	4 MB	-40 ∼ 105	QFN32 (5*5)	16	V1.1

¹ 更多关于芯片丝印和包装的信息,请参考章节7 封装。

² 环境温度指乐鑫芯片外部的推荐环境温度。

³ ESP32-C3 须在芯片封装外连接 SPI flash。更多关于 SPI 模式的信息,请参考章节 2.6 芯片与 flash 的管脚对应关系。

⁴ GPIO 数量为 16 的型号未引出用于连接 flash 的 SPIO/SPI1 相关管脚。

⁵ 所有芯片版本的 SRAM 大小相同,但芯片版本 v1.1 (即 ESP32-C3FH4X) 比芯片版本 v0.4 多约 35 KB 供用户使用。v1.1 依赖于特定的 ESP-IDF 版本,详见 <u>关于 ESP32-C3 芯片版本 v1.1 的兼容性公告</u>。关于 芯片版本的识别,请参考 《ESP32-C3 系列芯片勘误表》。

⁶ 更多关于封装内 flash 的信息,详见章节 4.1.2.1 内部存储器。默认情况下,封装内 flash 支持的最大时钟频率为 80 MHz,且不支持自动暂停功能。如需使用 120 MHz 的 flash 时钟频率或自动暂停功能,请联系我们。

2 管脚

2.1 管脚布局

图 2-1. ESP32-C3、ESP32-C3FH4、ESP32-C3FN4 管脚布局 (俯视图)

图 2-2. ESP32-C3FH4X、ESP32-C3FH4AZ 管脚布局(俯视图)

2.2 管脚概述

ESP32-C3 芯片集成了多个需要与外界通讯的外设。由于芯片封装尺寸小、管脚数量有限,传送所有输入输出信号的唯一方法是管脚多路复用。管脚多路复用由软件可编程的寄存器控制(详见 《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵)。

总体而言, ESP32-C3 芯片的管脚可分为以下几类:

- IO 管脚, 具有以下预设功能:
 - 每个 IO 管脚都预设了 IO MUX 功能 见表 2-4 IO MUX 管脚功能
 - 部分 IO 管脚预设了模拟功能 见表 2-6 模拟功能

预设功能即每个 IO 管脚直接连接至一组特定的片上外设信号。运行时,可通过映射寄存器配置连接管脚的外设信号。

- 模拟管脚, 专用于模拟功能 见表 2-8 模拟管脚
- 电源管脚, 为芯片组件和非电源管脚供电 见表 2-9 电源管脚

表 2-1 管脚概述 简要介绍了所有管脚。更多信息,详见下文相应章节,或参考附录 A-ESP32-C3 管脚总览。

管脚配置5 管脚功能 1 管脚 管脚 管脚 供电 管脚 2-4 类型 IO MUX 序号 名称 复位时 复位后 模拟 LNA_IN 模拟 VDD3P3 2 电源 VDD3P3 3 电源 4 XTAL_32K_P Ю VDD3P3_RTC IO MUX 模拟 5 XTAL_32K_N Ю VDD3P3_RTC IO MUX 模拟 6 GPI02 10 VDD3P3 RTC ΙE ΙE IO MUX 模拟 7 CHIP_EN 模拟 8 GPIO3 Ю VDD3P3_RTC ΙE ΙE IO MUX 模拟 ΙE **MTMS** 10 VDD3P3_RTC IO MUX 9 模拟 10 MTDI Ю VDD3P3_RTC ΙE IO MUX 模拟 VDD3P3 RTC 11 电源 IE 6 10 VDD3P3_CPU IO MUX 12 MTCK MTDO Ю VDD3P3_CPU ΙE IO MUX 13 GPI08 VDD3P3 CPU ΙE 14 10 IO MUX GPI09 10 VDD3P3 CPU IE, WPU IE, WPU IO MUX 15 16 **GPI010** 10 VDD3P3_CPU ΙE IO MUX 17 VDD3P3 CPU 电源 VDD_SPI8 18 电源 VDD3P3_CPU IO MUX SPIHD VDD_SPI / VDD3P3_CPU WPU IE, WPU IO MUX 19 10 20 **SPIWP** Ю VDD SPI / VDD3P3 CPU **WPU** IE, WPU IO MUX VDD SPI/VDD3P3 CPU 21 SPICS0 10 **WPU** IE, WPU IO MUX **SPICLK** Ю VDD SPI/VDD3P3 CPU IO MUX 22 **WPU** IE, WPU

表 2-1. 管脚概述

模拟 见下页

23

24 25 **SPID**

SPIQ

GPI018

10

10

10

IO MUX

IO MUX

IO MUX

VDD_SPI / VDD3P3_CPU

VDD SPI/VDD3P3 CPU

VDD3P3_CPU

WPU

WPU

IE, WPU

IE, WPU

±	2-1		+ 3:	ı.	15
衣	2-1	_	127	г	坝

管脚	管脚	管脚	供电	管脚配置 5		管脚功能 1	
序号	名称	类型	管脚 2-4	复位时	复位后	IO MUX	模拟
26	GPIO19	10	VDD3P3_CPU		USB_PU	IO MUX	模拟
27	UORXD	10	VDD3P3_CPU		IE, WPU	IO MUX	
28	UOTXD	10	VDD3P3_CPU		WPU ⁷	IO MUX	
29	XTAL_N	模拟					
30	XTAL_P	模拟					
31	VDDA	电源					
32	VDDA	电源					
33	GND	电源					

- 1. 加粗功能为默认启动模式下管脚的默认功能,详见章节 3.1 芯片启动模式控制。
- 2. 供电管脚一栏, 由 VDD_SPI 供电的管脚:
 - 电源实际来自给 VDD_SPI 供电的内部电源轨,详见章节 2.5.2 电源管理。
- 3. **供电管脚**一栏,由 VDD3P3_CPU / VDD_SPI 供电的管脚:
 - 供电管脚(VDD3P3_CPU 或 VDD_SPI)可通过寄存器配置,详见 <u>《ESP32-C3 技术参考手册》</u> > 章节 *IO MUX 和 GPIO* 交换 矩阵。
- 4. 管脚默认驱动电流如下:
 - GPIO2、GPIO3、MTMS、MTDI: 10 mA
 - GPI018, GPI019: 40 mA
 - 其余管脚: 20 mA
- 5. 管脚配置一栏为复位时和复位后预设配置缩写:
 - IE 输入使能
 - WPU 内部弱上拉电阻使能
 - WPD 内部弱下拉电阻使能
 - USB_PU USB 上拉电阻使能
 - USB 管脚(GPIO18 和 GPIO19)默认开启 USB 功能,此时管脚是否上拉由 USB 上拉电阻决定。USB 上拉电阻由 USB_SERIAL_JTAG_DP/DM_PULLUP 控制,具体阻值可通过 USB_SERIAL_JTAG_
 - PULLUP_VALUE 位控制, 详见 <u>《ESP32-C3 技术参考手册》</u> > 章节 USB 串ロ/JTAG 控制器。
 - USB 管脚关闭 USB 功能时,用作普通 GPIO,默认禁用管脚内部弱上下拉电阻,可通过 IO_MUX_FUN_WPU/WPD 配置,详见《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵。
- 6. EFUSE_DIS_PAD_JTAG 的值为
 - Ø 初始默认值,输入使能,内部弱上拉电阻使能 (IE & WPU)
 - 1 输入使能 (IE)
- 7. 输出使能
- 8. 该管脚默认用于给封装内外的 flash 供电。若芯片在封装外部连接 flash 且外接 flash 电源,该电源管脚可用作 GPIO。详细信息请参考详细信息请参考 《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵。
- 9. 管脚 19~管脚 24 未引出至 ESP32-C3FH4AZ 和 ESP32-C3FH4X 芯片,在该芯片中为空管脚。

部分管脚在芯片上电过程中有毛刺,具体见表 2-2。

表 2-2. 芯片上电过程中的管脚毛刺

管脚	毛刺类型 1	典型持续时间 (ns)
MTCK	低电平毛刺	5
MTDO	低电平毛刺	5
GPIO10	低电平毛刺	5
UORXD	低电平毛刺	5

见下页

表 2-2 - 接上页

管脚	毛刺类型 1	典型持续时间 (ns)
GPIO18	高电平毛刺	50000

1低电平毛刺:在持续期间维持低电平输出状态; 高电平毛刺: 在持续期间维持高电平输出状态; 下拉毛刺: 在持续期间维持内部弱下拉状态; 上拉毛刺: 在持续期间维持内部弱上拉状态。

关于高/低电平和上/下拉的相关具体参数,请参考

表 5-4。

2.3 10 管脚

2.3.1 IO MUX 功能

IO MUX 能让一个输入/输出管脚连接多个输入/输出信号。ESP32-C3 的每个 IO 管脚可在表 2-4 IO MUX 管脚功能 列出的三个信号(IO MUX 功能,即 FO-F2)中选择,连接任意一个。

三个信号中:

- 部分源自 GPIO 交换矩阵 (GPIOO、GPIO1等)。GPIO 交换矩阵包含内部信号传输线路,用于映射信号,能令管脚连接几乎任一外设信号。这种映射虽然灵活,但可能影响传输信号的速度,造成延迟。如何通过 GPIO 交换矩阵连接外设信号,详见 《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵。
- 部分直接源自特定外设(**UOTXD、MTCK 等**),包括 UARTO、JTAG、SPIO/1 和 SPI2 详见表 2-3 通过 *IO MUX* 连接的外设信号。

管脚功能	信号	描述
UOTXD	发送数据 (Transmit)	LIADTO 按口
UORXD	接收数据 (Receive)	UARTO 接口
MTCK	测试时钟 (Test clock)	
MTDO	测试数据输出 (Test Data Out)	田工祖学科化的 ITAO 拉豆
MTDI	测试数据输入 (Test Data In)	用于调试功能的 JTAG 接口
MTMS	测试模式选择 (Test Mode Select)	
SPIQ	数据输出 (Data out)	
SPID	数据输入 (Data in)	22 V CDIO /1 校 D
SPIHD	暂停 (Hold)	3.3 V SPIO/1 接口,通过 SPI 总线连接封装内或封
SPIWP	写保护 (Write protect)	装外 flash。支持单线、双线、四线 SPI 模式。详见
SPICLK	时钟 (Clock)	章节 2.6 芯片与 flash 的管脚对应关系
SPICS	片选 (Chip select)	
FSPIQ	数据输出 (Data out)	
FSPID	数据输入 (Data in)	
FSPIHD	暂停 (Hold)	用于快速 SPI 传输的 SPI2 主接口。支持单线、双
FSPIWP	写保护 (Write protect)	线、四线 SPI 模式
FSPICLK	时钟 (Clock)	
FSPICS0	片选 (Chip select)	

表 2-3. 通过 IO MUX 连接的外设信号

表 2-4 IO MUX 管脚功能 列出了管脚的 IO MUX 功能。

表 2-4. IO MUX 管脚功能

管脚	IO MUX /	IO MUX 功能 ^{1, 2, 3}					
序号	GPIO 名 称 ²	FO	类型 ³	F1	类型	F2	类型
4	GPI00	GPI00	I/O/T	GPI00	I/O/T		
5	GPI01	GPI01	I/O/T	GPI01	I/O/T		
6	GPI02	GPI02	I/O/T	GPI02	I/O/T	FSPIQ	I1/O/T
8	GPIO3	GPIO3	I/O/T	GPIO3	I/O/T		
9	GPIO4	MTMS	l1	GPIO4	I/O/T	FSPIHD	I1/O/T

见下页

hts	松こっ 攻工 穴							
管	IO MUX /			IO MUX 功	能 1, 2, 3			
脚					,,,,			
序	GPIO 名		Me wor 3	F4	Mr. and	F0	Me well	
号	称2	FO	类型 ³	F1	类型	F2	类型	
10	GPI05	MTDI	l1	GPI05	I/O/T	FSPIWP	I1/O/T	
12	GPI06	MTCK	l1	GPI06	I/O/T	FSPICLK	I1/O/T	
13	GPI07	MTDO	O/T	GPI07	I/O/T	FSPID	I1/O/T	
14	GPI08	GPI08	I/O/T	GPI08	I/O/T			
15	GPIO9	GPI09	I/O/T	GPIO9	I/O/T			
16	GPIO10	GPI010	I/O/T	GPIO10	I/O/T	FSPICS0	I1/O/T	
18	GPIO11	GPIO11	I/O/T	GPIO11	I/O/T			
19	GPIO12	SPIHD	11/0/T	GPIO12	I/O/T			
20	GPIO13	SPIWP	11/0/T	GPIO13	I/O/T			
21	GPIO14	SPICS0	O/T	GPIO14	I/O/T			
22	GPIO15	SPICLK	O/T	GPIO15	I/O/T			
23	GPIO16	SPID	11/0/T	GPIO16	I/O/T			
24	GPIO17	SPIQ	11/0/T	GPIO17	I/O/T			
25	GPIO18	GPIO18	I/O/T	GPIO18	I/O/T			
26	GPIO19	GPIO19	I/O/T	GPIO19	I/O/T			
27	GPI020	UORXD	l1	GPI020	I/O/T			
28	GPIO21	UOTXD	0	GPIO21	I/O/T			

¹ 加粗表示默认启动模式下的默认管脚功能,详见章节 3.1 芯片启动模式控制。

- ●I-輸入。O-輸出。T-高阻。
- I1 输入;如果该管脚分配了 Fn 以外的功能,则 Fn 的输入信号恒为 1。
- IO 输入; 如果该管脚分配了 Fn 以外的功能,则 Fn 的输入信号恒为 O。

² 高亮 的单元格,详见章节 2.3.3 GPIO 的限制。

 $^{^{3}}$ 每个 IO MUX 功能 (Fn, n = 0 ~ 2) 均对应一个 "类型"。以下是各个 "类型"的含义:

2.3.2 模拟功能

部分 IO 管脚具有**模拟功能**,可用于任意功耗模式下的模拟外设(如 ADC)。模拟功能连接内部模拟信号,详见表 2-5 连接模拟功能的模拟信号。

表 2-5. 连接模拟功能的模拟信号

管脚功能	信号	描述
ADCCH	ADC1/2 通道 信号	ADC1/2 接口
USB_D-	数据 - (Data -)	LICD DE CALLACA THAN
USB_D+	数据 + (Data +)	USB 串口/JTAG 功能
XTAL_32K_N	负极性时钟信号 (Negative clock signal)	连接 ESP32-C3 无源或有源晶振的外部 32
XTAL_32K_P	正极性时钟信号 (Positive clock signal)	kHz 时钟输入/输出

表 2-6 模拟功能 列出了 IO 管脚的模拟功能。

表 2-6. 模拟功能

管脚	模拟	模拟功能 2			
序号	IO 名称 ^{1, 2}	FO	F1		
4	GPI00	XTAL_32K_P	ADC1_CHO		
5	GPIO1	XTAL_32K_N	ADC1_CH1		
6	GPIO2		ADC1_CH2		
8	GPIO3		ADC1_CH3		
9	GPIO4		ADC1_CH4		
10	GPI05		ADC2_CHO		
25	GPIO18	USB_D-			
26	GPIO19	USB_D+			

¹ 加粗表示默认启动模式下的默认管脚功能,详见章节 3.1 芯片启动模式控制。

² 高亮 的单元格,详见章节 2.3.3 GPIO 的限制。

2.3.3 GPIO 的限制

ESP32-C3 的所有 IO 管脚都有 GPIO 功能。不过,这些 IO 管脚是多功能管脚,可以根据需求配置不同的功能,也有一些使用限制,需要特别注意。

本章节的表格中,下列管脚功能具有 红色 或 黄色 高亮,是重要的管脚功能,所属 IO 管脚用作 GPIO / GPIO 时需谨慎:

- IO 管脚 用于与封装内 flash 通讯,不建议作其他用途。更多信息,详见章节 2.6 芯片与 flash 的管脚对应关系。
- IO 管脚 具有以下重要功能之一:
 - Strapping 管脚 启动时逻辑电平需为特定值。详见章节 3 启动配置项。

说明:

Strapping 管脚在管脚名称处高亮,而非管脚功能。

- USB_D+/-- 默认情况下连接 USB 串口/JTAG 控制器。此类管脚需重新配置,方可用作 GPIO。
- JTAG 接口 通常用于调试功能。详见表 2-3 通过 IO MUX 连接的外设信号。要释放这类管脚,可用《ESP32-C3 技术参考手册》 USB 串口/JTAG 控制器的 USB_D+/- 功能代替。
- UART接口 通常用于调试功能。详见表 2-3 通过 IO MUX 连接的外设信号。
- VDD_SPI 默认为 flash 的供电管脚,仅在 flash 连接外部电源时可用作 GPIO。

更多关于管脚分配的信息,可见章节 2.3.4 外设管脚分配 和 附录 A - ESP32-C3 管脚总览。

2.3.4 外设管脚分配

ESP32-C3 芯片可以分配给外设的管脚包括:

- 固定管脚,通过 IO MUX 直接连接到外设信号
- 任意 GPIO 管脚,通过 GPIO 交换矩阵映射到外设信号

如果外设只支持 IO MUX,则只能分配给固定管脚。这类外设包括 USB 串口/JTAG、JTAG、ADC1 和 ADC2。如果外设同时支持 IO MUX 和 GPIO 交换矩阵,则可以根据用户需求使用固定管脚或任意 GPIO 管脚。

说明:

- 连接到 IO MUX 管脚的外设信号,请参考章节 2.3.1 IO MUX 功能。
- 可以分配到 GPIO 管脚的外设信号,请参考
 《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵 > 章节外设管脚列表。

表 2-7 外设管脚分配 根据优先级高亮了可以分配给外设接口的管脚:

- 优先级 1: 固定 IO MUX 管脚,直接连接外设信号。
- 优先级 2: GPIO 交换矩阵管脚,没有章节 2.3.3 GPIO 的限制 所述的限制。
- 优先级 3: GPIO 交换矩阵管脚, 具有章节 2.3.3 GPIO 的限制 描述的重要功能之一:
 - GPIO2、GPIO8、GPIO9: Strapping 管脚。
 - GPIO18、GPIO19: USB 串口/JTAG 接口。
 - GPIO4、GPIO5、GPIO6、GPIO7: JTAG 接口。
 - GPIO20、GPIO21: UARTO 接口。
 - GPIO11: VDD_SPI 管脚。该管脚默认用于给 flash 供电,仅在 flash 连接外部电源时可用作 GPIO。
- 优先级 4: 分配给 flash 的 GPIO 交换矩阵管脚, 详见章节 2.3.3 GPIO 的限制。

表 2-7. 外设管脚分配

管脚序号	管脚名称	USB Serial/JTAG	JTAG	ADC1	ADC2	UARTO 1	SPI0/1 1	SPI2 ¹	UART1	I2C	128	TWAI	LED PWM	RMT
1	LNA_IN													
2	VDD3P3													
3	VDD3P3													
4	XTAL_32K_P			ADC1_CHO		GPI00	GPI00	GPI00	GPI00	GPI00	GPI00	GPI00	GPI00	GPI00
5	XTAL_32K_N			ADC1_CH1		GPI01	GPI01	GPI01	GPI01	GPI01	GPI01	GPI01	GPI01	GPI01
6	GPI02			ADC1_CH2		GPI02	GPI02	FSPIQ	GPI02	GPI02	GPI02	GPI02	GPI02	GPI02
7	CHIP_EN													
8	GPIO3			ADC1_CH3		GPI03	GPIO3	GPI03	GPI03	GPI03	GPI03	GPI03	GPIO3	GPI03
9	MTMS		MTMS	ADC1_CH4		GPIO4	GPIO4	FSPIHD	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPI04
10	MTDI		MTDI		ADC2_CHO	GPI05	GPI05	FSPIWP	GPI05	GPI05	GPI05	GPI05	GPI05	GPI05
11	VDD3P3_RTC													
12	MTCK		MTCK			GPI06	GPI06	FSPICLK	GPI06	GPI06	GPI06	GPI06	GPI06	GPI06
13	MTDO		MTDO			GPI07	GPI07	FSPID	GPI07	GPI07	GPI07	GPI07	GPI07	GPI07
14	GPIO8					GPI08	GPI08	GPI08	GPI08	GPI08	GPI08	GPI08	GPI08	GPI08
15	GPIO9					GPI09	GPI09	GPI09	GPI09	GPI09	GPI09	GPI09	GPIO9	GPI09
16	GPIO10					GPIO10	GPIO10	FSPICS0	GPIO10	GPIO10	GPIO10	GPIO10	GPIO10	GPIO10
17	VDD3P3_CPU													
18	VDD_SPI					GPIO11	GPIO11	GPIO11	GPIO11	GPIO11	GPIO11	GPIO11	GPIO11	GPIO11
19	SPIHD					GPIO12	SPIHD	GPI012	GPI012	GPI012	GPIO12	GPIO12	GPIO12	GPIO12
20	SPIWP					GPIO13	SPIWP	GPIO13	GPI013	GPIO13	GPIO13	GPIO13	GPIO13	GPI013
21	SPICS0					GPIO14	SPICS0	GPIO14	GPIO14	GPIO14	GPIO14	GPIO14	GPIO14	GPIO14
22	SPICLK					GPI015	SPICLK	GPIO15	GPI015	GPIO15	GPI015	GPIO15	GPIO15	GPI015
23	SPID					GPI016	SPID	GPI016	GPI016	GPI016	GPI016	GPI016	GPIO16	GPI016
24	SPIQ					GPIO17	SPIQ	GPIO17	GPIO17	GPIO17	GPIO17	GPIO17	GPIO17	GPI017
25	GPIO18	USB_D-				GPIO18	GPIO18	GPIO18	GPIO18	GPIO18	GPIO18	GPIO18	GPIO18	GPI018
26	GPIO19	USB_D+				GPIO19	GPIO19	GPIO19	GPI019	GPI019	GPI019	GPI019	GPIO19	GPIO19
27	UORXD					UORXD	GPI020	GPI020	GPI020	GPI020	GPI020	GPI020	GPI020	GPI020
28	UOTXD					UOTXD	GPIO21	GPIO21	GPI021	GPIO21	GPI021	GPIO21	GPIO21	GPI021
29	XTAL_N													
30	XTAL_P													
31	VDDA													
32	VDDA													
33	GND													

¹ UARTO 接口、SPIO/1 接口、SPI2 接口通过 IO MUX 直接连接 固定管脚 的外设信号也可通过 GPIO 交换矩阵连接至任意 GPIO 管脚。

2.4 模拟管脚

表 2-8. 模拟管脚

管脚	管脚	管脚	管脚
序号	名称	类型	功能
1	LNA_IN	1/0	低噪声放大器 (RF LNA) 输入/输出信号
7	CHIP EN		高电平: 芯片使能 (上电);
/	CHIE_LIN	'	低电平: 芯片关闭 (掉电);
			注意不能让 CHIP_EN 管脚浮空
29	XTAL_N	_	连接芯片有源晶振或无源晶振的外部时钟输入/输出。
30	XTAL_P	_	P/N 指差分时钟正极/负极端。

2.5 电源

2.5.1 电源管脚

表 2-9 电源管脚 列举了为芯片供电的电源管脚。

表 2-9. 电源管脚

管脚	管脚		电源 1,2	
序号	名称	方向	电源域 / 其他	IO 管脚 ³
2	VDD3P3	输入	模拟电源域	
3	VDD3P3	输入	模拟电源域	
11	VDD3P3_RTC	输入	RTC 和部分数字电源域	RTC IO
17	VDD3P3_CPU	输入	数字电源域	数字 IO
18	VDD SPI 4	输入	封装内 flash (备用电源线)	
10	VDD_3PI	输出	封装内和封装外 flash	
31	VDDA	输入	模拟电源域	
32	VDDA	输入	模拟电源域	
33	GND	_	外部接地	

¹请结合章节 2.5.2 电源管理 阅读。

2.5.2 电源管理

电源管理如图 2-3 ESP32-C3 电源管理 所示。

芯片上的元器件通过电压稳压器供电。

表 2-10. 电压稳压器

电压稳压器	输出	电源
数字	1.1 V	数字电源域
低功耗	1.1 V	RTC 电源域

² 电压、电流的推荐值和最大值,详见章节5.1绝对最大额定值和章节5.2建议工作条件。

³ 数字 IO 管脚即由 VDD3P3_CPU 供电的管脚,RTC IO 管脚即由 VDD3P3_RTC 供电的管脚,如图 2-3 ESP32-C3 电源管理 所示,也可参考表 2-1 管脚概述 > 供电管脚一栏。

⁴配置 VDD_SPI 为输入或输出,请参考 《ESP32-C3 技术参考手册》>章节低功耗管理。

图 2-3. ESP32-C3 电源管理

2.5.3 芯片上电和复位

芯片上电后,其电源轨需要一点时间方可稳定。之后,用于上电和复位的管脚 CHIP_EN 拉高,激活芯片。更多关于 CHIP_EN 及上电和复位时序的信息,请见图 2-4 和表 2-11。

图 2-4. 上电和复位时序参数图

表 2-11. 上电和复位时序参数说明

参数	说明	最小值 (µs)
	CHIP_EN 管脚拉高激活芯片前,VDDA、VDD3P3、VDD3P3_RTC	50
$ _{STBL}$	和 VDD3P3_CPU 达到稳定所需的时间	50
+	CHIP_EN 电平低于 V_{IL_nRST} (具体数值参考表 5-4) 从而复位芯	50
t_{RST}	片的时间	50

2.6 芯片与 flash 的管脚对应关系

表 2-12 列出了所有 SPI 模式下芯片与 flash 的管脚对应关系。

封装内带有 flash 的芯片变型(见表 1-1 ESP32-C3 系列芯片对比)与封装内 flash 连接的管脚取决于所使用的 SPI 模式。

封装外 flash 的推荐连接管脚也可参照下表。

更多关于 SPI 控制器的信息,可参考章节 4.2.1.2 SPI 控制器。

注意:

不建议将连接 flash 的管脚用于其他用途。

表 2-12. 芯片与封装内 flash 的管脚对应关系

管脚 序号	管脚名称	Single SPI Flash	Dual SPI Flash	Quad SPI / QPI Flash
22	SPICLK	CLK	CLK	CLK
21	SPICSO 1	CS#	CS#	CS#
23	SPID	DI	DI	DI
24	SPIQ	DO	DO	DO
20	SPIWP	WP#	WP#	WP#
19	SPIHD	HOLD#	HOLD#	HOLD#

¹ CSO 用于封装内 flash

3 启动配置项

芯片在上电或硬件复位时,可以通过 Strapping 管脚 和 eFuse 参数 配置如下启动参数,无需微处理器的参与:

• 芯片启动模式

- Strapping 管脚: GPIO2、GPIO8 和 GPIO9

• ROM 日志打印

- Strapping 管脚: GPIO8

- eFuse 参数: EFUSE_UART_PRINT_CONTROL 和 EFUSE_USB_PRINT_CHANNEL

上述 eFuse 位的默认值均为 0,也就是说没有烧写过。eFuse 只能烧写一次,一旦烧写为 1,便不能恢复为 0。有关烧写 eFuse 的信息,请参考 _《ESP32-C3 技术参考手册》_ > 章节 eFuse 控制器。

上述 strapping 管脚如果没有连接任何电路或连接的电路处于高阻抗状态,则其默认值(即逻辑电平值)取决于管脚内部弱上拉/下拉电阻在复位时的状态。

表 3-1. Strapping 管脚的默认配置

Strapping 管脚	默认配置	值
GPI02	浮空	-
GPIO8	浮空	-
GPIO9	弱上拉	1

要改变 strapping 管脚的值,可以连接外部下拉/上拉电阻。如果 ESP32-C3 用作主机 MCU 的从设备, strapping 管脚的电平也可通过主机 MCU 控制。

所有 strapping 管脚都有锁存器。系统复位时,锁存器采样并存储相应 strapping 管脚的值,一直保持到芯片掉电或关闭。锁存器的状态无法用其他方式更改。因此,strapping 管脚的值在芯片工作时一直可读取,strapping 管脚在芯片复位后作为普通 IO 管脚使用。

Strapping 管脚的信号时序需遵循表 3-2 和图 3-1 所示的 建立时间和 保持时间。

表 3-2. Strapping 管脚的时序参数说明

参数	: 说明	最小值 (ms)
t	建立时间,即拉高 CHIP_EN 激活芯片前,电源轨达到稳定所需的	
$ ^{I_{SU}}$	时间	
+	保持时间,即 CHIP_EN 已拉高、strapping 管脚变为普通 IO 管脚	2
$ t_H $	保持时间,即 CHIP_EN 已拉高、strapping 管脚变为普通 IO 管脚开始工作前,可读取 strapping 管脚值的时间	S

图 3-1. Strapping 管脚的时序参数图

3.1 芯片启动模式控制

复位释放后, GPIO2、GPIO8 和 GPIO9 共同决定启动模式。详见表 3-3 芯片启动模式控制。

表 3-3. 芯片启动模式控制

启动模式	GPI02 ²	GPI08	GPI09
SPI boot 模式	1	任意值	1
Joint download boot 模式 3	1	1	0

¹加粗表示默认值和默认配置。

- USB-Serial-JTAG Download Boot
- UART Download Boot

在 SPI Boot 模式下, ROM 引导加载程序通过从 SPI flash 中读取程序来启动系统。

在 Joint Download Boot 模式下,用户可通过 UARTO 或 USB 接口将二进制文件下载至 flash,或将二进制文件 下载至 SRAM 并运行 SRAM 中的程序。

除了 SPI Boot 和 Joint Download Boot 模式, ESP32-C3 还支持 SPI Download Boot 模式, 详见 《ESP32-C3 技术参考手册》 > 章节 芯片 Boot 控制。

3.2 ROM 日志打印控制

系统启动过程中, ROM 代码日志可打印至:

- (默认) UARTO 和 USB 串口/JTAG 控制器
- UARTO
- USB 串口/JTAG 控制器

EFUSE_UART_PRINT_CONTROL 和 GPIO8 控制 UARTO ROM 日志打印,如表 3-4 UARTO ROM 日志打印控制 所 示。

² GPIO2 实际不控制 SPI Boot 和 Joint Download Boot 模式, 但由于管脚毛刺建议将此管脚上拉。

³ Joint Download Boot 模式下支持以下下载方式:

表 3-4. UARTO ROM 日志打印控制

UARTO ROM 日志打印	EFUSE_UART_PRINT_CONTROL	GPI08
使能	0	忽略
	1	0
	2	1
关闭	1	1
	2	0
	3	忽略

¹ 加粗表示默认值和默认配置。

EFUSE_USB_PRINT_CHANNEL 控制 USB 串ロ/JTAG 控制器 ROM 日志打印,如表 3-5 USB 串ロ/JTAG ROM 日 志打印控制 所示。

表 3-5. USB 串口/JTAG ROM 日志打印控制

USB 串口/JTAG ROM 日志打印控制	EFUSE_DIS_USB_SERIAL_JTAG ²	EFUSE_USB_PRINT_CHANNEL
使能	0	0
关闭	0	1
	1	忽略

¹ 加粗表示默认值和默认配置。

 $^{^2}$ EFUSE_DIS_USB_SERIAL_JTAG 控制是否关闭 USB 串口/JTAG。

4 功能描述

4.1 系统

本章节描述了芯片操作的核心部分,包括微处理器、存储器组织结构、系统组件和安全功能。

4.1.1 微处理器和主控

本章节描述了芯片内的核心处理单元及其功能。

4.1.1.1 高性能处理器

ESP32-C3 系列芯片搭载低功耗 RISC-V 32 位单核处理器, 具有以下特性:

- 四级流水线架构, 支持 160 MHz 的时钟频率
- RV32IMC ISA
- 支持 32 位乘法器、32 位除法器
- 支持最多 32 个向量中断, 共7个优先级
- 支持最多8个硬件断点/观察点
- 支持最多 16 个 PMP 区域
- 用于调试的 JTAG 接口

更多信息,请参考《ESP32-C3 技术参考手册》>章节 高性能处理器。

4.1.1.2 GDMA 控制器

ESP32-C3 系列芯片包含一个六通道的通用 DMA 控制器 (简称 GDMA),包括三个发送通道和三个接收通道,每个通道之间相互独立。这六个通道被具有 DMA 功能的外设所共享,通道之间支持可配置固定优先级。

通用 DMA 控制器基于链表来实现对数据收发的控制,并支持外设与存储器之间及存储器与存储器之间的高速数据传输。每个通道支持访问片内 RAM。

ESP32-C3 系列芯片中有六个外设具有 DMA 功能,这六个外设是 SPI2、UHCIO、I2S、AES、SHA 和 ADC。

更多信息,请参考《ESP32-C3 技术参考手册》 > 章节 GDMA 控制器 (DMA)。

4.1.2 存储器组织结构

本章节描述了存储器布局、解释数据的存储、访问和管理方式、以实现高效的操作。

ESP32-C3 的地址映射结构如图 4-1 所示。

图 4-1. 地址映射结构

说明:

图中灰色背景标注的地址空间不可用。

4.1.2.1 内部存储器

ESP32-C3 系列芯片片上存储包括:

- 384 KB 的 ROM: 用于程序启动和内核功能调用
- 400 KB 片上 SRAM: 用于数据和指令存储,时钟频率可配置,最大 160 MHz。400 KB SRAM 中,有 16 KB 配置为 cache 专用
- RTC 快速存储器: 为 8 KB 的 SRAM, 可被主 CPU 访问, 在 Deep-sleep 模式下可以保存数据
- 4 Kbit 的 eFuse: 其中 1792 位保留给您使用,例如用于存储密钥和设备 ID
- 封装内 flash

- flash 大小详见章节 1 ESP32-C3 系列型号对比
- 至少10万次编程/擦除周期
- 至少 20 年数据保留时间
- 默认最大时钟频率 80 MHz

更多信息,请参考《ESP32-C3 技术参考手册》>章节系统和存储器。

4.1.2.2 封装外 flash

ESP32-C3 系列芯片支持在芯片封装外连接多个 SPI 、Dual SPI、Quad SPI 和 QPI flash。

CPU 的指令空间、只读数据空间可以映射到封装外 flash, 封装外 flash 可以最大支持 16 MB。ESP32-C3 系列芯片支持基于 XTS-AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。

通过高速缓存, ESP32-C3 系列芯片一次最多可以同时有:

- 8 MB 的指令空间以 64 KB 的块映射到 flash, 支持 8 位、16 位和 32 位读取。
- 8 MB 的数据空间以 64 KB 的块映射到 flash, 支持 8 位、16 位和 32 位读取。

说明:

ESP32-C3 系列芯片启动完成后,软件可以自定义封装外 flash 到 CPU 地址空间的映射。

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节系统和存储器。

4.1.2.3 Cache

ESP32-C3 系列芯片采用八路组相连只读 cache 结构, 具有以下特性:

- cache 的大小为 16 KB
- cache 的块大小为 32 字节
- 支持 pre-load 功能
- 支持 lock 功能
- 支持关键字优先 (critical word first) 和提前重启 (early restart)

更多信息,请参考《ESP32-C3 技术参考手册》>章节系统和存储器。

4.1.2.4 eFuse 控制器

eFuse 存储器是只可编程一次的存储器,用于存储参数内容和用户数据。ESP32-C3 芯片的 eFuse 控制器用于 烧写和读取 eFuse 存储器。

特性

- 烧写保护可配置
- 读取保护可配置
- 使用多种硬件编码方式保护参数内容

更多信息,请参考《ESP32-C3 技术参考手册》>章节 eFuse 控制器。

4.1.3 系统组件

本章节描述了对系统的整体功能和控制起到重要作用的组件。

4.1.3.1 IO MUX 和 GPIO 交换矩阵

ESP32-C3 系列芯片有 22 或 16 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能。除作为数字信号管脚外,部分 GPIO 管脚也可配置为模拟功能管脚,比如 ADC 等管脚。

所有 GPIO 都可选择内部上拉/下拉,或设置为高阻。GPIO 配置为输入管脚时,可通过读取寄存器获取其输入值。输入管脚也可经设置产生边缘触发或电平触发的 CPU 中断。数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲器。这些管脚可以复用作其他功能,例如 UART、SPI 等。当芯片低功耗运行时, GPIO可设定为保持状态。

IO MUX 和 GPIO 交换矩阵用于将信号从外设传输至 GPIO 管脚。两者共同组成了芯片的 IO 控制。利用 GPIO 交换矩阵,可配置外设模块的输入信号来源于任何的 IO 管脚,并且外设模块的输出信号也可连接到任意 IO 管脚。

更多信息,请参考《ESP32-C3 技术参考手册》 > 章节 IO MUX 和 GPIO 交换矩阵。

4.1.3.2 复位

ESP32-C3 芯片提供四种级别的复位方式,分别是 CPU 复位、内核复位、系统复位和芯片复位。除芯片复位外,其他复位方式不影响片上内存存储的数据。

特性

- 支持四种复位等级:
 - CPU 复位: 复位 CPU 核。复位释放后,程序将从 CPU Reset Vector 开始执行
 - 内核复位: 复位除 RTC 以外的其它数字系统,包括 CPU、外设、Wi-Fi、Bluetooth® LE 及数字 GPIO
 - 系统复位: 复位包括 RTC 在内的整个数字系统
 - 芯片复位: 复位整个芯片
- 支持软件复位和硬件复位:
 - 软件复位: CPU 配置相关寄存器可触发软件复位
 - 硬件复位: 硬件复位直接由硬件电路触发

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节复位和时钟。

4.1.3.3 时钟

更多信息,请参考《ESP32-C3 技术参考手册》>章节复位和时钟。

CPU 时钟

CPU 时钟有三种可能的时钟源:

• 外置主晶振时钟

- 快速 RC 振荡器时钟 (通常为 17.5 MHz, 频率可调节)
- PLL 时钟

应用程序可以在外置主晶振、PLL 时钟和快速 RC 振荡器时钟时钟中选择一个作为时钟源。根据不同的应用程序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。CPU 一旦发生复位后,CPU 的时钟源默认选择为外置主晶振时钟,且分频系数为 2。

说明:

ESP32-C3 必须有外部主晶振时钟才可运行。

RTC 时钟

RTC 慢速时钟应用于 RTC 计数器、RTC 看门狗和低功耗控制器,有三种可能的时钟源:

- 外置低速 (32 kHz) 晶振时钟
- 内置慢速 RC 振荡器 (通常为 136 kHz, 频率可调节)
- 内置快速 RC 振荡器分频时钟(由内置快速 RC 振荡器时钟经 256 分频生成)

RTC 快速时钟应用于 RTC 外设和传感器控制器,有 2 种可能的时钟源:

- 外置主晶振二分频时钟
- 内置快速 RC 振荡器的 N 分频时钟(通常为 17.5 MHz, 频率可调节)

4.1.3.4 中断矩阵

ESP32-C3 中断矩阵将任一外部中断源单独映射到 ESP-RISC-V CPU 的任一外部中断上,以便在外设中断信号产生后,及时通知 CPU 进行处理。

特性

- 接收 62 个外部中断源作为输入
- 生成 31 个 CPU 的外部中断作为输出
- 支持查询外部中断源当前的中断状态
- 支持配置 CPU 的中断优先级、中断类型、中断阈值以及中断使能

更多信息,请参考《ESP32-C3 技术参考手册》>章节中断矩阵。

4.1.3.5 系统定时器

ESP32-C3 系列芯片内置 52 位系统定时器,该系统定时器包含两个 52 位的时钟计数器和三个报警比较器,具有以下功能:

- 时钟计数器的频率固定为 16 MHz
- 三个报警比较器根据不同的报警值可产生三个独立的中断
- 两种报警模式: 单次特定报警值报警和周期性报警
- 支持设置 52 位的单次特定报警值和 26 位的周期性报警值

- 计数器值重新加载
- 支持当 CPU 暂停或处于 OCD 模式时, 时钟计数器也暂停

更多信息,请参考《ESP32-C3 技术参考手册》>章节系统定时器。

4.1.3.6 电源管理单元

ESP32-C3 有一个先进的电源管理单元 (PMU),可以灵活地给芯片的不同电源域供电,在芯片性能、功耗和唤醒延迟之前取得最佳平衡。

配置 PMU 的程序较为复杂。为针对典型场景简化电源管理, ESP32-C3 具有以下**预设功耗模式**, 可给不同电源域组合供电:

- Active 模式 CPU、RF 电路和所有外设均上电。芯片可以处理数据、接收、发射和侦听信号。
- Modem-sleep 模式 CPU 上电,可降低时钟频率。RF 电路在需要时间歇性开启,因此无线可保持连接。
- Light-sleep 模式 CPU 停止工作,可选择上电。芯片可由所有唤醒机制唤醒,包括 MAC、RTC 定时器或外部中断。无线可保持连接。部分数字外设可选择关闭。
- Deep-sleep 模式 仅 RTC 上电。无线连接数据存储在 RTC 存储器中。

设备在不同功耗模式下的功耗,请参考章节 5.6 功耗特性。

图 4-2 模块和电源域 和表 4-1 列举了 电源域 和 电源子域 下属的芯片模块。

图 4-2. 模块和电源域

电源	RTC	数字	校字 模拟							
功耗 模式			СРИ	可选 数字 外设	无线 数字 电路		RC_FAST_ CLK	XTAL_ CLK	PLL	RF 电路
Active	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Modem-sleep	ON	ON	ON	ON	ON ¹	ON	ON	ON	ON	OFF ²
Light-sleep	ON	ON	OFF ¹	ON ¹	OFF ¹	ON	OFF	OFF	OFF	OFF ²
Deep-sleep	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF

表 4-1. 模块和电源域

4.1.3.7 定时器组

ESP32-C3 系列芯片内置两个54位通用定时器,具有16位分频器和54位可自动重载的向上/向下计时器。

定时器具有如下功能:

- 16 位时钟预分频器, 分频系数为 1-65536
- 54 位时基计数器可配置成递增或递减
- 可读取时基计数器的实时值
- 暂停和恢复时基计数器
- 可配置的报警产生机制
- 电平触发中断

更多信息,请参考《ESP32-C3 技术参考手册》>章节 定时器组 (TIMG)。

4.1.3.8 看门狗定时器

更多信息,请参考《ESP32-C3 技术参考手册》>章节看门狗定时器。

数字看门狗定时器

ESP32-C3 系列芯片中有三个数字看门狗定时器:两个定时器组中各一个(称作主系统看门狗定时器,缩写为 MWDT), RTC 模块中一个(称作 RTC 看门狗定时器,缩写为 RWDT)。

在引导加载 flash 固件期间, RWDT 和定时器组 O 中的 MWDT 会自动使能, 以检测引导过程中发生的错误, 并 恢复运行。

数字看门狗定时器具有如下特性:

- 四个阶段,每个阶段都可配置超时时间。每阶段都可单独配置、使能和关闭。
- 如在某个阶段发生超时, MWDT 会采取中断、CPU 复位和内核复位三种超时动作中的一种, RWDT 会采取 中断、CPU复位、内核复位和系统复位四种超时动作中的一种。
- 保护 32 位超时计数器
- 防止 RWDT 和 MWDT 的配置被误改。

¹可配置,详见 TRM。

² 若无线数字电路上电,RF 电路可在内部操作需要时间歇性开启,确保无线保持连

flash 启动保护
 如果在预定时间内 SPI flash 的引导过程没有完成,看门狗会重启整个主系统。

模拟看门狗定时器

ESP32-C3 系列芯片中还有一个模拟看门狗定时器: RTC 超级看门狗定时器 (SWD)。超级看门狗是模拟域的超低功耗电路,可以防止系统在数字电路异常状态下运行,并在必要时复位系统。

SWD 具有如下特性:

- 超低功耗
- 用中断提醒 SWD 即将超时
- 软件有多种专用的方法喂 SWD, 让 SWD 监控整个操作系统的工作状态

4.1.3.9 权限控制

ESP32-C3 芯片内置了一个权限控制模块 (Permission Controller, PMS),可以将硬件资源(内存和外设)分配给不同环境,从而实现特权环境和非特权环境的分离。

特性

- 支持特权环境和非特权环境下的独立权限管理
- 支持片内存储器的权限管理,包括:
 - CPU 对片内存储器的访问权限控制
 - GDMA 对片内存储器的访问权限控制
- 支持片外存储器的权限管理
 - CPU 通过 SPI1 访问外部存储器的权限控制
 - CPU 通过 Cache 访问外部存储器的权限控制
- 支持外设空间的权限管理
 - 各外设空间均支持独立的权限控制
 - 支持非对齐访问的监测
- 支持自定义地址段权限管理
- 内置权限寄存器锁保护机制
- 内置权限监测中断机制

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节权限控制 (PMS)。

4.1.3.10 系统寄存器

ESP32-C3 芯片中的系统寄存器用于配置多种辅助芯片功能。

特性

- 控制系统和存储器
- 控制时钟
- 控制软件中断
- 控制低功耗管理寄存器
- 控制外设时钟门控和复位

更多信息,请参考《ESP32-C3 技术参考手册》>章节系统寄存器 (HP_SYSREG)。

4.1.3.11 辅助调试

辅助调试可以帮助在软件调试过程中定位错误和问题,提供各种监视能力和日志记录功能,以帮助高效地识别 和解决软件错误。

特性

- 读写监测: 监测 CPU 总线是否在限定的地址范围内进行读写操作, 若发生读写操作则触发中断。
- 栈指针 (SP) 监测: 监测栈指针是否超出限定的范围, 若超出范围则产生中断。
- 程序计数器 (PC) 记录:记录 PC,可以获得上一次 CPU 复位时的 PC 值。
- **总线访问记录**:记录总线访问信息,当 CPU 或者 DMA 写了某个特殊值时,会记录此次写行为的地址和 PC 值,并将这些信息记录到 SRAM 中。

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节辅助调试 (ASSIST_DEBUG)。

4.1.4 加密和安全组件

本章节描述了集成在芯片中用于保护数据和操作的安全功能。

4.1.4.1 AES 加速器

ESP32-C3 内置 AES(高级加密标准)硬件加速器可使用 AES 算法,完成数据的加解密运算,具有 Typical AES 和 DMA-AES 两种工作模式。整体而言,相比基于纯软件的 AES 运算,AES 硬件加速器能够极大地提高运算速度。

特性

- Typical AES 工作模式
 - AES-128/AES-256 加解密运算
- DMA-AES 工作模式
 - AES-128/AES-256 加解密运算
 - 块(加密)模式
 - * ECB (Electronic Codebook)
 - * CBC (Cipher Block Chaining)

- * OFB (Output Feedback)
- * CTR (Counter)
- * CFB8 (8-bit Cipher Feedback)
- * CFB128 (128-bit Cipher Feedback)
- 中断发生

更多信息,请参考《ESP32-C3 技术参考手册》>章节 AES 加速器 (AES)。

4.1.4.2 HMAC 加速器

HMAC 加速器 (HMAC) 模块用于使用 SHA-256 哈希算法和 RFC 2104 中描述的密钥计算信息认证码 (MAC)。它提供了硬件支持的 HMAC 计算,显著降低了软件复杂性,提高了性能。

特性

- 标准 HMAC-SHA-256 算法
- HMAC 计算的 hash 结果仅支持可配的硬件外设访问(下行模式)
- 兼容挑战-应答身份验证算法
- 生成数字签名外设所需的密钥(下行模式)
- 重启软禁用的 JTAG (下行模式)

更多信息,请参考《ESP32-C3 技术参考手册》>章节 HMAC 加速器。

4.1.4.3 RSA 加速器

RSA 加速器可为多种运用于"RSA 非对称式加密演算法"的高精度计算提供硬件支持,能够极大地降低此类运算的运行时间和软件复杂度。与纯软件 RSA 算法相比,硬件 RSA 加速器的运算速度更快。

特性

- 大数模幂运算(支持两个加速选项),运算子位宽最高支持3072位
- 大数模乘运算,运算子位宽最高支持 3072 位
- 大数乘法,运算子位宽最高支持 1536 位
- 多种运算子位宽
- 计算完成时触发中断

更多信息,请参考《ESP32-C3 技术参考手册》>章节 RSA 加速器。

4.1.4.4 SHA 加速器

SHA(安全哈希算法)硬件加速器可完成 SHA 运算,具有 Typical SHA 和 DMA-SHA 两种工作模式。整体而言,相比基于纯软件的 SHA 运算,SHA 硬件加速器能够极大地提高运算速度。

特性

- 支持 FIPS PUB 180-4 规范中的以下运算标准
 - SHA-1 运算
 - SHA-224 运算
 - SHA-256 运算
- 提供两种工作模式
 - Typical SHA 工作模式
 - DMA-SHA 工作模式
- 允许插入 (interleaved) 功能(仅限 Typical SHA 工作模式)
- 允许中断功能(仅限 DMA-SHA 工作模式)

更多更多信息,请参考《ESP32-C3 技术参考手册》 > 章节 SHA 加速器 (SHA)。

4.1.4.5 数字签名

ESP32-C3 芯片中的数字签名 (DS) 模块可通过硬件加速高效生成基于 RSA 的数字签名。

特性

- RSA 数字签名支持密钥长度最大为 3072 位
- 私钥数据已加密,并且只能由 DS 读取
- SHA-256 摘要用于保护私钥数据免遭攻击者篡改

更多更多信息,请参考《ESP32-C3 技术参考手册》 > 章节数字签名 (DS)。

4.1.4.6 片外存储器加密与解密

ESP32-C3 芯片中的片外存储器加密与解密 (XTS_AES) 模块为用户在外部存储器 (flash) 中存储的应用程序代码和数据提供安全保障。

特性

- 通用 XTS-AES 算法, 符合 IEEE Std 1619-2007
- 手动加密过程需要软件参与
- 高速的自动解密过程, 无需软件参与
- 寄存器配置、eFuse 参数、启动 (boot) 模式共同决定加解密功能

更多信息,请参考 《ESP32-C3 技术参考手册》 > 章节片外存储器加密与解密 (XTS_AES)。

4.1.4.7 随机数生成器

ESP32-C3 中的随机数生成器 (RNG) 是一个真随机数生成器,从物理过程中生成用于加密操作的 32 位随机数。

特性

- 随机数发生器的熵源
 - SAR ADC、高速 ADC 两者的热噪声
 - 异步时钟不匹配

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节随机数生成器 (RNG)。

4.2 外设

本章节介绍了芯片上的外设接口,包括扩展芯片功能的通信接口和片上传感器。

4.2.1 通讯接口

本章节介绍了芯片与外部设备和网络进行通信和交互的接口。

4.2.1.1 UART 控制器

ESP32-C3 系列芯片有两个 UART 接口,即 UARTO 和 UART1,支持异步通信(RS232 和 RS485)和 IrDA,通信 速率可达到 5 Mbps。UART 支持 CTS 和 RTS 信号的硬件流控以及软件流控(XON 和 XOFF)。两个 UART 接口 通过共用的 UHCIO 接口与 GDMA 相连,均可被 GDMA 访问或者 CPU 直接访问。

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节 UART 控制器 (UART, LP_UART)。

管脚分配

UARTO 接口,连接发送和接收信号 (UOTXD and UORXD) 的管脚通过 IO MUX 与 GPIO21 ~ GPIO20 复用。其他信号可以通过 GPIO 交换矩阵到任意 GPIO。

更多关于管脚分配的信息,请参考 章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.2 SPI 控制器

ESP32-C3 具有以下 SPI 接口:

- SPIO, 供 ESP32-C3 的 GDMA 控制器与 Cache 访问封装内或封装外 flash
- SPI1, 供 CPU 访问封装内或封装外 flash
- SPI2, 通用 SPI 控制器, 通过 GDMA 分配 DMA 通道进行访问

SPIO 和 SPI1 特性

- 支持 SPI、Dual SPI、Quad SPI、QPI 模式
- 时钟频率可配置, STR 模式下最高可达 120 MHz
- 数据传输以字节为单位

SPI2 特性

- 支持主机或从机模式
- 通过 GDMA 分配 DMA 通道进行访问
- 支持 SPI、Dual SPI、Quad SPI、QPI 模式
- 时钟极性 (CPOL) 和相位 (CPHA) 可配置
- 时钟频率可配置
- 数据传输以字节为单位

- 读写数据位序可配置: 最高有效位 (MSB) 优先,或最低有效位 (LSB) 优先
- 主机模式
 - 支持双线全双工通信, 时钟频率最高可达 80 MHz
 - 支持单线、双线和四线半双工通信,时钟频率最高可达 80 MHz
 - 具有六个 SPI_CS 管脚,可与六个独立 SPI 从机相连
 - CS 建立和保持时间可配置
- 从机模式
 - 支持双线全双工通信,时钟频率最高可达 60 MHz
 - 支持单线、双线和四线半双工通信,时钟频率最高可达 60 MHz

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节 SPI 控制器 (SPI)。

管脚分配

SPIO/1 接口的管脚通过 IO MUX 与 GPIO12~GPIO17 复用。

SPI2 接口的管脚通过 IO MUX 与 GPIO2、GPIO4~GPIO7、GPIO10 和 JTAG 接口管脚复用。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.3 I2C 控制器

ESP32-C3 系列芯片有一个 I2C 总线接口,根据您的配置,总线接口可以用作 I2C 主机或从机模式。I2C 接口支持:

- 标准模式 (100 Kbit/s)
- 快速模式 (400 Kbit/s)
- 速度最高可达 800 Kbit/s, 但受制于 SCL 和 SDA 上拉强度
- 7 位寻址模式和 10 位寻址模式
- 双寻址模式
- 7位广播地址

更多信息,请参考《ESP32-C3 技术参考手册》>章节 /2C 控制器 (/2C)。

管脚分配

I2C 的管脚可以为任意 GPIO, 通过 GPIO 交换矩阵配置。

更多关于管脚分配的信息,请参考章节章节 2.3 /O 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 /O MUX 和 GPIO 交换矩阵。

4.2.1.4 128 控制器

ESP32-C3 系列芯片有一个标准 I2S 接口,可以以主机或从机模式,在全双工或半双工模式下工作,并且可被配置为 I2S 串行 8 位、16 位、24 位、32 位的收发数据模式,支持频率从 10 kHz 到 40 MHz 的 BCK 时钟。

更多信息,请参考《ESP32-C3 技术参考手册》>章节 /2S 控制器 (/2S)。

I2S 接口连接 GDMA 控制器。支持 TDM PCM、TDM MSB 对齐、TDM 标准和 PDM 标准。

管脚分配

I2S 的管脚可以为任意 GPIO, 通过 GPIO 交换矩阵配置。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.5 USB 串口/JTAG 控制器

ESP32-C3 集成一个 USB 串口/JTAG 控制器, 具有以下特性:

- 包含 CDC-ACM 虚拟串口及 JTAG 适配器功能
- 兼容 USB 2.0 全速标准, 传输速度最高可达 12 Mbit/s (注意, 该控制器不支持 480 Mbit/s 的高速传输模式)
- 可编程封装内/封装外 flash
- 利用紧凑的 JTAG 指令, 支持 CPU 调试
- 芯片内部集成的全速 USB PHY

更多信息,请参考《ESP32-C3 技术参考手册》>章节 USB 串口/JTAG 控制器 (USB_SERIAL_JTAG)。

管脚分配

USB 串口/JTAG 控制器的管脚与 GPIO18~GPIO19 复用。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.6 双线汽车接口

ESP32-C3 系列芯片带有一个 TWAI® 控制器, 具有如下特性:

- 兼容 ISO 11898-1 协议 (CAN 规范 2.0)
- 支持标准帧格式(11 位 ID)和扩展帧格式(29 位 ID)
- 比特率从 1 Kbit/s 到 1 Mbit/s
- 多种操作模式: 工作模式、只听模式和自检模式(传输无需确认)
- 64 字节接收 FIFO
- 数据接收过滤器(支持单过滤器和双过滤器模式)
- 错误检测与处理: 错误计数器、可配置的错误中断阈值、错误代码记录和仲裁丢失记录

更多信息,请参考《ESP32-C3 技术参考手册》>章节 双线汽车接口。

管脚分配

TWAI 管脚可以为任意 GPIO,通过 GPIO 交换矩阵配置。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.7 LED PWM 控制器

LED PWM 控制器可以用于生成六路独立的数字波形, 具有如下特性:

- 波形的周期和占空比可配置,占空比精度可达 14 位
- 多种时钟源选择,包括 APB 总线时钟、外置主晶振时钟
- 可在 Light-sleep 模式下工作
- 支持硬件自动步进式地增加或减少占空比,可用于 LED RGB 彩色梯度发生器

更多信息,请参考_《ESP32-C3 技术参考手册》 > 章节 LED PWM 控制器。

管脚分配

LED PWM 管脚可以为任意 GPIO, 通过 GPIO 交换矩阵配置。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.1.8 红外遥控

红外遥控器 (RMT) 支持双通道的红外发射和双通道的红外接收。通过程序控制脉冲波形,遥控器可以支持多种红外协议和单线协议。四个通道共用一个 192 × 32 位的存储模块来存放收发的波形。

更多信息,请参考 《ESP32-C3 技术参考手册》 > 章节 红外遥控 (RMT)。

管脚分配

RMT 管脚可以为任意 GPIO, 通过 GPIO 交换矩阵配置。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.2 模拟信号处理

本小节描述芯片上感知和处理现实世界数据的组件。

4.2.2.1 SAR ADC

ESP32-C3 系列芯片集成了两个 12 位 SAR ADC, 共支持 6 个模拟通道输入。

- ADC1 支持 5 个模拟通道输入,已在工厂校准。
- ADC2 支持 1 个模拟通道输入,未在工厂校准。

部分芯片版本的 ADC2 无法工作,详见<u>《ESP32-C3 系列芯片勘误表》</u>。

有关 ADC 特性,请参考章节 5.5 ADC 特性。

更多信息,请参考《ESP32-C3 技术参考手册》>章节 片上传感器与模拟信号处理。

管脚分配

SAR ADC 管脚与 GPIOO~GPIO5、JTAG 接口管脚、SPI2 接口管脚和连接外部无源或有源晶振的管脚复用。

更多关于管脚分配的信息,请参考章节章节 2.3 IO 管脚 和 <u>《ESP32-C3 技术参考手册》</u> > 章节 IO MUX 和 GPIO 交换矩阵。

4.2.2.2 温度传感器

温度传感器生成一个随温度变化的电压。内部 ADC 将传感器电压转化为一个数字量。

温度传感器的测量范围为-40 °C 到 125 °C。温度传感器一般只适用于监测芯片内部温度的变化,该温度值会随着微控制器时钟频率或 IO 负载的变化而变化。一般来讲,芯片内部温度会高于工作环境温度。

更多信息,请参考 《ESP32-C3 技术参考手册》 > 章节 片上传感器与模拟信号处理。

4.3 无线通信

本节描述了芯片的无线通信能力,涵盖无线电模块、Wi-Fi 和蓝牙。

4.3.1 无线电

本小节描述了嵌入在芯片中的基本无线电模块,用于实现无线通信和数据交换。ESP32-C3 系列芯片射频包含以下主要模块:

- 2.4 GHz 接收器
- 2.4 GHz 发射器
- 偏置 (Bias) 和线性稳压器
- Balun 和收发切换器
- 时钟生成器

4.3.1.1 2.4 GHz 接收器

2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用两个高精度、高速的 ADC 将后者转为数字信号。为了适应不同的信道情况, ESP32-C3 系列芯片集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电路和基带滤波器。

4.3.1.2 2.4 GHz 发射器

2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放大器驱动天线。数字校准进一步改善了功率放大器的线性。

为了抵消射频接收器的瑕疵, ESP32-C3 系列芯片还另增了校准措施, 例如:

- 载波泄露消除
- I/Q 相位匹配
- 基带非线性抑制
- 射频非线性抑制
- 天线匹配

这些内置校准措施缩短了产品的测试时间,并且不再需要测试设备。

4.3.1.3 时钟生成器

时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号,所有部件均集成于芯片上,包括电感、变容二极管、环路滤波器、线性稳压器和分频器。

时钟生成器带有内置校准电路和自测电路。运用自主知识产权的优化算法,对正交时钟的相位和相位噪声进行 优化处理,使接收器和发射器都有最好的性能表现。

4.3.2 Wi-Fi

本小节描述了芯片的 Wi-Fi 能力,用于实现高速无线通信。

4.3.2.1 Wi-Fi 无线电和基带

ESP32-C3 系列芯片 Wi-Fi 射频和基带支持以下特性:

- 802.11b/g/n
- 802.11n MCSO-7 支持 20 MHz 和 40 MHz 带宽
- 802.11n MCS32
- 802.11n 0.4 μs 保护间隔
- 数据率高达 150 Mbps
- 接收 STBC (单空间流)
- 可调节的发射功率
- 天线分集

ESP32-C3 系列芯片支持基于外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控制,用来选择最合适的天线以减少信道衰落的影响。

4.3.2.2 Wi-Fi MAC

ESP32-C3 系列芯片完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务集 (BSS) STA 和 SoftAP 操作。支持通过最小化主机交互来优化有效工作时长,以实现功耗管理。

ESP32-C3 系列芯片 Wi-Fi MAC 自行支持的底层协议功能如下:

- 4× 虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模式
- RTS 保护, CTS 保护, 立即块确认 (Immediate Block ACK)
- 分片和重组 (Fragmentation and defragmentation)
- TX/RX A-MPDU, TX/RX A-MSDU
- 传输机会 (TXOP)
- 无线多媒体 (WMM)
- GCMP、CCMP、TKIP、WAPI、WEP、BIP、WPA2 个人模式或 WPA2 企业模式 (WPA2-PSK/WPA2-Enterprise)
 及 WPA3 个人模式或 WPA3 企业模式 (WPA3-PSK/WPA3-Enterprise)
- 自动 Beacon 监测 (硬件 TSF)
- 802.11mc FTM

4.3.2.3 网络特性

乐鑫提供的固件支持 TCP/IP 联网、ESP-WIFI-MESH 联网或其他 Wi-Fi 联网协议,同时也支持 TLS 1.0、1.1、1.2。

本小节描述了芯片的蓝牙能力,用于实现低功耗、短距离应用的无线通信。ESP32-C3 系列芯片包含了一个低功耗蓝牙 (Bluetooth Low Energy) 子系统,集成了硬件链路层控制器、射频/调制解调器模块和功能齐全的软件协议栈。低功耗蓝牙子系统支持 Bluetooth 5 和 Bluetooth mesh。

4.3.3.1 低功耗蓝牙物理层

ESP32-C3 系列芯片低功耗蓝牙射频和物理层支持以下特性:

- 1 Mbps PHY
- 2 Mbps PHY, 用于提升传输速率
- Coded PHY (125 Kbps and 500 Kbps),用于提升传输距离
- 硬件实现 Listen Before Talk (LBT)

4.3.3.2 低功耗蓝牙链路控制器

ESP32-C3 系列芯片低功耗蓝牙链路控制器支持以下特性:

- 广播扩展 (Advertising Extensions),用于增强广播能力,可以广播更多的智能数据
- 多广播
- 支持同时广播和扫描
- 多连接, 支持中心设备 (Central) 和外围设备 (Peripheral) 同时运行
- 自适应跳频和信道选择
- 信道选择算法 #2 (Channel Selection Algorithm #2)
- 连接参数更新
- 高速不可连接广播 (High Duty Cycle Non-Connectable Advertising)
- LE Privacy 1.2
- 数据包长度扩展 (LE Data Packet Length Extension)
- 链路层扩展扫描过滤策略 (Link Layer Extended Scanner Filter policies)
- 低速可连接定向广播 (Low duty cycle directed advertising)
- 链路层加密
- LE Ping

5.1 绝对最大额定值

超出表 5-1 绝对最大额定值 的绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在 这些或其它条件下超出章节 5.2 建议工作条件 技术规格指标的功能性操作。长时间暴露在绝对最大额定条件下 可能会影响设备的可靠性。

表 5-1. 绝对最大额定值

参数	说明	最小值	最大值	单位
输入电源管脚 1	允许输入电压	-0.3	3.6	V
$ _{output} ^2$	IO 输出总电流	_	1000	mΑ
T_{STORE}	存储温度	-40	150	°C

¹ 更多关于输入电源管脚的信息,见章节 2.5 电源。

5.2 建议工作条件

推荐环境温度,请参考章节1ESP32-C3系列型号对比。

表 5-2. 建议工作条件

参数 ¹	说明	最小值	典型值	最大值	单位
VDDA, VDD3P3, VDD3P3_RTC	建议输入电压	3.0	3.3	3.6	V
VDD3P3_CPU ^{2, 3}	建议输入电压	3.0	3.3	3.6	V
VDD_SPI (输入)	_	3.0	3.3	3.6	V
I_{VDD}	输入总电流	0.5	_	_	А

¹ 请结合章节 2.5 电源 阅读。

² 在 25 ℃ 的环境温度下连续 24 小时保持所有 IO 管 脚拉高并接地,设备工作完全正常。

² 写 eFuse 时,由于烧录 eFuse 的电路较敏感,VDD3P3_CPU 的电压应不超过 3.3 V。

³ 使用 VDD3P3_CPU 给 VDD_SPI 供电时 (见章节 2.5.2 电源管理),应考 虑 R_{SPI} 的电压降。更多信息,请参考章节 5.3 VDD_SPI 输出特性。

³ 写 eFuse 时,由于烧录 eFuse 的电路较敏感,VDD3P3_CPU 的电压应不超过 3.3 V。

5.3 VDD_SPI 输出特性

表 5-3. VDD_SPI 内部和输出特性

参数	说明 ¹	典型值	单位
D	VDD_SPI 连接 3.3 V flash 时,由 VDD3P3_CPU	7.5	0
R_{SPI}	经 R _{SPI} 供电 ²	7.5	7.7

¹ 请结合章节 2.5.2 电源管理 阅读。

- VDD_flash_min flash 的最小工作电压
- I_flash_max flash 的最大工作电流

5.4 直流电气特性 (3.3 V, 25 °C)

表 5-4. 直流电气特性 (3.3 V, 25 °C)

参数	说明	最小值	典型值	最大值	单位
C_{IN}	管脚电容	_	2	_	рF
V_{IH}	高电平输入电压	0.75 × VDD ¹	_	VDD ¹ + 0.3	V
V_{IL}	低电平输入电压	-0.3	_	0.25 × VDD ¹	V
$ I_{IH} $	高电平输入电流	_	_	50	nΑ
$ I_{IL} $	低电平输入电流	_	_	50	nΑ
V_{OH}^{2}	高电平输出电压	0.8 × VDD ¹	_	_	V
V_{OL}^{2}	低电平输出电压	_	_	0.1 × VDD ¹	V
	高电平拉电流 (VDD ¹ = 3.3 V, V _{OH} >= 2.64 V,		40		mA
OH	PAD_DRIVER = 3)	_	40	_	IIIA
	低电平灌电流 (VDD 1 = 3.3 V, V_{OL} = 0.495 V,		00		A
$ I_{OL} $	PAD_DRIVER = 3)	_	28	_	mA
R_{PU}	内部弱上拉电阻	_	45	_	kΩ
R_{PD}	内部弱下拉电阻	_	45	_	kΩ
\/	芯片复位释放电压(CHIP_EN 应满足电压范	0.75 × VDD ¹		VDD ¹ + 0.3	V
V_{IH_nRST}	围)	0.75 × VDD '	_	VUU ' + 0.3	V
V_{IL_nRST}	芯片复位电压(CHIP_EN 应满足电压范围	-0.3	_	0.25 × VDD ¹	V

¹ VDD - 各个电源域电源管脚的电压。

 $^{^2}$ VDD3P3_CPU 需高于 *VDD_flash_min + I_flash_max * R_{SPI}*,其中

 $^{^{2}}$ V_{OH} 和 V_{OL} 为负载是高阻条件下的测试值。

5.5 ADC 特性

表 5-5. ADC 特性

符号	参数	最小值	最大值	单位
DNL(差分非线性) ¹	ADC 外接 100 nF 电容;输入为 DC 信号;	-7	7	LSB
INL (积分非线性)	 环境温度 25 ℃; Wi-Fi 关闭	-12	12	LSB
采样速度	_	_	100	kSPS ²

¹使用滤波器多次采样或计算平均值可以获得更好的 DNL 结果。

ADC 经硬件校准和 软件校准后的结果如表 5-6 所示。如需更高的精度,可选用其他方法自行校准。

表 5-6. ADC 校准结果

参数	说明	最小值	最大值	单位
スカネ	ATTENO, 有效测量范围 0~750	-10	10	mV
	ATTEN1,有效测量范围 0~1050	-10	10	mV
总误差	ATTEN2,有效测量范围 0~1300	-10	10	mV
	ATTEN3,有效测量范围 0~2500	-35	35	mV

5.6 功耗特性

5.6.1 Active 模式下的 RF 功耗

下列功耗数据是基于 3.3 V 电源、25 °C 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。

表 5-7. 不同 RF 模式下的 Wi-Fi 功耗

工作模式 1	说	归	峰值 (mA)
Active (RF 工作)		802.11b, 1 Mbps, @21 dBm	335
		802.11g, 54 Mbps, @19 dBm	285
		802.11n, HT20, MCS7, @18.5 dBm	276
		802.11n, HT40, MCS7, @18.5 dBm	278
	RX	802.11b/g/n, HT20	84
	πΛ	802.11n, HT40	87

² kSPS (kilo samples-per-second) 表示每秒采样千次。

5.6.2 其他功耗模式下的功耗

表 5-8. Modem-sleep 模式下的功耗

哲-P ODII 転参 (MU-)		44.414	典型值		
模式	CPU 频率 (MHz)	舶 处	外设时钟全关 (mA)	外设时钟全开 (mA) 1	
Modem-sleep ^{2,3}	160	CPU 工作	23	28	
		CPU 空闲	16	21	
	80	CPU 工作	17	22	
		CPU 空闲	13	18	

¹实际情况下,外设在不同工作状态下电流会有所差异。

表 5-9. 低功耗模式下的功耗

模式	描述	功耗典型值 (μA)
Light-sleep	VDD_SPI 和 Wi-Fi 掉电,所有 GPIO 设置为高阻状态	130
Deep-sleep	RTC 定时器 + RTC 存储器	5
关闭	CHIP_EN 脚拉低,芯片处于关闭状态	1

5.7 可靠性

表 5-10. 可靠性认证

测试项目	测试条件	测试标准
HTOL (高温工作寿命)	125 °C,1000 小时	JESD22-A108
ESD (静电放电敏感度)	HBM(人体放电模式) ¹ ± 2000 V	JS-001
[20] (靜电放电報您及)	CDM (充电器件模式) ² ± 1000 V	JS-002
闩锁测试 (Latch-up)	过电流 ± 200 mA	JESD78
一	过电压 1.5 × VDD _{max}	JLSD/0
	烘烤: 125℃, 24 小时	J-STD-020、JESD47、
预处理测试	浸泡:三级 (30 ℃,60% RH,192 小时)	JFSD22-A113
	回流焊: 260 + 0 ℃, 20 秒, 三次	JESDZZ-AIIS
TCT (温度循环测试)	-65 °C / 150 °C,500 次循环	JESD22-A104
uHAST(无偏压高加速温	 130 °C,85% RH,96 小时	JESD22-A118
湿度应力试验)	130 C, 83% KH, 967[NB]	JESDZZ-AHO
HTSL (高温贮存寿命)	150 °C,1000 小时	JESD22-A103
LTSL (低温存储寿命)	-40 °C,1000 小时	JESD22-A119

¹ JEDEC 文档 JEP155 规定: 500 V HBM 能够在标准 ESD 控制流程下安全生产。

² Modem sleep 模式下,Wi-Fi 设有时钟门控。

³ Modem-sleep 模式下,访问 flash 时功耗会增加。若 flash 速率为 80 Mbit/s, SPI 2 线模 式下 flash 的功耗为 10 mA。

 $^{^2}$ JEDEC 文档 JEP157 规定: 250 V CDM 能够在标准 ESD 控制流程下安全生产。

6 射频特性

本章提供产品的射频特性表。

射频数据是在天线端口处连接射频线后测试所得,包含了射频前端电路带来的损耗。射频前端电路为 O Ω 电阻。

工作信道中心频率范围应符合国家或地区的规范标准。软件可以配置工作信道中心频率范围,具体请参考_《ESP 射频测试指南》。

除非特别说明,射频测试均是在 3.3 V (±5%) 供电电源、25 °C 环境温度的条件下完成。

6.1 Wi-Fi 射频

表 6-1. Wi-Fi 频率

参数	最小值 (MHz)	典型值 (MHz)	
工作信道中心频率	2412	_	2484

6.1.1 Wi-Fi 射频发射器 (TX) 特性

表 6-2. 频谱模板和 EVM 符合 802.11 标准时的发射功率

速率	最小值 (dBm)	典型值 (dBm)	
802.11b, 1 Mbps	_	21.0	_
802.11b, 11 Mbps	_	21.0	_
802.11g, 6 Mbps	_	21.0	_
802.11g, 54 Mbps	_	19.0	_
802.11n, HT20, MCS0	_	20.0	_
802.11n, HT20, MCS7	_	18.5	_
802.11n, HT40, MCS0	_	20.0	_
802.11n, HT40, MCS7	_	18.5	_

表 6-3. 发射 EVM 测试

	最小值	典型值	标准限值
速率	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @21 dBm	_	-24.5	-10
802.11b, 11 Mbps, @21 dBm	_	-25.0	-10
802.11g, 6 Mbps, @21 dBm	_	-23.0	-5
802.11g, 54 Mbps, @19 dBm	_	-27.5	-25
802.11n, HT20, MCS0, @20 dBm	_	-22.5	-5
802.11n, HT20, MCS7, @18.5 dBm	_	-29.0	-27
802.11n, HT40, MCS0, @20 dBm	_	-22.5	-5
802.11n, HT40, MCS7, @18.5 dBm	_	-28.0	-27

6.1.2 Wi-Fi 射频接收器 (RX) 特性

表 6-4. 接收灵敏度

	最小值		最大值
速率	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	-98.4	_
802.11b, 2 Mbps	_	-96.0	_
802.11b, 5.5 Mbps	_	-93.0	_
802.11b, 11 Mbps	_	-88.6	_
802.11g, 6 Mbps	_	-93.8	_
802.11g, 9 Mbps	_	-92.2	_
802.11g, 12 Mbps	_	-91.0	_
802.11g, 18 Mbps	_	-88.4	
802.11g, 24 Mbps	_	-85.8	_
802.11g, 36 Mbps	_	-82.0	
802.11g, 48 Mbps	_	-78.0	_
802.11g, 54 Mbps	_	-76.6	_
802.11n, HT20, MCS0	_	-93.6	_
802.11n, HT20, MCS1	_	-90.8	_
802.11n, HT20, MCS2	_	-88.4	_
802.11n, HT20, MCS3	_	-85.0	_
802.11n, HT20, MCS4	_	-81.8	_
802.11n, HT20, MCS5	_	-77.8	_
802.11n, HT20, MCS6	_	-76.0	_
802.11n, HT20, MCS7	_	-74.8	_
802.11n, HT40, MCS0	_	-90.0	_
802.11n, HT40, MCS1	_	-88.0	_
802.11n, HT40, MCS2	_	-85.2	_
802.11n, HT40, MCS3	_	-82.0	_
802.11n, HT40, MCS4	_	-78.8	_
802.11n, HT40, MCS5	_	-74.6	_
802.11n, HT40, MCS6	_	-73.0	_
802.11n, HT40, MCS7	_	-71.4	_

表 6-5. 最大接收电平

	最小值	典型值	最大值
速率	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	5	_
802.11b, 11 Mbps	_	5	_
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7	_	0	_
802.11n, HT40, MCS0	_	5	_
802.11n, HT40, MCS7	_	0	_

表 6-6. 接收邻道抑制

		典型值	
速率	(dB)	(dB)	(dB)
802.11b, 1 Mbps	_	35	_
802.11b, 11 Mbps	_	35	_
802.11g, 6 Mbps	_	31	_
802.11g, 54 Mbps	_	20	_
802.11n, HT20, MCS0	_	31	_
802.11n, HT20, MCS7	_	16	_
802.11n, HT40, MCS0	_	25	_
802.11n, HT40, MCS7	_	11	_

6.2 低功耗蓝牙射频

表 6-7. 低功耗蓝牙频率

参数	最小值 (MHz)	典型值 (MHz)	
工作信道中心频率	2402	_	2480

6.2.1 低功耗蓝牙射频发射器 (TX) 特性

表 6-8. 发射器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	20.00	dBm
别则及别切罕	增益控制步长	_	3.00	_	dB
载波频率偏移和漂移	$ f_n _{n=0, 1, 2,k}$ 最大值	_	17.00	-	kHz
	$ f_0 - f_n $ 最大值	_	1.75	_	kHz
	$ f_{n-}f_{n-5} $ 最大值	_	1.46	_	kHz
	$ f_1-f_0 $	_	0.80	-	kHz
	$\Delta f1_{avg}$	_	250.00	-	kHz
 调制特性	$\Delta f2_{\text{max}}$ 最小值		190.00	_	kHz
	(至少 99.9% 的 Δ $f2_{max}$)	_			KΠZ
	$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	_	0.83	_	_
带内杂散发射	±2MHz偏移	_	-37.62	_	dBm
	±3 MHz 偏移	_	-41.95	_	dBm
	> ± 3 MHz 偏移	_	-44.48	_	dBm

表 6-9. 发射器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	20.00	dBm
	增益控制步长	_	3.00		dB
	$ f_n _{n=0,1,2,k}$ 最大值	_	20.80	_	kHz
 载波频率偏移和漂移	fo f 最大估	_	1.30	_	kHz
蚁火火平闸炒州 保炒					加玉哥

表 6-9 - 接上页

参数	描述	最小值	典型值	最大值	单位
	$ f_{n-}f_{n-5} $ 最大值	_	1.33		kHz
	$ f_1 - f_0 $	_	0.70	_	kHz
	$\Delta f1_{ ext{avg}}$	_	498.00	_	kHz
调制特性	$\Delta f2_{\text{max}}$ 最小值		430.00	_	kHz
炯即付注	(至少 99.9% 的 $\Delta f2_{\text{max}}$)	_			KIIZ
	$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	0.93	_	_
	± 4 MHz 偏移	_	-43.55	_	dBm
带内杂散发射	± 5 MHz 偏移	_	-45.26	_	dBm
	> ± 5 MHz 偏移	_	-45.26		dBm

表 6-10. 发射器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	20.00	dBm
别则及别为华	增益控制步长	_	3.00	-	dB
	$ f_n _{n=0, 1, 2,k}$ 最大值		17.50	_	kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	0.45	_	kHz
	$ f_n - f_{n-3} $	_	0.70	-	kHz
	$ f_0 - f_3 $	_	0.30	_	kHz
	$\Delta f1_{avg}$	_	250.00	-	kHz
调制特性	$\Delta f1_{max}$ 最小值		005.00		kHz
	(至少 99.9% 的 $\Delta f1_{max}$)	_	235.00	_	KIIZ
带内杂散发射	±2 MHz 偏移	_	-37.90	_	dBm
	±3 MHz 偏移	_	-41.00	_	dBm
	> ± 3 MHz 偏移	_	-42.50	_	dBm

表 6-11. 发射器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
射频发射功率	射频功率控制范围	-24.00	0	20.00	dBm
别	增益控制步长	l	3.00	_	dB
载波频率偏移和漂移	$ f_n _{n=0, 1, 2,k}$ 最大值	_	17.00	-	kHz
	$ f_0 - f_n $ 最大值		0.88	-	kHz
	$ f_{n}-f_{n-3} $	_	1.00	_	kHz
	$ f_0 - f_3 $		0.20	-	kHz
	$\Delta f2_{ ext{avg}}$	_	208.00	-	kHz
调制特性	$\Delta f2_{max}$ 最小值		190.00		kHz
	(至少 99.9% 的 Δ $f2_{max}$)		190.00	_	KI IZ
	±2 MHz 偏移	_	-37.90	_	dBm
带内杂散发射	± 3 MHz 偏移	_	-41.30	_	dBm
	> ± 3 MHz 偏移	_	-42.80	_	dBm

6.2.2 低功耗蓝牙射频接收器 (RX) 特性

表 6-12. 接收器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-97	_	dBm
最大接收信号 @30.8% PER	_	_	5	_	dBm
共信道抑制比 C/I	_	_	8	_	dB
	F = FO + 1 MHz	_	-3	_	dB
邻道选择性抑制比 C/I	F = FO – 1 MHz	_	-4	_	dB
	F = F0 + 2 MHz	_	-29	_	dB
	F = F0 - 2 MHz	_	-31	_	dB
	F = FO + 3 MHz	_	-33	_	dB
	F = FO - 3 MHz	_	-27	_	dB
	$F \ge FO + 4 MHz$	_	-29	_	dB
	$F \le FO - 4 MHz$	_	-38	_	dB
镜像频率	_	_	-29	_	dB
你	$F = F_{image} + 1 MHz$	_	-41	_	dB
邻道镜像频率干扰	$F = F_{image} - 1 MHz$	_	-33	_	dB
	30 MHz ~ 2000 MHz	_	-5	_	dBm
一	2003 MHz ~ 2399 MHz	_	-18	_	dBm
带外阻塞	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	-5	_	dBm
互调	_	_	-30	_	dBm

表 6-13. 接收器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-93	_	dBm
最大接收信号 @30.8% PER	_	_	3	_	dBm
共信道干扰 C/I	_	_	10	_	dB
	F = F0 + 2 MHz	_	-7	_	dB

表 6-13 - 接上页

参数	描述	最小值	典型值	最大值	单位
	F = F0 - 2 MHz	_	-7	_	dB
	F = FO + 4 MHz	_	-28	_	dB
	F = FO - 4 MHz	_	-26	_	dB
	F = F0 + 6 MHz	_	-26	_	dB
	F = F0 - 6 MHz	_	-27	_	dB
	F ≥ F0 + 8 MHz	_	-29	_	dB
	F ≤ F0 − 8 MHz	_	-28	_	dB
镜像频率	_	_	-28	_	dB
机治海梅斯克工业	$F = F_{image} + 2 MHz$	_	-26	_	dB
邻道镜像频率干扰	$F = F_{image} - 2 \text{ MHz}$	_	-7	_	dB
	30 MHz ~ 2000 MHz	_	-5	_	dBm
带外阻塞	2003 MHz ~ 2399 MHz	_	-19	_	dBm
市外阻塞	2484 MHz ~ 2997 MHz	_	-16	_	dBm
	3000 MHz ~ 12.75 GHz	_	-5	_	dBm
互调	_	_	-29	_	dBm

表 6-14. 接收器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-105	_	dBm
最大接收信号 @30.8% PER	_	_	5	_	dBm
共信道抑制比 C/I	_	_	3	_	dB
	F = FO + 1 MHz	_	-6	_	dB
	F = FO – 1 MHz	_	-6	_	dB
	F = F0 + 2 MHz	_	-33	_	dB
 邻道选择性抑制比 C/I	F = F0 - 2 MHz	_	-43	_	dB
プロル洋性抑制に U/1	F = F0 + 3 MHz	_	-37	_	dB
	F = FO - 3 MHz	_	-47	_	dB
	$F \ge FO + 4 MHz$	_	-40	_	dB
	$F \le FO - 4 MHz$	_	-50	_	dB
镜像频率	_	_	-40	_	dB
双	$F = F_{image} + 1 MHz$	_	-50	_	dB
邻道镜像频率干扰 	$F = F_{image} - 1 MHz$	_	-37	_	dB

表 6-15. 接收器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-100	_	dBm
最大接收信号 @30.8% PER	_	_	5	_	dBm
共信道抑制比 C/I	_	_	3	_	dB
	F = FO + 1 MHz	_	-2	_	dB
	F = FO – 1 MHz	_	-3	_	dB
	F = FO + 2 MHz	_	-32	_	dB
 邻道选择性抑制比 C/I	F = F0 - 2 MHz	_	-33	_	dB
並はははいます。	F = FO + 3 MHz	_	-23	_	dB
	F = F0 - 3 MHz	_	-40	_	dB

表 6-15 - 接上页

参数	描述	最小值	典型值	最大值	单位
	$F \ge FO + 4 MHz$	_	-34	_	dB
	$F \le FO - 4 MHz$	_	-44	-	dB
镜像频率	_	_	-34	_	dB
邻道镜像频率干扰	$F = F_{image} + 1 MHz$	_	-46	_	dB
	$F = F_{image} - 1 MHz$	_	-23	_	dB

7 封装

- 有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。
- 俯视图中,芯片管脚从 Pin 1 位置开始按逆时针方向编号。关于管脚序号和名称的详细信息,请参考图 2-1 ESP32-C3、ESP32-C3FH4、ESP32-C3FN4 管脚布局(俯视图)。
- 推荐 PCB 封装图 源文件 (dxf) 供您下载,可使用 Autodesk Viewer 查看。
- PCB 参考布局,可见 《ESP32-C3 硬件设计指南》。

图 7-1. QFN32 (5×5 mm) 封装

附录 A - ESP32-C3 管脚总览

管脚	管脚	管脚	供电	管脚配置 模拟功能			IO MUX 功能						
序号	名称	类型	管脚	复位时	复位后	0	1	0	类型	1	类型	2	类型
1	LNA_IN	模拟											
2	VDD3P3	电源											
3	VDD3P3	电源											
4	XTAL_32K_P	10	VDD3P3_RTC			XTAL_32K_P	ADC1_CHO	GPI00	I/O/T	GPI00	I/O/T		
5	XTAL_32K_N	10	VDD3P3_RTC			XTAL_32K_N	ADC1_CH1	GPIO1	I/O/T	GPI01	I/O/T		
6	GPI02	10	VDD3P3_RTC	IE	IE		ADC1_CH2	GPI02	I/O/T	GPI02	I/O/T	FSPIQ	11/O/T
7	CHIP_EN	模拟											
8	GPIO3	10	VDD3P3_RTC	IE	IE		ADC1_CH3	GPIO3	I/O/T	GPI03	I/O/T		
9	MTMS	IO	VDD3P3_RTC		IE		ADC1_CH4	MTMS	11	GPI04	I/O/T	FSPIHD	11/O/T
10	MTDI	10	VDD3P3_RTC		IE		ADC2_CHO	MTDI	11	GPI05	I/O/T	FSPIWP	11/O/T
11	VDD3P3_RTC	电源											
12	MTCK	10	VDD3P3_CPU		IE			MTCK	11	GPI06	I/O/T	FSPICLK	11/0/T
13	MTDO	IO	VDD3P3_CPU		IE			MTDO	O/T	GPI07	I/O/T	FSPID	11/O/T
14	GPIO8	10	VDD3P3_CPU	IE	IE			GPI08	I/O/T	GPI08	I/O/T		
15	GPIO9	IO	VDD3P3_CPU	IE, WPU	IE, WPU			GPI09	I/O/T	GPI09	I/O/T		
16	GPIO10	IO	VDD3P3_CPU		IE			GPIO10	I/O/T	GPIO10	I/O/T	FSPICS0	11/O/T
17	VDD3P3_CPU	电源											
18	VDD_SPI	电源	VDD3P3_CPU					GPIO11	I/O/T	GPIO11	I/O/T		
19	SPIHD	10	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPIHD	11/0/T	GPIO12	I/O/T		
20	SPIWP	10	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPIWP	11/0/T	GPIO13	I/O/T		
21	SPICS0	10	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPICS0	O/T	GPIO14	I/O/T		
22	SPICLK	10	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPICLK	O/T	GPI015	I/O/T		
23	SPID	IO	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPID	11/0/T	GPI016	I/O/T		
24	SPIQ	IO	VDD_SPI / VDD3P3_CPU	WPU	IE, WPU			SPIQ	11/0/T	GPIO17	I/O/T		
25	GPIO18	IO	VDD3P3_CPU			USB_D-		GPIO18	I/O/T	GPIO18	I/O/T		
26	GPIO19	IO	VDD3P3_CPU			USB_D+		GPIO19	I/O/T	GPI019	I/O/T		
27	UORXD	IO	VDD3P3_CPU		IE, WPU			UORXD	l1	GPI020	I/O/T		
28	UOTXD	IO	VDD3P3_CPU		WPU			UOTXD	0	GPI021	I/O/T		
29	XTAL_N	模拟											
30	XTAL_P	模拟											
31	VDDA	电源											
32	VDDA	电源											
33	GND	电源											
	1	1		1	1		1	UI.		1	t.		

附录 A - ESP32-C3 管脚总览

^{*} 更多信息,详见章节 2 管脚。 <mark>高亮</mark> 的单元格,请参考章节 2.3.3 *GPIO* 的限制。

ESP32-C3 芯片系列合集概览

ESP32-C3 芯片系列合集是一种低功耗解决方案,集成 2.4 GHz Wi-Fi (802.11b/g/n) 和蓝牙 5.0 连接,专用于智能家居应用。该芯片系列合集包括以下芯片系列:

- ESP32-C3 系列
- ESP8685 系列, 在 ESP32-C3 系列基础上进一步优化成本

ESP32-C3 芯片系列合集的所有子类系列使用共同的软件和参考资料,包括技术参考手册和硬件设计指南 - 请参阅相关文档和资源。

	ESP32-C3	ESP8685
芯片版本	v0.4/v1.1	v0.4
封装内 flash	无/4 MB	4 MB
Flash 可扩展性	Υ	_
GPIO 数量	16 或 22	15
封装	QFN32 (5×5 mm)	QFN28 (4×4 mm)

词汇表

芯片系列

芯片系列合集中具有相似特性和规格的子集 2,64

芯片系列合集

使用同款晶圆的芯片产品总称。例如,ESP32-C3 芯片系列合集包括 ESP32-C3 芯片系列和 ESP8685 芯片系列 2,64

封装内 flash

集成于芯片封装内部、位于芯片晶圆外部的 flash 4, 32

封装外 flash

位于芯片封装外部的 flash 4

外设

芯片内部用于与外界通讯的硬件组件或子系统 15, 18

strapping 管脚

芯片上电时用于某些配置的一种 GPIO 管脚,可在芯片复位后重新配置为普通 GPIO 28

eFuse 参数

存储在芯片内 eFuse 存储器中的参数。可以通过写 EFUSE_PGM_DATAn_REG 寄存器设置,通过读取与参数同名的寄存器字段获得具体值 28

SPI boot 模式

从 SPI flash 中加载和执行现有代码的启动模式 29

joint download boot 模式

通过 UART 或其他接口(见表 3-3 芯片启动模式控制 > 注释)下载代码到 flash 中、并从 flash 或 SRAM 中加载和执行下载代码的启动模式 29

eFuse

一次性可编程 (OTP) 存储器,用于存储系统和用户参数,例如 MAC 地址、芯片版本号、flash 加密密钥等。 值为 0 表示默认状态,值为 1 表示已烧写 33

相关文档和资源

相关文档

- 《ESP32-C3 技术参考手册》 提供 ESP32-C3 芯片的存储器和外设的详细使用说明。
- 《ESP32-C3 硬件设计指南》 提供基于 ESP32-C3 芯片的产品设计规范。
- <u>《ESP32-C3 系列芯片勘误表》</u> 描述 ESP32-C3 系列芯片的已知错误。
- 证书

https://espressif.com/zh-hans/support/documents/certificates

• ESP32-C3 产品/工艺变更通知 (PCN)

https://espressif.com/zh-hans/support/documents/pcns?keys=ESP32-C3

- ESP32-C3 公告 提供有关安全、bug、兼容性、器件可靠性的信息 https://espressif.com/zh-hans/support/documents/advisories?keys=ESP32-C3
- 文档更新和订阅通知
 https://espressif.com/zh-hans/support/download/documents

开发者社区

- 《ESP32-C3 ESP-IDF 编程指南》 ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架

https://github.com/espressif

- ESP32 论坛 工程师对工程师 (E2E) 的社区,您可以在这里提出问题、解决问题、分享知识、探索观点。 https://esp32.com/
- The ESP Journal 分享乐鑫工程师的最佳实践、技术文章和工作随笔。 https://blog.espressif.com/
- SDK 和演示、App、工具、AT 等下载资源
 https://espressif.com/zh-hans/support/download/sdks-demos

产品

- ESP32-C3 系列芯片 ESP32-C3 全系列芯片。
 https://espressif.com/zh-hans/products/socs?id=ESP32-C3
- ESP32-C3 系列模组 ESP32-C3 全系列模组。

https://espressif.com/zh-hans/products/modules?id=ESP32-C3

- ESP32-C3 系列开发板 ESP32-C3 全系列开发板。
 - https://espressif.com/zh-hans/products/devkits?id=ESP32-C3
- ESP Product Selector (乐鑫产品选型工具) 通过筛选性能参数、进行产品对比快速定位您所需要的产品。 https://products.espressif.com/#/product-selector?language=zh

联系我们

 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议 https://espressif.com/zh-hans/contact-us/sales-questions

修订历史

日期	版本	发布说明
2024-11-14	v2.0	新增章节 2.3.4 外设管脚分配新增 ESP32-C3 芯片系列合集概览新增 词汇表
2024-09-11	v1.9	根据 <u>PCN20240702 ESP32-C3FH4X 产品更新</u> 更新 ESP32-C3FH4X 的管脚布局和 GPIO 数量
2024-07-29	v1.8	 在章节 1 ESP32-C3 系列型号对比 移除 ESP32-C3FH4XAZ 变型,并在说明中增加 关于 ESP32-C3 芯片版本 v1.1 的兼容性公告 在表 2-1 管脚概述 > 注释 4 中更新管脚的默认驱动电流 在章节 4.1.2.1 内部存储器 新增 flash 编程/擦除周期、数据保留时间、最大时钟频率 优化以下章节的格式、结构和表述: 章节 2 管脚 章节 3 启动配置项(曾用名 "Strapping 管脚") 章节 4 功能描述 其他微小改动
2024-04-01	∨1.7	 ESP32-C3FN4 变型标注为停产 ESP32-C3FH4AZ 变型标注为 NRND ESP32-C3FH4X 变型标注为推荐
2024-01-19	v1.6	 在章节 1 ESP32-C3 系列型号对比 新增 ESP32-C3FH4X 和 ESP32-C3FH4XAZ 变型 将章节 4.2.1.7 LED PWM 控制器 中 PWM 占空比精度更正为 14 位

接上页

日期	版本	发布说明
2023-08-11	v1.5	 ESP32-C3FN4 标注为 NRND 改进以下章节: 章节 产品概述 章节 2 管脚 章节 4.1.3.6 电源管理单元 章节 4.2.1.2 SPI 控制器 章节 5.1 绝对最大额定值 章节 5.2 建议工作条件 章节 5.3 VDD_SPI 输出特性 章节 5.5 ADC 特性 将章节 6.2 低功耗蓝牙射频 中的"射频功率控制范围"最大值更新为 20 dBm 増加 附录 A 其他微小改动
2022-12-15	V1.4	 在章节 4.3.3.1 低功耗蓝牙物理层 删除特性 "天线分集" 删除特性 "支持外部功率放大器" 将表 芯片上电过程中的管脚毛刺 中 GPIO18 的毛刺类型更新为高电平毛刺
2022-11-15	V1.3	 更新表 芯片上电过程中的管脚毛刺的注释 在章节 4 功能描述 增加技术参考手册和管脚外设分配的链接 在章节 4.2.2.1 SAR ADC 增加 ADC2 错误的相关注释 更新章节 4.1.3.8 看门狗定时器 增加表 ADC 校准结果 更新章节 5.6.2 其他功耗模式下的功耗 在章节 6.2 低功耗蓝牙射频 更新射频功率控制范围 更新章节 7 封装 的笔误 更新章节 相关文档和资源
2022-04-13	V1.2	 新增芯片变型 ESP32-C3FH4AZ; 更新图 ESP32-C3 功能框图; 在章节 4.1.3.6 电源管理单元 新增 Deep-sleep 模式的唤醒源。

接上面

日期	版本	发布说明
2021-10-26	V1.1	 在图 ESP32-C3 功能框图,显示功耗模式; 在产品特性中增加 CoreMark 分数; 在表管脚描述中显示默认管脚功能; 更新图 ESP32-C3 电源管理 及相关描述; 增加表 SPI 管脚信号; 在表建议工作条件中增加第三条说明; 其他措辞更新。
2021-05-28	V1.0	 更新功耗模式; 更新章节 3 启动配置项; 在章节 4.1.3.3 时钟 更新部分时钟的名称和频率; 在章节 4.2.2.1 SAR ADC 增加 ADC1、ADC2 的说明; 在表 IO MUX 中更新 UORXD、UOTXD 复位后的默认配置; 在表 ADC 特性 中更新采样速度; 更新表 可靠性认证; 在章节 7 封装 新增推荐 PCB 封装图的链接。
2021-04-23	v0.8	更新 Wi-Fi 射频 和 低功耗蓝牙射频 数据。
2021-04-07	v0.7	 更新 USB 串口/JTAG 控制器 的相关信息; 在章节 3 启动配置项 增加 GPIO2; 更新图 地址映射结构; 在章节 4.1.3.1 IO MUX 和 GPIO 交換矩阵 增加表 IO MUX 和表 芯片上电过程中的管脚毛刺; 在章节 4.2.1.2 SPI 控制器 更新 SPI2 的相关信息; 在章节 4.1.1.2 GDMA 控制器 更新通道之间支持可配置的固定优先级; 更新表 可靠性认证。
2021-01-18	v0.6	 说明 400 KB SRAM 中,有 16 KB 专用于 cache; 在章节 6.1.1 Wi-Fi 射频发射器 (TX) 特性 的表 发射 EVM 测试 中把最大值更新为标准限值。

接上页

日期	版本	发布说明
2021-01-13	v0.5	 更新 Wi-Fi 相关信息; 在章节管脚定义表格注释中增加封装内 flash 端口和芯片管脚的连接关系; 在章节 2.5.2 电源管理 更新图 ESP32-C3 电源管理,增加图 上电和复位时序参数图 和表 上电和复位时序参数说明; 在章节 3 启动配置项 增加图 Strapping 管脚的时序参数图 和表 Strapping 管脚的时序参数说明; 更新表格外设管脚分配; 增加章节 5 电气特性; 增加章节 7 封装。
2020-11-27	v0.4	预发版本。

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供任何其他乐鑫提案、规格书或样 品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2024 乐鑫信息科技(上海)股份有限公司。保留所有权利。

www.espressif.com