

Human Granzyme B (CTLA-1) ELISA assay

Sandra L. Ross, Marika Sherman, Patricia L. McElroy, Julie A. Lofgren, Gordon Moody, Patrick A. Baeuerle, Angela Coxon, Tara Arvedson

Abstract

This protocol describes an ELISA assay for measurement of Granzyme B (CTLA-1) in supernatants collected from T cell dependent cytotoxicity (TDCC) cultures after BiTE® treatment.

Citation: Sandra L. Ross, Marika Sherman, Patricia L. McElroy, Julie A. Lofgren, Gordon Moody, Patrick A. Baeuerle, Angela Coxon, Tara Arvedson Human Granzyme B (CTLA-1) ELISA assay. **protocols.io**

dx.doi.org/10.17504/protocols.io.hw5b7g6

Published: 17 May 2017

Protocol

Reagents

Step 1.

- Granzyme B (CTLA-1)Human ELISA Kit, Abcam, P/N ab46142, Lot # GR149011-8
- Granzyme B Microplate (12 x 8 well strips)
- Granzyme B Standard
- 10X Standard Diluent Buffer
- Biotinylated anti-Granzyme B
- Biotinylated Antibody Diluent
- Streptavidin-HRP
- HRP Diluent
- 200X Wash Buffer
- Chromogen TMB Substrate Solution
- Stop Reagent
- · Distilled or deionized water

Prepare solutions

Step 2.

- 1. Prepare Wash Buffer (1X Wash Buffer in DI Water): 1.0 ml 200X Wash buffer + 199 mL Water
- 2. Prepare 1X Standard Diluent Buffer: Dilute the 10X Standard Diluent Buffer 10-fold in distilled water before use (400 μ L 10X Standard Diluent + 3.6 mL distilled water)

Prepare Standard (calibration curve)

Step 3.

Prepare a 1,000 pg/mL **Standard #1** by reconstituting the lyophilized Granzyme B standard with the

volume indicated on the vial using the appropriate 1X Standard Diluent Buffer

Dilution	Step		Standard Diluent Buffer (μl)	Conc. (pg/mL)
1:100	1	500 μl of 1000 pg/mL stock		1000
1:2	2	250 μl of 1000 pg/mL stock	250	500
1:2	3	250 μl of 500 pg/mL	250	250
1:2	4	250 μl of 250 pg/mL	250	125
1:2	5	250 μl of 125 pg/mL	250	62.5
1:2	6	250 μl of 62.5 pg/mL	250	31.3
1:2	7	250 μl of 31.3 pg/mL	250	15.6
1:2	8		250	0

Prepare 1X Biotinylated anti-Granzyme B

Step 4.

Number of well strips used	Volume of Biotinylated anti-Granzyme B (µL)	Volume of Biotinylated Antibody Diluent (µL)
4	80	2,120

Add standards to plate

Step 5.

Add 100 µl of Standard to the appropriate wells of the plate

Add samples to plate

Step 6.

Add 100 µl of Neat Sample to the appropriate wells of the plate

Add biotinylated antibody solution

Step 7.

- 1. Add 50 µl of Biotin Antibody Solution to each well
- 2. Seal the plate
- 3. Cover with a plate sealer
- 4. Incubate for 3 hours at room temperature

Prepare 1X Streptavidin-HRP Solution

Step 8.

Add 500 µl to the vial

Number of well strips used	Volume of Streptavidin-HRP (μL)	Volume of HRP-Diluent (mL)
4	60	4

Wash plate

Step 9.

1. After incubation, wash the plate 3X with 1X Wash Buffer using a plate washer

- 2. Aspirate the liquid from each well.
- 3. Add 0.3 µL of 1X Wash Buffer into each well
- 4. Aspirate the liquid from each well.
- 5. Repeat for a total of 3 washes.
- 6. Blot plate on a paper towel

Add Streptavidin Solution to plate

Step 10.

- 1. Add 100 µl of Streptavidin Solution to each well
- 2. Seal the plate
- 3. Cover with aluminum foil
- 4. Incubate for 30 minutes at room temperature

Wash plate

Step 11.

- 1. After incubation, wash the plate 3X with Wash Buffer using a plate washer
- 2. Aspirate the liquid from each well.
- 3. Add 0.3 µL of 1X Wash Buffer into each well
- 4. Aspirate the liquid from each well.
- 5. Repeat for a total of 3 washes.
- 6. Blot plate on a paper towel

Add substrate to plate

Step 12.

- 1. Add 100 µl Chromogen TMB substrate solution to each well of the plate
- 2. Incubate in the dark for 10-20 minutes at room temperature.
- 3. Avoid direct exposure to light by wrapping the plate in aluminum foil.

Add Stop Solution to plate

Step 13.

Add 100 µl Stop Solution to each well of the plate

Read plate

Step 14.

- 1. Read absorbance of each well on a spectrophotometer using 450 nm as the primary wavelength
- 2. Optionally 620 nm (610 nm to 650 nm is acceptable) as the reference wavelength.

Data analysis

Step 15.

Calculate the mean absorbance for each set of duplicate standards and samples, and subtract the average zero standard optical density. Plot the standard curve on log-log graph paper, with standard concentration on the x-axis and absorbance on the y-axis. Draw the best-fit straight line through the standard points.