Métodos Numéricos - LCC 2020

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Lucas Venturato,

Agustín Gurvich

Práctica 7: Interpolación polinómica y aproximación de funciones

Interpolación polinómica

1. Dados los siguientes datos para la función e^x

- a) Hallar los valores aproximados de $\sqrt[3]{e}$ por interpolación lineal y cúbica, usando los métodos de Lagrange y Newton.
- b) Obtener cotas de los errores debidos a la interpolación. Comparar dichas cotas con el error exacto, sabiendo que $\sqrt[3]{e} = 1.395612425$
- 2. Pruebe que si f(x) es un polinomio de orden menor o igual que n, una interpolación de Lagrange de orden n (con n+1 puntos) para dicha función es exacta.
- 3. Se desea tabular la función de Bessel de orden 0

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t) dt$$

en el intervalo [0,1] en abscisas equidistantes. ¿Qué paso de tabulación ha de usarse para que todos los valores obtenidos por interpolación lineal tengan un error (debido a la interpolación) menor que $\frac{1}{2}10^{-6}$? ¿Y si se realiza una interpolación cuadrática?

4. Se dispone de la siguiente tabla

para la función de Bessel de orden 0 definida en el ejercicio (3), usar el método de las diferencias divididas de Newton para hallar los valores de $J_0(2.15)$ y $J_0(2.35)$ con errores menores que $\frac{1}{2}10^{-6}$.

5. Supongamos que $x_j = j$ para j = 0, 1, 2, 3 y notamos $P_{i,...,k}$ el polinomio de interpolación de Lagrange de menor grado posible que coincide con la función f en los puntos $x_i, ..., x_k$. Si se conoce que

$$P_{0,1}(x) = 2x + 1,$$
 $P_{0,2}(x) = x + 1,$ $P_{1,2,3}(2.5) = 3,$

encontrar $P_{0,1,2,3}(2.5)$.

- 6. Para una cierta función f(x) conocemos las diferencias divididas de Newton: f[-1] = 2, f[-1,1] = 1, f[-1,1,2] = -2, f[-1,1,2,4] = 2.
 - (a) Encuentre el polinomio interpolante $P_3(x)$ de grado menor o igual a 3 que interpola f(x) en los nodos -1, 1, 2, 4.
 - (b) Utilice el polinomio de interpolación para estimar f(0).
 - (c) Sabiendo que $|f^4(x)|$ en el intervalo [-1,4] tiene su valor acotado por 33.6, encuentre una cota superior para el valor absoluto del error de estimación de f(0).

Aproximación de funciones

7. Encuentre los polinomios de aproximación por mínimos cuadrados de grado 1,2 y 3 para los datos presentados en la siguiente tabla:

i	x_i	y_i
0	0	1
1	0.15	1.004
2	0.31	131
3	0.5	1.117
4	0.6	1.223
5	0.75	1.422

¿Cuál de las aproximaciones anteriores es mejor?

8. Dado el conjunto de datos:

i	1	2	3	4	5	6	7	8	9	10
x_i	4	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.5	326.72

- a) Construya una aproximación por mínimos cuadrados de grado 1, 2 y 3. Calcule el error.
- b) Utilizando Scilab grafique los datos de la tabla y las sucesivas funciones aproximantes obtenidas en el ítem anterior.
- 9. Utilizar un polinomio de interpolación $P_n(x)$ con nodos uniformemente espaciados para aproximar la función $f(x) = \frac{1}{1+x^2}$ en el intervalo [-5,5]. Graficar el error $f(x) P_n(x)$ en el intervalo [-5,5] para n = 2, 4, 6, 10, 14. Comentar la tendencia observada en el error al aumentar n.
- 10. Sea $f(x) = e^x$ en [-1, 1]
 - (a) Hallar el polinomio de interpolación $P_3(x)$ usando como nodos de interpolación las raíces del polinomio de Chebyshev, $T_4(x)$.
 - (b) Graficar el error $e^x P_3(x)$ en el intervalo [-1, 1].
- 11. En la mayoría de los casos, se desea aproximar una función en un intervalo distinto de [-1,1]. Suponga que se quiere aproximar g(t) en el intervalo $a \le t \le b$. Luego definimos una nueva función f(x) en [-1,1] como:

$$f(x) = g\left(\frac{(b+a) + x(b-a)}{2}\right), \qquad -1 \le x \le 1$$

donde

$$t = \frac{(b+a) + x(b-a)}{2}$$

representa un cambio lineal de variable que permite aproximar f(x) en [-1,1].

Aproximar la función g(t) = cos(t) en el intervalo $0 \le t \le \pi/2$ mediante un polinomio cúbico. Obtener los nodos de interpolación a partir del polinomio de Chebyshev correspondiente utilizando el cambio de variable indicado.