Contents

1 The Fundamental Theorem of Arithmetic								
	1.1	The series of reciprocals of the primes	3					
2	Arit	Arithmetical Functions and Dirichlet Multiplication						
	2.1	Mobius function	7					
	2.2	The Euler totient function	7					
	2.3	The Dirichlet product	10					
	2.4	The Mangoldt function Λ	12					
	2.5	Multiplicative functions	12					
	2.6	Liouville's function λ	15					
	2.7	The divisor function σ_{α}	15					
	2.8	Generalized convolution	16					
	2.9	Formal power series	17					
	2.10	The Selberg theorem	18					
3	Ave	rages of Arithmetical Functions	23					
	3.1	Asymptotic equality of function	23					
	3.2	Euler's summation formula						
	3.3	Some elementary asymptotic formula						
	3.4	The average order of $d(n)$						
	3.5	The average order of $\sigma_{\alpha}(n)$						
	3.6	The average order $\phi(n)$						
	3.7	An application						
	3.8	The average order of $\mu(n)$ and $\Lambda(n)$						
	3.9	The partial sums of Dirichlet product						
	3.10	Applications to $\mu(n)$ and $\Lambda(n)$						
		Another Identity for the partial sums of a Dirichlet product	26					
4	Eler	Elementary Theorems on the Distribution of Prime Numbers 27						
_	4.1	Chebyshev's functions $\psi(x), \theta(x)$						
	4.2	Relations connecting $\theta(x)$ and $\pi(x)$						
	4.3	Equivalent forms of Prime Number Theorem						
		Inequalities for $\pi(x)$ and n .	28					

Chapter 1

The Fundamental Theorem of Arithmetic

induction, well-ordering principle, divisibility, gcd is commutative, associative, and distributive, relatively prime, primes, fundamental theorem of arithmetic.

1.1 The series of reciprocals of the primes

Theorem 1.1. The infinite series $\sum \frac{1}{p_n}$ diverges.

Proof. Suppose the sum converges instead and let k be such that

$$\sum_{n=k+1}^{\infty} \frac{1}{p_n} \le \frac{1}{2}$$

Let $Q = p_1 \dots p_k$, then for all $r \geq 1$,

$$\sum_{n=1}^{r} \frac{1}{1+nQ} \le \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m} \right)^t$$
$$\le \sum_{t=1}^{\infty} \left(\frac{1}{2} \right)^t$$
$$= 1$$

By allowing $r \to \infty$, we get

$$\sum_{n=1}^{\infty} \frac{1}{1 + nQ} \le 1$$

However, this is a constradiction as the sum diverges as

$$\sum_{n=1}^{\infty} \frac{1}{1 + nQ} \le \sum_{n=1}^{\infty} \frac{1}{Q + nQ} \le \frac{1}{Q} \sum_{n=2}^{\infty} \frac{1}{n}$$

Therefore, $\sum \frac{1}{p_n}$ must diverge.

Euclidean algorithm, division algorithm, gcd algorithm.

Exercises

1. If (a, b) = 1 and if $c \mid a$ and $d \mid b$, then (c, d) = 1.

Solution. Let e = (c, d), since $e \mid c$, then $e \mid a$ and similarly, $e \mid b$. Therefore, $e \mid (a, b)$ which means e = 1.

2. If (a, b) = (a, c) = 1, then (a, bc) = 1.

Solution. Let d = (a, bc) and e = (b, d). Then, $e \mid d$ and hence $e \mid a$, as a result $e \mid (a, b)$ which means e = 1. Note that, $d \mid bc$ but (b, d) = 1 thus, $d \mid c$. Since $d \mid a$, then $d \mid (a, c)$ and hence d = 1.

3. If (a, c) = 1, then (a, bc) = (a, b).

Solution. Let d = (a, bc) and e = (c, d). Then, $e \mid d$ and hence $e \mid a$, as a result $e \mid (a, c)$ which means e = 1. Note that, $d \mid bc$ but (c, d) = 1 thus, $d \mid b$. Since $d \mid a$, then $d \mid (a, b)$. Moreover, $(a, b) \mid d$ since $(a, b) \mid a$ and $(a, b) \mid bc$. Therefore, d = (a, b).

4. If $m \neq n$ compute the $\gcd(a^{2^m} + 1, a^{2^n} + 1)$ in terms of a.

Solution. WLOG assume n < m and note that

$$a^{2^m} - 1 = a^{2^{m-n} \cdot 2^n} - 1 = (a^{2^n} - 1)(a^{2^n} + 1)(a^{2 \cdot 2^n} + 1) \dots (a^{2^{m-n-1} \cdot 2^n} + 1)$$

and hence

$$a^{2^n} + 1 \mid a^{2^m} - 1$$

Therfore,

$$(a^{2^n} + 1, a^{2^m} + 1) = (2, a^{2^n} + 1) = \begin{cases} 1 & a \text{ is even} \\ 2 & a \text{ is odd} \end{cases}$$

5. If a > 1, then $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$.

Solution. If m = n, then the result hold obviously. Suppose n < m and note that

$$a^{m} - 1 = (a^{m-n})(a^{n} - 1) + (a^{m-n} - 1)$$

and therefore, $(a^m - 1, a^n - 1) = (a^{m-n} - 1, a^n)$. By applying the Euclidean algorithm we arrive at the conclusion.

6. Given n > 0, let S be a set whose elements are positive integers $\leq 2n$ such that if a and b are in S and $a \neq b$, then $a \nmid b$. What is the maximum number of integers that S can contain?

Solution. Note that S can not have more than n elements. To see this, consider the sets $\{m2^k \mid k \geq 0, m2^k \leq 2n\}$ for $m = 1, 3, \ldots, 2n - 1$. There are n - 1 such sets and they partition the set $\{1, 2, \ldots, 2n\}$. No two elements of S can come from the same set, and as a result $|S| \leq n - 1$ by pigeonhole principle. However, note that $S = \{n + 1, n + 2, \ldots, 2n\}$ satisfies the conditions and has exactly n - 1 elements. Therefore, the maximum of n - 1 elements is attainable for all n > 0.

7. If n > 1 prove that the sum $\sum_{k=1}^{n} \frac{1}{k}$ is not an integer. Also show that for any signing of the sum $\sum_{k=1}^{n} (-1)^{a_k} \frac{1}{k}$ is not an integer.

Solution. Let p be the largest prime less than or equal to n. Let $r, s \in \mathbb{Z}$ be such that $s \neq 0$ and (r, s) = 1.

$$\frac{r}{s} = \sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{1}{k}$$

We claims that $p \nmid s$. For the sake of contradiction suppose there is an integer q such that s = pq. Then,

$$r = s \left(\sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{1}{k} \right)$$
$$= \sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{pq}{k}$$

Since (p,k)=1 for all $k\leq n$ and $k\neq p$, then it must be the case that the sum

$$\sum_{\substack{k=1\\k\neq p}}^{n} (-1)^{a_k} \frac{q}{k}$$

is an integer. Therefore, we have shown that there is integer t such that r = pt, which contradicts our assumption that (r, s) = 1. Thus, p does not divide s. To conclude, consider the sum

$$\frac{r}{s} + \frac{(-1)^{a_p}}{p} = \frac{pr + (-1)^{a_p}s}{ps}$$

which can not be integer as $p \nmid s$.

 \triangleright

Chapter 2

Arithmetical Functions and Dirichlet Multiplication

Definition: A function $f: \mathbb{N} \to \mathbb{C}$ is an arithmetical function.

2.1 Mobius function

The Mobius function μ , is defined as $\mu(1)=1$ and for n>1 if $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$

$$\mu(n) = \begin{cases} (-1)^k & \alpha_1 = \dots = \alpha_k = 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.1. If $n \ge 1$,

$$\sum_{d|n} \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1 & n = 1 \\ 0 & \text{otherwise} \end{cases}$$

Proof. Suppose n > 1 and $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, then

$$\sum_{d|n} \mu(d) = \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} = (1-1)^{k} = 0$$

If n = 1, then $\sum_{d|n} \mu(d) = \mu(1) = 1$.

2.2 The Euler totient function

The Euler totient function ϕ is defined as

$$\phi(n) = \sum_{\substack{k=1\\(k,n)=1}}^{n} 1 = \left| \left\{ 1 \le k \le n \, \middle| \, (k,n) = 1 \right\} \right|$$

Theorem 2.2. If $n \ge 1$,

$$\sum_{d|n} \phi(d) = n$$

Proof. Define the equivalence relation $i \sim j$ whenever (n,i) = (n,j) on the numbers $\leq n$. The divisors of n can be taken as class representatives. We claim that the size of the class d is equal to $\phi(\frac{n}{d})$. Note that, if (n,i) = d, then (n/d,i/d) = 1 and vice versa. That is, there is a bijection between elements of the class d and numbers that are coprime to n/d less than n/d. Therefore,

$$n = \sum_{d|n} |\operatorname{class}_d| = \sum_{d|n} \phi\left(\frac{n}{d}\right) = \sum_{d|n} \phi(d)$$

Theorem 2.3. If $n \geq 1$,

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

Proof. The statement is clearly true for n = 1. Suppose n > 1 and $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Let A_i denote the set of all numbers k less than or equal to n such that $p_i \mid (n, k)$. Then,

$$\phi(n) = \left| \left(\bigcup_{i=1}^{k} A_{i} \right)^{c} \right|$$

$$= n - \left| \bigcup_{i=1}^{k} A_{i} \right|$$

$$= n - \sum_{j=1}^{n} (-1)^{j-1} \sum_{i_{1} < i_{2} < \dots < i_{j}} \left| A_{i_{1}} \cap \dots \cap A_{i_{j}} \right|$$

$$= n + \sum_{j=1}^{n} \sum_{i_{1} < i_{2} < \dots < i_{j}} (-1)^{j} \frac{n}{p_{i_{1}} \dots p_{i_{j}}}$$

$$= n + \sum_{j=1}^{n} \sum_{i_{1} < i_{2} < \dots < i_{j}} \mu(p_{i_{1}} \dots p_{i_{j}}) \frac{n}{p_{i_{1}} \dots p_{i_{j}}}$$

$$= \sum_{d|n} \mu(d) \frac{n}{d}$$

2.2.1 The product formular for $\phi(n)$

Theorem 2.4. For any $n \geq 1$,

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Proof. If $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ let $m = p_1 \dots p_k$.

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$
$$= n \sum_{d|m} \frac{\mu(d)}{d}$$

$$= n \left(\sum_{\substack{d|m \\ p_1|d}} \frac{\mu(d)}{d} + \sum_{\substack{d|m \\ p_1 \nmid d}} \frac{\mu(d)}{d} \right)$$

$$= n \left(\sum_{\substack{d|m \\ p_1 \nmid d}} \frac{\mu(p_1 d)}{p_1 d} + \sum_{\substack{d|m \\ p_1 \nmid d}} \frac{\mu(d)}{d} \right)$$

$$= n \left(\left(1 - \frac{1}{p_1} \right) \sum_{\substack{d|m \\ p_1 \nmid d}} \frac{\mu(d)}{d} \right)$$

$$= n \prod_{\substack{p|n }} \left(1 - \frac{1}{p} \right)$$

Corollary 2.5.

1.
$$\phi(p^{\alpha}) = (p-1)p^{\alpha-1}$$
.

2.
$$\phi(mn) = \phi(m)\phi(n)\frac{d}{\phi(d)}$$
 where $d = (m, n)$.

3. If
$$a \mid b$$
, then $\phi(a) \mid \phi(b)$.

4. $\phi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factors, then $2^r \mid \phi(n)$.

Proof.

1.
$$\phi(p^{\alpha}) = p^{\alpha} \left(\frac{p-1}{p}\right) = (p-1)p^{\alpha-1}$$
.

2.

$$\begin{split} \phi(mn) &= mn \prod_{\substack{p|m \\ p \nmid m}} \left(1 - \frac{1}{p}\right) \\ &= mn \prod_{\substack{p|n \\ p \nmid m}} \left(1 - \frac{1}{p}\right) \prod_{\substack{p|m \\ p \nmid n}} \left(1 - \frac{1}{p}\right) \prod_{\substack{p|n \\ p \nmid n}} \left(1 - \frac{1}{p}\right) \\ &= mn \frac{\prod_{\substack{p|n \\ 1 - \frac{1}{p}}} \left(1 - \frac{1}{p}\right)}{\prod_{\substack{p|n \\ 1 - \frac{1}{p}}} \frac{\prod_{\substack{p|n \\ 1 - \frac{1}{p}}} \left(1 - \frac{1}{p}\right)}{\prod_{\substack{p|n \\ 1 - \frac{1}{p}}} \prod_{\substack{p|n \\ 1 - \frac{1}{p}}} \left(1 - \frac{1}{p}\right)} \\ &= \phi(m)\phi(n) \frac{1}{\prod_{\substack{p|n \\ m}} \left(1 - \frac{1}{p}\right)} \\ &= \phi(m)\phi(n) \frac{d}{\phi(d)} \end{split}$$

3. Note that if $p \mid a$, then $p \mid b$.

4. If n has an odd prime factor, then $\phi(n)$ is even. If n is power of 2 greater than 4, then $\phi(n)$ is also even. If n has r distinct odd prime factors, each contribute at least one factor of 2 in $\phi(n)$ and thus $2^r \mid \phi(n)$.

2.3 The Dirichlet product

Definition: Let f and g be two arithmetical functions, their **Dirichlet product** is defined as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Then, we can write $\phi = \mu * N$ where N(n) = n.

Theorem 2.6.

1.
$$f * q = q * f$$
.

2.
$$(f * g) * h = f * (g * h)$$
.

Proof.

1.
$$(f*g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right) = \sum_{n/d|n} f\left(\frac{n}{d}\right)g(d) \sum_{d|n} f\left(\frac{n}{d}\right)g(d) = (g*f)(n)$$

2.

$$((f * g) * h)(n) = \sum_{d|n} (f * g)(d)h\left(\frac{n}{d}\right)$$

$$= \sum_{d|n} \sum_{k|d} f(k)g\left(\frac{d}{k}\right)h\left(\frac{n}{d}\right)$$

$$= \sum_{k|n} \sum_{k|d,d|n} f(k)g\left(\frac{d}{k}\right)h\left(\frac{n}{d}\right)$$

$$= \sum_{k|n} \sum_{d|n/k} f(k)g\left(\frac{kd}{k}\right)h\left(\frac{n}{kd}\right)$$

$$= \sum_{k|n} \sum_{d|n/k} f(k)g(d)h\left(\frac{n}{kd}\right)$$

$$= \sum_{k|n} \sum_{d|n/k} f(k)(g * h)\left(\frac{n}{k}\right)$$

$$= (f * (g * h))(n)$$

Definition: The identity function, $I(n) = \lfloor \frac{1}{n} \rfloor$.

Theorem 2.7. For any arithmetical function f, I * f = f * I = f.

Proof. Trivial.

Theorem 2.8. If f is an arithmetical function with $f(1) \neq 0$, there is a unique arithmetical function f^{-1} , called the Dirichlet inverse of f such that

$$f * f^{-1} = f^{-1} * f = I$$

Moreover, f^{-1} is given by $f^{-1}(1) = \frac{1}{f(1)}$ and for n > 1

$$f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d | n \\ d < n}} f\left(\frac{n}{d}\right) f^{-1}(d)$$

Proof. It can be easily shown that the given function is a Dirichlet inverse of f. That is,

$$f * f^{-1} = f^{-1} * f = I$$

Suppose g is also a Dirichlet inverse of f. Then,

$$g * f * f^{-1} = (g * f) * f^{-1} = I * f^{-1} = f^{-1}$$

= $g * (f * f^{-1}) = g * I = g$

Therefore, $g = f^{-1}$ and f^{-1} is unique.

Remark 1. The set of all arithmetical functions f with $f(1) \neq 0$ is an Abelian group under Dirichlet multiplication.

Proposition 2.9. Suppose f and g are invertible arithmetical functions, then $(f * g)^{-1} = f^{-1} * g^{-1}$.

Proof. We can readily deduct this from the fact that invertible functions form an Abelian group under Dirichlet multiplication. \blacksquare

Definition: The unit function u(n) = 1 for all $n \ge 1$. Since $\sum_{d|n} \mu(d) = I(n)$, then $\mu * u = I$ and thus by uniqueness of inverse $\mu^{-1} = u$.

Theorem 2.10 (Mobius inversion formula). If

$$f(n) = \sum_{d|n} g(n)$$

then,

$$g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right) \tag{2.1}$$

Proof. Since f = g * u, then $g = f * u^{-1} = f * \mu$.

2.4 The Mangoldt function Λ

Definition: For every integer $n \geq 1$, we define

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m \text{ for some prime } p \text{ and } m \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.11. For $n \geq 1$,

$$\log(n) = \sum_{d|n} \Lambda(d)$$

and

$$\Lambda(n) = \sum_{d|n} \mu(d) \log\left(\frac{n}{d}\right) = -\sum_{d|n} \mu(d) \log(d)$$

Proof. For the first identity we have

$$\sum_{d|n} \Lambda(d) = \sum_{p^{\alpha}|n} \Lambda(p^{\alpha}) = \sum_{p^{\alpha}|n} \log p = \sum_{p^{\alpha}|n} \alpha \log p = \log n$$

Hence, $\log = \Lambda * u$. Therfore, $\Lambda = \log * u^{-1} = \log * \mu$.

2.5 Multiplicative functions

Definition: An arithmetical function f is **multiplicative** if $f \not\equiv 0$ and

$$f(mn) = f(m)f(n)$$

whenver (m, n) = 1. The function f is said to be **completely multiplicative** if for all m, n

$$f(mn) = f(m)f(n)$$

Remark 2. Multiplicative functions from a subgroup under *. The ordinary multiplication and division of two (completely) multiplicative functions are (completely) multiplicative.

Proposition 2.12. If f is multiplicative, then f(1) = 1.

Proof. Since f is multiplicative, f(1) = f(1)f(1) thus, f(1) = 0, 1. If f(1) = 0, then $f \equiv 0$ which contradicts our assumption hence f(1) must be 1.

Theorem 2.13. Given an arithmetical function f with f(1) = 1

- 1. f is multiplicative if and only if $f(\prod p_i^{\alpha_i}) = \prod f(p_i^{\alpha_i})$
- 2. If f is multiplicative, then f is completely multiplicative if and only if $f(p^{\alpha}) = (f(p))^{\alpha}$.

Proof.

1. If f is multiplicative, then the formula is obviously true. Suppose the formula holds and the integers m, n are relatively prime. Let $m = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and $n = q_1^{\beta_1} \dots q_r^{\beta_r}$ with no p equal to a q.

$$f(mn) = f\left(\prod p_i^{\alpha_i} \prod q_i^{\beta_i}\right) = \prod_{i,j} f(p_i^{\alpha_i}) f\left(q_j^{\beta_j}\right) = \prod_i f(p_i^{\alpha_i}) \prod_j f\left(q_j^{\beta_j}\right) = f(m) f(n)$$

Therefore, f is multiplicative.

2. If f is completely multiplicative, then the formula holds trivially. Suppose the formula holds and m, n are integers with prime decomposition $m = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and $n = p_1^{\gamma_1} \dots p_k^{\gamma_k} q_1^{\beta_1} \dots q_r^{\beta_r}$ with no p equal to a q.

$$f(mn) = f\left(\prod p_i^{\alpha_i + \gamma_i} \prod q_i^{\beta_i}\right)$$

$$= \prod_{i,j} f\left(p_i^{\alpha_i + \gamma_i}\right) f\left(q_j^{\beta_j}\right)$$

$$= \prod_i (f(p_i))^{\alpha_i + \gamma_i} \prod_j f\left(q_j^{\beta_j}\right)$$

$$= \prod_i (f(p_i))^{\alpha_i} \prod_i (f(p_i))^{\gamma_i} \prod_j f\left(q_j^{\beta_j}\right)$$

$$= \prod_i f(p_i^{\alpha_i}) \prod_i f(p_i^{\gamma_i}) \prod_j f\left(q_j^{\beta_j}\right)$$

$$= f(m) f(n)$$

Theorem 2.14. If f and g are both multiplicative, then f * g is multiplicative. If g and f * g are both multiplicative, then f is multiplicative.

Proof. Suppose f and g are two multiplicative functions and m, n are two relatively prime integers. Then,

$$f * g(mn) = \sum_{d|mn} f(d)g\left(\frac{mn}{d}\right)$$

$$= \sum_{\substack{d_m|m\\d_n|n}} f(d_m d_n)g\left(\frac{m}{d_m} \frac{n}{d_n}\right)$$

$$= \sum_{\substack{d_m|m\\d_n|n}} \sum_{d_n|n} f(d_m)f(d_n)g\left(\frac{m}{d_m}\right)g\left(\frac{n}{d_n}\right)$$

$$= f * g(m)f * g(n)$$

Let g be a multiplicative function. We show that g^{-1} is multiplicative as well. Since g(1) = 1, then $g^{-1}(1) = 1$. Note that if p is a prime for $k \ge 1$ we have,

$$g^{-1}(p^k) = -\sum_{i=0}^{k-1} g(p^{k-i})g^{-1}(p^i)$$

Let h be the multiplicative function that agrees with g^{-1} on prime powers. Consider the Dirichlet multiplication g*h for $p_1^{\alpha_1} \dots p_k^{\alpha_k}$ with $\alpha_i \geq 1$.

$$g * h(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = \sum_{0 \le i_j \le \alpha_j} h(p_1^{i_1} \dots p_k^{i_k}) g(p_1^{\alpha_1 - i_1} \dots p_k^{\alpha_k - i_k})$$

$$= \sum_{0 \le i_j \le \alpha_j} h(p_1^{i_1}) \dots h(p_k^{i_k}) g(p_1^{\alpha_1 - i_1}) \dots g(p_k^{\alpha_k - i_k})$$

$$= \prod_j \sum_{0 \le i_j \le \alpha_j} h(p_j^{i_j}) g(p_j^{\alpha_j - i_j})$$

$$= \prod_{j} \sum_{0 \le i_j \le \alpha_j} g^{-1} \left(p_j^{i_j} \right) g \left(p_j^{\alpha_j - i_j} \right)$$

$$= \prod_{j} \left(\sum_{0 \le i_j < \alpha_j} g^{-1} \left(p_j^{i_j} \right) g \left(p_j^{\alpha_j - i_j} \right) + g^{-1} \left(p_j^{\alpha_j} \right) \right)$$

$$= \prod_{j} \left(\sum_{0 \le i_j < \alpha_j} -g^{-1} \left(p_j^{\alpha_j} \right) + g^{-1} \left(p_j^{\alpha_j} \right) \right)$$

$$= 0$$

Also, g * h(1) = g(1)h(1) = 1. That is, g * h = I and since Dirichlet inverse is unique it must be that $g^{-1} = h$.

2.5.1 Inverse of completely multiplicative functions

Theorem 2.15. Let f be a multiplicative function. Then, f is completely multiplicative if and only if

$$f^{-1}(n) = \mu(n)f(n)$$

Proof. Suppose f is completely multiplicative and $g(n) = \mu(n)f(n)$

$$f * g(n) = \sum_{d|n} f(d)\mu(d)f(\frac{n}{d}) = f(n)\sum_{d|n} \mu(d) = f(n)I(n) = I(n)$$

Thus, $f^{-1} = g$. Suppose f is a multiplicative function such that $f^{-1} = \mu f$. Let p be prime and $\alpha \ge 1$ be such that $f(p^{\alpha}) = (f(p))^{\alpha}$. Then, note

$$f(p^{\alpha+1}) = -\sum_{i=0}^{\alpha} f(p^i) f^{-1}(p^{\alpha+1-i}) = -f(p^{\alpha}) f^{-1}(p) = (f(p))^{\alpha} f(p) = (f(p))^{\alpha+1}$$

Remark 3. Note that $N = \phi * u$ and $\phi = N * \mu$ therefore, $\phi^{-1} = \mu^{-1} * N^{-1} = u * N^{-1}$. Since N is completely multiplicative, $\phi^{-1} = u * \mu N$. That is,

$$\phi^{-1}(n) = \sum_{d|n} d\mu(d)$$

Theorem 2.16. If f is multiplicative,

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))$$

Proof. Let $g(n) = \sum_{d|n} \mu(d) f(d)$. Note that $g = \mu f * u$ and thus it is multiplicative. Then, to determine g we need to evaluate $g(p^{\alpha})$ for prime p and $\alpha \geq 1$.

$$g(p^{\alpha}) = \sum_{d|p^{\alpha}} \mu(d)f(d) = \sum_{d|p} \mu(d)f(d) = 1 - f(p)$$

As a result,

$$g(n) = \prod_{p^{\alpha}||n} g(p^{\alpha}) = \prod_{p|n} (1 - f(p))$$

2.6 Liouville's function λ

Definition: The Liouville function λ is defined as $\lambda(1) = 1$ and if $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, then

$$\lambda(n) = (-1)^{\alpha_1 + \dots + \alpha_k}$$

Theorem 2.17. For $n \geq 1$,

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & n \text{ is a perfect square} \\ 0 & otherwise \end{cases}$$

and also $\lambda^{-1}(n) = |\mu(n)|$.

Proof. Note that $g = \lambda * u$ is multiplicative since λ is completely multiplicative. Hence, for a prime p and $\alpha \geq 1$ we have

$$g(p^{\alpha}) = \sum_{i=0}^{\alpha} \lambda(p^{i}) = \sum_{i=0}^{\alpha} (-1)^{i} = \frac{1 - (-1)^{\alpha+1}}{1 - (-1)} = \frac{1 + (-1)^{\alpha}}{2} = \begin{cases} 1 & \alpha \text{ is even} \\ 0 & \alpha \text{ is odd} \end{cases}$$

Therefore,

$$g(n) = \prod_{p^{\alpha}||n} g(p^{\alpha}) = \begin{cases} 1 & n \text{ is a perfect square} \\ 0 & \text{otherwise} \end{cases}$$

Since λ is completely multiplicative, $\lambda^{-1} = \mu \lambda$. If there is a prime p such that $p^2 \mid n$, then $\mu(n) = 0$ and $\mu(n)\lambda(n) = |\mu(n)|$. If $n = p_1 \dots p_k$, then $\lambda(n) = \mu(n)$ and thus $\lambda(n)\mu(n) = (\mu(n))^2 = |\mu(n)|$.

2.7 The divisor function σ_{α}

Definition: For all $\alpha \in \mathbb{C}$, $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha} = N^{\alpha} * u$

Proposition 2.18. The divisor function σ_{α} is multiplicative and

$$\sigma_{\alpha}(p^{k}) = 1 + p^{\alpha} + \dots + p^{k\alpha} = \begin{cases} \frac{p^{(k+1)\alpha} - 1}{p^{\alpha} - 1} & \alpha \neq 0\\ k + 1 & \alpha = 0 \end{cases}$$

Proof. Trivial.

Theorem 2.19. For $n \geq 1$, we have

$$\sigma_{\alpha}^{-1}(n) = \sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)$$

Proof. Since N^{α} is completely multiplicative we have

$$\sigma_{\alpha}^{-1} = (N^{\alpha})^{-1} * \mu = N^{\alpha}\mu * \mu$$

2.8 Generalized convolution

Let $F:]0, \infty[\to \mathbb{C}$ such that F(x) = 0 for 0 < x < 1. Let f be an arithmetical function

$$f \circ F(x) = \sum_{n \le x} f(n) F\left(\frac{x}{n}\right)$$

is a function such that $f \circ F(x) = 0$ for 0 < x < 1 and defined on $]0, \infty[$.

Remark 4. In general, \circ is not commutative nor associative.

Theorem 2.20. Let f and g be two arithmetical functions

$$f \circ (g \circ F) = (f * g) \circ F$$

Theorem 2.21 (Inverse formula). Let f have inverse f^{-1} , then the equation

$$G(x) = \sum_{n \le x} f(x) F\left(\frac{x}{n}\right)$$

implies

$$F(x) = \sum_{n \le x} f^{-1}(x)G\left(\frac{x}{n}\right)$$

Proof.

$$f \circ (g \circ F)(x) = \sum_{n \le x} f(n)g \circ F\left(\frac{x}{n}\right)$$

$$= \sum_{n \le x} f(n) \sum_{k \le x/n} g(k)F\left(\frac{x}{nk}\right)$$

$$= \sum_{n \le x} \sum_{nk \le x} f(n)g(k)F\left(\frac{x}{nk}\right)$$

$$= \sum_{nk \le x} f(n)g(k)F\left(\frac{x}{nk}\right)$$

$$= \sum_{m \le x} \sum_{d \mid m} f(d)g\left(\frac{m}{d}\right)F\left(\frac{x}{m}\right)$$

$$= \sum_{m \le x} f * g(m)F\left(\frac{x}{m}\right)$$

$$= (f * g) \circ F(x)$$

Theorem 2.22 (Generalized Mobius inversion). Let f be completely multiplicative

$$G(x) = \sum_{n \le x} f(n) F\left(\frac{x}{n}\right) \iff F(x) = \sum_{n \le x} \mu(n) f(n) G\left(\frac{x}{n}\right)$$

Proof. We have

$$\mu f \circ G = f^{-1} \circ G = f^{-1} \circ (f \circ F) = (f^{-1} * f) \circ F = F$$

2.9 Formal power series

Definition of formal power series as usual with equality, sum, and multiplication. Therefore, formal power series form a ring with 0 and 1. If the leading coefficient is non-zero, then the formal power series is invertible.

Definition: Let f be an arithmetical function and p be a prime

$$f_p(x) = \sum_{n=0}^{\infty} f(p^n) x^n$$

is the Bell series of f modulo p.

Theorem 2.23. If f and g are multiplicative, then f = g if and only if $f_p = g_p$ for all p.

Example 2.1.

$$\mu_p(x) = 1 - x$$
 $I_p(x) = 1$ $\lambda_p(x) = \frac{1}{1 + x}$ $\phi_p(x) = \frac{1 - x}{1 - px}$ $u_p(x) = \frac{1}{1 - x}$ $N_p^{\alpha}(x) = \frac{1}{1 - p^{\alpha}x}$

Theorem 2.24. Let f and g be two arithmetical functions and h = f * g, then $h_p = f_p g_p$ for all p.

Proof. We have,

$$h_p(x) = \sum_{n=0}^{\infty} h(p^n) x^n$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} f(p^i) g(p^{n-i}) x^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} f(p^i) g(p^{n-i}) x^n$$

$$= \sum_{i=0}^{\infty} f(p^i) x^i \sum_{n=i}^{\infty} g(p^{n-i}) x^{n-i}$$

$$= \sum_{i=0}^{\infty} f(p^i) x^i \sum_{n=0}^{\infty} g(p^n) x^n$$

$$= f_p(x) g_p(x)$$

As a result,

$$(\sigma_{\alpha})_{p}(x) = N_{p}^{\alpha}(x)u_{p}(x) = \frac{1}{1 - p^{\alpha}x} \frac{1}{1 - x} = \frac{1}{1 - (p^{\alpha} + 1)x + p^{\alpha}x^{2}} = \frac{1}{1 - \sigma_{\alpha}(p) + p^{\alpha}x^{2}}$$

Definition: The derivative arithmetical function f is defined by

$$f'(n) = f(n)\log(n)$$

Theorem 2.25.

1.
$$(f+g)' = f' + g'$$
.

2.
$$(f * g)' = f' * g + f * g'$$
.

3.
$$(f^{-1})' = -f' * (f * f)^{-1}$$
 provided that $f(1) \neq 0$.

Proof.

1.
$$(f+g)' = (f+g)\log = f\log + g\log$$
.

2.

$$(f * g)'(n) = f * g(n) \log n$$

$$= \sum_{d|n} f(d)g\left(\frac{n}{d}\right) \log n$$

$$= \sum_{d|n} f(d)g\left(\frac{n}{d}\right) \left(\log d + \log \frac{n}{d}\right)$$

$$= \sum_{d|n} f(d) \log dg\left(\frac{n}{d}\right) + \sum_{d|n} f(d)g\left(\frac{n}{d}\right) \log \frac{n}{d}$$

$$= f' * g(n) + f * g'(n)$$

3. Note that, $(f * f^{-1})' = I' = I \log \equiv 0$. From the previous part we have

$$(f*f^{-1})' = f'*f^{-1} + f*(f^{-1})' = 0 \implies (f^{-1})' = -f^{-1}*f'*f^{-1} = -f'*(f*f)^{-1} \blacksquare$$

2.10 The Selberg theorem

Theorem 2.26. For $n \geq 1$,

$$\Lambda(n)\log(n) + \sum_{d|n} \Lambda(d)\Lambda\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d)\log^2\left(\frac{n}{d}\right)$$

Proof. Recall that $\Lambda = \mu * \log$ and $\Lambda' = \Lambda \log$ by definition.

$$\begin{split} \Lambda \log + \Lambda * \Lambda &= \Lambda' + (\mu * \log) * \Lambda \\ &= (\mu * \log)' + (\mu * u') * \Lambda \\ &= \mu' * \log + \mu * \log' + [(\mu * u)' - \mu' * u] * \Lambda \\ &= \mu \log * \log + \mu * \log^2 - \mu \log * u * \Lambda \\ &= \mu \log * \log + \mu * \log^2 - \mu \log * \log \\ &= \mu * \log^2 \end{split}$$

Exercises

1. Prove that

$$\frac{n}{\phi(n)} = \sum_{d|n} \frac{\mu^2(d)}{\phi(d)}$$

Solution. Note that, both the left hand side N/ϕ and the right hand side $\mu^2/\phi * u$ are multiplicative therefore, it suffices to show that they are equal on prime powers.

$$LHS = \frac{p^{\alpha}}{\phi(p^{\alpha})} = \frac{p^{\alpha}}{p^{\alpha-1}(p-1)} = \frac{p}{p-1}$$

$$RHS = \sum_{d|p^{\alpha}} \frac{\mu^{2}(d)}{\phi(d)} = \frac{1}{\phi(1)} + \frac{1}{\phi(p)} = \frac{p}{p-1}$$

$$\Rightarrow LHS = RHS$$

2. Let $\nu(n)$ be the number of distinct prime factors of n with $\nu(1) = 1$. Let $f = \mu * \nu$ and prove that f(n) is either 0 or 1.

Solution. Let m, k be an integer with $m, k \ge 1$ and p a prime such that (m, p) = 1. Then,

$$\mu * \nu(p^k m) = \sum_{d|p^k m} \mu(d) \nu\left(\frac{p^k m}{d}\right)$$

$$= \sum_{d|m} \sum_{l|p^k} \mu(ld) \nu\left(\frac{p^k m}{ld}\right)$$

$$= \sum_{d|m} \mu(d) \nu\left(\frac{p^k m}{d}\right) + \mu(pd) \nu\left(\frac{p^{k-1} m}{d}\right)$$

$$= \sum_{d|m} \mu(d) \left(1 + \nu\left(\frac{m}{d}\right)\right) - \mu(d) \left((1 - I(k)) + \nu\left(\frac{m}{d}\right)\right)$$

$$= I(k) \sum_{d|m} \mu(d)$$

$$= I(k) I(m)$$

Therefore, the value of the function is either 0 or 1. Moreover, it is only 1 for prime numbers. \triangleright

3. Prove that

$$\sum_{d^k|n} \mu(d) = \begin{cases} 0 & \text{if } m^k \mid n \text{ for some } m > 1\\ 1 & \text{otherwise} \end{cases}$$

Solution. Let $n = m^k r$ with $m \ge 1$ and r is $k_{\rm th}$ power free. That is, there is no integer whose $k_{\rm th}$ power divides r. Therefore,

$$\sum_{d^k|n} \mu(d) = \sum_{d^k|m^k} \mu(d) = \sum_{d|m} \mu(d) = I(m)$$

4. Prove that

$$\sum_{d|n} \mu(d) \log^m(d) = 0$$

if $m \ge 1$ and n has more than m distinct prime factors.

Solution. Let $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ has k distinct prime factors.

$$\sum_{d|n} \mu(d) \log^{m}(d) = \sum_{d|p_{1}...p_{k}} \mu(d) \log^{m}(d)$$

$$= \sum_{d|p_{1}...p_{k-1}} \mu(d) \log^{m}(d) + \mu(dp_{k}) \log^{m}(dp_{k})$$

$$= \sum_{d|p_{1}...p_{k-1}} \mu(d) \log^{m}(d) - \mu(d) (\log d + \log p_{k})^{m}$$

$$= -\sum_{d|p_{1}...p_{k-1}} \sum_{j=0}^{m-1} {m \choose j} \mu(d) \log^{j}(d) \log^{m-j}(p_{k})$$

$$= -\sum_{j=0}^{m-1} {m \choose j} \log^{m-j}(p_{k}) \sum_{d|p_{1}...p_{k-1}} \mu(d) \log^{j}(d)$$

Assuming that the induction base is true and k > m, then we are done by induction. The base case is when m = 1. Let $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and $k \ge 2$,

$$\sum_{d|n} \mu(d) \log d = -\log(p_k) \sum_{d|p_1...p_{k-1}} \mu(d)$$

$$= -\log p_k I(p_1...p_{k-1}) = 0$$

5. Let f(x) be defined for all rational x in $0 \le x \le 1$ and let

$$F(n) = \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \qquad F^*(n) = \sum_{\substack{k=1\\(k,n)=1}} f\left(\frac{k}{n}\right)$$

- (a) Show that $F^* = F * \mu$.
- (b) Show that

$$\mu(n) = \sum_{\substack{k=1\\(k,n)=1}} e^{2\pi i k/n}$$

Solution. (a) We have,

$$F^*(n) = \sum_{k=1}^n I((n,k)) f\left(\frac{k}{n}\right)$$
$$= \sum_{k=1}^n \sum_{d|(n,k)} \mu(d) f\left(\frac{k}{n}\right)$$
$$= \sum_{d|n} \sum_{k=1}^{n/d} \mu(d) f\left(\frac{dk}{n}\right)$$

 \triangleright

$$= \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$$
$$= \mu * F(n)$$

(b) Let $f(x) = e^{2\pi ix}$, then

$$F(n) = \sum_{k=1}^{n} e^{2\pi i k/n} = I(n)$$

and thus

$$\mu * F = \mu = F^* = \sum_{\substack{k=1 \\ (k,n)=1}}^n e^{2\pi i k/n}$$

6. Prove that,

$$\sigma_1(n) = \sum_{d|n} \phi(d)\sigma_0\left(\frac{n}{d}\right)$$

And try to generalize it for σ_{α}

Solution. For integer $\alpha \geq 1$

$$\sigma_{\alpha} = N^{\alpha} * u = (N^{\alpha - 1}N) * u$$

$$= (N^{\alpha - 1}N) * (N^{\alpha - 1}\mu) * (N^{\alpha - 1}\mu)^{-1} * u$$

$$= (N^{\alpha - 1}\phi) * N^{\alpha - 1} * u$$

$$= (N^{\alpha - 1}\phi) * \sigma_{\alpha - 1}$$

7.

Chapter 3

Averages of Arithmetical Functions

Arithmetical functions fluctuate a lot, by taking averages we can determine their behaviour

$$\tilde{f}(n) = \frac{1}{n} \sum_{k=1}^{n} f(k)$$

3.1 Asymptotic equality of function

 $f(x) \in O(g(x))$ if there exists M > 0 and a such that for all $x \ge a$, $|f(x)| \le M|g(x)|$. Usually, g is taken to be positive.

Definition: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$, then f is asymptotic to g as $x\to\infty$ and we write $f(x)\sim g(x)$ as $x\to\infty$.

3.2 Euler's summation formula

Theorem 3.1. If f has a continuous derivative f' on the interval [y, x], where 0 < y < x, then

$$\sum_{y < n \le x} f(n) = \int_{y}^{x} f(t) dt + \int_{y}^{x} (t - \lfloor t \rfloor) f'(t) dt + f(x)(\lfloor x \rfloor - x) - f(y)(\lfloor y \rfloor - y)$$

3.3 Some elementary asymptotic formula

Definition: The Euler-Mascheroni constant is defined as

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right)$$

Definition: The Riemann zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

where $s \in \mathbb{C}$ is a complex variable.

Theorem 3.2. If $x \ge 1$ we have

$$\sum_{n \le x} \frac{1}{n} = \log n + \gamma + O\left(\frac{1}{x}\right) \tag{3.1}$$

$$\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s}) \qquad s > 0 \land s \ne 1$$
 (3.2)

$$\sum_{n > s} \frac{1}{n^s} = O(x^{1-s}) \qquad s > 1 \tag{3.3}$$

$$\sum_{n \le x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + O(x^{\alpha}) \qquad \alpha \ge 0$$
 (3.4)

3.4 The average order of d(n)

Theorem 3.3. For all $x \ge 1$,

$$\sum_{n \le x} d(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x})$$

The error term can be improved to $O(x^{12/37+\epsilon})$ for all $\epsilon > 0$.

3.5 The average order of $\sigma_{\alpha}(n)$

Theorem 3.4. For all $x \ge 1$

$$\sum_{n \le x} \sigma_1(x) = \frac{1}{2}\zeta(2)x^2 + O(x\log x)$$
$$\sum_{n \le x} \sigma_{-1}(x) = \zeta(2)x + O(\log x)$$

If $\alpha > 0$ and $\alpha \neq 1$, then

$$\sum_{n \le x} \sigma_{\alpha}(x) = \frac{1}{\alpha + 1} \zeta(\alpha + 1) x^{\alpha + 1} + O(x^{\beta})$$
$$\sum_{n \le x} \sigma_{-\alpha}(x) = \zeta(\alpha + 1) x + O(x^{\delta})$$

where $\beta = \max\{1, \alpha\}$ and $\delta = \max\{0, 1 - \alpha\}$.

3.6 The average order $\phi(n)$

Theorem 3.5. For x > 1 we have

$$\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + O(x \log x)$$

3.7 An application

Definition: Two lattice point P and Q are mutually visible if the line segment connecting them contains no other lattice point.

Theorem 3.6. Two lattice point (a, b) and (c, d) are mutually visible if and only if (a - c, b - d) = 1.

Consider the square $C(r) = \{(x,y) \mid |x|, |y| \le r\}$, let N(r) = #C(r) and let N'(r) be the number of visible points from the origin in C(r).

Theorem 3.7. The set of lattice points visible from the origin has density $\frac{6}{\pi^2}$. That is,

$$\lim_{n \to \infty} \frac{N'(r)}{N(r)} = \frac{6}{\pi^2}$$

3.8 The average order of $\mu(n)$ and $\Lambda(n)$

Theorem 3.8. We have

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \mu(n) = 0$$

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \Lambda(n) = 1$$

Both are equivalent to prime number theorem.

3.9 The partial sums of Dirichlet product

Theorem 3.9. If h = f * g, let

$$H(x) = \sum_{n \le x} h(n) \qquad F(x) = \sum_{n \le x} f(n) \qquad G(x) = \sum_{n \le x} g(n)$$

then we have

$$H(x) = \sum_{n \le x} f(n)G\left(\frac{x}{n}\right) = \sum_{n \le x} g(n)F\left(\frac{x}{n}\right)$$

Theorem 3.10. If $F(x) = \sum_{n \leq x} f(n)$ we have

$$\sum_{n \le x} \sum_{d|n} f(d) = \sum_{n \le x} f(x) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{n \le x} F\left(\frac{x}{n}\right)$$

3.10 Applications to $\mu(n)$ and $\Lambda(n)$

Theorem 3.11. For $x \ge 1$ we have

$$\sum_{n \le x} \mu(x) \left(\frac{x}{n}\right) = 1$$
$$\sum_{n \le x} \Lambda(x) \left(\frac{x}{n}\right) = \log(\lfloor x \rfloor!)$$

Theorem 3.12. For all $x \ge 1$ we have

$$\left| \sum_{n \le r} \frac{\mu(n)}{n} \right| \le 1$$

with equality hodling if x < 2.

Theorem 3.13 (Legendre's Identity). For all $x \ge 1$

$$\lfloor x \rfloor! = \prod_{p \le x} p^{\alpha(p)}$$

where $\alpha(p) = \sum_{m=1}^{\infty} \left| \frac{x}{p^m} \right|$.

Theorem 3.14. If $x \ge 2$

$$\log(|x|!) = x \log x - x + O(\log x)$$

and hence

$$\sum_{n \le x} \Lambda(n) \lfloor (x)n \rfloor = x \log x - x + O(\log x)$$

Theorem 3.15. For $x \ge 2$

$$\sum_{p \le x} \lfloor (x)p \rfloor \log p = x \log x + O(x)$$

3.11 Another Identity for the partial sums of a Dirichlet product

Theorem 3.16. If h = f * g, let

$$H(x) = \sum_{n \le x} h(n) \qquad F(x) = \sum_{n \le x} f(n) \qquad G(x) = \sum_{n \le x} g(n)$$

then we have

$$H(x) = \sum_{n \le x} \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right) = \sum_{qd \le x} f(d)g(q)$$

Theorem 3.17. If a, b are positive real numbers such that ab = x, then

$$\sum_{ad \le x} f(d)g(q) = \sum_{n \le a} f(n)G\left(\frac{x}{n}\right) + \sum_{n \le b} g(x)G\left(\frac{x}{n}\right) - F(a)G(b)$$

Chapter 4

Elementary Theorems on the Distribution of Prime Numbers

4.1 Chebyshev's functions $\psi(x), \theta(x)$

Definition: For x > 0,

$$\psi(x) = \sum_{n \le x} \Lambda(n) = \sum_{m=1}^{\infty} \sum_{p^m \le x} \Lambda(p^m) = \sum_{m=1}^{\infty} \sum_{p^m \le x} \log(p)$$

Moreover, since there are no primes less than 2, if $x^{1/m} < 2$, then the inner sum would be zero. That is,

$$\psi(x) = \sum_{m \le \lg x} \sum_{p \le x^{1/m}} \log p$$

Definition: For x > 0,

$$\theta(x) = \sum_{p \le x} \log p$$

Therefore,

$$\psi(x) = \sum_{m \le \log x} \theta(\sqrt[m]{x})$$

Theorem 4.1. For x > 0,

$$0 \le \frac{\psi(x) - \theta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log 2}$$

Proof.

From this theorem, we are able to conclude that if $\lim \frac{\psi(x)}{x}$ exists, then $\lim \frac{\theta(x)}{x}$ exists and they are equal.

4.2 Relations connecting $\theta(x)$ and $\pi(x)$

Theorem 4.2 (Abel's identity). Let a(n) be arithmetical and let $A(n) = \sum_{n \leq x} a(n)$, with A(x) = 0 for x < 1. Assume f has a continuous derivative on interval [y, x]. Then, we have

$$\sum_{y \le n \le x} a(n)f(x) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t) dt$$

The Euler's summation formula can be easily deduced from Abel's.

Theorem 4.3. For $x \ge 2$

$$\theta(x) = \pi(x) \log x - \int_{2}^{x} \frac{\pi(t)}{t} dt$$

and

$$\pi(x) = \frac{\theta(x)}{\log x} + \int_2^x \frac{\theta(t)}{t \log^2 t} dt$$

4.3 Equivalent forms of Prime Number Theorem

Theorem 4.4. The following relations are equivalent.

$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1 \tag{4.1}$$

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1 \tag{4.2}$$

$$\lim_{x \to \infty} \frac{\psi(x)}{r} = 1 \tag{4.3}$$

Theorem 4.5. Let p_n be the n_{th} prime, the following relations are equivalent.

$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$

$$\lim_{x \to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{p_n}{n \log n} = 1$$

4.4 Inequalities for $\pi(x)$ and p_n

Theorem 4.6. For every integer $n \geq 2$

$$\frac{1}{6} \frac{n}{\log n} \le \pi(n) \le 6 \frac{n}{\log n}$$

and for $n \geq 1$,

$$\frac{1}{6}n\log n < p_n < 12\left(n\log n + n\log\left(\frac{12}{e}\right)\right)$$