שיעור 3 ערכים עצמיים ווקטוירם עצמיים

3.1 ערכיים עצמיים, ווקטורים עצמיים של מטריצות

הגדרה 3.1 ערך עצמי ווקטור עצמי של מטריצה

יקרא (v $eq ar{0}$) מטריצה לוקטור האפס על אדה $\mathbf{v}\in F^n$ וקטור האפט . \mathbb{F} מטריצה ריבועית מעל אם היים אם $A\in \mathbb{F}^{n imes n}$ כך של $\lambda\in\mathbb{F}$ אם קיים סקלר $\lambda\in\mathbb{F}$ כך ש

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

A נקרא ערך עצמי של A ששייך לוקטור עצמי י. המשוואה הזאת נקראת ששייך לוקטור עצמי של λ

דוגמה 3.1

נתונה מטריצה

$$A = \left(\begin{array}{cc} 2 & 4 \\ 3 & 6 \end{array}\right) ,$$

המתאים: אחד מהוקטורים הבאים, הוא וקטור עצמי של A ומצאו את הערך עצמי המתאים:

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 (א)

$$u_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (3)

פתרון:

(א)

$$A \cdot \mathbf{v}_1 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 16 \\ 24 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 8u_1.$$

ולכן u_1 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_1 = 8$$
.

$$A \cdot \mathbf{v}_2 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 0u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_2=0$$
.

$$A \cdot u_3 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

A ולכן u_3 אינו וקטור עצמי של

דוגמה 3.2

()

נתונה מטריצה

$$A = \left(\begin{array}{cc} 4 & 8 \\ 1 & 6 \end{array}\right) ,$$

ים: את הערך עצמי את ומצאו את וקטור עצמי הוא וקטור הבאים, הוא המתאים: מהוקטורים הבאים, הוא וקטור עצמי של אחד מהוקטורים הבאים, הוא וקטורים הבאים ה

$$u_1=egin{pmatrix} 4 \ 1 \end{pmatrix}$$
 (X)

$$u_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (3)

פתרון:

(メ)

(ロ)

$$A \cdot u_1 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 24 \\ 10 \end{pmatrix} \neq \lambda u_1.$$

A אינו וקטור עצמי של ולכן ולכן

$$A \cdot u_2 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -4 \\ 1 \end{pmatrix} = 2u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda = 2$$
.

$$A \cdot u_3 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (3)

 $\lambda=8$ ולכן עצמי לערך עצמי של A השייך עצמי ולכן ולכן ולכן

דוגמה 3.3

הינם המטריצה של וקטורי עצמיים של הינם ו
$$u_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 , $u_1=\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ הראו

$$A = \left(\begin{array}{cc} 5 & 0 \\ 2 & 0 \end{array}\right)$$

$$A \cdot u_1 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$A \cdot u_2 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\lambda_2=0$ ו אוא וקטור עצמי השייך לערך עצמי ו $\lambda_1=2$ ו אוא וקטור עצמי השייך לערך עצמי וכן $\lambda_1=0$

משפט 3.1

ערך עצמי של מטריצה יכול להיות 0.

וקטור האפס לא יכול להיות וקטור עצמי של מטריצה.

משפט 3.2 המשוואה האופייני של מטריצה

,3.1 אז לפי הגדרה א לערך עמצי λ ששייך לערך עצמי של יויהי א וקטור ויהי א א ויהי $A\in\mathbb{F}^{n\times n}$

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
,

נעביר אגפים:

$$\bar{0} = \lambda \mathbf{v} - A \mathbf{v} \qquad \Rightarrow \qquad \bar{0} = (\lambda I - A) \mathbf{v}$$

כאשר I המטריצה היחידה של $\mathbb{F}^{n imes n}$. קיבלנו את המשוואה

$$(\lambda I - A) \mathbf{v} = \bar{\mathbf{0}} .$$

.0 -שווה ($\lambda I-A$) אווה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה עצמי אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה ($\lambda I-A$) שווה ל- $\lambda I-A$

$$|\lambda I - A| = 0 .$$

A המשוואה הזאת נקראת משוואת האופייני של

הצד שמאל נקרא **הפולינום האופייני של** A ומסומן $p_A(\lambda)$ כלומר

$$p_A(\lambda) = |\lambda I - A| .$$

משפט 3.3 סדר של פולינום האופייני

A מסדר A של $p_A(x)$ אם הפולינום האופייני $A \in \mathbb{F}^{n imes n}$

משפט 3.4 מרחב עצמי

תהי $A\in\mathbb{F}^{n imes n}$ ויהי λ ערך עצמי של A. נסמן ב- V_λ הקבוצה של כל הוקטורים עצמיים ששייכים לערך עצמי λ , בתוספת הוקטור האפס. $\mathbb{F}^{n imes n}$ תת-מרחב של $\mathbb{F}^{n imes n}$.

הוכחה: תרגיל בית.

$A-\lambda I$ מרחב עצמי של ערך עצמי λ שווה למרחב האפס של 3.5

תהי $A \in \mathbb{F}^{n imes n}$ מרחב העצמי של A ערך עצמי של A ויהי א

$$V_{\lambda} = \text{Nul}\left(A - \lambda I\right)$$
.

 $.V_{\lambda}\subseteq \mathrm{Nul}\,(A-\lambda I)$ נוכיח כי נוכיח הוכחה:

יהי את משוואת הערך עצמי A אשייך לערך עצמי A אשייך אשייך לערך עצמי u יהי וקטור עצמי של

$$A \cdot u = \lambda u \qquad \Rightarrow \qquad (A - \lambda I) \cdot u = \bar{0}$$

לכן $u\in V_\lambda$ לכן לכל וקטור אפס. אנכן $u\in \mathrm{Nul}(A-\lambda I)$ לכן $ar 0\in \mathbb F^n$ כאשר $V_\lambda\subseteq \mathrm{Nul}\,(A-\lambda I)$.

 $\operatorname{Nul}\left(A-\lambda I\right)\subseteq V_{\lambda}$ נוכיח כי

יהי $u \in \operatorname{Nul}(A - \lambda I)$ יהי

$$(A - \lambda I) u = \bar{0} \qquad \Rightarrow \qquad A \cdot u = \lambda u \ .$$

לכן $u\in {\rm Nul}\,(A-\lambda I)$ לכל לכך $u\in V_\lambda$ לכן לערך עצמי u ששייך לערך ששייך לערך עצמי u לכן אווא וקטור עצמי של שווא אווא ו

הגדרה 3.2 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של מטריצה

 λ_i ערך עצמי ארך ויהי $A\in\mathbb{F}^{n imes n}$

הריבוי אלגברי של λ_i הוא הריבוי של λ_i הוא הריבוי אלגברי של האופייני האוח הריבוי אלגברי הריבוי הריבוי של

$$|\lambda I - A| = (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \quad \cdots \quad (\lambda - \lambda_i)^{m_i} \quad \cdots \quad (\lambda - \lambda_l)^{m_l} ,$$

 m_i אז הריבוי אלגברי של

הריבוי גיאומטרי שלו. כלומר המימד אם המימד הוא λ_i שלו. כלומר אם הריבוי גיאומטרי

$$V_{\lambda_i} = \{u_1, \dots, u_k\}$$

k הוא λ_i יש אוקטורים כי הריבוי ואומרים עצמיים אז ל- אז ל- אז ל- אוקטורים עצמיים ואומרים או

דוגמה 3.4

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2) - 6 = 0 \quad \Rightarrow \quad \lambda^2 - 3\lambda - 4 = 0$$

או שקול

$$(\lambda - 4)(\lambda + 1) = 0$$

ולכן לפולינום אופייני יש שני פתרונות:

$$\lambda = 4$$

$$.\lambda = -1$$

 $\lambda = 4$

$$(A-\lambda I\mid ar{0})\stackrel{\lambda=4}{=}(A-4I\mid ar{0})=\left(egin{array}{cc|c} -3 & 2 & 0 \ 3 & -2 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} -3 & 2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$
 פתרון: $\begin{pmatrix} x \ y \end{pmatrix}=y\begin{pmatrix} 2 \ 3 \end{pmatrix}$: נסמן

$$V_4 = \operatorname{span}\left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$$
.

נסמן . $\lambda=4$ נסמן אייך לערך עצמי החב מרחב עצמי ו

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
.

 $\lambda=4$ הוא הוקטור עצמי ששייך לערך עצמי ווא הוקטור עז הוא ווא הוקטור לכן היכוי גיאומטרי של $\dim(V_4)=1$

 $\lambda = -1$

$$(A-\lambda I\mid ar{0}) \stackrel{\lambda=-1}{=} (A+I\mid ar{0}) = \left(egin{array}{cc|c} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight)$$
 הפתרון הוא: $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ נסמן

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$
 .

נסמן . $\lambda=-1$ נסמן להערך עצמי השייך עצמי אמרחב ע

$$u_2 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

 $\lambda=-1$ הוא הוקטור עצמי ששייך לערך עצמי הוקטור עצמי הוא ווא הוקטור לכן הוא $\dim(V_{-1})=1$

דוגמה 3.5

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 2 & 0 & 0 & -1 \\ 0 & \lambda - 2 & 1 & 1 \\ 1 & 1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2)\left((\lambda - 2)^2 - 1\right) = 0 .$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 4 - 1\right) = 0$$

$$(\lambda - 1)(\lambda - 2) (\lambda^2 - 4\lambda + 4 - 1) = 0$$

$$(\lambda - 1)(\lambda - 2) (\lambda^2 - 4\lambda + 3) = 0$$

$$(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 1) = 0$$

$$(\lambda - 1)^2(\lambda - 2)(\lambda - 3) = 0$$

:קיימים 3 ערכים עצמיים

 $\lambda=1$ מריבוי אלגברי

 $\lambda=2$ מריבוי אלגברי

 $\lambda=3$ מריבוי אלגברי

 $\lambda = 1$

$$(A - \lambda I \mid \bar{0}) \stackrel{\lambda=1}{=} (A - I \mid \bar{0}) = \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & -1 & 1 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

הפתרון הוא
$$\lambda=1$$
 עצמי עצמי ששייך לערך עצמי המרחב .
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}=z\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}+w\begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \ z,w\in\mathbb{R}$$
 הוא הפתרון הוא

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

בבסיס של V_1 ישנם שני וקטורים. נסמן

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

 $\lambda=1$ ו- u_2 הם הוקטורים עצמיים ששייכים לערך עצמי ו- u_1 נון ש $\dim(V_1)=2$, הוא אומרים כי הריבוי גאומטרי של הערך עצמי

$$(A-2I\mid \bar{0}) = \left(\begin{array}{ccc|ccc|c} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{array} \right) \ \rightarrow \ \left(\begin{array}{ccc|ccc|c} -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \ \rightarrow \ \left(\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

$$\rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

הוא
$$\lambda=2$$
 עצמי ששייך לערך עצמי המרחב
$$\begin{pmatrix} x\\y\\z\\w \end{pmatrix}=y\begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix},\ y\in\mathbb{R}.$$
 פתרון:

$$V_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

נסמן . נסמן על V_2 יש וקטור אחד. נסמן

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} .$$

עד הערך אומטרי פי הריבוי אומרים אומרים לוון ש $\mathrm{dim}(V_2)=1$ כיוון אוון אומטרי עצמי ששייך לערך עצמי לערך אוון הוא . $\lambda=2$ עצמי לערך עצמי הוא . $\lambda=2$

 $\lambda = 3$

$$(A - 3I \mid \bar{0}) = \begin{pmatrix} -1 & 0 & 0 & 1 \mid 0 \\ 0 & -1 & -1 & -1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix} \xrightarrow{\begin{array}{c} R_1 \to -R_1 \\ R_2 \to -R_2 \end{array}} \begin{pmatrix} 1 & 0 & 0 & -1 \mid 0 \\ 0 & 1 & 1 & 1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \left(\begin{array}{cccc|ccc} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

המרחב עצמי ששייך לערך עצמי
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = z \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \ z \in \mathbb{R}.$$
 פתרון: $z \in \mathbb{R}$

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

:בסיס של V_3 יש וקטור אחד

$$u_4 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} .$$

אז אומרים כי הריבוי גאומטרי של הערך עצמי הוא $\dim(V_3)=1$ - כיוון ש- $\lambda=3$ כיוון עצמי ששייך לערך עצמי ששייך לערך אז הוא $\lambda=3$. הוא $\lambda=3$

3.2 לכסון של מטריצה

הגדרה 3.3 לכסינות של מרטיצות

תהי מטריצה אם קיימת מטריצה אלכסונית. כלומר אם היא דומה לכסינה אם תקרא לכסינה אם תקרא לכסינה אם חיימת אלכסונית. כלומר אם חיימת מטריצה אלכסונית בד $D\in\mathbb{F}^{n\times n}$ מכריצה אלכסונית ומטריצה אלכסונית בדי אלכסונית היא מטריצה אלכסונית בדי מטריצה בדי מטריצה

$$D = P^{-1}AP .$$

משפט 3.6 לכסינות של מרטיצות

. לכסינה A אז \mathbb{F}^n אז א בסיס של מהווה בסיס עצמיים עצמיים אז $A\in\mathbb{F}^{n\times n}$

נסמן הוקטורים עצמיים ב- $\{u_1,\dots,u_n\}$ ששייכים לערכים עצמיים $\lambda_1,\dots,\lambda_n$ בהתאמה (הערכים עצמיים לא בהכרח שונים זה מזה). מכאן נובע ש-

$$D = P^{-1}AP \qquad \Leftrightarrow \qquad A = PDP^{-1}$$

. מטריצה
$$P=\begin{pmatrix} |&|&&|\\u_1&u_2&\dots&u_n\\|&|&&|\end{pmatrix}$$
 מטריצה אלכסונית ו
$$D=\begin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\\vdots&\vdots&\ddots&0\\0&0&\dots&\lambda_n \end{pmatrix}$$
 כאשר

הוכחה: $\lambda_i = \lambda_i u_i$ לכל $1 \leq i \leq n$ לכל

$$A \cdot P = \begin{pmatrix} | & | & | \\ A \cdot u_1 & A \cdot u_2 & \dots & A \cdot u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= PD.$$

 P^{-1} לכן הפיכה. לכן אז $\{u_1,\dots,u_n\}$ אז מהווים עצמיים עצמיים מהון כי הוקטורים. אז הפיכה. לכן הפיכה. לכן .AP=PD הפיכה. לכן היימת ומותר להכפיל מצד שמאל ב- $.P^{-1}$. נקבל

$$A = P^{-1}PD .$$

משפט 3.7 קריטירון 1 ללכסינות של מטריצה

. אם ל- A יש n ערכים עצמיים שונים ב- \mathbb{F} , אז $A\in\mathbb{F}^{n\times n}$ תהי

הוכחה: תרגיל בית.

משפט 3.8 קריטירון 2 ללכסינות של מטריצה: סכום המימדים של מרחבים העצמיים

A . $A \in \mathbb{F}^{n imes n}$ תהי A לכסינה אם"ם סכום המימדים של המרחבים העצמיים השונים שווה ל

הוכחה: תרגיל בית.

משפט 3.9 קריטירון 3 ללכסינות של מטריצה

תהי $A\in\mathbb{F}^{n imes n}$. אם

- ו- בהכרח שונים, ו $\mathbb F$, לא בהכרח שונים, ו- מפולינום האופייני שלה מתפרק למכפלה של גורמים לינאריים מעל
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,
 - $.\mathbb{F}$ אז A לכסינה מעל

הוכחה: תרגיל בית.

3.3 ערכים עצמיים של טרנספורמציות לינאריות

הגדרה 3.4 אופרטור לינארי

יהי V מרחב וקטורי. טרנספורציה לינארי T:V o V נקראת אופרטור לינארי.

הגדרה 3.5 אופרטור לכסין

אלכסונית. $[T]_B$ -ש כך על בסיס אס קיים לכסין נקראת נקראת לכסונית אופרטור לינארי יו $T:V \to V$

-טל V כך של $B=\{b_1,\ldots,b_n\}$ של מיים בסיס

$$T(b_1) = \lambda_1 b_1$$
, $T(b_2) = \lambda_2 b_2$, ..., $T(b_n) = \lambda_n b_n$.

X

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה)

הגדרה 3.6 ערך עצמי ווקטור עצמי של אופרטור לינארי

-תהי $V o u \neq 0$ אופרטור לינארי ו- λ סקלר. λ נקרא ערך עצמי של T: V o V תהי T: V o V

$$T(u) = \lambda u$$
.

נקרא u

 λ וקטור עצמי ששייך לערך עצמי

משפט 3.10

אופרטור לינארי אם"ם מוקטורים אם"ם קיים אם"ם לכסינה אם"ם לכסינה $T:V \to V$ אופרטור לינארי

הוכחה: ⇒

-ע כך $U = \{u_1, \dots, u_n\}$ כך ש- מיים לכסינה. ז"א קיים בסיס T

$$T(u_1) = \lambda_1 u_1$$
, $T(u_2) = \lambda_2 u_2$, ..., $T(u_n) = \lambda_n u_n$.

X

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה).

 \leq

-ע כך א $\lambda_1,\dots,\lambda_n$ פלרים סקלרים שמורכב מוקטורים עצמיים. א"א קיימים שמורכב $U=\{u_1,\dots,u_n\}$ כך ש

$$T(u_1) = \lambda_1 u_1$$
, ... $T(u_n) = \lambda_n u_n$.

לכן

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

אלכסונית.

הגדרה 3.7 פולינום האופייני של אופרטור לינארי

תהי T:V o V אז הפולינום מניח ש A המטריצה לינארי. נניח ש T:V o V המטריצה תהי

$$p_T(\lambda) = |\lambda I - A|$$

T נקרא הפולינום האופייני של

הגדרה 3.8 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של אופרטור לינארי

ערך עצמי. ו- λ ערך עצמי. T:V o V נניח

- . הריבוי האלגברי של λ הוא הריבוי של λ בפולינום האופייני.
- λ הריבוי הגאומרטי של ל λ הוא הוא λ ללומר, מספר הוקטורים העצמיים הבת"ל השייכים ל- ל λ

דוגמה 3.6

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

 $T(u) = \lambda u$ -פשו את הוקטורים עצמיים של T כך ש- חפשו את חפשו האח T לכחיוה?

פתרון:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

. כאשר $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ כאשר אופרטור.

פולינום האופייני:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0.$$

ערכים עצמיים:

$$\lambda = -1$$

$$\lambda = 4$$

 $\lambda = 4$

$$(A-4I)=inom{-3}{3}\quad 2 \ 3 \quad -2 \end{pmatrix} o inom{-3}{0}\quad 0$$
 פתרון: $V_4=\mathrm{span}\left\{inom{2}{3}
ight\}$ הוא $\lambda=4$ הוא $\lambda=4$ לכן המרחב עצמי שלו x ב- x y ברון: x ברון:

$$(A+I)=egin{pmatrix}2&2\\3&3\end{pmatrix} o egin{pmatrix}1&1\\0&0\end{pmatrix}$$
 נסמן הוקטור $.V_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\-1\end{pmatrix}\right\}$ הוא $\lambda=-1$ הוא לכן המרחב עצמי של $.U_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\y\end{pmatrix}=egin{pmatrix}-1\\1\end{pmatrix}y,y\in\mathbb{R}\\y\end{pmatrix}=egin{pmatrix}-1\\1\\1\end{pmatrix}$ עצמי שלו ב- $u_{1}=egin{pmatrix}1\\-1\\1\end{pmatrix}$ בת"ל:

$$\begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \to \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$$

לכן הם מהווים בסיס של \mathbb{R}^2 לכסינה.

$$T(u_1) = 4 \cdot u_1$$
, $T(u_2) = -1 \cdot u_2$.

משפט 3.11

יהי לינארי לינארי אופרטור $T:V \to V$ ויהי וקטורי מעל V אופרטור לינארי לכסיו.

B נניח ש- T לפי בסיס וניח שה המייצגת ומטריצה המטריצה וניח ש

יהיו $\lambda_1,\dots,\lambda_n$ הוקטורים עצמיים של T לפי בסיס B, ששייכים לערכים עצמיים u_1,\dots,u_n והם לא בהכרח שונים זה מזה).

אז

$$[T]_B = PDP^{-1}$$

או באופן שקול

$$P^{-1}[T]_B P = D$$

$$D = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
 -1 $P = egin{pmatrix} \mid & \mid & & \mid \\ u_1 & u_2 & \dots & u_n \\ \mid & \mid & & \mid \end{pmatrix}$ באשר

הוכחה:

$$[T]_{B}P = [T]_{B} \begin{pmatrix} | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [T]_{B}u_{1} & [T]_{B}u_{2} & \dots & [T]_{B}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

$$= PD,$$

כלומר, P^{-1} קיימת. לכן מותר להכפיל u_1,\dots,u_n בת"ל, אז P^{-1} הפיכה לכן מותר להכפיל מותר להכפיל מצד ימין ב- P^{-1} . נקבל: ולכן

$$[T]_B = PDP^{-1}$$

ומכאן נובע כי

$$P^{-1}[T]_B P = D$$

משפט 3.12

תהי אומטרי ו- kהריבוי האלגברי אם ערך עצמי. אם או λ_0 לינארית לינארית $T:V\to V$ הריבוי אומטרי אל אומטרי איז א λ_0

$$k \leq m$$
.

במילים: הריבוי הגיאומטרי קטן או שווה לריבוי האלגברי.

k ערך עצמי מריבוי אלגברי m וריבוי גיאומטרי λ_0 ערך עצמי מריבוי אלגברי m וקטורים בת"ל בת"ל u_1,\dots,u_k ששייכים לערך עצמי k נשלים אותו לבסיס של k:

$$B = \{u_1, \dots, u_k, u_{k+1}, \dots, u_n\}$$
.

 $:\!B$ נחשב את המטריצה המייצגת של נחשב את המטריצה המייצגת נחשב את

$$T(u_1) = \lambda_0 u_1$$
, ..., $T(u_k) = \lambda_0 u_k$

לכן

$$[T]_{B} = \begin{pmatrix} \lambda_{0} & 0 & \cdots & 0 \\ 0 & \lambda_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda_{0} \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

הוא A הופייני של

$$p_A(\lambda) = |\lambda I - A| = \begin{pmatrix} \lambda - \lambda_0 & 0 & \cdots & 0 \\ 0 & \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

נחשב את הדטרמיננטה דרך העמודה הראשונה:

$$p_A(\lambda) = (\lambda - \lambda_0) \cdot \left| \begin{pmatrix} \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & * \\ 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & \cdots & 0 \end{pmatrix} \right|$$

עד שנקבל

$$p_A(\lambda) = (\lambda - \lambda_0)^k |\lambda I - A'| = (\lambda - \lambda_0)^k p_{A'}(\lambda)$$

k -לכן הריבוי האלגברי גדול או שווה ל

דוגמה 3.7

$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 3\\ -1 & 3 & 1 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם A לכסינה? אם כן, רשמו מטריצה אלכסונית D ומטריצה הפיכה P כך ש

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -1 \\ 0 & \lambda + 1 & -3 \\ 1 & -3 & \lambda - 1 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} \lambda + 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} - \begin{vmatrix} 0 & 1 + \lambda \\ 1 & -3 \end{vmatrix}$$
$$= (\lambda + 1) ((\lambda + 1)(\lambda - 1) - 9) - (0 - (1 + \lambda))$$
$$= (\lambda + 1)(\lambda^2 - 1 - 9 + 1)$$
$$= (\lambda + 1)(\lambda^2 - 9)$$
$$= (\lambda + 1)(\lambda + 3)(\lambda - 3)$$

:ערכים עצמיים

.1 מריבוי אלגברי $\lambda=-1$

.1 מריבוי אלגברי $\lambda=3$

 $\lambda = -3$ מריבוי אלגברי

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \\ 1 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא $\lambda=-1$ עצמי השייך להערך אמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} y, \quad y \in \mathbb{R} \,:$ פתרון:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 3\\1\\0 \end{pmatrix} \right\}$$

 $.u_1 = egin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ הווקטור עצמי של $\lambda = -1$ הווקטור עצמי

 $\lambda=-1$ לכן הריבוי הגיאומטרי של הערך עצמי לוו $\lambda=-1$ לכן הריבוי הגיאומטרי

 $\lambda = 3$

$$(A-3I) = \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ -1 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & -12 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=3$$
 עצמי $\lambda=3$ המרחב עצמי השייך להערך עצמי z הוא המרחב .
$$\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} \frac{z}{4}\\\frac{3}{4}z\\z \end{pmatrix} = z \begin{pmatrix} 1\\3\\4 \end{pmatrix} :$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\3\\4 \end{pmatrix} \right\}$$

הוא $\lambda=3$ הוא הערך עצמי של הוא

$$u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} .$$

.1 הוא לכן איבוי של הערך איז גיאומטרי לכן הריבוי $\dim(V_3)=1$

 $\lambda = -3$

$$(A+3I) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 6 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא
$$\lambda=-3$$
 אוא אפייך להערך עצמי השייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -\frac{1}{2}z\\-\frac{3}{2}z\\z \end{pmatrix}=z\begin{pmatrix} -\frac{1}{2}\\-\frac{3}{2}\\1 \end{pmatrix}$ פתרון:

$$V_{-3} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} \right\}$$

הוא $\lambda=-3$ הוא הערך עצמי של הוקטור עצמי

$$u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} .$$

 $\lambda = -3$ לכן הריבוי גיאומטרי של הערך עצמי dim $V_{-3} = 1$

 $:\mathbb{R}^3$ לכן קיים בסיס של dim V_1+ dim V_3+ dim $V_{-3}=3$

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix} , \qquad P = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ 0 & 4 & 2 \end{pmatrix} .$$

דוגמה 3.8

$$A = \begin{pmatrix} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{pmatrix}$$

A את הערכים העצמיים ומרחבים עצמיים של

כך ש כך P ומטריצה הפיכה מטריצה אלכסונית לכסינה? אם כן, רשמו ב האם ב

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda - 5 & -2 & 2 \\ -2 & \lambda - 5 & 2 \\ 2 & 2 & \lambda - 5 \end{vmatrix}$$

$$= (\lambda - 5) \begin{vmatrix} \lambda - 5 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & \lambda - 5 \\ 2 & 2 \end{vmatrix}$$

$$= (\lambda - 5) ((\lambda - 5)^2 - 4) + 2 (-2(\lambda - 5) - 4) + 2 (-4 - 2(\lambda - 5))$$

$$= (\lambda - 5) (\lambda^2 - 10\lambda + 21) + 2 (-2\lambda + 6) + 2 (-2\lambda + 6)$$

$$= (\lambda - 5) (\lambda - 7) (\lambda - 3) - 4 (\lambda - 3) - 4 (\lambda - 3)$$

$$= (\lambda - 3) ((\lambda - 5) (\lambda - 7) - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 35 - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 27)$$

$$= (\lambda - 3) (\lambda - 9)(\lambda - 3)$$

 $\lambda=3$ ערך עצמי מריבוי אלגברי $\lambda=3$

 $\lambda=0$ ערד עצמי מריבוי אלגברי $\lambda=0$

 $\lambda = 3$

$$(A-3I)=\left(egin{array}{ccc}2&2&-2\\2&2&-2\\-2&-2&2\end{array}
ight)
ightarrow \left(egin{array}{ccc}1&1&-1\\0&0&0\\0&0&0\end{array}
ight)$$
 אוא $\lambda=3$ אוא $\lambda=3$ המרחב עצמי השייך להערך עצמי $\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=y\left(-1\\1\\0\end{pmatrix}+z\left(1\\0\\1\end{pmatrix}$ המרחב $V_3=\mathrm{span}\left\{\left(-1\\1\\0\end{pmatrix},\left(1\\0\\1\right)\right\}$

 $\lambda=3$ אז הריבוי הגיאומטרי של הערך עצמי של הייבוי הגיאומטרי אז הריבוי הגיאומטרי

 $\lambda = 9$

$$(A-9I) = \begin{pmatrix} -4 & 2 & -2 \\ 2 & 4 & -2 \\ -2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא $\lambda=9$ אפתרון: $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -z\\-z\\z \end{pmatrix}=z\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$: הוא

$$V_9 = \operatorname{span}\left\{ \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \right\}$$

.1 אז הריבוי הגיאומטרי של הערך עצמי הוא , $\dim(V_9)=1$

.dim $V_9 = 1$,dim $V_3 = 2$

 $\mathrm{dim}V_3+\mathrm{dim}V_9=3\ .$

:לכן קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים

$$u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 9 \end{pmatrix} , \qquad P = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} .$$

$$D = P^{-1}AP$$

דוגמה 3.9

$$A = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -12 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)\lambda(\lambda - 1) = 0$$

 $\lambda=0$ ערך עצמי מריבוי אלגברי $\lambda=0$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=1$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} 0 & 0 & 12 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=1$ עצמי $\lambda=1$ המרחב עצמי השייך להערך עצמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} :$

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=1$ אז הריבוי הגיאומטרי של הערך עצמי dim $(V_1)=1$

 $\lambda = 0$

$$(A - 0 \cdot I) = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=0$ עצמי אפייך להערך אייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} 0\\y\\0 \end{pmatrix}=y\begin{pmatrix} 0\\1\\0 \end{pmatrix}$:פתרון:

$$V_0 = \operatorname{span}\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$

.1 הוא $\lambda=0$ עצמי של הערך הגיאומטרי הגיאומטרי אז $\dim(V_0)=1$.dim $V_0=1$,dim $V_1=1$

 $\dim V_1 + \dim V_0 = 2 < \dim(\mathbb{R}^3) .$

. לכסינה אל A לכן לא קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים. לכן לא לכסינה

משפט 3.13 קריטירון 1 ללכסינות של אופרטור

n יש ל- 0 אם ל- . $\dim(V)=n$ שר לנגארי. נניח ש- T:V o V אופרטור לינארי. אופרטור לינארי. אז T לכסינה. T לכסינה.

הוכחה: תרגיל בית.

משפט 3.14 קריטירון 2 ללכסינות של אופרטור: סכום המימדים של מרחבים העצמיים

יהי T . $\dim(V)=n$ -ש נניח ש- T:V o V אופרטור לכסין אם מעל T:V o V היהי לכסין אם מרחב עצמי מעל המרחבים העצמיים שווה ל- ח.

הוכחה: תרגיל בית.

משפט 3.15 קריטירון 3 ללכסינות של אופרטור

יהי עצמי עצמי אופרטור T:V o V, ויהי " $\mathbb F$ אופרטור לינארי. אם

- ו- שונים, או בהכרח שונים, ו- \mathbb{F} מתפרק למכפלה של גורמים לינאריים מעל \mathbb{F} , לא בהכרח שונים, ו-
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,

 $.\mathbb{F}$ אז לכסין מעל

הוכחה: תרגיל בית.

דוגמה 3.10

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- \mathbb{R} לכסינה מעל A.
- ${\Bbb C}$ לכסינה מעל A לכסינה A

פתרון:

$$p_A(\lambda) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

 $\mathbb R$ לא לכסינה אל A לכן מעל $\mathbb R$, לכן לינאריים לינאריים לגורמים לגורמים לא מתפרק לגורמים לינאריים מעל

.2

$$\lambda^2 + 1 = (\lambda - i)(\lambda + i) = 0$$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=i$

 $\lambda=-i$ ערך עצמי מריבוי אלגברי $\lambda=-i$

$$(A-iI)=\left(egin{array}{cc} -i&1\\-1&-i\end{array}
ight) \; o \; \left(egin{array}{cc} -i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=i$ עצמי $\lambda=i$ עצמי השייך להערך עצמי $\lambda=i$ המרחב אמיין להערך אמיי $\lambda=i$ הוא

$$V_i = \operatorname{span}\left\{ \begin{pmatrix} -i\\1 \end{pmatrix} \right\}$$

1 אז הריבוי הגיאומטרי של הערך עצמי הוא $\dim(V_i)=1$

 $\lambda = -i$

$$(A+iI)=\left(egin{array}{cc} i&1\\-1&i\end{array}
ight) \;
ightarrow\; \left(egin{array}{cc} i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=-i$ עצמי השייך להערך עצמי $. \left(egin{array}{cc} x\\y\end{array}
ight)=\left(egin{array}{cc} iy\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$ המרחב עצמי השייך להערך עצמי $. \left(egin{array}{cc} y\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$

1 אז הריבוי של הערך איז הגיאומטרי אז $\dim(V_{-i})=1$

$$P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$
 , $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $D = P^{-1}AP$.

משפט 3.16 וקטורים עצמיים ששייכים לערכים עצמיים שונים בת"ל

. נתון שונים עצמיים עצמיים לערכים עצמיים של ד
 שטריים עצמיים שונים הם אופרטור לינארי. וקטורים עצמיים של
 $T:V\to V$

הוכחה: נתון:

אופרטוא לינארי, אופרטו
א $T:V\to V$

T של u_1, \ldots, u_n ערכים עצמיים שונים ששייכים שונים שונים עצמיים אונים ערכים אונים $\lambda_1, \ldots, \lambda_n$

צריך להוכיח:

בת"ל. u_1, \ldots, u_n

הוכחה:

n נוכיח את הטענה ע"י אינדוקציה על

שלב הבסיס:

עבור n=1 לכן הוא בת"ל. $u_1 \neq \bar{0} : n=1$

שלב האינדוקציה:

נניח שעבור n , וקטורים עצמיים ששייכים ל n ערכים עצמיים שונים בת"ל. נניח n וקטורים עצמיים ששייכים ל $\lambda_1,\dots,\lambda_{n+1}$ וקטורים עצמיים השייכים לערכים עצמיים לערכים עצמיים השייכים לערכים עצמיים השייכים לערכים עצמיים ו

$$\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n + \alpha_{n+1} u_{n+1} = \bar{0}$$
(*)

אז

$$\alpha_1 T(u_1) + \alpha_2 T(u_2) + \ldots + \alpha_n T(u_n) + \alpha_{n+1} T(u_{n+1}) = \bar{0}$$

$$\alpha_1 \lambda_1 u_1 + \alpha_2 \lambda_2 u_2 + \ldots + \alpha_n \lambda_n u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
(*1)

 $:\lambda_{n+1}$ ב (*) נכפיל

$$\alpha_1 \lambda_{n+1} u_1 + \alpha_2 \lambda_{n+1} u_2 + \ldots + \alpha_n \lambda_{n+1} u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
 (*2)

(*1) מ (1*):

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n + \alpha_{n+1}(\lambda_{n+1} - \lambda_{n+1})u_n = \bar{0}$$

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n = \bar{0}$$
(*3)

לכן בת"ל. בת"ל. בת"ל. לכן בת"ל. ההנחת האינדוקציה הוקטורים

$$\alpha_1(\lambda_1 - \lambda_{n+1}) = 0$$
 , ... , $\alpha_n(\lambda_n - \lambda_{n+1}) = 0$. (*4)

כל הערכים העצמיים שונים זה מזה, כלומר $\lambda_i - \lambda_{n+1} \neq 0$ לכל זה שונים שונים זה מזה, כלומר

$$\alpha_1 = 0 , \ldots , \alpha_n = 0 . \tag{*5}$$

נציב (5*) ב- (*) ונקבל

$$\alpha_1 u_1 = \bar{0}$$

לכן $\alpha_1, \ldots, \alpha_{n+1}=0$ כי הוא וקטור עצמי לכן (*) לכן (מצקיים לכן $\alpha_1=0$ לכן עצמיים לכן $\alpha_1=0$ לכן $\alpha_1=0$ לכן $\alpha_1=0$ בת"ל. בת"ל.

3.4 שימושים של לכסון מטריצה

משפט 3.17 חזקה של מטריצה הדומה למטריצה אלכסונית

אם A לכסינה, אז קיימת מטריצה אלכסונית D ומטריצה הפיכה P כך ש $D=P^{-1}A$ לכ

$$A^n = PD^nP^{-1} .$$

הוכחה:

נוכיח את הטענה ע"י אינדוקציה.

שלב הבסיס:

$$A = PDP^{-1} \Leftarrow D = P^{-1}AP$$
 , $n = 1$ עבור

שלב האינדוקציה:

נניש שעבור $A^n = PD^nP^{-1}$ מתקיים מתקיים

$$A^{n+1} = (PD^nP^{-1}) \cdot PDP^{-1} = PD^{n+1}P^{-1}$$

דוגמה 3.11

נתונה המטריצה

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

- A מצאו את הערכים עצמיים והמרחבים עצמיים של $oldsymbol{1}$
- $A = P^{-1}A$ ע כך שP כך אם ומטריצה הפיכה P ומטריצה הפיכה ומטריצה על האם 2 האם P
 - A^{1001} את חשבו 3

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 - 1) = (\lambda - 1)^2(\lambda + 1) = 0$$

 $\lambda=1$ מריבוי אלגברי

 $\lambda=-1$ מריבוי אלגברי

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

 ${\rm dim} V_1 + {\rm dim} V_{-1} = 2 + 1 = 3 = {\rm dim} \ \mathbb{R}^3$

לכן A לכסינה.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^{1001} = PD^{1001}P^{-1}$$

 $:P^{-1}$ נמצא את

$$\left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 לכן
$$D^{1001} = \begin{pmatrix} 1^{1001} & 0 & 0 \\ 0 & 1^{1001} & 0 \\ 0 & 0 & (-1)^{1001} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$A^{1001} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

משפט 3.18

אז $A \cdot u = \lambda u$ אז אוקטור עצמי של A השייך לערך עצמי א

$$A^n u = \lambda^n u$$
.

<u>שלב הבסיס:</u>

 $A\cdot u=\lambda u$ קטור עצמי של $A\cdot u=\lambda u$ קטור עצמי של אבור $A\cdot u=\lambda u$

שלב האינדוקציה:

נניח שעבור 1>1, אז $A^nu=\lambda^nu$

$$A^{n+1}u = A(A^nu) = A\lambda^n u = \lambda^n Au = \lambda^n \cdot \lambda u = \lambda^{n+1}u.$$

דוגמה 3.12

$$A = \begin{pmatrix} 0 & -4 & 0 \\ 1 & -4 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

- A מצאו את הערך עצמי ווקטור עצמי של
- $A = P^{-1}A$ ע כך שP כך אם לכסינה? אם לכסינה מטריצה אלכסונית אלכסונית D ומטריצה הפיכה A

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 את חשבו את

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & 4 & 0 \\ -1 & \lambda + 4 & 0 \\ -1 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 4 \\ -1 & \lambda + 4 \end{vmatrix} = (\lambda - 1)(\lambda^2 + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^2 = 0$$

 $\lambda=1$ מריבוי אלגברי $\lambda=1$

 $\lambda=-2$ מריבוי אלגברי

$$\lambda = -2$$

$$(A+2I) = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-2} = \operatorname{span}\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & -4 & 0 \\ 1 & -5 & 0 \\ 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -4 & 0 \\ 0 & -9 & 0 \\ 0 & -6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\dim V_1 + \dim V_{-2} = 1 + 1 = 2 < \dim \mathbb{R}^3$

לכן A לא לכסינה.

וקטור עצמי השייך ל
$$\lambda=-2$$
, לכן $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = (-2)^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-2)^{2024} \\ -2^{2023} \\ 0 \end{pmatrix}$$

3.5 משפטים נוספים הקשורים ללכסון של מטריצה

משפט 3.19 דטרמיננטה של מטריצה משולשית שווה למכפלה של איברי האלכסון הראשי

תהי מטריצה של שווה למכפלה או משולשית תחתונה. הדטרמיננטה של שווה למכפלה של תהי $A\in\mathbb{F}^{n\times n}$ האיברים על האלכסון הראשי. כלומר

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}, \qquad |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn}.$$

n אידוקציה על

שלב הבסיס:

עבור n=1 הטענה נכונה באופן טריוויאלי.

Aבמטריצה במטריבה aכאשר (aנסמן נסמן . $A\in\mathbb{F}^{1\times 1}$ נחמר כלומר כלומר מחוץ .

$$|A|=a$$
.

מטריצה משולשית, והאיבר היחיד על האלכסון הראשי הוא a. לכן המכפלה של האיברים על האלכסון ראשי A פשוט שווה ל-a. לכן A שווה למכפלה של האיברים על האלכסון הראשי של

שלב האינקודציה:

n=N+1 נניח שהטענה נכונה עבור n=N (הנחת האינדוקציה). נוכיח אותה עבור

יונה: עליונה מטריצה $A \in \mathbb{F}^{N imes N}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} & a_{1,N+1} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} & a_{2,N+1} \\ 0 & 0 & a_{33} & \dots & a_{3,N} & a_{3,N+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} & a_{N,N+1} \\ 0 & 0 & 0 & \dots & 0 & a_{N+1,N+1} \end{pmatrix}$$

נחשב הדטרמיננטה על השורה האחרונה:

$$|A| = a_{N+1,N+1} \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix}$$

לפי ההנחת האינדוקציה הדטרמיננטה של מטריצה N imes N משולשית עליחונה שווה למכפלה של האיברים על האלכסון הראשי, לכן

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix} = a_{11} \cdot a_{22} \dots a_{N,N} .$$

לכן

$$|A| = a_{11} \cdot a_{22} \dots a_{N,N} \cdot a_{N+1,N+1}$$

משפט 3.20 ערכים העצמיים של מטריצה משולשית

הערכים העצמיים של מטריצה משולשית עליונה (או משולשית תחתונה) הם האיברים הנמצאים על האלכסון הראשי.

האיב. אז האלכסון הראשי. אז $\{lpha_1,lpha_2,\ldots,lpha_n\}$ היהיו משולשית, משולשית $A\in\mathbb{F}^{n imes n}$

$$\lambda I - A$$

גם מטריצה והאיברים על האלכסון הראשי הם $\{\lambda-\alpha_1,\lambda-\alpha_2,\dots,\lambda-\alpha_n\}$ הדטרמיננטה על האלכסון הראשי, לכן לכן מטריצה משולשית היא המכפלה של האיברים על האלכסון הראשי, לכן לכן

$$|\lambda I - A| = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n)$$

לכן הפולינום האופייני הוא

$$p_A(\lambda) = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n) = 0$$
.

השורשים הם

$$\lambda = \alpha_1, \quad \lambda = \alpha_2, \quad \dots \quad \lambda = \alpha_n$$
.

ז"א הערכים עצמיים שווים לאיברים על האלכסון הראשי.

הגדרה 3.9 הגדרת דמיון בין מטריצות

-ע כך $P\in\mathbb{F}^{n\times n}$ כך הפיכה מטריצה מטריצה אם דומות B ו- A ו- A נאמר ש- $A,B\in\mathbb{F}^{n\times n}$

$$B = P^{-1}AP .$$

משפט 3.21 פולינום האופייני של מטריצות דומות

אם A ו- B דומות אז יש להן אותו פולינום אופייני, ולכן אותם ערכים עצמיים.

הוכחה:

$$f_B(x) = |xI - B|$$

$$= |xI - P^{-1}AP|$$

$$= |P^{-1}xIP - P^{-1}AP|$$

$$= |P^{-1}(xI - A)P|$$

$$= |P^{-1}||xI - A||P|$$

$$= |P|^{-1}|xI - A||P|$$

$$= |xI - A||P|^{-1}|P|$$

$$= |xI - A|$$

$$= f_A(x)$$

משפט 3.22 קיום ווקטור עצמי של אופרטור לינארית

יהי תעקה וקטורי נוצר חופית מעל שדה $\mathbb F$ ותהי ותהי לינארית. היים לפחות וקטור עצמי אחד של $T:V \to V$ יהיים לפחות וקטור עצמי אחד של

הקבוצה . $u_1
eq ar{0} \in V$ יהי . $\dim(V) = n$ - הקבוצה .

$$\{u_1, T(u_1), T^2(u_1), \dots, T^n(u_1)\}$$

 a_0,\dots,a_n וקטורים. לכן הצירוף לינארי הבא מתקיים רק אם אחד המקדמים לכן הצירוף לכן הצירוף לינארי וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר המקדמים לכן הצירוף לינארי הבא מתקיים המקדמים וחדר ה

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = \bar{0}$$
 (*1)

נרשום את זה בצורה

$$(a_0 + a_1T + a_2T^2 + \ldots + a_nT^n) u_1 = \bar{0} .$$

בצד שמאל יש הצבת העתקה בפולינום מסדר n. לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = c(z - \lambda_1) \ldots (z - \lambda_n)$$

כ: (*1) את לפרק לפרן לכן לכן $1 \leq i \leq n$, $\lambda_i \in \mathbb{C}$, $c \neq 0 \in \mathbb{C}$

$$a_0 u_1 + a_1 T(u_1) + a_2 T^2(u_1) + \ldots + a_n T^n(u_1) = c (T - \lambda_1 I) \ldots (T - \lambda_n I) u_1 = \bar{0}.$$
 (*2)

אז בהכרח הדטרמיננטה של המטריצה שמכפילה (*2) אז בהכרח הדטרמיננטה של המטריצה שמכפילה עוואה הומוגונית ב- (*2) אז בהכרח אם קיים פתרון $u_1 \neq 0$ למשוואה הומוגונית שווה לאפס. לפיכך שווה לאפס.

$$|c(T - \lambda_1 I) \dots (T - \lambda_n I)| = c|T - \lambda_1 I| \dots |T - \lambda_n I| = 0.$$
 (*3)

. עבורו ערך עצמי ערך יש לפחות לכן ל- $T-\lambda_i I|=0$ עבורו ($1\leq i\leq n$) לכן קיים לכן ליים