

Forecasting: principles and practice

Rob J Hyndman

3.3 Hierarchical forecasting

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- **3** Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

Forecasting the PBS

ATC drug classification

- Alimentary tract and metabolism
- Blood and blood forming organs
- Cardiovascular system
- **Dermatologicals** D

Α

В

Μ

- G Genito-urinary system and sex hormones Systemic hormonal preparations, excluding sex hormones Н
 - and insulins
 - Anti-infectives for systemic use Antineoplastic and immunomodulating agents
 - Musculo-skeletal system
 - Nervous system
- Ν P Antiparasitic products, insecticides and repellents
- Respiratory system R
- S Sensory organs

Various

ATC drug classification

- Quarterly data on visitor night from 1998:Q1 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

Spectacle sales

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

Hierarchical time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Hierarchical time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

- Pharmaceutical sales
- Tourism demand by region and purpose

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

9

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

9

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- 2 Can we exploit relationships between the series to improve the forecasts?

The problem

- 1 How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm.

 (e.g., ets, auto.arima, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
 - This is available in the hts package in R.

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- 3 Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

hts package for R

hts: Hierarchical and Grouped Time Series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 5.1.5

Depends:

Published:

Maintainer:

R (> 3.2.0), forecast (> 8.1)

SparseM, Matrix, matrixcalc, parallel, utils, methods, graphics, grl Imports: LinkingTo: Rcpp (> 0.11.0), RcppEigen

Suggests: testthat, knitr, rmarkdown

2018-03-26

Author: Rob J Hyndman, Alan Lee, Earo Wang, Shanika Wickramasuriya Rob J Hyndman < Earo. Wang at gmail.com >

BugReports: https://github.com/earowang/hts/issues

GPL (> 2)License: URL: http://pkg.earo.me/hts

12

Example using R

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```



```
# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
```

forecast.gts() function

Usage

```
forecast(object, h,
  method = c("comb", "bu", "mo", "tdgsf", "tdgsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
  weights = c("wls", "ols", "mint", "nseries"),
  covariance = c("shr", "sam"),
  positive = TRUE,
  parallel = FALSE, num.cores = 2, ...)
```

Arguments

num, cores

object	Hierarchical time series object of class gts.
h	Forecast horizon
method	Method for distributing forecasts within the hierarchy.
fmethod	Forecasting method to use
weights	Weights used for "optimal combination" method.
covariance	Shrinkage estimator or sample estimator for GLS covariance.
positive	If TRUE, forecasts are forced to be strictly positive
parallel	If TRUE, allow parallel processing

If parallel = TRUE, specify how many cores to be used

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- 3 Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

Domestic visitor nights

Quarterly data: 1998 - 2006.

From: National Visitor Survey, based on annual

interviews of 120,000 Australians aged 15+,

collected by Tourism Research Australia.

Reconciled forecasts

Reconciled forecasts

Reconciled forecasts

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

Training sets

Test sets h = 1

Training sets

Test sets
$$h = 1$$

Training sets Test sets h = 1time

Training sets Test sets h = 1 time

Hierarchy: states, zones, regions

Forecast horizon							
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave
			Aus	tralia			
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
			Sta	ates			
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
			Reg	ions			
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- 3 Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

b_t: vector of all series at bottom level in time *t*.

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

b_t: vector of all series at bottom level in time t.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

b_t: vector of all series at bottom level in time t.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped time series

Grouped time series

Grouped time series

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{y}_{t}} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $y_t = Sb_t$

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$\mathbf{y}_t = \mathbf{S}\mathbf{b}_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- **b**_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix **P**.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix P.

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{P} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{P} = (\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1}$, where Σ_h is the h-step base forecast error covariance matrix.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{S}(\mathbf{S}'\boldsymbol{\Sigma}_{h}^{-1}\mathbf{S})^{-1}\mathbf{S}'\boldsymbol{\Sigma}_{h}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(h)$$

Problem: Σ_h hard to estimate, especially for h > 1.

Solutions:

- Ignore Σ_h (OLS)
- Assume Σ_h diagonal (WLS) [Default in hts]
- Try to estimate Σ_h (GLS)

Features

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- **3** Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

Lab Session 15

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- **3** Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

Temporal hierarchies

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Monthly series

k = 2, 4, 12 nodes

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly data

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

- Type 1 Departments Major A&E
- Type 2 Departments Single Specialty
- Type 3 Departments Other A&E/Minor Injury
- 4 Total Attendances
- Type 1 Departments Major A&E > 4 hrs
- Type 2 Departments Single Specialty > 4 hrs
- Type 3 Departments Other A&E/Minor Injury > 4 hrs
- Total Attendances > 4 hrs
- 9 Emergency Admissions via Type 1 A&E
- Total Emergency Admissions via A&E
- Other Emergency Admissions (i.e., not via A&E)
- Total Emergency Admissions

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

Aggr. Level	h	Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1-52	2.0	1.9	-5.0%
Annual	1	3.4	1.9	-42.9%

thief package for R

thief: Temporal HIErarchical Forecasting

thief package for R

thief: Temporal HIErarchical Forecasting

Install from CRAN

install.packages("thief")

Usage

library(thief)
thief(y)

Outline

- 1 Hierarchical and grouped time series
- 2 hts package for R
- **3** Application: Australian tourism
- 4 Optimal forecast reconciliation
- 5 Lab Session 15
- **6** Temporal hierarchies
- 7 Lab session 16

Lab Session 16