Теоремы Гёделя о неполноте арифметики

Основные свойства исчислений: Ф.А.

	К.И.В.	И.И.В.	К.И.П.	Ф.А. + кл.
корректность	да	да	да (лекция 5)	да (сейчас)
непротиворечивость	да	да	да (лекция 6)	верим (т. Г
полнота	да	да	да (лекция 6)	<mark>нет</mark> (т. Гёде
разрешимость	да	да	нет (лекция 7)	нет (док-во

Классическая модель Ф.А.

А как определять «нестандартные» предикаты и функции (Q_1' , c(p,q) и т.п.)? Для простоты разрешим только нелогические функциональные и предикатные символы (=, +, ·, 0, $^\prime$).

Определение

Классическая модель формальной арифметики: $D=\mathbb{N}_0$, оценки предикатных и функциональных символов— естественные.

Теорема

Формальная арифметика корректна

Доказательство.

Свойства аксиом $A1\dots A8$ очевидны.

Доказательство схемы аксиом индукции:

$$\psi(0) \& (\forall x. \psi(x) \rightarrow \psi(x')) \rightarrow \psi(x)$$

Индукция по структуре формулы ψ , затем математическая индукция по x.

Схема аксиом индукции чуть подробнее

Индукция по структуре формулы ψ в

$$\psi(0) \& (\forall x. \psi(x) \rightarrow \psi(x')) \rightarrow \psi(x)$$

Для примера база:

$$\theta_0(0) = \theta_1(0) \& (\forall x. \theta_0(x) = \theta_1(x) \to \theta_0(x') = \theta_1(x')) \to \theta_0(x) = \theta_1(x)$$

Докажем индукцией по x.

- 1. x:=0. Тогда либо $\llbracket \theta_0(0)=\theta_1(0) \rrbracket = \Pi$, либо $\llbracket \theta_0(x)=\theta_1(x) \rrbracket^{x:=0}=\mathsf{V}$
- $2. \; x := s. \;$ Тогда s раз применяем переход

$$\llbracket \theta_0(x) = \theta_1(x) \rightarrow \theta_0(x') = \theta_1(x')
bracket^{x:=\overline{0...s}} = \mathsf{M}$$

отсюда

$$[\theta_0(x') = \theta_1(x')]^{x:=s} = [\theta_0(x) = \theta_1(x)]^{x:=s+1} = V$$

Можно ли верить этому доказательству (доказываем индукцию через индукцию)?

Самоприменимость

Определение

Пусть ξ — формула с единственной свободной переменной x_1 . Тогда: $\langle \ulcorner \xi \urcorner, p \rangle \in W_1$, если $\vdash \xi(\ulcorner \overline{\xi} \urcorner)$ и p — номер доказательства.

Определение

Отношение W_1 рекурсивно, поэтому выражено в Φ .A. формулой ω_1 со свободными переменными x_1 и x_2 , причём:

- 1. $\vdash \omega_1(\lceil \overline{\varphi} \rceil, \overline{p})$, если p гёделев номер доказательства самоприменения φ ;
- 2. $\vdash \neg \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$ иначе.

Определение

Определим формулу $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$

Первая теорема Гёделя о неполноте арифметики

Определение

Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, . . . выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория омега-непротиворечива.

Теорема

Первая теорема Гёделя о неполноте арифметики

- **Е**сли формальная арифметика непротиворечива, то $\forall \sigma(\lceil \overline{\sigma} \rceil)$.
- ► Если формальная арифметика ω -непротиворечива, то $\forall \neg \sigma(\overline{\ } \sigma \overline{\ }).$

Доказательство теоремы Гёделя

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p). \ W_1(\ulcorner \xi \urcorner, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\overline{\ulcorner \sigma \urcorner}, p)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{0})$, $\vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. То есть, $\langle \lceil \sigma \rceil, p \rangle \in W_1$. То есть, p — доказательство самоприменения $W_1 : \vdash \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.

Почему теорема о неполноте?

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \lnot \omega_1(\ulcorner \sigma \urcorner, p)$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$. То есть, $\llbracket \forall p. \lnot \omega_1(\ulcorner \sigma \urcorner), p) \rrbracket = \mathsf{И}$. То есть, $\sqsubseteq \sigma(\ulcorner \sigma \urcorner)$.

Первая теорема Гёделя о неполноте в форме Россера

Определение

$$\theta_1 \le \theta_2 \equiv \exists p.p + \theta_1 = \theta_2$$
 $\theta_1 < \theta_2 \equiv \theta_1 \le \theta_2 \& \neg \theta_1 = \theta_2$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi(\ulcorner \xi \urcorner)$. Пусть ω_2 выражает W_2 в формальной арифметике.

Теорема

Рассмотрим $\rho(x_1) = \forall p.\omega_1(x_1,p) \to \exists q.q \leq p \& \omega_2(x_1,q)$. Тогда $\not\vdash \rho(\lceil \rho \rceil)$ и $\not\vdash \neg \rho(\lceil \rho \rceil)$. «Меня легче опровергнуть, чем доказать»

Формальное доказательство

Неполнота варианта теории, изложенной выше, формально доказана на Coq, Russell O'Connor, 2005:

"My proof, excluding standard libraries and the library for Pocklington's criterion, consists of 46 source files, 7 036 lines of specifications, 37 906 lines of proof, and 1 267 747 total characters. The size of the gzipped tarball (gzip -9) of all the source files is 146 008 bytes, which is an estimate of the information content of my proof."

```
Theorem Incompleteness : forall T : System,
    Included Formula NN T ->
    RepresentsInSelf T ->
    DecidableSet Formula T ->
    exists f : Formula,
    Sentence f/\(SysPrf T f \/ SysPrf T (notH f) ->
Inconsistent LNN T).
```

Consis

Лемма

dash 1 = 0 тогда и только тогда, когда dash lpha при любом lpha.

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in$ Proof, если p — гёделев номер доказательства ξ . Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

непротиворечива»

Вторая теорема Гёделя о неполноте арифметики

Теорема

Ecли Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \sigma \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \sigma \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \sigma \rceil)$. То есть, если Consis, то $\sigma(\lceil \sigma \rceil)$, — и это можно доказать, то есть \vdash Consis $\to \sigma(\lceil \sigma \rceil)$. Однако если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \sigma \rceil)$.

Слишком много неформальности

Рассмотрим такой особый Consis':

$$\pi'(x) := \exists p. \psi(x, p) \& \neg \psi(\overline{1 = 0}, p)$$

$$\mathsf{Consis'} := \pi'(\overline{1 = 0})$$

Заметим:

- 1. Если ФА непротиворечива, то $[\pi'(x)] = [\pi(x)]$:
 - lacktriangle если $x
 eq \lceil 1 = 0 \rceil$ и $[\![\psi(x,p)]\!] = \mathsf{M}$, то $[\![\psi(\overline{\lceil 1 = 0 \rceil},p)]\!] = \mathcal{N}$
 - ightharpoonup если $x=\lceil 1=0 \rceil$, то $\psi(\lceil 1=0 \rceil,p)= \Pi$ при любом p.
- 2. Ho \vdash Consis'.

Условия выводимости Гильберта-Бернайса-Лёба

Определение

Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёба, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\ulcorner \alpha \urcorner})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi(\overline{\lceil \alpha \rceil}) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

Первая теорема Гёделя о неполноте ещё раз

Лемма

Лемма об автоссылках. Для любой формулы $\phi(x_1)$ можно построить такую замкнутую формулу α (не использующую неаксиоматических предикатных и функциональных символов), что $\vdash \phi(\overline{\ \ \ \ \ \ \ \ \)} \leftrightarrow \alpha$.

Теорема

Существует такая замкнутая формула γ , что если $\Phi.A$. непротиворечива, то \forall γ , а если $\Phi.A$. ω -непротиворечива, то и \forall $\neg \gamma$.

Доказательство.

Рассмотрим $\phi(x_1) \equiv \neg \pi(x_1)$. Тогда по лемме об автоссылках существует γ , что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\ \gamma})$.

- ▶ Предположим, что $\vdash \gamma$. Тогда $\vdash \gamma \to \neg \pi(\overline{\ulcorner \gamma \urcorner})$, то есть $\not\vdash \gamma$
- ▶ Предположим, что $\vdash \neg \gamma$. Тогда $\vdash \pi(\lceil \gamma \rceil)$, то есть $\vdash \exists p. \psi(\lceil \gamma \rceil, p)$. Тогда по ω -непротиворечивости найдётся p, что $\vdash \psi(\lceil \gamma \rceil, \overline{p})$, то есть $\vdash \gamma$.

Доказательство второй теоремы Гёделя

- 1. Пусть γ таково, что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\lceil \gamma \rceil})$.
- 2. Покажем $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil 1 = 0 \rceil})$.
 - 2.1 По условию 2, $\vdash \pi(\overline{\ \ \gamma}) \to \pi(\overline{\ \ }\pi(\overline{\ \ \gamma}))$. По теореме о дедукции $\pi(\overline{\ \ \gamma}) \vdash \pi(\overline{\ \ }\pi(\overline{\ \ \gamma}))$;
 - 2.2 Так как $\vdash \pi(\overline{\lceil \gamma \rceil}) \to \neg \gamma$, то по условию 1 $\vdash \pi(\overline{\lceil \pi(\overline{\lceil \gamma \rceil})} \to \neg \gamma \rceil);$
 - 2.3 По условию <u>3,</u>

$$\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil \pi(\overline{\lceil \gamma \rceil}) \rceil}) \to \pi(\overline{\lceil \pi(\overline{\lceil \gamma \rceil})}) \to \neg \gamma \rceil) \to \pi(\overline{\lceil \neg \gamma \rceil});$$

- 2.4 Таким образом, $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil \neg \gamma \rceil})$;
- 2.5 Однако $\vdash \gamma \to \neg \gamma \to 1 = 0$. Условие 3 (применить два раза) даст $\pi(\ulcorner \gamma \urcorner) \vdash \pi(\ulcorner 1 = 0 \urcorner)$.
- 3. $\neg \pi(\overline{\ \ 1=0\ \ }) \to \neg \pi(\overline{\ \ \gamma}\overline{\ \ })$ (т. о дедукции, контрапозиция).
- 4. $\vdash \neg \pi(\overline{\ }1 = 0 \overline{\ }) \to \gamma$ (определение γ).

Расширение на другие теории

Определение

Теория S — расширение теории T, если из $⊢_{\mathcal{T}} \alpha$ следует $⊢_{\mathcal{S}} \alpha$

Определение

Теория S — рекурсивно-аксиоматизируемая, если найдётся теория S' с тем же языком, что:

- 1. $\vdash_{\mathcal{S}} \alpha$ тогда и только тогда, когда $\vdash_{\mathcal{S}'} \alpha$;
- 2. Множество аксиом теории \mathcal{S}' рекурсивно.

Теорема

 \mathcal{S} — непротиворечивое рекурсивно-аксиоматизируемое расширение формальной арифметики, то в ней можно доказать аналоги теорем Гёделя о неполноте арифметики.

Сужение: система Робинсона

Определение

Теория первого порядка, использующая нелогические функциональные символы 0, (+) и (·), нелогический предикатный символ (=) и следующие нелогические аксиомы, называется системой Робинсона.

$$a = a$$

$$a = b \rightarrow b = a$$

$$a = b \rightarrow a' = b'$$

$$a' = b' \rightarrow a = b$$

$$a = b \rightarrow a + c = b + c \& c + a = c + b$$

$$a = b \rightarrow a \cdot c = b \cdot c \& c \cdot a = b \rightarrow a \cdot c = b \cdot c \& c \cdot a = b \rightarrow a \cdot b' = a$$

$$a + b' = (a + b)'$$

$$a \cdot b' = a \cdot b + a$$

Система Робинсона неполна: аксиомы — в точности утверждения, необходимые для доказательства теорем Гёделя. Система Робинсона не имеет схем аксиом.

Арифметика Пресбургера

Определение

Теория первого порядка, использующая нелогические функциональные символы 0, 1, (+), нелогический предикатный символ (=) и следующие нелогические аксиомы, называется арифметикой Пресбургера.

$$\neg(0 = x + 1)
x + 1 = y + 1 \to x = y
x + 0 = x
x + (y + 1) = (x + y) + 1
(\varphi(0) & \forall x.\varphi(x) \to \varphi(x + 1)) \to \forall y.\varphi(y)$$

Теорема

Арифметика Пресбургера разрешима и синтаксически и семантически полна.

Невыразимость доказуемости

Определение

$$\mathit{Th}_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid \ \vdash_{\mathcal{S}} \alpha \}; \ \mathit{Tr}_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid [\![\alpha]\!]_{\mathcal{S}} = \mathit{VI} \}$$

Лемма

Пусть $D(\lceil \alpha \rceil) = \lceil \alpha(\lceil \alpha \rceil) \rceil$ для любой формулы $\alpha(x)$. Тогда D представима в формальной арифметике.

Теорема

Если расширение Φ .A. S непротиворечиво и D представима в нём, то $Th_{\mathcal{S}}$ невыразимо в \mathcal{S}

Доказательство.

Пусть $\delta(a,p)$ представляет D, и пусть $\sigma(x)$ выражает множество $\mathsf{Th}_{\mathcal{S}}$ (рассматриваемое как одноместное отношение). Пусть $\alpha(x) := \forall p. \delta(x,p) \to \neg \sigma(p)$. Верно ли, что $\lceil \alpha \rceil \in \mathsf{Th}$?

Неразрешимость формальной арифметики

Теорема

Если формальная арифметика непротиворечива, то формальная арифметика неразрешима

Доказательство.

Пусть формальная арифметика разрешима. Значит, есть рекурсивная функция f(x): f(x)=1 тогда и только тогда, когда $x\in \mathsf{Th}_{\Phi.A.}$. То есть, $\mathsf{Th}_{\Phi.A.}$ выразимо в формальной арифметике.

По теореме о невыразимости доказуемости, $\mathsf{Th}_{\Phi.A.}$ невыразимо в формальной арифметике. Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in Tr_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathrm{Th}_{\mathcal{S}}=\mathrm{Tr}_{\mathcal{S}}=\mathrm{Tr}_{\Phi \mathrm{A}}$. То есть $\mathrm{Tr}_{\Phi \mathrm{A}}$ невыразимо в \mathcal{S} . Пусть φ таково, что $[\![\varphi(x)]\!]=\mathrm{VI}$ при $x\in\mathrm{Tr}$. Тогда $\vdash\varphi(x)$, если $x\in\mathrm{Tr}$ и $\vdash\neg\varphi(x)$, если $x\notin\mathrm{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Однако, если взять $D = \mathbb{R}$, истина становится выразима (алгоритм Тарского).