CS

Discrete Probability

Summer

Authors: Shaleen Baral

Contents

1. Events and Probability	2
1.1. Events	
1.2. Probability	2
1.3. Independence and Conditioning	
2. Random Variables	7
2.1. Probability Distribution and Expectation	
2.2. Generating Function	
2.3. Conditional Expectation	8
3. Bounds and Inequalities	8
3.1. The Three Basic Inequalities	8
3.2 Frequently Used Bounds	8

1. Events and Probability

1.1. Events

Random phenonmenon are observed by means of experiments. Each experiment results in an *outcome*. The collection of all possible outcomes ω is called the *sample space* Ω . Any subset $A\subseteq \Omega$ of the sample space Ω can be regarded as a representation of some *event*.

Definition 1.1.1 (Indicator Function): Let \mathcal{P} be a property that an element x of some set E may or may not satisfy. Then the indicator function for \mathcal{P} , $\mathbb{1}_{\mathcal{P}}: E \to \{0,1\}$ is defined by

$$\mathbb{1}_{\mathcal{P}}(x) = \begin{cases} 1 & \text{if } x \text{ satisfies } \mathcal{P}, \\ 0 & \text{otherwise.} \end{cases}$$

Example: For any set $A\subseteq \Omega$ we may define an indicator function $\mathbb{1}_A:\Omega\longrightarrow\{0,1\}$ using the set membership property:

$$\mathbb{1}_A(\omega) = \begin{cases} 1 & \text{ if } x \in A, \\ 0 & \text{ otherwise.} \end{cases}$$

We say that an outcome $\omega \in \Omega$ realizes an event $A \subseteq \Omega$ if $\omega \in A$. Two event $A, B \subseteq \Omega$ are said to be *incompatible* if $A \cap B = \emptyset$ – that is, no outcome can realize both A and B.

We refer to \emptyset as the *impossible event*. Conversely, we refer to Ω as the *certain event*.

For a family of sets $\{A_k\}_{k\in\mathbb{N}}$, we use the notation $\sum_{k=1}^{\infty}A_k$ to denote $\bigcup_{k=1}^{\infty}A_k$ if the family is pairwise disjoint.

Definition 1.1.2 (Exhaustive): A family of events is *exhaustive* if any outcome ω realizes at least one of them.

Definition 1.1.3 (Mutually Exclusive): A family of events is *mutually exclusive* if any two distinct events among them are incompatible.

Definition 1.1.4 (Partition): A family of sets $\{A_k\}$ partition Ω if

$$\sum_{k=1}^{\infty} A_k = \Omega.$$

In other words, we say that the events $\{A_k\}$ are *mutually exclusive* and *exhaustive*. Furthermore, in terms of indicator functions,

$$\sum_{k=1}^{\infty}\mathbb{1}_{A_k}=1.$$

If $B \subseteq A$, event B is said to imply event A, because $\omega \in \Omega$ realizes A whenever it realizes B. In terms of indicator functions, $\mathbb{1}_B(\omega) \leq \mathbb{1}_A(\omega)$.

1.2. Probability

Probability theory assigns to each event a number, the *probability* of said event. We require the collection, \mathcal{F} , of events to which a probability is assigned to be a σ -field.

Definition 1.2.1 (σ -field): Let \mathcal{F} be a collection of subsets of Ω such that

- a. the certain event Ω is in \mathcal{F} ,
- b. if $A \in \mathcal{F}$, then $\overline{A} \in \mathcal{F}$,
- c. if $\left\{A_k\right\}_{k\in\mathbb{N}}$ is a countable collection of sets in $\mathcal F$ then $\cup_{k=1}^\infty A_k\in\mathcal F.$

Then \mathcal{F} is a σ -field (or σ -algebra) on Σ . Here, we may also refer to it as the σ -field of events.

Remark: Particularly, \mathcal{F} may not be the collection of all subsets of Ω .

The *trivial* σ -field is the collection of all subsets 2^{Ω} of Ω . The *gross* σ -field is the σ -field of two members $\{\emptyset, \Omega\}$.

Usually, if Ω is countable we take the σ -field of events to be the trivial σ -field.

The *probability* of an event measures the likeliness of its occurrence.

Definition 1.2.2 (Probability Measure): A *probability* on (Ω, \mathcal{F}) is a mapping $P: \mathcal{F} \longrightarrow \mathbb{R}$ such that

- a. (non-negativity) $0 \le P(A) \le 1$,
- b. (unit measure)) $P(\Omega)=1,$ c. (sigma additivity) $P\left(\sum_{k=1}^{\infty}A_{k}\right)=\sum_{k=1}^{\infty}P(A_{k}).$

The triple (Ω, \mathcal{F}, P) is called a *probability space* or *probability model*.

Remark: Notationally, we may replace intersection with commas i.e. $P(A, B) = P(A \cap B)$.

Remark: One may think of the axioms above as being motivatived by the heuristic interpretation of probability as emperical frequency.

Some basic consequences of the axioms above are as follows.

Proposition 1.2.1: For any event $A \in \mathcal{F}$

$$P\left(\overline{A}\right) = 1 - P(A)$$

and in particular, $P(\emptyset) = 0$.

Proof: Using additivity,

$$1 = P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A}).$$

By the fact that $P(\Omega) = 1$, $P(\emptyset) = 0$ immediately follows.

Proposition 1.2.2: Probability is *monotone*, that is to say

$$A \subseteq B \Longrightarrow P(A) \le P(B)$$
.

Proof: Using subadditivity,

$$P(B) = P(A \cup (B - A)) = P(A) + P(B - A) > P(A).$$

Proposition 1.2.3: Probability is sub- σ -additive, that is to say

$$P\bigg(\bigcup_{k=1}^{\infty}A_k\bigg)\leq \sum_{k=1}^{\infty}P(A_k).$$

Proof: Using subadditvity and monotonicity,

$$P\bigg(\bigcup_{k=1}^\infty A_k\bigg) = P\bigg(\bigcup_{k=1}^\infty \bigg(A_k - \bigcup_{\ell=1}^{k-1} A_k\bigg)\bigg) = \sum_{k=1}^\infty P\bigg(A_k - \bigcup_{\ell=1}^{k-1} A_k\bigg) \leq \sum_{k=1}^\infty P(A_k).$$

Definition 1.2.3 (Negligible): A set $N \subset \Omega$ is called P-negligible if it is contained in an event $A \in \mathcal{F}$ of probability P(A) = 0.

Proposition 1.2.4: A countable union of negligible sets is a negligible set.

Proof: Let N_k , $k \ge 1$, be P-negligble sets. By definition, there exists a sequence A_k , $k \ge 1$ of events of null probability such that $N_k \subseteq A_k$, $k \ge 1$. We then have,

$$N := \cup_{k>1} N_k \subset = A := \cup_{k>1} A_k.$$

Note that P(A) = 0. So, by σ -subadditivity and non-negativity of P, P(N) = 0.

Definition 1.2.4 (Almost Surely): A property \mathcal{P} relative to the samples $\omega \in \Sigma$ is said to hold P-almost-surely ("P-a.s.") if

$$P(\{\omega; \omega \text{ verifies property } \mathcal{P}\}) = 1.$$

Remark: If there is no ambiguity, we may abbreviate *P*-almost-surely to just almost-surely.

Definition 1.2.5 (Non-Decreasing Sets): A sequence of events $\{A_n\}_{n\geq 1}$ is non-decreasing if $A_n\subseteq A_{n+1}$ for all $n\geq 1$.

Definition 1.2.6 (Non-Increasing Sets): A sequence of events $\{A_n\}_{n\geq 1}$ is non-decreasing if $A_{n+1}\subseteq A_{n+1}$ for all $n\geq 1$.

Proposition 1.2.5: Let $\left\{A_n\right\}_{n\geq 1}$ be a non-decreasing sequence of events. Then,

$$P(\cup_{k=1}^{\infty} A_n) = \lim_{n\uparrow\infty} P(A_n).$$

Proof: Note that

$$\begin{split} A_n &= A_1 + (A_2 - A_1) + \ldots + (A_n - A_{n-1}) \\ \bigcup_{k=1}^{\infty} A_k &= A_1 + (A_2 - A_1) + \ldots + (A_n - A_{n-1}) \end{split}$$

Thus,

$$\begin{split} P\bigg(\bigcup_{k=1}^{\infty}A_k\bigg) &= P(A_1) + \sum_{j=2}^{\infty}P\big(A_j - A_{j-1}\big) \\ &= \lim_{n\uparrow\infty}\bigg\{P(A_1) + \sum_{j=2}^nP\big(A_j - A_{j-1}\big)\bigg\} = \lim_{n\uparrow\infty}P(A_n). \end{split}$$

Corollary 1.2.5.1: Let $\left\{B_n\right\}_{n\geq 1}$ be a non-increasing sequence of events. Then,

$$P\biggl(\bigcap_{n=1}^\infty B_n\biggr)=\lim_{n\uparrow\infty}P(B_n).$$

Proof: Note that $\{\overline{B_n}\}$ is a non-decreasing sequence of events. Thus, by <u>Proposition 1.2.5</u> and De-Morgan's law we have,

$$P\left(\bigcap_{n=1}^{\infty}B_{n}\right)=1-P\left(\bigcup_{n=1}^{\infty}\overline{B_{n}}\right)=1-\lim_{n\uparrow\infty}P\left(\overline{B_{n}}\right)=\lim_{n\uparrow\infty}\left(1-P\left(\overline{B_{n}}\right)\right)=\lim_{n\uparrow\infty}P(B_{n})$$

Next, we introduce the lim inf and lim sup for sets.

Definition 1.2.7 (Liminf I): The lim inf of a sequence $\left\{A_n\right\}_{n\in\mathbb{N}}$ of sets is defined to be

$$\liminf_{n\uparrow\infty}A_n=\bigcup_{n=1}^{\infty}\bigcap_{j\geq n}A_j.$$

Definition 1.2.8 (Limsup I): The \limsup of a sequence $\{A_n\}_{n\in\mathbb{N}}$ of sets is defined to be

$$\lim\sup(n\uparrow\infty)A_n=\bigcap_{n=1}^\infty\bigcup_{j>n}A_j.$$

The following lemma give useful interpretations for these.

Lemma 1.2.1: $x \in \liminf_{n \uparrow \infty} A_n$ iff $x \notin A_n$ for finitely many n.

Proof: $x\in \liminf_{n\uparrow\infty}A_n$ iff $x\in \bigcap_{j\geq n}^\infty A_j$ for some $n\in\mathbb{N}$. By definition, the latter is true iff $x\in A_j$ for every $j\geq n$ i.e. $x\notin A_j$ implies $j\leq n$. Thus, $x\notin A_n$ for finitely many n.

Remark: For this reason, a shorthand for the limit infimum is "x is in A_n all but finitely often", also expressed as A_n a.b.f.o.

Lemma 1.2.2: $x \in \limsup_{n \uparrow \infty} A_n$ iff for every $n \in \mathbb{N}$, there exists $m \geq n$ such that $x \in A_m$.

 $\textit{Proof:} \ x \in \limsup_{n \uparrow \infty} A_n \ \text{iff} \ x \in \bigcup_{j \geq n} A_j \ \text{for every} \ n \in N. \ \text{The latter is true iff} \ x \in A_j \ \text{for some} \ j \geq n, \\ \text{for every} \ n \in \mathbb{N}.$

Remark: For this reason, a shorthand for the limit supremum is "x is in A_n infinitely often", also expressed as A_n i.o.

We can also define \limsup and \liminf in terms of indicator functions.

Lemma 1.2.3 (Liminf II): The \liminf of a sequence $\left\{A_n\right\}_{n\in\mathbb{N}}$ of sets is given by

$$\liminf_{n\uparrow\infty}A_n=\left\{x\in\Omega\mid \liminf_{n\uparrow\infty}\mathbb{1}_{A_n}(x)=1\right\}$$

Proof: Note that the indicator function only acquires values in $\{1,0\}$. For any $x\in\Omega$, $\lim\inf_{n\uparrow\infty}\mathbbm{1}_{A_n}(x)=1$ iff $\mathbbm{1}_{A_n}(x)<1$ for finitely many $n\in\mathbb{N}$. Thus, $\mathbbm{1}_{A_n}(x)=0$ for finitely many $n\in\mathbb{N}$ and $x\notin A_n$ for finitely many $n\in\mathbb{N}$ too.

Lemma 1.2.4 (Limsup II): The \limsup of a sequence $\{A_n\}_{n\in\mathbb{N}}$ of sets is given by

$$\limsup_{n\uparrow\infty}A_n=\bigg\{x\in\Omega\mid \limsup_{n\uparrow\infty}\mathbb{1}_{A_n}(x)=1\bigg\}.$$

Proof: Note that the indicator function only acquires values in $\{0,1\}$. For any $x\in\Omega$, $\limsup_{n\uparrow\infty}\mathbbm{1}_{A_n}(x)=1$ iff for every $\sup_{j\geq n}\mathbbm{1}_{A_j}(x)=1$ for every $n\in\mathbb{N}$. The later is true iff there exists $j\geq n$ for every $n\in\mathbb{N}$ such that $\mathbbm{1}_{A_j}(x)=1$.

Proposition 1.2.6 (Borel-Cantelli Lemma): For any sequence of events $\{A_n\}_{n>1}$,

$$\sum_{k=1}^{\infty} P(A_n) < \infty \Longrightarrow P(A_n \text{ i.o.}) = 0$$

Proof: The set $\bigcup_{k\geq n}^{\infty} A_k$ decreases with n. Thus, by sequential continuity of probability,

$$P(A_n \text{ i.o.}) = P\left(\bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k\right) = \lim_{n \uparrow \infty} P\left(\bigcup_{k > n} A_k\right).$$

Then, by σ -subadditivity,

$$P\!\left(\bigcup_{k\geq n}A_k\right)\leq \sum_{k\geq n}P(A_k).$$

By the fact that $\sum_{k=1}^{\infty} P(A_n) < \infty$, the right hand-side of the inequality goes to 0 as $n \uparrow \infty$.

Counting Models

A common setting is one where the set Ω of all possible outcomes is finite and (for some reason) we are led to believe that all the outcomes ω have the same probability. As the probabilities must sum up to one, each outcome has probability $\frac{1}{|\Omega|}$. Since the probability of an event A is the sum of the probabilities of all outcomes $\omega \in A$, we have

$$P(A) = \frac{|A|}{|\Omega|}.$$

In this setting, computing P(A) merely requires *counting* the elements in the sets A and Ω . Now, we review some useful tools that can help with counting.

Proposition 1.2.7 (Stirling's Formula I):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Proposition 1.2.8 (Stirling's Formula II):

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}.$$

Remark: For a simpler, cruder bound, $e^{\frac{1}{12n}} \le 1.09 < 2$ for all $n \in \mathbb{N}$.

We can apply this to estimate the binomial coefficients.

Proposition 1.2.9:

$$\binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

Proof:

$$\begin{split} \binom{n}{k} &= \frac{n(n-1)\cdots(n-k+1)}{k!} \\ &\leq \frac{n^k}{k!} \leq \frac{n^k}{\sqrt{2\pi k} \left(\frac{k}{a}\right)^k} \leq \frac{1}{\sqrt{2\pi k}} \cdot \left(\frac{en}{k}\right)^k \leq \left(\frac{en}{k}\right)^k. \end{split}$$

1.3. Independence and Conditioning

2. Random Variables

2.1. Probability Distribution and Expectation

- 2.2. Generating Function
- 2.3. Conditional Expectation
- 3. Bounds and Inequalities
- 3.1. The Three Basic Inequalities
- 3.2. Frequently Used Bounds