# 作业报告——图像去噪的 K-SVD 算法

李梓健、孙天一、檀嘉宸、王子赫、张绍轩

## 1 算法介绍

## 1.1 优化算法: K-SVD 算法

K-SVD(K-Singular Value Decomposition)是一种高效的字典学习算法,用于信号重建和降噪。它通过迭代过程优化过完备字典,以更好地表示输入数据。在图像降噪中,K-SVD 旨在找到一个稀疏表示,该表示能够最小化重建误差并保留图像的重要特征。

K-SVD 算法的一般流程如下:

- 1. 初始化: 使用初始预定义字典进行初始化;
- 2. 稀疏编码:对每个图像块应用稀疏编码,以找到其在当前字典下的最佳表示;
- 3. 字典更新:对每个字典元素,使用恰当更新方法来最小化重建误差:
- 4. 迭代: 重复稀疏编码和字典更新步骤, 直到满足收敛条件.

在本项目中,我们采用 DCT 过完备字典作为初始字典;利用 OMP(正交匹配追踪)算法进行系数编码;在字典更新中,利用最速下降法最小化残差来更新字典元素.

#### Algorithm 1: K-SVD

**Input:** X: the patches

**Output:** D: the learned dictionary, A: the sparse representation

 $1 D_0 \leftarrow \mathrm{DCT}_{2N}$ ;

// the initial overcomplete dictionary

2 for i = 0 to max iter do

3 if i > 0 then

4 |  $D_i \leftarrow \text{DictLearn}(X, A)$ 

 $A_i \leftarrow \mathrm{OMP}(X, D)$ 

#### 1.1.1 初始字典: DCT 过完备字典

DCT(离散余弦变换)是一种常用于信号处理和图像压缩的变换方法. 对于初始图像样本 X, DCT可以将图像转换成在频域中表示的系数.

DCT 过完备字典是 K-SVD 算法中常用的初始字典,它包含了 DCT 基础上的各种变体和组合.这样的字典提供了一个良好的起点,可以捕捉图像数据中的多种特征.

构建过程:

- 1. 选择 DCT 基: 根据块的规模 N, 选取 N 阶 DCT 变换矩阵作为初始 DCT 基.
- 2. 构造过完备字典: 利用以下规则扩展基元素 这相当于对一个 2N 阶 DCT 变换矩阵进行裁切.
- 3. 归一化: 将字典元素归一化, 以避免数值问题.

### 1.1.2 稀疏编码: OMP 算法

OMP(正交匹配追踪)是一种贪婪算法,用于在给定字典的情况下找到信号的稀疏表示。在 K-SVD中,它用于确定每个图像块的稀疏系数.

设输入信号为 x,字典为 D,OMP 算法的目标是在满足稀疏度的前提下,寻找最优的稀疏表示. 这里最优性是指

在本项目中,我们对每条信号(即每个 patch )都执行 OMP 算法,从而确定整体的稀疏编码

### Algorithm 2: Orthogonal Matching Pursuit

```
Input: x: a single signal, D: the dictionary, s: sparsity

Output: a_x: the sparse representation of x

1 a_x = 0, r = x; // Initialization

2 while |x|_0 \le s do

3 | k = \arg\max_j \{d_j^T r : d_j \text{ is the } j^{\text{th}} \text{ column of } D\}

4 | x_k + d_k^T r; // Update

5 | r - d_k^T r \cdot d_k

6 | if |r|_2 < \varepsilon then

7 | break
```

## 1.2 字典学习方法

字典更新是 K-SVD 算法中的核心步骤,目的是优化字典以更好地适应数据.我们采用的字典更新原则如下:

- 1. 选取字典中的原子: 对于每一个字典中的原子 (基向量), 依次进行更新. 设当前从字典中选择原子  $d_k$ .
- 2. 对于当前待更新的原子,找到使用该原子进行稀疏编码的样本。 设  $I_k = \{j: x_j k \neq 0\}$ ,令  $Y_k = Y_{I_k}$  表示使用原子  $d_k$  进行稀疏编码的样本, $X_k = X_{I_k \times k}$  表示相 应稀疏编码的系数.
- 3. 通过梯度下降法优最小化残差,以更新当前选定的原子. 这里优化目标为
- 4. 重复迭代: 对所有字典中的原子重复步骤 1-3, 直到满足停止条件(如达到最大迭代次数或字典变化不大)

以下是从灰色图像中学习到的字典结果



Figure 1: Dictionary learned from three grayscale images.

Remark 1.1. The above contents are basically "Task 1".

## 2 数值结果

各个任务的数值结果展示如下:

#### 2.1 Task 3: 彩色图像学习

对于彩色图像,使用清晰图像进行字典学习与图像降噪,PSNR结果如表 1所示

Table 1: PSNR values of  $18~\mathrm{McM}$  images.

|       | Red Channel | Green Channel | Blue Channel | Average of three |
|-------|-------------|---------------|--------------|------------------|
| McM01 | 27.04       | 27.26         | 27.66        | 27.32            |
| McM02 | 30.79       | 32.34         | 31.94        | 31.69            |
| McM03 | 25.55       | 25.81         | 25.03        | 25.46            |
| McM04 | 27.90       | 29.58         | 27.32        | 28.27            |
| McM05 | 31.23       | 29.63         | 28.83        | 29.90            |
| McM06 | 30.63       | 30.08         | 31.00        | 30.57            |
| McM07 | 29.79       | 30.52         | 30.20        | 30.17            |
| McM08 | 34.00       | 34.52         | 34.36        | 34.29            |
| McM09 | 31.05       | 32.60         | 33.39        | 32.35            |
| McM10 | 32.10       | 32.56         | 32.99        | 32.55            |
| McM11 | 32.20       | 32.39         | 34.76        | 33.11            |
| McM12 | 34.27       | 33.95         | 34.03        | 34.08            |
| McM13 | 35.07       | 34.80         | 33.83        | 34.57            |
| McM14 | 34.78       | 34.87         | 33.96        | 34.53            |
| McM15 | 33.79       | 34.61         | 34.91        | 34.44            |
| McM16 | 24.50       | 23.06         | 29.94        | 25.83            |
| McM17 | 25.30       | 27.58         | 28.49        | 27.12            |
| McM18 | 27.49       | 27.82         | 32.30        | 29.21            |

作为对比,噪声图像的 PSNR 结果如表 2 所示.

Table 2: PSNR values of 18 noised McM images.

|       | Red Channel | Green Channel | Blue Channel | Average of three |
|-------|-------------|---------------|--------------|------------------|
| McM01 | 22.10       | 22.08         | 22.12        | 22.12            |
| McM02 | 22.09       | 22.12         | 22.12        | 22.12            |
| McM03 | 22.11       | 22.12         | 22.11        | 22.11            |
| McM04 | 22.10       | 22.12         | 22.14        | 22.14            |
| McM05 | 22.11       | 22.10         | 22.12        | 22.12            |
| McM06 | 22.10       | 22.11         | 22.12        | 22.12            |
| McM07 | 22.10       | 22.12         | 22.13        | 22.13            |
| McM08 | 22.10       | 22.12         | 22.11        | 22.11            |
| McM09 | 22.11       | 22.11         | 22.09        | 22.09            |
| McM10 | 22.10       | 22.13         | 22.12        | 22.12            |
| McM11 | 22.12       | 22.11         | 22.11        | 22.11            |
| McM12 | 22.13       | 22.11         | 22.10        | 22.10            |
| McM13 | 22.10       | 22.09         | 22.12        | 22.12            |
| McM14 | 22.11       | 22.10         | 22.10        | 22.10            |
| McM15 | 22.12       | 22.10         | 22.13        | 22.13            |
| McM16 | 22.09       | 22.09         | 22.11        | 22.11            |
| McM17 | 22.11       | 22.11         | 22.10        | 22.10            |
| McM18 | 22.12       | 22.12         | 22.13        | 22.13            |

# 2.2 Task 4: 未知清晰图像情形

For color image denoising, please summarize your result in the following table. The result in the table is what I obtained using the sample code provided in the project.zip file.

Table 3: PSNR values of  $18~\mathrm{McM}$  images.

|       | Red Channel | Green Channel | Blue Channel | Average of three |
|-------|-------------|---------------|--------------|------------------|
| McM01 |             |               |              |                  |
| McM02 |             |               |              |                  |
| McM03 |             |               |              |                  |
| McM04 |             |               |              |                  |
| McM05 |             |               |              |                  |
| McM06 |             |               |              |                  |
| McM07 |             |               |              |                  |
| McM08 |             |               |              |                  |
| McM09 |             |               |              |                  |
| McM10 |             |               |              |                  |
| McM11 |             |               |              |                  |
| McM12 |             |               |              |                  |
| McM13 |             |               |              |                  |
| McM14 |             |               |              |                  |
| McM15 |             |               |              |                  |
| McM16 |             |               |              |                  |
| McM17 |             |               |              |                  |
| McM18 |             |               |              |                  |

# 3 总结

References