Matrizes na engenharia : Redes - 2021 © Gustavo C. Buscaglia

ICMC - Sala 4-219, Ramal 738176, gustavo.buscaglia@gmail.com

O assunto

- O Cálculo Numérico resolve **modelos da realidade** que são **complexos demais** para serem resolvidos **analiticamente** ou, em geral, **manualmente**.
- Nesse capítulo consideramos a complexidade de sistemas com muitas variáveis incógnita acopladas, que dependem umas das outras.
- Em aplicações de engenharia, grandes sistemas de equações típicamente aparecem na modelagem de
 - Redes de elementos discretos: Redes elétricas, redes hidráulicas, circuitos térmicos, treliças estruturais, etc.
 - Sistemas contínuos discretizados por diferenças finitas, elementos finitos, etc. Exemplos típicos são campos electromagnéticos, campos térmicos, deformação de sólidos elásticos, escoamento de fluidos, etc. Uma vez discretizado, o sistema é equivalente a uma rede.

Resolver esses conjuntos de equações permite **simular** a rede, analizar a **sensibilidade** aos diversos parâmetros, **otimizar** o funcionamento, etc.

 Existe uma formulação matemática, que utiliza o grafo da rede, que torna possível automatizar a construção e resolução do sistema de equações. Esse é o método utilizado nos softwares de engenharia e o assunto desse capítulo.

Redes e sistemas de equações

Problema	Nó	Variável nodal	Aresta	Variável de aresta	Conservação		
Elétrico	Conexão	Tensão (voltagem)	Componente Fonte	Corrente	Carga		
Hidráulico	União	Pressão	Tubulação Bomba, Válvula	Vazão	Massa Volume		
Estrutural (treliças)	Articulação	Deslocamento	Barra	Tensão	Momento (equilíbrio)		

- Desenvolveremos um modelo para simular sistemas discretos, compostos por partes (nós), conectadas por conexões (arestas).
- O modelo n\u00e3o serve para qualquer sistema discreto.
- Deve haver uma quantidade conservada, como no slide anterior. Massa, Momento, Quantidade de pessoas, Energia, etc.
- As **conexões** representam **fluxos** da quantidade conservada.
- Deve existir uma variável associada a cada parte/nó tal que, quando essa variável é igual entre dois nós conectados, o fluxo entre eles é zero.
- O fluxo de cada aresta é proporcional à diferença da variável nodal entre seus extremos.
- Não necessariamente os nós são representações de "pontos físicos".
- Não necessariamente as arestas são representações de objetos físicos de conexão.
- Exemplo: Conducção térmica através de um corpo laminado.

- 1. **Variáveis nodais (potencial):** Adotaremos a notação *q*. Estão univocamente definidas em cada nó. Podem ser escalares (voltagem, pressão, temperatura), vetoriais (deslocamento, potencial electromagnético) ou outros (rotação).
- 2. **Variáveis de aresta (fluxo):** Denotaremos por *f*. Pode ser escalar (corrente, vazão, fluxo de calor), tensorial (tensão, momentos), etc. Tem uma "orientação" (sentido da corrente, do fluxo, tensão de tração/compressão, etc.).
- 3. Conservação nodal (caso escalar):

$$\sum_{a\to i}e_{ai}f_a=s_i\tag{1}$$

onde e_{ai} é +1 se o fluxo **positivo** em a é **sainte** de i, e viceversa. O lado direito é uma **fonte** (p.ex., **injeção** de fluxo ao nó i desde o exterior, positivo quando **entra**).

4. Lei de fluxo (caso escalar):

$$q_{a+} - q_{a-} = R_a f_a (2)$$

Lei de Ohm
$$V_{a+} - V_{a-} = Z_a I_a$$

Ley de Darcy
$$p_{a+} - p_{a-} = K_a Q_a$$

Lei de Fourier
$$T_{a+} - T_{a-} = R_a J_a$$

etc.

5. As equações do sistema surgem de "acoplar" muitos componentes, cada um deles bastante simples.

Circuito hidráulico de um carro.

Circuito hidráulico de um/a engenheiro/a.

6. É possível automatizar o trajeto da teoria à prática. Isto é a base de grande parte do software de engenharia.

7. **Exercício:** Pense outros sistemas que possam ser modelados com a estratégia acima. Quais seriam a variável nodal, o fluxo e a quantidade conservada nodalmente? Guarde suas respostas para discutir na aula!

- 8. A rede da figura está composta por m = 8 arestas e n = 7 nós. Uma vez numerados os nós e arestas, resulta um **grafo**.
- 9. Em geral, o grafo é ingressado ao computador através de uma lista de arestas.

$$C = [12; 24; 43; 46; 45; 35; 65; 67];$$

O fluxo é definido como positivo quando vai do primeiro nó ao segundo (orientação)

10. **Matriz de incidência:** $J(m \times n)$. É uma típica matriz **esparsa**. O sinal contém a informação de orientação.

$$J = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\label{eq:J=zeros} \begin{split} J=&zeros(m,n);\\ &for \ i=1:m\\ &J(i,C(i,1))=1;\\ &J(i,C(i,2))=-1;\\ end \end{split}$$

11. Matriz de incidência e equações

• Lei de fluxo: R = J = J = b, p.ex., $R_4 f_4 = q_4 - q_6$. R_a é a "resistência" da aresta a = 1, ..., m. Atenção: aresta 1 tem resistência R_1 mas também fonte/bomba b_1 , i.e. $R_1 f_1 = q_1 - q_2 + b_1$. Se fosse fonte de fluxo/corrente a equação é outra: f_1 = fluxo imposto.

$$\begin{pmatrix} R_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & R_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & R_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & R_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & R_6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & R_7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & R_8 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} b_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \\ q_7 \end{pmatrix} + \begin{pmatrix} b_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• Octave: Conhecido q, pode-se obter f: f=diag(1./R)*(J*q+b)

• Lei de conservação nodal: $J^T f = s$, p.ex., $-f_2 + f_3 + f_4 + f_5 = s_4 = 0$ onde s_i é o fluxo que está **ingressando** ao nó i desde fora da rede.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{f_1} \\ \mathbf{f_2} \\ \mathbf{f_3} \\ \mathbf{f_4} \\ \mathbf{f_5} \\ \mathbf{f_6} \\ \mathbf{f_7} \\ \mathbf{f_9} \end{pmatrix} = \begin{pmatrix} s_1 \\ 0 \\ 0 \\ 0 \\ s_7 \end{pmatrix}$$

• Octave: Conhecidos f e s, res=J'*f-s é o desbalanço nodal de fluxos.

• Resumo: Equações da rede, $J^T f = s$, R f = J q + b .

(Ainda sem impor potenciais conhecidos)

$$\underbrace{\begin{pmatrix} R & -J \\ J^T & 0 \end{pmatrix}}_{\mathbf{B}} \underbrace{\begin{pmatrix} f \\ q \end{pmatrix}}_{\mathbf{X}} = \underbrace{\begin{pmatrix} b \\ s \end{pmatrix}}_{\mathbf{d}}$$

• Potenciais impostos: Os fluxos que entram pelas conexões externas com potencial imposto (a terra, no caso) são desconhecidas. Em troca, o potencial é conhecido. A equação " q_i = valor conhecido" é colocada em substituição da linha i da equação matricial $J^T f = s$, cujo lado direito se desconhece.

Tudo em poucas linhas de código: (exemplo elétrico)

```
C=[1 2;2 4;4 3;4 6;4 5;3 5;6 5;6 7]; \%\text{ lista de arestas}
b=zeros(m,1);b(1)=12; \% fontes de tensao (em V)
s=zeros(n,1); %% correntes externas entrantes impostas
R=[0 200 300 400 500 600 700 800]; %%impedancia (em Ohm)
idado=[1 7]; nt=length(idado); dado=zeros(nt,1); %% nos com pot imposto
J=zeros(m,n); for k=1:m J(k,C(k,1))=1; J(k,C(k,2))=-1; end
B=[diag(R) -J; J' zeros(n,n)]; d=[b; zeros(n,1)];
% proximas linhas: modificação por nos com potencial dado
Ident=eve(m+n);
for k=1:nt
 B(m+idado(k),:)=Ident(m+idado(k),:);
 d(m+idado(k))=dado(k);
end
%% resolucao e separacao das incognitas
x=B\d; f=x(1:m); q=x(m+1:m+n);
```

B =

0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	
0	200	0	0	0	0	0	0	0	0	-1	0	1	0	0	
0	0	300	0	0	0	0	0	0	0	0	1	-1	0	0	
0	0	0	400	0	0	0	0	0	0	0	0	-1	0	1	
0	0	0	0	500	0	0	0	0	0	0	0	-1	1	0	
0	0	0	0	0	600	0	0	0	0	0	-1	0	1	0	
0	0	0	0	0	0	700	0	0	0	0	0	0	1	-1	
0	0	0	0	0	0	0	800	0	0	0	0	0	0	-1	
0	0	0	0	0	0	0	0	900	0	0	0	0	-1	0	
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	
0	-1	1	1	1	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	-1	-1	-1	0	1	0	0	0	0	0	0	
0	0	0	-1	0	0	1	1	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

d' = (transposto para caber na pagina)
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12. Miniprojeto: Distribuir um fluido numa área

Vamos supor ter um conjunto de n unidades de consumo (nós) distribuídas segundo uma rede retangular $N_1 \times N_2$ (com $n = N_1 + N_2$) com comprimento de lado ℓ .

- O conjunto é alimentado desde um reservatório a pressão P conectado a um certo nó da rede.
 Se deseja distribuir uma vazão a de fluido a cada nó, que é o seu consumo.
- Considerar as resistências obedecendo a lei de Hagen-Poiseuille (escoamento laminar): Relação entre diferença de pressão e vazão num conduto; i.e.,

$$\Delta p = \frac{8\mu\ell}{\pi r^4} Q,$$

onde μ é a viscosidade e r o raio.

- Considerar que todos os nós estão conectados seguindo um grid retangular com $m = (N_1 1)N_2 + N_1(N_2 1)$ canos de comprimento ℓ .
- Os canos tem ráio $r_1 = 1$, e vamos considerar (para simplificar os números) a = 1, $8\mu\ell/\pi = 1$ e P = 0. Esses valores apenas afetam as escalas de pressão e vazão, mas não a física envolvida. Com eles, a resistência de cada cano é $R_0 = 1$.

- Cada cano tem uma probabilidade p de ficar obstruido. Se isto acontecer, a resistência do cano sobe para o valor $R_1 = 10$.
- Considerar um sistema com $N_1 = 5$ e $N_2 = 4$. O reservatório está conectado ao nó 1 (extremo inferior esquerdo).

Quando nenhum cano está obstruido, a pressão mínima do sistema é -20.42 (com respeito à pressão do reservatório, colocada a zero por ser a pressão de referência). Esse dado é útil para verificar que seu código esteja calculando corretamente.

Objetivo: O objetivo do trabalho é estimar a probabilidade de que, por causa das obstruções aleatórias, a pressão mínima seja menor que -40, que é o limite de funcionamento do sistema. Entregar um relatório breve descrevendo o método utilizado e a estimativa de probabilidade obtida (com seu erro). Enviar também o código desenvolvido.

Dados adicionais: Se *A* é o **último dígito de seu número USP**, considerar a seguinte probabilidade de obstrução:

$$p = 0.05 + 0.02 A$$

Início do miniprojeto "Distribuir um fluido numa área"

- N unidades de consumo (nós) segundo uma rede quadrada 5×4 de lado 1.
- Alimentação: Nó 1 a pressão 0
- Cada nó consome uma vazão de valor 1.
- Cada cano tem resistência 1 se livre e 10 se obstruído.

• Geração do grafo da rede.

[n,m,C,coord]=geragrafo(5,4);

Visualização do grafo

```
scatter(coord(:,1),coord(:,2),40,q,"filled"); hold on
for i=1:m
    xaux=[coord(C(i,1),1) coord(C(i,2),1)];
    yaux=[coord(C(i,1),2) coord(C(i,2),2)];
    plot(xaux,yaux,"k-","linewidth",2)
    end
```

Notar que é possível usar diferentes cores ou espessuras, para mostrar por exemplo o valor da vazão em cada cano (uma vez calculada).

• O sistema de equações: B x = d onde

$$B = \begin{pmatrix} R & -J \\ J^T & 0 \end{pmatrix}, \qquad x = \begin{pmatrix} f_1 \\ f_2 \\ \dots \\ f_m \\ q_1 \\ q_2 \\ \dots \\ q_n \end{pmatrix}, \qquad d = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ -1 \\ -1 \\ \dots \\ -1 \end{pmatrix},$$

sendo J a matriz de incidência do grafo e R a matriz $(m \times m)$ diagonal que tem a resistência de cada cano na diagonal.

Importante: Para fixar a pressão do nó 1 a zero, a linha m+1 de B deve ser substituída pela linha m+1 da matriz identidade, e o valor de d(m+1) deve ser substituído pelo valor imposto (zero).

Sistema linear do problema:

- Dependendo de se cada cano está obstruído ou não, a matriz R muda de valores (notar que a matriz J e o lado direito d não mudam). Isto faz que os valores de fluxos (f) e pressões (q), que surgem de resolver o sistema, mudem também.
- Para cada realização aleatória, portanto, a pressão mínima pmin=min(q) será em princípio diferente.

• Resultado: Valores numéricos de q e f quando todos os canos estão livres.

Pressão mínima: min(q) = -20.42

Visualização da pressão:

```
[xx yy]=meshgrid((1:nx)-1,(1:ny)-1);
matq=reshape(q,nx,ny)';
surf(xx,yy,matq);
```

