

4 Integrales de línea y de superficie

4.1 Integrales sobre curvas y campos conservativos.

Problema 4.1 Integra

- i) $f(x,y) = 2xy^2$ sobre el primer cuadrante de la circunferencia de radio R.
- ii) $f(x, y, z) = (x^2 + y^2 + z^2)^2$ a lo largo del arco de hélice circular $\mathbf{r}(t) = (\cos t, \sin t, 3t)$, desde el punto (1, 0, 0) hasta el punto $(1, 0, 6\pi)$.

Solución: i) $2R^4/3$; ii) $2\pi\sqrt{10}(5+120\pi^2+1296\pi^5)/5$.

Problema 4.2 Determina la longitud y la masa de un hilo cuya forma es el arco de parábola $y = x^2$ desde (0,0) hasta (2,4) y cuya densidad es $\rho(x,y) = x$.

Solución: La longitud es $\sqrt{17} + (\log(4+\sqrt{17}))/4$ y la masa es $(17^{3/2}-1)/12$.

Problema 4.3 En los ejercicios que siguen, calcula la integral de línea del campo vectorial **f** a lo largo del camino que se indica:

- $i) \ \mathbf{f}(x,y) = (x^2 2xy, y^2 2xy),$ a lo largo de la parábola $y = x^2$ desde (-1,1) a (1,1),
- $ii) \ \mathbf{f}(x,y) = (x^2+y^2, x^2-y^2),$ a lo largo de la curva y = 1 |1-x|,desde (0,0)a (2,0),
- iii) $\mathbf{f}(x,y,z)=(y^2-z^2,2yz,-x^2)$, a lo largo del camino descrito por $r(t)=(t,t^2,t^3)$, con $t\in[0,1]$,
- $iv) \ \mathbf{f}(x,y,z) = (2xy,x^2+z,y),$ a lo largo del segmento que une (1,0,2) con (3,4,1)

Solución: i) - 14/15; ii) 4/3; iii) 1/35; iv) 40.

Problema 4.4 Se considera la función vectorial $f(x,y) = (x^2,y)$. Calcula la integral de línea de f desde (1,0) hasta (-1,0) a lo largo de:

- i) El segmento que une ambos puntos.
- ii) Los dos recorridos posibles del rectángulo $[-1,1]\times[-1,1].$
- iii) La semicircunferencia superior que une ambos puntos.

Solución: 2/3 en todos los casos.

Problema 4.5 Calcula:

- i) $\int_g (x-y)dx + (x+y)dy$, siendo g el segmento que une (1,0) con (0,2).
- ii) $\int_C x^3 dy y^3 dx$, siendo C la circunferencia unidad.

iii) $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, siendo Γ el cuadrado de vértices (1,0), (0,1), (-1,0) y (0,-1), recorrido en sentido contrario a las agujas del reloj.

iv) $\int_{\rho} (x+2y)dx + (3x-y)dy$ siendo ρ la elipse de ecuación $x^2+4y^2=4$, recorrida en sentido contrario a las agujas del reloj.

$$v)\ \int_R \frac{y^3 dx - xy^2 dy}{x^5}, \ \text{siendo}\ R\ \text{la curva}\ x = \sqrt{1-t^2},\ y = t\sqrt{1-t^2},\ -1 \le t \le 1.$$

Solución: i)7/2; ii) 3π /2; iii) 0; iv) 2π ; v) $-\pi$ /2.

Problema 4.6 Calcula:

i) $\int_{\gamma} y \, dx - x \, dy + z \, dz$, siendo γ la curva de intersección del cilindro $x^2 + y^2 = a^2$ y el plano z - y = a en sentido antihorario.

 $ii) \int_{\gamma} \mathbf{F}, \text{ siendo } \mathbf{F}(x,y,z) = (2xy+z^2,x^2,2xz) \text{ y } \gamma \text{ la intersección del plano } x=y \text{ con la esfera } x^2+y^2+z^2=a^2, \text{ recorrida en cualquiera de los dos sentidos.}$

iii) $\int_{\gamma} \mathbf{F}$, siendo $\mathbf{F}(x,y,z) = (y,z,x)$ y γ la curva intersección de $x^2 + y^2 = 2x$ con x = z, recorrida en sentido positivo.

Solución: i) $-2\pi a^2$; ii) 0; iii) 0.

Problema 4.7 Una partícula de masa m se mueve desde t=0 hasta t=1 describiendo la curva:

$$\mathbf{r}(t) = (t^2, \sin t, \cos t), t \in [0, 1].$$

Halla la fuerza que actúa sobre la partícula sabiendo que viene dada por la expresión $\mathbf{F}(t) = m\mathbf{r}''(t)$ (segunda ley de Newton). Calcula también el trabajo total realizado por dicha fuerza.

Solución: $\mathbf{F}(t) = m(2, -\sin t, -\cos t)$. El trabajo es 2m.

Problema 4.8 Halla el valor de b > 0 que minimiza el trabajo producido al mover una partícula sometida al campo de fuerzas $\mathbf{F}(x,y) = (3y^2 + 2,16x)$, desde (-1,0) hasta (1,0), a lo largo de la semielipse $b^2x^2 + y^2 = b^2$, $y \ge 0$.

Solución: El trabajo mínimo es $4(1-\pi^2)$, que se alcanza para $b=\pi$.

Problema 4.9 Considera el campo de fuerzas $\mathbf{F}(x,y) = (cxy,x^6y^2)$, a,b,c>0. Calcula el parámetro a en términos de c para que el trabajo producido al mover una partícula a lo largo de la parábola $y=ax^b$ desde x=0 hasta x=1 no dependa de b.

Solución: $a = \sqrt{3c/2}$.

Problema 4.10 Calcula el trabajo producido al mover una partícula sometida al campo de fuerzas (en polares) $\mathbf{F}(r,\theta) = (-4 \sin \theta, 4 \sin \theta)$, a lo largo de la curva $r = e^{-\theta}$ desde el punto (1,0) hasta el origen.

Solución: 8/5.

Problema 4.11 Sea $\mathbf{F}(x, y, z) = (\sin y + z, x \cos y + e^z, x + ye^z).$

- i) Prueba que la integral sobre cualquier curva cerrada, regular a trozos, vale 0.
- ii) Obtén el potencial de F, es decir, encuentra ϕ tal que $\mathbf{F} = \nabla \phi$.

Solución: i) rot $\mathbf{F} = 0$ y \mathbf{F} es de clase C^1 en todo \mathbb{R}^3 (que es un conjunto simplemente conexo); ii) $\phi(x, y, z) = x(\operatorname{sen} y + z) + y \operatorname{e}^z$.

Problema 4.12 Calcula $\int_{\gamma} \mathbf{F}$, siendo $\mathbf{F}(x,y,z) = (2xze^{x^2+y^2}, 2yze^{x^2+y^2}, e^{x^2+y^2})$ y γ la curva en \mathbb{R}^3 dada por $\mathbf{r}(t) = (t, t^2, t^3)$, $0 \le t \le 1$.

Solución: e^2 .

Problema 4.13 Sea la curva en \mathbb{R}^3 , $\gamma(t) = \left(e^{t^2} + t(1-e) - 1, \sin^5(\pi t), \cos(t^2 - t)\right)$, $t \in [0, 1]$, y el campo vectorial $\mathbf{F}(x, y, z) = (y + z + x^4 \sin x^5, \ x + z + \operatorname{arctg} y, \ x + y + \sin^2 z)$.

- i) Halla $\int_{\gamma} \mathbf{F}$.
- ii) ¿Existe f tal que $\nabla f = \mathbf{F}$? En caso afirmativo halla f.

Solución: i) 0; ii) $f(x, y, z) = xy + xz + yz - \frac{1}{5}\cos x^5 + y \arctan y - \frac{1}{2}\log(1+y^2) + \frac{z}{2} - \frac{1}{4}\sin 2z$.

Problema 4.14 Sea la curva en \mathbb{R}^3 , $\Gamma = \{ x^2 + y^2 = 1, z = y^2 - x^2 \}$, y el campo vectorial $\mathbf{F}(x, y, z) = (y^3, e^y, z)$.

- i) Halla $\int_{\Gamma} \mathbf{F}$.
- ii) ¿Existe f tal que $\nabla f = \mathbf{F}$?

Solución: i) $-3\pi/4$; ii) No.

Problema 4.15 Determina a y b de manera que el campo vectorial

$$\mathbf{w}(x,y) = e^{2x+3y} \Big((a \operatorname{sen} x + a \cos y + \cos x), (b \operatorname{sen} x + b \cos y - \operatorname{sen} y) \Big)$$

sea conservativo, y calcula la función potencial correspondiente.

Solución: $a = 2, b = 3; \varphi(x, y) = e^{2x+3y}(\sin x + \cos y) + C.$

Problema 4.16 Considera el campo vectorial

$$\mathbf{F}(x,y) = \left(\frac{\log(xy)}{x}, \frac{\log(xy)}{y}\right),\,$$

definido para x > 0, y > 0, y sean a > 0, b > 0 dos constantes.

- i) Calcula $\int_{\gamma} \mathbf{F}$ siendo γ el arco de la hipérbola xy = a con $x_1 \le x \le x_2$.
- ii) Si A es un punto (cualquiera) de la hipérbola xy = a, B es un punto (cualquiera) de la hipérbola xy = b, y γ es una curva (cualquiera) de clase C^1 , contenida en el primer cuadrante que une A con B, prueba que

$$\int_{\gamma} \mathbf{F} = \frac{1}{2} \log(ab) \log(b/a).$$

Solución: i) $\mathbf{F} = \nabla f$, con $f(x,y) = \frac{1}{2} (\log(xy))^2 + c$, $\int_{\gamma} \mathbf{F} = 0$.

4.2 Integrales sobre superficies.

Problema 4.17 Calcula el área de las siguientes superficies:

- i) esfera de radio R;
- ii) cono circular parametrizado por $\mathbf{r}(u,v)=(u\cos v,u\sin v,u)$, donde $0\leq u\leq a$ y $0\leq v\leq 2\pi$.
- iii) porción del paraboloide $z = x^2 + y^2$ que se encuentra en el cilindro $x^2 + y^2 = a^2$;
- iv) porción del cilindro $x^2 + z^2 = 16$ limitada por el cilindro $x^2 + y^2 = 16$.

Solución: i) $4\pi R^2$; ii) $\pi a^2 \sqrt{2}$; iii) $\pi ((1+4a^2)^{3/2}-1)/6$; iv) 128.

Problema 4.18 Halla el área de la superficie de la esfera $x^2 + y^2 + z^2 = a^2$ situada fuera de los cilindros $x^2 + y^2 = \pm ax$.

Solución: $4\pi a^2 - 8a^2$.

Problema 4.19

i) Deduce la fórmula del área de la superficie de revolución obtenida al girar la gráfica $y = f(x), \ 0 < a \le x \le b$, alrededor del eje vertical:

$$A = 2\pi \int_{a}^{b} x \sqrt{1 + (f'(x))^{2}} \, dx,$$

con la parametrización $\mathbf{s}(r,\theta) = (r\cos\theta, r\sin\theta, f(r))$, donde $a \le r \le b$ y $0 \le \theta \le 2\pi$.

- ii) Obtén el área de la superficie del toro obtenido al girar la gráfica $(x-R)^2+y^2=c^2,\ 0< c< R.$
- iii) Deduce la parametrización correspondiente para obtener la fórmula análoga en el caso de girar la gráfica y = f(x), $a \le x \le b$, alrededor del eje horizontal.

Solución: ii) $4\pi^2 Rc$; iii) $\mathbf{s}(x,\theta) = (x, f(x)\cos\theta, f(x)\sin\theta)$).

Problema 4.20 Sea el conjunto de \mathbb{R}^3 , $W = \{1 \le z \le (x^2 + y^2)^{-1/2}\}$. Demostrar que W tiene volumen finito pero su frontera tiene área infinita.

Solución: $V = \pi$.

Problema 4.21 Se consideran la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, y \ge 0\}$ orientada con la normal exterior a la esfera unidad, y la función $\mathbf{F}(x, y, z) = (x + z, y + z, 2z)$.

- i) Calcula $\int_S \mathbf{F} \cdot \mathbf{n}$.
- ii) Calcula $\int_S \operatorname{rot} \mathbf{F} \cdot \mathbf{n}$.

Solución: i) $8\pi/3$; ii) π .

Problema 4.22 Calcula $\int_S \mathbf{F} \cdot \mathbf{n}$ en los siguientes casos, donde \mathbf{n} denota la normal exterior en los apartados i) iii) iv), y la normal que apunta hacia arriba (con tercera componente positiva) en el apartado ii):

28

i) $\mathbf{F}(x,y,z) = (x^2,y^2,z^2)$ y S la frontera del cubo $0 \le x, y, z \le 1$.

 $ii) \ {\bf F}(x,y,z) = (xy,-x^2,x+z)$ y S la porción del plano 2x+2y+z=6 situada en el primer octante.

iii) $\mathbf{F}(x,y,z) = (xz^2, x^2y - z^2, 2xy + y^2z)$ y S la semiesfera superior $z = \sqrt{a^2 - x^2 - y^2}$.

iv) $\mathbf{F}(x,y,z)=(2x^2+\cos yz,3y^2z^2+\cos(x^2+z^2),\mathrm{e}^{y^2}-2yz^3)$ y S la superficie del sólido engendrado por el corte del cono $z\geq\sqrt{x^2+y^2}$ y la bola $x^2+y^2+z^2\leq1$.

Solución: i) 3; ii) 27/4; iii) $2\pi a^5/5$; iv) 0.

Problema 4.23 Halla el momento de inercia respecto de un diámetro de una lámina esférica homogénea de masa m y radio a.

Solución: $2ma^2/3$.

4.3 Teoremas de Green, Stokes y Gauss.

Problema 4.24 Calcula $\int_{\gamma} (5 - xy - y^2) dx - (2xy - x^2) dy$ siendo γ el cuadrado de vértices (0,0), (1,0), (1,1) y (0,1), directamente y aplicando el teorema de Green.

Solución: 3/2.

Problema 4.25 Sea f una función derivable en \mathbb{R} . Sean

$$P(x,y) = e^{x^2} - \frac{y}{3 + e^{xy}}, \quad Q(x,y) = f(y),$$

y γ la frontera del cuadrado $[0,1] \times [0,1]$ recorrida en sentido positivo. Calcula $\int_{\gamma} P dx + Q dy$.

Solución: $(1 - \log(e + 3) + \log 4)/3$.

Problema 4.26 Sean las funciones $P(x,y) = y/(x^2 + y^2)$ y $Q(x,y) = -x/(x^2 + y^2)$. Sea C una curva cerrada, regular a trozos, que no pasa por el origen, con $C = \partial D$.

i) Demuestra que $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.

ii) Si $(0,0) \in D$, prueba que $\int_C P dx + Q dy = \pm 2\pi$, dependiendo de la orientación de γ .

iii) Si $(0,0)\not\in D,$ calcula $\int_C P\,dx + Q\,dy.$

Solución: iii) 0.

Problema 4.27 Evalúa $\int_{\gamma} \frac{-y \, dx + (x-1) \, dy}{(x-1)^2 + y^2}$, siendo γ una curva cerrada, simple, regular a trozos, que contiene al punto (1,0) en su interior.

Solución: $\pm 2\pi$, dependiendo de la orientación de γ .

Problema 4.28

i) Sea A el área de un dominio D, acotado por C curva cerrada, simple, regular a trozos, y orientada en sentido positivo (contrario a las agujas del reloj). Prueba que

$$A = \frac{1}{2} \int_C -y \, dx + x \, dy \,,$$

y que en coordenadas polares es

$$A = \frac{1}{2} \int_C r^2(\theta) \, d\theta.$$

- ii) Calcula el área interior al bucle que forma la curva parametrizada como $\mathbf{s}(t) = (t^2 1, t^3 t)$.
- iii) Calcula el área de la cardioide en polares $r(\theta) = a(1 \cos \theta), (0 \le \theta \le 2\pi).$

Solución: ii) 8/15; iii) $3\pi a^2/2$.

Problema 4.29

- i) Calcula $\int_D (x+2y) dx dy$, donde D es el dominio acotado por el intervalo $[0,2\pi]$ y la arcada de la cicloide $x=t-\sin t,\ y=1-\cos t,\ \cos 0\le t\le 2\pi.$
- ii) Calcula $\int_D xy^2 dx dy$, donde D es el dominio limitado por el astroide $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$ y los ejes.
- iii) Calcula $\int_D y^2 dx dy$, donde D es el dominio limitado por la curva $x = a(t \sin^2 t)$, $y = a \sin^2 t$, $0 \le t \le \pi$, y la recta que une sus extremos.

Solución: i) $-2\pi(3\pi+2)$; ii) 8/2145; iii) 0.

Problema 4.30 Utilizando el teorema de Stokes calcula la integral \int_S rot \mathbf{F} en los siguientes casos, donde S está orientada según la normal exterior:

- $i) \ \mathbf{F}(x,y,z) = (x^2y^2,yz,xy)$ y S el paraboloide $z=a^2-x^2-y^2, \ z \geq 0.$
- $ii) \ {\bf F}(x,y,z) = ((1-z)y,z{\rm e}^x,x\,{\rm sen}\,z)$ y S
 la semiesfera superior de radio a.
- *iii*) $\mathbf{F}(x, y, z) = (x^3 + z^3, e^{x+y+z}, x^3 + y^3)$ y $S = \{x^2 + y^2 + z^2 = 1, y \ge 0\}.$

Solución: $i) 0; ii) - \pi a^2; iii) 0.$

Problema 4.31 Considera el campo vectorial $\mathbf{F}(x,y,z) = \left(y\,,\,x^2\,,\,(x^2+y^4)^{3/2}\,\sin(\mathrm{e}^{\sqrt{xyz}})\right)$. Calcula $\int_S \mathrm{rot}\,\mathbf{F}\cdot\mathbf{n}$, donde \mathbf{n} denota la normal interior al semielipsoide

$$S = \{(x, y.z): 4x^2 + 9y^2 + 36z^2 = 36, z \ge 0\}.$$

Solución: 6π .

Problema 4.32 Sea $\mathbf{F}(x,y,z) = (2y,3z,x)$ y T el triángulo de vértices A(0,0,0), B(0,2,0) y C(1,1,1).

- i) Da una orientación a la superficie del triángulo T y la inducida en la frontera.
- ii) Calcula la integral de línea del campo \mathbf{F} sobre la frontera de T.

Solución: i) $\mathbf{n} = (1, 0, -1)$; la frontera se recorre de A a B, de B a C y de C a A; ii) -1.

Problema 4.33 Se consideran la función $\mathbf{F}(x,y,z) = (y \operatorname{sen}(x^2 + y^2), -x \operatorname{sen}(x^2 + y^2), z(3-2y))$ y el dominio $W = \{(x,y,z) \in \mathbb{R}^3 \ / \ x^2 + y^2 + z^2 \le 1, z \ge 0\}$. Calcula $\int_{\partial W} \mathbf{F}$.

Solución: 1.

Problema 4.34 Verificar el teorema de Stokes para:

- i) $\mathbf{F}(x,y,z)=(y^2,xy,xz)$, en el paraboloide $z=a^2-x^2-y^2,\ z\geq 0$.
- *ii)* $\mathbf{F}(x, y, z) = (-y^3, x^3, z^3)$ en $S = \{z = y, y \ge 0, x^2 + y^2 \le 1\}.$

Solución: i) 0; ii) $3\pi/4$.

Problema 4.35 Un campo de vectores en \mathbb{R}^3 es de la forma $\mathbf{F}(x,y,z) = (P_1(x,y) + P_2(x,z), x + Q(y,z), R(x,y,z))$, con $P_1, P_2, Q, R \in \mathcal{C}^2(\mathbb{R}^3)$. Si Γ_h es el contorno de la sección del cilindro $x^2 + y^2 = 1$ a la altura h, demostrar que $\int_{\Gamma_h} \mathbf{F}$ es independiente de h.

Problema 4.36 Calcula la integral $\int_S \mathbf{F}$, donde

- i) $\mathbf{F}(x,y,z)=(18z,-12,3y),$ y S es la región del plano 2x+3y+6z=12 situada en el primer octante.
- ii) $\mathbf{F}(x,y,z) = (x^3, x^2y, x^2z)$, y S es la superficie cerrada que consta del cilindro $x^2 + y^2 = a^2$, $0 \le z \le b$, y sus tapas superior e inferior.
- iii) $\mathbf{F}(x,y,z)=(4xz,-y^2,yz)$, y S es la superficie que limita el cubo $0\leq x,\,y,\,z\leq 1$.
- iv) $\mathbf{F}(x, y, z) = (x, y, z)$, y S es una superficie cerrada simple.

Solución: i) 24; ii) $5\pi a^4 b/4$; iii) 3/2; iv) $3|\Omega|$, donde $S = \partial\Omega$.

Problema 4.37 Sea S el cuadrado de vértices (0,0,0), (0,1,0), (0,0,1) y (0,1,1) (orientado con la normal de primera coordenada positiva). Se considera también el campo vectorial

$$\mathbf{F}(x, y, z) = (xy^2, 2y^2z, 3z^2x).$$

Calcular \int_S rot $\mathbf{F} \cdot \mathbf{n}$ de dos maneras distintas (utilizando el Teorema de Stokes).

Solución: -2/3.

Problema 4.38 Calcula el flujo del campo vectorial $\mathbf{F}(x,y,z)=(y^2,yz,xz)$ a través de la superficie del tetraedro acotado por $x=0,\ y=0,\ z=0,\ x+y+z=1,$ orientada según la normal exterior.

Solución: 1/12.

Problema 4.39 Supongamos que la temperatura en cada punto del espacio sea proporcional al cuadrado de la distancia al eje vertical, y consideremos el dominio $V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 2z, z \le 2\}.$

- i) Calcula el volumen de V.
- ii) Calcula la temperatura promedio en V.
- iii) Calcula el flujo del gradiente de temperatura a través (y hacia fuera), de ∂V .

Solución: i) $16\pi/3$; ii) α (la constante de proporcionalidad); iii) $32\alpha\pi$.

Problema 4.40 Sea S la esfera de radio a orientada con su vector normal exterior, y sea el campo vectorial $\mathbf{F}(x,y,z) = (\sin yz + \mathrm{e}^z, x\cos z + \log(1+x^2+z^2), \mathrm{e}^{x^2+y^2+z^2})$. Calcula $\int_S \mathbf{F} \cdot \mathbf{n}$.

Solución: 0.

Problema 4.41 Sea $S = S_1 \cup S_2$, donde S_1 y S_2 son las superficies

$$S_1 = \{ x^2 + y^2 = 1, 0 \le z \le 1 \}$$
 $S_2 = \{ x^2 + y^2 + (z - 1)^2 = 1, z \ge 1 \},$

y sea el campo vectorial $\mathbf{F}(x,y,z)=(zx+z^2y+x,z^3yx+y,z^4x^2).$

- i) Calcula \int_S rot $\mathbf{F} \cdot \mathbf{n}$ utilizando el teorema de Stokes.
- ii) Calcula la misma integral utilizando el teorema de la divergencia.

Solución: 0.

Problema 4.42 Sea $h: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Halla $\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{n}$, donde \mathbf{n} es el vector normal unitario interior a $\partial\Omega$, y

$$\mathbf{F}(x,y,z) = \left(e^{y^2 + z^2} + \int_0^x \frac{e^{t^2 + y^2}}{\sqrt{t^2 + y^2}} dt, \operatorname{sen}(x^2 + e^z), h(x,y)\right),$$

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le \sqrt{x^2 + y^2}, \ x \ge 0, \ y \ge 0 \}.$$

Solución: $\pi(1-e)/4$.

Problema 4.43 Considera el campo vectorial

$$\mathbf{F}(x, y, z) = \left(y e^z, \int_0^x e^{-t^2 + \cos z} dt, z(x^2 + y^2) \right).$$

Calcula $\int_{\partial\Omega}\mathbf{F}\cdot\mathbf{n}$, donde \mathbf{n} denota la normal exterior a la frontera del dominio

$$\Omega = \left\{ (x,y,z): \ x^2 + y^2 + z^2 < a^2 \,, \ x^2 + y^2 < z^2 \right\}.$$

Solución: $(8 - 5\sqrt{2})\pi a^5/30$.