Project Report (ECE 514) Part 1

Somshubhra Roy sroy22@ncsu.edu 200483305

1.

200	
	ECE 514 PROJECT
	PART 2
	SOMSHUBHRA ROY
<i>J.</i>	X, y was 2 jointly continious R.V.S
	fry(n,y) =) n+ 3 y2, 0 0 1 3
<u> </u>	o otherwise
	U= X
	L
(1	a> Ru = E(U.UT)
	$= E(x^2) E(xy)$
	$E(xy)$ $E(y^2)$
	- D
$i\rangle$	$E(x^2) = \int n^2 \left(n + \frac{3}{2}y^2\right) dn dy$
,	-00 -00
	$= \int \int n^3 + \frac{3}{3} y^2 n^2 dn dy$
	$= \int_{0}^{1} \left[\frac{n^{4}}{u} + \frac{3}{2} y^{2} \frac{\lambda^{3}}{3} \right] dy.$
	1 1 1 2 3 3 J.
44	
	$= \int_{0}^{2} \frac{1}{4} + \frac{69}{2} dy$
	[y
	$\begin{bmatrix} \frac{1}{4} + \frac{1}{4} \\ \frac{1}{6} \end{bmatrix} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$
	L' 0 10 4 6 12

$$E(Y^{2}) = \iint_{3} y^{2} (n + \frac{3}{2}y^{2}) dn dy$$

$$= \iint_{3} (y^{2}n + \frac{3}{2}y^{4}) dy dn$$

$$= \iint_{3} \frac{y^{3}}{3} n + \frac{3}{2} \frac{y^{5}}{5} dx.$$

$$= \begin{bmatrix} \frac{n^{2}}{6} + \frac{3}{10} \\ \frac{1}{6} \end{bmatrix} dn.$$

$$= \begin{bmatrix} \frac{n^{2}}{6} + \frac{3}{10} \\ \frac{1}{3} \end{bmatrix} dn.$$

$$= \begin{bmatrix} \frac{5}{6} + \frac{3}{10} \\ \frac{1}{30} \end{bmatrix} = \frac{7}{15}$$

$$= \frac{14}{30} = \frac{7}{15}$$

$$= \frac{1}{30} = \frac{7}{15}$$

$$= \frac{1}{30} = \frac{7}{15} = \frac{7}{15}$$

$$= \frac{1}{3} = \frac{7}{15} = \frac{7}{15} = \frac{7}{15}$$

$$= \frac{1}{30} = \frac{7}{15} = \frac{7}{15} = \frac{7}{15}$$

$$= \frac{1}{30} = \frac{7}{15} = \frac{7}{15} = \frac{7}{15}$$

$$= \frac{1}{30} = \frac{7}{15} =$$

		P27	,			i a new
	Ru =	5/12	17/48		0.41667	0.351466
			100	2		
		17/48	7/15		0.3514667	0.4667
					[As	
b)	Co =	Ru-E(U) E(UT)		
	E(U)=		Ea	, ζ.	E(UT)= E	E(x) FE(x
		ECYD	~ (ECYD
				[90 [8]		
is	E			-	= (E	$(x))^2$ $E(x)$
						CX)E(Y) (E(
		1 1				
i	E(x)	= [n(ne 3 y2)	dn	du	
		0 0	2 1 7			4) ()
		= (2)	3.2.1	~ al		
) 6	+3ynd	10	J	1
9		- (2	71		
	,	1 2 3	+ 3 y 2 m2		dy	
101				0	ki ,	
		$z \int \int \frac{1}{3}$	+ 342	y		
			2 1 7	1) _ B	
		= 39	77		- 5/Ko 3	1 1 2 7

$$E(y) = \int_{0}^{1} \int_{0}^{1} (n + \frac{3}{3}y^{2}) dy dn.$$

$$= \int_{0}^{1} \int_{0}^{1} ny + \frac{3}{3}y^{3} dy dn.$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{1}{3} dn.$$

$$= \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} dn.$$

$$= \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} dn.$$

$$= \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3} dn.$$

$$= \int_{0}^{1} \frac{1}{3} \int_{0}^{1} \frac{1}{3}$$

- 2. The MATLAB code for generating X_s is attached below.
- 3. The MATLAB code for generating $Cov(X_s)$ is attached below.

It is observed that $Cov(X_s)$ is not exactly same as Cov(U) but the estimate can be improved by increasing the sample size of the generated vector X_s