Differential Calculus with Applications to Life Sciences

Math 102:105

Pooya Ronagh

Agenda for today:

- Linear approximation
- Derivatives (spreadsheet)
- Newton's method (spreadsheet)
- Antiderivatives

Last time: Equation of tangent line

Given y = f(x) find y = mx + b as equation of tangent line

- slope of the tangent line at x = a is f'(a)
- so far: y = f'(a)x + b
- Find b such that (a, f'(a)) is on the line

$$y = f'(a)x + [f(a) - af'(a)]$$

Another way to write this

$$y = f(x_0) + f'(x)(x - x_0)$$

Specially useful for linear approximations.

Example

$$y = f(x_0) + f'(x)(x - x_0)$$

Use this formula to approximate $(1.03)^{(1/3)}$

Question

Which one is an approximation to sin(3)?

- (A) 0
- (B) pi
- (C) 3
- (D) 0.14159
- (E) Don't know

Sketching derivative using spreadsheet

$$f(x) = \sin(x)$$

$$f(x) = x\sin(x)$$

Newton's method using spreadsheets

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Antiderivative

lf

$$f'(x) = 6x^2 + 2x$$

Then f(x) is given by:

(A)
$$f'(x) = 2x^3 + x^2 + 1$$
 (B) $f'(x) = 6x^3 + 2x^2$

(C)
$$f'(x) = 2x^3 + x^2 - 10$$
 (D) $f'(x) = 2x^3 + x^2 - 37$

(E) could have infinity many answers

Last rule of derivate: chain rule

But before that: composition of functions

If
$$f(x) = 2x + 3$$
 and $g(x) = -4x + 2$ what is $f(g(x))$?

- (A) -8x +7
- (B) -8x + 10
- (C) $-8x^2-8x+6$
- (D) -8x+5

Chain rule= derivative of a composition

Composition: o notation

$$f(g(x)) = f'(g(x))g'(x)$$

See you on Thursday!

And don't forget these due dates:

WW3: Sept 29

OSH2: Sept 30

PL5.1: Oct 3

