Lineární algebra

September 16, 2025

Contents

1	Kon	nplexní čísla
	1.1	Operace s komplexními čísly
	1.2	Goniometrický tvar
		1.2.1 Moivreova věta
2		alytická geometrie
	2.1	Vektor
		2.1.1 Vektorový součin
	2.2	Přímka

1 Komplexní čísla

Komplexní čísla jsou rozšířením oboru reálných čísel. V algebraickém tvaru se zapisují jako a+bi, kde $a,b\in\mathbb{R}$. a nazýváme reálnou a b imaginární částí.

1.1 Operace s komplexními čísly

Sčítání, odčítání a násobení funguje tak, jak bychom čekali.

$$z = 1 + 4i$$

$$u = -2 + 3i$$

$$z + u = (1 + 4i) + (-2 + 3i) = -1 + 7i$$

$$z - u = (1 + 4i) - (-2 + 3i) = 3 + i$$

$$z * u = (1 + 4i) * (-2 + 3i) = -14 - 5i$$

Dělení je speciální případ. Pro dělení dvou komplexních čísel rozšíříme zlomek komplexně sdruženým číslem jmenovatele, které získáme obrácením prostředního znaménka.

$$\frac{u}{z} = \frac{u}{z} * \frac{\bar{z}}{\bar{z}} = \frac{-2+3i}{1+4i} * \frac{1-4i}{1-4i} = \frac{-2+3i+8i-12i^2}{1-4i+4i-16i^2} = \frac{10+11i}{17} = \frac{10}{17} + \frac{11}{17}i$$

1.2 Goniometrický tvar

K zapsání goniometrického tvaru nám postačí absolutní hodnota komplexního čísla a úhel, který svírá s osou x.

$$z = |z| * (\cos \alpha + i \sin \alpha)$$

Příklad 1: z = -1

Goniometrický tvar: $z = 1 * (\cos \pi)$

Příklad 2: $|z| = \sqrt{2}$; $\alpha = \frac{7}{4}\pi$ Goniometrický tvar: $z = \sqrt{2} * (\cos \frac{7\pi}{4} + i * \sin \frac{7\pi}{4})$

1.2.1 Moivreova věta

Moivreova věta nám slouží k umocňování a odmocňování komplexních čísel.

$$z^{n} = |z|^{n} * \left(\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n}\right)$$

$$\sqrt[n]{z} = \sqrt[n]{|z|} * \left(\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n}\right)$$

Příklad:

$$\sqrt[3]{-1} = \cos\frac{\pi + 2k\pi}{3} + i\sin\frac{\pi + 2k\pi}{3}, \quad k \in \{0, 1, 2\}$$

$$k = 0$$
: $\sqrt[3]{-1} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$

$$k=1: \sqrt[3]{-1} = \cos\frac{3\pi}{3} + i\sin\frac{3\pi}{3} = -1$$

$$k=2: \quad \sqrt[3]{-1} = \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

2 Analytická geometrie

2.1 Vektor

Pro $n \in \mathbb{N}$ se zapisuje jako $\vec{u} = (u_1, u_2, \dots, u_n)$

2.1.1 Vektorový součin

Je definována pouze na dvou vektorech v \mathbb{R}^3 . Výsledkem je vektor na ně kolmý.

$$\vec{u} = (u_1, u_2, u_3)$$

$$\vec{v} = (v_1, v_2, v_3)$$

$$\vec{u} \times \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Pozor! $\vec{u} \times \vec{v} \neq \vec{v} \times \vec{u}$. Oba vektory jsou kolmé, ale každý na opačnou stranu.

2.2 Přímka

Parametrické rovnice přímky se zapisují jako $X = A + \vec{u}t$, kde $A = [a_1, a_2, a_3]; \vec{u} = (u_1, u_2, u_3).$

$$x = a_1 + u_1 t$$
$$y = a_2 + u_2 t$$
$$z = a_3 + u_3 t$$

Příklad: Nalezněte průsečík X přímek p a q

$$x = 1 + t$$
 $x = 0 + s$
 $p: y = -2 + t$ $q: y = 1 - s$
 $z = -1 - t$ $z = -2$

$$1+t=0+s$$
 $t-s=-1$ $1-s=-1$ $s=2$ $-2+t=1-s$ $t+s=3$ $1+s=3$ $s=2$ $t=1$ $t=1$

Jelikož se parametry s v první i druhé rovnici shodují, tak mají přímky průsečík. Souřadnice bodu X získáme dosazením parametru t do parametrických rovnic přímky p

$$x = 1 + t = 1 + 1 = 2$$
 $X: y = -2 + t = -2 + 1 = -1$
 $z = -1 - t = -1 - 1 = -2$

2.3 Rovina

Parametrické rovnice roviny se zapisují jako $X = A + t\vec{u} + s\vec{v}$, kde $A = [a_1, a_2, a_3]; \vec{u} = (u_1, u_2, u_3); \vec{v} = (v_1, v_2, v_3).$

$$x = a_1 + u_1t + v_1s$$
$$y = a_2 + u_2t + v_2s$$
$$z = a_3 + u_3t + v_3s$$