Number Theory

whx1003

2024年8月16日

## Preface

今天的主要内容是一些基本的数论知识,包括

- ▶ 常见的数论函数
- ► 某些神<mark>秘的</mark>数论公式
- ▶ 筛法

# 数论函数

- ▶ 数论函数: 定义域为正整数的函数, OI 中常见的数论函数大部分的值域是整数.
- ▶ 完全积性函数: 对任意正整数 n, m 均有 f(nm) = f(n)f(m) 的函数.
- ▶ 积性函数: 对满足  $n \perp m$  的正整数 n, m 有 f(nm) = f(n)f(m) 的函数.
- ▶ 质因数分解: 每个正整数 n 总能唯一地表示为

$$n = \prod_{i=1}^m p_i^{r_i}$$

的形式, 其中  $p_i$  为互不相同的质数,  $r_i \ge 1$ .

推论 1: 积性函数 f 一定满足 f(1) = 1.

推论 2: 通过质数处点值可以唯一确定完全积性函数; 通过全部  $p^k$  处点值可以唯一确定积性函数.

▶ Dirchlet 卷积: 对两个数论函数 f, g, 定义它们的 Dirchlet 卷积

$$(f \otimes g)(n) = \sum_{d|n} f(d)g(n/d) = \sum_{xy=n} f(x)g(y).$$

Dirchlet 卷积是 OI 中数论的最重要概念, 他有如下的优良性质:

- ▶ 交换律:  $f \otimes g = g \otimes f$ ;
- ▶ 结合律:  $f \otimes g \otimes h = f \otimes (g \otimes h)$ ;
- ▶ 单位元: 取  $\varepsilon(n) = [n = 1]$ , 则对任意数论函数 f 都有  $f \otimes \varepsilon = \varepsilon \otimes f = f$ ;
- ▶ 两个积性函数的 Dirchlet 卷积仍是积性函数;
- ▶ 积性函数的 Dirchlet 逆仍是积性函数.

Dirchlet 逆的概念见下一页

### 计算 Dirchlet 卷积

给出数论函数 f,g 在 1...n 上的点值, 计算  $f \otimes g$  在 1...n 上的点值.

## 计算 Dirchlet 卷积

给出数论函数 f,g 在 1...n 上的点值, 计算  $f \otimes g$  在 1...n 上的点值.

直接暴力计算即可, 复杂度是

$$\sum_{h=1}^{n} \#\{x \mid h\} = \sum_{x=1}^{n} \sum_{h=1}^{n} [x \mid h] = \sum_{x=1}^{n} \left\lfloor \frac{n}{x} \right\rfloor = \mathcal{O}(n \log n).$$

## 计算 Dirchlet 卷积

给出数论函数 f,g 在 1...n 上的点值, 计算  $f \otimes g$  在 1...n 上的点值.

直接暴力计算即可, 复杂度是

$$\sum_{h=1}^{n} \#\{x \mid h\} = \sum_{x=1}^{n} \sum_{h=1}^{n} [x \mid h] = \sum_{x=1}^{n} \left\lfloor \frac{n}{x} \right\rfloor = \mathcal{O}(n \log n).$$

## 计算 Dirchlet 逆

给出数论函数 f 在 1...n 上的点值, 求一个数论函数 g 满足  $f\otimes g=\varepsilon$ . 保证  $f(1)\neq 0$ .

## 计算 Dirchlet 卷积

给出数论函数 f,g 在 1...n 上的点值, 计算  $f \otimes g$  在 1...n 上的点值.

直接暴力计算即可, 复杂度是

$$\sum_{h=1}^{n} \#\{x \mid h\} = \sum_{x=1}^{n} \sum_{h=1}^{n} [x \mid h] = \sum_{x=1}^{n} \left\lfloor \frac{n}{x} \right\rfloor = \mathcal{O}(n \log n).$$

### 计算 Dirchlet 逆

给出数论函数 f 在  $1 \dots n$  上的点值, 求一个数论函数 g 满足  $f \otimes g = \varepsilon$ . 保证  $f(1) \neq 0$ .

首先有 
$$g(1) = \frac{1}{f(1)}$$
. 对  $n \ge 2$  我们有

$$(f \otimes g)(n) = \varepsilon(n) = 0 \implies \sum_{d|n} f(d)g(n/d) = 0$$

$$\implies g(n) = -\frac{1}{f(1)} \sum_{d|n,d>1} f(d)g(n/d)$$

暴力计算的复杂度也是  $\mathcal{O}(n \log n)$ .



### 试看看!

考虑积性函数  $1(n) \equiv 1$ , 计算它的 Dirchlet 逆.

## 试看看!

考虑积性函数  $1(n) \equiv 1$ , 计算它的 Dirchlet 逆.

不妨记  $\mu := 1^{-1}$ ,我们来简单计算一下前几项:

| Т     | 1 | 2  | 3  | 4 | 5  | 6 | 7  | 8 9 | 10  | 11 | 12 | 13 | 14 | 15 | 16 |
|-------|---|----|----|---|----|---|----|-----|-----|----|----|----|----|----|----|
| $\mu$ | 1 | -1 | -1 | 0 | -1 | 1 | -1 | 0 0 | - 1 | -1 | 0  | -1 | 1  | 1  | 0  |

简单观察一下规律:

- ► 在 n = p 处  $\mu(p) = -1$ ;
- ▶ 在 n = pq 处  $\mu(pq) = 1$ ;
- ▶ 在  $n = p^k (k > 1)$  处  $\mu(p^k) = 0$ ;

我们之前提到过, 积性函数的 Dirchlet 逆仍积性, 且通过所有  $p^k$  处的点值可以唯一确定一个积性函数, 因此不难推理出

$$\mu(n) = \begin{cases} (-1)^{\text{#prime factors of } n} & n \text{ is square free} \\ 0 & \text{otherwise} \end{cases}$$

这是可以归纳证明的. 实际上  $\mu$  就是大名鼎鼎的 Möbius 函数.



## 试看看!

考虑积性函数 id(n) = n, 计算 Dirchlet 卷积  $\mu \otimes id$ .

### 试看看!

考虑积性函数 id(n) = n, 计算 Dirchlet 卷积  $\mu \otimes id$ .

不妨记  $\varphi := \mu \otimes id$ ,我们来简单计算一下前几项:

|           |   |   |   |   |   |   |   |   |   | 10 |    |   |    |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|----|----|---|----|---|---|---|
| $\varphi$ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4  | 10 | 4 | 12 | 6 | 8 | 8 |

简单观察一下规律:

- ightharpoonup 在 n=p 处  $\varphi(p)=p-1$ ;
- ▶ 在  $n = p^k(k > 1)$  处  $\varphi(p^k) = (p-1)p^{k-1}$ ;

不难推理出

$$\varphi(n) = n \prod_{i=1}^k \frac{p_i - 1}{p_i}, \text{ where } n = \prod_{i=1}^k p_i^{r_i}$$

这是可以归纳证明的. 实际上  $\varphi$  就是大名鼎鼎的 Euler totient 函数.

注意到我们关于  $\mu$  和  $\varphi$  的定义给出两个重要等式:

## μ 的数论性质

$$\sum_{d|n} \mu(d) = [n=1]$$

注意到  $\mu = 1^{-1}$ , 于是  $\mu \otimes 1 = \varepsilon$ , 从而写开即证.

## $\varphi$ 的数论性质

$$\sum_{d|n} \varphi(d) = n$$

注意到  $\varphi = id \otimes \mu = id \otimes 1^{-1}$ , 于是  $\varphi \otimes 1 = id$ , 从而写开即证.

## 至此我们已经见过了大部分常见的数论函数

- ▶ 单位元 ε;
- ightharpoonup  $\operatorname{id}_k(n) = n^k$ , 一般记  $\operatorname{id} = \operatorname{id}_1$ , 记  $\operatorname{1}(n) = \operatorname{I}(n) = \operatorname{id}_0(n) \equiv 1$ ;
- ▶  $\sigma_k(n) = \sum_{d|n} d^k$ , 一般记  $d(n) := \sigma_0(n)$  为因数个数函数;
- Möbius 函数  $\mu(n)$ ;
- **Euler totient** 函数  $\varphi(n)$ .

#### 它们之间有关系:

- $\blacktriangleright \ \mu \otimes 1 = \varepsilon;$
- $\triangleright \varphi \otimes 1 = id;$
- $\mu \otimes id = \varphi;$
- $1 \otimes 1 = d = \sigma_0;$

其中前三者是 OI 中数论的核心等式.

这里需要额外提一下  $\mu$  和  $\varphi$  的组合意义:

 $\varphi$  的组合意义是,  $\varphi(n)$  恰为 1...n 之间与 n 互质的数的个数. 也即

$$\varphi(n) = \sum_{d=1}^{n} [d \perp n]$$

 $\varphi$  的两种定义是可以互推的:

$$\varphi(n) = \sum_{d=1}^{n} [\gcd(d, n) = 1] = \sum_{d=1}^{n} \varepsilon(\gcd(d, n))$$
$$= \sum_{d=1}^{n} \sum_{k|\gcd(d, n)} \mu(k) = \sum_{k|n} \mu(k) \frac{n}{k}$$

最后一式就是 Dirchlet 卷积  $\varphi = \mu \otimes id$ .

# Möbius 反演

而 μ 的组合意义则和 Möbius 反演有关:

## Möbius 反演

$$f(n) = \sum_{d|n} g(d) \iff g(n) = \sum_{d|n} f(d)\mu(n/d)$$

大家可以联想一下已经学过的其它反演:

### 子集反演

$$f_S = \sum_{T \subseteq S} g(T) \iff g_S = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T.$$

不难发现二者有一些相似之处: 考虑记 S 为 n 的所有素因数的多重集, 那么枚举因数  $d \mid n$  实际上就是枚举了一个子多重集  $T \subseteq S$ . 因此 Möbius 反演的实质就是「子多重集反演」, 而  $\mu$  就是这个反演的系数.

下一个问题是, 如何计算各种数论函数在 1...n 上的点值. 我们从一个比较简单的问题开始

## 打素数表

给定正整数 n, 输出  $1 \dots n$  中的所有素数.

下一个问题是, 如何计算各种数论函数在 1...n 上的点值. 我们从一个比较简单的问题开始

## 打素数表

给定正整数 n, 输出 1...n 中的所有素数.

- ▶ 做法一: 枚举每个数 x = 1...n, 每次  $\mathcal{O}(\sqrt{x})$  判断 x 是否为素数, 总复杂度  $\mathcal{O}(n\sqrt{n})$ .
- ▶ 做法二: 维护一个 bool 数组记录每个数是否为素数, 用全体 x = 2...n 去掉其倍数 (这就是「筛法」名字的来源), 总复杂度  $\sum_{x} \frac{n}{x} = \mathcal{O}(n \log n)$ .
- ▶ 做法三 (埃拉托斯特尼筛法, 埃氏筛): 将做法三中的全体 x 改为素数 x, 总复杂度可以分析出  $\sum_{p} \frac{n}{p} = \mathcal{O}(n \log \log n)$ .
- ▶ 做法四 (欧拉筛, 线性筛): 用每个数的最小的质因数筛去它. 复杂度  $\mathcal{O}(n)$ .

### 线性筛的具体做法是:

```
vector<int> linear_sieve(int n) {
  vector<int> is_prime(n + 1, true), primes;
  for (int i = 2; i <= n; ++i) {
    if (is_prime[i]) primes.push_back(i);
    for (int p : primes) {
        if (i * p > n) break;
        is_prime[i * p] = false;
        if (i % p == 0) break;
    }
  }
  return primes;
}
```

#### 简单分析一下复杂度和正确性:

- ▶ 正确性: 考虑每个合数 n 的最小质因数 p, 那么 n/p 一定没有 < p 的因数. 于是在我们的循环中, 当 i = n/p 时, 在 p 之前的素数上不会 break, 于是一定可以筛掉 n.
- ▶ 复杂度: 如果 p 不是 n 的最小质因数, 那么 n/p 就有比 p 更小的质因数 q. 于是在我们的循环中, 当 i = n/p 时, 在 q 处就会 break, 那么就不会再次筛掉 n. 于是我们可以断言, 每个合数恰被筛去了一次, 于是其正确性和复杂度均有所保证.

## 计算 $\mu$ 和 $\phi$

计算  $\mu$  和  $\phi$  在 1...n 上的点值.

## 计算 $\mu$ 和 $\phi$

计算  $\mu$  和  $\phi$  在 1...n 上的点值.

我们来修改之前的线性筛素数的代码:

```
for (int i = 2; i <= n; ++i) {
   if (is_prime[i]) {
      primes.push_back(i);
      mu[i] = -1, phi[i] = i - 1;
   for (int p : primes) {
       if (i * p > n) break;
       if (i % p) {
          mu[i * p] = -mu[i];
          phi[i * p] = phi[i] * (p - 1);
       } else {
          mu[i * p] = 0;
          phi[i * p] = phi[i] * p;
          break;
```

## 计算积性函数

给定一个一般的积性函数 f, 其点值可以在  $\mathcal{O}(\log n)$  时间内计算, 求它在  $1 \dots n$  处的点值.

## 计算积性函数

给定一个一般的积性函数 f, 其点值可以在  $\mathcal{O}(\log n)$  时间内计算, 求它在  $1 \dots n$  处的点值.

思路类似  $\mu$  和  $\varphi$ , 只是现在我们需要确定每个正整数的最小质因子的次数, 这也是不难实现的. 具体细节留给大家自己思考

注意到  $\leq n$  的形如  $p^k$  的数只有  $\mathcal{O}\left(\frac{n}{\log n}\right)$  个, 于是总复杂度是可以做到  $\mathcal{O}(n)$  的.

关于线性筛有一个常见误区:线性筛复杂度<mark>最低,是否意味着运行</mark>速度一定最快?实际上经过一些测试,我们发现线性筛是跑不过经过一些优化的埃氏筛的.但是线性筛的优势是它会且仅会筛去每个数一次,因此可以比较方便地计算积性函数的点值.

#### SPOJ PRIME1 Prime Generator

求 [L, R] 之间的所有素数.  $R \le 10^{14}, R - L + 1 \le 10^6$ .

#### SPOJ PRIME1 Prime Generator

求 [L, R] 之间的所有素数.  $R \le 10^{14}, R - L + 1 \le 10^6$ .

经典结论: 一个合数 n 的最小质因子一定  $\leq \sqrt{n}$ . 因此只需要先<mark>筛出  $\leq \sqrt{R}$  的所有素数,然后用每个素数筛掉它在 [L,R] 之间的所有倍数即可. 筛素数是  $\mathcal{O}(\sqrt{R})$  的,用素数筛 [L,R] 是</mark>

$$\sum_{p < \sqrt{R}} \frac{R - L}{p} = \mathcal{O}((R - L) \log \log R)$$

的,可以通过.

# 完全平方数

计算 1...n 之间有多少个数没有平方因子.  $n \le 10^{14}$ .

## 完全平方数

计算 1...n 之间有多少个数没有平方因子.  $n \le 10^{14}$ .

相信大家小学都学过容斥原理: 用总的, 减去有一个质数的平方的, 加上有两个质数的平方的, 再减去有三个质数的平方的......

$$n - \sum_{p} \left\lfloor \frac{n}{p^2} \right\rfloor + \sum_{p_1, p_2} \left\lfloor \frac{n}{p_1^2 p_2^2} \right\rfloor + \dots = \sum_{x \ge 1} \mu(x) \left\lfloor \frac{n}{x^2} \right\rfloor.$$

于是只需要计算  $\leq \sqrt{n}$  的  $\mu$  点值即可.

## 完全平方数

计算 1...n 之间有多少个数没有平方因子.  $n \le 10^{14}$ .

相信大家小学都学过容斥原理: 用总的, 减去有一个质数的平方的, 加上有两个质数的平方的, 再减去有三个质数的平方的......

$$n - \sum_{p} \left\lfloor \frac{n}{p^2} \right\rfloor + \sum_{p_1, p_2} \left\lfloor \frac{n}{p_1^2 p_2^2} \right\rfloor + \dots = \sum_{x \ge 1} \mu(x) \left\lfloor \frac{n}{x^2} \right\rfloor.$$

于是只需要计算  $\leq \sqrt{n}$  的  $\mu$  点值即可.

另一个做法是, 注意到一个数无平方因子当且仅当  $\mu \neq 0 \iff \mu^2 = 1$ . 记 f(n) 为 n 的最大平方因子就有

$$\mu^{2}(n) = [f(n) = 1] = \sum_{d|f(n)} \mu(d) = \sum_{d^{2}|n} \mu(d)$$

$$\implies \sum_{i=1}^{n} \mu^{2}(i) = \sum_{i=1}^{n} \sum_{d^{2}|i} \mu(d) = \sum_{d \ge 1} \mu(d) \left\lfloor \frac{n}{d^{2}} \right\rfloor.$$

## 字符串计数

称字符串 s 有循环节 t, 如果存在一个  $k \ge 2$  使得  $s = \underbrace{t \cdots t}_{k}$ . 现在给定字符集大小 m, 问有多少个长为 n 的没有循环节的字符串.  $m, n \le 10^9$ .

## 字符串计数

称字符串 s 有循环节 t, 如果存在一个  $k \ge 2$  使得  $s = \underbrace{t \cdots t}_{k}$ . 现在给定字符集大小 m, 问有多少个长为 n 的没有循环节的字符串.  $m, n \le 10^9$ .

设长为n 的答案为 $f_n$ ,那么一个串一定要么没有循环节,要么有循环节,于是枚举循环节的长度可知

$$m^n = \sum_{d|n} f_d \iff f_n = \sum_{d|n} \mu(d) m^{n/d}.$$

于是只需要计算所有  $d \mid n$  的  $\mu$ , 这可以把 n 提前因式分解做到. 因数个数 d(n) 是比较有限的 (见下表):

| $n \leq$            | $10^{1}$  | $10^{2}$  | $10^{3}$  | $10^{4}$  | $10^{5}$  | $10^{6}$  | $10^{7}$  | $10^{8}$  | $10^{9}$  |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $\max\{\omega(n)\}$ | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 8         | 9         |
| $\max\{d(n)\}$      | 4         | 12        | 32        | 64        | 128       | 240       | 448       | 768       | 1344      |
| $n \leq$            | $10^{10}$ | $10^{11}$ | $10^{12}$ | $10^{13}$ | $10^{14}$ | $10^{15}$ | $10^{16}$ | $10^{17}$ | $10^{18}$ |
| $\max\{\omega(n)\}$ | 10        | 10        | 11        | 12        | 12        | 13        | 13        | 14        | 15        |
| $\max\{d(n)\}$      | 2304      | 4032      | 6720      | 10752     | 17280     | 26880     | 41472     | 64512     | 103680    |

数论题中的一个常见套路是「整除分块」. 这个方法的来源是一个精巧的观察:

## 整除分块

对一个正整数 n, 所有形如  $\left|\frac{n}{x}\right|$  的数的个数是什么级别?

数论题中的一个常见套路是「整除分块」. 这个方法的来源是一个精巧的观察:

## 整除分块

对一个正整数 n, 所有形如  $\left|\frac{n}{x}\right|$  的数的个数是什么级别?

#### 关键观察:

- ▶ 当  $x \leq \sqrt{n}$  时, 只有  $\mathcal{O}(\sqrt{n})$  种不同的 x, 于是也只有  $\mathcal{O}(\sqrt{n})$  种不同的  $\left|\frac{n}{x}\right|$ ;
- ▶ 当  $x > \sqrt{n}$  时, 有  $\left\lfloor \frac{n}{x} \right\rfloor \leq \sqrt{n}$ , 于是也只有  $\mathcal{O}(\sqrt{n})$  种不同的  $\left\lfloor \frac{n}{x} \right\rfloor$ ;

因此不同的  $\left|\frac{n}{x}\right|$  只有  $\mathcal{O}(\sqrt{n})$  个!

我们可以十分简单地枚举出这  $\mathcal{O}(\sqrt{n})$  个值:

```
for (int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / 1);
}</pre>
```

此<mark>时对每个  $x \in [l,r]$  都有  $\lfloor \frac{n}{x} \rfloor = \lfloor \frac{n}{l} \rfloor$ . 算法正确性的证明比较简单, 只需要注意到</mark>

$$\left\lfloor \frac{n}{l} \right\rfloor = \left\lfloor \frac{n}{r} \right\rfloor \implies \left\lfloor \frac{n}{l} \right\rfloor \le \frac{n}{r} \implies j \le \left\lfloor \frac{n}{\lfloor n/l \rfloor} \right\rfloor.$$

### 典中典#1

T 组询问, 每组询问给出正整数 n, 求

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gcd(i, j)$$

的值.  $n \le 10^7, T \le 10^4$ .

### 典中典#1

T 组询问, 每组询问给出正整数 n, 求

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gcd(i, j)$$

的值.  $n \le 10^7, T \le 10^4$ .

我们来推一下式子. 首先我们改为枚举  $d := \gcd(i, j)$  就有

$$= \sum_{d\geq 1} d \sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i, j) = d]$$

由于  $\gcd(i,j) = d \iff \gcd(i/d,j/d) = 1$ , 用  $\mu$  来替代它就有

$$= \sum_{d\geq 1} d \sum_{i=1}^{\lfloor n/d\rfloor} \sum_{j=1}^{\lfloor n/d\rfloor} [\gcd(i,j) = 1] = \sum_{d\geq 1} d \sum_{i=1}^{\lfloor n/d\rfloor} \sum_{j=1}^{\lfloor n/d\rfloor} \sum_{k|\gcd(i,j)} \mu(k)$$

接下来注意到  $k \mid \gcd(i,j) \iff k \mid i \land k \mid j$ . 交换求和顺序, 就有

$$\begin{split} &= \sum_{d \geq 1} d \sum_{k \geq 1} \mu(k) \sum_{i=1}^{\lfloor n/d \rfloor} [k \mid i] \sum_{j=1}^{\lfloor n/d \rfloor} [k \mid j] \\ &= \sum_{d \geq 1} d \sum_{k \geq 1} \mu(k) \left\lfloor \frac{\lfloor n/d \rfloor}{k} \right\rfloor \left\lfloor \frac{\lfloor n/d \rfloor}{k} \right\rfloor. \end{split}$$

这里有一个非常好的结论:  $\left|\frac{\lfloor n/x\rfloor}{y}\right| = \left|\frac{n}{xy}\right|$ . 于是可以进一步化简:

$$= \sum_{d>1} d \sum_{k>1} \mu(k) \left\lfloor \frac{n}{kd} \right\rfloor^2$$

现在我们改为枚举 T = kd, 于是

$$= \sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor^{2} \left( \sum_{kd=T} \mu(k)d \right)$$

注意最后那一项其实就是  $(\mu \otimes id)(T) = \varphi(T)$ , 于是

$$=\sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor^{2} \varphi(T)$$

于是只需要维<mark>护出  $\varphi$  的前缀和, 然后用我们之前那个整除分块的算法计算即可...</mark>

#### 典中典#2

T 组询问, 每组询问给出正整数  $n, m, \bar{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \gcd(i, j)$$

的值.  $n, m \le 10^7, T \le 10^4$ .

#### 典中典#2

T 组询问, 每组询问给出正整数  $n, m, \bar{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \gcd(i, j)$$

的值.  $n, m \leq 10^7, T \leq 10^4$ .

和上一个题的推导完全一致, 只是现在我们需要同时按照  $\lfloor n/T \rfloor$ ,  $\lfloor m/T \rfloor$  分块, 这也是容易实现的, 只需要每次令

```
for (int 1 = 1, r; 1 <= n && 1 <= m; 1 = r + 1) {
    r = min(n / (n / 1), m / (m / 1));
}</pre>
```

即<mark>可.</mark> 总的段数是  $\mathcal{O}(\sqrt{n} + \sqrt{m})$  的.

### 典中典#3

T 组询问, 每组询问给出正整数  $n, m, \vec{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = 1]$$

的值.  $n, m \le 10^7, T \le 10^4$ .

### 典中典 #3

T 组询问, 每组询问给出正整数  $n, m, \vec{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = 1]$$

的值.  $n, m \le 10^7, T \le 10^4$ .

$$\sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i,j) = 1] = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d \mid \gcd(i,j)} \mu(d)$$
$$= \sum_{d \geq 1} \mu(d) \sum_{i=1}^{n} [d \mid i] \sum_{j=1}^{m} [d \mid j]$$
$$= \sum_{d \geq 1} \mu(d) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor,$$

同样整除分块即可, 只需要预处理  $\mu$  的前缀和.



### 典中典#4

T 组询问, 每组询问给出正整数  $n, m, \bar{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{lcm}(i, j)$$

的值.  $n, m \le 10^7, T \le 10^4$ .

#### 典中典#4

T 组询问, 每组询问给出正整数  $n, m, \bar{x}$ 

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \text{lcm}(i,j)$$

的值.  $n, m \le 10^7, T \le 10^4$ .

你需要知道:  $lcm(x,y) = \frac{xy}{\gcd(x,y)}$ . 于是

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \text{lcm}(i,j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d \ge 1} [\gcd(i,j) = d] \frac{ij}{d} = \sum_{d \ge 1} \sum_{i=1}^{n/d} \sum_{j=1}^{m/d} \frac{(id)(jd)}{d} [\gcd(i,j) = 1]$$

$$= \sum_{d \ge 1} d \sum_{i=1}^{n/d} \sum_{j=1}^{m/d} ij \sum_{k|\gcd(i,j)} \mu(k) = \sum_{d \ge 1} d \sum_{k \ge 1} \mu(k) \sum_{i=1}^{n/dk} \sum_{j=1}^{m/dk} (ik)(jk)$$

$$= \sum_{d \ge 1} d \sum_{k \ge 1} k^2 \mu(k) \left(\sum_{i=1}^{n/dk} i\right) \left(\sum_{j=1}^{m/dk} j\right)$$

记 
$$S(n)=\frac{n(n+1)}{2}$$
 为自然数前缀和, 并改为枚举  $T=dk$ , 则 
$$=\sum_{T>1}\sum_{dk=T}dk^2\mu(k)S(n/T)S(m/T).$$

现在按照套路, 我们需要处理

$$f(T) := \sum_{dk=T} dk^2 \mu(k)$$

的前缀和......真的能处理吗?

记  $S(n) = \frac{n(n+1)}{2}$  为自然数前缀和,并改为枚举 T = dk,则

$$= \sum_{T \ge 1} \sum_{dk=T} dk^2 \mu(k) S(n/T) S(m/T).$$

现在按照套路, 我们需要处理

$$f(T) := \sum_{dk=T} dk^2 \mu(k)$$

的前缀和......真的能处理吗?

#### 点积保持积性

设 f,g 是两个积性函数, 那么 h(n) := f(n)g(n) 也是一个积性函数.

因此  $k^2\mu(k)$  是一个积性函数. 而 d 也是一个积性函数, 因此二者的 Dirchlet 卷积  $\sum_{dk=T} dk^2\mu(k)$  仍是积性函数!

那么只需要确定 f 在  $p^k$  处的取值. 实际上计算可知

$$f(p^k) = p^k - p^{k+1} = p^k (1 - p).$$

于是直接用线性筛处理即可.



之前的几个题的复杂度瓶颈都在于「预处理积性函数的前缀和」. 我们用线性筛把这个问题做到了  $\mathcal{O}(n)$ , 看起来已经是最优了...... 真的吗?

之前的几个题的复杂度瓶颈都在于「预处理积性函数的前缀和」. 我们用线性筛把这个问题做到了  $\mathcal{O}(n)$ , 看起来已经是最优了...... 真的吗?

实际上 OI 中数论最重要的一类算法就是所谓的「亚线性筛」, 顾名思义就是这些筛法的复杂度是 o(n) 的!

### Luogu P4213 【模板】杜教筛

T 次询问,每次给定一个正整数 n,计算

$$\sum_{i=1}^{n} \varphi(i), \quad \sum_{i=1}^{n} \mu(i)$$

的值.  $T \le 10, n \le 2^{31}$ .

之前的几个题的复杂度瓶颈都在于「预处理积性函数的前缀和」. 我们用线性筛把这个问题做到了  $\mathcal{O}(n)$ , 看起来已经是最优了...... 真的吗?

实际上 OI 中数论最重要的一类算法就是所谓的「亚线性筛」, 顾名思义就是这些筛法的复杂度是 o(n) 的!

### Luogu P4213 【模板】杜教筛

T 次询问,每次给定一个正整数 n,计算

$$\sum_{i=1}^{n} \varphi(i), \quad \sum_{i=1}^{n} \mu(i)$$

的值.  $T \le 10, n \le 2^{31}$ .

杜教筛的原理是一个关键观察: 如果我们要计算某个积性函数 f 的前缀和, 我们再选取一个积性函数 g, 则

$$\sum_{i=1}^{n} (f \otimes g)(i) = \sum_{i=1}^{n} \sum_{d|i} g(d)f(i/d) = \sum_{d=1}^{n} g(d) \sum_{d|i} f(i/d) = \sum_{d=1}^{n} g(d) \sum_{i=1}^{n/d} f(i)$$

< ロ > < 個 > < 重 > < 重 > < 更 > の < @

变换一下, 这就是

$$\sum_{i=1}^{n} f(i) = \frac{1}{g(1)} \left( \sum_{i=1}^{n} (f \otimes g)(i) - \sum_{d=2}^{n} g(d) \sum_{i=1}^{n/d} f(i) \right).$$

如果记  $S_f(n)$  为 f 的前缀和, 那么

$$S_f(n) = \frac{1}{g(1)} \left( S_{f \otimes g}(n) - \sum_{d=2}^n g(d) S_f(n/d) \right).$$

对最后一项使用整除分块,我们只需要计算  $S_g$  在所有  $\lfloor n/x \rfloor$  位置的值. 如果  $S_g$  和  $S_{f\otimes g}$  是容易计算的 (比如可以  $\mathcal{O}(1)$  计算),那我们就可以把计算  $S_f(n)$  递归到计算 全体  $S_f(\lfloor n/x \rfloor)$ ,记忆化之后就只需要计算全体  $S_f(\lfloor n/x \rfloor)$ . 复杂度是

$$\sum_{i=1}^{\sqrt{n}} \sqrt{i} + \sqrt{n/i} = \mathcal{O}(n^{3/4}).$$

我们称全体  $\{S_f(\lfloor n/x \rfloor)\}$  为 f 的「基本和组」, 杜教筛告诉我们, 如果已知 g 和  $f \otimes g$  的基本和组, 那么可以在  $\mathcal{O}(n^{3/4})$  时间内计算出 f 的基本和组.

ロトイプトイミトイミト ミ かくぐ

回归正题, 我们来试着为  $\varphi$  和  $\mu$  找一个合适的 g. 注意到

$$\varphi \otimes 1 = id, \quad \mu \otimes 1 = \varepsilon,$$

实际上我们还可以比  $\mathcal{O}(n^{3/4})$  更快一点. 我们还有一个朴素算法是用线性筛预处理  $\leq$  某个阈值 B 的全体  $\varphi$ ,  $\mu$  的点值. 结合一下这两个算法, 对  $\lfloor n/x \rfloor \leq B$  的位置我们用线性筛预处理点值, 对  $\lfloor n/x \rfloor > B$  的位置我们递归计算, 则取  $B = n^{2/3}$  时复杂度为

$$n^{2/3} + \sum_{x \le n^{1/3}} \sqrt{\frac{n}{x}} = \mathcal{O}(n^{2/3}).$$

这样我们就可以通过本题.



### 以计算 $\varphi$ 为例, 核心代码:

```
unordered_map<11, 11> phi;
11 du_sieve(11 n) {
    if (n <= B) return phi_prework[n];
    else if (phi.count(n)) return phi[n];

    ll ans = n * (n + 1) / 2;
    for (11 1 = 2, r; 1 <= n; 1 = r + 1) {
        r = n / (n / 1);
        ll val = du_sieve(n / 1);
        ans = ans - (r - 1 + 1) * val;
    }
    return phi[n] = ans;
}</pre>
```

实践中还有一些优化常数的办法. 比如可以不使用哈希表而是用两个数组分别记录  $x \leq \sqrt{n}$  和  $x \geq \sqrt{n}$  时的  $S_f(\lfloor n/x \rfloor)$ . 即前者用 x 做下标,后者用  $\lfloor n/x \rfloor$  做下标.

反过来, 我们有时候可能已知 f 和 g 的基本和组, 需要计算  $f \otimes g$  的基本和组. 这可以类似杜教筛做:

$$S_{f \otimes g}(n) = \sum_{i=1}^{n} \sum_{d|i} f(d)g(i/d) = \sum_{d=1}^{n} f(d) \sum_{i=1}^{n/d} g(i) = \sum_{d=1}^{n} f(d)S_{g}(n/d).$$

也可以使用狄利克雷双曲线法 (Dirchlet Hyperbola Method):

$$S_{f\otimes g}(n) = \sum_{i=1}^{n} \sum_{xy=i} f(x)g(y) = \sum_{xy\leq n} f(x)g(y).$$

于是可以计算  $x \le \sqrt{n}$  的情况和  $y \le \sqrt{n}$  的<mark>情况, 减去 x, y 同时  $\le \sqrt{n}$  的情况. 也即</mark>

$$S_{f \otimes g}(n) = \sum_{x=1}^{\sqrt{n}} f(x) S_g(n/x) + \sum_{y=1}^{\sqrt{n}} g(y) S_f(n/y) - S_f(\sqrt{n}) S_g(\sqrt{n}).$$

于是可以  $\mathcal{O}(\sqrt{n})$  计算出  $S_{f\otimes g}(n)$  的值. 计算整个基本和组还是  $\mathcal{O}(n^{3/4})$  或  $\mathcal{O}(n^{2/3})$ ,优势在于常数小且计算某个单点时不需要计算前序的点值.

◆ロト ◆個ト ◆意ト ◆意ト ■ かくで

### 神秘来源题

给定正整数  $n \le 10^9$ , 计算

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} \gcd(i, j, k).$$

### 神秘来源题

给定正整数  $n \leq 10^9$ , 计算

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} \gcd(i, j, k).$$

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} \gcd(i, j, k) = \sum_{d=1}^{n} d \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} [\gcd(i, j, k) = d]$$

$$= \sum_{d=1}^{n} d \sum_{i=1}^{n/d} \sum_{j=1}^{i} \sum_{k=1}^{i} [\gcd(i, j, k) = d]$$

$$= \sum_{d=1}^{n} d \sum_{k=1}^{n/d} \mu(k) \sum_{i=1}^{n/kd} i^{2}$$

$$= \sum_{T=1}^{n} \sum_{kd=T} d\mu(k) S_{2}(n/T).$$

#### 求和

定义积性函数  $f_d$  满足  $f_d(p^k) = (-1)^k [k \le d]$ . 计算

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d=1}^{m} f_d(\gcd(i,j)).$$

 $n \le 10^{10}, m \le 40.$ 

#### 求和

定义积性函数  $f_d$  满足  $f_d(p^k) = (-1)^k [k \le d]$ . 计算

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d=1}^{m} f_d(\gcd(i,j)).$$

 $n \le 10^{10}, m \le 40.$ 

先简单推导一下:

$$= \sum_{s=1}^{n} \sum_{d=1}^{m} f_d(s) \sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i, j) = s]$$
$$= \sum_{s=1}^{n} \sum_{t=1}^{n/s} \mu(t) \sum_{d=1}^{m} f_d(s) \left\lfloor \frac{n}{st} \right\rfloor^2$$

于是只用计算  $\mu \otimes f_d$  的前缀和. 根据杜教筛, 就只用计算  $f_d$  的前缀和.

考虑一下  $f_d$  怎么算. 注意到  $f_2$  基本上就是我们之前的「无平方因子」的那个函数. 如果记  $\lambda := f_{\infty}$ , 那么

- ▶ 对无 d+1 次因子的正整数 n,  $f_d(n) = \lambda(n)$ .
- ▶ 对有 d+1 次因子的正整数 n,  $f_d(n)=0$ .

记  $g_d(n)$  为 n 的最大的 d 次因子, 则

$$f_d(n) = \lambda(n)[g_{d+1}(n) = 1] = \lambda(n) \sum_{h|g_{d+1}(n)} \mu(h) = \lambda(n) \sum_{h^{d+1}|n} \mu(h).$$

于是

$$S_{f_d}(n) = \sum_{i=1}^n \lambda(i) \sum_{h^{d+1}|i} \mu(h) = \sum_{h=1}^{n^{1/(d+1)}} \mu(h) \sum_{i=1}^{n/h^{d+1}} \lambda(ih^{d+1}).$$

注意到  $\lambda$  是完全积性的, 于是

$$= \sum_{h^{d+1} \le n} \mu(h) \lambda^{d+1}(h) S_{\lambda}(n/h^{d+1}).$$

接下来的问题就是计算  $\lambda$  的前缀和  $S_{\lambda}$ .



考虑一下  $\lambda$  能不能继续杜教筛. 稍微算一下  $\lambda \otimes 1$  的取值. 在  $p^k$  处,

$$(\lambda \otimes 1)(p^k) = \sum_{j=0}^k \lambda(p^j) = 1 + (-1) + 1 + \dots + (-1)^k = [k \text{ is even}].$$

因此实际上

$$(\lambda \otimes 1)(n) = [n \text{ is a perfect square}]$$
  
 $\implies S_{\lambda \otimes 1}(n) = \lfloor \sqrt{n} \rfloor.$ 

因此  $\lambda$  也可以杜教筛. 于是整个问题总复杂度  $\mathcal{O}(mn^{2/3})$ .



杜教筛是一种比较远古的筛法,下面给大家带来一个稍微现代一点的筛法.

杜教筛是一种比较远古的筛法,下面给大家带来一个稍微现代一点的筛法.

### 引理

称一个正整数是 powerful number, 如果它没有一次的质因子. 则对任意正整数 n,  $1 \dots n$  之间 powerful number 的个数只有  $\mathcal{O}(\sqrt{n})$  个.

这是因为所有 powerful number 一定是  $x^2y^3$  的形式. 那么这种数的个数不超过

$$\sum_{x=1}^{\sqrt{n}} \sqrt[3]{\frac{n}{x^2}} = \mathcal{O}(\sqrt{n}).$$

那么对于一个积性函数 f, 我们尝试"拟合"它: 我们选取一个容易求前缀和的积性 函数 g, 然后考虑积性函数  $h = g \otimes f^{-1}$ , 注意到

$$f(p) = h(1)g(p) + g(1)h(p) = g(p) + h(p),$$

于是我们有 h(p) = 0! 再结合 h 为积性函数, 我们就知道 h 仅在 powerful number 处取值非零!

根据杜教筛的结论, 我们还知道

$$S_f(n) = \sum_{d=1}^n h(d) S_g(n/d),$$

于是可以直接暴力搜索出全体非零的 h 并乘以对应的  $S_g$ , 就可以在  $\mathcal{O}(\sqrt{n})$  时间内计算出  $S_f$  的点值. 从而可以在  $\mathcal{O}(n^{3/4})$  或  $\mathcal{O}(n^{2/3})$  时间内计算出 f 的基本和组.

根据杜教筛的结论, 我们还知道

$$S_f(n) = \sum_{d=1}^n h(d) S_g(n/d),$$

于是可以直接暴力搜索出全体非零的 h 并乘以对应的  $S_g$ , 就可以在  $\mathcal{O}(\sqrt{n})$  时间内计算出  $S_f$  的点值. 从而可以在  $\mathcal{O}(n^{3/4})$  或  $\mathcal{O}(n^{2/3})$  时间内计算出  $S_f$  的基本和组.

还能再给力一点吗? 仔细想一下, 我们好像还没用到全体  $\lfloor n/x \rfloor$  只有  $\mathcal{O}(\sqrt{n})$  个不同取值这件事. 实际上我们有

#### 定理

h 的基本和组只有  $\mathcal{O}(n^{1/3})$  个不同的值.

这是因为对一个 S(n/x). 当  $x \le n^{1/3}$  时显然只有  $\mathcal{O}(n^{1/3})$  个不同取值; 当  $x > n^{1/3}$  时有  $n/x < n^{2/3}$ ,于是只有  $\mathcal{O}(n^{1/3})$  个 h 值非零,从而前缀和只有  $\mathcal{O}(n^{1/3})$  段.

在整除分块时我们可以只对这  $n^{1/3}$  段分块, 从而求  $S_f(n)$  点值复杂度降到  $\mathcal{O}(n^{1/3})$ , 求 f 的基本和组的复杂度降到  $\mathcal{O}(n^{2/3})$  或  $\mathcal{O}(n^{3/5})$ .

当然这些复杂度的达成都有一系列的条件. 比如很多时候 g 需要用杜教筛计算, 从 而将整体复杂度拉到了  $\mathcal{O}(n^{2/3})$ ; 再比如  $S_h$  实际上并不好求, 可能必须要  $\mathcal{O}(\sqrt{n})$  把 所有非零点值算出来.

### Luogu P5325 【模板】Min\_25 筛

给出积性函数 f 满足  $f(p^k) = p^k(p^k - 1)$ , 求  $S_f(n)$ .  $n \le 10^{10}$ .

当然这些复杂度的达成都有一系列的条件. 比如很多时候 g 需要用杜教筛计算, 从 而将整体复杂度拉到了  $\mathcal{O}(n^{2/3})$ ; 再比如  $S_h$  实际上并不好求, 可能必须要  $\mathcal{O}(\sqrt{n})$  把 所有非零点值算出来.

### Luogu P5325 【模板】Min\_25 筛

给出积性函数 f 满足  $f(p^k) = p^k(p^k - 1)$ , 求  $S_f(n)$ .  $n \le 10^{10}$ .

注意到 f(p) = p(p-1), 于是可以构造  $g(n) = \varphi \cdot id.$  g 的基本和组的计算可以杜教筛:

$$\sum_{d|n} \frac{n}{d} \varphi(n/d) \cdot d = n \sum_{d|n} \varphi(d) = n^2.$$

复杂度瓶颈是计算 g 的基本和组  $\mathcal{O}(n^{2/3})$ .

### LOJ #6053. 简单的函数

给出积性函数 f 满足  $f(p^c) = p \oplus c$ , 计算  $S_f(n)$ .  $n \le 10^{10}$ .

#### LOJ #6053. 简单的函数

给出积性函数 f 满足  $f(p^c) = p \oplus c$ , 计算  $S_f(n)$ .  $n \le 10^{10}$ .

注意到

$$f(p) = \begin{cases} 3 & p = 2 \\ p - 1 & p \in \mathbb{P} \land p > 2 \end{cases}$$

也就是说, 除了 p=2 都有实际上  $f(p)=\varphi(p)$ . 于是可以构造

$$g(n) = \begin{cases} 3\varphi(n) & 2 \mid n \\ \varphi(n) & 2 \nmid n. \end{cases}$$

那么只需要计算 g 的前缀和即可 powerful number.

g 的前缀和

$$\sum_{i=1}^{n} g(i) = \sum_{i=1}^{n} \varphi(i) + 2 \sum_{i=1}^{n/2} \varphi(2i).$$

注意到

$$\varphi(2i) = \begin{cases} 2\varphi(i) & 2 \mid i \\ \varphi(i) & 2 \nmid i \end{cases}$$

于是

$$\sum_{i=1}^{n/2} \varphi(2i) = \sum_{i=1}^{n/2} \varphi(i) + \sum_{i=1}^{n/4} \varphi(2i) = \dots = S_{\varphi}(n/2) + S_{\varphi}(n/4) + \dots$$

$$\implies S_g(n) = S_{\varphi}(n) + 2S_{\varphi}(n/2) + 2S_{\varphi}(n/4) + \dots$$

只需要先计算  $\varphi$  的基本和组, 之后计算 g 的基本和组复杂度不超过  $\mathcal{O}(\sqrt{n\log n})$ . 总 复杂度  $\mathcal{O}(n^{2/3})$ .

## 其它筛法

前面提到的两种筛法都是比较古老的筛法 (而且原理也比较简单), 实际上还有另一类思路完全不同 (也更复杂) 的筛法, 这类筛法包括

- ► Min\_25 筛
- ► Min\_26 筛
- ▶ 洲阁筛

与之前所述的杜教筛, Powerful Number 筛等相比, 上述几个筛其实更像是「筛」, 因为它们的基本思路是, 每个合数一定有  $<\sqrt{n}$  的质因子, 于是对应的点值可以用  $<\sqrt{n}$  的质因子的幂的点值组合出来.

与之相对的, Powerful Number 筛则有一个推广是所谓的「冷<mark>群</mark>筛」, 主要内容是分析了一般积性函数如何构造 Powerful Number 筛中的 g.

当然,也有一些把两种思路结合起来的尝试.

直到大约一年前,一个神秘的组合做法横空出世,让我们来到了一切的终点:

「数论函数求和问题在理论复杂度上<mark>的终极结果已被取得:</mark> 块筛卷积达到了  $\widetilde{\mathcal{O}}(\sqrt{n})$  的下界」

# 题单

- ▶「NOI2016」循环之美
- ▶「SDOI2008」仪仗队
- ▶「SDOI2012」Longge 的问题
- ▶「SDOI2014」数表
- ▶「SDOI2017」数字表格
- ▶「CQOI2015」选数
- ▶「CQOI2017」小 Q 的表格
- ▶ Luogu P1829 [国家集训队]Crash 的数字表格 / JZPTAB
- ▶ Luogu P2257 YY 的 GCD
- ▶ Luogu P2260 [清华集训 2012] 模积和
- ► Luogu P2398 GCD SUM
- ▶ Luogu P2714 四元组统计
- ▶ Luogu P4318 完全平方数
- ▶ Luogu P4449 于神之怒加强版
- ► Luogu P4466 [国家集训队] 和与积
- ► Luogu P4917 天守阁的地板
- ▶ Luogu P5438 【XR-2】记忆
- ▶ Luogu P6222 「P6156 简单题」加强版



# 题单

- ► CF585E Present for Vitalik the Philatelist
- ► CF1285F Classical?
- ▶ gym102354B. Yet Another Convolution
- ▶ UOJ #62. 【UR #5】怎样跑得更快
- ► LOJ #6052. DIV
- ▶ LOJ #2476. 「2018 集训队互测 Day 3」蒜头的奖杯
- ► LOJ #6682. 梦中的数论
- ► HDU #5382. GCD?LCM!
- ► BZOJ #3512. DZY Loves Math IV
- ► BZOJ #3529. 数表
- ▶ BZOJ #3930. 选数
- ► BZOJ #3944. Sum
- ▶ BZOJ #4652. 循环之美
- ▶ 51Nod #1847. 奇怪的数学题
- ▶ 51Nod #2026. Gcd and Lcm
- ▶ 51Nod #2583. 数论只会 Gcd
- ▶ SPOJ 的 DIVCNT 系列 (DIVCNT1 给  $S_d$  搞了个  $\mathcal{O}(n^{1/3})$  的做法)

## In case too easy...

### 每日一题 Day #7

给定正整数 n, 求

$$\sum_{i=1}^{n} \sum_{d|i} \left( \sum_{k|d} \varphi(k) \sigma_0(d/k) \right) \mu(i/d)$$

 $n \le 10^{10^6}$ , 答案模  $10^9 + 7$ .

### 每日一题 Day #9

给定积性函数 ƒ 满足

$$f(p^k) = \frac{p^{k+1} - 1}{p^{k+1} - p^k}.$$

计算  $\sum_{i=1}^{n} f(i)$ , 你只需要保证和真实答案的相对误差不超过  $10^{-4}$ .  $n \le 10^{18}$ .

### 每日一题 Day #25

给定积性函数 ƒ 满足

$$f(p^k) = p^k + 1$$

计算  $\sum_{i=1}^{n} f(i)$ , 答案对 998244353 取模.  $n \le 10^{12}$ .

1 P 4 B P 4 B P 4 B P 4 C