Thermo Intro temperatur

Fahrenheit

Celais

Rankine

Kelvin

Room temp

 $\Delta F = \frac{9}{5} \Delta C$

20°C (~70°F) $\Delta F = \frac{9}{5}\Delta C$ 293K $T_F = \frac{9}{5}T_c + 32$

Tk = Tc + 273.15

Number, moles, moler mass, density

1 mole of things = 6.022.103 things
particle

N-> number of particles

N → Number of

I mole is a grame of protons and neutrons 2 12 protons and nentrons Co 6 protous M > total mass of a collection Ex. mass of one proton? mass of one proton × number of proton = mass of collection m -> mass of one particle mxN=M M = M = laren NA Zo Avergadro's number 6.022.103 M= 1.7.10⁻²⁴ grams = 1.7·10-27 kg

What about N2? 1 mole of N2 = 2. (Hg) = 28 g Dry air! 78% Nz, 21% Oz, 1% Ar 0.78 · (289/mal) + 0.21 (329/mal) + 0.01 (409/mal) = 29 9/mal Ideal Gas Law an equation of state

- experimental law

- experimental law (microscopic)

PV = NKBT

Roltzmann's constant

KB = 1.38 · 10⁻²³ JK P= F Area [Pa] = [N] $M \left[M_3 \right]$ * Temperature [K]

Alternative form -> PV = nRT (macroscopic)

La universal gas constant

Nkg=n.R [N=n·NA - definition of moles M. NA· KB = M. R NA. KB = R = 6.022. 10 part 1.38.10 J/K R = 8.31 J K·mól

Volume of I mole of air at room temp and atmosphie present $V = \frac{nRT}{P} = \frac{1 \text{ mol} \cdot 3.31 \text{ J/kmsl} \cdot 300 \text{ K}}{10^5 \text{ Pa}} = 0.024 \text{ m}^3$ (7 | atm = 1.013.105

 $\sqrt[3]{0.024} \text{ m}^3 = 15.288 \text{ m}$ $\sqrt[3]{0.024} \text{ m}^3 = 15.288 \text{ m}$ $\sqrt[3]{0.024} \text{ m}^3 = 15.288 \text{ m}$

Laws of Thernodynamics

- O. Thermometers work
 - 1. Conservation of Energy
- 2. Heat flows from high temp to low temp Entropry is maximized No perpetual motion machine
 - 3. Vou com't reach absolute zero

1st Law > Conservation of Everagy System & Energy of a system can change Work & Heat

Surroundings

Form applied Spontaneous flow Forn applied Spontaneous flow over distance of energy du = Q + W to a difference in temperature -> dU= dQ + dW 2 mexant differential dQ=Q(x+dx)-Q(x) du = 8Q + 8W les internal energy of the system, heat is added or work is done to the system they are positive

Compression Work (or Expansion)

W=F·NX assuming pressure is uniform throughout the P = Faces Apreston W= Pages A: DX (scomprission (expension) must happen quasistatically OV is (-) in compression but

W = - P DV energy is increasing

Problem 1.32. By applying a pressure of 200 atm, you can compress water to 99% of its usual volume. Sketch this process (not necessarily to scale) on a PV diagram, and estimate the work required to compress a liter of water by this amount. Does the result surprise you?

Slope-intrupt

N= MX+b

y-int

M= DV

point relope W-W,= W(x-X) (m= 42-4, = 200 = -2.10 day P-0=-2.104 ctu (V-1L) P = -2.10 atm. V + 2.10 atm

1.33

Problem 1.33. An ideal gas is made to undergo the cyclic process shown in Figure 1.10(a). For each of the steps A, B, and C, determine whether each of the following is positive, negative, or zero: (a) the work done on the gas; (b) the change in the energy content of the gas; (c) the heat added to the gas. Then determine the sign of each of these three quantities for the whole cycle. What does this process accomplish?

Figure 1.10. PV diagrams for Problems 1.33 and 1.34.

Come back!

Proportionality

PV=NKET

P.V = NKBT,

P2V=NKBTZ

P2X-WKBTZ

PX= AKET,

Pz Tz

= 2

PaT SD=C.T

Constant of proportionality

$$\frac{P_{z}}{P_{z}} = \frac{N_{z}}{N_{z}} \longrightarrow P = C_{z}N$$

$$\frac{P_{z}}{P_{z}} = \frac{N_{z}}{N_{z}}$$

$$\frac{P_{z}}{P_{z}} = \frac{N_{z}}{N_{z}}$$

$$\frac{N k_{0}T}{N_{z}}$$

$$P = C_2 V'' = \frac{C_2}{V}$$

$$\frac{P_{z}}{P_{i}} = \left(\frac{V_{z}}{V_{i}}\right)^{2} = \frac{V_{i}}{V_{z}}$$

$$F_{G} = \begin{pmatrix} c_{1} \\ F_{1} \end{pmatrix}$$

$$F_{G} = \begin{pmatrix} c_{2} \\ F_{1} \end{pmatrix}$$

$$\frac{P_z}{P_i} = \left(\frac{T_z}{T_i}\right) \cdot \left(\frac{V_z}{V_i}\right)^{-1}$$

$$T_{F} = MT_{c} + 32^{\circ}F$$

$$M = \frac{180}{100}F^{\circ} = \frac{9F^{\circ}}{5C^{\circ}}$$

$$T_{F} = \frac{9F^{\circ}}{5C^{\circ}}T_{c} + 32F^{\circ}$$

$$T_{C} = \frac{9F^{\circ}}{5C^{\circ}}T_{c} + 32F^{\circ}$$