Elucidation of Gut Microbiome Response to Dietary Fiber Types Using MBRAs

Outstanding Questions:

- •Which types of fibers result in favorable/unfavorable shifts that are functionally relevant?
- •What are the ecological and functional consequences of fiber fermentation on host health?

Three Phase Strategy for Developing Precision Medicine Prebiotics

INPUTS

MBRA

OUTPUTS

Resistant starch Combination

Human Stool "Healthy" donors

Inner Dimensions: 25 X 25 X 40 mm (25 ml) **Microbiome** Composition Stability Resilience Resistance

Metabolites Global profile Targeted: SCFAs

Outstanding Questions:

- •Which types of fibers result in favorable/unfavorable shifts that are functionally relevant?
 - •Which types of fibers prevent pathogen colonization c. diff, ETBF, E. coli pks, MRSA
 - •Which types of fibers prevent development of biofilm formation
 - •Which types of fibers results in the most diversity or highest amount of competition/stability
 - •Which types of fibers create the resiliency to stressors pH, temperature, O2 (e.g. what is the buffering capability)
- •What are the ecological and functional consequences of fiber fermentation on host health?
 - •How do different fibers alter the microbial community to protect from colon cancer development
 - •How do different fibers alter the microbial community to modulate stem cells/CSCs

Specific Aims:

- 1. Determine model community changes in composition and metabolism after exposure to inulin or resistant starch
 - Measure alpha and beta diversity after inulin or resistant starch exposure in three model stool communities
 - Determine changes in short chain fatty acid and metabolism after inulin or resistant starch exposure in three model stool communities
- 2. Measure ability to resist pathogen colonization by c. diff, MRSA or enterotoxic B. fragilis in fiber-exposed stool community
- 3. Quantify ability to recover from antibiotic challenge in fiber-exposed stool community

PHASE I

Fiber-Microbiome Modeling

- -Microbial community response to dietary prebiotic fibers
- -Resistance to ETBF or *C. difficile* infection
- -Model nutrient-metabolite interactions

Q: Which dietary fibers prevent pathogen invasion?

PHASE II

Fiber Conditioned Microbiome
Response

-"Healthy" vs colon cancer stool community response to fibers -Fiber conditioned microbiome response to immune system Q: Which dietary fibers promote a favorable immune response in healthy/cancer stool communities?

PHASE III

Candidate Fiber Testing

- -Germ free mice humanized with fiber-conditioned microbiome
- -Fiber conditioned community effect on host tumor response
- -Fiber conditioned microbiome response to cancer therapy

Q: Does the fiber conditioned microbiome improve response to cancer therapy?