Capítulo 3: Routing dinámico

FUNCIONES DE LOS PROTOCOLOS DE ENRUTAMIENTO DINÁMICO

- Comparta información acerca de redes conocidas con otros enrutadores.
- Actualizar las tablas de enrutamiento de forma automática cuando cambia la topología
- Determinar cuál es la mejor ruta a un destino.

OBJETIVO DE LOS PROTOCOLOS DE ENRUTAMIENTO DINÁMICO ES:

- Descubrir redes remotas
- Mantener la información de enrutamiento actualizada
- Seleccionar la mejor ruta a las redes de destino
- Brindar la funcionalidad necesaria para encontrar una nueva mejor ruta si la actual deja de estar disponible

COMPONENTES DE LOS PROTOCOLOS DE ENRUTAMIENTO DINÁMICO

Algoritmo

Se usan para facilitar información de enrutamiento y determinar la mejor ruta.

Mensajes de los protocolos de enrutamiento

Se utilizan para descubrir enrutadores vecinos e intercambiar información de enrutamiento.

VENTAJAS Y DESVENTAJAS

	Enrutamiento dinámico	Enrutamiento estático
Complejidad de la configuración	Por lo general es independiente del tamaño de la red	Se incrementa con el tamaño de la red
Conocimientos requeridos del administrador	Se requiere de un conocimiento avanzado	No se requieren conocimientos adicionales
Cambios de topología	Se adapta automáticamente a los cambios de topología	Se requiere la intervención del administrador
Escalamiento	Adecuado para las topologías simples y complejas	Adecuada para topologías simples
Seguridad	Es menos seguro	Más segura
Uso de recursos	Utiliza CPU, memoria y ancho de banda de enlace	No se requieren recursos adicionales
Capacidad de predicción	La ruta depende de la topología actual	La ruta hacia el destino es siempre la misma

CLASIFICACIÓN

Vector Distancia

- o RIP
 - Classful → no envían la máscara de subred durante las actualizaciones (subneteo)
- EIGRP (propiedad de CISCO)
 Classless → envían la máscara de subred durante las actualizaciones (VLSM)

Características

- Las rutas se anuncian como vectores de distancia y dirección (directamente conectados)
- Brinda una vista incompleta de la topología de la red
- Por lo general, se realizan actualizaciones periódicas
- Recomendables para redes de diseño plano y para redes que utilizan una topología hub-and-spoke

Interior link-state

- OSPF
- o IS-IS
- BGP

Características

- Se crea una vista completa de la topología de la red
- Las actualizaciones no son periódicas

Exterior vector ruta

o BGP

Sistema autónomo es un grupo de enrutadores controlados por una autoridad única.

IGP y EGP

IGP → Protocolo de Gateway Interior

Se usan para el enrutamiento dentro de un sistema autónomo y dentro de redes individuales.

Por ejemplo: RIP, EIGRP, OSPF

EGP → Protocolo de Gateway Exterior

Se usan para el enrutamiento entre sistemas autónomos.

CONVERGENCIA

- Se define como el estado en el que las tablas de enrutamiento de todos los enrutadores son uniformes.
- La convergencia rápida es conveniente en las redes para que los enrutadores no tomen decisiones incorrectas.
- Se dice que una red ha convergido cuando operan con un enrutamiento coherente.

MÉTRICA

Es un valor utilizado por los protocolos de enrutamiento para asignar costos a fin de alcanzar las redes remotas. Las rutas con la métrica más baja hacia un destino indican la mejor ruta.

- RIP: conteo de saltos
- IGRP y EIGRP: ancho de banda (usado por defecto), retraso (usado por defecto), carga, confiabilidad
- IS-IS y OSPF: costo, ancho de banda (implementación de Cisco)

DISTANCIA ADMINISTRATIVA

- Se refiere a la confiabilidad de una ruta en particular.
- La distancia administrativa es un número entero entre 0 y 255. Cuanto menor es el valor, mayor es la preferencia del origen de ruta. Una distancia administrativa de 0 es la más preferida. Solamente una red conectada directamente tiene una distancia administrativa igual a 0 que no puede cambiarse.
- Ej: cuando varios protocolos de enrutamiento tienen una ruta a la misma red destino, la que tenga menor distancia administrativa es la que se instalará en la tabla de enrutamiento.

Origen de la ruta	Distancia administrativa
Conectado	0
Estática	1
Ruta sumarizada EIGRP	5
BGP externo	20
EIGRP interno	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP externo	170
BGP interno	200

BALANCEO DE CARGA

Ésta es la capacidad de un enrutador de distribuir paquetes entre varias rutas de igual costo. Comando para determinar si se está utilizando el balanceo de carga: **show ip route**