DM 3. Enoncé

Problème 1 : une intégrale dépendant d'un paramètre.

Lorsque $b \in \mathbb{R}$ et $t \in \mathbb{R}_+^*$, on pose $t^b = e^{b \ln t}$.

De plus, on convient que, pour tout b > 0, $0^b = 0$ et que $0^0 = 1$.

Ainsi, pour tout $b \in \mathbb{R}_+$, l'application $t \longmapsto t^b$ est définie et continue sur \mathbb{R}_+ . On ne demande pas de le démontrer.

On pose, pour tout $x \in \mathbb{R}_+$,

$$\varphi(x) = \int_0^1 \frac{dt}{1 + t^x}.$$

- 1°) Calculer $\varphi(0)$, $\varphi(1)$ et $\varphi(2)$.
- 2°) Sans utiliser de dérivée, montrer que φ est croissante sur \mathbb{R}_{+} .
- **3°)** Soit $x, y \in \mathbb{R}_+$ avec $x \leq y$. Montrer que

$$|\varphi(x) - \varphi(y)| \le \int_0^1 (t^x - t^y) dt \le y - x.$$

- **4°)** En déduire que φ est continue sur \mathbb{R}_+ , c'est-à-dire que, pour tout $x \in \mathbb{R}_+$, $\varphi(y) \xrightarrow[y \to x]{} \varphi(x)$.
- 5°) Montrer que, $1 \varphi(x) \xrightarrow[x \to +\infty]{} 0$.
- **6°)** Pour tout $x \ge 0$, montrer que

$$\varphi(x) = \frac{1}{2} + x \int_0^1 \frac{t^x}{(1+t^x)^2} dt.$$

- **7°)** Montrer que φ est dérivable en 0 et que $\varphi'(0) = \frac{1}{4}$.
- 8°) Esquisser l'allure du graphe de φ .
- 9°) Donner un équivalent simple de $\varphi(x)-1$ lorsque x tend vers $+\infty$, c'est-à-dire une fonction f(x) simple telle que $\frac{\varphi(x)-1}{f(x)} \underset{x \to +\infty}{\longrightarrow} 1$.

1

Problème 2 : π est irrationnel.

Lorsque $(x_n)_{n\in\mathbb{N}}$ est une suite de réels, on admettra la définition suivante : la suite $(x_n)_{n\in\mathbb{N}}$ tend vers le réel ℓ lorsque n tend vers $+\infty$ si et seulement si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N \ |x_n - \ell| \le \varepsilon.$$

Dans ce cas, on note $x_n \xrightarrow[n \to +\infty]{} \ell$.

Soit $r \in \mathbb{Q} \setminus (\frac{\pi}{2}\mathbb{Z})$. On pose $r = \frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$.

On souhaite montrer que $\tan r$ est irrationnel. Dans ce but, on raisonne par l'absurde en supposant que $\tan r = \frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

Pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose

$$f_n(x) = \frac{1}{n!} (2ax - bx^2)^n.$$

On pose également, pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{2r} f_n(x) \sin x \ dx.$$

- 1°) a) Déterminer le minimum et le maximum de la fonction f_1 entre 0 et 2r.
- **b)** En déduire que $I_n \xrightarrow[n \to +\infty]{} 0$.
- 2°) a) Calculer I_0 en fonction de $\sin r$.
- **b)** Calculer I_1 en fonction de a, b, $\sin r$ et $\cos r$.
- 3°) a) Montrer que, pour tout $n \ge 2$, $I_n = -\int_0^{2r} f_n''(x) \sin x \ dx$.
- **b)** Montrer que, pour tout $n \in \mathbb{N}$, $f''_{n+2} = 4a^2f_n (4n+6)bf_{n+1}$.
- c) Montrer que, pour tout $n \in \mathbb{N}$, il existe $a_n, b_n \in \mathbb{Z}$ tels que

$$I_n = 2(a_n \cos r + b_n \sin r) \sin r.$$

- **4**°) **a)** Montrer que, pour tout $n \in \mathbb{N}$, $\frac{qI_n}{\sin(2r)} \in \mathbb{Z}$.
- b) En déduire une contradiction.
- 5°) En déduire que π est irrationnel.

Problème 3 : Calcul de $\sum_{n=1}^{+\infty} \frac{1}{n^x}$ lorsque x est un entier pair.

On définit la suite d'applications $(P_n)_{n\in\mathbb{N}^*}$ par récurrence, en convenant que, pour tout $x\in\mathbb{R}$,

$$P_1(x) = -\frac{x^2}{4} + \frac{x}{2}$$

et que, pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

$$P_{n+1}(x) = \int_0^x t P_n(t) dt - x \int_0^x P_n(t) dt + \frac{x^2}{2} \int_0^1 P_n(t) dt.$$

- 1°) On rappelle qu'une application f de \mathbb{R} dans \mathbb{R} est polynomiale si et seulement si il existe $N \in \mathbb{N}$ et $a_0, \ldots, a_N \in \mathbb{R}$ tels que, pour tout $x \in \mathbb{R}$, $f(x) = a_0 + a_1 x + \cdots + a_N x^N$. Montrer que les applications P_n sont polynomiales.
- **2°)** Pour tout $n \in \mathbb{N}^*$, on note $m_n = \int_0^1 P_n(t) dt$. Calculer m_1 et m_2 .
- **3°)** Soit $n \in \mathbb{N}^*$. Calculer P'_{n+1} et P''_{n+1} en fonction de P_n et de m_n .
- **4**°) Soit $k \in \mathbb{N}^*$. Montrer que la suite $\left(\int_0^1 P_n(t) \cos(k\pi t) dt\right)_{n \in \mathbb{N}^*}$ est géométrique.

En déduire que, pour tout $n \in \mathbb{N}^*$, $\int_0^1 P_n(t) \cos(k\pi t) dt = -\frac{1}{2(k\pi)^{2n}}$.

- 5°) Soit $n \in \mathbb{N}^*$.
- a) Expliquer pourquoi il existe une application polynomiale Q_n telle que, pour tout $t \in \mathbb{R}$, $P_n(t) = tQ_n(t)$.
- **b)** Montrer que, pour tout $N \in \mathbb{N}^*$,

$$\sum_{k=1}^{N} \frac{1}{k^{2n}} = -\pi^{2n} \int_{0}^{1} Q_{n}(t) \sum_{k=1}^{N} 2t \cos(k\pi t) dt.$$

- **6°)** Pour tout $t \in]0,1]$, on pose $f(t) = \frac{t}{\sin(\frac{\pi t}{2})}$.
- a) Déterminer un réel ℓ tel que $f(t) \xrightarrow[t \to 0]{} \ell$.

Pour la suite, on pose $f(0) = \ell$, si bien que f est maintenant une application continue de [0,1] dans \mathbb{R} .

b) Montrer qu'il existe une application η de \mathbb{R} dans \mathbb{R} telle que pour tout $x \in \mathbb{R}$, $\cos(x) = 1 + x\eta(x)$ avec $\eta(x) \xrightarrow[x \to 0]{} 0$.

On admettra pour la suite qu'il existe une application ε de \mathbb{R} dans \mathbb{R} telle que pour tout $x \in \mathbb{R}$, $\sin(x) = x + x^2 \varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[x \to 0]{} 0$.

- c) Montrer que f est dérivable en 0 et déterminer f'(0).
- d) Montrer que f est de classe C^1 sur [0,1].
- **7°)** a) Soit $a \in \mathbb{C}$ et $N \in \mathbb{N}$. Montrer que $(a-1)\sum_{k=0}^{N} a^k = a^{N+1} 1$.
- **b)** Soit $N \in \mathbb{N}^*$ et $t \in]0,1]$. Montrer que

$$\sum_{k=0}^{N} e^{ik\pi t} = \frac{\sin(\frac{N+1}{2}\pi t)}{\sin(\frac{\pi t}{2})} e^{i\pi t \frac{N}{2}}.$$

c) Montrer que, pour tout $N \in \mathbb{N}^*$ et $t \in [0, 1]$,

$$\sum_{k=1}^{N} 2t \cos(k\pi t) = -t + f(t) \sin\left(\left(N + \frac{1}{2}\right)\pi t\right).$$

8°) Soit $a,b \in \mathbb{R}$ avec a < b et soit φ une application de classe C^1 de [a,b] dans \mathbb{R} . Montrer que

$$\int_{a}^{b} \varphi(t) \sin\left((N + \frac{1}{2})\pi t\right) dt \underset{N \to +\infty}{\longrightarrow} 0.$$

9°) Soit $n \in \mathbb{N}^*$. On pose $\sum_{k=1}^{+\infty} \frac{1}{k^{2n}} = \lim_{N \to +\infty} \left(\sum_{k=1}^{N} \frac{1}{k^{2n}}\right)$, si cette limite existe.

Montrer que $\sum_{k=1}^{+\infty} \frac{1}{k^{2n}} = m_n \pi^{2n}.$

En déduire les valeurs de $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ et de $\sum_{k=1}^{+\infty} \frac{1}{k^4}$.