MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (From expected to strict running time). Let A be an algorithm that always provides a solution to a puzzle and is guaranteed to have expected running-time τ and we need to construct a t-time algorithm that fails with low probability. One way to solve this is to stop the original algorithm A after s time steps. Let A_s be the corresponding algorithm which returns \bot if A does not stop in s time steps and whatever A returns otherwise. Let B be the algorithm that runs A_s up to $\lfloor t/s \rfloor$ times to get the correct answer. Use Markov inequality to estimate the failure probability of B. What is the minimal failure probability δ for fixed time-bound t? What is the minimal time-bound t to achieve failure probability δ . Graph the region of feasible solutions on $t\delta$ -plane.

Solution. W.l.o.g. We can assume that the algorithm \mathcal{A} realises the Markov bound. If not we can modify the algorithm \mathcal{A} such way that if it succeeds earlier it does empty computations until the time-bound s is reached and only then returns the answer.