

FIG. 1

FIG. 1A

D1and D2 fixed spatial
frequency

Embodiment 1

FIG. 2A

D1 and D2 fixed spatial
frequency

Embodiment 2

FIG. 2B

FIG. 2C

Embodiment 3

FIG. 2D

FIG. 2E

FIG. 2F

FIG. 2G

FIG. 2I

Embodiment 10

FIG. 2J

Embodiment 11

FIG. 2K

FIG. 2L

FIG. 2M

FIG. 2N

ESTABLISH END-USER REQUIREMENTS FOR LASER BEAM PRODUCING MODULE UNDER DESIGN (e.g. WORKING DISTANCE, DEPTH OF FIELD, BAR CODE RESOLUTION, ETC.)

A

DETERMINE THE NECESSARY SPOT-SIZE, ASPECT-RATIO, AND WAIST-DIMENSIONS OF THE OUTPUT LASER BEAM IN ORDER TO SCAN THE DESIRED CLASS OF BAR CODE SYMBOLS

B

DETERMINE THE FOCAL DISTANCE OF THE LASER BEAM PRODUCING MODULE (i.e. SYSTEM) f_{MODULE} WHICH PROVIDES THE DESIRED DEPTH OF FIELD FOR THE END-USER SCANNING SYSTEM AT THE DESIRED WORKING DISTANCE

C

USING THE GAUSSIAN BEAM PROPAGATION MODEL, DETERMINE THE REQUIRED BEAM SIZE AND ASPECT-RATIO LEAVING THE LASER BEAM PRODUCING SYSTEM UNDER DESIGN

D

FIG. 3A1

FIG. 3A2

(B)

DETERMINE THE DISTANCE FROM THE VLD TO FIRST
LENS ELEMENT L1, WHICH PRODUCES AN OUTPUT LASER
BEAM HAVING THE DESIRED BEAM SIZE DETERMINED AT
BLOCK D

H

DETERMINE THE FOCAL LENGTH OF LENS ELEMENT L1
THAT PRODUCES AN OUTPUT LASER BEAM HAVING THE
DESIRED FOCAL LENGTH DETERMINED AT BLOCK C

I

FIG. 3A3

FIG. 3B1

FIG. 3B2

B

DETERMINE THE DISTANCE FROM THE VLD TO FIRST LENS ELEMENT L1 WHICH PRODUCES AN OUTPUT LASER BEAM HAVING THE DESIRED SIZE DETERMINED AT BLOCK D

H

DETERMINE WHICH OPTICAL COMPONENT OF THE SYSTEM WILL COVERGE OR DIVERGE THE LASER BEAM FROM THE VLD SO THAT UPON ADJUSTING THE SEPARATION BETWEEN THE VLD AND LENS L1, THE CONVERGENCE OR DIVERGENCE OF THE NON-COLLIMATED LASER BEAM ENTERING THE DOE-BASED SUBSYSTEM CANCELS OUT THE INHERENT ASTIGMATISM IN THE BEAM PRODUCED BY INHERENT CHARACTERISTICS OF THE VLD

I

DETERMINE THE OPTICAL PARAMETERS IN THE LASER BEAM PRODUCING SYSTEM UNDER DESIGN TO YIELD THE DESIRED FOCAL DISTANCE IN THE OUTPUT LASER BEAM DETERMINED AT BLOCK C

J

FIG. 3B3

FIG. 3C1

FIG. 3C2

B

DETERMINE THE DISTANCE FROM THE VLD TO FIRST LENS ELEMENT L1, WHICH PRODUCES AN OUTPUT LASER BEAM HAVING THE DESIRED BEAM SIZE DETERMINED AT BLOCK D

H

DETERMINE THE FOCAL LENGTH OF LENS L1 SO THAT, WHEN THE CORRECT AMOUNT OF SEPARATION EXISTS BETWEEN THE VLD AND LENS L1, THE RESULTING CONVERGENCE/ DIVERGENCE OF THE LASER BEAM WILL ELIMINATE ASTIGMATISM UPON PASSING THROUGH DOE D1 ONLY

I

ASSUME HOE H2 IS A STIGMATIC-TYPE OPTICAL ELEMENT AND DETERMINE THE FOCAL LENGTH OF LENS L2 SO THAT DESIRED AVERAGE FOCAL LENGTH IS ACHIEVED IN OUTPUT LASER BEAM

J

DETERMINE CONSTRUCTION OF DOE D2 TO PRODUCE DESIRED FOCAL LENGTH THROUGH LENS L2

K

FIG. 3C3

ESTABLISH END-USER REQUIREMENTS FOR THE LASER BEAM PRODUCING MODULE UNDER DESIGN (e.g. FINAL ASPECT-RATIO AND SPOT SIZE)

A

USING THE GAUSSIAN BEAM PROPAGATION MODEL TO DETERMINE THE REQUIRED BEAM ASPECT-RATIO LEAVING THE LASER BEAM PRODUCING SYSTEM IN ORDER TO PRODUCE THE SPECIFIED ASPECT-RATIO AT FOCUS

B

CHOOSE AN ACCEPTABLE LASER SOURCE (e.g. VLD) HAVING AN ACCEPTABLE DEGREE OF BEAM DIVERGENCE, ASTIGMATISM, ASPECT-RATIO, WAVELENGTH AND BANDWIDTH

C

DETERMINE AN APPROPRIATE VALUE FOR THE BEAM-SHAPING FACTORS OF DOE D1 AND DOE D2, WHICH ENSURES THAT THE ASPECT-RATIO OF THE BEAM ENTERING THE LASER BEAM MODIFYING SUBSYSTEM IS SUFFICIENTLY MODIFIED SO THAT THE OUTPUT LASER BEAM HAS THE DESIRED ASPECT-RATIO

D

(A)

FIG. 3D1

A

DETERMINE THE CONSTRUCTION ANGLES ($\theta_{i1}, \theta_{d1}, \theta_{i2}, \theta_{d2}, \rho$) EXPRESSED AT RECONSTRUCTION WAVELENGTH λ_R FOR THE TWO DOEs D1 AND D2, WHICH PROVIDES AN OPTICAL SUBSYSTEM WHEREIN THE LASER BEAM OUTPUT FROM THE SECOND DOE D2 THEREOF HAS (1) EFFECTIVELY ZERO NET BEAM DISPERSION, AND (2) THE DESIRED ASPECT-RATIO DETERMINED AT BLOCK B

E

DETERMINE THE CONVERGENCE OF THE BEAM LEAVING LENS L1 THAT WILL ADJUST OR ELIMINATE THE ASTIGMATISM PRODUCED BY THE VLD

F

USE THE GAUSSIAN BEAM PROPAGATION MODEL TO DETERMINE THE REQUIRED BEAM SPOT SIZE LEAVING THE LASER BEAM PRODUCING SYSTEM IN ORDER TO PRODUCE THE FOCUSED SPOT SIZE DETERMINED AT BLOCK A

G

DETERMINE THE DISTANCE FROM THE VLD TO THE FIRST LENS ELEMENT L1 THAT PRODUCES AN OUTPUT LASER BEAM HAVING THE DESIRED BEAM SIZE DETERMINED AT BLOCK G

H

B

FIG. 3D2

B

DETERMINE THE FOCAL LENGTH OF THE LENS ELEMENT L1
THAT PRODUCES A BEAM WITH THE CONVERGENCE
DETERMINED IN BLOCK F

FIG. 3D3

FIG. 3E

CHOOSE VALUES FOR COMPRESSION/EXPANSION RATIOS M_1
AND M_2 SO THAT THE BEAM SHAPING FACTOR SATISFIES λ_R
 $M = M_1 M_2$, CHOOSE RECONSTRUCTION (DESIGN)
WAVELENGTH θ_{i1} , AND ANGLE OF INCIDENCE

SOLVE FOR ANGLE OF DIFFRACTION θ_{d1} AT DOE D1 USING
EQUATION NO.(4)

SOLVE FOR THE FRINGE STRUCTURE SPACING d_1 OF DOE D1,
USING EQUATION NO.(1)

SOLVE FOR THE ANGLE OF INCIDENCE θ_{i2} AT DOE D2, USING
EQUATION NO.(7)

SOLVE FOR THE DOE TILT ANGLE, ρ , USING EQUATION NO. (3)

A

FIG. 3F1

A

SOLVE FOR THE ANGLE OF DIFFRACTION θ_{d2} AT DOE D2
USING EQUATION NO.(5)

F

SOLVE FOR THE FRINGE SPACING d_2 WITHIN DOE D2 USING
EQUATION NO. (2)

G

FIG. 3F2

CONVERT THE DESIGN PARAMETERS $\theta_{i1}, \theta_{d1}, \theta_{i2}, \theta_{d2}$, (AND f_2)
EXPRESSED AT THE RECONSTRUCTION WAVELENGTH λ_R ,
INTO CONSTRUCTION PARAMETERS EXPRESSED AT THE
CONSTRUCTION WAVELENGTH λ_c , NAMELY: θ_{o1}, θ_{r1} , FOR
HOE H1; AND θ_{o2}, θ_{r2} , FOR HOE H2

A

IN THE CASE OF VARIABLE SPATIAL FREQUENCY DOEs, USE
COMPUTER-RAY TRACING TO DETERMINE THE DISTANCES OF
THE OBJECT AND REFERENCE (BEAM) SOURCES RELATIVE TO
THE HOLOGRAPHIC RECORDING MEDIUM (AS WELL AS THE
DISTANCES OF ANY ABERRATION-CORRECTING LENSES
THEREFROM) EMPLOYED DURING THE HOLOGRAPHIC
RECORDING PROCESS

B

FIG. 4A

θ_R = REFERENCE BEAM ANGLE OF INCIDENCE

θ_O = OBJECT BEAM ANGLE OF INCIDENCE

FIG. 4B

FORMULATE WITHIN A DIGITAL COMPUTER SYSTEM, A MATHEMATICAL DESCRIPTION OF THE OBJECT AND REFERENCE BEAM WAVEFRONTS USED TO CONSTRUCT DOE D1 AND DOE D2, DURING OPTICAL FORMATION THEREOF WHEN USING THE HOLOGRAPHIC RECORDING METHOD SHOWN IN FIG. 4B

A

USE THE DIGITAL COMPUTER SYSTEM TO FORMULATE A MATHEMATICAL DESCRIPTION OF THE INTERFERENCE PATTERN THAT IS GENERATED BY MATHEMATICALLY ADDING THE MATHEMATICAL MODEL OF THE OBJECT BEAM WAVEFRONT TO THE REFERENCE BEAM WAVEFRONT, TO PROVIDE A SPATIAL FUNCTION OF THE COMPUTER GENERATED / REPRESENTED INTERFERENCE PATTERN

B

USE THE DIGITAL COMPUTER SYSTEM TO SAMPLE THE SPATIAL FUNCTION OF THE COMPUTER GENERATED/ REPRESENTED INTERFERENCE PATTERN ALONG THE X AND Y DIRECTIONS THEREOF TO PRODUCE A LARGE SET OF SAMPLED VALUES OF VARYING AMPLITUDE TRANSMITTANCE ASSOCIATED WITH THE COMPUTER GENERATED INTERFERENCE PATTERN

C

(A)

FIG. 4C1

FIG. 4C2

FIG. 4D

Beam Dispersion Analysis

FIG. 5A

FIG. 5B

FIG. 5B1

FIG. 5B2

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 8A

FIG. 8B

FIG. 9

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 10D

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 13

FIG. 14
(Case A)

FIG. 15
(Case B)

FIG. 16
(Case C)

FIG. 17
(Case D)

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24