Задача 1. Фабрика выпускает наборы из n > 2 белых слоников различной величины и массы, стоящих по росту. По стандарту разность масс соседних слоников должна быть одной и той же. При каких n контролер гарантированно сможет это проверить с помощью чашечных весов без гирь?

Определение 1. Арифметическая прогрессия — это (конечная или бесконечная) последовательность чисел . . . , a_1 , a_2 , в которой разность $d = a_k - a_{k-1}$ между соседними членами a_k и a_{k-1} одинакова для всех k; она называется разностью или прирашением прогрессии.

Задача 2. Выразите n-й член арифметической прогрессии через первый член и разность. Найдите 50-е натуральное число среди чисел, больших 90 и имеющих остаток 3 при делении на 4.

Задача 3. Каждый член некой последовательности (кроме крайних, если они есть) равен среднему арифметическому двух соседних членов. Верно ли, что это арифметическая прогрессия? Верно ли обратное?

Задача 4. В некоторой арифметической прогрессии сумма первых n членов равна сумме первых m членов (где m < n). Докажите, что сумма первых n + m членов этой прогрессии равна нулю.

Задача 5. Выразите сумму всех членов конечной арифметической прогрессии a_1, a_2, \ldots, a_n через

а) два крайних члена и число слагаемых; б) начальный член, число слагаемых и приращение.

Задача 6. Найдите сумму всех трёхзначных чисел, оканчивающихся на 7.

Задача 7. По строкам и столбцам прямоугольной таблицы $m \times n$ стоят арифметические прогрессии. Найдите сумму всех чисел в таблице, если сумма четырёх угловых чисел равна S.

Задача 8. а) Дан квадратный трёхчлен $f(x) = ax^2 + bx + c$. При каких условиях на коэффициенты a, b, c найдётся такая арифметическая прогрессия (a_n) , что $a_1 + \ldots + a_n = f(n)$ при всех натуральных n?

б) Найдите арифметическую прогрессию, сумма первых n членов которой равна $2n^2 - 3n$.

Задача 9*. Можно ли натуральный ряд покрыть k арифметическими прогрессиями с различными целыми разностями, не равными 1, если **a)** k=2; **b)** k=3; **b)** k=4; **r)** k=5?

Определение 2. Геометрическая прогрессия — это (конечная или бесконечная) последовательность ненулевых чисел . . . , a_1, a_2, a_3, \ldots , в которой отношение $q = a_k/a_{k-1}$ соседних членов одинаково для всех k; оно называется знаменателем прогрессии.

Задача 10. Будет ли геометрической прогрессией последовательность, k-й член которой равен

- д) Выразите n-й член геометрической прогрессии через первый член и знаменатель.

Задача 11. Квадрат каждого члена некой последовательности (кроме крайних, если они есть) ненулевой и равен произведению двух соседних членов. Верно ли, что это геометрическая прогрессия? Верно ли обратное?

Задача 12. Некто приезжает в город с новостью и сообщает её двоим. Каждый из вновь узнавших новость через 5 минут сообщает её ещё двоим (которые её не знают) и т. д. (пока все в городе её не узнают). Через сколько времени новость узнает весь город, если в нём 1 000 000 жителей?

Задача 13. Торговец принёс на рынок мешок одинаковых орехов. Первый покупатель купил 1 орех, второй -2, третий -4, и т. д.: каждый следующий покупал вдвое больше орехов, чем предыдущий. Орехи, купленные последним, весили 50 кг, после чего у торговца остался 1 орех. Сколько килограммов орехов было у него вначале?

Задача 14. Найдите суммы: **a)** $1+x+x^2+\ldots+x^n$; **б)** $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots-\frac{1}{512}$. **в)** Выразите сумму всех членов конечной геометрической прогрессии через начальный член a, количество слагаемых n и знаменатель q.

Задача 15. Даны две бесконечные вправо прогрессии: арифметическая и геометрическая. Известно, что все числа, которые встречаются среди членов геометрической прогрессии, встречаются и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии — целое число.

Задача 16. Можно ли покрыть натуральный ряд конечным числом геометрических прогрессий?

Определение 3. Числа Фибоначчи – это члены последовательности f_0, f_1, \ldots , в которой $f_0 = f_1 = 1$, а каждый следующий член равен сумме двух предыдущих: $f_n = f_{n-1} + f_{n-2}$ при всех целых $n \geqslant 2$.

Задача 17. Вычислите первые 15 чисел Фибоначчи.

Задача 18. Найдите все а) арифметические; б) геометрические прогрессии, у которых каждый член, начиная с третьего, равен сумме двух предыдущих.

Задача 19. Представьте последовательность Фибоначчи в виде суммы двух геометрических прогрессий, т. е. найдите такие прогрессии (g_n) и (h_n) , что $f_n = g_n + h_n$ при всех целых $n \ge 0$.

1	2	3	4	5 a	5 6	6	7	8 a	8 6	9 a	9 6	9 B	9 Г	10 a	10 б	10 B	10 Г	10 д	11	12	13	14 a	14 б	14 B	15	16	17	18 a	18 б	19