МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Факультет автоматизированных и информационных систем

Кафедра «Информатика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 7 по дисциплине «**Математическое моделирование сложных систем**»

на тему: «Создание и исследование моделей в виде интегродифференциальных и дифференциальных уравнений. Построение иерархических моделей.»

Выполнил: студент гр. ИП-32

Коваленко А.И.

Принял: доцент

Трохова Т.А.

Цель: получение навыков создания пользовательских моделей для визуального моделирования систем, описываемых дифференциальными уравнениями.

Задание 1:

Реализация модели гидравлического демпфера в пакете Xcos системы Scilab

Математическая модель гидравлического демпфера описывается дифференциальным уравнением второго порядка вида:

$$\ddot{y} + 2n\dot{y} + py = 0$$

Для решения дифференциального уравнения его нужно привести к дифференциальному уравнению вида:

$$\ddot{y} = -2n\dot{y} - py$$

Решив это уравнение, мы найдем две функции y(t) и y'(t).

Порядок составления схемы, следующий:

1. Перед моделированием нужно разместить в память константные значения вида:

- 2. Смоделируем правые части уравнений, оставив незаполненными входы для y и y '.
- 3. Так как правая часть уравнений равна второй производной соответствующей функции, то для получения значений первой производной и самой функции вторую производную нужно проинтегрировать два раза, поэтому в схему добавляем два блока интегратора, на выходе которых мы получим функции у и у'.
- **4.** Соединим выходы блоков интегрирования со входами для y и y, которые оставались незаполненными.
- $5.\ 3$ ададим начальное перемещение демпфера на втором интеграторе, оно равно 0.05
 - 6. Выведем результаты моделирования на регистраторы.
 - 7. Зададим время моделирования 4с.
 - 8. Зададим параметры для блока CLOCK:
 - период и время инициализации -0.001.
 - 10. Промасштабируем блок осциллографов:

Ymin=-0.04, Ymax=0.06

11. Запускаем модель на выполнение, получаем график функций y(t) перемещения демпфера

Рисунок 1 – Реализация схемы в пакете Xcos системы Scilab

Результат выполнения задания 1:

Рисунок 2 — График функций y(t) перемещения демпфера

Задание 2:

Решение интегро-дифференциальных уравнений в Хсоѕ

В качестве примера рассмотрим модель системы, показанной на рисунке 1.

Рисунок 3 – Вид механической системы

Подобная схема описывается следующим интегро-дифференциальным уравнением.

$$f=m\frac{dv}{dt}+\alpha v+K\int v\,dt$$

Для построения визуализированной схемы Simulink преобразуем его к нормализованному виду, чтобы производная $\frac{dv}{dt}$ была в левой части уравнения:

$$\frac{dv(t)}{dt} = \frac{f(t)}{m} - \frac{\alpha}{m}v(t) - \frac{K1}{m}\int v(t)dt$$

Порядок составления схемы, следующий:

- 2. Правая часть интегро-дифференциального уравнения, описывающего схему, включает две составляющие, которые моделируются отдельно: одна содержит источник нагружающей силы $\frac{f(t)}{m}$, другая моделирует остальные элементы механической системы $-\frac{\alpha}{m}v(t)-\frac{K}{m}\int v(t)dt$.
- 3. Смоделируем первую составляющую в виде источника синусоидального сигнала с параметрами: амплитуда -50, частота -5. Умножим ее на 1/m, где m можно задать числовым значением непосредственно в блоке, а можно поместить в область рабочей памяти в командном режиме перед запуском модели на выполнение, например, >>m=10

Смоделируем вторую составляющую в виде суперблока с одним входом и одним выходом. Для этого включим в модель суперблок раскроем его и смоделируем два слагаемых, причем для моделирования интеграла используется блок интегрирования.

4. Для того, чтобы найти значение v(t), нужно сложить две составляющие и проинтегрировать полученный сигнал. Следует заметить, что результат интегрирования v(t) является входным сигналом для подсистемы.

- 5. Задать в командном режиме для модели следующие параметры:
 - m=10 $\alpha=2.5$
 - K = 50
- 6. Задать время моделирования, равное 30с.
- 7. Запустить модель на обработку, получить график функции скорости v(t). Добавить в модель блок интегрирования для получения функции перемещения массы. Построить график функции перемещения.

Рисунок 4 – Реализация схемы в пакете Xcos системы Scilab

Рисунок 5 – Содержимое суперблока

Результат выполнения задания 2:

Рисунок 6 – График функции перемещения

Задание 3:

Рассчитать значение функций перемещения и скорости динамической системы для индивидуального задания (папка «Задачи»). Модель задана дифференциальным уравнением второго порядка. Построить графики выходных параметров модели, для этого:

- 1. Создать блочную модель системы в Xcos.
- 2. Запустить модель на выполнение, получить графики перемещения, скорости механической системы под воздействием начального значения перемещения (задание 1 лабораторной работы №5).

Исследовать влияние на систему таких внешних воздействий, как синусоидальное и ступенчатое. Получить графики этих перемещений, сравнить их с графиками лабораторной работы 5 и 6.

Исходными данными для задачи являются:

т – масса груза

l — длина стержня

а – расстояние до демпфера

D — диаметр пружины

d – диаметр проволоки пружины

i — число витков пружины

G — модуль упругости

 α – коэффициент вязкого сопротивления движения демпфера

Таблица 4.1 - Таблица исходных данных

а(м)	1 (m)	D (мм)	d	i	m	α	φ_0	t_{κ}	Варьируемый	N
			(MM)		(кг)			(c)	параметр	варианта
0,2	0,5	50	5	5	5	300	0,05	1	m	1
0,22	0,55	60	6	6	6	210	0,06	1,6	1	2
0,23	0,53	65	6,2	5	4	212	0,051	0,5	α	3
0,05	0,6	55	6,1	6	8	310	0,061	1,1	a	4

Для всех вариантов заданий G=80*10⁹

Таблица 4.2 - Таблица значений варьируемых параметров

m	1,1	1,4	2,0	2,3	2,9	3,3	3,8	4,1	4,5
1	0,5	0,65	0,78	0,89	1,0	1,15	1,29	1,35	1,5
α	210	250	290	325	360	385	400	420	450
a	0,05	0,09	0,12	0,15	0,2	0,25	0,29	0,32	0,35

Описание математической модели

Груз массой m укреплен на абсолютно жестком безынерционном стержне длиной l, который удерживается в равновесии пружиной и демпфером. Демпфер имеет линейную характеристику трения $f = \alpha \cdot \dot{x}$.

В соответствии с принципом Даламбера составим дифференциальное уравнение движения груза, как уравнение равновесия при отклонении стержня на некоторый малый угол φ

$$mgl\varphi = ml^2\ddot{\varphi} - ca^2\varphi - a^2\alpha\dot{g} = 0$$

Обозначив

$$2n = a^2 \alpha / (ml^2) \qquad p^2 = (ca^2 - mgl) / ml^2$$

запишем дифференциальное уравнение в виде

$$\ddot{\varphi} + 2n\dot{\varphi} + p^2\varphi = 0$$

 $c = Gd^4 / 8D^3i$ - жесткость пружины

$$p=\sqrt{(ca^2-mgl)/ml^2}$$
 -частота собственных колебаний $n=a^2\alpha/(2ml^2)$ - приведенный коэффициент сопротивления демпфера

 $F(t) = F_0 sin(wt) - возмущающая сила, действующая на систему. Все параметры функции подобрать самостоятельно.$

$$p = \sqrt{300.38}$$
$$n = 4.8$$

Рисунок 7 – Реализация схемы в пакете Xcos системы Scilab

Рисунок 8 – График функции перемещения без воздействия в Scilab

Рисунок 9 – График функции перемещения без воздействия в Python

Рисунок 10 – Реализация схемы в пакете Xcos системы Scilab

Рисунок 11 — График функции перемещения со ступенчатым воздействием в Scilab

Рисунок 12 — График функции перемещения со ступенчатым воздействием в Python

Рисунок 13 – Реализация схемы в пакете Xcos системы Scilab

Рисунок 14 — График функции перемещения с синусоидальным воздействием в Python

Рисунок 15 – График функции перемещения с синусоидальным воздействием в Scilab

Вывод: в ходе данной лабораторной работы были получены навыки разработки планов полного факторного эксперимента в СКМ, а также навыки выполнения регрессионного и корреляционного анализ результатов эксперимент.