GROUP THEORY AND REPRESENTATION

WENHAO

1. Group Theory

Definition 1 (Group). A group is a set plus an operation, that map an ordered pair of group element (g, h) of G into another element $g \cdot h \in G$, satisfying the following properties:

- (1) operation is associative: $g \cdot (h \cdot k) = (g \cdot h) \cdot k$ for $g, h, k \in G$;
- (2) G contain an identity element e, that satisfies $g \cdot e = e \cdot g = g$ for all $g \in G$ and
- (3) Each element of G has an inverse, denoted by g^{-1} .

Definition 2 (Order of the group). Order of the group G, or the cardinality of the group, is the number of elements in the set G, denoted by |G|

Definition 3 (Abelian group). A group is called abelian if for all $g, h \in G$, $g \cdot h = h \cdot g$ (commutative)

Permutation group. We denote a set by X. All the bijections of X to itself form a group, which we denote $\operatorname{Sym}(X)$. If |X| = n, then $|\operatorname{Sym}(X)| = n!$. If |X| = |Y|, then $\operatorname{Sym}(X) = \operatorname{Sym}(Y)$ and we denote it as $\operatorname{Sym}(n)$ or S_n For example, $S_3 = \{e, (1, 2), (2, 3), (1, 3), (1, 2, 3), (3, 2, 1)\}$. We have $|S_3| = 6$. The permutation (3, 2, 1) means $3 \to 2, 2 \to 1, 1 \to 3$ with 1, 2, 3 indicate the position in the set.

Linear transformation group. Denoting V as a vector space, we write GL(V) as the group of all linear transformation in V

Definition 4 (Subgroup). Definition: H is a non empty subset of G and H is a group, then H is a subgroup of G

Theorem 1. The intersections of subgroups of G is also a subgroup of G.

Proof. Suppose H and L are subgroups of G. M is the intersections between H and L, then:

- (1) identity $e \in M$;
- (2) if $h_1, h_2 \in H$ and $h_1 \cdot h_2 = e$, If $h_1 \in L$, then inevitably $h_2 \in L$, therefore the intersections of H and L is closed under inverse;
- (3) similarly, if $h_1, h_2 \in H$ and $h_1, h_2 \in L$, then $h_1 \cdot h_2$ belong to both H and L are therefore in the intersections. M is closed under group operation.

Definition 5 (Generator). For a set S, the intersections of all subgroups contain S is a subgroup. This intersections is denoted by $\langle S \rangle$ and we say that it is generated by S.

For a group element g, we write that group that is generated by g as $\langle g \rangle$, the order of $\langle g \rangle$ is also called the order of g.

Theorem 2. if a group G is finite, we must have $g^n = e$ for $g \in G$. Since any g^a is a number in G

Definition 6 (Cyclic group). If a group is generated by a single element, i.e. $G = \langle g \rangle$ for $g \in G$

Definition 7. A group is called normal (self-conjugate) if

$$gBg^{-1} = B \text{ for } g \in G \qquad (group \text{ automorphism})$$

Date: February 2, 2022.

2 WENHAO

Theorem 3 (Rearrangement theorem). for group G and a group element $g' \in G$, the set

$$\{g'g \mid g \in G\}$$

contain each group element once and only once.

Proof. It is equivalent to say that if $g_1 \neq g_2$, then $g'g_1 \neq g'g_2$. all group element in G are mapped to another distinct elements in G (rearrangement).

If
$$g'g_1 = g'g_2$$
 but $g_1 \neq g_2$, then

$$g'^{-1}g'g_1 = g'^{-1}g'g_2$$

which appearnt conflict with the assumption

Multiplication. For S and T, both subset of group G, we define their produce:

$$ST = \{ st \mid s \in S, t \in T \}$$

and $sT \equiv \{s\}T$ and $Ts \equiv T\{s\}$ for $s \in S$.

Definition 8 (Left cosets). For H a subgroup of G and $g \in G$, gH is called a left coset. Hg is called a right coset. The set $\{gH \mid g \in G, H \text{ is subgroup of } G\}$ is written as $G \setminus H$

For example, for $S_3 = \{e, (12), (23), (13), (123), (132)\}$ and $H = \{e, (123), (132)\}$, We can work out the following relationship:

$$(123)(123) = (132) (132)(123) = e$$

$$(132)(132) = (123) (123)(132) = e$$

i.e., H is a subset of S_4 . Applying element $g \in \{(12), (23), (13)\}$ on H give the set $\{(12), (23), (13)\}$. Therefore, the left cosets of H is:

$$\{ \{e, (123), (132)\}, \{(12), (23), (13)\} \}$$

Theorem 4. The left cosets of the subgroup H of G partition G

Proof. This is equivalent to say that gH is either H itself, or share no comment elements with H. if $g \in H$, then gH = H. On the other hand, if $g \notin H$ but $gh \in H$ for an element $h \in H$, then, by the requirement of group $h^{-1} \in H$. $ghh^{-1} = g \in H$ which conflict with the assumption. Therefore, we gH cannot share element with H: |gH| = |H|, so that left cosets of a subgroup partition the group.

As a result, the whole group can be written as:

$$G = H + g_1 H + g_2 H + \dots + g_n H$$

Theorem 5 (Lagrange's theorem). For a finite group G and H is a subgroup of G, |H| can divide G.

Definition 9 (Index of H in G). The number of left cosets of a subgroup H is called the index of H in G, denoted as [G:H].

If G is a finite group and $g \in G$. Then the order of $\langle g \rangle$ divide |G|. This is because $\langle g \rangle$ is a subgroup of G.

2. Representation Theory

4 WENHAO

3. Crystal Structure

Appendix A