Math 550 Homework 5

Dr. Fuller Due October 2

- 1. Calculate the differential of each of the following.
 - (a) $\omega = e^{xy} dx$
 - (b) $\omega = x_1x_2 dx_3 \wedge dx_4$
 - (c) $\omega = f(x, y) dx + g(x, y) dy$
 - (d) $\omega = f(x, y, z) dy \wedge dz g(x, y, z) dx \wedge dz + h(x, y, z) dx \wedge dy$
- 2. Determine if the following 2-forms are exact.
 - (a) $\omega = x dx \wedge dy$
 - (b) $\omega = z dx \wedge dy$
 - (c) $\omega = z dx \wedge dy + y dx \wedge dz + z dy \wedge dz$
- 3. (a) Let $\alpha \in \Omega^1(\mathbf{R}^3)$ satisfy $\alpha(p) \neq 0$ for all $p \in \mathbf{R}^3$. Prove that $\ker \alpha$ is a 2-dimensional subspace (i.e. a plane) of \mathbf{R}^3_p for all $p \in \mathbf{R}^3$.
 - (b) Let $\alpha_1 = dz$. Sketch the planes described in part (a).
 - (c) Let $\alpha_2 = x \, dy + dz$. Sketch the planes described in part (a).
 - (d) Show that $\alpha_1 \wedge d\alpha_1 = 0$ and $\alpha_2 \wedge d\alpha_2 \neq 0$ (at all $p \in \mathbf{R}^3$).
- 4. Prove that if $\omega \in \Omega^k(\mathbf{R}^n)$ is exact and $\varphi \in \Omega^\ell(\mathbf{R}^n)$ is closed, then $\omega \wedge \varphi$ is exact.
- 5. Show that the image of the curve $c(t) = (\cos 2t \cos t, \cos 2t \sin t)$ for $t \in (-\pi/2, \pi/4)$ is not a 1-dimensional manifold.
- 6. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = x^2 + y^2 z^2$.
 - (a) For which values of a is $f^{-1}(a)$ a manifold?
 - (b) Find two different values a and b so that the manifolds $f^{-1}(a)$ and $f^{-1}(b)$ are not homeomorphic, and prove that they are not homeomorphic.
- 7. Let S^2 denote the unit sphere in \mathbb{R}^3 . Give a basis for the tangent space S_p^2 at any $p \in S^2$.
- 8. Prove that the unit sphere S^{n-1} is \mathbb{R}^n cannot be parameterized as a manifold by a single parameterization. Can you generalize your proof into a more general result?
- 9. Let V be a k-dimensional vector subspace of \mathbf{R}^n .
 - (a) Prove that V is a k-dimensional manifold in \mathbb{R}^n .
 - (b) Let V_p denote the tangent space to V at $p \in V$. Prove that $V_p = V$.