Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision theory

Exercise 4

Michael Hartisch, Lundra Resyli

Friedrich-Alexander University Erlangen-Nuremberg, Department of Mathematics June 10, 2024

Exercise 1

Tina is looking for a new apartment. Relevant criteria are rent and distance to the university.

- Rent: 200 to 600 euros, linear utility function
- Distance: 0 to 7 km, utility function:

Eisenführ, Weber, Langer, Question 6.2

Data

- Rent: 200 to 600 euros, linear utility function
- Distance: 0 to 7 km, utility function:

Eisenführ, Weber, Langer, Question 6.2

- 1. Tina finds an apartment that is 4 km away and costs 300 euros as good as an apartment that is 2 km away but costs 500 euros. What are the weighting factors?
- 2. How expensive can an apartment directly at the university be so that it is still better than an apartment that is 2 km away and costs 200 euros?

Solution 1

Let u_1 be utility for rent, u_2 utility for distance. $u_1(x) = -1/400 \cdot (x - 600)$

1. $(300, 4) \sim (500, 2)$

$$\lambda_{1}u_{1}(300) + \lambda_{2}u_{2}(4) = \lambda_{1}u_{1}(500) + \lambda_{2}u_{2}(2)$$

$$\Rightarrow \qquad 3/4\lambda_{1} + 1/4\lambda_{2} = 1/4\lambda_{1} + 1/2\lambda_{2}$$

$$\Rightarrow \qquad \lambda_{1} = 1/3, \lambda_{2} = 2/3$$

2. $(x,0) \sim (200,2)$

$$1/3u_{1}(x) + 2/3u_{2}(0) = 1/3u_{1}(200) + 2/3u_{2}(2)$$

$$\Rightarrow 1/3u_{1}(x) + 2/3 = 1/3 + 2/3 \cdot 1/2$$

$$\Rightarrow u_{1}(x) = 0$$

$$\Rightarrow x = 600$$

Background

Leo wishes to buy a new watch. Relevant criteria are

- low price: 50 to 200 euros
- long warranty: 4 to 16 years
- large water depth: 10 to 50 m

He uses the following utility functions:

- Price *x*: $u_1(x) = a + b/x$
- Warranty x: $u_2(x) = c + d\sqrt{x}$
- Depth x: $u_3(x) = e + fx$

Eisenführ, Weber, Langer, Question 6.6

- 1. Determine parameters *a* to *f* so that functions are normalized on [0, 1]
- 2. How much does the price of 50 euros have to increase so that the utility of the price is halved?
- 3. Is the transition from 4 to 9 years of warranty more useful than from 9 to 16 years?
- 4. Find suitable weights if the following models are equally good:

$$(200, 16, 12) \sim (80, 4, 12)$$

$$(70, 16, 10) \sim (70, 4, 35)$$

Solution 2

1. Parameters:

$$u_1(x) = \frac{200}{3x} - \frac{1}{3}$$

$$u_2(x) = \frac{1}{2}\sqrt{x} - 1$$

$$u_3(x) = \frac{1}{40}x - \frac{1}{4}$$

2. Halving utility: 80 euros

3. Warranty: equally good

4. Weights: $\lambda_1 = 10/23$, $\lambda_2 = 5/23$, $\lambda_3 = 8/23$

Exercise 3

- Model for caffeine addiction
- a person has three life periods: youth, middle age, old age
- decide in each period: drink coffee or not
- if drinking coffee in period t, then addicted in period t + 1
- Utility values:

- $\delta = 1$, $\beta = 1/2$
- how do TC, Naive, and Sophisticated decide?

O'Donoghue, Rabin, The Economics of Immediate Gratification (2000)

Solution 3

- TC: only drinks coffee in old age
- Naive: drinks coffee in middle and old age
- Enlightened: always drinks coffee

Exercise 4

Maximize:

Determine the best solution(s) with respect to

- Maximin
- Hurwicz with $\alpha = 1/2$
- Average
- Minimax Regret

Solution 4

	S_1	<i>S</i> ₂	<i>S</i> ₃	min	max	Hurwicz	Regret	Average
a_1	8	3	3	3	8	11/2	6	14/3
a_2	2	9	4	2	9	11/2	7	15/3
a_3	9	1	2	1	9	10/2	8	12/3
a_4	9	4	0	0	9	9/2	5	13/3
max	9	9	4					

• Maximin: a₁

• Hurwicz with $\alpha = 1/2$: a_1 and a_2

• Average: a_2

• Minmax Regret: a4

Exercise 5: Axioms

Minimax Regret does not satisfy:

- Axiom 5: Independence of irrelevant alternatives
- Axiom 7: Independence of row permutations

Find one example each to demonstrate this.

Solution 5

- it is minimized
- Axiom 5:

	<i>S</i> ₁	<i>S</i> ₂	Regret
a_1	3	1	1
a_2	2	3	2

	<i>S</i> ₁	<i>S</i> ₂	Regret
a_1	3	1	3
a_2	2	3	2
a_3	0	2	1

• Axiom 7:

	<i>S</i> ₁	<i>S</i> ₂	Regret
a_1	3	1	3
a_2	2	3	2
a_2	3	2	3
a_3	0	2	1

- calculate the OWA value for the following solution values:
 - \circ w = (1/2, 0, 0, 1/2), a = (7, 3, 6, 4)
 - \circ w = (1/4, 1/4, 0, 1/2), a = (2, 6, 3, 6)
 - \circ w = (1/3, 1/3, 1/3, 0), a = (6, 7, 3, 1)
 - \circ w = (0, 0, 1/2, 1/2), a = (6, 3, 5, 8)

Solution 6: OWA

- w = (1/2, 0, 0, 1/2), a = (7, 3, 6, 4)• $OWA(a) = 1/2 \cdot 7 + 1/2 \cdot 3 = 5$
- w = (1/4, 1/4, 0, 1/2), a = (2, 6, 3, 6)• $OWA(a) = 1/4 \cdot 6 + 1/4 \cdot 6 + 1/2 \cdot 2 = 4$
- w = (1/3, 1/3, 1/3, 0), a = (6, 7, 3, 1)• $OWA(a) = 1/3 \cdot 7 + 1/3 \cdot 6 + 1/3 \cdot 3 = 16/3$
- w = (0, 0, 1/2, 1/2), a = (6, 3, 5, 8)• $OWA(a) = 1/2 \cdot 5 + 1/2 \cdot 3 = 4$

- Reminder: $WOWA(a_1, \ldots, a_n) = \sum_{i \in [n]} \omega_i a_{\pi(i)}$ with
 - \circ π a permutation such that A is sorted in ascending order
 - $\circ \omega_i = w(\sum_{j \leq i} p_{\pi(j)}) w(\sum_{j < i} p_{\pi(j)})$
 - \circ w(x) is the interpolating function
- Determine WOWA(a) with a = (1, 2, 3, 4), p = (0.1, 0.4, 0.3, 0.2), w = (1/2, 1/4, 1/4, 0)

Solution 7: WOWA

$$w(x) = \begin{cases} 2x & \text{for } x \in [0, 1/4] \\ 1/4 + x & \text{for } x \in [1/4, 3/4] \\ 1 & \text{for } x \in [3/4, 1] \end{cases}$$

• permuted *p*-vector: p' = (0.2, 0.3, 0.4, 0.1)

$$\omega_1 = w(0.2) - w(0) = 0.4$$
 $\omega_2 = w(0.5) - w(0.2) = 0.75 - 0.4 = 0.35$
 $\omega_3 = w(0.9) - w(0.5) = 1 - 0.75 = 0.25$
 $\omega_4 = w(1) - w(0.9) = 1 - 1 = 0$

• $WOWA(A) = 0.4 \cdot 4 + 0.35 \cdot 3 + 0.25 \cdot 2 = 3.15$