

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Monitor para medidores de energía eléctrica

Autor: Ing. Mauricio Barroso Benavides

Director: Mg. Ing. Gonzalo Sanchez (F.A.A.)

Jurados:

Mg. Ing. Martín Nicolás Menéndez (pertenencia) Mg. Ing. Christian Yañez Flores (pertenencia) Esp. Ing. Esteban Daniel Volentini (pertenencia)

Este trabajo fue realizado en la Ciudad de Salta, entre agosto de 2019 y agosto de 2020.

Resumen

La presente memoria tiene como objetivo describir el desarrollo de un dispositivo electrónico, capaz de monitorear la información de consumo de energía eléctrica proveniente de medidores de uso domiciliario. El trabajo fue propuesto por la cooperativa de servicios eléctricos de la ciudad boliviana de Tupiza, COPELECT, para automatizar la lectura de los medidores que tiene instalados en los hogares de sus más de diez mil abonados.

En la elaboración de este trabajo se ven plasmados los conocimientos adquiridos en la carrera de especialización, sobre ingeniería de software, sistemas operativos en tiempo real I y II, protocolos de comunicación y diseño de circuitos impresos.

Agradecimientos

Esta sección es para agradecimientos personales y es totalmente **OPCIONAL**.

Índice general

Re	sume	en	III
1.		oducción General	1
	1.1.	Medición del consumo eléctrico domiciliario	1
	1.2.	Medición inteligente	3
	1.3.	Soluciones disponibles en el mercado	4
	1.4.	Motivación	6
	1.5.	Objetivos y alcance	6
2.		oducción Específica	7
	2.1.	Requerimientos	7
		2.1.1. Requerimientos funcionales	7
		2.1.2. Requerimientos no funcionales	7
	2.2.	Esquema general del sistema	8
		2.2.1. Conversor óptico-eléctrico	8
		2.2.2. Microcontrolador	9
		2.2.3. Transceptor Wi-Fi	9
		2.2.4. Transceptor LoRa	10
		2.2.5. Reloj en tiempo real	13
		2.2.6. Memoria no volátil	13
	2.3.	Planificación	15
3.		eño e Implementación	17
	3.1.		17
		3.1.1. Conversión óptica-eléctrica	17
		3.1.2. Procesamiento y transmisión	17
		3.1.3. Almacenamiento	17
		3.1.4. Prototipo comercial	17
	3.2.	Diseño de firmware	17
		3.2.1. Adquisición de datos	17
		3.2.2. Servidor web	17
		3.2.3. Comunicación LoRa	17
4.	Ensa	ayos y Resultados	19
	4.1.	Pruebas de firmware	19
		4.1.1. Pruebas unitarias	19
		4.1.2. Pruebas de funcionamiento	20
	4.2.	Pruebas de hardware	20
	4.3.	Pruebas funcionales de la interfaz web	21
	4.4.	Pruebas funcionales de campo	21
	4.5.	Resultado final	21
	4.6.	Comparación con dispositivos disponibles comercialmente	21

5.	Con	clusiones	2 3
	5.1.	Conclusiones generales	2 3
	5.2.	Próximos pasos	24
Bi	bliog	rafía	25

Índice de figuras

1.1.	Medidor de consumo electrico analogico.	4
1.2.	Medidor de consumo eléctrico digital	2
	Smart meter de la firma emlite ¹	3
1.4.	Registrador de pulsos PA-FL de la firma SyxthSense ²	5
1.5.	Registrador de pulsos AirTM-100S de la firma iNES 3	5
	Diagrama en bloques general del dispositivo	8
	Fotoresistencia GL5528 ⁴	
		9
	Ubicación de Wi-Fi en el modelo OSI ⁶	10
2.5.	Arquitectura LoraWAN ⁷	11
2.6.	Módulo Wi-Fi basado en el circuito integrado EMW3162 ⁸	11
2.7.	Stack LoraWAN ⁹	12
2.8.	Arquitectura Lora WAN^{10}	12
	Módulo LoRa basado en el circuito integrado RF96 ¹¹	13
2.10.	Módulo RTC basado en el circuito integrado DS1307	14
2.11.	Módulo EEPROM basado en el circuito integrado 24C256	14
2.12.	Módulo flash basado en el circuito integrado W25Q16BVSIG	15
4.1.	Banco de pruebas para las pruebas de funcionamiento	20

Índice de Tablas

2.1.	IEEE 802.11	1(
4.1.	caption corto	19
4.2.	caption corto	19

Dedicado a... [OPCIONAL]

Capítulo 1

Introducción General

En este capítulo se presenta una descripción del proceso que COPELECT realiza para obtener información sobre el consumo eléctrico de sus abonados, nociones sobre medidores inteligentes, una comparación de las soluciones comercialmente disponibles en esta temática, las razones que motivaron al desarrollo del trabajo junto con sus objetivos y alcances.

1.1. Medición del consumo eléctrico domiciliario

En los hogares se dispone de diversos dispositivos eléctricos y electrónicos que son utilizados para entretenimiento, labores domésticas, trabajo, etc. La energía eléctrica consumida por estos dispositivos es medida en vatio-hora, simbolizado Wh [1]. El kWh, equivalente a 1000 vatios-hora, se utiliza para la facturación del consumo de energía eléctrica por parte de las compañías prestadoras del servicio [1]. Para este fin, las compañías instalan en los hogares de sus abonados dispositivos llamados medidores, que se encargan de contar la cantidad de kWh consumidos. También, los medidores proporcionan una interfaz para que los funcionarios de dichas compañías puedan registrar la información de consumo eléctrico.

Las mayor parte de compañías prestadoras del servicio eléctrico utilizan principalmente dos tipos de medidores para medir el consumo eléctrico domiciliario. Estos son:

- 1. Medidores analógicos: contienen un disco giratorio metálico y un contador analógico que indica el total de kWh consumidos. Cuando la corriente fluye a través del medidor, se genera un campo eléctrico que impulsa el disco a girar. Entonces, la velocidad angular del disco está relacionada linealmente con el consumo eléctrico. Cada medidor analógico tiene un valor que indica el número de revoluciones que representan exactamente 1 kWh [2].
- 2. Medidores digitales: tienen una interfaz que consiste en una pequeña pantalla digital para mostrar la cantidad total de kWh consumidos y una salida de pulso óptico compuesta por un LED (*Light-Emitting Diode*). Cada cierta cantidad de transiciones entre el estado apagado y encendido del LED representa exactamente 1 kWh consumido, esta cantidad es una constante indicada por el medidor como impulsos/kWh. Por lo tanto, monitorear el parpadeo del LED brinda la capacidad obtener el consumo eléctrico en el tiempo. El valor de los impulsos/kWh difiere según el fabricante del medidor y generalmente se encuentra debajo del LED [2].

En las figuras 1.1 y 1.2, se pueden observar un medidor de consumo eléctrico analógico y otro digital, respectivamente.

FIGURA 1.1. Medidor de consumo eléctrico analógico.

FIGURA 1.2. Medidor de consumo eléctrico digital.

Cuando la compañía prestadora del servicio eléctrico quiere obtener la información de consumo de sus medidores, lo hace registrando el valor que exhibe la interfaz del medidor, que posee un contador analógico en el caso de un medidor analógico o una pantalla digital en el caso de un medidor digital, ambas exhiben el total de kWh consumidos por el abonado.

La cooperativa de servicios eléctricos Tupiza Ltda., COPELECT, de la ciudad de Tupiza, Bolivia, tiene instalados alrededor de diez mil medidores de consumo eléctrico analógicos y digitales de uso domiciliario en los hogares de sus abonados, que son monitoreados para determinar el consumo eléctrico de cada uno de ellos. El monitoreo lo realizan funcionarios que se desplazan por toda la ciudad y registran el valor que exhibe la interfaz de los medidores junto con el nombre del abonado al que corresponde. Esta información es recopilada y utilizada para emitir la factura correspondiente de cada abonado. Finalmente, la factura emitida es impresa y llevada por los funcionarios a los hogares de los abonados para que

tengan conocimiento del monto que deben pagar por su consumo eléctrico.

El proceso de monitoreo antes descrito es llevado a cabo una vez al mes por doce funcionarios, quienes tardan alrededor de ocho días en registrar toda la información de los medidores. Posteriormente, esa información es introducida a una base de datos que funciona en un servidor local ubicado en las oficinas centrales de COPELECT. La cantidad de kWh consumidos que deben ser facturados se determinan al restar el conteo de kWh del mes anterior con el actual. En casos particulares donde los funcionarios no pueden acceder al medidor para registrar el conteo de kWh consumidos, se emite la factura con los datos del mes anterior.

1.2. Medición inteligente

La mayoría de los medidores de consumo eléctrico utilizados por parte de las compañías que prestan dicho servicio, sean estos analógicos o digitales, son dispositivos cuya única función es medir y exhibir mediante su interfaz la cantidad de kWh consumidos. Esta información únicamente es útil para la compañía y no brinda otros datos de relevancia. Existen también en el mercado otro tipo de medidores cuyas prestaciones son beneficiosas tanto para la compañía como para el abonado.

Los medidores inteligentes o *smart meters*, son dispositivos que graban información como el consumo eléctrico, niveles de voltaje, corriente y factor de potencia. Esta información es comunicada a la compañía eléctrica para generar la facturación de sus servicios y a los abonados para que tengan mayor conocimiento sobre el comportamiento de su consumo eléctrico. Los smart meters típicamente graban la información eléctrica en tiempo real o en intervalos cortos a lo largo del día.

En la figura 1.3 se observa un smart meter.

FIGURA 1.3. Smart meter de la firma emlite¹.

¹Imagen tomada de: https://www.jwsmartmeters.co.uk/brand/emlite/

Para mejorar el proceso de monitoreo y adquisición de información sobre consumo eléctrico, los smart meters representan una solución idónea, pero, el costo de su implementación los vuelve inviables para muchas compañías que ofrecen el servicio eléctrico. Entonces, debido a la problemática antes planteada, existe un mercado creciente para medidores no inteligentes, ampliados con un dispositivo que transfiere la información sobre el consumo eléctrico a la compañía y al abonado.

El dispositivo añadido a los medidores eléctricos de uso convencional puede utilizar distintos tipos de sensores para obtener la información de consumo eléctrico. Estos son:

- Pinza de corriente: es una bobina sujeta alrededor de un conductor eléctrico. Cuando la corriente pasa a través del conductor, se genera un campo eléctrico. La bobina medirá este campo eléctrico y lo traducirá a un flujo de corriente [3].
- Cámara: podría ser situada en frente de del medidor y periódicamente tomar obtener fotografías del contador o pantalla. Las lecturas del consumo pueden ser extraídas de estas fotografías con técnicas de procesamiento de imágenes [4].
- Foto-reflector: consiste en un LED y un fototransistor en una sola carcasa. Este sensor es posicionado en frente del disco que poseen los medidores analógicos, cuando el LED emite luz es reflejada por el disco y medida por el fototransistor [5].
- Fototransistor: en conjunto con la salida de pulso óptico de los medidores digitales, se puede contar la cantidad de veces que el LED pasa de estado bajo a alto, para determinar el consumo eléctrico [6].

1.3. Soluciones disponibles en el mercado

Como se mencionó en la subsección anterior, dotar a los medidores convencionales de un dispositivo que amplíe sus funciones, es una manera de mejorar el proceso de monitoreo y adquisición de información de consumo eléctrico que realizan las compañías prestadoras de servicio.

Comercialmente existen dispositivos que cumplen esta función y utilizan alguno de los sensores adecuados para este fin. La fabricación de estos dispositivos se realiza sobre todo en Estados Unidos y algunos países europeos. A continuación se listan algunos dispositivos que utilizan la salida de pulso óptico de los medidores digitales para registrar el consumo de kWh:

■ PA-FL [7] es un contador de pulsos con comunicación inalámbrica de la firma SyxthSense. Es alimentado mediante baterías o una fuente de tensión de 24 V y trabaja como parte de un sistema propietario de SyxthSense. Puede ser instalado en medidores de electricidad, agua o gas y transmitir inalámbricamente los datos que registra utilizando una modulación de tipo FSK (*Frequency Shift Keying*) en la banda de 868.3 MHz. También, posee dos salidas de potencia de 1 A y y 60 V que pueden ser utilizadas para interactuar con otros dispositivos eléctrico o electrónicos. Dispone de una carcasa con certificación IP54. En la figura 1.4 se muestra una fotografía del dispositivo.

FIGURA 1.4. Registrador de pulsos PA-FL de la firma SyxthSense².

■ AirTM-100S [8]: creado por la firma iNES, es un dispositivo diseñado para adquirir datos de medidores de energía eléctrica, agua y gas. Utiliza la salida de pulso óptico de medidores digitales para registrar el consumo del servicio. Es alimentado por una batería de 3.6 V que le brinda un tiempo de vida de aproximadamente cinco años, tiene carcasa con certificación IP65 y puede transmitir utilizando redes SIGFOX³ a una frecuencia de 868 MHz. El dispositivo puede observarse en la figura 1.5.

FIGURA 1.5. Registrador de pulsos AirTM-100S de la firma iNES⁴.

²Imagen tomada de: [7]

³SIGFOX. Es un operador de red global que implementa redes inalámbricas para conectar dispositivos de bajo consumo.

⁴Imagen tomada de: [8]

1.4. Motivación

Hoy en día, no solo las compañías de servicio eléctrico están interesadas en los números que proporcionan los medidores domiciliarios, sino también los propios abonados. Con la introducción del *smart meter*, la cantidad de electricidad consumida se puede comunicar en tiempo real al abonado. Este consumo se presenta en un dispositivo, por ejemplo, un teléfono inteligente o una tableta, que brinda más información a los abonados y los motiva a reducir su consumo de energía hasta en un 9 % [9]. Entonces, el trabajo se originó como una propuesta de CO-PELECT, para contar con una alternativa tecnológica que optimice el proceso de monitoreo de los medidores que tiene instalados en la ciudad boliviana de Tupiza y proporcione a sus usuarios una manera de conocer su consumo eléctrico de manera oportuna.

Otra motivación importante para la realización de este trabajo fue la aplicación de los conocimientos adquiridos en la carrera de Especialización, para desarrollar e implementar un dispositivo basado en buenas prácticas de desarrollo de *firmware* y *hardware*, que sea lo suficientemente robusto y eficiente para que puedan reproducirlo por cientos o miles de unidades.

1.5. Objetivos y alcance

El objetivo principal de este trabajo fue desarrollar e implementar un dispositivo electrónico, capaz de monitorear un medidor de consumo eléctrico de uso domiciliario mediante la salida de pulso óptico incorporada, para proporcionar la información obtenida a la compañía prestadora del servicio de manera remota y permitir al abonado conocer su consumo eléctrico en el momento que realiza la consulta a través de una interfaz gráfica web.

El alcance de este proyecto incluye:

- Un prototipo comercial que pueda ser instalado en los medidores de consumo eléctrico de COPELECT.
- Manual de uso e instalación.

Capítulo 2

Introducción Específica

El presente capítulo presenta los requerimientos del dispositivo, una descripción de los bloques que lo componen y la planificación que se siguió para lograr satisfactoriamente el desarrollo.

2.1. Requerimientos

El dispositivo tiene dos tipos de requerimientos, funcionales y no funcionales. Los funcionales, se refieren a la capacidad para cumplir con ciertas tareas impuestas, que garantizan un correcto desempeño del dispositivo en general. Los no funcionales, tienen relación con temas de carácter económico e informativo.

2.1.1. Requerimientos funcionales

- El dispositivo deberá poseer conexión Wi-Fi¹
- El dispositivo deberá funcionar como servidor web local.
- El dispositivo deberá contar con la hora y fecha exactas.
- El dispositivo deberá interpretar los pulsos ópticos provenientes de un medidor de consumo de energía eléctrica domiciliario.
- El dispositivo deberá poseer una memoria no volátil para registrar datos como la hora, fecha, conteo de pulsos e ID del usuario; durante al menos tres meses.
- El dispositivo deberá contar con un sistema de adquisición, procesamiento, transmisión y recepción de datos, el mismo podrá ser implementado en un microcontrolador con Wi-Fi integrado.
- El dispositivo deberá poseer una interfaz web para que los usuarios puedan observar un registro histórico de su consumo de energía eléctrica.
- El dispositivo deberá poder establecer conexión con un gateway LoRa, para enviar diariamente en formato hexadecimal la hora, fecha, consumo de energía eléctrica e ID del usuario.

2.1.2. Requerimientos no funcionales

• El dispositivo deberá tener un precio menor a 50 \$us.

¹Wi-Fi. Es una tecnología inalámbrica para la interconexión de dispositivos electrónicos.

• El dispositivo deberá contar con manuales de uso e instalación.

2.2. Esquema general del sistema

Para cumplir con todos los requerimientos funcionales expuestos en la sección anterior, los componentes mínimos necesarios y su interconexión se muestran en el diagrama en bloques de la figura 2.1.

FIGURA 2.1. Diagrama en bloques general del dispositivo.

En el diagrama anterior, el conversor óptico-eléctrico, transforma los pulsos de luz provenientes del LED de un medidor de consumo eléctrico a pulsos eléctricos y los entrega al microcontrolador. El microcontrolador procesa estos pulsos y realiza el cálculo del consumo eléctrico, esa información junto con la hora y fecha provenientes del reloj en tiempo real, son almacenados en la memoria no volátil para su posterior utilización. El transceptor Wi-Fi, se comunica con el microcontrolador para obtener los datos que serán utilizados para generar la interfaz gráfica mostrada al usuario. El transceptor LoRa, tiene la función de establecer comunicación bidireccional con un dispositivo concentrador LoRa, para enviar la información de la memoria no volátil y recibir parámetros de funcionamiento.

2.2.1. Conversor óptico-eléctrico

Es el encargado de convertir la salida de pulso óptico de medidores eléctricos digitales a pulsos eléctricos, para que puedan ser interpretados por un microcontrolador. Esta información determina el consumo eléctrico que registra el medidor.

La salida de pulso óptico de los medidores eléctricos digitales, esta compuesta por un LED de color rojo, que emite luz cuando se ha consumido una cierta cantidad de kWh. El valor de la relación entre los pulsos emitidos y el consumo eléctrico, es un parámetro intrínseco del medidor, que varía según el modelo y la firma que lo fabrica.

Para realizar la conversión de pulsos de luz a pulsos eléctricos, existen principalmente dos transductores que cumplen cabalmente esta función:

■ Fotoresistencia: es una resistencia cuyo valor se modifica en función a la intensidad de luz incidente. También es conocida como LDR (*Light-Dependent Resistor*, resistencia dependiente de la luz) [10]. En la figura 2.2 se observa una fotoresistencia.

FIGURA 2.2. Fotoresistencia GL5528².

Fototransistor: es un transistor sensible a la luz, normalmente a los infrarrojos. La cantidad de luz incidente es proporcional a la corriente de base generada. Generalmente tiene el factor de forma de un LED [10]. Un fototransistor de uso común se observa en la figura 2.3.

FIGURA 2.3. Fototransistor IR333C³.

2.2.2. Microcontrolador

2.2.3. Transceptor Wi-Fi

Wi-Fi es un tecnología de red inalámbrica, que permite a dispositivos como computadoras y teléfonos celulares conectarse entre sí para formar una red, o conectarse a un enrutador por el que se disponga de conexión a Internet. Está basado en la familia de estándares IEEE 802.11, que definen los protocolos que permiten la comunicación entre dispositivos compatibles con Wi-Fi [11]. Según la versión de Wi-Fi, puede funcionar en las bandas de 2.4 GHz o 5 GHz[11].

En la tabla 2.1 muestran las características técnicas de las distintas versiones del estándar IEEE 802.11.

²Imagen tomada de: https://www.devobox.com/en/photosensors/38-photoresistor-ldr07. html

³Imagen tomada de: https://www.steren.com.gt/fototransistor-de-5-mm-transparente.html

⁴Datos obtenidos de: https://microchipdeveloper.com/wifi:a-b-g-n-explained

Protocolo 802.11	Frecuencia	Ancho de banda	Velocidad de datos (Mb/s)
a	5 GHz	20 MHz	5, 9, 12, 18, 24, 36, 48, 54
b	2.4 GHz	20 MHz	1, 2, 5.5, 11
g	2.4 GHz	20 MHz	6, 9, 12, 18, 24, 36, 48, 54
n	2.4 GHz y 5 GHz	20 MHz y 40 MHz	7.2, 28.9, 43.3, 57.8, 65, 72.2

TABLA 2.1. Tabla comparativa de características del estándar IEEE 802.11^4

Dentro del modelo OSI⁵, Wi-Fi se encuentra en la capa física y de enlace de datos. En la figura 2.x se ve el modelo OSI.

FIGURA 2.4. Ubicación de Wi-Fi en el modelo OSI⁶.

Una red Wi-Fi tiene una arquitectura en estrella como se muestra en la figura 2.x. Los elementos principales de una red Wi-Fi son:

- Estaciones: son dispositivos electrónicos que se conectan entre sí a través de enrutadores inalámbricos. Son más conocidos como hosts y pueden ser computadoras, tabletas, teléfonos celulares o sistemas embebidos.
- Puntos de acceso: también conocidos como Access Points, son los elementos de la red que enrutan la información proveniente de las estaciones dentro de la red local o hacia otras redes.

Dentro de lo referido al desarrollo de sistemas embebidos, comercialmente pueden encontrarse módulos Wi-Fi como el de la figura 2.x.

2.2.4. Transceptor LoRa

LoRa(*Long Range*, largo alcance), es una técnica de modulación de espectro extendido derivada de la tecnología CSS (*Chirp Spread Spectrum*, espectro extendido

⁵Modelo OSI. Es un modelo de referencia para los protocolos de red, creado por la Organización Internacional de Normalización.

⁶Imagen tomada de: https://microchipdeveloper.com/wifi:80211-osi

⁷Imagen tomada de: https://www.aprendiendoarduino.com/2018/03/05/redes-lpwan/

 $^{^8} Imagen \ tomada \ de: https://www.seeedstudio.com/EMW3162-WiFi-Module-External-IPEX-antenn-p-2235. html$

FIGURA 2.5. Arquitectura LoraWAN⁷.

FIGURA 2.6. Módulo Wi-Fi basado en el circuito integrado EMW3162⁸.

de tipo chirp)[12]. Fue desarrollado por la firma Semtech y es utilizada principalmente en dispositivos orientados a IoT(*Internet of Things*, Internet de las cosas) y dispositivos alimentados por baterías. Opera en las bandas de 433 Mhz, 868 Mhz y 915 MHz, según el país.

Las comunicaciones entre dispositivos LoRa, son del tipo punto a punto, ya que la tecnología es de capa física. Para formar redes LoRa, es necesaria una capa MAC (*Media Access Control*, control de acceso al medio), la cual es llamada LoRaWAN (*Long Range Wide Area Network*, red de área amplia LoRa).

LoRaWAN, es una especificación de redes LPWAN (*Low Power Wide Area Network*, red de área amplia de baja potencia) y LoRa Alliance es la encargada de su estandarización. Está diseñada para conectar dispositivos de bajo consumo energético a Internet a través de redes regionales, nacionales o globales. Además proporciona comunicación bidireccional, seguridad, movilidad y servicios de localización[13].

En la figura 2.x se puede observar el modelo de capas de una red de dispositivos LoRa, donde el protocolo LoRa define la capa física (PHY) y LoRaWAN la capa de acceso al medio (MAC).

FIGURA 2.7. Stack LoraWAN⁹.

La arquitectura de una red LoRaWAN es de tipo estrella, como se muestra en la figura 2.x.

FIGURA 2.8. Arquitectura LoraWAN¹⁰.

De la figura anterior, se distinguen los siguientes elementos:

- Nodos: son los dispositivos que utilizan la tecnología LoRa como método de transmisión de datos. Son utilizados para obtener datos de sensores o para interactuar con actuadores. Generalmente son dispositivos de bajo consumo energético y alimentados por baterías.
- Concentradores: también conocidos como gateways, son los encargados de recibir la información de los nodos y reenviarla a un servidor de red. Estos dispositivos tienen acceso a Internet mediante redes celulares, Wi-Fi o ethernet.

 $^{^9 \}text{Imagen tomada de: } \text{https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/}$

¹⁰Imagen tomada de: https://www.aprendiendoarduino.com/2018/03/05/redes-lpwan/

- Servidores de red: son los responsables del enrutamiento de los mensajes a la aplicación adecuada, seleccionar el mejor gateway para el mensaje de enlace descendente, eliminar mensajes duplicados y descifrar los mensajes que vienen cifrados desde los nodos.
- Servidores de aplicación: es donde se realizan los procesos útiles sobre los datos obtenidos de los nodos. Típicamente se ejecutan en una nube privada o pública.

En el desarrollo de nodos para redes LoRaWAN, se utilizan módulos de desarrollo que llevan embebido un circuito integrado con tecnología LoRa, como el de la figura 2.x.

FIGURA 2.9. Módulo LoRa basado en el circuito integrado RF96¹¹.

2.2.5. Reloj en tiempo real

Más conocido como RTC (*Real-Time Clock*, reloj en tiempo real), es un circuito integrado que tiene la capacidad de llevar con precisión la hora y fecha. Para contar con exactitud los segundos, utiliza un oscilador de cristal de cuarzo de 32.768 kHz, que puede o no estar embebido en el encapsulado del RTC.

La principal aplicación de un RTC es brindar a un sistema electrónico la hora y fecha exactas, también puede ofrecer otras funciones como alarmas, salidas de reloj de 1 Hz o medición de temperatura.

Algunos RTCs tienen una fuente de poder alternativa basada en baterías, que mantiene funcionando la parte del circuito que lleva la cuenta de la hora y fecha. Esta fuente de tensión normalmente son baterías de litio o supercapacitores¹². Comercialmente un RTC puede adquirirse como parte de un módulo, como el que se ve en la figura 2.4, que tiene instalada la fuente de alimentación alternativa y brinda mayor facilidad para acceder a los pines del circuito integrado.

2.2.6. Memoria no volátil

Es un tipo de memoria de lectura y escritura, en la que los datos que tiene almacenados se mantienen intactos cuando la fuente de alimentación deja de funcionar, es decir, que no necesita energía para mantener guardada la información grabada en ella [14].

¹¹Imagen tomada de: https://www.antratek.com/rfm95-lora-module

¹²Supercapacitor. Es un capacitor que tiene valores de capacitancia muy altos, pero valores de voltaje muy bajos.

FIGURA 2.10. Módulo RTC basado en el circuito integrado DS1307.

En sistemas embebidos, existen principalmente dos tipos de memorias no volátiles:

■ EEPROM (*Electrically Erasable Programmable Read-Only Memory*, ROM borrable y programable eléctricamente): es un tipo de memoria ROM que puede ser programada y borrada mediante métodos eléctricos. Aunque puede ser leída un número ilimitado de veces, las operaciones de escritura o borrado de datos solo se pueden realizar entre cien mil y un millón de veces. Este tipo de memorias pueden encontrarse como circuitos integrados que generalmente disponen de comunicación I2C o SPI. En la figura 2.5 se aprecia un módulo EEPROM, comercialmente esta es la forma más habitual de encontrarlo.

FIGURA 2.11. Módulo EEPROM basado en el circuito integrado 24C256.

■ Flash: está basada en las memorias EEPROM y permite la lectura y escritura de múltiples posiciones de memoria de manera simultánea, gracias a ello su velocidad de funcionamiento es superior a la de su antecesor. El número de operaciones de escritura o borrado es de diez mil a un millón. Es empleada principalmente en la fabricación de memorias USB y unidades de estado sólido. Asimismo, los microcontroladores actuales tienen integrada una unidad de memoria flash para el almacenamiento de instrucciones y datos. Para la realización de pruebas y prototipos, existen comercialmente módulos de memoria flash con comunicación SPI, como el de la figura 3.6.

2.3. Planificación 15

FIGURA 2.12. Módulo flash basado en el circuito integrado W25Q16BVSIG.

2.3. Planificación

Como se explicó en la subsección 2.2, el dispositivo esta compuesto por diferentes bloques funcionales, que tienen tanto componentes de firmware como de hardware. dsadasdasd asdasdasdas dasdas dsad sad

Capítulo 3

Diseño e Implementación

- 3.1. Diseño de hardware
- 3.1.1. Conversión óptica-eléctrica
- 3.1.2. Procesamiento y transmisión
- 3.1.3. Almacenamiento
- 3.1.4. Prototipo comercial
- 3.2. Diseño de firmware
- 3.2.1. Adquisición de datos
- 3.2.2. Servidor web
- 3.2.3. Comunicación LoRa

Capítulo 4

Ensayos y Resultados

En este capítulo se presentan las pruebas y ensayos realizados para validar el correcto funcionamiento del dispositivo. También, se incluyen los resultados obtenidos y una tabla comparativa de características con otros dispositivos similares disponibles en el mercado.

4.1. Pruebas de firmware

El dispositivo está compuesto principalmente por tres bloques funcionales, cada uno tiene asociado un módulo de firmware que le permite desempeñar las tareas de adquisición de datos, interfaz web y comunicación LoRa; como se explicó en el capítulo 3. Durante el desarrollo del dispositivo, los módulos de firmware fueron sometidos a una serie de pruebas para garantizar su correcto funcionamiento, de acuerdo con la planificación del trabajo.

4.1.1. Pruebas unitarias

Como primer prueba sobre el firmware, se hicieron pruebas unitarias sobre las bibliotecas desarrolladas para el manejo de los periféricos RTC, EEPROM y LoRa. Se utilizó Ceedling para ejecutar dichas pruebas, en combinación con Gcov para generar los análisis de cobertura correspondientes. En la tabla X se pueden observar los resultados de las pruebas unitarias y en la tabla Y se exhiben los análisis de cobertura.

TABLA 4.1. caption largo más descriptivo

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

TABLA 4.2. caption largo más descriptivo

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

Estas pruebas fueron imprescindibles para asegurar que cada biblioteca interactúe correcta y eficientemente con los componentes de hardware con los que están asociados.

4.1.2. Pruebas de funcionamiento

Para la ejecución de las pruebas, se montaron en un *breadboard* los componentes de hardware asociados a los bloques funcionales del dispositivo y luego fueron conectados mediante cables de manera directa, según el diagrama presentado en la sección 3.1.5. En la figura 4.1 se observa una fotografía de los componentes del dispositivo montados y conectados en el breadboard.

FIGURA 4.1. Banco de pruebas para las pruebas de funcionamiento.

Las pruebas consistieron en monitorear la ejecución de las funciones que componen los bloques de firmware. Para este propósito, se utilizó el monitor para consola incorporado en el SDK utilizado para el desarrollo del firmware.

Para probar la ejecución de todas las funciones de los bloques de firmware, se modificó el código fuente para cumplir los siguientes requerimientos:

- Generar
- Agregar manualmente valores en la EEPROM.

.

4.2. Pruebas de hardware

Estas pruebas tuvieron como objetivo principal verificar el correcto funcionamiento de los módulos de hardware que componen el dispositivo. Asimismo, registrar las especificaciones técnicas que posteriormente servirán para comercializar el dispositivo.

Para realizar Las pruebas se realizaron sobre el prototipo comercial,

- 4.3. Pruebas funcionales de la interfaz web
- 4.4. Pruebas funcionales de campo
- 4.5. Resultado final
- 4.6. Comparación con dispositivos disponibles comercialmente

Capítulo 5

Conclusiones

5.1. Conclusiones generales

En este trabajo se logró diseñar e implementar el prototipo comercial de un dispositivo electrónico, que tiene la capacidad de utilizar la salida de pulso óptico de medidores de consumo eléctrico domiciliario para obtener, procesar y transmitir información sobre la cantidad de kWh consumidos por los abonados de COPELECT. Para este fin, se diseñaron distintos módulos de firmware y hardware, que permiten transmitir diariamente la información obtenida a los gateways LoRa-WAN propiedad de COPELECT. También, el dispositivo brinda a los abonados de COPELECT una interfaz gráfica web para conocer su consumo eléctrico de los últimos tres meses.

Durante el desarrollo del trabajo se presentó el riesgo de demora al conseguir los componentes electrónicos requeridos. Se aplicó el mecanismo de mitigación descrito en la planificación y se destinaron más recursos económicos de los previstos para poder cumplir con los plazos establecidos.

Los requerimientos del trabajo fueron cubiertos de acuerdo con la planificación, salvo los siguientes:

- Se eliminó la implementación de WPS (*Wi-Fi Protect Setup*) para suprimir cualquier tipo de interacción física del abonado con el dispositivo y evitar posibles manipulaciones incorrectas.
- La cantidad de meses visualizados en la interfaz web fue reducida de seis a tres, para exhibir más claramente los gráficos en dispositivos de pantallas pequeñas.

Para desarrollar exitosamente el trabajo, se aplicaron los conocimientos obtenidos de varias de las materias cursadas en la carrera de Especialización en sistemas embebidos. Estos fueron:

- Metodología de trabajo con repositorios locales y en la nube.
- Programación orienta a objetos en lenguaje C.
- Programación con sistemas operativos en tiempo real.
- Protocolos de comunicación I2C y SPI.
- Pruebas de software para sistemas embebidos.
- Diseño de esquemáticos y circuitos impresos basados en normas internacionales.

Por otra parte, para concluir exitosamente el trabajo también fue necesario adquirir algunos conocimientos sobre:

- Diseño de páginas web: los conocimientos adquiridos fueron útiles para crear la interfaz web embebida en el dispositivo, se obtuvieron conocimientos sobre HTML, CSS y JavaScript.
- jQuery: se aprendió a utilizar la biblioteca jQuery Mobile para suministrar funcionalidad y un aspecto pulcro a la interfaz web.
- Highcharts: utilizando esta biblioteca se pudo generar de una manera sencilla un gráfico de barras que ayuda al abonado a visualizar el consumo de kWh registrado por el dispositivo.

5.2. Próximos pasos

Como se especificó en esta memoria, el trabajo desarrollado es un prototipo comercial del dispositivo, que debe ser probado durante varios meses en un entorno real de trabajo para encontrar y solucionar posibles errores de firmware y hardware que no se presentaron en ninguna de las pruebas realizadas. Por lo tanto, posterior al periodo de pruebas del prototipo comercial el paso a seguir es la fabricación de una version final del dispositivo siguiendo buenas prácticas de manufacturabilidad.

También, existen algunas características que deben ser incorporadas para mejorar la calidad del dispositivo. Estas son:

- Implementar un mecanismo de actualización de firmware remoto, OTA (Over The Air).
- Implementar algoritmos de wear leveling para incrementar el tiempo de vida de la memoria EEPROM.
- Adecuar el dispositivo para que pueda ser utilizado en medidores de agua y gas.

Bibliografía

- [1] Wikipedia. *Vatio-hora Wikipedia, la enciclopedia libre*. Visitado el 2020-07-02. 2020. URL: https://es.wikipedia.org/wiki/Vatio-hora.
- [2] Wikipedia. *Electricity meter Wikipedia*. Visitado el 2020-07-011. 2020. URL: https://en.wikipedia.org/wiki/Electricity_meter.
- [3] Wikipedia. *Current clamp Wikipedia*. Visitado el 2020-07-011. 2020. URL: https://en.wikipedia.org/wiki/Current_clamp.
- [4] Manisha V Shinde; Pradip W Kulkarni. «Camera click energy meter reading system». En: *IEEE* (2015).
- [5] François GUILLIER's blog RSS Feed. *Electricity meter*. Visitado el 2020-07-010. 2020. URL: www.guillier.org/blog/2014/08/electricity-meter/.
- [6] OpenEnergyMonitor. *Learn* | *OpenEnergyMonitor*. Visitado el 2020-07-06. 2020. URL: https://learn.openenergymonitor.org/electricitymonitoring/pulse-counting/introduction-to-pulse-counting.
- [7] SyxthSense. Wireless Pulse Counter for Metering (PA-FL). Visitado el 2020-07-14. 2020. URL: www.syxthsense.com/wireless/pa-fl/wireless-pulse-counter-formetering//pulse-counting/introduction-to-pulse-counting.
- [8] ElkoEP. *Wireless pulse converter AirTM-100S bull ElkoEP*. Visitado el 2020-07-14. 2020. URL: https://www.elkoep.com/airtm-100s/.
- [9] Energy European Commission. Smart grids and meters Energy European Commission. Visitado el 2020-07-14. 2020. URL: https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and-meters.
- [10] Juan Carlos Rico Noguera Antonio Serna Ruíz Francisco Antonio Ros García. *Guía Práctica de Sensores*. CREACIONES COPYRIGHT, 2010. ISBN: 9788492779499. URL: https://www.casadellibro.com/libro-guia-practica-de-sensores/9788492779499/1799582.
- [11] CISCO. ¿Qué es la tecnología wifi? Definición y tipos Cisco. Visitado el 2020-07-18. 2017. URL: https://www.cisco.com/c/es_mx/products/wireless/what-is-wifi.htmlÅő.
- [12] Semtech. Semtech LoRa Technology Overview | Semtech. Visitado el 2020-07-17. 2018. URL: https://www.semtech.com/lora.
- [13] LoRa Alliance R. About LoRaWAN R | LoRa Alliance R. Visitado el 2020-07-16. 2019. URL: https://lora-alliance.org/about-lorawan.
- [14] Thomas L. Floyd. *Fundamentos de Sistemas Digitales 6 Edicion*. Prentice Hall, 2000. ISBN: 8489660212. URL: https://www.amazon.com/-/es/Thomas-L-Floyd/dp/8489660212.