Power and Sample Size

Gian Carlo Diluvi MSc Student UBC Statistics

STAT 550

Hypothesis testing

statistical hypothesis testing provides a sound framework to decide whether observed data are unreasonable under some baseline hypothesis H_0

$$H_0$$
 vs H_1 can have a huge impact!

- accused in a trial is innocent
- new drug has same effect as current treatment
- proportion of families living below poverty threshold is **small**

- accused in a trial is guilty
- new drug has a larger effect as current treatment
- proportion of families living below poverty threshold is **not small**

Uncertainty is everywhere

we do not know if H_0 is true...

this talk: why power is important, and how it is related to sample size

Low power studies are a waste of resources

power can be as low as 0.2 in fields like neuroscience [Button et al 2013] this can lead to a high rate of incorrect rejections (low positive predictive value, PPV)

50% effect:

taken from [Krzywinski and Altman 13]

Low power studies are a waste of resources

in studies with multiple outcomes often only around 10% of outcomes have an effect this can lead to over 3/3 of rejections being wrong with low power, and 1/3 with high

10% effect:

taken from [Krzywinski and Altman 13]

Too much focus is given to specificity

common procedure for hypothesis testing:

- 1. fix significance level $\,lpha$
- 2. compute critical value x^*
- 3. calculate the test statistic t(x)
- 4. if $t(x) > x^*$, reject H_0

what about the **power**?

The alternative as a means of determining power

if H_0 is not true, H_1 characterizes the true distribution of the data

A complete picture of hypothesis testing

There is no free lunch

low type I error

https://gph.is/2fgMwNJ

high power

https://gph.is/2qjWXXP

small effect detection

https://gph.is/2rXvPyi

small sample size

pick 3

https://gph.is/g/ZWdK7LL

Determining sample size

recall procedure for hypothesis testing:

- 1. fix significance level lpha
- 2. compute critical value $x^*(\alpha, n)$
- 3. calculate the test statistic t(x)
- 4. if $t(x) > x^*$, reject H_0

use it to find optimal sample size:

- 1. fix desired α , power, effect size
- 2. solve for n:

$$\mathsf{power} = \mathtt{P}\left(t(x) > x^*(lpha, n) \,|\, H_1
ight)$$

"the n that makes the probability of rejecting H_0 when it is false equal to **power**"

problem: difficult to solve for n

- 1. fix a sample size $oldsymbol{n}$
- 2. calculate critical value $x^*(\alpha, n)$
- 3. compute power, $P(t(x) > x^*(\alpha, n) | H_1)$
- 4. repeat 1-3 until computed power is at least as big as desired **power**

problem: difficult to solve for n

- 1. fix a sample size n
- 2. calculate critical value $x^*(\alpha, n)$
- 3. compute power, $P(t(x) > x^*(\alpha, n) | H_1)$
- 4. repeat 1-3 until computed power is at least as big as desired **power**

problem: difficult to solve for n

- 1. fix a sample size n
- 2. calculate critical value $x^*(\alpha, n)$
- 3. compute power, $P(t(x) > x^*(\alpha, n) | H_1)$
- 4. repeat 1-3 until computed power is at least as big as desired **power**

problem: difficult to solve for n

- 1. fix a sample size n
- 2. calculate critical value $x^*(\alpha, n)$
- 3. compute power, $P(t(x) > x^*(\alpha, n) | H_1)$
- 4. repeat 1-3 until computed power is at least as big as desired **power**

problem: difficult to solve for n

- 1. fix a sample size n
- 2. calculate critical value $x^*(\alpha, n)$
- 3. compute power, $P(t(x) > x^*(\alpha, n) | H_1)$
- 4. repeat 1-3 until computed power is at least as big as desired **power**

Conclusion

low power studies are a waste of resources

trade-off between lpha, power, n, and effect size

sample size can be used to increase power

dashboard, code, slides:

we want to sample from a population

we want to sample from a population

too small...

we want to sample from a population

too large...

we want to sample from a population

about right!

trade-off between **sample size**, how large an **error** you are willing to tolerate, and **how often**

"willing to make an error larger than — only — % of the time"

(classical textbook by [Cochran 77])