Layered Graph Drawing (Sugiyama Method)

Drawing Conventions and Aesthetics

a digraph

- A possible layered drawing
- 1. Edges pointing upward should be avoided.
- **2a.** Nodes should be evenly distributed.
- **2b.** Long edges should be avoided.
- 3. There should be as few edge crossings as possible.
- 4. Edges should be as straight/vertical as possible.

- Layered networks are often used to represent dependency relations.
- Sugiyama et al. developed a simple method for drawing layered networks in 1979.
- Sugiyama's aims included:
 - few edge crossings
 - edges as straight as possible
 - nodes spread evenly over the page
- The Sugiyama method is useful for
 - dependency diagrams
 - flow diagrams
 - conceptual lattices
 - other directed graphs: acyclic or nearly acyclic.

- Step 1
 Cycle Removal
- Step 2 Layering

- Step 1
 Cycle Removal
- Step 2 Layering
- Step 3
 Node ordering

- Step 1
 Cycle Removal
- Step 2 Layering
- Step 3 Node ordering
- Step 4
 Coordinate
 assignment

Layered Drawing of Digraphs

- Polyline drawings of digraphs with vertices arranged in horizontal layers
- Sugiyama, Tagawa and Toda '81
- Eades and Sugiyama '91
- Evolutionary algorithm approach of Branke et al.
- Magnetic field approach of Sugiyama and Misue.
- Attractive in practice: most graph drawing systemsinclude the Sugiyama method.

Step 1. Cycle Removal

- Input graph may contain cycles
 - 1. make an acyclic digraph by <u>reversing</u> some edges
 - 2. draw the acyclic graphs
 - 3. render the drawing with the original edge directions

■ Acyclic graph by reversing two edges

Step 1. Cycle Removal

- Each cycle must have at least one edge against the flow
 - We need to keep the number of edges against the flow small
- Main problem: how to choose the set of edges R so that it is small
- **■** Feedback arc set:
 - set of edges R whose <u>reversing</u> makes the digraph acyclic
- Feedback edge set:
 - set of edges whose <u>removal</u> makes the digraph acyclic
- Maximum acyclic subgraph problem
 - find a maximum set Ea such that the graph(V, Ea) contains no cycles: NP-hard
- Feedback arc set problem
 - find a minimum set Ef such that the graph(V, E \ Ef) contains no cycles: NP-hard

Step 1. Cycle Removal

- Edges in E \ Ea will be reversed
- Assume no two-cycles (or delete both two edges)
- Heuristics
 - 1. Fast heuristic
 - 2. Enhanced Greedy heuristic
 - 3. Randomized algorithm:[BS90]: O(mn) time
- Exact algorithm: [Grotschel et al 85, Reinelt 85]

1. Fast heuristic

- Maximum acyclic subgraph problem
 - equivalent to unweighted linear ordering problem: find an ordering of the vertices, a mapping o such that the # of edges (u,v), o(u) > o(v) is minimized.
- Easiest heuristic
 - take an arbitrary ordering
 - then delete the edges (u,v) with o(u) > o(v)
 - May use given ordering: BFS or DFS
 - No performance guarantee: reverse |E|-|V|-1 edges (DFS)
- Heuristic that guarantees acyclic set of size at least ½|E| [BS90]
 - Delete for every vertex either incoming or outgoing edges
 - Linear time

1. Fast heuristic [BS90]

Algorithm 8: A Greedy Algorithm

```
E_a = \emptyset;

foreach v \in V do

 \begin{vmatrix} \mathbf{if} & |\delta^+(v)| \ge |\delta^-(v)| & \mathbf{then} \\ & \text{append } \delta^+(v) & \mathbf{to } E_a; \end{vmatrix} 
 \mathbf{else}
 & \text{lappend } \delta^-(v) & \mathbf{to } E_a; \end{aligned}
 & \text{delete } \delta(v) & \text{from } G;
```

2. Enhanced greedy heuristic

- Feedback set problem: equivalent to finding a vertex sequence with as few leftward edges as possible
 - S=(v1, v2, ..., vn): vertex sequence of a digraph G
 - Leftward edge: (vi, vj) with i > j
 - set of leftward edges for a vertex sequence forms a feedback set

Greedy Cycle Removal

- Greedy cycle removal heuristic [Eades et al 93]
 - Source & sink play a special role: edges incident to source & sink cannot be part of a cycle
 - Successively remove vertices from G
 - Add each in turn, to one of two lists SI & Sr, either the end of SI or the beginning of Sr
 - Greedy: choice of vertices to be removed and the choice of the list to be added

Greedy Cycle Removal

- Greedy Cycle Removal [Eades et al 93]
 - All sinks (sources) should be added to Sr (SI)
 - Choose a vertex u whose outdeg(u)-indeg(u) is maximized and add to SI
 - performance

$$|E_a| \ge \frac{|E|}{2} + \frac{|V|}{6}.$$

- Can be implemented in linear time and space
- Sparse graph: Ea with at least 2/3|E|

Greedy Cycle Removal

Algorithm 9: An Enhanced Greedy Heuristic

Analysis

- Delete all two cycles before applying Greedy-cycleremoval
 - Two-cycle: a directed cycle with two edges
- [Theorem] G: connected digraph with n vertices & m edges without two cycles. Greedy-Cycle-Removal computes a vertex sequence S of G with at most m/2 n/6 leftward edges
- [Theorem] Greedy-Cycle-Removal can be implemented in linear time & space
- Simple & speedy
- **■** Sparse graph [EL95]

[Theorem] G: connected digraph with n vertices & m edges without two cycles. Each vertex of G has total degree at most 3. Greedy-Cycle-Removal computes a vertex sequence S of G with at most m/3 leftward edges

Step 2. Layer Assignment

- Layering: partition V into L1, L2, ..., Lh
- Layered (di)graph: digraph with layers
- Height h: # of layers
- H-layered graph: digraph with height h
- Width w: # of vertices with largest layer
- Span of an edge
- Proper digraph: no edge has a span > 1
- Some application, vertices are preassigned to layers
- However, in most applications, we need to transform an cyclic digraph into a layered digraph

Step 2. Layer Assignment

■ Requirements

- 1. Layered digraph should be compact: height & width
- 2. The layering should be proper: add dummy vertices
- 3. The number of dummy vertices should be small
 - A. time depends on the total number of vertices
 - B. bends in the final drawing occur only at dummy vertices
 - C. the number of dummy vertices on an edge measures the y extent of the edge: avoid long edge.

Methods

- 1. Longest path layering: minimize height
- 2. Layering to minimize width
- 3. Minimize the number of dummy vertices

Three Layering Algorithms

- **■** Longest Path
- Coffman-Graham
- **Network Simplex**

Grafo1012 (Di Battista et al., Computational Geometry: Theory and Applications, (7), 1997)

Longest Path Layering

Coffman-Graham Layering (1972)

Network Simplex Layering (AT&T, 1993)

ILP formulation

$$\min \sum_{(u,v)\in E} (y(u) - y(v))$$

$$y(u) \in \mathbb{Z}, \forall u \in \mathbb{V},$$

$$y(u) \ge 1, \forall u \in V,$$

$$y(u) - y(v) \ge 1, \forall (u, v) \in E.$$

1. Longest path layering

- Minimizing the height
- Place all sinks in layer L₁
- Each remaining vertex v is placed in layer L_{p+1}, where the longest path from v to a sink has length p

$$y(u) := \max\{i \mid v \in N^+(u) \text{ and } y(v) = i\} + 1$$

 $N^+(u) := \{ v \in V \mid \exists (u, v) \in E \}$

- Can be computed in linear time
- Main drawback: too wide

2. Layering to minimize width

- Finding a layering with minimum height subject to a maximum width constraint: *Precedence-constrained multiprocessor scheduling problem ->* NP-complete [GJ79]
- Coffman-Graham Layering
 - Input: reduced graph G (no transitive edges) and W
 - Output: layering of G with width at most W
 - Aim: ensure the height of the layering is kept small [LS77]
 - Two phases
 - 1. Order the vertices
 - 2. Assign layers
- Width: does not count dummy vertices

Coffman-Graham Layering

■ Simple lexicographic order:

 $S \prec T$ if either

- 1. $S = \emptyset$ and $T \neq \emptyset$, or
- 2. $S \neq \emptyset$, $T \neq \emptyset$ and $\max(S) < \max(T)$, or
- 3. $S \neq \emptyset$, $T \neq \emptyset$, $\max(S) = \max(T)$ and $S \setminus \{\max(S)\} \prec T \setminus \{\max(T)\}$
 - First phase: lexicographical ordering
 - Second phase: ensure that no layer receive more than W vertices
 - [LS77] height is not too large

$$h \le (2 - \frac{2}{w})h_{opt}$$

Coffman-Graham Layering

Algorithm 12: Coffman-Graham-Algorithm

```
foreach v \in V do \pi(v) := n + 1;
for i = 1 to |V| do
    choose a vertex v with \pi(v) = n + 1
                     and minimum set \{\pi(u) \mid (u,v) \in E\} with respect to \prec;
k := 1; L_1 := \emptyset; U := V;
while U \neq \emptyset do
    choose u \in U such that every vertex in \{v \mid (u, v) \in E\} is in V \setminus U
                                                          and \pi(u) is maximized;
    if |L_k| < w and N^+(u) \subseteq L_1 \cup L_2 \cup \dots L_{k-1} then
        add u to L_k;
```

3. Minimizing # of dummy vertices

- one can compute a layering in polynomial time that minimizes the number of dummy vertices [GKNV93]
- $\blacksquare f = \sum_{(u,v)\in V} (y(u) y(v) 1)$
- **■** f: sum of vertical spans of the edges in the layering
- # of edges : (# of dummy vertices)
- Layer assignment problem is reduced to choosing y-coordinates to minimize f
- Integer linear programming problem

Remark

Methods

- 1. Layering for general graphs [Sander 96]
- 2. Minimizing the height: Longest path layering
- 3. Layering with given width: Coffman-Graham algorithm: width is more important than height
- 4. Minimizing the total edge span (# of dummy vertices): relatively compact drawing

■ [Sander 96]

- 1. Calculate y by DFS or BFS
- 2. Calculate minimum cost spanning trees
- 3. Apply spring embedder

Step 3. Crossing Reduction

- Input: proper layered graph
- # of edge crossings does not depend on the precise position of the vertices, but only the ordering of the vertices within each layer (combinatorial, rather than geometric)
- NP-complete, even for only two layers [GJ83]
- Many heuristics
 - Layer-by-layer sweep: two layer crossing problem
 - 1. Sorting
 - 2. Barycenter method
 - 3. Median method
 - 4. Integer programming method: exact algorithm

Crossing Reduction: ordering

Layer-by-layer sweep

- A vertex ordering of layer L₁ is chosen
- \blacksquare For i = 2, 3, ..., h
 - The vertex ordering of L_{i-1} is fixed
 - Reordering the vertices in layer Li to reduce edges crossings between L_{i-1} and L_i
- Two layer crossing problem: given a fixed ordering of L_{i-1}, choose a vertex ordering of Layer L_i to minimize # of crossings
- Several variations: layer-by-layer sweep

Layer-by-layer sweep

- Step 3 uses a "layer-by-layer sweep", from bottom to top.
- At each stage of the sweep, we:
 - hold one layer fixed, and
 - Re-arrange the nodes in the layer above to avoid edge crossings.

Two layer crossing problem

Two layer crossing problem

The problem of finding an optimal solution is NP-hard.

■ Heuristics

- 1. <u>Barycenter method</u>: place each free node at the barycenter of its neighbours.
- 2. <u>Median method</u>: place each free node at the median of its neighbours.

Two layer crossing problem

- given a two-layered digraph G=(L1,L2,E) and an ordering x1 of L1, find an ordering x2 of L2, such that cross(G,x1,x2) = opt(G,x1)
 - two-layered digraph G=(L1, L2, E): a bipartite digraph
 - cross(G, x1, x2): # of crossings in a drawing of G
 - opt(G,x1): min $_{x2}$ cross(G, x1, x2)
- NP-complete: [EW94]
- Simple observation: u and v are in L2
 the # of crossings between edges incident with u and
 edges incident with v depends only on the relative
 positions of u and v and not on the other vertices

Crossing number

- Crossing number c_{uv}
 - # of crossings that edges incident to u make with edges incident v, when x2(u) < x2(v)
 - # of pairs (u,w), (v,z) of edges with x1(z) < x1(w)

\overline{C}	e	f	g
\overline{e}	0	2	1
f	1	0	2
g	0	3	0

One-sided crossing minimization

$$opt(G, \pi_1) = \min_{\pi_2} cross(G, \pi_1, \pi_2)$$

Given a bipartite Graph $G = (V_1, V_2, E)$ and a permutation π_1 of V_1 . Find a permutation π_2 of V_2 that minimizes the edge crossings in the drawing of G, i.e., $cross(G, \pi_1, \pi_2) = opt(G, \pi_1)$.

$$\operatorname{cross}(G, \pi_1, \pi_2) = \sum_{\pi_2(u) < \pi_2(v)} c_{uv} = \sum_{i=1}^{n_2 - 1} \sum_{j=i+1}^{n_2} c_{ij}$$

$$L = \sum_{\pi_2(u) < \pi_2(v)} \min\{c_{uv}, c_{vu}\}\$$

1. Sorting Method

- Aim: to sort the vertices in L2 into an order that minimizes # of crossings
- Naive algorithm: O(|E|)², can be reduced
- Adjacent-Exchange
 - exchange adjacent pair of vertices using the crossing numbers, in a way similar to bubble sort
 - Scan the vertices of L2 from left to right, exchanging an adjacent pair u, v whenever $c_{uv} > c_{vu}$
 - O(|L2|²) time

■ Split

- quick sort: choose a pivot vertex p in L2, and place each vertex u to the left of p if $c_{up} < c_{pu}$, and to the right of p otherwise
- Apply recursively to the left & right of p
- O(|L2|²) time in worst case; O((|L2|log (|L2|) in practice

Adjacent-Exchange

Algorithm 13: greedy_switch

```
repeat
```

```
for u := 1 to |V_2| - 1 do
 | \mathbf{if} \ c_{u(u+1)} > c_{(u+1)u} \mathbf{then} | 
 | \mathbf{switch} \ \mathbf{vertices} \ \mathbf{at} \ \mathbf{positions} \ u \ \mathbf{and} \ u + 1;
```

until the number of crossings was not reduced;

Split

Algorithm 14: split $(i, j : 1, ..., |V_2|)$

```
if j > i then
    pivot := low := i; high := j;
    for k := i + 1 to j do
         if c_{k \ pivot} < c_{pivot \ k} then
\pi(k) := low; \ low := low + 1;
         else
           | \pi(k) := high; \ high := high - 1; 
    /* low == high */
    \pi(pivot) := low;
    copy \pi(i \dots j) into \pi_2(i \dots j);
    split (i, low - 1);
     split (high + 1, j);
```

2. The Barycenter Method

- The most common method
- x-coordinate of each vertex u in L2 is chosen as the barycenter(average) of the x-coordinates of its neighbors
- \blacksquare x2(u) = bary(u) = 1/deg(u) Σ x1(v), v is a neighbor

$$bary(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} \pi_1(v)$$

- If two vertices have the same barycenter, then order them arbitrarily
- Can be implemented in linear time

3. The Median Method

- Similar to the barycenter method
- x-coordinate of each vertex u in L2 is chosen as the median of the x-coordinates of its neighbors
- v1, v1, ..., vj: neighbors of u with x1(v1) < x1(v2) < ... < x1(vj)
 - med(u) = x1(vj/2)
 - if u has no neighbor, then med(u) = 0
- How to use med(u) to order the vertices in L2: sort L2 on med(u)
- If med(u) = med(v)
 - Place the odd degree vertex on the left of the even degree vertex
 - If they have the same parity, choose the order of u & v arbitrarily
- Can be computed using a linear-time median finding algorithm [AHU83]

Analysis

- [Theorem]
 if opt(G,x1)= 0, then bar(G,x1)=med(G,x1)=0
- Performance guarantees

Theorem 1:

The *barycenter method* is at worst O(sqrt(n)) times optimal. □

Theorem 2:

The *median method* is at worst 3 times optimal.

$$(1) \frac{bar(G)}{opt(G)} is O(\sqrt{n})$$

$$(2) \frac{med(G)}{opt(G)} \le 3$$

■ Some intuition behind Theorem 2 (median method is at worst 3 times optimal).

■ Some intuition behind Theorem 2 (median method is at worst 3 times optimal).

■ Median placement:

■ Optimal placement:

- Median: at most 3xy crossings
- \blacksquare Optimal: at least xy+1 crossings
- <u>Theorem 2:</u> The median method is at worst 3 times optimal.
- In practice, there are many good methods, and the median is just one of them.

4. Integer Programming methods

- Integer programming approach may be used for two-layer crossing problem
- Solving integer programs require sophisticated technique: branch and cut approach can be used to obtain an optimal solution for digraphs of limited size [JM97]
- Advantage: find the optimal solution
- Disadvantage: no guarantee to terminate in polynomial time
- Successful for small to medium sized digraphs

5. Planarization method [Mutzel97]

■Use maximal planar subgraph approach

Remark

- Median method seems very attractive
- **■** Comparative tests
 - pseudo-random graphs [EK86, JM97]
 - real-world digraphs [GKNV93]
 - No single winner
- Use a hybrid approach
 - 1. Use the median method to determine the initial ordering
 - 2. Use an adjacent exchange method to refine

Step 4. Horizontal Coordinate Assignment

- Bends occur at the dummy vertices in the layering step.
- We want to reduce the angle of such bends by choosing an x-coordinate for each vertex, without changing the ordering in the crossing reduction step
- Optimization problem with constraints
 - draw each directed path as straight as possible
 - ensure the ordering in each layer (enforce minimal distance)
- It may affect the width of the drawing
- Some layered drawing requires exponential area with straight lines
- Quadratic programming problems can be solved by standard methods, but it requires considerable computational resource

Priority Barycenter Method

- Position vertices at the Barycenter of their neighbours
 - Can reuse "positions" from the ordering step
- Assign each vertex a priority
 - Priority = degree
 - Dummy vertices have the highest priority
- Enforce minimal distance between adjacent vertices
 - If two vertices are too close then move ONE of them to a safe distance
 - Move the vertex with the lower priority