Trabajo Práctico Nº 1: Lógica y Conjuntos.

Ejercicio 1.

Esta frase no es una proposición.

Indicar cuáles de las siguientes frases son proposiciones:
(a) Un cuadro tiene 3 lados.
Esta frase es una proposición.
(b) $x > 2$.
Esta frase no es una proposición.
(c) Hoy tardé más de una hora en llegar.
(C) 110y tarde mas de una nora en tiegar.
Esta frase es una proposición.
i range
(d) El mes de abril del 2019.

Ejercicio 2.

Expresar las siguientes proposiciones en forma simbólica, negarlas y retraducir su negación al lenguaje coloquial:

(a) Juana no es simpática, pero sabe bailar.

p: "Juana no es simpática".

q: "Juana sabe bailar".

Forma simbólica Proposición: p A q.

Forma simbólica Negación Proposición: $\neg (p \land q) \leftrightarrow \neg p \lor \neg q$.

Lenguaje coloquial Negación Proposición: "Juana es simpática o no sabe bailar".

(b) Los alumnos estudian los fines de semana o se divierten.

p: "Los alumnos estudian los fines de semana".

q: "Los alumnos se divierten".

Forma simbólica Proposición: p V q.

Forma simbólica Negación Proposición: $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$.

Lenguaje coloquial Negación Proposición: "Los alumnos no estudian los fines de semana y no se divierten".

(c) Si los alumnos conocen a los simuladores, entonces, los desprecian.

p: "Los alumnos conocen a los simuladores".

q: "Los alumnos desprecian a los simuladores".

Forma simbólica Proposición: $p \rightarrow q$.

Forma simbólica Negación Proposición: $\neg (p \rightarrow q) \leftrightarrow \neg (\neg p \lor q) \leftrightarrow \neg \neg p \land \neg q \leftrightarrow p \land \neg q$.

Lenguaje coloquial Negación Proposición: "Los alumnos conocen a los simuladores y no los desprecian".

Ejercicio 3.

Construir tablas de verdad de:

(a)
$$\neg$$
 ($p \land q$).

р	q	p ∧ q	$\neg (p \land q)$
V	V	V	<mark>F</mark>
V	F	F	V
F	V	F	V
F	F	F	V

(b)
$$\neg (\neg p \land \neg r) \land q$$
.

¬р	¬r	$\neg p \wedge \neg r$	¬ (¬ p ∧ ¬ r)	q	<mark>¬ (¬p ∧</mark> ¬r) ∧ q
V	V	V	F	V	F
V	F	F	V	V	V
F	V	F	V	F	F
F	F	F	V	F	F

(c)
$$(p \rightarrow q) \rightarrow r$$
.

р	q	$\mathbf{p} \longrightarrow \mathbf{q}$	r	$(\mathbf{p} \longrightarrow \mathbf{q}) \longrightarrow \mathbf{r}$
V	V	V	V	V
V	F	F	V	V
F	V	V	F	F
F	F	V	F	F

(d)
$$\neg$$
 ($p \lor q$).

p	q	p ∨ q	<mark>¬ (p ∨ q)</mark>
V	V	V	<mark>F</mark>
V	F	V	<mark>F</mark>
F	V	V	<mark>F</mark>
F	F	F	V

(e)
$$\neg q \land \neg r$$
.

Licenciatura en Informática UNLP - Matemática 0 | 4

Juan Menduiña

q	r	$\neg \mathbf{q}$	$\neg \mathbf{r}$	<mark>¬q∧¬r</mark>
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

(f) $(\neg s \land p) \lor (s \land \neg p)$.

s	¬s	p	¬р	$\neg s \wedge p$	$s \wedge \neg p$	$ \begin{array}{c} (\neg s \wedge p) \\ \lor (s \wedge \\ \neg p) \end{array} $
V	F	V	F	F	F	F
V	F	F	V	F	V	V
F	V	V	F	V	F	V
F	V	F	V	F	F	F

Ejercicio 4.

- p: "Tobi es el perro de mi amigo".
- q: "Tobi es un caniche".
- r: "Tobi es un caniche que ladra todo el tiempo".
- s: "Tobi es un perro muy divertido".

Escribir, con palabras del lenguaje coloquial, los resultados de las siguientes operaciones:

(a)
$$p \wedge q$$
.

"Tobi es el perro de mi amigo y es un caniche".

(b)
$$\neg q \lor \neg r$$
.

"Tobi no es un caniche o no es un caniche que ladra todo el tiempo".

(c)
$$\neg r \land s$$
.

"Tobi no es un caniche que ladra todo el tiempo y es un perro muy divertido".

(d)
$$q \vee s$$
.

"Tobi es un caniche o es un perro muy divertido".

Ejercicio 5.

Simbolizar las siguientes proposiciones:

(a) Si
$$5 > 3$$
, entonces, $5 - 3 \ge 0$.

p: "
$$5 > 3$$
".
q: " $5 - 3 \ge 0$ ".

$$p \rightarrow q$$
.

(b)
$$Si\ A$$
, $B\ y\ C$ son números racionales tales que $2A+3B$ - $5C$ = 0 , entonces, A = B = C = 0 .

$$q: "2A + 3B - 5C = 0"$$

r: "
$$A = B = C = 0$$
".

$$(p \land q) \rightarrow r$$
.

Ejercicio 6.

(a) Pasar a la forma si ... entonces ... y simbolizar: "Es necesario ser argentino para ser presidente de la república".

Proposición:

"Si soy presidente de la república, entonces, soy argentino".

Simbolización:

```
p: "soy presidente de la república".
q: "soy argentino".
```

 $p \rightarrow q$.

(b) Expresar y simbolizar utilizando la palabra suficiente: "Si aprobó el examen, entonces, contestó bien el 40% de sus preguntas".

Expresión:

"Es suficiente aprobar el examen para haber contestado bien el 40% de sus preguntas".

Simbolización:

```
p: "aprobó el examen".
```

q: "contestó bien el 40% de sus preguntas".

 $p \rightarrow q$.

(c) Expresar y simbolizar utilizando la palabra necesario: "Pedro es argentino sólo si es americano".

Expresión:

"Es necesario que Pedro sea americano para que sea argentino".

Simbolización:

```
p: "Pedro es argentino".
```

q: "Pedro es americano".

 $p \rightarrow q$.

Ejercicio 7.

Establecer si las siguientes fórmulas constituyen tautologías, contradicciones o contingencias.

(a)
$$(p \land q) \land (q \land p)$$
.

p	q	$\mathbf{p} \wedge \mathbf{q}$	q ∧ p	(<mark>p ∧ q) ∧ (q ∧</mark> p)
V	V	V	V	V
V	F	F	F	F
F	V	F	F	F
F	F	F	F	F

Esta fórmula constituye una contingencia, ya que los resultados de las diferentes líneas de la tabla de verdad son V y F.

(b)
$$(p \lor q) \longrightarrow p$$
.

р	q	p ∨ q	$(\mathbf{p} \lor \mathbf{q}) \longrightarrow \mathbf{p}$
V	V	V	V
V	F	V	V
F	V	V	F F
F	F	F	V

Esta fórmula constituye una contingencia, ya que los resultados de las diferentes líneas de la tabla de verdad son V y F.

(c)
$$(q \rightarrow p) \lor p$$
.

p	q	$\mathbf{q} \rightarrow \mathbf{p}$	$(\mathbf{q} \longrightarrow \mathbf{p}) \lor \mathbf{p}$
V	V	V	V
V	F	V	V
F	V	F	F F
F	F	V	V

Esta fórmula constituye una contingencia, ya que los resultados de las diferentes líneas de la tabla de verdad son V y F.

Ejercicio 8.

Encontrar proposiciones equivalentes usando las leyes de De Morgan y sustituciones adecuadas:

(a)
$$p \land \neg q$$
.

$$[p \land \neg q] \longleftrightarrow [\neg (\neg p \lor q)].$$

р	Q	¬р	$\neg \mathbf{q}$	<mark>p ∧ ¬q</mark>	$\neg (\neg p \lor q)$
V	V	F	F	F .	F .
V	F	F	V	V	V
F	V	V	F	F F	F
F	F	V	V	F .	F

(b)
$$\neg$$
 (\neg *p* \land *q*).

$$[\neg (\neg p \land q)] \leftrightarrow [p \lor \neg q].$$

p	q	¬р	¬q	$\neg p \wedge q$	<mark>¬ (¬p ∧</mark> q)	<mark>p ∨ ¬q</mark>
V	V	F	F	F	V	V
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	F	V	V

(c)
$$(p \land q) \lor q$$
.

$$[(p \land q) \lor q] \longleftrightarrow [\lnot [\lnot (p \land q) \land \lnot q]] \longleftrightarrow [\lnot [(\lnot p \lor \lnot q) \land \lnot q]].$$

p	q	¬р	¬q	p ∧ q	$(\mathbf{p} \wedge \mathbf{q})$ $\vee q$	¬ p ∨ ¬ q	$ \begin{array}{c} (\neg p \lor \\ \neg q) \land \\ \neg q \end{array} $	<mark>¬ [(¬p</mark> ∨ ¬q) ∧ ¬q]
V	V	F	F	V	V	F	F	V
V	F	F	V	F	F	V	V	F
F	V	V	F	F	V	V	F	V
F	F	V	V	F	F	V	V	F

(d)
$$(p \land q) \land (q \land \neg p)$$
.

$$[(p \land q) \land (q \land \neg p)] \longleftrightarrow [\neg [\neg (p \land q) \lor \neg (q \land \neg p)]] \longleftrightarrow [\neg [(\neg p \lor \neg q) \lor (\neg q \lor p)]].$$

Licenciatura en Informática UNLP - Matemática 0 | 10

Juan Menduiña

р	q	¬р	¬q	p ∧ q	q ∧ ¬ p	(p ∧ q) ∧ (q ∧ ¬p)	¬ p ∨ ¬ q	¬q∨ p	(¬p ∨ ¬q) ∨ (¬q ∨ p)	
V	V	F	F	V	F	F	F	V	V	F
V	F	F	V	F	F	F	V	V	V	F
F	V	V	F	F	V	F	V	F	V	F
F	F	V	V	F	F	F	V	V	V	F

Ejercicio 9.

Determinar, en cada caso, si la información que se da es suficiente para conocer el valor de verdad de las siguientes proposiciones compuestas. Justificar la respuesta.

(a)
$$(p \land q) \rightarrow r$$
, $r \in V$.

r	р	q	$\mathbf{p} \wedge \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \longrightarrow \mathbf{r}$
V	V	V	V	V
V	V	F	F	V
V	F	V	F	V
V	F	F	F	V

Por lo tanto, la información que se da es suficiente para conocer el valor de verdad de la proposición.

(b)
$$(p \land q) \longrightarrow (p \lor r)$$
, $p \ es \ V \ y \ r \ es \ F$.

p	r	q	p ∧ q	p∨r	$\frac{(\mathbf{p} \wedge \mathbf{q}) \longrightarrow}{(\mathbf{p} \vee \mathbf{r})}$
V	F	V	V	V	V
V	F	F	F	V	V

Por lo tanto, la información que se da es suficiente para conocer el valor de verdad de la proposición.

(c)
$$(p \lor q) \leftrightarrow (\neg p \lor \neg q)$$
, $q es V$.

q	р	¬q	¬р	$\mathbf{p} \lor \mathbf{q}$	$\neg p \lor \neg q$	$(\mathbf{p} \vee \mathbf{q})$ $\longleftrightarrow (\neg \mathbf{p} \vee \neg \mathbf{q})$
V	V	F	F	V	F	F
V	F	F	V	V	V	V

Por lo tanto, la información que se da no es suficiente para conocer el valor de verdad de la proposición.

Ejercicio 10.

Expresar mediante cuantificadores, esquemas proposicionales, conectivos, además usar equivalencias lógicas para expresar, de manera condicional, las siguientes proposiciones:

(a) Todos los hombres son mortales.

```
U: {hombres}.

p (x): "x es hombre".

q (x): "x es mortal".

\forall x \in U: (si p (x) \Longrightarrow q (x)).
```

(b) Hay algún número que no es primo.

```
U: {conjunto de números naturales}.

p (x): "x es un número primo".

q (x): "x es un número natural".

\exists x \in U: (si p (x) \Longrightarrow q (x)).
```

Ejercicio 11.

Sean los esquemas p(x): x + 4 = 3 y q(x): $x^2 - 1 = 0$.

(a) ¿Existe un universo en el cual la proposición $\forall x$: $(p(x) \land q(x))$ resulte verdadera? Justificar.

p (x):
$$x + 4 = 3 \implies x = -1$$
.
q (x): $x^2 - 1 = 0 \implies x = [-1; 1]$.
U: $\{-1\}$.

(b) Hallar un universo U en el cual la proposición anterior sea falsa. Justificar.

U: {conjunto de números reales menos el -1}.

Ejercicio 12.

A partir de los enunciados, simbolizar y obtener conclusiones:

(a) Si Juan nació en Mendoza, entonces, es argentino. Juan nació en Mendoza.

Simbolización:

```
p: "Juan nació en Mendoza". VERDADERA.
```

q: "Juan es argentino".

 $p \rightarrow q$. VERDADERA.

Conclusión:

q: "Juan es argentino".

(b) Si Juan nació en Mendoza, entonces, es argentino. Juan no es argentino.

Simbolización:

p: "Juan nació en Mendoza".

q: "Juan es argentino". FALSA.

 $p \rightarrow q$. VERDADERA.

Conclusión:

¬p: "Juan no nació en Mendoza".

Ejercicio 13.

(a) *Juan y x fueron al teatro.*

Esta expresión es un esquema proposicional.

(b) *x es perro*.

Esta expresión es un esquema proposicional.

(c) Distancia del punto P a x es igual a 2. (El punto P es conocido).

Esta expresión es un esquema proposicional.

(d)
$$x \ge 0 \land x \le 3$$
.

Esta expresión es un esquema proposicional.

Ejercicio 14.

En cada caso, decir si se trata de esquemas, en tal caso transformarlo en una proposición. Usar constantes adecuadas. Dar un universo y aplicar cuantificadores. Hallar el valor de verdad de la proposición.

(a)
$$P(n)$$
: $n + 1 > n$.

Es un esquema proposicional.

U: {conjunto de números reales}.
$$\forall x \in U$$
: (P (n)).

El valor de verdad de la proposición es VERDADERO.

(b)
$$Q(n)$$
: $n^2 + 1$.

No es un esquema proposicional.

(c)
$$R(n)$$
: $n^2 - 3n + 2 = 0$.

Es un esquema proposicional.

U:
$$\{1, 2\}$$
. \forall x ∈ U: (R (n)).

El valor de verdad de la proposición es VERDADERO.

(d) S (n): n es un número racional.

Es un esquema.

U: {conjunto de números racionales}.
$$\forall x \in U$$
: (S (n)).

El valor de verdad de la proposición es VERDADERO.

Ejercicio 15.

Simbolizar utilizando esquemas, cuantificadores y conectivos lógicos y dar un universo.

(a) Hay objetos rojos y, además, hay objetos verdes.

U: {conjunto de objetos rojos; conjunto de objetos verdes}. p (x): "x es rojo".

q(x): "x es verde".

 $\forall x \in U: (p(x) \lor q(x)).$

(b) Hay números pares o todos los números son múltiplos de 3.

U: {conjunto de números naturales múltiplos de 2; conjunto de números naturales múltiplos de 3}.

p (x): "x es par".

q (x): "x es múltiplo de 3".

 $[\exists \ x \in U: (p(x))] \lor [\forall \ x \in U: (q(x)].$

(c) No todos los números son múltiplos de 5.

U: {conjunto de números naturales}. p (x): "x es múltiplo de 5".

$$[\exists x \in U: (\neg p(x))] \Leftrightarrow [\neg (\forall x) \in U: (\neg p(x))].$$

(d) Todos los números no son múltiplos de 5.

U: {conjunto de números naturales no múltiplos de 5}. p (x): "x es múltiplo de 5".

$$[\forall x \in U: (\neg p(x))] \Leftrightarrow [\neg (\exists x) \in U: (p(x))].$$

(e) Algunos hombres son aburridos.

 $U{:}\;\{hombres\}.$

p (x): "x no es aburrido".

 $[\exists \ x \in U: (\neg \ p \ (x))] \Longleftrightarrow [\neg \ (\forall \ x) \in U: (p \ (x))]$

(f) Ninguna persona es perfecta.

U: {personas}. p(x): "x es perfecta".

$$[\forall \ x \in \mathrm{U} \colon (\neg \ p \ (x))] \Longleftrightarrow [\neg \ (\exists \ x) \in \mathrm{U} \colon (p \ (x))].$$

(g) No todo número real es un número racional.

U: {conjunto de números reales}. p (x): "x es un número racional".

$$[\exists \ x \in U: (\neg \ p \ (x))] \Longleftrightarrow [\neg \ (\forall \ x) \in U: (p \ (x))].$$

(h) Todos los números primos son impares excepto el 2.

U: {conjunto de números primos menos el 2}. p (x): "x no es un número impar".

$$[\forall \ x \in U : (\neg \ p \ (x))] \Longleftrightarrow [\neg \ (\exists \ x) \in U : (p \ (x))].$$

Ejercicio 16.

Escribir por extensión los siguientes conjuntos:

(a) $A = \{x: x \text{ es una letra de la palabra FACULTAD}\}.$

$$A = \{F, A, C, U, L, T, A, D\}.$$

(b) $B = \{x: x \text{ es una cifra del número } 3.502.332\}.$

$$B = \{3, 5, 0, 2\}.$$

(c) $C = \{x: x \text{ es diptongo de la palabra VOLUMEN}\}.$

$$C=\{\}.$$

Ejercicio 17.

Dados los conjuntos $A = \{1, 2, 3\}$, $B = \{1, 2, 4, 5\}$ y $C = \{2, 4\}$, calcular los conjuntos $A \cap B$, $A \cup B$, A - B, $C_B C$, B - A, $A \cap B \cap C$, A - (B - C), (A - B) - C, B - C. Comparar los resultados y obtener conclusiones posibles.

- (a) $A \cap B$.
- $A \cap B = \{1, 2\}.$
- **(b)** $A \cup B$.
- $A \cup B = \{1, 2, 3, 4, 5\}.$
- (c) A B.
- $A B = \{3\}.$
- (d) C_BC .
- $C_BC = \{1, 5\}.$
- (e) B A.
- $B A = \{4, 5\}.$
- (f) $A \cap B \cap C$.
- $A \cap B \cap C = \{2\}.$
- (g) A (B C).
- $A (B C) = \{2, 3\}.$
- **(h)** (A B) C.

$$(A - B) - C = \{3\}.$$

B -
$$C = \{1, 5\}.$$

Ejercicio 18.

Considerando como conjunto Universo a aquel comprendido por todas las letras del alfabeto castellano y los siguientes conjuntos $A = \{x: x \text{ es vocal}\}$, $B = \{a, e, o\}$, $C = \{i, u\}$, $D = \{x: x \text{ es letra de la palabra murciélago}\}$ $y E = \{x: x \text{ es consonante}\}$, dar por extensión:

(a) $A \cap B$.

 $A \cap B = \{a, e, o\}.$

(b) $A \cup B$.

 $A \cup B = \{a, e, i, o, u\}.$

(c) A - B.

 $A - B = \{i, u\}.$

(d) $C \cup D$.

 $C \cup D = \{m, u, r, c, i, e, l, a, g, o\}.$

(e) *E* - *A*.

 $E - A = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}.$

(f) *E* - *D*.

 $E - D = \{b, d, f, h, j, k, n, p, q, s, t, v, w, x, y, z\}.$

Ejercicio 19.

Jujuy \in {x: x es provincia de Argentina}.

(h)

(i)

 $2 \in \{1,2\} \cup \{1,6\}.$

(j)

 $a \notin \{\{a\}\}.$

(k)

 $\{a\} \in \{\{a\}\}.$

Ejercicio 20.

¿Cómo se puede traducir las leyes de De Morgan con la notación de conjuntos?

$$x \notin (A \cup B) \Leftrightarrow x \notin A \cap x \notin B.$$

 $(A \cup B)^c \Leftrightarrow A^c \cap B^c.$

$$x \notin (A \cap B) \Leftrightarrow x \notin A \cup x \notin B.$$

 $(A \cap B)^c \Leftrightarrow A^c \cup B^c.$

Ejercicio 21.

Sean A y B dos conjuntos no vacíos tales que $A \subseteq B$. Determinar, si es posible, el valor de verdad de los siguientes enunciados. Justificar la respuesta.

(a)
$$\exists x : (x \in A \land x \notin B)$$
.

El valor de verdad de este enunciado es FALSO, ya que, si *x* pertenece al conjunto A, entonces, también pertenece al conjunto B.

(b)
$$\exists x : (x \in B \land x \notin A)$$
.

El valor de verdad de este enunciado es VERDADERO, ya que puede existir *x* perteneciente al conjunto B que no pertenezca al conjunto A.

(c)
$$\forall x : (x \notin B \longrightarrow x \notin A)$$
.

El valor de verdad de este enunciado es VERDADERO, ya que, si *x* no pertenece al conjunto B, entonces, tampoco pertenece al conjunto A.

(d)
$$\forall x : (x \notin A \longrightarrow x \notin B)$$
.

El valor de verdad de este enunciado es FALSO, ya que, si *x* no pertenece al conjunto A, puede pertenecer al conjunto B.

Ejercicio 22.

(h) $f \in C_{\mathcal{U}}C$.

(i)
$$c \in C - B$$
.

Esta información no es cierta.

(j)
$$a \in C \cap B$$
.

Esta información es cierta.

(k)
$$b \in C_B A$$
.

Esta información no es cierta.

(I)
$$d \notin A \cap C$$
.

Esta información es cierta.

Ejercicio 23 (Adicional).

Indicar los valores de verdad de todas las proposiciones que intervienen para que la proposición $p \rightarrow (q \lor r)$ resulte falsa.

$\mathbf{p} \longrightarrow (\mathbf{q} \lor \mathbf{r})$	p	q∨r	${f q}$	r r
F	V	F	<mark>F</mark>	F

Los valores de verdad de p, q y r son verdadera, verdadera y falsa, respectivamente.

Ejercicio 24 (Adicional).

Marcar las afirmaciones correctas:

- Una conjunción es verdadera sólo si las dos proposiciones que la componen lo son.

ESTA AFIRMACIÓN ES CORRECTA.

- *Una conjunción es falsa si las dos proposiciones componentes lo son.* ESTA AFIRMACIÓN ES CORRECTA.
- Una disyunción es falsa sólo si todas las proposiciones que la componen lo son. ESTA AFIRMACIÓN ES CORRECTA.
- *Una conjunción es falsa si algunas las proposiciones componentes lo son.* ESTA AFIRMACIÓN ES CORRECTA.
- *Una disyunción es verdadera sólo si lo son todas las proposiciones componentes.* ESTA AFIRMACIÓN ES INCORRECTA.
- Una disyunción es verdadera sólo si lo son algunas las proposiciones componentes.

ESTA AFIRMACIÓN ES INCORRECTA.

- Un condicional es falso si el antecedente es verdadero y el consecuente es verdadero.

ESTA AFIRMACIÓN ES INCORRECTA.

- *Un condicional es verdadero si el antecedente es falso.* ESTA AFIRMACIÓN ES CORRECTA.
- *Un condicional es falso si el antecedente es verdadero.* ESTA AFIRMACIÓN ES INCORRECTA.
- *Un bicondicional es verdadero si ambos componentes son verdaderos.* ESTA AFIRMACIÓN ES CORRECTA.
- Un bicondicional es verdadero si ambos componentes tienen el mismo valor de verdad.

ESTA AFIRMACIÓN ES CORRECTA.

- *Un bicondicional es falso si ambos componentes son falsos.* ESTA AFIRMACIÓN ES INCORRECTA.

Ejercicio 25 (Adicional).

La proposición $\neg p \rightarrow (q \lor r)$ es falsa. ¿Qué sucede con las siguientes proposiciones?

$\neg p \longrightarrow (q \lor r)$	¬р	q∨r	p	q	r
F	V	F	F	F	F

(a)
$$p \rightarrow q$$
.

p	q	$\mathbf{p} \longrightarrow \mathbf{q}$
F	F	$\overline{\mathbf{V}}$

Esta proposición es VERDEDERA.

(b)
$$(p \land \neg q) \lor \neg r$$
.

p	q	r	$\neg q$	$\neg \mathbf{r}$	p ∧ ¬ q	(p ∧ ¬q) ∨ ¬r
F	F	F	V	V	F	V

Esta proposición es VERDEDERA.

(c)
$$(\neg p \lor q) \longrightarrow r$$
.

p	q	r	¬р	$\neg \mathbf{p} \lor \mathbf{q}$	$\frac{(\neg \mathbf{p} \lor \mathbf{q})}{\rightarrow \mathbf{r}}$
F	F	F	V	V	<mark>F</mark>

Esta proposición es FALSA.

(**d**)
$$\neg q \longrightarrow p$$
.

р	q	$\neg q$	$\neg q \rightarrow p$
F	F	V	<mark>F</mark>

Esta proposición es FALSA.

Ejercicio 26 (Adicional).

Analizar si las siguientes proposiciones son equivalentes: $\neg (p \land q) y \neg p \land \neg q$.

p	\mathbf{q}	¬р	¬q	p ∧ q	$\neg (\mathbf{p} \wedge \mathbf{q})$	<mark>¬p ∧ ¬q</mark>
V	V	F	F	V	F	F
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	F	V	V

Por lo tanto, estas proposiciones no son equivalentes.

Ejercicio 27 (Adicional).

Para cada una de las siguientes proposiciones, dar el valor de verdad para un conjunto universal apropiado y simbolizar usando esquemas proposicionales y cuantificadores:

(a) Todos los números son amigos.

```
U: {conjunto de números naturales}. p (x): "x es amigo".
```

$$\forall \ x \in U \colon (p \ (x)).$$

El valor de verdad de esta proposición es FALSO.

(b) Algunos números son perfectos.

```
U: {conjunto de números naturales}. p (x): "x es perfecto".
```

```
\exists x \in U: (p(x)).
```

El valor de verdad de esta proposición es VERDADERO.

(c) Los números y los matemáticos son irracionales.

```
U_x: {conjunto de números irracionales}.
```

 U_{ν} : {matemáticos}.

p (x): "x es irracional".

q (y): "y es irracional".

$$\forall x \in U_x, \forall y \in U_y$$
: $(p(x) \land q(y))$.

El valor de verdad de esta proposición es FALSO.

Ejercicio 28 (Adicional).

(a) Simbolizar la siguiente proposición, usando proposiciones simples y/o esquemas proposicionales, cuantificadores y dar un universo: "Hay ingresantes que cursan COC pero no cursan EPA".

```
U: {ingresantes}.

p (x): "x cursa COC".

q (x): "x cursa EPA".

\exists x \in U: (p(x) \land \neg (q(x))).
```

(b) Negar la proposición anterior de forma simbólica y coloquial.

Forma simbólica:

$$[\neg [\exists x \in U: (p(x) \land \neg (q(x)))]] \Leftrightarrow [\forall x \in U: \neg (p(x) \land \neg (q(x)))] \Leftrightarrow [\forall x \in U: (\neg (p(x)) \lor q(x))].$$

Forma coloquial:

"Todos los ingresantes o no cursan COC o cursan EPA".

Ejercicio 29 (Adicional).

Considerando como conjunto Universo a aquel comprendido por todas las letras del alfabeto castellano y los siguientes conjuntos $A = \{x: x \text{ es vocal}\}$, $B = \{a, e, o\}$, $C = \{i, u\}$, $D = \{x: x \text{ es letra de la palabra "murciélago"}\}$ y $E = \{x: x \text{ es consonante}\}$, indicar si las siguientes afirmaciones son correctas.

(a) La intersección entre B y C es vacía.

Esta afirmación es CORRECTA.

(b) La unión entre A y E es igual al Universo.

Esta afirmación es CORRECTA.

(c) El complemento de C respecto de A es igual a D.

Esta afirmación es INCORRECTA.