MTH5105 Differential and Integral Analysis 2009-2010

Exercises 2

There are two sections. Questions in Section 1 will be marked and will form your coursework mark. Questions in Section 2 are voluntary but highly recommended.

1 Exercise for Feedback/Assessment

- 1) Suppose that $f:[0,1]\to\mathbb{R}$ is continuously differentiable.
 - (a) Show that there is some number M such that $|f'(x)| \leq M$ for all x. [8 marks]
 - (b) Using the Mean Value Theorem, or otherwise, prove that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x, y \in [0, 1]$. [12 marks]

2 Extra Exercises

2) Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable with

$$f' = g$$
 and $g' = -f$.

Show that between every two zeros of f there is a zero of g and between every two zeros of g there is a zero of f.

3) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable (f'' = (f')') with

$$f(0) = f'(0) = 0$$
 and $f(1) = 1$.

Show that there exists a $c \in (0,1)$ such that f''(c) > 1.

The deadline is 5.00pm (strict) on Monday 1st February. Please hand in your coursework to the red coursework box on the ground floor.