Analysis of RNA-seq data

Day 3 recap

CAMBRIDGE INSTITUTE

Case Study

Transcriptomic Profiling of Mouse Brain During Acute and Chronic Infections by *Toxoplasma gondii* Oocysts

Rui-Si Hu¹-², Jun-Jun He¹*, Hany M. Elsheikha³, Yang Zou¹, Muhammad Ehsan¹, Qiao-Ni Ma¹, Xing-Quan Zhu¹-⁴ and Wei Cong⁵*

Bioinformatics Analysis Workflow

Two Factor Models

Additive model: gene expression changes with status and time point, but the difference in gene expression difference between infected and uninfected is the same irregardless of the time point

Interaction model: gene expression changes with status and time point, but the difference in gene expression between infected and uninfected changes depending on the time point

DESeq2 | Models and Hypothesis Testing | Two-Factor Additive Model

$$log_2(q) = eta_0 + eta_1 imes Status + eta_2 imes TimePoint$$

Formula syntax:

~ Status + TimePoint

Null hypothesis:

Infected vs Uninfected $\beta_1 = 0$

d33 vs d11 $\beta_2 = 0$

DESeg coefficient names:

$$\beta_0 \rightarrow Intercept$$

$$\beta_1 \rightarrow$$

Status_Infected_vs_Uninfected

$$\beta_2 \rightarrow \text{TimePoint_d33_vs_d11}$$

DESeq2 | Models and Hypothesis Testing | Two-Factor Interaction Model

$$log_2(q) = eta_0 + eta_1 * Status + eta_2 * TimePoint + eta_3 * Status : TimePoint$$

Formula syntax:

- ~ Status + TimePoint + Status:TimePoint
- ~ Status * TimePoint

Null hypothesis:

Infected vs Uninfected (<u>d11</u>) $\beta_1 = 0$

Infected vs Uninfected (d33) $\beta_1 + \beta_3 = 0$

d33 vs d11 (<u>Uninfected</u>) $\beta_2 = 0$

d33 vs d11 (Infected) $\beta_2 + \beta_3 = 0$

Interaction ("Difference of differences") $\beta_3 = 0$

DESeq2 | Models and Hypothesis Testing

- Considered Experimental Design
- Check your analysis through its process
- Select the simplest appropriate model for your data which best describes the majority of genes
- Know when to visit a bioinformatician or statistician.