СРЕДСТВА ОХРАННОЙ, ПОЖАРНОЙ И ОХРАННО-ПОЖАРНОЙ СИГНАЛИЗАЦИИ

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

Издание официальное

УДК 614.842.43:006.354 Группа П77

межгосударственный стандарт

СРЕДСТВА ОХРАННОЙ, ПОЖАРНОЙ И ОХРАННО-ПОЖАРНОЙ СИГНАЛИЗАЦИИ

ГОСТ 26342—84

Типы, основные параметры и размеры

ОКП 43 7100,43 7200

Срок действия с 01.01.86

Настоящий стандарт распространяется на технические средства охранной, пожарной и охранно-пожарной сигнализации обыкновенного, пыле- и водозащищенного исполнения по ГОСТ 12997 [извещатели, приборы приемно-контрольные и др. (далее в тексте — технические средства)], предназначенные для защиты объектов народного хозяйства, квартир и других мест хранения личного имущества граждан от несанкционированного проникновения человека (далее в тексте — проникновение) и (или) пожара, и устанавливает типы, основные параметры и размеры этих средств.

Требования настоящего стандарта являются обязательными, кроме требований пп. 2.2.7, 2.2.18, 2.2.28.

Стандарт не распространяется на технические средства специального назначения.

Термины, применяемые в настоящем стандарте, и их определения приведены в справочном приложении 1.

Классификация технических средств приведена в справочном приложении 2.

(Измененная редакция, Изм. № 1, 2).

1. ТИПЫ

1.1. Типы технических средств и их обозначения приведены в табл. 1.

Таблица 1

Наименование типа технических средств	Обозначение	Код ОКП
Извещатели:	И	
охранные	ИО	437210—437215
пожарные	ИП	437110—437114
охранно-пожарные	ИОП	437210, 437213, 437215
Приборы приемно-контрольные:	ППК	
охранные	ППКО	437241
охранно-пожарные	ППКОП	437241
пожарные	ППКП	437131
Приборы управления пожарные	ПУ	437132
Оповещатели:	ОП	
охранные	ОПО	437243—437246
пожарные	ОПП	437133—437136
охранно-пожарные	ОПОП	437243—437246
Шифрустройства	ШУ	437291
Системы передачи извещений о проникновении	СПИ	437250—437252
пожаре		

Издание официальное

Перепечатка воспрещена

 \star

© Издательство стандартов, 1984 © ИПК Издательство стандартов, 2002

Наименование типа технических средств	Обозначение	Код ОКП
Составные части систем передачи извещений о проникновении и пожаре:		
устройства оконечные объектовые	УОО	437253—437254
ретрансляторы	P	437255—437256
устройства оконечные пультовые	УОП	437253—437254
Пульты централизованного наблюдения	ПЦН	437257—437258

Примечания:

- 1. Пульты централизованного наблюдения допускается включать в состав систем передачи извещений с выполнением ими функций пультового оконечного устройства.
- 2. В технически обоснованных случаях в стандартах и технических условиях на технические средства допускается устанавливать типы технических средств, отличные от установленных в настоящем пункте.

(Измененная редакция, Изм. № 1, 2).

2. ОСНОВНЫЕ ПАРАМЕТРЫ ОХРАННЫХ И ОХРАННО-ПОЖАРНЫХ ИЗВЕЩАТЕЛЕЙ

2.1. Точечные охранные извещатели

- 2.1.1. Максимальное число срабатываний электроконтактных извещателей должно быть не менее 10^5 , из них не менее $0.15 \cdot 10^5$ под максимальной электрической нагрузкой.
- 2.1.2. Максимальное число срабатываний магнитоконтактных извещателей определяют по типу используемого геркона, оно должно быть не менее 10^5 под электрической нагрузкой, которую указывают в технических условиях на извещатели конкретного типа.

Для вновь разрабатываемых извещателей максимальное число срабатываний должно быть не менее 10^6 .

(Измененная редакция, Изм. № 1).

2.1.3. Выходное электрическое сопротивление электроконтактных и магнитоконтактных извещателей должно быть:

не более 0.5 Ом при токе (100 ± 10) мА — при замкнутых контактах (в дежурном режиме); не менее 200 кОм — при разомкнутых контактах (в режиме «Тревога»).

(Измененная редакция, Изм. № 2).

- 2.1.4. Максимальное значение силы постоянного и переменного тока, проходящего через контакты извещателя, выбирают из следующего ряда: 0,03; 0,05; 0,1; 0,2 А.
- 2.1.5. Максимальное значение подаваемого на контакты извещателя напряжения постоянного и переменного тока выбирают из следующего ряда: 60; 72 В.

2.1.4, 2.1.5. (Измененная редакция, Изм. № 1).

- 2.1.6. Минимальные значения силы тока и напряжения, подаваемых на контакты электроконтактного извещателя, устанавливают в стандартах и технических условиях на извещатели конкретных типов
- 2.1.7. Минимальное значение силы постоянного и переменного тока, проходящего через контакты магнитоконтактного извещателя, -0.1 мА.
- 2.1.8. Минимальное значение подаваемого на контакты магнитоконтактного извещателя напряжения постоянного и переменного тока $10~\mathrm{B}.$

2.2. Линейные, поверхностные и объемные охранные и охранно-пожарные извещатели

- 2.2.1. Максимальное значение рабочей дальности действия (длины зоны обнаружения) извещателей для закрытых помещений выбирают из следующих рядов:
 - 4; 6; 8; 10; 12 м для извещателей малой дальности действия;
 - 15; 20; 30 м для извещателей средней дальности действия;
 - 40; 50; 60; 100; 150; 200 м для извещателей большой дальности действия.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

- 2.2.2. Максимальное значение рабочей дальности действия (длины зоны обнаружения) извещателей для открытых площадок и периметров объектов выбирают из следующих рядов:
 - 20; 30; 50 м для извещателей малой дальности действия;

100; 150; 200 м — для извещателей средней дальности действия;

300; 500 м — для извещателей большой дальности действия.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

- 2.2.3. Максимальное значение ширины зоны обнаружения и при необходимости допускаемые отклонения данного параметра для радиоволновых и ультразвуковых извещателей устанавливают в стандартах и технических условиях на извещатели конкретных типов.
 - 2.2.1, 2.2.2, 2.2.3. (Измененная редакция, Изм. № 2).
 - 2.2.4. (Исключен, Изм. № 2).
- 2.2.5. Контролируемую площадь для ударно-контактных, магнитоконтактных, электромагнитных бесконтактных и пьезоэлектрических извещателей (для одного извещателя) выбирают из следующего ряда: 2; 4; 5; 6; 8; 10; 12; 16; 20; 24 м².

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

2.2.6. Контролируемую площадь для оптико-электронных, радиоволновых, пьезоэлектрических для защиты капитальных конструкций и ультразвуковых поверхностных извещателей выбирают из следующего ряда: 10; 25; 40; 60; 90; 120; 150; 180; 250; 300; 400; 500; 750; 1000; 1500 м².

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

- 2.2.5, 2.2.6. (Измененная редакция, Изм. № 1, 2).
- 2.2.7. Контролируемый объем для оптико-электронных, радиоволновых и ультразвуковых объемных извещателей выбирают из следующего ряда: 20; 40; 50; 100; 150; 200; 250; 400; 1000; 2500; 4000; 5000 м³.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

- 2.2.8. Верхнюю границу скорости перемещения человека в зоне обнаружения извещателя, при которой должен сработать извещатель, выбирают из следующих рядов:
- 2; 3 м/с для извещателей для закрытых помещений малой и средней дальности действия, а также для оптико-электронных извещателей большой дальности действия;
 - 3; 5; 7; 10 м/с для извещателей для открытых площадок и периметров объектов.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

2.2.9. Нижнюю границу скорости перемещения человека в зоне обнаружения извещателя, при которой должен сработать извещатель, выбирают из следующего ряда: 0,1; 0,2; 0,3; 0,4; 0,5 м/с.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

Для активных однопозиционных, регистрирующих прекращение потока энергии оптического излучения, и двухпозиционных оптико-электронных извещателей нижнюю границу скорости перемещения человека в зоне обнаружения извещателя не устанавливают.

- 2.2.7, 2.2.8, 2.2.9. (Измененная редакция, Изм. № 2).
- 2.2.10. Чувствительность линейных и объемных извещателей (за исключением емкостных и емкостно-индуктивных) определяется срабатыванием извещателя при перемещении человека (объекта обнаружения) в его зоне обнаружения или при пересечении луча человеком (объектом обнаружения) со скоростью от нижней до верхней границы скорости перемещения человека в зоне обнаружения извещателя. Значения нижней и верхней границы скорости перемещения человека в зоне обнаружения извещателя, выбранные в соответствии с требованиями пп. 2.2.8, 2.2.9, устанавливают в стандартах и технических условиях на извещатели конкретных типов.

Чувствительность вновь разрабатываемых объемных извещателей определяется величиной скорости перемещения человека (объекта обнаружения) при установленных скоростях перемещения в зоне обнаружения извещателя. Значения скоростей перемещения, чувствительности и методы их измерения устанавливают в стандартах и технических условиях на извещатели конкретных типов.

Для активных однопозиционных, регистрирующих прекращение потока энергии оптического излучения, и двухпозиционных оптико-электронных извещателей чувствительность определяют только при верхней границе скорости перемещения человека в зоне обнаружения извещателя.

(Измененная редакция, Изм. № 1, 2).

2.2.10a. Чувствительность поверхностных извещателей устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Введен дополнительно, Изм. № 1).

2.2.11. Чувствительность для емкостных и комбинированных емкостно-индуктивных извещателей определяется срабатыванием извещателя при приближении человека (объекта обнаружения) со скоростью от 0,1 до 2,0 м/с на расстояние от 70 до 0 см (извещатели для периметров объектов) и от 20 до 0 см (извещатели для закрытых помещений).

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 2).

- 2.2.12. Длительность извещения о тревоге, выдаваемого ударно-контактными (инерционными) извещателями, должна быть не менее 100 мс, извещателями остальных типов не менее 2 с.
- 2.2.13. Линейные двухпозиционные радиоволновые извещатели для периметров объектов должны иметь запас по уровню принимаемого радиосигнала, который должен быть не менее значения, выбираемого из следующего ряда: 6; 9; 12 дБ.

(Измененная редакция, Изм. № 1).

2.2.14. Активные оптико-электронные извещатели должны сохранять работоспособность при фоновой освещенности рассеянным светом на светофильтре фотоприемного устройства, выбираемой из следующих рядов:

500; 1000; 1500; 2000 лк — от осветительных приборов;

5000; 10000; 20000; 30000 лк — от солнечного света.

(Измененная редакция, Изм. № 2).

- 2.2.15. Угол обзора зоны обнаружения пассивных оптико-электронных извещателей устанавливают в стандартах и технических условиях на извещатели конкретных типов.
- 2.2.16. Зона обнаружения пассивных оптико-электронных извещателей может иметь дискретную структуру и состоять из элементарных чувствительных зон. Конкретное количество элементарных чувствительных зон в угле обзора зоны обнаружения устанавливают в стандартах и технических условиях на извещатели конкретных типов.
- 2.2.17. Активные оптико-электронные извещатели для периметров объектов должны иметь коэффициент запаса по энергии излучения, выбираемый из следующего ряда: 50; 100; 150; 200; 250; 300; 500; 1000.

(Измененная редакция, Изм. № 2).

- 2.2.18. Зону отторжения от инженерных ограждений двухпозиционных извещателей для периметров объектов и однопозиционных радиоволновых извещателей для открытых площадок выбирают из следующего ряда: 1; 2; 5 м.
- 2.2.19. Ультразвуковые извещатели должны сохранять работоспособность при воздействии акустического шума в диапазоне частот 20-16000 Гц с уровнем до +60 дБ относительно нулевого стандартного уровня.
- 2.2.20. Длину охраняемого участка периметра объекта и при необходимости допускаемые отклонения данного параметра для линейных емкостных и емкостно-индуктивных извещателей устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 2).

2.2.21. Максимальное значение емкости чувствительного элемента емкостных и емкостно-индуктивных извещателей для закрытых помещений выбирают из следующего ряда: 100; 200; 300; 500; 1000

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 1, 2).

- 2.2.22. Минимальный потребляемый ток в дежурном режиме при больших разбросах напряжения и шлейфе сигнализации пьезоэлектрических извещателей не должен превышать 1 мА.
- 2.2.23. Основные параметры охранно-пожарных извещателей должны соответствовать требованиям пп. 2.2.1, 2.2.3, 2.2.6—2.2.10a, 2.2.12, 2.2.14—2.2.16, 2.2.19.

(Измененная редакция, Изм. № 2).

- 2.2.24. Чувствительность охранно-пожарных извещателей к обнаружению открытого пламени определяется срабатыванием извещателя при возникновении открытого пламени площадью (1100_{-100}) см².
- 2.2.25. Помехозащищенность охранных и охранно-пожарных извещателей определяется максимальной величиной основного параметра помехи, которая не приводит к срабатыванию извещателя, ее устанавливают в стандартах и технических условиях на извещатели конкретных типов.

Помехозащищенность активных оптико-электронных извещателей определяется параметрами, указанными в пп. 2.2.14, 2.2.17.

2.2.26. Выходное сопротивление извещателей должно быть:

не более 0,5 Ом при токе (100 ± 10) мА — в дежурном режиме;

не менее 200 кОм — в режиме «Тревога».

При использовании электромагнитных реле на выходе извещателя вместо данного параметра в стандартах и технических условиях на извещатели конкретных типов устанавливают максимальные значения коммутируемых тока и напряжения.

2.2.5, 2.2.6. (Измененная редакция, Изм. № 2).

- 2.2.27. Для извещателей, в которых используют амплитудный способ обработки сигнала, отношение сигнал/шум на входе порогового устройства должно быть не менее 10, при этом эффективное значение напряжения шума измеряют при отсутствии внешних возмущающих воздействий (в измерительной камере) в полосе полезного сигнала. Для извещателей, в которых используют другие способы обработки сигнала, отношение сигнал/шум, место и условия его измерения устанавливают в стандартах и технических условиях на извещатели конкретных типов.
- 2.2.28. В стандартах и технических условиях на вновь разрабатываемые технические средства конкретных типов устанавливают вероятность обнаружения (пропуска) цели при установленных скоростях перемещения человека (объекта обнаружения) в зоне обнаружения извещателя. При этом указывают значение доверительной вероятности определения параметра.

(Измененная редакция, Изм. № 1).

2.2.29. Вновь разрабатываемые охранные и охранно-пожарные извещатели для закрытых помещений должны сохранять работоспособность при напряжении питания $(12^{+3,0}_{-1.8})$ В.

(Введен дополнительно, Изм. № 2).

3. ОСНОВНЫЕ ПАРАМЕТРЫ ПОЖАРНЫХ ИЗВЕШАТЕЛЕЙ

3.1. Тепловые пожарные извещатели

3.1.1. Номинальное значение температуры контролируемой среды, вызывающее срабатывание извещателя (пороговую температуру срабатывания), выбирают из следующего ряда: 50; 60; 70; 80; 90; 100; 120; 140; 160; 180; 200; 250 °C.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

3.1.2. Дифференциальный извещатель должен срабатывать при воздействии скорости нарастания температуры контролируемой среды, выбираемой из следующего ряда: 3; 5; 10; 20; 30 °С/мин, или при воздействии ступенчатого изменения температуры контролируемой среды, выбираемого из следующего ряда: 30; 50; 100 °С.

Допускаемые отклонения от номинального значения ступенчатого изменения температуры контролируемой среды при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

3.1.1, 3.1.2. (Измененная редакция, Изм. № 1, 2).

3.1.3. Максимальное значение инерционности срабатывания тепловых извещателей выбирают из следующего ряда: 5; 10; 30; 60; 90; 120 с.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 2).

3.2. Дымовые пожарные извещатели

3.2.1. Значение чувствительности точечных оптических дымовых извещателей определяется удельной оптической плотностью среды, значение которой не должно превышать величины, выбираемой из следующего ряда: 0,05; 0,1; 0,15; 0,2; 0,3; 0,4; 0,5 дБ/м.

Значение чувствительности линейных оптических дымовых извещателей определяется оптической плотностью среды, значение которой не должно превышать величины, выбираемой из следующего ряда: 0,5; 1,0; 1,5; 2,0; 3,0; 4,0; 6,0; 10,0 дБ.

(Измененная редакция, Изм. № 1).

3.2.1а. Максимальное значение рабочей дальности действия линейных оптических дымовых извещателей следует выбирать из следующего ряда: 5; 10; 20; 50; 100; 150 м.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Введен дополнительно, Изм. № 1).

(Измененная редакция, Изм. № 2).

3.2.2. Максимальное значение инерционности срабатывания оптических дымовых извещателей выбирают из следующего ряда: 1; 3; 5; 10; 20; 30 с.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 2).

- 3.2.3. Основные параметры радиоизотопных дымовых извещателей устанавливают в соответствии с требованиями ГОСТ 22522.
 - 3.2.4. Помехозащищенность оптических дымовых пожарных извещателей

Оптические дымовые извещатели не должны срабатывать при минимальной фоновой освещенности в месте установки 500 лк [от ламп накаливания и (или) люминесцентных ламп]. Максимально допустимое значение фоновой освещенности устанавливают в технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 1).

3.3. Пожарные извещатели пламени

3.3.1. Значение чувствительности извещателей пламени определяется максимальным расстоянием, при котором происходит их срабатывание от пламени нормированного очага пожара (парафиновая свеча диаметром 25 мм с высотой пламени 3—4 см). Значения чувствительности выбирают из следующего ряда: 0,5; 1,0; 2,0; 3,0; 5,0; 7,0; 10,0 м.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

3.3.2. Максимальное значение инерционности срабатывания извещателей пламени выбирают из следующего ряда: 0,005; 0,05; 0,1; 0,2; 0,5; 1,0; 2,0; 3,0; 5,0 с.

Допускаемые отклонения данного параметра при необходимости устанавливают в стандартах и технических условиях на извещатели конкретных типов.

- 3.3.3. Значение фоновой освещенности чувствительного элемента пожарного извещателя пламени, при котором извещатель сохраняет работоспособность (помехозащищенность извещателя), должно быть не менее значения, выбираемого из следующего ряда: 500*; 1000; 5000; 10000 лк, с указанием источников фонового излучения (ламп накаливания; люминесцентных ламп; дневного света; дневного света, прошедшего через оконное стекло).
 - 3.3.1, 3.3.2, 3.3.3. (Измененная редакция, Изм. № 2).
- 3.4. Основные параметры ручных пожарных извещателей устанавливают в стандартах и технических условиях на извещатели конкретных типов.

(Измененная редакция, Изм. № 1).

4. ОСНОВНЫЕ ПАРАМЕТРЫ ПРИЕМНО-КОНТРОЛЬНЫХ ПРИБОРОВ

- 4.1. Информационную емкость ППК выбирают из следующих рядов:
- 1; 2; 3; 4; 5 контролируемых шлейфов сигнализации для ППК малой информационной емкости;
- 10; 20; 30; 40; 50 контролируемых шлейфов сигнализации для ППК средней информационной емкости;
- 60; 80; 100; 150; 200; 250; 300; 350; 400; 450; 500 контролируемых шлейфов сигнализации для ППК большой информационной емкости.

Информационную емкость вновь разрабатываемых $\Pi\Pi K$ допускается выбирать из следующих рядов:

```
2^n, где n = 0; 1; 2; . . .; 10; 2^n + 2^{n-1}, где n = 2; 3; 4; . . .; 9.
```

 Π р и м е ч а н и е. По требованию заказчика (потребителя) значение информационной емкости может отличаться от указанных значений и должно быть установлено в стандартах и технических условиях на $\Pi\Pi K$ конкретных типов.

(Измененная редакция, Изм. № 2).

^{*} В новых разработках не применять.

4.2. Охранные и охранно-пожарные ППК должны выдавать извещения о проникновении при получении ими извещений о нарушении шлейфов охранной сигнализации длительностью 70 мс и более и не должны выдавать указанных извещений при длительности 50 мс и менее.

По требованию заказчика (потребителя) значения указанных выше длительностей могут отличаться от указанных значений и должны быть установлены в стандартах и технических условиях на ППК конкретных типов.

- 4.3. Длительность извещений о проникновении или пожаре, выдаваемых ППК на объектовое оконечное устройство СПИ для передачи на ПЦН, должна быть не менее 2 с.
 - 4.2, 4.3. (Измененная редакция, Изм. № 1).
- 4.4. Охранные и охранно-пожарные ППК должны сохранять работоспособность при сопротивлении шлейфа охранной сигнализации без учета сопротивления выносного элемента не более величин, выбираемых из следующего ряда: 0,10; 0,15; 0,22; 0,33; 0,47; 0,68; 1,0; 1,3*; 1,5*; 2,0* кОм, и при сопротивлении утечки между проводами шлейфа и (или) между каждым проводом и землей не менее 20 кОм.

Для вновь разрабатываемых охранных и охранно-пожарных $\Pi\Pi K$ без адресации сопротивление шлейфа охранной сигнализации без учета сопротивления выносного элемента должно быть не более: $100~{\rm OM}-{\rm для}~\Pi\Pi K$ для охраны квартир граждан;

1 кОм — для ППК для охраны объектов народного хозяйства.

Вновь разрабатываемые ППК с адресацией должны сохранять работоспособность при сопротивлении сигнальной линии не более величин, выбираемых из следующего ряда: 22; 47; 100; 200 Ом, при сопротивлении шлейфа охранной сигнализации без учета сопротивления выносного элемента не более величин, выбираемых из следующего ряда: 10; 15; 22; 33; 47; 100; 150 Ом, и при сопротивлении утечки между проводами сигнальной линии (шлейфа) и (или) между каждым проводом и землей не менее 100 кОм.

4.5. Охранно-пожарные и пожарные ППК должны сохранять работоспособность при сопротивлении шлейфа пожарной сигнализации без учета сопротивления выносного элемента не более величин, выбираемых из следующего ряда: 0,10; 0,15; 0,22; 0,33; 0,47; 0,5*; 0,68*; 1,0*; 1,3*; 1,5*; 2,0* кОм, и при сопротивлении утечки между проводами шлейфа и (или) между каждым проводом и землей не менее 50 кОм.

Вновь разрабатываемые пожарные ППК с адресацией должны сохранять работоспособность при сопротивлении сигнальной линии не более величин, выбираемых из следующего ряда: 47; 100; 200 Ом.

4.4, 4.5. (Измененная редакция, Изм. № 1, 2).

5. ОСНОВНЫЕ ПАРАМЕТРЫ ПРИБОРОВ УПРАВЛЕНИЯ

- 5.1. Информационную емкость приборов управления выбирают из следующего ряда: 1; 2; 3; 4; 5 защищаемых зон.
- 5.2. Разветвленность (количество коммутируемых цепей, приходящихся на одну защищаемую зону) выбирают из следующего ряда: 1; 2; 3; 4; 5 коммутируемых цепей.

6. ОСНОВНЫЕ ПАРАМЕТРЫ ОПОВЕЩАТЕЛЕЙ

- 6.1. Информационную емкость многозонных оповещателей выбирают из следующего ряда: 2; 3; 4; 5; 10; 20.
- 6.2. В качестве исполнительных элементов световых оповещателей используют лампы накаливания напряжением 12 и 24 В постоянного тока и 220 В переменного тока мощностью не более 25 Вт, а также светодиоды видимого диапазона частот оптического излучения.
- 6.3. В качестве исполнительных элементов звуковых оповещателей используют звонки, электронные сирены и другие устройства постоянного тока напряжением 12 или 24 В, мощностью не более 750 мВт; сирены, ревуны, звонки переменного тока и другие устройства, выдерживающие аварийное включение в течение суток, частотой 50 Гц, напряжением 220 В, мощностью не более 60 В А.
- 6.4. Уровень громкости сигнала звуковых оповещателей на расстоянии 1 м от оповещателя должен быть не менее 85 дБ.

^{*} В новых разработках не применять.

7. ОСНОВНЫЕ ПАРАМЕТРЫ ШИФРУСТРОЙСТВ

7.1. Вероятность подбора кодовой комбинации шифрустройства выбирают из следующего ряда: 10^{-2} ; 10^{-3} ; 10^{-4} ; 10^{-5} ; 10^{-6} ; 10^{-7} .

8. ОСНОВНЫЕ ПАРАМЕТРЫ СИСТЕМЫ ПЕРЕДАЧИ ИЗВЕЩЕНИЙ

8.1. Информационную емкость СПИ выбирают из следующего ряда:

до 200 (с шагом наращивания 10) номеров;

до 1000 (с шагом наращивания 100; 200) номеров;

свыше 1000 (с шагом наращивания 1000) номеров.

(Измененная редакция, Изм. № 1).

8.2. Информативность СПИ выбирают из следующего ряда: 2; 3; 4; 5; свыше 5 видов извещений.

Примечание. С охраняемых объектов на ПЦН передают, например, следующие виды извещений: «Проникновение», «Пожар», «Неисправность», «Взятие», «Снятие», а также адреса объектов и прочую служебную и диагностическую информацию.

8.3. Скорость передачи информации по групповому каналу связи выбирают из следующего ряда: 75, 200, 300, 600, 1200 бит/с.

Состав и значения остальных параметров сигналов взаимодействия составных частей СПИ устанавливают в стандартах или технических условиях на составные части СПИ конкретных типов.

Во вновь разрабатываемых СПИ информацию должны передавать кодом КОИ-7. На участке «объектовое оконечное устройство—ретранслятор» допускается применять код другого вида.

(Измененная редакция, Изм. № 1).

- 8.4. Количество контролируемых направлений, т. е. входов объектовых оконечных устройств СПИ выбирают из следующего ряда: 1; 2; 3; 4; 5; 10; 20; 30; 40; 50.
- 8.5. Количество контролируемых направлений, т. е. входящих линий (каналов) связи ретрансляторов выбирают из следующего ряда: 1; 2; 3; 4; 5; 6; 10; 15; 20; 30; 40; 50; 60; 70; 80; 90; 100.
- 8.6. Количество контролируемых направлений, т. е. входящих линий (каналов) связи пультовых оконечных устройств СПИ, выбирают из следующего ряда: 1; 2; 4; 6; 8; 10.

9. ОСНОВНЫЕ ПАРАМЕТРЫ ПУЛЬТОВ ЦЕНТРАЛИЗОВАННОГО НАБЛЮДЕНИЯ

- 9.1. Информационную емкость ПЦН выбирают в соответствии с требованиями п. 8.1.
- 9.2. Информативность ПЦН выбирают в соответствии с требованиями п. 8.2.
- 9.3. Скорость непосредственного документирования информации ПЦН должна быть не менее 6 знаков/с.

(Измененная редакция, Изм. № 1).

9.4. Количество контролируемых направлений, т. е. входящих линий (каналов) связи ПЦН, выбирают из следующего ряда: 1; 2; 4; 6; 8; 10.

10. ПАРАМЕТРЫ ЭЛЕКТРОПИТАНИЯ

10.1. Электропитание технических средств должно осуществляться:

от сети переменного тока напряжением (220^{+22}_{-33}) В и частотой (50 ± 1) Гц;

от источников постоянного тока с параметрами:

для ретрансляторов, устанавливаемых на ATC, $-(60^{+12}_{-6})$ В и (или) $(48^{+10}_{-5})^*$ В;

для охранных и охранно-пожарных извещателей для закрытых помещений — (12±1,2) В;

для охранных извещателей для открытых площадок и периметров объектов и пожарных извещателей — (24±3) В;

для ППК, объектового и пультового оборудования СПИ — $(12\pm1,2)$ В и (или) (24 ± 3) В.

Допускается, по требованию заказчика (потребителя), электропитание от источников постоянного тока с параметрами, отличными от указанных.

(Измененная редакция, Изм. № 1).

^{*} Для вновь разрабатываемых ретрансляторов.

10.2. В стандартах и технических условиях на вновь разрабатываемые технические средства конкретных типов приводят параметры провалов напряжения сети и импульсных помех из сети электропитания, при которых сохраняется работоспособность технических средств.

Минимальное значение длительности полного провала напряжения сети, при котором сохраняется работоспособность вновь разрабатываемых извещателей и ППК, должно быть 250 мс.

(Измененная редакция, Изм. № 1, 2).

10.3. Время работы технических средств от резервных источников постоянного тока выбирают из следующего ряда: 4; 8; 12; 24; 48; 72 ч.

11. ПОКАЗАТЕЛИ НАДЕЖНОСТИ

- 11.1. Показатели надежности устанавливают в стандартах и технических условиях на технические средства конкретных типов по РД 50—650.
- 11.2. В стандартах и технических условиях на вновь разрабатываемые технические средства конкретных типов устанавливают вероятность возникновения отказа, приводящего к ложному срабатыванию, за 1000 ч работы.

(Измененная редакция, Изм. № 1).

12. РАЗМЕРЫ ТЕХНИЧЕСКИХ СРЕДСТВ

12.1. Предпочтительные ряды линейных размеров технических средств (габаритные, установочные, присоединительные размеры, диаметры, длины, высоты, расстояния между осями отверстий и др.) должны соответствовать требованиям ГОСТ 6636.

(Измененная редакция, Изм. № 1).

12.2. Размеры конструкций технических средств выбирают и устанавливают в технических условиях в соответствии с табл. 3. Размеры определяют минимальные или максимальные габариты конструкций со всеми выступающими элементами (крепления, присоединения, сигнальными, установочными и другими электрорадиоэлементами).

(Измененная редакция, Изм. № 1, 2).

Таблица 3

Наименование технических средств	Размеры, мм	
тинменование техни неских средств	минимальные	максимальные
Извещатели охранные и охранно-пожарные автомати-		
ческие:	4,0	2000
электроконтактные, ударно-контактные, магнито-		
контактные, пьезоэлектрические	4,0	63
ультразвуковые	25	320
емкостные, электромагнитные бесконтактные	4,0	140, 320*
радиоволновые	40	630
оптико-электронные	40	320, 1600*
в том числе для периметров объектов	40	2000
Извещатели охранные и охранно-пожарные ручные	10	200
Извещатели пожарные автоматические:	10	200
тепловые	10	120
дымовые	10	150
световые	10	140
комбинированные	10	200
Извещатели пожарные ручные	10	125
Приборы приемно-контрольные, приборы управления	40	630
Оповещатели	20	400
Шифрустройства	20	250
Составные части систем передачи извещений:		
устройства оконечные объектовые	40	360
ретрансляторы	100	1220
устройства оконечные пультовые	50	400
Пульты централизованного наблюдения	100	1600
Элементы конструкций технических средств	0,1	2000

^{*} Для вновь разрабатываемых извещателей.

С. 10 ГОСТ 26342-84

12.3. Типоразмеры конструкций и параметры, определяющие возможность унификации, агрегатирования и модульного построения технических средств, устанавливают в стандартах и технических условиях на технические средства конкретных типов.

13. ПОКАЗАТЕЛИ МАТЕРИАЛОЕМКОСТИ И ЭНЕРГОЕМКОСТИ

13.1. В стандартах и технических условиях на технические средства конкретных типов приводят показатели материалоемкости и энергоемкости технических средств. Номенклатуру показателей устанавливают по нормативно-технической документации.

термины, применяемые в настоящем стандарте, и их определения

Термин	Определение
Охранная сигнализация	Получение, обработка, передача и представление в заданном виде потребителям при помощи технических средств информации о проникновении на охраняемые объекты
Пожарная сигнализация	Получение, обработка, передача и представление в заданном виде потребителям при помощи технических средств информации о пожаре на охраняемых объектах
Охранно-пожарная сигнализа- ция	Получение, обработка, передача и представление в заданном виде потребителям при помощи технических средств информации о проникновении на охраняемые объекты и о пожаре на них
Комплекс охранной сигнализации	Совокупность совместно действующих технических средств охранной сигнализации, установленных на охраняемом объекте и объединенных системой инженерных сетей и коммуникаций
Установка пожарной сигнализации	По ГОСТ 12.2.047
Комплекс охранно-пожарной сигнализации	Совокупность совместно действующих технических средств охранной, пожарной и (или) охранно-пожарной сигнализации, установленных на охраняемом объекте и объединенных системой инженерных сетей и коммуникаций
Система передачи извещений о проникновении и пожаре (система передачи извещений)	Совокупность совместно действующих технических средств для передачи по каналам связи и приема в пункте централизованной охраны извещений о проникновении на охраняемые объекты и (или) пожаре на них, служебных и контрольно-диагностических извещений, а также (при наличии обратного канала) для передачи и приема команд телеуправления
Охранный извещатель	Техническое средство охранной сигнализации для обнаружения проникновения и формирования извещения о проникновении
Ручной охранный извещатель	Охранный извещатель с ручным или иным неавтоматическим (например, ножным) способом приведения в действие
Пожарный извещатель	По ГОСТ 12.2.047
Ручной пожарный извещатель	По ГОСТ 12.2.047
Охранно-пожарный извещатель	Извещатель, совмещающий функции охранного и пожарного извещателя
Тепловой пожарный извещатель	По ГОСТ 12.2.047
Максимальный тепловой пожарный извещатель	Тепловой пожарный извещатель, срабатывающий при превышении определенного значения температуры окружающей среды
Дифференциальный тепловой пожарный извещатель	Тепловой пожарный извещатель, срабатывающий при превышении определенного значения скорости нарастания температуры окружающей среды
Максимально-дифференциальный тепловой пожарный извещатель	Тепловой пожарный извещатель, совмещающий функции максимального и дифференциального тепловых пожарных извещателей

Термин	Определение
Дымовой пожарный извеща- тель	По ГОСТ 12.2.047
Пожарный извещатель пламени	По ГОСТ 12.2.047
Активный оптико-электронный охранный (охранно-пожарный) извещатель	Извещатель, формирующий извещение о проникновении (попытке проникновения) или пожаре при нормированном изменении (прекращении) отраженного потока (однопозиционный извещатель) или прекращении (изменении) принимаемого потока (двухпозиционный извещатель) энергии оптического излучения извещателя
Пассивный оптико-электронный охранный (охранно-пожарный) извещатель	Извещатель, формирующий извещение о проникновении (попытке проникновения) или пожаре при нормированной скорости изменения теплового излучения человека или пожара, внесенного в его зону обнаружения
Охранный (охранно-пожарный) приемно-контрольный прибор	Техническое средство охранной или охранно-пожарной сигнализации для приема извещений от извещателей (шлейфов сигнализации) или других приемно-контрольных приборов, преобразования сигналов, выдачи извещений для непосредственного восприятия человеком, дальнейшей передачи извещений и включения оповещателей, а в некоторых случаях и для электропитания охранных извещателей
Пожарный приемно-контрольный прибор	По ГОСТ 12.2.047
Прибор управления	Составная часть установки пожарной сигнализации для приема извещений от приемно-контрольных приборов или извещателей (шлейфов сигнализации), формирования и выдачи команд на пуск автоматических установок пожаротушения и (или) других установок и устройств
Оповещатель	Техническое средство охранной, пожарной или охранно-пожарной сигнализации, предназначенное для оповещения людей на удалении от охраняемого объекта о проникновении (попытке проникновения) и (или) пожаре
Речевой оповещатель	Оповещатель, выдающий речевые сигналы
Звуковой оповещатель	Оповещатель, выдающий звуковые неречевые сигналы
Световой оповещатель	Оповещатель, выдающий световые сигналы
Шифрустройство	Техническое средство охранной сигнализации, обеспечивающее возможность входа на охраняемый объект и выхода с объекта без выдачи извещений о проникновении
Объектовое оконечное устройство	Составная часть системы передачи извещений, устанавливаемая на охраняемом объекте для приема извещений от приемно-контрольных приборов, шлейфов охранной или охранно-пожарной сигнализации сигналов и их передачи по каналу связи на ретранслятор (ПЦН), а также (при наличии обратного канала) для приема команд телеуправления от ретранслятора (ПЦН) Примечание. При необходимости объектовое оконечное устройство может быть совмещено с приемно-контрольным прибором

Термин	Определение
Ретранслятор	Составная часть системы передачи извещений, устанавливаемая в промежуточном пункте между охраняемыми объектами и пунктом централизованной охраны (пунктом установки ПЦН) или на охраняемом объекте для приема извещений от объектовых оконечных устройств или других ретрансляторов, преобразования сигналов и их передачи на последующие ретрансляторы, пультовое оконечное устройство или пульт централизованного наблюдения, а также (при наличии обратного канала) для приема от ПЦН, пультового оконечного устройства или других ретрансляторов и передачи на объектовые оконечные устройства или другие ретрансляторы команд телеуправления
Пультовое оконечное устройство	Составная часть системы передачи извещений, устанавливаемая в пункте централизованной охраны (пункте установки ПЦН) для приема извещений от ретранслятора(ов), их преобразования и передачи на пульт централизованного наблюдения или устройство вычислительной техники, а также (при наличии обратного канала) для приема от пульта централизованного наблюдения или устройства вычислительной техники и передачи на ретрансляторы и (или) объектовые оконечные устройства команд телеуправления
Пульт централизованного на- блюдения	Самостоятельное техническое средство (совокупность технических средств) или составная часть системы передачи извещений, устанавливаемая в пункте централизованной охраны (пункте установки ПЦН) для приема от пультовых оконечных устройств или ретранслятора(ов) извещений о проникновении на охраняемые объекты и (или) пожаре на них, служебных и контрольно-диагностических извещений, обработки, отображения, регистрации полученной информации и представления ее в заданном виде для дальнейшей обработки, а также (при наличии обратного канала) для передачи через пультовое оконечное устройство на ретранслятор(ы) и объектовые оконечные устройства команд телеуправления
Шлейф охранной (пожарной, охранно-пожарной) сигнализации	Электрическая цепь, соединяющая выходные цепи охранных (пожарных, охранно-пожарных) извещателей, включающая в себя вспомогательные (выносные) элементы (диоды, резисторы и т. п.) и соединительные провода и предназначенная для выдачи на приемно-контрольный прибор извещений о проникновении (попытке проникновения), пожаре и неисправности, а в некоторых случаях и для подачи электропитания на извещатели
Охраняемый объект	Объект, охраняемый подразделениями охраны и оборудованный действующими техническими средствами охранной, пожарной и (или) охранно-пожарной сигнализации
Охраняемая зона	Часть охраняемого объекта, контролируемая одним шлейфом охранной сигнализации (для комплексов охранной сигнализации), одним шлейфом пожарной сигнализации (для установок пожарной сигнализации), одним шлейфом охранно-пожарной сигнализации или совокупностью шлейфов охранной и пожарной сигнализации (для комплексов охранно-пожарной сигнализации)
Защищаемая зона	Охраняемая зона, контролируемая шлейфом пожарной (охранно- пожарной) сигнализации и оборудованная действующими техническими средствами автоматического пожаротушения
Зона обнаружения извещателя	Часть пространства охраняемого объекта, при перемещении в которой человека (объекта обнаружения) или возникновении очага пожара извещатель выдает извещение о проникновении (попытке проникновения) или пожаре
Контролируемая площадь	Площадь зоны обнаружения извещателя

Термин	Определение
Элементарная чувствительная зона пассивного оптико-электронного охранного извещателя	Часть зоны обнаружения извещателя, в которой осуществляется прием энергии инфракрасного излучения человека (объекта обнаружения)
Зона отторжения	Зона, непосредственно примыкающая к инженерным ограждениям охраняемого объекта и свободная от построек, деревьев, кустарника и т. п., для обеспечения нормальной работы извещателей для открытых площадок и периметров объектов
Информационная емкость	Количество охраняемых объектов (для систем передачи извещений), контролируемых шлейфов сигнализации (для приемно-контрольных приборов), охраняемых зон, о состоянии которых может оповестить оповещатель (для оповещателей), или защищаемых зон (для приборов управления), информацию о (для) которых может передавать (принимать, отображать и т. п.) техническое средство охранной, пожарной или охранно-пожарной сигнализации
Информативность	Количество видов извещений, передаваемых (принимаемых, отображаемых и т. п.) техническим средством охранной, пожарной или охранно-пожарной сигнализации
Чувствительность извещателя	Численное значение контролируемого параметра, при превышении которого должно происходить срабатывание извещателя
Инерционность извещателя	Промежуток времени от начала воздействия заданного в нормативнотехнической документации значения контролируемого параметра до срабатывания извещателя
Оптическая плотность среды	Десятичный логарифм отношения потока излучения, прошедшего через незадымленную среду, к потоку излучения, ослабленного средой при ее частичном или полном задымлении
Удельная оптическая плот- ность среды	Отношение оптической плотности задымленной среды к оптической длине пути луча в контролируемой среде

(Измененная редакция, Изм. № 1, 2).

КЛАССИФИКАЦИЯ ТЕХНИЧЕСКИХ СРЕДСТВ ОХРАННОЙ, ПОЖАРНОЙ И ОХРАННО-ПОЖАРНОЙ СИГНАЛИЗАЦИИ

1. Классификация охранных и охранно-пожарных извещателей

- 1.1. По способу приведения в действие охранные и охранно-пожарные извещатели подразделяют на автоматические и ручные.
- 1.2. По назначению автоматические охранные извещатели (далее в тексте охранные извещатели) подразделяют на:

для закрытых помещений;

для открытых площадок и периметров объектов.

1.3. По виду зоны, контролируемой извещателем, охранные извещатели подразделяют на:

точечные;

линейные;

поверхностные;

объемные.

1.4. По принципу действия охранные извещатели подразделяют на:

электроконтактные;

магнитоконтактные;

ударно-контактные;

электромагнитные бесконтактные;

пьезоэлектрические;

емкостные;

ультразвуковые;

оптико-электронные (активные и пассивные);

радиоволновые;

комбинированные.

- 1.5. По количеству зон обнаружения, создаваемых охранными извещателями, их подразделяют на одно-
- 1.6. По дальности действия ультразвуковые, оптико-электронные и радиоволновые охранные извещатели для закрытых помещений подразделяют на:

малой дальности действия — до 12 м;

средней дальности действия — свыше 12 до 30 м;

большой дальности действия — свыше 30 м (кроме ультразвуковых извещателей).

1.7. По дальности действия оптико-электронные и радиоволновые охранные извещатели для открытых плошадок и периметров объектов подразделяют на:

малой дальности действия — до 50 м;

средней дальности действия — свыше 50 до 200 м;

большой дальности действия — свыше 200 м.

1.8. По конструктивному исполнению ультразвуковые, оптико-электронные и радиоволновые извещатели подразделяют на:

однопозиционные — один или более передатчиков (излучателей) и приемник(и) совмещены в одном блоке:

двухпозиционные — передатчик (излучатель) и приемник выполнены в виде отдельных блоков;

многопозиционные — более двух блоков (один передатчик, два или более приемников; один приемник, два или более передатчиков; два или более передатчиков, два или более приемников).

1.9. Автоматические охранно-пожарные извещатели подразделяют на ультразвуковые и оптико-электронные.

2. Классификация пожарных извещателей

- 2.1. По способу приведения в действие пожарные извещатели подразделяют на автоматические и ручные.
- 2.2. По виду контролируемого признака пожара автоматические пожарные извещатели (далее в тексте пожарные извещатели) подразделяют на:

тепловые;

дымовые;

пламени;

комбинированные.

(Измененная редакция, Изм. № 1).

С. 16 ГОСТ 26342-84

2.3. По характеру реакции на температуру окружающей среды тепловые пожарные извещатели подразделяют на:

максимальные;

дифференциальные;

максимально-дифференциальные.

- 2.4. По принципу действия дымовые пожарные извещатели подразделяют на радиоизотопные и оптические.
- 2.5. Классификация радиоизотопных пожарных извещателей по ГОСТ 22522.
- По используемой области спектра оптического излучения пожарные извещатели пламени подразделяют на:

ультрафиолетовые;

инфракрасные;

видимого спектра излучения;

комбинированные.

(Измененная редакция, Изм. № 2).

2.7. По виду зоны, контролируемой извещателем, оптические пожарные извещатели подразделяют на: точечные:

линейные.

(Введен дополнительно, Изм. № 1).

3. Классификация приемно-контрольных приборов

3.1. По информационной емкости (количеству контролируемых шлейфов сигнализации) ППК подразделяют на:

малой информационной емкости — до 5 шлейфов сигнализации;

средней информационной емкости — от 6 до 50 шлейфов сигнализации;

большой информационной емкости — свыше 50 шлейфов сигнализации.

3.2. По информативности ППК подразделяют на:

малой информативности — до 2 видов извещений;

средней информативности — от 3 до 5 видов извещений;

большой информативности — свыше 5 видов извещений.

- 3.1, 3.2. (Измененная редакция, Изм. № 1).
- 3.3. По возможности резервирования составных частей ППК средней и большой информационной емкости подразделяют на:

без резервирования;

с резервированием.

3.4. По назначению охранные и охранно-пожарные ППК подразделяют:

для охраны квартир граждан;

для охраны объектов народного хозяйства.

(Введен дополнительно, Изм. № 2).

4. Классификация приборов управления

4.1. По информационной емкости (количеству защищаемых зон) приборы управления подразделяют на: малой информационной емкости — до 2 защищаемых зон;

средней информационной емкости — от 3 до 5 защищаемых зон;

большой информационной емкости — свыше 5 защищаемых зон.

4.2. По разветвленности (количеству коммутируемых цепей, приходящихся на одну защищаемую зону) приборы управления подразделяют на:

малой разветвленности — до 2 коммутируемых цепей;

большой разветвленности — свыше 2 коммутируемых цепей.

5. Классификация оповещателей

5.1. По характеру выдаваемых сигналов оповещатели подразделяют на:

световые;

звуковые;

речевые;

комбинированные.

- 5.2. По информационной емкости (количеству обслуживаемых охраняемых зон) оповещатели подразделяют на однозонные и многозонные.
 - 5.3. По исполнению оповещатели подразделяют на:

для использования в помещениях;

для использования на открытом воздухе.

6. Классификация шифрустройств

- 6.1. По способу установки кодовой комбинации шифрустройства подразделяют на:
- с постоянной установкой кодовой комбинации;
- со сменной установкой кодовой комбинации;
- с использованием метода случайной выборки.
- 6.2. По информационной емкости (количеству обслуживаемых охраняемых зон) шифрустройства подразделяют на однозонные и многозонные.

7. Классификация систем передачи извещений (СПИ)

7.1. По информационной емкости (количеству охраняемых объектов) СПИ подразделяют на системы: малой информационной емкости — до 200 номеров;

средней информационной емкости — от 201 до 1000 номеров;

большой информационной емкости — свыше 1000 номеров.

(Измененная редакция, Изм. № 1).

- 7.2. По возможности наращивания информационной емкости СПИ подразделяют на системы:
- с постоянной информационной емкостью;
- с возможностью наращивания информационной емкости.
- 7.3. По информативности СПИ подразделяют на системы:

малой информативности — до 2 видов извещений;

средней информативности — от 3 до 5 видов извещений; большой информативности — свыше 5 видов извещений.

- 7.4. По возможности изменения информативности СПИ подразделяют на системы:
- с постоянной информативностью;
- с изменяемой информативностью.
- 7.5. По типу используемых линий (каналов) связи СПИ подразделяют на системы, использующие:

линии телефонной сети, в том числе переключаемые;

специальные линии связи:

радиоканалы;

комбинированные линии связи и др.

- 7.6. По способу передачи информации СПИ подразделяют на системы:
- с циклической передачей информации:
- со спорадической передачей информации;
- с циклически-спорадической передачей информации.
- 7.7. По возможности изменения структуры линий связи СПИ подразделяют на системы:
- с жесткой структурой линии связи;
- с изменяемой структурой линии связи (с использованием резервных каналов при неисправностях основных).
 - 7.8. По возможности резервирования составных частей СПИ подразделяют на системы:

без резервирования;

- с резервированием.
- 7.9. По количеству направлений передачи информации СПИ подразделяют на системы:
- с однонаправленной передачей информации;
- с двунаправленной передачей информации (с наличием обратного канала).
- 7.10. По виду формата сообщения СПИ подразделяют на системы:
- с постоянным форматом сообщения;
- с переменным форматом сообщения.

8. Классификация объектовых оконечных устройств

- 8.1. По информативности объектовые оконечные устройства подразделяют в соответствии с требованиями п. 7.3.
 - 8.2. По возможности изменения информативности объектовые оконечные устройства подразделяют на:
 - с постоянной информативностью;
 - с изменяемой информативностью.
 - 8.3. По количеству выходов объектовые оконечные устройства подразделяют на:
 - с одним выходом;
 - с двумя и более выходами.
- 8.4. По типу используемых исходящих линий (каналов) связи объектовые оконечные устройства подразделяют в соответствии с требованиями п. 7.5.

9. Классификация ретрансляторов

- 9.1. По количеству контролируемых направлений, т. е. входящих линий (каналов) связи, ретрансляторы подразделяют на:
 - до 10 входящих линий (каналов) связи;

свыше 10 входящих линий (каналов) связи.

(Измененная редакция, Изм. № 2).

- 9.2. По возможности наращивания количества контролируемых направлений ретрансляторы подразделяют на:
 - с постоянным количеством контролируемых направлений;
 - с возможностью наращивания количества контролируемых направлений.
 - 9.3. По количеству исходящих линий (каналов) связи ретрансляторы подразделяют на:
 - с одной исходящей линией (каналом) связи;
- с двумя и более исходящими линиями (каналами) связи для создания обходных путей и обеспечения стандартных стыков.
- 9.4. По типу используемых линий (каналов) связи ретрансляторы подразделяют в соответствии с требованиями п. 7.5.
- 9.5. По структуре подключения объектовых оконечных устройств и других ретрансляторов ретрансляторы подразделяют на:
 - с радиальной структурой;
 - с цепочечной структурой;
 - с радиально-цепочечной структурой.
 - 9.6. По наличию логической обработки информации ретрансляторы подразделяют на:
 - без логической обработки информации;
 - с логической обработкой информации.

10. Классификация пультовых оконечных устройств

- 10.1. По информативности пультовые оконечные устройства подразделяют в соответствии с требованиями п. 7.3.
- 10.2. По количеству контролируемых направлений, т. е. входящих линий (каналов) связи пультовые оконечные устройства подразделяют на:
 - с одной входящей линией (каналом) связи;
 - с двумя и более входящими линиями (каналами) связи.
- 10.3. По типу используемых входящих линий (каналов) связи пультовые оконечные устройства подразделяют в соответствии с требованиями п. 7.5.

11. Классификация пультов централизованного наблюдения

- 11.1. По информационной емкости ПЦН подразделяют в соответствии с требованиями п. 7.1.
- 11.2. По возможности наращивания информационной емкости ПЦН подразделяют на пульты:
- с постоянной информационной емкостью;
- с возможностью наращивания информационной емкости.
- 11.3. По информативности ПЦН подразделяют в соответствии с требованиями п. 7.3.
- 11.4. По возможности изменения информативности ПЦН подразделяют на пульты:
- с постоянной информативностью;
- с изменяемой информативностью.
- 11.5. По алгоритму обслуживания объектов ПЦН подразделяют на пульты:
- с ручным взятием объектов под охрану (далее в тексте взятие) и снятием их с охраны (далее в тексте снятие) путем ведения телефонных переговоров с дежурным ПЦН (пульта управления);
- с автоматическим взятием и снятием [без ведения телефонных переговоров с дежурным ПЦН (пульта управления)];
- с комбинированным взятием и снятием [взятие путем ведения телефонных переговоров с дежурным ПЦН (пульта управления), снятие автоматическое или наоборот].
 - 11.6. По способу отображения поступающей информации ПЦН подразделяют на пульты:
 - с индивидуальным или групповым отображением информации в виде световых и звуковых сигналов;
 - с отображением информации на дисплеях с применением устройства обработки и накопления банка данных.
 - 11.7. По скорости непосредственного документирования информации ПЦН подразделяют на пульты: со скоростью до 10 знаков/с;
 - со скоростью свыше 10 знаков/с.
 - 11.8. По возможности резервирования составных частей ПЦН подразделяют на пульты: без резервирования;
 - с резервированием.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством внутренних дел СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 04.12.84 № 4084

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 12.2.047—86	Приложение 1
ГОСТ 6636—69	12.1
ГОСТ 12997—84	Вводная часть
ГОСТ 22522—91	3.2.3; приложение 2, 2.5
РД 50—650—87	11.1

4. ИЗДАНИЕ, декабрь 2001 г., с Изменением № 1, постановление от 29.12.87 № 5094 и Изменением № 2, постановление от 27.06.91 № 1167

Редактор *И.И. Зайончковская* Технический редактор *В.Н. Прусакова* Корректор *В.Е. Нестерова* Компьютерная верстка *О.В. Арсеевой*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 20.12.2001. Подписано в печать 17.01.2002. Усл. печ. л. 2,32. Уч.-изд.л. 2,25. Тираж 800 экз. С 3492. Зак. 63.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Hабрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062, Москва, Лялин пер., 6. Плр № 080102