Issue #15 Entanglement Witness Using Classical Shadow

Kwangjun Choi

Gyungmin Cho

Eungi Min

Motivation of Classical Shadow

$$\langle E \rangle = \langle \psi(\theta_{opt}) | H | \psi(\theta_{opt}) \rangle$$

Motivation of Classical Shadow

Destructive nature of measurement in QM

-> an original state is unknown to us

To calculate the expectation value of a certain observable, we should reconstruct the original state.

Definition

"Shadow tomography is the task of predicting properties

without fully characterizing the quantum state, [2]

• Pick a unitary from the ensemble, and rotate the state $(\rho \mapsto U \rho U^{\dagger})$

Measure by a computational basis

n-bit measurement outcome $|\hat{b}\rangle \in \{0,1\}^n$,

- * For the states by the computational measurement, re-rotate them and get an expectation.
- * We can consider M as an 'operator' (can be inversed)

$$\mathbb{E}\Big[U^{\dagger}\Big|\hat{b}\Big\rangle\!\!\left\langle\hat{b}\Big|U\Big] = \mathcal{M}(\rho) \; \Rightarrow \; \rho = \mathbb{E}\Big[\mathcal{M}^{-1}\Big(U^{\dagger}\Big|\hat{b}\Big\rangle\!\!\left\langle\hat{b}\Big|U\Big)\Big]$$

For the state re-rotated, if we apply the inverse-M, we can get a shadow of the original state.

$$S(\rho; N) = \left\{ \hat{\rho}_1 = \mathcal{M}^{-1} \left(U_1^{\dagger} \middle| \hat{b}_1 \right) \middle\langle \hat{b}_1 \middle| U_1 \right), \dots,$$
$$\hat{\rho}_N = \mathcal{M}^{-1} \left(U_N^{\dagger} \middle| \hat{b}_N \right) \middle\langle \hat{b}_N \middle| U_N \right) \right\}$$

Algorithm 1. Median of means prediction based on a classical shadow $S(\rho, N)$

1 function LINEARPREDICTIONS $(O_1, ..., O_M, S(\rho; N), K)$

2 Import $\mathrm{S}(\rho;N) = \left[\hat{
ho}_1,\ldots,\hat{
ho}_N\right] riangle$ Load classical shadow

3 Split the shadow into K equally-sized parts and set \triangleright Construct K estimators of ρ

$$\hat{\rho}_{(k)} = \frac{1}{\lfloor N/K \rfloor} \sum_{l=(k-1)\lfloor N/K \rfloor+1}^{k\lfloor N/K \rfloor} \hat{\rho}_l$$

4 **for** i = 1 to M **do**

5 Output $\hat{o}_i(N, K) = \text{median} \left\{ \text{tr} \left(O_i \hat{\rho}_{(1)} \right), \dots, \text{tr} \left(O_i \hat{\rho}_{(K)} \right) \right\}$. \triangleright Median of means estimation

The Clifford group, generated by CNOT, H, S [2]

$$|\mathcal{C}_n| = 2^{n^2 + 2n} \prod_{j=1}^n (4^j - 1).$$

$$\hat{\rho} = (2^n + 1)U^{\dagger}|\hat{b}\rangle\langle\hat{b}|U - \mathbb{I}$$

qiskit.quantum_info.random_clifford

Detecting Genuine Entanglement

IBM Quantum / © 2020 IBM Corporation

Detecting Genuine Entanglement

$$|\psi\rangle = U_A \otimes U_B \otimes U_C |\psi_{\text{GHZ}}^+\rangle$$
 where U_A, U_B, U_C are random single-qubit rotations.

$$O := O(V_A, V_B, V_C) = V_A \otimes V_B \otimes V_C |\psi_{\text{GHZ}}^+\rangle \langle \psi_{\text{GHZ}}^+|V_A^{\dagger} \otimes V_B^{\dagger} \otimes V_C^{\dagger}.$$

Detecting Genuine Entanglement

any state ρ_s with only bipartite entanglement, $\operatorname{tr}(O\rho_s) \leq .5$,

for any state ρ_s with at most W-type

 $\operatorname{tr}(O\rho) > .75$ certifies that ρ has GHZ-type entanglement.

State Preparation

Trace Distance

We used a Fake backend named as 'FakeJakarta'

#shadow = 1000

#shadow = 5000

GHZ

0.2635582983193262, 0.38418661971830803

GHZ

Rotated 0.1962142857142854, 0.2459181338028158


```
ideal_ghz_fidelity_list = []

for w in rw_list_ghz:
    fid = witness_check(w, ghz_arr)
    ideal_ghz_fidelity_list.append(fid)
ideal_ghz_fidelity_array = np.array(ideal_ghz_fidelity_list)
np.where(ideal_ghz_fidelity_array>0.5)
```

#witness = 1000

(array([51, 188, 244, 283, 549, 583, 937]),)

(array([], dtype=int64),)


```
ghz fidelity list jak 1000 = []
for w in rw list qhz:
    for ghz shadow in ghz jak 1000 split shadow witness:
        fid = witness check(w, ghz_shadow)
   med fid = np.median(fid)
    ghz fidelity list jak 1000.append(med fid)
ghz fidelity jak 1000 array = np.array(ghz fidelity list jak 1000)
np.where(ghz fidelity jak 1000 array>0.5)
```

IBM Quantum / © 2020 IBM Corporation

#shadow = 1000


```
ghz fidelity list jak = []
for w in rw list qhz:
    for ghz shadow in ghz jak split shadow witness:
        fid = witness check(w, ghz shadow)
   med fid = np.median(fid)
    ghz fidelity list jak.append(med fid)
ghz fidelity jak array = np.array(ghz fidelity list jak)
np.where(ghz fidelity jak_array>0.5)
```

(array([583]),)

#shadow = 5000


```
ideal_rot_ghz_fidelity_list = []
for w in rw_list_rot_ghz:
    fid = witness_check(w, rot_ghz_arr)
    ideal_rot_ghz_fidelity_list.append(fid)
ideal_rot_ghz_fidelity_array = np.array(ideal_rot_ghz_fidelity_list)
np.where(ideal_rot_ghz_fidelity_array>0.5)
```

(array([4830]),)

#witness = 10000


```
rot ghz jak 1000 fidelity list = []
for w in rw list rot ghz:
    for qhz shadow in rot ghz_jak_1000_spli
         fid = witness check(w, ghz shadow)
    med fid = np.median(fid)
    rot ghz jak 1000 fidelity list.append(m
rot ghz jak 1000 fidelity array = np.array(
rot ghz jak 1000 fidelity array[rot ghz jak
array([], dtype=complex128)
```

```
rot ghz jak 5000 fidelity list = []
for w in rw list rot ghz:
    for ghz shadow in rot ghz jak 5000 spl
         fid = witness check(w, ghz shadow)
    med fid = np.median(fid)
    rot ghz jak 5000 fidelity list.append(
rot ghz jak 5000 fidelity array = np.array
rot ghz jak 5000 fidelity array[rot ghz ja
array([], dtype=complex128)
```

#shadow = 1000

#shadow = 5000

More Qubits?

0.5305592750000007

#shadow = 5000

Future Direction

1. To apply this method on the efficient way to measure fidelity such as multiple quantum coherence for GHZ state.

However, using Clifford measurements is required to construct many entangling gates.

- 2. Some condition observable-based (Bipartite entanglement or non-locality and based on randon pauli measurement)
- More optimal p3-PPT method
- Mermin inequality (for non-locality)

Thanks for Listening!

IBM Quantum / © 2020 IBM Corporation