Hausaufgabe 6

Aufgabe 1

Wir zeigen zuerst, dass a_n nach unten durch \sqrt{x} beschränkt ist: Sei $A(n) := a_n \ge \sqrt{x}$

- (IA) Für $a_0 = 1$ folgt $a_0 \ge \sqrt{1}$ und für $a_0 = x > 1$ folgt $a_0 \ge \sqrt{x}$. Also gilt A(1).
- (IS) Es gelte A(n) für ein $n \in \mathbb{N}_0$. $n \mapsto n+1$: Zu zeigen ist $a_{n+1} \ge \sqrt{x}$:

$$a_{n+1} \ge \sqrt{x} \iff a_n^2 + x \ge 2a_n\sqrt{x} \iff (a_n - \sqrt{x})^2 \ge 0$$

Letzteres ist stets erfüllt, da $\forall x \in \mathbb{R} \colon x^2 \geq 0$ gilt. Es folgt nun nach dem Prinzip der vollständigen Induktion A(n) für alle $n \in \mathbb{N}_0$. Also ist a_n mit \sqrt{x} nach unten beschränkt.

Zu zeigen ist nun, dass a_n monoton fällt, also $a_{n+1} - a_n \le 0$:

$$a_{n+1} - a_n = \frac{1}{2} \left(a_n + \frac{x}{a_n} \right) - a_n = \frac{a_n}{2} - \frac{x}{2a_n} - \frac{2a_n}{2} = x - (a_n)^2 \stackrel{a_n \ge \sqrt{x}}{\le} x - (\sqrt{x})^2 = 0$$

Da nun stets $a_{n+1} - a_n \le 0$ gilt, ist a_n monoton fallend und damit nach 1.4 auch nach oben beschränkt, also insgesamt beschränkt. Der Grenzwert dieser rekursiven Folge lässt sich wie folgt bestimmen:

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \frac{1}{2} \left(L + \frac{x}{L} \right)$$

Wir lösen nach L auf:

$$L = \frac{1}{2} \left(L + \frac{x}{L} \right) \iff L^2 = x \iff L = \pm \sqrt{x}$$

Da a_n jedoch von unten durch \sqrt{x} beschränkt ist gilt stets $L = \lim_{n \to \infty} a_n \not< \sqrt{x}$, d.h. a_n kann niemals $-\sqrt{x}$ erreichen. Somit kommt für uns als Lösung nur $\lim_{n \to \infty} a_n = \sqrt{x}$ in Frage, da es nach Satz 4.13 (Kapitel 2) nur genau eine positive reelle Zahl $\sqrt[n]{x} \in \mathbb{R}_+$ mit $n \in \mathbb{N}$ gibt. Also konvergiert a_n gegen \sqrt{x} .

b) Für c=1 folgt durch $\forall n \in \mathbb{N}_0 \colon a_n \geq \sqrt{x} \implies a_n \geq 0$, dass folgendes stets gilt:

$$|(a_n - \sqrt{x})^2| \le 2a_n|a_n - \sqrt{x}|^2 \iff \left|\frac{a_n^2 - 2a_n\sqrt{x} + x}{2a_n}\right| \le |a_n - \sqrt{x}|^2$$

$$\iff \left| \frac{1}{2} \left(a_n + \frac{x}{a_n} \right) - \sqrt{x} \right| \le |a_n - \sqrt{x}|^2 \iff |a_{n+1} - \sqrt{x}| \le 1 \cdot |a_n - \sqrt{x}|^2$$

Somit existiert ein c = 1 > 0, sodass gilt:

$$\forall n \in \mathbb{N}_0 \colon |a_{n+1} - \sqrt{x}| \le c \cdot |a_n - \sqrt{x}|^2$$

Also konvergiert a_n quadratisch gegen \sqrt{x} .

Aufgabe 2

Für $(a_n)_{n\in\mathbb{N}} = \frac{1}{(n+1)^2}$ gilt $\lim_{n\to\infty} \frac{1}{(n+1)^2} = 0$. Zu $\varepsilon > 0$ wählt man ein $n_0 \in \mathbb{N}$ mit $n_0 > \sqrt{\frac{1}{\varepsilon}} - 1$. Es folgt:

$$\forall n \ge n_0 \colon \left| \frac{1}{(n+1)^2} - 0 \right| = \frac{1}{(n+1)^2} \le \frac{1}{(n_0+1)^2} < \frac{1}{\left(\left(\sqrt{1/\varepsilon} - 1\right) + 1\right)^2} = \varepsilon$$

Es folgt nach Definition 1.5 dass $\lim_{n\to\infty} a_n = 0$.

Aufgabe 3

a)

Wir wählen zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ sodass $2^{(N-1)} > \varepsilon^{-1}$ gilt. Seien nun $m, n \in \mathbb{N}$ mit $m, n \geq N$ gegeben. Es lässt sich in diesem Fall ohne Beschränkung der Allgemeinheit annehmen, dass $n \geq m$. Somit gilt n = m + k für ein $k \in \mathbb{N}_0$. Es folgt nun durch die Dreiecksungleichung (*) und die Gegebenheit der Aufgabe (**):

$$|a_m - a_n| = |a_m - a_{m+k}| = \left| \sum_{i=1}^k a_{m+i-1} - a_{m+i} \right| \le \sum_{i=1}^k |a_{m+i-1} - a_{m+i}|$$

$$\le \sum_{i=1}^k 2^{-(m+i-1)} = \sum_{i=1}^k \frac{1}{2^{m+i-1}} < \frac{1}{2^{m-1}} \le \frac{1}{2^{N-1}} < \frac{1}{\varepsilon^{-1}} = \varepsilon$$

Also gilt das Cauchy-Kriterium, da zu jedem ε ein $N \in \mathbb{N}$ mit $2^{-(N-1)} < \varepsilon$ existiert, sodass gilt:

$$\forall m, n \geq N : |a_m - a_n| < \varepsilon$$

Für $b_n = \frac{8n^2 - 5}{4n^2 + 7}$ gilt $\lim_{n \to \infty} \frac{8n^2 - 5}{4n^2 + 7} = 2$. Wir wählen ein $n_0 \in \mathbb{N}$ mit $n_0 > n_0(\varepsilon)$:

$$n_0(\varepsilon) := \begin{cases} \left\lceil \left(\sqrt{\frac{19}{4\varepsilon} - \frac{7}{4}}\right) \right\rceil & \text{falls } \varepsilon < \frac{19}{11} \\ 2 & \text{falls } \varepsilon \ge \frac{19}{11} \end{cases}$$

Es folgt für $\varepsilon < \frac{19}{11}$:

$$\forall n \ge n_0 \colon |b_n - 2| = \left| \frac{8n^2 - 5}{4n^2 + 7} - 2 \right| < \left| \frac{8\left(\sqrt{\frac{19}{4\varepsilon} - \frac{7}{4}}\right)^2 - 5}{4\left(\sqrt{\frac{19}{4\varepsilon} - \frac{7}{4}}\right)^2 + 7} - 2 \right| = \left| \frac{2\left(\frac{19}{\varepsilon}\right) - 19}{\frac{19}{\varepsilon}} - 2 \right| = \varepsilon$$

Und für $\varepsilon \geq \frac{19}{11}$:

$$\forall n \ge n_0 \colon |b_n - 2| \le \left| \frac{8(n_0)^2 - 5}{4(n_0)^2 + 7} - 2 \right| < \left| \frac{8(2)^2 - 5}{4(2)^2 + 7} - 2 \right| = \frac{19}{23} < \varepsilon$$

Somit gilt $\lim_{n\to\infty} b_n = 2$.

Aufgabe 4

a) Für ein beliebiges $\varepsilon > 0$ existiert nach Definition ein $N \in \mathbb{N}$ sodass gilt:

$$\forall m, n \geq N \colon |a_n - a_m| < \varepsilon$$

Da jedoch $|b_n - b_m| \le |a_n - a_m|$ für alle $m, n \in \mathbb{N}$ gilt, also insbesondere auch für $m, n \ge N$, folgt durch die Transitivität von Ungleichungen:

$$\forall m, n \geq N \colon |b_n - b_m| < \varepsilon$$

Also existiert zu jedem ε ein N sodass $|b_n - b_m| < \varepsilon$ für alle $m, n \ge N$ gilt. Somit ist auch b_n eine Cauchy-Folge.

b) Sei $(a_n)_{n\in\mathbb{N}}$ eine gegebene Cauchy-Folge. Nach Definition existiert für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$ sodass mit der Dreiecksungleichung gilt:

$$\forall m, n \ge N \colon |a_m| - |a_n| < |a_m - a_n| < \varepsilon \iff |a_m| < |a_n| + \varepsilon$$

Da dies für alle $m, n \ge N$ gilt, folgt es auch insbesondere für n = N:

$$\forall m \geq N \colon |a_m| \leq |a_N| + \varepsilon$$

Somit ist a_n für alle $n \ge N$ durch $|a_N| + \varepsilon$ beschränkt. Die endliche Anzahl an Werten von a_m für m < N haben ein Maximum M, sodass $\forall n < N : a_n < M$ gilt. Es folgt also:

$$\forall n \in \mathbb{N} \colon |a_n| \le \max(\{|a_m| \colon m \in \mathbb{N} \land m < N\} \cup \{|a_N| + \varepsilon\})$$

Also entweder ist das Maximum des Bildes von a_n über alle n < N größer als $|a_N| + \varepsilon$ und somit die Schranke der Folge, oder $|a_N| + \varepsilon$ bleibt die Schranke. In jedem Fall ist dann jede Cauchy-Folge beschränkt.

c) Da a_n eine Cauchy-Folge ist, existiert zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ sodass $|a_m - a_n| < \varepsilon$ für alle $m, n \geq N$ gilt. Umgeschrieben muss also gelten

$$\forall i, j \in \mathbb{N}_0 \colon |a_{N+i} - a_{N+j}| < \varepsilon$$

Insbesondere muss dies also auch als Spezialfall für $n, k \in \mathbb{N}, n \geq N$ und m = n + k gelten:

$$\forall k, n \in \mathbb{N}, \ n \geq N : |a_m - a_n| = |a_{n+k} - a_n| < \varepsilon$$

Folglich gibt es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ sodass für beliebige $k \in \mathbb{N}$ gilt:

$$\forall n \ge N \colon |a_{n+k} - a_n| = |b_n^{(k)}| < \varepsilon$$

Also ist auch $b_n^{(k)}$ für beliebige $k \in \mathbb{N}$ eine Cauchy-Folge.