NICHTLINEARE FUNKTIONALANALYSIS

Luis Felipe Müller

21. April 2011

Kompletter Mitschrieb zur gleichnamigen Vorlesung bei Herrn Dondl

(Sommersemester 2011, Uni Heidelberg)

Dieser Mitschrieb steht unter der freien CC-BY-SA-DE 3.0 Lizenz.

Für weitere Informationen besuchen Sie

http://creativecommons.org/licenses/by-sa/3.0/deed.de

Organisatorisches

Termine

- Vorlesung: Mo./Mi. 9-11ct. -104 Ang. Math.
- Übungsaufgaben: Mi. Mi. vor der Vorlesung. Kasten in der Angew.Math
- Übungsgruppe: Fr. 16-18 Angew. Math. -101
- Website zur Vorlesung: http://dondl.org/wiki/Sommersemester_11
- Literatur:
 - 1. Růžička M: Nichtlineare Funktionalanalysis, Eine Einführung
 - 2. Aubin-Ekeland: Applied nonlinear Analysis
 - 3. Deimling: Nonlinear Functional Analysis
 - 4. Schwartz: Nonlinear Functional Analysis
 - 5. Zeidler: Nonlinear Functional Analysis and its applications
- Prüfungen: Zulassung mit etwa 50% der Übungsaufgaben-Punkte. Prüfung ist mündlich, beispielsweise am 29. Juli (Fr.)
- Dozent: Patrick Dondl, Sprechstunde Mo./Mi. 11-12 in Raum 130 (Angew. Math.)
- Tutor: Julian Scheuer

Inhaltsverzeichnis

1	Einle	itung]
		Thema der Vorlesung	
		Vorarbeiten	
		1.2.1 Ableitung in Banachräume und implizite Funktionen	3
	1.3	Der Browersche Abbildungsgrad	ç
		1.3.1 Notation	

1 Einleitung

1.1 Thema der Vorlesung

In der linearen Funktionalanalysis haben wir eine Vielzahl von Methoden kennengelernt um Ergebnisse aus der endlichdimensionalen linearen Algebra auf den unendlichdimensionalen Fall zu verallgemeinern. Ein Hauptaufgabe war dabei, die Lösbarkeit von Gleichungen der Form

$$Ax = y$$

für lineare Operatoren A auf ∞-dimensionalen Banchräumen zu zeigen.

Ein Beispiel:

Sei $\Omega \subset \mathbb{R}^3$, gefüllt mit einer inkompressiblen, riskosen Flüssigkeit. $v_j(x)$ sei die Geschwindigkeit der Flüssigkeit an der Stelle $x \in \Omega$. p(x) ist der Druck an der Stelle x.

Randbedingungen: $v_j(x) = 0$ $x \in \partial \Omega$ Inkompressibilität: $\partial_j v_j(x) = 0$ $x \in \Omega$

Bewegungsungleichung: Wir betrachten die Kräfte, die auf einen kleinen Würfel, eingeschlossen durch (x_1, x_2, x_3) , $(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3)$. Druck auf eine Oberfläche des Würfels mit Normale x, ist $f_i^p = p \cdot \Delta x_2 \Delta x_3 \cdot \delta_{ij}$ auf die gegenüberliegende Seite wirkt

$$-(p+\partial_i p \Delta x_i) \Delta x_2 \Delta x_3 \delta_{ij}$$

Zusammen ergibt sich

$$f = (\partial_j p) \Delta V$$

Kraft durch Viskosität auf eine Oberfläche mit Normale x_1 ist

$$f_i^{V,x_i} = -2\eta \Delta x_2 \Delta x_3 \partial_1 v_j$$

mit einer Konstante η . Der gleiche Trick wie oben ergibt für die gegenüberliegende Oberfläche

$$\eta \Delta x_2 \Delta x_3 \partial (v_i + \partial v_i \Delta x_1)$$

Zusammen ergibt sich

$$f_j^V = \eta \Delta V \cdot \partial_i \partial_i v_j$$

Newton: $\rho \Delta V \frac{\mathrm{d}}{\mathrm{d}t} v_j(t, x(t)) = \eta \Delta V \partial_i \partial_i v_j - \Delta V(\partial_j p) + \Delta V \kappa_j$ mit einer externen Konstante κ_j , bspw. Gravitation

Teilen durch ΔV und die Kettenregel ergibt

$$\rho \partial_t v_j = \eta \partial_i \partial_i v_j - \rho(v_i \partial_i) - \partial_j p + K_j \quad \text{(Newton)}$$

$$d_j v_j = 0$$

Naurier-Stokes. Frage: Existiert eine eindeutige Lösung zur sationären Naurier-Stokes-Gleichung:

$$\eta \partial_i \partial_i v_j - (v_i \partial_i) v_j + \partial_j p + K_j = 0 \tag{1}$$

Wir können die Gleichung etwas umschreiben. Sei H ein Hilbertraum

$$H := \overline{\left\{u \in C_c^{\infty}(\Omega, \mathbb{R}^3), \text{ so dass } \partial_j v_j = 0\right\}}^{W^{1,2}(\Omega, \mathbb{R}^3)}$$

Ein Skalarprodukt auf H ist gegeben durch

$$(u,v)_H := \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} \sum_{i,j=1}^{3} (\partial_i u_j) (\partial_i v_j)$$

Ω beschränkt \Rightarrow $(\cdot, \cdot)_H$ ist äquivalent zum üblichen Skalarprodukt (mittels Poincaré). Wir multiplizieren (1) mit $ω \in H$, integrieren und erhalten

$$\int_{\Omega} (\eta \partial_i \partial_i v_j - (v, \partial_i) v_j + K_j) \cdot \omega_j = \int_{\Omega} (\partial_j p) \omega_j = 0, \text{ da } \omega \text{ divergenz frei.}$$

$$(1) \Rightarrow \eta(v, \omega)_H - a(v, v, w) - \int_{\Omega} K \omega = 0$$

Ebenso für a:

$$a(u, v, w) := (\underbrace{B(u, v)}_{\text{bilinear.}}, w)_H$$

Also

$$(1) \Rightarrow (\eta v - B(u, v)) - \tilde{K}, \omega)_H = 0 \quad \forall \omega \in H$$

somit

$$\eta v - B(v, v) = \tilde{K}$$

Das ist eine Gleichung der Form

$$Fv = \tilde{K}$$
, mit F einem Nichtlinearen Operator (2)

Im ersten Teil der Vorlesung beschäftigen wir uns mit der eindeutigen Lösbarkeit von Gleichungen der Form

$$Fx = y$$
, $F: X \rightarrow Y$, X, Y Banachräume

und zum Abschluß zeigen wir mit Hilfe des *Schauder'schen Fixpunktsatzes* die Existenz und finden eine Lösung von (2), also der schwachen Form der stationären Navier-Stokes-Gleichung.

Im zweiten Teil der Vorlesung beschäftigen wir uns mit Variationsrechnung (d.h. dem Finden von Minimierern nichtlinearer Funktionalen)

$$W: X \to \mathbb{R}$$
 mit X ein Banachraum

Finde

$$x_0 \in X: W(x_0) = \inf_{y \in X} W(y)$$

Insbesonder treffen wir dort auf Probleme in der Elastizitätstheorie.

Aufbau der Vorlesung

- Abbildungsgrad \rightarrow Existenz von Lösungen von Fx = y
- Monotone Operatoren \rightarrow Eindeutigkeit von Lösungen von Fx = y; zeitabhängige Probleme.
- Variationsrechnung $\rightarrow \inf_{y \in X} W(y)$

1.2 Vorarbeiten

1.2.1 Ableitung in Banachräume und implizite Funktionen

Es seien X und Y Banachräume, $\Omega \subset X$ offen, $F : \Omega \to Y$, $x_0 \in \Omega$

Definition 1.1 (Gâteaux-Ableitung) Die Gâteaux-Ableitung d $F(x_0, \psi)$ des Operators F im Punkt x_0 in Richtung $\psi \in X$ ist gegeben durch

$$dF(x_0, \psi) = \lim_{s \to 0} \frac{F(x_0 + s \cdot \psi) - F(x_0)}{s} = \frac{d}{ds} F(x_0 + s\psi) \Big|_{s=0}$$

falls der Limes existiert. Der Operator F heißt in diesem Fall in x_0 Richtung ψ Gâteaux-differenzierbar.

Definition 1.2 (Fréchet-Ableitung) Der Operator F heißt Fréchet-differenzierbar in $x_0 \in \Omega$, falls ein beschränkter, linearer Operator

$$F'(x_0): X \to Y$$

existiert, so dass

$$\lim_{\|h\| \to 0} \frac{\|F(x_0 + h) - F(x_0) - F'(x_0) \cdot h\|}{\|h\|} = 0$$
(3)

 $F'(x_0)$ heißt dann Fréchet-Ableitung von F in x_0 .

Theorem 1.3 i) $F'(x_0)$ ist durch (3) eindeutig bestimmt.

- ii) Falls F stetig ist in x_0 , so ist jeder lineare Operator, der (3) erfüllt, ebenfalls stetig.
- iii) Ist $L: X \rightarrow Y$ linear, so gilt

$$L'(x) = L \quad \forall x \in X$$

Beweis: i) Es gelte (3) auch für L. Dann haben wir

$$||Lh - F'(x_0)h|| \le \varepsilon ||h||$$
 falls $||h|| < \delta = \delta(\varepsilon, x_0)$

Für beliebiges h folgt aber

$$\|(L - F'(x_0))(\delta \|h\|^{-1} \cdot h)\| \le \delta \varepsilon$$

$$\Rightarrow \|(L - F'(x_0))h\| \le \varepsilon \|h\| \quad \forall h \in X, \ \forall \varepsilon > 0$$

$$\Rightarrow \|L - F'(x_0)\|_{\mathscr{L}(X,Y)} = 0$$

ii) (3) wird umgeformt zu

$$||F'(x_0)h|| \le \varepsilon ||h|| + ||F(x_0+h) - F(x_0)||$$

Mit $h \to 0$ folgt die Stetigkeit (für $||h|| \le \delta$) von $F'(x_0)$ an der Stelle 0. Wegen Linearität von $F'(x_0)$ ist $F'(x_0)$ somit stetig.

iii) (3) gilt offensichtlich für $L'(x_0) = L$, mit i) folgt Eindeutigkeit.

Proposition 1.4 Jeder Fréchet-differenzierbare Operator F ist Gâteaux-differenziebar $\forall \psi \in X$ und es gilt

$$F'(x_0)\psi = dF(x_0,\psi)$$

Beweis: Übungsaufgabe

Definition 1.5 F heißt (Fréchet-)differenzierbar auf Ω , falls $\forall x \in X$ ein F'(x) existiert, sodass F'(x) stetig ist und (3) erfüllt. F heißt stetig (Fréchet-)differenzierbar in Ω , falls die Abbildung

$$F': \Omega \to \mathcal{L}(X,Y)$$

stetig ist.

Proposition 1.6 Existiert die Gâteaux-Ableitung $dF(x,\psi) \ \forall x \in \Omega$, und ist sie linear und stetig in $\psi \ \forall x \in \Omega$, so ist F Fréchet-differenziebar auf Ω und es gilt

$$F'(x)\psi = dF(x,\psi)$$

Beweis: Übungsaufgabe

Definition 1.7 Sei F auf Ω stetig differenziebar, $x_0 \in \Omega$. Falls ein stetiger linearer Operator

$$F''(x_0): X \to \mathcal{L}(X,Y)$$

existiert mit

$$\lim_{\|h\|\to 0} \frac{\|F'(x_0+h)-F'(x_0)-F''(x_0)h\|_{\mathscr{L}(X,Y)}}{\|h\|} = 0$$

dann heißt F in x_0 zweimal (Fréchet-)differenzierbar und $F''(x_0)$ heißt zweite Ableitung von F in x_0 . Höhere Ableitungen entsprechend.

Bemerkung 1.8 Es gilt die Kettenregel: Seien X, Y, Z Banachräume, $\Omega_X \subset X$ offen, $x_0 \in \Omega_X$,

$$F: \Omega_X \to Y$$
, $F(x_0) = y_0 \in \Omega_Y \subset Y$ offen

$$G:\Omega_Y\to Z$$

Falls $F'(x_0)$ und $G'(y_0)$ existiert, so ist

$$(G \circ F)'(x_0) = G'(y_0) \circ F'(x_0)$$

Definition 1.9 (Partielle Ableitung) Seien X, Y, Z Banachräume, $\Omega_X \subset X$ offen, $x_0 \in \Omega_X$, $\Omega_Y \subset Y$ offen, $y_0 \in \Omega_Y$. Der Operator

$$F: \Omega_V \times \Omega_V \to Z$$

heißt partiell in (x_0, y_0) nach dem zweiten Argument (nach y) differenzierbar, falls die Ableitung

$$F(x_0,\cdot):\Omega_Y\to Z$$

differenziebar ist. Wir nennen den linearen Operator $F_Y(x_0, y_0): Y \to Z$, der

$$\lim_{\|h\|\to 0} \frac{\|F(x_0, y_0 + h) - F(x_0, y_0) - F_Y(x_0, y_0)h\|}{\|h\|} = 0$$

erfüllt, die partielle Ableitung von F in (x_0, y_0) nach dem zweiten Argument.

Proposition 1.10 Seien X, Y Banachräume, $\Omega \subset X$ offen und konvex mit $x_0, x_1 \in \Omega$. $F : \Omega \to Y$ sei stetig Fréchet-differenzierbar auf Ω . Dann gilt

$$F(x_1) - F(x_0) = \int_0^1 F'(x_0 + t(x_1 - x_0))(x_1 - x_0) dt$$

Das Integral ist als Limes der entsprechenden Riemannsumme zu verstehen und dieser existiert.

Beweis: Übungsaufgabe

Ähnlich dem endlichdimensionalen Fall geben uns die Ableitungen im Banachraum hinreichende Bedingungen um Operatoren implizit zu definieren. Die Fragestellung ist die folgende: Seien X, Y, Z Banachräume, U eine Umgebung von $x_0 \in X$. V eine Umgebung von $y_0 \in Y$. Wir suchen zu $F: U \times V \to Z$ einen Operator

$$T: U_0 \subset U \to V$$

sodass gilt

$$F(x,Tx) = F(x_0,y_0) \quad \forall \ x \in U_0.$$

Durch eine einfache Verschiebung ist es ausreichend, den Fall

$$F(x_0, y_0) = 0$$

zu untersuchen.

Proposition 1.11 Sei X ein Banachraum, $Id: X \to X$, $x \mapsto x$ die Identität auf X. Es sei

$$R: B_r(0) \subset X \to X$$

eine k-Kontraktion mit k < 1, d.h. $||R(x) - R(y)|| \le k||x - y||$, und es gelte

$$||R(0)|| < r(1-k)$$

Dann existiert genau ein $x \in B_r(0)$ mit

$$(\mathrm{Id} + R)x = 0$$

Beweis: Sei S = -R, wir suchen also einen Fixpunkt von S.

1. Eindeutigkeit: Seien Sx = x und Sx' = x', damit gilt

$$||x - x'|| = ||Sx - Sx'|| \le k||x - x'||.$$

Mit k < 1 folgt x = x'.

2. Existenz: Sei $x \in B_r(0)$, es gilt

$$||Sx|| \le ||Sx - S(0)|| + ||S(0)|| \le k||x|| + ||S(0)|| < kr + r(1 - k) = r$$

Sei $x_p = S x_{p-1}$, $x_0 = 0$. Es gilt (wie auch im Banach'schen Fixpunktsatz, siehe ÜB 1), dass

$$||x_{n+n} - x_n|| \le k^n (1-k)^{-1} ||x||,$$

damit ist $(x_p)_{p\in\mathbb{N}}$ eine Cauchy-Folge und konvergiert gegen $x\in X$. Wir haben weiter, dass

$$||x|| \le \underbrace{||x - x_{p+1}||}_{\to 0} + ||x_{p+1}|| \quad \text{mit} \quad ||x_{p+1}|| < (1 - k)||S(0)|| = r \Rightarrow ||x|| < r$$

Wegen $x_{p+1} = S x_p$ gilt dass x = S x, somit ist x der gesuchte Fixpunkt.

Theorem 1.12 (Satz über implizite Funktion) Seien X, Y, Z Banachräume, $U \subset X$ Umgebung von $x_0 \in X$, $V \in Y$ Umgebung von $y_0 \in Y$. Sei weiter

$$F: U \times V \rightarrow Z$$

stetig und stetig differenzierbar nach der zweiten Variablen. $F_Y(x_0, y_0)$ sei eine Bijektion von Y nach Z und es gelte

$$F(x_0, y_0) = 0$$

Dann existiert $B_{\delta}(x_0) \subset U$, $B_r(y_0) \subset V$ und genau ein Operator $T : B_{\delta}(x_0) \to B_r(y_0)$, so dass $T(x_0) = y_0$ und $F(x, Tx) = 0 \ \forall \ x \in B_{\delta}(x_0)$. T ist stetig.

BEWEIS: Ohne Einschränkung sei $x_0 = y_0 = 0$. Sei $L := F_Y(0,0)$, Id : $Y \to Y$ die Identität auf V. Es sei $S(x,y) := L^{-1}F(x,y) - y$ für $(x,y) \in U \times V$. Somit gilt

$$F(x,y) = 0 \Leftrightarrow y + S(x,y) = 0.$$

S ist stetig differenzierbar nach dem zweiten Argument mit

$$S_Y = L^{-1}F_Y(x, y) - Id$$

Damit gilt

$$S_{Y}(0,0) = 0$$

Sei $k \in (0, 1)$. Wegen Stetigkeit von S_Y existiert r > 0 mit

$$||S_Y(x,y)|| \le k \quad \forall (x,y) \in B_r(0) \times B_r(0)$$

Sei nun $x \in B_r(0)$, $y, \tilde{y} \in B_r(0)$ Es gilt nach Proposition 1.10, dass

$$||S(x,y) - S(x,\tilde{y})|| = \left\| \int_0^1 S_Y(x,\tilde{y} + t(y-\tilde{y}))(y-\tilde{y}) dt \right\| \le k \cdot ||y-\tilde{y}||$$

Wegen S(0,0) und Stetigkeit von S existiert $\delta \le r$, so dass

$$||S(x,0)|| \le r(1-k) \quad \forall \ x \in B_{\delta}(0)$$

Sei also $x \in B_{\delta}(0)$. Nach Proposition 1.11 existiert genau ein $y \in B_r(0)$ mit y + S(x, y) = 0. Wir setzen

$$Tx = y$$
, $T: B_{\delta}(0) \rightarrow B_{r}(0)$

Es gilt T(0) = 0 wegen 0 + S(0,0) = T(0) + S(0,T(0)) = 0 und der Eindeutigkeit von T. Es bleibt die Stetigkeit von T zu zeigen: Seien $x, x' \in B_{\delta}(0)$, damit gilt

$$0 = Tx + S(x, Tx) = T(x' + S(x, Tx'))$$

also

$$||Tx - Tx'|| \le ||S(x', Tx') - S(x, Tx')|| + ||S(x, Tx) - S(x, Tx)||$$

$$\le ||S(x', Tx') - S(x, Tx')|| + k||Tx - Tx'||$$

$$= (1 - k)||Tx - Tx'||$$

$$\le ||S(x', Tx') - S(x, Tx')|| \to 0 \text{ für } x \to x'$$

Somit ist *T* stetig.

Bemerkung 1.13 Ist *F r*-mal stetig differenziebrar, so gilt das auch für *T*.

Theorem 1.14 Seien X, Y Banachräume, $U \subset X$ eine Umgebung von x_0 . Es sei $F : U \to Y$ stetig differenzierbar und $F'(x_0)$ sei eine lineare Bijektion von X nach Y. Dann existiert eine Umgebung $U_0 \subset U$ von x_0 , so dass

$$F|_{U_0}: U_0 \to F(U_0) \ni y_0 - F(x_0)$$

ein Homöomorphismus (bistetige Abbildung) ist.

Beweis: Wir wenden Satz 1.12 auf

$$\tilde{F}(x, y) := F(x) - y$$

an.

Bemerkung 1.15 Ist F r-mal stetig differenzierbar, so gilt das auch für F^{-1} (F ist ein r-Diffeomorphismus).

Beweis: Übungsaufgabe

Definition 1.16 (Zusammenhände Mengen) - Sei X ein (topologischer metrischer, normierter) Raum. Eine Menge $\Omega \subset X$ heißt zusammenhängend, falls es keine zwei abgeschlossenen (offenen) Ω_1 , Ω_2 gibt mit

$$\Omega \subset \Omega_1 \cup \Omega_2$$
, $\Omega \cap \Omega_1 \cap \Omega_2 = \emptyset$, $\Omega \cap \Omega_{1,2} \neq \emptyset$

- Eine Menge $\Omega \subset X$ heißt wegzusammenhängend, falls sich je zwei Punkte in Ω durch eine stetige, in Ω verlaufende Kurve verbinden lassen.
- Eine Menge $\overline{\Omega} \subset \Omega$ heißt Zusammenhangskomponente von Ω , falls $\overline{\Omega} \subset \Omega$ maximal, zusammenhängend.

Bemerkung 1.17 Wegzusammenhängend ⇒ Zusammenhängend. Offen, zusammenhängend ⇒ Wegzusamenhängend

Theorem 1.18 (Mittelwert) Seien X, Y Banachräume, $F: X \to Y$ stetig differenzierbar.

i) Falls Ω konvex ist, so gilt

$$||F(x) - F(y)|| \le M||x - y||$$

wobei

$$M = \max_{0 \le t \le 1} \|F'((1-t)x + ty)\|$$

ii) Umgekehrt gilt: Falls

$$||F(x) - F(y)|| \le M||x - y|| \quad \forall x, y \in \Omega$$

Dann gilt

$$\sup_{x\in\Omega}\|F'(x)\|\leq M$$

Beweis: Sei $f(t) := F((1-t)x + ty), 0 \le t \le 1$. Nach Kettenregel gilt

$$f'(t) = F'((1-t)x + ty)(x - y)$$

$$\Rightarrow \|f'(x)\| \leq \tilde{M} := M\|x - y\|$$

i) Sei $\phi(t) := ||f(t)||$ für $\delta > 0$. Wir wollen zeigen, dass $\phi(t) \le 0 \ \forall \delta > 0$, $0 \le t \le 1$. Sei also (zum Widerspruch)

$$t_0 := \max\{t \in [0,1] | \phi(s) \le 0 \ \forall \ s \le t\}.$$

Dann gilt

$$\phi(t_0 + \varepsilon) = \|f(t_0 + \varepsilon) - f(t_0) + f(t_0) - f(0)\| - (\tilde{M} + \delta)t$$

$$\leq \|f(t_0 + \varepsilon) - f(t_0)\| - (\tilde{M} + \delta) - \phi(t_0)$$

$$\leq \|f'(t_0)\varepsilon + (1)\| - (\tilde{M} + \delta)\varepsilon$$

$$\leq (-\delta + (1))\varepsilon$$

ii) Angenommen, es existiert x_0 mit $||F'(x_0)|| \ge M + 2\delta$, $\delta > 0$. Dann existiert $e \in X$, ||e|| = 1, $||F'(x_0)e|| \ge M + \delta$. Somit gilt

$$M\varepsilon \ge \|F(x_0 + \varepsilon e) - F(x_0)\| = \|F'(x_0)(\varepsilon e) + (\varepsilon)\|$$

 $\ge (M + \delta)\varepsilon - (\varepsilon) > M\varepsilon$

Das ist ein Widerspruch.

Corollar 1.19 Sei $\Omega \subset X$ offen, (weg-)zusammenhängend, F stetig differenzierbar auf Ω . Es gilt

$$F = \text{Const} \iff F' = 0$$

Bemerkung 1.20 Wir schreiben wie im endl. dim. $C(\Omega) = C^0(\Omega)$, $C^1(\Omega)$...

Anwendungen: Lokale Existenz und Eindeutigkeit Banachraum-wertiger Differenztialgleichunegen. Sei X Banachraum, $\Omega \subset X$ offen, $I \subset \mathbb{R}$ kompaktes Intervall. Es sei $C_b(I,\Omega)$ der Banachraum der beschränkten, stetigen Abbildungen von I nach Ω , versehen mit der sup-Norm.

Lemma 1.21 Sei $f \in C(\Omega,)$ (Y Banachraum) und sei die Funktion

$$f_{\star}: C_b(I,\Omega) \to C_b(I,Y)$$

definiert als

$$(f_{\star}x)(t) = f(x(t))$$

Es gilt $f_{\star} \in C^r$

Beweis: r = 0: Sei $x_0 \in C_b(I, \Omega)$, $\varepsilon > 0 \ \forall t \in I$ existiert $\delta(t) > 0$, so dass

$$||f(\chi) - f(x_0(t))|| \le \frac{\varepsilon}{2} \quad \forall \chi \in U$$

Die offenen Kugeln

$${B_{\delta(t)}(x_0(t))}_{t\in I}$$

sind eine offene Überdeckung vom $\{x_0(t)\}_{t\in I}$. Diese Menge ist als stetiges Bild einer kompakten Menge kompakt, und somit existiert endliche Teilüberdeckung

$$\{B_{\delta(t_j)}(x_0)(t_j)\}_{1\leq j\leq N}$$

Sei nun $x \in C_b(I, \Omega)$ mit

$$||x-x_0|| \le \delta := \min_{1 \le j \le N} \delta(t_j)$$

Somit existiert $\forall t \in I$ ein t_i , so dass $||x_0(t) - x_0(t_i)|| \le \delta(t_i)$, und deshalb gilt

$$||f(x(t)) - f(x_0(t))|| \le ||\underbrace{f(x(t)) - f(x_0(t_j))}_{\le 2\delta}|| + ||\underbrace{f(x_0(t_j)) - f(x_0(t))}_{\le \delta}||,$$

denn

$$||x(t) - x_0(t_j)|| \le ||x(t) - x_0(t)|| + ||x_0(t) - x_0(t_j)|| \le 2\delta(t_j).$$

Somit folgt die Steigkeit.....

r = 1: Wir müssen zeigen, dass

$$\sup_{t \in I} \|f(x_0(t)) + x(t) - f(x_0(t)) - f'(x_0(t))x(t)\| \le \varepsilon \sup_{t \in I} \|x(t)\|$$

denn

$$(f'_{\star}(x_0)x)(t) = f'(x_0(t))x(t)$$

Übungsaufgabe. Folgt wie Stetigkeit durch Kompaktheit von I.

1.3 Der Browersche Abbildungsgrad

Motivation

Ziel: f(x) = 0 zu lösen für $f: U \subset X \to X$, X Banachraum.

Frage: Existenz/Anzahl der Lösungen

Rückblick auf Funktionentheorie: Sei $z_0 \in \mathbb{C}$

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} \, \mathrm{d}z$$

 \Rightarrow Verallg.: $f \in \mathcal{H}(\mathbb{C})$. $0 \notin f(\gamma)$

$$n(f(\gamma),0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz = \sum_{k} n(\gamma, z_k) \alpha_k$$

wobei $f(z_n) = 0$, α_k Vielfachheiten.

Ziel: Verallg. des Begriffs "Umlaufzahl" für Abb. $f:U\subset\mathbb{R}^n\to\mathbb{R}^n$

1.3.1 Notation

 $U \subset\subset \mathbb{R}^n$ offen,

$$J_f(x) = \det \partial f(x)$$

$$RV(f) = \{ y \in \mathbb{R}^n \mid \forall \ x \in f^{-1}(y), \ J_f(x) \neq 0 \}$$

$$CV(f) = \mathbb{R}^n \setminus RV(f)$$

$$D_y^r(\overline{U}, \mathbb{R}^n) := \{ f \in C^k(\overline{U}, \mathbb{R}^n) \mid y \notin f(\partial U) \}$$

$$D_y(\overline{u}, \mathbb{R}^n) := D_y^0(\overline{U}, \mathbb{R}^n)$$

 $\tau(R^n)$ bezeichne die Topologie auf \mathbb{R}^n .

Definition 1.22 Eine Abbildung

$$\deg: \bigcup_{U \in \tau(\mathbb{R}^n), \, y \in \mathbb{R}^n} (D_y(\overline{U}, \mathbb{R}^n) \times \{U\} \times \{y\} \to \mathbb{R},$$

d.h.

$$\deg = \deg(f, U, y)$$

heißt Gradabbildung, falls

- **D1** $\deg(f, U, y) = \deg(f y, U, 0)$
- **D2** deg(Id, U, y) = 1 $\forall y \in U$
- **D3** Seien $U_1, U_2 \subset U$ offen und disjunkt, sodass $y \notin f(\overline{U} | (U_1 \cup U_2))$, dann gelte

$$deg(f, U, y) = deg(f, U_1, y) + deg(f, U_2, y)$$

D4
$$H(t) = (1-t)f + tg \in D_v(\overline{U}, \mathbb{R}^n) \quad \forall t \in [0,1] \Rightarrow \deg(f, U, y) = \deg(g, U, y)$$
 (Homotopieinvarianz)

Theorem 1.23 Sei deg eine Gradabbildung. Dann gilt

$$i) \deg(f, \emptyset, y) = 0$$
 und

$$\deg(f, U, y) = \sum_{i=1}^{N} \deg(f, U_i, y)$$

falls $y \notin f(\overline{U} \setminus \bigcup_{i=1}^N U_i)$, $U_i \subset U$ offen und disjunkt.

$$ii) y \notin f(U) \Rightarrow \deg(f, U, y) = 0$$

$$iii) |f(x) - g(x)| < \operatorname{dist}(y, f(\partial U)) \quad \forall \ x \in \partial U \quad \rightarrow \quad \deg(f, u, y) = \deg(g, U, y)$$

Beweis: i) Sei $U_1 = U$, $U_2 = \emptyset$, einsetzen in (**D3**)

$$\Rightarrow \deg(f,\emptyset,y) = 0$$

$$i = 1$$
: $U_2 = \emptyset$

$$\Rightarrow \deg(f, U, y) = \deg(f, U_1, y)$$

i > 1: Induktion mittels (**D3**)

ii)

$$y \notin f(U) \rightarrow y \notin = (\overline{U}) \Rightarrow y \notin f(\overline{U} \setminus \emptyset)$$

$$\stackrel{(i)}{\Rightarrow} \deg(f, U, y) = 0 \quad (i = 1, U_1 = \emptyset)$$

iii) Sei H(t,x) := (1-t)f(x) + tg(x) und sei $x \in \partial U$

$$\Rightarrow |H(t,x) - y| = |f(x) - y + t(g(x) - f(x))|$$

$$\geq |f(x) - y| - |g(x) - f(x)|$$

$$\geq \operatorname{dist}(y, f(\partial U)) - |g(x) - f(x)| > 0$$

$$\Rightarrow y \notin H(t, \partial U) \quad \forall t \Rightarrow H(t) \in D_y(\overline{U}, \mathbb{R}^n)$$

$$\stackrel{\text{(D4)}}{\Rightarrow} \text{ Behauptung.}$$

Theorem 1.24 i) deg (\cdot, U, y) ist lokal konstant in $D_v(\overline{U}, \mathbb{R}^n)$

- *ii)* deg (f, U, \cdot) *ist lokal konstant in* $\mathbb{R}^n \setminus f(\partial U)$
- iii) Seien $H: [0,1] \times \overline{U} \to \mathbb{R}^n$ und $y: [0,1] \to \mathbb{R}^n$ stetig (d.h. H ist eine Homotopie zwischen $H(0) = H(0,\cdot)$ und H(1)), so gilt

$$\deg(H(0), U, y(0)) = \deg(H(1), U, y(1)),$$

falls
$$H(t) \in D_{v(t)}(\overline{U}, \mathbb{R}^n) \ \forall t \in [0, 1]$$

Beweis: Beachte: $D_{v}(\overline{U}, \mathbb{R}^{n})$ ist offen in $C^{0}(\overline{U}, \mathbb{R}^{n})$

i)
$$||f - g||_{C^0 \overline{U}} < \varepsilon \Rightarrow |f(x) - g(x)| < \varepsilon \,\forall x, \partial U$$
 mit

$$\varepsilon := \operatorname{dist}(y, f(\partial U)) \Rightarrow \operatorname{deg}(f, U, y) = \operatorname{deg}(g, U, y)$$

ii) Sei $y_0 \notin f(\partial U)$ und $y \in B_{\text{dist}(y_0, f(\partial U))}(y_0 \subset \mathbb{R}^n \setminus f(\partial U))$

$$\Rightarrow \|(f - y) - f\| < \operatorname{dist}(y_0, f(\partial U))$$

$$\stackrel{i)}{\Rightarrow} \deg(f - y, U, y_0) = \deg(f, U, y_0)$$

$$\stackrel{\mathbf{D1}}{\Rightarrow} \deg(f, U, y_0 + y) = \deg(f, U, y_0)$$

iii) H ist gleichmäßig stetig

$$\Rightarrow H: [0,1] \to C^0(\overline{U},\mathbb{R}^n) \quad t \mapsto H(t,\cdot)$$

ist auch stetig. H ist ein stetiger Weg in $D_v(\overline{U}, \mathbb{R}^n)$. Sei y fest

$$\Rightarrow$$
 deg $(H(t, U, y))$ = Const

weil $deg(\cdot, U, y)$ konst. auf Zsh-Komponenten ist. Für y = y(t):

$$\deg(H(0), U, y(0)) = \deg(H(0) - y(0), U, 0) = \deg(H(t) - y(t), U, 0) \quad \forall t$$

Lemma 1.25 Zwei Matrizen $M_1, M_2 \in Gl(n)$ sind genau dann homotop in GL(n), falls

$$sign \det M_1 = sign \det M_2$$

Beweis: " \Rightarrow " Sei $M \in Gl(n)$. Wegen der Linearität von det in Zweilen können elementare Zeilenumformungen mit Hilfe stetiger Deformationen in Gl(n) erzeugt werden.

$$M \rightarrow * \operatorname{diag}(m_1, \ldots, m_m), \quad \operatorname{mit}[m_i] = 1$$

weil sign det M_1 = sign det M_2 .

$$H(t) := \begin{pmatrix} \pm \cos(\pi t) & \mp \sin(\pi t) \\ \sin(\pi t) & \cos(\pi t) \end{pmatrix}$$

ist eine Homotopie in Gl(n) von $diag(\pm 1, 1)$ nach $diag(\mp 1, -1)$. i = n transformiere $diag(\mp 1, -1)$. i = n transformiere $diag(m_i, ..., m_i)$ nach $diag(\pm 1, 1)$

$$\Rightarrow \begin{pmatrix} \operatorname{sign} \det M & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 0 & \cdots & \cdots & 1 \end{pmatrix}$$

Theorem 1.26 Sei $f \in D^1_v(\overline{U}, \mathbb{R}^n)$, $y \notin CV(f)$ und deg eine Gradabbildung. Dann gilt

$$\deg(f, U, y) = \sum_{x \in f^{-1}(y)} \operatorname{sign} J_f(x),$$

wobei die Summe endlich ist.

BEWEIS: O.B.d.A. y_0 (**D1**). Alle $x \in f^{-1}(0)$ sind isolierte Punkte in U (Homöomorphiesatz). $f^{-1}(y)$ hat höchstens am Rand einen Häufungspunkt, aber $0 \notin f(\partial U)$.

$$\Rightarrow f^{-1}(0) = \{x^i\}_{i=1}^N$$

Wähle $\delta > 0$ so klein, dass $B_{\delta}(x^{i})$ paarw. disjunkt.

$$\deg(f, U, 0) = \sum_{i=1}^{N} \deg(f, B_{\delta}(x^{i}), 0)$$

beachte $0 \notin f(\overline{U}, \setminus \bigcup_{i=1}^{N} B_{\delta}(x^{i}))$.

$$f(x) = \partial f(x)(x - x') + |x - x^i| r(x - x') \quad \text{mit} \quad r \in C^0(B_\delta(x^i), \mathbb{R}^n), \quad r(0) = 0)$$

Zeige $0 \notin H(t, \partial B_{\delta}(x^i))$.

$$J_f(x^i) \neq 0 \Rightarrow \exists \lambda > 0 : |\partial f(x^i)(x - x^i)| \ge \lambda |x - x^i|$$

O.B.d.A. sei δ so klein, dass $|r(x-x^i)| < \lambda$ in $B_{\delta}(x^i)$.

$$\Rightarrow |H(t,x)| > |\partial f(x^{i})(x-x^{i})| - (1-t)(x-x^{i})r(x-x^{i}) \ge \lambda \delta - \delta |r| > 0 \quad \forall \ x \in \partial B_{\delta}(x^{i})$$

$$\stackrel{\text{(D4)}}{\Rightarrow} \deg(f,U,0) = \sum_{i=1}^{N} \deg(\partial f(x^{i})(\cdot - x^{i}), B_{\delta}(x^{i}), 0$$

Lemma 1.25

$$\Rightarrow \deg(\partial f(x^i)(\cdot - x^i), B_{\delta}(x^i), 0) = \deg(\operatorname{diag}(\operatorname{sign} J_f(x^i), 1, \dots, 1), B_{\delta}(x^i), 0)$$

Falls $J_f(x^i) > 0 \stackrel{D2}{\Rightarrow} \deg(I(\cdot - x^i), B_\delta(x^i), 0) = 1$. Es genüngt also, $\deg(M(\cdot - x^i), B_1(x^i), 0)$. Zu berechnen, wobei $M = \operatorname{diag}(-1, 1, \dots, 1)$ ist.

$$U_{1} := B_{1}(x^{i}) = \left\{ \max_{1 \leq k \leq n} |x_{k} - x_{k}^{i}| < 1 \right\}$$

$$U_{2} := U_{1} + (2, 0, \cdot, 0)$$

$$g(r) = 2 - |r - 1|, h(r) = 1 - r^{2}$$

$$f_{1}(x) := \left(1 - g(x_{1} - x_{1}^{i})h(x_{2} - x_{2}^{(i)}) \dots h(x_{n} - x_{n}^{(i)}), \dots, 1 \right)$$

$$f_{2}(x) := \left(1, x_{2} - x_{2}^{(i)}, \dots, x_{n} - x_{n}^{(i)} \right)$$

$$f_{1}^{-1}(0) = \{y, z\} \quad y = x^{i}, z = x^{i} + (2, 0, \dots, 0)$$

$$f_{1}|_{\partial U} = f_{2}|_{\partial U} \implies \deg(f_{1}, U_{2}, 0) = 0$$

$$\implies \deg(f_{1}, U, 0) = \deg(f_{1}, U_{1}, 0) + \deg(f_{2}, U_{2}, 0) \quad (\star)$$

$$\implies \deg(M, B_{1}(x^{i}), 0) = \deg(\partial f_{1}(y), B_{1}(x^{i}), 0)$$

$$= \deg(f_{1}, U_{1}, 0) \stackrel{(\star)}{=} - \deg(f_{1}, U_{2}, 0)$$

$$= - \deg(\partial f_{1}(z), U_{2}, 0) = \deg(\operatorname{Id}, U_{2}, 0) = 1$$