Найти отношение поверхности тела вращения к поверхности равновеликого шара.

2500. Фигура, ограниченная параболой $y^2 = 2px$ и **пр**ямой x = p/2, вращается вокруг прямой y = p. Найти объем и поверхность тела вращения.

§ 9. Вычисление моментов. Координаты центра тяжести

1°. Моменты. Если на плоскости Оху масса М плотности $\rho = \rho(y)$ заполняет некоторый ограниченный континуум Ω (линию, плоскую область) и $\omega = \omega(y)$ — соответствующая мера (длина дуги, площадь) той части континуума Ω , ординаты которой не превышают у, то к-м моментом массы М относительно оси Ох называется число

$$\boldsymbol{M}_{k} = \lim_{\max \Delta y_{c} \to 0} \sum_{i=1}^{n} \rho\left(y_{i}\right) y_{i}^{k} \Delta \omega\left(y_{i}\right) = \int_{\Omega} \rho y^{k} d\omega\left(y_{i}\right) (k = 0, 1, 2, \ldots),$$

где $\Delta y_i = y_i - y_{i-1}$ и $\Delta \omega \left(y_i \right) = \omega \left(y_i \right) - \omega \left(y_{i-1} \right)$. Как частные случаи, получаем при k=0 массу M, при k = 1 - cтатический момент, при k = 2 - момент инерции.Аналогично определяются моменты массы относительно координатных плоскостей.

Если $\rho = 1$, то соответствующий момент называется геометрическим (момент линии, плоской фигуры, тела и т. д.).

2°. Центр тяжести. Координаты центра тяжести (x₀, y_n) однородной плоской фигуры площади S определяются по формулам

$$x_0 = \frac{M_1^{(y)}}{S}, \quad y_0 = \frac{M_1^{(x)}}{S},$$

где $M_1^{(y)}$, $M_1^{(x)}$ — геометрические статические моменты фигуры Относительно осей Оу и Ох.

2501. Найти статический момент и момент инерции дуги полуокружности радиуса а относительно диаметра, проходящего через концы этой дуги.

2501.1. Найти статический момент дуги параболы

$$y^2 = 2px (0 \le x \le p/2)$$

относительно прямой x = p/2.

2502. Найти статический момент и момент инерции однородной треугольной пластинки с основанием в и высотой h относительно основания ($\rho = 1$).

2502.1. Найти моменты инерции $I_x = M_2^{(x)}$ и $I_u = M_2^{(y)}$ относительно осей Ох и Оу параболического сегмента,