Introduction to Audio Content Analysis

Module 6.4: Rhythm Descriptors

alexander lerch

introduction

overview

corresponding textbook section

Chapter 6 — Temporal Analysis: pp. 133-135

lecture content

- introduction of the beat histogram
- low level features used to describe rhythmic properties

learning objectives

- explain the terms beat histogram and beat spectrum and how they related to each other
- describe two low level features derived from the beat spectrum and discuss their musical meaning and limits

introduction

overview

corresponding textbook section

Chapter 6 — Temporal Analysis: pp. 133-135

lecture content

- introduction of the beat histogram
- low level features used to describe rhythmic properties

learning objectives

- explain the terms beat histogram and beat spectrum and how they related to each other
- describe two low level features derived from the beat spectrum and discuss their musical meaning and limits

rhythm description problem statement

- challenges for extracting rhythm descriptors from an audio signal
 - onset, beat, and downbeat detection error prone
 - varying tempo
- ⇒ need for robust low level descriptors

beat histogram

beat spectrum/beat histogram: compact representation of periodicities

- compute novelty function
 - time domain features: envelope, rms
 - spectral differences: flux, ...
 - any other feature
- compute transform
 - (resonance) filter bank
 - magnitude spectrum
 - pick onsets
 - → compute histogram of Inter-Onset-Intervals (IOI histogram)

graph from¹

¹A. Lykartsis and A. Lerch, "Rhythm Features for Musical Genre Classification Using Multiple Novelty Functions," in *Proceedings of the International Conference on Digital Audio Effects (DAFX)*, Trondheim, Norway, 2015.

beat histogram feature examples

Georgia Center for Music Tech College of Design

statistical features

 mean, centroid, standard deviation, kurtosis, . . .

peak features

- value and position of absolute max
- ratio (value and position) of strongest and 2nd strongest peaks

other features

- flatness, crest, high frequency content, MFCCs (??),...
- features from ACF of beat histogram

beat histogram feature examples

Georgia Center for Music Tech Technology

statistical features

 mean, centroid, standard deviation, kurtosis, . . .

peak features

- value and position of absolute max
- ratio (value and position) of strongest and 2nd strongest peaks

other features

- flatness, crest, high frequency content, MFCCs (??),...
- features from ACF of beat histogram

overview intro beat histogram features summary

o o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

beat histogram

Georgia Center for Music Tech

feature examples

statistical features

 mean, centroid, standard deviation, kurtosis, . . .

peak features

- value and position of absolute max
- ratio (value and position) of strongest and 2nd strongest peaks

other features

- flatness, crest, high frequency content, MFCCs (??),...
- features from ACF of beat histogram

plot from²

7/8, pp. 724–739, 2004.

²J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the audio engineering society (jaes), vol. 52, no.

rhythm description general questions

- should a rhythm description be tempo dependent or not?
- what role does microtiming play?
- should rhythm descriptors be normalized to bar length?
- what rhythms are perceptually similar?

summary

lecture content

beat histogram or spectrum

- some frequency domain representation of onsets
- usually characterizing the periodicities

beat histogram features

- low level features characterizing the beat spectrum
- often statistical descriptors
- easy to extract but limited meaning

