REGULAR EXPRESSIONS FOR INFINITE

TREES AND A STANDARD FORM OF AUTOMATA

By A.W.MOSTOWSKI

Math.Institute of the University of Gdańsk , 80-952 Gdańsk , Poland Wita Stwosza 57

Summary For Rabin pair automata [R1] a standard form is defined /def. 2/ i.e. such that an ordered subset $\{s_1,\ldots,s_{2I-1}\}$ of states is distinguished in such a way that a path of a run is accepting /rejecting if for some i even/ odd, $1 \le i \le 2I-1$, the s_i appears infinitely often, and all s_j , $j \le i$ only finitely many times. The class of standard automata is big enough to represent all f.a. representable sets /th.1/ but has many properties similar to special automata defined in [R1]. A standard regular expression is defined /def. 6/ describing a process of forming of an infinite tree, as well as a process of building of an automaton /analysis and synthesis theorems 3.4/. The standard regular expressions are a generalisation of McNaughtons formula $\mathcal{Vol} \beta^{\omega}/\text{of}$. [N] /.

1. Notions. We refer the reader to automata on infinite binary trees as defined in [R1], and to automata on finite trees as given in [TW]. For simplicity reasons the theorems are stated and proved for a binary case, but some minor changes will allow the theorems to be true for mixed trees as given in [M3].

Only in par. 3 the regular expressions theory is shown explicitely to be working for mixed trees.

An alphabet \sum is fixed. A /valued, infinite, binery/ tree $\mathbf{t} = (\mathbf{T}, \mathbf{v})$ is a tree $\mathbf{T} = \left\{0,1\right\}^{\frac{1}{N}}$ with a valuation $\mathbf{v}: \mathbf{T} \longrightarrow \sum_{i=1}^{N} \mathbf{T}$. The relation $\mathbf{x} \in \mathbf{y}$ is an order, where $\mathbf{x} \in \mathbf{y}$ iff there exists zeT such that $\mathbf{xz} = \mathbf{y}$. Maximal chains for \sum are called paths of \mathbf{T} . For $\mathbf{A}, \mathbf{B} \in \mathbf{PS}(\mathbf{S})$ the relation $\mathbf{A} \subset \mathbf{B}$ denotes proper inclusion.

A /partial/ table is a triple $\mathcal{T} = \langle S, M, s_{in} \rangle$, where S is a finite set of states $s_{in} \in S$, and $M: S \times \sum \rightarrow PS(S \times S)$ is a transition function. A run of \mathcal{T} on t is a total function $r: T-\rightarrow S$ such that : $r(\Lambda) = s_{in}$, $\langle r(x0), r(x1) \rangle \in M(r(x), v(x))$ for $x \in T$.

A finite automaton on trees is a pair $Q=\langle \mathcal{I},W\rangle$ of a table \mathcal{I} and a set $W\leq S^\omega$ of accepting paths. A tree t is accepted by the Q iff there exists a run r of \mathcal{I} on t, such that for each path $\mathcal{I} \leq T$, r/ $\mathcal{I} \in W$, i.e. each path of the run is accepting.

Let $\mathcal{Q}=\left\{(U_{\mathbf{i}},L_{\mathbf{i}}):0\leqslant i\leqslant I,U_{\mathbf{i}},L_{\mathbf{i}}\leqslant S\right\}$ be a collection of pairs and $\mathcal{F}\leqslant\mathrm{PS}(S)$ a collection of subsets. Let $s:\omega\to S$ be a sequence. We shall define a set $[\mathcal{Q}]$ of sequences on S as follows: $s\in [\mathcal{Q}]$ iff card $(s^{-1}(U_{\mathbf{i}}))\geqslant\omega$ and card $(s^{-1}(L_{\mathbf{i}}))<\omega$, for some $i:0\leqslant i\leqslant I$. We speak of a Rabin automaton or a pair automaton if $W=[\mathcal{Q}]$. The $I=I(\mathcal{G}_c)$ is called a Rabin pair index of the automaton. Let us define $s\in [\mathcal{Q}]$ iff $\{x: \mathrm{card}(s^{-1}(x))\geqslant\omega\}\in\mathcal{F}$. For $W=[\mathcal{F}]$ we shall say that \mathcal{L} is a Muller, or set, automaton. Definition 1. A Rabin automaton is a chain form automaton /c.f.a./ iff $L_0\leqslant L_1\leqslant\ldots\leqslant L_{I-1}$ for the L_0,\ldots,L_{I-1} appearing in the \mathcal{Q} .