Diferencialinės lygtys P3

Raimundas Vidunas Vilniaus Universitetas

MIF, 2023 rugsėjo 18 d.

Pirmųjų paskaitų tikslai

Praeitą savaitę:

- Geometrinė diferencialinių lygčių ir Koši uždavinio analizė krypčių laukais.
- Pirmos eilės lygčių su atsiskiriančiais kintamaisiais sprendimo komplikacijos.

Šiandien:

- Formuluosime Koši uždavinio sprendinio egzistavimo sąlygą.
 Pateiksime ir ją netenkinantį pavyzdį.
- Nagrinėsime Koši uždavinio sprendimą skaitiniu metodu.
- Pirmos eilės lygčių y' = F(ax + by) ir y' = F(y/x) suvedimas į lygtis su atsiskiriančiais kintamaisiais.

Koši uždavinys pirmos eilės lygčiai (egzistavimas)

Teorema (Koši ir Peano)

Nagrinėjame diferencialinę lygtį $\frac{dy}{dx} = \varphi(x, y)$

su Koši pradine sąlyga $y(x_0) = y_0$.

Tarkime, funkcija $\varphi(x,y)$ yra tolydi uždarame stačiakampyje

$$\Gamma = \{(x,y) : |x-x_0| \le a, |y-y_0| \le b, a > 0, b > 0\}.$$

Tegu
$$|\varphi(x,y)| \le M < \infty$$
, ir $h = \min\left(a, \frac{b}{M}\right)$.

Tada intervale $|x - x_0| \le h$ egzistuoja diferencialinės lygties sprendinys y(x), tenkinantis sąlygą $y(x_0) = y_0$.

Žr. Golokvosčiaus skyrius 3.1 ir 3.2. Įrodoma, kad kiekvienam $\varepsilon > 0$ galime rasti artinį $y_{\varepsilon}(x)$ tokį, kad $(x,y_{\varepsilon}(x)) \in Q$ kai $|x-x_0| < \varepsilon$, ir $|y'_{\varepsilon}(x) - \varphi(x,y_{\varepsilon}(x))| \le \varepsilon$. Riboje gauname tolygų konvergavimą į sprendinį.

Pavyzdys 1: Intervalas sprendinio egzistavimuii

Nagrinėjame Koši uždavinį $y' = x - y^2$, y(0) = 0.

Kokiame intervale šiam uždaviniui sprendinys garantuotai egzistuoja?

Imame stačiakampį |x|<1, |y|<1. Turime aprėžti funkciją $\varphi(x,y)=x-y^2$, t.y., rasti jos ekstrumumo taškus stačiakampyje.

Kadangi $\frac{\partial \varphi}{\partial x} = 1 \neq 0$, ekstremumo taškai yra ant stačiakampio kraštų x = -1 ir x = 1.

Kadangi $\frac{\partial \varphi}{\partial y} = -2y$, nagrinėjame taškus (x, y) su $x \in \{-1, 1\}$ ir $y \in \{0, -1, 1\}$.

Maksimali $|\varphi(x,y)|$ reikšmė yra $\varphi(-1,1)=\varphi(-1,-1)=-2$. Tad $|\varphi(x,y)|\leq 2$, ir sprendinys egzistuoja kai $|x|\leq \min(1,\frac{1}{2})$. Imame intervalą $x\in [-\frac{1}{2},\frac{1}{2}]$.

Jei pradėtumėme nuo stačiakampio $|x|<\frac{2}{3},\ |y|<\frac{2}{3},$ gautumėme didesnį intervalą $|x|\leq \min(\frac{2}{3},\frac{2/3}{2/3+4/9})=\frac{3}{5}.$

Pavyzdys 2: Koši uždavinio nevienatis

Diferencialinė lygtis x y'(x) = 3y(x) su pradine sąlyga y(0) = 0 turi be galo daug sprendinių:

$$y(x) = \left\{ \begin{array}{ll} Cx^3, & \text{jei } x \geq 0, \\ 0, & \text{jei } x < 0, \end{array} \right. \quad \text{arba net} \quad y(x) = \left\{ \begin{array}{ll} C_1x^3, & \text{jei } x \geq 0, \\ C_2x^3, & \text{jei } x < 0. \end{array} \right.$$

Pradinei sąlygai y(0) = 1 sprendinių nėra.

Atskirųjų sprendinių apibrėžimo sritis turi būti pakankamai apribota, vengti "singuliariųjų" taškų. Nagrinėjamu atveju, apibrėžimo srityje neturėtų būti taško x=0.

Netiesinių lygčių atveju, sprendinių ypatingi taškai gali būti ir neaiškūs. Pvz., lygties $yy'=\frac{1}{2}$ bendras sprendinys yra $y(x)=\sqrt{x-C}$. Tad bet koks taškas x=C gali būti apibrėžimo srities riba.

Skaitinis Koši uždavinio sprendimas

Koši uždavinio $\frac{dy(x)}{dx} = \varphi(x,y)$, $y(x_0) = y_0$ skaitinis sprendimas remiasi Teiloro aproksimacija

$$y(x + h) = y(x) + y'(x) \frac{h}{1!} + y''(x) \frac{h^2}{2!} + y'''(x) \frac{h^3}{3!} + \dots$$

aplink rekursyviai žinomus taškus $x=x_0$, $x=x_0+h$, $x=x_0+2h$, Čia h imamas mažas (t.y., artimas nuliui) žingsnio dydis, galimai neigiamas (sprendinio pretęsimui j neigiamą pusę).

Paprasčiausias metodas yra Oilerio tiesioginis metodas, kur sprendinio reikšmės $y(x_0+h)$, $y(x_0+2h)$, $y(x_0+3h)$, ... yra paskaičiuojamos naudojantis tiesine aproksimacija $y(x+h)=y(x)+h\,y'(x)$.

Jei $x_k = x_0 + kh$, then aproksimuojančio sprendinio reikšmės $\widetilde{y}_k \approx y(x_k)$ yra skaičiuojamos pirmos eilės rekursija $\widetilde{y}_{k+1} = \widetilde{y}_k + h \varphi(x_k, \widetilde{y}_k)$.

Tikslesni skaitiniai metodai

- Aproksimuoti pirmąją išvestinę aukštenės eilės skirtuminiais (rekursiniais) operatoriais; pvz., $y'(x) = \frac{y(x+h) y(x-h)}{2h}$.
- Netiesioginiai metodai; pvz., $\widetilde{y}_{k+1} = \widetilde{y}_k + \varphi(x_{k+1}, \widetilde{y}_{k+1})$.
- Imti daugiau Teiloro aproksimacijos narių.
- Aproksimuoti aukštesnės eilės išvestines Teiloro aproksimacijoje skirtuminiais operatoriais; pvz., $y''(x) = \frac{y(x+h) 2y(x) + y(x-h)}{h^2}$.

Lygtys su atskiriamais kintamaisiais: platesnis taikymas

lš diferencialinės lygties
$$\frac{dy}{dx} = \varphi(x)\psi(y)$$
 gavome diferencialų lygtį $\frac{dy}{\psi(y)} = \varphi(x)dx$.

Integruodami abi puses gauname
$$\int \frac{dy}{\psi(y)} = \int \varphi(x) dx$$
.

Apskaičiavę pirmykštes funkcijas $\Phi(x) = \int \varphi(x) dx$, $\Psi(y) = \int \frac{dy}{\psi(y)}$ gauname bendrąjį sprendinį *neišreikštine forma*: $\Psi(y) = \Phi(x) + C$.

Imdami atvirkštinę funkciją $y = \Psi^{-1}$ (bent mažoje srityje), išsprendžiame $y(x) = \Psi^{-1}(\Phi(x) + C)$.

Šiandien nagrinėjame pirmos eilės lygčių y' = F(ax + by) ir y' = F(y/x)

suvedimą į lygtį su atsiskiriančiais kintamaisiais.

Suvedimas į atskiriamų kintamųjų atvejį

Tarkime, turime šio pavidalo pirmos eilės diferencialinę lygtį:

$$\frac{dy}{dx} = F(ax + by).$$

Įvedame naują nežinomąją funkciją: u = ax + by.

Tada
$$\frac{du}{dx} = a + b \frac{dy}{dx}$$
.

Pradinė lygtis transformuojasi į $\frac{du}{dx} = a + b F(u)$.

Kintamieji atsiskiria: $\frac{du}{a+bF(u)}=dx$.

Integruojame:
$$\int \frac{du}{a+bF(u)} = x + C.$$

Jei $\Psi(u) = \int \frac{du}{a+bF(u)}$ yra pirmykštė funkcija, turime bendrąjį sprendinį neišreikštiniu pavidalu: $\Psi(ax+by) = x+C$.

Raimundas Vidunas

Pavyzdys 3

Spręskime diferencialinę lygtį $\frac{dy}{dx} = (y + x)^2$.

Pakeitę u = y + x turime $\frac{du}{dx} = \frac{dy}{dx} + 1$,

ir lygtis tampa $\frac{du}{dx} = u^2 + 1$.

lšskaidome $\frac{du}{u^2+1}=dx$ ir integruojame: $\int \frac{du}{u^2+1}=\int dx$.

Gauname $\arctan u = x + C$, $\text{arba } u = \tan(x + C)$.

Pradinei nežinomai funkcijai y = u - x, turime

$$y=\tan(x+C)-x.$$

Kadangi dalijome iš $u^2 + 1$, dar yra kompleksiniai pastovūs sprendiniai $y = \pm i - x$, bet juos ignoruojame.

Lygties y' = F(y/x) suvedimas į atskiriamus kintamuosius

Tarkime, turime šio pavidalo pirmos eilės diferencialinę lygtį:

$$\frac{dy}{dx} = F\left(\frac{y}{x}\right).$$

Įvedame naują nežinomąją funkciją: u = y/x, arba y = x u.

Tada
$$\frac{dy}{dx} = x \frac{du}{dx} + u$$
.

Pradinė lygtis transformuojasi į $x \frac{du}{dx} + u = F(u)$.

Kintamieji atsiskiria: $\frac{du}{F(u)-u} = \frac{dx}{x}$.

Integruojame:
$$\int \frac{du}{F(u) - u} = \ln|x| + C.$$

Jei $\Psi(u) = \int \frac{du}{F(u) - u}$ yra pirmykštė funkcija, turime

bendrąjį sprendinį neišreikštiniu pavidalu: $\Psi\left(\frac{y}{x}\right) = \ln|x| + C$.

Pavyzdys 4

Spręskime diferencialinę lygtį $\frac{dy}{dx} = \frac{2xy}{x^2 + y^2}$.

Padaliję skaitiklį ir vardiklį iš x^2 , gauname: $\frac{dy}{dx} = \frac{2\frac{y}{x}}{1 + \frac{y^2}{x^2}}$.

Įvedame u = y/x, atpažįstame $\frac{dy}{dx} = \frac{2u}{1+u^2}$.

Iš y = x u gauname $\frac{dy}{dx} = x \frac{du}{dx} + u$,

tad lygtis naujajai nežinomajai funkcijai u(x) tampa $x \frac{du}{dx} + u = \frac{2u}{1 + u^2}$

Perrašome
$$x \frac{du}{dx} = \frac{2u}{1 + u^2} - u = \frac{u - u^3}{1 + u^2}.$$

Kintamieji atsiskiria: $\frac{(1+u^2) du}{u-u^3} = \frac{dx}{x}.$

Pavyzdžio 4 tęsinys

Integruojame:
$$\int \frac{(1+u^2) du}{u-u^3} = \int \frac{dx}{x}.$$

Kairėje pusėje skaidome dalinėmis trupmenomis:

$$\int \frac{(1+u^2) du}{u-u^3} = \int \frac{(1+u^2) du}{u(1-u)(1+u)}$$

$$= \int \left(\frac{1}{u} - \frac{1}{u+1} - \frac{1}{u-1}\right) du$$

$$= \ln|u| - \ln|u+1| - \ln|u-1| + C_0$$

$$= \ln\left|\frac{u}{u^2-1}\right| + C_0.$$

uncover<4-> Neišreikštine forma, turime:

$$\ln\left|\frac{u}{u^2-1}\right|=\ln|x|+C_1.$$

Imame eksponentes, gauname $\frac{u}{2} = C_2 x$.

Pavyzdžio 4 pabaiga

Iš
$$\ln \left| \frac{u}{u^2 - 1} \right| = \ln |x| + C_1$$
 gavome $\frac{u}{u^2 - 1} = C_2 x$.

Moduliai $|\cdot|$ logaritmuose įtraukti į konstantą C_2 .

Galime spręsti
$$u$$
: $u(x) = \frac{1 \pm \sqrt{4C_2^2x^2 + 1}}{2C_2x}$,

arba
$$u(x) = \frac{C_3 \pm \sqrt{x^2 + C_3^2}}{x}$$
 su $C_3 = \frac{1}{2C_2}$.

Kadangi y = ux, bendrasis sprendinys yra $y(x) = C_3 \pm \sqrt{x^2 + C_3^2}$.

Atskiram sprendiniui parenkame C_3 ir \pm ženklą prie kvadratinės šaknies.

Pvz., Koši uždavinio
$$y(1)=-2$$
 sprendinys yra $y(x)=-\frac{3}{4}-\sqrt{x^2+\frac{9}{16}}$.

Homogeninės funkcijos

Kaip atpažinti, kad dešinioji pusė lygtyje $\frac{dy}{dx} = \frac{2xy}{x^2 + y^2}$

yra funkcija F(y/x) nuo y/x?

Skaitiklis ir vardiklis dešinėje pusėje yra homogeninės funkcijos, antro laipsnio (m = 2): $f(tx, ty) = t^m f(x, y)$.

Visa trupmena yra nulinio m=0 laipsnio homogeninė funkcija, t.y., invariantinė homotetijos (x,y)=(tx,ty) atžvilgiu.

Imdami $t=\frac{1}{x}$ gauname $f(x,y)=\frac{1}{x^m}f\left(1,\frac{y}{x}\right)$ skaitiklyje ir vardiklyje, su m=2. Visa trupmena tampa F(y/x), su m=0.

Nulinio laipsnio homogeninių funkcijų pavyzdžiai:

$$\frac{x^3-xy^2}{x^2y+y^3},\quad \frac{\sqrt{x^2+y^2}+y}{x},\quad \sin\frac{y}{x},\quad \frac{y}{x}\left(1+\ln y-\ln x\right).$$

Uždaviniai

1. Nurodykite kokią nors atkarpą [a, b], kurioje egzistuoja sprendinys šiam Koši uždaviniui: $y' = x + y^3$, y(1) = 0.

Raskite bendruosius ar (Koši uždaviniams) atskiruosius sprendinius šioms lygtims:

- 2. y' y = 2x 3.
- 3. (x + 2y) y' = 1, su pradine sąlyga y(0) = -1.
- 4. $x^2y' = 2xy y^2$.
- 5. xy' = x + 2y, su pradine sąlyga y(1) = -1.
- 6. $2x^3y' = y(2x^2 y^2)$, su pradine sąlyga y(e) = -e.
- 7. $xy' = y + x \tan \frac{y}{x}$.
- 8. $xy' = y + \sqrt{xy}$.
- 9. $y' = \sqrt{4x + 2y 1}$.
- 10. $y' = \cos(y x)$.

Pasirinkite kurią nors šių lygčių, nubrėžkite jos krypčių lauką, ir kelias integralines kreives (t.y., sprendinių grafikus).

Antros paskaitos grafiniai uždaviniai

- 1. Žr. brėžinį kairėje.
- 2. Žr. brėžinį dešinėje. Izoklinės yra tiesės, lygiagrečios tiesei $y=\frac{1}{2}x$. Bendrasis sprendinys yra $y(x)=\frac{1}{2}x+1+C\mathrm{e}^{-x}$. Dabar galite sprendinį rasti!

Antros paskaitos sprendimų atsakymai

$$3. \quad y(x) = \pm \sqrt{\frac{2}{C - \ln|x|}}.$$

4.
$$y(x) = \pm \sqrt{C - x^2}$$
.

5.
$$y(x) = \pm \sqrt{x^2 + C}$$
.

6.
$$y(x) = \pm \sqrt{2 + \frac{C}{x}}$$
.

7.
$$y(x) = \frac{\sqrt{3-2x}}{x}$$
; bendrasis sprendinys $y = \pm \frac{\sqrt{3-2x+Cx^2}}{x}$.

8.
$$y(x) = -\frac{2}{\sqrt{1 - 8x - \frac{8}{3}x^3}};$$

bendrasis sprendinys $y = \pm \frac{1}{\sqrt{C - 2x - \frac{2}{3}x^3}}$ ir y = 0.

9.
$$y=-2$$
 $y=0$ $y=2$ $y=3$