Свойства линейного пространства

- 1. В линейном пространстве существует единственный нулевой вектор.
- **2.** В линейном пространстве V для каждого вектора $\vec{x} \in V$ существует единственный ему противоположный вектор $-\vec{x} \in V$.
- 3. Для вектора $-\vec{x} \in V$ противоположным вектором является $\vec{x} \in V$.
- **4.** $0 \otimes \vec{x} = \vec{0}, \forall \vec{x} \in V$.
- **5.** $-1 \otimes \vec{x} = -\vec{x}, \forall \vec{x} \in V$.
- 6. Произведение любого числа α на нулевой вектор есть нулевой вектор, то есть $\alpha \otimes \vec{0} = \vec{0}$. $\forall \alpha \in P$.
 - 7. Если $\alpha \otimes \vec{x} = \vec{0}$ и $\alpha \neq 0$, то $\vec{x} = \vec{0}$.
 - **8.** Если $\alpha \otimes \vec{x} = \vec{0}$ и $\vec{x} \neq \vec{0}$, то $\alpha = 0$.

Линейным (векторным) пространством называется непустое множество V элементов произвольной природы $\vec{x}, \vec{y}, \vec{z}, \ldots$, то есть $V = \{\vec{x}, \vec{y}, \vec{z}, \ldots\}$, условно называемых векторами, над которыми определены две операции: сложения двух векторов $\oplus : \forall \vec{x}, \vec{y} \in V \Rightarrow \vec{x} \oplus \vec{y} \in V$, и умножения вектора на число $\otimes : \forall \vec{x} \in V, \forall \alpha \in P \Rightarrow \alpha \otimes \vec{x} \in V$, P—некоторое числовое множество, удовлетворяющие восьми аксиомам:

- **1**. $\vec{x} \oplus \vec{y} = \vec{y} \oplus \vec{x}$, $\forall \vec{x}, \vec{y} \in V$;
- **2.** $(\vec{x} \oplus \vec{y}) \oplus \vec{z} = \vec{x} \oplus (\vec{y} \oplus \vec{z}), \ \forall \vec{x}, \vec{y}, \vec{z} \in V;$
- **3.** существует нуль—вектор $\vec{0} \in V$ такой, что $\vec{x} \oplus \vec{0} = \vec{x}$ для любого $\vec{x} \in V$;
- **4.** для каждого $\vec{x} \in V$ существует ему противоположный элемент $-\vec{x} \in V$ такой, что $\vec{x} \oplus (-\vec{x}) = \vec{0}$;
 - **5.** $1 \otimes \vec{x} = \vec{x}$, $\forall \vec{x} \in V$;
 - **6.** $\alpha \otimes (\beta \otimes \vec{x}) = (\alpha \beta) \otimes \vec{x}$, $\forall \vec{x} \in V, \forall \alpha, \beta \in P$;
 - 7. $\alpha \otimes (\vec{x} \oplus \vec{y}) = (\alpha \otimes \vec{x}) \oplus (\alpha \otimes \vec{y}), \ \forall \vec{x}, \vec{y} \in V, \forall \alpha \in P;$
 - **8.** $(\alpha + \beta) \otimes \vec{x} = (\alpha \otimes \vec{x}) \oplus (\beta \otimes \vec{x}), \ \forall \vec{x} \in V, \forall \alpha, \beta \in P.$

n=1

Определение 2 (линейного подпространства).

Множество V_1 элементов линейного пространства V называется **подпространством** пространства V , если выполнены условия:

- 1) в множестве V_1 операции сложения векторов и умножения вектора на число определяются также, как и в V ;
 - 2) если \vec{x} , $\vec{y} \in V_1$, то и $\vec{x} \oplus \vec{y} \in V_1$;
 - 3) если $\alpha \in P, \vec{x} \in V_1$, то и $\alpha \otimes \vec{x} \in V_1$.

Заметим, что всякое подпространство V_1 линейного пространства является линейным пространством.

Определение 3. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейного пространства V называется линейно зависимой, если существует набор чисел $\alpha_1, \alpha_2, ..., \alpha_n$, среди которых хотя бы одно не равно нулю, такой, что $(\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus ... \oplus (\alpha_n \otimes \vec{x}_n) = \vec{0}$.

Определение 4. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейного пространства V называется линейно независимой, если векторное равенство $(\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus ... \oplus (\alpha_n \otimes \vec{x}_n) = \vec{0}$ выполняется тогда и только тогда, когда $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Определение 5. Пусть в линейном пространстве V выполнены условия:

- 1) существует n линейно независимых векторов;
- 2) любая система n+1 векторов линейно зависима.

Тогда число n называется **размерностью линейного пространства** V и обозначается $\dim V = n$.

Определение 6. Базисом n – **мерного линейного пространства** V называется любая упорядоченная система n линейно независимых векторов этого пространства.

Определение 7. Выражение (1) называется разложением вектора \vec{x} по базису $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$, а числа $\alpha_1, \alpha_2, \dots, \alpha_n$ называются координатами вектора \vec{x} в этом базисе.

Определение 8. Линейное пространство V называется конечномерным, если в нем имеется базис, состоящий из конечного числа векторов.

Линейное пространство V называется **бесконечномерным**, если в нем существует система из любого числа линейного независимых векторов.

Множество всех аналитических (бесконечное число раз дифференцируемых) функций является примером бесконечномерного пространства, в котором в качестве базиса можно взять совокупность многочленов $1, x, x^2, ..., x^n, ...$

Теорема 1. Если к системе r линейно зависимых векторов присоединить любые m векторов, то получим систему r+m линейно зависимых векторов.

Теорема 2. Если из системы r линейно независимых векторов отбросить любые m, m < r, векторов, то получим систему r - m линейно независимых векторов.

Теорем 3. Если среди векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ имеется нулевой вектор, то эти векторы линейно зависимы.

Теорема 4. Для того, чтобы векторы $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n > 1$, линейного пространства V были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.

Теорема 5. Если $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ — базис n — мерного линейного пространства V , то любой вектор \vec{x} этого пространства линейно выражается через векторы $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$, то есть

$$\vec{x} = (\alpha_1 \otimes \vec{e}_1) \oplus (\alpha_2 \otimes \vec{e}_2) \oplus \dots \oplus (\alpha_n \otimes \vec{e}_n), \tag{1}$$

причем коэффициенты разложения $\alpha_1, \alpha_2, ..., \alpha_n$ определены однозначным образом.

Теорема 6. Если $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ — система линейно независимых векторов линейного пространства V и любой вектор \vec{x} этого пространства линейно выражается через векторы $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$, то $\dim V = n$.

Элементы функционального анализа

Определение 1. Линейное пространство V называется **евклидовым**, если каждой паре векторов \vec{x} и \vec{y} из пространства V поставлено в соответствие действительное число, обозначаемое (\vec{x}, \vec{v}) и удовлетворяющее следующим аксиомам:

- 1) $(\vec{x}, \vec{x}) \ge 0, \forall \vec{x} \in V$, и $(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$;
- 2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in V$;
- 3) $(\vec{x}_1 \oplus \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y}), \forall \vec{x}_1, \vec{x}_2, \vec{y} \in V;$
- 4) $(\alpha \otimes \vec{x}, \vec{v}) = \alpha \cdot (\vec{x}, \vec{v}), \forall \alpha \in R, \forall \vec{x}, \vec{v} \in V$.

Введенная операция называется **скалярным умножением векторов**, число (\vec{x}, \vec{y}) – **скалярным произведением векторов** \vec{x} и \vec{y} , а число (\vec{x}, \vec{x}) – **скалярным квадратом вектора** \vec{x} и обозначается \vec{x}^2 .

Замечание. Если хотя бы один из векторов \vec{x} , \vec{y} является нулевым, то их скалярное произведение равно нулю, то есть $(\vec{0}, \vec{v}) = 0, \forall \vec{v} \in V$.

Действительно, применяя свойство 4 линейного пространства, а затем аксиому 4 евклидова пространства, имеем

$$(\vec{0}, \vec{y}) = (0 \otimes \vec{x}, \vec{y}) = 0 \cdot (\vec{x}, \vec{y}) = 0, \forall \vec{x}, \vec{y} \in V$$
.

Определение 2. Если n –мерное линейное пространство является евклидовым, то оно называется евклидовым n –мерным пространством, а базис линейного пространства – базисом евклидова пространства.

Определение 3. Непустое множество X элементов произвольной природы x, y, z, \ldots называется **метрическим пространством**, если любым двум элементам x и y из множества X ставится в соответствие действительное число $\rho(x,y)$, называемое расстоянием между x и y, удовлетворяющее следующим аксиомам:

- **1.** $\rho(x,y) \ge 0, \forall x,y \in X$, if $\rho(x,y) = 0 \Leftrightarrow x = y$.
- **2.** $\rho(x,y) = \rho(y,x), \forall x,y \in X$.
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y), \forall x,y,z \in X$.

Определение 4. Множество $\{x: x \in X, \rho(x, x_0) < r\}$ называется открытым шаром $B(x_0, r)$ с центром в точке x_0 и с радиусом r или r – окрестностью точки x_0 .

Определение 5. Множество $A \subset X$ называется **открытым**, если для любого $x \in A$ существует радиус r > 0 такой, что $B(x,r) \subset A$.

Определение 6. Пусть $A \subset X$. Точка x называется предельной точкой множества A, если для любого r > 0 шар B(x,r) содержит хотя бы одну точку множества A, то есть существует последовательность $\{x_n\}$ элементов множества A, сходящаяся к x.

Определение 7. Пусть $A \subset X$ называется **замкнутым**, если оно содержит все свои предельные точки.

Определение 8. Последовательность $\{x_n\}$ элементов метрического пространства (X, ρ) называется **фундаментальной**, если для любого $\varepsilon > 0$ существует номер $N = N(\varepsilon)$ такой, что при любых n, m > N выполнено неравенство $\rho(x_n, x_m) < \varepsilon$.

Определение 9. Метрическое пространство (X, ρ) называется **полным**, если в нем любая фундаментальная последовательность сходится к некоторому $x \in X$.

Определение 10. Линейное пространство V называется нормированным, если каждому вектору $\vec{x} \in V$ поставлено в соответствие действительное число $\|\vec{x}\|$, называемое нормой вектора \vec{x} , удовлетворяющее аксиомам:

- **1.** $||\vec{x}|| \ge 0, \forall \vec{x} \in V, \mathbf{u} ||\vec{x}|| = 0 \Leftrightarrow \vec{x} = \vec{0};$
- **2.** $\|\alpha \otimes \vec{x}\| = |\alpha| \cdot \|\vec{x}\|, \forall \alpha \in R(C), \forall \vec{x} \in V;$
- 3. $\|\vec{x} \oplus \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|, \forall \vec{x}, \vec{y} \in V.$

Определение 11. Углом между ненулевыми векторами евклидова пространства V называется угол φ , косинус которого определяется по формуле (2).

Определение 12. Два вектора называются **ортогональными**, если их скалярное произведение равно нулю.

Нулевой вектор ортогонален любому другому вектору.

Определение 13. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортогональной**, если эти векторы попарно ортогональны, то есть $(\vec{x}_i, \vec{x}_j) = 0, \forall i \ne j; i, j, = 1, 2, ... n$.

Определение 14. Вектор \vec{x} называется **нормированным или единичным**, если $\|\vec{x}\| = 1$.

Если
$$\vec{x} \neq \vec{0}$$
, то существует два нормированных вектора $\vec{x}_1^0 = \frac{\vec{x}}{\|\vec{x}\|}$ и $\vec{x}_2^0 = -\frac{\vec{x}}{\|\vec{x}\|}$.

Нахождение для данного вектора нормированного вектора по указанным формулам называется **нормированием** данного **вектора**, а множитель $\mu = \pm \frac{1}{\|\vec{x}\|}$ — **нормирующим множителем**.

Определение 15. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортонормированной**, если она ортогональна и каждый вектор является нормированным, то есть

$$(\vec{x}_i, \vec{x}_j) = \begin{cases} 0, \forall i \neq j, \\ 1, \forall i = j, \end{cases} i, j, = 1, 2, \dots n.$$

Определение 16. Базис евклидова пространства называется ортогональным, если базисные векторы составляют ортогональную систему векторов.

Определение 17. Базис евклидова пространства называется ортонормированным, если базисные векторы составляют ортонормированную систему векторов.

Определение 18. Линейное пространство H называется **унитарным**, если каждой паре векторов \vec{x} и \vec{y} из пространства H поставлено в соответствие действительное или комплексное число , обозначаемое (\vec{x}, \vec{y}) и удовлетворяющее следующим аксиомам:

- 1) $(\vec{x}, \vec{x}) \ge 0, \forall \vec{x} \in H$, и $(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$;
- 2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in H$;
- 3) $(\vec{x}_1 \oplus \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y}), \forall \vec{x}_1, \vec{x}_2, \vec{y} \in H$;
- 4) $(\alpha \otimes \vec{x}, \vec{v}) = \alpha \cdot (\vec{x}, \vec{v}), \forall \alpha \in C, \forall \vec{x}, \vec{v} \in H$

Введенная операция называется **скалярным умножением векторов**, число (\vec{x}, \vec{y}) – **скалярным произведением векторов** \vec{x} и \vec{y} .

Определение 19. Полное унитарное пространство называется гильбертовым.

Теорема. Множество A открыто тогда и только тогда, когда его дополнение $X \setminus A$ замкнуто. Каждая предельная точка множества A, которая не является его внутренней точкой, называется **граничной точкой** множества A. Она может не принадлежать множеству A.

Теорема. Любая сходящаяся последовательность $\{x_n\}$ является фундаментальной последовательстью.

Теорема. Ортогональная система ненулевых векторов линейно независима. Теорема (процесс ортогонализации Грама-Шмидта).

В любом n –мерном евклидовом пространстве, $n \ge 2$, существует ортонормированный базис.

Неравенство Коши-Буняковского.

Для любых двух векторов \vec{x} и \vec{y} евклидова пространства справедливо неравенство

$$|(\vec{x}, \vec{y})| \leq \sqrt{(\vec{x}, \vec{x})} \cdot \sqrt{(\vec{y}, \vec{y})}$$
.

Свойства линейного оператора

- 1. Собственный вектор линейного оператора имеет единственное собственное значение.
- 2. Если \vec{x} собственный вектор линейного оператора f с собственным значением k и λ любое отличное от нуля число, то $\lambda \cdot \vec{x}$ также собственный вектор линейного оператора f с собственным значением k.
- 3. Если \vec{x}_1 и \vec{x}_2 линейно независимые собственные векторы линейного оператора f с одним и тем же собственным значением k, то $\vec{x}_1 + \vec{x}_2$ собственный вектор линейного оператора f с собственным значением k.
- **4.** Если $\vec{x_1}$ и $\vec{x_2}$ собственные векторы линейного оператора f с собственными значениями k_1 и k_2 соответственно, и $k_1 \neq k_2$, то $\vec{x_1}$ и $\vec{x_2}$ линейно независимые векторы.

12. Линейные преобразования.

Пусть V — линейное пространство.

Определение 1. Если задан закон f, по которому каждому вектору $\vec{x} \in V$ поставлен в соответствие единственный вектор $\vec{y} \in V$, то будем говорить, что задано **преобразование** (отображение, оператор) f пространства V в себя и записывать $f: V \to V$.

Вектор \vec{y} называется **образом** вектора \vec{x} , а вектор \vec{x} – **прообразом** вектора \vec{y} . Если преобразование f переводит вектор \vec{x} в вектор \vec{y} , то это будем записывать как $\vec{y} = f(\vec{x})$.

Определение 2. Преобразование f называется **линейным**, если выполнены два условия:

1)
$$f(\vec{x}_1 \oplus \vec{x}_2) = f(\vec{x}_1) \oplus f(\vec{x}_2), \forall \vec{x}_1, \vec{x}_2 \in V$$
;

2)
$$f(\lambda \otimes \vec{x}) = \lambda \otimes f(\vec{x}), \forall \vec{x} \in V, \forall \alpha \in R$$
.

Замечание. Линейное преобразование переводит нулевой вектор в нулевой.

$$f(\vec{0}) = f(\vec{x} \oplus (-\vec{x})) = f(\vec{x}) \oplus f(-\vec{x}) = f(\vec{x}) \oplus f(-1 \otimes \vec{x}) = f(\vec{x}) \oplus (-1 \otimes f(\vec{x})) = f(\vec{x}) \oplus (-f(\vec{x})) = \vec{0}.$$

Определение 3. Преобразование f называется тождественным, если оно каждому вектору пространства V ставит в соответствие этот же вектор, то есть $f(\vec{x}) = \vec{x}$.

Тождественное преобразование является линейным.

Пусть линейное преобразование f переводит базис $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ в векторы $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, то есть $f(\vec{e}_i) = \vec{e}_i', i = 1, 2, ..., n$, при этом

$$\begin{cases} \vec{e}'_1 = a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \dots + a_{n1}\vec{e}_n, \\ \vec{e}'_2 = a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \dots + a_{n2}\vec{e}_n, \\ \dots \\ \vec{e}'_n = a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \dots + a_{nn}\vec{e}_n. \end{cases}$$

Определение 4. Матрица вида

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

называется матрицей линейного преобразования f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$.

Определение 5. Ранг r матрицы A называется рангом преобразования, а число n-r- дефектом этого преобразования.

Связь между координатами вектора и его образа

Пусть вектор $\vec{x}(x_1; x_2; ...; x_n)$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то есть $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + ... + x_n \vec{e}_n$. Найдем $f(\vec{x})$.

Предположим, что $f(\vec{x})=(y_1,y_2,...,y_n)$. Тогда $f(\vec{x})=y_1\vec{e}_1+y_2\vec{e}_2+...+y_n\vec{e}_n$. С другой стороны

$$\begin{split} f(\vec{x}) &= f(x_1\vec{e}_1 + x_2\vec{e}_2 + \ldots + x_n\vec{e}_n) = x_1f(\vec{e}_1) + x_2f(\vec{e}_2) + \ldots + x_nf(\vec{e}_n) = \\ &= x_1(a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \ldots + a_{n1}\vec{e}_n) + x_2(a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \ldots + a_{n2}\vec{e}_n) + \ldots + x_n(a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \ldots + a_{nn}\vec{e}_n) = \\ &= (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n)\vec{e}_1 + (a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n)\vec{e}_2 + \ldots + (a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n)\vec{e}_n. \end{split}$$
 Отсюда

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(1)

Обозначим
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$, $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$. Тогда система (1) примет вид

Y = AX.

Определение 6. Областью значений линейного оператора f называется множество $\operatorname{Im} A$ векторов вида $\vec{y} = A\vec{x}$, то есть $\operatorname{Im} A = \{ \vec{y} \in V \mid \vec{y} = A\vec{x}, \vec{x} \in V \}$.

Определение 7. Ядром линейного оператора f называется множество KerA всех векторов $\bar{x} \in V$, для которых $A\bar{x} = \bar{0}$, то есть $\ker A = \left\{ \bar{x} \in V \mid A\bar{x} = \bar{0} \right\}$

Связь между координатами вектора и его образа

Определение 8. Пусть в линейном пространстве V даны два базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$

И

$$\begin{cases} \vec{e}_1' = t_{11}\vec{e}_1 + t_{21}\vec{e}_2 + \dots + t_{n1}\vec{e}_n, \\ \vec{e}_2' = t_{12}\vec{e}_1 + t_{22}\vec{e}_2 + \dots + t_{n2}\vec{e}_n, \\ \dots \\ \vec{e}_n' = t_{1n}\vec{e}_1 + t_{2n}\vec{e}_2 + \dots + t_{nn}\vec{e}_n. \end{cases}$$

Матрица
$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{pmatrix}$$
 называется матрицей перехода от базиса $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ к

базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$

Если $\vec{x}(x_1; x_2; ...; x_n)$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{x}(x_1'; x_2'; ...; x_n')$ в базисе $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, то покажем,

что
$$X=TX'$$
 , где $X'=\begin{pmatrix} x_1'\\x_2'\\\dots\\x_n' \end{pmatrix}$.

Действительно.

$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n \,,$$

$$\vec{x} = x_1' \vec{e}_1' + x_2' \vec{e}_2' + \ldots + x_n' \vec{e}_n' = x_1' \cdot \left(t_{11} \vec{e}_1 + t_{21} \vec{e}_2 + \ldots + t_{n1} \vec{e}_n \right) + x_2' \cdot \left(t_{12} \vec{e}_1 + t_{22} \vec{e}_2 + \ldots + t_{n2} \vec{e}_n \right) +$$

$$+ \ldots + x_n' \cdot \left(t_{1n} \vec{e}_1 + t_{2n} \vec{e}_2 + \ldots + t_{nn} \vec{e}_n \right) =$$

$$= \left(t_{11} x_1' + t_{12} x_2' + \ldots + t_{1n} x_n' \right) \vec{e}_1 + \left(t_{21} x_1' + t_{22} x_2' + \ldots + t_{2n} x_n' \right) \vec{e}_2 + \ldots + \left(t_{n1} x_1' + t_{n2} x_2' + \ldots + t_{nn} x_n' \right) \vec{e}_n.$$
 Отсюда

$$\begin{cases} x_1 = t_{11}x'_1 + t_{12}x'_2 + \dots + t_{1n}x'_n, \\ x_2 = t_{21}x'_1 + t_{22}x'_2 + \dots + t_{2n}x'_n, \\ \dots \\ x_n = t_{n1}x'_1 + t_{n2}x'_2 + \dots + t_{nn}x'_n, \end{cases}$$
(2)

или в матричной форме

$$X = TX'$$
. (3)

Определение 9. Формулы (2) или(3) называются формулами преобразования координат.

Определение 10. Многочлен $\det(A - \lambda \cdot E)$ степени n относительно λ называется характеристическим многочленом матрицы A или линейного оператора f .

Определение 11. Характеристическим уравнением линейного оператора f называется уравнение вида

$$\det(A - \lambda \cdot E) = 0, \tag{1}$$

где A — матрица линейного оператора f в некотором базисе.

Определение 12. Корни характеристического уравнения (1) называются **характеристическими числами** матрицы A или линейного оператора f .

Замечание. При переходе от одного базиса к другому матрица линейного оператора меняется, а характеристический многочлен остается неизменным.

Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица линейного оператора f в некотором базисе. Тогда

характеристическое уравнение примет вид

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = 0 \Leftrightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Собственные векторы линейного оператора.

Определение 13. Вектор \vec{x} линейного пространства называется собственным вектором линейного оператора f , если этот вектор ненулевой и существует действительное число k такое, что

$$f(\vec{x}) = k \cdot \vec{x}. \tag{1}$$

Определение 2. Число k называется **собственным числом вектора** \vec{x} относительно линейного оператора f .

Равенство (1) можно записать в матричном виде

$$A \cdot X = k \cdot X \Leftrightarrow A \cdot X = k \cdot (E \cdot X) \Leftrightarrow A \cdot X = (k \cdot E) \cdot X \Leftrightarrow (A - k \cdot E) \cdot X = O$$

где
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица линейного оператора f в некотором базисе, $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$

-матрица-столбец из координат вектора \vec{x} в том же базисе.

Собственные векторы линейного оператора

Зависимость между матрицами одного и того же оператора в различных базисах.

Теорема 1. Если $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}'_1, \vec{e}'_2, ..., \vec{e}'_n$ – два базиса некоторого линейного пространства и A – матрица линейного оператора f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то матрица B этого оператора в базисе $\vec{e}'_1, \vec{e}'_2, ..., \vec{e}'_n$ имеет вид

$$B = T^{-1} \cdot A \cdot T \,, \tag{1}$$

где T — матрица перехода от базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ к базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$.

Следствие

Если линейный оператор имеет в некотором базисе невырожденную матрицу, то и в любом другом базисе матрица этого оператора является невырожденной.

Действительно, пусть A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n$ и $\vec{e}_1',\vec{e}_2',\ldots,\vec{e}_n'$ соответственно и $\det A \neq 0$. Так как $B=T^{-1}\cdot A\cdot T$, где T — невырожденная матрица, то найдем $\det B$, получим

$$\det B = \det \left(T^{-1} \cdot A \cdot T \right) = \det \left(T^{-1} \right) \cdot \det A \cdot \det T = \frac{1}{\det T} \cdot \det A \cdot \det T = \det A \neq 0,$$

то есть $\det A = \det B \neq 0$.

Замечание.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}'_1, \vec{e}'_2, ..., \vec{e}'_n$ соответственно, то $A = T \cdot B \cdot T^{-1}$.

Характеристическое уравнение линейного оператора.

Теорема 2.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно, то

$$\det(A - \lambda \cdot E) = \det(B - \lambda \cdot E)$$

где λ — произвольное число и E — единичная матрица порядка n .

Теорема 3.

Для того, чтобы линейный оператор f имел собственный вектор \vec{x} с собственным значением k , необходимо и достаточно, чтобы число k являлось корнем характеристического уравнения этого оператора.

Теорема 4.

Пусть k — собственное число линейного оператора f с матрицей A n — мерного линейного пространства. Если ранг матрицы $A-k\cdot E$ равен r, то существует n-r линейно независимых собственных векторов линейного оператора f с собственным числом k.