

8. Random processes

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Random processes

So far, we considered deterministic signals.

In experiments, we have **non-deterministic** signals resulting from **random processes** (e.g. signals polluted by measurement noise)

Goal: determine **statistical properties** of such random processes

Typically, this can be done using techniques like averaging

Records and ensembles

Each registration of a random process is called a **record** A collection of records is called an **ensemble**

Example:

4 records of response measurements by driving 4 laps on a test circuit form an ensemble

DAF test circuit Sint Oedenrode

Stationary and ergodic processes

Assumption: random processes are **stationary** and **ergodic**

Implication: statistical properties do not change with time and they can be deduced from a single, sufficiently long realization of the process

Two types of averages

Time averaging

$$\mu_{x}(k) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x_{k}(t) dt$$

Record averaging

$$\mu_{\mathbf{x}}(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} x_k(t)$$

Two types of correlation functions

Auto correlation (time averaged)

$$R_{xx}(k,\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x_k(t) x_k(t+\tau) dt$$

Auto correlation (record averaged)

$$R_{xx}(t,\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} x_k(t) x_k(t+\tau)$$

Stationary and ergodic processes

A random process is called **stationary** when

$$\mu_{x}(t) = \mu_{x}, \qquad R_{xx}(t,\tau) = R_{xx}(\tau),$$

In other words, the record-average $\mu_{\chi}(t)$ and the record-averaged correlation function $R_{\chi\chi}(t,\tau)$ do not depend on time t.

A random process is called **ergodic** when

$$\mu_{\mathcal{X}}(k) = \mu_{\mathcal{X}}, \qquad R_{\mathcal{X}\mathcal{X}}(k, \tau) = R_{\mathcal{X}\mathcal{X}}(\tau),$$

In other words, the time-average $\mu_{\chi}(k)$ and the time-averaged correlation function $R_{\chi\chi}(k,\tau)$ do not depend on the record k.

Assumption: random processes are stationary and ergodic

Implication: statistical properties do not change with time and they can be deduced from a single, sufficiently long realization of the process

Stationary and ergodic processes

Assumption: random processes are **stationary** and **ergodic**

In practice:

- difficult to prove stationarity and ergodicity, however...
- in many situations we may assume stationarity and ergodicity (elaboration of coming theory becomes more straightforward)

To meet this assumption:

collect record(s) under equal experimental conditions
 (e.g. constant temperature, avoid external disturbances, etc.)

Probability distribution and probability density

Consider a fixed time instant t. What is the probability that $x(t) \le x_1$?

Answer is given by the **probability distribution function** P(x) of the (stationary) process:

$$Prob[x(t) \le x_1] = P(x_1, t) = P(x_1).$$

Using P(x), we can define the **probability density function** p(x):

$$p(x) = \frac{dP}{dx}(x), \qquad \Rightarrow \qquad P(x_1) = \int_{-\infty}^{x_1} p(x) \ dx.$$

Example: Gaussian process

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$$
 0.3

 μ : mean

 σ : standard deviation

In the figure: $\mu = 0.7$, $\sigma = 1.0$.

Probability distribution and probability density

Process is stationary and ergodic \Rightarrow it suffices to consider only one sample x(t) ($0 \le t < \infty$)

Stochastic properties of $x(t_1)$ can be determined from the sample x(t):

Expected value is equal to the time-average of the signal:

$$\mathbb{E}[x(t=t_1)] = \int_{-\infty}^{\infty} xp(x) \, dx = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) dt = \mu_x.$$

Mean square value

$$MSV = \mathbb{E}[x^2(t_1)] = \int_{-\infty}^{\infty} x^2 p(x) \ dx = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x^2(t) dt = R_{xx}(0) =: \psi_x^2.$$
 Finance σ_x^2 and the standard deviation σ_x

• Variance σ_x^2 and the standard deviation σ_x

$$\sigma_x^2 = \mathbb{E}[(x(t_1) - \mu_x)^2] = \int_{-\infty}^{\infty} (x - \mu_x)^2 p(x) \, dx = \lim_{T \to \infty} \frac{1}{T} \int_0^T (x(t) - \mu_x)^2 \, dt$$

Auto correlation

Auto correlation function (of a stationary ergodic process):

$$R_{xx}(\tau) = \mathbb{E}[x(t)x(t+\tau)] = \lim_{T\to\infty} \frac{1}{T} \int_0^T x(t)x(t+\tau)dt.$$

Measure for internal (periodic) structure in a (random) signal

- for $\tau = 0$ holds: $R_{xx}(0) = \psi_x^2$
- $R_{\chi\chi}(\tau) \leq R_{\chi\chi}(0)$
- symmetric: $R_{xx}(\tau) = R_{xx}(-\tau)$.

Example: Auto correlation

$$x(t) = x_1(t) + x_2(t)$$

- $x_1(t) = 0.5 \sin(2\pi f t)$, period time= 1/f = 3.333 s
- $x_2(t)$ random signal, normal pdf ($\mu = 0, \sigma = 1$)

Cross correlation

Cross correlation function for two stationary ergodic random processes x(t) and y(t):

$$R_{xy}(\tau) = \mathbb{E}[x(t)y(t+\tau)] = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t)y(t+\tau)dt$$

 $R_{xy}(\tau)$ gives information about coherence between x(t) and $y(t+\tau)$

- $R_{\chi\gamma}(\tau) = R_{\gamma\chi}(-\tau)$,
- but $R_{xy}(\tau)$ in general not symmetric, i.e. generally $R_{xy}(\tau) \neq R_{xy}(-\tau)$.

Example: cross correlation

x(t) and $y(t + \tau)$ have something in common for $\tau = -t_0 = -1.2$ s!

Application of cross correlation

Determine the length of a pipe network:

Determine the value of τ at which a peak occurs in $R_{xy}(\tau)$ Length of the network can be estimated based on the propagation speed of pressure waves

8b. Random processes in the frequency domain

Auto Power Spectral Density $S_{\chi\chi}(f)$

Process is stationary and ergodic \Rightarrow it suffices to consider only one sample x(t) ($0 \le t < \infty$)

Introduce rectangular window $w_T(t)$ (which is 1 when $1 \le t < T$ and zero otherwise).

Define:

$$X_T(f) = \int_0^T x(t)w_T(t)e^{-2\pi i ft}dt, \qquad x(t)w_T(t) = \int_{-\infty}^\infty X_T(f)e^{2\pi i ft}df,$$

The MSV of $x(t)w_T(t)$ is then

$$MSV = \frac{1}{T} \int_{0}^{T} x^{2}(t) w_{T}^{2}(t) dt = \frac{1}{T} \int_{0}^{T} x(t) w_{T}(t) \int_{-\infty}^{\infty} X_{T}(f) e^{2\pi i f t} df dt$$

$$= \frac{1}{T} \int_{-\infty}^{\infty} X_{T}(f) \int_{0}^{T} x(t) w_{T}(t) e^{2\pi i f t} dt df = \frac{1}{T} \int_{-\infty}^{\infty} X_{T}(f) \overline{X_{T}(f)} df = \frac{1}{T} \int_{-\infty}^{\infty} |X_{T}(f)|^{2} df$$

Auto power spectral density $S_{\chi\chi}(f)$

$$MSV = \frac{1}{T} \int_{-\infty}^{\infty} |X_T(f)|^2 df$$

Note that the MSV represents power.

The MSV resulting from frequencies $f \in [f_1, f_1 + \Delta f]$ is given by

$$\frac{1}{T} \int_{f_1}^{f_1 + \Delta f} |X_T(f)|^2 df.$$

So $\frac{1}{T}|X_T(f)|^2$ is the power density of the frequency spectrum of $x(t)w_T(t)$.

The auto power spectral density of the signal x(t) (without window) is thus

$$S_{xx}(f) \coloneqq \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$
.

In electrical systems $x(t)^{\sim}V(t)$, $P=\frac{V^2}{R}$

Properties of auto power spectral density $S_{\chi\chi}(f)$

• $S_{\chi\chi}(f)$ is related to $R_{\chi\chi}(\tau)$ by the Fourier transform (Wiener-Khintchine relation)

$$S_{xx}(f) = \int_{\tau=-\infty}^{\infty} R_{xx}(\tau) e^{-2\pi j f \tau} d\tau, \qquad R_{xx}(\tau) = \int_{f=-\infty}^{\infty} S_{xx}(f) e^{2\pi j f \tau} df.$$

- $S_{\chi\chi}(f)$ is real
- $S_{xx}(f)$ is symmetric: $S_{xx}(f) = S_{xx}(-f)$
- $MSV = \psi_{x}^{2} = \int_{-\infty}^{\infty} S_{xx}(f)df = R_{xx}(0)$
- Nonzero average of μ_{x} (DC-component) leads to a Dirac function at f=0 in $S_{xx}(f)$

Estimator $\widehat{S}_{\chi\chi}(f)$

Problem: the computation of $S_{xx}(f)$ requires the infinite sample x(t) for $0 \le t < \infty$.

• Based on N records $x_k(t)$ on $0 \le t < T$, we can compute the **estimator** $\hat{S}_{xx}(f)$

$$\hat{S}_{xx}(f) = \frac{1}{NT} \sum_{k=1}^{N} [\overline{X_{T,k}(f)} X_{T,k}(f)], \qquad X_{T,k}(f) = F[x_k(t)].$$

• The variance of the estimator $\hat{S}_{xx}(f)$ is given by

$$\sigma_{S_{xx}}^2(f) = var(S_{xx}(f)) = \frac{S_{xx}^2(f)}{N} \approx \frac{\hat{S}_{xx}^2(f)}{N}$$

Variance decreases by increasing the number of records N!

95% confidence interval:

$$\hat{S}_{xx}(f)[1-2V] \le S_{xx}(f) \le \hat{S}_{xx}(f)[1+2V]$$

Variation coefficient $V = \sigma_{S_{YX}}(f)/\hat{S}_{XX}(f)$.

Example: Estimator $\widehat{S}_{xx}(f)$

$$x(t) = \sin(2\pi f_0 t) + n(t)$$

 $f_0=5$ Hz, n(t): Gaussian white noise $\mu_n=0$, $\sigma_n=3$, $\Delta T=0.015625$ s N=25 records $X_{B,k}(f)$ of 256 points, Hanning window.

Warning: averaging of X(f)

Averaging of $\left|X_{T,k}(f)\right|^2$ makes sense.

Averaging of the $X_{T,k}(f)$ is tricky, and often not a good idea.

Example: consider 6 records

$$x_k(t) = \sin(2\pi f_o(t - t_k)).$$

Only the starting times t_k differ.

$$X_k(f) = X_o(f)e^{2\pi if\phi_k}$$

with
$$\phi_k := -2\pi f_o t_k$$
, $X_o(f) = F[\sin(2\pi f_o t)]$.

- Phase angles directly related to starting times t_k
- Averaging (to get rid of measurement noise) converges to zero!
- Solution: signal triggering, make t_k equal (not always possible)

Cross power spectral density $S_{xy}(f)$

Introduce rectangular window $w_T(t)$ (which is 1 when $1 \le t < T$ and zero otherwise).

Consider Fourier transforms of windowed signals

$$X_T(f) = F[x(t)w_T(t)], Y_T(f) = F[y(t)w_T(t)].$$

Definition:

$$S_{xy}(f) = \lim_{T \to \infty} \frac{1}{T} \overline{X_T(f)} Y_T(f)$$

Properties of $S_{xy}(f)$

• $S_{\chi\gamma}(f)$ is related to the cross correlation $R_{\chi\gamma}(\tau)$ by

$$S_{xy}(f) = \int_{\tau = -\infty}^{\infty} R_{xy}(\tau) e^{-2\pi i f \tau} d\tau, \qquad R_{xy}(\tau) = \int_{f = -\infty}^{\infty} S_{xy}(f) e^{2\pi i f \tau} df$$

- $S_{xy}(f)$ (complex) contains phase information (in contrast to $S_{xx}(f)$ (real))
- $S_{xy}(f) = \overline{S_{yx}(f)}$
- The **coherence function** $\gamma_{xy}(f)$ is defined by

$$\gamma_{xy}^2(f) \coloneqq \frac{\left|S_{xy}(f)\right|^2}{S_{xx}(f)S_{yy}(f)}$$

• $\gamma_{xy}(f)$ is real and $0 \le \gamma_{xy}(f) \le 1$.

Estimator $\widehat{S}_{xy}(f)$

Estimator:

$$\hat{S}_{xy}(f) = \frac{1}{NT} \sum_{k=1}^{N} \left[\overline{X_{T,k}(f)} Y_{T,k}(f) \right]$$

Variance of the estimator:

$$\sigma_{S_{xy}}^2(f) = var\left(S_{xy}(f)\right) = \frac{\left|S_{xy}(f)\right|^2}{N\gamma_{xy}^2(f)} \approx \frac{\left|\hat{S}_{xy}(f)\right|^2}{N\hat{\gamma}_{xy}^2(f)},$$

95% confidence interval:

$$\hat{S}_{xy}(f)[1-2V] \le S_{xy}(f) \le \hat{S}_{xy}(f)[1+2V], \qquad V = \sigma_{S_{xy}}(f)/\hat{S}_{xy}(f).$$

Example: cross power spectral density $\widehat{S}_{xy}(f)$

$$x(t) = \sum_{k=1}^{3} [\sin(2\pi f_k t + \varphi_k)]$$

$$f_1 = 0.93, f_2 = 1.57, f_3 = 3.52 \text{ Hz},$$

$$\varphi_1 = 0.85, \varphi_2 = 2.87, \varphi_3 = 1.83 \text{ rad}$$

$$y(t) = x(t) + n(t),$$

n(t): normal distributed pdf, $\mu_n = 0$, $\sigma_n = 3$

25 records of 256 time points.

$$\Delta T = 500/(25 * 256) \approx 0.078 \text{ s.}$$

- Peaks at $f_k = 0.93, 1.57, 3.52$ Hz as expected
- Phase is random except at $f_k = 0.93, 1.57, 3.52$ Hz where it is approx. 0.

Fig. 2.29 3-harmonic signal (left) and with additional noise (right)

Fig. 2.30 Cross power spectrum of the two signals x(t) and y(t)

