Supporting Information:

Synthesis of nickelocene via ligand substitution $\text{ of NiCl}_2 \cdot 6 \ \text{H}_2 O$

David Qiu

Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Matthews

Avenue, Urbana, IL, 61801

E-mail: davidlq2@illinois.edu

Contents

1	General Considerations	S-2
2	Experimental	S-2
	2.1 $[Ni(NH_3)_6]Cl_2$ synthesis	. S-2
	2.2 $Ni(Cp)_2$ synthesis	. S-2
	2.3 $Ni(Cp)_2$ sublimation and analysis	. S-3
3	$^{1}\mathrm{H}\ \mathrm{NMR}\ \mathrm{Spectrum}$	S-4
4	IR Spectrum	S-5
\mathbf{R}_{0}	eferences	S-5

1 General Considerations

Throughout the experiment, a 60 MHz Nanalysis NMReady-60PRO tabletop NMR instrument was used to record all ¹H NMR spectra at room temperature. NMR spectrum was sourced from a fellow classmate. IR spectra were taken on a Perkin Elmer Spectrum Two FTIR spectrometer. The experiment was performed according to Girolami et al. ^{S1}

Diethyl ether was sourced from Fischer Chemical. Ammonium hydroxide (28.0%–30.0% NH₃) was sourced from Macron Fine Chemicals. NiCl₂·6 H₂O and NaCp (2.4 M in THF) was sourced from Sigma-Aldrich. Ethanol and THF sourced directly from the University of Urbana-Champaign Chemistry department.

2 Experimental

- 2.1 [Ni(NH₃)₆]Cl₂ synthesis NiCl₂·6H₂O (8 g, 34 mmol) was mixed with 20 mL DI water in a flask. While stirring, 30 mL of concentrated ammonium hydroxide (28.0%–30.0% NH₃) was poured in, forming a cloudy purple mixture. This solution was cooled in an ice bath, and 80 mL of ethanol was added. The [Ni(NH₃)₆]Cl₂ precipitate was filtered through a coarse glass frit, and was washed with ethanol and diethyl ether. The [Ni(NH₃)₆]Cl₂ was then dried, yielding a percent yield of 85.5% (6.74 g total, 7.88 g expected).
- 2.2 Ni(Cp)₂ synthesis [Ni(NH₃)₆]Cl₂ (1.2 g, 5 mmol) and a stir bar was added to a three-necked round-bottom flask placed in an ice bath. A gas inlet valve, glass stopper, and rubber septum were attached, and the flask was filled with N₂ on a Schlenk line. 20 mL of THF was injected, and 5 mL of NaCp was added drop-wise. This was allowed to react for 1 hour, during which the solution turned a dark brown. The reaction was quenched with 1 mL of ethanol. Residual solvent was removed via the Schlenk line. The rubber stopper was quickly replaced with a glass stopper, and all joints were re-greased.

2.3 Ni(Cp)₂ sublimation and analysis A cold finger was quickly fitted to the central neck of the Ni(Cp)₂ flask, and the flask was placed under a static vacuum. The flask was then heated via a heating mantle between 80–120 °C (40 V on a Variac), and green crystals gradually formed on the cold finger over an hour. The flask was then refilled with N₂, and the sublimed Ni(Cp)₂ crystals were then weighed, yielding a percent yield of 10.6% (0.10 g total, 0.94 g expected). ¹H NMR and IR spectrum were collected.

¹H NMR (60 MHz, CDCl₃): 7.21 ppm (CHCl₃, s), 2.20 ppm (acetone, s), 1.35 ppm (H grease, m), 0.12 ppm (unidentified impurity). Impurities were identified according to a table of trace impurities. ^{S2} The Ni(Cp)₂ product shift was not observed in the ¹H NMR. This interpretation is in good agreement with the literature value of the ¹H NMR shift of nickelocene (254.8 ppm). ^{S3}

IR: $\tilde{\nu} = 2963 \text{ cm}^{-1}(\text{C-H stretch})$, $\tilde{\nu} = 1422 \text{ cm}^{-1}(\text{asymmetric aromatic C-C stretch})$, $\tilde{\nu} = 1259 \text{ cm}^{-1}(\text{C-H bend/rock})$. This is in good agreement with the literature nickelocene IR spectra, which cite additional vibrational modes of the cyclopentadienyl ligand in the fingerprint region. S3,S4

3 ¹H NMR Spectrum

Figure S1: Provided ¹H NMR spectrum of Ni(Cp)₂, following baseline and phase correction. "S" denotes residual non-deuterated organic solvents, and "*" denotes an unidentified impurity.

4 IR Spectrum

Figure S2: IR spectrum of $Ni(Cp)_2$, with corresponding assignments.

References

- (S1) Girolami, G. S.; Rauchfuss, T. B.; Angelici, R. J. Synthesis and Techniques in Inorganic Chemistry, 3rd ed.; University Science Books, 1999.
- (S2) Fulmer, G. R.; Miller, A. J.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179.
- (S3) Jolly, P. W.; Wilke, G. *The Organic Chemistry of Nickel*; 1974; Vol. I: Organonickel Complexes; Chapter VIII: Cyclopentadienyl Nickel Complexes.

(S4) Wilkinson, G.; Pauson, P.; Cotton, F. Bis-cyclopentadienyl Compounds of Nickel and Cobalt. *Journal of the American Chemical Society* **1954**, *76*, 1970–1974.