BASICS OF DIFFERENTIAL GEOMETRY 2

Notes of BIMSA course

Misuzu

February 18, 2025

${\tt CONTENTS}$

Contents

L	Principle Bundles	2
	1.1 Lie Groups	2

${\rm CONTENTS}$

Introduction.

Last semester:

- Geometry of vector bundles
- Basic Riemannian geometry
- $\bullet\,$ Differential operators on manifolds

We will learn this semester:

- Theory of principle bundles
- characteristic classes
- Basics of complex manifold, Kähler manifold, symplectic manifold.

1 Principle Bundles

In this section, we introduce the connections of principle bundles, it's closely related to the connections of vector bundles.

1.1 Lie Groups

Definition 1.1. Let G be a smooth manifold. G is a Lie group if G is a group s.t. multiplication and inverse are smooth.

Let G be a Lie group, $g \in G$, we denote:

- $L_q: G \to G, h \mapsto gh$ (left translation)
- $R_q: G \to G, h \mapsto hg$ (right translation)
- $\mathfrak{X}^L(G) = \{X \in \mathfrak{X}(G) \mid \forall g \in G, (L_q)_*X = X\}$ (left invariant vector fields)

For $X \in \mathfrak{X}^L(G)$, $L_{g*}X = X$ means that X is L_g -related to X. Then for $\forall X, Y \in \mathfrak{X}^L(G)$, $L_{g*}([X,Y]) = [L_{g*}X, L_{g*}Y] = [X,Y]$, so $\mathfrak{X}^L(G)$ is closed under $[\cdot, \cdot]$

Definition 1.2. Set $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Given a \mathbb{K} -vector space \mathfrak{g} and a bilinear map $[\cdot,\cdot]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, we say \mathfrak{g} is a Lie algebra if:

- $(1) \ \forall X, Y \in \mathfrak{g}, [X, Y] = -[Y, X]$
- (2) $\forall X, Y, Z \in \mathfrak{g}, [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$
- $[\cdot,\cdot]$ is called Lie bracket.

So by definition we have $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is a Lie algebra.

Definition 1.3. For Lie algebra $\mathfrak{g}, \mathfrak{h}$, a linear map $f : \mathfrak{g} \to \mathfrak{h}$ is called the Lie algebra homomorphism if: $\forall X, Y \in \mathfrak{g}, f([X,Y]) = [f(X), f(Y)]$

If f is in addition an isomorphism, then f is called a Lie algebra isomorphism.

Let $e \in G$ be the unit of G. Set $\iota : \mathfrak{X}^L(G) \to T_eG$, $X \mapsto X_e$. Then ι is a linear isomorphism. Let $\mathfrak{g} = T_eG$, so we can define the Lie bracket on \mathfrak{g} s.t. ι is a Lie algebra isomorphism, i.e. setting $X^{\sharp} = \iota^{-1}(X)$, $[X,Y] = [X^{\sharp},Y^{\sharp}]_e$. Note that $X_g^{\sharp} = (L_g)_{*e}X$, $g \in G$.

Definition 1.4. Let G be Lie group, $\mathfrak{g} = T_e G$ with $[\cdot, \cdot]$ is called the Lie algebra of G. $(\mathfrak{X}^L(G), [\cdot, \cdot])$ is also called the Lie algebra of G)

Definition 1.5. Let G, H be Lie groups. A map $\rho: G \to H$ is a Lie group homomorphism if ρ is a smooth map and a group homomorphism. For the special

case $(\mathbb{R},+) \to G$, $t \mapsto g_t$, $\{g_t\}_{t \in \mathbb{R}}$ is called one parameter subgroup of G.

Proposition 1.1. Let G be Lie group and \mathfrak{g} its Lie algebra. Then

- (1) $\forall X \in \mathfrak{g}, X^{\sharp} = \iota^{-1}(X)$ is complete, i.e. X^{\sharp} generates a flow $\{\varphi_t\}_{t \in \mathbb{R}}$.
- (2) Set $\exp_G(tX) = \varphi_t(e) \in G$. Then $\varphi_t = R_{\exp_G(tX)}$.
- (3) For $s, t \in \mathbb{R}$, $\exp_G(sX) \exp_G(tX) = \exp_G((s+t)X)$, i.e. $\{\exp_G(tX)\}_{t \in \mathbb{R}}$ is one parameter subgroup of G.
 - (4) $\mathfrak{g} \to \{\text{one parameter subgroup of } G\}, X \mapsto \{\exp_G(tX)\}_{t \in \mathbb{R}} \text{ is bijective.}$

Proof. (1) By ODE theory, $\exists \epsilon > 0, \ \gamma_e : (-\epsilon, \epsilon) \to G \text{ s.t. } \gamma_e(0) = e, \frac{d\gamma_e}{dt} = X_{\gamma_e(t)}^{\sharp}.$

Claim 1. $\forall g \in G$, define $\gamma_g : (-\epsilon, \epsilon) \to G$, $t \mapsto g\gamma_e(t)$ is the integral curve of X^{\sharp} with $\gamma_g(0) = g$.

Indeed, $\forall t \in (-\epsilon, \epsilon), \frac{d\gamma_g}{dt}(t) = (L_g)_{*\gamma_e(t)} \frac{d\gamma_e}{dt}(t) = X_{g \cdot \gamma_e(t)}^{\sharp}.$

Claim 2. $\gamma_e: (-\epsilon, \epsilon) \to G$ can be extended to integral curve $\gamma_e: \mathbb{R} \to G$ of X^{\sharp} with $\gamma_e(0) = e$.

Set $\varphi_t = R_{\gamma_e(t)}$, then $\{\varphi_t\}_{t \in \mathbb{R}}$ is the flow generated by X^{\sharp} . So the following are easy.

By this proposition, we can define the exponential map $\exp_G : \mathfrak{g} \to G$.

Proposition 1.2. Let G, H be Lie groups with Lie algebra $\mathfrak{g}, \mathfrak{h}$. If $f: G \to H$ is Lie group homomorphism, then $f_{*e}: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. We only need to show that X^{\sharp} and $(f_{*e}X)^{\sharp}$ are f-related. Since $X = \frac{d}{dt} \exp_G(tX)|_{t=0}$, we have $f_{*g}(X_g^{\sharp}) = \frac{d}{dt} f\left(g \cdot \exp_G(tX)\right)|_{t=0} = \frac{d}{dt} f(g) f\left(\exp_G(tX)\right)|_{t=0} = \left(L_{f(g)}\right)_{*e} (f_{*e}X) = (f_{*e}X)_{f(g)}^{\sharp}$.

Example 1.1. Let V be a \mathbb{R} -vector space, G = GL(V), \mathfrak{g} Lie algebra of G. Then $\mathfrak{g} = End(V)$, the bracket is given as follows:

Proposition 1.3. $\forall X, Y \in End(V), [X, Y] = XY - YX.$

Proof. For $X \in End(V)$, set matrix exponential $e^{tX} = \sum_{k=0}^{\infty} \frac{(tX)^k}{k!}$. Then $\{e_{tX}\}_{t \in \mathbb{R}}$ is a one parameter subgroup of G and $\frac{d}{dt}e^{tX}|_{t=0} = X$. So $\exp_G(tX) = e^{tX}$.

Then
$$[X,Y] = [X^{\sharp},Y^{\sharp}]_e = \left(\mathcal{L}_{X^{\sharp}}Y^{\sharp}\right)_e = \frac{d}{dt}\left(\varphi_{-t}\right)_{*e^{tX}}\left(Y_{e^{tX}}^{\sharp}\right)|_{t=0} = \frac{d}{dt}\frac{d}{ds}\varphi_{-t}\left(e^{tX}e^{sY}\right)|_{s=t=0} = XY - YX.$$

Example 1.2. Set

- $O(n) = \{g \in GL(n; \mathbb{R}) \mid g^t g = E_n\}$ (orthogonal group)
- $SO(n) = \{g \in O(n) \mid \det g = 1\}$ (special orthogonal group)

we can check that O(n), SO(n) are Lie subgroups of $GL(n; \mathbb{R})$.

SO(n) is the unit component of O(n), so $\mathfrak{o}(n) = \mathfrak{so}(n)$ (Lie algebra of O(n)) and SO(n)). This is a Lie subalgebra of $End(\mathbb{R}^n)$ given by

$$\mathfrak{o}(n) = \mathfrak{so}(n) = \left\{ X \in End(\mathbb{R}^n) \mid X^t + X = O_n \right\}$$

where O_n is the zero matrix of size n.

Similarly, set

- $U(n) = \{g \in GL(n; \mathbb{C}) \mid g^*g = E_n\}$ (unitary group) where $g^* = \overline{g^t}$
- $SU(n) = \{g \in U(n) \mid \det g = 1\}$ (special unitary group)

We can check that

- U(n), SU(n) are Lie subgroups of $GL(n; \mathbb{C})$
- $\mathfrak{u}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O\}$ (Lie algebra of U(n))
- $\mathfrak{su}(n) = \{X \in End(\mathbb{C}^n) \mid X^* + X = O, \operatorname{tr} X = 0\}$ (Lie algebra of (SU(n)))

Note. A Lie subgroup H of G is a Lie group s.t.

- \bullet *H* is a subset of *G*
- ullet inclusion map $H\hookrightarrow G$ is an embedding and group homomorphism

Fact. A closed subgroup of G is a Lie subgroup of G.

Definition 1.6. Let V be a \mathbb{K} -vector space, G a Lie group. A Lie group homomorphism $\rho: G \to GL(V)$ is called a representation of V. The Lie algebra homomorphism $\rho_{*e}: \mathfrak{g} \to End(V)$ is called a differential representation.

Example 1.3. Let G be a Lie group, \mathfrak{g} its Lie algebra. $\forall g \in G$, define a homomorphism

$$F_g: G \to G, \ h \mapsto ghg^{-1}$$

Note that $F_g \circ F_{g'} = F_{gg'}$. This induces a Lie algebra homomorphism $(F_g)_{*e}$: $\mathfrak{g} \to \mathfrak{g}$ which satisfies $(F_g)_{*e} \circ (F_{g'})_{*e} = (F_{gg'})_{*e}$. So we obtain a representation

$$Ad: G \to GL(\mathfrak{g}), \ g \mapsto (F_q)_{*e}$$

called adjoint representation of G. The differential representation $ad: \mathfrak{g} \to End(\mathfrak{g})$ of Ad is given as follows.

Proposition 1.4. $\forall X, Y \in \mathfrak{g}, ad(X)(Y) = [X, Y].$

Proof. Note that $F_g = R_{g^{-1}} \circ L_g$. Then

$$ad(X)(Y) = \frac{d}{dt}Ad(\exp_G(tX))(Y)|_{t=0} = \frac{d}{dt} \left(R_{\exp_G(-tX)}\right)_{*\exp_G(tX)} \left(L_{\exp_G(tX)}\right)_{*e} (Y)|_{t=0} = [X^{\sharp}, Y^{\sharp}]_e = [X, Y].$$

Recall that there is a exponential map in Riemannian geometry. The Riemannian exp and the Lie group exp are related as follows.

Definition 1.7. A Riemannian metric $\langle \cdot, \cdot \rangle$ on a Lie group G is said to be bi-invariant if $\forall g, h \in G, L_q^* R_h^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$.

Theorem 1.1. Let G be a Lie group with a bi-invariant metric $\langle \cdot, \cdot \rangle$. Then $\exp_e = \exp_G$.

To show this we describe the Levi-Civita connection ∇ of $\langle \cdot, \cdot \rangle$.

Lemma 1.1.
$$\forall X, Y \in \mathfrak{g}, \nabla_{X^{\sharp}}Y^{\sharp} = \frac{1}{2}[X,Y]^{\sharp}.$$

Proof. By Koszul formula, we have

$$\langle \nabla_{X^{\sharp}} Y^{\sharp}, Z^{\sharp} \rangle = \frac{1}{2} \left(X^{\sharp} \langle Y^{\sharp}, Z^{\sharp} \rangle + Y^{\sharp} \langle Z^{\sharp}, X^{\sharp} \rangle - Z^{\sharp} \langle X^{\sharp}, Y^{\sharp} \rangle - \langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle - \langle Z^{\sharp}, [Y^{\sharp}, X^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle \right)$$

Since for $\forall g \in G$, $X_g^{\sharp} = \frac{d}{dt} g \cdot \exp_G(tX) \mid_{t=0}$, we have

$$X^{\sharp}\langle Y^{\sharp},Z^{\sharp}\rangle = \frac{d}{dt}\langle Y^{\sharp}_{g\cdot\exp_G(tX)},Z^{\sharp}_{g\cdot\exp_G(tX)}\rangle_{g\cdot\exp_G(tX)}\mid_{t=0} = \frac{d}{dt}\langle Y,Z\rangle_e\mid_{t=0} = 0$$

Since $\langle \cdot, \cdot \rangle$ is bi-invariant,

$$L_g^*R_{g^{-1}}^*\langle\cdot,\cdot\rangle_e = \langle\cdot,\cdot\rangle_e \text{ for } \forall g \in G \iff \langle Ad(g)(\cdot),Ad(g)(\cdot)\rangle_e = \langle\cdot,\cdot\rangle_e$$

Setting $g = \exp_G(tZ)$ and $\frac{d}{dt}|_{t=0}$, we have $\langle ad(Z)(\cdot), \cdot \rangle_e + \langle \cdot, ad(Z)(\cdot) \rangle_e = 0$, which shows that $\langle Y^{\sharp}, [X^{\sharp}, Z^{\sharp}] \rangle + \langle X^{\sharp}, [Z^{\sharp}, Y^{\sharp}] \rangle = 0$, so we have $\nabla_{X^{\sharp}} Y^{\sharp} = \frac{1}{2} [X, Y]^{\sharp}$.

The proof of the theorem completes once shown that $\exp_G(tX)$ is geodesic, which is left as an exercise.

Exercise 1.1. Prove the theorem.