

Journey to the Multi-Cloud

클라우드바리스타 커뮤니티 제3차 컨퍼런스

CB-Tumblebug : 멀티 클라우드 인프라 운용 자동화를 위하여

(멀티 클라우드 인프라 운용 관리)

손 석 호 / CB-Tumblebug 프레임워크 리더

이번 세션은…

응용/도메인/기관 특화 SW CLOUD BARISTA 멀티클라우드 서비스 개방형 인터페이스 **CB-Tumblebug** 멀티 클라우드 애플리케이션 통합관리 프레임워크 멀티 클라우드 통합 모니터링 프레임워크 멀티 클라우드 인프라 서비스 통합 관리 프레임워크 멀티 클라우드 인프라 서비스 연동 프레임워크

멀티 클라우드 서비스 공통 플랫폼

목 차

- CB-Tumblebug 개요
- CB-Tumblebug 주요 기능 및 구조
- CB-Tumblebug 개발 현황 및 로드맵
- CB-Tumblebug 사용 방법 및 기술 시연

CB-Tumblebug: 멀티 클라우드 인프라 서비스 통합 관리 기술 개요

CB-Tumblebug: 멀티 클라우드 인프라 서비스 통합 관리 기술 정의

기술 정의

사용자 요구사항에 따라 최적의 <u>멀티 클라우드 인프라 서비스를 조합 및 프로비저닝</u>하고, <u>통합 제어 및 관리를 통해 사용자의 컴퓨팅 인프라 운용을 지원</u>하는 기술

CB-Tumblebug 의 주요 개념 정리 (주요 관리 대상)

- 멀티 클라우드 인프라 서비스 (MCIS)
 - 지역적으로 격리된 다수의 클라우드 환경에서 단일 목적(응용서비스, 애플리케이션 등)을 위해 하나 이상의 클라우드 인프라 서비스(가상머신 등)를 조합 및 상호 연계한 컴퓨팅 인프라 그룹
 - 용도 : 멀티 클라우드 인프라의 통합 제어 및 관리
- 멀티 클라우드 인프라 리소스 (MCIR)
 - 다수의 클라우드 환경에서 컴퓨팅 인프라 생성을 위해 관리하는 모든 리소스 (예: vNet, Image, AccessKey, ...)
 - 용도 : MCIS 생성 및 설정을 위해 사용

[MCIS 예시]

[MCIR 예시]

CB-Tumblebug 주요 기능

- MCIS 프로비저닝 및 특화 구성
 - 멀티 클라우드 자원을 활용하여 MCIS를 생성하고 특화하는 기능
- MCIS 라이프사이클 관리
 - MCIS의 라이프사이클 상태를 종합적으로 관리하고 통합 제어하는 기능
- MCIS 최적 구성 및 배치 스케줄링
 - 다양한 정보 수집을 통해 MCIS를 최적으로 구성하고 스케줄링 하는 기능
- MCIS 자동 제어 (에스프레소 릴리스 주요 포인트)
 - MCIS를 진단하고 결과에 따라 자동 제어하는 운용 자동화 기능

MCIS 프로비저닝 및 특화 구성

• 멀티 클라우드 자원을 활용하여 MCIS를 생성하고 특화하는 기능

[MCIS 구성 변경 예시]

[MCIS 특화 구성 예시]

MCIS 라이프사이클 관리

- MCIS의 라이프사이클 상태를 쉽게 파악하고 통합 제어할 수 있는 기능
 - Partial State : MCIS의 세부 요소들의 대표적인 상태를 한눈에 표시하기 위한 개념

MCIS 라이프사이클 상태 검증 및 보정

MCIS 최적 구성 및 배치 스케줄링 개요

- 다양한 정보 수집을 통해 MCIS를 최적으로 구성하고 스케줄링 하는 기능
- MCIS 통합 최적 배치
 - VM 간 응답속도 기반 배치

예) VM 간 응답시간 < 40ms

- MCIS 개별 VM의 최적 배치
 - VM 스팩 기반 배치
 - VM 가격 기반 배치
 - VM 위치 기반 배치
 - VM 성능 기반 배치 (벤치마킹)
 - VM 복합 조건 기반 배치

MCIS 최적 구성 및 배치 스케줄링: 성능 측정 예시

멀티 클라우드 VM 타입 (지역구분)

gcp-asia-east1-e2-standard-8 gcp-asia-east1-e2-highcpu-2 aws-us-east-1-m4.4xlarge aws-us-east-1-f1.2xlarge aws-us-east-1-m4.xlarge azure-koreacentral-Standard D11 v2 gcp-asia-east1-e2-highcpu-8 gcp-asia-east1-e2-highmem-16 gcp-asia-east1-n1-standard-16 gcp-europe-west3-e2-highcpu-2 aws-ap-northeast-2-c5.xlarge gcp-asia-east1-e2-highmem-2 aws-us-east-1-t2.2xlarge aws-us-east-1-i2.2xlarge gcp-asia-east1-e2-medium gcp-asia-east1-e2-highcpu-16 aws-us-east-1-c3.8xlarge

- CPU
- Memory
- FIO
- DB

MCIS 자동 제어 필요성 및 기능 정의

(에스프레소 릴리스 주요 포인트)

- MCIS 자동 제어 기능 정의
 - 사용자 정책을 기반으로 MCIS의 상태를 진단하고 결과에 따라 MCIS를 자동 제어하는 기능

수많은 VM 수동으로 개별 관리 (복잡성 증가)

MCIS 단위의 <u>통합 및 자동 제어</u> 필요

MCIS

MCIS 자동 제어 기본 개념 (정책 구성)

사용량

- MCIS 진단 조건
 - MCIS 자원 사용량 진단
 - MCIS 라이프사이클 진단
 - MCIS 성능 진단
- MCIS 제어 액션
 - MCIS 규모 제어 (Scale In/Out)
 - MCIS 라이프사이클 제어 (Suspend/Resume)
 - MCIS 자원 교체 (Replace)

MCIS 자동 제어 특징

MCIS 자동 제어 메커니즘 : State-Machine

State-Machine 메커니즘

- 자동 제어 컨트롤러는 정책 오브젝트 상태를 기준으로 동작
- 시스템 중단 및 재실행시에도 정상 동작 가능

- 주기적으로 정책 오브젝트 상태 확인

- 상태에 맞는 동작 수행

MCIS 자동 제어 State-Machine

MCIS 자동 제어 기능 구조 및 컴포넌트간 동작 플로우

MCIS 자동 제어 기능 구조

컴포넌트간 동작 플로우

[참고] CB-Tumblebug, 20년도 개발 현황

주요 업무	상세 업무	수행 내용	결과물 공개 수준	대상 버전
CB-Tumblebug 시스템 개선 및 안정화	CB-Tumblebug API 현행화 및 프레임워크 통합	- API 항목 및 파라미터 개선 - 리모델링 CB-Spider (API 및 정보처리 방식) 통합 - API 메커니즘 및 소스코드 개선	대상버전 릴리스	Cappuccino Espresso
	CB-Tumblebug 시험 체계 개선	- CB-Tumblebug 시험 체계 구축 - CB-Tumblebug 시험 데이터 생성	대상버전 릴리스	Cappuccino
	멀티 클라우드 인프라 서비스 라이프사이클 개선	- 클라우드별 라이프사이클 제어 상태 처리 방식 분석 - 라이프사이클 제어 트렌젝션 생성 및 처리 기능 개발 - 트렌젝션 단위 라이프사이클 상태 저장 및 조회 기능 개발	대상버전 릴리스	Cappuccino
멀티 클라우드 인프라 서비스 최적 배치 기능 개발	멀티 클라우드 인프라 서비스 배치 메커니즘 개발	- 최적 배치 조건 선정 - 최적 배치 요구사항 템플릿 및 API 체계 개발 - 멀티 클라우드 인프라 서비스 평가 정보 테이블 자동 생성 기능 개발 - 최적 배치 알고리즘 기반 우선순위 리스트 처리 기능 개발	PoC (일부) 대상버전 릴리스	Cappuccino Espresso
	멀티 클라우드 인프라 서비스 동적 성능 평가 메커니즘 개발	- 멀티 클라우드 인프라 서비스 동적 성능 평가 항목 선정 - 멀티 클라우드 인프라 서비스 동적 성능 평가 수집 스케줄러 개발 - 성능 평가 항목별 측정 기능 개발(ex: 계산 성능, DB처리 성능 등) - 멀티 클라우드 인프라 서비스 평가 수행 에이전트 연동 - 구동 시험 및 데이터 수집	PoC (일부) 대상버전 릴리스	Cappuccino Espresso
	멀티 클라우드 인프라 서비스 고속·동적 배치 기술 연구	- 멀티 클라우드 인프라 서비스 고속·동적 배치 기술 분석 및 고안 - 멀티 클라우드 인프라 서비스 고속·동적 배치 메커니즘 PoC 추진	РоС	-
멀티 클라우드 인프라 서비스 통합 품질 제어 자동화 개발	멀티 클라우드 인프라 서비스 제어 자동화 정책 관리 기능 개발	- 멀티 클라우드 인프라 서비스 제어 자동화 정책(조건 및 액션) 요청 템플릿 및 API 개발 - 멀티 클라우드 인프라 서비스 제어 자동화 정책 처리 상태 저장 및 조회 기능 개발	대상버전 릴리스	Espresso
	멀티 클라우드 인프라 서비스 진단 기능 개발	- 멀티 클라우드 인프라 서비스 모니터링 항목 정의 - 멀티 클라우드 인프라 서비스 데이터 수집 모듈 개발 (CB-Dragonfly 연동) - 멀티 클라우드 인프라 서비스 제어 조건 판별 및 트리거 모듈 개발	대상버전 릴리스	Espresso
	멀티 클라우드 인프라 서비스 자동 제어 액션 개발	- 멀티 클라우드 인프라 서비스 자동 제어 액션 선정 - 멀티 클라우드 인프라 서비스 자동 제어 액션 개발	대상버전 릴리스	Espresso

CB-Tumblebug 개발 로드맵

PoC → 프로토타입 → 릴리스 → 안정화&고도화

MCIS 프로비저닝 및 특화 구성

MCIS 최적 구성 및 배치 스케줄링

MCIS 자동 제어

MCIS 특화 기능 발굴 및 고도화

MCIR / MCIS 고속·동적 배치 기술 연구

최적 배치를 위한 동적 성능 요소 발굴 및 데이터 수집

자동 제어 진단 조건 / 액션 다양화 및 고도화

예측 기반 자동 제어 알고리즘 연구

[참고] CB-Tumblebug 구조 및 개발 로드맵 (향후 주요 포인트)

CB-Tumblebug 사용 방법: API 기반 제어

CB-Tumblebug 서버

REST API 사용을 위한 Postman 클라이언트

지도 기반 GUI 클라이언트

Web 기반 GUI 클라이언트 (CB-Waterstrider/WebTool)

CB-Tumblebug은 REST API 서버 구동 (언어 및 플랫폼 독립적인 클라이언트 사용 가능)

CB-Tumblebug 사용 방법: 시나리오 테스트 도구

credentials.conf

- CSP 사용자 인증 크레덴셜

conf.env

- 클라우드 리젼, 이미지 ID 등

클라우드 연동 환경 설정

Namespace 생성

MCIR 생성

MCIS 생성

MCIS 상태 조회

MCIR 생성을 위한 모든 단계 수행

> 모든 자원 종료 및 삭제

MCIS 확장

MCIS 접속키 파일 생성

MCIS NginX 배포

CB-Dragonfly 자동 배치

MCIS 자동 제어 정책 등록

South Company of the Company of

Welcome, my IP is 3.101.148.231!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to Cloud-Barista.

Check CB-Tumblebug MCIS VM Location

Check the Location of NGINX HOST.

Thank you for using Cloud-Barista and CB-Tumblebug.

위치: cb-tumblebug/test/official/

[사용 및 개발 편의를 위한 다양한 테스트 스크립트]

CB-Tumblebug 기술 시연

- 글로벌 스케일 멀티 클라우드 인프라 운용 자동화 -

에스프레소(Espresso) 한잔 어떠세요? ^^

CB-Tumblebug 기술 시연 개요

- 글로벌 스케일 웹서비스 호스팅 MCIS 운용 자동화 시연
- 시연 과정
 - 글로벌 스케일 MCIS를 통합 생성
 - MCIS의 모든 VM에 웹서버 자동 배치
 - MCIS 자동 제어 정책 등록
 - MCIS CPU 사용률 진단
 - MCIS Scale In / Scale Out 액션
 - MCIS의 모든 웹서버에 CPU 부하 생성
 - MCIS 자동 제어 정책에 따른 제어 확인

평균 CPU 사용량: → 87 → 96 → 91

https://github.com/cloud-barista https://cloud-barista.github.io

(손석호/ contact-to-cloud-barista@googlegroups.com)

"Journey to the Multi-Cloud"

Cloud-Barista Community 3rd Conference