

Universidad de Alcalá Departamento de Ciencias de la Computación

Estructuras de Datos Ejercicios de Árboles AVL y Montículos

 Dados los siguientes árboles binarios, determinar si están balanceados y especificar el factor de balanceo para todos los nodos. En el caso de que no estén balanceados, identificar las raíces de los subárboles más pequeños no balanceados y efectuar las rotaciones necesarias para que lo estén.

- 2. Insertar los siguientes nodos en un árbol AVL vacío, indicando los pasos y rotaciones necesarias. Nodos a insertar: 10, 40, 35, 25, 60, 30, 80, 50, 27, 28, 38
- 3. Dado el siguiente árbol AVL, borrar los nodos: 60, 55, 50 y 40. Indicar los pasos y las rotaciones realizadas, en caso de que sean necesarias.

- 4. Extender la especificación de árbol binario con las siguientes operaciones (en pseudocódigo):
 - a. determinar si un árbol binario es completo.
 - b. determinar si un árbol binario es semicompleto.
 - c. determinar si un árbol binario es un montículo de mínimos.
- 5. Indicar el contenido de un montículo de mínimos, representado por un vector, después de insertar en un montículo vacío los siguientes enteros: 4, 1, 5, 2, 9, 8, 3, 7.
- 6. El algoritmo de ordenación por el método del montículo (*heapsort*) inserta en un montículo todos los elementos del vector a ordenar. Después se va extrayendo sucesivamente el mínimo del montículo, de forma que los elementos quedan ordenados en orden creciente.

Universidad de Alcalá Departamento de Ciencias de la Computación

Estructuras de Datos Ejercicios de Árboles AVL y Montículos

Implementar este algoritmo de ordenación utilizando las operaciones básicas de montículo estudiadas en clase.

- 7. Partiendo de un vector de n enteros, escribir un algoritmo para encontrar el k-ésimo menor elemento del vector utilizando un montículo de mínimos.
- 8. (Examen del Grado en Ingeniería Informática, Enero 2011) Llamaremos a un montículo de máximos dominante si la información de cada nodo (natural) es igual a la cantidad de nodos descendientes (no solo hijos directos) que tiene dicho nodo. Se pide:
 - a. Especificar completamente el TAD montículo de máximos.
 - b. Comprobar si un montículo es dominante.
 - c. Eliminar el nodo con mayor valor de un montículo dominante (es decir, el que tenga más descendientes).