Introducción a la Lógica y la Computación — Autómatas y Lenguajes Práctico 2: Autómatas finitos no deterministas

- 1. Dibuje los diagramas de transición de los ε -NFAs con las siguientes especificaciones.
 - a) Estados $\{q_0, q_1, q_2\}$; símbolos de input $\{a, b\}$, estado inicial q_0 y estado final q_0 también y función de transición dadas por la siguiente tabla.
 - b) Estados $\{q_0, q_1, q_2\}$, símbolos de input $\{a, b\}$, estado inicial q_0 y estados finales q_0, q_1 y función de transición dadas por la siguiente tabla.

c)	Estados $\{q_0, q_1, q_2, q_3\}$, símbolos
	de input $\{a, b, c\}$, estado inicial
	q_0 y estado final q_1 y función de
	transición dadas por la siguien-
	te tabla

			a	b	ε
	q_0)	Ø	$q_1, q_2\}$	$\{q_2\}$
	q_1	1	$\{q_2\}$	$\{q_0,q_1\}$	- Ø
	q_2	2	$\{q_0\}$	Ø	$\{q_0\}$
			a	b	ε
Q	<i>[</i> 0	1	$\{q_1\}$	$\{q_0,q_1\}$	Ø
Q	I_1		Ø	$\{q_2\}$	$\{q_2\}$
Q	$\sqrt{2}$	{	$\{q_1\}$	Ø	Ø
	h			C	ج

- 2. Para cada uno de los siguientes autómatas establezca el conjunto de estados Q, el conjunto de símbolos de input Σ , el estado inicial q_0 , el conjunto de estados finales \mathcal{F} y la función de transición.

- 3. Sea $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ un ε -NFA, $q' \in Q$ y $X \subseteq Q$.
 - a) Demostrar que $[X] = \bigcup_{q \in X} [q]$.
 - b) Probar que si $q' \in F$ entonces $[q'] \in \mathcal{F}$ (el conjunto de estados finales del determinizado).
 - c) Demostrar que [[X]] = [X]. Concluir que "existe X tal que D = [X]" (i.e. que D sea un estado del determinizado) equivale a "D = [D]".
- 4. Demostrar las siguientes por inducción en cadenas.
 - a) En todo NFA vale que $q \xrightarrow{\alpha\beta} q'$ si y sólo si $\exists r: q \xrightarrow{\alpha} r \xrightarrow{\beta} q'$.
 - b) Ídem al punto anterior para ε -NFAs.
- 5. Sean $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ y $\mathbb{A}' = (Q', \Sigma, \delta', q'_0, F')$ dos ε -NFAs. Definir formalmente un nuevo autómata \mathbb{U} cuyo lenguaje aceptado sea $L(\mathbb{A}) \cup L(\mathbb{A}')$.
- 6. Aplique el algoritmo dado en clase para obtener DFAs equivalentes a los $\varepsilon\textsc{-NFAs}$ del Ejercicio 1.