Basic Time Series Concepts

February 25, 2020

The material in this set of notes was initially based on Sections 1.1-1.6 of Robert Shumway and David Stouffer's Time Series Analysis and Its Applications: With R Examples

Suppose we observe an $n \times 1$ vector $\mathbf{y} = (y_1, \dots, y_n) = \boldsymbol{\mu}_y + \boldsymbol{\epsilon}$, where $\boldsymbol{\mu}_y$ is a fixed but unknown mean, $\boldsymbol{\epsilon}$ are random errors and elements of \boldsymbol{y} are ordered in time. We will refer to \boldsymbol{y} as a time series, although the sequence of elements can also be called a stochastic process.

The joint distribution function of y is

$$F(c_1,...,c_n) = P(y_1 \le c_1,...,y_n \le c_n)$$
.

Often, this will be difficult to write out and work with, so it does not provide a useful means of characterizing a time series y. Instead, we often characterize a time series y via its:

- Mean Function: $\mu_{y,t} = \mathbb{E}[y_t] = \int_{-\infty}^{\infty} y f_t(y) dy$, where $f_t(y)$ is the marginal density of y_t having integrated out all other elements of \boldsymbol{y} .
- Autocovariance Function: $\gamma_y(s,t) = \mathbb{E}[(y_s \mu_{y,s})(y_t \mu_{y,t})]$ for all s and t.
 - When s = t, gives the variance $\gamma_y(s, s) = \mathbb{V}[y_s]$.
- Autocorrelation Function: $\rho_y(s,t) = \gamma_y(s,t)/\sqrt{\gamma_y(s,s)\gamma_y(t,t)}$ for all s and t.

Without further assumptions, this is still an unwieldy way to characterize a time series because the mean function depends on t and the autocovariance and autocorrelation functions depend on both s and t. To simplify things further, we often assume that the time series is either:

- Strongly Stationary: The distribution of any subset of k elements of $(y_{t_1}, \ldots, y_{t_k})$ is exactly the same as the distribution of the shifted set of k elements $(y_{t_1+h}, \ldots, y_{t_k+h})$.
 - The mean function $\mu_{y,t}$ does not depend on t: $\mu_{y,t} = \mathbb{E}[y_t] = \mathbb{E}[y_{t+h}] = \mu_{y,t+h}$.
 - The autocovariance function $\gamma_y(s,t)$ depends on s and t only through their absolute difference h=|s-t|:

$$\gamma(s+h,s) = \mathbb{E}[(y_{s+h} - \mu_y)(y_s - \mu_y)]$$
$$= \mathbb{E}[(y_h - \mu_y)(y_0 - \mu_y)]$$
$$= \gamma(h,0).$$

• Weakly Stationary: The second moments of y_t are finite, i.e. $\mathbb{E}[y_t^2] < \infty$ for all t, the mean function is constant and does not depend on time, $\mu_{y,t} = \mu_y$, and the autocovariance function $\gamma_y(s,t)$ depends on s and t only through their absolute difference h = |s - t|.

Note that although strong stationarity with finite second moments $\mathbb{E}[y_t^2] < \infty$ implies weak stationarity, the reverse does not hold. Strong stationarity is usually too strict to be a reasonable assumption, so from here on out we will call a time series **stationary** if it is **weakly stationary**.

When a time series is stationary, its autocovariance and autocorrelation functions can be written as functions of a single variable h. For this reason, we will drop the second arguments of the autocovariance and autocorrelation functions when a time series is stationary, writing $\gamma_y(h) = \gamma_y(h, 0)$ and $\rho_y(h) = \rho_y(h, 0)$.

When we observe a time series y, we do not know the mean, autocovariance, or autocorrelation functions a priori - we need to estimate them. When y is stationary we can compute:

• The **sample mean** function:

$$\hat{\mu}_y = \bar{y} = \sum_{t=1}^n y_t / n. \tag{1}$$

• The sample autocovariance function:

$$\hat{\gamma}_y(h) = \frac{1}{n} \sum_{t=1}^{n-h} (y_{t+h} - \hat{\mu}_y) (y_t - \hat{\mu}_y), \qquad (2)$$

with $\hat{\gamma}_y(-h) = \hat{\gamma}_y(h)$ for h = 0, 1, ..., n - 1.

- We divide by n and not n-h to ensure that the sample variance of a sum of elements of \boldsymbol{y} computed from the $n \times n$ sample autocovariance matrix with entries $\hat{\gamma}(i-j)$ will always be nonnegative.
- This is a biased estimate of $\gamma_y(h)$.
- The sample autocorrelation function:

$$\hat{\rho}_y(h) = \frac{\hat{\gamma}_y(h)}{\hat{\gamma}_y(0)}.$$
(3)

When we examine a sample autocorrelation function, it is natural to ask how different our estimates of the sample autocorrelation are from what we would might expect if \boldsymbol{y} were a **white noise** time series with no autocorrelation at all, i.e. if $\rho_y(h) = 0$ for all $h \neq 0$. We can get a handle on this using the following result:

If
$$\mathbf{y} = \boldsymbol{\mu}_y + \boldsymbol{\epsilon}$$
 where $\boldsymbol{\mu}_y = \mathbf{0}$ and $\boldsymbol{\epsilon}_i \overset{i.i.d.}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$ for $i = 1, ..., n$, then $\hat{\rho}_y\left(h\right) \approx v/\sqrt{n}$, for $h = 1, ..., H$, where $v \sim \mathcal{N}\left(0, 1\right)$ and H is fixed but arbitrary.

This result allows us to perform an approximate test of the null hypothesis that $\rho_y(h) = 0$ for any h > 1.