

1993 年全国大学生数学模型竞赛

启 源

(清华大学应用数学系,北京 100084)

1993年全国大学生数学模型竞赛 10 月 15 日至 17 日在北京、上海、西安、武汉、广 州、重庆、南京、大连、长沙、太原等二十多个城市举行。来自全国101所高校的机械、电机、 化工、土木、自动化、计算机等工科专业,数学、物理等理科专业(含师范院校)及经管类专 业的近 1300 名学生组成 420 多个队参加了竞赛,竞赛中涌现出许多优秀答卷,全国 11 个 赛区共评出特等奖 11 名(队),一等奖 48 名,二等奖 104 名。12 月 3 日在北京举行了颁奖 仪式。

国家教委的负责同志十分关心这项竞赛,亲临现场视察并出席颁奖仪式,充分肯定数 学模型竞赛在开拓学生的创造性、培养协作精神等方面的积极意义,决定与中国工业与应 用数学学会一起,在更多的高校推广这项活动,办成面向全国大学生的一项大奖赛。

1993 年的竞赛有两道题,一道题是从卫星通讯的频率设计中的一个科研课题简化加 工而成,另一道题是根据若干支球队历史上的战绩,设计一个反映诸队实力的排名次的算 法。下面除刊登赛题及获北京赛区特等奖的两篇优秀论文外,还特请两位命题,评阅人撰 文发表,希望起到与众多的参赛者交流的作用,并使关心这项竞赛的同志们对它有更多的 了解。

1993 年全国大学生数学模型竞赛试题

A 题 非线性交调的频率设计

如果一非线性器件的输入 u(t) 与输出 y(t) 的关系是 $y(t) = u(t) + u^2(t)$ (其中 t是时间),那么当输入是包含频率 f_1, f_2 的信号 $u(t) = \cos 2\pi f_1 t + \cos 2\pi f_2 t$ 时,输出 y(t)中不仅包含输入信号 f_1, f_2 ,而且还会出现 $2f_1, f_2 \pm f_2$ 等新的频率成分,这些新的频率 称为交调,如果交调出现在原有频率 f_1,f_2 的附近,就会形成噪声干扰,因此工程设计中 对交调的出现有一定的要求。

现有一 SCS (非线性)系统,其输入输出关系由如下一组数据给出:

输入#)	5	10	20	30	40	50	60	80
輸出リ	2.	25 6	5.80	20.15	35.70	56.40 7	5.10	87.85 9	8.50

输入信号为 $u(t) = A_1 \cos 2\pi j_1 t + A_2 \cos 2\pi j_2 t + A_3 \cos 2\pi j_3 t$, 其中 $A_1 = 25$, $A_2 = 10$, A, = 45 是输入信号振幅,对输入信号的频率 f_1, f_2, f_3 的设计要求为:

- 1) $36 \le f_1 \le 40$, $41 \le f_2 \le 50$, $46 \le f_3 \le 53$.
- 2) 输出中的交调均不得出现在 $f_i \pm 5$ 的范围内 (i = 1, 2, 3),此范围称为 f_i 的接 收带(参见下图)。

- 3) 定义输出中的信噪比 SNR = $10\log_{10}\frac{B_i^2}{C^2}$ (单位: 分贝), 其中 B_i 是输出中对应 于频率为 f_i 的信号的振幅, C_n 是某一频率为 f_n 的交调的振幅.若 f_n 出现在 $f_n = f_i \pm 6$ 处 (i-1,2,3),则对应的 SNR 应大于 10 分贝(参见上图).
 - 4) f_i 不得出现在 f_i 的接收带内 $(i,j-1,2,3,i \neq j)$.
- 5) 为简单起见 f_i 只取整数值,且交调只考虑 2 阶类型(即 $\{f_i \pm f_i\}, i, j = 1, 2, 3$) 和 3 阶类型(即 $\{f_i \pm f_i \pm f_k\}, i, j, k = 1, 2, 3$).

试按上述要求设计输入信号频率 f.,f2,f3.

B 题 足球队排名次

下表给出了我国 12 支足球队在 1988—1989 年全国足球甲级联赛中的成绩,要求

- 1)设计一个依据这些成绩排出诸队名次的算法,并给出用该算法排名次的结果。
- 2) 把算法推广到任意N个队的情况。
- 3) 讨论:数据应具备什么样的条件,用你的方法才能够排出诸队的名次。 对下表的说明:
- 1) 12 支球队依次记作 T., T2, · · · T12.
- 2) 符号 X 表示两队未曾比赛。
- 3) 数字表示两队比赛结果,如 T,行与 T。列交叉处的数字表示: T,与 T。比赛 了 2 场; T, 与 T。的进球数之比为 0:1 和 3:1。

	T,	Т,	Т,	Т,	Т,	Т,	Т,	T,	Т,	T ₁₀	Tii	Т,,
	 	0;1	2;2	2:0	3:1	1:0	0:1	0:2	1:0	1:1		
T,	X	1:0	1:0	3:1			1:3	2:1	4:0	1:1	X	X
	 	0:0	0:2	1:0								
}			2:0	0:0	1:1	2:1	1:1	0:0	2:0	0:2		
T,		x	0:1	2:0			1:1	0:0	1:1	0:0	X	X
	 		1:3	0:0								
				4:2	2:1	3:0	1:0	0:1	1:0	0:1		
Т,			X	1:1			1:4	3:1	2:3	2:0	X	X
	 			0:0								
т,					2:3	0:1	0:5	2:1	0:1	0:1		
	 			X			2:3	1:3	0:0	1:1	X	X
Т,						0:1					1:0	0:1
_	_				Х		X	X	X	X	1:2	1:1
T.						x	x	X	X	X	X	
								1:0	2:1	3:1	3:1	2:0
т,							X	2:0	3:0	3:0		
								0:0	1:0	2:2		
									0:1	1:1	3:1	0:0
T_s								X	1:2	1:0		
į									2:0	0:1		
										3:0		
Т,									X	1:0	1:0	1:0
										0:0		
Tio											1;0	2:0
- 10										X		
T ,,												1:1
- 11											X	1:2
T ₁₂	 											1:1
~ 12												X