# **Evolutionary algorithm**

## for autonomous cleaning robot

Protocol by Kathrin Hartmann and Lena Cabrera

#### 1. Control



- controller is neural network with architecture
  - 16 input nodes (12 sensory inputs, 4 recurrent inputs)
  - 4 hidden nodes
  - 2 output nodes (left and right motor velocities)
- activation function is tanh
- recurrent nodes are initialized with random values between 1 and maximum sensor reach

#### 2. Morphology

We used our own mobile robot simulator which was developed for the previous assignment.

### 3. Genetic representation

- binary representation
- weights (0.01-0.001) encoded, first with integers between 10 and 100 which are then encoded as 7-digit binary numbers
- entire genotype → 72 weights as 504-digit binary numbers
  (consists of 64 weights (12 for sensory inputs, 4 for recurrent inputs to 4 hidden
  nodes) for input/hidden layer and 8 weights for hidden/output layer)

## 4. Population size

- population size = 30

## 5. Initialization (of genotypes)

- random distribution between 0.01 and 0.001

### 6. Fitness function

- maximizing cleaned area, punishment of wall collisions (value sensor = 0)

- fitness = 
$$\frac{cleaned\ area}{total\ area} * \prod_{i}^{n*s} \frac{value\ sensor\ i}{max\ sensor\ reach}$$

with n as number sensors, s as number steps in simulation, total area as room area.

## 7. Selection and reproduction

- truncated rank based selection: n\_best\_percentage = 0.8
- generational replacement, in case of uneven population size, use more copies of best performing individuals

### 8. Crossover and mutation

- crossover\_percentage = 0.2
- mutation\_percentage = 0.05
- crossover:
  - use random individuals
  - split at random position and switch bits
- mutation:
  - flip random bit
  - in case this results in illegal weight (representation): generate random weight and turn this weight into binary representation

## 9. Stop criterion

- terminates after stagnating fitness for 5 generations