Question 1

Your goal this week is to write a program to compute discrete log modulo a prime p. Let g be some element in \mathbb{Z}_p^* and suppose you are given h in \mathbb{Z}_p^* such that $h=g^x$ where $1 \le x \le 2^{40}$. Your goal is to find x. More precisely, the input to your program is p,g,h and the output is x.

The trivial algorithm for this problem is to try all 2^{40} possible values of x until the correct one is found, that is until we find an x satisfying $h=g^x$ in \mathbb{Z}_p . This requires 2^{40} multiplications. In this project you will implement an algorithm that runs in time roughly $\sqrt{2^{40}}=2^{20}$ using a meet in the middle attack.

Let $B=2^{20}$. Since x is less than B^2 we can write the unknown x base B as $x=x_0*B+x_1$ where x_0,x_1 are in the range [0,B-1]. Then $b=g^x=g^{x_0*B+x_1}=g^{B^{x_0}}*g^{x_1}$

By moving the term g_{x^1} to the other side we obtain $h/g^{x_1}=g^{B^{x_0}}$ in \mathbb{Z}_p .

The variables in this equation are x_0,x_1 and everything else is known: you are given g,h and $B=2^{20}$. Since the variables x_0 and x_1 are now on different sides of the equation we can find a solution using meet in the middle (<u>Lecture 3.3</u>):

- First build a hash table of all possible values of the left hand side $^h/_{q^{x_1}}$ for $x_1=0,1,\ldots,2^{20}$.
- Then for each value $x_0=0,1,2,...,2^{20}$ check if the right hand side $g^{B^{x_0}}$ is in this hash table. If so, then you have found a solution (x_0,x_1) from which you can compute the required x as $x=x_0B+x_1$.

The overall work is about 2^{20} multiplications to build the table and another 2^{20} lookups in this table.

Now that we have an algorithm, here is the problem to solve:

p=1340780792994259709957402499820584612747936582059239337772356144 372176403007354697680187429816690342769003185818648605085375388281 1946569946433649006084171

g=1171782988036620700951611759633536708855808499999895220559997945 906392949973658374667057217647146031292859482967542827946656652711 5212748467589894601965568

h=3239475104050450443565264378728065788649097520952449527834792452 971981976143292558073856937958553180532878928001494706097394108577 585732452307673444020333

Each of these three numbers is about 153 digits. Find x such that $h=g^x$ in \mathbb{Z}_p .

To solve this assignment it is best to use an environment that supports multi-precision and modular arithmetic. In Python you could use the gmpy2 or numbthy modules. Both can be used for modular inversion and exponentiation. In C you can use GMP. In Java use a BigInteger class which can perform mod, modPow and modInverse operations.

Your Answer		Score	Explanation
375374217830	Correct	1.00	
Total		1.00 / 1.00	