Puissance

Définition: Puissance

On définit la *puissance d'une force* $\mathscr{P}_{\mathscr{R}}(\overrightarrow{F})$ exercée par une force \overrightarrow{F} sur un point matériel situé en M animé d'une vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ dans un référentiel \mathscr{R} :

$$\mathscr{P}_{\mathscr{R}}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v_{\mathscr{R}}}(M).$$

Travail élémentaire

Définition: Travail élémentaire

On définit le travail *élémentaire*, noté $\delta W_{\mathcal{R}}(\vec{F})$, fourni par une force \vec{F} s'exerçant sur un point matériel pendant un intervalle de temps infinitésimal dt dans un référentiel \mathcal{R} par :

$$\delta W_{\mathcal{R}}(\vec{F}) = \mathcal{P}_{\mathcal{R}}(\vec{F}) dt$$
.

Travail sur un déplacement fini

Définition : Travail d'une force au cours d'un déplacement fini

Pour un déplacement *fini* d'une position M_1 à une position M_2 le long d'une courbe \mathscr{C} , le travail total est :

$$M_1 \underset{\mathscr{C}}{\longrightarrow} M_2 (\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \delta W (\overrightarrow{F}) = \int_{M_1 \underset{\mathscr{C}}{\longrightarrow} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

Caractère moteur ou résistant de l'action d'une force

Définition : Caractère moteur ou résistant de l'action d'une force

L'action d'une force est dite *motrice* (resp. *résistive*) quand la puissance de la force est *positive* (resp. *négative*), c'est-à-dire quand l'angle entre la force et la vitesse est *aigu* (resp. *obtus*). La puissance est nulle quand la force est *orthogonale* à la vitesse.

Expressions et cas particuliers

Travail élémentaire

Coordonnées cartésiennes $\delta W = \overrightarrow{F} \cdot d\overrightarrow{M} = F_x dx + F_y dy + F_z dz$

Coordonnées cylindriques $\delta W = \overrightarrow{F} \cdot d\overrightarrow{M} = F_r dr + F_{\theta} r d\theta + F_z dz$

Coordonnées sphériques $\delta W = \vec{F} \cdot d\vec{M} = F_r dr + F_{\theta} r d\theta + F_{\varphi} r \sin\theta d\varphi$

Champ de force \vec{F} uniforme

$$W(\overrightarrow{F})_{\mathscr{R}} = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \overrightarrow{F} \cdot d\overrightarrow{M} = \overrightarrow{F} \cdot \int_{M_1 \xrightarrow{\mathscr{C}} M_2} d\overrightarrow{M} = \overrightarrow{F} \cdot \overrightarrow{M_1 M_2}$$

Forces de liaison et de frottement

Puissance et travail des forces de liaison et de frottement

- La puissance, et donc le travail, de la réaction normale \vec{N} d'un support immobile est toujours nulle. C'est également le cas pour la force de tension d'un pendule.
- L'action de la force de frottement \overrightarrow{F} exercée par un milieu ou un support immobile est toujours résistive.

Énergie cinétique

Définition : Énergie cinétique

On définit *l'énergie cinétique* $\mathscr{E}_{c\mathscr{R}}$ dans un référentiel \mathscr{R} d'un point matériel M animé dans \mathscr{R} de la vitesse $\overrightarrow{v_{\mathscr{R}}}(M)$ par :

$$\mathcal{E}_{c\mathcal{R}} = \frac{1}{2}m\|\overrightarrow{\nu_{\mathcal{R}}}(M)\|^2 = \frac{\|\overrightarrow{p_{\mathcal{R}}}(M)\|^2}{2m}$$

Théorème de la puissance cinétique

Théorème : de la puissance cinétique

La dérivée par rapport au temps dans un référentiel galiléen \mathscr{R}_g de l'énergie cinétique d'un point matériel M est égale à la puissance $\mathscr{P}_{\mathscr{R}_g}(\vec{F})$ dans \mathscr{R}_g de la résultante \vec{F} des forces qui lui sont appliquées :

$$\mathscr{P}_{\mathscr{R}_g}(\overrightarrow{F}) = \frac{\mathrm{d}\mathscr{E}_{c\mathscr{R}_g}}{\mathrm{d}t}.$$

Théorème de l'énergie cinétique

Théorème : de l'énergie cinétique

La variation de l'énergie cinétique dans un référentiel galiléen \mathcal{R}_g d'un point matériel M situé en M_1 à l'instant t_1 et en M_2 à l'instant t_2 est égale au travail de la résultante \overrightarrow{F} des forces qui lui sont appliquées le long du trajet $\mathscr C$ entre M_1 et M_2 :

$$\underline{\Lambda}_{t_1 \to t_2} \mathcal{E}_{c_{\mathcal{R}_g}} = \mathcal{E}_{c_{\mathcal{R}_g}}(t_2) - \mathcal{E}_{c_{\mathcal{R}_g}}(t_1) = \int_{M_1 \xrightarrow{\mathscr{C}} M_2} \overrightarrow{F} \cdot d\overrightarrow{OM}.$$

Exercice: Force de frottement solide

On considère un point matériel de masse m glissant sur un plan horizontal, dans le champ de pesanteur uniforme (d'accélération \vec{g}), soumis à des forces de frottement solide caractérisé par un coefficient μ .

- 1. Déterminer les intensités des forces \vec{R}_{\perp} et \vec{R}_{\parallel} quand le point matériel glisse.
- 2. On envisage deux trajets pour le point matériel. Dans le premier, il parcourt la distance L avant de s'immobiliser. Dans le deuxième, il parcourt une distance L+D, rebondit sur un mur et repart en sens inverse pour s'immobiliser au même point que dans le premier trajet. Déterminer, pour les deux trajets, les expressions :
 - des travaux du poids et de la réaction normale \vec{R}_{\perp} ,
 - du travail de la réaction tangentielle $\overrightarrow{R}_{\parallel}$.

Définition: Force conservative

Une force \vec{F} est dite *conservative* si son travail $W_{M_1 \to M_2}(\vec{F})$ sur un point matériel se déplaçant d'un point M_1 à un point M_2 ne dépend pas de la trajectoire suivie de M_1 à M_2 mais uniquement des points extrêmaux M_1 et M_2 .

De manière équivalente : $W(\overrightarrow{F}) = 0$ sur toute trajectoire fermée.

Énergie potentielle

Définition : Énergie potentielle

On peut associer à la force \vec{F} conservative une énergie potentielle $\mathscr{E}_{pot}(M)$, fonction uniquement de la position M d'un point matériel soumis à \vec{F} , définie par :

$$\mathscr{E}_{\mathrm{pot}}(M) = -W_{M_0 \to M}(\overrightarrow{F}) = -\int_{M_0}^{M} \overrightarrow{F} \cdot d\overrightarrow{M},$$

où M_0 est un point que lconque. On dit que \overrightarrow{F} «moins» dérive de l'énergie potentielle $\mathscr{E}_{\mathrm{pot}}$.

Travail d'une force conservative

Travail d'une force conservative

Le travail d'une force \vec{F} conservative sur un point matériel se déplaçant de la position M_1 à la position M_2 est alors égal à la *diminution* d'énergie potentielle entre M_1 et M_2 :

$$\underset{M_1 \to M_2}{W}(\overrightarrow{F}) = \mathcal{E}_{\text{pot},\overrightarrow{F}}(M_1) - \mathcal{E}_{\text{pot},\overrightarrow{F}}(M_2).$$

Cas d'un système à un degré de liberté

Énergie potentielle pour un mouvement à un degré de liberté

On associe à $\overrightarrow{F} = F_x \overrightarrow{e_x}$ une énergie potentielle $\mathscr{E}_{pot}(x)$ telle que :

$$F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}}{\mathrm{d}x}$$
.

Le travail de \overrightarrow{F} de la position x_1 à la position x_2 est :

$$W_{x_1 \to x_2}(\overrightarrow{F}) = \mathcal{E}_{\text{pot}}(x_1) - \mathcal{E}_{\text{pot}}(x_2) = \int_{x_1}^{x_2} F_x \, \mathrm{d}x.$$

x peut être une cordonnée cartésienne mais aussi un angle en coordonnées polaires

Exemples

Poids

$$\mathcal{E}_{\mathrm{pot}}(M) = mg(z-z_0),$$

avec z l'altitude ($\overrightarrow{e_z}$ de sens opposé à \overrightarrow{g}), z_0 est l'altitude où \mathscr{E}_{pot} est nulle.

Ressort idéal unidimensionnel

$$\mathscr{E}_{\text{pot}}(\ell) = \frac{1}{2}k(\ell - \ell_0)^2,$$

toujours nulle pour $\ell = \ell_0$ par convention.

Gradient d'un champ scalaire

Définition : Gradient d'un champ scalaire

Soit $M \mapsto E(M)$ un *champ scalaire*. Son *gradient*, noté $\overrightarrow{\text{grad}} E$ est le *champ vectoriel* $M \mapsto \overrightarrow{\text{grad}} E(M)$ tel que, au voisinage de tout point M:

$$dE(M) = \overrightarrow{grad} E \cdot \overrightarrow{dOM}$$
.

Orientation du gadient

Le gradient $\overrightarrow{\text{grad }E}$ est orthogonal aux surfaces dites «iso-E» définies par E = cste.

Cas d'une force conservative

Dérivation de l'énergie pontentielle

Le champ d'une force conservative $\overrightarrow{F}(M)$ dérive de son énergie potentielle $\mathscr{E}_{\mathrm{pot}}(M)$ selon :

$$\overrightarrow{F}(M) = -\overrightarrow{\operatorname{grad}}\mathscr{E}_{\operatorname{pot}}(M).$$

Cas du poids

Le poids est le gradient de l'énergie potentielle $\mathscr{E}_{pot}=mgz$. Les surfaces isoénergétiques sont des plans horizontaux.

Expressions

Expressions du gradient

Les composantes d'une force conservative sont :

$$\mathbf{coordonn\acute{e}es\ cart\acute{e}siennes:}\quad \overrightarrow{F} = -\overrightarrow{\mathrm{grad}}\mathscr{E}_{\mathrm{pot}}(x,y,z) = -\left(\frac{\partial\mathscr{E}_{\mathrm{pot}}}{\partial x}\overrightarrow{e_x} + \frac{\partial\mathscr{E}_{\mathrm{pot}}}{\partial y}\overrightarrow{e_y} + \frac{\partial\mathscr{E}_{\mathrm{pot}}}{\partial z}\overrightarrow{e_z}\right)$$

coordonnées cylindriques :
$$\overrightarrow{F} = -\overrightarrow{\text{grad}} \mathcal{E}_{\text{pot}}(r, \theta, z) = -\left(\frac{\partial \mathcal{E}_{\text{pot}}}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial \mathcal{E}_{\text{pot}}}{\partial \theta} \overrightarrow{e_\theta} + \frac{\partial \mathcal{E}_{\text{pot}}}{\partial z} \overrightarrow{e_z}\right)$$

coordonnées sphériques :
$$\overrightarrow{F} = - \overrightarrow{\text{grad}} \mathscr{E}_{\text{pot}}(r, \theta, \varphi) = - \left(\frac{\partial \mathscr{E}_{\text{pot}}}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial \mathscr{E}_{\text{pot}}}{\partial \theta} \overrightarrow{e_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial \mathscr{E}_{\text{pot}}}{\partial \varphi} \overrightarrow{e_{\varphi}} \right)$$

Exemples fondamentaux

Énergie potentielle de gravitation

L'énergie potentielle de gravitation entre deux masses ponctuelles M_1 , m_1 et M_2 , m_2 distantes de r_{12} a pour expression :

$$\mathcal{E}_{\text{pot}_{\text{grav}}} = -\frac{\mathcal{G} m_1 m_2}{r_{12}}.$$

Énergie potentielle élastique

L'énergie potentielle d'interaction entre deux masses distantes de r_{12} reliées par un ressort de raideur k et de longueur à vide ℓ_0 a pour expression :

$$\mathcal{E}_{\text{pot\'elas}} = \frac{1}{2} k (r_{12} - \ell_0)^2$$

Exercice

Un point matériel est placé dans un champ de force \overrightarrow{F} dérivant de l'énergie potentielle :

$$\mathscr{E}_{\text{pot}} = \frac{\mathscr{E}_{\text{pot}_0}}{\ell^3} \left(x^4 + y^4 \right)$$

- 1. Déterminer l'expression de la force \vec{F} . À quelle condition portant sur les constantes $\mathscr{E}_{\text{pot}_0}$ et ℓ sera-t-elle attractive?
- 2. Dans ce cas, préciser le vecteur \overrightarrow{F} aux points $(\ell;0)$; $(0;-\ell)$ et $(\ell;\ell)$.

Construction

Définition : Énergie mécanique

On définit l'énergie mécanique $\mathscr{E}_{m\mathscr{R}}$ d'un point matériel situé en M dans un référentiel \mathscr{R} , soumis à des forces conservatives auxquelles est associée une énergie potentielle $\mathscr{E}_{pot}(M)$ par :

$$\mathcal{E}_{\mathrm{m}\mathscr{R}} = \mathcal{E}_{\mathrm{pot}}(M) + \mathcal{E}_{\mathrm{cin}\mathscr{R}}.$$

Théorème

Théorème : de l'énergie mécanique (forme locale)

Dans un référentiel galiléen \mathcal{R}_g , la variation de l'énergie mécanique d'un point matériel est égale au seul travail des forces non conservatives.

En notant \mathcal{P}_{nc} leur puissance, on a à chaque instant :

$$\left(\frac{\mathrm{d}\mathscr{E}_{\mathrm{m}\mathscr{R}_{\mathrm{g}}}}{\mathrm{d}t}\right)_{\mathscr{R}_{\mathrm{g}}} = \mathscr{P}_{\mathrm{nc}}.$$

Théorème : de l'énergie mécanique (forme globale)

En notant W_{nc} le travail total de ces forces non conservatives entre un instant où le $M_1 \xrightarrow{M_1 \to M_2} M_2$

point matériel est en M_1 , animé dans \mathcal{R}_g d'une vitesse de norme v_1 , et un autre instant où il est en M_2 animé d'une vitesse de norme v_2 , on a :

$$\Delta \mathcal{E}_{\mathbf{m}\mathcal{R}_g} = \left(\frac{1}{2} m v_2^2 + \mathcal{E}_{\mathsf{pot}}(M_2)\right) - \left(\frac{1}{2} m v_1^2 + \mathcal{E}_{\mathsf{pot}}(M_1)\right) = \underset{M_1 \xrightarrow{} M_2}{W_{\mathsf{nc}}}.$$

Système conservatif

Définition : Système conservatif

Un système dont l'énergie mécanique se conserve est dit *conservatif*. Pour un tel système l'équation :

$$\mathcal{E}_{\mathrm{m}} = cste = \mathcal{E}_{\mathrm{m}0}$$

est nommée intégrale première du mouvement.

Vitesse pour un système conservatif

Pour un système conservatif, la vitesse du point matériel s'exprime en fonction de sa position selon :

$$v^2 = \frac{2}{m} \left(\mathcal{E}_{\text{m0}} - \mathcal{E}_{\text{pot}}(M) \right)$$

Influence de forces de frottement

Effet des frottements sur l'énergie mécanique

Quand les seules forces non conservatives auxquelles il est soumis sont de frottement, l'énergie mécanique ne peut que diminuer :

$$\frac{\mathrm{d}\mathscr{E}_{\mathrm{m}}}{\mathrm{d}t} \le 0. \tag{1}$$

Interprétation de l'énergie potentielle

Interprétation de l'énergie potentielle

• Pour un système conservatif :

$$d\mathcal{E}_{cin} = -d\mathcal{E}_{pot}$$
.

• Une diminution de \mathcal{E}_{cin} permet d'emmagasiner de l'énergie potentielle qui pourra être restituée sous forme cinétique.

Exemples:

- m lancée vers le haut : v^2 diminue et $\mathscr{E}_{pot} = mgz$ augmente.
- à la redescente, $\mathscr{E}_{\mathrm{pot}}$ diminue et v^2 augmente.

États liés et de diffusion

Définition : États liés et de diffusion

mouvement entre x_{\min} et x_{\max}

Un système conservatif est dit :

- dans un état $\emph{lié}$ si le mouvement est contraint dans une région finie de l'espace,
- dans un état *de diffusion* si le mouvement peut s'étendre jusqu'à l'infini.

Positions d'équilibre

Caractérisation

Les positions dites *d'équilibre* où un point matériel soumis à la force conservative \vec{F} dans \mathcal{R}_g galiléen peut être en équilibre sont les points M_{eq} tels que $\vec{F} = \vec{0}$.

Une position $M_{\rm eq}$ d'équilibre est dite :

stable si la force qui s'exerce sur un P.M. proche de $M_{\rm eq}$ tend à le ramener vers $M_{\rm eq}$,

instable sinon.

Mouvement à un degré de liberté

L'énergie potentielle présente une tangente horizontale en un point d'équilibre :

$$\left(\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}(x)}{\mathrm{d}x}\right)_{M_{\mathrm{eq}}} = 0$$

Le point $M_{\rm eq}$ d'abscisse $x_{\rm eq}$ est une position d'équilibre stable si et seulement si :

 $\mathcal{E}_{pot}(x)$ localement *minimale* en x_{eq}

Si $\frac{d^2 \mathcal{E}_{pot}(x_{eq})}{dx^2} \neq 0$, cette condition correspond à :

$$\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{pot}}(x)}{\mathrm{d} x^2} x_{\mathrm{eq}} > 0.$$

Modèle fondamental/Oscillations anharmoniques

Approximation harmonique

Voisinage d'une position d'équilibre stable

Le mouvement d'un point matériel de masse m au voisinage d'une position d'équilibre stable en $x=x_{\rm eq}$ est *harmonique* de pulsation $\omega_0=$

$$\sqrt{\left(\frac{\mathrm{d}^2\mathcal{E}_{\mathrm{pot}}}{\mathrm{d}x^2}\right)_{x_{\mathrm{eq}}}/m}.$$

L'amplitude des oscillations, notée X_m , et le maximum du module de la vitesse atteinte, noté v_m vérifient : $\omega_0 X_m = v_m$. La trajectoire dans l'espace des phases est une ellipse parcourue dans le sens horaire.

Indispensable

- travail et puissance : définition, théorèmes
- poids et ressort : énergies potentielles
- définition du gradient, cas des forces conservatives
- exemples fondamentaux d'énergie mécanique
- espace des phases : points de rebroussement, barrières et puits de potentiel.

Réversibilité

Définition : Système réversible

Un système mécanique est dit *réversible* si pour tout mouvement $(t, \overrightarrow{OM}(t), \overrightarrow{v}(t))$ vérifiant les équations du mouvement, le mouvement dit *renversé*,

- paramétré par t' tel que $\frac{dt'}{dt} = -1$,
- avec $(\overrightarrow{OM}_{\text{renv}}(t') = \overrightarrow{OM}(t), \overrightarrow{v}_{\text{renv}}(t') = -\overrightarrow{v}(t))$

vérifie également les équations du mouvement.

Théorème

Un système conservatif est réversible.

Indispensable