Development of a new Pythonbased cardiac phantom for myocardial SPECT imaging

John Wesley Mathis ECE/SSE 591

What is SPECT?

- Single Photon Emission Computed Topography
- Nuclear Imaging
- Shows blood flow to tissues and organs
- Myocardial Perfusion SPECT
 - Evaluates blood flow to the heart muscle

Anthropomorphic Human Phantoms

- Objects that simulate human tissues and organs to test and calibrate imaging devices
- Used in nuclear medicine
 - Image acquisition
 - Reconstruction
 - Data analysis
 - Calibration, etc.

Types of Phantoms

- Numerical Phantoms
 - Stylized Phantoms: Use mathematical equations to represent human anatomy
 - Analytical geometries
 - Voxel Phantoms: Use 3D imaging techniques like MRI or CT scans
 - More realistic, derived from human patients
- Non-numerical phantoms
 - Physical models

Quantitative Measurements

- End Diastolic Volume(EDV)
 - Volume of blood in the left ventricle at the end of filling
- End-Systolic Volume (ESV)
 - Volume of blood in the left ventricle after contraction
- Ejection Fraction(EF)
 - Percentage of blood pumped out of the left ventricle during each heartbeat
- Phase Analysis, Wall Thickening Motion, Perfusion Parameters
 - Various measures of heart function and blood flow
- Defect Extent and Severity, Stress and Rest Scores, Total Perfusion Deficit(TPD)
 - Assessment of areas with poor blood flow and overall heart health

The Problem

- Current Cardiac Phantoms limited in realism and flexibility
- Stylized Phantoms lack detail of anatomical model
- Voxel Phantoms are rigid and less flexible

Study Aim

- Design a computational cardiac phantom
 - Simulate interfering Parameters
 - Accurate phantom for validating and improving the quantitative analysis software
- Computational Phantom
 - Versatile and easily modifiable
 - Enhances imaging accuracy and diagnosis

Why use Python?

- High-Level programming language
- Easy Syntaxes
- Flexibility
- More advantages over other languages

Python Libraries Used

 NumPy: numerical operations and matrix handling

• SciPy: scientific computing, including optimization and interpolation

Results

Accurate myocardial slices consistent with SPECT images

Various defect severities simulated

Accurate EDV, ESV, EF parameters

	% Difference				
Extent	10%	20%	30%	40%	50%
EDV	2.8	2.9	-1.2	18.4	31.5
ESV	1.6	-6.5	-14.8	3.9	19.4
EF	1.3	5.3	8.8	11.4	11.2

My Thoughts

References

- NumPy developers. (n.d.). NumPy logo. Retrieved from https://github/com/numpy/numpy/tree/main/branding/logo
- SciPy devleopers (n.d.). Scipy logo. Retrieved from https://github.com/scipy/scipy.org/blob/main/static/images/logo.svg
- Biopython. (n.d.). Biopython logo. Retrieved from https://biopython.org/wiki/logo
- Hanafy, O. S., Khalil, M. M., Khater, I. M., & Mohammed, H. S. (2020). Development of a new Python □ based cardiac phantom for myocardial SPECT imaging. *Annals of Nuclear Medicine*, 23(1), 257. https://doi.org/10.1007/s12149-020-01534-y
- Matplotlib developers. (n.d.). Matplotlib logo. Retrieved from https://matplotlib.org/stable/gallery/misc/logos2.html
- pandas development team. (n.d.). Pandas logo. Retrieved from https://pandas.pydata.org/about/citing.html
- Python Software Foundation. (n.d.). Python logo. Retrieved from https://www.python.org/community/logos/
- Splettstoesser, T. (n.d.). Cas9 protein structure [Image]. Wikimedia Commons. Retrieved from https://en.wikipedia.org/wiki/Cas9#/media/File:Cas9_5AXW.png

Questions?