Machine Learning and Algorithms (Session 5)

Yi Zhang March 3, 2022

Question to solve

- Each observation has two features and a label.
- The label can be 0, 1, or 2
- For a point with x1=3.3, x2=3.5, what should be predicted label?

x1	x2	label
4.464301	2.649087	2
1.659899	2.094037	0
4.106146	1.677039	1
0.208483	3.112597	0
0.538283	2.190707	0
2.975260	3.679411	2

Visualize the data

Decision Tree

- Try to split the domain into segments
 - Loop through each feature
 - For each feature, loop through each mid-point between values to get the split performance
 - Choose feature that gives the best performance

• For the final model, we aim to put observations with the same labels in one

segment

How do we decide "good" split?

- Gini Index
 - $1 \sum_{i} p_{i}^{2}$, where p_{i} is the percentage of samples with j label
- For the root (No split at all)

$$Gini = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{3}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 1 - \frac{14}{36} = \frac{11}{18} \approx 0.611$$

- What should be the prediction if no split?
- Majority vote: We predict everyone as 0

gini = 0.611 samples = 6 value = [3, 1, 2]

Splitting based-on feature 1 (1)

- Gini Index
 - $1 \sum_{i} p_{i}^{2}$, where p_{j} is the percentage of samples with j label

- $Gini(Left) = 1 \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right)^2 = \frac{3}{8} = 0.375$
- $Gini(Right) = 1 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 = \frac{1}{2} = 0.5$
- $Gini(Weighted) = \frac{\#Left}{\#Total}Gini(Left) + \frac{\#Right}{\#Total}Gini(Right)$ $= \frac{4}{6} * \frac{3}{8} + \frac{2}{6} * \frac{1}{2} = \frac{5}{12} \approx 0.417$

Splitting based-on feature 2 (1)

- Gini Index
 - $1 \sum_{i} p_{i}^{2}$, where p_{j} is the percentage of samples with j label

•
$$Gini(Left) = 1 - 1^2 = 0$$

•
$$Gini(Right) = 1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = \frac{4}{9} \approx 0.444$$

•
$$Gini(Weighted) = \frac{\#Left}{\#Total}Gini(Left) + \frac{\#Right}{\#Total}Gini(Right)$$

= $\frac{3}{6} * 0 + \frac{3}{6} * \frac{4}{9} = \frac{4}{18} \approx 0.222$

This is the best split if we use feature 1

Best first split

- Best split using feature 1:
 - Left=0
 - Right=0.44
 - Weighted=0.222
- Best split using feature 2:
 - Left=0.375
 - Right=0.5
 - Gini =0.4
- No split:
 - Gini =0.611
- Conclusion:
 - We can split using feature 1 at 2.318
 - This decreases Gini by 0.389,
 - 0.389 is the information gain.

 $X[0] \le 2.318$ gini = 0.611

samples = 6

Best second split

- For the second depth
 - Perform the same computation to decide split
 - Left child of the root
 - Gini is already 0
 - Should not split
 - Right child of the root.
 - Split reduces the Gini index
 - The best split is using feature 2 at x2=2.163

Alternative indicator

- Entropy
 - $-\sum_j p_j \log_2(p_j)$
- Gini-index
 - $1 \sum_j p_j^2$

Use sklearn to train Decision Tree

- We use DecisionTreeClassifer from sklearn.tree to train the model
- Three steps
 - Initialize the model
 - Train the model
 - Use model for prediction

```
from sklearn.tree import DecisionTreeClassifier
## Initialize model
model=DecisionTreeClassifier()
## Train the model
model.fit(X,y)
## Prediction
model.predcit(X)
```

Arguments for DecisionTreeClassifier

- DecisionTreeClassifier(criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,...) [source]
 - criterion{"gini", "entropy"}
 - default="gini"
 - max_depth:
 - int, default=None
 - If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples
 - min_samples_split
 - int or float, default=2
 - The minimum number of samples required to split an internal node
 - min_samples_leaf
 - int or float, default=1
 - The minimum number of samples required to be at a leaf node.

Use plot_tree to visualize Decision Tree

- We use plot_tree from sklearn.tree to train the model
 - Since a tree can be very large, we might want to only visualize part of the tree. We can use max_depth to control how deep we want to visualize the tree
 - In the following demo, even though the tree has depth=2, we visualize only to depth=1

```
X[0] \le 2.318

gini = 0.611

samples = 6

value = [3, 1, 2]

gini = 0.0

samples = 3

value = [3, 0, 0]
X[1] \le 2.163

gini = 0.444

samples = 3

value = [0, 1, 2]
(...)
```

```
from sklearn.tree import plot_tree
## plot tree
plot_tree(Tree,max_depth=1)
plt.show()
```

Model performance

- Accuracy:
 - $Accuracy = \frac{\#correct\ prediction}{\#samples}$
- Error Rate
 - ErrorRate = 1 Accuracy
- Precision: The ratio of how much of the predicted is correct
 - $Precision_j = \frac{\#Predicted\ to\ be\ label\ j\ and\ indeed\ label\ j}{\#Predicted\ to\ be\ label\ j}$
- Recall: The ratio of how many of the actual labels were predicted.
 - $Recall_j = \frac{\#Predicted \ to \ be \ label \ j \ and \ indeed \ label \ j}{\#Total \ number \ of \ label \ j}$
- F1-score:

•
$$F1_j = 2 \frac{Precision_j \times Recall_j}{Precision_j + Recall_j}$$

- Accuracy/Error Rate
 - $Accuracy = \frac{3}{6} = \frac{1}{2}$
 - $ErrorRate = 1 \frac{1}{2} = \frac{1}{2}$
- Precision/Recall
 - $Precision_0 = \frac{3}{6} = \frac{1}{2}, Recall_0 = \frac{3}{3} = 1$
 - $Precision_1 = \frac{0}{0} = N/A$, $Recall_1 = \frac{0}{2} = 0$
 - $Precision_2 = \frac{0}{0} = N/A$, $Recall_2 = \frac{0}{1} = 0$
- F1-score

•
$$F1_0 = 2\frac{\frac{1}{2} \times 1}{\frac{1}{2} + 1} = \frac{2}{3}$$
, $F1_1$, $F1_2 = N/A$

Check performance of a tree

• We can use classification report from sklearn.metrics to measure the

performance of prediction

precision recall t1-score support 0.50 1.00 0.67 3 0.00 0.00 0.00 0.00 0.00 0.00 0.50 6 accuracy 0.17 0.33 0.22 macro avg weighted avg 0.25 0.50 0.33

from sklearn.metrics import classification_report ## Initialize model print(classification_report (y_true, y_pred)

3.75

```
3.50
    3.25
   3.00
2.75 gatrue 2.50
   2.25
   2.00
   1.75
                                           feature1
```

```
/home/codio/.local/lib/python3.6/site-packages/sklearn/metrics/_classification.py:13
-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/codio/.local/lib/python3.6/site-packages/sklearn/metrics/ classification.py:13
-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use
behavior.
 warn prf(average, modifier, msg start, len(result))
/home/codio/.local/lib/python3.6/site-packages/sklearn/metrics/ classification.py:1248: UndefinedMetricWarning: Precision and F
-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to control this
behavior.
  warn prf(average, modifier, msg start, len(result))
```

Cross-validation

- For Decision Tree classification, if we keep on splitting
 - We can always get 100% accuracy on the dataset if we keep splitting.
 - The model might perform poorly on new data.

- Solution: Split the data into two sets
 - Training (For train the model)
 - Test (For the model performance evaluation)

```
from sklearn.model_selection import train_test_split
# split the features and labels into training (80%) and testing (20%) with a fixed order
X_train, X_val, y_train, y_val = train_test_split(y,X,test_size=0.2, random_state=0)
```

Hyper-parameter tuning

- Cross-validation can be used for hyper-parameter tuning.
- For example, if we want to decide the maximum depth, we can do the following:

for MDvalue in maximum_depth:
 Train the model with MDvalue on the training set
 Predict the accuracy on the testing set
Choose best model corresponds to max(MDvalue)