Exercise 1 (Vector norms).

(a) Let $(V, \|\cdot\|)$ be a normed vector space. Prove that

$$\Big| \|x\| - \|y\| \Big| \le \|x \pm y\|$$

for all $x, y \in V$.

(b) Prove that all norms in \mathbb{R}^n are equivalent. This means that for arbitrary norms $\|\cdot\|_*$ and $\|\cdot\|_{**}$ there exists constants α, β such that for all $x \in \mathbb{R}^n$ it is

$$\alpha ||x||_* \le ||x||_{**} \le \beta ||x||_*.$$

Hint: It suffices to show that every norm on \mathbb{R}^n is equivalent to the Euclidean norm $\|\cdot\|_2$. Definition 1 and Theorem 2 below could be helpful.

Definition 1. A set $X \subset (\mathbb{R}^n, \|\cdot\|_2)$ is called **bounded** if there exists C > 0 such that $\|x\|_2 \leq C$ for all $x \in X$. X is **open** : \Leftrightarrow any point of X is an interior point. X is **closed** : $\Leftrightarrow \mathbb{R}^n \setminus X$ is open. X is called **compact** if it is closed and bounded.

Theorem 2 (Weierstrass extreme value theorem). Let $X \subset (\mathbb{R}^n, \|\cdot\|_2)$ be compact and $f: X \to \mathbb{R}$ be continuous. Then f(X) is compact and there exist $x_{min}, x_{max} \in X$ such that for all $x \in X$

$$f(x_{min}) < f(x) < f(x_{max}).$$

Exercise 2 (matrix norms). Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^n and $\|\cdot\|_*$ the induced matrix norm. Prove the following

- (a) $\|\cdot\|_*$ is a vector norm on (the vector space) $\mathbb{R}^{n\times n}$.
- (b) $\|\cdot\|_*$ is compatible with $\|\cdot\|$, i.e. $\|Ax\| \leq \|A\|_* \|x\|$ for all $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$.
- (c) $\|\cdot\|_*$ is submultiplicative, i.e. for all $A, B \in \mathbb{R}^{n \times n}$ one has

$$||AB||_* \le ||A||_* ||B||_*.$$

- (d) $||E_n||_* = 1$.
- (e) If $\| \cdot \|$ is another vector norm on $\mathbb{R}^{n \times n}$ that is compatible with $\| \cdot \|$ then for all $A \in \mathbb{R}^{n \times n}$

$$||A||_* \le |||A|||.$$

Exercise 3 (Spectral norm and spectral radius). Let $A \in \mathbb{R}^{n \times n}$. Prove that for the spectral norm on \mathbb{R}^n it holds

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where for $B \in \mathbb{R}^{n \times n}$

$$\rho(B) \coloneqq \max_{\lambda \in \sigma(B)} |\lambda|$$

denotes the largest absolute eigenvalue of B and is called the **spectral radius** of B.

Hint: Use that A^TA as a symmetric matrix has an orthonormal eigenbasis and a positive spectrum (i.e. only real eigenvalues ≥ 0). Then, represent each vector x in the equation

$$||A||_2 = \max_{||x||_2 = 1} \langle Ax, Ax \rangle^{\frac{1}{2}} = \max_{||x||_2 = 1} (x^T A^T Ax)^{\frac{1}{2}}$$

with respect to this basis and compute the resulting expression.