1 Studio di Funzioni al finito.

Exercise 1.1

Studiare la funzione:

$$f(z) = e^z$$

Soluzione

• Zeri

L'esponenziale non si annulla mai, quindi la funzione non ha zeri.

• Singolarità

Poiché lo svipullo di Taylor dell'esponenziale intorno all'origine

$$e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}$$

converge su tutto \mathbb{C} , si deduce che e^z è una funzione intera, cioè non ha singolarità al finito.

Studiare la funzione:

$$f(z) = \sin z$$

Soluzione

• Zeri

Per il seno abbiamo che, per $x \in \mathbb{R}$, $\sin(x) = 0$ per $x = \pi m$, con $m \in \mathbb{Z}$. Prima, dimostriamo che per variabile complessa z, abbiamo solo quelli zeri sulla retta reale. Scriviamo

$$\sin(z) = 0 \implies \frac{e^{iz} - e^{-iz}}{2i} = 0 \implies e^{iz} = e^{-iz} \implies e^{2iz} = 1,$$

da cui possiamo dire che

$$e^{2iz} = e^{i2\pi m}, \ m \in \mathbb{Z} \implies z = \pi m, \ m \in \mathbb{Z}.$$

Quindi la funzione seno (nel campo complesso) si annulla quando l'argomento del seno è un multiplo intero di π :

$$\sin z = 0 \quad \Leftrightarrow \quad z = 0, \pm \pi, \pm 2\pi, \dots \quad \Leftrightarrow \quad z = m\pi, \quad m \in \mathbb{Z}.$$

Per capire l'ordine degli zeri, procediamo considerando la sequenza delle derivate:

1. Abbiamo già visto che:

 $\lim_{z \to m\pi} \sin z = 0 \implies z = m\pi \text{ è zero di ordine } n \ge 1 \text{ e si passa al punto } 2.$

2. Ora studiamo f'(z):

$$f'(z) = \frac{d}{dz}\sin z = \cos z$$

Il limite per $z \to m\pi$ di f'(z) è quindi dato da:

$$\lim_{z \to m\pi} \frac{d}{dz} \sin z = \lim_{z \to m\pi} \cos z = \cos(m\pi) = (-1)^m \neq 0$$

Perciò i punti $z = m\pi$ $(m \in \mathbb{Z})$ sono zeri di ordine n = 1 (zeri semplici) di sin z.

• Singolarità

Poiché lo svipullo di Taylor del seno intorno all'origine

$$\sin z = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

converge su tutto \mathbb{C} , si deduce che sin z è una funzione intera, cioè non ha singolarità al finito.

Studiare la funzione:

$$f(z) = \cos z$$

Soluzione

• Zeri

Per il coseno abbiamo che, per $x \in \mathbb{R}$, $\cos(x) = 0$ per $x = \pi(1/2 + m)$, con $m \in \mathbb{Z}$. Prima, dimostriamo che per variabile complessa z, abbiamo solo quelli zeri sulla retta reale. Scriviamo

$$\cos(z) = 0 \implies \frac{e^{iz} + e^{-iz}}{2} = 0 \implies e^{iz} = -e^{-iz} \implies e^{2iz} = -1,$$

da cui possiamo dire che

$$e^{2iz} = e^{i(\pi + 2\pi m)}, m \in \mathbb{Z} \implies z = \pi(1/2 + m), m \in \mathbb{Z}.$$

Quindi la funzione coseno (nel campo complesso) si annulla quando:

$$\cos z = 0 \quad \Leftrightarrow \quad z = \left(\frac{1}{2} + m\right)\pi, \quad m \in \mathbb{Z}.$$

Per capire l'ordine degli zeri, procediamo considerando la sequenza delle derivate:

1. Abbiamo già visto che:

 $\lim_{z\to (1/2+m)\pi}\cos z=0 \ \Rightarrow \ z=(1/2+m)\pi \ \text{è zero di ordine} \ n\geq 1 \ \text{e si passa al punto} \ 2.$

2. Ora studiamo f'(z):

$$f'(z) = \frac{d}{dz}\cos z = -\sin z$$

Il limite per $z \to (1/2 + m)\pi$ di f'(z) è quindi dato da:

$$\lim_{z \to (1/2+m)\pi} \frac{d}{dz} \cos z = \lim_{z \to (1/2+m)\pi} (-\sin z) = -\sin((1/2+m)\pi) = (-1)^{(m+1)} \neq 0$$

Perciò i punti $z=(1/2+m)\pi$ $(m\in\mathbb{Z})$ sono zeri di ordine n=1 (zeri semplici) di $\cos z$.

Singolarità

Poiché lo svipullo di Taylor del coseno intorno all'origine

$$\cos z = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

converge su tutto \mathbb{C} , si deduce che $\cos z$ è una funzione intera, cioè non ha singolarità al finito.

3

Studiare la funzione

$$f(z) = \frac{\sin z}{z}$$

e scriverne lo sviluppo in serie di potenze intorno a z=0.

Soluzione

• Studio della funzione

Questa è una funzione fratta del tipo

$$f(z) = \frac{f_1(z)}{f_2(z)}$$

dove a numeratore c'è la funzione $f_1(z) = \sin z$ e a denominantore la funzione $f_2(z) = z$.

- Studiamo $f_1(z) = \sin z$
 - * Zeri:

$$f_1(z) = \sin z = 0 \quad \Leftrightarrow \quad z = 0, \pm \pi, \pm 2\pi, \dots \quad \Leftrightarrow \quad z = m\pi, \quad m \in \mathbb{Z}.$$

che, come abbiamo visto dall'esercizio 2, sono tutti zeri semplici.

- * Singolarità: La funzione $f_1(z) = \sin z$ non ha singolarità.
- Studiamo $f_2(z) = z$
 - * Zeri: $f_2(z) = z$ ha uno zero semplice in z = 0.
 - * Singolarità: $f_2(z) = z$ non ha singolarità.

Quindi per la funzione

$$f(z) = \frac{f_1(z)}{f_2(z)} = \frac{\sin z}{z}$$

dobbiamo trattare separatamente il punto z=0 dagli altri zeri del numeratore e abbiamo:

$$-z=0$$
:

$$f_1(z)$$
 ha uno zero di ordine $n_1=1$ (semplice) in $z=0$ $\Rightarrow f(z)$ è regolare e non nulla in $z=0$

 $f_2(z)$ ha uno zero di ordine $n_2 = 1$ (semplice) in z = 0

$$-z=m\pi, m\in\mathbb{Z}, m\neq 0$$
:

$$f_1(z)$$
 ha zeri semplici e $\Rightarrow f(z)$ ha zeri semplici $f_2(z)$ è regolare e non nulla

Riassumendo,

$$f(z) = \frac{\sin z}{z}$$

ha zeri semplici in $z=m\pi,\,m\in\mathbb{Z},\,m\neq0$ e non ha singolarità.

• Sviluppo in serie intorno a z=0

Poiché z=0 è un punto regolare di f(z), ci aspettiamo che lo sviluppo in serie intorno a questo punto sia uno sviluppo di Taylor. Procediamo usando lo sviluppo in serie del seno:

$$f(z) = \frac{1}{z} \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!} = 1 - \frac{1}{6}z^2 + \frac{1}{120}z^4 + \dots$$

Questa serie, come quella del seno converge su tutto \mathbb{C} .

Studiare la funzione:

$$f(z) = e^{\frac{1}{z}}$$

e scriverne lo sviluppo in serie di potenze intorno a z=0.

Soluzione

• Zeri

Essendo un'esponenziale, la funzione non ha zeri (l'esponenziale non si annulla mai).

• Singolarità

Per quanto riguarda le singolarità, l'esponenziale tende a infinito, quando l'esponente va ad infinito. In questo caso quindi l'esponente va ad infinito se

$$\frac{1}{z} \to \infty$$

cioè se

$$z \to 0$$

Quindi l'unica singolarità è in $z_0 = 0$ che è quindi una singolarità isolata.

Per capire di che singolarità si tratta, sfruttiamo il fatto di conoscere lo sviluppo in serie dell'esponenziale:

$$e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}$$

Sostituendo in entrambi i membri $z \to 1/z$, otteniamo¹:

$$e^{\frac{1}{z}} = \sum_{k=0}^{+\infty} \frac{(1/z)^k}{k!} = \sum_{k=0}^{+\infty} \frac{z^{-k}}{k!}$$

Per capire se si tratta di una singolarità essenziale o di un polo, dobbiamo capire se la serie ha infinite potenze negative o se si ferma ad un valore negativo finito. Questo si può vedere in vari modi.

Per esempio si possono scrivere esplicitamente i termini della serie:

$$e^{\frac{1}{z}} = \sum_{k=0}^{+\infty} \frac{z^{-k}}{k!} = 1 + z^{-1} + \frac{z^{-2}}{2} + \frac{z^{-3}}{6} + \frac{z^{-4}}{24} + \dots$$
$$= 1 + \frac{1}{z} + \frac{1}{2} \frac{1}{z^2} + \frac{1}{6} \frac{1}{z^3} + \frac{1}{24} \frac{1}{z^4} + \dots$$

Questa sostituzione in entrambi i membri è lecita solo perché il raggio di convergenza dello sviluppo in serie dell'esponenziale è infinito. In generale lo sviluppo di f(z) intorno a z=0 può essere usato per ricavare lo sviluppo di f(1/z) con la sostituzione $z \to 1/z$ solo se il raggio di convergenza della serie è infinito.

Come si vede le potenze di z acquistano valori sempre più negativi al crescere di k. Quindi z = 0 è una singolarità essenziale di $e^{\frac{1}{z}}$.

Un altro modo per vederlo è quello di cercare di portare la serie nella forma:

$$e^{\frac{1}{z}} = \sum_{k=-\infty}^{+\infty} d_k z^k$$

e vedere se i coefficienti d_k si annullano per k inferiori ad un certo valore n. Per portare la serie nella forma voluta, partiamo da

$$e^{\frac{1}{z}} = \sum_{k=0}^{+\infty} \frac{z^{-k}}{k!}$$

In questa formula vogliamo trasformare $z^{-k} \to z^k$, cioè $-k \to k$. Per fare questo, basta fare la sostituzione -k = k' (cioè k = -k'):

$$e^{\frac{1}{z}} = \sum_{k=0}^{+\infty} \frac{z^{-k}}{k!} = \sum_{k'=0}^{-\infty} \frac{z^{k'}}{(-k')!}$$

Per determinare gli estremi di variabilità della serie in k', abbiamo usato il fatto che:

Se
$$k = 0$$
, allora $k' = -k = 0$; Se $k = +\infty$, allora $k' = -k = -\infty$

A questo punto riordiniamo in senso crescente la somma su k'

$$e^{\frac{1}{z}} = \sum_{k'=0}^{-\infty} \frac{z^{k'}}{(-k')!} = \sum_{k'=-\infty}^{0} \frac{z^{k'}}{(-k')!}$$

e rinominiamo $k' \to k$

$$e^{\frac{1}{z}} = \sum_{k=-\infty}^{0} \frac{z^k}{(-k)!}$$

per ottenere la serie nella forma voluta. Come si vede le potenze positive si fermano a k=0, mentre quelle negative proseguono fino a $-\infty$, da cui deduciamo nuovamente che in z=0 la funzione ha una singolarità essenziale.

• Sviluppo in serie intorno a z=0

Dal punto precedente abbiamo che lo sviluppo in serie di potenze intorno a z=0 è:

$$e^{\frac{1}{z}} = \sum_{k=0}^{+\infty} \frac{z^{-k}}{k!} = \sum_{k=-\infty}^{0} \frac{z^{k}}{(-k)!} = 1 + \frac{1}{z} + \frac{1}{2} \frac{1}{z^{2}} + \frac{1}{6} \frac{1}{z^{3}} + \frac{1}{24} \frac{1}{z^{4}} + \dots$$

Studiare la funzione:

$$f(z) = \cos\frac{1}{z}$$

e scriverne lo sviluppo in serie di potenze intorno a z = 0.

Soluzione

• Zeri

La funzione coseno si annulla quando l'argomento del coseno è un multiplo dispari di $\pi/2$:

$$\cos z = 0 \quad \Leftrightarrow \quad z = \pm \frac{\pi}{2}, \pm \frac{3}{2}\pi, \dots \quad \Leftrightarrow \quad z = \frac{2m+1}{2}\pi, \quad m \in \mathbb{Z}.$$

Nel nostro caso avremo quindi:

$$\cos \frac{1}{z} = 0 \quad \Leftrightarrow \quad \frac{1}{z} = \frac{2m+1}{2}\pi, \quad m \in \mathbb{Z}, \quad \Leftrightarrow \quad z = \frac{2}{2m+1}\frac{1}{\pi}, \quad m \in \mathbb{Z}.$$

Per capire l'ordine degli zeri, procediamo considerando la sequenza delle derivate:

1. Abbiamo già visto che:

$$\lim_{z \to \frac{1}{2m+1} \frac{1}{\pi}} \cos \frac{1}{z} = 0 \implies z = \frac{2}{2m+1} \frac{1}{\pi} \text{ è zero di ordine } n \ge 1 \text{ e si passa al punto } 2.$$

2. Ora studiamo f'(z):

$$f'(z) = \frac{d}{dz}\cos\frac{1}{z} = -\sin\frac{1}{z}\frac{d}{dz}\frac{1}{z} = \sin\frac{1}{z}\frac{1}{z^2}$$

Il limite per $z \to \frac{2}{2m+1} \frac{1}{\pi}$ di f'(z) è quindi dato da:

$$\lim_{z \to \frac{2}{2m+1} \frac{1}{\pi}} \frac{d}{dz} \cos \frac{1}{z} = \lim_{z \to \frac{2}{2m+1} \frac{1}{\pi}} \sin \frac{1}{z} \frac{1}{z^2} = \sin \left(\frac{2m+1}{2}\pi\right) \left(\frac{2m+1}{2}\pi\right)^2$$
$$= (-1)^m \left(\frac{2m+1}{2}\pi\right)^2 \neq 0$$

Perciò i punti $z = \frac{2}{2m+1} \frac{1}{\pi}$ $(m \in \mathbb{Z})$ sono zeri di ordine n = 1 (zeri semplici) di $\cos \frac{1}{z}$.

• Singolarità

I punti singolari del coseno, si hanno quando l'argomento del coseno tende ad infinito. In questo caso quindi l'argomento del coseno va ad infinito se

$$\frac{1}{z} \to \infty$$

cioè se

$$z \to 0$$

Quindi l'unica singolarità è in $z_0 = 0$ che è quindi una singolarità isolata.

Per capire di che singolarità si tratta, sfruttiamo il fatto di conoscere lo sviluppo in serie del coseno:

$$\cos z = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

Sostituendo in entrambi i membri $z \to 1/z$, otteniamo²:

$$\cos\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \left(\frac{1}{z}\right)^{2k} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{-2k}.$$

Per capire se si tratta di una singolarità essenziale o di un polo, dobbiamo capire se la serie ha infinite potenze negative o se si ferma ad un valore negativo finito. Questo si può vedere in vari modi.

Per esempio si possono scrivere esplicitamente i termini della serie:

$$\cos\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{-2k} = 1 - \frac{z^{-2}}{2} + \frac{z^{-4}}{24} + \dots = 1 - \frac{1}{2} \frac{1}{z^2} + \frac{1}{24} \frac{1}{z^4} + \dots$$

Come si vede le potenze di z acquistano valori sempre più negativi al crescere di k. Quindi z=0 è una singolarità essenziale di $\cos\frac{1}{z}$.

Un altro modo per vederlo è quello di cercare di portare la serie nella forma:

$$\cos\frac{1}{z} = \sum_{k=-\infty}^{+\infty} d_k z^{2k}$$

e vedere se i coefficienti d_k si annullano per k inferiori ad un certo valore n. Notiamo che abbiamo scritto z^{2k} (cioè esponenti pari di z) invece della forma generale z^k , perchè si vede dalla formula

$$\cos\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{-2k}.$$

che la serie ha solo potenze pari. Per arrivare alla formula voluta dobbiamo quindi trasformare z^{-2k} in z^{2k} , cioè -2k in 2k. Per fare questo, facciamo la sostituzione

$$-2k = 2k', \Leftrightarrow k' = -k \Leftrightarrow k = -k'.$$

²Questa sostituzione in entrambi i membri è lecita solo perché il raggio di convergenza dello sviluppo in serie dell'esponenziale è infinito. In generale lo sviluppo di f(z) intorno a z=0 può essere usato per ricavare lo sviluppo di f(1/z) con la sostituzione $z \to 1/z$ solo se il raggio di convergenza della serie è infinito.

Ottenendo perciò:

$$\cos\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{-2k} = \sum_{k'=0}^{-\infty} \frac{(-1)^{-k'}}{(-2k')!} z^{2k'}$$

Per determinare gli estremi di variabilità della serie in k', abbiamo usato il fatto che:

Se
$$k = 0$$
, allora $k' = -k = 0$; Se $k = +\infty$, allora $k' = -k = -\infty$

A questo punto riordiniamo in senso crescente la somma su k'

$$\cos\frac{1}{z} = \sum_{k'=0}^{-\infty} \frac{(-1)^{-k'}}{(-2k')!} z^{2k'} = \sum_{k'=-\infty}^{0} \frac{(-1)^{-k'}}{(-2k')!} z^{2k'}$$

e rinominiamo $k' \to k$

$$\cos\frac{1}{z} = \sum_{k=-\infty}^{0} \frac{(-1)^{-k}}{(-2k)!} z^{2k}$$

per ottenere la serie nella forma voluta. Come si vede le potenze positive si fermano a k=0, mentre quelle negative proseguono fino a $-\infty$, da cui deduciamo nuovamente che in z=0 la funzione ha una singolarità essenziale.

• Sviluppo in serie intorno a z = 0

Dal punto precedente abbiamo che lo sviluppo in serie di potenze intorno a z=0 è:

$$\cos\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} z^{-2k} = \sum_{k=-\infty}^{0} \frac{(-1)^{-k}}{(-2k)!} z^{2k} = 1 - \frac{1}{2} \frac{1}{z^2} + \frac{1}{24} \frac{1}{z^4} + \dots$$

Studiare la funzione:

$$f(z) = \sin\frac{1}{z}$$

e scriverne lo sviluppo in serie di potenze intorno a z=0.

Soluzione

• Zeri

La funzione seno si annulla quando l'argomento del seno è un multiplo intero di π :

$$\sin z = 0 \quad \Leftrightarrow \quad z = 0, \pm \pi, \pm 2\pi, \dots \quad \Leftrightarrow \quad z = m\pi, \quad m \in \mathbb{Z}.$$

Nel nostro caso avremo quindi:

$$\sin\frac{1}{z} = 0 \quad \Leftrightarrow \quad \frac{1}{z} = \pm \pi, \pm 2\pi, \dots$$

Qui abbiamo eliminato il valore

$$\frac{1}{z} = 0,$$

perché non può mai essere raggiunto per valori finiti di z. Quindi gli zeri di $\sin(1/z)$ sono dati da:

$$\sin\frac{1}{z} = 0 \quad \Leftrightarrow \quad \frac{1}{z} = m\pi, \quad m \in \mathbb{Z}, \ m \neq 0, \quad \Leftrightarrow \quad z = \frac{1}{m\pi}, \quad m \in \mathbb{Z}, \ m \neq 0.$$

Per capire l'ordine degli zeri, procediamo considerando la sequenza delle derivate:

1. Abbiamo già visto che:

$$\lim_{z\to \frac{1}{mc}}\sin\frac{1}{z}=0 \ \Rightarrow \ z=\tfrac{1}{m\pi} \ \text{è zero di ordine} \ n\geq 1 \ \text{e si passa al punto} \ 2.$$

2. Ora studiamo f'(z):

$$f'(z) = \frac{d}{dz}\sin\frac{1}{z} = \cos\frac{1}{z}\frac{d}{dz}\frac{1}{z} = -\cos\frac{1}{z}\frac{1}{z^2}$$

Il limite per $z \to \frac{1}{m\pi}$ di f'(z) è quindi dato da:

$$\lim_{z \to \frac{1}{m\pi}} \frac{d}{dz} \sin \frac{1}{z} = -\lim_{z \to \frac{1}{m\pi}} \cos \frac{1}{z} \frac{1}{z^2}$$
$$= -\cos(m\pi) (m\pi)^2 = -(-1)^m (m\pi)^2 \neq 0$$

Perciò i punti $z = \frac{1}{m\pi}$ $(m \in \mathbb{Z}, m \neq 0)$ sono zeri di ordine n = 1 (zeri semplici) di $\sin \frac{1}{z}$.

11

• Singolarità

I punti singolari del seno, si hanno quando l'argomento del seno tende ad infinito. In questo caso quindi l'argomento del seno va ad infinito se

$$\frac{1}{z} \to \infty$$

cioè se

$$z \to 0$$

Quindi l'unica singolarità è in $z_0 = 0$ che è quindi una singolarità isolata.

Per capire di che singolarità si tratta, sfruttiamo il fatto di conoscere lo sviluppo in serie del seno:

$$\sin z = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

Sostituendo in entrambi i membri $z \to 1/z$, otteniamo³:

$$\sin\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \left(\frac{1}{z}\right)^{2k+1} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{-2k-1}.$$

Per capire se si tratta di una singolarità essenziale o di un polo, dobbiamo capire se la serie ha infinite potenze negative o se si ferma ad un valore negativo finito. Questo si può vedere in vari modi.

Per esempio si possono scrivere esplicitamente i termini della serie:

$$\sin\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{-2k-1} = z^{-1} - \frac{z^{-3}}{6} + \dots = \frac{1}{z} - \frac{1}{6} \frac{1}{z^3} + \dots$$

Come si vede le potenze di z acquistano valori sempre più negativi al crescere di k. Quindi z=0 è una singolarità essenziale di sin $\frac{1}{z}$.

Un altro modo per vederlo è quello di cercare di portare la serie nella forma:

$$\sin\frac{1}{z} = \sum_{k=-\infty}^{+\infty} d_k z^{2k+1}$$

e vedere se i coefficienti d_k si annullano per k inferiori ad un certo valore n. Notiamo che abbiamo scritto z^{2k+1} (cioè esponenti dispari di z) invece della forma generale z^k , perchè si vede dalla formula

$$\sin\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{-2k-1}$$

³Questa sostituzione in entrambi i membri è lecita solo perché il raggio di convergenza dello sviluppo in serie dell'esponenziale è infinito. In generale lo sviluppo di f(z) intorno a z=0 può essere usato per ricavare lo sviluppo di f(1/z) con la sostituzione $z \to 1/z$ solo se il raggio di convergenza della serie è infinito.

che la serie ha solo potenze dispari. Per arrivare alla formula voluta dobbiamo quindi trasformare z^{-2k-1} in z^{2k+1} , cioè -2k-1 in 2k+1. Per fare questo, facciamo la sostituzione

$$-2k - 1 = 2k' + 1$$
, \Leftrightarrow $k' = -k - 1$ \Leftrightarrow $k = -k' - 1$.

Ottenendo perciò:

$$\sin\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{-2k-1} = \sum_{k'=-1}^{-\infty} \frac{(-1)^{-k'-1}}{[2(-k'-1)+1]!} z^{2k'+1} = \sum_{k'=-1}^{-\infty} \frac{(-1)^{-k'-1}}{(-2k'-1)!} z^{2k'+1}$$

Per determinare gli estremi di variabilità della serie in k', abbiamo usato il fatto che:

Se
$$k = 0$$
, allora $k' = -k - 1 = -1$; Se $k = +\infty$, allora $k' = -k - 1 = -\infty$

A questo punto riordiniamo in senso crescente la somma su k'

$$\sin\frac{1}{z} = \sum_{k'=-1}^{-\infty} \frac{(-1)^{-k'-1}}{(-2k'-1)!} z^{2k'+1} = \sum_{k'=-\infty}^{-1} \frac{(-1)^{-k'-1}}{(-2k'-1)!} z^{2k'+1}$$

e rinominiamo $k' \to k$

$$\sin\frac{1}{z} = \sum_{k=-\infty}^{-1} \frac{(-1)^{-k-1}}{(-2k-1)!} z^{2k+1}$$

per ottenere la serie nella forma voluta. Come si vede le potenze positive non ci sono (la serie si ferma a k = -1), mentre quelle negative proseguono fino a $-\infty$, da cui deduciamo nuovamente che in z = 0 la funzione ha una singolarità essenziale.

• Sviluppo in serie intorno a z=0

Dal punto precedente abbiamo che lo sviluppo in serie di potenze intorno a z=0 è:

$$\sin\frac{1}{z} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{-2k-1} = \sum_{k=-\infty}^{-1} \frac{(-1)^{-k-1}}{(-2k-1)!} z^{2k+1} = \frac{1}{z} - \frac{1}{6} \frac{1}{z^3} + \dots$$