1) INVERTER gate using Static CMOS logic

Schematics

(1) VTC

(a) 45nm (width of PMOS is varied from 180nm to 260nm)

(2) Delay calculations/power dissipation

45nm

32nm

(a) Observation and Calculation

C_load=1pF Output Delay= (Tlh + Thl) / 2 Power Dissipation= Vdd * I_{D(avg)}

- 45nm Technology Tlh=3.9445ns Thl=1.38ns Tavg=2.66ns lavg=10.078uA
- 32nm Technology Tlh=5.705ns Thl=5.402ns Tavg=5.553ns lavg=8.992uA

Node	TpHL(ns)	TpLH(ns)	Tdelay(ns)	P=Vdd*Iavg(uW)
45	1.38	3.9445	2.66	10.0178
32	5.402	5.705	5.55	8.0928

NAND and NOR gate using Static CMOS logic

Schematic:

NAND

R

2) NAND and NOR gate using Static CMOS logic

• 32nm Technology

• 45nm Technology

• 32nm Technology

• 45nm Technology

Observations and Calculations:

Formulas Used:

- Output Delay= (Tlh + Thl)/2
- Power Dissipation= Vdd * I_{D(avg)}

NAND

Technology	Tlh	Thi	Output Delay	I _{D(avg)}	Power Dissipation
45 nm	54.649123ns	1.5113573ns	28.08024015ns	48.031nA	48.031nW
32 nm	6.2516376ns	3.65781ns	4.9547238ns	297.19pA	297.19pW

NOR

Technology	Tlh	Thl	Output Delay	l _{D(avg)}	Power Dissipation
45 nm	82.2584 ns	29.9875 ns	56.12295 ns	147.96nA	147.96nW
32 nm	33.41985 ns	17.568 ns	25.493925 ns	27.047nA	27.047nW

3) NAND and NOR gate using Dynamic logic (45nm)

NAND gate

Observations and calculations

Formulas Used:

- Output Delay= (Tlh + Thl)/2
- Power Dissipation= Vdd * I_{D(avg)}

• 45nm

 $ID(avg) = 5.6215 \mu A$

Power Dissipation =5.6215µW

Tlh=0ns

ThI=5.9301-5.90250 μs=27.6ns

Tavg=13.8ns

45nm

• 32nm

 $ID(avg) = 8.694 \mu A$

Power Dissipation = $7.8246\mu W$

Tlh=0ns

Thl= $4.9602637\mu s$ - $4.9077753\mu s$ =52.5ns

Tavg=26.25ns

Bleeder circuit week

Bleeder circuit strong

NOR GATE

• 32nm

ID(avg) = 2.4823μ A

Power Dissipation = $2.234\mu W$

Tlh=0ns

Thl= $4.9602637\mu s$ - $4.9077753\mu s$ =32.5ns

Tavg=16.25ns