Design Tradeoffs in Arithmetic Circuits

Arvind
Computer Science & Artificial Intelligence Lab
M.I.T.

Algorithmic Tradeoffs in Hardware Design

- Each function allows many implementations with widely different delay, area, and power tradeoffs
- Choosing the right algorithms is key to optimizing your design
 - Tools cannot compensate for an inefficient algorithm (in most cases)
 - Just like programming software
- Case study: Building a better adder

Ripple-Carry Adder: Simple but Slow

 Worst-case path: Carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001

$$t_{PD} = (n-1)*t_{PD,CI \rightarrow CO} + t_{PD,CI \rightarrow S} \approx \Theta(n)$$

• $\Theta(n)$ is read "order n" and tells us that the latency of our adder grows linearly with the number of bits of the operands

Asymptotic Analysis

- Suppose some computation takes n²+2n+3 steps
- We say it takes $\Theta(n^2)$ (read "is of order n^2 ") steps
- Why?

because $2n^2 > n^2+2n+3 > n^2$ except for a few small integers (1,2 and 3)

Formally, g(n)=⊕(f(n)) iff there exist C₂ ≥ C₁ > 0
 such that for all but finitely many integers n ≥ 0,

$$C_2 \cdot f(n) \ge g(n) \ge C_1 \cdot f(n)$$

 $g(n) = O(f(n))$ $\Theta(...)$ implies both inequalities;
 $O(...)$ implies only the first.

Carry-Select Adder Trades Area for Speed

- Propagation delay: $t_{PD,32} = t_{PD,16} + t_{PD,MUX}$
 - If we used 16-bit ripple-carry adders, this would roughly halve delay over a 32-bit ripple-carry adder

Drawbacks? Consumes much more area than ripple-carry adder Wide mux adds significant delay

Carry-Select Adder Trades Area for Speed

We can use any type of adder, including CSA

Recursive Carry-Select Adder

It is easier to write the code than to draw a picture

```
function Bit#(33) csa32(Bit#(32) a, Bit#(32) b, Bit#(1) c);
  let csL = csa16(a[15:0], b[15:0], c);
  let csU = (csL[16] == 0) ? csa16(a[31:16], b[31:16], 0)
                           : csa16(a[31:16], b[31:16], 1);
  return {csU,csL[15:0]};
endfunction
// following functions can be defined similarly
function Bit#(17) csa16(Bit#(16) a, Bit#(16) b, Bit#(1) c);
function Bit#(9) csa8(Bit#(8) a, Bit#(8) b, Bit#(1) c);
function Bit#(5) csa4(Bit#(4) a, Bit#(4) b, Bit#(1) c);
function Bit#(3) csa2(Bit#(2) a, Bit#(2) b, Bit#(1) c);
// let csa2 use fa instead of csa1
```

CSA analysis

- Carry delay $t_{PD,n}=\Theta(\log n)$ but lots of extra hardware
- Area calculation
 - csa32 = 3 csa16 + mux17
 - csa16 = 3 csa8 + mux9
 - csa8 = 3 csa4 + mux5
 - csa4 = 3 csa2 + mux3
 - csa2 = 3 fa + mux2
 - fa = 5 gates
 - muxn = 3n+1 gates
- Total gates in csa32
 - 243 fa + 81 mux2 + 27 mux3 + 9 mux5 + 3 mux9 + mux17
 - = 2339 gates
- Lots of circuits are duplicated but Boolean optimizations by the compiler may reduce the size of the circuit
 - Many of the 243 fa's have the same inputs

32-RCA has an area of 32 fa = 32X5 = 160 gates

Wait until the end for some synthesis results

Carry-Lookahead Adders (CLAs)

- CLAs compute all carry bits in ⊕(log n) delay
- Key idea: Transform chain of carry computations into a tree
 - Transforming a chain of associative operations (e.g., AND, OR, XOR) into a tree is easy
 - But how to do this with carries?

Full Adder

Α	В	C_{in}	S	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean equations

$$s = (\sim a \cdot \sim b \cdot c_{in}) + (\sim a \cdot b \cdot \sim c_{in}) + (a \cdot \sim b \cdot \sim c_{in}) + (a \cdot b \cdot c_{in})$$

$$c_{\text{out}} = (\sim a \cdot b \cdot c_{\text{in}}) + (a \cdot \sim b \cdot c_{\text{in}}) + (a \cdot b \cdot \sim c_{\text{in}}) + (a \cdot b \cdot c_{\text{in}})$$

Optimized

$$s = t \oplus c_{in}$$

$$c_{out} = t \cdot c_{in} + a \cdot b$$

Full Adder: Optimization steps

$$s = (\sim a \cdot \sim b \cdot c_{in}) + (\sim a \cdot b \cdot \sim c_{in}) + (a \cdot \sim b \cdot \sim c_{in}) + (a \cdot b \cdot c_{in})$$

$$= (\sim a \cdot \sim b + a \cdot b) \cdot c_{in} + (\sim a \cdot b + a \cdot \sim b) \cdot \sim c_{in}$$

$$= \sim (a \oplus b) \cdot c_{in} + (a \oplus b) \cdot \sim c_{in}$$

$$= a \oplus b \oplus c_{in}$$

$$c_{out} = (\sim a \cdot b \cdot c_{in}) + (a \cdot \sim b \cdot c_{in}) + (a \cdot b \cdot \sim c_{in}) + (a \cdot b \cdot c_{in})$$

$$= (a \oplus b) \cdot c_{in} + a \cdot b$$

$$c_{out} = (a + b) \cdot c_{in} + a \cdot b$$
This is also correct

Sharing common sub-exressions

$$t = a \oplus b$$

 $s = t \oplus c_{in}$
 $c_{out} = t \cdot c_{in} + a \cdot b$

Carry Generation and Propagation

$$c_{out} = a \cdot b + a \oplus b \cdot c_{in}$$
generates a carry propagates a carry
$$c_{out} = g + p \cdot c_{in}$$

$$where g = a \cdot b \quad and \quad p = a \oplus b$$

- g=1 $\rightarrow c_{out} = 1$ (FA generates a carry)
- p=1 (and g=0) \rightarrow c_{out} = c_{in} (FA propagates carry)

Notice p and g don't depend upon cin

Generate and Propagate compose hierarchically

$$c_{out} = g + p \cdot c_{in}$$

where $g = a \cdot b$ and $p = a \oplus b$

$$c_{H} = g_{H} + p_{H} \cdot c_{L}$$

$$= g_{H} + p_{H} \cdot (g_{L} + p_{L} \cdot c_{in})$$

$$= g_{H} + p_{H} \cdot g_{L} + p_{H} \cdot p_{L} \cdot c_{in}$$

$$g_{HI} \qquad p_{HI}$$

$$g_{HL} = g_H + p_H \cdot g_L$$

 $p_{HL} = p_H \cdot p_L$

CLA Building Blocks

Step 1: Generate individual g & p signals

$$g = a \cdot b$$

 $g = a \cdot b$
 $g = a \oplus b$

Step 2: Combine adjacent g & p signals

Step 3: Generate individual carries

$$gp_{ij} \quad C_{j-1}$$

$$c_i = g_{ij} + p_{ij} \cdot C_{j-1}$$

There are many CLA variants. Let's derive the Brent-Kung CLA.

Generating and Combining gp's

How does delay grow with number of bits? $\Theta(\log n)$

Generating the Carries

March 5, 2019 <u>MIT 6.004 Spring 2019</u> L08-16

Carry-Lookahead Adder Takeaways

- There are many CLA designs
 - We've seen a Brent-Kung CLA
 - Several other types (e.g., Kogge-Stone)
 - Different variants for each type, e.g., using higher-radix trees to reduce depth
- This technique is useful beyond adders: computes any one-dimensional binary recurrence in ⊕(log n) delay
 - e.g., comparators, priority encoders, etc.

Some Synthesis Results Brian Wheatman

	Time Opt Basic gates	Time Opt Ext gates	Space Opt Basic gates	Space Opt Ext gates		
Ripple-Carry Adder (RCA)						
Gates	413	164	414	158		
Area (um^2)	295	180	296	177		
Delay (ps)	742	680	758	690		
Recursive Carry-Select Adder						
Gates	970	663	840	564		
Area (um^2)	727	604	630	519		
Delay (ps)	226	233	340	302		
Kogge-Stone Adder						
Gates	963	530	905	498		
Area (um^2)	697	483	639	464		
Delay (ps)	175	167	182	201		

Summary

- Choosing the right algorithms is crucial to design good digital circuits—tools can only do so much!
- Carry-lookahead adders perform ⊕(log n) addition with some area cost. This technique can be used to optimize a broad class of circuits.