The group G is isomorphic to the group labelled by [72, 39] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3) : C8$:

	1a	8a	2a	8b	8c	4a	4b	8d	3a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	-1	1	1	-1	1
χ_3	1	-E(4)	1	E(4)	-E(4)	-1	-1	E(4)	1
χ_4	1	E(4)	1	-E(4)	E(4)	-1	-1	-E(4)	1
χ_5	1	-E(8)	-1	$E(8)^{3}$	E(8)	-E(4)	E(4)	$-E(8)^3$	1
χ_6	1	$-E(8)^{3}$	-1	E(8)	$E(8)^{3}$	E(4)	-E(4)	-E(8)	1
χ_7	1	$E(8)^{3}$	-1	-E(8)	$-E(8)^{3}$	E(4)	-E(4)	E(8)	1
χ_8	1	E(8)	-1	$-E(8)^{3}$	-E(8)	-E(4)	E(4)	$E(8)^{3}$	1
χ_9	8	0	0	0	0	0	0	0	-1

Trivial source character table of $G \cong (C3 \times C3)$: C8 at p = 3:

Trivial source character table of $G = (C3 \times C3) : C8$ at $p = 3$:																		
Normalisers N_i					N_1				Ν	V_2					N_3			
p-subgroups of G up to conjugacy in G					P_1				I	$\overline{2}$					P_3			
Representatives $n_j \in N_i$	1a	8a	2a	8b	8c	4a	4b	8d	1a	2a	1a	8b	4a	2a	8c	8d	4b	8a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	$-E(8)^{3}$	-1	E(8)	$E(8)^{3}$	E(4)	-E(4)	-E(8)	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-E(8)	-1	$E(8)^{3}$	E(8)	-E(4)	E(4)	$-E(8)^{3}$	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		$E(8)^{3}$	-1	-E(8)	$-E(8)^{3}$	E(4)	-E(4)	E(8)	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$		E(8)	-1	$-E(8)^{3}$	-E(8)	-E(4)	E(4)	$E(8)^{3}$	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		-1	1	-1	-1	1	1	-1	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-E(4)	1	E(4)	-E(4)	-1	-1	E(4)	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		E(4)	1	-E(4)	E(4)	-1	-1	-E(4)	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$		0	-4	0	0	0	0	0	3	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		0	4	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		-1	1	-1	-1	1	1	-1	1	1	1	-1	1	1	-1	-1	1	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-E(8)	-1	$E(8)^{3}$	E(8)	-E(4)	E(4)	$-E(8)^{3}$	1	-1	1	$E(8)^{3}$	-E(4)	-1	E(8)	$-E(8)^{3}$	E(4)	-E(8)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	$-E(8)^{3}$	-1	E(8)	$E(8)^{3}$	E(4)	-E(4)	-E(8)	1	-1	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		E(4)	1	-E(4)	E(4)	-1	-1	-E(4)	1	1	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		-E(4)	1	E(4)	-E(4)	-1	-1	E(4)	1	1	1	E(4)	-1	1	-E(4)	E(4)	-1	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$		E(8)	-1	$-E(8)^{3}$	-E(8)	-E(4)	E(4)	$E(8)^{3}$	1	-1	1	$-E(8)^3$	-E(4)	-1	-E(8)	$E(8)^{3}$	E(4)	E(8)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	$E(8)^{3}$	-1	-E(8)	$-E(8)^{3}$	E(4)	-E(4)	E(8)	1	-1	1	-E(8)	E(4)	-1	$-E(8)^{3}$	E(8)	-E(4)	$E(8)^3$

```
P_1 = Group([()]) \cong 1
```

 $N_1 = Group([(2,3,8,9,4,6,7,5),(2,8,4,7)(3,9,6,5),(2,4)(3,6)(5,9)(7,8),(1,2,4)(3,5,7)(6,8,9),(1,3,6)(2,5,8)(4,7,9)]) \cong (\text{C3 x C3}): \text{C8}$

 $N_2 = Group([(1,6,3)(2,8,5)(4,9,7),(2,4)(3,6)(5,9)(7,8),(1,2,4)(3,5,7)(6,8,9)]) \cong (\text{C3 x C3}): \text{C2}$

 $N_3 = Group([(1,4,2)(3,7,5)(6,9,8),(1,6,3)(2,8,5)(4,9,7),(2,5,7,6,4,9,8,3)]) \cong (\text{C3 x C3}): \text{C8}$

 $P_2 = Group([(1,6,3)(2,8,5)(4,9,7)]) \cong C3$

 $P_3 = Group([(1,6,3)(2,8,5)(4,9,7),(1,4,2)(3,7,5)(6,9,8)]) \cong C3 \times C3$