Relatório trabalho de Monte Carlo

Aluno: Gustavo Barros Campos

Matrícula: 2015079160

Foram feitas as seguintes medidas utilizando o multímetro padrão e multímetro a ser calibrado:

Vs (V)	Vi(V)				Média(V)	Desvio Padrão(V)	
2,04	2,02	2,01	2,01	2	2,01	2,01	0,01
6,09	6,07	6,07	6,07	6,07	6,06	6,07	0,00
10,02	10	10	9,99	9,99	10	10	0,01
14,05	14,02	14,01	14	14	14,01	14,01	0,01
19,04	18,99	18,99	19	18,99	18,99	18,99	0,00

Foi utilizado o modelo aditivo:

 $EX = ViX - VS + \delta ViX - \delta VS$

Foram geradas distribuições para cada um dessas variáveis a não ser o padrão Vs.

- ViX Foi usado uma Student T, já que as medidas tinham grau de liberdade = 4.
- δViX Foi usado uma uniforme, já que o erro da resolução do display segue essa distribuição.

Specification Criteria	Probability of Failure	
Mean ± 2 sigma	4.5%	
Mean ± 3 sigma	0.3%	
Mean ± 4 sigma	0.006%	

1)Determinar valor esperado do erro, EX, pelo MMC nos cinco pontos de calibração tendo como base as informações disponíveis;

Valor	de	
Referência		Erro médio
2,04V		-0,03V

6,09V	-0,02V
10,02V	-0,03V
14,05V	-0,04V
19,04V	-0,04V

2) Determinar a incerteza do mensurando para uma probabilidade de abrangência de 95 % (U95) pelo MMC. Compare com o resultado fornecido pela LPU;

Valor de Referência	U	U LPU	Diferença
2,04V	0,02V	0,02V	0,00V
6,09V	0,01V	0,01V	0,00V
10,02V	0,02V	0,02V	0,00V
14,05V	0,02V	0,02V	0,00V
19,04V	0,01V	0,02V	0,01V

3) Pelo MMC, plotar o gráfico da CDF (distribuição cumulativa) para o mensurando EX, considerando apenas um dos pontos de calibração.

4) Pelo MMC, plotar o gráfico da PDF (densidade de probabilidade) para o mensurando EX, considerando apenas um dos pontos de calibração. Compare com a PDF fornecida pela LPU.

PDF de Ex 2V

5) Determinar os limites do menor intervalo de abrangência para a probabilidade de 95 % usando o MMC e comparar com os valores dados pelo LPU (lei de propagação de incertezas) (considere apenas o cálculo do intervalo pela LPU em um ponto de calibração). Obs.: Mostrar os cálculos e indicar no gráfico da PDF os limites (inferior e superior) do intervalo de abrangência

Cálculo limite inferior e superior MMC

Ex inf = Ex(r)Ex sup = Ex(r+q)

r=M*(1-0,95)/2

```
r=500k*0,05/2=12,5k
q=0,95*500k=475k
q+r=487,5k
```

Ex(12,5k) = -0,0336V Ex(487,5k) = -0,00656VIntervalo de abrangência = 0,027V

Limite inferior e superior LPU

Uc calculada pelo LPU = 0,00539

Veff = $(Uc^4)/((Medidas_sd^4)/4) = 8,47$ (Considerei nesse cálculo somente incertezas tipo A)

k = 2,34 (Pela tabela da distribuição T-Student)

U95=k*Uc=0,01261

Ex = (Medição - Padrão) + -U95 = -0.02 + -0.01262

Exinf = -0.03261 Exsup = -0.00739

Pode-se observar pelo gráfico que os valores dos limites inferiores e inferiores são bem próximos, mostrando que nesse caso a aproximação da LPU foi boa, já que a PDF se parece muito com uma distribuição normal.

6) Plotar o gráfico intervalo de abrangência versus quantil esquerdo (left hand probability) que mostra a localização do menor intervalo de abrangência para apenas um ponto de calibração dentro da faixa.

Intervalo de abrangência x quantil esquerdo 6V

O menor valor do intervalo de abrangência foi de 0,027V, que é o mesmo valor do intervalo encontrado no item 5.

7) Certificado de calibração

Faixa Nominal: 20V	Valor de uma divisão: 0,01V				
Valor de Referência	Indicação no Instrumento	Correção	k	U	Veff
2,04V	2,01V	0,03V	2,15	0,02V	18,48
6,09V	6,07V	0,02V	2,11	0,01V	23,9
10,02V	10V	0,02V	2,13	0,02V	20,72
14,05V	14,01V	0,04V	2,14	0,02V	19,72
19,04V	18,99V	0,05V	2,11	0,01V	25,16

Veff foi calculado utilizando:

Ex_sd^4/ (Medidas_sd^4/4)

Onde Ex_sd é o desvio padrão resultante de Monte Carlo e Medidas_sd é o desvio padrão das medidas. Depois disso foi utilizada a tabela da distribuição t-Student para encontrar o valor de k.

U = Intervalo de abrangência/2