

Graph-based Molecule Design with Deep Latent Variable Models

Elias Arnold <elias.arnold@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

30.04.2020

Agenda

- 1. Motivation
- 2. Conventional methods
- 3. Problem
- 4. Novel approaches
- 5. Recap of variational autoencoders
- 6. Constraint Graph Variational Autoencoder (CGVAE)
- 7. Experiments with CGVAE
- 8. Conclusion and outlook

Motivation

Demand for new Molecules steadily increasing

Number of small organic molecules: $> 10^{60}$ (Number of molecules which can be used to manufacture new drugs)

Reseach should be efficient (effort, money, ...)

Semiconductors

Photovoltaics

Drug discovery

Conventional Methods for Molecule Design (Drug discovery)

- > Goal: Find molecule that binds to a target to (de) activate it
- > Two main stages:
- 1. Find molecules that are capable of binding to the target (Hits)

High-Throughput-Screening (HTS)

Virtual Screening (VS)

- > Physical tests
- Search molecule pool
- Pool size: $\sim 10^3$

- No physical molecules needed
- > Computer simulations
- > Various databases available
- 2. Optimise the molecules found (combine advantages of Hits)
 - Modify hit-compounds (combine advatages)
 - > Quantum chemical property estimation
 - > Implies solution of Schrödinger equation or Quantum Monte Carlo

Problem

- Conventional methods scale very poorly
- > Conventional methods can not explore all possible compounds
- > Random search (trial and error) -> **NOT** goal oriented

- > Recent publications propose statistical methods to tackle this problem
- > These approaches also need a dataset for training
- > Efficiently optimise the quantum chemical properties of the molecule

The Autoencoder (AE)

- > Often, the models used follow the varational autoencoder (VAE) architecture
- > To introduce a VAE, we have to understand an (AE) autoencoder first:

(b) Original \mid with noise \mid AE reconstruction

> Vector z is called latent vector

The Autoencoder (AE)

- Assume a dataset of molecules x with a corresponding property y: $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$
- > AE distributes z all over the latent space, to distinguish molecules
- \rightarrow The colour of the latent vectors z represents the value of y

- We want to sample new z, to generate unseen x'
- > **Problem**: Distribution of the latent space not tractable

The Variational Autoencoder (VAE)

- Idea: use KL divergence as a regulariser term to shape latent space according to a tractable distribution (gaussian) -> Problem: run backpropagation on a stochastic node
-) Use parametrisation trick: $z = \mu + \sigma \odot \epsilon$

The Variational Autoencoder (VAE)

- KL divergence forms latent space according to a gaussian (here, $\mathcal{N}(0,1)$)
- > **Problem**: can we structure the latent space to sample a specific property?

The Variational Autoencoder (VAE) with Property Prediction

- > Structuring of the latent space by second decoder p(y|z) with $L_{property}$ loss
- > Add L_{property} to the loss function of VAE

$$loss = L_{recon} + L_{KL} + L_{property}$$

VAE to Generate New Data

- > We can now sample random latent vectors from the latent space
- > Moreover, we can sample in regions with interesting property values
- The samples can then be reconstructed with the trained decoder p(x|z)

Constrained Graph Variational Autoencoder (CGVAE)

- In this masterthesis, we evaluated CGVAE (Liu et al. 2018)
- > Variational Autoencoder: CGVAE is based on the VAE architecture
- Constrained: CGVAE uses masks to ensure chemical stability of the generated molecules
- > **Graph**: CGVAE represents molecules as graphs

Architeture of CGVAE

- > CGVAE encodes single nodes (instead of whole molecule)
- > Sequential assembly of final graph (in BFS order)
- > Encoder and decoder are gated graph neural networks (GGNN) (Li et al. 2015)

Experiments with CGVAE

- $> L_{CGVAE} = L_{recon} + \lambda_1 L_{KL} + \lambda_2 L_{property}$
- > We split our experiments into three parts
- > In each part, we include an additional loss term:
 - 1. Property prediction: $loss = L_{property}$
 - 2. Reconstruction of molecules: $loss = L_{property} + L_{recon}$
 - 3. Sampling of new molecules: $loss = L_{property} + L_{recon} + L_{KL}$

Experiments Part 1

- Represent molecules as graphs (like CGVAE)
- > Goal: predict quantum chemical properties
- > This part focuses on: $loss = L_{property}$

Experiments Part 1 - Molecule Descriptor

- > Encode molecule as a classical graph
- Graph is a pair of two sets $\mathcal{G} = (V^{9 \times 5}, E^{13 \times 5})$
- > Example: 1,2-oxazole-4-carbaldehyde

Experiments Part 1 - Molecule Descriptor with Spatial Information

- Graph descriptor has weak descriptive power
- > Idea: use spatial information (bond lengths/angles) of molecule
- > Graph is a tuple of three sets $\mathcal{G}^{47\times5}=(V^{9\times5},E^{13\times5},A^{25\times5})$


```
[[0, 1, 2, 2, 17, -1],
[[0, 1, 1, 1, 21, -1],
[1, 0, 2, 1,46, -1].
                                                        [1, 2, 3, 2, 23, -1].
[2, 1, 3, 1, 37, -1].
                                                        [1, 2, 6, 2, 26, -1].
[3, 0, 4, 1.33, -1],
                                                        [2, 3, 4, 1,93, -1].
                              E (set of edges)
                                                                                      A (set of angles)
[4, 0, 5, 1,40, -1].
                                                        [3, 4, 5, 1,91, -1].
[5, 1, 6, 1, 31, -1].
                                                        [4, 5, 6, 1,83, -1].
                              Kev:
                                                                                      Kev:
[6, 0, 2, 1.43, -1],
                                                        [5, 6, 2, 1.96, -1],
                              0: Single bond
                                                                                      Bond angle in radian
[-1, -1, -1, -1, -1], ...]
                                                        [-1, -1, -1, -1, -1]. ...]
                              1: Double bond
                              2: Triple bond
[[0, 0, 0, 1, 0],
                              3: Aromatic bond
[0, 1, 0, 0, 0].
                              Bond length in angstrom
[0, 1, 0, 0, 0].
[0, 1, 0, 0, 0],
                              V (set of nodes)
[0, 0, 0, 1, 0].
[0, 0, 1, 0, 0],
                              Key:
[0, 1, 0, 0, 0],
                              [H, C, N, O, F]
[-1, -1, -1, -1, -1], ...]
```

Experiments Part 1 - Networks

- > We used four different networks to predict quantum chemical properties
 - > GGNN used in CGVAE (Li et al. 2015)
 - > ARMA graph learning (Bianchi et al. 2019)
 - > RNN as baseline
 - CNN as baseline
- > Hyperparameters optimised by hand

Experiments Part 1 - Dataset

- Use popular quantum machine 9 (QM9) dataset (Ramakrishnan et al. 2014)
 - > 133,885 organic molecules
 - > Up to nine heavy (non-hydrogen) atoms
 - 3-d coordinates for each atom
 - 15 chemical properties [hartrees]
- > Split data into three disjoint parts
 - > Test set: 30'000 molecules
 - Validation set: 20777 molecules (20 % of remaining data)
 - Training set: 83108 molecules (80 % of remaining data)
 - > Use split to regress four chemical properties
 - ϵ_{HOMO} Energy of the highest occupied molecular orbital [kcal/mol]
 - ϵ_{LUMO} Energy of the lowest unoccupied molecular orbital [kcal/mol]
 - $> \epsilon_{\it GAP}$ Difference of $\epsilon_{\it HOMO}$ and $\epsilon_{\it LUMO}$ [kcal/mol]
 - > U_0 Internal energy at 0 K [kcal/mol]

Experiments Part 1 - Results

- > Spatial information has big impact on descriptive power
- > Good accuracy with baseline models
- > Accuracy of simulator: ≈1 kcal/mol

Descriptor	Architecture	MAE values in kcal/mol			
Descriptor		ϵ номо	ϵ LUMO	$\epsilon_{\sf GAP}$	U_0
Cuarb based	CNN	5.60	6.34	7.64	18.89
Graph-based with bond lengths and bond angles	RNN	3.52	3.26	5.03	6.43
	GGNN	3.15	3.29	5.10	7.42
	ARMA	3.32	2.95	4.74	11.36

Experiments Part 2

- \rightarrow This part focusses on: $loss = L_{property} + L_{recon}$
- > Combine en- and decoder
- > **Goal**: find latent size for optimal reconstructions

Experiments Part 2 - Molecule Comparison

- > Compare both original and reconstructed molecule in terms of...
 - \rightarrow ... the ϵ_{GAP} property
 - ... the graph structure

> With 30 latent dimensions, CGVAE makes the most accurate reconstructions

Experiments Part 3

- \rightarrow This part focusses on: $loss = L_{property} + L_{recon} + L_{KL}$
- > **Goal**: structuring of the latent space and sampling of new molecules (generation)

> CGVAE uses $\epsilon \in \mathcal{N}(0,1)$

Experiments Part 3 - Metrics

> Three prevalent metrics to evaluate generative behaviour

Metric	Description	Reported in CGVAE paper	
Novelty	Ratio of generated molecules not present	94.35 %	
	in the training dataset used		
Uniqueness	Ratio of duplicates in the set	94.35 %	
	of generated molecules		
Validity	Ratio of chemically valid molecules	100.00 %	

> Can we reproduce the results reported in the CGVAE paper?

Experiments Part 3 - Our Results

Novelty	Uniqueness	Validity
84.84 %	89.18 %	100.00 %
86.35 %	90.71 %	100.00 %
88.75 %	96.10 %	100.00 %
87.10 %	94.75 %	100.00 %
79.71 %	96.60 %	100.00 %
63.78 %	99.14 %	100.00 %
94.35 %	98.57 %	100.00 %
	84.84 % 86.35 % 88.75 % 87.10 % 79.71 % 63.78 %	84.84 % 89.18 % 86.35 % 90.71 % 88.75 % 96.10 % 87.10 % 94.75 % 79.71 % 96.60 % 63.78 % 99.14 %

- > Just the validity results were similar as the values reported in the paper
- > Opposite trends in novelty and uniqueness of the results
- > While novelty **increases** with the variance, uniqueness **decreases**

Experiments Part 3 - Visualisation of the Latent Space

- > To represent a molecule, we used the mean vector of all nodes
- > Then, PCA was used to find a 2-d subspace of the 30-d latent space
- \geq Colours correspond to the ϵ_{GAP} property

Conclusion

- > Spatial information enhances accuracy for property prediction
- > Latent space does not have to be high dimensional for good reconstructions
- > Trade-off in usually used metrics (Uniqueness and novelty cannot be optimised together)

Outlook

- CGVAE build a molecule sequentially
- > This has two donsides:
 - > Unlikely to reconstruct exact same molecule
 - > Long generation time

> Future research should investigate one-shot generation of molecules

Training of CGVAE

- > This was our first approach for part 2 of the experiments
- > Train models with different sizes of latent space
- > Unfortunately, no ranking of models possible due to stochastic nature of training
- \rightarrow However, loss converges after \leq 70 epochs of training

Generative Procedure of CGVAE

- > CGVAE builds a molecule sequentally (node-by-node)
- \supset Therefore, the three networks G_{dec} (GNN), L_{I} , and C are used
- > Initially, the latent space has N unconnected nodes
- > N is an upper bound on the atoms of the original molecule

Novelty vs. Uniqueness

- > Assume latent vectors represent entire molecules
- Combine latent vectors of CGVAE (e.g. mean vector)

Small variance (increases uniqueness) | Large variance (increases novelty)

