-or-

How to make neat images

Niels Oppermann, Cosmology group meeting, 2011-11-29

A map of the Galactic Faraday depth

The Physics

Faraday depth:
$$\phi \propto \int_{r_{
m source}}^0 n_{
m e}(ec{x}) B_r(ec{x}) {
m d} r$$
 $eta = \phi \lambda^2$

41 330 data points

Challenges

- Regions without data
- Uncertain error bars:
 - complicated observations
 - ▶ $n\pi$ -ambiguity
 - extragalactic contributions unknown

The Statistics

$$d = Rs + n$$

Wiener Filter

$$m=\int \mathcal{D}s~s~\mathcal{P}(s|d)$$
 $d=Rs+n$ $m=Dj,~ ext{where}~~ egin{array}{c} j=R^\dagger N^{-1}d \ D=\left(S^{-1}+R^\dagger N^{-1}R
ight)^{-1} \end{array}$

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

$$A\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D} s \; s_{\ell m} s_{\ell' m'}^* \mathcal{P}(s)$$

$$egin{aligned} S(\hat{n},\hat{n}') &= \int \mathcal{D}s \; s(\hat{n}) s(\hat{n}') \mathcal{P}(s) \ &= S(\hat{n} \cdot \hat{n}') \ \Rightarrow S_{(\ell m),(\ell' m')} &= \int \mathcal{D}s \; s_{\ell m} s_{\ell' m'}^* \mathcal{P}(s) \ &= \delta_{\ell \ell'} \delta_{m m'} C_{\ell} \end{aligned}$$

$$egin{aligned} S(\hat{n},\hat{n}') &= \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s) \ &= S(\hat{n}\cdot\hat{n}') \ \Rightarrow S_{(\ell m),(\ell' m')} &= \int \mathcal{D}s \ s_{\ell m}s_{\ell' m'}^*\mathcal{P}(s) \ &= \delta_{\ell\ell'}\delta_{mm'}\mathcal{C}_{\ell} \end{aligned}$$

$$N_{ij} = \delta_{ij} \sigma_i^2$$
 (uncorrelated noise)

$$S_{(\ell m),(\ell' m')} = \delta_{\ell \ell'} \delta_{m m'} \frac{C_{\ell}}{C_{\ell}} \quad N_{ij} = \delta_{ij} \frac{\eta_i}{\eta_i} \sigma_i^2$$

$$S_{(\ell m),(\ell' m')} = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$
 $N_{ij} = \delta_{ij} \eta_i \sigma_i^2$

assume priors for parameters

$$\mathcal{P}\left((C_\ell)_\ell \right) = \prod_\ell \frac{1}{q_\ell \Gamma(\alpha_\ell - 1)} \left(\frac{C_\ell}{q_\ell} \right)^{-\alpha_\ell} \exp\left(-\frac{q_\ell}{C_\ell} \right)$$

$$\mathcal{P}\left((\eta_i)_i\right) = \prod_i \frac{1}{q_i \Gamma(\alpha_i - 1)} \left(\frac{\eta_i}{q_i}\right)^{-\alpha_i} \exp\left(-\frac{q_i}{\eta_i}\right)$$

⇒ marginalize over all possible parameters

Extended Critical Filter

$$m = Dj, \quad D = \left[\sum_{\ell} C_{\ell}^{-1} S_{\ell}^{-1} + \sum_{i} \eta_{i}^{-1} R^{\dagger} N_{i}^{-1} R \right]^{-1},$$

$$j = \sum_{i} \eta_{i}^{-1} R^{\dagger} N_{i}^{-1} d$$

$$C_{\ell} = \frac{1}{\alpha_{\ell} + \ell - 1/2} \left[q_{\ell} + \frac{1}{2} \text{tr} \left(\left(mm^{\dagger} + D \right) S_{\ell}^{-1} \right) \right]$$

$$\eta_{i} = \frac{1}{\alpha_{i}} \left[q_{i} + \frac{1}{2} \text{tr} \left(\left((d - Rm) (d - Rm)^{\dagger} + D \right) N_{i}^{-1} \right) \right]$$

The Images

- ▶ Approximate $s(b, l) := \frac{\phi(b, l)}{p(b)}$ as a statistically isotropic Gaussian field
- R: multiplication with p(b) and projection on directions of sources
- $N_{ij} = \delta_{ij} \eta_i \sigma_i^2$

posterior mean of the signal

uncertainty of the signal map

posterior mean of the Faraday depth

uncertainty of the Faraday depth

uncertainty of the Faraday depth

N. Oppermann, G. Robbers, T.A. Enßlin: "Reconstructing signals from noisy data with unknown signal and noise covariance"

Physical Review E, vol. 84, Issue 4, id. 041118 arXiv:1107.2384

N. Oppermann, H. Junklewitz, G. Robbers, M.R. Bell, T.A. Enßlin, A. Bonafede, R. Braun, J.C. Brown, T.E. Clarke, I.J. Feain, B.M. Gaensler, A. Hammond, L. Harvey-Smith, G. Heald, M. Johnston-Hollitt, U. Klein, P.P. Kronberg, S.A. Mao, N.M. McClure-Griffiths, S.P. O'Sullivan, L. Pratley, T. Robishaw, S. Roy, D.H.F.M. Schnitzeler, C. Sotomayor-Beltran, J. Stevens, J.M. Stil, C. Sunstrum, A. Tanna, A.R. Taylor, C.L. Van Eck: "An improved map of the Galactic Faraday sky" arXiv:1111.6186

All results available at http://www.mpa-garching.mpg.de/ift/faraday/

Backup

