# Flight Delays

Final Presentation
Team 25
Jaclyn Andrews, Alyssa Augsburger, John Lee
December 12, 2020

### **Question Formulation**



|             | 2016 | 2017 | 2018 | 2019 |
|-------------|------|------|------|------|
| Airlines    | 5.6  | 6.4  | 7.7  | 8.3  |
| Passengers  | 13.3 | 14.8 | 16.4 | 18.1 |
| Lost Demand | 1.8  | 2.0  | 2.2  | 2.4  |
| Indirect    | 3.0  | 3.4  | 3.9  | 4.2  |
| Total       | 23.7 | 26.6 | 30.2 | 33.0 |

#### Question:

Given flight and weather information known two hours ahead of planned departure time, will a flight depart on time (within 15 minutes of scheduled departure) or will it be delayed or cancelled?

#### **Evaluation:**

F1 Score - to minimize both false positive and negatives

#### State of the Art (on a subset of data):

F1 Score of 0.85

### **Data Introduction**

#### Flights Data:

- Reporting Carrier On-Time Performance (Bureau of Transportation Statistics)
- 2015 through 2019 U.S. Flights Data

#### Weather Data:

- National Oceanic and Atmospheric Administration Repository
- 2015 through 2019 Weather Data

|                          | Rows        | Columns |  |
|--------------------------|-------------|---------|--|
| Dataset                  |             |         |  |
| Airline Data (2015-2019) | 31,746,841  | 109     |  |
| Weather Data (2015-2019) | 630,904,436 | 177     |  |

### **Our Process**



EDA + Data Pre-Processing

Feature Engineering

Join Data

Train Machine Learning Models **Evaluate Results** 

Fine Tune Models

### **EDA: Large Dataframes**



**Challenge:** High computational complexity

Solution: Filter and sub-setting (asw)

Challenge: Handling nulls

**Solution:** Drop training nulls & impute test nulls



Code: sns.heatmap(airlines\_3m.toPandas().isnull(), cmap='tab20', cbar=False);

### **EDA: Outcome Variable**



**Challenge:** Unbalanced data **Solution:** Sampling weights



**Challenge:** Various separate causes of delay **Solution:** Customized feature creation



### **EDA: Seasonality**



**Challenge:** Capturing the variances in seasonality **Solution:** Split data into train/validation/test by year





### **EDA: Weather Data Abnormalities**



Challenge: Data is not normally distributed

**Solution:** Binned data on splits





# **Data Processing: Pipeline**





Legend: Rows / Columns

### **Data Processing: Data Join**



#### Flights & Weather Data Join

- Flights airport code (IATA <-> ICAO)
- Flights datetime transformation
- Flights timezone adjustment
- Join on data 2-hours prior

```
# join 2 hr data (for origin weather)
joinla = spark.sql("SELECT * FROM a_tt INNER JOIN w_tt ON
    (a_tt.CRS_DEP_TIME_2HR_HR = w_tt.DATE_HR AND a_tt.origin_icao_code =
    w_tt.AIRPORT)")

dbutils.fs.rm("dbfs:/mnt/mids-w261/team_25/join_data_folder/joinla", True)
joinla.write.parquet("dbfs:/mnt/mids-w261/team_25/join_data_folder/joinla")
joinla = spark.read.option("header", "true").parquet("dbfs:/mnt/mids-w261/team_25/join_data_folder/joinla/part-00*.parquet")
joinla.registerTempTable("joinla")
```

### # union the 2hr and 3 hr data joins (for origin weather) joined\_origin = spark.sql("SELECT \* from join1a UNION SELECT \* FROM join2a")

#### Step 1: Inner Join

Join on airport and time bucket 2 hours prior to departure.



#### Step 3: Union

Stack two joins on top of each other to make one set of flights with all weather readings from 2 and 3 hours prior to departure.



#### Step 2: Inner Join

Join on airport and time bucket 3 hours prior to departure.



#### Step 4: Filter & Group By

Filter out weather readings later than 2 hours prior to departure. Group by flight and select latest remaining weather reading.



### Feature Engineering: Selection and Transformation



<sup>\*</sup>All weather variables included for both origin and destination weather stations 2 hours prior to departure



### **Feature Engineering: Creation**





Propagation
(Tail # Previous Delay)

**Derived from:** flight delay data available 2 hours prior to flight departure.

Values: 0 (no prev. delay), 1 (prev. delay)

**Missing:** Default value of no previous

delay





Flight
Schedule
(# of flights per day)

Derived from: CRS flight schedule\*

Values: numeric, # of flights

**Missing:** 'assumption: schedule is provided and determined

at least a full day in advance.



**Derived from:** Directed flight path graph weighted by number of flights along the path.

Values: rank between 0 and 1

 $\textbf{Missing:} \ imputed \ with \ 1/(\# \ of \ airports$ 

in training data)



### Feature Engineering: Delay Propagation



- Delay rate increases throughout the day across all airlines
- Major cause of delay is late aircrafts
- Features to include:
  - Time of day
  - Binary first flight of day
  - Aircraft's last flight delay status





# Feature Engineering: Flight Schedule





# **Algorithm Exploration: Baseline**













Logistic Regression

F1-Score: 0.372

Decision Tree

F1-Score: 0.374

Random Forest

F1-Score: 0.402

Gradient Boosted Tree

F1-Score: 0.413



| Airline   | Time of Day | Delay (Outcome) | Prediction 1 | Residual 1            |
|-----------|-------------|-----------------|--------------|-----------------------|
|           |             |                 | P(Delay)     | Outcome - Prediction1 |
| JetBlue   | Morning     | 0               | 0.5          | -0.5                  |
| JetBlue   | Morning     | 0               | 0.5          | -0.5                  |
| JetBlue   | Night       | 0               | 0.5          | -0.5                  |
| JetBlue   | Night       | 1               | 0.5          | 0.5                   |
| American  | Morning     | 1               | 0.5          | 0.5                   |
| American  | Night       | 1               | 0.5          | 0.5                   |
| American  | Night       | 1               | 0.5          | 0.5                   |
| American  | Night       | 0               | 0.5          | -0.5                  |
| Southwest | Morning     | 0               | 0.5          | -0.5                  |
| Southwest | Morning     | 0               | 0.5          | -0.5                  |
| Southwest | Night       | 1               | 0.5          | 0.5                   |
| Southwest | Night       | 1               | 0.5          | 0.5                   |





Gini index 
$$_{Time=Morning} = 1 - \sum_{i=1}^{n} p_i^2 = 1 - P(Delay)^2 - P(Nodelay)^2 = 1 - \frac{1}{5}^2 - \frac{4}{5}^2 = 0.320$$

Gini index 
$$_{Time=Night} = 1 - \frac{5}{7}^2 - \frac{2}{7}^2 = 0.408$$

Weighted gini index 
$$_{Time} = \frac{5}{12} \times 0.320 + \frac{7}{12} \times 0.408 = 0.371$$

| Airline   | Time of Day | Delay (Outcome) |
|-----------|-------------|-----------------|
|           |             |                 |
|           |             |                 |
| JetBlue   | Morning     | 0               |
| JetBlue   | Morning     | 0               |
| JetBlue   | Night       | 0               |
| JetBlue   | Night       | 1               |
| American  | Morning     | 1               |
| American  | Night       | 1               |
| American  | Night       | 1               |
| American  | Night       | 0               |
| Southwest | Morning     | 0               |
| Southwest | Morning     | 0               |
| Southwest | Night       | 1               |
| Southwest | Night       | 1               |

| ROOT                      |            |  |  |
|---------------------------|------------|--|--|
| Split Point               | Gini index |  |  |
| Time (weighted)           | 0.371      |  |  |
| Airline Split1 (weighted) | 0.438      |  |  |
| Airline Split2 (weighted) | 0.438      |  |  |

| MORNING                   |            |  |  |  |
|---------------------------|------------|--|--|--|
| Split Point               | Gini index |  |  |  |
| Airline Split1 (weighted) | 0.267      |  |  |  |
| Airline Split2 (weighted) | 0.000      |  |  |  |

| NIGHT                     |            |  |  |  |
|---------------------------|------------|--|--|--|
| Split Point               | Gini index |  |  |  |
| Airline Split1 (weighted) | 0.371      |  |  |  |
| Airline Split2 (weighted) | 0.405      |  |  |  |







| Airline   | Time of Day | Delay (Outcome) | Prediction 1 | Residual 1            | Gamma                                                                         | Learning Rate | Prediction 2                                    | Residual 2            |
|-----------|-------------|-----------------|--------------|-----------------------|-------------------------------------------------------------------------------|---------------|-------------------------------------------------|-----------------------|
|           |             |                 | P(Delay)     | Outcome - Prediction1 | $\frac{\sum (Leaf\ Residuals)}{\sum (PreviousPrediction\times (1-PrevPred))}$ |               | $Prediction 1+ \\ (Learning Rate \times Gamma)$ | Outcome – Prediction2 |
| JetBlue   | Morning     | 0               | 0.5          | -0.5                  | -2                                                                            | 0.100         | 0.3                                             | -0.3                  |
| JetBlue   | Morning     | 0               | 0.5          | -0.5                  | -2                                                                            | 0.100         | 0.3                                             | -0.3                  |
| JetBlue   | Night       | 0               | 0.5          | -0.5                  | 0                                                                             | 0.100         | 0.5                                             | -0.5                  |
| JetBlue   | Night       | 1               | 0.5          | 0.5                   | 0                                                                             | 0.100         | 0.5                                             | 0.5                   |
| American  | Morning     | 1               | 0.5          | 0.5                   | 2                                                                             | 0.100         | 0.7                                             | 0.3                   |
| American  | Night       | 1               | 0.5          | 0.5                   | 1.2                                                                           | 0.100         | 0.62                                            | 0.38                  |
| American  | Night       | 1               | 0.5          | 0.5                   | 1.2                                                                           | 0.100         | 0.62                                            | 0.38                  |
| American  | Night       | 0               | 0.5          | -0.5                  | 1.2                                                                           | 0.100         | 0.62                                            | -0.62                 |
| Southwest | Morning     | (0              | 0.5          | -0.5                  | -2                                                                            | 0.100         | 0.3                                             | -0.3                  |
| Southwest | Morning     | 0               | 0.5          | -0.5                  | -2                                                                            | 0.100         | 0.3                                             | -0.3                  |
| Southwest | Night       | 1               | 0.5          | 0.5                   | 1.2                                                                           | 0.100         | 0.62                                            | 0.38                  |
| Southwest | Night       | 1               | 0.5          | 0.5                   | 1.2                                                                           | 0.100         | 0.62                                            | 0.38                  |

# **Tuning**



#### **Individual Feature Inclusion:**

- ✓ PageRank
- Delay propagation
- Destination weather
- ★ Flight schedule

#### Hyperparameters:

- **★** Maximum depth
- Maximum iterations
- Minimum instances per node

#### Other:

- One hot encoding
- Top 10 features from other models
- Principal component analysis



### **Final Algorithm**



- Gradient Boosted Tree
  - o PCA with 10 components
  - Maximum depth = 6
  - Maximum iterations = 20
  - Minimum instances per node = 1
- Results
  - F1 Score: 0.458
  - Recall: 0.652
  - o Precision: 0.353
  - o Accuracy: 0.689
  - o AUC: 0.743



# **Feature Importance**



#### Top 10 Important Features

| 8  | idx | name                   | vals                                                  | score    |
|----|-----|------------------------|-------------------------------------------------------|----------|
| 19 | 9   | CRS_DEP_TIME_BUCKIndex | [3.0, 4.0, 8.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0        | 0.148639 |
| 23 | 13  | PREVIOUS_DELAYIndex    | [0, 1,unknown]                                        | 0.148508 |
| 14 | 4   | ORIGINIndex            | [ATL, ORD, DEN, LAX, DFW, SFO, PHX, LAS, IAH, $\dots$ | 0.123706 |
| 16 | 6   | DESTIndex              | [ATL, ORD, DEN, LAX, DFW, SFO, PHX, LAS, IAH, $\dots$ | 0.101194 |
| 11 | 1   | MONTHIndex             | [7, 8, 6, 10, 3, 5, 9, 4, 11, 12, 1, 2,unkn           | 0.073684 |
| 0  | 19  | pcaFeatures_0          | NaN                                                   | 0.070289 |
| 18 | 8   | FIRST_DEPIndex         | [0, 1,unknown]                                        | 0.065377 |
| 13 | 3   | OP_UNIQUE_CARRIERIndex | [WN, DL, AA, OO, UA, EV, B6, AS, NK, F9, MQ, H        | 0.051720 |
| 22 | 12  | VIS_DIST_BUCKIndex     | [1.0, 0.0,unknown]                                    | 0.043988 |
| 21 | 11  | CIG_HEIGHT_BUCKIndex   | [1.0, 0.0,unknown]                                    | 0.029461 |
|    |     |                        |                                                       |          |

#### pcaFeatures\_0

|                  | 0         |
|------------------|-----------|
| CRS_ELAPSED_TIME | -0.039214 |
| DISTANCE         | -0.052169 |
| LATITUDE         | 0.208493  |
| LONGITUDE        | 0.023494  |
| ELEVATION        | 0.110524  |
| TEMP             | -0.445146 |
| DEW_TEMP         | -0.434215 |
| SLPRESS          | 0.238642  |
| PAGERANK         | 0.012238  |
| DEST_LATITUDE    | 0.202934  |
| DEST_LONGITUDE   | 0.023569  |
| DEST_ELEVATION   | 0.110008  |
| DEST_TEMP        | -0.446441 |
| DEST_DEW_TEMP    | -0.431663 |
| DEST_SLPRESS     | 0.237118  |

### Conclusion

#### • Performance and scalability

o Gradient boosted trees can't fully be parallelized

#### Future work

- Additional engineered features
- Hyperparameter tuning
- Split data at very beginning of pipeline



### **Bibliography**

- Lukacs, Michael. "Cost of Delay Estimates." FAA, 2019, www.faa.gov/data research/aviation data statistics/media/cost delay estimates.pdf.
- "OST\_R: BTS: Transtats." BTS, 2020, <u>www.transtats.bts.gov/DatabaseInfo.asp?DB\_ID=120</u>.
- "Land-Based Datasets and Products." National Climatic Data Center, 2020, <u>www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets</u>.
- Belcastro, Loris, et al. Using Scalable Data Mining for Predicting Flight Delays. Dec. 2014.
- Chakrabarty, Navoneel. A Data Mining Approach to Flight Arrival Delay Prediction for American Airlines.