BÀI TẬP THAM KHẢO GIẢI TÍCH II Nhóm ngành 1 Mã học phần: MI 1121

- 1) Kiểm tra giữa kỳ hệ số 0.3, Tự luận, 60 phút. Nội dung: Từ chương 1 đến hết bài tích phân suy rộng phụ thuộc tham số.
- 2) Thi cuối kỳ hệ số 0.7, Tự luận, 90 phút.

Chương 1

Ứng dụng của phép tính vi phân trong hình học

1.1 Úng dụng trong hình học phẳng

Bài 1. Viết phương trình tiếp tuyến và pháp tuyến với đường cong

a)
$$y=e^{1-x^2}$$
 tại giao điểm của đường cong với đường thẳng $y=1$

b)
$$\begin{cases} x = 2t - \cos(\pi t) \\ y = 2t + \sin(\pi t) \end{cases}$$
 tại điểm A ứng với $t = 1/2$

c)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$$
 tại điểm $M(8; 1)$

Bài 2. Tính độ cong tại điểm bất kỳ của

a)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (a > 0).$$

b)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} \ (a > 0)$$

c)
$$r = ae^{b\varphi}, (a, b > 0)$$

Bài 3. Tính độ cong của đường $y=\ln x$ tại điểm có hoành độ x>0. Khi nào độ cong đạt cực đại? Khi $x\to\infty$ thì độ cong sẽ như thế nào ?

Bài 4. Tìm hình bao của họ các đường cong sau

a)
$$y = \frac{x}{c} + c^2$$

b)
$$cx^2 - 3y - c^3 + 2 = 0$$

c)
$$y = c^2(x - c)^2$$

$$d) 4x \sin c + y \cos c = 1$$

Ứng dụng trong hình học không gian

Bài 5. Giả sử $\vec{p}(t)$, $\vec{q}(t)$, $\alpha(t)$ là các hàm khả vi. Chứng minh rằng

a)
$$\frac{d}{dt}(\vec{p}(t) + \vec{q}(t)) = \frac{d\vec{p}(t)}{dt} + \frac{d\vec{q}(t)}{dt}$$

b)
$$\frac{d}{dt}(\alpha(t)\vec{p}(t)) = \alpha(t)\frac{d\vec{p}(t)}{dt} + \alpha'(t)\vec{p}(t)$$

c)
$$\frac{d}{dt}(\vec{p}(t)\vec{q}(t)) = \vec{p}(t)\frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt}\vec{q}(t)$$

a)
$$\frac{d}{dt}(\vec{p}(t) + \vec{q}(t)) = \frac{d\vec{p}(t)}{dt} + \frac{d\vec{q}(t)}{dt}$$
 b) $\frac{d}{dt}(\alpha(t)\vec{p}(t)) = \alpha(t)\frac{d\vec{p}(t)}{dt} + \alpha'(t)\vec{p}(t)$ c) $\frac{d}{dt}(\vec{p}(t)\vec{q}(t)) = \vec{p}(t)\frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt}\vec{q}(t)$ d) $\frac{d}{dt}(\vec{p}(t) \times \vec{q}(t)) = \vec{p}(t) \times \frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt} \times \vec{q}(t)$

Bài 6. Đường cong C được biểu diễn bởi hàm vecto $\vec{r}(t)$. Giả sử $\vec{r}(t)$ là hàm khả vi và $\vec{r}'(t)$ luôn vuông góc với $\vec{r}(t)$. Chứng minh rằng C nằm trên một mặt cầu tâm tại gốc tọa độ.

Bài 7. Viết phương trình tiếp tuyến và pháp diên của đường

a)
$$\begin{cases} x = a \sin^2 t \\ y = b \sin t \cos t \end{cases}$$
 tại điểm ứng với $t = \frac{\pi}{4}$, $(a, b, c > 0)$ $z = c \cos^2 t$

Bài 8. Tính độ cong của các đường cong

a)
$$egin{cases} x = \cos t \ y = \sin t \ z = t \end{cases}$$
 tại điểm ứng với $t = \frac{\pi}{2}$

$$\left\{ \begin{array}{l} z=t \\ \\ x=\cos t+t\sin t \\ \\ y=\sin t-t\cos t \end{array} \right. \ \, {\rm tại\ diễm\ \'mg\ v\'oi\ } \ \, t=\pi \\ \\ z=t \ \, \end{array}$$

c) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x - 3z = 4

Bài 9. Viết phương trình pháp tuyến và tiếp diên của mặt cong

a)
$$x^2 - 4y^2 + 2z^2 = 6$$
 tại điểm $(2; 2; 3)$ b) $z = 2x^2 + 4y^2$ tại điểm $(2; 1; 12)$

b)
$$z = 2x^2 + 4y^2$$
 tại điểm (2; 1; 12)

c)
$$\ln(2x+y^2) + 3z^3 = 3$$
 tại điểm $(0;-1;1)$ d) $x^2 + 2y^3 - yz = 0$ tại điểm $(1;1;3)$

d)
$$x^2 + 2y^3 - yz = 0$$
 tại điểm $(1; 1; 3)$

Bài 10. Viết phương trình tiếp tuyến và pháp diện của đường

a)
$$\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$$
 tại điểm $A(1; 3; 4)$

a)
$$\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$$
 tại điểm $A(1;3;4)$
b)
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 47 \\ x^2 + 2y^2 = z \end{cases}$$
 tại điểm $B(-2;1;6)$

Tích phân bôi

2.1 Tích phân kép

Bài 11. Thay đổi thứ tự lấy tích phân của các tích phân sau

a)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y)dy$$
 b) $\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y)dx$ c) $\int_{0}^{2} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y)dy$

c)
$$\int_{0}^{2} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y) dy$$

d)
$$\int_{0}^{\frac{\pi}{2}} dy \int_{\sin y}^{1+y^2} f(x,y) dx$$

e)
$$\int_{0}^{\sqrt{2}} dy \int_{0}^{y} f(x,y) dx + \int_{\sqrt{2}}^{2} dy \int_{0}^{\sqrt{4-y^2}} f(x,y) dx$$

Bài 12. Tính các tích phân sau

a)
$$\iint_{\mathcal{D}} \frac{y}{1+xy} dx dy$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1; 0 \le y \le 2\}$

b)
$$\iint\limits_{\mathcal{D}} x^2(y-x) dx dy$$
, với \mathcal{D} là miền giới hạn bởi các đường cong $y=x^2$ và $x=y^2$

c)
$$\iint\limits_{\mathcal{D}} 2xydxdy$$
, với \mathcal{D} giới hạn bởi các đường $x=y^2, x=-1, y=0$ và $y=1$

d)
$$\iint\limits_{\mathcal{D}}(x+y)dxdy,$$
 với \mathcal{D} xác định bởi $x^2+y^2\leq 1, \sqrt{x}+\sqrt{y}\geq 1$

e)
$$\iint_{\mathcal{D}} |x + y| dx dy$$
, $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : |x| \le 1; |y| \le 1\}$

f)
$$\iint\limits_{|x|+|y| \le 1} (|x|+|y|) dx dy$$

g)
$$\int_{0}^{1} dx \int_{0}^{1-x^2} \frac{xe^{3y}}{1-y} dy$$

Bài 13. Tìm cận lấy tích phân trong toạ độ cực của $\iint\limits_{\mathcal{D}} f(x,y) dx dy$, trong đó \mathcal{D} là miền xác định như sau

a)
$$a^2 \le x^2 + y^2 \le b^2$$

b)
$$x^2 + y^2 > 4x, x^2 + y^2 < 8x, y \ge x, y \le \sqrt{3}x$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
, $y \ge 0$, $(a, b > 0)$

d)
$$x^2 + y^2 \le 2x, x^2 + y^2 \le 2y$$

Bài 14. Dùng phép đổi biến trong toạ độ cực, hãy tính các tích phân sau

a)
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^2 - x^2}} \ln(1 + x^2 + y^2) dy$$
, $(R > 0)$

b)
$$\iint\limits_{\mathcal{D}} xydxdy,$$
 với \mathcal{D} là nửa mặt tròn: $(x-2)^2+y^2\leq 1, y\geq 0$

c)
$$\iint_{\mathcal{D}} (\sin y + 3x) dx dy$$
, với \mathcal{D} là mặt tròn: $(x-2)^2 + y^2 \leq 1$

d)
$$\iint\limits_{\mathcal{D}} |x+y| dx dy$$
, với \mathcal{D} là mặt tròn: $x^2+y^2 \leq 1$

Bài 15. Chuyển tích phân sau theo hai biến u và v:

a)
$$\int\limits_0^1 dx \int\limits_{-x}^x f(x,y) dy$$
, nếu đặt $\begin{cases} u=x+y \\ v=x-y \end{cases}$

b) áp dụng tính với $f(x,y) = (2-x-y)^2$

Bài 16. Tính các tích phân sau

a)
$$\iint\limits_{\mathcal{D}} \frac{2xy+1}{\sqrt{1+x^2+y^2}} dx dy, \text{ trong } \mathring{\text{d}} \circ \mathcal{D} : x^2+y^2 \leq 1$$

b)
$$\iint_{\mathcal{D}} \frac{dxdy}{(x^2 + y^2)^2}$$
, trong đó \mathcal{D} :
$$\begin{cases} y \le x^2 + y^2 \le 2y \\ x \le y \le \sqrt{3}x \end{cases}$$

c)
$$\iint_{\mathcal{D}} \frac{xy}{x^2 + y^2} dx dy, \text{ trong do } \mathcal{D}: \begin{cases} 2x \le x^2 + y^2 \le 12 \\ x^2 + y^2 \ge 2\sqrt{3}y \\ x \ge 0, y \ge 0 \end{cases}$$

d)
$$\iint\limits_{\mathcal{D}}|9x^2-4y^2|dxdy, \text{ trong d\'o }\mathcal{D}:\frac{x^2}{4}+\frac{y^2}{9}\leq 1$$

e)
$$\iint_{\mathcal{D}} (3x + 2xy) dx dy, \text{ trong d\'o } \mathcal{D}: \begin{cases} 1 \le xy \le 9 \\ y \le x \le 4y \end{cases}$$

2.2 Tích phân bội 3

Tính các tích phân bội ba sau

Bài 17.
$$\iiint\limits_V z dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 0 \le x \le 1 \\ x \le y \le 2x \\ 0 \le z \le \sqrt{5 - x^2 - y^2} \end{cases}$$

Bài 18.
$$\iiint\limits_V (3xy^2-4xyz) dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 1 \leq y \leq 2 \\ 0 \leq xy \leq 2 \\ 0 \leq z \leq 2 \end{cases}$$

Bài 19.
$$\iiint\limits_V xye^{yz^2}dxdydz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1 \\ x^2 \leq z \leq 1 \end{cases}$$

Bài 20.
$$\iiint\limits_V (x^2+y^2) dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} x^2+y^2+z^2 \leq 1 \\ x^2+y^2-z^2 \leq 0 \end{cases}$$

Bài 21.
$$\iiint\limits_V z\sqrt{x^2+y^2}dxdydz$$
, trong đó

- a) V là miền giới hạn bởi mặt trụ: $x^2+y^2=2x$ và các mặt phẳng: y=0,z=0,z=a, $(y\geq 0,a>0)$
- b) V là nửa của hình cầu $x^2+y^2+z^2 \leq a^2, z \geq 0, (a>0)$
- c) Vlà nửa của khối elipsoid $\frac{x^2+y^2}{a^2}+\frac{z^2}{b^2}\leq 1, z\geq 0, (a,b>0)$

Bài 22. $\iiint\limits_V y dx dy dz$, trong đó V là miền giới hạn bởi mặt nón: $y=\sqrt{x^2+z^2}$ và mặt phẳng y=h,(h>0)

Bài 23.
$$\iiint\limits_V \frac{x^2}{a^2} dx dy dz, \text{ trong dó } V: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1 \ (a,b,c>0)$$

Bài 24.
$$\iiint\limits_V (x^2+y^2+z^2) dx dy dz$$
, trong đó $V: \begin{cases} 1 \le x^2+y^2+z^2 \le 4 \\ x^2+y^2 \le z^2 \end{cases}$

Bài 25. $\iiint\limits_V \sqrt{x^2+y^2} dx dy dz$, trong đó V là miền giới hạn bởi $x^2+y^2=z^2, z=-1$

Bài 26.
$$\iiint\limits_V \frac{dxdydz}{\left[x^2+y^2+(z-2)^2\right]^2}, \text{ trong đó } V: \begin{cases} x^2+y^2 \leq 1 \\ |z| \leq 1 \end{cases}$$

Bài 27. $\iiint\limits_V \sqrt{x^2+y^2+z^2} dx dy dz, \text{ trong đó } V \text{ là miền xác định bởi} \\ x^2+y^2+z^2 \leq z$

2.3 Ứng dụng của tích phân bội

Bài 28. Tính diện tích của miền $\mathcal D$ giới hạn bởi các đường $\begin{cases} y^2=x, y^2=2x\\ x^2=y, x^2=2y \end{cases}$

Bài 29. Tính diện tích của miền
$$\mathcal{D}$$
 giới hạn bởi
$$\begin{cases} y=0, y^2=4ax\\ x+y=3a, y\leq 0, (a>0). \end{cases}$$

Bài 30. Tính diện tích của miền
$$\mathcal{D}$$
 xác định bởi
$$\begin{cases} 2x \leq x^2 + y^2 \leq 4x \\ 0 \leq y \leq x \end{cases}$$

Bài 31. Tính diện tích của miền \mathcal{D} xác định bởi $r \geq 1, r \leq \frac{2}{\sqrt{3}}\cos\varphi$

Bài 32. Tính diện tích của miền \mathcal{D} giới hạn bởi các đường (a>0)

a)
$$(x^2 + y^2)^2 = 2a^2xy$$
 b) $r = a(1 + \cos\varphi)$

Bài 33. Chứng minh rằng diện tích của miền \mathcal{D} xác định bởi $x^2+(\alpha x-y)^2\leq 4$ không đổi $\forall \alpha\in\mathbb{R}$

- **Bài 34.** Tính thể tích của miền xác định bởi $\begin{cases} x+y\geq 1\\ x+2y\leq 2\\ y\geq 0, 0\leq z\leq 2-x-y \end{cases}$
- **Bài 35.** Tính thể tích của miền giới hạn bởi các mặt $\begin{cases} z=4-x^2-y^2\\ 2z=2+x^2+y^2 \end{cases}$
- **Bài 36.** Tính thể tích của miền xác định bởi $|x-y|+|x+3y|+|x+y+z| \leq 1$.
- **Bài 37.** Tính thể tích của miền giới hạn bởi các mặt $z = 1 + x^2 + y^2$, mặt trụ $x^2 + 4y^2 = 4$ và mặt phẳng Oxy.
- **Bài 38.** Tính thể tích của miền giới hạn bởi các mặt: $az = x^2 + y^2, z = \sqrt{x^2 + y^2}, (a > 0).$
- **Bài 39.** Tính diện tích phần mặt cầu $x^2+y^2+z^2=4a^2$ nằm bên trong mặt trụ $x^2+y^2-2ay=0$, (a>0).

Tích phân phụ thuộc tham số

Bài 40. Xét tính liên tục của hàm số $I(y) = \int_{0}^{1} \frac{y^2 - x^2}{(x^2 + y^2)^2} dx$.

Bài 41. Tìm $\lim_{y \to 1} \int_{0}^{y} \frac{\arctan x}{x^2 + y^2} dx$.

Bài 42. Khảo sát sự liên tục của tích phân $I(y) = \int_0^1 \frac{yf(x)}{x^2 + y^2} dx$ với f(x) là hàm số dương, liên tục trên đoạn [0,1].

Bài 43. Cho hàm số $f(y) = \int\limits_0^{\frac{\pi}{2}} \ln{(\sin^2 x + y^2 \cos^2 x)} dx$. Tính f'(1).

Bài 44. Chứng minh rằng tích phân phụ thuộc tham số $I(y) = \int_{-\infty}^{+\infty} \frac{\arctan(x+y)}{1+x^2} dx$ là một hàm số liên tục, khả vi đối với biến y. Tính I'(y) rồi suy ra biểu thức của I(y).

Bài 45. Tính các tích phân sau, (với a, b, α, β là các số dương, n là số nguyên dương):

a)
$$\int_{0}^{1} \frac{x^b - x^a}{\ln x} dx$$

d)
$$\int_{0}^{1} x^{\alpha} (\ln x)^{n} dx$$

b)
$$\int_{0}^{\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$

e)
$$\int_{0}^{+\infty} \frac{dx}{(x^2+y)^{n+1}}$$

c)
$$\int_{0}^{+\infty} e^{-ax} \frac{\sin(bx) - \sin(cx)}{x} dx$$

f)
$$\int_{0}^{\frac{\pi}{2}} ln(1 + y \sin^2 x) dx$$
, với $y > -1$

Bài 46. Tính các tích phân sau:

a)
$$\int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$$

$$d) \int_{0}^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx$$

b)
$$\int_{1}^{+\infty} \frac{(\ln x)^4}{x^2} dx$$

e)
$$\int_{0}^{+\infty} \frac{1}{1+x^3} dx$$

c)
$$\int_{0}^{+\infty} x^{10} e^{-x^2} dx$$

f)
$$\int_{0}^{+\infty} \frac{x^{n+1}}{(1+x^n)^2} dx$$
, $(2 < n \in \mathbb{N})$

g)
$$\int_{-\infty}^{0} e^{2x} \sqrt[3]{1 - e^{3x}} dx$$

i)
$$\int_{0}^{1} \frac{1}{\sqrt[n]{1-x^n}} dx, (2 \le n \in \mathbb{N})$$

h)
$$\int_{0}^{a} x^{2n} \sqrt{a^{2} - x^{2}} dx$$
, $(a > 0, n \in \mathbb{N})$

Tích phân đường

4.1 Tích phân đường loại 1

Tính các tích phân sau:

Bài 47.
$$\int_C (3x-y)ds$$
, C là nửa đường tròn $y=\sqrt{9-x^2}$

Bài 48.
$$\int_C (x-y)ds$$
, C là đường tròn $x^2+y^2=2x$

Bài 49.
$$\int_C y^2 ds$$
, C là đường có phương trình
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t), (0 \le t \le 2\pi, a > 0) \end{cases}$$
Bài 50. $\int_C \sqrt{x^2 + y^2} ds$, C là đường cong
$$\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t - t \cos t), (0 \le t \le 2\pi, a > 0) \end{cases}$$

Bài 50.
$$\int_{C} \sqrt{x^2 + y^2} ds$$
, C là đường cong
$$\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t - t \cos t), (0 \le t \le 2\pi, a > 0) \end{cases}$$

4.2 Tích phân đường loại 2

Tính các tích phân sau:

Bài 51. $\int_{AB} (x^2 - 2xy)dx + (2xy - y^2)dy$, trong đó AB là cung Parabol $y = x^2$ từ A(1;1) đến B(2;4)

Bài 52. $\int_C (2x-y)dx + xdy$, trong đó C là đường cong $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ theo chiều tăng của $t, (0 \le t \le 2\pi, a > 0)$

Bài 53. $\int_{ABCA} 2(x^2 + y^2)dx + x(4y + 3)dy$, trong đó ABCA là đường gấp khúc đi qua A(0;0), B(1;1), C(0;2)

Bài 54. $\int_{ABCDA} \frac{dx+dy}{|x|+|y|}$, trong đó ABCDA là đường gấp khúc đi qua A(1;0), B(0;1), C(-1;0), D(0;-1)

Bài 55. Tính tích phân sau

$$\int_C (xy + x + y)dx + (xy + x - y)dy$$

bằng hai cách: tính trực tiếp, tính nhờ công thức Green rồi so sánh các kết quả, với C là đường:

a)
$$x^2 + y^2 = R^2$$

b)
$$x^2 + y^2 = 2x$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a, b > 0)$$

Bài 56.
$$\oint_{x^2+y^2=2x} x^2(y+\frac{x}{4})dy - y^2(x+\frac{y}{4})dx$$

Bài 57. $\oint e^x[(1-\cos y)dx-(y-\sin y)dy]$, trong đó OABO là đường gấp khúc qua O(0;0), A(1;1), B(0;2)

Bài 58.
$$\oint_{x^2+y^2=2x} (xy+e^x\sin x+x+y)dx-(xy-e^{-y}+x-\sin y)dy$$

Bài 59. $\oint_C (xy^4 + x^2 + y\cos(xy))dx + (\frac{x^3}{3} + xy^2 - x + x\cos(xy))dy, \text{ trong dó } C \text{ là dường cong}$ $\begin{cases} x = a\cos t \\ y = a\sin t, (a > 0) \end{cases}$

Bài 60. Dùng tích phân đường loại 2 tính diện tích của miền giới hạn bởi một nhịp cycloid : $x = a(t - \sin t), y = a(1 - \cos t)$ và trục Ox, (a > 0).

Bài 61.
$$\int_{(-2;-1)}^{(3;0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy$$

Bài 62.
$$\int_{(1,\pi)}^{(2;2\pi)} (1 - \frac{y^2}{x^2} \cos \frac{y}{x}) dx + (\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}) dy$$

Bài 63. Tính tích phân đường

$$I = \int_{L} (3x^{2}y^{2} + \frac{2}{4x^{2} + 1})dx + (3x^{3}y + \frac{2}{y^{3} + 4})dy$$

trong đó L là đường cong $y = \sqrt{1 - x^4}$ đi từ A(1,0) đến B(-1,0).

Bài 64. Tìm hằng số α để tích phân sau không phụ thuộc vào đường đi trong miền xác định

$$\int_{AB} \frac{(1-y^2)dx + (1-x^2)dy}{(1+xy)^{\alpha}}.$$

Bài 65. Tìm hằng số a, b để biểu thức : $(y^2 + axy + y\sin(xy))dx + (x^2 + bxy + x\sin(xy))dy$ là vi phân toàn phần của một hàm số u(x,y) nào đó. Hãy tìm hàm số u(x,y) đó.

Bài 66. Tìm hàm số h(x) để tích phân

$$\int_{AB} h(x)[(1+xy)dx + (xy+x^2)dy]$$

không phụ thuộc vào đường đi trong miền xác định. Với h(x) vừa tìm được, hãy tính tích phân trên từ A(2;0) đến B(1;2).

Bài 67. Tìm hàm số h(xy) để tích phân

$$\int_{AB} h(xy)[(y+x^3y^2)dx + (x+x^2y^3)dy]$$

không phụ thuộc vào đường đi trong miền xác định. Với h(xy) vừa tìm được, hãy tính tích phân trên từ A(1;1) đến B(2;3).

Tích phân mặt

5.1 Tích phân mặt loại I

Tính các tích phân mặt loại 1 sau đây

Bài 68.
$$\iint_S (z+2x+\frac{4y}{3})dS$$
, trong đó

$$S = \{(x, y, z) : \frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1, x \ge 0, y \ge 0, z \ge 0\}$$

Bài 69.
$$\iint_S (x^2 + y^2) dS$$
, trong đó $S = \{(x, y, z) : z = x^2 + y^2; 0 \le z \le 1\}$

Bài 70.
$$\iint_S z dS$$
, trong đó $S = \{(x, y, z) : y = x + z^2, 0 \le x \le 1, 0 \le z \le 1\}$

Bài 71.
$$\iint\limits_{S}\frac{dS}{(1+x+y+z)^2}, \text{ trong đó }S \text{ là biên của tứ diện }x+y+z\leq 2, x\geq 0, y\geq 0, z\geq 0$$

5.2 Tích phân mặt loại 2

Tính các tích phân mặt loại 2 sau đây

Bài 72. $\iint_S z(x^2+y^2)dxdy$, trong đó S là nửa mặt cầu: $x^2+y^2+z^2=1,\ z\geq 0$, hướng của S là phía ngoài mặt cầu

Bài 73. $\iint_S y dz dx + z^2 dx dy$, trong đó S là phía ngoài của mặt ellipsoid $x^2 + \frac{y^2}{4} + z^2 = 1$, $x \ge 0, y \ge 0, z \ge 0$

Bài 74. $\iint_S x^2 y^2 z dx dy$, trong đó S là mặt trên của nửa mặt cầu $x^2 + y^2 + z^2 = R^2, z \leq 0$

Bài 75. $\iint\limits_{S}(y+z)dxdy,$ trong đó S là phía trên của mặt $z=4-4x^2-y^2$ với $z\geq 0$

Bài 76. $\iint_S x^3 dy dz + y^3 dz dx + z^3 dx dy, \text{ trong đó } S \text{ là phía ngoài của mặt cầu}$ $x^2 + y^2 + z^2 = R^2$

Bài 77.
$$\iint\limits_{S}y^{2}zdxdy+xzdydz+x^{2}ydzdx, \text{ trong đó }S\text{ là phía ngoài của miền }\begin{cases}x^{2}+y^{2}\leq 1, 0\leq z\leq x^{2}+y^{2}\\x\geq 0, y\geq 0\end{cases}$$

Bài 78. $\iint\limits_{S} x dy dz + y dz dx + z dx dy, \text{ trong d\'o } S \text{ là phía ngoài của miền } \begin{cases} (z-1)^2 \geq x^2 + y^2 \\ a \leq z \leq 1 \end{cases}$

Bài 79. Dùng công thức Stoke tính tích phân đường $\int_C (x+y^2)dx + (y+z^2)dy + (z+x^2)dz$, trong đó C là biên của tam giác với các đỉnh (1;0;0),(0;1;0),(0;0;1), hướng ngược chiều kim đồng hồ khi nhìn từ trên xuống.

Bài 80. Gọi S là phần mặt cầu $x^2+y^2+z^2=1$ nằm trong mặt trụ $\begin{cases} x^2+x+z^2=0\\ y\geq 0, \end{cases}$ hướng của S là phía ngoài của mặt cầu.

Chứng minh rằng: $\iint_{S} (x-y)dxdy + (y-z)dydz + (z-x)dzdx = 0.$

Lý thuyết trường

Bài 81. Tính đạo hàm theo hướng $\vec{\ell}$ của hàm $u=x^3+2y^3+3z^2+2xyz$ tại điểm A(2;1;1) với $\vec{\ell}=\vec{AB},B(3;2;3).$

Bài 82. Tính môđun của $\overrightarrow{\text{grad}}u$, với $u=x^3+y^3+z^3-3xyz$ tại A(2;1;1). Khi nào thì $\overrightarrow{\text{grad}}u$ vuông góc với Oz, khi nào thì $\overrightarrow{\text{grad}}u=0$?

Bài 83. Tính $\overrightarrow{\operatorname{grad}}u$, với

$$u=r^2+\frac{1}{r}+\ln r$$
trong đó $r=\sqrt{x^2+y^2+z^2}$

Bài 84. Theo hướng nào thì sự biến thiên của hàm số

$$u = x \sin z - y \cos z$$

từ gốc O(0,0,0) là lớn nhất?

Bài 85. Tính góc giữa hai vector $\overrightarrow{\text{grad}}z$ của các hàm số

$$z = \sqrt{x^2 + y^2}$$
$$z = x - 3y + \sqrt{3xy}$$

tại (3; 4).

Bài 86. Trong các trường sau đây, trường nào là trường thế? Tìm hàm thế vị (nếu có).

a)
$$\vec{F} = 5(x^2 - 4xy)\vec{i} + (3x^2 - 2y)\vec{j} + \vec{k}$$

b)
$$\vec{F} = (yz - 3x^2)\vec{i} + xz\vec{j} + (xy + 2)\vec{k}$$

c)
$$\vec{F} = (x+y)\vec{i} + (x+z)\vec{j} + (z+y)\vec{k}$$

d)
$$\vec{F} = C \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{(x^2 + y^2 + z^2)^3}}, C \neq 0$$
 là hằng số

e)
$$\vec{F} = (\arctan z + 4xyz)\vec{i} + (2x^2z - 3y^2)\vec{j} + (\frac{x}{1+z^2} + 2x^2y)\vec{k}$$

Bài 87. Cho $\vec{F}=xz^2\vec{i}+yx^2\vec{j}+zy^2\vec{k}$. Tính thông lượng của \vec{F} qua mặt cầu $S:x^2+y^2+z^2=1$, hướng ra ngoài.

Bài 88. Cho $\vec{F} = x(y+z)\vec{i} + y(z+x)\vec{j} + z(x+y)\vec{k}$, L là giao tuyến của mặt trụ $x^2 + y^2 + y = 0$ và nửa mặt cầu $x^2 + y^2 + z^2 = 2$, $z \ge 0$. Chứng minh rằng lưu số của \vec{F} dọc theo L bằng 0.

Viên Toán ứng dung và Tin học

