

Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

Zhenhua Tian¹, Cara A.C. Leckey², Lingyu Yu¹

¹ Department of Mechanical Engineering, University of South Carolina, Columbia, SC ²Nondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA

Outline

- Background and overview
- Beamforming in anisotropic composite laminates
 - Generic beamforming formula
 - Array characterization
- Phased array implementation
 - Piezoelectric transducer (PZT)-scanning laser Doppler vibrometer (SLDV) sensing system
- Proof of concept experiment
 - Detection of multiple defects in anisotropic composite plate
- Conclusions

Research Background and Motivation

- Rapid damage inspection in composites
 - Increased use of composites in aerospace vehicles (space and aeronautics)
 - Composites have unique damage types (compared to metallic plates), such as microcracking and delamination

- Critical for ensuring operability and safety of composite structures
- ✓ Imperative for evaluating and certifying the materials, in the development and manufacturing of nextgeneration composite materials

Composite crew module Image from www.nasa.gov

C-scan image of a hidden delamination in a composite plate

Guided Ultrasonic Wave Damage Detection

Guided wave damage detection

- Sensitivity to a variety of damage types
- Traveling a relatively long distance with low energy loss
- Promising detection results on metallic plates

Challenges

- Dispersive and multi-modal
- Guided wave signal: incident, reflection and noise
- Complex wave propagation in anisotropic composite plates
- Additional data analysis is needed for damage diagnosis

A waveform under a narrowband excitation indeed containing (1) an incident A0 wave, (2) a reflected A0 wave, and (3) noise

Directionally dependent wave propagation

Research Overview

State of the art—guided wave phased arrays

- A small number of sensors placed close to each other in a compact format
- Steering of the array output in any desired direction through phase/time delays
- Perform a sweep inspection of the entire structure in a way analogous to radar
- Phased arrays in isotropic plates: Wilcox et al. 2005, Yu and Giurgiutiu 2008; Stepinski 2007; Fromme et al. 2006; Purekar et al. 2004; Kwon et al. 2013

Phased array

Objectives

- Phased array beamforming in anisotropic composites
- Rapid damage detection in anisotropic composites

Our work

- Generic beamforming formula for anisotropic composites
- Phased array implementation using PZT-SLDV system
- Detection of multiple defects in a CFRP plate

Can we multiple defects in an anisotropic composite plate?

Single actuator

Beamforming in Anisotropic Composite Laminates

- Assumptions: far-field, uniform point source
- Based on the traditional delay and sum beamforming
- Unique of this method
 - ✓ Phase delay in frequency domain
 - ✓ Directionally dependent wavenumber and phase velocity are considered
 - \checkmark The energy skew angle β between wavenumber vector \mathbf{k} and group velocity vector \mathbf{c}_q is considered

mth element at $\{\mathbf{p}_m\}$ $u(t,\mathbf{x}) = Ae^{j[\omega t - \mathbf{k} \cdot (\mathbf{x} - \mathbf{p}_m)]}$

Delay and sum beamforming $z(t,\mathbf{x}) = u(t,\mathbf{x}) \sum_{m=0}^{M-1} w_m e^{j\left[\mathbf{k}\cdot\mathbf{p}_m - \frac{\mathbf{A}_m(\theta_S)}{2}\right]}$

Delay
$$\Delta_m(\theta_S) = \mathbf{k}(\omega, \theta_S + \beta_S) \cdot \mathbf{p}_m$$

Beamforming in an Anisotropic $[0_2/90_2]_s$ CFRP Plate

- Test plate: 0.85 mm thick 8-ply CFRP plate with [0₂/90₂]_s layup
- Wave mode: A₀ mode at 90 kHz
- Wavelength: 11 mm ≥λ_{v,min} ≥ 8.0 mm
- Array configuration: 16×16 grid array
- Element spacing: $d_x = d_y = 2 \text{ mm}$

Point source at the origin

$$u(t,\mathbf{x}) = Ae^{j(\omega t - \mathbf{k} \cdot \mathbf{x})}$$

Array beamforming

$$z(t,\mathbf{x}) = u(t,\mathbf{x}) \sum_{m=0}^{M-1} w_m e^{j\left[\mathbf{k}\cdot\mathbf{p}_m - \Delta_m(\theta_S)\right]}$$

Beamforming Factor for Array Characterization

$$\begin{split} &BF(\theta \mid w_{p,q}, \theta_S) \\ &= \frac{1}{PQ} \sum_{p=0}^{P-1} \sum_{q=0}^{Q-1} w_{p,q} e^{j[\mathbf{k}(\omega, \theta + \beta) - \mathbf{k}(\omega, \theta_S + \beta_S)] \cdot \left((p - \frac{P-1}{2})d_x, (q - \frac{Q-1}{2})d_y\right)} \end{split}$$

Phased Array Implementation using PZT-SLDV System

- PZT: to generate guided waves
- Scanning laser Doppler vibrometer (SLDV):
 Scan points are selected from the entire scan area to construct the array
- Higher spatial density and resolution (less than 0.1 mm)
- The scan points can be easily configured in different distribution
 - ✓ Such as linear array, circular array, square array,
 - ✓ For different purposes such as parametric studies and array optimization.

Detection of Multiple Defects in a CFRP Plate (Setup)

- Test plate: 0.85 mm thick 8-ply CFRP plate with [0₂/90₂]_s layup
- Defects: four quartz rods (D₁, D₂, D₃ and D₄) bonded on the plate
- Same distance 100 mm away from the array center
- Different angles 0°, 45°, 90° and 135°

- PZT to generate guided waves
 - Excitation: 3-count tone burst at 90 kHz
- SLDV to measure wavefield in the scanning area
 - Dimensions: 45 mm ×45 mm
 - Resolution: 0.1 mm

Detection in a CFRP Plate

Guided waves measured in the scanning area

SLDV points at selected locations $\{\mathbf{p}_m\}$ Signal at each array point

Delay and sum in frequency domain

Frequency-space representation

Time-space representation

Detection Results

- 31×31 points are chosen from the scanning area to construct a phased array
 - Array configuration: 31×31 grid array
 - Element spacing: $d_x = d_y = 2 \text{ mm}$
 - Array span: $D_x = D_y = 60 \text{ mm}$

Detection of Multiple Defects in a CFRP Plate (Results)

Conclusions

- Generic beamforming formula for anisotropic composites
 - Phase delay in frequency domain
 - Directionally dependent wavenumber and phase velocity are considered
 - The energy skew angle β between wavenumber vector k and group velocity vector c_α is considered
- Detection of multiple defects
 - The dispersion effect is compensated
 - Multiple defects are successfully detected
- Future work
 - Detect delamination damage
 - Enhanced beamforming
 - Directionally dependent wave amplitude A(θ)

Detection of multiple defects

Acknowledgements

 The non-reimbursement space act umbrella agreement SAA1-18124 between South Carolina Research Foundation (SCRF) and the National Aeronautics and Space Administration (NASA) Langley Research Center

 SC NASA EPSCoR Research Grant Program 521192-USCYu

THANK YOU! QUESTIONS?

