Lecture 16: Sample Size and Power

Chapter 4.6

Last Time: Reedie Sleep Example

Tested number of hours of sleep:

- ► H_0 : $\mu = 7$
- ▶ $H_A: \mu > 7$

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► H_0 : $\mu = 7$
- H_A : $\mu \neq 7$

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► $H_0: \mu = 7$
- ► H_A : $\mu \neq 7$

The the p-value would be double: $2 \times 0.007 = 0.014$. Picture:

Say Dr. Quack is conducting a hypothesis tests. They start with $\alpha=\text{0.05}.$

Say Dr. Quack is conducting a hypothesis tests. They start with $\alpha = 0.05$.

They conduct the test and get p-value = 0.09. They then declare "having used an $\alpha = 0.10$, we reject the null hypothesis and declare our results to be significant."

Say Dr. Quack is conducting a hypothesis tests. They start with $\alpha = 0.05$.

They conduct the test and get p-value = 0.09. They then declare "having used an $\alpha=0.10$, we reject the null hypothesis and declare our results to be significant."

What's not honest about this approach?

Say Dr. Quack is conducting a hypothesis tests. They start with $\alpha = 0.05$.

They conduct the test and get p-value = 0.09. They then declare "having used an $\alpha = 0.10$, we reject the null hypothesis and declare our results to be significant."

What's not honest about this approach?

Ronald Fisher, the creator of p-values, never intended for them to be used this way: http://en.wikipedia.org/wiki/P-value#Criticisms

Goals for Today

- ▶ More in depth discussion of
 - ▶ 10% sampling rule
 - Skew condition to check to use the normal model
- How big a sample size do I need?
- Statistical power
- Statistical vs practical significance

Question: Why do we set n to be less than 10% of the population size N?

Question: Why do we set n to be less than 10% of the population size N?

Intuition: Shouldn't we always sample as many people as we can?

Question: Why do we set n to be less than 10% of the population size N?

Intuition: Shouldn't we always sample as many people as we can?

Answer: Yes, if we only care about the mean. If we also care about the SE, then we need to be careful.

Question: Why do we set n to be less than 10% of the population size N?

Intuition: Shouldn't we always sample as many people as we can?

Answer: Yes, if we only care about the mean. If we also care about the SE, then we need to be careful.

Explanation: Recall from HW5 Q1, sampling without replacement from a rooms that are half male/female but with N=10 and N=10000.

Finite Population Correction

We can tie the conceptual and mathematical notions of sampling:

We can tie the conceptual and mathematical notions of sampling:

Conceptual: If we sample everybody, we know the true μ .

We can tie the conceptual and mathematical notions of sampling:

Conceptual: If we sample everybody, we know the true μ .

and

Mathematical: If
$$n = N$$
 then $FPC = \sqrt{\frac{N-n}{N-1}} = 0$ then $SE = \frac{\sigma}{\sqrt{n}} \times FPC = 0$

We can tie the conceptual and mathematical notions of sampling:

Conceptual: If we sample everybody, we know the true μ .

and

Mathematical: If
$$n = N$$
 then $FPC = \sqrt{\frac{N-n}{N-1}} = 0$ then $SE = \frac{\sigma}{\sqrt{n}} \times FPC = 0$

i.e.

- the sampling distribution is just one point: the true μ .
- if we repeat this procedure many times, we get the same value each time: 0 variability.

Sampling and the SE

Question: Why do we care that our SE is correct?

Sampling and the SE

Question: Why do we care that our SE is correct?

Answer: If not

- ▶ the SE in confidence intervals is off
- the z-scores of \overline{x} have the wrong denominator

Throughout the book, they talk about the condition for \overline{x} being nearly normal and using s in place of σ in $SE = \frac{\sigma}{\sqrt{n}}$:

On page 164: the population distribution is not strongly skewed

- On page 164: the population distribution is not strongly skewed
- ▶ On page 167: the data are not strongly skewed

- On page 164: the population distribution is not strongly skewed
- ▶ On page 167: the data are not strongly skewed
- On page 168: the distribution of sample observations is not strongly skewed

- On page 164: the population distribution is not strongly skewed
- On page 167: the data are not strongly skewed
- ➤ On page 168: the distribution of sample observations is not strongly skewed
- ▶ On page 185: the population data are not strongly skewed

However, they all mean the same thing:

However, they all mean the same thing:

1. The true population distribution from which you are drawing your sample observations/data x_1, \ldots, x_n is not too skewed.

However, they all mean the same thing:

- 1. The true population distribution from which you are drawing your sample observations/data x_1, \ldots, x_n is not too skewed.
- 2. The histogram (visual estimate) of the sample observations/data x_1, \ldots, x_n is not too skewed.

Sample Size: Thought Experiment

Say you have two distributions with $\mu=$ 15 but different $\sigma.$

Sample Size: Thought Experiment

Say you have two distributions with $\mu=$ 15 but different $\sigma.$

Which of the two distributions do you think will require a bigger n to estimate μ "well"?

Margin of Error

Recall our formula for a 95% confidence interval:

$$\left[\overline{x} - 1.96 \frac{s}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{s}{\sqrt{n}}\right]$$

Margin of Error

Recall our formula for a 95% confidence interval:

$$\left[\overline{x} - 1.96 \frac{s}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{s}{\sqrt{n}}\right]$$

The margin of error is half the width of the CI.

Margin of Error

Recall our formula for a 95% confidence interval:

$$\left[\overline{x} - 1.96 \frac{s}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{s}{\sqrt{n}}\right]$$

The margin of error is half the width of the CI.

Say we knew the true standard deviation σ , then

Margin of Error
$$=1.96\frac{\sigma}{\sqrt{n}}$$

Identify n for a Desired Margin of Error

Identify n for a Desired Margin of Error

Since

Identify n for a Desired Margin of Error

Since

So

Identify n for a Desired Margin of Error

Since

So

• As σ goes up, you need more n

Identify *n* for a Desired Margin of Error

Since

So

- As σ goes up, you need more n
- ▶ As z^* goes up, i.e. higher confidence level, you need more n

Identify *n* for a Desired Margin of Error

Since

So

- As σ goes up, you need more n
- As z^* goes up, i.e. higher confidence level, you need more n
- ▶ As the desired margin of error goes down, you need more *n*

Back to Thought Experiment

For the same desired maximal margin of error m and same confidence level, we need a larger n to estimate the mean of the blue curve:

Type II Error Rate and Power

Type II Error Rate and Power

When rejecting the null hypothesis, we call this a statistically significant result. But statistically significant results aren't always practically significant.

When rejecting the null hypothesis, we call this a statistically significant result. But statistically significant results aren't always practically significant.

Example: say we are comparing the average exam score of men μ_M and women μ_W .

When rejecting the null hypothesis, we call this a statistically significant result. But statistically significant results aren't always practically significant.

Example: say we are comparing the average exam score of men μ_M and women μ_W . We can do a two-sample test:

- $H_0: \mu_M \mu_F = 0$ (same average exam score)
- $H_A: \mu_M \mu_F \neq 0$ (different average exam score)

Say for very large n_M & n_F we observe $\overline{x}_M = 19.0002$ and $\overline{x}_F = 19.0001$.

Say for very large n_M & n_F we observe $\overline{x}_M = 19.0002$ and $\overline{x}_F = 19.0001$.

The point estimate of $\mu_M - \mu_F$ is $\overline{x}_M - \overline{x}_F = 0.0001$. This difference is near negligible, it is still possible to "reject H_0 at an α -significance level."

Say for very large n_M & n_F we observe $\overline{x}_M = 19.0002$ and $\overline{x}_F = 19.0001$.

The point estimate of $\mu_M - \mu_F$ is $\overline{x}_M - \overline{x}_F = 0.0001$. This difference is near negligible, it is still possible to "reject H_0 at an α -significance level."

However, the 95% confidence interval on the difference might look like

[0.00005, 0.00015]

Moral of the story

Moral of the story

▶ Hypothesis tests with "rejections of H_0 " focus almost entirely on statistical significance.

Moral of the story

- ▶ Hypothesis tests with "rejections of H_0 " focus almost entirely on statistical significance.
- Confidence intervals allow you to also focus on practical significance.