Applied Machine Learning with Python

GILBERTO FERREIRA TERUEL

Iº FÓRUM BAIANO DE TECNOLOGIAS ABERTA UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

28 DE NOVEMBRO DE 2017

ORGANIZAÇÃO

- Introdução
- Desenvolvimento de algoritmos
- Tipos de Problemas
- Redes Neurais
- Extra

MACHINE LEARNING

O QUE É MACHINE LEARNING?

• Campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados". Arthur Samuel, 1959.

PROGRAMAÇÃO TRADICIONAL

MACHINE LEARNING

· Tendências e em uso

Reconhecimento de faces

Sistema de Recomenação

Reconhecimento de caracteres

Sistemas de recomendação e busca

Direção Assistida

Filtro anti-SPAM

DESENVOLVIMENTO DE ALGORITMOS

MACHINE LEARNING

DESENVOLVIMENTO DE ALGORITMOS MACHINE LEARNING

Basicamente um programa em machine learning é desenvolvido em 3 principais etapas:

Pré processamento da informação do dataset, construção do modelo e etapa de teste e avalição.

DESENVOLVIMENTO DE ALGORITMOS MACHINE LEARNING

FERRAMENTAS PYTHON

TIPOS DE PROBLEMAS

MACHINE LEARNING

APRENDIZAGEM SUPERVISIONADA

- Modelos que são treinados com dados rotulados (normalmente por humanos Tuplas -> x_train, y_train).
- Após treinado o algoritmo é capaz de receber novos dados (x_test) e calcular qual será o label atribuido a esse dado.
- Classificação e Regressão são os principais subtópicos da aprendizagem supervisionada.

APRENDIZAGEM SUPERVISIONADA

Basicamente um programa em machine learning é desenvolvido em 2 etapas:

Construção do modelo e Etapa de predição.

APRENDIZAGEM NÃO SUPERVISIONADA

- Esses algoritmos são normalmente utilizados para estimar densidades baseando-se em dados não rotulados e onde não é observável uma densidade de probabilidade.
- · Gera agrupamentos "clusters naturais" para que seja possível atribuir rótulos aos grupos.
- Problemas usuais: Clustering, detecção de anomalias, algoritmos de maximização.

APRENDIZAGEM NÃO SUPERVISIONADA

Basicamente um programa em machine learning é desenvolvido em 2 etapas:

• Construção do modelo e Etapa de predição.

APRENDIZAGEM POR REFORÇO – ALGORITMO EVOLUCIONÁRIO

- Algoritmos inspirados no comportamento, voltado para adaptabilidade.
- Nesse tipo de algoritmo é descrito um ambiente e um agente que irá interagir com esse ambiente. Ações são descritas para que esse agente possa interagir com o ambiente. A cada iteração do agente com o ambiente é recebido um prêmio, sendo maior a cada resultado mais próximo do correto. Na iterações seguintes é repetido o caminho anterior para tentar aumentar o prêmio.

GENETIC ALGORITHM - ALGORITMO EVOLUCIONÁRIO

- Algoritmos inspirados no comportamento, voltado para adaptabilidade.
- Nesse tipo de algoritmo é descrito um ambiente e uma população de individuos que irão interagir com esse ambiente. Calculos de fit são computados para avaliação desse individuo, de acordo com o objetivo. A cada iteração desses individuos com o ambiente indivíduos são selecionados probabilisticamente, trocam "genes" com outros indivíduos e alguns desses "genes" são transformados "mutados", então essa nova população criada é realimentada.

REDES NEURAIS

MACHINE LEARNING

REDES NEURAIS ARTIFICIAIS

PERCEPTRON

• Sistemas baseados na biologia neural que constituem o cérebro animal. Esses sistemas aprendem e convergem progressivamente

$$y_k = \phi \left(b_k + \sum_{i=1}^m w_{ki} x_i \right) = \phi \left(\mathbf{x}^T \cdot \mathbf{w}_k \right)$$

EXEMPLOS DE FUNÇÕES DE ATIVAÇÃO

Identity	f(x)=x	f'(x)=1
Binary step	$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$
Logistic (a.k.a. Soft step)	$f(x)=rac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$
TanH	$f(x)= anh(x)=rac{2}{1+e^{-2x}}-1$	$f^{\prime}(x)=1-f(x)^2$
ArcTan	$f(x)= an^{-1}(x)$	$f'(x)=rac{1}{x^2+1}$
Softsign [7][8]	$f(x) = rac{x}{1+ x }$	$f'(x) = rac{1}{(1+ x)^2}$
Inverse square root unit (ISRU) ^[9]	$f(x) = rac{x}{\sqrt{1 + lpha x^2}}$	$f'(x) = \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3$

REDES NEURAIS PROFUNDAS ARTIFICIAIS

- Redes Neurais Profundas são geralmente utilizadas para processamento de dados não supervisionados, exige um alto poder de processamento (paralelo) e geralmente é adereçado GPU's para ese tipo de tarefa.
- Amplamente utilizado para classificação de imagens.

LIMITAÇÕES

• Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled, IEEE, 2015.

EXTRA

RECONHECIMENTO DE FACES

RECONHECIMENTO DE FACES

OVERVIEW PROJETO RECONHECIMENTO DE DOR EM IMAGENS 2D DE RN

RECONHECIMENTO DE FACES

OVERVIEW PROJETO RECONHECIMENTO DE DOR EM IMAGENS 2D

Citações: GUINSBURG, 1999; GRUNAU, 2013; HEIDERICH; LESLIE; GUINSBURG, 2015

MATERIAIS E MÉTODOS

Extração Multivariada de Informação

- Para que seja possível gerar imagens sintéticas, navegando entre as componentes de maior variância nas imagens, é necessário aplicar a técnica PCA.
- Navegando sobre as primeiras principais componentes, gera-se imagens com variâncias características aplicadas sobre a imagem média.

$$y = \bar{x} + j \cdot \sqrt{\lambda_i} \cdot p_i$$

Figura 17

Citações: DALAL; TRIGGS, 2005. Figura 17: Adaptada de FUKUNAGA, 1990.

RESULTADOS PRELIMINARES - PCA

Navegação das variáveis mais expressivas

Figura 43: Variações de luminância.

Figura 44: Variações de boca.

Figura 45: Variações de suconasolabial e boca.

Figura 46: Variações de olhos e posição da cabeça.

Figura: Autor.

RESULTADOS PRELIMINARES - LDA

MUITO OBRIGADO!

Cursos e Materiais Recomendados

Datasets: http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

Redes Neurais: http://playground.tensorflow.org

Cursos:

- Coursera: https://www.coursera.org/specializations/python

-Udemy: https://www.udemy.com/complete-guide-to-tensorflow-for-deep-learning-with-python/learn/v4/t/lecture/7876622?start=18

Scipy: https://www.youtube.com/watch?v=OB1reY6IX-o&t=1247s

Python para Zumbis: https://www.pycursos.com/python-para-zumbis/