

SRM Institute of Science and Technology Ramapuram Chennai

Faculty of Science & Humanities

(A Place for Transformation)

Department of Computer Science and Applications (BCA & BCA-GenAI)

PRACTICAL RECORD

NAME :

REGISTER NUMBER:

COURSE : BCA

SEMESTER / YEAR : V / III

SUBJECT CODE : UCA23501J -

SUBJECTNAME : PYTHON PROGRAMMING

October 2025

SRM Institute of Science and Technology Ramapuram Chennai

Faculty of Science & Humanities

(A Place for Transformation)

Department of Computer Science and Applications (BCA & BCA-GenAI)

REGISTERNUMBER: BONAFIDECERTIFICATE					
STAFFIN-CHARGE	HEAD OF THE DEPARTMENT				
Submitted for the University Practical Examination held at S Technology, Ramapuram Chennai on	SRM Institute of Science and				
INTERNAL EXAMINER 1	INTERNAL EXAMINER 2				

INDEX

Ex.No	Date	Description	Page No	Signature
1		Write a Python code to display system information using pywhois.	1	
2		The Magic 8 Ball is a toy used for fortune-telling or seeking advice.	2	
3		Check whether a number is prime or not	4	
4		Make a Simple Calculator	5	
5		Find the Factorial of a Number	7	
6		Python Program to Generate a Random Number	8	
7		Python Program to Display the multiplication Table	9	
8		Python Program to Convert Decimal to Binary, Octal and Hexadecimal	10	
9		Python Program to Transpose a Matrix	11	
10		Python Program to Multiply Two Matrices	12	
11		Python Program to Check Whether a String is Palindrome or Not	13	
12		Python Program to Sort Words in Alphabetic Order	14	
13		Python Program for Inheritance.	15	
14		Python Program for Operator overloading.	16	
15		Python Program for Exception Handling.	17	
16		Program to read and write text and numbers	18	
17		Using a List to Find the Median of a Set of Numbers Program using sorting and searching	20	
18		When the user enters a statement, the program responds in one of two ways: 1 With a randomly chosen hedge, such as "Please tell me more." 2 By changing some key words in the user's input string and appending this string to a randomly chosen qualifier. Thus, to "My teacher always plays favorites," the program might reply, "Why do you say that your teacher always plays favorites?"	22	
19		Program using classes and methods	25	
20		Program using polymorphism, abstract classes	27	

EX.No.:1 RegNo:
Date: Name:

Write a Python code to display system information using pywhois.

AIM:

To Write a Python code to display system information using pywhois

PROGRAM:

import platform
my_system = platform.uname()
print(f"System: {my_system.system}")
print(f"Node Name: {my_system.node}")
print(f"Release: {my_system.release}")
print(f"Version: {my_system.version}")
print(f"Machine: {my_system.machine}")
print(f"Processor: {my_system.processor}")

OUTPUT:

System: Windows

Node Name: DESKTOP-7ILF0RN

Release: 10

Version: 10.0.19041 Machine: AMD64

Processor: Intel64 Family 6 Model 165 Stepping 5, GenuineIntel

RESULT:

EX.No.: 2 RegNo:
Date: Name:

The Magic 8 Ball is a toy used for fortune-telling or seeking advice.

AIM:

To a python program to generate the Magic 8 Ball is for fortune-telling or seeking advice.

PROGRAM:

```
import random
answers = ['It is certain', 'It is decidedly so', 'Without a doubt', 'Yes -
definitely', 'You may rely on it', 'As I see it, yes', 'Most likely', 'Outlook good', 'Yes Signs point to yes
', 'Reply hazy', 'try again', 'Ask again later', 'Better not tell you now', 'Cannot predict now', 'Concentrat
e and ask again', 'Dont count on it', 'My reply is no', 'My sources say no', 'Outlook not so good', 'Very
doubtful']
print('Hello World, I am the Magic 8 Ball, What is your name?')
name = input()
print('hello ' + name)
def Magic8Ball():
  print('Ask me a question.')
  input()
  print (answers[random.randint(0, len(answers)-1)] )
  print('I hope that helped!')
  Replay()
def Replay():
  print ('Do you have another question? [Y/N] ')
  reply = input()
  if reply == 'Y':
     Magic8Ball()
```

```
elif reply == 'N':
    #exit()
    print('Bye')
else:
    print('I apologies, I did not catch that. Please repeat.')
    Replay()
Magic8Ball()
```

OUTPUT:

```
Hello World, I am the Magic 8 Ball, What is your name? joe
hello joe
Ask me a question.
will i pass this semester?
Very doubtful
I hope that helped!
Do you have another question? [Y/N]
```

RESULT:

N

Bye

EX.No.: 3 RegNo:
Date: Name:

Check whether a number is prime or not

AIM:

To write a program to check whether a number is prime or not in python.

PROGRAM:

```
num = int(input("Enter a number: "))
if num > 1:
    for i in range(2,num):
        if (num % i) == 0:
            print(num,"is not a prime number")
            print(i,"times",num//i,"is",num)
            break
        else:
            print(num,"is a prime number")
        else:
            print(num,"is not a prime number")
```

OUTPUT:

Enter a number: 5 5 is a prime number

RESULT:

```
EX.No.: 4
Date:
                                   Make a Simple Calculator
AIM:
     Python Program to Make a Simple Calculator.
PROGRAM:
def add(x, y):
  return x + y
def subtract(x, y):
  return x - y
def multiply(x, y):
  return x * y
def divide(x, y):
  return x / y
print("Select operation.")
print("1.Add")
print("2.Subtract")
print("3.Multiply")
print("4.Divide")
while True:
```

choice = input("Enter choice(1/2/3/4): ")

RegNo:

Name:

```
if choice in ('1', '2', '3', '4'):
     num1 = float(input("Enter first number: "))
     num2 = float(input("Enter second number: "))
     if choice == '1':
       print(num1, "+", num2, "=", add(num1, num2))
     elif choice == '2':
       print(num1, "-", num2, "=", subtract(num1, num2))
     elif choice == '3':
       print(num1, "*", num2, "=", multiply(num1, num2))
     elif choice == '4':
       print(num1, "/", num2, "=", divide(num1, num2))
  else:
     print("Invalid Input")
OUTPUT:
Select operation.
1.Add
2.Subtract
3.Multiply
4.Divide
Enter choice(1/2/3/4): 1
Enter first number: 23
Enter second number: 45
23.0 + 45.0 = 68.0
```

RESULT:

EX.No.: 5 RegNo:
Date: Name:

Find the Factorial of a Number

AIM:

To write a python program for Finding the Factorial of a Number.

PROGRAM:

```
num = int(input("Enter a number: "))
factorial = 1
# check if the number is negative, positive or zero
if num < 0:
    print("Sorry, factorial does not exist for negative numbers")
elif num == 0:
    print("The factorial of 0 is 1")
else:
    for i in range(1,num + 1):
        factorial = factorial*i
print("The factorial of",num,"is",factorial)</pre>
```

OUTPUT:

Enter a number: 5

The factorial of 5 is 120

RESULT:

EX.No.: 6 RegNo:
Date: Name:

Python Program to Generate a Random Number

AIM:

To write a python Program for generating a Random Number

PROGRAM:

```
import random
x=int(input("Enter a number to Predict "))
y=random.randint(0,9)#single
if x==y:
    print("Exact Prediction ",x)
elif (x-y) ==1:
    print("Ohhh!Missed By One ", y)
else:
    print("Prediction dose not match ",y)
```

OUTPUT:

Enter a number to Predict 7

Prediction dose not match 58

RESULT:

EX.No.: 7 RegNo:

Date: Name:

Python Program to Display the multiplication Table

AIM:

TO write a Python Program for Displaying the multiplication Table.

PROGRAM:

x=int(input("Enter a number to generate a table"))

for i in range(1,11):

$$print("{0} * {1} = {2}".format(i,x,i*x))$$

OUTPUT:

Enter a number to generate a table 5

1 * 5 = 5

2 * 5 = 10

3 * 5 = 15

4 * 5 = 20

5 * 5 = 25

6 * 5 = 30

7 * 5 = 35

8 * 5 = 40

9 * 5 = 45

10 * 5 = 50

RESULT:

EX.No.: 8 RegNo:
Date: Name:

Python Program to Convert Decimal to Binary, Octal and Hexadecimal

AIM:

To Write a Python Program for Converting Decimal to Binary, Octal and Hexadecimal

PROGRAM:

```
dec = int(input())
print("The decimal value Entered ", dec, "is:")
print(bin(dec), "in binary.")
print(oct(dec), "in octal.")
print(hex(dec), "in hexadecimal.")
```

OUTPUT:

98

The decimal value Entered 98 is:

0b1100010 in binary.

0o142 in octal.

0x62 in hexadecimal.

RESULT:

EX.No.:9 Date: Python Program to Transpose a Matrix AIM: TO WRITE A Python Program FOR Transposing a Matrix **PROGRAM:** X = [[12,7],[4,5], [3,8]] result = [[0,0,0],[0,0,0]]# iterate through rows for i in range(len(X)): # iterate through columns for j in range(len(X[0])): result[j][i] = X[i][j]for r in result: print(r) **OUTPUT:** [12, 4, 3][7, 5, 8]

RegNo:

Name:

RESULT:

EX.No.: 10 RegNo:
Date: Name:

Python Program to Multiply Two Matrices

AIM:

To write a Python Program for Multiplying Two Matrices.

PROGRAM:

```
X = [[12,7,3],
  [4,5,6],
  [7,8,9]]
# 3x4 matrix
Y = [[5,8,1,2],
  [6,7,3,0],
  [4,5,9,1]]
# result is 3x4
result = [[0,0,0,0],
      [0,0,0,0],
      [0,0,0,0]
for i in range(len(X)):
  for j in range(len(Y[0])):
    for k in range(len(Y)):
       result[i][j] += X[i][k] * Y[k][j]
for r in result:
 print(r)
```

OUTPUT:

```
[114, 160, 60, 27]
[74, 97, 73, 14]
[119, 157, 112, 23]
```

RESULT:

EX.No.: 11 RegNo:
Date: Name:

Python Program to Check Whether a String is Palindrome or Not

AIM:

To write a Python Program for Checking Whether a String is Palindrome or Not

PROGRAM:

```
x = "malayalam"
w = ""
for i in x:
    w= i + w #mal

if (x == w):
    print("Yes it is palindrome")
else:
    print("No, it is NOT palindrome")
```

OUTPUT:

Yes it is palindrome

RESULT:

EX.No.: 12 RegNo:
Date: Name:

Python Program to Sort Words in Alphabetic Order

AIM:

To write a Python Program for Sorting Words in Alphabetic Order

PROGRAM:

```
my_str = input("Enter a string: ")
words = [word.lower() for word in my_str.split()]
words.sort()
print("The sorted words are:")
for word in words:
    print(word)
```

OUTPUT:

Enter a string: I love Python an easy language to code

The sorted words are:

an

code

easy

i

language

love

python

to

RESULT:

EX.No.: 13 RegNo:
Date: Name:

Python Program for Inheritance.

AIM:

To write a program for implementing inheritance Python

PROGRAM:

```
class addition:

def __init__(self,x,y):
    self.x=x
    self.y=y

def addi(self,x,y):
    return (x+y)

#object creation process
a=int (input("Enter a first Number: "))
b=int (input("Enter a second Number: "))
obj =addition(a,b)
print("Addition of two numbers : ",obj.addi(a,b))
```

OUTPUT:

Enter a first Number: 5
Enter a second Number: 7
Addition of two numbers: 12

RESULT:

EX.No.: 14 RegNo: Date: Name:

Python Program for Operator overloading.

AIM:

Python program To implement Operator overloading.

PROGRAM:

```
class A:
  def __init__(self, a):
    self.a = a
  # adding two objects
  def __add__(self, o):
    return self.a + o.a
ob1 = A(1)
ob2 = A(2)
ob3 = A("Python")
ob4 = A("overloading")
print(ob1 + ob2)
print(ob3 + ob4)
OUTPUT:
```

3

Pythonoverloading

RESULT:

EX.No.: 15 RegNo:
Date: Name:

Python Program for Exception Handling.

AIM:

To write a Python Program for implementing Exception Handling.

PROGRAM:

```
a=int (input("Enter a first Number: "))
b=int (input("Enter a second Number: "))
try:
    k = a//b
    print(k)

except ZeroDivisionError:
    print("Can't divide by zero")
else:
    print(k)
finally:
    print('Program closed')
```

OUTPUT:

Enter a first Number: 5
Enter a second Number: 0
Can't divide by zero
Program closed

RESULT:

EX.No.: 16 RegNo:

Date: Name:

Program to read and write text and numbers

Aim:

To write a python program to read and write text and numbers

Program:

```
f = open("sample.txt", "w")
integer = 10
f.write(str(integer))

a="hello"
f.write(str(a))
with open('sample.txt') as f:
    contents = f.read()
    print(contents)
f.close()
```

output

Input:

Output:

```
C→ 10hello
```

Result:

Thus the above program has been executed successfully.

EX.No.: 17 RegNo:
Date: Name:

Using a List to Find the Median of a Set of Numbers Program using sorting and searching

Aim:

To write a program using a List to Find the Median of a Set of Numbers Program using sorting and searching]

Program:

```
def get_median(ls):
    # sort the list

ls_sorted = ls.sort()

# find the median

if len(ls) % 2 != 0:

# total number of values are odd

# subtract 1 since indexing starts at 0

m = int((len(ls)+1)/2 - 1)

return ls[m]

else:

m1 = int(len(ls)/2 - 1)

m2 = int(len(ls)/2)

return (ls[m1]+ls[m2])/2
```

create a list

ls = [3, 1, 4, 9, 2, 5, 3, 6]

get the median

print(get_median(ls))

Screenshot:

Input:

```
def get_median(ls):
····#·sort·the·list
····ls_sorted·=·ls.sort()
···#·find·the·median
····if·len(ls)·%·2·!=·0:
·····#·total·number·of·values·are·odd
·····# subtract 1 since indexing starts at 0
\cdots \cdots m = \inf((len(ls)+1)/2 - \cdot 1)
----return-ls[m]
····else:
\cdots \cdots m1 = int(len(ls)/2 - \cdot 1)
\cdots \cdots m2 = int(len(ls)/2)
·····return·(ls[m1]+ls[m2])/2
#-create-a-list
1s = (3, \cdot 1, \cdot 4, \cdot 9, \cdot 2, \cdot 5, \cdot 3, \cdot 6]
# get the median
print(get_median(ls))
```

3.5

Output:

3.5

Result:

Thus the above program has been executed successfully.

```
EX.No.: 18
                                                        RegNo:
Date:
                                                        Name:
               CASE STUDY Example for Dictionary, list String Literals
Aim:
               To write a python Program to implement case study for given scenario.
Program:
import random
hedges=("Please tell me more", "Many of my patient tell me the same thing", "Please continue
")
quantifiers=("why do you say that", "you seem to think that", "Can you explain why")
replacements={"I":"you","me":"you","my":"your","we":"you","us":"you","mine":"yours"}
def reply(sentence):
 probablity=random.randint(1,4)
 if probablity==1:
   return random.choice(hedges)
 else:
  return random.choice(quantifiers)+changePerson(sentence)
def changePerson(sentence):
 words=sentence.split()
 replyWords=[]
 for word in words:
  replyWords.append(replacements.get(word,word))
```

```
return "".join(replyWords)

def main():

print("good morning, I hope well today")

print("what can I do for you")

sentence=input("\n>>")

while sentence.upper() !="QUIT":

print(reply(sentence))

sentence=input("\n>>")

print("have a nice day")

main()
```

Screenshot:

Input:

```
import random
hedges=("Please tell me more", "Many of my patient tell me the same thing", "Please continue")
quantifiers=("why do you say that", "you seem to think that", "Can you explain why")
replacements=("T":"you", "me":"you", "my":"your", "we":"you", "us":"you", "mine":"yours"}
def reply(sentence):
    probablity==1:
        return random.choice(hedges)
    else:
        return random.choice(quantifiers)+changePerson(sentence)

def changePerson(sentence):
    words=sentence.split()
    replyWords=[]
    for word in words:
        replyWords.append(replacements.get(word,word))
    return "".join(replyWords)

def main():
    print("good morning, I hope well today")
    print("what can I do for you")
    sentence-input("\n>>")
    while sentence.upper() !="QUIT":
        print(reply(sentence))
        sentence-input("\n>>")
        print("have a nice day")

main()
```

Output:

```
good morning, I hope well today
what can I do for you

>>good
you seem to think thatgood

>>QUIT
have a nice day
```

Result:

Thus the above program has been executed successfully.

EX.No.: 19 RegNo:
Date: Name:

Program using classes and methods

Aim:

To write the code for creating classes and methods.

Program:

```
class BankAccount:
  def __init__(self, owner, balance=0):
     self.owner = owner
     self.balance = balance
  def deposit(self, amount):
    if amount > 0:
       self.balance += amount
       print(f"Deposited ${amount}")
    else:
       print("Invalid deposit amount")
  def withdraw(self, amount):
    if amount > 0 and amount <= self.balance:
       self.balance -= amount
       print(f"Withdrew ${amount}")
    else:
       print("Invalid or insufficient funds")
  def display_balance(self):
    print(f"{self.owner}'s account balance: ${self.balance}")
```

```
# Sample usage

account1 = BankAccount("Alice", 100)

account1.display_balance()

account1.deposit(50)

account1.withdraw(30)

account1.withdraw(150)
```

Output:

Alice's account balance: \$100

account1.display_balance()

Deposited \$50 Withdrew \$30

Invalid or insufficient funds

Alice's account balance: \$120

Result:

Thus the above program has been executed successfully.

EX.No.: 20 RegNo:
Date: Name:

Program using polymorphism, abstract classes

Aim

To write a Python program that demonstrates polymorphism using abstract classes and abstract methods, where different subclasses provide their own implementation of a common abstract method.

Program

```
from abc import ABC, abstractmethod
# Abstract class
class Shape(ABC):
  # Abstract method (must be implemented by subclasses)
  @abstractmethod
  def draw(self):
    pass
  # Concrete method
  def display(self):
     print("Displaying shape details...")
# Subclass 1
class Circle(Shape):
  def draw(self):
     print("Drawing a Circle")
# Subclass 2
class Rectangle(Shape):
  def draw(self):
```

```
print("Drawing a Rectangle")
# Subclass 3
class Triangle(Shape):
  def draw(self):
     print("Drawing a Triangle")
# Main program
def main():
  # Polymorphism: the same method name works differently for each object
  shapes = [Circle(), Rectangle(), Triangle()]
  for shape in shapes:
     shape.draw()
                     # Calls the subclass-specific method
     shape.display() # Calls the common method from abstract class
                 # Blank line for clarity
    print()
if __name__ == "__main__":
  main()
Output
Drawing a Circle
Displaying shape details...
Drawing a Rectangle
Displaying shape details...
Drawing a Triangle
Displaying shape details...
Result:
```

Thus the above program has been executed successfully.