

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemáticas

MAT1620 Cálculo II

Profesor: Rodrigo Vargas Ayudantes: Cristóbal Matute

Ayudantia Integrales triples

Problema 1

Resuelva usando coordenadas cilíndricas.

a) [15.7.18] $\iiint_E x^3 + xy^2 dV$, donde E es el sólido que yace en el primer octante y debajo de $z = 1 - x^2 - y^2$.

b) [15.7.21] $\iiint_E x^2 dV$, donde E es el sólido que yace dentro del cilindro $x^2+y^2=1$, arriba del plano z=0 y debajo de $z^2=4x^2+4y^2$

c) [15.7.27] $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2+y^2)^{\frac{3}{2}} dz dy dx$

d) [15.7.28] $\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} xyzdzdxdy$

Problema 2

a) [15.8.23] $\iiint_E z dV$, donde E es el sólido que yace entre las esferas $x^2 + y^2 + z^2 = 1$ y $x^2 + y^2 + z^2 = 4$, en el primer octante.

b) [15.7.25] $\iiint_E x^2 dV$, donde E es el sólido acotado por el plano xz y los hemisferios $y = \sqrt{9 - x^2 - z^2}$ y $y = \sqrt{16 - x^2 - z^2}$.

c) [15.8.39] $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} xydzdxdy$.

Problema 4

a) Encuentre el volumen del sólido dentro de la esfera $x^2 + y^2 + z^2 = 4$ y sobre el cono $z = \sqrt{3x^2 + 3y^2}$.