HKUST

MATH 2111 Matrix Algebra and Applications

2022-23 Sample Final Examination	Name:_	
	Student ID:_	
Lecture Section:	-	

Directions:

- This is a closed book examination. No Calculator is allowed in this examination.
- DO NOT open the exam booklet until you are instructed to do so.
- DO NOT detach any pages from this exam booklet, except the last two blank sheets.
- Please switch all mobile phones to silent mode. And all electronic communication devices (e.g. laptops, tablets, smart watches, etc.) must be kept away from your body.
- Please write your name, ID number, and lecture section in the space provided above.
- DO NOT use any of your own scratch paper. Write your name on every scratch paper supplied by the examination, and do not take any scratch paper away after the examination.
- When instructed to open the exam booklet, please check that you have 14 pages of 7 questions.
- Answer all questions. Show an appropriate amount of work for each problem. If you do not show enough work, you will get only partial credit.
- You may write on the backside of the pages, but if you use the backside, clearly indicate that you have done so.
- Please have pens, papers and, in particular, your student ID ready. We will check your ID during the exam.

Please read the following statement and sign your signature.

I have neither given nor received any unauthorized aid during this examination. The answers submitted are my own work.

I understand that sanctions will be imposed, if I am found to have violated the University's regulations governing academic integrity.

Student's Signature :

Question No.	Marks	Out of
Qn. 1		20
Qn. 2		10
Qn. 3		10
Qn. 4		15
Qn. 5		15
Qn. 6		15
Qn. 7		15
Total Marks		100

Qn. 1 (20 marks) Choose a correct option for each question. No justification is required. Each correct answer is worth 2 marks.

(1) Let $A\mathbf{x} = \mathbf{b}$ be a linear system with 20 equations, 15 variables, and 10 basic variables. Then

 $\dim \text{Row} A$ is:

	(A) 0	(B) 5	(C) 10	(D) 15	(E) 20
(2	2) Let A be a $p \times q$	q matrix with rank	A = q. Consider the	e statements:	
	(II) $\mathbf{x} \mapsto A\mathbf{x}$ is (III) $\mathbf{x} \mapsto A^T\mathbf{x}$ i	a one-to-one trans an onto transform s a one-to-one trans s an onto transform	ation. nsformation.		
	The correct stat	sements are:			
	(A) I, III only	(B) I, IV only	(C) II, III only	(D) II, IV only	(E) I, II, III, IV
3	B) Let A, B, E be a	$n \times n$ matrices and	l let E be invertible.	Consider the relation	ns:
	(I)	A = EB (II)	A = BE (III) E	A = B (IV) $AE = A$	=B
	The relation(s)	that guarantee(s)	A being row-equivalent	ent to B is/are:	
	(A) I only	(B) II only	(C) I, III only	(D) II, IV only (E)	I, II, III, IV
(4	1) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ have zero determ		pendent set in \mathbb{R}^3 .	Which of the following	ng 3×3 matrices
	(A) $\begin{bmatrix} 2\mathbf{v}_1 & 3\mathbf{v}_2 \end{bmatrix}$	$4\mathbf{v}_3]$			
	(B) $[\mathbf{v}_1 \ \mathbf{v}_1 + \mathbf{v}_1]$	$\mathbf{v}_2 \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3]$			
		$\mathbf{v}_2 + \mathbf{v}_3 \mathbf{v}_3 + \mathbf{v}_1]$			
	· · ·	$\mathbf{v}_2 - \mathbf{v}_3 \mathbf{v}_3 - \mathbf{v}_1$			
	(E) None of th	e above.			
(5	5) Which of the fo	llowing sets is a su	bspace of $M_{3\times3}$ (the	e vector space of 3 \times	3 matrices)?
	, ,	$M_{3\times3}$: NulA conta	ains \mathbf{e}_1 }.		
		$M_{3\times 3}: \det A = 0\}.$			
		$M_{3\times3}: A^T A = I_3\}.$			
		$M_{3\times3}:A$ is diagonal	alizable}.		
	(E) None of th	e above.			
(6	S) Let A be an $m \times$	n matrix with ran	kA = n < m. Which	of the following state	ements is correct?
	(A) dim Row A	$A > \dim \operatorname{Col} A.$			

- (B) dim Row $A > \dim$ Nul A.
- (C) dim Nul $A > \dim$ Col A.
- (D) dim Nul $A = \dim \operatorname{Col} A$.
- (E) None of the above.
- (7) Let A be an $n \times n$ matrix. If 0 is an eigenvalue of A, then which of the following subspaces, if non-zero, must be an eigenspace of A?
 - (A) $(\text{Row } A)^{\perp}$
- (B) Row A
- (C) $(\operatorname{Col} A)^{\perp}$
- (D) $\operatorname{Col} A$
- (E) None of the pervious.
- (8) Let A, B be an $n \times n$ matrix similar to each other. Which of the following statements is INCORRECT?
 - (A) A, B have the same determinant.
 - (B) A, B have the same rank.
 - (C) A, B have the same nullity.
 - (D) A, B have the same collection of eigenvalues.
 - (E) A, B have the same collection of eigenvectors.
- (9) Let W be a subspace of \mathbb{R}^n and let $\mathbf{u} \in \mathbb{R}^n$. Consider the statements:
 - (I) $\operatorname{proj}_W \mathbf{u} \perp (\mathbf{u} \operatorname{proj}_W \mathbf{u}).$
 - (II) $\operatorname{proj}_{W^{\perp}} \mathbf{u} \perp (\mathbf{u} \operatorname{proj}_{(W^{\perp})} \mathbf{u})$
 - (III) $\operatorname{proj}_W \mathbf{u} \perp \operatorname{proj}_{W \perp} \mathbf{u}$
 - (IV) $(\mathbf{u} \operatorname{proj}_W \mathbf{u}) \perp (\mathbf{u} \operatorname{proj}_{(W^{\perp})} \mathbf{u})$

The correct statements are:

- (A) I, II, III only (B) I, II, IV only (C) I, III, IV only (D) II, III, IV only (E) I, II, III, IV
- (10) Let A be an $m \times n$ matrix and let \mathbf{v} be the orthogonal projection of a vector $\mathbf{u} \in \mathbb{R}^n$ onto ColA. Which of the followings is correct?
 - (A) $A^T \mathbf{u} = \mathbf{0}$.
 - (B) $A^T \mathbf{v} = \mathbf{0}$.
 - (C) $A^T(\mathbf{u} + \mathbf{v}) = \mathbf{0}$.
 - (D) $A^T(\mathbf{u} \mathbf{v}) = \mathbf{0}$.
 - (E) None of the above.

Qn. 2 (10 marks) Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Find A^{-1} .
- (b) Find the matrix X such that $AXA^{-1} = B$.

Qn. 3 (10 marks) Consider a linear system $A\mathbf{x} = \mathbf{b}$ where:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) Check that $A\mathbf{x} = \mathbf{b}$ is inconsistent.
- (b) Find a least squares solution \mathbf{x}_0 to the system $A\mathbf{x} = \mathbf{b}$.
- (c) Find the distance of \mathbf{b} to ColA.

Qn. 4(15 marks) Consider \mathbb{P}_2 , the vector space of polynomials with degree at most 2. Let:

$$\mathcal{B} = \{1 + t, t + t^2, t^2 + 1\}, \qquad p(t) = 1 + t + t^2, \qquad q(t) = 2 + t - t^2.$$

- (a) (4 marks) Verify that \mathcal{B} is a basis for \mathbb{P}_2 .
- (b) (6 markds) Find the coordinate vectors of p(t), q(t) relative to basis \mathcal{B} .
- (c) (2 marks) Let $[r(t)]_{\mathcal{B}} = [1\ 2\ 1]^T$. Find the polynomial r(t).
- (d) (3 marks) Does the r(t) in (c) belong to $\text{Span}\{p(t),q(t)\}$? Why or Why not?

Qn. 5 (15 marks) Let:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

- (a) (10 marks) Diagonalize A, namely, find invertible matrices P, P^{-1} and a diagonal matrix D such that $A = PDP^{-1}$.
- (b) (5 marks) Find a general formula of A^n .

Qn. 6 (15 marks) Let:

$$A = \begin{bmatrix} 4 & 0 & 0 & 1 \\ 0 & 4 & 1 & 0 \\ 0 & 1 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

- (a) (4 marks) Show that \mathbf{v}, \mathbf{w} are both eigenvectors of A. Write down also their eigenvalues.
- (b) (8 marks) Find an orthonormal basis for the eigenspace of A containing (i) \mathbf{v} (ii) \mathbf{w} respectively. [Note: your orthonormal basis should start with the vector \mathbf{v} (or \mathbf{w}).]
- (c) (3 marks) Find an orthogonal matrix P such that $D = P^T A P$ is a diagonal matrix. Write down also the diagonal matrix D.

Qn. 7 (15 marks) Let:

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}, \quad U = \text{Row}A, \quad W = \text{Nul}A, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

- (a) (6 marks) Find $\text{proj}_U \mathbf{v}$.
- (b) (4 marks) Find $\operatorname{proj}_W \mathbf{v}$.
- (c) (5 marks) Let B denote the standard matrix of the orthogonal projection transformation proj_U , and let C denote the standard matrix of the orthogonal projection transformation proj_W . Find B+C.