浙江大学 2019-2020 学年 秋冬 学期

《离散数学》课程期末考试试卷

课程号: 21120401 开课学院: 计算机学院

考试试卷: ☑ A卷 □ B卷

考试形式: ② 闭卷 □ 开卷, 允许带 ______入场 考试日期: 2020 年 1 月 14 日, 考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生姓名 学号 所属院系 题序 1 2 3 4 5 6 7 8 总分 得分 评卷人

ZHEJIANG UNIVERSITY DISCRETE MATHEMATICS, FALL-WINTER 2019 FINAL EXAM

- 1. (20 pts) Determine whether the following statements are true or false. If it is true fill a $\sqrt{}$ otherwise a \times in the bracket before the statement.
 - (a) () Let A, B, C and D be arbitrary sets, then $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$.
 - (b) () Let A, B be two sets. If $2^A \in 2^B$, then $A \in B$, where 2^X is the power set of X.
 - (c) () Let A, B and C be arbitrary sets. If $2^A \oplus 2^C = 2^B \oplus 2^C$, then A = B, where \oplus denotes symmetric difference.
 - (d) () Let P(x), Q(x) be two predicates, then $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists y Q(y)$.
 - (e) () If exactly one of the assignments 000, 011, 100, and 111 make the propositional formula φ false, then φ can be converted in full disjunctive normal form $\Sigma(0,3,4,7)$.
 - (f) () The set of all functions from \mathbb{N} to \mathbb{N} is uncountable infinite.
 - (g) () Let R be a binary relation. If R is symmetric and transitive, then R is reflexive.
 - (h) () Let (S, \preceq) be a partially ordered set, if there is unique minimal element e of S, then e is the least element of S.
 - (i) () If a graph contains an Hamilton circuit, then it does not have a cut-edge.
 - (j) () Let G be a simple planar graph with e edges, v vertices and r regions, then r = e v + 2.

2. (12 pts) Construct arguments to prove that the following reasoning is valid.

Hypothesis: $\forall x (\forall y (B(x,y) \rightarrow \neg A(y)) \rightarrow \neg C(x))$

Conclusion: $\forall x (C(x) \rightarrow \exists y (A(y) \land B(x,y)))$

3. (12%) Prove that $\mathbb{N} \times \mathbb{N}$ is countable infinite.

4. (10 pts) There are 51 houses on a street. Each house has an address between 1000 and 1099, inclusive. Show that at least two houses have addresses that are consecutive integers.

5. (12 pts) Let F be the set of all propositional formulas involving variables p_1, p_2, \dots, p_n . Define a binary relation \mathcal{R} on F:

 $\forall A, B \in F, A\mathcal{R}B$ if and only if $A \leftrightarrow B$ is a tautology.

- (a) Prove that the binary relation \mathcal{R} on F is an equivalence relation.
- (b) Give a description of the equivalence classes.
- (c) How many different equivalence classes of \mathcal{R} are there?

- 6. (14 pts) Let G = (V, E) be a simple graph. Define its complement \overline{G} as a graph on the vertex set V with an edge set \overline{E} (the complement of E).
 - (a) What is the degree sequence of \overline{G} in terms of the degree sequence of G?
 - (b) An automorphism of a graph G is a permutation of its vertices which preserves adjacency (i.e. $(u,v) \in E \Leftrightarrow (\varphi(u),\varphi(v)) \in E$). Let Aut(G) be a set of automorphisms of G. Show that $Aut(G) = Aut(\overline{G})$.
 - (c) Prove that at least one of G and \overline{G} is connected.

7. (10 pts) Draw all non-isomorphism trees with exactly 7 vertices with maximum degree 3.

- 8. (10 pts) Let S be a set having n elements. Let H be the Hasse diagram for the partial ordering $\{(A, B) \mid A \subseteq B\}$ on the power set of S. Let f_n denote the number of edges in a Hasse diagram representing a set with n element.
 - (a) Compute f_0 , f_1 , f_2 and f_3 .
 - (b) Find a recurrence relation for f_n , and justify your answer.