글	(Class	Alcohol	Malic Acid	Ash	Alcalinity of Ash	Magnesium	Total Phenols	Flavanoids	Nonflavanoid Phenols	Proanthocyanins	Color Intensity	Hue	OD280, of D:
	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	
	1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	
	2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	
	3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	
	4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	

memory usage: 19.6 KB

Gathering information about the dataset using .info() wine_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

Daca	co caming (coca c in co caming)						
#	Column	Non-Null Count	Dtype				
0	Class	178 non-null	int64				
1	Alcohol	178 non-null	float64				
2	Malic Acid	178 non-null	float64				
3	Ash	178 non-null	float64				
4	Alcalinity of Ash	178 non-null	float64				
5	Magnesium	178 non-null	int64				
6	Total Phenols	178 non-null	float64				
7	Flavanoids	178 non-null	float64				
8	Nonflavanoid Phenols	178 non-null	float64				
9	Proanthocyanins	178 non-null	float64				
10	Color Intensity	178 non-null	float64				
11	Hue	178 non-null	float64				
12	OD280/OD315 of Diluted Wines	178 non-null	float64				
13	Proline	178 non-null	int64				
dtypes: float64(11), int64(3)							

Set a seed for the random number generator for reproducibility np.random.seed(0)

```
# Manually constructing an evaluation set of 5 data points.
# We are creating random data for 3 predictors: 'Alcohol', 'Malic Acid', and 'Ash'.
# The random data is drawn from a normal distribution centered around the mean of the actual data, with a spread corresponding t
# This creates a simulated dataset that resembles the properties of the original dataset.
evaluation_set = {
    'Alcohol': np.random.normal(wine_data['Alcohol'].mean(), wine_data['Alcohol'].std(), 5),
    'Malic Acid': np.random.normal(wine_data['Malic Acid'].mean(), wine_data['Malic Acid'].std(), 5),
    'Ash': np.random.normal(wine_data['Ash'].mean(), wine_data['Ash'].std(), 5)
}
```

Convert the dictionary to a pandas DataFrame for easier handling and analysis later on.
evaluation_set_df = pd.DataFrame(evaluation_set)

```
# Simple Linear Regression
# Selecting the predictor variable 'Malic Acid' for the regression model.
# This variable will be used as the independent variable (X) in the model.
X = wine_data['Malic Acid']
# Selecting the target variable 'Alcohol' for the regression model.
# This variable will be predicted by the model and serves as the dependent variable (y).
y = wine_data['Alcohol']
# Adding a constant to the predictor variable.
# This is necessary because statsmodels' OLS does not include a bias term (intercept) by default.
# By adding a constant, we are effectively adding an intercept term to the model.
X_with_constant = sm.add_constant(X)
# Fitting the simple linear regression model using OLS (Ordinary Least Squares).
# 'y' is the target variable, and 'X with constant' contains the predictor with an added constant term.
# The '.fit()' method is used to fit the model to the data, finding the coefficients that minimize the residual sum of squares.
simple_lm_model = sm.OLS(y, X_with_constant).fit()
# Multicollinearity analysis
# Selecting predictors for analysis
predictors = wine_data[['Malic Acid', 'Ash', 'Alcalinity of Ash', 'Magnesium']]
# Adding a constant for intercept in the analysis
predictors_with_constant = sm.add_constant(predictors)
# Calculating VIF for each predictor
# Initialize a DataFrame to store VIF results
vif_data = pd.DataFrame()
# Store the names of the predictors
vif_data["Feature"] = predictors_with_constant.columns
# Calculate VIF for each predictor using a list comprehension
# VIF is calculated for each feature by iterating through all columns
vif_data["VIF"] = [variance_inflation_factor(predictors_with_constant.values, i)
                   for i in range(predictors_with_constant.shape[1])]
# Multiple Linear Regression
# Fitting a multiple linear regression model using Ordinary Least Squares (OLS) method.
# The model uses 'y' as the dependent variable and 'predictors_with_constant' as independent variables.
multiple_lm_model = sm.OLS(y, predictors_with_constant).fit()
# Generating a summary of the multiple linear regression model to review performance metrics and coefficients.
multiple lm summary = multiple lm model.summary()
# Predictions for the evaluation set with multiple predictors
# Selecting initial predictors from the evaluation set.
evaluation_set_multiple_predictors = evaluation_set_df[['Malic Acid', 'Ash']]
# Simulating 'Alcalinity of Ash' and 'Magnesium' for the evaluation set based on original data distribution.
evaluation_set_multiple_predictors['Alcalinity of Ash'] = np.random.normal(wine_data['Alcalinity of Ash'].mean(), wine_data['Alc
evaluation_set_multiple_predictors['Magnesium'] = np.random.normal(wine_data['Magnesium'].mean(), wine_data['Magnesium'].std(),
# Adding a constant term for intercept in predictions.
evaluation_set_multiple_predictors_with_constant = sm.add_constant(evaluation_set_multiple_predictors)
# Predicting 'Alcohol' content using the fitted multiple linear regression model.
evaluation_set_multiple_predictions = multiple_lm_model.predict(evaluation_set_multiple_predictors_with_constant)
# Printing summary of the multiple linear regression model for review.
print(multiple_lm_summary)
```

OLS Regression Results

						:	
Dep. Variable:		Alcohol	R-squared:		0.294		
Model:		0LS	Adj. R-squar	ed:	0.277		
Method:	Least	Squares	F-statistic:		17.98		
Date:	Fri, 23 F	eb 2024	Prob (F-stat	istic):	2.32e-12		
Time:	1	4:46:00	Log-Likeliho	od:	-184.03		
No. Observations:		178	AIC:		378.1		
Df Residuals:		173	BIC:		394.0		
Df Model:		4					
Covariance Type:	no	nrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	11.7846	0.544	21.655	0.000	10.710	12.859	
Malic Acid	0.1383	0.049	2.844	0.005	0.042	0.234	
Ash	1.1045	0.227	4.872	0.000	0.657	1.552	
Alcalinity of Ash	-0.1263	0.018	-6.885	0.000	-0.163	-0.090	
Magnesium	0.0074	0.004	1.900	0.059	-0.000	0.015	
Omnibus:		1.448	Durbin-Watso	======= n:	1.272	:	
Prob(Omnibus):		0.485	Jarque-Bera	(JB):	1.521		
Skew:		-0.207	Prob(JB):		0.467	1	
Kurtosis:		2.817	Cond. No.		1.10e+03	}	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.1e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- # Residual Analysis for Multiple Linear Regression Model
- # Calculate residuals from the model residuals = multiple_lm_model.resid
- # Visualizing the relationship between fitted values and residuals to check assumptions plt.figure(figsize=(12, 5))
- plt.subplot(1, 2, 1)
- # Scatter plot of residuals vs. fitted values
- plt.scatter(multiple_lm_model.fittedvalues, residuals, alpha=0.5)
- # Horizontal line at zero to aid in visualizing deviation
- plt.axhline(y=0, color='red', linestyle='--')
- plt.xlabel('Fitted Values')
- plt.ylabel('Residuals')
- plt.title('Residuals vs Fitted Values')

Text(0.5, 1.0, 'Residuals vs Fitted Values')

Histogram of Residuals
plt.subplot(1, 2, 2)
plt.hist(residuals, bins=20, edgecolor='black')
plt.xlabel('Residuals')
plt.title('Histogram of Residuals')
plt.tight_layout()
plt.show()

Q-Q Plot
fig, ax = plt.subplots(figsize=(6, 4))
sm.qqplot(residuals, line='s', ax=ax)
plt.title('Q-Q Plot of Residuals')
plt.show()


```
# Jarque-Bera Test to assess normality of residuals
# Performing the Jarque-Bera test on the model's residuals
jb_test = sm.stats.jarque_bera(residuals)

# Organizing test results into a dictionary for clarity
jb_test_results = {
    'JB statistic': jb_test[0], # Test statistic
    'p-value': jb_test[1], # P-value for the test
    'Skewness': jb_test[2], # Skewness from the test
    'Kurtosis': jb_test[3] # Kurtosis from the test
}

# Printing the test results to evaluate normality
print(jb_test_results)
```

{'JB statistic': 1.5211796749784372, 'p-value': 0.46739066115532457, 'Skewness': -0.20713928673279716, 'Kurtosis': 2.8170351