QCM n° 12

	QCM -	cocher	une	case	si	la	phrase	qui	suit	\mathbf{est}	correcte.
--	-------	--------	-----	------	----	----	--------	-----	-----------------------	----------------	-----------

Question n°1 \square {1} est une base de \mathbb{C} comme \mathbb{R} -espace vectoriel. \square {i} est une base de \mathbb{C} comme \mathbb{C} -espace vectoriel. \square {i, 1 + i} est une base de \mathbb{C} comme \mathbb{R} -espace vectoriel. \square 1 et i sont \mathbb{C} linéairement indépendants.
Question n°2 On considère les applications suivantes :
$f: \mathbb{R}^3 \to \mathbb{R}^2$ et $g: \mathbb{R}^3 \to \mathbb{R}$ $(x,y,z) \to (x-y,y+2z+a)$ et $(x,y,z) \to (ax+b)(x+y)$.
où a et b sont des réels. \square Pour tout $a \in \mathbb{R}$, f est une application linéaire. \square f est une application linéaire si et seulement si $a = 0$. \square g est une application linéaire si et seulement si $a = b = 0$. \square g est une application linéaire si et seulement si $a = 0$.
Question n°3 Soit E un espace vectoriel et f un projecteur de E , c.à.d. un endomorphisme de E tel que $f^2 = f$. On notera Id l'identité de E . \Box f est injective. \Box $Id - f$ est un projecteur de E . \Box $E = \ker f \oplus \operatorname{Im} f$. \Box $\operatorname{Im} f = \ker(Id - f)$.
Question n°4 Dans $\mathbb{R}_3[X]$, l'ensemble des polynômes à coefficients réels de degré ≤ 3 , or considère les polynômes $P_1 = X^3 + 1$, $P_2 = P_1'$ (la dérivée de P_1) et $P_3 = P_1''$ (la dérivée seconde de P_1). \square Le rang de la famille $\{P_1, P_3\}$ est 3. \square $\{P_1, P_2, P_3\}$ est une famille génératrice de $\mathbb{R}_3[X]$. \square $\{P_1, P_2, P_3\}$ est une famille libre de $\mathbb{R}_3[X]$. \square Le rang de la famille $\{P_1, P_2, P_3\}$ est 3.
Question n°5 Soit n un entier ≥ 3 et $E = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n ; x_1 = x_2 = \dots = x_n\}$. $\square \dim E = n - 1$. $\square \dim E = n$. $\square \dim E = 1$. $\square E = \mathbb{R}$.

Question n°6 Soit X une variable aléatoire à valeurs dans $\{0,1,2\}$ et de loi donnée par

$$\mathbb{P}(X = 0) = \mathbb{P}(X = 2) = a \text{ et } \mathbb{P}(X = 1) = 1 - 2a$$

où a est une constante réelle.

Quelles valeurs la constante a a-t-elle le droit de prendre ?

- \square Toutes les valeurs de]0,1[car $\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)=1.$
- \square Seulement la valeur a=1/4.
- \square Toutes les valeurs de]0, 1/2[.
- ☐ Une autre réponse que les précédentes.

Quel est le graphe de la fonction de répartition de X parmi les graphes suivants ?

- \square Le premier.
- \square Le second.
- \square Le troisième.

Que valent l'espérance et la variance de X?

- $\square \mathbb{E}(X) = 1 \text{ et } Var(X) = 1 + 2a.$
- $\square \mathbb{E}(X) = 2a \text{ et } Var(X) = 4a^2.$
- $\square \mathbb{E}(X) = 1 \text{ et } Var(X) = 2a.$

On pose Y=4-2X. Sans déterminer la loi de Y, peut-on calculer l'espérance et l'écart-type de Y ?

- \square Oui, ils valent respectivement 2 et $\sqrt{8a}$.
- \square Oui, ils valent respectivement 2 et $\sqrt{4(1-a)}$.
- \square Oui, ils valent respectivement 4(1-a) et 4a.
- ☐ Oui, mais aucune des propositions précédentes n'est correcte.
- \square Non, il nous faut nécessairement la loi pour calculer ces caractéristiques de Y.

Question n°7 Soit $\mathscr E$ une expérience aléatoire et Ω l'univers qui lui a été associé. Soient A et B deux événements de probabilités respectives 0.5 et 0.6 . \square A est inclus dans B car $\mathbb P(A) \leqslant \mathbb P(B)$.
\square A et B ne peuvent pas être incompatibles car $\mathbb{P}(A) + \mathbb{P}(B) = 1.1 > 1$. \square Il est impossible que A et B soient indépendants si A implique B. \square O est indépendant de tout autre événement.
□ Deux événements quelconques (mais non impossibles) ne peuvent être simultanément incompatibles et indépendants.
Supposons maintenant que $\mathbb{P}(A \cup B) = 4/5$. A et B sont-ils indépendants ? \Box Oui.
 □ Non. □ On ne peut pas se prononcer car on ne dispose pas de P(A ∩ B). □ On ne peut pas se prononcer car on ne dispose pas de détails sur l'expérience, sur Ω, A et B.
Question n°8 On considère le système d'équations, d'inconnue $(x,y,z)\in\mathbb{R}^3$ et de paramètre un réel m : $ (\mathtt{S}) \left\{ \begin{array}{rcl} x-y-z &=& 1\\ -x+2y-mz &=& -3\\ 2x-y+(m-1)z &=& 2m+2. \end{array} \right. $
$\Box (S) \Leftrightarrow \begin{cases} x - y - z &= 1 \\ y - (m+1)z &= -2 \\ (m+1)z &= m+1. \end{cases}$ $\Box \text{ Pour tout réel } m, \text{ (S) admet une infinité de solutions.}$ $\Box \text{ Si } m = -1, \text{ (S) n'admet pas de solution.}$ $\Box \text{ Si } m \neq -1, \text{ (S) admet une unique solution.}$
Question n°9 Soit A une matrice de rang r . \square A admet r vecteurs colonnes linéairement indépendants. \square \square Toute famille contenant r vecteurs colonnes de A est libre. \square Toute famille contenant r vecteurs lignes de A est libre.

Question n°10 On considère $M_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels muni des deux bases $\mathcal{B} = \{A_1, A_2, A_3, A_4\}$ et $\mathcal{B}' = \{B_1, B_2, B_3, B_4\}$, où

$$A_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

$$B_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, B_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, B_4 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}.$$

On notera P la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' et Q la matrice de passage de la base \mathcal{B}' à la base \mathcal{B} .

Définition : Soit E un espace vectoriel muni de deux bases \mathcal{B} et \mathcal{B}' . La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' est la matrice de l'identité de E de la base \mathcal{B}' à la base \mathcal{B} . Autrement dit, c'est la matrice dont la jième colonne est constituée des coordonnées du jième vecteur de la base \mathcal{B}' dans la base \mathcal{B} .

$$\square P = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

$$\square \ Q = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \end{array} \right).$$