SRN		

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE17MA151

END SEMESTER ASSESSMENT B.TECH. II SEMESTER - December 2018 UE17MA151- ENGINEERING MATHEMATICS-II

Tim	: 3 Hrs Answer All Questions Max Marks: 100	7
		7
b)	transforms, $f(t) = \begin{cases} \sin t & 0 \le t < \pi \\ \sin 2t & \pi \le t < 2\pi \\ \sin 3t & t \ge 2\pi \end{cases}$	7
c)	If $f(t)$ is a periodic function with period T , show that $L[f(t)] = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt.$	6
2. a)	Find the Laplace inverse of $\frac{s}{s^4 + 4a^4}$.	7
b)	Find $L^{-1} \left[s \log \left(\frac{s+4}{4} \right) \right]$.	7
c	Using Laplace transform method, solve the initial value problem $y'' + 3y' - 10y = 4\delta(t-2)$; $y(0) = 2$, $y'(0) = -3$.	6
3. a	If α and β are the roots of $J_n(ax) = 0$, then show that $\int_0^a x J_n(\alpha x) J_n(\beta x) dx = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \frac{a^2}{2} [J_{n+1}(\alpha a)]^2 & \text{if } \alpha = \beta \end{cases}$	9
1	Express $\int_{1}^{1} \sqrt{-\log x} dx$ in terms of beta function and hence evaluate.	5
	f and f such that $F = (axy + z)l + (3x - 2)f$	
4.	irrotational. Also find a scalar function ϕ such that $F = \sqrt{\phi}$.	
	A surface S consists of that part of the cylinder $x = 0$ and $z = 4$. Verify Stokes $y \ge 0$ and the two semi-circles of radius 3 in the planes $z = 0$ and $z = 4$. Verify Stokes	
	theorem where $\vec{F} = zi + xyj + xzk$. If V is the region in first octant bounded by $y^2 + z^2 = 9$, and plane $x = z$ and $\vec{F} = 2x^2y\hat{i} - y^2\hat{j} + 4xz^2\hat{k}$, then evaluate $\iiint_V \nabla \cdot \vec{F} dV$.	1

[<u>-</u>		SRN					
5.	a)	Find the Fourier series for the function $f(x) = \begin{cases} 1+2x & -3 \le x \le 0 \\ 1-2x & 0 \le x \le 3 \end{cases}$ and hence deduce					
		that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.					
	b)						
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7				
5	(c)	c) Prove that in the interval $0 < x < 2$, $x = 1 - \frac{8}{\pi^2} \left\{ \cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \frac{1}{5^2} \cos \frac{5\pi x}{2} + \right\}.$					
		Deduce that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = \frac{\pi^4}{96}$. Hence determine the sum S of the series					
		$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} +$	6				