Project Design Phase-I

Proposed Solution Template

Date	17/10/22
Team ID	PNT2022TMID16722
Project Name	Project – NYC Bike Share System
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem	The government needs a way to
	to be solved)	analyze the NYC bike share system so
		that they can enhance the system
		and give residents and visitors a fun,
		safe, affordable and convenient
		alternative to walking, taxis, buses
		etc.
2.	Idea / Solution description	The goal of this analysis is to create
		an operating report of Citi Bike for
		the year 2018. We are going to
		create different types of data
		visualizations using the various
		features of IBM Cognos Analytics so
		that the user can better understand
		the results of the analysis. It
		integrates reporting,

		modeling, analysis, dashboards etc. so
		that the users can understand the
		available data, and make effective
		decisions. It includes predictive,
		descriptive, and exploratory
		techniques and provides an intuitive
		and straightforward interface that is
		easy to understand. Python's
		analytical functions can also be used
		for generating descriptive statistics
		and visualizations can also be created
		using Python's visualization libraries
3.	Novelty / Uniqueness	Our solution gives faster results,
		reduces maintenance due to
		complete report coverage, and
		improved decision making - our
		reports and dashboards present the
		data in easily-understood formats
4.	Social Impact / Customer	Bike share engages riders in physical
	Satisfaction	activity, beneficial to health. In
		addition, it promotes green mobility
		and contributes to carbon neutrality.
		This analysis will help in
		understanding the association
		between bike share usage and the
		environment which is essential for
		system management and urban
		transportation planning.

5.	Business Model (Revenue	This analysis might show that bike
	Model)	share is a relatively inexpensive and
		quick-to- implement urban
		transportation option compared to
		other transportation modes. The
		relative cost of launching a bikeshare
		system is less than investments in
		other transportation infrastructure,
		such as public transit and highways.
6.	Scalability of the Solution	This analysis presents evidence of the
		possible contribution of bike sharing
		systems to a more resilient transport
		system, as it can quickly provide
		alternative transport options to
		urban residents. As moredata
		becomes available, particularly in
		otherareas with identically
		comprehensive bike sharing systems,
		a clearer picture of the role of this
		transport mode in these emergency
		situations can be better evaluated by
		this analysis and provide results with
		an increased accuracy.