Rendu TP3

Zineb Slam, Oumaima Talouka

2 juin 2017

1 Classifieur euclidien, K plus proches voisins

1.1 Programmation

1.1.1 Classifieur Euclidien

ceuc.app est une fonction qui retourne les centres d'inertie de chaque classifieur. La fonction rowsum sur R nous a été très utile pour sommer les lignes. La fonction ceuc.val prédit classe chaque individu des données tests. Nous utilisons ici la fonction distXY pour calculer qui sépare chaque individu a chacun des centres d'inertie.

1.1.2 K Plus proches Voisins

Dans cette partie nous avons essaye de programmer l'algorithme des k plus proches voisins en évitant les boucles.

1.1.3 Test de fonctions

1.2 Évaluation des Performances

1.2.1 Estimation des paramètres

Les résultats sont affichés dans Le tableau ci-dessous :

Estimation des Parametres						
Jeu de données	k	μ_k	\sum_k	π_k		
Synth1-40	1	$\begin{pmatrix} -0.32 \\ 1.09 \end{pmatrix}$	0.68 0.12 1.09 1.012	0.45		
	2	$\begin{pmatrix} -1.883 \\ 0.105 \end{pmatrix}$	1.37 0.32 1.09 0.32	0.55		
Synth1-100	1	$\begin{pmatrix} 0.02 \\ 0.82 \end{pmatrix}$	$\begin{bmatrix} 0.88 & -0.13 \\ -0.13 & 1.12 \end{bmatrix}$	0.54		
	2	$\begin{pmatrix} -1.96 \\ -0.13 \end{pmatrix}$	0.76 -0.04 $-0.04 0.76$	0.46		
Synth1-500	1	(0.13) (0.88)	1.05 0.052 0.052 0.98	0.53		
	2	$\begin{pmatrix} -1.88 \\ -0.08 \end{pmatrix}$	$\begin{bmatrix} 0.97 & -0.11 \\ -0.11 & 0.98 \end{bmatrix}$	0.47		
Synth1-1000	1	$\begin{pmatrix} -0.01 \\ 0.91 \end{pmatrix}$	0.97 0.06 1.08 0.06	0.50		
	2	$\begin{pmatrix} -1.96 \\ 0.02 \end{pmatrix}$	0.99 0.02 0.02 0.94	0.50		
2						

1.2.2 Calcul du taux d'erreur du classifieur Euclidien et KPP

Dans cette partie nous allons tester les performances de chacun des algorithmes programmes precedement en utilisan le critère de l'erreur qu'on exprime comme :

$$Erreur = \frac{1}{N} \sum_{i=1}^{n} \mathbb{1} \hat{z}_i \neq z_i$$

Avec z_i la vrai valeur de z et \hat{z}_i la valeur calculée a partir de l'algorithme. N est le nombre d'individus. $\mathbbm{1} \hat{z}_i \neq z_i = 1$ si $\hat{z}_i = z_i$, 0 sinon. Après avoir calculé le taux d'erreur on peut utiliser la formule ci-dessous pour calculer l'intervalle de confiance :

$$Ic = \left[\mu_{\epsilon} - t \frac{\sigma_{\epsilon}^2}{\sqrt{N}}, \mu_{\epsilon} + t \frac{\sigma_{\epsilon}^2}{\sqrt{N}}\right]$$

On choisit un niveau de confiance t de 95%. Notons ici que μ et σ sont ceux calculés pour les différentes valeurs de ϵ et non ceux du jeu de données. Autre point a remarquer est le N qui est ici le nombre d'individus , or comme on a sépare notre jeu de données entre un ensemble d'application et un ensemble de test, on veillera a mettre le nombre d'individus correspondant en fonction si c'est l'intervalle de confiance d'application ou test. D'après l'énoncé en utilisant la fonction separ1 napp $=\frac{2n}{3}$ et $ntst=\frac{n}{3}$ n étant le nombre total d'individus du jeu de donnée.

Les résultats obtenus pour les jeux de données sont affichés dans Le tableau qui suit.

Performance du	Classifie	r Euclidien	du KPP	
Jeu de données	ϵ_{test}	Ic_{test}	ϵ_{test}	Ic_{test}
Synth1-40				
Synth1-100				
Synth1-500				
Synth1-1000				

1.2.3 Jeux de données Synth2-1000

Estimation des Paramètres					
Jeu de données	k	μ_k	\sum_{k}	π_k	
Synth2-1000	1				
Symm2-1000	2				

Performance du	Classifie	r Euclidien	du KPP		
Jeu de données	ϵ_{test}	Ic_{test}	ϵ_{test}	Ic_{test}	
Synth2-1000					

1.2.4 Jeux de données réelles

Estimation des Paramètres					
Jeu de données	k	μ_k	\sum_k	π_k	
Pima	1				
	2				

Performance du	Classifie	r Euclidien	du KPP		
Jeu de données	ϵ_{test}	Ic_{test}	ϵ_{test}	Ic_{test}	
Pima					

Estimation des Paramètres					
Jeu de données k μ_k \sum_k π_k					
Breast Cancer	1				
Dreast Cancer	2				

Performance du	Classifie	r Euclidien	du KPP		
Jeu de données	ϵ_{test}	Ic_{test}	ϵ_{test}	Ic_{test}	
Breast Cancer					

2 Règle de Bayes

3 Conclusion