Homework 1

CIS-623 STRUCTURED PROGRAMMING & FORMAL METHODS

PROF. MEHMET KAYA

1/13/2022

Anthony Redamonti SYRACUSE UNIVERSITY

Question 1:

Consider the following logic:

Syntax: A wff can be defined using the following BNF rules.

- $\Phi ::= p | (\Phi + \Phi) | (\neg \Phi)$
- p is propositional symbol representing a proposition from the set of propositions {p1, p2, p3, ...}

Semantics:

- A proposition can map to "true" or "false"
- "¬" is interpreted as "negation" (¬true = false; ¬false = true)
- "+" is interpreted as "exclusive or"

```
o true + true = false
o false + false = false
o true + false = true
o false + true = true
```

Which strings are well-formed formulas (wff's) in this logic?

- 1. p_1 is a well-formed formula according to the BNF rules.
- 2. $(p_1 + (\neg p_2))$ is a wff.
- 3. $+p_1$ is not a wff because the exclusive or operator is defined as a binary operator in the BNF rules. The proposition on the left-hand side is missing.
- 4. $(\neg \Phi)$ is a wff.
- 5. $p_1 + p_2$ is not a wff because there is a missing set of parentheses.
- 6. $\neg(p_1)$ is not a wff. The negation symbol should be inside the parentheses.
- 7. $\neg(p_1 \text{ is not a wff. There is a missing closed parenthesis.}$
- 8. $(p_1 + (p_2 + p_3))$ is a wff.

Question 2:

Let us assume that unary operator – has higher precedence than + operator, and + is a left associative operator. What are the fully parenthesized versions of the following wffs?

1.
$$((\neg p_1) + (\neg p_2))$$

2. $(((\neg (\neg p_1)) + (\neg p_2)) + p_3)$
3. $(((\neg p_1) + p_2) + (\neg p_3))$

Question 3:

Axioms are the formulas that are regarded to be true in the logic. Can you give three axioms in this logic? (using schemas - generic versions of formulas)

The following three axioms are formulas that are valid (always true).

1.
$$((\neg p_1) + p_1)$$

2.
$$((\neg p_1) + p_1) + (p_1 + p_1)$$

3.
$$\left(\left(\left((\neg p_1) + p_1\right) + (p_1 + p_1)\right) + (p_1 + p_1)\right)$$

Question 4:

Can you give some inference rules in this logic? (using schemas generic versions of formulas)

Rule 1: $(\Phi + \Psi)$, $\Phi + (\neg \Psi)$

Rule 2: $(\Phi + \Psi), \Psi \vdash (\neg \Phi)$

Rule 3: $(\Phi + \Psi)$, $\neg \Phi + \Psi$

Rule 4: Φ , $\neg \Psi \vdash (\Phi + \Psi)$

Rule 5: $\neg \Phi, \Psi \vdash (\Phi + \Psi)$

Rule 6: $(\Phi + \Psi)$, $\neg \Psi \vdash \Phi$

Rule 7: $\neg \neg \Phi \vdash \Phi$

Question 5:

Can you give a proof p3 from p1, p1+p2, p2+p3 using the inference rules from question 4?

 p_1 , $(p_1 + p_2)$, $(p_2 + p_3) \vdash p_3$

- 1. p_1 (premise)
- 2. $(p_1 + p_2)$ (premise)
- 3. $(p_2 + p_3)$ (premise)
- 4. $(\neg p_2)$ [Rule 1], 1, 2
- 5. p_3 [Rule 3], 3, 4

Question 6:

Is $\neg p_2$ a logical consequence of p_1 and $p_1 + p_2$?

 $p_1, (p_1 + p_2) \vDash \neg p_2$?

Model Number	p_1	p_2	$p_1 + p_2$
1	F	F	F
2	F	Т	Т
3	Т	F	Т
4	Т	Т	F

From the above truth table, only Model 3 satisfies the given premises that p_1 and $p_1 + p_2$ are both true. In this model, p_2 is false. Therefore, $\neg p_2$ is true.

 $\neg p_2$ is a logical consequence of p_1 and $p_1 + p_2$.

$$p_1, (p_1 + p_2) \vDash \neg p_2$$