

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS CRATEÚS CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Geração procedural de modelos arquiteturais com geometria arredondada utilizando Selection Expressions (SELEX)

Daniel Henrique de Brito

Orientador: Arnaldo Barreto Vila Nova

Coorientador: Ítalo Mendes da Silva Ribeiro

Crateús 2020

SUMÁRIO

- 1. Introdução
- 2. Fundamentação teórica
- 3. Trabalhos correlatos
- 4. Proposta
- 5. Cronograma
- 6. Referências

1 - Introdução

1 - Introdução

- 1.1 Contextualização
- 1.2 Justificativa
- 1.3 Objetivo geral
- 1.4 Objetivos específicos

1.1 - Contextualização

- Modelagem procedural
 - Aplicações:
 - Indústria cinematográfica
 - Indústria de jogos
 - Simulações
 - Planejamento urbano
 - Logística

1.1 - Contextualização

- Modelagem procedural
 - Vantagens:
 - Geração de uma grande variedade de modelos baseados em diferentes parâmetros
 - Diminuição da carga de trabalho para geração dos modelos
 - Desvantagens:
 - Falta de intuitividade na utilização de alguns *frameworks*
 - Dificuldade na criação das gramáticas

1.2 - Justificativa

- Geração procedural de edifícios
- Motivação para escolha da SELEX:
 - Técnica relativamente recente
 - Evolução em relação à CGA Shape e CGA++
- Desafio:
 - Modelagem de arquiteturas arredondadas

1.3 - Objetivos geral

Gerar modelos arquiteturais com geometria arredondada utilizando *Selection Expressions*, por meio da especificação de uma nova operação de deformação.

1.4 - Objetivos específicos

- Implementar e avaliar a linguagem para geração de modelos arquiteturais;
- Integrar linguagem com ferramenta de modelagem 3D por meio de scripts;
- Avaliar a aplicação de técnicas de deformação para criação de modelos arquiteturais com geometria arredondada;
- Avaliar o resultado obtido frente a alguns exemplos do mundo real.

2 - Fundamentação teórica

2 - Fundamentação teórica

- 2.1 Geração procedural
- 2.2 L-Systems
- 2.3 Shape grammar
- 2.4 Split grammar
- 2.5 CGA Shape
- 2.6 CGA++
- 2.7 Selection Expressions (SELEX)
- 2.8 Deformação

2.1 - Geração procedural

Conceito:

 Técnicas procedurais são segmentos de código que especificam algumas características de um modelo ou efeito gerado por computador (EBERT et al., 2002).

Ferramentas:

Maya, Houdini, City Engine

Técnicas

2.1 - Geração procedural

• Exemplo:

Figura 1: Modelo de ambiente virtual criado com o *framework SketchaWorld*. Fonte: (*SMELIK et al., 2014*)

2.1 - Geração procedural

• Exemplo:

Figura 2: Modelagem procedural a partir de uma fotografia. Fonte: (NISHIDA et al., 2018)

2.2 - L-Systems

Os *L-Systems* de *Lindenmayer* (1968) tem como ideia principal alterar partes de um objeto inicial por meio da aplicação de sucessivas regras de substituição, com objetivo de gerar objetos mais elaborados.

Figura 3: Geração de um modelo de alga utilizando *L-Systems*. Fonte: (*SIMON*, 2011)

2.3 - Shape grammars

A ideia central das *shape grammars* para criação de modelos 3D é começar com uma forma básica, e modificá-la até que se pareça com o modelo desejado (HAUBENWALLNER, 2016).

Figura 4: Gramática para gerar planta de igreja na forma de cruz grega. Fonte: (KNIGHT, 1995)

2.4 - Split grammar

As *split grammars* foram introduzidas por *Wonka et al.* (2003), sendo utilizadas para modelagem procedural de construções, geralmente, fachadas de edifícios.

Figura 5: Árvore de derivação de uma fachada. Fonte: (RODRIGUES, 2014)

2.4 - Split grammar

Figura 6: Fachada gerada a partir da árvore de derivação representada na Figura 5. Fonte: (RODRIGUES, 2014)

2.5 - CGA Shape

A CGA Shape foi proposta por Müller et al. (2006) para geração procedural de modelos arquiteturais, trazendo melhorias em relação às split grammars. Suas especificações podem ser divididas em:

- Forma
- Regras de escopo
- Regras de divisão básica
- Regras de redimensionamento
- Regras de divisão com repetição
- Regras de divisão de componentes
- Processo de produção

2.5 - CGA Shape

Figura 7: Representação geométrica da *CGA Shape*. Fonte: (*MüLLER et al., 2006*)

2.5 - CGA Shape

```
1. \ lot \leadsto S(1r,building\_height,1r) \\ Subdiv("Z",Scope.sz*rand(0.3,0.5),1r)\{facades|sidewings\}
```

sidewings →
 Subdiv("X", Scope.sx * rand(0.2,0.6), 1r){sidewing|ε}
 Subdiv("X", 1r, Scope.sx * rand(0.2,0.6)){ε|sidewing}

3. sidewing

 \rightsquigarrow S(1r, 1r, Scope.sz*rand(0.4, 1.0)) facades: 0.5

 $\leadsto S(1r, Scope.sy*rand(0.2, 0.9), Scope.sz*rand(0.4, 1.0)) facades: 0.3$

 $\sim \varepsilon : 0.2$

4. facades → Comp("sidefaces"){facade}

Figura 8: Variações estocásticas de modelos de edifícios. Fonte: (MüLLER et al., 2006)

2.6 - CGA++

A CGA++ foi introduzida por Schwarz e Müller (2015) como sendo uma evolução natural da CGA Shape, com o objetivo de superar limitações existentes na modelagem procedural de arquiteturas, tais como:

- Impossibilidade de realizar operações envolvendo múltiplas formas;
- Falta de informações contextuais para determinados objetivos de modelagem;
- Incapacidade de gerar uma derivação de dentro de outra derivação e consultar ou incorporar o resultado.

2.6 - CGA++

- Especificações:
 - Consultar árvore de formas
 - Construir novas formas
 - Funções
- Linguagem:
 - Objetos: booleanos, números, strings, listas e tuplas
 - Argumentos: iteráveis, implícitos e de expressão
 - Variáveis auxiliares

2.6 - CGA++

Figura 9: Representação de bloco perimetral. Fonte: Adaptado de (SCHWARZ; MÜLLER, 2015)

A SELEX é uma nova abordagem para geração procedural que foi introduzida por Jiang et al. (2018), e tem como ideia principal selecionar um subconjunto de formas utilizando selection-expressions, visando melhorar dois problemas predominantes nas abordagens utilizadas na CGA Shape e CGA++:

- Limitação de coordenação dos elementos;
- Hierarquia de divisão dos elementos.

- Especificações:
 - Conceito
 - Definições de forma:
 - Formas de construção
 - Formas virtuais
 - Linguagem:
 - Regra:

```
selection-expression → actions;
```

■ Atribuição:

```
identifier = expression;
```

- Especificações:
 - Configuração de uma selection-expression:

```
<[topoS][attrS|groupS]*/[topoS][attrS|groupS]*/...>
```

- Seletores:
 - Seletor de topologia: child(), parent(), root(), neighbor()
 - Seletor de atributo: [label="facade"]
 - Seletor de grupo: groupRows(), groupCols(), groupRegions()

- Especificações:
 - Exemplo:

Figura 10: Grafo abstrato da seleção de nós. Fonte: (*Jiang et al., 2018*)

- Especificações:
 - Exemplo:
 - c) <descendant()[label=="facade"]/[label=="mainGrid"]/[type=="cell"]
 [rowIdx in (3,4)][colIdx in (1,2,4,5)][::groupRegions()]>

Figura 11: Exemplo da utilização de seletores. Fonte: Adaptado de (*Jiang et al., 2018*)

- Especificações:
 - Ações: addShape, attachShape, coverShape, connectShape
 - o Funções de restrição: left, right, top, bottom, center-x, center-y

Figura 12: Comparação do ajuste com e sem o uso de rótulos. Fonte: (*Jiang et al., 2018*)

Figura 13: Comparação dos paradigmas de modelagem da *SELEX* e da *CGA Shape*. Fonte: (*Jiang et al., 2018*)

Figura 14.1: Exemplo de modelagem utilizando *SELEX*. Fonte: Adaptado de (*Jiang et al., 2018*)

Figura 14.2: Exemplo de modelagem utilizando *SELEX*. Fonte: Adaptado de (*Jiang et al., 2018*)

Figura 14.3: Exemplo de modelagem utilizando *SELEX*. Fonte: Adaptado de (*Jiang et al., 2018*)

Figura 14.4: Exemplo de modelagem utilizando *SELEX*. Fonte: Adaptado de (*Jiang et al., 2018*)

2.8 - Deformação

No campo da física, a deformação de uma estrutura é qualquer mudança da configuração geométrica do corpo que leve à uma variação da sua forma ou das suas dimensões após a aplicação de uma ação externa (*TRUESDELL; NOLL*, 1992).

Na deformação de forma livre, idealizada por Sederberg e Parry (1986), é definida uma grade regular de pontos de controle. Ao deslocar esses pontos de controle, uma deformação do espaço é alcançada.

Figura 15: Exemplo de deformação de forma livre. Fonte: (SEDERBERG; PARRY, 1986)

Uma evolução do trabalho de *Sederberg e Parry (1986)* é trazida por *Jin e Li (2000)*, onde é apresentado um método de deformação tridimensional utilizando coordenadas polares direcionais.

Figura 16: Objeto de controle de origem (a) e objetos de controle de destino (b), (c), (d). Fonte: Adaptado de (*JIN*; *LI*, 2000)

Figura 17: Deformação de uma bola de futebol (a) com base nos objetos (b), (c) e (d) da Figura 16. Fonte: Adaptado de (*JIN*; *LI*, 2000)

Outras duas técnicas são apresentadas por *Procházková (2017)*, o esquema de Sederberg, baseado em polinômios de Bernstein, e também o método NURBS (*Non-Uniform Rational B-Spline*).

Figura 18: Deformação de forma livre de Sederberg. Fonte: (PROCHáZKOVá, 2017)

Figura 19: Deformação de forma livre utilizando NURBS. Fonte: (PROCHáZKOVá, 2017)

As deformation grammars foram introduzidas por Vimont et al. (2017), permitindo deformar livremente objetos complexos ou conjuntos de objetos, preservando sua consistência.

Figura 20: (a) O modelo inicial de uma casa (b) é deformado pelo usuário. Fonte: (VIMONT et al., 2017)

3 - Trabalhos correlatos

3 - Trabalhos correlatos

- 3.1 Generalized Use of Non-Terminal Symbols for Procedural Modeling (KRECKLAU et al., 2010)
- 3.2 Procedural architecture using deformation-aware split grammars (ZMUGGet al., 2014)
- 3.3 Procedural modeling of architecture with round geometry (EDELSBRUNNER et al., 2017)

3.1 - Generalized Use of Non-Terminal Symbols for Procedural Modeling

A abordagem de *Krecklau et al. (2010)* introduz a linguagem de modelagem procedural *G*², que utiliza deformação de forma livre como um objeto não-terminal alternativo para superar a desvantagem da criação de objetos arredondados.

Figura 21: Aplicação de regras de modelagem da *G*². Fonte: Adaptado de (*KRECKLAU* et al., 2010)

3.2 - Procedural architecture using deformation-aware split grammars

Uma extensão às *split grammars* é apresentada por *Zmugg et al.* (2014), permitindo a criação de arquiteturas curvadas através da integração de deformações de forma livre em qualquer nível de uma gramática.

Figura 22: Prédio comercial com estrutura arredondada. Fonte: Adaptado de (*ZMUGG et al., 2014*)

3.3 - Procedural modeling of architecture with round geometry

No trabalho de *Edelsbrunner et al.* (2017) são especificados sistemas de coordenadas personalizados na *split grammar* definida pelo usuário.

Figura 23: Divisão de formas com diferentes sistemas de coordenadas (cartesiana, cilíndrica e esférica). Fonte: (EDELSBRUNNER et al., 2017)

4 - Proposta

4 - Proposta

- 4.1 Problema
- 4.2 Implementação e integração
- 4.3 Representação das formas e operações
- 4.4 Aplicação de deformação nos modelos

4.1 - Problema

Conforme mencionado por *Jiang et al.* (2018), uma das limitações de implementação da *SELEX* é a incapacidade de modelar estruturas arredondadas diretamente, trabalhando apenas por meio de sua importação, como complementos, o que impossibilita a modelagem de fachadas curvadas.

4.1 - Problema

50

Figura 24: Exemplo que está além da capacidade de modelagem da *SELEX*. Fonte: (*Jiang et al., 2018*)

4.2 - Implementação e integração

- Implementação do interpretador para a SELEX, por meio da utilização da biblioteca pyparsing;
- Implementação dos scripts para integração com o software de modelagem
 Blender (versão 2.83);
- Utilização das bibliotecas bpy e bmesh para modelagem.

4.3 - Representação das formas e operações

As formas de construção poderão ser representadas pelos objetos padrões presentes no Blender, como plano e cubo. Entretanto, um ponto importante de definição é a representação das formas virtuais, uma vez que elas ditam como são realizadas as subdivisões para operações de *design*.

Figura 25: Exemplo prévio de subdivisão por meio da utilização de *scripts* no Blender. Fonte: Próprio autor

O Blender dispõe de vários recursos para manipulação de vértices, faces e arestas, em relação a diferentes eixos.

Figura 26: Representação do sistema de coordenadas do Blender: (a) eixos, (b) vértice, (c) aresta, (d) face. Fonte: Próprio autor

A proposta consiste na criação da operação *roundShape*, que recebe alguns parâmetros, como tipo de deformação, direção, nome da forma, e outros a serem especificados, podendo ser exemplificada da seguinte maneira:

```
(i) roundShape("roundFront", "outside", "cube", ...)
(ii) roundShape("roundTop", "outside", "cube", ...)
(iii) roundShape("roundBottom", "outside", "cube", ...)
(iv) roundShape("roundLeft", "outside", "cube", ...)
(v) roundShape("roundRight", "outside", "cube", ...)
```

```
{<[label=="facade"]> -> roundShape("front", "outside", ...);}
```


Figura 27: (a) Forma original, (b) roundFront, (c) roundTop, (d) roundBottom, (e) roundLeft, (f) roundRight.

Fonte: Próprio autor

• Exemplo do resultado esperado após formalização da operação roundShape:

Figura 28: Modelagem inicial e experimental da arquitetura da Figura 24 (ao lado). Fonte: Próprio autor

5 - Cronograma

5 - Planejamento e próximas atividades

Atividades	2020.1										2020.2		
	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar
Pesquisa do tema	Х	х	X	X	X	X							
Definição do tema							X	Х	8.				
Pesquisa bibliográfica	Х	Х	X	Х	X	X	X	Х	X	X	X	х	X
Elaboração do projeto									Х	X	X	Х	X
Implementação do projeto										X	Х	х	Х
Apresentação e discussão do resultado												X	х
Entrega do projeto													X

Tabela 1: Cronograma com planejamento do trabalho. Fonte: Próprio autor

SMELIK, R. M.; TUTENEL, T.; BIDARRA, R.; BENES, B. A survey on procedural modeling for virtual worlds. Comput. Graph. Forum, The Eurographs Association & John Wiley & Sons, Ltd., Chichester, GBR, v. 33, n. 6, p. 31–50, set. 2014. ISSN 0167-7055.

NISHIDA, G.; BOUSSEAU, A.; ALIAGA, D. G. *Procedural Modeling of a Building from a Single Image*. Computer Graphics Forum, Wiley, v. 37, n. 2, 2018.

SIMON, L. Procedural reconstruction of buildings: towards large scale automatic 3d modeling of urban environments. 07 2011.

KNIGHT, T. W. Transformations in Design: A Formal Approach to Stylistic Change and Innovation in the Visual Arts. USA: Cambridge University Press, 1995. ISBN 0521384605.

RODRIGUES, F. C. M. *Evolução de split grammars para construções procedurais*. Dissertação (Mestrado em Ciência da Computação) — Universidade Federal do Ceará, Fortaleza, 2014.

MüLLER, P.; WONKA, P.; HAEGLER, S.; ULMER, A.; GOOL, L. V. *Procedural modeling of buildings*. ACM Trans. Graph., Association for Computing Machinery, New York, NY, USA, v. 25, n. 3, p. 614–623, jul. 2006. ISSN 0730-0301.

SCHWARZ, M.; MüLLER, P. Advanced procedural modeling of architecture. ACM Trans. Graph., Association for Computing Machinery, New York, NY, USA, v. 34, n. 4, jul. 2015. ISSN 0730-0301.

Jiang, H.; Yan, D.; Zhang, X.; Wonka, P. Selection expressions for procedural modeling. IEEE Transactions on Visualization and Computer Graphics, v. 26, n. 4, p. 1775–1788, 2018.

SEDERBERG, T. W.; PARRY, S. R. *Free-form deformation of solid geometric models*. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York, NY, USA: Association for Computing Machinery, 1986. (SIGGRAPH '86), p. 151–160. ISBN 0897911962.

JIN, X.; LI, Y. F. *Three-dimensional deformation using directional polar coordinates*. J. Graph. Tools, A. K. Peters, Ltd., USA, v. 5, n. 2, p. 15–24, fev. 2000. ISSN 1086-7651.

PROCHáZKOVá, J. Free form deformation methods – the theory and practice. 02 2017.

VIMONT, U.; ROHMER, D.; BEGAULT, A.; CANI, M.-P. Deformation grammars: Hierarchical constraint preservation under deformation. Computer Graphics Forum, v. 36, n. 8, p. 429–443, 2017.

KRECKLAU, L.; PAVIC, D.; KOBBELT, L. Generalized use of non-terminal symbols for procedural modeling. Computer Graphics Forum, v. 29, n. 8, p. 2291–2303, 2010.

ZMUGG, R.; THALLER, W.; KRISPEL, U.; EDELSBRUNNER, J.; HAVEMANN, S.; FELLNER, D. *Procedural architecture using deformation-aware split grammars*. Vis. Comput., v. 30, p. 1009–1019, 09 2014.

EDELSBRUNNER, J.; HAVEMANN, S.; SOURIN, A.; FELLNER, D. W. *Procedural modeling of architecture with round geometry*. Computers & Graphics, v. 64, p. 14 – 25, 2017. ISSN 0097-8493. Cyberworlds 2016.

TRUESDELL, C.; NOLL, W. *The non-linear field theories of mechanics*. In: The Non-Linear Field Theories of Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. p. 1–579. ISBN 978-3-662-13183-1.

EBERT, D. S.; MUSGRAVE, F. K.; PEACHEY, D.; PERLIN, K.; WORLEY, S. *Texturing and Modeling: A Procedural Approach*. 3rd. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002. ISBN 1558608486.

LINDENMAYER, A. Mathematical models for cellular interactions in development. Journal of Theoretical Biology, v. 18, n. 3, p. 300 – 315, 1968. ISSN 0022-5193.

HAUBENWALLNER, K. *Procedural generation using grammar based modeling and genetic algorithms*. Graz University of Technology - Institute of Computer Graphics, Austria, 2016.

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS CRATEÚS CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Geração procedural de modelos arquiteturais com geometria arredondada utilizando Selection Expressions (SELEX)

Daniel Henrique de Brito

Orientador: Arnaldo Barreto Vila Nova

Coorientador: Ítalo Mendes da Silva Ribeiro

Crateús 2020