Задача

Дима достаточно быстро освоил алгоритм Евклида и решил с его помощью много различных задач.

Алгоритм Евклида заключается в следующем:

- 1. Пусть **a**, **b** числа, НОД которых надо найти.
- 2. Если $\mathbf{b} = \mathbf{0}$, то число \mathbf{a} искомый **НО**Д.
- 3. Если $\mathbf{b} > \mathbf{a}$, то необходимо поменять местами числа $\mathbf{a} \ \mathbf{u} \ \mathbf{b}$.
- 4. Присвоить числу **a** значение a b.
- 5. Вернуться к шагу 2.

Задача

Дима понял, что нужно продолжать совершенствоваться. И ему пришла идея решить новую задачу. Пусть заданы числа \mathbf{a} , \mathbf{b} , \mathbf{c} и \mathbf{d} . Требуется узнать, наступит ли в процессе реализации алгоритма Евклида для заданной пары чисел (\mathbf{a}, \mathbf{b}) такой момент, когда число \mathbf{a} будет равно \mathbf{c} , а число \mathbf{b} будет равно \mathbf{d} .

Помогите Диме справиться с этой задачей.

Условия

Входные данные:

Первая строка содержит количество наборов входных данных \mathbf{k} ($1 \le \mathbf{k} \le 100$). Далее идут описания этих наборов. Каждое описание состоит из двух строк. Первая из них содержит два целых числа: \mathbf{a} , \mathbf{b} ($1 \le \mathbf{a}$, $\mathbf{b} \le 10^{18}$). Вторая строка – два целых числа: \mathbf{c} , \mathbf{d} ($1 \le \mathbf{c}$, $\mathbf{d} \le 10^{18}$).

Выходные данные:

Для каждого набора выведите в отдельной строке слово **«YES»**, если в процессе применения алгоритма Евклида к паре чисел **(a, b)** в какой-то момент получается пара **(c, d)**, или слово **«NO»** – в противном случае.

Ограничения: 1 секунда, 16 Мб.

Пример

Входные данные:

2

20 10

10 10

107

24

Выходные данные:

YES

NO

Разбор

Выполнять проверку напрямую с помощью алгоритма, который описан в условии задачи, невозможно, так как существуют такие наборы входных данных, что программа не успеет их обработать за **1** секунду. Поэтому потребуется чуть-чуть улучшить исходный алгоритм.

Для начала нужно проверить частный случай, когда совпадение будет найдено до каких-либо действий с переменными. Если такого не произошло, то следующую проверку совпадения нужно выполнить после обмена значений переменных (в случае, когда $\mathbf{b} > \mathbf{a}$).

Далее, если мы еще не нашли нужно совпадения, предположим, если в ходе следующих вычитаний из \mathbf{a} значения переменной \mathbf{b} мы должны получить искомую пару, которая будет совпадать \mathbf{c} парой (\mathbf{c}, \mathbf{d}) , то очевидно, что \mathbf{b} должно совпадать \mathbf{c} \mathbf{d} , так как переменная \mathbf{b} на данном этапе остается неизменной, при этом $\mathbf{a}_{\mathbf{n}} \leq \mathbf{c} \leq \mathbf{a}_{\mathbf{0}}$, где $\mathbf{a}_{\mathbf{i}}$ — значение переменной \mathbf{a} на \mathbf{i} -ом ($\mathbf{0} \leq \mathbf{i} \leq \mathbf{n}$, где \mathbf{n} — шаг, на котором $\mathbf{a}_{\mathbf{i}} < \mathbf{b}$) шаге вычитания.

Разбор

И при этом у нас должно выполняться следующее условие: $\mathbf{b} \mid (\mathbf{a_0} - \mathbf{c})$. Почему это так? Так как должно найтись $\mathbf{a_i}$, которое было бы равно \mathbf{c} после нескольких вычитаний из $\mathbf{a_0}$ значения \mathbf{b} . Значит можно представить $\mathbf{a_0}$ и \mathbf{c} в таком виде:

$$c = k_1 * b + r,$$

 $a_0 = (k_2 + k_1) * b + r,$

где $(0 \le k_1, k_2; 0 \le r \le b-1)$

Тогда $\mathbf{a_0} - \mathbf{c} = (\mathbf{k_2} + \mathbf{k_1}) * \mathbf{b} + \mathbf{r} - (\mathbf{k_1} * \mathbf{b} + \mathbf{r}) = (\mathbf{k_2} + \mathbf{k_1} - \mathbf{k_1}) * \mathbf{b} + \mathbf{r} - \mathbf{r} = \mathbf{k_2} * \mathbf{b}$, следовательно, $\mathbf{b} \mid (\mathbf{a_0} - \mathbf{c})$.

Разбор

То есть третье условие совпадения будет состоять из нескольких условий:

- 1. b = d
- $2. \ a_n \le c \le a_0$
- 3. $b | (a_0 c)$

Мы рассмотрели 3 возможных ситуации, когда ответ "**YES**", в остальных случаях следует выводить "**NO**".