Direction of Induced Current

Bar magnet moves through coil

Current induced in coil

Reverse pole

Induced current changes sign

Coil moves past fixed bar magnet

Current induced in coil as in (A)

Bar magnet stationary inside coil

No current induced in coil

ConcepTest: Lenz's Law

- → If a North pole moves towards the loop from above the page, in what direction is the induced current?
 - ◆ (a) clockwise
 - (b) counter-clockwise
 - ◆ (c) no induced current

Must counter flux change in downward direction with upward B field

ConcepTest: Induced Currents

- → A wire loop is being pulled through a uniform magnetic field. What is the direction of the induced current?
 - ◆ (a) clockwise
 - ♦ (b) counter-clockwise
 - ♠ (c) no induced current

No change in flux, no induced current

ConcepTest: Induced Currents

In each of the 3 cases above, what is the direction of the induced current?

(Magnetic field is into the page and has no boundaries)

- (a) clockwise
- (b) counter-clockwise
- (c) no induced current

ConcepTest: Lenz's Law

- → If a coil is shrinking in a B field pointing into the page, in what direction is the induced current?
 - (a) clockwise
 - ♦ (b) counter-clockwise
 - ♠ (c) no induced current

Downward flux is decreasing, so need to create downward B field

Induced currents

- →A circular loop in the plane of the paper lies in a 3.0 T magnetic field pointing into the paper. The loop's diameter changes from 100 cm to 60 cm in 0.5 s
 - What is the magnitude of the average induced emf?
 - What is the direction of the induced current?
 - lacktriangle If the coil resistance is 0.05Ω , what is the average induced current?

$$|V| = \frac{d\Phi_B}{dt} = 3.0 \times \left| \frac{\pi \left(0.3^2 - 0.5^2 \right)}{0.5} \right| = 3.016 \text{ Volts}$$

- ◆ Direction = clockwise (Lenz's law)
- \bullet Current = 3.016 / 0.05 = 60.3 A

ConcepTest: Induced Currents

- →A wire loop is pulled away from a current-carrying wire. What is the direction of the induced current in the loop?
 - (a) clockwise
 - ◆ (b) counter-clockwise
 - ♦ (c) no induced current

Downward flux through loop decreases, so need to create downward field

ConcepTest: Induced Currents

- →A wire loop is moved in the direction of the current. What is the direction of the induced current in the loop?
 - ◆ (a) clockwise
 - ◆ (b) counter-clockwise
 - (c) no induced current

Flux does not change when moved along wire

ConcepTest: Lenz's Law

- → If the B field pointing out of the page suddenly drops to zero, in what direction is the induced current?
 - (a) clockwise
 - (b) counter-clockwise
 - ◆ (c) no induced current

Upward flux through loop decreases, so need to create upward field

- → If a coil is rotated as shown, in a B field pointing to the left, in what direction is the induced current?
 - ◆ (a) clockwise
 - (b) counter-clockwise
 - ♦ (c) no induced current

Flux into loop is increasing, so need to create field out of loop

ConcepTest: Induced Currents

→Wire #1 (length L) forms a one-turn loop, and a bar magnet is dropped through. Wire #2 (length 2L) forms a two-turn loop, and the same magnet is dropped through. Compare the magnitude of the induced currents in these two cases.

• (a)
$$I_1 = 2 I_2$$

• (b) $I_2 = 2 I_1$
• (c) $I_1 = I_2 \neq 0$
• (d) $I_1 = I_2 = 0$

Voltage doubles, but R also doubles, leaving current the same

◆ (e) Depends on the strength of the magnetic field

Motional EMF

→Consider a conducting rod moving on metal rails in a uniform magnetic field:

$$\left| \mathcal{E} \right| = \frac{d\Phi_B}{dt} = \frac{d(BA)}{dt} = \frac{d(BLx)}{dt} = BL\frac{dx}{dt} = BLv$$

Current will flow counter-clockwise in this "circuit". Why?

Force and Motional EMF

- → Pull conducting rod out of B field
- → Current is clockwise. Why?

$$i = \frac{\mathcal{E}}{R} = \frac{BLv}{R}$$

→ Current within B field causes force

$$F = iLB = \frac{B^2 L^2 v}{R}$$

- ◆ Force opposes pull (RHR)
- ◆ Also follows from Lenz's law
- → We must pull with this force to maintain constant velocity

Power and Motional EMF

→ Force required to pull loop:
$$F = iLB = \frac{B^2L^2v}{R}$$

→Power required to pull loop:
$$P = Fv = \frac{B^2L^2v^2}{R}$$

→ Energy dissipation through resistance

$$P = i^2 R = \left(\frac{BLv}{R}\right)^2 R = \frac{B^2 L^2 v^2}{R}$$

- →Same as pulling power! So power is dissipated as heat
 - Kinetic energy is constant, so energy has to go somewhere
 - ◆ Rod heats up as you pull it

Example

- →Pull a 30cm x 30cm conducting loop of aluminum through a 2T B field at 30cm/sec. Assume it is 1cm thick.
 - ◆ Circumference = 120cm = 1.2m, cross sectional area = 10⁻⁴ m²
 - \bullet R = ρ L/A = 2.75 x 10⁻⁸ * 1.2 / 10⁻⁴ = 3.3 x 10⁻⁴ Ω
- **→**EMF

$$\mathcal{E} = BLv = 2 \times 0.3 \times 0.3 = 0.18 \text{ V}$$

→Current

$$i = \mathcal{E}/R = 0.18/3.3 \times 10^{-4} = 545 \,\text{A}$$

→Force

$$F = iLB = 545 \times 0.3 \times 2 = 327 \,\text{N}$$
 74 lbs!

→Power

$$P = i^2 R = 98 \text{ W}$$
 About 0.33° C per sec (from specific heat, density)

Electric Generators

- → Rotate a loop of wire in a uniform magnetic field:
 - lacktriangle changing $\theta \Rightarrow$ changing flux \Rightarrow induced emf

Electric Generators

- →Flux is changing in a sinusoidal manner
 - ◆ Leads to an alternating emf (AC generator)

$$\left| \mathcal{E} \right| = N \frac{d\Phi_B}{dt} = NBA \frac{d\cos(\omega t)}{dt} = NBA\omega\sin(\omega t)$$

- This is how electricity is generated
- Water or steam (mechanical power) turns the blades of a turbine which rotates a loop
- Mechanical power converted to electrical power

ConcepTest: Generators

- →A generator has a coil of wire rotating in a magnetic field. If the B field stays constant and the area of the coil remains constant, but the rotation rate increases, how is the maximum output voltage of the generator affected?
 - (a) Increases
 - ♦ (b) Decreases
 - ♦ (c) Stays the same
 - ♦ (d) Varies sinusoidally

Induction in Stationary Circuit

- → Switch closed (or opened)
 - ◆ Current induced in coil B (directions as shown)
- → Steady state current in coil A
 - ◆ No current induced in coil B

Inductance

- →Inductance in a coil of wire defined by $L = \frac{N\Phi_B}{i}$
- → Can also be written $Li = N\Phi_B$
- → From Faraday's law $\mathcal{E} = -N \frac{d\Phi_B}{dt} = -L \frac{di}{dt}$
 - ◆ This is a more useful way to understand inductance
 - ◆ Calculate emf generated in coil from rate of change of current
- →Inductors play an important role in circuits when current is changing!

Self - Inductance

- → Consider a single isolated coil:
 - Current (red) starts to flow clockwise due to the battery
 - ◆ But the buildup of current leads to changing flux in loop
 - ◆ Induced emf (green) opposes the change

This is a self-induced emf (also called "back" emf)

$$\mathcal{E} = -N\frac{d\Phi}{dt} = -L\frac{di}{dt}$$

L is the self-inductance units = "Henry (H)"

Inductance of Solenoid

→Total flux (length l)

$$B = \mu_0 in$$

$$N\Phi_B = (nl)(BA) = \mu_0 n^2 A li$$

$$\mathcal{E} = -N\frac{d\Phi_B}{dt} = -\mu_0 n^2 A l \frac{di}{dt} = -L\frac{di}{dt}$$

$$L = \mu_0 n^2 A l$$
 Lots of windings

To make large inductance:

- Big area
- > Long

LR Circuits

- →Inductance and resistor in series with battery of EMF I/
- → Start with no initial current in circuit
 - ◆ Close switch at t = 0
 - Current is initially 0 (initial increase causes voltage drop across inductor)
- \rightarrow Find i(t)
 - Resistor: $\Delta V = Ri$
 - ♦ Inductor: $\Delta V = L \frac{di}{dt}$
 - ◆ Apply loop rule

$$V - Ri - L\frac{di}{dt} = 0$$

Analysis of LR Circuit

→ Differential equation is
$$\frac{di}{dt} + i\left(\frac{R}{L}\right) = \frac{V}{R}$$

- → General solution: $i = V/R + Ke^{-tR/L}$
 - ◆ (Check and see!)
 - \bullet K = -V/R (necessary to make i = 0 at t = 0)

$$i = \frac{V}{R} \left(1 - e^{-tR/L} \right)$$
 Rise from 0 with time constant $\tau = L/R$

Final current (maximum)

Current vs Time in RL Circuit (Initially Zero Current in Inductor)

L-R Circuits (2)

 \rightarrow Switch off battery: Find i(t) if current starts at i_0

$$0 = L\frac{di}{dt} + Ri$$

$$i = i_0 e^{-tR/L}$$
 Exponential fall to 0 with time constant $\tau = L/R$

Initial current (maximum)

Current vs Time in RL Circuit (For Initial Current i_{max} in Inductor)

Exponential Behavior

- $\rightarrow \tau = L/R$ is the "characteristic time" of any RL circuit
 - ♦ Only t / τ is meaningful
- \rightarrow t = τ
 - ◆ Current falls to 1/e = 37% of maximum value
 - ◆ Current rises to 63% of maximum value
- \rightarrow t = 2τ
 - \bullet Current falls to $1/e^2 = 13.5\%$ of maximum value
 - ◆ Current rises to 86.5% of maximum value
- \rightarrow t = 3τ
 - ◆ Current falls to 1/e³ = 5% of maximum value
 - ◆ Current rises to 95% of maximum value
- \rightarrow t = 5τ
 - \bullet Current falls to $1/e^5 = 0.7\%$ of maximum value
 - ◆ Current rises to 99.3% of maximum value

ConcepTest: Generators and Motors

- →A current begins to flow in a wire loop placed in a magnetic field as shown. What does the loop do?
 - ♦ (a) moves to the right
 - ♦ (b) moves up
 - ◆ (c) rotates around horizontal axis
 - (d) rotates around vertical axis
 - ◆ (e) moves out of the page

This is how a motor works !!

Electric Motors

- Current is supplied from an external source of emf (battery or power supply)
- Forces act to rotate the wire loop
- A motor is essentially a generator operated in reverse!

Motor

→ Forces act to rotate the loop clockwise.

→ When loop is vertical, current switches sign and the forces reverse, in order to keep the loop in rotation.

→ This is why alternating current is normally used for motors.

Motors

Generators

Electrical ⇒ mechanical energy

Mechanical ⇒ **electrical energy**