به نام خدا

تکلیف سری چهارم درس زبانهای توصیف سختافزار و مدارات

برای ارسال تکالیف، حتما به نکات زیر توجه کنید:

- برای هر سوال در نرم افزار ISE ، فایل جداگانهای ایجاد کنید.
- تمامی طرح ها میبایست به طور کافی توسط ModelSim شبیه سازی شوند. بنابراین لازم است برای هر سوال Test Bench
- علاوه بر ارسال فایل جواب سوال و فایل شبیه سازی، میبایست از شکل موجهای موجود در شبیه سازی Screenshot گرفته و آنها را با کیفیت مناسب (به طوری که اسامی سیگنالها و شکل موجها واضح باشند) ارسال کنید.
- توجه کنید که برنامه ها باید تماما قابل سنتز باشند. همچنین نتایج سنتز از قبیل حداکثر فرکانس قابل اتصال به طرح و منابع استفاده شده از FPGA را گزارش کنید. از تراشه زیر به عنوان هدف سنتز استفاده کنید.

Spartan6
XC6SLX16
CSG324
-3

- · لازم نیست تمامی فایلهای موجود در پوشه پروژه را ارسال کنید!! تنها فایل ۷. جواب، فایل ۷. شبیه سازی و تصاویر شکل موجهای شبیه سازی شده را ارسال کنید.
 - حتى الامكان اسامي سيگنالها و متغيرها را با مسمّى انتخاب كنيد و همچنين با نظم و ترتيب برنامه بنويسيد.
 - در نهایت این فایل را در قسمت مربوطه در سامانه دروس آپلود کنید.

طراحی اول:

در یک بازی یک عدد N بیتی بصورت تصادفی انتخاب شده و روی یک کارت نوشته می شود (Target_num). این بازی دو شرکت کننده دارد که هر کدام می توانند ۱۰ بار حدس بزنند که عدد نوشته شده روی کارت چه عددی است. اعدادی که نفر اول و نفر دوم حدس می زنند بتر تیب با First_num و Second_num نامگذاری می شوند که هر دو N بیتی هستند. کسی که هر بار بتواند عددی با correlation بیشتر با عدد Target_num را حدس بزند، برنده آن دور بازی است (correlation به معنای تعداد بیت متناظر مساوی است. مثلاً دو رشته ۶ بیتی "01110" و "10110" دارای correlation برابر با ۳ هستند). بنابراین برنده نهایی در اولویت اول کسی است که بتواند عدد روی کارت را درست حدس بزند. در این حالت بازی تمام می شود. در غیر اینصورت در اولویت بعدی کسی که بتواند در مجموع correlation بیشتری در دفعات مختلف نسبت به عدد مورد نظر را حدس بزند، برنده است. این به این معنی است که در هر دوره حدس زدن عدد orrelation برای هر بازیکن محاسبه و در انتهای همه بازی ها بازیکنی که مجموع correlation هایش در ۱۰ دوره بازی بیشتر است برنده اعلام می شود (به شرطی که هیچ کدام correlation کامل تا انتها بدست نیاورند.)

این مدل بازی در Top-module مطابق با شکل زیر از چهار Sub-module تشکیل شده است. ورودی های ماژول اصلی شامل سیگنال کلاک (Clock)، سیگنال ریست آسنکرون و سه عدد N بیتی است که در بالا معرفی شد. این ورودی ها با لبه بالارونده همان کلاک اصلی سیستم تولید می شوند. همچنین توجه داشته باشید که سیگنال ورودی Target_num فقط یکبار تولید می شود و در طول بازی تغییر نمی کند. خروجی ماژول اصلی نیز یک سیگنال دو بیتی (Result) است که در صورتی که نفر اول برنده باشد مقدار 10 را نمایش می دهد. مقدار 11 نیز نشان دهنده این است که هر دو شرکت کننده توانسته اند با شرایط مساوی مسابقه را به پایان بر سانند (در واقع یا هر دو به درستی توانسته اند Target_num را حدس بزنند و یا اینکه حدس آنها Correlation یکسانی با عدد Target_num، در مجموع تمام دورهای بازی داشته است). مقدار 00 در خروجی Result به معنی ادامه داشتن بازی است. یعنی هنوز برنده مشخص نشده است.

در ماژول Correlation، قرار است که correlation اعدادی که نفر اول و نفر دوم حدس زدهاند (N+3 و Out_2 و Out_1 بیتی N+3 بیتی Out_1 بدست آید. نتیجه حاصل شده، در سیگنال N+3 بیتی Out_1 و Second_num بدست آید. نتیجه حاصل شده، در سیگنال N+3 بیتی Out_1 و Out_2 قرار داده می شود. این دو سیگنال در هر دور بازی مجموع correlationهای هر یک از افراد را تا زمان آن دور انجام شده بازی نشان می دهند. به طور مثال فرض می کنیم که این دو سیگنال ۱۱ بیتی هستند و در دور اول مقدار correlation نفر اول مقدار Out_1 00 نفر دوم Out_2 10 و Out_1 و Out_1 و Out_1 و Out_1 و Out_1 به صورت Out_1 11 نفر دوم Out_2 11 و Out_1 به صورت Out_3 11 به صورت Out_4 11 به صورت Out_4 11 به صورت Out_4 11 نفر اول و نفر دوم است.

اکنون مقادیر جدید correlation باید به صورت جمع مقادیر correlation بنابراین مقادیر سیگنالهای Out_2 و Out_1 و Out_2 و Out_3 بازیکنان باشد. بنابراین مقادیر سیگنالهای Out_3 و Out_4 و Out_4 و Out_5 به ترتیب برابر با Out_6 و Out_6 و Out_6 خواهد بود. این کار تا دور دهم بازی انجام می شود. از سوی دیگر خروجی Out_6 و Out_6 در این ماژول هم برای حالتی است که یکی از شرکت کنندگان بتوانند عدد روی کارت را دقیقا حدس بزنند (یعنی عدد Out_6 در باشد، مقدار سیگنال Out_6 باشد، مقدار با Out_6 و مارس با Out_6 باشد، مقدار خروجی Out_6 و اگر هر دو نفر درست حدس زده باشند، مقدار سیگنال Out_6 و اگر هر دو نفر درست حدس زده باشد، مقدار سیگنال Out_6 و اگر هر دو نفر درست حدس زده باشد، مقدار سیگنال Out_6 و اگر هر دو نفر درست حدس زده باشد، مقدار سیگنال Out_6 و اگر هر دو نفر درست حدس زده باشد، مقدار سیگنال Out_6 و اگر هر دو نفر درست حدس زده باشد،

ماژول Winner مشخص کننده فرد برنده در طول این بازی است. مقایسه مجموع correlationها در این ماژول انجام می شود. براساس مقدار سیگنالهای Out_1 و Out_2 باید مشخص شود که چه کسی دارای بیشترین مجموع out_1 است. خروجی این ماژول بنام wr میگنال دو بیتی است که اگر نفر اول برنده باشد مقدار 01، اگر نفر دوم برنده باشد مقدار 10 و اگر correlation حدس های دو نفر یکسان باشد مقدار 11 را خواهد داشت.

ماژول Decision تصمیم گیرنده نهایی در مورد فرد برنده است بگونهای که با اولویت دادن به کسی که بتواند عدد روی کارت را درست حدس بزند، عمل می کند. در صورتی که هر یک و یا هر دو نفر شرکت کنندگان توانسته باشند مقدار دقیق را حدس زده باشند، تعیین فرد برنده با توجه به سیگنال Correct_guess انجام می شود و این کار در هر دوری از بازی از این ۱۰ دور که انجام شود، باعث تولید خروجی خواهد شد و بدنبال آن نیاز است که سیستم ریست شود و فرایند بازی به ابتدای آن برگردد. اما اگر در طول این ۱۰ بار هیچ یک از افراد نتوانسته باشند مقدار درست را حدس بزنند، نتیجه بازی با توجه به مقدار سیگنال مقدار خواهد شد. بطوری که اگر این سیگنال 10 باشد، خروجی Result برابر با 10 بوده و نفر اول برنده است و اگر این سیگنال مقدار مقدار در طول فرایند بازی است. جدول زیر عملکرد ماژول Decision را برای تولید خروجی نشان می دهد.

Correct guess	Result
00	Out_wr
01 or 10 or 11	Correct guess

تبصره:

برای محاسبه correlation بین اعداد باید از function استفاده شود.

طراحي دوم:

ا. با توجه به مفهوم سوال اول، در این سوال قرار است ماژولی طراحی کنید که در آن 16 بازیکن با شماره گذاری 0000 تا 1111، هر کدام یک عدد 32 بیتی اعلام کنند و سپس بر اساس correlation بین عدد اعلام شده توسط هر بازیکن و عدد Target_num، فرد برنده توسط شماره آن بازیکن اعلام شود.

تبصره: طراحی شما بگونهای باشد که اگر correlation بدست آمده برای دو یا چند نفر یکسان بود، فرد با شماره کوچکتر بعنوان برنده اعلام شود.

۲. در قسمت دوم قرار است ماژولی (RFCorrelator) طراحی کنید که از ماژول قسمت اول استفاده کند. این کار با تعریف ماژولی انجام میشود که یک ورودی Bit_stream تک بیتی که حاوی اطلاعات سریال است به صورت همگام با لبه بالارونده سیگنال کلاک را دریافت نموده و بطور ممتد در زمان، به ازای هر ۳۲ بیت دریافتی یک نفر را بعنوان برنده اعلام می کند. توجه شود که در اصل هر ۳۲ پالس ساعت یک مقدار جدید برای خروجی تولید می شود. این خروجی چهار بیتی تولید شده (شماره فرد برنده) تا اعلام نتیجه برنده بعدی روی خروجی باقی می ماند. توجه کنید که در این ماژول، برای دریافت دادهها در واقع به یک شیفت رجیستر serial_to_parallel نیاز دارید.

هر چند صورت این مسئله برای سادگی به صورت یک بازی مطرح شده است ولی این طرح کاربرد زیادی در طراحی سیستم های مخابراتی دارد.

