2/2

3/3

2/2

0/4

Note: 12/20 (score total: 16/26)

+2/1/58+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS Quizz du 13/11/2013 Nom et prénom : Liver Jahre

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?

${\it flash-approximation \ successives - simple \ rampe - \ double \ rampe}$
double rampe - flash - approximation successives - simple rampe
approximation successives - flash - simple rampe - double rampe $$
flash - approximation successives - double rampe - simple rampe
approximation successives - flash - double rampe - simple rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T)=R_0(1+\alpha T)$ où Treprésente la température en °C, $R_0=1$ k Ω la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

= 1,1k Ω L'étendu de mesure est [-25°C; 60°C]. Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.

Question 3 •

Quelle est la capacité d'un condensateur plan ? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \frac{\epsilon d}{S}$$

$$C = \epsilon dS$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

des potentiels des	
	esistances des differences de potentiels.

	Question 5 • Pourquoi faire du sur-échantillonnage ?
0/0	Pour améliorer l'efficacité du filtre antirepliement.
2/2	Pour supprimer les perturbations de mode commun. Pour réduire le bruit de quantification
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ? La taille des grains de la poudre utilisée
1/1	Le pas de bobinage La longueur du potentiomètre La course électrique.
	La résistance maximale du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des déformations des flux lumineux des courants des résistances des températures des grands déplacements.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des flux lumineux des déplacements angulaires des températures des déplacement linéaire des courants
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	Les voies sont symétriques.
0/0	De rejeter les perturbations de mode différentiel.
3/3	Le gain est fixé par une seule résistance. Les impédances d'entrées sont élevés.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN ?
1/1	☐ 1.25 V ☐ 80 mV.s ⁻¹ ☐ 78 mV ☐ 10 mV.s ⁻¹
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
0/6	Le système est oscillant $p_1 = A_0/\tau_C$ et $p_2 = -A_0/\tau_C$ $p = (A_0 - 1)/\tau_C$ Le système est instable $p = (A_0 + 1)/\tau_C$ Le système est stable