Algebra relazionale e interrogazioni

A. Lorenzi, E. Cavalli
INFORMATICA PER ISTITUTI TECNICI TECNOLOGICI

Operazioni relazionali

Algebra relazionale

Gli operatori relazionali agiscono su una o più tabelle producendo una nuova tabella. Le operazioni relazionali servono per interrogare la base dati per estrarre le informazioni desiderate dalle tabelle del database.

Principali operatori relazionali:

- Selezione
- Proiezione
- Congiunzione

Le relazioni sono insiemi:

- Unione, Intersezione, Differenza

II database degli esempi (1)

Agenti (<u>IDAgente</u>, Nome, Zona)
Clienti (<u>IDCliente</u>, RagioneSociale, PartitalVA, Provincia, *IDAgente*)

Per distinguere tra *IDAgente* di **Agenti** e *IDAgente* di **Clienti** si usa la: **dot notation**: **Agenti**.IDAgente \Leftrightarrow **Clienti**.IDAgente

II database degli esempi (2)

Le tabelle Clienti e Agenti con i dati:

Clienti

Agenti

Proiezioni e Selezioni

Proiezione e Selezione agiscono ortogonalmente

Selezione: OPR

Una **selezione** estrae dalla tabella **R** le sole righe che soddisfano la proprietà **P**, cioè le righe di R per le quali **P** è vera

Oprovincia="MI" Clienti - Selezione di Clienti per Provincia = "MI"

Grado risultante: Grado uguale a quello di R

Cardinalità risultante: Cardinalità minore o uguale a quella di R

Proiezione: $\pi_L R$

Proiezione di Clienti su IDCliente, RagioneSociale, IDAgente

Proiezione: $\pi_L R$

La cardinalità di una proiezione di **R** può essere minore di quella di **R** perché nel modello relazionale non ci possono essere tabelle con righe uguali. Le righe duplicate sono compattate.

Come vedremo, i DBMS, per ragioni di efficienza, non compattano le righe in modo automatico.

π_{IDAgente} Clienti

Bisogna richiederlo esplicitamente: clausola DISTINCT nel comando SELECT di SQL

Congiunzione: $R \bowtie_P S$ (1)

La **congiunzione** (**join**) tra **R** e **S** combina due tabelle generando una nuova tabella, le cui righe contengono tutti gli attributi di **R** e di **S**, abbinando le sole righe di **R** e di **S** che soddisfano la proprietà **P**

$$R \bowtie_P S \equiv G_P (R \times S)$$

R x S, prodotto cartesiano tra R ed S, combina tutte le righe di R con tutte le righe di S, generando una tabella priva di valore informativo

P, nella maggior parte dei casi, consiste in una o più condizioni del tipo: $\mathbf{R.A} = \mathbf{S.B}$ dove $\mathbf{A} \in \mathbf{B}$ sono attributi di \mathbf{R} e, rispettivamente, di \mathbf{S} . Si parla di **equi-join**, indicati con: $\mathbf{R_A} \bowtie \mathbf{S_B}$

L'equi join più comune è quello che compone due tabelle con una condizione di uguaglianza tra la chiave primaria di una tabella e una chiave esterna dell'altra: **R.***PK* = **S.***FK*

Congiunzione: $R \bowtie_P S$ (2)

Join Naturale: R≥<

Join Naturale tra Clienti e Agenti: equi join sui campi con lo steso nome

Clienti ► Agenti

Esempi di interrogazioni (1)

Esempi di interrogazioni (2)

Elenco di tutti i clienti con RagioneSociale, PartitaIVA, Provincia e Nome del rispettivo agente

1. Clienti Agenti Temp1 = Congiunzione di Clienti e Agenti per Clienti.IDAgente = Agenti.IDAgente

4	IDClie →	RagioneSociale -	PartitalVA -	Prov •	Clienti.I -	Agenti.IDA -	Nome -	Zona 👻
	Lami	Lamiere per Auto	04357839912	TO	Bia	Bia	Bianchi	Nord
	Tond	Tondini metallici	05467833808	BS	Bia	Bia	Bianchi	Nord
	Vite	Viteria Lombarda	05567389302	MI	Bia	Bia	Bianchi	Nord
	Vitp	Viteria di Precisione	06443652006	MI	Bia	Bia	Bianchi	Nord
	Levi	Levigatoria Toscani	01528120155	FI	Ner	Ner	Neri	Centro
	Luci	Lucidatura Metalli	01572800164	RM	Ner	Ner	Neri	Centro
	Meta	Metallurgica Emiliar	01583315265	ВО	Ner	Ner	Neri	Centro
	Metb	Metalli Rari	01642877201	NA	Ros	Ros	Rossi	Sud
	Otto	Ottonificio Pugliese	04687990657	BA	Ros	Ros	Rossi	Sud
	Rame	Rame & Metalli	03568168943	PA	Ver	Ver	Verdi	Isole

2. π_L Temp1

Proiezione di Temp1 su RagioneSociale, PartitalVA, Provincia, Nome

Esempi di interrogazioni (3)

Elenco delle ragioni sociali e del nome degli agenti per i clienti di Milano **♂** Clienti Temp1 = Selezione di Clienti per Provincia = "Mi" 1. IDCliente -RagioneSociale - PartitalVA - Provi - IDAgente -Viteria Lombarda 05567389302 Bia Vite Vitp Viteria di Precision 06443652006 MI Bia * Temp1 Agenti 2. Temp2 = Congiunzione di Temp1 e Agenti **IDAgente** per Clienti.IDAgente = Agenti.IDAgente IDC -RagioneSociale - PartitalVA - Provi - Client - Agenti - Nome -Zona Vite Viteria Lombarda 05567389302 Bia Bia Bianchi Nord Vitp Viteria di Precision 06443652006 Bia Bia Bianchi Nord * 3. π_{l} Temp2 Proiezione di Temp2 su RagioneSociale, Nome

Altre operazioni relazionali

Per tabelle con struttura omogenea, cioè righe con lo stesso numero di attributi, dello stesso tipo e nello stesso ordine :

- Unione $R \cup S$
- Intersezione R ∩ S
- DifferenzaR S

Le proiezioni con Access

Le selezioni con Access

Le congiunzioni con Access

Esempi di interrogazioni

Esempi (1)

Riviste (<u>CodRiv</u>, Titolo, Periodicità, Prezzo) **Abbonati** (<u>CodAbb</u>, Cognome, Indirizzo, Città) **Abbonamenti** (<u>ID</u>, Data, *CodRiv*, *CodAbb*)

Esempi (2)

```
Riviste ( <u>CodRiv</u>, Titolo, Periodicità, Prezzo )

Abbonati ( <u>CodAbb</u>, Cognome, Indirizzo, Città )

Abbonamenti ( <u>ID</u>, Data, CodRiv, CodAbb )
```

- Città di residenza degli abbonati a una rivista di cui si conosce il codice
- 1. Temp1 = Selezione di Abbonamenti per CodRiv = "xxx"
- 2. Temp2 = Congiunzione di Temp1 e Abbonati su CodAbb
- 3. Proiezione di Temp2 su Città

```
π<sub>Città</sub> ( ( σ<sub>CodRiv = "xxx"</sub> Abbonamenti ) ς CodAbb Abbonati )
```

Esempi (3)

```
Riviste ( <u>CodRiv</u>, Titolo, Periodicità, Prezzo )

Abbonati ( <u>CodAbb</u>, Cognome, Indirizzo, Città )

Abbonamenti ( <u>ID</u>, Data, CodRiv, CodAbb )
```

- Titolo e prezzo dell'abbonamento di tutte le riviste
- 1. **Proiezione** di **Riviste** su *Titolo*, *Prezzo*

- Titolo e periodicità delle riviste con prezzo dell'abbonamento superiore a una cifra prefissata
- 1. Temp1 = Selezione di Riviste per *Prezzo > pp.pp*
- 2. Proiezione di Temp1 su Titolo, Periodicità

Esempi (4)

```
Riviste ( <u>CodRiv</u>, Titolo, Periodicità, Prezzo )

Abbonati ( <u>CodAbb</u>, Cognome, Indirizzo, Città )

Abbonamenti ( <u>ID</u>, Data, CodRiv, CodAbb )
```

- Cognome degli abbonati che hanno sottoscritto un abbonamento a una qualsiasi rivista, nel primo trimestre dell'anno 2011
- 1. Temp1 = Selezione di Abbonamenti per Data >= 1/1/2011 And Data <= 31/3/2011
- 2. Temp2 = Congiunzione di Temp1 e Abbonati su CodAbb
- 3. **Proiezione** di Temp2 su *Cognome*

*** Volendo la congiunzione può essere eseguita prima della selezione

Esempi (5)

```
Riviste ( <u>CodRiv</u>, Titolo, Periodicità, Prezzo )

Abbonati ( <u>CodAbb</u>, Cognome, Indirizzo, Città )

Abbonamenti ( <u>ID</u>, Data, CodRiv, CodAbb )
```

- Cognome e codice abbonato degli abbonati alla rivista "Quattroruote"
 Le informazioni che servono stanno in 2 tabelle ma bisogna usarne 3 ...
- 1. Temp1 = Selezione di Riviste Titolo = "Quattroruote"
- 2. Temp2 = Congiunzione di Temp1 e Abbonamenti su CodRiv
- 3. Temp3 = Congiunzione di Temp2 e Abbonati su CodAbb
- 4. **Proiezione** di Temp3 su *Cognome, CodAbb*

^{***} Volendo le congiunzioni possono essere eseguite prima della selezione

Join esterni e Self join

Join esterni

- Il join esterno tra R ed S è una congiunzione che restituisce tutte le righe di R o di S anche in assenza di valori uguali per gli attributi comuni
- Equi join, join naturale, ... si dicono join interni
- Nei join interni si possono perdere informazioni
 - Clienti senza agenti
 - Clienti con il codice agente errato
 - Agenti senza clienti
- Con i join esterni si recuperano le informazioni perse
- I join esterni sono utili per risolvere i problemi di assenza
 - Chi sono i clienti con codice agente errato o senza agenti?
 - Chi sono gli agenti senza clienti?

Left Join

 R Left join S elenca tutte le righe di R; le righe di R senza corrispondenti in S sono completate con valori nulli.

Clienti Left Join Agenti

Right Join

 R Right join S elenca tutte le righe di S; le righe di S senza corrispondenti in R sono completate con valori nulli.

Clienti Right Join Agenti

Problemi di assenza (1)

Problemi di assenza (2)

- Agenti senza corrispondenti clienti
 - 1. Temp1 = **Agenti Right Join Clienti** su *IDAgente*
 - 2. Selezione di Temp1 per Clienti.IDAgente Nullo
- Full join tra R ed S elenca tutte le righe di R e di S. Le righe senza corrispondenti di R o di S sono completate con valori nulli
- R Full join S non è sempre implementato nei DBMS
- R Full join S = R Left join S ∪ R Right join S

Self Join (1)

- Si parla di self join quando si combinano le righe di una tabella con le righe della tabella stessa
- Si presentano con le tabelle derivate da associazioni ricorsive

- Nome, Cognome del capo di Bianchi
- Bisogna congiungere Dipendenti con se stessa

Self Join (2)

Dipendenti Join Dipendenti_1 con la condizione:

Dipendenti.MatSupervisore = **Dipendenti**_1.Matricola

Proiezione di (Selezione di (Dipendenti Join Dipendenti_1) per Dipendenti. Cognome = "Bianchi") sui campi Dipendenti_1. Nome, Dipendenti_1. Cognome