实验题目一 用超声光栅测定水中的声速题解与评分标准

【问题 1】搭建光路观察声光效应。

1. 画出光路布置示意图,简要说明各元件的作用。(4分)

图 1 实验光路图

序号	名称	作用
1	钠光灯	提供波长 589.3 nm 的光源
2	单缝	钠灯光经单缝可视其为发光物体
3	薄透镜	使单缝光源处于透镜的焦平面上,形成平行光
4	超声池	形成超声光栅
5	薄透镜	超声光栅出射的平行光经过此透镜汇聚,将成像在其焦平面上
6	测微目镜	用于观察和测量衍射条纹间距

评分标准:

- (1) 光路图各元件位置正确 1分;,
- (2) 元件作用阐述正确 3分。

2. 搭建并调节光路, 说明实验步骤和调节要求, 观察超声光栅衍射现象。(9分)

- (1) 调钠光灯与狭缝等高。
- (2) 透镜 L₂(元件 5) 与狭缝的等高共轴粗调及两次成像法细调。即物与像大于 4 倍的 焦距时,固定物屏和像屏,调节透镜位置会呈现一大一小的两个像,调整中心 重合即可。并通过自准直法测其焦距后连同滑块一起从导轨上取下。
- (3) 同理对透镜 L₁进行粗调和细调等高共轴并通过自准直法产生平行光。
- (4) 安装透镜 L₂及测微目镜,调节等高共轴,调清晰测微目镜分划板,并使测微目 镜看到清晰的狭缝像。
- (5) 安装超声池,调整合适高度并使光线垂直入射。

(6) 观察到衍射条纹。

评分标准:

- (1) 0.5分;
- (2) 3 分,等高共轴粗调 0.5 分,细调 1 分粗调,。测量焦距 1.5 分,(150.0±2.03mm 以内 1.5 分) 1.5 分;(150.0±4.05mm 以内 1 分);1 分;(150.0±6.05mm 以内 0.5 分外);不测焦距不得分。;
 - (3) 2分(粗、细调节共轴 0.5分,产生平行光 1.5分);
 - (4) 1.5分(调等高、调分划板、调狭缝像各 0.5分);
 - (5) 1分(调高度 0.5分,调垂直入射 0.5分);
 - (6) 1分。

注:如果只用一块透镜自准直调焦、测焦距,而认为两个透镜焦距一致(即不测 5 的 焦距,只测 3 也可以)

3. 调整衍射系统,得到至少三级(k=±3)对称的衍射条纹;改变超声波频率时,描述并解释测微目镜视场中条纹的变化规律,记录最佳状态的超声波频率。(3分)

当超声波频率增大时,光衍射条纹间距增大;反之频率减小时,条纹间距随之减小。这是因为当超声频率变大时,超声波长变小,即光栅常数 d 变小,由 $d\sin\theta=k\lambda$ 知 $\sin\theta$ 会变大,而在小角度下 $\sin\theta\approx\tan\theta=\frac{S}{f}$,条纹间距 S 变大;反之条纹间距变小。

记录最佳状态的超声频率。

评分标准: 文字表述正确 2分;

超声波频率以具体仪器备案资料为准为 10--12MHz, 正确得 1 分。

【问题 2】测定超声光栅的光栅常数和超声波在水中传播的声速。

1. 给出所用公式,说明公式中各个量的物理意义。(5分)

光栅方程 $d\sin\theta = k\lambda$

式中 d 为光栅常数, θ为衍射角

若 L_k 为 k 级条纹至零级条纹的距离, f 为透镜焦距,由于 $L_k << f$, $\sin\theta \approx \theta \approx \tan\theta = \frac{L_k}{f}$

则
$$\sin \theta = \frac{L_k}{f}$$

所以有
$$d = \frac{k\lambda f}{L_k} = \frac{\lambda f}{\Delta L_k}$$
 , 光栅常数即为超声波长

因此超声波声速

$$V = dv$$

其中v为超声波频率,f为透镜焦距, λ 为钠光波波长, Δ Lk 为衍射条纹间距。

评分标准:

- (1) 光栅方程 1分;
- (2) 1分;
- (3) , 光栅常数即为超声波长 1分;
- (4) 超声波的速度 1分;

k	X_k (mm)	$X_{+3} - X_{-3} \pmod{9}$	$X_{+2} - X_{-2} \pmod{mm}$	$X_{+1} - X_{-1} \pmod{\mathfrak{p}}$	(5)
-3	2.053	3.886	2.595	1.295	各 量
-2	2.710				物理
-1	3.360				
0	4.012				意 义
1	4.655				各 0.2
2	5.305				\/ ++
3	5.939				分,共

计1分。

2. 测量至少三级(k=±3)对称的衍射条纹,记录并处理数据(45分)

$$\overline{\Delta L_k} = \frac{1}{3} \left(\frac{3.866}{6} + \frac{2.595}{4} + \frac{1.295}{2} \right) = 0.6469 \text{ (mm)}$$

计算超声光栅的光栅常数和超声波在水中的声速。

方法一:

透镜焦距: f =149.80mm,

超声波频率为 $\nu = 10.718 \text{ MHz}$,室温 17.5°C

超声光栅常数

$$d = \frac{\lambda f}{\Delta L_k} = \frac{589.3 \times 10^{-9} \times 149.80}{0.6480 \times 10^{-3}} = 0.1362 mm$$

超声声速

$$V = dv = 0.1362 \times 10.718 \times 10^6 = 1460$$
 m/s

方法二

透镜焦距为 f =149.80mm

超声波频率为 *v* = 10.718 MHz 室温 17.5℃

超声光栅常数

$$d = \frac{\lambda f}{\Delta L_k} = \frac{589.3 \times 10^{-9} \times 149.80}{0.6469 \times 10^{-3}} = 0.1365 mm$$

超声声速

$$V = \frac{\lambda f v}{\Delta L_{\nu}} = dv = 0.1365 \times 10.718 \times 10^{6} = 1463$$
 m/s

评分标准:

- (1) 公式代入数据 0.51分;
- (2)有效数字正确 0.51分;
- (3) 结果在 1470±30m/s 得有效区间 42 分; 在 1470±40 得 3 分; 在 1470±50

得1分;超出以上范围其余不得分。。

建议都不要求做不确定度计算

实验题目二 "研究小灯泡的发光问题"题解与评分标准

【问题 1】确定灯泡灯丝温度与其电阻的关系

1. 1 设计出确定环境温度下灯泡灯丝电阻 R0 的线路图 (3分)(若申请了提示卡 1,扣除 6分)测量原理电路图如图 1 所示。

线路图评分标准:

- (1). 电路原理正确
- (2). 元件符号使用正确,连线无断点。

1. 2 简述测量原理及步骤

测量原理:

通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式 $T=aR^{0.83}$ 计算得出 a,即可确定 灯泡的灯丝温度与其电阻的关系。小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。(在原理部分,可能出现以下三种答案)

答案 1:

利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图 1 所示。图中 R_1 为电位器, R_2 为标准电阻,L 是小灯泡。记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大功率范围的测量,只测量小功率下的即可。

答案 2.

利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图 1 所示。图中 R_1 为电位器, R_2 为标准电阻,L 是小灯泡。记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电流范围的测量,只测量小电流下的即可。

答案 3.

利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图 1 所示。图中 R_1 为电位器, R_2 为标准电阻,L 是小灯泡。记录灯丝电压及标阻电压,从

而获得灯丝电阻与其电压的关系, 画出他们的关系曲线, 外推到电压为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电压范围的测量,只测量低电压下的即可。

原理部分评分标准:

- (1) 明确需要测量室温下的电阻,利用测量到的室内温度和电阻来确定 a,
- (2) ①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理。
 - ②当功率为零时,电流或者电压也会为零,因此解法2和3也有道理。但鉴于灯丝电阻与电流、电压呈现明显的非线性;受测量仪器精度限制,小电流(或低电压)区域的数值误差大。因此利用电流(或电压)外推方法不可取。
- (3)此部分只测量小功率范围(电压、电流)。

实验步骤:

- (1)连接线路,将电位器 R_1 滑到图 1 中的下端,使与灯泡部分并联的电阻较小。
- (2)检查无误后,按下开关。
- (3)记录灯泡电压与标值电阻的电压。

1. 3 自行设计表格,将所获得的数据列入表格,并用作图法给出 R_0

- 1) 直流稳压电源的输出电压=1.0V(可自行设定固定电压的数值,但应能够满足测量要求)。
- 2) 室温 t₀=17.9℃
- 3) 标准电阻阻值=20.0Ω(或 100Ω, 此时标阻电压是下面列表的 5 倍)

表 1 测量环境温度下电阻 R_0

	测量	数据	计算所得数据			
序号	灯丝电压	标阻电压	灯 丝 电 流	灯丝电阻(Ω)	灯丝电功率	
	(mV)	(mV)	(mA)		(mW)	
1	21.1	40.0	2.00	10.55	0.042	
2	31.8	60.0	3.00	10.60	0.095	
3	42.8	79.9	4.00	10.71	0.171	
4	54.4	100.1	5.01	10.87	0.272	
5	66.3	120.0	6.00	11.05	0.398	
6	79.1	140.4	7.02	11.27	0.555	
7	92.6	160.4	8.02	11.55	0.743	
8	107.3	180.5	9.03	11.89	0.968	
9						
10						

解答一: 测量电阻与功率的关系

解答二: 测量电阻与电流的关系

解答三: 测量电阻与电压的关系

 R_0 =10.45Ω (由灯丝电阻与电功率关系外推得出)。

室内温度为 17.9° C,由 $290.9=a\cdot10.45^{0.83}$,可计算得 a=41.48,故而有小灯泡温度与电阻的关系为 $T=41.48\cdot R^{0.83}$,当我们测得小灯泡的电阻即可获得其温度值。

【问题 2】研究灯泡发光强度与灯丝温度的关系

2.1 画出你实验用的线路图、简述其工作原理及实验步骤线路图如下

图 3 测量灯泡发光强度与灯丝温度关系的线路图

工作原理: (1) 由 V_3 和 R_3 可得出光电流,虽然光电池不能接收到灯泡发出的所有光线,但光电流仍可以线性地反映出灯泡发光强度; (2) 而由 V_2 和 R_2 可知通过小灯泡的电流,利用 V_1 的测量值可进而得出此时的灯泡电阻,由 $T=aR^{0.83}$ 可求出灯泡的温度,最终可获得灯泡的温度与其发光强度的关系。

步骤:

- (1)用文具夹子将样品板与光电池板固定好,保持两者之间位置不变。
- (2)在未闭合开关之前,记录下 V₃,并在计算中扣除本底电流。
- (3)调节电位器增大标阻电压,从灯泡发光开始测量。
- (4)调节电位器,记录灯泡灯丝的电压、标准电阻的电压、光电池的电压。

2.2 用作图法研究灯泡发光强度与灯丝温度的关系,给出你的结论。

相关参数:

直流电源电压值=15.0V

标阻阻值=20.0Ω

光电池并联定值电阻=100Ω(注:此两只电阻不能换位)

灯泡的本底电流电压很小, 近似为零, 可以忽略

记录测量数据如下表

序号	灯丝电	标阻电	灯丝电	灯丝温度	光电池电	光电流(mA)
	压(V)	压(V)	$阻(\Omega)$	(K)	压(mV)	
1	1.290	0.600	43.00	941	0.1	0.001
2	1.740	0.701	49.64	1060	0.2	0.002
3	2.21	0.800	55.25	1159	0.6	0.006
4	2.73	0.900	60.67	1252	1.4	0.014
5	3.29	1.001	65.73	1338	2.6	0.026
6	3.88	1.101	70.48	1418	4.5	0.045

7	4.50	1.201	74.94	1492	7.2	0.072
8	5.17	1.301	79.48	1567	11.1	0.111
9	5.87	1.401	83.80	1637	16.4	0.164
10	6.60	1.501	87.94	1704	23.2	0.232
11	7.36	1.601	91.94	1768	31.9	0.319
12	8.19	1.703	96.18	1836	43.2	0.432
13	9.03	1.803	100.17	1899	56.8	0.568
14	9.91	1.903	104.15	1961	73.3	0.733
15	10.74	1.995	107.67	2016	91.0	0.910
16	12.00	2.12	113.21	2102	122.3	1.223

利用表 2 中灯丝温度与光电流的数据绘出图 4。

2.3 求出灯泡额定电压下的灯丝温度

当我们测得小灯泡的电阻即可获得其温度值。当小灯泡电压 U=12.0V 时,小灯泡温度 T=2102K