2 03022025-190234

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Задан двухполюсник на рисунке 2, причём R1 = 118.48 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 – Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.23\text{-}0.27\mathrm{i}$.

Рисунок 4 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.455	-145.3	20.384	94.7	0.026	56.0	0.358	-67.2
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
7.4	0.537	134.7	3.753	26.6	0.105	41.6	0.131	-154.6

и частоты $f_{\text{\tiny H}}=2.1$ ГГц, $f_{\text{\tiny B}}=6.3$ ГГц.

Найти обратные потери по входу на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 3.4 дБ
- 2) 6.8 дБ
- 3) 11.7 дБ
- 4) 5.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
5.0	0.410	141.9	2.491	42.4	0.160	48.3	0.131	-139.8

и частоты $f_{\text{\tiny H}}=2$ $\Gamma\Gamma$ ц, $f_{\text{\tiny B}}=4$ $\Gamma\Gamma$ ц.

Найти неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 0.5 дБ 2) 3.1 дБ
- 3) 8.6 дБ 4) 6.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.7	0.480	171.7	7.761	62.9	0.055	56.8	0.221	-104.2
3.8	0.482	170.5	7.557	61.8	0.056	56.6	0.220	-105.1
3.9	0.483	169.3	7.357	60.8	0.057	56.5	0.218	-105.9
4.0	0.484	168.2	7.159	59.6	0.059	56.3	0.217	-106.8
4.1	0.486	167.1	6.992	58.6	0.060	55.9	0.215	-108.0
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
4.4	0.492	164.0	6.503	55.5	0.064	54.8	0.210	-111.8
4.5	0.494	163.0	6.345	54.3	0.066	54.5	0.208	-113.1
4.6	0.496	162.1	6.204	53.4	0.067	54.1	0.206	-114.3
4.7	0.497	161.2	6.065	52.4	0.068	53.7	0.203	-115.5

и частоты $f_{\text{H}}=4.1~\Gamma\Gamma$ ц, $f_{\text{B}}=4.7~\Gamma\Gamma$ ц. **Найти** модуль s_{12} в дB на частоте f_{B} .

- 1) -23.3 дБ
- 2) -13.9 дБ
- 3) 15.7 дБ
- 4) -6.1 дБ