TRABALHO E ENERGIA

AULA 1 - CONCEITO DE TRABALHO

Trabalho

Em Física, o trabalho mede a quantidade de energia que fornecemos ou retiramos de um corpo quando, devido a uma força, ele efetua um deslocamento.

$$\tau = F \cdot d \cdot cos\theta$$

Unidade: J (joules)

AULA 2 - TRABALHO MÉTODO GRÁFICO

Trabalho - Método Gráfico

No caso de F não ser constante, o trabalho por de ser calculado pela área sob o gráfico F x d:

AULA 3 – ENERGIA CINÉTICA

Energia Cinética

É a energia que um corpo possui quando está em movimento, pois nesse caso é capaz de realizar trabalho, efetuando um deslocamento ou produzindo uma deformação em outro corpo.

$$E_C = \frac{m.v^2}{2}$$

Unidade: J (joules)

AULA 4 – TEOREMA DA ENERGIA CINÉTICA (TEC)

Teorema da Energia Cinética

É válido para um sistema conservativo ou não, onde a <u>força resultante</u> realiza um trabalho total equivalente à variação da energia cinética.

$$au_R = \Delta E_{CIN}$$

Unidade: J (joules)

AULA 5 - ENERGIA POTENCIAL GRAVITACIONAL

Energia Potencial Gravitacional

A energia gasta ao levantar um corpo desde o solo até uma altura h fica retida no campo gravitacional. Pode-se observar este fato notando que ao soltarmos o corpo ele entra em movimento acelerado aumentando, deste modo, a energia cinética. Assim, define-se então a energia potencial gravitacional de um corpo como sendo o trabalho realizado contra a força gravitacional ao deslocá-lo desde o solo (ponto de referência) até a altura considerada.

$$E_{pot} = m \cdot g \cdot h$$

Onde:

m: massa do corpo, unidade kg;

g: aceleração da gravidade, unidade m/s²;

h: altura, unidade metro.

Unidade: J (joules)

AULA 6 – ENERGIA POTENCIAL ELÁSTICA

Energia Potencial Elástica

Define-se a energia potencial elástica, como o trabalho realizado ao se deformar a mola (ou outro corpo) de um valor x (de deformação).

$$E_{EL} = \frac{kx^2}{2}$$

Unidade: J (joules)

AULA 7 – ENERGIA MECÂNICA EM SISTEMAS CONSERVATIVOS

Energia mecânica

É a soma das energias cinética, potencial gravitacional e potencial elástica:

$$E_{MEC} = E_C + E_P + E_{EL}$$

Sistemas Conservativos

São aqueles onde não ocorre dissipação de energia mecânica. A energia cinética (E_C) , a energia potencial (E_P) e energia potencial elástica (E_{EL}) podem ser variáveis, mas sua soma, que é a energia mecânica, **é constante** (é sempre a mesma em cada ponto). Esta conservação existe quando ele se move somente sob ação de forças

1

TRABALHO E ENERGIA

conservativas (força peso, elástica, elétrica, etc.). Neste caso, então:

$$\Delta E_{MEC} = 0 \Longrightarrow$$

$$E_{MEC_{FINAL}} - E_{MEC_{INICIAL}} = 0 \Longrightarrow$$

$$E_{MEC_{FINAL}} = E_{MEC_{INICIAL}}$$

$\eta = \frac{E_{UTIL}}{E_{TOTAL}}$

ou

$$\eta = \frac{P_{UTIL}}{P_{TOTAL}}$$

AULA 8 – ENERGIA MECÂNICA EM SISTEMAS NÃO CONSERVATIVOS

Sistemas Não Conservativos.

São sistemas em que há trabalho realizado por forças dissipativas (força de atrito, força de resistência do ar, etc.). Parte da energia mecânica do sistema é então dissipada nas formas de energia térmica, sonora, etc. Assim a energia mecânica do sistema, diminui. Em todo sistema dissipativo, o trabalho das forças não conservativas (força de atrito, força de resistência do ar, etc.) é igual à energia total dissipada, ou seja, é igual à variação da energia mecânica

$$\tau_{FNC} = \Delta E_{MEC\hat{A}NICA} = E_{MEC_{FINAL}} - E_{mec_{INICIAL}}$$

AULA 10 - POTÊNCIA

Potência

A potência de uma força corresponde à rapidez com que o trabalho é realizado, ou seja, com que a energia é transformada.

$$P = \frac{E}{t}$$

Unidade: W (watt)

Potência instantânea

$$P_{inst} = F.V.cos\theta$$

Rendimento

Como em um sistema real a energia total E_{TOTAL} de um sistema nunca é convertida integralmente em energia útil, há sempre uma dissipação $E_{DISSIPADA}$. Podemos então calcular o rendimento observando a parcela da energia total efetivamente convertida em energia útil: