Imagine you work for a bank and you want to predict whether a loan applicant will default on their loan or not based on some demographic and financial data. Here is a sample dataset containing 10 loan applicants and whether they defaulted on their loan or not:

Applicant ID	Age	Income	Education Level	Defaulted
			High School	
	35	50,000	Bachelor's	No
	45	80,000	Master's	No
	28	22,000	High School	No
			Bachelor's	
	46	70,000	Master's	No
	24	18,000	High School	Yes
	38	60,000	Bachelor's	No
	32	48,000	Bachelor's	No
10	29	25,000	High School	Yes

Applicant ID	Age	Income	Education Level	Defaulted
		55,000	Bachelor's	

this example, we have a new applicant who is 31 years old, has an annual income of 5,000, and has a Seathedris degree. The question mark in the Defaulted column dicates that we do not know whether this applicant will default on their loan or not. We n use our Naive Bayes classifier to predict the value of the Defaulted column for this wapplicant based on the values of the other columns.

เม่ารักราสาขุ 10-19, 20-29, 30-39, 40-49 และ แบ่ว ช่วรราชได้ < 20,000, 20,001 - 39,999, 40,000 - 59,999, 60,000 - 80,000

the specified ranges:			
			No
20-29	<20000	High School	
	20001-39999	Bachelor's	
	20001-39999	Bachelor's	
		Master's	
		High School	
		Bachelor's	
30-39	40000-59999		
20-29	40000-59999		
40-49	60000-80000	Bachelor's	
	<20000		
	20001-39999	Master's	
	20001-39333		

Pl Defaulted | Age Group = 30-39, Income Group = 40,000-59,999, Education Level = Bachelor's)

Prior

P(C;): P(Defaulted = Yes) =
$$\frac{4}{10}$$
 = 0.4
P(Defaulted = NO) = $\frac{6}{10}$ = 0.6

Likelihood

P(XIC): P(Age Group = 30-39, Income Group = 40,000 - 59,999, Education Level = Bachelor's | Defaulted)

P(Age Group = 30 - 39 | Defaulted = NO) =
$$\frac{3}{1}$$
 = 0.5

P(Education level = Bachelor's | Defaulted = NO) =
$$\frac{3}{L}$$
 = 0.5

x = (Age = 31, Incom = 55,000, Education Level = Bachelor'S)

Therefor, X belongs to class (Defaulted = NO)