Búsqueda Binaria

Quimey Vivas Leopoldo Taravilse

Avature Argentina

Training Camp 2018

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

Buscando en listas ordenadas

• Uno de los problemas más comunes que existen es el de querer buscar si un número aparece o no en una lista ordenada.

Quimey Vivas (Avature)

4/21

Buscando en listas ordenadas

- Uno de los problemas más comunes que existen es el de querer buscar si un número aparece o no en una lista ordenada.
- Es trivial ver que se puede resolver el problema en O(n) donde n es la cantidad de elementos de la lista, simplemente buscando uno por uno en orden.

Buscando en listas ordenadas

- Uno de los problemas más comunes que existen es el de querer buscar si un número aparece o no en una lista ordenada.
- Es trivial ver que se puede resolver el problema en O(n) donde n es la cantidad de elementos de la lista, simplemente buscando uno por uno en orden.
- Hay una forma de aprovechar el hecho de que el arreglo está ordenado. Esta forma de buscar eficientemente se conoce como búsqueda binaria.

Supongamos que queremos buscar si el número 22 está en el siguiente arreglo:

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

Supongamos que queremos buscar si el número 22 está en el siguiente arreglo:

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

Podemos preguntarnos ¿Es el primer elemento del arreglo el 22? No, ¿Es el segundo elemento del arreglo el 22? Tampoco... y así hasta que nos preguntamos ¿Es el décimo elemento del arreglo el 22? Sí!

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

Con búsqueda binaria podemos buscar así

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

Notemos que en 4 pasos pudimos encontrar el 22 cuando antes nos llevaba 10 pasos.

6/21

Código de la búsqueda binaria

```
# A es el arreglo ordenado, v es el valor a buscar
   # Si v esta en A entonces esta en el intervalo [L, R) de A
   def busqueda binaria(A, v):
       I = 0
4
       R = Ien(A)
        while R - L > 1:
           M = (L + R) / 2
            if v < M:
               R = M
9
10
            else:
                I = M
11
        if A[L] == v:
12
            return l
13
        return None # Not found
14
```

¿Funciona? ¿Encuentra la primera aparición de v? ¿La última? ¿Una cualquiera?


```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

```
1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128 .

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128

1 2 4 6 8 14 15 16 21 22 31 35 44 45 56 87 89 95 99 100 103 112 128
```

Complejidad de la búsqueda binaria

La complejidad de la búsqueda binaria es $O(\log n)$ donde n es el tamaño del arreglo. Esto es fácil de probar ya que en cada paso se reduce el espacio de búsqueda a la mitad.

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

Funciones monótonas

Cuando tenemos una función f que cumple

$$x > y \Rightarrow f(x) \geq f(y)$$

decimos que f es monótona creciente. Si en cambio f cumple

$$x > y \Rightarrow f(x) \le f(y)$$

decimos que f es monótona decreciente. Si f es monótona creciente o monótona decreciente decimos que f es monótona.

Cuando una función es monótona creciente (decreciente) podemos aplicar búsqueda binaria para buscar el menor valor de x tal que $f(x) \ge y$ ($f(x) \le y$) para un y dado.

Quimey Vivas (Avature)

Ejemplo de búsqueda binaria con funciones monótonas

Pedro estudia Ciencias de la Computación y le quedan por cursar *n* materias. Él sabe que si hace una sóla materia le va a costar 1 unidad de esfuerzo aprobarla, pero si hace una segunda materia le cuesta 2 unidades de esfuerzo para aprobar la segunda materia, y en general, si hace *i* materias le cuesta *i* unidades de esfuerzo aprobar la *i*-ésima materia.

El sabe que hacer un esfuerzo de *t* unidades o más lo va a estrezar y por lo tanto va a dejar la carrera. Cuántos cuatrimestres necesita para recibirse?

Ejemplo de búsqueda binaria con funciones monótonas

• Lo primero que tenemos que hacer es calcular cuántas materias puede hacer por cuatrimestre. Luego es una división.

Ejemplo de búsqueda binaria con funciones monótonas

- Lo primero que tenemos que hacer es calcular cuántas materias puede hacer por cuatrimestre. Luego es una división.
- Para calcular cuántas materias puede hacer por cuatrimestre, sabemos que ese número x cumple con $\frac{x(x+1)}{2} < t$. Luego hacemos búsqueda binaria para encontrar ese máximo valor posible de x.

Quimey Vivas (Avature)

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

Búsqueda binaria continua

 Así como usamos búsqueda binaria cuando tenemos un dominio discreto, también podemos usar búsqueda binaria cuando el dominio es continuo.

Búsqueda binaria continua

- Así como usamos búsqueda binaria cuando tenemos un dominio discreto, también podemos usar búsqueda binaria cuando el dominio es continuo.
- Por ejemplo, tenemos una función f monótona creciente y continua y queremos hallar el mínimo x tal que $f(x) \ge y$.

Búsqueda binaria continua

- Así como usamos búsqueda binaria cuando tenemos un dominio discreto, también podemos usar búsqueda binaria cuando el dominio es continuo.
- Por ejemplo, tenemos una función f monótona creciente y continua y queremos hallar el mínimo x tal que f(x) ≥ y.
- Como f es continua, si el mínimo x_0 existe tenemos qué f(x) = y, es decir $x_0 = f^{-1}(y)$.

15/21

• Dado un número x, calcular la raiz cuadrada de x

Quimey Vivas (Avature)

- Dado un número x, calcular la raiz cuadrada de x
- ¿Cuál sería el criterio de terminación? ¿Cuántas iteraciones necesitamos?

- Dado un número x, calcular la raiz cuadrada de x
- ¿Cuál sería el criterio de terminación? ¿Cuántas iteraciones necesitamos?
- A diferencia del caso de la búsqueda binaria discreta, cuando el dominio de la búsqueda binaria es continuo tenemos que poner un punto de corte arbitrario para la búsqueda binaria.

- Dado un número x, calcular la raiz cuadrada de x
- ¿Cuál sería el criterio de terminación? ¿Cuántas iteraciones necesitamos?
- A diferencia del caso de la búsqueda binaria discreta, cuando el dominio de la búsqueda binaria es continuo tenemos que poner un punto de corte arbitrario para la búsqueda binaria.
- Podríamos cortar por ejemplo cuándo $R-L < 10^{-9}$ que nos da una precisión aceptable.

Quimey Vivas (Avature)

- Dado un número x, calcular la raiz cuadrada de x
- ¿Cuál sería el criterio de terminación? ¿Cuántas iteraciones necesitamos?
- A diferencia del caso de la búsqueda binaria discreta, cuando el dominio de la búsqueda binaria es continuo tenemos que poner un punto de corte arbitrario para la búsqueda binaria.
- Podríamos cortar por ejemplo cuándo $R-L < 10^{-9}$ que nos da una precisión aceptable.
- Cuando el ciclo termina, tanto L como R contienen la respuesta con un error de a lo sumo 10^{-9} .

Quimey Vivas (Avature)

- Dado un número x, calcular la raiz cuadrada de x
- ¿Cuál sería el criterio de terminación? ¿Cuántas iteraciones necesitamos?
- A diferencia del caso de la búsqueda binaria discreta, cuando el dominio de la búsqueda binaria es continuo tenemos que poner un punto de corte arbitrario para la búsqueda binaria.
- Podríamos cortar por ejemplo cuándo $R-L < 10^{-9}$ que nos da una precisión aceptable.
- Cuando el ciclo termina, tanto L como R contienen la respuesta con un error de a lo sumo 10^{-9} .
- Método de Newton

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

Búsqueda binaria con predicados booleanos

 Ya vimos como hace búsqueda binaria sobre funciones que tienen una imagen numérica y que son monotonas.

Búsqueda binaria con predicados booleanos

- Ya vimos como hace búsqueda binaria sobre funciones que tienen una imagen numérica y que son monotonas.
- Cuando la imagen de la función es booleana, por ejemplo, dado un predicado booleano P, encontrar el mínimo x tal que P(x) es verdadero, también podemos definir monotonía y aplicar búsqueda binaria.

Búsqueda binaria con predicados booleanos

- Ya vimos como hace búsqueda binaria sobre funciones que tienen una imagen numérica y que son monotonas.
- Cuando la imagen de la función es booleana, por ejemplo, dado un predicado booleano P, encontrar el mínimo x tal que P(x) es verdadero, también podemos definir monotonía y aplicar búsqueda binaria.
- Cuando un predicado es falso para todos los $x < x_0$ y verdadero para los $x \ge x_0$ decimos que el predicado monótono. Esto equivale con asignarle 0 a falso y 1 a verdadero, en este caso el predicado es monótono creciente.

Ejemplo de búsqueda binaria con predicados booleanos

Problema

Fito tiene que cruzar un cuarto lleno de dinosaurios desde la esquina superior izquierda hasta la esquina inferior derecha. Son dadas las posiciones de los dinosaurios y las dimensiones del cuarto. Se sabe que si pasa a distancia menor a T de un dinosaurio, este lo ve y se lo come. Cuál es el mínimo T tal que Fito puede lograr su objetivo?

Contenidos

- Búsqueda Binaria discreta
 - Búsqueda binaria en un arreglo
 - Más allá de los arreglos
- Búsqueda binaria continua
 - Búsqueda binaria para el cálculo de funciones inversas
 - Búsqueda binaria con funciones de imagen booleana
 - Algunos comentarios

- El caso no monónoto:
- Búsqueda ternaria: