

Estimación por intervalos y pruebas de hipótesis

Regresión con dos variables

Estimación por intervalos

Para entrar en contexto, tomemos el ejemplo de la tabla 2.6.

$$\hat{Y}_i = -0.0144 + 0.7240 X_i$$

- "Cuando la escolaridad (X_i) aumenta un año, el incremento <u>promedio</u> del salario es de 0.7240 ($\hat{\beta}_2$).
 - $\hat{\beta}_2$ es una **estimación puntual** del valor verdadero, β_2 .
- ¿Qué tan confiable es un estimador?
 - Lo medimos a través de su error estándar.

•
$$\Pr(\hat{\beta}_2 - \delta \le \beta_2 \le \hat{\beta}_2 + \delta) = 1 - \alpha$$

- $\hat{\beta}_2 \delta \le \hat{\beta}_2 \le \hat{\beta}_2 + \delta$ es el intervalo de confianza
- $1-\alpha$ es el nivel de confianza (la probabilidad de que el valor verdadero de β_2 se encuentre dentro de ese intervalo)
- α es el nivel de significancia

- Si conocemos las distribuciones de probabilidad de los estimadores, podemos encontrar sus intervalos de confianza.
 - Gracias al supuesto de normalidad de las perturbaciones, los estimadores de MCO-OLS, $\hat{\beta}_1$, $\hat{\beta}_2$ están normalmente distribuidos.
- Puesto que no se conoce σ y solo tenemos $\hat{\sigma}$, podemos expresarlo como

$$t = \frac{\hat{\beta}_2 - \beta_2}{ee(\hat{\beta}_2)} = \frac{Estimador - parámetro}{Error estándar estimado del estimador}$$

- La variable t sigue una distribución t con n-k g. l. (grados de libertad), donde
 - ullet n es el número de observaciones de la muestra y
 - *k* la cantidad de parámetros a estimar.

• Entonces, construyendo el intervalo de confianza para β_2 mediante la distribución t tenemos:

$$\Pr\left(-t\alpha_{/2} \le t \le t\alpha_{/2}\right) = 1 - \alpha$$

- Donde:
- $t\alpha_{/2}$ es el valor de la variable t obtenida de la distribución para un nivel de significancia de $\alpha_{/2}$ y n-k g.l. (se le conoce como **nivel crítico**).

• Sustituyendo el valor de t, tenemos que:

$$\Pr\left(-t\alpha_{/2} \le \frac{\hat{\beta}_2 - \beta_2}{ee(\hat{\beta}_2)} \le t\alpha_{/2}\right) = 1 - \alpha$$

• Despejando
$$\beta_2$$
, obtenemos el **intervalo de confianza** para β_2
$$\Pr\left(\hat{\beta}_2 - t\alpha_{/2}ee(\hat{\beta}_2) \le \beta_2 \le \hat{\beta}_2 + t\alpha_{/2}ee(\hat{\beta}_2)\right) = 1 - \alpha$$

• Escrito de forma compacta:

$$\hat{\beta}_2 \pm t\alpha_{/2} ee(\hat{\beta}_2)$$

• El intervalo de confianza para β_1 :

$$\hat{\beta}_1 \pm t\alpha_{/2} ee(\hat{\beta}_1)$$

• ¿Es compatible o no una observación, de acuerdo a las hipótesis que planteamos?

- La hipótesis planteada:
 - Hipótesis nula, H_0
- Se suele contrastar vs. una
 - Hipótesis alternativa, H_1

Teoría de las pruebas de hipótesis

Diseño de reglas o procedimientos que permitan decidir si se rechaza o no la hipótesis nula.

Para diseñar las reglas, tenemos los métodos mutuamente complementarios:

Intervalos de confianza
Pruebas de

significancia

Método del intervalo de confianza

Prueba de dos colas (bilateral)

- Si, para el ejemplo de salarios, donde $\hat{\beta}_2 = 0.724$, suponemos que:
 - H_0 : $\beta_2 = 0.5$
 - $H_1: \beta_2 \neq 0.5$
- Si β_2 se encuentra dentro del intervalo de confianza, no rechazamos la H_0 .
- Aceptar ≠ no rechazar.
- Cuando se rechaza la H_0 , decimos que el resultado es estadísticamente significativo.

Método del intervalo de confianza

- Prueba de una cola (unilateral):
 - $\exists n$ expectativas *a priori* de que la H_1 sea unilateral:
 - $H_0: \beta_2 \le 0.5$
 - $H_1: \beta_2 > 0.5$

Pruebas de significancia

Pruebas de significancia de los coeficientes de regresión: la prueba t

- Prueba de significancia: Procedimiento que utiliza resultados muestrales para verificar una H_0 .
- Intervalo de confianza = región de aceptación.
- Área(s) fuera del int. De confianza = región(es) de rechazo/ críticas.

La prueba *t*

- Para nuestro ejemplo, asumiendo:
 - H_0 : $\beta_2 = \beta_2^* = 0.5$
 - $H_1: \beta_2 \neq 0.5$
- Calculamos el valor de t $t = \frac{0.724 0.5}{0.07} = 3.2$
- Un estadístico es estadísticamente significativo si cae en la región crítica.

Prueba *t* de significancia

Tipo de hipótesis	H_0 : Hipótesis nula	H_1 : Hipótesis alternativa	Regla de decisión
Dos colas	$eta_2=eta_2^*$	$\beta_2 \neq \beta_2^*$	$ t > t\alpha_{/2}, gl$
Cola derecha	$\beta_2 \leq \beta_2^*$	$\beta_2 > \beta_2^*$	$t > t_{\alpha}, gl$
Cola izquierda	$\beta_2 \ge \beta_2^*$	$\beta_2 < \beta_2^*$	$t < -t_{\alpha}, gl$

Hipótesis nula "cero"

- Es muy común que comencemos con una hipótesis nula del estilo: H_0 : $\beta_2 = 0$
- Es un mecanismo para determinar si Y tiene relación con X.
- Si no se rechaza esta H_0 , entonces no tiene sentido plantearse ninguna otra hipótesis.

Selección del nivel de significancia, α

Rechazar o no una H_0 depende de α .

 α = Probabilidad de cometer un error de **tipo I (P de rechazar** H_0 cuando es verdadera).

Error **tipo II**: No rechazar H_0 cuando es falsa.

Type I error (false positive)

Type II error (false negative)

Error tipo I y tipo

• Si se disminuye la probabilidad de cometer un error tipo I, se aumenta el tipo II y viceversa.

P-value

• El p-value expresa la probabilidad **exacta** de cometer un error de tipo l.

• Se define al p-value como "el nivel de significancia más bajo al cual puede rechazarse una hipótesis nula".