Analysis of Variance Two Factors

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 1

1

Outline

- Two-Factor ANOVA
 - Additive Factors
 - Interaction Factors
 - Interaction Plot
- Additions

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 2

Two-Factor ANOVA: Additive Factors

- Compare two or more populations on two factors
 - Factor A has I level of treatments
 - Factor B has J level of treatments
 - Example: test washing detergents on pens
 - A = Brand of pens, I = 3
 - B = Washing detergent, J = 4

		Washing detergent				
		1	2	3	4	
Brand	1	0.97	0.48	0.48	0.46	
of	2	0.77	0.14	0.22	0.25	
pens	3	0.67	0.39	0.57	0.19	

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 3

3

Additive Two-Factor ANOVA: Effects Model

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

$$\sum \alpha_i = 0$$

$$\sum \beta_i = 0$$

- X_{ij} = random sample j of treatment i
- μ = overall mean of treatment
- α_i = effect due to factor A at level i
- β_i = effect due to factor B at level j
- ε_{ij} = random error from sample j of treatment i
 - Assumed to be independent and normally distributed with mean = 0, variance = σ^2
- Factor A is independent of factor B

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 4

Δ

Additive Two-Factor ANOVA: Effects Model (cont.)

$$E(X_{ij}) = \mu + \alpha_i + \beta_j$$

$$\sum \alpha_i = 0 \qquad \sum \beta_j = 0$$

• If $\alpha_i = 0$ and $\beta_j = 0$, then all treatments have the same response

$$E(X_{ij}) = \mu$$

- Thus, null hypotheses for two additive factor ANOVA
 - Hypothesis on A: factor A at any level i has no effect on overall mean.
 - H_{0A} : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$
 - <u>Hypothesis on B</u>: factor B at any level j has no effect on overall mean.
 - H_{OB} : $\beta_1 = \beta_2 = ... = \beta_J = 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

5

Two-Factor ANOVA: Additive Factors (cont.)

- Let
 - μ_{ij} = mean of treatment i of factor A and treatment j of factor B
 - I = number of treatments from factor A
 - J = number of treatments from factor B
- Hypothesis on A: factor A at any level i has no effect on true mean.
 - H_{0A} : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$
 - H_{aA} : Not all α i's are equal (Factor A has effect.)
- Hypothesis on B: factor B at any level j has no effect on true mean.
 - H_{0B} : $\beta_1 = \beta_2 = ... = \beta_J = 0$
 - H_{aB} : Not all β_i 's are equal (Factor B has effect.)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 6

Two-Factor ANOVA: Additive Factors (cont.)

- Test statistic (cont.):
 - I = Number of treatments from factor A
 - J = Number of treatments from factor B

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X})^2$$

$$df = IJ - 1$$

$$SSA = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_i - \bar{X})^2$$

$$df = I - 1$$

$$SSB = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{j} - \bar{X})^{2}$$

$$df = J - 1$$

SSE =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X})^2$$
 df = $(I - 1)(J - 1)$

$$df = (I - 1)(J - 1)$$

$$SST = SSA + SSB + SSE$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Two-Factor ANOVA: Additive Factors (cont.)

- Test statistic (cont.):
 - I = Number of treatments from factor A
 - J = Number of treatments from factor B

Another option: Sample-based

computation

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}^{2} - \frac{1}{IJ} (\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij})^{2} \qquad df = IJ - 1$$

$$SSA = \frac{1}{I} \sum_{i=1}^{I} (\sum_{j=1}^{J} X_{ij})^2 - \frac{1}{IJ} (\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij})^2 \quad df = I - 1$$

$$SSB = \frac{1}{I} \sum_{j=1}^{J} (\sum_{i=1}^{I} X_{ij})^{2} - \frac{1}{II} (\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij})^{2} \quad df = J - 1$$

$$SSE = SST - SSA - SSB \qquad df = (I - 1)(I - 1)$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 8

Two-Factor ANOVA: Additive Factors (cont.)

Test statistic (cont.):

Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
H _{OA} vs. H _{aA}	SSA/(I-1)	f _A = MSA / MSE	$f_A > F_{\alpha, I-1, (I-1)(J-1)}$
H _{OB} vs. H _{aB}	SSB/(J - 1)		$f_{B} > F_{\alpha, J-1, (I-1)(J-1)}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 9

9

Example

Test 4 washing detergents on 3 brands of pens at significance level = 0.05

		1	2	3	4	
Brand	1	0.97	0.48	0.48	0.46	0.598
of	2	0.77	0.14	0.22	0.25	0.345
pens	3	0.67	0.39	0.57	0.19	0.455
		0.803	0.337	0.423	0.300	0.466

- A = Brand of pens, I = 3
- B = Washing detergents, J = 4
- SST* = 0.6947, df = 11
- SSA* = 0.1282, df = 2
- SSB* = 0.4797, df = 3
- SSE = 0.6947 0.1282 0.4797 = 0.0868, df = 11 2 3 = 6

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 10

Example (cont.)

- Test 4 washing detergents on 3 brands of pens (cont.):
 - SST* = 0.6947, df = 11
 - SSA* = 0.1282, df = 2
 - SSB* = 0.4797, df = 3
 - SSE = 0.0868, df = 6

Hypothesis	Mean Square (MS = SS/df)	Test statistic (f)	Rejection region
H _{OA} vs. H _{aA}	0.1282/2 = 0.0641	f _A = 4.43	F _{0.05, 2, 6} = 5.14
H _{OB} vs. H _{aB}	0.4797 / 3 = 0.1599	f _B = 11.05	F _{0.05, 3, 6} = 4.76
Error	0.0868/6 =0.0144		6188

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 11 Department of Computer Engineering
Kasetsart University

11

Example (cont.)

Test 4 washing detergents on 3 brands of pens (cont.):

Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
H _{OA} vs. H _{aA}	0.1282/2 = 0.0641	f _A = 4.43	F _{0.05, 2, 6} = 5.14
H _{OB} vs. H _{aB}	0.4797 / 3 = 0.1599	f _B = 11.05	F _{0.05, 3, 6} = 4.76
Error	0.0868/6 =0.0144		

- H_{OA} is not rejected. Factor A (brand of pens) has no effect on mark removal
- H_{OB} is rejected. Factor B (washing detergents) has effect on mark removal

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 12

Multiple Comparisons

- To specify which mean is different from others
 - Fix on factor A or B
 - Find Tukey's Honestly Significant Difference (HSD) using the following formula

Factor A:
$$w_A = q_{\alpha,I,(I-1)(J-1)} \sqrt{\frac{MSE}{J}}$$

Factor B: $w_B = q_{\alpha,J,(I-1)(J-1)} \sqrt{\frac{MSE}{I}}$

- $q_{\alpha, m, n}$ = q-value from studentized range distribution with 2 degrees of freedom m, n
- Follow the same steps as finding other HSD

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 14

Example

Factor A:
$$w_A = q_{\alpha,I,(I-1)(J-1)} \sqrt{\frac{MSE}{I}}$$

Test 4 washing detergents on 3 brands of pens at significance level = 0.05

			-			
		1	2	3	4	
Brand	1	0.97	0.48	0.48	0.46	0.598
of	2	0.77	0.14	0.22	0.25	0.345
pens	3	0.67	0.39	0.57	0.19	0.455
		0.803	0.337	0.423	0.300	0.466

Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
H _{OA} vs. H _{AA}	0.1282/2 = 0.0641	f _A = 4.43	F _{0.05, 2, 6} = 5.14
H _{oB} vs. H _{aB}	0.4797 / 3 = 0.1599	f _B = 11.05	F _{0.05, 3, 6} = 4.76
Error	0.0868/6 =0.0144		

Fixed at brands of pens:

$$w_A = q_{0.05,3,6} \sqrt{\frac{MSE}{J}} = 4.34 \sqrt{\frac{0.0144}{4}} = 0.261$$

- Sort factor-A sample means: 0.345, 0.455, 0.598
- 1 group of means: $\{\bar{x}_1, \bar{x}_2, \bar{x}_3\}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

15

Example (cont.)

Factor B:
$$w_B = q_{\alpha, J, (I-1)(J-1)} \sqrt{\frac{MSE}{I}}$$

Test 4 washing detergents on 3 brands of pens at significance level = 0.05

		1	2	3	4	
Brand	1	0.97	0.48	0.48	0.46	0.598
of	2	0.77	0.14	0.22	0.25	0.345
pens	3	0.67	0.39	0.57	0.19	0.455
		0.803	0.337	0.423	0.300	0.466

Fixed at detergent factor:

$$w_B = q_{0.05,4,6} \sqrt{\frac{MSE}{I}} = 4.90 \sqrt{\frac{0.0144}{3}} = 0.340$$

- Sort factor-B sample means: 0.300, 0.337, 0.423, 0.803
- 2 groups of means: $\{\bar{x}_4, \bar{x}_2, \bar{x}_3\}$ and \bar{x}_1

Supaporn Erjongmanee fengspe@ku.ac.th

Slide 16

Example 2

Test 4 coatings on 3 soil type for corrosion at significance level = 0.05

		1	2	3	\bar{x}_j
Coating (A)	1	64	49	50	54.33
	2		51	48	50.67
	3	47	45	50	47.33
	4	51	43	52	48.67
	\bar{x}_i	53.75	47.00	50.00	50.25

- A = Coatings, I = 4, B = Soil Types, J = 3
- SST = 242.063, df = 11

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X})^{2}$$

• SSA = 83.583, df = 3
$$SSA = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_i - \bar{X})^2$$
• SSB = 91.500, df = 2
$$SSB = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_j - \bar{X})^2$$

$$SSB = \sum_{i=1}^{I} \sum_{i=1}^{J} (\bar{X}_{i} - \bar{X})^{2}$$

SSE = SST – SSA – SSB = 66.979, df = 11 – 3 – 2 = 6

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 17

17

Example 2 (cont.)

Test 4 coatings on 3 soil types for corrosion (cont.):

Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
H _{OA} vs. H _{aA}	83.583/3 = 27.861	f _A = 2.495	F _{0.05, 3, 6} = 4.7571
H _{OB} vs. H _{aB}	91.500 / 2 = 45.750	f _B = 4.098	F _{0.05, 2, 6} = 5.1433
Error	66.97/6 =11.163		

- H_{OA} is not rejected. Factor A (coatings) has no effect on corrosion
- H_{OB} is not rejected. Factor B (soil types) has no effect on corrosion

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 18

Outline

- Two-Factor ANOVA
 - Additive Factors
 - Interaction Factors
 - Interaction Plot
- Additions

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 19

19

Two-Factor ANOVA: Interaction Factors

- Compare two or more populations on <u>two interaction</u> factors
 - Factor A has I level of treatments
 - Factor B has J level of treatments
 - K Samples from treatment of factors and B are collected
 - Example: 3 varieties of tomatoes on 4 planting density

		Planting Density										
Vari ety	10,000		20,000		30,000		40,000					
Н	10.5	9.2	7.9	12.8	11.2	13.3	12.1	12.6	14.0	10.8	9.1	12.5
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 20

Interaction Two-Factor ANOVA: Effects Model

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

• X_{ij} = random sample j of treatment i

 $\sum \beta_i = 0$ $\sum \alpha_i = 0$

- μ = overall mean of treatment i on factor j
- α_i = effect due to factor A at level i
- β_i = effect due to factor B at level j
- Υ_{ii} = interaction parameter between factors A and B
- ε_{ii} = random error from sample j of treatment i
 - Assumed to be independent and normally distributed with mean = 0, variance = σ^2
- Factor A is not independent of factor B
 - If Y; 's are all zeros, factors A and B are independent.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

21

Interaction Two-Factor ANOVA: Effects Model (cont.)

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

$$\sum \alpha_i = 0$$

- If $lpha_i=0$, $eta_j=0$, and $\gamma_{ij}=0$, then all treatments have the same response $E(X_{ijk}) = \mu$
- Thus, null hypotheses for interaction factor ANOVA
 - Hypothesis on A and B: factors A and B at any level i has no effect on overall mean
 - H_{OAB} : Υ_{ii} = 0 for all i,j Test first If reject, no need to test H_{OA} , H_{OB}
 - Hypothesis on A: factor A at any level i has no effect on overall mean.
 - H_{0A} : $\alpha_1 = \alpha_2 = ... = \alpha_T = 0$
 - <u>Hypothesis on B</u>: factor B at any level j has no effect on overall mean.
 - H_{OB} : $\beta_1 = \beta_2 = ... = \beta_1 = 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 22

Two-Factor ANOVA: Interaction Factors (cont.)

- Let
 - μ_{ijk} = mean of treatment i of factor A and treatment j of factor B
 - I = number of treatments from factor A
 - J = number of treatments from factor B
 - K = number of samples per treatments from factors A and B
- Hypothesis:
 - H_{OAB} : $\Upsilon_{ii} = 0$ for all i,j
 - H_{aAB}: At least Υ_{ii} ≠ 0
 - H_{0A} : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$
 - $H_{a\Delta}$: At least $\alpha_i \neq 0$
 - H_{OB} : $\beta_1 = \beta_2 = ... = \beta_I = 0$
 - H_{aB} : At least $\beta_i \neq 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 23

23

Two-Factor ANOVA: Interaction Factors

Test statistic (cont.):

$$SST = \sum_{i} \sum_{i} \sum_{k} (X_{ijk} - \bar{X})^{2}$$

$$df = IJK - 1$$

$$SSA = \sum_{i} \sum_{i} \sum_{k} (\bar{X}_{i} - \bar{X})^{2}$$

$$df = I - 1$$

$$SSB = \sum_{i} \sum_{j} \sum_{k} (\bar{X}_{j} - \bar{X})^{2}$$

$$df = J-1$$

$$SSAB = \sum_{i} \sum_{j} \sum_{k} (\bar{X}_{ij} - \bar{X}_{i} - \bar{X}_{j} + \bar{X})^{2} \qquad \text{df} = (I - 1)(J - 1)$$

$$df = (I - 1)(J - 1)$$

$$SSE = \sum_{i} \sum_{j} \sum_{k} (X_{ijk} - \bar{X}_{ij})^{2}$$

$$df = IJ(K - 1)$$

$$SST = SSA + SSB + SSAB + SSE$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 24

Two-Factor ANOVA: Additive Factors (cont.)

Test statistic (cont.):

Another option:

Sample-based computation

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk}^{2} - \frac{1}{IJK} (\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk})^{2} \qquad df = IJK - 1$$

$$SSA = \frac{1}{JK} \sum_{i=1}^{I} (\sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk})^{2} - \frac{1}{IJK} (\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk})^{2} \quad df = I - 1$$

$$SSB = \frac{1}{IK} \sum_{j=1}^{J} (\sum_{i=1}^{I} \sum_{k=1}^{K} X_{ijk})^{2} - \frac{1}{IIK} (\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk})^{2} \quad df = J - 1$$

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk}^{2} - \frac{1}{K} \sum_{i=1}^{I} \sum_{j=1}^{J} [(\sum_{k=1}^{K} X_{ijk})^{2}] \qquad df = (I-1)(J-1)$$

SSAB =SST - SSA - SSB - SSE

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 25

25

Two-Factor ANOVA: Interaction Factors (cont.)

- Test statistic (cont.):
 - I = Number of treatments from factor A
 - J = Number of treatments from factor B
 - K = number of samples per treatments from factors A and B

	Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
	H _{OA} vs. H _{aA}	SSA/(I -1)	$f_A = MSA / MSE$	$f_A > F_{\alpha, I-1, IJ(K-1)}$
	H _{OB} vs. H _{aB}	SSB/(J - 1)	$f_B = MSB / MSE$	$f_B > F_{\alpha, J-1, IJ(K-1)}$
	H _{OAB} vs. H _{aAB}	CCAD	$f_{AB} = MSAB /$	$f_{AB} > F_{\alpha, (I-1)(J-1), IJ(K-1)}$
up				ļ

nputer Engineering

26

Su

Example

Test 3 varieties of tomatoes on 4 planting density at significance level
 = 0.01

		Planting Density										
Vari ety	10,000			20,000			30,000			40,000		
Н	10.5	9.2	7.9	12.8	11.2	13.3	12.1	12.6	14.0	10.8	9.1	12.5
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2

- A = Varieties of tomatoes, I = 3
- B = Planting densities, J = 4
- K = Number of samples per factors A and B = 3
- IJK = 36

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 27

27

Example (cont.)

• Test 3 varieties of tomatoes on 4 planting density at significance level = 0.01

		Planting Density										
Vari ety	10,000		20,000		30,000			40,000				
Н	10.5	9.2	7.9	12.8	11.2	13.3	12.1	12.6	14.0	10.8	9.1	12.5
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2

- SST = 460.36, df = 35 (IJK -1)
- SSA = 327.60, df = 2 (I-1)
- SSB = 86.69, df = 3 (J-1)
- SSE = 38.04, df = 24 (IJ(K-1)) -> MSE = 38.04 / 24 = 1.59
- SSAB = 460.36 327.60 86.69 38.04 = 8.03, df = 35 2 3 24 = 6

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 28

Example (cont.)

· Test statistic:

Hypothesis	Mean Square (MS)	Test statistic (f)	Rejection region
H _{OA} vs. H _{aA}	163.8	f _A = 103.02	F _{0.01, 2, 24} = 5.61
H _{OB} vs. H _{aB}	28.9	f _B = 18.18	F _{0.01, 3, 24} = 4.72
H _{OAB} vs. H _{aAB}	1.34	f _{AB} = 0.84	F _{0.01, 6, 24} = 3.67

- H_{OAB} is not rejected. Interaction has no effect.
- H_{OA} is rejected. Factor A (varieties of tomatoes) has effect on average product
- H_{OB} is rejected. Factor B (planting densities) has effect on average product

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 29

29

Multiple Comparisons

- When interaction is rejected and one or both factors has the effect, we can perform multiple comparisons.
- To specify which mean is different from others
 - Fix on factor A or B
 - Find Tukey's Honestly Significant Difference (HSD) using the following formula

Factor A:
$$w_A = q_{\alpha,I,IJ(K-1)} \sqrt{\frac{MSE}{JK}}$$

Factor B:
$$w_B = q_{\alpha, J, IJ(K-1)} \sqrt{\frac{MSE}{IK}}$$

- $q_{\alpha, m, n} = q$ -value from studentized range distribution with 2 degrees of freedom m, n
- Follow the same steps as finding other HSD

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 30

Example (cont.)

I = 3, J = 4, K = 3

IJ(K-1) = 24

• Test 3 varieties of tomatoes on 4 planting density at $\alpha = 0.01$

	Planting Density												
Vari ety	10,000		١	20,000			30,000			40,000			\bar{x}_i
Н	10.5	9.2	7.9	12.8	11.2	13.3	12.1	12.6	14.0	10.8	9.1	12.5	11.33
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5	12.21
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2	18.13

Factor A:
$$w_A = q_{\alpha,I,IJ(K-1)} \sqrt{\frac{MSE}{JK}}$$

Factor A:
$$w_A = q_{\alpha,I,IJ(K-1)} \sqrt{\frac{MSE}{JK}}$$
 $w_A = q_{0.01,3,24} \sqrt{\frac{MSE}{JK}} = 4.55 \sqrt{\frac{1.59}{12}} = 1.66$

• Sort sample means (\bar{x}_i) : 11.33, 12.21, 18.13

• 2 groups of means: $\{\bar{x}_1, \bar{x}_2\}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 31

31

Example (cont.)

I = 3, J = 4, K = 3

IJ(K-1) = 24

• Test 3 varieties of tomatoes on 4 planting density at α = 0.01

	Planting Density											
Vari ety	10,000		20,000		30,000			40,000				
Н	10.5 9.2 7.9 12.8 11.2 13.3		13.3	12.1	12.6	14.0	10.8	9.1	12.5			
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2
\bar{x}_j	11.48			14.39		15.78			13.91			

Factor B:
$$w_B = q_{\alpha,J,IJ(K-1)} \sqrt{\frac{MSE}{IK}}$$

Factor B:
$$w_B = q_{\alpha,J,IJ(K-1)} \sqrt{\frac{MSE}{IK}}$$
 $w_B = q_{0.01,4,24} \sqrt{\frac{MSE}{IK}} = 4.91 \sqrt{\frac{1.59}{9}} = 2.06$

• Sort sample means (\bar{x}_i) : 11.48, 13.91, 14.39, 15.78

• 2 groups of mean: \bar{x}_1 and $\{\bar{x}_4, \bar{x}_2, \bar{x}_3\}$

Supaporn Erjongmanee fengspe@ku.ac.th

Slide 32

Department of Computer Engineering Kasetsart University

Example 2

- Test 2 varieties of Iron (Fe) on 3 concentration doses
- 18 samples per category

	Fe ²⁺		Fe ³⁺					
10.2	1.2	0.3	10.2	1.2	0.3			
0.71	2.20	2.25	2.20	4.04	2.71			
1.66	2.93	3.93	2.69	4.16	5.43			
2.01	3.08	5.08	3.54	4.42	6.38			
2.16	3.49	5.82	3.75	4.93	6.38			
2.42	4.11	5.84	3.83	5.49	8.32			
2.42	4.95	6.89	4.08	5.77	9.04			
2.56	5.16	8.50	4.27	5.86	9.56			
2.60	5.54	8.56	4.53	6.28	10.01			
3.31	5.68	9.44	5.32	6.97	10.08			
3.64	6.25	10.52	6.18	7.06	10.62			
3.74	7.25	13.46	6.22	7.78	13.80			
3.74	7.90	13.57	6.33	9.23	15.99			
4.39	8.85	14.76	6.97	9.34	17.90			
4.50	11.96	16.41	6.97	9.91	18.25			
5.07	15.54	16.96	7.52	13.46	19.32			
5.26	15.89	17.56	8.36	18.40	19.87			
8.15	18.30	22.82	11.65	23.89	21.60			
8.24	18.59	29.13	12.45	26.39	22.25			

- A = Forms of Irons, I = 2, B = Concentration of doses, J = 3
- K = Number of samples per factors A and B = 18, IJK = 108

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 33

5.82 5.84 6.89 8.50 8.56 9.44

10.52 13.46 13.57

14.76 16.41

3.64 3.74 3.74 6.25 7.25 7.90

8.85 11.96 15.54 15.89 18.30 18.59 Department of Computer Engineering
Kasetsart University

33

Example 2 (cont.)

Test 2 varieties of Iron (Fe) on 3 concentration doses

$\lambda = 0.01$
$\overline{x}_{Fe2+}=7.88$
$\overline{x}_{Fe3+}=9.40$
$\overline{x}_{10.2} = 4.82$
$\overline{x}_{1.2} = 8.92$
$\overline{x}_{0.3} = 12.19$

 $\overline{x} = 8.64$

• SST = 3992.37,	df = 107 (IJK - 1)	1)
------------------	--------------------	----

- SSA = 62.26, df = 1 (/-1)
- SSB = 983.62, df = 2 (J-1)
- SSE = 2938.20, df = 102 (/J(K-1))
- SSAB = SST SSA SSB SSE = 8.29, df = 2

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 34

5.86

13.46 18.40 23.89 26.39

Example 2(con	t.)	• SST = 3992.37, df =	= 107	• SSE = 2938.20, d	f = 102
		• SSA = 62.26, df = 1	-	SSAB = 8.29, df =	= 2
Test statistic :		• SSB = 983.62, df =	2	MSE = 2938.20 / 1	02 = 28.81
Hypothesis	Mean Square (MS)	Test statistic (f)	Rej	ection region	
H _{OA} vs. H _{aA}	62.26/1= 62.26	f _A = 62.26/28.81 = 2.16	F 0.05	1, 1, 102 = 6.89 5, 1, 102 = 3.93 1, 102 = 2.76	ccept at 0.1
H _{OB} vs. H _{aB}	983.62/2 = 491.81	= 17.07 F _{0.05, 2,}		1, 2, 102 = 4.82 5, 2, 102 = 3.09 2, 102 = 2.36	eject at 0.01
H _{OAB} vs. H _{aAB}	8.29/2 = 4.15	f _{AB} = 4.15/28.81 = 0.14	F 0.0!	1, 2, 102 = 4.82 5, 2, 102 = 3.09 2, 102 = 2.36	ccept at 0.1
• H _{OAB} is not i	rejected. Intera	action has no effect			
H _{OA} is not re	ejected. Factor	A (forms of Iron) h	as no	o effect on % of re	tained iron
anc	-	Concentration) has			

 Test statist 	tic:	• SSB = 983.62,	df = 2 MSE = 2938.20 /	102 = 28.81
Hypothesis	Mean Square (MS)	Test statistic (f)	P-value	
H _{OA} vs. H _{aA}	62.26/1= 62.26	f _A = 62.26/28.81 = 2.16	0.14 Accept at 0.1	
H _{OB} vs. H _{aB}	983.62/2 = 491.81	f _B = 491.81/28.81 = 17.07	4.02 x 10 ⁻⁷ Reject at 0.01	
H _{OAB} vs. H _{aAB}	8.29/2 = 4.15	f _{AB} = 4.15/28.81 = 0.14	0.87 Accept at 0.1	
• H _{OA} is not re	ejected. Facto		:. as no effect on % of reta effect on % of retained in	_

Outline

- Two-Factor ANOVA
 - Additive Factors
 - Interaction Factors
 - Interaction Plot
- Addition

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 37 Department of Computer Engineering Kasetsart University

37

Additive Two-Factor ANOVA: Effects Model

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

 $\sum \alpha_i = 0 \qquad \sum \beta_j = 0$

Adding effect of factors A and B

- X_{ii} = random sample j of treatment i
- μ = overall mean of treatment
- α_i = effect due to factor A at level i
- β_j = effect due to factor B at level j
- ε_{ii} = random error from sample j of treatment i
 - Assumed to be independent and normally distributed with mean = 0, variance = σ^2
- Factor A is independent of factor B

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 38

Interaction Plot: Example 1 $X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$ $\sum \beta_i = 0$ $\sum \alpha_i = 0$ Adding effect of factors A and B 2 factors affect job applicants A. Weight B. Relationship type Acquaintance 6.6 udged Qualifications Both lines (means) are (almost) parallel 6.2 Two lines are not crossing -> Change in one factor does not affect the other factor Girl Friend When value of one factor changes, mean changes Typical **Companion Weight**

Department of Computer Engineering

Kasetsart University

Image source: http://onlinestatbook.com/2/analysis_of_variance/multiway.html

Statistics in Computer Engineering

Slide 39

39

Supaporn Erjongmanee

fengspe@ku.ac.th

Interaction Plot: Example 5

Test 3 varieties of tomatoes on 4 planting density at significance level = 0.01

		Planting Density										
Vari ety	10,000			20,000			30,000			40,000		
Н	10.5	9.2	7.9	12.8	11.2	13.3	12.1	12.6	14.0	10.8	9.1	12.5
Ife	8.1	8.6	10.1	12.7	13.7	11.5	14.4	15.4	13.7	11.3	12.5	14.5
Р	16.1	15.3	17.5	16.6	19.2	18.5	20.8	18.0	21.0	18.4	18.9	17.2

- A = Varieties of tomatoes, I = 3
- B = Planting densities, J = 4
- K = Number of samples per factors A and B = 3
- IJK = 36

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 43

Kasetsart University

43

Statistics in Computer Engineering

44

Supaporn Erjongmanee

fengspe@ku.ac.th

Interaction Plot: Example 6

- Test 2 varieties of Iron (Fe) on 3 concentration doses
- 18 samples on % retainment per category

	Fe^{2+}		Fe ³⁺					
10.2	1.2	0.3	10.2	1.2	0.3			
0.71	2.20	2.25	2.20	4.04	2.71			
1.66	2.93	3.93	2.69	4.16	5.43			
2.01	3.08	5.08	3.54	4.42	6.38			
2.16	3.49	5.82	3.75	4.93	6.38			
2.42	4.11	5.84	3.83	5.49	8.32			
2.42	4.95	6.89	4.08	5.77	9.04			
2.56	5.16	8.50	4.27	5.86	9.56			
2.60	5.54	8.56	4.53	6.28	10.01			
3.31	5.68	9.44	5.32	6.97	10.08			
3.64	6.25	10.52	6.18	7.06	10.62			
3.74	7.25	13.46	6.22	7.78	13.80			
3.74	7.90	13.57	6.33	9.23	15.99			
4.39	8.85	14.76	6.97	9.34	17.90			
4.50	11.96	16.41	6.97	9.91	18.25			
5.07	15.54	16.96	7.52	13.46	19.32			
5.26	15.89	17.56	8.36	18.40	19.87			
8.15	18.30	22.82	11.65	23.89	21.60			
8.24	18.59	29.13	12.45	26.39	22.25			

- A = Forms of Irons, I = 2, B = Concentration of doses, J = 3
- K = Number of samples per factors A and B = 18, IJK = 108

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 45

45

More on Multiple Comparison (cont.)

ANOVA tests on ALL means whether they are identical Multiple comparison tests on PAIRWISE means

ANOVA detects lower variability among all means ANOVA test is more sensitive than Multiple comparison

Image source: http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-varianceanova-and-the-f-test

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 49

49

Interaction Two-Factor ANOVA: Effects Mode

$$\sum \alpha_i = 0$$

$$\sum \beta_j = 0$$

• If $lpha_i=0$, $eta_j=0$, and $\gamma_{ij}=0$, then all treatments have the same response

$$E(X_{ijk}) = \mu$$

Thus, null hypotheses for interaction factor ANOVA

Hypothesis on A and B: factors A and B at any level i has no effect on overall mean

• H_{OAB} : $\Upsilon_{ij} = 0$ for all i,j Test first If reject, no need to test H_{OA} , H_{OB}

• Hypothesis on A:

A interacts with B

factor A at any level i has no effect on overall mean. Effect of A depends on B

• H_{0A} : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$

Thus, A and B both affect.

• Hypothesis on B: factor B at any level j has no effect on overall mean.

• H_{OB} : $\beta_1 = \beta_2 = ... = \beta_1 = 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 50

More on ANOVA

When H_{OAB} is rejected and H_{OA} (or H_{OB}) is not rejected, what does it mean?

A and B interact.

A and B both affect.

That's why all means are equal and H_{OA} is not rejected.

A has effect but its effect (that depends on B) is the same for all responses

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 51

51

References

- J.L. Devore and K.N. Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- 2. J.A. Rice, Mathematical Statistics and Data Analysis, Duxbury Press, 1995.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 52

