

凡治众如治寡,分数是也

——《孙子兵法

分治

分治法

- 3.1 分治法概述
- 3.2 求解排序问题
- 3.3 求解查找问题
- 3.4 求解组合问题
- 3.5 求解大整数乘法和矩阵乘法问题

3.1 分治法概述 分治法的设计思想

对于一个规模为n的问题:若该问题可以容易地 解决(比如说规模n较小)则直接解决,否则将其 分解为k个规模较小的子问题,这些子问题互相独 立且与原问题形式相同,递归地解这些子问题,然 后将各子问题的解合并得到原问题的解。这种算法 设计策略叫做分治法。

3.1 分治法概述 分治法的特征

分治法所能解决的问题一般具有以下几个特征:

- (1) 该问题的规模缩小到一定的程度就可以容易地解决。
- (2) 该问题可以分解为若干个规模较小的相同问题。
- (3) 利用该问题分解出的子问题的解可以合并为该问题的解。
- (4)该问题所分解出的各个子问题是相互独立的,即子问题 之间不包含公共的子问题。

3.1 分治法概述 分治法的求解过程

分治法通常采用递归算法设计技术,在每一层递归上都有3个步骤:

- ①分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。
- ② 求解子问题: 若子问题规模较小而容易被解决则直接求解, 否则递归地求解各个子问题。
- ③ 合并:将各个子问题的解合并为原问题的解。

3.1 分治法概述 分治法算法设计框架

```
divide-and-conquer(P)
{ if |P| \le n_0 return adhoc(P);
 /*分解为较小的子问题 P<sub>1</sub>, P<sub>2</sub>, ..., P<sub>k</sub>*/
divide P into smaller subinstances P1,P2,...,Pk;
                                       //循环处理k次
 for(i=1;i<=k;i++)
   y<sub>i</sub>=divide-and-conquer(P<sub>i</sub>); //递归求解各子问题Pi
    return merge(y_1, y_2, ..., y_k); //合并子问题解为原问题的解
}; */
```

3.1 分治法概述

根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?

这些问题很难予以肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。

当k=1时称为减治法。如: f(n)=n*f(n-1)

3.1 分治法概述

分治法----二分法

许多问题可以取 *k*=2,称为**二分法**,如图所示,这种使子问题规模大致相等的做法是出自一种**平衡子问题**的思想,它几乎总是比子问题规模不等的做法要好。

•••

基本思想:在待排序的n个元素中任取一个元素(通常取第一个元素)作为基准,把该元素放入最终位置后,整个数据序列被基准分割成两个子序列,所有小于基准的元素放置在前子序列中,所有大于基准的元素放置在后子序列中,并把基准排在这两个子序列的中间,这个过程称作划分。

然后对两个子序列分别重复上述过程,直至每个子序列内只有一个记录或空为止。

快速排序

无序区

分治策略:

- ① **分解**:将原序列a[s...t]分解成两个子序列a[s...i-1]和a[i+1...t],其中i为划分的基准位置。
- ② 求解子问题: 若子序列的长度为0或为1,则它是有序的,直接返回;否则递归地求解各个子问题。
- ③ **合并:**由于整个序列存放在数组中*a*中,排序过程 是就地进行的,合并步骤不需要执行任何操作。

快速排序

例如,对于{2,5,1,7,10,6,9,4,3,8}序列,其快速排序过程如下图所示(没有画出空的子序列)。

快速排序——一次划分算法:

```
int Partition(int a[], int s, int t) //划分算法
   int i=s, j=t;
   int tmp=a[s]; //用序列的第1个记录作为基准
   while (i!=j)//从序列两端交替向中间扫描,直至i=j为止
   { while (j \ge i \&\& a[j] \ge tmp)
         j--; //从右向左扫描,找第1个关键字小于tmp的a[j]
      a[i]=a[j]; //将a[j]前移到a[i]的位置
      while (i \le j \&\& a[i] \le tmp)
         i++; //从左向右扫描,找第1个关键字大于tmp的a[i]
      a[j]=a[i]; //将a[i]后移到a[j]的位置
   a[i]=tmp;
   return i:
```

快速排序算法:

```
void QuickSort(int a[], int s, int t)
//对a[s..t]元素序列进行递增排序
{ if (s<t) //序列内至少存在2个元素的情况
     int i=Partition(a, s, t):
     QuickSort(a, s, i-1); //对左子序列递归排序
     QuickSort(a, i+1, t); //对右子序列递归排序
```

【算法分析】快速排序的时间主要耗费在划分操作上,对长度为n的区间进行划分,共需n-1次关键字的比较,时间复杂度为0(n)。

对n个记录进行快速排序的过程构成一棵递归树,在这样的递归树中,每一层至多对n个记录进行划分,所花时间为0(n)。

当初始排序数据正序或反序时,此时的递归树高度为n,快速排序呈现最坏情况,即最坏情况下的时间复杂度为 $0(n^2)$;

当初始排序数据随机分布,使每次分成的两个子区间中的记录个数大致相等,此时的递归树高度为 $\log_2 n$,快速排序呈现最好情况,即最好情况下的时间复杂度为 $0(n\log_2 n)$ 。快速排序算法的平均时间复杂度也是 $0(n\log_2 n)$ 。

练习

已知由 $n(n\geq 2)$ 个正整数构成的集合 $A=\{a_k\}$ ($0\leq k \leq n$),将其划分为两个不相交的子集 A_1 和 A_2 ,元素个数分别是 n_1 和 n_2 , A_1 和 A_2 中元素之和分别为 S_1 和 S_2 。设计一个尽可能高效的划分算法,满足 $|n_1-n_2|$ 最小且 $|S_1-S_2|$ 最大。要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想,采用C、C++描述算法,关键之处给出注释。
- (3) 说明你所设计算法的时间复杂度和空间复杂度。

温 思路:将A递增排序,前 $\lfloor n/2 \rfloor$ 个元素放在 A_1 中,其他放在 A_2 中

将最小的[n/2]个元素放在A1中,其他放在A2中

查找第n/2小的元素

递归快速排序

```
int Partition(int a[], int low, int high) //以a[low]为基准划分
  int i=low, j=high;
   int povit=a[low];
  while (i<j)
       while (i<j && a[j]>=povit)
       a[i]=a[j];
       while (i<j && a[i] <= povit)
          i++;
       a[j]=a[i];
   a[i]=povit;
   return i;
```

```
int Solution(int a[], int n)
  int low=0, high=n-1;
   bool flag=true;
  while (flag)
   { int i=Partition(a, low, high);
      if (i==n/2-1)
                                  //基准a[i]为第n/2的元素
         flag=false;
      else if (n/2-1>i)
                                        //在右区间查找
         low=i+1;
      else
                                  //在左区间查找
         high=i-1;
   int s1=0, s2=0;
   for (int i=0; i < n/2: i++)
     s1+=a[i];
  for (int j=n/2; j < n; j++)
     s2 + = a[j]:
  return s2-s1:
```

3.2 分治法求解排序问题 归并排序

【归并排序的基本思想】首先将a[0..n-1]看成是n个长度为1的有序表,将相邻的 $k(k\geq 2)$ 个有序子表成对归并,得到n/k个长度为k的有序子表;然后再将这些有序子表继续归并,得到 n/k^2 个长度为 k^2 的有序子表,如此反复进行下去,最后得到一个长度为n的有序表。

若*k*=2,即归并在相邻的两个有序子表中进行的,称为二路归并排序。 若*k*>2,即归并操作在相邻的多个有序子表中进行,则叫多路归并排序。

- 自顶向下(递归)
- 自底向上(非递归)

归并排序

自顶向下的二路归并排序算法:设归并排序的当前区间是 a[low..high],则递归归并排序的两个步骤如下:

- ① 分解:将序列a[low..high]一分为二,即求mid=(low+high)/2; 递归地对两个子序列a[low..mid]和a[mid+1..high]进行继续分解。其终结条件是子序列长度为1(因为一个元素的子表一定是有序表)。
- ② 求解子问题: 排序两个子序列a[low..mid]和a[mid+1..high]。
- ③ 合并:与分解过程相反,将已排序的两个子序列a[low..mid]和a[mid+1..high]归并为一个有序序列a[low..high]。

```
void merge(int a[], int low, int mid, int high)
//a[low..mid], a[mid+1..high]分别有序,将其归并为新有序序列
  i=low, j=mid+1, k=1:
   tmpa=(int *)malloc((high-low+1)*sizeof(int)+1);
  while (i<=mid && j<=high)
        if (a[i] <= a[j]) { tmpa[k] = a[i]; i++; k++; }
       else { tmpa[k]=a[j]; j++; k++; }
  while (i \le mid) { tmpa[k]=a[i]; i++; k++; }
  while (j \le high) { tmpa[k] = a[j]; j++; k++; }
   for (k=1, i=low; i \le high; k++, i++) a[i] = tmpa[k]:
   free(tmpa);
```

归并排序

```
void mergeSort(int a[], int low, int high) {
                               //子序列有两个或以上元素
    if (low<high)
      mid=(low+high)/2;
       mergeSort(a, low, mid);
       mergeSort(a, mid+1, high);
       merge (a, low, mid, high); //0(n)
```

```
T(n)=1 当n=1 T(n)=0(n\log_2 n)
T(n)=2T(n/2)+0(n) 当n>1 S(n)=0(n)
```

归并排序

归并排序-自底向上

归并排序

自底向上的二路归并排序的分治策略如下:

循环 $\lceil \log_2 n \rceil$ 次, $\lceil \log_2 n \rceil$ 次, $\lceil \log_2 n \rceil$ 。每次执行以下步骤:

- ① 分解:将原序列分解成长度为len的若干子序列。
- ② 求解子问题:将相邻的两个子序列调用Merge算法合并成一个有序子序列。
- ③ 合并:由于整个序列存放在数组中a中,排序过程是就 地进行的,合并步骤不需要执行任何操作。

归并排序 自底向上

```
void Merge(int a[], int low, int mid, int high)
//a[low..mid]和a[mid+1..high] \rightarrow a[low..high]
  int *tmpa:
  int i=low, j=mid+1, k=0;
  tmpa=(int *)malloc((high-low+1)*sizeof(int));
  while (i<=mid && j<=high)
    if (a[i] \leq a[j])
                                //将第1子表中的元素放入tmpa中
     { tmpa[k]=a[i]; i++; k++; }
                                 //将第2子表中的元素放入tmpa中
     else
     \{ tmpa[k]=a[j]; j++; k++; \}
  while (i<=mid) //将第1子表余下部分复制到tmpa
   \{ tmpa[k]=a[i]; i++; k++; \}
  while (j<=high)
                                 //将第2子表余下部分复制到tmpa
   \{ tmpa[k]=a[j]; j++; k++; \}
  for (k=0, i=low; i<=high; k++, i++) //将tmpa复制回a中
     a[i]=tmpa[k];
  free(tmpa);
                                 //释放tmpa所占内存空间
```

归并排序

将相邻的长度为length的有序表合并成一个有序表

```
void MergePass (int a[], int length, int n)
//一趟二路归并排序
 int i:
  for (i=0; i+2*length-1<n; i=i+2*length) //归并length长的两相邻子表
      Merge(a, i, i+length-1, i+2*length-1);
  if (i+length-1<n)//余下两个子表,后者长度小于length
      Merge(a, i, i+length-1, n-1);/*归并这两个子表;
                               否则余下一个子表,此次不参与归并*/
```


3.2 分治法求解排序问题 归并排序

```
void MergeSort(int a[], int n) //自底向上的二路归并算法
{ int length;
  for (length=1;length<n;length=2*length)
     MergePass(a, length, n);
}</pre>
```

【算法分析】对于上述二路归并排序算法,当有n个元素时,需要 $\lceil \log_2 n \rceil$ 趟归并,每一趟归并,其元素比较次数不超过n-1,元素移动次数都是n,因此归并排序的时间复杂度为 $O(n\log_2 n)$ 。

应用于外部排序

3.3 分治法求解查找问题 查找最大和次大元素

【**问题描述**】对于给定的含有*n*元素的无序序列,求这个序列中最大和次大的两个不同的元素。

例如: (2, 5, 1, 4, 6, 3), 最大元素为6, 次大元素为5。

3.3 分治法求解查找问题 查找最大和次大元素

【问题求解】对于无序序列a[low.high]中,采用分治法求最大元素max1和次大元素max2的过程如下:

- (1) a[low.high]中只有一个元素:则max1=a[low], max2=-INF(-
- ∞) (要求它们是不同的元素)。
- (2) a[low.high]中只有两个元素:则max1=MAX{a[low],a[high]},max2=MIN{a[low],a[high]}。
- (3) a[low.high]中有两个以上元素: 按中间位置mid=(low+high)/2划分为a[low..mid]和a[mid+1..high]左右两个区间(注意左区间包含a[mid]元素)。

求出左区间最大元素1max1和次大元素1max2,求出右区间最大元素rmax1和次大元素rmax2。

合并: 若lmax1>rmax1, 则max1=lmax1, max2=MAX{lmax2, rmax1}; 否则max1=rmax1, max2=MAX{lmax1, rmax2}。

3.3 分治法求解查找问题

查找最大和次大元素

【算法描述】

```
void solve(int a[], int low, int high, int &max1, int &max2)
   if (low==high)
                                   //区间只有一个元素
        \max 1 = a[1ow]; \qquad \max 2 = -INF;
    else if (low==high-1) //区间只有两个元素
        max1=max(a[low], a[high]); max2=min(a[low], a[high]); }
    else
                          //区间有两个以上元素
        int mid=(low+high)/2;
        int lmax1, lmax2;
                                                 //左区间求1max1和1max2
         solve (a, low, mid, lmax1, lmax2);
         int rmax1, rmax2;
         solve(a, mid+1, high, rmax1, rmax2); //右区间求1max1和1max2
         if (lmax1>rmax1)
            \max 1 = 1 \max 1:
            max2=max(1max2, rmax1); //1max2, rmax1中求次大元素
         else
            max1=rmax1:
            max2=max(1max1, rmax2); //1max1, rmax2中求次大元素
```

3.3 分治法求解查找问题

查找最大和次大元素

【算法分析】对于solve(a, 0, n-1, max1, max2)调用,其

比较次数的递推式为:

$$T(1)=T(2)=1$$

$$T(n)=2T(n/2)+1$$
 //合并的时间为O(1)

可以推导出T(n)=O(n)。

3.3 分治法求解查找问题

查找最大和最小元素

```
void solve(int a[], int low, int high, int *max, int *min)
                             //区间只有一个元素
   if (low==high)
       *max=a[low]; *min=a[low]; }
   else if (low==high-1) //区间只有两个元素
       *max=max(a[low], a[high]); *min=min(a[low], a[high]); }
   else.
                     //区间有两个以上元素
       mid=(low+high)/2;
       int lmax, lmin; int rmax, rmin;
      solve(a, low, mid, &lmax, &lmin);
                                         //左区间求1max和1min
      solve(a, mid+1, high, &rmax, &rmin); //右区间求rmax和rmin
       if (lmax>rmax) *max=lmax;
       else *max=rmax:
       if (lmin<rmin) *min=lmin;
       else *min=rmin;
```

查找最大和最小元素

算法分析:

(1) 列出比较次数的递归方程。

$$T(n) = \begin{cases} 0, & n = 1 \\ 1, & n = 2 \\ 2T(\frac{n}{2}) + 2, & n > 2 \end{cases}$$

查找最大和最小元素

(2). 求解递归方程。

当n>2时

$$T(n) = 2T(\frac{n}{2}) + 2 = 2[2T(\frac{n}{2^2}) + 2] + 2 = 2^{k-1}T(\frac{n}{2^{k-1}}) + 2^k - 2$$

$$2^{k-1} + 2^{k-2} + \dots + 2 = \frac{2 - 2^{k-1} * 2}{1 - 2}$$

$$T(n) = \frac{n}{2}T(2) + n - 2$$

因为
$$T(2) = 1$$

所以
$$T(n) = \frac{n}{2}T(2) + n - 2 = \frac{3}{2}n - 2$$

3.3 分治法求解查找问题 折半查找

基本思路: 设a[low..high]是当前的查找区间,首先确定该区间的中点位置mid=(low+high)/2]; 然后将待查的k值与a[mid]. key比较:

- (1) 若k=a[mid],则查找成功并返回该元素的物理下标;
- (2) 若Ka[mid],则由表的有序性可知a[mid..high]均大于k,因此若表中存在关键字等于k的元素,则该元素必定位于左子表a[low..mid-1]中,故新的查找区间是左子表a[low..mid-1];
- (3) 若k > a[mid],则要查找的k > a[mid+1...high]中,即新的查找区间是右子表a[mid+1...high]。

下一次查找是针对新的查找区间进行的。

折半查找

【算法实现】

```
int BinSearch(int a[], int low, int high, int k)
//拆半查找算法
  int mid:
  if (low<=high)
                       //当前区间存在元素时
     mid=(low+high)/2; //求查找区间的中间位置
      if (a[mid]==k)
                       //找到后返回其物理下标mid
         return mid;
      if (a[mid]>k) //当a[mid]>k时
         return BinSearch(a, low, mid-1, k);
                         //当a[mid]<k时
      else
         return BinSearch(a, mid+1, high, k);
                          //若当前查找区间没有元素时返回-1
  else return -1:
```

折半查找

【算法分析】折半查找算法的主要时间花费在元素比较上,对于含有n个元素的有序表,采用折半查找时最坏情况下的元素比较次数为C(n),则有:

$$C(n) \le 1 + C(\lfloor n/2 \rfloor)$$
 当 $n \ge 2$

由此得到: $C(n) \leq \lfloor \log_2 n \rfloor + 1$

折半查找的主要时间花在元素比较上,所以算法的时间复杂度为 $0(\log_2 n)$ 。

寻找一个序列中第k小元素

【**问题描述**】对于给定的含有n元素的无序序列,求这个序列中第 k ($1 \le k \le n$) 小的元素。

【问题求解】假设无序序列存放在a[1..n]中,若将a递增排序,则第k小的元素为a[k]。

采用类似于快速排序的思想。

<寻找一个序列中第k小元素

对于序列a[s...t],在其中查找第k小元素的过程如下:

将a[s]作为基准(即最小下标位置的元素为数轴)进行一次划分,对应的划分位置下标为i。3种情况:

- 若k=i-s+1 ,a[i]即为所求,返回a[i]。
- 若Ki-s+I ,第k小的元素应在a[s. i-1]子序列中,递归在该子序列中求解并返回其结果。
- 若ki-s+I,第k小的元素应在a[i+1...<math>t]子序列中,递归在该子序列中求解并返回其结果。

寻找一个序列中第k小元素

算法实现:

```
int QuickSelect(int a[], int s, int t, int k)
//在a[s..t]序列中找第k小的元素
  int i=s, j=t, tmp;
  if (s < t)
  \{ tmp=a[s]:
     while (i!=j)
                            //从区间两端交替向中间扫描,直至i=j为止
     { while (j>i && a[j]>=tmp) j--;
        a[i]=a[j]; //将a[j]前移到a[i]的位置
        while (i \le j \&\& a[i] \le tmp) i++;
        a[i]=a[i]: //将a[i]后移到a[i]的位置
     a[i]=tmp;
     if (k==i-s+1) return a[i]:
     else if (k \le i-s+1) return QuickSelect(a, s, i-1, k);
                           //在左区间中递归查找
     else return QuickSelect(a, i+1, t, k-(i-s+1));
                            //在右区间中递归查找
  else if (s==t && s==k-1) //区间内只有一个元素且为a[k-1]
     return a[k-1]:
```

寻找一个序列中第k小元素

【算法分析】对于QuickSelect(a, s, t, k)算法,设序列a中含有n个元素,其比较次数的递推式为:

$$T(n) = T(n/2) + O(n)$$

可以推导出*T(n)*=O(*n*),这是最好的情况,即每次划分的基准恰好是中位数,将一个序列划分为长度大致相等的两个子序列。

在最坏情况下,每次划分的基准恰好是序列中的最大值或最小值,则处理区间只比上一次减少1个元素,此时比较次数为O(n²)。

在平均情况下该算法的时间复杂度为O(n)。

寻找两个等长有序序列的中位数

【问题描述】对于一个长度为*n*的有序序列(假设均为升序序列)*a*[0...*n*-1],处于中间位置的元素称为*a*的中位数。

设计一个算法求给定的两个有序序列的中位数。

例如,若序列*a*=(11, 13, 15, 17, 19),其中位数是15, 若*b*=(2, 4, 6, 8, 20),其中位数为6。两个等长有序序列的中位数是含它们所有元素的有序序列的中位数,例如*a*、*b*两个有序序列的中位数为11。

$$a=(11, 13, 15, 17, b=(2, 4, 6, 8, 20)$$
19)
 $c=(2, 4, 6, 8, 11, 12, 15, 17, 19, 20)$

【问题求解】对于含有n个元素的有序序列a[s...t],当n为奇数时,中位数是出现在m=\(\((s+t)/2\)\)处;当n为偶数时,中位数下标有 m=\(\((s+t)/2\)\)\((r+t)/2\)\((r+t)/2\)\+1(上中位)两个。为了简单,仅考虑中位数为m=\(\((s+t)/2\)\)处。

0 1 2 3 4 0 1 2 3 4

$$a=(11, 13, 15, 17, b=(2, 4, 6, 8, 20))$$
 $m=\lfloor (s+t)/2\rfloor = 2$
 $m=\lfloor (s+t)/2\rfloor = 2$
 $m=\lfloor (s+t)/2\rfloor = 4$
 $m=\lfloor (s+t)/2\rfloor = 4$

采用二分法求含有n个有序元素的序列a、b的中位数的过程如下:

● 若1=1, 较小者为中位数。

其他(else): 又分为3种情况:

分别求出a、b的中位数a[m1]和b[m2]:

② 若a[m1] 〈b[m2],则舍弃序列a中前半部分(较小的一半),同时舍弃序列b中后半部分(较大的一半)要求舍弃的长度相等(因为要转换为同类型的子问题(同为n个元素的有序表))。

case1:(序列元素个数n为奇数)下面示例中,n=5

② 若a[m1] 〈b[m2],则舍弃序列a中前半部分(较小的一半),同时舍弃序列b中后半部分(较大的一半)要求舍弃的长度相等(因为要转换为同类型的子问题(同为n个元素的有序表))。

case1:(序列元素个数n为奇数)

② 若a[m1]〈b[m2],则舍弃序列a中前半部分(较小的一半),同时舍弃序列b中后半部分(较大的一半)。要求舍弃的长度相等(因为要转换为同类型的子问题:即:同为n个元素的有序表)

case2:(序列元素个数n为偶数)下面示例中,n=6。n为偶数时,我们取中用的是下取整。这样在舍弃子表的时候,a的左子表元素个数少于右子表,故a的左子表要连其中间位置的元素一并舍弃。对于b,它需要舍弃右子表,故不需要连带舍去其中间位置的元素。这样就能保证子问题与原问题相同,仍然为两个长度相等的有序表。

② 若a[m1] 〈b[m2],则舍弃序列a中前半部分(较小的一半),同时舍弃序列b中后半部分(较大的一半)。要求舍弃的长度相等(因为要转换为同类型的子问题:即:同为n个元素的有序表)

case2:(序列元素个数n为偶数)下面示例中,n=6。n为偶数时,我们取中用的是下取整。这样在舍弃子表的时候,a的左子表元素个数少于右子表,故a的左子表要连其中间位置的元素一并舍弃。对于b,它需要舍弃右子表,故不需要连带舍去其中间位置的元素。这样就能保证子问题与原问题相同,仍然为两个长度相等的有序表。

对于a[s1..t1]和b[s2..t2];取中间分别为a[m1]和b[m2]

②若a[m1]<b[m2]规律:

取a后半部分:奇数个元素,a[m1...t1]

偶数个元素, a[m1+1..t1]

取b前半部分: b[s2..m2]

n为奇数 s1 m1 t1 a=2 4 8 9 11 90 95 b=13 20 22 34 45 56 60 s2 m2 t2

③ 若a[m1]>b[m2],则舍弃序列a中后半部分(较大的一半),同时舍弃序列b中前半部分(较小的一半),要求舍弃的长度相等。舍弃一半即[n/2]个元素。将情况②中的调换位置即可。

对于a[s1..t1]和b[s2..t2];取中间分别为a[m1]和b[m2]

③若a[m1]>b[m2]规律:

取a前半部分: a[s1..m1]

取b后半部分: 奇数个元素,后半部分为b[m2..t2]

偶数个元素,后半部分为b[m2+1..t2]

n为奇数

s1 m1 t1

a=13 20 22 34 45 56 60

b=2 4 8 9 11 90 95

s2 m2 t2

n为偶数

13 20 22 34 45 56 60

2 4 8 9 11 90 95

13 20 22 34

9 11 90 95

13 20

90 95

20

90

20

```
int midNum(int a[],int s1,int e1,int b[],int s2,int e2)
       //求两个有序序列a[s1..e1]和b[s2..e2]的中位数
       int m1,m2;
       return a[s1]<b[s2]?a[s1]:b[s2];
       else
                                    //求a的中位数位置
              m1=(s1+e1)/2;
                                  //求b的中位数位置
              m2=(s2+e2)/2;
              if (a[m1]==b[m2])
                                     //两中位数相等时返回该中位数
                      return a[m1];
                                     //当a[m1]<b[m2]时
              if (a[m1] < b[m2])
                  if((s1+e1)%2==0) s1=m1; //a取后半部分, 奇数个元素
                  else s1=m1+1; //偶数个元素
                             //b取前半部分
                  e2=m2;
                  return midNum(a,s1,e1,b,s2,e2);
              else
                                     //当a[m1]>b[m2]时
                   e1=m1: //a取前半部分
                   if((s2+e2)%2==0) s2=m2;//b取后半部分,奇数个元素
                   else s2=m2+1; //偶数个元素
                   return midNum(a,s1,e1,b,s2,e2);
```

求解最大连续子序列和问题

【**问题描述**】给定一个有 $n(n \ge 1)$ 个整数的序列,要求求出其中最大连续子序列的和。

例如:

序列(-2, 11, -4, 13, -5, -2)的最大子序列和为20

序列(-6, 2, 4, -7, 5, 3, 2, -1, 6, -9, 10, -2)的最大子序列和为16。

规定一个序列最大连续子序列和至少是0(长度为0的子序列),如果小于0, 其结果为0。

求解最大连续子序列和问题

【问题求解】对于含有n个整数的序列a[0..n-1],若n=1,表示该序列仅含一个元素,如果该元素大于0,则返回该元素;否则返回0。

若n>1,采用分治法求解最大连续子序列时,取其中间位置 $mid=\lfloor (n-1)/2\rfloor$,该子序列只可能出现3个地方。

(1) 该子序列完全落在左半部即*a*[0..mid]中。采用递归求出其最大连续子序列和maxLeftSum。

求解最大连续子序列和问题

【问题求解】

(2) 该子序列完全落在<mark>右半部</mark>即*a*[mid+1..*n*-1]中。采用递归求出其最大连续子序列和maxRightSum。

求解最大连续子序列和问题

「问题求解】

(3) 该子序列跨越序列a的中部而占据左右两部分。

1 -2 3 5 2 -1 5 -3
$$n=8$$
, mid= $(0+7)/2=3$
 $\Rightarrow \max(8,6)=8? \times$

跨越序列a的中部: a_{mid}左、右最大连续子序列和的+

$$\max(8,6,14)=14$$

求解最大连续子序列和问题

「问题求解】

考虑该子序列跨越序列amid元素的情况

结果: max3(maxLeftSum, maxRightSum, maxLeftBorderSum+maxRightBorderSum)

求解最大连续子序列和问题

算法描述】

```
long maxSubSum(int a[], int left, int right)
//求a[left..high]序列中最大连续子序列和
{ int i, j;
  long maxLeftSum, maxRightSum;
  long maxLeftBorderSum, leftBorderSum;
  long maxRightBorderSum, rightBorderSum;
  if (left==right) //子序列只有一个元素时
  { if (a[left]>0) //该元素大于0时返回它
         return a[left];
                         //该元素小于或等于0时返回0
      else
           return 0;
```

求解最大连续子序列和问题

```
//求中间位置
int mid=(left+right)/2;
maxLeftSum=maxSubSum(a, left, mid);
                                       //求左边
maxRightSum=maxSubSum(a, mid+1, right); //求右边
maxLeftBorderSum=0, leftBorderSum=0;
                                       //求出以左边加上a[mid]元素
for (i=mid;i>=left;i--)
                                       //构成的序列的最大和
{ leftBorderSum+=a[i];
   if (leftBorderSum>maxLeftBorderSum)
       maxLeftBorderSum=leftBorderSum;
maxRightBorderSum=0, rightBorderSum=0;
                                       //求出a[mid]右边元素
for (j=mid+1;j<=right;j++)</pre>
                                       //构成的序列的最大和
{ rightBorderSum+=a[j];
   if (rightBorderSum>maxRightBorderSum)
       maxRightBorderSum=rightBorderSum;
return max3(maxLeftSum, maxRightSum,
             maxLeftBorderSum+maxRightBorderSum);
```

求解最大连续子序列和问题

【算法分析】设求解序列a[0..n-1]最大连续子序列和的执行时间为T(n),第(1)、(2)两种情况的执行时间为T(n/2),第(3)种情况的执行时间为0(n),所以得到以下递推式:

$$T(n)=1$$
 当 $n=1$ $T(n)=2T(n/2)+n$ 当 $n>1$

容易推出, T(n)=O(nlog₂n)。

求解棋盘覆盖

【问题描述】有一个2^k×2^k (*k*>0)的棋盘,恰好有一个方格与其他方格不同,称之为特殊方格。现在要用如下的L型骨牌覆盖除了特殊方格外的其他全部方格,骨牌可以任意旋转,并且任何两个骨牌不能重叠。请给出一种覆盖方法。

求解棋盘覆盖

【问题求解】棋盘中的方格数= $2^k \times 2^k = 4^k$,覆盖使用的L型骨牌个数= $(4^k-1)/3$ 。

采用的方法是:将棋盘划分为4个大小相同4个象限,根据特殊方格的位置(dr, dc),在中间位置放置一个合适的L型骨牌。

例如,如下图所示,特殊方格在左上角象限中,在中间放置一个覆盖其他3个象限中各一个方格的L型骨牌。

特殊方格在左上角象限

其他情况类似!

4

将一个size/2×size/2的棋盘,其中特殊方格在左上角的棋盘用L型骨牌进行覆盖。

k=3, n=2³=8

左上角象限	3	3	4	4	8	8	9	9	右上角
	3	2	0	4	8	7	7	9	象限
	5	2	2	6	10	10	7	11	
	5	5	6	6	1	10	11	11	
	13	13	14	1	1	18	19	19	
左下角象限	13	12	14	14	18	18	17	19	
	15	12	12	16	20	17	17	21	右下角
	15	15	16	16	20	20	21	21	象限

用(tr, tc)表示一个象限左上角方格的坐标, (dr, dc)是特殊方格所在的坐标, size是棋盘的行数和列数。

用二维数组board存放覆盖方案,用tile全局变量表示L型骨牌的编号(从整数1开始),board中3个相同的整数表示一个L型骨牌。


```
#include<stdio.h>
#define MAX 1025
//问题表示
int k; //棋盘大小
int x,y; //特殊方格的位置

//求解问题表示
int board[MAX][MAX];
int tile=1;
```


k=3, n=2³=8

Т	

3	3	4	4	8	8	9	9
3	2	0	4	8	7	7	9
5	2	2	6	10	10	7	11
5	5	6	6	1	10	11	11
13	13	14	1	1	18	19	19
13	12	14	14	18	18	17	19
15	12	12	16	20	17	17	21
15	15	16	16	20	20	21	21

3.5 求解大整数乘法和矩阵乘法问题

3.5.1 求解大整数乘法问题

【问题描述】设X和Y都是n(为了简单,假设n为2的幂,且X、Y 均为正数)位的二进制整数,现在要计算它们的乘积X*Y。

当位数n很大时,可以用传统方法来设计一个计算乘积X*Y的算法,但是这样做计算步骤太多,显得效率较低。可以采用分治法来设计一个更有效的大整数乘积算法。

【问题求解】先将n位的二进制整数X和Y各分为两段,每段的长为 n/2位,如下图所示。

由此, $X=A*2^{n/2}+B$, $Y=C*2^{n/2}+D$ 。这样,X和Y的乘积为:

 $X*Y=(A*2^{n/2}+B)*(C*2^{n/2}+D)=A*C*2^n+(A*D+C*B)*2^{n/2}+B*D$

如果这样计算X*Y,则必须进行4次n/2位整数的乘法(A*C、A*D、B*C和B*D),以及3次不超过n位的整数加法,此外还要做2次移位(分别对应乘2ⁿ和乘2ⁿ/2)。所有这些加法和移位共用0(n)步运算。设T(n)是两个n位整数相乘所需的运算总数,则有以下递推式:

$$T(n)=0(1)$$
 当 $n=1$ $T(n)=4T(n/2)+0(n)$ 当 $n>1$

由此可得T(n)=O(n²)。

采用分治法,把X*Y写成另一种形式:

$$X*Y=A*C*2^n+[(A-B)*(D-C)+A*C+B*D]*2^{n/2}+B*D$$

虽然该式看起来比前式复杂些,但它仅需做3次n/2位整数的乘法(A*C、

B*D和(A-B)*(D-C)), 6次加、减法和2次移位。由此可以推出:

$$T(n) = O(n^{1.59})$$

