Chapter 3 — Convergence in Measure

Last Updated: July 31, 2022

Contents

§1 Modes of Convergence]
§2 Normed Spaces	3

§1 Modes of Convergence

For simplicity, we will deal with \mathbb{R} -valued functions only. For further remarks, see the footnote in the book.

Definition §1.0.1. Let (X, \mathscr{A}, μ) be a measure space. Let $f, f_1, f_2, \ldots : X \to \mathbb{R}$ be a sequence of \mathscr{A} -measurable functions. We say that f_n converges to f in measure if for every $\varepsilon > 0$, we have that

 $\lim_{n} \mu \left(\left\{ x \in X : \left| f_{n}(x) - f(x) \right| > \varepsilon \right\} \right) = 0$

Remark §1.0.2. <u>∧</u> General convergence in measure is neither implied nor implies convergence almost everywhere! As the following examples show:

- **Example §1.0.3.** 1. Consider $(X, \mathcal{B}(\mathbb{R}), \lambda)$. Consider the sequence of functions $\{\chi_{[n,\infty)}\}$. Then $\chi_{[n,\infty)} \to 0$ function everywhere (hence, almost everywhere). But it does not converge in measure! To see this take $\varepsilon = \frac{1}{2}$.
 - 2. Consider the Borel subsets of [0,1) with the Lebesgue measure. Consider the sequence whose first term is the characteristic function of [0,1). The next two terms are the characteristic functions of $[0,\frac{1}{2}]$ and $[\frac{1}{2}]$, 1). The next four terms are the characteristic functions of [0,1/4), [1/4,1/2), [1/2,3/4) and [3/4,1). Well this goes on...

Now, let $\varepsilon > 0$ be given. Clearly this sequence converges to zero in measure but for each $x \in [0,1)$, $\{f_n(x)\}$ has infinitely many zeroes and ones, so, it does not converge!

Proposition §1.0.4 ($\mu < \infty$ and $\{f_n\} \to f$ a.e. implies $\{f_n\} \to f$ in measure). Let (X, \mathcal{A}, μ) be a measure space. Let $f, f_1, f_2 \dots$ be a sequence of \mathcal{A} -measurable real valued functions on X. If μ is finite and $\{f_n\}$ converges almost everywhere to f then $\{f_n\}$ converges in measure to f.

Proof. We need to prove that

$$\lim_{n} \mu(\left\{x \in X : |f_n(x) - f(x)| > \varepsilon\right\}) = 0$$

for every $\varepsilon > 0$. Let $\varepsilon > 0$ be given. Define $A_n = \{x \in X : |f_n(x) - f(x)| > \varepsilon\}$ and $B_n = \bigcup_{k \ge n} A_k$.

It is easy to see that $\{B_n\}$ is a decreasing sequence of subsets of X. We claim that $\cap_n B_n$ is contained in the set $\{x \in X : \{f_n(x)\}\}$ does not converge to $f(x)\}$. To see this, let $x \in \cap B_n$, then $x \in A_n$ for infinitely many n. If $\{f_n(x)\} \to f(x)$ then there must be some $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$ for every $n \ge N$. Since $x \in A_n$ for infinitely many n, we can select a $k \ge N$ such that $x \in A_k$. Then we have that $\varepsilon < |f_k(x) - f(x)| < \varepsilon$ which is absurd! Note that the first inequality is due to $x \in A_k$ and the second inequality holds due to $k \ge N$. Thus, this completes the proof of our claim.

Notice that the set $\{x \in X : \{f_n(x)\}\$ does not converge to $f(x)\}$ is μ - negligible set. Thus $\mu(\cap_n B_n) = 0$.

Since $\{B_n\}$ is a decreasing sequence of sets and $\mu < \infty$, Proposition 1.2.5 in the book implies that $\lim_n \mu(B_n) = \mu(\cap_n B_n) = 0$.

Now, observe that $A_n \subseteq B_n$ for every $n \in \mathbb{N}$. This observation implies that $\mu(A_n) \le \mu(B_n)$ and hence $\mu(A_n) = 0$ as $n \to \infty$.

This completes the proof.

Proposition §1.0.5. Let (X, \mathcal{A}, μ) be a measure space. Let f and $f_1, f_2, ...$ be a sequence of \mathcal{A} measurable real valued functions on X. If $\{f_n\}$ converges to f in measure then then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges almost everywhere to f.

Let X be a set. A sequence of real valued functions $\{f_n\}$ on X is said to *converge uniformly* to a real valued function f on X if for every $\varepsilon > 0$ there is a $N \in \mathbb{N}$ such that for every $n \geq N$ and every $x \in X$, we have that $|f_n(x) - f(x)| < \varepsilon$.

Proposition §1.0.6 (Egoroff's Theoren). Let (X, \mathcal{A}, μ) be a measure space. Let f and $f_1, f_2, ...$ be a sequence of \mathcal{A} -measurable real valued functions on X. If μ is finite and $\{f_n\}$ converges to f almost everywhere then for each $\varepsilon > 0$ there is some $B \in \mathcal{A}$ satisfying $\mu(B^c) < \varepsilon$ and $\{f_n\}$ converges to f uniformly on g.

Outline of Proof. Let $\varepsilon > 0$. For each n, let $g_n = \sup_{k \ge n} |f_n - f|$.

Let $F = \{x \in X : \{f_n(x)\}\}$ does not converge to f(x). Then by assumption F is a μ -negligible set.

We claim that g_n is finite almost everywhere for every n. Let $G_n = \{x \in X : g_n(x) = +\infty\}$. We show that $G_n \subseteq F$. If we show this then $\mu(G_n) = 0$ and we will done with the proof of our claim.

It is rather easy to show that $F^c \subseteq G_n^c$. Let $x \in F$. Then there is some $N \in \mathbb{N}$ such that $|f_k(x) - f(x)| < 1$ for every $k \ge N$.

If $n \ge N$ then we have that $g_n(x) = \sup_{k \ge n} |f_k(x) - f(x)| \le 1$.

If n < N then $g_n(x) \le \max\{|f_n(x) - f(x)|, ..., |f_{N-1} - f(x)|, 1\}$.

Either ways, $g_n(x) < +\infty$. Thus this shows that $x \in G_n^c$.

Now, let $G = \{x \in X : \{g_n(x)\} \text{ does not converge to 0}\}$. Complete the proof by showing that $G \subseteq F$ and following up the textbook!

Egoroff's Theorem provides a motivation for the following definition:

Definition §1.0.7. Let (X, \mathscr{A}, μ) be a measure space. Let f and $f_1, f_2, ...$ be a sequence of \mathscr{A} -measurable real valued functions on X. Then $\{f_n\}$ converges to f almost uniformly if for each $\varepsilon > 0$ there is some $B \in \mathscr{A}$ such that $\mu(B^c) < \varepsilon$ and $\{f_n\}$ converges to f uniformly on B.

We remark that if $\{f_n\}$ converges to f almost uniformly then $\{f_n\}$ converges to f almost everywhere. To see this, for $n \in \mathbb{N}$, select $B_n \in \mathscr{A}$ such that $\mu(B_n^c) < \frac{1}{n}$ and $\{f_n\}$ converges to f uniformly on B_n . Let $B = \bigcap_n B_n$. Then $\mu(B^c) \le \mu(B_n^c) < \frac{1}{n}$ for every $n \in \mathbb{N}$. Thus $\mu(B^c) = 0$. We claim that $\lim_n f_n = f$ everywhere on B. This is easy to see: if $x \in B$ then $x \in B_n$ for some $n \in \mathbb{N}$ and since $\{f_n\}$ converges to f uniformly on g, we have that $\lim_n f_n(x) = f(x)$.

It follows from Egoroff's theorem that on a finite measure space, almost everywhere convergence is equivalent to almost uniform convergence.

Definition §1.0.8. Suppose that (X, \mathcal{A}, μ) is a measure space and $f, f_1, f_2, ...$ belong to $\mathcal{L}(X, \mathcal{A}, \mu, \mathbb{R})$. Then $\{f_n\}$ converges to f in mean if

$$\lim_{n} \int |f_n - f| \, d\mu = 0$$

Proposition §1.0.9 (convergence in mean implies convergence in measure). Suppose that (X, \mathcal{A}, μ) is a measure space and $f, f_1, f_2, ...$ belong to $\mathcal{L}(X, \mathcal{A}, \mu, \mathbb{R})$. If $\{f_n\}$ converges to f in mean then $\{f_n\}$ converges to f in measure.

Example §1.0.10 (convergence in mean does not imply a.e. convergence). See Example §1.0.3.

Example §1.0.11 (neither convergence in measure nor convergence a.e. imply convergence in mean). See book!

However, under additional hypothesis we have the following:

Proposition §1.0.12. Let (X, \mathcal{A}, μ) be a measure space. Let f and $f_1, f_2, ...$ belongs to $\mathcal{L}(X, \mathcal{A}, \mu, \mathbb{R})$. If $\{f_n\}$ converges to f a.e. or in measure and there is a nonnegative function g on X such that $|f_n| \le g$ and $|f| \le g$ for every n = 1, 2, ... holds a.e. then $\{f_n\}$ converges to f in mean.

§2 Normed Spaces