what is driver?

-) 16 a testing component used in bottom
-up approach to unit testing which simulates
the higher level module / component that a writ
being tested interacts with.

Example: if module A calls module B, module

A is being tested, admiven is conexted to simulate

the behaviour of module B providing inputs and

neciving outputs as if module B were turctioning

module.

what is blub? Is a testing component used in top down approach to unit testing which simulates the lower level modules allowing higher level of modules to be test independently

Example :- if module Acalls B. and module Bis not fully implemented / doesn't exist. a stub is cheated to simulate the behaviour of B and neturn predetermine response

@ what is intregation testing

individual components funits are tested and combined as group to verify that they can work together on not

- (1) Non-incremental intregation testing
- inchemental intregation
 testing
 topdown Bottomup
- Ex why incremental intregation testing is preferred rather than using non incremental testing?
- (1) Early petection of defects in incremental testing

- a mone efficient debugging
- 3 allows continous Validation
- (9) effective nisk management
- @ improves bility
- (5) Betten Resource Utilization
- 6 Faster Feedback loop

cyclomatic complexity:-

V = E - N + 2P

Method-2

V = T + 1

Method-3

V = No of negions

E = edge

N= Node

P = 1

= connected component

T = predicted Node

(Node has two outgoing edge)

negion = inside cycle+1

Method-4

V = binary decision +1

ton, switch, if, else

method -5

using connection Matrix

[it, elseit, else] (3-1) +1 = 3

(E) V= F-N+2P 1.2 for 8,9 elseit else Statement 10 end for 11 V= E-N+2 = 10 - 8+2 2001231 bilothing F+ (0.5 0) 2000

①
$$V = E - N + 2p$$

= $1s - 13 + 2$
= 4

$$V = \pi + 1$$

$$= \underset{\text{Nobe}}{\overset{\text{No}}{\text{predicted}}}$$

$$= \underset{\text{Nobe}}{\overset{\text{No}}{\text{predicted}}}$$

$$= \underset{\text{Nobe}}{(B, c, D)} + 1$$

@ connection untrix

1	Po	0	e	0	E	18	16	H	12	13	V	1	w
A		1								1			
B			2	2		184	-						
·				2 -	2	2							
0								2					
8							2						
9							2						
6												1	
14									2	2			
3											2		
3											2		
X												1	
_ V	,												2
u													

1
1-1=0
2-1= 4
1-0=0
1-1=0
1-1=0
1-1=0
1-1=0
1-1 =0

1-1-0

3

Ans

o tou -) No Regions fon Co Nested ton end × 5 en d

$$V = E - N + 2P$$

$$= 22 - 18 + 2$$

$$= 4 + 2 = 6$$

$$List of Independent paths: - (Ido in halls)$$

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow B \rightarrow E \rightarrow C \rightarrow D \rightarrow B \rightarrow C \rightarrow D \rightarrow C \rightarrow E \rightarrow C \rightarrow D \rightarrow C \rightarrow$$

Independent paths !-

- (1) ABBCDEFGMCH
- 2) ABCH complete to
- 3 ABBCH
 - WABBCDEEFACH

Test case design for independent path

Test 20	JUPUT	Expected	Inde Pendent Pathcovened by Test case
1	N = 0	blank	2_
2	N= 1	blank	3
3	N = 3 $9 = (1, 2, 3)$ $9 = (1, 2, 3)$	maintaint the tommet no just to need t	And

$$A = [1,100]$$

 $B = [1,100]$

Boundary Value Test case

		A	B	
minimum	uin	1	1	
Valuejust above minimum	uint 1	2000	2	3
muximum	Max	100	100	2
Value just less Maximum	Max_	5 5	99	P
Nominal	Nom	5 cm 0.	10	3
below less than minimum	min_	1 0 0000	1000 O	1
value above maximum	Max +	5) [6]	101	Ŧ

(01,001) - man 01 xx00

Boundary Value test cases
= 4n+1

Boundary checking = 4x2+1 = 8+1=5

Test 10	Formula	Testense	Expected output		
1	Anom, Brom	(5, 10)	5 Sullan		
2	Anom, Bmin	(5, 1)	1 -		
3	A nom. Brint	(5, 2)	1 m m		
4	A nom, Brux	(5, 100)	5		
S	A nom. B mex-	(5, 99)	1 Stiller		
6	A min Bnom	(1,10)	1		
7	Amin+ Brom	(2,10)	2 2		
8	A MAR IB NOM	(100,10)	16		
5	AMX-, BNOM	(95 '10)	Lin I		

@ Robustness Testing

$$n = 2$$

Test cases = 6 n + 1
= 12+1 = 13

TestcaseID	+ e- (co	Testerse	Expected output
1-9	From BUC Testase		
(0	Anom, Bmax+	5, 101	Jovalid
11	Anom, Bmin-	\$,0	Invalid
12_	Amaxt, Brom	101, 10	Jovalid
13	Amin; Brom	0,10	Invaid

$$n=2$$

min O nimit soll

(1-9) - Bue restease

- (10) Amin, Bmin -) (11) -1
- (1) Amin, Omax -) (1,100) -1
- (3) Amin, B Mint -) (1,2) -1
- (13) Amin, B max -) (1,99) 1
- (14) Amin+, Bmin+ -) (2,2) -> 2
- (5) Amint, Bmin -) (2,1) -) 1
- (6) Amin+, Bmax -) (2, 100) -> 2
- (7) Amint, Bmax) (2,99) -> 1
- (18) Amax, Bmax (100, 100) 100
- (16) Amax, B min (100, 1) 1
- (20) Amex, Brain+ -) (100,2) -) 2
- (31) Amax, B max - (100,59) -> 1
- (22) Amax -, Bmax - (30, 50) -- 50
- (23) Amx-, Bimin (01, 1) -1
- (29) Amax 1 B min+ -) (37, 2) -> 1
- (35) Amex-, B, max -) (39,100) =) 1