16. Маршрутен протокол RIP

Общи положения

- RIP (routing information protocol) е широко използван маршрутизиращ протокол с вектор на разстоянието (distance vector).
- Той е подходящ предимно за малки мрежи, в които относително рядко настъпват промени в топологията.
- Всеки ред в маршрутната таблица на RIP маршрутизаторите съдържа информация за направлението, следваща стъпка към това направление и метрика.

Общи положения

Метриката обозначава разстоянието в стъпки до местоназначението, т.е. метриката използвана от RIP протокола е брой хопове.

Максималният брой хопове в една RIP мрежа е 15.

За обмен на маршрутна информация: порт 520/UDP

MAC	IP header	UDP	RIP header	Data :::
header		header		

RIР таймери

- RIP на всеки 30 секунди изпраща копие на маршрутната таблица към съседните маршрутизатори.
- Таймерът за невалиден маршрут (hold down time) е 180 s.
- Определя интервала от време, след който даден маршрут се счита за невалиден, ако маршрутизаторът не е получил съобщения за него.

RIР таймери

Когато даден път бъде отбелязан като невалиден, се изпращат съобщения с тази информация към съседните маршрутизатори и се преустановява използването му.

Тези съобщения се изпращат до изтичането на таймера за изтриване на маршрут (flush timer).

След което пътят се изтрива окончателно от маршрутната таблица.

Формат на RIP пакетите

Първата версия на RIPv1 не поддържа subnet маски, т.е. VLSM, респ. CIDR.

Втора версия на протокола - RIPv2, поддържа VLSM, респ. CIDR. Форматът на пакетите на версия RIPv2 е следния:

Формат на RIPv2 пакетите

Command	Version	Routing domain		
Address family		Route tag		
IP address				
Netmask				
Next hop IP addres				
Metric				

Формат на RIPv2 пакетите

Първите три полета Command, Version и Routing domain представляват заглавната част на пакета, а останалите шест полета съдържат данни за маршрути и комбинация от тях може да се повтаря до 25 пъти в един RIPv2 пакет.

За пренасяне на информацията от по-големи маршутни таблици се използват няколко RIPv2 пакета.

Полето Command указва дали пакетът съдържа заявка или отговор.

Формат на RIPv2 пакетите

- Полето Version указва версията на протокола, за RIPv2 тази стойност е 2.
- Полетата Routing domain и Route Tag не се използват и се запълват с нули.
- Полето Address family е равно на 2, ако следва IP адрес. Ако имаме заявка за цялата маршрутна таблица, е 0.

Сходимост на RIP

- При промяна в топологията на мрежата се налага всички маршрутизатори да преизчислят своите вектори на разстоянията и да достигнат до непротиворечиво описание на новата топология.
- За увеличаване на скоростта на сходимост на RIP се използват различни методи, например разделяне на хоризонта (split horizon).
- Тези методи намаляват вероятността за поява на цикли в маршрутите, но не могат да гарантират отсъствието им.

Count to infinity

- Максималният брой хопове в RIP е 15.
- Всяко местоназначение, което е на разстояние над 15 хопа се приема за недостижимо.
- Това прави невъзможно прилагането на RIP в мрежи с повече от 15 рутера.
- Но ограничава ситуацията "броене до безкрайност" (Count to infinity), при която могат да се получат цикли в маршрутите.

Версии на RIP

- RIPv1 (RFC 1058) прилага само classful маршрутизация.
- T.e периодичните updates не носят subnet информация.
- Не е възможно да имаме подмрежи от един и същи клас с различни маски. С други думи, всички подмрежи от даден клас трябва да бъдат с еднакви маски.

Версии на RIP

- RIPv2 е разработен през 1994 г. и има възможност да носи subnet информация, да поддържа CIDR.
 - За поддържане на обратна съвместимост с версия 1 запазено е ограничението от 15 хопа.
- За сигурност е въведена аутентикация с явен текст, подобрена с MD5 (RFC 2082).

Версии на RIP

За да не се товарят хостове, които не са участници в RIP, RIPv2 "мултикаства" обновленията на адрес 224.0.0.9, за разлика от RIPv1, който е broadcast.

RIPv2. Discontiguous Networks.

Discontiguous network е мрежов префикс, разделен от друг (различен) префикс. На следващия слайд 131.108.0.0 е разделена от подмрежа на 137.99.0.0; т.е 131.108.0.0 е discontiguous network.

RIPv2. Discontiguous Networks.

RIPv1 прави summary към classful границата.

Router 1 (2) изпраща update към Router 2 (1) през 137.99.88.0:

Router 1 (2) конвертира 131.108.5.0/24 (131.108.2.0/24) в 131.108.0.0/16.

Конфигуриране на RIP

Boston Router

Boston>en Boston#config t Boston(config)#router rip Boston(config-router)#version 2 Boston(config-router)#network 172.16.0.0 !Advertises directly connected networks (classful address only) Boston(config-router)#no auto-summary !Turns off autosummarization

Buffalo Router

Buffalo>en

Buffalo#config t

Buffalo(config)#router rip

Buffalo(config-router)#version 2

Buffalo(config-router)#network 172.16.0.0

Buffalo(config-router)#no auto-summary

Bangor Router

Bangor>en

Bangor#config t

Bangor(config)#router rip

Bangor(config-router)#version 2

Bangor(config-router)#network 172.16.0.0

Bangor(config-router)#no auto-summary

Конфигуриране на RIP

Router(config)# router rip Router(config-router)# network 10.0.0.0 Router(config-router)# exit

Router(config)# interface ethernet1 Router(config-if)# ip address 10.1.1.1 255.255.255.0

Router(config-if)# no ip split-horizon Router(config-if)# exit

Конфигуриране на RIP. Други команди.

router rip

Passive-interface eth0

! не изпраща update-и по interface eth0

RIPng

RIPng (RFC 2080) е разширение на RIPv2 за поддържане на IPv6:

- в маршрутната таблица IPv6 префикс, next-hop IPv6 адрес
- използва порт 521/UDP и мултикаст (FF02::9) за updates
- сигурност: IP AH (Authentication Header) и IP ESP (Encapsulating Security Payload)

Не изисква глобална конфигурация.

Освен за за целия RIPng - таймери, default-route origination, maximum-paths и др.

На един рутер, множество RIPng процеси.


```
Austin(config)#ipv6 unicast-routing
Austin(config)#interface fastethernet 0/0
  Austin(config-if)#ipv6 enable
  Austin(config-if)#ipv6 address
2001:db8:c18:2::/64 eui-64
 Austin(config-if)#ipv6 rip tower enable
Austin(config-if)#interface fastethernet 0/1
 Austin(config-if)#ipv6 enable
  Austin(config-if)#ipv6 address
2001:db8:c18:1::/64 eui-64
 Austin(config-if)#ipv6 rip tower enable
```

```
Houston(config)#ipv6 unicast-routing
Houston(config)#interface fastethernet 0/0
 Houston(config-if)#ipv6 enable
 Houston(config-if)#ipv6 address
2001:db8:c18:2::/64 eui-64
Houston(config-if)#ipv6 rip tower enable
 Houston(config-if)#interface fastethernet
0/1
Houston(config-if)#ipv6 enable
Houston(config-if)#ipv6 address
2001:db8:c18:3::/64 eui-64
Houston(config-if)#ipv6 rip tower enable
```

ripngd Configuration (quagga)

[root@rec-gw quagga]# less ripngd.conf.sample

```
! debug ripng events
! debug ripng packet
router ripng
 network sit1 !sit tunnel-interface
 route 3ffe:506::0/32
 distribute-list local-only out sit1
!ipv6 access-list local-only permit 3ffe:506::0/32
!ipv6 access-list local-only deny any
```

ripngd команди в Terminal Mode

```
#show ip ripng
#show debugging ripng
```

```
#debug ripng events
#debug ripng packet
#debug ripng zebra
```