Lista de Exercícios

Cálculo I

Seção 6.2: Volumes

Os exercícios dessa lista são referentes ao livro James Stewart, Cálculo - Vol 1, 6^a ed.

Enunciado para as questões 1-12: Encontre o volume do sólido obtido pela rotação da região limitada pelas curvas dadas em tornoo das retas especificadas. Esboce a região, o sólido e um disco ou arruela típicos.

- 1. $y = 2 \frac{1}{2}x$, y = 0, x = 1 e x = 2, em torno do eixo x.
- 2. $y = e^x$, y = 0, x = 0 e x = 1, em torno do eixo x.
- 3. $y = \frac{1}{x}$, x = 1, x = 2 e y = 0, em torno do eixo x.
- 4. $y = \sqrt{25 x^2}$, y = 0, x = 2 e x = 4, em torno do eixo x.
- 5. $y = 2\sqrt{y}$, x = 0, e y = 9, em torno do eixo y.
- 6. $y = \ln(x), y = 1, y = 2$ e x = 0, em torno do eixo y.
- 7. $y = x^3$, y = x e $x \ge 0$, em torno do eixo x.
- 12. $y = e^{-x}$, y = 1 e x = 2, em torno do eixo y = 2.

Enunciado para as questões 31-33: Escreva, mas não calcule, uma integral para o volume do sólido obtido pela rotação da região limitada pelas curvas dadas em torno da reta especificada.

- 31. $y = \tan^3(x), y = 1$ e x = 0, em torno do eixo y = 1.
- 32. $y = (x-2)^4$ e 8x y = 16, em torno do eixo x = 10.
- 33. y = 0, $y = \operatorname{sen}(x)$ e $0 \le x \le \pi$, em torno do eixo y = 1.

Enunciado para as questões 41-43: Cada integral representa o volume de um sólido. Descreva esse sólido.

41.
$$\pi \int_0^{\frac{\pi}{2}} \cos^2(x) dx$$

43.
$$\pi \int_0^1 (y^4 - y^8) dy$$

Gabarito

1.
$$\frac{19\pi}{12}$$

2.
$$\frac{\pi}{2}(e^2-1)$$

3. $\frac{\pi}{2}$

4.
$$\frac{94\pi}{3}$$

5. 162π

6.
$$\frac{\pi(e^4 - e^2)}{2}$$

7. $\frac{4\pi}{21}$

12.
$$\pi \left(\frac{5}{2} + 4e^{-2} - \frac{1}{2}e^{-4} \right)$$

31.
$$\pi \int_0^{\frac{\pi}{4}} (1 - \tan^3(x))^2 dx$$

32.
$$V = \int_0^{16} \pi \left(\left(10 - \frac{y+16}{8} \right)^2 - \left[10 - \left(\sqrt[4]{y} + 2 \right) \right]^2 \right) dy.$$

33.
$$\pi \int_0^{\pi} (1 - (1 - \sin(x))^2) dx$$

41. Sólido obtido pela rotação da região $0 \le y \le \cos(x), 0 \le x \le \frac{\pi}{2}$ em torno do eixo x.

43. Sólido obtido pela rotação acima do eixo x limitada por $x=y^2$ e $x=y^4$ em torno do eixo y.