CS 341 Automata Theory Elaine Rich Homework 12

Due: Tuesday, April 10

This assignment covers Chapter 20.

- 1) * Let L_1, L_2, \ldots, L_k be a collection of languages over some alphabet Σ such that:
 - For all $i \neq j$, $L_i \cap L_j = \emptyset$.
 - $L_1 \cup L_2 \cup \cdots \cup L_k = \Sigma^*$.
 - $\forall i \ (L_i \text{ is in SD}).$

Prove that each of the languages L_1 through L_k is in D.

- 2) If L_1 and L_3 are in D and $L_1 \subseteq L_2 \subseteq L_3$, what can we say about whether L_2 is in D?
- 3) Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M' that decides L^R .
- 4) Construct a standard one-tape Turing machine M to enumerate the language A^nB^n . Assume that M starts with its tape equal to \square . Also assume the existence of the printing subroutine P, defined in Section 20.5.1.
- 5) Recall the function mix, defined in Example 8.23. Neither the regular languages nor the context-free languages are closed under mix. Are the decidable languages closed under mix? Prove your answer.
- 6) Let $\Sigma = \{a, b\}$. Consider the set of all languages over Σ that contain only even length strings.
 - a) How many such languages are there?
 - b) How many of them are semidecidable?