SEAT NO. CT - 23 025

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

FIRST YEAR (Bachelor of Science in Computer Science& Information Technology/ Bachelor of Science in Computer Science Specialization in "Artificial Intelligence") FALL SEMESTER EXAMINATIONS 2023 Batch 2023

Time: 3 Hours

Dated:24-01-2024 Max.Marks:60

Applied Physics- PH-122

NOTE:

- · Attempt all Questions.
- · Questions should be attempted maintaining the sequential order.
- · All questions carry equal marks.

Q.1	EXPLAIN how Huygen's principle provides the understanding of wave propagation. DISCUSS Huygen's Fresnel correction.	5 marks	CLO-1
Q.2	ILLUSTRATE the response of harmonic oscillator driven, by an F _{external} , at its natural frequency of vibrations. Can small or large damping modify a resonating system, demonstrate graphically?	5 marks	CLO-1
Q.3	CLASSIFY Bi-polar Junction Transistors. DISCUSS VI characteristics of PN junction diode.	5 marks	CLO-1
Q.4	With the help of labeled diagram DEMONSTRATE how population inversion is achieved, DISCUSS modes of LASER operation?	5 marks	CLO-1
Q.5	An eardrum having mass "m" performs simple harmonic oscillation with restoring constant 'k'. VERIFY that the total mechanical energy E _T of the system remains conserved.	5 marks	CLO-1
Q.6	ESTABLISH expression for electric field "E" due to the ring of charges at a point "P" over distance "x" from central axis perpendicular to the plane of the ring having radius "a" carrying a uniformly distributed positive total charge "Q".	5 marks	CLO-
Q.7	A bag of cement weighing 325 N hangs from three strings. Two of the strings make an angle $\theta_1 = 60.0^{\circ}$ and $\theta_2 = 40.0^{\circ}$ with the horizontal. If the system is in equilibrium, EVALUATE the tensions T_1 , T_2 , and T_3 in the string.	5 marks	CLO-

	T_1 T_2 T_3 T_4 T_5		
Q.8	A viewing screen is separated from a double-slit source by 1.2 m. The distance between the two slits is 0.030 mm and the second-order bright fringe is 4.5 cm from the central fringe. CALCULATE the distance between adjacent bright fringes.	5 marks	CLO-2
Q.9	FIND OUT (i) wavelength of photon scattered at $\theta = 35^{\circ}$ from the incident radiation, if photons of wavelength 2.17 pico-meter are incident on free electrons, (ii) Maximum Compton wave shift corresponding to the interaction.	5 marks	CLO-3
Q.10	CALCULATE the binding energy per nucleon for ²⁰ Ne ₁₀ , ⁵⁶ Fe ₂₆ and ²³⁸ U ₉₂ . Given that mass of neutron is 1.008665 amu, mass of proton is 1.007825 amu, mass of ²⁰ Ne ₁₀ is 19.9924 amu, mass of ⁵⁶ Fe ₂₆ is 55.93492 amu, ²³⁸ U ₉₂ is 238.050783 amu. Take 1u=931.5 MeV	5 marks	CLO-3
Q.11	FIND OUT half-lie and decay rate of thorium sample having "N' radioactive nuclei. If 1 gram of thorium emits 4500 α-particles per second FIND half-life at mass 232.12 gram.	5 marks	CLO-3
Q.12	CALCULATE the De Broglie wavelength of, a) dust particle of mass 1.0 × 10 ⁻⁹ kg drifting with a speed of 2.0 cm/s, b) an electron whose Kinetic energy is 120 eV.	5 marks	CLO-3

 $\boxed{\epsilon_0 = 8.85 \times 10^{-12} \, \text{Fm}^{-1} \, \left| \, m_e = 9.1 \times 10^{-31} \, \text{kg} \right| \, e = 1.602 \times 10^{-19} \, \text{C}} \quad \left| \, h = 6.626 \times 10^{-34} \, \text{J.s} \, \right| \, 1 \, \text{a.m.u} = 1.66 \times 10^{-24} \, \text{g}$