Aprendizado Profundo 1

Perceptron Multicamadas e a Retropropagação de Erros

Professor: Lucas Silveira Kupssinskü

Agenda

- Breve revisão sobre o *perceptron*
- Treinando um MLP simples
 - Forward Pass
 - Backward Pass
 - Atualização de Pesos
 - Compação com código PyTorch
- Generalizando o treinamento
- Exemplo Vetorizado

Breve revisão

x_1	x_2	У
-1	-1	-1
-1	1	-1
1	-1	-1
1	1	1

Perceptron Multi Camadas

Uma rede de perceptrons pode aproximar uma função qualquer

• Porém o *Perceptron Learning Algorithm* (PLA) não funciona para uma rede de perceptrons

Exercício

- Prove que o Perceptron Multicamadas abaixo gera uma fronteira de decisão linear
 - Considere $\varphi(x) = 2x$

"Inverno"

- Após 1968 com a publicação de Minski e Papert o interesse em redes neurais diminuiu
 - Pouca verba de pesquisa
 - Qual motivo de trabalhar em algo que não consegue nem resolver o problema XOR?
 - Sem ideias de como treinar perceptrons de múltiplas camadas
- Até que as coisas mudaram
 - RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning representations by back-propagating errors. **nature**, v. 323, n. 6088, p. 533-536, 1986.
 - Observação: Hinton não alega ter inventado o *backprop*, ele só foi um dos principais responsáveis pela sua popularização e talvez o primeiro a observar a hierarquia de *features* com grande riqueza semântica

Vamos calcular manualmente uma iteração de treino em uma rede neural MLP

- Ideia central
 - Usar Half Mean Squared Error como função de custo

•
$$J(\theta) = \frac{1}{2N} \Sigma_i (y^{(i)} - \hat{y}^{(i)})^2$$

- Aplicar a descida de gradiente
 - $\theta_{t+1} = \theta_t \eta \nabla J$

As premissas abaixo tornam o problema mais simples, mas não menos genérico

- 2 camadas
- 1 neurônio em cada camada
- Desconsideramos o bias
- Vamos tentar aprender a função identidade $y = X_1$

Ideia: Aplicar GD

- 2 camadas
- 1 neurônio em cada camada
- Desconsideramos o bias
- Vamos tentar aprender a função identidade $y=X_1$

1.0 -0.5 -0.0 --0.5 --1.0 --2 -1 0 1 2

Sign function

Ideia: Aplicar GD

A função sinal tem dois problemas

- 1. Derivada não definida em x = 0
- 2. Valor da derivada é 0 em todos os valores de x nos quais a função é derivável

Ideia: Aplicar GD

A função sinal tem dois problemas

- 1. Derivada não definida em x=0
- 2. Valor da derivada é 0 em todos os valores de x nos quais a função é derivável **Solução**: Trocar de função de ativação para sigmoid

 $\partial \sigma/\partial x$

Ideia: Aplicar GD

Inicializando os pesos $\theta^{(1)}=-0.5$ e $\theta^{(2)}=0.5$ conseguimos computar loss para o par $X_1=1,y=1$ Vamos adotar loss como $J(\theta)=\frac{1}{2}(y-\hat{y})^2$

Este é o Forward Pass

Treinando um MLP

Ideia: Aplicar GD

$$\hat{y} = \sigma \left(\theta^{(2)} \sigma (X^{(1)} \theta^{(1)}) \right) = 0.5470$$

Vamos adotar loss como
$$J(\theta) = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(1 - 0.5470)^2 = 0.1026045$$

Comparando com PyTorch

Ideia: Aplicar GD

$$\hat{y} = \sigma\left(\theta^{(2)}\sigma(X^{(1)}\theta^{(1)})\right) = 0.5470$$
 Vamos adotar loss como $J(\theta) = \frac{1}{2}(y-\hat{y})^2 = 0.1026045$

import torch

```
class RedeSimples(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.theta_1 = torch.nn.parameter.Parameter(
            torch.tensor(-0.5), requires_grad=True)
        self.theta_2 = torch.nn.parameter.Parameter(
            torch.tensor(0.5), requires_grad=True)

    def forward(self, x):
        x = torch.sigmoid(x * self.theta_1)
        x = torch.sigmoid(x * self.theta_2)
        return x
```

```
x = torch.tensor(1.0)
y = torch.tensor(1.0)
model = RedeSimples()
y_hat = model(x)
loss = ((y - y_hat)**2)/2
print(f'y_hat: {y_hat}')
print(f'loss: {loss}')
```

y_hat: 0.5470529198646545 loss: 0.10258052498102188

Vamos relembrar a descida de gradiente:

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

Onde:

 η : taxa de aprendizado

abla J: gradiente da função de custo em relação aos parâmetros heta

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

Problema: Como computar $\frac{\partial J}{\partial \theta^{(2)}}$ e $\frac{\partial J}{\partial \theta^{(1)}}$? A função $J(\theta)$ é uma função composta

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

Problema: Como computar $\frac{\partial J}{\partial \theta^{(2)}}$ e $\frac{\partial J}{\partial \theta^{(1)}}$? A função $J(\theta)$ é uma função composta

Solução: Regra da cadeia

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y)$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y)$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)})$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y)$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)})$$

$$\frac{\partial z^{(2)}}{\partial \theta^{(2)}} = a^{(1)}$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y)$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)})$$

$$\frac{\partial z^{(2)}}{\partial \theta^{(2)}} = a^{(1)}$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

 $\frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y)$$

$$\frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)})$$

$$\frac{\partial z^{(2)}}{\partial z^{(1)}} = a^{(1)} (1 - a^{(1)})$$

$$\frac{\partial z^{(2)}}{\partial z^{(2)}} = a^{(1)}$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y) \qquad \qquad \frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)}) \qquad \qquad \frac{\partial a^{(1)}}{\partial z^{(1)}} = a^{(1)} (1 - a^{(1)})$$

$$\frac{\partial z^{(2)}}{\partial z^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(2)}}{\partial \theta^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(1)}}{\partial \theta^{(1)}} = X_1$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y) \qquad \qquad \frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)}) \qquad \qquad \frac{\partial a^{(1)}}{\partial z^{(1)}} = a^{(1)} (1 - a^{(1)})$$

$$\frac{\partial z^{(2)}}{\partial z^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(2)}}{\partial \theta^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(1)}}{\partial \theta^{(1)}} = X_1$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\mathbf{X_1} \bullet \underbrace{\sum_{\mathbf{C}^{(1)} = -0.5} \mathbf{Z^{(2)} = 0.18875}}_{\mathbf{C}^{(1)} = -0.5} \underbrace{\sum_{\mathbf{C}^{(2)} = 0.5470} \mathbf{Z^{(2)} = 0.5470}}_{\mathbf{C}^{(2)} = 0.5}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = (a^{(2)} - y)a^{(2)}(1 - a^{(2)})a^{(1)} = (0.5470 - 1)0.5470(1 - 0.5470)0.3775$$

$$\frac{\partial J}{\partial \theta^{(1)}} = (a^{(2)} - y)a^{(2)}(1 - a^{(2)})\theta^{(2)}a^{(1)}(1 - a^{(1)})X_1 = (0.5470 - 1)0.5470(1 - 0.5470)(0.5)0.3775(1 - 0.3775)1$$

$$\frac{\partial J}{\partial a^{(2)}} = \frac{\partial \frac{1}{2} (y - a^{(2)})^2}{\partial a^{(2)}} = (a^{(2)} - y) \qquad \qquad \frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$$

$$\frac{\partial a^{(2)}}{\partial z^{(2)}} = a^{(2)} (1 - a^{(2)}) \qquad \qquad \frac{\partial a^{(1)}}{\partial z^{(1)}} = a^{(1)} (1 - a^{(1)})$$

$$\frac{\partial z^{(2)}}{\partial z^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(2)}}{\partial \theta^{(2)}} = a^{(1)}$$

$$\frac{\partial z^{(1)}}{\partial \theta^{(1)}} = X_1$$

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = -0.0423741194325$$

$$\frac{\partial J}{\partial \theta^{(1)}} = -0.013188944673365625$$

Este é o Backward Pass

$$\theta_t = \theta_{t-1} - \eta \nabla J$$

$$\frac{\partial J}{\partial \theta^{(2)}} = -0.0423741194325$$

$$\frac{\partial J}{\partial \theta^{(1)}} = -0.013188944673365625$$

Agora podemos usar a regra de atualização da descida de gradiente para computar os novos pesos $\theta_t = \theta_{t-1} - \eta \nabla J$

$$\theta_t^{(2)} = 0.5 - 0.1(-0.042374)$$
 $\theta_t^{(1)} = -0.5 - 0.1(-0.013189)$

$$\frac{\partial J}{\partial \theta^{(2)}} = -0.0423741194325$$

$$\frac{\partial J}{\partial \theta^{(1)}} = -0.013188944673365625$$

Agora podemos usar a regra de atualização da descida de gradiente para computar os novos pesos $\theta_t = \theta_{t-1} - \eta \nabla I$

$$\theta_t^{(2)} = 0.5042374$$
 $\theta_t^{(1)} = -0.4986811$

Essa é a atualização dos pesos (Optimizer SGD)

$$\frac{\partial J}{\partial \theta^{(2)}} = -0.0423741194325$$

$$\frac{\partial J}{\partial \theta^{(1)}} = -0.013188944673365625$$

Com os novos parâmetros, podemos computar um novo valor para a função de custo

$$\theta_t^{(2)} = 0.5042374$$
 $\theta_t^{(1)} = -0.4986811$

$$\hat{y}_t = \sigma(0.5042374 * \sigma(1 * (-0.4986811))) = 0.5474$$

$$J(\theta_t) = \frac{1}{2}(1 - 0.5474)^2 = 0.10242338$$

Comparando com PyTorch


```
\frac{\partial J}{\partial \theta^{(2)}} = -0.0423741194325
```

$$\frac{\partial J}{\partial \theta^{(1)}} = -0.013188944673365625$$

```
import torch
from torch.optim import SGD
```

```
class RedeSimples(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.theta_1 = torch.nn.parameter.Parameter(
            torch.tensor(-0.5), requires_grad=True)
        self.theta_2 = torch.nn.parameter.Parameter(
            torch.tensor(0.5), requires_grad=True)

    def forward(self, x):
        x = torch.sigmoid(x * self.theta_1)
        x = torch.sigmoid(x * self.theta_2)
        return x
```

```
optimizer = SGD(model.parameters(), lr=0.1)
x = torch.tensor(1.0)

model.train()
optimizer.zero_grad()
y_hat = model(x)
loss = (y - y_hat)**2/2
loss.backward()
print(f'Grad: {model.theta_2.grad}, {model.theta_1.grad}')
optimizer.step()
print(f'Pesos: {model.theta_2.data}, {model.theta_1.data}')
```

Grad: -0.04237288236618042, -0.01318769808858633 Pesos: 0.5042372941970825, -0.4986812174320221 ₂₉

• 1º Computar todas as saídas da rede (Forward Pass)

- 1º Computar todas as saídas da rede (Forward Pass)
- 2º Computar o quão diferente as saídas são em relação a variável alvo (Loss Function)
 - Não existe apenas uma forma de avaliar a divergência entre a saída e a variável alvo
 - Variam conforme a tarefa
 - Podem ter um ou mais termos com objetivo de regularização

- 1º Computar todas as saídas da rede (*Forward Pass*)
- 2º Computar o quão diferente as saídas são em relação a variável alvo (Loss Function)
- 3º Computar o gradiente do erro em relação aos parâmetros da rede (*Backward Pass*)
 - O gradiente pode ser analítico ("exato") ou numérico ("aproximado")
 - Usualmente computado via grafo computacional

- 1º Computar todas as saídas da rede (Forward Pass)
- 2º Computar o quão diferente as saídas são em relação a variável alvo (Loss Function)
- 3º Computar o gradiente do erro em relação aos parâmetros da rede (*Backward Pass*)
- 4º Atualizar os pesos (Optimizer)
 - Usamos a versão vanilla no exemplo anterior, mas vamos ver variações
 - Batch, mini-Batch ou estocástico
 - Com ou sem momentum

- 1º Computar todas as saídas da rede (*Forward Pass*)
- 2º Computar o quão diferente as saídas são em relação a variável alvo (Loss Function)
- 3º Computar o gradiente do erro em relação aos parâmetros da rede (Backward Pass)
- 4º Atualizar os pesos (Optimizer)

```
optimizer = SGD(model.parameters(), lr=0.1)
x = torch.tensor(1.0)
y = torch.tensor(1.0)

model.train()
optimizer.zero_grad()
y_hat = model(x)
loss = (y - y_hat)**2/2
loss.backward()
optimizer.step()
```

Generalizando o treinamento

- Repare que o gradiente em relação a cada peso $\theta^{(i)}$ depende de:

 - Um gradiente global $\delta^{(i)}=\frac{\partial J}{\partial z^{(i)}}$ Um gradiente local $\frac{\partial z^{(i)}}{\partial \theta^{(i)}}=a^{(i-1)}$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

Generalizando o treinamento

- Repare que o gradiente em relação a cada peso $\theta^{(i)}$ depende de:

 - Um gradiente global $\delta^{(i)} = \frac{\partial J}{\partial z^{(i)}}$ Um gradiente local $\frac{\partial z^{(i)}}{\partial \theta^{(i)}} = a^{(i-1)}$

$$i = 2$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- Repare que o gradiente em relação a cada peso $\theta^{(i)}$ depende de:

 - Um gradiente global $\delta^{(i)} = \frac{\partial J}{\partial z^{(i)}}$ Um gradiente local $\frac{\partial z^{(i)}}{\partial \theta^{(i)}} = a^{(i-1)}$

$$i = 1$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- Repare que o gradiente em relação a cada peso $heta^{(i)}$ depende de:
 - Um gradiente global $\delta^{(i)} = \frac{\partial J}{\partial z^{(i)}}$
 - Um gradiente local $\frac{\partial z^{(i)}}{\partial \theta^{(i)}} = a^{(i-1)}$

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)} a^{(i-1)}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- Repare que o gradiente em relação a cada peso $\theta^{(i)}$ depende de:
 - Um gradiente global $\delta^{(i)} = \frac{\partial J}{\partial z^{(i)}}$
 - Um gradiente local $\frac{\partial z^{(i)}}{\partial a^{(i)}} = a^{(i-1)}$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

ullet Repare que o gradiente global em uma camada $\delta^{(l)}$ depende do gradiente global da camada posterior $\delta^{(l+1)}$:

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

ullet Repare que o gradiente global em uma camada $\delta^{(l)}$ depende do gradiente global da camada posterior $\delta^{(l+1)}$:

$$\bullet \ \delta^{(1)} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

ullet Repare que o gradiente global em uma camada $\delta^{(l)}$ depende do gradiente global da camada posterior $\delta^{(l+1)}$:

•
$$\delta^{(1)} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}}$$

• $\frac{\partial z^{(2)}}{\partial a^{(1)}} = \theta^{(2)}$
• $\frac{\partial a^{(1)}}{\partial z^{(1)}} = a'^{(1)}$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- ullet Repare que o gradiente global em uma camada $\delta^{(l)}$ depende do gradiente global da camada posterior $\delta^{(l+1)}$:
- $\delta^{(1)} = \delta^{(2)} \theta^{(2)} a'^{(1)}$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- ullet Repare que o gradiente global em uma camada $\delta^{(l)}$ depende do gradiente global da camada posterior $\delta^{(l+1)}$:
- $\delta^{(1)} = \delta^{(2)} \theta^{(2)} a'^{(1)}$

$$\delta^{(l)} = \left(\delta^{(l+1)}\theta^{(l+1)}\right)a^{\prime(l)}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

• Repare que o gradiente da última camada $\delta^{(L)}$ é igual a:

•
$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

$$\frac{\partial J}{\partial \theta^{(2)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \theta^{(2)}} = \delta^{(2)} \frac{\partial z^{(2)}}{\partial \theta^{(2)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

$$\frac{\partial J}{\partial \theta^{(1)}} = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(1)}} \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial \theta^{(1)}} = \delta^{(1)} \frac{\partial z^{(1)}}{\partial \theta^{(1)}}$$

- Temos três componentes para implementar o backpropagation
- Vamos revisar algumas questões que podem ter ficado de fora

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)} a^{(i-1)} \qquad \delta^{(l)} = \left(\delta^{(l+1)} \theta^{(l+1)}\right) a^{\prime(l)} \qquad \delta^{(L)} = \frac{\partial J}{\partial a^{(L)}}$$

- Temos três componentes para implementar o backpropagation
- Vamos revisar algumas questões que podem ter ficado de fora
 - bias ou o termo livre

- Temos três componentes para implementar o backpropagation
- Vamos revisar algumas questões que podem ter ficado de fora
 - bias ou o termo livre
 - Número de unidades

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)} a^{(i-1)}$$

$$\delta^{(l)} = \left(\delta^{(l+1)} \theta^{(l+1)}\right) a^{\prime(l)}$$

$$\delta^{(l)} = \left(\delta^{(l+1)} \theta^{(l+1)}\right) a^{\prime(l)}$$

Compreendendo a notação

$$heta_{jk}^{(l)}$$

- l: número da camada
- *j:* saída
- k: entrada

Por exemplo: $\theta_{12}^{(2)}$ é o peso da camada $\frac{2}{1}$ que multiplica a ativação da unidade $\frac{2}{1}$ da camada $\frac{2}{1}$ e é usado como entrada na unidade $\frac{1}{1}$ da camada $\frac{2}{1}$

- Vamos revisar algumas questões que podem ter ficado de fora
 - bias ou o termo livre
 - Número de unidades: Multiplicações viram produto de Hadamard

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)^T} a^{(i-1)}$$

$$\delta^{(l)} = \left(\delta^{(l+1)}\theta^{(l+1)}\right) \odot a^{\prime(l)}$$

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

• Todas as componentes do treinamento podem ser representadas e implementadas em operações envolvendo matrizes! ©

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)^T} a^{(i-1)}$$

$$\delta^{(l)} = \left(\delta^{(l+1)}\theta^{(l+1)}\right) \odot a^{\prime(l)}$$

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

Um exemplo vetorizado

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)^T} a^{(i-1)}$$

$$\delta^{(l)} = \left(\delta^{(l+1)}\theta^{(l+1)}\right) \odot a^{\prime(l)}$$

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

Dataset

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$		
0.5	0.2	
0.6	-0.1	
-0.4	-0.3	

0.2

0.6

0.8

0.6

-0.4

-0.1

-0.3

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$	
0.5	0.2
0.6	-0.1
-0.4	-0.3

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

Loss Function

-0.4

-0.3

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$\theta^{(1)}$ 0.5 0.2 0.6 -0.1 -0.4 -0.3

 $\overline{\partial a^{(L)}}$

-0.095

-0.196

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

0.7

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$	
0.5	0.2
0.6	-0.1
-0.4	-0.3

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \odot \frac{\partial a^{(L)}}{\partial z^{(L)}}$$

 ∂J $\overline{\partial a^{(L)}}$

-0.095

-0.196

 $\partial o^{(L)}$ $\overline{\partial s^{(L)}}$

0.238975

0.239096

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	8.0

 \odot

$\boldsymbol{\theta}$	(1)
0.5	0.2
0.6	-0.1
-0.4	-0.3

	$oldsymbol{ heta}^{(2)}$	
0.7	-0.1	0.2

$$\delta^{(l)} = \left(\delta^{(l+1)}\theta^{(l+1)}\right) \odot a^{\prime(l)}$$

		$a^{\prime(1)}$		
\odot	0.2455	0.2448	0.2467	_
J	0.2470	0.2798	0.2458	

	$\delta^{(1)}$	
-0.0039	0.0006	-0.0011
-0.0080	0.0012	-0.0023

		Pesos Camada 1	
V	27	$\alpha(1)$	

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$	
0.5	0.2
0.6	-0.1
-0.4	-0.3

	$oldsymbol{ heta}^{(2)}$	
0.7	-0.1	0.2

$$\frac{\partial J}{\partial \theta^{(i)}} = \delta^{(i)^T} a^{(i-1)}$$

	$\delta^{(1)}$		
-0.0039	0.0006	-0.0011	
-0.0080	0.0012	-0.0023	

X_1	X_2
0.5	0.1
0.2	0.6

$rac{\partial J}{\partial heta^{(1)}}$		
-0.00356	-0.00524	
0.00051	0.00075	
-0.00102	-0.00149	

	$a^{(1)}$	
0.5671	0.5720	0.4428
0.5548	0.5150	0.4354

$rac{\partial J}{\partial heta^{(2)}}$		
-0.0387	-0.0370	-0.0304

Optimizer

$$\theta_t^{(l)} = \theta_{t-1}^{(l)} - \eta \nabla_{\theta} J$$

Pesos Camada 1

$ heta^{(1)}$		
0.5	0.2	
0.6	-0.1	
-0.4	-0.3	

-0.1

$\frac{\partial J}{\partial \theta^{(1)}}$		
-0.00356	-0.00524	
0.00051	0.00075	
-0.00102	-0.00149	

$oldsymbol{ heta}^{(1)}$		
0.5004	0.2005	
0.5999	-0.10007	
-0.3999	-0.2999	

Pesos Camada 2

	$oldsymbol{ heta}^{(2)}$	
0.7	-0.1	0.2

-0.1

$$\frac{\partial J}{\partial \theta^{(2)}}$$
 -0.0387 -0.0370 -0.0304

$$= \begin{array}{cccc} & \theta^{(2)} \\ & 0.7039 & -0.0963 & 0.2030 \end{array}$$

0.7039

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(2)}$

Pesos Camada 1

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$		
0.50019	0.20004	
0.59997	-0.10001	
-0.39994	-0.29998	

	$oldsymbol{ heta}^{(2)}$	
0.70129	-0.09870	0.20100

$\mathbf{z}^{(2)}$
0.4340
0.4294

2x3 1x3 2x1

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	8.0

$\boldsymbol{\theta}^{(}$	(1)
0.50019	0.20004
0.59997	-0.10001
-0.39994	-0.29998

Pesos Camada 1

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$		
0.50019	0.20004	
0.59997	-0.10001	
-0.39994	-0.29998	

	$oldsymbol{ heta}^{(2)}$	
0.70129	-0.09870	0.20100

Loss Function

Pesos Camada 1

X_1	X_2	y
0.5	0.1	0.6
0.2	0.6	0.8

$oldsymbol{ heta}^{(1)}$		
0.50019	0.20004	
0.59997	-0.10001	
-0.39994	-0.29998	

$oldsymbol{ heta}^{(2)}$		
0.70129	-0.09870	0.20100

O resultado

Pesos Camada 1

$oldsymbol{ heta}^{(1)}$	
0.5	0.2
0.6	-0.1
-0.4	-0.3

Pesos Camada 2

$oldsymbol{ heta}^{(2)}$		
0.7	-0.1	0.2

Pesos Camada 1

$oldsymbol{ heta}^{(1)}$		
0.50019	0.20004	
0.59997	-0.10001	
-0.39994	-0.29998	

$oldsymbol{ heta}^{(2)}$		
0.70129	-0.09870	0.20100

Resumindo

- Podemos treinar redes neurais de múltiplas camadas usando descida de gradiente
- O processo de treinamento envolve 4 etapas
 - 1º Computar todas as saídas da rede (Forward Pass)
 - 2º Computar o quão diferente as saídas são em relação a variável alvo (Loss Function)
 - 3º Computar o gradiente do erro em relação aos parâmetros da rede (*Backward Pass*)
 - 4º Atualizar os pesos (Optimizer)
- Todo o treinamento pode ser implementado de forma vetorizada

Referências:

Sugere-se fortemente a leitura de:

- · Capítulo 2 NIELSEN, Michael A. Neural networks and deep learning. San Francisco, CA, USA: Determination press, 2015. (http://neuralnetworksanddeeplearning.com/index.html)
- · Primeira publicação sobre o Backpropagation RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning representations by back-propagating errors. nature, v. 323, n. 6088, p. 533-536, 1986.