CSI3660 – System Administration

Prof. Fredericks

Troubleshooting and Ethics

Objectives

- Describe and outline good troubleshooting practices
- Effectively troubleshoot common hardware- and software-related problems
- Monitor system performance

Identify and fix common performance problems

- After installing, configuring, and documenting your Linux system.
 - You must maintain the system's integrity over time
- This includes:
 - Monitoring
 - Proactive maintenance
 - Reactive maintenance

Figure 14-1: The maintenance cycle

- Monitoring
 - Examining log files
 - Running performance utilities periodically
 - identify problems and their causes
- Proactive maintenance
 - Minimizing chance of future problems
 - e.g., perform regular system backups

- Reactive maintenance
 - Correcting problems when they arise
 - Documenting solutions
 - Developing better proactive maintenance methods
- Documentation
 - System information stored in a log book for future references
 - All maintenance actions should be documented
- Troubleshooting procedures
 - Tasks performed when solving system problems

Figure 14-2: Common troubleshooting procedures

- Two troubleshooting golden rules
 - Prioritize problems according to severity
 - Spend reasonable amount of time on each problem given its priority
 - Ask for help if you can't solve the problem
 - Try to solve the root of the problem
 - Avoid missing underlying cause
 - Justify why a certain solution is successful

Resolving Common System Problems

- Three categories of problems:
 - Hardware-related
 - Software-related
 - User interface-related

- Often involve improper hardware or software configuration
 - Peripheral communications
 - Video card and monitor configuration
 - POST test alerts
 - Loose hardware connections
 - Problems specific to the type of hardware
 - View output of dmesg or journalctl -b command
 - View content of:
 - /var/log/boot.log
 - /var/log/messages

- Absence of device drivers prevent OS from using associated devices
 - dmesg or lshw command
 - Displays the hardware that is detected by the Linux kernel
 - lsusb command
 - Displays a list of USB devices detected by the Linux kernel
 - lspci command
 - Displays a list of PCI devices detected by the Linux kernel
 - Compare outputs of commands to output of 1smod to determine if driver module is missing from kernel

- Hardware failure can render a device unusable
 - HDDs most common hardware components to fail
 - If HDD containing partitions mounted on noncritical directories fails:
 - Power down computer and replace failed HDD
 - Boot Linux system
 - Create partitions on replaced HDD
 - Use mkfs to create filesystems
 - Restore original data
 - Ensure /etc/fstab has appropriate entries to mount filesystems

- If HDD containing / filesystem fails:
 - Power down computer and replace failed HDD
 - Reinstall Linux on new HDD
 - Restore original configuration and data files using a backup utility

Software-Related Problems

- Software-related problems are typically more difficult to identify and resolve than hardware-related problems
- Identify whether the software-related problem is related to application software or operating system software

- Reason applications can fail:
 - Missing program libraries/files
 - Process restrictions
 - Conflicting applications
- Dependencies
 - Prerequisite shared libraries or packages required for program execution
 - Programs usually check at installation
 - Package files may be removed accidentally

- rpm -V <package> command
 - Identify missing files in a package or package dependency
- 1dd command
 - Display shared libraries used by a program
- ldconfig command
 - Updates list of shared library directories (/etc/ld.so.conf) and list of shared libraries (/etc/ld.so.cache)

- Too many running processes can use all available PIDs in the process table
 - Solve by killing the parent process of zombie processes
- File handles
 - Connections programs make to files
- ulimit command
 - Used to modify process limit parameters in current shell
 - Can also modify max number of file handles

- /var/log directory
 - Contains most system log files
- If applications stop functioning due to difficulty gaining resources, restart (application) using SIGHUP
 - To determine if another process is trying to access the same resources attempt to start application in Single User Mode
 - If resource conflict is the cause of the problem, download newer version of application or patch
 - kill –SIGHUP <pid>: reload process configuration
 - Generally will restart daemon
 - Sometimes will kill process and you have to manually restart

- Most software-related problems are related to OS
 - X windows, bootloader, and filesystem problems
- Problem detecting video card or monitors by the kernel
 - An updated driver may be required
- To isolate a problem starting X Windows or gdm:
 - View the Xorg or XFree86 configuration file
 - Execute the xwininfo command

- For LILO boot loader problems
 - Place "linear" and remove "compact" from the /etc/lilo.conf file
- GRUB and GRUB2 boot loader errors are typically a result of a missing file in /boot directory

- If the filesystem on a partition mounted to a noncritical directory, such as /home or /var, becomes corrupted:
 - Unmount the filesystem
 - umount
 - Run fsck command with -f (full) option
 - If fsck command cannot repair filesystem, use mkfs command to re-create the filesystem
 - Restore filesystem's original data

- If the / filesystem is corrupted:
 - Boot from installation or live media and enter System Rescue
 - At the BASH shell prompt within System Rescue:
 - Use mkfs to recreate the filesystem
 - Use backup utility to restore original data to the re-created / filesystem
 - Exit System Rescue and reboot system
- Knoppix Linux
 - Bootable Linux distributions with many filesystem repair utilities

Performance Monitoring

- Hardware that is improperly configured might still work, but at a slower speed
- Jabbering
 - Failing hardware components send large amounts of information to CPU
- Other causes of poor performance:
 - Software monopolizes system resources
 - Too many processes
 - Too many read/write requests to HDD
 - Rogue / zombie processes

Performance Monitoring

- To solve software performance issues
 - Remove software from the system
 - Move software to another Linux system
 - Add CPU or otherwise alter hardware
- Bus mastering
 - Peripheral components perform tasks normally executed by CPU
 - Reduces the amount of processing the CPU must perform and increases system speed
 - "Skip CPU"
 - PCI supports this

Performance Monitoring

- To increase performance:
 - Add RAM
 - Upgrade to faster HDDs (SSD hard disks)
 - Use disk striping RAID
 - Keep CD/DVD drives on a separate HDD controller
- Run performance utilities on a regular basis
 - Record results in a system log book
 - Eases identification of performance problems
- Baseline
 - Measure of normal system activity

- System Statistics (sysstat) package
 - Contains wide range of system monitoring utilities
 - Already installed on Scientific!
- mpstat (multiple processor statistics) command:
 - Displays CPU statistics
 - Used to monitor CPU performance
 - Can specify interval and number of measurements rather than displaying average values
 - %sys should be smaller than %usr and %nice combined
 - Sys: % cpu utilization at kernel (system) level
 - Usr: % cpu utilization at user level
 - Nice: % cpu utilization at user level with nice priority

- iostat (Input/Output Statistics) command: measures flow of information to and from disk devices
 - Displays CPU statistics similar to mpstat
 - Displays statistics for each disk device on the system
 - Output includes:
 - Transfers per second
 - Number of kilobytes read and written per second
 - Total number of kilobytes read and written for the device

- sar (system activity reporter) command:
 - Displays various system statistics taken in the last day
 - Provides more information than mpstat and iostat
 - By default scheduled to run every 10 minutes
 - Output logged to a file in /var/log/sa directory
 - -f option: View statistics from a specific file
 - Can be used to take current system measurements
 - Take four CPU statistics every two seconds with this command: sar
 2 4

- Additional sar options:
 - -q option: Displays processor queue statistics
 - runq-sz value: Number of processes waiting for execution on processor run queue
 - plist-sz value: Indicates number of processes currently running
 - 1davg values: Represent average CPU load
 - -W option:
 - Displays number of pages sent to and taken from swap partition
 - Large number causes slower performance
 - Add RAM to resolve

Option	Description
-A	Displays the most information; this option is equivalent to all options
-b	Displays I/O statistics
-B	Displays swap statistics
-d	Displays Input/Output statistics for each block device on the system
-f file_name	Displays information from the specified file; these files typically reside in the /var/log/sa directory
-n ALL	Reports all network statistics
-o file_name	Saves the output to a file in binary format
-P CPU#	Specifies statistics for a single CPU (the first CPU is 0, the second CPU is 1, and so on)
-q	Displays statistics for the processor queue
-r	Displays memory and swap statistics
-R	Displays memory statistics
-u	Displays CPU statistics; this is the default action when no options are specified
-v	Displays kernel-related filesystem statistics
-W	Displays swapping statistics

Table 14-1: Common options to the sar command

Other Performance Monitoring Utilities

- top command:
 - Displays CPU statistics, memory usage, swap usage, and average CPU load
- free command:
 - Displays total amounts of physical and swap memory and their utilizations
 - Can be used to indicate whether more physical memory is required
- vmstat command:
 - Displays memory, CPU, and swap statistics
 - Can be used to indicate whether more physical memory is required

Analysis and Tools

Analysis and Tools

Ethics

- Ethics
 - The principles of conduct that govern a group of people
- Morals
 - Proclamation of what is right and good

- We are discussing Ethics
 - Policies concerning computer use are generally either for users or admins

System Administrator's Guild

- Example code from SAGE: System Administrators' Guild
- Not:
 - a set of enforceable laws
 - an enumeration of procedures
 - all-encompassing
 - an enumeration of sanctions and punishments

 Reinforces need for sysadmins to maintain a high standard of professionalism

SAGE Code of Ethics

- The integrity of a system administrator must be beyond reproach.
 - SAs come in contact with privileged information regularly
 - Need to protect integrity and privacy of data
 - Must uphold law and policies as established for their systems

- A system administrator shall not unnecessarily infringe upon the rights of users.
 - No tolerance for discrimination except when required for job
 - Must not exercise special powers to access information except when necessary

SAGE Code of Ethics

- Communications of system administrators with all whom they may come in contact shall be kept to the highest standards of professional behavior.
 - Must keep users informed of computing matters that might affect them
 - Must give impartial advice, and disclose any potential conflicts of interest
- The continuance of professional education is critical to maintaining currency as a system administrator.
 - Reading, study, training, and sharing knowledge and experiences are requirements

SAGE Code of Ethics

- A system administrator must maintain an exemplary work ethic.
 - A sysadmin can have a significant impact on an organization
 - A high level of trust is maintained by exemplary behavior

- At all times system administrators must display professionalism in the performance of their duties.
 - Need to be professional, even when dealing with management, vendors, users, or other sysadmins

Acceptable Use Policy

- Acceptable Use Policy required for users
 - When is personal use of equipment permitted?
 - What types of personal use are forbidden?
 - Can you start a business?
 - Can you surf adult sites?
 - What if the equipment is at your home?
- Might combine with a monitoring/privacy policy
 - Explain that monitoring might happen as part of running the network/server
- Look for archived/existing policies for starting point

Privileged Access

- Many users need privileged access
 - Sysadmins, programmers of device drivers, software installers, etc.
 - Such people need a special code of conduct
 - Since privileges can be abused
- Such users should sign a statement of having read the policy, and be given a copy
- Sysadmins should track those who have privileges on which systems
- Such access should expire unless renewed by signing again

Privileged Access

- Privileged access comes with responsibility to use it properly
- Access to be used only when necessary
 - Management will describe such uses
- Acknowledge that mistakes happen, and encourage procedures (such as backups) to minimize damage

Privileged Access

- Procedures to deal with situation in which sysadmin gets information that would not otherwise be public
 - E.g., learn about illegal or prohibited activities, or privileged info (pending sale of business)
- Warning about possible penalties for violations, including termination
- Legal requirements may also apply (e.g., SEC, FCC rules)

Copyrighted Information

- Acceptable use policy should require members to abide by current copyright laws
 - "Borrowing" non-freely redistributable software or content is usually illegal
 - Companies caught using pirated software have significant legal and financial liabilities
 - Pirated software can also be a source of viruses

- Sysadmins are often blamed for copyright violations found on their networks (permitted or installed)
 - Best approach is to make it easy for users
 - Use open source, or get broad site licenses for other packages

Law Enforcement

- Sysadmins are often contacted to help with investigations into computer-related crime
 - Also harassment issues, or need for records
- Need a procedure (prevent panic, significant mistakes)
 - Often work with a manager or legal department
 - Keep records of all communication and work performed
 - (e.g., commands typed)
 - Must verify identity of investigator before anything else
 - Social engineering is often a successful attack method
- Working with law enforcement can take a lot of time
 - Might need to make policies to reduce likelihood of need

Ethical Dilemmas

- What do you do when
 - You overhear (or read) about
 - A co-worker dealing drugs from the office?
 - Plans for sabotaging the company?
 - Stealing equipment and reselling via online auction?
 - Having an affair with the boss?
 - You are asked to read someone else's email?
 - By a non-admin colleague
 - By your manager

Protecting Yourself

- Have organizational policies that you can point to, and get guidance from
- Verify the (unreasonable) request
 - Perhaps you misheard it?
 - Get request in writing
- Verify with your manager (get permission)
- Make logs of all requests and communication
- Have a witness
 - Someone to watch what you are doing and agrees with your actions
 - Or at least verify your actions
- Contact organizational ombudsman, security, police if appropriate