EJERCICIO 1

Se desea estimar el efecto que las variaciones en el nivel de ocupación de las empresas tienen sobre la cuenta de resultados, para ello se recogen las tasas de variación (1990-1991) de esas variables en diversos sectores. Las observaciones de aquellos sectores en los que se detecta un crecimiento de los ingresos se presentan en el cuadro siguiente:

Sector	Resultados	Plantilla
Inmobiliarias	2,1	6,1
Comercio	2,2	11,0
Bancos	7,8	1,4
Seguros	15,3	7,2
Petróleo	17,2	4,2
Autopistas	20,3	4,2
Electricidad	25,0	-1,9
Agua y Gas	26,3	-2,4
Comunicación	35,4	-0,5

a) La estimación del modelo de regresión simple se muestra en la tabla siguiente:

Dependent Variable: RESULTADOS

Method: Least Squares Date: 08/29/07 Time: 18:10

Sample: 19

Included observations: 9

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	23.01750	3.361626	6.847133	0.0002
PLANTILLA	-1.896162	0.629188	-3.013666	0.0196
R-squared	0.564736	Mean dependent var		16.84444
Adjusted R-squared	0.502555	S.D. dependent var		11.33767
S.E. of regression	7.996433	Akaike info criterion		7.188998
Sum squared resid	447.6006	Schwarz criterion		7.232826
Log likelihood	-30.35049	F-statistic		9.082184
Durbin-Watson stat	1.836001	Prob(F-stati	stic)	0.019561

Interprete el coeficiente β . Contraste, a continuación, la significatividad de los parámetros.

La representación gráfica de los residuos del ajuste es:

Valore a partir del mismo lo acertado de la estimación.

b) Con los mismos datos se estima una regresión invirtiendo las definiciones de las variables endógena y exógena, esto es, $x_i = a + b y_i + \varepsilon_i$, siendo el resultado:

Dependent Variable: PLANTILLA

Method: Least Squares Date: 08/30/07 Time: 16:49

Sample: 19

Included observations: 9

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8.272354	1.971578	4.195804	0.0041
RESULTADOS	-0.297831	0.098827	-3.013666	0.0196
R-squared	0.564736	Mean dependent var		3.255556
Adjusted R-squared	0.502555	S.D. dependent var		4.493359
S.E. of regression	3.169156	Akaike info criterion		5.337938
Sum squared resid	70.30485	Schwarz criterion		5.381765
Log likelihood	-22.02072	F-statistic		9.082184
Durbin-Watson stat	2.871765	Prob(F-stati	stic)	0.019561

Observe que los coeficientes de determinación de ambas regresiones son idénticos. ¿Cómo justificaría analíticamente este resultado?.

c) Sin considerar en las dos relaciones el término de perturbación ($y_i = \alpha + \beta x_i$ y x_i = $a + b y_i$) la relación exacta entre los dos coeficientes es $b = \frac{1}{\beta}$. Compruebe este resultado y observe que esta relación no se mantiene entre los parámetros estimados. ¿Por qué?.

- d) Compruebe que el producto de las estimaciones de b y β proporciona el valor del coeficiente de determinación. Demuestre que esta igualdad se cumple siempre en el modelo de regresión simple.
- e) Compruebe que si $R^2=1$, se cumple la relación $b=\frac{1}{\beta}$ entre los parámetros estimados.

EJERCICIO 2

Los datos recogidos a continuación muestran la evolución en el periodo 1970-1990 del porcentaje del sector servicios en el PIB:

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
% servicios	47,23	48,01	48,00	48,06	48,99	50,71	51,85	53,06	54,25	55,62	57,04
	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	
% servicios	58,61	59,24	59,81	61,09	59,43	58,79	59,68	59,96	60,43	61,82	

a) Se desea ajustar una tendencia a los anteriores valores. A partir del grafico de la serie:

proponga una función tendencial que pueda adaptarse correctamente a los datos.

b) En cualquier caso, se estima una tendencia lineal y una tendencia cuadrática, cuyos resultados aparecen en las tablas adjuntas.

Dependent Variable: SERVICIOS

Method: Least Squares Date: 09/07/07 Time: 18:47

Sample: 1970 1990 Included observations: 21

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	46.64267	0.706898	65.98216	0.0000
@TREND+1	0.788675	0.056297	14.00914	0.0000
R-squared	0.911733	Mean dependent var		55.31810
Adjusted R-squared	0.907087	S.D. dependent var		5.125011
S.E. of regression	1.562184	Akaike info criterion		3.820440
Sum squared resid	46.36797	Schwarz criterion		3.919918
Log likelihood	-38.11462	F-statistic		196.2559
Durbin-Watson stat	0.279265	Prob(F-statis	stic)	0.000000

Dependent Variable: SERVICIOS

Method: Least Squares Date: 09/07/07 Time: 18:49

Sample: 1970 1990 Included observations: 21

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	44.03758	0.850669	51.76816	0.0000
@TREND+1	1.468263	0.178107	8.243706	0.0000
(@TREND+1)^2	-0.030890	0.007863	-3.928771	0.0010
R-squared	0.952481	Mean dependent var		55.31810
Adjusted R-squared	0.947201	S.D. dependent var		5.125011
S.E. of regression	1.177624	Akaike info criterion		3.296439
Sum squared resid	24.96239	Schwarz criterion		3.445657
Log likelihood	-31.61261	F-statistic		180.3982
Durbin-Watson stat	0.537978	Prob(F-stati	stic)	0.000000

¿Cuál de las dos estimaciones proporciona un mejor ajuste estadístico?.

c) Los residuos de ambas estimaciones se recogen en los gráficos siguientes:

¿Cómo interpreta el comportamiento de los mismos?.

EJERCICIO 3

A partir de la siguiente especificación de una función de consumo agregado (sin término independiente):

$$C_t = \beta_1 Y_t - \beta_2 TD_t + \beta_3 APU_t + \beta_4 AE_t + \beta_5 C_{t-1} + u_t$$

donde C_t = consumo familiar; Y_t = renta disponible de las familias antes de impuestos directos personales; TD_t = impuestos directos personales (incluyen impuestos sobre la renta y el patrimonio); APU_t = ahorro público y AE_t = ahorro empresarial.

Y con la identidad contable S = Y - TD - C, siendo S el ahorro familiar, se define la función de ahorro familiar:

$$S_{t} = (1 - \beta_{1})Y_{t} - (1 - \beta_{2})TD_{t} - \beta_{3} APU_{t} - \beta_{4} AE_{t} - \beta_{5} C_{t-1} + u_{t}$$

Especifique las restricciones en los parámetros que le permitirían contrastar las siguientes hipótesis:

- a) La hipótesis de que el ahorro familiar es independiente de los ahorros público y empresarial.
- b) La igualdad de los efectos de sustitución entre el ahorro familiar y el ahorro público y empresarial.
- c) La hipótesis de que podría incrementarse el ahorro público en igual medida en que disminuye la presión fiscal directa, sin distorsionar con ello el ahorro familiar.

EJERCICIO 4

Defina el contraste de razón de verosimilitud para la hipótesis nula de permanencia estructural de los parámetros, frente a la hipótesis alternativa de cambio estructural.

EJERCICIO 5

En el modelo de regresión: $y = X \beta + Z \gamma + u$, donde se supone que se satisfacen las hipótesis clásicas se pretende contrastar la hipótesis de que $\gamma = 0$, empleando el contraste de los Multiplicadores de Lagrange. Obtener la expresión del estadístico para este planteamiento.

EJERCICIO 6

Los datos del cuadro adjunto recogen información de una variable y para dos grupos diferenciados de individuos (Grupo 1: $i = 1, ..., N_1$; Grupo 2: $i = N_1 + 1, ..., N_1 + N_2$).

Grupo 1	Grupo 2
100,0000	100,0000
112,8302	105,8264
175,0404	138,5850
296,5499	170,5707
335,3100	193,3413
400,3234	214,7444
427,9245	258,5612
479,1375	282,8775
340,3774	313,2580
234,5553	335,8502

Se especifica el modelo:

$$y_i = \alpha + \beta D_i + u_i$$
 $i = 1,, N_1 + N_2$

donde D_i es una variable ficticia definida de la siguiente manera:

$$D_i = \begin{cases} 1 & i \in Grupo \ 1 \\ 0 & i \in Grupo \ 2 \end{cases}$$

- a) Interprete los coeficientes del modelo en términos de los valores medios de la variable *Y*.
- b) Tras estimar el modelo por MCO, se obtiene el resultado siguiente:

Dependent Variable: Y

Sample: 120

Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	211.3615	34.91561	6.053495	0.0000
DD	78.84339	49.37813	1.596727	0.1277
R-squared	0.124068	Mean dependent var		250.7832
Adjusted R-squared	0.075405	S.D. dependent var		114.8270
S.E. of regression	110.4128	Akaike info criterion		12.34097
Sum squared resid	219437.9	Schwarz criterion		12.44054
Log likelihood	-121.4097	F-statistic		2.549537
Durbin-Watson stat	0.312256	Prob(F-	statistic)	0.127733

Verifique empíricamente las relaciones existentes entre las estimaciones de α y β y los valores medios muestrales de cada grupo.

- c) Contraste la hipótesis de igualdad de medias poblacionales de los dos grupos.
- d) Demuestre analíticamente el resultado obtenido en b).

EJERCICIO 7

Dada la siguiente definición de dos variables ficticias:

$$D_{1i} = \begin{cases} 1 & i \in A \\ 0 & i \notin A \end{cases}$$

$$D_{2i} = \begin{cases} 1 & i \notin A \\ 0 & i \in A \end{cases}$$

Interprete los siguientes modelos, señalando aquellos que no pueden considerarse correctos:

a)
$$y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \gamma x_i + u_i$$

b)
$$y_i = \beta_0 + \beta_1 D_{1i} + \gamma x_i + u_i$$

c)
$$y_i = \beta_0 + \beta_1 D_{1i} + \gamma_1 D_{1i} x_i + \gamma_2 D_{2i} x_i + \gamma_3 x_i + u_i$$

d)
$$y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{1i} D_{2i} + \gamma x_i + u_i$$

e)
$$y_i = \beta + \gamma D_{ij} x_i + u_i$$

f)
$$y_i = \beta D_{1i} + \gamma x_i + u_i$$

g)
$$y_i = \beta_0 + \beta_1 D_{1i} + \gamma D_{1i} x_i + u_i$$

h)
$$y_i = \beta_0 + \beta_1 D_{1i} + \gamma_1 D_{1i} x_i + \gamma_2 x_i + u_i$$

EJERCICIO 8

Con una muestra de 15 países se desea estimar el efecto que un aumento de las cotizaciones de la Seguridad Social tendría sobre la parte de las cotizaciones a cargo de los trabajadores. La información correspondiente al año 1982 de las cotizaciones a la Seguridad Social (CSS) y la parte correspondiente a los trabajadores (CSST), en ambos casos como porcentaje del total de ingresos fiscales, se presenta en el cuadro adjunto.

	CSS	CSST
Austria	31,9	13,5
Bélgica	29,8	10,1
Dinamarca	2,8	1,5
Francia	43,2	11,5
Alemania	36,2	16,1
Irlanda	15,0	5,4
Italia	47,2	7,1
Japón	30,4	10,7
Luxemburgo	28,0	11,2
Países Bajos	41,6	18,0
Portugal	28,5	10,8
España	46,5	10,3
Suiza	31,0	10,2
Reino Unido	16,9	7,6
Estados Unidos	27,7	10,8

a) Con el fin propuesto se estima el modelo $CSST_i = \beta_1 + \beta_2 CSS_i + u_i$, obteniendo el resultado siguiente:

Dependent Variable: CSST Method: Least Squares

Sample: 1 15

Included observations: 15

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.882307	2.294687	1.691868	0.1145
CSS	0.211442	0.070326	3.006600	0.0101
R-squared	0.410154	Mean dependent var		10.32000
Adjusted R-squared	0.364781	S.D. dependent var		4.009845
S.E. of regression	3.195872	Akaike info criterion		5.285163
Sum squared resid	132.7767	Schwarz criterion		5.379569
Log likelihood	-37.63872	F-statistic		9.039643
Durbin-Watson stat	1.790668	Prob(F-statis	stic)	0.010110

Interprete el efecto y valórelo estadísticamente.

Se calcula asimismo el gráfico de los residuos del modelo frente a la endógena estimada (csstf) y el contraste de White .

White Heteroskedasticity Test:

F-statistic	6.664125	Probability	0.011310
Obs*R-squared	7.893311	Probability	0.019319

De acuerdo con estos instrumentos valore la posible presencia de heteroscedasticidad en el modelo y sus efectos sobre la inferencia. Plantee, si es posible, alguna opción para solucionar el problema planteado.

b) Se plantea transformar el modelo en logaritmos, obteniéndose:

Dependent Variable: LCSST Method: Least Squares Sample: 1 15

Included observations: 15

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.214864	0.348746	-0.616105	0.5485
LCSS	0.744728	0.104436	7.130971	0.0000
R-squared	0.796400	Mean dependent var		2.220443
Adjusted R-squared	0.780739	S.D. dependent var		0.584482
S.E. of regression	0.273686	Akaike info criterion		0.369895
Sum squared resid	0.973752	Schwarz criterion		0.464302
Log likelihood	-0.774212	F-statistic		50.85075
Durbin-Watson stat	1.792355	Prob(F-statistic)		0.000008

White Heteroskedasticity Test:

F-statistic	3.033159	Probability	0.085876
Obs*R-squared	5.036708	Probability	0.080592

Valore de nuevo la hipótesis de varianza constante.

EJERCICIO 9

Demuestre que, en los dos modelos siguientes, las variables y_{t-1} y u_t no son independientes.

a)
$$y_t = \beta y_{t-1} + u_t$$
, $u_t = \phi u_{t-1} + \varepsilon_t$

b)
$$y_t = \beta y_{t-1} + u_t$$
 , $u_t = \varepsilon_t - \theta \varepsilon_{t-1}$

siendo $\varepsilon_{\scriptscriptstyle t}$ un proceso ruido blanco.

EJERCICIO 10

Sea una variable aleatoria con función de densidad:

$$f(x; \theta) = \frac{2}{\theta} x e^{-\frac{x^2}{\theta}} \qquad x \ge 0, \ \theta > 0$$

Para muestras aleatorias simples de tamaño n, obtenga el estimador máximo verosímil de θ .

EJERCICIO 11

Para analizar la relación entre las ventas de helados, y_t , y la temperatura de una determinada ciudad costera, x_t , se han utilizado 100 datos diarios de ambas variables para el año 2002 y se han estimado las siguientes rectas de regresión:

$$\hat{y}_{t} = 1663,6 + 0.75 x_{t}$$

$$(0,028)$$

$$\hat{y}_{t} = 186,12 + 0.82 x_{t} + 832,09 D_{t}$$

$$(0,049) \quad (32,82)$$

$$R^{2} = 0.984$$

$$(0,049) \quad (32,82)$$

$$R^{2} = 0.983$$

$$(0,044) \quad (0,002)$$

$$\hat{y}_{t} = -184,7 + 0.83 x_{t} + 1757,99 D_{t} - 0.06 D_{t} x_{t}$$

$$(0.062) \quad (491,37) \quad (0.024)$$

donde D_t es una variable ficticia que toma el valor 1 si t es un día de verano y 0 en caso contrario.

- a) Interprete los coeficientes del último modelo planteado.
- b) Contraste si el ser verano o no es un factor explicativo de la variable ventas de helados.
- c) Contraste si el efecto marginal de un incremento unitario en la temperatura sobre las ventas de helados es diferente según sea verano o no.
- d) Contraste la hipótesis de que las ventas de helados son totalmente independientes del hecho de estar o no en verano.

EJERCICIO 12