法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

第2课 图像数据处理

Image Data Processing

主讲人:张宗健

悉尼科技大学博士

主要研究方向: 计算机视觉、视觉场景理解、图像&语言、深度学习

图像检索CbIR、Human ReID等

本章结构

- □ 图片存储原理
- □ 空域分析及变换
- □频域分析及变换
- □ 金字塔
- □模板匹配
- □ 代码实践

RGB颜色空间

- 加法混色,彩色显示器
- 3通道
 - Red通道
 - Green通道
 - Blue通道
- 一个像素颜色值
 - (b, g, r)
- 取值范围
 - [0, 255]
 - [0.0, 1.0]

CMY(K)颜色空间

- 减法混色,印刷
- 4通道
 - Cyan通道
 - Magenta通道
 - Yellow通道
 - Key通道
- 一个像素颜色值
 - (c, m, y, k)
- 取值范围
 - [0, 255]
 - [0.0, 1.0]

Cyan -

HSV/HSL(I)颜色空间

- 人类视觉概念, 画家配色
- 3通道
 - H/Hue通道: 色调,颜色种类
 - S/Saturation: 饱和度,颜色浓淡
 - V/Value:明度,颜色明亮度
 - L/Lightness(I/Intensity): 亮度, 光照亮度
- 一个像素颜色值
 - (h, s, v/l/i)
- 取值范围
 - [0, 255]
 - [0.0, 1.0]

CIE-XYZ颜色空间

- 国际照明协会, 1931
- 基于人类颜色视觉的直接测定
- 其他颜色空间基础
- 人类视觉系统-视锥细胞
 - 短波 (S, 420-440nm)
 - 中波 (M, 530-540nm)
 - 长波 (L, 560-580nm)
- 3色刺激值通道
 - X, Y, Z约略对应于红色、绿色、蓝色
 - 一种波的刺激等于几种波的混合刺激

CIE-Lab对色空间

- 国际照明协会, 1976
- 接近人类视觉、致力于感知均匀性
- 颜色空间本身不均匀
 - 非线性关系 > 人类眼睛的非线性响应
- 3通道
 - L: 亮度
 - a: 红/绿
 - b: 黄/蓝
- 色差距离CIE2000
 - · 基于人类色差实验数据,均匀性好

主流颜色空间

- RGB三通道彩色图
 - 图片→3维矩阵([0,255])

- 单通道灰度图
 - 亮度信息 ([0,255])
 - Gray=R*0.3+G*0.59+B*0.11

灰度化

颜色传感器: Bayer网格

- · 在G格估计RGB
- 基于周边9个色值

RGB图片数据格式

• 3维矩阵

	列 -											> _				
行	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
17	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	1 G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91	1		
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	1		В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	
4	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
•			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.93	0.49	0.74	
			0.79	0.73	0.89		0.33	0.01	0.09	0.79	0.73	0.99		0.82	0.93	
			0.91	0.94	0.03	0.49	0.41	0.78	0.76	0.77	0.09	0.99	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

滤波/卷积

- 在每个图片位置 (x,y) 上进行基于邻域的函数计算
 - 滤波函数→权重相加
 - 卷积核、卷积模板 滤波结果

- 卷积核、卷积模板 L 滤波结果 L 滤波函数 L 像素邻域值滤波器、滤波模板 $h[x,y]=\sum f[k,l]\,I[x+k,y+l]$ • 扫描窗
- 不同功能需要定义不同的函数
 - 图像增强
 - 平滑/去燥
 - 梯度/锐化
 - 信息提取、检测
 - 边缘、显著点、纹理
 - 模式

滤波/卷积

滤波结果

滤波函数

像素邻域值

 $h[x, y] = \sum f[k, l] I[x+k, y+l]$

- 参数解释
 - x,y是像素在图片中的位置/坐标
 - k,1是卷积核中的位置/坐标
 - 中心点的坐标是(0,0)
 - f[k,1]是卷积核中在 (k,1) 上的权重参数
 - I[x+k, y+l]是与f[k, l]相对应的图片像素值
 - h[x, y]是图片中(x, y)像素的滤波/卷积结果

	图片								
4	1	6			卷	积本	亥		
7	2	3		•	1	1	1		结果
9	5	8		\otimes	1	1	1	=	45
					1	1	1		

滤波/卷积

- · 边界补充 (Padding)
 - 获得同尺寸输出的情况下
 - 卷积核越大,补充越多
- 补充类型
 - 补零 (zero-padding)
 - 边界复制 (replication)
 - 镜像 (reflection)
 - 块复制 (wraparound)

5x5

滤波/卷积

- 补零 (zero-padding)
- · 边界复制 (replication)
- 镜像 (reflection)
- 块复制(wraparound)

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	2	3	0	0	0
0	0	0	4	5	6	0	0	0
0	0	0	7	8	9	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

滤波/卷积

7x7卷积: 3x3 → 9x9

补零 (zero-padding)

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	2	3	0	0	0
0	0	0	4	5	6	0	0	0
0	0	0	7	8	9	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

边界复制 (replication)

1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
4	4	4	4	5	6	6	6	6
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9

滤波/卷积

7x7卷积: 3x3 → 9x9
 镜像 (reflection)

9	8	7	7	8	9	9	8	7
6	5	4	4	5	6	6	5	4
3	2	1	1	2	3	3	2	1
3	2	1	1	2	3	3	2	1
6	5	4	4	5	6	6	5	4
9	8	7	7	8	9	9	8	7
9	8	7	7	8	9	9	8	7
6	5	4	4	5	6	6	5	4
3	2	1	1	2	3	3	2	1

块复制(wraparound)

1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9
1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9
1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9

平滑均值滤波/卷积

- 奇数尺寸
 - 3x3, 5x5, 7x7, $2n-1 \times 2n-1$
- 参数和为:1

平滑均值滤波/卷积

- 3x3
- 扫描步长: 1
- 边框补零

0	0	0	0	0	0	0	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	0	0	0	0	0	0	0

输入图片

6x6

平滑均值滤波/卷积

- 3x3
- 扫描步长: 1
- 边框补零

0	0	0	0	0	0	0	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	0	0	0	0	0	0	0

平滑均值滤波/卷积

3x3

输入图片

6x6

- 扫描步长:1
- 边框补零

0	0	0	0	0	0	0	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	0	0	0	0	0	0	0

10

平滑均值滤波/卷积

- 3x3
- 扫描步长: 1
- 边框补零

0	0	0	0	0	0	0	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	0	0	0	0	0	0	0

4	6	8	10	12	8
6					

输入图片 6x6

平滑均值滤波/卷积

- 3x3
- 扫描步长: 1
- 边框补零

0	0	0	0	0	0	0	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	9	9	9	18	18	18	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	18	18	18	9	9	9	0
0	0	0	0	0	0	0	0

4	6	8	10	12	8
6	9	12	15	18	12
8	12	13	14	15	10
10	15	14	13	12	8
12	18	15	12	9	6
8	12	10	8	6	4

输入图片

6x6

平滑中值滤波/卷积

- 奇数尺寸
 - 3x3, 5x5, 7x7, $2n-1 \times 2n-1$
- 操作原理
 - 卷积域内的像素值从小到大排序
 - 取中间值作为卷积输出
- 有效去除椒盐噪声

平滑中值滤波/卷积

平滑高斯滤波/卷积

- 奇数尺寸
 - 3x3, 5x5, 7x7, $2n-1 \times 2n-1$
- 模拟人眼, 关注中心区域
- 有效去除高斯噪声
- 参数
 - x,y是卷积参数坐标
 - 标准差 σ

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

平滑高斯滤波/卷积

• 人眼特性: 离关注中心越远, 感受精度越模糊

摄像头

人类视觉

平滑高斯滤波/卷积

- σ越小
- 关注区域越集中

原图

 $\sigma=1$

平滑高斯滤波/卷积

- 分解特性(级联高斯)
 - 2D卷积拆分成两个相同的1D卷积
 - 列卷积
 - 行卷积
 - 降计算
 - 2D卷积: KxK次计算
 - 2x1D卷积: 2K次计算

1	2	1		1	X	1	2	1
2	4	2	=	2				
1	2	1		1				

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

梯度Prewitt滤波/卷积

• 水平梯度/垂直边缘

• 垂直梯度/水平边缘

梯度Sobel滤波/卷积

• 水平梯度/垂直边缘

• 垂直梯度/水平边缘

梯度Laplacian滤波/卷积

- 二阶微分算子
 - 一阶导数极值

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- 作用
 - 团块检测:周边高于(低于)中心点
 - 边缘检测: 像素值快速变化的区域

1	-2	1
	1D	

0	1	0
1	-4	1
0	1	0

	1	1	1
	1	-8	1
I	1	1	1

2D 8邻域

0	0	1	0	0
0	1	2	1	0
1	2	-16	2	1
0	1	2	1	0
0	0	1	0	0

5x5

Laplacian滤波锐化

梯度滤波/卷积

- Laplacian 滤波
- Sobel-X滤波
- Sobel-Y滤波

空域分析及变换

其他滤波/卷积

• (左)移位

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

• 锐化

\otimes	0	0	0
	0	2	0
	0	0	0

傅里叶变换

• 一个信号可以由足够多个不同频率和幅值的正余弦波组成 $A\sin(\omega x) + B\cos(\omega x)$

傅里叶变换

傅里叶变换

• 信号分解

傅里叶变换

- 连续变换 $H(\omega) = \int_{-\infty}^{\infty} h(x)e^{-j\omega x}dx$
- 离散变换 $H(k) = \frac{1}{N} \sum_{k=1}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}}$ k = -N/2..N/2
- 存储每个频率段上的:
 - 幅值 $A = \pm \sqrt{\text{Re}(\omega)^2 + \text{Im}(\omega)^2}$
 - 相接 $\phi = \tan^{-1} \frac{\text{Im}(\omega)}{\text{Re}(\omega)}$

2D离散傅里叶变换

$$F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left(\frac{k}{M}m + \frac{l}{N}n\right)}$$

2D傅里叶基图片

滤波效果

原图

FFT

低通

高通

相位滤波

山象学院 ChinaHadoop.cn

频段滤除

空域卷积=频域乘积

高斯金字塔

- 原因:多次高斯卷积之后,一些像素是多余的
- · 操作: n次(高斯卷积→2x降采样)→n层金字塔
- 目的:捕捉不同尺寸的物体

高分辨率

业 业 Lina Hadoon co

高斯金字塔

- 高斯滤波的必要性
- 直接降采样损失信息

高斯+降采样

原图

高斯金字塔

- 尺度空间
- 不同尺度适合不同尺寸的物体
- 合适的尺度永远未知

拉普拉斯全字塔 (Laplacian)

- 高频细节信息在卷积和下采样中丢失
- 保留所有层所丢失的高频信息,用于图像恢复

$$L_{i} = G_{i} - \mathrm{UP}(G_{i+1}) \otimes \mathcal{G}_{5 \times 5}$$

模板匹配

模板图片匹配VS卷积

- 作用:同尺度目标检测
- 模板: 真实图片 VS 卷积核
- · 操作:使用模板图片扫描整个图片 VS 卷积扫描
- 匹配结果:相似度量 VS 权重相加
 - 返回相似度图
 - 6中相似距离计算
 - (标准化) 欧式距离
 - (标准化)相关
 - (标准化)去均值相关

模板匹配

模板图片匹配

演示环节

Github

- https://github.com/349zzjau
- 链接推荐
 - 平滑滤波
 - http://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html
 - 梯度滤波
 - http://docs.opencv.org/master/d5/d0f/tutorial_py_gradients.html
 - 傅里叶变换
 - http://docs.opencv.org/master/de/dbc/tutorial_py_fourier_transform.html
 - 模板匹配
 - http://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html
 - 全字塔
 - http://docs.opencv.org/master/dc/dff/tutorial_py_pyramids.html

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

Q & A

小象账号: 349zzjau

课程名:基于深度学习的计算机视觉

课后调查问卷: http://cn.mikecrm.com/0D9JujS

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

