Matroids in Lean: Project Proposal

Ivan Sergeev

ISTA

10 October 2024

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theorem

First-degree Ingredients

Regular 3-connected matroids with no R_{10} or R_{12} minor Regular 3-connected Matroids with an R_{10} minor Regular Matroids with an R_{12} minor

Second-degree Ingredients

Splitter Theorem
Separation Algorithm and Its Corollaries
3-separations and 3-sums

Conclusion

Outline

Motivation

Definition

High-Level Proof of Seymour's Decomposition Theorem

First-degree Ingredients

Second-degree Ingredients

Conclusion

What is Seymour's Decomposition Theorem?

- ▶ Any 1-, 2-, and 3-sum of two regular matroids is regular
- Any regular matroid can be decomposed into matroids that are graphic, cographic, or isomorphic to R_{10} by repeated 1-, 2-, and 3-sum decompositions

Why Matroids?

- ► Generalize vector spaces and linear independence (vector matroids)
- Generalize graphs (graphic matroids)
- Generalize extensions of fields (algebraic matroids)
- ► Axiomatic definition ⇒ amenable to formalization

Why Seymour's Decomposition Theorem?

- Structural characterization of the class of regular matroids
- Efficient algorithm for testing if a binary matroid is regular
- Efficient algorithm for testing if a real matrix is totally unimodular
- ▶ Construction of $\{0,\pm 1\}$ and $\{0,1\}$ totally unimodular matrices
- Structural approach to certain problems

Concrete Application: Cycle Polytope

- **Given:** Connected binary matroid M with weighs w_e for all elements e
- ▶ Goal: Find a disjoint union C of circuits of M such that $\sum_{e \in C} w_e$ is maximized
- ▶ Note: This includes the max cut problem, so can be NP-hard
- ▶ Regular matroid decomposition theorem leads to:
 - Characterization of the cycle polytope
 - ▶ Polyhedral approach for a special subclass: efficient separation ⇒ optimization

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theorem

First-degree Ingredients

Second-degree Ingredients

Conclusion

Matroids: Main Definition

- Let E be a finite ground set
- ▶ Let $\mathcal{I} \subseteq 2^E$ be a family of subsets satisfying:
 - ▶ $\emptyset \in \mathcal{I}$ (non-empty)
 - ▶ if $A \subseteq B \in \mathcal{I}$, then $A \in \mathcal{I}$ (down-closed)
 - ▶ if $A, B \in \mathcal{I}$ and |A| < |B|, then $A + x \in \mathcal{I}$ for some $x \in B \setminus A$ (exchange property)
- ▶ Then the pair $M = (E, \mathcal{I})$ is called a **matroid**

Matroids: Key Notions

- ▶ A base of M is a maximal independent subset of E
- ightharpoonup A cobase is the set E-X for some base X
- ▶ The dual matroid of M is $M^* = (E, \mathcal{I}^*)$ where \mathcal{I}^* is all cobases and their subsets
- \blacktriangleright For $A \subseteq E$, the rank of A is the cardinality of a maximal independent subset of A
- ► A circuit is a minimal dependent subset of E
- ► A cocircuit of *M* is a circuit of *M**

Graphic Matroids

- ▶ Let G be a graph with edge set E, let \mathcal{I} be all forests in G
- ▶ Then the **graphic matroid** of *G* is $M = M(G) = (E, \mathcal{I})$
- ► A cographic matroid is the dual of a graphic matroid
- ► A planar matroid is one that is graphic and cographic

Binary Matroids

- Let F be a binary matrix over GF(2) with a column index set E
- ▶ Let \mathcal{I} be all $Z \subseteq E$ such that the columns of F indexed by Z are independent
- ▶ The binary matroid generated by F is $M = (E, \mathcal{I})$
- Note: graphic matroids are binary (node-edge incidence matrix)
- Representation matrix:
 - ▶ Delete all GF (2)-dependent rows from F
 - ▶ Perform binary row operations to arrive at $[I \mid B]$
 - ▶ *B* is a representation matrix (can be empty)

Regular Matroids

- lacktriangle A real matrix is **totally unimodular** (TU) if all its subdeterminants are 0 or ± 1
- ▶ A binary matroid is regular if it has a representation matrix with a TU signing
- Important properties:
 - A binary matroid is regular iff every representation matrix has a TU signing
 - For a regular matroid, its dual and all its minors are regular
 - Every graphic and cographic matroid is regular

Special Binary Matroids

- Nonregular F_7 is represented by $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$
- Regular, nongraphic, noncographic R_{10} is represented by $\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Regular, nongraphic, noncographic
$$R_{12}$$
 is represented by
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

1-, 2-, and 3-Sums of Graphs

- ▶ 1-sums: identification of a node
- **2**-sums:

▶ 3-sums:

1-sums of Binary Matroids

► A 1-separable matroid can be represented by

$$\begin{array}{c|cccc} & Y_1 & Y_2 \\ \hline X_1 & A^1 & 0 \\ \hline X_2 & 0 & A^2 \\ \end{array}$$

▶ This also defines $M_1 \oplus_1 M_2$ for M_1 and M_2 represented by A^1 and A^2

2-sums of Binary Matroids

► A 2-separable matroid can be represented by

▶ This also defines $M_1 \oplus_2 M_2$ for M_1 and M_2 represented by

▶ The bottom-left submatrix is reconstructed via (column y of B^2) · (row x of B^1)

3-sums of Binary Matroids

► A 3-separable matroid can be represented by

▶ This also defines $M_1 \oplus_3 M_2$ for M_1 and M_2 represented by

► The bottom-left submatrix is computed via a formula from these submatrices

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theorem

First-degree Ingredients

Second-degree Ingredients

Conclusion

Seymour's Decomposition Theorem

- ▶ Any 1-, 2-, and 3-sum of two regular matroids is regular
- Any regular matroid can be decomposed into matroids that are graphic, cographic, or isomorphic to R_{10} by repeated 1-, 2-, and 3-sum decompositions

Dependency Graph

Dependency Graph

Easy Direction

- ▶ Any 1-, 2-, and 3-sum of two regular matroids is regular
- Proof sketch:
- ▶ Use the matrix representation of the 1-, 2-, or 3-sum
- Use TU signings of representations of the summands
- If necessary, sign the remaining elements via a specific formula
- Prove TUness of the composite signed matrix

Hard Direction

Any regular matroid can be decomposed into matroids that are graphic, cographic, or isomorphic to R_{10} by repeated 1-, 2-, and 3-sum decompositions

► Ingredients:

- 1. A 3-connected regular matroid has no R_{10} or R_{12} minor \Rightarrow graphic or cographic
- 2. A 3-connected regular matroid with an R_{10} minor is isomorphic to R_{10}
- 3. A regular matroid with an R_{12} minor is a 3-sum of two proper minors

Hard Direction: Proof

- Let M be a regular, nongraphic, noncographic matroid
- ▶ If M is 1- or 2-separable, then M is a 1- or 2-sum (property of k-sums)
- ▶ Given M is 3-connected, M has an R_{10} or R_{12} minor (ingredient 1)
- ▶ If M has an R_{10} minor, then it is isomorphic to R_{10} (ingredient 2)
- ▶ If M has an R_{12} minor, then M is a 3-sum (ingredient 3)

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theoren

First-degree Ingredients

Second-degree Ingredients

Conclusion

Ingredient 1

- ▶ A 3-connected regular matroid has no R_{10} or R_{12} minor \Rightarrow graphic or cographic
- Sub-ingredients:
- 1. Regular matroid has no $M(K_5)$, $M(K_5)^*$, $M(K_{3,3})$, or $M(K_{3,3})^*$ minors \Rightarrow planar

- 2. $M(K_5)$ is a splitter for regular matroids with no $M(K_{3,3})$ minors
- 3. Regular matroid is 3-connected, nongraphic, noncographic, has an $M(K_{3,3})$ minor, and all its proper minors are graphic or cographic \Rightarrow isomorphic to R_{10} or R_{12}

Ingredient 1

▶ A 3-connected regular matroid has no R_{10} or R_{12} minor \Rightarrow graphic or cographic

Sub-ingredients:

- 1. Regular matroid has no $M(K_5)$, $M(K_5)^*$, $M(K_{3,3})$, or $M(K_{3,3})^*$ minors \Rightarrow planar
 - ▶ Relies on many involved results: Menger's theorem, Kuratowski's theorem, the wheel theorem, and the census of small 3-connected matroids
- 2. $M(K_5)$ is a <u>splitter</u> for regular matroids with no $M(K_{3,3})$ minors
 - ▶ Proof = splitter theorem + case analysis
- 3. Regular matroid is 3-connected, nongraphic, noncographic, has an $M(K_{3,3})$ minor, and all its proper minors are graphic or cographic \Rightarrow isomorphic to R_{10} or R_{12}
 - ▶ Relies on results about 3-connected nested extensions, which require splitter theorem
 - Long and technical proof with many cases and graph constructions

Ingredient 1: Proof

- Let M be a 3-connected, regular, nongraphic, noncographic matroid
- ▶ M is not planar + Ingredient $1.1 \Rightarrow M$ or M^* has an $M(K_5)$ or $M(K_{3,3})$ minor
- ▶ Ingredient 1.2 \Rightarrow M or M^* has an $M(K_{3,3})$ minor or is isomorphic to $M(K_5)$
- Latter case is a contradiction
- ▶ Former case + ingredient $1.3 \Rightarrow M$ or M^* has R_{10} or R_{12} as a minor
- $ightharpoonup R_{10}$ and R_{12} are self-dual $\Rightarrow M$ has R_{10} or R_{12} as a minor

Ingredient 1: Proof

- \triangleright Let M be a 3-connected, regular, nongraphic, noncographic matroid
- ▶ M is not planar + Ingredient $1.1 \Rightarrow M$ or M^* has an $M(K_5)$ or $M(K_{3,3})$ minor
- ▶ Ingredient $1.2 \Rightarrow M$ or M^* has an $M(K_{3,3})$ minor or is isomorphic to $M(K_5)$
- Latter case is a contradiction
- ▶ Former case + ingredient $1.3 \Rightarrow M$ or M^* has R_{10} or R_{12} as a minor
- $ightharpoonup R_{10}$ and R_{12} are self-dual $\Rightarrow M$ has R_{10} or R_{12} as a minor
- ▶ There is an alternative proof [Geelen, Gerards, '04]
 - Seems shorter, but appears to heavily rely on graph-theoretic results

Ingredient 2

- \triangleright A 3-connected regular matroid with an R_{10} minor is isomorphic to R_{10}
- **Equivalent statement:** R_{10} is a splitter of the class regular matroids
- **▶** Sub-ingredients:
- 1. The splitter theorem
- 2. R_{10} is self-dual
- 3. F_7 is not regular
- 4. "Graph plus T set" constructions for R_{10} and F_7

Ingredient 2: Proof

- ightharpoonup Represent R_{10} as a graph plus T set
- \triangleright R_{10} is self-dual, so suffices to consider 1-element additions in the splitter theorem
- ▶ Up to isomorphism, there are only 3 distinct 3-connected 1-element additions
- ▶ Case 1 (graphic): after contracting a specific edge, the resulting graph contains a subdivision of the graph plus T set for $F_7 \Rightarrow$ this extension is nonregular
- ▶ Cases 2, 3 (nongraphic): both reduce to the graph plus T set for $F_7 \Rightarrow$ nonregular

Ingredient 3

 \triangleright A regular matroid with an R_{12} minor is a 3-sum of two proper minors

Sub-ingredients:

- 1. Let \mathcal{M} be a class of binary matroids closed under isomorphism and taking minors. Let N be a minor that lies in \mathcal{M} , but its 1- and 2-element extensions of a specific form are not in \mathcal{M} . Let N have a 3-separation. If $M \in \mathcal{M}$ has an N minor, then any 3-separation of any such minor corresponding to the 3-separation of N under an isomorphism induces a 3-separation of M.
 - ► Corollary from a characterization theorem for a separation algorithm
- 2. For a binary 3-connected matroid, any 3-separation (E_1, E_2) with $|E_1|, |E_2| \ge 4$ produces a 3-sum and vice versa.

Ingredient 3: Proof

- ▶ Apply Ingredient 1 with regular matroids as \mathcal{M} and R_{12} as N
- \triangleright Calculate all 3-connected regular 1-element extensions of R_{12} , check cases
- ► Apply Ingredient 2 to get a 3-sum from a 3-separation

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theorem

First-degree Ingredients

Second-degree Ingredients

Conclusio

Splitter Theorem

- lacktriangle Let ${\mathcal M}$ be a class of binary matroids closed under isomorphism and taking minors
- Let N be a 3-connected minor of \mathcal{M} on at least 6 elements, and not a wheel
- ► Claim: The following are equivalent:
 - \triangleright N is a **splitter** of \mathcal{M} , i.e., every $M \in \mathcal{M}$ with a proper N minor has a 2-separation
 - $ightharpoonup \mathcal{M}$ does not contain a 3-connected 1-element extension of N
- ► (There is also a wheel version, it is used in 3-connected nested extensions)

Proof of Splitter Theorem

- ▶ If *N* is a splitter, then trivial. Assume *N* is not a splitter.
- ightharpoonup Suppose no 3-connected 1-element extension of N is in \mathcal{M}
- ▶ Then $\exists M \in \mathcal{M}$: 3-connected, has no 2-separation, contains N as a proper minor
- ▶ Technical lemma $\Rightarrow M$ has a 3-connected minor N' that extends an N minor
- lacktriangle 1-extension case: contradicts the assumptions on ${\mathcal M}$
- \triangleright 2-extension case: N' is derived from N by one addition and one expansion
- ightharpoonup Analyze the structure of a binary matrix representation of N' that displays N
- ightharpoonup Arrive at: N' contains a 3-connected 1-element extension of an N minor
- lacktriangle This contradicts the assumptions on ${\cal M}$

Technical Lemma for Splitter Theorem

- ► Let *M* be a 3-connected binary matroid
- ▶ Let N be a 3-connected proper minor of M with \geq 6 elements
- ▶ Claim: M has an N minor \overline{N} and a 3-connected minor N' such that
 - \triangleright N' is a 1-element extension of \overline{N} , or
 - \triangleright N' is a 2-element extension, by one addition and one expansion, of \overline{N}
- Proof sketch:
- ▶ Construct a connected minor N' that is a 1-element extension of N by $z \in M \setminus N$
- ightharpoonup Reason about a matrix representation of N and N'
- ▶ Apply a <u>characterization theorem</u> for a separation algorithm, do case analysis

Corollaries of Splitter Theorem

- $ightharpoonup M(K_5)$ is a splitter of the regular matroids with no $M(K_{3,3})$ minors
- $ightharpoonup R_{10}$ is a splitter of the class of regular matroids
- ▶ Theorems about nested connected minors, for example:
 - Let M be a 3-connected binary matroid
 - Let N be a 3-connected proper minor of M on \geq 6 elements, and not a wheel
 - Then there is a sequence $M_0, \ldots, M_t = M$ of nested 3-connected minors where M_0 is isomorphic to N and where the rank + corank gap = 1

Separation Algorithm

- ▶ Suppose a minor N of M has an exact k-separation (F_1, F_2)
- ▶ Does *M* have an induced *k*-separation (E_1, E_2) with $E_{1,2} \supseteq F_{1,2}$?
- ▶ Separation algorithm: explicit recursive procedure to answer this question

Separation Algorithm: Characterization Theorem

- Suppose M has at least one minor isomorphic to N
- \blacktriangleright ...that has a k-separation corresponding to (F_1, F_2) under an isomorphism
- ▶ ...and which does not induce a k-separation of M
- ▶ Suppose *M* is minimal with respect to the above conditions
- ► Claim: *M* is represented by a matrix corresponding to a 1- or 2-extension of *N* and satisfying certain additional properties
- ightharpoonup Proof = separation algorithm + case analysis

Separation Algorithm: Corollary

- lacktriangle Let ${\mathcal M}$ be a class of binary matroids closed under isomorphism and taking minors
- Suppose \mathcal{M} contains N with a k-separation, but not its 1- and 2-element extensions represented by the matrices from the characterization theorem
- ▶ Suppose $M \in \mathcal{M}$ has a minor isomorphic to N
- ► Claim: Any k-separation of any such minor corresponding to the k-separation of N under an isomorphism induces a k-separation of M

Separation Algorithm: Proof of Corollary

- \blacktriangleright $\mathcal M$ is closed under isomorphism \Rightarrow assume that N itself is a minor of M
- Suppose the k-separation of N does not induce one in M
- \triangleright Then M or its minor containing N satisfies the characterization theorem
- $ightharpoonup \mathcal{M}$ is closed under taking minors $\Rightarrow \mathcal{M}$ contains a 1- or 2-element extension of N represented by one of the matrices from the characterization theorem
- lacktriangle This contradicts the assumptions on ${\cal M}$

3-separations and 3-sums

- For a binary 3-connected matroid, any 3-separation (E_1, E_2) with $|E_1|, |E_2| \ge 4$ produces a 3-sum and vice versa
- Proof sketch:
- ► A matrix representation of a 3-sum produces a 3-separation
- Consider a 3-separation, which must be exact, as M is 3-connected
- Analyse the structure of the corresponding representation matrix
- ► Consider a shortest path in the corresponding bipartite graph, apply path shortening technique to reduce it to a path of length 2 via pivots
- Reason about the entries of the matrix and the effects of the pivots
- Eventually arrive at a matrix representation of a 3-sum

Outline

Motivation

Definitions

High-Level Proof of Seymour's Decomposition Theoren

First-degree Ingredients

Second-degree Ingredients

Conclusion

Conclusion

- ▶ Laid out the dependency graph for Seymour's decomposition theorem:
- 1. Gives a complete overview of the theorem's proof all the way down to definitions
- 2. Can guide formalization efforts
- Identified good first candidates for formalization:
- 1. Easy direction of Seymour's decomposition theorem
- 2. The splitter theorem and its corollaries