DECOMPOSIZIONE LU IN PARALLELO

Scrivere un codice parallelo per calcolare la decomposizione LU di una matrice A di dimensione $N \times N$ con elementi così definiti:

$$A = (A_{i,j}),$$
 $A_{i,j} = cos((j-1)\beta_i),$ $\beta_i = \frac{2i-1}{2N}\pi,$ $A_{i,i} = A_{i,i} + N,$

Supponendo N multiplo del numero dei processori disponibili, si richiede di procedere nel seguente modo:

- il processore P0 costruisce A e distribuisce ciclicamente le righe di A sulle matrici U_{loc} di dimensioni $N_{loc} \times N$ dei singoli processori ($N_{loc} = N/nproc$).
- ogni processore, mediante l'algoritmo LU parallelo, costruisce e memorizza alcune delle righe dei fattori L e U nelle matrici locali L_{loc} , di dimensione $N_{loc} \times N$, e U_{loc} .
- ogni processore comunica al processore P0 le matrici L_{loc} e U_{loc} per consentire a P0 di costruire i fattori L e U;
- P0 verifica la correttezza della decomposizione costruendo T = L * U e calcolando

$$Err = \sqrt{\sum_{i,j} (A_{i,j} - T_{i,j})^2}$$