| POLITECHNIKA<br>KRAKOWSKA<br>Laboratorium Metrologii | Hubert V<br>Magdalena<br>Michał<br>Michał<br>Mikoła<br>Szczepa<br>Tomasz Pi<br>Wiktor | Załącznik nr 1<br>Wzór<br>sprawozdania |             |
|------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|-------------|
| Współrzędnościowej                                   | Imię i Nazwisko                                                                       |                                        | sprawozuama |
|                                                      | grupa: 13K2                                                                           | rok akad.: 2023/2024                   |             |
|                                                      | grupa lab: L04                                                                        | zespół: 13K2                           |             |

#### METROLOGIA I SPECYFIKACJA GEOMETRYCZNA WYROBU

Ćwiczenie: L1

Temat ćw.: Analiza dokumentacji technicznej i dobór przyrządów pomiarowych

1. Wstęp teoretyczny (zgodnie z zakresem wiedzy podanym na stronie lmw.pk.edu.pl)
Analiza dokumentacji technicznej i dobór przyrządów pomiarowych w kontekście
metrologii i geometrycznego kształtowania wyrobu stanowi kluczowy element naszych
zajęć. W poniższym tekście omówimy te zagadnienia, biorąc pod uwagę specyfikę tematu:

#### Podział przyrządów i narzędzi pomiarowych

Przyrządy i narzędzia pomiarowe można podzielić na wiele różnych kategorii, w zależności od rodzaju pomiaru oraz specyfikacji technicznej. W ramach naszych zajęć będziemy zgłębiać te kategorie i ich zastosowanie. Przykładowe podziały obejmują:

- → Przyrządy długościowe używane do pomiarów liniowych, takie jak suwmiarki, mikrometry czy przyrządy kontrolne.
- → Przyrządy kątowe służące do pomiarów kątów, jak goniometry, mikroskopy optyczne i inne.
- → Przyrządy powierzchniowe wykorzystywane do pomiarów powierzchni, w tym mierniki grubości powłok czy przewodności cieplnej.
- → Przyrządy specjalistyczne dedykowane do pomiarów o szczególnych wymaganiach, np. przyrządy do pomiarów niewidzialnych fal elektromagnetycznych.

# Kryteria racjonalnego doboru przyrządów pomiarowych, optymalna niepewność pomiaru

Przy wyborze przyrządów pomiarowych istotne jest uwzględnienie wielu czynników. Pierwszym z nich jest dokładność i precyzja pomiarów, ponieważ dobór przyrządu powinien uwzględniać wymagania dotyczące precyzji oraz dopuszczalne błędy pomiarowe. Kolejnym czynnikiem jest zakres pomiarowy - przyrząd powinien mieć odpowiedni zakres pomiarowy, aby pokrywać wymagane przedziały. Istotna jest również niepewność pomiarowa, należy ocenić optymalną niepewność pomiarową przyrządu i dopasować ją do oczekiwań co do precyzji. Również warunki pracy – środowisko, temperatura, wilgotność i inne czynniki mogą wpłynąć na działanie przyrządu. Podczas doboru przyrządu również ważne są koszty.

# Tolerancja wymiaru i jej oznaczenie w dokumentacji technicznej, klasy dokładności wykonania wymiarów

Tolerancje wymiarów są kluczowe dla produkcji wyrobów o odpowiedniej jakości. Oznaczenie tolerancji wymiaru w dokumentacji technicznej jest fundamentalne dla zrozumienia wymagań projektowych. Klasy dokładności (np. IT9 do IT18) określają, jak dokładnie wymiary muszą być wykonane, a współczynnik  $\alpha$  jest używany do określenia oczekiwanej dokładności pomiaru przyrządu. Zrozumienie tych pojęć jest niezbędne, aby dostosować proces produkcji do wymagań projektowych.

#### Rodzaje wymiarów

Pomiary zewnętrzne – obejmują pomiar wymiarów zewnętrznych wyrobu, takie jak długość, szerokość i wysokość. Do tego celu używane są przyrządy, takie jak suwmiarki, mikrometry czy przyrządy kontrolne.

Pomiary wewnętrzne – dotyczą pomiarów wymiarów wewnętrznych wyrobu, takich jak średnica otworów czy głębokość kanałów. W tym przypadku stosuje się narzędzia, takie jak mikrometry wewnętrzne lub mikroskopy endoskopowe.

Pomiary mieszane – obejmują kombinację pomiarów zarówno zewnętrznych, jak i wewnętrznych, by ocenić kompleksową geometrię wyrobu.

Pomiary pośrednie – dotyczą pomiarów, które nie są bezpośrednio związane z wymiarami, ale mogą mieć wpływ na jakość wyrobu, takie jak chropowatość powierzchni czy twardość materiału.

Wszystkie te zagadnienia są bardzo istotne w przemyśle, gdzie jakość, dokładność i zgodność z dokumentacją techniczną są kluczowe dla sukcesu produkcji.

### 2. Analiza dokumentacji technicznej wybranego elementu

Dokumentacja techniczna dotyczy odlewu części przemysłowej, do którego pomiaru zostały dobierane odpowiednie przyrządy pomiarowe.

Rodzaje Pomiarów:

Pomiar zewnętrzny: została wybrana szerokość elementu do pomiaru.



Pomiar wewnętrzny: została wybrana średnica otworu do pomiaru.



Pomiar mieszany: została wybrana głębokośc wpustu do pomiaru.



Pomiar pośredni: została wybrana odległość między środkami otworów w elemencie.



Strona 4 / 8

## Tytuł rysunku: Odlew Części Przemysłowej





### 3. Dobór przyrządów pomiarowych do określonych zadań pomiarowych

Na podstawie rysunku dobrać odpowiedni przyrząd pomiarowy (z dostępnego katalogu) uwzględniając kryteria doboru oraz wypełnić poniższą tabelę . Wartość tolerancji należy dobrać z tabeli 1 z instrukcji lub odczytać z rysunku.

| Rodzaj<br>mierzoneg<br>o wymiaru | Wartość<br>mierzoneg<br>o wymiaru | Pole<br>Tolerancji<br>T | Oczekiwan<br>a<br>dokładność | Dobór przyrządu pomiarowego                         |
|----------------------------------|-----------------------------------|-------------------------|------------------------------|-----------------------------------------------------|
| zewnętrzny                       | <b>w mm</b> 17                    | 0,4                     | przyrządu<br>0,08            | Rodzaj przyrządu:Suwmiarka o szczękach półwałkowych |
|                                  |                                   |                         |                              | Nazwa przyrządu:ABSOLUTE Digimatic                  |
|                                  |                                   |                         |                              | Producent przyrządu:Mitutoyo                        |
|                                  |                                   |                         |                              | Seria i nr: 550-301-10                              |
|                                  |                                   |                         |                              | Zakres pomiarowy: 0-200                             |
|                                  |                                   |                         |                              | Błędy graniczne/Dokładność: +-0,03                  |
| wewnętrzny                       | ø 43,65H11                        | 0,16                    | 0,032                        | Rodzaj przyrządu: Suwmiarka                         |
|                                  |                                   |                         |                              | Nazwa przyrządu:Suwmiarka czujnikowa                |
|                                  |                                   |                         |                              | Producent przyrządu:Mituoyo                         |
|                                  |                                   |                         |                              | Seria i nr: 505-680                                 |
|                                  |                                   |                         |                              | Zakres pomiarowy:0-100                              |
|                                  |                                   |                         |                              | Błędy graniczne/Dokładność: +-0,015                 |
|                                  | 6                                 | 0,2                     | 0,04                         | Rodzaj przyrządu: Suwmiarka czujnikowa              |
|                                  |                                   |                         |                              | Nazwa przyrządu: Suwmiarka czujnikowa               |
| mieszany                         |                                   |                         |                              | Producent przyrządu: Mituoyo                        |
|                                  |                                   |                         |                              | Seria i nr: 505-681                                 |
|                                  |                                   |                         |                              | Zakres pomiarowy:0-150                              |
|                                  |                                   |                         |                              | Błędy graniczne/Dokładność: +-0,02                  |
| pośredni                         | 55,5                              | 0,19                    | 0,038                        | I<br>Rodzaj przyrządu Suwmiarka                     |
|                                  |                                   |                         |                              | Nazwa przyrządu:Suwmiarka czujnikowa                |
|                                  |                                   |                         |                              | Producent przyrządu:Mitutoyo                        |
|                                  |                                   |                         |                              | Seria i nr: 505-680                                 |
|                                  |                                   |                         |                              | Zakres pomiarowy:0-100                              |
|                                  |                                   |                         |                              | Zames pointare ny. o 100                            |

|  |  | Błędy graniczne/Dokładność:+-0,015 |
|--|--|------------------------------------|
|  |  | <b>II</b><br>Rodzaj przyrządu:     |
|  |  | Nazwa przyrządu:                   |
|  |  | Producent przyrządu:               |
|  |  | Seria i nr:                        |
|  |  | Zakres pomiarowy:                  |
|  |  | Błędy graniczne/Dokładność:        |
|  |  |                                    |

#### 4. WNIOSKI

Jednym z kluczowych wniosków z tych zajęć jest to, że dokładność pomiarów jest istotna w każdym procesie produkcyjnym. Pomiar wymiarów pośrednich, zewnętrznych, wewnętrznych i mieszanych oraz innych parametrów odgrywa kluczową rolę w zapewnieniu jakości i zgodności wyrobów z wymaganiami projektu. Suwmiarki, jako precyzyjne przyrządy pomiarowe, są nieocenione w osiąganiu precyzyjnych wyników pomiarów.

Ponadto, w trakcie tych zajęć dowiedziałem się, że istnieje wiele czynników, które wpływają na dokładność i niepewność pomiarową. Warunki środowiskowe, umiejętności obsługi suwmiarki, a także dostępność odpowiednich narzędzi mogą mieć znaczący wpływ na wyniki pomiarów. Dlatego też ważne jest, aby dokładnie analizować te czynniki i podejmować odpowiednie kroki w celu zminimalizowania błędów pomiarowych.

Podsumowując, zajęcia te przypomniały mi o istotności metrologii i precyzyjnych pomiarów w przemyśle i produkcji. Zrozumienie czynników wpływających na dokładność pomiarów oraz umiejętność posługiwania się narzędziami pomiarowymi, takimi jak suwmiarki, są niezbędne dla każdego, kto dąży do osiągnięcia wysokich standardów jakości w produkcji i projektowaniu wyrobów.