Dave Dubin

Fall Semester, 2017

 Most logic books (including your assigned reading) introduce propositional logic as a tool or system for analyzing the validity and soundness of reasoning.

- Most logic books (including your assigned reading) introduce propositional logic as a tool or system for analyzing the validity and soundness of reasoning.
- van Benthem, et al. contrast arguments like this invalid one:

- Most logic books (including your assigned reading) introduce propositional logic as a tool or system for analyzing the validity and soundness of reasoning.
- van Benthem, et al. contrast arguments like this invalid one:

- Most logic books (including your assigned reading) introduce propositional logic as a tool or system for analyzing the validity and soundness of reasoning.
- van Benthem, et al. contrast arguments like this invalid one:

(2.4) If you take my medication, you will get better

But you are not taking my medication.

So, you will not get better.

- Most logic books (including your assigned reading) introduce propositional logic as a tool or system for analyzing the validity and soundness of reasoning.
- van Benthem, et al. contrast arguments like this invalid one:
 - (2.4) If you take my medication, you will get better
 But you are not taking my medication.
 So, you will not get better.
- ... and this valid argument:
 - If you take my medication, you will get better

 (2.6) But you are not getting better.
 - So, you have not taken my medication. .:

Concepts from earlier in the semester

• Propositions are the bearers of truth values: the kinds of things that can be true or false.

Concepts from earlier in the semester

- Propositions are the bearers of truth values: the kinds of things that can be true or false.
- States of affairs are the parts of reality responsible for making propositions true or false.

• We represent propositions with lower case letters (typically p, q, and r).

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.
- n proposition letters generate 2^n states of affairs.

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.
- n proposition letters generate 2^n states of affairs.
- $\{pqr, pq\overline{r}, p\overline{q}r, p\overline{q}r, \overline{p}qr, \overline{p}q\overline{r}, \overline{pq}r, \overline{pq}r, \overline{pq}r\}$

Logical Operators

Table 1: 2.15 from van Benthem, et al.

Symbol	In natural language	Technical name
7	not	negation
\wedge	and	conjunction
\vee	or	disjunction
\rightarrow	if then	implication
\leftrightarrow	if and only if	equivalence

Logical Expressions

• A sentence constructed from proposition letters and operators is true or false in each state of affairs.

Logical Expressions

- A sentence constructed from proposition letters and operators is true or false in each state of affairs.
- Consider, for example: $((\neg p \lor q) \to r)$

Logical Expressions

- A sentence constructed from proposition letters and operators is true or false in each state of affairs.
- Consider, for example: $((\neg p \lor q) \to r)$
- The sentence is mapped to a truth value via the following tables

Semantics of the operators

φ	$\neg \varphi$
0	1
1	0

Table 3: 2.18 from van Benthem, et al.

φ	ψ	$\varphi \wedge \psi$	$\varphi \vee \psi$	$\varphi \to \psi$	$\varphi \leftrightarrow \psi$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

• "I will only go to school if I get a cookie now."

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- $\bullet \ (((e \lor I) \land \neg a) \to s)$

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- $(((e \lor I) \land \neg a) \rightarrow s)$
- e = "A foreign national has legal employment."

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- $\bullet \ (((e \lor I) \land \neg a) \to s)$
- e = "A foreign national has legal employment."
- I = "He has had legal employment less than three years ago."

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- $(((e \lor I) \land \neg a) \rightarrow s)$
- e = "A foreign national has legal employment."
- I = "He has had legal employment less than three years ago."
- a = "He is currently employed abroad."

- "I will only go to school if I get a cookie now."
- Compare with "I will go to school if I get a cookie"
- The latter is cookie implies school, but the former is school implies cookie.
- You want $(s \rightarrow c)$
- Gloss: s = "I will go to school" and c = "I get a cookie."
- John and Mary are running
- $(j \wedge m)$
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- $\bullet \ (((e \lor I) \land \neg a) \to s)$
- e = "A foreign national has legal employment."
- I = "He has had legal employment less than three years ago."
- a = "He is currently employed abroad."
- s = "He is entitled to social security."

p	q	r	((~	p	V	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	1	1	
0	0	0	1	0	1	0	0	0	

р	q	r	((~	р	V	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	1	1	
0	0	0	1	0	1	0	0	0	

р	q	r	((\sim	р	V	q)	\rightarrow	r)
1	1	1		0	1	1	1	1	1	
1	1	0		0	1	1	1	0	0	
1	0	1		0	1	0	0	1	1	
1	0	0		0	1	0	0	1	0	
0	1	1		1	0	1	1	1	1	
0	1	0		1	0	1	1	0	0	
0	0	1		1	0	1	0	1	1	
0	0	0		1	0	1	0	0	0	
			•							

p	q	r	((~	р	V	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0			1	1	
0	0	0	1	0	1	0	0	0	
			•						

p	q	r	(((p	\vee	\sim	q) &	r	$)\leftrightarrow ($	$(\sim ($	р	&	r) \	q))
1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1
1	1	0	1	1	0	1	0	0	0	1	1	0	0	1	1
1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	0
1	0	0	1	1	1	0	0	0	0	1	1	0	0	1	0
0	1	1	0	0	0	1	0	1	0	1	0	0	1	1	1
0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	1
0	0	1	0	1	1	0	1	1	1	1	0	0	1	1	0
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0

Grammar of propositional logic

Let P be a set of proposition letters and let $p \in P$.

The following expression defines the recursive grammar for a logical expression φ in Backus–Naur Form:

$$\varphi ::= p |\neg \varphi|(\varphi \land \varphi)|(\varphi \lor \varphi)|(\varphi \to \varphi)|(\varphi \leftrightarrow \varphi)$$

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

r

Grammatically *incorrect* expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- I
- ¬q

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

- ¬ ∨ p
- ∨)p¬

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

- ¬ ∨ p
- ∨)p¬
- $\bullet \neg p \lor q \rightarrow r$

$$\bullet \ ((\neg p \lor q) \to r)$$

- $((\neg p \lor q) \to r)$
- $\bullet \ (\neg(p \lor q) \to r)$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$
- $\neg((p \lor q) \to r)$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$
- $\neg((p \lor q) \to r)$
- $(\neg p \lor (q \rightarrow r))$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$
- $\bullet \ \neg((p \lor q) \to r)$
- $\bullet \ (\neg p \lor (q \to r))$
- $\neg (p \lor (q \rightarrow r))$

Exercise 2.7

Which of the following are formulas in propositional logic?

•
$$p \rightarrow \neg q$$

Exercise 2.7

Which of the following are formulas in propositional logic?

- $p \rightarrow \neg q$
- $\neg\neg \land q \lor p$

Exercise 2.7

Which of the following are formulas in propositional logic?

- $p \rightarrow \neg q$
- $\neg\neg \land q \lor p$
- p¬q

• Semantics is the relationship of a language to the part of the world that we're modeling.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.
- For " $V(\varphi) = 1$ " we also write " $V \models \varphi$ " read as "V is a model of φ " or "V satisfies φ ."

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.
- For " $V(\varphi) = 1$ " we also write " $V \models \varphi$ " read as "V is a model of φ " or "V satisfies φ ."
- If V doesn't satisfy φ we write " $V \not\models \varphi$ ". In other words $V(\varphi) = 0$.

• A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.

- ullet A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- ullet A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.
- Examples:

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- \bullet If a statement φ is neither logically true or logically false then it is contingent.
- Examples:
 - **1** $(q \lor \neg q)$ is logically true.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.
- Examples:
 - **1** $(q \lor \neg q)$ is logically true.
 - **2** $(q \land \neg q)$ is logically false.

Consistency

 A set of propositional logic statements is consistent if at least one state of affairs satisfies every statement in the set.

Consistency

- A set of propositional logic statements is consistent if at least one state of affairs satisfies every statement in the set.
- A set of propositional logic statements is inconsistent if no state of affairs satisfies every statement in the set.

Inference and validity

 A conclusion is valid with respect to a set of premises if the conclusion is true in every sitation where the premises are true (van Benthem, et al, page 2-4).

Inference and validity

- A conclusion is valid with respect to a set of premises if the conclusion is true in every sitation where the premises are true (van Benthem, et al, page 2-4).
- One can validly infer a conclusion φ from a set of premises P if the negation of φ is inconsistent with the set of statements P.

Computation and expressive power

(From van Bentham, et al., chapter 2)

Computing a truth value for a formula takes linear time.

Computation and expressive power

(From van Bentham, et al., chapter 2)

- Computing a truth value for a formula takes linear time.
- Computing a truth table for validity takes exponential time.

Computation and expressive power

(From van Bentham, et al., chapter 2)

- Computing a truth value for a formula takes linear time.
- Computing a truth table for validity takes exponential time.
- The problem of testing for validity in propositional logic is decidable: there exists a mechanical method that computes the answer, at least in principle.