深度学习项目班

- 考研复试

让我不至于做PPT做上半年。

李哥25深度学习班

群号: 686811126

扫一扫二维码, 加入群聊

李哥考研

答疑: 工作日的晚上我会守在QQ群, 一般问问题我都会立马解答。 没意外不超过二十分钟。

白天问问题的话可能没办法及时回复, 但偶尔也会看

作业: 每节课课后我会布置作业,大家一定要尽量完成!!!

博客:

注册CSDN,写下自己对每一节代码和项目的理解。 以及安装环境遇到的问题。

大家自己也必须写。 很有用!!!!

说明:

李哥考研

- 1,发现听不懂课,很正常。 我听吴恩达老师,李宏毅老师,李沐老师的,加起来七八遍了都。但现在还有一些不懂。但不要担心,课和代码结合是最高效的理解方式。 通过对比去理解每一步在干嘛,是怎么做的,就会简单。大家要在理解代码上下功夫。
- 2,一些深层次的原理往往是老师们复试最喜欢问的。 比如, 他们会问, 这个是根据什么选择的? 而不会问, 你这个操作是怎么用代码实现的。 因此大家不用纠结代码细节。 Cv工程师, cv 玩的就是一个ctrl-C ctrl-V

举个例子, 大模型LLM的岗位面试题: transformer 的内部结构变换。如果只是看了看大模型的代码, 项目流程, 恐怕这样的基础问题有点难以回答。

3,以后你成高手了,发现我讲的内容有偏差,不要惊讶,因为深度学习的变化速度,超出你想象

- 0, 机器学习与深度学习介绍。深度学习基本知识
- 1, 多层神经网络, 多层感知机。
- 2, python基本操作,环境搭建。 Pytorch 介绍。
- 3,深度学习解决回归任务。回归代码<mark>实战</mark>:新冠人数预测。(目标是看懂一个深度学习项目,模型保存,预测,训练集和验证集划分,测试集评估。)
- 4, 图片分类任务。 卷积神经网络介绍。 经典卷积神经网络。
- 5,图片分类任务实战,食物分类任务。(迁移学习,图片增广,目标学会写一个项目)
- 6, 深度学习与特征的关系, 为后面内容做铺垫。
- 7, NLP任务介绍, (RNN,LSTM简单介绍)。 主要为介绍self-attention机制与bert模型代码讲解。(无监督和自监督将在这一章节介绍。)
- 8, BERT实战, 文本情感分类任务。
- 9,初识生成任务,认识生成任务项目代码。
- 10, ViT模型 与 多模态任务, 大模型简介

深度学习是什么

能够感知、推理、行动和适应的程序

机器学习

能够随着数据量的增加不断改进性能的算法

深度学习

机器学习的一个子集: 利 用多层神经网络从大量数 据中进行学习

机器学习算法简介

李哥考研

● 一般是基于数学,或者统计学的方法,具有很强的可解释性。

• 这里简述几个经典的传统机器学习算法。

● KNN, 决策树, 朴素贝叶斯

KNN: K最近邻居(K-Nearest Neighbors,简称KNN)

李哥考研

现在要判断小明是清华的还是北大的

取离他位置最近的100个人出来,100个都是北大的

取离他位置最近的100个人出来,89个都是清华的

取离他位置最近的200个人出来,111个都是清华的,89个北大的。

取离他位置最近的200个人出来,180个都是川大的

- 一种监督学习算法,用于分类和回归问题。它的基本思想是通过测量不同数据点之间的距离来进行预测。KNN的工作原理可以概括为以下几个步骤:
- 1. 距离度量: KNN使用距离度量(通常是欧氏距离)来衡量数据点之间的相似性。
- 2.确定邻居数量K
- 3.投票机制

KNN: K最近邻居(K-Nearest Neighbors,简称KNN)

决策树

李哥考研

认识的人 垃圾关键词 垃圾邮件?

是	是	否
是	是	否
是	否	否
是	否	否
是	否	否
否	是	是
否	是	是
否	是	是
否	否	否
否	否	否
否	否	是

思考:假如没有垃圾关键词的邮件中有垃圾邮件

决策树

李哥考研

认识的人 垃圾关键词 可疑附件 垃圾邮件?

是	是	否
是是	是	否
	否	否
是	否	否
是	否	否 是 是 是 否
否	是	是
否	是	是
否	是	是
否	否	否
否	否	否
否	否	是

假如没有垃圾关键词的邮件中 有垃圾邮件?

添加其他特征

决策树不善于处理未见过的特征。

朴素贝叶斯

$$P(y = c_k | x) = \frac{P(y = c_k)P(x | y = c_k)}{\sum_k P(y = c_k)P(x | y = c_k)}$$

東主页

🍘 动态

₩ 投稿 17

△ 合集和列表 3

搜索视频、动态

代表作

[5分钟深度学习] #01 梯度下降算法

● 9.9万

= 214

[5分钟深度学习] #02 反向传播算法

▶ 7.7万

(=) 120

[5分钟深度学习] #03 激活函数

● 5.1万

(=) 76

深度学习是什么

6 6

李哥考研

人工智能

能够感知、推理、行动和适应的程序

机器学习

能够随着数据量的增加不断改进性能的算法

深度学习

机器学习的一个子集: 利 用多层神经网络从大量数 据中进行学习

机器学习,具有数学上的 可解释性,但准确率不是 百分百,且不灵活

深度学习

设计一个很深的网络架构让机器自己学。

深度学习就是找一个函数f。

初识神经网络任务。

f(x) = Y

f(身高, 体重, 财富)= 寿命

f("描述")=

1: 向量:

身高,体重,财富

(180, 140, -1000)

2: 矩阵/张量:

3: 序列:

"你今天吃什么"

我用的苹果

我吃的苹果

• 我们想要的输出(任务类别)一般也有下面几种。

李哥考研

1: 回归任务: 根据以前的温度推测明天的温度大概有多高。

(填空题)

2: 分类任务: 图片: 猫/狗。

句子: 积极/消极。

(选择题) 疾病: 轻度/中度/重度。

19×19

3: 生成任务(结构化):

(简答题)

15min

CHATGPT

1: 向 2 矩阵(图片) 3 : 序列 量

李哥考研

3

3 (2)

1: 回归	2: 分类	3:	结构化输
		- F	

	1	100	100	
-		1	3	
-		3	NOW!	
	-冷静点	-冷你	床	

	任务	输入	輸出
	根据一条河十年内三月的水位情况,推测明年三月此河水位。	1	1
	根据视频生成字幕。	3	3 (2)
ſ	自动填充代码。	3	3 (2)
	判断图片中人物是谁。	2	2
	判断两部动漫是否为同一部。	3	2
	判断动漫声优是否为同一个人。	3	2
×	判断淘宝商品的配图和文字标题是否是一致的?	3	2
	圈出图片中的羊,并且识别为羊	2	1+2
	根据车摄像头看到的画面,把人,路,车的轮廓准确的画出来。	2	3 (2)

1: 向 量	2 矩阵(图片)	3: 序列
1: 回归	2: 分类	3: 结构化输 出

李哥考研

任务1: 根据一条河十年内三月的水位情况,推测明年三月此河水位。

任务2: 根据视频生成字幕。

任务3: 自动填充代码。

1: 向 量	2 矩阵(图片)	3: 序列
1: 回归	2: 分类	3: 结构化输 出

李

李哥考研

任务4: 判断人物是谁。

任务5: 判断动漫是否为同一部。

任务6: 判断声优是否为同一个人。

1: 向 量	2 矩阵(图片)	3: 序列
1: 回归	2: 分类	3: 结构化输出

任务7: 判断淘宝商品的 配图和文字标题是否是一致

任务8: 把一张图中的羊圈起来,并识别出圈出来的是羊。

任务9: 根据车摄像头看到的画面,把人,路,车的轮廓准确的画出来。

深度学习任务

分类和回归是结构化的基础。

分类时, 是用数字来表示类别。

有的时候需要多个模态的数据, 比如 图片, 文字, 声音。

回归与神经元

大家都说深度学习需要数据,为什么?

因为要从数据中找到函数

如何从数据中找到想要的函数?

Step 1: 定义一个函数 (模型)

Step 2: 定义一个合适的损失函数

Step 3: 根据损失, 对模型进行优化

如何找一个函数呢?

李哥考研

$$V=$$
 at + v_0

X	y= 2x+1+ε
1	3.1
2	5.1
3	6.9
4	8.7
5	10.8
6	13.5
7	?

loss

Linear model

模型:

线性模型

 $\hat{y} = w x + b$

预测值

weight bias (权重和偏差, 未知参数)

Loss function of unknown para : $L(w, b) = |\hat{y} - y| = |wx + b - y|$

➤ Loss 就是这些未知参数的函数

➤ Loss: 判断我们选择的这组参数怎么样。

数据(feature) 标签(label)

计算loss

李哥考研

X	y= 2x+1+ε	$\hat{y} = 3 x + 2$	loss
1	3.1	5	1.9
2	5.1	8	2.9
3	6.9	11	4.1
4	8.7	14	5.3
5	10.8	17	6.2
6	13.5	20	6.5
7	?		

$$L(w, b) = |\hat{y} - y| = |xw+b-y|$$

$$w_0 = 3$$
 $b_0 = 2$

Loss:
$$L = \frac{1}{N} \sum_{n} l$$

Step 1: 定义一个函数 (模型)

Step 2: 定义一个合 适的损失函数

Step 3: 根据损失, 对模型进行优化

$$w^*, b^* = \arg\min_{w,b} L$$

李哥考研

$$L(w, b) = |\hat{y} - y| = |xw + b - y|$$

- 梯度下降
 - ➤ 随机选择一个w⁰
 - \rightarrow 计算 $\frac{\partial L}{\partial w}|_{w=w^0}$
 - ➤ 更新 w 的值

3. Optimization

梯度大,移动的远,梯度小,移动的近

李哥考研

- ➤ 随机选择一个w⁰
- \rightarrow 计算 $\frac{\partial L}{\partial w}|_{w=w^0}$

$$\frac{\partial L}{\partial w}|_{w=w^0}$$
 η : learning rate

MAE : $L(w, b) = |\hat{y} - y|$ (均绝对误差)

MSE : $L(w, b) = (\hat{y} - y)^2$ (均方误差)

3. Optimization

$$w^*$$
, $b^* = arg \min_{w,b} L$

李哥考研

- \triangleright 随机选个初值 w^0, b^0
- > Compute

$$\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$$

$$\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$$

$$w^1 \leftarrow w^0 - \frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$$

$$b^1 \leftarrow b^0 - \frac{\eta}{\eta} \frac{\partial L}{\partial b} |_{w=w^0, b=b^0}$$

有torch框架可以帮我们自动计算。

Update w and b

线性函数与多层神经元

线性函数与多层神经元

线性函数与多层神经元

更复杂的神经网络

试玩数据分类。

• https://playground.tensorflow.org/

函数

创建csdn账号, 创建李哥深度学习专栏

答疑

THANKS

