Álgebra 1

Lista 09 (Subgrupos)

9.1. (Subgrupos finitos). Mostre que um subconjunto finito não vazio S de um grupo G é um subgrupo de G se, e somente se, ele é fechado com respeito à operação do grupo.

Dica: se $a \in S$, então $x \mapsto ax$ é uma bijeção de S sobre si mesmo.

- 9.2. (Certos subconjuntos). Seja G um grupo comutativo. Verifique que:
 - (i) se n é um inteiro qualquer, então $\{x^n : x \in G\}$ é um subgrupo de G;
 - (ii) se H e K são subgrupos de G, então $\{hk:h\in H,\,k\in K\}$ é um subgrupo de G.
- 9.3. (**Subgrupos notáveis**). Mostre que os seguintes subconjuntos são subgrupos de um grupo G:
 - (i) o conjunto Z(G) dos elementos $x \in G$ tais que xg = gx para cada $g \in G$;
 - (ii) o conjunto D(G) de todos os produtos possíveis de um número finito de elementos da forma $aba^{-1}b^{-1}$ com $a, b \in G$;
 - (iii) a interseção $\Phi(G)$ dos subgrupos próprios maximais M de G (i.e., M é um subgrupo de G com $M \neq G$ e, para qualquer subgrupo H de G com $H \neq G$, se $M \subseteq H$ então H = M).
- 9.4. (**Automorfismos**). Se G é um grupo, prove que o conjunto $\operatorname{Aut}(G)$ das bijeções $f:G\to G$ tais que f(xy)=f(x)f(y) é um subgrupo do grupo $\operatorname{Perm}(G)$ de todas as bijeções de G em si mesmo.

Para cada $g \in G$, seja $c_g : G \to G$, $c_g(x) = gxg^{-1}$. Prove que $\{c_g : g \in G\}$ é um subgrupo de $\operatorname{Aut}(G)$.

- 9.5. (**Produto de grupos II**). Sob a notação do Exercício 8.3, é verdade que cada subgrupo de $G \times H$ é da forma $G' \times H'$, em que G' é um subgrupo de G e H' é um subgrupo de H?
- 9.6. (**Produto de grupos III**). Seja $(G_i)_{i\in I}$ uma família de grupos e, para todos os $i\in I$, exceto possivelmente por uma quantidade finita, sejam H_i subgrupos de G_i . Verifique que as famílias $(g_i)_{i\in I}$ tais que $g_i\in G_i$ com $g_i\in H_i$ quando H_i está definido, formam um grupo sob a multiplicação

$$(g_i)_{i \in I} (g'_i)_{i \in I} = (g_i g'_i)_{i \in I}.$$