TD 5 : SVM

Exercice 1 - Support Vector Machine

On considère ici un problème de classification binaire vers $Y = \{-1, +1\}$ de données dans un espace de description $X \in \mathbb{R}^d$. On note $\{(\mathbf{x}^i, y^i) \in (X, Y)\}, i \in \{1, \dots, n\}$ l'ensemble d'apprentissage considéré. La fonction de décision du classifieur considéré est donnée par : $f_{\mathbf{w},b}(\mathbf{x}) = sign(\mathbf{w}^T\mathbf{x} + b)$.

On considère dans un premier temps un ensemble de données linéairement séparable. Cet ensemble de données et la frontière de décision sont représentés (en 2D) sur la figure 1.

Figure 1 – Ensemble de données linéairement séparables

Q 1.1 Marge

Sur cette figure, l'échantillon \mathbf{x}^i et de label y^i est représenté par le point A. On s'intéresse à sa distance signée γ^i à la frontière de decision (dont le point le plus proche est représenté en B sur la figure).

Q 1.1.1 Sachant que $\mathbf{w}/||\mathbf{w}||$ est un vecteur unitaire orthogonal à la frontière de décision, donner l'expression de γ^i en fonction de \mathbf{x}^i , y^i , \mathbf{w} et b.

Q 1.1.2 Montrer que la distance et la solution ne change pas en multipliant la solution par un scalaire, i.e. pour $(\alpha \mathbf{w}, \alpha b)$. Que cela implique-t-il si l'on souhaite éloigner au maximum (au sens géométrique) les points de la frontière de décision?

Q 1.2 Formulation du SVM

On considère alors le problème d'optimisation sous contraintes suivant :

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2$$
s.t.
$$y^i(\mathbf{w}^T \mathbf{x}^i + b) \ge 1, \forall i \in \{1, \dots, n\}$$

- **Q 1.2.1** Pourquoi choisit-on la contrainte ≥ 1 plutôt que ≥ 0 ? Pourquoi 1?
- Q 1.2.2 Poser le Lagrangien à considérer pour optimiser ce problème sous contraintes
- \mathbf{Q} 1.2.3 Donner la solution analytique de la minimisation de ce Lagrangien selon \mathbf{w} et b

- Q 1.2.4 En déduire une nouvelle formulation "duale" de notre problème d'optimisation sous contraintes
- Q 1.2.5 Que cette nouvelle formulation permet-elle?
- Q 1.2.6 Quel est le problème du problème d'optimisation que l'on a considéré? Proposer une nouvelle formulation qui corrige ce problème
 - Q 1.2.7 Proposer la formulation duale de ce nouveau problème
- ${f Q}$ 1.2.8 Donner la fonction de classification obtenue après optimisation de cette formulation duale du SVM
- **Q 1.2.9** D'après les conditions de Karush-Kuhn-Tucker (KKT) concernant les propriétés de la solution optimale d'un Lagrangien, on a : $a_i(1 \xi_i y^i(\mathbf{w}^T\mathbf{x}^i + b)) = 0$, $\forall i \in \{1..N\}$ et $\beta_i \xi_i = 0$, $\forall i \in \{1..N\}$. Qu'en déduire pour les paramètres a_i obtenus à l'optimum?
 - **Q 1.2.10** Qu'en déduire pour l'estimation du biais b?

Exercice 2 - Noyaux

- **Q 2.1** Montrez que si K et K' sont deux noyaux (i.e. il existe ϕ et ϕ' telles que $K(x,y) = \langle \phi(x), \phi(y) \rangle$, $K'(x,y) = \langle \phi'(x), \phi'(y) \rangle$):
 - **Q 2.1.1** cK est un noyau pour $c \in \mathbb{R}^+$
 - **Q 2.1.2** K + K' est un noyau;
 - \mathbf{Q} 2.1.3 KK' est un noyau;
 - **Q 2.1.4** $(1+\langle x, x'\rangle)^d$ est un noyau.

Exercice 3 - Noyaux sur les chaînes de caractères

Soit S une séquence de mots sur un alphabet \mathcal{A} fini. Montrez que :

- 1. K(x, x') = nombre de sous-chaînes de longueur 5 que x et x' ont en commun est un noyau;
- 2. K(x,x')=1 si x et x' ont au moins une sous-chaîne de longueur 5 en commun, 0 sinon, n'est pas un noyau (indice : considérez 3 chaînes x,x' et x'').