## AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

## **Listing of Claims:**

14

Claim 1 (currently amended): A circuit board comprising:

an insulating ceramic substrate having two surfaces; and

conductive layers bonded to both surfaces of the insulating ceramic substrate, wherein the conductive layers comprise at least 99.98% by mass of aluminum, and display an average crystal grain diameter within a range from 0.5 mm to 5 mm and a standard deviation σ of the crystal grain diameter less than or equal to of no more than 2 mm.

Claim 2 (currently amended): A circuit board according to claim 1, wherein the conductive layers comprise rolled materials comprising at least 20 ppm or more of each of Cu, Fe and Si.

Claim 3 (original): A circuit board according to claim 2, wherein the conductive layers are rolled with a draft of at least 15%.

Claim 4 (currently amended): A circuit board according to claim 1, wherein a surface area of a crystal with maximum crystal grain diameter within the conductive layers accounts for less than or equal to no more than 15% of a surface area of the insulating ceramic substrate.

Claim 5 (original): A circuit board according to claim 1, wherein the insulating ceramic substrate is formed from at least one of Al<sub>2</sub>O<sub>3</sub>, AlN and Si<sub>3</sub>N<sub>4</sub>.

Claim 6 (currently amended): A circuit board according to claim 1, wherein the conductive layers are bonded to the a surface of the insulating ceramic substrate using a brazing material, and the brazing material is one or more materials selected from a group consisting of Al-Si based materials, Al-Ge based materials, Al-Mn based materials, Al-Cu based materials, Al-Mg based £ 1

materials, Al-Si-Mg based materials, Al-Cu-Mn based materials, and Al-Cu-Mg-Mn based materials.

Claim 7 (currently amended): A circuit board according to claim 2, wherein a surface area of a crystal with maximum crystal grain diameter within the conductive layers accounts for no more than 15% of a surface area of the insulating ceramic substrate, the insulating ceramic substrate is formed from at least one of Al<sub>2</sub>O<sub>3</sub>, AlN and Si<sub>3</sub>N<sub>4</sub>, the conductive layers are bonded to the a surface of the insulating ceramic substrate using a brazing material, and the brazing material is one or more materials selected from a group consisting of Al-Si based materials, Al-Ge based materials, Al-Mn based materials, Al-Cu based materials, Al-Mg based materials, Al-Si-Mg based materials, Al-Cu-Mn based materials, and Al-Cu-Mg-Mn based materials.

Claim 8 (currently amended): A method of producing a circuit board, comprising the steps of:

positioning a conductive layer comprising at least 99.98% by mass of aluminum on top of an insulating ceramic substrate with a brazing material disposed therebetween,

bonding the conductive layer and the insulating ceramic substrate together via the brazing material by compressing the conductive layer and the insulating ceramic substrate at a pressure within a range from 50 kPa to 300 kPa while heating to a temperature of at least 600°C in one of either a vacuum and or an inert gas atmosphere, and

making an average crystal grain diameter of the conductive layer within a range from 0.5 mm to 5 mm, and

making a standard deviation  $\sigma$  of the crystal grain diameter no more than 2 mm.

Claim 9 (currently amended): A method of producing a circuit board according to claim 8, further comprising the step of a step for producing the conductive layer, comprising the steps of by

heat treating a plate material comprising at least 99.98% by mass of aluminum and at least 20 ppm of each of Cu, Fe and Si, and then conducting rolling with a draft of at least 15%.

Application No.: Not Yet Assigned 5 Docket No.: 09852/0201900-US0

Claim 10 (original): A power module comprising a circuit board according to claim 1, and a heat radiating plate for supporting the circuit board.

Claim 11 (currently amended): A power module according to claim 10, wherein at least a portion of the conductive layer of the circuit board is bonded to the heat radiating plate using a <u>circuit board</u> brazing material with a lower melting point than the brazing material.