

Extended Fig. 1 Hex maps showing the patterns for the selected variables (see Section 1 for further details) across the study region. (a) ²⁰⁸Pb/²⁰⁴Pb; (b) Shear wave velocity (Vs) at 60 km; (c) ⁸⁷Sr/⁸⁶Sr; (d) Shear wave velocity (Vs) at 100 km; (e) Ce/Pb; (f) Moho depth (km).

Extended Fig. 2 Splines (lines) of the winning model (C1C) for remaining selected variables not shown in Figure 3. Symbols show the data within the study (blue circles = Red Sea Rift, green diamonds = Main Ethiopian Rift, yellow triangles = Gulf of Aden Rift).

Extended Fig. 3 (a) Violin plot showing the within cluster sum of squares for the k-means cluster analysis testing number of clusters between 1 and 20, for 1000 iterations.

Extended Fig. 4 Map of the segments and cluster assignment (see legend) within the study region. Segments are shown in blue from north to south: Erta Ale Volcanic Segment (EAVS), Tat'Ale Volcanic Segment (TAVS), Alayta Volcanic Segment (AVS), Dabbahu Volcanic Segment (DVS), Gabillema Volcanic Segment (GVS), Adda'do Magmatic Segment (AMS), Fentale-Dofen Magmatic Segment (FDMS), Boset Magmatic Segment (BMS), Aluto-Gedamsa Magmatic Segment (AGMS), Corbetti Magmatic Segment (CMS). Rift axis (dotted line) and Holocene volcanoes (black triangles) are shown. (b) and (c) are enlarged maps of the boxes shown in (a). (d) & (e) Principal component analysis bi-plot (PC1 vs PC2) when considering the six isotopic systems (see Section 1) showing the samples and their component scores relative to those of the mantle end-members.

Extended Fig. 5 The mean standardised root means square error of prediction (RMSEP) for each of the models tested (described in Section 5.5) when excluding any observations that have a Ce/Pb > 20. Individual linear model results are shown by red squares and the mean of those results are displayed by the red line. Individual spline results are shown by blue circles and the mean of those results are shown by a blue line.

Extended Fig. 6 The mean standardised root means square error of prediction (RMSEP) for each of the models tested (described in Section 5.5) when excluding the Gulf of Aden. Key is as shown in Extended Fig. A6.

Model	Description
C1C	A singular upwelling centred at Lake Abhe (11.192 °N 41.784 °E) with each
	rift (i.e., Red Sea Rift, Gulf of Aden rift and Main Ethiopian Rift) behaving
	the same (not independent), based on the theory of [5]. This model fits a
	single line using all the data points from each rift.
C3C	Three upwellings centred at Lake Abhe (11.192 °N 41.784 °E), and two
	other points across the region (14.008 °N 40.458 °E & 6.626 °N 37.948 °E);
	a model based on the locations of previously proposed small-scale
	upwelling locations through numerical modelling [30]. Assumes each rift
	behaves the same (not independent of each other) and the upwellings are of
	the same composition. This model fits a single line across all the data points
C1D	A singular upwelling centred at Lake Abhe (11.192 °N 41.784 °E) with each
	rift behaving independently. This model fits three lines (one for each rift)
	across the data points for the corresponding rift
C3D	Three small-scale upwellings centred at Lake Abhe (11.192 °N 41.784 °E),
	and two other points across the region (14.008 °N 40.458 °E & 6.626 °N
	37.948°E) with each rift acting independently. This model assumes each
	upwelling is compositionally the same and fits three lines (one for each rift)
	across the data points for the corresponding rift
C3X	Three small-scale upwellings centred at Lake Abhe (11.192 °N 41.784 °E),
	and two other points across the region (14.008 °N 40.458 °E & 6.626 °N
	37.948 ∘E) with each rift and upwelling acting independently. This model
	plots five lines.

Extended Table 1: Models considered when assessing the Afar upwelling characteristics.

39 Details of each model are described.

Variable (s)	Observed Range	Details
	Tunge	²⁰⁶ Pb/ ²⁰⁴ Pb >20 is linked to HIMU, ²⁰⁶ Pb/ ²⁰⁴ Pb ranging from
206-1 204-1	17.853 to	19.2 to 20.5 indicates a mantle upwelling source (C, FOZO)
²⁰⁶ Pb/ ²⁰⁴ Pb	19.608	[73] and $^{206}\text{Pb}/^{204}\text{Pb} < 17.8$ can be
		related to a depleted mantle component 74].
²⁰⁷ Pb/ ²⁰⁴ Pb	15.448 to	²⁰⁷ Pb/ ²⁰⁴ Pb <15.5 is related to a depleted mantle component
	15.697	[74], ²⁰⁷ Pb/ ²⁰⁴ Pb >15.65 is linked to the HiMU component
		and $^{207}\text{Pb}/^{204}\text{Pb} \sim 15.6$ indicates a mantle upwelling source
		(C, FOZO). A ²⁰⁷ Pb/ ²⁰⁴ Pb >15.75 is linked to crustal values
		[16, 36].
²⁰⁸ Pb/ ²⁰⁴ Pb	37.984 to	²⁰⁸ Pb/ ²⁰⁴ Pb <38 is related to a depleted mantle component
	39.420	[2], 208 Pb/ 204 Pb >39.5 is linked to the HiMU component and
		²⁰⁸ Pb/ ²⁰⁴ Pb 39.2 to 39.5 indicates a mantle upwelling source
		(C, FOZO). A ²⁰⁸ Pb/ ²⁰⁴ Pb >39.7 is linked to crustal values
1422 7 1 (1442 7 1	0.510.50	[16, 36].
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51259 to	A low ¹⁴³ Nd/ ¹⁴⁴ Nd (<0.5121) indicates continental crust or
	0.51317	Pan African Lithosphere. ¹⁴³ Nd/ ¹⁴⁴ Nd values ~ 0.51285
		indicates a HIMU or upwelling related mantle source. Higher
		¹⁴³ Nd/ ¹⁴⁴ Nd values (>0.5131) indicate a depleted mantle source (i.e., DMM) [24, 73, 75].
⁸⁷ Sr/ ⁸⁶ Sr	0.70280 to	A low 87Sr/86Sr (0.7040-0.7045) indicates a mantle
517 51	0.70678	component that is either depleted (DMM) or an upwelling
	0.70070	(HIMU, C). A higher ⁸⁷ Sr/ ⁸⁶ Sr (<0.705) indicates the
		potential influence from continental crust [24, 73, 75].
Ce/Pb	6.84 to 48.92	A Ce/Pb >30 is commonly attributed to a recycled mantle
		source that has been depleted in fluid mobile elements (i.e.,
		Pb, Ba, Sr, K) during subduction, therefore resulting in high
		fluid-immobile-element to fluid-mobile -element ratios (i.e.,
		Ce/Pb). Typical mantle has a Ce/Pb value of 25±5 and crust
		a value of ~4 [35].
La/Sm	0.4 to 4.7	(La/Sm) >1 indicates LREE enrichment fractionation (alkali
		basalts or upwelling), (La/Sm) <1 indicates LREE depleted
		(mid-ocean ridge). The higher the La/Sm the lower the melt
. > 74	0.26	fraction [5]
ΔNb	-0.26 to 0.95	Differentiates between a depleted mantle ($\Delta Nb < 0$) and a
Va (a) 40 1	2 91 to 4 06	mantle upwelling $(\Delta Nb > 0)$ [25].
Vs @ 40 km	3.81 to 4.06 4.06 to 4.18	Shear wave velocities can be sensitive, temperature, grainsize and the presence of fluids. A reduction in Vs can
Vs @ 60 km Vs @ 80 km	4.00 to 4.16	indicate a change in mantle composition or an increased
Vs @ 100 km	3.97 to 4.10	proportion of melt/hydrothermal
Vs @ 120 km	4.03 to 4.10	fluid [29]. This is the velocity from 40 km depth.
13 W 120 KIII	1.03 to 7.10	

- **Extended Table 2:** Variables used within the analysis summarising the ranges observed and
- why they have been selected.

	JA-2 (Imai et al., 1995), n=6					BCR-2 (Wilson., 1997), n=4				JB-2 (GeoREM), n=3						
	Mean	Std.Dev	%RSD	Ref.	Uncert.	Mean	Std.Dev	%RSD	Ref.	Uncert.	Mean	Std.Dev	%RSD	Ref.	Uncert.	Accuracy %
Li	29.41	0.25	0.85	29.18	0.60	9.04	0.12	1.33	9.13	0.22	8.16	0.16	1.96	8.08	0.15	0.99
Sc	17.91	0.19	1.06	18.93	0.30	32.55	0.17	0.52	33.53	0.40	55.35	0.52	0.94	54.08	0.76	2.35
V	115.38	4.32	3.74	119.70	2.40	403.50	5.06	1.25	417.60	4.50	575.27	9.98	1.73	572.40	8.30	0.50
Cr	397.18	13.36	3.36	424.80	9.30	14.56	0.47	3.23	15.85	0.38	24.63	0.31	1.26	26.65	0.69	7.58
Co	27.55	0.20	0.73	28.33	1.00	36.86	0.19	0.52	37.33	0.37	37.18	0.58	1.56	37.57	0.67	1.04
Ni	127.20	1.68	1.32	136.00	2.20	11.72	0.41	3.50	12.57	0.30	13.65	0.29	2.12	14.77	0.51	7.58
Cu	30.36	0.97	3.19	29.00	1.50	23.06	1.24	5.38	19.66	0.72	222.63	2.76	1.24	222.10	3.60	0.24
Rb	72.17	1.29	1.79	69.80	1.30	46.46	0.92	1.98	46.02	0.56	6.24	0.25	4.01	6.40	0.11	2.50
Sr	245.67	1.43	0.58	245.80	3.00	333.78	1.47	0.44	337.40	6.70	175.90	2.21	1.26	178.20	1.50	1.29
Y	17.17	0.07	0.41	16.89	0.60	36.01	0.09	0.25	36.07	0.37	23.89	0.28	1.17	23.56	0.44	1.40
Zr	114.72	0.75	0.65	108.50	2.60	187.65	1.74	0.93	186.50	1.50	45.42	0.40	0.88	48.25	0.88	5.87
Nb	9.24	0.10	1.08	9.30	0.20	12.43	0.24	1.93	12.44	0.20	0.49	0.00	0.00	0.57	0.03	13.27
Cs	4.97	0.11	2.21	4.78	0.10	1.11	0.04	3.60	1.16	0.13	0.77	0.02	2.60	0.80	0.02	3.75
Ba	317.67	5.45	1.72	308.40	5.10	692.20	12.06	1.74	683.90	4.70	220.00	2.41	1.10	218.10	2.70	0.87
La	16.08	0.05	0.31	15.46	0.40	24.92	0.16	0.64	25.08	0.16	2.23	0.02	0.90	2.28	0.04	2.24
Ce	33.16	0.25	0.75	32.86	0.90	52.85	0.29	0.55	53.12	0.33	6.37	0.05	0.78	6.55	0.09	2.78
Pr	3.77	0.02	0.53	3.69	0.10	6.79	0.05	0.74	6.83	0.04	1.13	0.01	0.88	1.13	0.02	0.09
Nd	14.37	0.07	0.49	14.04	0.20	28.41	0.10	0.35	28.26	0.37	6.21	0.01	0.16	6.39	0.06	2.85
Sm	3.08	0.02	0.65	3.03	0.00	6.54	0.05	0.76	6.55	0.05	2.23	0.01	0.45	2.27	0.02	1.59
Eu	0.91	0.01	1.10	0.89	0.00	1.97	0.02	1.02	1.99	0.02	0.83	0.01	1.20	0.84	0.01	0.72
Gd	3.04	0.04	1.32	3.01	0.10	6.70	0.08	1.19	6.81	0.08	3.19	0.03	0.94	3.12	0.05	2.15
Tb	0.49	0.01	2.04	0.48	0.00	1.06	0.01	0.94	1.08	0.03	0.58	0.01	1.72	0.59	0.01	1.07
Dy	2.93	0.03	1.02	2.85	0.10	6.36	0.05	0.79	6.42	0.06	3.87	0.03	0.78	3.87	0.06	0.05
Но	0.60	0.00	0.00	0.59	0.00	1.30	0.01	0.77	1.31	0.01	0.86	0.00	0.00	0.86	0.02	0.35
Er	1.72	0.02	1.16	1.68	0.00	3.62	0.05	1.38	3.67	0.04	2.51	0.03	1.20	2.54	0.04	1.06
Tm	0.26	0.00	0.00	0.25	0.00	0.53	0.01	1.89	0.53	0.01	0.38	0.01	2.63	0.39	0.01	3.31
Yb	1.68	0.02	1.19	1.65	0.00	3.39	0.04	1.18	3.39	0.04	2.52	0.01	0.40	2.53	0.03	0.36

	JA-2 (Imai et al., 1995), n=6					BCR-2 (Wilson., 1997), n=4				JB-2 (GeoREM), n=3						
	Mean	Std.Dev	%RSD	Ref.	Uncert.	Mean	Std.Dev	%RSD	Ref.	Uncert.	Mean	Std.Dev	%RSD	Ref.	Uncert.	Accuracy %
Lu	0.26	0.00	0.00	0.25	0.00	0.51	0.00	0.00	0.50	0.01	0.39	0.00	0.00	0.39	0.01	0.15
Hf	2.97	0.01	0.34	2.84	0.10	4.92	0.03	0.61	4.97	0.03	1.47	0.01	0.68	1.49	0.03	1.14
Ta	0.70	0.04	5.71	0.65	0.00	0.83	0.07	8.43	0.79	0.02	0.04	0.00	0.00	0.04	0.00	1.01
Pb	19.97	0.46	2.30	18.88	0.30	10.32	0.35	3.39	10.59	0.17	4.96	0.09	1.81	5.25	0.11	5.52
Th	4.92	0.07	1.42	4.80	0.10	5.81	0.12	2.07	5.83	0.05	0.26	0.02	7.69	0.26	0.00	0.93
U	2.28	0.04	1.75	2.18	0.10	1.67	0.04	2.40	1.68	0.02	0.15	0.00	0.00	0.15	0.00	1.83

- Extended Table 3: Trace element averages of certified international reference materials summarised in [78]. Number of runs (n) for each
- reference material are shown.

End Member	Afar Plume	Depleted Mantle	Pan African Lithosphere	HiMU	EMI	EMII
²⁰⁶ Pb/ ²⁰⁴ Pb	19.5	17.5	17.85	22	17.4	19.3
²⁰⁷ Pb/ ²⁰⁴ Pb	15.6	15.3	15.75	15.84	15.48	15.64
²⁰⁸ Pb/ ²⁰⁴ Pb	39.2	36.6	39.75	40.75	39.0	39.75
⁸⁷ Sr/ ⁸⁶ Sr	0.512875	0.51335	0.5121	0.51285	0.51235	0.51235
¹⁴³ Nd/ ¹⁴⁴ Nd	0.7035	0.7022	0.7075	0.7025	0.7055	0.709
References	[36, 76]	[36,76]	[36, 77]	[76]	[76]	[76]

- **Extended Table 4:** End member compositions used in the principal component analysis.
- 46 References for values shown in the table.

1	7
4	1

End Member	PC1	PC2	PC3
²⁰⁶ Pb/ ²⁰⁴ Pb	0.3714	-0.5488	0.4249
²⁰⁷ Pb/ ²⁰⁴ Pb	0.5619	-0.1131	-0.5855
²⁰⁸ Pb/ ²⁰⁴ Pb	0.5727	-0.1835	0.1812
⁸⁷ Sr/ ⁸⁶ Sr	-0.3687	-0.5481	0.2860
¹⁴³ Nd/ ¹⁴⁴ Nd	0.2872	0.5933	0.6017
Variance explained (%)	53.15	37.42	5.01

Extended Table 5: Eigenvectors for the principal components 1-3 when principal component analysis is done on 5 radiogenic isotope variables. The amount of variance explained by each of the principal components is also included.

53 Extended Equation 1: Delta Niobium equation.

$$\Delta Nb = 1.74 + \log\left(\frac{Nb}{Y}\right) - 1.92\log\left(\frac{Zr}{Y}\right)$$