

CAHIER D'EXAMEN

Matricule

11

CONTRÔLE PÉRIODIQUE - HIVER 2023

	<u> </u>	(lettres moulées)							
<u> </u>	om: Benze énom: Oma	0							
Pr	enom : O-110	(lettres moulées)							
		,							
No	du cours :	MTH2302D	Section:						
Ti	tre du cours :	PROBABILITÉS ET S	TATISTIQUE						
nı	DECENTES.								
DI.	RECTIVES:								
1.	Remplissez la par	tie ci-haut et signez immédiatement	le cahier.						
2.	Donnez une réponse complète à chaque question et cette réponse doit être expliquée et justifiée. La note 0 sera attribuée à toute réponse non justifiée.								
3.	N'utilisez que le recto pour rédiger vos réponses; servez-vous du verso comme brouillon. Inscrivez votre matricule sur chaque page.								
4.	Écrivez aussi lisiblement que possible, de manière à ce que le correcteur comprenne vos réponses.								
5.	Ne détachez aucune feuille de ce cahier. Rédigez vos solutions sur les pages identifiées à cet effet. Vérifiez que le cahier compte bien <u>18</u> pages.								
6.	Documentation : 1 feuille résumée manuscrite 8,5x11 recto-verso.								
7.	Calculatrice non-programmable permise. Les appareils électroniques personnels (téléphones, tablettes, ordinateurs, etc.) sont interdits.								
8.	aucune question pas répondre à u	té envers tous les étudiants, le pro durant cet examen. Si vous estim ne question (données manquantes, er (maximum 2 lignes) et passez à la	ez que vous ne pouvez données erronées, et.),						

 Réservé

 1.
 2 /2

 2.
 2 2 /3

 3.
 4 /4

 4.
 4 /4

 5.
 /4

 6.
 3 /3

 TOTAL
 /20

Signature de l'étudiant(e)

Date: samedi, le 18 février 2023

Heure: 10h00 à 12h00

QUESTION Nº 1 (2 points)

On considère deux événements A et B d'un espace échantillon tels que

$$P(A) = 0.40;$$
 $P(\overline{B} | A) = 0.25;$ $P(B | \overline{A}) = 0.50.$

- a) (1 point) Calculer la probabilité P(B).
- b) (1 point) Calculer la probabilité $P(A \cup B)$.

RÉPONSE

$$P(A) = 0A = > P(\overline{A}) = 0.6$$

 $P(SL) = 1$
 $P(\overline{B}|A) = 0.25 = \frac{P(\overline{B}|A)}{P(A)} = > P(\overline{B}|A) = 0.25.04$

$$P(B|\overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = > P(B \cap \overline{A}) = 0.5 \cdot 0.6 = 0.3$$

a)
$$P(B) = (P(A) - P(B(A)) + P(B(A))$$

= 0,3 = 0,6

b)
$$P(AUB) = P(A) + P(B) - P(ANB)$$

= $P(A) + P(B) - (P(A) - P(BNA))$
= $0.4 + 0.6 - 0.13$
= 0.7

 $\underline{QUESTION\ N^{o}\,1}\ (suite)$

2.25

QUESTION Nº 2 (3 points)

On considère un système (voir schéma ci-dessous) constitué de trois composants A, B et C. Le système fonctionne s'il y a au moins un chemin, liant les points 1 et 2, constitué de composants qui fonctionnent. Les trois composants opèrent indépendamment les uns des autres et chacun a une fiabilité de 0,95.

Sachant que le système fonctionne, quelle est alors la probabilité que le composant B fonctionne?

RÉPONSE

Évernment D: " Le système fonctionne!

Non -0.5

$$P(B|D) = \frac{P(B \cap D)}{P(D)}$$

$$= \frac{O_195 \cdot O_195}{O_199} \quad Connect \left(-0\right)$$

 $\underline{QUESTION\ N^{o}\,2}\ (suite)$

QUESTION Nº 2 (suite)

Contrôle périodique - Hiver 2023

QUESTION Nº 3 (4 points)

On suppose que chaque nouvelle que vous recevez provient (origine) d'une seule des trois sources suivantes : F, T, C. Les sources F et T sont des réseaux sociaux tandis que la source C est constituée des médias conventionnels (télé, radio, etc.).

On suppose que 50% des nouvelles que vous recevez proviennent de F, 30% proviennent de T et le reste provient de C. De plus, une étude montre que 60% des nouvelles de F sont fausses, cette proportion est de 40% pour les nouvelles de T et de 10% pour celles de C.

Vous venez de recevoir une nouvelle.

- a) (2 points) Quelle est la probabilité que la nouvelle soit fausse?
- b) (2 points) Si la nouvelle est fausse, quelle est alors la probabilité qu'elle provienne d'au moins une des sources des réseaux sociaux ?

RÉPONSE

$$P(F) = 0.5$$
 ° $P(T) = 0.9$ ° $P(C) = 0.2$ (con $\Omega = 1$)
 $X : 11$ Forms Namedly 1

a)
$$P(X) = P(F) \cdot P(X|F) + P(T) \cdot P(X|T) + P(() \cdot P(X|C))$$

$$= 0.5 \cdot 0.6 + 0.3 \cdot 0.1 + 0.2 \cdot 0.1$$

$$= \frac{11}{25} = 0.44$$

b) $P(FiITIX) = P((FiITIAX)) = 0.5 \cdot 0.6 + 0.3 \cdot 0.4 = 21$

b)
$$P(FUT(X)) = \frac{P((FUT) \Lambda X)}{P(X)} = \frac{0.5 \cdot 0.6 + 0.3 \cdot 0.4}{0.44} = \frac{21}{22}$$

 $\underline{QUESTION\ N^{o}\,3}\ (suite)$

 $\underline{QUESTION\ N^{o}\,3}\ (suite)$

QUESTION Nº 4 (4 points)

Soit X une variable aléatoire de fonction de densité

4/4

$$f_{X}(x) = \begin{cases} k(1+x) & \text{si } -1 < x < 1 \\ 0 & \text{sinon,} \end{cases}$$

où k est une constante réelle.

- a) (1 point) Déterminer la valeur de la constante k.
- b) (3 points) On considère une deuxième variable Y définie par $Y=1-X^2$.
 - 1.b) (1,5 point) Calculer la probabilité P(Y > 3/4).
 - 2.b) (1,5 point) Calculer la moyenne de Y, c'est-à-dire E(Y).

RÉPONSE

O()
$$\int_{-\infty}^{\infty} f_{x}(x) dx = 1$$

$$K \int_{-1}^{1} (1+x) dx = 1$$

$$K \left[x + \frac{x^{2}}{2} \right]_{-1}^{1} = 1$$

$$2 K = 1$$

$$K = \frac{1}{2}$$

b)
$$P(Y>3/4) = P(1-X^2>3/4)$$

 $= P(X^2 < \frac{1}{4})$
 $= P(\frac{1}{2} < X < \frac{1}{2})$
 $= \int_{-q_5}^{0} \frac{1}{2} (1+X) dx$
 $= \frac{1}{2} \left[x + \frac{x^2}{2} \right]_{-0,5}^{0,5}$
 $P(Y>3/4) = 0,5$

2.b)
$$E(Y) = \int_{-1}^{1} (1-X^{2}) \frac{1}{2} (1+X) dx$$

$$= \int_{-1}^{2} \int_{-1}^{1} (1+x-x^{2}-x^{3}) dx$$

$$= \int_{-1}^{2} \left[x + \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{1}^{1}$$

$$= \frac{1}{2} \left[x + \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{1}^{1}$$

 $\underline{QUESTION\ N^{o}\,4}\ (suite)$

QUESTION Nº 4 (suite)

QUESTION No 5 (4 points)

Une boîte contient 3 jetons dont les valeurs sont différentes. Un jeton a la valeur 0, un jeton a la valeur 1, et un jeton a la valeur 2. On choisit au hasard et sans remise deux jetons de la boîte. Soit X la valeur du premier jeton obtenu, et Y la somme des valeurs des deux jetons obtenus.

a) (2 points) Déterminer, sous forme de tableau, la fonction de masse conjointe du vecteur [X, Y], en y incluant les valeurs possibles et les distributions marginales de X et de Y.

Laisser les probabilités sous forme fractionnaire (par exemple 1/4 au lieu de 0,25).

b) (2 points) Calculer l'écart-type de la variable T = 20 + 2X - Y.

	<u>RÉPOI</u>	<u>NSE</u>										
đ.		yx	Q	1	2	Py(Y)	P(0,0	0)=0	1 -1	/		
•		0	0	1/6/	46/	त	P()	$(0) = \frac{1}{3}$	2 - 6	tagen i Santa Santa Santa		
		1	16	0	1	26	6(0)		$=\frac{\sqrt{6}}{6}$			
		2	16	1/6	Q	CARO.	P (0,	2) = 1	1 - 18			
		$P_{X}(x)$	2	30	26	_1		ब्रि	.7 = 76			
	b)	V(T)	= V([30+]	х-У)	*100) P (-		1 1 2 -:			
			= (2)	$_{\sigma}$ ($\Lambda()$	())=162)(-1) Cau(X	(y) P (S	١٠) = =	1 - 1 - 1			
	$\bigwedge()$	()=E	(x²) -	(E(X))	L							
$= \left(0^{2} \cdot \frac{2}{6} + 1^{2} \cdot \frac{2}{6} + 2^{2} \cdot \frac{2}{6}\right) - \left(0 \cdot \frac{2}{6} + 1 \cdot \frac{2}{6} + 2 \cdot \frac{2}{6}\right)^{2}$												
	\ 10	= = = = = = = = = = = = = = = = = = =	-	(m. CC)	2.	(Cou	(X^{\dagger})	= E(X)	1-E(x)E(У		
	γC		ξ (σ Ε(λ _σ)					= 3 -	、~~1·2·~2 1·1) - pxpy		
			3/6	TO VICE TO SERVICE OF THE SERVICE OF		(= 3		>		

QUESTION Nº 5 (suite)

$$V(T) = 4 \cdot \frac{2}{3} + (2) \cdot (4) \cdot (-\frac{1}{3})$$

$$= \frac{10}{3} - \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{$$

 $\underline{QUESTION\ N^{o}\, 5}\ (suite)$

 $\underline{QUESTION\ N^{o}\,5}\ (suite)$

QUESTION Nº 6 (3 points)

On suppose que les autobus de la ville passent à un certain arrêt, durant le jour, selon un processus de Poisson de moyenne 5 autobus par heure.

- a) (1 point) Quelle est la probabilité qu'il passe à cet arrêt au moins 3 autobus durant les 25 prochaines minutes?
- b) (2 points) Étant donné qu'un usager attend l'autobus à cet arrêt depuis 5 minutes, quelle est la probabilité qu'un autobus arrive dans moins de 10 minutes à compter de maintenant?

RÉPONSE

QUESTION Nº 6 (suite)

Page supplémentaire