Assignment10 EC2011-29

Abhay Suresh

9th January 2021

1 Assigned Question

29. The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to-analog (D/A) converter as shown in the figure below. Assume all the states of the counter to be unset initially. The waveform which represents the D/A converter output V_{\circ} is

2 What is a Johnson Counter?

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide outputs for 2k timing signals.

A switch-tail ring counter is a circular shift register with the complemented output of the last flip-flop connected to the input of the first flip-flop.

A Johnson Counter uses D Flip Flops. The following is a D Flip Flop

D(Data Pin) is the input state for D Flip Flop. Q and \bar{Q} , both represent Output state of the Flip flop.

Based on input, Output changes its states.

All these occur only in the presence of the clock signal.

Clock	Input	Output	
	D	Q	\overline{Q}
low	X	0	1
high	0	0	1
high	1	1	0

D Flip Flip has two more inputs, also known as ASYNCHRONOUS inputs These two inputs are ${\tt CLEAR}$ and ${\tt PRESET}.$

Asynchronous inputs on a Flip Flop have control over the outputs (Q and \bar{Q}) regardless of clock input status.

The following is the Truth values for D Flip Flop.

Clock	Input			Output	
	Preset	Clear	D	Q	\overline{Q}
High	low	low	0	0	1
High	low	low	1	1	0
x	high	low	X	1	0
x	low	high	X	0	1
X	high	high	x	1	1

3 How is a Johnson Counter Decoded?

The decoding of a k-bit Johnson counter to obtain 2k timing signals follows a regular pattern.

The all-0's state is decoded by taking the complement of the two extreme flip-flop outputs.

The all-1's state is decoded by taking the normal outputs of the two extreme flip-flops.

All other states are decoded from an adjacent 1,0 or 0,1 pattern in the sequence.

4 Concept Related to the question

- 1) Input of D/A converter (D_2, D_1, D_0) = Output of Johnson Counter (Q_2, Q_1, Q_0)
- 2) The waveform is drawn using the ouput obtained for V_o ie. due to input D_2, D_1, D_0

5 Solution

Based on Section 3 we can say that we will obtain 6 timing signals, because the given Johnson Counter is 3-bit Johnson Counter.

These 3 sections are basically 3 different D Flip Flops as represented in Figure 1.

Here the Data pins are assumed to be as S_2, S_1, S_0 to avoid confusion with the data inputs of D/A coverter. (D_2, D_1, D_0)

Using the concept from Section3 the following is the Output Table for the given Johnson Counter

Figure 1: Johnson Counter represented by Three D Flip Flops

Clear	Clock	Q_2	Q_1	Q_0	Stages
0	X	0	0	0	0
1	↓	1	0	0	4
1	↓	1	1	0	6
1	↓	1	1	1	7
1	↓	0	1	1	3
1	↓	0	0	1	1

Table 1: Output of the given Johnson Ring Counter

Here \downarrow represent that the D Flip Flop is negative edge triggered. The Following is the timing Diagram of the same Output received.

From the 1st concept we know that Input of D/A converter (D_2, D_1, D_0) = Output of Johnson Counter (Q_2, Q_1, Q_0) Hence the output for the D/A converter is as follows.

$Q_2 \rightarrow D_2$	$Q_1 \rightarrow D_1$	$Q_0 \rightarrow D_0$	Stages
0	0	0	0
1	0	0	4
1	1	0	6
1	1	1	7
0	1	1	3
0	0	1	1

The obtained values of stages are plotted to obtain the waveform for V_0 Which is Option A.

Figure 2: Final Answer

Hence A is the Answer