Thermo 4

Changements d'états

1 Introduction

1.1 Vocabulaire : changements d'états

1.2 Observation expérimentale

Lorsque l'on place de l'eau liquide au congélateur, la température au cours du temps suit cette évolution :

À une pression fixée, pour un corps pur, le changement d'état se produit à une température bien définie.

Le changement d'état d'un corps pur à pression constante s'effectue à température constante.

Ce n'est pas le cas pour un mélange.

1.3 Problème étudié

Nous allons décrire dans la suite le corps pur diphasé à l'équilibre :

- **corps pur** : il n'y a qu'une seule espèce chimique;
- **diphasé**: elle est présente sous deux phases, par exemple liquide et gaz;
- à l'équilibre : la pression P et la température T sont les mêmes dans les deux phases.

2 Diagramme (P,T)

On peut donc représenter les frontières des changements d'état sur un diagramme de phase (P,T). On présente ci-dessous l'allure du diagramme pour la plupart des espèces (à gauche), et celle du diagramme de l'eau (à droite).

Remarque. La pente négative pour l'eau est liée au fait que la glace est moins dense que le liquide : si l'on comprime de la glace, on peut la faire fondre (mais les pressions en jeu sont très importantes).

Il apparait deux points particuliers sur les diagrammes :

- ▷ le point triple T, qui correspond à l'unique condition de température et de pression pour laquelle les trois phases peuvent coexister;
- ⊳ lepoint critique C, au-delà duquel le corps ne présente plus qu'un seul état fluide (sans transition), on parle alors de fluide supercritique.

Remarque. Ces points sont utilisés pour établir des étalons de température.

Expériences:

- ébullition à plus basse température lorsque la pression est plus basse;
- observation du point triple.

3 Diagramme de Clapeyron

3.1 Expérience

À la frontière d'un changement d'état sur un diagramme (P,T), il y a coexistence de deux phases, dans des proportions différentes. Pour représenter l'état du système au cours du changement de phase, on utilise alors un diagramme de Clapeyron (P,V).

On emprisonne un gaz dans une récipient étanche et thermostaté à une température T_0 . On comprime le gaz et on mesure la pression. On observe :

On comprime le mélange : la quantité de liquide augmente mais la pression n'augmente pas (courbe bleue, plus à gauche).

On comprime le mélange : le gaz disparaît et le mélange est très peu compressible (courbe verte).

3.2 Bilan

courbe).

Si on renouvelle l'expérience pour plusieurs températures, on obtient différentes courbes pour les différentes températures, appelées **isothermes d'Andrews**.

Définition.

- La courbe où les premières gouttes de liquide apparaissent (à droite) est appelée courbe de rosée.
- La courbe où les premières bulles de gaz apparaissent (à gauche) est appelée courbe d'ébullition.
- Les deux courbes se rejoignent au **point critique**.

3.3 Théorème des moments

3.3.1 Titres massiques

On note m la masse du système. On note m_ℓ la masse de liquide et m_g la masse de gaz.

Définition. On définit le titre massique en gaz et en liquide :

$$x_g = rac{m_g}{m_g + m_\ell}$$
 et $x_\ell = rac{m_\ell}{m_g + m_\ell}$

On a, comme $m_g + m_\ell = m$:

$$x_g + x_\ell = 1$$

3.3.2 Théorème des moments

On prend l'exemple de l'équilibre liquide-gaz à une température T_0 , une pression P_0 et un volume V fixé. Le théorème des moments permet de connaître les titres massiques connaissant la pression et le volume massique total par lecture sur un diagramme (P, v).

Les titres se lisent graphiquement avec la loi de moments sur le diagramme (P,v) : $x_g = \frac{AM}{AB} \qquad \text{et} \qquad x_\ell = \frac{BM}{AB}$

Démonstration On note V_g le volume de gaz et V_ℓ le volume de liquide.

$$V = V_q + V_\ell$$

Le volume massique V/m est donc :

$$v = \frac{V_g}{m} + \frac{V_\ell}{m}$$
$$= \frac{v_g m_g}{m} + \frac{v_\ell m_\ell}{m}$$
$$= x_g v_g + x_\ell v_\ell$$

Connaissant le volume massique v (mesuré), les volumes massiques du gaz et du liquide v_g et v_ℓ , on souhaite connaître x_g et x_ℓ

$$\begin{cases} x_g + x_\ell = 1\\ x_g v_g + x_\ell v_\ell = v \end{cases}$$

On substitue x_g :

$$v = (1 - x_\ell) v_g + x_\ell v_\ell$$

Soit:

D'où:

$$x_{\ell} = \frac{v - v_g}{v_{\ell} - v_g}$$

$$x_g = \frac{v - v_\ell}{v_a - v_\ell}$$

Remarque.

— Quelque soit la variable extensive Y (enthalpie, entropie par exemple), on peut démontrer le théorème des moments avec y, y_{ℓ} et y_q .

$$x_g = \frac{y - y_\ell}{y_g - y_\ell} \qquad \text{et} \qquad x_\ell = \frac{y - y_g}{y_\ell - y_g}$$

Par exemple:

$$x_g = rac{h - h_\ell}{h_g - h_\ell}$$
 et $x_\ell = rac{h - h_g}{h_\ell - h_g}$

$$x_g = rac{s-s_\ell}{s_g-s_\ell}$$
 et $x_\ell = rac{s-s_g}{s_\ell-s_g}$

— le théorème des moments est également valable avec les grandeurs molaires.

Bilan. Pour connaître la composition et l'état d'un système diphasé, il suffit de préciser :

- la pression **ou** la température : une fois que l'on connaît l'un, le diagramme (P,T) permet de trouver l'autre. À une température connue, le changement d'état se fait à une pression fixée et inversement ;
- la fraction molaire ou le volume massique :
 - le théorème des moments permet d'avoir les fractions massiques à partir du volume massique,
 - la relation :

$$v = x_q v_q + x_\ell v_\ell$$

permet d'avoir le volume massique à partir des fractions massiques.

Enthalpie de changement d'état

4.1 **Définition**

Définition. L'enthalpie massique de changement d'état est :

$$\Delta h_{\alpha \to \beta} = h_{\beta} - h_{\alpha}$$

C'est le transfert thermique qu'il faut fournir à 1 kg de corps pur pour lui faire changer d'état.

Exemple

$$\Delta h_{\rm fus} = h_{\rm lig} - h_s > 0$$

— Solidification :

$$\Delta h_{\rm sol} = h_s - h_{\rm liq} = -\Delta h_{\rm fus}$$

Ordre de grandeur Pour l'eau :

$$\Delta h_{\text{fus}} = 330 \text{ kJ} \cdot \text{kg}^{-1}$$
$$\Delta h_{\text{eb}} = 2,26 \text{ MJ} \cdot \text{kg}^{-1}$$

Pour comparer, chauffer l'eau liquide de 1 °C nécessite 4,185 kJ·kg⁻¹. Les ordres de grandeurs sont donc bien supérieurs.

4.2 Application : calorimétrie

Application

On place $m_0=40$ g de glaçons à $T_0=0\,^{\circ}$ C dans $m_1=300$ g d'eau à $T_1=20\,^{\circ}$ C. Déterminer la température d'équilibre T_f .

On donne $c_{\text{eau}} = 4185 \,\text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$ et la capacité thermique du calorimètre $C = 150 \,\text{J} \cdot \text{K}^{-1}$.

La variation d'enthalpie est :

$$\Delta H = \Delta H_{\rm cal} + \Delta H_{\rm eau} + \Delta H_{\rm glace}$$

Le calorimètre et l'eau restent dans le même état, leur température ne fait que varier :

$$\Delta H_{\rm cal} = C \left(T_f - T_i \right)$$

$$\Delta H_{\rm eau} = m_1 c_{\rm eau} \left(T_f - T_i \right)$$

La glace a changé d'état : on est passé de la glace à 0 $^{\circ}$ C à du liquide à T_f . On peut donc écrire simplement :

$$\Delta H_{\text{glace}} = m_g \left(h_{\ell} \left(T_f \right) - h_g \left(0^{\circ} \text{C} \right) \right)$$

On peut décomposer cette variation en deux étapes : fusion de toute la glace puis chauffage de l'eau liquide :

$$\Delta H_{\text{glace}} = m_g \underbrace{\left(\underbrace{h_\ell \left(T_f \right) - h_\ell \left(0^{\circ} \text{C} \right)}_{c_{\text{eau}} \left(T_f - T_0 \right)} + \underbrace{h_\ell \left(0^{\circ} \text{C} \right) - h_g \left(0^{\circ} \text{C} \right)}_{\Delta h_{\text{fus}}} \right)}_{}$$

Or, le calorimètre étant parfaitement isolé et la transformation monobare :

$$\Delta H = Q = 0$$

Donc:

$$(C + m_1 c_{\text{eau}}) (T_f - T_i) + m_g \Delta h_{\text{fus}} + m_g c_{\text{eau}} (T_f - T_0) = 0$$

$$T_f = \frac{\left(C + m_1 c_{\text{eau}}\right) T_i + m_g c_{\text{eau}} T_0 - m_g \Delta h_{\text{fus}}}{C + m_1 c_{\text{eau}} + m_g c_{\text{eau}}} = 9.5 \,^{\circ} \,^{\circ} \text{C}$$

5 Entropie de changement d'état

La variation d'entropie lors d'un changement d'état est :

$$\Delta S_{\alpha \to \beta} = \frac{\Delta H_{\alpha \to \beta}}{T}$$

Où $\Delta H_{\alpha \to \beta}$ est l'enthalpie de changement d'état et T la température de changement d'état.

Application

Calculer l'entropie créée lors de la transformation pour l'exemple précédent.

La variation d'entropie est :

$$\Delta S = \Delta S_{\rm cal} + \Delta S_{\rm eau} + \Delta S_{\rm glace}$$

Les variations d'entropie du calorimètre et de l'eau sont (voir chapitre T3, les formules sont données) :

$$\Delta S_{\text{cal}} = C \ln \left(\frac{T_f}{T_i} \right) = -5,48 \text{ J} \cdot \text{K}^{-1}$$

$$\Delta S_{\rm eau} = m_1 c_{\rm eau} \ln \left(\frac{T_f}{T_i} \right) = -45,89 \text{ J} \cdot \text{K}^{-1}$$

La glace a changé d'état : on est passé de la glace à 0 $^{\circ}$ C à du liquide à T_f . On peut donc écrire simplement :

$$\Delta S_{\text{glace}} = m_g \left(s_\ell \left(T_f \right) - s_g \left(0^{\circ} \text{C} \right) \right)$$

$$= m_g \left(s_\ell \left(T_f \right) - s_\ell \left(0^{\circ} \text{C} \right) \right) + m_g \left(s_\ell \left(0^{\circ} \text{C} \right) - s_g \left(0^{\circ} \text{C} \right) \right)$$

$$= m_g c_{\text{eau}} \ln \left(\frac{T_f}{T_0} \right) + m_g \frac{\Delta h_{\text{fus}}}{T_0}$$

$$= 54.04 \text{ J. K}^{-1}$$

Ainsi:

$$\Delta S = 2.67 \; \mathrm{J \cdot K^{-1}}$$

Le système est calorifugé donc $S_e=0$ ainsi :

$$S_c = 2.67 \,\mathrm{J \cdot K^{-1}}$$