Threads

Sistemas Operacionais Gerência de processos

Agenda

- * Contextualização
- * Threads
 - * Visão geral
 - * Modelos de multithreading

Lembrando...

Estados de processo

PCB - Process Control Block

include/linux/sched.h

process state
process number
program counter
registers

memory limits

list of open files

. . .

Agenda

- * Contextualização
- * Threads
 - * Visão geral
 - * Modelos de multithreading

Visão geral

single-threaded process

multithreaded process

Beneficios Thread vs. Processos

- * Responsividade das interfaces com o usuário
- * Compartilhamento de recursos entre threads com memória compartilhada
- * Economia de recursos do SO
- * Utilização de arquiteturas com concorrência interna ao processo
- * Escalabilidade do software

Exemplo de arquitetura

Pesafios da programação de threads

- * São os mesmos desafios da programação paralela e concorrente (concorrência e sincronização)
- * Alguns desafios
 - * Divisão de atividades, balanceamento das atividades, dependência de dados, e testar/depurar

Agenda

- * Contextualização
- * Threads
 - * Visão geral
 - * Modelos de multithreading

Tipos de threads

- * Threads do usuário
 - * Gerenciamento de thread feito pela biblioteca de threads da plataforma
 - * Unidade de escalonamento -> processo
- * Threads do kernel pthread.h
 - * Threads admitidos diretamente pelo kernel
 - * Gerenciamento de threads feito pelo SO
 - * Unidade de escalonamento -> thread

Modelos de multithreading

- * Define o mapeamento entre threads de usuário e threads do kernel
- * Pefine a unidade de escalonamento do SO
- * São modelos
 - * Muitos para um
 - * Um para um
 - * Muitos para muitos

Muitos para um

- * Muitas threads de nível de usuário mapeadas para uma única thread de nível kernel
- * Exemplos
 - * Solaris green threads
 - * GNU portable threads

Um para um

- * Cada thread de nível usuário é mapeada para uma thread de nível de kernel
- * Exemplos
 - * Windows NT/XP/ 2000
 - * Linux
 - * Solaris 9 e posterior

Muitos para muitos

- * Permite muitas threads em nível de usuário sejam mapeadas à muitas threads de nível de kernel
- * Exemplos
 - * Versões anteriores a Solaris 9
 - * Windows NT/2000 com o pacote ThreadFiber

Hibrido em 2 níveis

- * Semelhante a "Muitos para Muitos", exceto por permitir que uma thread de nível de usuário seja mapeada a uma thread de nível kernel
- * Exemplos
 - * IRIX, HP-UX, Tru64 UNIX
 - * Solaris 8 e anteriores

Bibliografia

Processos e threads Gerência de processos Sistemas operacionais

Bibliografia

* SILBERSCHATZ, G.; GAGNE, G. Sistemas Operacionais com Java. Campus, 7a Ed, 2007.

Threads

Sistemas Operacionais Gerência de processos