KARNAUGH MAP basics & Krg-points. 71

- Developed by Kurnaugh in 1953.
- It is used to minimize booken equations.
- It B build based on goay wde.
- Two Variable K-map.



- Three Variable 11-map

| AB | AB | AB<br>OI | AB<br>11 | AB |
|----|----|----------|----------|----|
| 20 | 10 | 2        | 16       | 14 |
| CI | 1, | 3        | 7        | _5 |

| CPAB     | AB<br>OO | AB<br>Ol | AB  | AB<br>16 |
|----------|----------|----------|-----|----------|
| ∑ 00 a 3 | 1,       | 14       | 112 | 8        |
| 10 92    | 1,       | 5        | (3  | _1       |
| cpll     | 3        | 7        | 15  | L)       |
| cDlo     | 2        | 16       | 14  | 10       |

K-map rules for grouping. n

Il knowp should not contein zono and cells contain (1) must be

- 2) We can group 1,2,4,8,..., 2" (211s.
- 3) Each group should be as large as possible.
- 1) (may muy overlap.
- 5) Opposite gamping and wonor gamping 17 allowed.
- 1) There should be as few goness as passible.

| CDAB | 00  | 1 01 | 1 | 11  | ַסו  |                   |
|------|-----|------|---|-----|------|-------------------|
| 00   | 1   | 1    | 4 | 012 | 18   | _ I <sup>\$</sup> |
| 01   | 0 1 | 0.5  |   | OB  | 09   |                   |
| 11   | 03  | 07   |   | 015 | 0 11 |                   |
| 10   | 1   | 1    |   | 014 | 110  |                   |
| Ŋ    |     | 27   | 4 |     | l    |                   |



Implicants, Prime Implicants and Essential Prime Implicants in K-map.

Implicants - The group's of 1's is Implicants.

Prime Implicants - It largest possible group of 1's.

Essential prime Impliants - At least, throw is single = 1 which can not be combined in other own



K-map Examples 1h

I In the Sum of products function is  $f(x_1, y_1, z_2) = E_m(2,3,4,5)$ . The prime implicants one

- ~ 9 87, XT
  - 의 ₹Y, X92, X92
  - () XYZ, XYZ, XT
  - D 742, 772, x72



2) The K-map for a booken function is shown in figure. The number of essential prime implicants for this fundam

- is 1914
  - 519
  - 4
  - 8 (6



3) solve given boolean expression using K-mar

y = ABC + ABC + ABC = AC + AB + BC



Examples on K-Map 75.

I Find the Bookean expression for K-map given below.



2] J = AB + ABC + AB + C, Solve booken expression by k-map.



3] Find The Bookean expression for K-map given below.





I The numbers of product team in the minimized Sum of product expression obtained though the following K-map is \_\_\_\_ [X is dentity are ].



2) Solve given booken K-map [x is don't cone]



3) Solve given bootean K-map [x is don't care]









## 3) Solve K-map



K-Map for POS expression Steps for PUS exprasion - take grouping of o - find function (ta) - Put compliment of all vastables (+) \* If boolean function is given by y = Em (3,6) than 9] J= B (A+() (A+Z) b) 7 = B(A-12)(A+2) C) 7 = B (A+T) (A+C) d) y = B (A+C) (A+C) J, = B. (A+C). (A+C) 72 B. CA+C). (A+T) A It booleen function is given by. - ) function of I in terms of POS ABC Y 000-11 00170 010+0 011-1 10000 10171 110-11 11170 Ma = (A+B+c). (A+B+C). (A+B+C). (A+B+C) 7 = (A+B+T). (A+B+C). (A+B+T). (A+B+T)







K-map examples of GATE, DROO & ISRO Examination &

I) The tunction  $f(A,B,C,D) = \sum_{m} (S,7,9,11,13,15)$  is

independent of Variables

9 B B AD

CD AB BD AD

CD AB BD AD



2) The Standard Sum of Product of the function f=A+BC is expressed as

3) Consider the following Bookean function of four variables  $f(\omega, X, 7, Z) = E_m(1,3,4,(,9,11,12,14))$ , the function

- @ Independent of one Variable
- 1 Independent of two Variable
  - @ Independent of three Variable
- (d) Dependent of all Vasiable:

