Concise Notes of Probability Theory

Zhen Hy

2022年2月3日

1 重要的知识点

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$
, Chebyshev's Inequality

2 Basic Knowledge

Definition 1 (概率, P). 满足: P(A) > 0, $P(\Omega) > 0$, $P(\cup_i A_i) = \sum_i P(A_i)$.

Theorem 1 (Bayes).

$$P(B_i|A) = \frac{P(AB_i)}{P(A)} = \frac{P(AB_i)}{\sum_{j} P(A|B_j)P(B_j)}$$

Definition 2. 两两独立,相互独立

3 Random Variables

Definition 3. 分布函数 F, 分布律/列 P (离散), 概率密度函数 (连续)

Definition 4. In high dimension:

- 联合分布函数 $F(x,y) = P(X \le x, Y \le y)$
- 边缘分布函数 $F_X(x), F_Y(y)$
- 条件概率密度 $f_{Y|X} = f(x,y)/f_X(x)$
- 独立 $f(x,y) = f_X(x)f_Y(y)$

Definition 5 (Expectation 期望). $\sum_{k=1}^{+\infty} |x_k| p_k$ 或 $\int_{-\infty}^{+\infty} x f(x) dx$ 绝对收敛,则该随机变量期望存在。

3.1 Classic Distributions

2-dimentional Normal Distribution $N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$:

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

Distributions	0 - 1	Bernoulli(二项)	几何	Poisson
记号	B(1,p)	B(n,p)	G(p)	$P(\lambda)$
Domain	0, 1	$1, \ldots, n$	$1,\ldots,+\infty$	$1,\ldots,+\infty$
$\Pr(X=k)$	$p^k(1-p)^{1-k}$	$C_n^k p^k (1-p)^k$	$(1-p)^{k-1}p$	$e^{-\lambda} \lambda^k/k!$
E[X]	p	np	1/p	λ
D(X)	p(1-p)	np(1-p)	$(1-p)/p^2$	λ

表 1: Discrete Distribution

Distributions	Uniform 均匀	Exponential 指数	Normal 正态
记号	U(a,b)	$E(\lambda)$	$N(\mu, \sigma^2)$
Domain	(a,b)	$(0,+\infty)$	\mathbb{R}
$f_X(x)$	1/(b-a)	$\lambda e^{-\lambda x}$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$
E[X]	(a + b)/2	$1/\lambda$	μ
D(X)	$(b-a)^2/12$	$1/\lambda^2$	σ^2

表 2: Continuous Distribution

3.2 Theorems and Properties

Theorem 2. 卷积: $Z = X + Y \Longrightarrow f_Z(z) = f_X(x) * f_Y(y)$.可用分布函数直接推倒。

Property 1. For some distribution: (这些分布是"稳定的"。)

- If $X \sim N(\mu, \sigma^2)$, then $\frac{X \mu}{\sigma} \sim N(0, 1)$.
- If $(X,Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2)$
- If $X \sim P(\lambda_1)$ and $Y \sim P(\lambda_2)$, then $X + Y \sim P(\lambda_1 + \lambda_2)$.
- If $X \sim B(n, p)$ and $Y \sim B(m, p)$, then $X + Y \sim B(n + m, p)$.

Theorem 3 (* 多维随机变量函数的联合分布). 了解即可(会算线性变换就行?)

$$(X,Y) \to f_{(X,Y)}(x,y)$$
,设
$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$
 且
$$\begin{cases} x = h(u,v) \\ y = s(u,v) \end{cases}$$
 同时

$$J(u,v) = \begin{vmatrix} \partial h/\partial u & \partial h/\partial v \\ \partial s/\partial u & \partial s/\partial v \end{vmatrix} \neq 0$$

那么

$$f_{(U,V)}(u,v) = f_{(X,Y)}[h(u,v),s(u,v)] \times |J(u,v)|$$

Property 2 (期望, 方差). May be useful:

- E[X + Y] = E[X] + E[Y].
- $X, Y \Leftrightarrow \dot{D}, E[XY] = E[X]E[Y] \text{ and } D(X+Y) = D(X) + D(Y).$
- $D(CX) = C^2D(X)$.

Definition 6 (协方差,相关系数). $cov(X,Y) = E[(X-\mu_x)(Y-\mu_y)]$ and $\rho = \frac{cov(X,Y)}{\sqrt{D(X)D(Y)}} \in [-1,1]$. *注:若独立,则一定不相关;反之不然。

4 中心极限定理

Theorem 4 (Markov's Inequality).

$$P(X \ge a) \le \frac{E[X]}{a}$$

Theorem 5 (Chebyshev's Inequality).

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

or

$$P(|X - \mu| < \varepsilon) > 1 - \frac{\sigma^2}{\varepsilon^2}$$

记: 有一对相反的不等号。Also, Chebyshev's Inequality is significant when prooving "Laws of Large Number".

Theorem 6 (Laws of Large Number). Here's some different forms of the law:

• Chebyshev. 两两独立且不相关,方差存在且有共同的上界。

$$\lim_{n \to +\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \frac{1}{n}\sum_{i=1}^{n} E[X_i]\right|\right)$$

Note: 不相关条件可以换成 $\lim_{n\to+\infty}\frac{1}{n^2}D(\sum_{k=1}^n X_k)=0$.

• Khintchine.

$$\lim_{n \to +\infty} P\left(\left|\frac{1}{n} \sum_{i=1}^{N} X_k - \mu\right| \ge \varepsilon\right) = 0$$

Theorem 7 (CLT).

$$\lim_{n \to +\infty} P\left(\frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n\sigma^2}} \le x\right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

5 数理统计

Definition 7. 一些统计量如下:

- 样本均值。 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 样本方差。 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- 样本 k 阶原点矩。 $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.
- 样本 k 阶中心矩。 $(CM)_k = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^k$.

Definition 8. 分数位:

- 上侧 α 分数位。 $P(X > x_{\alpha}) = \alpha$
- 双侧 α 分数位。 $P(|X| > x_{\alpha/2}) = \alpha$

Distributions	χ² 卡方分布	t 分布	F 分布
记号	$\chi^2(n)$	t(n)	F(m,n)
意义	$ \sum_{i=1}^{n} N^2(0,1) $	$\frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$	$\frac{\chi^2(m)/m}{\chi^2(n)/n}$
E[X]	n	/	/
D[X]	2n	/	/

表 3: 常用统计量的分布

Property 3 (F 分布).
$$\frac{1}{F(m,n)} \sim F(n,m)$$
 and $\frac{1}{F_{1-\alpha}(m,n)} = F_{\alpha}(n,m)$

Theorem 8. May be significant. $X \sim N(\mu, \sigma^2)$.

•
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \ or \ \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

•
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi^2(n-1).$$

•
$$\bar{X}$$
, $\frac{(n-1)S^2}{\sigma^2}$ 独立。

$$\Longrightarrow \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

6 点估计

Definition 9. 矩估计法, 最大似然法 (有一些特殊的情况如 $\hat{\theta} = \min_i \theta_i$)

Definition 10 (无偏性). $E[\hat{\theta}] = \theta$.

Definition 11 (有效性). If $D(\hat{\theta}_1) < D(\hat{\theta}_2)$, then $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效。

Theorem 9 (Rao-Cramer 不等式).

$$D(\hat{\theta}) \ge I(\theta) = 1 / \left\{ nE \left[\left(\frac{\partial \ln f(X; \theta)}{\partial \theta} \right)^2 \right] \right\}$$

于是有"有效估计量"的定义。

Definition 12 (一致估计量). $\lim_{n\to+\infty} P(|\hat{\theta}-\theta|<\varepsilon)=1$.

或者: 无偏估计量且 $\lim_{n\to+\infty} D(\hat{\theta})=0$

Vethod.		
	枢轴量	置信区间
待估参数为4~ ← 02 已知	<u> Х-м</u> ~ N(0,1)	X ± Jn Was2
行估多数 カリ { σ² 已知	$\frac{\overline{X}-M}{S/\sqrt{n}} \sim t(n-1)$	$\overline{X} \pm \frac{S}{\sqrt{n}} t_{d/2}(n-1)$
	枢轴量	置信区问
符估多数カプ イ 円知	$\frac{\sum_{j=1}^{n} \left(\chi_{\bar{v}} - \mathcal{M} \right)^{2}}{\sigma^{-2}} \sim \chi^{2}(n)$	$\sum_{i=1}^{n} (X_i - M)^2 \left\{ \chi_{i/2}^2(n) \text{ and } \chi_{i-\frac{d}{2}}^2(n) \right\}$
符估後数カプ { 4 已知 4 日知	$\frac{\sum_{j=1}^{n} \left(\chi_{\bar{j}} - \overline{\chi} \right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$	$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \left\{ \chi_{d/2}^2(n-1) \text{and} \chi_{I-\frac{d}{2}}^2(n-1) \right\}$

图 1: 单个正态总体参数的置信区间

7 假设检验

Definition 13 (p 值检验法).

一定要注意大于小于号!

过程与置信区间一致,略。