

pst-plot plotting data and functions

January 15, 2014

Documentation by **Herbert Voß**

Package author(s):
Timothy Van Zandt
Herbert Voß

This version of pst-plot uses the extended keyval handling of pst-xkey and has a lot of the macros which were recently in the package pstricks-add. This documentation describes only the new and changed stuff. For the default behaviour look into the documentation part of the base pstricks package. You find the documentation here: http://mirrors.ctan.org/graphics/pstricks/base/doc/.

Thanks to: Guillaume van Baalen; Stefano Baroni; Martin Chicoine; Gerry Coombes; Ulrich Dirr; Christophe Fourey; Hubert Gäßlein; Jürgen Gilg; Denis Girou; Peter Hutnick; Christophe Jorssen; Uwe Kern; Manuel Luque; Patrice Mégret; Jens-Uwe Morawski; Tobias Nähring; Rolf Niepraschk; Martin Paech; Alan Ristow; Christine Römer; Arnaud Schmittbuhl

Contents 3

Contents

	Basi	c commands, connections and labels	5
1.	Intro	oduction	5
2.	Plott	ing data records	5
3.	Plott	ing mathematical functions	7
п.	. New	commands	8
4.	Exte	nded syntax	8
5.	New	Macro \psBoxplot	10
6.	The 6.1. 6.2. 6.3.	Coordinates of the psgraph area	20
7.	\psx	Tick and \psyTick	24
8.	\pst	ScalePoints	24
9.	New	or extended options	25
	9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. 9.9. 9.10. 9.11. 9.12. 9.13.	Introduction Option xLabels, yLabels, xLabelsrot, and yLabelsrot Option xLabelOffset and ylabelOffset Option yMaxValue and yMinValue Option axesstyle Option xyAxes, xAxis and yAxis Option labels Options xlabelPos and ylabelPos Options labelFontSize and mathLabel Options xlabelFactor and ylabelFactor Options decimalSeparator and comma Options xyDecimals, xDecimals and yDecimals Option triglabels	27 28 30 32 33 33 34 35 36 37
	9.14. 9.15. 9.16. 9.17. 9.18. 9.19.	Option ticks Option tickstyle Options ticksize, xticksize, yticksize Options subticks, xsubticks, and ysubticks Options subticksize, xsubticksize, ysubticksize tickcolor and subtickcolor ticklinestyle and subticklinestyle	46 46 48 48 49

Contents 4

9.21.	logLines	50
9.21.	xylogBase, xlogBase and ylogBase	
9.22.	xylogBasexylogBase	
9.24.	ylogBase	
9.25.	xlogBase	
9.26.	No logstyle (xylogBase={})	
9.27.	Option tickwidth and subtickwidth	
	options for \readdata	61
10. New	options for Areaudata	O1
11. New	options for \listplot	62
11.1.	Options nStep, xStep, and yStep	62
11.2.	Options nStart and xStart	
11.3.	Options nEnd and xEnd	
11.4.	Options yStart and yEnd	
11.5.	Options plotNo, plotNoX, and plotNoMax	
11.6.	Option changeOrder	70
12. New	plot styles	71
12.1.	Plot style colordot and option Hue	71
12.2.	Plot style bar and option barwidth	72
12.3.	Plot style ybar	74
12.4.	Plotstyle LSM	75
12.5.	Plotstyles values and values*	78
12.6.	Plotstyles xvalues and xvalues*	79
13. Pola	r plots	80
14 New	macros	83
	\psCoordinates	
	\psFixpoint	
	\psNewton	
14.4.	\psVectorfield	
15. Inter	rnals	88
16 71 -		00
16. List	of all optional arguments for pst-plot	89
Referen	ces	91

Part I.

Basic commands, connections and labels

1. Introduction

The plotting commands described in this part are defined in the very first version of pst-plot.tex and available for all new and ancient versions.

The \psdots, \psline, \pspolygon, \pscurve, \psecurve and \psccurve graphics objects let you plot data in a variety of ways. However, first you have to generate the data and enter it as coordinate pairs x,y. The plotting macros in this section give you other ways to get and use the data.

To parameter plotstyle=style determines what kind of plot you get. Valid styles are dots, line, polygon, curve, ecurve, ccurve. E,g., if the plotstyle is polygon, then the macro becomes a variant of the \pspolygon object.

You can use arrows with the plot styles that are open curves, but there is no optional argument for specifying the arrows. You have to use the arrows parameter instead.

No PostScript error checking is provided for the data arguments. There are system-dependent limits on the amount of data T_EX and PostScript can handle. You are much less likely to exceed the PostScript limits when you use the line, polygon or dots plot style, with showpoints=false, linearc=0pt, and no arrows.

Note that the lists of data generated or used by the plot commands cannot contain units. The values of \psxunit and \psyunit are used as the unit.

2. Plotting data records

The macros with a preceeding ps are equivalent to those without.

\fileplot is the simplest of the plotting functions to use. You just need a file that contains a list of coordinates (without units), such as generated by Mathematica or other mathematical packages. The data can be delimited by curly braces { }, parentheses (), commas, and/or white space. Bracketing all the data with square brackets [] will significantly speed up the rate at which the data is read, but there are system-dependent

limits on how much data T_EX can read like this in one chunk. (The [must go at the beginning of a line.) The file should not contain anything else (not even \endinput), except for comments marked with %.

\fileplot only recognizes the line, polygon and dots plot styles, and it ignores the arrows, linearc and showpoints parameters. The \listplot command, described below, can also plot data from file, without these restrictions and with faster T_EX processing. However, you are less likely to exceed PostScript's memory or operand stack limits with \fileplot.

If you find that it takes T_EX a long time to process your \fileplot command, you may want to use the \PSTtoEPS command described on page ??. This will also reduce T_EX 's memory requirements.

\dataplot is also for plotting lists of data generated by other programs, but you first have to retrieve the data with one of the following commands: data or the data in file should conform to the rules described above for the data in \fileplot (with \savedata, the data must be delimited by [], and with \readdata, bracketing the data with [] speeds things up). You can concatenate and reuse lists, as in

```
\readdata{\foo}{foo.data}
\readdata{\bar}{bar.data}
\dataplot{\foo\bar}
\dataplot[origin={0,1}]{\bar}
```

The \readdata and \dataplot combination is faster than \fileplot if you reuse the data. \fileplot uses less of T_EX 's memory than \readdata and \dataplot if you are also use \PSTtoEPS.

Here is a plot of $\int \sin(x) dx$. The data was generated by Mathematica, with

```
Table[{x,N[SinIntegral[x]]},{x,0,20}]
```

and then copied to this document.


```
pspicture(4,3) \psset{xunit=.2cm,yunit=1.5cm}

savedata{\mydata}[

{{0, 0}, {1., 0.946083}, {2., 1.60541}, {3., 1.84865}, {4., 1.7582},

{5., 1.54993}, {6., 1.42469}, {7., 1.4546}, {8., 1.57419},

{9., 1.66504}, {10., 1.65835}, {11., 1.57831}, {12., 1.50497},

{13., 1.49936}, {14., 1.55621}, {15., 1.61819}, {16., 1.6313},

{17., 1.59014}, {18., 1.53661}, {19., 1.51863}, {20., 1.54824}}]

adataplot[plotstyle=curve,showpoints,dotstyle=triangle]{\mydata}

psline{<->}(0,2)(0,0)(22,0)

endpspicture
```

\listplot is yet another way of plotting lists of data. This time, should be a list of data (coordinate pairs), delimited only by white space. *list* is first expanded by

 $T_{E}X$ and then by PostScript. This means that *list* might be a PostScript program that leaves on the stack a list of data, but you can also include data that has been retrieved with \readdata and \dataplot. However, when using the line, polygon or dots plot-styles with showpoints=false, linearc=0pt and no arrows, \dataplot is much less likely than \listplot to exceed PostScript's memory or stack limits. In the preceding example, these restrictions were not satisfied, and so the example is equivalent to when \listplot is used:

```
...
\listplot[plotstyle=curve, showpoints=true, dotstyle=triangle]{\mydata}
...
```

3. Plotting mathematical functions

```
\label{lem:constant} $$ \postplot [Options] $$ \{x_1 \min @\} \{x_1 \max @\} \{function\} $$ \postplot [Options] $$ \{t_1 \min @\} \{t_1 \max @\} \{x(t) y(t)\} $$ $$
```

\psplot can be used to plot a function f(x), if you know a little PostScript. function should be the PostScript or algebraic code for calculating f(x). Note that you must use x as the dependent variable.

```
\psplot[plotpoints=200]{0}{720}{x sin}
```

plots $\sin(x)$ from 0 to 720 degrees, by calculating $\sin(x)$ roughly every 3.6 degrees and then connecting the points with \psline. Here are plots of $\sin(x)\cos((x/2)^2)$ and $\sin^2(x)$:


```
pspicture(0,-1)(4,1)
psset{xunit=1.2pt}
psplot[linecolor=gray,linewidth=1.5pt,plotstyle=curve]{0}{90}{x sin dup mul}
psplot[plotpoints=100]{0}{90}{x sin x 2 div 2 exp cos mul}
psline{<->}(0,-1)(0,1) psline{->}(100,0)
endpspicture
```

\parametricplot is for a parametric plot of (x(t), y(t)). function is the PostScript code or algebraic expression for calculating the pair x(t) y(t). For example,

```
pspicture(3,3)
parametricplot[plotstyle=dots,plotpoints=13]%
{-6}{6}{1.2 t exp 1.2 t neg exp}
endpspicture
```

plots 13 points from the hyperbola xy=1, starting with $(1.2^{-6},1.2^{6})$ and ending with $(1.2^{6},1.2^{-6})$.

Here is a parametric plot of $(\sin(t), \sin(2t))$:

The number of points that the \psplot and \parametricplot commands calculate is set by the plotpoints=<value> parameter. Using "curve" or its variants instead of "line" and increasing the value of plotpoints are two ways to get a smoother curve. Both ways increase the imaging time. Which is better depends on the complexity of the computation. (Note that all PostScript lines are ultimately rendered as a series (perhaps short) line segments.) Mathematica generally uses "lineto" to connect the points in its plots. The default minimum number of plot points for Mathematica is 25, but unlike \psplot and \parametricplot, Mathematica increases the sampling frequency on sections of the curve with greater fluctuation.

Part II. New commands

4. Extended syntax for \psplot, \psparametricplot, and \psaxes

There is now a new optional argument for $\protect\pr$

The macro \psaxes has now four optional arguments, one for the setting, one for the arrows, one for the x-label and one for the y-label. If you want only a y-label, then leave the x one empty. A missing y-label is possible. The following examples show how it can be used.

```
begin{pspicture}(-1,-0.5)(12,5)

psaxes[Dx=100,dx=1,Dy=0.00075,dy=1]{->}(0,0)(12,5)[$x$,-90][$y$,180]

psplot[linecolor=red, plotstyle=curve,linewidth=2pt,plotpoints=200]{0}{11}%

// const1 3.3 10 8 neg exp mul def
```

4. Extended syntax

```
/s 10 def
/const2 6.04 10 6 neg exp mul def ] % optional PS commands
{ const1 x 100 mul dup mul mul Euler const2 neg x 100 mul dup mul mul exp
mul 2000 mul}

end{pspicture}
```


5. New Macro \psBoxplot

A box-and-whisker plot (often called simply a box plot) is a histogram-like method of displaying data, invented by John. Tukey. The box-and-whisker plot is a box with ends at the quartiles Q_1 and Q_3 and has a statistical median M as a horizontal line in the box. The "'whiskers"* are lines to the farthest points that are not outliers (i.e., that are within 3/2 times the interquartile range of Q_1 and Q_3). Then, for every point more than 3/2 times the interquartile range from the end of a box, is a dot.

The only special optional arguments, beside all other which are valid for drawing lines and filling areas, are IQLfactor, barwidth, and arrowlength, where the latter is a factor which is multiplied with the barwidth for the line ends. The IQLfactor, preset to 1.5, defines the area for the outliners. The outliners are plotted as a dot and take the settings for such a dot into account, eg. dotstyle, dotsize, dotscale, and fillcolor. The default is the black dot.


```
2 \psset{yunit=0.1,fillstyle=solid}
  \savedata{\data}[100 90 120 115 120 110 100 110 100 90 100 100 120 120 120]
  \rput(1,0){\psBoxplot[fillcolor=red!30]{\data}}
  \rput(1,105){2001}
  \savedata{\data}[90 120 115 116 115 110 90 130 120 120 120 85 100 130 130]
  \rput(3,0){\psBoxplot[arrowlength=0.5,fillcolor=blue!30]{\data}}
  \rput(3,107){2008}
  \savedata{\data}[35 70 90 60 100 60 60 80 80 60 50 55 90 70 70]
  \rput(5,0){\psBoxplot[barwidth=40pt,arrowlength=1.2,fillcolor=red!30]{\data}}
11 \rput(5,65){2001}
12 \savedata{\data}[60 65 60 75 75 60 50 90 95 60 65 45 45 60 90]
13 \rput(7,0) {\psBoxplot[barwidth=40pt,fillcolor=blue!30]{\data}}
14 \rput(7,65){2008}
15 \savedata{\data}[20 20 25 20 15 20 20 25 30 20 20 20 30 30 30]
16 \rput(9,0){\psBoxplot[fillcolor=red!30]{\data}}
17 \rput(9,22){2001}
18 \savedata{\data}[20 30 20 35 35 20 20 60 50 20 35 15 30 20 40]
  \rput(11,0){\psBoxplot[fillcolor=blue!30,linestyle=dashed]{\data}}
20 \rput(11,25){2008}
21 \psaxes[dy=1cm,Dy=10](0,0)(12,130)
22 \end{pspicture}
```

The next example uses an external file for the data, which must first be read by the macro \readdata. The next one creates a horizontal boxplot by rotating the output with -90 degrees.


```
1 \readdata{\data}{boxplot.data}
```

```
begin{pspicture}(-1,-1)(2,10)

psset{yunit=0.25,fillstyle=solid}

savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]

prut(1,0){\psBoxplot[fillcolor=blue!30]{\data}}

psaxes[dy=lcm,Dy=4](0,0)(2,35)

end{pspicture}

begin{pspicture}(-1,-1)(11,2)

psset{xunit=0.25,fillstyle=solid}

savedata{\data}[2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32]

rput{-90}(0,1){\psBoxplot[yunit=0.25,fillcolor=blue!30]{\data}}

psaxes[dx=lcm,Dx=4](0,0)(35,2)

end{pspicture}
```

It is also possible to read a data column from an external file:


```
\begin{filecontents*}{Data.dat}
  98, 32
  20, 11
  79, 26
  14, 9
6 23, 22
  21, 10
  58, 25
  13, 8
10 19, 5
11 53, 29
12 41, 37
13 11, 2
14 83, 25
15 71, 51
16 10, 7
17 89, 17
18 10, 6
    , 41
19
      75
```

```
21 \end{filecontents*}

22 \begin{pspicture}(-1,-1)(5,6)

24 \psaxes[axesstyle=frame,dy=1cm,Dy=20,ticksize=4pt 0](0,0)(4,5)

25 \psreadDataColumn{1}{,}{\data}{Data.dat}

26 \rput(1,0){\psBoxplot[fillcolor=red!40,yunit=0.05]{\data}}

27 \psreadDataColumn{2}{,}{\data}{Data.dat}

28 \rput(3,0){\psBoxplot[fillcolor=blue!40,yunit=0.05]{\data}}

29 \end{pspicture}
```

6. The psgraph environment

This new environment psgraph does the scaling, it expects as parameter the values (without units!) for the coordinate system and the values of the physical width and height (with units!). The syntax is:

```
\psgraph [Options] {<arrows>}%
    (xOrig,yOrig)(xMin,yMin)(xMax,yMax){xLength}{yLength}
...
\endpsgraph
\begin{psgraph} [Options] {<arrows>}%
    (xOrig,yOrig)(xMin,yMin)(xMax,yMax){xLength}{yLength}
...
\end{psgraph}
```

where the options are valid **only** for the the \psaxes macro. The first two arguments have the usual PSTricks behaviour.

- if (xOrig, yOrig) is missing, it is substituted to (xMin, xMax);
- if (x0rig,y0rig) and (xMin,yMin) are missing, they are both substituted to (0,0). The y-length maybe given as !; then the macro uses the same unit as for the x-axis.


```
\readdata{\data}{demo1.data}

\pstScalePoints(1,1e-08){}{}% (x,y){additional x operator}{y op}

\psset{llx=-1cm, lly=-1cm}

\begin{psgraph} [axesstyle=frame,xticksize=0 7.59,yticksize=0 25,%

subticks=0,ylabelFactor=\cdot 10^8,

Dx=5,dy=1\psyunit,Dy=1](0,0)(25,7.5){10cm}{6cm} % parameters

\listplot[linecolor=red,linewidth=2pt,showpoints=true]{\data}

\end{psgraph}
```

In the following example, the y unit gets the same value as the one for the x-axis.


```
1 \psset{llx=-1cm,lly=-0.5cm,ury=0.5cm}
2 \begin{psgraph}(0,0)(5,3){6cm}{!!} % x-y-axis with same unit
3 \psplot[linecolor=red,linewidth=1pt]{0}{5}{x dup mul 10 div}
4 \end{psgraph}
```



```
| \readdata{\data}{\demo1.data}
| \psset{llx=-0.5cm,lly=-1cm}
| \pstScalePoints(1,0.000001){}{}
| \psgraph[arrows=->,Dx=5,dy=200\psyunit,Dy=200,subticks=5,ticksize=-10pt 0,tickwidth=0.5pt,subtickwidth=0.1pt](0,0)(25,750){5.5cm}{5cm}
| \listplot[linecolor=red,linewidth=0.5pt,showpoints=true,dotscale=3,plotstyle=LineToYAxis,dotstyle=o]{\data}
| \endpsgraph
```



```
readdata{\data}{demo1.data}
pstScalePoints(1,0.2){}{log}
psset{lly=-0.75cm}
psgraph[ylogBase=10,Dx=5,Dy=1,subticks=5](0,0)(25,2){12cm}{4cm}
listplot[linecolor=red,linewidth=1pt,showpoints,dotstyle=x,dotscale=2]{\data}
endpsgraph
```



```
| \readdata{\data}{\demo0.data}
| \psset{\ly=-0.75cm,ury=0.5cm}
| \pstScalePoints(1,1){}{\log}
| \begin{psgraph}[arrows=->,Dx=0.5,ylogBase=10,0y=-1,xsubticks=10,%
| ysubticks=2](0,-3)(3,1){12cm}{4cm}
| \psset{0y=-2}% must be global
| \listplot[linecolor=red,linewidth=1pt,showpoints=true,
| plotstyle=LineToXAxis]{\data}
| \listplot[plotstyle=values,rot=90]{\data}
| \end{psgraph}
| \end{psgraph}
| \leftilde{\text{psgraph}}
| \leftilde{\text{p
```



```
| \psset{lly=-0.75cm,ury=0.5cm}
| \readdata{\data}{\demoo.data}
| \pstScalePoints(1,1){}{log}
| \psgraph[arrows=->,Dx=0.5,ylogBase=10,0y=-1,subticks=4](0,-3)(3,1){6cm}{3cm}
| \listplot[linecolor=red,linewidth=2pt,showpoints=true,plotstyle=LineToXAxis]{\data}
| \endpsgraph
```



```
\readdata{\data}{\demo2.data}%

\readdata{\dataII}{\demo3.data}%

\pstScalePoints(1,1){1989 sub}{}

\psset{llx=-0.5cm,lly=-1cm, xAxisLabel=Year,yAxisLabel=Whatever,%

xAxisLabelPos={c,-0.4in},yAxisLabelPos={-0.4in,c}}

\psgraph[axesstyle=frame,Dx=2,0x=1989,subticks=2](0,0)(12,6){4in}{2in}%

\listplot[linecolor=red,linewidth=2pt]{\data]}

\listplot[linecolor=blue,linewidth=2pt]{\dataII}

\listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}}

\endpsgraph
```



```
1 \readdata{\data}{demo2.data}%
2 \readdata{\dataII}{demo3.data}%
3 \psset{llx=-0.5cm,lly=-0.75cm,plotstyle=LineToXAxis}
```

```
4 \pstScalePoints(1,1){1989 sub}{2 sub}
5 \begin{psgraph} [axesstyle=frame,Dx=2,0x=1989,0y=2,subticks=2](0,0)(12,4){6in}
{3in}
6 \listplot[linecolor=red,linewidth=12pt]{\data}
7 \listplot[linecolor=blue,linewidth=12pt]{\dataII}
8 \listplot[linecolor=cyan,linewidth=12pt,yunit=0.5]{\dataII}
9 \end{psgraph}
```

An example with ticks on every side of the frame and filled areas:


```
\def\data{0 0 1 4 1.5 1.75 2.25 4 2.75 7 3 9}
  \psset{lly=-0.5cm}
  \begin{psgraph}[axesstyle=none,ticks=none](0,0)(3.0,9.0){12cm}{5cm}
   \pscustom[fillstyle=solid,fillcolor=red!40,linestyle=none]{%
     \listplot{\data}
     \psline(3,9)(3,0)}
   \pscustom[fillstyle=solid,fillcolor=blue!40,linestyle=none]{%
     \listplot{\data}
     psline(3,9)(0,9)
   \listplot[linewidth=2pt]{\data}
10
   \psaxes[axesstyle=frame,ticksize=0 5pt,xsubticks=20,ysubticks=4,
11
     tickstyle=inner,dy=2,Dy=2,tickwidth=1.5pt,subtickcolor=black](0,0)(3,9)
12
   \rput*(2.5,3){level 1}\rput*(1,7){level 2}
13
14 \end{psgraph}
```

6.1. Coordinates of the psgraph area

The coordinates of the calculated area are saved in the four macros \psgraphLLx, \psgraphURy, \psgraphURx, and \psgraphURy, which is LowerLeft, UpperLeft, LowerRight, and UpperRight. The values have no dimension but are saved in the current unit.

```
9
8
7
                          \psset{llx=-5mm,lly=-1cm}
6
                          \begin{psgraph}[axesstyle=none,ticks=none](0,0)
                            (3.0,9.0){4cm}{5cm}
5
                           \psdot[dotscale=2](\psgraphLLx,\psgraphLLy)
4
                            \psdot[dotscale=2](\psgraphLLx,\psgraphURy)
3
                           \psdot[dotscale=2](\psgraphURx,\psgraphLLy)
2
                           \psdot[dotscale=2](\psgraphURx,\psgraphURy)
                          \end{psgraph}
1
0
                2
                       3
         1
  0
```

6.2. The new options for psgraph

name	default	meaning
xAxisLabel	Х	label for the x-axis
yAxisLabel	у	label for the y-axis
xAxisLabelPos	{}	where to put the x-label
yAxisLabelPos	{}	where to put the y-label
xlabelsep	5pt	labelsep for the x-axis labels
ylabelsep	5pt	labelsep for the x-axis labels
llx	0pt	trim for the lower left x
lly	0pt	trim for the lower left y
urx	0pt	trim for the upper right x
ury	0pt	trim for the upper right y

There is one restriction in using the trim parameters, they must been set **before** \psgraph is called. They are redundant when used as parameters of \psgraph itself. The xAxisLabelPos and yAxisLabelPos options can use the letter c for centering an x-axis or y-axis label. The c is a replacement for the x or y value. When using values with units, the position is always measured from the origin of the coordinate system, which can be outside of the visible pspicture environment.


```
readdata{\data]{demo2.data}%
readdata{\dataII}{demo3.data}%

psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,%
yAxisLabel=Whatever,xAxisLabelPos={c,-0.4in},%
yAxisLabelPos={-0.4in,c}}

pstScalePoints(1,1){1989 sub}{}

psframebox[linestyle=dashed,boxsep=false]{%
begin{psgraph}[axesstyle=frame,0x=1989,subticks=2](0,0)(12,6){0.8\linewidth} }{2.5in}%
\listplot[linecolor=red,linewidth=2pt]{\data]%
\listplot[linecolor=blue,linewidth=2pt]{\dataII}%
\listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}%
\end{psgraph}%
}
```

6.3. The new macro \pslegend for psgraph

```
\pslegend [Reference] (xOffset,yOffset) {Text}
```

The reference can be one of the lb, lt, rb, or rt, where the latter is the default. The values for x0ffset and y0ffset must be multiples of the unit pt. Without an offset the value of \pslabelsep are used. The legend has to be defined *before* the environment psgraph.


```
\readdata{\data}{demo2.data}%
          \readdata{\dataII}{demo3.data}%
          \psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,%
                  yAxisLabel=Whatever,xAxisLabelPos={c,-0.4in},%
                  yAxisLabelPos={-0.4in,c}}
         \pstScalePoints(1,1){1989 sub}{}
         \prootember \pro
                                                    \blue\rule[1ex]{2em}{1pt} & Data II\\
                                                    \cyan\rule[1ex]{2em}{1pt} & Data III}
        }{2.5in}%
               \listplot[linecolor=red,linewidth=2pt]{\data}%
11
              \listplot[linecolor=blue,linewidth=2pt]{\dataII}%
12
              \\listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}%
14 \end{psgraph}%
```

• \pslegend uses the commands \tabular and \endtabular, which are only available when running LATEX. With TEX you have to redefine the macro \pslegend@ii:

```
def\pslegend@ii[#1](#2){\rput[#1](!#2){\psframebox[style=legendstyle]{%
    \footnotesize\tabcolsep=2pt%
    \tabular[t]{@{}ll@{}}\pslegend@text\endtabular}}\gdef\pslegend@text{}}
```

- The fontsize can be changed locally for each cell or globally, when also redefining the macro \pslegend@ii.
- If you want to use more than two columns for the table or a shadow box, then redefine \pslegend@ii.

The macro \psframebox uses the style legendstyle which is preset to fillstyle=solid, fillcolor=white, and linewidth=0.5pt and can be redefined by

```
\newpsstyle{legendstyle}{fillstyle=solid,fillcolor=red!20,shadow=true}
```



```
\readdata{\data}{demo2.data}%
  \readdata{\dataII}{demo3.data}%
  \psset{llx=-1cm,lly=-1.25cm,urx=0.5cm,ury=0.1in,xAxisLabel=Year,%
    yAxisLabel=Whatever,xAxisLabelPos={c,-0.4in},%
    yAxisLabelPos={-0.4in,c}}
  \pstScalePoints(1,1){1989 sub}{}
  \newpsstyle{legendstyle}{fillstyle=solid,fillcolor=red!20,shadow=true}
  \pslegend[lt](10,10){\red\rule[1ex]{2em}{1pt} & Data I\
                  \left[ 1ex \right] {2em} {1pt} & Data II \
                  \cyan\rule[1ex]{2em}{1pt} & Data III}
11 \rightarrow \frac{1}{2} | begin{psgraph}[axesstyle=frame,0x=1989,subticks=2](0,0)(12,6){0.8\linewidth}
    }{2.5in}%
   \listplot[linecolor=red,linewidth=2pt]{\data}%
12
   \listplot[linecolor=blue,linewidth=2pt]{\dataII}%
   \listplot[linecolor=cyan,linewidth=2pt,yunit=0.5]{\dataII}%
  \end{psgraph}%
```

7. \psxTick and \psyTick

Single ticks with labels on an axis can be set with the two macros \psxTick and \psyTick. The label is set with the macro \pshlabel, the setting of mathLabel is taken into account.

```
\label{localization} $$ \operatorname{psxTick} [\operatorname{Options}] $$ \{ \operatorname{rotation} \} (x \ \operatorname{value}) \{ \operatorname{label} \} $$ \\ \operatorname{psyTick} [\operatorname{Options}] $$ \{ \operatorname{rotation} \} (y \ \operatorname{value}) \{ \operatorname{label} \} $$ \\
```



```
begin{psgraph}[Dx=2,Dy=2](0,0)(-4,-2.2)
    (4,2.2){.5\textwidth}{!}

psxTick[linecolor=red,labelsep=-20pt
    ]{45}(1.25){x_0}

psyTick[linecolor=blue](1){y_0}

end{psgraph}
```

8. \pstScalePoints

The syntax is

```
\pstScalePoints(xScale,xScale){xPS}{yPS}
```

xScale,yScale are decimal values used as scaling factors, the xPS and yPS are additional PostScript code applied to the x- and y-values of the data records. This macro is only valid for the \listplot macro!


```
1 \def\data{%
2  0 0 1 3 2 4 3 1
3  4 2 5 3 6 6 }
4 \begin{pspicture}(-0.5,-1)(6,6)
5 \psaxes{->}(0,0)(6,6)
6 \listplot[showpoints=true,%
7  linecolor=red]{\data}
8 \pstScalePoints(1,0.5){}{3 add}
9 \listplot[showpoints=true,%
10 linecolor=blue]{\data}
11 \end{pspicture}
```

\pstScalePoints(1,0.5){}{3 add} means that **first** the value 3 is added to the y values and **second** this value is scaled with the factor 0.5. As seen for the blue line for x = 0 we get $y(0) = (0+3) \cdot 0.5 = 1.5$.

Changes with \pstScalePoints are always global to all following \listplot macros. This is the reason why it is a good idea to reset the values at the end of the pspicture environment.

9. New or extended options

9.1. Introduction

The option tickstyle=full |top|bottom no longer works in the usual way. Only the additional value inner is valid for pst-plot, because everything can be set by the ticksize option. When using the comma or trigLabels option, the macros \pshlabel and \psvlabel shouldn't be redefined, because the package does it itself internally in these cases. However, if you need a redefinition, then do it for \pst@@ehlabel and \pst@@evlabel with

```
\makeatletter
\def\pst@@ehlabel#1{...}
\def\pst@@evlabel#1{...}
\makeatother
```

name	type	default	page
axesstyle	none axes frame polar inner	axes	30
barwidth	length	0.25cm	72
ChangeOrder	boolean	false	70
comma	boolean	false	36
decimals	integer	-1 ¹	78
decimalSeparator	char		36
fontscale	real	10	78
ignoreLines	integer	0	61
labelFontSize	macro	{}	34
labels	all x y none	all	33
llx	length	0pt	20
lly	length	0pt	20
logLines	none x y all	none	50
mathLabel	boolean	false	34
nEnd	integer or empty	{}	66
nStart	integer	0	65
nStep	integer	1	62
plotNo	integer	1	67
plotNoMax	integer	1	67
polarplot	boolean	false	80
PSfont	PS font	Times-Romasn	78
quadrant	integer	4	30
subtickcolor	color	darkgray	49

¹ A negative value plots all decimals

9.1. Introduction

name	type	default	page
subticklinestyle	solid dashed dotted none	solid	50
subticks	integer	0	48
subticksize	real	0.75	48
subtickwidth	length	0.5\pslinewidth	57
tickcolor	color	black	49
ticklinestyle	solid dashed dotted none	solid	50
ticks	all x y none	all	45
ticksize	length [length]	-4pt 4pt	46
tickstyle	full top bottom inner	full	46
tickwidth	length	0.5\pslinewidth	57
trigLabelBase	integer	0	37
trigLabels	boolean	false	37
urx	length	0pt	20
ury	length	0pt	20
valuewidth	integer	10	78
xAxis	boolean	true	32
xAxisLabel	literal	{\@empty}	20
xAxisLabelPos	(x,y) or empty	{\@empty}	20
xDecimals	integer or empty	{}	37
xEnd	integer or empty	{}	66
xLabels	list	{\empty}	27
xlabelFactor	anything	{\@empty}	35
xlabelOffset	length	0	28
xlabelPos	bottom,axis,top	bottom	33
xLabelsRot	angle	0	27
xlogBase	integer or empty	{}	55
xticklinestyle	solid dashed dotted none	solid	50
xStart	integer or empty	{}	65
xStep	integer	0	62
xsubtickcolor	color	darkgray	49
xsubticklinestyle	solid dashed dotted none	solid	50
xsubticks	integer	0	48
xsubticksize	real	0.75	48
xtickcolor	color	black	49
xticksize	length [length]	-4pt 4pt	46
xtrigLabels	boolean	false	42
xyAxes	boolean	true	32
xyDecimals	integer or empty	{}	37
xylogBase	integer or empty	{}	52
yAxis	boolean	true	32
yAxisLabel	literal	{\@empty}	20

continued ...

continued			
name	type	default	page
yAxisLabelPos	(x,y) or empty	{\@empty}	20
yDecimals	integer or empty	{}	37
yEnd	integer or empty	{}	67
yLabels	list	{\empty}	27
ylabelFactor	literal	{\empty}	35
ylabelOffset	length	0	28
ylabelPos	left axis right	left	33
xLabelsRot	angle	0	27
ylogBase	integer or empty	{}	53
yMaxValue	real	1.e30	28
yMinValue	real	-1.e30	28
yStart	integer or empty	{}	67
yStep	integer	0	62
ysubtickcolor	<color></color>	darkgray	49
ysubticklinestyle	solid dashed dotted none	solid	50
ysubticks	integer	0	48
ysubticksize	real	0.75	48
ytickcolor	color>	black	49
yticklinestyle	solid dashed dotted none	solid	50
yticksize	length [length]	-4pt 4pt	46
ytrigLabels	boolean	false	42

9.2. Option xLabels, yLabels, xLabelsrot, and yLabelsrot

```
psset{xunit=0.75}
begin{pspicture}(-2,-2)(14,4)
psaxes[xLabels={,Kerry,Laois,London,Waterford,Clare,Offaly,Galway,Wexford,%
Dublin,Limerick,Tipperary,Cork,Kilkenny},xLabelsRot=45,
yLabels={,low,medium,high},mathLabel=false](14,4)
end{pspicture}
```


The values for xlabelsep and ylabelsep are taken into account.

9.3. Option xLabelOffset and ylabelOffset


```
1 \psset{xAxisLabel=,yAxisLabel=,
2 llx=-5mm,urx=1cm,lly=-5mm,
3 mathLabel=false,xlabelsep=-5pt,
4 xLabels={A,b,C,d,E,f}}
5 \begin{psgraph}{->}(5,2){6cm}{2cm}
6 \end{psgraph}
```

```
psset{xAxisLabel=,yAxisLabel=,
    llx=-5mm,urx=1cm,lly=-5mm,
    mathLabel=false,xlabelsep=-5pt,
    xLabels={,A,b,C,d,E},
    xlabelOffset=-0.5,
    ylabelOffset=0.5}
begin{psgraph}{->}{(5,2){6cm}{2cm}}
end{psgraph}
```

9.4. Option yMaxValue and yMinValue

With the new optional arguments yMaxValue and yMinValue one can control the behaviour of discontinuous functions, like the tangent function. The code does not check that yMaxValue is bigger than yMinValue (if not, the function is *not* plotted at all). All four possibilities can be used, i.e. one, both or none of the two arguments yMaxValue and yMinValue can be set.

```
begin{pspicture}(-6.5,-6)(6.5,7.5)
wultido{\rA=-4.71239+\psPiH}{7}{%
   \psline[linecolor=black!20,linestyle=dashed](\rA,-5.5)(\rA,6.5)}

psset{algebraic,plotpoints=10000,plotstyle=line}

psaxes[trigLabelBase=2,dx=\psPiH,xunit=\psPi,trigLabels]
   {->}(0,0)(-1.7,-5.5)(1.77,6.5)[$x$,0][$y$,-90]

psclip{\psframe[linestyle=none](-4.55,-5.5)(5.55,6.5)}

psplot[yMaxValue=6,yMinValue=-5,linewidth=2pt,linecolor=red]{-4.55}{4.55}{(x)/(sin(2*x))}

endpsclip
psplot[linestyle=dashed,linecolor=blue!30]{-4.8}{4.8}{x}

psplot[linestyle=dashed,linecolor=blue!30]{-4.8}{4.8}{-x}

rput(0,0.5){$\times$}
end{pspicture}
```



```
begin{pspicture}(-6.5,-4)(6.5,7.5)

psaxes[trigLabelBase=2,dx=\psPiH,xunit=\psPi,trigLabels]%

{->}(0,0)(-1.7,-3.5)(1.77,6.5)[$x$,0][$y$,90]

psplot[yMaxValue=6,yMinValue=-3,linewidth=1.6pt,plotpoints=2000,

linecolor=red,algebraic]{-4.55}{4.55}{tan(x)}

end{pspicture}
```

9.5. Option axesstyle

There is a new axes style polar which plots a polar coordinate system. Syntax:

```
\psplot[axesstyle=polar](Rx,Angle)
\psplot[axesstyle=polar](...)(Rx,Angle)
\psplot[axesstyle=polar](...)(...)(Rx,Angle)
```

Important is the fact, that only one pair of coordinates is taken into account for the radius and the angle. It is *always* the last pair in a sequence of allowed coordinates for the \psaxes macro. The other ones are ignored; they are not valid for the polar coordinate system. However, if the angle is set to 0 it is changed to 360 degrees for a full circle.

```
begin{pspicture}(-1,-1)(5.75,5.75)

psaxes[axesstyle=polar,
    subticks=2](5,90)

psline[linewidth=2pt]{->}(5;15)

psline[linewidth=2pt]{->}(2;40)

psline{->}(2;10)(4;85)

end{pspicture}
```


All valid optional arguments for the axes are also possible for the polar style, if they make sense ...:) Important are the Dy option, it defines the angle interval and subticks, for the intermediate circles and lines. The number can be different for the circles (ysubticks) and the lines (xsubticks).

```
100
                                                                        80
                                                   120
                                                                                 60
\begin{array}{c} \mathbf{begin} \{ pspicture \} (-3, -1) (4.5, 4.5) \end{array}
                                                                     3
\psaxes[axesstyle=polar,
                                           140
                                                                                         40
  subticklinestyle=dashed,
                                                                     2
  subticks=2,Dy=20](4,140)
\psline[linewidth=2pt]{->}(4;15)
                                                                                              20
\psline[linewidth=2pt]{->}(2;40)
\psline{->}(2;10)(3;85)
\end{pspicture}
```


9.6. Option xyAxes, xAxis and yAxis

Syntax:

```
xyAxes=true|false
xAxis=true|false
yAxis=true|false
```

Sometimes there is only a need for one axis with ticks. In this case you can set one of the preceding options to false. The xyAxes only makes sense when you want to set both x and y to true with only one command, back to the default, because with xyAxes=falseyou get nothing with the \psaxes macro.

As seen in the example, a single y axis gets the labels on the left side. This can be changed with the option ylabelPos or with xlabelPos for the x-axis.

9.7. Option labels

9.7. Option labels

Syntax:

```
labels=all|x|y|none
```

This option was already in the pst-plot package and only mentioned here for completeness.

9.8. Options xlabelPos and ylabelPos

Syntax:

```
xlabelPos=bottom|axis|top
ylabelPos=left|axis|right
```

By default the labels for ticks are placed at the bottom (x axis) and left (y-axis). If both axes are drawn in the negative direction the default is top (x axis) and right (y axis). It be changed with the two options xlabelPos and ylabelPos. With the value axis the user can place the labels depending on the value of labelsep, which is taken into account for axis.

9.9. Options labelFontSize and mathLabel

This option sets the horizontal **and** vertical font size for the labels depending on the option mathLabel for the text or the math mode. It will be overwritten when another package or a user defines

```
\def\pshlabel#1{\labelFontSize ...}
\def\psvlabel#1{\labelFontSize ...}
\def\pshlabel#1{$\labelFontSize ...$}% for mathLabel=true (default)
\def\psvlabel#1{$\labelFontSize ...$}% for mathLabel=true (default)
```

in another way. Note that for mathLabel=truethe font size must be set by one of the mathematical styles \textstyle, \displaystyle, \scriptstyle, or \scriptscriptstyle.

9.10. Options xlabelFactor and ylabelFactor

When having big numbers as data records then it makes sense to write the values as $< number > \cdot 10^{< exp>}$. These new options allow you to define the additional part of the value, but it must be set in math mode when using math operators or macros like \cdot!

```
\readdata{\data}{demo1.data}

\pstScalePoints(1,0.000001){}{}% (x,y){additional x operator}{y op}

\psset{llx=-1cm,lly=-1cm}

\psgraph[ylabelFactor=\cdot 10^6,Dx=5,Dy=100](0,0)(25,750){8cm}{5cm}

\listplot[linecolor=red, linewidth=2pt, showpoints=true]{\data}

\endpsgraph

\pstScalePoints(1,1){}{}% reset

\rangle

\rang
```


9.11. Options decimalSeparator and comma

Syntax:

```
comma=false|true
decimalSeparator=<charactor>
```

Setting the option comma to true gives labels with a comma as a decimal separator instead of the default dot. comma and comma=true is the same. The optional argument decimalSeparator allows an individual setting for languages with a different character than a dot or a comma. The character has to be set into braces, if it is an active one, e.g. decimalSeparator={,}.


```
begin{pspicture}(-0.5,-0.5)(5,5.5)

psaxes[Dx=1.5,comma,Dy=0.75,dy=0.75]{->}(5,5)

psplot[linecolor=red,linewidth=3pt]{0}{4.5}%

{x RadtoDeg cos 2 mul 2.5 add}

psline[linestyle=dashed](0,2.5)(4.5,2.5)

hend{pspicture}
```

9.12. Options xyDecimals, xDecimals and yDecimals

Syntax:

```
xyDecimals=<number>
xDecimals=<any>
yDecimals=<any>
```

By default the labels of the axes get numbers with or without decimals, depending on the numbers itself. With these options it is possible to determine the decimals, where the option xyDecimals sets this identical for both axes. xDecimals only for the x and yDecimals only for the y axis. The default setting {} means, that you'll get the standard behaviour.

9.13. Options trigLabels, xtrigLabels, ytrigLabels, and trigLabelBase for an axis with trigonmetrical units

With the option trigLabels=true *only* the labels on the x axis are trigonometrical ones. It is the same than setting xtrigLabels=true. The option trigLabelBase sets

the denominator of fraction. The default value of 0 is the same as no fraction. The following constants are defined in the package:

```
\def\psPiFour\{12.566371\}
\def\psPiTwo\{6.283185\}
\def\psPi\{3.14159265\}
\def\psPiH\{1.570796327\}
\newdimen\pstRadUnit
\newdimen\pstRadUnitInv
\pstRadUnit=1.047198cm % this is pi/3
\pstRadUnitInv=0.95493cm % this is 3/pi
```

Because it is a bit complicated to set the right values, we show some more examples here. For **all** following examples in this section we did a global

```
\psset{trigLabels,labelFontSize=\scriptstyle}
```

Translating the decimal ticks to trigonometrical ones makes no real sense, because every 1 xunit (1cm) is a tick and the last one is at 6cm.

```
begin{pspicture}(-0.5,-1.25)(6.5,1.25)%

pnode(5,0){A}%

psaxes{->}(0,0)(-.5,-1.25)(\psPiTwo,1.25)

end{pspicture}
```

```
begin{pspicture}(-0.5,-1.25)(6.5,1.25)%

psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)
    (\psPiTwo,1.25)

end{pspicture}
```

Modifying the ticks to have the last one exactly at the end is possible with a different dx value ($\frac{\pi}{3} \approx 1.047$):

```
1 \begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode(\
    psPiTwo,0){C}%
2 \psaxes[dx=\pstRadUnit]{->}(0,0)(-0.5,-1.25)
    (\psPiTwo,1.25)
3 \end{pspicture}%
```

Set everything globally in radian units. Now 6 units on the x-axis are 6π . Using trigLabelBase=3 reduces this value to 2π , a.s.o.

```
psset{xunit=\pstRadUnit}%
begin{pspicture}(-0.5,-1.25)(6.5,1.25)\pnode
  (6,0){D}%

psaxes{->}(0,0)(-0.5,-1.25)(6.5,1.25)%
end{pspicture}%
```

```
\psset{xunit=\pstRadUnit}%
\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
  \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)
  (6.5,1.25)
\end{pspicture}%
```

```
| \psset{xunit=\pstRadUnit}%
| \begin{pspicture}(-0.5,-1.25)(6.5,1.25)
| \psaxes[trigLabelBase=4]{->}(0,0)(-0.5,-1.25)
| (6.5,1.25)
| \end{pspicture}%
```


The best way seems to be to set the x-unit to \pstRadUnit. Plotting a function doesn't consider the value for trigLabelBase, it has to be done by the user. The first example sets the unit locally for the \psplot back to 1cm, which is needed, because we use this unit on the PostScript side.


```
\psset{xunit=\pstRadUnit}%
\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
\psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)
(6.5,1.25)
\psplot[xunit=lcm,linecolor=red,linewidth=1.5
pt]{0}{\psPiTwo}{x RadtoDeg sin}
\end{pspicture}
```

```
1 \psset{xunit=\pstRadUnit}%
2 \begin{pspicture}(-0.5,-1.25)(6.5,1.25)
3 \psaxes[trigLabelBase=3]{->}(0,0)(-0.5,-1.25)
(6.5,1.25)
4 \psplot[linecolor=red,linewidth=1.5pt]{0}{6}{
    x Pi 3 div mul RadtoDeg sin}
5 \end{pspicture}
```

```
1 \psset{xunit=\pstRadUnit}%
2 \begin{pspicture}(-0.5,-1.25)(6.5,1.25)
3 \psaxes[dx=1.5]{->}(0,0)(-0.5,-1.25)(6.5,1.25)
4 \psplot[xunit=0.5cm,linecolor=red,linewidth=1.5pt]{0}{\psPiFour}{x RadtoDeg sin}
5 \end{pspicture}
```

```
\psset{xunit=\pstRadUnit}%
\begin{pspicture}(-0.5,-1.25)(6.5,1.25)
  \psaxes[dx=0.75,trigLabelBase=2]{->}(0,0)
    (-0.5,-1.25)(6.5,1.25)
  \psplot[xunit=0.5cm,linecolor=red,linewidth
    =1.5pt]{0}{\psPiFour}{x RadtoDeg sin}
\end{pspicture}
```

It is also possible to set the x unit and dx value to get the labels right. But this needs some more understanding as to how it really works. A xunit=1.570796327 sets the unit to $\pi/2$ and a dx=0.666667 then puts at every 2/3 of the unit a tick mark and a label. The length of the x-axis is 6.4 units which is $6.4 \cdot 1.570796327cm \approx 10cm$. The function then is plotted from 0 to $3\pi = 9.424777961$.


```
begin{pspicture}(-0.5,-1.25)(10,1.25)

psaxes[xunit=\psPiH, trigLabelBase=3, dx=0.666667]{->}(0,0)(-0.5,-1.25)
    (6.4,1.25)

psplot[linecolor=red,linewidth=1.5pt]{0}{9.424777961}{%
    x RadtoDeg dup sin exch 1.1 mul cos add}
end{pspicture}
```



```
psset{unit=1cm}
psplot[xunit=0.25,plotpoints=500,linecolor=red,linewidth=1.5pt]{0}{37.70}{%
    x RadtoDeg dup sin exch 1.1 mul cos add}

end{pspicture}
```



```
psset{unit=1cm}
begin{pspicture}(-0.5,-1.25)(10,1.25)

psplot[xunit=0.0625,linecolor=red,linewidth=1.5pt,%

plotpoints=5000]{0}{150.80}%

{x RadtoDeg dup sin exch 1.1 mul cos add}

psaxes[xunit=\psPi,dx=0.5,Dx=8]{->}(0,0)(-0.25,-1.25)(3.2,1.25)

end{pspicture}
```



```
begin{pspicture}(-7,-1.5)(7,1.5)

psaxes[trigLabels=true,xunit=\psPi]{->}(0,0)(-2.2,-1.5)(2.2,1.5)

psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}

end{pspicture}
```



```
begin{pspicture}(-7,-1.5)(7,1.5)

psaxes[trigLabels=true,
   trigLabelBase=2,dx=\psPiH,xunit=\psPi]{->}(0,0)(-2.2,-1.5)(2.2,1.5)

psplot[linecolor=red,linewidth=1.5pt]{-7}{7}{x RadtoDeg sin}

end{pspicture}
```

The setting of trigonometrical labels with ytriglabels=true for the y axis is the same as for the x axis.


```
psset{unit=1cm}
begin{pspicture}(-6.5,-7)(6.5,7.5)

psaxes[trigLabelBase=2,dx=\psPiH,xunit=\psPi,ytrigLabels]
{->}(0,0)(-1.7,-6.5)(1.77,6.5)[$x$,0][$y$,90]

end{pspicture}
```

Also setting labels for the x axis is possible with trigLabels=trueor alternatively with ytrigLabels=true.


```
psset{unit=1cm}
begin{pspicture}(-6.5,-7)(6.5,7.5)
psaxes[trigLabelBase=2,dx=\psPiH,xunit=\psPi,xtrigLabels,ytrigLabels]
{->}(0,0)(-1.7,-6.5)(1.77,6.5)[$x$,0][$y$,90]
end{pspicture}
```

9.14. Option ticks

9.14. Option ticks

Syntax:

ticks=all|x|y|none

This option was already in the pst-plot package and only mentioned here for some completeness.

```
\psset{ticksize=6pt}
        1
                                         \begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{begin} & \textbf{pspicture} & \textbf{(-1,-1)} & \textbf{(2,2)} \end{array} \end{array}
                                         \psaxes[ticks=all,subticks=5]{->}(0,0)(-1,-1)(2,2)
                                          \end{pspicture}
                    1
     -1
                                          \begin{array}{l} \begin{array}{l} \textbf{begin} & (-1, -1) & (2, 2) \end{array} \end{array}
      1
                                         psaxes[ticks=y, subticks=5]{->}(0,0)(-1,-1)(2,2)
                                          \end{pspicture}
-1
    -1
             2
                                         \begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{begin} \{ pspicture \} (-1,-1) (2,2) \end{array} \end{array}
              1
                                         \proonup saxes[ticks=x, subticks=5]{->}(0,0)(2,2)(-1,-1)
                             2
                    1
                                          \end{pspicture}
             2
                                         \begin{array}{c} \begin{array}{c} \mathbf{begin} \{ pspicture \} (-1, -1) (2, 2) \end{array} \end{array}
             1
                                         \proonup subticks=5] {->} (0,0) (2,2) (-1,-1)
                             2
                    1
                                          \end{pspicture}
```

9.15. Option tickstyle

Syntax:

```
tickstyle=full|top|bottom|inner
```

The value inner is only possible for the axes style frame.


```
psset{subticks=10}
begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=full]{->}(3,3) \end{pspicture}
begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=top]{->}(3,3) \end{pspicture}
begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=bottom]{->}(3,3)\end{pspicture}
begin{pspicture}(-1,-1)(3,3) \psaxes[tickstyle=bottom]{->}(3,3)\end{pspicture}
}
begin{pspicture}(-1,-1)(3,3) \psaxes[axesstyle=frame, tickstyle=inner, ticksize=0 4pt]{->}(3,3)
end{pspicture}
```

9.16. Options ticksize, xticksize, yticksize

With this new option the recent tickstyle option of pst-plot is obsolete and no longer supported by pstricks-add.

Syntax:

```
ticksize=value[unit]
ticksize=value[unit] value[unit]
xticksize=value[unit]
xticksize=value[unit] value[unit]
yticksize=value[unit]
yticksize=value[unit] value[unit]
```

ticksize sets both values. The first one is left/below and the optional second one is right/above of the coordinate axis. The old setting tickstyle=bottom is now easy to

realize, e.g.: ticksize=-6pt 0, or vice versa, if the coordinates are set from positive to negative values.

A grid is also possible by setting the values to the max/min coordinates.

9.17. Options subticks, xsubticks, and ysubticks

Syntax:

```
subticks=<number>
xsubticks=<number>
ysubticks=<number>
```

By default subticks cannot have labels.

9.18. Options subticksize, xsubticksize, ysubticksize

subticksize sets both values, xsubticksize only for the x-axis and ysubticksize only for the y-axis, which must be relative to the ticksize length and can have any number. 1 sets it to the same length as the main ticks.

Syntax:

```
subticksize=value
xsubticksize=value
ysubticksize=value
```



```
psset{yunit=1.5cm,xunit=3cm}
begin{pspicture}(-1.25,-4.75)(3.25,.75)

psaxes[xticksize=-4.5 0.5,ticklinestyle=dashed,subticks=5,xsubticksize=1,%
ysubticksize=0.75,xsubticklinestyle=dotted,xsubtickwidth=1pt,
subtickcolor=gray]{->}(0,0)(-1,-4)(3.25,0.5)
end{pspicture}
```

9.19. Options tickcolor, xtickcolor, ytickcolor, subtickcolor, xsubtickcolor, and ysubtickcolor

Syntax:

```
tickcolor=<color>
xtickcolor=<color>
ytickcolor=<color>
subtickcolor=<color>
xsubtickcolor=<color>
ysubtickcolor=<color>
```

tickcolor and subtickcolor set both for the x- and the y-Axis.


```
begin{pspicture}(0,-0.75)(10,1)
psaxes[yAxis=false,labelFontSize=\scriptstyle,ticksize=0 10mm,subticks=10,
    subticksize=0.75,
    tickcolor=red,subtickcolor=blue,tickwidth=1pt,subtickwidth=0.5pt](10.01,0)
end{pspicture}
```


9.20. Options ticklinestyle, xticklinestyle, yticklinestyle, subticklinestyle, xsubticklinestyle, and ysubticklinestyle

Syntax:

```
ticklinestyle=solid|dashed|dotted|none
xticklinestyle=solid|dashed|dotted|none
yticklinestyle=solid|dashed|dotted|none
subticklinestyle=solid|dashed|dotted|none
xsubticklinestyle=solid|dashed|dotted|none
ysubticklinestyle=solid|dashed|dotted|none
```

ticklinestyle and subticklinestyle set both values for the x and y axis. The value none doesn't really makes sense, because it is the same as [sub]ticklines=0


```
psset{unit=4cm}
pspicture(-0.15,-0.15)(2.5,1)

psaxes[axesstyle=frame,logLines=y,xticksize=0 1,xsubticksize=1,ylogBase=10,
    tickcolor=red,subtickcolor=blue,tickwidth=1pt,subticks=9,xsubticks=10,
    xticklinestyle=dashed,xsubticklinestyle=dashed](2.5,1)
endpspicture
```

9.21. logLines

Syntax:

```
logLines=all|x|y
```

By default the option logLines sets the ticksize to the maximal length for x, y, or both. It can be changed, when *after* the option logLines the ticksize is set.

9.21. logLines **51**


```
pspicture(-1,-1)(5,5)
psaxes[subticks=5,xylogBase=10,logLines=all](5,5)

endpspicture\hspace{1cm}
pspicture(-1,-1)(5,5)
psaxes[subticks=9,axesstyle=frame,xylogBase=10,logLines=all, ticksize=0 5pt,tickstyle=inner](5,5)
endpspicture
```



```
psset{unit=4cm}
pspicture(-0.15,-0.15)(2.5,2)
psaxes[axesstyle=frame,logLines=y,xticksize=max,xsubticksize=1,ylogBase=10,
    tickcolor=red,subtickcolor=blue,tickwidth=1pt,subticks=9,xsubticks
    =10](2.5,2)
endpspicture
```


9.22. xylogBase, xlogBase and ylogBase

There are additional options xylogBase, xlogBase, ylogBase to get one or both axes with logarithmic labels. For an interval of $[10^{-3}...10^2]$ choose a PSTricksinterval of [-3,2]. PSTrickstakes 0 as the origin of this axes, which is wrong if we want to have a logarithmic axes. With the options 0y and 0x we can set the origin to -3, so that the first label gets 10^{-3} . If this is not done by the user then pst-plot does it by default. An alternative is to set these parameters to empty values $0x=\{\}$, $0y=\{\}$, in this case the package does nothing.

9.23. xylogBase

This mode in math is also called double logarithmic. It is a combination of the two foregoing modes and the function is now $y = \log x$ and is shown in the following example.

9.24. ylogBase **53**


```
begin{pspicture}(-3.5,-3.5)(3.5,3.5)

psplot[linewidth=2pt,linecolor=red
        ]{0.001}{3}{x log}

psaxes[xylogBase=10,0y=-3,0x
        =-3]{->}(-3,-3)(3.5,3.5)

uput[-90](3.5,-3){x}

uput[180](-3,3.5){y}

rput(2.5,1){$y=\log x$}

end{pspicture}
```

9.24. ylogBase

The values for the \psaxes y-coordinate are now the exponents to the base 10 and for the right function to the base e: $10^{-3} \dots 10^1$ which corresponds to the given y-interval $-3 \dots 1.5$, where only integers as exponents are possible. These logarithmic labels have no effect on the internally used units. To draw the logarithm function we have to use the math function

$$y = \log\{\log x\}$$
$$y = \ln\{\ln x\}$$

with an drawing interval of 1.001...6.

9.24. ylogBase 54

```
\begin{pspicture}(-0.5,-3.5)(6.5,1.5)
                                                                                                                                              y = \ln x
                                                                                                                                                                                                                                           \psplot[linewidth=2pt,plotpoints=100,
                                                                                                                                                                                                                                                    linecolor=red]%
     e^0
                                                                                                                                                                                                                                                   \{1.04\}\{6\}[ /ln \{\log 0.4343 \text{ div}\} \text{ def}
                                                                                                                                                                                                                                                             ]{x ln ln} % log(x)
                                                                                                                                                                                                                                           \proonup \psaxes[ylogBase=e,0y=-3]{->}(0,-3)
e^{-1}
                                                                                                                                                                                                                                                     (6.5, 1.5)
                                                                                                                                                                                                                                           \uput[-90](6.5,-3)\{x\}
e^{-2}
                                                                                                                                                                                                                                           \uput[0](0,1.5){y}
                                                                                                                                                                                                                                           \rule (5,1)  {$y=\ln x$}
e^{-3}
                                                                                                                                                                                                                                     \end{pspicture}
 10^4
                                                                                                                                                                                                                                           \begin{pspicture}(-0.5,1.75)(6.5,4.5)
                                                                                                                                                                                                                                                   psaxes[ylogBase=10,0y=2]{->}(0,2)
                                                                                                                                                                                                                                                             (0,2)(6.5,4.5)
 10^{3}
                                                                                                                                                                                                                                           \end{pspicture}
 10^{2}
                                                                                                       3
                                                                                                                                   4
                                                                                                                                                              5
                                                                                                                                                                                                                                           \begin{pspicture}(-0.5,-0.25)
 10^{4}
                                                                                                                                                                                                                                                     (6.5, 4.5)
                                                                                                                                                                                                                                                   \protect\ (0){6}{x x cos add log}
10^3
                                                                                                                                                                                                                                                                                                          % x + cox(x)
                                                                                                                                                                                                                                                   \psplot[linecolor=red]{0}{6}{x 3 exp
                                                                                                                                                                                                                                                                 x cos add log} % x^3 + cos(x)
 10^{2}
                                                                                                                                                                                                                                                   \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
                                                                                                                                                                                                                                                            exp x cos add log % x^5 + cos(x)
  10^{1}
                                                                                                                                                                                                                                                   \psaxes[ylogBase=10]{->}(6.5,4.5)
                                                                                                                                                                                                                                           \end{pspicture}
 10^{0}
                                                                                                                                                              5
 10^{5}
                                                                                                                                                                                                                                   \begin{pspicture}(-0.5,-1.25)(6.5,4.5)
                                                                                                                                                                                                                                           \protect\ (0){6}{x x cos add log}
10^{4}
                                                                                                                                                                                                                                                                                                  % x + cox(x)
                                                                                                                                                                                                                                           \psplot[linecolor=red]{0}{6}{x 3 exp
                                                                                                                                                                                                                                                    x cos add log % x^3 + cos(x)
  10^{3}
                                                                                                                                                                                                                                           \protect{\protect} \protect{\p
                                                                                                                                                                                                                                                         x \cos add \log  % x^5 + \cos(x)
  10^2
                                                                                                                                                                                                                                           psaxes[ylogBase=10]{->}(0,-1)(0,-1)
                                                                                                                                                                                                                                                      (6.5, 4.5)
 10^{1}
                                                                                                                                                                                                                                    \end{pspicture}
 10^{0}
                                                                                                       3
```

9.25. xlogBase **55**

9.25. xlogBase

Now we have to use the easy math function y = x because the x axis is still $\log x$.

```
y
 3
 2
                                               y = \log x
 1
 0
                                y = \ln x
-1
-2
-3
                                                        _{10^3} X
                    10^{-1}
   10^{-3}
                                                10^2
           10^{-2}
                              10^{0}
                                       10^{1}
```

```
begin{pspicture}(-3.5,-3.5)(3.5,3.5)

psplot[linewidth=2pt,linecolor=red
        ]{-3}{3}{x} % log(x)

psplot[linewidth=2pt,linecolor=blue
        ]{-1.3}{1.5}{x 0.4343 div} % ln(x)

psaxes[xlogBase=10,0y=-3,0x
        =-3]{->}(-3,-3)(3.5,3.5)

uput[-90](3.5,-3){x}

uput[180](-3,3.5){y}

rput(2.5,1){$y=\log x$}

rput[lb](0,-1){$y=\ln x$}

end{pspicture}
```



```
1 \psset{yunit=3cm, xunit=2cm}
2 \begin{pspicture}(-1.25, -1.25)(4.25, 1.5)
3 \uput[-90](4.25, -1){x}
```

```
4 \uput[0](-1,1.25){y}
5 \rput(0,1){$y=\sin x$}
6 \psplot[linewidth=2pt,plotpoints=5000,linecolor=red]{-1}{3.5}{10 x exp sin }
7 \psaxes[xlogBase=10,0x=-1,0y=-1]{->}(-1,-1)(4.25,1.25)
8 \psline[linestyle=dashed](-1,0)(4,0)
9 \psline[linestyle=dashed](!-1 1)(!90 log 1)(!90 log -1)
10 \psline[linestyle=dashed](!90 log 1)(!180 log 1)(!180 log -1)
11 \end{pspicture}
```


9.26. No logstyle (xylogBase={})

This is only a demonstration that the default option $=\{\}$ still works ... :-)

9.27. Option tickwidth and subtickwidth


```
psset{arrowscale=3,arrows=-D>,yAxis=false}
psaxes[subticks=8](0,0)(-5,-1)(5,1)\\[1cm]
psaxes[subticks=4,ticksize=-4pt 0,xlabelPos=top](0,0)(5,1)(-5,-1)\\
psaxes[subticks=4,ticksize=-10pt 0](0,0)(-5,-5)(5,5)\\[1cm]
psaxes[subticks=10,ticksize=0 -10pt](0,0)(-5,-5)(5,5)\\[1cm]
psaxes[subticks=4,ticksize=0 10pt,xlabelPos=bottom](0,0)(5,5)(-5,-5)\\[1cm]
psaxes[subticks=4,ticksize=0 -10pt,xlabelPos=top](0,0)(5,5)(-5,-5)\\[1cm]
psaxes[subticks=0](0,0)(-5,-5)(5,5)\\[1cm]
psaxes[subticks=0,tickcolor=red,linecolor=blue,xlabelPos=top](0,0)(5,5)(-5,-5)\\
psaxes[subticks=5,tickwidth=2pt,subtickwidth=1pt](0,0)(-5,-5)(5,5)\\[1cm]
psaxes[subticks=0,tickcolor=red,xlabelPos=top](0,0)(5,5)(-5,-5)\\
psaxes[subticks=0,tickcolor=red,xlabelPos=top](0,0)(5,5)(-5,-5)\\
```



```
pspicture(5,5.5)
psaxes[subticks=4,ticksize=6pt,subticksize
=0.5,%
tickcolor=red,subtickcolor=blue]{->}(5.4,5)
endpspicture
```



```
psset{axesstyle=frame}
pspicture(5,5.5)
psaxes[subticks=4,tickcolor=red,subtickcolor=blue](5,5)
pendpspicture
```


10. New options for \readdata

By default the macro \readdata reads every data record, which could be annoying when you have some text lines at top of your data files or when there are more than 10000 records to read.

pst-plot defines two additional keys ignoreLines and nStep, which allows you to ignore preceding lines, e.g. ignoreLines=2, or to read only a selected part of the data records, e.g. nStep=10, only every 10^{th} record is saved.

```
\readdata[ignoreLines=2]{\dataA}{stressrawdata.data}
\readdata[nStep=10]{\dataA}{stressrawdata.data}
```

The default value for ignoreLines is 0 and for nStep is 1. the following data file has two text lines which shall be ignored by the \readdata macro:

11. New options for \listplot

By default the plot macros \dataplot, \fileplot and \listplot plot every data record. There are noew additional keys nStep, nStart, nEnd, and xStep, xStart, xEnd, which allows to plot only a selected part of the data records, e.g. nStep=10. These "'n"' options mark the number of the record to be plotted (0,1,2,...) and the "'x"' ones the x-values of the data records.

The new options are only available for the \listplot macro, which is not a real limitation, because all data records can be read from a file with the \readdata macro (see example files or [?]):

```
\readdata[nStep=10]{\data}{/home/voss/data/data1.data}
```

The use nStep and xStep options only make real sense when also using the option plotstyle=dots . Otherwise the coordinates are connected by a line as usual. Also the xStep option needs increasing x values. Note that nStep can be used for \readdata and for \listplot. If used in both macros then the effect is multiplied, e.g. \readdata with nStep=5 and \listplot with nStep=10 means, that only every 50^{th} data record is read and plotted.

When both, x/yStart/End are defined then the values are also compared with both values.

11.1. Options nStep, xStep, and yStep

The datafile data.data contains 1000 data records. The thin blue line is the plot of all records with the plotstyle option curve.


```
readdata{\data}{data.data}

psset{xunit=12.5cm, yunit=0.2mm}

begin{pspicture}(-0.080, -30)(1,270)

pstScalePoints(1,1){1000 div}{1000 div}

psaxes[Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
    subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)

listplot[nStep=50,linewidth=3pt,linecolor=red,plotstyle=dots]{\data}

listplot[linewidth=1pt,linecolor=blue]{\data}

end{pspicture}
```



```
| \readdata{\data}{\data.data}
| \psset{xunit=12.5cm, yunit=0.2mm}
| \psgin{pspicture}(-0.080, -30)(1,270)
| \pstScalePoints(1,1){1000 div}{1000 div}
| \psaxes[Dx=200, dx=2.5cm, Dy=100, ticksize=0 5pt, tickstyle=inner,
| subticks=10, ylabelFactor=\cdot10^3, dy=2cm](0,0)(1,250)
| \listplot[xStep=100, linewidth=2pt, linecolor=red, plotstyle=dots]{\data}
| \multido{\rA=0.1+0.1}{9}{%
| \psline[linecolor=black!40, linestyle=dashed](\rA,0)(\rA,250)}
| \listplot[yStep=50000, linewidth=2pt, linecolor=blue, plotstyle=dots]{\data}
| \multido{\nA=50+50}{5}{%
| \psline[linecolor=black!40, linestyle=dashed](0, \nA)(1, \nA)}
| \listplot[linewidth=0.5pt]{\data}
| \lend{pspicture}
| \end{pspicture}
```

11.2. Options nStart and xStart


```
readdata{\data}{data.data}
psset{xunit=12.5cm, yunit=0.2mm}
begin{pspicture}(-0.080, -30)(1,270)

pstScalePoints(1,1){1000 div}{1000 div}

psaxes[Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
    subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)

listplot[nStart=200,linewidth=3pt,
    linecolor=blue,plotstyle=dots]{\data}

listplot[linewidth=1pt,linecolor=blue]{\data}

end{pspicture}
```

11.3. Options nEnd and xEnd


```
readdata{\data}{data.data}

psset{xunit=12.5cm, yunit=0.2mm}

begin{pspicture}(-0.080, -30)(1,270)

pstScalePoints(1,1){1000 div}{1000 div}

psaxes[axesstyle=frame,Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
    subticks=10,ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)

listplot[nStart=200,linewidth=3pt,
    linecolor=blue]{\data}

listplot[linewidth=1pt,linecolor=blue]{\data}

end{pspicture}
```

11.4. Options yStart and yEnd


```
1  \readdata{\data}{data.data}
2  \psset{xunit=12.5cm,yunit=0.2mm}
3  \begin{pspicture}(-0.080,-30)(1,270)
4  \pstScalePoints(1,1){1000 div}{1000 div}
5  \psaxes[axesstyle=frame,Dx=200,dx=2.5cm,Dy=100,ticksize=0 5pt,tickstyle=inner,
6    ylabelFactor=\cdot10^3,dy=2cm](0,0)(1,250)
7  \psset{linewidth=0.1pt, linestyle=dashed,linecolor=red}
8  \psline(0,40)(1,40)
9  \psline(0,175)(1,175)
10  \listplot[yStart=40000, yEnd=175000,linewidth=3pt,linecolor=blue,plotstyle=dots]{\data}
11 \end{pspicture}
```

11.5. Options plotNo, plotNoX, and plotNoMax

By default the plot macros expect $x \mid y$ data records, but when having data files with multiple values for y, like:

```
x y1 y2 y3 y4 ... yMax
x y1 y2 y3 y4 ... yMax
...
```

you can select the y value which should be plotted. The option plotNo marks the plotted value (default 1) and the option plotNoMax tells pst-plot how many y values are present. There are no real restrictions in the maximum number for plotNoMax.

We have the following data file:

```
[% file data.data
0 0 3.375 0.0625
10 5.375 7.1875 4.5
20 7.1875 8.375 6.25
30 5.75 7.75 6.6875
40 2.1875 5.75 5.9375
50 -1.9375 2.1875 4.3125
60 -5.125 -1.8125 0.875
```

```
70 -6.4375 -5.3125 -2.6875

80 -4.875 -7.1875 -4.875

90 0 -7.625 -5.625

100 5.5 -6.3125 -5.8125

110 6.8125 -2.75 -4.75

120 5.25 2.875 -0.75

]%
```

which holds data records for multiple plots (x y1 y2 y3). This can be plotted without any modification to the data file:

It is also possible to select another column for the x-value. Suppose we have a data base with records like x y y x y, then it is by default a record with one x value and four possible y values. We still have to define plotNoMax=4. However, it is possible to select the forth value as new x value by setting plotNoX=4 (it is preset to 1). Then the forth value is taken as x. The example uses the the following data set.

```
% X1 X2 Y1 Y2
2 55.1500 10.35 11.26
31 59.7167 11.06 11.11
```

```
34 65.7167 11.87 10.83

40 62.1833 11.59 11.19

45 56.0500 10.74 11.50

47 68.2667 12.65 11.11

52 69.7500 13.23 11.38

55 76.3333 14.28 11.22

59 75.4000 14.69 11.69

62 78.6000 15.25 11.64

66 69.3167 14.06 12.17

69 77.5500 15.24 11.79

73 70.8833 14.52 12.29

75 60.6167 13.10 12.97

79 68.3833 14.43 12.66

82 56.6833 12.05 12.75

87 95.1333 21.10 13.31
```



```
1 \readdata{\data}{demo.txt}
2 \psset{xAxisLabel={},yAxisLabel={},llx=-5mm}
3 \begin{psgraph}[axesstyle=frame,Dy=5,Dx=10,ticksize=5pt 0](0,0)(100,25){10cm}
}{8cm}
4 \psset{dotstyle=square,dotscale=1.5,linewidth=1.5pt}
5 \listplot[plotNoMax=3,plotNo=2,linecolor=red,plotstyle=dots]{\data}
6 \listplot[plotNoMax=3,plotNoX=2,plotNo=3,linecolor=blue,plotstyle=dots]{\data}
7 \end{psgraph}
```

11.6. Option changeOrder

It is only possible to fill the region between two listplots with \pscustom if one of them has the values in reverse order. Otherwise we do not get a closed path. With the option ChangeOrder the values are used in reverse order:


```
\begin{filecontents*}{test.data}
   0 3 8
   2 4 7
   5 5 5.5
   7 3.5 5
   10 2 9
  \end{filecontents*}
  \psset{lly=-.5cm}
  \begin{psgraph}[axesstyle=frame,ticklinestyle=dotted,ticksize=0 10](0,0)
    (10,10){4in}{2in}
10 \readdata{\data}{test.data}%
11 \pscustom[fillstyle=solid,fillcolor=blue!40]{%
   \listplot[plotNo=2,plotNoMax=2]{\data}%
   \listplot[plotNo=1,plotNoMax=2,ChangeOrder]{\data}}
13
14 \end{psgraph}
```

12. New plot styles 71

12. New plot styles

12.1. Plot style colordot and option Hue

The plotted dots can be colored with the HSB color model, where Hue is set by an angle (0...360) and the values of Saturation and Brightnes are set by the relative y value of the data records. The default value for Hue is 180.

12.2. Plot style bar and option barwidth

This option allows you to draw bars for the data records. The width of the bars is controlled by the option barwidth, which is set by default to value of $0.25 \, \text{cm}$, which is the total width.


```
psset{xunit=.44cm,yunit=.3cm}
begin{pspicture}(-2,-3)(29,13)

psaxes[axesstyle=axes,0x=1466,0y=0,Dx=4,Dy=2,xticksize=-6pt 0,
    ylabelFactor={\,\%}]{-}(29,12)

listplot[shadow=true,linecolor=blue,plotstyle=bar,barwidth=0.3cm,
    fillcolor=red,fillstyle=solid]{\barData}

rput{90}(-3,6.25){Amount}
end{pspicture}
```



```
psset{xunit=.44cm,yunit=.3cm}
begin{pspicture}(-2,-3)(29,13)
  \psaxes[axesstyle=axes,0x=1466,0y=0,Dx=4,Dy=2,ticksize=-4pt 0,
    ylabelFactor={\,\%}]{-}(29,12)
  \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm,
    fillcolor=red,fillstyle=crosshatch]{\barData}
  \rput{90}(-3,6.25){Amount}
end{pspicture}
```



```
psset{xunit=.44cm,yunit=.3cm}
begin{pspicture}(-2,-3)(29,13)
   \psaxes[axesstyle=axes,0x=1466,0y=0,Dx=4,Dy=2,ticksize=-4pt 0,
   ylabelFactor={\,\%}]{-}(29,12)
   \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm,
    fillcolor=red,fillstyle=vlines]{\barData}
   \listplot[showpoints=true]{\barData}
   \rput{90}(-3,6.25){Amount}
end{pspicture}
```

Interrupted bar plot

The new keywords interrupt takes three comma separated values: the value, when the interrupted y axis is interruptes, the separation for the drawn tilde and the value for the inrrupted section, e.g. interrupt= $\{15,1,30\}$.


```
1 \psset{xunit=.44cm, yunit=.3cm}
  \begin{pspicture}(-2,-3)(29,32)
  \psaxes[axesstyle=axes,ticksize=-4pt 0,Dy=2,Dx=2](29,15)
  \rput(0,15.4){\textbf{\huge$\approx$}}
  \rput(0,16){\psaxes[xAxis=false,ticksize=-4pt 0,
   Dy=2,0y=46,Dx=2](29,15)
  \psset{interrupt={15,1,30}}
  \listplot[linecolor=red,plotstyle=bar,barwidth=0.3cm,
  fillcolor=red!30,fillstyle=solid]{
  0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 10 2
11 11 1 12 50 13 55 14 14 15 7 16 9 17 7 18 4
12 19 2 20 3 21 0 22 0 23 0 24 1 25 2 % 1st example
13 }
  \listplot[linecolor=blue,plotstyle=bar,barwidth=0.3cm,
14
  fillcolor=blue!30, fillstyle=solid, opacity=0.5]{
16 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 3 10 10
17 11 11 12 8 13 61 14 10 15 13 16 3 17 1 18 0
  19 0 20 2 21 0 22 0 23 0 24 0 25 0 % 2nd exa
18
19 }
 \listplot[linecolor=green,plotstyle=bar,barwidth=0.3cm,
  fillcolor=green!30,fillstyle=solid,opacity=0.5]{
22 0 0 1 0 2 0 3 0 4 1 5 0 6 0 7 0 8 0 9 3 10 4
23 11 11 12 59 13 11 14 12 15 7 16 3 17 1 18 0
24 19 0 20 2 21 0 22 1 23 0 24 0 25 0 % 3rd exa
25
  \end{pspicture}
```

12.3. Plot style ybar

With the setting plotstyle=ybar the graph is set with horizontal bars instead of vertical. For yLabels see section ??. .

Frequency of Winning the Final

12.4. Plotstyle LSM 75

```
\savedata{\data}[1 1 1 2 1 3 2 4 3 5 4 6 4 7 6 8 6 9 7 10 25 11 30 12 32 13]

\psset{llx=-1.5cm,lly=-1.5cm,xAxisLabel=\textbf{Frequency of Winning the Final},

xAxisLabelPos={c,-1cm},yAxisLabel=,yLabels={,Kerry,Laois,London,Waterford,Clare,Offaly,
Galway,Wexford,Dublin,Limerick,Tipperary,Cork,Kilkenny}}

\textbegin{psgraph}[axesstyle=frame,labels=x,ticksize=-4pt 0,Dx=5](0,0)(35,14){10}
cm}{7cm}

\listplot[plotstyle=ybar,fillcolor=blue!20,linecolor=blue,barwidth=4mm,fillstyle=solid]{\data}
\listplot[plotstyle=xvalues,labelsep=5pt]{\data}
\end{psgraph}
```

12.4. Plotstyle LSM

With the setting plotstyle=LSM (Least Square Method) the data records are not printed in the usual way as dots or a line, the \listplot macro calculates the values for y_a line $y = v \cdot x + u$ which fits best all data records.


```
begin{filecontents*}{LSM.data}
0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7

end{filecontents*}

psset{lly=-.5cm}
readdata{\data}{LSM.data}
begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}

listplot[plotstyle=dots]{\data}
   \listplot[plotstyle=LSM, linecolor=red]{\data}
end{psgraph}
```

12.4. Plotstyle LSM 76

The macro looks for the lowest and biggest x-value and draws the line for this interval. It is possible to pass other values to the macro by setting the xStart and/or xEnd options.

y=0.755679 x+1.84105

```
begin{filecontents*}{LSM.data}
0 1 1 3 2.8 4 3 2.9 2 5 4 4 5 5.5 6 8.2 8 7

end{filecontents*}

readdata{\data}{LSM.data}

psset{lly=-1.75cm}
begin{psgraph}[arrows=->](0,0)(0,0)(8,8){.5\textwidth}{!}

listplot[plotstyle=dots]{\data}

listplot[PstDebug,plotstyle=LSM,xStart=-0.5,xEnd=8.5,linecolor=red]{\data}
end{psgraph}
```

With PstDebug one gets the equation $y = v \cdot x + u$ printed, beginning at the position (0|-50pt). This cannot be changed, because it is only for some kind of debugging. Pay attention for the correct xStart and xEnd values, when you use the \pstScalePoints Macro. In the following example we use an x-interval from 0 to 3 to plot the values; first we subtract 0.003 from all x-values and then scale them with 10000. This is not taken into account for the xStart and xEnd values.

12.4. Plotstyle LSM 77

y=-0.304095 x+2.27634

```
begin{filecontents*}{LSM.data}
0.003298697 1.397785583
0.003193358 1.615489564
0.003094538 2.044019006
0.003001651 2.259240127
end{filecontents*}
readdata{\data}{LSM.data}

**pstScalePoints** (10000,1) { 0.003 sub }{}

psgraph[arrows=->,0x=0.0030,Dx=0.0001,dx=\psxunit](0,0)(3.2,3){10cm}{5cm}
\listplot[showpoints=true,linewidth=1pt,linecolor=blue]{\data}
\listplot[PstDebug=1,plotstyle=LSM,linewidth=0.1pt,linestyle=dashed,%
xStart=-0.25,xEnd=3.3]{\data}
\endpsgraph
```

12.5. Plotstyles values and values*

Instead of plotting the curve with the setting plotstyle=values the y-values are printed at the current point.

The possible optional arguments are PSfont, valuewidth, fontscale, and decimals. The default setting is:

\psset[pst-plot]{PSfont=Times-Roman,fontscale=10,valuewidth=10,decimals=-1}

The optional argument rot from the base package pstricks is also taken into account. With the star version plotstyle=values* the box of the printed value isn't transparent, everything behind this box is not seen.

12.6. Plotstyles xvalues and xvalues*

This is similar to the options values, except that it plots the x-values instead of the y-values. This maybe useful when also using the plotstyle ybar (see Section 12.3 on page 74).


```
1 \begin{pspicture}(-2.5,-.5)(2.5,5.5)
2 \psaxes{->}(0,0)(-2,0)(2,5.5)
3 \psplot{-2}{2}{x dup mul }
4 \psplot[plotstyle=xvalues,
5 plotpoints=10]{-2}{2}{x dup mul }
6 \end{pspicture}
```

13. Polar plots

13. Polar plots

With the option polarplot=false|true it is possible to use any plot command in polar mode:

```
\label{eq:command} $$ \ps????plot [polarplot,...] {<start angle>}{<end angle>}% $$ [PS command] {<r(alpha)>}$
```

The equation in PostScript code is interpreted as a function $r=f(\alpha)$, e.g. for the circle with radius 1 as $r=\sqrt{\sin^2 x + \cos^2 x}$, or $r=a*\frac{sin(x)*cos(x)}{(sin(x)^3+cos(x)^3)}$ for the following examples:

```
x sin dup mul x cos dup mul add sqrt
```



```
psset{plotpoints=200, unit=0.75}
begin{pspicture*}(-5, -5) (5.1, 5.1)
    \psaxes[arrowlength=1.75, ticksize=2pt, labelFontSize=\scriptstyle,
    linewidth=0.2mm]{->}(0,0) (-4.99, -4.99) (5,5) [x, -90] [y, 180]
    \rput[Br](-.15, -.35) {$0$} \psset{linewidth=.35mm, polarplot}
    \psplot[linecolor=red]{140}{310}{3 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div}

psplot[linecolor=cyan]{140}{310}{6 x sin mul x cos mul x sin 3 exp x cos 3 exp add div}

psplot[linecolor=blue,algebraic]{2.44}{5.41}{-8*sin(x)*cos(x)/(sin(x)^3+cos (x)^3)}
end{pspicture*}
```

13. Polar plots


```
psset{unit=0.5cm}
begin{pspicture}(-6,-6)(6,6)
psaxes[axesstyle=polar,labelFontSize=\scriptstyle,linewidth=0.2mm]{->}(6,6)
psset{linewidth=3pt,polarplot,plotpoints=500,plotstyle=curve}

psclip{\pscircle[linestyle=none]{6}}
psplot[linecolor=red]{140}{310}{3 neg x sin mul x cos mul x sin 3 exp x cos 3 exp add div}

psplot[linecolor=cyan]{140}{310}{6 x sin mul x cos mul x sin 3 exp x cos 3 exp add div}

psplot[linecolor=blue,algebraic]{2.44}{5.41}{-8*sin(x)*cos(x)/(sin(x)^3+cos(x)^3)}
endpsclip
end{pspicture}
```



```
psset{plotpoints=200,unit=1}
begin{pspicture}(-2.5,-2.5)(2.5,2.5)% Ulrich
Dirr

psaxes[arrowlength=1.75,%
    ticksize=2pt,linewidth=0.17mm]{->}%
    (0,0)(-2.5,-2.5)(2.5,2.5)[$x$,-90][$y$,180]
    rput[Br](-.15,-.35){$0$}
psset{linewidth=.35mm,plotstyle=curve,polarplot}
}
psplot[linecolor=red]{0}{360}{x cos 2 mul x sin mul}
psplot[linecolor=green]{0}{360}{x cos 3 mul x sin mul}
psplot[linecolor=blue]{0}{360}{x cos 4 mul x sin mul}
lend{pspicture}
```

13. Polar plots

14. New macros

14. New macros

14.1. \psCoordinates

```
\protect\ [Options] (x,y)
```



```
begin{pspicture}(-5mm,-1cm)(10,10)

psaxes{->}(10,10)

psplot[algebraic,linecolor=red,linewidth=2pt]{0}{10}{x^2/10}

psCoordinates(*2 {x^2/10})

psCoordinates[linecolor=blue,linestyle=dashed,
    dotstyle=square,dotscale=2](*4 {x^2/10})

psCoordinates[arrowscale=1.5,arrows=->](*6 {x^2/10})

psCoordinates[arrows=->,linecolor=blue,linestyle=dotted,
    dotstyle=triangle,dotscale=2](*8 {x^2/10})

psCoordinates[dotscale=2](*9 {x^2/10})

lend{pspicture}
```

14.2. \psFixpoint 84

14.2. \psFixpoint

```
\psFixpoint [Options] \{x_0\}\{f(x)\}\{n\}
```

 x_0 is the start value of the iteration, f(x) the function, which can either be in postfix or algebraic notation, for the latter it needs the optional argument algebraic. The number of the iteration is given by n.


```
begin{pspicture}[algebraic](-5mm,-1cm)(10,10)

psaxes{->}(10,10)

psplot[linecolor=red,linewidth=2pt]{0}{10}{sqrt(5*x)}

psline(10,10)

psFixpoint[linecolor=blue]{9.5}{sqrt(5*x)}{20}

psFixpoint[linestyle=dashed]{1}{sqrt(5*x)}{20}

end{pspicture}
```

14.3. \psNewton **85**

14.3. \psNewton

```
\psNewton [Options] \{x_0\}\{f(x)\} [f'(x)] \{n\}
```

If the optional derivation of the function f(x) is missing, then the macro itself calculates the derivation with an interval of ± 0.01 . It can be changed by setting the optional argument VarStepEpsilon to another value. If the derivation is also given as a function, it is used without any check for the values.


```
1 \def\f{1/5*x^3-x^2}
2 \psset{plotpoints=2000,algebraic}
%
4 \begin{pspicture*}[showgrid](-5.5,-8.5)(7.5,3.5)
5 \psaxes{->}(0,0)(-5,-8)(7,3)[$x$,270][$y$,0]
6 \psplot[linewidth=2pt,linecolor=blue]{-5}{8}{\f}
7 \uput[90](2.95,0){$x_0$}\uput[90](3.9,0){$x_0$}
8 \psNewton[linecolor=red,linewidth=0.5pt]{2.95}{\f}{10}
9 \psNewton[showpoints,linestyle=dashed]{3.9}{\f}{8}
\end{pspicture*}
```

 x_0 is the start value of the iteration, f(x) the function, which can either be in postfix or algebraic notation, for the latter it needs the optional argument algebraic. The number of the iteration is given by n. All defined plotstyles can be used, but there

14.3. \psNewton

maybe PostScript errors for plotstyle=values if the number of steps is too big. In such a case decrease the number of steps.


```
1 \def\f{-(1/192)*x^3-(1/12)*x-(1/192)*Pi*x^2-(1/12)*Pi+2}
2 \def\fDerive{-(3/192)*x^2-(1/12)-(2/192)*Pi*x}
3 \psset{plotpoints=2000,unit=0.5,algebraic}
4 %
5 \begin{pspicture*}[showgrid](-16,-5)(8.5,18.5)
6 \psaxes[Dx=6,Dy=4]{->}(0,0)(-16,-5)(8,18)[$x$,270][$y$,0]
7 \psplot[algebraic,linewidth=2pt,linecolor=blue]{-20}{8}{\f}
8 \psxTick(-15){x_0}
9 \psNewton[linecolor=red,linewidth=0.5pt]{-15}{\f}{12}
10 \psNewton[linecolor=red,linewidth=0.5pt,plotstyle=xvalues,showDerivation=false]{-15}{\f}{6}
11 %
9-15, -9.567466932, -4.903526029, 3.026073041, 6.688396612, 5.580230655 (Made by Maple)
13 \end{pspicture*}
```

14.4. \psVectorfield

```
\psVectorfield [Options] (x_0,y_0) (x_1,y_1) \{f'(x,y)\}
```

f'(x,y) can be in Postfix notation or with option algebraic in Infix notation. The Δx and Δy are given by Dx and Dy and preset to 0.1, the length of the arrow lines is relative and internally set by 1/0x with a preset of 0x=3.


```
%\usepackage{pst-ode}
       %solve dy/dx=x^2 + y^2 - 1 numerically for different initial values of y in
  %interval x=[-1.1,1.1]; store resulting data points as tables into Postscript
  %objects
  \psset{unit=3cm}
  \begin{pspicture}(-1.2,-1.2)(1.1,1.1)
  \psaxes[ticksize=0 4pt,axesstyle=frame,tickstyle=inner,subticks=20,
        0x=-1,0y=-1](-1,-1)(1,1)
11 \psset{arrows=->,algebraic}
12 \psVectorfield[linecolor=black!60](-0.9,-0.9)(0.9,0.9){ x^2+y^2-1 }
\text{14} \pst0DEsolve[algebraicOutputFormat] \{y0_a\}\{t \mid x[0]\}\{-1\}\{1\}\{100\}\{-0.5\}\{t^2+x^2\}\}
    [0]^2-1}
^{15} %y0_b=0.0
  \label{local-pst0DEsolve} $$ \operatorname{local}_{y0_b}_{t \mid x[0]}_{-1}_{1}_{100}_{0.0}_{t^2+x} $$
    [0]^2-1}
17 %y0_c=0.5
_{18} \rangle = 18 \pst0DEsolve[algebraicOutputFormat]\{y0_c\}\{t \mid x[0]\}\{-1\}\{1\}\{100\}\{0.5\}\{t^2+x^2\}\}
    [0]^2-1}
```

15. Internals

```
19 \psset{arrows=-}%
20 \listplot[linecolor=red, linewidth=1pt]{y0_a}
21 \listplot[linecolor=green,linewidth=1pt]{y0_b}
22 \listplot[linecolor=blue, linewidth=1pt]{y0_c}
23 \end{pspicture}
```

15. Internals

The last pair of coordinates of \psplot and \psparametricplot is saved in a PostScript array and can be used as FinalState inside PostScript code.


```
\psset{unit=2}
                                         \pscustom[linejoin=1,arrows=->]{%
                                                                                           \protect\ \psline(0,-1)(1,0)
                                                                                           \protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
                                                                                           \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
                                                                 }
                                                                 \pscustom[linejoin=1,arrows=->,linecolor=red]{%
                                                                                           \protect\ \psline(0,-1)(1,0)
10
                                                                                           \protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
11
                                                                                           \psline(! FinalState aload pop )(3,0)
12
13
  14 \end{pspicture}
```

16. List of all optional arguments for pst-plot

Key	Type	Default
ignoreLines	ordinary	0
Hue	ordinary	180
barwidth	ordinary	0.25cm
interrupt	ordinary	
IQLfactor	ordinary	[none]
plotstyle	ordinary	line
plotpoints	ordinary	50
yMaxValue	ordinary	1.e30
yMinValue	ordinary	-1.e30
PSfont	ordinary	Times-Roman
valuewidth	ordinary	10
fontscale	ordinary	10
decimals	ordinary	-1
xlabelsep	ordinary	5pt
ylabelsep	ordinary	5pt
xyValues	boolean	true
ChangeOrder	boolean	true
polarplot	boolean	true
VarStep	boolean	true
PlotDerivative	ordinary	[none]
VarStepEpsilon	ordinary	[none]
method	ordinary	[none]
ticks	ordinary	all
labels	ordinary	all
0x	ordinary	0
Dx	ordinary	1
dx	ordinary	0
0y	ordinary	0
Dy	ordinary	1
dy	ordinary	0
showorigin	boolean	true
labelFontSize	ordinary	
mathLabel	boolean	true
decimalSeparator	ordinary	
comma	boolean	true
xAxis	boolean	true
yAxis	boolean	true
xyAxes	boolean	true
xlabelPos	ordinary	b
ylabelPos	ordinary	l
xyDecimals	ordinary	

Continued on next page

Continued from previous page

KeyTypeDefaultxDecimalsordinaryyDecimalsordinaryxlogBaseordinaryylogBaseordinaryxylogBaseordinary
yDecimals ordinary xlogBase ordinary ylogBase ordinary
xlogBase ordinary ylogBase ordinary
ylogBase ordinary
•
xylogBase ordinary
trigLabelBase ordinary 0
xtrigLabels boolean true
ytrigLabels boolean true
trigLabels boolean true
logLines ordinary none
ylabelFactor ordinary \relax
xlabelFactor ordinary \relax
showOriginTick boolean true
ticksize ordinary -4pt 4pt
xticksize ordinary [none]
yticksize ordinary [none]
tickstyle ordinary full
subticks ordinary 1
xsubticks ordinary 1
ysubticks ordinary 1
subticksize ordinary 0.75
xsubticksize ordinary 0.75
ysubticksize ordinary 0.75
tickwidth ordinary 0.5\pslinewidth
xtickwidth ordinary 0.5\pslinewidth
ytickwidth ordinary 0.5\pslinewidth
subtickwidth ordinary 0.25\pslinewidth
xsubtickwidth ordinary 0.25\pslinewidth
ysubtickwidth ordinary 0.25\pslinewidth
labelOffset ordinary Opt
xlabelOffset ordinary Opt
ylabelOffset ordinary Opt
frameOffset ordinary Opt
tickcolor ordinary black
xtickcolor ordinary black
ytickcolor ordinary black
subtickcolor ordinary gray
xsubtickcolor ordinary gray
ysubtickcolor ordinary gray
xticklinestyle ordinary solid
xsubticklinestyle ordinary solid
yticklinestyle ordinary solid
ysubticklinestyle ordinary solid

Continued on next page

References 91

Continued from previous page

Continued from previ	ious page	
Key	Type	Default
ticklinestyle	ordinary	solid
subticklinestyle	ordinary	solid
nStep	ordinary	1
nStart	ordinary	0
nEnd	ordinary	
xStep	ordinary	0
yStep	ordinary	0
xStart	ordinary	
xEnd	ordinary	
yStart	ordinary	
yEnd	ordinary	
plotNoX	ordinary	1
plotNo	ordinary	1
plotNoMax	ordinary	1
axesstyle	ordinary	axes
xLabels	ordinary	
xLabelsRot	ordinary	0
yLabels	ordinary	
yLabelsRot	ordinary	0
xAxisLabel	ordinary	Χ
yAxisLabel	ordinary	У
xAxisLabelPos	ordinary	
yAxisLabelPos	ordinary	
llx	ordinary	\z@
lly	ordinary	\z@
urx	ordinary	\z@
ury	ordinary	\z@
psgrid	boolean	true
gridpara	ordinary	
gridcoor	ordinary	\relax
showDerivation	boolean	true

References

- [1] Denis Girou. Présentation de PSTricks. Cahier GUTenberg, 16:21–70, April 1994.
- [2] Michel Goosens, Frank Mittelbach, Sebastian Rahtz, Dennis Roegel, and Herbert Voß. *The LATEX Graphics Companion*. Addison-Wesley Publishing Company, Boston, Mass., second edition, 2007.
- [3] Nikolai G. Kollock. *PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz.* IWT, Vaterstetten, 1989.
- [4] Herbert Voß. *PSTricks Grafik für T_EX und L^AT_EX*. DANTE Lehmanns, Heidelberg/Hamburg, 6. edition, 2010.

References 92

[5] Herbert Voß. *PSTricks – Graphics and PostScript for LATEX*. UIT, Cambridge – UK, 1. edition, 2011.

- [6] Herbert Voß. \LaTeX quick reference. UIT, Cambridge UK, 1. edition, 2012.
- [7] Herbert Voß. *Presentations with LATEX*. DANTE Lehmanns Media, Heidelberg/Berlin, 1. edition, 2012.
- [8] Timothy Van Zandt. multido.tex a loop macro, that supports fixed-point addition. CTAN:/macros/generic/multido.tex, 1997.
- [9] Timothy Van Zandt and Denis Girou. Inside PSTricks. *TUGboat*, 15:239–246, September 1994.

Symbols $\hAmacro B$, 5	ecurve, 5 \empty, 26, 27
A algebraic, 84, 85, 87	\endinput, 6 \endpsgraph, 14
all, 25, 26	\endtabular, 22
arrowlength, 10	Environment
arrows, <mark>5</mark> , 6	psgraph, 14, 21pspicture, 20, 24
axes, 25	pspicture, 20, 24
axesstyle, 25	F
axis, 26, 27, 33	\fileplot, 5, 6, 62
В	fillcolor, 10, 22
barwidth, 10, 25, 72	fillstyle, 22
black, 26, 27	fontscale, 25, 78
bottom, 25, 26, 46	frame, 25, 46
box plot, 10	full, 25, 26
box-and-whisker plot, 10	Н
Brightnes, 71	HSB, 71
C	Hue, 71
c, 20	Hue, 71
ccurve, 5	т
\cdot, 35	I ignored inco 25 61
ChangeOrder, 25, 70	ignoreLines, 25, 61 inner, 25, 26, 46
comma, 25, 36	
Commu, 20, 00	
curve, 5, 62	interrupt, 73
curve, 5, 62	interrupt, 73 IQLfactor, 10
curve, 5, 62 D	<pre>interrupt, 73 IQLfactor, 10 K</pre>
curve, 5, 62 D darkgray, 25, 26	<pre>interrupt, 73 IQLfactor, 10 K Keyvalue</pre>
curve, 5, 62 D	<pre>interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26</pre>
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27	<pre>interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25</pre>
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26
Curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10 dotstyle, 10	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5 - curve, 5, 62
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10 dotstyle, 10 dotted, 26, 27	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5 - curve, 5, 62 - darkgray, 25, 26
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10 dotted, 26, 27 Dx, 87	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5 - curve, 5, 62 - darkgray, 25, 26 - dashed, 26, 27
D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10 dotstyle, 10 dotted, 26, 27 Dx, 87 dx, 40	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5 - curve, 5, 62 - darkgray, 25, 26 - dashed, 26, 27 - dots, 5-7
curve, 5, 62 D darkgray, 25, 26 dashed, 26, 27 \dataplot, 5-7, 62 decimals, 25, 78 decimalSeparator, 25, 36 \displaystyle, 34 dots, 5-7, 62 dotscale, 10 dotsize, 10 dotted, 26, 27 Dx, 87	interrupt, 73 IQLfactor, 10 K Keyvalue - all, 25, 26 - axes, 25 - axis, 26, 27, 33 - black, 26, 27 - bottom, 25, 26 - ccurve, 5 - curve, 5, 62 - darkgray, 25, 26 - dashed, 26, 27 - dots, 5-7 - dotted, 26, 27

innon OF OC AC	lineans F 7
- inner, 25, 26, 46	- linearc, 5-7
- lb, 21	- llx, 20, 25
- left, 27	- lly, 20, 25
- legendstyle, 22	- logLines, 25, 50
- line, 5-7	- mathLabel, 24, 25, 28, 34
- lt, <mark>21</mark>	– nEnd, 25, 62
– none, 25–27, 50	– nStart, <mark>25</mark> , <mark>62</mark>
- polar, <mark>25, 30</mark>	- nStep, <mark>25</mark> , <mark>61</mark> , <mark>62</mark>
– polygon, <mark>5–7</mark>	- 0x, <mark>52, 87</mark>
– rb, <mark>21</mark>	– 0y, <mark>52</mark>
– right, <mark>27</mark>	<pre>- plotNo, 25, 67</pre>
– rt, <mark>21</mark>	 plotNoMax, 25, 67, 68
- solid, <mark>26, 27</mark>	<pre>– plotNoX=4, 68</pre>
- Times-Romasn, <mark>25</mark>	– plotpoints, <mark>8</mark>
- top, 25, 26	- plotstyle, 5, 62, 74, 75, 78, 86
– values, 79	– polarplot, <mark>25, 80</mark>
- x, 25, 26	– PSfont, <mark>25, 78</mark>
- y, 25, 26	– PstDebug, <mark>76</mark>
– ybar, <mark>79</mark>	– quadrant, <mark>25</mark>
Keyword	- rot, <mark>78</mark>
– algebraic, <mark>84, 85, 87</mark>	<pre>- showpoints, 5-7</pre>
– arrowlength, 10	subtickcolor, 25, 49
- arrows, <mark>5</mark> , 6	subticklinestyle, 26, 50
axesstyle, 25	subticks, 26, 31, 48
barwidth, 10, 25, 72	subticksize, 26, 48
ChangeOrder, 25, 70	subtickwidth, 26
- comma, <mark>25, 36</mark>	– tickcolor, <mark>26, 49</mark>
decimals, 25, 78	ticklinestyle, 26, 50
decimalSeparator, 25, 36	– ticks, <mark>26</mark>
– dotscale, <mark>10</mark>	- ticksize, <mark>25, 26, 46, 47</mark>
- dotsize, <mark>10</mark>	– tickstyle, <mark>25, 26, 46</mark>
– dotstyle, <mark>10</mark>	– tickwidth, <mark>26</mark>
– Dx, <mark>87</mark>	– trigLabelBase, <mark>26, 37, 39, 40</mark>
- dx, 40	– trigLabels, <mark>25</mark> , <mark>26, 37, 43</mark>
- Dy, 31, 87	– urx, <mark>20, 26</mark>
- fillcolor, <mark>10, 22</mark>	– ury, <mark>20</mark> , 26
– fillstyle, <mark>22</mark>	– valuewidth, <mark>26</mark> , 78
- fontscale, 25, 78	VarStepEpsilon, 85
– Hue, 71	– xAxis, <mark>26</mark>
- ignoreLines, 25, 61	xAxisLabel, 20, 26
- interrupt, 73	xAxisLabelPos, 20, 26
- IQLfactor, 10	xDecimals, 26, 37
labelFontSize, 25	- xEnd, 26, 62, 76
- labels, 25	xlabelFactor, 26
- labelsep, <mark>33</mark>	xlabelOffset, 26, 28

xlabelPos, 26, 32, 33	label, <mark>33</mark>
- xLabels, 26-28	labelFontSize, 25
- xlabelsep, 20, 28	labels, <mark>25</mark>
- xLabelsRot, 26, 27	labelsep, <mark>33</mark>
- xlogBase, 26, 52, 55	lb, <mark>21</mark>
- xStart, 26, 62, 76	Least square method, 75
- xStep, 26, 62	left, <mark>27</mark>
- xsubtickcolor, <mark>26</mark>	legendstyle, <mark>22</mark>
xsubticklinestyle, 26, 50	line, <mark>5–7</mark>
- xsubticks, 26, 31	linearc, <mark>5–7</mark>
- xsubticksize, <mark>26</mark> , <u>48</u>	\listplot, 5-7, 24, 62, 75
- xtickcolor, <mark>26</mark>	llx, <mark>20, 25</mark>
- xticklinestyle, <mark>26, 50</mark>	lly, <mark>20, 25</mark>
- xticksize, <mark>26</mark>	logarithmic label, 52
- xtrigLabels, 26, 37	logLines, <mark>25</mark> , <mark>50</mark>
- xunit, 40	LSM, 75
- xyAxes, 26, 32	lt, <mark>21</mark>
- xyDecimals, 26, 37	3.5
- xylogBase, 26, 52, 56	M
- yAxis, <mark>26</mark>	Macro
- yAxisLabel, 20, 26	- \hAmacroB, 5
yAxisLabelPos, 20, 27	-\cdot, 35
- yDecimals, 27, 37	- \dataplot, 5-7, 62
– yEnd, <u>27</u>	- \displaystyle, 34
ylabelFactor, 27	-\empty, 26, 27
- ylabelOffset, 27	-\endinput, 6
- ylabelPos, 27, 32, 33	-\endpsgraph, 14
- yLabels, 27, 74	-\endtabular, 22
- ylabelsep, 20, 28	- \fileplot, 5, 6, 62
- yLabelsRot, <mark>27</mark>	- \listplot, 5-7, 24, 62, 75
ylogBase, 27, 52	- \parametricplot, 7, 8
- yMaxValue, <mark>27, 28</mark>	- \ps????plot, 80
yMinValue, 27, 28	- \psaxes, 8, 14, 30, 32, 53
- yStart, 27	- \psccurve, 5
- yStep, 27, 62	- \psCoordinates, 83
– ysubtickcolor, <mark>27</mark>	- \pscurve, 5
ysubticklinestyle, 27, 50	- \pscustom, 70
- ysubticks, <mark>27, 31</mark>	- \psdataplot, 5
ysubticksize, 27, 48	- \psdots, 5
- ytickcolor, 27	<pre>- \psecurve, 5 - \psfileplot, 5</pre>
- yticklinestyle, 27, 50	- \psfixpoint, 84
- yticksize, 27	•
<pre>- ytrigLabels, 27, 43</pre>	- \psframebox, 22
<pre>- ytriglabels, 42</pre>	- \psgraph, 14, 20
L	- \psgraphLLx, 20
L	<pre>- \psgraphLLy, 20</pre>

Vacana killari 20	natuiale 2 70
- \psgraphURx, 20	- pstricks, 2, 78
- \psgraphURy, 20	- pstricks-add, 2, 46
- \pshlabel, 24, 25	\parametricplot, 7, 8
- \pslabelsep, 21	plotNo, 25, 67
- \pslegend, 21, 22	plotNoMax, 25, 67, 68
- \psline, 5, 7	plotNoX=4, 68
-\pslinewidth, 26	plotpoints, 8
-\pslistplot,5	plotstyle, 5, 62, 74, 75, 78, 86
- \psNewton, 85	polar, 25, 30
- \psparametricplot, 8, 88	polar coordinate, 30
-\psplot, 7, 8, 40, 88	polarplot, 25, 80
- \pspolygon, 5	polygon, 5-7
- \psreadColumnData, 5	\ps????plot, 80
-\pstRadUnit, 40	\psaxes, 8, 14, 30, 32, 53
- \pstScalePoints, 24, 76	\psccurve, 5
- \PSTtoEPS, 6	\psCoordinates, 83
- \pstVerb, 8	\pscurve, 5
- \psVectorfield, 87	\pscustom, 70
- \psvlabel, 25	\psdataplot, 5
-\psxTick, 24	\psdots, 5
- \psxunit, 5	\psecurve, 5
-\psyTick, 24	\psfileplot, 5
- \psyunit, 5	\psFixpoint, 84
- \readdata, 5-7, 11, 61, 62	PSfont, 25, 78
-\savedata, 5, 6	\psframebox, 22
-\scriptscriptstyle, 34	\psgraph, 14, 20
-\scriptstyle, 34	psgraph, 14, 21
- \tabular, 22	\psgraphLLx, 20
- \textstyle, 34	\psgraphLLy, 20
mathLabel, 24, 25, 28, 34	\psgraphURx, 20
N	\psgraphURy, 20
nEnd, 25, 62	\pshlabel, 24, 25
none, 25–27, 50	\pslabelsep, 21
nStart, <mark>25, 62</mark>	\pslegend, 21, 22
nStep, 25, 61, 62	\psline, 5, 7
	\pslinewidth, 26
0	\pslistplot, 5
0x, 52, 87	\psNewton, 85
0y, <mark>52</mark>	\psparametricplot, 8, 88 pspicture, 20, 24
n.	\psplot, 7, 8, 40, 88
P Poetrogo	\pspolygon, 5
Package	\psreadColumnData, 5
- pst-plot, 2, 25, 33, 45, 46, 52, 61, 67	pst-plot, 2, 25, 33, 45, 46, 52, 61, 67
<pre>- pst-plot.tex, 5 - pst-xkey, 2</pre>	pst-plot.tex, 5
- μσι-λησy, <u>Δ</u>	ρου ριστιτολ, σ

pst-xkey, 2	ticksize, 25, 26, 46, 47
PstDebug, 76	tickstyle, <mark>25</mark> , <mark>26</mark> , 46
\pstRadUnit, 40	tickwidth, <mark>26</mark>
pstricks, 2, 78	Times-Romasn, 25
pstricks-add, <mark>2, 46</mark>	top, 25, 26
\pstScalePoints, 24, 76	trigLabelBase, 26, 37, 39, 40
\PSTtoEPS, 6	trigLabels, <mark>25</mark> , <mark>26</mark> , <mark>37</mark> , 43
\pstVerb, 8	
\psVectorfield, 87	U
\psvlabel, 25	urx, 20, 26
\psxTick, 24	ury, 20, 26
\psxunit, 5	\mathbf{V}
\psyTick, 24	Value
\psyunit, 5	- bottom, 46
	- dots, 62
Q	
quadrant, <mark>25</mark>	- full, 25
n	- LSM, 75
R	- solid, 22
rb, 21	- style, 5
\readdata, 5-7, 11, 61, 62	- values, 78, 86
right, 27	- values*, 78
rot, 78	- white, 22
rt, <mark>21</mark>	- ybar, 74
S	values, 78, 79, 86
Saturation, 71	values*, 78
\savedata, 5, 6	valuewidth, <mark>26, 78</mark>
\scriptscriptstyle, 34	VarStepEpsilon, 85
	W
\scriptstyle, 34	
showpoints, 5-7	white, 22
solid, 22, 26, 27	X
style, 5	x, 25, 26
subtickcolor, 25, 49	xAxis, 26
subticklinestyle, 26, 50	xAxisLabel, 20, 26
subticks, 26, 31, 48	xAxisLabelPos, 20, 26
subticksize, 26, 48	xDecimals, 26, 37
subtickwidth, 26	xEnd, 26, 62, 76
Syntax	xlabelFactor, 26
- c, 20	xlabelOffset, 26, 28
Т	xlabelPos, 26, 32, 33
\tabular, 22	xLabels, 26–28
\textstyle, 34	xlabelsep, 20, 28
tickcolor, 26, 49	xLabelsRot, 26, 27
ticklinestyle, 26, 50	xlogBase, 26, 52, 55
-	•
ticks, 26	xStart, 26, 62, 76

```
xStep, 26, 62
xsubtickcolor, 26
xsubticklinestyle, 26, 50
xsubticks, 26, 31
xsubticksize, 26, 48
xtickcolor, 26
xticklinestyle, 26, 50
xticksize, 26
xtrigLabels, 26, 37
xunit, 40
xyAxes, 26, 32
xyDecimals, 26, 37
xylogBase, 26, 52, 56
y, 25, 26
yAxis, 26
yAxisLabel, 20, 26
yAxisLabelPos, 20, 27
ybar, 74, 79
yDecimals, 27, 37
yEnd, 27
ylabelFactor, 27
ylabelOffset, 27
ylabelPos, 27, 32, 33
yLabels, 27, 74
ylabelsep, 20, 28
yLabelsRot, 27
ylogBase, 27, 52
yMaxValue, 27, 28
yMinValue, 27, 28
yStart, 27
yStep, 27, 62
ysubtickcolor, 27
ysubticklinestyle, 27, 50
ysubticks, 27, 31
ysubticksize, 27, 48
ytickcolor, 27
yticklinestyle, 27, 50
yticksize, 27
ytrigLabels, 27, 43
ytriglabels, 42
```