PROJECT 3

Automotive Door Control System Design <u>Static Design</u>

Project Requirements

- Hardware requirements:

Two microcontrollers connected via CAN bus

One Door sensor (D)

One Light switch (L)

One Speed sensor (S)

ECU 1 connected to D, S, and L, all input devices

Two lights, right (RL) and left (LL)

One buzzer (B)

ECU 2 connected to RL, LL, and B, all output devices

- Software requirements:

ECU 1 will send status messages periodically to ECU 2 through the CAN protocol Status messages will be sent using Basic Communication Module (BCM)

Door state message will be sent every 10ms to ECU 2

Light switch state message will be sent every 20ms to ECU 2

Speed state message will be sent every 5ms to ECU 2

Each ECU will have an OS and application SW components

If the door is opened while the car is moving \rightarrow Buzzer ON, Lights OFF

If the door is opened while the car is stopped \rightarrow Buzzer OFF, Lights ON

If the door is closed while the lights were $ON \rightarrow Lights$ are OFF after 3 seconds

If the car is moving and the light switch is pressed \rightarrow Buzzer OFF, Lights ON

If the car is stopped and the light switch is pressed → Buzzer ON, Lights ON

You should draw and deliver the system schematic (Block Diagram) according to your requirements understanding, a screenshot is required

Static Design Analysis

- For ECU 1:

- 1. Make the layered architecture
- 2. Specify ECU components and modules
- 3. Provide full detailed APIs for each module as well as a detailed description for the used typedefs
- 4. Prepare your folder structure according to the previous points

- For ECU 2:

- 1. Make the layered architecture
- 2. Specify ECU components and modules
- 3. Provide full detailed APIs for each module as well as a detailed description for the used typedefs
- 4. Prepare your folder structure according to the previous points

You should deliver a pdf file containing all your work and a video recording where you will discuss your work (maximum 3min long)