MI

AISHELL Speaker Verification Challenge 2019

参赛队伍: 小米AI实验室

队员: 蔡国都、庄伟基、王欣、杨朔、李文凤

Contents

- Data Preparation
- 2 Experimental Environment
- Model Training
- 4 Scoring Strategy
- 5 Summary

- Training data
 - AISHELL-WakeUp-1: Train, Dev
 - Openslr: SLR17 (MUSAN), SLR28 (RIR NOISES), SLR33 (AISHELL)
- Downsampling
 - Hi-Fi data: 44.1kHz → 16kHz
- Data augmentation
 - MUSAN: music, babble, noise[1]
 - Volume, tempo
 - RIRS/Reverberation[2]
 - Frequency masking[3]
 - Total data: 99w -→ 200w

^[1] D. Snyder, G. Chen, and D. Povey, "MUSAN: A Music, Speech, and Noise Corpus," arXiv:1510.08484 [cs], 2015.

^[2] Ko, Tom, et al. "A study on data augmentation of reverberant speech for robust speech recognition." ICASSP 2017 - 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, 2017.

^[3] Daniel S. Park, et al. "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition." arXiv:1904.08779 [cs], 2019.

- KW-VAD
 - Purpose
 - Energy-based kaldi vad is not perform well.
 - Train the acoustic model (aishell-1) to obtain alignment information for KW-VAD training

• Structure

• fast exp set:254 * (100/hifi, 400/far)

Methods	Dev-EER	Description
baseline1	3.03	no-vad/volume/musan /reverb/tempo
Kaldi-vad	2.802	√
kw-vad	2. 721	
volume	2.845	✓
volume normalization	3. 056	X

Methods	Dev-EER	Description
baseline2	3. 242	kw-vad/no-aug
musan_noise	3. 172	✓
musan_music	3. 171	✓
musan_speech	2.94	✓
Kaldi-reverb	3. 171	✓
sox-reverb	3. 146	✓
tempo	3.048	✓
Frequency masking	2.86	✓
fusion	2.674	√

Experimental Environment

וח

Experimental Environment

- SGE
 - CentOS/Ubuntu
 - CPU: 640 cores
 - GPU: 8*8 Tesla V100 , vRAM:16G
- Tools
 - Kaldi [4]
 - wav-reverberate
 - BeamformIt
 - egs/aishell
 - SOX
 - Pytorch
 - resnet-50

[4] Povey, Daniel, et al. "The Kaldi speech recognition toolkit." IEEE 2011 workshop on automatic speech recognition and understanding. No. CONF. IEEE Signal Processing Society, 2011.

Model Training

Model Training

- i-vector ^[5]
- x-vector + cnn + self-attention [6][7]
- resnet + AM-Softmax [8][9][10]

^[5] Dehak, N., et al. "Front-End Factor Analysis for Speaker Verification." IEEE Transactions on Audio, Speech and Language Processing 19.4(2011):788-798.

^[6] David Snyder et al. "X-vectors: Robust DNN Embeddings for Speaker Recognition". In: Proc. of ICASSP. IEEE. 2018, pp. 5329-5333.

^[7] Zhu, Yingke et al. "Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification." Interspeech. 2018.

^[8] He, Kaiming, et al. "Deep Residual Learning for Image Recognition." (2015).

^[9] Wang, Feng, et al. "Additive margin softmax for face verification." IEEE Signal Processing Letters 25.7 (2018): 926-930.

^[10] Chung, Joon Son, A. Nagrani, and A. Zisserman. "VoxCeleb2: Deep Speaker Recognition." (2018).

i-vector

[5] Dehak, N., et al. "Front-End Factor Analysis for Speaker Verification." IEEE Transactions on Audio, Speech and Language Processing 19.4(2011):788-798.

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0, T)	T	1500Tx3000
segment6	{0}	T	3000x512
segment7	{0}	T	512x512
softmax	{0}	T	512x <i>N</i>

Table 1. The embedding DNN architecture. x-vectors are extracted at layer segment6, before the nonlinearity. The N in the softmax layer corresponds to the number of training speakers.

^[6] David Snyder et al. "X-vectors: Robust DNN Embeddings for Speaker Recognition". In: Proc. of ICASSP. IEEE. 2018, pp. 5329-5333.

x-vector+cnn+self-attention

^[6] David Snyder et al. "X-vectors: Robust DNN Embeddings for Speaker Recognition". In: Proc. of ICASSP. IEEE. 2018, pp. 5329-5333.

^[7] Zhu, Yingke et al. "Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification." Interspeech. 2018

x-vector+cnn+self-attention

^[6] David Snyder et al. "X-vectors: Robust DNN Embeddings for Speaker Recognition". In: Proc. of ICASSP. IEEE. 2018, pp. 5329-5333.

^[7] Zhu, Yingke et al. "Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification." Interspeech. 2018

x-vector+cnn+self-attention

Layer	Kernel size	Channels	Height offsets	Time offsets
conv1	3*3	64	{h-1, h, h+1}	{t-1, t, t+1}
conv2	3*3	128	{h-1, h, h+1}	{t-1, t, t+1}
conv3	3*3	128	{h-1, h, h+1}	{t-1, t, t+1}
conv4	3*3	128	{h-1, h, h+1}	{t-2, t, t+2}
conv5	3*3	64	{h-1, h, h+1}	{t-2, t, t+2}

resnet50+AM-Softmax

layer name	resnet-50	
conv1 pool1	7*7, 64, stride 2 3*3, max pool, stride 2	
conv2_x	1*1, 64 3*3, 64 1*1, 256	
conv3_x	1*1, 128 3*3, 128 1*1, 512 * 4, stride 2	
conv4_x	1*1, 256 3*3, 256 1*1, 1024 * 6, stride 2	
conv5_x	1*1, 512 3*3, 512 1*1, 2048 * 3, stride 2	
fc1 avg_pool fc2	9*1, 2048, stride 1 1*N, average pool, stride 1 1 * 1, 254	

^[8] He, Kaiming, et al. "Deep Residual Learning for Image Recognition." (2015).

^[9] Wang, Feng, et al. "Additive margin softmax for face verification." IEEE Signal Processing Letters 25.7 (2018): 926-930.

^[10] Chung, Joon Son, A. Nagrani, and A. Zisserman. "VoxCeleb2: Deep Speaker Recognition." (2018).

$$\mathcal{L}_{AMS} = -\frac{1}{n} \sum_{i=1}^{n} log \frac{e^{s \cdot (cos\theta_{y_i} - m)}}{e^{s \cdot (cos\theta_{y_i} - m)} + \sum_{j=1, j \neq y_i}^{c} e^{s \cdot cos\theta_j}}$$
$$= -\frac{1}{n} \sum_{i=1}^{n} log \frac{e^{s \cdot (W_{y_i}^T \mathbf{f}_i - m)}}{e^{s \cdot (W_{y_i}^T \mathbf{f}_i - m)} + \sum_{j=1, j \neq y_i}^{c} e^{sW_j^T \mathbf{f}_i}}.$$

more discriminative embeddings

^[9] Wang, Feng, et al. "Additive margin softmax for face verification." IEEE Signal Processing Letters 25.7 (2018): 926-930.

• PLDA [11]

$$score = \log \frac{p(\eta_1, \eta_2 \mid H_s)}{p(\eta_1 \mid H_d)p(\eta_2 \mid H_d)}$$

• Fusion

^[11] Garcia-Romero, Daniel, and Carol Y. Espy-Wilson. "Analysis of i-vector length normalization in speaker recognition systems." Twelfth Annual Conference of the International Speech Communication Association. 2011.

- Skill
 - Track1
 - Enroll:
 - downsample, noise
 - Calculate the mean of embedding for all sentences after augmentation as the vector of registered sentences
 - Eval:
 - Use 16 channels of data
 - Calculate the mean of embedding for all sentences as the vector of test sentences
 - Track2
 - Enroll/Eval:
 - Use 16 channels of data
 - Calculate the mean of embedding for all sentences as the vector of test sentences

- Skill
 - Whitening
 - Track1: keep the same amount of Hi-Fi data and far field data.
 - Track2: use all far field data.
 - PLDA
 - All training data
 - All far field data
 - Keep the same amount of Hi-Fi data and far field data
 - Other methods:
 - Beamforming: processing the multi channel.

Results on dev

train_99w cr	spectrogram kw-vad	PLDA	2. 47	1.83
	cnn + x-vector + attention	PLDA enroll_aug	1.74	1.83
[1]spectrogram train_200w kw-vad cnn + x-vector + attention		PLDA	1.92	1.58
	kw-vad cnn + x-vector + attention	PLDA-20W	1.77	1.32
		PLDA-20W enroll_aug	1. 4 1	1. 32
train_200w	[2]spectrogram kw-vad resnet+AM-Softmax	PLDA-20W enroll_aug	1. 48	1. 23
train_200w	fbank kw-vad i-vector	PLDA	2. 52	2. 21
train_200w	[3]fbank kw-vad frequency masking i-vector	PLDA-20W enroll_aug	2. 15	1. 87
_	fusion[1,2,3]	weighted average	1.33	1.14
			l ,	

(enroll: 3 normal utts)

Summary

Summary

- Innovation
 - More accurate kw-vad
 - Rich data augmentation strategy
 - Multiple-model fusion
 - Scoring strategy
- Advantage
 - Powerful Kaldi-based SGE queue
 - More relevant to the Xiaomi product business
 - Mobile phone, AISoundbox, TV, etc.

Application scene in xiaomi

mi

- phone
 - "xiaoaitongxue" wakeup
- AIoT
 - TV: kids lock
 - AISoundbox: nick name
 - gender, age
 - family members
 - Personalized recommendation

Welcome to Xiaomi Thanks!