Podstawy mechaniki kwantowej

Notatki z wykładu

$24~\mathrm{marca}~2025$

Spis treści

1	Hist	toria powstania fizyki kwantowej	3
	1.1	Zapomnijmy o mechanice klasycznej	3
	1.2	Promieniowanie ciała doskonale czarnego	3
	1.3	Prawo Rayleigha-Jeansa	3
	1.4	Teoria kwantowa Plancka	4
	1.5	Efekt fotoelektryczny	4
	1.6	Widma atomowe i model Bohra	5
2	Fun	kcja falowa	6
	2.1	Eksperyment z dwoma szczelinami	6
	2.2	Eksperyment ze światłem	6
	2.3	Proste zagadnienie	6
	2.4	Funkcja falowa swobodnego elektronu	7
3	Star	ny kwantowe	8
	3.1	Właściwości światła	8
	3.2	Światło jako fala	8
	3.3	Elektron jako fala	8
	3.4	Interpretacja funkcji falowej	8
	3.5	Zasada superpozycji	8
	3.6	Interpretacja fali elektronowej	8
	3.7	Zasada superpozycji w mechanice kwantowej	9
	3.8	Fala de Broglie'a	9
	3.9	Fala płaska	9
	3.10	Najprostszy obiekt fali	9
	3.11	Opis 3D	9
	3.12	Operator pędu i energii	10
	3.13	Pakiety falowe	10
		3.13.1 Transformacja Fouriera	10
		3.13.2 Interpretacja	10
		3.13.3 Energia fali	10
		3.13.4 Własności pakietów falowych	10
	3.14	Pakiet Gaussowski	11
		3.14.1 Normalizacja	11
		3.14.2 Pakiet w przestrzeni rzeczywistej	11
		3.14.3 Interpretacja	11

3.15	Ewolucja w czasie	11
3.16	Niepewność i interferencja	12
	3.16.1 Para czas-energia	12
3.17	Równanie Schrödingera	12
	3.17.1 Motywacja	12
	3.17.2 Fala płaska	12
	3.17.3 Równanie Schrödingera z potencjałem	12

1 Historia powstania fizyki kwantowej

1.1 Zapomnijmy o mechanice klasycznej

Związek z nią będzie jasny, kiedy pójdziemy głębiej w teorię.

1.2 Promieniowanie ciała doskonale czarnego

Eksperyment Stefana-Boltzmanna (1878) badał promieniowanie cieplne emitowane przez ciało doskonale czarne. Ciało doskonale czarne to obiekt, który pochłania całe promieniowanie i emituje je zgodnie z temperaturą.

Rysunek 1: Ciało doskonale czarne. Źródło: Wikipedia

Pokazano, że całkowita energia wypromieniowywana przez takie ciało jest proporcjonalna do czwartej potęgi jego temperatury absolutnej

$$R(T) = \sigma T^4,$$

gdzie R to moc promieniowania na jednostkę powierzchni, T to temperatura w kelwinach, a σ to stała Stefana-Boltzmanna.

Całkowita moc promieniowania to

$$R(T) = \int_0^\infty \rho(\lambda, T) d\lambda,$$

gdzie λ to długość fali, a $\rho(\lambda,T)$ to spektralna funkcja rozkładu.

W 1893 Wien zauważył, że spektralna gęstość promieniowania nie zależy od λ i Tosobno, ale od ich iloczynu λT

$$\rho(\lambda, T) = \lambda^{-5} f(\lambda T).$$

1.3 Prawo Rayleigha-Jeansa

W klasycznej elektrodynamice, promieniowanie elektromagnetyczne opisane jako fale stojące daje rozkład energii w funkcji długości fali. Liczba takich fal o długości od λ do $\lambda+d\lambda$ to

$$\rho(\lambda, T) = \frac{8\pi}{\lambda^4} \cdot \bar{\epsilon},$$

gdzie $\bar{\epsilon}$ to średnia energia takiej fali. Wzór ten jest dokładny dla długich fal, ale prowadzi do problemu z "katastrofą ultrafioletową" przy krótkich falach, co zostało skorygowane przez teorię kwantową Plancka.

Rysunek 2: Widmo promieniowania ciała doskonale czarnego w wybranych temperaturach. Źródło: e-Fizyka, AGH

Teoria kwantowa Plancka 1.4

W 1900 roku Planck zaproponował, że ciała emitują światło w postaci kwantów ($\epsilon = n\epsilon_0$)

$$\bar{\epsilon} = \frac{\sum_{n=0}^{\infty} n\epsilon_0 \exp\left(-\frac{n\epsilon_0}{kT}\right)}{\sum_{n=0}^{\infty} \exp\left(-\frac{n\epsilon_0}{kT}\right)} = \dots = \frac{\epsilon_0}{\exp\left(\frac{\epsilon_0}{kT}\right) - 1},$$

gdzie $\epsilon_0 = h\nu = \frac{hc}{\lambda}$ jest energią jednego kwantu promieniowania. Z tego wyrażenia Planck otrzymał rozkład promieniowania w funkcji długości fali, który ma postać

$$\beta(\lambda, T) = \frac{8\pi hc}{\lambda^5} \cdot \frac{1}{\exp\left(\frac{hc}{k\lambda T}\right) - 1},$$

Wzór ten zgadza się z wynikami eksperymentalnymi, eliminując problem "katastrofy ultrafioletowej".

Efekt fotoelektryczny 1.5

Efekt fotoelektryczny to zjawisko emisji elektronów z powierzchni metalu pod wpływem padającego na niego światła.

Rysunek 3: Układ do obserwacji zjawiska fotoelektrycznego. Źródło: e-Fizyka, AGH

W 1900 roku doświadczenia Lenarda wykazały, że energia elektronów zależy od częstotliwości światła, a nie jego intensywności. Einstein sformułował wzór efektu fotoelektrycznego

$$\frac{1}{2}mv_{\max}^2 = h\nu - W,$$

gdzie W to funkcja pracy metalu (zależna od rodzaju metalu).

1.6 Widma atomowe i model Bohra

Newton (1660) badał rozszczepienie światła. Melvill (1755) odkrył, że różne pierwiastki mają charakterystyczne linie widmowe. Kirchhoff (1855) zauważył, że widmo zależy od typu atomu i istnieją zarówno widma emisyjne, jak i absorpcyjne.

Balmer (1885) podał wzór:

$$\lambda = C \cdot \frac{n^2}{n^2 - 4}.$$

Rydberg sformułował bardziej ogólny wzór:

$$\tilde{\nu} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right).$$

2 Funkcja falowa

2.1 Eksperyment z dwoma szczelinami

Eksperyment z dwoma szczelinami to doświadczenie, w którym światło przechodzi przez dwie szczeliny i na ekranie za nimi pojawia się interferencja.

Rysunek 4: Eksperyment z dwoma szczelinami. Źródło: Ranjbar, Vahid. (2023)

2.2 Eksperyment ze światłem

Rysunek 5: Eksperyment z dwoma szczelinami. Źródło: e-Fizyka, AGH

Amplituda światła: $A(\vec{r}, t)$

Intensywność światła: $I = |A|^2$

$$I = |A_1|^2 + |A_2|^2 + A_1 A_2^* + A_1^* A_2$$

Jest to skutek superpozycji.

2.3 Proste zagadnienie

Amplitudy w dwóch miejscach:

$$A_1 = a_1 \exp[i(\omega t - kr_1 + \delta_1)]$$

$$A_2 = a_2 \exp[i(\omega t - kr_2 + \delta_2)]$$

Niech $a_1 = a_2 = a$ i $\delta_1 = \delta_2$. Dla dużych odległości (D >> d), fale są płaskie:

$$r_1^2 = D^2 + \left(x + \frac{d}{2}\right)^2$$

$$r_2^2 = D^2 + \left(x - \frac{d}{2}\right)^2$$

Stad:

$$r_1^2 - r_2^2 = 2xd$$
$$r_1 - r_2 \approx \frac{xd}{D}$$

Intensywność końcowa:

$$I = (a \cdot e^{i\omega t})^2 \cdot \left[e^{-ikr_1} + e^{-ikr_2}\right]$$

$$= 2a^2 \left(\cos\left(kr_1 - kr_2\right) + 1\right)$$

$$= 2a^2 \left(1 + \cos\left(k(r_1 - r_2)\right)\right)$$

$$= 2a^2 \left(1 + \cos\left(\frac{2\pi}{x} \cdot \frac{xd}{D}\right)\right)$$

2.4 Funkcja falowa swobodnego elektronu

 $e^- \sim \text{fala (formalna definicja później)}$

Niech $\Psi(x, y, z, t) \sim A(\vec{z}, t)$.

 $|\Psi|^2=P$ – "Intensywność" fali elektronowej, prawdopodobieństwo znalezienia elektronu w tej chwili w danym miejscu.

Dla dwóch funkcji falowych:

$$\Psi = \Psi_A + \Psi_B$$
$$P \sim |\Psi_A + \Psi_B|^2$$

Prawdopodobieństwo znalezienia elektronu w danej przestrzeni = 1. Zatem

$$\int |\Psi(z,t)|^2 dz = 1.$$

Funkcja falowa znormalizowana do jedynki. Funkcja falowa jest całkowalna kwadratowo.

Superpozycja:

$$\Psi = c_1 \Psi_1 + c_2 \Psi_2$$

$$\Psi_1 = |\Psi_1| e^{i\alpha_1}$$

$$\Psi_2 = |\Psi_2| e^{i\alpha_2}$$

Stad:

$$|\Psi|^2 = |c_1\Psi_1|^2 + |c_2\Psi_2|^2 + 2\operatorname{Re}\left[c_1c_2\Psi_1\Psi_2e^{i\alpha_1-\alpha_2}\right]$$

3 Stany kwantowe

3.1 Właściwości światła

Czarne ciało, gdy jest zimne, pochłania wszystkie barwy światła, ale gdy jest bardzo podgrzane, to świeci na biało.

Światło jest systemem anomnym.

3.2 Światło jako fala

$$A(\vec{r},t) = A_1(\vec{r},t) + A_2(\vec{r},t)$$

Natężenie światła wyraża się wzorem:

$$I(\vec{r},t) = |A(\vec{r},t)|^2$$

3.3 Elektron jako fala

Elektron również może być zapisany jako fala:

$$\Psi(x, y, z, t) \sim A(\vec{r}, t)$$

gdzie $A(\vec{r},t)$ jest amplitudą fali elektronowej.

3.4 Interpretacja funkcji falowej

$$|\Psi(x,y,z,t)|^2$$

jest **prawdopodobieństwem** znalezienia cząstki w danym obszarze przestrzeni w danym czasie.

Dodatkowo: - D - bok - λ - puls częsta - λ - złota zanieczyszczona

3.5 Zasada superpozycji

Obowiązuje zasada superpozycji (tak jak dla światła):

$$\Psi = \Psi_A + \Psi_B$$

ale:

$$|\Psi_A + \Psi_B|^2 \neq |\Psi_A|^2 + |\Psi_B|^2$$

3.6 Interpretacja fali elektronowej

Mamy jeden elektron, tzn. mamy jeden sygnał, więc w danym obszarze go zaobserwujemy. Przyjmujemy, że w całej przestrzeni znalezienie elektronu jest równe 1, ponieważ mamy dokładnie jeden elektron:

$$\int |\Psi(\vec{r},t)|^2 dV = 1$$

Szukamy znormowanej zadanej funkcji $\Psi,$ tzn. dzielimy każdą funkcję przez jej normę, aby uzyskać 1.

3.7 Zasada superpozycji w mechanice kwantowej

$$\Psi = c_1 \Psi_1 + c_2 \Psi_2$$

$$\Psi_1 = |\Psi_1| e^{i\delta_1}$$

$$\Psi_2 = |\Psi_2| e^{i\delta_2}$$

$$|\Psi|^2 = c_1^2 |\Psi_1|^2 + c_2^2 |\Psi_2|^2 + 2 \operatorname{Re}(c_1 c_2^* |\Psi_1| |\Psi_2| e^{i(\delta_1 - \delta_2)})$$

To definiuje interferencję.

3.8 Fala de Broglie'a

$$E = h\nu, \quad E = \hbar\omega$$

$$p = \frac{h}{\lambda}, \quad p = \hbar k$$

Gdzie: - E to energia, - ν to częstotliwość, - λ to długość fali, - p to pęd cząstki.

3.9 Fala płaska

Równanie fali płaskiej:

$$\Psi(x, y, z, t) = A \exp(i (kx - \omega t))$$

Można również zapisać jako:

$$\Psi = A \exp\left(\frac{i}{\hbar}(px - Et)\right)$$

3.10 Najprostszy obiekt fali

- Stojąca fala może się zdarzyć, że nie będzie płaska. - Stojąca jednowymiarowa fala jest płaska. - Warunek brzegowy przestrzeni może być dobrany na nasz typ układu.

3.11 Opis 3D

Dla trzech wymiarów zapisujemy:

$$\Psi(\vec{r},t) = A \exp\left(\frac{i}{\hbar}(\vec{p} \cdot \vec{r} - Et)\right)$$

Pęd jest opisany jako:

$$p^2=k^2$$

3.12 Operator pędu i energii

Operator pędu w kierunku x:

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

Operator energii:

$$i\hbar\frac{\partial}{\partial t}\Psi = E\Psi$$

Operator pędu w trzech wymiarach:

$$\hat{\vec{p}} = -i\hbar\nabla$$

3.13 Pakiety falowe

Zapiszmy jednowymiarową falę cząstki:

$$\Psi(x,t) = (2\pi\hbar)^{-1/2} \int \phi(p_x) e^{\frac{i}{\hbar}(p_x x - Et)} dp_x$$

Jest to fala płaska.

3.13.1 Transformacja Fouriera

Funkcję falową w przestrzeni p_x możemy zapisać jako:

$$\phi(p_x) = (2\pi\hbar)^{-1/2} \int e^{-\frac{i}{\hbar}p_x x} \Psi(x) dx$$

Jest to transformata Fouriera.

3.13.2 Interpretacja

Funkcja $\phi(p_x)$ opisuje rozkład prawdopodobieństwa w przestrzeni pędu.

$$\int dp_x |\phi(p_x)|^2 = 1$$

co oznacza, że prawdopodobieństwo znalezienia danej wartości p_x jest znormalizowane.

3.13.3 Energia fali

Energia kinetyczna:

$$E = \frac{p_x^2}{2m}$$

3.13.4 Własności pakietów falowych

- Fala po rozmyciu, w którym kontrolujemy szerokość, to **superpozycja różnych częstości**. - Determinuje interferencję oraz precyzję pomiaru.

3.14 Pakiet Gaussowski

Funkcja $\phi(p_x)$ dla pakietu Gaussowskiego ma postać:

$$\phi(p_x) = C \exp\left(-\frac{(p_x - p_0)^2}{2(\Delta p_x)^2}\right)$$

gdzie Δp_x oznacza niepewność pędu.

3.14.1 Normalizacja

$$\int |\phi(p_x)|^2 dp_x = 1$$

Współczynnik normalizacyjny:

$$C = \frac{1}{(2\pi\hbar)^{1/4} (\Delta p_x)^{1/2}}$$

3.14.2 Pakiet w przestrzeni rzeczywistej

$$\Psi(x) = \left(\frac{1}{\pi(\Delta x)^2}\right)^{1/4} e^{-\frac{x^2}{2(\Delta x)^2}}$$

Związek nieoznaczoności Heisenberga:

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}$$

3.14.3 Interpretacja

- Jeśli pakiet jest dobrze zlokalizowany (krótki) w przestrzeni, to jest źle zlokalizowany w przestrzeni pędu. - Dla podstawowego stanu nie uwzględniamy elektronów.

3.15 Ewolucja w czasie

Energia wyrażona przez pęd:

$$E = \frac{p_x^2}{2m}$$

Funkcja falowa w czasie:

$$\Psi(x,t) = (2\pi\hbar)^{-1/4} e^{ip_0x/\hbar} e^{-iEt/\hbar}$$

Niepewności pędu i położenia:

$$\Delta x \Delta p_x = \frac{\hbar}{2}$$

Szczególny przypadek:

$$\Delta X \cdot C = \frac{\hbar}{2} p_x$$

Niepewność Heisenberga:

$$\Delta x \Delta p > \hbar$$

To jest grube przybliżenie, ponieważ rzeczywistość wymaga bardziej dokładnych obliczeń.

3.16 Niepewność i interferencja

Jeśli suponować interferencję, to będzie wymiarowana z elektronem i obiektem.

Niepewności:

$$\Delta y \Delta p_y \ge \hbar$$

$$\Delta x \Delta p_x \ge \hbar$$

3.16.1 Para czas-energia

Transformata Fouriera:

$$\Psi(t) = \frac{1}{\sqrt{2\pi}} \int g(\omega) e^{-i\omega t} d\omega$$

Związek nieoznaczoności:

$$\Delta t \Delta E > \hbar$$

Zależność energii od częstotliwości:

$$E = \hbar \omega$$

Graficzna ilustracja nieoznaczoności czasu i energii pokazuje, że krótkie impulsy prowadzą do szerokiego rozkładu częstotliwości.

3.17 Równanie Schrödingera

3.17.1 Motywacja

Chcemy znaleźć równanie, które będzie opisywało ewolucję fali.

Własności funkcji falowej:

- Jeśli Ψ_1 i Ψ_2 są rozwiązaniami, to kombinacja liniowa $c_1\Psi_1+c_2\Psi_2$ również jest rozwiązaniem.
- $\Psi(x,t)$ jest funkcją zespoloną.

3.17.2 Fala płaska

$$\Psi(x,t) = Ae^{i(px-Et)/\hbar}$$

Podstawiając zależności:

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}, \quad \hat{E} = i\hbar \frac{\partial}{\partial t}$$

Dla swobodnej cząstki:

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t)$$

3.17.3 Równanie Schrödingera z potencjałem

W obecności potencjału V(x,t) równanie przyjmuje postać:

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(x,t)\right]\Psi(x,t)$$