

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 96/31551 (11) Internati nal Publication Number: C08G 18/66, 18/48 A1 (43) Internati nal Publication Date: 10 October 1996 (10.10.96) (81) Designated States: JP, US, European patent (AT, BE, CH, DE, PCT/GB96/00863 (21) International Application Number:

(22) International Filing Date:

4 April 1996 (04.04.96)

(30) Priority Data:

9506946.4

4 April 1995 (04.04.95)

GB

(71) Applicant (for all designated States except US): UNIVERSITY OF STRATHCLYDE [GB/GB]; McCance Building, 16 Richmond Street, Glasgow G1 1XQ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GRAHAM, Neil, Bonnette [GB/GB]; 6 Kilmardinny Grove, Bearsden, Dunbartonshire G61 3NY (GB). MAO, Jianwen [CN/DE]; Scheffelstrasse 32, D-79639 Grenzach-Wyhlen (DE).

(74) Agents: McCALLUM, William, Potter et al.; Cruikshank & Fairweather, 19 Royal Exchange Square, Glasgow G1 3AE DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MICROGELS

(57) Abstract

A microgel is produced by a two-stage process wherein the monomers are first polymerised in the absence of solvent for a controlled | period, and in a second stage solvent is added and polymerisation is completed. The polymer is preferably a polymerthane formed from a polyalkylene glycol, a triol and a diisocyanate. The molecular weight is typically 100,000 to 200,000. The microgels form granules which may be compressed into solid form. Such solid forms containing an active agent, such as a protein, are useful as sustained delivery devices.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

PCT/GB96/00863

1

MICROGELS

FIELD OF THE INVENTION

The present invention relates to a process for the production of a microgel. The process enables the production of microgels in a simple and economic manner. The invention also relates to microgels themselves, particularly when compressed or melted into a solid body.

BACKGROUND

Prior patent specification GB2090264 discloses a solution polymerisation process for the preparation of polymeric materials comprising cross-linked particles which are capable of forming sols, that is to say, a class of hydrogels which are referred to as microgels. The process involves polymerising one or more monomers in a solvent having particular characteristics and terminating the polymerisation before macrogelation occurs.

Microgels may be defined as intramolecularly cross-linked macromolecules. In common with other cross-linked polymers, microgels have a cross-linked structure and fixed surfaces. On the other hand, microgels may generally speaking be dissolved in certain solvents in the same way as non-cross-linked

linear or branched polymers of similar molecular weight. In conventional cross-linked polymers, macrogelation occurs such that an extensive three-dimensional network is set up, which generally speaking resists dissolution in solvents. In microgels, the cross-linking structure exists predominantly within individual globular molecules.

The special molecular structure of microgels and their ability to exist as globular particles makes the microgel a promising material for pharmaceutical applications, such as carriers for controlled drug delivery. Patent specifications GB2090264, GB2143733 and GB2230952 disclose sustained release devices comprising an active ingredient and a hydrogel.

It is therefore foreseen that microgels may have a variety of potential industrial uses, and it would be desirable to provide an improved production process capable of producing microgels in a simple efficient and economical manner. Originally, microgels had to be produced high at dilutions which favour intramolecular rather than intermolecular linking. Patent specification GB2090264 exemplifies an improved process for the production of microgels at higher concentrations in solvents having particular defined characteristics and under certain conditions which favour microgel formation. Generally speaking, the microgels formed have good solubility in the

solvents used in the production process, so that solid microgel granules are generally obtained precipitation of the microgel from solution by the addition of an organic liquid such as hexane, cyclohexane, petrol ether or methanol. However, the addition of a further organic liquid to the solvent used in the microgel production reaction means that the solvent cannot be directly reused without costly procedures for recovering the solvent from the mixture formed with the organic liquid. Furthermore, the microgel granule size or shape may not be suitable for direct use as a tabletting excipient, so that further processing such as grinding and sieving may be needed. These expedients are undesirable and detract from the industrial applicability of such microgel production processes.

It is an object of the present invention to mitigate these disadvantages.

SUMMARY OF THE INVENTION

One aspect of the present invention provides a process for the production of a microgel, which comprises

(i) in a first step conducting a polymerisation reaction by cross-linking at least one monomer in a reaction mixture substantially free of solvent therefor; and

4

(ii) thereafter in a second step, dissolving the reaction mixture in a solvent and completing the polymerisation to produce a microgel.

Polymerisation may generally be taken to completion without macrogelation occurring, and there is therefore usually no need to terminate polymerisation prior to completion (though this is not excluded).

Another aspect of the present invention relates to the microgel polymer, particularly in granular form. The process of the present invention has been found to provide microgels having higher molecular weights than those obtained by conducting the polymerisation in a solvent in the absence of the solvent-free first polymerisation step.

A third aspect of the invention relates to a sustained release device comprising the microgel and having incorporated therein an active agent to be released. Advantageously, the device is in the form of a compress of microgel granules having the active agent dispersed therethrough. On swelling in water the compress generally becomes microporous but retains its integral structure.

Thus, it is surprisingly found according to the present invention that the use of a solvent-free first stage of the polymerisation enables microgels to be produced which may be more easily separated from

solution, for example by cooling to precipitate microgels of good crystallinity. In fact, the crystal structure of microgels produced according to the present process appears to be improved over those produced by known processes. That good microgels may be produced employing a process which is, at least in its initial stage, solvent-free is surprising. It has hitherto been assumed that the nature and presence of the solvent from the beginning of the polymerisation is essential in order to favour intramolecular crosslinking and to prevent macrogelation occurring. Furthermore, since the microgels of the present invention may be separated from the reaction solution without the need to add any further organic liquid, the possibility exists for reusing the polymerisation solvent directly. Water-soluble or insoluble microgels may be produced.

Polymerisation may also proceed at a faster rate using the solvent-free first step of the present invention, compared to conventional processes without this step. Thus, the speed of production of the microgels may be enhanced.

The polymerisation reaction of the present invention may be an addition polymerisation, for example a cationic, anionic or free radical polymerisation, or a step-growth or condensation polymerisation. The polymerisable monomer may in

particular be any of those monomers disclosed in GB2090264.

However, the present invention is advantageously applied to the production of polyurethane microgels. this case, the monomer is a dihydroxy or polyhydroxy compound, such as a polyalkylene oxide, particularly polyethylene oxide or polypropylene Generally, the ratio of number average oxide. molecular weight to functionality is greater than Polyethylene glycols of number average molecular weight 3,000 to 10,000 are particularly preferred. Production of water-insoluble polyurethane microgels tends to be favoured by using relatively low amounts of polyethylene oxide and relatively high amounts of cross-linking agent. Water soluble microgels may be made in converse manner.

Cross-linking may be carried out using a suitable cross-linking agent known in the art, such as a diisocyanate or polyisocyanate, for example (cyclo) aliphatic, araliphatic or aromatic diisocyanate. Specific examples include 2,4 and 2,6 toluene diisocyanate; (cyclo)aliphatic diisocyanates such as 1, 6 hexamethylene diisocyanate isophorone diisocyanate, 4, 4'-dicyclohexylmethane diisocyanate, and (cyclo)hexylene 1, 2 - and 1,4- diisocyanate; and araliphatic diisocyanates such as 4,4'-diphenylmethane diisocyanate.

In order to provide a three-dimensional branched polyurethane structure, the polymerisation reaction preferably also includes a polyfunctional compound having active hydrogen atoms, such as an aromatic or aliphatic polyol, for example an aliphatic triol such as 1,2,6 hexantriol.

A particularly preferred polyurethane is formed by polymerising a mixture of a polyethylene glycol, an aliphatic triol, and a diisocyanate in a molar ratio 1:1-8:2-15.

The solvent for the second step may in principal be any suitable solvent, such as those disclosed in GB2090264. Preferably, the solvent will have a moderate solubility for the microgel at ambient temperature, such as to allow the microgel to be precipitated directly from solution without the addition of any other substance thereto which would affect the ability of the solvent to be directly reused in a further polymerisation reaction. ethyl ketone is a particularly preferred solvent for the production of polyurethane microgels. Acetone and diethyl ketone may also be employed. The solvent is employed in the second step of the polymerisation process, and is generally added such as to dilute the reaction mixture from the first step concentration in the range 2 to 30%, preferably 5 to 20% wt/volume.

The properties of the finished microgels are dependent upon the extent of polymerisation which occurs during the first step in the absence of solvent. Generally, the first step is carried out for a time which is insufficient for macrogelation to occur and this is usually in the range 1 to 60 minutes, preferably 5 to 30 minutes, and particularly 20 minutes. Generally, the reaction completion in the second step as indicated by the disappearance of cross-linking agent takes less than 24 hours. Thus the first step may take from about 0.5 2.0% of the total polymerisation time. Α polyurethane will generally be produced by polymerisation at a temperature in the range 50 to 100°C.

Microgels of the present invention generally have higher weight average molecular weights (e.g. above 40,000, typically in the range 100,000 to 200,000) than those prepared conventionally without the solvent-free first step.

The microgel particles of the present invention tend to flow well and be less sticky than conventional microgels, and be of good size uniformity. This may be due to differences in chemical structure arising from the solvent-free first step. Polyethylene oxide-based microgels are believed to comprise a hydrophobic core (composed for example in the case of a

polyurethane primarily of aromatic moieties and polyol) and hydrophilic loops or side chains extending therefrom formed of polyethylene oxide. In the microgels of the present invention the loops or chains may be longer due to some linear polymer formation prior to cross-linking.

The microgel is preferably separated from cooling the reaction mixture to solution by temperature below the temperature at which polymerisation is carried out, and below the melting temperature of the crystalline portion microgel. For an industrial process, deposition of the solid microgel is preferably brought about at a temperature of 10 to 25°C i.e. substantially room temperature; although cooling below room temperature may be used if necessary.

The microgels of the present invention have a particularly high degree of crystallinity, which may be in the range 40 to 70% determined as described Generally, the microgels crystallise in the herein. granules comprising globular microgel particles whose size shows good consistency. the average granule size may be in the range 10 to described determined as herein. 1,000 microns microgels are crystallised Generally, the solution in the form of granules having a size greater than 0.1mm, particularly 1 to 5mm. Such microgel WO 96/31551 PCT/GB96/00863

10

granules have beneficial compaction properties so as to be suitable for compression moulding. Generally speaking, the microgel granules produced by the production process may be used directly, without any need for further treatment such as grinding or sieving.

Thus, the microgel granules of the present invention are particularly suited to the production of solid sustained release devices produced compression, optionally under the effect of heat. Generally, the sustained release device includes an active agent which is dispersed uniformly throughout the microgel compress. The sustained release device is intended to be placed in a liquid into which the active agent is to be released, such as water. microgel itself may be either soluble or insoluble in the liquid in which the active agent is to be released. In the case of insoluble microgels, the liquid may gain access to the active agent through pores present in the microporous compress.

It is a surprising property of the microgels of the present invention that they are able to produce a compress which on swelling in water does not disintegrate but becomes microporous. Compression may be carried out at room temperature and heating is not generally required.

However, the microgels can generally be melted at

temperatures of less than 100°C without decomposition, and this allows moulded forms to be produced.

The active agent may be a pharmaceutical, bacteriostat, viricide, insecticide, herbicide. larvicide, fungicide, algicide, nematicide, anthelmintic, topical or dermatological agent, antimarine growth prevention, foulant for preservative, surfactant, pigment, disinfectant, sterilising agent or any other agent for which sustained release is desirable. It is a particular benefit that the microgel sustained release device of the present invention may be used to deliver high molecular weight active agents, such as biologically active molecules, particularly proteins. Since proteins and many peptides have high molecular weight and hydrophilicity, it has hitherto been difficult to find materials which can regulate the release of these substances. Although hydrogels have special potential for the release of proteins due to their relatively high permeability, hydrophilic nature biocompatability, introducing a protein hydrogel matrix has hitherto proved to be difficult. Prior methods have included polymerisation of the hydrogel in the presence of the protein or peptide, or loading the protein or peptide into the hydrogel by swelling the hydrogel in an aqueous solution thereof and subsequently drying again. However, both these

methods have disadvantages and may lead to toxic reaction products or a denatured protein. The microgels of the present invention allow production of a hydrogel matrix by compaction of microgel granules admixed with the active agent at room temperature in the dry state. This minimises possible degradation or contamination of the protein or peptide. Previously compaction of microgels generally required heating.

In particular, the protein or peptide may be an antibody, an enzyme or a hormone. A microporous sustained release device may also deliver a living micro-organism, such as a bacterium (for example lactobacillus) or a parasitic organism, such as those used to kill fungi or mosquito larvae.

Water-soluble microgels may be used to deliver such biologically active materials. They may also be used to aid solubility of an insoluble or sparingly soluble active agent.

The compressed or moulded microgel may be in any suitable solid form, such as a tablet or ball, cylinder, disc or block. The microgel solid form may be coated with a coating which is soluble or insoluble in the liquid into which the active agent is to be released. In the case of an insoluble coating, a suitable aperture or apertures will be provided to allow ingress of liquid and release of active agent.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Embodiments of the invention will now be described by way of example only

EXAMPLE 1 (Synthesis of microgels)

(i) The following materials were employed.

PEG 6000 (Polyethylene glycol; the code 6000 represents the approximate molecular weight) was supplied by BP and was vacuum dried at 90-95°C for at least 4 hours using a Rotavapor (trademark) drier and was stored molten in an oven at 80°C until used. hydroxyl numbers of the dried PEGs were determined by a standard method. The number average molecular weight value calculated from these hydroxyl numbers was 5830. Desmodur W (dicyclohexyl methane diisocyanate) was obtained from Bayer and was used without further purification. 1,2,6 - hexantriol (HTP) was provided by Aldrich and used without further purification.

Caffeine (Aldrich, Mw: 235), bovine serum albumin (BSA) (obtained from Sigma, Mw:66,000) and polyvinyl pyrrolidone (Aldrich, Mw: 10,000) were used as model drugs for controlled drug delivery.

Methyl ethyl ketone (MEK) was supplied by Aldrich and was dried over anhydrous calcium sulphate (20-40 mesh) and molecular sieve (4A type, 20 mesh) for at least 24 hours and distilled fresh before use. The

solubility parameter of MEK is 18.4 J'ml-3/2.

Chloroform and petroleum ether (60-80°C b.p.) were used as supplied by Aldrich.

Anhydrous ferric chloride (FeCl₃) supplied by BDH was used as catalyst.

Wheaton glass serum bottles and their corresponding seals with teflon-faced septum were supplied by Aldrich and were used as the reaction container.

(ii) Microgel samples were prepared using following route. The initial reactions were carried out in solvent-free bottles and then the reactants were diluted with solvent after various initial reaction times. Molten PEG6000 was weighed in a bottle and there was added thereto hexantriol in which anhydrous FeC1, was dissolved. The concentration was monitored so to give a concentration of FeCl, in the total reactants of 0.2mg/g. These reactants were mixed together and then Desmodur W was added. bottle was placed in an oven at 80°C and samples were withdrawn at different times, e.g. 5 mins, 10 mins, 15 mins, 20 mins and 25 mins. In a second step the samples were diluted in methyl ethyl ketone to different concentrations, i.e. 5.8, 11.6% (wt./vol.). Additional catalyst was included in the solvent used for dilution, so the total

concentration of the catalyst in the solution was 0.5g/100ml. The solutions sealed in the bottles were put back in the same oven for further reaction. (The samples withdrawn at 20 mins and marked with an asterisk were actually macrogeled before dilution, and fall outside the present invention.)

Results are shown in Table 1 where Ti represents the initially solvent-free reaction time. The molar ratio is PEG: hexantriol: Desmodur W.

TABLE 1 Samples of Solvent-Free Initial Reaction.

SAMPLE	Ti(min)	Molar Ratio	Solvent	Concentration
X4-5-3	5	1:4:7	MEK	11.6
X4-10-3	10	1:4:7	MEK	11.6
X4-15-3	15	1:4:7	MEK	11.6
X4-20-3	20*	1:4:7	MEK	11.6
X3-5-3	5	1:3:5.5	MEK	11.6
X3-10-3	10	1:3:5.5	MEK	11.6
X3-15-3	15	1:3:5.5	MEK	11.6
X3-20-3	20*	1:3:5.5	MEK	11.6
X2.5-5-3	5	1:2.5:4.75	MEK	11.6
X2.5-10-3	10	1:2.5:4.75	MEK	11.6
X2.5-15-3	15	1:2.5:4.75	MEK	11.6
X2.5-20-3	20*	1:2.5:4.75	MEK	11.6
X1.5-5-3	5	1:1.5:3.25	MEK	11.6
X1.5-10-3	10	1:1.5:3.25	MEK	11.6
X1.5-15-3	15	1:1.5:3.25	MEK	11.6
X1.5-20-3	20	1:1.5:3.25	MEK	11.6

The completion of the reaction was indicated by the disappearance of the isocyanate IR peak at 2225 cm⁻¹. The reaction will normally take less than 24 hours. All the microgels were insoluble in water and soluble in chloroform.

Samples marked * are for comparison only.

EXAMPLE 2 (Crystallisation)

Microgel granules were prepared by direct filtration of a microgel solution after leaving the solution in a freezer at -15°C for 20 minutes. The microgel and the solvent were easily separated. Because there was still some solvent left in the filtered samples a small amount of petroleum ether (60-80°C) was used to wash the separated microgel samples. Washing prevented the flocculation of crystallised granules from sticking together. samples were then dried in a vacuum oven overnight. The amount of microgel recovered from crystallisation was well above 96% excluding the loss of materials during work-out.

The particle sizes of the microgel granules were measured using a Malvern 2600 model laser scattering particle sizer. Results are shown in Table 2.

Figure 1 shows the distribution of particle sizes for sample X2.5-5-1. Comparing the results shown in Table 2, the higher the concentration of monomers, the

bigger the average particle size of the crystallised granules. The change of the specific area as the monomer concentration changes also reflect the same trend. The particle sizes, on the other hand, were quite uniform for each sample.

TABLE 2

SAMPLE	Conc.of Monomer	Specific Area	Average Size
	(g/100ml)	(sq m/cc)	(µm)
X2.5-5-1	5.8	0.1422	66.51
X2.5-5-2	8.7	0.0987	72.21
X2.5-5-3	11.6	0.0946	73.52

EXAMPLE 3 (characterisation)

1) Molecular Weight and Molecular Structure

GPC (Gel Permeation Chromatography) was used to measure the molecular weight of the microgel samples. The experiments were carried out using following conditions:

- a) Waters Model 510 pump, 1.0ml/min, 600-800psi
- b) Knaur Differential Refractometer
- c) Waters WISP 710B automatic sample injector, injection volume 100μ l.
- d) Waters 745 data module

e) Waters Ultrastyragel-linear and Ultrastyragel-500A columns.

Sample concentration was 0.1g/100ml. Sample solutions were filtered before injecting into the gel permeation chromatograph using a Waters disposable 0.5 μ m filter. Chloroform was employed as the solvent.

The system was calibrated with polyethylene glycol standards which were supplied by Polymer Laboratory Ltd.

The molecular weight of the microgels prepared via the "solvent-free" route of the present invention was much higher than that of the microgels prepared by conventional solution polymerisation. All the samples had a single peak on a GPC curve which indicated that the composition of each microgel sample was uniform. Or in other words, they were all intramolecularly crosslinked but had different sizes. The total reaction could be divided into

- a) initial stage reaction in the absence of solvent, and
- b) further reaction in solution after solvent was added.

Both steps were essential to form such microgels as the first step reaction (because of the high reactant concentration) should be faster and effective, so long as the crosslinking was still microscopic, till solvent was added.

Macrogelation is probably avoided by steric stabilization provided by PEG chains chemically anchored around the microgel cores.

TABLE 3 Molecular Weight

SAMPLE	Mw	Mn	Mw/Mn
X2.5-5-3	169516	92478	1.83
X2.5-10-3	115411	42712	2.70
X2.5-15-3	130466	43844	2.97

2) GLASS TRANSITION AND CRYSTALLINITY

DSC (Differential Scanning Calorimetry) experiments were carried on a DuPont Model 910 DSC instrument coupled with a DuPont Model 990 thermal analyser. Some 3-5mg of sample was transferred to an aluminium pan. The pan was then sealed hermetically and heated from the starting temperature to a limit temperature at a rate of 5°C/min as stated later. The DSC cell was constantly purged with dry nitrogen gas to avoid moisture contamination during the operation.

The DSC characterisation results are listed in Table 4. The experiments were carried out at a heating rate of 5°C/min. Data for PEG6000 polyethylene oxide is included for comparison.

TABLE 4 DSC Results.

SAMPLE	Tg	Tm	ΔΗ,	PEG	Crystallinity
	(°C)	(°C)	J.g-1	w/w%	·
X3-5-3	-120.34	51.18	110.7	76.0	66.2
X3-10-3	-115.42	46.37	68.22	76.0	40.8
X2.5-5-3	-114.53	50.25	99.61	78.7	57.5
X1.5-5-3	-106.21	51.48	120.5	84.7	64.6
X1.5-5-3	-113.9	48.52	88.70	84.7	47.6
X1.5-10-3	-108.93	52.99	105.8	84.7	56.7
PEG6000	-94.37	65.68	219.0	100	99.5
					_

The glass transition of the microgel should be determined mainly by the soft segment of each microgel molecule which was composed of PEG chains; since the quantity of the hard core, i.e. urethane bonds and crosslinkers, was quite low (the weight percentage of these components was normally less than 15%). The structure of each microgel molecule is assumed to comprise a central core having anchored thereto PEG chains or loops.

The degree of the crystallinity of the microgels and the PEG can be measured by measuring the heat of fusion which is related to the melting of crystalline

PCT/GB96/00863

22

PEG in microgel samples.

 $\Delta H_{c}=--BO$

m: sample mass in mg

A: area of the curve in cm²

Bo: instrumental constant

 ΔH_f : heat of fusion in J.g.

The heat of fusion of 100% crystalline PEO (polyethyleneoxide) was taken as 220.12J.g¹. By dividing the heat of fusion of each microgel by the heat of fusion of the 100% PEO, the degree of the crystallinity in the total polymer was obtained. The degree of crystallinity in the PEO fraction of the microgel was further calculated, taking account of the proportion of PEG in each microgel.

EXAMPLE 4 (Controlled Drug Delivery)

1) Tablets made by Direct Compression

Figures 2 and 3 show the release of bovine serum albumin (BSA), polyvinyl pyrrolidone (PVDP) and caffeine from a tablet. The tablets were made by direct compression of a mixture of microgel X2.5-3 and each model drug. The loading was 10% (w/w) and the pressure applied was 5 tons. The size and the weight of the tablets were: diameter 13mm and thickness 3mm, and 0.5 grams respectively. Release experiments were

carried out in a standard dissolution apparatus at 37°C in water. Paddle speed was 60rpm. The release of bovine serum albumin, PVDP and caffeine were monitored by UV absorption at 280nm, 215nm and 274nm respectively.

The tablets were insoluble in water, and did not disintegrate even at the end of the release experiment but did swell. A typical swollen tablet measured 20mm diameter x 60mm thickness.

2) Tablets made by melting and compressing

Tablets could also be made by a melting and compressing process. Thus, a mixture of the microgel and a drug such as caffeine which is stable at elevated temperature was heated to 80°C for 20 minutes. The molten mixture was then compressed to form tablets or balls using a special mould. The soprepared tablets swell in water and will normally provide a more prolonged release than those prepared by direct compression. Release profiles are shown in Figure 4.

This method of preparing tablets may form the basis of an economical high-speed production of constant-release swelling devices using conventional tabletting equipment. This kind of tablet could also be injection moulded.

It is surprising that the microgel tablets made

by either direct compressing or by melting and compressing do not disintegrate when immersed in water for a long time. The crystallinity and the intermolecular entanglement of the microgel may play an important role in this.

Another feature for these tablets is that the rate of release of high molecular weight substances, i.e. PVDP and BSA, from the microgel tablets is relatively high. Without wishing to be restricted to any particular scientific theory, this could attributed to a different release mechanism. conventional non-porous hydrogels, diffusion via free volume governs the rate of the release. substances of different molecular weights have quite different release rates. The higher the molecular weight the slower the release. For microgel tablets, small channels ranging from $1\mu\mathrm{m}$ within the tablets have been seen in electromicrographs. These channels can then provide faster release for the high molecular weight agents than would be obtained using non-porous hydrogels.

CLAIMS

- 1. A process for the production of a microgel, which comprises;
 - in a first step conducting a polymerisation reaction by cross-linking at least one monomer in a reaction mixture substantially free of solvent therefor: and
 - ii) thereafter in a second step, dissolving the reaction mixture in a solvent and completing the polymerisation to produce a microgel.
- 2. A process according to claim 1 wherein the microgel produced is a polyurethane microgel.
- 3. A process according to any preceding claim wherein the monomer is a polyalkylene oxide.
- 4. A process according to claim 3 wherein the monomer is a polyethylene glycol of number average molecular weight in the range 3000 to 10,000.
- 5. A process according to claim 4 wherein the polyethylene glycol is cross-linked by means of a diisocyanate.

- 6. A process according to claim 5 wherein the polymerisation reaction also comprises a polyfunctional compound selected from the group consisting of aromatic and aliphatic polyols.
- 7. A process according to claim 6 wherein the polyfunctional compound is an aliphatic triol.
- 8. A process according to claim 7 which comprises polymerising a mixture of a polyethylene glycol, an aliphatic triol and a diisocyanate.
- 9. A process according to claim 8 wherein the molar ratio of polyethylene glycol to triol to diisocyanate is 1:1-8:2-15.
- 10. A process according to any preceding claim wherein the solvent for the second step has a solubility for the microgel at ambient temperature, such as to allow the microgel to be precipitated directly from solution without the addition of any other substance to effect precipitation.
- 11. A process according to claim 10 wherein an amount of solvent is added such as to dilute the first step reaction mixture to a concentration in the range 2 to 30% wt/volume.

- 12. A process according to any preceding claim wherein the first step is carried out for a time of 1 to 60 minutes.
- 13. A process according to claim 12 wherein the first step time is from 5 to 30 minutes.
- 14. A process according to any preceding claim wherein polymerisation is carried out at a temperature of 50 to 100°C.
- 15. A process according to any preceding claim wherein precipitation of the microgel is achieved by cooling the reaction mixture to a temperature in the range 10 to 25°C.
- 16. A process according to any preceding claim wherein the microgel produced has a weight average molecular weight in the range 100,000 to 200,000.
- 17. A polyurethane microgel which has a weight average molecular weight in the range 100,000 to 200,000.
- 18. A microgel according to claim 17 in granular form, the granules having a size in the range 1 to 5mm.

- 19. A microgel according to claim 18 wherein the granules are the direct polymerisation product and have not been subjected to mechanical size reduction.
- 20. A sustained release device which comprises a microgel and an active agent to be released.
- 21. A device according to claim 20 in the form of a solid body formed of a compress of microgel granules.
- 22. A device according to claim 20 or 21 wherein the microgel is a polyurethane.
- 23. A device according to any of claims 20 to 22 wherein the microgel has a weight average molecular weight in the range 100,000 to 200,000.
- 24. A device according to any of claims 20 to 23 wherein the microgel is in granular form and the granule size is in the range 1 to 5mm.
- 25. A device according to any of claims 20 to 24 wherein the active agent is a protein or peptide.

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter ronal Application No PCI/GB 96/00863

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C08G18/66 C08G18/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 COBG COBJ

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,4 293 679 (COGLIANO) 6 October 1981 see column 1, line 60 - column 7, line 35; claims 1-12; examples 3-7	1-3
A	WO,A,91 02763 (NATIONAL RESEARCH DEVELOPMENT CORPORATION) 7 March 1991 see page 1, line 31 - page 7, line 30; claims	1
Α	W0,A,80 01985 (EMBREY ET AL) 2 October 1980 see page 1, line 12 - page 10, line 12 see page 13, line 5 - line 17; claims	1
A	EP,A,O 121 331 (NATIONAL RESEARCH DEVELOPMENT CORPORATION) 10 October 1984 see page 12, line 1 - page 13, line 17; claims 1,7	1
	-/	

Further documents are listed in the continuation of hox C.	Patent family members are listed in annex.
* Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified)	'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
'O' document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled of in the art.
'P' document published prior to the international filing date but later than the priority date claimed	'&' document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
28 June 1996	1 2. 08. 96
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patendaan 2 NL - 2280 HV Rijswijk Tel. (- 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (- 31-70) 340-3016	Bourgonje, A

Form PCT ISA 210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/GB 96/00863

C.(Continua Category	citation of document, with indication, where appropriate, of		Relevant to claim No.
A	EP,A,O 132 384 (NATIONAL RESE/ DEVELOPMENT CORPORATION) 30 Ja see the whole document & GB,A,2 143 733 cited in the application	ARCH anuary 1985	1
			·

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte Tonal Application No PCI/GB 96/00863

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-4293679	06-10-81	NONE	
WO-A-9102763	07-03-91	DE-D- 69013926 DE-T- 69013926 EP-A- 0489068 ES-T- 2065544 GB-A,B 2235462 US-A- 5236966	08-12-94 23-03-95 10-06-92 16-02-95 06-03-91 17-08-93
WO-A-8001985	02-10-80	AU-B- 537740 AU-B- 5669080 AU-B- 537741 AU-B- 5669180 EP-A,B 0016652 EP-A,B 0016654 WO-A- 8001984 GB-A,B 2047093 GB-A,B 2047094 US-A- 4931288 US-A- 4894238 US-A- 5079009 US-A- 5017382	12-07-84 25-09-80 12-07-84 25-09-80 01-10-80 01-10-80 02-10-80 26-11-80 26-11-80 05-06-90 16-01-90 07-01-92 21-05-91
EP-A-121331	10-10-84	AU-B- 562797 AU-B- 2522484 CA-A- 1225595 GB-A,B 2144051 JP-A- 59196815 US-A- 5147646	18-06-87 06-09-84 18-08-87 27-02-85 08-11-84 15-09-92
EP-A-132384	30-01-85	GB-A,B 2143733 JP-B- 6049644 JP-A- 60042321 US-A- 4814182	20-02-85 29-06-94 06-03-85 21-03-89

THIS PAGE BLANK (USPTO)