PAST CLASS TESTS

In the years up to 2007 there were 3 algebra class tests per session. From semester 1 2008 there will be only 2 algebra class tests per semester so the pre-2008 tests included here do not have the same coverage of material as the class tests for 2008 and onwards. The Information booklet for MATH1131/1141 lists the material available for examination in the current schedule of class tests, as does page (240) of these notes. Also there have been some changes to the syllabus for 2008 and onwards and some parts of the questions in the following pre-2008 class tests are no longer examinable. Thus the following pre-2008 tests should only be taken as a guide to the level of difficulty to be expected in class test questions for 2008 and onwards.

Sample class tests from 2008 and onwards are included after all the pre-2008 class tests and these tests correspond to the current syllabus and class test schedule. However, the content of the class tests is specified in the Information booklet for MATH1131/1141.

The following selection of past class tests can be used as a guide to the degree of difficulty of algebra class tests. Due to variations in the timing of the mid-semester breaks the material examined in each class test can vary from semester to semester and from year to year. Thus students must consult the Information booklet for MATH1131/1141, or page (240) of these notes, to ascertain the precise topics that may be examined in each algebra class test.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 1a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	e	Initials	Student Number
Tutorial Code	Tute	or's Name	Mark
Note: The use of a ca	alculator is NOT po	ermitted in this te	est
Show all your working			
All answers should be gi	ven in the appropriate	ely SIMPLIFIED for	m.
QUESTIONS (Time	allowed: 25 minutes)		
1. (2 marks)			
(i) Find a param	(4,2,3), B(5,-7,-2) a tetric vector equation ith reasons, whether of	of the straight line A	AB. on the straight line AB .
2. (2 marks)			
,	vector equation of the	e plane in \mathbb{R}^3 with C	artesian equation
	$2x_1$	$-5x_2 + x_3 = 7.$	
Hence give two no	n–parallel non–zero ve	ectors which are para	llel to the plane.
3. (3 marks)			
For the points A (1) $\overrightarrow{AB} \times \overrightarrow{AC}$.	(1,2,3), B(3,4,1), C(3,4,1)	(3,3,4) calculate	
(ii) Area of $\triangle AB$	BC.		
4. (3 marks)			
	th line in \mathbb{R}^3 through	the point $P(1,2,3)$	and parallel to the vector \mathbf{v}
$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$. Let Q be the	e point with co-ordina	ates $(1, 4, 4)$.	
(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overline{I}\right)$	\overrightarrow{PQ} .		
(ii) Find the shor	test distance d between	en the line ℓ and Q .	
Please write	your answers on lined	A4 paper and staple	e to this cover sheet.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 1b

This sheet must be filled in and stapled to the front of your answers

		,
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculator	r is NOT permitted in this test	
Show all your working		
All answers should be given in th	ne appropriately SIMPLIFIED form.	
QUESTIONS (Time allowed:	25 minutes)	
1. (2 marks)		
Determine, with reasons, whare collinear (i.e. all in a st	nether or not the 3 points $A(3,5,7)$, B raight line).	(5, -4, 3) and $C(-5, 41, 22)$
2. (2 marks)		
Find a parametric vector eq	uation for the plane through the points	A(1,2,1), B(3,4,2), C(5,2,1)
3. (3 marks)		
,	C(5,6,4) and $C(2,1,3)$ calculate; between A and B .	
(ii) the projection $\operatorname{proj}_{\overrightarrow{AC}}$	$\left(\overrightarrow{AB}\right)$.	
4. (3 marks)		
A triangle has vertices at the	he origin O , at $A(4, -4, 8)$ and at $B(0, -4, 8)$	(0, -3, -6).
Let X be a point on the side	le OA such that $OX = \frac{3}{4}OA$, and Y a	a point on the side OB such

that $OY = \frac{2}{3}OB$.

Find parametric vector equations for the lines AY and BX and show that they intersect at the point P(2, -3, 2).

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 2b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	ator is NOT permitted in this t	test
Show all your working		
All answers should be given in	n the appropriately SIMPLIFIED fo	orm.
QUESTIONS (Time allow	ved: 25 minutes)	
1. (3 marks)		
Consider the line ℓ and	plane Π in \mathbb{R}^3 with Cartesian equat	ions:
	$\ell: \frac{x-2}{3} = \frac{y+1}{4} = \frac{z+3}{1}$	3
	$\Pi: \ 3x - 2y - 4z = 11 \ .$	
(i) Find a parametric	equation of the line ℓ .	
(ii) Find the co-ordinate	tes of the point P where ℓ meets Π .	
2. (3 marks)		
For the points $A(1, 2, 1)$ (i) Calculate $\overrightarrow{AB} \times \overrightarrow{AC}$	B(3,1,-1) and C(2,4,1);	
(ii) Find the area of pa	rallelogram with two adjacent sides	AB and AC.
3. (4 marks)		
/ \	he in \mathbb{R}^3 through the point $P(1,2,3)$	3) and parallel to the vector $\mathbf{v} =$
$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. Let Q be the point	nt with co-ordinates $(2, 4, 4)$.	
(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overrightarrow{PQ}\right)$;		
	listance d between the line ℓ and Q ;	
(iii) Find the co-ordinate	tes m of the point M on ℓ which is	closest to Q .

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

This sheet mus	st be fined in and stapled to the front of	your answers
Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	ator is NOT permitted in this test	
Show all your working		
All answers should be given in	n the appropriately SIMPLIFIED form.	
QUESTIONS (Time allow	ved: 25 minutes)	
1. (2 marks)		
For the points $A(3,2,1)$	and $B(6, 3, -2)$	
(i) Find a parametric	vector equation for the line AB .	
(ii) Find Cartesian equ	actions for the line AB .	
2. (2 marks)		
Find a parametric vecto	or equation for the plane in \mathbb{R}^3 with carte	sian equation
	$7x_1 + 2x_2 - x_3 = 1 .$	
Hence give two non-para	allel, non-zero vectors which are parallel	to the plane.
3. (2 marks)		
	B(3,5,-2) and $C(5,1,2)$,	
(i) Find $\cos(\angle BAC)$.		
(ii) Find $\operatorname{proj}_{\overrightarrow{AC}}\left(\overrightarrow{AB}\right)$		
4. (4 marks)		
In the plane with a cart origin and $\overrightarrow{OA} = \mathbf{a}$, \overrightarrow{OB}	esian co-ordinate system, let $OACB$ be a $b = b$, where $a \not\mid b$.	a parallelogram, with O the
(i) Write down (and la terms of a and b .	abel as such), parametric vector equations	s of the lines OC and AB in
and \mathbf{b} .	tes of the point P of intersection of lines	SOC and AB in terms of SOC
(iii) Show that $ \overrightarrow{OP} =$	$ \overrightarrow{PC} $ and $ \overrightarrow{PA} = \overrightarrow{PB} $.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 1 VERSION 4a

This sheet must be filled in and stapled to the front of your answers

			[
Stu	dent's Family Name	Initials	Student Number
Tut	orial Code	Tutor's Name	Mark
Not	e: The use of a calcula	tor is NOT permitted in this te	est
Show	all your working		
All a	nswers should be given in	the appropriately SIMPLIFIED for	m.
QUI	ESTIONS (Time allow	ed: 25 minutes)	
1.	(2 marks)		
		$B(5,7,-2) \text{ and } C(8,-3,2) \text{ in } \mathbb{R}^3;$	\rightarrow \longrightarrow
		es \mathbf{t} of the point T on AB such that	
	(ii) Find the co-ordinate cyclic order) is a part	tes \mathbf{d} of the point D such that the carallelogram.	quadrilateral $ABCD$ (named in
2.	(2 marks)		
	Find a parametric vector	equation for the plane in \mathbb{R}^3 with c	artesian equation
		$3x_1 - x_2 + 2x_3 = 8.$	
	Hence give two non-para	allel non–zero vectors which are para	llel to the plane.
3.	(2 marks)		
	For $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$	$\left(\mathbf{a}\right)$, calculate $\mathbf{a} \times \mathbf{b}$.	
4.	(4 marks)		
	Let ℓ be the straight lin	e in \mathbb{R}^3 through the point $P(1,2,3)$	and parallel to the vector $\mathbf{v} =$
	$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$. Let Q be the poir	at with co-ordinates $(1, 4, 4)$.	
	(i) Find $\operatorname{proj}_{\mathbf{v}}\left(\overrightarrow{PQ}\right)$.		
	(ii) Find the shortest d	istance d between the line ℓ and Q .	
	(iii) Find the co-ordinat	es m of the point M on ℓ which is c	losest to Q .

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 1a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	tor is NOT permitted in this test	
Show all your working	•	
All answers should be given in	the appropriately SIMPLIFIED form.	
QUESTIONS (Time allow	ed: 25 minutes)	
1. (2 marks)		
For the complex number	s $z = 1 + 5i$, $w = 3 - 2i$ calculate	
	$\operatorname{Im}(z+3iw)$, z/\overline{w} , $\operatorname{Arg}(1-4i-w)$	
in simplified cartesian fo	rm.	
2. (4 marks)		
		b_1
Determine what condition	ons on b_1, b_2, b_3, b_4 are needed to ensure the	nat $\begin{bmatrix} b_2 \\ b_2 \end{bmatrix}$ belongs to the
		$\begin{pmatrix} b_3 \\ b_4 \end{pmatrix}$
span of the vectors $\begin{pmatrix} 1 \\ -2 \\ -2 \\ 6 \end{pmatrix}$	$ \left(\begin{array}{c}3\\-5\\-4\\3\end{array}\right), \left(\begin{array}{c}-3\\4\\2\\12\end{array}\right). $	
3. (4 marks)		

Please write your answers on lined A4 paper and staple to this cover sheet.

to write $\sin^5 \theta$ in terms of $\sin \theta$, $\sin 2\theta$, $\sin 3\theta$,

 $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$

Use the identity

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 1b

This sheet must be filled in and stapled to the front of your answers

Stu	ident's Family Name	Initials	St	udent Number
Tut	torial Code	Tutor's Name		Mark
Not	e: The use of a calculat	or is NOT permitted in this test		
Shov	v all your working			
All a	answers should be given in	the appropriately SIMPLIFIED form.		
\mathbf{QU}	ESTIONS (Time allowe	d: 25 minutes)		
1.	(3 marks)			
	For the complex numbers	z = -2 - 3i, $w = 1 - i$ calculate		
		$\operatorname{Re}((1+3i)z)$, $ z^2 $, $\frac{z+1}{w}$		
	in simplified cartesian for	m.		
2.	(4 marks)			
	Determine what condition	ns on b_1, b_2, b_3, b_4 are needed to ensure that	$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$	belongs to the
	span of the vectors $\begin{pmatrix} 1\\2\\4\\1 \end{pmatrix}$	$, \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -3 \\ -7 \end{pmatrix}.$	(-4)	
3.	(3 marks)			
	Use the identity	$0 1 i\theta -i\theta$		
		$\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$		

Please write your answers on lined A4 paper and staple to this cover sheet.

to write $\cos^5 \theta$ in terms of $\cos \theta$, $\cos 2\theta$, $\cos 3\theta$,

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 2a

This sheet must be filled in and stapled to the front of your answers

Stu	ident's Family Name		Initials	Student Number
Tut	sorial Code	Tutor	's Name	Mark
Not	e: The use of a calcula	or is NOT per	mitted in this te	est
Shov	v all your working			
All a	nswers should be given in	the appropriately	SIMPLIFIED for	m.
QUI	ESTIONS (Time allowed	d: 25 minutes)		
1.	(3 marks)			
	Find the complex square	roots of $-24 - 70$	0i by solving $(x +$	$(iy)^2 = -24 - 70i$ for x, y real.
2.	(3 marks)			
	Determine, with reasons,	whether or not the	he lines	
		$\ell_1: {f x} =$	$\begin{pmatrix} -1\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\-5 \end{pmatrix}$	
	and	$\ell_2: {f x} =$	$\begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ -1 \\ 6 \end{pmatrix}$	
	intersect.		, , , , ,	
3.	(4 marks)			
	(i) Find the complex ro (ii) Hence factorise $p(z)$			irreducible quadratic factors.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 2b

This sheet must be filled in and stapled to the front of your answers

				-	
Stu	dent's Family Name		Initials	L	Student Number
Tut	orial Code		Tutor's Name		Mark
Note	e: The use of a calcula	tor is N	OT permitted in this	test	
Show	all your working				
All a	nswers should be given in	the app	ropriately SIMPLIFIED	orm.	
QUI	ESTIONS (Time allowed	ed: 25 m	inutes)		
1.	(3 marks)				
	Find the complex square	roots of	16 - 30i by solving $(x +$	$(iy)^2 = 16 - 30i$	for x, y real.
2.	(3 marks)				
	Determine, with reasons,	whether	or not the lines		
		ℓ_1 :	$\mathbf{x} = \begin{pmatrix} -1\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\4 \end{pmatrix} ,$	$\lambda \in \mathbb{R}$	
	and	ℓ_2 :	$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} ,$	$u \in \mathbb{R}$	
	intersect.				
3.	(4 marks)				
	(i) Find the complex re(ii) Hence factorise p(z)			al irreducible qu	adratic factors.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Mathematics 1A Algebra S1 2014 TEST 2 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark

Note: The use of a calculator is NOT permitted in this test

Show all your working

All answers should be given in the appropriately SIMPLIFIED form.

QUESTIONS (Time allowed: 25 minutes)

1. (3 marks)

For the complex numbers z = -1 - i, w = -11 + 7i find

$$(-5-i)\overline{z} + 2w$$
, $\frac{w}{1+3i}$, $\operatorname{Arg}(2z)$.

2. (3 marks)

Let $z = -\sqrt{3} + 3i$. Find a polar form for z and the principal argument and "a + ib" form of z^{19}

Powers of real numbers may be left unsimplified.

3. (4 marks)

Find the general solution for the following linear system of equations by setting up an augmented matrix, performing Gaussian Elimination and solving by back substitution.

$$x_1 + 3x_2 - 2x_3 + 4x_4 = 2$$

$$-2x_1 - 4x_2 + 5x_3 - 9x_4 = 0$$

$$-x_1 + x_2 + 4x_3 - 6x_4 = 6$$