Algoritmi Numerici (Parte II) [Lezione 3] Convergenza

Alessandro Antonucci alessandro.antonucci@supsi.ch

 $\verb|https://colab.research.google.com/drive/1RrlLMSom2MOE3iQk-XbDm66pDxtGAVtR||$

Convergenza

Una successione di valori x_0, x_1, x_2, \ldots converge verso un valore x^* se la distanza/errore $\epsilon_k := \mid x_k - x \mid$ tende sempre più ad avvicinarsi a zero con il crescere di k

$$\lim_{k\to+\infty}\epsilon_k=\mathbf{0}$$

Un algoritmo iterativo per la ricerca degli zeri di una funzione genera una successione di valori x_0, x_1, x_2, \ldots , tale che, nei casi in cui converge, tende verso il valore x^* di uno zero

Ordine di convergenza

Un algoritmo iterativo ha ordine di convergenza p se esistono due numeri $C \ge 0$ e $p \ge 0$ tali che

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k^p}=C,$$

ovvero
$$|x_{k+1} - x^*| < C|x_k - x^*|^p$$

Se p = 1 si dice che l'ordine di convergenza è lineare superlineare con 1 , quadratico con <math>p = 2

Convergenza dei vari algoritmi

- L'algoritmo della bisezione e le sue varianti convergono linearmente ($oldsymbol{p}=\mathbf{1}$)
- L'algoritmo della secante converge superlinearmente $(p = \tfrac{1+\sqrt{5}}{2} \simeq 1.618)$
- L'algoritmo della tangente converge quadraticamente (p=2)

Convergenza su punti a tangenza orizzontale

- Se $f'(x^*) = 0$ (zero con tangente orizzontale), l'algoritmo della tangente "rallenta" e la convergenza è lineare e non quadratica
- Es. con $f(x) = x^2$, f(x) = 2x allora $x^* = 0$ e $f'(x^*) = 0$.

k	x_k	$f(x_k)$	$f'(x_k)$
0	1	1	2
1	$1-\tfrac{1}{2}=\tfrac{1}{2}$	$\frac{1}{4}$	1
2	$\frac{1}{2} - \frac{\frac{1}{4}}{1} = \frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{2}$
3	$\frac{1}{4} - \frac{\frac{1}{16}}{\frac{1}{2}} = \frac{1}{8}$		

Ogni iterazione dimezza l'errore, convergenza lineare! la stessa cosa succede con l'algoritmo della secante