Getting started with an STM32F0 development board using STM32CubeIDE

Getting started: Choose a development board STM32F030F4P6

Features of STM32F030F4P6

- 32-bit ARM® Cortex®-M0 CPU
- Maximum 48MHz system main frequency
- 4KB SRAM with hardware parity check
- 16KB Flash
- Operating voltage: 2.4V 3.6V
- Internal 8MHz RC oscillator (HSI) with PLL option
- Internal 40kHz RC oscillator (LSI)
- External 4-32MHz crystal oscillator (HSE)
- Multiple low-power modes: Sleep, Stop, Standby
- Power on/down reset
- 15 I/Os, all available as external interrupts, many 5V-tolerant
- 1x 5-channel DMA controller with flexible mapping
- 1x 12-bit ADC, up to 9+2 channels, 0V 3.6V
- 1× 16-bit advanced-control timer with 6 PWM-channels
- 4× 16-bit general-purpose timer
- 2x watchdog timer
- 1x SysTick timer
- 1x real-time clock (RTC) with calendar, alarm, and periodic wakeup
- 1x USART interface with auto baud rate detection
- 1x I²C interface supporting Fast-mode Plus (1Mbit/s)
- 1x SPI interface with up to 18Mbit/s
- Hardware CRC-32 calculation unit
- Serial wire debug interface (SWD)
- Factory built-in embedded UART bootloader

Hardware connection with ST-link and TTL

The ST-LINK acts as an in-circuit debugger and programmer. This means it allows you to transfer your compiled code from your computer to the microcontroller's internal memory. Without a programmer like the ST-LINK, you wouldn't be able to get your program onto the microcontroller to run it.

TTL (Transistor–transistor logic) converter is used for UART communication. UART (Universal Asynchronous Receiver Transmitter) is a serial communication protocol commonly found in microcontrollers and embedded systems. It uses TTL logic levels for data transmission. And power up our STM32F0 Dev board.

Using STM32CubeIDE

Create STM32 new project

Click STM32Cube IDE Desktop Icon Figure 1

Figure 1: Open Cube IDE

Select or Browse a file path that will create the stm32 project files. Then Click Launch

Figure 2: Select a file path as a workspace

The first time opening STM32CubeIDE, it will show an initial screen that has links to guides and other resources that help you get started.

Figure 3: Welcome Screen

Click "Start new STM32 Project" and cube Ide download Necessary Driver files Figure 4

Figure 4: Download Files

Figure 5: Target Selection

Target Selection Window Click the commercial Part Number and Type "STM32F030F4P6" Figure 6

Figure 6: Commercial Part Number

Then Click MCUs/MPC List select First List and Tap "Next" Figure 7

Figure 7: MCUs/MPU List

When you press next then shows a pop-up window creates a valid project name and click "Finish" Figure 8

Figure 8: Create Project Name

Then Firmware Library Package Setup shows the pop-up window, click "Yes" Figure 9

Figure 9: Create Project Name

Appearing Led_Blink.ioc (your_project_name.ioc) - Pinout & Configuration screen. Figure 10

Figure 10: Pinout & Configuration window

Figure 11: System Core

Mark "Debug Serial Wire" Figure 12

Figure 12: SYS Mode and Configuration

Click "Clock Configuration" Then shows Figure 13

Figure 13: Clock Configuration

Change HCLK value from 8 MHz to 48 MHz (max) value and tap "OK" Figure 14

Figure 14: Change Clock Frequency

Click "Save All" then open the pop-up window show "Do you want generate Code?" tap "Yes" then next pop-up tap "Yes" Figure 15

Figure 15: Code Generate

Finally shows the main.c file and other Lib, Driver files generated

Figure 16: Open main.c file window

Code Optimization

