AIMS Assignment : Vision Language Models for Recipe Generation

1. Project Overview

Objective:

To generate concise 2–3 step cooking instructions from food images and noisy titles using Vision-Language Models (VLMs).

Approach:

Leveraged few-shot learning and prompt engineering with state-of-the-art VLMs to process multimodal data (images and text) and synthesize brief, actionable recipes.

2. Implementation Details

2.1 Model Selection

Primary Model: Gemini 2.0 Flash

 I chose this model because it offers fast inference, supports multimodal inputs (both images and text), and is easy to use. Additionally, it has been trained on a large, high-quality dataset, which contributes to its strong performance and reliable outputs.

Output Performance

- **BLEU Score: 0.0461** Strong for open-ended tasks like food captioning, where exact word matches are rare.
- **ROUGE-1 Score: 0.4650** Good Score even comparable to the fine-tuned LLaVA Chef model, indicating high-quality generation.

Method	Inputs	BLEU-1	BLEU-2	BLEU-3	BLEU-4	SacreBLEU	METEOR	ROUGE-1	ROUGE-2	ROUGE-L
Chef Transformer [16]	X_{ing}	0.267	0.127	0.064	0.034	0.038	0.116	0.262	0.059	0.136
Mistral [22]	$X_t + X_{ing}$	0.130	0.075	0.048	0.033	0.041	0.082	0.188	0.058	0.111
LLaMA [47]	$X_t + X_{inq}$	0.252	0.129	0.072	0.043	0.053	0.156	0.293	0.077	0.156
LLaVA [32]	$X_i + X_t + X_{ing}$	0.297	0.159	0.089	0.042	0.061	0.2	0.368	0.106	0.183
LLaVA-Chef-S1	$X_i + X_t + X_{ing}$	0.322	0.19	0.117	0.075	0.096	0.159	0.404	0.141	0.217
LLaVA-Chef-S2	$X_i + X_t + X_{ing}$	0.331	0.193	0.118	0.075	0.09	0.159	0.396	0.136	0.213
LLaVA-Chef-S3	$X_i + X_t + X_{ing}$	0.362	0.215	0.135	0.089	0.167	0.188	0.473	0.172	0.241

Source: LLaVA-Chef: A Multi-modal Generative Model for Food, Recipes arXiv:2408.16889v1 [cs.CL] 29 Aug 2024

Secondary Model: BLIP- 2

 A good Multi Modal Vision Language Model with most likes and most downloads on Hugging Face Platform.

Output Performance

• **BLEU Score: 0.0129** (limited success) — The Model had certain challenges like heavy size, computation difficulties and few errors which I could not resolve.

2.2 Dataset

- Data Collection: Manual Scraping of Images, Titles and Summary description from sources like <u>Food.com</u>, <u>AllRecipes.com</u>, <u>Google Images</u> etc.
- Dataset Size: Set of 10 curated samples for few shot training and 5 samples for test set.

Below is an example of how the Recipe was stored :

Original Recipe Japanese Egg Salad Sandwich Image: Image of Japanese Egg Salad Sandwich Ingredients 4 large eggs • 1 teaspoon lemon juice ½ cup mayonnaise · 2 teaspoons rice vinegar ¼ teaspoon kosher salt 1 pinch cayenne pepper • ¾ teaspoon white sugar • 1 tablespoon heavy cream 1 teaspoon Dijon mustard 4 slices soft white bread · 3 dashes hot sauce 1 tablespoon unsalted butter Instructions · Steam eggs for 11 minutes, cool and peel · Mix mayo, salt, sugar, mustard, hot sauce, lemon juice, and vinegar · Mash eggs with seasonings and mayo Chill for 1 hour · Butter bread and assemble sandwiches

Summarized Recipe

```
"input": {
   "image": "image of sandwich",
   "title": "Egg Spread Sammy"
  "output": {
    "summary": {
     "Ingredients": [
        "4 large eggs",
       "1/2 cup mayonnaise",
       "1/4 teaspoon kosher salt",
        "3/4 teaspoon white sugar",
        "1 teaspoon Dijon mustard",
       "3 dashes hot sauce, or to taste",
       "1 teaspoon freshly squeezed lemon juice",
        "2 teaspoons rice vinegar",
        "1/2 teaspoon kosher salt, or to taste",
       "1/4 teaspoon white sugar",
       "1 pinch cayenne pepper",
       "1 tablespoon heavy cream",
        "4 slices soft white bread",
       "1 tablespoon unsalted butter, softened"
      "Instructions": [
       "Steam eggs until hard boiled, then cool and peel",
       "Mix mayonnaise, salt, sugar, mustard, hot sauce, lemon
juice, and rice vinegar to make Kewpie-style mayo",
       "Mash eggs with seasonings, cream, and Kewpie mayo; chill
for at least 1 hour",
       "Butter bread slices, spread egg salad evenly, assemble
sandwiches, and optionally remove crusts"
 }
```

2.3 Prompting Strategy

Two-Segment Prompting:

- **System Prompt:** A fixed description that defines the role, purpose, and expected behavior of the model. It sets the foundation which the model should follow throughout the task.
- User Prompt: The model is provided with Input-output pair examples for few-shot learning then it produces the output on test data in the same input format.

Overall, I used multiple prompting techniques like Chain of Thought (CoT) and Tree of Thought (ToT) where I provided the model with stepwise instructions like step 1, step 2

etc along with looking for variations in the summary and , role-play where the model acts as an expert in culinary domain , this allows the model to behave like an expert and think effectively. This enables the model to enable structured, context-aware, and multi-step problem solving.

Template Structure:

JSON-based prompt format for consistency and reusability.

2.4 Performance Metrics

• BLEU Score: 0.0461

• ROUGE Scores:

ROUGE-1 F1: 0.4650
 ROUGE-2 F1: 0.1612
 ROUGE-L F1: 0.2910

2.5 Pipeline

3. Challenges

3.1 Technical Challenges

• Data Collection:

Manually curated samples from Food.com, AllRecipes, and Google and setting up the format. Focused on variety and quality. This approach took a little time and effort.

• Multimodal Prompting:

Combined image and text inputs using structured prompts with few-shot examples.

• Memory Constraints:

Faced issues with large models like BLIP-2. Had to optimize Python code and used Gemini 2.0 for efficiency.

3.2 Model-Specific Challenges

- **BLIP-2:** Encountered several implementation errors and computation problems.
- Gemini 2.0: Successfully integrated with consistent and meaningful output.

4. Future Improvements

- Improved prompt fine-tuning for better alignment and coherence.
- Expand the dataset for better generalization and training opportunities.
- Optimize computational backend for running heavier VLMs.
- Explore more advanced models like LLaVA-Chef for further accuracy.