

Embedded and Real-Time Systems

Spring 2021

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Lecture 13

Automotive Communication Protocols

CAN Bus

- CANBUS or CAN bus Controller Area Network bus
- An automotive serial bus system developed to satisfy the following requirements
 - Network multiple <u>microcontrollers</u> with 1 pair of wires
 - Allow microcontrollers communicate with each other
 - High speed, real-time communication
 - Provide noise immunity in an electrically noisy environment
 - Low cost

Who uses CANBUS?

- Designed specifically for automotive applications
- Today industrial automation / medical equipment

CANBUS Market Distribution

CANBUS History

First idea

 The idea of CAN was first conceived by engineers at Robert Bosch Gmbh in Germany in the early 1980s

Early focus

Develop a communication system between a number of ECUs (electronic control units)

New standard

• None of the communication protocols at that time met the specific requirements for speed and reliability so the engineers developed their own standard

CANBUS Timeline

- 1983 : First CANBUS project at Bosch
- 1986 : CAN protocol introduced
- 1987 : First CAN controller chips sold
- 1991: CAN 2.0A specification published
- 1992 : Mercedes-Benz used CAN network
- 1993: ISO 11898 standard
- 1995: ISO 11898 amendment
- Present : The majority of vehicles use CAN bus

CANBUS and the OSI Model

- CAN is a closed network
 - no need for security, sessions or logins
 - no user interface requirements
- Physical and Data Link layers in silicon

CANBUS Physical Layer

- Physical medium: two wires terminated at both ends by resistors
- Differential signal: better noise immunity
- Benefits
 - Reduced weight, Reduced cost
 - Fewer wires = Increased reliability

CAN bus network

http://canbuskit.com/what.php

VS.

Transmission Characteristics

- Up to 1 Mbit/sec
- Common baud rates: 1 MHz, 500 KHz and 125 KHz
- All nodes same baud rate
- Max length:120' to 15000' (rate dependent)

Message Oriented Transmission Protocol

- Each node receiver & transmitter
- A sender of information transmits to all devices on the bus
- All nodes read message, then decide if it is relevant to them
- All nodes verify reception was error-free
- All nodes acknowledge reception

Bus Arbitration

- Arbitration: needed when multiple nodes try to transmit at the same time
- Only one transmitter is allowed to transmit at a time
- A node waits for bus to become idle
- Nodes with more important messages continue transmitting

Bus Arbitration

- Message importance is encoded in message ID
- Lower value = More important
- As a node transmits each bit, it verifies that it sees the same bit value on the bus that it transmitted
- A "0" on the bus wins over a "1" on the bus
- Losing node stops transmitting, winner continues

Summary

- CAN bus Controller Area Network bus
- Primarily used for building ECU networks in automotive applications
- Two wires
- OSI Physical and Data link layers
- Differential signal noise immunity
- 1Mbit/s, 120'
- Messages contain up to 8 bytes of data