# **Chemistry 3P51 – Fall 2013 Quantum Chemistry**

Lecture No. 31 Nov 20<sup>th</sup>, 2013

1

# **Objectives**

- · To remind the student how the variational principle works
- · To introduce the linear variational method
- · To apply the linear variational method to a particle in a box

#### How the variational method works

When the true eigenfunction is not known, we devise a **trial wave function** with some adjustable ("variational") parameters

$$\psi = \psi(1,2,...N; c_1,c_2,...,c_n)$$

The average energy depends on the choice of these parameters, so we treat it as a function of  $c_i$ :

$$\langle E \rangle (c_1, c_2, \dots, c_n) = \frac{\int \psi^* \hat{H} \psi \, d\tau}{\int \psi^* \psi \, d\tau}$$

Next we minimize this expression with respect to the  $c_i$ 's. The optimal values of the parameters are obtained by solving the simultaneous equations

$$\frac{\partial \langle E \rangle}{\partial c_i} = 0, \quad i = 1, 2, \dots, n$$

#### The linear variational method

- As mentioned during lectures, we can test several wave-functions for one single system.
- Of particular interest it will be to consider a test function of the following form

$$\varphi = c_1 f_1 + c_2 f_2 + \dots + c_n f_n$$

- That is, the test function is constructed as a linear combination of n different known functions  $\{f_1, f_2, f_3, ... f_n\}$
- The coefficients  $\{c_1, c_2, c_3, ..., c_n\}$  are constants to be determined by the variational method

## System of linear equations for the variational method

When the variational method is applied to the function presented in the previous slide, the following system of linear equations is obtained

$$\begin{bmatrix} S_{11}W - H_{11} & S_{12}W - H_{12} & \cdots & S_{1n}W - H_{1n} \\ S_{21}W - H_{21} & S_{22}W - H_{22} & \cdots & S_{2n}W - H_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ S_{n1}W - H_{n1} & S_{n2}W - H_{n2} & \cdots & S_{nn}W - H_{nn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

• In this equation: 
$$W - \text{Variational integral (energies)}$$
 
$$S_{ij} = \int f_i^* f_j \, d\tau \quad \text{Overlap}$$
 
$$i = 1, 2, ..., n$$
 
$$j = 1, 2, ..., n$$
 
$$H_{ij} = \int f_i^* \hat{H} f_j \, d\tau \quad \text{Hamiltonian matrix}$$

where we have symbolically represented three-dimensional integrals.

#### The secular equation

- It should be kept in mind that the objective of the variational method is to determine the energies W as well as the coefficients  $\{c_1, c_2, c_3, \ldots, c_n\}$
- · A test wave-function like the one shown in the slide 4 will lead, in general, to *n* different energies  $\{W_1, W_2, W_3, ..., W_n\}$ ; each of them with their corresponding c's coefficients.
- Since we are looking for **non-trivial solutions** (solutions for which the coefficients c's are different from zero), the determinant of the matrix of coefficients must be zero. That is

$$\begin{vmatrix} S_{11}W - H_{11} & S_{12}W - H_{12} & \cdots & S_{1n}W - H_{1n} \\ S_{21}W - H_{21} & S_{22}W - H_{22} & \cdots & S_{2n}W - H_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ S_{n1}W - H_{n1} & S_{n2}W - H_{n2} & \cdots & S_{nn}W - H_{nn} \end{vmatrix} = 0$$

This equation is known as the secular equation.

### Solutions of the secular equation

- The determinant previously shown will lead to a polynomial of degree n, which will have in general n different solutions.
- The *n* different energies  $\{W_1, W_2, W_3, ..., W_n\}$ , when sorted out from the smallest to greatest value, say  $W_1 < W_2 < W_3 < ... < W_n$  represent approximations to the first *n* energies of the system
- For each value of W, a set of coefficients should be determined.
   Each of these sets of coefficients will provide the corresponding approximate wave-functions for the first n states of the system.

$$W_{1} \rightarrow c_{11}, c_{12,...}, c_{1n} \rightarrow \varphi_{1}$$

$$W_{2} \rightarrow c_{21}, c_{22,...}, c_{2n} \rightarrow \varphi_{2}$$

$$... \qquad ...$$

$$W_{n} \rightarrow c_{n1}, c_{n2,...}, c_{nn} \rightarrow \varphi_{n}$$

7

# Example: Linear variational method applied to a particle in a box

Consider once again a particle in a box



$$V(x) = \begin{cases} 0; & 0 \le x \le L \\ +\infty; & \text{otherwise} \end{cases}$$

We will use the following test function

$$\varphi = c_1 f_1 + c_2 f_2$$
  
=  $c_1 x^2 (L - x) + c_2 x (L - x)^2$   $0 \le x \le L$ 

 We compute the matrix elements needed to apply the linear variational method

$$H_{11} = \int_{0}^{L} f_{1}^{*}(x) \hat{H} f_{1}(x) dx = -\frac{\hbar^{2}}{2m} \int_{0}^{L} f_{1}^{*}(x) f_{1}^{*}(x) dx = \frac{\hbar^{2} L^{5}}{15m} \qquad S_{11} = \int_{0}^{L} f_{1}^{*}(x) f_{1}(x) dx = \frac{L^{7}}{105}$$

$$H_{22} = \int_{0}^{L} f_{2}^{*}(x) \hat{H} f_{2}(x) dx = -\frac{\hbar^{2}}{2m} \int_{0}^{L} f_{2}^{*}(x) f_{2}^{*}(x) dx = \frac{\hbar^{2} L^{5}}{15m} \qquad S_{22} = \int_{0}^{L} f_{2}^{*}(x) f_{2}(x) dx = \frac{L^{7}}{105}$$

$$H_{12} = \int_{0}^{L} f_{1}^{*}(x) \hat{H} f_{2}(x) dx = -\frac{\hbar^{2}}{2m} \int_{0}^{L} f_{1}^{*}(x) f_{2}^{*}(x) dx = \frac{\hbar^{2} L^{5}}{60m} \qquad S_{12} = \int_{0}^{L} f_{1}^{*}(x) f_{2}(x) dx = \frac{L^{7}}{140}$$

$$H_{21} = \int_{0}^{L} f_{2}^{*}(x) \hat{H} f_{1}(x) dx = -\frac{\hbar^{2}}{2m} \int_{0}^{L} f_{2}^{*}(x) f_{1}^{*}(x) dx = \frac{\hbar^{2} L^{5}}{60m} \qquad S_{21} = \int_{0}^{L} f_{2}^{*}(x) f_{1}(x) dx = \frac{L^{7}}{140}$$

· Thus, the secular equation takes the following form

$$\begin{vmatrix} S_{11}W - H_{11} & S_{12}W - H_{12} \\ S_{21}W - H_{21} & S_{22}W - H_{22} \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} \frac{L^7}{105}W - \frac{\hbar^2 L^5}{15m} & \frac{L^7}{140}W - \frac{\hbar^2 L^5}{60m} \\ \frac{L^7}{140}W - \frac{\hbar^2 L^5}{60m} & \frac{L^7}{15m}W - \frac{\hbar^2 L^5}{15m} \end{vmatrix} = 0 \Rightarrow \left(\frac{L^7}{105}W - \frac{\hbar^2 L^5}{15m}\right)^2 - \left(\frac{L^7}{140}W - \frac{\hbar^2 L^5}{60m}\right)^2 = 0$$

$$W_1 = \frac{5\hbar^2}{mL^2} \text{ and } W_2 = \frac{21\hbar^2}{mL^2}$$

#### Energies from the variation method

 From the previous slide we notice that W<sub>1</sub> < W<sub>2</sub>. These values correspond to approximations of the ground-state energy and first excited state energy, respectively.

$$E_{\text{g.s}}^{\text{var}} = \frac{5\hbar^2}{mL^2}$$
 and  $E_1^{\text{var}} = \frac{21\hbar^2}{mL^2}$ 

· From the exact solution of the particle-in-a-box system we have

$$E_{\text{g.s}}^{\text{actual}} = \frac{4.9348 \hbar^2}{mL^2}$$
 and  $E_1^{\text{actual}} = \frac{19.7392 \hbar^2}{mL^2}$ 

which lead to the following errors in percentage

error(g.s) 
$$\sim 1.32$$
 % and error(1st)  $\sim 6.39$  %

#### Wave-functions from the variation method

 Recall that the system of linear equations that need to be solved for each value of W is

$$\begin{bmatrix} S_{11}W - H_{11} & S_{12}W - H_{12} \\ S_{21}W - H_{21} & S_{22}W - H_{22} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• For  $W_1$ . Substituting  $W = W_1 = \frac{5\hbar^2}{mL^2}$  the former system of linear equations turns into

$$c_1 - c_2 = 0 \Rightarrow c_2 = c_1$$

Substitution into the test wave-function shown in slide 8 leads to

$$\varphi(x) = c_1 \left[ x^2 (L - x) + x (L - x)^2 \right]$$

where  $c_1$  can be determined from **normalization**. Thus

$$\varphi(x) = \sqrt{\frac{30}{L^7}} \left[ x^2 (L - x) + x (L - x)^2 \right]$$

#### Wave-functions from the variation method

 Recall that the system of linear equations that need to be solved for each value of W is

$$\begin{bmatrix} S_{11}W - H_{11} & S_{12}W - H_{12} \\ S_{21}W - H_{21} & S_{22}W - H_{22} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• For  $W_2$ . Substituting  $W = W_2 = \frac{21\hbar^2}{mL^2}$  the former system of linear equations turns into

$$c_1 + c_2 = 0 \Longrightarrow c_2 = -c_1$$

Substitution into the test wave-function shown in slide 8 leads to

$$\varphi(x) = c_1 \left[ x^2 (L - x) - x (L - x)^2 \right]$$

where  $c_1$  can be determined from **normalization**. Thus

$$\varphi(x) = -\sqrt{\frac{210}{L^7}} \left[ x^2 (L - x) - x (L - x)^2 \right]$$

12

# Graphic comparison of actual and variation wavefunctions for a particle in a box

