ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

26 май 2009 г. – <u>Вариант 2</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ , от които само един е верен. Отговорите на тези задачи отбелязвайте със син/черен цвят на химикалката в листа за отговори, а не върху тестовата книжка. Отбелязвайте верния отговор със знака X в кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и отбележете буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е отбелязана със знака ${\bf X}$.

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълнете решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

- 1. Кое от посочените числа е най-малко?
- **A)** $2^{-\frac{1}{2}}$

- **B**) $\lg 1$ **B**) $(-9)^{\frac{1}{3}}$ $\Gamma tg(-135^{\circ})$
- **2.** Стойността на израза $(2\sqrt{3} \sqrt{2})^2 + \frac{24}{\sqrt{6}}$ е:
- **A)** 14

b) 8

- **B)** $8\sqrt{6}$
- Γ) $8+8\sqrt{6}$
- 3. Ако $\frac{a}{b} = 2$, то стойността на израза $\frac{(a+b)(a^2+b^2)}{a^3+b^3}$ е:
- **A)** $\frac{5}{2}$

Б) 1

B) 4

- **Г**) 6
- 4. Кое от посочените квадратни уравнения има два отрицателни корена?
- **A)** $-x^2 + 6x 4 = 0$

b) $x^2 - 6x - 4 = 0$

B) $x^2 + 6x + 4 = 0$

- Γ) $-x^2 6x + 4 = 0$
- 5. Коя от посочените функции е представена графично на чертежа?

- 6. Изразът $\sqrt{\frac{-5}{3x-6}}$ НЯМА смисъл при:
- A) $x \le 0$

B) x > 2

 Γ) $x \ge 2$

- 7. Стойността на израза $3\log_5^2 1 4\log_5 \frac{1}{25} 5^{\log_5 10}$ е:
- **A)** -18
- **B**)1

B) −1

 Γ) -2

- 8. Решения на неравенството $(x-4)(9-2x) \ge 0$ са:

- **A)** $x \in \left[4; \frac{9}{2}\right]$ **B)** $x \in \left[4; +\infty\right)$ **B)** $x \in \left[-\infty; \frac{9}{2}\right]$ Γ) $x \in (-\infty; 4] \cup \left[\frac{9}{2}; +\infty\right]$

- 9. Стойността на израза $\cot g \left(\frac{1225}{2} \pi \right)$ е :
- **A)**-1
- **Б**)1

- **B)** 0
- Г) недефинирана
- **10.** Ako $\lg \alpha = 3$, то стойността на израза $\frac{2\sin(180^\circ \alpha) + 3\cos(180^\circ \alpha)}{\cos(90^\circ \alpha) + \sin(90^\circ + \alpha)}$ e:
- **A)** $\frac{2\sqrt{5}}{5}$
- **Б**) $\frac{3}{4}$

- 11. За аритметичната прогресия $a_1, a_2, ..., a_9$ е известно, че $a_2 + a_8 = 8$. Сумата $a_1 + a_3 + a_4 + a_5 + a_6 + a_7 + a_9$ e pabha ha:
- **A)** 14
- **Б)** 16

B) 28

- **Г**) 32
- 12. В телевизионна игра участват 50 души, между които има двама братя. Водещият на играта по случаен начин избира един от участващите. Вероятността той да е някой от братята е:
- **A)** $\frac{1}{2}$

B) $\frac{1}{25}$

- Γ) $\frac{1}{50}$
- 13. В $\triangle ABC$, ъглополовящата на $\angle ACB$ дели страната AB в отношение 8:3, считано от върха A. Ако $AC = 16 \ cm$, то дължината на страната BC е:
- **A)** $42\frac{2}{2}$ cm
- **b**) 6 cm

- **B**) 9, 6 cm
- **Γ**) 4 cm
- 14. На чертежа AP: PC = 2:3 и CB: CQ = 5:2. Ако PQ = 9 cm,
- то със сигурност е вярно, че:

b) AB = 15 cm

B) AB || PO

 Γ) AB и PO не са успоредни

- 15. Даден е ромб ABCD и точка $M \in AB$, такава че AM : MB = 3 : 2. Ако AC пресича DM в точка N, то отношението MN:NDе равно на:
- B) $\frac{1}{2}$

16. В правоъгълен триъгълник медианите към катетите са равни на $\sqrt{52}$ и $\sqrt{73}$. Дължината на хипотенузата е равна на:

A) 5

Б) 6

B)8

Γ) 10

17. В триъгълник ABC AB=13 cm, AC=8 cm. Ако $\angle ACB=120^{\circ}$, то дължината на страната BC е:

A) 7 cm $\sqrt{337}$ cm

b) $\sqrt{129}$ cm

B) 15 cm

Γ)

18. Ако в $\triangle ABC$ $\angle A = 60^{\circ}$ и височините през върховете C и B са съответно 6 cm и $\sqrt{3}$ cm , то лицето на $\triangle ABC$ е равно на:

A) $6 cm^2$

b) $6\sqrt{3} \ cm^2$

B) $12 cm^2$

 Γ) 9 cm²

19. Точка O е център на описаната около триъгълника ABC

окръжност. Ако AO=R и $\angle ACB=\gamma$, $\gamma>90^\circ$, то лицето на $\triangle AOB$ е равно на:

A) $R^2 \sin 2\gamma$

 $\mathbf{E}) \; \frac{1}{2} R^2 \sin 2\gamma$

B) $-R^2 \sin 2\gamma$

 $\Gamma) -\frac{1}{2}R^2 \sin 2\gamma$

20. Диагоналите на равнобедрен трапец са перпендикулярни помежду си. Ако височината на трапеца е $8\ cm$, то лицето му е равно на:

A) 64 cm^2

Б) 32 cm²

B) $16 cm^2$

 Γ) 8 cm²

Отвоворите на задачите от 21. до 25. вкл. запишете в свитъка за свободните отвовори!

- 21 . Неравенството $\log_{\frac{1}{2}} x + 4\log_{\frac{1}{2}} x < 5\log_{\frac{1}{2}} y$ е изпълнено за x > 0 и y > 0 . Запишете по-малкото от числата x и y .
- **22.** В банка са вложени 5000 лв. при годишна сложна лихва 4%. Намерете колко лева ще е сумата след 2 години.

23. За
$$tg\alpha = \frac{1}{5}$$
, намерете стойността на израза $A = \frac{5}{5 + \sin 2\alpha}$.

- **24.** Към вписана в равнобедрен триъгълник $\triangle ABC$ окръжност е построена допирателна MN ($M \in AC, N \in BC$), успоредна на основата AB. Точката M разделя бедрото AC на отсечки с дължини $1\,cm$ и $2\,cm$, считано от основата. Намерете дължината на MN в сантиметри.
- 25. Правите a и b са успоредни. Върху правата a са дадени пет точки, а върху правата b четири точки. Колко различни трапеца могат да бъдат построени с върхове тези точки?

<u>Пълните решения с необходимите обосновки на задачите от26. до 28. вкл. запишете в свитъка за свободните отговори!</u>

26. Намерете сбора от корените на ирационалното уравнение

$$2x^2 + x + \sqrt{2x^2 + x + 4} = 26$$

- **27.** Намерете вероятността при случаен избор на трицифрено число от интервала [250;700] да попаднете на число, което при деление на 5 дава остатък 4.
- **28.** В триъгълник ABC $AC = 8 \ cm$, $BC = 5 \ cm$ и $\angle ACB = 60^{\circ}$. Точките P и Q са петите на височините съответно през върховете A и B . Да се намери лицето на $\triangle PCQ$.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_n q - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^2=a_1.b_1$$
 $r=rac{a+b-c}{2}$ $\sinlpha=rac{a}{c}$ $\coslpha=rac{b}{c}$ $tglpha=rac{a}{b}$ $\cot glpha=rac{b}{a}$ Произволен триъгълник: $a^2=b^2+c^2-2bc\coslpha$ $b^2=a^2+c^2-2ac\coseta$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0^{0}	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot\! lpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} lpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \cot \beta)}{\cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \mp \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot($$