New subspaces from old:

If V a vector space, U, W are subspaces, $U \cap W$ is also a subspace.

We even showed this for any number of subspaces:

If $W_i, i \in I$ are all subspaces, the $\bigcap_{i \in I} W_i$ is a subspace.

Here I is called an indexing set.

One next homework, we look at $U \cup W$

Hint: Try
$$V = \mathbb{R}^2$$

$$U = x$$
-axis=span $((1,0)) = \{(x,0)|x \in \mathbb{R}\}\ W = y$ -axis

sums of subspaces:

Have V a vector space, U, W subspaces.

Then
$$U+W=\{u+w|u\in U,w\in W\}=\{v\in V|v \text{ can be written as } v=u+w,u\in U,w\in W\}$$

Let's prove that U + W is a subspace, need to show:

1.
$$0_v \in U + W$$

2. If
$$v_1, v_2 \in U + W$$
, then $v_1 + v_2 \in U + W$

3. If
$$c \in F$$
 and $v \in U + W$ then $c \cdot v \in U + W$

•
$$0_v \in U + W$$
 because $0_v = 0_{v \, in \, U} + 0_{v \, in \, W}$

• Say
$$v_1, v_2 \in U + W$$
, want $v_1 + v_2 \in U + W$
That means $v_1 = u_1 + w_1$ for some $u_1 \in U, w_1 \in W$
 $v_2 = u_2 + w_2$ for some $u_2 \in U, w_2 \in W$
So $v_1 + v_2 = (u_1 + w_1)(u_2 + w_2) = (u_1 + u_2)_{in U} + (w_1 + w_2)_{in W}$

• closed under scalar mult is an exercise

Fact: U + W is the smallest subspace of V that contains both U and W.

More formally: $U \subset U + W$, $w \subset U + W$

If $X \in V$ is a subspace and $U \subset X, W \subset X$ then $U + W \subset X$

Proof. we won't do the whole thing, will show $U \subset U + W$

Let's show $U \subset U + W$

i.e. if
$$x \in U$$
, then $x \in U + W == \cite{1mu} x = u + w$

$$x = x + 0$$
, x in U and 0 in W

Example 1: $V = \mathbb{R}^2$

Have $U = \text{span}\{(1,0,0)\}, W = \text{span}\{(0,1,1)\}$

U+W is the plane that contains U,W

say
$$v \in U + W$$
 means $v = c_1$ $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2$ $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Example 2:
$$V = \mathbb{R}^2, U = \mathbb{R}^2, W = \text{x-axis} = \text{span}\{(1,0)\}$$

$$U+W=\mathbb{R}^2$$

Since $W \subset U$ already, adding in those vectors doesn't change U

Note: saying $v \in U + W$ means v = u + w for some $u \in U, w \in W$. It is possible to have more than one choice for u, w

Fact: if $U \cap W = \{0\}$

then if $v \in U + W$, there's exactly one choice of u, w to make v = u + w

Proof. suppose $v + u_1 + w_1$ and $v = u_2 + w_2$, we'll show $u_1 = u_2$, $w_1 = w_2$

$$\therefore u_1 + w_2 = u_2 + w_2$$

$$\therefore u_1 - u_2 = w_1 - w_2$$

$$\therefore u_1 - u_2 \in U \cap W$$

$$\therefore u_1 - u_2 = 0$$

$$\therefore u_1 = u_2.$$

similarly,
$$w_1 = w_2$$

In this case, your book says U+W is a direct sum ("direct" means $U\cap W=\{0\})$

Take V,W any two vector spaces (over the same field F), define a new vector space $V\oplus W$ called the direct sum of V,W

vectors in $V \oplus W$ are ordered pairs (v, w)

$$(x,y) + (a,b) = (x+a,y+b)$$

$$c \cdot (x, y) = (cx, cy)$$

For U + W, U, W were both subspaces of V

If $v \in U + W$, might be many ways to write v = u + w

For $U \oplus W$, U,W don't need to be related $(\mathbb{R} \oplus [-1,1] \text{ is ok})$, $(x,y) = (w,z) \leftrightarrow x = w, y = z$

Fact: If U, W are subspaces of V, and $U \cap W = \{0\}$

Then there's an invertible linear map. $T:U\oplus W\to U+W$ (we call these

isomorphic vector spaces)

We always have a linear map, $T:U\oplus W\to U+W$ defined by T(u,w)=u+w. (True even if $U\cap W\neq\{0\}$). This map is always surjective.

Need to show:

For any
$$y \in U + W$$
, $\exists x \in U \oplus W$ s.t. $T(x) = y$
since $y \in U + W$, then $y = u + w$ for some $u \in U, w \in W$
So $y = T(u, w)$ (the x above is (u, w))

To show injective, we'll use that $U\cap W=\{0\}$

Need: If
$$T(u_1, w_1) = T(u_2, w_2)$$
, then $(u_1, w_1) = (u_2, w_2)$

If
$$T(u_1, w_1) = T(u_2, w_2)$$
, that means $u_1 + w_1 = u_2 + w_2$

we just showed this means $u_1 = u_2, w_1 = w_2$

$$\therefore (u_1, w_1) = (u_2, w_2)$$