Eine Woche, ein Beispiel 11.26 calculation of Pervs (CIP')

Final goal: Fill in the tables in the next page. (for first time, remove the i'column) We won't show the following fact in this document: Fact There are exactly 5 indec reps in $Perv_{\Delta}(CIP')$.

Ref:

[Willians]: Langlands correspondence and Bezrukavnikov's equivalence calculations from Lukas Bonfert's note (don't forward this to anyone else).

$$\psi \stackrel{\text{can}}{\underset{\text{var}}{\longleftarrow}} \phi$$

alias

 $Var \circ can + 1 = 1$

ì¥	(<u>/</u>	<u>\</u>	۶	₂ 6	
(o,	I	,	ı	,	١)	

	/>	-2	-1	0	1
C	j*	0	0	0	0
[00]	.* i	0	0	Q	0
	`.'	0	0	Q	0
	K _r ∟	0	0	Q	0

I Co In [Willians], 803 is oligged out

	\n'	-2	-1	0	1
C	j*	0	<u>@</u>	0	0
[m]	.* i	0	Q	0	0
	`.'	0	0	0	Q
	K,∟	0	Q	o	Q

$$Q \stackrel{\circ}{\sim} 0$$

IC∞ IC (©P', <u>C</u>c)

$$R_{j*} \underline{Q}_{C}[1]$$
(-1,0,0,-1)

	/	-2	-1	0	1
C	j*	0	<u>@</u>	0	0
[00]	.* i	0	Q	Q	0
	١.	0	0	0	0
	K,L	0	Q	0	0
	r	0	Q	Q	0

$$Q \stackrel{\circ}{\underset{1}{\longrightarrow}} Q$$

 $I(\psi)$

$$\int_{\mathbb{R}^{2}} Q_{\mathbb{C}}[1]$$

	/s	-2	-1	0	1
C	j*	0	Q	0	0
[00]	.* 1	0	0	0	0
	٠,	0	0	Q	Q
	K,∟	0	0	0	Q

$$Q \stackrel{!}{\bigcirc} Q$$

 $P(\psi)$

???

1 (-1,1,1,0) -2 - 1 ٥ C 0 0 [m] Q 0 Q 0 0 0 0

$$Q \stackrel{\binom{p}{r}}{\underset{(1 \ 0)}{\longrightarrow}} Q^{2}$$

 $P(\phi) = I(\phi)$

Hint for calculation

1 Stalk are usually easy to compute, while global sections are collections of compatible stalks.

2 Use some triangles can facilitate calculations.

e.g.
$$R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}} \longrightarrow R_{j*} \underline{\mathbb{Q}}_{\mathbb{C}} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}}^{[-1]} \xrightarrow{+1} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}}^{[-1]} \xrightarrow{+1} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}}^{[-1]} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}}^{[-1]} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{C}} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{Q}} \longrightarrow R_{j*}^{\circ} \underline{\mathbb{Q}}_{\mathbb{Q}} \longrightarrow R_{j*}^{$$

3. Open-closed formalism also save some time. e.g. $(j! \mathcal{Q}_{\mathbb{C}})_{\infty} = i^*j! \mathcal{Q}_{\mathbb{C}} = 0$

Ex. Check the following table for $F \in \mathcal{D}_{\Lambda}(\mathbb{C}|P')$ or $PSh_{\Lambda}(\mathbb{C}|P')$:

1. Ø = [00] = CIP'

F	F. = F(C)	F = F (CIP'-803)	F(CIP')	RT(F)	
in Q soot	0	Q	Q	Q	
OCIP'	Q	Q Q	Q	Ø ⊕Q[-2]	
<u>@</u> c1P' Rj* <u>@</u> c	Q	Q & Q [-1]	_	Q	
1: Qc	Ø.	0	Q	Q[-2]	
(R°j*\(\overline{\O}_{\C}\))\(\begin{array}{c} \P'_j \O_C \\ \P'_j \O_C \\ \O_j \O_j \O_C \\ \O_j \O_j \\ \O_j \O_C \\ \O_j \O_j \\ \O_j \O_j \\ \O_j \	Q	Q	Q	Q &Q[-1]	= QCIP'
(R'j, Qc) pre	0	Q	0	-	
R'1+Qc	0	Q	Q	Q	= i * Q Foo]
R'J+Qc (j! Qc)pre	Q	0	O	_	

How to compute f'?

https://math.stackexchange.com/questions/2167554/how-to-calculate-ri

We do it by cases.

0 When
$$f = j : \mathcal{U} \xrightarrow{\text{open}} X$$
, $j' = j^*$;

e.p. costalks can be computed in this way, and
$$i_{*}F = \lim_{x \in V} H'(V, U \cap V; F|_{V})$$

3) When
$$f = \pi : X \longrightarrow [*]$$
, X mfld of dim n , one gets $\pi' \mathcal{U} = Or_X[n]$

4 Other cases try to write f as composition of maps we're familiar with eg for X⊆C" hypersurface, want xxQ use the composition $\pi_X : X \hookrightarrow \mathbb{C}^n \longrightarrow \{*\}$

Surprising: f' does not depend on the composition we choose!

reason: adjunction is unique

1 B ramified covering and blow up

$$1. f: [0,1) \longrightarrow \{*\}$$

Ex. Compute
$$f'Q$$
 for the following cases:
1. $f: [0,1) \longrightarrow \{*\}$
2. $f: M \longrightarrow \{*\}$ M: mfld with boundary
 $f: CU_{\{0\}}C \longrightarrow \{*\}$ $f: CU_{\{0\}}C \longrightarrow \{*\}$ $f: CU_{\{0\}}C \longrightarrow \{*\}$