30.
$$H = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y - z - 2 = 0\}$$
 31. $\{p \in P_3 : p(1) = 0\}$

32. El conjunto de matrices diagonales de 3×3 .

33.
$$M_{32}$$
 34. M_{23}

De los ejercicios 35 al 43 encuentre el espacio nulo, la imagen, la nulidad y el rango de la matriz dada.

35.
$$\begin{pmatrix} 0 & 2 & 0 \\ 1 & 2 & 2 \\ 2 & 0 & -2 \end{pmatrix}$$
 36. $A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \\ 0 & -2 & 2 \end{pmatrix}$ 37. $A = \begin{pmatrix} 0 & -3 & 6 \\ 2 & 0 & 6 \\ 1 & -1 & 4 \end{pmatrix}$

38.
$$\begin{pmatrix} 1 & -3 & 2 \\ -1 & -3 & -2 \\ -1 & -4 & 2 \\ 1 & -2 & 2 \end{pmatrix}$$
 39.
$$A = \begin{pmatrix} 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix}$$
 40.
$$A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 3 & -1 & -1 & -1 \end{pmatrix}$$

41.
$$\begin{pmatrix} 0 & 5 & 2 & -2 \\ 3 & -2 & -2 & -1 \\ 2 & 3 & 2 & 0 \\ -8 & 7 & 6 & 2 \end{pmatrix}$$
 42.
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & -1 & 0 \\ 1 & -2 & 3 & 3 \\ 2 & -3 & 5 & 6 \end{pmatrix}$$
 43.
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 2 \\ 4 & 6 \end{pmatrix}$$

De los ejercicios 44 al 48 escriba el vector dado en términos de los vectores básicos dados.

44. En
$$\mathbb{R}^3$$
: $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$

45. En
$$\mathbb{R}^3$$
: $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$

46. En
$$\mathbb{P}_2$$
: $p(x) = x$; $3 + x + x^2$, $1 - x - 2x^2$, $-1 + 2x + x^2$

47. En
$$\mathbb{M}_{22}$$
: $\mathbf{x} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$; $\begin{pmatrix} -3 & -2 \\ 0 & -3 \end{pmatrix}$; $\begin{pmatrix} 0 & 1 \\ -3 & 0 \end{pmatrix}$; $\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$; $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$

48. En
$$\mathbb{M}_{22}$$
: $\mathbf{x} = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$; $\begin{pmatrix} 1 & -4 \\ -4 & -1 \end{pmatrix}$; $\begin{pmatrix} -2 & -3 \\ 2 & 1 \end{pmatrix}$; $\begin{pmatrix} 1 & -3 \\ 1 & 3 \end{pmatrix}$; $\begin{pmatrix} -3 & 0 \\ 3 & 0 \end{pmatrix}$