ICPC NOTES – CRUSADERS 2024

1.1 SET INPUT AND OUTPUT

```
void setIO() {
   freopen("input.in", "r", stdin);
   freopen("output.out", "w", stdout);
}
1.2 IMPORTANT BEFORE START
```

ios::sync_with_stdio(false); cin.tie(nullptr); // don't use this on interactive problems cout << flush; // force display in console setIO();</pre>

1.3 DATA TYPES

int main(){

}

- int, int32 t: $[-2^{31}, 2^{31}-1] \cong [-2.1 \times 10^9, 2.1 \times 10^9]$
- long long int, int64_t: $[-2^{63}, 2^{63}-1] \cong [-9.2 \times 10^{18}, 9.2 \times 10^{18}]$
- unsigned long long int, uint64 t: $[0, 2^{64}-1] \cong [0, 1.8 \times 10^{19}]$

1.4 MAXIMUM POSSIBLE TEST CASES BY ALGORITHM COMPLEXITY

N	Time Complexity
<= 10 11	O(n!) O(n ⁶)
<= 15 – 18	$O(2^n \times n^2)$
<= 18 – 22	O(2 ⁿ x n)
<= 100 10 ²	O(n ⁴)
<= 400 4 x 10 ²	O(n ³)

N	Time Complexity
<= 2000 2 x 10 ³	O(n ² log ₂ n)
<= 10000 1 x 10 ⁴	O(n ²)
<= 1000000 1 x 10 ⁶	O(n log₂n)
<= 100000000 1 x 10 ⁸	O(n)

2.1 RECURSIVE BINARY EXPONENTIATION

```
int power(int a, int n){
    if(n == 0){
        return 1;
    }else if(n%2 == 0){
        long long tmp = power(a, n/2);
        return tmp * tmp % mod;
    }else{
        long long tmp = power(a, (n-1)/2);
        return a * tmp % mod * tmp % mod;
    }
}
```

2.2 ITERATIVE BINARY EXPONENTIATION

int lcm(int a, int b){

return a / gcd(a,b) * b;

```
long long power(int a, int b){
 long long output = 1;
 while(b > 0){
  if(b & 1){
   output = output * a % mod;
  a = (long long)a * a % mod;
  b = b >> 1;
 return output;
2.3 MODULAR INVERSE
Note that gcd(a,mod) must be 1 for this algorithm to work.
int inverse(int a) {
  return power(a, mod - 2);
}
2.4 COMBINATIONS USING MODULAR INVERSE
C(n,k) = \frac{n!}{k! (n-k)!} \quad C(n,k) \bmod x \equiv \left[n! * (k!)^{-1} \bmod x * \left((n-k)!\right)^{-1} \bmod x\right] \bmod x
int comb (int n, int k) {
  if (n < 0 || k < 0 || n < k) return 0;
  return fac[n] * inverse(fac[k]) % mod * inverse(fac[n - k]) % mod;
}
3.1 GREATEST COMMON DIVISOR (EUCLIDEAN ALGORITHM)
int gcd(int a, int b){
  if(b == 0){
     return abs(a);
  }else{
     return gcd(b, a%b);
}
3.2 LEAST COMMON MULTIPLE
```

```
4.1 SIEVE OF ERASTÓTENES
// O(n \log(\log n)) -> n <= 10^8
vector<bool> sieve(int n){
  vector<bool> isPrime(n+1, true);
  isPrime [0] = isPrime [1] = false;
  for(int i = 4; i \le n; i += 2){
     isPrime [i] = false;
  for(int i = 3; i*i <= n; i += 2){
     if(isPrime [i]){
       for(int j = i*i; j <= n; j += 2*i)
          isPrime [j] = false;
     }
  return isPrime; // algorithm to obtain the first n primes optimally
5.1 CUSTOM COMPARATOR
bool customComparison(int a, int b) {
  return a < b; // it sorts in ascending order
}
bool customComparisonPair(const pair<int, int>& a, const pair<int, int>& b) {
  if (a.first != b.first)
     return a.first < b.first;
  return a.second > b.second;
}
int main(){
  vector<int> vec = { 7, 5, 2, 1, 4, 3 };
  vector<pair<int, int>> vec = {{1, 5}, {2, 2}, {1, 2}, {4, 3}, {2, 3}, {1, 6}};
  sort(vec.begin(), vec.end(), customComparison);
  sort(vec.begin(), vec.end(), customComparisonPair);
}
```