Coloración

Coloración de vértices

Definición 11.1: Una coloración (válida) de vértices en un grafo G es una asignación de colores (etiquetas en general) a los vértices de G tal que si $uv \in E(G)$ entonces u y v tienen colores diferentes.

Si la coloración usa k colores diferentes, se llama una k-coloración.

Un grafo G es k-coloreable si existe una k-coloración válida.

Una k-coloración particiona los vértices en k conjuntos disjuntos, o k clases de equivalencia.

El problema de decisión $D_{color}(G, k)$ consiste en determinar si G es k-coloreable. Veamos dos casos particulares.

Un grafo G es 1-coloreable si y solo si $E(G) = \emptyset$.

Teorema 11.2: Un grafo G no trivial es 2-coloreable si y solo si G es bipartito.

Luego, para $k \in [1,2]$ el problema $D_{color}(G,k)$ es decidible en tiempo polinomial para todo G. Más adelante veremos que para ciertas familias de grafos especiales, también se puede decidir para k > 2. Sin embargo, en general, este problema es NP-Completo para k > 2.

Definición: El número cromático $\chi(G)$ es el menor k tal que G es k-coloreable. Se dice que G es k-cromático si $\chi(G) = k$.

Dado que el problema de decisión $D_{color}(G, k)$ es NP-Completo, es evidente que determinar $\chi(G)$ debe ser un problema difícil, y de hecho es NP-Duro. Pero podemos establecer algunos límites inferiores y superiores.

Notemos que si H es un subgrafo de G, entonces $\chi(H) \leq \chi(G)$. Diremos entonces que G es k-crítico si $\chi(H) < \chi(G) = k$ para todo subgrafo propio H.

Lema 11.3: Si G es k-cromático, entonces tiene un subgrafo k-crítico.

Demostración: Vamos a hacer un descenso. Si G no es k-crítico, entonces tiene un subgrafo propio H tal que $\chi(H)=\chi(G)$. Sea H^* el subgrafo propio de menor orden tal que $\chi(H')=\chi(G)=k$. H' tiene que ser k-crítico, pues de lo contrario tendría un subgrafo propio de menor orden k-cromático.

Lema 11.4: Si G es k-crítico, entonces es conexo.

Demostración: Si G no es conexo, entonces $\chi(G) = max\{\chi(G_i)\}$ para alguna de las componentes conexas G_i , por lo tanto G no sería k-crítico.

Lema 11.5: Si G es k-crítico, entonces $\chi(G-u)=\chi(G-e)=k-1$ para todo vértice u y arista e.

Demostración: Por definición de k-criticalidad, $\chi(G-u) \leq k-1$, $\chi(G-e) \leq k-1$. Supongamos que hay una arista e=uv tal que G-e es (k-2)-coloreable. Entonces el vértice u se puede colorear con el color k-1 y por tanto G no sería k-cromático. De igual forma con un vértice u arbitrario.

Lema 11.6: Si G es k-crítico con grado mínimo δ , entonces $\delta \geq k-1$.

Demostración: Asumamos que $\delta \leq k-2$ y sea v un vértice de grado mínimo. Por condición de k-criticalidad, $\chi(G-v)=k-1$, pero en cualquier k-1-coloración de G-v a lo sumo se necesitan k-2 colores para los vecinos de v. Por lo tanto, con k-1 colores se puede colorear G, lo que contradice que $\chi(G)=k$.

Demostremos entonces la primera cota para $\chi(G)$ para un grafo general.

Teorema 11.7: En todo grafo G con grado máximo Δ se cumple que $\chi(G) \leq \Delta + 1$.

Demostración: Si G es k-cromático, entonces tiene un subgrafo k-crítico H, donde se cumple que $\delta(H) \geq k-1$, pero entonces $\Delta(G) \geq \Delta(H) \geq \delta(H) \geq k-1$.

Además, podemos enunciar sin demostración la siguiente cota más ajustada.

Teorema 11.8 (Brooks): $\chi(G) \leq \Delta(G)$ siempre y cuando G no sea un grafo completo o un ciclo impar.

Finalmente, tenemos una cota inferior clara. Si $\omega(G)$ es el tamaño del mayor clique de G, está claro que $\chi(G) \geq \omega(G)$. Queda la pregunta de cuán ajustada es esta cota. ¿Son todos los grafos con número cromático grande, grafos que contienen un clique relativamente grande? Pues, sorprendentemente, no.

Teorema 11.9: Para todo valor k existe un grafo G con $\chi(G) = k$ tal que G no contiene ningún subgrafo isomorfo a K_3 .

Demostración: Vamos a hacerlo por inducción en k. Para $k \in [1, 2, 3]$ tenemos K_1 , K_2 y C_5 . Asumamos k > 3 y sea G_{k-1} el grafo correspondiente a k-1 con $\chi(G_{k-1}) = k-1$. Vamos a construir G_k de la siguiente forma:

Por cada vértice $v_i \in V(G_{k-1})$ añadimos un vértice u_i conectado a todos los vecinos de v_i . Luego añadimos un vértice v más conectado a todos los u_i .

Notemos que en G_k no puede haber triángulos, porque de haberlos, serían dos vértices de G_{k-1} con un vértice u_i de los nuevos (ya que en G_{k-1} no había triángulos). Entonces podría construir un triángulo con v_i también.

Notemos además que $\chi(G_k) \leq k$ porque puedo colorear cada u_i con el mismo color que v_i y me queda un color nuevo para v. Asumamos entonces que $\chi(G_k) = k-1$. Entonces, hay al menos un color (supongamos sin pérdida de generalidad que es k-1) tal que ningún u_i lo tiene. Pero como $\chi(G_{k-1}) = k-1$ entonces alguno de los v_i tiene que tener ese color. Pero ese v_i podemos colorearlo como u_i , ya que todos sus vecinos están bien coloreados. Luego, tendría una k-2-coloración para G_{k-1} .

Coloración de aristas

Todas las definiciones aplican también para las aristas, solo que ahora no puede haber un vértice con dos aristas del mismo color.

Le llamamos *índice cromático* $\chi'(G)$ al menor k tal que G es k-arista-coloreable.

Dejaremos enunciado sin demostración el teorema fundamental de coloración de aristas:

Teorema 11.10: En todo grafo se cumple que $\Delta \le \chi'(G) \le \Delta + 1$.

De hecho, a medida que aumenta el orden del grafo, es mucho más probable que sea $\chi(G) = \Delta$, pero determinar si un grafo está en alguna de las dos categorías es un problema NP-Completo.