Analiza Danych Ankietowych Sprawozdanie 3

Natalia Lach 262303, Alicja Myśliwiec 262275

Matematyka Stosowana Wydział Matematyki Politechniki Wrocławskiej

Spis treści

1.	Zadanie 1	. 2
2.	Zadanie 2	. 2
3.	Zadanie 3	. 3
4.	Zadanie 4	. 4
5 .	Zadanie 5	. 6
	5.1. Podpunkt a)	. 6
	5.2. Podpunkt b)	. 8
	5.3. Podpunkt c)	. 9
	5.4. Podpunkt d)	
	5.5. Podpunkt e)	
	5.6. Podpunkt f)	
6.	Zadanie 6	. 14
	6.1. Podpunkt a)	. 14
	6.2. Podpunkt b)	
	6.3. Podpunkt c)	
	6.4. Podpunkt d)	
	6.5. Podpunkt e)	
	6.6. Podpunkt f)	
7.	Zadanie 7	
	7.1. Podpunkt a)	
	7.2. Podpunkt b)	
	7.3. Podpunkt c)	
8.	Zadanie 8	
	8.1. Podpunkt a)	
	8.2. Podpunkt b)	
	8.3. Podpunkt c)	. 21
9.	Zadanie 9	. 21
	9.1. Podpunkt a)	
	9.2. Podpunkt b)	
	9.3. Podpunkt c/d)	
	9.4. Podpunkt e)	. 23
10	Zadanie 10	. 23
	10.1. Podejście względem kryterium informacyjnego	. 23
	10.2. Podejście krokowe	. 24
11	.Zadanie 11	. 27
	11.1. Podejście względem kryterium informacyjnego	
	11.2. Podejście krokowe	27

1. Zadanie 1

W niniejszym zadaniu należało zweryfikować hipotezę, że atmosfera w miejscu pracy w pierwszym badanym okresie (zmienna A1) i po roku od pierwszego badania (zmienna A2) odpowiada modelowi symetrii. Hipotezą alternatywną jest w takim przypadku to, że rozważane zmienne nie odpowiadają modelowi symetrii. W celu weryfikacji hipotez wykonano dwa testy, działając na danych pochodzących z tabeli 1.

A1 A2	-2	-1	0	1	2
-2	10	0	1	0	1
-1	2	15	1	0	1
0	1	1	32	1	0
1	1	1	6	96	1
2	0	0	0	3	26

Tab. 1: Tablica dwudzielcza zmiennych A1 i A2.

Analizowana tablica dwudzielcza, jest tabelą o wymiarach 5x5,
a więc wykonać można uogólniony test Mcnemary oraz test ilorazu wiarogodności. Ustalony poziom istotności wynos
i $\alpha=0.05.$ Wyniki przedstawiono w poniższej tabeli.

Test	Mcnemary	Ilorazu wiarogodności
p-wartość	NA	0.205975

Tab. 2: p-wartości testów dla zmiennych A1 i A2.

Jak wynika z tabeli 2, p-wartość uogólnionego testu Mcnemary jest niedostępna. W analizowanej tabeli dwudzielczej (tabela 1) występują zera na symetrycznie odpowiadających sobie miejscach. Konstrukcja rozważanego testu nie pozwala na analizę tak wyglądającego zestawu danych.

Inaczej jest w przypadku testu ilorazu wiarogodności. Test zwrócił p-wartość większą od ustalonego poziomu istotności, a więc nie mamy podstaw do odrzucenia hipotezy zerowej, czyli stwierdzić, że dane nie są realizacją modelu symetrii.

Biorąc pod uwagę wymiary analizowanej tabeli dwudzielczej, hipoteza o jednorodności rozkładów brzegowych nie jest równoważna z tą dotyczącą modelu symetrii. Istnieje jedynie jednostronne wynikanie. Skoro nie ma wystarczających dowodów, aby odrzucić hipotezę o symetrii w rozkładzie, to nie ma także podstaw, aby odrzucić hipotezę o jednorodności rozkładów brzegowych.

2. Zadanie 2

Tym razem do czynienia mamy z tablicą dwudzielczą o wymiarach 4x4 dotyczącą zadowolenia z wynagrodzenia w pierwszym badanym okresie (zmienna W1) i po roku od pierwszego badania (zmienna W2). Ponownie należy zweryfikować hipotezę, że obie zmienne odpowiadają modelowi symetrii na poziomie istotności $\alpha=0.05$. I tym razem wykonano dwa testy, bazując na danych z tabeli dwudzielczej - tabeli 3.

W2 W1	-2	-1	1	2
-2	74	0	0	0
-1	0	19	0	0
1	0	1	1	0
2	0	0	1	104

Tab. 3: Tablica dwudzielcza zmiennych W1 i W2.

Biorąc pod uwagę wymiary analizowanej tabeli dwudzielczej, przeprowadzono dwa testy - uogólniony test Mcnemary oraz test ilorazu wiarogodności. Wyniki przedstawiono poniżej, w tabeli 4.

Test	Mcnemary	Ilorazu wiarogodności
p-wartość	NA	0.836800

Tab. 4: p-wartości testów dla zmiennych W1 i W2.

Ponownie jak w przypadku zadania w sekcji 2, test Mcnemary zwrócił nieokreśloną p-wartość. Jak wspomniano wcześniej, powodem jest występowanie zer na odpowiadających sobie miejscach w analizowanej tabeli kontyngencji.

P-wartość w przypadku testu ilorazu wiarogodności jest większa od ustalonego poziomu istotności, a więc nie ma podstaw do odrzucenia hipotezy zerowej dotyczącej modelu symetrii. Owa hipoteza nie jest jednak równoważna hipotezie o jednorodności rozkładów brzegowych. Skoro nie ma wystarczających dowodów, aby odrzucić hipotezę o symetrii w rozkładzie, to nie ma także podstaw, aby odrzucić hipotezę o jednorodności rozkładów brzegowych.

3. Zadanie 3

W niniejszym zadaniu należy zweryfikować hipotezę analogiczną do tych w poprzednich sekcjach. Tym razem jednak działano na zmodyfikowanych danych dotyczących zadowolenia z wynagrodzenia. Zmienne WM1 i WM2 odpowiadają bardziej ogólnemu opisowi opinii wydanych przez pracowników podczas odpowiednio pierwszego okresu badania i po roku od niego. Przykładowo odpowiedź (-1) oznacza ogólne niezadowolenie, czyli połączenie odpowiedzi (-2) i (-1) z oryginalnej zmiennej. Dane przedstawiono w tabeli 5. Poziom istotności pozostaje stały, równy $\alpha=0.05$.

WM1 WM2	-1	1
-1	93	0
1	1	106

Tab. 5: Tablica dwudzielcza zmiennych WM1 i WM2.

Na podstawie tak skonstruowanych danych przeprowadzono test Mcnemary w dwóch wersjach - z poprawką dotyczącą ciągłości (correct = TRUE) i bez niej (correct = FALSE). Otrzymano następujące wyniki.

Test Mcnemary	correct = TRUE	correct=FALSE
p-wartość	1	0.3173

Tab. 6: p-wartości testów dla zmiennych WM1 i WM2.

Przy ustalonym poziomie istotności, p-wartości przedstawione w tabeli 6 nie dają podstaw do odrzucenia hipotezy zerowej. To znaczy, że nie mamy wystarczających dowodów, by stwierdzić, że dane nie są realizacjami z modelu symetrii. Zauważyć można znaczące różnice w otrzymanych wartościach z poprawką na ciągłość i bez niej. Jednak decyzja dotycząca hipotezy jest taka sama w obu testach.

Analizowana tablica dwudzielcza jest rozmiaru 2x2, zatem w tym przypadku hipoteza o modelu symetrii jest równoważna z tą o jednorodności rozkładów brzegowych. W takim razie nie mamy podstaw do odrzucenia żadnej z nich.

4. Zadanie 4

W tym zadaniu należało przeprowadzić symulacyjnie porównanie mocy testu Z oraz testu Z_0 .

Zaczynająć od implementacji owych testów, test Z:

Test Z_0 :

```
test_z0 <- function(ftab){
    n <- sum(ftab)
    z0 <- (ftab[1,2]-ftab[2,1])/sqrt(ftab[1,2]+ftab[2,1])
    print(z0)
    pval <- 2*(1-pnorm(abs(z0)))
}</pre>
```

Hipoteza zerowa jest w postaci

$$H_0: p_{1+} = p_{+1},$$

natomiast alternatywna

$$H_1: p_{1+} \neq p_{+1}.$$

W celu symulacji należy wygenerować odpowiedzi na pytania dla n respondentów.

```
testy <- function(p2,n, pval = 0.05){
   p1 <- 0.5
   odp_1 <- runif(n) ##generuje 1000 losowych wartosci miedzy 0 a 1
   odp_2 <- runif(n)
   o1 <- as.integer(odp_1<p1) ##patrze czy sa < prawdopodobienstwa sukcesu
   o2 <- as.integer(odp_2<p2)

if (0 %in% o2 & 1 %in% o2) {
     tab <- table(o1, o2)
     }

else if (0 %in% o2) {
     tab <- table(o1, o2)
     tab <- cbind(tab, 0)</pre>
```

```
}
else if (1 %in% o2) {
    tab <- table(o1, o2)
    tab <- cbind(0, tab)
}
else {
    tab <- matrix(0, nrow = 2, ncol = 2)
}
r1 <- test_z0(tab)</pre>
r2 <- test_z(tab)</pre>
class data.frame(r1, r2)
}
```

W ten sposób otrzymujemy rezultaty testów Z oraz Z0 wygenerowanych przez nas danych. Poniżej kod służący do liczenia mocy testów oraz przykładową symulację.

Ostatecznie moc została wyznaczona dla $n \in [20, 50, 100, 1000], p_1 = 0.5 \text{ oraz } p_2 = 0.01, 0.02, \dots 0.99.$

Rys. 1: Moce testów Z i Z_0 w zależności od wartości p_2

Rys. 2: Moce testów Z i Z_0 w zależności od wartości p_2

Na rysunkach 1 i 2 można zauważyć, że oba testy są silniejsze w miarę zwiększania różnicy wartości p_2 od $p_2 = 0.5$. W miarę symulacji dla większego n widać, że ostatecznie oba wykresy się niemalże pokrywają, jednak przykładowo dla n = 20, test Z_0 wypada gorzej (moc testu ma mniejszą wartość).

5. Zadanie 5

W niniejszym zadaniu zakładamy, że

- zmienna 1 to zmienna S, czyli zajmowane stanowisko (kierownicze bądź nie),
- zmienna 2 to zmienna W1, czyli zadowolenie z wynagrodzenia w pierwszym badanym okresie (wartości w skali Stapela od -2 do 2),
- zmienna 3 to zmienna Wyk, czyli wykształcenie (wartości od 1 do 3).

Na podstawie wspomnianych zmiennych tworzone będą następujące modele log-liniowe. Zakładamy poziom ufności równy $\alpha=0.05$. Testowana będzie hipoteza zerowa, że dany model został dopasowany poprawnie do posiadanych danych.

Wpierw jednak rozważane dane trzeba przygotować, to znaczy utworzyć odpowiednie tabele liczności. Przykładowy kod przedstawiono poniżej.

```
##zebranie odpowiednich zmiennych
col_s <- data$S
col_wyk <- data$Wyk
col_w <- data$W1

##stworzenie obiektu data_frame
df <- data.frame(col_s, col_w, col_wyk)
names(df) <- c('S','W1','Wyk')
df_tab <- as.data.frame(table(df))</pre>
```

5.1. Podpunkt a)

Model [1 3] zakłada niezależność zmiennych 1 i 3. Można go zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_k^{(3)}$$

```
\forall i \in \{1,2\}, k \in \{1,2,3\}
```

Oznacza to, że zakładamy, że zajmowane stanowisko nie jest powiązane z wykształceniem. Dodatkowo zadowolenie z wynagrodzenia nie ma wpływu na model.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 3. Ponadto p-wartość wyniosła 0 a $deviance \approx 203.07$.

		S	W1	Wyk	Freq	fitted(mods)
		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
	1	0	-2	1	19	8.86625
	2	1	-2	1	1	1.38375
	3	0	-1	1	3	8.86625
	4	1	-1	1	0	1.38375
	5	0	1	1	0	8.86625
	6	1	1	1	0	1.38375
	7	0	2	1	18	8.86625
	8	1	2	1	0	1.38375
Call: glm(formula = Freq ~ S + Wyk, family = poisson, data = df tab)	9	0	-2	2	40	30.27500
grim(101 mara = 11 eq 1. 3 1 wyk, 1 amrry = porsson, data = ar_cab)	10	1	-2	2	5	4.72500
Deviance Residuals:	11	0	-1	2	15	30.27500
Min 1Q Median 3Q Max	11	U	-1		10	30.27500
-7.7814 -2.4320 -0.7379 1.7898 5.8821	12	1	-1	2	2	4.72500
Coefficients:	13	0	1	2	0	30.27500
Estimate Std. Error z value Pr(> z)	14	1	1	2	0	4.72500
(Intercept) 2.1823 0.1587 13.755 < 2e-16 ***	15	0	2	2	68	30.27500
51 -1.8575 0.2069 -8.977 < 2e-16 *** Wyk2 1.2281 0.1776 6.916 4.65e-12 ***	16	1	2	2	10	4.72500
Wyk3 -0.7691 0.2775 -2.772 0.00558 **	17	0	-2	3	5	4.10875
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	18	1	-2	3	4	0.64125
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	19	0	-1	3	0	4.10875
(Dispersion parameter for poisson family taken to be 1)	20	1	-1	3	0	0.64125
Null deviance: 442.20 on 23 degrees of freedom	21	0	1	3		4.10875
Residual deviance: 203.07 on 20 degrees of freedom	22	1	1	3	2	0.64125
AIC: 267.82	1150000					
Number of Sicher Service iterations, 5	23	0	2	3	5	4.10875
Number of Fisher Scoring iterations: 5	24	1	2	3	3	0.64125
(a) Podsumowanie funkcji glm.		(b) Ta	bela	liczn	ości.

Rys. 3: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak widać na rysunku 3, liczności z modelu dość znacząco różnią się od tych z danych. Także otrzymana p-wartość daje podstawy do odrzucenia hipotezy zerowej, czyli do stwierdzenia, że faktycznie model został źle dopasowany.

Wniosek jest zatem taki, że musi istnieć pewna zależność pomiędzy zajmowanym stanowiskiem a

wykształceniem pracownika, a także zmienna W1 może mieć wpływ na odpowiedzi, czego rozważany przez nas model nie uwzględnia.

5.2. Podpunkt b)

Model [13] zakłada zależność zmiennych 1 i 3. Można go zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_k^{(3)} + \lambda_{ik}^{(13)}$$

$$\forall i \in \{1,\!2\}, k \in \{1,\!2,\!3\}$$

Oznacza to, że zakładamy, że zajmowane stanowisko jest powiązane z wykształceniem.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 4. Ponadto deviance wyniosła ≈ 183.9797 a p-wartość jest równa 0.

		S	W1	Wyk	Freq	fitted(mods)
		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
	1	0	-2	1	19	10.00
	2	1	-2	1	1	0.25
	3	0	-1	1	3	10.00
	4	1	-1	1	0	0.25
	5	0	1	1	0	10.00
	6	1	1	1	0	0.25
	7	0	2	1	18	10.00
	8	1	2	1	0	0.25
	9	0	-2	2	40	30.75
Call: glm(formula = Freq ~ S + Wyk + S * Wyk, family = poisson, data = df tab)	10	1	-2	2	5	4.25
Parities Parities	11	0	-1	2	15	30.75
Deviance Residuals: Min 1Q Median 3Q Max	12	1	-1	2	2	4.25
-7.8422 -2.2361 -0.4385 1.3898 5.7820						
Coefficients:	13	0	1	2	0	30.75
Estimate Std. Error z value Pr(> z)	14	1	1	2	0	4.25
(Intercept) 2.3026 0.1581 14.563 < 2e-16 ***	15	0	2	2	68	30.75
S1 -3.6889 1.0124 -3.644 0.000269 *** Wyk2 1.1233 0.1820 6.171 6.77e-10 ***	16	1	2	2	10	4.25
Wyk3 -1.3863 0.3535 -3.921 8.81e-05 ***	17	0	-2	3	5	2.50
S1:Wyk2 1.7099 1.0449 1.636 0.101749						
S1:Wyk3 3.5835 1.1117 3.223 0.001267 **	18	1	-2	3	4	2.25
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	19	0	-1	3	0	2.50
(Pissessing assessing for animal family, tales to be 4)	20	1	-1	3	0	2.25
(Dispersion parameter for poisson family taken to be 1)	21	0	1	3	0	2.50
Null deviance: 442.20 on 23 degrees of freedom						
Residual deviance: 183.98 on 18 degrees of freedom	22	1	1	3	2	2.25
AIC: 252.73	23	0	2	3	5	2.50
Number of Fisher Scoring iterations: 5	24	1	2	3	3	2.25
(a) Podsumowanie funkcji glm.		((b) Ta	abela	liczno	ości.

Rys. 4: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 4, oczekiwane liczności uzyskane z modelu różnią się od tych rzeczywistych. Także wartość deviance jest wysoka. Stwierdzamy, że model został źle dopasowany.

5.3. Podpunkt c)

Model [1 2 3] jest oparty na trzech zmiennych i zakłada ich niezależność względem siebie. Można go zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)}$$
$$\forall i \in \{1,2\}, j \in \{1,2,3,4\}, k \in \{1,2,3\}$$

Oznacza to, że zakładamy, że ani zajmowane stanowisko ani zadowolenie z wynagrodzenia ani wykształcenie nie są w żaden sposób ze sobą powiązane.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

```
1-pchisq(deviance(mods), df = df.residual(mods)) ##p-wartosc
cbind(mods$data, fitted(mods)) ##tabela licznosci
```

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 5. Ponadto p-wartość wyniosła około 0.00062 a $deviance \approx 42.2422$.

		S	W1	Wyk	Freq	fitted(mods)
		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
	1	0	-2	1	19	13.12205
	2	1	-2	1	1	2.04795
	3	0	-1	1	3	3.54650
	4	1	-1	1	0	0.55350
6-11.	5	0	1	1	0	0.35465
Call: glm(formula = Freq ~ S + W1 + Wyk, family = poisson, data = df tab)	6	1	1	1	0	0.05535
gam(rormata = rreq = 5 r wi r wyk, ramity = poisson, data = ar_tab)	7	0	2	1	18	18.44180
Deviance Residuals:	8	1	2	1	0	2.87820
Min 1Q Median 3Q Max	_					
-2.3992 -0.8209 -0.5129 0.2158 3.6711	9	0	-2	2		44.80700
Coefficients:	10	1	-2	2	5	6.99300
Estimate Std. Error z value Pr(> z)	11	0	-1	2	15	12.11000
(Intercept) 2.5743 0.1835 14.026 < 2e-16 ***	12	1	-1	2	2	1.89000
51 -1.8575 0.2069 -8.977 < 2e-16 ***	13	0	1	2	0	1,21100
W1-1 -1.3083 0.2520 -5.191 2.09e-07 ***		- 10		1.5	170	
W11 -3.6109 0.7166 -5.039 4.68e-07 ***	14	1	1	2	0	0.18900
W12 0.3403 0.1521 2.238 0.02524 *	15	0	2	2	68	62.97200
Wyk2 1.2281 0.1776 6.916 4.65e-12 ***	16	1	2	2	10	9.82800
Wyk3 -0.7691 0.2775 -2.771 0.00558 **	17	0	-2	3	5	6.08095
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	18	1	-2	3	4	0.94905
	19	0	-1	3	0	1.64350
(Dispersion parameter for poisson family taken to be 1)	20	1	-1	3	0	0.25650
Null deviance: 442.195 on 23 degrees of freedom	21	0	1	3	0	0.16435
Residual deviance: 42.242 on 17 degrees of freedom	22	1	1	3	2	0.02565
AIC: 112.99				17		
	23	0	2	3		8.54620
Number of Fisher Scoring iterations: 8	24	1	2	3	3	1.33380
(a) Podsumowanie funkcji glm.		(1	o) Ta	bela	liczn	ości.

Rys. 5: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli na rysunku 5, liczności oczekiwane i rzeczywiste nieco się od siebie różnią. Także wartość deviance jest wysoka, a p-wartość na ustalonym poziomie ufności daje podstawy do odrzucenia hipotezy zerowej. Model nie został dopasowany poprawnie.

5.4. Podpunkt d)

Model [12 3] zakłada za to, że wśród trzech zmiennych, zmienne 1 i 2 są od siebie zależne, jednak występuje brak zależności wobec zmiennej 3. Model można zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{ij}^{(12)}$$

$$\forall i \in \{1,\!2\}, j \in \{1,\!2,\!3,\!4\}, k \in \{1,\!2,\!3\}$$

Oznacza to, że zakładamy, że zajmowane stanowisko oraz zadowolenie z wynagrodzenia są od siebie zależne, jednak wykształcenie jest czynnikiem od nich niezależnym.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 6. Ponadto p-wartość wyniosła około 0.00212 a $deviance \approx 33.9138$.

		S	W1	Wyk	Freq	fitted(mods)
		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
	1	0	-2	1	19	1.312000e+01
Call:	2	1	-2	1	1	2.050000e+00
glm(formula = Freq ~ S + W1 + Wyk + S * W1, family = poi	sson, 3	0	-1	1	3	3.690000e+00
data = df_tab)	4	1	-1	1	0	4.100000e-01
Deviance Residuals:	5	0	1	1	0	9.067214e-09
Min 10 Median 30 Max	6	1	1	1	0	4.100000e-01
-2.3087 -0.8377 -0.2620 0.4903 2.4074	7	0	2	1		1.865500e+01
	8	1	2	1		2.665000e+00
Coefficients: Estimate Std. Error z value Pr(> z)	9	0	-2	2		4.480000e+01
(Intercept) 2.57414 0.18712 13.756 < 2e-16 ***						
51 -1.85630 0.34004 -5.459 4.79e-08 ***	10	1	-2	2	5	7.000000e+00
W1-1 -1.26851 0.26680 -4.755 1.99e-06 ***	11	0	-1	2	15	1.260000e+01
W11 -21.09274 2883.98341 -0.007 0.99416	12	1	-1	2	2	1.400000e+00
W12 0.35198 0.16314 2.158 0.03096 *	13	0	1	2	0	3.096122e-08
Wyk2 1.22807 0.17758 6.916 4.65e-12 ***						
Wyk3 -0.76913 0.27753 -2.771 0.00558 **	14	1	1	2	0	1.400000e+00
S1:W1-1 -0.34093 0.81926 -0.416 0.67731	15	0	2	2	68	6.370000e+01
S1:W11 19.48330 2883.98351 0.007 0.99461	16	1	2	2	10	9.100000e+00
51:W12 -0.08961 0.45115 -0.199 0.84255	17	0	-2	3	5	6.080000e+00
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1	' ' 1 18	1	-2	3	4	9.500000e-01
	19	0	-1	3	0	1.710000e+00
(Dispersion parameter for poisson family taken to be 1)	20	1	-1	3	0	1.900000e-01
Null deviance: 442.195 on 23 degrees of freedom	21	0	1	3	0	4.201880e-09
Residual deviance: 33.914 on 14 degrees of freedom	22	1	1	3	2	1.900000e-01
AIC: 110.67	23	0	2	3	100	8.645000e+00
Number of Fisher Scoring iterations: 16	24	1	2	3		1.235000e+00
(a) Podsumowanie funkcji glm.		(D) Ta	abela	nczn	osci.

Rys. 6: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Ponownie, tabela na rysunku 6 ukazuje niezbyt dobre dopasowanie modelu do danych. Liczności teoretyczne i rzeczywiste różnią się od siebie. Deviance w tym przypadku wynosi nieco mniej niż w poprzednim podpunkcie, jednak także i tym razem odrzucamy hipotezę zerową. Otrzymana p-wartość wskazuje na złe dopasowanie modelu do rozważanych danych.

5.5. Podpunkt e).

Model [12 13] zakłada, że wśród trzech zmiennych, zmienne 1 i 2, a także 1 i 3 są od siebie zależne. Przy ustalonej wartości zmiennej 1, zmienne 2 i 3 są od siebie niezależne. Wówczas mowa

o zmiennych 2 i 3 jako zmiennych warunkowo niezależnych. Taką relację można zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{ij}^{(12)} + \lambda_{ik}^{(13)}$$
$$\forall i \in \{1, 2\}, j \in \{1, 2, 3, 4\}, k \in \{1, 2, 3\}$$

Oznacza to, że między zajmowanym stanowiskiem i zadowoleniem z wynagrodzenia, a także między zajmowanym stanowiskiem a poziomem wykształcenia istnieje pewna zależność. Natomiast zadowolenie z wynagrodzenia i wykształcenie są zmiennymi warunkowo niezależnymi.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 7. Ponadto p-wartość wyniosła około 0.2512 a deviance ≈ 14.8237 .

		S	W1	Wyk	Freq	fitted(mods)
		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
Call:	1	0	-2	1	19	1.479769e+01
glm(formula = Freq \sim S + W1 + Wyk + S * W1 + S * Wyk, family = poisson,	2	1	-2	1	1	3.703704e-01
data = df_tab)	3	0	-1	1	3	4.161850e+00
Deviance Residuals:	4	1	-1	1	0	7.407407e-02
Min 1Q Median 3Q Max	5	0	1	1	0	4.384198e-09
-1.58698 -0.67881 -0.05727 0.60121 1.31445						
	6	1	1	1	0	
Coefficients: Estimate Std. Error z value Pr(> z)	7	0	2	1	18	2.104046e+01
(Intercept) 2.69447 0.18667 14.435 < 2e-16 ***	8	1	2	1	0	4.814815e-01
51 -3.68772 1.04776 -3.520 0.000432 ***	9	0	-2	2	40	4.550289e+01
W1-1 -1.26851 0.26680 -4.755 1.99e-06 ***	10	1	-2	2	5	6.296296e+00
W11 -21.93973 4404.68250 -0.005 0.996026	11		-1	2		1.279769e+01
W12 0.35198 0.16314 2.158 0.030964 *	11	0	-1	2	15	1.2/9/69e+01
wyk2 1.12330 0.18202 6.171 6.77e-10 ***	12	1	-1	2	2	1.259259e+00
Wyk3 -1.38629 0.35355 -3.921 8.82e-05 ***	13	0	1	2	0	1.348141e-08
51:W1-1 -0.34093 0.81926 -0.416 0.677306	14	1	1	2	0	1.259259e+00
51:W11 20.33029 4404.68256 0.005 0.996317	15	0	2	2	60	6.469942e+01
51:W12 -0.08961 0.45115 -0.199 0.842552 51:Wyk2 1.70991 1.04497 1.636 0.101771						
51:Wyk3	16	1	2	2	10	8.185185e+00
	17	0	-2	3	5	3.699422e+00
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	18	1	-2	3	4	3.333333e+00
	19	0	-1	3	0	1.040462e+00
(Dispersion parameter for poisson family taken to be 1)	20	1	-1	3	0	6.666667e-01
Null deviance: 442.195 on 23 degrees of freedom	21	0	1	3	0	1.096050e-09
Residual deviance: 14.824 on 12 degrees of freedom	22	1	1	3	2	6.666667e-01
AIC: 95.576	23	0	2	3	5	5.260116e+00
Number of Fisher Scoring iterations: 17	24	1	2	3	3	4.333333e+00
(a) Podsumowanie funkcji glm.		((b) Ta	abela	liczr	ności.

Rys. 7: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Tym razem otrzymana p-wartość jest większa od ustalonego poziomu ufności, a więc nie mamy podstaw do odrzucenia hipotezy zerowej o tym, że model został dobrze dobrany. Także wartość deviance jest najniższa jak dotąd, biorąc pod uwagę podpunkty dotyczące wszystkich trzech zmiennych. Liczności z tabeli 7 są do siebie zbliżone. Zatem nie mamy podstaw do stwierdzenia, że model mógł zostać źle dopasowany do analizowanych danych.

5.6. Podpunkt f)

Model [1 23] zakłada, że wśród trzech zmiennych, zmienne 2 i 3 są od siebie zależne, jednak występuje brak zależności wobec zmiennej 1. Można go zapisać poniższym wzorem.

$$\ell_{ik} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{jk}^{(23)}$$

$$\forall i \in \{1,2\}, j \in \{1,2,3,4\}, k \in \{1,2,3\}$$

Oznacza to, że zakładamy, że zadowolenie z wynagrodzenia oraz wykształcenie są od siebie zależne, jednak zajmowane stanowisko jest czynnikiem od nich niezależnym.

Odpowiednio przygotowane dane podano jako argument funkcji glm i dopasowano do nich rozważany model za pomocą poniższego kodu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 8. Ponadto p-wartość wyniosła około 0.01286 a deviance ≈ 23.970 .

Ustalono poziom ufności na $\alpha=0.05$, zatem otrzymana p-wartość sugeruje odrzucenie hipotezy zerowej. I w tym przypadku liczności przedstawione w tabeli na rysunku 8 są do siebie dość zbliżone, jednak nie na tyle, by stwierdzić, że model został dobrze dopasowany do danych. Wskazuje na to także wartość deviance.

		S	W1	Wyk	Freq	fitted(mods)
Call:		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
$glm(formula = Freq \sim S + W1 + Wyk + W1 * Wyk, family = poisson,$		0	-2	1	19	1.730000e+01
data = df_tab)	2	1	-2	1	1	2.700000e+00
Deviance Residuals:	3	0	-1	1		2.595000e+00
Min 10 Median 30 Max						
-2.2045 -0.5296 -0.0001 0.1900 2.1330	4	1	-1	1	0	4.050000e-01
2.2043 0.3230 0.0001 0.1300 2.1330	5	0	1	1	0	9.882209e-09
Coefficients:	6	1	1	1	0	1.542310e-09
Estimate Std. Error z value Pr(> z)	7	0	2	1	18	1.557000e+01
(Intercept) 2.85071 0.22534 12.650 < 2e-16 ***	8	1	2	1		2.430000e+00
S1 -1.85745 0.20692 -8.977 < 2e-16 ***						
W1-1 -1.89712 0.61914 -3.064 0.00218 **	9	0	-2	2	40	3.892500e+01
W11 -21.28324 5674.58093 -0.004 0.99701 W12 -0.10536 0.32489 -0.324 0.74572	10	1	-2	2	5	6.075000e+00
W12 -0.10536 0.32489 -0.324 0.74572 Wyk2 0.81093 0.26874 3.018 0.00255 **	11	0	-1	2	15	1.470500e+01
Wyk3 -0.79851 0.40139 -1.989 0.04666 *	12	1	-1	2	2	2.295000e+00
W1-1:Wyk2 0.92367 0.68145 1.355 0.17528						
W11:Wyk2 -0.81093 8025.06932 0.000 0.99992	13	0	1	2	0	9.882209e-09
W12:Wyk2 0.65541 0.37496 1.748 0.08048 .	14	1	1	2	0	1.542310e-09
W1-1:Wyk3 -18.58761 5674.58099 -0.003 0.99739	15	0	2	2	68	6.747000e+01
W11:Wyk3 19.77916 5674.58098 0.003 0.99722	16	1	2	2	10	1.053000e+01
W12:Wyk3 -0.01242 0.58452 -0.021 0.98304	17	0	-2	3	5	7.785000e+00
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '	1 18	1	-2	3	4	1.215000e+00
	19	0	-1	3	0	9.882209e-09
(Dispersion parameter for poisson family taken to be 1)	20	1	-1	3	0	1.542310e-09
Null deviance: 442.20 on 23 degrees of freedom	21	0	1	3	0	1.730000e+00
Residual deviance: 23.97 on 11 degrees of freedom	22	1	1	3	2	2.700000e-01
AIC: 106.72						
	23	0	2	3	5	6.920000e+00
Number of Fisher Scoring iterations: 17	24	1	2	3	3	1.080000e+00
(a) Podsumowanie funkcji glm.		(b) Ta	abela	liczn	ości.

Rys. 8: Podsumowanie wykonanej funkcji wraz z tabela liczności modelu.

6. Zadanie 6

Podobnie jak w zadaniu 5 w sekcji 5, sprawdzane będzie dopasowanie modelów log-linowych do danych. W tym przypadku analizowane będą zmienne:

- zmienna 1 zmienna S, czyli zajmowane stanowisko (kierownicze bądź nie),
- zmienna 2 zmienna P, czyli płeć (litery M lub K),
- zmienna 3 zmienna Wyk, czyli wykształcenie (wartości od 1 do 3).

Sposób przygotowywania danych, wykonywania funkcji glm oraz inne operacje i założenia pozostają takie same jak w zadaniu 5. Modele log-liniowe, które zostaną dopasowane do danych także się nie zmieniły, więc nie bedą ponownie opisywane.

6.1. Podpunkt a)

Analizowany jest model [1 3]. Oznacza to, że zakładamy, że ani zajmowane stanowisko ani wykształcenie nie są w żaden sposób ze sobą powiązane. Płeć nie gra żadnej roli w analizowanym modelu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 9. Ponadto p-wartość wyniosła około $1.6342 \cdot 10^{-13}$ a $deviance \approx 77.392$.

		S	P	Wyk	Freq	fitted(mods)
Deviance Residuals:		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
Min 1Q Median 3Q Max -5.2644 -2.0923 -0.4669 1.2975 4.3522	1	0	K	1	1	17.7325
Coefficients:	2	1	K	1	0	2.7675
Estimate Std. Error z value Pr(> z)	3	0	M	1	39	17.7325
(Intercept) 2.8754 0.1586 18.125 < 2e-16 *** 51 -1.8575 0.2069 -8.977 < 2e-16 ***	4	1	M	1	1	2.7675
Wyk2 1.2281 0.1776 6.916 4.64e-12 ***	5	0	K	2	54	60.5500
Wyk3 -0.7691 0.2775 -2.771 0.00558 **	6	1	K	2	4	9.4500
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	7	0	M	2	69	60.5500
(Dispersion parameter for poisson family taken to be 1)	8	1	M	2	13	9.4500
W-11 designers 245 540 as 44 description	9	0	K	3	8	8.2175
Null deviance: 316.518 on 11 degrees of freedom Residual deviance: 77.392 on 8 degrees of freedom	10	1	K	3	4	1.2825
AIC: 127.78	11	0	M	3	2	8.2175
Number of Fisher Scoring iterations: 5	12	1	M	3	5	1.2825
Number of Fisher Scoring iterations: 5 (a) Podsumowanie funkcji glm.	12				liczn	ości

Rys. 9: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 9, liczności teoretyczne i rzeczywiste różnią się od siebie dość znacząco. Wskazuje na to także wartość deviance. Otrzymana p-wartość sugeruje odrzucenie hipotezy zerowej i przyjęcie, że model nie jest dobrze dopasowany.

6.2. Podpunkt b)

Analizowany jest model [13]. Oznacza to, że zakładamy, że zajmowane stanowisko oraz wykształcenie są ze sobą powiązane. Płeć nie gra żadnej roli w rozważanym modelu.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 10. Ponadto p-wartość wyniosła około $9.95 \cdot 10^{-11}$ a deviance ≈ 58.3023 .

```
glm(formula = Freq ~ S + Wyk + S * Wyk, family = poisson, data = df_tab)
Deviance Residuals:
            1Q Median
                                                                                       P Wyk Freq fitted(mods)
-5.6576 -1.1320 -0.0044 1.0116
                                                                               <fct>
                                                                                   <fct>
                                                                                         <fct> <int>
Coefficients:
                                                                                                          20.0
           Estimate Std. Error z value Pr(>|z|)
                                                                                                 0
                                                                                                           0.5
(Intercept) 2.9957
                        0.1581 18.947 < 2e-16 ***
                         1.0124 -3.644 0.000269 ***
             -3.6889
                                                                                                 39
                                                                                                          20.0
Wyk2
             1.1233
                         0.1820
                                 6.172 6.76e-10 ***
                         0.3536 -3.921 8.82e-05 ***
                                                                            4
                                                                                                  1
                                                                                                           0.5
Wyk3
             -1.3863
             1.7099
S1:Wyk2
                         1.0450
                                 1.636 0.101770
                                                                                            2
                                                                                                 54
                                                                                                          61.5
51:Wyk3
             3.5835
                         1.1118
                                 3.223 0.001268 **
                                                                            6
                                                                                                           8.5
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                          61.5
                                                                                                           8.5
(Dispersion parameter for poisson family taken to be 1)
                                                                                                           5.0
    Null deviance: 316.518 on 11 degrees of freedom
                                                                           10
                                                                                                           4.5
Residual deviance: 58.302 on 6 degrees of freedom
AIC: 112.69
                                                                                                           5.0
                                                                           11
                                                                                            3
Number of Fisher Scoring iterations: 5
                                                                           12
                                                                                            3
                                                                                                  5
                                                                                                           4.5
                                                                                       M
                    (a) Podsumowanie funkcji glm.
                                                                                  (b) Tabela liczności.
```

Rys. 10: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 10, liczności teoretyczne i rzeczywiste różnią się od siebie dość znacząco. Wskazuje na to także wartość deviance. Otrzymana p-wartość sugeruje odrzucenie hipotezy zerowej i przyjęcie, że model nie jest dobrze dopasowany.

6.3. Podpunkt c)

Analizowany jest model [1 2 3]. Oznacza to, że zakładamy, że ani zajmowane stanowisko ani płeć ani wykształcenie nie są w żaden sposób ze sobą powiązane.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 11. Ponadto p-wartość wyniosła około $1.298 \cdot 10^{-10}$ a $deviance \approx 60.328$.

Min 1Q Median 3Q Max 4.2561 -1.7038 -0.4112 1.7332 3.0601			P	VVVK	Freq	fitted(mods)
1.2501 -1.7038 -0.4112 1.7332 3.0001		<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
1072070 107100770 100010770 17017077 17017070	1	0	K	1	1	12.590075
pefficients:						100000000000000000000000000000000000000
Estimate Std. Error z value Pr(> z)	2	1	K	1	0	1.964925
Intercept) 2.5329 0.1851 13.685 < 2e-16 ***	3	0	M	1	39	22.874925
1 -1.8575 0.2069 -8.977 < 2e-16 ***	4	1	М	1	1	3.570075
4 0.5971 0.1478 4.041 5.32e-05 *** /k2 1.2281 0.1776 6.916 4.65e-12 ***					-	
/k2 1.2281 0.1776 6.916 4.65e-12 *** /k3 -0.7691 0.2775 -2.771 0.00558 **	5	0	K	2	54	42.990500
	6	1	K	2	4	6.709500
ignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	7	0	M	2	69	78.109500
Dispersion parameter for poisson family taken to be 1)	8	1	M	2	13	12.190500
Null deviance: 316.518 on 11 degrees of freedom	9	0	K	3	8	5.834425
esidual deviance: 60.328 on 7 degrees of freedom	10	1	K	3	4	0.910575
IC: 112.72	11	0	M	3	2	10.600575
umber of Fisher Scoring iterations: 5	12	1	M	3	5	1.654425

Rys. 11: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 11, liczności teoretyczne i rzeczywiste różnią się od siebie dość znacząco. Wskazuje na to także wartość deviance. Otrzymana p-wartość sugeruje odrzucenie hipotezy zerowej i przyjęcie, że model nie jest dobrze dopasowany.

6.4. Podpunkt d)

Analizowany jest model [12 3]. Oznacza to, zakładamy, że zajmowane stanowisko oraz płeć są od siebie zależne, jednak wykształcenie jest czynnikiem od nich niezależnym.

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 12. Ponadto p-wartość wyniosła około $4.8343\cdot 10^{-11}$ a $deviance\approx 59.8472$.

```
glm(formula = Freq ~ S + P + Wyk + S * P, family = poisson, data = df_tab)
Deviance Residuals:
             1Q Median
                                30
                                         Max
                                                                                           P Wyk Freq fitted(mods)
-4.3259 -1.7670 -0.3977 1.5670
                                     3.1354
                                                                                   <fct>
                                                                                                    <int>
Coefficients:
                                                                                                              12.915
            Estimate Std. Error z value Pr(>|z|)
                                                                                 2
                                                                                                              1.640
                         0.1878 13.624 < 2e-16 ***
(Intercept)
             2.5584
                         0.3753 -5.498 3.83e-08 ***
             -2.0637
                                                                                 3
                                                                                      0
                                                                                           M
                                                                                                      39
                                                                                                             22.550
PM
                                  3.528 0.000419 ***
              0.5573
                         0.1580
                                   6.916 4.65e-12 ***
                                                                                 4
                                                                                           M
                                                                                                 1
                                                                                                      1
                                                                                                              3 895
Wyk2
              1,2281
                         0.1776
                                -2.771 0.005582 **
Wyk3
             -0.7691
                         0.2775
                                                                                                 2
                                                                                 5
                                                                                      0
                                                                                                      54
                                                                                                             44,100
              0.3077
                                 0.684 0.494277
S1:PM
                         0.4501
                                                                                 6
                                                                                                 2
                                                                                                              5.600
                                                                                            K
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                             77,000
                                                                                 8
                                                                                                 2
                                                                                                      13
                                                                                                              13,300
(Dispersion parameter for poisson family taken to be 1)
                                                                                 9
                                                                                                 3
                                                                                                              5.985
    Null deviance: 316.518 on 11 degrees of freedom
Residual deviance: 59.847 on 6 degrees of freedom
                                                                                10
                                                                                                 3
                                                                                                              0.760
AIC: 114.24
                                                                                11
                                                                                      0
                                                                                           M
                                                                                                 3
                                                                                                      2
                                                                                                              10.450
Number of Fisher Scoring iterations: 5
                                                                                12
                                                                                           M
                                                                                                 3
                                                                                                              1 805
                      (a) Podsumowanie funkcji glm.
                                                                                       (b) Tabela liczności.
```

Rys. 12: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 12, liczności teoretyczne i rzeczywiste różnią się od siebie. Wskazuje na to także dość wysoka wartość deviance. Otrzymana p-wartość ponownie sugeruje odrzucenie hipotezy zerowej i przyjęcie, że model nie jest dobrze dopasowany.

6.5. Podpunkt e)

Analizowany jest model [12 13]. Oznacza to, że między zajmowanym stanowiskiem i płcią, a także między zajmowanym stanowiskiem a poziomem wykształcenia istnieje pewna zależność. Natomiast płeć i wykształcenie są zmiennymi warunkowo niezależnymi.

```
Call:
glm(formula = Freq ~ S + P + Wyk + S * P + S * Wyk, family = poisson,
    data = df_tab)
Deviance Residuals:
                        3
-4.6664
         -0.7698
                   2.4923
                             0.3320
                                     1.3323 -0.4795 -1.0627
                                                                  0.2956
              10
                       11
                                 12
 1.9686 0.7596 -2.0224 -0.5503
                                                                                  S
                                                                                        P Wyk Freq fitted(mods)
Coefficients:
                                                                               <fct>
                                                                                     <fct>
                                                                                          <fct>
                                                                                               <int>
                                                                                                          <dbl>
            Estimate Std. Error z value Pr(>|z|)
                       0.1873 14.300 < 2e-16 ***
                                                                                                      14.5664740
(Intercept) 2.6787
                         1.0597 -3.676 0.000237 ***
             -3.8951
51
                                                                             2
                                                                                                   0
                                                                                                       0.2962963
                                  3.528 0.000419 ***
PM
              0.5573
                         0.1580
                                  6.171 6.77e-10 ***
Wvk2
              1.1233
                         0.1820
                                                                            3
                                                                                  0
                                                                                       M
                                                                                             1
                                                                                                  39
                                                                                                      25.4335260
Wyk3
             -1.3863
                          0.3536
                                  -3.921 8.82e-05 ***
                                                                                              1
                                                                                                       0.7037037
S1:PM
              0.3077
                          0.4501
                                   0.684 0.494285
S1:Wyk2
              1.7099
                          1.0450
                                   1.636 0.101771
                                                                             5
                                                                                                      44.7919075
                                  3.223 0.001268 **
S1:Wyk3
              3.5835
                         1.1118
                                                                                                       5.0370370
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                      78.2080925
                                                                                  0
                                                                                             2
                                                                                                  69
                                                                             8
                                                                                  1
                                                                                             2
                                                                                                  13
                                                                                                      11.9629630
(Dispersion parameter for poisson family taken to be 1)
                                                                             9
                                                                                  0
                                                                                             3
                                                                                                       3.6416185
    Null deviance: 316.518 on 11 degrees of freedom
                                                                            10
                                                                                             3
                                                                                                       2 6666667
Residual deviance: 40.757 on 4 degrees of freedom
AIC: 99.147
                                                                            11
                                                                                  0
                                                                                       M
                                                                                             3
                                                                                                       6.3583815
                                                                            12
                                                                                  1
                                                                                             3
                                                                                                       6.3333333
Number of Fisher Scoring iterations: 5
                    (a) Podsumowanie funkcji glm.
                                                                                   (b) Tabela liczności.
```

Rys. 13: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Otrzymane summary oraz tabele liczności przedstawiono na rysunku 13. Ponadto p-wartość wyniosła około $3.0177 \cdot 10^{-8}$ a deviance ≈ 40.7571 .

Także tym razem p-wartość jest mniejsza od ustalonego poziomu ufności, a więc odrzucamy hipotezę zerową i stwierdzamy, że model został źle dopasowany.

6.6. Podpunkt f)

Analizowany jest model [1 23]. Oznacza to, że zakładamy, że zadowolenie z wynagrodzenia oraz wykształcenie są od siebie zależne, jednak zajmowane stanowisko jest czynnikiem od nich niezależnym

Otrzymane summary oraz tabele liczności przedstawiono poniżej, na rysunku 14. Ponadto p-wartość wyniosła około 0.000174 a $deviance \approx 24.4908$.

```
Call:
glm(formula = Freq ~ S + P + Wyk + P * Wyk, family = poisson,
    data = df_tab)
Deviance Residuals:
                     3 4
    1 2
                                                  6
                                                                    8
0.1416 -0.5196 0.7329 -2.3296 0.5341 -1.5122 -0.2302
     9
                    11
-0.7701 1.5719 -1.9181 2.9240
Coefficients:
                                                                                   P Wyk Freq fitted(mods)
           Estimate Std. Error z value Pr(>|z|)
                                                                            <fct> <fct> <fct> <fct> <int>
                                                                                                   <dbl>
(Intercept) -0.1450 1.0004 -0.145 0.884735
            -1.8575 0.2069 -8.977 < 2e-16 ***
                                                                                                   0.865
             3.6889 1.0124 3.644 0.000269 ***
PM
                                                                                            0
                                                                                                   0.135
                                                                          2
                                                                               1
                                                                                   K
                                 4.026 5.68e-05 ***
Wyk2
             4.0604
                        1.0086
                       1.0408 2.387 0.016967 *
                                                                          3
                                                                               0
                                                                                   M
                                                                                            39
                                                                                                  34.600
Wyk3
             2.4849
                       1.0269 -3.255 0.001133 **
PM:Wyk2
            -3.3426
                                                                                            1
                                                                          4
                                                                                   M
                                                                                        1
                                                                                                   5.400
                                                                               1
           -4.2279 1.1186 -3.780 0.000157 ***
PM:Wyk3
                                                                                        2
                                                                                                  50.170
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                   7.830
                                                                                                  70.930
(Dispersion parameter for poisson family taken to be 1)
                                                                          8
                                                                                   M
                                                                                        2
                                                                                            13
                                                                                                   11.070
    Null deviance: 316.518 on 11 degrees of freedom
                                                                          9
                                                                                        3
                                                                                            8
                                                                                                  10 380
Residual deviance: 24.491 on 5 degrees of freedom
                                                                                             4
                                                                         10
                                                                                   K
                                                                                        3
                                                                                                   1 620
AIC: 80.881
                                                                         11
                                                                                        3
                                                                                            2
                                                                                                   6.055
Number of Fisher Scoring iterations: 6
                                                                         12
                                                                                   M
                                                                                             5
                                                                                                   0.945
                     (a) Podsumowanie funkcji glm.
                                                                               (b) Tabela liczności.
```

Rys. 14: Podsumowanie wykonanej funkcji wraz z tabelą liczności modelu.

Jak wynika z tabeli z rysunku 14, liczności teoretyczne i rzeczywiste różnią się od siebie. Wskazuje na to także wartość deviance. Otrzymana p-wartość ponownie sugeruje odrzucenie hipotezy zerowej i przyjęcie, że model nie jest dobrze dopasowany.

7. Zadanie 7

W niniejszym zadaniu skupiamy się na zmiennych z zadania 5 z sekcji 5. Rozważane będą dwa modele log-liniowe - [13 23] oraz [123]. W celu dopasowania modelów skorzystano z następującego kodu.

```
col_s <- data$S
col_wyk <- data$Wyk
col_w <- data$W1</pre>
```

Później na podstawie fit1 oraz fit2 określane są prawdopodobieństwa.

Za dane przyjmujemy zmienne:

- 1 zmienna S stanowisko,
- 3 zmienna Wyk wykształcenie,
- 2 zmienna W1 zadowolenie z wynagrodzenia w pierwszym badanym okresie.

7.1. Podpunkt a)

W tym podpunkcie należy oszacować prawdopodobieństwo, że osoba pracująca na stanowisku kierowniczym jest zdecydowanie zadowolona ze swojego wynagrodzenia.

Model Wartości	[13 23]	[123]
Teoretyczne	0.48148	0.48148
Estymowane	0.50740	0.48148

Tab. 7: Teoretyczne i estymowane wartości prawdopodobieństw.

Analizując tabelę 7 można zauważyć, że wartości teoretyczne i estymowane prawdopodobieństw dla modelu [123] są niemal identyczne (wartości podane w tabeli są przybliżeniami otrzymanych wyników, jednak różnice występują na dalekim miejscu po przecinku, więc są one w tym przypadku nierozróżnialne). Jednak dla modelu [13 23] owe prawdopodobieństwa różnią się. Może to świadczyć o niepoprawnym dopasowaniu modelu do danych. Otrzymane wyniki sugerują, że prawdopodobieństwo, że osoba pracująca na stanowisku kierowniczym jest zdecydowanie zadowolona ze swojego wynagrodzenia wynosi około 0.48.

7.2. Podpunkt b)

W tym podpunkcie należy oszacować prawdopodobieństwo, że osoba z wykształceniem zawodowym pracuje na stanowisku kierowniczym.

Model Wartości	[13 23]	[123]
Teoretyczne	0.02439	0.02439
Estymowane	0.02439	0.02439

Tab. 8: Teoretyczne i estymowane wartości prawdopodobieństw.

Analizując tabelę 8, zauważyć można, że i tym razem wartości teoretyczne i estymowane w obu modelach wyniosły w przybliżeniu dokładnie tyle samo. Zatem prawdopodobieństwo, że osoba z wykształceniem zawodowym pracuje na stanowisku kierowniczym jest równe około 0.02.

7.3. Podpunkt c)

W tym podpunkcie należy oszacować prawdopodobieństwo, że osoba z wykształceniem wyższym nie pracuje na stanowisku kierowniczym.

Model Wartości	[13 23]	[123]
Teoretyczne	0.526316	0.526316
Estymowane	0.526316	0.526316

Tab. 9: Teoretyczne i estymowane wartości prawdopodobieństw.

Analizując tabelę 9, ponownie zauważyć można, że wartości teoretyczne i estymowane w obu modelach wyniosły w przybliżeniu dokładnie tyle samo. Zatem prawdopodobieństwo, że soba z wykształceniem wyższym nie pracuje na stanowisku kierowniczym jest równe około 0.52.

8. Zadanie 8

Procedura wykonania zadania jest identyczna jak w zadaniu 7 (sekcja 7). Jedynie zostały zmienione analizowane dane. Przyjmujemy zmienne:

- 1 zmienna S stanowisko,
- 2 zmienna P płeć,
- 3 zmienna Wyk wykształcenie.

8.1. Podpunkt a)

W tabeli 10 podano teoretyczne oraz estymowane prawdopodobieństwa, że osoba pracująca na stanowisku kierowniczym jest kobietą.

Model Wartości	[13 23]	[123]
Teoretyczne	0.296	0.296
Estymowane	0.472	0.296

Tab. 10: Teoretyczne i estymowane wartości prawdopodobieństw.

Tym razem estymowana wartość prawdopodobieństwa jest niezgodna z jej rzeczywistą wartością w przypadku modelu [13 23]. Może to świadczyć o złym dopasowaniu modelu do danych. Jednak w przypadku modelu [123], obie wartości są w przybliżeniu takie same. Zatem można stwierdzić, że szukane prawdopodobieństwo wynosi około 0.3.

8.2. Podpunkt b)

W tabeli 11 podano teoretyczne oraz estymowane prawdopodobieństwa, że osoba z wykształceniem zawodowym pracuje na stanowisku kierowniczym.

Model Wartości	[13 23]	[123]
Teoretyczne	0.02439	0.02439
Estymowane	0.02439	0.02439

Tab. 11: Teoretyczne i estymowane wartości prawdopodobieństw.

Otrzymane wartości wynoszą w przybliżeniu tyle samo w każdym przypadku, a więc można stwierdzić, że szukane prawdopodobieństwo wynosi około 0.02.

Jak się okazuje, jest to wartość identyczna do tej uzyskanej w zadaniu 7b) z sekcji 7.2.

8.3. Podpunkt c)

W tabeli 12 podano teoretyczne oraz estymowane prawdopodobieństwa, że osoba z wykształceniem wyższym jest mężczyzną.

Model Wartości	[13 23]	[123]
Teoretyczne	0.368	0.3684
Estymowane	0.3684	0.3684

Tab. 12: Teoretyczne i estymowane wartości prawdopodobieństw.

Otrzymane wartości wynoszą w przybliżeniu tyle samo w każdym przypadku, a więc można stwierdzić, że ów prawdopodobieństwo jest równe 0.37.

9. Zadanie 9

W tym zadaniu zostaną zweryfikowane następujące hipotezy na poziomie istotności $\alpha=0.05$

9.1. Podpunkt a)

- zmienne losowe S, W1 i Wyk są wzajemnie niezależne.

 H_0 o danych z modelu [1 2 3] będzie testowana przeciwko hipotezie alternatywnej: dane pochodza z modelu [123]

```
## Wszelkie tablice beda tworzone w nastepujacy sposob
col_s <- data$S
col_wyk <- data$Wyk
col_w1 <- data$W1

##tabela S, W1, Wyk
df <- data.frame(col_s, col_w1, col_wyk)
names(df) <- c('S','W1','Wyk')
df_tab <- as.data.frame(table(df))</pre>
```

```
mods <- glm(Freq ~ W1+S+Wyk, data=df_tab, family=poisson)
p_val <- 1-pchisq(deviance(mods), df = df.residual(mods))</pre>
```

Otrzymano $p_val=0.0006187$, która jest mniejszą wartością od zadanego poziomu istotności . Odrzucamy więc hipotezę zerową na rzecz alternatywnej.

Następnie rozpatrywana hipoteza zerowa (model [1 2 3]) będzie testowana przeciwko hipotezie alternatywnej o tym, że dane pochodzą z nadmodelu [12 32].

```
mods2 <- glm(Freq ~ S+W1+Wyk + S*Wyk + Wyk*W1, data=df_tab, family=poisson)
test <- anova(mods, mods2)
p_val <- 1-pchisq(test$Deviance[2], df = test$Df[2])</pre>
```

Korzystając z funkcji anova otrzymano $p_val = 9.870781e - 06$, co ponownie jest znacznie mniejsze od zadanego poziomu istotności. Odrzucamy więc w obu przypadkach hipotezę zerową i wnioskujemy, iż podane zmienne nie są niezależne.

9.2. Podpunkt b)

- zmienna losowa W1 jest niezależna od pary zmiennych S i Wyk (model [2 13]). H_0 o danych z modelu [2 13] będzie testowana przeciwko hipotezie alternatywnej: dane pochodza z modelu [123]

```
mods <- glm(Freq ~ S+W1+Wyk + W1 + S*Wyk, data=df_tab, family=poisson)
p_val <- 1-pchisq(deviance(mods), df = df.residual(mods))</pre>
```

Otrzymano $p_val = 0.080963$, co jest większe od zadanego $\alpha = 0.05$. Dlatego też nie ma podstaw do odrzucenia hipotezy zerowej.

Następnie rozpatrywana hipoteza zerowa będzie testowana przeciwko hipotezie alternatywnej o tym, że dane pochodzą z nadmodelu [12 32] .

```
mods2 <- glm(Freq ~ S+W1+Wyk + S*W1 + Wyk*W1, data=df_tab, family=poisson)
test <- anova(mods, mods2)
p_val <- 1-pchisq(test$Deviance[2], df = test$Df[2])</pre>
```

Otrzymano $p_val=0.377725$. W tym przypadku wartość ta jest mniejsza od zadanego α , co pozwala nam odrzucić hipotezę zerową o tym, że zmienna losowa W1 jest niezależna od pary zmiennych S i Wyk.

9.3. Podpunkt c/d)

- zmienna losowa W1 jest niezależna od zmiennej losowej S, przy ustalonej wartości zmiennej Wyk (model [13 23]). H_0 o danych z modelu [13 23] będzie testowana przeciwko hipotezie alternatywnej: dane pochodza z modelu [123].

```
mods <- glm(Freq ~ S+W1+Wyk + S*Wyk + W1*Wyk, data=df_tab, family=poisson)
p_val <- 1-pchisq(deviance(mods), df = df.residual(mods))</pre>
```

Otrzymano $p_val=0.84464$. Wartość ta jest większa od zadanego $\alpha=0.05$, dlatego też nie ma podstaw do odrzucenia hipotezy zerowej.

Następnie rozpatrywana hipoteza zerowa będzie testowana przeciwko hipotezie alternatywnej o tym, że dane pochodzą z nadmodelu [12 13 23].

Otrzymano $p_val=0.34998$. W tym przypadku wartość ta jest mniejsza od zadanego α , co pozwala nam odrzucić hipotezę zerową o tym, że zmienna losowa W1 jest niezależna od pary zmiennych S i Wyk.

9.4. Podpunkt e)

- zmienna losowa S jest niezależna od zmiennej P, przy ustalonej wartości zmiennej Wyk (model [13 32]).

 H_0 o danych z modelu [13 32] będzie testowana przeciwko hipotezie alternatywnej: dane pochodza z modelu [123]

```
col_s <- data$S
col_wyk <- data$Wyk
col_p <- data$P

df <- data.frame(col_s, col_p, col_wyk)
names(df) <- c('S','P','Wyk')
df_tab <- as.data.frame(table(df))</pre>
```

```
mods <- glm(Freq ~ S+P+Wyk + S*Wyk + P*Wyk, data=df_tab, family=poisson)
p_val <- 1-pchisq(deviance(mods), df = df.residual(mods))</pre>
```

Otrzymano $p_val=0.1446957$. Wartość ta jest mniejsza od zadanego α , dlatego też odrzucamy hipotezę zerową o niezależności zmiennej losowa S od zmiennej P, przy ustalonej wartości zmiennej Wyk, na rzecz alternatywnej.

Następnie rozpatrywana hipoteza zerowa będzie testowana przeciwko hipotezie alternatywnej o tym, że dane pochodzą z nadmodelu [12 13 23].

Otrzymano $p_val=0.024487$. W tym przypadku wartość ta jest ponownie mniejsza od zadanego α , co pozwala nam odrzucić hipotezę zerową.

10. Zadanie 10

W niniejszym zadaniu analizowane będą modele log-liniowe dla następujących zmiennych.

- Zmienna 1 to zmienna A1, czyli atmosfera w miejscu pracy w pierwszym badanym okresie (wartości w skali Likerta)
- Zmienna 2 to zmienna W1, czyli zadowolenie z wynagrodzenia w pierwszym badanym okresie (wartości w skali Stapela)
- Zmienna 3 to zmienna P, czyli płeć

Ustalony poziom ufności wynosi $\alpha = 0.05$.

10.1. Podejście względem kryterium informacyjnego.

Aby porównać wartości kryteriów informacyjnych AIC i BIC dla rozważanych zmiennych, wykorzystano następujący kod.

```
## stworzenie tabeli z danymi
data10 <- data[c('A1','W1','P')]
table10 <- ftable(data10, row.vars = c('A1','W1'))
table10 <- as.data.frame(as.table(table10))</pre>
```

Powtórzono tę procedurę dla każdego z modeli i wyniki przedstawiono w tabeli na poniższym rysunku 15.

MODEL	AIC	BIC
<chr></chr>	<dbl></dbl>	<dbl></dbl>
[1 2 3]	314.2426	329.4425
[12 3]	123.5923	159.0588
[1 23]	318.0580	338.3245
[13 2]	320.6063	342.5617
[12 13]	129.9560	172.1780
[12 23]	127.4077	167.9408
[23 13]	324.4217	324.4217
[12 23 13]	133.5509	180.8396
[123]	150.1856	217.7408
[1]	484.1343	492.5787
[2]	427.4253	434.1808
[3]	567.1889	570.5666
[13]	475.4339	492.3227
[12]	138.6564	172.4340
[23]	416.1766	429.6877
[1 2]	329.3067	342.8177
[1 3]	469.0702	479.2035
[2 3]	412.3613	420.8056
[]	582.2529	583.9418

Rys. 15: Wartości kryteriów informacyjnych.

Z przedstawionej tabeli wynika, że najmniejsze wartości obu kryteriów osiągnięte zostały dla modelu [123]. Oznacza to, że ów model najlepiej oddaje zależności pomiędzy analizowanymi danymi. Atmosfera w pracy oraz zadowolenie z wynagrodzenia są od siebie zależne, podczas gdy płeć nie jest czynnikiem ściśle z nimi powiązanym. Otrzymane wyniki wydają się być zgodne z rzeczywistością.

10.2. Podejście krokowe.

W podejściu krokowym postępujemy według następującej procedury.

```
table10_3 <- data.frame('M' = c(), 'p-value' = c(), 'AIC(M)' = c(),
                           'BIC(M)' = c()
##utworzenie modeli
model10_1 <- glm(freq10 ~ (A1 + W1 + P), ##[1 2 3]
                   data = table10,
                   family = poisson)
model10_2 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*W1), ##[12 3]
                   data = table10,
                   family = poisson)
model10_3 \leftarrow glm(freq10 \sim (A1 + W1 + P + W1*P), \#[1 23]
                   data = table10,
                   family = poisson)
model10_4 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*P), \#[13 2]
                   data = table10,
                   family = poisson)
model10_5 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*W1 + A1*P), ##[12 13]
                   data = table10,
                   family = poisson)
model10_6 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*W1 + W1*P), ##[12 23]
                   data = table10,
                   family = poisson)
model10_7 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*P + W1*P), ##[13 23]
                   data = table10,
                   family = poisson)
model10_8 \leftarrow glm(freq10 \sim (A1 + W1 + P + A1*W1 + W1*P + A1*P), ##[12 23 13]
                   data = table10,
                   family = poisson)
model10_9 \leftarrow glm(freq10 \sim ((A1 + W1 + P)^2 + A1*W1*P), ##[123]
                   data = table10,
                   family = poisson)
##funkcja do testowania czy model1 jest lepszy od modelu2
test <- function(model1, model2){</pre>
    if (model1$aic != model2$aic){
      test <- anova(model1,model2)</pre>
      test_g <- 1 - pchisq(test$Deviance[2], df = test$Df[2])</pre>
      test_BIC <- BIC(model2)</pre>
      test_AIC <- AIC(model2)</pre>
      c(test_g,test_AIC,test_BIC)
    } else {
      test_BIC <- BIC(model2)</pre>
      test_AIC <- AIC(model2)</pre>
      c(NaN,test_AIC,test_BIC)
    }
##hierarchie modeli
models1 = list(model10_1, model10_2, model10_3, model10_4)
```

Pierwszym krokiem jest przeprowadzenia testów oraz wyliczenia kryteriów dla modelu podstawowego [1 2 3] względem modeli [12 3], [1 23], [2 13].

```
##pierwszy poziom modeli
```

```
for (model in models1){
   tests <- test(model10_1,model)
   print(tests)
   table10_1 <- rbind(table10_1,tests)
   colnames(table10_1) <- c('p-value', 'AIC(Mr)','BIC(Mr)')
}
Mr <- c('M_1 [1 2 3]','M_2 [12 3]','M_3 [1 23]', 'M_4 [13 2]')
table10_1 <- cbind(Mr, table10_1)</pre>
```

Otrzymano w ten sposób tabelę z podsumowaniem uzyskanych wyników.

Mr	p-value	AIC(Mr)	BIC(Mr)
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
M_1 [1 2 3]	NaN	314.2426	329.4425
M_2 [12 3]	0.0000000	123.5923	159.0588
M_3 [1 23]	0.5349822	318.0580	338.3245
M_4 [13 2]	0.8022519	320.6063	342.5617

Rys. 16: Tabela kroku nr. 1.

Z tabeli na rysunku 16 wynika, że hipotezę zerową testu ANOVA odrzucono tylko w przypadku modelu drugiego, to jest modelu [12 3]. Także wartości kryteriów są najniższe dla tego właśnie przypadku. Wskazuje to na fakt, że ten model jest najlepszym spośród tych analizowanych i będzie on porównywany dalej, z kolejnymi nadmodelami.

```
##drugi poziom
models2 = list(model10_2, model10_5, model10_6)
for (model in models2){
   tests <- test(model10_2, model)
   table10_2 <- rbind(table10_2, tests)
   colnames(table10_2) <- c('p-value', 'AIC(Mr)', 'BIC(Mr)')
}
Mr <- c('M_2 [12 3]', 'M_5 [12 13]', 'M_6 [12 23]')
table10_2 <- cbind(Mr, table10_2)</pre>
```

Mr	p-value	AIC(Mr)	BIC(Mr)
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
M_2 [12 3]	NaN	123.5923	159.0588
M_5 [12 13]	0.8022519	129.9560	172.1780
M_6 [12 23]	0.5349822	127.4077	167.9408

Rys. 17: Tabela kroku nr. 2.

Analizując tabelę na rysunku 17, można zauważyć, że każda z otrzymanych p-wartości jest wyższa od ustalonego poziomu ufności, a więc nie mamy podstaw do odrzucenia hipotezy zerowej i do stwierdzenia, że któryś z rozważanych modeli jest lepiej dopasowany do danych niż model [12 3]. Także wartości kryteriów są wyższe niż te dla modelu podstawowego.

Procedura krokowa na tym etapie powinna zostać zakończona i wybrany powinien zostać model [12 3]. Jest to dokładnie ten sam model, który został uznany za najodpowiedniejszy także w poprzednim podejściu, podczas wyboru modelu z najmniejszą wartością kryteriów informacyjnych. Interpretacja pozostaje taka sama.

11. Zadanie 11

W niniejszym zadaniu powtórzono procedurę z zadania 10 z sekcji 10. Zmieniły się jedynie analizowane dane.

- Zmienna 1 to zmienna D, czyli dział, w którym pracownik jest zatrudniony.
- Zmienna 2 to zmienna A1, czyli atmosfera w miejscu pracy w pierwszym badanym okresie (wartości w skali Likerta).
- Zmienna 3 to zmienna P, czyli płeć.

11.1. Podejście względem kryterium informacyjnego.

Otrzymano następujące wyniki.

MODEL	AIC	BIC
<chr></chr>	<dbl></dbl>	<dbl></dbl>
[1 2 3]	209.3334	224.5333
[12 3]	217.8385	253.3050
[1 23]	215.6971	237.6525
[13 2]	158.9377	179.2043
[12 13]	167.4428	207.9759
[12 23]	224.2022	266.4242
[23 13]	165.3014	165.3014
[12 23 13]	173.7756	221.0643
[123]	184.5309	252.0861
[1]	322.5161	329.2716
[2]	277.1697	285.6141
[3]	360.2243	363.6020
[13]	257.0563	270.5674
[12]	232.9026	266.6802
[23]	268.4693	285.3581
[1 2]	224.3975	237.9085
[1 3]	307.4520	315.8964
[2 3]	262.1057	272.2389
[]	375.2884	376.9772

Rys. 18: Wartości kryteriów informacyjnych.

Analizując tabelę przedstawioną na rysunku 18, widzimy, że najmniejsze wartości kryteriów informacyjnych zostały osiągniete dla modelu [13 2]. Otrzymane wyniki sugerują, że płeć oraz dział, w którym dany pracownik pracuje są od siebie zależne, jednak to co uważa o atmosferze w miejscu pracy jest już czynnikiem od nich niezależnym. Otrzymane wyniki wydają się być zgodne z rzeczywistością.

11.2. Podejście krokowe.

Także w tym podejściu korzystać będziemy z procedur wytłumaczonych w poprzednim zadaniu, w sekcji 10.2. Nastąpiła jedynie zmiana danych.

```
data11 <- data[c('D','A1','P')]
table11 <- ftable(data11, row.vars = c('D','A1'))
table11 <- as.data.frame(as.table(table11))
freq10 <- table11$Freq</pre>
```

Porównując modele [12 3], [1 23], [2 13] względem modelu podstawowego [1 2 3], otrzymano następujące wyniki.

Mr	p-value	AIC(Mr)	BIC(Mr)
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
M_1 [1 2 3]	NaN	209.3334	224.5333
M_2 [12 3]	2.154821e-01	217.8385	253.3050
M_3 [1 23]	8.022519e-01	215.6971	237.6525
M_4 [13 2]	3.458678e-12	158.9377	179.2043

Rys. 19: Tabela kroku nr. 1.

Jak wynika z tabeli na rysunku 19, jedyny model dla którego p-wartość testu ANOVA wyniosła mniej niż ustalony poziom ufności, to model [13 2]. Daje to podstawy do odrzucenia hipotezy zerowej i stwierdzenia, że jest on bardziej odpowiedni wobec posiadanych danych niż model podstawowy. Jednocześnie, uzyskał on najmniejsze wartości kryteriów informacyjnych AIC i BIC. Zatem to model [13 2] będzie dalej porównywany i testowany.

Mr	p-value	AIC(Mr)	BIC(Mr)
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
M_4 [13 2]	NaN	158.9377	179.2043
M_5 [12 13]	0.2154821	167.4428	207.9759
M_7 [13 23]	0.8022519	165.3014	192.3235

Rys. 20: Tabela kroku nr. 2.

Tabela na rysunku 20 przedstawia drugi krok w stosowanej procedurze. Otrzymane p-wartości są większe od ustalonego poziomu ufności, a więc brak nam podstaw do odrzucenia hipotezy zerowej i stwierdzenia, że któryś z rozważanych modeli jest lepszy od tego podstawowego. Potwierdzają to także wysokie wartości kryteriów informacyjnych.

Kończymy zatem procedurę i dochodzimy do wniosku, że wybrany zostać powinien model [13 2]. To on najlepiej oddaje charakter danych. Także i w tym przypadku, wybrany model powiela się z tym, wybranym metodą uwzględniającą minimum z kryteriów informacyjnych. Interpretacja wyników pozostaje taka sama.