Copyright by (一直反击)

Robust Principal Component Analysis (PCA) (or Rank-Sparsity Structure)

Recall PCA: XER * Centered data marting

Vî ØN

$$X \Rightarrow L + \overline{E}$$

X=L+E 1 1 Low rook noise/perturbation Gaussian II Ellew.

" SVD approach for PCA"

{Sij +0 } U- << pn

Surveiliance Video

RPCA. Ma. Candles Wright.

1312 rank-1 mode

Copyright by (一直读书)

$$Y_i = a_i U + \epsilon_i$$

$$Y = [Y_i - Y_n]$$

$$\sum_{i=1}^{n} e^{2iu} U + \epsilon_i$$

$$Y = [Y_1 - Y_n]$$
 $Y_i \sim \mathcal{N}(0, \Sigma)$ $\alpha_i \sim \mathcal{N}(0, \sigma_i^2)$

UERP, llulle=1

例为

Ganssian Graphical Model

 $X_1, \dots, X_{\varphi} \sim \mathcal{N}(0, \Sigma)$

X: LX; conditionally independent given other variables (X; LX) (X-51,12)

DOO = SLOOT POH SHA RHO
invisible hand
Sparse
conditional indep. 提出 H 解释 O

low rank

PCA

min IX-UIF St. Bank (L) < K

Sensitive to outlier

RPCA

Convex Relaxation X = L+S

(P)

min. 11 L/1 + +/131/ st, X=[+5

Convex Prog.

IL Wx = min = (trace (Wi) + trace (W2))

St
$$\begin{bmatrix} W_1 & L \\ L^T & W_2 \end{bmatrix} \geq 0$$
 p.s.d.

Linear Matrix Inequality with S.D. Constraints

min $\frac{1}{2}$ tr(W₁) + $\frac{1}{2}$ tr(W₂) + λ ||S||₁
Sit, $\begin{bmatrix} W_1 & L \\ L^T & W_2 \end{bmatrix} \ge 0$ $X = L + S' \qquad (flood pt.)$ Spp S linear inequality / equality
Spp. constraint

美雅 X

S, Boyd. Convex Commission Basics of SPP vs. LP $x \in \mathbb{R}^n$ $c \in \mathbb{R}^n$ (44) min CTX < < C, Xx Vector inner product Storadard form s.t. Ax = b $\chi \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{n \times n}$ min CoX = Sig Lig Hadamard ian. prod. St. Ai X = bi id, ..., m $\chi \geq 0$ p.s.d. "Conic Programming" $\mathcal{A} \subset \mathcal{A}$ d is come €) REC → dXEC $X \geq 0$ $X \geq 0$ Y = 0 Y =Dral. LD max min L(x; J, M) = CTX + GT (b-AX) -MX M20,7 X $\mu = C - A^{\mathsf{T}} y \ge 0$ $\frac{\partial L}{\partial x} = C - A^{T} y - J_{N} = 0$ $max \quad b^{T} y$ h < loo s.t. u=c-ATY >0 "SDD" Max 5ty s.t. S=C- = Aidi>0 P.S.O www.ebanshu.com

Given $X = L_0 + S_0$ Lo? S.? Exact Recovery Theory? 3DP [=6, S=50 RPCA Cardes. Wright Parrilo. X = Lo + So O La lowmank A/R sparse jalentiability

So Sparse 1 Low-round I dea: Low-rank Lo = USKVT Cone Sparse S= #{Sij to} Teometry ! "Incoherence" (Candes-Recht 09) 3 M21 s.t. Y2= (000 400) TER" $\varphi \qquad ||U^T e_i||^2 \leq \frac{\mu r}{n}$ Lo = USV! rank(lo)=r 1 VTei 1 2 5 Mr | UVT | in 5 th Thm (1) Lo nxn. rank(Lo) Spr Ny (lgn) (2) So uniform sparse 11 Sollos Ps n2 DDP (\ = VIR) exactly Lo. So ([= Lo] S=So) with provious ebanship com

Partial observation. min ILLIX talls!
min $NLN * + ANSN_1$ s.t. $P_{\Omega}(X) = P_{\Omega}(L) + P_{\Omega}(S)$ It subset of $\{C_i, j_i\}$
Then up to non rk(Lo) = fr nx (lon)?
(2) \square uniform $ \square = 0.1n^2$ sought $O(n^2)$ (3) Corrupted observation with $T \le C_S$
(3) corrupted observation with $T \leq Cs$
SDP ()= /10.1 n) w.h.p. recover Lo.
Rectangular motrix. Xhixnz , $\lambda = 1/1 max(n_1, n_2)$
Cardos-Tao 2010. Se > Mnrlgan almost linear obs.
$\sim 1 < 6$.
Gross 2011 \all \general \pin n log n. optimal
"Open": Phase-transition
matrix. completion Lo Low-rank
observation = m rounk (Go)=r M 1 P2/ Hong
prob (exet recovery) to random M= f(r) 2/1/2 ? Tropp 2013
Tropp 2013

Con www.ebanshu.com

Sparse PCA: SPP

Recall PCA

Max XTZX

2: covariane matrix

8-t 11×1/2=1

Manconvex Problem

* eigen-decomp.

SDP approach

trace XIIX = trace (IXXI)

X = 1X X T rank-one

 $\max th(\Sigma X) \leftarrow 3xt3$ Siti trac(X)=1 < \$ th

X > 0 relaxation

PCA sparse. $\Sigma = \delta_x^2 u u^T + \delta_z^2 Ip$

" eigenverfor" -> sparse

max tr(SX) -AllXll,

>t. (x)=1 X SO

MDS with Uncertainty: Sensor Network Localization copyrightly Ones

Recall Classical MDS

Given dig pair distance

V(i,j) Complete

 $5.86 \times 10^{-2} \text{ fm}$

 $\min_{\substack{y \in \mathbb{Z} \\ \text{for } y, j}} \left(\|y_i - y_j\|^2 - \operatorname{dij}^2 \right)^2$

emin 11 YYT - Bll2

B = - 1 HDH D=[dij]

= igen-decomp(B)

天公安意: SNL

V: Sensor O(i.j) EE iff

incomplete

2 noise: Tij = dij + Eij 8 anchor point $X_i = a_i$ partial

目标:

11 Yi - Yi 1 = dig (1.1) EE $\|\Delta_{v}-\gamma_{1}\|^{2}=d_{ij}$

REE Significant Commence of the Commence of th

练到:

 $||Y_i - Y_j||^2 = (Y_i - Y_j)^T (Y_i - Y_j)$

YieRk

$$||Y_i - Y_j||^2 = (Y_i - Y_j)^T (Y_i - Y_j)$$

$$= (e_i - e_j)^T (Y_i - Y_j)$$

$$= (e_i - e_j)^T (Y_i - Y_j)$$

$$e_i = (o - - o (o - - o))$$

$$Y_i = Y_i - e_i$$

$$Y_i - Y_i = Y_i - e_i$$

 $= (e_i - e_j) (e_i - e_j)^T \cdot [Y^T Y]$

X = YTY >0

= (et-ej)(ei-ej)T·X LMI. 8D.

Inequality

 $X = Y^T Y \implies X \succeq Y^T Y \cdot (X - Y^T Y \succeq 0)$

| | Yi - Yill = dij, (iij) EE

LMI $Z = \begin{bmatrix} I & Y \\ Y & X \end{bmatrix} \geq 0$ $Z_{i:k,i:k} = I$ $(0;e_i-e_i)(0;e_i-e_j) \quad Z = d_{ij} \quad (i,j) \in E$

Note; Coje My: -Yill & dij(Heij) => LMI noise

(2) Anchor point. $Y_i = a_i$, $||Q_i - Y_j||^2 = d_{ij}^2 \Rightarrow (|Q_i|^2 + Q_j) (|Q_i|^2 + Q_j)$

SPP approach -> MDS

Copyright by (一直大学)

Martab

Protein 3-D strutture Reconstruction

CMDS Schoen berg

SDJ-MDS Exact Recovery? Yinyu de group.

P. Bisnos. A. So.

Recall SDP

(SDD)

(SPP) min (PX)

st. $A_i \cdot X = b_i$

C,XER nen

 $c=1, \ldots, m$ $b=\int_{a}^{b}$

AERM, SERMAN

X\subseteq 0

max - btg

St. $S = C - \sum_{i=1}^{n} A_i b_i \geq 0$

 $F_p = \{ X \geq 0 : A_i X = b_i \}$

 $F_D = \{(b,S): S = C - \sum Ai \neq i \geq 0\}$

Primal obj. C.X dual obj bty

Weak Duality Fp + P, Fo + P

 $\Rightarrow C \cdot X - P_1 X > 0$ duality gop

HXCTP. Y(y,S) EFA

Strong Duality of SDP

龙柱内岛 Soin

(A) $rank(X^{4}) + rank(5^{4}) \leq N$

SDP-MDS.

$$tank(R^*) \ge k$$
 - $3 \Rightarrow rank(R^*) + rank(S^*) \le k + n$
 $r'ank(R^*) + rank(S^*) \le n$ $tank(R^*) \le k + n$
 $tank(R^*) + rank(R^*) \le n$ $tank(R^*) \le n$ $tank(R^*) \le n$

Copyright by (全旗手)

X=YTY YERKXH

 \Rightarrow rank $(Z^{*}) = k$ (2k)

miningal tank

19 $\frac{1}{2}$ rank $(S^*) = n$ $(\leq n)$

maximal rank.

NATION : Universal Rigidity (UR)

there is a unique embedding Gi GRt C>R l2k (di, eizel) s.t. II.4:-bill=dij, Wijel

minimal din embedding k: R.

Schoenberg 1938: G is complete => UR.

Gis incomplete

[So-Ye 12007] General.

UR SDP maximal rank solin
rank(S*)=n. rank(Z*)=k

Theorem Equivalent statements

of Ism G is UR or has a unique embedding in RK

· (1232) SPP has a max-rank feasible solin rank (2)=k

(rank (5)=n)

· Xx = YTY or trace (X-YTY)=0 eigenderomp of X

UR.s. polynomial (n, k, log(2))

Ye, ICCM 2010 ; Fields 2011

Maximum Variance Unfolding (Manifold Learning) Copyright by Copyright

 $X = Y^TY \implies X \gtrsim Y^TY$

The state of the s

Kij= Wi, /j>

max trace (K)

SIP' Sit, Kirt Kin-Akrij = dij

 $K \geq 0$

Why max tr(k)?

TOE Work.

[So- Ye 2007.]

unfolding

80%.

k-manifold

(K+1) - lateration graph

"Unifold manifold"