MATURA EXAM IN PHYSICS

WRITTEN EXAM

Information for the Preparation

Apart from physical contents the following skills are tested:

- ▶ Basic mathematical skills:
 - Algebraic transformations
 - Circumference and area of a circle, surface and volume of a sphere
 - Trigonometric functions (definition and numerical values for special angles), radian
 - Vectors: sum and difference (construction, calculation with components), scalar (dot) and vector (cross) product (geometrical meaning)
 - Approximations, limits
- Basic functions (algebraically and in graphical representation):
 - Proportionality and linearity, linear functions with two parameters
 - Simple power laws, especially squares (parabola) and inverse proportionality (hyperbola)
 - Trigonometric functions (amplitude, period, phase)
 - Exponential function (half life period)
 - Physical examples for functional relations
- Graphical representations (also see above):
 - Read/plot values from/in diagrams.
 - Determine slope and axis intercept of straight line fit.
 - Determine average of a function graphically (e.g. power vs. time diagram)
 - Add/subtract/multiply/square graphs
- ▶ Express physical phenomena in English
 - Describe formal relations between two quantities in words
 - Describe the behaviour of curves
 - Careful use of physical terms
- Careful, concise sketches which help to find a solution
- Ratios (How does x change when y changes by a factor k or by p %?)
- Consistent use of symbols, different symbols for different quantities (e.g. with indices)
- ▶ Powers of ten
- Units and unit prefixes, transformation between different units, reasonable precision
- ▶ Know orders of magnitude, e.g. speed of light, size of an atom, radius of the Earth, density of air, ...
- ▶ Error estimates and error calculation

STRUCTURE OF THE PAPER

SHORT QUESTIONS (PART A)

- ▶ Time: 60 minutes
- Questions covering all subjects (2nd to 4th year)
- Aids: Pens and pencils, ruler, set square, pair of compasses
- Write in ink or ballpoint pen (not red!); draw sketches and diagrams in pencil
- Write your solutions on the problem sheet (use the reverse side if necessary)
- Round numerical values to a reasonable number of figures and use prefixes or powers of ten where appropriate; fractions and roots are only allowed in ratios
- Leave the sheets tacked together

PROBLEMS (PART B)

- ▶ Time: 120 minutes
- Questions focussing on the subjects of 3rd and 4th year (including physics lab); basic concepts of 2nd year
- ▶ Aids
 - This brochure
 - Formula sheet: one sheet, i.e. two pages (A4 format), handwritten
 - "Formeln und Tafeln" (9th edition or newer)
 - Graphical calculator (TI 89), one spare device and/or spare batteries for the group
 - Pens, pencils, drawing tools (ruler, set square, pair of compasses)

Aids (especially calculators) may not be exchanged during the test. In addition, the regulations set by the school administration are in effect.

▶ Format

- Use a new sheet for every problem
- Name and class on every sheet of paper
- Title on first page: Matura Exam 2007, Physics Paper
- Do not write in the borders of the sheet
- No calculations on the problem sheets
- Hand in the problem sheets with the solutions at the end of the exam
- Write in ink or ballpoint pen (not red!); draw sketches and diagrams in pencil; cross out wrong results (no Tipp-Ex)

▶ Hints

- Use scratch paper for first tries
- Answer the questions in complete, correct English sentences
- No results without explanations; numerical results with formal solution (derivation with calculator only when explicitly allowed)
- Diagrams whenever possible quantitative (axis ticks); draw the axes with a ruler
- Derive formulae not contained in "Formeln und Tafeln"
- Round final results to three significant figures. If you are asked to do an error calculation, round the result to the first significant figure of the error.
- Reserve some time for a final check: Did I answer the questions? Is the result reasonable? Are the units correct? ...
- Two hours are a long time to work fully concentrated. Try to first solve the (partial) problems you feel comfortable with and come back to the remaining problems in a second run.

SUBJECTS OVERVIEW

REMARKS

- Physics does not only consist of formulae, but of the underlying concepts. There is no point in learning every formula in this brochure by heart without understanding what it means.
- The formulae in this brochure provide the basic tools to solve physical problems. The list is not exhaustive. You should always be able to derive other formulae from the basic ones.
- At the beginning of every section, some important terms are listed of which you are supposed to know the meaning and the definition. There are also some skills which are not related to calculations.
- You should know the constants at the beginning of every section with a reasonable precision.
- The symbols are generally the same as in "Formeln und Tafeln" and "Cutnell & Johnson" respectively.
- Always be aware of the scope of a law and of its possible applications.

Basic Terms:	Uniform motion:	Time, position and displacement, velocity and speed
	Constant acceleration:	Average and instantaneous speed, acceleration, free fal
	Superposition:	Principle of linear superposition, projectile motion
	Circular motion:	Period and frequency, angular velocity, centripetal acceleration
SKILLS:	Draw, interpret and transform disp	lacement/speed/acceleration vs time diagrams
Constants:	Acceleration due to gravity on earth and moon	
DEFINITIONS:	Speed	$v = \frac{\Delta s}{\Delta t}$
	Acceleration	$a = \frac{\Delta v}{\Delta t}$
	Frequency	$f = \frac{n}{\Delta t}$
	Period	$T = \frac{1}{f}$
	Angular Frequency	$\omega = \frac{2\pi}{T} = 2\pi f$ Angle in radian
FORMULAE:	Angular speed	$v = \omega r$
	Centripetal acceleration	$a_R = \omega^2 r = \frac{v^2}{r}$

2	DYNAMICS
· .	ITYNANICS

Basic Terms:	Inertia and mass:	Mass, density, inertial reference frame
	(Conservation of) momentum:	Momentum, closed system, conservation of momentum
	Newton's laws of motion:	Newton's laws of motion, force
	Dynamics of circular motion:	Centripetal force
Skills:	Draw forces acting on an object, find o	omponents (graphically and numerically)
	Set up and solve equations of motion	
Constants:	Densities of air and water	
Definitions:	Density	$ \rho = \frac{m}{V} $
	Momentum	$\vec{p} = m\vec{v}$
FORMULAE:	Newton's second law	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Force of gravitation	$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m\vec{a}$
	Elastic force	$F_F = D \Delta l$
	Friction	$F_{R,G} = \mu_G F_N$ Kinetic friction
		$F_{R,H} \le \mu_H F_N$ Static friction (inequality)
	Air resistance	$F_L = \frac{1}{2} c_w \rho A v^2$

3. Energy

TOPICS:	(Conservation of) Energy:	0,	kinetic energy, elastic energy, gy; conservation of energy
	Collisions:	Elastic and inelas	tic collision
	Work and power:	Work, power, effic	ciency
Skills:	Set up energy sums (also with non-me	chanical energy for	rms)
	Solve collision problems with conserva	ation of energy and	momentum
DEFINITIONS:	Potential energy	$E_{\text{pot}} = mgh$	Arbitrary reference level
	Kinetic energy	$E_{\rm kin} = \frac{1}{2}mv^2$	
	Elastic energy	$E_{\rm S} = \frac{1}{2} D \Delta l^2$	
	Work	$W = F_s s$	Alternative unit kWh
	Power	$P = \frac{W}{\Delta t} = F_s v$	F_s is the component of the force parallel to the direction of motion
	Efficiency	$ \eta = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{P_{\text{out}}}{P_{\text{in}}} $	

4. GRAVITA	rion*		
Basic terms:	Kepler's laws:	Planetary motion, swept area	
	Gravitation:	Gravitational force, gravitational energy, escape velocity, Schwarzschild radius	
Skills:	Draw the orbit of a planet around th	e sun	
	Calculate the mass of a planet/star from a satellite's period of revolution		
	Calculate the escape speed from a star's mass and radius		
Constants:	Gravitational constant		
	Mass and radius of earth, moon and sun; distance earth - sun and earth - moon		
FORMULAE:	Kepler 1	The orbit of a planet about the Sun is an ellipse with the	
		Sun's centre of mass at one focus	
	Kepler 2	A line joining a planet and the Sun sweeps out equal	
		areas in equal intervals of time	
	Kepler 3	$(T_1:T_2)^2=(a_1:a_2)^3$	
	Gravitational force	$F_G = G \frac{m_1 m_2}{r^2}$	
	Work in the gravitational field	$W_{A\to B} = G m_1 m_2 \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$	

5. Rigid Bodies*		
Basic Terms:	Law of the lever:	Torque, equilibrium (conditions)
	Centre of gravity and equilibrium:	Centre of gravity/mass; stable, unstable and indifferent equilibrium
Skills:	Establish the equilibrium conditions for a rigid body	
	Determine the centre of mass from pa	rtial centres of mass
DEFINITIONS:	Torque	$\vec{M} = \vec{r} \times \vec{F}$
FORMULAE:	Rotational equilibrium	$\sum_{i} \vec{M}_{i} = 0$

6. Hydrostatics

Basic Terms:	Pascal's principle:	Pressure, hydraulic systems
	Hydrostatic pressure in liquids:	Hydrostatic paradox, communicating vessels
	Air pressure:	Air pressure, qualitative change in atmosphere
	Buoyancy:	Archimedes' principle, swimming objects
SKILLS:	Explain how a mercury barometer works	
	Determine the immersion depth of a s	wimming object
Definitions:	Pressure	$p = \frac{F_{\perp}}{A}$
FORMULAE:	Hydrostatic pressure	$\Delta p = \rho g h$
	Buoyant force (Archimedes)	The buoyant force on a submerged object equals the weight of the liquid displaced by the object

7. GASES		
BASIC TERMS:	Gas laws:	Ideal gas, process vs. state; isothermal, isobaric, isochoric and adiabatic processes; amount of substance, molar mass
	Kinetic gas theory:	Particle model, distribution of molecular speed
SKILLS:	Draw, interpret and transform diagr	rams for processes on an ideal gas
Constants:	Molar masses of important elements	s (hydrogen, helium, oxygen, nitrogen, carbon)
	Avogadro's number	
	Universal gas constant	
Definitions:	Molar mass	$M = \frac{m}{n}$
	Avogadro's law	$N = n N_A$
FORMULAE:	Ideal gas law	pV = nRT
8. TEMPERA	TURE AND HEAT	
Basic Terms:	Temperature:	thermal equilibrium; Celsius and Kelvin scale
	Internal energy:	Work and heat for processes with gases
	Heat engines:	Stirling process; heat engine, heat pump, refrigerator; efficiency of an ideal heat engine

DEFINITIONS:	Molar mass	$M = \frac{m}{n}$
	Avogadro's law	$N = n N_A$
FORMULAE:	Ideal gas law	pV = nRT
8. Tempera	TURE AND HEAT	
Basic Terms:	Temperature:	thermal equilibrium; Celsius and Kelvin scale
	Internal energy:	Work and heat for processes with gases
	Heat engines:	Stirling process; heat engine, heat pump, refrigerator; efficiency of an ideal heat engine
	Specific heat:	Specific heat; temperature of mixtures
	Heat transfer:	Convection, heat conduction, radiation
	Phase transitions:	Phase transitions; latent heat; vapour pressure diagrams, triple point, critical point
SKILLS:	Draw and interpret heat flow diagram Describe the heat flows in mixing pro	6
	Sketch the intensity vs wavelength dis	agram for heat radiation at different temperatures
CONSTANTS: Typical efficiency of a thermal power station Specific heat of water		station
	Solar constant	
	Latent heat of fusion and latent heat of	of evaporation for water
Definitions:	Heat value	$H = \frac{Q^{\prime}}{m}$
	Specific heat	$c = \frac{Q}{m \Delta T}$
	Intensity of radiation	$J = \frac{P}{A}$
	Latent heat	$L_{f,\nu} = \frac{Q_{f,\nu}}{m}$
FORMULAE:	First law of thermodynamics	$\Delta U = Q^{\times} + W^{\times}$
	Efficiency of an ideal heat engine	$ \eta_C = 1 - \frac{T_k}{T_h} $ Analogous expressions for heat pump and refrigerator
	Heat conduction	$\frac{Q}{\Delta t} = -\lambda A \frac{\Delta T}{d}$ and $\frac{Q}{\Delta t} = -U A \Delta T$
	Kirchhoff's law	$J = \varepsilon J_S$
	Stefan-Boltzmann's law	$J_S = \sigma T^4$
	Wien's law	$\lambda_{\max} T = b$

9. ELECTROSTATICS

BASIC TERMS:	Basic Phenomena:	Elementary charge, conductors and insulators, charging by induction
	Coulomb's law:	Electrostatic force between point charges
	Electric field:	Field lines, dipole, homogeneous field, Faraday cage; magnitude of electric field
	Electric potential energy, potential and voltage (potential difference):	Work in the electric field, acceleration of charged particles
	Capacitors	Parallel plate capacitor, electric fields in matter, energy in the electric field
Skills:	Draw field lines for a system of charges,	calculate magnitude for a system of point charges
	Calculate speed of charged particles fro	m acceleration voltage (unit eV)
Constants:	Elementary charge	
	Coulomb's constant	
DEFINITIONS:	Magnitude of the electric field	$\vec{E} = \frac{\vec{F}}{q}$
	Potential difference (voltage)	$\vec{E} = \frac{\vec{F}}{q}$ $\Delta V = \frac{W}{q}$
	Capacity	$C = \frac{Q}{\Delta V}$
FORMULAE:	Force between two point charges	$F_C = \frac{1}{4\pi\varepsilon_0 \kappa} \frac{Q_1 Q_2}{r^2}$
	Potential of a point charge	$V(r) = \frac{1}{4\pi\varepsilon_0 \kappa} \frac{q}{r}$
	Voltage in a homogeneous field	$\Delta V = E d$
	Capacity of a parallel plate capacitor	$C = \varepsilon_0 \kappa \frac{A}{d}$
	Energy in a capacitor's electric field	$W_{\rm el} = \frac{1}{2} Q \Delta V = \frac{1}{2} C \Delta V^2 = \frac{1}{2} \frac{Q^2}{C}$ $W_{\rm el} = \frac{1}{2} \varepsilon_0 \kappa E^2$
	Energy density in the electric field	$w_{\rm el} = \frac{1}{2} \varepsilon_{\rm o} \kappa E^2$

10. DC CIRCUITS		
Basic Terms:	Electric current and power:	
	Resistance:	

Simple circuits, power of the electric current

Characteristic of different loads; resistors; resistivity,

temperature coefficient

Resistor networks: Series and parallel circuits; internal resistance of a

battery; measuring voltage and current

Charging and discharging capacitors: Time constant, half life

Conductance: metals, electrolytes, semiconductors

Skills: Draw and interpret schematic circuit diagrams (with meters)

Constants: resistivity of copper

Half life

Definitions:

Current	$I - \frac{\Delta Q}{\Delta Q}$
	$1 - \frac{1}{\Delta t}$
Resistance	ΔV

FORMULAE:

	Δt
Resistance	$R = \frac{\Delta V}{I}$
Power of electric current	$P = \Delta V I$
Ohm's law	$\Delta V \propto I$ only for (ohmic) resistors
Resistance of wires	$R = \rho \frac{l}{A}$
Temperature dependence	$\Delta ho = ho_{T_o} lpha_{T_o} \Delta T$ Formeln und Tafeln: $T_o = 20$ °C or $\Delta R = R_{T_o} lpha_{T_o} \Delta T$
Series wiring of resistors	$R_T = R_1 + R_2 + \dots$
Parallel wiring of resistors	$R_T = \left(\frac{1}{R_1} + \frac{1}{R_2} + \ldots\right)^{-1}$
Discharging a capacitor	$\Delta V(t) = \Delta V_{\rm o} e^{-t/\tau}$
Time constant	$\tau = RC$

 $\overline{T_{1/2}} = \tau \ln 2$

11. MAGNETISM

Basic terms:	Ferromagnetism:	Permanent magnet; earth's magnetic field
	Magnetic field:	Magnetic field lines; force on a current-carrying wire, right-hand-rule
	Magnetic force (Lorentz force):	Motion of charged particles in a magnetic field
	Electromagnetism:	Magnetic field around a straight wire, at the centre of a current loop, in a coil/solenoid, in a Helmholtz coil
	Induction:	Magnetic flux; Faraday's law; Lenz's law, eddy currents
	Self inductance:	Self inductance; energy in the magnetic field, making/ breaking current
Skills:	Draw magnetic field lines	
	Derive and integrate a graph (induced	emf and magnetic flux)
Constants:	Earth's magnetic field in Zurich (horiz	ontal component and inclination)
	Permeability of free space	
Definitions:	Magnetic flux	$\Phi = BA_{\perp}$
Formulae:	Force on a current	$\vec{F} = I \vec{l} \times \vec{B}$ Direction: right-hand-rule
	Magnetic force (Lorentz force)	$\vec{F}_L = q \vec{v} \times \vec{B}$ Negative particles: left hand
	Magnetic field of a straight wire	$B = \frac{\mu_o}{2\pi} \frac{I}{r}$
	Magnetic field of a solenoid	$B = \mu_{\rm o} \frac{NI}{l}$
	Induced emf in a wire	$\Delta V = \nu B l$
	Faraday's Law	$\Delta V(t) = -N \dot{\Phi}(t)$
	Self-induced emf	$\Delta V(t) = -L\dot{I}(t)$
	Inductance of a solenoid	$L = \frac{\mu_0 \mu_r N^2 A}{l}$
	Breaking current	$I(t) = I_{\rm o} e^{-t/\tau}$
	Time constant	$ au = rac{L}{R}$
	Energy in a solenoid's magnetic field	$W_{\rm mag} = \frac{1}{2}L I^2$ see electric field energy
	Energy density of the magnetic field	$w_{\text{mag}} = \frac{1}{2\mu_0 \mu_x} B^2$ see electric field energy

12. AC CIRCUITS

Basic terms:	AC Circuits:	Impedance and phase shift; rms values, effective power
	Transformer:	Primary and secondary circuit
	Electric grid	High voltage
Skills:	Determine amplitude, frequency, pha	ase shift of ac signal from diagram (or oscilloscope)
	Use phasor diagrams to investigate pl	hase relations
	Describe how electric energy gets fro	m the power station to the socket
Constants:	Frequency and rms value of the house	ehold voltage in Europe
DEFINITIONS:	Harmonic ac voltage	$v(t) = v_{\rm o}\cos(\omega t)$
	Impedance	$Z = \frac{v_{o}}{i_{o}}$
	Rms values	$V_{\rm rms} = \frac{v_{\rm o}}{\sqrt{2}}, I_{\rm rms} = \frac{i_{\rm o}}{\sqrt{2}}$
FORMULAE:	Phase and time shift	$\frac{\Delta \varphi}{2\pi} = \frac{\Delta t}{T}$
	Effective power	$P = \Delta V I \cos(\Delta \varphi)$
	Resistor	$X_R = R, \Delta \varphi = 0$
	Capacitor	$X_C = \frac{1}{\omega C}, \Delta \varphi = -\frac{\pi}{2}$
	Inductors	$X_L = \omega L, \Delta \varphi = +\frac{\pi}{2}$
	Transformer (ideal, unloaded)	$\frac{\Delta V_1}{\Delta V_2} = \frac{n_1}{n_2}$
	Transformer (ideal, short circuit)	$\frac{\Delta V_1}{\Delta V_2} = \frac{n_1}{n_2}$ $\frac{I_1}{I_2} = \frac{n_2}{n_1}$

13.	USCILLATIONS
-----	---------------------

Basic terms:	Simple harmonic motion:	Kinematics, dynamics and energy of the simple harmonic motion
	Damping and resonance:	Energy loss due to damping, envelope; driven oscillation and resonance
	Superposition:	Superposition of oscillations with the same frequency (phasor diagram); beats
	Coupled oscillations:	Coupling; natural oscillations
Skills:	Use the characteristic equation to dete	rmine an oscillation's period
	Draw, interpret and transform diagram	ns for displacement, speed, acceleration and energy
DEFINITIONS:	Characteristic equation	$\ddot{y}(t) = -\omega^2 y(t)$
FORMULAE:	Simple harmonic motion	$y(t) = A\cos(\omega t)$
	Maximum speed	$v_{\text{max}} = \omega A$
	Maximum acceleration	$a_{\text{max}} = \omega^2 A$
	Oscillation period	$T = \frac{2\pi}{\omega}$
	Total energy	$E \propto A^2$
	Period of a mass on a spring	$T = 2\pi \sqrt{\frac{m}{k}}$ Small angle
	Period of a mathematical pendulum	$T \approx 2\pi \sqrt{\frac{l}{g}}$ Small angle approximation
	Period of an LC-circuit	$T = 2\pi \sqrt{LC}$
	Damped oscillation	$y(t) = A(t)\cos(\omega t)$
	Half life for exponential envelope	$T_{1/2} = \tau \ln 2$
	Time constant for LCR oscillator	$\tau = 2 \frac{L}{R}$ $f_B = f_1 - f_2 $
	Beat frequency	$f_B = f_1 - f_2 $

14. WAVES

BASIC TERMS:	Waves:	Perturbation, wave carrier, c transverse waves	oupling; longitudinal and
	Linear waves:	Representation for fixed time superposition	e/fixed position; reflexion,
	Harmonic waves:	Wavelength	
SKILLS:	Transform from fixed time to fixed position and vice versa		
DEFINITIONS:	Characteristic equation	y(x,t) = f(x - vt)	linear wave
	Harmonic wave	$y(x,t) = A\cos(\omega t - kx)$	
FORMULAE:	Wave number	$k = \frac{2\pi}{\lambda}$	
	Propagation speed	$v = \lambda f$	

Basic terms:	Sound waves:	Speed of sound in different me	edia	
	Sound pitch and intervals:	Frequency ratio, scales		
	Sound level:	Sound intensity and level, dec	ibel, phone scale	
	Musical instruments:	Standing waves; string and wi spectrum	nd instruments; frequency	
	Doppler effect:	Moving source and/or observe reflexion on moving object	er, frequency shift for	
Skills:	Sketch standing waves on strings and in pipes			
	"Add" intervals			
	"Add" sound intensity levels			
	Interpret polar diagrams for directivi	ty of loudspeakers		
Constants:	Speed of sound in air Basic intervals (octave, fifth, fourth, major and minor third, equally tempered half-tone)			
	Hearing threshold level and frequence	y range of the human ear		
DEFINITIONS:	Sound intensity	$I = \frac{P}{A}$		
	Sound intensity level (in decibel)	$I = \frac{P}{A}$ $\beta = 10 \log \frac{I}{I_0}$	Rules of thumb	
Formulae:	Speed of sound in a gas	$v_S = \sqrt{\frac{\kappa RT}{M}}$		
	Speed of sound in a liquid	$v_S = \sqrt{\frac{1}{\chi \rho}}$		
	Transverse waves on a string	$v_S = \sqrt{\frac{\sigma}{\rho}} = \sqrt{\frac{F}{m^*}}$		
	Overtones of a vibrating string	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$	Nodes at both ends	
	Overtones of an open tube	$f_n = (n+1)f_0 = (n+1)\frac{v_s}{2l}$	Antinodes of air motion at both ends	
	gedackt pipe (closed at one end)	$f_n = (2n+1)f_0 = (2n+1)\frac{v_s}{4l}$		
	Doppler effect	$f_{\rm R} = f_{\rm E} \frac{\nu_{\rm S} \pm \nu_{\rm R}}{\nu_{\rm S} \mp \nu_{\rm E}}$	R: Receiver; E: Emitter sign defined by direction	

16. ELECTROMAGNETIC WAVES

Basic terms:	Production and propagation:	Spectrum of electromagnetic wave; standing waves; dipole antenna; speed of light in vacuum and in media; Intensity	
	Polarisation:	Polarised and unpolarised light; polarisation filters	
	Wave optics:	Huygens' principle; interference, diffraction	
	Ray optics:	Reflexion and refraction; lenses	
SKILLS:	Give an overview of the electromagnetic spectrum		
	Draw the path of a light ray through a glass object		
Constants:	Speed of light in vacuum (air)		
	Critical angle for total internal reflexion		
Definitions:	Refractive index	$n = \frac{c_{\text{vacuum}}}{}$	
		$c_{ m medium}$	
Formulae:	Speed of light in vacuum	$c_{\text{vacuum}} = \frac{1}{\sqrt{\varepsilon_{\text{o}}\mu_{\text{o}}}}$	
	Speed of light in a medium	$c_{\text{medium}} = \frac{c_{\text{vacuum}}}{n} = \frac{c_{\text{vacuum}}}{\sqrt{\kappa \mu_r}}$	
	Electric and magnetic field vectors	$ec{E} = ec{B} imes ec{c}$	
	Intensity	$I = \frac{\kappa \varepsilon_r}{2} c E^2 = \frac{1}{2\mu_0 \mu_r} c B^2$	
	Poynting vector	$\vec{S} = \frac{1}{2\mu_0 \mu_r} \vec{E} \times \vec{B}$	
	Law of reflexion	$\vartheta_r = \vartheta_i$	
	Law of refraction	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
	Total internal reflexion (critical angle)	$\sin \vartheta_c = \frac{n_2}{n_1} \qquad only for \ n_1 > n_2$	
	Thin lens equation	$\frac{1}{d_f} = \frac{1}{d_o} + \frac{1}{d_i}$	
	Lateral magnification	$\frac{1}{d_f} = \frac{1}{d_o} + \frac{1}{d_i}$ $\frac{D_i}{D_o} = -\frac{d_i}{d_o}$	
	Condition for constructive interference	$\Delta r = m\lambda, m = 0, \pm 1, \pm 2, \dots$	
	Diffraction on a double slit/grating (maxima)	$\sin \theta_m = m \frac{\lambda}{d}$ $\sin \theta_k = k \frac{\lambda}{c}$	
	Diffraction on a single slit (minima)	$\sin \vartheta_k = k \frac{\lambda}{s}$	

17.	REL	ATT	VITY

Basic terms:	Postulates:	Relativity postulate and speed	d of light postulate
	Relativistic kinematics:	Simultaneity; time dilation, le	ength contraction
	Relativistic dynamics:	Relativistic energy and mome energy and mass	entum; equivalence of
Skills:	Calculate a relativistic particle's speed	from the acceleration voltage	
	Calculate the energy set free in a nucle	ar process	
Definitions:	Speed (dimensionless)	$\beta = \frac{v}{c}$	
	Lorentz factor	$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$	non-relativistic: $\gamma - 1 \ll 1$
FORMULAE:	Time dilation	$t = \gamma \tau$	
	Length contraction	$l = \frac{\lambda}{\gamma}$	Only parallel to motion
	Energy-momentum relation	$E^2 = (mc^2)^2 + (pc)^2$	
	Equivalence of energy and mass	$E_{\rm o} = mc^2$	Rest energy
	relativistic energy	$E = E_{\rm o} + E_{\rm kin} + \ldots = \gamma E_{\rm o}$	
	Mass defect	$\Delta m = m_X - Zm_p - (N - Z)m_r$	1
	Doppler effect for light (longitudinal)	$f_O = f_S \sqrt{\frac{c \pm v}{c \mp v}}$	

18. QUANTUM PHYSICS

Basic Terms:	Photoelectric effect:	Work function, photon
	Wave-particle duality:	de Broglie relation
	Atomic physics:	Energy levels; resonance absorption
Constants:	Planck's constant	
FORMULAE:	Energy of a photon	$E = hf = \hbar\omega$
	Photoelectric equation	$W_{\max} = hf - W_a$
	Threshold frequency	$f_{\min} = \frac{W_a}{h}$
	de Broglie wavelength	$\lambda_B = \frac{h}{p}$

19. NUCLEAR PHYSICS

Basic terms:	Radioactive decay:	α , β and γ decay, daughter nuclei; decay law, half life period
Skills:	Find daughter nucleus for α and β decay	
	Determine half life period from decay diagram	
FORMULAE:	Decay law $N(t) = N_0 e^{-\lambda t} = N_0 2^{-t/T_{1/2}}$	
	Half life period	$T_{1/2} = \frac{\ln 2}{\lambda}$