Homework 1

Problem 1. Prove that $\sqrt[n]{m}$ is irrational if m is not the nth power of an integer.

Proof. Suppose $\sqrt[n]{m} = a/b$ where $a, b \in \mathbb{Z}$ and (a, b) = 1. Then $mb^n = a^n$. We can uniquely prime factor a and b as $p_1^{a_1} \dots p_r^{a_r}$ and $q_1^{b_1} \dots q_s^{b_s}$. Then we can group the prime factors of a^n as n identical groups of $p_1^{a_1} \dots p_r^{a_r}$. It follows that mb^n can be written as the product of n identical groups of prime powers. But then each of these groups must contain $q_1^{b_1} \dots q_s^{b_s}$ since this is the prime factorization of b. Therefore m must have a prime factorization such that it can be evenly divided into these n groups. In other words, we must have $m = c^n$ for some integer c.

Problem 2. Suppose $a^2 + b^2 = c^2$ with $a, b, c \in \mathbb{Z}$. For example $3^2 + 4^2 = 5^2$ and $5^2 + 12^2 = 13^2$. Assume that (a,b) = (b,c) = (c,a) = 1. Prove that there exist integers u and v such that $c-b = 2u^2$ and $c+b = 2v^2$ and (u,v)=1 (there is no loss in generality in assuming that b and c are odd and a is even). Consequently a = 2uv, $b = v^2 - u^2$ and $c = v^2 + u^2$. Conversely show that if u and v are given, then the three numbers a, b and c given by these formulas satisfy $a^2 + b^2 = c^2$.

Proof. Since c and b are relatively prime and both odd we can write (c-b)(c+b) as $4(p_1^{a_1}p_2^{a_2}\dots p_n^{a_n})(q_1^{b_1}q_2^{b_2}\dots q_m^{b_m})$ where $2p_1^{a_1}\dots p_n^{a_n}=c-b$, $2q_1^{b_1}\dots q_m^{b_m}=c+b$, p_i , q_i are primes and $p_i\neq q_j$ for all i and j. That is, c-b and c+b are relatively prime except for a factor of 2. Now write $4(a/2)^2=(c-b)(c+b)$. Now associate each of the factors corresponding to c-b with the same prime factors in $(a/2)^2$. Since c-b and c+b share no common factors (except for 2) we see that none of the squares get split up in this process. Thus $c-b=2r_1^{2c_1}\dots r_{n'}^{2c_{n'}}=2u^2$ where $u=r_1^{c_1}\dots r_{n'}^{c_{n'}}$. Likewise $c+b=2s_1^{2d_1}\dots s_{m'}^{2d_{m'}}=2v^2$ where $v=s_1^{d_1}\dots s_{m'}^{d_{m'}}$. Since (c-b,c+b)=2 and it immediately follows that (u,v)=1. Conversely, suppose we are given such u and v. Then $a^2=4u^2v^2=(c-b)(c+b)=c^2-b^2$ so we have

the desired formula.

Problem 3. If $a^n - 1$ is prime, show that a = 2 and that n is a prime. Assume a > 0 and n > 1

Proof. Note that $a^n - 1 \neq 2$ since the equation $a^n = 3$ has no integer solutions by Problem 1. Then $a^n - 1 = p$ where p is necessarily odd and so $a^n = p + 1$ which shows a^n is even. Therefore $2 \mid a^n$ which means $2 \mid a$ since 2 is prime. We can then write $a^n = 2^n m^n$ for some positive integer m. But now note that

$$2^{n}m^{n} - 1 = (2m - 1)(1 + 2m + 2^{2}m^{2} + \dots + 2^{n-1}m^{n-1})$$

so if $m \neq 1$ we have a factorization of p. Thus a = 2. A similar argument shows that n must be prime because if n = rs then we have

$$2^{n} - 1 = 2^{r} 2^{s} - 1 = (2^{r} - 1)(1 + 2^{r} + 2^{2r} + \dots + 2^{rs - r}).$$

In order for this to be prime we must have r=1 so that n is prime.

Problem 4. Prove that $\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is not an integer.

Proof. Find k such that $2^k \le n \le 2^{k+1}$. Now find the lowest common multiple of $\{2, \ldots, 2^k - 1, 2^k + 1, \ldots, n\}$. This will necessarily be of the form $2^{k-1}m$ where m is an odd integer. Now multiply this by the sum in question. We have

$$2^{k-1}m\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right).$$

Every term in this product is an integer except $2^{k-1}m(1/2^k) = m/2$ since m is odd. Thus the sum in question cannot be an integer.

Problem 5. Show that 3 is divisible by $(1 - \omega)^2$ in $\mathbb{Z}[\omega]$.

Proof. We have $(1-\omega)^2 = 1 - 2\omega + \omega^2 = 1 - 2\omega + (-\omega - 1) = -3\omega$. Now multiply both sides by $\omega + 1$. On the left we have $(\omega + 1)(1 - \omega)^2$ and on the right we have $3(-\omega(\omega + 1)) = 3(-\omega^2 - \omega) = 3(\omega + 1 - \omega) = 3$. Therefore $3 = (\omega + 1)(1 - \omega)^2$.

Problem 6. For $\alpha = a + b\omega \in \mathbb{Z}[\omega]$ we defined $\lambda(\alpha) = a^2 - ab + b^2$. Show that α is a unit iff $\lambda(\alpha) = 1$. Deduce that $1, -1, \omega, -\omega, \omega^2$ and $-\omega^2$ are the only units in $\mathbb{Z}[\omega]$.

Proof. Suppose $\alpha = a + b\omega$ is a unit with inverse $\beta = c + d\omega$. Note that λ is multiplicative so we have $1 = \lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta) = (a^2 - ab + b^2)(c^2 - cd + d^2)$. Since each of these factors is a positive integer we must have $a^2 - ab + b^2 = 1$ so that $\lambda(\alpha) = 1$.

Conversely, suppose $\lambda(\alpha)=1$. Then $a^2-ab+b^2=1$. We wish to find β such that $\alpha\beta=1$. Multiplying out the terms we get the equations ac-bd=1 and ad+bc-bd=0. Solving the first equation for c and plugging it into the second gives us $a^2c-a+b^2c-abc+b=0$. Using the fact that $a^2-ab+b^2=1$ we now have c=a-b. We can then use this to find d=-b. It's a quick check to see that $\beta=(a-b)-b\omega$ is α^{-1} . Thus α is a unit.

Problem 7. Define $\mathbb{Z}[\sqrt{-2}]$ as the set of all complex numbers of the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Z}$. Show that $\mathbb{Z}[\sqrt{-2}]$ is a ring. Define $\lambda(\alpha) = a^2 + 2b^2$ for $\alpha = a + b\sqrt{2}$. Use λ to show $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. Since $\mathbb{Z}[\sqrt{-2}]$ is contained in the ring \mathbb{C} we need only show that $\mathbb{Z}[\sqrt{-2}]$ is nonempty and closed under subtraction and multiplication. Let $\alpha = a + b\sqrt{-2}$ and $\beta = c + d\sqrt{-2}$. Then $\alpha - \beta = (a - c) + (b - d)\sqrt{-2}$ which is in $\mathbb{Z}[\sqrt{-2}]$. Likewise $\alpha\beta = (ac - 2bd) + (ad + bc)\sqrt{-2}$ which is also in $\mathbb{Z}[\sqrt{-2}]$. Thus $\mathbb{Z}[\sqrt{-2}]$ is a ring.

Let α and β be as before and suppose $\beta \neq 0$. Now $\alpha/\beta = r + s\sqrt{2}$ where $r, s \in \mathbb{Q}$. Choose integers $m, n \in \mathbb{Z}$ such that $|r - m| \leq \frac{1}{2}$ and $|s - n| \leq \frac{1}{2}$. Let $\delta = m + ni$ so that $\delta \in \mathbb{Z}[\sqrt{-2}]$. We have $\lambda(\alpha/\beta - \delta) = (r - m)^2 + 2(s - n)^2 \leq \frac{1}{4} + 2\frac{1}{4} = \frac{3}{4}$. Let $\rho = \alpha - \beta\delta$. Then $\rho \in \mathbb{Z}[\sqrt{-2}]$ and we must have either $\rho = 0$ or

$$\lambda(\rho) = \lambda(\beta((\alpha/\beta) - \delta)) \le \lambda(\beta)\lambda((\alpha/\beta) - \delta) \le \frac{3}{4}\lambda(\beta) < \lambda(\beta).$$

Therefore $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain by λ .

Problem 8. Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are 1 and -1.

Proof. Suppose $\alpha\beta=1$ with $\alpha=a+b\sqrt{-2}$ and $\beta=c+d\sqrt{-2}$. Then ac-2bd=1 and ad+bc=0. Solving the second equation for c and plugging it into the first we see that $d=-b/(a^2+2b^2)$. Since the denominator is necessarily greater than b we see that this can only be an integer if $a^2+2b^2=1$. But this can only happen if b=0 and $a=\pm 1$.

Problem 9. Suppose $\pi \in \mathbb{Z}[i]$ and that $\lambda(\pi) = p$ is a prime in \mathbb{Z} . Show that π is a prime in $\mathbb{Z}[i]$. Show that the corresponding result holds in $\mathbb{Z}[\omega]$ and $\mathbb{Z}[\sqrt{-2}]$.

Proof. Suppose $\pi = \alpha \beta$. Then $p = \lambda(\pi) = \lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta)$. Since $\lambda(\alpha)$ and $\lambda(\beta)$ are both integers, we see that one of them must be 1 which means α or β is a unit in $\mathbb{Z}[i]$. Thus π must be irreducible and therefore prime since $\mathbb{Z}[i]$ is a P.I.D.. The exact same proof holds for $\mathbb{Z}[\omega]$ and $\mathbb{Z}[\sqrt{-2}]$ using Problem 6 and Problem 8 because λ is multiplicative in these cases too.

Problem 10. For a rational number r let [r] be the largest integer less than or equal to r, e.g., $\left[\frac{1}{2}\right] = 0$, $\left[2\right] = 2$ and $\left[3\frac{1}{3}\right] = 3$. Prove $\operatorname{ord}_p n! = \left[n/p\right] + \left[n/p^2\right] + \left[n/p^3\right] + \dots$

Proof. Consider the set of pairs (s,t) where $p^st \leq n$. If we fix s we can increment t starting at t=1 and stopping when $p^st > n$. Then there's some value t_s such that $p^st_s \leq n$ and $p^s(t_s+1) > n$. Moreover, it's clear that $[n/p^s] = t_s$. But note that the pairs (s,t) for all integer values of s>0 and $1\leq t\leq t_s$ together represent all the possible divisors of n! which include a factor of p. Therefore to count factors of p in n! we need only count these pairs. But we've already seen that for each s there are t_s pairs so the total is simply $\sum_{s=1}^{\infty} t_s = \sum_{s=1}^{\infty} [n/p^s]$.

Problem 11. Deduce from Exercise 6 that $\operatorname{ord}_p n! \leq n/(p-1)$ and that $\sqrt[n]{n!} \leq \prod p \mid n! p^{1/(p-1)}$.

Proof. We know each term in the series in Problem 10 is less than or equal to n/p^k . Thus $\operatorname{ord}_p n! \leq \sum_{k=1}^{\infty} n/p^k = n/(p-1)$.

Since the order of each prime appearing in n! is less than or equal to n/(p-1) it follows that

$$n! \le \prod_{p|n!} p^{\frac{n}{p-1}} = \left(\prod_{p|n!} p^{\frac{1}{p-1}}\right)^n$$

so $\sqrt[n]{n!} \le \prod_{p|n!} p^{1/(p-1)}$.

Problem 12. Use Exercise 7 to show that there are infinitely many primes.

Proof. Suppose there are only finitely many primes $p_1, \ldots p_m$. Let $n = p_1 p_2 \ldots p_m$. Using Problem 11 and the fact that $n^n \leq (n!)^2$ we have

$$n^{n} \le (n!)^{2} \le (n!)^{n} \le \prod_{p|n!} p^{\frac{n}{p-1}} = \prod_{i=1}^{m} p_{i}^{\frac{n}{p_{i}-1}} = \left(\prod_{i=1}^{m} p_{i}^{\frac{1}{p-1}}\right)^{n} < n^{n}$$

since $1/(p-1) \le 1$. This is a contradiction and so there must be infinitely many primes.

Problem 13. Consider the function $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$. $\zeta(s)$ is called the Riemann zeta function. It converges for s > 1. Prove the formal identity (Euler's identity) $\zeta(s) = \prod_p (1 - (1/p^s))^{-1}$.

Proof. For each prime p multiply both sides of $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$ by $1/p^s$ and then subtract the result from the previous result. We have

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots$$

and

$$\frac{1}{2^s}\zeta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \frac{1}{8^s} + \dots$$

Subtracting we have

$$\left(1 - \frac{1}{2^s}\right)\zeta(s) = \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \dots$$

Repeating the process for p = 3 we get

$$\left(1 - \frac{1}{3^s}\right) \left(1 - \frac{1}{2^s}\right) \zeta(s) = \frac{1}{1^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{11^s} + \dots$$

Applying this to every prime we arrive at the formula

$$\prod_{p} \left(1 - \frac{1}{p^s} \right) \zeta(s) = 1$$

which then gives the desired formula $\zeta(s) = \prod_p (1 - (1/p^s))^{-1}$.

Problem 14. Verify the formal identities (a) $\zeta(s)^{-1} = \sum_{n=1}^{\infty} \mu(n)/n^s$. (b) $\zeta(s)^2 = \sum_{n=1}^{\infty} \nu(n)/n^s$. (c) $\zeta(s)\zeta(s-1) = \sum_{n=1}^{\infty} \sigma(n)/n^s$.

(a)
$$\zeta(s)^{-1} = \sum_{n=1}^{\infty} \mu(n)/n^s$$

(b)
$$\zeta(s)^2 = \sum_{n=1}^{\infty} \nu(n)/n^s$$
.

(c)
$$\zeta(s)\zeta(s-1) = \sum_{n=1}^{\infty} \sigma(n)/n^s$$

Proof. (a) Using Problem 13 we can write $\zeta(s)^{-1} = \prod_p (1 - (1/p^s))$. If we expand the right hand side we see that we get get a sum of terms $1/n^s$ where n is a squarefree integer. We know n must be squarefree because each prime p appears only once in the product so we will never multiply a prime by itself. Furthermore if n has an odd number of prime factors then the term $1/n^s$ will be negative and if it has an even number of prime factors then it will be positive since terms being multiplied have a $-1/p^s$ term. This explicitly gives the formula $\sum_{n=1}^{\infty} \mu(n)/n^s$. (b) For some $0 \le k < s$ we have

$$\zeta(s)\zeta(s-k) = \sum_{u=1}^{\infty} \frac{1}{u^s} \sum_{v=1}^{\infty} \frac{v^k}{v^s} = \sum_{u,v}^{\infty} \frac{v^k}{(uv)^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{uv=n} v^k = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{d|n} d^k.$$

When k=0 we get the formula $\zeta(s)^2 = \sum_{n=1}^{\infty} \nu(n)/n^s$. (c) This is a special case of the formula in part (b). Putting in k=1 gives $\zeta(s)\zeta(s-1) = \sum_{n=1}^{\infty} \sigma(n)/n^s$.

4