SMART WASTE MANAGEMENT

PRESENTED BY

STUDENT NAME: DIVYA SRI S

COLLEGE NAME: M. KUMARASAMY

COLLEGE OF ENGINNERING

DEPARTMENT: AIDS

EMAIL ID: DHIVYASRI2124@GMAIL.COM

AICTE STUDENT ID:

STU678E867B67E6F1737393787

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

The increasing population in urban areas has led to a rise in solid waste production.

Most municipalities follow fixed-time garbage collection schedules regardless of the actual waste levels in bins.

This results in two major problems: overflowing bins that pose health risks, and empty bins being collected unnecessarily, leading to inefficient resource use.

PROPOSED SOLUTION

 The proposed system uses IoT sensors to monitor garbage bin levels and machine learning to predict the fill time of each bin.

Key Features:

- Ultrasonic sensors installed in bins measure garbage level in real-time.
- Data is transmitted via Wi-Fi to a central cloud-based system.
- - A machine learning model predicts when bins will be full.
- A dashboard displays the fill status and generates alerts for municipal workers.
- This helps in optimizing collection routes, saving fuel, time, and ensuring a cleaner environment.

SYSTEM APPROACH

System Requirements:

- NodeMCU ESP8266 microcontroller
- Ultrasonic Sensor (HC-SR04)
- Wi-Fi connectivity (via hotspot or router)
- Firebase or ThingSpeak for cloud data storage
- Python for ML model and dashboard
- Web dashboard built using Flask

Libraries/Tools Used:

- Python: pandas, numpy, sklearn, matplotlib, seaborn
- Arduino IDE for programming NodeMCU
- Firebase Realtime Database for real-time monitoring

ALGORITHM & DEPLOYMENT

Algorithm Selection:

- Linear Regression model chosen due to its efficiency in predicting continuous numerical values (i.e., time to fill bins).
- - Input Features: Previous fill levels over time, location of the bin, average disposal rate.

Training:

- Data collected from sensors every hour and stored in Firebase.
- Cleaned and trained using scikit-learn.
- - Split data into training and test sets for evaluation.

Deployment:

- The trained model is hosted in a Flask app.
- Dashboard displays bin locations, current fill % and estimated full time.
- Alerts are sent when bins are about to overflow.

RESULT

RESULT

Smart Waste Management Dashboard

Bin ID	Location	Fill Level (%)	Predicted Full Time	Status
Bin 1	Main Street	78	2 hours	Almost Full
Bin 2	Market Square	92	30 minutes	Overflowing
Bin 3	School Road	45	5 hours	Normal
Bin 4	Hospital Lane	63	3.5 hours	Almost Full
Bin 5	Temple Street	85	1 hour	Almost Full
Bin 6	Library Avenue	52	4 hours	Normal
Bin 7	Tech Park Gate 2	96	15 minutes	Overflowing
Bin 8	University Hostel Road	68	2.5 hours	Almost Full
Bin 9	Central Bus Station	88	50 minutes	Overflowing
Bin 10	City Mall Parking	39	6 hours	Normal
Bin 11	Green Park	42	5.5 hours	Normal
Bin 12	East Side Plaza	77	2 hours	Almost Full
Bin 13	West End	60	3 hours	Normal
Bin 14	South Gate	55	3.8 hours	Normal
Bin 15	North Station	90	45 minutes	Overflowing
Bin 16	Riverfront	48	5 hours	Normal
Bin 17	Hilltop Road	35	7 hours	Normal

CONCLUSION

The Smart Waste Management System successfully addresses the inefficiencies in traditional garbage collection.

Key Benefits:

- Reduces manpower and fuel costs
- Prevents overflowing bins
- Enables data-driven decision making

The combination of IoT and machine learning can be scaled to multiple cities, contributing to smart and sustainable urban living.

FUTURE SCOPE

- Integration of route optimization using Google Maps API to further reduce travel time.
- Expand system to segregate waste types (plastic, organic, metal).
- Use of solar-powered sensors for environmental sustainability.
- Integrate anomaly detection (fire or bin tampering) using computer vision.

Long-term vision includes deployment in smart cities and integration with municipal ERP systems.

REFERENCES

- Research Paper: "Smart Waste Management Using IoT" IEEE, 2020
- Arduino.cc Sensor and ESP8266 Documentation
- scikit-learn Documentation Machine Learning Libraries
- Firebase Realtime Database Cloud Data Storage
- GitHub: https://github.com/Divyasri4002/smart-waste-dashboard

Thank you