ML4NS Mini Project

Kushagra Agarwal 2018113012

Problem Statement:

Given an image, calculate the sum of digits appearing in the image.

Example:

Correct Label: 6

Constraints: Any weights that are submitted should be reproducible by code. This is why I did not use any pre-trained networks (like VGG or Resnet with pre-trained weights on the Imagenet dataset).

Methodology:

I used 4 different types of networks and then applied a smart majority voting strategy to select which model output should be chosen among them. I used 3 end to end neural networks and 1 digit extractor + neural net model.

So basically 3 end to end Models described under the **End to End models section** and the Digit extractor approach described in **Digit Extractor Module** and the **Neural Network trained on the MNIST dataset section**.

End to End models

https://colab.research.google.com/drive/1HEFDaln8sQwSL-NDQQlwMqTFjErkoS9_?usp=sharing

I am not describing all the 3 models in detail as all were relatively similar and the same analogies described below more or less extend to them as well.

Train: Validation split used was 80:20

The image was normalized. Predictions were converted to 37 categorical outputs, representing sums from 0 to 36.

Layer (type)	Output	Shape	Param #
conv2d_6 (Conv2D)	(None,	38, 166, 32)	320
batch_normalization_6 (Batch	(None,	38, 166, 32)	128
conv2d_7 (Conv2D)	(None,	36, 164, 32)	9248
batch_normalization_7 (Batch	(None,	36, 164, 32)	128
max_pooling2d_3 (MaxPooling2	(None,	18, 82, 32)	Θ
conv2d_8 (Conv2D)	(None,	16, 80, 64)	18496
batch_normalization_8 (Batch	(None,	16, 80, 64)	256
conv2d_9 (Conv2D)	(None,	14, 78, 64)	36928
batch_normalization_9 (Batch	(None,	14, 78, 64)	256
max_pooling2d_4 (MaxPooling2	(None,	7, 39, 64)	0
conv2d_10 (Conv2D)	(None,	5, 37, 128)	73856
batch_normalization_10 (Batc	(None,	5, 37, 128)	512
conv2d_11 (Conv2D)	(None,	3, 35, 128)	147584
batch_normalization_11 (Batc	(None,	3, 35, 128)	512
max_pooling2d_5 (MaxPooling2	(None,	1, 17, 128)	0
flatten_1 (Flatten)	(None,	2176)	0
dense_3 (Dense)	(None,	100)	217700
dense_4 (Dense)	(None,	74)	7474
dropout_1 (Dropout)	(None,	74)	0
dense 5 (Dense)	(None,	37)	2775

I also tried various other model architectures:

Simple CNN with FCs

```
# model = Sequential()
# model.add(Conv2D(8, kernel size=(3, 3), padding = "same", activation='relu', input shape=input shape))
# model.add(Conv2D(8, (3, 3), activation='relu', padding = "same"))
# model.add(MaxPool2D(pool_size=(2, 2), strides = 2))
# model.add(Conv2D(16, kernel size=(3, 3), padding = "same", activation='relu'))
# model.add(Conv2D(16, (3, 3), activation='relu', padding = "same"))
# model.add(MaxPool2D(pool size=(2, 2), strides = 2))
# model.add(Conv2D(32, kernel_size=(3, 3), padding = "same", activation='relu'))
# model.add(Conv2D(64, (3, 3), activation='relu', padding = "same"))
# model.add(Conv2D(128, (3, 3), activation='relu', padding = "same"))
# model.add(MaxPool2D(pool size=(2, 2), strides = 2))
# model.add(Flatten())
# model.add(Dense(500, activation='relu'))
# model.add(Dense(100, activation='relu'))
# model.add(Dense(num category*2, activation='relu'))
# model.add(Dense(num category, activation='softmax'))
# model.compile(loss=keras.losses.categorical crossentropy, optimizer='adam', metrics=['accuracy'])
```

YANN LECUN'S LENET-5 (Modified version)

Accuracy and Traning Loss vs Epochs graphs:

Predictions on some images from the Validation Set:

Report on Different Metrics:

#############	Classific	ation Rep	ort #####	########
р	recision	recall	f1-score	support
Θ	0.00	0.00	0.00	1
1	0.00	0.00	0.00	1
2	0.33	0.12	0.18	8
3	0.00	0.00	0.00	15
4	0.15	0.14	0.15	28
5	0.38	0.96	0.55	24
6	0.80	0.81	0.81	59
7	0.88	0.79	0.83	81
8	0.74	0.86	0.80	110
9	0.82	0.72	0.77	132
10	0.78	0.79	0.78	174
11	0.81	0.78	0.80	203
12	0.83	0.86	0.85	272
13	0.86	0.80	0.83	308
14	0.84	0.85	0.84	326
15	0.87	0.81	0.84	381
16	0.78	0.85	0.81	389
17	0.87	0.84	0.85	420
18	0.79	0.86	0.83	355
19	0.79	0.85	0.82	361
20	0.91	0.78	0.84	398
21	0.89	0.78	0.83	374
22	0.79	0.87	0.83	330
23	0.79	0.90	0.84	273
24	0.88	0.83	0.85	246
25	0.86	0.83	0.84	190
26	0.75	0.89	0.82	159
27	0.79	0.75	0.77	127
28	0.81	0.68	0.74	84
29	0.70	0.82	0.76	62
30	0.57	0.65	0.61	48
31	0.38	0.29	0.33	31
32	1.00	0.18	0.30	17
33	0.55	0.75	0.63	8
34	0.00	0.00	0.00	3
35	0.00	0.00	0.00	1
36	0.00	0.00	0.00	1
accuracy			0.81	6000
macro avg	0.62	0.61	0.60	6000
eighted avg	0.82	0.81	0.81	6000

All three models had nearly the same accuracies. **93% on the training set and 80% on the validation set.**

Digit extractor module:

https://colab.research.google.com/drive/1hHpZSUM7QikMYqbveqsDhHlZqOR1FKj5?usp=sharing

For this, I used contour finding methods to first identify connected components of pixels and then demarcate this using a rectangular boundary.

First I padded the image with zero paddings to make sure no digits touch the border. Then I did the contour finding approach to get the boundaries. Now there were some problems with this approach. For example, there were some digits that touched each other, in this scenario, the connected component analysis was returning 2 digits together. So I used a set of well-defined if and else statements to find out if the aspect ratio of the extracted digit matched with the expected one. If not, then it would divide the boundary with a centerline, with the presumption that it had originally concatenated 2 digits together. A similar method was used to divide digits if 3 of them were concatenated.

After this, I used the bilateral filter on the extracted image and resized it using a custom-defined function resize_to_fit to reshape it to a 28x28 image, which is the image size that our MNIST trained Neural net had learned.

```
for (i,image) in enumerate(train_data[start:end]):
   if(i>0 \text{ and } i\%100 == 0):
     print(i, correct, semicorrect, incorrect, int(correct/(correct+incorrect+semicorrect)*10000)/100,
            int(semicorrect/(correct+incorrect+semicorrect)*10000)/100,
            int(incorrect/(correct+incorrect+semicorrect)*10000)/100, "Done")
   padded image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER REPLICATE)
   if(show == 1):
     plt.imshow(padded_image)
     plt.show()
   # Finding the contours in the image
   contours = cv2.findContours(padded_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
   contours = contours[1] if imutils.is_cv3() else contours[θ]
   letter image regions = []
   for contour in contours:
        (x, y, w, h) = cv2.boundingRect(contour)
       if (w > 40):
            # print("Splitting into 3")
            # This contour is too wide to be a single letter, hence split
           onethird width = int(w / 3)
           letter_image_regions.append((x, y, onethird_width, h))
           letter\_image\_regions.append((x + onethird\_width, y, onethird\_width, h)) \\ letter\_image\_regions.append((x + 2*onethird\_width, y, onethird\_width, h))
        elif (w > 20):
            # print("Splitting into 2")
            # This contour is too wide to be a single letter, hence split
           half width = int(w / 2)
            letter_image_regions.append((x, y, half_width, h))
           letter_image_regions.append((x + half_width, y, half_width, h))
        elif (w< 3 or h<9):
            # print("Random pixel block")
            # Some error in contouring, ignore!
           continue
        else:
           letter image regions.append((x, y, w, h))
   # If less/more than 4 detected digits take note of the error
   if len(letter_image_regions) != 4:
        bad_image_count+=1
        if (str(len(letter_image_regions)) not in bad_image_dict):
           bad_image_dict[str(len(letter_image_regions))] = [i]
           bad_image_dict[str(len(letter_image_regions))].append(i)
   # Sort the detected letter images based on the x coordinate
   letter_image_regions = sorted(letter_image_regions, key=lambda x: x[θ])
   sum = 0
   for letter_bounding_box in letter_image_regions:
       x, y, w, h = letter_bounding_box
        letter_image = padded_image[y-2:y + h+2, x-2:x + w+2]
       modified image = resize to fit(letter image, 28, 28)
       modified image = modified image.astvpe('float32')
```

Neural Net trained on MNIST dataset:

https://colab.research.google.com/drive/1hHpZSUM7QikMYqbveqsDhHlZqOR1FKj5?usp=sharing

onv2d 27 (Conv2D)		Shape	Param #
	(None,	26, 26, 32)	320
ax_pooling2d_18 (MaxPooling	(None,	13, 13, 32)	0
onv2d_28 (Conv2D)	(None,	11, 11, 64)	18496
onv2d_29 (Conv2D)	(None,	9, 9, 64)	36928
ax_pooling2d_19 (MaxPooling	(None,	4, 4, 64)	0
latten_9 (Flatten)	(None,	1024)	0
ense_21 (Dense)	(None,	100)	102500
ense_22 (Dense)	(None,	10)	1010
	at accessories	Section = 100 to 100 = 100	

The model trained on the MNIST dataset had **99.93% accuracy on training and 99.33%** on validation.

Now I examined the pixel distribution intensity values for the MNIST dataset and the extracted images by the digit extractor module and observed some differences.

In the extracted images, this strong rise in frequency wasn't observed near 1.0. To make it similar to the MNIST dataset, I tried adding different types of noises.

Poisson Noise:

```
# poisson noise
def poission_noise(dataset):

vals = len(np.unique(dataset))
vals = 2 ** np.ceil(np.log2(vals))
dataset = np.random.poisson(dataset * vals) / float(vals)
return dataset
```

Salt and Pepper Noise:

Gaussian Noise:

```
# gaussian noise
def gaussian_noise(dataset, mult=1):

gauss = np.random.normal(0,1, dataset.size)
gauss = gauss.reshape(dataset.shape[0],dataset.shape[1],dataset.shape[2]).astype('float32')
dataset += mult*gauss
return dataset
```

Bilateral Noise:

```
# bilateral filter
def bilateral_filter(dataset, num_pix = 15):

for i in range(dataset.shape[0]):
   image = dataset[i, :, :]
   mean_image = cv2.bilateralFilter(image, num_pix, 75, 75)
   dataset[i, :, :] = mean_image

return dataset
```

On trying various combinations, the **bilateral filter added to the extracted images** served the best purpose, with 7 and 75*75 neighborhood as parameters.

After applying the noise, I then normalized the image and predicted its label using my trained Neural Net (which was trained on the MNIST dataset). Then I simply add the predicted digits for all 4 extracted images and report the sum as the label for the image.

On the whole pipeline, **I achieved an 83% accuracy on the validation set**. This was so as the model needed to first extract the four digits correctly and then predict all the 4 labels correctly to make sure that the predicted label matches with the correct label.

Smart Voting Strategy

https://colab.research.google.com/drive/1_xVTzYKlg45hee_1WAfQ3j2rNCoBQJ9S?usp=sharing

So basically, 3 of my 4 models used an end-to-end approach to predict, and 1 used a 2 step digit extraction and then prediction.

Detailed Description of the 4 models:

Index	Model Type	Train Accuracy	Validation Accuracy
1	End-to-End	93%	80%
2	Digit Extractor	90+%	83%
3	End-to-End	96%	75%
4	End-to-End	92%	81%

So I compared the predictions from all 4 models and the following results were observed.

All agree: 5010
1 disagrees: 575
2 disagrees: 1164
3 disagrees: 943
4 disagrees: 471
1 and 2 agree: 49
1 and 3 agree: 283
1 and 4 agree: 370
2 and 3 agree: 44
2 and 4 agree: 71
3 and 4 agree: 71
3 and 4 agree: 283
2 on both sides: 604
None agree: 133

Out of 10000 test set images, 5010 were predicted to have the same output label by all 4 models. Other subcategories are in a similar way self-explanatory.

So for all these categories, I chose different models output, which is described below:

Category	Count	Chosen model
All agree	5010	1 or 2 or 3 or 4
1 disagrees	575	2 or 3 or 4
2 disagrees	1164	1 or 3 or 4
3 disagrees	943	1 or 2 or 4
4 disagrees	471	1 or 2 or 3
1 and 2 agree	49	1 or 2
1 and 3 agree	283	1 or 3
1 and 4 agree	370	1 or 4
2 and 3 agree	44	2 or 3
2 and 4 agree	71	2 or 4
3 and 4 agree	283	3 or 4
2 agree on both sides	604	2
None Agree	133	2
Total	10000	

All the other chosen models are self-explanatory except for 2 agree on both sides and None Agree. For 2 agree on both sides, I chose Model 2, as it is the only independent model uncorrelated with the other 3 and if its prediction (which is indeed a sum of 4 individual predictions) matches with the output of any other model, then it must be onto something. A similar analogy for None agree exists, as if none of the models are giving a correct answer, we should instead go for either the highest accuracy model or the Independent model, and here as all the models have nearly the same accuracies, I chose to go with the model 2 which is truly uncorrelated with other 3.