Text Representation

Representation learning

What is an embedding?

- "Latent space" or "embedding space" refers to a lowdimensional representation of high-dimensional data
 - In neural network, the mapping from original data to the embedding space is often linear.
 - Ex of linear mapping/projection: PCA
- Mapping of these embeddings are one of the key tricks in deep learning today

Embeddings

Can be trained by supervised or self-supervised techniques

Self-Supervised Learning = Filling in the Blanks

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the masked from the visible.
- Predict the any occluded part from all available parts.

- Pretend there is a part of the input you don't know and predict that.
- Reconstruction = SSL when any part could be known or unknown

Outline

- Contrastive learning
- Sentence embeddings
 - MUSE
 - SimCSE
 - BGE
 - CLIP

Contrastive learning

(positive, +1)

- An important technique for self-supervised training is contrastive learning
 - Similar things should have similar embeddings
 - Different things should have different embeddings
- Example: negative sampling loss in word2vec

$$J_t(\theta) = \log \sigma \left(u_o^T v_c \right) + \sum_{i=1}^k \mathbb{E}_{j \sim P(w)} \left[\log \sigma \left(-u_j^T v_c \right) \right]$$
Context word
Negative samples

(negative, -1)

Types of contrastive learning

- Triplet loss
- InfoNCE loss

Triplet loss

- Triplet loss considers an anchor, a positive, and a negative
- Requires mining of hard negative samples

$$\sum_{i}^{N}\left[\left\|f(x_{i}^{a})-f(x_{i}^{p})\right\|_{2}^{2}-\left\|f(x_{i}^{a})-f(x_{i}^{n})\right\|_{2}^{2}+\alpha\right]_{+}$$

Take positive only max(0,x)

https://arxiv.org/abs/1503.03832

Dealing with minibatches

- Since we train in minibatches, most modern losses pair positive and negative samples within a minibatch for more efficient computation
 - Compute all pairwise distance within the minibatch

https://arxiv.org/pdf/1511.06452.pdf

NCE (Noise constrastive estimation) loss

- Maximize training data probability while reducing noise probability.
- Learn in a constrastive way to reduce overhead for normalization
 - Max LogP(data) Log P(noise or negative samples)
 - Ex: used to train word embeddings such as W2V, too many classes in the softmax output

InfoNCE

 Similar to NCE but just for categorical cross entropy (instead of binary cross entropy)
 https://arxiv.org/pdf/1807.03748.pdf

Effectively maximize mutual information between c and positive x

$$L_{InfoNCE} = -E[log \frac{f(x,c)}{\sum_{x'} f(x',c)}] \qquad f(x,c) = exp(\mathbf{z}^T W c)$$
 z is encoded x

- f() can be any function that describes similarity
- Can be extended to have multiple positive examples in a batch (soft nearest neighbor loss)
 https://arxiv.org/abs/1902.01889

Soft nearest neighbor loss

- Multiple positive and negative
- Adds temperature (either hyperparameter, or learned)
 - Weights the gradient size, helps model learn form hard negatives

Definition. The soft nearest neighbor loss at temperature T, for a batch of b samples (x, y), is:

$$l_{sn}(x,y,T) = -\frac{1}{b} \sum_{i \in 1..b} \log \begin{pmatrix} \sum_{\substack{j \in 1..b \\ j \neq i \\ y_i = y_j \\ k \in 1..b \\ k \neq i}} e^{-\frac{||x_i - x_j||^2}{T}} \\ \sum_{\substack{k \in 1..b \\ k \neq i}} e^{-\frac{||x_i - x_k||^2}{T}} \end{pmatrix}$$
(1)

Contrastive summary

 The most common form you will see for contrastive learning is

$$\mathcal{L}^{\text{NT-Xent}} = -\frac{1}{n} \sum_{i,j \in \mathcal{MB}} \log \frac{\exp(\text{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2n} \mathbb{1}_{[k \neq i]} \exp(\text{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Alignment: Similar samples have similar features. (Figure inspired by Tian et al. (2019).)

Uniformity: Preserve maximal information.

Figure 1: Illustration of alignment and uniformity of feature distributions on the output unit hypersphere. STL-10 (Coates et al., 2011) images are used for demonstration.

$$\tau \mathcal{L}^{\text{NT-Xent}} = \underbrace{-\frac{1}{n} \sum_{i,j} \text{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)}_{\mathcal{L}_{\text{alignment}}} + \underbrace{\frac{\tau}{n} \sum_{i} \log \sum_{k=1}^{2n} \mathbb{1}_{[k \neq i]} \exp(\text{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k) / \tau)}_{\mathcal{L}_{\text{distribution}}}$$

Encourage similar things to align

Encourage embeddings to spread uniformly in the hypersphere

 People often refer to this as contrastive loss, InfoNCE loss, normalized temperature scaled CE loss, ...

https://arxiv.org/abs/2005.10242 https://arxiv.org/abs/2011.02803 https://arxiv.org/abs/2002.05709

Key details to contrastive loss works

- Large batch
- Hard/semi-hard negative mining
- Augmentation on the anchor and postive
- Other tricks includes adding classification/supervised loss (CE/softmax loss)

Outline

- Contrastive learning
- Sentence embeddings
 - MUSE
 - SimCSE
 - BGE
 - CLIP

Sentence representation

- How would we create a sentence embedding?
- Compositionality from words/tokens!
 - Sum, max
 - Recurrence
 - Attention

MUSE

Deep Averaging Networks (DAN)

https://www.aclweb.org/anthology/P15-1162/ 2015

Universal Sentence Encoder (USE)

A model focusing on sentence representation
Use sentencepiece tokenization
Pre-trained then used anywhere
Based on (1) DAN (lite version) or (2) Transformer

Official implementation with pretrained weights

https://tfhub.dev/google/collections/universal-sentence-encoder/1 https://ai.googleblog.com/2018/05/advances-in-semantic-textual-simi

https://www.kaggle.com/models/google/universal-sentence-encoder

Pretraining USE

Training done using multi-task

- 1) Skip-thought
- 2) Response prediction
- 3) Natural language inference (NLI)

Picture credit: https://amitness.com/2020/06/universal-sentence-encoder/

Skip-thought task

Similar to skip-gram, use the middle to predict context Unsupervised

Skip-thought Task Structure

Picture credit: https://amitness.com/2020/06/universal-sentence-encoder/

Response prediction

Match questions and answers in internet forum (scraped)

Supervised (free labels)

similar sentence gives similar response

Input-Response Prediction

To map answer to

Picture credit: https://amitness.com/2020/06/universal-sentence-encoder/

Natural Language Inference

Predict relationship between sentence Supervised

Premise	Hypothesis	Judgement
A soccer game with multiple males playing	Some men are playing a sport	entailment
I love Marvel movies	I hate Marvel movies	contradiction
I love Marvel movies	A ship arrived	neutral

Multilingual USE

Can train to map multiple languages to the same presentation.

Can handle code switching, has Thai!

https://ai.googleblog.com/2019/07/multilingual-universal-sentence-encoder.html

Download-ables

Pytorch conversion

https://huggingface.co/dayyass/universal-sentence-encoder-multilingual-large-3-pytorch

BERT-Based embeddings

Sentence representation with BERT

With BERT, we found that MLM training create good sentence representation too!

We can use NSP embedding or pool the token embeddings to create a sentence representation

SBERT

Model	Spearman	
Not trained for STS		
Avg. GloVe embeddings	58.02	
Avg. BERT embeddings	46.35	
InferSent - GloVe	68.03	
Universal Sentence Encoder	r 74.92	
SBERT-NLI-base	77.03	
SBERT-NLI-large	79.23	
Trained on STS benchmark da	taset	
BERT-STSb-base	84.30 ± 0.76	
SBERT-STSb-base	84.67 ± 0.19	
SRoBERTa-STSb-base	84.92 ± 0.34	
BERT-STSb-large	85.64 ± 0.81	
SBERT-STSb-large	84.45 ± 0.43	
SRoBERTa-STSb-large	85.02 ± 0.76	
Trained on NLI data + STS be	nchmark data	
BERT-NLI-STSb-base	88.33 ± 0.19	
SBERT-NLI-STSb-base	85.35 ± 0.17	
SRoBERTa-NLI-STSb-base	84.79 ± 0.38	
BERT-NLI-STSb-large	88.77 ± 0.46	
SBERT-NLI-STSb-large	86.10 ± 0.13	
SRoBERTa-NLI-STSb-large	86.15 ± 0.35	

Sentence level contrastive learning

 We can learn better sentence representation with some additional supervised (or unsupervised) sentence level contrastive learning

ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer (2021)

ConSERT augmentations

ConSERT alignment

SimCSE

 Use simple dropout in the model to create different versions of the same sentence

SimCSE

Data augmentation			STS-B
None (unsup. SimCSE)			82.5
Crop	10%	20%	30%
	77.8	71.4	63.6
Word deletion	10%	20%	30%
	75.9	72.2	68.2
Delete one word			75.9
w/o dropout			74.2
Synonym replacement			77.4
MLM 15%			62.2

Other augmentations technique

Rather than contrastive, predict next sentence, 1 of 3 next sentences

Training objective	$f_{ heta}$	$(f_{\theta_1}, f_{\theta_2})$
Next sentence	67.1	68.9
Next 3 sentences [▶]	67.4	68.8
Delete one word	75.9	73.1
Unsupervised SimCSE	82.5	80.7

$$\mathcal{L}_{i,j} = -\log \frac{\exp(\operatorname{sim}(r_i, r_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(r_i, r_k)/\tau)}$$

What's other use of embeddings?

Retrieval and recommendation

What's other use of embeddings?

Learn joint embeddings between different modalities

Figure 2: Illustration of the Neural Retrieval Model for YouTube.

Joint interaction model

Two tower model

BGE-M3

- A retreival model (Query -> Document)
- Built on top of BGE (Chinese embedding model)
 - BGE: Masked LM finetuned with contrastive and task specific losses
- BGE-M3 (multilingual, multifunction, multigranularity)
- Trained by multiple losses terms that utilizes different parts of the model embeddings

Figure 2: Multi-stage training process of M3-Embedding with self-knowledge distillation.

CLIP

Contrastive learning on image-text pairs

(1) Contrastive pre-training

Outline

- Contrastive learning
- Sentence embeddings
 - MUSE
 - SimCSE
 - BGE
 - CLIP