Data Science SS20

Machine Learning V

Non-Linear Models - Part II

Machine Learning IV

Outline

- Part I: The Need for non-linear models
- Part I: Extending the simple linear classifier
 - Adding non-linearity
 - Simple Neural Networks
- Part II: Support Vector Machines
 - Linear SVMs
 - The "Kernel-Trick"

- Invented in the mid 90s by Vapnik
- Classification and Regression
- State of the Art ML Algorithm of the pre Deep Learning era

- Invented in the mid 90s by Vapnik
- Classification and Regression
- State of the Art ML Algorithm of the pre Deep Learning era
- Basic model:
 - Support only two classes {-1,1}
 - Linear classification

- Invented in the mid 90s by Vapnik
- Classification and Regression
- State of the Art ML Algorithm of the pre Deep Learning era
- Basic model:
 - Support only two classes {-1,1}
 - Linear classification

Parameterization:

$$wx - b = 0$$

What is the difference compared to previous formulations?

Standard linear model:

- → loss only on accuracy
- → many solutions

$$\underset{w}{\operatorname{arg\,min}} \sum_{i=0}^{N} L(y_i, w^T x_i + b)$$

What is the difference compared to previous formulations?

Standard linear model:

- → loss only on accuracy
- → many solutions

New optimization problem

- \rightarrow "Max Margin": $\frac{2}{\|w\|}$
- → only one solution, convex optimization problem

Basic formulation

New optimization problem

- → maximize "Margin":
- → equals minimizing the uncertainty

$$\arg\min_{w} \frac{1}{2} \|w\|$$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i
angle + b) \geq 1$$

Soft Margin: allow some outliers

Still

- → maximize "Margin":
- → equals minimizing the uncertainty
- → enable linear separability

Soft Margin: allow some outliers

Still

- → maximize "Margin":
- → equals minimizing the uncertainty
- → enable linear separability

$$\arg\min_{w} \frac{1}{2} \|w\| + \frac{C}{\sum_{i} \xi_{i}}$$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x_i}
angle + b) \geq 1 - \overline{\xi_i}$$

Error

$$\zeta_i = \max(0, 1 - y_i(w \cdot x_i - b))$$

Penalty factor

Dual Formulation of the optimization Problem

Via Lagrange dual function, leads to quadratic optimization problem (convex!)

Re-write w as linear combination of samples:

$$\mathbf{w} = \sum_{i=1}^m lpha_i y_i \mathbf{x}_i$$

There is exactly one solution and we will find it!

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

Re-write w as linear combination of samples:

$$\mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i$$

$$\underset{\alpha}{\operatorname{arg max}} \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

Subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^m \alpha_i y_i = 0$

Normal as linear combination of samples

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

Re-write w as linear combination of samples:

$$\mathbf{w} = \sum_{i=1}^m lpha_i y_i \mathbf{x}_i$$

$$\underset{\alpha}{\operatorname{arg max}} \quad \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

Subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^m \alpha_i y_i = 0$

Dot-product over all samples

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

Re-write w as linear combination of samples:

$$\mathbf{w} = \sum_{i=1}^m lpha_i y_i \mathbf{x}_i$$

$$\underset{\alpha}{\operatorname{arg max}} \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

Subject to $0 \le \alpha_i \le C$ and $\sum_{i=1}^m \alpha_i y_i = 0$

$$\sum_{i=1}^m lpha_i y_i = 0$$

Soft Margin

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

Re-write w as linear combination of samples:

$$\mathbf{w} = \sum_{i=1}^m lpha_i y_i \mathbf{x}_i$$

$$\underset{\alpha}{\operatorname{arg max}} \quad \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

Subject to $0 \le \alpha_i \le C$ and $\sum_{i=1}^m \alpha_i y_i = 0$

$$\sum_{i=1}^m \alpha_i y_i = 0$$

Weight balance between classes

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

$$f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \mathbf{x}
angle + b) = \mathrm{sgn}\Bigg(\sum_{i=1}^m lpha_i y_i \langle \mathbf{x_i}, \mathbf{x}
angle + b\Bigg)$$

Dual Formulation of the optimization Problem

Via *Lagrange dual function*, leads to quadratic optimization problem (convex)

$$f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle + b) = \mathrm{sgn}\left(\sum_{i=1}^m lpha_i y_i \langle \mathbf{x_i}, \mathbf{x} \rangle + b\right)$$

Only a few vectors have $\alpha_i > 0$

→ "Support Vectors" form the actual model

Non Linear SVMs:

 \rightarrow follow same strategy as before and add simple non-linear function At the formulation of the model normal: $\phi: \mathbb{R}^{d_1} \rightarrow \mathbb{R}^{d_2}, \mathbf{x} \mapsto \phi(\mathbf{x})$

$$f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \mathbf{x}
angle + b) = \mathrm{sgn}\Bigg(\sum_{i=1}^m lpha_i y_i \langle \mathbf{x_i}, \mathbf{x}
angle + b\Bigg)$$

$$f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \phi(\mathbf{x})
angle + b) = \mathrm{sgn}\Biggl(\sum_{i=1}^m lpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b\Biggr)$$

Kernel function

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

"Kernel Trick": replace explicit non-linear function by kernel

Popular Kernels:

Polynomial (of degree d)

$$k(x,y) = \langle x, y \rangle$$

Gauss (or RBF)

$$k(x,y) = \exp\!\left(-rac{||x-y||^2}{2\sigma^2}
ight)$$

Linear

$$k(x,y) = \langle x, y \rangle$$

$$f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \phi(\mathbf{x})
angle + b) = \mathrm{sgn}\Bigg(\sum_{i=1}^m lpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b\Bigg)$$

Training (optimization problem) and inference do not change!

Multi class problems:

Multi class problems: 1-vs-Rest

N models, take best.

Multi class problems: 1-vs-1

N(N-1)/2 models – tree execution, take best.

Discussion

Lab exercises coming up ...