0.1. BUNDLES 1

0.1 Bundles

Definition 0.1.1. A bundle is $E \stackrel{p}{\to} B$, where E is the total space, B is the base space, and p is the projection, $p^{-1}(b)$ is the fiber over b. A cross section is $s: X \to E$, such that $ps = 1_X$. The restriction $p^{-1}(A) \stackrel{\pi}{\to} A$, $A \subseteq B$ is also a bundle

Definition 0.1.2. Suppose $E \stackrel{p}{\to} B$ is a bundle, $f: A \to B$ is a map, then the pullback $f^*(E) = A \times_p E \to A$ is the **pullback bundle**, the pullback of a section $s: B \to E$ is defined as $f^*s := s \circ f$, notice $p(f^*s(y)) = p(s(f(y))) = f(y)$

Definition 0.1.3. A fiber bundle is a bundle $E \xrightarrow{p} B$ such that there exists an open neighborhood U of b and a homeomorphism ϕ making the following diagram commute

$$p^{-1}(U) \stackrel{\phi}{\longrightarrow} U \times F$$

Definition 0.1.4. G is a topological group, a G fiber bundle $E \xrightarrow{p} B$ is a fiber bundle and also a morphism of G spaces

Lemma 0.1.5. A fiber bundle is a Serre fibration

Definition 0.1.6. \mathbb{F} is a topological field, a **vector bundle** is a fiber bundle $E \stackrel{p}{\to} X$ with fiber being \mathbb{F}^n and ϕ restricts on each fiber is an \mathbb{F} isomorphism

Definition 0.1.7. G is a topological group, a **principal** G **bundle** $p: P \to B$ is a morphism of G spaces, B with the trivial G action, and for each $b \in B$, there is a local trivialization

$$p^{-1}(U) \xrightarrow{\phi} U \times G$$

$$\downarrow p \qquad pr_1$$

 ϕ is an isomorphism

Remark 0.1.8. G action on P preserves fibers, and the action on fiber is free and transitive, each fiber is a G torsor. A morphism of principal G bundles is always an isomorphism. A principal G bundle is trivial iff it has a global section

Proposition 0.1.9. Suppose $P \to B$ is a principal G bundle, $G \to G/H$ is a principal H bundle, then $P \to P/H$ is a principal H bundle

Proof.
$$P \cong P \times_G G \to P \times_G (G/H) \cong P/H$$

Proposition 0.1.10. Suppose $P \to B$ is a principal G bundle, F is a left G space, $P \times_G F \to P \times_G * \cong B$ is a G fiber bundle. $X \xrightarrow{f} Y$ is a map, $f^*(P \times_G F) \to f^*(P) \times_G F$ is a natural homeomorphism

Proposition 0.1.11. $P \stackrel{p}{\to} B$ is a principal G bundle, X is a right G space, a morphism $P \stackrel{f}{\to} X$ $\begin{pmatrix} 1 \\ f \end{pmatrix}$

induce $P \xrightarrow{\begin{pmatrix} 1 \\ f \end{pmatrix}} P \times X$, $B \cong P/G \to P \times X/G \cong P \times_G X$ which is a section s_f of $P \times_G X \to B$, this is a natural bijection

Proposition 0.1.12. $P \to B \times I$ is principal G bundle, then P and $P_0 \times I$ is an isomorphism, here P_0 is the restriction of P over $B \times \{0\}$

Proof.

3

0.2 Vector bundles

Proposition 0.2.1. $E \stackrel{p}{\to} X$ is trivial iff there exist global sections s_1, \dots, s_n that they are linearly independent on each fiber

Definition 0.2.2. Let $E \xrightarrow{p} X$ be a vector bundle, consider two trivializations $\varphi_U : E_U \to U \times \mathbb{R}^n$ and $\varphi_V : E_V \to V \times \mathbb{R}^n$ around $x \in X$, then $\varphi_V \circ \varphi_U^{-1}$ restricted on $U \cap V \times \mathbb{R}^n$ is a local isomorphism with inverse $\varphi_U \circ \varphi_V^{-1}$ restricted on $U \cap V \times \mathbb{R}^n$, it is also called a transition function and it can also be regard as a continuous map $g_{VU} : U \cap V \to GL(n, \mathbb{R})$ or $g_{VU} \in GL(n, C(U \cap V))$, such that $\varphi_V \circ \varphi_U(x, v) = (x, g_{VU}(x)v)$, notice then $g_{UV} = g_{VU}^{-1}$, and g_{VU} 's satisfy the cocycle relation $g_{WV}g_{VU} = g_{WU}$ on $U \cap V \cap W$

Conversely, given $\bigsqcup_{\alpha \in A} U_{\alpha} \times \mathbb{R}^{n} \times A$ transition functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(n,\mathbb{R})$ that sat-

isfying cocycle relation $g_{\gamma\beta}g_{\beta\alpha}=g_{\gamma\alpha}$ on $U_{\alpha}\cap U_{\beta}\cap U_{\gamma}$, mod equivalence relation $(x,v,\alpha)\sim (x,g_{\beta\alpha}(v),\beta), x\in U_{\alpha}\cap U_{\beta}$, you will get back the vector bundle

Suppose $s: X \to E$, is a section, denote $\varphi_i \circ s|_{U_i}(x) = (x, f_i(x))$ over U_i , then $(x, f_j(x)) = \varphi_j \circ s|_{U_j}(x) = \varphi_j \circ s|_{U_i}(x) = \varphi_j \circ \varphi_i^{-1} \circ \varphi_i \circ s|_{U_i}(x) = \varphi_j \circ \varphi_i^{-1}(x, f_i(x)) = (x, g_{ji}(x)f_i(x)), \forall x \in U_i \cap U_j$, thus $f_j = g_{ji}f_i$, conversely, this relation also defines a section

Definition 0.2.3. The pullback of a transition function is defined to be $f^*g_{ij} := g_{ij} \circ f$

Definition 0.2.4. A morphism between vector bundles $\varphi: E \to F$ is map such that the following diagram commutes

$$E \xrightarrow{\varphi} F$$

$$\downarrow p \qquad \qquad \downarrow q$$

$$X \xrightarrow{f} Y$$

and $\varphi_x: E_x \to F_{f(x)}$ is a homomorphism between vector spaces

Definition 0.2.5. Let $E \xrightarrow{p} X$ and $F \xrightarrow{q} Y$ be vector bundles, then direct sum $E \times F \xrightarrow{p \times q} X \times Y$ is also a vector bundle, suppose $\varphi_U : U \to U \times \mathbb{R}^n$, $\psi_V : V \to V \times \mathbb{R}^m$ are trivializations, then $\varphi_U \times \psi_V : U \times V \to U \times \mathbb{R}^n \times V \times \mathbb{R}^m \cong U \times V \times \mathbb{R}^{n+m}$ is also a trivialization

Proposition 0.2.6. Let $E \stackrel{p}{\to} X$ is a vector bundle, and $f: X \to Y$ is a homeomorphism, then $E \stackrel{f \circ p}{\longrightarrow} Y$ is a vector bundle, suppose $\varphi_U: E_U \to U \times \mathbb{F}^n$ is a trivialization, then $(f \times 1) \circ \varphi_U =: \psi_{f(U)}: E_U \to U \times \mathbb{F}^n \to f(U) \times \mathbb{F}^n$ is a trivialization

Domain is homeomorphic to its graph

Proposition 0.2.7. $p:\Gamma_f\to X, (x,f(x))\mapsto x$ is homeomorphism

Proof. p as a restriction on Γ_f of $X \times Y$ projecting to X is continuous, and define $q: X \to \Gamma_f, x \to (x, f(x))$, since the composition $X \stackrel{q}{\to} \Gamma_f \hookrightarrow X \times Y$ which is continuous because $X \stackrel{f}{\to} Y$, $X \stackrel{id}{\to} X$ are continuous, q is continuous, and p, q are inverses to each other

Definition 0.2.8. $E \xrightarrow{\pi} X$ is a continuous map, then we can construct the pullback bundle $f^*E \xrightarrow{p} Y$

$$\begin{array}{ccc}
f^*E & \xrightarrow{g} & E \\
\downarrow^p & & \downarrow^\pi \\
Y & \xrightarrow{f} & X
\end{array}$$

satisfying universal property

Concrete construction: let $f^*E = Y \underset{X}{\times} E \subseteq Y \times X$ with subspace topology, where $Y \underset{X}{\times} E = \{(y,v) \in Y \times E | f(y) = \pi(v)\}$, let's check it is a vector bundle over Y, notice that $Y \underset{X}{\times} E \to Y$ factor through $Y \underset{X}{\times} E \to \Gamma_f \to Y$, $(y,v) \mapsto (y,\pi(v)) = (y,f(y)) \mapsto y$, where Γ_f is the graph of f which is homeomorphic to Y due to Proposition 0.2.7, notice that $Y \underset{X}{\times} E \to \Gamma_f$ is the restriction of vector bundle $Y \times E \xrightarrow{1 \times \pi} Y \times X$ over Γ_f , thus $Y \underset{X}{\times} E \to Y$ is a vector bundle, suppose F as in the commutative diagram, then h is simply defined as $h(w) := (\beta(w), \alpha(w))$

Remark 0.2.9. In general, this is a pullback, but it has a vector bundle structure such that it induces an isomorphism on each fiber, now suppose $F \xrightarrow{q} Y$ is a another vector bundle such that not only the diagram commutes but also induce isomorphism on each fiber, then $F \cong f^*E$ Use this we have $(fg)^*E \cong g^*(f^*E)$, $f^*(E \oplus F) \cong f^*E \oplus f^*F$, $f^*(E \otimes F) \cong f^*E \otimes f^*F$, $1^*E \cong E$

Definition 0.2.10. Suppose E, F are vector bundles both trivialized over $\{U_{\alpha}\}$ (this can easily be achieved, just take intersections), suppose the transition functions are $g_{\alpha\beta}, h_{\alpha\beta}$, then define the tensor product of vector bundles $E \otimes F$ by letting its transition functions be $g_{\alpha\beta} \otimes h_{\alpha\beta}$ Similarly, we can define symmetric power and exterior power of vector bundles by specifying its transition function

Does it have universal property also?

Definition 0.2.11. Let $E \xrightarrow{p} X$, $E \xrightarrow{p} X$ be vector bundles, then the direct sum $E \oplus F \xrightarrow{p} X$ is defined by transition functions $g_{\alpha\beta} \oplus h_{\alpha\beta}$, where $g_{\alpha\beta}$, $h_{\alpha\beta}$ are transition functions of E, F

Definition 0.2.12. Let $E \to X$ be a vector bundle, define its dual bundle as follows, if $g_{\alpha\beta}$ is a transition function, the transition function for E^* would be $(g_{\alpha\beta}^{-1})^T$

Definition 0.2.13. quotient bundle, exterior and symmetric power of vector bundle

Proposition 0.2.14. $E \xrightarrow{p} X$ is a vector bundle with X being a paracompact space, then there exists a continuous map $\langle, \rangle : E \oplus E \to \mathbb{R}$ with $\langle, \rangle|_{E_x}$ defines an inner product

Definition 0.2.15. $F \subseteq E$ is called a vector subbundle if F is a subspace of E and $F \stackrel{p}{\to} X$ is also a vector space

Proposition 0.2.16. $E \stackrel{p}{\to} X$ is a vector bundle with X being a paracompact space and $F \subseteq E$ is a vector subbundle, then there exists a vector subbundle $F^{\perp} \subseteq E$ such that $F_x \oplus F^{\perp}|_x = E|_x$ and $(F|_x)^{\perp} = F^{\perp}|_x$

Proof. \square X compact Hausdorff => E has complement

Theorem 0.2.17. If $E \stackrel{p}{\to} X$ is vector bundle over a compact Hausdorff space X, then there exists a vector bundle $E' \stackrel{p'}{\to} X$ such $E \oplus E'$ is a trivial bundle

Proposition 0.2.18. Every Lie group G is parallelizable

Proof. Pick an arbitrary basis e_1, \dots, e_n of T_1G , then $L_g^*(e_i)$ will be a basis of $T_{g^{-1}}G$ since L_g^* is an isomorphism, they form independent global sections of the tangent bundle

Definition 0.2.19. Tautological bundle

Definition 0.2.20. Let X be a smooth manifold of dimension n (depending on the field), Ω denote the cotangent bundle, then $\omega := \bigwedge^n \Omega$ is called the canonical bundle

Definition 0.2.21. Universal bundle

Theorem 0.2.22. Let X be a paracompact Hausdoff space, there is a bijection $\left[X, \varinjlim Gr_{\mathbb{C}}(n, N)\right] \to \operatorname{Vect}^n_{\mathbb{C}}(X), [f] \mapsto [f^*(E)]$

Definition 0.2.23. If G is a topological group, then a principal G-bundle P is a fiber bundle with a continuous right G action $P \times G \to P$, and the action is free and transitive(thus regular), which imply each fiber is a G-torsor, also, $g \mapsto yg$ is a homeomorphism

Definition 0.2.24. Let $E \xrightarrow{p} X$ is a vector bundle, an inner product is a continuous map $\langle, \rangle : E \oplus E \to \mathbb{R}$ with $\langle, \rangle|_{E_x}$ defines an inner product on E_x

Proposition 0.2.25. Let $E \stackrel{p}{\to} X$ is a vector bundle with an inner product \langle , \rangle , then we can local trivialization to be isometry on each fiber, i.e. $\langle v, w \rangle = (\varphi_U(v), \varphi_U(w)), v, w \in E_x$, where (,) is the standard inner product on $U \times \mathbb{R}^n$

Proposition 0.2.26. $E \xrightarrow{p} X$ is a vector bundle with X being a paracompact space, then there exists a continuous map $\langle , \rangle : E \oplus E \to \mathbb{R}$ with $\langle , \rangle |_{E_x}$ defines an inner product

Definition 0.2.27. let G be a topological group, E, X be G-spaces, then $E \xrightarrow{p} X$ is a G-vector bundle if it is a vector bundle, p is a G map, and for any $x \in X$, $g: E_x \to E_{qx}$ is a linear map

Definition 0.2.28. Let G be a topological group, H be a closed subgroup, a G vector bundle $\pi: E \to G/H$ is called a homogeneous vector bundle

Lemma 0.2.29. Let $Y \xrightarrow{f} X$, $Z \xrightarrow{g} X$ be open surjective continuous maps, then the projection $p_Y: Y \times_X Z \to Y$ is open surjective

Proof. For surjectivity, if $y \in Y$, since g is surjective, $\exists z \in Z$ such that g(z) = f(y), then $(z,y) \in Y \times_X Z$

To prove p_Y is open, suppose $(z_0, y_0) \in Y \times_X Z$ is in some open set, then $(z_0, y_0) \in U \times V \cap Y \times_X Z$ for some $y_0 \in U, z_0 \in V$ open, since f, g are open, $U' := f(U) \cap g(V)$ is open, let $V' := V \cap f^{-1}(U')$, then we can show V' is in the image of $U \times V \cap Y \times_X Z$, since $\forall y \in V', f(y) \in U' \subseteq g(V)$, thus f(y) = g(z) for some $z \in V$, hence $(y, z) \in U \times V \cap Y \times_X Z$

Proposition 0.2.30. Let $\pi: E \to G/H$ be a homogeneous vector bundle, E_H be the fiber over the coset H, action $G \times E_H \to E$ can be regard as $\alpha: G \times_H E_H \to E$ which is an isomorphism of G vector bundles. Moreover, if H is locally compact, then for a given $\mathbb{R}H$ module E_H , $G \times_H E_H \to G/H$ is indeed a G vector bundle, hence G vector bundle E is in one to one correspondence with representations of H on E_H , so $K_G(G/H) \cong R(H)$

Proof. E_H is an $\mathbb{R}H$ module, let $G \times_H E_H$ denote the space of orbits of $G \times E_H$ under H by $h \cdot (g, \xi) = (gh^{-1}, h\xi)$, $G \times_H E_H$ is a G space with G action $g \cdot (g', \xi) \mapsto (gg', \xi)$, then the group action can be regarded as $\alpha : G \times_H E_H \to E, (g, \xi) \mapsto g\xi$, we can find its inverse $\beta : E \to G \times_H E_H, E_{gH} \ni \xi \mapsto (g, g^{-1}\xi)$, to show that this is continuous, consider $\gamma : G \times E \to G \times E, (g, \xi) \mapsto (g, g^{-1}\xi)$, then the preimage of $G \times E_H$ will be the pullback $G \times_{G/H} E := \{(g, \xi) \in G \times E | gH = \pi \xi\}$, then $G \times_{G/H} E \to G \times E_H \to G \times_H E_H, (g, \xi) \mapsto (g, g^{-1}\xi)$ factors as $G \times_{G/H} E \to E \xrightarrow{\beta} G \times_H E, (g, \xi) \mapsto \xi \mapsto (g, g^{-1}\xi)$ which open surjective, therefore β is continuous due to the previous Lemma

Definition 0.2.31. A clutching function for S^k is $f: S^{k-1} \to GL(n, \mathbb{C})$, then we can define vector bundle E_f with f being the transition function, conversely, if E is a vector bundle over S^k , since its upper and lower hemispheres are both contractible, $E = E_f$, where f is the transition function, denoting the corresponding matrix T_f

Theorem 0.2.32. $[S^{k-1}, GL(n, \mathbb{C})] \to \text{Vect}^n_{\mathbb{C}}(S^k), f \mapsto E_f \text{ is a bijection}$

Lemma 0.2.33. Suppose $f, g: S^{k-1} \to GL(n, \mathbb{C})$, then $(E_f \otimes E_g) \oplus \varepsilon^n \cong E_{fg} \oplus \varepsilon^n \cong E_f \oplus E_g$

Proof. Since $GL(n, \mathbb{C})$ is path connected, there is a path $A_t \in GL(2n, \mathbb{C})$ that $A_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $A_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, then $\begin{pmatrix} T_f \\ I \end{pmatrix} A_t \begin{pmatrix} I \\ T_g \end{pmatrix} A_t$ is $\begin{pmatrix} T_f \\ T_g \end{pmatrix}$ when t = 0 and $\begin{pmatrix} T_f T_g \\ I \end{pmatrix} = \begin{pmatrix} T_{fg} \\ I \end{pmatrix}$ when t = 1

Definition 0.2.34. Let $E \xrightarrow{p} X$ be vector bundle of rank n, and there is a inner product over E, we can define the sphere bundle S(E) associated to E to be $S(E) = \bigcup_{x \in X} S(E_x)$ with the subspace topology, this is a fiber bundle, suppose φ_U is a local trivialization, since we can choose φ_U to be isometry over each fiber, thus the following diagram commutes

Definition 0.2.35. Let $E \xrightarrow{p} X$ be vector bundle of rank n, and there is a inner product over E, we can define the projective bundle P(E) associated to E to be $P(E) = \bigcup_{x \in X} P(E_x)$ with the quotient topology, this is a fiber bundle, suppose φ_U is a local trivialization, since we can choose φ_U to be isometry over each fiber, thus the following diagram commutes

Definition 0.2.36. Let $E \stackrel{p}{\to} X$ be vector bundle of rank n, and there is a inner product over E, we can define the flag bundle F(E) associated to E to be $F(E) = \bigcup_{x \in X} F(E_x)$ with the subspace topology in $P(E) \times \cdots \times P(E)$

Remark 0.2.37. Consider the pullback of $\pi: F(E) \to X$, $\pi^*(E) \subseteq F(E) \times E$, consider its subbundles L_1, \dots, L_n , where L_i is the subbundle that over a point in F(E), it is the *i*-th factor, then $\pi^*(E) \cong L_1 \oplus \dots \oplus L_n$

Definition 0.2.38. Let X be a paracompact and Hausdorff space, there exist unique functions $w_1, w_2, \dots, w_i : \text{Vect}_{\mathbb{R}}(X) \to H^i(X, \mathbb{Z}_2), E \to w_i(E)$, and they only depend on the isomorphism classes of E, satisfying

- 1. $w_i(f^*(E)) = f^*(w_i(E))$, for pullback bundle $f^*(E)$
- 2. $w(E_1 \oplus E_2) = w(E_1) \smile w(E_2)$ where $w = 1 + w_1 + w_2 + \cdots \in H^*(X, \mathbb{Z}_2)$
- 3. $w_i(E) = 0, \forall i > \dim E$
- 4. If $E \to \mathbb{R}P^{\infty}$ is the canonical line bundle, then $w_1(E)$ is the generator of $H^*(\mathbb{R}P^{\infty}, \mathbb{Z}_2) \cong \mathbb{Z}_2[x]$ $w_i(E)$ are called the Stiefel-Whitney classes of E

Definition 0.2.39. Let X be a paracompact and Hausdorff space, there exist unique functions $c_1, c_2, \dots, c_i : \text{Vect}_{\mathbb{C}}(X) \to H^{2i}(X; \mathbb{Z}), E \to c_i(E)$, and they only depend on the isomorphism classes of E, satisfying

- 1. $c_i(f^*(E)) = f^*(c_i(E))$, for pullback bundle $f^*(E)$
- 2. $c(E_1 \oplus E_2) = c(E_1) \smile c(E_2)$ where $c = 1 + c_1 + c_2 + \cdots \in H^*(X; \mathbb{Z})$
- 3. $c_i(E) = 0, \forall i > \dim E$
- 4. If $E \to \mathbb{C}P^{\infty}$ is the canonical line bundle, then $c_1(E)$ is a generator of $H^*(\mathbb{C}P^{\infty}; \mathbb{Z}) \cong \mathbb{Z}[x]$, specify a generator in advance
- $c_i(E)$ are called the Chern classes of E, also we define the Chern polynomial to be $c_t = 1 + c_1 t + c_2 t^2 + \cdots$ where t is just a formal variable used to keep tracking of the degree

Lemma 0.2.40. Let L_1, L_2 be line bundles, then $c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$

Definition 0.2.41. Suppose L is a line bundle, define the Chern character $ch(L) = e^{c_1(L)} = 1 + c_1(L) + \frac{c_1(L)^2}{2!} + \cdots \in H^*(X; \mathbb{Q})$, then we have $ch(L_1 \otimes L_2) = e^{c_1(L_1 \otimes L_2)} = e^{c_1(L_1) + c_1(L_2)} = e^{c_1(L_1)} e^{c_1(L_2)} = ch(L_1) ch(L_2)$, If we assume $ch(L_1 \oplus L_2) = ch(L_1) + ch(L_2)$, then for $E = L_1 \oplus \cdots \oplus L_n$, $ch(E) = ch(L_1) + \cdots + ch(L_n) = n + (c_1(L_1) + \cdots + c_1(L_n)) + (c_1(L_1)^2 + \cdots + c_1(L_n)^2)/2! + \cdots$, on the other hand, we have $c(E) = c(L_1) \smile \cdots \smile c(L_n) = (1 + c_1(L_1)) \smile \cdots \smile (1 + c_1(L_n)) = 1 + c_1(E) + \cdots + c_n(E)$, where $c_i(E)$ would just be the i-th elementary symmetric polynomial of $c_1(L_1), \cdots, c_1(L_n)$, i.e. $c_i(E) = \sigma_i(c_1(L_1), \cdots, c_1(L_n))$, so we can express $c_1(L_1)^k + \cdots + c_1(L_n)^k$ in terms of $c_i(E)$, i.e. $c_1(L_1)^k + \cdots + c_1(L_n)^k = s_k(c_1(E), \cdots, c_n(E))$, thus we have an abstract definition of Chern character, $ch(E) = \dim E + s_1(c_1(E), \cdots, c_n(E)) + s_2(c_1(E), \cdots, c_n(E))/2! + \cdots$

Proposition 0.2.42. $ch(E_1 \oplus E_2) = ch(E_1) + ch(E_2), ch(E_1 \otimes E_2) = ch(E_1)ch(E_2)$

0.3 Principal bundle

0.4 Topological K-theory

Definition 0.4.1. Two vector bundles $E \to X$, $F \to X$ are stably isomorphic if $E \oplus \varepsilon^n \cong F \oplus \varepsilon^n$, denoted as $E \approx F$, we also denote $E \sim F$ if $E \oplus \varepsilon^n \cong F \oplus \varepsilon^m$ for some n, m

Remark 0.4.2. Here stably isomorphic does not imply isomorphic, for example, $TS^2 \approx_s \varepsilon^2$, since $\varepsilon^3 \approx T^2 \oplus NS^2 \approx T^2 \oplus \varepsilon^1$ whereas TS^2 is not trivial by the hairy ball theorem, and $NS^2 \approx \varepsilon^1$ is trivial because it is very easy to find a nonvanishing global section

Definition 0.4.3. Define the reduced K group to be $\tilde{K}(X)$ which consists of \sim -equivalent classes, and define K group to be the formal difference of isomorphic classes E - F, and E - F = E' - F' if $E \oplus F' \oplus G \cong E' \oplus F \oplus G$ for some vector bundle G

Remark 0.4.4. When X is compact Hausdorff, $E \oplus F' \oplus G \cong E' \oplus F \oplus G$ is equivalent to $E \oplus F' \oplus \varepsilon^m \cong E' \oplus F \oplus \varepsilon^m$, since we can find G' such that $G \oplus G' \cong \varepsilon^m$ due to Theorem 0.2.17 $K(*) = \{\varepsilon^m - \varepsilon^n\} \cong \mathbb{Z}, \ \tilde{K}(*) = 0$, and when X compact Hausdorff we have an exact sequence $0 \to K(*) \to K(X) \to \tilde{K}(X) \to 0$, where $K(*) \to K(X)$ is simply given by $\varepsilon^m - \varepsilon^n \mapsto \varepsilon^m - \varepsilon^n$, $K(X) \to \tilde{K}(X)$ is defined as follows, given $E - F \in K(X)$, $E - F = E \oplus F' - F \oplus F' = E' - \varepsilon^m$ is mapped to E', this exact sequence splits since we have map $K(X) \to K(*)$ given by restriction

Conjecture 0.4.5. Let M be the Möbius line bundle over S^1 , since $M \oplus M \cong \varepsilon^2$, and $M \otimes M \cong \varepsilon^1$, thus real K-theory of S^1 is isomorphic to $\mathbb{Z}[M]/(M^2-1, 2M-2)$

Example 0.4.6. Let $S^n \subset \mathbb{R}^{n+1}$ be the unit sphere, TS^n, NS^n be the tangent bundle and normal bundle, then $TS^n \oplus NS^n$ can be seen as the restriction of the trivial bundle $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ on S^n , thus $TS^n \oplus NS^n$ is trivial

Definition 0.4.7. Define external product $K(X) \otimes K(Y) \to K(X \times Y)$, $a \otimes b \mapsto p_1^*(a)p_2^*(b) =: a \times b$, this is a ring homomorphism

0.5 Classifying space

Definition 0.5.1. Suppose G is a topological group, P_G is the contravariant functor from the category of CW complexes to the category of sets, mapping X to all the principal G bundles over X, a classifying space BG is a topological space such that $[-, BG] \to P_G(-)$ is a natural isomorphism

Lemma 0.5.2. BG is unique up to weak homotopy equivalence

Proof. Suppose B'G is also a classifying space, then $[-,BG] \cong P_G(-) \cong [-,B'G]$ are natural isomorphic, by Theorem ??, we may assume BG, B'G are both CW complexes, and by Lemma ??, $X \to Hom(-,X)$ is fully faithful functor, thus BG, B'G are homotopic \Box

Theorem 0.5.3 (Milnor's contruction for classifying space). Define E^nG to be $G * \cdots * G$ are formal sums $t_0g_0 + t_1g_1 + \cdots + t_ng_n$, with $\sum t_i = 1$. $EG := \varinjlim E^nG$ are finite formal sums $\sum t_ig_i$ with $\sum t_i = 1$. $E^nG \to E^nG/G$, $EG \to EG/G =: BG$ are principal G bundles, any principal G bundle over X is a pullback bundle of $EG \xrightarrow{p} BG$

Proof. Define G right action on E^nG , EG

$$E^nG imes G o E^nG, \left(\sum t_ig_i,g
ight)\mapsto \sum t_ig_ig$$

$$EG imes G o EG, \left(\sum t_ig_i,g
ight)\mapsto \sum t_ig_ig_i$$

Let $U_i = \{p(\sum t_i g_i) | t_i \neq 0\}$, then we would have a equivariant homeomorphism $p^{-1}(U_i) \rightarrow U_i \times G$, $\sum t_i g_i \mapsto (p(\sum t_i g_i), g_i)$ with inverse $U_i \times G \rightarrow p^{-1}(U_i), (p(\sum t_i g_i), g) \mapsto \sum t_j g_j g_i^{-1} g$, this is well defined since $(p(\sum t_i g_i h), g) \mapsto \sum t_j g_j h h^{-1} g_i^{-1} g = \sum t_j g_j g_i^{-1} g$

Definition 0.5.4. A **topological category** \mathscr{C} is a small category where $ob\mathscr{C}$, $mor\mathscr{C}$ are topological spaces and $i:ob\mathscr{C}\to mor\mathscr{C}$, $c\mapsto 1_c$, $s:mor\mathscr{C}\to ob\mathscr{C}$, $c\stackrel{f}\to d\mapsto c$, $t:mor\mathscr{C}\to ob\mathscr{C}$, $t:mor\mathscr{C}\to ob\mathscr{C}\to ob\mathscr{C}$, $t:mor\mathscr{C}\to ob\mathscr{C}\to ob\mathscr{C}$, $t:mor\mathscr{C}\to ob\mathscr{C}\to ob\mathscr{C}$, $t:mor\mathscr{C}\to ob\mathscr{C}\to ob\mathscr{$

Nerve of a category

Definition 0.5.5. Define **nerve** $N\mathscr{C}$ on category \mathscr{C} which is also a simplicial set, $N\mathscr{C}([n]) := Hom([n], \mathscr{C})$, the set of all functors from [n] to \mathscr{C} , viewing $[n] = 0 \to 1 \to \cdots \to n$ as a category

Definition 0.5.6 (Segal's contruction for classifying space). Define the classifying space of \mathscr{C} to be $B\mathscr{C} := |N\mathscr{C}|$ as in Definition 0.5.5