LAB ASSIGNMENT

Demonstration of TFET Common Source Configuration

Submitted By:

BATCH 4

1- KULDEEP GUPTA 2014VLSI-10

2- MUKESH CHATURVEDI 2014VLSI-11

3- NEMANA UDAYA RAMYA 2014VLSI-12

4-SOUMYARANJAN SENAPATI 2014vLSI-19

Submitted To: Dr. Manisha Pattanaik

VLSI Design Lab

Atal Bihari Vajpayee - Indian Institute of Information **Technology and Management, Gwalior – 474015**

Objective:

To design a TFET Common Source Amplier and calculate the following parameter:

- 1. Voltage Gain
- 2. Transconductance
- 3. Output Impedance
- 4. Input Impedance
- 5. Bandwidth
- 6. Gain Bandwidth Product
- 7. Voltage Swing
- 8. Frequency Response Plot

Technology Used: 32nm technology

Fig: Schematic of CS amplifier

A) DESIGN OF TUNNEL FET USING DECKBUILD

STEPS:

- 1. Go to -> Terminal-> gedit
- 2.Write the code for the tunnel fet
- Device Structure description
- Mixed Mode Netlist description
- 3. Save both the files with .in extension
- 4.Go to -> Terminal
- 5.Type -> deckbuild
- 6.Open file ->Mixedmode_DGFET.in
- 7.Run the code in deckbuild
- 8.Open -> Terminal
- 9.Type -> tonyplot
- 10. Open the following files in tonyplot
 - 1. Mixedmode_DGFET.str
 - 2. Mixedmode_DGFET.log

PHYSICAL PARAMETERS

CHANNEL LENGTH	32nm
SUBSTRATE DOPING (/cm³)	12.5X10 ¹⁶
INTRINSIC DOPING (/cm³)	1 X 10 ¹⁷
SOURCE DOPING (/cm³)	$1X\ 10^{20}$
DRAIN DOPING (/cm³)	5X 10 ¹⁹
LOAD RESISTANCE	10Kohms

Structure Of Common Source Amplifier:

Fig : Structure of CS amplier

Energy Band Diagram:

Fig: Energy Band Diagram At 0V

Fig: Energy Band Diagram at 2V

Tunneling Effect:

***Particle of the control of th

Fig: Band to Band Electron Tunneling

C 101 102 033 MAN 010 COS COT COS

0.01 0.02 0.00 0.01 0.00 0.07 0.08

Drain Current Vs Gate Voltage

Fig: Log(Id) vs Vgs

Leakage Current= 6.18 x 10⁻¹⁵ Amp

Fig: Transconductance vs Vgs

V[2] (V)

1.2

0.8

Transconductance gm = 520.8 uAmp/volt

Gain of the CS Amplifier:

Fig: |A| vs Vin

Gain = 14.27 dB

Output Voltage vs Input Voltage:

Fig: Vout vs Vin curve

Vout = Vdd - Id*Rd

Voltage Swing:

Fig: AC input and output waveforms

Voltage Swing of Input Signal = 1.3V to 1.475V Voltage Swing of Output Signal = 1.475V 1.58V

Frequency Response:

Fig: Gain in dB vs frequency

3dB Bandwidth = 525MHz

Comparison Table:

_				1
S.No	Parameters	In CMOS	In FINFET	In TFET
1	Voltage Gain	8.27dB	13.62dB	14.27 dB
2	Transconductance	210uA/V	320 uA/V	520.8 uA/V
3	Input Impedance	6.89Mohms	10 ¹⁷ ohms	10 ¹⁹ ohms
4	Output Impedance	10 K ohms	10 K ohms	10 Kohms
5	Bandwidth	422.56MHz	4.7GHz	525MHz
6	Gain x Bandwidth	1.094GHz	22.56GHz	2.714GHz
7	Voltage Swing	0.8 to 1V	0.84 to 1V	1.475V to 1.58V

Conclusion:

- The gain and transconductance of the TFET CS amplifier is more than the CMOS and FinFet.
- TFET has less short channel effects.
- TFET has low leakage current.
- Ion/Ioff ratio is high in TFET.