ОПИКСС

1. Основные определения. Обобщенная модель системы передачи

Информация - сведения (сообщения, данные) независимо от формы их представления

Сообщение - слово, блок или группа блоков данных, предназначенные для передачи и воспринимаемые их потребителем однозначно и как единое целое

Данные - информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека

Сигнал - изменяющаяся физическая величина, отображающая сообщение

Сеть связи - технологическая система, включающая в себя средства и линии связи и предназначенная для электросвязи **Электросвязь** - любые излучение, передача или прием знаков, сигналов, голосовой информации, письменного текста, изображений, звуков или сообщений любого рода по радиосистеме, проводной, оптической и другим электромагнитным системам

Средства связи - технические и программные средства, используемые для формирования, приема, обработки, хранения, передачи, доставки сообщений электросвязи или почтовых отправлений, а также иные технические и программные средства, используемые при оказании услуг связи или обеспечении функционирования сетей связи **Линии связи** - линии передачи, физические цепи и линейно-кабельные сооружения связи

Обобщенная модель системы передачи

2. Модель цифровой системы передачи

3. Классификация систем электросвязи

Классификация систем электросвязи

Классификация сетей связи

Классификация сетей связи

Грацыя ОПТСС

Топология сетей связи

6. Структура первичной сети

7. Организация городской телефонной сети.

8. Модель взаимодействия открытых систем.

Модель взаимодействия открытых систем оптос

Взаимодействие уровней

Грацыя ОПТСС

					Блок данных	Прикладные данные
Заголовок протокола представления				31	Блок данных	БД протокола представления
Заголовок протокола сванса 32				31	Блок данных	БД протокола сванса
Заголовок транспортной услуги 32			32	31	Блок данных	БД транспортного протокола
Заголовок сетевой услуги	3,	3;	32	31	Блок данных	БД сетевого протокола
Заголовок канала ПД З ₅	3,	3,	32	3,	Блок данных	БД протокола канала

10. Абсолютный уровень передачи.

Уровни передаваемых сигналов

Грация ОПТСС

- Преимущества использования относительных величин
- 1. Чувствительность слухового аппарата к воздействию звукового сигнала подчиняется логарифмическому закону
- 2. Потери сигнала в линии подчиняются экспоненциальному закону
- 3. Порядок логарифмических величин оказывается меньшим, чем в случае использования абсолютных величин
- 4. Операции умножения и деления заменяются операциями сложения и вычитания
- Уровень по мощности: $p_{\perp}=10$ ig $\left(\frac{P_{z}}{P_{z}}\right)$ $\partial\mathcal{S}=p_{\perp}=\frac{1}{2}$ in $\left(\frac{P_{z}}{P_{z}}\right)$. Hn
- Уровень по напряжению: $P_z = 201 {\rm g} \left(\frac{U_z}{U_z} \right) \delta \mathcal{B}$ $P_z = \ln \left(\frac{U_z}{U_z} \right) H n$
- Уровень по току: $p_{_{n}} = 201 \underline{g} \bigg(\frac{I_{_{1}}}{I_{_{1}}} \bigg), \partial B \qquad p_{_{n}} = 1 \underline{n} \bigg(\frac{I_{_{2}}}{I_{_{1}}} \bigg), Hn$
- Абсолютный уровень: $P_i = P_a = 1$ мВт, $U_i = U_a = 0.775$ В, $I_i = I_a = 1.29$ мА, $R_a = 600$ Ом. p_a , ∂ Бм. p_a , ∂ Бт. p_a , ∂ Бт. $p_a \neq p_a \neq p_a$

$$\begin{split} p_u &= 10 \, \lg \left(\frac{P_z}{P_0} \right) - 10 \, \lg \left(\frac{U_z^2 \, R_0}{U_o^2 \, R_z} \right) - 10 \, \lg \left(\left(\frac{U_z}{U_o} \right)^2 \cdot \left(\frac{R_z}{R_o} \right)^{-1} \right) - 20 \, \lg \left(\frac{U_z}{U_o} \right) - 10 \, \lg \left(\frac{R_z}{R_o} \right) - p_u - 10 \, \lg \left(\frac{R_z}{R_o} \right) \\ p_u &= 10 \, \lg \left(\frac{P_z}{P_o} \right) - 10 \, \lg \left(\frac{I_z^2 \, R_z}{I_o^2 \, R_o} \right) - 10 \, \lg \left(\left(\frac{I_z}{I_o} \right)^2 \cdot \frac{R_z}{R_o} \right) - 20 \, \lg \left(\frac{I_z}{I_o} \right) + 10 \, \lg \left(\frac{R_z}{R_o} \right) - p_u + 10 \, \lg \left(\frac{R_z$$

11. Относительный уровень передачи. Диаграмма уровней.

Относительный уровень:

$$\begin{split} & p_{ss} = 101 \underbrace{\left(\frac{P_{s}}{P_{s}}\right)}, \partial E MO - p_{ss} = 201 \underbrace{\left(\frac{U_{s}}{U_{s}}\right)}, \partial E MO \\ & p_{ss} = 101 \underbrace{\left(\frac{P_{s}}{P_{s}}\right)}, \partial E MO - \frac{P_{ss}}{P_{s}} = 201 \underbrace{\left(\frac{U_{s}}{U_{s}}\right)}, \partial E MO \\ & p_{ss} = 101 \underbrace{\left(\frac{P_{s}}{P_{s}}\right)}, \partial E MO - \frac{P_{ss}}{P_{s}} = 101 \underbrace{\left(\frac{P_{s}}{P_{s}}\right)}, \partial E MO - \frac{P_{ss}}{P_{ss}} = 101 \underbrace{\left(\frac{P_{s}}{P_{s}}\right)}, \partial E MO - \frac{P_{ss}}{P_{ss}} = 201 \underbrace{\left(\frac{U_{s}}{U_{s}}\right)}, \partial E MO - \frac{P_{ss}}{P_{ss}} = 201 \underbrace{\left(\frac{$$

- Затухание
$$_{n}$$
: $a_{n} = 101g\left(\frac{P_{n}}{P_{n}}\right)$ Усиление $_{n}$: $S_{n} = -a_{n} = 101g\left(\frac{P_{n}}{P_{n}}\right)$ Коэффициент усиления $_{n}$: $K_{n} = \frac{P_{n}}{P_{n}}$
- Затухание $_{n}$: $a_{n} = 201g\left(\frac{U_{n}}{U_{n}}\right)$ Усиление $_{n}$: $S_{n} = 201g\left(\frac{U_{n}}{U_{n}}\right)$ Коэффициент усиления $_{n}$: $K_{n} = \frac{P_{n}}{P_{n}}$
- Динамический диапазон: $D = 101g\left(\frac{P_{n}}{P_{n}}\right)$. ∂E Пик —фактор: $Q = 101g\left(\frac{P_{n}}{P_{n}}\right)$. ∂E

• Затухание «:
$$a_* = 201 = \frac{U_*}{U_*}$$
 Усиление «: $S_* = 201 = \frac{U_*}{U_*}$ Коэффициент усиления «: $K_* = \frac{U_*}{U_*}$

- Динамический диапазон:
$$D=101g\left(\frac{P_{max}}{P_{max}}\right)$$
 ∂E Пик $-\Phi$ актор : $Q=101g\left(\frac{P_{max}}{P_{max}}\right)$, ∂E

Помехозащищенность сигнала: $A_{\mu} = 101 g \left(\frac{P_{\mu}}{P} \right)$, ∂B

12. Основные характеристики сигналов электросвязи.

Основные характеристики сигналов электро связи

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t))$$

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} (t) dt \quad a_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \cos(2\pi k f t) dt \quad b_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \sin(2\pi k f t) dt$$

$$S(j\omega) = \int_{-\infty}^{\infty} s(t) \exp(-j\omega t) dt \quad s(t) \Leftrightarrow S(j\omega) \quad s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega) \exp(j\omega t) d\omega$$

$$s(t) = \frac{1}{T} \int_{-\infty}^{\infty} s^2(t) dt < \infty$$

$$\mathbf{IIphmep:} \quad s(t) = \begin{cases} U, & t \in [-T/2, T/2] \\ 0, & t \notin [-T/2, T/2] \end{cases}$$

$$S(j\omega) = \operatorname{Re} \left\{ \int_{-\infty}^{\infty} s(t) \exp(-j\omega t) dt \right\} = \operatorname{Re} \left\{ \int_{-T/2}^{T/2} \exp(-j\omega t) dt \right\} =$$

$$= \operatorname{Re} \left\{ \frac{U}{-j\omega} \exp(-j\omega t) \right\} \Big|_{T/2}^{T/2} = \operatorname{Re} \left\{ \frac{U}{-j\omega} \cos(\omega t) - j \frac{U}{-j\omega} \sin(\omega t) \right\} \Big|_{T/2}^{T/2} =$$

$$= \operatorname{Re} \left\{ \frac{jU}{\omega} \cos(\omega t) + \frac{U}{\omega} \sin(\omega t) \right\}_{\omega}^{T/2} = \frac{U}{\omega} \sin(\omega T) = UT \frac{\sin(\omega T)}{\omega T}$$

13. Линейное разделение сигналов.

Francis Office

Линейное разделение сигналов

$$\begin{split} S(i\Delta t) &= e_1 a_1(i\Delta t) + e_2 a_2(i\Delta t) + \ldots + e_n a_n(i\Delta t) \\ S_1 &= e_{11} a_1 + e_{12} a_2 + \ldots + e_{1N} a_N \\ S_2 &= e_{21} a_1 + e_{22} a_2 + \ldots + e_{2N} a_N \\ &\cdots \qquad \cdots \qquad \cdots \\ S_N &= e_{N1} a_1 + e_{N2} a_2 + \ldots + e_{NN} a_N \\ a_1 &= \frac{\Delta_1}{\Delta} \quad a_2 = \frac{\Delta_2}{\Delta} \quad \ldots \quad a_N = \frac{\Delta_N}{\Delta} \end{split}$$

$$\Delta = \begin{bmatrix} e_{11} & \dots & e_{1N} \\ e_{21} & \dots & e_{2N} \\ \vdots & \ddots & \vdots \\ e_{N1} & \dots & e_{NN} \end{bmatrix} \quad \Delta_1 = \begin{bmatrix} S_1 & \dots & e_{1N} \\ S_2 & \dots & e_{2N} \\ \vdots & \ddots & \vdots \\ S_N & \dots & e_{NN} \end{bmatrix} \quad \dots \quad \Delta_N = \begin{bmatrix} e_{11} & \dots & S_1 \\ e_{21} & \dots & S_2 \\ \vdots & \ddots & \vdots \\ e_{N1} & \dots & S_N \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & -3 & -2 \end{bmatrix} \quad \begin{bmatrix} 1 & -3 & -$$

Пример

$$5 = 1a_1 + 3a_2 - 4a_N$$

$$3 = 2a_1 - a_2 + 2a_N$$

$$-2 = a_1 - 3a_2 + 2a_N$$

$$\Delta = \begin{bmatrix} 1 & 3 & -4 \\ 2 & 3 & 2 \\ 1 & -2 & 2 \end{bmatrix} = 18 \quad \Delta_1 = \begin{bmatrix} 5 & 3 & -4 \\ 3 & -1 & 2 \\ -2 & -3 & 2 \end{bmatrix} = 34$$

$$\Delta_2 = \begin{bmatrix} 1 & 5 & -4 \\ 2 & 3 & 2 \\ 1 & -2 & 2 \end{bmatrix} = -12 \quad \Delta_3 = \begin{bmatrix} 1 & 3 & 5 \\ 2 & -1 & 3 \\ 1 & -3 & -2 \end{bmatrix} = 7$$

$$a_1 = \frac{34}{18} = 1.89$$
 $a_2 = \frac{-12}{18} = -0.67$ $a_1 = \frac{7}{18} = 0.39$

14. Условия линейного разделения сигналов.

$$a_{1}\begin{bmatrix}e_{11}\\e_{21}\\\vdots\\e_{N1}\end{bmatrix}+a_{2}\begin{bmatrix}e_{12}\\e_{22}\\\vdots\\e_{N2}\end{bmatrix}+\ldots+a_{N}\begin{bmatrix}e_{1N}\\e_{2N}\\\vdots\\e_{NN}\end{bmatrix}=\begin{bmatrix}0\\0\\\vdots\\0\end{bmatrix}\Leftrightarrow a_{1}\equiv a_{2}\equiv\ldots\equiv a_{N}\equiv 0$$

$$a_1\mathbf{e}_1 + a_2\mathbf{e}_2 + \ldots + a_N\mathbf{e}_N = \mathbf{0}$$

$$\Gamma = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1N} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{N1} & \gamma_{N2} & \cdots & \gamma_{NN} \end{bmatrix} \qquad \gamma_{ij} = \mathbf{e}_{i}^{T} \mathbf{e}_{j} = \sum_{n=1}^{N} e_{in} e_{jn}$$

 $\Gamma > 0 \Longrightarrow \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N$ Линейно независимы

 $\Gamma = 0 \Longrightarrow \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N$ Линейно зависимы

Условие линейного разделения сигналов
$$\begin{array}{c} \mathbf{V}_{\text{Словие линейного разделения сигналов} \\ a_1 \begin{bmatrix} e_{11} \\ e_{21} \\ \vdots \\ e_{N1} \end{bmatrix} + a_2 \begin{bmatrix} e_{12} \\ e_{22} \\ \vdots \\ e_{N2} \end{bmatrix} + \dots + a_N \begin{bmatrix} e_{1N} \\ e_{2N} \\ \vdots \\ e_{NN} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \\ \Leftrightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv a_1 \equiv a_2 \equiv \dots \equiv a_N \equiv 0 \\ 0 \Rightarrow a_1 \equiv a_2 \equiv a_$$

$$\Gamma = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 19 & -20 \\ 2 & -20 & 24 \end{bmatrix} = 324 \implies$$
 Сигналы линейно независимы

$$\begin{array}{l} 0 = 1a_1 + 3a_2 - 2a_N \\ 0 = 2a_1 - a_2 - 4a_N \\ 0 = 1a_1 - 3a_2 - 2a_N \end{array}) \quad \mathbf{e_1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \mathbf{e_2} = \begin{bmatrix} 3 \\ -1 \\ -3 \end{bmatrix} \mathbf{e_3} = \begin{bmatrix} -2 \\ -4 \\ -2 \end{bmatrix}$$

$$\varGamma = \begin{bmatrix} 6 & -2 & -12 \\ -2 & 19 & 4 \\ -12 & 4 & 24 \end{bmatrix} = 0 \implies \textbf{Сигналы линейно зависимы}$$

$$e_3 = -2e_1$$

15. Максимальное количество линейно разделимых сигналов в N-мерном линейном пространстве

Максимальное количество линейно разделимых сигналов в N-мерном линейном пространстве

$$a_{1}\mathbf{e}_{1} + a_{2}\mathbf{e}_{2} + \dots + a_{N}\mathbf{e}_{N} = \mathbf{0}$$

$$a_{1}\mathbf{e}_{1} + a_{2}\mathbf{e}_{2} + \dots + a_{N}\mathbf{e}_{N} + \mathbf{e}_{N+1} = \mathbf{0}$$

$$\mathbf{E}\mathbf{A} + \mathbf{e}_{N+1} = \mathbf{0} \quad \mathbf{e}_{N+1} = -\mathbf{E}\mathbf{A}$$

$$\mathbf{A} = -\mathbf{E}^{-1}\mathbf{e}_{N+1}$$

$$\mathbf{E} = \begin{bmatrix} e_{11} & e_{12} & \dots & e_{1N} \\ e_{21} & e_{22} & \dots & e_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ e_{N1} & e_{N2} & \dots & e_{NN} \end{bmatrix} \mathbf{A} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{N} \end{bmatrix}$$

$$\gamma_{ij} = \mathbf{e}_{i}^{T}\mathbf{e}_{j} = \sum_{n=1}^{N} e_{in} e_{jn}$$

16. Формирование группового сигнала.

Формирование группового сигнала

$$\mathbf{S} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_N \mathbf{e}_N = \mathbf{s}_1 + \mathbf{s}_2 + \dots + \mathbf{s}_N = \sum_{i=1}^{N} \mathbf{s}_i$$

$$S = EA$$

$$\mathbf{A} = \mathbf{E}^{-1}\mathbf{S} = \mathbf{E}^{-1}\mathbf{E}\mathbf{A}$$

$$\mathbf{E}^{-1}\mathbf{E} = \mathbf{E}^{T}\mathbf{E} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1N} \\ \gamma_{21} & \gamma_{22} & \dots & \gamma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{N1} & \gamma_{N2} & \dots & \gamma_{NN} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = \mathbf{I}$$

$$\gamma_{ij} = \mathbf{e}_i^T \mathbf{e}_j = \begin{cases} 1, \forall i = j \\ 0, \forall i \neq j \end{cases}$$

$$\mathbf{e}_2^T \mathbf{S} = a_1 \mathbf{e}_2^T \mathbf{e}_1 + a_2 \mathbf{e}_2^T \mathbf{e}_2 + \ldots + a_N \mathbf{e}_2^T \mathbf{e}_N = a_2$$

17. Ортогональные переносчики. Разделение ортогональных переносчиков

18. Разделение линейно-независимых сигналов.

Разделение линейно-независимых сигналов

$$\begin{split} & \mathbf{b}_{1} = c_{11}\mathbf{e}_{1} + c_{12}\mathbf{e}_{2} + \ldots + c_{1N}\mathbf{e}_{N} \\ & \mathbf{b}_{2} = c_{21}\mathbf{e}_{1} + c_{22}\mathbf{e}_{2} + \ldots + c_{2N}\mathbf{e}_{N} \\ & \vdots \\ & \mathbf{b}_{N} = c_{N1}\mathbf{e}_{1} + c_{N2}\mathbf{e}_{2} + \ldots + c_{NN}\mathbf{e}_{N} \\ & \mathbf{b}_{i}^{T}\mathbf{e}_{j} = \begin{cases} 1, \ \forall i = j \\ 0, \ \forall i \neq j \end{cases} \quad i, j = 1 \ldots N \\ & \mathbf{b}_{1} = c_{11}\mathbf{e}_{1} + c_{12}\mathbf{e}_{2} + \ldots + c_{1N}\mathbf{e}_{N} \\ & \mathbf{b}_{2} = c_{21}\mathbf{e}_{1} + c_{22}\mathbf{e}_{2} + \ldots + c_{2N}\mathbf{e}_{N} \\ & \vdots \\ & \mathbf{b}_{N} = c_{N1}\mathbf{e}_{1} + c_{N2}\mathbf{e}_{2} + \ldots + c_{NN}\mathbf{e}_{N} \end{split}$$

$$\begin{aligned} \mathbf{e}_1 &= \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{e}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} & \mathbf{b}_1 = c_{11} \mathbf{e}_1 + c_{12} \mathbf{e}_2 \\ \mathbf{b}_2 = c_{21} \mathbf{e}_1 + c_{22} \mathbf{e}_2 \end{aligned}$$

$$\Rightarrow \mathbf{b}_1^T \mathbf{e}_1 = 1 \quad \mathbf{b}_1^T \mathbf{e}_2 = 0 \quad \mathbf{b}_2^T \mathbf{e}_1 = 0 \quad \mathbf{b}_2^T \mathbf{e}_2 = 1$$

$$\begin{cases} \mathbf{b}_1^T \mathbf{e}_1 = c_{11} \mathbf{e}_1^T \mathbf{e}_1 + c_{12} \mathbf{e}_2^T \mathbf{e}_1 = c_{11} 5 + c_{12} 6 = 1 \\ \mathbf{b}_1^T \mathbf{e}_2 = c_{11} \mathbf{e}_1^T \mathbf{e}_2 + c_{12} \mathbf{e}_2^T \mathbf{e}_2 = c_{11} 6 + c_{12} 8 = 0 \end{cases}$$

$$\begin{cases} \mathbf{b}_2^T \mathbf{e}_1 = c_{21} \mathbf{e}_1^T \mathbf{e}_1 + c_{22} \mathbf{e}_2^T \mathbf{e}_2 = c_{21} 5 + c_{22} 6 = 0 \\ \mathbf{b}_2^T \mathbf{e}_2 = c_{22} \mathbf{e}_1^T \mathbf{e}_1 + c_{22} \mathbf{e}_2^T \mathbf{e}_2 = c_{21} 6 + c_{22} 8 = 1 \end{cases}$$

$$c_{11} = -0.125 \quad c_{12} = 0.271$$

$$c_{21} = -1.5 \quad c_{22} = 1.25$$

19. Разделение сигналов с конечной энергией.

Разделение сигналов с конечной энергией

$$\int_{i\Delta t}^{(i+1)\Delta t} e_n^2(t)dt < \infty, \quad n = 1...N$$

$$\int_{i\Delta t}^{(i+1)\Delta t} e_i(t)e_j(t)dt = \begin{cases} 1, \forall i = j \\ 0, \forall i \neq j \end{cases} \quad i, j = 1..N$$

$$S(t) = a_1e_1(t) + a_2e_2(t) + ... + a_Ne_N(t) = \sum_{n=1}^N a_ne_n(t) = \mathbf{A}^T \mathbf{E}(t)$$

$$\mathbf{A} = \int_{i\Delta t}^{(i+1)\Delta t} s(t)\mathbf{E}(t)dt$$

$$a_n = \int_{i\Delta t}^{(i+1)\Delta t} s(t)e_n(t)dt, \quad n = 1...N$$

20. Разделение сигналов с конечной мощностью.

Разделение сигналов с конечной мощностью

$$\int_{i\Delta t}^{(i+1)\Delta t} g(t,\tau)e_i(\tau)e_j(\tau)d\tau = \begin{cases} const, \forall i=j\\ 0, \forall i\neq j \end{cases} i, j=1..N$$

$$g(\tau) = 2G_0\Delta f \frac{\sin(\Delta\omega\tau)}{\Delta\omega\tau} g(\tau) \Leftrightarrow G(\omega) = \begin{cases} G_0, 0 \le |\omega| \le \Delta\omega\\ 0, |\omega| > \Delta\omega \end{cases}$$

$$S(t) = \sum_{n=1}^{N} a_n(t)e_n(t) = \mathbf{A}^T(t)\mathbf{E}(t)$$

$$\mathbf{A}(t) = \int_{-\infty}^{\infty} \mathbf{E}(\tau)s(\tau)g(t-\tau)d\tau \ a_n(t) = \int_{-\infty}^{\infty} e_n(\tau)s(\tau)g(t-\tau)d\tau$$

Генции ОПТСО

21. Система передачи с ЧРК.

Аналоговые системы передачи с частотным разделением каналов

Структурная схема МСП с ЧРК

22. Метод амплитудной модуляции с передачей одной боковой полосы частот

$$a_n(t) = A_n \cos(2 \pi f_c t)$$

$$e_n(t) = E_n \cos(2\pi f_n t)$$

$$s_n(t) = E_n \left[1 + \frac{A_n}{E_n} \cos(2\pi f_n t) \right] \cos(2\pi f_n t) = E_n (1 + ma_n(t)) \cos(2\pi f_n t) =$$

$$= E_n \cos(2\pi f_n t) + 0.5m E_n \left[\cos[2\pi (f_n + f_c)t] + \cos[2\pi (f_n - f_c)t]\right]$$

$$s_{\Sigma}(t) = \sum_{n=1}^{N} s_n(t)$$

Спектр модулированного сигнала

Виды амплитудной модуляции

Грация ОПТСС

- 1. АМ-ДБП-Н
- 2. АМ-ДБП
- 3. АМ-ОБП-Н
- 4. АМ-ОБП
- 5. AM-ЧП

27. Системы передачи с временным разделением каналов

Системы передачи с временным разделением каналов
$$T_{\mathbf{x}} = \frac{1}{F_{\mathbf{x}}} \leq \frac{1}{2F_{\mathbf{x}}}$$

$$g(t) = \frac{\sin(2\pi F_{\mathbf{x}}t)}{2\pi F_{\mathbf{x}}t}$$

$$a(t) = \sum_{i=-\infty}^{\infty} a(iT_{\mathbf{x}})g(t-iT_{\mathbf{x}}) = \sum_{i=-\infty}^{\infty} a(iT_{\mathbf{x}})\frac{\sin 2\pi F_{\mathbf{x}}(t-iT_{\mathbf{x}})}{2\pi F_{\mathbf{x}}(t-iT_{\mathbf{x}})}$$

$$s_{n}(t) = a_{n}(t)e_{n}(t) = a_{n}(t)\sum_{k}e_{n}(t-kT_{\mathbf{x}})$$

$$s_{2}(t) = \sum_{n=1}^{N} s_{n}(t) = \sum_{n=1}^{N} a_{n}(t)\sum_{k}e_{n}(t-kT_{\mathbf{x}}-(n-1)\tau)$$

28. Амплитудно-импульсная модуляция первого рода

Амплитудно-импульсная модуляция 1-го рода

$$a(t) = A_0 + A_1 \cos(2\pi f_c t) = A_0 + A_1 \cos(\Omega t)$$

$$s_{\text{trans}}(t) = a(t)e(t) = a(t)\sum e_0(t - kT)$$

$$\begin{split} s_{\text{AVIM-I}}(t) &= a(t)e(t) = a(t)\sum_{k}e_0(t-kT_{\text{m}}) \\ s_{\text{AVIM-I}}(t) &= (A_0 + A_1\cos\Omega t)\sum_{k}e_0(t-kT_{\text{m}}) \end{split}$$

$$\begin{split} &\sum_{k} e_{0}(t-kT_{\mathrm{m}}) = \frac{2}{T_{\mathrm{m}}} \int_{0}^{\frac{T_{\mathrm{m}}}{2}} e_{0}(t)dt + \sum_{n=1}^{\infty} \left[\frac{4}{T_{\mathrm{m}}} \int_{0}^{\frac{T_{\mathrm{m}}}{2}} e_{0}(t) \cos n\Omega_{\mathrm{m}} t dt \right] \cos n\Omega_{\mathrm{m}} t \\ &\sum_{k} e_{0}(t-kT_{\mathrm{m}}) = f_{\mathrm{m}} E_{0}(0) + 2 f_{\mathrm{m}} \sum_{n=1}^{\infty} E_{0}(n\Omega_{\mathrm{m}}) \cos n\Omega_{\mathrm{m}} t \\ &S_{AHM-1}(t) = A_{0} f_{\mathrm{m}} \left\{ E_{0}(0) + 2 \sum_{n=1}^{\infty} E_{0}(n\Omega_{\mathrm{m}}) \cos n\Omega_{\mathrm{m}} t \right\} + \\ &+ A_{1} f_{\mathrm{m}} \left\{ E_{0}(0) \cos \Omega t + \sum_{n=1}^{\infty} E_{0}(n\Omega_{\mathrm{m}}) \left[\cos(n\Omega_{\mathrm{m}} - \Omega) t + \cos(n\Omega_{\mathrm{m}} + \Omega) t \right] \right\} \end{split}$$

Спектр сигнала АИМ-1

$$S_{\text{AHM-1}}(\Omega) = \frac{U\tau}{T_{\text{g}}}S(\Omega) + \frac{2U\tau}{T_{\text{g}}}\sum_{k=1}^{\infty} \frac{\sin\left(\frac{k\Omega_{\text{g}}\tau}{2}\right)}{\left(\frac{k\Omega_{\text{g}}\tau}{2}\right)}S(k\Omega_{\text{g}}\pm\Omega)$$

Гаим-1(f) $2A_0f_{\pi}E_0(f)$ $2A_1f_{\pi}E_0(f)$ 0 f_{π} $2f_{\pi}$ $3f_{\pi}$ $4f_{\pi}$ $5f_{\pi}$

 $s_{\text{bbix}}(t) = f_{\text{n}} E_0(0) [A_0 + A_1 \cos(ft)]$ $f_{\text{n}} E_0(0) < 1$

29. Амплитудно-импульсная модуляция второго рода

Амплитудно-импульсная модуляция 2-го рода

$$\begin{split} s_{AYM-2}(t) &= \sum_{k} a(kT_{\text{m}}) e_0(t-kT_{\text{m}}) \\ s_{AHM-2}(t) &= \sum_{k} A_1 \cos \Omega kT_{\text{m}} \cdot e_0(t-kT_{\text{m}}) \\ e_0(t-kT_{\text{m}}) &= \frac{1}{2\pi} \int_{0}^{+\infty} E_0(\omega) e^{-i\omega kT_{\text{m}}} e^{i\omega t} d\omega \end{split}$$

$$\begin{split} s_{\mathit{AHM}-2}(t) &= A_1 \int\limits_{-\infty}^{+\infty} E_0(\omega) e^{\mathrm{i} s t} \, \frac{f_{\pi}}{2} \Bigg[\sum_n \delta \bigl(\omega - \Omega - n \Omega_{\pi} \bigr) + \sum_n \delta \bigl(\omega + \Omega - n \Omega_{\pi} \bigr) \Bigg] d\omega = \\ &= A_1 \frac{f_{\pi}}{2} \sum_n \Big[E_0 \bigl(n \Omega_{\pi} - \Omega \bigr) e^{i(n \Omega_2 - \Omega) t} + E_0 \bigl(n \Omega_{\pi} + \Omega \bigr) e^{i(n \Omega_2 + \Omega) t} \Big]. \\ s_{\mathit{AHM}-2}(t) &= A_1 f_{\pi} \Bigg[E_0 \bigl(\Omega \bigr) \cos \Omega t + \sum_{k=1}^{\infty} E_0 \bigl(k \Omega_{\pi} - \Omega \bigr) \cos (k \Omega_{\pi} - \Omega) t + \\ &\quad + \sum_{k=1}^{\infty} E_0 \bigl(k \Omega_{\pi} + \Omega \bigr) \cos \bigl(k \Omega_{\pi} + \Omega \bigr) t \Bigg]. \\ E_0 \bigl(-\omega \bigr) &= E_0 \bigl(\omega \bigr) &\qquad \cos x = \frac{e^{i x} + e^{-i x}}{2} \\ s_{\mathit{AHM}-2}(t) &= A_1 f_{\pi} \Bigg[E_0 \bigl(\Omega \bigr) \cos \Omega t + \sum_{k=1}^{\infty} E_0 \bigl(k \Omega_{\pi} - \Omega \bigr) \cos \bigl(k \Omega_{\pi} - \Omega \bigr) t + \\ &\quad + \sum_{k=1}^{\infty} E_0 \bigl(k \Omega_{\pi} + \Omega \bigr) \cos \bigl(k \Omega_{\pi} + \Omega \bigr) t \Bigg] \end{split}$$

$$\begin{split} \sum_{k} \cos \Omega k T_{\mathbf{n}} \cdot e^{-i\omega k T_{\mathbf{n}}} &= \sum_{k} \frac{1}{2} \left[e^{i k T_{\mathbf{n}}} + e^{-i \Omega k T_{\mathbf{n}}} \right] e^{-i\omega k T_{\mathbf{n}}} = \\ &= 1 + \frac{1}{2} \sum_{k=1}^{\infty} \left(e^{i(\omega - \Omega)k T_{\mathbf{n}}} + e^{-i(\omega - \Omega)k T_{\mathbf{n}}} + e^{-i(\omega + \Omega)k T_{\mathbf{n}}} \right) = \\ &= \left\{ \frac{1}{2} + \sum_{k=1}^{\infty} \cos(\omega - \Omega) k T_{\mathbf{n}} \right\} + \left\{ \frac{1}{2} + \sum_{k=1}^{\infty} \cos(\omega + \Omega) k T_{\mathbf{n}} \right\}. \\ &\left\{ \frac{1}{2} + \sum_{k=1}^{\infty} \cos z k x \right\} = \frac{\pi}{z} \sum_{n} \delta \left(x - n \frac{2\pi}{z} \right) \\ &\sum_{k} \cos \Omega k T_{\mathbf{n}} \cdot e^{-i\omega k T_{\mathbf{n}}} = \frac{\Omega_{\mathbf{n}}}{2} \left[\sum_{n} \delta \left(\omega - \Omega - n \Omega_{\mathbf{n}} \right) + \sum_{n} \delta \left(\omega + \Omega - n \Omega_{\phi} \right) \right] \\ &s_{AHM-2}(t) = A_{\mathbf{n}} f_{\mathbf{n}} \left[E_{0}(\Omega) \cos \Omega t + \sum_{k=1}^{\infty} E_{0}(k \Omega_{\mathbf{n}} - \Omega) \cos(k \Omega_{\mathbf{n}} - \Omega) t + \right. \\ &\left. + \sum_{k=1}^{\infty} E_{0}(k \Omega_{\mathbf{n}} + \Omega) \cos(k \Omega_{\mathbf{n}} + \Omega) t \right]. \end{split}$$

Спектр сигнала АИМ-2 $S_{\text{AИМ-2}}(f) = \frac{U\tau}{T_{\text{m}}} \cdot \frac{\sin\left(\frac{f\tau}{2}\right)}{\left(\frac{f\tau}{2}\right)} \left[S(f) + 2\sum_{k=1}^{\infty} S(kf_{\text{m}} \pm f)\right]$ Sahm-2(f) $2A_{0}f_{\pi}G_{\text{m}}(f)$ $2A_{1}f_{\pi}G_{\text{m}}(f)$ $2A_{1}f_{\pi}G_{\text{m}}(f)$ Демодулятор сигнала АИМ-2 $\frac{1}{\Omega_{\text{m}}E_{0}(\Omega)}$

30. Дискретизация полосовых сигналов.

Дискретизация полосовых сигналов

$$nf_{\pi} - f_{H} + \Delta f_{\phi} \le f_{H}$$
 $(n+1)f_{\pi} - f_{E} \ge f_{E} + \Delta f_{\phi},$ (39)

$$\frac{2f_{\rm g} + \Delta f_{\rm \phi}}{(n+1)} \le f_{\rm g} \le \frac{2f_{\rm g} - \Delta f_{\rm \phi}}{n} \tag{40}$$

31. Квантование сигналов по уровню.

Квантование сигнала по уровню

Квантующее устройство для передачи двухполярных сигналов

32. Мощность шумов квантования.

Мощность шумов квантования

$$\xi_{\text{NE},m} = \lim_{T \to \infty} \int_{0}^{T} \varepsilon_{\text{NE}}^{2}(t)dt = \lim_{T \to \infty} \int_{0}^{T} \sum_{m=0}^{M} \varepsilon_{\text{NE},m}^{2}(t)dt = \sum_{m=0}^{M} \xi_{\text{NE},m} \tag{41}$$

$$\xi_{\text{NE},m} = \lim_{T \to \infty} \frac{1}{T} \left[\int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} \int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} (t)dt + \int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} \varepsilon_{\text{NE},m}^{2}(t)dt + \dots + \int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} (t)dt \right] = (42)$$

$$= \lim_{T \to \infty} \frac{\Delta t_{m,a} + \dots + \Delta t_{m,x}}{T} \frac{1}{\Delta t_{m,a}} \int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} \varepsilon_{\text{NE},m}^{2}(t)dt = p_{a} \frac{1}{\Delta t_{m,a}} \int_{-\Delta t_{m,x}/2}^{\Delta t_{m,x}/2} \left(\frac{\Delta_{m}}{\Delta t_{m,a}}\right)^{2} t^{2}dt$$

$$\xi_{\text{NE},m} = \int_{U_{m}-\Delta/2}^{U_{m}+\Delta/2} \varepsilon_{\text{NE},m}^{2}(U)\omega(U)dU \cong \omega(U_{m}) \int_{U_{m}-\Delta/2}^{U_{m}+\Delta/2} (U - U_{m})^{2}dU \cong$$

$$= \omega(U_{m}) \int_{\Delta/2}^{\Delta/2} z^{2}dz = \omega(U_{m}) \frac{\Delta_{m}^{2}}{12} = p_{m} \frac{\Delta_{m}^{2}}{12}$$

$$\xi_{\text{NE}} = \sum_{m=1}^{M} \omega(U_{m}) \frac{\Delta_{m}^{3}}{12} = \sum_{m=1}^{M} p_{m} \frac{\Delta_{m}^{2}}{12} = \frac{\Delta^{2}}{12}$$

$$(43)$$

$$\sum_{m=1}^{M} p_{m} \cong \int_{U_{m}}^{U_{m}} \omega(U_{m})dU = 1$$

33. Выбор числа уровней квантования.

Выбор числа уровней квантования

$$p_{\text{срТНОУ}} = -13 \div 15 \text{ дБ}, \ \sigma = 4,5 \div 5,5 \text{ дБ}$$
 $p_6 = p_{\text{ср ТНОУ}} + 3\sigma$

$$U_{\text{пик}} = U_0 \text{dec} (0,05 p_{\text{ср}} + k_{\text{п}}),$$
 $k_{\text{n}} = 16 \div 18 \text{ дБ}$

$$U_{\text{orp}} = k\sigma_{\text{max}}^2$$
(46)

Для биполярных сигналов

$$M = \frac{2|U_{\text{orp}}|}{\sigma} + 1 \cong \frac{2|U_{\text{orp}}|}{\sigma} \quad P_{\text{NB}} = \frac{1}{3} \frac{U_{\text{orp}}^2}{M^2} = \frac{1}{3} \frac{k^2 \sigma_{\text{max}}^2}{M^2} \quad \frac{P_{\text{c}}}{P_{\text{NB}}} = 12 \frac{M^2 \sigma_{\text{c}}^2}{k^2 \sigma_{\text{max}}^2} \quad (47)$$

Для униполярных сигналов

$$M = \frac{U_{\text{orp}}}{\sigma} \qquad P_{\text{KE}} = \frac{1}{12} \frac{U_{\text{orp}}^2}{M^2} = \frac{1}{12} \frac{k^2 \sigma_{\text{max}}^2}{M^2} \qquad \frac{P_{\text{c}}}{P_{\text{KE}}} = 3 \frac{M^2 \sigma_{\text{c}}^2}{k^2 \sigma_{\text{max}}^2}$$
(48)

34. Защищенность сигнала от шумов квантования.

Помехозащищенность сигнала от шумов квантования

$$A_{\rm nz} = 10 \lg 3 + 20 \lg \frac{M}{k} + 20 \lg \frac{\sigma_c}{\sigma_{\rm max}}$$
 (49)

$$A_{\text{nz}} = 10 \lg 12 + 20 \lg \frac{M}{k} + 20 \lg \frac{\sigma_{e}}{\sigma_{\text{max}}}$$
 (50)

$$K = G_{\text{max}}$$

$$M = 2^{m} \quad A_{xx} = 6m - 20 \lg k + 20 \lg \frac{G_{c}}{G_{\text{max}}} + 4.8$$

$$A_{xx} = 6m - 20 \lg k + 20 \lg \frac{G_{c}}{G_{\text{max}}} + 10.8$$
(52)

$$A_{xx} = 6m - 20 \lg k + 20 \lg \frac{\sigma_c}{\sigma_{max}} + 10.8$$
 (52)

35.Цифро-аналоговый преобразователь с коммутацией напряжений

Цифро-аналоговый преобразователь

ЦАП с коммутацией напряжений

36.Цифро-аналоговый преобразователь с коммутацией токов

ЦАП с коммутацией токов

37. Аналого-цифровой преобразователь с единичными приближениями

АЦП с единичными приближений

38. Аналого-цифровой преобразователь последовательных приближений

АЦП последовательных приближений

39. Аналого-цифровой преобразователь непосредственного сравнения

АЦП непосредственного сравнения

