Properties of inner products

LATEST SUBMISSION GRADE

100%

1.	The function	1 / 1 poi
	$eta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T egin{bmatrix} 2 & -1 \ -1 & 1 \end{bmatrix} \mathbf{y}$	
	is	
	not an inner product	
	an inner product	
	Correct It's symmetric, bilinear and positive definite. Therefore, it is a valid inner product.	
	✓ symmetric	
	\checkmark Correct Yes: $eta(\mathbf{x},\mathbf{y})=eta(\mathbf{y},\mathbf{x})$	
	positive definite	
	\checkmark Correct Yes, the matrix has only positive eigenvalues and $eta(\mathbf{x},\mathbf{x})>0$ for all $\mathbf{x}\neq0$ and $eta(\mathbf{x},\mathbf{x})=0\iff \mathbf{x}=0$	
	not bilinear	
	not positive definite	
	not symmetric	
	☑ bilinear	
	✓ Correct Yes:	

- β is symmetric. Therefore, we only need to show linearity in one argument.
- For any $\lambda \in \mathbb{R}$ it holds that $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.

$$eta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T egin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} \mathbf{y}$$

is

- not symmetric
- symmetric

✓ Correct

Correct: $eta(\mathbf{x},\mathbf{y}) = eta(\mathbf{y},\mathbf{x})$

- not bilinear
- ✓ bilinear

✓ Correct

Correct

- eta is symmetric. Therefore, we only need to show linearity in one argument.
- $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.
- positive definite
- not positive definite

✓ Correct

With $x=[1,1]^T$ we get $\beta(\mathbf{x},\mathbf{x})=0$. Therefore β is not positive definite.

not an inner product

✓ Correct

Correct: Since $\boldsymbol{\beta}$ is not positive definite, it cannot be an inner product.

an inner product

$eta(\mathbf{x},\mathbf{y}) = \mathbf{x}^T$	2	1	
$\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^3$	-1	1	У

İS

symmetric

not symmetric

✓ Correct

Correct: If we take $\mathbf{x}=[1,1]^T$ and $\mathbf{y}=[2,-1]^T$ then $\beta(\mathbf{x},\mathbf{y})=0$ but $\beta(\mathbf{y},\mathbf{x})=6$. Therefore, β is not symmetric.

bilinear

✓ Correct

Correct.

not bilinear

an inner product

not an inner product

✓ Correct

Correct: Symmetry is violated.

4. The function

$\beta(\mathbf{x}, \mathbf{y})$	$=\mathbf{x}^T$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	у
		10	- 1	

İS

- not an inner product
- not positive definite
- an inner product

✓ Correct

It is the dot product, which we know already. Therefore, it is also an inner product.

- not symmetric
- symmetric

✓ Correct

It is the dot product, which we know already. Therefore, it is symmetric.

- not bilinear
- positive definite

✓ Correct

It is the dot product, which we know already. Therefore, it is positive definite.

bilinear

✓ Correct

It is the dot product, which we know already. Therefore, it is positive bilinear.

5. For any two vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^2$ write a short piece of code that defines a valid inner product.

```
1 / 1 point
```

```
import numpy as np
   3
       def dot(a, b):
   4
         """Compute dot product between a and b.
   5
         Args:
         a, b: (2,) ndarray as R^2 vectors
   7
   8
         a number which is the dot product between a, b
   9
  10
  11
  12
         dot_product = np.inner(a, b)
  13
  14
       return dot_product
  15
  16 # Test your code before you submit.
  17 a = np.array([1,0])

18 b = np.array([0,1])

19 print(dot(a,b))
                                                                                                     Run
                                                                                                    Reset
0
```

```
✓ Correct

Good job!
```