

CS-2001 **Data Structures**

Spring 2022 **Binary Tree and Tree ADT**

Mr. Muhammad Yousaf

National University of Computer and Emerging Sciences, Faisalabad, Pakistan.

Binary Tree

- In a binary tree each node has at most two children
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left sub-tree
 - Right sub-tree

Binary Tree: Full **Node**

- A full node is a node where both the left and right sub-trees are non-empty trees
- (OR) if it has exactly two child nodes

Full Binary Tree

- A full binary tree is where each node is:
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

Perfect Binary Tree

- A perfect binary tree of height h is a binary tree where
 - All leaf nodes have the same depth or level L
 - All other nodes are full-nodes

Binary Tree: Properties (3)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

Binary Tree: Properties (4)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect binary tree with n nodes has **height** $\log_2(n + 1) 1$

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = \log_2(n + 1)$
 $\Rightarrow h = \log_2(n + 1) - 1$

Proof – Total Nodes of a Perfect Binary Tree

Geometric Progression (finite)

$$- a, ar, ar^2, ar^3, ar^4, ..., ar^{n-1}$$

Sum of Geometric Progression

-
$$Sn = a + ar + ar^{2} + ar^{3} + ar^{4} + \dots + ar^{n-1}$$

- $Sn = a \left[\frac{(r^{n}-1)}{r-1} \right]$ if r>1 and r!=1

- Total no. of nodes = sum of internal + external nodes
- Internal nodes = $2^h 1$
- External nodes = 2^h
- Total nodes = $2^h 1 + 2^h$ = $2^h + 2^h - 1$; let say; $a = 2^h$ = a + a - 1= 2a + 1= $2 \cdot 2^{h+1} - 1$; replacing a with 2^h = $2^{h+1} - 1$

Proof – Total Nodes of a Perfect Binary Tree

Sum of finite Geometric Progression

$$-Sn = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1} = a \left[\frac{(r^{n-1})}{r-1} \right] - \dots - Eq. (1)$$

• Series we have in perfect binary trees

$$-$$
 Total nodes = $2^0 + 2^1 + 2^2 + 2^3 + 2^4 \dots + 2^h$

-
$$Total\ nodes = 1.2^0 + 1.2^1 + 1.2^2 + 1.2^3 + 1.2^4 + 1.2^h$$

$$- a = 1, r = 2$$
 and

$$- n-1 = h OR n=h+1$$

Putting above values in in the formula of Eq.(1)

- Total nodes =
$$a \left[\frac{(r^{n}-1)}{r-1} \right]$$

-
$$Total\ nodes = 1 \cdot \left[\frac{(2^{h+1}-1)}{2-1}\right]$$

-
$$Total\ nodes = 2^{h+1}-1$$

Binary Tree: Properties (4)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect binary tree with n nodes has height $log_2(n + 1) 1$
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h+1} 1

n-ary Trees

- What are n-ary trees?
- Strict n-ary trees
- Height vs Nodes?
- Internal vs External nodes

3-ary tree VS 4-ary trees

• 3-ary tree: {0,1,2,3}

• 4-ary tree: {0,1,2,3,4}

Strict/Full 3-ary Trees

- Height given, what will be the no. of nodes?
- Min nodes: 3x3+1 = 7
- Min nodes: base*height+1 OR m*h+1

• Max nodes:
$$3^0+3^1+3^2+3^3.....3n = \frac{m^{h+1}-1}{m-1}$$

Strict/Full 3-ary Trees

- Nodes given, what will be the height?
- Max height:

$$- n = m*h+1 => h = (n-1)/m$$

• Min height:

$$- n = \frac{m^{n+1}-1}{m-1}$$

- Find h??

[Almost] Complete Binary tree

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - There are 2^d nodes at depth d for d = 1,2,...,h-1
 ➤ Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth hare as far left as possible

Missing node towards the right

Complete Binary Tree

- Complete binary tree of height h is a binary tree in which
 - There are 2^d nodes at depth d for d = 1,2,...,h-1
 ➤ Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth h are as far left as possible (Formal ?)

Missing node towards the right

Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h-1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

Full vs. Complete Binary Tree

Complete Binary Trees...

What is the height and number of nodes for each tree?

Complete Binary Tree: Properties

- Total number of nodes n are between
 - At least: perfect binary tree of height h-1 + 1 (i.e., 1 node in the next level) \rightarrow 2^h 1 + 1= 2^h nodes
 - At most: perfect binary tree of height h, i.e., 2^{h+1} -1 nodes
- Height h is equal to [Log₂(n)]

Balanced Binary Tree

Balanced binary tree

- For each node, the difference in height of the right and left sub-trees is no more than one
- Both Perfect binary trees and complete binary trees are balanced as well

Completely balance binary tree

- Left and right sub-trees of every node have the same height
- A perfect binary tree is completely balanced

Tree ADT

Binary Tree Storage

- Contiguous storage
- Linked-list based storage

Contiguous Storage

Array Storage Example (1)

[1]	Α
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Н
[9]	I

Array Storage Example (1)

Element	Index	Left-Child	Right-Child	[1]	Α
Α	1	2	3	[2]	В
В	2	2*2	2*2+1	[3]	С
С	3	2*3	2*3+1	[4]	D
				[5]	Е
				[6]	F
Node	i	2*i	2*i+1	[7]	G
				[8]	Н
Parent $=\frac{n}{2}$				[9]	I

Array Storage (1)

- We can store a binary tree as an array
- Traverse tree in breadth-first order, placing the entries into array
 - Storage of elements (i.e., objects/data) starts from root node
 - Nodes at each level of the tree are stored left to right

Array Storage (2)

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in $k \div 2$

Array Storage Example (3)

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively

Array Storage Example (4)

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively
 - Its parent is node 9 with index 5/2 = 2

Array Storage (3)

- Why array index is not started from 0
 - In C++, this simplifies the calculations

```
parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;
```


Array Storage Example (2)

• Unused nodes in tree represented by a predefined bit pattern

[1]	Α
[2]	В
[3]	-
[4]	C
[5]	_
[6]	_
[7]	_
[8]	D
[9]	_
	•••
[16]	Е

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - Because there is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K? double

Linked List Storage

As Linked List Structure (1)

- We can implement a binary tree by using a struct which stores:
 - An element
 - A left child pointer (pointer to first child)
 - A right child pointer (pointer to second child)

```
struct Node{
   Type value;
   Node *LeftChild,*RightChild;
}*root;
```

- The root pointer points to the root node
 - Follow pointers to find every other element in the tree
- Leaf nodes have LeftChild and RightChild pointers set to NULL

As Linked List Structure: Example

Tree Traversal

Tree Traversal

- To traverse (or walk) the tree is to visit (printing or manipulating) each node in the tree exactly once
 - Traversal must start at the root node
 - > There is a pointer to the root node of the binary tree
- Two types of traversals
 - Breadth-First Traversal
 - Depth-First Traversal

Breadth-First Traversal (For Arbitrary Trees)

- All nodes at a given depth d are traversed before nodes at d+1
- Can be implemented using a queue

Order: ABHCDGIEFJK

Breadth-First Traversal – Implementation

- Create a queue and push the root node onto the queue
- While the queue is not empty:
 - Enqueue all of its children of the front node onto the queue
 - Dequeue the front node

Depth-First Traversal (For Arbitrary Trees)

- Traverse as much as possible along the branch of each child before going to the next sibling
 - Nodes along one branch of the tree are traversed before backtracking
- Each node could be approached multiple times in such a scheme
 - The first time the node is approached (before any children)
 - The last time it is approached (after all children)

Depth-First Tree Traversal (Binary Trees)

- For each node in a binary tree, there are three choices
 - Visit the node first
 - Visit the node after left subtree
 - Visit the node after both the subtrees
- These choices lead to three commonly used traversals
 - Preorder traversal: visit Root (Left subtree) (Right subtree)
 - Inorder traversal: (Left subtree) visit Root (Right subtree)
 - Postorder traversal: (Left subtree) (Right subtree) visit Root

Inorder Traversal

- Algorithm
 - 1. Traverse the left subtree in inorder
 - 2. Visit the root
 - 3. Traverse the right subtree in inorder

A, B, C, D, E, F, G, H, I, J

Inorder Traversal

Algorithm

- Traverse the left subtree in inorder
- 2. Visit the root
- 3. Traverse the right subtree in inorder

Example

- Left + Right
- [Left * Right] + [Left + Right]
- (A * B) + [(Left * Right) + E)
- (A * B) + [(C * D) + E]

Inorder Traversal – Implementation

```
void inorder(Node *p) const
   if (p != NULL)
      inorder(p->leftChild);
      cout << p->info << " ";</pre>
      inorder(p->rightChild);
void main () {
   inorder (root);
```

Preorder Traversal

Algorithm

- Visit the node
- 2. Traverse the left subtree
- 3. Traverse the right subtree

Example

- + Left Right
- + [* Left Right] [+ Left Right]
- + (* AB) [+ * Left Right E]
- +*AB + *CDE

Preorder Traversal – Implementation

```
void preorder(Node *p) const
   if (p != NULL)
      cout << p->info << " ";</pre>
      preorder(p->leftChild);
      preorder(p->rightChild);
void main () {
   preorder (root);
```

Postorder Traversal

Algorithm

- Traverse the left subtree
- 2. Traverse the right subtree
- 3. Visit the node

Example

- Left Right +
- [Left Right *] [Left Right+] +
- (AB*) [Left Right * E +]+
- (AB*) [C D * E +]+
- AB*CD*E++

Postorder Traversal – Implementation

```
void postorder(Node *p) const
   if (p != NULL)
      postorder(p->leftChild);
      postorder(p->rightChild);
      cout << p->info << " ";</pre>
void main () {
   postorder (root);
```

Example: Printing a Directory Hierarchy

- Consider the directory structure presented on the left
 - Which traversal should be used?


```
/
usr/
bin/
local/
var/
adm/
cron/
log/
```

Any Question So Far?

