Banasthali Vidyapith

Department of Computer Science

Computer Organization and Architecture

B.Tech.(CS-A and B), III Semester, Assignment-I, 2023

- 1. Do the following (Arithmetic operations):
 - (a) The signed decimal number +75 equal to —— in 8 bit 2's complement.
 - (b) The 2's complement number 10000000 is equal to—— in signed decimal.
 - (c) The number 01110000 is equal to— — in signed decimal.
 - (d) Subtract $(10000)_2$ from $(11010)_2$ using 1's complement.
 - (e) Subtract $(1010100)_2$ from $(1010100)_2$ using 2's complement.
- 2. Do following arithmetic operations using 7-bit 2's complement method:

(a)
$$(+23)+(+46)$$
 (b) $(+23)+(-46)$ (c) $(-23)+(-46)$ (d) $(-23)+(+46)$

- 3. Design the XOR Gate using a) only NAND gate b) Only NOR gate.
- 4. Simplify the following Boolean expression to a minimum number of literals.

a)
$$F1=(BC'+A'D) (AB'+CD')$$
 b) $F2=xy+x(wz+wz')$

- 5. Express the complement of the following functions in the sum of min-terms: $a)F(A,B,C,D) = \sum_{x} (0,2,6,11,13,14)$ $b)F(x,y,z) = \prod_{x} (0,1,2,3,4,6)$
- 6. Determine the Canonical SOP, POS, minimal SOP, and POS expression for the following truth table. Also draw the logic diagram for each of them.

A (Input)	0	0	0	0	1	1	1	1
B (Input)	0	0	1	1	0	0	1	1
C (Input)	0	1	0	1	0	1	0	1
Y (Output)	0	1	0	1	0	1	0	0

- 7. Find the minimal SOP and POS expression of the following using K-map.

 - a) $F = \sum m(1,5,6,12,13,14) + \sum d(2,4)$ b) $F = \sum m(1,3,5,7,9,15) + \sum d(4,6,12,13)$
 - c) $F(A, B, C) = \sum m(1, 2, 5, 7) + \sum d(0, 4, 6)$
 - d) $F(A, B, C) = \prod (0, 3, 6, 7)$
- 8. Design a Full adder using 3x8 Decoder.
- 9. Implement 16x1 MUX using 8x1 and 2x1 MUX.
- 10. Draw a NAND logic diagram that implements the complement of the following function: $F(A, B, C, D) = \sum (0, 1, 2, 3, 4, 8, 9, 12)$
- 11. Implement the following Boolean function using a) 16:1 MUX b) 8:1 MUX c) 4:1 MUX d) 2:1 MUX $F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$