PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-163616

(43)Date of publication of application: 18.06.1999

(51)Int.CI.

H01Q 3/08 H01Q 3/02 H01Q 3/24 H04B 1/38

(21)Application number: 09-328309

-328309

(71)Applicant :

HITACHI DENSHI LTD

(22)Date of filing:

28.11.1997

(72)Inventor:

YAHAGI KAZUHIKO MIYAGAWA AKIHISA

(54) ANTENNA CONTROL SYSTEM

(57)Abstract:

efficiency and to secure a communication distance in actual service by moving, in response to a signal received from a sensor part, the position of an antenna with respect to a device toward a place free from influence by obstacles such as a human body, etc. SOLUTION: A radio unit 1 has sensor parts 3 to 6 to detect obstacles approaching the unit 1, and signals of these parts 3 to 6 are monitored by a microcomputer 7. The microcomputer 7 determines a direction where an obstacle is approaching by the signals sent from the parts 3 to 6 and then allows an antenna position control part 8 to move the position of an antenna 2 with respect to a device to a place free from influence caused by obstacles such as a human body, etc. If the antenna 2 is a small plane antenna that can be stored in the unit 1, plural separate antennas 2 are prepared in the unit 1 with obstacle sensors placed near these antennas 2 respectively. Then one of antennas 2 that is not close to an obstacle is selected and electrically

PROBLEM TO BE SOLVED: To attain a nearly ideal antenna radiation

LEGAL STATUS

connected to the unit 1.

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平11-163616

(43)公開日 平成11年(1999)6月18日

(51) Int.Cl. ⁶		徽別記号	FΙ			
H01Q	3/08		H01Q	3/08		
	3/02			3/02		
	3/24			3/24		
H 0 4 B	1/38	•		1/38		
			審査蘭求	未請求	請求項の数3	OL (全 3 頁)
(21)出顧番号		特顯平9-328309	(71)出顧人	000005429		
				日立電	子株式会社	
(22) 出顧日		平成9年(1997)11月28日		東京都千代田区神田和泉町1番地		
			(72)発明者	矢萩 -	一彦	
						地 日立電子株式
					2.并工場内	
			(72)発明者			
						計地 日立電子株式
					2井工場内	

(54) 【発明の名称】 アンテナ制御方式

(57)【要約】

【課題】 アンテナに近づく障害物から遠ざけるように アンテナの向きを制御することにより、アンテナの輻射 効率をより理想状態に近づけ、実使用状態での通話距離 を確保するアンテナ制御方式を提供する。

【解決手段】 アンテナ近傍に近づく人体等の障害物を 検出するセンサ部と、機器に対するアンテナの位置を変 化させる制御部を設け、前記センサ部からの信号により 機器に対するアンテナ位置を人体等の障害物の影響を受 けない方向へ移動させるようにしたものである。

1

【特許請求の範囲】

【請求項1】 アンテナを具備する機器において、

アンテナの近傍に人体等の障害物が近づいたことを検出 するセンサ部と、機器に対するアンテナの位置を変化さ せる制御部を設け、該センサ部からの信号により機器に 対するアンテナ位置を人体等の障害物の影響を受けない 方向へ移動させるように構成したことを特徴とするアン テナ制御方式。

【請求項2】 請求項1記載のアンテナ制御方式におい て、

複数個のアンテナとその内の一つを選択し接続する構造 を設け、該センサ部からの信号により人体等の障害物の 影響を受けない位置のアンテナを選択して接続すること を特徴とするアンテナ制御方式。

【請求項3】 請求項1又は請求項2記載のアンテナ制 御方式において、アンテナを具備する機器は無線機であ ることを特徴とするアンテナ制御方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば無線機など 20 アンテナを具備する機器において、アンテナの実使用状 態における輻射効率の向上に関するものである。

[0002]

【従来の技術】従来のアンテナを具備する機器につい て、図4に示す携帯型無線機の例により説明する。無線 機1には、アンテナ2が固定接続され、送信時には高周 波出力電力がアンテナ2より送出され通信相手局側に送 られ、受信時には通信相手局側から送出された高周波信 号をアンテナ2で受けて通話が行われる。上記のような 通話が行われている時の相手局側との距離、即ち通話距 30 離は、無線機1より出力される高周波出力電力が全て損 失無しにアンテナ2から空間に輻射され、さらに相手局 側までの間に障害物が無い場合、また同様に相手局側か ら送出された高周波信号をアンテナ2で受けて損失無く 無線機1に送られた時に最大となり、確実な通話品質が 得られる。一方、アンテナ2の輻射効率は上記のような 理想状態で最大となるが、無線機をベルト等で腰に装着 した場合や肩掛けベルト等で装着した場合などの実使用 上アンテナ近傍に人体等の障害物が存在すると、その影 響によりアンテナ2と無線機1と整合がずれ、さらに近 40 傍に存在する障害物で反射、回折および吸収されアンテ ナ2の輻射効率が著しく劣化する。

【0003】図5に理想状態()と、無線機をベルト 等で腰に装着しアンテナ2が人体に密着している場合

()と、多少人体から離れている場合()のアンテ ナ輻射効率の測定例を示す。理想状態()ではほぼ正 円を描いているのに対し、アンテナ2が人体に密着して いる場合()、極端に輻射効率が劣化するとともに人 体がある方向ではさらに輻射効率が劣化している。アン

状態には及ばないが、密着している場合より輻射効率が 改善されている。以上の様に構成された従来の無線機の 実使用状態では、アンテナの輻射効率が最大となる理想 状態で使用されることはほとんど無く、使用中に無線機 の位置が移動すると無線機にアンテナが固定されている ため、何らかの障害物がアンテナに近づき影響を及ぼ し、確実な通話距離が得られなくなる恐れがある。

2

[0004]

【発明が解決しようとする課題】以上のように従来の無 10 線機では、アンテナが無線機に固定されているため無線 機の実使用状態では何らかの障害物がアンテナに近づき 影響を及ぼし、確実な通話距離が得られなくなる危険性 がある。本発明は以上の点に鑑み、このような問題を解 決するためになされたもので、その目的はアンテナに近 づく障害物から遠ざけるようにアンテナを制御すること により、アンテナの輻射効率をより理想状態に近づけ実 使用状態での通話距離を確保するアンデナ制御方式を提 供することにある。

[0005]

【課題を解決するための手段】本発明は上記の目的を達 成するため、アンテナ近傍に近づく人体等の障害物を検 出するセンサ部と、機器に対するアンテナの位置を変化 させる制御部を設け、前記センサ部からの信号により機 器に対するアンテナ位置を人体等の障害物の影響を受け ない方向へ移動させるように構成したものである。従っ て本発明によれば、実使用状態でのアンテナ輻射効率を 常に最良の状態で使用でき、実使用状態での通話距離を 確保するアンテナ制御方式を提供することができる。

[0006]

【発明の実施の形態】以下、本発明を図面に示す実施例 に基づいて説明する。図1は本発明によるアンテナ制御 方式の一実施例を示す図である。図1に示す実施例にお いて、無線機1にはその4辺に近づく障害物を検出する センサ部3~6が設けられ、その信号はマイコン7にて 監視されている。マイコン7は、前記センサ部3~6の 信号によりどの方向から障害物が近づいてきたかを判断 し、機器に対するアンテナ位置を人体等の障害物の影響 を受けない方向へ移動させるようにアンテナ位置制御部 を制御する。

【0007】以下動作について、図2及び図3により詳 細に説明する。図2に示す無線機1のアンテナ2が固定 接続されている近傍の右側側面にセンサ部3、後面にセ ンサ部4、左側側面にセンサ部5及び前面にセンサ部6 が設けられ、それぞれ4辺に近づく障害物を検出する。 いま、図3に示すように無線機1の後面に人体が近づい た場合、無線機1の後面に設けられたセンサ部4からの 信号により図1に示すマイコン7がアンテナ位置制御部 8を制御し、アンテナ2を矢印方向へ移動させる。以上 の動作から、図3に示すように無線機1の後面に人体が テナ2が多少人体から離れている場合 () では、理想 50 近づいた時にアンテナ位置を制御することにより、図5

3

に示す のアンテナ輻射効率を、 に示すアンテナ輻射 効率に改善することができ、あらゆる実使用状態におい て通話距離を確保することができる。

【0008】また、アンテナ2が物理的に小型で無線機 1内に実装できる平面アンテナであるなどの場合、無線 機1の上部と下部などアンテナが離れる位置に複数個の アンテナを、またそれぞれのアンテナ近傍に障害物を検 出するセンサ部を設け、障害物が近傍に無いアンテナを 選択し電気的に接続することも可能である。さらに複数 個のアンテナを設けた場合、受信時においてはダイバシ 10 【図4】従来の無線機の一例を示す外観図。 チ方式を併用することで、より確実な通話距離を確保す ることができる。

[0009]

【発明の効果】以上説明したように本発明によれば、ア ンテナ近傍に近づく人体等の障害物の影響を最小にでき

るため、実使用状態でのアンテナ輻射効率を常に最良の 状態で使用でき、実使用状態での通話距離を確保するこ とができる。

【図面の簡単な説明】

【図1】本発明のアンテナ制御方式の一実施例を示すブ ロック図。

【図2】本発明の一実施例である無線機の外観図。

【図3】本発明の一実施例である無線機の動作を示す 図。

【図5】アンテナの輻射効率特性例を示す図。

【符号の説明】

1:無線機、

2:アンテナ、

3~6:センサ部、

7:マイコン、

8:アンテナ位置制御部。

[図1]

【図5】

THIS PAGE BLANK (USPTO)