EPA Vehicle Emission Score Prediction using Machine Learning

Group 4:

Sayantan Majumdar

Dawit Wolday Asfaw

Cong Shen

Divya Reddy Manku

Akhil Reddy Annreddy

Introduction

- Greenhouse gases (GHG) are responsible for trapping heat, thereby making the planet warmer.
- In the US, the transportation sector generates the largest share of GHG emissions (29% of 2019 GHG emissions) from burning fossil fuels.
- The Environmental Protection Agency (EPA) emissions score (smog rating) reflects vehicle tailpipe emissions (CO₂) that contribute to local and regional air pollution

Problem Description

- Building a machine learning model to predict the EPA emission score from different vehicles operating in the US.
- Classification problem, emission score: 1 (worst) 10 (best)
- Compare different machine learning models to assess their performance on the data sets
- Broad business objective: Enabling policymakers to address critical issues in the sustainable transportation industry

Data Source and Collection

- Available on the EPA fuel economy portal [https://www.fueleconomy.gov/]
- Two data sets:
 - ➤ Vehicle data (83 variables, 44075 observations)
 - ➤ Emissions data (8 variables, 42442 observations)
- The EPA has generated annual reports, but there are no existing publicly available notebooks having detailed machine learning workflows

https://www.fueleconomy.gov/feg/pdfs/guides/FEG2021.pdf

Data Source and Collection

Data Set	Feature Name	Details
emissions	score	EPA 1-10 smog rating for fuelType1 (target variable)
vehicle	fuelType1	For single fuel vehicles, this will be the only fuel. For dual fuel vehicles, this will be the conventional fuel.
vehicle	highway08	Highway MPG for fuelType1
vehicle	barrels08	Annual petroleum consumption in barrels for fuelType1
vehicle	year	Model year
vehicle	VClass	EPA vehicle size class
vehicle	phevBlended	If True, this vehicle operates on a blend of gasoline and electricity in charge depleting mode

Data Curation: Merging the Vehicles and Emissions data sets

Potential
 Issues &
 Challenges

Feature Engineering

Model Complexity: Hyperparameter Tuning

Evaluation Metrics

Research Questions

- Which predictors are most suited for predicting the EPA emission score?
 - ➤ Which machine learning model works best for this data set?
 - Which vehicle class has poor emission ratings?

Data Management

- After merging and cleaning data (removing missing and incorrect values), we have 28556 nonredundant observations.
- Data Transformation: Aggregating fuelType1 variable

```
In [153]: ve df.fuelType1.value counts()
Out[153]: Regular Gasoline
          Premium Gasoline
                               12175
          Diesel
                                 365
          Electricity
                                 254
          Midgrade Gasoline
                                 136
          Natural Gas
          Name: fuelType1, dtype: int64
          We can combine midgrade and regular gasolines as 'Regular Gasoline'. We can also combine 'Electricity' and 'Natural Gas' as 'Green Fuel'
In [154]: for ft in ve df.fuelType1.unique():
              selection = ve df['fuelType1'] == ft
              if ft == 'Midgrade Gasoline':
                  ve_df.loc[selection, 'fuelType1'] = 'Regular Gasoline'
              elif ft in ['Electricity', 'Natural Gas']:
                  ve_df.loc[selection, 'fuelType1'] = 'Green Fuel
          ve df.fuelType1.value counts()
Out[154]: Regular Gasoline
          Premium Gasoline 12175
          Diesel
                                365
          Green Fuel
                                284
          Name: fuelType1, dtype: int64
```


Correlation & Distribution Analysis

Correlation & Distribution Analysis

Principal Component Analysis

- > 3-component solution explains 96% variance in the original data
- > For predictive modeling, we thought of avoiding PCA

Total Explained Variance: 95.99%

1. Decision process: Classification

2. Error function: evaluate a model

3. Model optimization: adjusting model hyperparameters to get the best model

Machine Learning

Ensemble Algorithms, Neural Network, SVM, Multinomial Logistic Regression

Model Evaluation and Comparison

Scalable ML using Dask

Source: https://www.ibm.com/cloud/learn/machine-learning

Image source: https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

Model Comparison

- 1. Ensemble Learning: Gradient Boosting Trees (GBT), Random Forests (RF), Boosted Random Forests (RF), Extremely Randomized Trees (ETR)
- 2. Neural Network: Multi-layer Perceptron Classifier (MLP)
- 3. Support Vector Classifier (SVC)
- 4. Multinomial Logistic Regression (MLR)

Note: 70% train, 30% test with stratified split, Train and Test predictors scaled using MinMaxScaler for all the models

Model Comparison: MLR

Out[219]:		Da	ta	F1 Score	Precision	Recall	Balanced	Accuracy	Kappa Score
	0	Tra	iin	0.331403	0.329090	0.509821		0.509821	0.189551
	1	Validation	on	0.326589	0.326447	0.469016	;	0.483657	0.183054
	2	Te	est	0.346034	0.353011	0.454485	i	0.409037	0.161838
n [220]:	pri	int(rep	ort	:)					
				preci	.sion	recall	f1-score	suppor	t
			1	L	0.13	0.31	0.18	58	4
			2	2	0.25	0.61	0.35	35	4
			3	3	0.32	0.53	0.40	56	6
				5	0.49	0.19	0.27	341	8
			6	5	0.51	0.19	0.28	250	6
			7	7	0.32	0.35	0.33	52	7
			8	3	0.06	0.49	0.11	16	4
			9)	0.14	0.42	0.21	37	0
			16)	0.96	1.00	0.98	7	6
		micro	avg	3	0.27	0.27	0.27	856	5
		macro	avg	5	0.35	0.45	0.35	856	5
	we:	ighted	avg	5	0.42	0.27	0.28	856	5
T - [004]		• / -		1 .					
In [221]:	pr:	ınt(sea	arch	n_mır.be	st_param	IS_)			
	{'(C': 1,	' ma	ax_iter'	: 300, '	solver':	: 'saga',	'tol': 0	.0001}

Model Comparison: SVC

Out[20]:		Data	F1 Score	Precision	Recall	Balanced	Accuracy	Kappa Score
	0	Train	0.370993	0.365296	0.577352	!	0.577352	0.231768
	1	Validation	0.356233	0.355257	0.511651		0.532175	0.220769
	2	Test	0.399593	0.386629	0.578398		0.578398	0.250525
n [21]:	pri	int(repor	rt)					
			preci	sion	recall	f1-score	suppor	t
			1	0.46	0.46	0.46	584	4
				0.24	0.75	0.36	354	4
			3	0.41	0.71	0.52	566	5
			4	0.13	1.00	0.24	:	2
			5	0.63	0.23	0.34	3418	3
			6	0.50	0.30	0.38	2506	5
			7	0.33	0.54	0.41	527	7
				0.06	0.37	0.10	164	4
				0.14	0.43	0.21	376	
		1	.0	0.97	1.00	0.99	76	5
		accurac	:y			0.36	8567	7
		macro av	/g	0.39	0.58	0.40	8567	7
	wei	ighted av	/g	0.50	0.36	0.37	8567	7
in [23]:	pri	int(searc	:h_svm.be	st_param	ıs_)			
	{'(C': 1, 'b	reak_tie	es': True	e, 'gamma	a': 0.8,	'tol': 0.0	91}

Model Comparison: RF

t[236]:		Data	F1 Score	Precision	Recal	l Balanced	Accuracy	Kappa Score
	0	Train	0.578722	0.555383	0.714078	3	0.714078	0.422408
	1	Validation	0.436231	0.426816	0.533302	2	0.547823	0.263565
	2	Test	0.408527	0.398950	0.420700)	0.420700	0.227434
[237]:	pr:	int(repor	rt)					
			prec	ision	recall	f1-score	suppor	rt
			1	0.57	0.61	0.59	58	34
			2	0.40	0.45	0.43	35	54
			3	0.66	0.69	0.67	56	56
			4	0.00	0.00	0.00		2
			5	0.47	0.43	0.45		
			6	0.35	0.35	0.35		
			7	0.37	0.39	0.38		
			8	0.12	0.19	0.14		
		-	9	0.08	0.09	0.08		
		_	LØ	0.97	1.00	0.99	/	76
		accurac	v			0.42	856	57
		macro av	•	0.40	0.42	0.41		
	we:	ighted av	_	0.43	0.42	0.42		57
[238]:	pr:	int(searc	h_rf.bes	st_params	5_)			
		class_wei nples_lea					terion':	'entropy',

Model Comparison: GBT

	Data	F1 Score	Precision	Recall	Balanced	Accuracy	Kappa Score
0	Train	0.702728	0.644762	0.839862		0.839862	0.540943
1	Validation	0.481861	0.452456	0.556968		0.568588	0.324939
2	Test	0.514768	0.471515	0.633385		0.633385	0.329062
pri	int(repor	rt)					
		preci	ision	recall	f1-score	suppor	·t
		1	0.50	0.66	0.57	58	34
		2	0.36	0.67	0.47	35	4
		3	0.55	0.81	0.65	56	66
		4	0.50	1.00	0.67		2
		5	0.64	0.30	0.41	341	.8
		6	0.49	0.47	0.48	250	16
		7	0.39	0.54	0.45	52	.7
		8	0.15	0.48	0.23	16	4
		9		0.41	0.22	37	0
	1	.0	0.97	1.00	0.99	7	'6
	accurac	:y			0.45	856	57
	macro av	/g	0.47	0.63	0.51	856	57
wei	ighted av	/g	0.53	0.45	0.46	856	57
pri	int(searc	:h_dask_]	lgbm.best	_params_	_)		
	1 2 pri	0 Train 1 Validation 2 Test print(repor	0 Train 0.702728 1 Validation 0.481861 2 Test 0.514768 print(report) prec: 1 2 3 4 5 6 7 8 9 10 accuracy macro avg weighted avg	0 Train 0.702728 0.644762 1 Validation 0.481861 0.452456 2 Test 0.514768 0.471515 print(report) precision 1 0.50 2 0.36 3 0.55 4 0.50 5 0.64 6 0.49 7 0.39 8 0.15 9 0.15 10 0.97 accuracy macro avg 0.47 weighted avg 0.53	O Train 0.702728 0.644762 0.839862 1 Validation 0.481861 0.452456 0.556968 2 Test 0.514768 0.471515 0.633385 print(report) 1 0.50 0.66 0.67 3 0.55 0.81 0.67 3 0.55 0.81 0.40 4 0.50 1.00 5 0.64 0.30 6 0.49 0.47 7 0.39 0.54 8 0.15 0.48 9 0.15 0.41 10 0.97 1.00 accuracy macro avg 0.47 0.63 weighted avg 0.53 0.45	0 Train 0.702728 0.644762 0.839862 1 Validation 0.481861 0.452456 0.556968 2 Test 0.514768 0.471515 0.633385 Print(report) 1 0.50 0.66 0.57 2 0.36 0.67 0.47 3 0.55 0.81 0.65 4 0.50 1.00 0.67 5 0.64 0.30 0.41 6 0.49 0.47 0.48 8 0.15 0.48 0.23 9 0.15 0.41 0.22 10 0.97 1.00 0.99 accuracy 0.47 0.63 0.51	O Train 0.702728 0.644762 0.839862 0.839862 1 Validation 0.481861 0.452456 0.556968 0.568588 2 Test 0.514768 0.471515 0.633385 0.633385 print(report) 1 0.50 0.66 0.57 58 2 0.36 0.67 0.47 35 3 0.55 0.81 0.65 56 4 0.50 1.00 0.67 6 5 0.64 0.30 0.41 341 6 0.49 0.47 0.48 256 7 0.39 0.54 0.45 52 8 0.15 0.48 0.23 16 9 0.15 0.41 0.22 37 10 0.97 1.00 0.99 7 accuracy 0.45 0.45 0.46 856 weighted avg 0.53 0.45 0.46

Model Comparison: BRF

Out[20]:		Data	F1 Score	Precision	Recall	Balanced	Accuracy	Kappa Score
	0	Train	0.457200	0.431045	0.675145		0.675145	0.331778
	1	Validation	0.424028	0.404417	0.578920		0.602269	0.296177
	2	Test	0.449043	0.417397	0.644578		0.644578	0.309786
In [21]:	pr:	int(repor	rt)					
			preci	ision	recall	f1-score	suppo	rt
			1	0.46	0.62	0.53	58	84
			2	0.33	0.72	0.45	3!	54
			3	0.49	0.80	0.60	56	56
			4	0.10	1.00	0.17		2
			5	0.64	0.26	0.37	34:	18
			6	0.49	0.43	0.46	250	
			7	0.38	0.50	0.43		27
			8	0.14	0.66	0.23		54
			9	0.18	0.46	0.26		70
		1	10	0.97	1.00	0.99	7	76
		accurac	су			0.43	856	57
		macro av	/g	0.42	0.64	0.45	856	57
	we	ighted av	/g	0.52	0.43	0.43	856	67
In [22]:	pr:	int(seard	ch_brf.be	est_param	ıs_)			
								rning_rate'
	'm:	in_data_i	in_bin':	3, 'n_es	stimators	s': 500,	'num_lea	ves': 63, '

Model Comparison: ETR

out[33]:		Data	F1 Score	Precision	Recal	l Balanced	Accuracy	Kappa Score
	0	Train	0.533500	0.514130	0.709851		0.709851	0.401488
	1	Validation	0.400826	0.395748	0.519259)	0.537028	0.239507
	2	Test	0.462869	0.428880	0.533174	ļ.	0.533174	0.221032
n [34]:	pr:	int(repor	rt)					
			preci	ision	recall	f1-score	suppo	rt
			1	0.55	0.61	0.58	58	84
			2	0.39	0.53	0.45	3!	54
			3	0.62	0.67	0.64	56	56
			4	0.40	1.00	0.57		2
			5	0.46	0.36	0.40	34:	18
			6	0.36	0.36	0.36	250	96
			7	0.34	0.40	0.37	5	27
			8	0.12	0.24	0.16	16	54
			9	0.10	0.16	0.12	3	70
		-	10	0.96	1.00	0.98		76
		accura	су			0.40	850	67
		macro av	vg	0.43	0.53	0.46	856	67
	we	ighted av	٧g	0.42	0.40	0.40	850	67
		-	-					
n [35]:	pr:	int(seard	ch_et.bes	st_params	5_)			
	{'	class_we:	ight': 'b	palanced'	', 'crite	erion': '	entropy'	, 'max_dept
				ors': 300				

Model Comparison: MLP

Out[21]:		Da	ta F	1 Score	Precision	Recall	Balanced	Accuracy	Kappa Score
	0	Tra	in (0.526306	0.590153	0.513441		0.513441	0.385971
	1	Validatio	on (0.450087	0.489226	0.445315		0.453457	0.324013
	2	Te	st (0.483473	0.530263	0.476535		0.428881	0.326520
In [22]:	pri	int(rep	ort)					
				preci	.sion	recall	f1-score	suppo	rt
			1		0.57	0.59	0.58	58	84
			2		0.49	0.38	0.43	3!	54
			3		0.57	0.72	0.64	56	66
			5		0.52	0.67	0.59	34:	18
			6		0.48	0.38	0.43	250	96
			7		0.53	0.37	0.43	5	27
			8		0.39	0.09	0.15	16	64
			9		0.25	0.09	0.13	3	70
			10		0.97	1.00	0.99		76
		micro	avg		0.52	0.52	0.52	856	65
		macro	avg		0.53	0.48	0.48	856	65
	wei	ighted	avg		0.51	0.52	0.50	850	65
In [23]:	pri	int(sea	rch	_mlp.be	st_param	ıs_)			
	{'}	nidden_	lay	er_size	s': (512	256),	'learning	g_rate_i	nit': 0.001,

Final Model Results: GBT

ROC_AUC 0.622634

F1 Score 0.514768

Precision 0.471515

Recall 0.633385

Balanced Accuracy 0.633385

Kappa Score 0.329062

Test Data

1000

800

600

400

200

Dask + Foundry

ETR Training:

- 216 GB memory!
- 40 cores
- 10 nodes
- ~10 mins of GridSearch

Revisiting Research Questions

Which predictors are most suited for predicting the EPA emission score?

Revisiting Research Questions

- ➤ Which machine learning model works best for this data set? **Gradient Boosting Trees**
- ➤ Which vehicle class has poor emission ratings? Pickup Trucks and Vans

Conclusions

- •We were able to successfully answer the research questions
- 7 classification models are compared
- Correlation analysis and PCA-based dimensionality reduction were not helpful (possibly due to strong non-linearity)
- Additional data are required to improve the model results and address class imbalance.
- With Dask and Missouri S&T Foundry High-Performance Computing, we could save hours/days of computational time: Scalable ML is the way to go!
- This kind of modeling and analysis, if pushed to a production environment, could enable policymakers to address critical issues in the sustainable transportation industry.

Thank you!

