

## **EFM32G210 DATASHEET**

EFM32G210F128



#### • ARM Cortex-M3 CPU platform

- High Performance 32-bit processor @ up to 32 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller

#### • Flexible Energy Management System

- 20 nA @ 3 V Shutoff Mode
- 0.6 μA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
- 0.9 μA @ 3 V Deep Sleep Mode, including Real Time Clock with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
- 45 μA/MHz @ 3 V Sleep Mode
- 180  $\mu$ A/MHz @ 3 V Run Mode, with code executed from flash
- 128 KB Flash
- 16 KB RAM

#### • 24 General Purpose I/O pins

- Configurable Push-pull, Open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- 14 asynchronous external interrupts
- 8 Channel DMA Controller
- 8 Channel Peripheral Reflex System for autonomous inter-peripheral signaling
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Timers/Counters
  - 2x 16-bit Timer/Counter
    - 2x3 Compare/Capture/PWM channels
    - Dead-Time Insertion on TIMER0
  - 16-bit Low Energy Timer
  - 24-bit Real-Time Counter
  - 8-bit Pulse Counter
    - Asynchronous pulse counting/quadrature decoding
  - Watchdog Timer with dedicated RC oscillator @ 50 nA

#### Communication interfaces

- 2x Universal Synchronous/Asynchronous Receiver/Transmitter
  - UART/SPI/SmartCard (ISO 7816)/IrDA
  - Triple buffered full/half-duplex operation
  - 4-16 data bits
- Low Energy UART
  - Autonomous operation with DMA in Deep Sleep Mode
- I<sup>2</sup>C Interface with SMBus support
  - · Address recognition in Stop Mode

#### • Ultra low power precision analog peripherals

- 12-bit 1 Msamples/s Analog to Digital Converter
  - 4 single ended channels/2 differential channels
  - On-chip temperature sensor
  - · Conversion tailgating for predictable latency
- 12-bit 500 ksamples/s Digital to Analog Converter
- 2x Analog Comparator
  - Programmable speed/current
  - Capacitive sensing with up to 5 inputs
- Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug interface
  - 1-pin Serial Wire Viewer
- Pre-Programmed Serial Bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.8 V
- QFN32 package

#### EFM32G210 microcontrollers are suited for all battery operated applications

**Energy Metering** 



Industrial/Home Automation



Wireless Alarm/ Security



Medical Systems







# 1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32G210 devices.

Table 1.1. Ordering Information

| Ordering Code       | Flash (KB) | RAM<br>(KB) | Max<br>Speed<br>(MHz) | Supply<br>Voltage | Temperature  | Package |
|---------------------|------------|-------------|-----------------------|-------------------|--------------|---------|
| EFM32G210F128-QFN32 | 128        | 16          | 32                    | 1.8 to<br>3.8V    | -40 to 85 °C | QFN32   |

Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information.

## 1.1 Block Diagram

A block diagram of the EFM32G210 is shown in Figure 1.1 (p. 2).

Figure 1.1. Block Diagram





## 2 System Summary

## 2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also and shows a summary of the configuration for the EFM32G210 devices. For a complete feature set and indepth information on the modules, the reader is referred to the *EFM32G Reference Manual*.

#### 2.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in *EFM32G Cortex-M3 Reference Manual*.

#### 2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

#### 2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

## 2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

## 2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

## 2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

## 2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree



of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

#### 2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

#### 2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

#### 2.1.10 Inter-Integrated Circuit Interface (I2C)

The I<sup>2</sup>C module provides an interface between the MCU and a serial I<sup>2</sup>C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I<sup>2</sup>C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

# 2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards and IrDA devices.

## 2.1.12 Pre-Programmed Serial Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

# 2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUART<sup>TM</sup>, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

## 2.1.14 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

## 2.1.15 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available



in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

#### 2.1.16 Low Energy Timer (LETIMER)

The unique LETIMER<sup>TM</sup>, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

#### 2.1.17 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn\_S0IN pin as external clock source. The module may operate in energy mode EM0 – EM3.

#### 2.1.18 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

#### 2.1.19 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

## 2.1.20 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals.

## 2.1.21 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has one single ended output buffer connected to channel 0. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

## 2.1.22 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

## 2.1.23 General Purpose Input/Output (GPIO)

In the EFM32G210, there are 24 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advances configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM



outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

## 2.2 Configuration Summary

The features of the EFM32G210 is a subset of the feature set described in the EFM32G Reference Manual. Table 2.1 (p. 6) describes device specific implementation of the features.

Table 2.1. Configuration Summary

| Module    | Configuration                | Pin Connections                               |
|-----------|------------------------------|-----------------------------------------------|
| Cortex-M3 | Full configuration           | NA                                            |
| DBG       | Full configuration           | DBG_SWCLK, DBG_SWDIO,<br>DBG_SWO              |
| MSC       | Full configuration           | NA                                            |
| DMA       | Full configuration           | NA                                            |
| RMU       | Full configuration           | NA                                            |
| EMU       | Full configuration           | NA                                            |
| CMU       | Full configuration           | CMU_OUT0, CMU_OUT1                            |
| WDOG      | Full configuration           | NA                                            |
| PRS       | Full configuration           | NA                                            |
| I2C0      | Full configuration           | 12C0_SDA, 12C0_SCL                            |
| USART0    | IrDA                         | US0_TX, US0_RX. US0_CLK, US0_CS               |
| USART1    |                              | US1_TX, US1_RX, US1_CLK, US1_CS               |
| LEUART0   | Full configuration           | LEU0_TX, LEU0_RX                              |
| TIMER0    | Full configuration with DTI. | TIM0_CC[2:0], TIM0_CDTI[2:0]                  |
| TIMER1    | Full configuration           | TIM1_CC[2:0]                                  |
| RTC       | Full configuration           | NA                                            |
| LETIMER0  | Full configuration           | LET0_O[1:0]                                   |
| PCNT0     | 8-bit count register         | PCNT0_S[1:0]                                  |
| ACMP0     | Full configuration           | ACMP0_CH[1:0], ACMP0_O                        |
| ACMP1     | Full configuration           | ACMP1_CH[7:5], ACMP1_O                        |
| VCMP      | Full configuration           | NA                                            |
| ADC0      | Full configuration           | ADC0_CH[7:4]                                  |
| DAC0      | Full configuration           | DAC0_OUT[0]                                   |
| AES       | Full configuration           | NA                                            |
| GPIO      | 24 pins                      | Available pins are shown in Table 4.3 (p. 49) |

## 2.3 Memory Map

The *EFM32G210* memory map is shown in Figure 2.1 (p. 7), with RAM and Flash sizes for the largest memory configuration.



Figure 2.1. EFM32G210 Memory Map with largest RAM and Flash sizes





## 3 Electrical Characteristics

#### 3.1 Test Conditions

### 3.1.1 Typical Values

The typical data are based on  $T_{AMB}=25^{\circ}C$  and  $V_{DD}=3.0$  V, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

#### 3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

## 3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8).

Table 3.1. Absolute Maximum Ratings

| Symbol             | Parameter                     | Condition                              | Min  | Тур | Max                  | Unit |
|--------------------|-------------------------------|----------------------------------------|------|-----|----------------------|------|
| T <sub>STG</sub>   | Storage temperature range     |                                        | -40  |     | 150 <sup>1</sup>     | °C   |
| T <sub>S</sub>     | Maximum soldering temperature | Latest IPC/JEDEC J-STD-020<br>Standard |      |     | 260                  | °C   |
| V <sub>DDMAX</sub> | External main supply voltage  |                                        | 0    |     | 3.8                  | V    |
| V <sub>IOPIN</sub> | Voltage on any I/O pin        |                                        | -0.3 |     | V <sub>DD</sub> +0.3 | V    |

<sup>&</sup>lt;sup>1</sup>Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

## 3.3 General Operating Conditions

## 3.3.1 General Operating Conditions

Table 3.2. General Operating Conditions

| Symbol            | Parameter                    | Min | Тур | Max | Unit |
|-------------------|------------------------------|-----|-----|-----|------|
| T <sub>AMB</sub>  | Ambient temperature range    | -40 |     | 85  | °C   |
| V <sub>DDOP</sub> | Operating supply voltage     | 1.8 |     | 3.8 | V    |
| f <sub>APB</sub>  | Internal APB clock frequency |     |     | 32  | MHz  |
| f <sub>AHB</sub>  | Internal AHB clock frequency |     |     | 32  | MHz  |



### 3.3.2 Environmental

#### Table 3.3. Environmental

| Symbol              | Parameter                          | Condition              | Min | Тур | Max | Unit |
|---------------------|------------------------------------|------------------------|-----|-----|-----|------|
| V <sub>ESDHBM</sub> | ESD (Human Body Model<br>HBM)      | T <sub>AMB</sub> =25°C |     |     | 2   | kV   |
| V <sub>ESDCDM</sub> | ESD (Charged Device<br>Model, CDM) | T <sub>AMB</sub> =25°C |     |     | 1   | kV   |

Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C.



# **3.4 Current Consumption**

Table 3.4. Current Consumption

| Symbol           | Parameter                                       | Condition                                                                                                                   | Min | Тур  | Max | Unit       |
|------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------------|
|                  |                                                 | 32 MHz HFXO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 180  |     | μΑ/<br>MHz |
|                  |                                                 | 28 MHz HFRCO, all peripheral clocks disabled, $V_{DD}$ = 3.0 V                                                              |     | 181  | 235 | μΑ/<br>MHz |
|                  | EM0 current. No prescal-                        | 21 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 183  | 237 | μΑ/<br>MHz |
| I <sub>EMO</sub> | ing. Running prime number calculation code from | 14 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 185  | 243 | μΑ/<br>MHz |
|                  | Flash.                                          | 11 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 186  | 246 | μΑ/<br>MHz |
|                  |                                                 | 7 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 191  | 257 | μΑ/<br>MHz |
|                  |                                                 | 1 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 220  |     | μΑ/<br>MHz |
|                  |                                                 | 32 MHz HFXO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 45   |     | μΑ/<br>MHz |
|                  | EM1 current                                     | 28 MHz HFRCO, all peripheral clocks disabled, $V_{DD}$ = 3.0 V                                                              |     | 47   | 62  | μΑ/<br>MHz |
|                  |                                                 | 21 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 48   | 64  | μΑ/<br>MHz |
| I <sub>EM1</sub> |                                                 | 14 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 50   | 69  | μΑ/<br>MHz |
|                  |                                                 | 11 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                       |     | 51   | 72  | μΑ/<br>MHz |
|                  |                                                 | 7 MHz HFRCO, all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 56   | 83  | μΑ/<br>MHz |
|                  |                                                 | 1 MHz HFRCO. all peripheral clocks disabled, V <sub>DD</sub> = 3.0 V                                                        |     | 103  |     | μΑ/<br>MHz |
| L                | EM2 current                                     | EM2 current with RTC at 1<br>Hz, RTC prescaled to 1kHz,<br>32 kHz LFRCO, V <sub>DD</sub> = 3.0 V,<br>T <sub>AMB</sub> =25°C |     | 0.9  |     | μΑ         |
| I <sub>EM2</sub> | EWZ Current                                     | EM2 current with RTC at 1<br>Hz, RTC prescaled to 1kHz,<br>32 kHz LFRCO, V <sub>DD</sub> = 3.0 V,<br>T <sub>AMB</sub> =85°C |     | 3.0  | 6.0 | μА         |
| lews.            | EM3 current                                     | V <sub>DD</sub> = 3.0 V, T <sub>AMB</sub> =25°C                                                                             |     | 0.59 |     | μΑ         |
| I <sub>ЕМЗ</sub> | Livio dullont                                   | V <sub>DD</sub> = 3.0 V, T <sub>AMB</sub> =85°C                                                                             |     | 2.75 | 5.8 | μΑ         |
| I <sub>EM4</sub> | EM4 current                                     | V <sub>DD</sub> = 3.0 V, T <sub>AMB</sub> =25°C                                                                             |     | 0.02 |     | μΑ         |
| °⊏IVI4           |                                                 | V <sub>DD</sub> = 3.0 V, T <sub>AMB</sub> =85°C                                                                             |     | 0.25 | 0.7 | μΑ         |



Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28MHz



Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21MHz





Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14MHz



Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11MHz





Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7MHz



Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28MHz





Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz



Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz





Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz



Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7MHz





Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32 kHz LFRCO.





Figure 3.12. EM3 current consumption.







Figure 3.13. EM4 current consumption.





## 3.5 Transition between Energy Modes

Table 3.5. Energy Modes Transitions

| Symbol            | Parameter                       | Min | Тур            | Max | Unit                        |
|-------------------|---------------------------------|-----|----------------|-----|-----------------------------|
| t <sub>EM10</sub> | Transition time from EM1 to EM0 |     | 0 <sup>1</sup> |     | HF<br>core<br>CLK<br>cycles |
| t <sub>EM20</sub> | Transition time from EM2 to EM0 |     | 2              |     | μs                          |
| t <sub>EM30</sub> | Transition time from EM3 to EM0 |     | 2              |     | μs                          |
| t <sub>EM40</sub> | Transition time from EM4 to EM0 |     | 163            |     | μs                          |

<sup>&</sup>lt;sup>1</sup>Core wakeup time only.

## 3.6 Power Management

This EFM32G device requires the power to be applied to the AVDD\_x pins before or at the same time as power is applied to the VDD\_DREG and IOVDD\_x pins. For practical schematic recommendations to fulfil this requirement, please see the application note, "AN0002 EFM32 Hardware Design Considerations".



#### Table 3.6. Power Management

| Symbol                   | Parameter                                                             | Condition                                                              | Min  | Тур  | Max  | Unit |
|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------|------|------|------|
| V <sub>BODextthr</sub> - | BOD threshold on falling external supply voltage                      |                                                                        | 1.82 |      | 1.85 | V    |
| V <sub>BODintthr</sub> - | BOD threshold on falling internally regulated supply voltage          |                                                                        | 1.62 |      | 1.68 | V    |
| V <sub>BODextthr+</sub>  | BOD threshold on rising external supply voltage                       |                                                                        |      | 1.85 |      | V    |
| t <sub>RESET</sub>       | Delay from reset is re-<br>leased until program execu-<br>tion starts | Applies to Power-on Reset,<br>Brown-out Reset and pin reset.           |      | 163  |      | μs   |
| C <sub>DECOUPLE</sub>    | Voltage regulator decoupling capacitor.                               | X5R capacitor recommended.<br>Apply between DECOUPLE<br>pin and GROUND |      | 1    |      | μF   |

## 3.7 Flash

Table 3.7. Flash

| Symbol               | Parameter                                   | Condition              | Min   | Тур  | Max            | Unit   |
|----------------------|---------------------------------------------|------------------------|-------|------|----------------|--------|
| EC <sub>FLASH</sub>  | Flash erase cycles before failure           |                        | 20000 |      |                | cycles |
|                      | T <sub>AMB</sub> <150°C                     | 10000                  |       |      | h              |        |
| RET <sub>FLASH</sub> | Flash data retention                        | T <sub>AMB</sub> <85°C | 10    |      |                | years  |
|                      |                                             | T <sub>AMB</sub> <70°C | 20    |      |                | years  |
| t <sub>W_PROG</sub>  | Word (32-bit) programming time              |                        | 20    |      |                | μs     |
| t <sub>P_ERASE</sub> | Page erase time                             |                        | 20    | 20.4 | 20.8           | ms     |
| t <sub>D_ERASE</sub> | Device erase time                           |                        | 40    | 40.8 | 41.6           | ms     |
| I <sub>ERASE</sub>   | Erase current                               |                        |       |      | 7 <sup>1</sup> | mA     |
| I <sub>WRITE</sub>   | Write current                               |                        |       |      | 7 <sup>2</sup> | mA     |
| V <sub>FLASH</sub>   | Supply voltage during flash erase and write |                        | 1.8   |      | 3.8            | V      |

<sup>&</sup>lt;sup>1</sup>Measured at 25°C

<sup>&</sup>lt;sup>2</sup>Measured at 25°C



# 3.8 General Purpose Input Output

#### Table 3.8. GPIO

| Symbol                | Parameter                                                            | Condition                                                                       | Min                  | Тур | Max                 | Unit |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|-----|---------------------|------|
| V <sub>IOIL</sub>     | Input low voltage                                                    |                                                                                 |                      |     | 0.3V <sub>DD</sub>  | V    |
| V <sub>IOIH</sub>     | Input high voltage                                                   |                                                                                 | 0.7V <sub>DD</sub>   |     |                     | V    |
|                       |                                                                      | Sourcing 6 mA, V <sub>DD</sub> =1.8V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = STANDARD | 0.75V <sub>DD</sub>  |     |                     | V    |
| V                     | Outsut high valtage                                                  | Sourcing 6 mA, V <sub>DD</sub> =3.0V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = STANDARD | 0.95V <sub>DD</sub>  |     |                     | V    |
| V <sub>IOOH</sub>     | Output high voltage                                                  | Sourcing 20 mA, V <sub>DD</sub> =1.8V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = HIGH    | 0.7V <sub>DD</sub>   |     |                     | V    |
|                       |                                                                      | Sourcing 20 mA, V <sub>DD</sub> =3.0V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = HIGH    | 0.9V <sub>DD</sub>   |     |                     | V    |
|                       | Output low voltage                                                   | Sinking 6 mA, V <sub>DD</sub> =1.8V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = STANDARD  |                      |     | 0.25V <sub>DD</sub> | V    |
|                       |                                                                      | Sinking 6 mA, V <sub>DD</sub> =3.0V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = STANDARD  |                      |     | 0.05V <sub>DD</sub> | V    |
| V <sub>IOOL</sub>     |                                                                      | Sinking 20 mA, V <sub>DD</sub> =1.8V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = HIGH     |                      |     | 0.3V <sub>DD</sub>  | V    |
|                       |                                                                      | Sinking 20 mA, V <sub>DD</sub> =3.0V,<br>GPIO_Px_CTRL DRIVE-<br>MODE = HIGH     |                      |     | 0.1V <sub>DD</sub>  | V    |
| I <sub>IOLEAK</sub>   | Input leakage current                                                | High Impedance IO connected to GROUND or V <sub>DD</sub>                        |                      |     | +/-25               | nA   |
| R <sub>PU</sub>       | I/O pin pull-up resistor                                             |                                                                                 |                      | 40  |                     | kOhm |
| R <sub>PD</sub>       | I/O pin pull-down resistor                                           |                                                                                 |                      | 40  |                     | kOhm |
| R <sub>IOESD</sub>    | Internal ESD series resistor                                         |                                                                                 |                      | 200 |                     | Ohm  |
| t <sub>IOGLITCH</sub> | Pulse width of pulses to be removed by the glitch suppression filter |                                                                                 | 10                   |     | 50                  | ns   |
| t <sub>IOOF</sub>     | Output fall time                                                     | 0.5 mA drive strength and load capacitance C <sub>L</sub> =12.5-25pF.           | 20+0.1C <sub>L</sub> |     | 250                 | ns   |
|                       |                                                                      | 2mA drive strength and load capacitance C <sub>L</sub> =350-600pF               | 20+0.1C <sub>L</sub> |     | 250                 | ns   |
| V <sub>IOHYST</sub>   | I/O pin hysteresis (V <sub>IOTHR+</sub> - V <sub>IOTHR-</sub> )      | V <sub>DD</sub> = 1.8 - 3.8 V                                                   | 0.1V <sub>DD</sub>   |     |                     | V    |



Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage





GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



## 3.9 Oscillators

#### 3.9.1 LFXO

#### Table 3.9. LFXO

| Symbol              | Parameter                                               | Condition                                                                                                      | Min | Тур    | Max  | Unit |
|---------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|--------|------|------|
| f <sub>LFXO</sub>   | Supported nominal crystal frequency                     |                                                                                                                |     | 32.768 |      | kHz  |
| ESR <sub>LFXO</sub> | Supported crystal equivalent series resistance (ESR)    |                                                                                                                |     | 30     | 120  | kOhm |
| C <sub>LFXOL</sub>  | Supported crystal external load range                   |                                                                                                                | 5   |        | 25   | pF   |
| DC <sub>LFXO</sub>  | Duty cycle                                              |                                                                                                                | 48  | 50     | 53.5 | %    |
| I <sub>LFXO</sub>   | Current consumption for core and buffer after start-up. | ESR=30 kOhm, C <sub>L</sub> =10 pF,<br>LFXOBOOST in CMU_CTRL<br>is 1                                           |     | 190    |      | nA   |
| t <sub>LFXO</sub>   | Start- up time.                                         | ESR=30 kOhm, C <sub>L</sub> =10 pF,<br>40% - 60% duty cycle has<br>been reached, LFXOBOOST<br>in CMU_CTRL is 1 |     | 400    |      | ms   |

#### 3.9.2 HFXO

#### Table 3.10. HFXO

| Symbol              | Parameter                                                            | Condition                                                                          | Min | Тур | Max  | Unit |
|---------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-----|------|------|
| f <sub>HFXO</sub>   | Supported nominal crystal Frequency                                  |                                                                                    | 4   |     | 32   | MHz  |
| FCD                 | Supported crystal equiv-                                             | Crystal frequency 32 MHz                                                           |     | 30  | 60   | Ohm  |
| ESR <sub>HFXO</sub> | alent series resistance (ESR)                                        | Crystal frequency 4 MHz                                                            |     | 400 | 1500 | Ohm  |
| g <sub>mHFXO</sub>  | The transconductance of the HFXO input transistor at crystal startup | HFXOBOOST in CMU_CTRL equals 0b11                                                  | 20  |     |      | mS   |
| C <sub>HFXOL</sub>  | Supported crystal external load range                                |                                                                                    | 5   |     | 25   | pF   |
| DC <sub>HFXO</sub>  | Duty cycle                                                           |                                                                                    | 46  | 50  | 54   | %    |
|                     | Current consumption for HFXO after startup                           | 4 MHz: ESR=400 Ohm,<br>C <sub>L</sub> =20 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 85  |      | μА   |
| I <sub>HFXO</sub>   |                                                                      | 32 MHz: ESR=30 Ohm,<br>C <sub>L</sub> =10 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 165 |      | μА   |
| t <sub>HFXO</sub>   | Startup time                                                         | 32 MHz: ESR=30 Ohm,<br>C <sub>L</sub> =10 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 400 |      | μs   |
|                     | Pulse width removed by glitch detector                               |                                                                                    | 1   |     | 4    | ns   |



### 3.9.3 LFRCO

Table 3.11. LFRCO

| Symbol                  | Parameter                                                                  | Condition | Min | Тур   | Max | Unit |
|-------------------------|----------------------------------------------------------------------------|-----------|-----|-------|-----|------|
| f <sub>LFRCO</sub>      | Oscillation frequency ,<br>V <sub>DD</sub> = 3.0 V, T <sub>AMB</sub> =25°C |           |     | 32    |     | kHz  |
| t <sub>LFRCO</sub>      | Startup time not including software calibration                            |           |     | 150   |     | μs   |
| I <sub>LFRCO</sub>      | Current consumption                                                        |           |     | 190   |     | nA   |
| TC <sub>LFRCO</sub>     | Temperature coefficient                                                    |           |     | ±0.02 |     | %/°C |
| VC <sub>LFRCO</sub>     | Supply voltage coefficient                                                 |           |     | ±15   |     | %/V  |
| TUNESTEP <sub>L</sub> . | Frequency step for LSB change in TUNING value                              |           |     | 1.5   |     | %    |

Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage







#### 3.9.4 HFRCO

#### Table 3.12. HFRCO

| Symbol                      | Parameter                                        | Condition                   | Min  | Тур                 | Max | Unit   |
|-----------------------------|--------------------------------------------------|-----------------------------|------|---------------------|-----|--------|
|                             |                                                  | 28 MHz frequency band       |      | 28                  |     | MHz    |
|                             |                                                  | 21 MHz frequency band       |      | 21                  |     | MHz    |
|                             | Oscillation frequency, V <sub>DD</sub> =         | 14 MHz frequency band       |      | 14                  |     | MHz    |
| f <sub>HFRCO</sub>          | 3.0 V, T <sub>AMB</sub> =25°C                    | 11 MHz frequency band       |      | 11                  |     | MHz    |
|                             |                                                  | 7 MHz frequency band        |      | 7                   |     | MHz    |
|                             |                                                  | 1 MHz frequency band        |      | 1                   |     | MHz    |
| t <sub>HFRCO_settling</sub> | Settling time after start-up                     | f <sub>HFRCO</sub> = 14 MHz |      | 0.6                 |     | Cycles |
|                             |                                                  | f <sub>HFRCO</sub> = 28 MHz |      | 106                 |     | μΑ     |
|                             |                                                  | f <sub>HFRCO</sub> = 21 MHz |      | 93                  |     | μA     |
|                             | Current consumption                              | f <sub>HFRCO</sub> = 14 MHz |      | 77                  |     | μA     |
| I <sub>HFRCO</sub>          | Current consumption                              | f <sub>HFRCO</sub> = 11 MHz |      | 72                  |     | μA     |
|                             |                                                  | f <sub>HFRCO</sub> = 7 MHz  |      | 63                  |     | μA     |
|                             |                                                  | f <sub>HFRCO</sub> = 1 MHz  |      | 22                  |     | μA     |
| DC <sub>HFRCO</sub>         | Duty cycle                                       | f <sub>HFRCO</sub> = 14 MHz | 48.5 | 50                  | 51  | %      |
|                             | Temperature coefficient, V <sub>DD</sub> = 3.0 V | f <sub>HFRCO</sub> = 14 MHz |      | ±0.01 <sup>1</sup>  |     | %/°C   |
|                             |                                                  | f <sub>HFRCO</sub> = 28 MHz |      | ±0.005 <sup>1</sup> |     | %/°C   |
| TO                          |                                                  | f <sub>HFRCO</sub> = 21 MHz |      | ±0.01 <sup>1</sup>  |     | %/°C   |
| TC <sub>HFRCO</sub>         |                                                  | f <sub>HFRCO</sub> = 11 MHz |      | ±0.02 <sup>1</sup>  |     | %/°C   |
|                             |                                                  | f <sub>HFRCO</sub> = 7 MHz  |      | ±0.02 <sup>1</sup>  |     | %/°C   |
|                             |                                                  | f <sub>HFRCO</sub> = 1 MHz  |      | ±0.06 <sup>1</sup>  |     | %/°C   |
|                             |                                                  | f <sub>HFRCO</sub> = 14 MHz |      | ±0.32 <sup>2</sup>  |     | %/V    |
|                             |                                                  | f <sub>HFRCO</sub> = 28 MHz |      | ±0.52 <sup>2</sup>  |     | %/V    |
| \/C                         | Supply voltage coefficient,                      | f <sub>HFRCO</sub> = 21 MHz |      | ±0.25 <sup>2</sup>  |     | %/V    |
| $VC_{HFRCO}$                | T <sub>AMB</sub> =25°C                           | f <sub>HFRCO</sub> = 11 MHz |      | ±0.28 <sup>2</sup>  |     | %/V    |
|                             |                                                  | f <sub>HFRCO</sub> = 7 MHz  |      | ±0.3 <sup>2</sup>   |     | %/V    |
|                             |                                                  | f <sub>HFRCO</sub> = 1 MHz  |      | ±15 <sup>2</sup>    |     | %/V    |
| TUNESTEP <sub>H</sub> .     | Frequency step for LSB change in TUNING value    |                             |      | 0.3                 |     | %      |

Calculated using (max(-40°C - 85°C) - min(-40°C - 85°C)) / f\_HFRCO / (85°C - (-40°C))

 $<sup>^2</sup> Calculated using \left( max(1.8V - 3.8V) - min(1.8V - 3.8V) \right) / f_{HFRCO} / \left( 3.8V - 1.8V \right) \right)$ 



Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Temperature and Supply Voltage



Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Temperature and Supply Voltage



Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage





Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage



Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage



Figure 3.26. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage



85



### **3.9.5 ULFRCO**

#### Table 3.13. ULFRCO

| Symbol               | Parameter                  | Condition | Min | Тур   | Max | Unit |
|----------------------|----------------------------|-----------|-----|-------|-----|------|
| f <sub>ULFRCO</sub>  | Oscillation frequency      | 25°C, 3V  | 0.8 |       | 1.5 | kHz  |
| TC <sub>ULFRCO</sub> | Temperature coefficient    |           |     | 0.05  |     | %/°C |
| VC <sub>ULFRCO</sub> | Supply voltage coefficient |           |     | -18.2 |     | %/V  |

# 3.10 Analog Digital Converter (ADC)

#### Table 3.14. ADC

| Symbol                    | Parameter                                                                          | Condition                                                                                                                    | Min                  | Тур  | Max                   | Unit |
|---------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-----------------------|------|
| M                         | lanut valtana nana                                                                 | Single ended                                                                                                                 | 0                    |      | V <sub>REF</sub>      | V    |
| V <sub>ADCIN</sub>        | Input voltage range                                                                | Differential                                                                                                                 | -V <sub>REF</sub> /2 |      | V <sub>REF</sub> /2   | V    |
| V <sub>ADCREFIN</sub>     | Input range of external ref-<br>erence voltage, single end-<br>ed and differential |                                                                                                                              | 1.25                 |      | $V_{DD}$              | V    |
| V <sub>ADCREFIN_CH7</sub> | Input range of external neg-<br>ative reference voltage on<br>channel 7            | See V <sub>ADCREFIN</sub>                                                                                                    | 0                    |      | V <sub>DD</sub> - 1.1 | V    |
| V <sub>ADCREFIN_CH6</sub> | Input range of external pos-<br>itive reference voltage on<br>channel 6            | See V <sub>ADCREFIN</sub>                                                                                                    | 0.625                |      | V <sub>DD</sub>       | V    |
| V <sub>ADCCMIN</sub>      | Common mode input range                                                            |                                                                                                                              | 0                    |      | V <sub>DD</sub>       | V    |
| I <sub>ADCIN</sub>        | Input current                                                                      | 2pF sampling capacitors                                                                                                      |                      | <100 |                       | nA   |
| CMRR <sub>ADC</sub>       | Analog input common mode rejection ratio                                           |                                                                                                                              |                      | 65   |                       | dB   |
|                           |                                                                                    | 1 MSamples/s, 12 bit, external reference                                                                                     |                      | 351  |                       | μΑ   |
|                           |                                                                                    | 1 MSamples/s, 12 bit, internal reference                                                                                     |                      | 411  |                       | μΑ   |
|                           |                                                                                    | 10 kSamples/s 12 bit, internal<br>1.25 V reference, WARMUP-<br>MODE in ADCn_CTRL set to<br>0b00, ADC_CLK running at<br>13MHz |                      | 67   |                       | μΑ   |
| I <sub>ADC</sub>          | Average active current                                                             | 10 kSamples/s 12 bit, internal<br>1.25 V reference, WARMUP-<br>MODE in ADCn_CTRL set to<br>0b01, ADC_CLK running at<br>13MHz |                      | 63   |                       | μΑ   |
|                           |                                                                                    | 10 kSamples/s 12 bit, internal<br>1.25 V reference, WARMUP-<br>MODE in ADCn_CTRL set to<br>0b10, ADC_CLK running at<br>13MHz |                      | 64   |                       | μΑ   |
| C <sub>ADCIN</sub>        | Input capacitance                                                                  |                                                                                                                              |                      | 2    |                       | pF   |
| R <sub>ADCIN</sub>        | Input ON resistance                                                                |                                                                                                                              | 1                    |      |                       | MOhm |
| R <sub>ADCFILT</sub>      | Input RC filter resistance                                                         |                                                                                                                              |                      | 10   |                       | kOhm |



| Symbol                  | Parameter                                                                  | Condition                                                            | Min | Тур | Max | Unit                  |
|-------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----|-----|-----|-----------------------|
| C <sub>ADCFILT</sub>    | Input RC filter/decoupling capacitance                                     |                                                                      |     | 250 |     | fF                    |
| f <sub>ADCCLK</sub>     | ADC Clock Frequency                                                        |                                                                      |     |     | 13  | MHz                   |
|                         |                                                                            | 6 bit                                                                | 7   |     |     | ADC-<br>CLK<br>Cycles |
| t <sub>ADCCONV</sub>    | Conversion time                                                            | 10 bit                                                               | 11  |     |     | ADC-<br>CLK<br>Cycles |
|                         |                                                                            | 12 bit                                                               | 13  |     |     | ADC-<br>CLK<br>Cycles |
| t <sub>ADCACQ</sub>     | Acquisition time                                                           | Programmable                                                         | 1   |     | 256 | ADC-<br>CLK<br>Cycles |
| t <sub>ADCACQVDD3</sub> | Required acquisition time for VDD/3 reference                              |                                                                      | 2   |     |     | μs                    |
| t                       | Startup time of reference<br>generator and ADC core in<br>NORMAL mode      |                                                                      |     | 5   |     | μѕ                    |
| t <sub>ADCSTART</sub>   | Startup time of reference<br>generator and ADC core in<br>KEEPADCWARM mode |                                                                      |     | 1   |     | μs                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, single<br>ended, internal 1.25V refer-<br>ence |     | 59  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, single<br>ended, internal 2.5V refer-<br>ence  |     | 63  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, single ended, V <sub>DD</sub> reference        |     | 65  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, differential, internal 1.25V reference         |     | 60  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, differential, internal 2.5V reference          |     | 65  |     | dB                    |
| SNR <sub>ADC</sub>      | Signal to Noise Ratio (SNR)                                                | 1 MSamples/s, 12 bit, differential, 5V reference                     |     | 54  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, differential, V <sub>DD</sub> reference        |     | 67  |     | dB                    |
|                         |                                                                            | 1 MSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference      |     | 69  |     | dB                    |
|                         |                                                                            | 200 kSamples/s, 12 bit, single ended, internal 1.25V reference       |     | 62  |     | dB                    |
|                         |                                                                            | 200 kSamples/s, 12 bit, single ended, internal 2.5V reference        |     | 63  |     | dB                    |
|                         |                                                                            | 200 kSamples/s, 12 bit, single ended, V <sub>DD</sub> reference      |     | 67  |     | dB                    |



| Symbol              | Parameter                    | Condition                                                                | Min | Тур | Max | Unit |
|---------------------|------------------------------|--------------------------------------------------------------------------|-----|-----|-----|------|
|                     |                              | 200 kSamples/s, 12 bit, dif-<br>ferential, internal 1.25V refer-<br>ence |     | 63  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, internal 2.5V reference            |     | 66  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, 5V reference                       |     | 66  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, V <sub>DD</sub> reference          |     | 69  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference        |     | 70  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, single<br>ended, internal 1.25V refer-<br>ence     |     | 58  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, single<br>ended, internal 2.5V refer-<br>ence      |     | 62  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, single ended, V <sub>DD</sub> reference            |     | 64  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, differential, internal 1.25V reference             |     | 60  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, differential, internal 2.5V reference              |     | 64  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, differential, 5V reference                         |     | 54  |     | dB   |
|                     |                              | 1 MSamples/s, 12 bit, differential, V <sub>DD</sub> reference            |     | 66  |     | dB   |
| CNDD                | Signal to Noise-puls-Distor- | 1 MSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference          |     | 68  |     | dB   |
| SNDR <sub>ADC</sub> | tion Ratio (SNDR)            | 200 kSamples/s, 12 bit, single ended, internal 1.25V reference           |     | 61  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, single ended, internal 2.5V reference            |     | 65  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, single ended, V <sub>DD</sub> reference          |     | 66  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, dif-<br>ferential, internal 1.25V refer-<br>ence |     | 63  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, internal 2.5V reference            |     | 66  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, 5V reference                       |     | 66  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, V <sub>DD</sub> reference          |     | 68  |     | dB   |
|                     |                              | 200 kSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference        |     | 69  |     | dB   |



| Symbol                 | Parameter                                         | Condition                                                                | Min | Тур   | Max | Unit                |
|------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-----|-------|-----|---------------------|
|                        |                                                   | 1 MSamples/s, 12 bit, single ended, internal 1.25V reference             |     | 64    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, single<br>ended, internal 2.5V refer-<br>ence      |     | 76    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, single ended, V <sub>DD</sub> reference            |     | 73    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, differential, internal 1.25V reference             |     | 66    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, differential, internal 2.5V reference              |     | 77    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, differential, V <sub>DD</sub> reference            |     | 76    |     | dBc                 |
|                        |                                                   | 1 MSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference          |     | 75    |     | dBc                 |
| SEDD.                  | Spurious-Free Dynamic                             | 1 MSamples/s, 12 bit, differential, 5V reference                         |     | 69    |     | dBc                 |
| SFDR <sub>ADC</sub>    | Range (SFDR)                                      | 200 kSamples/s, 12 bit, single ended, internal 1.25V reference           |     | 75    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, single ended, internal 2.5V reference            |     | 75    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, single ended, V <sub>DD</sub> reference          |     | 76    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, dif-<br>ferential, internal 1.25V refer-<br>ence |     | 79    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, differential, internal 2.5V reference            |     | 79    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, differential, 5V reference                       |     | 78    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, differential, V <sub>DD</sub> reference          |     | 79    |     | dBc                 |
|                        |                                                   | 200 kSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference        |     | 79    |     | dBc                 |
| \/                     | Officet violence                                  | After calibration, single ended                                          |     | 0.3   |     | mV                  |
| V <sub>ADCOFFSET</sub> | Offset voltage                                    | After calibration, differential                                          |     | 0.3   |     | mV                  |
|                        |                                                   |                                                                          |     | -1.16 |     | mV/°C               |
| TGRAD <sub>ADCTH</sub> | Thermometer output gradient                       |                                                                          |     | -3.85 |     | ADC<br>Codes/<br>°C |
| DNL <sub>ADC</sub>     | Differential non-linearity (DNL)                  |                                                                          |     | ±0.7  |     | LSB                 |
| INL <sub>ADC</sub>     | Integral non-linearity (INL),<br>End point method |                                                                          |     | ±1.2  |     | LSB                 |



| Symbol            | Parameter        | Condition | Min                 | Тур | Max | Unit |
|-------------------|------------------|-----------|---------------------|-----|-----|------|
| MC <sub>ADC</sub> | No missing codes |           | 11.999 <sup>1</sup> | 12  |     | bits |

On the average every ADC will have one missing code, most likely to appear around 2048 +/- n\*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue.

The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.27 (p. 35) and Figure 3.28 (p. 35), respectively.

Figure 3.27. Integral Non-Linearity (INL)



Figure 3.28. Differential Non-Linearity (DNL)





## 3.10.1 Typical performance

Figure 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°







2.5V Reference



2XVDDVSS Reference



**5VDIFF Reference** 



**VDD** Reference



Figure 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°



**VDD** Reference



Figure 3.31. ADC Differental Linearity Error vs Code, Vdd = 3V, Temp = 25°





Figure 3.32. ADC Absolute Offset, Common Mode = Vdd /2



Figure 3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V



2010-12-17 - d0004\_Rev1.20



Figure 3.34. ADC Temperature sensor readout



## 3.11 Digital Analog Converter (DAC)

Table 3.15. DAC

| Symbol                 | Parameter                                          | Condition                                                      | Min | Тур | Max             | Unit            |
|------------------------|----------------------------------------------------|----------------------------------------------------------------|-----|-----|-----------------|-----------------|
| V <sub>DACOUT</sub>    | Output voltage range                               | VDD voltage reference, single ended                            | 0   |     | V <sub>DD</sub> | V               |
| V <sub>DACCM</sub>     | Output common mode voltage range                   |                                                                | 0   |     | V <sub>DD</sub> | V               |
|                        |                                                    | 500 kSamples/s, 12bit                                          |     | 400 |                 | μΑ              |
| I <sub>DAC</sub>       | Active current including references for 2 channels | 100 kSamples/s, 12 bit                                         |     | 200 |                 | μΑ              |
|                        |                                                    | 1 kSamples/s 12 bit                                            |     | 38  |                 | μΑ              |
| SR <sub>DAC</sub>      | Sample rate                                        |                                                                |     |     | 500             | ksam-<br>ples/s |
|                        |                                                    | Continuous Mode                                                |     |     | 1000            | kHz             |
| f <sub>DAC</sub>       | DAC clock frequency                                | Sample/Hold Mode                                               |     |     | 250             | kHz             |
|                        |                                                    | Sample/Off Mode                                                |     |     | 250             | kHz             |
| CYC <sub>DACCONV</sub> | Clock cyckles per conversion                       |                                                                |     | 2   |                 |                 |
| t <sub>DACCONV</sub>   | Conversion time                                    |                                                                | 2   |     |                 | μs              |
| t <sub>DACSETTLE</sub> | Settling time                                      |                                                                |     | 5   |                 | μs              |
| CNID                   | Signal to Noise Ratio                              | 500 kSamples/s, 12 bit, single ended, internal 1.25V reference |     | 58  |                 | dB              |
| SNR <sub>DAC</sub>     | (SNR)                                              | 500 kSamples/s, 12 bit, single ended, internal 2.5V reference  |     | 59  |                 | dB              |
| SNDR <sub>DAC</sub>    | Signal to Noise-pulse Distortion Ratio (SNDR)      | 500 kSamples/s, 12 bit, single ended, internal 1.25V reference |     | 57  |                 | dB              |



| Symbol                   | Parameter                      | Condition                                                      | Min | Тур | Max | Unit  |
|--------------------------|--------------------------------|----------------------------------------------------------------|-----|-----|-----|-------|
|                          |                                | 500 kSamples/s, 12 bit, single ended, internal 2.5V reference  |     | 54  |     | dB    |
| SEDD                     | Spurious-Free Dynamic          | 500 kSamples/s, 12 bit, single ended, internal 1.25V reference |     | 62  |     | dBc   |
| SFDR <sub>DAC</sub>      | Range(SFDR)                    | 500 kSamples/s, 12 bit, single ended, internal 2.5V reference  |     | 56  |     | dBc   |
| V <sub>DACOFFSET</sub>   | Offset voltage                 | After calibration, single ended                                |     | 2   |     | mV    |
| V <sub>DACSHMDRIFT</sub> | Sample-hold mode voltage drift |                                                                |     | 540 |     | μV/ms |
| DNL <sub>DAC</sub>       | Differential non-linearity     |                                                                |     | ±1  |     | LSB   |
| INL <sub>DAC</sub>       | Integral non-linearity         |                                                                |     | ±5  |     | LSB   |
| MC <sub>DAC</sub>        | No missing codes               |                                                                |     | 12  |     | bits  |



## 3.12 Analog Comparator (ACMP)

Table 3.16. ACMP

| Symbol                  | Parameter                                         | Condition                                                                 | Min | Тур  | Max             | Unit |
|-------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-----|------|-----------------|------|
| V <sub>ACMPIN</sub>     | Input voltage range                               |                                                                           | 0   |      | $V_{DD}$        | V    |
| V <sub>ACMPCM</sub>     | ACMP Common Mode voltage range                    |                                                                           | 0   |      | V <sub>DD</sub> | V    |
|                         |                                                   | BIASPROG=0b0000, FULL-<br>BIAS=0 and HALFBIAS=1 in<br>ACMPn_CTRL register |     | 55   |                 | nA   |
| I <sub>ACMP</sub>       | Active current                                    | BIASPROG=0b1111, FULL-<br>BIAS=0 and HALFBIAS=0 in<br>ACMPn_CTRL register |     | 2.82 |                 | μА   |
|                         |                                                   | BIASPROG=0b1111, FULL-<br>BIAS=1 and HALFBIAS=0 in<br>ACMPn_CTRL register |     | 195  |                 | μА   |
|                         |                                                   | Internal voltage reference off. Using external voltage reference          |     | 0    |                 | μА   |
| I <sub>ACMPREF</sub>    | Current consumption of internal voltage reference | Internal voltage reference,<br>LPREF=1                                    |     | 50   |                 | nA   |
|                         |                                                   | Internal voltage reference,<br>LPREF=0                                    |     | 6    |                 | μΑ   |
| V                       | Offset voltage                                    | Single ended                                                              |     | 10   |                 | mV   |
| V <sub>ACMPOFFSET</sub> | Offset voltage                                    | Differential                                                              |     | 10   |                 | mV   |
| V <sub>ACMPHYST</sub>   | ACMP hysteresis                                   | Programmable                                                              |     | 17   |                 | mV   |
|                         |                                                   | CSRESSEL=0b00 in<br>ACMPn_INPUTSEL                                        |     | 39   |                 | kOhm |
|                         | Capacitive Sense Internal                         | CSRESSEL=0b01 in<br>ACMPn_INPUTSEL                                        |     | 71   |                 | kOhm |
| R <sub>CSRES</sub>      | Resistance                                        | CSRESSEL=0b10 in<br>ACMPn_INPUTSEL                                        |     | 104  |                 | kOhm |
|                         |                                                   | CSRESSEL=0b11 in<br>ACMPn_INPUTSEL                                        |     | 136  |                 | kOhm |

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 42) .  $I_{ACMPREF}$  is zero if an external voltage reference is used.

Total ACMP Active Current
$$I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$$
(3.1)



Figure 3.35. Typical ACMP Characteristics













## 3.13 Voltage Comparator (VCMP)

Table 3.17. VCMP

| Symbol                  | Parameter                        | Condition                                                                | Min | Тур             | Max | Unit |
|-------------------------|----------------------------------|--------------------------------------------------------------------------|-----|-----------------|-----|------|
| V <sub>VCMPIN</sub>     | Input voltage range              |                                                                          |     | $V_{DD}$        |     | V    |
| V <sub>VCMPCM</sub>     | VCMP Common Mode voltage range   |                                                                          |     | V <sub>DD</sub> |     | V    |
|                         |                                  | BIASPROG=0b0000<br>and HALFBIAS=1 in<br>VCMPn_CTRL register              |     | 0.1             |     | μА   |
| I <sub>VCMP</sub>       | Active current                   | BIASPROG=0b1111<br>and HALFBIAS=0 in<br>VCMPn_CTRL register.<br>LPREF=0. |     | 14.7            |     | μΑ   |
| t <sub>VCMPREF</sub>    | Startup time reference generator | NORMAL                                                                   |     | 10              |     | μs   |
| V                       | Offset voltage                   | Single ended                                                             |     | 10              |     | mV   |
| V <sub>VCMPOFFSET</sub> | Offset voltage                   | Differential                                                             |     | 10              |     | mV   |
| V <sub>VCMPHYST</sub>   | VCMP hysteresis                  |                                                                          |     | 17              |     | mV   |

The  $V_{DD}$  trigger level can be configured by setting the TRIGLEVEL field of the VCMP\_CTRL register in accordance with the following equation:

#### VCMP Trigger Level as a Function of Level Setting

## 3.14 Digital Peripherals

Table 3.18. Digital Peripherals

| Symbol               | Parameter       | Condition                           | Min | Тур  | Max | Unit       |
|----------------------|-----------------|-------------------------------------|-----|------|-----|------------|
| I <sub>USART</sub>   | USART current   | USART idle current, clock enabled   |     | 7.5  |     | μΑ/<br>MHz |
| I <sub>UART</sub>    | UART current    | UART idle current, clock enabled    |     | 5.63 |     | μΑ/<br>MHz |
| I <sub>LEUART</sub>  | LEUART current  | LEUART idle current, clock enabled  |     | 150  |     | nA         |
| I <sub>I2C</sub>     | I2C current     | I2C idle current, clock enabled     |     | 6.25 |     | μΑ/<br>MHz |
| I <sub>TIMER</sub>   | TIMER current   | TIMER_0 idle current, clock enabled |     | 8.75 |     | μΑ/<br>MHz |
| I <sub>LETIMER</sub> | LETIMER current | LETIMER idle current, clock enabled |     | 150  |     | nA         |
| I <sub>PCNT</sub>    | PCNT current    | PCNT idle current, clock enabled    |     | 100  |     | nA         |
| I <sub>RTC</sub>     | RTC current     | RTC idle current, clock enabled     |     | 100  |     | nA         |
| I <sub>AES</sub>     | AES current     | AES idle current, clock enabled     |     | 2.5  |     | μΑ/<br>MHz |



| Symbol            | Parameter    | Condition                        | Min | Тур  | Max | Unit       |
|-------------------|--------------|----------------------------------|-----|------|-----|------------|
| I <sub>GPIO</sub> | GPIO current | GPIO idle current, clock enabled |     | 5.31 |     | μΑ/<br>MHz |
| I <sub>PRS</sub>  | PRS current  | PRS idle current                 |     | 2,81 |     | μΑ/<br>MHz |
| I <sub>DMA</sub>  | DMA current  | Clock enable                     |     | 8.12 |     | μΑ/<br>MHz |



## 4 Pinout and Package

#### Note

Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32G210.

#### 4.1 Pinout

The *EFM32G210* pinout is shown in Figure 4.1 (p. 46) and Table 4.1 (p. 46). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the \*\_ROUTE register in the module in question.

Figure 4.1. EFM32G210 Pinout (top view, not to scale)



Table 4.1. Device Pinout

|       | 2 Pin#<br>Name | Pin Alternate Functionality / Description |               |               |             |  |  |  |  |  |
|-------|----------------|-------------------------------------------|---------------|---------------|-------------|--|--|--|--|--|
| Pin # | Pin Name       | Analog                                    | Timers        | Communication | Other       |  |  |  |  |  |
| 0     | VSS            | Ground                                    |               |               |             |  |  |  |  |  |
| 1     | PA0            |                                           | TIM0_CC0 #0/1 | I2C0_SDA #0   |             |  |  |  |  |  |
| 2     | PA1            |                                           | TIM0_CC1 #0/1 | 12C0_SCL #0   | CMU_CLK1 #0 |  |  |  |  |  |



|       | 2 Pin#<br>Name |                                                | Pin Alternate Functi                                                            | onality / Description |                          |
|-------|----------------|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|--------------------------|
| Pin # | Pin Name       | Analog                                         | Timers                                                                          | Communication         | Other                    |
| 3     | PA2            |                                                | TIM0_CC2 #0/1                                                                   |                       | CMU_CLK0 #0              |
| 4     | IOVDD_1        | Digital IO power supply 1.                     |                                                                                 |                       |                          |
| 5     | PC0            | ACMP0_CH0 #0                                   | PCNT0_S0IN #2                                                                   | US1_TX #0             |                          |
| 6     | PC1            | ACMP0_CH1 #0                                   | PCNT0_S1IN #2                                                                   | US1_RX #0             |                          |
| 7     | PB7            | LFXTAL_P #0                                    |                                                                                 | US1_CLK #0            |                          |
| 8     | PB8            | LFXTAL_N #0                                    |                                                                                 | US1_CS #0             |                          |
| 9     | RESETn         | Reset input. Active low, with internal pull-up | ).                                                                              |                       |                          |
| 10    | PB11           | DAC0_OUT0 #0                                   | LETIMO_OUT0 #1                                                                  |                       |                          |
| 11    | AVDD_2         | Analog power supply 2.                         |                                                                                 | ,                     |                          |
| 12    | PB13           | HFXTAL_P #0                                    |                                                                                 | LEU0_TX #1            |                          |
| 13    | PB14           | HFXTAL_N #0                                    |                                                                                 | LEU0_RX #1            |                          |
| 14    | IOVDD_3        | Digital IO power supply 3.                     |                                                                                 | ,                     |                          |
| 15    | AVDD_0         | Analog power supply 0.                         |                                                                                 |                       |                          |
| 16    | PD4            | ADC0_CH4 #0                                    |                                                                                 | LEU0_TX #0            |                          |
| 17    | PD5            | ADC0_CH5 #0                                    |                                                                                 | LEU0_RX #0            |                          |
| 18    | PD6            | ADC0_CH6 #0                                    | LETIMO_OUT0 #0                                                                  | I2C0_SDA #1           |                          |
| 19    | PD7            | ADC0_CH7 #0                                    | LETIM0_OUT1 #0                                                                  | I2C0_SCL #1           |                          |
| 20    | VDD_DREG       | Power supply for on-chip voltage               | ge regulator.                                                                   |                       |                          |
| 21    | DECOUPLE       |                                                | Itage regulator, nominally at 1.8 c C <sub>DECOUPLE</sub> is required at this p |                       |                          |
| 22    | PC13           | ACMP1_CH5 #0                                   | TIM0_CDTI0 #1/3<br>TIM1_CC0 #0<br>PCNT0_S0IN #0                                 |                       |                          |
| 23    | PC14           | ACMP1_CH6 #0                                   | TIM0_CDTI1 #1/3<br>TIM1_CC1 #0<br>PCNT0_S1IN #0                                 |                       |                          |
| 24    | PC15           | ACMP1_CH7 #0                                   | TIM0_CDTI2 #1/3<br>TIM1_CC2 #0                                                  |                       | DBG_SWO #1               |
| 25    | PF0            |                                                | LETIM0_OUT0 #2                                                                  |                       | DBG_SWCLK #0/1           |
| 26    | PF1            |                                                | LETIM0_OUT1 #2                                                                  |                       | DBG_SWDIO #0/1           |
| 27    | PF2            |                                                |                                                                                 |                       | ACMP1_O #0<br>DBG_SWO #0 |
| 28    | IOVDD_5        | Digital IO power supply 5.                     |                                                                                 | ,                     |                          |
| 29    | PE10           |                                                | TIM1_CC0 #1                                                                     | US0_TX #0             |                          |
| 30    | PE11           |                                                | TIM1_CC1 #1                                                                     | US0_RX #0             |                          |
| 31    | PE12           |                                                | TIM1_CC2 #1                                                                     | US0_CLK #0            |                          |
| 32    | PE13           |                                                |                                                                                 | US0_CS #0             | ACMP0_O #0               |

## 4.2 Alternate functionality pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 48). The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.



#### Note

Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-TION 0.

Table 4.2. Alternate functionality overview

| Alternate     |      | LOCA | TION |   |                                                                                                               |
|---------------|------|------|------|---|---------------------------------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3 | Description                                                                                                   |
| ACMP0_CH0     | PC0  |      |      |   | Analog comparator ACMP0, channel 0.                                                                           |
| ACMP0_CH1     | PC1  |      |      |   | Analog comparator ACMP0, channel 1.                                                                           |
| ACMP0_O       | PE13 |      |      |   | Analog comparator ACMP0, digital output.                                                                      |
| ACMP1_CH5     | PC13 |      |      |   | Analog comparator ACMP1, channel 5.                                                                           |
| ACMP1_CH6     | PC14 |      |      |   | Analog comparator ACMP1, channel 6.                                                                           |
| ACMP1_CH7     | PC15 |      |      |   | Analog comparator ACMP1, channel 7.                                                                           |
| ACMP1_O       | PF2  |      |      |   | Analog comparator ACMP1, digital output.                                                                      |
| ADC0_CH4      | PD4  |      |      |   | Analog to digital converter ADC0, input channel number 4.                                                     |
| ADC0_CH5      | PD5  |      |      |   | Analog to digital converter ADC0, input channel number 5.                                                     |
| ADC0_CH6      | PD6  |      |      |   | Analog to digital converter ADC0, input channel number 6.                                                     |
| ADC0_CH7      | PD7  |      |      |   | Analog to digital converter ADC0, input channel number 7.                                                     |
| CMU_CLK0      | PA2  |      |      |   | Clock Management Unit, clock output number 0.                                                                 |
| CMU_CLK1      | PA1  |      |      |   | Clock Management Unit, clock output number 1.                                                                 |
| DAC0_OUT0     | PB11 |      |      |   | Digital to Analog Converter DAC0 output channel number 0.                                                     |
|               |      |      |      |   | Debug-interface Serial Wire clock input.                                                                      |
| DBG_SWCLK     | PF0  | PF0  |      |   | Note that this function is enabled to pin out of reset, and has a built-in pull down.                         |
| DBG_SWDIO     | PF1  | PF1  |      |   | Debug-interface Serial Wire data input / output.                                                              |
| BBG_6WBIG     |      |      |      |   | Note that this function is enabled to pin out of reset, and has a built-in pull up.                           |
| DDG 01410     | DEO  | D045 |      |   | Debug-interface Serial Wire viewer Output.                                                                    |
| DBG_SWO       | PF2  | PC15 |      |   | Note that this function is not enabled after reset, and must be enabled by software to be used.               |
| HFXTAL_N      | PB14 |      |      |   | High Frequency Crystal (4 - 32 MHz) negative pin. Also used as external optional clock input pin.             |
| HFXTAL_P      | PB13 |      |      |   | High Frequency Crystal (4 - 32 MHz) positive pin.                                                             |
| I2C0_SCL      | PA1  | PD7  |      |   | I2C0 Serial Clock Line input / output.                                                                        |
| I2C0_SDA      | PA0  | PD6  |      |   | I2C0 Serial Data input / output.                                                                              |
| LETIMO_OUT0   | PD6  | PB11 | PF0  |   | Low Energy Timer LETIM0, output channel 0.                                                                    |
| LETIM0_OUT1   | PD7  |      | PF1  |   | Low Energy Timer LETIM0, output channel 1.                                                                    |
| LEU0_RX       | PD5  | PB14 |      |   | LEUART0 Receive input.                                                                                        |
| LEU0_TX       | PD4  | PB13 |      |   | LEUART0 Transmit output. Also used as receive input in half duplex communication.                             |
| LFXTAL_N      | PB8  |      |      |   | Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. |
| LFXTAL_P      | PB7  |      |      |   | Low Frequency Crystal (typically 32.768 kHz) positive pin.                                                    |
| PCNT0_S0IN    | PC13 |      | PC0  |   | Pulse Counter PCNT0 input number 0.                                                                           |
| PCNT0_S1IN    | PC14 |      | PC1  |   | Pulse Counter PCNT0 input number 1.                                                                           |
| TIM0_CC0      | PA0  | PA0  |      |   | Timer 0 Capture Compare input / output channel 0.                                                             |
| TIM0_CC1      | PA1  | PA1  |      |   | Timer 0 Capture Compare input / output channel 1.                                                             |



| Alternate     |      | LOCA | TION | ,    |                                                                                       |
|---------------|------|------|------|------|---------------------------------------------------------------------------------------|
| Functionality | 0    | 1    | 2    | 3    | Description                                                                           |
| TIM0_CC2      | PA2  | PA2  |      |      | Timer 0 Capture Compare input / output channel 2.                                     |
| TIM0_CDTI0    |      | PC13 |      | PC13 | Timer 0 Complimentary Deat Time Insertion channel 0.                                  |
| TIM0_CDTI1    |      | PC14 |      | PC14 | Timer 0 Complimentary Deat Time Insertion channel 1.                                  |
| TIM0_CDTI2    |      | PC15 |      | PC15 | Timer 0 Complimentary Deat Time Insertion channel 2.                                  |
| TIM1_CC0      | PC13 | PE10 |      |      | Timer 1 Capture Compare input / output channel 0.                                     |
| TIM1_CC1      | PC14 | PE11 |      |      | Timer 1 Capture Compare input / output channel 1.                                     |
| TIM1_CC2      | PC15 | PE12 |      |      | Timer 1 Capture Compare input / output channel 2.                                     |
| US0_CLK       | PE12 |      |      |      | USART0 clock input / output.                                                          |
| US0_CS        | PE13 |      |      |      | USART0 chip select input / output.                                                    |
| US0 RX        | PE11 |      |      |      | USART0 Asynchronous Receive.                                                          |
| 030_RX        | PEII |      |      |      | USART0 Synchronous mode Master Input / Slave Output (MISO).                           |
| US0_TX        | PE10 |      |      |      | USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. |
|               |      |      |      |      | USART0 Synchronous mode Master Output / Slave Input (MOSI).                           |
| US1_CLK       | PB7  |      |      |      | USART1 clock input / output.                                                          |
| US1_CS        | PB8  |      |      |      | USART1 chip select input / output.                                                    |
| US1 RX        | PC1  |      |      |      | USART1 Asynchronous Receive.                                                          |
| 031_RX        | FUI  |      |      |      | USART1 Synchronous mode Master Input / Slave Output (MISO).                           |
| US1_TX        | PC0  |      |      |      | USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. |
|               |      |      |      |      | USART1 Synchronous mode Master Output / Slave Input (MOSI).                           |

## 4.3 GPIO pinout overview

The specific GPIO pins available in *EFM32G210* is shown in Table 4.3 (p. 49). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0.

Table 4.3. GPIO Pinout

| Port   | Pin<br>15 | Pin<br>14 | Pin<br>13 | Pin<br>12 | Pin<br>11 | Pin<br>10 | Pin<br>9 | Pin<br>8 | Pin<br>7 | Pin<br>6 | Pin<br>5 | Pin<br>4 | Pin<br>3 | Pin<br>2 | Pin<br>1 | Pin<br>0 |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Port A | -         | -         | -         | -         | -         | -         | -        | -        | -        | -        | -        | -        | -        | PA2      | PA1      | PA0      |
| Port B | -         | PB14      | PB13      | -         | PB11      | -         | -        | PB8      | PB7      | -        | -        | -        | -        | -        | -        | -        |
| Port C | PC15      | PC14      | PC13      | -         | -         | -         | -        | -        | -        | -        | -        | -        | -        | -        | PC1      | PC0      |
| Port D | -         | -         | -         | -         | -         | -         | -        | -        | PD7      | PD6      | PD5      | PD4      | -        | -        | -        | -        |
| Port E | -         | -         | PE13      | PE12      | PE11      | PE10      | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        |
| Port F | -         | -         | -         | -         | -         | -         | -        | -        | -        | -        | -        | -        | -        | PF2      | PF1      | PF0      |



### 4.4 QFN32 Package

Figure 4.2. QFN32



#### Note:

- 1. 'e' represents the basic terminal pitch. Specifies the true geometric position of the terminal axis.
- 2. Datum 'C' is the mounting surface with which the package is in contact
- 3. Specifies the vertical shift of the flat part of each terminal form the mounting surface.
- 4. Dimension 'A' includes package warpage.
- 5. Dimension 'b' applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension 'b' should not be measured in the radius area.
- 6. Depending on the method of lead termination at the edge of the package, a maximum 0.15 mm pull back (L1) may be present. 'L' minus 'L1' is to be equal to or greater than 0.3 mm.
- 7. Package dimensions take reference from JEDEC MO-220 rev. K, variations VJJ-2, except D2 and E2.

Table 4.4. QFN32 (Dimensions in mm)

| Symbol | A    | A1   | А3   | D    | D1   | E    | E1   | е    | L1   | ZD    | ZE    | b    | L    | D2   | E2   |
|--------|------|------|------|------|------|------|------|------|------|-------|-------|------|------|------|------|
| Min    | -    | 0.00 |      |      |      |      |      |      | 0.03 |       |       | 0.25 | 0.30 | 4.30 | 4.30 |
| Nom    | 0.80 | 0.02 | 0.20 | 6.00 | 4.55 | 6.00 | 4.55 | 0.65 | -    | 0.725 | 0.725 | 0.30 | 0.40 | 4.40 | 4.40 |
| Max    | 0.90 | 0.05 |      |      |      |      |      |      | 0.15 |       |       | 0.35 | 0.50 | 4.50 | 4.50 |

The QFN32 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).



# **5 PCB Layout and Soldering**

## **5.1 Recommended PCB Layout**

Figure 5.1. QFN32 PCB Land Pattern



Figure 5.2. QFN32 PCB Solder Mask





Figure 5.3. QFN32 PCB Stencil Design



- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.

## **5.2 Soldering Information**

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions.



## 6 Chip Marking, Revision and Errata

### 6.1 Chip Marking

In the illustration below package fields and position are shown.

Figure 6.1. Example Chip Marking



#### 6.2 Revision

The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 53). If the revision says "ES" (Engineering Sample), the revision must be read out electronically as specified in the reference manual.

#### 6.3 Errata

Please see the dxxxx\_EFM32G210\_errata.pdf for description and resolution of device erratas.



## **7 Revision History**

#### 7.1 Revision 1.20

December 17th, 2010

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current

Added Flash current consumption

Updated HFRCO data

Updated LFRCO data

Added graph for ADC Absolute Offset over temperature

Added graph for ADC Temperature sensor readout

#### 7.2 Revision 1.11

November 17th, 2010

Corrected maximum DAC clock speed for continuous mode.

Added DAC sample-hold mode voltage drift rate.

Added pulse widths detected by the HFXO glitch detector.

Added power sequencing information to Power Management section.

#### 7.3 Revision 1.10

September 13th, 2010

Added typical values for R<sub>ADCFILT</sub> and C<sub>ADCFILT</sub>.

Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off.

Added RoHS information and specified leadframe/solderballs material.

Added Serial Bootloader to feature list and system summary.

Updated ADC characterization data.

Updated DAC characterization data.

Updated RCO characterization data.

Updated ACMP characterization data.

Updated VCMP characterization data.



#### **7.4 Revision 1.00**

April 23rd, 2010

ADC\_VCM line removed.

Added pinout illustration and additional pinout table.

Changed "Errata" chapter. Errata description moved to separate document.

Document changed status from "Preliminary".

Updated "Electrical Characteristics" chapter.

#### **7.5 Revision 0.85**

February 19th, 2010

Renamed DBG\_SWV pin to DBG\_SWO.

#### **7.6 Revision 0.83**

January 25th, 2010

Updated errata section.

Specified flash word width in Section 3.7 (p. 18)

Added Capacitive Sense Internal Resistor values in Section 3.12 (p. 42) .

#### **7.7 Revision 0.82**

December 9th, 2009

Updated conctact information.

ADC current consumption numbers updated in Section 3.10 (p. 31)

#### **7.8 Revision 0.81**

November 20th, 2009

Section 2.1.21 (p. 5) updated.

Section 3.1 (p. 8) updated.

Storage temperature in Section 3.2 (p. 8) updated.

Temperature coefficient of band-gap reference in Section 3.6 (p. 17) added.

Erase times in Section 3.7 (p. 18) updated.

Definitions of DNL and INL added in Figure 3.27 (p. 35) and Figure 3.28 (p. 35).

Current consumption of digital peripherals added in Section 3.14 (p. 44) .

Updated errata section.



## **7.9 Revision 0.80**

Initial preliminary revision, October 19th, 2009



### A Disclaimer and Trademarks

#### A.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Energy Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Energy Micro products are generally not intended for military applications. Energy Micro products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### A.2 Trademark Information

Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited. Other terms and product names may be trademarks of others.



## **B** Contact Information

### **B.1 Energy Micro Corporate Headquarters**

| Postal Address                                                    | Visitor Address                                               | Technical Support                                 |
|-------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|
| Energy Micro AS<br>P.O. Box 4633 Nydalen<br>N-0405 Oslo<br>NORWAY | Energy Micro AS<br>Sandakerveien 118<br>N-0484 Oslo<br>NORWAY | support.energymicro.com<br>Phone: +47 40 10 03 01 |

#### www.energymicro.com

Phone: +47 23 00 98 00 Fax: + 47 23 00 98 01

#### **B.2 Global Contacts**

Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information.

| Americas                     | Europe, Middle East and Africa | Asia and Pacific         |
|------------------------------|--------------------------------|--------------------------|
| www.energymicro.com/americas | www.energymicro.com/emea       | www.energymicro.com/asia |



## **Table of Contents**

| 1. | Ordering Information                             |              |
|----|--------------------------------------------------|--------------|
|    | 1.1. Block Diagram                               |              |
| 2. | System Summary                                   | 3            |
|    | 2.1. System Introduction                         | 3            |
|    | 2.2. Configuration Summary                       | 6            |
|    | 2.3. Memory Map                                  | 6            |
| 3. | Electrical Characteristics                       | 8            |
|    | 3.1. Test Conditions                             |              |
|    | 3.2. Absolute Maximum Ratings                    | 8            |
|    | 3.3. General Operating Conditions                | 8            |
|    | 3.4. Current Consumption                         |              |
|    | 3.5. Transition between Energy Modes             | . 17         |
|    | 3.6. Power Management                            | 17           |
|    | 3.7. Flash                                       | 18           |
|    | 3.8. General Purpose Input Output                | 10           |
|    | 3.9. Oscillators                                 |              |
|    | 3.10. Analog Digital Converter (ADC)             | 31           |
|    | 3.11. Digital Analog Converter (DAC)             | . <u>a</u> ( |
|    | 3.12. Analog Comparator (ACMP)                   | . 40         |
|    | 3.13. Voltage Comparator (VCMP)                  | 1/           |
|    | 3.14. Digital Peripherals                        | 4            |
| 1  | Pinout and Package                               |              |
| 4. | 4.1. Pinout                                      |              |
|    | 4.1. Finout  4.2. Alternate functionality pinout |              |
|    |                                                  |              |
|    | 4.3. GPIO pinout overview                        | . 48         |
| _  | 4.4. QFN32 Package                               |              |
| 5. | PCB Layout and Soldering                         | . 51         |
|    | 5.1. Recommended PCB Layout                      |              |
| _  | 5.2. Soldering Information                       | . 52         |
| 6. | Chip Marking, Revision and Errata                |              |
|    | 6.1. Chip Marking                                | . 53         |
|    | 6.2. Revision                                    |              |
|    | 6.3. Errata                                      |              |
| 7. | Revision History                                 |              |
|    | 7.1. Revision 1.20                               |              |
|    | 7.2. Revision 1.11                               |              |
|    | 7.3. Revision 1.10                               |              |
|    | 7.4. Revision 1.00                               |              |
|    | 7.5. Revision 0.85                               |              |
|    | 7.6. Revision 0.83                               |              |
|    | 7.7. Revision 0.82                               |              |
|    | 7.8. Revision 0.81                               |              |
|    | 7.9. Revision 0.80                               |              |
| A. | Disclaimer and Trademarks                        |              |
|    | A.1. Disclaimer                                  | 57           |
|    | A.2. Trademark Information                       | . 57         |
| В. | Contact Information                              | 58           |
|    | B.1. Energy Micro Corporate Headquarters         | . 58         |
|    | P. 2. Clobal Contacts                            | E            |



# **List of Figures**

| I.1. Block Diagram                                                                                          | 2  |
|-------------------------------------------------------------------------------------------------------------|----|
| 2.1. <i>EFM</i> 32 <i>G</i> 210 Memory Map with largest RAM and Flash sizes                                 | 7  |
| 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at |    |
| 28MHz                                                                                                       | 11 |
| 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at |    |
| 21MHz                                                                                                       | 11 |
| 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at |    |
| 14MHz                                                                                                       | 12 |
| 3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at |    |
| 11MHz                                                                                                       | 12 |
| 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at |    |
| 7MHz                                                                                                        | 13 |
| 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28MHz                 |    |
| 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz                 |    |
| 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz                 |    |
| 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz                 |    |
| 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7MHz                 | 15 |
| 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32 kHz LFRCO.                                         | 16 |
|                                                                                                             |    |
| 3.12. EM3 current consumption.                                                                              |    |
| 3.13. EM4 current consumption.                                                                              |    |
| 3.14. Typical Low-Level Output Current, 2V Supply Voltage                                                   |    |
| 3.15. Typical High-Level Output Current, 2V Supply Voltage                                                  |    |
| 3.16. Typical Low-Level Output Current, 3V Supply Voltage                                                   | 22 |
| 3.17. Typical High-Level Output Current, 3V Supply Voltage                                                  | 23 |
| 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage                                                 | 24 |
| 3.19. Typical High-Level Output Current, 3.8V Supply Voltage                                                |    |
| 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage                                          | 27 |
| 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Temperature and Supply Voltage                               | 29 |
| 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Temperature and Supply Voltage                               |    |
| 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage                              | 29 |
| 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage                              | 30 |
| 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage                              | 30 |
| 3.26. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage                              | 30 |
| 3.27. Integral Non-Linearity (INL)                                                                          | 35 |
| 3.28. Differential Non-Linearity (DNL)                                                                      | 35 |
| 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°                                                          | 36 |
| 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°                                            | 37 |
| 3.31. ADC Differental Linearity Error vs Code, Vdd = 3V, Temp = 25°                                         | 38 |
| 3.32. ADC Absolute Offset, Common Mode = Vdd /2                                                             | 39 |
| 3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V                               | 39 |
| 3.34. ADC Temperature sensor readout                                                                        | 40 |
| 3.35. Typical ACMP Characteristics                                                                          |    |
| 4.1. EFM32G210 Pinout (top view, not to scale)                                                              | 46 |
| 4.2. QFN32                                                                                                  |    |
| 5.1. QFN32 PCB Land Pattern                                                                                 |    |
| 5.2. QFN32 PCB Solder Mask                                                                                  |    |
| 5.3. QFN32 PCB Stencil Design                                                                               |    |
| 5.5. Eyample Chin Marking                                                                                   | 52 |



## **List of Tables**

| 1.1. Ordering Information             | 2   |
|---------------------------------------|-----|
| 2.1. Configuration Summary            |     |
| 3.1. Absolute Maximum Ratings         |     |
| 3.2. General Operating Conditions     | . 8 |
| 3.3. Environmental                    | . 🤅 |
| 3.4. Current Consumption              | 10  |
| 3.5. Energy Modes Transitions         | 17  |
| 3.6. Power Management                 |     |
| 3.7. Flash                            |     |
| 3.8. GPIO                             |     |
| 3.9. LFXO                             |     |
| 3.10. HFXO                            |     |
| 3.11. LFRCO                           |     |
| 3.12. HFRCO                           |     |
| 3.13. ULFRCO                          |     |
| 3.14. ADC                             |     |
| 3.15. DAC                             |     |
| 3.16. ACMP                            |     |
| 3.17. VCMP                            |     |
| 3.18. Digital Peripherals             |     |
| 4.1. Device Pinout                    | 46  |
| 4.2. Alternate functionality overview |     |
| 4.3. GPIO Pinout                      |     |
| 4.4. QFN32 (Dimensions in mm)         | 50  |



# **List of Equations**

| 3.1. Total ACMP Active Current                         | <br>42 |
|--------------------------------------------------------|--------|
| 3.2. VCMP Trigger Level as a Function of Level Setting | <br>44 |



Energy Micro AS Sandakerveien 118 P.O. Box 4633 Nydalen N-0405 Oslo Norway

www.energymicro.com