

Curva de crescimento usando modelo misto: Uma aplicação na progressão da doença de Machado - Joseph

André L. Grion - Bruno H. Abreu - Fabio H. Schroeder

# Introdução

### Objetivo

Ajustar curvas para descrever a progressão de Machado – Joseph (DMJ), quantificada pelo escore
 NESSCA (Escore do Exame Neurológico para Ataxias).

#### O que é a doença Machado – Joseph ?

Também conhecida como ataxia spinocerebellar tipo 3 (SCA3), é uma desordem neurodegenerativa autossômica dominante caracterizada pela ataxia cerebelar progressiva que acarreta, sem nunca alterar o intelecto, dependência ao sujeito. É uma doença hereditária, progressiva, de manifestação tardia (geralmente na idade adulta) e devida a uma mutação em um gene localizado no cromossoma 14q32.1

### O que é a escala NESSCA?

 Escala composta por 18 itens produzindo um escore total que varia de 0 a 40, onde 0 é nenhum comprometimento.

### Métodos

#### Dados

- Estudo procedido no HCPA, entre maio de 1995 e junho de 2005, com uma amostra de 105 sujeitos cujo diagnóstico é positivo para a DMJ
- Cada consulta médica foi realizada de acordo com a procura e/ou retorno do sujeito ao atendimento (o que não ocorreu em todos os anos subsequentes á primeira consulta)
- Todos os pacientes foram avaliados pela mesma médica, que incluiu um exame neurológico completo.

#### Covariáveis:

- Idade do início da doença
- comprimento da mutação
  - Definido como sequência repetitiva CAG do alelo ATXN3 expandido.
  - Todas as pessoas tem esse gene, e quando mutado causa a DMJ
  - Sujeitos sem a DMJ têm entre 10 a 40 repetições, já portadores têm entre 62 a 86.
  - Portanto, a mensuração desta sequência repetitiva aumentada definiu a variável comprimento da mutação.



#### Imputação dos dados:

- Tipo recordatória para observações faltantes no intervalo entre uma avaliação e outra, quando o escore
   NESSCA se manteve constante entre as duas avaliações.
- Em caso de alteração do escore, permitindo através dos sintomas relatados pelo paciente estimar-se "o momento em que houve alteração no escore"...

•



# Métodos



Com o objeito de avaliar a progressão da DMJ ao longo do tempo, utilizou-se o escore NESSCA como variável reposta., verificando se a doença poderia ser influenciada pelas variáveis explicativas idade no início da doença e comprimento da mutação.

Foram ajustadas 3 modelos tendo , tendo ora comprimento da mutação , ora idade do início da doença , e por fim ambas as variáveis (dicotomizadas).

# Métodos

#### Modelo 01. – Idade no início da doença (contínua)

$$\operatorname{nessca}_{ij} = (\alpha_0 + \alpha_1 \operatorname{idinic}_i + U_{1i}) + (\beta_0 + \beta_1 \operatorname{idinic}_i + U_{2i}) \operatorname{tempo}_{ij} + \varepsilon_{ij}$$

#### Onde:

i = 1, ..., n, onde n é o número de sujeitos, neste caso, n=105;

j = 1, ..., n<sub>i</sub>, onde n<sub>i</sub> é o número de observações do sujeito i;

nessca<sub>ii</sub> é o escore da escala NESSCA do sujeito i na avaliação j;

idinic; é a idade no início da doença do sujeito i;

 $U_{1i}$  e  $U_{2i}$  são efeitos aleatórios de cada sujeito,  $U_{1i}$  mede o quanto o intercepto da reta do i-ésimo sujeito se afasta do intercepto da reta média, e analogamente,  $U_{2i}$  mede este afastamento em termos da inclinação;

tempoii é o tempo desde o início da doença para o sujeito i na avaliação j;

 $\varepsilon_{ii}$  é o erro aleatório.

Para completar a especificação deste modelo pressupõe-se que os efeitos aleatórios tenham distribuição normal bivariada com média zero e matriz de variâncias-covariâncias dita não estruturada:

$$U_i = \begin{bmatrix} U_{1i} \\ U_{2i} \end{bmatrix} \sim N(0,D) \qquad \qquad D = \begin{bmatrix} \sigma_1^2 \sigma_{12} \\ \sigma_{12} \sigma_2^2 \end{bmatrix} \qquad \text{e tamb\'em,} \qquad \qquad \varepsilon_{ij}^{iid} \sim N(0,\sigma_\varepsilon^2)$$



#### Modelo 01. – Idade no início da doença (contínua)

Note que, como  $E[U_{1i}] = E[U_{2i}] = E[\varepsilon_{ij}] = 0$ , os efeitos fixos são interpretados como coeficientes de regressão da reta média:

$$E[\operatorname{nessca}_{ij}] = (\alpha_0 + \alpha_1 \operatorname{idinic}_i) + (\beta_0 + \beta_1 \operatorname{idinic}_i) \operatorname{tempo}_{ij}$$
[1]

Onde:

 $\alpha_0$  é o intercepto da reta média dos sujeitos com idade no início da doença igual a zero, o que não é clinicamente relevante;

 $\alpha_1$  é a variação no intercepto da reta média dos sujeitos dada uma unidade de variação na idade no início da doença do sujeito;

β<sub>0</sub> é a inclinação da reta média dos sujeitos com idade no início da doença igual a zero;

 $\beta_1$  é a variação na inclinação da reta média dos sujeitos dada uma unidade de variação na idade no início da doença do sujeito.



### Modelo 02. – comprimento da mutação (contínua)

$$E[\operatorname{nessca}_{ij}] = (\alpha_0 + \alpha_1 \operatorname{cagexp}_i) + (\beta_0 + \beta_1 \operatorname{cagexp}_i) \operatorname{tempo}_{ij}$$
 [2]

Onde:

 ${\tt cagexp}_i$  é o comprimento da mutação do sujeito i;

 $\alpha_0$  é o intercepto da reta média dos sujeitos com comprimento da mutação igual a zero, o que não é clinicamente possível;

α<sub>1</sub> é a variação no intercepto da reta média dos sujeitos dada uma unidade de variação no comprimento da mutação;

 $\beta_0$  é a inclinação da reta média dos sujeitos com comprimento da mutação igual a zero;

 $eta_1$  é a variação na inclinação da reta média dos sujeitos dada uma unidade de variação no comprimento da mutação.



Modelo 03. – Idade no início da doença e comprimento da mutação (dicotomizados)

$$\begin{aligned} &\operatorname{nessca}_{ij} = (\alpha_0 + \alpha_1 \mathrm{idinicd}_i + \alpha_2 \mathrm{cagexpd} + U_{1i}) + (\beta_0 + \beta_1 \mathrm{idinicd}_i + \beta_2 \mathrm{cagexpd} + U_{2i}) \mathrm{tempo}_{ij} + \varepsilon_{ij} \\ &\operatorname{Onde:} \\ &\operatorname{nessca}_{ij}, \ tempo_{ij}, \ U_{1i}, \ U_{2i}, \ \varepsilon_{ij} \ \text{são definidos como anteriormente;} \\ &\operatorname{idinicd}_i = \begin{cases} 0, \mathrm{idinic} < 34 \\ 1, \mathrm{idinic} \geq 34 \end{cases} & \operatorname{cagexpd}_i = \begin{cases} 0, \operatorname{cagexp} < 74 \\ 1, \operatorname{cagexp} \geq 74 \end{cases} \end{aligned}$$



#### Modelo 03. – Idade no início da doença e comprimento da mutação (dicotomizados)

$$E[\operatorname{nessca}_{ij}] = (\alpha_0 + \alpha_1 \operatorname{idinicd}_i + \alpha_2 \operatorname{cagexpd}_i) + (\beta_0 + \beta_1 \operatorname{idinic}_i + \beta_2 \operatorname{cagexp}_i) \operatorname{tempo}_{ij} [3]$$

Como idinicd e cagexpd são variáveis binárias, pode-se obter as retas médias para cada grupo:

$$E[\operatorname{nessca}_{ij} \mid \operatorname{cagexp} = 0, \operatorname{idinic} = 0] = \alpha_0 + \beta_0 \operatorname{tempo}_{ij}$$

$$E[\operatorname{nessca}_{ij} \mid \operatorname{cagexp} = 0, \operatorname{idinic} = 1] = (\alpha_0 + \alpha_1) + (\beta_0 + \beta_1) \operatorname{tempo}_{ij}$$

$$E[\operatorname{nessca}_{ij} \mid \operatorname{cagexp} = 1, \operatorname{idinic} = 0] = (\alpha_0 + \alpha_2) + (\beta_0 + \beta_2) \operatorname{tempo}_{ij}$$

$$E[\operatorname{nessca}_{ij} \mid \operatorname{cagexp} = 1, \operatorname{idinic} = 1] = (\alpha_0 + \alpha_1 + \alpha_2) + (\beta_0 + \beta_1 + \beta_2) \operatorname{tempo}_{ij}$$

### Descritiva

|                 | Variável | N   | Média | Mediana | Mínimo | Máximo | Desvio Padrão |
|-----------------|----------|-----|-------|---------|--------|--------|---------------|
| Amostra inteira | cagexp   | 100 | 74,24 | 74      | 67     | 82     | 2,65          |
|                 | idinic   | 105 | 34,09 | 34      | 7      | 57     | 10,07         |
|                 | NESSCA   | 105 | 16,43 | 16      | 3      | 33     | 5,20          |
| CAGEXP < 74     | cagexp   | 45  | 71,89 | 72      | 67     | 73     | 1,22          |
|                 | idinic   | 45  | 39,00 | 38      | 24     | 57     | 7,70          |
|                 | NESSCA   | 45  | 15,37 | 16      | 3      | 29     | 4,98          |
| CAGEXP≥ 74      | cagexp   | 55  | 76,16 | 76      | 74     | 82     | 1,84          |
|                 | idinic   | 55  | 29,82 | 29      | 15     | 50     | 9,17          |
|                 | NESSCA   | 55  | 17,51 | 17      | 5      | 33     | 5,34          |
| IDINIC < 34     | cagexp   | 48  | 75,44 | 76      | 71     | 82     | 2,73          |
|                 | idinic   | 49  | 25,10 | 26      | 7      | 33     | 5,70          |
|                 | NESSCA   | 49  | 17,33 | 17      | 3      | 33     | 5,20          |
| IDINIC≥ 34      | cagexp   | 52  | 73,13 | 73      | 67     | 77     | 2,03          |
|                 | idinic   | 56  | 41,95 | 42      | 34     | 57     | 5,40          |
|                 | NESSCA   | 56  | 15,76 | 16      | 3      | 31     | 5,11          |

1

CE093

### Gráfico das curvas individuais para NESSCA



Gráfico das curvas médias para idade no início da doença dicotomizada



Gráfico das curvas médias para comprimento da mutação dicotomizada



#### Estimativa dos parâmetros para o ajuste da NESSCA á idade de ínicio

| Efeito       | Parâmetro  | Estimativa | Erro Padrão | valor-p | IC 95%         |
|--------------|------------|------------|-------------|---------|----------------|
| Intercepto   | $\alpha_0$ | 8,34       | 2,89        | 0,01    | (2,56; 14,12)  |
| tempo        | $\beta_0$  | 1,87       | 0,34        | <0,01   | (1,19; 2,55)   |
| idinic       | $\alpha_1$ | -0,06      | 0,08        | 0,45    | (-0,23; 0,10)  |
| tempo*idinic | β1         | -0,02      | 0,01        | 0,03    | (-0,04; -0,00) |

A reta média estimada:

$$\hat{E}[\text{nessca}_{ij}] = (8,34 - 0,06 \text{idinic}_i) + (1,87 - 0,02 \text{idinic}_i) \text{tempo}_{ij}$$

Matriz de covariância do efeitos aleátorios:

$$\mathbf{D} = \begin{bmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} \\ \hat{\sigma}_{12} & \hat{\sigma}_2^2 \end{bmatrix} = \begin{bmatrix} 35,75 & -2,88 \\ -2,88 & 0,47 \end{bmatrix}$$

Resultados do modelo para a idade no ínicio da doença contínua :



Estimativa dos parâmetros para o ajuste da NESSCA ao comprimento da mutação

| Efeito       | Parâmetro  | Estimativa | Erro Padrão | valor-p | IC 95%           |
|--------------|------------|------------|-------------|---------|------------------|
| Intercepto   | $\alpha_0$ | 37,99      | 23,56       | 0,11    | (-9,17; 85,15)   |
| tempo        | $\beta_0$  | -11,12     | 2,43        | <0,01   | (-15,96 ; -6,28) |
| cagexp       | $\alpha_1$ | -0,43      | 0,32        | 0,18    | (-1,06; 0,21)    |
| tempo*cagexp | $\beta_1$  | 0,16       | 0,03        | <0,01   | (0,10; 0,23)     |

A reta média estimada:

$$\hat{E}[\text{nessca}_{ij}] = (37,99 - 0,43\text{cagexp}_i) + (-11,12 + 0,16\text{cagexp}_i)\text{tempo}_{ij}$$

Matriz de covariância do efeitos aleátorios:

$$D = \begin{bmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} \\ \hat{\sigma}_{12} & \hat{\sigma}_2^2 \end{bmatrix} = \begin{bmatrix} 35,62 - 2,12 \\ -2,12 & 0,29 \end{bmatrix}$$

• Resultados das retas ajustadas para o comprimento da mutação:



### Estimativa dos parâmetros para o ajuste da NESSCA á idade de ínicio e comp. da mutação dicotomizados

| Efeito        | Parâmetro  | Estimativa | Erro Padrão | valor-p | IC 95%         |
|---------------|------------|------------|-------------|---------|----------------|
| Intercepto    | $\alpha_0$ | 7,85       | 1,84        | <0,01   | (4,16 ; 11,54) |
| tempo         | $\beta_0$  | 0,88       | 0,19        | <0,01   | (0,50; 1,25)   |
| idinicd       | $\alpha_1$ | -0,73      | 1,92        | 0,71    | (-4,57; 3,12)  |
| cagexpd       | $\alpha_2$ | -2,44      | 1,92        | 0,21    | (-6,29; 1,41)  |
| tempo*idinicd | $\beta_1$  | -0,15      | 0,19        | 0,44    | (-0,54; 0,24)  |
| tempo*cagexpd | $\beta_2$  | 0,59       | 0,19        | <0,01   | (0,21; 0,98)   |

#### A reta média estimada:

$$\hat{E}[nessca_{ij}] = (7,85-0,73idinicd_i - 2,44cagexpd_i) + (0,88-0,15idinic_i + 0,59cagexp_i)tempo_{ij}$$

Matriz de covariância do efeitos aleátorios:

$$D = \begin{bmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} \\ \hat{\sigma}_{12} & \hat{\sigma}_2^2 \end{bmatrix} = \begin{bmatrix} 37,65 & -2,53 \\ -2,53 & 0,41 \end{bmatrix}$$

Resultados das retas ajustadas para idade do início da doença e comp. da mutação dicotomizados:



### Conclusão

O modelo misto mostrou-se eficiente no ajuste das curvas de crescimento para as três alternativa, e por esse motivo é
possível concluir que as dificuldades relacionadas ao desbalanceamento dos dados foram superadas.

- Os resultados mostraram que quanto mais tardio o início da doença, mais lenta ocorre a sua progressão, sugerindo,
   assim que a idade do início da DMJ, pode ser considerada um fator de proteção.
- No caso do comprimento da mutação, quanto maior é este comprimento, mais rápida é a progressão da doença,
   então pode-se apontar que o comprimento da mutação é um fator de risco para a DMJ.

Como continuidade desse estudo, seria interessante utilizar um modelo que não assumisse linearidade entre NESSCA e o tempo, para testar a hipótese de que um portador DMJ tem uma velocidade maior de progrssão nos primeiros anos da doença e depois uma estabilização.

2

CE093