	1
Roll Number:	1
Non Number.	1

UNIVERSITY DEPARTMENTS, ANNA UNIVERSITY - CHENNAL DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

B.E. DEGREE EXAMINATIONS, APRIL 2011

III SEMESTER - R 2008

CS 9204 COMPUTER ARCHITECTURE

Time: Three Hours

Max. Marks: 100

Answer All Questions

PART-A (10 X 2 = 20 Marks)

1. Consider a load-store processor with a clock cycle time of 1 ns. running a program with the following instruction mix:

	Frequency	Clock cycle count
ALU operations	50%	1
Loads	20%	3 .
Stores	10%	3
Branches	20%	2

A second level of cache is being added, that speeds up memory access time by 2, and increases clock cycle time by 30%. Find the improvement obtained.

- 2. Discuss the concept of a carry look ahead adder.
- Discuss the features to be considered while deciding on the choice of addressing modes.
- 4. What is a control store? Discuss.
- 5. What is meant by static branch prediction?
- 6. Discuss the concept of loop unrolling by the compiler.
- 7. What is a TLB? Discuss.
- 8. What is a write buffer?
- 9. What are the functions to be performed by an I/Ö interface?
- 10. What is daisy chaining?

PART-B (5 x 16 = 80 Marks)

the sequence instruction	sic steps involved in the instruction of operations that take place in a sir	cycle of a processor. •Showingle bus organization for the	w e
	R, R2, # DATA nat is ADD dst, src1, src2.	ر (10))
(ii) Discuss the co hardwired cont	ncept of microprógramming. How do rol?	oes it compare with (6)
12. a. (i) Discuss the	cónstruction óf á 4x4 arráy multiplie	r. (10)
(ii) What is a ca	rry save adder? What are its advant	tages? (6)	ı
	, OR .		
	restoring division algorithm. e same for the numbers 15 / 9.	(10)	
(ii) Discuss the	operation of a floating point adder/s	ubtractor unit. (6)	
13. a. (i) Discuss the algorithm.	book keeping done by the Tomasul	o's dynamic scheduling	
unit (handle execution la latency, two	e following code assuming that the l s also all memory references and br tency, one Floating-Point Add/Sub t FP Mult units with an execution late with a 40-cycle latency.	anches) with a 1-cycle unit with 2-cycles execution	
LÓ LD MULD SUBD DIVD ADDD MULD	F6 34(R2) F2 45(R3) F0, F2, F4 F8, F0, F2 F10, F0, F6 F6, F10, F2 F2, F0, F6		
	•		

(ii) What is meant by delayed branching? Discuss the different ways by which the

compiler fills the branch delay slots.

b. (i) Discuss the implementation of the MIPS integer pipeline. What are the additional complexities to be handled in a floating-point pipeline?	*(10)
(ii) What is meant by hardware speculation? How is it handled in a dynamic scheduled processor?	cally (6)
14.a. (i) Compare and contrast the various mapping policies used in cache memories.	
A computer system has a main memory consisting of 16M words. It als has a 4K-word cache organized in the block-set-associative manner, wi blocks per set and 128 words per block. Calculate the number of bits in each of the TAG, SET and WORD fields the main memory address format.	th 4
(ii) Discuss any four techniques used for improving the performance of the cache.	(6)
OR .	
b. (i) What are the advantages of virtual memory? Show how a paged memory management technique is implemented.	 (10)
(ii) What is the need for a hierarchical memory system? Show the complete flow of data between the processor and memory, assuming there are two levels of cache and support for virtual memory.	(6)
15.a. (i) What is the need for a DMA transfer in a computer system? Discuss in detail how this is accomplished.	(10)
(ii) Distinguish between synchronous and asynchronous bus transfers.	(6)
OR .	
 b. (i) What is the need for standard I/O interfaces? Discuss in detail any one standard interface. 	(10)
(ii) What is an interrupt driven transfer? Discuss.	. (6)