

Final Assessment Test - November 2019

Course:

MAT3004 - Applied Linear Algebra

Class NBR(s) 0344 / 0510 / 0512 / 0513 / 2730

Slot: A1+TA1+TAA1+V1

Time: Three Hours

Max. Marks: 100

REEPING MOBILE PHONE/SMART WATCH, EVEN IN 'OFF' POSITION, IS EXAM MALPRACTICE

SPARCH TIT QUESTION PAPERS

Answer any FIVE Questions (5 X 20 = 100 Marks)

ON TELEGRAM TO JOIN

a) Determine if the following system is consistent: y - 4z = B; 2x - 3y + 2x = 1; 5x - By + 7z = 1. [10]

b) Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & B \end{bmatrix}$, using Gauss-Jordan elimination process [10]

Determine whether the polynomials $p_1 = 1 - x$, $p_2 = 5 + 3x - 2x^2$, $p_3 = 1 + 3x - x^2$ are linearly [10] dependent or independent in P2

[10] b) Determine whether the vectors $v_1=(1,1,2), v_2=(1,0,1), v_3=(2,1,3)$ span the vector space R^3

[10] Show that the matrices $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ form a basis for the vector space My3 of 2 × 2matrices.

 $\text{3)} \quad \text{iff } U = \{(x_1, x_2, x_3, x_4, x_5) \colon 2x_1 - x_2 - x_3 = 0 = x_4 - 3x_5\}, V = \{(x_1, x_2, x_3, x_4, x_5) \colon x_3 + x_4 = 0\}$ [10] be two subspaces of H^3 . Find the dimensions of U,V,V+W and $V\cap W$.

(I) With = $\begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$, let $u = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$ Determine if u is in null space of A. [5] [5]

(iii) Could a 6 × 9 matrix have a two-dimensional null space.

Let $T: P_Z(\mathbb{R}) \to M_{2\times Z}(\mathbb{R})$ be defined by $T(p) = \begin{bmatrix} p(0) & p(1) \\ p'(0) & p'(1) \end{bmatrix}$. Find the matrix associated to T with [10] respect to the standard bases $\beta = \{1, x, x^2\}$ and $\gamma = \{\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\ 1 & 0\end{bmatrix}, \begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\}$ of $P_2(\mathbb{R})$ and M_{2×2}(R) respectively.

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by T(x,y,z,u)=(x+2y,x-3z+u,2y+3z+4u). Let α and β be the standard bases for R^4 and R^3 respectively. Find $[T]_n^\beta$

Apply the Gram-Schmidt process to transform the basis vectors $v_1=(1,1,1),\,v_2=(0,1,1),$ $v_3=(0,0,1)$ into an orthogonal basis $\{u_1,u_2,u_3\}$ and then normalize the orthogonal basis vectors to obtain an orthonormal basis (w1, w2, w3)

Prove that if $x_1, x_2, ..., x_k$ are nonzero mutually orthogonal vectors in an inner product space V, then they are linearly independent.

Let U be a subspace of an inner product space V, and let $x \in V$. Then, prove that the orthogonal projection $Proj_U(x)$ of x satisfies $||x - Proj_U(x)|| \le ||x - y||$ for all $y \in U$.

[10]

110

