

Embeddings

Prof. Anderson Dourado

- 1. Embeddings
- 2. Word2Vec
- 3. Demo Word2Vec
- 4. Exercício

Embeddings

- Até o momento tratamos palavras como símbolos atômicos: *hotel, conferência, andar...*
- Ignoramos o contexto e a ordem das palavras.
- Consideremos a relevância das palavras pela frequência ou representação de 0's e 1.

- Chamamos essa representação de one-hot vector
- Exemplo:
 - Hotel: [0 0 0 0 0 0 1 0 0 0 0]
 - Motel: [0 0 0 0 1 0 0 0 0 0 0]

Principais problemas nas representações utilizadas até agora:

- Alta dimensionalidade dos dados
- Falta de representação semântica
- Representação esparsa
- Falta de contexto

As palavras não possuem qualquer tipo de correlação!

A maioria das representações de texto são discretas e possuem alguns problemas:

- Perda de nuances: sinônimos apto, bom, expert, proficiente.
- Perde novas palavras (impossível de manter atualizado): fodão, ninja...
- Subjetivo (não leva em consideração contexto)
- Necessita trabalho humano para criar e adaptar

Difícil calcular similaridade de palavras

O que gostaríamos?

- Analise semântica, onde o contexto importa.
- Representação que permita uma **comparação de textos**, a partir de um cálculo simples de distâncias por exemplo.
- Representação compacta, de forma a melhorar a performance dos métodos de ML.
- Representação que aprenda os diferentes significados que uma palavra pode ter:

"Sentado no banco da praça vi um assalto ao banco."

Para entendermos o conceito dessas representações, também chamadas de Representações Distribuídas, precisamos entender alguns pontos antes, premissas:

- Similaridade Distribucional: o significado de uma palavra pode ser entendido a partir do contexto em que aparece.
 - Isto é conhecido também como conotação, ou seja, o significado é definido pelo contexto. Diferente de denotação, que é o significado literal de uma palavra.
- Hipótese Distribucional: Palavras que aparecem em contextos similares possuem significados similares então duas palavras que aparecem em contextos similares devem possuir vetores similares.
- Representação Distribuída: representação de texto através de vetores compactos (baixa dimensão) e densos (não-esparsos). Daqui, surgiu o conceito de Word Embeddings.

Ideia 1: Definir sentido pela distribuição linguística

Ideia 2: Sentido como um ponto multidimensional no espaço

- Cada palavra é um vetor (não apenas "bom" ou "w₄₅")
- Palavras similares são vizinhas no espaço semântico
- Construímos o espaço observando as palavras vizinhas no texto

- Com palavras:
 - A feature é uma palavra
 - Necessita exatamente a mesma palavra
- Com embeddings:
 - A feature é um vetor
 - Podemos generalizar para uma palavra não vista

Word Embedding é conjunto de modelos para mineração de textos, ou seja, é mais uma técnica de pré-processamento em NLP, onde os textos são transformados e as palavras representadas por um vetor na forma numérica, ou seja, em uma representação matemática de cada palavra.

Word Embeddings utilizam representações de **vetores densos de tamanho fixo** que são capazes de armazenar informações sobre o contexto e significado dos documentos.

Cada palavra é representada por um ponto em um espaço multidimensional (embedding space) e como falamos, cada palavra é representada de forma numérica no vetor, que na verdade são os pontos/dimensões de cada palavra.

Word2Vec

 Como vimos, qualquer objeto pode ser representado através de vetores. Por hora, vamos olhar para vetores de palavras já treinados (depois vamos entender como chegar nesses vetores e o que ele representa) para entender suas principais propriedades. São técnicas que usam redes neurais para produzir embeddings que preservam algumas propriedades semânticas das palavras:

Este vetor representa a palavra "King":

```
[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ]
```

• É uma lista de 50 números. Vamos coloca-los numa única linha para poder compará-la com vetores de outras palavras:

 Podemos colorir cada uma das células para melhor visualização e comparação:

• Vamos deixar os números de lado e focar somente nas cores.

Comparando com outros vetores de palavras:

• Esse tipo de representação vetorial é que nos permite estabelecer relações como as seguintes:

E mais, eu posso realizar operações algébricas do tipo: v['king']-v['man']+v['woman'] = v['queen']

Qual a ideia? Encontrar uma representação a partir do contexto das palavras vizinhas.

 Word2Vec pode criar vetores densos a partir de duas abordagens: Continuous Bag-of-Word (CBOW) e Skip-gram:

CBOW

predizer uma palavra a partir de um contexto (outras palavras). Skip-gram predizer o contexto (outras palavras) a partir de uma palavra.

This is a visual comparison

A similaridade cosseno é uma medida de semelhança entre dois vetores não nulos.

Demo e Exercício

Obrigado!

orofanderson.dourado@fiap.com.br

Copyright © 2025 | Professor Anderson Vieira Dourado

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente

proibido sem consentimento formal, por escrito, do professor/autor.

