

I am not com down until you reduce the price of melie meel

EXAME MARE EASY
Whatsapp on 0768790499

ED TO Jord on
Whatsapp Group.

MA110 - MATHEMATICAL METHODS

Time allowed: Two hours (2:00 hours)

Instructions:

- You must write your Name, your Computer Number and programme of study on your answer sheet.
- 2. Calculators are not allowed in this paper.
- 3. There are three (3) questions in this paper, Attempt All questions and show detailed working for full credit

QUESTION ONE

- a) (i) If $C \subset D$, then simplify if possible $C' \cup D'$ (2.5 marks) \smile
 - (ii) Express 1.171717...... as a fraction $\frac{a}{b}$ in its simplest form where a and b are integers and $b \neq 0$. (2.5 marks)
 - b) Consider the binary operation a*b=a+b-2ab, where a and b are real numbers.
 - (i) Is * a binary operation on the set of real numbers? Give reason for your answer. (1) Mark u
 - (ii) Is the operation * commutative? If not give a counter example. (1) Mark
 - (iii) Find the value of 1*(2*3) and (1*2)*3 and state whether * is associative (3) Marks
 - c) Given the rational function $f(x) = \frac{x+2}{x-2}$. Sketch its graph indicating its domain and range, all the asymptotes and intercepts. (5 Marks)
 - d) Prove that $\sqrt{2}$ is an irrational number (5 Marks)
 - e) Let $f(x) = \frac{x+1}{x-1}$ and $g(x) = \sqrt{x}$. Find $(g \circ f)(x)$ and determine the domain (5 Marks)

QUESTION TWO

a) Using the associative and distributive properties of union and intersection of sets .Show that

$$A \cup B = (A \cap B) \cup (A \cap B') \cup (A' \cap B)$$
 (5 Marks) \Leftrightarrow

- b) Let α and β be the roots of the quadratic equation $3x^2+2x+5=0$. Find a quadratic equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ without calculating α and β (5 Marks) \vee
- c) Solve the given radical function inequality $\sqrt{2} \sqrt{x+6} \le -\sqrt{x}$ 3. (5 Marks)
- d) Solve for x and y given that:

$$\frac{x}{1+i} - \frac{y}{2-i} = \frac{1-5i}{3-2i}$$
 (5 Marks)

e) Show that the function f defined by $f(x) = \frac{2x}{x-1} x \in R$, is a bijection on R on to $\{y \in R: y \neq 2\}$ (5 Marks) \vee

QUESTION THREE

- a) Use the Rational root theorem to solve $x^3 4x^2 + 8 = 0$ (5 Marks)
- b) Rationalize the denominator $\frac{1}{\left(\sqrt{2}+1\right)\!\left(\sqrt{3}-1\right)}$ (5 Marks)
- c) (i) Determine whether the function $f(x) = x^4 + x^2 + 1$ even, odd or neither. (2.5 marks)
 - (ii) Let $A = \{x \in \mathbb{R}: -4 \le x < 2\}$ and $B = \{x \in \mathbb{R}: x \ge -1\}$. Find a) $A \cap B$ b) A' (2.5 marks) \smile
- d) What are the dimensions of the largest rectangular field , () which can be enclosed by 1200 m of fencing? (5 Marks)
- e) Sketch the graph of f(x)=|2x+1|. On the same diagram sketch also the graph of $g(x)=\sqrt{1-2x}$ and , hence, find the values such that $\sqrt{1-2x}>|2x+1|$ \checkmark (5 Marks)

MA110 - MATHEMATICAL METHODS TEST 2

Time allowed: Two hours thirty minutes (2:30)

Instructions:

- You must write your Name, your Computer Number and programme of study on your answer sheet.
- 2. Calculators are not allowed in this paper.
- 3. There are four (4) questions in this paper, Attempt All questions and show detailed working for full credit

QUESTION ONE

- a) Express $\frac{2x+1}{x^3-1}$ in partial fractions \rightarrow (5marks)
- b) Find the centre and length of a radius of the given circle and graph it $x^2 + y^2 10x = 0$. (5marks)
- c) Prove the result by induction: $1 \times 3 + 2 \times 4 + \cdots + n(n+2) = \frac{1}{6}n(n+1)(2n+7)$

(5marks)

- d) Find the 4th term in the binomial expansion $\left(2 \frac{x}{2}\right)^9 \checkmark$ (5marks)
- = e) If xy = 64 and $log_x y + log_y x = \frac{5}{2}$, Find x and y. \searrow (5 marks)

QUESTION TWO

 \nearrow a) A is the point (-1,2), B is the point (2,3) and C is the point (3,5). P is a point which divides BC in the ratio 3: 4 and Q lies on AB such that

$$AQ = \frac{2}{5}AB.$$

(i) Find the coordinates of P

(2.5 marks)

(ii) Find the coordinates of Q.

- (2.5 marks)
- \star b) Find λ for which the matrix $\lambda I A$ is a singular matrix if where I is an

identity Matrix given that
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
 (5 marks)

c) Show that the sum of the integers from 1 to n is $\frac{1}{2}n(n+1)$ (5marks)

- ϵ d) Solve the logarithmic equation : $\log(x-4) + \log(x-1) = 1$ (5marks)
- of x are $1 \frac{5}{2}x + \frac{75}{8}x^2$, Find the values of n and a, and state the range of values of x for which the expansion is valid. (5 marks)

QUESTION THREE

- a) Find the radius of the circle with center at C(-2,5) if the line x + 3y = 9 is a tangent line. (5marks)
- b) Using geometrical progression, change $0.2\overline{14}$ to $\frac{a}{b}$ form , where a and b are integers and $b \neq 0$. (5marks)
- c) Use mathematical induction to prove that the statement is true for all positive integers n given that $4^n 1$ is divisible by 3 (5marks)
- (5) Graph $f(x) = log_{\frac{1}{2}}x$ by reflecting the graph of $g(x) = \left(\frac{1}{2}\right)^x$ a cross the line y = x
- e) (i) Find the inverse of the matrix $A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$ (5 marks)
 - (ii) Use your inverse to solve the system of linear equations

$$3x - y + 2z = 4$$

$$x + y + z = 2$$

$$2x + 2y - z = 3$$
(3marks)

QUESTION FOUR

a) Write the following in sigma notation

(i)
$$1 - \frac{2}{3} + \frac{4}{9} - \frac{8}{27} + \cdots$$
 (3marks)

(ii)
$$1^4 + 2^4 + 3^4 + \dots + n^4 + (n+1)^4$$
. (2marks)

- b) The number of grams of a certain radioactive substance present after t hours is given by the equation $Q=Q_0e^{-0.45t}$, where Q_0 represents the initial number of grams. How long will it take 2500 grams to be reduced to 1250 given $\ln\left(\frac{1}{2}\right)=-0.693$ (Smarks)
 - c) (i) Expand $(1+2x)^4$ and $(1-2x)^4$ in ascending powers of x. (5 marks)
 - (ii) Hence reduce $(1+2x)^4 (1-2x)^4$ to its simplest form. (3marks)
 - (iii) Using the results in (ii) evaluate $(1.002)^4 (0.998)^4$ (5 marks)

20 + 20 + 14 + 150 - 120

THE COPPERBELT UNIVERSITY

SCHOOL OF MATHEMATICS AND NATURAL SCIENCES

Department of Mathematics

2022/2023 ACADEMIC YEAR
SESSIONAL EXAMINATION

MA110-MATHEMATICAL METHODS I

TIME ALLOWED: Three (3) hours

INSTRUCTIONS:

- 1. You must write your **COMPUTER NUMBER**, **PROGRAM** and **YOUR GROUP** on each answer booklet you have used.
- There are seven (7) questions in this paper, Attempt any five
 questions, Each question consists of a, b, c, d, e. All questions carry equal marks
- 3. Calculators are NOT allowed in this paper.
- Should you have any problem or if you need more answer booklet, put up your hand an invigilator will come to attend to you.

90 =

b) Solve the logarithmic equation:

$$\log(x-4) + \log(x-1) = 1.$$

c) Use De Moivre's theorem to find the indicated power of $(1+i)^{20}$ and express results in a+bi.

d) Find the limit of the quotients as

$$h \to 0 \quad \frac{\sqrt{x+h} - \sqrt{x}}{h}. \qquad 2 \quad (18)$$
it a integral of

20

e) Evaluate the definite integral of

$$\int_0^{\pi^2} \frac{\cos\sqrt{x}}{\sqrt{x}} \ dx.$$

- QUESTION TWO (1-9) a) Use the rational root theorem to solve $x^3 4x^2 + 8 = 0$.
- b) Use mathematical induction to prove that the statement is true for all positive integers n given that $4^n - 1$ is divisible by 3.
- c) Find the period, amplitude, phase shift and sketch the curve of $f(x) = 1 + \frac{1}{2} \sin\left(2x + \frac{\pi}{4}\right).$
- d) Let $f(x) = \frac{|x|}{x}$. Determine giving reasons whether or not the function is continuous at x = 0.
- e) Show that $\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$

a) Define an operation * on the set of real numbers by

$$a * b = a^b$$

- i). Is * a binary operation on the set of real numbers?
- ii). Is the operation commutative?
- iii). Evaluate (3*2)*-2.
- b) Find λ for which the matrix $\lambda I A$ is a singular matrix where I is an identity Matrix given that $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}$.
- c) Solve for real values of x, given that $sinh^2x 3coshx = 3$.
- d) Differentiate the function f(x) = sinx using the first principle
- e) Evaluate the indefinite integral of

$$\int \frac{2x^2 - 5x + 2}{x(x^2 + 1)} dx.$$

QUESTION FOUR ×

- a) Let $f(x)=1-x^2$ and $g(x)=\sqrt{x}$, Find $(g \circ f)(x)$ and determine the domain.
- b) Write the following in sigma notation

(i)
$$1 - \frac{2}{3} + \frac{4}{9} - \frac{8}{27} + \cdots$$
 (ii) $1^4 + 2^4 + 3^4 + \cdots + n^4 + (n+1)^4$

- c) Find all the critical points of the function $f(x) = 1 + \sin^2 x + \sin x \text{ defined on the interval}$ $0 < x < 2\pi.$
- d) Find the equation of the tangent to the graph of the function $f(x) = 1 + \sin^2 x + \sin x$ at a point where $x = \pi$.
- e) Evaluate the $\,$ indefinite integral of $\, \int \ln x \; dx \,$.

- a) Let α and β be the roots of the quadratic equation $3x^2 + 2x + 5 = 0$. Find a quadratic equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ without calculating α and β .
- b) The number of grams of a certain radioactive substance present after t hours is given by the equation $Q=Q_0e^{-0.45t}$, where Q_0 represents the initial number of grams. How long will it take 2500 grams to be reduced to 1250 given $\ln\left(\frac{1}{2}\right)=-0.693$.
- c) Sketch the graph of the polar equation $r^2 = sin 2\theta$.
- d) Find the cube root of 8i.
- e) Find the derivative of $xe^y 3ysinx = 1$.

60

QUESTION SIX 20

- a) Prove that $\sqrt{2}$ is an irrational number.
- b) Find the centre and length of a radius of the given circle and graph it $x^2 + y^2 10x = 0$.
- c) Solve the trigonometric equation $sin x + cos x = \sqrt{2}$ if $0 \le x \le 2\pi$.
- d) Use the Second derivative Test to find the local extrema of $f(x) = x^4 8x^2 + 10.$
- e) Evaluate the indefinite integral of

S/F

al of $e^x sinx dx.$ $-2 \frac{1}{3} \frac{1}$

QUESTION SEVEN <

- a) Show that the function f defined by $f(x) = \frac{2x}{x-1}$ $x \in R$, is a bijection on R on to $\{y \in R : y \neq 2\}$.
- b) Use binomial theorem to find the value of $(1.01)^{10}$ up to the third term.
- c) Find the exact value of tan 67.5°

76 =

d) Determine the interval for which f(x) is continuous.

$$f(x) = \sqrt{4 - x^2}.$$

e) Two numbers x and y are connected by the relation x + y = 6. Find the values of x and y which give a stationary point of the function $T = 2x^2 + 3y^2$ and determine whether they make T a maximum or minimum.

MADEEASY EXAM