Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma	13
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
Ω	Transformada de Laplace 10	12
Э.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Lapiace	L٦
10	O.Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	18
	10.4. Sistema de ecuaciones lineales	2(
11	1.Polinomios ortogonales 12	23
	11.1. Definiciones	
	11.2. Teoremas	
	11.3. Relación de recurrencia	
16	2.Polinomios de Hermite	. –
14	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite)]
13	3.Polinomios de Laguerre 13	
	13.1. Definición	
	13.2. Función generatriz	33
	13.3. Relaciones de recurrencia	} 5
	13.4. Ecuación de Laguerre	} 5
	13.5. Ortogonalidad	36
	13.6. Polinomios asociados de Laguerre	38
1⊿	4.El problema de Sturm-Liouville 13	}C
	14.1. Operadores diferenciales autoadjuntos	
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades 14	5
15.1. Puntos singulares	٤5
15.2. Solución por serie: método de Frobenius	6
15.3. Limitaciones del método. Teorema de Fuchs	9
15.4. Una segunda solución	1
16. Ecuaciones diferenciales del tipo 15	5
16.1. Soluciones en puntos regulares	5
16.2. Soluciones en la vecindad de puntos singulares	9
16.3. Singularidades en infinito	;7
16.4. Ejemplos	8
16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas	'1
17. Funciones hipergeométricas 17	7
17.1. La ecuación hipergeométrica general	7
17.2. Ecuación indicial	
17.3. Ecuación diferencial de Gauss	'9
17.4. La serie hipergeométrica	31
17.5. Ecuación hipergeométrica confluente	
18. Polinomios de Legendre 18	7
18.1. Función generatriz	37
18.2. Relaciones de recurrencia	39
18.3. Coeficientes del polinomio $P_n(x)$	0
18.4. Fórmula de Rodrigues	
18.5. Ecuación diferencial de Legendre	
18.6. Lugares nulos de $P_n(x)$	
18.7. Relación de ortogonalidad	
18.8. Expresiones integrales para $P_n(x)$	
18.9. Serie de Legendre	
18.10Funciones asociadas de Legendre	
18.11Problema de Sturm-Liouville asociado	
18.12Armónicos esféricos	
18.13Segunda solución de la ecuación de Legendre	
19.La ecuación diferencial de Bessel 21	1
19.1. La ecuación diferencial de Bessel	1
19.2. Funciones de Bessel de índice no entero	
19.3. Funciones de Bessel de índice entero	
19.4. Comportamiento asintótico	
19.5. Función generatriz	
19.6. Fórmulas de adición	
19.7. Representaciones integrales	
19.8. Relaciones de recurrencia	
19.9. Relaciones de ortogonalidad	
19.10Problema de Sturm-Liouville asociado	

VI ÍNDICE

20. Diversos tipos de funciones cilíndricas	223
20.1. Segunda solución de la ecuación de Bessel	223
20.2. Funciones de Hankel	226
21. Aplicaciones a la Electrostática	229
21.1. Coordenadas rectangulares	229
21.2. Coordenadas polares, dos dimensiones	233
21.3. Ecuación de Laplace en coordenadas esféricas	236
21.4. Ecuación de Laplace en coordenadas cilíndricas	240
21.5. Otras aplicaciones	243
21.6. Ecuación de difusión	246
21.7. Difusión con creación de partículas	248

Capítulo 19

La ecuación diferencial de Bessel

versión preliminar 3.1-26 diciembre 2002

19.1. La ecuación diferencial de Bessel

Consideremos en la ecuación hipergeométrica general el caso $A=0, C=\infty, \alpha+\alpha'=0, \beta+\beta'=1$ y $\gamma+\gamma'=0$, lo cual esta de acuerdo con $\alpha+\alpha'+\beta+\beta'+\gamma+\gamma'=1$

$$\Psi'' + \frac{1}{z}\Psi' + \left[\frac{-B\,\alpha\alpha'}{z^2(z-B)} + \frac{B\,\beta\beta'}{z(z-B)^2} + \frac{\gamma\gamma'}{z(z-B)}\right]\Psi = 0 ,$$

si consideramos además, $\beta\beta'=\gamma\gamma'=B^2$ y tomamos el límite $B\to\infty$, obtenemos

$$\Psi'' + \frac{1}{z}\Psi' + \left(1 - \frac{\alpha^2}{z^2}\right)\Psi = 0.$$
 (19.1)

la cual es conocida como la ecuación diferencial de Bessel. Esta ecuación tiene una singularidad fuchsiana en z=0 cuando $\text{Re}(\alpha)>0$. Planteamos como solución

$$\Psi(z) = z^{\sigma} \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu+\sigma} .$$

Sustituyendo en la ecuación (19.1)

$$z^2\Psi'' + z\Psi' - \alpha^2\Psi = -z^2\Psi ,$$

tenemos

$$\sum_{\nu=0}^{\infty} \left\{ a_{\nu}(\nu + \sigma)(\nu + \sigma - 1) + a_{\nu}(\nu + \sigma) - a_{\nu}\alpha^{2} \right\} z^{\nu + \sigma} = -\sum_{\nu=2}^{\infty} a_{\nu-2}z^{\nu + \sigma} ,$$

obteniendo

$$a_{\nu} \left[(\nu + \sigma)^2 - \alpha^2 \right] = -a_{\nu-2} , \quad \nu = 2, 3, \dots ,$$

mientras que para $\nu = 0$

$$a_0(\sigma^2 - \alpha^2) = 0 ,$$

lo que da una ecuación para el exponente $\sigma^2 = \alpha^2$, con dos soluciones, $\sigma_1 = +\alpha$ y $\sigma_2 = -\alpha$. Elegimos $\sigma = \sigma_1 = +\alpha$ y $a_0 \neq 0$. Para $\nu = 1$

$$a_1(1+2\alpha)=0\;,$$

lo que implica $a_1 = 0$. Además, usando la fórmula recursiva para los coeficientes

$$a_{\nu} = -\frac{a_{\nu-2}}{\nu(\nu + 2\alpha)} \,, \tag{19.2}$$

se puede demostrar que todos los coeficientes impares son nulos. Los coeficientes pares

$$a_2 = -\frac{a_0}{2^2 \, 1! \, (\alpha + 1)} \; , \qquad a_4 = \frac{a_0}{2^4 \, 2! \, (\alpha + 1)(\alpha + 2)} \; , \quad \dots$$

El término general es

$$a_{2\mu} = (-1)^{\mu} \frac{a_0}{2^{2\mu} \mu! (\alpha + 1)(\alpha + 2) \cdots (\alpha + \mu)}$$
.

Tomando

$$a_0 = \frac{1}{2^{\alpha} \Gamma(\alpha + 1)} ,$$

se obtiene

$$J_{\alpha}(z) = \left(\frac{z}{2}\right)^{\alpha} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu}}{\mu! \Gamma(\mu+\alpha+1)} \left(\frac{z}{2}\right)^{2\mu}, \qquad (19.3)$$

con Re $\alpha \geq 0$, conocida como función de Bessel de orden α .

19.2. Funciones de Bessel de índice no entero

Consideremos $\sigma = -\alpha$. Hay solución, en este caso, linealmente independiente de J_{α} , en forma de serie

$$J_{-\alpha}(z) = \left(\frac{z}{2}\right)^{-\alpha} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu}}{\mu! \Gamma(\mu - \alpha + 1)} \left(\frac{z}{2}\right)^{2\mu} , \qquad (19.4)$$

Ejemplo Observemos que si $\alpha = 1/2$, la resta de las dos raíces $\sigma_1 - \sigma_2 = 1/2 + 1/2 = 1 \in \mathbb{Z}$. Sin embargo, a pesar de estar en el caso incómodo las dos soluciones todavía funcionan (habíamos encontrado un hecho similar al discutir el oscilador armónico). En efecto, consideremos $\alpha = 1/2$. El denominador en (19.3) se puede reescribir

$$\mu!\Gamma(\mu + 3/2) = \mu!(\mu + 1/2)\Gamma(\mu + 1/2)$$
.

Pero $\Gamma(n+1/2) = (2n-1)!!\sqrt{\pi}/2^n$, luego

$$\mu! \Gamma(\mu + 3/2) = \mu! (\mu + 1/2)(2\mu - 1)!! \sqrt{\pi}/2^{\mu}$$
$$= \mu! (2\mu + 1)(2\mu - 1)!! \sqrt{\pi}/2^{\mu+1}$$
$$= \mu! (2\mu + 1)!! \sqrt{\pi}/(2^{\mu+1})$$

Y como $(2n+1)!! = \frac{(2n+1)!}{2^n n!}$, de modo que

$$\mu! \Gamma(\mu + 3/2) = (2\mu + 1)! \sqrt{\pi}/2^{2\mu+1}$$

se tiene finalmente

$$J_{1/2}(z) = \sqrt{\frac{z}{2}} \frac{1}{z\sqrt{\pi}} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu} 2^{2\mu+1}}{(2\mu+1)!} \frac{z^{2\mu+1}}{2^{2\mu}} ,$$

es decir

$$J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu}}{(2\mu+1)!} z^{2\mu+1} . \tag{19.5}$$

La sumatoria en (19.5) es el desarrollo en serie de sen z, luego

$$J_{1/2}(z) = \sqrt{\frac{2}{\pi}} \frac{\sin z}{\sqrt{z}} \,. \tag{19.6}$$

La otra solución resulta ser

$$J_{-1/2}(z) = \sqrt{\frac{2}{\pi z}} \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu}}{(2\mu)!} z^{2\mu} , \qquad (19.7)$$

o bien

$$J_{-1/2}(z) = \sqrt{\frac{2}{\pi}} \frac{\cos z}{\sqrt{z}} \,. \tag{19.8}$$

Sin demostración: J_{α} para índices $\alpha = \pm (2n+1)/2$ se expresa por fórmulas semejantes.

19.3. Funciones de Bessel de índice entero

Para $\alpha = n \in \mathbb{Z}$, J_n dada por (19.3) es holomorfa en z = 0, y en realidad holomorfa en todo el plano. Consideremos la primera función de Bessel, es decir con n = 0, y derivémosla:

$$J_0(z) = \sum_{\nu}^{\infty} \frac{(-1)^{\nu}}{(\nu!)^2} \left(\frac{z}{2}\right)^{2\nu} = 1 - \frac{1}{(1!)^2} \frac{z^2}{2^2} + \frac{1}{(2!)^2} \frac{z^4}{2^4} - \cdots ,$$

$$J_0'(z) = -\frac{2}{(1!)^2} \frac{z}{2^2} + \frac{4}{(2!)^2} \frac{z^3}{2^4} - \frac{6}{(3!)^2} \frac{z^5}{2^6} + \cdots .$$

Por otra parte, la función de Bessel de índice uno es

$$J_1(z) = \frac{z}{2} \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu}}{\nu!(\nu+1)!} \left(\frac{z}{2}\right)^{2\nu} = \frac{z}{2} \left\{ 1 - \frac{1}{(1!)^2} \frac{z^2}{2^2} + \frac{1}{(2!)^2} \frac{z^4}{2^4} - \cdots \right\} .$$

Comparando concluimos que

$$J_1(z) = -J_0'(z) . (19.9)$$

Para índice entero positivo, (19.3) da

$$J_n(z) = \left(\frac{z}{2}\right)^n \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\nu! (\nu+n)!} \left(\frac{z}{2}\right)^{2\nu} . \tag{19.10}$$

Para índice entero pero negativo:

$$J_{-n}(z) = \left(\frac{z}{2}\right)^{-n} \sum_{\nu=n}^{\infty} \frac{(-1)^{\nu}}{\nu! \Gamma(\nu-n+1)} \left(\frac{z}{2}\right)^{2\nu} .$$

Consideraremos nulos los coeficientes con $\nu < n$ en la función gamma (la función gamma tiene polos en $\lambda = 0, -1, -2, \ldots$, luego $1/\Gamma(\lambda) = 0$). Sea $\mu = \nu - n$. Luego

$$J_{-n}(z) = \left(\frac{z}{2}\right)^n \sum_{\mu=0}^{\infty} \frac{(-1)^{\mu}(-1)^n}{(\mu+n)!\mu!} \left(\frac{z}{2}\right)^{2\mu} ,$$

lo que resumimos como

$$J_{-n}(z) = (-1)^n J_n(z) . (19.11)$$

19.4. Comportamiento asintótico

Proposición 19.1 Para una variable real $x \gg 1$, toda solución real de la ecuación de Bessel es aproximadamente de la forma $A\cos(x+\gamma)/\sqrt{x}$.

Demostración Sea

$$\sqrt{x}\Psi(x) = u(x) .$$

Despejando y diferenciando tenemos

$$\begin{split} &\Psi(x) = x^{-1/2}u(x) \ , \\ &\Psi'(x) = x^{-1/2}u'(x) - \frac{1}{2}x^{-3/2}u(x) \ , \\ &\Psi''(x) = x^{-1/2}u''(x) - x^{-3/2}u'(x) + \frac{3}{4}x^{-5/2}u(x). \end{split}$$

Sustituyendo en la ecuación de Bessel,

$$u''(x) - \frac{u'(x)}{x} + \frac{3}{4}\frac{u(x)}{x^2} + \frac{u'(x)}{x} - \frac{1}{2}\frac{u(x)}{x^2} + \left(1 - \frac{\alpha^2}{x^2}\right)u(x) = 0 ,$$

quedando

$$u''(x) + \left(1 - \frac{1/4 - \alpha^2}{x^2}\right)u(x) = 0.$$

Para x muy grande,

$$u''(x) + u(x) = 0$$
, con solución $u(x) = A\cos(x + \gamma)$,

luego la solución completa es

$$\Psi(x) = A \frac{\cos(x+\gamma)}{\sqrt{x}} \ .$$

q.e.d.

Por otra parte, cerca de cero la función de Bessel de índice nulo se puede aproximar por

$$J_0(z) \approx 1 - \frac{z^2}{4} + \frac{z^4}{64} = \left(1 - \frac{z^2}{8}\right)^2$$
 (19.12)

19.5. Función generatriz

Buscamos una función generatriz de las funciones de Bessel de índice entero,

$$\Psi(z,s) = \sum_{n=-\infty}^{\infty} s^n J_n(z) . \qquad (19.13)$$

Usando (19.10) (que es válida también si n < 0, recordando que $1/h! \equiv 0$ si $h < 0, h \in \mathbb{Z}$),

$$\begin{split} \Psi(z,s) &= \sum_{n=-\infty}^{\infty} s^n \sum_{l=0}^{\infty} \frac{(-1)^l}{l!(l+n)!} \left(\frac{z}{2}\right)^{2l+n} \\ &= \sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^l}{l!(l+n)!} \left(\frac{z}{2}\right)^{2l} \left(\frac{zs}{2}\right)^n \\ &= \sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} \left(\frac{z}{2s}\right)^l \frac{1}{(l+n)!} \left(\frac{zs}{2}\right)^{l+n} \end{split}$$

Sea h = l + n. La doble suma se puede reescribir

$$\sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} = \sum_{l=0}^{\infty} \sum_{n=-\infty}^{\infty} ,$$

pero los factores de la forma 1/h! reducen la suma sobre h a ir entre $0 \in \infty$. Así,

$$\Psi(z,s) = \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} \left(\frac{z}{2s}\right)^l \left[\sum_{h=0}^{\infty} \frac{1}{h!} \left(\frac{zs}{2}\right)^h\right] = e^{-\frac{z}{2s}} e^{\frac{zs}{2}} .$$

De este modo, la función generatriz queda

$$\Psi(z,s) = \exp\left[\frac{z}{2}\left(s - \frac{1}{s}\right)\right] = \sum_{n = -\infty}^{\infty} J_n(z)s^n .$$
 (19.14)

19.6. Fórmulas de adición

Consideremos la función generatriz (19.14) con argumento $z = (z_1 + z_2)/2$

$$\exp\left[\left(\frac{z_1+z_2}{2}\right)\left(s-\frac{1}{s}\right)\right] = \exp\left[\frac{z_1}{2}\left(s-\frac{1}{s}\right)\right] \exp\left[\frac{z_2}{2}\left(s-\frac{1}{s}\right)\right] ,$$
$$\sum_{n=-\infty}^{\infty} s^n J_n(z_1+z_2) = \sum_{\mu=-\infty}^{\infty} s^{\mu} J_{\mu}(z_1) \sum_{\nu=-\infty}^{\infty} s^{\nu} J_{\nu}(z_2) .$$

Comparando coeficientes para igual potencia en s tenemos

$$J_n(z_1 + z_2) = \sum_{\mu = -\infty}^{\infty} J_\mu(z_1) J_{n-\mu}(z_2) .$$
 (19.15)

Particularicemos (19.15) al caso n = 0 y $z_1 = z = -z_2$

$$J_0(0) = 1 = J_0^2(z) + \sum_{\mu=1}^{\infty} J_{\mu}(z)J_{-\mu}(-z) + \sum_{\mu=1}^{\infty} J_{-\mu}(-z)J_{\mu}(z) ,$$

obteniendo

$$1 = J_0^2(z) + 2\sum_{\mu=1}^{\infty} J_{\mu}^2(z) .$$
 (19.16)

En el caso que la variable $z \in \mathbb{R}$ y considerando que $|J_0(z)| \leq 1$, podemos acotar los J_{ν} por

$$|J_{\mu}(z)| \le \frac{1}{\sqrt{2}}, \quad \text{si } \mu = 1, 2, 3, \dots$$
 (19.17)

Reemplazamos $s=e^{i\varphi}$ con $\varphi\in\mathbb{R},$ luego

$$\frac{1}{2}\left(s - \frac{1}{s}\right) = \frac{1}{2}(e^{i\varphi} - e^{-i\varphi}) = i\operatorname{sen}\varphi\ .$$

En la función generatriz,

$$\exp\left[\frac{z}{2}\left(s-\frac{1}{s}\right)\right] = \exp(iz\operatorname{sen}\varphi),$$

luego

$$\exp(iz\operatorname{sen}\varphi) = \sum_{n=-\infty}^{\infty} e^{in\varphi} J_n(z) .$$
(19.18)

Desarrollando, y usando (19.11),

$$\exp(iz \operatorname{sen} \varphi) = J_0(z) + \sum_{n=1}^{\infty} J_n(z)(\cos n\varphi + i \operatorname{sen} n\varphi) + \sum_{n=1}^{\infty} J_{-n}(z)(\cos n\varphi - i \operatorname{sen} n\varphi) ,$$

$$= J_0(z) + 2\sum_{m=1}^{\infty} J_{2m}(z) \cos 2m\varphi + 2i\sum_{m=1}^{\infty} J_{2m+1}(z) \operatorname{sen}(2m+1)\varphi ,$$

Comparando partes real e imaginaria, con $x \in \mathbb{R}$,

$$\cos(x \operatorname{sen} \varphi) = J_0(x) + 2 \sum_{m=1}^{\infty} J_{2m}(x) \cos 2m\varphi ,$$

$$\operatorname{sen}(x \operatorname{sen} \varphi) = 2 \sum_{m=0}^{\infty} J_{2m+1}(x) \operatorname{sen}(2m+1)\varphi .$$
(19.19)

Sea $\varphi = 0$. Entonces

$$1 = J_0(x) + 2\sum_{m=1}^{\infty} J_{2m}(x) .$$
(19.20)

Sea $\varphi = \pi/2$. Entonces

$$\cos x = J_0(x) + 2\sum_{m=1}^{\infty} (-1)^m J_{2m}(x) ,$$

$$\sin x = 2\sum_{m=0}^{\infty} (-1)^m J_{2m+1}(x) .$$
(19.21)

19.7. Representaciones integrales

Cambiemos el índice de suma en (19.18) a m, multipliquemos la ecuación por $e^{-im\varphi}$ e integremos en φ . Se obtiene

$$\int_{-\pi}^{\pi} \exp(i(z \sec \varphi - m\varphi) d\varphi = 2\pi J_m(z) .$$

Si $x \in \mathbb{R}$ entonces $J_m(x)$ es real, lo que significa

$$J_m(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(x \sin \varphi - m\varphi) \ d\varphi ,$$

por paridad de la función subintegral, podemos reescribir la integral como

$$J_m(x) = \frac{1}{\pi} \int_0^{\pi} \cos(m\varphi - x \sin\varphi) \, d\varphi .$$
 (19.22)

En particular,

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sec \varphi) \, d\varphi = \frac{1}{\pi} \left[\int_0^{\pi/2} \cos(x \sec \varphi) \, d\varphi + \int_{\pi/2}^{\pi} \cos(x \sec \varphi) \, d\varphi \right] .$$

Haciendo el cambio de variable $\theta = \varphi - \pi$, tenemos

$$J_0(x) = \frac{1}{\pi} \left[\int_0^{\pi/2} \cos(x \operatorname{sen} \varphi) \, d\varphi + \int_{-\pi/2}^0 \cos(x \operatorname{sen}(\theta + \pi)) \, d\theta \right] .$$

Usando que $sen(\theta + \pi) = -sen \theta$ y que coseno es una función par,

$$J_0(x) = \frac{1}{\pi} \left[\int_0^{\pi/2} \cos(x \operatorname{sen} \varphi) \, d\varphi + \int_{-\pi/2}^0 \cos(x \operatorname{sen} \theta) \, d\theta \right] .$$

Sumando ambas integrales

$$J_0(x) = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos(x \operatorname{sen} \varphi) \, d\varphi .$$
 (19.23)

Hagamos el cambio de variable en (19.23) $\omega = \operatorname{sen} \varphi$. Entonces $d\varphi = \frac{d\omega}{\sqrt{1-\omega^2}}$ y la integral nos queda

$$J_0(x) = \int_{-1}^1 \frac{\cos(\omega x)}{\pi \sqrt{1 - \omega^2}} d\omega.$$

Definamos una función $p(\omega)$ de la forma

$$p(\omega) = \begin{cases} 0 & \text{si } |\omega| \ge 1, \\ \frac{1}{\pi\sqrt{1-\omega^2}} & \text{si } |\omega| < 1, \end{cases}$$

podemos reescribir J_0 como

$$J_0(x) = \int_{-\infty}^{\infty} \cos(\omega x) p(\omega) d\omega .$$

Con los cambios de variable x = t y $\omega = 2\pi s$, obtenemos

$$J_0(t) = \int_{-\infty}^{\infty} \cos(2\pi st) F(s) ds ,$$

donde

$$F(s) = \begin{cases} 0 & \text{si } |s| \ge \frac{1}{2\pi}, \\ \frac{2}{\pi\sqrt{1 - 4\pi s^2}} & \text{si } |s| < \frac{1}{2\pi}. \end{cases}$$

De lo anterior se desprende, puesto que $J_0(x)$ es una función par, que F(s) es precisamente la transformada de Fourier de $J_0(x)$:

$$\mathcal{F}\{J_0,s\} = F(s) .$$

Análogamente, tomando transformada de Fourier a la relación (19.9) obtenemos

$$\mathcal{F}{J_1,s} = \mathcal{F}{-J_0',s} = -i2\pi s \mathcal{F}{J_0,s} = -2\pi i s F(s)$$
.

19.8. Relaciones de recurrencia

Derivemos la función generatriz (19.14) respecto a s,

$$\frac{\partial \Psi(z,s)}{\partial s} = \frac{z}{2} \left(1 + \frac{1}{s^2} \right) \sum_{n=-\infty}^{\infty} s^n J_n(z) ,$$
$$\sum_{n=-\infty}^{\infty} n s^{n+1} J_n(z) = \frac{z}{2} \sum_{n=-\infty}^{\infty} \left[J_{n-1} + J_{n+1} \right] s^{n+1} .$$

Comparando coeficientes,

$$\frac{2n}{z}J_n(z) = J_{n-1}(z) + J_{n+1}(z) .$$
(19.24)

Derivamos (19.14) respecto a z y obtenemos

$$\frac{\partial \Psi(z,s)}{\partial z} = \frac{1}{2} \left(s - \frac{1}{s} \right) \sum_{n=-\infty}^{\infty} s^n J_n(z) ,$$

$$\sum_{n=-\infty}^{\infty} s^n J'(z) = \frac{1}{s} \sum_{n=-\infty}^{\infty} \left[I_{n,s} - I_{n,s} \right] s^n$$

$$\sum_{n=-\infty}^{\infty} s^n J'_n(z) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \left[J_{n-1} - J_{n+1} \right] s^n .$$

Comparando coeficientes

$$2J'_n(z) = J_{n-1}(z) - J_{n+1}(z) .$$
(19.25)

Sumando (19.24) y (19.25) tenemos

$$\frac{n}{z}J_n(z) + J'_n(z) = J_{n-1}(z) , \qquad (19.26)$$

es decir

$$z^{n}J_{n-1}(z) = [z^{n}J_{n}(z)]' . (19.27)$$

Por otro lado, restando (19.24) y (19.25) obtenemos

$$J'_n(z) - \frac{n}{z}J_n(z) = -J_{n+1}(z) , \qquad (19.28)$$

es decir

(19.27) y (19.29) indican que, al igual que los polinomios de Hermite, las funciones de Bessel de índice entero tienen operadores de subida y de bajada. En este caso, el operador de subida es

$$-z^n \frac{d}{dz} \frac{1}{z^n} ,$$

y el de bajada es

$$\frac{1}{z^n}\frac{d}{dz}z^n.$$

Finalmente, consideremos (19.20)

$$1 = J_0(z) + 2\sum_{\nu=1}^{\infty} J_{2\nu}(z) = \sum_{\nu=0}^{\infty} \left[J_{2\nu}(z) + J_{2\nu+2}(z) \right] .$$

Usando la relación de recurrencia (19.24) para $n = 2\nu + 1$ tenemos

$$1 = 2\sum_{\nu=0}^{\infty} \frac{2\nu+1}{z} J_{2\nu+1}(z) ,$$

$$\frac{z}{2} = \sum_{\nu=0}^{\infty} (2\nu + 1) J_{2\nu+1}(z) ,$$

y por inducción completa:

$$\left(\frac{z}{2}\right)^n = \sum_{\nu=0}^{\infty} \frac{(2\nu + n)(n + \nu + 1)!}{\nu!} J_{2\nu+n}(z) . \tag{19.30}$$

Podemos pues expresar cualquier serie de potencias en serie de funciones de Bessel.

19.9. Relaciones de ortogonalidad

Estudiemos las relaciones de ortogonalidad en el intervalo $0 \le x \le \infty$. Consideremos

$$f(x) = J_{\sigma}(hx)$$
, $g(x) = J_{\sigma}(kx)$, $\operatorname{con} h \neq k$. (19.31)

Tomemos las derivadas

$$f'(x) = hJ'_{\sigma}(hx)$$
, $f''(x) = h^2J''_{\sigma}(hx)$,
 $g'(x) = kJ'_{\sigma}(kx)$, $g''(x) = k^2J''_{\sigma}(kx)$.

La ecuaciones de Bessel que satisfacen son:

$$J''_{\sigma}(hx) + \frac{1}{hx}J'_{\sigma}(hx) + \left(h^2 - \frac{\sigma^2}{x^2}\right)J_{\sigma}(hx) = 0 ,$$

$$J''_{\sigma}(kx) + \frac{1}{kx}J'_{\sigma}(kx) + \left(k^2 - \frac{\sigma^2}{x^2}\right)J_{\sigma}(kx) = 0 .$$

Multiplicando la primera ecuación por h^2 y la segunda por k^2 y usando las definiciones dadas en (19.31) obtenemos

$$f''(x) + \frac{1}{x}f'(x) + \left(h^2 - \frac{\sigma^2}{x^2}\right)f(x) = 0,$$

$$g''(x) + \frac{1}{x}g'(x) + \left(k^2 - \frac{\sigma^2}{x^2}\right)g(x) = 0.$$
(19.32)

Multiplicando por xg(x) y por xf(x) respectivamente y restando,

$$xf(x)''g(x) - xg(x)''f(x) + (xf'(x)g'(x) - xf'(x)g'(x)) + f'(x)g(x) - f(x)g'(x) + x(h^2 - k^2)f(x)g(x) = 0.$$

El factor entre paréntesis corresponde a un cero agregado para lograr el reordenamiento

$$[x(f'(x)g(x) - f(x)g'(x))]' = (k^2 - h^2)xf(x)g(x) .$$

Integrando en el intervalo $a \le x \le b$

$$\int_{a}^{b} t f(t)g(t) dt = \frac{1}{k^{2} - h^{2}} \left[x(f'(x)g(x) - f(x)g'(x)) \right]_{a}^{b}.$$

La expresión del lado derecho se anulará en tres casos

- 1. Si $J_{\sigma}(hx)$ y $J_{\sigma}(kx)$ se anulan en a y en b.
- 2. Sus derivadas se anulan en a y en b.
- 3. O bien $J_{\sigma}(ha) = J_{\sigma}(ka) = 0 = J'_{\sigma}(hb) = J'_{\sigma}(kb)$.

De cualquier modo,

$$\int_{a}^{b} x J_{\sigma}(hx) J_{\sigma}(kx) dx$$

es la típica integral que interviene en asuntos de ortogonalidad.

Ortogonalidad

Por ejemplo, para $m \neq n$, se tiene ortogonalidad sobre el intervalo [0, a] con

$$\int_0^a J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) \rho \, d\rho = 0 , \qquad (19.33)$$

donde los $\alpha_{\nu m}$ son tales que $J_{\nu}(\alpha_{\nu m}) = 0$.

Normalización (sin demostración)

$$\int_0^a \left[J_{\nu} \left(\alpha_{\nu m} \frac{\rho}{a} \right) \right]^2 \rho \, d\rho = \frac{a^2}{2} [J_{\nu+1}(\alpha_{\nu m})]^2 \ . \tag{19.34}$$

19.10. Problema de Sturm-Liouville asociado

(19.33) y (19.34) sugieren que $J_{\nu}\left(\alpha_{\nu m}\frac{\rho}{a}\right)$ pueden ser base de un espacio de funciones en [0,a]. Poniendo $h=\alpha_{\nu m}/a$ y $\sigma=\nu$ en (19.32) encontramos que satisfacen la ecuación

$$f''(\rho) + \frac{1}{\rho}f'(\rho) + \left(\frac{\alpha_{\nu m}^2}{a^2} - \frac{\nu^2}{\rho^2}\right)f(\rho) = 0$$
,

que se puede reescribir

$$\rho f''(\rho) + f'(\rho) + \left(\frac{\alpha_{\nu m}^2}{a^2} - \frac{\nu^2}{\rho^2}\right) \rho f(\rho) = 0$$
,

o bien

$$\frac{d}{d\rho} \left(\rho \frac{d}{d\rho} f \right) + \left(\frac{\alpha_{\nu m}^2}{a^2} - \frac{\nu^2}{\rho^2} \right) \rho f(\rho) = 0 , \qquad (19.35)$$

que es un problema de autovalores de un operador autoadjunto. En efecto, tomando el operador autoadjunto

$$\mathcal{L} = \frac{d}{d\rho} \left(\rho \frac{d}{d\rho} \right) - \frac{\nu^2}{\rho} ,$$

y la función de peso

$$w(\rho) = \rho > 0$$
 en $\rho \in [0, \infty]$,

(19.35) corresponde al problema de autovalores de \mathcal{L} , con autovalores

$$\lambda_{\nu m} = \frac{\alpha_{\nu m}^2}{a^2} \ .$$

Así, las funciones $J_{\nu}(\lambda_{\nu m}\rho)$ asociadas a cada autovalor, para $m=0,1,2,\ldots(\nu)$ está fijo) serán un set completo en el cual se podrá expandir cualquier función en $[0,\infty]$.

¿A qué problemas físicos está asociado este problema de Sturm-Liouville? Consideremos nuevamente el operador laplaciano, como en (18.40), pero ahora en coordenadas cilíndricas:

$$\nabla^2 \Psi(\vec{r}) = \left[\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d}{d\rho} \right) + \frac{1}{\rho^2} \frac{d^2}{d\phi^2} + \frac{d^2}{dz^2} \right] \Psi(\rho, \phi, z) . \tag{19.36}$$

Se aprecia de inmediato que en un proceso de separación de variables, las derivadas respecto a z serán reemplazadas por una constante, y las derivadas respecto a ϕ serán reemplazadas por otra constante, quedando para la parte radial precisamente la ecuación de Bessel en la forma (19.35). Por tanto, las funciones de Bessel aparecerán típicamente (no únicamente) como soluciones de problemas que involucren el operador de Laplace (encontrar un potencial electrostático —ecuación de Laplace—, modos normales de oscilación —ecuación de Helmholtz—, etc.) y que tengan simetría cilíndrica.