

การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 6 ณ คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ข้อสอบภาคทฤษฎี

วันพุธที่ 28 เมษายน พ.ศ. 2553

เวลา 08:30 - 13:30 น.

คำชี้แจงการสอบภาคทฤษฎี

ข้อสอบภาคทฤษฎีมีคะแนนรวม 120 คะแนน คิดเป็น 60% ของคะแนนทั้งหมด

- 1. ให้นักเรียนตรวจสอบเอกสารก่อนลงมือทำ ดังนี้
 - 1.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 22 หน้า (รวมปกและตารางธาตุ)
 - 1.2 กระคาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 40 หน้า (รวมปก)
 - 1.3 เลขประจำตัวสอบในข้อสอบภาคทฤษฎีและกระคาษคำตอบภาคทฤษฎีทุกหน้า
- 2. ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" นักเรียนต้องหยุดทำข้อสอบทันที แล้วรวบรวมข้อสอบและกระดาษคำตอบใส่ในซองเอกสาร วางไว้บน โต๊ะ รอจนกรรมการคุมสอบเก็บข้อสอบก่อน จึงออกจากห้องสอบ
- 4. โจทย์คำนวณให้แสดงวิธีคิดตามที่โจทย์กำหนด กรณีกำตอบที่เป็นตัวเลขต้องคำนึงถึงเลขนัยสำคัญหรือ ตอบจำนวนทศนิยมตามที่โจทย์กำหนด
- 5. โจทย์ที่ให้เลือกคำตอบ ให้ใส่เครื่องหมายถูก (\checkmark) ในช่อง \square ที่ต้องการเลือก
- 6. ในระหว่างการสอบ นักเรียนสามารถรับประทานอาหารว่างที่วางให้บนโต๊ะได้
- 7. ห้ามยืมเครื่องเขียน และเครื่องคิดเลขผู้อื่นใช้โดยเด็ดขาด
- 8. ห้ามนักเรียนนำเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนถือว่าทุจริตในการสอบ <u>กรณีทุจริตใด ๆ ก็ตาม</u> <u>นักเรียนจะหมดสิทธิ์ในการแข่งขันและจะถูกให้ออกจากห้องสอบทันที</u>

กำหนดให้

เลขอาโวกาโดร (Avogadro number) $N_A = 6.02 \times 10^{23} \ / mol$

= 1.987 cal/mol.K

ค่าคงที่ของฟาราเคย์ (Faraday constant) $F = 96,500 \text{ C/mol e}^{-1}$

ค่าคงที่ของพลังค์ (Planck's constant) $h = 6.63 \times 10^{-34} \; J \cdot s$

ปริมาตรต่อ โมลของแก๊สอุคมคติ (molar volume of gas) = 22.4~L ที่ STP

ความเร็วแสง $c = 3 \times 10^8 \text{ m/s}$

1 cal = 4.184 J $K = {}^{\circ}\text{C} + 273$

1 atm = 760 mmHg 1 L = 1 dm³ = 10^3 cm³

Spectrochemical series: $\Gamma < Cl^- < F^- < OH^- < H_2O < SCN^- < NH_3 < en < CN^- < CO$

โจทย์ข้อที่ 1 (6 คะแนน)

กำหนดแผนผังระดับพลังงานของออร์บิทัล โมเลกุล (molecular orbital, ${f MO}$) ของ ${f N}_2$ เป็นดังแสดง

- 1.1 (1 คะแนน) MO ลำดับที่ 3 นับจากล่างสุด<mark>ของแผนผังนี้</mark>เป็นชนิดใด มีวิธีคิดหรือเหตุผลอย่างไร
- 1.2 (1 คะแนน) ให้วาครูปแสดงการซ้อนเหลื่อมของออร์บิทัลอะตอม (atomic orbital, AO) เกิดเป็น MO ตามข้อ 1.1
- 1.3 (1 คะแนน) NO และ CN $^-$ มีลำคับของ MO เช่นเดียวกับของ N $_2$ แต่ระคับพลังงานของออร์บิทัลใน N กับ O (หรือ C กับ N) ไม่เท่ากัน จงเขียนแผนผังระคับพลังงานของ MO สำหรับ NO
- $1.4 \quad (3 คะแนน) อันดับพันธะของ NO และ <math>{\rm CN}^-$ เป็นเท่าใด และสมบัติแม่เหล็กเป็นอย่างไร

โจทย์ข้อที่ 2 (7 คะแนน)

เทคนีเชียม (43Tc) เป็นธาตุกัมมันตรังสีที่ไม่มีในธรรมชาติ แต่มีประโยชน์มากในเชิงการแพทย์ การเตรียม ในห้องปฏิบัติการทำได้โดยนำไอโซโทป ⁹⁸Mo ไปยิงด้วยนิวตรอน ไอโซโทปที่ได้จะสลายตัวให้รังสีเบตา (beta) พร้อมทั้ง ^{99m}Tc ซึ่งเป็นนิวเคลียสอยู่ในสถานะกระตุ้น (excited state)

 $^{99 m}$ Tc คือ ไอ โซ โทปที่นำไปใช้งานมีค่าครึ่งชีวิตเท่ากับ 6 ชั่ว โมง ซึ่งจะสลายตัวให้รังสีแกมมา พร้อมทั้ง 99 Tc ที่นิวเคลียสอยู่ในสถานะพื้น โดยมีครึ่งชีวิต 2 . 11×10 5 ปี และสลายตัวให้รังสีเบตา

- 2.1 (2 คะแนน) เขียนสมการนิวเคลียร์แสดงการเปลี่ยนแปลงที่เกิดขึ้นทุกขั้นตอน
- 2.2 (3 คะแนน) สมมุติว่า ^{99m}Tc ถูกผลิตขึ้น เมื่อวันพุธที่ 28 เมษายน พ.ศ. 2553 เวลา 10:00 น. แล้ว นำไปใช้งาน จงหาว่า ณ เวลาใคที่ ^{99m}Tc จะสลายไปจนเหลือ 1% ของเคิม (ตอบวัน วันที่ เคือน พ.ศ. และเวลาถึงระดับนาที)
- 2.3 (2 คะแนน) ⁹⁸Mo ที่ใช้ในการผลิตไอโซโทปนี้อยู่ในรูป MoO₄²⁻ (โมลิบเคต) เมื่อได้ผลิตภัณฑ์

 ^{99m}Tc ยังคงมี O เกาะอยู่เท่าเดิม จงเขียนสูตรเคมีของผลิตภัณฑ์และแสดงการจัดเรียงอิเล็กตรอนของ

 ^{99m}Tc นี้

โจทย์ข้อที่ 3 (8 คะแนน)

 $\underline{A} \ \underline{B} \ \underline{C}$ และ \underline{D} เป็นธาตุเรพรีเซนเททีฟและ ไม่เป็นธาตุกัมมันตรังสีที่มีทั้งเลขควอนตัมหลัก \mathbf{n} และจำนวน เวเลนซ์อิเล็กตรอนเพิ่มขึ้นธาตุละหนึ่งจาก \underline{A} ไปยัง \underline{D} โดย \underline{D} สามารถเกิดสารประกอบไดฟลูออไรด์ $\underline{D}F_2$ ที่มีรูปร่างเป็นเส้นตรงได้ ให้ตอบคำถามต่อไปนี้ โดยเขียนชื่อหรือสัญลักษณ์ของธาตุตามตารางธาตุในการ ตอบคำถาม

- 3.1 (3 คะแนน) \underline{A} คือธาตุใด มีเลขออกซิเคชันที่เป็นจำนวนเต็มได้ทั้งหมดกี่ค่า และเลขออกซิเคชันที่น้อย ที่สุดและมากที่สุดมีค่าเป็นเท่าใด อธิบายเหตุผลในการระบุ \underline{A}
- 3.2 (1 คะแนน) สารประกอบไตรออกไซด์ของ <u>B</u> ที่อยู่ในสถานะแก๊สมีโครงสร้างโมเลกุลที่แตกต่างจาก ที่อยู่ในสถานะของแข็ง วาครูปโครงสร้างแบบวงของสารประกอบนี้ที่อยู่ในสถานะของแข็ง โคย แสดงพันธะเคี่ยวและพันธะคู่ให้ชัดเจน
- 3.3 (1.5 คะแนน) ผลึกใอออนิกของสารประกอบระหว่างโพแทสเซียมกับ <u>C</u> มีโครงสร้างแบบใด ใอออนบวกมีการจัดเรียงตัวอย่างไร และเลขโคออร์ดิเนชันของไอออนลบเป็นเท่าใด
- 3.4 (1.5 คะแนน) สารประกอบฟลูออไรค์ของ <u>D</u> มีหลายชนิด สารประกอบ <u>D</u>F₄ มีรูปร่างแบบใด อะตอมกลางใช้ไฮบริดออร์บิทัลแบบใด วาดรูปแสดงโครงสร้างโดยแสดงอิเล็กตรอนคู่โดดเดี่ยวให้ ชัดเจน
- 3.5 (1 คะแนน) เปรียบเทียบกรคออกโซของ $\underline{A}\ \underline{B}$ และ \underline{C} ที่มีจำนวนออกซิเจนเท่ากัน กรคใคมีความแรง มากที่สุด เพราะเหตุใด

โจทย์ข้อที่ 4 (8 คะแนน)

เมื่อนำ ${\rm CrCl_3\cdot 6H_2O}$ ละลายน้ำ ได้สารละลายของสารประกอบโคออร์คิเนชัน ${\bf A}$ ที่สามารถตกตะกอนทันที กับสารละลาย ${\bf AgNO_3}$ และตกตะกอนได้สมบูรณ์ในอัตราส่วนโดยโมล 1 ต่อ 1 เมื่อตั้งสารละลาย ${\bf A}$ ทิ้งไว้ 1 วัน จะเปลี่ยนเป็นสารละลาย ${\bf B}$ ที่มีค่านำไฟฟ้าโมลาร์ (molar conductance) ใกล้เคียงกับสารละลาย ${\bf C}$ และ ${\bf D}$ ที่ได้จากการละลาย (${\rm NEt_4}$) $_3{\rm Ti}({\rm CN})_6$ และการออกซิไดส์ ${\rm Co(en)_3Cl_2}$ ตามลำดับ ไอออนเชิงซ้อน ในสารละลายทั้ง 4 ชนิดมีรูปร่างเป็นทรงเหลี่ยมแปดหน้า และ ไอออนเชิงซ้อนใน ${\bf D}$ มีค่าพลังงานการแยก ในสนามผลึก (crystal field splitting energy, $\Delta_{\rm o}$) มากกว่าพลังงานในการเข้าคู่ของอิเล็กตรอน (pairing energy)

- 4.1 (4 คะแนน) เขียนสูตรและชื่อเป็นภาษาอังกฤษของ ไอออนเชิงซ้อนในสารละลายทั้ง 4 ชนิด
- 4.2 (0.75 คะแนน) ${f A}$ และ ${f B}$ เป็นไอโซเมอร์กัน ${f A}$ และ ${f B}$ จัดเป็นไอโซเมอร์ชนิดใด
- 4.3 (1.5 คะแนน) สาร **A B C D** ชนิดใดที่มีใอโซเมอร์เรขาคณิต (geometrical isomer) วาดรูปแสดง โครงสร้างพร้อมทั้งระบุชนิดของไอโซเมอร์ที่เป็นไปได้ทั้งหมด
- 4.4 (0.75 คะแนน) สมมุติว่าใช้จำนวนโมลของสารประกอบโคออร์คิเนชันบริสุทธิ์ทั้งสี่ชนิคเท่ากัน เมื่อ ชั่งน้ำหนักขณะที่ไม่มีสนามแม่เหล็กภายนอกได้น้ำหนัก \mathbf{w}_0 เมื่อชั่งในขณะที่มีสนามแม่เหล็ก ภายนอกได้น้ำหนัก \mathbf{w}_1 ให้เปรียบเทียบค่า $|\mathbf{w}_1 \mathbf{w}_0|$ ของสารประกอบแต่ละคู่ โดยเลือกใช้ เครื่องหมาย \approx (ใกล้เคียง) > (มากกว่า) หรือ < (น้อยกว่า)
- 4.5 (1 คะแนน) จากข้อมูลความสัมพันธ์ระหว่างสีที่สารดูคกลืนกับสีที่ตามองเห็นดังตาราง

สีที่ดูดกลืน	ม่วง	น้ำเงิน	น้ำเงินเขียว	เหลืองเขียว	เหลือง	ส้ม	แดง
สีที่มองเห็น	เหลืองเขียว	เหลือง	แดง	ม่วง	น้ำเงินเข้ม	น้ำเงิน	เขียว

ถ้าสารละลายทั้ง 4 ชนิคมีสีไม่ซ้ำกัน คือ สีเหลืองเขียว สีเหลือง สีเขียว และ สีม่วง ให้ระบุสีของ สารละลายแต่ละชนิด

โจทย์ข้อที่ 5 (13.5 คะแนน)

ควินิน ($C_{20}H_{24}N_2O_2$) มีสมบัติต้านเชื้อมาเลเรีย (antimalarial properties) มีสูตรโครงสร้างดังนี้

quinine

อะตอมในโตรเจนในโครงสร้างวงแอโรแมติก มีค่า p $K_b = 9.70$ และอะตอมในโตรเจนในหมู่เอมีนตติยภูมิ (tertiary amine group) มีค่า p $K_b = 5.10$ ควินินมีค่าการละลายน้ำต่ำ จึงมักเตรียมในรูปควินินใฮโดรคลอ ไรด์ ($C_{20}H_{24}N_2O_2\cdot HCl$) ซึ่งละลายน้ำได้มากกว่าควินินถึง 120 เท่า

- 5.1 (3 คะแนน) สารละลายอิ่มตัวของควินินในน้ำที่มีความเข้มข้น $1.6{ imes}10^{-3}~{
 m mol/L}$ มี pH เท่าใด
- 5.2 (3 คะแนน) ถ้าสารละลายควินินไฮโดรคลอไรด์ในน้ำมีความเข้มข้นร้อยละ 1.5 โดยมวลต่อปริมาตร มีความหนาแน่นเท่ากับ 1.0 g/mL สารละลายนี้มี pH เท่าใด
- 5.3 (3.5 คะแนน) ควินินสกัดได้จากเปลือกต้นซิงโคนา ชั่งเปลือกต้นซิงโคนาที่ทำให้แห้งและบดให้ ละเอียดมา 5.00 g เติมกรดไฮโครคลอริก (HCl) เข้มข้น 0.1022 mol/L ปริมาตร 25.00 mL ควินิน จะทำปฏิกิริยากับกรดไฮโดรคลอริกให้ควินินไฮโดรคลอไรด์ กรองแล้วไทเทรตสารละลายที่ได้ด้วย สารละลายโซเดียมไฮดรอกไซด์ (NaOH) เข้มข้น 0.1000 mol/L พบว่าต้องใช้สารละลาย NaOH ปริมาตร 15.10 mL จึงจะถึงจุดยุติ
 - ก) คำนวณร้อยละของควินินในเปลือกต้นซิงโคนา
 - ข) ฟีนอลฟ์ทาลีนเป็นอินดิเคเตอร์ที่เปลี่ยนสีในช่วง pH 8.3–10.0 (ไม่มีสี–แดง)
 ถ้าในการไทเทรตนี้เลือกใช้ฟีนอลฟ์ทาลีนเป็นอินดิเคเตอร์ ที่จุดยุติสารละลายเปลี่ยนสีอย่างไร
 และจุดยุติที่ได้ใกล้เคียงกับจุดสมมูลหรือไม่ เพราะเหตุใด
- 5.4 (1.5 คะแนน) ควินินเป็นสารประกอบที่ให้ฟลูออเรสเซนซ์ (การวาวแสง) โดยเฉพาะอย่างยิ่งเมื่ออยู่ ในสารละลายกรดเจือจาง จึงสามารถหาปริมาณควินินในสารละลายได้ด้วยวิธีสเปกโทรฟลูออโร เมตรี เมื่อนำสารละลายควินิน (ใน H_2SO_4) ที่มีความเข้มข้นต่าง ๆ ไปวัดค่าการวาวแสงโดยวิธีสเปกโทรฟลูออโรเมตรี โดยใช้ความยาวคลื่นแสงกระตุ้น (excitation wavelength) เท่ากับ 310 nm และ วัดค่าความเข้มของการวาวแสง (fluorescence emission intensity) ที่ความยาวคลื่น 450 nm ได้ผลดังแสดงในกราฟมาตรฐาน

น้ำโทนิก (tonic water) เป็นน้ำอัคลมที่มีควินิน มีรสขมเล็กน้อย เมื่อนำตัวอย่างน้ำโทนิกปริมาตร 1.00~mL มาเจือจางด้วยสารละลาย H_2SO_4 ในขวดกำหนดปริมาตรขนาด 25.00~mL สารละลายที่ ได้เรียกว่า สารละลาย ก. จากนั้นนำสารละลาย ก. 1.00~mL มาเจือจางด้วยสารละลาย H_2SO_4 ในขวด กำหนดปริมาตรขนาด 25.00~mL แล้วนำไปวัดค่าความเข้มของการวาวแสงได้เท่ากับ 36.37~ปริมาณ ควินินในตัวอย่างน้ำโทนิกเริ่มต้นเป็นเท่าใด

- 5.5 (0.5 คะแนน) ควินินมีจำนวนใครัลคาร์บอน (chiral carbon) เท่าใค
- 5.6 (2 คะแนน) ในกระคาษคำตอบซึ่งได้แสคงโครงสร้างของควินินไว้ ให้เขียนวงกลมล้อมรอบไครัล คาร์บอน และเขียนอักษร R หรือ S เพื่อระบุคอนฟิกุเรชันสัมบูรณ์ (absolute configuration) ของ ใครัลคาร์บอนนั้น

โจทย์ข้อที่ 6 (8 คะแนน)

ปรอท (Hg) ในธรรมชาติมีเลขออกซิเคชันเป็น 0, +1 และ +2 เมื่อเลขออกซิเคชันเป็น +1 เรียกเมอร์คิวรี(I) ใอออน เมื่อเลขออกซิเคชันเป็น +2 เรียกว่า เมอร์คิวรี(II) ใอออน

- $6.1 \quad (2$ คะแนน) นักเรียนคนหนึ่งไม่แน่ใจว่าเมอร์คิวรี(I)ไอออน อยู่ในรูปใค จึงทคลองสร้างเซลล์คังนี้ ${
 m Hg}\ (l)$ สารละลาย ${
 m A}\ ||$ สารละลาย ${
 m B}\ |{
 m Hg}\ (l)$
 - เมื่อสารละลาย A และ B คือ สารละลายเมอร์คิวรี(I)ในเทรต เข้มข้น 0.263 mol/L และ 2.63 mol/L ตามลำคับ เมื่อนำไปวัดความต่างศักย์ของเซลล์ได้เท่ากับ 0.0296 V
 - ก) จากผลการทดลองข้างต้น เมอร์คิวรี(I) ใอออน อยู่ในรูป $\mathrm{Hg^+}$ หรือ $\mathrm{Hg_2^{2+}}$
 - ข) เขียนสมการแสดงครึ่งปฏิกิริยารีดักชั้นของเมอร์คิวรี(I) ใอออน ที่สอดคล้องกับข้อ ก)
- 6.2 (6 คะแนน) ถ้าเติมปรอทเหลวปริมาณมากเกินพอในสารละลาย Fe³⁺ เข้มข้น 1.00×10⁻³ mol/L ได้ เมอร์คิวรี(I) ไอออน และ Fe²⁺
 - ก) เขียนสมการที่คุลแสดงปฏิกิริยาที่เกิดขึ้น
 - ข) ถ้าที่ภาวะสมคุลมี ${
 m Fe}^{3+}$ เหลือ 5.40% ความเข้มข้นของเมอร์คิวรี(I) ใอออน และ ${
 m Fe}^{2+}$ เป็นเท่าใด
 - ค) คำนวณค่าคงที่สมคุล (K) ของปฏิกิริยาในข้อ ก) โดยตอบในรูปของ $\log K$
 - ง) ที่ภาวะสมคุล ค่าศักย์ใฟฟ้ารีดักชันมาตรฐานของเมอร์คิวรี(I) เป็นเท่าใด กำหนด ค่าศักย์ไฟฟ้ารีดักชันมาตรฐานที่ 25°C ดังนี้

Fe²⁺(aq) + 2e⁻
$$\rightarrow$$
 Fe(s) E^o = -0.440 V
Fe³⁺(aq) + 3e⁻ \rightarrow Fe(s) E^o = -0.040 V
Fe³⁺(aq) + e⁻ \rightarrow Fe²⁺(aq) E^o = +0.770 V

จ) คำนวณค่าพลังงานเสรี (free energy, ΔG°) ของปฏิกิริยาในข้อ ก)

โจทย์่ข้อที่ 7 (5 คะแนน)

เมื่อนำสารละลาย MSO_4 (M เป็นโลหะใด ๆ) เข้มข้น 0.010 mol/L ใน H_2SO_4 ซึ่งมี pH เท่ากับ 4 มา แยกสลายด้วยไฟฟ้า (electrolysis) โดยใช้แพลทินัมเป็นขั้วไฟฟ้า ที่ 25° C ความคัน 1 atm

กำหนด ค่าศักย์ไฟฟ้ารีดักชันมาตรฐานที่ 25°C ดังนี้

$$M^{2+}(aq) + 2e^{-} \rightarrow M(s)$$
 $E^{0} = -0.403 \text{ V}$
 $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightarrow 2H_{2}O(l)$ $E^{0} = +1.229 \text{ V}$

- 7.1 (0.5 คะแนน) เขียนปฏิกิริยาที่เกิดขึ้นที่ขั้วแคโทด และขั้วแอโนด
- 7.2 (2 คะแนน) ศักย์ใฟฟ้าต่ำสุดที่ทำให้โลหะ M ไปเกาะที่ขั้วไฟฟ้ามีค่าเท่าใด
- 7.3 (0.5 คะแนน) เขียนสมการแสดงการแยกสลายด้วยใฟฟ้าของสารละลาย MSO₄
- 7.4 (1.25 คะแนน) คำนวณปริมาณไฟฟ้าที่ใช้ในการแยกสลายด้วยไฟฟ้านาน 1 ชั่วโมง ที่กระแสไฟฟ้า คงที่ 0.200 A ถ้าประสิทธิภาพของกระแส (current efficiency) เป็น 95 %
- 7.5 (0.75 คะแนน) ถ้าเกิดโลหะ M หนัก 0.399 g เกาะที่ขั้วแพลทินัม มวลอะตอมของโลหะ M เป็น เท่าใด

โจทย์ข้อที่ 8 (3 คะแนน)

ดินมีโลหะหนักเป็นองค์ประกอบทั้งโดยธรรมชาติและการปนเปื้อน โลหะหนักจะอยู่ทั้งในเนื้อดิน (solid phase) และในน้ำในโพรงของเนื้อดิน (pore water) โดย<mark>อยู่</mark>ในสมคุลที่มีค่าสัมประสิทธิ์การแบ่งส่วน (partition coefficient, \mathbf{K}_p) ดังนี้

$$K_p = \frac{M_{\text{solid phase}}}{M_{\text{pore water}}} (L/kg)$$

เมื่อ M_{solid phase} คือ ปริมาณของโลหะหนักในเนื้อคิน (μg/kg)

M_{pore water} คือ ปริมาณของโลหะหนักในน้ำในโพรงของเนื้อคิน (μg/L)

ค่า \mathbf{K}_{p} ของโลหะหนักแต่ละชนิดในคินแต่ละแหล่งไม่เท่ากัน ขึ้นกับลักษณะและองค์ประกอบอื่นๆ ในคิน เช่น ปริมาณสารอินทรีย์ ความเป็นกรด-เบสของคิน เป็นต้น ค่า \mathbf{K}_{p} ได้จากการทดลองดังนี้

- หาปริมาณโลหะหนักในน้ำในโพรงของเนื้อคิน โดยนำคินมา 2.0 kg สกัดด้วยสารละลาย ${
 m Ca(NO_3)_2}$ เข้มข้น 2 mmol/L ปริมาตร $1.0\,{
 m L}$
- หาปริมาณโลหะหนักในเนื้อดิน โดยนำดินที่ผ่านการสกัดด้วยสารละลาย $Ca(NO_3)_2$ และทำให้ แห้งแล้ว น้ำหนัก 0.20~g มาสกัดด้วยกรดในตริกเข้มข้นปริมาตร 4~mL กรองสารละลายลงในขวดกำหนด ปริมาตรขนาด 50.00~mL ปรับปริมาตรด้วยน้ำกลั่น
- นำน้ำสกัดทั้ง 2 ชนิดไปหาปริมาณโลหะหนักด้วยเครื่องมือสำหรับตรวจวัดโลหะหนัก ได้ผลการ ทดลองดังนี้

แหล่งคิน	ໂດນາ	ปริมาณโลหะ (μg/L)								
	โลหะ	ในน้ำสกัดด้วยสารละลาย Ca(NO ₃) ₂	ในน้ำสกัดด้วยกรดในตริกเข้มข้น							
1	Cd	1.12	6.37							
	Cr	1.56	0.23							
2	Cd	2.25	73.83							
2	Pb	2.07	1.52							

- $8.1 \quad (2 \, \text{กะแนน}) ก่า \, \mathbf{K}_{\mathrm{p}} \, \text{ของโลหะต่าง} \, \gamma \, \, \mathrm{ในดินทั้ง} \, 2 แหล่ง เป็นเท่าใด$
- 8.2 (1 กะแนน) โลหะชนิดใด และในแหล่งดินใด มีความเสี่ยงต่อการปนเปื้อนในแหล่งน้ำใต้ดินมาก ที่สุด

โจทย์ข้อที่ 9 (4.5 คะแนน)

สารกลุ่มคลอโรฟลูออโรคาร์บอน หรือ CFCs เป็นสารทำความเย็นที่ระเหยง่าย เมื่อเข้าสู่ชั้นบรรยากาศโลก จะทำลายโอโซนในชั้นบรรยากาศได้ สาร CFCs ที่ใช้กันมากในอดีตมีชื่อทางการค้าว่า Freon-11 และ Freon-12 ซึ่งมีสูตรโมเลกุลเป็น CFCl₃ และ CF $_2$ Cl $_2$ ตามลำดับ สารทั้ง 2 ชนิดนี้ผลิตได้จากปฏิกิริยา ระหว่างการ์บอนเตตระคลอไรด์และกรดไฮโดรฟลูออริก

- 9.1 (0.5 คะแนน) เขียนสมการแสดงการผลิต Freon-11 และ Freon-12 จากปฏิกิริยาระหว่างคาร์บอน เตตระคลอไรค์และกรคไฮโครฟลูออริก
- 9.2 (0.75 คะแนน) ระหว่าง Freon-11 และ Freon-12 สารใคมีจุดเคือคต่ำกว่า อธิบายเหตุผลประกอบ
- 9.3 (1.25 คะแนน) กำหนดให้

$CCl_4(g) \rightarrow C(g) + 4Cl(g)$	$\Delta H^{\circ} = 1360 \text{ kJ}$
$HF(g) \rightarrow H(g) + F(g)$	$\Delta H^{\circ} = 565 \text{ kJ}$
$HCl(g) \rightarrow H(g) + Cl(g)$	$\Delta H^{\circ} = 430 \text{ kJ}$

 ΔH° ของการผลิตสาร CFCl $_3$ จากปฏิกิริยาระหว่างคาร์บอนเตตระคลอไรค์และกรคไฮโครฟลูออริก เท่ากับ $-10~\mathrm{kJ}$ พลังงานพันธะของ C-Cl และ C-F มีค่าเท่าใค

- 9.4 (1 คะแนน) พันธะใดจะถูกทำลายด้วยรังสีอัลตราไวโอเลตที่ความยาวคลื่น 254 nm
- 9.5 (1 คะแนน) เขียนสมการแสดงการทำลายโอโซนจากปฏิกิริยาของ Freon-11 และ Freon-12 ด้วย รังสีอัลตราไวโอเลตที่ความยาวคลื่น 254 nm ในชั้นบรรยากาศสตราโตสเฟียร์ (stratosphere)

โจทย์ข้อที่ 10 (10 คะแนน)

กระบวนการโซลเวย์สำหรับการผลิตโซเดียมคาร์บอเนต (Na_2CO_3) โดยเริ่มจาก $CaCO_3$ ในทาง อุตสาหกรรม เกี่ยวข้องกับปฏิกิริยาต่อไปนี้ ($25^{\circ}C$, 1 atm)

(1)
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$\Delta H_1^{\circ} = 42.55 \text{ kcal}$$

(2)
$$CO_2(g) + NaCl(aq) + H_2O(l) + NH_3(g) \longrightarrow NaHCO_3(aq) + NH_4Cl(aq)$$

$$\Delta H_2^{\circ} = 26.46 \text{ kcal}$$

(3)
$$\operatorname{Na_2CO_3}(aq) + \operatorname{CO_2}(g) + \operatorname{H_2O}(l) \implies 2\operatorname{NaHCO_3}(aq)$$

$$\Delta H_{3}^{o} = 164.57 \text{ kcal}$$

(4)
$$Ca(OH)_2(aq) \rightarrow CaO(s) + H_2O(l)$$

$$\Delta H_4^o = 15.58 \text{ kcal}$$

(5)
$$Ca(OH)_2(aq) + 2NH_4Cl(aq) \rightarrow CaCl_2(aq) + 2NH_3(g) + 2H_2O(l)$$

$$\Delta H_5^{\circ} = 37.84 \text{ kcal}$$

- 10.1 (2.5 คะแนน) ใช้กฎของเฮสส์หาค่าการเปลี่ยนแปลงเอนทาลปีของปฏิกิริยาสุทธิของ ${
 m Na}_2{
 m CO}_3$
- 10.2 (0.5 คะแนน) ปฏิกิริยานี้เป็นการคายความร้อนหรือคุคความร้อน
- 10.3 (2 คะแนน) ถ้าการเปลี่ยนแปลงเอนทาลปีของปฏิกิริยาสุทธินี้เท่ากับ -100.00 kcal จงหาค่าการ เปลี่ยนแปลงเอนทาลปีของการเกิด Na_2CO_3

กำหนดให้
$$\Delta H_{\rm f}^{\rm o}\,({
m NaCl}) = -98.23~{
m kcal/mol}$$
 $\Delta H_{\rm f}^{\rm o}\,({
m CaCO_3}) = -288.50~{
m kcal/mol}$

$$\Delta H_{\rm f}^{\rm o}$$
 (CaCl₂) = -190.00 kcal/mol

10.4 (1 คะแนน) จงคำนวณหาการเปลี่ยนแปลงเอนโทรปี (ΔS^{o}) ของปฏิกิริยานี้

$$S^{o}(CaCO_{3}) = 92.90 J/mol.K$$

$$S^{o}(CaCl_2) = 113.80 J/mol.K$$

$$S^{o}\left(Na_{2}CO_{3}\right) \ = \ 135.98 \quad J/mol.K$$

- 10.5 (2 คะแนน) จงคำนวณหาพลังงานเสรี (free energy, ΔG^{o}) ของปฏิกิริยานี้
- 10.6 (1.5 คะแนน) จงคำนวณหาค่าคงที่สมคุล (K) ของปฏิกิริยานี้
- 10.7 (0.5 คะแนน) จงเขียนสมการใอออนิกของปฏิกิริยาสุทธินี้

โจทย์ข้อที่ 11 (4 คะแนน)

ลูกโป่งใบหนึ่งบรรจุแก๊ส He วัดปริมาตรได้ 1,200 mL ที่อุณหภูมิ 30°C ความคัน 1.00 atm เมื่อปล่อยให้ ลอยขึ้นในแนวคิ่งจากบริเวณพื้นดินจนถึงความสูง 100 m จงคำนวณงาน (work) ที่เกิดจากการขยายตัวของ ลูกโป่ง

กำหนดให้

- แก๊ส He เป็นแก๊สอุดมคติ (ideal gas)
- การเปลี่ยนแปลงปริมาตรของลูกโป่งเป็นแบบผันกลับได้ (reversible)
- -ระยะความสูงจากพื้นคิน 100 m อุณหภูมิไม่เปลี่ยนแปลง แต่ทุก ๆ 20 m จากพื้นคินความ คันจะเปลี่ยนแปลง 5%

โจทย์ข้อที่ 12 (6 คะแนน)

ปฏิกิริยารีคอกซ์ชนิดหนึ่งเป็นดังนี้

$$X^{n+} + Y \rightarrow X + Y^{n+}$$

จากการสร้างเป็นเซลล์เคมีไฟฟ้าโดยใช้ความเข้มข้นของ X^{n+} และ Y^{n+} ต่าง ๆ กัน วัดค่าศักย์ไฟฟ้าของเซลล์ (E) ที่อุณหภูมิ 27° C ได้ผลดังนี้

$[X^{n+}]$ (mol/L)	$[Y^{n+}]$ (mol/L)	E (V)
0.100	0.200	4.10×10 ⁻²
0.100	0.300	3.58×10 ⁻²
0.100	0.400	3.21×10 ⁻²
0.100	0.500	2.92×10 ⁻²

- 12.1 (3 คะแนน) จงคำนวณ E° ของเซลล์ที่อุณหภูมิ 25°C ความคัน 1.00 atm โดยการเขียนกราฟ
- 12.2 (1.5 คะแนน) ปฏิกิริยานี้เกี่ยวข้องกับกี่อิเล็กตรอน
- 12.3 (1.5 คะแนน) จงคำนวณพลังงานเสรี (free energy, ΔG°) และค่าคงที่สมคุล (K) ของเซลล์ที่ อุณหภูมิ 25° C ความคัน $1.00\,\mathrm{atm}$

โจทย์ข้อที่ 13 (4 คะแนน)

ปฏิกิริยาการสลายตัวของซัลโฟนิลคลอไรค์ที่ 327° C เป็นปฏิกิริยาอันคับ 1 มีครึ่งชีวิต ($t_{1/2}$) เท่ากับ 6.93ชั่วโมง

$$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$$

- 13.1 (1 คะแนน) ค่าคงที่อัตราการเกิดปฏิกิริยามีค่าเท่าใดในหน่วย ${f s}^{-1}$
- 13.2 (3 คะแนน) ถ้าความคันเริ่มต้นของ SO_2Cl_2 คือ 1,000 mm Hg และการสลายตัวเกิดขึ้นในภาชนะ ขนาด 1 L จำนวนโมเลกุลของ SO_2Cl_2 ที่เหลือในภาชนะหลังจากเวลาผ่านไป 10 ชั่วโมงเท่ากับ เท่าใด

โจทย์ข้อที่ 14 (2 คะแนน)

ปฏิกิริยา $2A^{2+}(aq)+6(BX)^-(aq) \rightarrow 2A(BX)_2^-(aq)+(BX)_2(aq)$ เป็นปฏิกิริยา 2 ขั้นตอน พบว่า อัตราการเกิดปฏิกิริยาอยู่ในรูป $k[A^{2+}]^2[BX^-]^6$ ถ้าขั้นตอนแรกเป็นปฏิกิริยาที่เกิดขึ้นเร็ว ได้ผลิตภัณฑ์ $A(BX)_3^-$ ซึ่งเป็นสารมัชยันตร์ที่ไม่เสถียร ขั้นตอนที่สองเป็นปฏิกิริยาที่กำหนดอัตราการเกิดปฏิกิริยา (rate determining step) เขียนกล ใกการเกิดปฏิกิริยาทั้งหมด

โจทย์ข้อที่ 15 (3 คะแนน)

กระบวนการยับยั้งไวรัสเป็นปฏิกิริยาอันดับ 1 เมื่อเวลาผ่านไป 1 นาที พบว่าไวรัสถูกยับยั้ง 4%

- 15.1 (2 คะแนน) ค่าคงที่อัตราการเกิดปฏิกิริยา (k) มีค่าเท่าใด
- 15.2 (1 คะแนน) ไวรัสถูกยับยั้ง 50% เมื่อเวลาผ่านไปเท่าใด

โจทย์ข้อที่ 16 (4.5 คะแนน)

เมื่อนำแก๊สไฮโดรการ์บอนชนิดอิ่มตัวปริมาตร 100 mL ที่อุณหภูมิและความดันมาตรฐาน (STP) ไปเผา ใหม้ให้สมบูรณ์ และผ่านแก๊สที่เกิดขึ้นไปยังสารละลาย $Ca(OH)_2$ จะได้ตะกอนเกิดขึ้น เมื่อกรองตะกอน แล้วนำไปอบให้แห้ง ชั่งน้ำหนักได้ $1.786~\mathrm{g}$

- $16.1 \quad (1 \,
 m คะแนน) เขียนสมการการเผาไหม้ที่คุลแล้วของไฮโครคาร์บอนอิ่มตัวที่มีสูตรทั่วไปเป็น <math>C_{
 m n}H_{2
 m n+2}$
- 16.2 (0.5 คะแนน) แก๊สไฮโครคาร์บอนข้างต้นมีจำนวนกี่โมล
- 16.3 (0.5 คะแนน) ตะกอนที่เกิดขึ้นคือสารใด
- 16.4 (1.5 คะแนน) แก๊สไฮโครคาร์บอนข้างต้นมีสูตรโมเลกุลอย่างไร
- 16.5 (1 คะแนน) แก๊สไฮโดรคาร์บอนข้างต้นมีสูตรโครงสร้างเป็นอย่างไรได้บ้าง

โจทย์ข้อที่ 17 (4.5 คะแนน) เบนซีนทำปฏิกิริยาได้ตามขั้นตอนดังแสดงในแผนภาพ

- 17.1 (3.5 คะแนน) เขียนโครงสร้างพร้อมสเตอริโอเคมีที่เกิดขึ้น (ถ้ามี) ของผลิตภัณฑ์ (A)–(J)
- 17.2 (1 คะแนน) เขียนกลไกปฏิกิริยาที่เป็นสภาวะแทรนซิชัน (\mathbf{X}) และ (\mathbf{Y}) ในการเปลี่ยนสาร (\mathbf{C}) เป็น สาร (\mathbf{E}) และสาร (\mathbf{D}) เป็นสาร (\mathbf{F}) ตามลำคับ

โจทย์ข้อที่ 18 (8.5 คะแนน)

วิตามินซีหรือกรคแอสคอร์บิก มีสมบัติเป็นแอนติออกซิแคนท์ (antioxidant) และช่วยให้กระบวนการ ต่างๆ ในร่างกายอยู่ในภาวะสมคุล วิตามินซีเกิดจากกระบวนการชีวสังเคราะห์ที่มี D-glucose เป็นสารตั้ง ต้น ดังแผนภาพที่ 1

- 18.1 (2 กะแนน) ปฏิกิริยาในขั้นที่ (1) (4) ของกระบวนการชีวสังเคราะห์ จัดเป็นปฏิกิริยาประเภท การแทนที่ การขจัด การเติม ออกซิเดชัน หรือรีดักชัน ทั้งนี้ปฏิกิริยาบางขั้นอาจจัดได้มากกว่า 1 ประเภท
- 18.2 (0.5 คะแนน) ถ้าในปฏิกิริยาขั้นที่ (1) เป็นการใช้สารเคมีในห้องทดลองแทนปฏิกิริยาใน กระบวนการชีวสังเคราะห์ จะได้ผลิตภัณฑ์ที่มีโครงสร้างเป็นอย่างไร

เนื่องจากวิตามินซีเป็นสารสำคัญจึงมีการผลิตในอุตสาหกรรมเพื่อให้ได้ปริมาณมาก ซึ่งใช้ D-glucose จาก ธรรมชาติเป็นสารตั้งต้น และใช้ปฏิกิริยาเคมีสังเคราะห์เป็นส่วนใหญ่ โดยที่บางขั้นตอนใช้เชื้อ Acetobacter suboxydans ร่วมด้วย ดังแผนภาพที่ 2

- 18.3 (4 คะแนน) เขียน โครงสร้างของสาร **(A)-(G)**
- 18.4 (0.5 คะแนน) ในกระบวนอุตสาหกรรม หากใช้ปฏิกิริยาออกซิเดชันกับสาร (**B**) โดยตรง (โดยไม่ ผ่านการทำปฏิกิริยาในขั้น (**c**) และ (**e**)) จะได้สารที่มีโครงสร้างอย่างไร
- 18.5 (0.5 คะแนน) ในขั้น (b) ของกระบวนการอุตสาหกรรม Acetobacter suboxydans มีหน้าที่และ ความจำเพาะอย่างไร
- 18.6 (0.5 คะแนน) ปฏิกิริยาในขั้น (**b**) มีการเปลี่ยนคอนฟิกุเรชันจาก **D** เป็น **L** ได้อย่างไร
- 18.7 (0.5 คะแนน) เขียนกลไกปฏิกิริยา tautomerization ในขั้น (h)

โจทย์ข้อที่ 19 (4.5 คะแนน)

Apoptolidin เป็นสารที่ยับยั้งการเกิดเนื้องอก มี โครงสร้างดังแสดง

เมื่อนำสารนี้ทำปฏิกิริยากับน้ำที่มีสภาวะเป็นกรคอย่างอ่อน แล้วนำสารละลายที่ได้ไปสะเทินให้เป็นกลาง จากนั้นสกัดโดยใช้อีเทอร์เป็นตัวทำละลาย แยกชั้นอีเทอร์และน้ำออกจากกัน แต่ละชั้นจะมีสารผลิตภัณฑ์ ละลายอยู่ไม่เหมือนกัน

- 19.1 (1 คะแนน) เขียนโครงสร้างของสารผลิตภัณฑ์ที่ถูกสกัดอยู่ในชั้นอีเทอร์
- 19.2 (1.5 คะแนน) เขียนโครงสร้างของสารผลิตภัณฑ์ที่ละลายอยู่ในชั้นน้ำ
- 19.3 (1 กะแนน) เมื่อเปรียบเทียบสารผลิตภัณฑ์ที่ละลายอยู่ในชั้นน้ำ สารใดที่ละลายน้ำได้ดีที่สุด เพราะ เหตุใด และ เมื่ออยู่ในสภาวะสมดุลจะมีโครงสร้างเป็นอย่างไรได้บ้าง
- 19.4 (1 คะแนน) ถ้านำเอาสารที่ละลายในชั้นน้ำได้ดีที่สุด 1 โมล มาทำปฏิกิริยากับกรดเปอร์ไอโอดิก (HIO₄) ที่มากเกินพอ จะให้ผลิตภัณฑ์ที่มีโครงสร้างอย่างไรบ้าง และอย่างละกี่โมล

โจทย์ข้อที่ 20 (7 คะแนน)

นาโนเปปไทค์ที่มีชื่อว่า Bradykinin ทำให้เกิดความเจ็บปวดอย่างรุนแรง เกิดขึ้นได้เมื่อร่างกายตอบสนอง ต่อพิษที่ได้รับจากเหล็กในของแมลงที่มีพิษ เช่น ตัวต่อ หรือผึ้ง การหาโครงสร้างของนาโนเปปไทค์ทำตาม ขั้นตอนต่าง ๆ ดังนี้

(1) นำ Bradykinin ı โมล มาทำปฏิกิริยาไฮโครลิซิสอย่างสมบูรณ์ ไค้กรคอะมิโนชนิคต่างๆ ในจำนวน โมลต่อไปนี้ (ตัวย่อในวงเล็บใช้แทนชื่อเต็มของกรคอะมิโน)

Arginine (Arg) 2 โมล Glycine (Gly) 1 โมล Proline (Pro) 3 โมล Phenylalanine (Phe) 2 โมล Serine (Ser) 1 โมล

- (2) นำ Bradykinin มาทำปฏิกิริยากับ Sanger's reagent แล้วตามด้วยปฏิกิริยาไฮโครลิซิส จะได้ Arg ที่มีหมู่ 2,4-dinitrophenyl ติดอยู่
- (3) นำ Bradykinin ไปทำปฏิกิริยากับ carboxylpeptidase จะได้ Arg เกิดขึ้นก่อน แล้วตามด้วย Phe
- 20.1 (1.5 คะแนน) จากข้อมูล (2) และ (3) ได้ข้อสรุปอย่างไร
- 20.2 (3.5 คะแนน) เมื่อทำปฏิกิริยาไฮโครลิซิสบางส่วนของ bradykinin จะได้สารผสมของเปปไทด์ ต่างกัน 5 ชนิด เมื่อนำแต่ละชนิดไปทำปฏิกิริยากับ Sanger's reagent แล้วตามด้วยปฏิกิริยา ไฮโครลิซิส จะได้ผลดังนี้

เปปใทด์ที่	กรดอะมิโนที่ได้	กรดอะมิโนที่ได้โดยมีหมู่ 2,4-dinitrophenyl ติดอยู่
1	Pro, Pro	Arg
2	Arg, Phe	Pro
3	Gly	Pro
4	Ser, Phe	Gly
5	Ser	Phe

เปปไทค์แต่ละชนิด มีลำคับกรคอะมิโนที่เป็นไปได้ทั้งหมคอย่างไร

20.3 (2 คะแนน) ลำดับของกรดอะมิโนที่อยู่ในสาร bradykinin เป็นอย่างไร

หมายเหตุ การเขียนลำดับกรดอะมิโนในเปปไทด์ให้เขียนชื่อย่อของกรดอะมิโนต่อกันด้วยขีดและที่ปลาย ให้ระบุหมู่อะมิโนอิสระและหมู่คาร์บอกซิลอิสระด้วย

++++

การแข่งขัน เคมีโอลิมปิกระดับชาติ ครั้งที่ 6

ตารางธาตุ

									-								VIIIA
								1 1.0									2 4.0
1											Į.	He					
<u>IA</u>	IIA						IIIVA	IVA	VA	VIA	VIIA	helium					
3 6.9	4 9.0						5 10.8	6 12.0	7 14.0	8 16.0	9 19.0	10 20.2					
Li	Be				T	ransition	Elemen	ts				В	\mathbf{C}	N	O	\mathbf{F}	Ne
lithium	beryllium												carbon	nitrogen	oxygen	fluorine	neon
11 23.0	12 24.3												14 28.1	15 31.0	16 32.1	17 35.5	18 39.9
Na	Mg												Si	P	S	Cl	Ar
sodium	magnesium	IIIB	IVB	VB	VIB	VIIB		-VIIIB-		IB	IIB	aluminum	silicon	phosphorus	sulfur	chlorine	argon
19 39.1	20 40.1	21 45.0	22 47.9	23 50.9	24 52.0	25 54.9	26 55.8	27 58.9	28 58.7	29 63.5	30 65.4	31 69.7	32 72.6	33 74.9	34 79.0	35 79.9	36 83.8
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
37 85.5	38 87.6	39 88.9	40 91.2	41 92.9	42 95.9	43 98.9	44 101.1	45 102.9	46 106.4	47 107.9	48 112.4	49 114.8	50 18.7	51 121.8	52 127.6	53 126.9	54 131.3
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
55 132.9	56 137.3	57-71	42 178.5	73 180.9	74 183.9	75 186.2	76 190.2	77 192.2	78 195.1	79 197.0	80 200.6	81 204.4	82 207.2	83 209.0	84 (209)	85 (210)	86 (222)
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
cesium	barium	*	hafnium	tantalum	tungsten	rhenium	osmium	irridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (269)	109 (268)	110 (271)	111 (272)	112 (285)	113 (284)	114 (289)	115 (288)	116 (292)	117 (?)	118 (?)
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	$\mathbf{D}\mathbf{s}$	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
francium	radium	#	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	damstadtium	roentgenium	ununbium	ununtrium	ununquadium	ununpentium	ununhexium	ununseptium	ununoxtium

*Lanthanide Series

#Actinide Series

	57 138.9	58 140.1	59 140.9	60 144.2	61 (145)	62 150.0	63 152.0	64 157.3	65 158.9	66 162.5	67 164.9	68 167.3	69 168.9	70 173.0	71 175.0
S	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	lanthanum	cerium	praseodymium	neodymium	promithium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	89 (227)	90 232.0	91 231.0	92 238.0	93 237.0	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (254)	100 (257)	101 (258)	102 (255)	103 (256)
	Ac	Th	Pa	${f U}$	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
L	actinum	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelivium	nobelium	lawrencium