

Sumário

1. Definição e Propriedades

Definição e Propriedades

AVISO

Nesta aula, todas os entes geométricos estão situados num mesmo plano α .

Conjuntos Convexos

Definição 1

Um conjunto A chama-se **convexo**, se para cada dois pontos X e Y de A, o segmento \overline{XY} está contido em A.

Postulado da Separação dos Pontos de um Plano

Postulado da Separação dos Pontos de um Plano

Toda reta de um plano divide-o em dois conjuntos, os quais são convexos, denominados **semiplanos.**

A reta r chama-se **aresta** de cada semiplano de α .

Postulado da Separação dos Pontos de um Plano

- Se A e B pertencem a um mesmo semiplano, o segmento AB está contido no mesmo semiplano e não intercepta a reta r.
- Se os pontos C e D pertencem a semiplanos distintos, o segmento CD intercepta a reta r.

Ângulos

Definição 2

Chamamos de **ângulo** a figura formada por duas semirretas que têm a mesma origem.

As semirretas \overrightarrow{OA} e \overrightarrow{OB} são chamados **lados** do ângulo e a origem comum O é o seu vértice.

Notações

Para denotar este ângulo, escrevemos:

- ► Ô
- ► AÔB
- ► BÔA
- ightharpoonup uma letra grega: $\alpha, \beta, \gamma, \eta, ...$

Interior

Definição 3

Diz-se que um ponto P pertence ao interior de um ângulo AÔB, se

- ► P e A estão num mesmo semiplano definido pela reta $\overleftrightarrow{\mathsf{OB}}$;
- ▶ P e B estão num mesmo semiplano definido pela reta 🛱.

Figura 1: *P* pertence ao interior do ângulo *AÔB*

Exterior

Definição 4

O **exterior** de um ângulo AÔB é o conjunto de todos os pontos do plano que o contém, tais que:

- não pertencem aos lados do ângulo;
- não pertencem ao interior do ângulo dado.

Figura 2: Q pertence ao exterior do ângulo AÔB

Ângulos Consecutivos

Definição 5

Dois ângulos são ditos consecutivos se têm o mesmo vértice e um lado em comum.

Ângulos Adjacentes

Definição 6

Dois ângulos consecutivos que não possuem pontos internos em comum, são denominados **adjacentes**.

Figura 3: Os ângulos *AÔB* e *BÔC* são adjacentes.

Ângulos Opostos pelo Vértice

Definição 7

Dois ângulos são ditos **opostos pelo vértice**, se os lados de um deles são as semirretas opostas dos lados do outro.

Figura 4: Os ângulos μ e θ são opostos pelo vértice.

Trabalho

Responda ao questionário: Aula 02: Ângulos Parte 1.

Ângulos Suplementares

Definição 8

Dois ângulos adjacentes, cujos lados não comuns são semirretas opostas, são denominados **suplementares**.

ightharpoonup Dizemos que au é um **ângulo suplementar adjacente** de heta (e vice-versa).

Tipos de Ângulos

Definição 9

Um ângulo AÔB é dito:

- reto, se é congruente a seu suplementar adjacente;
- agudo, se é um ângulo menor que um ângulo reto;
- **obtuso**, se é um ângulo maior que um ângulo reto.

Medida de Ângulos

As unidades mais utilizadas para medir ângulos (sua amplitude) são o **grau** e **radiano**.

Figura 5: A área em verde representa o ângulo AÔB

Adição de Ângulos

Postulado Da adição de Ângulos: Se P é um ponto de interior de um ângulo $A\hat{O}B$, então $A\hat{O}B = A\hat{O}P + P\hat{O}B$.

Medida de Ângulos

- ▶ O ângulo de um grau (1°) é o ângulo obtido ao dividirmos o ângulo reto em 90 ângulos iguais. Com isso, um ângulo reto possui 90°.
- ▶ O ângulo de um minuto (1′) é o ângulo obtido ao dividirmos o ângulo de 1° em 60 partes iguais:

$$1'=\frac{1^\circ}{60}.$$

▶ O ângulo de um segundo (1") é o ângulo obtido ao dividirmos o ângulo de 1' em 60 partes iguais:

$$1'' = \frac{1'}{60} = \frac{1^{\circ}}{360}.$$

Ângulos Congruentes

Definição 10

Dois ângulos são ditos **congruentes** se têm a mesma medida.

Bissetriz

Definição 11

Seja P um ponto interior do ângulo AÔB. A **bissetriz** do ângulo AÔB, é a semirreta \overrightarrow{OP} , tal que $A\widehat{OP} = P\widehat{OB}$.

Figura 6: Os ângulos $A\hat{O}P$ e $P\hat{O}B$ possuem a mesma medida.

Ângulos Complementares

Definição 12

Dois ângulos são ditos **complementares**, se a soma de suas medidas é 90°. Cada um deles é denominado o **complemento** do outro.

Figura 7: Temos que $\eta + \zeta = 90^{\circ}$, logo são ângulos complementares.

Medidas de um ângulo

► Todo ângulo tem sua medida, em graus, de 0 à 180. A medida de um ângulo é zero se, e somente se, seus lados são semirretas coincidentes. Se seus lados são semirretas opostas, sua medida é 180°.

Figura 8: Transferidor: a 'régua' para medir ângulos

Ângulos

Definição 13

Denominamos de ângulo **raso** ao ângulo cujos lados são semirretas opostas (estão sobre a mesma reta, em sentidos opostos).

Figura 9: Ô é um ângulo raso

Teorema

Teorema 1

Dois ângulos opostos pelo vértice são congruentes.

Figura 10: Os ângulos μ e θ são opostos pelo vértice.

Demonstração do Teorema 1

- **Hipótese:** μ e θ são opostos pelo vértice .
- ▶ Tese: $\mu = \theta$.

Usaremos a prova direta (partimos da hipótese).

Seja au o ângulo simultaneamente adjacente aos ângulos μ e θ .

Figura 11: Os ângulos μ e θ são adjacentes ao mesmo ângulo τ .

Demonstração do Teorema 1

Com isso,

$$\mu + \tau = 180^{\circ}$$
 e $\theta + \tau = 180^{\circ}$.

Daí, obtemos

$$\mu + \tau = \theta + \tau \Rightarrow \mu + \tau - \tau = \theta + \tau - \tau$$

 $\Rightarrow \mu = \theta$.

Postulado

Postulado da Unicidade: Qualquer que seja o número real ζ , com $0 < \zeta < 180$, podemos construir um único ângulo de ζ graus, a partir de uma semirreta dada num semiplano.

Trabalho

Responda ao questionário: Aula 02: Ângulos Parte 2.