AMENDMENTS TO THE CLAIMS (including complete listing of the claims)

1-50. (Canceled)

51. (Currently Amended) An implantable, <u>fluid-imbibing</u> device for delivering an active agent to a fluid environment of use, said device comprising the <u>following components</u>: an impermeable reservoir comprising an interior surface;

a piston that divides the reservoir into a water-swellable agent chamber and an active agent chamber, wherein the water-swellable agent chamber has an open end and the active agent formulation chamber has an open end;

and-a back diffusion regulating outlet received in the open end of the active agent formulation chamber of the reservoir for delivering fluid from the active agent formulation chamber from the reservoir to the fluid environment, the reservoir interior surface and back diffusion regulating outlet having surfaces in a mating relationship, wherein (i) a helical flow path for the active agent is formed between the mating surfaces, (ii) wherein-a length of the helical flow path is sufficient to prevent back-diffusion of external fluid through the helical flow path, and (iii) wherein-the helical flow path has a length of about 2 to about 7 cm; and

a water-swellable semipermeable plug received in sealing relationship with the interior surface of the open end of the water-swellable agent chamber of the reservoir.

52. (Currently Amended) An implantable, <u>fluid-imbibing</u> device for delivering an active agent to a fluid environment of use, said device comprising <u>the following components</u>: an <u>impermeable</u> reservoir <u>comprising an interior surface</u>;

a piston that divides the reservoir into a water-swellable agent chamber and an active agent chamber, wherein the water-swellable agent chamber has an open end and the active agent formulation chamber has an open end;

and a back diffusion regulating outlet received in the open end of the active agent formulation chamber of the reservoir for delivering fluid from the active agent formulation chamber from the reservoir to the fluid environment, the reservoir interior surface and back diffusion regulating outlet having surfaces in a mating relationship, wherein (i) a helical flow path for the active agent is formed between the mating surfaces. (ii) wherein a length of the

helical flow path is sufficient to prevent back-diffusion of external fluid through the helical flow path, wherein-and (iii) the helical flow path has a diameter of about 0.003 to about 0.020 inches; and

a water-swellable semipermeable plug received in sealing relationship with the interior surface of the open end of the water-swellable agent chamber of the reservoir.

- 53. (Previously Presented) The device of claim 52, wherein the helical flow path has a length of about 2 to about 7 cm.
- 54. (Currently Amended) The device of claim 51, wherein the back diffusion regulating outlet comprises a thermoplastic memberpolymer and the reservoir comprises a metal eapsule and the helical flow path is formed by a helical groove in an exterior surface of the back diffusion regulating outlet thermoplastic member and by an interior surface of the metal capsulers ervoir.
- 55. (Currently Amended) A fluid-imbibing device for delivering an active agent to a fluid environment of use, said device comprising a water-swellable semipermeable plug that is received in scaling relationship with an interior of the surface of an open end of an implantable reservoir and an active agent to be displaced from the device when the water-swellable semipermeable plug swells The device of claim 51, wherein an exterior surface of the semipermeable plug includes comprises circumferential ridges.
 - 56. (Canceled)
- (Currently Amended) The device of claim 7152, wherein an exterior surface of the semipermeable material plug includes comprises circumferential ridges.
- 58. (Currently Amended) The device of claim 57, wherein there is a clearance between the ridges and the interior surface of the reservoir into which the semipermeable material-<u>plug</u> expands due to hydration.

Intarcia Dkt No. ALE 053.16 USSN: 10/645,293 PATENT

59. (Currently Amended) The device of claim 5551, wherein the semipermeable plug is substantially cylindrical and expands radially upon hydration to provide a friction fit with the interior surface and longitudinally to displace the active agent.

 (Currently Amended) The device of claim 5551, wherein the semipermeable plug comprises a material selected from the group consisting of plasticized cellulosic materials, polyurethanes, hydroxyethylmethacrylate, polyether-polyamide copolymers, and polyamides.

61-72. (Canceled)

73. (Currently Amended) The device of claim 55, wherein there is a clearance between the circumferential ridges and an interior surface of the reservoir into which the semipermeable material plug expands due to hydration.

74. (Canceled)

75. (Currently Amended) The device of claim 7452, wherein the semipermeable <u>plug</u> comprises a material is-selected from the group consisting of plasticized cellulosic materials, polyurethanes, <u>hydroxyethylmethacrylate</u>, <u>polyether-polyamide copolymers</u>, and polyamides.

76. (New) The device of claim 52, wherein the back diffusion regulating outlet comprises a polymer and the reservoir comprises a metal and the helical flow path is formed by a helical groove in an exterior surface of the back diffusion regulating outlet and by an interior surface of the reservoir.

77. (New) The device of claim 51, wherein the reservoir comprises titanium or a titanium alloy.

 (New) The device of claim 51, wherein the piston comprises an elastomeric material.

Intarcia Dkt No. ALE 053.16 USSN: 10/645,293 PATENT

- 79. (New) The device of claim 51, wherein the piston comprises a material selected from the group consisting of polypropylene, EPDM, silicone rubber, butyl rubber, plasticized polyvinylchloride, and polyurethanes.
- 80. (New) The device of claim 51, wherein the back diffusion regulating outlet comprises a polymer.
- 81. (New) The device of claim 80, wherein the back diffusion regulating outlet comprises a polymer selected from the group consisting of polyethylene, polypropylene, polycarbonate and polymethylmethacrylate.
- (New) The device of claim 52, wherein the reservoir comprises titanium or a titanium alloy.
- 83. (New) The device of claim 52, wherein the piston comprises an elastomeric material
- 84. (New) The device of claim 52, wherein the piston comprises a material selected from the group consisting of polypropylene, EPDM, silicone rubber, butyl rubber, plasticized polyvinylchloride, and polyurethanes.
- 85. (New) The device of claim 52, wherein the back diffusion regulating outlet comprises a polymer.
- 86. (New) The device of claim 85, wherein the back diffusion regulating outlet comprises a polymer selected from the group consisting of polyethylene, polypropylene, polycarbonate and polymethylmethacrylate.
- 87. (New) The device of claim 52, wherein the semipermeable plug is substantially cylindrical and expands radially upon hydration to provide a friction fit with the interior surface.