Deep Learning in Scientific Computing

Introduction to Deep Learning Part 2

Spring Semester 2023

Siddhartha Mishra Ben Moseley

ETH zürich

Recap – MLPs and CNNs

Multilayer perceptron (MLP)

$$NN(x; \theta) = W_2 \sigma(W_1 x + b_1) + b_2$$

Convolutional neural network (CNN)

$$NN(x; \theta) = W_2 \star \sigma(W_1 \star x + b_1) + b_2$$

Neural networks are simply **flexible functions** fit to data

Recap – Popular deep learning tasks

Supervised learning - regression

Unsupervised learning – feature learning

Supervised learning - classification

 $P(\log \mid x) = 1$

Unsupervised learning – generative modelling

Recap – Automatic differentiation

Neural networks can be trained using gradient descent:

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2}{\partial \theta_j}$$

Multivariate chain rule:

$$NN(\mathbf{x};\theta) = \mathbf{f} \circ \mathbf{g} \circ \mathbf{h}(\mathbf{x};\theta)$$
$$\frac{\partial NN}{\partial W_1} = \frac{\partial \mathbf{f}}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial W_1}$$

Chain rule can be efficiently evaluated using vector-Jacobian products (reverse-mode differentiation)

Autodifferentiation = exact gradients of **arbitrary** programs

Constructs a graph and uses message-passing of vjps / jvps

Combined, evaluates the chain rule

Course timeline

	Tutorials		Lectures
Tue 3:15-14:00, HG E5		Fri 12:15-14:00, HG D1.1	
21.02.		24.02.	Course introduction
28.02.	Intro to PyTorch	03.03.	Introduction to deep learning I
07.03.	Simple DNNs in PyTorch	10.03.	Introduction to deep learning II
14.03.	Advanced DNNs in PyTorch	17.03.	Physics-informed neural networks – introduction and theory
21.03.	PINN exercises	24.03.	Physics-informed neural networks – applications
28.03.	Implementing PINNs I	31.03.	Physics-informed neural networks – extensions
04.04.	Implementing PINNs II	07.04.	
11.04.		14.04.	
18.04.	Introduction to projects	21.04.	Neural operators – introduction and theory
25.04.	Implementing neural operators I	28.04.	Neural operators – applications
02.05.	Implementing neural operators II	05.05.	Neural operators – extensions
09.05.	Operator learning exercises	12.05.	Graph and sequence models
16.05.	Project discussions	19.05.	Differentiable physics – introduction
23.05.	Implementing autodifferentiation	26.05.	Differentiable physics and neural differential equations
30.05.	Intro to JAX	02.06.	Future trends and overview of CAMLAB

State-of-the-art

Inside ChatGPT – by end of this lecture, you will understand how this works!

Radford et al, Improving Language Understanding by Generative Pre-Training, ArXiv (2018)

Brown et al, Language Models are Few-Shot Learners, NeurIPS (2020)

Lecture overview

- Challenges of function fitting
 - Overfitting / underfitting
 - Bias / variance
- Regularising deep neural networks
 - Architecture
 - Training data
 - Loss function
- Optimising deep neural networks
 - Stochastic gradient descent
 - Adam / higher-order
- State-of-the-art models
 - Transformers, ChatGPT

Train loss vs Train error vs Test error

Training loss:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

$$D_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

Train error:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} |NN(x_i; \theta) - y_i|$$

$$D_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

Test error:

$$L(\theta) = \frac{1}{M} \sum_{i}^{M} |NN(x_i; \theta) - y_i|$$

$$D_{\text{test}} = \{(x_1, y_1), \dots, (x_M, y_M)\}$$

Overfitting vs underfitting

Understanding error sources

Training loss:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

$$D = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

This is also known as the **empirical loss**, and can be more generally written as:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} l(NN(x_i; \theta), y_i), \qquad x, y \sim p(x, y)$$

But what we really want to minimise is the **expected loss**:

$$\mathcal{L}(\theta) = \iint l(NN(x; \theta), y) p(x, y) dx dy$$
$$= E_{(x,y) \sim p}[l(x, y; \theta)]$$

But this is impossible in practice!

Understanding error sources

Training loss:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

$$D = \{(x_1, y_1), \dots, (x_N, y_N)\}$$

This is also known as the **empirical loss**, and can be more generally written as:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} l(NN(x_i; \theta), y_i), \qquad x, y \sim p(x, y)$$

But what we really want to minimise is the **expected loss**:

$$\mathcal{L}(\theta) = \iint l(NN(x; \theta), y) p(x, y) dx dy$$
$$= E_{(x,y) \sim p}[l(x, y; \theta)]$$

But this is impossible in practice!

This means there are two sources of error:

1) **Approximation error** (limited expressivity of neural network)

$$\mathcal{E}_{app} = \mathcal{L}(\underline{NN^*}) - \mathcal{L}(\underline{y^*})$$

NN which minimises expected loss

True function which minimises expected loss

2) **Estimation error** (finite amount of training data) (aka generalisation error)

$$\mathcal{E}_{\text{est}} = \mathcal{L}(NN) - \mathcal{L}(NN^*)$$

NN which minimises empirical loss

NN which minimises expected loss

Function space

Function space, $f: \mathbb{R}^u \to \mathbb{R}^v$

Neural network, $NN(x; \theta)$, which minimises expected loss $\mathcal{L}(\theta)$

Neural network, $NN(x; \theta)$, which minimises empirical loss $L(\theta)$

Space of all possible functions that neural network can represent

Function space

Neural network, $NN(x; \theta)$, which minimises empirical loss $L(\theta)$

Training step 10000 Training data Test data 0.5

Overfit

Decomposing expected loss

Let $h(x, D) = NN(x; \theta)$ be the function learned by the neural network using a **particular** training dataset $D = \{(x_1, y_1), ..., (x_N, y_N)\}$

Then we would like to understand what the expected loss is averaged over all possible training datasets, i.e.

$$E_{(x,y)\sim p,\,D\sim p^N}[l(x,y,D)]$$

Assume a simple least-squares loss function, e.g.

$$E_{x,y,D}[(h(x,D)-y)^2]$$

Then it can be shown*:

$$E_{x,y,D}[(h(x,D)-y)^2] = \underbrace{E_x\left[\left(\bar{h}(x)-\bar{y}(x)\right)^2\right]}_{\text{Bias}^2} + \underbrace{E_{x,D}\left[\left(h(x,D)-\bar{h}(x)\right)^2\right]}_{\text{Variance}} + \underbrace{E_{x,y}[(\bar{y}(x)-y)^2]}_{\text{Irreducible noise}}$$

Variance

Where

$$\bar{y}(x) = E_{y|x}[y] = \int y \, p(y|x) dy$$
 = Average observation

$$\bar{h}(x) = E_D[h(x,D)] = \int h(x,D) p(D) dD$$
 = Average model

Exact function Noisy training data -0.51.0

*for full derivation, see e.g. https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

Irreducible noise

Decomposing expected loss

From previous slide:

$$E_{x,y,D}[(h(x,D)-y)^2] = E_x \left[\left(\bar{h}(x) - \bar{y}(x) \right)^2 \right] + E_{x,D} \left[\left(h(x,D) - \bar{h}(x) \right)^2 \right] + E_{x,y}[(\bar{y}(x) - y)^2]$$

Variance

Irreducible noise

Where

$$\bar{y}(x) = E_{y|x}[y] = \int y \, p(y|x) dy$$
 = Average observation

$$\bar{h}(x) = E_D[h(x, D)] = \int h(x, D) p(D) dD$$
 = Average model

Bias = "average" model error

Variance = sensitivity of model prediction to training data

Irreducible noise = inherent noise in the training observations; you can never beat this $(\bar{y}(x))$ is the best possible predictor of y)

Bias²

Decomposing expected loss

From previous slide:

$$E_{x,y,D}[(h(x,D)-y)^2] = E_x \left[\left(\bar{h}(x) - \bar{y}(x) \right)^2 \right] + E_{x,D} \left[\left(h(x,D) - \bar{h}(x) \right)^2 \right] + E_{x,y}[(\bar{y}(x)-y)^2]$$

Variance

Irreducible noise

Where

$$\bar{y}(x) = E_{y|x}[y] = \int y p(y|x) dy$$
 = Average observation

$$\bar{h}(x) = E_D[h(x,D)] = \int h(x,D) p(D) dD$$
 = Average model

Bias = "average" model error

Variance = sensitivity of model prediction to training data

Irreducible noise = inherent noise in the training observations; you can never beat this $(\bar{y}(x))$ is the best possible predictor of y)

Bias²

Typically, there is a bias-variance **tradeoff!**

Bias-variance tradeoff

Bias = "average" model error

Variance = sensitivity of model prediction to training data

Overfitting vs underfitting

Improving model performance

If you have high bias (or underfitting)

- Increase model complexity (e.g. number of free parameters)
- Or modify model architecture (shift location of hypothesis space)

If you have high variance (or overfitting)

- Increase the amount of training data
- Or **regularise** the neural network in some other way

Function space

Neural network, $NN(x; \theta)$, which minimises empirical loss $L(\theta)$

Ideal model

Overfit

Regularisation

- As well as changing the boundaries of the function space (hard constraint)
- We can **prefer** certain regions of the function space over others (soft constraint)

Ideal model

Regularised

Regularisation

Regularisation = **restrict** the space of possible functions a neural network can learn / **prefer** certain regions of the function space / impart a **prior** on the learning algorithm

Ways to regularise neural networks:

- Reduce model complexity
- Modify model architecture
- Increase amount of (or augment) training data
- Weight regularization / pruning
- Additional loss terms
- Dropout
- Early stopping

Regularised

Weight regularisation

Simple idea: prefer weights that are 0:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2 + \lambda \|\theta\|^2$$

Thus, the network learns to **prune** unnecessary connections

- Also known as ridge regression
- Other norms can be used (e.g. L1, L0 etc)

Weight regularisation

Simple idea: prefer weights that are 0:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2 + \lambda ||\theta||^2$$

Thus, the network learns to **prune** unnecessary connections

Probabilistic perspective:

Assume $\hat{p}(y|x,\theta)$ is a **normal** distribution:

$$\hat{p}(y|x,\theta) = \mathcal{N}(y; \mu = NN(x;\theta), \sigma = 1)$$

Then, assume each training datapoint is independently and identically distributed (iid), then the **data likelihood** can be written as:

$$\hat{p}(D|\theta) = p(x_1, y_1, \dots, x_N, y_N|\theta) = \prod_{i=1}^{N} \hat{p}(y_i|x_i, \theta)$$

Next, assume a **prior** on the parameters of the network:

$$\hat{p}(\theta_j) = \mathcal{N}(\theta_j; \mu = 0, \sigma = \sigma) \Rightarrow \hat{p}(\theta) = \prod_j \hat{p}(\theta_j)$$

Specifically, that they are iid normally distributed.

Then note that the parameter **posterior** distribution is given by Bayes rule:

$$\hat{p}(\theta|D) = \frac{\hat{p}(D|\theta)\hat{p}(\theta)}{\hat{p}(D)}$$

And use **maximum a posteriori estimation** (MAP) to estimate θ^* :

$$\theta^* = \max_{\theta} \hat{p}(\theta|D)$$

$$= \max_{\theta} \prod_{i}^{N} e^{-\frac{1}{2} \left(\frac{y_i - NN(x_i; \theta)}{1}\right)^2} \prod_{j} e^{-\frac{1}{2} \left(\frac{\theta_j - 0}{\sigma}\right)^2}$$

$$= \min_{\theta} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2 + \lambda \|\theta\|^2$$

Additional loss terms

Weight regularisation:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2 + \lambda \|\theta\|^2$$

Alternatively, we can use any **additional** arbitrary loss term as a regulariser:

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2 + R(D, \theta)$$

Examples include:

Structural similarity index measure (SSIM) loss (perceptual image quality measure)

SSIM
$$(y, \hat{y}) = \frac{(2\mu_y \mu_{\hat{y}} + c_1)(2\sigma_{y\hat{y}} + c_2)}{(\mu_y^2 + \mu_{\hat{y}}^2 + c_1)(\sigma_y^2 + \sigma_{\hat{y}}^2 + c_2)}$$

Smoothness loss (e.g. in frequency domain)

$$L(\hat{y}) = w(\omega)FFT(\hat{y})$$

Feature space loss (e.g. using a pretrained CNN)

$$F(y, \hat{y}) = \|\text{CNN}(y)_{\text{hidden}} - \text{CNN}(\hat{y})_{\text{hidden}}\|^2$$

During training, randomly set some activations to zero

- During training, randomly set some activations to zero
- Typically drop neurons with probability = 50%
- Neural network cannot rely on any single node
- Individual neurons cannot rely on individual inputs

- During training, randomly set some activations to zero
- Typically drop neurons with probability = 50%
- Neural network cannot rely on any single node
- Individual neurons cannot rely on individual inputs

- During training, randomly set some activations to zero
- Typically drop neurons with probability = 50%
- Neural network cannot rely on any single node
- Individual neurons cannot rely on individual inputs
- Effectively trains an ensemble of models
- Samples from this ensemble can be used for uncertainty estimation of network's outputs

Early stopping

Related to the **spectral bias** of neural networks

Increase / augment training data

Task: digit classification

Training data: only 9 images! How to avoid overfitting?

Strategy 1: **augment** training data, eg by using;

- Rotations
- Crops & zooms
- Flips
- Added noise

Strategy 2: **pre-train** the network on an unsupervised task = **self-supervised learning**

E.g.

- Reconstruction
- Predicting missing data
- Patch location

5 min break

Lecture overview

- Challenges of function fitting
 - Overfitting / underfitting
 - Bias / variance
- Regularising deep neural networks
 - Architecture
 - Training data
 - Loss function
- Optimising deep neural networks
 - Stochastic gradient descent
 - Adam / higher-order
- State-of-the-art models
 - Transformers, ChatGPT

Another source of error...

Up until now, we have assumed that the learned neural network parameters **globally** minimise the empirical loss, i.e.

$$\theta^* = \min_{\theta} L(\theta)$$

But, in practice, finding the global minima is extremely hard

So, we must also consider the effect of **optimisation error** on the performance of neural networks

=> Even though a large enough neural network can represent any arbitrary function (universal approximation theorem), there is **no guarantee** finding this network is tractable!

All error sources

Neural network, $NN(x; \theta)$, which minimises expected loss $\mathcal{L}(\theta)$

Neural network, $NN(x; \theta)$, which minimises empirical loss $L(\theta)$

Trained neural network, $NN(x; \theta)$

Space of all possible functions that neural network can represent

$$\mathcal{E} = \mathcal{E}_{app} + \mathcal{E}_{est} + \mathcal{E}_{opt}$$

All error sources

Neural network, $NN(x; \theta)$, which minimises expected loss $\mathcal{L}(\theta)$

Neural network, $NN(x; \theta)$, which minimises empirical loss $L(\theta)$

Trained neural network, $NN(x; \theta)$

Space of all possible functions that neural network can represent

$$\mathcal{E} = \mathcal{E}_{app} + \mathcal{E}_{est} + \mathcal{E}_{opt}$$

Loss landscape

Li et al, Visualizing the Loss Landscape of Neural Nets, NeurIPS (2018)

2D visualization of the loss function

$$l(\alpha, \beta) = L(\theta^* + \alpha u + \beta v)$$

Where u and v are 2 randomly sampled directional vectors in the parameter space

Loss surface for ResNet-56 without skip connections trained on CIFAR-10 (natural images)

Loss function is very high dimensional and contains many **local minima**

Problem 1): Loss function is flat everywhere

I.e.

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

Why is this possible?

Consider the tanh activation function:

$$\sigma'(x) \to 0$$
 as $|x| \to \infty$

If |x| is large, derivative is zero, for any value of x!

A

This means we must **normalise** the inputs and outputs of the network (i.e., training data) between (approximately) [-1,1]

But, even with properly normalised inputs, the loss function can still be flat!

Consider the output of a **single neuron** with an identity activation function in a MLP:

$$y_j = \sum_{i}^{N_{\rm in}} w_{ji} x_i$$

Then imagine that the inputs (x_i) and weights (w_{ji}) are continuous random variables, such that y_i is also a random variable. Then

$$\operatorname{Var}(y_j) = \operatorname{Var}\left(\sum_{i}^{N_{\text{in}}} w_{ji} x_i\right)$$

Then assume 1) the mean of w_{ji} and x_i is zero, 2) w_{ji} and x_i are all independent, 3) variance is the same across all input elements i, and then by using basic properties of variance, it can be shown

$$Var(y) = N_{in}Var(w)Var(x)$$

Thus, the **variance** of each neuron's **output** depends on the **number of input neurons** and the variance of their weights

Consider training a MLP with 5 hidden layers, each with 100 hidden units and no activation function

- 1) Ensure the input to the MLP is normalized between [-1,1]
- 2) Initialise weights from normal distribution
- 3) Plot histogram of **output values of each hidden layer**:

 $Var(w) < \frac{1}{N_{in}} \Rightarrow Var(y)$ decreases exponentially with depth

$$Var(w) = \frac{1}{N_{in}} \Rightarrow Var(y)$$
 is approximately constant

$$Var(w) > \frac{1}{N_{in}} \Rightarrow Var(y)$$
 grows exponentially with depth

Source: https://intoli.com/blog/neural-network-initialization/

Consider training a MLP with 5 hidden layers, each with 100 hidden units and no activation function

- 1) Ensure the input to the MLP is normalized between [-1,1]
- 2) Initialise weights from normal distribution
- 3) Plot histogram of **output values of each hidden layer**:

$$Var(y) = N_{in}Var(w)Var(x)$$

If all output values \Rightarrow 0, gradient of loss also tends to zero

If all output values $\Rightarrow \infty$, the tanh activation function saturates \Rightarrow gradient of loss also tends to zero

Source: https://intoli.com/blog/neural-network-initialization/

Consider training a MLP with 5 hidden layers, each with 100 hidden units and no activation function

- 1) Ensure the input to the MLP is normalized between [-1,1]
- 2) Initialise weights from normal distribution
- 3) Plot histogram of **output values of each hidden layer**:

$$Var(y) = N_{in}Var(w)Var(x)$$

Weights Drawn from
$$N(\mu=0,\sigma=0.05)$$

$$Var(w) = \frac{1}{N_{in}} \Rightarrow LeCun initialisation$$

Weights Drawn from
$$N(\mu=0,\sigma=0.20)$$

O

-200

1

2

3

Hidden Laver

LeCun et al, Neural Networks: Tricks of the Trade, Springer (2012)

Source: https://intoli.com/blog/neural-network-initialization/

LeCun initialisation:

$$Var(w) = \frac{1}{N_{in}}$$

Next consider the evolution of the gradient of the loss function during backpropagation of a single layer:

$$y_{j} = \sum_{i}^{N_{in}} w_{ji} x_{i}$$
$$\frac{\partial L}{\partial x_{i}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x_{i}} = \frac{\partial L}{\partial y} (w_{0i}, \dots, w_{ji})^{T}$$

Then again assuming all elements are independent random variables with zero mean a similar result can be shown:

$$\operatorname{Var}\left(\frac{\partial L}{\partial x}\right) = N_{\text{out}} \operatorname{Var}(w) \operatorname{Var}\left(\frac{\partial L}{\partial y}\right)$$

This suggests for stable gradient flow

$$Var(w) = \frac{1}{N_{\text{out}}}$$

A good compromise between stable forward and gradient flow is the **harmonic mean**, i.e.

$$Var(w) = \frac{2}{N_{\rm in} + N_{\rm out}}$$

= Xavier (Glorot) initialization

Glorot et al, Understanding the difficulty of training deep feedforward neural networks, AISTATS (2010)

Batch normalisation

Idea: insert extra layers that **dynamically** normalize the outputs of each hidden layer, by using statistics from the **batch** of training data

loffe et al, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, PMLR (2015)

$$y(x; \gamma, \beta) = \gamma \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

Where

$$\mu_B = \frac{1}{B} \sum_{i}^{B} x_i, \quad \sigma_B^2 = \frac{1}{B} \sum_{i}^{B} (x_i - \mu_B)^2$$

And γ and β are learnable vectors

- Allows network to achieve good results over wide range of initialization strategies
- Is also considered a regularisation strategy
- Must be careful to fix batch norm parameters during test-time inference (keep running estimates of μ_B , σ_B^2)

Residual networks (ResNets)

Idea: each layer learns a residual correction to its input

Aka: **skip connections**

He et al, Deep Residual Learning for Image Recognition, CVPR (2015)

$$y(x; \theta) = x + f(x; \theta)$$

Consider backpropagating through this residual layer:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial L}{\partial y} \left(\mathbf{1} + \frac{\partial f}{\partial x} \right)$$

Thus if f = 0, gradient flow is still preserved

- ResNets learn the "ideal" depth of a network; allows easy training of arbitrarily large numbers of layers (100+)
- Great for applications where input is like output (e.g. super resolution / segmentation)

- For later: ResNets have strong similarities with ODE solvers

Example residual networks

Gradient descent

Problem 2): Loss function has lots of local minima

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

- 1. Initialise weights randomly
- 2. Loop:
 - 1. Compute gradient, $\frac{\partial L(\theta)}{\partial \theta_j}$
 - 2. Update weights,

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial L(\theta)}{\partial \theta_j}$$

Gradient descent with large learning rate

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

- 1. Initialise weights randomly
- 2. Loop:
 - 1. Compute gradient, $\frac{\partial L(\theta)}{\partial \theta_j}$
 - 2. Update weights,

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial L(\theta)}{\partial \theta_i}$$

Gradient descent with large learning rate

- Can escape local minima (and global minima too!)
- Typically reduce learning rate with training step (e.g. exponentially decaying)

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

- 1. Initialise weights randomly
- 2. Loop:
 - 1. Compute gradient, $\frac{\partial L(\theta)}{\partial \theta_j}$
 - 2. Update weights,

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial L(\theta)}{\partial \theta_j}$$

Gradient descent with adaptive learning rate

"Intelligent" learning rate

Can adapt learning rate based on

- How large gradient is
- Local curvature
- How fast learning is happening
- Values of weights
- .. many other ideas

(Mini-batch) stochastic gradient descent

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

- 1. Initialise weights randomly
- 2. Loop:
 - **1. Randomly** sample minibatch (subset) of *B* training points
 - 2. Compute **mini-batch** gradient, $\frac{\partial L_b(\theta)}{\partial \theta_i}$
 - 3. Update weights,

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial L_b(\theta)}{\partial \theta_i}$$

(Mini-batch) stochastic gradient descent

- Produces noisy (approximate) gradient estimates
- -@-
- Can escape local minima √
- Much more efficient gradient computation (batch size of 100s vs millions) √
- Widely used in practice

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

- 1. Initialise weights randomly
- 2. Loop:
 - **1. Randomly** sample minibatch (subset) of *B* training points
 - 2. Compute **mini-batch** gradient, $\frac{\partial L_b(\theta)}{\partial \theta_i}$
 - 3. Update weights,

$$\theta_j \leftarrow \theta_j - \gamma \frac{\partial L_b(\theta)}{\partial \theta_i}$$

Adam optimiser

Adaptive moment estimation

$$L(\theta) = \frac{1}{N} \sum_{i}^{N} (NN(x_i; \theta) - y_i)^2$$

Kingma et al, Adam: A Method for Stochastic Optimization, ICLR, (2015)

- 1. Initialise θ randomly, and $m_0 \leftarrow 0$ (first moment) $v_0 \leftarrow 0$ (second moment)
- 2. For t = 1 to ...:
 - 1. Compute gradient, $\frac{\partial L}{\partial \theta_{t-1}}$
 - 2. Update moments, $m_t \leftarrow \beta_1 m_{t-1} + (1 \beta_1) \frac{\partial L}{\partial \theta_{t-1}}$, $v_t \leftarrow \beta_2 v_{t-1} + (1 \beta_2) \left(\frac{\partial L}{\partial \theta_{t-1}}\right)^2$
 - 3. Apply bias correction, $\widehat{m}_t \leftarrow \frac{m_t}{1-\beta_1^t}$, $\widehat{v}_t \leftarrow \frac{v_t}{1-\beta_2^t}$
 - 4. Update weights,

$$\theta_t \leftarrow \theta_{t-1} - \gamma \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

Typically, $\beta_1 = 0.9$, $\beta_2 = 0.999$

Adam optimiser

Idea 1: keep some **momentum** when moving in parameter space

$$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \frac{\partial L}{\partial \theta_{t-1}}$$

 β_1 = "forgetting factor"

Essentially computes (exponentially-weighted) moving average of gradient

Idea 2: adapt the step size (per parameter) based on the magnitude of the gradient, again using some momentum

$$v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial \theta_{t-1}}\right)^2$$

"Normalises" step size

$$\theta_t \leftarrow \theta_{t-1} - \gamma \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

Note - the bias correction gives a more accurate estimate of the moving average (removes effect of initial value)

Adam optimiser 👳 Widely used in practice!

Higher-order optimisation

Make use of higher-order derivatives (e.g. curvature) of loss function to make bigger steps

Taylor approximation:

$$L(\theta) = L(a) + L'(a)(\theta - a) + \frac{1}{2}L''(a)(\theta - a)^2 + \dots$$

Newton's method:

Instead of following gradient, step towards the local **minima** of the 2nd order approximation

$$\theta \leftarrow \theta - \gamma \frac{L'(\theta)}{L''(\theta)}$$

For a multivariate function:

$$\theta \leftarrow \theta - \gamma \big(H(L(\theta))^{-1} \nabla L(\theta) \big)$$

Where $H(L(\theta))$ is the **Hessian** matrix

Higher-order optimisation

Make use of higher-order derivatives (e.g. curvature) of loss function to make bigger steps

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \big(H(L(\boldsymbol{\theta}))^{-1} \nabla L(\boldsymbol{\theta}) \big)$$

Note

- It is usually prohibitively expensive to compute the Hessian $(p \times p)$ and its inverse
- So most modern methods (e.g. L-BFGS) use approximations
- These are called quasi-Newton methods

ChatGPT

Training dataset: a sequence of tokens (e.g. all of Wikipedia)

$$D = \{x_1, \dots, x_n\}$$

Input to network: sub-sequence of *D* (e.g. single sentence)

$$\chi_{i-k}, \ldots, \chi_{i-1}$$

Output of network: probability of next token (use softmax output layer)

$$P(x_i|x_{i-k},...,x_{i-1},\theta) = NN(x_{i-k},...,x_{i-1},\theta)_{x_i}$$

Loss function: cross entropy loss (classification loss)

$$L(\theta) = \sum_{i}^{N} \log NN(x_{i-k}, \dots, x_{i-1}, \theta)_{x_i}$$

Note: to generate multiple tokens as output: feed predictions back to model as inputs

Note: can additionally do supervised learning on this pre-trained model

GPT – architecture (transformer)

Radford et al, Improving Language Understanding by Generative Pre-Training, ArXiv (2018)

GPT – architecture (transformer)

Radford et al, Improving Language Understanding by Generative Pre-Training, ArXiv (2018)

Key idea: **attention** layers Attention is a **sequence-to-sequence** operation:

Vaswani et al, Attention Is All You Need, NeurIPS (2017)

GPT – architecture (transformer)

Radford et al, Improving Language Understanding by Generative Pre-Training, ArXiv (2018)

Key idea: **attention** layers Attention is a **sequence-to-sequence** operation:

$$q_{i} = W_{q}x_{i}$$

$$k_{i} = W_{k}x_{i}$$

$$v_{i} = W_{v}x_{i}$$

$$Y = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Where $\sqrt{d_k}$ is added for gradient stability

Interested in implementing? See here e.g.:

https://github.com/karpathy/minGPT

Lecture summary

- Three sources of error:
 - approximation error (hypothesis space)
 - estimation error (training data)
 - optimisation error (optimiser)
- Reduce approximation error -> modify network architecture
- Reduce estimation error -> use regularisation
- Reduce optimisation error -> choose better initialisation / optimiser
- Many strategies exist for all of these

