SBML Model Report

Model name: "Wierschem2004 - Electrical bursting activity in Pancreatic Islets"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Ethan Choi¹ and Matthew Grant Roberts² at June 25th 2010 at 12:07 a. m. and last time modified at March 14th 2018 at 9:28 a. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	34	unit definitions	11
rules	14	initial assignments	0

Model Notes

This a model from the article:

Complex bursting in pancreatic islets: a potential glycolytic mechanism.

Wierschem K, Bertram R. $\underline{\text{J Theor Biol}}$ 2004 Jun 21;228(4):513-21 15178199 ,

Abstract:

¹The University of Auckland, mcho099@aucklanduni.ac.nz

 $^{^2} EMBL\text{-}EBI, \verb|mroberts@ebi.ac.uk|$

The electrical activity of insulin-secreting pancreatic islets of Langerhans ischaracterized by bursts of action potentials. Most often this bursting isperiodic, but in some cases it is modulated by an underlying slower rhythm. Wesuggest that the modulatory rhythm for this complex bursting pattern is due tooscillations in glycolysis, while the bursting itself is generated by some otherslow process. To demonstrate this hypothesis, we couple a minimal model ofglycolytic oscillations to a minimal model for activity-dependent bursting inislets. We show that the combined model can reproduce several complex burstingpatterns from mouse islets published in the literature, and we illustrate howthese complex oscillations are produced through the use of a fast/slow analysis.

This model was taken from the CellML repository and automatically converted to SBML.

The original model was: Wierschem K, Bertram R. () - version=1.0

The original CellML model was created by:

Ethan Choi

mcho099@aucklanduni.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of 15 unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit millisecond

Name millisecond

Definition ms

2.2 Unit per_millisecond

Name per_millisecond

Definition ms^{-1}

2.3 Unit millivolt

Name millivolt

Definition mV

2.4 Unit picosiemens

Name picosiemens

Definition pS

2.5 Unit per_litre

Name per_litre

Definition 1^{-1}

2.6 Unit micromolar

Name micromolar

Definition $\mu mol \cdot l^{-1}$

2.7 Unit femtoampere

Name femtoampere

Definition fA

2.8 Unit micromolar_per_fA_ms

Name micromolar_per_fA_ms

 $\textbf{Definition} \hspace{0.2cm} \mu mol \cdot l^{-1} \cdot fA^{-1} \cdot ms^{-1}$

2.9 Unit micromolar_per_ms

Name micromolar_per_ms

Definition $\mu mol \cdot l^{-1} \cdot ms^{-1}$

2.10 Unit femtofarad

Name femtofarad

Definition fF

2.11 Unit time

Name time

Definition ms

2.12 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.13 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.14 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.15 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	Pancreatic Islet Cell		3	1		Z	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name Pancreatic Islet Cell

4 Parameters

This model contains 34 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
tau_c	tau_c		1200.000		✓
eta	eta		185.000		$ \overline{\mathbf{Z}} $
V	V		10.000		
k	k		20.000		
phi	phi		15.530		☑ ⊟ ⊟
ADP	ADP		0.086		
ATP	ATP		2.105		
C_m	C_m		5300.000		⊿ ⊟
$V_{\mathtt{membrane}}$	V		-67.018		
g_Ca_	g_Ca_		1200.000		
$V_{-}Ca$	V_Ca		25.000		$ \overline{\mathbf{Z}} $
v_m	v_m		-20.000		$ \overline{\mathscr{L}} $
s_m	s_m		12.000		
$\mathtt{m}_{-}\mathtt{infinity}$	m_{-} infinity		0.019		
$I_{\sf Ca}$	I_Ca		-2152.127		
g_K	$g_{-}K_{-}$		3000.000		
V_K	$V_{-}K$		-75.000		
I_K	$I_{-}K$		2.634		
$g_KCa_$	g_KCa_		300.000		
k_D	k_D		0.300		
omega	omega		0.343		⊿ ⊟ ⊟
I_KCa	I_KCa		821.482		
g_KATP	$g_KATP_$		350.000		
I_KATP	$I_{-}KATP$		1327.363		$ \mathbf{Z} $
tau_n	tau_n		16.000		\square
v_n	v_n		-16.000		$\overline{\checkmark}$
s_n	s_n		5.600		$\overline{\mathbf{Z}}$
$\mathtt{n}_{-}\mathtt{infinity}$	n_infinity	1	.10503026085849 · 10	0^{-4}	
n	n		1.1 · 10	0^{-4}	⊉ ⊟ ⊟
С	c		0.157		
f	f		0.001		
alpha	alpha		2.25 · 10	0^{-6}	$\overline{\mathbf{Z}}$
k_c	k_c		0.100		
J_{mem}	J_mem	-1	.08237146404908 · 10	0^{-5}	

5 Rules

This is an overview of 14 rules.

5.1 Rule I_KATP

Rule I_KATP is an assignment rule for parameter I_KATP:

$$I_{-}KATP = \frac{(V_{-}membrane - V_{-}K) \cdot g_{-}KATP_{-}}{ATP}$$
 (1)

5.2 Rule n_infinity

Rule n_infinity is an assignment rule for parameter n_infinity:

$$n_{\text{infinity}} = \frac{1}{1 + \exp\left(\frac{v_{\text{-}}n - V_{\text{-}}membrane}{s_{\text{-}}n}\right)}$$
 (2)

5.3 Rule omega

Rule omega is an assignment rule for parameter omega:

$$omega = \frac{1}{1 + \frac{k.D}{c}}$$
 (3)

5.4 Rule phi

Rule phi is an assignment rule for parameter phi:

$$phi = ATP \cdot (1 + k \cdot ADP)^2 \tag{4}$$

5.5 Rule I_K

Rule I_K is an assignment rule for parameter I_K:

$$I_{-}K = g_{-}K_{-} \cdot n \cdot (V_{-}membrane - V_{-}K)$$
(5)

5.6 Rule I_KCa

Rule I_KCa is an assignment rule for parameter I_KCa:

$$I_{KCa} = g_{KCa} \cdot omega \cdot (V_{membrane} - V_{K})$$
(6)

5.7 Rule m_infinity

Rule m_infinity is an assignment rule for parameter m_infinity:

$$m_infinity = \frac{1}{1 + exp\left(\frac{v_m - V_membrane}{s_m}\right)}$$
 (7)

5.8 Rule I_Ca

Rule I_Ca is an assignment rule for parameter I_Ca:

$$I_{-}Ca = g_{-}Ca_{-} \cdot m_{-}infinity \cdot (V_{-}membrane - V_{-}Ca)$$
(8)

5.9 Rule J_mem

Rule J_mem is an assignment rule for parameter J_mem:

$$J_{-}mem = f \cdot (alpha \cdot I_{-}Ca + k_{-}c \cdot c)$$
(9)

5.10 Rule ADP

Rule ADP is a rate rule for parameter ADP:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADP} = \frac{\mathrm{phi} - \mathrm{eta} \cdot \mathrm{ADP}}{1000 \cdot \mathrm{tau_c}} \tag{10}$$

5.11 Rule ATP

Rule ATP is a rate rule for parameter ATP:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATP} = \frac{\mathrm{v} - \mathrm{phi}}{1000 \cdot \mathrm{tau_c}} \tag{11}$$

5.12 Rule V_membrane

Rule V_membrane is a rate rule for parameter V_membrane:

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{-} \text{membrane} = \frac{(I_{-} Ca + I_{-} K + I_{-} K Ca + I_{-} KATP)}{C_{-} m}$$
(12)

5.13 Rule n

Rule n is a rate rule for parameter n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \frac{\text{n_infinity} - \mathbf{n}}{\text{tau_n}} \tag{13}$$

5.14 Rule c

Rule c is a rate rule for parameter c:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{c} = \mathbf{J}_{-}\mathbf{mem} \tag{14}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany