

Project Report

Self-Organized Criticality in Sandpile Models

Xinyi Chen Artemi Egorov Pegah Kassraian Fard

> Zurich April 2012

Abstract

blah blah

Acknowledgements

blah blah

Contents

Contents

A	bstra	nct	i
A	ckno	wledgements	iii
1	to o	lo list	1
	1.1	Individual contributions	1
	1.2	Introduction and Motivations	1
	1.3	Description of the Model	1
	1.4	Implementation	1
	1.5	Simulation Results and Discussion	1
	1.6	Summary and Outlook	1
\mathbf{R}	efere	nces	2
٨	ъπл	TLAR-Code	5

Chapter 1

to do list

- 1.1 Individual contributions
- 1.2 Introduction and Motivations
- 1.3 Description of the Model
- 1.4 Implementation
- 1.5 Simulation Results and Discussion
- 1.6 Summary and Outlook

Bibliography 3

Bibliography

- [1] Alessandro Vespignani Alain Barrat and Stefano Zapperi. Fluctuations and correlations in sandpile models. September 1999.
- [2] Michael Creutz. Cellular automata and self-organized criticality. November 1996.
- [3] Alessandro Vespignani and Alessandro Vespignani. How self-organized criticality works: A unified mean-field picture. June 1998.

Appendix A

MATLAB-Code