let w be 3D world

WSR

The world has two kind of models:

- اي س ثاب
- 1. Stationary model described on world coordinate frame
 - 2. Movable model have space of possible transformations, usually composed of rigid body. To an be more

stationary = any thing it's stable like table, a chair

Movable = it's has possible transformation , rigid body can be move but can't minimize (cannot deformation) ما اقدر اعدل شکله

Models:-

- 1 rigid Body
 - 2 liquid
 - (3) elastic
 - 9 gas

Object modeling choices:

2D ____ 2. Boundary representation

When we make 3D models, what is the best to choose?

triangle as primitive , because it's a small polygonal and gives flexibility

transformation in it's not easy 1000 Tringles each trangles has (x,y,z), when moving need to be calculated

Why we do transformation?

- 1. Movable models
- 2. Perception of stationarity

kind of

Transformation:

- Translation
- Rotation
- 3. Scaling ③
- 4. Shear

1. Translation †

 $P = X \text{ new} = X \text{ old} + T_X$ $P = Y \text{ new} = Y \text{ old} + T_X$ $P = Z \text{ new} = Z \text{ old} + T_X$

- 2D => 2 x, y moves
- 30=> 3 x, y, 2 moves

3. Scaling

Shear

Combining

عشرة انواع من transformation ما يهم التفاصيل Gives one matrix تحسب final distance final location

Homogenous

عندنا مجموعه من transformation معقده جمع ضرب جمع ضرب اعطتنا uniform matrix حسبت الموقع الاخير له بإلغاء الجمع وصيار ضرب فقط

• Is matrix multiplication associative? $- (A.B).C \stackrel{?}{=} A.(B.C)$

• Is matrix multiplication commutative? $-A \cdot B \stackrel{?}{=} B \cdot A$

General Pivot-Point Rotation

- Operation:-
 - 1. Translate (pivot point is moved to origin)
 - 2. Rotate about origin
 - 3. Translate (pivot point is returned to original position)

- We often need to transform points from one coordinate system to another:
 - 1. We might model an object in non-Cartesian space (polar)
 - 2. Objects may be described in their own local system
 - 3. Other reasons: textures, display, etc

You can put in angwere