Homework 3

1a) Let a, b, c be integers such that

alc, blc and gcd(a,b)=1,

Show that ab C.

B) Show that occurs = 1 is necessary.

Find a, b, c such that alc and ble

but abx c

0 = 6 0 = 8 0 = 8 0 = 8

gd(a16)= 2

ab=48/24=C

Q) Let a= Mpai 6 = 17 g.a.i Pi, quare pines Since ged caro) = 1, Pi + 9; Hi, 5 since a/c and b/c, TP: Qi and TTQ. ai are in the prime factorization of C Herce ab/C.

No. Courter example.

$$0 = 3$$

Let 0-0(9)	lenote the order of	st 9 10 a gove.
Complete the	tables:	
In (Z121+)	1 (7/3, t) b (0/4, cb)	$ \begin{array}{c c} \hline & (Z_2 \times Z_{3,1} +) \\ \hline & (a,b) & (a,b) \\ \hline & (0,8) & (0,1) & (0,1) \end{array} $
		(1,0) (1,1) (1,2)
	001((9/6)) = 00	
Prove that the	is is the for	$\chi \parallel Q \in \mathbb{Z}_m$ and $b \in \mathbb{Z}_n$
where m an	d n are coprime	

Let d = od (4 b). d. (a16) = (0,0) d.a= 0 and d.b= 0 Here, ord (a) I d 0×(6))d I gal (oda), od(b)) = 1 thin oda, od(b) d Let e = od(d) od(b) e.(0,0) = (eq.eb) = (0,0)Heru, de Since eld and dle, d=e | qcd(ord(a), od(b)) = 1because gd(mn) = 1 and ooka)/m and ord(b)/n 2. prove the Extended Euclidean abouthon: For all integers a, b, there exists integers u, v such that au + bv = gcd(a, b)

3. a) Given integers 0, b. Show that if there exists integers u, v such that QU + PA = 7then acd carb) = 1 b) If there exists integers 44 such that author= e is it always tone that gcd (9,6) = 6 ? If no, provide a counterexample.

3. a) Given integers a, b. Show that if there exists integers u, v such that QU + PA = 7then gcd carb) = 1 b) It there exists integers 4 v such trut author= e is it always tone that gcd (916) = 6 ? If no, provide a counterexample. q + 6 = 6 7.1 + 1.(-1) = 6

gcd (916) = OCA (7,1) = 1

H. Find a value x that simultaneously solves the congruences or show that no such value x can exist.

a) x = 3 mod 7

a) $X \equiv 3 \mod 7$ $X \equiv 4 \mod 9$ b) $X \equiv 13 \mod 7$

X = 41 mod 97

c) $x = 7 \mod 9$ $x = 3 \mod 6$

4. Find a value x that simultaneously solves the congruences or show that no such value X can exist. X= 31 S F Loon E = X a) X = 4 mod 9 X = 13 mod 7/7 x= 5764 X = 41 mod 97 X = 7 med O X = 3 mod 6 We Exteded Euclidean Algorian to Frd Di, Do $M^1 M^2 + M^2 U^2 = J$ Then $X = X_1 M_2 M_2 + X_2 M_1 M_1$

 $X = \frac{1}{2} \text{ mod } 0$ $X = \frac{1}{2} \text{ mod } 0$

If x exists, then

$$X = 60 + 3$$

$$0 = 3(3q-2q')+4$$

$$4 = (2a' - 3a)3$$

3/ (29-39)3 but 3/4

SO, there con't be son ton