```
In [1]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.metrics import accuracy_score
          from sklearn.preprocessing import LabelEncoder
          from sklearn.model_selection import train_test_split
          from sklearn.linear_model import LogisticRegression
          from sklearn.naive bayes import GaussianNB
          from sklearn.ensemble import RandomForestClassifier
          import warnings
          warnings.simplefilter("ignore")
In [2]:
          dataset = pd.read csv("Heart Disease Prediction.csv")
In [3]:
          dataset.head()
                                                                                         Number
Out[3]:
                      Chest
                                             FBS
                                                    EKG Max Exercise
                                                                               ST Slope
                                                                                              of
            Age Sex
                       pain
                                Cholesterol
                                                                                                  Th
                                            over
                                                                                   of ST
                                                                                           vessels
                                                  results
                                                           HR
                                                                angina depression
                       type
                                             120
                                                                                            fluro
         0
             70
                                               0
                                                          109
                                                                     0
                                                                                      2
                   1
                         4
                            130
                                        322
                                                       2
                                                                              2.4
                                                                                               3
                                                                                      2
         1
             67
                   0
                         3 115
                                        564
                                               \cap
                                                       2
                                                          160
                                                                     0
                                                                               1.6
                                                                                               0
         2
             57
                   1
                         2
                            124
                                        261
                                               0
                                                       0
                                                          141
                                                                     0
                                                                              0.3
                                                                                      1
                                                                                               0
         3
                                                          105
                                                                     1
                                                                                      2
                                                                                               1
                   1
                                        263
                                                       0
                                                                              0.2
             64
                         4
                            128
                                               0
                                        269
                                                                              0.2
                                                                                               1
         4
             74
                   0
                         2 120
                                               0
                                                       2
                                                          121
                                                                     1
                                                                                       1
In [4]:
          dataset.shape
         (270, 14)
Out[4]:
In [5]:
          dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 270 entries, 0 to 269
         Data columns (total 14 columns):
          #
              Column
                                         Non-Null Count
                                                          Dtype
         - - -
          0
                                         270 non-null
                                                           int64
              Age
          1
                                         270 non-null
              Sex
                                                          int64
          2
                                         270 non-null
              Chest pain type
                                                          int64
          3
              BP
                                         270 non-null
                                                          int64
          4
              Cholesterol
                                         270 non-null
                                                          int64
          5
              FBS over 120
                                         270 non-null
                                                          int64
          6
              EKG results
                                         270 non-null
                                                           int64
          7
                                         270 non-null
              Max HR
                                                          int64
              Exercise angina
          8
                                         270 non-null
                                                          int64
          9
              ST depression
                                         270 non-null
                                                          float64
          10
              Slope of ST
                                         270 non-null
                                                          int64
                                         270 non-null
          11
              Number of vessels fluro
                                                          int64
          12
              Thallium
                                         270 non-null
                                                           int64
```

13 Heart Disease 270 non-null object

dtypes: float64(1), int64(12), object(1)

memory usage: 29.7+ KB

In [6]: dataset.describe()

Out[6]:

Max	EKG results	FBS over 120	Cholesterol	ВР	Chest pain type	Sex	Age	
270.000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	count
149.67	1.022222	0.148148	249.659259	131.344444	3.174074	0.677778	54.433333	mean
23.16	0.997891	0.355906	51.686237	17.861608	0.950090	0.468195	9.109067	std
71.000	0.000000	0.000000	126.000000	94.000000	1.000000	0.000000	29.000000	min
133.000	0.000000	0.000000	213.000000	120.000000	3.000000	0.000000	48.000000	25%
153.500	2.000000	0.000000	245.000000	130.000000	3.000000	1.000000	55.000000	50%
166.000	2.000000	0.000000	280.000000	140.000000	4.000000	1.000000	61.000000	75%
202.000	2.000000	1.000000	564.000000	200.000000	4.000000	1.000000	77.000000	max

```
In [7]:
```

dataset.isnull().sum()

Out[7]:

Age Sex 0 Chest pain type 0 ΒP 0 Cholesterol 0 FBS over 120 0 EKG results 0 Max HR 0 Exercise angina 0 ST depression 0 Slope of ST 0 Number of vessels fluro 0 Thallium 0 Heart Disease 0 dtype: int64

In [8]:

sns.countplot(x="Sex",data=dataset)

Out[8]:

<AxesSubplot:xlabel='Sex', ylabel='count'>

0

Out[11]:

In [11]: dataset.head()

Number **FBS** Chest **EKG Max Exercise** ST Slope of **BP Cholesterol** pain Age Sex over results HR angina depression of ST vessels type 120 fluro 0 70 109 0 2 3 1 4 130 322 0 2.4 1 67 3 115 564 2 160 0 2 0 0 0 1.6 2 57 1 2 124 261 0 141 0 0.3 1 0 3 64 1 4 128 263 0 105 1 0.2 2 1 1 74 0 2 120 269 0 2 121 0.2 1

Heart Disease 1 ----> Present

Heart Disease 0 ----> Absent

```
In [12]:     X = dataset.drop(columns="Heart Disease",axis=1)
     Y = dataset["Heart Disease"]
```

In [13]: X.head()

Out[13]: Number **FBS** Chest Slope **EKG Max Exercise** ST Th Age Sex pain BP Cholesterol over results HR angina depression of ST vessels type 120 fluro 70 4 130 322 0 2 109 0 2.4 2 3

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results		Exercise angina	ST depression	Slope of ST	Number of vessels fluro	Th
1	67	0	3	115	564	0	2	160	0	1.6	2	0	
2	57	1	2	124	261	0	0	141	0	0.3	1	0	
3	64	1	4	128	263	0	0	105	1	0.2	2	1	
4	74	0	2	120	269	0	2	121	1	0.2	1	1	

In [14]: Y.head()

Out[14]:

0 1

J (

3 6

4 (

Name: Heart Disease, dtype: int32

In [40]:

 $X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)$

In [41]:

X_train.head()

Out[41]:

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of . vessels fluro
5	65	1	4	120	177	0	0	140	0	0.4	1	0
22	43	1	4	115	303	0	0	181	0	1.2	2	0
196	58	0	4	100	248	0	2	122	0	1.0	2	0
110	55	0	4	180	327	0	1	117	1	3.4	2	0
12	44	1	3	140	235	0	2	180	0	0.0	1	0

In [42]:

X_test.head()

Out[42]:

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of . vessels fluro
64	63	1	1	145	233	1	2	150	0	2.3	3	0
135	46	0	3	142	177	0	2	160	1	1.4	3	0
153	64	0	4	130	303	0	0	122	0	2.0	2	2
189	70	1	3	160	269	0	0	112	1	2.9	2	1
253	51	1	3	110	175	0	0	123	0	0.6	1	0

```
In [43]:
          Y_train.head()
                 0
Out[43]:
          22
                 0
          196
                 0
          110
                 1
          12
                 0
         Name: Heart Disease, dtype: int32
In [44]:
          Y_test.head()
Out[44]:
          135
                 0
                 0
          153
          189
                 1
          253
         Name: Heart Disease, dtype: int32
In [45]:
          X.shape,X_train.shape,X_test.shape
          ((270, 13), (216, 13), (54, 13))
Out[45]:
In [46]:
          model = LogisticRegression()
In [47]:
          model.fit(X_train, Y_train)
Out[47]:
          ▼ LogisticRegression
         LogisticRegression()
In [48]:
          X_train_prediction = model.predict(X_train)
          X_train_accuracy = accuracy_score(X_train_prediction, Y_train)
In [49]:
          X_train_accuracy
          0.8842592592592593
Out[49]:
In [50]:
          X test prediction = model.predict(X test)
          X_test_accuracy = accuracy_score(X_test_prediction, Y_test)
In [51]:
          X_test_accuracy
          0.8333333333333334
Out[51]:
In [52]:
          model2 = GaussianNB()
In [53]:
          model2.fit(X_train, Y_train)
```

```
Out[53]:
         ▼ GaussianNB
         GaussianNB()
In [54]:
          X test prediction2 = model2.predict(X test)
          X_test_accuracy2 = accuracy_score(X_test_prediction2, Y_test)
In [55]:
          X test accuracy2
         0.7407407407407407
Out[55]:
In [56]:
          X train prediction2 = model2.predict(X train)
          X train accuracy2 = accuracy score(X train prediction2, Y train)
In [57]:
          X_train_accuracy2
         0.8796296296296297
Out[57]:
In [58]:
          model3 = RandomForestClassifier()
In [59]:
          model3.fit(X_train,Y_train)
Out[59]:
         ▼ RandomForestClassifier
         RandomForestClassifier()
In [60]:
          X_train_prediction3 = model3.predict(X_train)
          X_train_accuracy3 = accuracy_score(X_train_prediction3, Y_train)
In [61]:
          X_train_accuracy3
Out[61]:
In [62]:
          X_test_prediction3 = model3.predict(X_test)
          X_test_accuracy3 = accuracy_score(X_test_prediction3, Y_test)
In [63]:
          X_test_accuracy3
         0.8148148148148148
Out[63]:
In [66]:
          input_data = (32,0,0,120,150,0,0,10,0,2,0,2,2)
          input_data_as_numpy_array = np.asarray(input_data)
          input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
          prediction = model.predict(input_data_reshaped)
          prediction
```

```
if prediction[0]==0:
    print("The person does not have heart disease")
else:
    print("The person have heart disease")
```

The person have heart disease

In []: