Tableau virtuel interactif

Baptiste Saleil, Geoffrey Mélia, Julien Pagès, Kevin Bollini

Tuteur de projet: M. Puech

30 avril 2012

- Introduction
- 2 Analyse et Conception
- Bibliothèque
- Application
- Conclusion

Introduction

But du projet :

- Proposer un sujet en lien avec nos deux formations
- Concevoir une application utilisant les mouvements de l'utilisateur (sans souris)
- Développer une bibliothèque de détection d'objet dans une image
- Exploiter cette bibliothèque pour reconnaître les mouvements de l'utilisateur
- Pouvoir écrire ou dessiner à plusieurs sur un tableau virtuel

Vidéo de présentation

Plan

- Introduction
- Analyse et Conception
 - Choix de conceptions
 - Gestion de projet
 - Analyse
 - Planning
- Bibliothèque
 - Architecture
 - Comparatifs des méthodes de suivi
 - Fonctionnement
 - Calibration
 - Suivi
- 4 Application
 - Objectifs
 - Architecture
 - Fonctionnalités
 - Fonctionnement
 - Mise en production

- Introduction
- 2 Analyse et Conception
- Bibliothèque
- Application
- Conclusion

Choix de conceptions

Choix principaux

Découper le projet en deux parties distinctes :

- une bibliothèque de suivi d'objets réutilisable
- une application avec une interface naturelle exploitant cette bibliothèque

Gestion de projet

Méthodologie :

- Se renseigner, réaliser une architecture de qualité
- Répartir le travail en fonction des compétences et formations de chacun
- Développer rapidement un prototype
- Développement incrémental en ajoutant des fonctionnalités

Gestion de projet

Organisation:

- Réunions
- Deux sous-groupes
- Partage des tâches au sein des groupes
- Décisions communes (à quatre)

Collaboration:

- Gestionnaire de versions (Subversion)
- Partage de documents (Mail et Subversion)
- Discussions (Mails / Instantanées)
- Édition collaborative pour le travail à distance (Gobby)

Analyse

Objectifs

- Identifier les besoins et envies des utilisateurs
- Distinguer et classer les fonctionnalités de l'application
- Établir un schéma de conception dans le temps
- Faciliter le développement, avoir des buts concrets
- Produire une application réellement aboutie

Rétroplanning

Rétroplanning (Diagramme de gantt) :

- Introduction
- 2 Analyse et Conception
- Bibliothèque
- Application
- Conclusion

Bibliothèque de suivi d'objets : libtrack

Objectifs de la bibliothèque conçue

- Distinguer complètement le suivi d'objet de l'application
- Avoir une utilisation simple sans connaissance en traitement d'image
- Permettre la détection d'actions
- Proposer un maximum de solutions de suivi
- Évaluer et comparer ces solutions

Bibliothèque libtrack

Bibliothèque

Création d'une structure de données : Cursor inclure graphique de la structure + énum

Bibliothèque

Deux fonctions enveloppes :

- Cursor * calibration(IpIImage * source, CvPoint A, CvPoint B, TYPE-TRACK flag)
- int track(IpIImage * source, Cursor * oldCursor)

Comparatif Couleur/modèle

Comparatif Couleur/modèle

Couleur

Avantages

- Suivi rapide
- Diversité possible de curseurs

Faiblesses

- Sensibilité à l'environnement
- Dépendant de la qualité du dispositif d'acquisition

Comparatif Couleur/modèle

Couleur

Avantages

- Suivi rapide
- Diversité possible de curseurs

Faiblesses

- Sensibilité à l'environnement
- Dépendant de la qualité du dispositif d'acquisition

modèle

Avantages

- Suivi moins dépendant de la qualité de l'environnement
- Efficace sur des objets 'complexes'

Faiblesses

- Suivi lent
- Très sensible aux variations du curseur

Comparatif Simple/composante connexe

Comparatif Simple/composante connexe

Barycentre simple

Avantages

- Suivi rapide

Faiblesses

- Sensibilité aux parasites (fausses détections)
- Précision fortement dépendante de l'environnement

Comparatif Simple/composante connexe

Barycentre simple

Avantages

- Suivi rapide

Faiblesses

- Sensibilité aux parasites (fausses détections)
- Précision fortement dépendante de l'environnement

Barycentre composante connexe

Avantages

- Suivi plus précis
- Résistance aux parasites

Faiblesses

- Suivi plus lent
- Perte occasionnelle du curseur

Scénario type d'utilisation de la bibliothèque

La bibliothèque s'utilise en deux grandes étapes :

- Calibration, engendrant une struture Cursor
- Track, mettant à jour les informations de la structure

Calibration: Source d'images et TYPE_TRACK

Écran de sélection du Type_TRACK et de la source d'images

Calibration : Sélection du curseur

• Extrait la position de l'objet à suivre

Sélection de l'objet

Calibration couleur : Réglage du seuil

Modifie l'attribut "threshold" de la structure Cursor.

Écran de réglage du seuil

Calibration Forme : Extraction du modèle

Modifie l'attribut "mask" de la structure Cursor.

Écran de validation du modèle.

Suivi par couleur : Barycentre

Calcul du barycentre de l'image binaire

Suivi par Blob : Composantes connexes

Recherche et isolement de la composante connexe pertinante

Suivi par couleur/Blob : Détection d'action

• Détection d'action par approchement du curseur

Retour image de l'objet suivi

Suivi par modèle

• Recherche du template dans l'image

Localisation par recherche de modèle.

Bilan

Objectifs atteints

- Bibliothèque utilisable et proposant plusieurs solutions de suivi
- Détection d'action implémentée dans deux des trois solutions
- Utilisation simple sans connaissances en traitement d'images

Bilan

Objectifs atteints

- Bibliothèque utilisable et proposant plusieurs solutions de suivi
- Détection d'action implémentée dans deux des trois solutions
- Utilisation simple sans connaissances en traitement d'images

Difficultés

- Temps d'adaptation aux bibliothèques OpenCv et CvBlob volumineux
- Implémentation de la détection pour le suivi par modèle

Bilan

Objectifs atteints

- Bibliothèque utilisable et proposant plusieurs solutions de suivi
- Détection d'action implémentée dans deux des trois solutions
- Utilisation simple sans connaissances en traitement d'images

Difficultés

- Temps d'adaptation aux bibliothèques OpenCv et CvBlob volumineux
- Implémentation de la détection pour le suivi par modèle

Ouverture

- Diversifier et optimiser les méthodes de suivi
- Rajouter des fonctionnalités côté application

- Introduction
- 2 Analyse et Conception
- Bibliothèque
- 4 Application
- Conclusion

Objectifs

- Interface intuitive
- Modulable, Extensible
- Fonctionnement transparent mode local / mode réseau
- Séparer le traitement du rendu
- Etablir un protocole simple et rapide

Etalonnage

- Choix principaux
- Réglages

Etalonnage

- Choix principaux
- Réglages

Client

- Interface graphique
- Liens entre les modules

Etalonnage

- Choix principaux
- Réglages

Client

- Interface graphique
- Liens entre les modules

Tableau

- Dessin / Interface gestuelle
- Réseau

Etalonnage

- Choix principaux
- Réglages

Client

- Interface graphique
- Liens entre les modules

Tableau

- Dessin / Interface gestuelle
- Réseau

Serveur

- Communication entre clients
- Synchronisation du tableau entre les clients

Architecture - Classes

Fonctionnalités - Outils

- Couleur
- Gomme
- Taille
- Affichage

Fonctionnalités - Actions

- Sauvegarde du dessin
- Vider le tableau
- Mode plein écran

Fonctionnement - Interface intuitive

Menu

Interface gestuelle

Dessin

Mm

Fonctionnement - Etalonnage

Technique

- Interface "Suivant Précédent"
- Étalonnage obligatoire

Utilisation

- Choix webcam / Type de suivi
- Sélection de l'objet
- 8 Réglage de la tolérance
- Ohoix mode local / réseau

Fonctionnement - Local

- Étalonnage
- Détection de l'objet
- Dessin

Fonctionnement - Réseau

Répeter à chaque mouvement détecté

- Étalonnage
- Détection de l'obje
- Dessin

Mise en production

Pourquoi?

- Généralement oubliée
- Première expérience
- Application aboutie

Eléments

- Traduction
- Packaging (.deb)
- Documentation
- Portabilité
- Dépôt accessible
- Code propre

Ouverture

- Amélioration du réseau
- Amélioration des performances
- Possibilité de relancer l'étalonnage

- Introduction
- 2 Analyse et Conception
- Bibliothèque
- 4 Application
- Conclusion

Conclusion

Objectifs atteints

- Solution fonctionnelle
- Respect du cahier des charges
- Découverte (Technologies, gestion de projet...)

Conclusion

Objectifs atteints

- Solution fonctionnelle
- Respect du cahier des charges
- Découverte (Technologies, gestion de projet...)

Difficultés

- Collaboration : Développement incrémental qui oblige à beaucoup communiquer
- Formation : Traitement de l'image, Conception d'architectures
- Techniques : Architecture, Fuites de mémoire...

Conclusion

Objectifs atteints

- Solution fonctionnelle
- Respect du cahier des charges
- Découverte (Technologies, gestion de projet...)

Difficultés

- Collaboration : Développement incrémental qui oblige à beaucoup communiquer
- Formation : Traitement de l'image, Conception d'architectures
- Techniques : Architecture, Fuites de mémoire...

Ouverture

- Diversifier et optimiser les méthodes de suivi
- Rajouter des fonctionnalités côté application

Sources et bibliographie

- http://www.sciencedirect.com.www.ezp.biu-montpellier. fr/science/article/pii/S026288561100120X
- http://www.irit.fr/recherches/SAMOVA/pageAnalysis.html
- http://www.irit.fr/~Philippe.Joly/Teaching/L3SI/ti.html
- http://opencv.willowgarage.com/wiki/
- code.google.com/p/cvblob/

lien du projet :

http://code.google.com/p/dessin-realite-augmentee/