

kauno technologijos universitetas

KAUNAS UNIVERSITY OF TECHNOLOGY

INFORMATICS FACULTY

INTRODUCTION TO ARTIFICIAL INTELLIGENCE DATA ANALYSIS LAB WORK REPORT

Report author: Uysal Demirci

Lecturer: doc.dr. Germanas Budnikas

Kaunas, 2024

1. Select (create) a dataset to perform this and other laboratory works. Your choice must be approved by the tutor.

Selected Dataset: Guns

Link: https://vincentarelbundock.github.io/Rdatasets/csv/AER/Guns.csv

Description: Guns is a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 states), by year for 1977–1999.

Format: A data frame containing 1,173 observations on 13 variables.

state factor indicating state.

year factor indicating year.

violent violent crime rate (incidents per 100,000 members of the population).

murder murder rate (incidents per 100,000).

robbery robbery rate (incidents per 100,000).

prisoners incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year).

afam percent of state population that is African-American, ages 10 to 64.

cauc percent of state population that is Caucasian, ages 10 to 64.

male percent of state population that is male, ages 10 to 29.

population state population, in millions of people.

income real per capita personal income in the state (US dollars).

density population per square mile of land area, divided by 1,000.

law factor. Does the state have a shall carry law in effect in that year?

The columns have the following datatypes:

```
RangeIndex: 1173 entries, 0 to 1172
Data columns (total 13 columns):
                 Non-Null Count
     Column
    year
                 1173 non-null
                                  int64
     violent
                 1173 non-null
                                  float64
                                  float64
    murder
                 1172 non-null
                 1173 non-null
                                  float64
    robberv
     prisoners
                 1172 non-null
                                  float64
                 1172 non-null
                                  float64
     afam
    cauc
                 1173 non-null
                                  float64
     male
                 1172 non-null
                                  float64
8
     population
                 1173 non-null
                                  float64
     income
                 1173 non-null
                                  float64
 10
    density
                 1173 non-null
                                  float64
                 1173 non-null
 11
                                  object
    state
    law
                 1173 non-null
                                  object
dtypes: float64(10), int64(1), object(2)
memory usage: 119.3+ KB
```

2. For each numeric type attribute calculate:

- total number of values,
- percentage of missing values,
- cardinality,
- minimum (min) and maximum (max) values,
- 1st and 3rd quartiles,
- average,
- median,
- Standard deviation.

Total Values 1173 1173 1173 1173 1173	0.0 0.0 0.0 0.0	23 1101 184 947 436	Min 1977.0 47.0 0.2 6.4 19.0	q1 1982.0 283.1 3.7 71.1 114.0	Average 1988.000000 503.074680 7.665132 161.820205 226.579710	Median 1988.0 443.0 6.4 124.1 187.0	q3 1994.0 650.9 9.8 192.7 291.0	Max 1999.0 2921.8 80.6 1635.1 1913.0	Stand eviation 6.636079 334.277194 7.522710 170.509962 178.888094 4.885688
1173 1173 1173 1173 1173	0.0 0.0 0.0 0.0	1173 1173 1173 1170 1173	21.8 12.2 0.4 8554.9 0.0	59.9 14.7 1.2 11934.8 0.0	62.945432 16.081127 4.816341 13724.796066 0.352038	65.1 15.9 3.3 13401.5 0.1	69.2 17.5 5.7 15271.0 0.2	76.5 22.4 33.1 23646.7 11.1	9.761527 1.732143 5.252115 2554.542334 1.355472
	1173 1173 1173 1173 1173 1173 1173 1173	1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0 1173 0.0	1173 0.0 23 1173 0.0 1101 1173 0.0 184 1173 0.0 947 1173 0.0 436 1173 0.0 1173 1173 0.0 1173 1173 0.0 1173 1173 0.0 1173 1173 0.0 1173 1173 0.0 1170	1173 0.0 23 1977.0 1173 0.0 1101 47.0 1173 0.0 184 0.2 1173 0.0 947 6.4 1173 0.0 436 19.0 1173 0.0 1173 0.2 1173 0.0 1173 21.8 1173 0.0 1173 12.2 1173 0.0 1173 0.4 1173 0.0 1170 8554.9	1173 0.0 23 1977.0 1982.0 1173 0.0 1101 47.0 283.1 1173 0.0 184 0.2 3.7 1173 0.0 947 6.4 71.1 1173 0.0 436 19.0 114.0 1173 0.0 1173 0.2 2.2 1173 0.0 1173 21.8 59.9 1173 0.0 1173 12.2 14.7 1173 0.0 1173 0.4 1.2 1173 0.0 1170 8554.9 11934.8	1173 0.0 23 1977.0 1982.0 1988.000000 1173 0.0 1101 47.0 283.1 503.074680 1173 0.0 184 0.2 3.7 7.665132 1173 0.0 947 6.4 71.1 161.820205 1173 0.0 436 19.0 114.0 226.579710 1173 0.0 1173 0.2 2.2 5.336217 1173 0.0 1173 21.8 59.9 62.945432 1173 0.0 1173 12.2 14.7 16.081127 1173 0.0 1173 0.4 1.2 4.816341 1173 0.0 1170 8554.9 11934.8 13724.796066	1173 0.0 23 1977.0 1982.0 1988.000000 1988.0 1173 0.0 1101 47.0 283.1 503.074680 443.0 1173 0.0 184 0.2 3.7 7.665132 6.4 1173 0.0 947 6.4 71.1 161.820205 124.1 1173 0.0 436 19.0 114.0 226.579710 187.0 1173 0.0 1173 0.2 2.2 5.336217 4.0 1173 0.0 1173 21.8 59.9 62.945432 65.1 1173 0.0 1173 12.2 14.7 16.081127 15.9 1173 0.0 1173 0.4 1.2 4.816341 3.3 1173 0.0 1170 8554.9 11934.8 13724.796066 13401.5	1173 0.0 23 1977.0 1982.0 1988.000000 1988.0 1994.0 1173 0.0 1101 47.0 283.1 503.074680 443.0 650.9 1173 0.0 184 0.2 3.7 7.665132 6.4 9.8 1173 0.0 947 6.4 71.1 161.820205 124.1 192.7 1173 0.0 436 19.0 114.0 226.579710 187.0 291.0 1173 0.0 1173 0.2 2.2 5.336217 4.0 6.9 1173 0.0 1173 21.8 59.9 62.945432 65.1 69.2 1173 0.0 1173 12.2 14.7 16.081127 15.9 17.5 1173 0.0 1173 0.4 1.2 4.816341 3.3 5.7 1173 0.0 1170 8554.9 11934.8 13724.796066 13401.5 15271.0	1173 0.0 23 1977.0 1982.0 1988.000000 1988.0 1994.0 1999.0 1173 0.0 1101 47.0 283.1 503.074680 443.0 650.9 2921.8 1173 0.0 184 0.2 3.7 7.665132 6.4 9.8 80.6 1173 0.0 947 6.4 71.1 161.820205 124.1 192.7 1635.1 1173 0.0 436 19.0 114.0 226.579710 187.0 291.0 1913.0 1173 0.0 1173 0.2 2.2 5.336217 4.0 6.9 27.0 1173 0.0 1173 21.8 59.9 62.945432 65.1 69.2 76.5 1173 0.0 1173 12.2 14.7 16.081127 15.9 17.5 22.4 1173 0.0 1173 0.4 1.2 4.816341 3.3 5.7 33.1 1173 0.0 1170 8554.9 11934.8 13724.796066 13401.5 15271.0 23

3. For each *category* type attribute calculate:

- total number of values,
- percentage of missing values,
- cardinality,
- mode,
- The frequency of the mode
- Percentage value of the mode
- Second mode value (mode 2),
- Frequency value for Mode 2,
- Percentage of Mode 2.

Attribute	Total Values	perMiss	Cardinality	Mode1	freqMode1	percMode1	Mode2	freqMode2	percMode2
state	1173	0.0	51	Alabama	23	2.0	Pennsylvania	23	2.0
law	1173	0.0	2	no	888	75.7	yes	285	24.3

4. Draw histograms of attributes. Provide descriptions of the distribution (eg, normal, exponential, etc.) and what conclusions can be drawn from it.

5. Identify data quality problems: missing values, cardinality problems, outliers. Provide a plan for resolving these issues, which will be implemented programmatically (e.g., missing values for a categorical attribute based on the attribute estimate of the mode, extreme values being removed or corrected).

There are no values missing. So there is to be done.

There are some outliers that should be removed, like I marked in the histograms above.

For histogram of robbery, I have removed the values higher than 600.

For histogram of prisoners, I have removed the values higher than 800.

In histogram of density, I made sure that only values up to 1 are shown on the graph.

After the all problems solved, the three histogram look like this:

6. Establish relationships between attributes using visualization techniques

- For numeric type attributes: Using a scatter plot type graph, provide multiple (2-3) examples with strong linear attribute dependency (direct or inverse correlation) and multiple examples with non-correlated (weakly correlated) attributes. Comment on results.
- Provide an SPLOM diagram (Scatter Plot Matrix).

SPLOM-Diagram:

For categorical attributes: Using the bar plot type diagram, give some (2-3) examples of attribute frequency and comment on the results.

Bar I	Plot					Legend	Comment				
				Bar Plot of law		Yes The state have a shall carry law in effect in that year	Most of states don't have a shall carry law in effect in that				
800 -						No The state doesn't have					
- 000 - 004 - 004						a shall carry law in effect in that year					
nb ₉ . 400 -											
200 -											
0 -	1	Š	2	Categories	yes						

Provide some (2-3) examples of histograms and box plot diagrams depicting relationships between categorical and numeric type variables.

In randomly selected 5 states, we do not observe the same murder rates. In some states, the murder rate is low.

7. Calculate the covariance and correlation values between continuous attributes and graphically represent the correlation matrix. Comments on the results.

Covariance:

	year	violent	murder	robbery	prisoners	afam	cauc	male	population	income	density
year	44.037543	269.410666	-1.648038	-16.026195	598.374573	2.224371	-2.167240	-9.952384	2.068891	8.903810e+03	-0.035582
violent	269.410666	111741.242285	2078.396676	51701.224138	42017.808974	930.563504	-1869.791449	-98.228168	559.997428	3.483899e+05	301.189549
murder	-1.648038	2078.396676	56.591164	1023.086755	954.936442	22.119521	-45.188434	0.195185	3.947945	4.238381e+03	7.633264
robbery	-16.026195	51701.224138	1023.086755	29073.647091	17290.168311	484.175552	<u>-972.351040</u>	-25.410953	284.058047	1.806978e+05	180.698534
prisoners	598.374573	42017.808974	954.936442	17290.168311	32000.950339	463.893547	-920.445589	-138.296096	89.576886	2.108747e+05	135.620943
afam	2.224371	930.563504	22.119521	484.175552	463.893547	23.869943	-46.832289	0.137018	1.490237	3.278608e+03	3.597587
cauc	-2.167240	-1869.791449	-45.188434	-972.351040	-920.445589	-46.832289	95.287415	-0.213084		-4.766903e+03	-7.344970
male	-9.952384	-98.228168	0.195185	-25.410953	-138.296096	0.137018	-0.213084	3.000320	-0.887028	-2.335674e+03	-0.149595
population	2.068891	559.997428	3.947945	284.058047	89.576886	1.490237	-3.354915	-0.887028	27.584713	2.887304e+03	-0.555442
income	8903.809619	348389.902668	4238.380999	180697.756667	210874.686493	3278.607806	-4766.902749	-2335.674313	2887.304419	6.525687e+06	1188.658447
density	-0.035582	301.189549	7.633264	180.698534	135.620943	3.597587	-7.344970	-0.149595	-0.555442	1.188658e+03	1.837304

Correlation:

	year	violent	murder	robbery	prisoners	afam	cauc	male	population	income	density
year	1.000000	0.121450	-0.033013	-0.014163	0.504058	0.068607	-0.033456	-0.865828	0.059360	0.525232	-0.003956
violent	0.121450	1.000000	0.826509	0.907077	0.702660	0.569788	-0.573019	-0.169647	0.318966	0.407986	0.664726
murder	-0.033013	0.826509	1.000000	0.797606	0.709608	0.601833	-0.615368	0.014979	0.099922	0.220553	0.748592
robbery	-0.014163	0.907077	0.797606	1.000000	0.566850	0.581202	-0.584192	-0.086037	0.317193	0.414849	0.781834
prisoners	0.504058	0.702660	0.709608	0.566850	1.000000	0.530776	-0.527107	-0.446318	0.095341	0.461456	0.559313
afam	0.068607	0.569788	0.601833	0.581202	0.530776	1.000000	-0.981978	0.016191	0.058076	0.262694	0.543244
cauc	-0.033456	-0.573019	-0.615368	-0.584192	-0.527107	-0.981978	1.000000	-0.012602	-0.065438	-0.191164	-0.555113
male	-0.865828	-0.169647	0.014979	-0.086037	-0.446318	0.016191	-0.012602	1.000000	-0.097503	-0.527856	-0.063715
population	0.059360	0.318966	0.099922	0.317193	0.095341	0.058076	-0.065438	-0.097503	1.000000	0.215201	-0.078022
income	0.525232	0.407986	0.220553	0.414849	0.461456	0.262694	-0.191164	-0.527856	0.215201	1.000000	0.343284
density	-0.003956	0.664726	0.748592	0.781834	0.559313	0.543244	-0.555113	-0.063715	-0.078022	0.343284	1.000000

8. Perform data normalization.

I converted all values in each column to values between 0 and 1.

	year	violent	murder	 population	income	density
count	1173.000000	1173.000000	1173.000000	 1173.000000	1173.000000	1173.000000
mean	0.500000	0.158646	0.092850	 0.134797	0.342564	0.031647
std	0.301640	0.116278	0.093566	 0.160407	0.169267	0.122099
min	0.000000	0.000000	0.000000	 0.000000	0.000000	0.000000
25%	0.227273	0.082127	0.043532	 0.023974	0.223954	0.002811
50%	0.500000	0.137749	0.077114	 0.087611	0.321145	0.007284
75%	0.772727	0.210067	0.119403	 0.161346	0.445017	0.015945
max	1.000000	1.000000	1.000000	 1.000000	1.000000	1.000000

9. Convert categorical variables to numeric type variables.

I converted to categorical 'law' variable to numeric using 1 for yes and 0 for no. For to convert categorical 'state' attributes to numeric, I gave a number to each state from starting 1.

year	violent	murder	robbery	prisoners	afam	cauc	male	population	income	density	state	law
1985	208.5	5.8	20.9	121	2.161607	67.42729	15.96853	0.822305	11019.40	0.005656	27	0
1984	211.5	1.8	71.1	52	1.411142	69.76175	17.01439	4.157698	13670.54	0.052267	24	0
1996	531.5	4.2	235.8	340	7.295498	58.40384	12.88328	8.009624	19554.82	1.079610	31	0
1997	623.7	8.2	165.7	479	4.313578	64.03395	14.37867	4.552207	14146.38	0.040057	3	1
1979	446.1	10.7	77.2	223	8.260472	57.66654	18.47252	5.823493	10236.49	0.119339	34	0
1982	623.7	18.5	133.8	170	8.149489	62.89593	20.32379	0.449611	18967.13	0.000788	2	0
1979	1608.7	27.4	1054.9	383	25.861250	22.06764	17.92189	0.650015	15552.99	10.655980	9	0
1990	919.0	11.5	363.8	323	10.346060	54.47374	14.95992	4.797431	17543.53	0.490786	21	0
1989	137.2	3.2	24.0	100	0.593634	71.46689	14.98429	1.219944	13559.46	0.039359	20	1
1997	218.7	4.1	43.1	149	1.370906	72.64451	13.90547	1.815588	12040.57	0.075376	49	1