Fracciones Continuas Introducción y k-convergencia

Guillermo Furlan Estrada

Universidad del Valle de Guatemala Licenciatura en Matemáticas Aplicadas

Funciones Continuas

- Contexto
- Definición Fracción Continua
- 3 Fracción continua k-convergente
- 4 Referencias

- Contexto
- 2 Definición Fracción Continua
- 3 Fracción continua k-convergente
- 4 Referencias

Contexto

Figura: Rafael Bombelli

- Contexto
- 2 Definición Fracción Continua
- 3 Fracción continua k-convergente
- 4 Referencias

Fracciones Continuas

Una fracción continua es aquella fracción que tenga la siguiente forma

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{1}}}}} \cdot \frac{1}{a_{3} + \frac{1}{a_{n-1} + \frac{1}{a_{n}}}}$$

Donde $a_0, a_1, ..., a_n$ son números reales, y la notación es $[a_0, ..., a_n]$

Teorema 1

Teorema: Cualquier número racional puede ser representado como una fracción continua finita.

Prueba:

Sean a, b números enteros tal que b > 0 aplicando el algoritmo de Euclides

$$a = ba_0 + r_1 \qquad 0 < r_1 < b$$

$$b = r_1a_1 + r_2 \qquad 0 < r_2 < r_1$$

$$r_1 = r_2a_2 + r_3 \qquad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{n-2} = r_{n-1}a_{n-1} + r_n \qquad 0 < r_n < r_{n-1}$$

$$r_{n-1} = r_na_n + 0$$

Dado que los residuos son enteros positivos, se puede reescribir las expresiones del algoritmo

$$\frac{a}{b} = a_0 + \frac{r_1}{b} = a_0 + \frac{1}{\frac{b}{r_1}}$$

$$\frac{b}{r_1} = a_1 + \frac{r_2}{r_1} = a_1 + \frac{1}{\frac{r_1}{r_2}}$$

$$\frac{r_1}{r_2} = a_2 + \frac{r_3}{r_2} = a_2 + \frac{1}{\frac{r_2}{r_3}}$$

$$\vdots$$

Usando la expresión anterior de b/r_1

$$\frac{a}{b} = a_0 + \frac{1}{\frac{b}{r_1}} = a_0 + \frac{1}{a_1 + \frac{1}{\frac{r_1}{r_2}}}$$

Repitiendo este procedimiento con las ecuaciones se obtiene

$$a_{1} = a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \dots}}}$$

$$a_{1} + \frac{1}{a_{n-1} + \frac{1}{a_{n}}}$$

Ejemplo

Expresar 19/51 como fracción continua

$$51 = 2 \cdot 19 + 13$$
 or $51/19 = 2 + 13/19$
 $19 = 1 \cdot 13 + 6$ or $19/13 = 1 + 6/13$
 $13 = 2 \cdot 6 + 1$ or $13/6 = 2 + 1/6$
 $6 = 6 \cdot 1 + 0$ or $6/6 = 1$

$$\frac{19}{51} = \frac{1}{\frac{51}{19}} = \frac{1}{2 + \frac{13}{19}}$$

$$= \frac{1}{2 + \frac{1}{\frac{19}{13}}}$$

$$= \frac{1}{2 + \frac{1}{1 + \frac{6}{13}}}$$

$$= \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{13}{6}}}}$$

$$= \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2}}}}$$

- Contexto
- 2 Definición Fracción Continua
- 3 Fracción continua k-convergente
- 4 Referencias

fracción continua k-convergente

Dada una fracción continua $[a_0, a_1, ..., a_k, ..., a_n]$ la que se froma de tomar los primeros k elementos se llama la fracción k-convergente y se denota

$$C_k = [a_0, a_1, ..., a_k] \ 1 < k < n$$

Nota:

Cuando k < n entonces

$$C_{k+1} = [a_0, ..., a_{k-1}, a_k + \frac{1}{a_{k+1}}]$$

valores p_k, q_k

Defínanse los números p_k , q_K de la siguiente forma:

$$p_0 = a_0$$
 $q_0 = 1$ $p_1 = a_1 * a_0 + 1$ $q_1 = a_1$ $p_k = a_k p_{k-1} + p_{k-2}$ $q_k = a_k q_{k-1} + q_{k-2}$

Teorema

Teorema: La fracción k-convergente de una fracción continua simple $[a_0, ..., a_n]$ tiene el valor

$$c_k = \frac{p_k}{q_k}$$

Prueba: Notese que el teorema se cumple para C_2 . supóngase por fines de inducción que para k=m el teorema se cumple entonces

$$C_m = \frac{p_m}{q_m} = \frac{a_m p_{m-1} + p_{m-2}}{a_m q_{m-1} + q_{m-2}}$$

Nótese que los enteros p_{m-1} , q_{m-1} , p_{m-2} , q_{m-2} no dependen de a_m entonces, la expresión anterior no varía para la fracción $[a_0,...,a_{m-1},a_m+\frac{1}{a_{m+1}}]$ y por la nota anterior

$$C_{m+1} = rac{\left(a_m + rac{1}{a_{m+1}}\right)p_{m-1} + p_{m-2}}{\left(a_m + rac{1}{a_{m+1}}\right)q_{m-1} + q_{m-2}} =$$

$$\frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}p_m + p_{m-1}}{a_{m+1}q_m + q_{m-1}}$$

por lo que para k=m+1 el teorema se cumple por lo que por inducción el teorema queda demostrado.

Ejemplo

Recordando 19/51 = [0,2,1,2,6] entonces

$$p_0 = 0$$
 $q_0 = 1$
 $p_1 = 0 * 2 + 1 = 1$ $q_1 = 2$
 $p_2 = 1 * 1 + 0 = 1$ $q_2 = 1 * 2 + 1 = 3$
 $p_3 = 2 * 1 + 1 = 3$ $q_3 = 2 * 3 + 2 = 8$
 $p_4 = 6 * 3 + 1 = 19$ $q_4 = 6 * 8 + 3 = 51$

Notación alternativa

Una forma diferente de definir los números p_k , q_k es

$$p_{-2} = 0, p_{-1} = 1$$
 $q_{-2} = 1, q_{-1} = 0$

entonces queda

$$p_k = a_K p_{k-1} + p_{k-2}$$
 $q_k = a_k q_{k-1} + q_{k-2}$ $k = 0, 1, 2, ...$

Dado [2,3,1,4,2]

k	-2	-1	0	1	2	3	4
a_k			2	3	1	4	2
p_k	0	1	2	7	9	43	95
q_k	1	0	1	3	4	19	42
C_k			2/1	7/3	9/4	43/19	95/42

Ejemplo

Considérese la fracción continua [0,1,1,...,1] es aquella que todo denominador es q, observese sus primeras convergencias

$$c_0 = 0/1$$
, $c_1 = 1/1$, $c_2 = 1/2$, $c_3 = 2/3$, $c_4 = 3/5$

usando el teorema anterior se tiene que el numerador de la k-convergencia es

$$p_k = 1 * p_{k-1} + p_{k-2} = U_k$$

y el denominador

$$q_k = 1 * q_{k-1} + q_{k-2} = p_k + p_{k-1} = U_{k+1}$$

donde U_k es el k número de fibonacci.

- Fracción continua k-convergente
- Referencias

Referencias

David M.Burton *Elementary Number Theory*. 7ma edición , 2011.