Decentralized sequential hypothesis-testing with common observations

Aditya Mahajan

McGill University

Allerton Conference Oct 2, 2013

Decentralized sequential hypothesis testing

- Setup ► Two (or more) sensors with correlated observations
 - ▶ Have coupled stopping cost when sequentially testing a hypothesis.

Objective
$$\min_{(\tau^1, \tau^2, u^1, u^2)} \mathbb{E}[\tau^1 c^1 + \tau^2 c^2 + \ell(u^1, u^2, H)]$$

Well posed
$$\blacktriangleright \ell(u^1, u^2, h) \neq \ell_1(u^1, h) + \ell_2(u^2, h)$$

$$\blacktriangleright \ell(n, n, n) \leqslant \left\{ \begin{cases} \ell(n, m, n) \\ \ell(m, n, n) \end{cases} \right\} \leqslant \ell(m, m, n)$$

- Motivation ► Sensor networks
 - ▶ Cognitive radio

(Selected) variations of sequential hypothesis testing

- . Sequential hypothesis testing
 - ▶ Wald (1945), Arrow, Blackwell, Girshick (1949)
 - ▶ Two threshold rule (equivalent to SLRT) is optimal

- . Multiple sensors making individual decisions
- ► Teneketzis, Ho (1987); LaVigna, Makowski, Baras (1986)
- ▶ Coupled cost function $\ell(u_1, u_2, h)$.
- ▶ Two threshold stopping rules (equiv. SLRT) are optimal.

. Multiple sensors communicating to fusion center

- ▶ Veeravalli, Başar, Poor (1993)
- ▶ Feedback from the fusion center to the sensors
- ▶ Two threshold stopping rule (equiv. SLRT) is optimal at fusion ctr

- Multiple sensors communicating to one another
 - ▶ Nayyar, Teneketzis (2011)
 - ▶ Two threshold stopping rule (equiv. SLRT) is optimal at 2nd sensor
 - ...but not optimal at 1st sensor

Problem formulation

Observation Sensor i gets local observation Y_t^i and common observation Z_t .

model Under
$$h_0$$
: $Y_t^i \sim f_0^i$ and $Z_t \sim f_0^0$

Under
$$h_1$$
: $Y_t^i \sim f_1^i$ and $Z_t \sim f_1^0$

Decision set At each time, sensor i has two alternatives

- ▶ Take another measurement at a cost c^i .
- ▶ Decide to stop and declare a value in {h₀, h₁}.

After both sensors stop, a cost $\ell(u^1, u^2, H)$ is incurred.

cost c^1

 $cost c^2$

Objective Choose decision strategies (g^1, g^2) to minimize

$$J(g^1,g^2) = \min_{(\tau^1,\tau^2,u^1,u^2)} \mathbb{E}[\tau^1c^1 + \tau^2c^2 + \ell(u^1,u^2,H)]$$

- Features of ▶ Non-classical information structure.
 - the setup
 Correlation modeled by common and local observations.
 - ▶ Actions coupled by cost and not dynamics.

Main results (1/2)

Theorem 1 There is no loss of optimality in restricting attention to control strategies of the form

$$U_t^i = \bar{g}_t^i(P_{0,t}^i, Z_{1:t}), \qquad i \in \{1, 2\}.$$

where \bar{g}_t^i is a threshold strategy given by

$$\bar{g}_t^i(p_t^i,z_{1:t}) = \begin{cases} h_1 & \text{if } p_t^i \leqslant \alpha_{1,t}^i(z_{1:t}) \\ C & \text{if } \alpha_{1,t}^i(z_{1:t}) < p_t^i < \alpha_{0,t}^i(z_{1:t}) \\ h_2 & \text{if } \alpha_{0,t}^i(z_{1:t}) \leqslant p_t^i \end{cases}$$

and the person-by-person optimal threshold functions $\alpha_{1,t}^i(z_{1:t})$ and $\alpha_{0,t}^i(z_{1:t})$ are obtained by solving two coupled dynamic programs.

Main results (2/2)

- **Definitions** $ightharpoonup S_t^i = \mathbb{1}\{\exists t' < t : u_{+'}^i = C\}$
 - $\blacktriangleright \ Q_t^i(h) = \mathbb{P}(H=h \mid Y_{1:t}^i) \text{; and } Q_{0,t}^i = Q_t^i(h_0).$
 - $D_{t}(h, s^{1}, s^{2}) = \mathbb{P}(H = h, S^{1} = s^{1}, S^{2} = s^{2} \mid Z_{1+1})$

Theorem 2 There is no loss of optimality in restricting attention to control strategies of the form

$$U_t^i = \hat{g}_t^i(Q_{0,t}^i, \textcolor{red}{D_t}), \qquad i \in \{1, 2\}.$$

where \hat{g}_{t}^{i} is a threshold strategy given by

$$\hat{g}_t^i(q_t^i,d_t) = \begin{cases} h_1 & \text{if } p_t^i \leqslant \beta_{1,t}^i(d_t) \\ C & \text{if } \beta_{1,t}^i(d_t) < p_t^i < \beta_{0,t}^i(d_t) \\ h_2 & \text{if } \beta_{0,t}^i(d_t) \leqslant p_t^i \end{cases}$$

and the threshold functions $\beta_{1,t}^i(d_t)$ and $\beta_{0,t}^i(d_t)$ are obtained by solving a dynamic program.

Salient features of the result

Threshold rules (or SLRTs) are optimal

For the finite horizon setup, the optimal strategy is a threshold rule in q_t^i , where the threshold curves $\beta_{1,t}^i$ and $\beta_{0,t}^i$ depend on d_t .

Equivalent to a sequential likelihood ration test (SLRT) where the value of the thresholds depend on d_t.

Time-invariant thresholds

For the infinite horizon set, the threshold curves $\beta_{1,t}^i$ and $\beta_{0,t}^i$ are time-invariant.

Therefore, the optimal strategy is easy to implement.

DP to compute

We present a dynamic program to compute the globally optimal thresholds thresholds.

This is in contrast to previous work on independent observations [Teneketzis, Ho (1987), LaVigna, Makowski, Baras (1986)] where coupled dynamic programs to compute person-by-person optimal thresholds were presented.

Step 1 ▶ Identify information state for local observations

where $P_t^i(h) = \mathbb{P}(H=h \mid Y_{1:t}^i, Z_{1:t});$ and $P_{0,t}^i = P_t^i(h_0).$

- Proof ► Arbitrarily fix strategy of j; consider best response strategy of i
 - ▶ Define: $F_t^i(h^j \mid h, z_{1:t}; g^j) = \mathbb{P}(U_{\tau^j}^j = h^j \mid H = h, Z_{1:t} = z_{1:t}; g^j).$

Lemma 1
$$\mathbb{P}(H = h, U_{\tau^j}^j = h^j \mid Y_{1:t}^i, Z_{1:t}; g^j) = F^i(h^j \mid h, z_{1:t}; g^j) P_t^i(h)$$

Lemma 2
$$\mathbb{E}[\ell(u^i, U^j, H) \mid Y_{1:t}^i, Z_{1:t}; g^j] = \langle L_t^i(Z_{1:t}, u^i), P_t^i \rangle$$

$$\begin{array}{ll} \text{Dynamic} & V_{t}^{i}(p_{t}^{i},z_{1:t};g^{j}) = \min \left\{ \left\langle L_{t}^{i}(z_{1:t},h_{0}),\; p_{t}^{i} \right\rangle, \quad \left\langle L_{t}^{i}(z_{1:t},h_{1}),\; p_{t}^{i} \right\rangle, \\ & Program & c + \mathbb{E}[V_{t+1}^{i}(P_{t+1}^{i},Z_{1:t+1};g^{j}) \mid P_{t}^{i} = p_{t}^{i},Z_{1:t} = z_{1:t}] \right\} \end{array}$$

Proof of Step 1 (cont.)

 $\begin{array}{ll} \mbox{Dynamic} & V_{t}^{i}(p_{t}^{i},z_{1:t};g^{j}) = \min \left\{ \left\langle L_{t}^{i}(z_{1:t},h_{0}),\; p_{t}^{i} \right\rangle, \quad \left\langle L_{t}^{i}(z_{1:t},h_{1}),\; p_{t}^{i} \right\rangle, \\ \mbox{Program} & c + \mathbb{E}[V_{t+1}^{i}(P_{t+1}^{i},Z_{1:t+1};g^{j}) \mid P_{t}^{i} = p_{t}^{i},Z_{1:t} = z_{1:t}] \right\} \end{array}$

Theorem 1 There is no loss of optimality in restricting attention to control strategies of the form

$$U^i_t = \bar{g}^i_t(P^i_{0,t}, Z_{1:t}), \qquad i \in \{1, 2\}.$$

where $\bar{g}_{\mathrm{t}}^{\mathrm{i}}$ is a threshold strategy given by

$$\bar{g}_t^i(p_t^i,z_{1:t}) = \begin{cases} h_1 & \text{if } p_t^i \leqslant \alpha_{1,t}^i(z_{1:t}) \\ C & \text{if } \alpha_{1,t}^i(z_{1:t}) < p_t^i < \alpha_{0,t}^i(z_{1:t}) \\ h_2 & \text{if } \alpha_{0,t}^i(z_{1:t}) \leqslant p_t^i \end{cases}$$

and the person-by-person optimal threshold functions $\alpha_{1,t}^i(z_{1:t})$ and $\alpha_{0,t}^i(z_{1:t})$ are obtained by solving two coupled dynamic programs.

Step 2 ► Alternative description of information state

$$\begin{array}{c|c} & p_{0,t}^1, z_{1:t} \\ \hline \\ p_{0,t}^2, z_{1:t} \\ \hline \end{array} \qquad \begin{array}{c|c} & q_{0,t}^1, d_t, z_{1:t} \\ \hline \\ q_{0,t}^2, d_t, z_{1:t} \\ \hline \end{array}$$

- **Definitions** $\triangleright S_t^i = \mathbb{I}\{\exists t' < t : u_{+'}^i = C\}$
 - $\blacktriangleright \ Q_t^i(h) = \mathbb{P}(H=h \mid Y_{1:t}^i) \text{; and } Q_{0,t}^i = Q_t^i(h_0).$
 - $\triangleright D_{+}(h, s^{1}, s^{2}) = \mathbb{P}(H = h, S^{1} = s^{1}, S^{2} = s^{2} \mid Z_{1+})$
 - **Lemma 3** P_t^i is a function of D_t and Q_t^i
 - ▶ Proof: Let $D_t(h)$ denote the marginal of $D_t(h, s^1, s^2)$. Then,

$$\frac{P_t^i(h_0)}{P_t^i(h_1)} = \left[\frac{D_t(h_0)(1-p)}{D_t(h_1)p}\right] \frac{Q_t^i(h_0)}{Q_t^i(h_1)}$$

Lemma 4
$$P_t^i \lessgtr \alpha(Z_{1:t}) \equiv Q_t^i \lessgtr \hat{\alpha}(D_t, Z_{1:t})$$

Step 3 ▶ Information state for common observation

- Proof ► Use the common information approach of Nayyar, M, Teneketzis ('13).
 - ▶ Equivalent centralized coordinated system.
 - ▶ Coordinator observes common information (D_t, Z_{1:t}).
 - \blacktriangleright ...and chooses prescriptions (Γ_t^1, Γ_t^2) , where $\Gamma_t^i : Q_t^i \mapsto U_t^i$.
 - . . . sensors passively use this prescription: $U_t^i = \Gamma_t^i(Q_t^i)$.

Proof of Step 3 (cont.)

Structural results

In the coordinated system, without loss of optimality use

$$(\Gamma_t^1, \Gamma_t^2) = \psi(\Pi_t)$$

Therefore, in the original system, without loss of optimality use $U_t^i = \hat{g}_t^i(Q_t^i, \Pi_t)$

Also obtain a corresponding dynamic program.

Lemma 5 Π_t is a function of D_t .

Theorem 2 There is no loss of optimality in restricting attention to control strategies of the form $U_t^i = \hat{g}_t^i(Q_{0\,t}^i, D_t), \qquad i \in \{1,2\}.$

where \hat{g}_t^i is a threshold strategy given by

$$\hat{g}_t^i(q_t^i,d_t) = \begin{cases} h_1 & \text{if } p_t^i \leqslant \beta_{1,t}^i(d_t) \\ C & \text{if } \beta_{1,t}^i(d_t) < p_t^i < \beta_{0,t}^i(d_t) \\ h_2 & \text{if } \beta_{0,t}^i(d_t) \leqslant p_t^i \end{cases}$$

and the threshold functions $\beta^i_{1,t}(d_t)$ and $\beta^i_{0,t}(d_t)$ are obtained by solving a dynamic program.

Summary

Theorem 2 There is no loss of optimality in restricting attention to control strategies of the form

$$U_t^i = \hat{g}_t^i(Q_{0,t}^i, \frac{D_t}{D_t}), \qquad i \in \{1, 2\}.$$

where \hat{g}_t^i is a threshold strategy given by

$$\hat{g}_t^i(q_t^i, d_t) = \begin{cases} h_1 & \text{if } p_t^i \leqslant \beta_{1,t}^i(d_t) \\ C & \text{if } \beta_{1,t}^i(d_t) < p_t^i < \beta_{0,t}^i(d_t) \\ h_2 & \text{if } \beta_{0,t}^i(d_t) \leqslant p_t^i \end{cases}$$

and the threshold functions $\beta_{1,t}^i(d_t)$ and $\beta_{0,t}^i(d_t)$ are obtained by solving a dynamic program.

Summary

- Key ideas ► Step 1: Find information state for local information.
- of the proof > Step 2: Obtain an alternative description of information state.
 - ▶ Step 3: Find information state for common information.
 - ▶ Step 4: Simplify the information state.

- Features of Threshold based rules are optimal.
 - the result ▶ The threshold curves depends on D_t.
 - Obtain a dynamic program to compute globally optimal threshold curves.

- Future directions > Computation of the threshold curves (cf. Smallwood and Sondik)
 - ▶ Approximation of the threshold curves based on type-I and type-II error probabilities (cf. Wald, Shiryaev)
 - Asymptotically optimal threshold curves (cf. Chernoff)

