ECE 417/598: Camera calibration

Vikas Dhiman.

Feb 14, 2022

-

¹See Hartley and Zisserman's Multiple View Geometry for details.

Announcements

- Midterm this Friday.
- Will cover
 - Rotation representations: Euler angles, axis-angle representation
 - Transformations
 - Denavit-Hartenberg parameters
 - Camera projection model
 - Pseudo-inverse
 - Projective representation for line and point
- Sample exam today
- No programming questions. Expect Linear Algebra question though. Only the concepts that we have touched in class.
- Jetbot update: probably not happening due to global chip shortage

$$u \approx v(\epsilon) \equiv |u - v| \le \epsilon \min(|u|, |v|)$$
 (1)

$$u \sim v(\epsilon) \equiv |u - v| \le \epsilon \max(|u|, |v|)$$
 (2)

Homogeneous representation of lines

$$\mathbb{P}^2 = \mathbb{R}^3 - \{(0, 0, 0)^\top\}$$

$$ax + by + 1.c = 0$$

$$\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The point $\mathbf{x} \in \mathbb{P}^2$ lies on a line \mathbf{I} if and only if

$$\boldsymbol{I}^{\top}\boldsymbol{x}=0$$

Points are rays and lines are planes

Intersection of lines

Two line $\mathbf{I_1}$ and $\mathbf{I_2}$ intersect at $\mathbf{x} \in \mathbb{P}^2$

$$\mathbf{x} = \mathbf{I}_1 \times \mathbf{I}_2$$

Find the intersection of two lines x=1 and y=1 using perspective geometry.

Find the intersection of two lines x=y and x+y=1 using perspective geometry.

Line joining points

Two point \mathbf{x}_1 and \mathbf{x}_2 form a $\mathbf{I} \in \mathbb{P}^2$

$$\mathbf{I} = \mathbf{x}_1 \times \mathbf{x}_2$$

Find the lines that pass through points (1,1) and (2,2) using perspective geometry.

Homography

Examples of Homography

Computing Homography

2D homography

Given a set of points $\mathbf{x}_i \in \mathbb{P}^2$ and a corresponding set of points $\mathbf{x}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each \mathbf{x}_i to \mathbf{x}_i' . In a practical situation, the points \mathbf{x}_i and \mathbf{x}_i' are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

Computing Homography

Solving for Homography derivation

Direct Linear Transformation (DLT) algorithm

Objective

Given $n \geq 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix H such that $\mathbf{x}_i' = \mathrm{H}\mathbf{x}_i$.

Algorithm

- (i) For each correspondence x_i ↔ x'_i compute the matrix A_i from (4.1). Only the first two rows need be used in general.
- (ii) Assemble the $n \ 2 \times 9$ matrices A_i into a single $2n \times 9$ matrix A.
- (iii) Obtain the SVD of A (section A4.4(p585)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if A = UDV^T with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
- (iv) The matrix H is determined from \mathbf{h} as in (4.2).

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.

Eigenvalues and Eigenvectors

For a square matrix A, the λ_i and \mathbf{x}_i that satisfy the following equation are called eigenvalues and eigenvectors respectively.

$$A\mathbf{x} = \lambda \mathbf{x} \text{ or } (A - \lambda I)\mathbf{x} = 0 \tag{3}$$

 λ is chosen to ensure that $A-\lambda I$ has null space, hence, characteristic equation

$$\det(A - \lambda I) = 0 \tag{4}$$

For symmetrix matrix $A = A^{\top}$, eigenvalues are real, and eigenvectors are orthonormal,

$$A[\mathbf{x}_1, \dots, \mathbf{x}_n] = [\mathbf{x}_1, \dots, \mathbf{x}_n] \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$
 (5)

$$AS = S\Lambda \tag{6}$$

if
$$A = A^{\top}$$
 then $A = S\Lambda S^{\top}$ (7)

Singular Value Decomposition (SVD)

$$A = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$

$$A^{\top}A = V\Sigma^{2}V^{-1}$$

$$A^{\top}A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$

$$AV = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$

$$U^{+} = \Sigma^{-1}AV^{+}$$

$$(8)$$

$$\lambda_{i} = \sigma_{i}^{2}$$

$$(10)$$

$$(11)$$