CLASE 2.2

Fuerza eléctrica: Ley de Coulomb.

El francés Charle Agustín Coulomb determinó experimentalmente la ley que determina la interacción de cuerpos cargados en reposo. Él determinó que la fuerza de interacción o fuerza electrostática es proporcional a las cargas entre los cuerpos e inversamente proporcional al cuadrado de la distancia que los separa.

$$F \propto \frac{q_1 q_2}{r^2}$$

- Las fuerzas de interacción electrostática tienen dirección de la línea que une ambos cuerpos cargados y su sentido depende de los signos de sus cargas; son de repulsión cuando las cargas son de igual signo, y de atracción cuando las cargas tienen signo contrario.
- La fuerza que ejerce el primer cuerpo sobre el segundo tiene igual valor que la que ejerce el segundo sobre el primero, pero los sentidos son diferentes.

Pasando a igualdad la relación de proporcionalidad anterior tenemos la fórmula de la fuerza electrostática de forma escalar, que es la llamada **Ley de Coulomb.**

$$F = k \frac{q_1 q_2}{r^2} \tag{1}$$

donde K es la constante de proporcionalidad llamada constante eléctrica del medio donde se encuentran las cargas.

$$K = \frac{1}{4\pi\varepsilon}$$

 $m{arepsilon}$ es la permitividad eléctrica del medio. Si el medio es el vacío (o aire) que se toma como referencia, en el sistema internacional $m{arepsilon}=m{arepsilon}_0=8.85x10^{-12}\left[rac{m{arepsilon}^2}{Nm^2}
ight]$, con lo que la constante eléctrica para el vacío es $K=rac{1}{4\piarepsilon_0}=9x10^9\left[rac{Nm^2}{\emph{C}^2}
ight]$

Trabajando vectorialmente la ley de Coulomb viene dada por:

$$\overrightarrow{F_1} = K \frac{q_1 q_2}{|\vec{r}_{21}|^2} \overrightarrow{U}_{21} = K \frac{q_1 q_2}{|\vec{r}_{21}|^3} \vec{r}_{21}$$
 (2)

 \vec{F}_1 es la fuerza que "siente la q_1 debido a la presencia de q_2 .

Con \vec{U}_{21} el vector unitario del vector \vec{r}_{21} , que es el vector que inicia en la carga 2 y llega a la carga 1 como se puede ver en la siguiente figura.

De igual manera si queremos calcular la fuerza que "siente" la carga 2 por la presencia de la carga 1, es decir \vec{F}_2 , tendremos que utilizar el vector que parte de la carga 1 y llega a la carga 2, es decir \vec{r}_{12} .

Nota: En este curso generalmente trabajaremos con las leyes desde el punto de vista vectorial (excepto cuando nos indiquen lo contrario).

Ejemplos

1. Considerando una carga $Q_1 = 1.5$ C ubicada en el punto (3, 4, -2) m y otra carga $Q_2 = 2.4$ C en el punto (-1, 4, 3) m. Hallar la fuerza sobre cada una de las cargas.

Calculamos sobre la carga Q1

$$\vec{F}_1 = k \frac{Q_1 Q_2}{(r_{21})^3} \vec{r}_{21} \quad \text{con } \vec{r}_{21} = \vec{r}_1 - \vec{r}_2 = (4\vec{\imath} + 0\vec{\jmath} - 5\vec{k}) \quad \to r_{21} = \sqrt{41}$$

$$\vec{F}_1 = 9x10^9 \frac{Nm^2}{C^2} \frac{1.5C.2.4C}{(\sqrt{41})^3 m^3} \left(4\vec{\imath} + 0\vec{\jmath} - 5\vec{k} \right) m = (49.4x10^7 \vec{\imath} + 0\vec{\jmath} - 61.7x10^7 \vec{k}) N$$

Si queremos la intensidad será el módulo

$$F_1 = \sqrt{(49.4x10^7)^2 + (0)^2 + (-61.7x10^7)^2} = 79.04x10^7 N$$

2. Calcular la fuerza con que se atraen las cargas eléctricas puntuales de 2 C y -3 C separadas 5 m. a) en el vacío, b) en aceite (permitividad relativa del aceite, $\varepsilon_r=4.6$

Este es un problema en el que pide solo la intensidad o magnitud de la fuerza de atracción, por lo que podemos trabajar con la Ley de Coulomb escalar

- a) $F = K \frac{q_1 q_2}{r^2} = 9x \cdot 10^9 \frac{2.(-3)}{5^2} = -2.16x \cdot 10^9 \, N$ (cuando da negativo se dice que es de atracción).
- b) En aceite

$$F = \frac{1}{4\pi\varepsilon_a} \frac{q_1 q_2}{r^2} \qquad \text{pero} \qquad \varepsilon_r = \frac{\varepsilon_a}{\varepsilon_0} \ \to \ \epsilon_a = \varepsilon_r \epsilon_0 = 4.6x8.85x10^{-12} = 40.71x10^{-12} \frac{c^2}{Nm^2} \quad \text{entonces} \ F = \frac{1}{4\pi.40.71x10^{-12}} \frac{2(-3)}{5^2} = 4.68x10^8 \ N$$

EJERCICIOS PROPUESTOS

- 1. Calcular la fuerza con que se repelen dos cargas de 2 y 3 Coulombios separadas 5m en agua (permitividad relativa del agua $\varepsilon_r=81.07$).
- 2. Hallar la fuerza entre dos cargas de 10 y -10 Culombios ubicadas en los puntos (1,1)m y (4,4)m respectivamente.

- 3. Una cierta carga Q se va a dividir en q y Q-q. ¿Cuál será la relación entre Q y q para que las dos separadas una distancia r, produzcan una máxima repulsión?
- 4. Hallar la distancia entre dos cargas de 0.15 C y 0.25 C que se repelen con una fuerza de 3600 N. a) en el vacío, b) en aceite.

Principio de superposición.

Si tenemos un conjunto de cargas q₀, q₁, q₂,q_n, la fuerza total que ejerce ese conjunto sobre una de sus cargas (por ejemplo q₀) es igual a la suma vectorial de las fuerzas de cada carga de conjunto sobre la carga escogida. Por ejemplo, sobre q₀:

$$\vec{F}_0 = k \sum_{i=1}^n \frac{q_0 q_i}{(r_{i0})^3} \vec{r}_{i0}$$
 (3)

Por ejemplo, si tengo q $_0$, q $_1$, q $_2$, q $_3$ la fuerza sobre la carga 0 será $\vec{F}_0 = \vec{F}_{10} + \vec{F}_{20} + \vec{F}_{30}$

Ejemplo

1. Se disponen de tres cargas $q_1 = 5$ uC, $q_2 = 2$ uC, y $q_3 = 4$ uC ubicadas en los puntos (2,4,0), (1,0,2) y (4,2,4) respectivamente. ¿Cuál es la fuerza que ejercen las dos primeras sobre la tercera?

Aplicando el principio de superposición la fuerza sobre la carga q₃ viene dado como:

$$\vec{F}_{3} = \vec{F}_{13} + \vec{F}_{23} = k \left[\frac{q_{3}q_{1}}{(r_{13})^{3}} \vec{r}_{13} + \frac{q_{3}q_{2}}{(r_{23})^{3}} \vec{r}_{23} \right]$$

$$\vec{r}_{13} = 2\vec{\imath} - 2\vec{\jmath} + 4\vec{k} \rightarrow r_{13} = \sqrt{(2)^{2} + (-2)^{2} + (4)^{2}} = \sqrt{24}$$

$$\vec{r}_{23} = 3\vec{\imath} + 2\vec{\jmath} + 2\vec{k} \rightarrow r_{23} = \sqrt{(3)^{2} + (2)^{2} + (2)^{2}} = \sqrt{17}$$

$$\vec{F}_3 = 9x10^9 \left[\frac{4x10^{-6} \cdot 5x10^{-6}}{\left(\sqrt{24}\right)^3} \left(2\vec{\imath} - 2\vec{\jmath} + 4\vec{k} \right) + \frac{4x10^{-6} \cdot 2x10^{-6}}{\left(\sqrt{17}\right)^3} \left(3\vec{\imath} + 2\vec{\jmath} + 2\vec{k} \right) \right]$$

$$\vec{F}_3 = 6.14x10^{-3}\vec{\imath} - 1.01x10^{-3}\vec{\jmath} + 8.17x10^{-3}\vec{k}$$

EJERCICIO PROPUESTO

1. Se tiene 4 cargas de -5 uC ubicadas en los vértices de un cuadrado de 0.5 m de lado. Calcular la magnitud de la fuerza que se ejerce sobre una de las cargas, si el sistema esta dentro del agua como medio. Permitividad dieléctrica relativa del agua 81.07

Fuerza eléctrica de distribuciones continuas de carga.

En estos casos se aplica el principio de superposición, considerando al cuerpo cargado como formado por un infinito número de cargas infinitesimales dg.

Ejemplos

- 1. Calcular la fuerza producida por un alambre de longitud infinita cargado uniformemente con una densidad lineal de carga λ , sobre una carga puntual Q situada a una distancia a del alambre. (En Carpeta: Docum.Física/Prob.Fís1)
- 2. Calcular la fuerza eléctrica sobre Q debido al alambre cargado uniformemente con densidad λ como el de la figura. (En Carpeta: Docum.Física/Prob.Fís2)
- 3. Encontrar la fuerza producida por un plano infinito cargado con densidad superficial de carga uniforme σ , sobre una carga puntual Q situada a una distancia a del plano.

Ejercicios propuestos

Objetivo. Resolver los siguientes ejercicios

- 1. Encontrar la fuerza eléctrica debido a un alambre cargado con densidad lineal uniforme $\lambda=10x10^3\frac{C}{m}$ y longitud 1 m, sobre una carga puntual $Q=5x10^3$ C ubicada a 0.5 m sobre la recta perpendicular que pasa por el punto medio del alambre.
- 2. Encontrar la fuerza eléctrica sobre una carga puntual de 2Q ubicada en el centro de un cuadrado de lado a, debido a cargas de igual valor -Q ubicadas en los tres vértices del cuadrado.
- 3. Un alambre recto de longitud 2L cargado con densidad lineal uniforme se dobla en 90°. A la distancia L de un extremo del alambre se coloca una carga Q. Calcular la fuerza sobre Q.

Resolver los siguientes ejercicios

- 1. Dos esferas de masa 1gr y de igual carga Q se cuelgan de hilos de 20cm y masa despreciable sujetos a un mismo punto. Si el ángulo que forman los hilos en el punto común es de 20°, calcular el valor de Q.
- 2. Tres cargas puntuales se ubican a lo largo del eje x. Q_1 = 1mC está en x = 1m , Q_2 = -2x 10^{-6} C en x = 2m. Dónde debe ubicarse la tercera carga Q_3 positiva de modo que ésta última carga se mantenga estática.
- 3. Calcular la fuerza electrostática que produce un anillo de radio a, cargado con densidad lineal λ , sobre una carga ubicada a una distancia b del centro del anillo sobre su eje.
- 4. Encontrar la fuerza sobre una carga de 3 C debido a un plano cuadrado de lado l cargado con densidad superficial $\sigma=10^5 \ \frac{c}{m^2}$ y ubicado a 0.5m de la carga.