# MNIST-UDA - Unsupervised Domain Adaptation

00000000

Presented by Yash (ys4yh)

## What is Domain Adaptation (DA)?



Leveraging labeled source domain, to learn a model for the target domain.

### **Different Scenarios**

|         | Dataset        | iWildCam             | Camelyon17           | RxRx1                 | FMoW                    | PovertyMap         | GlobalWheat          | OGB-MolPCBA       | CivilComments                                                                  | Amazon                                                                                      | Py150                                                    |
|---------|----------------|----------------------|----------------------|-----------------------|-------------------------|--------------------|----------------------|-------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|
|         | Input (x)      | camera trap photo    | tissue slide         | cell image            | satellite image         | satellite image    | wheat image          | molecular graph   | online comment                                                                 | product review                                                                              | code                                                     |
|         | Prediction (y) | animal species       | tumor                | perturbed gene        | land use                | asset wealth       | wheat head bbo       | x bioassays       | toxicity                                                                       | sentiment                                                                                   | autocomplete                                             |
|         | Domain (d)     | camera               | hospital             | batch                 | time, region            | country, ru/ur     | location, time       | scaffold          | demographic                                                                    | user                                                                                        | git repo                                                 |
|         | Source exampl  | e                    |                      |                       |                         |                    |                      | o o o o           | What do Black<br>and LGBT<br>people have to<br>do with bicycle<br>licensing?   | Overall a solid package that has a good quality of construction for the price.              | import numpy as np norm=np                               |
|         | Target example |                      |                      |                       |                         |                    |                      | HO HN             | As a Christian,<br>I will not be<br>patronizing any<br>of those<br>businesses. | I *loved* my<br>French press,<br>it's so perfect<br>and came with<br>all this fun<br>stuff! | <pre>import subprocess as sp p=sp.Popen() stdout=p</pre> |
|         | Original paper | Beery et al.<br>2020 | Bandi et al.<br>2018 | Taylor et al.<br>2019 | Christie et al.<br>2018 | Yeh et al.<br>2020 | David et al.<br>2021 | Hu et al.<br>2020 | Borkan et al.<br>2019                                                          | Ni et al.<br>2019                                                                           | Raychev et al.<br>2016                                   |
| Labeled | # domains      | 323                  | 5                    | 51                    | 16 x 5                  | 23 x 2             | 47                   | 120,084           | 16                                                                             | 3,920                                                                                       | 8,421                                                    |
|         | # examples     | 203,029              | 455,954              | 125,510               | 141,696                 | 19,669             | 6,515                | 437,929           | 448,000                                                                        | 539,502                                                                                     | 150,000                                                  |

## **Visual DA Scenarios**

Recognition



Segmentation



















Re-identification

Control

Visual localization













## **Different type of Shifts**

Covariate Shift  $p_s(x) \neq p_t(x)$ 

Label Shift  $p_s(y) \neq p_t(y)$ 

Conditional Shift  $p_s(x|y) \neq p_t(x|y)$ 

Concept Shift  $p_s(y|x) \neq p_t(y|x)$ 

## **Recent Approaches**



#### **Popular Methods**

- Maximum-Mean Discrepancy
- Contrastive Domain Discrepancy
- Domain Adversarial NN
- Adaptive Batch Normalization
- GANs

- Pseudo-labels
- Pretext learning
- Entropy minimization
- Consistency Regularization

## **Our Problem Set-Up**

## Source Domain MNIST Data

(60K Labeled Training Images & 10K Validation Images)



## Target Domain MNIST-M Data

= MNIST + BSDS500

(60K Unlabeled Training Images & 10K Testing Images)



## **Baseline Approach**

#### Approach:

- Training on **MNIST** Data
  - o 20 Epochs
  - Adam Optimizer
  - Learning Rate = 1e-3
  - Cross Entropy Loss
- Testing on MNIST-M Data

Testing Accuracy = 53%



## **Unsupervised Domain Adaptation by Backpropagation**



Reference: Ganin, Yaroslav, and V. Lempitsky. "Unsupervised domain adaptation by backpropagation. arXiv." arXiv preprint arXiv:1409.7495 (2014).

## **DANN** Approach

#### Approach:

- Training on labeled MNIST data and unlabeled MNIST-M data
  - 40 Epochs
  - Adam Optimizer
  - Learning Rate = 1e-3
  - Cross Entropy Loss for Classifier
  - Binary Cross Entropy Loss for Domain Classifier
- Testing on MNIST-M Data

Testing Accuracy = 71%



## MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation

Proposed a Jensen-Shannon divergence based Mutual Information loss for Unsupervised Domain Adaptation.

Demonstrated strong performance for **Nuclei Semantic** Segmentation and **Instance** Segmentation with different architecture - **UNet** and **HoverNet** and for different cancer-type **domain shifts**.



## **Mutual Information Branch**



## **MI Maximization Approach**

#### Approach:

- Training on labeled MNIST data and unlabeled MNIST-M data
  - 40 Epochs
  - Adam Optimizer
  - Learning Rate = 1e-3
  - Cross Entropy Loss for Classifier
  - Binary Cross Entropy Loss for Domain Classifier
- Fine-Tune further for 40 epochs by including Mutual Information loss.
- Testing on MNIST-M Data

Testing Accuracy = 87%



## Thank you! Any questions?

#### References:

- 1. Domain Adaptation for Visual Applications, ECCV 2020 Tutorial
- 2. Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." International Conference on Machine Learning. PMLR, 2021.
- 3. Liu, Xiaofeng, et al. "Deep unsupervised domain adaptation: A review of recent advances and perspectives." APSIPA Transactions on Signal and Information Processing 11.1 (2022)
- 4. Ganin, Yaroslav, and V. Lempitsky. "Unsupervised domain adaptation by backpropagation. arXiv." arXiv preprint arXiv:1409.7495 (2014).
- 5. Sharma, Yash, Sana Syed, and Donald E. Brown. "MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2022.