Notes for: Walsh and Lynch. Genetics and Analysis of Quantitative Traits

Thomas Battram

2020-06-09

Contents

Preface				
1	An overview of quantitative genetics Properties of distributions		7	
2			9	
3	Covariance, regression, and correlation			
	3.1	Covariance	11	
	3.2	Least squares linear regression	11	
	3.3	Correlation	11	
	3.4	Differential selection (brief intro)	11	
	3.5	Correlation between genotype and phenotype (brief intro)	11	
	3.6	End of chapter questions	11	
4	Pro	perties of single loci	13	
	4.1	Introduction	14	
	4.2	Allele and genotype frequencies	14	
	4.3	The transmission of genetic information	14	
	4.4	Characterising the influence of a locus on the phenotype	14	
	4.5	The basis of dominance	14	
	4.6	Fisher's decomposition of the genotypic value	14	
	4.7	Partioning the genetic variance	14	
	4.8	Additive effects, average excesses and breeding values	14	
	4.9	Extensions for multiple alleles and non random mating	14	
	4.10	End of chapter questions	14	
5	Sources of genetic variation for multilocus traits			
	5.1	Epistasis	15	
	5.2	A general least-squares model for genetic effects	15	
	5.3	Linkage	15	
	5.4	Effect of disequilibrium of the genetic variance	15	
	5.5	End of chapter questions	15	

4 CONTENTS

6	Sources of Environmental Variation			
	6.1	Extension of the linear model to phenotypes	17	
	6.2	Special environmental effects	17	
	6.3	General environmental effects of maternal origin	17	
	6.4	Genotype x environment interaction	17	
7	Resemblance between relatives			
	7.1	Measures of relatedness	20	
	7.2	The genetic covariance between relatives	20	
	7.3	The effect of linkage and gametic phase disequilibrium	20	
	7.4	Assortative mating	20	
	7.5	Polyploidy	20	
	7.6	Environmental sources of covariance between relatives	20	
	7.7	The heritability concept	20	
8	Introduction to Matrix Algebra and Linear Models			
	8.1	Multiple regression	21	
Qı	uesti	ons	23	
·	Cha	pter 4	23	
		pter 5		

Preface

This is a good book, but if I make it through the whole thing I deserve several medals and some cake.

6 CONTENTS

An overview of quantitative genetics

BORWANG!!!

This chapter just introduces the book and some simple concepts.

Properties of distributions

ALSO BORWANG!

You can guess what this chapter was on and also how much of a hoot it was...

Covariance, regression, and correlation

Placeholder

- 3.1 Covariance
- 3.1.1 Useful identities for covariance
- 3.2 Least squares linear regression
- 3.2.1 Properties of least squares
- 3.3 Correlation
- 3.4 Differential selection (brief intro)
- 3.5 Correlation between genotype and phenotype (brief intro)
- 3.6 End of chapter questions

Properties of single loci

- 4.1 Introduction
- 4.2 Allele and genotype frequencies
- 4.3 The transmission of genetic information
- 4.3.1 The Hardy-Weinberg principle
- 4.3.2 Sex-linked loci
- 4.3.3 Polyploidy
- 4.3.4 Age structure
- 4.3.5 Testing for Hardy-Weinberg proportions
- 4.4 Characterising the influence of a locus on the phenotype
- 4.5 The basis of dominance
- 4.6 Fisher's decomposition of the genotypic value
- 4.7 Partioning the genetic variance.
- 4.8 Additive effects, average excesses and breeding values
- 4.9 Extensions for multiple alleles and non random mating
- 4.9.1 Average excess
- 4.9.2 Additive effects
- 4.9.3 Additive genetic variance
- 4.10 End of chapter questions

Sources of genetic variation for multilocus traits

Placeholder

- 5.1 Epistasis
- 5.2 A general least-squares model for genetic effects
- 5.2.1 Extension to haploids and polyploids
- 5.3 Linkage
- 5.4 Effect of disequilibrium of the genetic variance
- 5.4.1 The evidence
- 5.5 End of chapter questions

16CHAPTER 5. SOURCES OF GENETIC VARIATION FOR MULTILOCUS TRAITS

Sources of Environmental Variation

Placeholder

- 6.1 Extension of the linear model to phenotypes
- 6.2 Special environmental effects
- 6.2.1 Within-individual variation
- 6.2.2 Developmental homeostasis and homozygosity
- 6.2.3 Repeatability
- 6.3 General environmental effects of maternal origin
- 6.4 Genotype x environment interaction

Resemblance between relatives

- 7.1 Measures of relatedness
- 7.1.1 Coefficients of identity
- 7.1.2 Coefficients of coancestry and inbreeding
- 7.1.3 The coefficient of fraternity
- 7.2 The genetic covariance between relatives
- 7.3 The effect of linkage and gametic phase disequilibrium
- 7.3.1 Gametic phase disequilibrium
- 7.4 Assortative mating
- 7.5 Polyploidy
- 7.6 Environmental sources of covariance between relatives
- 7.7 The heritability concept
- 7.7.1 Evolvability

Introduction to Matrix Algebra and Linear Models

8.1 Multiple regression

Simple multiple regression equation:

$$y = \alpha + \beta_1 z_1 + \beta_2 z_2 + \dots + \beta_n z_n + e \tag{8.1}$$

 $y = \text{dependent/response variable}, z_1, z_2, z_n = \text{predictors}, e = \text{residual error}, \alpha \text{ is a constant as are } \beta_1, \beta_2, \beta_n \text{ to be estimated.}$

Recall from Chapter 3 that the goal of least-squares regression is to find a set of constants (α and the β s) that minimise the squared differences between observed and expected values, with expected values is anything that fits on the "line of best fit". Also, recall equation (??), to see the relationship between y, z_n (x in the equation) and b. For multiple regression there are many "b" terms and each of them can be estimated by dividing the covariance of the dependent variable and the predictor ($\sigma(y, z_n)$) by the covariance of the predictor with all other predictors in the model. When n=1, the model reduces to a simple linear regression and we return to equation (??). This can be represented in matrix form like so:

$$\begin{pmatrix} \sigma^{2}(z_{1}) & \sigma(z_{1}, z_{n}) & \dots & \sigma(z_{1}, z_{n}) \\ \sigma(z_{1}, z_{1}) & \sigma^{2}(z_{2}) & \dots & \sigma(z_{2}, z_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(z_{1}, z_{n}) & \sigma(z_{2}, z_{n}) & \dots & \sigma^{2}(z_{n}) \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix} = \begin{pmatrix} \sigma(y, z_{1}) \\ \sigma(y, z_{2}) \\ \vdots \\ \sigma(y, z_{n}) \end{pmatrix}$$
(8.2)

22 CHAPTER~8.~~INTRODUCTION~TO~MATRIX~ALGEBRA~AND~LINEAR~MODELS

Questions

Have fun answering these Gib!

Chapter 4

1. What the fuck are they talking about with the molecular basis of dominance? - page 63-64

Chapter 5

1. How do they calculate the variance of a phenotype explained by just the dominance effects? - page $91\,$