Learning with Misspecified Models: the case of overconfidence

Jimena Galindo September 28, 2023

Overconfidence is Costly

OVERCONFIDENCE: Belief that my type is higher than it truly is ("overestimation" as in Moore and Healy (2008))

Overconfidence is Costly

OVERCONFIDENCE: Belief that my type is higher than it truly is ("overestimation" as in Moore and Healy (2008))

It seems to be persistent in various settings.

- Excess entry of entrepreneurs (Camerer and Lovallo, 1999)
- Suboptimal genetic testing and healthcare (Oster et al. 2013)
- Workers overestimate their productivity (Hoffman and Burks, 2020)

Ultimately it leads to sub-optimal choices

Models of Learning

Some of the features that theory has incorporated to explain overconfidence are:

- Dogmatism
- Paradigm shifts
- Motivated beliefs
- Myopic optimiztion

Four Theories of Misspecified Learning

- 1. Self-defeating equilibrium (Heidhues et al. (2018)):
 - ullet Bayesian on ω
 - Dogmatic about θ
- 2. Bayesian Likelihood Ratio test (Schwarstein and Sunderam (2021), Ba, (2022 JMP)) :
 - Bayesian on ω
 - Hypothesis testing on θ
- 3. Motivated Beliefs or Self-Attribution Bias (Benjamin, 2019):
 - Errors in probabilistic reasoning and judgment biases

An Example

A student has **unknown intrinsic ability** θ^* and chooses a level of effort $e \ge 0$.

Effort and ability are transformed into a noisy output at an exogenous and **unknown** rate ω .

An overconfident student believes he is of type $\hat{\theta} > \theta^*$

And wants to maximize utility

$$y = (\theta^* + e)\omega - \frac{1}{2}e^2 + \varepsilon$$

5

An Example

A student has **unknown intrinsic ability** θ^* and chooses a level of effort $e \ge 0$.

Effort and ability are transformed into a noisy output at an exogenous and **unknown** rate ω .

An overconfident student believes he is of type $\hat{\theta} > \theta^*$

And wants to maximize utility

$$y = (\theta^* + e)\omega - \frac{1}{2}e^2 + \varepsilon$$

Regardless of their own type, they should choose $\mathrm{e}^*(\omega)=\omega$

Learning is Possible

This exercise is repeated for t = 0, 1, ...

$$y_t = (\theta^* + e_t)\omega - \frac{1}{2}e_t^2 + \varepsilon_t$$

Note that both parameters are identified in this setting:

- \bullet Choosing \hat{e} and $\hat{e}+1$ over multiple periods allows identification of ω
- Once ω is known, θ can be backed out

How come people don't learn their true type and don't choose the optimal effort?

Mental Models

A prior belief over parameters/states/types and an updating procedure

- Bayesian
- Dogmatic
- Motivated Beliefs/Self-attribution

Research Questions

To what extent do the different theories explain observed behavior?

• Do we observe heterogeneity in the use of mental models?

Is ego-relevance of the type a key feature for the misspecification?

• Can the same theories be used to explain the prevalence of stereotypes?

Road-map

- 1. Three Theories of Overconfidence
- 2. Mechanisms and Predictions
- 3. Unifying Framework
- 4. Experimental Design
- 5. Results (coming soon)

The Theories

Settings with two or more unknowns allow for different explanations of the bias:

- 1. Self-defeating equilibrium (Heidhues et al., 2018):
 - ullet Bayesian on ω
 - Dogmatic about θ
- 2. Bayesian Likelihood Ratio test (Ba, 2022 JMP):
 - ullet Bayesian on ω
 - ullet Hypothesis testing on heta
- 3. Self-Serving Attribution Bias with two unknowns (Brunnermeier and Parker, 2005; Coutts et al. 2022wp):
 - \bullet Good news are attributed to high θ bad news are attributed to low ω

Theory 1: Dogmatic Modelers (HKS)

Unrealistic Expectations and Misguided Learning (Heidhues, Köszegi, and Strack, 2018)

The Setting

The student's true ability is θ^* , they believe with certainty that it is $\hat{\theta} > \theta^*$.

The rate ω is drawn from density g_0 with $\omega^* = E_{g_0}(\omega)$.

At t = 0, the student has the prior g_0 .

They correctly choose $e_0 = \omega^*$.

The Setting

The student's true ability is θ^* , they believe with certainty that it is $\hat{\theta} > \theta^*$.

The rate ω is drawn from density g_0 with $\omega^* = E_{g_0}(\omega)$.

At t = 0, the student has the prior g_0 .

They correctly choose $e_0 = \omega^*$.

Suppose they don't update their beliefs or their choice for a number of periods.

Updating the Beliefs

For their chosen effort ω^* , they observe an average output of

$$y_0 = (\theta^* + \omega^*)\omega^* - \frac{1}{2}(\omega^*)^2$$

But were expecting

$$(\hat{\theta} + \omega^*)\omega^* - \frac{1}{2}(\omega^*)^2 > y_0$$

Updating the Beliefs

For their chosen effort ω^* , they observe an average output of

$$y_0 = (\theta^* + \omega^*)\omega^* - \frac{1}{2}(\omega^*)^2$$

But were expecting

$$(\hat{\theta} + \omega^*)\omega^* - \frac{1}{2}(\omega^*)^2 > y_0$$

So they conclude that ω_1 must be such that:

$$(\hat{\theta} + \omega^*)\omega_1 - \frac{1}{2}(\omega^*)^2 = (\theta^* + \omega^*)\omega^* - \frac{1}{2}(\omega^*)^2$$

Which gives
$$\omega_1 = \frac{(\theta^* + \omega^*)\omega^*}{(\hat{\theta} + \omega^*)} < \omega^*$$

Updating the Beliefs

Updating choices every period (myopically) the belief will drift even further:

A lower choice of e still gives a lower output than expected.

So ω_{t+1} must be lower than they believed in period t.

Prediction: convergence to a self-confirming equilibrium with $\omega_{\infty} < \omega_1 < \omega^*$.

The result is symmetric for underconfident subjects.

Theory 2: Switchers

Robust Misspecified Models and Paradigm Shifts (Ba, 2022 JMP)

The Setting

Same as HKS but with finite Ω and finite A

Now the entrepreneur is willing to switch to an alternative level of ability θ' (assume $\theta' = \theta^*$).

Instead of updating $P[\theta]$ every period, they perform a Bayesian hypothesis test:

Adopt model θ' at time t iff

$$\frac{\ell_t(\theta')}{\ell_t(\hat{\theta})} > \alpha \ge 1$$

Where

$$\ell_t(heta) := \sum_{\omega} g_0(\omega) \prod_{ au=0}^{t-1} \pi^{ heta}(y_{ au}|a_{ au},\omega)$$

Results

Prediction: Misspecified agents escape the trap as long as their prior is not too "tight" around a self-confirming equilibrium.

Theory 3: Motivated Beliefs

Errors in probabilistic reasoning and judgment biases (Benjamin, 2019)

The Setting

Fixed effort e, $\theta \in \{\theta_H, \theta_L\}$ and $\omega \in \{\omega_H, \omega_L\}$ generate binary signals (\mathbf{s}/\mathbf{f})

After a signal realization m, the agent updates their belief about θ with distortions c_m^{θ} and c_m^{ω} , so that:

$$\frac{p_{t+1}[\theta_H]}{p_{t+1}[\theta_L]} = \left(\frac{p[\mathsf{m}|\theta_H]}{p[\mathsf{m}|\theta_L]}\right)^{c_m^\theta} \frac{p_t[\theta_H]}{p_t[\theta_L]}$$

and

$$\frac{p_{t+1}[\omega_H]}{p_{t+1}[\omega_L]} = \left(\frac{p[\mathsf{m}|\omega_H]}{p[\mathsf{m}|\omega_L]}\right)^{c_m^{\omega}} \frac{p_t[\omega_H]}{p_t[\omega_L]}$$

The agent suffers from self-attribution bias if $c_s^{ heta}>c_f^{ heta}$ and $c_s^{\omega}< c_f^{\omega}$.

Predictions

Prediction: Even unbiased agents will overweight θ_H after a success and end up being biased.

When $c^{\theta}=c^{\omega}=1$, the updating procedure coincides with the unbiased Bayesian.

The framework does not allow direct comparisons with the other two theories.

A Unifying Framework

Finite type space: $\theta \in \{\theta_H, \theta_M, \theta_L\}$

Finite state space: $\omega \in \{\omega_H, \omega_M, \omega_L\}$ with $p(\omega_k) = 1/3$

Finite action space: $e \in \{e_H, e_M, e_L\}$

Binary signal: Success/Failure with $P[Success|e,\omega,\theta]$ satisfying the assumptions of HKS

The Data Generating Process

The probability of success is given by:

	ω_H	ω_{M}	ω_L
e_H	50	20	2
e_M	45	30	7
e_L	40	25	20
		θ_L	

	ω_H	ω_{M}	ω_L
e_H	80	50	5
e_M	69	65	30
e_L	65	45	40
		θ_{M}	

	ω_H	ω_{M}	ω_L
e_H	98	65	25
e_M	80	69	35
e_L	75	55	45
		θ_H	

The Data Generating Process

	ω_H	ω_{M}	ω_L
e_H	50	20	2
e_M	45	30	7
e_L	40	25	20
		θ_L	

	ω_H	ω_{M}	ω_L
e_H	80	50	5
e_M	69	65	30
e_L	65	45	40
		θ_{M}	

The Data Generating Process

A Self-Confirming Equilibrium

	ω_H	ω_{M}	ω_L
e_H	50	20	2
e_M	45	30	7
e_L	40	25	20
		θ_L	

	ω_H	ω_{M}	ω_L
e_H	80	50	5
e_M	69	65	30
e_L	65	45	40
		θ_{M}	

	ω_H	ω_{M}	ω_{L}
e_H	98	65	25
e_M	80	69	35
e_L	75	55	45
		θ_H	

The Self-Confirming Equilibria

	ω_H	ω_{M}	ω_L
e_H	50	20	2
e_M	45	30	7
e_L	40	25	20
		θ_L	

	ω_H	ω_{M}	ω_L
e_H	80	50	5
e_M	69	65	30
e_L	65	45	40
		θ_{M}	

	ω_H	ω_{M}	ω_{L}
e_H	98	65	25
e_M	80	69	35
e_L	75	55	45
		θ_H	

An Example

- True type is θ_M
- ullet True exchange rate is $\omega_M o$ The entrepreneur believes it is uniformly distributed

	ω_H	$\omega_{ extsf{M}}$	ω_L
e_H	50	20	2
e_M	45	30	7
e_L	40	25	20
		θ_L	

	ω_H	ω_{M}	ω_{L}
e_H	80	50	5
e_M	69	65	30
e_L	65	45	40
	θ_{M}		

	ω_H	ω_{M}	ω_L
e_H	98	65	25
e_M	80	69	35
e_L	75	55	45
	θ_H		

Example: Dogmatic Modeler

ullet Theory 1: for a student who believes he is $heta_H$

- 1. Chooses e_H and is disappointed o adjust belief about ω downward
- 2. Eventually chooses e_M and is disappointed as well ightarrow adjust belief about ω
- 3. Eventually chooses e_L and falls into a self-confirming equilibrium

Dogmatic Overconfident

Figure 1:
$$\theta^* = \theta_M$$
, $\hat{\theta} = \theta_H$, $\omega^* = \omega_M$

Example: Likelihood Testing

- Theory 2: for the same initial belief
- ullet Keeping track of the likelihood of each heta

- 1. Chooses e_H and is disappointed o adjust belief about ω downward
- 2. Eventually chooses e_M and is disappointed as well o adjust belief about ω
- 3. Eventually chooses e_L and falls into a self-confirming equilibrium
- 4. At some point, the likelihood of θ_M becomes much larger than that of θ_H and the agent updates their belief

Switcher Overconfident

figures2/switcher_over_11.png

Figure 2:
$$\theta^* = \theta_M$$
, $\hat{\theta} = \theta_H$, $\omega^* = \omega_M$, $\alpha = 1.1$

Example: Self-Serving Beliefs

ullet Theory 3: Start with a diffused prior over heta

- 1. Chooses e that maximizes utility according to priors
- 2. Success \rightarrow overweight θ_H and underweight ω_H
- 3. Failure ightarrow overweight ω_L underweight θ_L
- 4. Belief on ω deteriorates a lot after failure streaks
- 5. Belief on θ increases a lot after success streaks

Self-Serving Bias

figures2/self-serving_11.png

The Simulation

figures2/all_11.png

The Experiment:

Part 1: Set Types

- Quiz: Answer as many questions as you can in 2 minutes:
 - Math, Verbal, Pop-Culture, Science, Us Geography, Sports and Video games
- How many questions do you think you answered correctly in each quiz?
 - o Bin1, Bin2, Bin3

The Experiment: Ego-relevant condition

Belief updating and effort choice (One topic at a time)

- Choose an effort
- Receive a sample of 10 signal realizations

11 rounds per topic

Eliciting Beliefs?

- \bullet $E[\omega]$ is revealed by their choice of effort
- ullet Eliciting beliefs for heta can incentivize learning in a way that is not consistent with the model

Allow them to see the success rate matrix for only one type.

• Track the matrices they choose to see in each round

The Experiment: Stereotype condition

Observe the characteristics of a participant (Gender, US National or not).

- "What score do you think this participant got in the (topic) quiz?"
- Bin1, Bin2, Bin3

Belief updating and effort choice

- Choose an effort
- Receive a signal realization
 - o The DGP is that of the observed participant

11 rounds (per topic/participant)

Screen

figures2/screen1.png

Screen

figures2/screen2.png

Conclusion

What I hope to get from this design:

- A classification of subjects into one of the models based on their behavior
- ullet If subjects are switchers: what is the switching threshold lpha
- Insight into the role of ego-relevant parameters in belief misspecification

The end

Thank you!