Домашнее задание 3

Юрасов Никита Андреевич

Обновлено 24 октября 2019 г.

Содержание

L	Haz	хождение выборочного среднего и выборочной дисперсии	2
	1.1	Распределение Пуассона	2
	1.2	Распределение Эрланга	2
2	Haz	хождение параметров распределений событий	3
2		хождение параметров распределений событий Распределение Пуассона	•

Эта работа представляет собой отчет к Домашнему Заданию №3. Так как в моделировании используется пакет numpy.random, то, пусть, для него будет выставлено по умолчанию стартовое значение генератора 12345678.

Нахождение выборочного среднего и выборочной дисперсии

Определение 1.1. Пусть X_1, X_2, \dots, X_n – выборка из какого-то распределения вероятности. Тогда ее выборочным средним называется случайная величина

$$\overline{X} = \frac{1}{n} \sum_{i=0}^{n} X_i$$

Определение 1.2. Пусть X_1, X_2, \dots, X_n – выборка из какого-то распределения вероятности. Тогда выборочная дисперсия – это случайная величина

$$S_n^2 = \frac{1}{n} \sum_{i=0}^n \left(X_i - \overline{X} \right)^2,$$

где \overline{X} – выборочное среднее.

Для нахождения этих двух значений можно воспользоваться методами mean и var библиотеки numpy, но для реализации была написана собственная функция sample_mean и sample_variance соответственно. Время работы на больших выборках почти одинаковое.

1.1 Распределение Пуассона

Выборочное среднее для выборки [2. 1. 1. 3. 0.] = 1.4 Выборочное среднее для выборки [2. 1. 2. 3. 7. 2. 3. 1. 2. 0.] = 2.3 Выборочная дисперсия для выборки [2. 1. 1. 3. 0.] = 1.04 Выборочная дисперсия для выборки [2. 1. 2. 3. 7. 2. 3. 1. 2. 0.] = 3.21

1.2 Распределение Эрланга

Выборочное среднее для выборки [9.43737905 11.94755981 1.6335522 11.63186523 1.95757948] = 7.321587156076815

Выборочное среднее для выборки [8.30297653 17.47684737 5.71182291 2.67860603 19.66877258 7.92660288 5.52776384 8.11891813 9.22277337 16.35132395] = 10.098640758 Выборочная дисперсия для выборки [9.43737905 11.94755981 1.6335522 11.63186523 1.95757948] = 21.11620307310885

Выборочная дисперсия для выборки [8.30297653 17.47684737 5.71182291 2.67860603 19.66877258 7.92660288 5.52776384 8.11891813 9.22277337 16.35132395] = 29.294400894

2 Нахождение параметров распределений событий

Для каждого из двух распределений будем строить оценку максимального правдоподобия.

2.1 Распределение Пуассона

Пусть функция распределения будет выглядеть следующим образом:

$$f(x,\theta) = \frac{\theta^x e^{-\theta}}{x!}, \quad x \ge 0$$

Тогда функция правдоподобия:

$$L(x,\theta) = \prod_{i=0}^{n} f(x,\theta) = \prod_{i=0}^{n} \left(\frac{\theta^{x_i} e^{-\theta}}{x_i!} \right) = e^{\theta n} \frac{\theta^{\sum_{i=0}^{n} x_i}}{\prod_{i=0}^{n} x_i!}$$

Возьмем от функции правдоподобия натуральный логарифм:

$$lnL(x,\theta) = -\theta n + \sum_{i=0}^{n} x_i \cdot ln\theta - ln \prod_{i=0}^{n} x_i!$$

Продифференцируем полученное выражение по θ и приравняем к нулю:

$$\frac{\partial lnL(x,\theta)}{\partial \theta} = -n + \frac{\sum_{i=0}^{n} x_i}{\theta} = 0$$

Будем решать это уравнение относительно θ :

$$\hat{\theta} = \frac{1}{n} \sum_{i=0}^{n} x_i$$

В итоге, получается, что оценка максимального правдоподобия параметра θ распределения Пуассона имеет вид выборочного среднего (см. определение 1.1).

Предложенная оценка $\hat{\theta}$ является <u>несмещенной</u>, так как выборочное среднее является в свою очередь несмещенной оценкой.

Состоятельность можно проверить по утверждению, что выборочные моменты k-го порядка сходятся κ k-ым моментам K, то есть:

$$\hat{\alpha_k} \xrightarrow{P} MX^k$$

В нашем случае k=1:

$$\hat{\alpha_k} \xrightarrow{P} MX$$

Следовательно оценка $\hat{\theta} = \hat{\alpha_k}$, которая является состоятельной.

Эффективность представленной оценки также подтверждается, так как $\hat{\theta}$ – оценка максимального правдоподобия, а такая оценка эффективна.

2.2 Распределение Эрланга

Рассмотрим функцию распределения, которая зависит от двух параметров:

$$f(x, m, \lambda) = \frac{\lambda^m x^{m-1}}{\Gamma(m)} e^{-\lambda x}, \quad m \in \mathbb{N}, \lambda > 0, x > 0$$

Построим функцию правдоподобия:

$$L(x,m,\lambda) = \prod_{i=0}^n f(x,m,\lambda) = \left(\frac{\lambda^m}{\Gamma(m)}\right)^n \prod_{i=0}^n x_i^{m-1} e^{-\lambda x_i} = \left(\frac{\lambda^m}{\Gamma(m)}\right)^n e^{-\lambda \sum_{i=0}^n x_i} \prod_{i=0}^n x_i^{m-1}$$

Возьмем натуральный логарифм от $L(x, m, \lambda)$:

$$lnL(x, m, \lambda) = mnln\lambda + (m - 1) \prod_{i=0}^{n} lnx_i - \lambda \sum_{i=0}^{n} x_i - nln\Gamma(m)$$

Продифференцируем полученное по λ и приравняем к нулю:

$$\frac{\partial lnL(x,m,\lambda)}{\partial \lambda} = \frac{mn}{\lambda} - \sum_{i=0}^{n} x_i = 0$$

Решая относительно λ , получим:

$$\hat{\lambda} = \frac{mn}{\sum_{i=0}^{n} x_i}$$

Также можно предложить оценку параметра λ , используя метод моментов.