

Prüfung

Digitale Signalverarbeitung

11.10.2006

Name	:	
Vorname	:	
Matrikelnummer	:	
Studiengang	:	
Klausurnummer	:	

Aufgabe	Punkte	
1		
2		
3		
Σ		
Note		

NAME:_

Aufgabe 1: Zeitdiskrete Faltung

(10 Punkte)

Gegeben seien die beiden zeitdiskreten Signale $x_1(n)$ und $x_2(n)$:

$$x_1(n) = \begin{cases} n-1, & n=0,1,2,3\\ 0, & \text{sonst} \end{cases}$$
 $x_2(n) = \begin{cases} n+1, & n=0,1\\ n-2, & n=2,3\\ 0, & \text{sonst} \end{cases}$

$$x_2(n) = \begin{cases} n+1, & n = 0, 1\\ n-2, & n = 2, 3\\ 0, & \text{sonst} \end{cases}$$

a.) Tragen Sie das Ergebnis der zeitdiskreten Faltung $y_a(n) = x_1(n) * x_2(n)$ in das nachfolgende Diagramm ein und geben Sie die jeweiligen Amplitudenwerte an.

b.) Die beiden Signale $x_1(n)$ und $x_2(n)$ werden nun mit Hilfe einer DFT der Länge 4 in den Frequenzbereich transformiert, dort multipliziert und anschließend mittels einer IDFT der Länge 4 zurücktransformiert. Tragen Sie das Ergebnis $y_b(n)$ der IDFT für n=0,1,2,3in das nachfolgende Diagramm ein und geben Sie die jeweiligen Amplitudenwerte an.

c.) Wie bezeichnet man die in Teilaufgabe b.) durchgeführte Faltung? Geben Sie die minimale DFT-Länge K_{\min} an, bei der gilt:

$$y_{\rm a}(n) = y_{\rm b}(n)$$
 für $n = 0, 1, 2, 3$.

Aufgabe 2: Entwurf eines FIR-Filters

(22 Punkte)

Es soll ein FIR-Filter mit nachfolgenden Eigenschaften entworfen werden:

$$\Omega_{\rm p} = 0.1\,\pi\,,\,\Omega_{\rm st} = 0.8\,\pi\,,\,\delta_{\rm st} = \delta_{\rm p} = 0.08\,,\,\Omega_{\rm c} = \frac{\Omega_{\rm p} + \Omega_{\rm st}}{2}$$

- a.) Skizzieren Sie das Toleranzschema und tragen Sie die alle oben genannten Größen mit den dazugehörigen Zahlenwerten ein.
- b.) Berechnen Sie Sperrdämpfung d_{st} und die Welligkeit im Durchlassbereich (Englisch: passband ripple) R_p jeweils in [dB].
- c.) Wie sind Formfaktor β und Filterordnung N_b bei Verwendung der modifizierten Fourierapproximation mit dem Kaiser-Fenster zu wählen?
- d.) Wie groß wäre die Filterordnung N_b^\prime bei Verwendung der Chebyshev-Approximation?

Im Weiteren wird mit der modifizierten Fourierapproximation nach c.) weitergearbeitet.

e.) Bestimmen Sie die Koeffizienten des Kaiser-Fensters w(n) und die Impulsantwort des FIR-Filters h(n). Die Werte für die modifizierte Besselfunktion erster Gattung mit nullter Ordnung (Englisch: 1st kind, 0th order) $I_0(x)$ entnehmen Sie bitte der nachfolgenden Tabelle (beim Nachschlagen in der Tabelle ist der x-Wert entsprechend zu runden).

x	$I_0(x)$	x	$I_0(x)$	x	$I_0(x)$
0.00	1.0000	0.60	1.0920	0.65	1.1084
		0.61	1.0952	0.66	1.1119
0.57	1.0829	0.62	1.0984	0.67	1.1154
0.58	1.0859	0.63	1.1017	0.68	1.1190
0.59	1.0889	0.64	1.1051	0.69	1.1226

Für die nachfolgenden Teilaufgaben sei ein FIR-Filter mit folgender Impulsantwort betrachtet:

$$h_2(n) = \begin{cases} 0.4, & n = 0, 3 \\ 1.0, & n = 1, 2 \\ 0, & \text{sonst} \end{cases}$$

f.) Bestimmen Sie die z-Transformierte $H_2(z)$ der Impulsantwort $h_2(n)$.

- g.) Welche der 5 folgenden Aussagen hinsichtlich der Phase von $H_2(z)$ trifft zu (genau eine Antwort)? Begründen Sie Ihre Auswahl!
 - (1) Das Filter ist linearphasig vom Typ I.
 - (2) Das Filter ist linearphasig vom Typ II.
 - (3) Das Filter ist linearphasig vom Typ III.
 - (4) Das Filter ist linearphasig vom Typ IV.
 - (5) Das Filter ist nicht linearphasig.
- h.) Berechnen Sie die Lage der Pol- und Nullstellen des Filters und skizzieren Sie das Pol-Nullstellen-Diagramm. (Hinweis: Eine der Nullstellen sollten Sie ohne komplizierte Rechnung ermitteln können).
- i.) Skizzieren Sie im nachfolgenden Diagramm ausgehend vom Pol-Nullstellen-Diagramm den Amplitudengang $|H_2(e^{j\Omega})|$ des Filters im Bereich $0 \le \Omega \le \pi$. Beschriften Sie die Achsen des Diagramms in geeigneter Weise.

MATRIKELNUMMER:_____

Aufgabe 3: Analyse eines LSI-Systems

(18 Punkte)

Gegeben sei nachfolgendes Pol-Nullstellen-Diagramm eines kausalen LSI-Systems:

Die Nullstellen liegen bei $z_{0,1}=-0.9,\,z_{0,2}=2$ und die Polstellen bei $z_{\infty,1}=0.5j,\,z_{\infty,2}=-0.5j.$

- a.) Ist das System stabil? Begründen Sie!
- b.) Bestimmen Sie die Übertragungsfunktion G(z) des Systems, so dass gilt:

$$G(z=1) = -1.52$$
.

- c.) Führen Sie eine Zerlegung der Übertragungsfunktion G(z) in ein Allpass-System $G_{AP}(z)$ und ein minimalphasiges System $G_{\min}(z)$ durch und geben Sie $G_{\min}(z)$ und $G_{AP}(z)$ an.
- d.) Ist das minimalphasige System $G_{\min}(z)$ invertierbar? Begründen Sie!

e.) Skizzieren Sie im nachfolgenden Diagramm den Amplitudengang $|G_{AP}(e^{j\Omega})|$ des Allpass-Systems im Bereich $0 \le \Omega \le \pi$ und tragen Sie alle wichtigen Größen und die dazugehörigen Zahlenwerte in das Diagramm ein!

- f.) Zeichnen Sie das Pol-Nullstellen-Diagramm des Allpass-Systems und geben Sie die Lage aller Pol- und Nullstellen an.
- g.) Skizzieren Sie das Blockschaltbild des Allpasses $G_{\rm AP}(z)$ in der Direktform I (Englisch: Direct Form I).
- h.) Bestimmen Sie die Impulsantwort $g_{AP}(n)$ des Allpasses mittels der inversen z-Transformation und geben Sie das Konvergenzgebiet (ROC) an.