UAM 항로설계를 위한 도심지 항공소음분석모델

발표자료(추가제출자료)

Team UAIN

- I. 활용 데이터 목록
- Ⅱ. 분석모델 개요
- Ⅲ. 분석모델 설계과정
- IV. 분석 결과 및 고찰
- V. 활용방안

I. 활용 데이터 목록

순번	데이터 제목	데이터 내용	데이터 제공기관
1	국토교통부_정류장별 이용량 현황	선택 지역범위내의 버스정류장 이용량 현황 정보	교통카드 빅데이터 통합정보시스템
2	국토교통부_대중교통 월간 통계자료	특정 월간 지하철, 버스등의 대중교통이용현황 정보	교통카드 빅데이터 통합정보시스템
3	국토교통부_용도별건물정보(반기)	건물정보를 GIS 코드, 용도 등으로 구분한 파일형식의 정보	국토교통부 V-World
4	용도별건물정보	건물정보를 GIS 코드, 용도 등으로 구분한 파일형식의 정보	국토교통부 V-World
5	Geocoder API 2.0 레퍼런스	입력 주소정보를 좌표정보로 반환한 정보	국토교통부 V-World
6	실시간 김포공항 소음측정 정보	김포공항 인근 실시간 수집되는 항공소음 정보	한국공항공사
7	항공기 출도착현황	김포공항에 운항하는 항공기정보(김포공항 항공운항정보)	한국공항공사
8	김포공항(RKSS) 항로정보	김포공항 항로 차트 및 항공운항관련 정보수록	항공정보포털 AIM
9	항공기소음 측정 운영지침	국내 주요 공항의 소음측정지점관련 주소정보 수록	국가법령정보센터
10	소음・진동관리법	국내 항공소음 및 주거/상업/공업지구, 도로교통소음 등의 소음/진동규정 수록	국가법령정보센터

II. 분석모델 개요

소음모델 수립의 필요성

UAM 운항 관점-

- UAM은 도심/저고도로 운항한다는 특징을 가짐
- UAM은 광역교통수요를 일부 대체할 것으로 기대
- 운용단계가 심화될수록 고정형에서 동적 항로계획으로 운용항로가 변화할 예정
- → 광역수요가 많이 몰리는 주거지 인근에서 UAM 비행이 이루어 질 수 있음

항공소음피해 관점

- 전국 주요공항들의 경우, '소음, 진동관리법 ' 에 의거 소음대책지역이 설정됨
- 각 지역은 24시간 평균 61~79 LdendB(A) 정도의 소음이 발생
- → 항공기 이착륙에 따라 24시간 평균 61~79 LdendB(A) 정도의 소음이 발생 하여 주민 생활에 지장 초래

II. 분석모델 개요

소음모델 특징

- 실제 항공소음및 기술기준 기반 소음 예측 모델 수립
- 지구분석데이터기반, 주거지/상업지별 소음 가중치 설정
- 실제 소음 측정데이터와 항공기 인증기준을 기반으로 모델을 수립
- 소음예측 모델 기반 추정치와 가중치의 결과를 포함하여 소음민감도를 산출함
 - → 항로주변의 소음민감도를 간편하게 산출하는 것이 가능

Ⅲ. 분석모델 설계과정

설계단계에서의 가정

- 소음은 지수적 (Exponential-scale, Log-scale) 으로 증가, 감소함
- 소음 민감도는 상업, 주거지구 등 지구별 종류만 영향을 줌 (교통량, 유동인구, 건물소음 등의 영향은 없음)

항공소음피해 관점

- 전국 주요공항들의 경우, '소음, 진동관리법 ' 에 의거 소음대책지역이 설정됨
- 각 지역은 24시간 평균 61~79 LdendB(A) 정도의 소음이 발생
- → 항공기 이착륙에 따라 24시간 평균 61~79 LdendB(A) 정도의 소음이 발생 하여 주민 생활에 지장 초래

별첨 1. UAM 예상 수요지역 분석

수집 데이터 샘플

기준일자	출발_구	출발_동	도착_구	도착_동	총_승객수	지하철_ 승객수	버스_ 승객수
20240501	가평군	가평읍	가평군	가평읍	1	1	0
20240501	가평군	가평읍	강남구	논현1동	9	9	0
20240501	가평군	가평읍	강남구	논현2동	11	11	0
20240501	가평군	가평읍	강남구	대치2동	5	5	0
20240501	가평군	가평읍	강남구	삼성1동	10	10	0
20240501	가평군	가평읍	강남구	삼성2동	1	1	0
20240501	가평군	가평읍	강남구	압구정동	2	2	0
20240501	가평군	가평읍	강남구	역삼1동	3	3	0
20240501	가평군	가평읍	강동구	둔촌1동	1	1	0
20240501	가평군	가평읍	강동구	명일1동	2	2	0
20240501	가평군	가평읍	강동구	성내2동	9	9	0
20240501	가평군	가평읍	강동구	암사2동	4	4	0
20240501	가평군	가평읍	강동구	천호1동	3	3	0

기준일자	승차_호선	승차_역	하차_호선	하차_역	총_승객수
20240531	우이신설선	4.19민주묘지	우이신설선	4.19민주묘지	9
20240531	우이신설선	4.19민주묘지	8호선	가락시장	1
20240531	우이신설선	4.19민주묘지	3호선	가락시장	1
20240531	우이신설선	4.19민주묘지	1호선	가산디지털단 지	3
20240531	우이신설선	4.19민주묘지	7호선	가산디지털단 지	8
20240531	우이신설선	4.19민주묘지	9호선	가양	1
20240531	우이신설선	4.19민주묘지	우이신설선	가오리	7
20240531	우이신설선	4.19민주묘지	2호선	강남	16
20240531	우이신설선	4.19민주묘지	분당선	강남구청	1
20240531	우이신설선	4.19민주묘지	5호선	강동	3
20240531	우이신설선	4.19민주묘지	8호선	강동구청	2
20240531	우이신설선	4.19민주묘지	2호선	강변(동서울터 미널)	9
20240531	우이신설선	4.19민주묘지	5호선	강일	2
20240531	우이신설선	4.19민주묘지	5호선	개롱	5
20240531	우이신설선	4.19민주묘지	1호선	개봉	2

별첨 1. UAM 예상 수요지역 분석

UAM 예상수요지역-

승차_역	승차_호선	승차_총_승객수	하차_역	하차_호선	하차_총_승객수
<u>강남</u>	<u>2호선</u>	<u>93889</u>	<u>강남</u>	<u>2호선</u>	<u>92528</u>
잠실(송파구청)	2호선	88927	잠실(송파구청)	2호선	88328
<u>홍대입구</u>	<u>2호선</u>	<u>75472</u>	<u>홍대입구</u>	<u>2호선</u>	<u>85454</u>
<u>서울역</u>	<u>1호선</u>	<u>75471</u>	<u>서울역</u>	<u>1호선</u>	<u>67652</u>
구로디지털단지	2호선	65511	구로디지털단지	2호선	65366
선릉	2호선	65200	삼성(무역센터)	2호선	65074
삼성(무역센터)	2호선	63814	역삼	2호선	63674
신림	2호선	61959	신림	2호선	59400
신도림	2호선	56662	선릉	2호선	58332
고속터미널	3호선	55962	을지로입구	2호선	57369
을지로입구	2호선	55383	신도림	2호선	56823
역삼	2호선	55260	고속터미널	3호선	55261
서울대입구(관악구청)	2호선	53409	성수	2호선	54728
가산디지털단지	7호선	50291	사당	2호선	51963
성수	2호선	49553	가산디지털단지	7호선	51215

UAM이 광역수요를 대체한다는 가정으로부터, 이용객이 많은 서울 도심내 주요 3개 지점(강남역, 홍대입구역, 서울역)에 대해 UAM이 잠재적으로 운항될 가능성이 있다고 판단함

지구데이터 수집-

목적: 예상 수요지역 3곳의 지적편집도 혹은 그와 유사한 데이터를 수집, 분석함으로써 주거지구, 상업지구의 비율을 알아보기 위함

수집 데이터: 국토교통부_용도별건물정보(반기), 용도별건물정보

데이터 정보-

제공기관: 국토교통부 V-World

형태: CSV, XML/JSON

데이터 활용방안-

- 1. 별첨 1을 통해 선정된 3개지역을 대상으로 각 역의 반경 500m(가로 세로 1km)범위 내 건축물 정보 수집
- 2. 특정크기의 격자를 설정하고 설정된 격자 내에 있는 주거용도, 상업용도의 건물의 비율을 계산
- 3. 특정방향의 항로를 설정하여 항로주위의 지구분석 결과만을 그래프로 표현

수집 데이터 샘플

법정동명	특수지구 분코드	특수지구 분명	지번	건물식별 번호	집합건물 구분코드	건물용도 분류명	건물높이
서울특별시 용산구 청파동1가	1	일반	Apr-63	10000	1	주거용	0
서울특별시 용산구 서계동	1	일반	235-23	10001	1	주거용	0
서울특별시 용산구 용문동	1	일반	38-152	10002	1	주거용	0
서울특별시 용산구 후암동	1	일반	254-77	10003	1	주거용	7.95
서울특별시 용산구 용문동	1	일반	1-57	10004	1	주거용	7.7
서울특별시 용산구 이태원동	1	일반	132-1	10005	1	상업용	14
서울특별시 용산구 후암동	1	일반	404-15	10006	1	주거용	7.1
서울특별시 용산구 후암동	1	일반	103-17	10007	1	상업용	0
서울특별시 용산구 한강로3가	1	일반	40-707	10008	1	상업용	0
서울특별시 용산구 후암동	1	일반	44-34	10010	1	주거용	0
서울특별시 용산구 보광동	1	일반	265-506	10012	1	주거용	6.7
서울특별시 용산구 원효로3가	1	일반	######	10013	1	상업용	0
서울특별시 용산구 보광동	1	일반	265-682	10015	1	주거용	0
서울특별시 용산구 보광동	1	일반	265-110	10016	1	주거용	0
서울특별시 용산구 후암동	1	일반	410-6	10017	1	주거용	0
서울특별시 용산구 후암동	1	일반	Jan-58	1E+08	1	주거용	12.47
서울특별시 용산구 한남동	1	일반	745-4	1E+08	1	주거용	8.79
서울특별시 용산구 이태원동	1	일반	######	1E+08	1	상업용	8.8
서울특별시 용산구 후암동	1	일반	406-46	1E+08	1	주거용	3.5

오른쪽과 같은 지적정보를 수집하여 QGIS 를 활용, 왼쪽과 유사한 지도정보를 획득하였다.

강남역 - 항로주변 상업/주거지 비율산출

좌측: 지도상에 붉은 실선으로 항로를 표시 / 중앙: 상업지구비율 / 우측: 주거지율비율

서울역 – 항로주변 상업/주거지 비율산출

홍대입구역 – 항로주변 상업/주거지 비율산출

항공소음 데이터 수집-

목적: 항공소음 예측을 위한 실제 항공소음 데이터 수집

수집 데이터: 한국공항공사_실시간 김포공항 소음측정 정보

데이터 정보-

제공기관: 한국 공항공사 형태: AIP(XML, JSON)

데이터 활용방안-

- 1. 실시간 수집 코드 작성 및 2024.06.01 13:00시부터 22:00시 까지의 소음데이터 수집
- 2. 해당 수집 데이터를 후술할 분석기준에 맞추어 세부 분석 진행

수집 데이터 샘플

ARP_SE	NMS_NM	NMT_DT	NMT_LVL	NMT_NO
GMP	이화마을	1326	56.98	2
GMP	길훈아파트	1326	51.33	15
GMP	소준마을	1326	59.67	5
GMP	신남초교	1326	53.17	12
GMP	김포공고	1326	70.55	4
GMP	SK허브수	1326	57.92	18
GMP	한양빌딩	1326	58.71	11
GMP	신촌마을	1326	44.58	17
GMP	고강아파트	1326	50.78	7

ARP_SE: 측정공항

NMS_NM: 측정지점

NMT_DT: 측정시각

NMT_LVL: 측정소음

NMT_NO: 측정기 번호

수집 데이터 샘플

Num	Estimated time Real_time range_time		Туре	RWY	
1	1320	1344	1354	DEP	14
2	1320	1332	1342	DEP	14
3	1325	1431	1441	DEP	14
4	1325	1339	1349	DEP	14
5	1325	1331	1321	ARR	32
6	1325	1315	1305	ARR	32
7	1330	1353	1403	DEP	14
8	1330	1357	1407	DEP	14

Estimated time : 계획된 시간

Real_time : 실제시간

range_time : 분석 시간범위

Type : 이착륙 유형

(DEP: 이륙, ARR: 착륙)

RWY : 사용 활주로 번호

수집데이터 기반분석 및 예측-

- 1) 실시간 수집된 항공소음을 항공운항데이터의 운항시간 범위에 해당하는 데이터로 한정하여 추출
- 2) 공항 접근경로상 way point(항로점)와 소음 측정지점과의 거리를 계산 *거리에 따른 소음예측을 진행하기 위함
- 3) 1), 2) 의 결과를 융합
- 4) 3)의 결과에서 1, 2시그마 범위의 데이터 추출
 - * 너무 크거나, 너무 작은 예외적인 데이터를 제외 하기 위함.
 - ** 1, 2 시그마 범위의 데이터만 실제 항공기가 해당 지점을 가장 가깝게 지나갔다 라고 간주함
 - ** 시그마 범위: 전체 데이터 중 1시그마(2.14%), 2시그마(13.6%), 3시그마(34.1%)에 위치할 확률
- 5) 4)의 과정을 통해 최종적으로 산출된 결과물을 활용하여 거리에 따른 소음수준을 예측하기위한 다항 회귀분석 진행

Log-Scale 회귀분석 결과

별첨 4. 소음영향 분석

소음영향분석 중간 분석단계- 항로별 소음 영역 지정(대입) 결과 샘플

강남역, 남북 항로

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
1	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
2	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
3	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
4	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
5	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
6	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
7	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
8	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
9	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
10	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
11	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
12	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
13	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
14	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
15	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
16	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
17	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
18	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0
19	0	0	0	0	65.78	66.89	68.25	70	72.48	76.74	70	76.74	72.48	70	68.25	66.89	65.78	0	0	0

항로가 설정된 중심 선이 속한 칸, 항로 중심 좌/우 각 6칸에 대하여 '통합모델의 예측 소음'의 거리에 따른 결과값을 대입

별첨4. 소음영향 분석

소음영향분석 중간 분석단계-지구별 가중치 할당 결과샘플

강남역, 남북 항로

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	0	0	0.222	0.263	0.154	0.119	0.124	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0	0	0
1	0	0	0	0	0.247	0.099	0.209	0.066	0.138	0.098	0.200	0.441	0.221	0.571	0.398	0.524	0.567	0	0	0
2	0	0	0	0	0.078	0.088	0.025	0.061	0.096	0.260	0.289	0.445	0.484	0.365	0.403	0.256	0.465	0	0	0
3	0	0	0	0	0.149	0.017	0.058	0.045	0.137	0.181	0.113	0.360	0.558	0.358	0.436	0.626	0.309	0	0	0
4	0	0	0	0	0.150	0.035	0.180	0.083	0.050	0.039	0.355	0.117	0.353	0.456	0.411	0.396	0.247	0	0	0
5	0	0	0	0	0.006	0.021	0.033	0.085	0.020	0.121	0.343	0.013	0.226	0.369	0.291	0.132	0.145	0	0	0
6	0	0	0	0	0.009	0.087	0.064	0.098	0.020	0.062	0.100	0.021	0.018	0.218	0.122	0.106	0.055	0	0	0
7	0	0	0	0	0.027	0.384	0.238	0.082	0.188	0.023	0.087	0.023	0.139	0.198	0.176	0.165	0.065	0	0	0
8	0	0	0	0	0.006	0.240	0.026	0.048	0.099	0.050	0.033	0.173	0.397	0.294	0.168	0.043	0.112	0	0	0
9	0	0	0	0	0.001	0.035	0.095	0.087	0.164	0.082	0.033	0.044	0.218	0.147	0.207	0.131	0.128	0	0	0
10	0	0	0	0	0.004	0.040	0.619	0.251	0.048	0.049	0.101	0.376	0.182	0.171	0.102	0.355	0.324	0	0	0
11	0	0	0	0	0.002	0.050	0.404	0.203	0.122	0.214	0.086	0.066	0.043	0.289	0.529	0.513	0.527	0	0	0
12	0	0	0	0	0.395	0.902	0.626	0.053	0.057	0.022	0.061	0.074	0.210	0.046	0.226	0.226	0.433	0	0	0
13	0	0	0	0	0.705	0.690	0.599	0.038	0.015	0.028	0.074	0.062	0.017	0.257	0.032	0.275	0.426	0	0	0
14	0	0	0	0	0.250	0.366	0.588	0.076	0.006	0.047	0.227	0.213	0.199	0.123	0.164	0.264	0.266	0	0	0
15	0	0	0	0	0.311	0.593	0.003	0.025	0.002	0.021	0.054	0.049	0.076	0.091	0.296	0.438	0.482	0	0	0
16	0	0	0	0	0.113	0.786	0.205	0.118	0.058	0.017	0.057	0.298	0.239	0.149	0.134	0.343	0.052	0	0	0
17	0	0	0	0	0.062	0.729	0.411	0.247	0.078	0.001	0.110	0.062	0.480	0.230	0.210	0.207	0.105	0	0	0
18	0	0	0	0	0.294	0.287	0.786	0.137	0.254	0.007	0.089	0.474	0.468	0.563	0.593	0.469	0.378	0	0	0
19	0	0	0	0	0.197	0.140	0.877	0.542	0.585	0.059	0.004	0.068	0.153	0.564	0.480	0.424	0.248	0	0	0

항로가 설정된 중심 선이 속한 칸, 항로 중심 좌/우 각 6칸에 대하여 소음영향 분석 방법의 5) 에 해당하는 공식을 사용하여(소음을 곱하지는 않음) 해당항로의 지구별 가중치를 모두 표시

별첨 4. 소음영향 분석

강남역 – 소음 가중치 분포도

각 격자별로 '소음영향 분석 방법 5)' 에 따라 소음가중치가 도출되고, 각 격자의 값을 항로의 분석범위 전체에 대해 표현해보면 위와 같음

별첨 4. 소음영향 분석 결과

강남역 - 평균 소음 가중치 이상영역

지역	항로	평균 소음 가중치 이상 영역 개수	전체 영역의 개수	평균이상 비율	소유	음가중치 값
강남역	남북 항로	<u>129</u>	<u>380</u>	<u>33.947% (최대)</u>		
강남역	동서 항로	125	380	32.895%	<u>최대값</u>	65.41
강남역	남동- 북서 항로	<u>112</u>	380	<u> 29.474% (최소)</u>	<u>최소값</u>	<u>0.0</u>
강남역	남서- 북동 항로	117	380	30.789%	평균값	8.70

별첨 5. 최종 데이터 분석결과

강남역

강남역의 소음영향분석결과 소음영향도가 평균 이상으로 예상되는 범위는 분석범위내에서 평균 32.8%이며 최대값을 보이는 남북항로와 최소값을 보이는 남동-북서 항로간 영역 차이는 약 3.4%p의 차이를 보였다. 소음영향범위가 최소가 되는 남북방향의 항로를 설정하는 것이 항로상 소음영향을 줄이는 방법이 될 것이다.

서울역

서울역의 소음영향분석결과 소음영향도가 평균 이상으로 예상되는 범위는 분석범위내에서 평균 36.6%이며 최대값을 보이는 동서항로와 최소값을 보이는 남서-북동 항로간 영역 차이는 약 7.9%p의 차이를 보였다. 소음영향범위가 최소가 되는 남서-북동방향의 항로를 설정하는 것이 항로상 소음영향을 줄이는 방법이 될 것이다.

홍대입구역

홍대입구역의 소음영향분석결과 소음영향도가 평균 이상으로 예상되는 범위는 분석범위내에서 평균 32.8%이며 최대값을 보이는 동서항로와 최소값을 보이는 남서-북동 항로간 영역 차이는 약 6.6%p의 차이를 보였다. 소음영향범위가 최소가 되는 남서-북동방향의 항로를 설정하는 것이 항로상 소음영향을 줄이는 방법이 될 것이다.