

Lecture 14 Turing Machines and Computability

Slides by David Albrecht (2011), some additions and modifications by Graham Farr (2013, 2016).

FIT2014 Theory of Computation

Overview

- Turing Machines
- Converting Finite Automaton to a Turing Machine
- Building Turing Machines
- Turing machines for computing functions
- Church's thesis

Effective Process

- Can be done with pencil and paper.
- Is a finite set of instructions.
- Demands neither insight or ingenuity.
- Will definitely work without error.
- Produces in a finite number of steps either:
 - A final result, or
 - If the result is a sequence, each symbol in the sequence.

Alan Turing (1912-1954)

http://www.npg.org.uk/collections/search/portrait/mw165875

How to model computation?

Consider a person doing a computation (pencil & paper).

- At any given time, the person is ...
- focused on some particular position on the paper;
- reading the symbol at the current position;
- •in some particular mental **state**, i.e., is doing some particular part of the computation.

Depending on the state and symbol, the person then ...

- writes a symbol there
 - (possibly overwriting what is already there);
- •may change their state;
- owes their attention nearby.

Turing machine

Set-up:

- infinitely long **tape** divided into cells
- each cell may contain a **symbol** from a finite alphabet
- head scans one tape cell at a time
- at any time, the machine is in some state

Program:

• For each state and symbol, specify the next state, next symbol, and direction (one step left, or one step right).

Computation step:

At each step, apply the appropriate instruction.

Turing machine

Tape Head can:

- Move left and right.
- Read letters from the tape.
- Write letters onto the tape.
- Computation is **deterministic**.

TM Components

- A Tape and Tape Head
- An Input Alphabet
- A Tape Alphabet
- A finite set of states
 - Each state is numbered by an integer ≥ 1 .
 - Start State (1)
 - Accept State (2)
 - Note: a Reject state is optional (if crash = reject).
- A finite set of rules letter → letter, direction between states.

Definitions

For a Turing Machine T

- Accept(T)
 - The set of strings leading to the Accept state.
 - Called the language accepted by T.
- Reject(T)
 - The set of strings that crash, or lead to a Reject state (if there is one), during execution.
- Loop(T)
 - The set of strings that cause T to loop forever.

Example

- Accept(T) = strings with a double aa
- Reject(T) = strings without a double aa that end in a
- Loop(T) = ε or strings without a double aa that end in b

Regular Languages

Every Regular Language can be accepted by a Turing Machine.

Convert Finite Automaton into a Turing Machine

- Label start state with 1.
- Label all other states with a integer ≥ 3 .
- Change the edge labels.
 - \circ a to a \rightarrow R
 - b to b→R
- Delete the second circle from all the Final states, and add an edge from each Final state to **Accept 2**, labelled with $\Delta \rightarrow \mathbf{R}$.

EVEN-EVEN

Problem

Build a Turing Machine that accepts the language $\{a^nb^n : n \ge 0\}$.


```
If the current letter is blank, then Accept string.
Loop {
  If current letter is a, then change a to A & move right.
  Move right over any a's and B's.
  If current letter is b, then change b to B & move left.
  Move left over any B's.
  If current letter is A, then move right & exit the loop.
  Else if current letter is a move left over any a's.
  If current letter is A, then move right.
Move right over any B's.
If current letter is blank, then Accept string.
```


Problem

Build a Turing Machine that accepts the language $\{a^nb^na^n: n \ge 0\}$.


```
Loop {
  If current letter is blank, then Accept string.
  If current letter is a, then change a to A & move right.
  Move right over a*bb*.
  If current letter is a, then move left.
  If current letter is b, then change b to a & move right.
  Move right over any a's.
  If current letter is blank, then delete 2 a's on the left.
  Move left over any a' s and b' s.
  If current letter is A, then move right.
```

TM for anbnan

Other Machines

Queue automaton

Like a deterministic PDA, but uses a Queue.

2PDA

Like a deterministic PDA, but with 2 Stacks.

NTM

A Nondeterministic Turing Machine.

kTM

A Turing Machine with k Tapes.

Theorems

- Any language which a Turing machine can accept can also be defined by any of these machines, and visa-versa.
- There are algorithms to convert all these machines (including Turing Machines) into each other.

Turing machines for computing functions

So far, our Turing machines just accept/reject. TMs can also compute functions.

What kinds of objects can Turing machines work with?

any objects that can be encoded as strings ...

ASCII Code

0	bbaaaa	5	bbabab
1	bbaaab	6	bbabba
2	bbaaba	7	bbabbb
3	bbaabb	8	bbbaaa
4	bbabaa	9	bbbaab

Binary Code

0	а	
1	b	
2	ba	
3	bb	
4	baa	
5	bab	
6	bba	
7	bbb	
•	•	

Unary Code

0	Δ	Δ
1	a	a
2	aa	a ²
3	aaa	a^3
4	aaaa	a ⁴
5	aaaaa	a^5
6	aaaaaa	a^6
7	aaaaaaa	a^7
•	•	•

Successor

Using the unary code for natural numbers build a Turing Machine that represents the function

$$f(n) = n + 1.$$

Successor

Double

Using the unary code for natural numbers build a Turing Machine that represents the function

$$f(n) = 2*n.$$

Double

Unary Code for Tuples of Integers

- Tuples of natural numbers
- Example: 1, 0, 2, 3
- Encoding:
 - Each integer is coded using the unary code as a string of a's
 - Integers are separated by a b.
- Example: abbaabaaa

Addition

Using the unary code of natural numbers build a Turing Machine that represents the function f(n, m) = n+m.

Addition

Monus

Using the unary code of tuples of natural numbers build a Turing Machine that represents the function:

$$f(n,m) = \begin{cases} n-m, & n \ge m \\ 0, & \text{Otherwise} \end{cases}$$

Definition

- A function is **computable** if it can be represented as:
- A Turing Machine
- Input
 - sequences of natural numbers
- Output
 - one natural number

Variations on Turing machines

- Direction: stay still, as well as Left/Right
- Tapes:
 - two-way infinite
 - multiple tapes
 - separate input, output, work tapes
 - "tapes" of 2 or more dimensions

• • • • •

Same class of computable functions

Other approaches to computability

recursive function theory

starting with Kurt Gödel, 1931

lambda calculus

Alonzo Church, 1936

Turing machines

Alan Turing, 1936-37

Same class of computable functions

Kurt Gödel (1906-1978)

Alonzo Church (1903-1995)

Church-Turing Thesis

Any function which can defined by an algorithm can be represented by a Turing Machine.

Note: not a Theorem! But widely accepted.

Evidence:

- different approaches to computability end up in agreement
- long experience, that algorithms can be implemented as programs, and therefore on Turing machines
- no known counterexamples, i.e., no algorithms which seem to be unimplementable

Alan Turing

Alan Turing Centenary Year (2012) website:

http://www.turingcentenary.eu/

B. Jack Copeland, Turing: Pioneer of the Information Age, OUP, 2013. Andrew Hodges, Alan Turing: The Enigma, Vintage, London, 1983.

Andrew Hodges, Turing, Phoenix, London, 1997.

Turing bibliography: http://www.turing.org.uk/sources/biblio.html

G. Farr, Calls for a posthumous pardon ... but who was Alan Turing?, The Conversation, 22 Dec 2011,

https://theconversation.com/calls-for-a-posthumous-pardon-but-who-was-alan-turing-4773

G. Farr, The Imitation Game: is it history, drama or myth?, The Conversation, 9 Jan 2015,

https://theconversation.com/the-imitation-game-is-it-history-drama-or-myth-35849

Revision

- Know what a Turing Machine is, and how to use one.
- Be able to convert a Finite Automaton into a TM.
- Be able to build a Turing Machine to define a language.
- Know the unary code for natural numbers, and tuples
- Know what a computable function is, and how to define one using a TM.
- Know and understand the Church-Turing Thesis.

Turing machine software

(see Moodle)

Tuatara (graphical environment)

Reading:

Sipser, Ch 3: Section 3.1, pp. 165-176, 181-190.

Preparation:

Sipser, Ch 3, start & end of Section 3.2; Section 3.3