

CCUS CAPABILITIES AND INITIATIVES AT ICES, A*STAR

Dr Chen Luwei

Process & Catalysis Research
Institute of Chemical and Engineering Sciences
A*STAR

July 23, 2021 ARES PUBLIC

Outline

Introduction

CO₂ Mineralisation

CO₂ to fuels and chemicals

CCU Translational Testbed (CCUTT)

Summary

CO₂ can be a valuable raw material, not just a climate killer

- CO₂-based products (building materials, chemicals, fuels) is a trillion-dollar market
- CO₂ can be **reused** instead of pulling carbon from fossil sources
- CCU technology is key to helping us meet climate goals as well as economic goals

<u>Using CO2 as an industrial feedstock could be a game-changer | World Economic Forum (weforum.org)</u>

CO2 can be a valuable raw material, not just a climate killer. Here's how | World Economic Forum (weforum.org)

CCUS value chain at ICES

Capture

 Ammonia-based Low Conc. CO₂ Capture

Storage

 Feasibility study of storage of CO₂ in regional reservoirs (with NUS)

Utilisation

- CO₂ Mineralisation
- CO₂ to Fuels\
 Chemicals\Materials

- Process Safety
- Process Design
- Techno-Economic Analysis + Life Cycle Assessment
- Carbon Capture and Utilisation Translational Testbed

CO₂ Mineralisation

Global warming has a large impact on Singapore

- Sea levels will rise up to 5 m by 2300
 if CO₂ reduction targets are not met
- 30% land area of Singapore is lower than 5 m above sea level, including areas of high economic importance like Jurong Island
- Large quantities of sand required for coastal protection

https://www.straitstimes.com/singapore/national-day-rally-2019-100-billion-needed-to-protect-singapore-against-rising-sea-levels

CO₂ Mineralisation generates "Alternative Sand"

CO₂ Mineralisation

Olivine: $Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$

Serpentine: $Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O$

- Solid carbonated mineral can be stored **safely and permanently**, 20 30 kt CO₂/ha
- Natural minerals, mineral waste from construction & demolition and incineration bottom ash (IBA) can be used as feedstock for mineralisation

Integration of CO₂ Mineralisation Tech with CO₂ Capture

- Flexible in capturing different CO₂ concentrations, including dilute CO₂ in flue gas (typical of Singapore's emissions)
- Comparatively low energy cost operates at room conditions
- Avoids the use of environmentally unfriendly binders or additives

CO₂ Mineralisation brings 3R benefits to Singapore

ARES PUBLIC

ICES' CO₂ Mineralisation technology has attracted interest from public agencies and industries

- Produced up to bench scale
- Funding to scale up mineralisation for field testing
- Collaboration opportunities

CO₂ Mineralisation Package Carbonated aggregates

CO₂ abatement substitute for sand or aggregate

Valuable products Silica, MgCO₃

Advantages of Substitute Natural Gas as an energy carrier

CO₂ methanation using renewable H₂

Schaaf *et al.* Energy, Sustainability and Society DOI 10.1186/s13705-014-0029-1

- 1. Simpler to handle / transport
- 2. Mature gas grid system
- 3. Can be stored long-term
- 4. High storage capacity

Audi PtG e-Gas project

Unique advantages of ICES-IHI Catalyst for methanation reaction

- Well dispersed Ni nanoparticles protected by porous SiO₂
- Flexible for a wide range of Ni loading
- Enhanced resistance to sintering, coking and S poisoning
- Easy to scale up

ICES-IHI catalyst

Commercial catalyst

Ni#mSiO₂ Dispersed Ni NPs in porous SiO₂ matrix

After reaction

Lab and field test of catalyst stability

(1001)

Translating science to industrial application

A demonstration unit of the new technology by IHI and ICES is set for launch on Jurong Island on May 10. The development makes economic and environmental sense for Jurong Island's energy-intensive industries amid Singapore's new carbon tax that kicks in this year. PHOTO THE PROPERTY OF THE PHOTO THE PHOTO

2 kg/d Demo unit ICES 50 kg/d IHI Yokohama 0.5 tonne/d Industrial-scale demo at IHI, Soma

CO₂-based jet fuel offers a potential solution for decarbonisation of aviation industry

Existing alternative technologies have limitations

- Battery and H₂ have low energy densities compared to hydrocarbon fuels
- Biofuel is limited (< 0.1% of total SAF in 2018)

Z. Jiang, P. Edwards*, et al, Phil. Trans. R. Soc. A (2010), **368,3343.**

Direct thermal catalytic conversion of CO₂ to jet fuel

ICES is developing a thermal catalytic process to **directly convert CO₂ into carbon-neutral liquid fuel** which has potential for the decarbonisation of aviation industry as drop in fuel

ICES' approach:

One step mild exothermic reaction $CO_2 + H_2$

- Smaller footprint
- Simpler process
- Higher energy efficiency
- Cost reduction

Current **two-step** approach:

ARES PUBLIC

Benchmarking ICES Catalysts with Published Results

Supported by UGT A*STAR seed funding

TRL2~3, 1 TD submitted

[1]. Environmental Progress & Sustainable Energy, 38, 1, 98
[2]. Nature Comm. 2017, 8, 15174
[3]. Catal. Sci. Technol., 2018,8, 4097
[4] J. Mater. Chem. A, 2020, https://doi.org/10.1039/D0TA046

[5] Nat Commun. 2020, 11, 6395

08F

Mazelike nano-reactor for enhanced catalysis in CO₂ to methanol

ICES-NUS Collaboration

 Cu activity and selectivity: 2~5 times higher than commercial catalyst

High stability and low metal content

Mohammadreza Kosari et al, Advanced Functional Materials https://doi.org/10.1002/adfm.202102896 ARES PUBLIC

Catalytic CO₂ conversion development at ICES

- Kerosene/methanol (CCUS OTR)
- Light olefins (industrial collaboration)
- Methane (industrial collaboration)

Catalyst design/ scale up

Reactor/ process design

System integration

Accelerated catalyst development platform **CCU Translational** Testbed (CCUTT)

Pilot plant & Commercialisation

CCU Translational Testbed (CCU-TT)

State of the Industry: The road to commercialisation

Research

mg - g / d

Invention & Lab Validation (TRL 1-3)

Test bedding of emerging technologies

kg/d

Testbedding & Demonstration (TRL 4-7)

Industrial Pilot t/d

Industrial Adoption kt-Mt / d

> Technology Adoption (TRL 8-9)

Increasing scale, Increasing capital costs, higher cost of failure

Typical Timeline 8 – 10 Years

ARES PUBLIC

How do we transform the speed of technology development for multiple emerging technologies?

Can we move from the conventional way.....

Invention & Technology Testbedding & Lab Validation Adoption **Demonstration** (TRL 1-3) (TRL 8-9) (TRL 4-7) g/d kg/d t/d kt/d

.....to the future?

- Faster technology development and implementation
- Greater flexibility
- De-risk technology adoption
- Reduced capital costs

(iooi)

(4)

New paradigm of testbedding and production:

A Future-State approach to supporting the Green Economy

Research

Accelerated CCU Technology Translation

Industrial **Pilot**

Carbon Capture

The Future of Chemical Processing

- Modular testbed for multiple technologies
- Data-driven insights
- Land- & cost-effective
- De-risk translation of chemical processes
- Cutting edge workforce

Industrial Adoption

- New, sustainable production paradigms
- Accelerated uptake of CCU technologies

Key Takeaways

- ICES is active in research areas of CCUS such as CO₂ capture, CO₂ mineralisation and CO₂ to fuels/chemicals with different TRLs
- A unique first-in-its-class flexible modular plug and play tested (CCU-TT) is at the conceptual design phase.
- We are looking for researchers and industrial partners for collaboration in CCUS

THANK YOU

enquiry@ices.a-star.edu.sg www.a-star.edu.sg/ices

Other capabilities

CO2 to polymers at ICES

Enhanced oil recovery research at A*STAR and NUS

- **ICES** has set up state of the art facilities to test EOR formulations under real life (reservoir) conditions in microfluidic and core flood experiments.
- A strong background in nanoscience, polymer science and formulation to enable development and screening of nanofluids for EOR, including CO₂ based EOR
- Modelling at IHPC and AFM studies at IMRE complement the experimental findings
- **NUS:** Petroleum Engineering (Prof Lau Hon Chung) *Mobility control with Pickering emulsions*
- **IHPC:** MSE (Zheng Jianwei) *Modelling of nanoparticle-rock surface-polymer interaction*
- **ICES:** FMP (Alex van Herk) *Polymer & nanocolloid synthesis*
- **IMRE:** ACI (Sean O'Shea)- *Colloidal AFM of nanoparticle-rock interactions, ellipsometry*
- Collaborators:
- **NTNU** (Norway): Petroleum Engineering (Prof Ole Torsaeter) *CT imaging of cores*

AFM droplet probe

Reservoir condition core flood