Model Evaluation and Information Criteria

Felipe José Bravo Márquez

September 29, 2021

Model Evaluation and Information Criteria

- In this class we will introduce various concepts for evaluating statistical models.
- According to [McElreath, 2020], there are two fundamental kinds of statistical error:
 - Overfitting: models that learn too much from the data leading to poor prediction.
 - Underfitting: moderls that learn too little from the data, which also leads to poor prediction.
- We will study two common families of approaches to tackle these problems.
 - Regularization: a mechanism to tell our models not to get too excited by the data.
 - Information criteria: a scoring device to estimate predictive accuracy of our models.
- In order to introduce information criteria, this class must also introduce some concepts of information theory.

- In the class of linear regression we learned that including more attributes can lead to a more accurate model.
- However, we also learned that adding more variables almost always improves the fit of the model to the data, as measured by the coefficient of determination R².
- This is true even when the variables we add to a model have no relation to the outcome.
- So it's no good to choose among models using only fit to the data.

- While more complex models fit the data better, they often predict new data worse.
- This means that a complex model will be very sensitive to the exact sample used to fit it.
- This will lead to potentially large mistakes when future data is not exactly like the past data.
- But simple models, with too few parameters, tend instead to underfit, systematically over-predicting or under-predicting the data.
- Regardless of how well future data resemble past data.
- So we can't always favor either simple models or complex models.
- Let's examine both of these issues in the context of a simple data example.

 We are going to create a data.frame containing average brain volumes and body masses for seven hominin species.

- It's not unusual for data like this to be highly correlated.
- Brain size is correlated with body size, across species.

- We will model brain size as a function of body size.
- We will fit a series of increasingly complex model families and see which function fits the data best.
- Each of these models will just be a polynomial of higher degree.

Let's calculate R² for each of these models:

```
> summary(reg.ev.1)$r.squared
[1] 0.490158
> summary(reg.ev.2)$r.squared
[1] 0.5359967
> summary(reg.ev.3)$r.squared
[1] 0.6797736
> summary(reg.ev.4)$r.squared
[1] 0.8144339
> summary(reg.ev.5)$r.squared
[1] 0.988854
> summary(reg.ev.6)$r.squared
[1] 1
```

- As the degree of the polynomial defining the mean increases, the fit always improves.
- The sixth-degree polynomial actually has a perfect fit, $R^2 = 1$.

Polynomial linear models of increasing degree, fit to the hominin data. Each plot shows the predicted mean in black, with 89% interval of the mean shaded. R^2 , is displayed above each plot. (a) First-degree polynomial. (b) Second-degree. (c) Third-degree. (d) Fourth-degree. (e) Fifth-degree. (f) Sixth-degree. Source: [McElreath, 2020].

- We can see from looking at the paths of the predicted means that the higher-degree polynomials are increasingly absurd.
- For example, reg.ev.6 the most complex model makes a perfect fit, but the model is ridiculous.
- Notice that there is a gap in the body mass data, because there are no fossil hominins with body mass between 55 kg and about 60 kg.
- In this region, the models has nothing to predict, so it pays no price for swinging around wildly in this interval.
- The swing is so extreme that at around 58 kg, the model predicts a negative brain size!
- The model pays no price (yet) for this absurdity, because there are no cases in the data with body mass near 58 kg.

- Why does the sixth-degree polynomial fit perfectly?
- Because it has enough parameters to assign one to each point of data.
- The model's equation for the mean has 7 parameters:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \beta_5 x_i^5 + \beta_6 x_i^6 + \epsilon_i \quad \forall i$$

and there are 7 species to predict brain sizes for.

- So effectively, this model assigns a unique parameter to reiterate each observed brain size.
- This is a general phenomenon: If you adopt a model family with enough parameters, you can fit the data exactly.
- But such a model will make rather absurd predictions for yet-to-be-observed cases.

Too few parameters hurts, too

- The overfit polynomial models manage to fit the data extremely well.
- But they suffer for this within-sample accuracy by making nonsensical out-of-sample predictions.
- In contrast, underfitting produces models that are inaccurate both within and out of sample.
- For example, consider this model of brain volume:

$$y_i = \beta_0 + \epsilon_i \quad \forall i$$

- There are no predictor variables here, just the intercept β_0 .
- We can fit this model as follows:

```
> reg.ev.0 <- lm( brain ~ 1 , data=d )
> summary(reg.ev.0)$r.squared
[1] 0
```

• The value of R2 is 0.

Too few parameters hurts, too

This model estimates the mean brain volume, ignoring body mass.

- As a result, the regression line is perfectly horizontal and poorly fits both smaller and larger brain volumes.
- Such a model not only fails to describe the sample.
- It would also do a poor job for new data

Roadmap

- The first thing we need to navigate between overfitting and underfitting problems is a criterion of model performance.
- We will see how information theory provides a useful criterion for model evaluation: the out-of-sample deviance.
- Once we learn about this cretierion we will se how both regularization and information criteria help to improve and estimate the out-of-sample deviance of a model.
- As usual, we will introduce these concepts with an example.

The Weatherperson

- Suppose in a certain city, a certain weatherperson issues uncertain predictions for rain or shine on each day of the year.
- The predictions are in the form of probabilities of rain.
- The currently employed weatherperson predicted these chances of rain over a 10-day sequence:

Day	1	2	3	4	5	6	7	8	9	10
Prediction	1	1	1	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Observed	ج	ج	ج	:	: Ö:	:	:Ö:	:Ö:	Ö	Ö:

- A newcomer rolls into town, and this newcomer boasts that he can best the current weatherperson, by always predicting sunshine.
- Over the same 10 day period, the newcomer's record would be:

Day	1	2	3	4	5	6	7	8	9	10
Prediction										
Observed	جي	جي	جي	÷Ö:	÷Ö:	÷Ö:	:Ö:	Ö:	Ö:	:Ö:

The Weatherperson

- Define hit rate as the average chance of a correct prediction.
- So for the current weatherperson, she gets $3 \times 1 + 7 \times 0.4 = 5.8$ hits in 10 days, for a rate of 5.8/10 = 0.58 correct predictions per day.
- In contrast, the newcomer gets $3 \times 0 + 7 \times 1 = 7$, for 7/10 = 0.7 hits per day.
- The newcomer wins.
- Let's compare now the two predictions using another metric, the joint likelihood: ∏ f(y_i; θ) for a frequentist model or ∏ f(y_i|θ) for a Bayesian one.
- The joint likelihood corresponds to the joint probability of correctly predicting the observed sequence.
- To calculate it we must first compute the probability of a correct prediction for each day.
- Then multiply all of these probabilities together to get the joint probability of correctly predicting the observed sequence.

The Weatherperson

- The probability for the current weather person is $1^3 \times 0.4^7 \approx 0.005$.
- For the newcomer, it's $0^3 \times 1^7 = 0$.
- So the newcomer has zero probability of getting the sequence correct.
- This is because the newcomer's predictions never expect rain.
- So even though the newcomer has a high average probability of being correct (hit rate), he has a terrible joint probability (likelihood) of being correct.
- And the joint likelihood is the measure we want.
- Because it is the unique measure that correctly counts up the relative number of ways each event (sequence of rain and shine) could happen.
- In the statistics literature, this measure is sometimes called the log scoring rule, because typically we compute the logarithm of the joint probability and report that.

Information and uncertainty

- So we want to use the log probability of the data to score the accuracy of competing models.
- The next problem is how to measure distance from perfect prediction.
- A perfect prediction would just report the true probabilities of rain on each day.
- So when either weatherperson provides a prediction that differs from the target, we can measure the distance of the prediction from the target.

Information and uncertainty

- What kind of distance should we adopt?
- Getting to the answer depends upon appreciating what an accuracy metric needs to do.
- It should appreciate that some targets are just easier to hit than other targets.
- For example, suppose we extend the weather forecast into the winter. Now there
 are three types of days: rain, sun, and snow.
- Now there are three ways to be wrong, instead of just two.
- This has to be reflected in any reasonable measure of distance from the target, because by adding another type of event, the target has gotten harder to hit.
- Before presenting a distance metric that satisfies the properties described above, we must introduce some concepts from information theory.

Information Theory

 The field of information theory, with Claude Shannon as one of its pioneering figures, was originally applied to problems of message communication, such as the telegraph.

- The basic insight is to ask: How much is our uncertainty reduced by learning an outcome?
- To answer this question we need a way to quantify the uncertainty inherent in a probability distribution.

Entropy

- Information entropy is a function that measures the uncertainty on probability functions.
- Let X be a discrete random variable of m different possible events, with a probaility mass function f, the entropy of X is definined as follows:

$$H(X) = -\mathbb{E}(\log f(x)) = -\sum_{i=1}^{m} f(x_i) \log f(x_i)$$
 (1)

- Usually we use log base 2, in which case the entropy units are called bits [Murphy, 2021].
- If X is continuous with density function f, the entropy H(X) takes the following form:

$$H(X) = -\mathbb{E}(\log f(x)) = -\int f(x) \log f(x) dx \tag{2}$$

 In plainer words: "The uncertainty contained in a probability distribution is the negative average log-probability of an event".

Entropy

- An example will help to demystify the function H(X).
- To compute the information entropy for the weather, suppose the true probabilities of rain (X=1) and shine (X=2) are $f(1)=\mathbb{P}(X=1)=0.3$ and $f(2)=\mathbb{P}(X=2)=0.7$, respectively.
- Then:

$$H(X) = -(f(1) \log f(1) + (f(2) \log f(2)) \approx 0.88$$

As an R calculation:

```
> f <- c( 0.3 , 0.7 )
> -sum( f*log2(f) )
[1] 0.8812909
```

Entropy

- Suppose instead we live in Abu Dhabi.
- Then the probabilities of rain and shine might be more like f(1) = 0.01 and f(2) = 0.99.

```
> f <- c( 0.01 , 0.99 )
> -sum( f*log2(f) )
[1] 0.08079314
```

- Now the entropy is about 0.08.
- Why has the uncertainty decreased?
- Because in Abu Dhabi it hardly ever rains.
- Therefore there's much less uncertainty about any given day, compared to a place in which it rains 30% of the time.
- These entropy values by themselves don't mean much to us, though.
- Instead we can use them to build a measure of accuracy. That comes next.

- How can we use information entropy to say how far a model is from the target?
- The key lies in divergence.
- Divergence: The additional uncertainty induced by using probabilities from one distribution to describe another distribution.
- This is often known as Kullback-Leibler divergence or simply K-L divergence, named after the people who introduced it for this purpose.
- Suppose for example that the true distribution of events is encoded by function f: f(1) = 0.3, f(2) = 0.7.
- Now, suppose we believe that these events happen according to another function q: q(1) = 0.25, q(2) = 0.75.
- How much additional uncertainty have we introduced, as a consequence of using q to approximate f?
- The answer is the the K-L divergence $D_{KL}(f, q)$.

• If *f* and *q* are probability mass functions, the K-L divergence is defined as follows:

$$D_{KL}(f,q) = \sum_{i=1}^{m} f(x_i)(\log f(x_i) - \log q(x_i)) = \sum_{i=1}^{m} f(x_i) \log \left(\frac{f(x_i)}{q(x_i)}\right)$$
(3)

```
> f<-c(0.3,0.7)
> q<-c(0.25,0.75)
> sum(f* log2(f/ q))
[1] 0.00923535
```

This naturally extends to continuous density functions as well [Murphy, 2021]:

$$D_{KL}(f,q) = \int f(x) \log \left(\frac{f(x)}{q(x)}\right) dx \tag{4}$$

- In plainer language, the divergence is the average difference in log probability between the target (f) and model (g).
- This divergence is just the difference between two entropies.
- The entropy of the target distribution f and the cross entropy arising from using q to predict f

Cross entropy and divergence

 When we use a probability distribution q to predict events from another distribution f, this defines something known as cross entropy H(f, q):

$$H(f,q) = -\sum_{i=1}^{m} f(x_i) \log q(x_i)$$
 (5)

- The notion is that events arise according to f, but they are expected according to the q, so the entropy is inflated, depending upon how different f and q are.
- Divergence is defined as the additional entropy induced by using q.
- So it is the difference between H(f), the actual entropy of events, and H(f,q):

$$D_{KL}(f,q) = H(f,q) - H(f)$$
(6)

- So divergence really is measuring how far q is from the target f, in units of entropy.
- Notice that which is the target matters: H(f,q) does not in general equal H(q,f).

- When f = q, we know the actual probabilities of the events.
- In that case:

$$D_{KL}(f,q)=D_{KL}(f,f)=0$$

```
> q <- f
> sum(f*log2(f/ q))
[1] 0
```

- But more importantly, as q grows more different from f, the divergence D_{KL} also grows.
- Suppose the true target distribution is $f = \{0.3, 0.7\}$.
- Suppose the approximating distribution q can be anything from $q = \{0.01, 0.99\}$ to $q = \{0.99, 0.01\}$.
- Let's build a plot with q(1) on the horizontal axis and the divergence $D_{KL}(f,q)$ on vertical one.

```
t <-
 tibble(f 1 = .3,
        f_2 = .7,
        q_1 = seq(from = .01, to = .99, by = .01)) %>%
 mutate(q_2 = 1 - q_1) %>%
  mutate(d_kl = (f_1 * log2(f_1 / q_1)) + (f_2 * log2(f_2 / q_2)))
t. %>%
  qqplot(aes(x = q 1, v = d kl)) +
  geom_vline(xintercept = .3, color = carto_pal(7, "BurqYl")[5],
            linetvpe = 2) +
  geom_line(color = carto_pal(7, "BurgYl")[7], size = 1.5) +
  annotate(geom = "text", x = .4, y = 1.5, label = "q = f",
          color = carto pal(7, "BurgYl")[5],
           family = "Courier", size = 3.5) +
  labs(x = "q[1]",
       y = "Divergence of q from f") +
  theme classic() +
  theme(text = element text(family = "Courier"),
        panel.background =
          element_rect(fill = alpha(carto_pal(7, "BurgYl")[3], 1/4)))
SOURCE: https://bookdown.org/ajkurz/Statistical_Rethinking_
recoded/overfitting-regularization-and-information-criteria.
html#information-theory-and-model-performance
```


- Only exactly where q = f, at q(1) = 0.3, does the divergence achieve a value of zero. Everyplace else, it grows.
- Since predictive models specify probabilities of events (observations), we can
 use divergence to compare the accuracy of models.

Deviance

sdsd

Regularization

Information criteria

Using information criteria

Conclusions

References I

McElreath, R. (2020).

Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.

Murphy, K. P. (2021).

Probabilistic Machine Learning: An introduction.

MIT Press.