Name:	

Chapter 5 Review Quiz

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. A metal reacts spontaneously with hydrochloric acid. What are the general products of the reaction?
 - a. salt, carbon dioxide, water
 - b. carbon dioxide, water
 - c. salt, water
 - d. salt, hydrogen gas
- ▼ 2. Which of the following is NOT an acid?
 - a. HF
 - b. NH₃
 - c. CH₃COOH
 - d. H_2SO_4
- ▼ 3. Which of the following is NOT a property of bases?
 - a. soapy feel in aqueous solution
 - b. conduct electricity in solution
 - c. sour taste
 - d. turn red litmus blue
- ▼ 4. Which of the following represents the correct ionic equation for zinc + sulfuric acid?
 - a. $Zn(s) + H_2SO_4 \rightarrow ZnSO_4 + 2H^+$
 - b. $Zn(s) + 2H^{+} + SO_{4}^{2-} \rightarrow ZnSO_{4} + H_{2}(g)$
 - c. $Zn(s) + 2H^+ + SO_4^{2-} \rightarrow Zn^{2+} + SO_4^{2-} + H_2(g)$
 - d. $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$
- ▼ 5. A base can produce:
 - a. hydrogen ions in solution.
 - b. hydronium ions in solution.
 - c. hydroxide ions in solution.
 - d. oxide ions in solution.
- 6. A student has spilt some clear colourless acid on the floor. Which of the following would not neutralise the acid?
 - a. adding water
 - b. adding a base
 - c. adding solid sodium carbonate
 - d. adding an alkali
 - 7. When hydrochloric acid is reacted with magnesium oxide it forms the same products as when HCl reacts with magnesium hydroxide. What can you conclude?
 - a. HCl is so reactive that it produces the same products with a range of substances.
 - b. Magnesium oxide is soluble.
 - c. Magnesium oxide and magnesium hydroxide are the same substance.
 - d. Magnesium oxide is a basic oxide.
- ▼ 8. A substance that can act as an acid or a base is known as:
 - a. amphoteric.
 - b. amphiprotic.
 - c. an oxide.

	d. none of the above.
▼ 9	 Neutralisation is the name given to a reaction between: a. an acid and metal. b. an acid and base. c. an acid and water. d. a base and water.
▼ 10	 Which of the following gives all the products of a reaction between an acid and a carbonate? a. a salt and hydrogen b. a salt and water and hydrogen. c. a salt and carbon dioxide d. a salt and water and carbon dioxide
v 11	. For the reaction HNO $_3$ (aq) + KOH(aq) \rightarrow KNO $_3$ (aq) + H $_2$ O(l) Δ H= 56 kJ mol $^{-1}$ If 20 mL of 0.15 mol L $^{-1}$ HNO $_3$ solution reacts with 10 mL of 0.25 mol L $^{-1}$ KOH solution in a thermally insulted container, how much heat energy is produced? a. 0.028 kJ b. 0.14 kJ c. 0.224 kJ d. 0.56 kJ
▼ 12	. 200 mL of 2 mol L^{-1} HCl solution is mixed with 200 mL of 2 mol L^{-1} NaOH solution in a thermally insulated container. If the initial temperature of the solutions is 20°C and the amount of energy released in the reaction is 21 kJ, what is the final temperature of the solution? a. 21° C b. 33° C c. 45° C d. 66° C
▼ 13	 Which of the following processes does NOT involve the application of a neutralisation reaction? a. using an antacid to relieve indigestion b. cleaning up an acid spill c. using tea leaves to produce blue hydrangea flowers d. adding quicklime to mine wastewater
▼ 14	 The first scientist to propose that hydrogen was the key component that gave an acid its properties was: a. Lavoisier. b. Davy. c. Arrhenius. d. Lewis.
▼ 15	 A Brønsted–Lowry base: a. accepts a proton. b. includes more bases than previous definitions. c. accepts hydrogen ions. d. all of the above.
▼ 16	 What is a product of reacting hydrochloric acid and ammonia gas? a. hydrogen gas b. ammonia chloride c. ammonium chloride d. water
▼ 17	 Which of the following reactions is not correct? a. NaOH(aq) + NH₄Cl(aq) → NaCl(aq) + NH₄OH(aq) b. HCl(aq) + MgO(s) → MgCl₂(aq) + H₂O(l) c.

$$NH_3(aq) + H_2O(1) \rightarrow NH_4^+(aq) + OH^-(aq)$$

- $\text{d.}\quad \text{H}_2\text{SO}_4(\text{aq}) + 2\text{NaHCO}_3(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l})$
- ▼ 18. Which of the following statements regarding Brønsted–Lowry theory of acids and bases is incorrect?
 - a. An acid is a proton donor.
 - b. A base is a proton acceptor.
 - c. Substances cannot be defined as acid or base if no hydrogen is present.
 - d. The type of solvent is unimportant.
- ▼ 19. The Lewis definition of an acid and base is broader than the Brønsted–Lowry definition because:
 - a. it does not require a proton.
 - b. it does not require a solvent.
 - c. it considers electron pair acceptance and donation.
 - d. all of the above.
- ▼ 20. Water is amphiprotic because it can:
 - a. produce both H⁺ and OH⁻ ions.
 - b. accept or donate a H⁺.
 - c. dissolve both acids and bases.
 - d. it can form H₃O⁺.

