Suggested exercises Section 2: Modules

Exercise 2.1. Let R be a commutative ring, let M be an R-module and let I be an ideal of R. Suppose that $IM = \{\sum_{\text{finite}} a_i x_i \mid a_i \in I, \ x_i \in M\} = 0$. Define a structure of R/I-module on M.

Exercise 2.2. Recall that a \mathbb{Z} -module is the same as an abelian group. Determine the group structure of $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m,\mathbb{Z}/n)$ as an abelian group, for all integers $m,n\geq 2$. More generally, let R be a commutative ring and I,J two ideals of R. Describe $\operatorname{Hom}_R(R/I,R/J)$ as an R-module.

Exercise 2.3. Let R be a commutative ring and let M,N be two R-modules. Verify that $\operatorname{Hom}_R(M,N)$ is an R-module for the R-action (af)(x)=af(x) for all $a\in R, f\in \operatorname{Hom}_R(M,N)$ and $x\in M$. How can you generalise the construction to arbitrary rings and left modules?

Exercise 2.4. Let M be an R-module.

- i. Prove that the torsion subgroup $M_{\mathbb{Z}-tor}$ of M, formed by the elements of finite order, is an R-module.
- ii. Suppose that R is a commutative ring.
 - (a) Prove that the (R-)torsion submodule $M_{tor} = \{x \in M \mid \exists \ a \in R, \ a \neq 0, \text{ such that } ax = 0\}$ is an R-submodule of M.
 - (b) Prove that $(M/M_{tor})_{tor} = \{0\}.$
- iii. Find an example of (non-commutative) ring R and R-module M for which M_{tor} is not an R-submodule of M.

Exercise 2.5. Let R be a commutative ring. The *annihilator* of an R-module M is $Ann(M) = \{a \in R \mid ax = 0, \forall x \in M\}$.

- i. Prove that M is faithful if and only if $Ann(M) = \{0\}$.
- ii. Prove that Ann(M) is a two-sided ideal of R.
- iii. Prove that M is a faithful module as a module for the quotient ring $R/\operatorname{Ann}(M)$.

Exercise 2.6. Let R be a commutative ring.

- Let M be an R-module. Prove that $\operatorname{Hom}_R(R,M)$ is an R-module isomorphic to M.
- Prove that $\operatorname{End}_R M$ is a unital ring, generally not commutative.

Exercise 2.8. Let R be a commutative ring. Prove that, given any R-homomorphism $\varphi \in \operatorname{Hom}_R(M,N)$, we obtain an exact sequence

$$0 \longrightarrow \ker(\varphi) \xrightarrow{incl} M \xrightarrow{\varphi} N \xrightarrow{\pi} \operatorname{coker}(\varphi) \longrightarrow 0 .$$

Exercise 2.9. Let R be a ring. Prove that a short exact sequence $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ of R-modules splits if and only if C is isomorphic to $A \oplus B$.

Exercise 2.10 (Five Lemma). Let R be a ring. Suppose that we have a commutative diagram of R-modules and R-homomorphisms, of the form

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{i} E ,$$

$$\downarrow a \qquad \downarrow b \qquad \downarrow c \qquad \downarrow d \qquad \downarrow e$$

$$A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{h'} D' \xrightarrow{i'} E'$$

with exact rows. Commutative means that all the 'paths' between two modules are equal, e.g. f'a = bf.

- i. Suppose that b, d are surjective and e injective. Prove that c is surjective.
- ii. Suppose that b, d are injective and a surjective. Prove that c is injective.
- iii. Suppose that a, b, d, e are isomorphisms. Prove that c is an isomorphism.

Exercise 2.14. Adapt the proof of Hilbert's basis theorem to show that R[[x]] is Noetherian if R is Noetherian.

Exercise 2.15. Let R be a ring, let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be a short exact sequence of R-modules and let M be an R-module.

i. Prove that the sequence

$$0 \longrightarrow \operatorname{Hom}_R(M,A) \xrightarrow{f_*} \operatorname{Hom}_R(M,B) \xrightarrow{g_*} \operatorname{Hom}_R(M,C) \quad \text{ is exact,}$$

where $f_*(\varphi) = f\varphi: M \to A \to B$ and similarly for g_* .

ii. Prove that the sequence

$$0 \longrightarrow \operatorname{Hom}_R(C, M) \xrightarrow{g^*} \operatorname{Hom}_R(B, M) \xrightarrow{f^*} \operatorname{Hom}_R(A, M)$$
 is exact,

where $g^*(\varphi) = \varphi f : B \to C \to M$ and similarly for f^* .

Exercise 2.18. Let R be a commutative ring. An R-module M is divisible if aM = M for all $a \in R$. That is, the multiplication by a map $M \to M$ is a surjective R-homomorphism.

- i. Prove that \mathbb{Q} is a divisible \mathbb{Z} -module (i.e. abelian group).
- iv. Prove that an injective R-module is divisible.

Exercise 2.20. Let R be a PID and let M be a nonzero finitely generated torsionfree R-module. Prove that M is free. (Hint: proceed by induction on the number of generators of M.)