Московский физико-технический институт Физтех-школа прикладной математики и информатики

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

II CEMECTP

Лектор: Вадим Владимирович Редкозубов

Автор: Kuceлев Huколай Πpoe кm на Github

Содержание

1 Несобственный интеграл

 $\mathbf{2}$

Пусть a_n, b_n — последовательности комплексных чисел $m \in \mathbb{N}$ и $A_k = \sum_{i=1}^k a_i$. Тогда $a_k = A_k - A_{k-1}$ (если считать, что $A_0 = 0$) и $\sum_{k=m}^n a_k b_k = \sum_{k=m}^n (A_k - A_{k-1}) b_k = \sum_{k=m}^n A_k b_k - \sum_{k=m}^n A_{k-1} b_k$. Следовательно, справедливо тождество (Преобразование Абеля) $\sum_{k=m}^n a_k b_k = A_n b_n - A_{m-1} b_m - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k)$

Лемма 0.1 (Абеля). Пусть $a_n, b_n - n$ оследовательности, причем $\{b_n\}$ монотонна. Если $\left|\sum_{i=m}^k a_i\right| \leqslant M \forall k, \ mo \ \left|\sum_{k=m}^n a_k b_k\right| \leqslant 2M(|b_n| + |b_m|)$

Доказательство. Считаем, что $a_k = 0$ при k < m. Тогда $\left|\sum_{k=m}^n a_k b_k\right| = \left|A_n b_n - \sum_{k=m}^n A_k (b_{k+1} - b_k)\right| \le |A_n||b_n| - \sum_{k=m}^n |A_k||b_{k+1} - b_k| \le M(|b_n| + \left|\sum_{k=m}^{n-1} (b_{k+1} - b_k)\right|)$. Т.к. $\{b_n\}$ монотонна, то $b_{k+1} - b_k$ одного знака $\forall k$, тогда

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant M(|b_n| + |b_n - b_m|)$$

Замечание. Если $m=1,\{b_n\}$ нестрого убывает и неотрицательна, $c\leqslant A_k\leqslant C$, то

$$cb_1 \leqslant \sum a_k b_k \leqslant Cb_1$$

Лемма 0.2 (Абель). Пусть $f \in R[a,b], g$ — монотонна на [a,b]. Если $\left| \int_a^b f(t) \, dt \right| \leqslant M$, то

$$\left| \int_{a}^{b} f(x)g(x) \, dx \right| \leqslant 2M(|g(a)| + |g(b)|)$$

1 Несобственный интеграл

Определение 1.1. Функция f назывется локально интегрируемой по Риману, на промежутке I, если $\forall [a,c] \subset I(f \in R[a,c])$

Определение 1.2. Пусть $-\infty < a < b \leqslant +\infty$ и f локально интегрируема на [a,b]. Предел $\int_a^b f(x) dx := \lim_{c \to b-0} \int_a^c f(x) dx$ называется несобственным интегралом f на [a,b]. Если предел существует и конечен, то $\int_a^b f(x) dx$ называют сходящимся, иначе — расходящимся.

Пусть $b \in \mathbb{R}$, f локально интегрируема на [a,b) и ограничена, тогда $f \in R[a,b]$ (при любом доопределении в точке b) и по свойству непрерывности определенного интеграла с переменным пределом, несобственный интеграл сопадает с определенным

 $\int_a^b f(x)dx = \lim_{x\to b-0} \int_a^x f(t)dt$, т.е. новая ситуация имеет место в случае $b=+\infty$ или $b\in\mathbb{R}$ и f неограничена на [a,b). Ряд свойств определенного интеграла перносится на несобственный, т.к. можно применить предельныйм переход.

Утверждение 1.1 (Принцип локализации). Пусть f локально интегрируема на [a,b). Тогда для любого $a^* \in (a,b)$ несобственный интеграл $\int_{a^*}^b f(x) dx$ и $\int_{a^*}^b f(x) dx$ сходятся или расходятся одновременно, причем, в случае сходимости:

$$\int_{a}^{a^{*}} f(x)dx + \int_{a^{*}}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

Доказательство.

Утверждение 1.2 (Линейность). Пусть f локально интегрируема на [a,b). Тогда для любого $a^* \in (a,b)$ несобственный интеграл $\int_{a^*}^b f(x) dx$ и $\int_{a^*}^b f(x) dx$ сходятся или расходятся одновременно, причем, в случае сходимости:

$$\int_{a}^{a^{*}} f(x)dx + \int_{a^{*}}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

Доказательство.

Сегодня вечером доделаю