Prep Course Mathematics

Differentiation

Sonja Otten, Christian Seifert (Deutsch), Jens-Peter M. Zemke (English)

Content

- 1. Differentiation
 - ► Slopes of secants and tangents, differentiability
 - ► Rules for derivatives
 - Higher derivatives
- 2. Application of differentiation
 - Monotonicity
 - Curvature behaviour
 - Extrema
 - ► Inflection points

Differentiation

Slopes of secants and tangents, differentiability

For interval D and function $f \colon D \to \mathbb{R}$:

Slopes of secants and tangents, differentiability

For interval D and function $f: D \to \mathbb{R}$:

slope of secant between x_0 and x:

$$\frac{f(x) - f(x_0)}{x - x_0}.$$

Slopes of secants and tangents, differentiability

For interval D and function $f : D \to \mathbb{R}$:

slope of secant between x_0 and x:

$$\frac{f(x)-f(x_0)}{x-x_0}.$$

slope of tangent at x_0 :

approximation by secant slopes for x tending to x_0 . notation: $f'(x_0)$ or $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$ for slope of tangent; first derivative of f at x_0 .

Then f differentiable at x_0 .

For function f given by $f(x) := x^2$ for $x \in \mathbb{R}$:

At first $x_0 = 3$:

ightharpoonup slope of secant between x and 3:

$$\frac{f(x) - f(3)}{x - 3} = \frac{x^2 - 3^2}{x - 3} = \frac{(x + 3)(x - 3)}{x - 3} = x + 3.$$

▶ slope of tangent at 3: slope of secant x+3 tends to 6 for x tending to 3, hence f'(3)=6.

For function f given by $f(x) := x^2$ for $x \in \mathbb{R}$:

At first $x_0 = 3$:

ightharpoonup slope of secant between x and 3:

$$\frac{f(x) - f(3)}{x - 3} = \frac{x^2 - 3^2}{x - 3} = \frac{(x + 3)(x - 3)}{x - 3} = x + 3.$$

▶ slope of tangent at 3: slope of secant x + 3 tends to 6 for x tending to 3, hence f'(3) = 6.

Now general $x_0 \in \mathbb{R}$:

ightharpoonup slope of secant between x and x_0 :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x + x_0)(x - x_0)}{x - x_0} = x + x_0.$$

▶ slope of tangent at x_0 : slope of secant $x + x_0$ tends to $2x_0$ for x tending to x_0 , hence $f'(x_0) = 2x_0$.

Show that the function f given by $f(x) := \sqrt{x}$ for x > 0 is differentiable at $x_0 = 1$.

Show that the function f given by $f(x) := \sqrt{x}$ for x > 0 is differentiable at $x_0 = 1$.

Slope of secant between x and 1:

$$\frac{f(x) - f(1)}{x - 1} = \frac{\sqrt{x} - \sqrt{1}}{x - 1} = \frac{\sqrt{x} - \sqrt{1}}{(\sqrt{x} - \sqrt{1})(\sqrt{x} + \sqrt{1})} = \frac{1}{\sqrt{x} + \sqrt{1}}.$$

Therefore, slope of tangent at 1: slope of secant $\frac{1}{\sqrt{x}+\sqrt{1}}$ tends to $\frac{1}{2}$ for x tending to 1, hence $f'(1)=\frac{1}{2}$.

Derivatives of elementary functions and rules for derivatives

f(x)	f'(x)
$c \ (c \in \mathbb{R})$	0
$x^{\alpha} \ (\alpha \neq 0)$	$\alpha \cdot x^{\alpha - 1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
e^x	e^x
$a^x \ (a > 0)$	$\log(a) \cdot a^x$
$\log(x)$	$\frac{1}{x}$
$\log_a(x) \ (a > 0)$	$\frac{1}{\log(a) \cdot x}$

Derivatives of elementary functions and rules for derivatives

f(x)	f'(x)
$c \ (c \in \mathbb{R})$	0
$x^{\alpha} \ (\alpha \neq 0)$	$\alpha \cdot x^{\alpha - 1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
e^x	e^x
$a^x \ (a > 0)$	$\log(a) \cdot a^x$
$\log(x)$	$\frac{1}{x}$
$\log_a(x) \ (a>0)$	$\frac{1}{\log(a) \cdot x}$

For differentiable f, g:

Constant factor rule: for $c \in \mathbb{R}$

$$(c \cdot f)'(x) = c \cdot f'(x)$$

Sum rule:

$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

Product rule:

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotient rule:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Chain rule:

$$(f(g))'(x) = f'(g(x)) \cdot g'(x)$$

First derivative of $f: \mathbb{R} \to \mathbb{R}$ given by:

$$f(x) := 3x^4 + 5x^3 - 2x^2 + x + 8:$$

$$f'(x) = 12x^3 + 15x^2 - 4x + 1.$$

First derivative of $f: \mathbb{R} \to \mathbb{R}$ given by:

 $f(x) := 3x^4 + 5x^3 - 2x^2 + x + 8$:

$$f'(x) = 12x^3 + 15x^2 - 4x + 1.$$

 $f(x) := x^2 \sin(x):$ We set $u(x) := x^2$, $v(x) := \sin(x)$. Then u'(x) = 2x, $v'(x) = \cos(x)$, and $f'(x) = u'(x)v(x) + u(x)v'(x) = 2x\sin(x) + x^2\cos(x).$

First derivative of $f: \mathbb{R} \to \mathbb{R}$ given by:

 $f(x) := 3x^4 + 5x^3 - 2x^2 + x + 8:$

$$f'(x) = 12x^3 + 15x^2 - 4x + 1.$$

- ► $f(x) := x^2 \sin(x)$: We set $u(x) := x^2$, $v(x) := \sin(x)$. Then u'(x) = 2x, $v'(x) = \cos(x)$, and $f'(x) = u'(x)v(x) + u(x)v'(x) = 2x\sin(x) + x^2\cos(x)$.
- ▶ $f(x) := \frac{x^2+7}{\cos(x)+2}$: We set $u(x) := x^2+7$, $v(x) := \cos(x)+2$. Then u'(x) = 2x, $v'(x) = -\sin(x)$, and

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x(\cos(x) + 2) + (x^2 + 7)\sin(x)}{(\cos(x) + 2)^2}.$$

First derivative of $f: \mathbb{R} \to \mathbb{R}$ given by:

 $f(x) := 3x^4 + 5x^3 - 2x^2 + x + 8:$

$$f'(x) = 12x^3 + 15x^2 - 4x + 1.$$

- ▶ $f(x) := x^2 \sin(x)$: We set $u(x) := x^2$, $v(x) := \sin(x)$. Then u'(x) = 2x, $v'(x) = \cos(x)$, and $f'(x) = u'(x)v(x) + u(x)v'(x) = 2x\sin(x) + x^2\cos(x)$.
- ▶ $f(x) := \frac{x^2+7}{\cos(x)+2}$: We set $u(x) := x^2+7$, $v(x) := \cos(x)+2$. Then u'(x) = 2x, $v'(x) = -\sin(x)$, and

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x(\cos(x) + 2) + (x^2 + 7)\sin(x)}{(\cos(x) + 2)^2}.$$

▶ $f(x) := e^{3x + \sin(x)}$: We set $u(x) := e^x$, $v(x) := 3x + \sin(x)$. Then $u'(x) = e^x$, $v'(x) = 3 + \cos(x)$, and

$$f'(x) = u'(v(x))v'(x) = e^{3x+\sin(x)}(3+\cos(x)).$$

Compute the first derivative of the function f:

$$f(x) := x^2 e^x \text{ for } x \in \mathbb{R}.$$

$$ightharpoonup f(x) := rac{\cos(x)}{\mathrm{e}^x} \text{ for } x \in \mathbb{R}.$$

$$f(x) := \sin(e^x) \text{ for } x \in \mathbb{R}.$$

Compute the first derivative of the function f:

- ▶ $f(x) := x^2 e^x$ for $x \in \mathbb{R}$. We set $u(x) := x^2$, $v(x) := e^x$. Then u'(x) = 2x, $v'(x) = e^x$, and $f'(x) = u'(x)v(x) + u(x)v'(x) = 2xe^x + x^2e^x = (x^2 + 2x)e^x.$
- $f(x) := \frac{\cos(x)}{e^x} \text{ for } x \in \mathbb{R}.$ We set $u(x) := \cos(x)$, $v(x) := e^x$. Then $u'(x) = -\sin(x)$, $v'(x) = e^x$, and $f'(x) = \frac{u'(x)v(x) u(x)v'(x)}{v(x)^2} = \frac{-\sin(x)e^x \cos(x)e^x}{e^{2x}} = \frac{-\sin(x) \cos(x)}{e^x}.$
- $f(x):=\sin(\mathrm{e}^x) \text{ for } x\in\mathbb{R}.$ We set $u(x):=\sin(x),\ v(x):=\mathrm{e}^x.$ Then $u'(x)=\cos(x),\ v'(x)=\mathrm{e}^x,$ and $f'(x)=u'(v(x))v'(x)=\cos(\mathrm{e}^x)\mathrm{e}^x.$

Higher derivatives

For interval D and function $f: D \to \mathbb{R}$:

If f differentiable at all $x \in D$, then derivative $f' \colon D \to \mathbb{R}$.

For $x_0 \in D$:

If f' differentiable at x_0 , then $f''(x_0) := (f')'(x_0)$ second derivative of f at x_0 .

Analogously: f''', $f^{(4)}$, $f^{(5)}$ etc.

Higher derivatives

For interval D and function $f: D \to \mathbb{R}$:

If f differentiable at all $x \in D$, then derivative $f' \colon D \to \mathbb{R}$.

For $x_0 \in D$:

If f' differentiable at x_0 , then $f''(x_0) := (f')'(x_0)$ second derivative of f at x_0 .

Analogously: f''', $f^{(4)}$, $f^{(5)}$ etc.

Exercise: Function f given by $f(x) := x^2 \sin(x)$ for $x \in \mathbb{R}$. Then, for $x \in \mathbb{R}$:

$$f'(x) =$$

$$f''(x) =$$

$$f'''(x) =$$

Higher derivatives

For interval D and function $f: D \to \mathbb{R}$:

If f differentiable at all $x \in D$, then derivative $f' : D \to \mathbb{R}$.

For $x_0 \in D$:

If f' differentiable at x_0 , then $f''(x_0) := (f')'(x_0)$ second derivative of f at x_0 .

Analogously: f''', $f^{(4)}$, $f^{(5)}$ etc.

Exercise: Function f given by $f(x) := x^2 \sin(x)$ for $x \in \mathbb{R}$. Then, for $x \in \mathbb{R}$:

$$f'(x) = 2x\sin(x) + x^2\cos(x),$$

$$f''(x) = (2 - x^2)\sin(x) + 4x\cos(x),$$

$$f'''(x) = -6x\sin(x) + (6 - x^2)\cos(x).$$

Application of differentiation

Monotonicity and first derivative

For interval D and function $f : D \to \mathbb{R}$:

Then f

- lacktriangle monotonically increasing, if $f(x_1) \leqslant f(x_2)$ for all $x_1, x_2 \in D$ such that $x_1 \leqslant x_2$,
- ightharpoonup monotonically decreasing, if $f(x_1) \geqslant f(x_2)$ for all $x_1, x_2 \in D$ such that $x_1 \leqslant x_2$.

Monotonicity and first derivative

For interval D and function $f \colon D \to \mathbb{R}$:

Then f

- lacktriangle monotonically increasing, if $f(x_1) \leqslant f(x_2)$ for all $x_1, x_2 \in D$ such that $x_1 \leqslant x_2$,
- ightharpoonup monotonically decreasing, if $f(x_1) \geqslant f(x_2)$ for all $x_1, x_2 \in D$ such that $x_1 \leqslant x_2$.

For f differentiable:

- ▶ f monotonically increasing if and only if $f'(x) \ge 0$ for all $x \in D$,
- ▶ f monotonically decreasing if and only if $f'(x) \leq 0$ for all $x \in D$.

Determination of the regions of monotonicity of function f given by $f(x) := \frac{1}{6}x^3 - 2x + 1$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = \frac{1}{2}x^2 - 2,$$

and solve $f'(x) \stackrel{!}{=} 0$. The solutions are $x = \pm 2$. Since f' parabola opening to the top:

- $f'(x) \geqslant 0$ for $x \leqslant -2$ and for $x \geqslant 2$,
- $f'(x) \leq 0$ for $-2 \leq x \leq 2$.

Thus, f monotonically increasing for $x \leqslant -2$ and for $x \geqslant 2$, and monotonically decreasing for $-2 \leqslant x \leqslant 2$.

Determine the regions of monotonicity of the function f given by $f(x) := \sin(x^2)$ for $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Determine the regions of monotonicity of the function f given by $f(x) := \sin(x^2)$ for $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

We calculate:

$$f'(x) = \cos(x^2) \cdot 2x.$$

Hence:

- f monotonically increasing for $-\frac{\pi}{2}\leqslant x\leqslant -\sqrt{\frac{\pi}{2}}$ and for $0\leqslant x\leqslant \sqrt{\frac{\pi}{2}}$,
- f monotonically decreasing for $-\sqrt{\frac{\pi}{2}}\leqslant x\leqslant 0$ and for $\sqrt{\frac{\pi}{2}}\leqslant x\leqslant \frac{\pi}{2}.$

Curvature behaviour and second derivative

For interval D and function $f: D \to \mathbb{R}$:

Then f

(strictly) left curved or (strictly) convex, if f goes through a left turn, i.e. for all $x, x_1, x_2 \in D$ such that $x_1 \leqslant x \leqslant x_2$ the point (x, f(x)) is (strictly) below the secant to $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Curvature behaviour and second derivative

For interval D and function $f: D \to \mathbb{R}$:

Then f

- **(strictly)** left curved or (strictly) convex, if f goes through a left turn, i.e. for all $x, x_1, x_2 \in D$ such that $x_1 \leqslant x \leqslant x_2$ the point (x, f(x)) is (strictly) below the secant to $(x_1, f(x_1))$ and $(x_2, f(x_2))$.
- **(strictly)** right curved or (strictly) concave, if f goes through a right turn, i.e. for all $x, x_1, x_2 \in D$ such that $x_1 \leqslant x \leqslant x_2$ the point (x, f(x)) is (strictly) above the secant to $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Curvature behaviour and second derivative

For interval D and function $f: D \to \mathbb{R}$:

Then f

- (strictly) left curved or (strictly) convex, if f goes through a left turn, i.e. for all $x, x_1, x_2 \in D$ such that $x_1 \leqslant x \leqslant x_2$ the point (x, f(x)) is (strictly) below the secant to $(x_1, f(x_1))$ and $(x_2, f(x_2))$.
- **(strictly)** right curved or (strictly) concave, if f goes through a right turn, i.e. for all $x, x_1, x_2 \in D$ such that $x_1 \leqslant x \leqslant x_2$ the point (x, f(x)) is (strictly) above the secant to $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

For f two times differentiable:

- ▶ f left curved if and only if $f''(x) \ge 0$ for all $x \in D$.
- ▶ f right curved if and only if $f''(x) \leq 0$ for all $x \in D$.

Determination of the curvature behaviour of function f given by $f(x) := \frac{1}{6}x^3 - 2x + 1$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = \frac{1}{2}x^2 - 2,$$
 $f''(x) = x,$

and solve $f''(x) \stackrel{!}{=} 0$. The solution is x = 0. Since f'' increasing affine function:

- $ightharpoonup f''(x) \geqslant 0$ for $x \geqslant 0$.
- $f''(x) \leq 0$ for $x \leq 0$.

Hence, f right curved for $x \leq 0$, and left curved for $x \geq 0$.

Determine the curvature behaviour of the function f given by $f(x) := \sin(x)$ for $x \in [-\pi, \pi]$.

Determine the curvature behaviour of the function f given by $f(x) := \sin(x)$ for $x \in [-\pi, \pi]$.

We calculate:

$$f'(x) = \cos(x),$$

$$f''(x) = -\sin(x).$$

Hence:

- ▶ f left curved for $x \in [-\pi, 0]$,
- ▶ f right curved for $x \in [0, \pi]$.

Local extrema

For interval D and function $f: D \to \mathbb{R}$:

Then $x_0 \in D$

- ▶ local maximum, if $f(x) \leq f(x_0)$ for all x close to x_0 .
- ▶ local minimum, if $f(x) \ge f(x_0)$ for all x close to x_0 .
- local extremum, if local maximum or minimum.

Local extrema

For interval D and function $f: D \to \mathbb{R}$:

Then $x_0 \in D$

- ▶ local maximum, if $f(x) \leq f(x_0)$ for all x close to x_0 .
- ▶ local minimum, if $f(x) \ge f(x_0)$ for all x close to x_0 .
- local extremum, if local maximum or minimum.
- ▶ global maximum, if $f(x) \leq f(x_0)$ for all $x \in D$.
- ▶ global minimum, if $f(x) \ge f(x_0)$ for all $x \in D$.

Local extrema

For interval D and function $f: D \to \mathbb{R}$:

Then $x_0 \in D$

- ▶ local maximum, if $f(x) \leq f(x_0)$ for all x close to x_0 .
- ▶ local minimum, if $f(x) \ge f(x_0)$ for all x close to x_0 .
- local extremum, if local maximum or minimum.
- ▶ global maximum, if $f(x) \leq f(x_0)$ for all $x \in D$.
- ▶ global minimum, if $f(x) \ge f(x_0)$ for all $x \in D$.

Local extrema

For interval D and function $f: D \to \mathbb{R}$:

Then $x_0 \in D$

- ▶ local maximum, if $f(x) \leq f(x_0)$ for all x close to x_0 .
- ▶ local minimum, if $f(x) \ge f(x_0)$ for all x close to x_0 .
- local extremum, if local maximum or minimum.
- ▶ global maximum, if $f(x) \leq f(x_0)$ for all $x \in D$.
- ▶ global minimum, if $f(x) \ge f(x_0)$ for all $x \in D$.

For x_0 interior point, f differentiable in x_0 : If f has a local extremum at x_0 , then $f'(x_0) = 0$.

▶ $x_0 \in D$ stationary point, if $f'(x_0) = 0$.

Local extrema

For interval D and function $f: D \to \mathbb{R}$:

Then $x_0 \in D$

- ▶ local maximum, if $f(x) \leq f(x_0)$ for all x close to x_0 .
- ▶ local minimum, if $f(x) \ge f(x_0)$ for all x close to x_0 .
- local extremum, if local maximum or minimum.
- ▶ global maximum, if $f(x) \leq f(x_0)$ for all $x \in D$.
- ▶ global minimum, if $f(x) \ge f(x_0)$ for all $x \in D$.

Criteria for extrema

For open interval D, function $f \colon D \to \mathbb{R}$, and stationary point $x_0 \in D$:

 \dots using the first derivative: for f differentiable:

- ▶ If $f'(x) \ge 0$ for $x < x_0$ and $f'(x) \le 0$ for $x > x_0$, then f has a local maximum in x_0 .
- ▶ If $f'(x) \le 0$ for $x < x_0$ and $f'(x) \ge 0$ for $x > x_0$, then f has a local minimum in x_0 .

Criteria for extrema

For open interval D, function $f \colon D \to \mathbb{R}$, and stationary point $x_0 \in D$:

 \dots using the first derivative: for f differentiable:

- ▶ If $f'(x) \ge 0$ for $x < x_0$ and $f'(x) \le 0$ for $x > x_0$, then f has a local maximum in x_0 .
- ▶ If $f'(x) \leq 0$ for $x < x_0$ and $f'(x) \geq 0$ for $x > x_0$, then f has a local minimum in x_0 .

 \dots using the second derivative: For f two times differentiable:

- ▶ If $f''(x_0) < 0$, then f has a local maximum in x_0 .
- ▶ If $f''(x_0) > 0$, then f has a local minimum in x_0 .

Example

Determination of extrema of function f given by $f(x) := \frac{1}{6}x^3 - 2x + 1$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = \frac{1}{2}x^2 - 2,$$

and solve $f'(x) \stackrel{!}{=} 0$. The solutions are $x = \pm 2$.

We compute

$$f''(x) = x$$
.

Since f''(-2) = -2 < 0: x = -2 local maximum.

Since f''(2) = 2 > 0: x = 2 local minimum.

Determine the local extrema of the function f given by $f(x) := x^2 e^{-x^2}$ for $x \in \mathbb{R}$.

Determine the local extrema of the function f given by $f(x) := x^2 e^{-x^2}$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = 2xe^{-x^2} + x^2e^{-x^2} \cdot (-2x) = 2x(1-x^2)e^{-x^2},$$

and solve $f'(x) \stackrel{!}{=} 0$. The solutions are x = 0 und $x = \pm 1$.

We compute

$$f''(x) = (4x^4 - 10x^2 + 2)e^{-x^2}.$$

- ▶ Since f''(0) = 2 > 0: x = 0 local minimum.
- ▶ Since $f''(\pm 1) = -4e^{-1} < 0$: $x = \pm 1$ local maximum.

Inflection points

For open interval D, function $f \colon D \to \mathbb{R}$, and $x_0 \in D$:

 $ightharpoonup x_0$ inflection point of f, if f changes curvature behaviour strictly at x_0 .

Inflection points

For open interval D, function $f: D \to \mathbb{R}$, and $x_0 \in D$:

 $ightharpoonup x_0$ inflection point of f, if f changes curvature behaviour strictly at x_0 .

Criteria for inflection points:

- ▶ If f is two times differentiable, x_0 inflection point, then $f''(x_0) = 0$.
- ▶ If f is three times differentiable, $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, then x_0 inflection point.

Example

Determination of inflection points for function f given by $f(x) := \frac{1}{6}x^3 - 2x + 1$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = \frac{1}{2}x^2 - 2,$$
 $f''(x) = x,$

and solve $f''(x) \stackrel{!}{=} 0$. The solution is x = 0.

We compute

$$f'''(x) = 1.$$

Since $f'''(0) = 1 \neq 0$: x = 0 inflection point.

Determine the inflection points of the function f given by $f(x) := e^{-x^2}$ for $x \in \mathbb{R}$.

Determine the inflection points of the function f given by $f(x) := e^{-x^2}$ for $x \in \mathbb{R}$.

We calculate:

$$f'(x) = -2xe^{-x^2},$$

$$f''(x) = (4x^2 - 2)e^{-x^2},$$

and solve $f''(x) \stackrel{!}{=} 0$. The solutions are $x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$.

We compute

$$f'''(x) = (-8x^3 + 12x)e^{-x^2}.$$

Since

•
$$f'''(-\frac{\sqrt{2}}{2}) = -4\sqrt{2}e^{-\frac{1}{2}} \neq 0$$
: $x = -\frac{\sqrt{2}}{2}$ inflection point.

•
$$f'''(+\frac{\sqrt{2}}{2}) = +4\sqrt{2}e^{-\frac{1}{2}} \neq 0$$
: $x = +\frac{\sqrt{2}}{2}$ inflection point.