mini_nn 1.6

Generated by Doxygen 1.8.15

1 mini_nn	1
2 mini_nn	3
3 Hierarchical Index	5
3.1 Class Hierarchy	5
4 Class Index	7
4.1 Class List	7
5 File Index	9
5.1 File List	9
6 Class Documentation	11
6.1 Conv2d< T > Class Template Reference	11
6.1.1 Detailed Description	12
6.1.2 Member Typedef Documentation	12
6.1.2.1 Matrix	12
6.1.2.2 Shape	13
6.1.3 Constructor & Destructor Documentation	13
6.1.3.1 Conv2d() [1/2]	13
6.1.3.2 ~Conv2d()	13
6.1.3.3 Conv2d() [2/2]	13
6.1.4 Member Function Documentation	14
6.1.4.1 backward()	14
6.1.4.2 forward()	14
6.1.4.3 get_fan()	15
6.1.5 Member Data Documentation	15
6.1.5.1 in_channels	15
6.1.5.2 kernel_size	16
6.1.5.3 out_channels	16
6.1.5.4 padding	16
6.1.5.5 stride	16
6.2 Layer< T > Class Template Reference	16
6.2.1 Detailed Description	17
6.2.2 Member Typedef Documentation	17
6.2.2.1 Matrix	18
6.2.2.2 Shape	18
6.2.3 Constructor & Destructor Documentation	18
6.2.3.1 Layer()	18
6.2.3.2 ∼Layer()	18
6.2.4 Member Function Documentation	18
6.2.4.1 backward()	18
6.2.4.2 bias_shape()	19

6.2.4.3 forward()	19
6.2.4.4 get_fan()	19
6.2.4.5 get_type()	20
6.2.4.6 set_bias()	20
6.2.4.7 set_network()	20
6.2.4.8 set_weight()	21
6.2.4.9 weight_shape()	21
6.2.5 Member Data Documentation	21
6.2.5.1 b	21
6.2.5.2 db	21
6.2.5.3 din	21
6.2.5.4 dW	22
6.2.5.5 in	22
6.2.5.6 layer_type	22
6.2.5.7 net	22
6.2.5.8 W	22
6.3 Linear< T > Class Template Reference	23
6.3.1 Detailed Description	24
6.3.2 Member Typedef Documentation	24
6.3.2.1 Matrix	24
6.3.2.2 Shape	24
6.3.3 Constructor & Destructor Documentation	24
6.3.3.1 Linear() [1/2]	25
6.3.3.2 ~Linear()	25
6.3.3.3 Linear() [2/2]	25
6.3.4 Member Function Documentation	25
6.3.4.1 backward()	26
6.3.4.2 forward()	26
6.3.4.3 get_fan()	27
6.3.5 Member Data Documentation	27
6.3.5.1 in_dims	28
6.3.5.2 in_reshape	28
6.3.5.3 out_dims	28
6.4 Loss< T > Class Template Reference	28
6.4.1 Member Typedef Documentation	29
6.4.1.1 Matrix	29
6.4.1.2 Shape	29
6.4.2 Constructor & Destructor Documentation	29
6.4.2.1 Loss() [1/2]	29
6.4.2.2 Loss() [2/2]	29
6.4.2.3 ~Loss()	30
6.4.3 Member Function Documentation	30

6.4.3.1 CrossEntropyLoss()	30
6.4.3.2 get_grad()	31
6.4.3.3 get_type()	31
6.4.4 Member Data Documentation	31
6.4.4.1 dscores	31
6.4.4.2 loss_type	31
6.4.4.3 scores	31
6.5 MaxPool2d< T > Class Template Reference	32
6.5.1 Detailed Description	33
6.5.2 Member Typedef Documentation	33
6.5.2.1 Matrix	33
6.5.2.2 Shape	33
6.5.3 Constructor & Destructor Documentation	33
6.5.3.1 MaxPool2d() [1/2]	33
6.5.3.2 ~MaxPool2d()	34
6.5.3.3 MaxPool2d() [2/2]	34
6.5.4 Member Function Documentation	34
6.5.4.1 backward()	34
6.5.4.2 forward()	35
6.5.5 Member Data Documentation	36
6.5.5.1 kernel_size	36
6.5.5.2 padding	36
6.5.5.3 stride	36
6.6 Network< T > Class Template Reference	36
6.6.1 Detailed Description	37
6.6.2 Member Typedef Documentation	37
6.6.2.1 Matrix	37
6.6.2.2 Shape	37
6.6.3 Constructor & Destructor Documentation	37
6.6.3.1 Network()	38
6.6.3.2 ~Network()	38
6.6.4 Member Function Documentation	38
6.6.4.1 backward()	38
6.6.4.2 forward()	38
6.6.4.3 get_optimizer()	38
6.6.4.4 operator<<() [1/4]	38
6.6.4.5 operator<<() [2/4]	39
6.6.4.6 operator <<() [3/4]	39
6.6.4.7 operator<<() [4/4]	39
6.6.4.8 predict()	39
6.6.4.9 set_optimizer()	39
6.6.5 Member Data Documentation	39

6.6.5.1 layers	39
6.6.5.2 loss	40
6.6.5.3 optimizer	40
6.7 Optimizer < T > Class Template Reference	40
6.7.1 Member Typedef Documentation	4
6.7.1.1 Matrix	4
6.7.1.2 Shape	4
6.7.2 Constructor & Destructor Documentation	4
6.7.2.1 Optimizer()	4
6.7.2.2 ~Optimizer()	4
6.7.3 Member Function Documentation	4
6.7.3.1 update()	42
6.7.4 Member Data Documentation	42
6.7.4.1 lr	42
6.8 ReLU< T > Class Template Reference	42
6.8.1 Detailed Description	43
6.8.2 Member Typedef Documentation	44
6.8.2.1 Matrix	44
6.8.2.2 Shape	44
6.8.3 Constructor & Destructor Documentation	44
6.8.3.1 ReLU()	44
6.8.3.2 ~ReLU()	45
6.8.4 Member Function Documentation	45
6.8.4.1 backward()	45
6.8.4.2 forward()	46
6.9 SGD< T > Class Template Reference	46
6.9.1 Member Typedef Documentation	47
6.9.1.1 Matrix	48
6.9.1.2 Shape	48
6.9.2 Constructor & Destructor Documentation	48
6.9.2.1 SGD()	48
6.9.2.2 ~SGD()	48
6.9.3 Member Function Documentation	48
6.9.3.1 update()	48
6.9.4 Member Data Documentation	49
6.9.4.1 momentum	49
6.9.4.2 weight_decay	49
7 File Documentation	51
7.1 layer/activation.hpp File Reference	5
7.1.1 Detailed Description	52
7.2 layer/activation, impl.hnn File Reference	53

7.2.1 Detailed Description	53
7.3 layer/convolution.hpp File Reference	54
7.3.1 Detailed Description	55
7.4 layer/convolution_impl.hpp File Reference	55
7.4.1 Detailed Description	56
7.5 layer/layer_base.hpp File Reference	57
7.5.1 Detailed Description	58
7.5.2 Enumeration Type Documentation	58
7.5.2.1 LAYER_TYPE	58
7.6 layer/linear.hpp File Reference	58
7.6.1 Detailed Description	59
7.7 layer/linear_impl.hpp File Reference	60
7.7.1 Detailed Description	61
7.8 layer/pooling.hpp File Reference	62
7.8.1 Detailed Description	63
7.9 layer/pooling_impl.hpp File Reference	63
7.9.1 Detailed Description	64
7.10 loader/data_loader.hpp File Reference	64
7.10.1 Detailed Description	65
7.10.2 Function Documentation	65
7.10.2.1 image_normalize()	65
7.10.2.2 load_images()	65
7.11 loader/model_loader.hpp File Reference	65
7.12 loss/loss.hpp File Reference	65
7.12.1 Enumeration Type Documentation	66
7.12.1.1 LOSS_TYPE	66
7.13 loss/loss_impl.hpp File Reference	67
7.13.1 Detailed Description	67
7.14 network/common_header.hpp File Reference	67
7.15 network/init.hpp File Reference	68
7.15.1 Detailed Description	69
7.15.2 Function Documentation	70
7.15.2.1 kaiming_normal()	70
7.15.2.2 kaiming_uniform()	70
7.16 network/network.hpp File Reference	71
7.17 network/network_impl.hpp File Reference	73
7.18 network/utils.hpp File Reference	73
7.18.1 Function Documentation	74
7.18.1.1 cout_shape()	74
7.19 optimizer/optimizer.hpp File Reference	74
7.20 optimizer_base.hpp File Reference	75
7.21 optimizer_impl.hpp File Reference	77

7.22 README.md File Reference	77
7.23 test/test_layer.cpp File Reference	77
7.23.1 Function Documentation	78
7.23.1.1 main()	78
7.24 test/test_loader.cpp File Reference	78
7.24.1 Function Documentation	79
7.24.1.1 main()	79
7.25 test/test_net.cpp File Reference	79
7.25.1 Function Documentation	79
7.25.1.1 main()	79
Index	81
ilidex	01

mini_nn

Author

Rui Jian Li, YiFan Cao, Yan
Peng Hu @email lirj@shanghaitech.edu.cn, caoyf@shanghaitech.
edu.cn, huyp@shanghaitech.edu.cn

Version

1.6.0

Date

2019-05-26

2 mini_nn

mini_nn

CS133 course project: mini neural network

Generic implementation of a neural network. Build a C++ library that

- can load a pre-trained network definition file
- contains an abstract definition of common layers and the composing elements
 - Linear transformations, convolutions
 - Response functions, output layers
 - Fully connected layers
- initializes concrete layers of the network with a suitable programming technique (e.g. factory method)
- applies it to some data

mini_nn

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$rer < T > \dots$	16
$Conv2d \! < T > \dots $	11
$Linear < T > \dots \dots$	23
$\label{eq:maxPool2d} \text{MaxPool2d} < T > \ \dots \dots$	32
$ReLU \! < T \! > \ldots \ldots$	42
ss <t></t>	28
$twork < T > \ldots \ldots \ldots \ldots \ldots \ldots$	36
$timizer < T > \ldots \ldots \ldots \ldots$	40
SGD< T >	46

6 Hierarchical Index

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Conv2d< 1 >	
Computes a 2-D convolution given 4-D input and filter tensors	11
Layer < T >	
Class of the layer	16
Linear< T >	
Layer class which inherits the linear class	23
Loss <t></t>	28
MaxPool2d< T >	
Class for the maxpool	32
Network< T >	
Class of network	
	40
ReLU< T >	
ReLu Class, the rectifier is an activation function	42
SGD< T> 4	46

8 Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

	51
layer/activation_impl.hpp	
•	53
layer/convolution.hpp	
	54
layer/convolution_impl.hpp	
Implementation for the convolution	55
layer/layer_base.hpp	
Attribute of the base of the layter	57
layer/linear.hpp	
Linear of the header file	58
layer/linear_impl.hpp	
	60
·	62
layer/pooling_impl.hpp	
• • • • • • • • • • • • • • • • • • • •	63
loader/data_loader.hpp	
	64
	65
	65
loss/loss_impl.hpp	•
	67
	67
network/init.hpp	01
	68
-	71
	73
	73
	74
and the state of the	
\cdot	75
and the state of t	77
= 7 11	77
	78
test/test_net.cpp	70

10 File Index

Class Documentation

6.1 Conv2d < T > Class Template Reference

Computes a 2-D convolution given 4-D input and filter tensors.

#include <convolution.hpp>

Inheritance diagram for Conv2d< T>:

Collaboration diagram for Conv2d< T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

· Conv2d ()=default

Construct a new Conv 2d object.

virtual ∼Conv2d ()=default

Destroy the Conv 2d object.

• Conv2d (size_t in_channels, size_t out_channels, size_t kernel_size=3, size_t stride=1, size_t padding=0)

Construct a new Conv 2d < T>:: Conv 2d object.

- virtual Matrix forward (const Matrix &in) override
- · virtual Matrix backward (const Matrix &dout) override
- virtual size_t get_fan ()

Get the fan object.

Protected Attributes

- · size_t in_channels_
- size t out channels
- size_t kernel_size_
- size t padding
- size_t stride_

6.1.1 Detailed Description

```
template<typename T> class Conv2d< T >
```

Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels] and a filter / kernel tensor of shape [filter ← height, filter_width, in_channels, out_channels], this op performs the following:

Flattens the filter to a 2-D matrix with shape [filter_height * filter_width * in_channels, output_channels]. Extracts image patches from the input tensor to form a virtual tensor of shape [batch, out_height, out_width, filter_height * filter width * in channels]. For each patch, right-multiplies the filter matrix and the image patch vector.

6.1.2 Member Typedef Documentation

6.1.2.1 Matrix

```
template<typename T >
typedef xt::xarray<T> Conv2d< T >::Matrix
```

6.1.2.2 Shape

```
template<typename T >
typedef Matrix::shape_type Conv2d< T >::Shape
```

6.1.3 Constructor & Destructor Documentation

```
6.1.3.1 Conv2d() [1/2]

template<typename T >
Conv2d< T >::Conv2d ( ) [default]
```

Construct a new Conv 2d object.

6.1.3.2 ∼Conv2d()

```
template<typename T > virtual Conv2d< T >::~Conv2d ( ) [virtual], [default]
```

Destroy the Conv 2d object.

6.1.3.3 Conv2d() [2/2]

Construct a new Conv 2d < T>:: Conv 2d object.

Template Parameters

Parameters

in_channels	: It refers to the input image that needs to be convolved. It is required to be a Tensor with a
	shape such as [batch, in_height, in_width, in_channels]. The specific meaning is [the number
	of pictures of a batch during training, the height of the picture, the width of the image, the
	number of image channels.], note that this is a 4D Tensor,

Parameters

out_channels	
kernel_size	size of the kernel
stride	The convolution step in each dimension of the image, this is a one-dimensional vector, with length 4
padding	This value determines the different convolution methods

6.1.4 Member Function Documentation

6.1.4.1 backward()

Template Parameters

Parameters

dout : the back	kward input
-----------------	-------------

Returns

xt::xarray < T >

only update if net is already set

Implements Layer < T >.

6.1.4.2 forward()

Template Parameters

```
Parameters
```

in :input for the network

```
Returns
```

```
xt::xarray < T >
```

prepare for output

Implements Layer< T >.

6.1.4.3 get_fan()

```
template<typename T > size_t Conv2d< T >::get_fan ( ) [virtual]
```

Get the fan object.

get the fan of Conv2d

Returns

size_t

Template Parameters

Returns

size_t

Reimplemented from Layer< T >.

6.1.5 Member Data Documentation

6.1.5.1 in_channels_

```
template<typename T >
size_t Conv2d< T >::in_channels_ [protected]
```

6.1.5.2 kernel_size_

```
template<typename T >
size_t Conv2d< T >::kernel_size_ [protected]
```

6.1.5.3 out_channels_

```
template<typename T >
size_t Conv2d< T >::out_channels_ [protected]
```

6.1.5.4 padding_

```
template<typename T >
size_t Conv2d< T >::padding_ [protected]
```

6.1.5.5 stride_

```
template<typename T >
size_t Conv2d< T >::stride_ [protected]
```

The documentation for this class was generated from the following files:

- layer/convolution.hpp
- layer/convolution_impl.hpp

6.2 Layer < T > Class Template Reference

the class of the layer

```
#include <layer_base.hpp>
```

Inheritance diagram for Layer < T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

• Layer ()=default

Construct a new Layer object.

• virtual ∼Layer ()=default

Destroy the Layer object.

virtual Matrix forward (const Matrix &in)=0

forward function in the network

• virtual Matrix backward (const Matrix &dout)=0

backward function in the networ

- virtual Shape weight_shape ()
- virtual Shape bias_shape ()
- virtual void set_weight (const Matrix &W)

Set the weight object.

virtual void set_bias (const Matrix &b)

Set the bias object.

virtual void set_network (Network< T > *net)

Set the network object.

• virtual LAYER_TYPE get_type ()

Get the type object.

virtual size_t get_fan ()

Get the fan object.

Protected Attributes

- LAYER_TYPE layer_type_
- Matrix in
- Matrix din_
- Matrix W_
- Matrix dW_
- Matrix b_
- Matrix db_
- Network< T > * net

6.2.1 Detailed Description

```
\label{template} \begin{split} \text{template} &< \text{typename T}> \\ \text{class Layer} &< \text{T}> \end{split}
```

the class of the layer

6.2.2 Member Typedef Documentation

6.2.2.1 Matrix

```
template<typename T>
typedef xt::xarray<T> Layer< T >::Matrix
```

6.2.2.2 Shape

```
template<typename T>
typedef Matrix::shape_type Layer< T >::Shape
```

6.2.3 Constructor & Destructor Documentation

6.2.3.1 Layer()

```
template<typename T>
Layer< T >::Layer ( ) [default]
```

Construct a new Layer object.

6.2.3.2 \sim Layer()

```
template<typename T>
virtual Layer< T >::~Layer ( ) [virtual], [default]
```

Destroy the Layer object.

6.2.4 Member Function Documentation

6.2.4.1 backward()

backward function in the networ

```
Parameters
 dout
Returns
     Matrix
Implemented in Conv2d< T>, ReLU< T>, Linear< T>, and MaxPool2d< T>.
6.2.4.2 bias_shape()
template<typename T>
virtual Shape Layer< T >::bias_shape ( ) [inline], [virtual]
Returns
     Shape
6.2.4.3 forward()
template<typename T>
virtual Matrix Layer< T >::forward (
             const Matrix & in ) [pure virtual]
forward function in the network
Parameters
 in
Returns
     Matrix
Implemented in Conv2d< T>, ReLU< T>, Linear< T>, and MaxPool2d< T>.
6.2.4.4 get_fan()
```

Get the fan object.

template<typename T>

virtual size_t Layer< T >::get_fan () [inline], [virtual]

```
Returns
```

```
size_t
```

Reimplemented in Conv2d< T >, and Linear< T >.

```
6.2.4.5 get_type()
```

```
template<typename T>
virtual LAYER_TYPE Layer< T >::get_type ( ) [inline], [virtual]
```

Get the type object.

Returns

LAYER_TYPE

6.2.4.6 set_bias()

Set the bias object.

Parameters

b

6.2.4.7 set_network()

Set the network object.

Parameters

net

6.2.4.8 set_weight()

Set the weight object.

Parameters

```
W
```

6.2.4.9 weight_shape()

```
template<typename T>
virtual Shape Layer< T >::weight_shape ( ) [inline], [virtual]
```

Returns

Shape

6.2.5 Member Data Documentation

6.2.5.1 b_

```
template<typename T>
Matrix Layer< T >::b_ [protected]
```

6.2.5.2 db_

```
template<typename T>
Matrix Layer< T >::db_ [protected]
```

6.2.5.3 din_

```
template<typename T>
Matrix Layer< T >::din_ [protected]
```

```
6.2.5.4 dW_
template<typename T>
Matrix Layer< T >::dW_ [protected]
6.2.5.5 in_
template<typename T>
Matrix Layer< T >::in_ [protected]
6.2.5.6 layer_type_
template<typename T>
LAYER_TYPE Layer< T >::layer_type_ [protected]
6.2.5.7 net_
{\tt template}{<}{\tt typename}\ {\tt T}{>}
Network<T>* Layer< T >::net_ [protected]
6.2.5.8 W_
```

The documentation for this class was generated from the following file:

• layer/layer_base.hpp

 ${\tt template}{<}{\tt typename}\ {\tt T}{>}$

 ${\tt Matrix\ Layer<\ T\ >::W_\ [protected]}$

6.3 Linear < T > Class Template Reference

the layer class which inherits the linear class

```
#include <linear.hpp>
```

Inheritance diagram for Linear< T >:

Collaboration diagram for Linear < T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

• Linear ()=default

Construct a new Linear object.

virtual ~Linear ()=default

Destroy the Linear object.

• Linear (size_t in_dims, size_t out_dims)

Construct a new Linear object.

• virtual Matrix forward (const Matrix &in) override

forward in the network

· virtual Matrix backward (const Matrix &dout) override

backward in the network

virtual size_t get_fan ()

Get the fan object.

Protected Attributes

- Matrix in reshape
- size_t in_dims_
- size_t out_dims_

6.3.1 Detailed Description

```
template < typename T> class Linear < T>
```

the layer class which inherits the linear class

Template Parameters

6.3.2 Member Typedef Documentation

6.3.2.1 Matrix

```
template<typename T >
typedef xt::xarray<T> Linear< T >::Matrix
```

6.3.2.2 Shape

```
template<typename T >
typedef Matrix::shape_type Linear< T >::Shape
```

6.3.3 Constructor & Destructor Documentation

```
6.3.3.1 Linear() [1/2]

template<typename T >
Linear< T >::Linear ( ) [default]
```

Construct a new Linear object.

6.3.3.2 \sim Linear()

```
template<typename T >
virtual Linear< T >::~Linear ( ) [virtual], [default]
```

Destroy the Linear object.

6.3.3.3 Linear() [2/2]

Construct a new Linear object.

Construct a new Linear < T>:: Linear object.

Parameters

in_dims	in dimensions
out_dims	out dimensions

Template Parameters

Parameters

in_dims	: in dimensions
out_dims	: out dimensions

6.3.4 Member Function Documentation

6.3.4.1 backward()

backward in the network

the implementation of the backward function

Parameters

dout

Returns

Matrix

Template Parameters

Parameters

dout

Returns

```
xt::xarray < T >
```

Implements Layer< T >.

6.3.4.2 forward()

forward in the network

the implementation of the forward function

Parameters

in

Returns
Matrix
Template Parameters T
Parameters in
Returns xt::xarray <t></t>
Implements Layer < T >.
6.3.4.3 get_fan()
<pre>template<typename t=""> size_t Linear< T >::get_fan () [virtual]</typename></pre>
Get the fan object.
get the fan of the network
Returns size_t
Template Parameters T
Returns size_t
Reimplemented from Layer< T >.

6.3.5 Member Data Documentation

6.3.5.1 in_dims_ template<typename T > size_t Linear< T >::in_dims_ [protected] 6.3.5.2 in_reshape_ template<typename T > Matrix Linear< T >::in_reshape_ [protected] 6.3.5.3 out_dims_

The documentation for this class was generated from the following files:

layer/linear.hpp

template<typename T >

· layer/linear_impl.hpp

6.4 Loss < T > Class Template Reference

size_t Linear< T >::out_dims_ [protected]

```
#include <loss.hpp>
```

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

```
• Loss ()
```

Construct a new Loss< T>:: Loss object.

• Loss (LOSS_TYPE loss_type)

Construct a new Loss< T>:: Loss object.

- virtual ~Loss ()=default
- virtual LOSS_TYPE get_type ()
- virtual const Matrix & get_grad ()
- virtual T CrossEntropyLoss (const Matrix &scores, const Matrix &target)

Protected Attributes

- Matrix scores_
- · Matrix dscores_
- LOSS_TYPE loss_type_

6.4.1 Member Typedef Documentation

6.4.1.1 Matrix

```
template<typename T>
typedef xt::xarray<T> Loss< T >::Matrix
```

6.4.1.2 Shape

```
template<typename T>
typedef Matrix::shape_type Loss< T >::Shape
```

6.4.2 Constructor & Destructor Documentation

```
6.4.2.1 Loss() [1/2]
```

```
template<typename T >
Loss< T >::Loss ( )
```

Construct a new Loss< T>:: Loss object.

Template Parameters

default use CROSS_ENTROPY

6.4.2.2 Loss() [2/2]

Construct a new Loss< T>:: Loss object.

	Para	

Parameters

```
loss_type
```

6.4.2.3 ∼Loss()

```
template<typename T>
virtual Loss< T >::~Loss ( ) [virtual], [default]
```

6.4.3 Member Function Documentation

6.4.3.1 CrossEntropyLoss()

Template Parameters

Parameters

scores	
target	

Returns

Т

```
/// construct index vector (stupied xt::index_view, maybe bug?)
```

exp_sum.shape(): [N, 1]

exp_sum.shape(): [N, 1]

loss.shape(): [N, 1]

6.4.3.2 get_grad()

```
template<typename T>
virtual const Matrix& Loss< T >::get_grad ( ) [inline], [virtual]
```

6.4.3.3 get_type()

```
template<typename T>
virtual LOSS_TYPE Loss< T >::get_type ( ) [inline], [virtual]
```

6.4.4 Member Data Documentation

6.4.4.1 dscores_

```
template<typename T>
Matrix Loss< T >::dscores_ [protected]
```

6.4.4.2 loss_type_

```
template<typename T>
LOSS_TYPE Loss< T >::loss_type_ [protected]
```

6.4.4.3 scores_

```
template<typename T>
Matrix Loss< T >::scores_ [protected]
```

The documentation for this class was generated from the following files:

- loss/loss.hpp
- loss/loss_impl.hpp

6.5 MaxPool2d < T > Class Template Reference

the class for the maxpool

#include <pooling.hpp>

Inheritance diagram for MaxPool2d< T >:

Collaboration diagram for MaxPool2d< T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

• MaxPool2d ()=default

Construct a new Max Pool 2d object.

virtual ∼MaxPool2d ()=default

Destroy the Max Pool 2d object.

MaxPool2d (size_t kernel_size, size_t stride=0, size_t padding=0)

Construct a new Max Pool 2d object.

· virtual Matrix forward (const Matrix &in) override

forward function in the network

· virtual Matrix backward (const Matrix &dout) override

backward function in the network

Protected Attributes

- size_t kernel_size_
- size_t padding_
- size_t stride_

6.5.1 Detailed Description

```
template < typename T> class MaxPool2d< T>
```

the class for the maxpool

Template Parameters

6.5.2 Member Typedef Documentation

6.5.2.1 Matrix

```
template<typename T >
typedef xt::xarray<T> MaxPool2d< T >::Matrix
```

6.5.2.2 Shape

```
template<typename T >
typedef Matrix::shape_type MaxPool2d< T >::Shape
```

6.5.3 Constructor & Destructor Documentation

```
6.5.3.1 MaxPool2d() [1/2]
```

```
template<typename T >
MaxPool2d< T >::MaxPool2d ( ) [default]
```

Construct a new Max Pool 2d object.

6.5.3.2 \sim MaxPool2d()

```
\label{template} $$ \ensuremath{\sf template}$ $$ \ensuremath{\sf template}$ $$ \ensuremath{\sf template}$ $$ \ensuremath{\sf T} > :: \sim $$ MaxPool2d ( ) [virtual], [default] $$
```

Destroy the Max Pool 2d object.

6.5.3.3 MaxPool2d() [2/2]

Construct a new Max Pool 2d object.

Construct a new Max Pool 2d < T>:: Max Pool 2d object.

Parameters

kernel_size	
stride	
padding	

Template Parameters

T	

Parameters

kernel_size	: the size of the kernel
stride	: the convolution is the step size of each dimension of the image, which is a one-dimensional vector.
padding	:This value determines the different convolution methods

6.5.4 Member Function Documentation

6.5.4.1 backward()

backward function in the network

backford function in the maxpool2d

Parameters dout
Returns Matrix
Template Parameters T
Parameters dout
Returns xt::xarray <t></t>
Implements Layer< T >.
6.5.4.2 forward()
<pre>template<typename t=""> xt::xarray< T > MaxPool2d< T >::forward (</typename></pre>
forward function in the network
forward function in the maxpool2d
Parameters in
Returns
Matrix
Template Parameters T
Parameters in : input

Returns

```
xt::xarray<T>
```

Implements Layer< T >.

6.5.5 Member Data Documentation

6.5.5.1 kernel_size_

```
template<typename T >
size_t MaxPool2d< T >::kernel_size_ [protected]
```

6.5.5.2 padding_

```
template<typename T >
size_t MaxPool2d< T >::padding_ [protected]
```

6.5.5.3 stride_

```
template<typename T >
size_t MaxPool2d< T >::stride_ [protected]
```

The documentation for this class was generated from the following files:

- layer/pooling.hpp
- layer/pooling_impl.hpp

6.6 Network < T > Class Template Reference

the class of network

```
#include <layer_base.hpp>
```

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

- Network ()=default
- virtual ∼Network ()=default
- Network< T > & operator<< (Layer< T > *layer)
- Network< T > & operator<< (Layer< T > &layer)
- Network< T > & operator<< (Loss< T > *loss)
- Network< T > & operator<< (Loss< T > &loss)
- virtual Optimizer < T > * get_optimizer ()
- virtual void set_optimizer (Optimizer < T > *opt)
- virtual Matrix predict (const Matrix &in)
- virtual Matrix forward (const Matrix &in, const Matrix &target)
- virtual void backward ()

Protected Attributes

- std::list< Layer< T > * > layers_
- Loss< T > * loss_
- Optimizer < T > * optimizer_

6.6.1 Detailed Description

```
template<typename T>class Network< T>
```

the class of network

6.6.2 Member Typedef Documentation

6.6.2.1 Matrix

```
template<typename T>
typedef xt::xarray<T> Network< T >::Matrix
```

6.6.2.2 Shape

```
template<typename T>
typedef Matrix::shape_type Network< T >::Shape
```

6.6.3 Constructor & Destructor Documentation

```
6.6.3.1 Network()
```

```
template<typename T>
Network< T >::Network ( ) [default]
6.6.3.2 \simNetwork()
template<typename T>
virtual Network< T >::~Network ( ) [virtual], [default]
6.6.4 Member Function Documentation
6.6.4.1 backward()
template<typename T >
void Network< T >::backward ( ) [virtual]
6.6.4.2 forward()
template<typename T >
xt::xarray< T > Network< T >::forward (
              const Matrix & in,
              const Matrix & target ) [virtual]
6.6.4.3 get_optimizer()
template<typename T>
\label{eq:continuity} \mbox{virtual Optimizer} < \mbox{T} > * \mbox{Network} < \mbox{T} > :: \mbox{get\_optimizer} \mbox{ ( ) [inline], [virtual]}
6.6.4.4 operator <<() [1/4]
template<typename T >
Network< T > & Network< T >::operator<< (</pre>
              Loss T > & loss
```

```
6.6.4.5 operator <<() [2/4]
template<typename T >
Network< T > & Network< T >::operator<< (</pre>
            Layer< T > * layer)
6.6.4.6 operator <<() [3/4]
template<typename T >
Network< T > & Network< T >::operator<< (</pre>
            Layer< T > & layer )
6.6.4.7 operator <<() [4/4]
template<typename T >
Network< T > & Network< T >::operator<< (
            Loss< T > * loss )
6.6.4.8 predict()
template<typename T >
xt::xarray< T > Network< T >::predict (
            const Matrix & in ) [virtual]
6.6.4.9 set_optimizer()
template<typename T>
virtual void Network < T >::set_optimizer (
             Optimizer< T > * opt ) [inline], [virtual]
6.6.5 Member Data Documentation
6.6.5.1 layers_
template<typename T>
std::list<Layer<T>*> Network< T >::layers_ [protected]
```

6.6.5.2 loss_

```
template<typename T>
Loss<T>* Network< T >::loss_ [protected]
```

6.6.5.3 optimizer_

```
template<typename T>
Optimizer<T>* Network< T >::optimizer_ [protected]
```

The documentation for this class was generated from the following files:

- layer/layer_base.hpp
- network/network.hpp
- network/network_impl.hpp

6.7 Optimizer < T > Class Template Reference

```
#include <optimizer_base.hpp>
```

Inheritance diagram for Optimizer < T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

- Optimizer ()=default
- virtual ∼Optimizer ()=default
- virtual void update (Matrix &target, const Matrix &grad)=0

Protected Attributes

• T lr_

6.7.1 Member Typedef Documentation

6.7.1.1 Matrix

```
template<typename T>
typedef xt::xarray<T> Optimizer< T >::Matrix
```

6.7.1.2 Shape

```
template<typename T>
typedef Matrix::shape_type Optimizer< T >::Shape
```

6.7.2 Constructor & Destructor Documentation

6.7.2.1 Optimizer()

```
template<typename T>
Optimizer< T >::Optimizer ( ) [default]
```

6.7.2.2 \sim Optimizer()

```
template<typename T>
virtual Optimizer< T >::~Optimizer ( ) [virtual], [default]
```

6.7.3 Member Function Documentation

6.7.3.1 update()

Implemented in SGD< T>.

6.7.4 Member Data Documentation

6.7.4.1 lr_

```
template<typename T>
T Optimizer< T >::lr_ [protected]
```

The documentation for this class was generated from the following file:

• optimizer_base.hpp

6.8 ReLU< T> Class Template Reference

ReLu Class, the rectifier is an activation function.

```
#include <activation.hpp>
```

Inheritance diagram for ReLU< T>:

Collaboration diagram for ReLU< T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

• ReLU ()

Construct a new Re L U object.

• virtual \sim ReLU ()=default

Destroy the ReLU object.

· virtual Matrix forward (const Matrix &in) override

forward function in the network

virtual Matrix backward (const Matrix &dout) override

backward function in the network

Additional Inherited Members

6.8.1 Detailed Description

template < typename T> class ReLU< T>

ReLu Class, the rectifier is an activation function.

Template Parameters

In the context of artificial neural networks, the rectifier is an activation function defined as the positive part of its argument:

 $\{ \forall x \in \{x\} = x^{+} = \max(0,x) \} \ \{ \forall x \in \{x\} = x^{+} = \max(0,x) \}$

where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave rectification in electrical engineering. This activation function was first introduced to a dynamical network by Hahnloser et al. in 2000 with strong biological motivations and mathematical justifications. It has been demonstrated for the first time in 2011 to enable better training of deeper networks, compared to the widely-used activation functions prior to 2011, e.g., the logistic sigmoid (which is inspired by probability theory; see logistic regression) and its more practical counterpart, the hyperbolic tangent. The rectifier is, as of 2017, the most popular activation function for deep neural networks.

6.8.2 Member Typedef Documentation

6.8.2.1 Matrix

```
template<typename T >
typedef xt::xarray<T> ReLU< T >::Matrix
```

6.8.2.2 Shape

```
template<typename T >
typedef Matrix::shape_type ReLU< T >::Shape
```

6.8.3 Constructor & Destructor Documentation

6.8.3.1 ReLU()

```
template<typename T >
ReLU< T >::ReLU ( )
```

Construct a new Re L U object.

Construct a new Re L U < T>:: Re L U object, the rectifier is an activation function.

Template Parameters

In the context of artificial neural networks, the rectifier is an activation function defined as the positive part of its argument:

```
{\displaystyle \int f(x)=x^{+}=\max(0,x)} {\displaystyle \int f(x)=x^{+}=\max(0,x)}
```

where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave rectification in electrical engineering. This activation function was first introduced to a dynamical network by Hahnloser et al.

in 2000 with strong biological motivations and mathematical justifications. It has been demonstrated for the first time in 2011 to enable better training of deeper networks, compared to the widely-used activation functions prior to 2011, e.g., the logistic sigmoid (which is inspired by probability theory; see logistic regression) and its more practical counterpart, the hyperbolic tangent. The rectifier is, as of 2017, the most popular activation function for deep neural networks.

```
6.8.3.2 \simReLU()
```

```
template<typename T > virtual ReLU<br/>< T >:: \sim ReLU ( ) [virtual], [default]
```

Destroy the ReLU object.

6.8.4 Member Function Documentation

6.8.4.1 backward()

backward function in the network

Parameters

dout

Returns

Matrix

Template Parameters

T

Parameters

dout

Returns

xt::xarray<T>

Implements Layer< T >.

6.8.4.2 forward()

forward function in the network

forward function

Template Parameters

Parameters

Returns

xt::xarray<T>

Template Parameters

Parameters

```
in the input
```

Returns

```
xt::xarray<T>
```

Implements Layer< T >.

The documentation for this class was generated from the following files:

- layer/activation.hpp
- layer/activation_impl.hpp

6.9 SGD< T> Class Template Reference

#include <optimizer.hpp>

Inheritance diagram for SGD< T>:

Collaboration diagram for SGD< T >:

Public Types

- typedef xt::xarray< T > Matrix
- typedef Matrix::shape_type Shape

Public Member Functions

- SGD (T Ir=0.1, T momentum=1., T weight_decay=0.)
- virtual ∼SGD ()=default
- virtual void update (Matrix &target, const Matrix &grad) override

Protected Attributes

- T momentum_
- T weight_decay_

6.9.1 Member Typedef Documentation

```
6.9.1.1 Matrix
```

```
template<typename T >
typedef xt::xarray<T> SGD< T >::Matrix

6.9.1.2 Shape

template<typename T >
typedef Matrix::shape_type SGD< T >::Shape
```

6.9.2 Constructor & Destructor Documentation

```
6.9.2.1 SGD()
```

6.9.2.2 \sim SGD()

```
template<typename T > virtual SGD < T > :: \sim SGD ( ) [virtual], [default]
```

6.9.3 Member Function Documentation

6.9.3.1 update()

Implements Optimizer < T >.

6.9.4 Member Data Documentation

6.9.4.1 momentum_

```
template<typename T >
T SGD< T >::momentum_ [protected]

6.9.4.2 weight_decay_
template<typename T >
```

T SGD< T >::weight_decay_ [protected]

The documentation for this class was generated from the following files:

- optimizer/optimizer.hpp
- optimizer/optimizer_impl.hpp

Chapter 7

File Documentation

7.1 layer/activation.hpp File Reference

#include "layer_base.hpp"
#include "activation_impl.hpp"
Include dependency graph for activation.hpp:

This graph shows which files directly or indirectly include this file:

Classes

class ReLU< T >

ReLu Class, the rectifier is an activation function.

7.1.1 Detailed Description

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.2 layer/activation_impl.hpp File Reference

the implentation for the header file of activation function

This graph shows which files directly or indirectly include this file:

7.2.1 Detailed Description

the implentation for the header file of activation function

Author

RuiJian Li, YiFan Cao, YanPeng Hu

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.3 layer/convolution.hpp File Reference

the attribute of the convolution

```
#include "init.hpp"
#include "layer_base.hpp"
#include "convolution_impl.hpp"
Include dependency graph for convolution.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

class Conv2d< T >

Computes a 2-D convolution given 4-D input and filter tensors.

7.3.1 Detailed Description

the attribute of the convolution

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.4 layer/convolution_impl.hpp File Reference

implementation for the convolution

#include <network.hpp>
Include dependency graph for convolution_impl.hpp:

This graph shows which files directly or indirectly include this file:

7.4.1 Detailed Description

implementation for the convolution

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.5 layer/layer_base.hpp File Reference

the attribute of the base of the layter

```
#include "common_header.hpp"
#include "utils.hpp"
Include dependency graph for layer_base.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

- class Network< T >
 - the class of network
- class Layer< T >

the class of the layer

Enumerations

enum LAYER_TYPE { CONV, LINEAR, POOL, ACT }
 enumerate the layer type

7.5.1 Detailed Description

the attribute of the base of the layter

Author

```
RuiJian Li( lirj@shanghaitech.edu.cn), YiFan Cao( caoyf@shanghaitech.edu.cn), Yan \leftarrow Peng Hu( huyp@shanghaitech.edu.cn)
```

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.5.2 Enumeration Type Documentation

7.5.2.1 LAYER_TYPE

enum LAYER_TYPE

enumerate the layer type

Enumerator

	_
CONV	
LINEAR	
POOL	
ACT	

7.6 layer/linear.hpp File Reference

the linear of the header file

```
#include "init.hpp"
#include "layer_base.hpp"
```

#include "linear_impl.hpp"
Include dependency graph for linear.hpp:

This graph shows which files directly or indirectly include this file:

Classes

class Linear< T >

the layer class which inherits the linear class

7.6.1 Detailed Description

the linear of the header file

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan⇔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.7 layer/linear_impl.hpp File Reference

implementation of the linear & forward &backword

#include <network.hpp>
Include dependency graph for linear_impl.hpp:

This graph shows which files directly or indirectly include this file:

7.7.1 Detailed Description

implementation of the linear & forward &backword

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.8 layer/pooling.hpp File Reference

```
#include "layer_base.hpp"
#include "pooling_impl.hpp"
Include dependency graph for pooling.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

class MaxPool2d< T >

the class for the maxpool

7.8.1 Detailed Description

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.9 layer/pooling_impl.hpp File Reference

the implementation of the pooling

This graph shows which files directly or indirectly include this file:

7.9.1 Detailed Description

the implementation of the pooling

head file

7.10 loader/data_loader.hpp File Reference

data_loader.hpp

```
#include <string>
#include <vector>
#include "xtensor-io/ximage.hpp"
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"
Include dependency graph for data_loader.hpp:
```


This graph shows which files directly or indirectly include this file:

Functions

- $\begin{tabular}{ll} \bullet & template < typename T > \\ void & image_normalize (xt::xarray < T > \&image, const xt::xarray < T > \&mean, const xt::xarray < T > \&std_) \\ \end{tabular}$
- template<typename T >
 xt::xarray< T > load_images (const std::vector< std::string > &paths, const xt::xarray< T > &mean, const xt::xarray< T > &std)

7.10.1 Detailed Description

data_loader.hpp

head file

7.10.2 Function Documentation

7.10.2.1 image_normalize()

7.10.2.2 load_images()

7.11 loader/model_loader.hpp File Reference

7.12 loss/loss.hpp File Reference

```
#include "common_header.hpp"
#include "loss_impl.hpp"
Include dependency graph for loss.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

class Loss< T >

Enumerations

• enum LOSS_TYPE { CROSS_ENTROPY }

7.12.1 Enumeration Type Documentation

7.12.1.1 LOSS_TYPE

enum LOSS_TYPE

Enumerator

CROSS_ENTROPY

7.13 loss/loss_impl.hpp File Reference

loss_impl.hpp

This graph shows which files directly or indirectly include this file:

7.13.1 Detailed Description

loss_impl.hpp

head file

7.14 network/common_header.hpp File Reference

```
#include <math.h>
#include <iostream>
#include "xtensor-blas/xlinalg.hpp"
#include "xtensor/xadapt.hpp"
```

```
#include "xtensor/xarray.hpp"
#include "xtensor/xindex_view.hpp"
#include "xtensor/xio.hpp"
#include "xtensor/xmath.hpp"
#include "xtensor/xpad.hpp"
#include "xtensor/xrandom.hpp"
#include "xtensor/xview.hpp"
Include dependency graph for common_header.hpp:
```


This graph shows which files directly or indirectly include this file:

7.15 network/init.hpp File Reference

Init the network. Containing two funcitons: kaiming_normal and kaiming_uniform.

```
#include "convolution.hpp"
#include "linear.hpp"
```

Include dependency graph for init.hpp:

This graph shows which files directly or indirectly include this file:

Functions

- template<typename T >
 void kaiming_normal (Layer< T > &layer, std::string mode="ReLU")
 kaiming normal distribution
- template < typename T >
 void kaiming_uniform (Layer < T > & layer, std::string mode="ReLU")
 kaiming uniform distribution

7.15.1 Detailed Description

Init the network. Containing two funcitons: kaiming_normal and kaiming_uniform.

Author

RuiJian Li(lirj@shanghaitech.edu.cn), YiFan Cao(caoyf@shanghaitech.edu.cn), Yan↔ Peng Hu(huyp@shanghaitech.edu.cn)

Version

1.6.0

Date

2019-05-30

Copyright

Copyright (c) 2019

7.15.2 Function Documentation

7.15.2.1 kaiming_normal()

kaiming normal distribution

Template Parameters

Parameters

According to the method described by He, K et al. in 'Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification' in 2015, the input tensor or variable is filled with a uniform distribution generation value. The resulting value in the tensor is sampled from U(-bound, bound), where bound = $sqrt(2/((1 + a^2) * fan_in)) * sqrt(3)$. Also known as He initialisation.

7.15.2.2 kaiming_uniform()

```
template<typename T > void kaiming_uniform (
```

```
Layer< T > & layer,
std::string mode = "ReLU" )
```

kaiming uniform distribution

Template Parameters

T	
,	

Parameters

layer	
mode	

According to the method described by He, K et al. in 'Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification' in 2015, the input tensor or variable is filled with a uniform distribution generation value. The resulting value in the tensor is sampled from U(-bound, bound), where bound = $sqrt(2/((1 + a^2) * fan_in)) * sqrt(3)$. Also known as He initialisation.

7.16 network/network.hpp File Reference

```
#include <list>
#include "activation.hpp"
#include "convolution.hpp"
#include "linear.hpp"
#include "loss.hpp"
#include "optimizer.hpp"
#include "pooling.hpp"
#include "network_impl.hpp"
Include dependency graph for network.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

class Network< T >

the class of network

7.17 network/network_impl.hpp File Reference

This graph shows which files directly or indirectly include this file:

7.18 network/utils.hpp File Reference

#include <common_header.hpp>
Include dependency graph for utils.hpp:

This graph shows which files directly or indirectly include this file:

Functions

 • template<typename T > void cout_shape (const xt::xarray< T > &matrix)

7.18.1 Function Documentation

7.18.1.1 cout_shape()

7.19 optimizer/optimizer.hpp File Reference

```
#include "optimizer_base.hpp"
#include "optimizer_impl.hpp"
Include dependency graph for optimizer.hpp:
```


This graph shows which files directly or indirectly include this file:

Classes

• class SGD< T >

7.20 optimizer/optimizer_base.hpp File Reference

#include "common_header.hpp"
Include dependency graph for optimizer_base.hpp:

This graph shows which files directly or indirectly include this file:

Classes

class Optimizer < T >

7.21 optimizer/optimizer_impl.hpp File Reference

This graph shows which files directly or indirectly include this file:

7.22 README.md File Reference

7.23 test/test_layer.cpp File Reference

```
#include "activation.hpp"
#include "convolution.hpp"
#include "linear.hpp"
#include "pooling.hpp"
#include <iostream>
```

Include dependency graph for test_layer.cpp:

Functions

• int main (int argc, char **argv)

7.23.1 Function Documentation

7.23.1.1 main()

```
int main (  \mbox{int $argc$,} \\ \mbox{char $**$ $argv$ )}
```

7.24 test/test_loader.cpp File Reference

#include "data_loader.hpp"
Include dependency graph for test_loader.cpp:

Functions

• int main (int argc, char **argv)

7.24.1 Function Documentation

7.24.1.1 main()

```
int main (
          int argc,
          char ** argv )
```

7.25 test/test_net.cpp File Reference

```
#include "network.hpp"
Include dependency graph for test_net.cpp:
```


Functions

• int main (int argc, char **argv)

7.25.1 Function Documentation

7.25.1.1 main()

```
int main (
          int argc,
          char ** argv )
```

Index

\sim Conv2d	stride , 16
Conv2d< T >, 13	cout_shape
~Layer	utils.hpp, 74
Layer< T >, 18	CROSS_ENTROPY
~Linear	loss.hpp, 66
Linear $<$ T $>$, 25	CrossEntropyLoss
~Loss	
	Loss < T >, 30
Loss< T >, 30	data landar ban
~MaxPool2d	data_loader.hpp
MaxPool2d < T >, 33	image_normalize, 65
\sim Network	load_images, 65
Network $<$ T $>$, 38	db_
\sim Optimizer	Layer $<$ T $>$, 21
Optimizer $<$ T $>$, 41	din_
\sim ReLU	Layer $<$ T $>$, 21
ReLU $<$ T $>$, 45	dscores_
\sim SGD	Loss $<$ T $>$, 31
SGD< T >, 48	dW_
	Layer< T >, 21
ACT	•
layer_base.hpp, 58	forward
, = 117	Conv2d< T >, 14
b_	Layer< T >, 19
_ Layer< T >, 21	Linear < T >, 26
backward	MaxPool2d < T >, 35
Conv2d< T >, 14	Network $< T >$, 38
Layer< T >, 18	ReLU< T >, 45
Linear $<$ T $>$, 25	11020 < 1 >, 40
MaxPool2d $<$ T $>$, 34	get_fan
Network $< T >$, 38	Conv2d< T >, 15
	Layer< T >, 19
ReLU <t>, 45</t>	-
bias_shape	Linear $<$ T $>$, 27
Layer $<$ T $>$, 19	get_grad
00111/	Loss< T >, 30
CONV	get_optimizer
layer_base.hpp, 58	Network< T >, 38
Conv2d	get_type
Conv2d $<$ T $>$, 13	Layer $<$ T $>$, 20
Conv2d < T >, 11	Loss< T >, 31
\sim Conv2d, 13	
backward, 14	image_normalize
Conv2d, 13	data_loader.hpp, 65
forward, 14	in
get_fan, 15	_ Layer< T >, 22
in_channels_, 15	in channels
kernel size , 15	Conv2d< T >, 15
Matrix, 12	in dims
out_channels_, 16	Linear $<$ T $>$, 27
padding_, 16	
	in_reshape_ Linear $<$ T $>$, 28
Shape, 12	Lillear< 1 >, 28

82 INDEX

init.hpp	Linear
kaiming_normal, 70	Linear $< T >$, 24, 25
kaiming_uniform, 70	Linear $<$ T $>$, 23
	\sim Linear, 25
kaiming_normal	backward, 25
init.hpp, 70	forward, 26
kaiming_uniform	get_fan, 27
init.hpp, 70	in_dims_, 27
kernel_size_	in_reshape_, 28
Conv2d $< T >$, 15	Linear, 24, 25
MaxPool2d < T >, 36	Matrix, 24
	out_dims_, 28
Layer	Shape, 24
Layer $< T >$, 18	load_images
Layer < T >, 16	data_loader.hpp, 65
∼Layer, 18	loader/data_loader.hpp, 64
b_, 21	loader/model_loader.hpp, 65
backward, 18	Loss
bias shape, 19	
db_, 21	Loss< T >, 29
din_, 21	Loss < T >, 28
dW_, 21	~Loss, 30
forward, 19	CrossEntropyLoss, 30
get_fan, 19	dscores_, 31
get_type, 20	get_grad, 30
in_, 22	get_type, 31
	Loss, 29
Layer, 18	loss_type_, 31
layer_type_, 22	Matrix, 29
Matrix, 17	scores_, 31
net_, 22	Shape, 29
set_bias, 20	loss.hpp
set_network, 20	CROSS_ENTROPY, 66
set_weight, 20	LOSS_TYPE, 66
Shape, 18	loss/loss.hpp, 65
W_, 22	loss/loss_impl.hpp, 67
weight_shape, 21	loss_
layer/activation.hpp, 51	Network $<$ T $>$, 39
layer/activation_impl.hpp, 53	LOSS_TYPE
layer/convolution.hpp, 54	loss.hpp, 66
layer/convolution_impl.hpp, 55	loss_type_
layer/layer_base.hpp, 57	Loss< T >, 31
layer/linear.hpp, 58	lr_
layer/linear_impl.hpp, 60	Optimizer < T >, 42
layer/pooling.hpp, 62	,
layer/pooling_impl.hpp, 63	main
layer_base.hpp	test_layer.cpp, 78
ACT, 58	test_loader.cpp, 79
CONV, 58	test_net.cpp, 79
LAYER TYPE, 58	Matrix
LINEAR, 58	Conv2d< T >, 12
POOL, 58	Layer< T >, 17
LAYER TYPE	Linear $<$ T $>$, 24
layer_base.hpp, 58	Loss< T >, 29
layer_type_	MaxPool2d $<$ T $>$, 33
Layer< T >, 22	Network $<$ T $>$, 37
layers	Optimizer $< T >$, 41
Network< T >, 39	ReLU< T >, 44
LINEAR	SGD< T >, 47
layer_base.hpp, 58	MaxPool2d
14,01_0430.11pp, 00	Waxi Ooiza

INDEX 83

MaxPool2d< T >, 33, 34	padding_
MaxPool2d < T >, 32	Conv2d $<$ T $>$, 16
\sim MaxPool2d, 33	MaxPool2d < T >, 36
backward, 34	POOL
forward, 35	layer_base.hpp, 58
kernel_size_, 36	predict
Matrix, 33	Network $<$ T $>$, 39
MaxPool2d, 33, 34	
padding_, 36	README.md, 77
Shape, 33	ReLU
stride_, 36	ReLU< T >, 44
momentum_	ReLU< T >, 42
SGD < T >, 49	∼ReLU, 45
	backward, 45
net_	forward, 45
Layer $<$ T $>$, 22	Matrix, 44
Network	ReLU, 44
Network $<$ T $>$, 37	Shape, 44
Network< T >, 36	000100
\sim Network, 38	scores_
backward, 38	Loss< T >, 31 set bias
forward, 38	Layer< T >, 20
get_optimizer, 38	set network
layers_, 39	Layer< T >, 20
loss_, 39	set optimizer
Matrix, 37	Network <t>, 39</t>
Network, 37	set weight
operator<<, 38, 39	Layer< T >, 20
optimizer_, 40	SGD
predict, 39	SGD< T >, 48
set_optimizer, 39	SGD< T >, 46
Shape, 37	~SGD, 48
network/common_header.hpp, 67	Matrix, 47
network/init.hpp, 68	momentum , 49
network/network.hpp, 71	SGD, 48
network/network_impl.hpp, 73	Shape, 48
network/utils.hpp, 73	update, 48
	weight_decay_, 49
operator<<	Shape
Network< T >, 38, 39	Conv2d < T >, 12
Optimizer	Layer< T >, 18
Optimizer< T >, 41	Linear $<$ T $>$, 24
Optimizer < T >, 40	Loss < T >, 29
\sim Optimizer, 41	MaxPool2d $<$ T $>$, 33
lr_, 42	Network $<$ T $>$, $\frac{1}{37}$
Matrix, 41	Optimizer <t>, 41</t>
Optimizer, 41	ReLU< T >, 44
Shape, 41	SGD< T >, 48
update, 41	stride
optimizer/optimizer.hpp, 74	Conv2d< T >, 16
optimizer/optimizer_base.hpp, 75	MaxPool2d $<$ T $>$, 36
optimizer/optimizer_impl.hpp, 77	,
optimizer_	test/test_layer.cpp, 77
Network< T >, 40	test/test_loader.cpp, 78
out_channels_	test/test_net.cpp, 79
Conv2d < T >, 16	test_layer.cpp
out_dims_	main, 78
Linear $<$ T $>$, 28	test_loader.cpp

84 INDEX

```
main, 79
test_net.cpp
main, 79

update
Optimizer< T >, 41
SGD< T >, 48
utils.hpp
cout_shape, 74

W_
Layer< T >, 22
weight_decay_
SGD< T >, 49
weight_shape
Layer< T >, 21
```