CIRCUITOS DIGITAIS

Simplificação empregando mapa de karnaugh

Adaptado do professor Prof. Edson Moreno

Introdução

Mapa de karnaugh

- Emprega conceitos vistos anteriormente
- Método de simplificação visual
- Permite reduzir
 - O tamanho do circuito (Propriedades da álgebra booleanas)
 - O número de níveis a serem empregados (Soma de produtos e produtos de soma)
- Complexidade é reduzida junto

Um mapa de Karnaugh é a representação gráfica da tabela de verdade de uma função lógica.

				>	(
	zw\	00	01	11	10	
	00	0	4	12	8	
	01	1	5	13	9	W
z	11	3	7	15	11	vv
	10	2	6	14	10	

FIGURE 4-21

A 3-variable Karnaugh map showing product terms.

Como preencher a tabela com a expressão ? a'b'c'+a'b'c+abc'+ab'c'

FIGURE 4-24

Example of mapping a standard SOP expression.

Como preencher a tabela com a expressão ? a'b'c'+a'b'c+abc'+ab'c'

Como preencher a tabela com a expressão?
a'b'c'd+a'b'cd+a'bc'd'+abc'd'+abc'd+abcd+ab'cd'

Como preencher a tabela com a expressão?
a'b'c'd+a'b'cd+a'bc'd'+abc'd'+abc'd+abcd+ab'cd'

Tabela Verdade → **Karnaugh**

FIGURE 4-35

Example of mapping directly from a truth table to a Karnaugh map.

Método de Karnaugh (3 variáveis)

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

Х	V	7	f(x,y,z)
	,		0
-	_	1	1
	1	0	1
	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
	X 0 0 0 1 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

Método de Karnaugh (3 variáveis)

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

	Х	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0 (0 1
	0	1	1	1
4	1	0	0	, 0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$f(x, y, z) = y + z$$

Método de Karnaugh (4 variáveis)

	Х	у	Z	W	f(x,y,z,w)
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

Método de Karnaugh (4 variáveis)

	Х	У	Z	W	f(x,y,z,w)
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

$$f(x, y, z, w) = \overline{y} \cdot w + x \cdot y \cdot \overline{w} + x \cdot y \cdot \overline{z}$$

Como Agrupar?

AB C	0	1
00	1	0
01	1	0
11	1	1
10	1	0

AB C	0	1
00	1	1
01	1	0
11	1	0
10	1	1

AB CL	00	01	11	10
00	0	1	1	0
01	0	1	0	0
11	0	1	0	1
10	1	1	1	0

AB CL	00	01	11	10
00	0	0	1	0
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

AB CD	00	01	11	10
00	0	1	0	1
01	0	0	1	1
11	1	0	1	1
10	1	0	0	1

Exercício em aula

- Monte o mapa de Karnaugh para as seguintes expressões e o circuito equivalente das simplificações.
- A'BC + AB'C + AB'C'
- A'BCD' + ABCD' + ABC'D' + ABCD
- -AC(B'+C)
- A'B'C' + A'BC' + A'BC + AB'C'+ABC'
- A'B'C' +A'B'C + A'BC+AB'C + ABC
- Construa a tabela verdade, a expressão e o circuito equivalente para:
- $S1 = \sum (1,2,5,4,7)$
- S2 = \prod (0,7,15,9)

Exercícios

- Projetar um circuito simplificado que caracterize um elevador da seguinte forma:
 - M sinaliza que o elevador está em movimento (1) ou parado (0)
 - O prédio possuir 3 andares (A1, A2 e A3)
 - O sistema deve reconhecer reconhecer a presença do elevador no andar (1) ou não (0)
 - A saída P deve indicar que a porta pode ser aberta (1) sempre que elevador estiver parado em um dado andar.
- Tente simplificar os seguintes circuitos aplicando karnaugh

EXERCÍCIOS

Minimizar o circuito que executa a tabela verdade abaixo:

Situação	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0