

Muon-HIP Alignment Workflow

Jim Pivarski, Alexei Safonov, Károly Banicz*

Texas A&M University, *FermiLab

8 February, 2008

Very early alignment of muon endcaps

- ▶ Align chambers and layers relative to each other with beam-halo (before first collisions) through CSC overlap hits
- Align whole rings relative to the tracker with several hundred I.P. muons
- ▶ Two opportunities to compare with hardware alignment
- Manually configured and operated by Károly Banicz and me

10 to 100 pb⁻¹ alignment of the whole muon system

- ▶ Align chambers relative to the tracker with tens of thousands through millions of I.P. muons
- Automated and parallelized, run on the CAF

- See Károly's talk at yestday's CSC DPG
- ► Alternate between track-fitting even-numbered chambers, aligning odd, and fitting odd, aligning even

- ▶ Ring alignment step requires a new level in muon hierarchy
 - $\ldots \to \mathsf{CSCStations} \to \mathsf{CSCRing} \to \mathsf{CSCChamber} \to \ldots$
- New item since last meeting
 - ► Hard to implement a structural change like this for 2_0_0?
 - ▶ I'd like to have that discussion offline

- ▶ 9 passes, the first having 15 iterations, the rest 5 (total of 55)
 - First align wheels and disks, slow convergence
 - Next align innermost muon stations
 - ► Then fix innermost and align next, etc.
 - ▶ Then allow everything to float when close to optimum
- ▶ Data selected by a p_T cut and a new track cut that rejects highly-scattering tracks

Resources for 100 pb⁻¹

- ▶ Assuming all W + Z and no QCD: 714,000 events
- ▶ 54 CPUs + 1 control job
- ▶ 11 min/iter \rightarrow 10 hours wall time (ideally)
- ▶ 12 MB/iter output on local disk → 660 MB
- ▶ Typical max memory: 300 MB, max swap: 700 MB
- ► CASTOR failed on 13 jobs (0.6%), each of which pauses the entire process— must be restarted by hand

- ► Single perl script creates all necessary directories and configuration files; easy to stop and restart a half-finished job
- One control job submits parallel sub-processes, waits for them to finish
 - This CPU spends most of its time sleeping
 - Waits forever if sub-job fails
- Muon geometry is passed from one iteration to the next via SQLite files: last one copied into database by hand
- Residuals monitoring through CommonAlignmentMonitor
- ► Alignment monitoring through MuonGeometryIntoNtuples
- ► For MC, combine datasets at the level of parameter matrices (individual subjobs run on pure samples)

Relative chamber alignment with beam-halo:

- ▶ Need HLT paths for beam-halo technical trigger
- ► CSC overlap hits need to be put on CosmicMuon tracks
- Need to submit code for setting APEs (through CommonAlignmentMonitor)
- Need to write and submit geometry-monitoring scripts
- ▶ Need to test survey constraints for muon system
- Develop procedure on MC (beam-halo rate is "factor-of-100" uncertain: level of feasibility will not be fully known)

Ring alignment with globalMuon tracks:

- Need to add CSCRing level of hierarchy
- ▶ Need to submit track-scattering cut

10 and 100 pb^{-1} full alignments:

- ► Procedure runs, but with CASTOR problems (now rare, but still a problem)
- Same new code requirements
- ▶ Determine optimal cut and preferred parameters for AlCaReco (to be coordinated with MillePede muon alignment group)
- \blacktriangleright Systematics studies (in 1_6_7 with large data samples)
 - ► Still need to try several configurations (optimize new track cut)
 - Miscalibrations, misaligned tracker, wrong $\rho(\vec{x})$, $\vec{B}(\vec{x})$...
 - Generic event selection with p_T cut, rather than W, Z
 - Layer alignment feasibility study
- ► CSA08: make sure the baseline procedure works and gives the same results in CMSSW_2_0_0
 - ▶ Need small 2_0_0 $Z \to \mu\mu$ sample: 54,000 events after AlCaRecoMu cuts

Conclusions

Jim Pivarski

Requests:

- ► More reliable CASTOR access
- Occasional overnight use of 50 CPUs
- ► Larger non-CASTOR space? (several GB)

Status:

- ▶ Baseline 100 pb $^{-1}$ procedure is almost in good shape: early tests show 300–800 μ m, depending on station
- ▶ Finished 85% of a full walkthrough, with manual intervention
- ▶ A lot of new code to submit; most of it is written
 - We need to talk about new item: CSCRing

CSA08:

- ► Extensive physics-tests of the procedure using 1_6_7 and existing CSA07 samples
- Check that software still works in 2_0_0 and beyond