Замкнутые классы

 ${\cal F}$ — множество булевых функций замыкание $[{\cal F}]$ (относительно суперпозиции) — это множество всех булевых функций, представимых формулой над ${\cal F}$.

Примеры:

$$[\emptyset] = \{\emptyset\}, [\neg x] = \{x, \neg x\}, [x \lor y] = \{x_1 \lor \dots \lor x_n | n > 1\}.$$

Замкнутый класс — равный своему замыканию.

Замкнутые классы

 T_0 : класс функций, сохраняющих ноль:

$$T_0 = \{f | f(0, \dots, 0) = 0\}$$

 T_1 : класс функций, сохраняющих единицу:

$$T_1 = \{f | f(1, \dots, 1) = 1\}$$

Примеры:

- ▶ ∨ и ∧ сохраняют как ноль, так и единицу
- ⊕ сохраняет ноль, но не сохраняет единицу
- lacktriangle ightarrow сохраняет ноль
- ¬ не сохраняет ни единицу, ни ноль

Предложение

Классы функций T_0 и T_1 замкнуты.

Двойственные функции

Двойственная функция к f:

$$f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n).$$

Самодвойственная функция: $f^* = f$.

Примеры:

- ▶ ∨ и ∧ двойственны друг другу
- ¬ двойственно самому себе (самодвойственно)

Предложение

$$(f^*)^* = f.$$

S: класс самодвойственных функций.

Предложение

Класс функций S замкнут.

Монотонные функции

Частичный порядок на множестве двоичных наборов: $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n)$, если $b_i \leq c_i$ для всех i.

f — монотонная функция, если $f(\alpha) \leq f(\beta)$, если $\alpha \leq \beta$.

М: класс монотонных функций.

Примеры:

- ▶ ∨ и ∧ монотонны
- ightharpoonup \lnot , \oplus , \rightarrow немонотонны

Предложение

Класс М замкнут.

Линейные функции

Линейные функции — такие, многочлен Жегалкина которых не использует конъюнкции; а также константа 0.

L: класс линейных функций:

$$L = \{x_{i_1} \oplus \cdots \oplus x_{i_m} \oplus c \mid m > 0, 1 \leq i_1 < \cdots < i_m \leq n, c \in \{0, 1\}\}$$

Предложение

Класс L замкнут.

Примеры:

- ▶ ⊕, ¬ линейны
- ▶ ∨, ∧ нелинейны

Критерий полноты системы функций

Множество булевых функций \mathcal{F} называется полной системой, если все булевы функции выразимы формулами над этим базисом.

Теорема (Пост, 1921)

Множество булевых функций $\mathcal F$ является полным тогда и только тогда, когда $\mathcal F$ не содержится ни в одном из пяти классов T_0 , T_1 , S, M, L.

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0, f_1 \notin T_1, f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

План доказательства:

- 1. Сперва из f_0 и f_1 выражается или отрицание, или обе константы, или и то и другое (как получится).
- 2. Выразим отрицание и константы следующим образом:
 - 2.1 Если получилось отрицание, то из f_S выражаются константы;
 - 2.2 Если же вышли обе константы, то отрицание выражается из f_M .
- 3. из f_L выражается конъюнкция.

- (1) Так как $f_0 \notin T_0$, то по определению T_0 имеем $f_0(0,\ldots,0)=1$.
 - 1. Если при этом $f_0(1,\ldots,1)=1$, то получена константа 1 в виде $\varphi_1(x)=f_0(x,\ldots,x)=1$.
 - 2. Если же $f_0(1,\dots,1)=0$, то в таком же виде получено отрицание, $\overline{\varphi}(x)=\neg x=f_0(x,\dots,x)$

(2.1) Пусть получено отрицание.

Для функции $f_S \notin S$ известно, что существует набор $(\sigma_1,\ldots,\sigma_n)$, на котором

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})\neq \neg f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}),$$

т.е.

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})=f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}).$$

Тогда формула $f_S(x^{\sigma_1},\ldots,x^{\sigma_n})$, построенная из f_S и из отрицания, выражает одну из констант.

С помощью отрицания выражается вторая константа.

(2.2) Пусть на шаге (1) получены обе константы.

Для функции $f_M \notin M$ существуют два набора α и β , для которых $\alpha < \beta$, но $f_M(\alpha) = 1$ и $f_M(\beta) = 0$.

Пусть i_1,\ldots,i_k — номера всех координат, в которых α и β отличаются друг от друга. Соответственно, в α там 0, в β — 1, а остальные координаты общие, σ_i , где $i \notin \{i_1,\ldots,i_k\}$:

$$f_{\mathcal{M}}(\sigma_1,\ldots,\sigma_{i_1-1},0,\sigma_{i_1+1},\ldots,\sigma_{i_k-1},0,\sigma_{i_k+1}\ldots\sigma_n)=1$$

$$f_{\mathcal{M}}(\sigma_1,\ldots,\sigma_{i_1-1},1,\sigma_{i_1+1},\ldots,\sigma_{i_k-1},1,\sigma_{i_k+1}\ldots\sigma_n)=0$$

Чтобы получить отрицание, подставим:

- ▶ константы вместо всех общих координат
- ightharpoonup одной и той же переменной x во всех изменяющиеся координатах:

$$\neg x = f_{M}(\sigma_{1}, \dots, \sigma_{i_{1}-1}, x, \sigma_{i_{1}+1}, \dots, \sigma_{i_{k}-1}, x, \sigma_{i_{k}+1}, \dots, \sigma_{n})$$

Мы построили $0,1,\neg$; нужно \wedge :

(3) Так как функция f_L нелинейна, ее многочлен Жегалкина содержит хотя бы одну конъюнкцию.

Пусть переменные x и y входят в состав этой конъюнкции.

Тогда функцию можно представить в виде $f_L(x,y,z,...) = xyP(z,...) \oplus xQ(z,...) \oplus yR(z,...) \oplus S(z,...)$, где P, Q, R, S — многочлены Жегалкина (Q,R,S могут отсутствовать).

Так как P — не константа 0, она равна единице на некотором наборе α .

Тогда
$$g(x,y) = f_L(x,y,\alpha) =$$

= $xyP(\alpha) \oplus xQ(\alpha) \oplus yR(\alpha) \oplus S(\alpha) =$
= $xy \oplus xb \oplus yc \oplus d$, где $b,c,d \in \{0,1\}$.

Подстановкой $g(x\oplus c,y\oplus b)$ получается следующая функция:

$$h(x,y) = g(x \oplus c, y \oplus b) = (x \oplus c)(y \oplus b) \oplus (x \oplus c)b \oplus (y \oplus b)c \oplus d = xy \oplus bc \oplus d$$

В зависимости от значения константного слагаемого $bc \oplus d$, получилась или конъюнкция, или ее отрицание. В последнем случае можно применить к ней ранее выраженную операцию отрицания. ЧТД