

Photogrammetry & Robotics Lab

Behavior Estimation for Self-Driving Cars

Benedikt Mersch

Part of the Course: Techniques for Self-Driving Cars by C. Stachniss, J. Behley, N. Chebrolu, B. Mersch, I. Bogoslavskyi, L. Peters

Planning in General

High abstraction Low abstraction

Planning in General

Behavior Planning vs. Estimation

- Plan maneuvers to follow global plan
- Transitions between maneuvers depend on traffic participants
- Behavior estimation can support decision making

What Information Can We Use?

- Infer behavior of other traffic participants from
 - past states (e.g. position, velocity, acceleration)
 - map information
 - sensor data (e.g. camera, LiDAR, radar)

- n-agent partially observable stochastic game
- Physical state $x_i^{(t)}$, observations $z_i^{(t)}$, internal state $b_i^{(t)}$ and control action $u_i^{(t)}$

- n-agent partially observable stochastic game
- Physical state $x_i^{(t)}$, observations $z_i^{(t)}$, internal state $b_i^{(t)}$ and control action $u_i^{(t)}$

- n-agent partially observable stochastic game
- Physical state $x_i^{(t)}$, observations $z_i^{(t)}$, internal state $b_i^{(t)}$ and control action $u_i^{(t)}$

 n-agent partially observable stochastic game

• Physical state $z_i^{(t)}$, observations $z_i^{(t)}$, internal state $b_i^{(t)}$ and control action $u_i^{(t)}$

- n-agent partially observable stochastic game
- Physical state $x_i^{(t)}$, observations $z_i^{(t)}$, internal state $b_i^{(t)}$ and control action $u_i^{(t)}$

- State estimation: $x_{1:n}^{(t)}$
- Intention and trait estimation: $b_{1:n}^{(t)}$
- Motion prediction: $x_{1:n}^{(t+1:t_f)}$

- State estimation: $x_{1:n}^{(t)}$
- Intention and trait estimation: $b_{1:n}^{(t)}$
- Motion prediction: $x_{1:n}^{(t+1:t_f)}$

- State estimation: $x_{1:n}^{(t)}$
- Intention and trait estimation: $b_{1:n}^{(t)}$
- Motion prediction: $x_{1:n}^{(t+1:t_f)}$

- State estimation: $x_{1 \cdot n}^{(t)}$
- Intention and trait estimation: $b_{1:n}^{(t)}$
- Motion prediction: $x_{1:n}^{(t+1:t_f)}$

Intention Estimation

Intention Estimation

Is the white car turning right or driving straight?

Intention Estimation

- Infer what other drivers want to do in the future
- Often probability distribution over high-level behavior modes (e.g. lane changing, turning, overtaking)
- Motion prediction can be conditioned on estimated intention

Intention Estimation Paradigms

Recursive estimation

$$p\left(b_{1:n}^{(t)}\right) = f\left(p\left(b_{1:n}^{(t-1)}\right), z_{\text{ego}}^{(t)}\right)$$

Single-shot estimation

$$p\left(b_{1:n}^{(t)}\right) = f\left(z_{\text{ego}}^{(t_p:t)}\right)$$

- Bayesian model
- Deep learning methods (black box)
- Game-theory

- In contrast to intention, a trait defines how the goal should be accomplished
- Traits depend on e.g. driver skill, preferences, aggressiveness

- In contrast to intention, a trait defines
 how the goal should be accomplished
- Traits depend on e.g. driver skill, preferences, aggressiveness

- In contrast to intention, a trait defines how the goal should be accomplished
- Traits depend on e.g. driver skill, preferences, aggressiveness

- In contrast to intention, a trait defines
 how the goal should be accomplished
- Traits depend on e.g. driver skill, preferences, aggressiveness

- Example traits:
 - Policy parameters of a driver model like minimum desired gap, maximum feasible acceleration
 - Parametric cost function that players try to optimize
- Offline: Estimate parameters in advance based on observations
- Online: Update parameters for previously unobserved drivers

Trait Estimation Paradigms

- Bayesian model
- Optimization e.g. inverse reinforcement learning
- Heuristics (use for example recommended parameters)

Motion Prediction

Motion Prediction

Now we are interested in the **full** trajectory, not the high-level action

Motion Prediction

- Predict future states $x_{1:n}^{(t+1:t_f)}$ of n traffic participants
- State transition model

$$x_i^{(t+1)} \sim F_i \left(x_i^{(t)}, u_i^{(t)} \right)$$

can be physics-/geometry-based or learned from data

Future interactions among traffic participants

Motion Hypotheses

- Single trajectories
- Multi-modal trajectories
- 3D/2D Bounding boxes
- Gaussian (mixture) distributions
- Occupancy grid maps
- Forward/backward reachable sets
- Raw sensor data

Motion Prediction Paradigms

Closed-loop forward simulation

- + Interaction aware
- Requires control policy

Algorithm 1 Motion Prediction via Forward Simulation

```
\begin{aligned} & \textbf{for } \tau \in t, \dots, t_f - 1 \\ & \textbf{for } i \in 1, \dots, n \\ & \mathbf{z}_i^{(\tau)} \leftarrow \boldsymbol{G}_i(\mathbf{x}_{1:n}^{(\tau)}) & \rhd \text{ receive observation} \\ & \mathbf{b}_i^{(\tau)} \leftarrow \boldsymbol{H}_i(\mathbf{b}_i^{(\tau-1)}, \mathbf{z}_i^{(\tau)}) & \rhd \text{ update internal state} \\ & \mathbf{u}_i^{(\tau)} \leftarrow \pi_i(\mathbf{b}_i^{(\tau)}) & \rhd \text{ select action} \\ & \mathbf{x}_i^{(\tau+1)} \leftarrow \boldsymbol{F}_i(\mathbf{x}_i^{(\tau)}, \mathbf{u}_i^{(\tau)}) & \rhd \text{ step forward} \end{aligned}
```

Motion Prediction Paradigms

- Closed-loop forward simulation
 - + Interaction aware
 - Requires control policy

Algorithm 1 Motion Prediction via Forward Simulation

```
\begin{array}{ll} \textbf{for } \tau \in t, \dots, t_f - 1 \\ \textbf{for } i \in 1, \dots, n \\ \textbf{z}_i^{(\tau)} \leftarrow \textbf{\textit{\textbf{G}}}_i(\textbf{x}_{1:n}^{(\tau)}) & \rhd \text{ receive observation} \\ \textbf{b}_i^{(\tau)} \leftarrow \textbf{\textit{\textbf{H}}}_i(\textbf{b}_i^{(\tau-1)}, \textbf{z}_i^{(\tau)}) & \rhd \text{ update internal state} \\ \textbf{u}_i^{(\tau)} \leftarrow \pi_i(\textbf{b}_i^{(\tau)}) & \rhd \text{ select action} \\ \textbf{x}_i^{(\tau+1)} \leftarrow \textbf{\textit{\textbf{F}}}_i(\textbf{x}_i^{(\tau)}, \textbf{u}_i^{(\tau)}) & \rhd \text{ step forward} \end{array}
```

Motion Prediction Paradigms

- Closed-loop forward simulation
 - + Interaction aware
 - Requires control policy

```
Algorithm 1 Motion Prediction via Forward Simulation
```

```
\begin{array}{ll} \textbf{for } \tau \in t, \dots, t_f - 1 \\ \textbf{for } i \in 1, \dots, n \\ \textbf{z}_i^{(\tau)} \leftarrow \textbf{\textit{G}}_i(\textbf{x}_{1:n}^{(\tau)}) & \text{receive observation} \\ \textbf{b}_i^{(\tau)} \leftarrow \textbf{\textit{H}}_i(\textbf{b}_i^{(\tau-1)}, \textbf{z}_i^{(\tau)}) & \text{b update internal state} \\ \textbf{u}_i^{(\tau)} \leftarrow \textbf{\textit{\pi}}_i(\textbf{b}_i^{(\tau)}) & \text{p select action} \\ \textbf{x}_i^{(\tau+1)} \leftarrow \textbf{\textit{F}}_i(\textbf{x}_i^{(\tau)}, \textbf{u}_i^{(\tau)}) & \text{p step forward} \end{array}
```

Motion Prediction Paradigms

Closed-loop forward simulation

- + Interaction aware
- Requires control policy

Independent prediction

- + Fast and parallelizable
- No interactions

Game-theoretic approaches

- + Accounting for future interactions
- Not easy to solve with many agents

Motion Prediction Methods

 Idea: Assume that agents move with constant velocity within prediction horizon

Single trajectory

 Idea: Assume that agents move with constant velocity within prediction horizon

Multiple trajectories

 Idea: Assume that agents move with constant velocity within prediction horizon

 Idea: Assume that agents move with constant velocity within prediction horizon

 Idea: Assume that agents move with constant velocity within prediction horizon
 But fails for

Alternative: Constant acceleration, yaw rate

Social Forces

- Idea: Agents A, B act in a force field
- Get trajectory from differential equation $\ddot{x}(t) = \frac{F(t)}{m}$

 Force depends on goal, humans and obstacles

Social Forces

- Idea: Agents A, B act in a force field
- Get trajectory from differential equation $\ddot{x}(t) = \frac{F(t)}{m}$

 Force depends on goal, humans and obstacles

Social Forces - Simulation

Social Forces

- Need to define and parameterize forces that explain behavior
- Less realistic predictions
- Does not apply for cars that follow road structures

Social Forces

- Need to define and parameterize forces that explain behavior
- Less realistic predictions
- Does not apply for cars that follow road structures

Can we model human driving behavior?

- Car following model with parameters θ
- Output: Acceleration of ego vehicle

$$\dot{v}_{\alpha} = f(v_{\alpha}, v_{\alpha-1}, s_{\alpha}, \theta)$$

$$\begin{split} \dot{v}_{\alpha} &= a \left(1 - \left(\frac{v_{\alpha}}{v_{0}}\right)^{\delta} - \left(\frac{s^{*}(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}}\right)^{2}\right) \\ \text{with} \quad s^{*}(v, \Delta v_{\alpha}) &= s_{0} + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration a
- Desired velocity v₀
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\begin{split} \dot{v}_{\alpha} &= a \left(1 - \left(\frac{v_{\alpha}}{v_0} \right)^{\delta} - \left(\frac{s^*(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}} \right)^2 \right) \\ \text{with} \quad s^*(v, \Delta v_{\alpha}) &= s_0 + v_{\alpha} T + \frac{v_{\alpha} \Delta v_{\alpha}}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration a
- Desired velocity v₀
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\dot{v}_\alpha = a \left(1 - \left(\frac{v_\alpha}{v_0}\right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha}\right)^2\right)$$
 with
$$s^*(v, \Delta v_\alpha) = s_0 + v_\alpha T + \frac{v_\alpha \Delta v_\alpha}{2\sqrt{ab}}$$

- Maximum vehicle acceleration a
- Desired velocity $\dot{v_0}$
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\begin{split} \dot{v}_\alpha &= a \left(1 - \left(\frac{v_\alpha}{v_0}\right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha}\right)^2\right) \\ \text{with} \quad s^*(v, \Delta v_\alpha) &= s_0 + v_\alpha T + \frac{v_\alpha \Delta v_\alpha}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration a
- lacktriangle Desired velocity v_0
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\begin{split} \dot{v}_\alpha &= a \left(1 - \left(\frac{v_\alpha}{v_0}\right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha}\right)^2\right) \\ \text{with} \quad s^*(v, \Delta v_\alpha) &= s_0 + v_\alpha T + \frac{v_\alpha \Delta v_\alpha}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration a
- Desired velocity v_0
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\begin{split} \dot{v}_{\alpha} &= a \left(1 - \left(\frac{v_{\alpha}}{v_{0}}\right)^{\delta} - \left(\frac{s^{*}(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}}\right)^{2}\right) \\ \text{with} \quad s^{*}(v, \Delta v_{\alpha}) &= s_{0} + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration a
- Desired velocity v_0
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

$$\begin{split} \dot{v}_\alpha &= a \left(1 - \left(\frac{v_\alpha}{v_0}\right)^\delta - \left(\frac{s^*(v_\alpha, \Delta v_\alpha)}{s_\alpha}\right)^2\right) \\ \text{with} \quad s^*(v, \Delta v_\alpha) &= s_0 + v_\alpha T + \frac{v_\alpha \Delta v_\alpha}{2\sqrt{ab}} \end{split}$$

- Maximum vehicle acceleration α
- Desired velocity v_0
- Minimum sparing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

Free road behavior

$$\dot{v}_{\alpha} = a \left(1 - \left(\frac{v_{\alpha}}{v_0}\right)^{\delta} - \left(\frac{s^*(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}}\right)^2\right)$$
 with
$$s^*(v, \Delta v_{\alpha}) = s_0 + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}}$$

- Maximum vehicle acceleration a
- Desired velocity v₀
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

Interaction term

$$\dot{v}_{\alpha} = a \left(1 - \left(\frac{v_{\alpha}}{v_0} \right)^{\delta} - \left(\frac{s^*(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}} \right)^2 \right)$$
 with
$$s^*(v, \Delta v_{\alpha}) = s_0 + v_{\alpha}T + \frac{v_{\alpha}\Delta v_{\alpha}}{2\sqrt{ab}}$$

- Maximum vehicle acceleration a
- Desired velocity v₀
- Minimum spacing s_0 in congested traffic
- Desired time headway T
- Comfortable braking deceleration b
- Exponent δ

Advantages:

- Simple but effective model
- Parameters are intuitive

Disadvantages:

- Less realistic in some scnenarios
- Does not work well for pedestrians

Advantages:

- Simple but effective model
- Parameters are intuitive

Disadvantages:

- Less realistic in some scenarios
- Does not work well for pedestrians

How can we model more realistic motion?

Deep Learning-based Prediction

 Learn to predict a future trajectory from large real-world datasets

Advantages:

- Implicit trait modeling
- High model representation capacity

Disadvantages:

- Parameters are not interpretable
- No explicit modeling of interactions
- Less robust for unseen scenarios

Training Scheme

Deep Learning Paradigms

- Sequence-to-sequence prediction with
 - Recurrent Neural Networks (RNN)
 - Convolutional Neural Networks (CNN)
 - Combination of RNN and CNN
 - Graph Neural Networks
 - Transformers
 - Generative Adversarial Networks
- Deterministic vs stochastic models

Deep Learning Paradigms

- Sequence-to-sequence prediction with
 - Recurrent Neural Networks (RNN)
 - Convolutional Neural Networks (CNN)
 - Combination of RNN and CNN
 - Graph Neural Networks
 - Transformers
 - Generative Adversarial Networks
- Deterministic vs stochastic models

What happens in A?

$$h_t = \sigma (W [h_{t-1}, x_t] + b)$$

What happens in A?

Learnable weights Learnable bias
$$h_t = \sigma\left(W\left[h_{t-1}, x_t\right] + b\right)$$

Activation function

Advantages: Weight sharing, variable sequence length

Disadvantages: Slow prediction, vanishing/exploding gradients

Advantages: Weight sharing, variable sequence length

Disadvantages: Slow prediction, vanishing/exploding gradients

Long Short-Term Memory

Long Short-Term Memory

Long Short-Term Memory

LSTM Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM Input Gate

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM Cell Update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

How Can We Use LSTMs for Sequence Prediction?

Sequence Prediction

- Encode past states of agent i
- Decode future states in autoregressive manner

Example: SocialLSTM

- What about the influence of neighbors?
- How to consider interactions?

Example: SocialLSTM

- Assumption:
 Hidden state
 contains motion
 information
- Hidden states of neighbors are shared

Example: SocialLSTM

- Assumption:
 Hidden state
 contains motion
 information
- Hidden states of neighbors are shared
- Pool hidden states into fixedsized tensor

SocialLSTM Comparison

Temporal Convolutions

- Apply convolutions across time dimensions
- Easier to train, but needs sufficient receptive field

Temporal Convolutions

- Apply convolutions across time dimensions
- Easier to train, but needs sufficient receptive field

Example: Fast and Furious

- Voxelize LiDAR into bird's eye view
- 3D CNN for end-to-end detection, tracking and motion prediction

What If Our Perception System Fails?

- Most prediction approaches require already tracked past trajectories
- Misperception is not considered
- Idea: End-to-end learning

- Most prediction approaches require already tracked past trajectories
- Misperception is not considered
- Idea: End-to-end learning

- Most prediction approaches require already tracked past trajectories
- Misperception is not considered
- Idea: End-to-end learning

- Most prediction approaches require already tracked past trajectories
- Misperception is not considered
- Idea: End-to-end learning

Self-supervised Prediction

- Labeling trajectories or bounding boxes is expensive
- Idea: Predict raw sensor data into the future

How Do We Evaluate Our Prediction?

- Final Displacement Error
- Average Displacement Error

- Final Displacement Error
- Average Displacement Error

- Final Displacement Error
- Average Displacement Error

- Final Displacement Error
- Average Displacement Error

$$ADE = \frac{1}{P} \sum_{t=1}^{P} \left\| \hat{x}_{i}^{(t)} - x_{i}^{(t)} \right\|_{2}$$

- Final Displacement Error
- Average Displacement Error

Unimodal vs multimodal

Datasets and Benchmarks

- KITTI
- SemanticKITTI
- Lyft Level 5
- Waymo Challenge
- nuScenes
- Argoverse
- highD, inD, rounD
- Pedestrian prediction: ETH, UCY

• ...

Summary

- Estimate intention, traits of future trajectory for planning own behavior
- Different solution strategies depending on e.g. model complexity or level of interaction
- Can learn behavior estimation from large real-world datasets with deep learning

Thank you for your attention

References

- B. Paden et al. "A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles." IEEE Transactions on Intelligent Vehicles, 2016.
- K. Brown et al. "Modeling and Prediction of Human Driver Behavior: A Survey". arXiv preprint, abs/2006.08832, 2020.
- F. Poggenhans et al. "Lanelet2: A high-definition map framework for the future of automated driving." 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (2018): 1672-1679.
- H. Li, R. Dai. "The merging control method of on-ramp vehicles based on cooperative vehicle infrastructure system for highway entering ramp." IOP Conference Series: Materials Science and Engineering, 2019.
- D. Helbing, P. Molnar. "Social force model for pedestrian dynamics", 1995.
- M. Treiber et al. "Congested Traffic States in Empirical Observations and Microscopic Simulations." Physical Review E. 62. 1805-1824, 2000.
- C. Olah "Understanding LSTM Networks". Retrieved from http://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
- S. Hochreiter, J. Schmidhuber. "Long Short-term Memory". Neural computation. 9. 1735-80. 10.1162/neco.1997.9.8.1735., 1997.
- A. Alahi et al. "Social LSTM: Human Trajectory Prediction in Crowded Spaces." In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
- S. Bai et al. "An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.", arXiv preprint, abs/1803.01271, 2018.
- W. Luo et al. "Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net." In Proc. of the IEEE Conf. on Computer Vision and 318 Pattern Recognition (CVPR), 2018.
- P. Hu et al. "Safe Local Motion Planning with Self-Supervised Freespace Forecasting.", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
- B. Lange et al. "Attention Augmented ConvLSTM for Environment Prediction .", In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2021.