# The patch frame and some separation axioms in Frm

58° Congreso Nacional de la SMM Interacciones entre Topología, Álgebra y Categorías

#### Juan Carlos Monter Cortés

Universidad de Guadalajara

☑ juan.monter2902@alumnos.udg.mx

# A little example

Let  $S = \mathbb{R}$  be with the topologies

$$O_l S = \{(-\infty, a)\}, \quad O_m S = \{(a, b)\}, \quad O_n S = \{[a, b)\},$$

where  $a, b \in S$ . Then

$$\mathcal{O}_l S \hookrightarrow \mathcal{O}_m S \hookrightarrow \mathcal{O}_n S$$

We can see that

$$O_l^p S = O_m S \simeq PO_l S$$
 y  $O_l^f S = O_n S \simeq NO_l S$ ,

that is,

$$O_1S = A \rightarrow PA \hookrightarrow NA$$

```
Hochster defines the patch topology

1968
```









# Frame theory

$$\mathsf{Frm} = \left\{ \begin{array}{ll} \mathsf{Obj}: & (A, \leqslant, \land, \bigvee, 1, 0) \\ \\ \mathsf{Arrows:} & f: A \to B \end{array} \right.$$

For  $S \in \mathsf{Top}$ ,

$$(OS, \subseteq, \cap, \bigcup, S, \emptyset) \in Frm$$

Furthermore,

is an adjunction.

# Packed spaces

$${}^pS=(S,{\mathbb O}^pS)$$
, where  ${\mathbb O}^pS$  is gerated by 
$${\sf pbase}=\{U\cap Q'\mid U\in {\mathbb O}S, Q\in {\mathbb Q}S\}$$

#### Definition

 $S \in \mathsf{Top}$  is **packed** if every compact (saturated) set is closed

*S* is packed 
$$\iff$$
  ${}^pS = S$ 

$$T_2 \Rightarrow \text{packed} \Rightarrow T_1$$

#### Patch trivial

By Hoffman-Mislove theorem<sup>1</sup>

$$Pbase = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}\$$

#### Definition

- 1. The **patch frame** of  $A \in \text{Frm } (PA)$ , is the frame generated by Pbase
- 2. A is patch trivial if  $A \simeq PA$ .

**Thm:** There is a bijective correspondence between  $F \in A^{\wedge}$  and  $Q \in QS$ 

 $<sup>{}^{\</sup>circ}F \in A^{\wedge}$  if F is a filter in A and  $\forall X \subseteq A$ , with X directed, if  $\bigvee X \in F$ , then  $a \in F$  for some  $a \in X$ .

<sup>°</sup> For  $a \in A$ ,  $u_a(x) = a \vee x$  and  $v_a(x) = (a \succ x)$  are nuclei in A.

 $<sup>{}^{\</sup>circ}v_F = f^{\infty}$ , where  $f = \bigvee \{v_a \mid a \in F\}$ 

# Tidy frames

#### Definition [[8], Def. 8.2.1]

Let  $A \in \text{Frm}$ ,  $F \in A^{\wedge}$  and  $\alpha \in \text{Ord be}$ . We say that:

1. *F* is  $\alpha$ -tidy if for  $x \in F$ ,  $d \lor x = 1$ , where

$$d = d(\alpha) = f^{\alpha}(0).$$

- 2. *A* is  $\alpha$ -tidy if every  $F \in A^{\wedge}$  is  $\alpha$ -tidy.
- 3. *A* is **tidy** if it is  $\alpha$ -tidy for some  $\alpha \in \text{Ord}$ .

#### Proposition [[8], Lemma 8.2.2]

 $A ext{ is tidy} \iff A ext{ is patch trivial.}$ 

# Objectives

- 1. Understand tidy frames in more detail.
- 2. To explore the relationship with some separation axioms in Frm.
- 3. Provide tools to study the tidy frames.
- 4. Give examples.

# Separation axioms in Frm



 $<sup>^{\</sup>circ}$  ∀  $a \not\leq b \in A$ , then

 $<sup>\</sup>circ$  (reg):  $\exists x, y \in A$  such that  $a \lor x = 1, y \nleq b$  and  $x \land y = 0$ .

 $<sup>^{\</sup>circ}$ (**H**):  $\exists c \in A$  such that  $c \nleq a$  and  $\neg c \leqslant b$ .

<sup>°(</sup>fit):  $\exists x, y \in A$  such that  $x \lor a = 1, y \nleq b$  and  $x \land y \leqslant b$ .

<sup>°(</sup>sfit):  $\exists c \in A$  such that  $c \lor a = 1 \neq c \lor b$ .

 $<sup>^{\</sup>circ}$ (**sH**) and  $T_1$  are notion some different. All this can be found in [5].

# Properties of the tidy frames

This is a summary of the properties that Sexton includes in [8]

• In the spatial case (A = OS),

• For  $A \in Frm$  arbitrary

$$A ext{ is } (\mathbf{reg}) \Rightarrow A ext{ is tidy}$$
  
 $A ext{ is } (\mathbf{fit}) \Rightarrow A ext{ is tidy}$   
 $A ext{ is tidy } \Rightarrow A ext{ is } T_1$ 

#### Some results

If 
$$(f: A \to B) \in Frm$$
,  $G \in A^{\wedge}$  and  $F \in B^{\wedge}$ , then

$$b \in f[G] \iff f_*(b) \in G \quad \text{ and } \quad a \in f_*[F] \iff f(a) \in F.$$

Also, if  $F \in B^{\wedge}$ , then  $f_*(F) \in A^{\wedge}$ .

#### **Proposition**

For  $f^{\infty}$  and  $f_j^{\infty}$  the nuclei associated to F and  $j_*F$ , respectively, we have

$$j\circ f_j^\infty\leqslant f^\infty\circ j$$

#### Proof

By induction transfinite.

# More properties of the tidy frames

#### **Proposition**

If  $A \in \text{Frm}$  is tidy and  $j \in NA$ , then  $A_j$  is tidy.

#### Proof

- We take  $x \in F \in A_j^{\wedge}$  and  $F \subseteq j_*[F] \in A^{\wedge}$ .
- For  $f^{\infty}$  and  $f_j^{\infty}$  as before, we have

$$d = d(\alpha) \geqslant d_i(\alpha) = d_i$$

- Since *A* is tidy, then  $d_j \lor x = 1$ , for all  $x \in j_*[F]$ . In particular, for all  $x \in F$ .
- Therefore,  $d \lor x = 1$ .

#### Corollary

If A is  $(\mathbf{sH})$ , A is tidy.

#### Proof

In (**sH**) all compact quotient is closed.





# Compact quotients

Tidy 
$$\iff$$
 P. trivial  $\iff$   $u_d = v_F$ 

#### Theorem

Let  $A \in \text{Frm and } j \in NA$ . Then

$$A_j$$
 is compact  $\iff$   $\nabla(j) \in A^{\wedge}$ .

Then

 $A_{u_d}$  is a closed quotient and  $A_{v_F}$  is a compact quotient.

If *A* is tidy, we have a compact closed quotient.

 $<sup>{}^{\</sup>circ}\nabla(j) = \{a \in A \mid j(a) = 1\}$  is a filter in A (Admissibility filter).  ${}^{\circ}$ With  $\nabla(j)$  we can define a "~" in NA:  $j \sim k \iff \nabla(j) = \nabla(k)$ .

#### **KC** frames

In [13], Wilansky defines a space *S* to be **KC** if every compact set is closed.

#### Definition

 $A \in Frm$  is a **KC frame** if every compact quotient is closed.

$$KC \Rightarrow Tidy$$

#### **Proposition**

If  $A \in \text{Frm es } \mathbf{KC} \text{ and } j \in NA$ , then  $A_j$  is  $\mathbf{KC}$ .

#### Proof

- Consider  $k \in NA_j$  such that  $\nabla(k) \in A_j^{\wedge}$ .
- If  $\nabla(k) \in A_i^{\wedge} \Rightarrow j_*[\nabla(k)] \in A^{\wedge}$ .
- We take  $l = j_* \circ k \circ j \in NA$  and  $\nabla(l) \in A^{\wedge} \Rightarrow l = u_a$  for some  $a \in A$ .
- Furthermore a = k(j(a)).
- For  $x, b \in A_i$  with b = j(a) we have  $u_b(x) = k(x)$ .

We can build the diagram (see [12])



What happens if A has property (H)?

 $<sup>{}^{1}</sup>g = \underline{(u_{A})_{*}} \circ (v_{\nabla})_{|A_{F}}.$ 

#### Theorem

Let *A* be a frame with property (**H**) then for every  $F \in A^{\wedge}$  with corresponding  $Q \in \mathcal{Q}S$  compact we have

$$OQ \simeq \uparrow Q'$$
,

that is, the frame of opens of the point space of  $A_F$  is isomorphic to a compact closed quotient of a Hausdorff space.

### Some examples

- With the cofinite topology we look that PA = NA.
- With the cocountable topology we look that pt  $NA \subseteq pt PA$ .
- With a subregular topology on the real we have a 1-tidy frame that is not regular.
- With the maximal compact topology we have a 2-tidy frame that is not 1-tidy.
- With the boss topology on a tree we look that exist  $\alpha$ -tidy frames.

# Bibliografía I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Paseka and B. Smarda,  $T_2$ -frames and almost compact frames. Czechoslovak Mathematical Journal (1992), 42(3), 385-402.
- J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, Springer Basel, 2012.



# Bibliografía II

- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- RA Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- RA Sexton, Frame theoretic assembly as a unifying construct, The University of Manchester (United Kingdom), 2000.
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.

# Bibliografía III

- H. Simmons, An Introduction to Frame Theory, lecture notes, University of Manchester. Disponible en línea en https://web.archive.org/web/20190714073511/http://staff.cs.manchester.ac.uk/~hsimmons.
- H. Simmons, Regularity, fitness, and the block structure of frames. Applied Categorical Structures 14 (2006): 1-34.
- H. Simmons, The lattice theoretic part of topological separation properties, Proceedings of the Edinburgh Mathematical Society, vol. 21, pp. 41–48, 1978.

# Bibliografía IV

- H. Simmons, *The Vietoris modifications of a frame*. Unpublished manuscript (2004), 79pp., available online at http://www.cs. man. ac. uk/hsimmons.
- A. Wilansky, Between T1 and T2, MONTHLY (1967): 261-266.
- A. Zaldívar, Introducción a la teoría de marcos [notas curso],
   2025. Universidad de Guadalajara.