Нижегородский государственный университет имени Н. И. Лобачевско	ГО
Радиофизический факультет	

Кафедра электродинамики

Отчёт по лабораторной работе №7 Определение КНД рупорной антенны

Выполнили (430 гр):

Горюнов О.А., Сиднев А.А., Плешков Д.С.

Содержание

1	Teo	ретическая часть	3
	1.1	Зеркальный метод	4
	1.2	Теоретическая оценка КНД пирамидальной рупорной антенны	6
2	Экс	спериментальная установка	7
3	Пра	актическая часть	9
	3.1	Определение значения коэффициента отражения и оценка КПД	9
	3.2	Определение коэффициента отражения Γ от металлического щита. Расчёт КНД	11
	3.3	Второй способ определения коэффициента Г и КНД системы	12
	3.4	Оценка погрешностей для обоих методов	14
4	Вы	вол	15

Цель работы

Цель работы заключается в нахождении коэффициента направленного действия (КНД) пирамидальной рупорной антенны с помощью зеркального метода (метода Парселла).

1 Теоретическая часть

Коэффициент направленного действия D характеризует выигрыш по мощности в направлении максимального излучения вследствие направленности антенны. Он равен отношению мощности, излучаемой в единицу телесного угла в направлении максимума диаграммы направленности $P(\vartheta_m, \varphi_m)$, к средней мощности $P_{\rm cp} = P_{\rm изл}/(4\pi)$, излучаемой антенной по всем направлениям, т.е.:

$$P_{\text{\tiny MЗЛ}} = \int_{0}^{2\pi} \int_{0}^{\pi} P(\vartheta, \varphi) sin\vartheta d\varphi d\vartheta \qquad (1)$$

Таким образом, имеем:

$$D = \frac{4\pi P(\vartheta_m, \varphi_m)}{\int_0^{2\pi} \int_0^{\pi} P(\vartheta, \varphi) sin\vartheta d\varphi d\vartheta}$$
 (2)

КПД антенны η есть отношение полной мощности излучения $P_{\text{изл}}$, излучаемой антенной, к полной мощности $P_{\text{подв}}$, подводимой к антенне, т.е.

$$\eta = \frac{P_{\text{\tiny MSJI}}}{P_{\text{\tiny подв}}} = \frac{\int_0^{2\pi} \int_0^{\pi} P(\vartheta, \varphi) sin\vartheta d\varphi d\vartheta}{P_{\text{\tiny подв}}} \quad (3)$$

Рис. 1: Диаграмма направленности

В силу принципа взаимности ДН (диаграмма направленности) и КНД антенны при ее работе в режиме передачи и в режиме приема совпадают.

Для адекватного описания npueмной антенны вводятся некоторые дополнительные характеристики. Одна из основных таких характеристик - эффективная площадь приема антенны A.

Эффективная площадь приема A определяется как отношение полной принимаемой антенной мощности $P_{\rm np}$ к плотности потока падающего излучения $S_{\rm n}$ в месте расположения антенны:

$$A = \frac{P_{\text{пр}}}{S_{\text{п}}} \tag{4}$$

Причем A и D связаны соотношением:

$$A = \frac{\lambda^2}{4\pi}D\tag{5}$$

1.1 Зеркальный метод

Зеркальный метод опирается на использование идеально отражающей плоской поверхности, расположенной в зоне Фраунгофера и ориентированной параллельно излучающей апертуре (см. рис.2).

Рис. 2: Метод изображений

Согласно методу изображений отыскание отраженного поля, поступающего в антенну, сводится к нахождению поля, принимаемого от аналогичной зеркальной (относительно отражающей плоскости) излучающей антенны (см. рис.2). В результате последовательного пересчета имеем: мощность, излучаемая гипотетической зеркальной антенной в единицу телесного угла в направлении на реальную антенну, равна $P_{\rm п} = DP_{\rm изл}/(4\pi)$, откуда плотность потока энергии в месте приема $S_{\rm п} = P_{\rm n}/4X^2 = DP_{\rm изл}/(16\pi X^2)$, где X - расстояние между антенной и отрадающей плоскостью; наконец, мощность, принимаемая антенной, равна $P_{\rm пр} = AS_{\rm n} = ADP_{\rm изл}/(16\pi X^2)$. С учетом (5) окончательно получаем:

$$\frac{P_{\rm np}}{P_{_{\rm \tiny M3,I}}} = \frac{D^2 \lambda^2}{64\pi^2 X^2} \tag{6}$$

Рис. 3: Блок-схема установки: 1 - генератор, 2 - измерительная линия, 3 - индикатор, 4 - согласующее устройство, 5 - рупорная антенна, 6 - поглощающий щит, 7 - отражающий щит.

Отсюда интересующая нас величина D представляется в виде:

$$D = \frac{8\pi X}{\lambda} \sqrt{\frac{P_{\text{пр}}}{P_{\text{изл}}}} \tag{7}$$

Таким образом, экспериментальное определение КНД требует нахождения отношения принимаемой зеркально отраженной мощности к мощности, излучаемой пирамидальной рупорной антенной.

1.2 Теоретическая оценка КНД пирамидальной рупорной антенны

Для теоретической оценки КНД обратимся к учебнику "Устройства СВЧ и антенны Филонов А.А., Фомин А.Н., Дмитриев Д.Д., Тяпкин В.Н. - Красноярск: СФУ, 2014. (стр. 328-329).

Пирамидальный рупор представляет собой сочетание E- и H- секториальных рупоров. При этом различают остроконечный ($R_E=R_H=R$) и клиновидный рупор $R_E\neq R_H$. В нашей работе используется клиновидный рупор. Соответствующие размеры согласно обозначениям на картинке: a=2,5 см, b=1 см, $L_E=9,1$ см, $L_H=13,6$ см.

Если пирамидальный рупор образован из оптимальных H- и E- рупоров, то максимально возможное значение КНД, соответствующее оптимальному рупору, определяется из соотношения:

$$D_m = \frac{16\sqrt{R_E R_H}}{\lambda} \tag{*}$$

Для нашего случая, используя элементарную геометрию можно найти R_E и R_H .

Соответсвующие вычисления:

$$sin\alpha = \frac{(L_H - a)/2}{15, 9[\text{cm}]}, \Rightarrow \alpha \approx 0,357$$

$$tg\alpha = \frac{L_H}{2R_H}, \Rightarrow R_H = \frac{L_H}{2tg\alpha} \approx 18,23 [{\rm cm}]$$

Аналогично для другого сечения рупора получим:

$$sin\alpha = \frac{(L_E - b)/2}{15,6[\text{cM}]}, \Rightarrow \alpha \approx 0,263$$

$$tg\alpha = \frac{L_E}{2R_E}, \Rightarrow R_E = \frac{L_E}{2tq\alpha} \approx 16,9[\text{cm}]$$

Тогда теоретическая оценка КНД по формуле (*):

$$D_m \sim 84, 1$$

2 Экспериментальная установка

Измерительная установка включает генератор СВЧ диапазона (длина излучаемой волны $\lambda \approx 3$ см) с отдельным блоком питания, волноводный тракт с измерительной линией и индикатором к ней, пирамидальный рупор, отражающий щит, щит с поглощающим покрытием. Блок-схема установки представлена на рис. 3. Отражающий щит должен располагаться в зоне Фраунгофера $X >> l_{1,2}^2/\lambda$ ($l_{1,2}$ - линейные размеры раскрыва рупора) и иметь линейные размеры $L_{1,2} > X\Delta\vartheta_{1,2} \approx X2\lambda/l_{1,2}$ ($\Delta\vartheta_{1,2}$ - ширина основного лепестка в горизонтальной или вертикальной плоскости).

Установка позволяет контролируемо менять расстояние $X + \Delta X$ между антенной и отражательным щитом в пределах 100 см.

В согласованном режиме, когда отражение от конца волновода отсутствует, коэффициент отражения Γ волны в волноводном тракте совпадает с членом $\sqrt{P_{\rm пр}/P_{\rm изл}}$, содержащимся в (8), и очевидным образом представляется через коэффициент бегущей волны (КБВ) в волноводе $\kappa = E_{min}/E_{max}$ ($\Gamma = (1-\kappa)(1+\kappa)$), определяемый с помощью измерительной линии.

Тогда для КНД получим:

$$D = \frac{8\pi X}{\lambda} \frac{1 - \kappa}{1 + \kappa} \tag{8}$$

Если детектор в измерительной линии квадратичный, то индикатор дает значения, пропорциональные квадрату амплитуды поля. Так что вместо κ измеряется величина $K = \kappa^2$, перепишем (8):

$$D = \frac{8\pi X}{\lambda} \frac{1 - \sqrt{K}}{1 + \sqrt{K}} \tag{9}$$

При наличии эффективного и надежного согласующего устройства отыскание КНД зеркальным методом сводится к процедуре согласования и последующего измерения КБВ в подводящем полноводном тракте. Согласование достигается за счет включения в волноводный тракт соответствующего устройства (показано пунктиром на рис. 3) при использовании дополнительного щита с поглощающим покрытием, перехватывающего поле излучения.

В данной работе измерения проводились в несогласованном режиме. С учетом отражения от конца подводящего тракта поле на оси волновода, нормированное на амплитуду падающей волны, для некоторого фиксированного положения рупора запишется в виде:

$$E = e^{-ihx} + \Gamma_k e^{i\varphi_k} e^{ihx} + \Gamma e^{i\varphi} e^{ihx} \tag{10}$$

где x - координата, отсчитываемая от конца полноводного тракта (см. рис. 4); h - постоянная распространения волны в волноводе; $\Gamma_k e^{i\varphi_k}$ - коэффициент отражения от конца тракта; $\Gamma e^{i\varphi}$ - коэффициент отражения, обусловленный отражающим щитом.

Смещение антенны на величину ΔX приведет к появлению в (10) дополнительного множителя $e^{ik_02\Delta X}$, связанного с дополнительным набегом фазы в свободном пространстве. В результате:

$$|E|^2 = 1 + \Gamma_k^2 + \Gamma^2 + 2\Gamma_k \Gamma \cos(\varphi - \varphi_k + k_0 2\Delta X) + 2\Gamma_k \cos(2hx + \varphi_k) + 2\Gamma \cos(2hx + \varphi + k_0 2\Delta X)$$
 (11)

Рис. 4: Волновой тракт

Поскольку Γ_k и Γ достаточно малы, то квадратичными величинами в первом приближении можно пренебречь:

$$|E|^2 \approx 1 + 2\Gamma_k \cos(2hx + \varphi_k) + 2\Gamma\cos(2hx + \varphi + k_0 2\Delta X) \tag{12}$$

$$D = \frac{8\pi X}{\lambda} \Gamma \tag{13}$$

3 Практическая часть

3.1 Определение значения коэффициента отражения и оценка КПД

Перед раскрывом рупора устанавливался щит с поглощающим покрытием, тем самым убирая отраженное от металлического щита поля (т.е. $\Gamma \approx 0$). Перемещая детектор сняли зависимость $|E|^2(x)$ на оси волновода. Полученные результаты:

x, MM	$V \sim E ^2, a.u.$
0	49
3	48
6	45
9	42
12	40
15	43
18	45
21	47
24	47
27	44
30	40
33	41,5
36	42
39	44
42	46

Из уравнения (12):

$$|E_{min}|^2 \approx 1 - 2\Gamma_k, |E_{max}|^2 \approx 1 + 2\Gamma_k$$

$$\Gamma_k = \frac{|E_{max}|^2 - |E_{min}|^2}{2(|E_{max}|^2 + |E_{min}|^2)}$$

Используя данные из графика ниже:

$$\Gamma_{k1} = \frac{49 - 40}{2 * (49 + 40)} \approx 0,0506; \quad \Gamma_{k2} = \frac{47 - 40}{2 \cdot (47 + 40)} \approx 0,0402$$

$$\Rightarrow \Gamma_{kcp} \approx 0,045$$

Длину волны в волноводе определим по двум пучностям. Возьмём на графике точки x=0 мм и x=22,5 мм (среднее между двумя значениями). Тогда получим:

$$\lambda_{\text{\tiny B}} = 2 \cdot \Delta x \approx 4,5 \text{ cm}$$

Так как в волноводе распространяется волна типа TE_{10} , тогда из дисперсионного соотношения:

$$k = \sqrt{\varkappa^2 + h^2} = \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda_{\rm B}}\right)^2}$$

$$\Rightarrow \lambda = \frac{2\pi}{\sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda_{\rm B}}\right)^2}} \approx 3,34 \text{ cm}$$

По определению КПД: $\eta = \frac{P_{\text{изл}}}{P_{\text{подв}}}$. Из-за наличия отражения на конце волновода, $P_{\text{изл}} \sim P_{\text{подв}} - P_{\text{отраж}}$. Учитывая, что $P \sim |E|^2$, оценочно:

$$\eta \sim 1 - \Gamma_k^2 \approx 0,998$$

3.2 Определение коэффициента отражения Γ от металлического щита. Расчёт КНД.

Для начала выбрали такое положение x зонда измерительной линии, при котором $cos(2hx+\varphi_k)=0$ и зафиксировали его. Щит убран. Изменяя положение антенны, сняли зависимость $|E|^2(\Delta X)$, где ΔX - расстояние между антенной и отражательным щитом.

ΔX , mm	0	3	6	9	12	15	20	23	26	29	32	35	38	41	44	47	50	53	56	59
$V \sim E ^2$, a.u.	42	42	44	47	44	42	43	45	47	45	42.5	42	45	47	45	42	42	45	46.5	45

Коэффициент Γ из формулы (12) - X=280 см:

$$\Gamma = \frac{|E_{max}|^2 - |E_{min}|^2}{2(|E_{max}|^2 + |E_{min}|^2)} = \frac{47 - 42}{2(47 - 42)} \approx 0,028$$

Убедимся в малости величин Γ_k^2 , Γ^2 и $\Gamma_k\Gamma$:

$$\Gamma_k^2 \approx 2 \cdot 10^{-3}, \ \Gamma^2 \approx 7 \cdot 10^{-4}, \ \Gamma_k \Gamma \approx 1,26 \cdot 10^{-3}$$

Определим КНД согласно формуле (13):

$$D = \frac{8\pi X}{\lambda} \Gamma \approx 59$$

Так по максимумам из графика можно определить длину волны в свободном пространстве:

$$\lambda \approx 3,2$$
 cm

3.3 Второй способ определения коэффициента Г и КНД системы

Зафиксировав положение антенны относительно металлического щита, сняли заивисмость $K(\Delta X)$, и по формуле:

$$\tilde{\Gamma}(\Delta X) = \frac{1 - \kappa(\Delta X)}{1 + \kappa(\Delta X)} = \frac{1 - \sqrt{K(\Delta X)}}{1 + \sqrt{K(\Delta X)}}$$
(14)

построили график:

	1.7	1.7		~ ()
ΔX , MM	$ E_{max} ^2$, a.u.	$ E_{min} ^2$, a.u.	K	$ ilde{\Gamma}(\Delta X)$
0	47	39	0,82979	0,04661
3	46	42	0,91304	0,02274
6	46	44	0,95652	0,01111
9	46,5	40	0,86022	0,03763
12	48,5	38,5	0,79381	0,05766
15	49,5	39	0,78788	0,05953
18	48	41	0,85417	0,03939
21	45	41	0,91111	0,02327
24	50	40	0,8	0,05573
27	50	37	0,74	0,07513
30	50	38	0,76	0,0685
33	48	41	0,85417	0,03939
36	47	44	0,93617	0,01649
39	49	39	0,79592	$0,\!057$
42	48	37	0,77083	0,06498
45	49	38	0,77551	0,06347
48	49	40	0,81633	0,05069
51	47	43	0,91489	0,02223
54	48	41	0,85417	0,03939
57	48	39	0,8125	0,05186
60	49	38	0,77551	0,06347
63	49	39	0,79592	0,057
66	48	42	0,875	0,03337
69	48	42	0,875	0,03337
72	49	40	0,81633	0,05069
75	50	38	0,76	0,0685
78	49	39	0,79592	0,057
81	49	41	0,83673	0,04453
84	47	43	0,91489	0,02223
87	49	40	0,81633	0,05069
90	50	39	0,78	0,06204
93	48	38	0,79167	0,05834
96	48	40	0,83333	0,04555
99	48	43	0,89583	0,02749
102	49	40	0,81633	0,05069

Покажем, что $\tilde{\Gamma}(\Delta X) \approx \Gamma + \Gamma_k$. Для этого в формуле (14) положим $\sqrt{K} \to min$, тогда $\tilde{\Gamma}(\Delta X) \to max$. Т.е., так как $K = \frac{E_{min}^2}{E_{max}^2}$, значит $E_{min} \to min$. Из (12):

$$|E_{min}|^2 = 1 - 2\Gamma_k - 2\Gamma$$

$$|E_{max}|^2 = 1 + 2\Gamma_k + 2\Gamma$$

$$\kappa = \sqrt{\frac{1 - 2\Gamma_k - 2\Gamma}{1 + 2\Gamma_k + 2\Gamma}} = \{2\Gamma_k + 2\Gamma \equiv x\} = \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \approx (1 - \frac{x}{2})(1 - \frac{x}{2}) = 1 - x + \frac{x^2}{4} \approx 1 - x$$

$$\tilde{\Gamma}(\Delta X) = \frac{1 - \kappa}{1 + \kappa} = \frac{1 - 1 + x}{1 + 1 - x} = \{\text{пренебрежём x в знаменателе}\} \approx \frac{x}{2} = \Gamma + \Gamma_k$$

Тогда коэффициент отражения от металлического щита:

$$\Gamma = \tilde{\Gamma}_{max} - \Gamma_k \approx 0,03$$

Тогда КНД по формуле (13):

$$D = \frac{8\pi X}{\lambda} \Gamma \approx 63$$

3.4 Оценка погрешностей для обоих методов

$$D = \frac{8\pi X}{\lambda} \Gamma \implies \delta D \approx \delta \Gamma + \delta \lambda$$

Оценим $\delta\lambda$:

$$\delta\lambda = \delta\left[\sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda}\right)^2}\right] = \frac{\delta\left(\frac{2\pi}{\lambda}\right)^2}{2\cdot\left(\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda}\right)^2\right)} = \frac{2\delta\lambda \cdot \frac{4\pi^2}{\lambda^2}}{2\cdot\left(\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda}\right)^2\right)} = \frac{\frac{2\Delta l}{x_{m1} - x_{m0}} \cdot \frac{4\pi^2}{\lambda^2}}{\left(\left(\frac{\pi}{a}\right)^2 + \left(\frac{2\pi}{\lambda}\right)^2\right)}$$
$$\delta\lambda \approx 0,004$$

Расчёт относительных погрешностей для коэффициента отражения Г очень трудоёмок, поэтому укажем только итоговые выражения для различных способов.

1 способ:

$$\delta\Gamma = 2\Delta V \cdot \left[\frac{2E_{max}^2}{E_{max}^4 - E_{min}^4}\right] \approx 0,42$$

$$\Rightarrow \delta D \approx 42,4\%$$

2 способ:

$$\delta\Gamma = \frac{\delta\tilde{\Gamma}_{max} \cdot \tilde{\Gamma}_{max} + \delta\Gamma_k \cdot \Gamma_k}{\tilde{\Gamma}_{max} - \Gamma_k} \approx 0,76$$

где

$$\delta\Gamma_{k} = 4\Delta V \cdot \left[\frac{E_{max}^{2}}{E_{max}^{4} - E_{min}^{4}}\right], \ \delta\tilde{\Gamma}_{max} = \frac{\sqrt{K} \cdot \Delta V \cdot \left(\frac{1}{E_{max}^{2}} + \frac{1}{E_{min}^{2}}\right)}{1 - K}$$

$$\Rightarrow \delta D \approx 76,4\%$$

4 Вывод

Выполнив лабораторную работу, мы:

1) Определили коэффициент отражения от конца волновода $\Gamma_{kcp} \approx 0,045$. Так как имеется ненулевой Γ_k , то $P_{\text{изл}} \neq P_{\text{подв}}$, из-за чего оценочное КПД:

$$\eta \approx 0.998$$

Так же определили длину волны в волноводе и свободном пространстве:

$$\lambda_{\scriptscriptstyle \rm B} pprox 4,5$$
 см, $\lambda pprox 3,34$ см

2) Определили коэффициент отражения от металлического щита $\Gamma \approx 0,028$ и определили длину волны в свободном пространстве другим способом (по максимумам на графике): $\lambda \approx 3,2$ см.

КНД согласно формуле (13):

$$D \approx 59$$

При этом относительная погрешность измерения составила $\delta D \sim 42,4\%$. Что в любом случае попадает в теоретическое значение в п.1.2.

3) Определили коэффициент отражения от металлического щита другим способом: $\Gamma \approx 0,03$. Получили КНД:

$$D \approx 63$$

При этом данным методом погрешность измерения получилась ещё больше: $\delta D \sim 76,4\%$.