Álgebra Tensorial: Ejercicios de Clase

Semana 1.

Ejercicio 1.1. Demuestre que existen tensores en $\mathbb{C}^2 \otimes \mathbb{C}^2$ que no son de rango 1, y caracterice los tensores totalmente descomponibles en $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$ (es decir, encuentre las ecuaciones que satisfacen los coeficientes de los vectores de rango 1).

Ejercicio 1.2. Teniendo en cuenta que para X, Y y Z variables aleatorias discretas, con $X \in \{1, \dots a\}$, $Y \in \{1, \dots b\}$ y $Z \in \{1, \dots c\}$, se puede construir un tensor de formato $a \times b \times c$, definido en una base, por los coeficientes

$$T_{ijk} = \mathbb{P}\{X = i, Y = j, Z = k\}$$

para $1 \le i \le a, 1 \le j \le b$ y $1 \le k \le c$. ¿Es verdad que el tensor T_{ijk} es de rango 1 si y sólo si las variables son independientes?

Ejercicio 1.3. Sean U y V espacios vectoriales complejos de dimensión finita. Caracterice los tensores totalmente descomponibles en $U^* \otimes V$ (es decir, encuentre las ecuaciones que satisfacen los vectores de rango 1).

Ejercicio 1.4. Demuestre que para dos espacios vectoriales complejos U y V, el isomorfismo canónico

$$\operatorname{Hom}(U,V) \xrightarrow{\varphi^{-1}} U^* \otimes V$$

manda las transformaciones lineales con rango $\leq k$ (i.e los $T \in \text{Hom}(U, V)$ con $\dim(\text{im}(T)) \leq k$) a los tensores que son suma k o menos tensores descomponibles.

Ejercicio 1.5. Demuestre que para todo entero k, el conjunto $\{T \in U^* \otimes V : R(T) \leq k\}$ es un conjunto cerrado con la norma euclidea.

Ejercicio 1.6. Demuestre que para U, V y W espacios vectoriales complejos de dimensión finita, existen los siguientes isomorfismos canónicos:

- (a) $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$
- (b) $U \otimes v \cong V \otimes U$
- (c) $(U \otimes V)^* \cong U^* \otimes V^* \otimes W$

Semana 2.

Ejercicio 2.1. Sean V y U espacios vectoriales de dimensión finita. Demuestre que el isomorfismo canónico $U^* \otimes V \stackrel{\varphi}{\cong} \operatorname{Hom}(U,V)$ da una correspondencia biunívoca entre el conjunto de tensores con rango menor a k, $\{T \in U^* \otimes V : R(T) \leq k\} \subseteq U^* \otimes V$, con el conjunto de transformaciones lineales $T \in \operatorname{Hom}(U,v)$ tales que el determinante de todos sus menores de tamaño $(k+1) \times (k+1)$ es igual a 0. Es decir:

 $\left\{\,T\in V^*\otimes U: R(T)\leq k\,\right\} \stackrel{\varphi}{\longleftrightarrow} \left\{\,T\in \mathrm{Hom}(V,U): \text{ las menores } (k+1)\times (k+1) \text{ de } T \text{ se desvanecen}\,\right\}.$

Ejercicio 2.2. Demostrar el teorema de Strassen

$$\begin{split} \hat{M}_{2,2,2} = & (\alpha_1^1 + \alpha_2^2) \otimes (\beta_1^1 + \beta_2^2) \otimes (c_1^1 + c_2^2) + \\ & (\alpha_1^2 + \alpha_2^2) \otimes \qquad \beta_1^1 \quad \otimes (c_1^2 - c_2^2) + \\ & \alpha_1^1 \quad \otimes (\beta_2^1 - \beta_2^2) \otimes (c_2^1 + c_2^2) + \\ & \alpha_2^2 \quad \otimes (\beta_1^2 - \beta_1^1) \otimes (c_1^2 + c_1^1) + \\ & (\alpha_1^1 + \alpha_2^1) \otimes \quad \beta_2^2 \quad \otimes (c_2^1 - c_1^1) + \\ & (\alpha_1^2 - \alpha_1^1) \otimes (\beta_1^1 + \beta_2^1) \otimes \quad c_2^2 \quad + \\ & (\alpha_2^1 - \alpha_2^2) \otimes (\beta_1^2 + \beta_2^2) \otimes \quad c_1^1 \end{split}$$

Y use el teorema para calcular el producto de $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$.

Semana 3.

Ejercicio 3.1. ¿Cómo reconocer una suma directa? Sea (U, ρ_U) una representación de G y sean $V_1, V_2 \subseteq U$ subespacios invariantes, de dimensiones d_1 y d_2 respectivamente.

1. Verifique que

$$V_i, \rho_i : G \longrightarrow GL(V_i)$$

 $g \longmapsto \rho_U(g)_{\upharpoonright_{V_i}}$

es una representación de $G[(V_1, \rho_1), (V_2, \rho_2)].$

- 2. $(U, \rho_U) \cong (V_1, \rho_1) \bigoplus (V_2, \rho_2)$ si y solo si: Existe una base $B = \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_1}}, \overrightarrow{b_1}, \dots, \overrightarrow{b_{d_2}}\}$ de U tal que
 - a) $B_1 := \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_1}}\}$ es una base de V_1 .
 - b) $B_2 := \{\overrightarrow{b_1}, \dots, \overrightarrow{b_{d_2}}\}$ es una base de V_2 .
 - c) $\forall g \in G$, se tiene la siguiente igualdad:

$$[\rho_{V_1}(g)]_B = \begin{pmatrix} \frac{[\rho_{V_1}(g)]_{B_1}}{0} & 0\\ \frac{[\rho_{V_2}(g)]_{B_2}}{0} \end{pmatrix}$$

Ejercicio 3.2. Sea $S_3 \circlearrowright U = \langle e_1, e_2, e_3 \rangle$

$$\rho: S_3 \longrightarrow GL(U)$$
$$\sigma \longmapsto (e_i \mapsto e_{\sigma(i)})$$

- 1. Demuestre que $V_1 = \langle e_1 + e_2 + e_3 \rangle$ y $V_2 = \{a_1e_1 + a_2e_2 + a_3e_3 : a_1 + a_2 + a_3 = 0\}$ son subespacios invariantes.
- 2. Demuestre que $U \cong V_1 \bigoplus V_2$.
- 3. Demuestre que V_2 no tiene subespacios invariantes propios no triviales, es decir es una representación irreducible.

Ejercicio 3.3. Fije bases $B_A = \{\overrightarrow{a_1}, \dots, \overrightarrow{a_{d_A}}\}$ del espacio vectorial $A, B_B = \{\overrightarrow{b_1}, \dots, \overrightarrow{b_{d_B}}\}$ del espacio vectorial $B, B_C = \langle \overrightarrow{a_i} \otimes \overrightarrow{b_j} : i \in \{1, ..., d_A\}, j \in \{1, ..., d_B\} \rangle$ de $A \bigotimes B$. ¿Cómo es $[T_{(g_A, g_B)}]_{B_C}$ en términos de $[g_A]_{B_A}$ y $[g_B]_{B_B}$?

Ejercicio 3.4.

Lema 3.1. (Sym^k(V), μ) satisface la siguiente propiedad universal:

Esto es, para todo espacio vectorial W y para todo T k-lineal y simétrica, existe una única φ lineal tal que $\varphi \circ \mu = T$. Es decir, $\varphi(v_1 \cdot v_2 \cdot \ldots \cdot v_k) = T(v_1, \ldots, v_k)$. Más aún, esta propiedad universal determina $(\operatorname{Sym}^k(V), \mu)$ de manera única módulo isomorfismo.

- 1. Demuestre el lema.
- 2. Para $V = \langle e_1, e_2 \rangle$, calcule Sym³(V).

Semana 4.

Ejercicio 4.1. Dado V un espacio vectorial de dimensión n, muestre que si $F \in Sym^k(V)$ entonces, el rango de Waring de F, $R_w(F)$, cumple que $R_w(F) \leq {k+n-1 \choose k}$.

Ejercicio 4.2. (Ejercicio 2.5.2.1 de [1]) Sean A, B, C espacios vectoriales de dimensión, a, b, c respectivamente, y sea $M_{a,b,c}$ es el tensor de multiplicación de matrices correspondiente, muestre que, visto como una forma trilineal en bases dadas, $M_{a,b,c}$ manda una tripla de matrices (X,Y,Z) en tr(XYZ), y es por lo tanto invariante bajo cambios de base en A, B y C. Muestre además que la familia de algoritmos de nueve parámetros para $M_{2,2,2}$ es la acción de $SL(A) \times SL(B) \times SL(C)$ sobre la expresión del tensor. (La acción de escalares multiplicados por la identidad no afectara expresión de manera significativa pues identificamos $\lambda v \otimes w = v \otimes (\lambda w)$ para un escalar λ).

Ejercicio 4.3. (Ejercicio 2.6.6.3 de [1]) Dado $F \in Sym^k(V)$, sea $F_{s,k-s} \in Sym^s(V) \otimes Sym^{k-s}(V)$ su polarización parcial se define por : si $F = v_1^k + \ldots + v_n^k$ entonces $F_{s,k-s} = v_1^s \otimes v_1^{k-s} + \ldots + v_n^s \otimes v_n^{k-s}$. Sea $\underline{R}_w(F)$ el border rank simétrico de F. Muestre que si $\underline{R}_w(F) \leq k$, entonces $rango(F_{s,k-s})$ como aplicación lineal de $Sym^s(V)^*$ en $Sym^{k-s}(V)$ cumple que $rango(F_{s,k-s}) \leq k$ para todo s.

Ejercicio 4.4. Pruebe el siguiente lema.

Lema 4.1. Existe una única función lineal

$$\pi_{sgn}: V^{\otimes k} \longrightarrow V^{\otimes k} \tag{1}$$

tal que $\pi_{sgn}(v_1 \otimes ... \otimes v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma)[v_{\sigma(1)} \otimes ... \otimes v_{\sigma(k)}]$. Además, se cumple que

- 1. Si $T \in V \otimes k$ es alternante, entonces $\pi_{san}(T) = T$.
- 2. $Im(\pi_{sgn}) = \{T \in V^{\otimes k} : \sigma(T) = sgn(\sigma)T\}.$

Ejercicio 4.5. Sea \bigwedge la transformación canónica, $\bigwedge: V^k \longrightarrow \bigwedge^k(V)$. Muestre el siguiente lema.

Lema 4.2.

- 1. \bigwedge es k-lineal y alternante.
- 2. Dada $T:V^k\longrightarrow W$ multilineal y alternante, existe una única transformación lineal $\varphi: \bigwedge^k(V)\longrightarrow W$ que conmuta el siguiente diagrama

Ejercicio 4.6.

(a) Demuestre el siguiente lema

Lema 4.3. $\bigwedge^k(V)$ tiene una base dada por $\{e_{i_1} \wedge ... \wedge e_{i_k} : 1 \leq i_1 < i_2 < ... < i_k \leq n\}$ con n = dim(V), y por lo tanto $dim(\bigwedge^k(V)) = \binom{n}{k}$.

- (b) Escriba $v_1 \wedge ... \wedge v_k$ en la base descrita en el lema, es decir, $v_1 \wedge ... \wedge v_k = \sum_{\substack{I \subseteq [n] \\ |I| = k}} C_I e_{i_1} \wedge ... e_{i_k}$
- (c) Muestre que $v_1 \wedge ... \wedge v_k = 0$ si y solo si $\{v_1, ... v_k\}$ es un conjunto linealmente dependiente en V.

Ejercicio 4.7. (Ejercicio 2.6.10 de [1])

- 1. Muestre que el subespacio $\bigwedge^k(V) \subset V^{\otimes k}$ es invariante bajo la acción de GL(V).
- 2. Dado v un espacio vectorial de dimensión n, como consecuencia del Lema 4.3, muestre que $\bigwedge^n(V)\cong\mathbb{C}, \bigwedge^l(V)=0$ para l>n y $\operatorname{Sym}^3V\otimes\bigwedge^3V\neq V^{\otimes 3}$ para n>1.
- 3. Se
a $\alpha \in V^*$ y $T \in V^{\otimes k},$ denotamos por $\alpha^{\rfloor}T$ a la contracción de
 α con T, definida en descomponibles por

$$V^* \times V^{\otimes k} \longrightarrow V^{\otimes k-1}$$

$$\alpha \times (v_1 \otimes \dots \otimes v_k) \mapsto \alpha^{\rfloor}(v_1 \otimes \dots \otimes v_k) = \alpha(v_1)v_2 \otimes \dots \otimes v_k$$

Calcule explicitamente $\alpha^{\downarrow}(v_1v_2...v_k)$ y muestre que es, en efecto, un elemento de $\operatorname{Sym}^{k-1}V$ y de manera similar para $\alpha^{\downarrow}(v_1 \wedge v_2 \wedge ... \wedge v_k)$.

- 4. Muestre que la composición $\alpha^{\downarrow} \circ \alpha^{\downarrow} : \bigwedge^{k} V \longrightarrow \bigwedge^{k-2} V$ es el mapa 0.
- 5. Muestre que si $V = A \otimes B$ entonces existe una descomposición inducida en suma directa

$$\bigwedge\nolimits^k V = \bigwedge\nolimits^k A \oplus (\bigwedge\nolimits^{k-1} A \otimes \bigwedge\nolimits^1 B) \oplus \ldots \oplus (\bigwedge\nolimits^1 A \otimes \bigwedge\nolimits^{k-1} B) \oplus \bigwedge\nolimits^k B$$

de $\bigwedge^k V$ como $GL(A) \otimes GL(B)$ -módulo.

6. Muestre que un subespacio $A \subset V$ determina una filtración inducida bien definida de $\bigwedge^k V$ dada por $\bigwedge^k A \subset \bigwedge^{k-1} A \wedge \bigwedge^1 V \subset \bigwedge^{k-2} A \wedge \bigwedge^2 V \subset ... \subset \bigwedge^k V$. Si $P_A = \{g \in GL(V) : g \cdot v \in A \ \forall \ v \in A\}$ entonces cada filtrando es un P_A -submódulo.

- 7. Muestre que si V está equipado con una forma volumétrica, es decir, un elemento $\phi \in \bigwedge^n V$ no cero, entonces se tiene una identificación $\bigwedge^k V \cong \bigwedge^{n-k} V^*$.
- 8. Muestre que $V^* \cong \bigwedge^{n-1} V \otimes \bigwedge^n V^*$ como GL(V)-módulos.
- 9. Muestre que las álgebras tensorial, simétrica y exterior son asociativas.

Ejercicio 4.8. (Ejercicio 2.6.12 de [1]). Sea $f: V \longrightarrow V$, con $n = \dim(V)$, $f^{\wedge n}: \bigwedge^n V \longrightarrow \bigwedge^n V$ se llama el determinante de f

- 1. Verifique que si f tiene rango n-1 entonces $f^{\wedge n-1}$ tiene rango 1, y si $rango(f) \leq n-2$ entonces $f^{\wedge n-1}$ es cero.
- 2. Más generalmente, muestre que si f tiene rango r entonces $f^{\wedge s}$ tiene rango $\binom{r}{s}$.
- 3. Muestre que los autovalores de $f^{\wedge k}$ son los productos de k de los autovalores de f
- 4. Dado $f:V\longrightarrow V$, con $n=\dim(V),\ f^{\wedge n}:\bigwedge^nV\longrightarrow \bigwedge^nV$ es una transformación lineal de un espacio de dimensión 1 en sí mismo y por lo tanto es una multiplicación por un escalar, muestre que si escogemos una base para representar f con una matriz, entonces el determinante de dicha matriz es el escalar que representa a $f^{\wedge v}$.
- 5. Dado $f:V\longrightarrow V$ asuma que V admite una base de autovectores de f, muestre que $\bigwedge^k V$ admite una base de autovectores de $f^{\wedge k}$ y encuentre los autovalores y autovectores de $f^{\wedge k}$ en términos de los de f. En particular muestre que el coeficiente t^{n-k} de det(f-tI), el polinomio característico de f, es $(-1)^k tr(f^{\wedge k})$, donde $tr(f^{\wedge k})$ es la suma de los autovalores de $f^{\wedge k}$.
- 6. Sea $f: V \longrightarrow W$ invertible con dim(V) = dim(W) = n, verifique que $f^{\wedge n-1} = f^{-1} \otimes det(f)$.
- 7. Fije $det \in \bigwedge^n V^*$. Sea

$$SL(V) = \{g \in GL(V) : g \cdot det = det\}$$

Muestre que SL(V) es un grupo, este es llamado el grupo lineal especial. Muestre que si uno fija una base $\alpha^1, ..., \alpha^n$ de V^* tal que $det = \alpha^1 \wedge ... \wedge \alpha^n$ y usa esta base y su dual para escribir los $g: V \longrightarrow V$ como matrices $n \times n$ entonces SL(V) corresponde con las matrices de determinante 1.

- 8. Dados E, F espacios vectoriales n-dimensionales, fije $\Omega \in \bigwedge^n E^* \otimes \bigwedge^n F$, dado que $dim(\bigwedge^n E^* \otimes \bigwedge^n F) = 1$, Ω es único salvo un factor de escala. Dado $f: V \longrightarrow W$ es posible escribir $f^{\wedge n} = c_f \Omega$ para algún escalar c_f . Muestre que si uno escoge bases $e_1, ...e_n$ para E y $f_1, ...f_n$ para F tal que $\Omega = e_1 \wedge ... \wedge e_n \otimes f_1 \wedge ... \wedge f_n$ y expresa f como una matriz M_f respecto a estas bases, entonces $c_f = det(M_f)$.
- 9. Muestre que Ω determina un vector $\Omega^* \in \bigwedge^n F^* \otimes \bigwedge^n E$ dado por $\langle \Omega, \Omega * \rangle = 1$. Recuerde que $f: V \longrightarrow W$ determina un mapa lineal $f^T: W^* \longrightarrow V^*$. Use Ω^* para definir det_{f^T} , muestre que $det_f = det_{f^T}$.

Ejercicio 4.9. Muestres que $\bigwedge^k (T:U\longrightarrow V)=\bigwedge^k T:\bigwedge^k U\longrightarrow \bigwedge^k V$ es un funtor de la categoría de espacios vectoriales en si misma.

Ejercicio 4.10. Sean A, B, C espacios vectoriales con bases $a_1, a_1; b_1, b_2yc_1, c_2$ respectivamente, y sea

$$S = a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_1 \otimes c_1 + a_1 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_2$$

- (a) Muestre que $R(S) \geq 3$.
- (b) Verifique que ocurre en $V_1 \otimes V_2 \otimes ... \otimes V_k$ para $k \geq 3$ con $dim(V_i) > 1$.

Ejercicio 4.11. Verifique que $\{T \in V_1 \otimes ... \otimes V_k : \underline{R}(T) \leq s\}$ es un conjunto cerrado en $V_1 \otimes ... \otimes V_k$.

.

Semana 6.

Ejercicio 6.1. • $X \in \mathbb{C}$ es algebraico si y solo si $X = \emptyset$, $X = \mathbb{C}$ o $|X| < \infty$

ullet Encuentre un $X\in\mathbb{C}^2$ cerrado (en la topología métrica) que no sea algebraico.

Ejercicio 6.2. a) Demuestre que $\mathscr{A} = \{X \in \mathbb{C}^n : X \text{ es algebraico}\}$ satisface las siguientes propiedades:

- i) \emptyset , $\mathbb{C} \in \mathscr{A}$.
- ii) Si $A, B \in \mathcal{A}$ entonces $A \cup B \in \mathcal{A}$
- iii) Si $\{A_{\alpha}\}_{\alpha\in I}$, con $A_{\alpha}\in\mathscr{A}$, entonces $\bigcap_{\alpha\in I}A_{\alpha}\in\mathscr{A}$

b) (V o F) La topología de Zariski en \mathbb{C}^2 es igual a la topología de Zariski en \mathbb{C} dos veces es decir, $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$.

Ejercicio 6.3. Demuestre que $(f_1,...,f_m) = \bigcap_{J \supset \{f_1,...,f_m\}} J$, con J ideal.

Ejercicio 6.4. Muestre que dim $(\mathbb{C}[x_1,...,x_n]_d) = \binom{n+d-1}{d}$

Ejercicio 6.5. Se dice que $I \subset R$ es homogéneo si existen elementos homogeneos $g_1, ..., g_s$ tales que $I = (g_1, ..., g_s)$. Muestre que las siguientes afirmaciones son equivalentes:

- i) I es homogéneo.
- ii) $g \in I$ y $g = g_{\alpha} + ... + g_{o}$ en componentes homogeneas entonces $g_{j} \in I \ \forall j$
- iii) $I_j := I \cap R_j \ \forall j \in \mathbb{N}$ entonces $I = \bigoplus_{i=0}^\infty I_j$

Semana 7.

Ejercicio 7.1. Sea (V, ρ) una representación de G y $\rho^*: G \longrightarrow GL(\operatorname{Fun}(V, \mathbb{C}))$ la acción contragradiente definida por $\rho^*(g) = \phi_g$ donde $\phi_g(f) = f \circ \rho(g)^{-1}$. Demuestre que $(\operatorname{Fun}(V, \mathbb{C}), \rho^*)$ es una representación de G. Pregunta adicional: verificar que si ρ^* no se define usando la inversa, entonces no es una representación.

Ejercicio 7.2. Demuestre que

$$\operatorname{Sym}^{\bullet}(V^*) \cong \bigoplus_{k=0} \operatorname{Sym}^k(V^*),$$

donde el isomorfismo es de representaciones.

Ejercicio 7.3. Si $W \subseteq \mathbb{C}^n$ es G-estable, entonces \overline{W} es G-estable. Recuerde que \overline{W} denota la clausura de Zariski del conjunto W.

Ejercicio 7.4. Demuestre que:

- 1. Sym² Vy
 $\bigwedge^2 V$ son representaciones irreducibles de GL
(V). Adicional: trabajar el caso sym²
 Vy $\bigwedge^k V$ para todo k
- 2. Si V_1 es irreducible de G_1 y V_2 es irreducible de G_2 , entonces $V_1 \otimes V_2$ es irreducible de $G_1 \times G_2$ Ejercicio 7.5. ; A qué es igual $\bigwedge^2 (A \otimes B)$ como representación de $GL(A) \times GL(B)$?

Semana 8.

Ejercicio 8.1. Demuestre que los subconjuntos algebraicos de \mathbb{P}^n forman una base de cerrados de una topología, la topología de Zariski (proyectiva). Recuerde que un subconjunto algebraico de \mathbb{P}^n es:

$$\mathcal{V}_{\mathbb{P}}(I) = \{ [\alpha] \in \mathbb{P}^n : F(\alpha) = 0, \ \forall F \in I \},$$

para $I \subseteq \mathbb{C}[x_0,...,x_n]$ un ideal homogéneo.

Ejercicio 8.2. (Variedades lineales) Demuestre la siguiente correspondencia:

 $\{ \mathcal{V}_{\mathbb{P}}(I) : I \subseteq \mathbb{C}[x_0, ..., x_n] \text{ generado por formas lineales } \} = \{ \mathbb{P}(A) : A \text{ es un subespacio de } V \}$ en $\mathbb{P}(V)$.

Ejercicio 8.3.

Definición 8.1. Si $[v_1],...,[v_k] \in \mathbb{P}^n$, el espacio proyectivo generado por ellos es:

$$\langle [v_1], ..., [v_k] \rangle = \{ [\alpha_1 v_1 + ... + \alpha_k v_k] : \alpha_1, ..., \alpha_k \in \mathbb{C}, \alpha_1 v_1 + ... + \alpha_k v_k \neq 0 \}.$$

Demuestre que $\langle [v_1], ..., [v_k] \rangle \cong \mathbb{P}^t$ para algún t $(t = \dim(\langle v_1, ..., v_k \rangle) - 1)$ como variedades proyectivas.

Ejercicio 8.4. Demuestre el Nullstellensatz proyectivo:

Teorema 8.1. Se tiene la siguiente correspondencia:

$$\begin{cases}
I \subseteq \mathbb{C}[x_0, ..., x_n], \\
I \text{ homogéneo radical }, \\
I \subseteq \langle x_0, ..., x_n \rangle
\end{cases} \xrightarrow{\mathcal{I}(-)} \begin{cases}
\text{ subconjuntos algebraicos } \\
X \subseteq \mathbb{P}^n
\end{cases}.$$

Ejercicio 8.5. Si X es un subconjunto algebraico de \mathbb{P}^n , demuestre que R_X es un anillo graduado. Es decir, si definimos:

$$(R_X)_j = \mathbb{C}[x_0, ..., x_n]_j / \mathcal{I}(X)_j,$$

entonces:

- 1. Como espacio vectorial (anillo) $R_X = \bigoplus_{j=0}^{\infty} (R_X)_j$.
- 2. $(R_X)_i(R_X)_k \subseteq (R_X)_{i+k}$ para cualesquiera j, k.

Semana 9.

Ejercicio 9.1. Sea $F \neq 0$ un polinomio homogeneo de grado e en $\mathbb{C}[x_0,...,x_n]$ y sean $I = \langle F \rangle$, $R = \mathbb{C}[x_0,...,x_n]/I$.

- (a) Calcule HF(j) correspondiente a R.
- (b) Verifique que HF(j) coincide con un polinomio de grado n-1 para $j\gg 0$. Es decir, existe un A tal que $HF(j)=Aj^{n-1}+O(j^{n-2})$ para $j\gg 0$.

Ejercicio 9.2. Si $V = \langle e_1, ..., e_n \rangle$ y $V^* = \langle x_1, ..., x_n \rangle$ con la base dual correspondiente, tenemos una identificación canónica:

$$\operatorname{Sym}^d(V)^* \longleftarrow \operatorname{Sym}^d(V^*).$$

(a) Demuestre que bajo esta identificación:

$$x^{\alpha} : \operatorname{Sym}^{d}(V) \to \mathbb{C}$$
$$x^{\alpha}(e_{\beta}) = \begin{cases} 0 & \text{si } \alpha \neq \beta, \\ \frac{1}{\binom{d}{\alpha}} & \text{si } \alpha = \beta, \end{cases}$$

utilizando la notación de multiíndice $\alpha = (\alpha_1, ..., \alpha_n), x^{\alpha} = x_1^{\alpha_1} ... x_n^{\alpha_n}$ y $\binom{d}{\alpha}$ es el coeficiente multinomial correspondiente.

(b) Pruebe que en estas coordenadas:

$$\gamma_d: V \longrightarrow \operatorname{Sym}^d(V)$$
 $(a_1, ..., a_n) \longmapsto (a_1^d, a_1^{d-1} a_2, ... a_n^d)$
 $= (\text{ monomios de grado } d \text{ en } a_1, ..., a_n).$

Ejercicio 9.3. (La variedad de Veronese) Si $V = \langle e_1, ..., e_n \rangle$ y $d \in \mathbb{N}$, considere:

$$\gamma_d : \mathbb{P}(V) = \mathbb{P}^{n-1} \longrightarrow \mathbb{P}(\operatorname{Sym}^d(V)) = \mathbb{P}^{\binom{n+d-1}{d}-1}$$
$$[a_1, ..., a_n] \longmapsto [\text{ monomios de grado } d \text{ en } a_1, ..., a_n],$$

y definimos la d-ésima variedad de Veronese de \mathbb{P}^{n-1} como $X := \gamma_d(\mathbb{P}^{n-1})$.

(a) Demuestre que $\mathcal{I}(X) \subseteq \mathbb{C}[y_{\alpha} : \sum_{i=1}^{n} \alpha_{i} = d]$ es:

$$\mathcal{I}(X) = \langle y_{\alpha_1} y_{\alpha_2} - y_{\beta_1} y_{\beta_2} : \alpha_1 + \alpha_2 = \beta_1 + \beta_2 \rangle.$$

(b) Demuestre que $X \cong \mathbb{P}^{n-1}$ como variedades algebraicas proyectivas. [Ayuda: Utilice el hecho de que, si $f: X \to Y$ es una función entre vars. algebraicas y $f|_{U_i}$ es un morfismo para abiertos $U_i \subseteq X$ con $X = \bigcup_i U_i$, entonces f es un morfismo.]

Semana 10.

Ejercicio 10.1. Sean V y W dos espacios vectoriales de dimensión n y m respectivamente, defina

$$\sigma: \mathbb{P}(V) \times P(W) \to \mathbb{P}(V \otimes W)$$
$$([v], [w]) \to [v \otimes w]$$

Que en coordenadas se escribe como

$$([a_1:\cdots;a_n],[b_1;\cdots;b_m)\to \begin{bmatrix} \begin{pmatrix} a_1b_1&\cdots&a_nb_1\\ \vdots&&\vdots\\ a_1b_m&\cdots&a_nb_m \end{pmatrix} \end{bmatrix}$$

Defina $X = \sigma(\mathbb{P}(V) \times P(W))$. Demuestre que

$$\mathcal{I}(X) = \left(2 \times 2 \text{ minors} \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix}\right)$$

Ejercicio 10.2. • Demuestre que $\mathbb{P}^1 \times \mathbb{P}^1$ con la topología producto de Zariski, no es homeomorfo a $X := \operatorname{im}(\sigma)$, donde σ es el mapa del ejercicio anterior.

■ Demuestre que $\mathbb{P}^1 \times \mathbb{P}^1$ no es isomorfo a \mathbb{P}^2 . (Hint: Teorema de Bezout).

Ejercicio 10.3. Sean $V_1 = \langle e_1, e_2 \rangle$, $V_2 = \langle f_1, f_2 \rangle$, $V_3 = \langle g_1, g_2 \rangle$, $[T] \in \mathbb{P}(V_1 \otimes V_2 \otimes V_3)$, con

$$T = z_{111}e_1 \otimes f_1 \otimes g_1 + \cdots + z_{222}e_2 \otimes f_2 \otimes g_2$$

y $X = \operatorname{im}(\sigma)$ como en el ejercicio 10.1. Defina los siguientes conjuntos de ecuaciones

•
$$A_1$$
: Det $\begin{pmatrix} z_{111} & z_{112} \\ z_{121} & z_{122} \end{pmatrix} = 0$

•
$$A_2$$
: Det $\begin{pmatrix} z_{211} & z_{212} \\ z_{221} & z_{222} \end{pmatrix} = 0$

■
$$B \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 minors = Det $\begin{pmatrix} z_{111}z_{212} - z_{112}z_{211}, \cdots \\ z_{121}z_{222} - z_{121}z_{221}, \cdots \end{pmatrix}$

Sabemos que $X = V((A_1) + (A_2) + (B)).$

1. Demuestre que $\mathcal{I}(X) = ((A_1) + (A_2) + (B))$. Hint: Si a, b, c son las dimensiones de $\mathbb{P}(V_1), \mathbb{P}(V_2)$ Y $\mathbb{P}(V_3)$ respectivamente

$$\mathrm{HF}_X(t) = \binom{a+t}{t} \binom{b+t}{t} \binom{c+t}{t}$$

2. Demuestre que $\operatorname{im}(\sigma)$ es cerrado para todo k

$$\sigma: \mathbb{P}(V_1) \times \mathbb{P}(V_2) \times \cdots \mathbb{P}(V_k) \to \mathbb{P}(V_1 \otimes \cdots V_k)$$

Semana 11.

Ejercicio 11.1. Sea V un espacio vectorial.

1. Demuestre que existe una correspondencia natural (Up to scalars)

$$\bigwedge^{k} V \longrightarrow \bigwedge^{n-k} V^{*}$$

$$w \longrightarrow w^{*}$$

2. Defina

$$\varphi(w): V \longrightarrow \bigwedge^{k+1} V$$
$$v \longrightarrow v \wedge w$$

$$\psi(w^*): V^* \longrightarrow \bigwedge^{n-k+1} V^*$$
$$v^* \longrightarrow v^* \wedge w^*$$

Demustre que w es descomponible si y sólo si $\operatorname{Ker}(\varphi(w)) = \operatorname{Ker}(\psi(w))^{\perp}$

3. Equivalentemente, $\forall \alpha \in \bigwedge^{k+1} V^*, \beta \in \bigwedge^{n-k+1} V$

$$\Xi_{\alpha,\beta}(w) = \langle \varphi^t(w)(\alpha), \psi^t(w)(\beta) \rangle = 0$$

donde si $f:A\to B,\ f^t:B^*\to A^*$ es el transpuesto de f definido por $f^t(l):=l\circ f.$ Verifique que es una ecuación cuadrática.

4. Encuentre el polinomio que define $Gr(1, \mathbb{P}^3) \subset \mathbb{P}(\bigwedge^2 \mathbb{C}^4)$.

Ejercicio 11.2. Sea $X \subset \mathbb{C}^n$ cerrado, las siguientes son equivalentes.

- 1. X es un cerrado irreducible
- 2. $\mathcal{I}(X) \subset \mathbb{C}[x_1, \cdots, x_n]$ es un ideal primo
- 3. $\mathbb{C}[X] := \mathbb{C}[x_1, \cdots, x_n]/\mathcal{I}(X)$ es un dominio de integridad.

Ejercicio 11.3. Demuestre que si X es una variedad y $X = X_1 \cup \cdots \cup X_k$ con X_i irreducibles y $X \neq \bigcup_{i \neq i} X_j$ para todo i, entonces la descomposición es única.

Ejercicio 11.4. Si X_i son las componentes irreducibles de una variedad X, $Dim(X) = \max_i Dim(X_i)$

Ejercicio 11.5. Utilizando lo visto durante la clase del 21 de abril, demuestre el Lema de Normalización de Noether

Lema 11.1. Si $S = \mathbb{C}[x_1, \dots, x_n]/J$, existen $k \in \mathbb{N}, y_1, \dots, y_k \in S$ tales que

- 1. $\mathbb{C}[y_1, \cdots, y_k] \subset S$
- 2. $\mathbb{C}[y_1, \dots, y_k] \subset S$ es una extensión entera.

Semana 12.

Ejercicio 12.1. Sean $X := \{[A] : \operatorname{rank} A \leq 1\} \subseteq \mathbb{P}^{mn-1} \ y \ Z := \sigma_j(A)$. Demuestre que

- 1. $Z = \{ [A] : \operatorname{rank} A \leq j \}$
- 2. Z es irreducible y $\dim(Z) = j(n+m-j) 1$.

Ejercicio 12.2. Si Y es variedad irreducible y $U, V \subseteq Y$ abiertos. Pruebe que

- \blacksquare U es denso si y solo si es no vacío.
- Si U, V no son vacíos entonces $U \cap V \neq \emptyset$.

Ejercicio 12.3. \blacksquare Si X y Y son irreducibles entonces $X \times Y$ es irreducible.

- Si $U \subseteq X$ y X es irreducible entonces U es irreducible.
- Si X es irreducible y $f: X \to Y$ entonces f(X) es irreducible.
- Si Z es irreducible entonces \overline{Z} es irreducible.

Referencias

[1] Joseph M Landsberg. Tensors: geometry and applications. Representation theory, 381(402):3, 2012.