COMP130014.02 编译

第八讲:静态单赋值

徐辉 xuh@fudan.edu.cn

大纲

- ❖一、IR代码精简:消除冗余Load/Store
- ※二、纯寄存器表示
- *三、优化Phi指令

一、IR代码精简:消除冗余Load/Store

线性IR中的Load冗余

```
fn foo(x:int) -> int
      let y:int = 0;
bb0:
      let z:int = x + y;
      if(z>0)
 bb1:
 y = y + 1;
    bb2: | y = y + 1;
          z = x + y;
          ret z;
```

```
%x = alloca i32
    bb0:
          %y = alloca i32
          %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
          %x0 = load i32, i32* %x
          %y0 = load i32, i32* %y
          %z0 = add i32 %x0, %y0
          store i32 %z0, i32* %z
          %z1 = load i32, i32* %z
          %t0 = icmp sgt i32 %z1, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y1 = load i32, i32* %y
%y2 = add i32 %y1, 1
store i32 %y2, i32* %y
br label %bb2
       bb2: | %y3 = load i32, i32* %y
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %x1 = load i32, i32* %x
             %y5 = load i32, i32* %y
             %z2 = add i32 %x1, %y5
             store i32 %z2, i32* %z
             %z3 = load i32, i32* %z
```

ret i32 %z3

优化思路: 可用临时寄存器分析

bb1:

```
%y1 = load i32, i32* %y
%y2 = add i32 %y1, 1
store i32 %y2, i32* %y
br label %bb2
```

- 正向遍历控制流图
- Transfer函数定义:
 - %t = load i32, i32* %x
 - $S_x = S_x \cup \{t\}$
 - store i32 %t, i32* %x
 - $S_{x} = \{t\}$
- 遇到合并节点

$$IN(n) = \bigcap_{n' \in predecessor(n)} OUT(n')$$

分析过程

bb0:	<pre>%x = alloca i32 %y = alloca i32 %z = alloca i32 store i32 %0, i32* %x store i32 0, i32* %y %x0 = load i32, i32* %x %y0 = load i32, i32* %y %z0 = add i32 %x0, %y0 store i32 %z0, i32* %z %z1 = load i32, i32* %z %t0 = icmp sgt i32 %z1, 0 br i1 %t0, label %bb1, label %bb</pre>	\$\cdot \{\times \text{\chi}\} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$y {} {y0} {y0} {y0} {y0} {y0}	\$\bigs_z\$ \{\} \{\} \{\z0\} \{\z0\} \{\z0\} \{\z0\} \{\z0\} \}	
bb1:					
	▼				
%y1 = load i32, i32* %y		{x0}	{y0}	$\{z0,z1\}$	
%y2 = add	i32 %y1, 1	{x0}	{y0,y1}	{z0,z1}	
1 -	%y2, i32* %y	{x0}	{y0,y1}	{z0,z1}	
br label %bb2		{x0}	{y2}	{z0,z1}	
bi 1abci %bb2					
		{x0}n{x0}	{y0}∩{y2}	${z0,z1} \cap {z0,z1}$	
bb	2: %y3 = load i32, i32* %y	{x0}	{y3}	{z0,z1}	
	%y4 = add i32 %y3, 1	{x0}	{y3}	{z0,z1}	
	store i32 %y4, i32* %y	{x0}	{y4}	{z0,z1}	
	%x1 = load i32, i32* %x	{x0,x1}	{y4}	{z0,z1}	
	%y5 = load i32, i32* %y	{x0,x1}	{y4,y5}	{z0,z1}	
	%z2 = add i32 %x1, %y5	{x0,x1}	{y4,y5}	{z0,z1}	
	store i32 %z2, i32* %z	{x0,x1}	{y4,y5}	{z2}	
	%z3 = load i32, i32* %z	{x0,x1}	{y4,y5}	{z2,z3} 6	
	ret i32 %z3	(//-)	() .),-)	(,)	

分析结果

73 171					
bb0:	<pre>%x = alloca i32 %y = alloca i32 %z = alloca i32 store i32 %0, i32* %x store i32 0, i32* %y %x0 = load i32, i32* %x</pre>	S _x {x0}	<i>S_y</i>	<i>S_z</i> {}	
	%y0 = load i32, i32* %y	{x0}	{y0}	{}	
%z0 = add i32 %x0, %y0		{x0}	{y0}	{}	
store i32 %z0, i32* %z		{x0}	{y0}	{z0}	
	%z1 = load i32, i32* %z	{x0}	{y0}	{z0,z1}	
	%t0 = icmp sgt i32 %z1, 0				
	br i1 %t0, label %bb1, label %b	b2		•	
bb1:					
%y1 = loa	d i32, i32* %y				
%y2 = add i32 <mark>%y1</mark> , 1		{x0}	{y0,y1}	{z0,z1}	
store i32 %y2, i32* %y		{x0}	{y0,y1}	{z0,z1}	
br label	%bb2	{x0}	{y2}	{z0,z1}	
		(,,0) - (,,0)	(,,0) - (,,2)	(-0 -1)-(-0 -1)	
bb	2: %y3 = load i32, i32* %y	{x0}n{x0} {x0}	{y0}n{y2}	$\{z0,z1\}\cap\{z0,z1\}$	
	%y4 = add i32 %y3, 1	{x0}	{y3} {y3}	{z0,z1} {z0,z1}	
	store i32 %y4, i32* %y	(x0)		{z0,z1}	
	%x1 = load i32, i32* %x	{x0,x1}	{y4}	{z0,z1}	
	%y5 = load i32, i32* %y	{x0,x1}	{y4,y5}	{z0,z1}	
	%z2 = add i32 <mark>%x1</mark> , <mark>%y5</mark> ———	{x0,x1}	{y4,y5}	{z0,z1}	
	store i32 %z2, i32* %z	{x0,x1}	{y4,y5}	{z2}	
	%z3 = load i32, i32* %z	{x0,x1}	{y4,y5}	{z2,z3} 7	
	ret i32 <mark>%z3</mark>	(),,,		(,)	

优化结果

```
bb0: | %x = alloca i32
          %y = alloca i32
          %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
          %x0 = load i32, i32* %x
          \%y0 = load i32, i32* %y
          %z0 = add i32 %x0, %y0
          store i32 %z0, i32* %z
          %t0 = icmp \ sgt \ i32 \ %z0, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
       bb2: | %y3 = load i32, i32* %y
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
             store i32 %z2, i32* %z
             ret i32 %z2
```

伪代码

```
For (each instruction n):
    IN[n] = {<v: Ø>: v is a program variable}
    OUT[n] = {<v: Ø>}
Repeat:
    For(each instruction n):
        For(each n's predecessor p)
            IN[n] = IN[n] n OUT[p]
        OUT[n] = TRANSFER(n)
Until IN[n] and OUT[n] stops changing for all n
```

问题: 算法是否一定会终止?

- 有循环的情况:
 - 每个程序节点的可用寄存 器数目是单调递减的

```
fn fac(n: int) -> int {
    let r = 1;
    while (n>0) {
        r = r * n;
        n = n-1;
    }
    ret r;
}
```

```
define i32 @fac(i32 %0) {
bb0:
   %n = alloca i32
   %r = alloca i32
    store i32 %0, i32* %n
    store i32 1, i32* %r
    br label %bb1
bb1:
   %t1 = load i32, i32* %n
    %t2 = icmp sgt i32 %t1, 0
    br i1 %t2, label %bb2, label %bb3
bb2:
   %t3 = load i32, i32* %r
   %t4 = load i32, i32* %n
   %t5 = mul i32 %t3, %t4
    store i32 %t5, i32* %r
   %t6 = load i32, i32* %n
   %t7 = sub i32 %t6, 1
    store i32 %t7, i32* %n
    br label %bb1
bb3:
   %t8 = load i32, i32* %r
    ret i32 %t8
                                     10
```

线性IR中的Store冗余

```
fn foo(x:int) -> int
      let y:int = 0;
bb0:
      let z:int = x + y;
      if(z>0)
 bb1:
 y = y + 1;
    bb2: | y = y + 1;
          z = x + y;
          ret z;
```

```
%x = alloca i32
    bb0:
          %y = alloca i32
          %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
          %x0 = load i32, i32* %x
          \%y0 = load i32, i32* %y
          %z0 = add i32 %x0, %y0
          store i32 %z0, i32* %z
          %t0 = icmp sgt i32 %z0, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
       bb2: |\%y3| = 10ad i32, i32* \%y
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
             store i32 %z2, i32* %z
             ret i32 %z2
```

优化思路:可用Store语句分析

```
%x = alloca i32
   bb0:
         %y = alloca i32
         %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
         %x0 = load i32, i32* %x
         %y0 = load i32, i32* %y
         %z0 = add i32 %x0, %y0
          store i32 %z0, i32* %z
         %t0 = icmp sgt i32 %z0, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
       bb2: | %y3 = load i32, i32* %y
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
```

store i32 %z2, i32* %z

ret i32 %z2

- 逆向遍历控制流图
- Transfer函数定义:
 - store i32 %t, i32* %x
 - $S = S \cup \{x\}$
 - %t = load i32, i32* %x
 - $S = S \setminus \{x\}$
 - %t = alloc, i32* %x
 - $S = S \setminus \{x\}$
- 遇到合并节点

$$OUT(n) = \bigcap_{n' \in successor(n)} IN(n')$$

分析过程

分析结果

优化结果

```
bb0: | %x = alloca i32
          %y = alloca i32
          %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
          %x0 = load i32, i32* %x
          %y0 = load i32, i32* %y
          %z0 = add i32 %x0, %y0
          %t0 = icmp sgt i32 %z0, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
             %y3 = load i32, i32* %y
       bb2:
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
             store i32 %z2, i32* %z
             ret i32 %z2
```

二、纯寄存器表示

消除数据存取

```
bb0: | %x = alloca i32
         %y = alloca i32
         %z = alloca i32
          store i32 %0, i32* %x
         store i32 0, i32* %y
         x0 = 10ad i32, i32* x
         %y0 = load i32, i32* %y
         %z0 = add i32 %x0, %y0
         %t0 = icmp sgt i32 %z0, 0
         br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
            %y3 = load i32, i32* %y
       bb2:
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
             store i32 %z2, i32* %z
             ret i32 %z2
```

分析方法: 内存数值流分析

```
%x = alloca i32
    bb0:
          %y = alloca i32
          %z = alloca i32
          store i32 %0, i32* %x
          store i32 0, i32* %y
         %x0 = load i32, i32* %x
         %y0 = load i32, i32* %y
         %z0 = add i32 %x0, %y0
         %t0 = icmp sgt i32 %z0, 0
          br i1 %t0, label %bb1, label %bb2
bb1:
%y2 = add i32 %y0, 1
store i32 %y2, i32* %y
br label %bb2
       bb2: | %y3 = load i32, i32* %y
             %y4 = add i32 %y3, 1
             store i32 %y4, i32* %y
             %z2 = add i32 %x0, %y4
             store i32 %z2, i32* %z
             ret i32 %z2
```

- 正向遍历控制流图
- Transfer函数定义:
 - store i32 %t, i32* %x
 - $S_{\mathbf{x}} = \{t\}$
- 遇到合并节点

$$IN(n) = \bigcup_{n' \in predecessor(n)} OUT(n')$$

分析过程

分析结果

纯寄存器表示

练习:将下列代码转化为纯寄存器表示

```
define i32 @fac(i32 %0) {
bb0:
   %n = alloca i32
   %r = alloca i32
   store i32 %0, i32* %n
   store i32 1, i32* %r
   br label %bb1
bb1:
   %t1 = load i32, i32* %n
   %t2 = icmp sgt i32 %t1, 0
    br i1 %t2, label %bb2, label %bb3
bb2:
   %t3 = load i32, i32* %r
   %t4 = load i32, i32* %n
   %t5 = mul i32 %t3, %t4
    store i32 %t5, i32* %r
   %t6 = load i32, i32* %n
   %t7 = sub i32 %t6, 1
    store i32 %t7, i32* %n
    br label %bb1
bb3:
   %t8 = load i32, i32* %r
    ret i32 %t8
```

数据流分析方法小结

	May Analysis (U)	Must Analysis (∩)
Forward	纯寄存器表示	精简Load
Backward		精简Store

数据流分析方法小结: 框架

三、Phi指令优化

哪个Phi指令方案更优?

SSA简化def-use关系

- 原始程序的def-use关系数量是 $O(m \times n)$;
- SSA的def-use数量减少为O(m+n)。

```
match v1:
    0 => { x = 0; }
    1 => { x = 1; }
    _ => { x = -1; }
...
match v2:
    0 => { x = x + x; }
    1 => { x = x * x; }
    _ => { x = -x; }
```


优化思路:基于支配边界优化Phi指令

- bb0支配bb2, bb1和bb2的支配边界都是bb3
- 如果bb1和bb2中都没有def(x), bb3不需要phi(x), 可直接使用bb0中的def(x)
- 如果bb1中有def(y), bb3中一定需要phi(y)

支配的基本概念

- 给定有向图G(V,E)与起点 v_0 ,如果从 v_0 到某个点 v_j 均需要经过点 v_i ,则称 v_i 支配 v_j 或 v_i 是 v_j 的一个支配点
 - $v_i \in Dom(v_i)$
- 如果 $v_i \neq v_i$,则称 v_i 严格支配 v_i

支配树的基本概念

- 所有 v_i 的严格支配点中与 v_i 最接近的点成为 v_i 的最近支配点
 - $Idom(v_j) = v_i$, v_j 的其它严格支配点均严格支配 v_i
- 连接接所有的最近支配关系, 形成一棵支配树
 - 根节点外的每一点均存在唯一的最近支配点

支配边界Dominance Frontier

- v_i 的支配边界是所有满足条件的 v_i 的集合
 - v_i 支配 v_j 的一个前序节点
 - v_i 并不严格支配 v_j


```
DF(bb_0) = \{\}

DF(bb_1) = \{bb_3\}

DF(bb_2) = \{bb_3\}

DF(bb_3) = \{bb_3\}

DF(bb_4) = \{bb_3, bb_4, bb_7\}

DF(bb_5) = \{bb_3, bb_4\}

DF(bb_6) = \{bb_3\}

DF(bb_7) = \{\}
```

利用支配边界设置Phi指令

- 初始化: 枚举所有变量的def-sites
 - def-sites(x) = {bb1,bb2,bb6,bb7}
- 为每个变量在bb_i增加phi节点:
 - $bb_i \in def\text{-sites}(x)$
 - $bb_j \in DF(bb_i)$
- 在bb3增加phi指令的phi(x)

```
DF(bb_0) = \{\}

DF(bb_1) = \{bb_3\}

DF(bb_2) = \{bb_3\}

DF(bb_3) = \{bb_3\}

DF(bb_4) = \{bb_3, bb_4, bb_7\}

DF(bb_5) = \{bb_3, bb_4\}

DF(bb_6) = \{bb_3\}

DF(bb_7) = \{\}
```


优化结果

- 重新编号
- 删除只有一个元素的phi指令

练习

- 分析右侧代码:
 - 1) 计算支配树
 - 2) 计算支配边界
 - 3) 修改为SSA

