Assignment 2, Fall 2023 CS4823/CS6643, Parallel Computing PRAM Algorithms

Due Date

This assignment is due next Wed, 09/6/2023, at 11:59pm

Materials to Review

1. Read Chapter 2, sections 2.3 and 2.4.1 of textbook, and related slide sets posted for this chapter.

Questions

- 1. (10 points) Find one of the indices where maximum value occurs in an array A[1..n] of integers in O(1) time on a CRCW Common PRAM model.
 - (a) Give pseudocode (6 points).
 - (b) For $p = n^2$, calculate T_p , S_p , E_p , cost and work of your algorithm. Here, n is the size of the input, p is number of processors, T_p is the parallel time taken using p processors, S_p is the speedup, E_p is the efficiency, $cost = pT_p$, and work is the total operation count across all processors. (4 points).
- 2. (15 points) Design an algorithm for multiplying two square matrices of size $n \times n$ which uses $p <= n^3$ processors and achieves the fastest parallel execution time of $O(\log n)$. You may assume EREW PRAM model.
 - (a) (10 points) Give major steps in high level description/pseudocode enough to answer part (b) that is, detailed pseudocode is not needed.
 - (b) (5 points) For $p \le n^3$ processors, calculate expressions for Tp, Sp, Ep, cost and work of your algorithm as functions of n and p using O notation.