

UNIVERSIDAD JUÁREZ AUTONOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BÁSICAS

PROGRAMA EDUCATIVO

LIC. CIENCIAS COMPUTACIONALES

PROFESOR

DR. ABDIEL EMILIO CACERES GONZALEZ

EXPERIENCIA EDUCATIVA

ANALIZIS DE ALGORITMOS

TRABAJO

TAREA 3

ESTUDIANTE

RODRIGUEZ TORRES KEVIN NICK

CARDENAS, TAB. 26 DE MARZO DEL 2021

1. Observa el siguiente problema computacional y el algoritmo que lo resuelve:

PROBLEMA: Ordenar una lista de números enteros de menor a mayor

ENTRADA: Una lista A de n números enteros

SALIDA: Una permutación de la lista, de modo que los números estén ordenados de menor a mayor.

1 burbuja(A):

```
2 for i desde 1 hasta |A| - 1:

3 for j desde 0 hasta |A| - 2:

4 si Aj > Aj+1:

5 aux \leftarrow Aj

6 Aj \leftarrow Aj+1

7 Aj+1 \leftarrow aux

8 return A
```

Analiza la complejidad para este algoritmo y proporciona una cota superior para el tiempo de ejecución.

Entradas	numero de iteraciones	salidas
51 21 39 80 36	1	21 51 39 80 36
21 51 39 80 36	2	21 36 39 80 51
21 36 39 80 51	3	21 36 39 80 51
21 36 39 80 51	4	21 36 39 51 80

$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-2} 1 = \sum_{i=0}^{n} m$$
 $\sum_{i=0}^{n} (n) \le \sum_{i=0}^{n} n^2 \le \sum_{i=0}^{n} (n^4)$
Complejidad: O(n^2) Cuota superior: $[n^4]$

4. Analiza la complejidad del programa que escribiste en el ejercicio anterior y dibuja una gráfica con la función asintótica que obtuviste.

Entradas	Numero de iteraciones	Salidas	
Oso Ana Aérea	3	True	
Osos pelo libro	3	False	
Ana osos radar	3	True	

Complejidad: O(n)

5. Estudia el siguiente algoritmo:

```
1 Iter6(n):
2 cuenta ← 0
3 for i desde 1 hasta n:
4 for j desde i+1 hasta n:
5 for k desde j+1 hasta n:
6 cuenta ← cuenta + 1
7 return cuenta
```

Realiza y reporta el análisis de complejidad de este algoritmo.

i	j	k	cuenta
1	2	3,4,5	3
2	2,3	3,4,5 4,5	5
3	2,3,4	5	6
4	2,3,4 2,3,4,5		6
5			6

Análisis de complejidad:

 $O(n^3)$