Programación Científica

Simulación:

Comportamiento caótico de un péndulo simple

03 de agosto de 2022

Propósito

Analizar el comportamiento caótico de un péndulo simple que realiza oscilaciones forzadas debido a la acción de una fuerza externa de la forma $F = f\cos(\omega t)$.

Ecuación del movimiento:

$$\frac{d^2\theta}{dt^2} = -{\rm sen}\theta - q\,\frac{d\theta}{dt} + b\cos(\omega t)$$

$$q = \frac{r}{Lm} \quad {\rm y} \quad b = \frac{f}{m}$$

m: Masa del péndulo.

L: Longitud del péndulo.

r: coeficiente de rozamiento.

Paramétros:

• $\omega = \frac{2}{3}\omega_0$, $\omega_0 = \sqrt{\frac{g}{L}} = 1$

• a = 0.5

La ecuación de movimiento se resolverá con el método Runge-Kutta 4.

Actividades

Todas las simulaciones se realizarán con las condiciones iniciales $\theta_0 = 1$ y $\dot{\theta}_0 = 0$.

1. Simular para un tiempo igual a 100
 $T=\frac{2\pi}{\omega})$ y b=1.05, 1.07, 1.08, 1.09 y 1.1

Para cada simulación:

- Graficar la evolución temporal de θ
- Graficar la trayectoria en el espacio de fases.
- Graficar la sección de Poincaré.
- 2. Construir el diagrama de bifurcación para b entre 1.04 y 1.09.
- 3. Simular el movimiento del péndulo con las condiciones iniciales $\theta_0 = 1$ y $\dot{\theta}_0 = 0$ para un tiempo igual a 10000T y b = 1.2. Graficar la trayectoria en el espacio de fases y la sección de Poincaré.

Estructura del Reporte

1. Introducción

- Descripción del sistema de estudio.
- Secciones de Poincaré.

Para esto, consultar un libro(s) de mecánica clásica e incluirlo(s) como referencia(s)

NO INCLUIR PAGINAS DE INTERNET COMO REFERENCIAS

• Planteamiento del problema.

2. Metodología

- Estructura del programa utilizado.
- Condiciones de las simulaciones.
- Procedimiento para el análisis y el tratamiento de los datos.

3. Resultados

- Para las condiciones iniciales $\theta_0 = 1$ y $\dot{\theta}_0 = 0$ y b = 1.05, 1.07, 1.08, 1.09 y 1.1
 - Graficos con la evolución temporal de θ para 50T < t < 100T
 - Graficos con las trayectorias en el espacio de fases.
 - Graficos de las secciones de Poincare.
- \bullet Gráfico con el diagrama de bifurcación para bentre 1.04 y 1.09
- Gráfico de la sección de Poicare para b=1.2 y un tiempo de simulación de 10000T

4. Conclusiones

Las conclusiones deben relacionarse directamente con lo presentado en la sección anterior.

Fecha de entrega del reporte: 10 de agosto de 2022

Marco V Bayas