Q-Learning

Shusen Wang

Sarsa VS Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s,a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- We used Sarsa for updating value network (critic).

Sarsa VS Q-Learning

- Q-learning is for training the optimal action-value function, $Q^*(s,a)$.
- TD target: $y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a)$.
- We used Q-learning for updating DQN.

• We have proved that for all π ,

$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})\right].$$

• We have proved that for all π ,

$$Q_{\pi}(S_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \boldsymbol{A_{t+1}})].$$

• If π is the optimal policy π^* , then

$$Q_{\pi^*}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi^*}(S_{t+1}, A_{t+1})].$$

• We have proved that for all π ,

$$Q_{\pi}(S_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \boldsymbol{A_{t+1}})].$$

• If π is the optimal policy π^* , then

$$Q_{\pi^*}(S_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi^*}(S_{t+1}, \boldsymbol{A_{t+1}})].$$

• Q_{π^*} and Q^* both denote the optimal action-value function.

• We have proved that for all π ,

$$Q_{\pi}(S_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \boldsymbol{A_{t+1}})].$$

• If π is the optimal policy π^* , then

$$Q_{\pi^*}(S_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi^*}(S_{t+1}, \boldsymbol{A_{t+1}})].$$

• Q_{π^*} and Q^* both denote the optimal action-value function.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1})].$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1})].$$

• The action A_{t+1} is computed by

$$A_{t+1} = \operatorname*{argmax}_{a} Q^{*}(S_{t+1}, a).$$

• Thus $Q^*(S_{t+1}, A_{t+1}) = \max_{a} Q^*(S_{t+1}, a)$.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1})].$$

• Thus
$$Q^*(S_{t+1}, A_{t+1}) = \max_a Q^*(S_{t+1}, a)$$
.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1})].$$

$$= \max_{\mathbf{a}} Q^{\star}(S_{t+1}, \mathbf{a})$$

Identity:
$$Q^*(s_t, \mathbf{a}_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_{\mathbf{a}} Q^*(S_{t+1}, \mathbf{a})\right].$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a)\right].$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a)\right].$$

- Let (s_{t+1}, r_t) be an observation of (S_{t+1}, R_t) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a)\right]$$
. $\approx y_t$

- Let (s_{t+1}, r_t) be an observation of (S_{t+1}, R_t) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.

Q-Learning: Tabular Version

Q-Learning (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.

Q-Learning (tabular version)

• Observe (s_t, a_t, r_t, s_{t+1}) .

• TD target:
$$y_t = r_t + \gamma \left(\max_{a} Q^*(s_{t+1}, a) \right)$$
.

	Action a_1	Action a_2	Action a_3	Action a_4	• • •
State s_1					
State s ₂					
State s ₃					
•					

Q-Learning (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.
- TD error: $\delta_t = Q^*(s_t, a_t) y_t$.
- Update: $Q^*(s_t, a_t) \leftarrow Q^*(s_t, a_t) \alpha \cdot \delta_t$.

make $Q^*(s_t, a_t)$ closer to y_t

Q-Learning: DQN Version

DQN Version

• Approximate $Q^*(s, a)$ by DQN, $Q(s, a|\mathbf{w})$.

DQN Version

- Approximate $Q^*(s, a)$ by DQN, $Q(s, a|\mathbf{w})$.
- DQN controls the agent by: $a_t = \underset{a}{\operatorname{argmax}} Q(s_t, a|\mathbf{w})$
- We seek to learn the parameter, w.

Q-Learning (DQN Version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a \mid \mathbf{w}).$
- TD error: $\delta_t = Q(s_t, a_t \mid \mathbf{w}) y_t$.
- Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ q(s_t, a_t | \mathbf{w})}{\partial \ \mathbf{w}}$.

Summary

- Goal: Learn the optimal action-value function Q^* .
- Tabular version (directly learn Q^*).
 - There are finite states and actions.
 - Draw a table, and update the table by Q-learning.
- DQN version (function approximation).
 - Approximate Q^* by the DQN, $Q(s, \boldsymbol{a}|\mathbf{w})$.
 - Update the parameter, w, by Q-learning.

Thank you!