Problem Set 1 - Thomas Boyko - 30191728

1. Let $m, n \in \mathbb{Z}^+$ so that $\gcd(m, n) = 1$. Prove that if $\sqrt{\frac{m}{n}}$ is rational, then m, n are perfect squares.

Proof. Suppose $m, n \in \mathbb{Z}^+$ coprime, and that $\sqrt{\frac{m}{n}} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ where $b \neq 0$. We may also assume that a, b are also coprime; i.e. $\frac{a}{b}$ is the lowest terms we can put $\sqrt{\frac{m}{n}}$.

Then $\frac{m}{n} = \frac{a^2}{b^2}$, and $mb^2 = na^2$. So $m|na^2$, and since $m \nmid n$, $m|a^2$. Likewise $n|b^2$.

2. Prove that no order can be defined in \mathbb{C} that turns it into an ordered field.

Proof. Suppose by way of contradiction that we have an order < on \mathbb{C} so that \mathbb{C} is an ordered field. Then the square of any element in \mathbb{C} must be positive. So $1^2 = 1 > 0$, and $(i)^2 = -1 > 0$. But

$$0 < 1 \implies 0 + 0 < 1 + (-1) = 0.$$

4

4

4

Which means 0 < 0, a contradiction. So \mathbb{C} cannot be an ordered field.

3. Write z = a + bi, and w = c + di. Define the lexicographic order, z < w if a < c and also if a = c but b < d. Prove that this turns \mathbb{C} into an ordered set.

Proof. Take the order defined above, and write z, w as above.

Then we show that exactly z < w, z = w, or w < z. Suppose neither w < z, z < w are true. So we know four things:

$$a \le c$$
$$c \le a$$

__ u

4. Show that a field automorphism $f : \mathbb{R} \to \mathbb{R}$ is either constant zero or identity.

(a) Prove f(0) = 0 and f(1) is either 0, 1.

Proof. We easily see f(0) = 0:

$$f(0) = f(0+0) = f(0) + f(0) \implies f(0) = f(0).$$

And similarly, letting f(1) = x:

$$f(1) = f(1 \cdot 1) = f(1) \cdot f(1).$$

Then $x^2 = x$, so x(x - 1) = 0 and f(1) is either 0 or 1.

(b) Prove f(n) = nf(1) for any $n \in \mathbb{Z}$. Use this to show that $f\left(\frac{m}{n}\right) = \frac{m}{n}f(1)$ for any $m, n \in \mathbb{Z}$, and conclude that f(q) must be either q or 0.

Proof. We have covered that f(0) = 0, and outlined the cases for f(1). Consider $n \in \mathbb{Z}_{>1}$.

$$f(nx) = f(1 + ... + 1) = f(1) + ... + f(1) = n f(1).$$

Now we show that f(-n) = -f(n):

$$0 = f(0) = f(n - n) = f(n) + f(-n) \implies -f(n) = f(-n).$$

So clearly f(n) = n f(1) for any $n \in \mathbb{Z}$.