Approach:

To train an open-source LLM (Large Language Model) for event recommendation, we follow a structured methodology:

1. **Dataset Collection**:

- Scrape and collect event-related data from platforms like Eventbrite, Meetup, and local event websites.
 - Gather user preferences through surveys, past event interactions, and historical data.
 - Use APIs (e.g., Ticketmaster, Google Events) for real-time event listings.

2. **Data Preprocessing**:

- Clean and normalize event descriptions, dates, locations, and categories.
- Use NLP techniques (tokenization, stemming, stopword removal) to enhance event text representation.
- Create embeddings using models like Word2Vec, TF-IDF, or BERT to capture semantic meaning.

3. **Model Selection & Training**:

- Fine-tune an open-source LLM (e.g., LLaMA, Mistral, Falcon) using instruction tuning.
- Implement Reinforcement Learning with Human Feedback (RLHF) to improve user preference understanding.
 - Train the model to generate personalized recommendations based on input prompts.

4. **Integration with Chat Platforms**:

- Deploy the trained model as an API using FastAPI or Flask.
- Connect the model to WhatsApp/Telegram via Twilio or Telegram Bot API.
- Enable real-time notifications and conversational event discovery.

5. **Continuous Improvement**:

- Collect user feedback to refine recommendations.
- Update datasets regularly for improved accuracy.
- Implement A/B testing to evaluate different recommendation strategies.

- **Challenges Faced:**
- 1. **Data Availability & Quality:**
- Many event platforms restrict API access or require paid plans.
- User preferences may be diverse and require extensive labeling.
- 2. **LLM Fine-tuning Complexity:**
 - Requires significant computational resources.
 - Balancing generalization and personalization is challenging.
- 3. **Latency & Real-time Processing:**
 - Ensuring fast response times for chatbot interactions.
 - Handling high query loads efficiently.
- 4. **User Privacy & Data Security:**
 - Storing user preferences securely.
- Preventing unauthorized access to recommendation data.

- **Improvements & Future Work:**
- 1. **Hybrid Recommendation System:**
 - Combine LLM-based recommendations with collaborative filtering techniques.
 - Use graph-based approaches to find event relationships.
- 2. **Better Context Understanding:**
 - Implement memory-based techniques so the bot remembers user preferences.
 - Use real-time feedback loops for refinement.
- 3. **Multi-Modal Event Discovery:**

- Integrate images, videos, and social media insights.
- Provide richer event descriptions for users.
- 4. **Scalability & Optimization:**
 - Use model distillation to deploy lightweight LLM variants.
 - Optimize database queries for better event search performance.

This approach ensures that users receive highly personalized and timely event recommendations, enhancing their overall experience.