Homework 1

Jack McShane

January 20, 2022

1 Question 3

Given:

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{1, 3, 5, 7, 9\}, B = \{1, 2, 3, 5, 7\}$$

(a) What is \bar{A} ?

$$\bar{A} = S - A$$

= $\{1 \dots 10\} - \{1, 3, 5, 7, 9\}$
= $\{2, 4, 6, 8\}$

(b) What is \bar{B} ?

$$\bar{B} = S - B$$

$$= \{1 \dots 10\} - \{1, 2, 3, 5, 7\}$$

$$= \underline{\{4, 6, 8, 9, 10\}}$$

(c) What is $A \bar{\cup} B$?

$$A \bar{\cup} B = \{1, 3, 5, 7, 9\} \bar{\cup} \{1, 2, 3, 5, 7\}$$

$$= \{1, 2, 3, 5, 7, 9\}$$

$$= \{1 \dots 10\} - \{1, 2, 3, 5, 7, 9\}$$

$$= \underline{\{4, 6, 8, 10\}}$$

(d) What is $A \cap B$?

$$A \cap B = \{1, 3, 5, 7, 9\} \cap \{1, 2, 3, 5, 7\}$$
$$= \{1, 3, 5, 7\}$$
$$= \{2, 4, 6, 8, 9, 10\}$$

2 Question 1

$$\begin{aligned} &\underline{Given}:\\ &P(A)=.8, P(B)=.36, P(C)=.28\\ &P(A\cap B)=.29, P(A\cap C)=.24, P(B\cap C)=.16\\ &P(A\cap B\cap C)=.13 \end{aligned}$$

(a) Draw the corresponding venn diagram.

(b) What is $P(A \cap B \cap \bar{C})$?

(c) What is $P(A \cap \bar{B} \cap \bar{C})$?

$$P(A \cap B) = P(A \cap B \cap C) + P(A \cap B \cap \overline{C})$$

$$P(A \cap B \cap \overline{C}) = P(A \cap B) - P(A \cap B \cap C)$$

$$= .29 - .13$$

$$= .16$$

(d) What is $P(\bar{A} \cap \bar{B} \cap \bar{C})$?

$$P(A \cap C) = P(A \cap B \cap C) + P(A \cap \overline{B} \cap C)$$

$$P(A \cap \overline{B} \cap C) = P(A \cap C) - P(A \cap B \cap C)$$

$$= .24 - .13$$

$$= .11$$

$$P(A) = P(A \cap \bar{B} \cap \bar{C}) + P(A \cap B \cap \bar{C}) + P(A \cap \bar{B} \cap C) + P(A \cap B \cap C)$$

$$P(A \cap \bar{B} \cap \bar{C}) = P(A) - P(A \cap B \cap \bar{C}) - P(A \cap \bar{B} \cap C) - P(A \cap B \cap C)$$

$$P(A \cap \bar{B} \cap \bar{C}) = .8 - .16 - .11 - .13$$

= $\underline{.40}$

(e) What is $P(\bar{A} \cap \bar{B} \cap \bar{C})$?

$$P(\bar{A} \cap \bar{B} \cap \bar{C}) = 1 - P(A \cup B \cup C)$$

= 1 - (.8 + .36 + .28 - .29 - .24 - .16 + .13)
= .12

(f) What is $P(\bar{A} \cap (B \cup C))$?

$$P(\bar{A} \cap (B \cup C)) = P(B \cup C) - P(A \cap (B \cup C))$$

$$= (P(B) + P(C) - P(B \cap C)) -$$

$$(P(A \cap B \cap \bar{C}) + P(A \cap \bar{B} \cap C) + P(A \cap B \cap C))$$

$$= (.36 + .28 - .16) - (.16 + .11 + .13)$$

$$= .08$$

3 Question 7

$$\underline{Given}$$
:
 $P(A) = .7, P(B) = .6$
 $P(\bar{A} \cap B) = .2$

(a) What is $P(A \cap B)$?

$$P(A \cap B) = P(B) - P(\bar{A} \cap B)$$
$$= .6 - .2$$
$$= .4$$

(b) Is it possible for A and B to be disjoint events? Why or why not?

For A and B to be disjoint, the intersection of A dn B must be the null set, but we know that is not the case from the calculation above. That is, from finding $P(A \cap B) = .4$

(c) What is $P(A \cup \bar{B})$?

$$P(A \cup \bar{B}) = P(A) + P(\bar{B}) - P(A \cap \bar{B})$$

$$P(\bar{B}) = 1 - P(B)$$
$$= \underline{.4}$$

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$
$$= .7 - .4$$
$$= \underline{\underline{3}}$$

$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A \cap \overline{B})$$
$$= .7 + .4 - .3$$
$$= .8$$

(d) Is it possible for A and B to be independent events? Why or why not?

For independence, P(A)*P(B) must equal $P(A \cap B)$.

$$P(A \cap B) = .4$$

$$P(A) * P(B) = .7 * .6$$

$$= .42$$

The two values do not match. Therefore, A and B are not independent events.

(e) What is P(A-B)?

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{.4}{.6}$$
$$= .67$$

4 Question 8

$$\underline{Given}:$$

$$P(+|D) = .62, P(-|\bar{D}) = .82$$

(a) What is $P(+|\bar{D})$?

$$P(+|\bar{D}) = 1 - P(-|\bar{D})$$

= 1 - .82
= .18

(b) What is P(-|D|)?

$$P(-|D) = 1 - P(+|D)$$

= 1 - .62
= .38

(c) Given: P(D) = .05. Draw the corresponding tree diagram.

(d) What is P(+)?

$$P(+) = P(+|D)P(D) + P(+|\bar{D})P(\bar{D})$$

= .62 * .05 + .18 * .95
= .202

(e) What is P(D|+)?

$$P(D|+) = \frac{P(D \cap +)}{P(+)}$$

$$= \frac{P(+|D)P(D)}{P(+)}$$

$$= \frac{.62 * .05}{.202}$$

$$= \underline{.153}$$