Chapter 10 Trees

Discrete Structures for Computing on 27 May 2014

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Huynh Tuong Nguyen, Tran Vinh Tan Faculty of Computer Science and Engineering University of Technology - VNUHCM

Contents

Trees Huynh Tuong Nguyen Tran Vinh Tan

Introduction Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Properties of Trees

- 2 Tree Traversal
- 3 Applications of Trees Binary Search Trees
 - Decision Trees
- 4 Spanning Trees
- **5** Minimum Spanning Trees

Introduction

- Very useful in computer science: search algorithm, game winning strategy, decision making, sorting, . . .
- Other disciplines: chemical compounds, family trees, organizational tree, . . .

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introdu

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Tree

Definition

A ${\sf tree}\ (c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

ntroduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A tree $(c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

A tree $(c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

Tree

Definition

A $tree\ (c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

troduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A $tree\ (c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

troduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Tree

Definition

A $tree\ (c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

troduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Tree

Definition

A tree $(c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Definition

Graphs containing no simple circuits that are not necessarily connected is forest (rừng), in which each connected component is a tree.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introdu

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduc

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduc

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

a ● Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduc

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

Spanning Trees

panning trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

paining rices

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees
Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Terminology

Definition

- parent (cha) of v is the unique u such that there is a directed edge from u to v
- when u is the parent of v, v is called a child (con) of u
- vertices with the same parent are called siblings (anh em)
- the ancestors (tổ tiên) of a vertex are the vertices in the path from the root to this vertex (excluding the vertex itself)
- descendants ($con\ cháu$) of a vertex v are those vertices that have v as an ancestor

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

takan da sakta .

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm Kruskal's Algorithm

Terminology

Definition

- a vertex of a tree is called a leaf (lá) if it has no children
- vertices that have children are called internal vertices (dinh trong)

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

taken decayle

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees
Spanning Trees

panning irees

Minimum Spanning Trees Prim's Algorithm

Terminology

Definition

If a is a vertex in a tree, the subtree ($c\hat{a}y$ con) with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

- m-ary tree (cây m-phân): at most m children on each internal vertex of a rooted tree.
- full m-ary tree (cây m-phân đầy đủ): every internal vertex has exactly m children.
- An m-ary tree with m = 2 is called a binary tree ($c\hat{a}y$ nhi $ph\hat{a}n$).

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

.

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Ordered Rooted Trees

Definition

 An ordered rooted tree (cây có gốc có thứ tự) is a rooted tree where the children of each internal vertex are ordered (e.g. in order from left to right).

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

roduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Ordered Rooted Trees

Definition

- An ordered rooted tree (cây có gốc có thứ tự) is a rooted tree where the children of each internal vertex are ordered (e.g. in order from left to right).
- In an ordered binary tree (cây nhị phân có thứ tự), if an
 internal vertex has two children, the first child is called the
 left child (con bên trái) and the second is called the right
 child (con bên phải).

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Properties of Trees

1 Toperties of 1

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Properties & Theorems

Theorem

A tree with n vertices has n-1 edges.

Theorem

A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Properties & Theorems

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Minimum Spanning Trees

Kruskal's Algorithm

Spanning Trees

Prim's Algorithm

Theorem

A tree with n vertices has n-1 edges.

Theorem

A full m-ary tree with i internal vertices contains n = mi + 1vertices.

- (i) n vertices has (n-1)/m internal vertices and [(m-1)n+1]/m leaves
- (ii) *i* internal vertices has n = mi + 1 vertices and (m 1)i + 1leaves
- (iii) ℓ leaves has $n = (m\ell 1)/(m 1)$ vertices and $(\ell-1)/(m-1)$ internal vertices

Example

Example (Chain Letter Game)

- Each person who receives the letter is asked to send it on to four other peoples.
- Some peoples do this, but others do not send any letters.
- How many people have seen the letter, including the first person, if no one receives more than one letter and if the chain letter ends after there have been 100 people who read it but did not send it out?
- How many people sent out the letter?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Some peoples do this, but others do not send any letters.

Introduction Properties of Trees

Contents

- How many people have seen the letter, including the first person, if no one receives more than one letter and if the chain letter ends after there have been 100 people who read it but did not send it out?
- Tree Traversal

How many people sent out the letter?

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Solution

- Using 4-ary tree with 100 leaves corresponding to 100 persons who did not send out the letter.
- $\implies n = (ml 1)/(m 1) = (4 \times 100 1)/(4 1) = 133$ vertices and i = n - l = 133 - 100 = 33 internal vertices.

Level and Height

Definition

- The level (múc) of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.
- The level of the root is defined to be zero.
- The height (độ cao) of a rooted tree is the maximum of the levels of vertices (i.e. the length of the longest path from the root to any vertex).

Example

- Level of root a=0, b,j,k=1 and $c,e,f,l=2\dots$
- Because the largest level of any vertex is
 4, this tree has height
 4.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Balanced m-ary Trees

Definition

A rooted m-ary tree of height h is balanced ($c\hat{a}n \ d\hat{o}i$) if all leaves are at levels h or h-1.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Balanced m-ary Tree

Theorem

There are at most m^h leaves in an m-ary tree of height h.

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Balanced m-ary Tree

Theorem

There are at most m^h leaves in an m-ary tree of height h.

It can be proved by using mathematical induction on the height.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Balanced m-ary Tree

Theorem

There are at most m^h leaves in an m-ary tree of height h.

It can be proved by using mathematical induction on the height.

Corollary

- If an m-ary tree of height $\frac{h}{l}$ has ℓ leaves, then $\frac{h}{l} \geq \lceil \log_m \ell \rceil$.
- If the m-ary tree is full and balanced, then $h = \lceil \log_m \ell \rceil$.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Exercise

Exercise (Chess tournament)

Suppose 1000 people enter a chess tournament. Use a rooted tree model of the tournament to determine how many games must be played to determine a champion. If a player is eliminated after one loss and games are played until only one entrant has not lost. (Assume there are no ties)

Exercise (Isomorphic)

How many different isomers ($d\hat{o}ng ph\hat{a}n$) do the following saturated hydrocarbons have ?

- C_3H_8
- C_5H_{12}
- C_6H_{14}

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees
Spanning Trees

panning frees

Minimum Spanning Trees Prim's Algorithm

Question

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Exercise

- How many vertices and how many leaves does a complete m-ary tree of height h have?
- Show that a full m-ary balanced tree (cây m-phân hoàn hảo) of height h has more than m^{h-1} leaves.
- How many edges are there in a forest of t trees containing a total of n vertices?

Labeling Ordered Rooted Trees

- Ordered rooted trees are often used to store information.
- Need a procedure for visiting each vertex of an ordered rooted tree to access data.
- Ordering and labeling the vertices is important to traverse them in any procedure
- Universal address system (hệ địa chỉ phổ dụng)
 0 < 1 < 1.1 < 1.1.1 < 1.2 < 1.3 < ... < 2 < 3 < 3.1 < ...

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

 $\begin{picture}(100,000) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){$

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

print r

 $\ \ \, \textbf{for} \,\, \textbf{each} \,\, \textbf{child} \,\, c \,\, \textbf{of} \,\, r \,\, \textbf{from} \,\, \textbf{left} \,\, \textbf{to} \,\, \textbf{right} \\$

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

a

d

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

T(c) :=subtree with c as its root preorder(T(c))

a d

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

a

 $\mathsf{print}\ r$

T(c) :=subtree with c as its root preorder(T(c))

b

d

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

a

 $\mathsf{print}\ r$

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

r := root of T

a

print r

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

a

 $\mathsf{print}\ r$

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

a b f g

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

rree rraversar

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tự)

procedure preorder(T: ordered rooted tree)

 $r:=\mathsf{root}\;\mathsf{of}\;T$

 $\mathsf{print}\ r$

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

abfgc o

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Preorder Traversal (duyệt tiền thứ tư)

procedure preorder(T: ordered rooted tree)

r := root of T

print r

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

a

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

a d

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1 , T_2 , ..., T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1 , T_2 , ..., T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1 , T_2 , ..., T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1 , T_2 , ..., T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

b g a d

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Inorder Traversal (Duyệt trung thứ tự)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

fbgaeco

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Postorder Traversal (Duyệt hậu thứ tự)

```
\begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child} \ c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print} \ r \end{aligned}
```


Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
\begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Postorder Traversal (Duyệt hậu thứ tự)

```
\begin{split} \textit{procedure } \textit{postorder}(T: \textit{ordered rooted tree}) \\ r := \textit{root of } T \\ \textit{for each child } c \textit{ of } r \textit{ from left to right} \\ T(c) := \textit{subtree with } c \textit{ as its root} \\ \textit{postorder}(T(c)) \\ \textit{print } r \end{split}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
\begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child} \ c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


f da

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{array}{l} \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ r := \text{root of } T \\ \textbf{for each child } c \ \text{of } r \ \text{from left to right} \\ T(c) := \text{subtree with } c \ \text{as its root} \\ postorder(T(c)) \\ \textbf{print } r \end{array}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
procedure postorder(T: ordered rooted tree)
    r := \text{root of } T
    {f for} each child c of r from left to right
       T(c) := subtree with c as its root
       postorder(T(c))
    print r
```


Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{array}{l} \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ r := \text{root of } T \\ \textbf{for each child } c \ \text{of } r \ \text{from left to right} \\ T(c) := \text{subtree with } c \ \text{as its root} \\ postorder(T(c)) \\ \textbf{print } r \end{array}
```


Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
\begin{split} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{split}
```


f g b d a

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child } c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


f g b e d a

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Postorder Traversal (Duyệt hậu thứ tự)

```
 \begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for } \text{each child } c \text{ of } r \text{ from left to right} \\ & T(c) := \text{subtree with } c \text{ as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


f g b e c d a

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Infix, Prefix and Postfix Notations

• Infix (trung tố): $((x+y) \uparrow 2) + ((x-4)/3)$

• Prefix (tiền tố): + ↑ + x y 2 / - x 4 3

• Postfix ($h\hat{a}u t\hat{o}$): $x y + 2 \uparrow x 4 - 3 / +$

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

- .

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

Exercise

Exercise

Find the ordered rooted tree representing

$$(\neg(p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

Then use this rooted tree to find the prefix, postfix and infix forms of this expression

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees

$$(\neg(p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

Then use this rooted tree to find the prefix, postfix and infix forms of this expression

Solution

- Constructing the rooted tree from the bottom up
- Preorder traversal creates prefix notation
 → ∨¬ ∧ p q ∨ ¬q r ∨ ¬p r
- Postorder traversal creates postfix notation $p \ q \land \neg \lor q \neg r \land p \neg r \lor \rightarrow$
- Inorder traversal creates infix notation (with parentheses) $p \ q \neg \lor q \neg \land r \to p \neg \lor r$

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

Exercise

Find postorder traversal of a binary tree with inorder D B H E I A F C J G K and preorder A B D E H I C F G J K.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

Exercise

Find postorder traversal of a binary tree with inorder D B H E I A F C J G K and preorder A B D E H I C F G J K.

Solution

Post order: D H I E B F J K G C A.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Binary Search Trees

Definition

Binary search tree (cây tìm kiếm nhị phân - BST) is a binary tree in which the assigned key of a vertex is:

- larger than the keys of all vertices in its left subtree, and
- smaller than the keys of all vertices in its right subtree.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning

Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

. _

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

. . _

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

mathematics

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words mathematics, physics, geography, zoology, meteorology, geology, psychology, chemistry using alphabetical order.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Complexity in searching

 $O(\log(n))$ vs. O(n) in linear list

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

inning Trees

Minimum Spanning Trees Prim's Algorithm

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning

Decision Trees (Cây quyết định)

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005. We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Start! •

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

. . .

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning

Trees
Prim's Algorithm

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A spanning tree (cây khung) in a graph G is a subgraph of G that is a tree which contains all vertices of G.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

....

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

nning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

A spanning tree (cây khung) in a graph G is a subgraph of G that is a tree which contains all vertices of G.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Binary Search Trees Decision Trees

anning Trees

Minimum Spanning Trees

Definition

A spanning tree (cây khung) in a graph G is a subgraph of G that is a tree which contains all vertices of G.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

oanning Trees

Minimum Spanning Trees

Definition

A spanning tree (cây khung) in a graph G is a subgraph of G that is a tree which contains all vertices of G.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

panning Trees

Minimum Spanning Trees Prim's Algorithm

Definition

 A spanning tree (cây khung) in a graph G is a subgraph of G that is a tree which contains all vertices of G.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

anning Trees

Minimum Spanning Trees Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

oanning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Property

- Go deeper as you can
- Backtrack (quay lui) to possible branch when you are stuck.
- O(e) or $O(n^2)$

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

anning Trees

Minimum Spanning Trees Prim's Algorithm

Depth-First Search

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Algorithm

```
procedure DFS (G)

T := \text{tree consisting only vertex } v_1

visit(v_1)
```

```
procedure visit(v: vertex of G) /* recursive */
for each vertex w adjacent to v and not in T
add w and edge \{v,w\} to T
visit(w)
```

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Minimum Spanning Trees Prim's Algorithm

Breadth-First Search (Tìm kiếm ưu tiên chiều rộng)

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Minimum Spanning Trees

Breadth-First Search (Tìm kiếm ưu tiên chiều rộng)

vertex	L	
	Ø	
1		

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

ning Trees

Minimum Spanning Trees

Breadth-First Search (Tìm kiếm ưu tiên chiều rộng)

vertex	L	
	Ø	
1	2, 3, 4	

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

nning Trees

Minimum Spanning Trees

vertex	$\mid L$
	Ø
1	2, 3, 4
2	3, 4
'	

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Decision Trees

Applications of Trees
Binary Search Trees

.....T....

Minimum Spanning Trees Prim's Algorithm Kruskal's Algorithm

vertex	$\mid L$
	Ø
1	2, 3, 4
2	3, 4, 5, 6

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Decision Trees

Applications of Trees Binary Search Trees

.....T....

Minimum Spanning Trees

vertex	$\mid L$
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

anning Trees

Minimum Spanning Trees

vertex	L
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6

...... | T

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Decision Trees

Applications of Trees
Binary Search Trees

anning Trees

Minimum Spanning Trees

vertex	L
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6, 7, 8

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Minimum Spanning

vertex	L
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6, 7, 8
5	6, 7, 8

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Minimum Spanning

vertex	L
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6, 7, 8
5	6, 7, 8
6	7, 8
	!

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Decision Trees

Applications of Trees
Binary Search Trees

panning Trees

Minimum Spanning Trees

vertex	$\mid L$
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6, 7, 8
5	6, 7, 8
6	7, 8
7	8

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

panning Trees

Minimum Spanning Trees

	vertex	$\mid L$
		Ø
	1	2, 3, 4
	2	3, 4, 5, 6
	3	4, 5, 6
	4	5, 6, 7, 8
	5	6, 7, 8
	6	7, 8
11	7	8
4 :	8	Ø

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

vertex	L
	Ø
1	2, 3, 4
2	3, 4, 5, 6
3	4, 5, 6
4	5, 6, 7, 8
5	6, 7, 8
6	7, 8
7	8
8	Ø
1	

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

anning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Property

• O(e) or $O(n^2)$

Breadth-First Search

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Applications of Trees

Decision Trees

Minimum Spanning Trees

Kruskal's Algorithm

Properties of Trees

Tree Traversal

Binary Search Trees

Prim's Algorithm

Algorithm

procedure BFS (G)

T :=tree consisting only vertex v_1

 $L := \mathsf{empty} \mathsf{\,list}$

put v_1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L

for each neighbor w of v

if w is not in L and not in T then add w to the end of the list L

add w and edge $\{v, w\}$ to T

Exercise

Find spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

nning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

Find spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Minimum Spanning Trees

Definition

 A minimum spanning tree (cây khung nhỏ nhất) in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges. Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Janning Trees

Minimum Spanning Trees

Minimum Spanning Trees

Definition

 A minimum spanning tree (cây khung nhỏ nhất) in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Trees

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

.

Minimum Spanning Trees

Definition

 A minimum spanning tree (cây khung nhỏ nhất) in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

inimum Spanning

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Prim's Algorithm (1957)

procedure Prim(G)

T := a minimum-weight edge

for i := 1 to n - 2

 $e:=\hbox{an edge of minimum weight incident to a vertex in }T$ and not forming a simple circuit in T if added to T

T := T with e added

 $\mathbf{return}\ T$

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Kruskal's Algorithm (1958)

procedure Kruskal(G)

T := empty graphfor i := 1 to n-1

or i:=1 to n-1

 $e := \mbox{any edge in } G \mbox{ with smallest weight that does not form a simple circuit when added to } T$

T := T with e added

 ${\bf return}\ T$

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Janning Trees

Minimum Spanning Trees

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Huynh Tuong Nguyen Tran Vinh Tan

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

ıskal's Algorithm

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs. (and maximum spanning tree (cây khung cực đại).

Trees

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees Prim's Algorithm