## Prévision de pertes RTE

Pia CHANCEREL, Louis HEMADOU, François MEDINA

Mai 2020

- Introduction
- Récupération des données
- Modèles de prédiction
- 4 Sélection de variables
- 6 Conclusion

## Section 1

Introduction

## Contexte

- RTE : gestion du réseau haute tension français
- 2,5% de la consommation perdue : 500 M€
- Objectif : modèle de prédiction de pertes

# Problématique

- 35 variables explicatives
- Prédiction à long terme (1 an)

## Ressources

- Base de données : 35 variables et pertes horaires
- Rapport de stage sur la prédiction de pertes

# Objectif

- Identifier les variables significatives
- Identifier et paramétrer un algorithme de prédiction efficace

## Section 2

Récupération des données

# Réception

- Activité du réseau (consommation, production, énergie) : eco2mix
- Pertes relevées : portail client RTE

## Visualisation



# Description

- date/heure : représentatif de l'activité et du climat
- consommation, prévisions : charge et imprévus
- production : régimes d'activation et de charge du réseau
- échanges : charge supplémentaire sur des points individuels

## Traitement des fichiers

- encodage utf-8, comma separated values
- colonnes en snake\_case
- dates/heures numériques

pertes au même format que les données de consommation/production/échanges :

- élimination des lignes parasites (commentaires)
- un fichier par an
- une ligne par heure (colonnes jour/mois pour accès facile en observation)

## Section 3

Modèles de prédiction

## Validation d'un modèle

- Validation croisée pour éviter le sur-apprentissage.
- Coefficient de détermination  $R^2$  pour expliquer la proportion de variance des pertes expliquée par un modèle.
- Entrainement des modèles avec des données normalisées, standardisées ou orthogonalisées.

# Régression linéaire

Dépendance linéaire à déterminer :

$$f(x, \epsilon) = \beta_0 + \sum_{j=1}^{p} \beta_j x^j + \epsilon$$

Problème d'optimisation à résoudre :

$$\min_{\beta \in \mathbb{R}^{p+1}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \widetilde{x}_i \beta)^2 + \lambda \|\beta\|_2$$

# Régression linéaire

Résultats selon le pré-traitement des données :

| traitement        | $R^2$ |
|-------------------|-------|
| normalisation     | 0.80  |
| standardisation   | 0.83  |
| orthogonalisation | -1.9  |

# Régression linéaire

#### De bons résultats en standardisant ou en normalisant les données :



# Machine à noyau

Passage au problème dual et introduction du kernel:

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n (\alpha_i y_i - \frac{\alpha_i^2}{4}) - \frac{1}{2\lambda n^2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \varphi(x_i) \cdot \varphi(x_j)$$

On pose 
$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

Noyaux communément utilisés:

- Noyau gaussien:  $K(x_i, x_j) = \exp\left(-\frac{\|x_i x_j\|^2}{2\sigma^2}\right)$
- Noyau polynomial:  $K(x_i, x_i) = (1 + x_i \cdot x_i)^q$

# Machine à noyau

Coefficient de détermination selon le prétraitement :

| traitement        | $R^2$ |
|-------------------|-------|
| normalisation     | 0.63  |
| standardisation   | 0.61  |
| orthogonalisation | -0.17 |

# Machine à noyau

Résultats avec la machine à noyau, données standardisées :



## Réseau de neurones

- Utilisation des bibliotheques Keras et Tensorflow
- La complexité se trouvait dans la recherche d'une bonne architecture
- structure de réseau retenue:

| neurones | activation        |
|----------|-------------------|
| 400      | sigmoïde          |
| 400      | sigmoïde          |
| 100      | ReLU              |
| 1        | linéaire (sortie) |

## Réseau de neurones

| traitement                    | $R^2$        |
|-------------------------------|--------------|
| normalisation standardisation | 0.86<br>0.83 |
| orthogonalisation             | 0.48         |

## Réseau de neurones

Résultats avec un réseau de neurones, données normalisées



### Section 4

Sélection de variables

# Élimination des doublons

Corrélation de Pearson :  $\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$ 



# Élimination des doublons

#### Coefficient de détermination selon le seuil d'élimination :



seuil à 0.8 > 0.65, supprimant consommation, prevision\_0, fioul, gaz, hydraulique, hydro\_lacs, taux\_co2, 1.4% de perte

# Sélection des variables explicatives

La corrélation de Pearson ne suffit plus pour l'explication des pertes :

- sensibilité aux valeurs extrêmes
- relations non linéaires

On cherche donc d'autres méthodes.

# Sélection des variables explicatives

#### Méthodes de filtrage :

- matrices de corrélation (de Pearson)
- PCA (Principal Component Analysis)

# Corrélation avec les pertes

#### Corrélation de chaque variable avec les pertes :



Beaucoup de variables peu significatives ( $-0.5 < \rho < 0.5$ )

## P-value

# p-valeur avec scipy.stats : probabilité du même $\rho$ dans un système décorrélé



## P-value

#### Sans le log on trouve un outlier :



variation des pertes à des échelles plus courtes ou moins longues

# Corrélation avec les pertes

mois, jour, solaire, echanges\_italie, echanges\_suisse, bio\_biomasse et bio\_biogaz :

- Corrélation à 0
- Pas de relation linéaire : exclues pour la régression linéaire
- En les excluant : R<sup>2</sup> de 03805 à 0.799, soit 0.7%
- Comparé au doublons : 2 fois moins de perte, même nombre d'éliminés

# Analyse en composantes principales

Variables  $x_i$ , covariance K, composantes principales c et valeurs propres  $\lambda$  associées aux vecteurs e. Corrélation entre variable et composante principale :

$$Corr(c^{I}, x^{j}) = \frac{\sqrt{\lambda_{I}}e_{I}^{j}}{K_{I,i}}$$
 (1)

## **PCA**

#### max des corrélations par variable :



## **PCA**

#### somme des corrélations par variable :



## **PCA**

- La consommation a un maximum très élevé pour une somme faible : elle est presque à elle seule une composante principale
- heure, solaire et certains echanges disparaissent en restreignant le nombre de composantes.

### k Nearest Neighbors



#### k-NN

- mois, prevision\_1, nucléaire et gaz\_cogen sont performantes, même avec peu de voisins
- solaire et gaz\_tac sont peu performantes
- Les autres dans une bande moyennée entre 0.75 et 0.9 : non concluant

# Support Vector Regressor

Noyau gaussien de paramètre 0.001 et constante de tradeoff 1, entraîné sur 10 époques et 100 observations.



#### **SVR**

- On retrouve prevision\_1, nucleaire et gaz\_cogen performants
- Quelques R<sup>2</sup> négatifs: susceptibles de fausser les prédictions jour, echanges\_angleterre, echanges\_italie, fioul\_tac, gaz\_tac

# Poids de la régression linéaire



Les différences de poids peuvent être dues aux différences d'échelle

# Test de Student sur les poids

$$f(x_i, \varepsilon_i) = \beta_0 + \sum_{j=1}^p \beta_j x_i^j + \varepsilon_i$$

On suppose que les  $\varepsilon_i$  sont indépendants et suivent une  $\mathcal{N}(0, \sigma^2)$ .

Hypothèses nulle et alternative:

$$H_0 = \{\beta_j = 0\}, H_1 = \{\beta_j \neq 0\}$$

## Test de Student sur les poids

Le test de Student consiste à rejeter  $H_0$  si on a:

$$\left| \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \rho_j}} \right| > t_{n-p-1,1-\alpha/2}$$

- $\rho_i$  est le j-ième coefficient diagonale de la matrice  $(x^Tx)^{-1}$
- $t_{n-p-1,1-\alpha/2}$  est le quantile d'ordre  $1-\alpha/2$  d'une loi de student à n-p-1 degrés de liberté.
- $\hat{\beta}$  et  $\hat{\sigma}$  sont des estimateurs de  $\beta$  et  $\sigma$ .
- ullet  $\alpha$  quantifie le niveau du test (erreur de type I)

## Test de Student sur les poids

#### Résultats:

- On fixe  $\alpha = 5\%$ .
- Le test de Student élimine 12 variables explicatives.
- Réseau de neurones avec données normalisées:  $R^2=0.86 \rightarrow R^2=0.85$ .

#### Section 5

Conclusion

#### Difficultés

- différentes installation python : contournement avec jupyter notebook, organisation du code
- factorisation difficile : beaucoup de paramètres entrent en jeu
- travail à distance

#### Résultats

- Élimination de nombreuses variables inutiles ou redondantes, en lien avec intuitions
- Résultats très satisfaisants avec certains modèles

| Variables conservées        | R <sup>2</sup> de la prédiction obtenue |
|-----------------------------|-----------------------------------------|
| Toutes                      | 0.865                                   |
| Test de Student             | 0.858                                   |
| Test de Student inverse     | 0.501                                   |
| Doublons                    | 0.849                                   |
| Toutes méthodes considérées | 0.833                                   |

## Pour aller plus loin

- Évolution de la relation entre variables explicatives potentielles et pertes
- Transformation préalable des variables (périodicité notamment)

#### Remerciements

- Aboubakr MACHRAFI (stagiaire RTE)
- Valentin CADORET, Virginie DORDONNAT (RTE)
- Gabriel STOLTZ (ENPC)
- David PICARD (ENPC)