Friday Time Table will be followed

on

6th August (Wednesday)

Plan

- Algebra of Vectors (in \mathbb{R}^n)
- Subspace of \mathbb{R}^n
- Linear Dependence and Linear Independence
- Basis and Dimension
- Matrices
- The Inverse of a Matrix
- Elementary Matrix
- Gauss-Jordan Method for Computing Inverse

Definition: Let $n \in \mathbb{N}$. The space \mathbb{R}^n , as defined below, is called the n-dimensional Euclidean space.

$$\mathbb{R}^{n} = \{ [x_{1}, x_{2}, \dots, x_{n}]^{t} : x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \}.$$

Definition: Let $n \in \mathbb{N}$. The space \mathbb{R}^n , as defined below, is called the n-dimensional Euclidean space.

$$\mathbb{R}^{n} = \{ [x_{1}, x_{2}, \dots, x_{n}]^{t} : x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \}.$$

• Elements of \mathbb{R}^n are called *n*-vectors or simply vectors.

Definition: Let $n \in \mathbb{N}$. The space \mathbb{R}^n , as defined below, is called the n-dimensional Euclidean space.

$$\mathbb{R}^{n} = \{ [x_{1}, x_{2}, \dots, x_{n}]^{t} : x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \}.$$

• Elements of \mathbb{R}^n are called *n*-vectors or simply vectors.

• Note that
$$[x_1, x_2, \dots, x_n]^t = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is a column vector.

• Sometimes, an element $[x_1, x_2, ..., x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, ..., x_n]$ or $(x_1, x_2, ..., x_n)$.

- Sometimes, an element $[x_1, x_2, ..., x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, ..., x_n]$ or $(x_1, x_2, ..., x_n)$.
- The element (x_1, x_2, \dots, x_n) is also termed as an *n*-tuple.

- Sometimes, an element $[x_1, x_2, ..., x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, ..., x_n]$ or $(x_1, x_2, ..., x_n)$.
- The element $(x_1, x_2, ..., x_n)$ is also termed as an *n*-tuple.
- The vector $[0,0,\ldots,0]^t$ of \mathbb{R}^n , called the zero vector, is denoted by the symbol $\mathbf{0}$.

- Sometimes, an element $[x_1, x_2, ..., x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, ..., x_n]$ or $(x_1, x_2, ..., x_n)$.
- The element (x_1, x_2, \dots, x_n) is also termed as an *n*-tuple.
- The vector $[0,0,\ldots,0]^t$ of \mathbb{R}^n , called the zero vector, is denoted by the symbol **0**.
- If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, then a solution of $A\mathbf{x} = \mathbf{b}$, if any, is an element of \mathbb{R}^n .

- Sometimes, an element $[x_1, x_2, ..., x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, ..., x_n]$ or $(x_1, x_2, ..., x_n)$.
- The element (x_1, x_2, \dots, x_n) is also termed as an *n*-tuple.
- The vector $[0,0,\ldots,0]^t$ of \mathbb{R}^n , called the zero vector, is denoted by the symbol **0**.
- If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, then a solution of $A\mathbf{x} = \mathbf{b}$, if any, is an element of \mathbb{R}^n .
- Normally, while discussing a system of linear equations, elements of \mathbb{R}^n are regarded a column vectors.
- Otherwise, elements of \mathbb{R}^n may be regarded as row vectors.

1
$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]^t;$$

$$\mathbf{0} \ \mathbf{u} + \mathbf{v} = [u_1 + v_1, \ u_2 + v_2, \ \dots, \ u_n + v_n]^t;$$

2
$$c\mathbf{u} = [cu_1, cu_2, ..., cu_n]^t;$$

2
$$c\mathbf{u} = [cu_1, cu_2, ..., cu_n]^t;$$

- **2** $c\mathbf{u} = [cu_1, cu_2, ..., cu_n]^t;$
- **4** $\mathbf{u} \mathbf{v} = \mathbf{u} + (-1)\mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]^t$.

- **1** $\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]^t;$
- **2** $c\mathbf{u} = [cu_1, cu_2, ..., cu_n]^t$;
- **4** $\mathbf{u} \mathbf{v} = \mathbf{u} + (-1)\mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]^t$.
 - The vector $\mathbf{u} + \mathbf{v}$ is called the vector addition of \mathbf{u} and \mathbf{v} .

- **1** $\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]^t;$
- **2** $c\mathbf{u} = [cu_1, cu_2, ..., cu_n]^t;$
- **4** $\mathbf{u} \mathbf{v} = \mathbf{u} + (-1)\mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]^t$.
 - The vector u + v is called the vector addition of u and v.
 - The vector cu us called the scalar multiplication of c and u.

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$. Then

• $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);

- \bullet $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);

- \bullet $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);

- \bullet $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);
- u + 0 = u;

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);
- u + 0 = u;
- 0u = 0;

- \bullet $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);
- u + 0 = u;
- 0u = 0;
- $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$;

$$\bullet$$
 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);

•
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$
 (associativity);

•
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 (distributivity over vector addition);

•
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
 (distributivity over scalar addition);

•
$$u + 0 = u$$
;

•
$$0u = 0$$
;

•
$$u + (-u) = 0$$
;

•
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (commutativity);

•
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$
 (associativity);

•
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 (distributivity over vector addition);

•
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
 (distributivity over scalar addition);

•
$$u + 0 = u$$
;

•
$$0u = 0$$
;

•
$$u + (-u) = 0$$
;

•
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
.

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right],$$

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{bmatrix}, \quad RREF(A) = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{bmatrix}, \quad RREF(A) = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$S_h = \left\{ s \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} : s, t \in \mathbb{R} \right\}.$$

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{bmatrix}, \quad RREF(A) = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$\mathcal{S}_h = \left\{ \mathbf{s} \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}
ight] + t \left[egin{array}{c} -1 \\ 0 \\ 1 \\ 1 \end{array}
ight] : \; \mathbf{s}, t \in \mathbb{R}
ight\}.$$

Can we describe S_h with a few of the solutions?

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \left[\begin{array}{cccc} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$\mathcal{S}_h = \left\{ \mathbf{s} \left[egin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}
ight] + t \left[egin{array}{c} -1 \\ 0 \\ 1 \\ 1 \end{array}
ight] : \; \mathbf{s}, t \in \mathbb{R}
ight\}.$$

Can we describe S_h with a few of the solutions? How?

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{bmatrix}, \quad RREF(A) = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$S_h = \left\{ s \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} : s, t \in \mathbb{R} \right\}.$$

Can we describe S_h with a few of the solutions? How? Can we derive some special properties of solution sets like S_h ?

Linear Combination:

A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k.$$

Linear Combination:

A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Linear Combination:

A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Example

Is the vector $[1,2,3]^t$ a linear combination of $[1,0,3]^t$ and $[-1,1,-3]^t$?

Linear Combination:

A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exist real numbers c_1, c_2, \dots, c_k such that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k.$$

• The numbers c_1, c_2, \ldots, c_k are called the coefficients of the linear combination.

Example

Is the vector $[1,2,3]^t$ a linear combination of $[1,0,3]^t$ and $[-1,1,-3]^t$?

Result

A system of linear equations with augmented matrix $[A \mid \mathbf{b}]$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by span(S) (or span($\mathbf{v}_1, \dots, \mathbf{v}_k$)).

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\mathsf{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\mathsf{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

• Convention: $span(\emptyset) = \{0\}.$

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by span(S) (or span($\mathbf{v}_1, \dots, \mathbf{v}_k$)).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $span(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $span(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .
- $\mathbb{R}^2 = \text{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^t$ and $\mathbf{e}_2 = [0, 1]^t$.

Span of Vectors: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called the span of S (or span of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$).

Thus

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k \text{ for some } c_1, \ldots, c_k \in \mathbb{R} \}.$$

- Convention: $span(\emptyset) = \{0\}.$
- If $span(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .
- $\mathbb{R}^2 = \text{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^t$ and $\mathbf{e}_2 = [0, 1]^t$.

Example

Let $\mathbf{u} = [1, 2, 3]^t$ and $\mathbf{v} = [-1, 1, -3]^t$. Describe span(\mathbf{u}, \mathbf{v}) geometrically.

Let $S (\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}$.

Let $S (\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $a, b \in \mathbb{R}$.

• $S = \{0\}$ and $S = \mathbb{R}^n$ are (trivial) subspaces of \mathbb{R}^n .

Let $S (\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $a, b \in \mathbb{R}$.

- $S = \{0\}$ and $S = \mathbb{R}^n$ are (trivial) subspaces of \mathbb{R}^n .
- If S is a subspace of \mathbb{R}^n and if $\mathbf{u}, \mathbf{v} \in S$ then $0\mathbf{u} + 0\mathbf{v} = \mathbf{0} \in S$, $a\mathbf{u} + 0\mathbf{u} = a\mathbf{u} \in S$ and $1\mathbf{u} + 1\mathbf{v} = \mathbf{u} + \mathbf{v} \in S$.

Let $S (\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $a, b \in \mathbb{R}$.

- $S = \{0\}$ and $S = \mathbb{R}^n$ are (trivial) subspaces of \mathbb{R}^n .
- If S is a subspace of \mathbb{R}^n and if $\mathbf{u}, \mathbf{v} \in S$ then $0\mathbf{u} + 0\mathbf{v} = \mathbf{0} \in S$, $a\mathbf{u} + 0\mathbf{u} = a\mathbf{u} \in S$ and $1\mathbf{u} + 1\mathbf{v} = \mathbf{u} + \mathbf{v} \in S$.

Example

Examine whether the sets

$$S = \{[x, y, z]^t \in \mathbb{R}^3 : x = y + 1\}, \ T = \{[x, y, z]^t \in \mathbb{R}^3 : x = 5y\}$$
 and $U = \{[x, y, z]^t \in \mathbb{R}^3 : x = z^2\}$ are subspaces of \mathbb{R}^3 .

Let $S (\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $a, b \in \mathbb{R}$.

- $S = \{0\}$ and $S = \mathbb{R}^n$ are (trivial) subspaces of \mathbb{R}^n .
- If S is a subspace of \mathbb{R}^n and if $\mathbf{u}, \mathbf{v} \in S$ then $0\mathbf{u} + 0\mathbf{v} = \mathbf{0} \in S$, $a\mathbf{u} + 0\mathbf{u} = a\mathbf{u} \in S$ and $1\mathbf{u} + 1\mathbf{v} = \mathbf{u} + \mathbf{v} \in S$.

Example

Examine whether the sets

$$S = \{[x, y, z]^t \in \mathbb{R}^3 : x = y + 1\}, \ T = \{[x, y, z]^t \in \mathbb{R}^3 : x = 5y\}$$
 and $U = \{[x, y, z]^t \in \mathbb{R}^3 : x = z^2\}$ are subspaces of \mathbb{R}^3 .

Example

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$ then span(S) is a subspace of \mathbb{R}^n .

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If *U* and *V* are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If *U* and *V* are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

Result

Let $A\mathbf{x} = \mathbf{b}$ be a system of equations with n variables. Then exactly one of the following is true:

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If *U* and *V* are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

Result

Let $A\mathbf{x} = \mathbf{b}$ be a system of equations with n variables. Then exactly one of the following is true:

• there is no solution of the system $A\mathbf{x} = \mathbf{b}$;

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If *U* and *V* are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

Result

Let $A\mathbf{x} = \mathbf{b}$ be a system of equations with n variables. Then exactly one of the following is true:

- there is no solution of the system $A\mathbf{x} = \mathbf{b}$;
- 2 there is a unique solution of the system $A\mathbf{x} = \mathbf{b}$;

Let A be an $m \times n$ matrix. Then $U = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the nullspace of A..

Example

Let *U* and *V* be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If *U* and *V* are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an internal direct sum. Notation: $U \oplus V$.

Result

Let $A\mathbf{x} = \mathbf{b}$ be a system of equations with n variables. Then exactly one of the following is true:

- there is no solution of the system $A\mathbf{x} = \mathbf{b}$;
- 2 there is a unique solution of the system Ax = b;
- **3** there are infinitely many solutions of the system $A\mathbf{x} = \mathbf{b}$.

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

• If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent.

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent.
- A set of vectors containing the 0 is always linearly dependent.

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly dependent if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}.$$

- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent.
- A set of vectors containing the 0 is always linearly dependent.

Example

Examine whether the sets $T = \{[1, 2, 0]^t, [1, 1, -1]^t, [1, 4, 2]^t\}$ and $S = \{[1, 4]^t, [-1, 2]^t\}$ are linearly dependent.

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

S is linearly independent iff

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k=\mathbf{0}$$

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

S is linearly independent iff

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$$

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

- S is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

- S is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Example

Let $\mathbf{e}_i \in \mathbb{R}^n$ be the i-th column of the identity matrix I_n .

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

- S is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Example

Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in \mathbb{R}^n is said to be linearly independent if S is not linearly dependent.

- S is linearly independent iff $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \ldots = c_k = 0.$
- If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, then we also say that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Example

Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

Result

The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n are linearly dependent iff at least one of these vectors can be expressed as a linear combination of the others.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

• For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

• For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly dependent,

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff a₁,..., a_m are linearly dependent, i.e., the columns of A^T are linearly dependent.

Suppose RREF(A) has a zero row. Then the rows of A are linearly dependent.

Suppose RREF(A) has a zero row. Then the rows of A are linearly dependent.

Result

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and consider the $n \times m$ matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_m]$. Then S is linearly dependent iff the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

Suppose RREF(A) has a zero row. Then the rows of A are linearly dependent.

Result

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and consider the $n \times m$ matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_m]$. Then S is linearly dependent iff the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

Result

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$$
 and consider the $m \times n$ matrix $A = \begin{bmatrix} \mathbf{v}_1^t \\ \mathbf{v}_2^t \\ \vdots \\ \mathbf{v}_m^t \end{bmatrix}$. Then S is linearly dependent iff $rank(A) < m$.

Suppose RREF(A) has a zero row. Then the rows of A are linearly dependent.

Result

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$ and consider the $n \times m$ matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_m]$. Then S is linearly dependent iff the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

Result

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$$
 and consider the $m \times n$ matrix $A = \begin{bmatrix} \mathbf{v}_1^t \\ \mathbf{v}_2^t \\ \vdots \\ \mathbf{v}_m^t \end{bmatrix}$. Then S is linearly dependent iff $\operatorname{rank}(A) < m$.

Result

If m > n then any set of m vectors in \mathbb{R}^n is linearly dependent.

• The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).

- The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).
- If $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^t$, where 1 is at the *i*-th entry and the other entries are zero, then $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n .

- The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).
- If $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^t$, where 1 is at the *i*-th entry and the other entries are zero, then $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n .
- The vectors e_i (for i = 1, 2, ..., n) are called the standard unit vector.

- The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).
- If $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^t$, where 1 is at the *i*-th entry and the other entries are zero, then $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n .
- The vectors \mathbf{e}_i (for i = 1, 2, ..., n) are called the standard unit vector.

Result

For a subspace U, a subset $B = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq U$ is a basis of U iff every element of U is a unique linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_r$.

Find a basis for the subspace $S = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \}$, where

$$A = \left[\begin{array}{cccc} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Find a basis for the subspace $S = \{\mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0}\}$, where

$$A = \left[\begin{array}{cccc} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Result

Let S be a subspace of \mathbb{R}^n . Then S has a basis and any two bases for S have the same number of elements.

Find a basis for the subspace $S = \{\mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0}\}$, where

$$A = \left[\begin{array}{cccc} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Result

Let S be a subspace of \mathbb{R}^n . Then S has a basis and any two bases for S have the same number of elements.

Dimension: The number of elements in a basis for S (a subspace of \mathbb{R}^n) is called the dimension, denoted dim(S), of S.

Find a basis for the subspace $S = \{\mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0}\}$, where

$$A = \left[\begin{array}{cccc} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{cccc} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Result

Let S be a subspace of \mathbb{R}^n . Then S has a basis and any two bases for S have the same number of elements.

Dimension: The number of elements in a basis for S (a subspace of \mathbb{R}^n) is called the dimension, denoted dim(S), of S.

•
$$\dim(\mathbb{R}^n) = n$$
.

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix.

• If m = n, then A is called a square matrix.

- If m = n, then A is called a square matrix.
- If A is a square matrix, then the entries a_{ii} are called the diagonal entries of A.

- If m = n, then A is called a square matrix.
- If A is a square matrix, then the entries a_{ii} are called the diagonal entries of A.
- If A is a square matrix and if $a_{ij} = 0$ for all $i \neq j$, then A is called a diagonal matrix.

- If m = n, then A is called a square matrix.
- If A is a square matrix, then the entries a_{ii} are called the diagonal entries of A.
- If A is a square matrix and if $a_{ij} = 0$ for all $i \neq j$, then A is called a diagonal matrix.
- If an n × n diagonal matrix has all diagonal entries equal to 1, then it is called the identity matrix of size n, and is denoted by In (or simply by I).

- If m = n, then A is called a square matrix.
- If A is a square matrix, then the entries a_{ii} are called the diagonal entries of A.
- If A is a square matrix and if $a_{ij} = 0$ for all $i \neq j$, then A is called a diagonal matrix.
- If an n × n diagonal matrix has all diagonal entries equal to 1, then it is called the identity matrix of size n, and is denoted by In (or simply by I).
- If all the entries of A are equal to 0 then A is called a zero matrix, denoted O_{m×n} (or simply by O)

 A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ji} = a_{ij}$ for all i, j.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ij} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ij} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$.
- The matrix A is said to be skew-symmetric if $A^t = -A$.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ij} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$.
- The matrix A is said to be skew-symmetric if $A^t = -A$.
- If A is a complex matrix, then $\overline{A} = [\overline{a}_{ij}]$ and $A^* = \overline{A}^t$.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ij} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$.
- The matrix A is said to be skew-symmetric if $A^t = -A$.
- If A is a complex matrix, then $\overline{A} = [\overline{a}_{ij}]$ and $A^* = \overline{A}^t$.
- The matrix A* is called the conjugate transpose of A.

- A matrix B is said to be a sub matrix of A if B is obtained by deleting some rows and/or columns of A.
- The transpose A^t of $A = [a_{ij}]$ is defined as $A^t = [b_{ji}]$, where $b_{ij} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$.
- The matrix A is said to be skew-symmetric if $A^t = -A$.
- If A is a complex matrix, then $\overline{A} = [\overline{a}_{ii}]$ and $A^* = \overline{A}^t$.
- The matrix A* is called the conjugate transpose of A.
- The (complex) matrix A is said to be Hermitian if $A^* = A$, and skew-Hermitian if $A^* = -A$.

• A square matrix A is said to be upper triangular if $a_{ij} = 0$ for all i > j.

- A square matrix A is said to be upper triangular if $a_{ij} = 0$ for all i > j.
- A square matrix A is said to be lower triangular if $a_{ij} = 0$ for all i < j.

- A square matrix A is said to be upper triangular if $a_{ij} = 0$ for all i > j.
- A square matrix A is said to be lower triangular if $a_{ij} = 0$ for all i < j.
- Let A be an $n \times n$ square matrix. Then we define $A^0 = I_n$, $A^1 = A$ and $A^2 = AA$.

- A square matrix A is said to be upper triangular if a_{ij} = 0 for all i > j.
- A square matrix A is said to be lower triangular if a_{ij} = 0 for all i < j.
- Let A be an $n \times n$ square matrix. Then we define $A^0 = I_n$, $A^1 = A$ and $A^2 = AA$.
- In general, if k is a positive integer, we define the power A^k
 as follows

$$A^k = \underbrace{AA \dots A}_{k \text{ times}}.$$

- A square matrix A is said to be upper triangular if a_{ij} = 0 for all i > j.
- A square matrix A is said to be lower triangular if a_{ij} = 0 for all i < j.
- Let A be an $n \times n$ square matrix. Then we define $A^0 = I_n$, $A^1 = A$ and $A^2 = AA$.
- In general, if k is a positive integer, we define the power A^k
 as follows

$$A^k = \underbrace{AA \dots A}_{k \text{ times}}.$$

If A and O are matrices of the same size, then

$$A + O = A = O + A$$
, $A - O = A$, $O - A = -A$, $A - A = O$.

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_i$ is the *j-th* column of A.

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_j$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_i$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_i$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_i$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

- **1** Commutative Law: A + B = B + A.
- 2 Associative Law: (A + B) + C = A + (B + C).

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_j$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

- **1** Commutative Law: A + B = B + A.
- **2** Associative Law: (A + B) + C = A + (B + C).
- **3** 1A = A and s(rA) = (sr)A.

Result

Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the *i-th* row of A and $A\mathbf{e}_i$ is the *j-th* column of A.

Result

Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result

- **1** Commutative Law: A + B = B + A.
- **2** Associative Law: (A + B) + C = A + (B + C).
- **3** 1A = A and s(rA) = (sr)A.
- **4** s(A + B) = sA + sB and (s + r)A = sA + rA.

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

1 Associative Law: (AB)C = A(BC), if the respective matrix products are defined.

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- Distributive Law:

A(B+C) = AB+AC, (A+B)C = AC+BC, if the respective matrix sum and matrix products are defined.

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- Distributive Law:

A(B+C) = AB+AC, (A+B)C = AC+BC, if the respective matrix sum and matrix products are defined.

3 s(AB) = (sA)B = A(sB), if the respective matrix products are defined.

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- Distributive Law:

A(B+C) = AB+AC, (A+B)C = AC+BC, if the respective matrix sum and matrix products are defined.

- s(AB) = (sA)B = A(sB), if the respective matrix products are defined.
- 4 $I_m A = A = AI_n$, if A is of size $m \times n$.

- ② $(A+B)^t = A^t + B^t$ if A and B are of the same size.

- ② $(A+B)^t = A^t + B^t$ if A and B are of the same size.
- (AB)^t = $B^t A^t$ if the matrix product AB is defined.

- (A + B)^t = A^t + B^t if A and B are of the same size.
- (AB)^t = $B^t A^t$ if the matrix product AB is defined.
- (A^r)^t = $(A^t)^r$ for any non-negative integer r.

Partitioned Matrix

 By introducing vertical and horizontal lines into a given matrix, we can partition it into some blocks of smaller sub-matrices.

Partitioned Matrix

- By introducing vertical and horizontal lines into a given matrix, we can partition it into some blocks of smaller sub-matrices.
- For example, three partitions of the matrix A are given below:

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \underline{0} & 0 & 2 & 1 \\ \hline 0 & 0 & 1 & 5 \end{bmatrix}.$$

A given matrix can have several partitions possible.

- A given matrix can have several partitions possible.
- A block matrix $A = [A_{ij}]$ is a matrix, where each entry A_{ij} is itself a matrix.

- A given matrix can have several partitions possible.
- A block matrix $A = [A_{ij}]$ is a matrix, where each entry A_{ij} is itself a matrix.
- Thus a partition of a given matrix give us a block matrix.

- A given matrix can have several partitions possible.
- A block matrix $A = [A_{ij}]$ is a matrix, where each entry A_{ij} is itself a matrix.
- Thus a partition of a given matrix give us a block matrix.
- The first partition of the previous matrix A is the block

matrix
$$\begin{bmatrix} I & B \\ \mathbf{O} & C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$
, where

- A given matrix can have several partitions possible.
- A block matrix $A = [A_{ij}]$ is a matrix, where each entry A_{ij} is itself a matrix.
- Thus a partition of a given matrix give us a block matrix.
- The first partition of the previous matrix A is the block

matrix
$$\begin{bmatrix} I & B \\ \mathbf{O} & C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$
, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$.

Let A and B be two matrices of sizes $m \times n$ and $n \times r$, resp.

Let A and B be two matrices of sizes $m \times n$ and $n \times r$, resp.

1 If $B = [\mathbf{b}_1 \mid \mathbf{b}_2 \mid \dots \mid \mathbf{b}_r]$ then $AB = [A\mathbf{b}_1 \mid A\mathbf{b}_2 \mid \dots \mid A\mathbf{b}_r]$.

Let A and B be two matrices of sizes $m \times n$ and $n \times r$, resp.

1 If
$$B = [\mathbf{b}_1 \mid \mathbf{b}_2 \mid \dots \mid \mathbf{b}_r]$$
 then $AB = [A\mathbf{b}_1 \mid A\mathbf{b}_2 \mid \dots \mid A\mathbf{b}_r]$.

If
$$A = \begin{bmatrix} \frac{\mathbf{a}_1}{\mathbf{a}_2} \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$
 then $AB = \begin{bmatrix} \frac{\mathbf{a}_1 B}{\mathbf{a}_2 B} \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$.

Let A and B be two matrices of sizes $m \times n$ and $n \times r$, resp.

1 If
$$B = [\mathbf{b}_1 \mid \mathbf{b}_2 \mid \dots \mid \mathbf{b}_r]$$
 then $AB = [A\mathbf{b}_1 \mid A\mathbf{b}_2 \mid \dots \mid A\mathbf{b}_r]$.

If
$$A = \begin{bmatrix} \frac{\mathbf{a}_1}{\mathbf{a}_2} \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$
 then $AB = \begin{bmatrix} \frac{\mathbf{a}_1 B}{\mathbf{a}_2 B} \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$.

3 If
$$m = n = r$$
 and if $A = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \ldots \mid \mathbf{a}_n]$ and $B = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$

then

$$AB = \mathbf{a}_1 \mathbf{b}_1 + \mathbf{a}_2 \mathbf{b}_2 + \ldots + \mathbf{a}_n \mathbf{b}_n.$$

Definition

An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$, and B is called an inverse of A.

Definition

An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$, and B is called an inverse of A.

We can talk of invertibility only for square matrices.

Definition

An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$, and B is called an inverse of A.

- We can talk of invertibility only for square matrices.
- For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

Definition

An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$, and B is called an inverse of A.

- We can talk of invertibility only for square matrices.
- For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

• It is easy to see that the zero matrix **O** is never invertible.

Definition

An $n \times n$ matrix A is said to be invertible if there exists a matrix B satisfying $AB = I_n = BA$, and B is called an inverse of A.

- We can talk of invertibility only for square matrices.
- For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

- It is easy to see that the zero matrix **O** is never invertible.
- The matrix $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ is not invertible.

Result

If A is an invertible matrix, then its inverse is unique.

Result

If A is an invertible matrix, then its inverse is unique.

• A^{-1} denotes the inverse of an invertible matrix A.

Result

If A is an invertible matrix, then its inverse is unique.

- A^{-1} denotes the inverse of an invertible matrix A.
- If A is invertible then $AA^{-1} = I_n = A^{-1}A$.

Result

If A is an invertible matrix, then its inverse is unique.

- A⁻¹ denotes the inverse of an invertible matrix A.
- If A is invertible then $AA^{-1} = I_n = A^{-1}A$.

Result

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

• If $ad - bc \neq 0$ then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Result

If A is an invertible matrix, then its inverse is unique.

- A^{-1} denotes the inverse of an invertible matrix A.
- If A is invertible then $AA^{-1} = I_n = A^{-1}A$.

Result

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

• If $ad - bc \neq 0$ then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

• If ad - bc = 0 then A is not invertible.

Let A and B be two invertible matrices of the same size.

The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.

- The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2 If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.

- The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2 If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- **3** The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.

- The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2 If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- **3** The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- The matrix A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$.

- The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2 If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- The matrix A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$.
- **5** For any non-negative integer k, the matrix A^k is invertible, and $(A^k)^{-1} = (A^{-1})^k$.

Let A and B be two invertible matrices of the same size.

- The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2 If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- The matrix A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$.
- **5** For any non-negative integer k, the matrix A^k is invertible, and $(A^k)^{-1} = (A^{-1})^k$.

Elementary Matrix: An elementary matrix is a matrix that can be obtained by performing an elementary row operation on the identity matrix. • There are three types of elementary matrices.

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right],$$

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \; E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \; E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right], \; E_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right].$$

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$\textbf{\textit{E}}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \ \textbf{\textit{E}}_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right], \ \textbf{\textit{E}}_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right].$$

• The matrix E_1 is obtained by performing $R_2 \leftrightarrow R_3$ on I_3 .

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$\textbf{\textit{E}}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \ \textbf{\textit{E}}_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right], \ \textbf{\textit{E}}_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right].$$

- The matrix E_1 is obtained by performing $R_2 \leftrightarrow R_3$ on I_3 .
- E_2 is obtained by performing $R_2 \rightarrow 5R_2$ on I_3 .

- There are three types of elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \; E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right], \; E_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right].$$

- The matrix E_1 is obtained by performing $R_2 \leftrightarrow R_3$ on I_3 .
- E_2 is obtained by performing $R_2 \rightarrow 5R_2$ on I_3 .
- E_3 is obtained by performing $R_3 \rightarrow R_3 2R_1$ on I_3 .

• Let A be the 3 × 3 matrix as given below:

$$A = \left[\begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right].$$

Let A be the 3 × 3 matrix as given below:

$$A = \left[\begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right].$$

Then

$$E_1 A = \left[\begin{array}{ccc} a & b & c \\ p & q & r \\ x & y & z \end{array} \right],$$

• Let A be the 3 × 3 matrix as given below:

$$A = \left[\begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right].$$

Then

$$E_1A = \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}, \quad E_2A = \begin{bmatrix} a & b & c \\ 5x & 5y & 5z \\ p & q & r \end{bmatrix}$$
 and

Let A be the 3 x 3 matrix as given below:

$$A = \left[\begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right].$$

Then

$$E_1A = \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}, \quad E_2A = \begin{bmatrix} a & b & c \\ 5x & 5y & 5z \\ p & q & r \end{bmatrix}$$
 and

$$E_3A = \left[\begin{array}{cccc} a & b & c \\ x & y & z \\ p-2a & q-2b & r-2c \end{array} \right].$$

• The matrix E_1A is the matrix obtained from A by performing the elementary row operation $R_2 \leftrightarrow R_3$.

- The matrix E₁A is the matrix obtained from A by performing the elementary row operation R₂ ↔ R₃.
- The matrix E_2A is the matrix obtained from A by performing the elementary row operation $R_2 \rightarrow 5R_2$.

- The matrix E₁A is the matrix obtained from A by performing the elementary row operation R₂ ← R₃.
- The matrix E_2A is the matrix obtained from A by performing the elementary row operation $R_2 \rightarrow 5R_2$.
- The matrix E_3A is the matrix obtained from A by performing the elementary row operation $R_3 \rightarrow R_3 2R_1$.

- The matrix E₁A is the matrix obtained from A by performing the elementary row operation R₂ ↔ R₃.
- The matrix E_2A is the matrix obtained from A by performing the elementary row operation $R_2 \rightarrow 5R_2$.
- The matrix E_3A is the matrix obtained from A by performing the elementary row operation $R_3 \rightarrow R_3 2R_1$.

- Let E be an elementary matrix obtained by an elementary row operation on I_n . If the same elementary row operation is performed on an $n \times r$ matrix A, then the resulting matrix is equal to EA.
- The matrix B is row equivalent to A if there are elementary matrices E_1, E_2, \dots, E_k such that $B = E_k \dots E_2 E_1 A$.

• Elementary matrices are always invertible.

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .
- Applying $R_3 \rightarrow R_3 + 2R_1$ on I_3 we find E_3^{-1} .

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .
- Applying $R_3 \rightarrow R_3 + 2R_1$ on I_3 we find E_3^{-1} .
- We have

$$E_1^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right] = E_1,$$

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .
- Applying $R_3 \rightarrow R_3 + 2R_1$ on I_3 we find E_3^{-1} .
- We have

$$\textbf{\textit{E}}_1^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right] = \textbf{\textit{E}}_1, \quad \textbf{\textit{E}}_2^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{array} \right],$$

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .
- Applying $R_3 \rightarrow R_3 + 2R_1$ on I_3 we find E_3^{-1} .
- We have

$$E_1^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right] = E_1, \quad E_2^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{array} \right],$$

$$E_3^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right].$$

- Elementary matrices are always invertible.
- Applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} .
- Applying $R_2 \rightarrow \frac{1}{5}R_2$ on I_3 we find E_2^{-1} .
- Applying $R_3 \rightarrow R_3 + 2R_1$ on I_3 we find E_3^{-1} .
- We have

$$E_1^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right] = E_1, \quad E_2^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{array} \right],$$

$$E_3^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right].$$

Every elementary matrix is invertible, and its inverse is an elementary matrix of the same type.

Result (Fundamental Theorem of Invertible Matrices: I)

Result (Fundamental Theorem of Invertible Matrices: I) Let A be an $n \times n$ matrix. Then the following statements are equivalent.

Result (Fundamental Theorem of Invertible Matrices: I)

Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- A is invertible.
- At is invertible.
- **3** $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^n .
- **4** $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- **5** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **1** The reduced row echelon form of A is I_n .
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- $oldsymbol{1}$ rank(A) = n.

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Result

Let A be a square matrix. If a sequence of elementary row operations transforms A to the identity matrix I, then the same sequence of elementary row operations transforms I to A^{-1} .

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix.

• Apply elementary row operations on the matrix $[A \mid I_n]$.

Let A be an $n \times n$ matrix.

- Apply elementary row operations on the matrix $[A \mid I_n]$.
- If A is invertible, then $[A \mid I_n]$ will be transformed to $[I_n \mid A^{-1}]$.

Let A be an $n \times n$ matrix.

- Apply elementary row operations on the matrix $[A \mid I_n]$.
- If A is invertible, then $[A \mid I_n]$ will be transformed to $[I_n \mid A^{-1}]$.
- If A is not invertible, then $[A \mid I_n]$ can never be transformed to a matrix of the type $[I_n \mid B]$.

Let A be an $n \times n$ matrix.

- Apply elementary row operations on the matrix $[A \mid I_n]$.
- If A is invertible, then $[A \mid I_n]$ will be transformed to $[I_n \mid A^{-1}]$.
- If A is not invertible, then $[A \mid I_n]$ can never be transformed to a matrix of the type $[I_n \mid B]$.

Example

Find the inverse of the following matrix A, if it exists:

$$A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$