

Кафедра «Управление и информатика в технических системах» Учебный курс «Информатика»

ЛАБОРАТОРНАЯ РАБОТА №6 по теме «Модульное программирование» Вариант №99

Выполнил:				
студент гр. М-4-10	15.04.09		А.Б. Иванов	
	(дата)	(подпись)	_	
Принял:				
преподаватель			В.Г. Петров	
	(дата)	(подпись)	_	

СОДЕРЖАНИЕ

1.ТЕКСТ ЗАДАНИЯ	3
2.БЛОК-СХЕМЫ АЛГОРИТМОВ	4
3.ИДЕНТИФИКАТОРЫ	9
3.1.Тип данных NormFunction.	9
3.2.Переменные	9
3.3.Функции.	10
4.ПРОГРАММА	11
4.1.Текст программы	11
4.1.1. NormUsage.cpp	11
4.1.2. Norm.h	13
4.1.3. Norm.cpp	13
4.2. Результат выполнения программы	14
5.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	15

1. ТЕКСТ ЗАДАНИЯ

Напишите программу, состоящую из двух модулей:

- а) DLL содержит набор функций для вычисления норм векторов.
- б) EXE динамически загружает модуль DLL и использует его функции для вычисления евклидова расстояния, манхеттенского расстояния и максимального элемента массива.

2. БЛОК-СХЕМЫ АЛГОРИТМОВ

Рис. 1. Лист 1. Основная блок-схема программы. Динамическая загрузка DLL.

Рис. 1. Лист 2. Основная блок-схема программы. Объявление вектора и вычисление его нормы различными методами.

Рис. 2. Функция double *euclidian*(double* vector,int size). Вычисление нормы при помощи евклидова расстояния.

Рис. 3. Функция double *manhattan*(double* vector,int size). Вычисление нормы при помощи манхеттенского расстояния.

Рис. 4. Функция double *max*(double* vector,int size). Вычисление нормы при помощи определения максимального значения.

3. ИДЕНТИФИКАТОРЫ

3.1. Тип данных NormFunction

Описание: указатель на функцию-норму.

3.2. Переменные

таблица 1

	Таолица 1			
№	Имя	Область видимости	Тип	Описание и назначение
1.	dllhandle	main(int, char*[])	целочисленное (HINSTANCE)	идентификатор библиотеки
2.	normsCount	main(int, char*[])	целочисленная константа (const int)	количество функций-норм в библиотеке
3.	normsNames	main(int, char*[])	массив строк (const char*[])	массив имён функций-норм в библиотеке
4.	normsFuncti ons	main(int, char*[])	массив NormFunction (NormFunction[])	массив функций-норм, загруженных из библиотеки
5.	i	main(int, char*[])	целочисленное (int)	переменная цикла
6.	size	main(int, char*[])	целочисленное (int)	размерность вектора
7.	vector	main(int, char*[])	указатель на действительное число (double*)	массив, хранящий вектор, для которого вычисляется норма
8.	sum	euclidian(dou ble*,int)	действительное (double)	сумма квадратов координат вектора
9.	i	main(int, char*[])	целочисленное (int)	переменная цикла
10.	sum	manhattan(do uble*,int)	действительное (double)	сумма модулей координат вектора

11.	i	main(int, char*[])	целочисленное (int)	переменная цикла
12.	max	max(double*,i nt)	действительное (double)	максимальный элемент вектора
13.	i	main(int, char*[])	целочисленное (int)	переменная цикла

3.3. Функции

таблица 2.

№	Имя	Тип возвращаемог о значения	Описание и назначение функции	Список формальных параметров (тип, название, назначение)
1.	double euclidian(double* vector,int size)	действительное (double)	вычисление нормы при помощи евклидова расстояния	double* <i>vector</i> — указатель на исходный вектор int <i>size</i> — размерность вектора
2.	double manhattan(double* vector,int size)	действительное (double)	вычисление нормы при помощи манхеттенского расстояния	double* <i>vector</i> — указатель на исходный вектор int <i>size</i> — размерность вектора
3.	double <i>max</i> (double* <i>vector</i> ,int <i>size</i>).	действительное (double)	вычисление нормы при помощи определения максимального значения	double* <i>vector</i> — указатель на исходный вектор int <i>size</i> — размерность вектора

4. ПРОГРАММА

4.1. Текст программы

4.1.1. NormUsage.cpp

```
//-----
#pragma hdrstop
//----
#pragma argsused
#include <windows.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
// Объявление типа функции-нормы
typedef double ( import * NormFunction) (double*, int);
int main(int argc, char* argv[])
   // Вывод на экран информации о лабораторной работе
   // и исполнителе
   cout << "Лабораторная работа №6 ";
   cout << "по теме \"Модульное программирование\"" << endl;
   cout << "Вариант №99" << endl;
   cout << "Выполнил: Иванов A.Б." << endl;
   // загрузка библиотеки и получение её идентификатора
   HINSTANCE dllhandle = LoadLibrary("norm");
   // проверка, была ли загружена библиотека
   if (dllhandle == NULL)
       // если библиотека не была загружена - вывод сообщения
       // об ошибке и завершение работы программы
       cout << "error while loading library" << endl;</pre>
       system("pause");
       return 1;
   }
   // объявление количества функций нормы в библиотеке
   const int normsCount = 3;
   // задание имён функции нормы в библиотеке
```

```
const char* normsNames[normsCount] =
{" euclidian", "_manhattan", "_max"};
// объявление массива функций-норм
NormFunction normsFunctions[normsCount];
// цикл заполнения массива функций-норм функциями
// из библиотеки
for (int i = 0; i < normsCount; i++)</pre>
    // загрузка функции-нормы по её имени
    normsFunctions[i] =
            (NormFunction)
            GetProcAddress(dllhandle, normsNames[i]);
    // проверка была ли загружена функция-норма
    if (normsFunctions[i] == NULL)
        // если функция не была загружена - вывод сообщения
        // об ошибке и завершение работы программы
        cout << "error while getting function "</pre>
                << normsNames[i] << endl;
        system("pause");
        return 1;
    }
}
// ввод вектора, норму которого предстоит найти
int size;
cout << "Введите размерность вектора: ";
cin >> size;
double* vector = new double[size];
// Ввод элементов вектора
cout << "Введите элементы вектора: " << endl;
for (int i = 0; i < size; i++)
    cin >> vector[i];
}
// Вычисление нормы вектора при помощи функций из библиотеки
cout << "Вычисленные нормы: " << endl;
for (int i = 0; i < normsCount; i++)</pre>
    cout << normsNames[i] << " : "</pre>
            << normsFunctions[i] (vector, size) << endl;</pre>
}
delete[] vector;
FreeLibrary(dllhandle);
```

```
system("pause");
   return 0;
}
4.1.2. Norm.h
//-----
#ifndef normH
#define normH
// функция вычисления евклидова расстояния
extern "C" declspec(dllexport)
double euclidian(double* vector,int size);
// функция вычисления манхеттенского расстояния
extern "C" declspec(dllexport)
double manhattan(double* vector, int size);
// функция вычисления максимума
extern "C" declspec(dllexport)
double max(double* vector, int size);
//-----
#endif
4.1.3. Norm.cpp
//-----
#pragma hdrstop
#include <math.h>
#include "norm.h"
double euclidian(double* vector, int size)
   double sum = 0;
   for (int i = 0; i < size; i++)
      sum += pow(vector[i], 2);
  return sqrt(sum);
}
double manhattan(double* vector, int size)
```

double sum = 0;

4.2. Результат выполнения программы

```
Лабораторная работа №6 по теме "Модульное программирование"
Вариант №99
Выполнил: Иванов А.Б.
Введите размерность вектора: 3
Введите элементы вектора:
-4
0
3
Вычисленные нормы:
_euclidian : 5
_manhattan : 7
_max : 4
Для продолжения нажмите любую клавишу ...
```

5. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Дейтел X., Дейтел П. Как программировать на C++. Пер. с англ. М.: 3AO «Издательство БИНОМ», 1998 г. 1024 с.: ил.
- 2. Керниган Б. Ритчи Д. Язык программирования Си. Пер. С англ. 3-е изд., испр. Спб.: «Невский Диалект», 2001 г. 354 с.: ил.
- Страуструп Б. Язык программирования С++. Специальное издание —
 The C++ programming language. Special edition. М.: Бином-Пресс, 2007.
 1104 с.
- 4. ГОСТ 19.701-90 (ИСО 5807-85). Единая система программной документации. Схемы алгоритмов, программ данных и систем. Условные обозначения и правила выполнения.