1 二元关系

1.1 关系的定义

集合 A 到 B 的一个二元关系 R 是 $A \times B$ 的子集, 可以看作是函数的推广.

例 $A = \{a,b\}, B = \{1,2\}.$ 则 $A \times B = \{(a,1),(a,2),(b,1),(b,2)\}.$ 任取 $A \times B$ 的一个子集, 就是 A 到 B 的一种关系: 如 $B = \{(a,1),(b,1)\}$ 或 $\{(a,1),(a,2)\}.$

和部分函数类似, A 到 B 的关系, 不代表 A 中每个元素都有 B 中对应关联的元素. 如果 A 中每个元素都能在 B 中找到元素和该元素存在关系, 则称这个关系为左完全的 (left-total) 或是连续的 (serial).

例 $A = \{a, b\}, B = \{1, 2\}.$ 则关系 $R_1 = \{(a, 1), (b, 1)\}$ 是左完全的,因为 A 中所有元素,都有 B 中对应存在关系的元素.而关系 $R_2 = \{(a, 1), (a, 2)\}$ 就不是左完全的,因为在 B 中没有任何与 $b \in A$ 存在关系的元素.

将函数中定义域的概念推广到关系中来, 定义 A 到 B 的关系 R 的定义域为 A 中存在关系的元素集

$$\operatorname{dom} R := \{a \in A \mid \exists b \in B, aRb\}.$$

所以一个关系 $R \subseteq A \times B$ 为左完全的, 当且仅当 $\operatorname{dom} R = A$.

 $f: A \to B$ 如果是一个部分函数,那么我们可以把定义域限制到 A 中有定义的那部分上. 同理,如果 A 到 B 的关系 R 不是左完全的,那么我们可以限制 A 到它的子集 C 上,得到新的关系,记作 $R|_C$ 或 $R \upharpoonright_C$. 所以如果我们限制一个不是左完全的关系 R 到其定义域上 $R|_{\text{dom }B}$,则关系也就成为左完全的.

如上例中, A 到 B 的关系 $R_2 = \{(a,1),(a,2)\}$ 不是左完全的, 但 $\{a\}$ 到 B 的关系 $R_2|_{\{a\}}$ 是左完全的.

由于关系是函数的一种推广,可以看作是允许一对多的"函数",大多数函数中的概念都可以引入到关系中来.

1.2 关系的复合及性质

Definition 1.1 (关系的复合). 设集合 A 到 B 的关系 R, 以及 B 到 C 的关系 S. 则 R 与 S 的复合 $S \circ R$ 定义为:

 $S \circ R := \{(a, c) \mid \exists b \in B \notin aRb \wedge bSc\}.$

也可以采用记号 R; S 或 (R; S) 表示 R 与 S 复合.

Remark. 用。表示复合也是借用函数复合的记号, 所以其顺序也遵循函数复合, 从右向左: 复合函数 $g\circ f$ 表示先 f 后 g. 复合关系 $S\circ R$ 表示先 R 后 S. 而使用分号 R;S 或 (R;S) 作为后来定义的记号, 则是从左向右, 以方便阅读. 两种方式 $S\circ R$ 和 R;S 只是记号上的不同, 均代表相同含义: R 与 S 复合.

Proposition 1.1 (复合的性质).

- (结合律) $(R \circ S) \circ T = R \circ (S \circ T)$
- (恒等关系) $R \circ I_A = R$, $I_A \circ R = R$
- (逆关系) $R^{-1} \circ R = I_{\text{dom }R}, \quad R \circ R^{-1} = I_{\text{dom }R^{-1}}.$ 使用另一种记号也可以有: $R; R^{-1} = I_{\text{dom }R}, \quad R^{-1}; R = I_{\text{dom }R^{-1}}$
- $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

特别要注意: $R^{-1} \circ R$ 不一定等于 I_A , 不要套用实数的幂法则 $x^{-1}x = x^0 = 1$.

设 R 为 A 上的关系,则可以递归地定义 R^n :

$$R^n := \begin{cases} I_{\text{dom } R} & n = 0 \\ R^{n-1} \circ R & n > 0 \end{cases}.$$

于是有:

$$R^0 = I_A|_{\text{dom }R}$$

$$R^1 = I_A|_{\text{dom }R} \circ R = R$$

$$R^2 = R^1 \circ R = R \circ R$$

$$R^3 = R^2 \circ R = R \circ R \circ R$$

同时有下面关系:

$$\forall m, n \in \mathbb{N}, R^m \circ R^n = R^{m+n},$$
$$\forall m, n \in \mathbb{N}, (R^m)^n = R^{mn}.$$

率记幂指数 m,n 均定义在自然数上. 如果 m,n 中出现负数, 情况将变得很复杂. 不要简单地认为 $(R^{-1})^2 \circ R = R^{-1}$. 不妨尝试 $\{1,2\}$ 上的关系 $R = \{(1,2)\}$, 其逆关系 $R^{-1} = \{(2,1)\}$. 此时 $(R^{-1})^2 \circ R = \varnothing \neq \{(2,1)\} = R^{-1}$.

下面的性质使得记法 R^{-n} 是良定义的.

Proposition 1.2. 对任意自然数 $n, (R^n)^{-1} = (R^{-1})^n$.

证明. 通过归纳法, $(R^{-1})^1 = (R^1)^{-1}$. 现归纳地假设 $(R^{-1})^n = (R^n)^{-1}$.

$$(R^{-1})^{n+1} = (R^{-1})^n \circ R^{-1}$$
$$= (R^n)^{-1} \circ R^{-1}$$
$$= (R \circ R^n)^{-1}$$
$$= (R^{n+1})^{-1}.$$

Theorem 1.1 (传递性). 集合 A 上的关系 R 具有传递性, 当且仅当 $R^n \subseteq R$ 对任意 $n \in \mathbb{Z}^+$ 均成立.

证明.

正推: $R^n \subseteq R$ 在 n = 1 时成立,此为基础情形.现归纳地假设对于 $n \ge 1$, $R^n \subseteq R$. 要证明 $R^{n+1} \subseteq R$. 对于 $(a,b) \in R^{n+1}$,存在 $c \in A$, $(a,c) \in R^n$, $(c,b) \in R$.根据归纳 假设,(a,c) 也一定在 R 中.于是 $(a,c) \in R$ 且 $(c,b) \in R$,由于传递性, $(a,b) \in R$,所以 $R^{n+1} \subseteq R$.

反推: 设 $R^n \subseteq R$ 对任意整数 $n \geqslant 1$ 成立. 若 $(a,b) \in R$ 且 $(b,c) \in R$, 则有 $(a,c) \in R^2$, 而 $R^2 \subseteq R$, 所以 $(a,c) \in R$. 这说明了传递性.

Proposition 1.3. 设 R 为 A 上的关系:

- 1. R 是对称的 \iff $R = R^{-1}$
- 2. R 是反对称的 \iff $R \cap R^{-1} \subseteq I_A$
- 3. R 是自反的 $\iff R^{-1}$ 自反
- 4. R 是自反的 $\iff \overline{R}$ 自反

Proposition 1.4. R 是自反/对称关系,则对任意正整数 n, R^n 也是自反/对称的.

Proposition 1.5. R 是自反和传递的关系,则对任意正整数 n, $R^n = R$.

证明. 一方面, R 是传递的, 根据传递性定理, $R^n \subseteq R$ 对任意正整数 n 成立. 另一方面, R 是自反的, 可以通过归纳法证明 $R \subseteq R^n$ 对任意 n 成立(注意应用自反的条件). 所以对任意 $n \in \mathbb{Z}^+$, $R^n = R$.

1.3 关系的数量

n 个元素任意选取的情况一共有 2^n 个. 可以这样理解, 对于每个元素, 都有选或不选两种情况, 于是根据乘法公式, 选取的情况共有 $n \cdot n \cdots n = 2^n$ 个. 此外, 这还可以从

组合公式中看出:

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^{n}.$$

Proposition 1.6. n 元素集 A 上的自反关系有 2^{n^2-n} 个, 反自反关系也有 2^{n^2-n} 个.

证明. 自反的条件为 $\forall a \in A((a,a) \in R)$. 所以关系矩阵的对角线必然全为 1. 那么从剩下的 $n^2 - n$ 个元素中选取任意元素置 1, 得到的都为自反关系, 而这样的选取有 2^{n^2-n} 种. 反自反关系同理.

Proposition 1.7. n 元素集上的对称关系有 $2^{(n^2+n)/2}$ 个.

证明. 对称关系在关系矩阵中反应为关于对角线对称的元素相等. 故先选对角线任意一侧 (除开对角线上的元素), 这样的元素有 $(n^2 - n)/2$ 个, 选取方法有 $2^{(n^2 - n)/2}$ 种.

再任意选取对角线上的元素,因为对角线上的元素一定满足对称性. 故有 2^n 种情况.

两种选取情况相乘 $2^{(n^2-n)/2} \cdot 2^n$ 就得到结果.

Proposition 1.8. n 元素集上反对称关系有 $2^n 3^{(n^2-n)/2}$ 个. 非对称关系有 $3^{(n^2-n)/2}$ 个.

证明. 对于选取出的 $(a,b) \in R$ 和 $(b,a) \in R$, 会导致 a=b. 故选择对角线的情况有 2^n 种.

而如果选择出的 (a,b) 和 (b,a) 不同时满足关系 R,则有 3 种情况,两者都不满足关系(1 种)和两者中有一个满足关系(2 种).从对角线的任意一侧选择出元素,有 $(n^2-n)/2$ 个元素,每个元素又有 3 种情况:这个元素满足 R 但对称的元素不满足;这个元素不满足但对称的元素满足;这个元素和对称的元素都不满足.所以一共有 $3^{(n^2-n)/2}$ 种情况.

第二次的选择数量就对应了非对称关系的数量 $3^{(n^2-n)/2}$, 而反对称则是两次选择相乘: $2^n3^{(n^2-n)/2}$.

Definition 1.2 (贝尔数). n 元集合上的划分情况有 B_n 种, 其中 B_n 为第 n 个贝尔数, 递归定义如下:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

前 5 个贝尔数如下: $B_0 = B_1 = 1$, $B_2 = 2$, $B_3 = 5$, $B_4 = 15$, $B_5 = 52$.

Proposition 1.9. n 元素集上的等价关系对应集合的一个划分, 故等价关系的数量为 B_n .

2 二元关系的表示

使用矩阵描述二元关系, 当两个元素存在关系时, 矩阵对应元素为 1, 否则为 0.

Definition 2.1 (关系矩阵). $A = \{x_i \mid 1 \le i \le n\}, B = \{b_i \mid 1 \le i \le m\}$. 设 $R \subseteq A \times B$ 为 A 到 B 的关系. 定义该关系的关系矩阵 $\mathbf{M}_R = (r_{ij})_{n \times m}$ 为

$$r_{ij} = \begin{cases} 1 & (a_i, b_j) \in R \\ 0 & (a_i, b_j) \notin R \end{cases}.$$

逆关系的关系矩阵 根据定义, 下面的事实是显然的:

$$\mathbf{M}_{R^{-1}} = \mathbf{M}_R^{\top}$$
.

布尔积 和关系矩阵相关的运算为布尔积 \odot , 该运算作用与两个布尔矩阵上, 返回一个布尔矩阵. 对于 $\mathbf{A}_{n\times m}$ 和 $\mathbf{B}_{m\times p}$, 其布尔积的第 i 行 j 列如下:

$$(\mathbf{A} \odot \mathbf{B})_{ij} = \bigvee_{\gamma=0}^{m} \mathbf{A}_{i\gamma} \wedge \mathbf{B}_{\gamma j}$$

= $(\mathbf{A}_{i1} \wedge \mathbf{B}_{1j}) \vee (\mathbf{A}_{i2} \wedge \mathbf{B}_{2j}) \vee \cdots \vee (\mathbf{A}_{im} \wedge \mathbf{B}_{mj})$.

实际就是将一般矩阵乘法中,数与数的乘法换成逻辑运算中对应的与运算,同时将加 法换成对应的或运算.下面是一般的矩阵乘法.

$$\begin{aligned} (\mathbf{A}\mathbf{B})_{ij} &= \sum_{\gamma=0}^{m} \mathbf{A}_{i\gamma} \mathbf{B}_{\gamma j} \\ &= (\mathbf{A}_{i1} \mathbf{B}_{1j}) + (\mathbf{A}_{i2} \mathbf{B}_{2j}) + \dots + (\mathbf{A}_{im} \mathbf{B}_{mj}) \,. \end{aligned}$$

布尔积表示了关系的复合, 设关系 R 和 S 的关系矩阵分别为 \mathbf{M}_R 和 M_S , 则 (这里便体现了 R;S 记号的好处.):

$$\mathbf{M}_{S \circ R} = \mathbf{M}_{R;S} = \mathbf{M}_R \odot \mathbf{M}_S$$
.

如何说明这一等式? 按照关系复合的定义, 设 R 为 A 到 B 的复合, S 在 B 到 C 的 关系, 如果存在 $b \in B$, 使得 $(a,b) \in R$ 且 $(b,c) \in S$, 则 $(a,c) \in S \circ R$.

 $(a,b) \in R$ 与 $(\mathbf{M}_R)_{ab}$ 的真值等价, 而 $(b,c) \in S$ 与 $(\mathbf{M}_S)_{bc}$ 等价:

$$(a,b) \in R \iff (M_R)_{ab},$$

 $(b,c) \in S \iff (M_S)_{bc}.$

让 b 取遍 B, 只要有一个满足条件的 b, 则存在 $(a,c) \in S \circ R$. 所以逻辑上将所得的 所有 $(\mathbf{M}_R)_{ab} \wedge (\mathbf{M}_S)_{bc}$ 相或, 就是我们所要表达的含义:

$$(a,c) \in S \circ R \iff \exists b \in B [(\mathbf{M}_R)_{ab} \wedge (\mathbf{M}_S)_{bc}] \iff \bigvee_{b \in B} (\mathbf{M}_R)_{ab} \wedge (\mathbf{M}_S)_{bc}$$

右侧便是 $\mathbf{M}_R \odot \mathbf{M}_S$ 的 a 行 c 列: $(\mathbf{M}_R \odot \mathbf{M}_S)_{ac}$, 而其真值和 $(a,c) \in S \circ R$ 也就是 $\mathbf{M}_{S \circ R}$ 等价, 所以自然有 $\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S$.

关系的幂 最为常见的关系之一为集合到其自身的关系 $R \subseteq A \times A$. R 的关系矩阵 为方阵, 和一般矩阵乘法一样, 也可以定义幂:

$$\mathbf{M}^{[k]} = \begin{cases} \mathbf{M}_{I_A} = \mathbf{I} & k = 0 \\ \mathbf{M}^k = \mathbf{M}^{k-1} \odot \mathbf{M} & k > 0 \end{cases}.$$

那么我们就可以得到:

$$\mathbf{M}_R \odot \mathbf{M}_R = \mathbf{M}_{R^2}$$
;

更一般地, 可以归纳得到:

$$(\mathbf{M}_R)^n = \mathbf{M}_{R^n}$$
.

3 序集

3.1 偏序集

Definition 3.1 (偏序集). 集合 X 连同其上的关系 \leq 一起 (X, \leq) 被称为偏序集 (partially ordered set, poset), 当且仅当其满足以下三条性质:

- 自反 (reflexive): $\forall x \in X, x \leq x$
- 反对称 (anti-symmetric): $\forall x, y \in X, x \leq y$ 且 $y \leq x$ 则 x = y
- 传递 (transitive): $\forall x, y, z \in X, x \leq y$ 且 $y \leq z$ 则 $x \leq z$

严格地说, (X, \leq) 才是偏序集, 但当 \leq 已知的时候, 常常省略关系 \leq , 称 X 是一个偏序集. 另外, 为了描述关系所述的集合, 可以使用 \leq_X 表示 \leq 是 X 上的关系. 同理, 若确信不会带来混乱, 我们也常常省略下标.

Definition 3.2 (严格偏序). 在偏序集 X 上使用记号 x < y 表示 $x \le y$ 且 $x \ne y$, 称关系 < 为严格偏序. 于是, 严格偏序 (X,<) 满足:

- 非自反 (irreflexive): $\forall x \in X, x \nleq x$
- 非对称 (assymmetric): $\forall x, y \in X, x < y, 则 y \not< x$
- 传递 (transitive): $\forall x, y, z \in X$, x < y 且 y < z 则 x < z

Remark. 一旦定义了偏序 \leq , 则对应的记号 \geq 就随之定义: $x \geq y$ 被定义为 $y \leq x$.

严格偏序同理, x < y 等价于 y > x. 此外, 注意 x < y 等价于 x < y 或 x = y.

应当注意一点, 偏序集 (X, \leq) 中, 任意两个元素 x, y 一定处于且仅处于下面四种情况中的一种:

- $\bullet x > y$
- \bullet x = y
- x < y
- *x*, *y* 不可比较 (incomparable)

若 x, y 满足其中前三种情况的一种 x < y 或 x = y 或 x > y, 则称 x 和 y 是可比较的 (comparable).

3.2 全序集

Definition 3.3 (全序集). 若偏序集 X 中任意两个元素 x, y 都是可比较的, 则称 X 是一个全序集 (totally ordered set, toset) 或链 (chain).

Remark. 称全序集为链,是因为在 Hasse 图中,所有元素从上到下排成了一条链,因为任意两个元素都是可以"比较大小"的.

也就是说,全序集是特殊的偏序集,是偏序集的加强版本.

例 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{R}^* , 连同其上的小于等于关系, 都是全序集.

3.3 偏序集上的性质

首先是序集及其子集的性质.

Proposition 3.1. 偏序集的子集仍然是偏序集, 全序集的子集仍然是全序集.

由于 X 是偏序集, Y 是 X 的子集, Y 中的元素都在 X 中, 可以看出 X 中元素满足的自反、反对称、传递性, Y 中的元素也应该满足. 全序集及其子集同理. 具体证明过程省略.

3.3.1 最大元与极大元

下面就来研究偏序集的子集上的一些特别元素及其性质.

Definition 3.4 (极大元 (Maximal element)). X 是偏序集, Y 是 X 的子集. 若 $m \in Y$, 则 m 是 Y 的极大元, 当且仅当不存在 $y \in Y$, y > m. 换句话说, Y 中没有比 m 更大的元素.

Remark. 不存在 $y \in Y$, y > m 的等价表述为: 对于所有 $y \in Y$, 要么 $y \leq m$, 要么 y 和 m 不可比. 因为 x 和 y 只有四种状态 (见前文).

Definition 3.5 (最大元 (Greatest element)). X 是偏序集, $Y \subseteq X$. 若 $m \in Y$, 则 $m \not\in Y$ 的极大元, 当且仅当 $\forall y \in Y$, $m \geq y$. 换句话说, m 大于 Y 中所有元素.

极小元 (minimal element) 和最小元 (least element) 可以同理定义.

Remark. 由定义可以看出,最大元蕴含极大元,所以最大元比极大元更强. 最大元一定是极大元,但极大元不一定是最大元.

极大元和最大元是不同的概念. Y 中没有比 m 更大的元素, 不能说明 m 大于 Y 中所有元素. 考虑下面的偏序集 $Y = \{\emptyset, \{1\}, \{1,2\}, \{1,3\}\}$ 及其上的偏序 \subseteq : $\{1,2\}$ 是极大元, 没有比 $\{1,2\}$ 更大的元素, 因为在 Y 中找不到 y 满足 $\{1,2\}\subseteq y$. 同理 $\{1,3\}$ 也是极大元. 由此看出极大/小元可以不唯一.

在 Hasse 图上, 极大元和极小元就是图的顶和底, 但可以不唯一.

考虑 $X = (0,1) \subseteq \mathbb{R}$ 和小于等于关系 \leq , X 没有极大元和最大元. 考虑 $X = \{\{1\}, \{2\}, \{1,2\}\}$ 和子集关系 \subseteq , X 有唯一极大元 $\{1,2\}$ 和最大元 $\{1,2\}$. 设集合:

$$A = \{\{n\} : n, k \in \mathbb{N}, n \leqslant k\},\$$

直观地说, $A = \{\{0\}, \{1\}, \{2\}, \dots, \{k\}\}.$

那么考虑集合 $A \cup \{\emptyset\} = \{\emptyset, \{0\}, \{1\}, \dots, \{k\}\}$. 这个偏序集 (A, \subseteq) 有 k+1 个极大元, 0 个最大元.

由此看出:

Proposition 3.2. X 为偏序集,则 X 可能没有极大元,或有任意个极大元. X 可能没有最大元或存在唯一最大元. 极小元和最小元同理.

Proposition 3.3. 若 X 为有限偏序集,则 X 必然存在极大元和极小元.

证明. 下面证明必然存在极大元, 极小元同理.

归纳法. 若偏序集 X 为单元素集,则其唯一元素为极大元. 归纳地假设任意 n 元素偏序集存在极大元,要证明 n+1 元素偏序集存在极大元.

设 X 为偏序集, |X| = n + 1, $x \in X$. 则 $X \setminus \{x\}$ 为 n 元素偏序集, 则 $X \setminus \{x\}$ 存在极大元, 记为 m. 现重新将 x 加入到 $X \setminus \{x\}$ 中, 会出现三种情况: (1) $m \le x$; (2) $x \le m$; (3) x, m 不可比.

- (1) 若 $m \le x$: $X \setminus \{x\}$ 中找不到比 m 大的元素,也就找不到比 x 大的元素.于是 X 中,找不到比 x 大的元素,则 x 成为新的极大元.
- (2) 若 $x \le m$: 此时 X 中仍然找不到比 x 大的元素, 于是 m 仍是极大元.
- (3) 若 m, x 不可比: 加入后 X 中仍然没有比 x 大的元素, 这不影响 m 仍是极大元.

综上所述, 便完成了归纳. 于是对于任意有限偏序集, 总是存在极大元的. ■

Proposition 3.4. X 为偏序集, 若存在最大元, 则最大元是唯一的. 且此时极大元也是唯一的, 等于最大元. 也就是说, 最大元存在时, 极大元和最大元等价. 极小元和最小元同理.

Remark. 注意上面的逆命题并不成立, 若 X 有唯一极大元 x, 则 x 不一定是 X 的最大元. (如果限制到有限的偏序集上, 情况如何?)

针对这个逆命题, 我们可以举出反例, 定义集合 $S_k := \{n \in \mathbb{Z}: 0 \le n \le k\}$. 也就是说, S_k 为 0 到 k 的整数组成的集合:

$$S_0 = \{0\}$$

$$S_1 = \{0, 1\}$$

$$S_2 = \{0, 1, 2\}$$

$$S_n = \{0, 1, 2, \dots, n\}$$

考虑集合 $A = \{S_n : n \in \mathbb{N}\} \cup \{\{0, -1\}\},$ 即:

$$A = \left\{\{0, -1\}, \{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\right\}.$$

这是一个无限集, 其有唯一极大元 {0,-1}, 但没有最大元.

证明. 设 (X, \leq) 的一个子集 Y 存在最大元 m. 假设存在另一个最大元 m', 按照定义 $m, m' \in Y$, 且应该有 $m \geq m'$ 和 $m' \geq m$, 所以 m' = m. 这说明最大元如果存在, 必然是唯一的.

假设存在极大元 $n, n \in Y$, 所以有 $m \ge n$. 由于 $m \in Y$, 所以要么 $n \ge m$, 要么 n 和 m 不可比. 由于已经有 $m \ge n$, 说明两者是可比的. 所以只可能 $n \ge m$, 又有 $m \ge n$,

则 m=n. 这说明最大元存在时, 极大元是唯一等于最大元的.

Corollary 3.1. 若 X 是一个有限的偏序集, 且 X 存在唯一极大元 x, 则 x 就是 X 的最大元. 换句话说: X 存在最大元当且仅当 X 存在唯一极大元.

证明. 设 X 是一个有限的 n 元偏序集, 其有唯一极大元 x. 按照定义, $\forall y \in X$, 要么 $y \leq x$, 要么两者不可比. 于是可以分出两种情况: (1) 对任意 $y \in X$, 都有 $y \leq x$; (2) 存在 $y \in X$, x 不可比.

- (1) 若所有 $y \in X$ 都有 $y \le x$: 按照定义, x 为最大元.
- (2) 若 X 中存在与 x 不可比的元素: 记作 y_1 . 下面归纳地假设 X 中存在与 x 不可比的 y_i . 要证明 X 中一定存在与 x 不可比的 $y_{i+1} > y_i$.

首先一定存在 $y_{i+1} \in X$, $y_{i+1} > y_i$. 因为如果不存在此元素, 按照定义 y_i 成为极大元. 而 y_i 与 x 不可比, $y_i \neq x$. 于是 X 有两个不同的极大元, 不符合题述唯一极大元的条件.

其次 y_{i+1} 和 x 一定是不可比的. 因为一旦可比, $x \le y_{i+1}$ 会导致 x 不是极大元; 而 $y_{i+1} \le x$ 会导致 $y_i < y_{i+1} \le x$ 即 y_i 和 x 可比.

所以完成了归纳. 这意味着只要存在一个和 x 不可比的 $y_1 \in X$, X 中就会存在无穷个元素 y_1, y_2, \ldots , 每个都是与 x 不可比的, 且这些元素互不相同: $y_1 < y_2 < \cdots$. 但 X 是有限集, 这就产生了矛盾.

所以情况 (2) 是不存在的, 只有情况 (1) 成立, 此时 x 为最大元.

Proposition 3.5. X 为全序集,则最大元和极大元始终等价. 极小元和最小元同理.

证明. 证明两部分: 最大元蕴含极大元; 极大元蕴含最大元.

总结一下, 偏序集中: 极大元和最大元是两个不同的概念. 极大元可以有零个或任意个, 最大元只能有零个或一个. 且当最大元存在时, 两者等价, 此时两者都是唯一的.

而全序集中,由于可比性:最大元和极大元是始终等价的概念,要么同时没有,要么同时有唯一相同的最大元和极大元.

最大元和极大元的个数情况

偏序集中, 最大元和极大元有四种情况:

- 0 个极大元, 0 个最大元
- 1 个极大元, 0 个最大元 (若偏序集有限, 不可能出现这种情况?)

- 1 个极大元, 1 个最大元
- 多个极大元, 0 个最大元

全序集中, 最大元和极大元等价, 有两种情况:

- 0 个极大元, 0 个最大元
- 1 个极大元, 1 个最大元

3.3.2 上界与最小上界

Definition 3.6 (上界 (upper bound)). 设 Y 是偏序集 X 的子集. 对于 $\beta \in X$, 称 β 为 Y 的上界, 当且仅当 $\forall y \in Y$, $\beta \geq y$.

若 $\beta \in X$ 为 Y 的上界, 且 β 不在 Y 中, 则称 β 为 Y 的严格上界. 这等价于 $\forall y \in Y$, $y < \beta$.

Definition 3.7 (最小上界). 设 Y 是偏序集 X 的子集. 设 $\beta \in X$ 为 Y 的上界, 称 β 为 Y 的最小上界, 当且仅当对于任意 Y 的上界 β' 满足 $\beta \leq \beta'$. 即 β 是所有上界的集合的最小元.

同理可以定义下界 (lower bound) 和最大下界 (greatest lower bound).

 $Remark.\ Y$ 的极大/小元和最大/小元都是 Y 中的元素,而 Y 的上/下界和最小上界/最大下界却可以是 Y 外的元素.

Proposition 3.6. 一个偏序集可以没有上界,或存在任意个上界;可以没有最小下界,或存在唯一最小下界.下界和最大下界同理.

Proposition 3.7. 设 Y 是偏序集 X 的子集. 若 β 为 Y 的一个上界, 若 $\beta \in Y$, 则 有下面两条结论:

- β 为 Y 的最小上界
- β 为 Y 的最大元

这就导出了最大元的等价定义: 若 Y 中存在元素等于最小上界,则这个元素为最大元.下界和最大下界同理.

证明. 设 Y 是偏序集 X 的子集, β 为 Y 的一个上界且 $\beta \in Y$. 由于 β 为上界, $\forall y \in Y, y \leq \beta$. 由于 $\beta \in Y$, 按照定义 β 为 Y 的最大元. 若 Y 还存在上界 β' , 由于 $\beta \in Y$, $\beta \leq \beta'$. 所以 β 为最小上界.

就此我们可以导出最小上界性质 (最大下界同理).

Proposition 3.8 (最小上界性质). 设 Y 是偏序集 X 的子集, β 为 Y 的最小上界. 若 $y \in Y$ 且 $y < \beta$, 则存在 $y' \in Y$ 满足 $y < y' \le \beta$.

证明. 假设对于给定 $y < \beta$, 找不到 $y' \in Y$ 使得 $y < y' \leq \beta$. 这等价于对于任意 $y' \in Y$, 有 $y' \leq y$ 或 $y' > \beta$. 对于前者, 所有的 $y' \in Y$ 都有 $y' \leq y$, 则 y 为上界, 而 y 小于最小上界 β , 这产生了矛盾. 后者也是不可能的, 因为 β 为上界, $y' \leq \beta$. 综上所述, 一定存在 Y 中的元素 y' 满足 $y < y' < \beta$.

3.4 良序集

Definition 3.8 (良序集). 设 Y 为偏序集 X 的子集. 称 Y 是良序集 (well-ordered set, woset), 当且仅当 Y 的每个非空子集都存在最小元 $\min(Y)$

Remark. 空集 Ø 是良序集. 因为其每个非空子集都存在最小元是一个空真的命题.

例 N 是良序的; \mathbb{Z} , \mathbb{Q} , \mathbb{R} 都不是良序的.

Proposition 3.9. 良序集的子集也是良序集.

证明. 设 X 为良序集, $Y \subseteq X$. 若 Y 为空集, 则 Y 自然为良序集. 若 Y 非空, 考虑任意非空子集 $Y' \subseteq Y \subseteq X$. 由于 Y' 是 X 的非空子集, 所以 Y' 有最小元. 故 Y 为良序集.

Remark. 因此, 偏序集、全序集、良序集的子集仍然分别为偏序集、良序集、全序集. 故子集保留原集的序.

Proposition 3.10. 有限的全序集是良序集.

证明. 使用归纳法. 设 X 为一个有限的全序集. 若 X 为单元素集,则显然X 只有一个非空子集,且其存在最小元素. 于是 X 为良序集,这证明了基础情形. 下面归纳地假设有限的 n 元全序集为良序集,要证明 n+1 元全序集也为良序集.

设 X 为一个 n+1 元全序集. 取其中一个元素 x, 则 $X \setminus \{x\}$ 为良序集. 现在将 x 加入到 $X \setminus \{x\}$ 中,考虑任意非空 $Y \subseteq X$,则其可能包含新加进去的 x. 于是分两种情况讨论:

若 $x \notin Y$, 则 $Y \subseteq X \setminus \{x\}$, 也就为良序集, 有最小元.

若 $x \in Y$, 则 $Y \setminus \{x\} \subseteq X \setminus \{x\}$, 也就为良序集, 有最小元 m. 由于 $Y \subseteq X$ 为全序集, Y 中加入的 x 与 m 有两种情况: $x \le m$ 或 $m \le x$. 前者 x 成为新的最小元, 后者 m 仍为最小元.

综上所述, 如果 n 元素全序集是良序集. 则 n+1 元素全序集的任意非空子集都存在最小元, 于是为良序集.

Remark. 同理还可以证明: 全序集的有限子集存在最大元.

良序集的重要性质在于, 可以在其上使用归纳法.

Proposition 3.11 (强归纳原理). 设 (X, \leq) 为良序集, P(n) 是关于 $n \in X$ 的命题. 若满足: "对所有 m < n, P(m) 成立, 则 P(n) 成立." 则 P(n) 对一切 $n \in X$ 皆成立.

Remark. 注意, 此处无需说明基础情形. 因为对于 X 的最小元 m_0 , $P(m_0)$ 是空真的.

证明. 假设对于所有 m < n, P(m) 成立, 则 P(n) 成立; 但存在 $n \in X, P(n)$ 不成立. 我们将所有使 P(n) 不成立的元素装在集合中:

$$A := \{ n \in X \colon P(n) \ 为假 \}.$$

显然有 $A \subseteq X$ 且 A 非空. 由于 X 为良序集, 所以 A 必然存在最小元, 记为 n_0 . 那 么对于任意 $x < n_0$, $x \notin A$, 即 P(x) 成立. 于是根据归纳假设, $P(n_0)$ 也成立, 这和 $n_0 \in A$ 矛盾.

Lemma 3.1. 设 (X, \leq) 为偏序集, $x_0 \in X$. 则存在 X 的良序子集 Y, 它以 x_0 为最 小元, 且没有严格上界.

由该引理可以导出一个重要推论.

Lemma 3.2 (Zorn 引理 / 超限归纳原理). 非空偏序集 X 的每个全序子集 Y 都有上界, 那么 X 存在极大元.