DEVOIR SURVEILLÉ N° 1

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

Pour $n \in \mathbb{N}$, on pose $S_n = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}$.

- 1. Calculer S_0 , S_1 et S_2 .
- 2. Calculer les sommes $\sum_{k=0}^{n} {n \choose k}$ et $\sum_{k=0}^{n} 2^k$.
- 3. En intervertissant l'ordre de sommation, calculer S_n pour tout $n \in \mathbb{N}$.

EXERCICE 2.

- 1. Soient k, l, n des entiers naturels tels que $l \le k \le n$.
 - **a.** Montrer que $\binom{n}{k}\binom{k}{l} = \binom{n}{l}\binom{n-l}{k-l}$.
 - **b.** En déduire que si l < n, $\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{k}{l} = 0$.
- 2. Soit (a_n) et (b_n) deux suites réelles vérifiant :

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n \binom{n}{k} a_k$$

Montrer que

$$\forall n \in \mathbb{N}, \ \alpha_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} b_k$$

Exercice 3.

Dans tout l'énoncé, $\mathfrak n$ désigne un entier naturel supérieur ou égal à 3.

Dans la deuxième question de cet exercice, la notation $\sum_{0 \leqslant 2k \leqslant n}$ signifie que la somme porte sur les indices k tels

que $0 \leqslant 2k \leqslant n$.

De même, $\sum_{0 \le 2k+1 \le n}$ signifie que la somme porte sur les indices k tels que $0 \le 2k+1 \le n$.

Cela permet notamment de séparer élégamment les termes d'indices pairs et impairs d'une somme sans avoir à considérer la parité de $\mathfrak n$:

$$\sum_{k=0}^n \alpha_k = \sum_{0\leqslant 2k\leqslant n} \alpha_{2k} + \sum_{0\leqslant 2k+1\leqslant n} \alpha_{2k+1}$$

- 1. On définit la fonction f_n telle que $f_n(x) = (x+1)^n$ pour tout $x \in \mathbb{R}$.
 - a. Donner une expression développée de $f_n(x)$ à l'aide de la formule du binôme de Newton.
 - **b.** En calculant $f_n'(1)$ de deux manières, simplifier la somme $\sum_{k=0}^n k \binom{n}{k}$.
 - c. En calculant $f_n''(1)$ de deux manières, simplifier la somme $\sum_{k=0}^n k(k-1) \binom{n}{k}$.
 - d. Déduire des questions précédentes une expression simple de $\sum_{k=0}^n k^2 \binom{n}{k}.$
- 2. On définit la fonction g_n telle que $g_n(x) = f_n(x) + f_n(-x)$ pour tout $x \in \mathbb{R}$.
 - $\mathbf{a.} \ \, \mathrm{Montrer} \ \, \mathrm{que} \ \, g_n(x) = 2 \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} \ \, \mathrm{pour} \ \, \mathrm{tout} \ \, x \in \mathbb{R}.$
 - $\mathbf{b.} \ \, \mathrm{En\ calculant}\ \, g_n'(1)\ \, \mathrm{de\ \, deux\ \, mani\`eres,\ \, montrer\ \, que}\ \, \sum_{0\leqslant 2k\leqslant n} k\binom{n}{2k} = 2^{n-3}n.$
 - $\textbf{c.} \ \ \text{En calculant} \ \ g_n''(1) \ \ \text{de deux manières, montrer que} \ \sum_{0\leqslant 2k\leqslant n} k^2 \binom{n}{2k} = 2^{n-5} n(n+1).$

EXERCICE 4.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\binom{2n+2}{n+1} = \frac{2(2n+1)}{n+1} \binom{2n}{n}$.
- 2. En déduire par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \frac{4^n}{2\sqrt{n}} \leqslant {2n \choose n} \leqslant \frac{4^n}{n^{\frac{1}{3}}}$$

EXERCICE 5.

On considère la suite (F_n) définie par $F_0=0,\ F_1=1$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \ F_{n+2} = F_n + F_{n+1}$$

- 1. Calculer F_2 , F_3 , F_4 et F_5 .
- $\textbf{2.} \ \ \text{Montrer que pour tout} \ \ n\geqslant 5, \ F_n\geqslant n. \ \ \text{Que peut-on en déduire quant à la limite de la suite} \ \ (F_n)\ ?$
- 3. a. Montrer que pour tout $n \in \mathbb{N}^*$, $1 + \sum_{k=0}^{n-1} F_k = F_{n+1}$.
 - $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}^*, \ \sum_{k=0}^{n-1} F_{2k+1} = F_{2n}.$
 - c. Montrer que pour tout $n \in \mathbb{N}^*$, $1 + \sum_{k=0}^{n-1} F_{2k} = F_{2n-1}$.
- 4. a. Résoudre l'équation $x^2=x+1$. On notera α la solution positive et β la solution négative. Que vaut le produit $\alpha\beta$?
 - **b.** Montrer que pour tout $n \in \mathbb{N}$, $F_n = \frac{1}{\sqrt{5}} (\alpha^n \beta^n)$.
 - $\mathbf{c.} \ \mathrm{Soit} \ (p,q,r) \in \mathbb{N}^3 \ \mathrm{tel} \ \mathrm{que} \ p \geqslant r. \ \mathrm{Montrer} \ \mathrm{que} \ F_p F_{q+r} (-1)^r F_{p-r} F_q = F_{p+q} F_r.$