Примерен Изпит 2 по Диференциални Уравнения и Приложения

https://github.com/andy489/DEA

Задача 1. (5 т.) Колко решения има задачата?

Har san (a)	l	<u>''</u>		
	единствено решение	точно две решения	няма решение	безбройно много решения
$(y')^2 + yy' - x = 0$ y(1) = 1		X		
$y' = (2 + y)e^x$ $y(0) = 1$	Х			
$(y')^{2} - yy' - x = 0$ y(-2) = 1			Х	
y'' - 4y' - 5y = 0 y(0) = -3, y'(0) = 1	X			
$y'' + 16\pi^{2}y = 0$ y(0) = 0, y(1) = 0				Х

1.)

$$(y')^2 + yy' - x = 0 \Rightarrow F(x, y, z) = z^2 + yz - x = 0.$$

 $D_F(x, y) = y^2 - 4.1.(-x) = y^2 + 4x; D(1,1) = 5 > 0.$

 $F_z'=2z+y$. Точките, в които дескриминантата на характеристичното уравнение е положителна ще имат два различни реални корена. Проверяваме дали не е особена:

$$F(1,1,z)=z^2+z-1=0$$
 има 2 рал. реални корена $z_{1,2}=\frac{-1\pm\sqrt{5}}{2}$.

 $F_z'(1,1,z_{1,2}) = -1 \pm \sqrt{5} + 1 = \pm \sqrt{5} \neq 0 \Rightarrow$ точката (1,1) е обикновена и през нея минават точно 2 решения на даденото уравнение.

2.)

Линейно диференциално уравнение от първи ред с начално условие \Rightarrow задача на Коши. От теоремата за съществуване и единственост знаем, че това уравнение има единствено решение, там където са дефинирани коефициентите $a(x) = e^x$ и $b(x) = 2e^x$.

3.)

Аналогично на 1.), с тази разлика, че тук имаме D(-2,1)=1-8<0, т.е. точката (-2,1) не е нито обикновена нито особена и през нея не преминава нито едно решение на уравнението.

4.)

Характеристично уравнение: $\lambda^2-4\lambda-5=0; \quad D=4-1.(-5)=9; \quad \lambda_{1,2}=2\pm3.$ $\lambda_1=5, \quad \lambda_2=-1.$ ФСР:= $\{e^{5x},e^{-x}\}.$ Общото решение е $y(x)=c_1e^{5x}+c_2e^{-x}.$ $y(0)=c_1+c_2=-3\Rightarrow c_2=-3-c_1; \quad y'(x)=5c_1e^{5x}-c_2e^{-x}$ $y'(0)=5c_1-c_2=1\Rightarrow c_2=5c_1-1.$ Следователно $c_2=-3-c_1=5c_1-1\Rightarrow c_1=-\frac{1}{3}$ и $c_2=5c_1-1=-\frac{8}{3}.$ Окончателно, $y(x)=-\frac{1}{3}.e^{5x}-\frac{8}{3}e^{-x}$ е единственото решение на уравнението.

5.)
$$y'' + \underbrace{16\pi^2}_{g} y = 0; \ y(0) = 0, \ y(1) = 0.$$
 Задача на Щурм-Лиувил. Имаме нулевото

решение. Ако a е от собствените стойности имаме безбройно много решения, ако не - имаме само нулевото. Собствените стойности имат вида:

$$\lambda_k = \left(\frac{k\pi}{L}\right)^2 \stackrel{L=1}{=} (k\pi)^2$$
, където $k \in \mathbb{N}$. При $k=4, \;\; \lambda_4 = 16\pi^2 = a$ (четвъртата

собствена стойност от спектъра на уравнението) \Rightarrow ще имаме безброино много решения.

Задача 2. (2 т.) Определете общото решение на уравнението y'' + 6y' + 10y = 10.

а)
$$c_1cosx + c_2sinx$$
 б) $e^{-3x}cosx + c_1sinx$ в) $e^{-3x}(c_1cos + c_2sinx) + 1$ г) $c_1e^{2x} + c_2e^{3x}$ д) $e^{-3x}(c_1cosx + c_2sinx) - 1$ е) $c_1cos3x + c_2sin2x$, където c_1 и c_2 са произволни реални константи.

Решение:

y''+6y'+10y=10. Характеристичния полином на хомогенната част на уравнението е $P(\lambda)=\lambda^2+6\lambda+10=10$. $D=9-10=\pm i\Rightarrow \lambda_1=-3+1.i,\,\lambda_2=-3-1.i$ ФСР:= $\{e^{-3x}.cos(1.x),e^{-3x}.sin(1.x)\}$. Следователно $y(x)=c_1(e^{-3x}cosx+c_2e^{-3x}sinx)=e^{-3x}(c_1cosx+c_2sinx)$ - общо решение. Остана да видим кое от 1 и -1 (от подточки в) и д)) е частно решение.

$$10=f(x)=P_m(x)$$
 . $e^{\gamma x}\Rightarrow m=0, \gamma=0$ - не е корен на характеристичния полином $\Rightarrow s=0$, където $z(x)=x^s$. $Q_m(x)$. $e^{\gamma x}=c_3=const$. - частното решение. $c_3''+6c_3'+10c_3=10\Rightarrow c_3=1$.

y(x) = общо решение + частно решение = $e^{-3x}(c_1 cos x + c_2 sin x) + 1$. Отговор в).

Задача 3. (2 т.) Определете решението на смесената задача за уравнението на топлопроводността.

$$\begin{cases} u_t = \frac{1}{4}u_{xx}, \ 0 < x < \frac{\pi}{4}, \ t > 0 \\ u\big|_{t=0} = cos(10x), \ 0 \le x \le \frac{\pi}{4} \\ u_x\big|_{x=0} = 0, \ u\big|_{x=\frac{\pi}{4}} = 0, \ t \ge 0. \end{cases}$$

a)
$$e^{25t} sin(10x)$$

б)
$$e^{25t}cos(10x)$$

B)
$$e^{-5t}cos(10x)$$

r)
$$e^{-5t}sin(10x)$$

б)
$$e^{25t}cos(10x)$$
 в) $e^{-5t}cos(10x)$ е) $e^{-25t}sin(10x)$

e)
$$e^{-25t}sin(10x)$$

Решение:

 $u_{x}|_{x=0} = 0 \Rightarrow$ левия край е топлоизолиран.

При t=0 трябва да имаме cos(10x) (от условието). Следователно остават отговори б), в) и д). При $t \to +\infty: u_t = 0$, следователно отпада и б). От директно заместваме в уравнението на топлопроводността виждаме, че верния отговор е д): $u_t = -25e^{-25t}cos(10x)$ и

$$\frac{1}{4}u_{xx} = \left(-\frac{10}{4}e^{-25x}sin(10x)\right)' = -\frac{100}{4}e^{-25x}cos(10x) = -25e^{-25x}cos(10x).$$

Задача 4. (1 т.) Определете типа на уравнението

$$u_{xx} - 4u_{xy} - 2u_{yy} + 2u_x - 4yu_y + u = 0.$$

а) смесен

б) параболичен

в) елиптичен

г) хиперболичен

Решение:

$$au_{xx} + 2bu_{xy} + cu_{yy} + pu_x + qu_y + ru = 0.$$
 $b^2 - ac = 4 - 1.(-2) = 6 > 0 \Rightarrow$ уравнението е хиперболично г).

Задача 5. Сведете задачата на Коши

$$\begin{cases} y' = 2y - 3x^2 \\ y(0) = -3 \end{cases}$$

до интегрално уравнение. (2 т.) Намерете с метода на Пикар първите три последователни приближения $y_0(x)$, $y_1(x)$, $y_2(x)$ на решението на задачата на Коши. (3 T.)

Решение:

$$\int_{x_0}^x y'(s)ds = \int_0^x y'(s)ds = \int_0^x (2y(s) - 3s^2) ds;$$

$$\int_0^x y'(s)ds = y(x) - y(0) = y(x) + 3;$$

$$y(x) = -3 + \int_0^x (2y(s) - 3s^2) ds$$
 - интегрално уравнение на задачата на Коши.

Опростено:
$$y(x) = -3 - x^3 + 2 \int_0^x y(s)ds$$
;

Метод на Пикар:

 $y_0(x)=-3$ (първо приближение) $y_{n+1}=-3-x^3+2\int_0^xy_n(s)ds$ (рекурентната редица, от която ще получим попрецизните приближения)

$$y_1(x)=-3-x^3+2\int_0^x-3ds=-3-x^3-6x$$
 (второ приближение) $y_2(x)=-3-x^3+2\int_0^x\left(-3+s^3-6s\right)ds=-3-x^3-6x+2.rac{x^4}{4}-12rac{s^2}{2}=rac{x^4}{2}-x^3-6x^2-6x-3$ (трето приближение)

Задача 6. Дадено е уравнението:

$$y''' - 6y'' + 9y' = 0.$$

- а) Намерете общото решение на уравнението (4 т.)
- б) Намерете всички решения на уравнението, които са ограничени за $x \in (-\infty, 0]$ (4 т.)

Решение:

Характеристичен полином:

a)
$$P(\lambda) = \lambda^3 - 6\lambda^2 + 9\lambda = \lambda(\lambda - 3)^2$$

Корените на $P(\lambda) = 0$ са $\lambda_1 = 0, \lambda_{2,3} = 3;$

$$\Phi CP := \{e^{\lambda_1 x}, e^{\lambda_2 x}, x e^{\lambda_3 x}\} = \{1, e^{3x}, x e^{3x}\};$$

Общо решение: $y(x) = c_1 + c_2 \cdot e^{3x} + c_3 x e^{3x}$;

б) $\lim_{x \to -\infty} c_2 e^{3x} = 0;$ $\lim_{x \to -\infty} c_3 x e^{3x} = 0$ (експонентата расте с по-голяма скорост

от всеки полином от степен k; или от Лопитал: $xe^{3x} = \frac{x}{e^{3x}} = 0$)

Следователно всички решения са ограничени в интервала $(-\infty,0]$.

Задача 7. Дадена е системата

$$\begin{cases} \dot{x} = x + x^2 - y^2 \\ \dot{y} = -y \end{cases}$$

- а) Намерете равновесните точки на системата. (2 т.)
- б) Напишете линейното приближение на системата в околност на всяка една равновесна точка. (4 т.)
- в) Изследвайте относно устойчивост равновесните точки на дадената система (5 т.)

Решение:

а) Равновесните точки са там където скоростите се зануляват, т.е. десните страни на системата са 0.

$$\begin{cases} x + x^2 - y^2 = 0 \\ -y = 0 \end{cases} \Rightarrow \begin{cases} x(x+1) = 0 \\ y = 0 \end{cases} \Rightarrow x = 0$$
или $x = -1$.

Равновесни точки са (0,0) и (-1,0).

б)
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = Ja(a,b) \begin{pmatrix} x-a \\ x-b \end{pmatrix}$$
, където $Ja(a,b)$ е Якобианът на системата в точката (a,b) .

$$f = x + x^2 - y^2$$
, $g = -y$

$$Ja(x,y) = \begin{pmatrix} f'_{x}(x,y) & f'_{y}(x,y) \\ g'_{x}(x,y) & g'_{y}(x,y) \end{pmatrix} = \begin{pmatrix} 1+2x & -2y \\ 0 & -1 \end{pmatrix};$$

$$Ja(0,0)=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}\Rightarrow egin{pmatrix} \dot{x} \ \dot{y} \end{pmatrix}=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}\Rightarrow egin{pmatrix} \dot{x}=x \ \dot{y}=-y \end{pmatrix}$$
 - линейно приближение в равновесната точка (0,0).

$$Ja(-1,0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; \quad \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x+1 \\ y-0 \end{pmatrix} \Rightarrow \begin{cases} \dot{x} = -x-1 \\ \dot{y} = -y \end{cases}$$
 - линейно приближение в равновесната точка (-1,0).

в)

- Ако всички собствени стойности на Якобиана в равновесната точка са с отрицателна реална част, то точката е асимптотично устойчива.
- Ако съществува поне една собствена стойност на Якобиана в равновесната точка, която е с положителна реална част, тогава точката е неустойчива.

$$(0,0): det \, |Ja(0,0) - E \,.\, \lambda \,| = egin{bmatrix} 1 - \lambda & 0 \ 0 & -1 - \lambda \ \end{bmatrix} = -1 + \lambda^2 \Rightarrow \lambda_{1,2} = \pm 1 \Rightarrow$$
 равновесната точка (0,0) е неустойчива.

$$(-1,0): \det |Ja(0,1) - E \cdot \lambda| = \begin{vmatrix} -1 - \lambda & 0 \\ 0 & -1 - \lambda \end{vmatrix} = (1 + \lambda)^2 \Rightarrow \lambda_{1,2} = -1 < 0 \Rightarrow$$

равновесната точка (-1,0) е асимптотично устойчива.

Задача 8. (6 т.) Решете задачата на Коши за уравнението на струната

$$\begin{cases} u_{tt} = 9u_{xx}, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = -x^3, & u_t(x,0) = -1, \quad x \in \mathbb{R} \end{cases}$$

Решение:

От формулата на Даламбер:

$$u(x,t) = \frac{1}{2} [\varphi(x - at) + \varphi(x + at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(s) ds.$$

Имаме, че $\varphi(x) = -x^3$; $\psi(x) = -1$ и a = 3. Следователно

$$u(x,t) = \frac{1}{2} \left[-(x-3t)^3 - (x+3t)^3 \right] + \frac{1}{6} \int_{x-3t}^{x+3t} -1 ds = x^3 + 27xt^2 - \frac{1}{6}s \Big|_{x-3t}^{x+3t} = -x^3 - 27xt^2 - t$$