PSALTer results panel

Wave operator and propagator

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{1}\mathcal{A}_{_{S}}^{ \ h}$	0	0	0	0	$\frac{2a}{3\sqrt{3}}$	$\frac{1}{3}\sqrt{\frac{2}{3}}a.$	$\frac{1}{6}(a, -4c, k^2)$	$\frac{1}{6}\sqrt{5}(a_0^2-4c_1k^2)$	$\frac{a_1 - 8c_1 k^2}{0}$ 6 $\sqrt{2}$	$\frac{5a}{12} - \frac{4c k^2}{3}$	Spin-pari		2 °+ W _s ^{⊥h}			ariantform $v^{\alpha\beta}_{\beta}$ == 2(∂_{eta} W	$a^{\alpha} + \partial_{\beta} W^{\alpha\beta}_{ c}$,)	I	Multipliciti	$\frac{\text{es}}{\text{agy}}$	0	0	0	0	0 4	l 4°°						
Total expected gauge gau	$^{1}\mathcal{A}_{s}^{^{\perp h}}$			0	0	312	a. 3 √3	$a.4c.k^2$ $6\sqrt{2}$	$\sqrt{\frac{5}{2}} (a_0^{-4} c_1 k^2)$	$\frac{1}{3}(a, -2c, k^2)$	$a.8c.k^2$ 0.1 $6.\sqrt{2}$	2(1 W _s h		η ^α) == ¹ W	$_{\rm s}$ lt $^{\alpha}$ + 1 W $_{\rm s}$	$^{\perp t^{\alpha}}$ $\partial_{\beta}\partial^{\alpha}c$	$W^{\beta \chi}_{\chi} + 2(\partial_{\chi} \hat{c})$ $\partial_{\chi} \partial^{\alpha} W^{\beta \chi}_{\beta} + 2$	$\partial_{\chi}\partial^{\alpha}W^{\beta\chi}_{\beta} + \partial$;	3	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0 0										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{1}\mathcal{A}_{\varsigma}^{\parallel t}_{\alpha}$	0	0 0	0	C	$-\frac{1}{3}\sqrt{\frac{5}{3}}a.$	21.0	$\frac{1}{6}\sqrt{5}(a_0-2c_1k^2)$		$\sqrt{\frac{5}{2}} (a_0 - 4)$	$\frac{1}{6}\sqrt{5}(a_1-4c_1k^2)$			ge generat	cors:	$\partial_{\chi}\partial_{eta}\epsilon$	-3 ⁴ T ^{-γχ} == &δ ^χ ξ				3	$\mathcal{H}_{a}^{\parallel}$	0				0 0	2+ στ . α	$\frac{a \cdot k^2}{8}$		0 (0		$ \begin{array}{c c} \stackrel{2}{\cdot} \mathcal{A}_{s}^{\parallel}_{\alpha\beta\chi} \\ 0 \\ 0 \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{1}\mathcal{A}_{s^{Lt}}^{Lt}$	0	0	0	0	a. 3 √3	a. 3 √6	$\frac{1}{3}(-a,-c,k^2)$	$\frac{1}{6}\sqrt{5}(a_0-2)$	$\frac{a4c. k^2}{6.\sqrt{2}}$		-32 $\mathcal{A}^{\alpha\beta}_{\alpha}$ -8 h^{χ}_{λ} $\partial_{\beta}\mathcal{S}$ $\alpha\chi$)-18 $\mathcal{A}^{\beta}_{\nu}$ -9 $\partial_{\beta}h^{\chi}_{\lambda}$ ∂^{β} 36 $h^{\alpha\beta}$ $\partial_{\lambda}\zeta$ -18 h^{α} ∂_{λ}		$\partial_{lpha} \mathcal{A}_{eta \chi \mu} \ \partial^{\mu} \mathcal{A}^{lpha eta \chi} \ -$ $^{\iota eta \chi} \ +$	$A_{BXII} O^{\mu} A_{BXII} O^{\mu} A_{\mu}$ + - $\partial_{\alpha} A_{\mu X I} A_{\mu} $	w -	m	Χθχ	$^{2^{+}}\mathcal{T}^{\parallel}{}_{lphaeta}$						$ \begin{array}{c} \stackrel{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\overset{\sim}{\underset{\sim}{\underset$	0 0	0 (0 2	a. _0 4	0	0 0 0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0				a. 1	a. 0	$\frac{1}{3}\sqrt{\frac{2}{3}}$	$\mathcal{A}^{lpha}_{\widetilde{g}}$	$^{\chi}_{\chi}$ $^{\beta}_{\beta}\mathcal{A}^{\alpha}_{\alpha}$ $^{\beta}_{\gamma}$ $^{\gamma}_{\gamma}$ $^{\gamma}_{\beta}\mathcal{A}^{\alpha}_{\alpha}$ $^{\beta}_{\beta}$ $^{\gamma}_{\gamma}$ $^{\gamma}_{\gamma}$ $^{\gamma}_{\beta}$		$^{x\beta} \partial_{\chi}\partial^{\chi}$	αβ βυ Ομ	о _а Я _{µвх} д ^и Я ^α д _в Я _{аµх} д ^и Я ^α Я _с д ^и Я ^{авх}	9 × 0			0			0		_ [0 -6 c. k ²	5-1	0)	$\frac{a}{\frac{0}{4}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}h^{_{\alpha}}$	0 0	•						пİш	пļю	1	# + ###################################	$xh_{\beta} x xh_{\beta} x x$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$B = \nabla_{X} \wedge^{1} \alpha$ $A = A + $		$\mathcal{M}^{+0} \parallel \mathcal{W}^{+0}$	0		•	-	$6\sqrt{2} a. \qquad 6a.$	0 0	0, 3g th	0			2 0 2 0	2					
	${\mathcal{A}_{a}}^{_{\perp}}{}_{lphaeta}^{_{\parallel}}{}^{1^{+}}{\mathcal{A}_{s}}^{_{\perp}}{}_{lphaeta}$	$\frac{a}{2\sqrt{2}}$ 0		a. 4								~	0 4	18 A 4	$18 h^{\alpha}_{\alpha}$ $36 h_{\beta\chi}$	$c_1 \left(\partial_{\alpha} \mathcal{A}_{X \mu}^{\ \mu} \partial_{X}^{\lambda} \right)$ $2 \partial_{\alpha} \mathcal{A}_{\mathcal{B}}$	$2 \frac{\partial_{\alpha} \mathcal{A}_{\chi}}{\partial_{\alpha} \mathcal{A}_{\alpha}}$	$\partial_{\mu}\mathcal{A}_{lphaeta\chi}$ $\partial_{\mu}\mathcal{A}_{lphaeta\chi}$ $\partial_{\mu}\partial_{lphaeta}$	-0 <u>-</u>					$\sqrt{3} \frac{2}{a_0}$ $\frac{1}{6\sqrt{2} a_0}$	0 0	A _a ⁰⁺ β _s ^{±t 0+}	0	α. γ <u>6</u> 0	$\frac{a}{2}$	3 2 42				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1+}\mathcal{A}_{\mathrm{a}}\mathbb{I}_{\alpha\beta}^{+}^{-1}$	βι	-1		0	0	0	0	0	0	0	$S == \iiint (\mathcal{A}^{\alpha eta \chi})$							\(\mu_{+0}^{+0} \) \(\pu_{+0}^{+0} \) \(\pu_{+0}^{+0} \)	0 4/0 0	C 0 ++	0	0	0	0	0 4 +0 +4 +0	0 0	0 0	0 0	0 0))			

Massive and massless spectra

Parity:	Spin:	Square mass:	Poleresidue:	Massive par	$J^{P} = 0$ $J^{P} = 0$	Parity:	Spin:	Square mass:	Poleresidue:	Massive par	$J^{P} = 1^{-}$ $k^{\mu} = (\mathcal{E}, 0, 0, p)$	$k^{\mu} = (p, 0, 0, p)$?
Odd	0	$-\frac{a}{12c} > 0$	$\frac{1}{6c_1} > 0$	particle		Odd	1	$\frac{3a}{4c} > 0$	$\frac{25}{4c.} > 0$	particle		Massless par	? rticle
												Pole residue: -	$\frac{1}{a} > 0$

Unitarity conditions

$$a_{.} < 0 \&\& c_{.} > 0$$