COMP 250

Lecture 31

graph traversal

Nov. 21, 2018

Today

- Recursive graph traversal
 - depth first

- Non-recursive graph traversal
 - depth first
 - breadth first

Recall: tree traversal (recursive)

Graph traversal (recursive)

Need to specify a starting vertex.

Visit all nodes that are "reachable" by a path from a starting vertex.

Graph traversal (recursive)

// Here "visiting" just means "reaching"

Graph traversal (recursive)

// Here "visiting" just means "reaching"


```
depthFirst_Graph(v){
    v.visited = true
    for each w such that (v,w) is in E
        if ! (w.visited)
            depthFirst_Graph(w)
}
```

a

C

a a

```
depthFirst_Graph(v){
   v.visited = true
   for each w such that (v,w) is in E
      if ! (w.visited)
        depthFirst_Graph(w)
}
```



```
f
c c
a a a
```

```
depthFirst_Graph(v){
   v.visited = true
   for each w such that (v,w) is in E
      if ! (w.visited)
        depthFirst_Graph(w)
}
```


Call Tree

root

Unlike tree traversal for rooted tree, a graph traversal started from some arbitrary vertex does not necessarily reach all other vertices.

Knowing which vertices can be reached by a path from some starting vertex is itself an important problem. You will learn about such graph `connectivity' problems in COMP 251.

The order of nodes visited depends on the order of nodes in the adjacency list.

Adjacency List

What is the call tree for depthFirst(a)?

(Do it in your head.)

call tree for depthFirst(a)

Q: Can we do non-recursive graph traversal?

Q: Can we do non-recursive graph traversal?

A: Yes, similar to tree traversal: Use a stack or queue.

Recall: depth first tree traversal (with a slight variation)

```
treeTraversalUsingStack(root){
   initialize empty stack s
   visit root
   s.push(root)
   while s is not empty {
      cur = s.pop()
      for each child of cur{
         visit child
         s.push(child)
```

Visit a node *before* pushing it onto the stack. (Preorder)

Every node in the tree gets visited, pushed, and then popped.

Recall that visits occur down right side first.

Generalize to graphs...

```
graphTraversalUsingStack(v){
  initialize empty stack s
  v.visited = true
  s.push(v)
  while (!s.empty) {
    u = s.pop()
    for each w in u.adjList{
                                   // The only new part. Why?
      if (!w.visited){
         w.visited = true
         s.push(w)
```


a b 'a' is popped. 'b' and 'd' are pushed.

d e 'd' is popped. 'e' and 'g' are pushed.
a b b

g h
d e e 'g' is popped. 'h' is pushed.
a b b b

'h' is popped. 'i' is pushed.

'i' is popped. 'f' is pushed.

27

'f' is popped. 'c' is pushed.

g h i f c d e e e e e e a b b b b b b b Order of nodes visited (push order): abdeghifc

Recall: breadth first tree traversal

for each level i visit all nodes at level i


```
treeTraversalUsingQueue(root){
  initialize empty queue q
  q.enqueue(root)
  while q is not empty {
     cur = q.dequeue()
     visit cur
     for each child of cur
        q.enqueue(child)
```

Breadth first graph traversal

```
graphTraversalUsingQueue(v){
  initialize empty queue q
  v.visited = true
  q.enqueue(v)
  while (! q.empty) {
    u = q.dequeue()
    for each w in u.adjList{
      if (!w.visited){
         w.visited = true
         q.enqueue(w)
```

graphTraversalUsingQueue(c)

<u>queue</u>

C

graphTraversalUsingQueue(c)

queue

C

f

graphTraversalUsingQueue(c)

queue

C

f

be

Both 'b', 'e' are visited and enqueued before 'b' is dequeued.

graphTraversalUsingQueue(c)

queue

C

f

be

9

graphTraversalUsingQueue(c)

It defines a tree whose root is the starting vertex. It finds the shortest path (number of vertices) to all vertices reachable from starting vertex.

a bd dce

a bd dce ceg

dce ceg

Note order of nodes visited: We get paths of length 1, then paths of length 2, etc. i.e. breadth first.

dce ceg

Recall: How to implement a Graph class in Java?

```
class Graph<T> {
  HashMap< String, Vertex<T> > vertexMap;
  class Vertex<T> {
     ArrayList<Edge> adjList;
                       element;
     boolean
                      visited;
  class Edge {
    Vertex endVertex;
    double
                  weight;
```

HEADS UP! Prior to traversal,

for each w in V w.visited = false How to implement this?

```
HEADS UP! Prior to traversal, ....
for each w in V
w.visited = false

How to implement this?
class Graph<T> {
    HashMap< String, Vertex<T> > vertexMap;
    public void resetVisited() {
```

```
HEADS UP! Prior to traversal, ....
```

```
for each w in V
w.visited = false

How to implement this?
```

```
class Graph<T> {
    HashMap< String, Vertex<T>> vertexMap;
    :
    public void resetVisited() {
        for( Vertex<T> v: vertexMap.values() ){
            v.visited = false;
        }
}
```

TODO

Non-linear Data Structures

- 22. rooted trees
- 23. tree traversal
- 24. binary trees e.g. expression trees
- 25. binary search trees
- 26. priority queue, heaps 1
- 27. heaps 2
- 28. maps, hash codes
- 29. hash maps
- 30. graphs
- 31. graph traversal (breadth vs depth first)
- 32. graph applications: Google page rank, garbage collection

next _ lecture

Mathematical Tools for Analysis of Algorithms

- 33. recurrences 1 back substitution method, examples
- 34. recurrences 2 mergesort, quicksort
- 35. big O 1 formal big O definition
- 36. big O 2 rules for big O, big Omega, some incorrect proofs
- 37. big O 3 big Theta, best and worst case, limits rules