Frequency Response Techniques in Feedback Control Systems

https://github.com/mertankarali/Lecture-Notes/tree/master/METU-EE302/Frequency_Response

Part I - Polar Plot Part II - Nyquist Plot

Part III - Nyquist Stability

Nyquist Stability for Feedback Systems

Nyquist Stability for Feedback Systems

Assumptions

- $G_{OL}(s)$ is a minimum-phase system, i.e.
 - No poles/zeros in the Open Right Half Plane

$$-\lim_{\omega\to\infty} \left[\frac{G_{OL}(s)}{s}\right]_{s=\mathrm{J}\omega} = 0$$

- The feed-back system is Type 0-2
- Polar plot of $G_{OL}(j\omega)$ crosses the negative real-axis at most once.

Assumptions

- $G_{OL}(s)$ is a minimum-phase system, i.e.
 - No poles/zeros in the Open Right Half Plane
 - $-\lim_{\omega \to \infty} \left[\frac{G_{OL}(s)}{s} \right]_{s=J\omega} = 0$
- The feed-back system is Type 0-2
- Polar plot of $G_{OL}(j\omega)$ crosses the negative real-axis at most once.

Assumptions ⇒ Nyquist Stability

Def: T(s) is BIBO stable, if the Nyquist plot of $G_{OL}(s)$ does not encircle (-1+0j)

