Chapter 7

Limited dependent variables: classification

modeling binary, nominal, ordinal and count data

Modeling binary variables

Practical question: a bank should decide about granting loans to new clients, i.e. forecast of the solvency

$$Y_i = \begin{cases} 0, & \text{the client } i \text{ is solvent} \\ 1, & \text{the client } i \text{ is insolvent} \end{cases}$$

 X_{1i} - debt-to-income ratio ($\times 100$);

 X_{2i} — years with the current employer;

 X_{3i} - other debts (in 1000 Euro);

 X_{4i} – age (in years).

Question: can we use a linear regression model for binary variales? \leadsto linear probability model

Linear Prob.-model

$$Y_i = \beta_0 + \beta_1 \cdot X_i + u_i$$

 \bullet (+) the forecast \hat{Y}_i can be seen as probability

e forecast
$$\hat{Y}_i$$
 can be seen as probability
$$E(Y_i|X_i) = 1 \cdot P(Y_i = 1|X_i) + 0 \cdot P(Y_i = 0|X_i) = p_i$$

- (-) \hat{Y}_i may lie outside of [0,1]
- ei=10-12-12.V • (-) R^2 is useless as a goodness-of-fit measure
- (-) the residuals are not normally distributed
- (-) $Var(Y_i|X_i) = p_i(1-p_i) \neq const \rightsquigarrow heteroscedastic$

Transition to Logit/Probit

Let Y_i be the observed binary variable and Y_i^* the corresponding unobserved metric variable. For Y_i^* it holds:

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i = X_i' \beta + u_i.$$

Example: Y_i^* is an unobserved solvency of the client i with one can always

$$Y_i = 1 \text{ if } Y_i^* > 0 \text{ and } Y_i = 0 \text{ if } Y_i^* \le 0.$$

$$P(Y_i = 1 | \mathbf{X}_i) = P(Y_i^* > 0 | \mathbf{X}_i) = P(\mathbf{x}_i' \boldsymbol{\beta} + u_i > 0 | \mathbf{X}_i)$$

$$= P(-u_i < \mathbf{X}_i' \boldsymbol{\beta} | \mathbf{X}_i) = F(\mathbf{X}_i' \boldsymbol{\beta}), \rightarrow color of$$
The uniquely \mathbf{X}_i

where $F(\cdot)$ is the cdf of the residuals.

- $F(z) = \frac{1}{1+e^{-z}}$ the cdf of the logistic distribution \rightsquigarrow logit
- F(z) the cdf of the normal distribution \rightsquigarrow probit

or his Bod click

Logistic regression

Idea: transformation with the logistic function

Note: Alternatively we may use the CDF $\Phi(z_i)$ of $N(0,1) \rightsquigarrow$ probit-model

+ /3 x + 4. =) const le simulal mal

Note: interpretation of the parameters is different than in case of LR

• The effect of a change in x_{ik} depends on x_i ab:

$$\frac{\partial P(X_i = 1)}{\partial x_{ik}} - \frac{\partial Y_i}{\partial x_{ik}} = \frac{\partial F(x_i'\beta)}{\partial x_{ik}} = \underbrace{\begin{pmatrix} e^{x_i'\beta} \\ (1 + e^{x_i'\beta}) \end{pmatrix}^2}_{i} \beta_k$$

- The direction of change in $P(Y_i = 1)$ that arises due to a change in x_{ik} has the same sign as β_k for a probability of the same sign as β_k

$$z_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i1}x_{i2} + \beta_{3}x_{i2}$$

$$\frac{\partial F(x_{i}'\beta)}{\partial x_{i1}} = \frac{e^{z_{i}}}{(1 + e^{z_{i}})^{2}} \cdot (\beta_{1} + \beta_{2}x_{i2})$$

• Odds are helpful for interpretation (logit only!)

Cold = 2 = 12.6 of instruct

in trice the p-16 of this fract

$$Odds = \frac{P(Y=1|X)}{P(Y=0|X)} = e^{z}$$

$$|| Logit(z) Odds P(Y=1|X)|$$

$$|| \beta > 0 || rises by \beta rises by e^{\beta} > (rises)$$

$$|| \beta < 0 || falls by \beta falls by e^{\beta} = 1$$

Estimation of the parameters: logit

The parameters are estimated using ML:

$$L = \prod_{i=1}^{n} \underbrace{\left(\frac{1}{1+e^{-z_i}}\right)^{y_i}} \underbrace{\left(1-\frac{1}{1+e^{-z_i}}\right)^{1-y_i}} \longrightarrow max, \text{ w.r.t. } \beta_0, \dots, \beta_k.$$

to get aid of polices and get suns This simplifies to

$$\frac{\partial \log L(\beta)}{\partial \beta} = \sum_{i=1}^{n} \left[y_i - \frac{e^{z_i}}{1 + e^{z_i}} \right] x_i = \sum_{i=1}^{n} \left[y_i - \left(1 - \frac{1}{1 + e^{z_i}} \right) \right] x_i = \mathbf{0}$$
which leads to the 1st order conditions:

which leads to the 1st order conditions:

$$\sum_{i=1}^{n} \hat{p}_i \boldsymbol{x}_i = \sum_{i=1}^{n} y_i \boldsymbol{x}_i$$

Estimation of the parameters: probit

Again ML:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{N} \underbrace{\Phi(\boldsymbol{x}_{i}'\boldsymbol{\beta})^{y_{i}}}_{P(Y_{i}=1)} \cdot \underbrace{\left(1 - \Phi(\boldsymbol{x}_{i}'\boldsymbol{\beta})\right)^{1-y_{i}}}_{P(Y_{i}=0)} \longrightarrow max, \text{ w.r.t. } \beta_{0}, \dots, \beta_{K}.$$

This simplifies to

$$\frac{\partial \log L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{N} \left[y_i \frac{\phi(z_i)}{\Phi(z_i)} + (1 - y_i) \frac{-\phi(z_i)}{1 - \Phi(z_i)} \right] \boldsymbol{x}_i = \boldsymbol{0}.$$

It can be shown that (a general ML result):

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\longrightarrow} \mathcal{N}\left(\mathbf{0}, E\left[\frac{\partial^2 \log L}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right]\right)$$

Note:

- In contrary to the LR the estimation is always numeric.
- Likelihood-Ratio tests can be used to check the significance of the parameters.
- \mathbb{R} : glm(y \sim X,data=data, family=binomial(logit))

Example: a data set with 700 observations Rese Sale 433.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.434785 0.482326 -2.975 0.00293 ** 0.121391 0.019023 6.381 1.76e-10 *** debtinc

employer -0.161795 0.023742 -6.815 9.44e-12 *** 0.093460 0.045045 2.075 0.03801 * debts

age

$$\hat{\beta}_{i} = 0.121 > 0 \Rightarrow i \left\{ \begin{array}{c} \text{define incoms}, \text{ frem Park of involving inverse} \\ \text{years with current employer debts} \end{array} \right. \left\{ \begin{array}{c} \text{destine employer debts} \\ \text{debtine} \end{array} \right. \left\{ \begin{array}{c} \text{debtine employer} \\ \text{debts} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{debtine} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{ \begin{array}{c} \text{destine employer} \\ \text{destine employer} \end{array} \right\} \left\{$$

(*) - significant with $\alpha = 0.05$

) - Significant with
$$\alpha = 0.05$$

2,26

Forecasts:

Goodness of the model

Problem: classical measures, such as R^2 , cannot be used \rightarrow pseudo- R^2 ; classification tables; graphical measures (ROC-curve)

- pseudo- R^2 :
 - Let LL_0 be the Log-Likelihood of the null model $(b_1 = \cdots = b_k = 0)$

Let
$$LL_0$$
 be the Log-Likelihood of the null model $0 = \cdots = b_k = 0$

by Likelihood $0 = \cdots = b_k = 0$

by Let LL_0 $= \sum_{i=1}^N y_i \log(N_1/N) + \sum_{i=1}^N (1-y_i) \log(1-N_1/N)$

The sample of hand.

 $N_1 \log(N_1/N) + N_0 \log(N_0/N)$
 $N_1 \log(N_1/N) + N_0 \log(N_0/N)$

- Let LL_v be the Log-Likelihood of the full model (with all variables)
- Let LL_s be the Log-Likelihood of the saturated model (model with perfect fit, here $LL_s=0$ Prote 6. = 1 => log-prot = 0

- Deviance: $D = -2 \cdot LL_v$ (close 0)
- Cox and Snell R^2 : $1 (L_0/L_v)^{2/n}$
- Mc-Faddens- R^2 : $1 LL_v/LL_0$ (starting from 0.4)

Null deviance: 804.36 on 699 degrees of freedom Residual deviance: 626.49 on 695 degrees of freedom

- > library("DescTools")
- > PseudoR2(logit.model, which="all")

McFadden	McFaddenAdj	CoxSnell	Nagelkerke
0.22113546	0.20870328	0.22438958	0.32849894
AldrichNelson	VeallZimmermann	Effron	
0 07170058	0 27698049	0 24041479	

0.07170058 0.27698049 0.24041479

McKelveyZavoina Tjur AIC BIC 0.38471667 0.24430962 636.49076003 659.24616170

logLik logLik0 G2 -313.24538001 -402.18210244 177.87344485

A not a very good woll lixe

l'220-25%

• Classification table

		predicted		of truly 6-d
		$\hat{Y} = 1$	$\hat{Y} = 0$	
truth	1	$n_{11} = TP$	$n_{01} = FN$	$n_{\cdot 1} = P = N_{44} \cdot N_{01}$
or won	0	$n_{10} = FP$	$n_{00} = TN$	$n_{\cdot 0} = N_{\sim N_{\cdot 0}}$
		n_1 .	n_0 .	J
				1 1 1 mundow

Let $\hat{y}_i = 1$ if $P(Y_i = 1 | X_i) > 0.5$ and 0 else.

Board looks interest
$$\frac{\hat{Y}=1}{Y=1} \quad \frac{\hat{Y}=0}{Y=1}$$
 Sound you have the could be and food die in $Y=0$ 38 479

$$479+72$$
/700 = $78,71\%$ are correctly predicted. = in 18/2 of sections of sections are

But: there are 73,86% solvent clients in the sample. The obove 30.

Quaestion: is the threshold 0.5 a good choice?

. I I munto

Client con 2 co. 1 Mad Read De D Soul Dell gre a wrect district 1 25 % of coes, occase there are 24° of good clients

Goodness of the model and the choice of the threshold

• ROC (receiver operating characteristics), Lift and Gain curves are used to visualize and to quantify the goodness of the classification algorithms.

sensitivity =
$$\frac{n_{11}}{n_{\cdot 1}} = \frac{n_{11}}{n_{11} + n_{01}}$$

specifity = $\frac{n_{00}}{n_{\cdot 0}} = \frac{n_{00}}{n_{10} + n_{00}}$

Sensitivity: the fraction of correctly classified 1-values

among all true 1-objects.

Specificity: the fraction of correctly classified 0-values

among all true 0-object.

- Sensitivity= 72/(72 + 111) = 0.39 only 39% of insolvent clients are classified as insolvent
- Specifity= 479/(479 + 38) = 0.92 92% of solvent clients are classified as solvent

our boil is good in identifying good clients, but the in identifying Bod clients really degerous

PPV or PV+ =
$$\frac{n_{11}}{n_{1.}} = \frac{n_{11}}{n_{11} + n_{10}}$$

NPV or PV- = $\frac{n_{00}}{n_{0.}} = \frac{n_{00}}{n_{01} + n_{00}}$

PPV: the fraction of correctly classified 1-values among all objects classified as 1.

NPV: the fraction of correctly classified 0-values among all objects classified as 0.

(PPV-positive predicted value, NPV-negative predicted value)

- PPV= 72/(72+38)=0.65 only 65% of all as insolvent classified clients are really insolvent
- NPV= 479/(479+111)=0.81 81% of all as solvent classified clients are really solvent

ROC-curve: senstitivity values as a function of specifity

- The steeper the function, the better the algorithm. ROC-value is the square under the curve.
- If the curve is close to the diagonal, then the algorithm is as good as random assignments.

R: roc-function from the pROC-package

Now let $\hat{y}_i = 1$ if $P(Y_i = 1 | X_i) > 0.288$ and 0 else.

> confusionMatrix(as.numeric(Z.logit\$fitted.values>0.288), y)

40 => bod -s good (was (11) =) good 115 00 good so Bod (m 72) =) B.1

Reference 0 402 1 115 143

Prediction 0

Confusion Matrix and Statistics

143
Accuracy: 0.7786 => (402+143)/700. Closs & Cefse
95% CT : (0.746 0.000)

No Information Rate: 0.7386

LACC > NIRJ : 0.008201
Sensitivity: 0.7776 a much better a roll is letter in identifying God Specificity: 0.7814 => worse in classify fook cliests. P-Value [Acc > NTR] : 0.008201

Pos Pred Value: 0.9095 Neg Pred Value: 0.5543

Gain-curve:

- If Gain equals 40% for 20%, this implies that if 20% of the clients are classified as insolvent, then the algorithm will detect 40% of really insolvent clients.
- The digonal shows a model-free classification: If 20 % of the clients are classified as insolvent, then the algorithm detects 20% of really insolvent clients.
- The steeper the curve, the better (with a single kink).

R: gains-package

Lift curve: how much better is the predictive model compared to the model free classification?

• If lift is 2.1 for 20%, this implies that the model detection rate of insolvent clients is larger by 2.1 compared to model-free classification.

The CART method can be applied to binary data: classification trees

> confusionMatrix(as.numeric(predict(rpart.kredit) >0.192), v) Confusion Matrix and Statistics

Reference Prediction 0 420

> 1 97 143 Accuracy: 0.8043

95% CI: (0.7729, 0.8331) No Information Rate: 0.7386 P-Value [Acc > NIR] : 2.822e-05

Kappa: 0.5395 Mcnemar's Test P-Value : 1.715e-06 Sensitivity: 0.8124

> Specificity: 0.7814 Pos Pred Value: 0.9130

Neg Pred Value: 0.5958

16: No1 = N10 = 0

Tost of

, de lont

Modelling nominal data

Practical question:

- Choice of the political party depending of the characteristics of the voters;
- Choice of a product brand depending on the characteristics of the client;

Example:

```
mode - "car", "air", "train", oder "bus"
choice - decision
wait - waiting time, 0 for "car"
vcost - variable costs
travel - time
gcost - total costs
income - income
size - number of persons
```


	individua	l mode	choice	wait	vcost	travel	gcost	income	size
1	1	air	no	69	59	100	70	35	1
2	1	train	no	34	31	372	71	35	1
3	1	bus	no	35	25	417	70	35	1
4	1	car	yes	0	10	180	30	35	1
5	2	air	no	64	58	68	68	30	2
6	2	train	no	44	31	354	84	30	2
		any can							
		wife's cer)						

Multinomial logit model

For the simple logit model it holds:

$$P(Y=1|\mathbf{x}) = \frac{exp(\mathbf{x}'\boldsymbol{\beta})}{1 + exp(\mathbf{x}'\boldsymbol{\beta})} = \frac{exp(\mathbf{x}'\boldsymbol{\beta})}{1 + exp(\mathbf{x}'\boldsymbol{\beta})} = \mathbf{x}'\boldsymbol{\beta}$$

$$\ln\left(\frac{P(Y=0|\mathbf{x})}{P(Y=1|\mathbf{x})}\right) = \mathbf{x}'\boldsymbol{\beta}$$

For the
$$k$$
 categories of Y we define:

$$\ln(\text{odd}) = \ln\left(\frac{P(Y=r|x)}{P(Y=\underline{k}|x)}\right) = x'\beta_r, \quad r=1,...,k-1$$

with

$$P(Y = r | \boldsymbol{x}) = \frac{exp(\boldsymbol{x}'\boldsymbol{\beta}_r)}{1 + \sum_{s=1}^{k-1} exp(\boldsymbol{x}'\boldsymbol{\beta}_s)}, \quad r = 1, ..., k-1$$

$$P(Y = k | \boldsymbol{x}) = \frac{1}{1 + \sum_{s=1}^{k-1} exp(\boldsymbol{x}'\boldsymbol{\beta}_s)}.$$

One category, i.e. the k-th, is the reference category.

Note:

- Estimation via ML assuming independence of the observations. This is a questionable assumption:
 - similar categories;
 - odds do not depend on other categories, etc.
 - Solution: Hausmann/McFadden test
- Goodness-of-fit, tests as for logit.

Global and category specific variables

specific variables
$$x'\beta_r \mapsto x'_{glob}\beta_r^* + x'_{spec,r}\alpha$$
 good

• Global variables (income, number of persons) do not depend on the categories and have individual parameters for each category: $x'_{alab}\beta_r^*$.

The sign of the parameters cannot be interpreted.

• The category specific variables (waiting time, costs) depend on the categories and are evaluated relatively to the reference category.

$$(\boldsymbol{x}_{spec,r} - \boldsymbol{x}_{spec,k})' \boldsymbol{\alpha}$$
 or $\boldsymbol{x}_{spec,r}' \boldsymbol{\alpha}$

The sign of the parameters can be interpreted.

Let *gcost* and *wait* be category specific and *income* and *size* are global variables. The reference category is *air*.

```
> library("mlogit")
```

> mlogit(choice~wait+gcost|income+size, ...)

1.0392585

P(4=air) A with higher income there is higher chance of there of a plane then

Coefficients:

car:size

```
Estimate Std. Error t-value Pr(>|t|)
                  -2.3115942 0.7525161 -3.0718 0.0021276 **
train:(intercept)
bus:(intercept)
                 -3.4504941 0.9064886 -3.8064 0.0001410 ***
car:(intercept)
                 -7.8913907 0.9880615 -7.9867 1.332e-15 ***
wait.
                 -0.1013180 0.0112207 -9.0296 < 2.2e-16 ***
                 -0.0197064 0.0053844 -3.6599 0.0002523 ***
gcost
train:income
                 -0.0589804
                             0.0154532 -3.8167 0.0001352 ***
bus:income
                 -0.0277037
                              0.0169812 -1.6314 0.1027991
car:income
                 -0.0041153
                             0.0127301 -0.3233 0.7464866
train:size
                  1.3289497 0.3141683 4.2301 2.336e-05 ***
bus:size
                  1.0090796
                             0.3952899 2.5528 0.0106874 *
```

Log-Likelihood: -176.77 McFadden R^2: 0.37705

Likelihood ratio test : chisq = 213.98 (p.value = < 2.22e-16)

were people =) light clemes for train, car, bus.

0.2665513 3.8989 9.663e-05 ***

With the estimated paremeters we can estimate the probabilities $P(Y_i = r | \mathbf{x}_i)$ for all r.

					Kerson by
		train	bus	car	D.C.
[1,]	0.2368302	0.00000000	0.24496423	0.5182056) · Cep
[2,]	0.2083323	0.27785076	0.00000000	0.5138170	
[3,]	0.0000000	0.12686485	0.23058033	0.6425548	
[4,]	0.1151004	0.05063597	0.02141839	0.8128452	
		0.20694648			
[6,]	0.1316850	0.36965292	0.26144217	0.2372200	
		train.			

Ordered response models

Aim: Y can take M different ordered (!) values (credit ratings, grades, income classes, etc)

Using a single latent variable we can specify

$$Y_i^* = x_i'\beta + u_i$$

$$Y_i = j \text{ if } \gamma_{j-1} < Y_i^* \le \gamma_j$$

for some unknown threshold values γ_j with $\gamma_0 = -\infty$ and $\gamma_M = \infty$.

Assuming logistic cdf for u_i we obtain ordered logit model and assuming normality we obtain ordered probit model.

Example: a (simplified) rating of companies - Y = 1 - lowest, Y = 2 average, Y=3 - highest

```
MARKET_VALUE DIV_PER_SHR TOTAL_DEBT rating
-0.08911931 -0.08063048 -0.02276501
-0.09350059 -0.08148114 -0.14012151
-0.09452652 -0.08019333 -0.13869093
-0.09633656 -0.08090222 -0.13784721
-0.09254201 -0.08130392 -0.13822051
0.95192265 -0.06091170 13.33345544
                           without intercept.
```

Stenderdernal

$$Y^*=x'eta+u$$

$$Y=1 \quad \text{if} \quad y^*\leq \gamma_{1|2}$$

$$=2 \quad \text{if} \quad \gamma_{1|2}< y^*\leq \gamma_{2|3}$$

$$=3 \quad \text{if} \quad \gamma_{2|3}< y^*$$

Assuming normal error terms we can state the corresponding prob's
$$P(Y_i \leq k | \boldsymbol{x}_i) = P(Y_i^* \leq \gamma_{(k-1)|k} | \boldsymbol{x}_i) = \Phi(\gamma_{(k-1)|k} - \boldsymbol{x}_i'\boldsymbol{\beta})$$

$$P(Y_i = 1 | \boldsymbol{x}_i) = P(Y_i^* \leq \gamma_{1|2} | \boldsymbol{x}_i) = \Phi(\gamma_{1|2} - \boldsymbol{x}_i'\boldsymbol{\beta})$$

$$P(Y_i = 3 | \boldsymbol{x}_i) = P(Y_i^* > \gamma_{2|3} | \boldsymbol{x}_i) = 1 - \Phi(\gamma_{2|3} - \boldsymbol{x}_i'\boldsymbol{\beta})$$

$$P(Y_i = 2 | \boldsymbol{x}_i) = P(\gamma_{1|2} < Y_i^* \leq \gamma_{2|3} | \boldsymbol{x}_i) = \Phi(\gamma_{2|3} - \boldsymbol{x}_i'\boldsymbol{\beta}) - \Phi(\gamma_{1|2} - \boldsymbol{x}_i'\boldsymbol{\beta})$$

The log-likelihood function is then given by

$$LL(\boldsymbol{eta}|oldsymbol{X}) = \sum_{i=1}^{N} \log P(Y_i = y_i|oldsymbol{x}_i)
ightarrow max, ext{ w.r.t. } oldsymbol{eta}_i$$

The inferences follow in a similar fashion as for the simple logit.

P1 = 2,14 > 0 =) investig market schen inverses the probable to move to a letter a tegory. Example: Coefficients: Walue Std. Error t value Br = -96 = byth dordan intick MARKET_VALUE 2.14118 0.6803 3.1474 -0.70836 0.3189 - 2.2212DIV PER SHR TOTAL_DEBT 0.05553 0.1367 0.4063 Intercepts: Value Std. Error t value 1|2 -0.0309 0.0789 -0.3916 2|3 1.0181 0.0879 11.5797 1,01 Residual Deviance: 1480.408 AIC: 1490,408 > ordlog.pred = predict(ordlog, type="probs") > ordlog.pred 5.259901e-01 2.340771e-01 0.2399328 5.298021e-01 2.330434e-01 0.2371545 cstepri 5.305567e-01 2.328364e-01 0.2366069 5.313852e-01 2.326083e-01 0.2360065 5.292958e-01 2.331818e-01 0.2375224 5.453970e-02 8.685558e-02 0.8586047 the sid citegory

Modelling for count data

Practical questions:

- the number of claims by an insurance company per time period;
- the number of cosultations by a doctor per year;
- the number of insolvent companies per time period;
- occurrences of a seldom disease per season;
-

Note: the modelling is particularly important for small values of the target variable (rare events) and the distribution is heavily skewed.

Poisson distribution

The Poisson distribution is frequently used to model rare events

$$P(Y=y) = \begin{cases} \frac{\lambda^y}{y!}e^{-y}, & \text{for } y=0,1,2,\dots\\ 0, & \text{else}, \end{cases}$$

with the intensity parameter λ . It fulfils the equidispersion-condition:

Poisson regression model

Let Y_i, x_i be independent realisations, while Y_i follows Poisson distribution with

$$E(Y_i|x_i) = h(x_i'eta) = exp(x_i'eta) = \lambda_i$$
. Expected and in the person is dependent on interior of the parameters follows as for the logic model of the parameters follows as for the logic model.

- The interpretation of the parameters follows as for the logit model.
- The parameters are estimated via ML:

$$LL(\boldsymbol{\beta}) = \sum_{i=1}^{n} y_{i} \ln(h(\boldsymbol{x}_{i}'\boldsymbol{\beta})) - h(\boldsymbol{x}_{i}'\boldsymbol{\beta}) - \ln(y_{i}!) \longrightarrow max, \text{ w.r.t. } \boldsymbol{\beta}$$

$$\ell_{\boldsymbol{\beta}} \left(\frac{\left(h(\boldsymbol{x}_{i}'\boldsymbol{\beta}) \right)^{\boldsymbol{\beta}} - h(\boldsymbol{x}_{i}'\boldsymbol{\beta})}{\boldsymbol{y}_{i}!} \right)$$

Goodness of the model

To measure the goodness of the model we use deviance, i.e. the difference between the log-likelihood for the actual observations (perfect/saturiertes model) and the log-likelihood for the predicted values:

$$D = -2\sum_{i=1}^{n} [LL_i(\hat{Y}_i) - LL_i(Y_i)] = 2\sum_{i=1}^{n} [Y_i \ln(Y_i/\hat{\lambda}_i)] \sim \chi_{n-p}^2$$

Example: number of children

child - number of children

age - age of the woman

dur - years at school/college

nation - nationality, 0 = german, 1 = else

god - trust in God: $1 = \text{strong}, \dots, 6 = \text{never thought about it}$

univ - university degree: 0 = no, 1 = yes

mean(children\$child)
[1] 1.57297
> var(children\$child)
[1] 1.552769

Histogramm


```
glm(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
   dur + I(dur^2) + nation + god + univ, family = poisson(link = log),
   data = children)
```

Deviance Residuals:

Min Median Max -2.1514 -0.7559 0.0102 0.4832 3.6715

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -1.228e+01 1.484e+00 -8.277 < 2e-16 *** 9.359e-01 1.239e-01 7.553 4.26e-14 *** age I(age^2) -2.490e-02 3.786e-03 -6.577 4.80e-11 *** I(age^3) 2.842e-04 4.915e-05 5 781 7 42e-09 *** I(age⁴) -1.180e-06 2.297e-07 -5.137 2.80e-07 *** dur 1.118e-01 6.652e-02 1.680 0.092904 . -8.328e-03 2.997e-03 -2.779 0.005454 ** $I(dur^2)$ nation1 5 686e-02 1 386e-01 0.410.0.681599 god2 -1.025e-01 5.903e-02 -1.736 0.082599 tost using GLH -2.136 0.032683 * god3 -1.448e-01 6.780e-02 god4 -1.279e-01 7.088e-02 -1.805 0.071128 god5 -0.541 0.588569 -3.621e-02 6 695e-02 god6 -9.241e-02 7.505e-02 -1.231 0.218239 univ1 6.372e-01 1.729e-01 3 686 0 000228 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2067.4 on 1760 degrees of freedom Residual deviance: 1718.6 on 1747 degrees of freedom ATC: 5196.8

E(# of rids) = exp{po+pi-age2 + * A der + B dur = + B. I(god = 2) + B. I (god = 3) + 1 ... N. T(god = 6) . +

> God = 1. G y = .. B. Gol + . - will

Limited dependent variables: count data Boby Co. 1960 1920. 1950. Exp(Ny) many ter Kinder Kinder 20 80 80 2.0 # of ries / 10 10

Note: for the Poisson distribution it should hold $E(Y_i) = Var(Y_i) = \lambda_i$.

If this assumption is not fulfilled then we have overdispersion/underdispersion.

Solution: as an alternative we can use Quasi-Poisson- or the negative binomial distribution (negbin). Both distributions allow for different expectations and variances.

For negbin it holds:

$$P(Y_i|\boldsymbol{x}_i) = \frac{\Gamma(Y_i + \nu)}{\Gamma(\nu)\Gamma(Y_i + 1)} \cdot \left(\frac{\lambda_i}{\lambda_i + \nu}\right)^{Y_i} \cdot \left(\frac{\nu}{\lambda_i + \nu}\right)^{\nu}$$

with
$$E(Y_i) = \lambda_i = exp(\mathbf{x}_i'\boldsymbol{\beta})$$
 and $Var(Y_i) = \lambda_i + \lambda_i^2/\nu$.


```
glm(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
    dur + I(dur^2) + nation + god + univ, family = negative.binomial(theta = 1,
    link = log), data = children)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.56820 -0.50984 -0.01054 0.29990 1.90633
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.338e+01 1.267e+00 -10.555 < 2e-16 ***
           1.022e+00 1.075e-01 9.502 < 2e-16 ***
age
I(age^2)
           -2.730e-02 3.342e-03 -8.169 5.90e-16 ***
I(age^3)
          3.126e-04 4.395e-05 7.113 1.65e-12 ***
I(age^4)
           -1.302e-06 2.074e-07 -6.277 4.34e-10 ***
dur
          1.269e-01 5.990e-02 2.118 0.034294 *
I(dur^2)
           -9.577e-03 2.637e-03 -3.632 0.000289 ***
nation1
          8.309e-02 1.349e-01 0.616 0.538128
          -1.186e-01 5.849e-02
                                -2.028 0.042743 *
god2
god3
          -1.681e-01 6.642e-02
                                -2.530 0.011483 *
god4
          -1.563e-01 6.923e-02
                                -2.258 0.024075 *
god5
          -3.273e-02 6.602e-02 -0.496 0.620135
god6
           -1.205e-01 7.384e-02 -1.632 0.102848
univ1
           7.749e-01 1.581e-01 4.900 1.04e-06 ***
```

plets 1 to J =) alloy

[
E and Ver ho

262) Re different

(Dispersion parameter for Negative Binomial(1) family taken to be 0.3516262)

Null deviance: 1023.1 on 1760 degrees of freedom Residual deviance: 852.3 on 1747 degrees of freedom

AIC: 5911.9

