# Numerical Methods for Mean Field Games

# Lecture 3 Classical Numerical Methods: Part II FBPDE and FBSDE systems

Mathieu Laurière
New York University Shanghai

UM6P Vanguard Center, Université Cadi AYYAD, University Côte d'Azur, & GE2MI Open Doctoral Lectures July 5 – 7, 2023

#### Outline

## 1. Introduction

- 2. Methods for the PDE system
- Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
- 5. Conclusion

## Reminder: FB systems

- Here we will focus on the continuous time and space setting
- We have seen two types of forward-backward systems:
  - ▶ PDE systems: Kolmogorov-Fokker-Planck (KFP) and Hamilton-Jacobi-Bellman (HJB)
  - SDE systems of McKean-Vlasov (MKV) type
- We will describe methods based on both approaches
- There are two questions to design a numerical method:
  - ▶ Discretization → numerical scheme
  - ▶ Computation → algorithm

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t, x) - \nu \Delta u(t, x) + H(x, m(t, \cdot), \nabla u(t, x)), \\ 0 = \frac{\partial m}{\partial t}(t, x) - \nu \Delta m(t, x) - \operatorname{div}\left(m(t, \cdot)\partial_p H(\cdot, m(t), \nabla u(t, \cdot))\right)(x), \\ u(T, x) = g(x, m(T, \cdot)), & m(0, x) = m_0(x) \end{cases}$$

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t, x) - \nu \Delta u(t, x) + H(x, m(t, \cdot), \nabla u(t, x)), \\ 0 = \frac{\partial m}{\partial t}(t, x) - \nu \Delta m(t, x) - \operatorname{div}\left(m(t, \cdot)\partial_p H(\cdot, m(t), \nabla u(t, \cdot))\right)(x), \\ u(T, x) = g(x, m(T, \cdot)), \qquad m(0, x) = m_0(x) \end{cases}$$

#### Desirable properties for (1):

- Mass and positivity of distribution:  $\int_{\mathcal{S}} m(t,x) dx = 1, m \ge 0$
- lacktriangledown Convergence of discrete solution to continuous solution as mesh step o 0

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t, x) - \nu \Delta u(t, x) + H(x, m(t, \cdot), \nabla u(t, x)), \\ 0 = \frac{\partial m}{\partial t}(t, x) - \nu \Delta m(t, x) - \operatorname{div}\left(m(t, \cdot)\partial_p H(\cdot, m(t), \nabla u(t, \cdot))\right)(x), \\ u(T, x) = g(x, m(T, \cdot)), \qquad m(0, x) = m_0(x) \end{cases}$$

#### Desirable properties for (1):

- Mass and positivity of distribution:  $\int_{\mathcal{S}} m(t,x) dx = 1, m \ge 0$
- lacktriangle Convergence of discrete solution to continuous solution as mesh step o 0
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
- ⇒ Needs a careful discretization

Goal: (1) introduce and (2) solve a discrete version of the MFG PDE system:

$$\begin{cases} 0 = -\frac{\partial u}{\partial t}(t,x) - \nu \Delta u(t,x) + H(x,m(t,\cdot),\nabla u(t,x)), \\ 0 = \frac{\partial m}{\partial t}(t,x) - \nu \Delta m(t,x) - \operatorname{div}\left(m(t,\cdot)\partial_p H(\cdot,m(t),\nabla u(t,\cdot))\right)(x), \\ u(T,x) = g(x,m(T,\cdot)), \qquad m(0,x) = m_0(x) \end{cases}$$

#### Desirable properties for (1):

- Mass and positivity of distribution:  $\int_{\mathcal{S}} m(t,x) dx = 1, m \ge 0$
- lacktriangledown Convergence of discrete solution to continuous solution as mesh step o 0
- The KFP equation is the adjoint of the linearized HJB equation
- Link with optimality condition of a discrete problem
- ⇒ Needs a careful discretization

For (2): Once we have a discrete system, how can we compute its solution?

#### Outline

Introduction

## 2. Methods for the PDE system

- A Finite Difference Scheme
- Algorithms
- A Semi-Lagrangian Scheme
- 3. Optimization Methods for MFC and Variational MFG
- Methods for MKV FBSDE
- 5. Conclusion

#### Outline

- 1. Introduction
- 2. Methods for the PDE system
  - A Finite Difference Scheme
  - Algorithms
  - A Semi-Lagrangian Scheme
- 3. Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
- 5. Conclusion

#### Discretization

# Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010] Discretization:

- ullet For simplicity we consider the domain  $\mathbb{T}=$  one-dimensional (unit) torus.
- Let  $\nu = \sigma^2/2$ .
- We consider  $N_h$  and  $N_T$  steps respectively in space and time.
- Let  $h = 1/N_h$  and  $\Delta t = T/N_T$ . Let  $\mathbb{T}_h =$  discretized torus.
- We approximate  $m_0(x_i)$  by  $\rho_i^0$  such that  $h \sum_i \rho_i^0 = 1$ .

#### Discretization

# Semi-implicit finite difference scheme from [Achdou and Capuzzo-Dolcetta, 2010] Discretization:

- ullet For simplicity we consider the domain  $\mathbb{T}=$  one-dimensional (unit) torus.
- Let  $\nu = \sigma^2/2$ .
- We consider  $N_h$  and  $N_T$  steps respectively in space and time.
- Let  $h = 1/N_h$  and  $\Delta t = T/N_T$ . Let  $\mathbb{T}_h =$  discretized torus.
- We approximate  $m_0(x_i)$  by  $\rho_i^0$  such that  $h \sum_i \rho_i^0 = 1$ .

Then we introduce the following **discrete operators** : for  $\varphi \in \mathbb{R}^{N_T+1}$  and  $\psi \in \mathbb{R}^{N_h}$ 

• time derivative : 
$$(D_t \varphi)^n := \frac{\varphi^{n+1} - \varphi^n}{\Delta t}, \qquad 0 \le n \le N_T - 1$$

$$ullet$$
 Laplacian :  $(\Delta_h \psi)_i := -rac{1}{h^2} \left( 2 \psi_i - \psi_{i+1} - \psi_{i-1} 
ight), \qquad \qquad 0 \leq i \leq N_h$ 

$$ullet$$
 partial derivative :  $(D_h\psi)_i:=rac{\psi_{i+1}-\psi_i}{h}, \qquad \qquad 0\leq i\leq N_h$ 

$$ullet$$
 gradient :  $[
abla_h\psi]_i:=\left((D_h\psi)_i,(D_h\psi)_{i-1}
ight), \qquad \qquad 0\leq i\leq N_h$ 

#### Discrete Hamiltonian

For simplicity, we assume that the drift b and the costs f and g are of the form

$$b(x, m, \frac{\alpha}{\alpha}) = \frac{\alpha}{\alpha}, \qquad f(x, m, \frac{\alpha}{\alpha}) = L(x, \frac{\alpha}{\alpha}) + f_0(x, m), \qquad g(x, m) = g_0(x, m).$$

where  $x \in \mathbb{R}^d$ ,  $\alpha \in \mathbb{R}^d$ ,  $m \in \mathbb{R}_+$ . Then

$$H(x, m, p) = \max_{\alpha} \left\{ -L(x, \alpha) - \langle \alpha, p \rangle \right\} - f_0(x, m) = H_0(x, p) - f_0(x, m)$$

where  $H_0$  is the convex conjugate (also denoted  $L^*$ ) of L with respect to  $\alpha$ :

$$H_0(x,p) = L^*(x,p) = \sup_{\alpha} \{ \langle \alpha, p \rangle - L(x,\alpha) \}$$

For simplicity, we assume that the drift b and the costs f and g are of the form

$$b(x, m, \alpha) = \alpha,$$
  $f(x, m, \alpha) = L(x, \alpha) + f_0(x, m),$   $g(x, m) = g_0(x, m).$ 

where  $x \in \mathbb{R}^d$ ,  $\alpha \in \mathbb{R}^d$ ,  $m \in \mathbb{R}_+$ . Then

$$H(x, m, p) = \max_{\alpha} \left\{ -L(x, \alpha) - \langle \alpha, p \rangle \right\} - f_0(x, m) = H_0(x, p) - f_0(x, m)$$

where  $H_0$  is the convex conjugate (also denoted  $L^*$ ) of L with respect to  $\alpha$ :

$$H_0(x, p) = L^*(x, p) = \sup_{\alpha} \{ \langle \alpha, p \rangle - L(x, \alpha) \}$$

**Discrete Hamiltonian:**  $(x, p_1, p_2) \mapsto \tilde{H}_0(x, p_1, p_2)$  satisfying:

- Monotonicity: decreasing w.r.t.  $p_1$  and increasing w.r.t.  $p_2$ 
  - Consistency with  $H_0$ : for every x, p,  $\tilde{H}_0(x, p, p) = H_0(x, p)$
  - Differentiability: for every  $x, (p_1, p_2) \mapsto \tilde{H}_0(x, p_1, p_2)$  is  $\mathcal{C}^1$
  - Convexity: for every  $x, (p_1, p_2) \mapsto \tilde{H}_0(x, p_1, p_2)$  is convex

**Example:** if  $H_0(x, p) = |p|^2$ , a possible choice is  $\tilde{H}_0(x, p_1, p_2) = (p_1^-)^2 + (p_2^+)^2$ 

#### Discrete HJB

**Discrete solution:** We replace  $u, m : [0, T] \times \mathbb{T} \to \mathbb{R}$  by vectors

$$U, M \in \mathbb{R}^{(N_T+1) \times N_h}$$

**Discrete solution:** We replace  $u, m : [0, T] \times \mathbb{T} \to \mathbb{R}$  by vectors

$$U, M \in \mathbb{R}^{(N_T+1)\times N_h}$$

The HJB equation

$$\begin{cases} \partial_t u(t,x) + \nu \Delta u(t,x) + H_0(x, \nabla u(t,x)) = f_0(x, m(t,x)) \\ u(T,x) = g_0(x, m(T,x)) \end{cases}$$

is discretized as:

$$\begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(x_i, [D_h U^n]_i) = \mathbf{f}_0(x_i, M_i^{n+1}) \\ U_i^{N_T} = \mathbf{g}_0(x_i, M_i^{N_T}) \end{cases}$$

#### Discrete KFP

#### The KFP equation

$$\partial_t m(t,x) - \nu \Delta m(t,x) + \operatorname{div} \left( m(t,x) \partial_q H(x,m(t),\nabla u(t,x)) \right) = 0, \qquad m(0,x) = m_0(x)$$
 is discretized as

$$(D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^n, M^{n+1}) = 0, \qquad M_i^0 = \rho_i^0$$

#### The KFP equation

$$\partial_t m(t,x) - \nu \Delta m(t,x) + \operatorname{div} \left( m(t,x) \partial_q H(x,m(t),\nabla u(t,x)) \right) = 0, \qquad m(0,x) = m_0(x)$$
 is discretized as

$$(D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^n, M^{n+1}) = 0, \qquad M_i^0 = \rho_i^0$$

Here we use the discrete transport operator  $\approx -\operatorname{div}(\dots)$ 

$$\mathcal{T}_{i}(U,M) := \frac{1}{h} \begin{pmatrix} M_{i}\partial_{p_{1}}\tilde{H}_{0}(x_{i}, [\nabla_{h}U]_{i}) - M_{i-1}\partial_{p_{1}}\tilde{H}_{0}(x_{i-1}, [\nabla_{h}U]_{i-1}) \\ + M_{i+1}\partial_{p_{2}}\tilde{H}_{0}(x_{i+1}, [\nabla_{h}U]_{i+1}) - M_{i}\partial_{p_{2}}\tilde{H}_{0}(x_{i}, [\nabla_{h}U]_{i}) \end{pmatrix}$$

#### The **KFP equation**

$$\partial_t m(t,x) - \nu \Delta m(t,x) + \operatorname{div} \left( m(t,x) \partial_q H(x,m(t),\nabla u(t,x)) \right) = 0, \qquad m(0,x) = m_0(x)$$
 is discretized as

$$(D_t M_i)^n - \nu (\Delta_h M^{n+1})_i - \frac{\mathcal{T}_i(U^n, M^{n+1})}{(U^n, M^{n+1})} = 0, \qquad M_i^0 = \rho_i^0$$

Here we use the discrete transport operator  $\approx -\operatorname{div}(\dots)$ 

Intuition: weak formulation & integration by parts

$$\int_{\mathbb{T}} \operatorname{div} \left( m \partial_p H_0(x, \nabla u) \right) w = - \int_{\mathbb{T}} m \partial_p H_0(x, \nabla u) \cdot \nabla w$$

is discretized as

$$-h\sum_{i} \mathcal{T}_{i}(U, M)W_{i} = h\sum_{i} M_{i} \nabla_{q} \tilde{H}_{0}(x_{i}, [\nabla_{h} U]_{i}) \cdot [\nabla_{h} W]_{i}$$

## Discrete System - Properties

#### Discrete forward-backward system:

$$\begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(x_i, [D_h U^n]_i) = f_0(x_i, M_i^{n+1}), & \forall n \leq N_T - 1 \\ (D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^n, M^{n+1}) = 0, & \forall n \leq N_T - 1 \\ M_i^0 = \rho_i^0, & U_i^{N_T} = g_0(x_i, M_i^{N_T}), & i = 0, \dots, N_h \end{cases}$$

#### Discrete System - Properties

#### Discrete forward-backward system:

$$\begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(x_i, [D_h U^n]_i) = f_0(x_i, M_i^{n+1}), & \forall n \leq N_T - 1 \\ (D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^n, M^{n+1}) = 0, & \forall n \leq N_T - 1 \\ M_i^0 = \rho_i^0, & U_i^{N_T} = g_0(x_i, M_i^{N_T}), & i = 0, \dots, N_h \end{cases}$$

This scheme enjoys many nice properties, among which:

- It yields a monotone scheme for the KFP equation: mass and positivity are preserved
- Convergence to classical solution if monotonicity [Achdou and Capuzzo-Dolcetta, 2010, Achdou et al., 2012]
- Can sometimes be used to show existence of a weak solution [Achdou and Porretta, 2016]
- The discrete KFP operator is the adjoint of the linearized Bellman operator
- Existence and uniqueness result for the discrete system
- It corresponds to the **optimality condition** of a discrete optimization problem (details later)

#### Outline

- Introduction
- 2. Methods for the PDE system
  - A Finite Difference Scheme
  - Algorithms
  - A Semi-Lagrangian Scheme
- 3. Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
- 5. Conclusion

#### Algo 1: Fixed Point Iterations

```
Input: Initial guess (\tilde{M}, \tilde{U}); damping \delta(\cdot); number of iterations K
    Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
1 Initialize M^{(0)} = \tilde{M}^{(0)} = \tilde{M}, U^{(0)'} = \tilde{U}
2 for k = 0, 1, 2, \dots, K - 1 do
           Let U^{(k+1)} be the solution to:
             \begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(\mathbf{x}_i, [D_h U^n]_i) = \mathbf{f}_0(\mathbf{x}_i, \tilde{M}_i^{(k), n+1}), & n \leq N_T - 1 \\ U_i^{N_T} = \mathbf{g}_0(\mathbf{x}_i, \tilde{M}_i^{(k), N_T}) \end{cases}
           Let M^{(k+1)} be the solution to:
4
                      \begin{cases} (D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^{(k+1),n}, M^{n+1}) = 0, & n \le N_T - 1 \\ M_i^0 = \rho^0. \end{cases}
           Let \tilde{M}^{(\mathtt{k}+1)} = \delta(\mathtt{k})\tilde{M}^{(\mathtt{k})} + (1-\delta(\mathtt{k}))M^{(\mathtt{k}+1)}
6 return (M^{(K)}, U^{(K)})
```

#### Algo 1: Fixed Point Iterations

```
Input: Initial guess (\tilde{M}, \tilde{U}); damping \delta(\cdot); number of iterations K
                   Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
               1 Initialize M^{(0)} = \tilde{M}^{(0)} = \tilde{M}, U^{(0)'} = \tilde{U}
               2 for k = 0, 1, 2, \dots, K - 1 do
                           Let U^{(k+1)} be the solution to:
                             \begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(\mathbf{x}_i, [D_h U^n]_i) = \mathbf{f}_0(\mathbf{x}_i, \tilde{M}_i^{(k), n+1}), & n \leq N_T - 1 \\ U_i^{N_T} = \mathbf{g}_0(\mathbf{x}_i, \tilde{M}_i^{(k), N_T}) \end{cases}
                          Let M^{(k+1)} be the solution to:
               4
                                     \begin{cases} (D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \frac{\mathcal{T}_i}{\mathcal{T}_i} (U^{(k+1),n}, M^{n+1}) = 0, & n \le N_T - 1 \\ M_i^0 = \rho^0. \end{cases}
                          Let 	ilde{M}^{(\mathtt{k}+1)} = \delta(\mathtt{k}) 	ilde{M}^{(\mathtt{k})} + (1-\delta(\mathtt{k})) M^{(\mathtt{k}+1)}
               6 return (M^{(K)}, U^{(K)})
Remark: the HJB equation is non-linear
```

lacktriangle Idea 1: replace  $ilde{H}_0(x_i,[D_hU^n]_i)$  by  $ilde{H}_0(x_i,[D_hU^{(k),n}]_i)$ 

#### Algo 1: Fixed Point Iterations

```
Input: Initial guess (\tilde{M}, \tilde{U}); damping \delta(\cdot); number of iterations K
   Output: Approximation of (\hat{M}, \hat{U}) solving the finite difference system
1 Initialize M^{(0)} = \tilde{M}^{(0)} = \tilde{M}, U^{(0)} = \tilde{U}
2 for k = 0, 1, 2, \dots, K - 1 do
          Let U^{(k+1)} be the solution to:
           \begin{cases} -(D_t U_i)^n - \nu(\Delta_h U^n)_i + \tilde{H}_0(x_i, [D_h U^n]_i) = f_0(x_i, \tilde{M}_i^{(k), n+1}), & n \leq N_T - 1 \\ U_i^{N_T} = g_0(x_i, \tilde{M}_i^{(k), N_T}) \end{cases}
        Let M^{(k+1)} be the solution to:
                    \begin{cases} (D_t M_i)^n - \nu(\Delta_h M^{n+1})_i - \mathcal{T}_i(U^{(k+1),n}, M^{n+1}) = 0, & n \leq N_T - 1 \\ M^0 = o^0 \end{cases}
         Let \tilde{M}^{(k+1)} = \delta(k)\tilde{M}^{(k)} + (1 - \delta(k))M^{(k+1)}
6 return (M^{(K)}, U^{(K)})
```

Remark: the HJB equation is non-linear

- Idea 1: replace  $\tilde{H}_0(x_i, [D_h U^n]_i)$  by  $\tilde{H}_0(x_i, [D_h U^{(k),n}]_i)$
- Idea 2: use non linear solver to find a zero of  $\mathbb{R}^{N_h \times (N_T+1)} \ni U \mapsto \varphi(U) \in \mathbb{R}^{N_h \times N_T}$ ,  $\varphi(U) = \left(-(D_t U_i)^n \nu(\Delta_h U^n)_i + \tilde{H}_0(x_i, [D_h U^n]_i) \mathrm{f}_0(x_i, \tilde{M}_i^{(k), n+1})\right)_{i=0}^{n=0, \dots, N_T-1}$

# Sample code

#### Code

Sample code to illustrate: IPython notebook

https://colab.research.google.com/drive/1shJWSD2MA5Fo7\_rB625dAvNTdZS1a7bG?usp=sharing

- Finite difference scheme
- Solved by damped fixed point approach

# Algo 2: Newton's Method for FD System

**Idea:** Directly look for a zero of  $\varphi = (\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}})^{\top}$  with  $\varphi_{\mathcal{U}}$  and  $\varphi_{\mathcal{M}}$  s.t.

$$\begin{cases} \varphi_{\mathcal{U}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete HJB equation} \\ \varphi_{\mathcal{M}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete KFP equation} \end{cases}$$

$$\bullet \ \, \mathsf{Let} \, X^{(k)} = (U^{(k)}, M^{(k)})^\top$$

$$\bullet \ \ \text{Iterate:} \ X^{(k+1)} = X^{(k)} - J_{\varphi}(X^{(k)})^{-1} \varphi(X^{(k)})$$

## Algo 2: Newton's Method for FD System

**Idea:** Directly look for a zero of  $\varphi = (\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}})^{\top}$  with  $\varphi_{\mathcal{U}}$  and  $\varphi_{\mathcal{M}}$  s.t.

$$\begin{cases} \varphi_{\mathcal{U}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete HJB equation} \\ \varphi_{\mathcal{M}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete KFP equation} \end{cases}$$

- Let  $X^{(k)} = (U^{(k)}, M^{(k)})^{\top}$
- Iterate:  $X^{(k+1)} = X^{(k)} J_{\varphi}(X^{(k)})^{-1} \varphi(X^{(k)})$
- $\bullet$  Or rather:  $J_{\varphi}(X^{(k)})Y = -\varphi(X^{(k)}),$  then  $X^{(k+1)} = Y + X^{(k)}$

# Algo 2: Newton's Method for FD System

**Idea:** Directly look for a zero of  $\varphi = (\varphi_{\mathcal{U}}, \varphi_{\mathcal{M}})^{\top}$  with  $\varphi_{\mathcal{U}}$  and  $\varphi_{\mathcal{M}}$  s.t.

$$\begin{cases} \varphi_{\mathcal{U}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete HJB equation} \\ \varphi_{\mathcal{M}}(U,M) = 0 & \Leftrightarrow \ (U,M) \text{ solves discrete KFP equation} \end{cases}$$

- Let  $X^{(k)} = (U^{(k)}, M^{(k)})^{\top}$
- Iterate:  $X^{(k+1)} = X^{(k)} J_{\varphi}(X^{(k)})^{-1}\varphi(X^{(k)})$
- $\bullet \;$  Or rather:  ${\it J}_{\varphi}(X^{(k)})Y = -\varphi(X^{(k)}),$  then  $X^{(k+1)} = Y + X^{(k)}$

Key step: Solve a linear system of the form

$$\begin{pmatrix} A_{\mathcal{U},\mathcal{U}} & A_{\mathcal{U},\mathcal{M}} \\ A_{\mathcal{M},\mathcal{U}} & A_{\mathcal{M},\mathcal{M}} \end{pmatrix} \begin{pmatrix} U \\ M \end{pmatrix} = \begin{pmatrix} G_{\mathcal{U}} \\ G_{\mathcal{M}} \end{pmatrix}$$

where  $A_{\mathcal{U},\mathcal{M}}(U,M) = \nabla_U \varphi_{\mathcal{M}}(U,M), \quad A_{\mathcal{U},\mathcal{U}}(U,M) = \nabla_U \varphi_{\mathcal{U}}(U,M), \quad \dots$ 

#### Newton Method - Implementation

**Linear system** to be solved:  $\begin{pmatrix} A_{\mathcal{U},\mathcal{U}} & A_{\mathcal{U},\mathcal{M}} \\ A_{\mathcal{M},\mathcal{U}} & A_{\mathcal{M},\mathcal{M}} \end{pmatrix} \begin{pmatrix} U \\ M \end{pmatrix} = \begin{pmatrix} G_{\mathcal{U}} \\ G_{\mathcal{M}} \end{pmatrix}$ 

**Structure:**  $A_{\mathcal{U},\mathcal{M}}, A_{\mathcal{M},\mathcal{U}}$  are block-diagonal,  $A_{\mathcal{U},\mathcal{U}} = A_{\mathcal{M},\mathcal{M}}^{\top}$ , and

$$A_{\mathcal{U},\mathcal{U}} = \begin{pmatrix} D_1 & 0 & \dots & & & & 0 \\ -\frac{1}{\Delta t} \mathrm{Id}_{N_h} & D_2 & \ddots & 0 & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & 0 & -\frac{1}{\Delta t} \mathrm{Id}_{N_h} & D_{N_T} \end{pmatrix}$$

where  $D_n$  corresponds to the discrete operator

$$Z = (Z_{i,j})_{i,j} \mapsto \left(\frac{1}{\Delta t} Z_{i,j} - \nu(\Delta_h Z)_{i,j} + [\nabla_h Z]_{i,j} \cdot \nabla_p \tilde{H}_0(x_{i,j}, [\nabla_h U^{(k),n}]_{i,j})\right)_{i,j}$$

## Newton Method - Implementation

**Linear system** to be solved:  $\begin{pmatrix} A_{\mathcal{U},\mathcal{U}} & A_{\mathcal{U},\mathcal{M}} \\ A_{\mathcal{M},\mathcal{U}} & A_{\mathcal{M},\mathcal{M}} \end{pmatrix} \begin{pmatrix} U \\ M \end{pmatrix} = \begin{pmatrix} G_{\mathcal{U}} \\ G_{\mathcal{M}} \end{pmatrix}$  **Structure:**  $A_{\mathcal{U},\mathcal{M}}, A_{\mathcal{M},\mathcal{U}}$  are block-diagonal,  $A_{\mathcal{U},\mathcal{U}} = A_{\mathcal{M}}^{\top} {}_{\mathcal{M}}$ , and

 $A_{\mathcal{U},\mathcal{U}} = \begin{pmatrix} D_1 & 0 & \dots & 0 \\ -\frac{1}{\Delta t} \mathrm{Id}_{N_h} & D_2 & \ddots & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & 0 & -\frac{1}{\Delta t} \mathrm{Id}_{N_h} & D_{N_h} \end{pmatrix}$ 

where 
$$D_n$$
 corresponds to the discrete operator

$$Z = (Z_{i,j})_{i,j} \mapsto \left(\frac{1}{\Delta t} Z_{i,j} - \nu(\Delta_h Z)_{i,j} + [\nabla_h Z]_{i,j} \cdot \nabla_p \tilde{H}_0(x_{i,j}, [\nabla_h U^{(k),n}]_{i,j})\right)_{i,j}$$

**Rem.** Initial guess  $(U^{(0)}, M^{(0)})$  is important for Newton's method

- Idea 1: initialize with the ergodic solution
- lacktriangle Idea 2: continuation method w.r.t. u (converges more easily with a large viscosity)

See [Achdou, 2013] for more details.



Geometry of the room

Evacuation of a room with obstacles & congestion [Achdou and Laurière, 2020]



Initial density (left) and final cost (right)



Density in MFGame (left) and MFControl (right)

## Example: Exit of a Room – Remaining Mass



Remaining mass inside the room

### Outline

- Introduction
- 2. Methods for the PDE system
  - A Finite Difference Scheme
  - Algorithms
  - A Semi-Lagrangian Scheme
- 3. Optimization Methods for MFC and Variational MFG
- Methods for MKV FBSDE
- 5. Conclusion

### MFG Setup

- Scheme introduced by [Carlini and Silva, 2014]
- For simplicity: d=1, domain  $\mathcal{S}=\mathbb{R}$ ,  $\mathcal{A}=\mathbb{R}$
- ullet u=0, degenerate second order case also possible; see [Carlini and Silva, 2015]
- Model:

$$b(x, m, \alpha) = \alpha$$
  
$$f(x, m, \alpha) = \frac{1}{2} |\alpha|^2 + f_0(x, m), \qquad g(x, m)$$

where  $f_0$  and g depend on  $m \in \mathcal{P}_1(\mathbb{R})$  in a potentially non-local way

### MFG Setup

- Scheme introduced by [Carlini and Silva, 2014]
- For simplicity: d=1, domain  $\mathcal{S}=\mathbb{R}$ ,  $\mathcal{A}=\mathbb{R}$
- ullet u=0, degenerate second order case also possible; see [Carlini and Silva, 2015]
- Model:

$$b(x, m, \alpha) = \alpha$$
  
$$f(x, m, \alpha) = \frac{1}{2} |\alpha|^2 + f_0(x, m), \qquad g(x, m)$$

where  $f_0$  and g depend on  $m \in \mathcal{P}_1(\mathbb{R})$  in a potentially non-local way

MFG PDE system:

$$\begin{cases} -\frac{\partial u}{\partial t}(t,x) + \frac{1}{2}|\nabla u(t,x)|^2 = f_0(x,m(t,\cdot)), & \text{in } [0,T) \times \mathbb{R}, \\ \frac{\partial m}{\partial t}(t,x) - \operatorname{div}\left(m(t,\cdot)\nabla u(t,\cdot)\right)(x) = 0, & \text{in } (0,T] \times \mathbb{R}, \\ u(T,x) = g(x,m(T,\cdot)), & m(0,x) = m_0(x), \text{ in } \mathbb{R}. \end{cases}$$

# Representation of the Value Function

Dynamics:

$$X_t^{\alpha} = X_0^{\alpha} + \int_0^t \frac{\alpha(s)ds}{t}, \qquad t \ge 0.$$

• Representation formula for the value function given  $m = (m_t)_{t \in [0,T]}$ :

$$u[m](t,x) = \inf_{\alpha \in L^2([t,T];\mathbb{R})} \left\{ \int_t^T \left[ \frac{1}{2} |\alpha(s)|^2 + f_0(X_s^{\alpha,t,x}, m(s,\cdot)) \right] ds + g(X_T^{\alpha,t,x}, m(T,\cdot)) \right\},$$

where  $X^{\alpha,t,x}$  starts from x at time t and is controlled by  $\alpha$ 

### Discrete HJB equation

**Discrete HJB:** Given a flow of densities m,

$$\begin{cases} U_i^n = S_{\Delta t,h}[m](U^{n+1},i,n), & (n,i) \in [N_T - 1] \times \mathbb{Z}, \\ U_i^{N_T} = g(x_i,m(T,\cdot)), & i \in \mathbb{Z}, \end{cases}$$

where

•  $S_{\Delta t,h}$  is defined as

$$S_{\Delta t,h}[\mathbf{m}](W,n,i) = \inf_{\alpha \in \mathbb{R}} \left\{ \left( \frac{1}{2} |\mathbf{\alpha}|^2 + f_0(x_i,\mathbf{m}(t_n,\cdot)) \right) \, \Delta t + I[W](x_i + \mathbf{\alpha} \, \Delta t) \right\},$$

### Discrete HJB equation

**Discrete HJB:** Given a flow of densities m,

$$\begin{cases} U_i^n = S_{\Delta t, h}[m](U^{n+1}, i, n), & (n, i) \in \llbracket N_T - 1 \rrbracket \times \mathbb{Z}, \\ U_i^{N_T} = g(x_i, m(T, \cdot)), & i \in \mathbb{Z}, \end{cases}$$

where

•  $S_{\Delta t,h}$  is defined as

$$S_{\Delta t,h}[\mathbf{m}](W,n,i) = \inf_{\mathbf{\alpha} \in \mathbb{R}} \left\{ \left( \frac{1}{2} |\mathbf{\alpha}|^2 + f_0(x_i,\mathbf{m}(t_n,\cdot)) \right) \ \Delta t + I[W](x_i + \mathbf{\alpha} \ \Delta t) \right\},$$

• with  $I: \mathcal{B}(\mathbb{Z}) \to \mathcal{C}_b(\mathbb{R})$  is the **interpolation operator** defined as

$$I[W](\cdot) = \sum_{i \in \mathbb{Z}} W_i \beta_i(\cdot),$$

- where  $\mathcal{B}(\mathbb{Z})$  is the set of bounded functions from  $\mathbb{Z}$  to  $\mathbb{R}$
- and  $\beta_i = \left[1 \frac{|x-x_i|}{h}\right]_+$ : triangular function with support  $[x_{i-1}, x_{i+1}]$  and s.t.  $\beta_i(x_i) = 1$ .

### Discrete HJB equation - cont.

#### Before moving to the KFP equation:

• Interpolation: from  $U=(U_i^n)_{n,i}$ , construct the function  $u_{\Delta t,h}[m](x,t):[0,T]\times\mathbb{R}\to\mathbb{R},$ 

$$u_{\Delta t,h}[m](t,x) = I[U^{\left[\frac{t}{\Delta t}\right]}](x), \qquad (t,x) \in [0,T] \times \mathbb{R}.$$

### Discrete HJB equation - cont.

#### Before moving to the KFP equation:

• Interpolation: from  $U=(U_i^n)_{n,i}$ , construct the function  $u_{\Delta t,h}[m](x,t):[0,T]\times\mathbb{R}\to\mathbb{R},$ 

$$u_{\Delta t,h}[m](t,x) = I[U^{\left[\frac{t}{\Delta t}\right]}](x), \qquad (t,x) \in [0,T] \times \mathbb{R}.$$

• Regularization of HJB solution with a mollifier  $\rho_{\epsilon}$ :

$$u_{\Delta t,h}^{\epsilon}[m](t,\cdot) = \rho_{\epsilon} * u_{\Delta t,h}[m](t,\cdot), \qquad t \in [0,T].$$

# Discrete KFP equation: intuition

#### Eulerian viewpoint:

- focus on a location
- look at the flow passing through it
- evolution characterized by the velocity at (t, x)

#### Lagrangian viewpoint:

- focus on a fluid parcel
- look at how it flows
- ightharpoonup evolution characterized by the position at time t of a particle starting at x

# Discrete KFP equation: intuition

- Eulerian viewpoint:
  - focus on a location
  - look at the flow passing through it
  - evolution characterized by the velocity at (t, x)
- Lagrangian viewpoint:
  - focus on a fluid parcel
  - look at how it flows
  - evolution characterized by the position at time t of a particle starting at x
- Here, in our model:

$$X_t^{\alpha} = X_0^{\alpha} + \int_0^t \frac{\alpha(s)ds}{s}, \qquad t \ge 0.$$

Time and space discretization?

# Discrete KFP equation: intuition - diagram



Bottom: time  $t_n$ ; top: time  $t_{n+1}$ .

# Discrete KFP equation: intuition - diagram



Bottom: time  $t_n$ ; top: time  $t_{n+1}$ .

# Discrete KFP equation: intuition - diagram



Movement of the mass when using control  $v(t_n, x_i) = \alpha_i^n$ .

Bottom: time  $t_n$ ; top: time  $t_{n+1}$ .

### Discrete KFP equation

• Control induced by value function:

$$\hat{\alpha}_{\Delta t,h}^{\epsilon}[m](t,x) = -\nabla u_{\Delta t,h}^{\epsilon}[m](t,x),$$

and its discrete counter part:  $\hat{\alpha}_{n,i}^{\epsilon} = \hat{\alpha}_{\Delta t,h}^{\epsilon}[m](t_n, x_i)$ .

Discrete flow:

$$\Phi_{n,n+1,i}^{\epsilon}[m] = x_i + \hat{\alpha}_{\Delta t,h}^{\epsilon}[m](t_n, x_i) \Delta t.$$

Control induced by value function:

$$\hat{\mathbf{\alpha}}_{\Delta t,h}^{\epsilon}[m](t,x) = -\nabla u_{\Delta t,h}^{\epsilon}[m](t,x),$$

and its discrete counter part:  $\hat{\alpha}_{n,i}^{\epsilon} = \hat{\alpha}_{\Delta t,h}^{\epsilon}[m](t_n, x_i)$ .

Discrete flow:

$$\Phi_{n,n+1,i}^{\epsilon}[m] = x_i + \hat{\alpha}_{\Delta t,h}^{\epsilon}[m](t_n, x_i) \Delta t.$$

• Discrete KFP equation: for  $M^{\epsilon}[m] = (M_i^{\epsilon,n}[m])_{n,i}$ :

$$\begin{cases} M_i^{\epsilon,n+1}[m] = \sum_j \beta_i \left( \Phi_{n,n+1,j}^{\epsilon}[m] \right) M_j^{\epsilon,n}[m], & (n,i) \in [N_T - 1] \times \mathbb{Z}, \\ M_i^{\epsilon,0}[m] = \int_{[x_i - h/2, x_i + h/2]} m_0(x) dx, & i \in \mathbb{Z}. \end{cases}$$

#### **Fixed Point Formulation**

• Function  $m_{\Delta t,h}^{\epsilon}[m]:[0,T]\times\mathbb{R}\to\mathbb{R}$  defined as: for  $n\in[\![N_T-1]\!]$ , for  $t\in[t_n,t_{n+1})$ ,

$$\begin{split} m^{\epsilon}_{\Delta t,h}[\mathbf{m}](t,x) &= \frac{1}{h} \left[ \frac{t_{n+1} - t}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n}_i[\mathbf{m}] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right. \\ &\left. + \frac{t - t_n}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n+1}_i[\mathbf{m}] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right] \,. \end{split}$$

#### **Fixed Point Formulation**

• Function  $m_{\Delta t,h}^{\epsilon}[m]:[0,T]\times\mathbb{R}\to\mathbb{R}$  defined as: for  $n\in[\![N_T-1]\!]$ , for  $t\in[t_n,t_{n+1})$ ,

$$\begin{split} m^{\epsilon}_{\Delta t,h}[m](t,x) &= \frac{1}{h} \left[ \frac{t_{n+1} - t}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n}_i[m] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right. \\ &\left. + \frac{t - t_n}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n+1}_i[m] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right] \,. \end{split}$$

• Goal: Fixed-point problem: Find  $\hat{M} = (\hat{M}_i^n)_{i,n}$  such that:

$$\hat{M}_i^n = M_i^n \left[ m_{\Delta t,h}^{\epsilon} [\hat{M}] \right].$$

#### **Fixed Point Formulation**

• Function  $m_{\Delta t,h}^{\epsilon}[m]:[0,T]\times\mathbb{R}\to\mathbb{R}$  defined as: for  $n\in[\![N_T-1]\!]$ , for  $t\in[t_n,t_{n+1})$ ,

$$\begin{split} m^{\epsilon}_{\Delta t,h}[m](t,x) &= \frac{1}{h} \left[ \frac{t_{n+1} - t}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n}_i[m] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right. \\ &+ \frac{t - t_n}{\Delta t} \sum_{i \in \mathbb{Z}} M^{\epsilon,n+1}_i[m] \mathbf{1}_{[x_i - h/2, x_i + h/2]}(x) \right] \,. \end{split}$$

• Goal: Fixed-point problem: Find  $\hat{M} = (\hat{M}_i^n)_{i,n}$  such that:

$$\hat{M}_i^n = M_i^n \left[ m_{\Delta t,h}^{\epsilon} [\hat{M}] \right].$$

- Solution strategy: Fixed point iterations for example
- See [Carlini and Silva, 2014] for more details

### **Numerical Illustration**

Costs:

$$g \equiv 0,$$
  $f(x, m, \alpha) = \frac{1}{2} |\alpha|^2 + (x - c^*)^2 + \kappa_{MF} V(x, m),$ 

with

$$V(x, \mathbf{m}) = \rho_{\sigma_V} * (\rho_{\sigma_V} * \mathbf{m})(x),$$

#### **Numerical Illustration**

Costs:

$$g \equiv 0,$$
  $f(x, m, \alpha) = \frac{1}{2} |\alpha|^2 + (x - c^*)^2 + \kappa_{MF} V(x, m),$ 

with

$$V(x, \mathbf{m}) = \rho_{\sigma_V} * (\rho_{\sigma_V} * \mathbf{m})(x),$$

Experiments: target  $c^* = 0$ ,  $m_0$  = unif. on [-1.25, -0.75] and on [0.75, 1.25]





See [Laurière, 2021] for more details on these experiments

# Sample code

#### Code

Sample code to illustrate: IPython notebook

https://drive.google.com/file/d/1\_S9680R\_CAt20M83NENcyeHKsLLcxit9/view?usp=sharing

- Semi-Lagrangian scheme
- Solved by damped fixed point approach

### Outline

- Introduction
- 2. Methods for the PDE system
- 3. Optimization Methods for MFC and Variational MFG
  - Variational MFGs and Duality
  - Alternating Direction Method of Multipliers
  - A Primal-Dual Method
- 4. Methods for MKV FBSDE
- 5. Conclusion

### Outline

- 1. Introduction
- 2. Methods for the PDE system
- 3. Optimization Methods for MFC and Variational MFG
  - Variational MFGs and Duality
  - Alternating Direction Method of Multipliers
  - A Primal-Dual Method
- 4. Methods for MKV FBSDE
- 5. Conclusion

### Variational MFGs

### Key ideas:

- Variational MFG
- Duality
- Optimization techniques

### Variational MFGs



In some cases, the MFG PDE system can be interpreted as the optimality conditions for a variational problem

 $\textit{MFG PDE system} \Leftrightarrow \textit{optimality condition of two optimization problems in duality}$ 

See [Lasry and Lions, 2007], [Cardaliaguet, 2015], [Cardaliaguet and Graber, 2015], [Cardaliaguet et al., 2015], [Benamou et al., 2017], ...

#### A Variational MFG

- d=1, domain =  $\mathbb{T}$
- drift and costs:

$$b(x, m, \textcolor{red}{\alpha}) = \textcolor{red}{\alpha}, \qquad f(x, m, \textcolor{red}{\alpha}) = L(x, \textcolor{red}{\alpha}) + \operatorname{f}_0(x, m), \qquad g(x, m) = \operatorname{g}_0(x).$$

where  $x \in \mathbb{R}^d$ ,  $\alpha \in \mathbb{R}^d$ ,  $m \in \mathbb{R}_+$ .

Then

$$H(x, m, p) = \sup_{\alpha} \{-L(x, \alpha) - \alpha p\} - f_0(x, m) = H_0(x, p) - f_0(x, m)$$

• where  $H_0$  is the convex conjugate (also denoted  $L^*$ ) of L with respect to  $\alpha$ :

$$H_0(x,p) = L^*(x,p) = \sup_{\alpha} \{ \alpha p - L(x,\alpha) \}$$

Further assume (for simplicity)

$$L(x, \alpha) = \frac{1}{2} |\alpha|^2, \qquad H_0(x, p) = \frac{1}{2} |p|^2$$

#### A Variational Problem

• At equilibrium,  $\mathcal{L}(X_t) = \hat{\mu}_t$  and

$$J(\hat{\alpha}; \hat{m}) = \mathbb{E}\left[\int_0^T f(X_t, \hat{m}(t, X_t), \hat{\alpha}(t, X_t))dt + g(X_T)\right]$$

$$= \int_0^T \int_{\mathbb{T}} \underbrace{\int_{(x, \hat{m}(t, x), \hat{\alpha}(t, x))} \hat{m}(t, x)dxdt}_{=L(x, \hat{\alpha}(t, x)) + \hat{t}_0(x, \hat{m}(t, x))} \hat{m}(t, x)dxdt + \int_{\mathbb{T}} g(x)\hat{m}(T, x)dx$$

subject to:

$$0 = \frac{\partial \hat{m}}{\partial t}(t, x) - \nu \Delta \hat{m}(t, x) + \operatorname{div}\left(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{\alpha}(t, \cdot))}_{=\hat{\alpha}(t, \cdot)}\right)(x), \qquad \hat{m}_0 = m_0$$

### A Variational Problem

• At equilibrium,  $\mathcal{L}(X_t) = \hat{\mu}_t$  and

$$J(\hat{\boldsymbol{\alpha}}; \hat{\boldsymbol{m}}) = \mathbb{E}\left[\int_0^T f(X_t, \hat{\boldsymbol{m}}(t, X_t), \hat{\boldsymbol{\alpha}}(t, X_t))dt + g(X_T)\right]$$
$$= \int_0^T \int_{\mathbb{T}} \underbrace{f(x, \hat{\boldsymbol{m}}(t, x), \hat{\boldsymbol{\alpha}}(t, x))}_{=L(x, \hat{\boldsymbol{\alpha}}(t, x)) + \hat{\boldsymbol{\epsilon}}_0(x, \hat{\boldsymbol{m}}(t, x))} \hat{\boldsymbol{m}}(t, x)dxdt + \int_{\mathbb{T}} g(x)\hat{\boldsymbol{m}}(T, x)dx$$

subject to:

$$0 = \frac{\partial \hat{m}}{\partial t}(t, x) - \nu \Delta \hat{m}(t, x) + \operatorname{div}\left(\hat{m}(t, \cdot) \underbrace{b(\cdot, \hat{m}(t), \hat{\alpha}(t, \cdot))}_{=\hat{\alpha}(t, \cdot)}\right)(x), \qquad \hat{m}_0 = m_0$$

Change of variable:

$$\hat{w}(t,x) = \hat{m}(t,x)\hat{\alpha}(t,x)$$

$$\mathcal{B}(\hat{m}, \hat{\boldsymbol{w}}) = \int_0^T \int_{\mathbb{T}} \left[ L\left(x, \frac{\hat{\boldsymbol{w}}(t, x)}{\hat{m}(t, x)}\right) + \mathbf{f}_0(x, \hat{m}(t, x)) \right] \hat{m}(t, x) dx dt + \int_{\mathbb{T}} g(x) \hat{m}(T, x) dx$$
 subject to:

 $0 = \frac{\partial \hat{m}}{\partial t}(t, x) - \nu \Delta \hat{m}(t, x) + \operatorname{div}\left(\hat{w}(t, \cdot)\right)(x), \qquad \hat{m}_0 = m_0$ 

Reformulation:

$$\begin{split} \mathcal{B}(\hat{m},\hat{\boldsymbol{w}}) &= \int_0^T \int_{\mathbb{T}} \bigg[ \underbrace{L\bigg(x,\frac{\hat{w}(t,x)}{\hat{m}(t,x)}\bigg)\hat{m}(t,x)}_{\widetilde{L}(x,\hat{m}(t,x),\hat{w}(t,x))} + \underbrace{\underbrace{f_0(x,\hat{m}(t,x))\hat{m}(t,x)}_{\widetilde{F}(x,\hat{m}(t,x))} \bigg] dx dt \\ &+ \int_{\mathbb{T}} \underbrace{g(x)\hat{m}(T,x)}_{\widetilde{G}(x,\hat{m}(t,x))} dx \\ &= \int_0^T \int_{\mathbb{T}} \bigg[ \widetilde{L}(x,\hat{m}(t,x),\hat{w}(t,x)) + \widetilde{F}(x,\hat{m}(t,x)) \bigg] dx dt + \int_{\mathbb{T}} \widetilde{G}(x,\hat{m}(t,x)) dx \end{split}$$

subject to:

$$0 = \frac{\partial \hat{m}}{\partial t}(t, x) - \nu \Delta \hat{m}(t, x) + \operatorname{div}\left(\hat{w}(t, \cdot)\right)(x), \qquad \hat{m}_0 = m_0$$

Reformulation:

$$\begin{split} \mathcal{B}(\hat{m},\hat{\boldsymbol{w}}) &= \int_0^T \int_{\mathbb{T}} \bigg[ \underbrace{L \bigg( x, \frac{\hat{\boldsymbol{w}}(t,x)}{\hat{\boldsymbol{m}}(t,x)} \bigg) \hat{\boldsymbol{m}}(t,x)}_{\widetilde{L}(x,\hat{\boldsymbol{m}}(t,x),\hat{\boldsymbol{w}}(t,x))} + \underbrace{\mathbf{f}_0(x,\hat{\boldsymbol{m}}(t,x)) \hat{\boldsymbol{m}}(t,x)}_{\widetilde{F}(x,\hat{\boldsymbol{m}}(t,x))} \bigg] dx dt \\ &+ \int_{\mathbb{T}} \underbrace{g(x) \hat{\boldsymbol{m}}(T,x)}_{\widetilde{G}(x,\hat{\boldsymbol{m}}(t,x))} dx \\ &= \int_0^T \int_{\mathbb{T}} \bigg[ \widetilde{L}(x,\hat{\boldsymbol{m}}(t,x),\hat{\boldsymbol{w}}(t,x)) + \widetilde{F}(x,\hat{\boldsymbol{m}}(t,x)) \bigg] dx dt + \int_{\mathbb{T}} \widetilde{G}(x,\hat{\boldsymbol{m}}(t,x)) dx \end{split}$$

subject to:

$$0 = \frac{\partial \hat{m}}{\partial t}(t, x) - \nu \Delta \hat{m}(t, x) + \operatorname{div}\left(\hat{w}(t, \cdot)\right)(x), \qquad \hat{m}_0 = m_0$$

 $\bullet$  Convex problem under a linear constraint, provided  $\widetilde{L},\widetilde{F},\widetilde{G}$  are convex

### **Primal Optimization Problem**

### **Primal problem:** Minimize over $(m, w) = (m, m\alpha)$ :

subject to the constraint:

$$\partial_t m - \nu \Delta m + \operatorname{div}(w) = 0, \qquad m(0, x) = m_0(x)$$

### **Primal Optimization Problem**

**Primal problem:** Minimize over  $(m, w) = (m, m\alpha)$ :

$$\mathcal{B}(m, w) = \int_0^T \int_{\mathbb{T}} \left( \widetilde{L}(x, m(t, x), w(t, x)) + \widetilde{F}(x, m(t, x)) \right) dx dt + \int_{\mathbb{T}} \widetilde{G}(x, m(T, x)) dx dt$$

subject to the constraint:

$$\partial_t m - \nu \Delta m + \operatorname{div}(w) = 0, \qquad m(0, x) = m_0(x)$$

where

$$\widetilde{F}(x, \textbf{\textit{m}}) = \begin{cases} \int_0^{\textbf{\textit{m}}} \widetilde{f}(x, s) ds, & \text{if } \textbf{\textit{m}} \geq 0, \\ +\infty, & \text{otherwise,} \end{cases} \qquad \widetilde{G}(x, \textbf{\textit{m}}) = \begin{cases} \textbf{\textit{m}} \, \mathsf{g}_0(x), & \text{if } \textbf{\textit{m}} \geq 0, \\ +\infty, & \text{otherwise,} \end{cases}$$

and

$$\widetilde{L}(x, \pmb{m}, \pmb{w}) = \begin{cases} \pmb{m}L\left(x, \frac{\pmb{w}}{\pmb{m}}\right), & \text{if } \pmb{m} > 0, \\ 0, & \text{if } \pmb{m} = 0 \text{ and } w = 0, \\ +\infty, & \text{otherwise} \end{cases}$$

where  $\mathbb{R}\ni m\mapsto \widetilde{f}(x,m)=\partial_m(m\,\mathrm{f}_0(x,m))$  is non-decreasing (hence  $\widetilde{F}$  convex and l.s.c.) provided  $m\mapsto m\,\mathrm{f}_0(x,m)$  is convex.

### **Duality**

**Dual problem:** Maximize over  $\phi$  such that  $\phi(T,x)=\mathrm{g}_0(x)$ 

$$\mathcal{A}(\phi) = \inf_{m} \mathcal{A}(\phi, m)$$

with 
$$\mathcal{A}(\phi, m) = \int_0^T \int_{\mathbb{T}} m(t, x) \Big( \partial_t \phi(t, x) + \nu \Delta \phi(t, x) - H(x, m(t, x), \nabla \phi(t, x)) \Big) dx dt + \int_{\mathbb{T}} m_0(x) \phi(0, x) dx.$$

### **Duality**

**Dual problem:** Maximize over  $\phi$  such that  $\phi(T,x) = g_0(x)$ 

$$\mathcal{A}(\phi) = \inf_{m} \mathcal{A}(\phi, m)$$
 with 
$$\mathcal{A}(\phi, m) = \int_{0}^{T} \int_{\mathbb{T}} m(t, x) \Big( \partial_{t} \phi(t, x) + \nu \Delta \phi(t, x) - H(x, m(t, x), \nabla \phi(t, x)) \Big) dx dt$$

$$J_0 \quad J_{\mathbb T} \ + \int_{\mathbb T} m{m_0}(x) \phi(0,x) dx.$$

**Duality relation:**  $\mathcal{A}$  and  $\mathcal{B}$  satisfy: (A) =  $\sup_{\phi} \mathcal{A}(\phi) = \inf_{(m,w)} \mathcal{B}(m,w) =$  (B)

### **Duality**

**Dual problem:** Maximize over  $\phi$  such that  $\phi(T,x) = g_0(x)$ 

$$\mathcal{A}(\phi) = \inf_{m} \mathcal{A}(\phi, m)$$

with  $\mathcal{A}(\phi, m) = \int_0^T \int_{\mathbb{T}} m(t, x) \Big( \partial_t \phi(t, x) + \nu \Delta \phi(t, x) - H(x, m(t, x), \nabla \phi(t, x)) \Big) dx dt + \int_{\mathbb{T}} m_0(x) \phi(0, x) dx.$ 

**Duality relation:**  $\mathcal{A}$  and  $\mathcal{B}$  satisfy: (A) =  $\sup_{\phi} \mathcal{A}(\phi) = \inf_{(m,w)} \mathcal{B}(m,w) = (B)$ 

Proof idea: Fenchel-Rockafellar duality theorem and observe:

$$\textbf{(A)} = -\inf_{\phi} \bigg\{ \mathcal{F}(\phi) + \mathcal{G}(\Lambda(\phi)) \bigg\}, \qquad \textbf{(B)} = \inf_{(\boldsymbol{m}, \boldsymbol{w})} \bigg\{ \mathcal{F}^*(\Lambda^*(\boldsymbol{m}, \boldsymbol{w})) + \mathcal{G}^*(-\boldsymbol{m}, -\boldsymbol{w}) \bigg\}$$

where  $\mathcal{F}^*, \mathcal{G}^*$  are the convex conjugates of  $\mathcal{F}, \mathcal{G}$ , and  $\Lambda^*$  is the adjoint operator of  $\Lambda$ , and  $\Lambda(\phi) = \left(\frac{\partial \phi}{\partial t} + \nu \Delta \phi, \nabla \phi\right)$ ,

$$\mathcal{F}(\phi) = \chi_T(\phi) - \int_{\mathbb{T}^d} m_0(x)\phi(0,x)dx, \qquad \chi_T(\phi) = \begin{cases} 0 & \text{if } \phi|_{t=T} = \mathsf{g}_0\\ +\infty & \text{otherwise,} \end{cases}$$

$$\mathcal{G}(\varphi_1, \varphi_2) = -\inf_{0 \le m \in L^1((0,T) \times \mathbb{T}^d)} \int_0^T \int_{\mathbb{T}^d} m(t,x) \left( \varphi_1(t,x) - H(x,m(t,x), \varphi_2(t,x)) \right) dx dt.$$

### Outline

- Introduction
- 2. Methods for the PDE system
- 3. Optimization Methods for MFC and Variational MFG
  - Variational MFGs and Duality
  - Alternating Direction Method of Multipliers
  - A Primal-Dual Method
- 4. Methods for MKV FBSDE
- 5. Conclusion

### Augmented Lagrangian

Reformulation of the primal problem:

$$\textbf{(A)} = -\inf_{\phi} \bigg\{ \mathcal{F}(\phi) + \mathcal{G}(\Lambda(\phi)) \bigg\} = -\inf_{\phi} \inf_{q} \bigg\{ \mathcal{F}(\phi) + \frac{\mathcal{G}(q)}{q}, \text{ subj. to } q = \Lambda(\phi) \bigg\}.$$

The corresponding Lagrangian is

$$\mathcal{L}(\phi, q, \tilde{q}) = \mathcal{F}(\phi) + \mathcal{G}(q) - \langle \tilde{q}, \Lambda(\phi) - q \rangle.$$

**Reformulation** of the primal problem:

$$\textbf{(A)} = -\inf_{\boldsymbol{\phi}} \Big\{ \mathcal{F}(\boldsymbol{\phi}) + \mathcal{G}(\boldsymbol{\Lambda}(\boldsymbol{\phi})) \Big\} = -\inf_{\boldsymbol{\phi}} \inf_{\boldsymbol{q}} \Big\{ \mathcal{F}(\boldsymbol{\phi}) + \mathcal{G}(\boldsymbol{q}), \text{ subj. to } \boldsymbol{q} = \boldsymbol{\Lambda}(\boldsymbol{\phi}) \Big\}.$$

The corresponding Lagrangian is

$$\mathcal{L}(\phi, \mathbf{q}, \tilde{\mathbf{q}}) = \mathcal{F}(\phi) + \mathcal{G}(\mathbf{q}) - \langle \tilde{\mathbf{q}}, \Lambda(\phi) - \mathbf{q} \rangle.$$

• We consider the **augmented Lagrangian** (with parameter r > 0)

$$\mathcal{L}^{r}(\phi, \mathbf{q}, \tilde{q}) = \mathcal{L}(\phi, \mathbf{q}, \tilde{q}) + \frac{r}{2} \|\Lambda(\phi) - \mathbf{q}\|^{2}$$

• Goal: find a **saddle-point** of  $\mathcal{L}^r$ .

# Alternating Direction Method of Multipliers (ADMM)

Reminder:  $\mathcal{L}^r(\phi, q, \tilde{q}) = \mathcal{F}(\phi) + \mathcal{G}(q) - \langle \tilde{q}, \Lambda(\phi) - q \rangle + \frac{r}{2} \|\Lambda(\phi) - q\|^2$ 

```
Input: Initial guess (\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}); number of iterations K Output: Approximation of a saddle point (\phi, q, \tilde{q}) solving the finite difference system
```

- 1 Initialize  $(\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)})$ 2 for  $k = 0, 1, 2, \dots, K = 1, 0$
- $\mathbf{2} \ \ \mathbf{for} \ \mathbf{k} = 0, 1, 2, \dots, \mathbf{K} 1 \ \mathbf{do}$
- 3 (a) Compute

$$\phi^{(\mathtt{k}+1)} \in \operatorname*{argmin}_{\phi} \left\{ \mathcal{F}(\phi) - \langle \tilde{q}^{(\mathtt{k})}, \Lambda(\phi) \rangle + \frac{r}{2} \|\Lambda(\phi) - \mathbf{q^{(\mathtt{k})}}\|^2 \right\}$$

References: ALG2 in the book of [Fortin and Glowinski, 1983]

- → in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
- → in MFC:[Achdou and Laurière, 2016a], [Baudelet et al., 2023]

# Alternating Direction Method of Multipliers (ADMM)

Reminder:  $\mathcal{L}^r(\phi, q, \tilde{q}) = \mathcal{F}(\phi) + \mathcal{G}(q) - \langle \tilde{q}, \Lambda(\phi) - q \rangle + \frac{r}{2} ||\Lambda(\phi) - q||^2$ 

```
Input: Initial guess (\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}); number of iterations K
    Output: Approximation of a saddle point (\phi, q, \tilde{q}) solving the finite difference
                     system
1 Initialize (\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)})
2 for k = 0, 1, 2, ..., K - 1 do
            (a) Compute
                                 \phi^{(\mathtt{k}+1)} \in \operatorname{argmin} \left\{ \mathcal{F}(\phi) - \langle \tilde{q}^{(\mathtt{k})}, \Lambda(\phi) \rangle + \frac{r}{2} \|\Lambda(\phi) - q^{(\mathtt{k})}\|^2 \right\}
            (b) Compute
                                    q^{(\mathtt{k}+1)} \in \operatorname{argmin} \left\{ \mathcal{G}(q) + \langle \tilde{q}^{(\mathtt{k})}, q \rangle + \frac{r}{2} \|\Lambda(\phi^{(\mathtt{k}+1)}) - q\|^2 \right\}
```

References: ALG2 in the book of [Fortin and Glowinski, 1983]

4

- → in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]
- → in MFC: [Achdou and Laurière, 2016a], [Baudelet et al., 2023]

# Alternating Direction Method of Multipliers (ADMM)

Reminder: 
$$\mathcal{L}^r(\phi, q, \tilde{q}) = \mathcal{F}(\phi) + \mathcal{G}(q) - \langle \tilde{q}, \Lambda(\phi) - q \rangle + \frac{r}{2} ||\Lambda(\phi) - q||^2$$

```
Input: Initial guess (\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)}); number of iterations K
    Output: Approximation of a saddle point (\phi, q, \tilde{q}) solving the finite difference
                      system
1 Initialize (\phi^{(0)}, q^{(0)}, \tilde{q}^{(0)})
2 for k = 0, 1, 2, ..., K - 1 do
            (a) Compute
                                  \phi^{(\mathtt{k}+1)} \in \operatorname{argmin} \left\{ \mathcal{F}(\phi) - \langle \tilde{q}^{(\mathtt{k})}, \Lambda(\phi) \rangle + \frac{r}{2} \|\Lambda(\phi) - q^{(\mathtt{k})}\|^2 \right\}
             (b) Compute
4
                                     q^{(\mathtt{k}+1)} \in \operatorname{argmin} \left\{ \mathcal{G}(q) + \langle \tilde{q}^{(\mathtt{k})}, q \rangle + \frac{r}{2} \|\Lambda(\phi^{(\mathtt{k}+1)}) - q\|^2 \right\}
             (c) Compute
                                                       \tilde{q}^{(k+1)} = \tilde{q}^{(k)} - r \left( \Lambda(\phi^{(k+1)}) - q^{(k+1)} \right)
6 return (\phi^{(K)}, \boldsymbol{q}^{(K)}, \tilde{\boldsymbol{q}}^{(K)})
```

References: ALG2 in the book of [Fortin and Glowinski, 1983]  $\rightarrow$  in MFG: [Benamou and Carlier, 2015a], [Andreev, 2017]

→ in MFC:[Achdou and Laurière, 2016a], [Baudelet et al., 2023]

### ADMM: Discrete Primal Problem

**Notation:**  $N_h, N_T$  steps resp. in space and time,  $N = (N_T + 1)N_h$ ,  $N' = N_T N_h$ .

**Recall:**  $H_0(x,p) = \frac{1}{2}|p|^2$ . We take  $\tilde{H}_0(x,p_1,p_2) = \frac{1}{2}|(p_1^-,p_2^+)|^2$ .

Discrete version of the dual convex problem:

$$(\mathbf{A_h}) = -\inf_{\phi \in \mathbb{R}^N} \left\{ \mathcal{F}_h(\phi) + \mathcal{G}_h(\Lambda_h(\phi)) \right\},\,$$

where  $\Lambda_h: \mathbb{R}^N \to \mathbb{R}^{3N'}$  is defined by :  $\forall n \in \{1, \dots, N_T\}, \forall i \in \{0, \dots, N_h - 1\}$ ,

$$(\Lambda_h(\phi))_i^n = ((D_t\phi_i)^n + \nu (\Delta_h\phi^{n-1})_i, [\nabla_h\phi^{n-1}]_i),$$

### ADMM: Discrete Primal Problem

**Notation:**  $N_h, N_T$  steps resp. in space and time,  $N = (N_T + 1)N_h, N' = N_T N_h$ .

**Recall:**  $H_0(x,p) = \frac{1}{2}|p|^2$ . We take  $\tilde{H}_0(x,p_1,p_2) = \frac{1}{2}|(p_1^-,p_2^+)|^2$ .

Discrete version of the dual convex problem:

$$(\mathbf{A_h}) = -\inf_{\phi \in \mathbb{R}^N} \left\{ \mathcal{F}_h(\phi) + \mathcal{G}_h(\Lambda_h(\phi)) \right\},$$

where  $\Lambda_h: \mathbb{R}^N \to \mathbb{R}^{3N'}$  is defined by  $\forall n \in \{1, \dots, N_T\}, \forall i \in \{0, \dots, N_h - 1\},$ 

$$(\Lambda_h(\phi))_i^n = ((D_t\phi_i)^n + \nu (\Delta_h\phi^{n-1})_i, [\nabla_h\phi^{n-1}]_i),$$

where  $\mathcal{F}_h$ ,  $\mathcal{G}_h$  are the l.s.c. proper functions defined by:

$$\mathcal{F}_h: \mathbb{R}^N \ni \phi \mapsto \chi_T(\phi) - h \sum_{i=0}^{N_h-1} \rho_i^0 \phi_i^0 \in \mathbb{R} \cup \{+\infty\},$$

$$\mathcal{G}_h: \mathbb{R}^{3N'} \ni (a,b,c) \mapsto -h\Delta t \sum_{i=1}^{N_T} \sum_{i=1}^{N_h-1} \mathcal{K}_h(x_i, a_i^n, b_i^n, c_i^n) \in \mathbb{R} \cup \{+\infty\},$$

with

$$\mathcal{K}_h(x,a_0,p_1,p_2) = \min_{\boldsymbol{m} \in \mathbb{R}_+} \left\{ \boldsymbol{m}[a_0 + \tilde{H}_0(x,\boldsymbol{m},p_1,p_2)] \right\}, \quad \chi_T(\phi) = \begin{cases} 0 & \text{if } \phi_i^{N_T} \equiv \mathsf{g}_0(x_i) \\ +\infty & \text{otherwise}. \end{cases}$$

#### **ADMM** with Discretization

Discrete Aug. Lag.:  $\mathcal{L}_h^r(\phi, q, \tilde{q}) = \mathcal{F}_h(\phi) + \mathcal{G}_h(q) - \langle \tilde{q}, \Lambda_h(\phi) - q \rangle + \frac{r}{2} \|\Lambda(\phi) - q\|^2$ 

```
Input: Initial guess (\phi^{(0)},q^{(0)},\bar{q}^{(0)}); number of iterations K Output: Approximation of a saddle point (\phi,q,\bar{q}) 1 Initialize (\phi^{(0)},q^{(0)},\bar{q}^{(0)}) 2 for \mathbf{k}=0,1,2,\ldots,\mathbf{K}-1 do  \mathbf{a} = (a) \operatorname{Compute} \phi^{(\mathbf{k}+1)} \in \operatorname{argmin}_{q} \left\{ \mathcal{F}_{h}(\phi) - \langle \bar{q}^{(\mathbf{k})},\Lambda_{h}(\phi) \rangle + \frac{r}{2} \|\Lambda_{h}(\phi) - q^{(\mathbf{k})}\|^{2} \right\}  (b) Compute q^{(\mathbf{k}+1)} \in \operatorname{argmin}_{q} \left\{ \mathcal{G}_{h}(q) + \langle \bar{q}^{(\mathbf{k})},q \rangle + \frac{r}{2} \|\Lambda_{h}(\phi^{(\mathbf{k}+1)}) - q\|^{2} \right\}  5 (c) Compute \bar{q}^{(\mathbf{k}+1)} = \bar{q}^{(\mathbf{k})} - r \left(\Lambda_{h}(\phi^{(\mathbf{k}+1)}) - q^{(\mathbf{k}+1)}\right)  6 return (\phi^{(\mathbf{k})},q^{(\mathbf{k})},\bar{q}^{(\mathbf{k})})
```

#### **ADMM** with Discretization

Discrete Aug. Lag.: 
$$\mathcal{L}_h^r(\phi, q, \tilde{q}) = \mathcal{F}_h(\phi) + \mathcal{G}_h(q) - \langle \tilde{q}, \Lambda_h(\phi) - q \rangle + \frac{r}{2} \|\Lambda(\phi) - q\|^2$$

```
 \begin{array}{c} \textbf{Input: Initial guess } (\phi^{(0)},q^{(0)},\bar{q}^{(0)}); \text{ number of iterations K} \\ \textbf{Output: Approximation of a saddle point } (\phi,q,\tilde{q}) \\ \textbf{1 Initialize } (\phi^{(0)},q^{(0)},\bar{q}^{(0)}) \\ \textbf{2 for k} = 0,1,2,\ldots,\mathsf{K}-1 \textbf{ do} \\ \textbf{3} & (a) \operatorname{Compute } \phi^{(\mathbf{k}+1)} \in \operatorname{argmin}_{\phi} \Big\{ \mathcal{F}_h(\phi) - \langle \tilde{q}^{(\mathbf{k})},\Lambda_h(\phi)\rangle + \frac{r}{2} \|\Lambda_h(\phi) - q^{(\mathbf{k})}\|^2 \Big\} \\ \textbf{4} & (b) \operatorname{Compute } q^{(\mathbf{k}+1)} \in \operatorname{argmin}_{q} \Big\{ \mathcal{G}_h(q) + \langle \bar{q}^{(\mathbf{k})},q\rangle + \frac{r}{2} \|\Lambda_h(\phi^{(\mathbf{k}+1)}) - q\|^2 \Big\} \\ \textbf{5} & (c) \operatorname{Compute } \tilde{q}^{(\mathbf{k}+1)} = \tilde{q}^{(\mathbf{k})} - r \left(\Lambda_h(\phi^{(\mathbf{k}+1)}) - q^{(\mathbf{k}+1)}\right) \\ \textbf{6 return } (\phi^{(\mathbf{K})},q^{(\mathbf{K})},\tilde{q}^{(\mathbf{K})}) \end{array}
```

#### **First-order Optimality Conditions:**

- Step (a): finite-difference equation
- Step (b): minimization problem at each point of the grid

#### **ADMM** with Discretization

Discrete Aug. Lag.:  $\mathcal{L}_h^r(\phi, q, \tilde{q}) = \mathcal{F}_h(\phi) + \mathcal{G}_h(q) - \langle \tilde{q}, \Lambda_h(\phi) - q \rangle + \frac{r}{2} \|\Lambda(\phi) - q\|^2$ 

### First-order Optimality Conditions:

Step (a): finite-difference equation

Step (b): minimization problem at each point of the grid

#### Rem.: For (a): discrete PDE

- $\bullet$  if  $\nu = 0$ , a direct solver can be used
- ullet if  $\nu>0$ , PDE with  $4^{th}$  order linear elliptic operator  $\Rightarrow$  needs preconditioner

See e.g. [Achdou and Perez, 2012], [Andreev, 2017], [Briceño Arias et al., 2018]

- Domain  $\Omega = [0, 1]^2 \setminus [0.4, 0.6]^2$  (obstacle at the center)
- Define the Hamiltonian by duality (on  $\partial\Omega$  the vector speed is towards the interior)

$$H(x,m,p) = \begin{cases} \sup_{\xi \in \mathbb{R}^2} \left\{ -\xi \cdot p - L(x,m,\xi) \right\} = m^{-\alpha} |p|^{\beta} - \ell(x,m), & \text{if } x \in \Omega, \\ \sup_{\xi \in \mathbb{R}^2 : \xi \cdot n \leq 0} \left\{ -\xi \cdot p - L(x,m,\xi) \right\}, & \text{if } x \in \partial \Omega. \end{cases}$$

• The associated Lagrangian (corresponding to the running cost) is:

$$L(x, m, \xi) = (\beta - 1)\beta^{-\beta^*} m^{\frac{\alpha}{\beta - 1}} |\xi|^{\beta^*} + \ell(x, m), \qquad 1 < \beta \le 2, 0 \le \alpha < 1$$

- Domain  $\Omega = [0, 1]^2 \setminus [0.4, 0.6]^2$  (obstacle at the center)
- Define the Hamiltonian by duality (on  $\partial\Omega$  the vector speed is towards the interior)

$$H(x,m,p) = \begin{cases} \sup_{\xi \in \mathbb{R}^2} \left\{ -\xi \cdot p - L(x,m,\xi) \right\} = m^{-\alpha} |p|^{\beta} - \ell(x,m), & \text{if } x \in \Omega, \\ \sup_{\xi \in \mathbb{R}^2 : \xi \cdot n \leq 0} \left\{ -\xi \cdot p - L(x,m,\xi) \right\}, & \text{if } x \in \partial \Omega. \end{cases}$$

The associated Lagrangian (corresponding to the running cost) is:

$$L(x,m,\xi) = (\beta-1)\beta^{-\beta^*} m^{\frac{\alpha}{\beta-1}} |\xi|^{\beta^*} + \ell(x,m), \qquad 1 < \beta \leq 2, 0 \leq \alpha < 1$$

• Ex.:  $m_0$ : &  $u_T$ : opposite corners;  $\alpha = 0.01, \beta = 2, \ell(x, m) = 0.01m$ .

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Initial distribution (left) and final cost (right)

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Results for the mean field control (MFC) problem, with  $\nu=0$ 



Density at time t = T/8

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Density at time t = T/4

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Density at time t = 3T/8

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Density at time t=T/2

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Density at time t = 5T/8

Results for the mean field control (MFC) problem, with  $\nu=0$ 



Results for the mean field control (MFC) problem, with  $\nu=0$ 



Results for the mean field control (MFC) problem, with  $\nu=0$ 



### Outline

- Introduction
- 2. Methods for the PDE system
- 3. Optimization Methods for MFC and Variational MFG
  - Variational MFGs and Duality
  - Alternating Direction Method of Multipliers
  - A Primal-Dual Method
- 4. Methods for MKV FBSDE
- 5. Conclusion

# Optimality Conditions and Proximal Operator

- Let  $\varphi, \psi \colon \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$  be convex l.s.c. proper functions.
- Consider the optimization problem

$$\min_{y \in \mathbb{R}^N} \varphi(y) + \psi(y),$$

and its dual

$$\min_{\sigma \in \mathbb{R}^N} \varphi^*(-\sigma) + \psi^*(\sigma).$$

# Optimality Conditions and Proximal Operator

- Let  $\varphi, \psi \colon \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$  be convex l.s.c. proper functions.
- Consider the optimization problem

$$\min_{y \in \mathbb{R}^N} \varphi(y) + \psi(y),$$

and its dual

$$\min_{\sigma \in \mathbb{R}^N} \varphi^*(-\sigma) + \psi^*(\sigma).$$

 $\bullet$  The  $1^{st}\text{-order}$  opt. cond. satisfied by a solution  $(\hat{y},\hat{\sigma})$  are

$$\begin{cases} -\hat{\sigma} \in \partial \varphi(\hat{y}) \\ \hat{y} \in \partial \psi^*(\hat{\sigma}) \end{cases} \Leftrightarrow \begin{cases} \hat{y} - \tau \hat{\sigma} \in \tau \partial \varphi(\hat{y}) + \hat{y} \\ \hat{\sigma} + \gamma \hat{y} \in \gamma \partial \psi^*(\hat{\sigma}) + \hat{\sigma} \end{cases} \Leftrightarrow \begin{cases} \operatorname{prox}_{\tau \varphi}(\hat{y} - \tau \hat{\sigma}) = \hat{y} \\ \operatorname{prox}_{\gamma \psi^*}(\hat{\sigma} + \gamma \hat{y}) = \hat{\sigma}, \end{cases}$$

where  $\gamma > 0$  and  $\tau > 0$  are arbitrary and

• The proximal operator of a l.s.c. convex proper  $\phi \colon \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$  is:

$$\operatorname{prox}_{\gamma\phi}(x) := \operatorname*{argmin}_{y \in \mathbb{R}^N} \left\{ \phi(y) + \frac{|y - x|^2}{2\gamma} \right\} = (I + \partial(\gamma\phi))^{-1}(x), \quad \forall \, x \in \mathbb{R}^N.$$

### Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when  $\tau\gamma<1$ .

```
\begin{array}{c|c} \hline \textbf{Input: Initial guess} & (\sigma^{(0)}, \pmb{y}^{(0)}, \bar{\pmb{y}}^{(0)}); \theta \in [0,1]; \gamma > 0, \tau > 0; \text{ number of iterations K} \\ \hline \textbf{Output: Approximation of } (\hat{\sigma}, \hat{\pmb{y}}) \text{ solving the optimality conditions} \\ \textbf{Initialize} & (\sigma^{(0)}, \pmb{y}^{(0)}, \bar{\pmb{y}}^{(0)}) \\ \textbf{2} & \textbf{for } \mathbf{k} = 0, 1, 2, \dots, \mathbf{K} - 1 \textbf{ do} \\ \textbf{3} & (a) \text{ Compute} \\ \hline & \sigma^{(\mathbf{k}+1)} = \mathrm{prox}_{\gamma\psi^*}(\sigma^{(\mathbf{k})} + \gamma\bar{\pmb{y}}^{(\mathbf{k})}), \end{array}
```

### Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when  $\tau\gamma<1$ .

```
Input: Initial guess (\sigma^{(0)}, \mathbf{y^{(0)}}, \bar{\mathbf{y}^{(0)}}); \theta \in [0, 1]; \gamma > 0, \tau > 0; number of iterations K
   Output: Approximation of (\hat{\sigma}, \hat{y}) solving the optimality conditions
1 Initialize (\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)})
2 for k = 0, 1, 2, \dots, K - 1 do
3
           (a) Compute
                                                   \sigma^{(k+1)} = \operatorname{prox}_{\gamma \psi^*} (\sigma^{(k)} + \gamma \bar{y}^{(k)}),
           (b) Compute
4
                                                  y^{(k+1)} = \text{prox}_{\tau(o)}(y^{(k)} - \tau \sigma^{(k+1)}),
```

### Chambolle-Pock's Primal-Dual Algorithm

The following algorithm has been proposed by [Chambolle and Pock, 2011] It has been proved to converge when  $\tau\gamma < 1$ .

```
Input: Initial guess (\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)}); \theta \in [0, 1]; \gamma > 0, \tau > 0; number of iterations K
   Output: Approximation of (\hat{\sigma}, \hat{y}) solving the optimality conditions
1 Initialize (\sigma^{(0)}, y^{(0)}, \bar{y}^{(0)})
2 for k = 0, 1, 2, \dots, K - 1 do
          (a) Compute
3
                                                 \sigma^{(k+1)} = \operatorname{prox}_{\gamma_{ab}*} (\sigma^{(k)} + \gamma \bar{y}^{(k)}),
          (b) Compute
4
                                                 y^{(k+1)} = \text{prox}_{\tau(a)}(y^{(k)} - \tau \sigma^{(k+1)}),
          (c) Compute
5
                                               \bar{y}^{(k+1)} = y^{(k+1)} + \theta(y^{(k+1)} - y^{(k)}).
6 return (\sigma^{(K)}, y^{(K)}, \bar{y}^{(K)})
```

### Dual of Discrete Problem (A<sub>h</sub>)

By Fenchel-Rockafellar theorem, the dual problem of  $(\mathbf{A_h})$  is:

$$(\mathbf{B_h}) = \min_{(\textit{m}, \textit{w}_1, \textit{w}_2) = \sigma \in \mathbb{R}^{3N'}} \Big\{ \mathcal{F}_h^*(\Lambda_h^*(\sigma)) + \mathcal{G}_h^*(-\sigma) \Big\},$$

where  $\mathcal{G}_h^*$  and  $\mathcal{F}_h^*$  are respectively the Legendre-Fenchel conjugates of  $\mathcal{G}_h$  and  $\mathcal{F}_h$ , defined by:

• 
$$\mathcal{F}_h^*(\mu) = \sup_{\phi \in \mathbb{R}^N} \left\{ \langle \mu, \phi \rangle_{\ell^2(\mathbb{R}^N)} - \mathcal{F}_h(\phi) \right\}, \quad \forall \mu \in \mathbb{R}^N$$

$$\bullet \ \mathcal{G}_h^*(-\sigma) = \max_{q \in \mathbb{R}^{3N'}} \left\{ -\langle \sigma, q \rangle_{\ell^2(\mathbb{R}^{3N'})} - \mathcal{G}_h(q) \right\} = h\Delta t \sum_{n=1}^T \sum_{i=0}^n \tilde{L}_h(x_i, \sigma_i^n), \quad \forall \, \sigma \in \mathbb{R}^{3N'}$$

• with 
$$\tilde{L}_h(x,\sigma_0) = \max_{p_0 \in \mathbb{R}^3} \left\{ -\sigma_0 \cdot p_0 + \mathcal{K}_h(x,q_0) \right\}, \quad \forall \sigma_0 \in \mathbb{R}^3.$$

### Dual of Discrete Problem (A<sub>h</sub>)

By Fenchel-Rockafellar theorem, the dual problem of  $(\mathbf{A_h})$  is:

$$(\mathbf{B_h}) = \min_{(\textbf{\textit{m}}, \textbf{\textit{w}}_1, \textbf{\textit{w}}_2) = \sigma \in \mathbb{R}^{3N'}} \Big\{ \mathcal{F}_h^*(\Lambda_h^*(\sigma)) + \mathcal{G}_h^*(-\sigma) \Big\},$$

where  $\mathcal{G}_h^*$  and  $\mathcal{F}_h^*$  are respectively the Legendre-Fenchel conjugates of  $\mathcal{G}_h$  and  $\mathcal{F}_h$ , defined by:

• 
$$\mathcal{F}_h^*(\mu) = \sup_{\phi \in \mathbb{R}^N} \left\{ \langle \mu, \phi \rangle_{\ell^2(\mathbb{R}^N)} - \mathcal{F}_h(\phi) \right\}, \quad \forall \, \mu \in \mathbb{R}^N$$

$$\bullet \, \mathcal{G}_h^*(-\sigma) = \max_{q \in \mathbb{R}^{3N'}} \left\{ \left. - \left\langle \sigma, q \right\rangle_{\ell^2(\mathbb{R}^{3N'})} - \mathcal{G}_h(q) \right\} = h \Delta t \sum_{n=1}^{\infty} \sum_{i=0}^{\infty} \tilde{L}_h(x_i, \sigma_i^n), \quad \forall \, \sigma \in \mathbb{R}^{3N'} \right\}$$

• with  $\tilde{L}_h(x,\sigma_0) = \max_{p_0 \in \mathbb{R}^3} \left\{ -\sigma_0 \cdot p_0 + \mathcal{K}_h(x,q_0) \right\}, \quad \forall \sigma_0 \in \mathbb{R}^3.$ 

**Rem.:** The max can be costly to compute but in some cases  $\tilde{L}_h$  has a **closed-form** expression.

Finally  $\Lambda_h^*: \mathbb{R}^{3N'} \to \mathbb{R}^N$  denotes the adjoint of  $\Lambda_h$ : for all  $(m, y, z) \in \mathbb{R}^{3N'}, \phi \in \mathbb{R}^N$ :

$$\langle \Lambda_h^*(m, y, z), \phi \rangle_{\ell^2(\mathbb{R}^N)} = \langle (m, y, z), \Lambda_h(\phi) \rangle_{\ell^2(\mathbb{R}^{3N'})}$$

# Dual of Discrete Problem (A<sub>h</sub>)

By Fenchel-Rockafellar theorem, the dual problem of  $(A_h)$  is:

$$(\mathbf{B_h}) = \min_{\substack{(\boldsymbol{m}, \boldsymbol{w}_1, \boldsymbol{w}_2) = \sigma \in \mathbb{R}^{3N'}}} \Big\{ \mathcal{F}_h^*(\boldsymbol{\Lambda}_h^*(\sigma)) + \mathcal{G}_h^*(-\sigma) \Big\},$$

where  $\mathcal{G}_h^*$  and  $\mathcal{F}_h^*$  are respectively the Legendre-Fenchel conjugates of  $\mathcal{G}_h$  and  $\mathcal{F}_h$ , defined by:

• 
$$\mathcal{F}_h^*(\mu) = \sup_{\phi \in \mathbb{R}^N} \left\{ \langle \mu, \phi \rangle_{\ell^2(\mathbb{R}^N)} - \mathcal{F}_h(\phi) \right\}, \quad \forall \, \mu \in \mathbb{R}^N$$

$$\bullet \, \mathcal{G}_h^*(-\sigma) = \max_{q \in \mathbb{R}^{3N'}} \left\{ \left. - \left\langle \sigma, q \right\rangle_{\ell^2(\mathbb{R}^{3N'})} - \mathcal{G}_h(q) \right\} = h \Delta t \sum_{n=1}^{\infty} \sum_{i=0}^{\infty} \tilde{L}_h(x_i, \sigma_i^n), \quad \forall \, \sigma \in \mathbb{R}^{3N'} \right\}$$

• with  $\tilde{L}_h(x, \sigma_0) = \max_{p_0 \in \mathbb{R}^3} \left\{ -\sigma_0 \cdot p_0 + \mathcal{K}_h(x, q_0) \right\}, \quad \forall \sigma_0 \in \mathbb{R}^3.$ 

**Rem.:** The max can be costly to compute but in some cases  $\tilde{L}_h$  has a **closed-form** expression.

Finally  $\Lambda_h^*: \mathbb{R}^{3N'} \to \mathbb{R}^N$  denotes the adjoint of  $\Lambda_h$ : for all  $(m, y, z) \in \mathbb{R}^{3N'}, \phi \in \mathbb{R}^N$ :

$$\langle \Lambda_h^*(m, y, z), \phi \rangle_{\ell^2(\mathbb{R}^N)} = \langle (m, y, z), \Lambda_h(\phi) \rangle_{\ell^2(\mathbb{R}^{3N'})}$$

 $\text{Rem.: We have } \mathcal{F}_h^*(\Lambda_h^*(m,y,z)) = \begin{cases} h \sum_{i=0}^{N_h-1} m_i^{N_T} \, \mathbf{g}_0(x_i), & \text{if } (m,y,z) \text{ satisfies } (\star) \text{ below,} \\ +\infty, & \text{otherwise,} \end{cases}$ 

with 
$$\forall i \in \{0, \dots, N_h - 1\}$$
,  $m_i^0 = \rho_i^0$ , and  $\forall n \in \{0, \dots, N_T - 1\}$ :

$$(D_t m_i)^n - \nu \left(\Delta_h m^{n+1}\right)_i + \frac{y_i^{n+1} - y_{i-1}^{n+1}}{h} + \frac{z_{i+1}^{n+1} - z_i^{n+1}}{h} = 0. \tag{*}$$

#### Reformulation

The discrete dual problem can be recast as:

$$\inf_{(m,w)} \underbrace{\mathbb{B}_h(m,w) + \mathbb{F}_h(m)}_{\varphi(m,w)} + \underbrace{\iota_{\mathbb{G}^{-1}(\rho^0,0)}(m,w)}_{\psi(m,w)}$$
(P<sub>h</sub>)

with the costs 
$$\mathbb{F}_h(m) := \sum_{i,n} \widetilde{F}(x_i, m_i^n) + \frac{1}{\Delta t} \sum_i \widetilde{G}(x_i, m_i^{N_T}), \qquad \mathbb{B}_h(m, w) := \sum_{i,n} \hat{b}(m_i^n, w_i^{n-1}),$$
 
$$\hat{b}(m, w) := \begin{cases} mL\left(x, -\frac{w}{m}\right), & \text{if } m > 0, w \in K = \mathbb{R}_- \times \mathbb{R}_+, \\ 0, & \text{if } (m, w) = (0, 0), \\ +\infty, & \text{otherwise}, \end{cases}$$
 and 
$$\mathbb{G}(m, w) := (m_0, (Am^{n+1} + Bw^n)_{0 \le n \le N_T - 1}) \text{ with }$$
 
$$(Am)_i^{n+1} := (D_t m)_i^n - \nu (\Delta_h m)_i^{n+1}, \qquad (Bw)_i^n := (D_h w^1)_{i-1}^n + (D_h w^2)_i^n.$$

The discrete dual problem can be recast as:

$$\inf_{(m,w)} \underbrace{\mathbb{B}_h(m,w) + \mathbb{F}_h(m)}_{\varphi(m,w)} + \underbrace{\iota_{\mathbb{G}^{-1}(\rho^0,0)}(m,w)}_{\psi(m,w)} \tag{P_h}$$

with the costs

$$\mathbb{F}_h(m) := \sum_{i,n} \widetilde{F}(x_i, m_i^n) + \frac{1}{\Delta t} \sum_i \widetilde{G}(x_i, m_i^{N_T}), \qquad \mathbb{B}_h(m, w) := \sum_{i,n} \hat{b}(m_i^n, w_i^{n-1}),$$
 
$$\hat{b}(m, w) := \begin{cases} mL\left(x, -\frac{w}{m}\right), & \text{if } m > 0, w \in K = \mathbb{R}_- \times \mathbb{R}_+, \\ 0, & \text{if } (m, w) = (0, 0), \\ +\infty, & \text{otherwise}, \end{cases}$$
 and 
$$\mathbb{G}(m, w) := (m_0, (Am^{n+1} + Bw^n)_{0 \le n \le N_{m-1}}) \text{ with }$$

$$(Am)_i^{n+1} := (D_t m)_i^n - \nu (\Delta_h m)_i^{n+1}, \qquad (Bw)_i^n := (D_h w^1)_{i-1}^n + (D_h w^2)_i^n.$$

Rem.: The optimality conditions of this problem correspond to the finite-difference system

So we can apply **Chambolle-Pock**'s method for  $(P_h)$  with

$$y=(m,w), \qquad \varphi(m,w)=\mathbb{B}_h(m,w)+\mathbb{F}_h(m), \qquad \psi(m,w)=\iota_{\mathbb{G}^{-1}(\rho^0,0)}(m,w)$$

See [Briceño Arias et al., 2018] and [Briceño Arias et al., 2019] in stationary and dynamic cases.

#### **Numerical Example**

Setting: 
$$g\equiv 0$$
 and  $\mathbb{R}^2\times\mathbb{R}\ni (x,m)\mapsto f(x,m):=m^2-\overline{H}(x),$  with 
$$\overline{H}(x)=\sin(2\pi x_2)+\sin(2\pi x_1)+\cos(2\pi x_1)$$

We solve the corresponding MFG and obtain the following evolution of the density:



**Evolution of the density** 

More details in [Briceño Arias et al., 2019]

#### Turnpike phenomenon

This example also illustrates the turnpike phenomenon, see e.g. [Porretta and Zuazua, 2013]

- the mass starts from an initial density;
- it converges to a steady state, influenced only by the running cost;
- ullet as  $t \to T$ , the mass is influenced by the final cost and **converges to a final state**.



 $L^2$  distance between dynamic and stationary solutions

More details in [Briceño Arias et al., 2019]

# Summary so far

#### Outline

- 1. Introduction
- Methods for the PDE system
- Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
  - A Picard Scheme for MKV FBSDE
  - Stochastic Methods for some Finite-Dimensional MFC Problems
- Conclusion

#### Outline

- 1. Introduction
- Methods for the PDE system
- Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
  - A Picard Scheme for MKV FBSDE
  - Stochastic Methods for some Finite-Dimensional MFC Problems

Conclusion

### MKV FBSDE System

Recall: generic form:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & 0 \le t \le T \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & 0 \le t \le T \\ X_0 \sim m_0, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases}$$

- Decouple:
  - Given  $(\mathcal{L}(X), Y, Z)$ , solve for X
  - ▶ Given  $(X, \mathcal{L}(X))$  solve for (Y, Z)
- Iterate
- Algorithm proposed by [Chassagneux et al., 2019, Angiuli et al., 2019]

## Picard Scheme for MKV FBSDE System

```
Input: Initial guess (\xi, \zeta); initial condition \xi; terminal condition \zeta; time horizon T; number of iterations K
```

**Output:** Approximation of (X,Y,Z) solving the MKV FBSDE system

- 1 Initialize  $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$
- 2 for  $k = 0, 1, 2, \dots, K 1$  do
- Let  $X^{(k+1)}$  be the solution to:

$$\begin{cases} dX_t = B(X_t^{(\mathtt{k})}, \mathcal{L}(X_t^{(\mathtt{k})}), Y_t^{(\mathtt{k})}, Z_t^{(\mathtt{k})}) dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \xi \end{cases}$$

### Picard Scheme for MKV FBSDE System

```
Input: Initial guess (\xi, \zeta); initial condition \xi; terminal condition \zeta; time horizon T; number of iterations K
```

**Output:** Approximation of (X, Y, Z) solving the MKV FBSDE system

- 1 Initialize  $X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 \le t \le T$
- $\mathbf{2} \ \ \mathbf{for} \ \mathbf{k} = 0, 1, 2, \dots, \mathtt{K} 1 \ \mathbf{do}$
- 3 Let  $X^{(k+1)}$  be the solution to:

$$\begin{cases} dX_t = B(X_t^{(\texttt{k})}, \mathcal{L}(X_t^{(\texttt{k})}), Y_t^{(\texttt{k})}, Z_t^{(\texttt{k})}) dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \xi \end{cases}$$

4 Let  $(Y^{(k+1)}, Z^{(k+1)})$  be the solution to:

$$\begin{cases} dY_t = -F(X_t^{(\mathtt{k}+1)}, \mathcal{L}(X_t^{(\mathtt{k}+1)}), Y_t^{(\mathtt{k})}, Z_t^{(\mathtt{k})}) dt + Z_t^{(\mathtt{k})} dW_t, \qquad 0 \leq t \leq T \\ Y_T = \zeta \end{cases}$$

5  $\operatorname{return} \operatorname{Picard}[T](\xi,\zeta) = (X^{(\mathtt{K})},Y^{(\mathtt{K})},Z^{(\mathtt{K})})$ 

### Picard Scheme for MKV FBSDE System

```
number of iterations K
                  Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
               1 Initialize X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 < t < T
              2 for k = 0, 1, 2, \dots, K-1 do
                        Let X^{(k+1)} be the solution to:
                                      \begin{cases} dX_t = B(X_t^{(\mathtt{k})}, \mathcal{L}(X_t^{(\mathtt{k})}), Y_t^{(\mathtt{k})}, Z_t^{(\mathtt{k})}) dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \xi \end{cases}
                        Let (Y^{(k+1)}, Z^{(k+1)}) be the solution to:
                              \begin{cases} dY_t = -F(X_t^{(\mathtt{k}+1)}, \mathcal{L}(X_t^{(\mathtt{k}+1)}), Y_t^{(\mathtt{k})}, Z_t^{(\mathtt{k})}) dt + Z_t^{(\mathtt{k})} dW_t, & 0 \leq t \leq T \\ Y_T = \zeta \end{cases}
              5 return Picard[T](\xi,\zeta)=(X^{(\mathtt{K})},Y^{(\mathtt{K})},Z^{(\mathtt{K})})
Notation: \Phi_{\mathcal{E},\mathcal{C}}: (X^{(k)},\mathcal{L}(X^{(k)}),Y^{(k)},Z^{(k)}) \mapsto (X^{(k+1)},\mathcal{L}(X^{(k+1)}),Y^{(k+1)},Z^{(k+1)})
```

**Input:** Initial guess  $(\xi, \zeta)$ ; initial condition  $\xi$ ; terminal condition  $\zeta$ ; time horizon T;

```
Input: Initial guess (\xi, \zeta); initial condition \xi; terminal condition \zeta; time horizon T;
             number of iterations K
   Output: Approximation of (X, Y, Z) solving the MKV FBSDE system
1 Initialize X_t^{(0)} = \xi, Y_t^{(0)} = 0, Z_t^{(0)} = 0, 0 < t < T
2 for k = 0, 1, 2, \dots, K-1 do
        Let X^{(k+1)} be the solution to:
                    \begin{cases} dX_t = B(X_t^{(k)}, \mathcal{L}(X_t^{(k)}), Y_t^{(k)}, Z_t^{(k)}) dt + \sigma dW_t, & 0 \le t \le T \\ X_0 = \varepsilon \end{cases}
       Let (Y^{(k+1)}, Z^{(k+1)}) be the solution to:
            \begin{cases} dY_t = -F(X_t^{(k+1)}, \mathcal{L}(X_t^{(k+1)}), Y_t^{(k)}, Z_t^{(k)}) dt + Z_t^{(k)} dW_t, & 0 \le t \le T \\ Y_T = \zeta \end{cases}
5 return Picard[T](\xi,\zeta)=(X^{(K)},Y^{(K)},Z^{(K)})
```

Notation:  $\Phi_{\mathcal{E},\mathcal{C}}: (X^{(k)},\mathcal{L}(X^{(k)}),Y^{(k)},Z^{(k)}) \mapsto (X^{(k+1)},\mathcal{L}(X^{(k+1)}),Y^{(k+1)},Z^{(k+1)})$ 

Contraction? Small T or small Lipschitz constants for B, F, G

#### **Continuation Method**

• If T is big: Solve FBSDE on small intervals & "patch" the solutions together

#### Continuation Method

- If T is big: Solve FBSDE on small intervals & "patch" the solutions together
- Grid:  $0 = T_0 < T_1 < \cdots < T_{M-1} < T_M = T$
- Subproblem: Given  $(\xi_{T_m}, \mathcal{L}(\xi_{T_m}))$  and  $\zeta_{T_{m+1}}$ , solve:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & T_m \le t \le T_{m+1} \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & T_m \le t \le T_{m+1} \\ X_{T_m} = \xi_{T_m}, & Y_{T_{m+1}} = \zeta_{T_{m+1}} \end{cases}$$

#### **Continuation Method**

- If T is big: Solve FBSDE on small intervals & "patch" the solutions together
- Grid:  $0 = T_0 < T_1 < \cdots < T_{M-1} < T_M = T$
- Subproblem: Given  $(\xi_{T_m}, \mathcal{L}(\xi_{T_m}))$  and  $\zeta_{T_{m+1}}$ , solve:

$$\begin{cases} dX_t = B(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \sigma dW_t, & T_m \le t \le T_{m+1} \\ dY_t = -F(X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_t dW_t, & T_m \le t \le T_{m+1} \\ X_{T_m} = \xi_{T_m}, & Y_{T_{m+1}} = \zeta_{T_{m+1}} \end{cases}$$

- How to find  $\xi_{T_m}$  and  $\zeta_{T_{m+1}}$ ?
  - $\rightarrow \xi_{T_m}$  from previous problem's solution (or initial condition)
  - $\rightarrow \zeta_{T_{m+1}}$  from next problem's solution (or terminal condition)

### Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver
$$[m](\xi_0, \mu_0)$$

with  $\xi_0$  a random variable with distribution  $\mu_0$ 

```
Input: Initial guess (\xi, \mathcal{L}(\xi)); time step index m; number of iterations K
   Output: Approximation of Y_{T_m} where (X,Y,Z) solves the MKV FBSDE system on
              [T_m, T] starting with (\xi, \mathcal{L}(\xi)) at time T_m
1 Initialize X_t^{(0)} = \xi, \mathcal{L}(X_t^{(0)}) = \mathcal{L}(\xi) for all T_m \leq t \leq T_{m+1}
```

- $\mathbf{2} \ \ \textbf{for} \ \mathtt{k} = 0, 1, 2, \ldots, \mathtt{K} 1 \ \textbf{do}$ 
  - If  $T_{m+1} = T$ ,  $Y_{T_{m+1}}^{(k+1)} = G(X_{T_{m+1}}^{(k)}, \mathcal{L}(X_{T_{m+1}}^{(k)}))$

### Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

Solver
$$[m](\xi_0,\mu_0)$$

with  $\xi_0$  a random variable with distribution  $\mu_0$ 

- 2 for  $k = 0, 1, 2, \dots, K-1$  do
- If  $T_{m+1} = T$ ,  $Y_{T_{m+1}}^{(k+1)} = G(X_{T_{m+1}}^{(k)}, \mathcal{L}(X_{T_{m+1}}^{(k)}))$
- 4 Else: compute recursively:

$$Y_{T_{m+1}}^{(\mathtt{k}+1)} = \operatorname{Solver}[m+1](X_{T_{m+1}}^{(\mathtt{k})}, \mathcal{L}(X_{T_{m+1}}^{(\mathtt{k})}))$$

### Global Solver for MKV FBSDE System

Following [Chassagneux et al., 2019], define a global solver recursively, and then call:

$$\operatorname{Solver}[m](\xi_0, \mu_0)$$

with  $\xi_0$  a random variable with distribution  $\mu_0$ 

```
Input: Initial guess (\xi, \mathcal{L}(\xi)); time step index m; number of iterations K
   Output: Approximation of Y_{T_m} where (X,Y,Z) solves the MKV FBSDE system on
                 [T_m, T] starting with (\xi, \mathcal{L}(\xi)) at time T_m
1 Initialize X_t^{(0)} = \xi, \mathcal{L}(X_t^{(0)}) = \mathcal{L}(\xi) for all T_m < t < T_{m+1}
2 for k = 0, 1, 2, \dots, K-1 do
         If T_{m+1} = T, Y_{T_{m+1}}^{(k+1)} = G(X_{T_{m+1}}^{(k)}, \mathcal{L}(X_{T_{m+1}}^{(k)}))
          Else: compute recursively:
4
                                     Y_{T_{m+1}}^{(k+1)} = \text{Solver}[m+1](X_{T_{m+1}}^{(k)}, \mathcal{L}(X_{T_{m+1}}^{(k)}))
          Compute:
5
           (X_t^{(\mathtt{k}+1)}, \mathcal{L}(X_t^{(\mathtt{k}+1)}), Y_t^{(\mathtt{k}+1)}, Z_t^{(\mathtt{k}+1)})_{T_m \leq t \leq T_{m+1}} = \mathtt{Picard}[T_{m+1} - T_m](X_{T_m}^{(\mathtt{k})}, Y_{T_{m+1}}^{(\mathtt{k}+1)})
6 return Solver[m](\xi, \mathcal{L}(\xi)) := Y_{T_m}^{(K)}
```

# Implementation: Discretizations

In the sequel, we present two algorithms, following [Angiuli et al., 2019]

- Tree algorithm:
  - Time discretization
  - Space discretization: binomial tree structure
  - Look at trajectories
- Grid algorithm:
  - Time and space discretization on a grid
  - Look at time marginals

### Tree-Based Algorithm: Time Discretization

ullet Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)

### Tree-Based Algorithm: Time Discretization

- ullet Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T$ ,  $t_{i+1} t_i = \Delta t$
- Euler Scheme:  $0 < i < N_t 1$

$$\begin{cases} X_{t_{i+1}}^{(\mathbf{k}+1)} = X_{t_{i}}^{(\mathbf{k}+1)} + B(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k})}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t + \sigma \Delta W_{t_{i+1}} \\ X_{0}^{(\mathbf{k}+1)} = \xi \\ Y_{t_{i}}^{(\mathbf{k}+1)} = \mathbb{E}_{t_{i}}[Y_{t_{i+1}}^{(\mathbf{k}+1)}] + F(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k}}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t \\ \approx Y_{t_{i+1}}^{(\mathbf{k}+1)} + F(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k}}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t - Z_{t_{i}}^{(\mathbf{k}+1)} \Delta W_{t_{i+1}} \\ Y_{T}^{(\mathbf{k}+1)} = G(X_{T}^{(\mathbf{k}+1)}, \mathcal{L}(X_{T}^{(\mathbf{k}+1)})) \\ Z_{t_{i}}^{(\mathbf{k}+1)} = \frac{1}{\Delta t} \mathbb{E}_{t_{i}}[Y_{t_{i+1}}^{(\mathbf{k}+1)} \Delta W_{t_{i+1}}] \\ Z_{T}^{(\mathbf{k}+1)} = 0 \end{cases}$$

# Tree-Based Algorithm: Time Discretization

- ullet Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T, t_{i+1} t_i = \Delta t$
- Euler Scheme:  $0 < i < N_t 1$

$$\begin{cases} X_{t_{i+1}}^{(\mathbf{k}+1)} = X_{t_{i}}^{(\mathbf{k}+1)} + B(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k})}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t + \sigma \Delta W_{t_{i+1}} \\ X_{0}^{(\mathbf{k}+1)} = \xi \\ Y_{t_{i}}^{(\mathbf{k}+1)} = \mathbb{E}_{t_{i}}[Y_{t_{i+1}}^{(\mathbf{k}+1)}] + F(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k}}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t \\ \approx Y_{t_{i+1}}^{(\mathbf{k}+1)} + F(X_{t_{i}}^{(\mathbf{k}+1)}, \mathcal{L}(X_{t_{i}}^{(\mathbf{k}+1)}), Y_{t_{i}}^{(\mathbf{k}}, Z_{t_{i}}^{(\mathbf{k})}) \Delta t - Z_{t_{i}}^{(\mathbf{k}+1)} \Delta W_{t_{i+1}} \\ Y_{T}^{(\mathbf{k}+1)} = G(X_{T}^{(\mathbf{k}+1)}, \mathcal{L}(X_{T}^{(\mathbf{k}+1)})) \\ Z_{t_{i}}^{(\mathbf{k}+1)} = \frac{1}{\Delta t} \mathbb{E}_{t_{i}}[Y_{t_{i+1}}^{(\mathbf{k}+1)} \Delta W_{t_{i+1}}] \\ Z_{T}^{(\mathbf{k}+1)} = 0 \end{cases}$$

- Questions:
  - ► How to represent  $\mathcal{L}(X_{t_i}^{(k+1)})$ ?
  - ▶ How to compute the conditional expectation  $\mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}]$ ?

- At each  $t_i$ , replace  $\Delta W_{t_{i+1}}$  by a branch with 2 values:  $\pm \sqrt{\Delta t}$  w.p. 1/2
- Answers:
  - $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$  weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathtt{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k},$$

and at time  $t_i$ ,  $i \ge 1$ : look at values on the nodes at depth i

 $ightharpoonup \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] pprox ext{weighted average of values on the two next branches}$ 

- At each  $t_i$ , replace  $\Delta W_{t_{i+1}}$  by a branch with 2 values:  $\pm \sqrt{\Delta t}$  w.p. 1/2
- Answers:
  - $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$  weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathtt{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k},$$

and at time  $t_i$ ,  $i \ge 1$ : look at values on the nodes at depth i

- $ightharpoonup \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] pprox \text{weighted average of values on the two next branches}$
- Starting from some  $x_0$ , doing  $N_t$  steps:  $2^{N_t}$  paths
- $N_{x_0}$  starting points i.i.d.  $\sim \mu_0$ :  $N_{x_0} \times 2^{N_t}$  paths !

- At each  $t_i$ , replace  $\Delta W_{t_{i+1}}$  by a branch with 2 values:  $\pm \sqrt{\Delta t}$  w.p. 1/2
- Answers:
  - $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$  weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k},$$

and at time  $t_i, i \geq 1$ : look at values on the nodes at depth i

- $ightharpoonup \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(k+1)}] pprox \text{weighted average of values on the two next branches}$
- Starting from some  $x_0$ , doing  $N_t$  steps:  $2^{N_t}$  paths
- $N_{x_0}$  starting points i.i.d.  $\sim \mu_0$ :  $N_{x_0} \times 2^{N_t}$  paths !
- Save space thanks to recombinations?

- At each  $t_i$ , replace  $\Delta W_{t_{i+1}}$  by a branch with 2 values:  $\pm \sqrt{\Delta t}$  w.p. 1/2
- Answers:
  - $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$  weighted empirical distribution:

$$\mathcal{L}(X_{t_0}^{(\mathbf{k}+1)}) \approx \sum_{n=1}^{N_{x_0}} p_0^k \delta_{x_0^k},$$

and at time  $t_i, i \geq 1$ : look at values on the nodes at depth i

- $ightharpoonup \mathbb{E}_{t_i}[Y_{t_{i+1}}^{(\mathbf{k}+1)}] pprox \mathbf{weighted}$  average of values on the two next branches
- Starting from some  $x_0$ , doing  $N_t$  steps:  $2^{N_t}$  paths
- $N_{x_0}$  starting points i.i.d.  $\sim \mu_0$ :  $N_{x_0} \times 2^{N_t}$  paths !
- Save space thanks to recombinations? Not really but . . .

# Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$$

 $\rightarrow$  Approximate  $u(\cdot,\cdot,\cdot),v(\cdot,\cdot,\cdot)$  instead of  $(Y_t,Z_t)_{t\in[0,T]}$ 

# Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$$

- $\rightarrow$  Approximate  $u(\cdot,\cdot,\cdot),v(\cdot,\cdot,\cdot)$  instead of  $(Y_t,Z_t)_{t\in[0,T]}$
- Difficulty: space of  $\mathcal{L}(X_t)$  is infinite dimensional
  - → Freeze it during each Picard iteration:

$$Y_t^{(\mathtt{k}+1)} = u^{(\mathtt{k}+1)}(t,X_t^{(\mathtt{k}+1)}), \qquad Z_t^{(\mathtt{k}+1)} = v^{(\mathtt{k}+1)}(t,X_t^{(\mathtt{k}+1)}) \tag{$\star$}$$

# Grid-Based Algorithm: Time & Space Discretization

Decoupling functions (see e.g., Section 6.4 in [Carmona and Delarue, 2018]):

$$Y_t = u(t, X_t, \mathcal{L}(X_t)), \qquad Z_t = v(t, X_t, \mathcal{L}(X_t))$$

- $\to$  Approximate  $u(\cdot,\cdot,\cdot),v(\cdot,\cdot,\cdot)$  instead of  $(Y_t,Z_t)_{t\in[0,T]}$
- Difficulty: space of  $\mathcal{L}(X_t)$  is infinite dimensional
  - $\rightarrow$  Freeze it during each Picard iteration:

$$Y_t^{(\mathtt{k}+1)} = u^{(\mathtt{k}+1)}(t, X_t^{(\mathtt{k}+1)}), \qquad Z_t^{(\mathtt{k}+1)} = v^{(\mathtt{k}+1)}(t, X_t^{(\mathtt{k}+1)}) \tag{$\star$}$$

- Picard iterations for distribution & decoupling functions:
  - $\textbf{Step 1: Given } (\mu^{(\mathtt{k})}, u^{(\mathtt{k})}, v^{(\mathtt{k})}), \text{ compute } \mu^{(\mathtt{k}+1)}_t = \mathcal{L}(X^{(\mathtt{k}+1)}_t), 0 \leq t \leq T, \text{ where }$

$$dX_t^{(\mathtt{k}+1)} = B\bigg(X_t^{(\mathtt{k}+1)}, \mu_t^{(\mathtt{k})}, u^{(\mathtt{k})}(t, X_t^{(\mathtt{k}+1)}), v^{(\mathtt{k})}(t, X_t^{(\mathtt{k}+1)})\bigg)dt + \sigma dW_t$$

 $\textbf{Step 2: Given } (X^{(\mathtt{k})},\mu^{(\mathtt{k}+1)}), \text{compute } (u^{(\mathtt{k}+1)},v^{(\mathtt{k}+1)}) \text{ such that } (\star) \text{ holds, where }$ 

$$dY_t^{(\mathtt{k}+1)} = -F\bigg(X_t^{(\mathtt{k}+1)}, \boldsymbol{\mu}_t^{(\mathtt{k}+1)}, Y_t^{(\mathtt{k}+1)}, Z_t^{(\mathtt{k}+1)}\bigg)dt + Z_t^{(\mathtt{k}+1)}dW_t$$

• Return  $(\mu^{(k+1)}, u^{(k+1)}, v^{(k+1)})$ 

## Grid-Based Algorithm: Forward Equation

- ullet Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T$ ,  $t_{i+1} t_i = \Delta t$
- Space discretization (d=1): Grid  $\Gamma$ :  $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$

## Grid-Based Algorithm: Forward Equation

- ullet Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T$ ,  $t_{i+1} t_i = \Delta t$
- Space discretization (d=1): Grid  $\Gamma$ :  $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$
- Use projection  $\Pi$  to stay on  $\Gamma$  at every  $t_i$ :  $\mathcal{L}(X_{t_i}^{(k+1)}) \approx \text{vector of weights}$

# Grid-Based Algorithm: Forward Equation

- $\bullet$  Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T, t_{i+1} t_i = \Delta t$
- Space discretization (d=1): Grid  $\Gamma$ :  $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$
- Use projection  $\Pi$  to stay on  $\Gamma$  at every  $t_i$ :  $\mathcal{L}(X_{t_i}^{(k+1)}) \approx \text{vector of weights}$
- Picard iterations for distribution & decoupling functions:
  - ▶ Step 1: Given  $(\mu^{(k)}, u^{(k)}, v^{(k)})$ , compute  $\mu_{t_i}^{(k+1)} = \mathcal{L}(X_{t_i}^{(k+1)}), i = 0, \dots, N_t$ , where

$$\begin{split} X_{t_{i+1}}^{(\mathtt{k}+1)} &= \Pi \bigg[ X_{t_{i}}^{(\mathtt{k}+1)} + B \bigg( X_{t_{i}}^{(\mathtt{k}+1)}, \mu_{t_{i}}^{(\mathtt{k})}, u_{t_{i}}^{(\mathtt{k})}(X_{t_{i}}^{(\mathtt{k}+1)}), v_{t_{i}}^{(\mathtt{k})}(X_{t_{i}}^{(\mathtt{k}+1)}) \bigg) dt \\ &+ \sigma \Delta W_{t_{i+1}} \bigg] \end{split}$$

# Grid-Based Algorithm: Forward Equation

- $\bullet$  Focus on an interval [0,T] with small enough T (otherwise: call recursive solver)
- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T, t_{i+1} t_i = \Delta t$
- Space discretization (d=1): Grid  $\Gamma$ :  $x_0 < x_1 < \cdots < x_{N_x}, x_{j+1} x_j = \Delta x$
- Use projection  $\Pi$  to stay on  $\Gamma$  at every  $t_i$ :  $\mathcal{L}(X_{t_i}^{(k+1)}) \approx$  vector of weights
- Picard iterations for distribution & decoupling functions:
  - ▶ Step 1: Given  $(\mu^{(k)}, u^{(k)}, v^{(k)})$ , compute  $\mu_{t_i}^{(k+1)} = \mathcal{L}(X_{t_i}^{(k+1)}), i = 0, \dots, N_t$ , where

$$\begin{split} X_{t_{i+1}}^{(\mathtt{k}+1)} &= \Pi \bigg[ X_{t_{i}}^{(\mathtt{k}+1)} + B \bigg( X_{t_{i}}^{(\mathtt{k}+1)}, \mu_{t_{i}}^{(\mathtt{k})}, u_{t_{i}}^{(\mathtt{k})}(X_{t_{i}}^{(\mathtt{k}+1)}), v_{t_{i}}^{(\mathtt{k})}(X_{t_{i}}^{(\mathtt{k}+1)}) \bigg) dt \\ &+ \sigma \Delta W_{t_{i+1}} \bigg] \end{split}$$

- In fact  $\mu_{t_{i+1}}^{(k+1)}$  can be expressed in terms of  $\mu_{t_i}^{(k+1)}$  and a transition kernel
- lacktriangle Ex: binomial approx. of W o efficient computation using quantization

## Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution & decoupling functions (continued):
  - **Step 2:** Update u, v: for all  $0 < i < N_t, x \in \Gamma$ ,

$$\begin{cases} u_{t_i}^{(\mathbf{k}+1)}(x) = \mathbb{E}\left[u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_i}^{(\mathbf{k}+1)}) \\ + F\left(X_{t_i}^{(\mathbf{k}+1)}, \mu_{t_i}^{(\mathbf{k}+1)}, u_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)}), v_{t_i}^{(\mathbf{k})}(X_{t_i}^{(\mathbf{k}+1)})\right) \Delta t \ \middle| \ X_{t_i}^{(\mathbf{k}+1)} = x \right] \\ u_T^{(\mathbf{k}+1)}(x) = G(x, \mu_{t_i}^{(\mathbf{k}+1)}) \\ v_{t_i}^{(\mathbf{k}+1)}(x) = \mathbb{E}\left[\frac{1}{\Delta t} u_{t_{i+1}}^{(\mathbf{k}+1)}(X_{t_i}^{(\mathbf{k}+1)}) \ \middle| \ X_{t_i}^{(\mathbf{k}+1)} = x \right] \\ v_T^{(\mathbf{k}+1)}(x) = 0 \end{cases}$$

Ex.: binomial approximation of  $W \to \text{more explicit formulas}$ 

# Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution & decoupling functions (continued):
  - ▶ Step 2: Update u, v: for all  $0 < i < N_t, x \in \Gamma$ ,

$$\begin{aligned} & \text{Step 2: Update } u, v \text{: for all } 0 \leq i \leq N_t, \, x \in \Gamma, \\ & \begin{pmatrix} u_{t_i}^{(\mathtt{k}+1)}(x) = \mathbb{E}\left[u_{t_{i+1}}^{(\mathtt{k}+1)}(X_{t_i}^{(\mathtt{k}+1)}) \\ & + F\left(X_{t_i}^{(\mathtt{k}+1)}, \mu_{t_i}^{(\mathtt{k}+1)}, u_{t_i}^{(\mathtt{k}}(X_{t_i}^{(\mathtt{k}+1)}), v_{t_i}^{(\mathtt{k}}(X_{t_i}^{(\mathtt{k}+1)})\right) \Delta t \, \middle| \, X_{t_i}^{(\mathtt{k}+1)} = x \right] \\ & \begin{pmatrix} u_{t}^{(\mathtt{k}+1)}(x) = G(x, \mu_{t_i}^{(\mathtt{k}+1)}) \\ v_{t_i}^{(\mathtt{k}+1)}(x) = \mathbb{E}\left[\frac{1}{\Delta t}u_{t_{i+1}}^{(\mathtt{k}+1)}(X_{t_i}^{(\mathtt{k}+1)}) \, \middle| \, X_{t_i}^{(\mathtt{k}+1)} = x \right] \\ v_T^{(\mathtt{k}+1)}(x) = 0 \end{aligned}$$

- Ex.: binomial approximation of  $W \to \text{more explicit formulas}$
- Summary:

  - $\begin{array}{l} \qquad \text{Forward: } (\mu^{(k)}, u^{(k)}, v^{(k)}) \mapsto \mu^{(k+1)} = \mathcal{L}(X^{(k+1)}) \\ \qquad \qquad \text{Backward: } (\mu^{(k+1)}, u^{(k)}, v^{(k)}) \mapsto (u^{(k+1)}, v^{(k+1)}) \end{array}$

# Grid-Based Algorithm: Backward Equation

- Picard iterations for distribution & decoupling functions (continued):
  - ▶ Step 2: Update u, v: for all  $0 < i < N_t, x \in \Gamma$ ,

$$\begin{aligned} & \text{Step 2: Update } u, v \text{: for all } 0 \leq i \leq N_t, \, x \in \Gamma, \\ & \begin{pmatrix} u_{t_i}^{(\mathtt{k}+1)}(x) = \mathbb{E} \left[ u_{t_{i+1}}^{(\mathtt{k}+1)}(X_{t_i}^{(\mathtt{k}+1)}) \\ & + F\left(X_{t_i}^{(\mathtt{k}+1)}, \mu_{t_i}^{(\mathtt{k}+1)}, u_{t_i}^{(\mathtt{k}}(X_{t_i}^{(\mathtt{k}+1)}), v_{t_i}^{(\mathtt{k}}(X_{t_i}^{(\mathtt{k}+1)}) \right) \Delta t \, \middle| \, X_{t_i}^{(\mathtt{k}+1)} = x \right] \\ & \begin{pmatrix} u_{t_i}^{(\mathtt{k}+1)}(x) = G(x, \mu_{t_i}^{(\mathtt{k}+1)}) \\ v_T^{(\mathtt{k}+1)}(x) = \mathbb{E} \left[ \frac{1}{\Delta t} u_{t_{i+1}}^{(\mathtt{k}+1)}(X_{t_i}^{(\mathtt{k}+1)}) \, \middle| \, X_{t_i}^{(\mathtt{k}+1)} = x \right] \\ & v_T^{(\mathtt{k}+1)}(x) = 0 \end{aligned}$$

- ightharpoonup Ex.: binomial approximation of  $W o ext{more explicit formulas}$
- Summary:
  - $\begin{array}{l} \qquad \text{Forward: } (\mu^{(k)}, u^{(k)}, v^{(k)}) \mapsto \mu^{(k+1)} = \mathcal{L}(X^{(k+1)}) \\ \qquad \qquad \text{Backward: } (\mu^{(k+1)}, u^{(k)}, v^{(k)}) \mapsto (u^{(k+1)}, v^{(k+1)}) \end{array}$

More details and numerical examples in [Chassagneux et al., 2019, Angiuli et al., 2019]

### Outline

- 1. Introduction
- 2. Methods for the PDE system
- Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
  - A Picard Scheme for MKV FBSDE
  - Stochastic Methods for some Finite-Dimensional MFC Problems
- Conclusion

- In general: b, f, g involve the whole distribution  $\mu_t = \mathcal{L}(X_t)$  (infinite dim.)
- What if they involve only the first moment  $\overline{\mu}_t = \mathbb{E}[X_t]$ ?

- In general: b, f, g involve the whole distribution  $\mu_t = \mathcal{L}(X_t)$  (infinite dim.)
- What if they involve only the first moment  $\overline{\mu}_t = \mathbb{E}[X_t]$ ?
- Ex. 1: LQ (see lecture 2)
  - optimal control is a function of  $X_t$  and  $\overline{\mu}_t = \mathbb{E}[X_t]$
  - ▶ ODE for  $\overline{\mu}_t$  of the form  $\frac{d}{dt}\overline{\mu}_t = \varphi(t,\overline{\mu}_t)$

- In general: b, f, g involve the whole distribution  $\mu_t = \mathcal{L}(X_t)$  (infinite dim.)
- What if they involve only the first moment  $\overline{\mu}_t = \mathbb{E}[X_t]$ ?
- Ex. 1: LQ (see lecture 2)
  - optimal control is a function of  $X_t$  and  $\overline{\mu}_t = \mathbb{E}[X_t]$
  - $lackbox{ODE for }\overline{\mu}_t$  of the form  $\frac{d}{dt}\overline{\mu}_t=\varphi(t,\overline{\mu}_t)$
- Ex. 2:

$$\begin{cases} b(x, \mu, \alpha) = b(x, \overline{\mu}, \alpha) = (\cos(x) + \cos(\overline{\mu}))\alpha \\ f(x, \mu, \alpha) = |\alpha|^2, \qquad g(x, \mu) = 0 \end{cases}$$

- ▶ Can the optimal control be expressed as a function of  $X_t$ ,  $\mathbb{E}[X_t]$  only?
- ▶ ODE for  $\overline{\mu}_t$ ?

- In general: b, f, g involve the whole distribution  $\mu_t = \mathcal{L}(X_t)$  (infinite dim.)
- What if they involve only the first moment  $\overline{\mu}_t = \mathbb{E}[X_t]$ ?
- Ex. 1: LQ (see lecture 2)
  - optimal control is a function of  $X_t$  and  $\overline{\mu}_t = \mathbb{E}[X_t]$
  - ▶ ODE for  $\overline{\mu}_t$  of the form  $\frac{d}{dt}\overline{\mu}_t = \varphi(t,\overline{\mu}_t)$
- Ex. 2:

$$\begin{cases} b(x, \mu, \alpha) = b(x, \overline{\mu}, \alpha) = (\cos(x) + \cos(\overline{\mu}))\alpha \\ f(x, \mu, \alpha) = |\alpha|^2, \qquad g(x, \mu) = 0 \end{cases}$$

- ▶ Can the optimal control be expressed as a function of  $X_t$ ,  $\mathbb{E}[X_t]$  only?
- ▶ ODE for  $\frac{1}{\mu_t}$ ?

$$\frac{d}{dt}\overline{\mu}_t = \mathbb{E}\left[\left(\cos(X_t) + \cos(\overline{\mu}_t)\right)\alpha(t, X_t)\right]$$

It involves not only  $\mathbb{E}[X_t] = \overline{\mu}_t$  but also  $\mathbb{E}[\cos(X_t)]$ 

- In general: b, f, g involve the whole distribution  $\mu_t = \mathcal{L}(X_t)$  (infinite dim.)
- What if they involve only the first moment  $\overline{\mu}_t = \mathbb{E}[X_t]$ ?
- Ex. 1: LQ (see lecture 2)
  - optimal control is a function of  $X_t$  and  $\overline{\mu}_t = \mathbb{E}[X_t]$
  - $lackbox{ODE for }\overline{\mu}_t$  of the form  $\frac{d}{dt}\overline{\mu}_t=\varphi(t,\overline{\mu}_t)$
- Ex. 2:

$$\begin{cases} b(x, \mu, \alpha) = b(x, \overline{\mu}, \alpha) = (\cos(x) + \cos(\overline{\mu}))\alpha \\ f(x, \mu, \alpha) = |\alpha|^2, \qquad g(x, \mu) = 0 \end{cases}$$

- ▶ Can the optimal control be expressed as a function of  $X_t$ ,  $\mathbb{E}[X_t]$  only?
- ▶ ODE for  $\overline{\mu}_t$ ?

$$\frac{d}{dt}\overline{\mu}_t = \mathbb{E}\left[\left(\cos(X_t) + \cos(\overline{\mu}_t)\right)\alpha(t, X_t)\right]$$

It involves not only  $\mathbb{E}[X_t] = \overline{\mu}_t$  but also  $\mathbb{E}[\cos(X_t)]$ 

Class of MFC s.t. the problem can be solved with a finite number of moments?

### Finite-Dimensional Reformulation

#### Following [Balata et al., 2019]

• In some cases, MFC problems can be written as:

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \boldsymbol{\alpha}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \mathbf{\alpha}_t)dt + \Sigma d\mathbf{W}_t$$

where the state is:  $\underline{X}_t=(\mathbb{E}[X_t],\mathbb{E}[|X_t|^2],\dots,\mathbb{E}[|X_t|^p])\in(\mathbb{R}^d)^p$ 

### Finite-Dimensional Reformulation

#### Following [Balata et al., 2019]

In some cases, MFC problems can be written as:

$$J(\boldsymbol{\alpha}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \boldsymbol{\alpha}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$dX_t = \mathcal{B}(X_t, \mathbf{\alpha_t})dt + \Sigma dW_t$$

where the state is:  $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$ 

• Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T$ ,  $t_{i+1} - t_i = \Delta t$ 

#### Following [Balata et al., 2019]

• In some cases, MFC problems can be written as:

$$J(\pmb{\alpha}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \pmb{\alpha}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \mathbf{\alpha_t})dt + \Sigma d\mathbb{W}_t$$

where the state is:  $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$ 

- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T, t_{i+1} t_i = \Delta t$
- DPP for  $V:[0,T]\times(\mathbb{R}^d)^p\to\mathbb{R}$  or rather  $V_{\Delta t}:\{t_0,\ldots,t_{N_t}\}\times(\mathbb{R}^d)^p\to\mathbb{R}$ :

$$\begin{cases} V_{\Delta t}(T,\underline{x}) = \mathcal{G}(\underline{x}) \\ V_{\Delta t}(t_n,\underline{x}) = \sup_{\pmb{\alpha}} \left\{ \mathcal{F}(\underline{x},\underline{\alpha}) \Delta t + \mathbb{E}^{t_n,\underline{x},\pmb{\alpha}} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] \right\}, n = N_t - 1, \dots, 1, 0 \end{cases}$$
 where  $\mathbb{E}^{t_n,\underline{x},\pmb{\alpha}} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] = \mathbb{E} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\pmb{\alpha}}) \mid \underline{X}_{t_n}^{\pmb{\alpha}} = \underline{x} \right]$ 

#### Following [Balata et al., 2019]

• In some cases, MFC problems can be written as:

$$J(\pmb{\alpha}) = \mathbb{E}\left[\int_0^T \mathcal{F}(\underline{X}_t, \pmb{\alpha}_t) dt + \mathcal{G}(\underline{X}_T)\right]$$

subject to:

$$d\underline{X}_t = \mathcal{B}(\underline{X}_t, \mathbf{\alpha_t})dt + \Sigma d\mathbb{W}_t$$

where the state is:  $\underline{X}_t = (\mathbb{E}[X_t], \mathbb{E}[|X_t|^2], \dots, \mathbb{E}[|X_t|^p]) \in (\mathbb{R}^d)^p$ 

- Time discretization:  $0 = t_0 < t_1 < \cdots < t_{N_t} = T, t_{i+1} t_i = \Delta t$
- DPP for  $V:[0,T]\times(\mathbb{R}^d)^p\to\mathbb{R}$  or rather  $V_{\Delta t}:\{t_0,\ldots,t_{N_t}\}\times(\mathbb{R}^d)^p\to\mathbb{R}$ :

$$\begin{cases} V_{\Delta t}(T,\underline{x}) = \mathcal{G}(\underline{x}) \\ V_{\Delta t}(t_n,\underline{x}) = \sup_{\alpha} \left\{ \mathcal{F}(\underline{x},\underline{\alpha}) \Delta t + \mathbb{E}^{t_n,\underline{x},\alpha} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] \right\}, n = N_t - 1, \dots, 1, 0 \end{cases}$$
 where  $\mathbb{E}^{t_n,\underline{x},\alpha} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}) \right] = \mathbb{E} \left[ V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_n}^{\alpha} = \underline{x} \right]$ 

→ Key difficulty: estimation of the conditional expectation

- Family of basis functions  $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{\alpha})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[ \left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\alpha}) \right|^2 \right]$$

- Family of basis functions  $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{\alpha})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[ \left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\alpha}) \right|^2 \right]$$

Explicit expression:

$$\beta_{t_n}^m = \mathbb{E}[\phi(\underline{X}_{t_n}^{\alpha})\phi(\underline{X}_{t_n}^{\alpha})^{\top}]^{-1}\,\mathbb{E}[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\alpha})\phi(\underline{X}_{t_n}^{\alpha})]$$

- Family of basis functions  $\phi = (\phi^m)_{m=1,...,M}$
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{\alpha})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[ \left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\alpha}) \right|^2 \right]$$

Explicit expression:

$$\underline{\beta_{t_n}^m} = \mathbb{E}[\phi(\underline{X_{t_n}^{\alpha}})\phi(\underline{X_{t_n}^{\alpha}})^{\top}]^{-1} \mathbb{E}[V_{\Delta t}(t_{n+1},\underline{X_{t_{n+1}}^{\alpha}})\phi(\underline{X_{t_n}^{\alpha}})]$$

• Estimation with  $N_{MC}$  Monte Carlo samples:

$$\mathbb{E}[\phi(\underline{X}_{t_n}^{\ell,\alpha})\phi(\underline{X}_{t_n}^{\ell,\alpha})^{\top}] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} \phi(\underline{X}_{t_n}^{\ell,\alpha})\phi(\underline{X}_{t_n}^{\ell,\alpha})^{\top}$$

and

$$\mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{\alpha}}) \phi(\underline{X}_{t_n}^{\ell, \boldsymbol{\alpha}})] \approx \frac{1}{N_{MC}} \sum_{t=1}^{N_{MC}} V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{\alpha}}) \phi(\underline{X}_{t_n}^{\ell, \boldsymbol{\alpha}})$$

with training set  $\{(\underline{X}_{t_n}^{\ell,\alpha}, \underline{X}_{t_{n+1}}^{\ell,\alpha}); \ell = 1, \dots, N_{MC}\}$ 

- Family of basis functions  $\phi = (\phi^m)_{m=1,...,M}$  Not always easy to choose !
- Projection:

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \,|\, \underline{X}_{t_{n}}^{\alpha}\right] \approx \sum_{m=1}^{M} \beta_{t_{n}}^{m} \phi^{m}(\underline{X}_{t_{n}}^{\alpha})$$

where

$$\beta_{t_n}^m = \operatorname*{argmin}_{\beta \in \mathbb{R}^M} \mathbb{E} \left[ \left| V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) - \sum_{m=1}^M \beta^m \phi^m(\underline{X}_{t_n}^{\alpha}) \right|^2 \right]$$

Explicit expression:

$$\beta_{t_n}^m = \mathbb{E}[\phi(\underline{X}_{t_n}^{\alpha})\phi(\underline{X}_{t_n}^{\alpha})^{\top}]^{-1} \, \mathbb{E}[V_{\Delta t}(t_{n+1},\underline{X}_{t_{n+1}}^{\alpha})\phi(\underline{X}_{t_n}^{\alpha})]$$

• Estimation with  $N_{MC}$  Monte Carlo samples:

$$\mathbb{E}[\phi(\underline{X}_{t_n}^{\ell,\alpha})\phi(\underline{X}_{t_n}^{\ell,\alpha})^{\top}] \approx \frac{1}{N_{MC}} \sum_{\ell=1}^{N_{MC}} \phi(\underline{X}_{t_n}^{\ell,\alpha})\phi(\underline{X}_{t_n}^{\ell,\alpha})^{\top}$$

and

$$\mathbb{E}[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{\alpha}}) \phi(\underline{X}_{t_n}^{\ell, \boldsymbol{\alpha}})] \approx \frac{1}{N_{MC}} \sum_{t=1}^{N_{MC}} V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\ell, \boldsymbol{\alpha}}) \phi(\underline{X}_{t_n}^{\ell, \boldsymbol{\alpha}})$$

with training set 
$$\{(\underline{X}_{t_n}^{\ell,\alpha}, \underline{X}_{t_{n+1}}^{\ell,\alpha}); \ell = 1, \dots, N_{MC}\}$$

- Two space discretizations:
  - Set of points  $\Gamma$  on which we want to approximate  $V_{\Delta t}$ ; projection  $\Pi_{\Gamma}$
  - Quantization of noise (see e.g. [Pagès, 2018]):
    - ★ Set of cells  $C_Q = \{C_j; j = 1, \dots, J_Q\}$
    - \* Associated grid points  $\mathcal{G}_Q = \{\zeta_i; j = 1, \dots, J_Q\}$
    - \* Weights for Gaussian r.v.  $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$ :  $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
    - ★ Discrete version:  $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$ :  $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
    - $\star$  Can be optimized<sup>1</sup>; particularly helpful when d>1

Optimal grids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
  - Set of points  $\Gamma$  on which we want to approximate  $V_{\Delta t}$ ; projection  $\Pi_{\Gamma}$
  - Quantization of noise (see e.g. [Pagès, 2018]):
    - ★ Set of cells  $C_Q = \{C_j; j = 1, ..., J_Q\}$
    - \* Associated grid points  $\mathcal{G}_Q = \{\zeta_i; j = 1, \dots, J_Q\}$
    - \* Weights for Gaussian r.v.  $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$ :  $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
    - ★ Discrete version:  $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$ :  $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_i) = p_i$
    - ★ Can be optimized<sup>1</sup>; particularly helpful when d > 1
- Estimation with piecewise constant interpolation:  $\bar{V}_{\Delta t}: \{t_0, \dots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha} = \underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}(\underline{x}, \alpha_{t_{n}}) \Delta t + \Sigma \zeta_{j}\right)\right)$$

 $\text{ for all }\underline{x}\in\Gamma$ 

Optimal grids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
  - Set of points  $\Gamma$  on which we want to approximate  $V_{\Delta t}$ ; projection  $\Pi_{\Gamma}$
  - Quantization of noise (see e.g. [Pagès, 2018]):
    - ★ Set of cells  $C_Q = \{C_j; j = 1, ..., J_Q\}$
    - \* Associated grid points  $\mathcal{G}_Q = \{\zeta_i; j = 1, \dots, J_Q\}$
    - **\*** Weights for Gaussian r.v.  $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$ :  $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
    - ★ Discrete version:  $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$ :  $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_i) = p_i$
    - ★ Can be optimized<sup>1</sup>; particularly helpful when d > 1
- Estimation with piecewise constant interpolation:  $\bar{V}_{\Delta t}: \{t_0, \dots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha} = \underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}(\underline{x}, \alpha_{t_{n}}) \Delta t + \Sigma \zeta_{j}\right)\right)$$

for all  $x \in \Gamma$ 

Other interpolations are possible

<sup>1</sup> Optimal grids/weights available here: http://www.quantize.maths-fi.com

- Two space discretizations:
  - Set of points  $\Gamma$  on which we want to approximate  $V_{\Delta t}$ ; projection  $\Pi_{\Gamma}$
  - Quantization of noise (see e.g. [Pagès, 2018]):
    - ★ Set of cells  $C_Q = \{C_j; j = 1, \dots, J_Q\}$
    - **\*** Associated grid points  $\mathcal{G}_Q = \{\zeta_j; j = 1, \dots, J_Q\}$
    - \* Weights for Gaussian r.v.  $\Delta \mathbb{W} \sim \mathcal{N}(0, \Delta t)$ :  $p_j = \mathbb{P}(\Delta \mathbb{W} \in C_j)$
    - ★ Discrete version:  $\Delta \hat{\mathbb{W}} \in \mathcal{G}_Q$ :  $\mathbb{P}(\Delta \hat{\mathbb{W}} = \zeta_j) = p_j$
    - ★ Can be optimized<sup>1</sup>; particularly helpful when d > 1
- Estimation with piecewise constant interpolation:  $V_{\Delta t}: \{t_0, \dots, t_{N_t}\} \times \Gamma \to \mathbb{R}$

$$\mathbb{E}\left[V_{\Delta t}(t_{n+1}, \underline{X}_{t_{n+1}}^{\alpha}) \mid \underline{X}_{t_{n}}^{\alpha} = \underline{x}\right] \approx \sum_{j=1}^{J_{Q}} p_{j} \bar{V}_{\Delta t}\left(t_{n+1}, \Pi_{\Gamma}\left(\mathcal{B}(\underline{x}, \alpha_{t_{n}}) \Delta t + \Sigma \zeta_{j}\right)\right)$$

for all  $x \in \Gamma$ 

Other interpolations are possible

For more details and numerical examples, see [Balata et al., 2019]

Optimal grids/weights available here: http://www.quantize.maths-fi.com

### Outline

- Introduction
- 2. Methods for the PDE system
- Optimization Methods for MFC and Variational MFG
- 4. Methods for MKV FBSDE
- 5. Conclusion

# Summary

#### Other numerical methods

The previous presentation is not exhaustive!

#### Some other references:

- Gradient descent based methods [Laurière and Pironneau, 2016], [Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
- Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018], [Gomes and Yang, 2020]
- Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021], [Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
- Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
- Cubature [de Raynal and Trillos, 2015]
- ...

### Other numerical methods

The previous presentation is not exhaustive!

#### Some other references:

- Gradient descent based methods [Laurière and Pironneau, 2016], [Pfeiffer, 2016], [Lavigne and Pfeiffer, 2022]
- Monotone operators [Almulla et al., 2017], [Gomes and Saúde, 2018], [Gomes and Yang, 2020]
- Policy iteration [Cacace et al., 2021], [Cui and Koeppl, 2021], [Camilli and Tang, 2022], [Tang and Song, 2022], [Laurière et al., 2023]
- Finite elements [Benamou and Carlier, 2015b], [Andreev, 2017]
- Cubature [de Raynal and Trillos, 2015]
- ٥

However efficient, these methods are usually limited to problems with:

- (relatively) small dimension
- (relatively) simple structure
- ⇒ motivations to develop machine learning methods (see next lectures)

#### References I

[Achdou, 2013] Achdou, Y. (2013).

Finite difference methods for mean field games.

In Hamilton-Jacobi equations: approximations, numerical analysis and applications, volume 2074 of Lecture Notes in Math., pages 1–47. Springer, Heidelberg.

[Achdou et al., 2012] Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012).

Mean field games: numerical methods for the planning problem.

SIAM J. Control Optim., 50(1):77–109.

[Achdou and Capuzzo-Dolcetta, 2010] Achdou, Y. and Capuzzo-Dolcetta, I. (2010).

Mean field games: numerical methods.

SIAM J. Numer. Anal., 48(3):1136–1162.

[Achdou and Laurière, 2016a] Achdou, Y. and Laurière, M. (2016a).

Mean field type control with congestion (ii): An augmented lagrangian method.

Applied Mathematics & Optimization, 74(3):535–578.

[Achdou and Laurière, 2016b] Achdou, Y. and Laurière, M. (2016b).

Mean Field Type Control with Congestion (II): An augmented Lagrangian method.

Appl. Math. Optim., 74(3):535-578.

[Achdou and Laurière, 2020] Achdou, Y. and Laurière, M. (2020).

Mean field games and applications: Numerical aspects.

Mean Field Games: Cetraro, Italy 2019, 2281:249-307.

[Achdou and Perez, 2012] Achdou, Y. and Perez, V. (2012).

Iterative strategies for solving linearized discrete mean field games systems.

Netw. Heterog. Media, 7(2):197-217.

[Achdou and Porretta, 2016] Achdou, Y. and Porretta, A. (2016).

Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games.

SIAM J. Numer. Anal., 54(1):161-186.

[Almulla et al., 2017] Almulla, N., Ferreira, R., and Gomes, D. (2017).

Two numerical approaches to stationary mean-field games.

Dyn. Games Appl., 7(4):657–682.

[Andreev, 2017] Andreev, R. (2017).

Preconditioning the augmented lagrangian method for instationary mean field games with diffusion.

SIAM Journal on Scientific Computing, 39(6):A2763-A2783.

[Angiuli et al., 2019] Angiuli, A., Graves, C. V., Li, H., Chassagneux, J.-F., Delarue, F., and Carmona, R. (2019).

Cemracs 2017: numerical probabilistic approach to MFG.

ESAIM: ProcS, 65:84-113.

- [Balata et al., 2019] Balata, A., Huré, C., Laurière, M., Pham, H., and Pimentel, I. (2019). A class of finite-dimensional numerically solvable mckean-vlasov control problems. ESAIM: Proceedings and Surveys, 65:114–144.
- [Baudelet et al., 2023] Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023). Deep learning for mean field optimal transport. arXiv preprint arXiv:2302.14739.
- [Benamou and Carlier, 2015a] Benamou, J.-D. and Carlier, G. (2015a).

  Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.

J. Optim. Theory Appl., 167(1):1-26.

[Benamou and Carlier, 2015b] Benamou, J.-D. and Carlier, G. (2015b).

Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations.

Journal of Optimization Theory and Applications, 167(1):1–26.

[Benamou et al., 2017] Benamou, J.-D., Carlier, G., and Santambrogio, F. (2017). Variational mean field games.

In Active Particles, Volume 1, pages 141-171. Springer.

#### References IV

[Briceño Arias et al., 2019] Briceño Arias, L. M., Kalise, D., Kobeissi, Z., Laurière, M., Mateos González, A., and Silva, F. J. (2019).

On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings.

ESAIM: ProcS, 65:330-348.

[Briceño Arias et al., 2018] Briceño Arias, L. M., Kalise, D., and Silva, F. J. (2018). Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim., 56(2):801–836.

[Cacace et al., 2021] Cacace, S., Camilli, F., and Goffi, A. (2021). A policy iteration method for mean field games. ESAIM: Control, Optimisation and Calculus of Variations, 27:85.

[Camilli and Tang, 2022] Camilli, F. and Tang, Q. (2022).

Rates of convergence for the policy iteration method for mean field games systems. *Journal of Mathematical Analysis and Applications*, 512(1):126138.

[Cardaliaguet, 2015] Cardaliaguet, P. (2015).

Weak solutions for first order mean field games with local coupling.

In Analysis and geometry in control theory and its applications, pages 111–158. Springer.

[Cardaliaguet and Graber, 2015] Cardaliaguet, P. and Graber, P. J. (2015). Mean field games systems of first order. ESAIM Control Optim. Calc. Var., 21(3):690–722.

#### References V

- [Cardaliaguet et al., 2015] Cardaliaguet, P., Graber, P. J., Porretta, A., and Tonon, D. (2015). Second order mean field games with degenerate diffusion and local coupling.
  - NoDEA Nonlinear Differential Equations Appl., 22(5):1287-1317.
- [Carlini and Silva, 2014] Carlini, E. and Silva, F. J. (2014).
  - A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal., 52(1):45–67.
- [Carlini and Silva, 2015] Carlini, E. and Silva, F. J. (2015).

A semi-Lagrangian scheme for a degenerate second order mean field game system. *Discrete Contin. Dyn. Syst.*, 35(9):4269–4292.

- [Carmona and Delarue, 2018] Carmona, R. and Delarue, F. (2018).
  - Probabilistic theory of mean field games with applications. I, volume 83 of Probability Theory and Stochastic Modelling.

Springer, Cham.

Mean field FBSDEs, control, and games.

- [Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011).
  - A first-order primal-dual algorithm for convex problems with applications to imaging. *J. Math. Imaging Vision*, 40(1):120–145.

J. Math. Imaging Vision, 40(1):120–145.

[Chassagneux et al., 2019] Chassagneux, J.-F., Crisan, D., and Delarue, F. (2019). Numerical method for FBSDEs of McKean-Vlasov type.

Ann. Appl. Probab., 29(3):1640-1684.

#### References VI

[Cui and Koeppl, 2021] Cui, K. and Koeppl, H. (2021).

Approximately solving mean field games via entropy-regularized deep reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pages 1909–1917. PMLR.

[de Raynal and Trillos, 2015] de Raynal, P. C. and Trillos, C. G. (2015).

A cubature based algorithm to solve decoupled mckean-vlasov forward-backward stochastic differential equations.

Stochastic Processes and their Applications, 125(6):2206–2255.

[Fortin and Glowinski, 1983] Fortin, M. and Glowinski, R. (1983).

Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems.

North-Holland.

[Gomes and Saúde, 2018] Gomes, D. A. and Saúde, J. (2018).

Numerical methods for finite-state mean-field games satisfying a monotonicity condition.

Applied Mathematics & Optimization.

[Gomes and Yang, 2020] Gomes, D. A. and Yang, X. (2020).

The hessian riemannian flow and newton's method for effective hamiltonians and mather measures.

ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):1883–1915.

Mean field games. Jpn. J. Math., 2(1):229–260.

```
Numerical probability.
```

```
[Laurière, 2021] Laurière, M. (2021).
  Numerical methods for mean field games and mean field type control.
  arXiv preprint arXiv:2106.06231.
```

[Laurière and Pironneau, 2016] Laurière, M. and Pironneau, O. (2016). Dynamic programming for mean-field type control. J. Optim. Theory Appl., 169(3):902-924.

[Laurière et al., 2023] Laurière, M., Song, J., and Tang, Q. (2023).

[Lasry and Lions, 2007] Lasry, J.-M. and Lions, P.-L. (2007).

Policy iteration method for time-dependent mean field games systems with non-separable hamiltonians.

Applied Mathematics & Optimization, 87(2):17.

[Lavigne and Pfeiffer, 2022] Lavigne, P. and Pfeiffer, L. (2022).

Generalized conditional gradient and learning in potential mean field games. arXiv preprint arXiv:2209.12772.

[Pagès, 2018] Pagès, G. (2018). In Universitext. Springer.

### References VIII

```
[Pfeiffer, 2016] Pfeiffer, L. (2016).
```

Numerical methods for mean-field type optimal control problems.

Pure Appl. Funct. Anal., 1(4):629-655.

[Porretta and Zuazua, 2013] Porretta, A. and Zuazua, E. (2013).

Long time versus steady state optimal control.

SIAM J. Control Optim., 51(6):4242-4273.

[Tang and Song, 2022] Tang, Q. and Song, J. (2022).

Learning optimal policies in potential mean field games: Smoothed policy iteration algorithms. arXiv preprint arXiv:2212.04791.