

• • • • • •

Занятие №2

В ходе второго занятия:

- ▲ проговорим, как используется Bootstrap;
- ▲ разберемся с ошибками I и II рода, научимся находить компромисс между ними;
- узнаем про минимальный детектируемый эффект и его интерпретируемость;
- научимся определять размер групп для эксперимента;
- ▲ узнаем, как определить размер групп, если их численности разные;
- поймем, как находить стандартное отклонение метрики для рачета размера групп.

Bootstrap

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Bootstrap

bootstrap sample 1

bootstrap sample 2

bootstrap sample 3

Ресэмплинг: имитация повторного эксперимента (имитация повторной выборки из генеральной совокупности)

Описать каждое из полученных распределений одним числом (например, средним или медианой)

Распределение значений метрики для bootstrap-сэмплов

- □ На каждом сэмпле вычислим искомую метрику
- Повторяем ресэмплинг вычисляем значение метрики строим гистограмму
- Большинство полученных нами значений метрики (при многократной имитации повторного эксперимента) будет сосредоточено вблизи истинного значения метрики
- То есть истинному значению метрики будет соответствовать мода полученного нами распределения значений метрики

Bootstrap-тест

Демонстрация

Pасчет p-value через bootstrap-тест

Ошибки 1 и 2 рода

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Ошибка I рода

Ошибка первого рода α— отвергаем нулевую гипотезу, хотя она в действительности верна.

Ошибка первого рода α— замечаем различие там, где его нет.

Продуктовая постановка: выкатываем фичу в продакшн, хотя фича не увеличивает требуемую метрику.


```
n \text{ samples} = 10 000
sample size = 10 000
alpha = 0.05
real alpha = 0
for in range(n samples):
    a = np.random.normal(0, 3, sample_size)
    b = np.random.normal(0, 3, sample size)
    test res = ttest ind(a, b, equal var=False)
    if test res[1] < 0.05:
        real alpha += 1
real alpha /= n samples
print(f'Theoretical alpha: {alpha}')
print(f'Real alpha: {real alpha}')
Theoretical alpha: 0.05
Real alpha: 0.049
```

Если между распределениями нет отличий, то мы будем получать различия в α% случаев.

Направленность гипотезы

\\\\\\

Направление гипотезы позволяет сделать вывод о том, присутствуют ли отличия в целом или можно явно сказать об их направленности (отличия "больше" или "меньше").

Вывод: при направленной гипотезе увеличивается вероятность отклонения нулевой гипотезы.

Демонстрация

Ошибка I рода

Ошибка II рода

Ошибка второго рода 6 — не отвергаем нулевую гипотезу, хотя она в действительности не верна.

Ошибка второго рода \beta — не замечаем различия там, где оно есть.

Продуктовая постановка: разработанная фича оказалась полезной, но в продакшн мы ее не выкатили.

Демонстрация

Ошибки I и II рода

Ошибки I и II рода - резюме

Null hypothesis is	True	False
Rejected	Type I error False positive Probability = α	Correct decision True positive Probability = 1 - β
Not rejected	Correct decision True negative Probability = 1 - α	Type II error False negative Probability = β

Trade-off

- Если поддержка фичи стоит дорого, то следует обращать **большее внимание на ошибку I рода**.
- Если есть боязнь пропустить инновацию, то следует обращать **большее внимание на ошибку II рода**.

Классические ошибки:

- I рода 5%
- II рода 20%

Type I & Type II Errors | Differences, Examples, Visualizations

• • • • • • •

Доверительный интервал

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Z-score

Z-score — количество стандартных отклонений, на которое значение из ряда наблюдений выше или ниже среднего значения ряда:

$$z=rac{x-\mu}{\sigma}$$

Для стандартного нормального распределения N(0, 1) **z-score** — **квантиль** распределения, например:

$$\Delta$$
 $Z_{0.950} = Z_{1-0.050} = 1.64$

$$\Delta$$
 $Z_{0.975} = Z_{1-0.025} = 1.96$

Стандартная ошибка

\\\\\\

Стандартная ошибка статистики — величина, характеризующая стандартное отклонение выборочного среднего:

$$\mathrm{SE}_{ar{x}} \ = rac{s}{\sqrt{n}}$$

Формула стандартной ошибки следует из центральной предельной теоремы (ЦПТ).

Пример: выборка (n = 10 000, s = 15, x_{avg} = 10). Оценить стандартную ошибку.

$$SE_x = 15 / 100 = 0.15$$

Доверительный интервал и margin of error

Margin of error (MOE) — ширина доверительного интервала.

При прочих равных при меньшем размере выборки мы получим более широкий доверительный интервал.

Дов. интервал для среднего

$$CI_{1-\frac{\alpha}{2}} = \overline{x} \pm z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

Margin of error

количество стандартных ошибок

Power and Sample Size Determination

стандартная ошибка

Доверительный интервал и размер выборки <<<<<<

Пример: имеются две выборки (100 и 10 000 точек) из нормального распределения N(0.2, 1). По ним хотим проверить гипотезу о равенстве среднего генеральной совокупности нулю:

H0: $\mu = 0$ **H1**: $\mu \neq 0$

При $n_1 = 100$ нулевая гипотеза не отвергается, при $n_2 = 10\,000$ — отвергается.

Демонстрация

Доверительный интервал и количество наблюдений

MDE — Minimum Detectable Effect

<u>Подготовка</u>

групп

Запуск

эксперимента

Планирование

эксперимента

MDE — Минимальный детектируемый эффект

$$E = z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

MDE — минимальный эффект, который готовы увидеть в эксперименте.

$$MDE = Z_{1-\alpha} * SE_{H0} + Z_{1-\beta} * SE_{HI}$$

Ha MDE влияет:

- направленность гипотезы
- α ошибка первого рода
- β ошибка второго рода
- σ_A , σ_B стандартные отклонения метрик
- n_A, n_B размеры групп

Calculating Sample Sizes for A/B Tests [article]

Расчет количества наблюдений: формула

<u>По</u>дготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Расчет размера выборки через формулу

\\\\\\

Группы одинакового размера

$$n_i = 2 * \frac{(Z_{1-\alpha} + Z_{1-\beta})^2 \sigma^2}{(\mu_T - \mu_C)^2}$$

- Δ σ ст. отклонение метрики
- Δ μ_T среднее тестовой группы
- Δ μ_{C} среднее контрольной группы

Группы разного размера

$$n * P * (1 - P) = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2 \sigma^2}{(\mu_T - \mu_C)^2}$$

- Δ n = n_T + n_C
- \triangle P доля тестовой группы (0 < P < 1)

Пример

$$\alpha$$
 = 0.05, β = 0.2, σ = 300, μ_T - μ_C = 12.

P = 0.5:
$$n_1 = 9800$$
, $n_2 = 9800$, $n_1 + n_2 = 19600$
P = 0.2: $n_1 = 12250$, $n_2 = 49000$, $n_1 + n_2 = 61250$

Соотношение групп эксперимента

Группы разного размера

$$n * P * (1 - P) = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2 \sigma^2}{(\mu_T - \mu_C)^2}$$

$$\Delta$$
 n = n_T + n_C

 \triangle P — доля тестовой группы (0 < P < 1)

Вывод: чем более сбалансированы группы, тем меньше наблюдений требуется для эксперимента.

Стандартное отклонение и количество наблюдений

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Стандартное отклонение метрики

Вопрос: где взять стандартное отклонение метрики на эксперименте?

Возможные варианты:

Похожие эксперименты с такой же метрикой

Исторические данные по метрике

Демонстрация

Стандартное отклонение метрики

Выводы по второму занятию

- Для расчета количества наблюдений для эксперимента требуется знать следующие данные: ошибки I и II рода, стандартное отклонение тестируемой метрики, ожидаемый эффект.
- ▲ Величины ошибок I и II рода выбираются в зависимости от задачи.
- ▲ Стандартное отклонение метрики во время эксперимента может быть приближено историческими данными по аналогичной метрике.
- ▲ Большее число наблюдений в общем случае помогает увидеть более низкий ожидаемый эффект.

Дополнительная литература

 $\backslash \backslash \backslash \backslash \backslash \backslash \backslash$

- PowerUp!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and QuasiExperimental Design Studies [paper]
- The Core Analytics of Randomized Experiments for Social Research [paper]

ВОПРОСЫ

