5 Superfícies i isometries

Exercici 5.1. Determineu quins dels següents subconjunts de \mathbb{R}^3 són superfícies regulars:

- a) $S = \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 1\}$
- b) $S = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 + x^2y^2 2xyz = 0\}$
- c) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = \lambda\} \text{ on } \lambda \in \mathbb{R}$
- d) $S = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}$
- e) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \cosh^2 z = 0\}$
- f) $H = \{(x, y, z) \in \mathbb{R}^3 \mid y \cos z = x \sin z\}.$

Solució: Recordem que si $f: W \subset \mathbb{R}^3 \to \mathbb{R}$ és diferenciable i $a \in \mathbb{R}$ de manera que $df_p \neq 0$ per a tot $p \in f^{-1}(a)$ resulta que $S = f^{-1}(a)$ és superfície. a) Apliquem aquest resultat, la superfície té quatre components connexes. b) La superfície ve donada per z = xy que és una gràfica. c) Sempre que $\lambda \neq 0$ tenim superfície (hiperboloïdes). Si $\lambda = 0$ és un con, que és singular al (0,0,0). d) No és superfície, són dos plans que es tallen perpedicularment. e) Superfície de revolució, catenoïde. f) Si $f(x,y,z) = y \cos z - x \sin z$ llavors $df = (-\sin z, \cos z, -y \sin z - x \cos z) \neq \vec{0}$ i $f^{-1}(0)$ defineix una superfície. Per assegurar-se que el con i el parell de plans no són superfícies n'hi ha prou amb trobar tres vectors linealment independents i que siguin derivada en el mateix punt de corbes contingudes a S

Exercici 5.2. Sigui $\alpha(t)$ una corba parametritzada per l'arc de curvatura no nul·la en tot punt.

- a) Considerem $\Phi(t,s) = \alpha(t) + s \alpha'(t)$. Proveu que per tot (t,s) amb $s \neq 0$ existeix un entorn U de (t,s) tal que $\Phi(U)$ és una superfície.
- b) Proveu que els coeficients de la primera forma fonamental no depenen de la torsió de α .
- c) Considerant una corba plana amb la mateixa curvatura que α , deduïu que hi ha una isometria d'un obert de la superfície anterior amb una regió del pla.

Solució: a) $\Phi_s(t,s) = \vec{t}(t), \Phi_t(t,s) = \vec{t}(t) + s\kappa(t)\vec{n}(t)$. Llavors $(\Phi_s \times \Phi_t)(t,s) = s\kappa(t)\vec{b}(t) \neq \vec{0}$. Per cada (t,s) podem trobar un entorn $U \subset \mathbb{R}^2$ de manera que $\Phi: U \to \Phi(U) \subset S$ és una superfície. Fixem-nos que globalment pot tenir autointerseccions. Si $\kappa(t_0)\tau(t_0) \neq 0$, existeix ϵ tal que Φ restringida a $(t_0,t_0+\epsilon)\times(0,\infty)$ és parametrització d'una superfície regular. En efecte, comprovant que

$$\det(\mathbf{T}(t_0), \mathbf{T}(t_0 + \epsilon), \alpha(t_0 + \epsilon) - \alpha(t_0)) = -\frac{\kappa(t_0)\tau(t_0)}{6}\epsilon^4 + O(\epsilon^5) \neq 0$$

veiem que les rectes tangents en punts propers no es tallen. Deduïm que Φ és injectiva. Només cal veure que la inversa és contínua, però sabem que localment ve donada per una aplicació diferenciable definida en un obert de \mathbb{R}^3 .

b) $|\Phi_s|^2 = 1$, $|\Phi_t|^2 = 1 + s^2 \kappa^2(t)$ i $\langle \Phi_s, \Phi_t \rangle = 1$. No depén de la torsió. c) Si $\tilde{\alpha}(t)$ és plana, amb paràmetre arc i $\tilde{\kappa}(t) = \kappa(t)$ la superfície que defineix és un troç del pla i l'expressió de la primera forma fonamental és la mateixa en les coordenades (s,t), llavors tenim isometria.

Exercici 5.3. Decidiu entre quines de les següents superfícies de \mathbb{R}^3 existeix una isometria local:

- a) $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$
- b) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$
- c) $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sin y\}$

Solució: Les superfícies són, respectivament, un pla, un cilíndre i una planxa d''Uralita'. Parametritzem el cilidre per $(u,v)\mapsto (\cos(u),\sin(u),v)$ amb $u\in (0,2\pi),v\in\mathbb{R}$, en aquestes coordenades la primera forma fonamental és $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, una isometria del pla al cilindre és la que porta el punt (u,v,0) al punt del cilindre amb coordenades (u,v). En sentit contrari només podem definir-la en un obert. Per la superfície c) considerem la corba $y\mapsto (0,y,\sin(y))$ parametritzada per l'arc $s(y)=\int_0^y \sqrt{1+\cos^2(\xi)}d\xi$. Parmetritzem la superfície per $\varphi(x,s)=(x,y(s),\sin y(s))$. Llavors $\varphi_x=(1,0,0),\ \varphi_s=(0,y',y'\cos y(s))$. Tenim $|\varphi_x|^2=1,\langle\varphi_x,\varphi_s\rangle=0$ i

$$|\varphi_s|^2 = y'(s)^2 (1 + \cos^2 y(s)) = 1.$$

Per tant la 'teulada' és isomètrica al pla.

Exercici 5.4. Sigui S^2 l'esfera unitat de \mathbb{R}^3 . Demostreu que S^2 no és localment isomètrica a un pla. (*Indicació*: Calculeu l'àrea d'un disc de S^2 de radi r.)

Solució: Suposem que tenim una isometria local φ d'un entorn $p \in S^2$ a un entorn $q \in \mathbb{R}^2$. Llavors per un r prou petit el disc $D_r(p) \subset U$ i $\varphi(D_r(p)) = D_r(q)$ per ser isometria. Aquí cal usar que $D_r(p)$ (resp. $D_r(q)$) conté tots els punts que es poden unir a p (resp. a q) amb corbes de longitud $\leq r$. Per veure això: comencem amb una corba $\alpha(t) = (x(t), y(t))$ tal que $\alpha(0) = (0, 0)$ i $\alpha(1) = (a, 0)$ i notem

$$\int_0^1 \sqrt{(x')^2+(y')^2} dt \geq \int_0^1 \langle |x'(t)| dt \geq a$$

Això demostra el que volíem en el cas del pla. En el cas de l'esfera, usem coordenades esfèriques (φ, θ) i suposem $\varphi(0) = 0$:

$$\int_0^1 \sqrt{(\varphi')^2 + \sin^2(\varphi)(\theta')^2} \ge \varphi(1).$$

Finalment, l'àrea s'ha de conservar però $A(D_r(p)) = 2\pi(\cos(r) - 1)$ i $A(D_r(q)) = \pi r^2$ que són diferents.

Exercici 5.5. Es consideren les parametritzacions respectives ψ i φ de la catenoide C i de l'helicoide H donades per

$$\psi(u,v) = (\cosh v \cos u, \cosh v \sin u, v) \qquad \text{on} \quad u \in (0,2\pi), \ v \in \mathbb{R},$$

$$\varphi(z,w) = (w\cos z, w\sin z, z) \qquad \text{on} \quad z \in (0,2\pi), \ w \in \mathbb{R}$$

Comproveu que l'aplicació F determinada per $F(\psi(u,v)) = \varphi(u,\sinh v)$ és una isometria de la imatge de ψ en la catenoide C sobre un obert de l'helicoide H. Aquesta aplicació, es pot estendre a tot C? Es possible definir una isometria de H en C?

Solució: La primera forma de la catenoide en les coordenades $(u,v) \in (0,2\pi) \times \mathbb{R}$ és $\begin{pmatrix} \cosh^2 v & 0 \\ 0 & \cosh^2 v \end{pmatrix}$.

L'helicoïde el parametritzem per $\tilde{\varphi}(u,v) = (\sinh v \cos u, \sinh v \cos u, u)$, amb aquestes coordenades la primera forma fonamental té el mateix aspecte.

No es pot extendre a tota la catenoïde (C més el meridià que falta!) ja que si $u \to 0$ i $u \to 2\pi$ a la catenoïde estem en un mateix meridià però a l'helicoide obtenim una recta a z=0 i una recta a $z=2\pi$ respectivament. Com que topològicament són diferents no es pot establir una isometria entre C (completa) i H. Per veure que \mathbb{R}^2 i $S^1 \times \mathbb{R}$ no són homeomorfs, sense parlar de grup fonamental, es pot considerar la compactificació d'Alexandrov: els entorns de l'infinit són diferents en els dos casos.

Exercici 5.6. Demostreu⁶ que les superfícies

$$\begin{array}{lcl} \varphi(t,s) & = & (t\cos s, t\sin s, s) & \textit{Helicoide} \\ \psi(t,s) & = & (t\sin s, t\cos s, \log t) & \textit{Logaritmoide} \end{array}$$

⁶Aquest exercici es treballarà a la classe de problemes quan s'hagi introduït el concepte de curvatura de Gauss. No obstant podeu calcular les primeres formes fonamentals de cada superfície i veure que no coincideixen en els punts amb coordenades (t,s). Llavors l'aplicació que transforma $\varphi(t,s)$ en $\psi(t,s)$ no pot ser isometria.

tenen, en punts corresponents [mateixes coordenades (t,s)], la mateixa curvatura de Gauss, però l'aplicació que porta el punt de coordenades (t,s) de l'helicoide al punt de coordenades (t,s) del logaritmoide no és una isometria. [La curvatura no determina la mètrica].

Solució: Calculem la curvatura de Gauss.

$$\varphi_t = (\cos s, \sin s, 0)
\varphi_s = (-t \sin s, t \cos s, 1)
E = 1
F = 0
G = 1 + t^2
\nu = \frac{1}{\sqrt{1 + t^2}} (\sin s, -\cos s, t)
\varphi_{tt} = (0, 0, 0)
\varphi_{ts} = (-\sin s, \cos s, 0)
\varphi_{ss} = (-t \cos s, -t \sin s, 0)
e = 0
f = -\frac{1}{\sqrt{1 + t^2}}
g = 0
K = -\frac{1}{(1 + t^2)^2}$$

Anàlogament

$$\begin{array}{rcl} \psi_t & = & (\sin s, \cos s, \frac{1}{t}) \\ \psi_s & = & (t\cos s, -t\sin s, 0) \\ E & = & 1 + \frac{1}{t^2} \\ F & = & 0 \\ G & = & t^2 \\ \nu & = & \frac{1}{\sqrt{1+t^2}} (\sin s, \cos s, -t) \\ \psi_{tt} & = & (0, 0, -\frac{1}{t^2}) \\ \psi_{ts} & = & (\cos s, -\sin s, 0) \\ \psi_{ss} & = & (-t\sin s, -t\cos s, 0) \\ \psi_{ss} & = & (-t\sin s, -t\cos s, 0) \\ e & = & \frac{1}{t\sqrt{1+t^2}} \\ f & = & 0 \\ g & = & -\frac{t}{\sqrt{1+t^2}} \\ K & = & -\frac{1}{(1+t^2)^2} \end{array}$$

Per veure que l'aplicació f: helicoide \longrightarrow logaritmoide donada per $f(\varphi(t,s)=\psi(t,s)$ no és isometria hem de veure si la matriu de la primera forma fonamental de l'helicoide respecte de la base (φ_t,φ_s) coincideix amb la matriu de la primera forma fonamental del logaritmoide respecte de la base $(f_*\varphi_t,f_*\varphi_s)$. Però

$$f_*\varphi_t = \frac{d}{dt}\Big|_{t=0} f(\varphi(t, s_0)) = \frac{d}{dt}\Big|_{t=0} \psi(t, s_0) = \psi_t.$$

Anàlogament $f_*\varphi_v = \psi_v$. Però en els càlculs anteriors es veu que la matriu de la primera forma fonamental de l'helicoide respecte de la base (φ_t, φ_s) no coincideix amb la matriu de la primera forma fonamental del logaritmoide respecte de la base (ψ_t, ψ_s) .

Però podem veure fàcilment, no únicament que f no és isometria, sinó que no hi ha cap isometria entre l'helicoide H i el logaritmoide L. En efecte, qualsevol isometria F entre H i L ha de portar el punt de coordenades (t,s) al punt de coordenades $(\pm t,u(t,s))$, on u=u(t,s) és una funció desconeguda que ens determina F. Això és degut a que F conserva la curvatura de Gauss, la qual, com hem vist, només depèn de t^2 .

Així, doncs, tenim $F(\varphi(t,s)) = \psi(\pm t, u(t,s))$. En particular,

$$dF(\varphi_t) = \pm \psi_t + \psi_s \frac{\partial u}{\partial t}.$$

Per ser F isometria

$$\langle dF(\varphi_t), dF(\varphi_t) \rangle = \langle \varphi_t, \varphi_t \rangle = 1,$$

però

$$\langle dF(\varphi_t), dF(\varphi_t) \rangle = \langle \pm \psi_t + \psi_s \frac{\partial u}{\partial t}, \pm \psi_t + \psi_s \frac{\partial u}{\partial t} \rangle = 1 + \frac{1}{t^2} + (\frac{\partial u}{\partial t})^2 t^2.$$

Igualant les dues darreres igualtats obtenim una contradicció.