Proiectarea Algoritmilor

Curs 8 – Puncte de articulație, Punți, Drumuri minime

Bibliografie

- [1] Giumale Introducere în Analiza Algoritmilor cap. 5.3, 5.4, 5.4.1
- [2] Cormen Introducere în Algoritmi cap. Heap-uri binomiale (20), Heap-uri Fibonacci (21), Drumuri minime de sursă unica - primele 2 subcapitole (25.1 şi 25.2)
- [3] R. Sedgewick, K. Wayne Algorithms and Data Structures Fall 2007 Curs Princeton http://www.cs.princeton.edu/~rs/AlgsDS07/06PriorityQueues.pdf
- [4] Heap Fibonacci: http://www.cse.yorku.ca/~aaw/Jason/FibonacciHeapAnimation.html
- [5] Fibonacci heap: http://www.growingwiththeweb.com/data-structures/fibonacci-heap/overview/

Objective

- "Descoperirea" algoritmilor de:
 - Identificare a punctelor de articulație;
 - Identificare a punților;
 - Identificare a drumurilor de cost minim.

 Identificarea structurilor de date necesare pentru reducerea complexității acestor algoritmi.

Puncte de articulație. Def. Exemple

Definiție: G = (V,E) graf neorientat, u∈V. U este punct de articulație dacă ∃ x,y∈V, x ≠ y, x ≠ u, y ≠ u, a.î. ∀ x..y în G trece prin u.

Orice drum x..y trece prin u → u este punct de articulație.

Exista x..α..y care nu trece prin u → u nu mai este punct de articulație!

Algoritm naiv de detectare a punctelor de articulație

- Elimină fiecare nod și verifică conectivitatea grafului rezultat:
 - Graf conex → nodul nu e punct de articulație.
 - Altfel -> punct de articulație.

Complexitate?

$$O(V(V+E))$$

Puncte de articulație. Teoremă

- Teorema 5.15: G = (V,E), graf neorientat și u∈V. U este punct de articulație în G ⇔ în urma DFS în G una din proprietățile de mai jos este satisfăcută:
 - p(u) = null și u domină cel puțin 2 subarbori;
 - p(u) ≠ null și ∃v descendent al lui u în Arb(u) a.î. ∀x∈Arb(v) și ∀(x,z) parcursă de DFS(G) avem d(z) ≥ d(u).

Situații posibile

1) p(u) = null şi u domina cel puţin 2 subarbori:

2) p(u) ≠ null şi ∃v descendent al lui u în Arb(u) a.î.
 ∀x∈Arb(v) şi ∀(x,z) parcursă de DFS(G) d(z) ≥ d(u):

1/10 a 4/9

1/10 a 4/9

2/3 v 5/8

Pentru orice muchie din subarborele lui v nu există nici o muchie înapoi spre u sau spre un nod descoperit înaintea lui u.

Puncte de articulație. Demonstrație teoremă (la)

- $p(u) = null și u domină cel puțin 2 subarbori <math>\Rightarrow$ u este punct de articulație.
- Dem (Reducere la absurd): Fie A_1 și A_2 cei 2 subarbori, $x \in A_1$, $y \in A_2$. Pp ∃ x..α..y și $u \notin x..α..y$.
- z = primul nod descoperit de DFS din care se poate ajunge la x și la y. Cf. T drumurilor albe x,y ∈ Arb(z).
- Dar x,y∈Arb(u) → 2 cazuri:

Pp ∃ x..α..y și u \notin x..α..y.

Contradictie (1) x,y nu sunt în subarbori diferiți ai lui Arb(u).

 $p(u) \neq null$.

Puncte de articulație. Demonstrație teoremă (lb)

- u este punct de articulație și este descoperit în ciclul principal al DFS ⇒ p(u) = null și u domină cel puțin 2 subarbori.
- Dem (Reducere la absurd): Fie nodurile x şi y a.î. u ∈ ∀ x..y. u = primul nod descoperit din cale (altfel u nu mai e descoperit în ciclul principal al DFS) => p(u) = null şi x, y ∈ Arb(u).
- DFS(G) celași subarbore V = noduri(G)pp că x, y Pentru fiecare nod u (u ∈ V) c(u) = alb; p(u) = null; // initializare structură fie z rădăd timp = 0; // reține distanța de la rădăcina arborelui x..z..y → ı DFS pană la nodul curent se contraz Pentru fiecare nod u (u ∈ V) Dacă c(u) este alb Atunci explorare(u); // explorez nodul oomaanotie ∃ x..z..y => u nu este punct de articulație 🖊

Proiectarea Algoritmilor 2017

Puncte de articulație. Demonstrație teoremă (IIa)

p(u) ≠ null și ∃ v descendent al lui u în Arb(u) a.î. ∀ x ∈
Arb(v) și ∀ (x,z) parcursă de DFS(G) are d(z) ≥ d(u) ⇒
u este punct de articulație.

Dem (Reducere la absurd): Pp. u nu e punct de articulație $\rightarrow \exists w \in Arb(v), y \notin Arb(u)$ a.î. y..w. Fie z primul nod din y..w a.î. $z \notin Arb(u)$ și x ultimul nod din w..y a.î. $x \in Arb(u) \rightarrow (x,z)$ taie frontiera Arb(u).

Dacă $d(z) > d(u) \rightarrow u..x$, z alb la $d(u) \rightarrow z \in$ Arb(u) \rightarrow contradicție (z \notin Arb(u))

Dacă $d(z) < d(u) \rightarrow contradicție (ipoteza)$

→ # y..w → u punct de articulație

Puncte de articulație. Demonstrație teoremă (IIb)

- u este punct de articulație și nu este descoperit în ciclul principal al DFS ⇒ p(u) ≠ null și ∃ v descendent al lui u în Arb(u) a.î. ∀ x ∈ Arb(v) și ∀ (x,z) parcursă de DFS(G) având d(z) ≥ d(u).
- Dem: Fie nodurile x şi y a.î. u ∈ ∀ x..y şi p(u) ≠ null. Se pot forma 3 tipuri de structuri:

- Pentru primele 2 structuri, nu trebuie sa existe muchie care sa formeze ciclu de la nici un nod din Arb(v) către vreun predecesor al lui u. Altfel ∃ x..y a.î. u ∉ x..y.
- Pentru a 3-a structura, trebuie să ∄ muchie care să formeze ciclu către un predecesor al lui u de la niciun nod din cel puţin un subarbore A₁ sau A₂.

Puncte de articulație. Structuri de date.

- Structura de date de la DFS + pentru fiecare nod u ∈ V se reţin:
 - Low(u) = min{d(v) | v descoperit pornind din u în cursul DFS și c(v) ≠ alb}
 - Subarb(u) = numărul subarborilor dominaţi de u (dacă e ≥ 2, atunci avem un punct de articulaţie).

Idee algoritm

 Se aplică DFS şi se salvează pentru fiecare nod până unde merge înapoi (low): low[u] = min {d(u), d(v) pentru toate muchiile înapoi (u,v), low(w) pentru toţi fiii w ai lui u}.

 Pentru eficiență, trebuie ca fiii să se parcurgă înaintea părinților → ordinea inversă a d(u).

Algoritm Tarjan (I)

```
Articulaţii (G)
    V = noduri(G) // iniţializări
    • Timp = 0;
    Pentru fiecare (u ∈ V)
        • c(u) = alb;
        • d(u) = 0;
        • p(u) = null;
        • low(u) = 0;

    subarb(u) = 0; // reţine numărul de subarbori dominaţi de u

 art(u) = 0; // reţine punctele de articulaţie

      Pentru fiecare (u∈V)
        • Dacă c(u) e alb
            Exploreaza(u);

    Dacă (subarb(u) > 1) // cazul în care u este rădăcina în arborele
```


art(u) = 1 // DFS şi are mai mulţi subarbori → cazul

// 1 al teoremei

Algoritm Tarjan (II)

- Explorează(u)
 - d(u) = low(u) = timp++; // iniţializări
 - \circ c(u) = gri;
 - Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr subarbori
 // dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (1)

Timp = 0

$$C(i) = alb$$

 $D(i) = 0$
 $Low(i) = 0$
 $P(i) = null$
 $Subarb(i) = 0$
 $Art(i) = 0$
 $Exploreaza(0)$

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (2)

$$Low(0) = d(0) = 0$$

$$Timp = 1$$

$$C(0) = gri$$

$$P(1) = 0$$

$$Subarb(0) = 1$$

Exploreaza (1)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (3)

$$Low(1) = d(1) = 1$$

$$Timp = 2$$

$$C(1) = gri$$

$$P(2) = 1$$

$$Subarb(1) = 1$$

Exploreaza (2)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (4)

$$Low(2) = d(2) = 2$$

$$Timp = 3$$

$$C(2) = gri$$

$$P(3) = 2$$

$$Subarb(2) = 1$$

Exploreaza (3)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (5)

$$Low(3) = d(3) = 3$$

$$Timp = 4$$

$$C(3) = gri$$

$$P(4) = 3$$

$$Subarb(3) = 1$$

Exploreaza (4)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (6)

Low(4) =
$$d(4)=4$$

Timp =5
 $C(4)$ =gri
revenire

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (7)


```
Low(4) = d(4) = 4

Timp = 5

C(4) = gri

revenire

Low (3) = min {low(3), low(4)} = 3

Low(4) > d(3) \rightarrow art(3) = 1

P(5) = 3

Subarb(3) = 2

Exploreaza (5)
```

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (8)

$$Low(5) = d(5) = 5$$

$$Timp = 6$$

$$C(5) = gri$$

$$P(6) = 5$$

$$Subarb(5) = 1$$

Exploreaza (6)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (9)

Low(6) =
$$d(6) = 6$$

Timp = 7
 $C(6) = gri$
revenire

- Explorează(u)
 - d(u) = low(u) = timp++; // iniţializări
 - c(u) = gri;
 - Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (10)

Low(6) = d(6) = 6
Timp = 7
C(6) = gri
revenire
Low (5) = min
$$\{low(5), low(6)\} = 5$$

Low(6) > d(5) \rightarrow art(5) = 1
revenire

- Explorează(u)
 - d(u) = low(u) = timp++; // iniţializări
 - c(u) = gri;
 - Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (11)

Low(5) = d(5) = 5
Timp = 7
C(5) = gri
revenire
Low (3) = min {low(3), low(5)} = 3
Low(5) > d(3)
$$\rightarrow$$
 art(3) = 1
P(7) = 3
Subarb(3) = 3
Exploreaza (7)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominaţi de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (12)

Low(7) =
$$d(7) = 7$$

Timp = 8
C(7) = gri
P(8) = 7
Subarb(7) = 1
Exploreaza (8)

- Explorează(u)
 - d(u) = low(u) = timp++; // inițializări
 - c(u) = gri;
 - Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (13)

Exemplu rulare (14)

Exemplu rulare (15)

$$d(8) = 8$$

 $Low(8) = 0$
 $Timp = 9$
 $C(8) = gri$
revenire

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- **Pentru fiecare** nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (16)

low(7) = min(low(7), low(8)) = 0 $low(8) < d(7) \rightarrow nu se$ modifică art(7)

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (17)

Exemplu rulare (18)

Exemplu rulare (19)

low(3) = min(low(3), low(7)) = 0 $low(7) < d(3) \rightarrow nu$ se modifică art(3)revenire

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (20)

Exemplu rulare (21)

low(2) = min(low(2), low(3)) = 0 $low(3) < d(2) \rightarrow nu$ se modifică art(2)revenire

- d(u) = low(u) = timp++; // iniţializări
- c(u) = gri;
- Pentru fiecare nod v ∈ succs(u)
 - Dacă (c(v) e alb)
 - p(v) = u; subarb(u)++; // actualizare nr
 // subarbori dominați de u
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (p(u) != null && low(v) ≥ d(u)) art(u) = 1;
 // cazul 2 al teoremei
 - Altfel low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (22)

Exemplu rulare (23)

Exemplu rulare (24)

Exemplu rulare (25)

Exemplu rulare (26)

Exemplu rulare (27)

Exemplu rulare (28)

Exemplu rulare (29)

Algoritmul lui Tarjan adaptat pentru determinarea CTC

- index = 0 // nivelul pe care este nodul în arborele DFS
- S = empty // se folosește o stivă care se inițializează cu Ø
- Pentru fiecare v din V
 - Dacă (v.index e nedefinit) atunci // se pornește DFS din fiecare nod pe care
 - Tarjan(v)

// nu l-am vizitat încă

- Tarjan(v)
 - v.index = index // se setează nivelul nodului v
 - v.lowlink = index // reţine strămoșul nodului v
 - index = index + 1 // incrementez nivelul
 - S.push(v) // introduc v în stivă
 - Pentru fiecare (v, v') din E // se prelucrează succesorii lui v
 - Dacă (v'.index e nedefinit sau v' e în S) atunci // CTC deja identificate sunt ignorate
 - Dacă (v'.index e nedefinit) atunci Tarjan(v') // dacă nu a fost vizitat v' intru în recursivitate
 - v.lowlink = min(v.lowlink, v'.lowlink) //actualizez strămoșul
 - Dacă (v.lowlink == v.index) atunci // printez CTC începând de la coadă spre rădăcină
 - print "CTC:"
 - Repetă
 - v' = S.pop // extrag nodul din stiva și îl printez
 - print v'
 - Până când (v' == v) // până când extrag rădăcina

Exemplu rulare (CTC)

Punți

 Definiție: G = (V,E), graf neorientat și (u,v) ∈ E. (u,v) este punte în G ⇔ ∃ x,y ∈ V, x ≠ y, a.î. ∀ x..y conține muchia (u,v).

Orice drum x..y trece prin (u,v) =>(u,v) este punte

(u,v) nu este punte

Algoritm punți (I)

- Punţi(G)
 - V = noduri(G) // iniţializări
 - Timp = 0;
 - Pentru fiecare nod u (u ∈ V)
 - c(u) = alb;
 - d(u) = 0;
 - p(u) = null;
 - low(u) = 0;
 - punte(u) =0; // înlocuiește: subarb(u) = 0; art(u) = 0;
 - Pentru fiecare nod u (u ∈ V)
 - Dacă c(u) e alb
 - Explorează(u)

Algoritm punți (II)

- Explorează(u)
 - d(u) = low(u) = timp++; // iniţializări
 - c(u) = gri;
 - Pentru fiecare nod v (v ∈ succs(u))
 - Dacă c(v) e alb
 - p(v) = u; // se elimină: subarb(u)++;
 - Explorează(v);
 - low(u) = min{low(u), low(v)} // actualizare low
 - Dacă (low(v) > d(u)) punte(v) = 1;

```
// în loc de: Dacă(p(u) != null && low(v) >= d(u))
```

- Altfel
 - Dacă (p(u) ≠ v) low(u) = min{low(u), d(v)} // actualizare low

Exemplu rulare (Punți)

Exemplu

Drumuri de cost minim

- G = (V,E) un graf, iar w:E $\rightarrow \Re$ o funcție de cost asociată arcelor grafului (w(u,v) = costul arcului (u,v)).
- Cost(u..v) = costul drumului u..v (este aditiv costul drumului = suma costurilor arcelor).
- Variante:
 - Drumuri punct multipunct: pentru un nod dat s ∈ V, să se găsească un drum de cost minim de la s la ∀u ∈ V; Dijkstra, Bellman-Ford
 - Drumuri multipunct punct: pentru un nod dat e ∈ V, să se găsească un drum de cost minim de la ∀u ∈ V la e; G^T și apoi 1
 - Drumuri punct punct: pentru două noduri date u și v ∈ V, să se găsească un drum u..v de cost minim; Folosind 1
 - Drumuri multipunct multipunct: ∀u, v ∈ V, să se găsească un drum u..v de cost minim. Floyd-Warshall
 - 5. Drumuri de cost maxim!

Temă de gândire pentru acasă – posibil subiect de examen!

Optimalitatea drumurilor minime (I)

- Lemă 25.1 (Subdrumurile unui drum minim sunt drumuri optimale): G = (V,E), w : E → ℜ funcție de cost asociată. Fie p = v₁v₂...v₂ un drum optim de la v₁ la v₂. Atunci pentru orice i și j cu 1≤ i ≤ j ≤ k, subdrumul lui p de la v₁ la v₂ este un drum minim.
- Dem: Fie $p_{ij} = v_i..v_j$ subdrumul din p dintre v_i și v_j . $\rightarrow p = v_1..v_i..v_j..v_k => cost (p) = cost (<math>v_1..v_i$) + cost ($v_i..v_j$) + cost ($v_j..v_k$).
- Pp. prin absurd că v_i...v_j nu e optim => ∃p' a.î. cost (p') < cost (v_i...v_j) => p nu e drum minim → Contrazice ipoteza → p_{ij} este drum minim.

Optimalitatea drumurilor minime (II)

- Corolar 25.2: G = (V,E), $w : E \rightarrow \Re$ funcție de cost asociată. Fie p = s..uv un drum optim de la s la v. Atunci costul optim al acestui drum poate fi scris ca $\delta(s,v) = \delta(s,u) + w(u,v)$.
- Dem: Conform teoremei anterioare, s..u e un drum optim => cost (s..u) = δ (s,u).
- Lemă 25.3: G = (V,E), $w : E \rightarrow \Re$ funcție de cost asociată. $\forall (u,v) \in E$ avem $\delta(s,v) \leq \delta(s,u) + w(u,v)$.
- Dem: Orice drum optim are costul mai mic ca al oricărui alt drum.

Drumuri minime de sursă unică

- Sunt concepuți pentru grafuri orientate.
- Bazaţi pe algoritmi Greedy.
- Se pornește de la nodul de start și pe baza unui optim local, drumurile sunt extinse și optimizate până la soluția finală.
- Notaţii:
 - d[v] = costul drumului descoperit s..v;
 - δ(u,v) = costul drumului optim u..v; δ(u,v)=∞ daca v ∉ R(u);
 - p(v) = predecesorul lui v pe drumul s..v.

Drumuri minime de sursă unică

 Relaxarea arcelor → dacă d[v] > d[u] + w(u,v), atunci actualizează d[v].

Exemple: Dijkstra şi Bellman–Ford.

Algoritmul lui Dijkstra (I)

- Folosește o coadă de priorități în care se adaugă nodurile în funcție de distanța cunoscută în momentul respectiv de la s până la nod.
- Se folosește **NUMAI** pentru costuri pozitive (w(u,v) > 0, $\forall u,v \in V$).
- Dijkstra_generic (G,s)
 - V = nodurile lui G
 - Cât timp (∨ != ∅)
 - u = nod din V cu d[u] min
 - $V = V \{u\}$
 - Pentru fiecare (v ∈ succesorii lui u) relaxare_arc(u,v)

// optimizare drum s..v pentru v ∈ succesorilor lui u

Relaxarea arcelor (I)

• Lemă 25.5: G = (V,E), $w : E \rightarrow \Re$ funcție de cost asociată. $\forall v \in V$, d[v] obținut de algoritmul lui Dijkstra respectă $d[v] \geq \delta(s,v)$. În plus, odată atinsă valoarea $\delta(s,v)$, ea nu se mai modifică.

Dem:

- $\forall v \in V, v \notin R(s) \rightarrow d[v] = \delta(s,v) = \infty$; $d[s] = \delta(s,s) = 0$ (iniţializare)
- Pt v ∈ R(s), iniţializare → d[v] = ∞ ≥ δ(s,v). Dem. prin reducere la absurd că după oricâte relaxări, relaţia se menţine. Fie v primul vârf pentru care relaxarea (u,v) determină d[v] < δ(s,v) → după relaxarea (u,v): d[u] + w(u,v) = d[v] < δ(s,v) ≤ δ(s,u) + w(u,v) → d[u] < δ(s,u). Dar relaxarea nu modifică d[u], iar v e primul pentru care d[v] < δ(s,v). Contrazice presupunerea! => d[v] ≥ δ(s,v), ∀ v ∈ V
- Cum d[v] $\geq \delta(s,v)$ => odată ajuns la d[v] = $\delta(s,v)$, ea nu mai scade. Cum relaxarea nu creste valorile => d[v] nu se mai modifică.

Relaxarea arcelor (II)

Lemă 25.7: G = (V,E), w : E → ℜ funcție de cost asociată.
 Fie p = s..uv un drum optim de la s la v. Dacă d[u] = δ(s,u) la un moment dat, atunci începând cu momentul imediat următor relaxării arcului (u,v) avem d[v] = δ(s,v)

Dem:

- Dacă înainte de relaxare d[v] > d[u] + w(u,v), prin relaxare → d[v] = d[u] + w(u,v). Altfel, d[v] ≤ d[u] + w(u,v) => după relaxare avem d[v] ≤ d[u] + w(u,v).
- Cum d[u] = $\delta(s,u)$ și relaxarea (u,v) nu modifică d[u] => d[v] \leq d[u] + w(u,v) = $\delta(s,u)$ + w(u,v) = $\delta(s,v)$ (conf. Corolar 25.2) \rightarrow d[v] = $\delta(s,v)$

Algoritmul lui Dijkstra (II)

- Dijkstra(G,s)
 - Pentru fiecare (u ∈ V) // iniţializări
 - $d[u] = \infty$; p[u] = null;
 - d[s] = 0;
 - Q = construiește_coada(V) // coadă cu priorități
 - Cât timp (Q != ∅)
 - u = ExtrageMin(Q); // extrage din V elementul cu d[u] minim
 - // Q = Q {u} se execută în cadrul lui ExtrageMin
 - Pentru fiecare (v ∈ Q și v din succesorii lui u)
 - Dacă (d[v] > d[u] + w(u,v))
 - d[v] = d[u] + w(u,v) // actualizez distanţa
 - p[v] = u // și părintele

Exemplu (I)

Exemplu (II)

- d[1] = 0;
- (1): d[2] = 1; d[3] = 2; d[6] = 3;
- (2): d[4] = 7; d[5] = 10;
- (3): d[5] = 7;
- Dijkstra(G,s)
 - Pentru fiecare (u ∈ V)
 - d[u] = ∞; p[u] = null;
 - d[s] = 0;
 - Q = construieşte coada(V) // coadă cu priorități
 - Cât timp (Q != ∅)
 - u = ExtrageMin(Q); // extrage din V elementul cu d[u] // minim
 - // Q = Q {u} se execută în cadrul lui ExtrageMin
 - Pentru fiecare (v ∈ Q și v din succesorii lui u)
 - Dacă (d[v] > d[u] + w(u,v))
 - d[v] = d[u] + w(u,v) // actualizez distanta
 - p[v] = u // și părintele

Complexitate Dijkstra

 Depinde de ExtrageMin – coadă cu priorități.

- Operații ce trebuie realizate pe coadă + frecvenţa lor:
 - insert V;
 - delete V;
 - conţine? E;
 - micşorează_val E;
 - este vidă? V.

- Dijkstra(G,s)
 - Pentru fiecare (u ∈ V)
 - d[u] = ∞; p[u] = null;
 - d[s] = 0;
 - Q = construieşte coada(V) // coadă cu priorități
 - Cât timp (Q != ∅)
 - u = ExtrageMin(Q); // extrage din V elementul cu d[u] minim
 - // Q = Q {u} se execută in cadrul lui ExtrageMin
 - Pentru fiecare (v ∈ Q si v din succesorii lui u)
 - Dacă (d[v] > d[u] + w(u,v))
 - d[v] = d[u] + w(u,v) // actualizez distanţa
 - p[v] = u // si părintele

Implementare cu vectori

- Costuri:
 - insert − 1 * V = V;
 - delete V * V = V² (necesită căutarea minimului);
 - conţine? 1 * E = E;
 - micşorează_val 1 * E = E;
 - este_vidă? 1 * V = V;
- Cea mai bună metodă pentru grafuri "dese" (E≈V²)!

Implementare cu heap binar

- Heap binar structură de date de tip arbore binar + 2 constrângeri:
 - Fiecare nivel este complet; ultimul se umple de la stânga la dreapta;
 - ∀u ∈ Heap; u ≥ răd(st(u)) şi u ≥ răd(dr(u)) (u este ≥ decât ambii copii ai săi) unde ≥ este o relație de ordine pe mulțimea pe care sunt definite elementele heapului.

Operatii pe Heap Binar

insert

delete

Implementare Heap Binar

- Implementare folosind vectori.
- Poziție[i] = unde se găsește în indexul de valori elementul de pe poziția i din heap.
- Reverse[i] = unde se găsește în heap elementul de pe poziția i din valoare.
- Implementare disponibila la [3].

Index	0	1	2	3	4	5	6
Valoare	7	6	15	8	24	9	3
Poziție		ı		ı			
Reverse			1		1		

Heap Binar

- Costuri:
 - insert logV * V = VlogV;
 - delete logV * V = VlogV;
 - conţine? 1 * E = E;
 - micșorează_val logV * E = ElogV;
 - este_vidă? 1 * V = V.

 Eficient dacă graful are arce puţine comparativ cu numărul de noduri.

Heap Fibonacci

- Poate fi format din mai mulţi arbori.
- Cheia unui părinte ≤ cheia oricărui copil.
- Fiind dat un nod u şi un heap H:
 - p(u) părintele lui u;
 - copil(u) legătura către unul din copiii lui u;
 - st(u), dr(u) legătura la frații din stânga și din dreapta (cei l de pe primul nivel sunt legați între ei astfel);
 - grad(u) numărul de copii ai lui u;
 - min(H) cel mai mic nod din H;
 - n(H) numărul de noduri din H.

Operatii Heap Fibonacci

- Inserare nod O(1)
 - construiește un nou arbore cu un singur nod

- Min accesibil direct min(H) O(1)
- ExtrageMin O(logn) cost amortizat!
 - Mută copiii minimului pe prima coloană;
 - Consolidează heap-ul.

Operatii Heap Fibonacci

- Consolidare Heap
 - Cât timp există 2 arbori cu grade egale Arb(x) şi Arb(y), x < y:
 - Arb(y) transformat în copil al lui x;
 - grad[x] ++;

Applet şi implementare disponibile la [4].

🖜 Gif + implementare puteți găsi la [5]

Consolidare Heap

Costuri Heap Fibonacci

- Costuri:
 - insert − 1 * V = V;
 - delete logV * V = VlogV(amortizat!);
 - micșorează_val 1 * E = E;
 - este vidă? 1 * V = V.

Cea mai rapidă structură dpdv teoretic.

Concluzii Dijkstra

- Implementarea trebuie realizată în funcție de tipul grafului pe care lucrăm:
 - vectori pentru grafuri "dese" O(V²);
 - heap pentru grafuri "rare": HB O(E logV),
 HF O(V log V+E)

 Heapul Fibonacci este mai eficient decât heapul binar dar mai dificil de implementat.

ÎNTREBĂRI?

