Relatório da Experiência do Corpo Negro

João Braz 69684 João Branco 69691 André Boné 69937 André Martins 70017

8 de Dezembro de 2012

IST, MEFT, LCET, Prof. Dr. João Luís Maia Figueirinhas

Resumo

Tentámos verificar a Lei de Planck, de Stefan e do Deslocamento de Wien, usando como modelo de corpo negro uma lâmpada de tungsténio. Obtivemos para a constante de Wien $B=(2.71\pm0.05)\times10^{-3}mK$, um desvio à exactidão de 6.5%. O resultado obtido para o declive da linearização da Lei de Stefan foi de $b=4.41\pm0.04$, verificando-se um desvio à exactidão de 10.3%. Utilizámos um Cubo de Leslie para estudar a relação entre a emissividade e o poder de absorção de diferentes materiais à luz do teorema de Kirchoff.

1 Introdução [1]

Esta actividade envolve o estudo de um corpo negro. Um "corpo negro" constitui um corpo que absorve toda a radiação que nele incide, sendo caracterizado por uma constante adimensional denominada emissividade, e, que é neste caso 1, definindo-se da seguinte forma, para qualquer corpo: $e_c = \frac{I_c}{I_N}$, onde I_c e I_N são o poder emissivo de um corpo c e de um corpo negro N, respectivamente, tendo ambas unidades $[Js^{-1}m^{-2}]$. Visto que o corpo negro é aquele que tem a máxima emissividade, pela fórmula anterior verifica-se que esta se encontra no intervalo [0;1].

A Lei de Planck relaciona a intensidade da radiação electromagnética, I, emitida por um corpo negro com o seu comprimento de onda, λ , em equilibrio térmico.

$$I_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda KT}} - 1} \tag{1}$$

O máximo da emitância espectral desloca-se para menores λ e o integral da distribuição ao longo de todo o espectro aumenta quando aumenta T. Estas evidências estão contidas na Lei do Deslocamento de Wien (2) e na Lei de Stefan (3) respectivamente.

$$\lambda_{max}T = B, \quad B \approx 2.8977685 \times 10^{-3} mK$$
 (2)

$$I_N = \sigma T^4, \quad \sigma \approx 5.670373 \times 10^{-8} W m^{-2} K^{-4}$$
 (3)

O Teorema de Kirchoff enuncia que para qualquer corpo em equilibrio termodinâmico a razão entre o poder emissivo e o poder de absorção, definido por $Q=\frac{E_{abs}}{E_{inc}}$, é $F(T)=\sigma T^4$. Posto isto, deduz-se facilmente que a emissividade e o poder de absorção são iguais para qualquer corpo, ou seja, um bom absorsor é um bom emissor.

2 Experiência Realizada [2]

Numa primeira parte do trabalho tentaremos verificar a lei de Planck. Utilizaremos uma lâmpada de incandescência de tungsténio como modelo de corpo negro emissor (figura 1). Pela Lei de Ohm tem-se $\frac{V}{I}=R,~V$ e I são medidos directamente e através da razão $\frac{R(T)}{R(292.35K)},~\mathrm{com}~R(292.35)=0.4911\Omega,$ é possível

determinar T do filamento. Utilizamos um gerador de tensão associado em série a uma resistência (para evitar sobrecargas) e medimos V e I através de dois multimetros, respectivamente. [3]

O detector utilizado será uma termopilha, logo a tensão produzida será proporcional á intensidade da radiação incidente. A termopilha tem resposta plana para comprimentos de onda entre os $0.5\mu m$ e os $25\mu m$, garantida pelo fabricante. De modo a colimar os feixes incidente e emergentes, o braço do goniómetro com a lâmpada tem uma fenda ajustável seguida de uma lente convergente, seguida ainda de uma tampa com uma segunda fenda. No braço do goniómetro com o detector há outra lente convergente, de modo a colimar os feixes emergentes, resultantes da dispersão.

A luz sofre dispersão devido ao prisma óptico equilátero cuja geometria e a Lei de Snell-Descartes garantem (4), onde θ é o ângulo de incidência, α o ângulo entre faces do prisma, e δ o ângulo entre o feixe emergente e o ângulo de alinhamento dos braços do goniómetro.

$$n = \left\{ \sin^2 \theta + \left[\frac{\sin(\delta + \alpha - \theta) + \cos \alpha \sin \theta}{\sin \alpha} \right]^2 \right\}^{\frac{1}{2}}$$
 (4)

Figura 1: Esquema de montagem. $n(\lambda)$ está tabelado, pelo que se obtém a relação λ vs. I, ajustável a (1). [4]

As medições feitas para esta parte da experiência começam pela determinação do ângulo correspondente ao feixe incidente estar perpendicular á face do prisma. Na prática, medimos este ângulo quando o feixe reflectido coincidiu com a fenda colocada no braço do goniómetro com a lâmpada. De seguida, rodámos o prisma no sentido anti-horário, projectando o espectro obtido da dispersão do feixe pelo prisma sobre uma superfície branca (parede do laboratório) até obter uma separação clara dos vários comprimentos de onda. Trancámos a base do prisma e registámos o ângulo. A diferença entre este ângulo e o medido anteriormente é o ângulo θ .

De seguida, colocámos o braço do goniómetro com o detector na posição correspondente à detecção de λ na região do verde, pois esta região corresponde a um valor de λ menor que o λ_{max} , com intensidade próxima de zero. Registámos o ângulo desta posição do braço, para usá-lo como ponto de partida para as restantes medições a diferentes tensões. De seguida, variámos o ângulo, alternadamente, em 20' e em 40', no sentido horário. O braço do detector tinha uma cobertura na ponta de entrada. Antes de ser retirada para a medição da tensão, a leitura no voltimetro era anulada, de modo a anular o ruido térmico inerente. Ainda assim, considerámos uma margem de 0,3V, sendo qualquer leitura dentro dessa margem tomada como 0V. Medimos 20 ângulos para cada tensão, de 12V, 10V e 6V.

Por fim, retirámos o prisma e medimos o ângulo de alinhamento entre os braços do prisma. De mencionar que podiamos ter feito o alinhamento medindo o ângulo para o máximo de intensidade, mas considerámos suficiente fazê-lo por observação do feixe incidente sobre a cobertura do braço. A diferença entre este ângulo e cada ângulo medido do detector corresponde ao $\delta.$

Medidas as grandezas directas (δ,V) , θ , considerando o "zero" do ângulo de alinhamento dos braços do goniómetro e sabendo α , calcularam-se ns e traduziram-se esses resultados para λs .

Utilizaremos também os λ_{max} , de intensidade máxima, medidos para cada temperatura (tensão à lâmpada) para verificar a lei de Wien.

Na segunda parte do trabalho tentaremos verificar a lei de Stefan-Boltzmann. Para tal, utilizámos a lâmpada da experiência anterior, retirando-a do goniómetro e colocando-a numa base, e colocámos a termopilha à sua frente, encostando-a. Variámos a tensão entre 12V e 5V, de 1 em 1 V. Registámos as tensões obtidas no detector para as diferentes temperaturas na lâmpada. Mais uma vez, estas foram obtidas através da tensão e da corrente na lâmpada medidas nos multímetros, e calculada da mesma forma como para a primeira parte da experiência. Será de esperar, num gráfico $\ln(I)vs\ln(T)$ uma recta de declive 4.

Na terceira parte do trabalho pretende-se comparar as emissividades de diferentes superfícies para uma determinada temperatura, à luz do teorema de Kirchoff. Para tal dispomos de um cubo de Leslie, onde se coloca uma fonte de calor (lâmpada), com quatro faces revestidas de materiais diferentes: uma face reflectora, duas faces brancas mas de diferentes materiais e uma face preta. Foi usado um termómetro para medir a temperatura de equilíbrio no interior do cubo. Quando atingida a temperatura de equilibrio, foi utilizada uma termopilha para medir o poder emissivo de cada face. Antes de cada medição, a leitura no voltímetro era anulada em relação a uma referência fixa (parede branca do laboratório), e foi tido o cuidado de colocar o detector sempre à mesma distância das faces (encostado). Fizemos estas medições a 3/4 da potência máxima e à potência máxima da lâmpada.

As experiências foram realizadas numa sala escura (tanto

quanto possível) e as fontes luminosas, tal como o detector, foram cobertas nas direcções irrelevantes às medições, para reduzir o ruido térmico resultante de radiação electromagnética.

3 Dados e Tratamento de Dados

Lei da Radiação de Planck

Considerámos para os λs os $\lambda s_{tabelados}$ correspondentes aos $ns_{tableados}$ mais próximos dos $ns_{experimentais}$ e para o e_{λ} o máximo do módulo da diferença entre o λ anterior e seguinte e o λ resultado, o que é coerente com incerteza experimental, a qual corresponde a esses valores adjacentes.

Calculada R e o quociente $\frac{R}{R(292.35K)}$ determinámos T. Tendo em conta a grande incerteza associada à tabela, $e_{T_{tabelado}} = \pm 100K$, procedemos a uma interpolação em Mathematica dos pontos tabelados. Considerámos para o erro e_T o máximo do módulo da diferença entre T e $T \pm e_T$, determinado pela tabela por correspondência com $\frac{R \pm e_R}{R(292.35K)}$.

V/V	12V	10V	6V
T/K	2400 ± 2	2251 ± 3	1857 ± 4

Tabela 1: Ts do filamento extrapoladas da interpolação.

Normalizámos Vs a $V_{maxima} \approx 6.3 \times 10^{-5}$ e ajustámos os pontos experimentais à curva teórica (1) multiplicada por um parametro de normalização. Tentámos um ajuste com T fixa e outro com T como parâmetro livre.

Figura 2: Ajustes de $\frac{I}{I_{maxima}}(\lambda)$ com Ts fixas.

V/V	T/K	a/m^3W^{-1}	χ^2
12	2400	$(2.24 \pm 0.08) \times 10^{-13}$	777.072
10	2251	$(2.3 \pm 0.1) \times 10^{-13}$	443.525
6	1857	$(3.0 \pm 0.4) \times 10^{-13}$	52.3967

Tabela 2: Parâmetros dos ajustes de $\frac{I}{I_{maxima}}(\lambda)$ com Ts fixas.

Figura 3: Ajustes de $\frac{I}{I_{maxima}}(\lambda)$ com Ts livres.

V/V	T/K	a/m^3W^{-1}	χ^2
12	1330 ± 30	$(7.8 \pm 0.9) \times 10^{-12}$	82.5605
10	1270 ± 60	$(7\pm2)\times10^{-12}$	3.97
6	1110 ± 80	$(6 \pm 2) \times 10^{-12}$	4.98584

Tabela 3: Parâmetros dos ajustes de $\frac{I}{I_{maxima}}(\lambda)$ com Ts livres.

Lei do Deslocamento de Wien

Tratados os dados experimentais, seleccionámos os pares (λ_{maximo}, T) , de cada ensaio a diferente T, para os quais $I = I_{maxima}$. Ajustámos os pontos experimentais a (2).

Figura 4: Ajuste à Lei do Deslocamento de Wien.

b/mK	χ^2
$(2.71 \pm 0.05) \times 10^{-3}$	1.41

Tabela 4: Parâmetros de ajuste à Lei do Deslocamento de Wien. Lei de Stefan

Ajustou-se os pares (V,T) à linearização da Lei de Stefan.

Figura 5: Ajuste à linearização da Lei de Stefan.

a	b	χ^2
-36.2 ± 0.3	4.41 ± 0.04	14.908
-33.02 ± 0.02	4(fixo)	204.189

Tabela 5: Parâmetros do ajuste à linearização da Lei de Stefan.

Teorema de Kirchoff

Considerou-se para e_V a menor divisão de escala do voltímetro digital.

face	V/V
reflectora	$(1.25 \pm 0.01) \times 10^{-03}$
branca A	$(8.85 \pm 0.01) \times 10^{-03}$
branca B	$(3.96 \pm 0.01) \times 10^{-03}$
preta	$(1.37 \pm 0.01) \times 10^{-02}$

Tabela 6: Resultados para a experiência do Cubo de Leslie a $P=\frac{3}{4}P_{maxima}$ e $T=371.6\pm0.1K$.

	face	V/V
	reflectora	$(9.32 \pm 0.01) \times 10^{-4}$
	branca A	$(1.096 \pm 0.001) \times 10^{-2}$
Г	branca B	$(3.04 \pm 0.01) \times 10^{-3}$
	preta	$(1.62 \pm 0.01) \times 10^{-2}$

Tabela 7: Resultados para a experiência do Cubo de Leslie a $P=P_{maxima}$ e $T=378\pm1K.$

4 Críticas e Conclusões

Lei da Radiação de Planck

Ambos os ajustes, com temperatura fixa e livre, têm discrepância entre os dados experimentais e curvas teóricas. Isto pode dever-se ao facto de a lâmpada não ser um bom modelo para o corpo negro, e por haver meios supostamente transparentes entre o emissor e o detector, que na verdade causam ligeiras perdas nos feixes. Há também de notar que em (1), λ está elevado à $5^{\rm a}$ potência, o que significa que a incerteza de lambda contribui fortemente na propagação do erro.

Ao efectuarmos o ajuste para T como parâmetro livre, verifica-se que as linhas teóricas se ajustam melhor aos dados experimentais, e que as temperaturas são mais baixas que as inicialmente consideradas. Tal pode dever-se a alguns dos erros sistemáticos referidos anteriormente, e também à possível existência de impurezas do Tungsténio da lâmpada, uma vez que

a temperatura foi calculada a partir da resistividade própria do material. Mas a causa mais provável é o facto de a lâmpada de tungsténio não ser um modelo suficientemente próximo do corpo negro: a discrepância nas temperaturas obtidas ao ajuste devem-se ao facto de a lei de Planck se aplicar ao corpo negro ideal. A temperatura obtida por ajuste corresponde à temperatura que um corpo negro teria de ter para ter o perfil de intensidade obtido. Em adição, utilizando T como parâmetro livre, verifica-se que o ajuste entre os pontos e a curva está mais coerente para λs menores, pelo que se pode afirmar que a curva de Planck aplica-se melhor quanto menor for λ .

É também de notar que, para cada um dos ajustes, o valor de a se encontra dentro de uma gama limitada de valores muito próximos, o que é justificado pelo facto de a ser uma constante de proporcionalidade entre a tensão medida e a intensidade radiada.

Lei do Deslocamento de Wien

Fizemos dois ajustes que diferiram na T que considerámos, um com T resultado de fixar esse parâmetro e outro com T resultado de a deixar como parâmetro livre nos ajustes à Lei de Planck. Verificámos que no primeiro caso - que não apresentámos - a curva teórica é muito diferente da experimental, com $B=(7.31\pm0.06)\times10^{-2}mK$. No segundo caso, temos $B=(2.71\pm0.05)\times10^{-3}mK$, verificando-se um desvio à exactidão de 6.5%. Estes resultados vêm confirmar as conclusões tiradas com a Lei de Planck de que o modelo utilizado não se aproxima bem de um corpo negro. Realizámos estes ajustes tendo em conta o e_{λ} , note-se que todos os outros ajustes neste relatório não têm em conta, à partida, o erro na variável independente, pois foram efectuados quer no Gnuplot quer no fittea.

As oscilações dos valores de V que medimos pelo voltímetro condicionam a qualidade dos dados, desta vez assumindo uma maior importância. Para todos os três ensaios a diferentes T, o ponto experimental seguinte ao λ_{max} , tinha uma valor de V muito próximo do V_{max} , pelo que aceitamos que haja uma incerteza quanto a ser esse ou não o pico de V.

Mais importante é referir que deviamos ter procedido alternativamente. Ao invés de utilizar os dados do procedimento da Lei de Planck - cujos intervalos angulares medidos directamente tiveram um precisão de 20' ou 40' - deveriamos ter variado finamente a posição do detector de forma a encontrar, com precisão superior, o λ_{max} correspondente ao pico de V.

Lei de Stefan

Relativamente à parte da experiência sobre a Lei de Stefan, efectuámos um ajuste dos pontos a uma função afim, pelo que, neste caso, teremos o logaritmo da intensidade em função do logaritmo da temperatura, o que exigirá que o declive b seja igual a 4. Obtivemos $b=4.41\pm0.04$, com desvio à exactidão de 10.3%. Estes desvios sugerem, mais uma vez, que a aproximação da lâmpada com corpo negro não é válida , pelo que o comportamento da lâmpada de tungsténio não pode ser extrapolado para o de um corpo negro. Para além disso, a disposição dos pontos ajustados sugerem, há excepção de um ponto, que os erros aleatórios foram pouco relevantes (possíveis flutuações no voltímetro do detector e da temperatura no filamento). O erro é sistemático. Podendo admitir que os multimetros utilizados para medir a corrente e a tensão à lâmpada estão devidamente calibrados, a resistência do filamento terá sido correctamente determi-

nada. Estes factores sugerem que o erro sistemático se encontra na determinação de T: as intensidades medidas correspondem a T do filamento mais alta. Isto mostra que a tabela utilizada pode não corresponder ao filamento na gama de T em questão, talvez por existência de impurezas. Esta situação compromete ainda mais as conclusões que poderiamos tirar baseadas na T determinada.

O valor de χ^2 é muito superior quando se mantém o parâmetro b fixo e com valor 4, o que sugere que, comparando com o valor de χ^2 no caso em que se manteve o parâmetro b livre, a recolha de valores foi bem feita.

Teorema de Kirchoff

A experiência do Cubo de Leslie forneceu-nos dados cuja validade pode ter sido comprometida. Devido ao problema eléctrico de terra no laboratório, o termómetro apresentou um funcionamento errático, com grandes oscilações no valor medido pelo sensor, que estava em mau estado. Para ultrapassar esta situação desligou-se a lampâda para medir T no interior do cubo e voltou-se imediatamente a ligá-la. Assim, e como foi fornecida à lampâda $P > \frac{3}{4}P_{max}$ e só depois regulada, já sem tempo para assegurar bem um equilíbrio termodinâmico no interior da montagem, e considerando também que a situação eléctrica deve ter afetado a lampâda, admitimos que os resultados não são integralmente válidos.

Quanto aos resultados notámos que para as faces reflectora e brancaB, com $P=P_{max}$ se registaram duas medições inferiores que para $P=\frac{3}{4}P_{max}$, ora tal não é aceitável à luz da teoria, que sabemos ser válida e muito credível. Era espectável observar que para uma mesma face, um aumento de T implicasse um aumento de V, isto verificou-se para as faces preta e brancaA. Em relação à face brancaA, sendo branca à partida absorve pouco e portanto emite pouco na região do visível, daí a sua cor, no entanto verificámos que tinha um poder emissivo comparável ao da face preta, podemos portanto concluir que este material absorve e emite bem noutra região do espectro electromagnético, nomeadamente, na zona dos IVs. Da face preta já esperávamos este comportamento pois também absorve bem no visível, mas na anterior o comportamento que detectamos a olho não é suficiente para tirar elações em todo o espectro de radiação.

Desta parte da experiência concluimos que um material bom absorvedor é também um bom emissor para o mesmo λ .

Referências

- [1] Prof. Dr. João Luís Maia Figueirinhas. Aulas teóricas de Laboratório de Complementos de Termodinêmica e Electromagnetismo, 2012.
- [2] Prof. Dr. João Luís Maia Figueirinhas. Guia da execução do trabalho sobre a radiação do Corpo Negro, 2012.
- [3] Prof. Dr. João Luís Maia Figueirinhas. Determinação da temperatura do filâmento de Tungsténio da lâmpada usada como modelo de Corpo Negro, 2012.
- [4] Prof. Dr. João Luís Maia Figueirinhas. Tabela de converão de índices de refracção, n em comprimentos de onda λ da experiência do Corpo Negro, 2012.