SOLUTION FOR PB1

(1)

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
so,
$$\varphi'(v) = \frac{d\varphi(v)}{dv}$$

$$= \frac{1}{(1+v^2)^{\frac{1}{2}}} - \frac{v^2}{(1+v^2)^{\frac{3}{2}}}$$

$$= \frac{1}{(1+v^2)^{\frac{3}{2}}}$$

$$= \left(\frac{\varphi(v)}{v}\right)^3$$

$$\varphi'(0) = 1$$

(2) OR Operation

Table: Truth table

Inputs		Output
x_1	x_2	y
1	1	1
0	1	1
1	0	1
0	0	0

The OR operation may be realized using the perceptron:

The hard limiter input is $v = w_1x_1 + w_2x_2 + b = x_1 + x_2 - 0.5$

If
$$x_1 = x_2 = 1$$
, then $v = 1.5$, and $y = 1$

If
$$x_1 = 0$$
, and $x_2 = 1$, then $v = 0.5$, and $y = 1$

If
$$x_1 = 1$$
, and $x_2 = 0$, then $v = 0.5$ and $y = 1$

If
$$x_1 = x_2 = 0$$
, then $v = -0.5$ and $y = 0$

These conditions agree with the truth table.

(3) Diff. E(w) wrt w:

$$\frac{dE(w)}{dw} = -r_{xd} + r_x w$$

Optimal value of w correspond to $\frac{dE(w)}{dw} = 0$

$$\Rightarrow w^* = r_{xd}/r_x$$
 (Check $\frac{d^2 E(w)}{dw^2} = r_x > 0 \Rightarrow Min \text{ pt }$)

Using the method of steepest descent, recursive equation to compute the optimal value w^* :

$$w(n+1) = w(n) - \eta \frac{dE(w)}{dw}$$
$$= w(n) - \eta (r_x w(n) - r_{xd})$$

where η is the learning rate parameter.

(4)

Assume each neuron is represented by a McCulloch-Pitts model.

Let
$$x_i = \begin{cases} 1 & \text{if } _input _bit = 1 \\ 0 & \text{if } _input _bit = 0 \end{cases}$$

Induced local field of neuron 1 is $v_1 = x_1 + x_2 - 1.5 = >$

x_1	0	0	1	1
x_2	0	1	0	1
v_1	-1.5	-0.5	-0.5	0.5
<i>y</i> ₁	0	0	0	1

The induced local field of neuron 2 is: $v_2 = x_1 + x_2 - 2y_1 - 0.5 =$

x_1	0	0	1	1	<u>]</u> .
x_2	0	1	0	1	
<u>y</u> 1	0	0	0	1	=> XOR gate
v_2	-0.5	0.5	0.5	-0.5	
<i>y</i> 2	0	1	1	0	}