

FOR

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12P 41/00, C07D 311/66

(11) International Publication Number: WO 96/40975

A1

(43) International Publication Date: 19 December 1996 (19.12.96)

US

(21) International Application Number: PCT/US96/09993

(22) International Filing Date: 7 June 1996 (07.06.96)

(71) Applicant: SEPRACHEM, INC. [US/US]; 111 Locke Drive, Marlborough, MA 01752 (US).

7 June 1995 (07.06.95)

(72) Inventors: ROSSI, Richard, F, Jr.; 272 Reservoir Street, Norton, MA 02766 (US). ZEPP, Charles, M.; 940 North Road, Hardwick, MA 01037 (US). HEEFNER, Donald, L.; 111 Brigham Street #4F, Hudson, MA 01749 (US).

(74) Agents: HANSEN, Philip. E. et al.; Heslin & Rothenberg, P.C., 5 Columbia Circle, Albany, NY 12203 (US). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: OPTICAL RESOLUTION OF ALKYL CHROMAN-2-CARBOXYLATES

(57) Abstract

(30) Priority Data: 08/475,007

A process for resolving a racemic (C>>3) alkyl (R, S) chroman-2-carboxylate compound useful as intermediates in the synthesis of optically pure pharmaceutical compounds is disclosed. The process utilizes a microbial enzyme derived from Serratia marcescens to catalyze the enantioselective hydrolysis of the (C>>3) alkyl (S) -chroman-2-carboxylate enantiomer of the racemic mixture to its corresponding carboxylic acid at a faster rate than the R-enantiomer. An enantiomerically pure S-configured carboxylic acid is thereby formed which can undergo acidic esterification to provide an optically pure (C>>3) alkyl (S) -chroman-2-carboxylate intermediate for subsequent pharmaceutical synthesis. The nonhydrolyzed (C>>3) alkyl (R) -chroman-2-carboxylate enantiomer can also be isolated to provide an optically pure pharmaceutical precursor.

- Line

FOR THE PURPOSES OF INFORMATION ONLY

ALL TO THE STATE OF THE PARTY OF THE STATE O

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	22 to 2 mm		
ΑT	Austria	GE	United Kingdom	MW	Malawi
ΑU	Australia		Georgia	MX	Mexico
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE .	Ireland	NZ	New Zealand
ВJ	Benin	l'T	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	LI	Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal Senegal
CS		LR	Liberia	SZ	Swaziland
CZ	Czechoslovakia	LT	Lithuania	TD	Chad
	Czech Republic	LU	Luxembourg	TG	
DE	Germany	LV	Latvia	T.I	Togo
DK	Denmark	MC	Monaco	TT	Tajikistan
EE	Estonia	MID	Republic of Moldova	UA	Trinidad and Tobago
ES	Spain	MG	Madagascar		Ukraine
FI	Finland	MIL	Mali	UG	Uganda
FR	France	MN	Mongolia	US	United States of America
GA	Gabon	MIR	Mauritania	UZ	Uzbekistan
			**************************************	VN	Viet Nam

BNSDOCID: <WO_____9640975A1_l_>

OPTICAL RESOLUTION OF ALKYL CHROMAN-2-CARBOXYLATES

The present invention relates to a process for the resolution of alkyl chroman-2-carboxylates having the general formula (I)

of an asterisk (*) herein indicates the chiral center.) The invention also relates to the enantioselective enzymatic hydrolysis of one enantiomer in the racemic mixture of such esters by use of a microbial esterase derived from Serratia marcescens to form an enantiomerically pure chroman-2-carboxylic acid which can then be converted to a variety of esters, amides, and other derivatives of carboxylic acids.

BACKGROUND OF THE INVENTION

Optically active esters and acids, such as (C>3) alkyl chroman-2-carboxylates and chroman-2-carboxylic acid, having a single chiral center located on the carbon in the 2-position of the chroman structure and

SUBSTITUTE SHEET (RULE 26)

adjacent to the carboxyl group are useful as precursors in the chemical synthesis of certain pharmaceutical compounds. For example, compounds of the general formula (II) below, as described in European Patent 0546388 to AG Bayer, provide utility in the treatment of numerous central nervous system and cardiovascular diseases.

(II)

Compounds (II), wherein R" is hydrogen or methoxy, contain a single chiral center at the 2-position of the chroman structure and are synthesized by the reaction of alkyl chroman-2-carboxylate or chroman-2-carboxylic acid precursors in an intermediate step. Alkyl as used herein encompasses linear, branched, and cyclic hydrocarbon residues of 1 to 20 carbons; (C>3) alkyl refers to the subset of alkyl having 4 to 20 carbons.

The administration of an optically pure pharmaceutical compound (II) synthesized from an enantiomer of the (C>3) alkyl chroman-2-carboxylate or chroman-2-carboxylic acid intermediate may provide an improvement over the administration of the racemic compound. Often when administering a racemic compound, one enantiomer may actually provide the beneficial effects while the opposite enantiomer may

20

25

be deleterious or inert. Thus, advantages associated with the administration of the racemic mixture may be retained by using a single enantiomer of the compound without accompanying adverse side effects.

Resolution of the racemic (R, S)-carboxylate or acid intermediate into its individual enantiomers is a convenient point in the overall synthetic route to the corresponding optically pure pharmaceutical compounds (II) at which to introduce desired stereochemistry.

Therefore, separation of the enantiomers is desirable, and a need exists for a convenient and economic method for producing the enantiomers which can be performed on a commercial scale. Resolution of the racemic carboxylate mixture into isolated enantiomers provides such a method and permits large-scale syntheses of the individual enantiomers.

Resolution of racemic mixtures of chiral compounds can often be achieved by subjecting the racemates to the stereoselective action of various enzymes. Generally, enzymes for use in resolutions should exhibit a high degree of stereoselectivity for catalyzing the reaction of one isomer to the exclusion of others. Enzymatic resolution by enantioselective hydrolysis of various ester compounds has been widely employed for the lab-scale, preparative-scale, and industrial-scale production of many optically pure acids and esters.

One class of enzymes, the hydrolases, which 30 includes lipases, proteases, and esterases, for example, is often used in the resolution of enantiomers because they are commercially available

10

at reasonable cost, they do not require expensive cofactors, and some exhibit reasonable tolerance to organic solvents. Additionally, hydrolases are known to stereoselectively catalyze the hydrolysis of certain carboxylic acid derivatives, including esters.

For example, Urban (U.S. Pat. No. 5,089,637) employed enzymatic hydrolysis using a microbial esterase derived from *Pseudomonas fluorescens* to resolve racemic mixtures of (C_1-C_3) alkyl chroman-2-carboxylates. The esterase catalyzes stereoselective hydrolysis of the S-carboxylate enantiomer to produce a mixture of optically pure (C_1-C_3) alkyl (R)-chroman-2-carboxylate and (S)-chroman-2-carboxylic acid.

However, resolution of the enantiomers of (C>3)
alkyl chroman-2-carboxylates by stereoselective
enzymatic hydrolysis has not heretofore been
described. Such a resolution is desirable in order
to provide optically pure (C>3) alkyl chroman-2carboxylates and corresponding acids for use as
synthetic precursors in the manufacture of optically
pure pharmaceutical compounds (II) having the desired
R- or S- stereochemistry.

Therefore, a need exists for an inexpensive and efficient method for producing on a commercial scale the individual enantiomers of (C>3) alkyl chroman-2-carboxylates and chroman-2-carboxylic acid.

10

25

SUMMARY OF THE INVENTION

As a result of various studies, it has now been unexpectedly found that optically pure (C>3) alkyl chroman-2-carboxylates can be conveniently prepared in high enantiomeric purity by esterase catalyzed hydrolysis of the corresponding racemic ester compound. The resolution process of the present invention is accomplished through the use of a microbial esterase derived from Serratia marcescens that stereoselectively catalyzes hydrolysis of the Sester at a faster rate than the R-ester. Optically pure (S)-chroman-2-carboxylic acid is produced while the corresponding (C>3) alkyl (R)-chroman-2-carboxylate enantiomer remains as the ester.

15 Recovery of the latter species in optically purified form is thereafter possible permitting its use as an intermediate in the production of pharmaceutical compounds having an absolute R-configuration. Likewise, isolation of the hydrolyzed S-enantiomer followed by esterification provides the oppositely configured S-ester. Finally, racemization of either isolated ester can be performed.

In accordance with the present invention, a method is therefore provided for resolving a racemic mixture of (C>3) alkyl chroman-2-carboxylates, which comprises the steps of:

(a) providing an organic phase comprising a mixture of (C>3) alkyl chroman-2-carboxylate enantiomers represented by formula (I)

wherein R' is (C>3) alkyl;

- b) contacting said organic phase with an aqueous solution comprising water and a catalytic amount of a microbial esterase derived from Serratia marcescens to form a mixture comprising (C>3) alkyl (R)-chroman-2-carboxylate and (S)-chroman-2-carboxylic acid;
- c) separating said (S)-chroman-2-carboxylic acid from said (C>3) alkyl (R)-chroman-2-carboxylate; and
- d) recovering said (C>3) alkyl (R)-chroman-2-10 carboxylate.

The chroman ring system is known in Chemical Abstracts nomenclature as (2H)-3,4-dihydro-1-benzopyran.

Steps (a) and (b) are depicted as follows:

$$(R,S) \qquad Enzyme \\ (R,S) \qquad (R) \qquad (S)$$

$$(II) \qquad (III) \qquad (IV)$$

SUBSTITUTE SHEET (RULE 26)

The S-configured carboxylic acid enantiomer represented as formula (IV) above can then be esterified to form an optically pure (C>3) alkyl (S)-chroman-2-carboxylate. The (C>3) alkyl (R)-chroman-2-carboxylate enantiomer represented as formula (III) above of the racemic mixture remains substantially unaffected by the hydrolysis and can be isolated from the organic solution as the absolutely configured, optically pure (C>3) alkyl (R)-chroman-2-carboxylate enantiomer (III).

The esterase derived from Serratia marcescens is water soluble, whereas the esters of the present invention exhibit very low solubilities in water. Therefore, the enzyme-mediated optical resolution may be conducted under two-phase or multiphase reaction conditions.

In a preferred embodiment, the R' alkyl group of the racemate is isobutyl. Racemic isobutyl chroman-2-carboxylate is shown as formula (V).

(R,S)

(V)

Stereospecific hydrolysis of the S-enantiomer in the racemic carboxylate mixture provides isobutyl (R)-chroman-2-carboxylate.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method for the 5 production of resolved (C>3) alkyl chroman-2carboxylates, subsequently useful as intermediates in the synthesis of optically pure pharmaceutical compounds (II). Specifically, this invention relates to the production of optically pure pharmaceutical 10 intermediates by enzymatic resolution of racemic mixtures of (C>3) alkyl chroman-2-carboxylates (I) using a resolution process in which the racemate is contacted with an esterase derived from Serratia marcescens. The (C>3) alkyl (S)-chroman-2-15 carboxylate enantiomer is preferentially hydrolyzed and removed from the R-enantiomer, thus producing the enantiomerically enriched (C>3) alkyl (R)-chroman-2carboxylate (III) and enantiomerically enriched (S)chroman-2-carboxylic acid (IV). 20

The carboxylic acid is easily separated from the remaining R-ester, due to their differential solubilities in organic solvents, by known methods. In the present invention, by virtue of the lipophilicity of (C>3) alkyl esters, all the chroman esters are soluble in a variety of organic solvents that are immiscible with water, while the enantiomerically enriched (S)-chroman-2-carboxylic acid product of the hydrolysis is soluble in water at the appropriate pH. (The term "immiscible" as used herein refers to liquids that cannot be uniformly mixed in all solvents which are completely.

20

25

substantially, or proportions, and "immiscible with water" includes partially immiscible with water i.e. solvents such as butanol that form a separate organic phase when placed in contact with water.)

The resolution process described herein is a 5 kinetic resolution process in which each enantiomer of the racemic substrate mixture exhibits some susceptibility to enzymatic hydrolysis, but the Senantiomer is hydrolyzed more rapidly than the R-10 enantiomer.

The ability of an enzyme to discriminate between: two competitively reacting enantiomers may be quantified by the enantioselectivity value E, as described by C.S. Chen et al. (J. Amer. Chem. Soc., 104 (1982) 7294). The formula for calculation of E in the case of a subtractive kinetic resolution process is given as follows:

$$E = \{ \ln[(1 - x)(1 - ee(S))] / \ln[(1 - x)(1 + ee(S))] \}$$

where x is the degree of conversion of the entire quantity of starting substrate, expressed as a decimal fraction, and ee(S) is the enantiomeric excess of the remaining, non-hydrolyzed substrate enantiomer, also expressed as a decimal fraction. This formula permits comparison of enzyme reactions which have proceeded to different degrees of conversion, in which case direct comparison of the enantiomeric excess of the remaining carboxylate substrate is not possible. It is also possible to use this E value and corresponding calculations to 30 compare the apparent selectivity of the same enzyme operating under varying conditions.

In the resolution process of the present invention, an infinitely large E value displayed by the enzyme would be ideal. If $E=\infty$ and 50% of the total starting substrate has been hydrolyzed, then 100% of the non-hydrolyzed material will remain in 5 the organic phase after reaction at an optical purity of 100% enantiomeric excess. However, if the enzyme displays a lower E value, the overall extent of hydrolysis must be allowed to proceed past 50%, to an extent that is determined by the formula derived by 10 Chen et al. and reproduced above. Generally, an E value of at least 25 is necessary for a process to be of commercial value. In the present invention, the enzyme catalyst derived from Serratia marcescens has been surprisingly found to be S-selective with a 15 relatively large E value.

Because the (C>3) alkyl chroman-2-carboxylate racemic mixture (I) is available at room temperature as a liquid that emulsifies into a second (organic) phase upon addition of an aqueous solution, the 20 racemic mixture may be used in the present invention without addition of an organic solvent. Alternatively, racemic (C>3) alkyl chroman-2carboxylate (I) may be dissolved in an organic solvent to form an organic phase which is separable 25 from aqueous solution. The selected organic solvent is one which is appreciably immiscible with water, such as hexane, heptane, methyl isobutyl ketone, tbutyl methyl ether, toluene, ethyl acetate, or methylene chloride. However, the invention is not 30 limited to the use of the above-mentioned solvents, and other suitable water immiscible organic solvents that may be used will be obvious to those skilled in the art.

The enzyme catalyst derived from Serratia

marcescens for use in the present invention may be
obtained in aqueous solution. Alternatively, the
esterase may be obtained in powdered form and
subsequently dissolved in water. While highly
purified enzyme preparations are not necessary for
the process of this invention, if the enzyme to be
used herein has intrinsically low specific activity
units (units of catalytic activity per weight of
protein), crude preparations thereof can cause
practical problems by requiring unnecessarily large
volumes of reaction mixtures and correspondingly
large reactor volumes.

Sources and cultivation of Serratia marcescens are disclosed in U.S. Pat. No. 5,378,627 to Shibatani 15 et al., U.S. Pat. No. 5,374,554 to Kamatsubara et al., U.S. Pat. No. 5,371,014 to Matsuyama et al., and U.S. Pat. No. 5,393,664 to Kira et al. Microorganisms having IFO numbers assigned thereto, 20 such as Serratia marcescens IFO3046, for example, are described in the List of Culture, 8th ed., vol. 1 (1988) published by the Institute for Fermentation, Osaka (IFO) and available therefrom. Serratia marcescens ATCC14226 is described in the Catalogue of 25 Bacteria phages rDNA Vectors, 16th ed. (1985) published by American Type Culture Collection (ATCC) and available therefrom.

Briefly, Serratia marcescens produces an esterase that may be obtained by extraction from cultured broths of the microorganisms, followed by purifying the extract by a conventional method. In addition, the bacteria may be either wild type or mutants. Recombinant strains derived using genetic

10

15

「大学のでは、これので

means such as cell fusion or genetic engineering may also be used. The medium for cultivating Serratia marcescens for use in the present invention may be any medium on which the microorganisms will grow. For example, an ordinary liquid nutrient medium containing carbon sources, nitrogen sources, inorganic salts and organic nutrients can be used.

The concentration of the (C>3) alkyl chroman-2-carboxylate compound (I) to be hydrolyzed is not critical. Similarly, the concentration of the esterase required to effect hydrolysis of the S-carboxylate is not critical to the practice of this invention. However, in preferred embodiments, the enzyme concentration will be an amount which is effective to achieve hydrolysis in a reasonable period of time and may depend on the purity of the enzyme.

In the two-phase hydrolysis system, the preferred pH range of the aqueous phase is about 5.0 to 9.75 which covers the pH optimum for the Serratia marcescens preparation in use. It is desirable to maintain the pH of the aqueous phase within the desired range over the course of the hydrolysis by use of a buffer system. Examples of buffers with buffering capacity over the desired range include, but are not limited to, carbonates, bicarbonates, phosphates, borates, and citrates. Additionally, an automatic titrator using NaOH as the titrant, for example, or other pH controlling device may be used.

Similarly, the temperature at which the hydrolysis is performed may vary over a wide range, preferably between about 10°-45° C, provided that both

10

the aqueous and organic phases remain liquid, the enzyme does not experience denaturation at a rate too rapid to allow its use, and the carboxylates remain stable. The relative volumes of the aqueous and organic phases are not critical, and may vary over a wide range. In the preferred embodiment of the present invention, the temperature, the pH of the aqueous phase, the concentration of the enzyme (Serratia marcescens) in the aqueous phase, and the concentration of the (C>3) alkyl (R, S)-chroman-2-carboxylate racemic mixture are chosen such that an optimal combination of rate and enantioselectivity of hydrolysis is realized.

The esterase-catalyzed hydrolysis reaction is conducted by contacting the racemic carboxylate-containing organic phase with the aqueous phase in the presence of the Serratia marcescens esterase using conventional stirring or shaking techniques. Alternatively, known methods wherein the enzymatic resolution process is conducted within a multiphase/extractive enzyme membrane reactor may be employed. An example of such a membrane reactor may be found in U.S. Pat. No. 5,077,217 (Matson et al.), the disclosure of which is incorporated by reference.

25 Since the (C>3) alkyl chroman-2-carboxylate is preferentially soluble in the organic phase, the R ester will remain in the organic phase after hydrolysis, and the enantiomeric ester excess (ee Ester) in the organic phase will increase as a function of the extent of hydrolysis and enantioselectivity value E. Likewise, after hydrolysis, the aqueous solution will contain an Sacid and has an enantiomeric acid excess (ee Acid)

greater than 0. The extent of hydrolysis of the total racemic (C>3) alkyl chroman-2-carboxylate substrate (I) may be adjusted to permit the recovery of the unreacted R-ester at any desired level of enantiomeric excess; higher conversions yield organic-phase R-esters of increasing optical purity.

hydrolysis may be conveniently monitored by periodic HPLC analyses of the reaction mixture until the desired extent of conversion is reached. After completion of the hydrolysis, the optically pure Sacid enantiomer is then separated from the oppositely configured R-carboxylate enantiomer, preferably by separating the aqueous and organic phases. Common methods of separation include, but are not limited to, gravitational settling and centrifugation. Generally, after gravitational settling the aqueous layer can be drained through a tap in the bottom of the reaction vessel.

The substantially optically pure R-ester 20 contained in the organic solution may then be isolated by concentrating the organic layer under reduced pressure. Likewise, the S-carboxylic acid enantiomer produced in the aqueous layer can be isolated by precipitation and filtration, for 25 example. Acid catalyzed esterification of the isolated S-carboxylic acid may then be performed to obtain the S-carboxylate ester. Therefore, according to the present invention, both enantiomers, R and S, of the racemic (C>3) alkyl chroman-2-carboxylate 30 compound (I) or the corresponding carboxylic acid can be resolved and isolated for subsequent use as intermediates in the syntheses of optically pure

pharmaceutical compounds.

Racemization of either the isolated R- or Sester may then be done by refluxing the enantiomer with a base (about 1 mole %) such as potassium-tertbutoxide or sodium-iso-butoxide until completion. Other bases including tertiary amines such as triethylamine or strong basic amines such as 1,5diazabicyclo[4.3.0]non-5-ene or 1,8diazabicyclo[5.4.0]undec-7-ene may be used to effect 10 racemization. Also, refluxing with sodium or potassium hydroxide in catalytic amounts will cause racemization, although with a concomitant loss of ester due to hydrolysis. However, the invention is not limited to refluxing the isolated enantiomer with the aforementioned bases, and other bases that will 15 effect racemization may be used and will be obvious to those skilled in the art. Racemization may be followed by HPLC or by optical rotation to determine the extent of racemization.

The present invention is more particularly described and explained by means of the following detailed Examples of preferred embodiments. It is to be understood, however, that such Examples are for illustration purposes only and are not intended to limit the scope of the present invention.

EXAMPLE 1

An organic solution was formed containing 40.4 g of a racemic mixture of the isobutyl chroman-2-carboxylate enantiomers dissolved in 100 mL t-butyl methyl ether. The esterase derived from Serratia marcescens was obtained from Tanabe Seiyaku Co., Ltd.

in an aqueous solution having an enzymatic activity of 5200 units/mL. 5.0 mL of the esterase solution was added to 250 mL of a 0.1 M sodium phosphate buffered aqueous solution. The pH was maintained at 8.25 by an automatic titrator using a 2.5 M NaOH solution as the titrant. The organic and aqueous solutions were vigorously stirred with a stir plate for 2.5 hours, and samples were analyzed by HPLC after 1 hour and after 2.5 hours. The reaction was then allowed to phase separate, and the aqueous layer 10 was drained. The organic phase was dried over anhydrous sodium sulfate and evaporated to yield the final product. Isobutyl (R)-chroman-2-carboxylate was recovered in an amount of 19.2 g, or a yield of 96.0% The ee(Ester) value was 99.1% after 2.5 hours. 15

Optical purity of the enantiomers was analyzed by HPLC using a ChiralcelTM OD-R column with a 1:1 acetonitrile/buffer as the mobile phase. The buffer was 7 g sodium perchlorate/liter H_2O , adjusted to pH of 2.0 with conc. HCl.

The results of the hydrolysis are summarized in the following TABLE.

TABLE

25	Time (hr)	eeAcid (%)	eeEster (%)	Conversion (%)	E	Rate (mmol/hr/mlenz)
	1	93.2	84.4	47.7	77	16.9
	2.5	94.0	99.1	51.3	173	7.3

The aqueous phase of the hydrolysis reaction was

WO 96/40975 PCT/US96/09993

acidified to pH of 2.0 with conc. HCl forming a white precipitate of (S)-chroman-2-carboxylic acid. The Sacid was extracted into toluene, and the phases were The organic layer was placed in a vessel suitable for acid catalyzed esterification. Sulfuric acid was added to the vessel, and the mixture was heated to reflux. Water was removed by azeotropic distillation. The conversion of the acid to the ester was followed by GC analysis. Isobutyl (S) -10 chroman-2-carboxylate was thereby formed. Upon completion of the esterification, the sulfuric acid catalyst used in the reaction was removed by washing the reaction product with saturated sodium carbonate, and the S-carboxylate product was azeotropically 15 dried again.

The esterification reaction product containing isobutyl (S)-chroman-2-carboxylate in toluene was then racemized by placing the S-carboxylate in a vessel suitable for refluxing and adding potassium
tert-butoxide (about 1 mole%). The solution was refluxed, and the reaction was followed by HPLC analysis to determine the extent of racemization. When the reaction was complete, the solution was cooled to room temperature and washed with dilute sodium carbonate. Toluene and water were removed by distillation leaving the racemic isobutyl (R, S)-chroman-2-carboxylate behind. The product was confirmed by HPLC and GC analyses.

EXAMPLE 2

30 Large-scale enzymatic hydrolysis of racemic isobutyl chroman-2-carboxylate was carried out in three batches in a 200 gallon reactor to produce 100

秦中国中国的政治,这一时间,这种是一种是一种的政治,是一种

kg of the unhydrolyzed R-ester. Each batch utilized 67 kg substrate dissolved in 100 liters of heptane or toluene. The aqueous phase comprised 1.67 liters of an enzyme solution derived from Serratia marcescens (Tanabe) in 420 liters of a 0.1 M sodium phosphate buffer solution adjusted to a pH of 8.25 with 28.6 liters of 5 M NaOH. The total volume of the reactants was 615.5 liters such that the reactor was running at about 77% of its volume capacity.

After completion of hydrolysis, approximately 6 hours, the phases were permitted to separate, and the aqueous layer was drained through a bottom tap. The organic phase was then dried over anhydrous sodium sulfate (about 3 kg for 150 liters) and evaporated to yield the final unhydrolyzed isobutyl (R)-chroman-2-carboxylate enantiomer. Optical and chemical analyses of the isolated enantiomer were performed using the chromatographic techniques and conditions listed in EXAMPLE 1.

CLAIMS

- 1. A method for resolving a mixture of
 enantiomers of a (C>3) alkyl chroman-2-carboxylate,
 said method comprising the steps of:
- a) providing an organic phase comprising a mixture of (C>3) alkyl chroman-2-carboxylate enantiomers represented by formula (I)

wherein R' is (C>3) alkyl;

- b) contacting said organic phase with an aqueous solution comprising water and a catalytic amount of a microbial esterase derived from Serratia marcescens to form a mixture comprising (C>3) alkyl (R)-chroman-2-carboxylate and (S)-chroman-2-carboxylic acid;
 - c) separating said (S)-chroman-2-carboxylic acid from said (C>3) alkyl (R)-chroman-2-carboxylate; and
- d) recovering said (C>3) alkyl (R)-chroman-2-carboxylate.

- 2. The method according to claim 1, wherein said organic phase further comprises a water immiscible organic solvent.
- 3. The method according to claim 1, wherein R' is an isobutyl group.
- 4. The method according to claim 1, wherein said aqueous solution is maintained at a pH in the range of about 5.0 to 9.75.
- 5. The method according to claim 1, wherein said hydrolysis occurs at a temperature from about 10°C to about 45°C.
- 6. The method according to claim 1 further comprising the step of isolating said (S)-chroman-2-carboxylic acid from said aqueous solution.
- 7. The method according to claim 8 further comprising the step of esterifying said (S)-chroman-2-carboxylic acid to produce (C>3) alkyl (S)-chroman-2-carboxylate.
- 8. A method for recycling an (C>3) alkyl (S)-chroman-2-carboxylate, said method comprising the steps of:
- a) separating said (S)-chroman-2-carboxylic acid
 from said (C>3) alkyl (R)-chroman-2-carboxylate
 according to claim 1;
 - b) isolating said (S)-chroman-2-carboxylic acid;
 - c) esterifying said (S)-chroman-2-carboxylic acid to produce (C>3) alkyl (S)-chroman-2-
- 10 carboxylate; and

- d) refluxing said (C>3) alkyl (S)-chroman-2carboxylate with a base to produce a mixture of (C>3) alkyl (R, S)-chroman-2-carboxylate enantiomers.
- 9. The method according to claim 8, wherein said base is selected from the group consisting of potassium-tert-butoxide, sodium-iso-butoxide, potassium hydroxide, sodium hydroxide, triethylamine, 1,5-diazabicyclo[4.3.0]non-5-ene, and 1,8-diazabicyclo[5.4.0]undec-7-ene.
- 10. A method for recycling an (C>3) alkyl (R)-chroman-2-carboxylate, said method comprising the steps of:
- a) separating said (S)-chroman-2-carboxylic acid
 from said (C>3) alkyl (R)-chroman-2-carboxylate
 according to claim 1;
 - b) recovering said (C>3) alkyl (R)-chroman-2carboxylate; and
- c) refluxing said recovered (C>3) alkyl (R)-10 chroman-2-carboxylate with a base to produce a mixture of (C>3) alkyl (R, S)-chroman-2-carboxylate enantiomers.
 - 11. The method according to claim 10, wherein said base is selected from the group consisting of potassium-tert-butoxide, sodium-iso-butoxide, potassium hydroxide, sodium hydroxide, triethylamine, 1,5-diazabicyclo[4.3.0]non-5-ene, and 1,8-diazabicyclo[5.4.0]undec-7-ene.

INTERNATIONAL SEARCH REPORT

Internati Application No PCT/US 96/09993

			,1,00 00,0000
a. classii IPC 6	FICATION OF SUBJECT MATTER C12P41/00 C07D311/66		
A coording to	International Patent Classification (IPC) or to both national classifi	cation and IPC	
B FIELDS	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classification C12P C07D		
Documentati	ion searched other than minimum documentation to the extent that s	uch documents are included	in the fields searched
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, sear	ch terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim 140.
A	EP,A,O 448 254 (PFIZER) 25 Septem see page 1 - page 7	1-6	
A	EP,A,0 325 954 (HOFFMAN LA ROCHE) 1989 see page 1 - page 7	1-6	
P,X	DE,A,44 30 089 (BAYER) 29 Februar see page 1 - page 12	1-6	
Fu	urther documents are listed in the continuation of box C.	X Patent family me	embers are listed in annex.
A. docu	categories of cited documents : unent defining the general state of the art which is not	or emiority date and	thed after the international filing date not in conflict with the application but the principle or theory underlying the
'E' carlie	sidered to be of particular relevance or document but published on or after the international or date	lar relevance; the claimed invention d novel or cannot be considered to step when the document is taken alone	
"L" docu whice	ment which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another tion or other special reason (as specified) ament referring to an oral disclosure, use, exhibition or	'Y' document of particular cannot be considered	lar relevance; the claimed invention d to involve an inventive step when the sed with one or more other such docu-
'P' docu	ument referring to an oral disclosure, use, exhibition of er means iment published prior to the international filing date but r than the priority date claimed	ation being obvious to a person skilled of the same patent family	
1	the actual completion of the international search		he international search report
	30 August 1996	0	4. 09. 96
Name at	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
1	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Francoi	s, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

U. . . nation on patent family members

Internati Application No
PCT/US 96/09993

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-448254	25-09-91	US-A-	5089637	18-02-92	
		AT-T-	117299	15-02-95	
		AU-B-	620756	20-02-92	
		AU-B-	7369691	14-11-91	
		CA-A-	2038610	22-09-91	
		DE-D-	69106753	02-03-95	
		DE-T-	69106753	18-05-95	
		ES-T-	2067148	16-03-95	
		JP-A-	4234871	24-08-92	
		JP-B-	7064838	12-07-95	
		KR-B-	9405601	21-06-94	
		NO-B-	179680	19-08-96	
EP-A-325954	02-08-89	US-A-	5037747	06-08-91	
		JP-A-	1225496	08-09-89	
DE-A-4430089	29-02-96	NONE			

Form PCT/ISA/210 (potent family annex) (July 1992)