

LITMO

Сопоставление точек

Сопоставление точек

- Имеем набор выделенных особых точек и их дескрипторы.
- Как сопоставить одинаковые точки на разных изображениях?

Сопоставление точек

- Для сопоставления точек необходимо сгенерировать пары-кандидаты: для каждого патча в одном изображении находим несколько наиболее похожих по выбранной метрики патчей на другом изображении.
- Способы выбора пар-кандидатов точек:
 - 1. Полный перебор:
 - Для каждой особенности вычисляем расстояния до всех особенностей второго изображения и берем лучшую.
 - 2. Ускоренные приближенные меры:
 - Иерархические структуры (kd-trees, vocabulary trees).
 - Хэширование.

Геометрические модели структур

- Локальные особенности принадлежат определенным геометрическим структурам:
 - углы окон лежат на прямых;
 - 2. края окон лежат на прямых.
- На основе этих структур можно вычислить их геометрические модели.

Слева – выделенные особенности, справа – геометрические модели

• Простые модели – параметрические кривые:

Слева – линии, справа – окружности

• Сложная модель – автомобиль:

- Параметрические кривые: F(x,a) = 0 параметрическая модель, где a параметры модели,
- x вектор, соответствующий некоторым точкам в пространстве,
- $X = \{x_i\}$ множество векторов, соответствующих точкам в пространстве.
- Прямая линия: $F(x,a) = a_1x_1 + a_2x_2 + a_3 = 0$.
- Окружность: $F(x, a) = (x_1 a_1)^2 + (x_2 a_2)^2 a_3 = 0$.
- **Коника:** $F(x,a) = a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0.$
 - Коническое сечение плоскости с круговым конусом или кривая второго порядка.

• Параметрические кривые: в случае двумерной плоскости $x_1=x$, $x_2=y$.

- Задачи по оценке параметров модели на изображении:
 - Даны точки, удовлетворяющие модели. Необходимо вычислить параметры модели.
 - Дана модель. Определить, какие точки ей удовлетворяют, какие нет.
 - Даны точки, часть из них удовлетворяет модели (inliers), часть не удовлетворяет (outliers). Вычислить параметры модели и разделить данные на inliers и outliers.
 - Model fitting «подгонка модели».

Методы описания объектов

- Прямое линейное преобразование (DLT)
- М-оценки (M-estimators)
- Метод взвешенных наименьших квадратов
- Метод итеративно перевзвешиваемых наименьших квадратов
- RANSAC
- Метод медианных квадратов (LMS)
- M-SAC (M-estimator Sample Consensus)

- Direct Linear Transform (DLT)
- Задача: на двумерном изображении задан набор точек с координатами (x_i, y_i) , i = 1, n Необходимо найти прямую, наилучшим образом аппроксимирующую их.

• Решение:

• методом наименьших квадратов рассчитать прямую как минимум квадратов расстояний от точек до прямой;

вероятностная формулировка: поиск максимума правдоподобия по расстоянию: $\hat{l} = 0$

 $\arg\max_{l} P[\{(x_i, y_i)\}|l].$

 Модель прямой с зашумленными Гауссовским шумом в перпендикулярном направлении к линии точками:

$$\binom{x}{y} = \binom{u}{v} + \varepsilon \binom{a}{b},$$

где вектор $[u \quad v]^{\mathrm{T}}$ – точка на линии,

arepsilon — нормально распределенный гауссовский шум с нулевым мат. ожиданием и стандартным отклонением σ ,

вектор $[a \quad b]^{\mathrm{T}}$ – нормаль.

- Необходимо найти точки с максимумом вероятности нахождения на линии (максимум правдоподобия).
- Правдоподобие точек с параметрами a, b, d вычисляется следующим образом:

$$P(x_1, ..., x_n | a, b, d) = \prod_{i=1}^n P(x_i | a, b, d) \Rightarrow \prod_{i=1}^n e^{-\frac{(ax_i + by_i - d)^2}{2\sigma^2}}$$

При использовании натурального логарифма:

$$L(x_1, ..., x_n | a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (ax_i + by_i - d)^2$$

• Поскольку расстояние от точки (x_i, y_i) до линии по нормали равно |ax + by - d|, необходимо найти такие параметры a, b, d которые минимизируют функцию E:

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

• Продифференцируем функцию E по d и приравняем нулю:

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0,$$

и выразим d:

$$d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} x_i = a\bar{x} + b\bar{y}$$

• Подставим полученное выражение в функцию E:

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 =$$

$$= \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \dots & \dots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = (AN)^{\mathrm{T}}(AN).$$

• Продифференцируем $(AN)^T(AN)$ by N:

$$\frac{dE}{dN} = 2(A^{\mathrm{T}}A)N = 0.$$

- Видно, что решением данного матричного уравнения является собственный вектор $A^{\mathrm{T}}A$, соответствующий минимальному собственному значению при условии, что $\|N\|^2=1$.
- Выражение $A^{\mathrm{T}}A$ позволяет отыскать *сингулярные числа* матрицы A.

- Для упрощения поиска сингулярных чисел рассмотрим сингулярное разложение матриц.
- SVD-процедура (Singular Value Decomposition).
- Можно разложить матрицу $A = UDV^{\mathrm{T}}$,

где U и V — ортогональные матрицы,

D — диагональная матрица, состоящая из сингулярных чисел.

• Справедливы следующие соотношения:

$$A^{\mathrm{T}}A = VDU^{\mathrm{T}}UDV^{\mathrm{T}} = VDDV^{\mathrm{T}} = VD^{2}V^{\mathrm{T}}$$

- Используем SVD-процедуру для вычисления наименьших квадратов.
- Пусть дано уравнение:

$$Ap = 0$$

где норма вектора p: ||p|| = 1.

- Для поиска минимального сингулярного числа необходимо минимизировать норму: $\|UDV^{\mathrm{T}}p\|$.
- С учетом равенства на предыдущем слайде:

$$||UDV^{T}p|| = ||DV^{T}p|| \cdot ||V^{T}p|| = ||p||$$

• Если $||V^T p|| = 1$, то необходимо минимизировать:

$$||DV^Tp||$$
.

• Обозначим $y = V^T p$, тогда необходимо минимизировать:

$$||Dy||$$
, если $||y|| = 1$,

а в диагональной матрице D столбцы упорядочены по убыванию.

• В таком случае $y = (0, ..., 0, 1)^T$,

а p = Vy – последний столбец матрицы V.

- Используем МНК и SVD-процедуру для построения прямых.
- Пусть задан набор точек (x_i, y_i) .
- Для построения линии ax + by = d необходимо:
 - 1. Вычислить средние значения (\bar{x}, \bar{y}) ;
 - 2. Сформировать матрицу A содержащую отклонения от средней точки;
 - 3. Выполнить SVD-процедуру $A = UDV^{\mathrm{T}}$;
 - 4. Вычислить параметры a и b из последнего столбца матрицы V;
 - 5. Найти $d = a\bar{x} + b\bar{y}$.
- Метод наименьших квадратов для нахождения параметров моделей и называется DLT (Direct Linear Transform).

Геометрические преобразования

- Оценкой параметров модели также являются геометрические преобразования, рассмотренные ранее на предыдущих лекциях.
- Напомним, что есть набор из нескольких точек $X = (x_i, y_i)$ на одном изображении и соответствующий набор таких же точек $X' = (x'_i, y'_i)$ на другом изображении.
- Необходимо решить матричное уравнение вида XT = X' для определения параметров преобразования T.

Геометрические преобразования

- Решение матричного уравнения:
 - 1. С помощью псевдообратной матрицы X^+ :

$$T = X^+X'$$

где $X^+ = (X^T X)^{-1} X^T$ – псевдообратная матрица.

2. С помощью SVD-процедуры:

$$X = UDV^{\mathrm{T}} \rightarrow X^{+} = VD^{+}U^{\mathrm{T}}$$

где D — диагональная матрица,

причем псевдообратная матрица D^+ состоит из обратных элементов $\frac{1}{d_{ii}}$ матрицы D.

• Из-за этого данное решение более математически привлекательно при использовании в расчетах.

Резюме DLT

- Проблема линейных методов оценки параметров для сложных моделей: оптимизация алгебраической ошибки, не имеющей физического смысла.
- Для каждой модели есть нормальная ошибка, имеющая физический смысл, которую и нужно минимизировать.
 - Для этих целей используется метод «Gold Standard».
- Чаще всего для геометрических моделей оптимальной метрикой является расстояние от точки до кривой, или некой «оптимальной» точки.

Проблемы DLT

- Зачастую часть полученных точек не порождена моделью (x,a).
- В такой ситуации при оценке методом наименьших квадратов результат может быть сколь угодно далеким от истинного.
- Например, имеем набор пикселей, отобранных по порогу и построим на их основе прямую:

- Аномалии называются «выбросами» (outliers).
- Точки, удовлетворяющие модели, «не выбросами» (inliers).

 Для уменьшения влияния дальних точек, параметризуем точки в полярных координатах:

$$x\cos\theta + y\sin\theta = R$$
,

тогда целевая функция примет вид:

$$(\theta, R) = \arg\min_{(\theta, R)} \sum_{i} (x_i \cos \theta + y_i \sin \theta - R)^2.$$

• Обозначим $\varepsilon_i = x_i \cos \theta + y_i \sin \theta - R$, и модифицируем целевую функцию:

$$(\theta, R) = \arg\min_{(\theta, R)} \sum_{i} \rho(\varepsilon_i),$$

где в случае $\rho(\varepsilon) = \varepsilon^2$ получим метод наименьших квадратов.

• Обычно минимизируется следующая функция:

$$\sum_{i} \rho(r_i(x_i, \theta), \sigma),$$

где $r_i(x_i, \theta)$ — невязка i-ой точки при условии параметров модели θ , ρ — робастная функция с масштабом σ :

Робастная функция ρ ведёт себя как квадрат расстояния при малых значениях u и выравнивается с увеличением значения u.

- В качестве наиболее часто используемых вариантов робастной функции ho используются следующие функции:
 - 1. Функция Тьюки:

$$\rho(\varepsilon) = \begin{cases} \frac{K^2}{6} \left(1 - \left(1 - \left(\frac{\varepsilon}{K}\right)^2\right)^3\right), \text{если } |\varepsilon| \leq K \\ \frac{K^2}{6}, \text{если } |\varepsilon| > K \end{cases}$$

2. Функция Коши:

$$\rho(\varepsilon) = \frac{c^2}{2} \log\left(1 + \left(\frac{\varepsilon}{c}\right)^2\right),\,$$

где K и c — настроечные константы.

Слева функция Тьюки при $K=4,\!685$, справа функция Коши при $c=2,\!385$

28 / 59

- Как найти минимум целевой функции? При определенных робастных функциях сделать это крайне затруднительно.
- Методы:
 - 1. Методы нелинейной оптимизации;
 - 2. Метод взвешиваемых наименьших квадратов;
 - 3. Метод итеративно перевзвешиваемых наименьших квадратов.

Метод взвешиваемых наименьших квадратов

На примере поиска прямых:

$$(a, b, d) = \arg \min_{(a,b): a^2 + b^2 = 1} \sum_{i} w_i (ax_i + by_i + d)^2,$$
$$\sum_{i} w_i = 1,$$

где w_i – вес каждой точки.

- Построим ковариационную матрицу точек, представляющую собой квадратную симметрическую неотрицательно определенную матрицу:
 - На главной диагонали располагаются дисперсии координат точек.
 - Внедиагональные элементы ковариации между точками.

$$Cov = \begin{bmatrix} \sum_{i} w_{i} (x_{i} - \bar{x})^{2} & \sum_{i} w_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y}) \\ \sum_{i} w_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y}) & \sum_{i} w_{i} (y_{i} - \bar{y})^{2} \end{bmatrix}.$$

Метод взвешиваемых наименьших квадратов

- Максимальный собственный вектор матрицы Cov задает направление прямой \vec{l} ,
- Минимальный направление нормали $\overline{(a,b)}$.
- Прямая проходит через **среднюю точку** (\bar{x}, \bar{y}) ,

где
$$ar{x}=rac{\sum_i w_i x_i}{\sum_i w_i}$$
, $ar{y}=rac{\sum_i w_i y_i}{\sum_i w_i}$, $d=-(aar{x}+bar{y}).$

1. Получить начальное приближение модели методом наименьших квадратов:

$$\Theta^{(0)} = (\rho^{(0)}, \theta^{(0)}).$$

- 2. Установить номер итерации t = 1.
- 3. Для $\Theta^{(t-1)}$ рассчитать текущую оценку шума:

$$\sigma^{(t)} = 1,4826 \text{ median}_i |r_i^{(t)}(x_i, \Theta^{(t-1)})|,$$

которая является несмещенной (для нормального распределения) робастной оценкой средней ошибки.

- 4. Рассчитать веса точек $w_i^{(t)}$ с учетом функции ho,
 - а. в общем случае:

$$w_i = \frac{\rho \cdot \left(\frac{\varepsilon_i}{\sigma}\right)}{\frac{\varepsilon_i}{\sigma}},$$

b. в случае функции Тьюки:

$$w\left(rac{arepsilon}{\sigma}
ight) = egin{dcases} \left(1-\left(rac{arepsilon}{\sigma\cdot K}
ight)^2
ight),
m ecли \ \left|rac{arepsilon}{\sigma}
ight| \leq K, \ 0,
m ecли \ \left|rac{arepsilon}{\sigma}
ight| > K, \end{cases}$$

с. в случае функции Коши:

$$w\left(\frac{\varepsilon}{\sigma}\right) = \frac{1}{1 + \left(\frac{\varepsilon}{c \cdot \sigma}\right)^2}.$$

- 5. Используя взвешенные наименьшие квадраты получить $\Theta^{(t)}.$
- 6. Если $\|\Theta^{(t)} \Theta^{(t-1)}\| > \varepsilon^*$, то перейти на шаг 3,

где ε^* — максимальное желаемое отклонение.

Влияние настроечной константы c на построение линии: красная линия — первый шаг, зеленая — c=1,5, синяя — c=3,5.

Недостатки М-оценок

- 1. Необходимость хорошего первого приближения;
- 2. Необходимо правильно рассчитывать баланс весов, чтобы выполнялась работа алгоритма с достаточной точностью.

RANdom SAmple Consensus – RANSAC

- Метод оценки параметров модели на основе случайных выборок.
- Идея: проведение оценки не по всем данным, а лишь по небольшой выборке, не содержащей выбросов.
- Поскольку заранее неизвестно какие точки являются выбросами, а какие нет, то можно построить сразу много выборок случайным образом.
- Затем по каждой из выборок строим гипотезу. После этого выбираем такую гипотезу из всех, которая наилучшим образом согласуется со всеми данными.

RANSAC

- Основная проблема: число таких выборок огромно, поэтому необходимо строить гипотезы по выборке минимального размера.
- Например, при вписывание прямой в множество точек на плоскости, данный метод берет за основу только две точки необходимые для построения прямой и с их помощью строит модель.
- После этого проверяется, какое количество точек соответствует модели, используя функцию оценки с заданным порогом.

Пример RANSAC

Набор данных, в который необходимо вписать прямую

Пример RANSAC

Две минимальные выборки (по две точки) с отсечением по порогу вдоль предложенной прямой

На левом изображении в область попало 11 точек, на правом – 4

Пример RANSAC

Левая выборка более адекватно описывает прямую (получила больше «голосов»), соответственно является верным решением

Базовый алгоритм RANSAC

- Цикл из N-итераций:
 - 1. Построить выборку $S \subset X \ (x_i \in X)$. Как правило, минимально возможного размера для оценки параметров.
 - 2. Выдвинуть гипотезу Θ по выборке S.
 - 3. Оценить степень согласия гипотезы Θ и набора исходных данных X. Каждая точка помечается «выбросом» или «не выбросом».
 - 4. После проверки всех точек, проверяется, является ли гипотеза лучшей на данный момент, и если является, то она замещает предыдущую лучшую гипотезу.
- В конце работы цикла оставляется последняя лучшая гипотеза, из которой можно определить параметры модели, а также точки, помеченные как «выбросы» и «не выбросы».

RANSAC

- Для получения модели, построенной без выбросов с заданной вероятностью p, количество итераций N цикла можно рассчитать, если возможно указать заданную долю «выбросов» е.
- Количество выборок N выбирается так, чтобы вероятность выбора хотя бы одной выборки без выбросов была бы не ниже заданной (например, 0,99).
 Таким образом:

$$(1 - (1 - e)^{s})^{N} = 1 - p,$$

$$N = \frac{\log(1 - p)}{\log(1 - (1 - e)^{s})'}$$

где N – количество выборок (число итераций),

p – вероятность получить хорошую выборку за N итераций,

S — количество элементов (точек) в выборке,

е – доля «выбросов».

RANSAC

Для оценки степени согласия гипотез рассмотрим функции оценки гипотез:

$$R(\Theta) = \sum_i p(\varepsilon_i(\Theta)^2), p(\varepsilon_i(\Theta)^2) = \begin{cases} 1, \text{если } |\varepsilon_i| \leq T \\ 0, \text{если} |\varepsilon_i| > T \end{cases}, i = \overline{1, n},$$

где $\varepsilon_i(\Theta)$ – невязка i-ой точки и оцениваемой гипотезы;

p – вероятность (1 – «не выброс», 0 – «выброс»);

T — порог, выбираемый из соображений, что величина вероятности «не выброса» (inlier) была $p\approx 0.95$.

• Как правило, используется Гауссова модель шума с нулевым математическим ожиданием такая, что $T^2=3.84\sigma^2$.

Метод медианных квадратов

- LMS (Least Median Squares, метод медианных квадратов)
- Используется функция оценки гипотез:

$$R(\Theta) = \text{median}(\varepsilon_i(\Theta)^2), i = \overline{1, n},$$

где $\varepsilon_i(\Theta)$ – невязка i-ой точки и оцениваемой гипотезы.

RANSAC

• Количество выбросов быстро растет с ростом размера выборки и доли «выбросов».

	proportion of outliers e						
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Зависимость количества выборок от размера выборки и доли «выбросов»

• Как минимизировать долю выбросов, которая заранее неизвестна?

Адаптивное завершение алгоритма

- Можно начать алгоритм с грубой оценки, например, 50%, и затем последовательно уточнять число выборок.
- Адаптивное завершение алгоритма RANSAC:

```
N=999999, sample_count = 0, p = 0.99;
while(N > sample_count) {
    //Базовый алгоритм RANSAC:
    //Построение выборки S (количество точек в выборке),
    //гипотезы, оценка «не выбросов» в выборке inliers
    e = 1 - (inliers / S);
    N = log(1 - p) / log(1 - (1 - e)^S);
    sample_count++;
}
```

Проблема выбора порога

- Одним из недостатков метода RANSAC является неопределенность выбора порога.
- Как большой, так и маленький пороги приводят к неверным результатам.
- Пусть задан набор точек:

Проблема выбора порога

Большой порог: верное решение

Большой порог: неверное решение, эквивалентное верному

Проблема выбора порога

Маленький порог: неверное решение

Проблема LMS: медиана ошибки одинакова для обоих решений

Алгоритм M-SAC

Для оценки степени согласия гипотез рассмотрим функцию оценки гипотез:

$$R(\Theta) = \sum_i p(\varepsilon_i(\Theta)^2), p(\varepsilon_i(\Theta)^2) = \begin{cases} \varepsilon_i^2, \text{если } \varepsilon_i^2 \leq T^2 \\ T^2, \text{если } \varepsilon_i^2 > T^2 \end{cases}, i = \overline{1, n},$$

которая аналогична функции RANSAC за исключением модификации функции вероятности.

 Данный метод дает более точную оценку без увеличения вычислительной сложности и гарантирует верное решение.

Задача сопоставления точек

• Пример использования: сопоставление одинаковых характерных точек.

• При сопоставлении особых точек по дескрипторам будет определено довольно много ложных пар.

Алгоритм сопоставления

- 1. На изображениях Im и Im' заданы пары точек $\{x,x'\}$.
- 2. Вычисление модели преобразования T по ключевым точкам между изображениями Im и Im'.
 - Использование схемы RANSAC для построения модели T в наборах точек.
- 3. Фильтрация выбросов в $\{x, x'\}$.
- 4. Уточнение модели по оставшимся точкам.
 - Либо итеративным методом наименьших квадратов;
 - Либо нелинейной минимизацией.

Пример сопоставления точек

На двух изображениях найдено по 500 характеристических точек

Из них 117 выбросов и 268 соответствий

После фильтрации было отобрано 151 хорошее соответствие

Пример: построение панорамы

• Построение панорамы из упорядоченного набора фотографий.

Пример: построение панорамы

- Построение панорамы из неупорядоченного набора фотографий.
 - Необходимо определить, какие их них относятся к одному изображению, а какие к другому.

Достоинства RANSAC

- Простой и общий метод, применимый для множества задач;
- Хорошо работает на практике;
- Способен дать надёжную оценку параметров модели, то есть оценить параметры модели с высокой точностью, даже если в исходном наборе данных присутствует значительное количество выбросов.

Недостатки RANSAC

- Много настраиваемых параметров;
- Не всегда удается хорошо оценить параметры по минимальной выборке;
- Иногда требуется слишком много итераций;
- Не срабатывает при очень высокой доле выбросов;
- Часто есть лучший способ, нежели равновероятно выбирать точки;
- Отсутствие верхней границы времени, необходимого для вычисления параметров модели;
- Методом RANSAC можно определить только одну модель для определённого набора данных. Как и для любого подхода, предназначенного для одной модели, существует следующая проблема: когда в исходных данных присутствуют две (или более) модели, RANSAC может не найти ни одну.

ITSMOre than a UNIVERSITY

s.shavetov@itmo.ru