

专用 3 节可充电电池保护 IC

产品概述

BM3452 系列是专用 3 节可充电电池保护芯片,具有高精度、高集成度的特点,适用于电动工具、吸尘器以及小型后备电源等。BM3452 通过检测各节电池的电压、充放电电流以及环境温度等信息实现电池过充、过放、放电过电流、短路、充电过电流、温度保护等保护功能,通过外置电容来调节过充、过放、过电流保护延时。

功能特点

各节电池的高精度电压检测功能;

· 过充电检测电压 3.6 V ~ 4.6 V 精度±25 mV (+25)

精度±40 mV (-40 至+85)

・过充电滞后电压0.1 V精度±50 mV・过放电检测电压1.6 V ~ 3.0 V精度±80 mV

· 过放电滞后电压 0 / 0.2 / 0.4 V 精度±100 mV

3 段放电过电流检测功能;

· 过电流检测电压 1 0.025 V ~ 0.30 V (50 mV 步进) 精度±15 mV

· 过电流检测电压 2 0.2 / 0.3 / 0.4 / 0.6 V

· 短路检测电压 0.6V / 0.8 V

充电过电流检测功能;

充电过电流检测电压 -0.03 /-0.05 / -0.1 / -0.15 / -0.2 V

延时外置可调:

·通过改变外接电容大小设置过充电、过放电、过电流 1、过电流 2 检测延迟时间可通过外部信号控制充电、放电状态;

充、放电控制端子最高输出电压 12 V;

温度保护功能;

宽工作温度范围:-40~85;

断线保护功能;

低功耗;

・工作时(带温度保护) 25 µA 典型值 ・工作时(无温度保护) 15 µA 典型值

·休眠时 6 µA 典型值

应用领域

- · 电动工具
- 吸尘器
- · 小型 UPS 后备电源

封装形式

- · SOP16
- · TSSOP16

功能框图

图 1

产品选型

1. 产品命名

2. 产品目录

型号/项目	过充电 检测电	过充电 解除电	过放电 检测电	过放电 解除电	放电过 流 1 检	放电过流 2 检	短路检 测电压	充电过 流检测
2 3/5/1	压	压	压	压	测电压	测电压		电压
	V_{DET1}	V_{REL1}	V_{DET2}	V_{REL2}	V _{OC1}	V_{OC2}	V_{SHORT}	V_{OVCC}
BM3452XJDC-S16A	4.350V	4.230V	2.500V	2.800V	0.100V	0.400V	0.800V	-0.050V
BM3452SMDC-S16A	4.225V	4.110V	2.750V	3.000V	0.100V	0.400V	0.800V	-0.050V
BM3452HEDC-S16A	3.850V	3.750V	2.000V	2.500V	0.100V	0.400V	V008.0	-0.050V
BM3452TNDC-S16A	4.250V	4.130V	2.800V	3.000V	0.100V	0.400V	0.800V	-0.050V
BM3452TJDC-S16A	4.250V	4.130V	2.500V	2.700V	0.100V	0.400V	0.800V	-0.050V
BM3452SJDE-S16A	4.225V	4.110V	2.500V	2.700V	0.100V	0.200V	0.600V	-0.050V
BM3452XJDC-T16A	4.350V	4.230V	2.500V	2.800V	0.100V	0.400V	0.800V	-0.050V
BM3452TNDC-T16A	4.250V	4.130V	2.800V	3.000V	0.100V	0.400V	V008.0	-0.050V
BM3452TJDC-T16A	4.250V	4.130V	2.500V	2.700V	0.100V	0.400V	0.800V	-0.050V
BM3452SJDE-T16A	4.225V	4.110V	2.500V	2.700V	0.100V	0.200V	0.600V	-0.050V

表 1

引脚排布

图 3

引脚号	名称	描述
1	CDCT	CO、DO 控制端子
2	TOV	接电容,用于控制过充电检测延时
3	TOVD	接电容,用于控制过放电检测延时
4	TOC1	接电容,用于控制过电流1检测延时
5	TOC2	接电容,用于控制过电流2检测延时
6	NTC	接负温度系数热敏电阻,用于温度检测
7	TRH	接电阻,用于调节高温保护温度
8	VM	过电流保护锁定、充电器及负载检测端子
9	CO	充电控制 MOS 栅极连接端子,高电平与高阻态输出,最高 12V
10	DO	放电控制 MOS 栅极连接端子,CMOS 输出,最高 12V
11	VIN	放电过电流及充电过电流检测端子
12	GND	芯片的地、电池 1 的负电压连接端子
13	VC1	电池 1 的正电压、电池 2 的负电压连接端子
14	VC2	电池 2 的正电压、电池 3 的负电压连接端子
15	VC3	电池 3 的正电压
16	VCC	芯片的电源、电池 3 的正电压连接端子

表 2

绝对最大额定值

项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	-	GND-0.3 ~ GND+30	V
各节电池电压	V _{CELL}	Vcell3、Vcell2、 Vcell1	GND-0.3 ~ GND+6	V
VM 输入端子电压	VM	VM	GND-20 ~ GND+30	V
DO 输出端子电压	V_{DO}	DO	GND-0.3 ~ VCC+0.3	V
CO 输出端子电压	V _{co}	СО	GND-20 ~ VCC+0.3	V
工作环境温度	T _A	-	-40 ~ 85	
贮存温度	T _{STG}	-	-40 ~ 125	

表 3

注意:绝对最大额定值是指无论在任何条件下都不能超过的额定值。一旦超过此额定值,有可能造成产品 劣化等物理性损伤。

电气特性 (除特殊说明外: T_A=25)

项	目	符号	符号 测试条件 ^{*1}		典型值	最大值	单位	测试 电路
电源	見电压	VCC -		5	-	30	V	
正常	的耗	I _{VCC}	V1=V2=V3=3.5V	-	-	25	μΑ	1
休眼	民功耗	I _{STB}	V1=V2=V3=2.0V	-	-	10	μΑ	
	保护阈值	V_{DET1}	V1=V2=3.5V V3=3.5 4.4V	V _{DET1} -0.025	V _{DET1}	V _{DET1} +0.025	٧	
	保护延时	T _{OV}	V1=V2= 3.5V C _{OV} =0.1µF V3=3.5V 4.4V	0.5	1.0	1.5	S	
过充电	解除阈值	V_{REL1}	V1=V2=3.5V V3=4.4V 3.5V	V _{REL1} -0.05	V_{REL1}	V _{REL1} +0.05	٧	
	解除延时	T _{REL1}	V1=V2=3.5V V3=4.4V 3.5V	10	20	30	ms	2
	温度系数 1	K _{U1}	Ta= -40 to 85	-0.6	0	0.6	mV/	
	保护阈值	V_{DET2}	V1=V2=3.5V V3=3.5V 2.0V	V _{DET2} -0.08	V _{DET2}	V _{DET2} +0.08	V	
过放电	保护延时	T _{OVD}	V1=V2=3.5V C _{OVD} =0.1µF V3=3.5V 2.0V	0.5	1.0	1.5	S	

BM3452 系列

项	間	符号	测试条件 ^{*1}	最小值	典型值	最大值	单位	测试 电路			
対放电 解除阈值 解除延时	解除阈值	V _{REL2}	V _{REL2} V1=V2=3.5V V _F V3=2.0V 3.5V -0		V _{REL2}	V _{REL2} +0.10	V	2			
	T _{REL2}	V1=V2=3.5V V3=2.0V 3.5V	10	20	30	ms	2				
	保护阈值	V _{OC1}	V1=V2=V3=3.5V V4=0V 0.12V	V _{OC1} *85%	V _{OC1}	V _{OC1} *115%	V				
	保护延时	T _{OC1}	V1=V2=V3=3.5V C _{OC1} =0.1µF V4=0V 0.12V	100	200	300	ms				
放电过流 1	解除延时	T _{ROC1}	V1=V2=V3=3.5V V4=0V 0.12V 0V	100	200	300	ms				
	过流下拉 电阻	R _{VMS}	V1=V2=V3=3.5V V4=0V 0.12V	100	300	500	k				
温度系数	温度系数 2	K _{U2}	Ta= -40 to 85	-0.1	0	0.1	mV/				
保护	保护阈值	V _{OC2}	V1=V2=V3=3.5V V4=0V 0.5V	V _{OC2} *80%	V _{OC2}	V _{OC2} *120%	V	3			
过流 2	保护延时	T _{OC2}	V1=V2=V3=3.5V C _{OC2} =0.1µF V4=0V 0.5V	10	20	30	ms				
	解除延时	T _{ROC2}	V1=V2=V3=3.5V V4=0V 0.5V 0V	100	200	300	ms				
7 □ □ 7	保护阈值	V _{SHORT}	V1=V2=V3=3.5V V4=0V 1.2V	V _{SHORT}	V _{SHORT}	V _{SHORT} *120%	V				
短路	保护延时	T _{SHORT}	V1=V2=V3=3.5V V4=0V 1.2V 0V	100	100 300		μs				
充电过流	保护阈值	Vovcc	V1=V2=V3=3.5V V4=0V -0.2V	V _{ovcc} -0.015	Vovcc	V _{ovcc} +0.015	V	4			
	保护延时	T _{ovcc}	V1=V2=V3=3.5V V4=0V -0.2V	10	20	30	ms	4			
	СО	R _{co}	正常态,Co 为"H" (12V)	3	5	8	k	5			
输出电阻	D0	D	正常态,Do 为"H" (12V)	3	5	8	l.	_			
	DO	DO	DO	DO	R_{DO}	保护态,Do 为"L"	0.20	0.35	0.50	k	6

表 4

*1:以上测试条件均以锂电参数参考设计,其他档位参数根据实际电压调整。

说明书 WI-D06-J-0066 Rev.A/3 6/17

工作说明

1. 过充电

电池充电且 VIN $>V_{OVCC}$ 即未发生充电过流时 ,只要 VC1、(VC2-VC1)、(VC3-VC2)中任意电压值高过 V_{DET1} 并持续了一段时间 T_{OV} , 芯片即认为电池包中出现了过充电状态 , CO 由高电平变为高阻态 , 被外接电阻下拉至低电平 , 将充电控制 MOS 管关断 , 停止充电。

满足下面两个条件之一即可解除过充电状态: 所有电芯的电压都低于 V_{REL1} 并持续 T_{REL1} ; VM> 100mV(接入负载), 电池电压低于 V_{DET1} 并持续 T_{REL1} 。

2. 过放电

电池放电且 VIN< V_{OC1} 即未发生放电过流时,只要 VC1、(VC2-VC1)、(VC3-VC2)中任意电压值低于 V_{DET2} 并持续了一段时间 T_{OVD} ,芯片即认为电池包中出现了过放电状态,DO 由高电平变为低电平,将放电控制 MOS 管关断,停止放电,此时芯片进入休眠模式。

满足下面两个条件之一即可解除过放电状态 (休眠状态):

VM =0 且所有电芯的电压都高于 VREL2 并持续 TREL2;

VM <-100mV (接入充电器), 电池电压高于 V_{DET2}并持续 T_{REL2}。

3. 放电过电流

在放电时,放电电流随着负载而变化,VIN 电压随着放电电流的增大而增大。当 VIN 电压高于 V_{OC1} 并持续一段时间 T_{OC1} ,即认为出现了过电流 1;当 VIN 电压高于 V_{OC2} 并持续 T_{OC2} ,即认为出现了过电流 2;当 VIN 电压高于 V_{SHORT} 并持续 T_{SHORT} ,即认为出现了短路。三种中任意一种状态出现后,DO 由高电平变为低电平,关断放电控制 MOS 管停止放电,同时,过流锁定端子 VM 端内部下拉电阻 R_{VMS} 接入。通常 $V_{OC1} < V_{OC2} < V_{SHORT}$, $T_{OC1} > T_{OC2} > T_{SHORT}$ 。过电流保护时 DO 被锁定为低电平,断开负载即可解除锁定。

4. 延时设置

过充电延时,过放电延时由下述公式计算(单位:s): Tov = 10^7 x C_{OV} ; Tovd = 10^7 x C_{OVD} 放电过电流 1 延时由下述公式计算(单位:s): Toc1 = 2×10^6 x C_{OC1} 放电过电流 2 延时由下述公式计算(单位:s): Toc2 = 2×10^5 x C_{OC2}

5. 充电过电流

在充电时,如果充电电流过大且 VIN<V_{OVCC} 并持续了一段时间 T_{OVCC}, 芯片认为发生了充电过电流状态, CO 被外接电阻下拉至低电平, 充电控制 MOS 管关断, 必须将充电器移除才能解除。

6. 温度保护

为了防止充放电过程中电芯温度过高给电芯带来的损坏,需要进行电芯高温保护。NTC 端子连接热敏电阻用于感应温度变化,TRH 端子连接电阻用于高温保护基准的设置。过温检测时,芯片默认为放电检测。仅当 VM<-100mV 时,芯片识别为充电检测。以充电过温保护为参考,假设充电过温保护时 NTC 电阻阻值 RNTC,则 TRH 选取的电阻阻值为 RTRH=2*RNTC,此时放电过温保护时对应的 NTC 阻值为 0.54* R_{NTC} 对应的温度。我们可通过调节 R_{TRH} 大小来调节充放电过温保护的温度。

以 NTC 电阻选取 103AT-4 型号为例,常温下(25)为 10K ,设定充电保护温度为 55 。 55 时对应 R_{NTC} =3.5K,则选取 TRH 电阻阻值为 R_{TRH} = 2^*R_{NTC} =7K,放电过温保护时对应 NTC 电阻大小为 0.54^*R_{NTC} =1.89K,对应温度为 75 。 充电过温保护迟滞为 5 ,放电过温保护迟滞为 15 。 所以当充电温度高于保护温度 55 ,CO 变为高阻态,由外接电阻下拉至低电平,充电控制 MOS 管关断停止充电,当电芯温度降到 50 时,CO 变为高电平,充电控制 MOS 重新开启;当放电温度高于保护温度 75 ,DO 变为低电平,放电 MOS 管关断停止放电,同时充电 MOS 管也关断禁止充电,当电芯温度降到 60 时,DO 变为高电平,CO 变为高电平,充放电控制 MOS 重新开启。

7. 断线保护

当芯片检测到管脚 VC1、VC2、VC3 中任意一根或多根与电芯的连线断开,芯片判断为发生了断线,即将 CO 输出高阻态,DO 输出低电平,此保护状态称为断线保护状态。

工作时序图

1. 过充电、过放电保护

假定为恒流充电, VCHR-为充电器空载时负端电压:

- (1)通常状态;
- (2) 过充电保护状态;
- (3) 过放电保护状态。

2. 放电过电流、短路、充电过电流保护

假定为恒流充电, VCHR-为充电器空载时负端电压:

- (1) 通常状态;
- (2) 放电过电流 1 保护状态;
- (3) 放电过电流 2 保护状态;
- (4) 短路保护状态;
- (5) 充电过电流保护状态。

应用电路

图 6 3 串典型应用——充放电 NMOS 控制,回路共用

图 7 3 串典型应用——充放电 NMOS 控制,回路分开

图 8 3 串应用——充电 PMOS, 放电 NMOS 控制

备注:充电 PMOS 控制, 放电 NMOS 控制应用电路中, VM 端增加二极管 D1, 充放电过温保护为同一个温度。

以上应用原理图以 SOP16 封装为参考, TSSOP16 封装应用原理图与之相同, 仅替换封装形式即可!!

电阻、电容推荐值如下:

器件标号	典型值	范	围	单位
R1、R2、R3	1000	100 ~	1000	
R _{vcc}	1000	100 ~	1000	
R4	1	0.5	~ 2	M
R _B 、R5、R _{CD}	4.7	1-1	10	М
R _{NTC}	10	-		k
R _{TRH}	7	-		k
R _{VM}	220	10-	500	k
R_{CO} 、 R_{S}	10	5~	15	M
R _{DO} 、R _{VIN}	2	0~	10	k
R _{sense}	5	1 ~	20	m
C _{VCC}	2.2	0.47	~ 4.7	μF
C1、C2、C3	0.1	0.1~ 10	中容科	μF
C _{OV} , C _{OVD} , C _{OC1} , C _{OC2}	0.1	-	电容耐 压>50V	μF
C _{VIN}	10	2.2~100	下>201	nF

表 5

测试电路

1. 正常功耗及休眠功耗

测试电路 1

设定 V1=V2=V3=3.5V,观察电流表的读数,流出 GND 的电流即正常功耗。

在 的基础上,设定 V1=V2=V3=2.0V,观察电流表的读数,流出 GND 的电流即休眠功耗。

2. 过充电测试

测试电路 2

2.1 过充电保护及保护解除阈值

设定 V1=V2=V3=3.5V,确保 DO、CO 都为"H"。逐渐增大 V3,维持时间不小于过充电保护延时,当 CO由"H"变"L"时的 V3 电压即为过充电保护阈值电压(V_{DET1});逐渐减小 V3,维持时间不小于过充电保护解除延时,当 CO 重新变为"H"时,V3 电压即为过充电保护解除阈值电压(V_{RE11})。

2.2 过充电保护及过充电回复延时

设定 V1=V2=V3=3.5V,确保 DO、CO 都为"H"。将 V3 骤升至 4.4V,监控 CO 电压并维持一段时间, CO 由"H"变"L"的时间间隔即为过充电延时。

设定 V1=V2=3.5V, V3=4.4V, 确保 DO 为"H", CO 为"L"。将 V3 骤降至 3.5V, 监控 CO 电压并维持一段时间, CO 由"L"变"H"的时间间隔即为过充电回复延时。

3. 过放电测试

测试电路 2

3.1 过放电保护及过放电保护解除阈值

设定 V1=V2=V3=3.5V,确保 DO、CO 都为"H"。逐渐减小 V3,维持时间不小于过放电保护延时,当 DO由"H"变为"L"时的 V3 电压即为过放电保护阈值电压 (V_{DET2});逐渐增大 V3,维持时间不小于过放电保护解除延时,当 DO 重新变为"H"时,V3 电压即为过放电保护解除电压 (V_{REL2})。

3.2 过放及过放回复延时

设定 V1=V2=V3=3.5V, 确保 DO、CO 都为"H"。将 V3 骤降至 2.0V, 监控 DO 电压并维持一段时间, DO 由"H"变为"L"的时间间隔即为过放电延时。

设定 V1=V2=3.5V, V3=2.0V, 确保 DO 为"L", CO 为"H"。将 V3 骤升至 3.5V, 监控 DO 电压并维持一段时间, DO 由"L"变为"H"的时间间隔即为过放电回复延时。

4. 放电过电流及短路测试

测试电路3

4.1 过电流及短路保护阈值

设定 V1=V2=V3=3.5V,V4=0,确保 DO、CO 都为"H"。逐渐增大 V4,维持时间不小于过电流 1 保护延时,当 DO 由"H"变为"L"时的 V4 电压即为过电流 1 保护阈值(V_{DET3})。过电流 2 阈值(V_{DET4})及短路阈值(V_{SHORT})的测试需同时根据设定的保护延时长短去判断。

4.2 过电流及过电流回复延时

设定 V1=V2=V3=3.5V, V4=0, 确保 DO、CO 都为"H"。将 V4 骤然增大至 0.2V, 监控 DO 电压并维持一段时间, DO 由"H"变为"L"的时间间隔即为过电流 1 延时。

设定 V1=V2=V3=3.5V, V4=0,确保 DO、CO 都为"H"。逐步将 V4 骤然增大,即每次增大至的 V4 电压值比前一次大,同时监测 DO 由"H"变为"L"的延时,监测到的第一个比过电流 1 短的延时对应的 V4 的电压即为过电流 2 阈值,这个延时即为过电流 2 延时。

设定 V1=V2=V3=3.5V, V4=0,确保 DO、CO 都为"H"。逐步将 V4 骤然增大,即每次增大至的 V4 电压值比前一次大,同时监测 DO 由"H"变为"L"的延时,监测到的第一个比过电流 2 短的延时对应的 V4 的电压即为短路阈值,这个延时即为短路延时。

设定 V1=V2=V3=3.5V、V4=0.2V,确保 DO 为"L" , CO 为"H"。将 V4 骤然降至 0V,监控 DO 电压

并维持一段时间, DO 由"L"变为"H"的时间间隔即为过电流1回复延时。同样的测试方法可以测出过电流2回复延时及短路回复延时。

5. 充电过电流测试

测试电路 4

5.1 充电过电流保护阈值

设定 V1=V2=V3=3.5V, V4=0, 确保 DO、CO 都为"H"。 逐渐增大 V4, 维持时间不小于充电过电流保护延时,Co 由"H"变为"L"时 V4 即为充电过电流保护阈值。

5.2 充电过电流保护延时

设定 V1=V2=V3=3.5V, V4=0V, 确保 DO、CO 都为"H"。将 V4 骤然增大至 0.3V, 监控 CO 电压并维持一段时间,CO 由"H"变为"L"的时间间隔即为充电过电流保护延时。

6. CO、DO 输入/输出电阻测试

(1) CO、DO 为高电平时的输出电阻

测试电路 5、6

设定 V1=V2=V3=3.5V,V4=10.0V,开关 K 断开,确保此时 CO 输出为"H",测量 CO 端的电压 V_A ;闭合开关 K,V4 从 10V 开始降低,监测电流表的读数为 I_A ,当 I_A =50uA 时测得 CO 端的电压 V_B ,则 CO 输出电阻 R_{COH} = $(V_A$ - V_B)/50 (M)

同样的测试方法可用于测试 DO 输出电阻 RDOH, 只需将测试端子改为 DO 即可。

(2) DO 为低电平时的输出电阻

测试电路 6

设定 V1=V2=V3=2.00V、V4=0.00V,开关 K 断开,用电压表测试 DO 端电压,确保此时 DO 输出为 0V。 将开关 K 闭合,调节 V4 从 0V 开始上升,同时监测电流表的读数为 I_A ,当 I_A =-50uA 时测得 DO 电位为 V_{DO} ,则 DO 输出电阻 R_{DOL} = V_{DO} /50 (M)。

V3

V2

V2

VCC

VC3

VC2

VC1

GND

VIN

DO

СО

VCC VC3

VC2

VC1

GND

VIN

DO

СО

\$@@

测试电路 5

测试电路 6

封装示意图及参数

SOP16
SOP16 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1.550	0.053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.007	0. 010
D	9. 800	10. 200	0. 386	0. 402
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

TSSOP16

Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
3 y 111 0 0 1	Min	Max	Min	Max
D	4.900	5.100	0.193	0.201
Е	4.300	4.500	0.169	0.177
b	0.190	0.300	0.007	0.012
c	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
A		1.100		0.043
A2	0.800	1.000	0.031	0.039
A1	0.020	0.150	0.001	0.006
e	0.65 (BSC)		0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0. 25 (TYP)		0.01	(TYP)
θ	1 °	7°	1 °	7°

包装:

SOP16 包装方式: 13 寸 MBB 静电袋装, 2500pcs/盘; TSSOP16 包装方式: 13 寸 MBB 静电袋装, 4000pcs/盘。

- 本资料内容,随产品的改进,可能会有未经预告之修改,比亚迪微电子公司拥有优先修改权。
- 尽管本公司一向致力于提高产品质量和可靠性,但是半导体产品有可能按某种概率发生故障或错误工作,为防止因故障或错误工作而产生人身事故,火灾事故,社会性损害等,请充分留意冗余设计、火灾蔓延对策设计、防止错误动作设计等安全设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载及复制等。