2001 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5minutes
- Working time 2 hours
- Write using black or blue pen
- · Board approved calculators may be used
- A table of standard integrals is provided on the last page
- All necessary working should be shown in every question

Total marks (84)

Attempt Questions 1-7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NAME/NUMBER:

Question 1 (Start a new work book) Marks Determine the ratio in which the point C(6, 9) divides the interval AB, where A 3 is the point (-1, -5) and B the point (3, 3). Solve the inequality $x - 1 \le \frac{1}{x - 1}$. 3 For the polynomial $P(x) = x^3 - 2x^2 - x + 2$ i. show that x - 1 is a factor. 1 ii. Hence, or otherwise, find all the factors of P(x). 1 d. i. If $t = \tan \frac{\theta}{2}$, show that $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$. 2 ii. Using these results, show that $\frac{1-\cos\theta}{\sin\theta}=\tan\frac{\theta}{2}$. 1 iii. Hence find the exact value of tan 15°. 1 Question 2 (Start a new work book) For the parabola defined by the parametric equations x = 4t, $y = 2t^2$ i. by differentiation, show that the gradient of the tangent at the point, P, where 1 t = 3, is 3. 1 ii. find the gradient of the focal chord through P. iii. calculate the acute angle between the tangent at P and the focal chord 2 through P. Use one iteration of Newton's method to find an approximation to the root of 3 the equation $x \log_{\rho} x - 2x = 0$ near x = 7. Give your answer to 1 decimal place. Six people attend a dinner party. 1 i. In how many different ways can they be arranged around a round table? ii. In how many different ways can they be arranged if a particular couple must 1 sit together? iii. What is the probability that, if the people are seated at random, the couple are sitting apart from each other?

Question 2 (continued)

Marks

2

3

d. PC and PD are equal chords of a circle. A tangent, AB, is drawn at P.

Prove that AB is parallel to CD

Question 3 (Start a new work book)

- a. Jane, a netball goal shooter, has a 70% probability of scoring a goal at any attempt. In her next 10 attempts at scoring, what is the probability that she scores at least 8 times? Give your answer as a decimal to 2 significant figures.
- b. Show that the equation of the circle whose diameter is the join of the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $(x x_1)(x x_2) + (y y_1)(y y_2) = 0$
- c. Use the Principle of Mathematical Induction to prove that $2^{3n} 3^n$ is divisible by 5 for all positive integers n.
- d. The arc of the curve $y = \cos 2x$ between x = 0 and $x = \frac{\pi}{6}$ is rotated through 360° about the x-axis.

Find the exact volume of the solid formed.

Question 4 (Start a new work book)

a. If
$$\binom{n}{r} = \binom{n}{r+1}$$
, where n and r are positive integers, show that n is odd.

b. i. Express
$$x^2 + 6x + 13$$
 in the form $(x + a)^2 + b^2$

ii. Hence, using the substitution
$$u = x + 3$$
, find $\int \frac{dx}{x^2 + 6x + 13}$

STUDENT NAME/NUMBER:

Marks Question 4 (continued) Show that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$ 3 d. If $y = \frac{1}{2}(e^x - e^{-x})$, show that $x = \log_e(y + \sqrt{y^2 + 1})$ 3 Question 5 (Start a new work book) A particle's motion is defined by the equation $v^2 = 12 + 4x - x^2$, where x is its displacement from the origin in metres and ν its velocity in ms⁻¹. Initially, the particle is 6 metres to the right of the origin. i. Show that the particle is moving in Simple Harmonic Motion 1 ii. Find the centre, the period and the amplitude of the motion 3 iii. The displacement of the particle at any time t is given by the equation $x = a\sin(nt + \theta) + b.$ 2 Find the values of θ and b, given $0 \le \theta \le 2\pi$ Newton's Law of Cooling states that the rate of change in the temperature, T° , of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P° . i. If A and k are constants, show that the equation $T = P + Ae^{kt}$ satisfies 2 Newton's Law of Cooling. ii. A cup of tea with a temperature of 100°C is too hot to drink. Two minutes later, the temperature has dropped to 93°C. If the surrounding temperature is 2 23°C, calculate A and k. iii. The tea will be drinkable when the temperature has dropped to 80°C. How 2 long, to the nearest minute, will this take?

STUDENT NAME/NUMBER:

Question 6 (Start a new work book)

Marks

2

- a. A particle is projected horizontally with velocity, $V \text{ mṣ}^{-1}$, from a point h metres above the ground. Take $g \text{ ms}^{-2}$ as the acceleration due to gravity.
 - i. Taking the origin at the point on ground immediately below the projection point, find expressions for x and y, the horizontal and vertical displacements respectively of the particle at time t seconds.
 - ii. Hence show that the equation of the path of the particle is given by the equation $y = \frac{2hV^2 gx^2}{2V^2}$.
 - iii. Find how far the particle travels horizontally from its point of projection before it hits the ground.
- b. A particle moves in a straight line so that its velocity after t seconds is v ms⁻¹ and its displacement is x.
 - i. Given that $\frac{d^2x}{dt^2} = 10x 2x^3$ and that v = 0 when x = -1, find v in terms of x.
 - ii. Explain why the motion cannot exist between x = -1 and x = 1.
 - iii. Describe briefly what would have happened if the motion had commenced at x = 0 with y = 0.

Question 7 (Start a new work book)

Marks

In the circle, the chord AB is 6 metres long. The chord is produced to the point P and BP is a metres.

> A tangent to the circle cuts the chord at P. PT is x metres.

Show that
$$x = \sqrt{a(a + 6)}$$
.

2

In a rugby game, teams score points by placing the ball over the try line at the end of the field. A kicker may then take the ball back at right angles from the try line and attempt to kick the ball between the goal posts.

In the diagram, a try has been scored α metres to the right of the goal posts. The kicker has brought the ball back to the point P to attempt his kick. The kicker wants to maximise θ , his angle of view of the goalposts.

Let PT be x metres and assume that the goal posts are 6 metres wide.

i. Show that
$$\tan \theta = \frac{6x}{a^2 + 6a + x^2}$$
.

3

ii. Letting $T = \tan \theta$, find the value of x for which T is a maximum.

2

iii. Hence show that the maximum angle, θ , is given by $\theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}} \right)$ 2

2

iv. If a try is scored 10 metres to the right of the goal posts, find the maximum value of θ (to the nearest minute) and the corresponding value of x (to the nearest centimetre).

v. Explain why the goal kicker, to maximise his angle of view of the goal posts, should imagine himself at the point of contact of a tangent to the circle passing through the goal posts.

1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0