

Reg. No.: 22BAZ1266

Final Assessment Test (FAT) - May 2024

Programme	B.Tech.	Semester	WINTER SEMESTER 2023 - 24
Course Title	COMPLEX VARIABLES AND LINEAR ALGEBRA	Course Code	BMAT201L
Faculty Name	Prof. AMIT KUMAR RAHUL	Slot	A1+TA1+TAA1
		Class Nbr	CH2023240500810
Time	3 Hours	Max. Marks	100

General Instructions:

• Write only Register Number in the Question Paper where space is provided (right-side at the top) & do not write any other details.

Answer any 10 questions (10 X 10 Marks = 100 Marks)

- 01. If $u-v=(x-y)(x^2+4xy+y^2)$ and f(z)=u+iv is an analytic function of z=x+iy, $\lceil 10 \rceil$ then find f(z) in terms of z by the Milne-Thomson method.
- 02. (a) If $w=\phi+i\psi$ represents the complex potential of an electric field and $\psi=x^2-y^2+\frac{x}{x^2+y^2}$ [10] , then determine ϕ . [5 Marks]
 - (b) Evaluate the integral $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle |z| = 3.
- 03. Find the bilinear mapping which maps the points $z=-2i,i,\infty$ onto the points $w=0,-3,\frac{1}{3}$ [10] respectively. Then, find the image of the region $|z| \leq 1$ under this bilinear mapping and sketch both the regions in z- and w-planes respectively.
- 04. Using the contour integration, evaluate $\int_0^\infty \frac{dx}{x^4+1}$. [10]
- 05. (a) Show that the bilinear mapping $w = \frac{az+b}{cz+d}$ transforms a straight line in the z-plane onto a unit [10] circle in the w-plane if |a| = |c|. [5 Marks]
 - (b) Let $W=\{A\in \mathbb{M}_{2 imes 2}(\mathbb{R})| \mathrm{trace}(A)=0\}$. Verify whether W is a subspace or not. If so, then find its basis and dimension. [5 Marks]

06. Let
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & s & 4 \\ 1 & 2 & 3 & 4 & r \end{pmatrix}$$
. [10]

- (a) For what values of r and s, the nullity of the matrix A is 1? Hence, find the null-space of the obtained matrix A. [8 Marks]
- (b) For what values of r and s, the matrix A is of full rank? [2 Marks]
- 07. Check whether the mapping $T:\mathbb{R}^3\to\mathbb{R}^2$, given by T(x,y,z)=(x-y,y-z), is linear. Find [10] the kernel and range of T, and their dimensions. Further, verify the rank-nullity theorem. Also, determine whether T is one-to-one and/or onto.

- 08. Find the matrix of change of basis P from the basis $\alpha = \{x^2 + x + 1, x^2 + 1, x 1\}$ to the basis $\beta = \{2x^2 + 3x + 1, 2x^2 + 2x + 1, -x^2 2\}$ for $\mathcal{P}_2(\mathbb{R})$, the set of all polynomials of degree at most 2. Hence, find the matrix of change of basis from β to α using the matrix P. Further, assume that the polynomial $p(x) \in \mathcal{P}_2(\mathbb{R})$ has coordinates (1, 2, 3) with respect to the basis β . What are the coordinates of p(x) with respect to the basis α ?
- 09. Using the Gram-Schmidt process, obtain an orthonormal basis from the basis set $\{(1,0,1),(1,1,1),(1,3,4)\}$ of the Euclidean space \mathbb{R}^3 with the standard inner product.
- 10. (a) Let $x=(x_1,x_2,x_3), y=(y_1,y_2,y_3)\in\mathbb{R}^3$, and define $\langle x,y\rangle=x_1y_1+3x_2y_2-x_3y_3$. Does [10] $\langle \;,\; \rangle$ represent an inner product in \mathbb{R}^3 ? Justify your answer. [5 Marks] (b) Find the angle between the vectors (1,1,0) and (1,1,1) under the inner product $\langle (x_1,x_2,x_3),(y_1,y_2,y_3)\rangle=x_1y_1+2x_2y_2+\frac{1}{3}x_3y_3$ defined on \mathbb{R}^3 . [5 Marks]
- Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{pmatrix} 6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3 \end{pmatrix}$. [10]
- 12. Using the Gauss-Jordan elimination method, solve the following system of equations: x + y + z = 5,2x + 3y + 5z = 8,4x + 5z = 2. [10]