

Leveraging NoPASARAN to Test DNS Resolvers

Mayan Bashehab, Ilies Benhabbour, Prof. Marc Dacier King Abdullah University of Science and Technology

Objective

The goal is to conduct DNS tests using NoPASARAN [1] to identify potential implementation issues in DNS resolvers or proxying possibilities.

Introduction

- When a client needs to resolve a domain name, it entrusts a third party, the resolver, to handle the resolution correctly for them.
- The resolver acts as a network middlebox, making the resolution process invisible to the client.
- A potential problem with DNS resolvers is that they might not support essential resolver features such as DNS port randomization, glue records policy, etc.
- We employed the capabilities of NoPASARAN to detect compliance and potential vulnerabilities of network middleboxes.

- The main features implemented in NoPASARAN are as follows:
 - Scenarios
 - Data Channel
 - Control Channel
 - Predefined Primitives

DNS Measurement Tests

We leveraged certain tests from Netalyzr [2] into NoPASARAN, comprising the following:

- Port Randomization
- 0x20 Encoding
- Glue Records Policy
- Last Resolver IP address

Results

Using bind9 as the DNS resolver in our setup, we obtained the following results:

- The resolver randomized source ports.
- The resolver respected 0x20 encoding.
- The resolver stripped glue records.
- The test returned the IP address of the last proxy.

The same scenarios will be used to flag resolvers that would not give these results.

Future Work

Design scenarios for the remaining of the Netalyzr DNS tests including:

- Respect for short TTL
- NXDOMAIN Wildcarding
- IPv6 Support

References

[1] Benhabbour, I., & Dacier, M. (2022). NoPASARAN: a Novel Platform to Analyse Semi Active elements in Routes Across the Network. Applied Cybersecurity & Internet Governance, 1(1), 73–96.

[2] Kreibich, C., Weaver, N., Nechaev, B., & Paxson, V. (2010). Netalyzr: Illuminating the edge network. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (pp. 246-259).

The Server

ollers.protocol.WorkerServerProtocol object at 0x7f8a7908b7f0>, 'r
.123.11', 'server': '192.168.123.11'}
ate Machine - MAIN-516ab3| Executing action: {'SET_STATE': 'LISTEN
}
ate Machine - MAIN-516ab3| Setting state to: LISTENING TO PACKET

ate Machine - MAIN-516ab3] Setting state to: LISTENING TO PACKET ate Machine - MAIN-516ab3] Executing action: {'EXECUTE_ACTION': 'd' N' ctrl_channel role) (event ctrl_channel sent_reply)'} rsing] [Primitive - call] Expecting 1 input(s) and 0 output(s). Operating True. Optional outputs: True

rsing] [Primitive - call] Received inputs: ['DNS LISTEN', 'ctrl channel sent_reply)'