实验七 同步计数器顺时针展示学号

姓名 侯少森 学号 18340055

一、同步计数器顺时针展示学号设计

1. 实验内容

顺时针展示学号其实是利用同步计数器的功能,来选择自己想要显示的内容.由于学号中有数字 8,需要用四位二进制表示,故将其改为 7,而且学号中重复的数字也相应换成其他数字,最后,得出要显示的学号为17340256.

(1)首先, 创建一个状态图:

(2) 构建次态表:

_						
当前状态			次态			
Q_2	Q_1	\mathbf{Q}_{o}	\mathbf{Q}_{2}	\mathbf{Q}_1	$\mathbf{Q}_{\mathtt{o}}$	
0	0	1	1	1	1	
1	1	1	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
0	0	0	0	1	0	
0	1	0	1	0	1	
1	0	1	1	1	0	
1	1	0	0	0	1	

(3) J-K 触发器转换表:

输出	转换	触发器输入			
Q_{N}	Q_{N+1}	J	K		
0	0	0	X		
0	1	1	X		
1	0	X	1		
1	1	X	0		
(Q _{N+1} 为次态)					

(4)卡诺图:

J_o:

Q_1Q_0	00	01	11	10
Q_2				
0	0	X	X	1
1	0	X	X	1

K_o:

Q_1Q_0	00	01	11	10
Q_2				
0	X	0	1	X
1	X	1	0	X

 J_1 :

Q_1Q_0	00	01	11	10
Q_2				
0	1	1	X	X
1	0	1	X	X

K₁:

Q_1Q_0	00	01	11	10
\mathbb{Q}_2				
0	X	X	1	1
1	X	X	0	1

 J_2 :

02-				
Q_1Q_0	00	01	11	10
Q_2				

0	0	1	1	1
1	X	X	X	X

K₂:

Q_1Q_0	00	01	11	10
Q_2				
0	X	X	X	X
1	1	0	1	1

(5)触发器输入的逻辑表达式:

$$\begin{split} &J_0 = &Q_1 \\ &K_0 = \ \overline{Q}_1 \ \bullet \ Q_2 + \ \overline{Q}_2 \ \bullet \ Q_1 = &Q_1 \oplus Q_2 \\ &J_1 = \ \overline{Q}_2 + Q_0 \\ &K_1 = \ \overline{Q}_2 + \ \overline{Q}_0 \\ &J_2 = &Q_0 + Q_1 \ \bullet \ \overline{Q}_0 = &Q_0 + Q_1 \end{split}$$

2. 仿真电路与结果

(1)根据上面得到的表达式,在 proteus 上设计出仿真电路图:

 $K_2+Q_1+\overline{Q}_1 \bullet \overline{Q}_0=Q_1+\overline{Q}_0$

(2)点击运行,开始运行仿真电路图,得到的结果图如下:

(动态的仿真电路图助教已经检查过,结果是17340256)

- 3. 实验结果与分析
 - (1)在实验箱上连接好设计的电路
 - (2) 实验结果已经被助教检查并记录过. 结果是 17340256

二、实验总结

- (1)要对设计同步计数器的流程十分熟悉才可以很快的完成
- (2)要对得到的表达式进行变形,因为实验箱上没有或门,所以利用狄摩根公式来将或转化成与非的形式来实现.
- (3)要十分小心将线接错的情况,因为线路十分复杂.好在可以通过七段码上数字的变化来判断何处接错.