[2조] 차량 파손 이미지를 분석하여 수리 견적 측정

기간: 2023.05.31. ~ 06.27

팀원: 윤성환,박서연, 양수빈, 박성준, 신성혁, 유승완

분석 개요

차량 파손 이미지를 분석하여 수리 견적을 측정하는 것입니다. UNET 알고리즘을 사용하여 차량 이미지를 세분화하고, 파손된 부분을 식별하여 수리 작업과 해당 작업의 비용을 산출합니다.

분석 목적

차량 파손 이미지를 분석하여 수리 견적을 측정하는 것입니다. 이를 통해 차량 소유주나 보험사 등이 차량 파손 시 수리 비용을 미리 예측하고, 차량파손에 대한 지식이 없어도 이해가 가능하고 효율적인 결정을 내릴 수 있도록 돕는 것을 목표로 합니다.
분석 내용 (활용 데이터, 분석 소주제 등)

활용 데이터 : 교통사고 영상 데이터 (ex.영상_차대이륜차_T자형 교차로_0, 이미지_차대이륜차_T자형 교차로_0.tar)

- 차량 파손 이미지 수집: 차량 파손 이미지를 다양한 충격 정도와 부위에서 수집합니다. 이를 통해 다양한 파손 유형과 정도를 포함한 학습 데이터를 확보합니다.
- 객체 탐지 및 분류: UNET 알고리즘을 사용하여 차량 파손 이미지에서 파손된 부위를 정확하게 탐지하고 분류합니다. 차량의 다양한 부위(도어, 휀더, 범퍼 등)에 대한 파손 유형을 식별합니다.
- 파손 정도 측정: 탐지된 파손 부위의 정도를 측정하여 파손의 심각성을 평가합니다. 이를 위해 이미지 분석 및 컴퓨터 비전 기술을 활용하여 파손의 규모와 영향 범위를 측정합니다.
- 견적 산출: 수집한 파손 이미지 데이터와 정도 측정 결과를 기반으로 수리 견적을 산출합니다. 이를 통해 소유주나 보험사 등이 차량 파손에 대한 예상 수리 비용을 추정할 수 있습니다.
- 모델 평가 및 성능 개선: 학습된 모델의 성능을 평가하고, 필요한 경우 모델을 개선하여 정확도와 신뢰성을 높입니다. 추가적인 데이터 수집이나 모델의 파라미터 조정 등을 통해 모델의 성능을 향상시킵니다.
- 수리 견적 적용: 분석 결과를 소유주나 보험사 등에 제공하여 차량 파손 시 수리 비용을 측정하고 예측합니다. 이를 통해 차량 소유주들은 보다 정확한 수리 견적을 얻을 수 있으며, 보험사는 보상 처리를 효율적으로 수행할 수 있습니다.

분석 방법(사용하고 싶은 패키지 및 모델 등 작성)

OpenCV: 차량파손 이미지지의 로드 및 전처리를 수행하기 위해 사용합니다.

UNET알고리즘: UNET 알고리즘은 주로 의료 이미지 분석에서 사용되는 신경망 구조입니다. 이 알고리즘은 이미지 세그멘테이션 작업에 특화되어 있으며, 주어진 입력 이미지를 픽셀 단위로 분류하고 분할하는 데 사용됩니다.

TensorFlow: 알고리즘을 구현하고 학습시키기 위해 사용합니다.

Numpy: 다차원 배열 연산을 위해 사용됩니다.

Pandas: 데이터 조작 및 분석을 위해 사용됩니다.

분석 절차

차량 파손 이미지 데이터 수집 및 전처리: 교통사고 현장에서 찍힌 이미지 데이터를 수집하고, 필요한 전처리 작업을 수행하여 분석에 적합한 형식으로 변환합니다.

UNET 알고리즘을 사용한 객체 탐지 및 분류: 수집한 차량 파손 이미지에 UNET 알고리즘을 적용하여 파손된 부위를 정확하게 탐지하고 분류합니다. 차량의 다양한 부위(도어, 휀더, 범퍼 등)에 대한 파손 유형을 식별합니다.

파손 정도 측정: 탐지된 파손 부위의 정도를 측정하여 파손의 심각성을 평가합니다. 이미지 분석 및 컴퓨터 비전 기술을 활용하여 파손의 규모와 영향 범위를 측정합니다.

수리 견적 측정: 분석 결과를 바탕으로 차량 파손의 수리 견적을 측정합니다. 파손된 부위의 정도와 수리에 필요한 부품 및 노동 비용 등을 고려하여 견적을 계산합니다.

모델 평가 및 성능 개선: 학습된 모델의 성능을 평가하고, 필요한 경우 모델을 개선하여 정확도와 신뢰성을 향상시킵니다. 추가적인 데이터 수집이나 모델의 파라미터 조정 등을 통해 모델의 성능을 향상시킵니다.

수리 견적 결과 제공: 분석 결과를 소유주나 보험사 등에 제공하여 차량 파손에 대한 수리 견적을 제공합니다. 이를 통해 정확한 수리 비용을 예측하고 효율적인 결정을 돕습니다.

수리 견적 활용 및 확장성: 분석 결과를 활용하여 차량 수리를 계획하고, 보험 청구 절차를 원활하게 처리합니다. 또한, 분석 결과를 기반으로 차량 수리 비용의 추이를 분석하고, 유지 보수 정책 개선 등에 활용할 수 있습니다.

기대 효과(분석결과 활용 또는 확장성)

- 1. 정확한 수리 견적 제공: 차량 파손 이미지를 분석하여 수리 견적을 측정함으로써 정확한 수리 비용을 제시할 수 있습니다. 이를 통해 차주나 보험사 등이 신속하고 정확한 수리 결정을 할 수 있습니다.
- 2. 비용 절감과 효율성 향상: 정확한 수리 견적을 통해 비용을 효율적으로 관리할 수 있습니다. 불필요한 비용을 줄이고, 수리 작업의 우선 순위를 정하는 데 도움을 줍니다.
- 3. 차량 수리 계획의 최적화: 분석 결과를 활용하여 차량 수리를 계획하고 우선순위를 설정할 수 있습니다. 이를 통해 수리 작업의 효율성과 신속성을 향상시킬 수 있습니다.
- 4. 보험 청구 절차의 원활한 처리: 정확한 수리 견적을 제공함으로써 보험 청구 절차를 원활하게 처리할 수 있습니다. 보험 회사와의 원만한 협상이 가능하며, 신속한 보험 지급이 이루어집니다.
- 5. 정비 및 유지 보수 정책 개선: 분석 결과를 통해 차량 수리 비용의 추이를 파악하고 유지 보수 정책을 개선할 수 있습니다. 예방 정비 및 적절한 유지 보수 계획을 수립하여 차량의 수명을 연장시킬 수 있습니다.
- 6. 분석 결과의 확장성: 차량 파손 이미지 분석을 통해 얻은 결과를 다양한 분야에 확장하여 활용할 수 있습니다. 예를 들어, 보행자의 상해 정도 분석, 도로 상태 평가 등으로 확장하여 교통 안전 및 도로 유지 관리에 활용할 수 있습니다.