COMP3400 Assignment 2 Written

Paul Vrbik

April 9, 2022

Tail Recursion

Consider a function that takes the *average* of a list of numbers:

```
average :: (Fractional a) => [a] -> a
> average [1, 2, 3]
2.0
```

This will be a *partial function* because average [] = undefined. Let us use a *default* value to avoid this and define

average
$$[] = 0$$
.

Doing so makes this problem easier (though it will irritate the statisticians).

Question 1. [3 MARKS]

Define a *primitive recursive* of average:

```
p_average :: (Fractional a) => [a] -> a
```

Question 2. [3 MARKS]

Define a tail recursive helper function

```
h_average :: (Fractional a) => a -> a -> [a] -> a
```

that finds the average of the list.

Question 3. [1 MARK]

Define average via a single call to h_average.

Question 4. [1 MARK]

Define an iteration invariant for h_average that proves the correctness of average.

Question 5. [5 MARKS]

Prove h_average satisfies your iteration invariant.

Question 6. [1 MARK]

State the bound value for h_average.

Question 7. [2 MARKS]

Prove your bound value is always non-negative and decreasing.

Question 8. [2 MARKS]

Define *two* distinct quick-checks for average that *both* use lists from Arbitrary [Float]. In particular, your quick-checks should be for lists of *arbitrary length*.

Higher Order Functions

Consider the higher-order function foo

Question 9. [3 MARKS]

Define takeWhile by equating it to a single invocation of foo.

Question 10. [3 MARKS]

Define map by equating it to a single invocation of foo.

Question 11. [3 MARKS]

Define iterate by equating it to a single invocation of foo.

Induction

Question 12. [8 MARKS]

Consider the following definitions for implementing addition on natural numbers.

```
data Nat = Zero | Succ Nat deriving Show
plus :: Nat -> Nat -> Nat
plus m Zero = m
```

₄ plus m (Succ(n)) = plus (Succ m) n

Further consider this embedding which maps each Nat to a unique integer.

```
emb :: Nat -> Integer
emb Zero = 0
emb (Succ n) = 1 + emb n
```

Using induction prove:

```
emb $ plus m n = emb m + emb n
```

where + is the addition defined over integers.

When justifying your steps use the line numbers on this page.

Hint: Do induction over n while letting m be free.