FMI, Info, Anul I

Logică matematică și computațională

Seminar 1

(S1.1) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

- (i) $((x_0 \to x_1) \to x_0) \to x_0 = 1$;
- (ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$.

Fie φ , $\psi \in Form$.

Pentru orice $e:V\to\{0,1\}$, notăm cu $e\models\varphi$ (şi spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi)=1$. Notăm cu $\models\varphi$ (şi spunem că φ este tautologie) dacă pentru orice $e:V\to\{0,1\}$ avem că $e\models\varphi$. Spunem că φ este satisfiabilă dacă există $e:V\to\{0,1\}$ cu $e\models\varphi$ și nesatisfiabilă în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\models\varphi$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\models\varphi$. Notăm $e\notin\varphi$ 0, Notăm $e\notin\varphi$ 1 (şi spunem că din $e\notin\varphi$ 2 se deduce semantic $e\notin\varphi$ 3 avem $e\notin\varphi$ 4. Notăm cu $e\notin\varphi$ 5 dacă pentru orice $e\colon V\to\{0,1\}$ 6 cu $e\models\varphi$ 6 avem $e\models\varphi$ 6. Notăm cu $e\notin\varphi$ 6 dacă pentru orice $e\colon V\to\{0,1\}$ 8 avem $e\models\varphi$ 6 dacă și numai dacă $e\models\varphi$ 6, i.e. pentru orice $e\colon V\to\{0,1\}$ 8 avem $e\models\varphi$ 6.

(S1.2) Să se arate că pentru orice $e: V \to \{0,1\}$ și pentru orice formule φ, ψ avem:

$$e^+(\varphi \lor \psi) = e^+(\varphi) \lor e^+(\psi)$$

(S1.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S1.4) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \to \psi);$
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \lor (\varphi \land \psi) \sim \varphi;$
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

(S1.5) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.