

抢(橡脚)预划 上节课重要内容回顾

二次方程的根⇔抛物线与x轴的交点⇔不等式解集的区间端点 大于取两边,小于取中间

一元二次方程 的根	一元二次函数图像与x轴交点	不等式 $ax^2 + bx + c > 0$ 解集	< 0 解集
△ > 0 方程有两不同实根	少↑	$x < x_1 \dot{\boxtimes} x > x_2$	$x_1 < x < x_2$
$\Delta = 0$ 方程有两相同 实根 $x_1 = x_2 - \frac{b}{2a}$	か か か が が が が が が が が が が が が が	$x \neq -\frac{b}{2a}$	无解
△<0 方程无实根		$(-\infty, +\infty)$	无解

【标志词汇】给定不等式,求解集.

【标志词汇】给定不等式解集,求系数。

【举例】求不等式 $-x^2 + 4x - 3 > 0$ 的解集 大于取两边,小于取中间

步骤	实操
①a变正、标准化	$x^2 - 4x + 3 < 0$
②求根:求对应二次方程的根.	$x^{2} - 4x + 3 = (x - 1)(x - 3) = 0$ $x = 1 \cancel{x} = 3$
③写解集: 不等号为">"的,解集取两根之外 不等号为"<"的,解集取两根之间 (针对变形后的不等式)	y

抢(静)预辽 上节课重要内容回顾

 $ax^2 + bx + c > 0$ 对所有实数x都成立 恒成立 (必然) y

 \int 抛物线开口必向上, a > 0

 $ax^2 + bx + c < 0$ 对所有实数x都成立**恒成立(必然)**

 \int 抛物线开口必向下,a < 0

 $\frac{1}{1}$ 抛物线与x 轴无交点 (对应方程 $\Delta < 0$)

抢(橡) 预 ② 上节课重要内容回顾

标志词汇		解读
不等式 $ax^2 + bx + c > 0$ 解集为全体实数	必然	$ax^2 + bx + c$ 必然 > 0
不等式 $ax^2 + bx + c > 0$ 对所有实数 x 都成立	20°KA	
不等式 $ax^2 + bx + c \le 0$ 解集为空集	不可能	$ax^2 + bx + c$ 不可能≤ 0
不等式 $ax^2 + bx + c \le 0$ 无解	个山形	

 $(a \neq 0)$

把所有的无解转化为恒成立 把所有的不可能转化为必然

【**标志词汇**】一元二次不等式无解⇒转化为恒成立后求解

抢傷) 類 2 上节课重要内容回顾

等差数列的通项公式 $a_n = a_1 + (n-1)d$

等差数列前n项和公式
$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n$$

【标志词汇】 三项成等差数列 \Leftrightarrow ①给出a,b,c为等差,则有关系式2b=a+c ②需要设项,则直接设为a-d,a,a+d,自动满足等差

判定方法	详细描述
定义法	任意相邻两项之差 $a_{n+1}-a_n$ 为常数
等差中项法	$2a_{n+1} = a_n + a_{n+2}$
通项公式法	$a_n = dn + m$ (形似关于 n 的一次函数)
前n项和法	$S_n = An^2 + Bn$ (形似关于 n 的二次函数,其中 A 与 B 均可能为 0 ,但一定不含常数项)

後佛教 上节课重要内容回顾

【标志词汇】等差数列某几项和 ⇒ 下标和相等的两项之和相等

【标志词汇】等差数列某几项和 ⇒ 下标和相等的同数量项之和相等.

前奇数个项和: 等于中间项乘以项数 $S_n = n \cdot a_{\text{中间项}} \quad a_{\text{中间项}} = \frac{1}{n} S_n$

【标志词汇】 $a_{\text{pii}} \Leftrightarrow \text{对应的} S_n \quad n$ 为奇数

【标志词汇】等差数列S_n的最值⇒寻找数列变号的项

当 $a_1 < 0$, d > 0, S_n 有最小值. 从负递增, S_n 有最小值

当 $a_1 > 0$, d < 0, S_n 有最大值 从正递减, S_n 有最大值

> 分数的裂项

$$\frac{\mathsf{X} - \mathsf{J}}{\mathsf{J} \times \mathsf{X}} = \frac{\mathsf{1}}{\mathsf{J}} - \frac{\mathsf{1}}{\mathsf{X}}$$

【标志词汇】 [多分式求和]+[分母为相似的规律结构乘积] → 裂项相消.

正整数
$$n$$
满足 $\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{10}{21}$,则 $n = ($).
A.9 B.10 C.12 D.13 E.14

A.9

B.10

抢(像) 例 刻 本节课重要内容

【标志词汇】以a,b,c三项为边可构成三角形

⇔这三项中任意两项和大于第三项,任意两项差(大减小)小于第三项.

满足
$$\begin{cases} a+b>c\\ a+c>b \text{ , } \text{ 或满足} \\ b+c>a \end{cases} |a-b| < c\\ |a-c| < b\\ |b-c| < a \end{cases}$$

【标志词汇】三角形已知两边求第三边长度范围⇒两边之差(大减小) < 第三边 < 两边之和.

三条线段a = 5, b = 3, c的值为整数, 以a, b, c为边的三角形有 () 个.

A.1

B.3 C.5 D.7 E.以上都不正确

枪佛教 本节课重要内容

三角形面积: $S_{\triangle} = \frac{1}{2} \times$ 任意一个底边 × 相对应的高

抱佛 胸 预 ② 本节课重要内容

【直角三角形】

- 1. 一个内角为90°的三角形
- 2. 三边长度符合勾股定理 $a^2 + b^2 = c^2$
- 3. 三角形面积 $S = \frac{1}{2}ab$
- 4. 若三角形底边为圆的直径,顶点在圆周上,

则三角形为直角三角形

直径所对的圆周角为直角

後傷 勝 預 ② 本节课重要内容

【等腰三角形】

- 1. 等腰三角形两个底角相等
- 2. 等腰三角形两个腰相等
- 3. 三线合一: $\angle 1 = \angle 2 \Leftrightarrow AD \perp BC \Leftrightarrow BD = DC$

抢佛教 本节课重要内容

【等边三角形】边长与高之比为 $1:\frac{\sqrt{3}}{2}$

