Champ et potentiel magnétostatique

Table des matières

1		ribution des courants electriques	3												
	1.1	Courant électrique	3												
	1.2	Courant volumique	3												
	1.3	Courants surfaciques	4												
	1.4	Courant linéique	4												
	1.5	Symétrie des distributions de courants	4												
2	Cha	Champ magnétostatique 5													
	2.1	Loi de Biot et Savart	5												
	2.2	Topographie du champ magnétique	6												
		2.2.1 Lignes de champ	6												
		2.2.2 Tube de champ	7												
	2.3	Propriétés de symétrie du champ magnétique	7												
		2.3.1 Symétrie plane	7												
		2.3.2 Antisymétrie plane	7												
		2.3.3 Invariance par translation ou rotation	8												
3	Calo	culs du champ magnétique	8												
	3.1	Champ d'un fil rectiligne	8												
	3.2	Champ d'une bobine circulaire plate	8												
		3.2.1 Spire circulaire de courant	8												
		3.2.2 Bobine plate circulaire	10												
	3.3	Champ d'un solénoïde circulaire	10												
4	Flux magnétique - Théorème d'Ampère														
	4.1	Flux magnétique	12												
		4.1.1 Définition	12												
		4.1.2 Postulat du flux conservatif	12												
	4.2	Théorème d'Ampère	12												
		4.2.1 Circulation du champ magnétique	12												
		4.2.2 Théorème d'Ampère	13												
	4.3	Application du théorème d'Ampère	14												
		4.3.1 Fil rectiligne infini	14												
		4.3.2 Conducteur cylindrique infini plein	14												
		4.3.3 Distribution à géométrie plane : nappe plane infinie	15												
		4.3.4 Solénoïde infini	16												
5	Formulation locale des lois de magnétostatique 5.1 Formule locale du théorème d'Ampère														
5.1 Formule locale du théorème d'Ampère															
	5.2	Forme locale de la conservation du flux magnétique	17												
	5.3	Potentiel vecteur	17												
		5.3.1 Définition	17												
	5.4	Equation de Poisson de la magnétostatique	17												

© S.Boukaddid			E	Eléctromagnétisme														MP2					
6	App	lications																					18
	6.1	Fil infini																					18
	6.2	Plaque infinie																					19

1 Distribution des courants électriques

1.1 Courant électrique

•Définition : le courant électrique est le déplacement ordonné de particules chargées On distingue entre trois types :

- ➤ Courant de conduction : déplacement des charges dans un support matériel sans déplacement du support (déplacement des électrons dans un métal)
- ► Courant de convection : déplacement des charges par déplacement du support (disque isolant chargé en rotation)
- ► Courant particulaire : Particules chargées se déplacent dans le vide (faisceau électronique dans un tube cathodique)

1.2 Courant volumique

Considérons une portion de circuit filiforme de section s parcouru par un courant continu I engendré par des particules de charge q et de vitesse d'ensemble \overrightarrow{v}

Intensité du courant
 C'est la charge traversant la section s par unité de temps

$$I = \frac{dq}{dt}$$

- Vecteur densité volumique de courant \overrightarrow{j}
 - n^* : densité particulaire c'est-à-dire nombre de charge mobile par unité de volume
 - dl = v.dt donc

$$dq = n^* q s v dt$$
 et $I = n^* q v s = \rho_m . v. s$

- $\rho_m = n^* q$: densité volumique de charge mobile
- Définition : Le vecteur densité volumique de courant est défini par

$$\vec{j} = n^* q \vec{v} = \rho_m \vec{v}$$

• l'intensité de courant représente le flux de \overrightarrow{j} à travers la section s

$$I = \iint_{S} \overrightarrow{j} d\overrightarrow{s}$$

• si \overrightarrow{j} est uniforme

$$I = j.s$$

- unité de j est $A.m^{-2}$
- Vecteur élementaire de courant

• On définit le vecteur élementaire de courant par

$$d\overrightarrow{C} = I.\overrightarrow{dl}$$

- \overrightarrow{dl} : vecteur élémentaire du fil orienté dans le sens de I
- $Idl = n^*qvsdl = n^*qvd\tau = jd\tau$

$$\overrightarrow{dC} = I\overrightarrow{dl} = \overrightarrow{j} d\tau$$

1.3 Courants surfaciques

• Définition : On définit le vecteur surfacique \overrightarrow{j}_s par

$$\overrightarrow{j}_s = \sigma_m \overrightarrow{v}$$

avec σ_m : densité de charge surfacique

• \overrightarrow{j}_s se mesure en A. m^{-1}

Considérons une nappe plane : l'intensité I traverse une longueur L car l'épaisseur de la nappe *a* est négligeable

•
$$I = \overrightarrow{j}_s . L \overrightarrow{n} = j_s L = \sigma_m v L$$

•
$$\overrightarrow{dC} = \overrightarrow{Idl} = \overrightarrow{j}_s Ldl = \overrightarrow{j}_s .ds$$

$$\overrightarrow{dC} = I\overrightarrow{dl} = \overrightarrow{j}_{s}dl = \overrightarrow{j}_{d}\tau$$

- on tient compte de l'épaisseur a de la nappe
- $\overrightarrow{j} = \rho_m \overrightarrow{v}$ et $I = \iint_S \overrightarrow{j} \, ds = \rho_m v. a. L = \sigma_m. v. L$

$$\sigma_m = \rho_m.a$$

1.4 Courant linéique

pour un fil de section négligeable la densité linéique de courant correspond au courant lui-même

$$\overrightarrow{dC} = I\overrightarrow{dl}$$

1.5 Symétrie des distributions de courants

- Symétrie plane : On appelle symétrie plane l'invariance d'un distribution de courant \mathcal{D} par symétrie par rapport à un plan π ou plan de symétrie.
 - •Autrement : π est un plan de symétrie de la distribution \mathcal{D} si $\forall M \in \mathcal{D}$, $\ni M' \in \mathcal{D}$ telle que

$$M' = sym_{\pi}(M)$$
 et $\overrightarrow{dC}(M') = sym_{\pi}(\overrightarrow{dC}(M))$

•Exemple : cas de deux fils rectilignes parallèles (x = a et x = -a) parcourus par des courants de même intensité I et de même sens ,la plan yOz est un plan de symétrie de \mathcal{D} .

► Antisymétrie plane

- On appelle l'antisymétrie plane l'invariance de ${\mathscr D}$ par symétrie par rapport à un plan π^* ou plan d'antisymétrie,accompagnée du changement de sens du courant.
- Autrement : π^* est un plan d'antisymétrie de \mathscr{D} si : $\forall M \in \mathscr{D}, \ni M' \in \mathscr{D}$ telle que

$$M' = sym_{\pi^*}(M)$$
 et $\overrightarrow{dC}'(M') = -sym_{\pi^*}(M)$

• Exemple : cas de deux fils rectilignes parallèles (x = a et x = -a) parcourus par des courants de même intensité I et de sens contraires, la plan yOz est un plan de symétrie de \mathcal{D} .

► Invariance par translation

• une distribution de courant \mathcal{D} est invariante par translation parallèlement à Oz si

$$\forall z : \overrightarrow{dC}(x, y, z) = \overrightarrow{dC}(x, y)$$

• cette propriétés est possible seulement pour des distributions infinis

► Invariance par rotation

• une distribution de courant \mathcal{D} est invariante par rotation autour d'un axe Oz si

$$\forall \theta : \overrightarrow{dC}(r, \theta, z) = \overrightarrow{dC}(r, z)$$

• Exemple : cas d'un fil infini parcouru par un courant I selon z'z, cas d'une spire d'axe de révolution Oz parcourue par un courant I

► Symétrie cylindrique (d'axe Oz)

• cette symétrie suppose à la fois une invariance par translation parallèlement à Oz et par rotation autour de Oz

$$\forall \theta, z : \overrightarrow{dC}(r, \theta, z) = \overrightarrow{dC}(r)$$

- Symétrie sphérique (centre O)
 - cette symétrie suppose une invariance par rotation autour de tous les axes passant le centre de symétrie O

$$\forall \theta, \phi : \overrightarrow{dC}(r, \theta, \phi) = \overrightarrow{dC}(r)$$

• dans ce cas \overrightarrow{dC} est radial passant par le centre O

$$\overrightarrow{dC} = dC(r)\overrightarrow{e}_r$$

2 Champ magnétostatique

2.1 Loi de Biot et Savart

• Considérons une distribution de courants permanents \mathcal{D} .

•Loi de Biot et Savart : Chaque élément de courant \overrightarrow{dC} , situé en un point P, crée un champ magnétostatique \overrightarrow{dB} en un point M telle que

$$d\overrightarrow{B} = \frac{\mu_0}{4\pi} \overrightarrow{dC} \wedge \frac{\overrightarrow{PM}}{PM^3}$$

- ho $\mu_0 = 4\pi . 10^{-7} \text{H.} m^{-1}$: perméabilité du vide
- l'unité du champ magnétostatique est tesla : T
- ▶ le champ total crée par la distribution 𝒯 en un point M

$$\overrightarrow{B}(M) = \int_{\mathscr{D}} \frac{\mu_0}{4\pi} \overrightarrow{dC} \wedge \frac{\overrightarrow{PM}}{PM^3}$$

pour une distribution volumique

$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{D}} \overrightarrow{j}(P) d\tau \wedge \frac{\overrightarrow{PM}}{PM^3}$$

pour une distribution surfacique

$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \iint_{\mathcal{D}} \overrightarrow{j}_s(P) ds \wedge \frac{\overrightarrow{PM}}{PM^3}$$

pour une distribution linéique (filiforme)

$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \int_{\mathcal{D}} \overrightarrow{Idl}(P) \wedge \frac{\overrightarrow{PM}}{PM^3}$$

2.2 Topographie du champ magnétique

2.2.1 Lignes de champ

•Définition : On appelle ligne de champ,la courbe tangente en chacune de ses point du vecteur champ magnétostatique

l'équation du ligne de champ est donnée par

$$\overrightarrow{B} \wedge \overrightarrow{dl} = \overrightarrow{0}$$

avec \overrightarrow{dl} vecteur déplacement élémentaire le long du ligne de champ

2.2.2 Tube de champ

L'ensemble des lignes de champ s'appuyant sur une courbe fermée (contour) C engendre une surface S appelée tube de champ

2.3 Propriétés de symétrie du champ magnétique

2.3.1 Symétrie plane

Soit une distribution de courant \mathcal{D} invariante par symétrie plane par rapport à un plan π .

•
$$\overrightarrow{dC} = \overrightarrow{dC}'$$

•
$$\overrightarrow{dB} + \overrightarrow{dB'} = \frac{\mu_0}{4\pi} \left(\frac{\overrightarrow{dC} \wedge \overrightarrow{u}}{r^2} + \frac{\overrightarrow{dC'} \wedge \overrightarrow{u'}}{r^2} \right)$$

• $\overrightarrow{dB} + \overrightarrow{dB}'$ est perpendiculaire au plan de π

$$\overrightarrow{d\mathbf{B}'} = -sym_{\pi}(\overrightarrow{d\mathbf{B}})$$

•Conclusion : le champ magnétique \overrightarrow{B} est orthogonal à un plan de symétrie de la distribution de courant en tout point de ce plan.

2.3.2 Antisymétrie plane

Considérons une distribution de courants \mathcal{D} admettant un plan d'antisymétrie π^*

•
$$\overrightarrow{dC}' = -\overrightarrow{dC}$$

•
$$\overrightarrow{dB}' = sym_{\pi}(\overrightarrow{dB})$$

•
$$\overrightarrow{dB} + \overrightarrow{dB}'$$
 appartient au plan π^*

•Conclusion : le champ magnétique \overrightarrow{B} en un point d'un plan d'antisymétrie appartient à ce plan d'antisymétrie.

2.3.3 Invariance par translation ou rotation

- invariance par translation selon Oz: $\overrightarrow{B}(x, y, z) = \overrightarrow{B}(x, y)$
- invariance par rotation par rapport à Oz: $\overrightarrow{B}(r, \theta, z) = \overrightarrow{B}(r, z)$
- si Oz est un axe de révolution de la distribution : $\overrightarrow{B} = B_z(z) \overrightarrow{e}_z$
- •Remarque : le champ \overrightarrow{B} s'écrit sous forme d'une somme de produits vectoriels de vecteurs, c'est un champ antisymétrique ou un champ axial.

3 Calculs du champ magnétique

3.1 Champ d'un fil rectiligne

▶ Segment de courant

•
$$\overrightarrow{B}(M) = \frac{\mu_0 I}{4\pi} \int \overrightarrow{dl} \wedge \frac{\overrightarrow{u}}{PM^2}$$

•
$$\overrightarrow{e}_z \wedge \overrightarrow{u} = \cos \alpha \overrightarrow{e}_\theta \text{ et } \overrightarrow{dl} = dz \overrightarrow{e}_z$$

•
$$\overrightarrow{B}(M) = \frac{\mu_0 I}{4\pi} \overrightarrow{e}_{\theta} \int_{P_1}^{P_2} \frac{dz}{PM^2} \cos \alpha$$

•
$$PM = \frac{r}{\cos \alpha}$$
 et $OP = z = r \tan \alpha$

$$donc dz = \frac{rd\alpha}{\cos^2 \alpha}$$

•
$$\overrightarrow{B}(M) = \frac{\mu_0 I}{4\pi r} \overrightarrow{e}_{\theta} \int_{\alpha_1}^{\alpha_2} \cos \alpha d\alpha$$

$$\overrightarrow{B} = \frac{\mu_0 I}{4\pi r} (\sin \alpha_2 - \sin \alpha_1) \overrightarrow{e}_{\theta}$$

$$\overrightarrow{\mathbf{B}} = \frac{\mu_0 \mathbf{I}}{2\pi r} \overrightarrow{e}_{\theta}$$

• les lignes de champ d'un fil infini sont des cercles concentriques à ce fil

3.2 Champ d'une bobine circulaire plate

3.2.1 Spire circulaire de courant

L'axe Oz constituant un axe de symétrie de révolution, il y a invariance par rotation autour de Oz. En un point M de l'axe Oz \overrightarrow{B} ne dépend que de Z

$$\overrightarrow{B} = B(z) \overrightarrow{e}_z$$

► Calcul du champ au centre

Soit une spire de centre O et de rayon R,parcourue par un courant I

•
$$\vec{B}_0 = \frac{\mu_0 I}{4\pi} \oint_{spire} \frac{\vec{dl} \wedge \vec{u}}{R^2} \text{ avec (PO = R = cte)}$$

•
$$\overrightarrow{dl} \wedge \overrightarrow{u} = dl \overrightarrow{e}_z$$

•
$$\overrightarrow{B}_0 = \frac{\mu_0}{4\pi R^2} \oint_{spire} dl \overrightarrow{e}_z = \frac{\mu_0 I}{4\pi R^2} (2\pi R) \overrightarrow{e}_z$$

$$\overrightarrow{B}_0 = \frac{\mu_0 I}{2R} \overrightarrow{e}_z$$

$\blacktriangleright\,$ Calcul du champ en un point M de l'axe Oz

Soit un point P du spire repéré par ses coordonnées cylindriques R, θ , $z_p = 0$

• l'élement de courant :
$$\overrightarrow{dC} = \overrightarrow{Idl} = IRd\theta \overrightarrow{e}_{\theta}$$

•
$$\overrightarrow{\mathbf{B}} = \left(\int_0^{2\pi} d\mathbf{B}_z\right) \overrightarrow{e}_z$$

•
$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} R d\theta \overrightarrow{e}_{\theta} \wedge \frac{\overrightarrow{u}}{r^2}$$

•
$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi r^2} R \sin \alpha d\theta \overrightarrow{e}_z$$

•
$$dB_z = \overrightarrow{dB} \cdot \overrightarrow{e}_z = \frac{\mu_0 I}{4\pi r^2} R \sin \alpha d\theta$$

•
$$\sin \alpha = \frac{R}{r}$$

•
$$dB_z = \frac{\mu_0 I}{4\pi R} \sin^3 \alpha d\theta$$

•
$$B = \frac{\mu_0 I}{2R} \sin^3 \alpha$$

$$\overrightarrow{B}(M) = \frac{\mu_0 I}{2R} \sin^3 \alpha \overrightarrow{e}_z = B_0 \sin^3 \alpha \overrightarrow{e}_z$$

► Etude graphique du champ d'une spire

•
$$\sin \alpha = \frac{R}{\sqrt{R^2 + z^2}} = \left(1 + \frac{z^2}{R^2}\right)^{-1/2}$$

• en un point M très éloigné :
$$\frac{z^2}{R^2} >> 1 : \frac{B(M)}{B_0} \approx \frac{\mu_0 I R^2}{2z^3}$$

► Spectre magnétique d'une spire

3.2.2 Bobine plate circulaire

•Définition : une bobine, composée de N spires accolées, est dite plate, lorsque son épaisseur *e* est très inférieur au rayon R des spires.

Considèrons une bobine plate, composée de N spires

• $B(M) = NB_{spire}$

$$B(M) = B_0 \sin^3 \alpha$$

$$B_0 = \frac{\mu_0 NI}{2R}$$

3.3 Champ d'un solénoïde circulaire

Un solénoïde est constitué de N spires circulaires jointives de rayon R et d'axe commun

• $n = \frac{N}{l}$: nombre de spire par unité de longueur

- ▶ le spectre magnétique conduit aux résultats suivants
 - à l'intérieur du solénoïde,les lignes de champ sont pratiquement parallèles à l'axe du solénïde
 - à l'extérieur, les lignes de champ sortent de la face nord (N) en divergeant, et entrent dans la face sud (S) en convergeant (comme l'aimant droit).

Symétrie : les propriétés de symétrie sont identiques à celles d'une spire unique. L'axe Oz étant axe de symétrie de révolution . En un point M de l'axe Oz :

$$\overrightarrow{B} = B(z) \overrightarrow{e}_{z}$$

$$O \qquad \qquad P_{1} \qquad P \qquad P_{2} \qquad \theta_{1} \qquad \theta$$

$$O \qquad \qquad C \qquad \qquad M \qquad \overrightarrow{B} \qquad z$$

$$dz$$

- $n = \frac{dN}{dz}$: nombre de spire par unité de longueur
- $\alpha + \theta = \pi \operatorname{donc} \sin \alpha = \sin \theta \operatorname{et} \cos \alpha = -\cos \theta$
- l'élement dz crée en un point M un champ : $\overrightarrow{dB} = \frac{\mu_0 I dN}{2R} \sin^3 \alpha \overrightarrow{e}_z = \frac{\mu_0 nI}{2R} dz \sin^3 \theta \overrightarrow{e}_z$
- $z_{\rm M}={
 m OM}=cte$ et $z=z_{\rm P}={
 m OC}$ donc $z_{\rm M}=z+{
 m CM}=z+{
 m R}\frac{1}{\tan\alpha}=z-{
 m R}\frac{1}{\tan\theta}$ avec ${
 m CP}={
 m R}$
- $dz_{\rm M} = 0 = dz rd\left(\frac{1}{\tan\theta}\right) \operatorname{donc} dz = \operatorname{R}d\left(\frac{1}{\tan\theta}\right) = -\frac{\operatorname{R}d\theta}{\sin^2\theta}$
- $\overrightarrow{B} = -\frac{\mu_0 nI}{2} \int_{\theta_1}^{\theta_2} \sin\theta d\theta \overrightarrow{e}_z$

$$\overrightarrow{\mathbf{B}} = \frac{\mu_0 n\mathbf{I}}{2} (\cos \theta_2 - \cos \theta_1) \overrightarrow{e}_z$$

Solénoïde infini $\theta_1 = \pi$ et $\theta_2 = 0$

$$\vec{B}_{\infty} = \mu_0 n \vec{e}_z$$

4 Flux magnétique - Théorème d'Ampère

4.1 Flux magnétique

4.1.1 Définition

•Définition : le flux du champ magnétique à travers une surface (S) est défini par

$$\Phi = \iint_{(S)} \overrightarrow{B} \, dS$$

l'unité de Φ est weber ($wb = T.m^2$)

4.1.2 Postulat du flux conservatif

• Postulat : le flux magnétique à travers une surface fermée (Σ) quelconque est nul

$$\iint_{(S)} \overrightarrow{B} \, \overrightarrow{dS} = 0$$

- le champ magnétique est à flux conservatif, donc un tube de champ transporte un flux constant
- absence des charges magnétiques (absence des sources magnétiques à partir des quelles \overrightarrow{B} diverge)
- les lignes de champ magnétique sont fermées

4.2 Théorème d'Ampère

4.2.1 Circulation du champ magnétique

•Définition : La circulation du champ magnétostatique le long d'un contour (C) est définie par

$$\mathscr{C} = \oint_{(C)} \overrightarrow{B} \, \overrightarrow{dl}$$

- ► Cas d'un fil rectiligne infini
 - Définition : On dit que le contour (C) enlace le fil infini parcouru par un courant I,si le fil traverse la surface intérieure de (C)

C enlaçant le fil

C n'enlaçant pas le fil

•
$$\overrightarrow{B}(M) = \frac{\mu_0 I}{2\pi r} \overrightarrow{e}_{\theta}$$

•
$$d\overrightarrow{OM} = \overrightarrow{dr} = dr \overrightarrow{e}_r + rd\theta \overrightarrow{e}_\theta + dz \overrightarrow{e}_z$$

Cas n°1: C enlace le fil infini
$$\mathscr{C} = \oint_{(C)} \frac{\mu_0 I}{2\pi r} \overrightarrow{e}_{\theta} \overrightarrow{dr} = \frac{\mu_0 I}{2\pi} \int_0^{2\pi} d\theta = \mu_0 I$$

$$\mathscr{C} = \mu_0 I$$

- si le contour enlace le fil dans le sens indirect : $\mathscr{C} = -\mu_0 I$
- ► Cas n°2 : C n'enlace pas le fil lorsque M(repéré à t=0 par θ_1) décrit le contour (C), θ varie entre θ_1 à θ_1 donc $\mathscr{C} = \frac{\mu_0 I}{2\pi} \int_{\theta_1}^{\theta_1} d\theta = 0$

$$\mathscr{C} = 0$$

4.2.2 Théorème d'Ampère

• Enoncé: La circulation du champ magnétostatique le long d'un contour fermé orienté (C) est égale à la somme des intensités algébriques des courants enlacés par (C) multipliée par la constante μ_0 .

$$\mathcal{C} = \oint_{(C)} \overrightarrow{\mathbf{B}} \, \overrightarrow{dl} = \mu_0 \sum_k \varepsilon_k \mathbf{I}_k$$

- \vec{n} : vecteur unitaire normal à (S)(traversée par I_k) orienté par le sens de parcours de (C)
- $\varepsilon_k = 1$ si I_k a le même sens que \vec{n}
- $\varepsilon_k = -1$ si I_k a le sns contraire de \overrightarrow{n}

•
$$\mathscr{C} = \oint_{(C)} \overrightarrow{B} \overrightarrow{dl} = \mu_0 (I_2 - I_1)$$

- $\mathscr{C} = \mu_0(I_2 + 5I_3 I_1)$
- de façon plus générale

$$\mathscr{C}_{C} = \mu_{0} \iint_{(S)} \overrightarrow{j} \cdot \overrightarrow{n} \, dS$$

ou (S): surface quelconque s'appuyant sur le contour (C)

4.3 Application du théorème d'Ampère

4.3.1 Fil rectiligne infini

- la symétrie cylindrique : $\overrightarrow{B}(M) = B(r) \overrightarrow{e}_{\theta}$
- les lignes de champ sont des cercles
- on prend comme contour cercle qui passe par M (ligne de champ qui passe par M)

•
$$\mathscr{C} = \oint_{(C)} \overrightarrow{B} \overrightarrow{dl} = \oint_{(C)} B(r) \overrightarrow{e}_{\theta} dl \overrightarrow{e}_{\theta} = B(r).2\pi r$$

• théorème d'Ampère : $\mathscr{C} = \mu_0 I$

$$\overrightarrow{\mathbf{B}}(r) = \frac{\mu_0 \mathbf{I}}{2\pi r} \overrightarrow{e}_{\theta}$$

4.3.2 Conducteur cylindrique infini plein

Considérons une distribution cylindrique \mathscr{D} de courant, de rayon R, de longueur infiniment grande par rapport à R et d'axe Oz; le vecteur densité de courant \overrightarrow{j} supposé uniforme, est dirigée suivant Oz, le courant total est $I = \pi R^2 j$

• la symétrie cylindrique

$$\overrightarrow{B}(M) = B(r) \overrightarrow{e}_{\theta}$$

• théorème d'Ampère

$$\mathcal{C} = \oint_{(C)} \overrightarrow{\mathbf{B}} \, \overrightarrow{dl} = \mathbf{B}(r) 2\pi r = \mu_0 \mathbf{I}_{enlac\acute{\mathbf{e}}}$$

On distingue entre deux cas : M à l'extérieur du cylindre et M à l'intérieur du cylindre

- ► Cas n°1 : M à l'extérieur du cylindre r > R
 - le contour est (C₂)
 - $I_{enlac\acute{e}} = I$

$$\overrightarrow{B}(M) = \frac{\mu_0 I}{2\pi r} \overrightarrow{e}_{\theta}$$

- ► Cas n°2 : M à l'intérieur du cylindre r < R
 - le contour est (C₁)
 - $I_{enlac\acute{e}} = \iint_{(S_1)} \overrightarrow{j} \, d\overrightarrow{S} = \int_0^r j2\pi r dr = j\pi r^2$
 - $I = \pi R^2 i$
 - $I_{enlac\acute{e}} = \frac{I}{\pi R^2} \pi r^2 = I \frac{r}{R^2}$

$$\overrightarrow{B}(M) = \frac{\mu_0 I}{2\pi R^2} \overrightarrow{re}_{\theta}$$

4.3.3 Distribution à géométrie plane : nappe plane infinie

Considérons une nappe surfacique de courant infinie dans le plan (*xoy*)

- $\overrightarrow{j}_s = j_s \overrightarrow{e}_x$
- le plan (Oxz) est un plan de symétrie pour la distribution

$$\overrightarrow{B}(x, y, z) = B(x, y, z) \overrightarrow{e}_y$$

 la distribution de courant est invariante par translation suivant Ox et Oy

$$\overrightarrow{B}(x, y, z) = B(z)\overrightarrow{e}_y$$

- le contour (C) est un rectangle de largeur L et de longueur 2z
- $\mathscr{C} = \oint_{(C)} \overrightarrow{B} \overrightarrow{dl} = LB(z) + (-L)B(-z) = 2LB(z)$
- théorème d'Ampère : $\mathscr{C} = -\mu_0 j_s L$
- $2LB(z) = -\mu_0 j_s L$

$$\overrightarrow{B} = -\frac{\mu_0 j_s}{2} signe(z) \overrightarrow{e}_y$$

- ► Relations de passage
 - en un point M': $\overrightarrow{B}_2 = \frac{\mu_0 j_s}{2} \overrightarrow{e}_y$
 - en un point M : $\overrightarrow{B}_1 = -\frac{\mu_0 j_s}{2} \overrightarrow{e}_y$
 - $\overrightarrow{B}_2 \overrightarrow{B}_1 = \mu_0 j_s \overrightarrow{e}_y$
 - $\overrightarrow{n}_{2\rightarrow 1} = \overrightarrow{e}_z$ et $\overrightarrow{e}_y = \overrightarrow{n}_{2\rightarrow 1} \wedge \overrightarrow{e}_x$

$$\overrightarrow{B}_2 - \overrightarrow{B}_1 = \mu_0 \overrightarrow{j}_s \wedge \overrightarrow{n}_{1 \to 2}$$

4.3.4 Solénoïde infini

considérons un solénoïde infini

- $n = \frac{N}{L}$: nombre de spires par unité de longueur
- tout plan normal à Oz est un plan de symétrie

$$\overrightarrow{\mathbf{B}} = \mathbf{B}(r, \theta, z) \overrightarrow{e}_z$$

• la distribution de courant est invariante par translation suivant Oz et par rotation suivant Oz

$$\overrightarrow{B} = B(r) \overrightarrow{e}_z$$

ightharpoonup considérons le contour C_1 de longueur a

•
$$\mathscr{C} = \oint_{(C_1)} \overrightarrow{B} \, d\overrightarrow{l} = a.(B_{axe} - B(r)) = 0$$

$$\overrightarrow{\mathbf{B}}_{int} = \overrightarrow{\mathbf{B}}_{axe}$$

le champ magnétostatique à l'intérieur du solénoïde est uniforme

▶ Pour le contour (C₃) de longueur *d*

•
$$\mathscr{C} = \oint_{(C_3)} \overrightarrow{B} \, d\overrightarrow{l} = d(B_2 - B_1) = 0 \text{ donc } B_2 = B_1$$

$$\overrightarrow{\mathbf{B}}_{ext} = \overrightarrow{\mathbf{B}}_{\infty} = \overrightarrow{\mathbf{0}}$$

▶ Pour le contour C₂de longueur *b*

•
$$\mathscr{C} = \oint_{(C_2)} \overrightarrow{B} \overrightarrow{dl} = b.B_{int} - b.B_{ext} = n\mu_0 Ib$$

$$\overrightarrow{B}_{int} = \mu_0 n \overrightarrow{e}_z$$

5 Formulation locale des lois de magnétostatique

5.1 Formule locale du théorème d'Ampère

on se place dans le cadre du régime permanent

•
$$\mathscr{C} = \oint_{(C)} \overrightarrow{B} \overrightarrow{dl} = \iint_{(\Sigma)} \overrightarrow{rot} \overrightarrow{B} \overrightarrow{dS} = \mu_0 I$$

•
$$I = \iint_{(\Sigma)} \overrightarrow{j} \, dS$$

$$\overrightarrow{rot}\overrightarrow{\mathbf{B}} = \mu_0 \overrightarrow{j}$$

• Conclusion : le champ magnétique permanent est lié à ses sources par la loi locale

$$\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{j}$$

5.2 Forme locale de la conservation du flux magnétique

- (Σ) : une surface fermée délimitant un volume (V)
- $\iint_{(\Sigma)} \overrightarrow{B} \, d\overrightarrow{S} = 0$
- théorème d'Ostrogradski : $\oiint_{(\Sigma)} \overrightarrow{B} \overrightarrow{dS} = \iiint_{(V)} di v \overrightarrow{B} . d\tau = 0$

$$div\overrightarrow{B} = \overrightarrow{0}$$

cette équation traduit la conservation du flux magnétique

5.3 Potentiel vecteur

5.3.1 Définition

- $div(\overrightarrow{rot}\overrightarrow{U}) = 0$, avec \overrightarrow{U} un champ vecteur
- $div\vec{B} = 0$
- il existe un vecteur \overrightarrow{A} , telle que $\overrightarrow{B} = \overrightarrow{rot} \overrightarrow{A}$
- •Définition : le potentiel vecteur \overrightarrow{A} est défini par

$$\vec{B} = \overrightarrow{rot} \vec{A}$$

- ▶ le potentiel vecteur présente les mêmes symétries que la distribution de courant
- ▶ le potentiel vecteur \overrightarrow{A} est défini à gradient prés

•
$$\overrightarrow{A}' = \overrightarrow{A} + \overrightarrow{grad}f$$

•
$$\overrightarrow{rot}\overrightarrow{A}' = \overrightarrow{rot}(\overrightarrow{A} + \overrightarrow{grad}f) = \overrightarrow{rot}\overrightarrow{A}$$

5.4 Equation de Poisson de la magnétostatique

•
$$\overrightarrow{rot}\overrightarrow{\mathbf{B}} = \mu_0 \overrightarrow{j}$$

•
$$\overrightarrow{B} = \overrightarrow{rot} \overrightarrow{A}$$

•
$$\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{A}) = \mu_0 \overrightarrow{j}$$

•
$$\overrightarrow{rot}(\overrightarrow{rot}\overrightarrow{A}) = \overrightarrow{grad}(\overrightarrow{div}\overrightarrow{A}) - \Delta \overrightarrow{A}$$

- $\Delta \overrightarrow{A} + \mu_0 \overrightarrow{j} = \overrightarrow{grad}(\overrightarrow{div}\overrightarrow{A})$
- Jauge de Coulomb

$$div\overrightarrow{A} = 0$$

• l'équation de Poisson

$$\Delta \overrightarrow{A} + \mu_0 \overrightarrow{j} = 0$$

• la solution de l'équation de Poisson s'écrit sous la forme

$$\overrightarrow{A}(M) = \frac{\mu_0}{4\pi} \iiint_{(V)} \frac{\overrightarrow{j}(P)}{PM} d\tau$$

6 Applications

6.1 Fil infini

Considérons un fil infini de section (S) et de rayon R parcouru par un courant I de densité volumique \overrightarrow{j} uniforme $\overrightarrow{j}=\overrightarrow{je}_z$

- $I = j\pi R^2$
- la distribution de charge est invariante par translation suivant Oz et par rotation autour de Oz donc

$$\overrightarrow{B}(r, \theta, z) = \overrightarrow{B}(r) \text{ et } \overrightarrow{A}(r, \theta, z) = \overrightarrow{A}(r)$$

• tout plan $\theta = cte$ est un plan de symétrie de la distribution de courant

$$\overrightarrow{B} = B(r)\overrightarrow{e}_{\theta}$$

• tout plan z = cte est un plan d'antisymétrie de la distribution

$$\overrightarrow{A} = A(r) \overrightarrow{e}_z$$

• en un point M à l'intérieur du fil r < R

•
$$\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{j}(M) = \mu_0 \overrightarrow{j}$$

•
$$\frac{1}{r} \frac{\partial (rB_r)}{\partial r} = \mu_0 j$$

•
$$rB(r) = \frac{\mu_0 j r^2}{2} + C \text{ donc } B(r) = \frac{\mu_0 j r}{2} + \frac{C}{r}$$

• B(0) = 0, donc C = 0 (si non B(0) tend vers l'infini en r = 0)

$$\overrightarrow{B}(r) = \frac{\mu_0 j r}{2} \overrightarrow{e}_{\theta} = \frac{\mu_0 I r}{2\pi R^2} \overrightarrow{e}_{\theta}$$

•
$$\overrightarrow{B} = \overrightarrow{rot} \overrightarrow{A}$$

$$\bullet A_{int} = -\frac{\mu_0 I}{4\pi R^2} r^2 + cte$$

•
$$A(0) = 0$$
, $cte = 0$

$$\overrightarrow{A}_{int} = -\frac{\mu_0 I}{4\pi R^2} r^2 \overrightarrow{e}_z$$

▶ en un point M à l'extérieur du fil : $r \ge R$

•
$$\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{j}(M) = 0$$

•
$$B(r) = \frac{cte}{r}$$

• continuité de B en r=R (absence des courants surfaciques) : $cte=\frac{\mu_0 j R^2}{2}$

$$\overrightarrow{B} = \frac{\mu_0 j R^2}{2r} \overrightarrow{e}_{\theta} = \frac{\mu_0 I}{2\pi r} \overrightarrow{e}_{\theta}$$

•
$$-\frac{dA_z}{dr} = B(r) = \frac{\mu_0 I}{2\pi r}$$

•
$$A_{ext} = -\frac{\mu_0 I}{2\pi} \ln r + cte$$

• continuité de \overrightarrow{A} en $r = R : A_{int}(R) = A_{ext}(R)$ donc $cte = \frac{\mu_0 I}{2\pi} \left(\ln R - \frac{1}{2} \right)$

$$\overrightarrow{A}_{ext} = -\frac{\mu_0 I}{2\pi} \left(\ln \frac{r}{R} + \frac{1}{2} \right) \overrightarrow{e}_z$$

6.2 Plaque infinie

considérons une plaque infinie parcourue par un courant surfacique \overrightarrow{j}_s uniforme

• la symétrie impose

$$\overrightarrow{B}(x, y, z) = B(z) \overrightarrow{e}_y$$

• le plan O*yz* est un plan d'antisymétrie pour la distribution de courant

$$\overrightarrow{A} = A(z)\overrightarrow{e}_x$$

ightharpoonup au dessous de la plaque z < 0

•
$$\overrightarrow{rot}\overrightarrow{B}_2 = \mu_0 \overrightarrow{j}(M) = \overrightarrow{0}$$

•
$$\frac{\partial B_2}{\partial z} = 0$$
, donc $B_2 = C_2$

au dessus de la plaque

•
$$\overrightarrow{rot} \overrightarrow{B}_1 = \mu_0 \overrightarrow{j} (M) = \overrightarrow{0}$$

•
$$\frac{\partial B_1}{\partial z} = 0$$
, donc $B_1 = C_1$

► relation de passage : B1 – B₂ = $-\mu_0 j_s$

►
$$B(-z) = -B(z)$$
 donc $C_1 = -C_2$

- $ightharpoonup 2C_1 = -\mu_0 j_s$
- ▶ au dessus de la plaque

$$\overrightarrow{B} = \overrightarrow{B_1} = -\frac{\mu_0 j_s}{2} \overrightarrow{e}_y$$

▶ au dessous de la plaque

$$\overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}_2} = \frac{\mu_0 j_s}{2} \overrightarrow{e}_y$$

▶ potentiel vecteur \overrightarrow{A} au dessus de la plaque

•
$$\overrightarrow{B} = \overrightarrow{rot} \overrightarrow{A} = \overrightarrow{Be}_y \text{ avec } \overrightarrow{A} = \overrightarrow{Ae}_x$$

•
$$\frac{\partial A_x}{\partial z} = \frac{dA}{dz} = -\frac{\mu_0 j_s}{2}$$

$$\overrightarrow{A}(0) = \overrightarrow{0}$$

$$\overrightarrow{A} = -\frac{\mu_0 j_s}{2} z \overrightarrow{e}_x$$

> potentiel vecteur au dessous de la plaque

•
$$\frac{\partial A_x}{\partial z} = \frac{dA}{dz} = \frac{\mu_0 j_s}{2}$$

$$\vec{A} = \frac{\mu_0 j_s}{2} z \vec{e}_x$$