1

Discrete Assignment

EE:1205 Signals and Systems Indian Institute of Technology, Hyderabad

Abhey Garg EE23BTECH11202

(1)

(2)

(6)

I. Question 11.9.3.24

Show that the ratio of the sum of the first n terms of a geometric progression (G.P.) to the sum of terms from (n + 1)th to (2n)th term is $\frac{1}{r^n}$.

II. SOLUTION

TABLE 0 Input Parameters

Variable	Description	Value
x(0)	First term of G.P	
r	Common ratio of	
	G.P	
x(n)	General Term	$x(0) \cdot r^n \cdot u(n)$

$$x(n) = x(0)r^n u(n)$$

where

$$u(n) = \begin{cases} 0 & \text{for } n < 0\\ 1 & \text{for } n \ge 0 \end{cases}$$

$$s(n) = \sum_{k=-\infty}^{n} x(k)$$

$$s(n) = x(n) * u(n)$$
(3)

Taking z transform

$$S(z) = X(z)U(z) \tag{4}$$

$$= \left(\frac{x(0)}{1 - rz^{-1}}\right) \left(\frac{1}{1 - z^{-1}}\right) \quad |z| > |r| \cap |z| > 1 \tag{5}$$

$$=\frac{x(0)}{(1-rz^{-1})(1-z^{-1})} \qquad |z| > |r|$$

which can be expressed as

$$S(z) = \frac{x(0)}{r - 1} \left(\frac{r}{1 - rz^{-1}} - \frac{1}{1 - z^{-1}} \right) \tag{7}$$

Using partial fractions, again the inverse of the above can be expressed as

$$s(n) = x(0) \left(\frac{r^n - 1}{r - 1}\right) u(n)$$
 (8)

$$S(z) = \frac{x(0)}{r - 1} \left(\frac{r}{1 - rz^{-1}} - \frac{1}{1 - z^{-1}} \right) \tag{9}$$

To find S(2z) using the time-shifting property,

$$S(n) \stackrel{\mathrm{Z}}{\longleftrightarrow} S(z)$$
 (10)

$$S(2n) \stackrel{z}{\longleftrightarrow} S(z^2)$$
 (11)

Now, substitute z with z^2 in the expression for S(z):

$$S(z^2) = \frac{x(0)}{r - 1} \left(\frac{r}{1 - rz^{-2}} - \frac{1}{1 - z^{-2}} \right)$$
 (12)

Now, to find S(2n), take the inverse z transform. The expression is:

$$s(2n) = x(0) \left(\frac{r^{2n-1} - 1}{r - 1} \right) u(2n)$$
 (13)

Now we have to find $\frac{s(n)}{s(2n)-s(n)}$

$$\frac{s(n)}{s(2n) - s(n)} = \frac{x(0)\left(\frac{r^{n}-1}{r-1}\right)u(n)}{x(0)\left(\frac{r^{2n}-1}{r-1}\right)u(2n) - x(0)\left(\frac{r^{n}-1}{r-1}\right)u(n)}$$
(14)

$$=\frac{\binom{r^n-1}{r-1}}{\binom{r^2n-1}{r-1}-\binom{r^n-1}{r-1}}$$
(15)

$$=\frac{r^n-1}{(r^{2n}-1)-(r^n-1)}$$
 (16)

$$=\frac{r^n}{(r^{2n})-(r^n)}\tag{17}$$

$$=\frac{1}{r^n}\tag{18}$$

Fig. 0. Plot of ratio vs $1/r^n$ for r = 2