# Basic Inferential Data Analysis

Bo Liu

March 27, 2017

#### Overview

This report explores the growth of the odontoblast, the cell responsible for tooth growth, of the incisor teeth as a criterion of vitamin C intake of a guinea pig. In this study, 60 guinea pigs each received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid.

Load the ToothGrowth data and perform some basic exploratory data analyses

```
library(ggplot2); library(datasets); library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, round.POSIXt, trunc.POSIXt, units
data("ToothGrowth")
head (ToothGrowth)
##
      len supp dose
## 1 4.2
            VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
            VC 0.5
## 4
     5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
smry <- stat_summary(geom="crossbar", width=0.3, fun.data="mean_cl_boot")</pre>
meanline <- stat_summary(geom="line",fun="mean_se")</pre>
## Warning: Ignoring unknown parameters: fun
qplot(dose, len, data=ToothGrowth, colour=supp, xlab="vitamin C Dose(mg/day)", ylab="Tooth Length") + si
## No summary function supplied, defaulting to `mean_se()
```



### Provide a basic summary of the data.

From this figure, we can see the trend of len when supp and dose change. The len increasing as dose changing from 0.5 to 2 or supp status turn from VC to OJ.

## Use confidence intervals to compare tooth growth by supp and dose.

First, calculate mu and sigma.

```
mu<-mean(ToothGrowth$len)
sigma<-var(ToothGrowth$len)
mu</pre>
```

## [1] 18.81333

sigma

## [1] 58.51202

Second, calculate the confidence intervals, say 95% intervals.

```
n <- length(ToothGrowth$len)
con_int<-mu + c(-1,1)*2*sigma/sqrt(n)
con_int</pre>
```

## [1] 3.705594 33.921073

We see that confidence intervals is [3.705594, 33.921073]. Third, let's calculate the mean by supp and dose.

```
unique(ToothGrowth$supp)
## [1] VC OJ
## Levels: OJ VC
meansuppvc<-mean(ToothGrowth$len[ToothGrowth$supp=='VC'])
meansuppoj<-mean(ToothGrowth$len[ToothGrowth$supp=='0J'])</pre>
meansuppvc
## [1] 16.96333
meansuppoj
## [1] 20.66333
unique(ToothGrowth$dose)
## [1] 0.5 1.0 2.0
meandose05<-mean(ToothGrowth$len[ToothGrowth$dose==.5])</pre>
meandose10<-mean(ToothGrowth$len[ToothGrowth$dose==1.0])</pre>
meandose20<-mean(ToothGrowth$len[ToothGrowth$dose==2.0])</pre>
meandose05
## [1] 10.605
meandose10
## [1] 19.735
meandose20
## [1] 26.1
Finally, compare those mean values to confidence intervals.
con_int-meansuppvc
## [1] -13.25774 16.95774
con_int-meansuppoj
## [1] -16.95774 13.25774
con_int-meandose05
## [1] -6.899406 23.316073
con_int-meandose10
## [1] -16.02941 14.18607
con_int-meandose20
## [1] -22.394406
                     7.821073
```

If the result values were both negtive or positive, means that the mean value is not in the confidence intervals. Otherwise, the mean value is in the range of confidence intervals.

#### Conclusions.

Since all the mean values are in the confidence intervals, we can conclude that all those results are believable.