产品规格书

SZYD02-模组

产品型号: DYP-SZYD02-V1.0

文件版本: V1.3

文件密级:外发

深圳市电应普科技有限公司 Shenzhen Dianyingpu Technology Co., Ltd. 深圳市电应普科技有限公司保留该文件所有版权

修订记录

*A - 增加 M - 修改 D - 删除

版本	日期	章节号	A/M/D	标题或简要描述	修订者	批准者
V1.0	2024. 09. 23		A	首次编写	WXL	
					DQL	
V1.1	2024. 11. 29	2.1	M	修改成品结构图	WXL	
V1.2	2024. 12. 05	2. 1	M	修改成品结构图	WXL	
V1.3	2024. 12. 13	2. 1	M	修改成品结构图	WXL	
				4 X /		
				Y X X		
			V			
				<u> </u>		
			1			
			1			

目录

_	产品介绍	2
	1.1 概述	2
	1.2 产品特点	2
	1.3 适用范围	2
	1.4 基本参数	3
\equiv	外观说明	4
	2.1 机械特性	
	2.2 波束通道说明	
	2.3 接口定义	
三	输出说明	5
	3.1 UART 受控输出说明	
	3.1.1 通信说明	5
	3.1.2 通信时序图	6
	3.1.3 UART 输出格式	6
	3.1.4 UART 输出举例	6
	3.2 Modbus 协议说明	
	3.2.1 Modbus 协议参数	7
	3.2.2 Modbus 协议格式	7
	3.2.3 Modbus 寄存器	7
	3.2.4 Modbus 通讯举例	9
四	极限参数	
	4.1 额定环境条件	
	4.2 额定电气条件	
五.	有效探测范围参考	
六	注意事项	11
+.	包装规范	11

一 产品介绍

1.1 概述

SZYD02-模组是基于水下应用而设计的超声波水下避障传感器,具有体积小、盲区小、探测角度大、防水性能好的优点。

SZYD02-模组以下简称"模组"加以说明。

1.2 产品特点

- •5V 电源供电
- •5cm 小盲区
- •抗干扰强,数据输出稳定可靠
- •响应时间快,精度高
- •工作温度 0℃到 50℃
- •存储温度-25℃到 70℃
- •连接引脚具有静电防护设计
- IP68 防护等级
- •探测角度最大80°

1.3 适用范围

- •水下机器人避障
- •水下机器人巡壁检测
- •水下测距设备
- •水下探测器

1.4 基本参数

参数项	规格值	单位	备注
工作电压	5	V	DC
上电响应时间	<600	ms	
待机电流	<14	mA	
平均工作电流	<15	mA	(1)
峰值电流	<40	mA	
盲区距离	≤5	cm	
平面物体量程	5~800	cm	(2)
响应时间	<50	ms	(3)
输出方式	受控 UART	-	TTL5V
常温测量精度	± (1+S*1%)	cm	(2)
温度补偿	无	-	
参考角度	75±10	deg	(4)
外壳颜色	黑色	-	
外壳材质	ABS	-	

备注: (1) 供电 5V,约 100ms 工作周期测试所得到的典型数据;

- (2) 在静止水下 30cm 高度、水温 20℃、水面平静、无水流的环境下,被测对象为平面物体,传感器需尽可能垂直被测物体,以外壳最前端为起点,S表示测量的实际距离;
- (3) 在 115200bps 波特率下工作输出测得的响应时间;
- (4) 在静止水下 30cm 高度、水温 20℃、水面平静、无水流的环境下,被测对象为 Φ42mm 高 1000mm 钢管在 50cm 距离的所测得总角度参考数据;

二 外观说明

2.1 机械特性

(X9三合一)

网址: http://www.dypsensor.com

2.2 波束通道说明

通道一 通道二 通道三

2.3 接口定义

引脚编号	引脚名称	引脚描述	备注
1	VCC	电源输入引脚	
2	GND	电源接地引脚	
3	RX	UART 触发输入引线	
4	TX	UART 通讯输出引线	

三 输出说明

3.1 UART 受控输出说明

3.1.1 通信说明

当触发输入引线"RX" 接收到一个有下降沿的触发脉冲或任意一个串口数据,下降沿会触发模组工作一次,输出引线"TX"将输出一次测量数据,模组的触发周期必须大于 65ms(115200bps 波特率条件下)。

(编号:)

密级:	□绝密	□机密	□秘密	■普通
山が入る		□ 1/1 1		E 200

接口	波特率	数据位	停止位	校验位
TTL-5V	115200 bps	8	1	无

3.1.2 通信时序图

注: T1>T2+15ms; T2≈50ms。

3.1.3 UART 输出格式

帧数据	说明	字节
帧头	固定为 OXFF	1字节
Data1_H	通道1距离数据的高8位	1字节
Data1_L	通道1距离数据的低8位	1字节
Data2_H	通道2距离数据的高8位	1字节
Data2_L	通道2距离数据的低8位	1字节
Data3_H	通道3距离数据的高8位	1字节
Data3_L	通道3距离数据的低8位	1字节
SUM	通讯校验和	1字节

3.1.4 UART 输出举例

帧头	Data1_H	Data1_L	Data2_H	Data2_L	Data3_H	Data3_L	SUM
OXFF	0x03	0xE8	0x05	0x43	0X07	OXA1	OXDA

注:校验和只保留累加数值的低8位;

SUM = (帧头+ Data1_H+ Data1_L+Data2_H+ Data2_L+Data3_H+ Data3_L)&0x00FF = (0XFF + 0x03 + 0xE8 + 0x05 + 0x43 + 0X07 + 0XA1)&0x00FF = 0XDA;

通道1距离值= Data1_H * 256 + Data1_L = 0X03E8, 转换成十进制等于1000, 单位为mm, 表示当前测量的距离值为1000mm;

通道2距离值= Data2 H * 256 + Data2 L = 0X0543, 转换成十进制等于1347, 单位

网址: http://www.dypsensor.com

为mm, 表示当前测量的距离值为1347mm;

通道3距离值= Data3_H * 256 + Data3_L = 0X07A1,转换成十进制等于1953,单位为mm,表示当前测量的距离值为1953mm;

3.2 Modbus 协议说明

上电 450ms 后,可实时进行通讯。当模组接收到≥3 个字节时进入指令接收模式,等待大于 5 毫秒后再发送真正的指令并等待产品回复,进入指令接收模式后会保持 1S 的时间,每当接收到新的串口数据 1S 的保持时间会重新计算,在此期间传感器不能触发,仅做串口数据的接收和处理,超过 1S 没有接收到任何数据则恢复到正常测距模式。

3.2.1 Modbus 协议参数

模式	校验	传感器地址	读功能码	写功能码
Modbus-RTU	CRC-16/MODBUS	可设置,默认 0x01	0x03	0x06

3.2.2 Modbus 协议格式

用户机为主机设备,本模组为从机设备。

主机发送(读):

名称	设备地址	功能码 0x03	寄存器地址	寄存器数量	CRC16 校验
长度(Byte)	1	1	2	2	2

从机回应(读):

名称	设备地址	功能码 0x03	返回字节数	数据区	CRC16 校验
长度(Byte)	1	1	1	N	2

主机发送(写):

名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
长度(Byte)	1	1	2	2	2

从机回应(写):

名称	设备地址	功能码 0x06	寄存器地址	数据区	CRC16 校验
长度(Byte)	1	1	2	2	2

3.2.3 Modbus 寄存器

(1) Modbus 寄存器表

	(-) -:					
权限	地址	功能	数据类型	说明		

			(獨亏:)	密数: □绝密 □机密 □秘密 ■晋週
只读	0x0101	实时值	无符号整 型,16位	模组收到指令后启动完整测距一次,输出 实时距离值,单位: mm,响应时间约 50ms(量程不同而有差异)
只读	0x0106	实时值	无符号整 型,16位	模组收到指令后启动通道一测距一次,输出实时距离值,单位: mm,响应时间约20ms(量程不同而有差异)
只读	0x0107	实时值	无符号整型,16位	模组收到指令后启动通道二测距一次,输出实时距离值,单位: mm,响应时间约20ms(量程不同而有差异)
只读	0x0108	实时值	无符号整型,16位	模组收到指令后启动通道三测距一次,输出实时距离值,单位: mm, 响应时间约20ms(量程不同而有差异)
读写	0x0200	从机地址	无符号整 型,16位	范围: 0x01~0xFE(默认 0x01), 0xFF 为广播地址
读写	0x0201	波特率	无符号整 型,16位	串口波特率(默认 115200),单位: bps, 设置后立即生效,寄存器值对应的波特率 如下: 0x0002:4800,0x0003:9600, 0x0004:14400,0x0005:19200, 0x0006:38400,0x0007:57600, 0x0008:76800,0x0009:115200
读写	0x021F	测距量程	无符号整 型,16位	测距量程范围: 300mm~8000mm, 默认为8000mm
读写	0x0208	检测角度等 级	无符号整型,16位	角度等级可设置为 1~4 级,(默认第 4 级);等级越大,检测角度越大,感应越灵敏,反之越小。
只写	0x023C	恢复受控触 发	无符号整 型,16位	写入1退出指令接收状态,恢复受控触发

备注: 1、寄存器数据为高字节在前,低字节在后。

2、指令读取时间必须大于指令响应时间,确保数据帧收发完整。

(2) 波特率对单包通讯时长的影响

序号	波特率	通讯时长	备注
1	4800	16ms	
2	9600	8ms	
3	14400	5.6ms	
4	19200	4ms	
5	38400	2.4ms	
6	57600	1.6ms	

网址: http://www.dypsensor.com

(编号:)

密级:	□绝密	□机密	□秘密	■普通
111 2/2	L 20 111	U 4/ L 11)	☐ 7X(1))	E 200

7	76800	0.8ms	
8	115200	0.6ms	

注释:波特率越高单包通讯时间越短。

3.2.4 Modbus 通讯举例

例1: 触发完整测距, 读取实时值数据

主机: 01 03 01 01 00 03 55 F7

从机: 01 03 06 04 DF 03 BD 02 EC 25 AF

说明: 传感器地址为0x01,通道一距离值为0x04DF,转换成十进制为1247mm。

通道二距离值为0x03BD,转换成十进制为957mm。

通道三距离值为0x02EC,转换成十进制为748mm。

例2: 触发通道一测距, 读取实时值数据

主机: 01 03 01 06 00 01 65 F7

从机: 01 03 02 04 DF FB 1C

说明: 传感器地址为0x01,通道一距离值为0x04DF,转换成十进制为1247mm。

例3: 触发通道二测距, 读取实时值数据

主机: 01 03 01 07 00 01 34 37 从机: 01 03 02 03 BD 78 C5

说明: 传感器地址为0x01,通道二距离值为0x03BD,转换成十进制为957mm。

例4: 触发通道三测距, 读取实时值数据

主机: 01 03 01 08 00 01 04 34

从机: 01 03 02 02 EC B8 A9

说明: 传感器地址为0x01,通道三距离值为0x02EC,转换成十进制为748mm。

例5: 修改从机地址

主机: 01 06 02 00 00 05 48 71 从机: 01 06 02 00 00 05 48 71 说明: 传感器地址由0x01修改为0x05。

例6:修改角度等级

主机: 01 06 02 08 00 02 88 71 从机: 01 06 02 08 00 02 88 71

说明:模组地址为0x01,角度修改为第2级。

例7: 修改波特率

主机: 01 06 02 01 00 03 99 B3 从机: 01 06 02 01 00 03 99 B3

说明:模组地址为0x01,修改波特率为 9600bps。

四 极限参数

4.1 额定环境条件

项目	最小值	典型值	最大值	单位	备注
存贮温度	-25	25	70	$^{\circ}$	(1)
存贮湿度		65%	95%	RH	(1)
工作温度	0	20	50	$^{\circ}$	(2)
工作湿度	_	-	-	RH	

备注: (1) a、环境温度在-25~40℃时,湿度最高值为95%;

b、环境温度在40~70℃时,湿度最高为当前温度下自然界最高湿度;

(2) 在水下低温工作时,水不能处于凝结状态;

4.2 额定电气条件

参数项	规格			单位	备注
多 数坝	最小值	典型值	最大值	半业	食 住
工作电压	4. 75	5	5. 25	V	(1)
峰值电流			40	mA	
输入纹波			50	mV	V-pp
输入噪声			100	mV	V-pp
ESD			±4K/±15K	V	(2)

备注: (1) 如果供电电压超出范围,可能会导致传感器永久性损坏;

(2) 连接引线、引脚符合 IEC61000-4-2 标准;

五 有效探测范围参考

六 注意事项

- 1、规格书中未尽事宜,如没有特殊要求,按照深圳市电应普科技有限公司默认方式进行;
- 2、设计时请注意结构公差,不合理的结构设计有可能引起模块功能短暂性异常;
- 3、设计时请注意电磁兼容性评估,不合理的系统设计有可能引起模块功能异常;
- 4、涉及产品极限参数边界应用时,可联系本司 FAE 确认相关注意事项。

七 包装规范

- 1、默认为电应普常规包装方式;
- 2、可根据客户 IQC 相关标准定制包材;
- 3、集装箱运输方式需采用交错拼箱方式,同时需在单栈外缘使用裹膜搭配加强角板的方式 以提供足够的支撑。