EEEN20060 Communication Systems

Analysis of MAC Protocols

Brian Mulkeen

UCD School of Electrical,
Electronic and Communications

Scoil na hInnealtóireacht Leictrí, Leictreonaí agus Cumarsáide UCD

Scenario $\tau \longrightarrow \tau$

- N devices share a channel
 - e.g. bus network, all in parallel on cable
- Blocks of data become ready at random times
 - often assume Poisson random process
 - queue to be transmitted
 - eventually sent as frame on channel
 - average time to transmit bits of frame is $\overline{T_F}$
- Propagation delay on channel
 - end-to-end (worst case) τ
 - average delay between two devices $\bar{\tau}$
- Ignore errors short cable, separate problem

What do we want to know?

- Network Throughput
 - total rate of data transfer through system
 - bit/s or data block/s, from all users
 - or normalise: efficiency, block/frame time
- Average Transfer Delay
 - time from data block ready for transmission to final delivery at destination
 - 1. queuing time at sender
 - · waiting behind other blocks that were ready earlier
 - 2. access delay, waiting for turn or permission
 - 3. contention delay, collisions & re-transmissions
 - 4. transmission time, actually sending frame
 - 5. propagation delay, sender to destination

UCD DUBLIN

- In general, customers, here, data blocks
 - arrive into queue at random
 - here, Poisson random process
 - average rate of arrival λ (data block/s)
 - wait for some service, according to queue rule
 - here, service is transmission on channel
 - spend some time being served (service time)
 - here, frame transmission time fixed or variable
 - average service rate is $\mu = \frac{1}{T_0}$ (while busy)
 - then depart from the system

Queuing Theory

- For stable queue, need $\lambda < \mu$
 - arrival rate < service rate
 - define ratio $ho=rac{\lambda}{\mu}$ as link utilisation, want < 1
- Consider random service times (frame size)
 - assume exponential prob. density function
 - as shown above long frames less likely...
 - then prob. *n* customers in queue $P_n = \rho^n (1 \rho)$
 - assumes no limit on queue size...

Queuing Time

Normalised: time in units of average service time

- Average time in system (incl. service)
 - Little's formula: $E[n] = \lambda E[t_0]$
 - so $E[t_Q] = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\mu(1-\rho)}$
- Average time waiting: subtract service time

$$- E[t_W] = E[t_Q] - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

• Fixed service time, this becomes

-
$$\mathrm{E}[t_W] = \frac{\rho}{2\mu(1-\rho)}$$
 only half as long

Queue Size

- Average number of customers in queue
 - know probability of *n* customers...
 - average: $E[n] = \sum_{n=0}^{\infty} nP_n = \sum_{n=0}^{\infty} n\rho^n (1-\rho)$
 - get $E[n] = \frac{\rho}{1-\rho}$ grows rapidly as $\rho \to 1$
- Assumptions (not always realistic):
 - arrivals are Poisson random process
 - service time (frame size) exponential p.d.f.
 - infinite queue (no limit on size)
 - but similar shape for other cases

Example: Fixed TDMA

- Assume fixed-length link-layer frames
 - length T_F , chosen to fit in one time-slot
- Fixed and equal allocations to N devices
 - so N independent queues, arrival rates λ_i
 - service rate fixed, one block per cycle, $\mu = \frac{1}{T_C}$
 - so $ho_i = rac{\lambda_i}{\mu} = \lambda_i T_C$ and $\mathrm{E}[t_W] = rac{\rho_i}{1-\rho_i} rac{T_C}{2}$

UCD DUBLIN

- Cycle time is TDMA frame time, $T_C > NT_F$,
 - with overhead, let $T_C = (N+O)T_F$

Fixed TDMA

- Access delay waiting for turn
 - average = half cycle time
 - but no contention delay
- Average transfer delay: $T_i = \frac{\rho_i}{1-\rho_i} \frac{T_C}{2} + \frac{T_C}{2} + T_F + \bar{\tau}$
- Total throughput: $\lambda = \sum_{i=1}^{N} \lambda_i$
 - assuming all queues stable, $\lambda_i < \mu$
 - max throughput needs frame in every time-slot
- Note:
 - if equal traffic from all, $\rho_i = \frac{\lambda}{N} T_C = \lambda T_F \frac{N+O}{N}$
 - if could combine all data into one queue...
 - service rate (on same channel) $\frac{1}{T_F}$, so $\rho = \lambda T_F$
 - average transfer delay: $T = \frac{\rho}{1-\rho} \frac{T_F}{2} + T_F + \bar{\tau}$

Polling...

- Waiting time in gueue?
 - difficult to calculate in general, often simulate...
- Example:
 - device may send one frame when polled
 - so service rate is one frame per cycle
- How many devices will send frame in cycle?
 - device will send if queue not empty
 - prob. queue empty = $P_0 = 1 \rho$
 - prob. of device *i* sending = ρ_i
 - expected no. frames in cycle = $\sum_{i=1}^{N} \rho_i$
- Average cycle time: $\overline{t_c} = L + \overline{T_E} \sum_{i=1}^{N} \rho_i$
 - hence average service rate...

Example: Polling, independent devices

- Devices generate traffic as in TDMA
 - queue, wait for poll before transmitting
- Cycle time now variable
 - depends on who has data, and how much...
- Cycle time has fixed component, latency, L
 - minimum cycle time, time to poll all devices
 - centralised polling: $L \approx N(T_{noll} + T_{response} + 2\bar{\tau})$
 - for each device, send poll, received after prop. delay
 - device sends response, received after prop. delay
 - times depend on bits in messages and channel bit rate

- for each device, time to transmit token, prop. delay
- Access delay = half average cycle time

Example: Polling, master driven

- Devices generate data when polled
 - e.g. sensors in fire detection system
 - report status when asked, assume ask regularly
 - never want to transmit independently
 - assume equal priority, all polled at same rate
- Throughput depends on polling rate
 - design question is: how often can we poll?
- Cycle time: $T_C = N(T_{poll} + T_{response} + 2\bar{\tau})$
 - for each device, send poll, including data
 - device sends response, with data for master
 - times depend on bits in messages and channel bit rate
 - no queue at devices, no real access delay
 - nothing random in this system
 - so throughput is *N* blocks per cycle...

12

H H H

Example: Aloha

- Devices transmit frame when ready
 - collision if two (or more) frames overlap
- Assume data blocks fixed length (to simplify)
 - giving frame time T_F

UCD DUBLIN

- Vulnerable time $2T_F$
 - collision with our frame if any other device becomes ready in this interval...

Aloha... 0.15

- · Usually normalise to frame time
 - normalised throughput $S = \lambda T_F$ block/frame time
 - normalised attempt rate $G = \lambda' T_F$ attempt/fr. time
- Then $S = Ge^{-2G}$
 - differentiate: $\frac{dS}{dG} = e^{-2G}(1 2G)$ zero for max...
 - max throughput at G = 0.5 attempt/frame time
 - and $S_{max} = \frac{1}{2a} \approx 0.184$ block/frame time

15

Aloha...

UCD BUBLIN

- After collision, back-off, re-transmit...
- To simplify analysis, assume:
 - data blocks arrive for transmission (across all devices) as Poisson random process
 - average arrival rate (new data blocks) λ
 - back-off algorithm makes total transmission attempts a Poisson random process also
 - average rate of attempts $\lambda' > \lambda$
- Probability of success
 - P_S = prob. no transmit attempts in time $2T_F$
 - for Poisson random process, $P_{\rm S}=e^{-\lambda'2T_F}$
 - or P_S = fraction of attempts that succeed: $P_S = \frac{\lambda}{M}$
 - equating these: $\lambda = \lambda' P_{\rm c} = \lambda' e^{-\lambda' 2T_F}$

Aloha... 2.5 G 1.5 0.5 0.05 **S** 0.1 0.15

Alternative view

- desired throughput on X-axis
- see two ways to get it
- one with many collisions and long delays...
- Back-off algorithm vital!
 - want to stay on lower part of curve...
- Slotted Aloha
 - vulnerable time T_F
 - analysis similar...

