HIT 离散数学引论习题解析

Author

2024年5月9日

目录

	集合及其运算	1
1.1	集合的概念	1
1.2	子集、集合的相等	1
第二章	图的基本概念	2
2.1	图论的产生与发展概述	2
2.2	基本定义	2
2.3	路、圈、连通图	2
2.4	补图、偶图	3
2.5	欧拉图	4
2.6	哈密顿图	4
2.7	图的邻接矩阵	5
2.8	带权图与最短路问题	5

第一章 集合及其运算

1.1 集合的概念

1. 本节无习题

1.2 子集、集合的相等

- 1. 略
- 2. 略
- 3. 略
- 4. 正确的:b, c, e, g, i, k, l, p, q, r, s
- 5. 因为有 $A_1\subseteq A_n$ 且 $A_n\subseteq A_1$ 则 $A_1=A_n$ 则有 $A_1\subseteq A_{n-1}$ 且 $A_{n-1}\subseteq A_1$, 如此进行即可得证
- 6. $2^S = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$
- 7. 数学归纳法

第二章 图的基本概念

2.1 图论的产生与发展概述

1. 本节无习题

2.2 基本定义

- 1. 略应有一十个
- 2. 略应有十六个
- 3. 略
- 4. 设图 G = (V, E) 其中 V 是所有参加宴会的人, $\forall v_1, v_2 \in V, v_1v_2 \in E$ 当且仅当 v_1, v_2 握过手,则每个顶点的度数即为每人握手的次数,由推论 6.2.1 即可证
- 5. 假设有一个方案可以满足要求,考虑除起点和终点外经过每个点时都需要选择两条不同的未经过的 边。但是图中有三个点度数为奇数,至少有一个奇度数的点不是起点或终点,所以只能经过这个点 一次,但是一次经过只能走过两条边,所以不存在这种方案
- 6. 略

2.3 路、圈、连通图

- 1. 如果是通道则不一定,因为如果存在通道 $v_1v_2\cdots v_n$ 则 $v_1v_2\cdots v_nv_{n-1}\cdots v_1v_2\cdots v_n$ 则是另一条通道。如果是迹则一定,假设有 $v_1v_2\cdots v_n$ 和 $v_1v_2'\cdots v_n$ 两条迹,如果两条迹除去起始结束点没有重复点,则 $v_1v_2\cdots v_nv_{n-1}'\cdots v_2'v_1$ 是一个圈。否则假设 $v_i=v_j'$ 是第一个重复的点则存在一个 v_i 到 v_i' 的圈
- 2. 对于 p 归纳, p=1,2 时显然成立,若 p=k-1 时成立,则对于图 (p,q) 删去任意顶点 v 后有 m 个分支 $G_1,G_2,\cdots G_m$ 。由归纳假设 $q_i \geq p_i-1$ 。则 $\sum\limits_{i=1}^m q_i = k-\deg v \geq k-1-m$ 由于图连通,所以 v 到每个分支 G_i 至少有一条边,即 $\deg v \geq m$ 从而 $q \geq k-1$
- 3. 如果图是完全图则成立,否则假设有两个不相邻顶点 u,v 有 $\deg u + \deg v \leq p-2$ 删去这两个顶点,图 $G-\{u,v\}$ 的点数为 p-2,边数至少为 $\frac{(p-2)^2}{2}$,这是不可能的,所以对于任意不相邻顶点 u,v 有 $\deg u + \deg v \geq p-1$,即图连通
- 4. 证明思路同3

2.4 补图、偶图 3

5. 反证, 假设存在两条不相交的最长路 P_1, P_2 ,任取 $v_1 \in P_1, v_k \in P_2$,由于图连通,则存在 $v_1v_2 \cdots v_k$ 的一条路,取最大的 l 使 v_l inP_1 ,最小的 r 使 r > l 且 $v_r \in P_2$ 则 $v_l \cdots v_r$ 中间的点都不在 P_1 或 P_2 中。通过这条路连接 P_1, P_2 中较长的两部分,则得到的新路长度至少为 $|P_1|+1$,矛盾,得证

6. 与 8 相同

- 7. ⇒ 任取 $v_1 \in V_1, v_k \in V_2$,有路 $v_1 v_2 \cdots v_k$,则存在 $v_i v_{i+1}$ 在路中且 $v_i \in V_1, v_{i+1} \in V_2$ $\Leftrightarrow \forall v_1, v_n \in G$,取 $V_1 = \{v_1\}, V_2 = V/\{v_1\}$,则存在 $v_2 \in V_2$ 使得 $v_1 v_2 \in E$,之后取 $V_1 = \{v_1, v_2\}, V_2 = V/V_1$,如此进行,可知每次操作后均存在一条路从 v_1 到 v_i ,直到 $v_i = v_k$
- 8. 取图中最长路 $P = v_1 v_2 \cdots v_n$ 可知不存在 $v_1 v_k \in E$ 且 $v_k \notin P$ 否则 $v_k + P$ 是更长的路。则 v_1 所有 连边都是 $v_1 v_i, v_i \in P$,由于 $\deg v_1 \geq \delta(G)$,则至少存在一个 $i \geq \delta(G) + 1$ 使得 $v_1 v_i$,则 $v_1 v_2 \cdots v_i v_1$ 是一个长度至少为 $\delta(G) + 1$ 的圈
- 9. (a) 如果图 G 不连通,则至少有一个支有 $q \ge p$,所以只需对连通图 G 证明。如果 $\delta(G) > 1$,则由 8 可知存在长度至少为 3 的圈,否则删去一个 degv = 1 的点,此时图 $G' = G \{v\}$ 仍然满足 $q \ge p$,若还有 $\delta(G') = 1$,则继续删去一个度数为 1 的点,直到 $\delta(G') \ge 2$ 。因为点数为 1,2 的图不可能有 $q \ge p$,而上述删点过程保证了 $q \ge p$,所以此时图点数至少为 3 且 $\delta \ge 2$,至少存在一个大小为 3 的圈
 - (b) 只需证明 q=p+4 成立即可。反证,假设存在一个图使得 q=p+4 且不存在边不重的圈,取一个点数最小的这样的图记作 G,显然图中不存在度数为 1 的点,否则删去这个点后图点数会更小同时仍然符合条件。且该图最小圈长度为 5,否则取一个长度小于等于 4 的圈,删去这个圈上所有边后仍有 $q \geq p$,由上一问得到还有一个圈,不符合假设。下面证明 $\delta(G) \geq 3$,若存在 $\deg v=2$,假设两条边为 vv_1,vv_2 ,可知 $v_1v_2 \notin E$,否则有一个三元环。则删去 v 加入边 v_1v_2 ,此时仍有 $q \geq p+4$ 且满足性质,矛盾。故 $\delta(G) \geq 3$,则 $2p+8=2q=\sum \deg v \geq 3p$ 即 $p \leq 8$ 。此时取图中一个最小的的圈 C,C 上的顶点除 C 上的边外都有一条不在 C 中的边,记 C 为所有和 C 上顶点距离为 1 的点,则 C 中顶点相连,否则会形成一个长度至多为 C 上顶点距离为 1 的点,则 C 中顶点相连,否则会形成一个长度至多为 C 上旬 与 C 多 矛盾。综上不存在这样的图
- 10. 取 G 中最长路 $P = v_1 v_2 \cdots v_n$,可知 v_1 所有边的终点在 P 中,否则会有更长的路。对于 $v_1 v_i$ 与 $v_1 v_j$ 有 $|j-i| \geq 2$,否则存在长度为三的圈 $v_1 v_i v_j$ 。 v_1 的 k 条边依次为 $v_1 v_2, v_1 v_{i_2}, v_1 v_{i_3} \cdots v_1 v_{i_k}$ 则 $i_k \geq 2 + (k-1) \times 2 = 2k$ 所以 P 长度至少为 2k,则该图至少有 2k 个顶点。同时让 $i_j = i_{j-1} + 2$ 就得到 2k 个顶点的图的唯一构造

2.4 补图、偶图

- 1. G 不是连通图,则存在 $m \ge 2$ 个支 $G_1, G_2, \cdots G_m$,任取两点 u, v,若 u, v 在同一个支 G_i 中,则 在补图 G^c 中存在 ux, vx 两条边使其连通,其中 x 是另外一支的一个点。若 u, v 在不同支则 u, v 有边连通。
- 2. 待补充
- 3. 显然每个自补图所对应的完全图边数都是偶数, 即 $\frac{p(p-1)}{2}$ 是偶数, 即 p 为 4n 或 4n+1

4. 没有三角形我们考虑构造一个偶图,将点划分为U,V两个集合|U|=|V|=n,连边为 $u_1v_1,u_2v_2,\cdots u_nv_n$, $u_1v_2,u_2v_3,\cdots u_{n-1}v_n$, $u_2v_1,u_3v_2,\cdots u_nv_{n-1}$ 与 u_1v_n,u_nv_1

图 2.1: 示例

- 5. 因为 A 是 0 点,B 是 1 点,从 A 到 B 一定走了奇数步,但是不重不漏的走完整个棋盘需要偶数步,所以不可能
- 6. 下面对 p 是偶数证明,p 是奇数应该也差不多。先证明没有度数大于 $\frac{p}{2}$ 的点,若存在度数最大的点 v 有 $d(v) > \frac{p}{2}$,则他所连的 d(v) 个点中每个点度数都小于 n d(v),则 $2q \le d(v) + (d(v) 1)(p d(v)) + d(v)(p d(v) 1) = (p d(v))(2d(v) 1)$ 可知 (p d(v))(2d(v) 1) 是小于 $\frac{p^2}{2}$ 的,所以最大度数小于等于 $\frac{p}{2}$,又 $p \times \frac{p}{2} = \frac{p^2}{2}$,所以该图为 $\frac{p}{2}$ 正则图。且该图没有三角形,则由 6.3 节习题 10 可证得结论
- 7. 建议搜索图兰定理,该定理有很多证明方法
- 8. 对格子黑白染色,每个骨牌会覆盖一个黑格子和一个白格子,删去两个白格子后黑格子和白格子数量不等,无法用骨牌覆盖
- 9. 反证, 若 G^c 中有 u, v 使得 $d(u, v) \ge 3$, 则 $\forall x \in G$ ux, vx 都不在 G^c 中,则 ux, vx 在 G 中,则对于 $x, y \in G$,有路 xuvy 长度为 3,与 G 直径大于 3 矛盾。
- 10. (a) 显然每个顶点有 k 条边, 边数为 $k2^{k-1}$
 - (b) 这是自然的
 - (c) 使得,假设存在一个奇数长度的圈 C,设其长度为 2n+1,则某个顶点 (a_1, a_2, \dots, a_k) 改变了 奇数次变回自身,这是不可能的。所以这是一个偶图

2.5 欧拉图

1. 占位

2.6 哈密顿图

1. 占位

2.7 图的邻接矩阵 5

2.7 图的邻接矩阵

1. 占位

2.8 带权图与最短路问题

1. 占位