

第3次作业

危国锐 120034910021

(上海交通大学海洋学院,上海 200030)

摘 要: 截止日期: 2022-03-10。

关键词:词1,词2

Homework 3

Guorui Wei 120034910021

(School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract: Due date: 2022-03-10. **Keywords:** keyword 1, keyword 2

見 录

摘要	i
Abstract	i
1 Due date: 2022-03-10	1
References	

2022-03-11 05:17:00

Due date: 2022-03-10

1 Due date: 2022-03-10

weiguorui@sjtu.edu.cn 1 / 5 2022-03-11 05:17:00

$$V(Y) = E(Y-EY)^{2} = E[(Y-E(Y|X))+(E(Y|X)-EY)]^{2}$$

$$= \underbrace{E[Y-E(Y|X)]^{2}}_{I} + \underbrace{E[E(Y|X)-EY]^{2}}_{I} + \underbrace{2E[(Y-E(Y|X))(E(Y|X)-EY)]}_{I}$$

$$I. = E\{E[(Y-E(Y|X))^{2}|X]\} = EV(Y|X).$$

$$I. = E[E(Y|X) - E(E(Y|X))]^{2} = VE(Y|X).$$

$$II. = 2E\{E[(Y-E(Y|X))(E(Y|X)-EY)|X]\}$$

$$= 2E\{(E(Y|X)-EY)E[(Y-E(Y|X))|X]\} = 0$$

$$= E(Y|X) - E(Y|X) = 0$$

:. V(Y) = I + II + II = EV(Y|X) + VE(Y|X).

(p.61) 18. Proof. E(x|Y=y) = c ($\forall y$) $\Rightarrow EX = E[E(X|Y)] = C$, E(XY) = E[E(XY|Y)] = E[YE(X|Y)] = cEY $\Rightarrow cov(X,Y) = E[(X-EX)(Y-EY)] = E(XY) - EX \cdot EY = cEY - cEY = c.$ $\Leftrightarrow X \text{ and } Y \text{ are uncoordated.}$

- 9 -

Due date: 2022-03-10

Due date: 2022-03-10 (p-61) 21. Proof $E(Y|X)=X\Rightarrow EY=E[E(Y|X)]=EX$ $\Rightarrow cov(X,Y) = E(XY) - EX \cdot EY = E[E(XY|X)] - EX \cdot EX$ = E[XE(Y|X)] - (EX) = E[X] - (EX) = V(X). qued. (1) $p(Y=0, Z=0) = 0 \neq p(Y=0)p(Z=0)$ $y = 0 \qquad 1$ $y = 0 \qquad 1$ $P(Y=y|z=0) = \begin{cases} 0, & y=0, \\ 1, & y=1, \end{cases}$ $P(Y=y|z=1) = \begin{cases} \frac{1-b}{1-a}, & y=0, \\ \frac{b-a}{1-a}, & y=1. \end{cases}$ $\Rightarrow E(Y|z=0) = 0.0 + 1.1 = 1,$ $E(Y|z=1) = 0.\frac{1-b}{1-a} + 1.\frac{b-a}{1-a} = \frac{b-a}{1-a}$ => E(X|3)= b(5=0) E(X|5=0) + b(5=1) E(X|3=1) $= a \cdot 1 + (1-a) \cdot \frac{b-a}{1-a} = b$ (p-61) 23. Soln: (i) Poisson. $X \sim Poisson(\lambda) \iff P(X=x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, x \in N$ \Rightarrow MAF: $\sqrt{\chi}(t) = E(e^{t\chi}) = \sum_{\chi=0}^{+W} e^{t\chi} e^{-\lambda} \frac{\chi^{\chi}}{\chi_{1}}$ $= e^{-\lambda \sum_{t=0}^{\infty} \frac{\chi_{t}}{(\lambda e_{t})^{\chi}}} = e^{-\lambda} e^{\lambda e_{t}} = e^{\lambda (e_{t}^{-1})}$

Due date: 2022-03-10

(養養色 (ii). Normal. X~Ny102) $\Rightarrow \sqrt[4]{x(t)} = E[e^{tX}] = \int_{\mathbb{R}} e^{tx} \frac{1}{5\sqrt{2x}} \exp\left[-\frac{(x-\mu)^2}{20^2}\right] dx$ $\frac{1}{\sqrt{2}\pi} = \frac{1}{\sqrt{2}\pi} \left[\frac{1}{\sqrt{2}\pi} \left[\frac{1}{\sqrt{2}\pi} \left(\frac{1}{\sqrt{2}\pi} \right) \left(\frac{1}{\sqrt{2}\pi} \right) \right] \left(\frac{1}{\sqrt{2}\pi} \right) \left(\frac{$ $= e^{\mu t + \frac{\partial^2 t^2}{2}}, \quad t \in \mathbb{R}.$ (iii) framma. [Fit Harry X~ frammalx, 3) (9.30) $f_{x}(x) = \frac{x^{-1} e^{-x/\beta}}{e^{-x/\beta}}$ $\Rightarrow \sqrt{x} dt = E[e^{tX}] = \int_{\mathbb{R}} e^{tx} \frac{x^{\alpha + e^{-x/\beta}}}{\beta^{\alpha} \Gamma(\alpha)} dx \qquad (t < \frac{1}{\beta})$ $= \int_{\mathbb{R}} \frac{\chi^{\alpha-1} e^{-\chi/\frac{\beta}{1-\beta+1}}}{(\cdot)^{\alpha-1} dx}$ (1-At) ~ (1-At) ~ $= \left(\frac{1}{1-\beta t}\right)^{\alpha} \cdot \int_{\mathbb{R}} f(x) \int_{\mathbb{R}} f(x) dx = \left(\frac{1}{1-\beta t}\right)^{\alpha} \cdot \frac{1}{1-\beta t}$ (pb1) 24. Proof. Xi & Exp(B) = fxi(x) = 10-x/B, x>0 $\Rightarrow \sqrt{\chi_i(t)} = E(e^{tXi}) = \int_0^{+\infty} e^{tx} \int_{\mathcal{B}} e^{-x/\beta} dx = \frac{1}{1-\beta t}, t < /\beta.$ $\chi:=\sum_{i}\chi_{i} \qquad \qquad \chi_{i}(x)=E\left(e^{t\sum_{i}\chi_{i}}\right)=E\left(\prod_{i=1}^{n}e^{t\chi_{i}}\right)\stackrel{iid}{=}\prod_{i=1}^{n}\chi_{\chi_{i}}(t)=\left(\frac{1}{1-\beta t}\right)^{n}, \quad t<\gamma_{\beta}.$ 这是 Gamma (n, B) 的 MGF. ⇒ ∑Xi ~ Gamma (n, B)

weiguorui@sjtu.edu.cn 4 / 5 2022-03-11 05:17:00

References