A Comparison on multi-response multivariate estimation methods

Raju Rimal, Trygve Almøy and Solve Sæbø 25 Apr, 2018

nt	troduction
	"Big Data" is becoming a focal discussion in most of the discipline
	Massive explosion of data with informations integrated in many variables and features
	New methods and algoriths are being devised inorder to extract such information and study the relationship between different variables
	Modern inter-disciplinary research fields such as chemometrics, echonometrics and bioinformatics are handling multi-response models extensively
	This paper attempts to compare some of such methods and their performance on linear model data with specifically designed properties
Е	Background
[☐ Discuss some previous study on comparison specifically on multi-response setting
[☐ Discuss the experimenal design settings on those papers
[☐ What is new thing about this paper that other have not done
\subset	Objective
[☐ Demonstrate a systematic comparison study using SimrelM
[☐ Compare new estimation methods with conventional methods using data with properties particularly constructed for comparison

Statistical Model

☐ Simulation model

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{y} \\ \boldsymbol{\mu}_{x} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{yy} & \boldsymbol{\Sigma}_{yx} \\ \boldsymbol{\Sigma}_{xy} & \boldsymbol{\Sigma}_{xx} \end{bmatrix} \right)$$

- \square Define transformation as $\mathbf{z} = \mathbf{R}\mathbf{x}$ and $\mathbf{w} = \mathbf{Q}\mathbf{y}$
- ☐ Equivalent latent model will be,

$$\begin{bmatrix} \mathbf{w} \\ \mathbf{z} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} \boldsymbol{\mu}_w \\ \boldsymbol{\mu}_x \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{ww} & \boldsymbol{\Sigma}_{wz} \\ \boldsymbol{\Sigma}_{zw} & \boldsymbol{\Sigma}_{zz} \end{bmatrix} \right)$$

☐ How much should I discuss about simrel-M??

Exerimental Design

☐ Parameters with single level:	
---------------------------------	--

- □ Number of observations (n): 100
- □ Number of response variables (m): 3
- □ Number of informative response components: 2
- □ Position of predictor components relevant for response components (relpos): 1, 4; 2, 3
- \square Something smart (ypos): 1; 2, 3
- □ Parameters with multiple level:
 - □ Number of predictor variables (p): 2 levels (20, 250)
 - □ Decay factor of eigenvalues corresponding to predictors (gamma): 2 levels (0.2, 0.9)
 - \square Decay factor of eigenvalues corresponding to response (eta): 2 levels (0.1, 0.8)
 - \square Coefficient of determination corresponding to each informative response compnents R2: 2 levels (0.8, 0.8; 0.4, 0.8)

Estimation Methods

☐ Methods used in the study and their short description (how they estimate, what are they based on)

1. Principal Component Regression (PCR)

Coefficient plot:: Design: 1 Method: PCR

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

2. Partial Least Squares 1 (PLS1)

Coefficient plot:: Design: 1 Method: PLS1

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

3. Partial Least Squares 2 (PLS2)

Coefficient plot:: Design: 1 Method: PLS2

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

4. Envelope Estimation in Predictor Space (Xenv)

Coefficient plot:: Design: 1 Method: Xenv

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

5. Envelope Estimation in Response Space (Yenv)

Coefficient plot:: Design: 1 Method: Yenv

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

6. Simulteneous envelope estimaion (Senv)

Coefficient plot:: Design: 1 Method: Senv

p: 20, relpos: 1, 4; 2, 3, gamma: 0.2, eta: 0.1, R2: 0.8; 0.8

7. Ridge Regression (Ridge)

Coefficient plot:: Design: 1 Method: Ridge

8. Lasso Regression (Lasso)

Coefficient plot:: Design: 1 Method: Lasso

- ☐ How details should I discuss about these methods in terms their way of estimation and difference between them
- ☐ As *Xenv*, *Yenv* and *Senv* are based on maximum likelihood estimation, principal components of predictors explaining 99.5% of their variation are used.

Exploratory Study

- ☐ This section explores the inter-connection between the estimation methods and the properties of data based on regression coefficients
- ☐ Our discussion revolve around following factors and their interaction
 - ☐ Wide vs Tall predictor matrix

Estimation and Perediction Error: PCR

Response -- 1 -- 2 -- 3

Estimation and Perediction Error: PCR

Response -- 1 -- 2 -- 3

☐ High vs Low multicollinearity

Estimation and Perediction Error: PCR

p: 20 eta: 0.1 gamma: 0.2 R2: 0.4; 0.8

Response -- 1 -- 2 -- 3

Estimation and Perediction Error: PCR

p: 20 eta: 0.1 gamma: 0.9 R2: 0.4; 0.8

Response -- 1 -- 2 -- 3

☐ High vs Low correlation between responses

Estimation and Perediction Error: PCR

p: 20 eta: 0.1 gamma: 0.2 R2: 0.4; 0.8

Response -- 1 -- 2 -- 3

Estimation and Perediction Error: PCR

p: 20 eta: 0.8 gamma: 0.2 R2: 0.4; 0.8

Response -- 1 -- 2 -- 3

☐ Hight vs Low coefficient of determination

Estimation and Perediction Error: PCR p: 20 eta: 0.1 gamma: 0.2 R2: 0.4; 0.8

Number of Component

Estimation and Perediction Error: PCR p: 20 eta: 0.1 gamma: 0.2 R2: 0.8; 0.8

Systematic Comparison

- ☐ Should we use MANOVA model or some kind of norm/trace or similar measure for the error and use ANVOA instead?
- ☐ A MANOVA model is used for statistical analysis

$$pred_{err_{ijklm}} = \mu + p_i * gamma_i * r2_k * method_l * eta_m + \epsilon_{ijklm}$$

- ☐ In the model the prediction error for each of three response variables are used as response variable and following variables (with levels) and their complete interactions are used as predictor variables.
 - a. Number of predictor variables (p): 20 and 250
 - b. Decay factor of eigenvalues of $X(\gamma)$: 0.2 and 0.9

- c. Decay factor of eigenvalues of $Y(\eta)$: 0.1 and 0.8
- d. Coefficient of Determination (ρ): 0.8, 0.8 and 0.4, 0.8
- e. Method of estimation: PCR, PLS1, PLS2, Xenvelope, Yenvelope, Senvelope, Ridge and Lasso
- f. Number of tuning Parameters used (as numeric)
- □ Following is the MANOVA output for estimation error and prediction error models using number of components (tuning parameters) that results minimum error.

Estimation Error Model:

```
Analysis of Variance Table
                       Df Pillai approx F num Df den Df
                                                            Pr(>F)
(Intercept)
                         1 0.85222 12052.7
                                                3
                                                    6270 < 2.2e-16 ***
                         1 0.09529
                                      220.1
                                                    6270 < 2.2e-16 ***
                                                3
                         1 0.68418
                                    4527.6
                                                    6270 < 2.2e-16 ***
gamma
                         1 0.38443
                                                3
                                                    6270 < 2.2e-16 ***
eta
                                    1305.2
                                                    6270 < 2.2e-16 ***
R2
                         1 0.05217
                                     115.0
Method
                        7 0.88602
                                     375.5
                                               21 18816 < 2.2e-16 ***
                        1 0.00396
                                                3 6270 1.648e-05 ***
                                       8.3
p:gamma
                                                    6270 2.187e-08 ***
                        1 0.00613
                                                3
p:eta
                                      12.9
                         1 0.16480
                                     412.4
                                                3
                                                    6270 < 2.2e-16 ***
gamma:eta
                        1 0.00577
                                      12.1
                                                3
                                                    6270 6.556e-08 ***
p:R2
                                      92.8
                                                    6270 < 2.2e-16 ***
gamma:R2
                        1 0.04252
                                                3
                                       0.2
                                                3
eta:R2
                         1 0.00009
                                                    6270 0.9011113
                                               21 18816 < 2.2e-16 ***
p:Method
                        7 0.21428
                                      68.9
gamma:Method
                        7 0.78221
                                     316.0
                                                   18816 < 2.2e-16 ***
                                               21
                        7 0.40078
                                      138.2
                                               21
                                                   18816 < 2.2e-16 ***
eta:Method
R2:Method
                        7 0.12490
                                      38.9
                                               21 18816 < 2.2e-16 ***
                        1 0.00060
                                                    6270 0.2862542
p:gamma:eta
                                       1.3
                                                3
                         1 0.00040
                                       0.8
                                                3
                                                    6270 0.4739464
p:gamma:R2
p:eta:R2
                        1 0.00031
                                       0.7
                                                    6270 0.5806291
gamma:eta:R2
                        1 0.00017
                                       0.4
                                                3
                                                    6270 0.7874492
                                      22.5
                                               21 18816 < 2.2e-16 ***
p:gamma:Method
                        7 0.07353
p:eta:Method
                        7 0.02282
                                       6.9
                                               21
                                                   18816 < 2.2e-16 ***
                                                   18816 < 2.2e-16 ***
                        7 0.23322
                                      75.5
gamma:eta:Method
                                               21
                        7 0.01715
                                       5.2
                                                   18816 1.125e-13 ***
p:R2:Method
                                               21
gamma:R2:Method
                        7 0.09159
                                      28.2
                                               21
                                                   18816 < 2.2e-16 ***
eta:R2:Method
                         7 0.00190
                                       0.6
                                               21 18816 0.9409893
                        1 0.00003
                                       0.1
                                                3
                                                    6270 0.9830458
p:gamma:eta:R2
                        7 0.00613
                                               21 18816 0.0112070 *
p:gamma:eta:Method
                                       1.8
p:gamma:R2:Method
                         7 0.00793
                                       2.4
                                                   18816 0.0003875 ***
                        7 0.00359
                                                   18816 0.3696117
p:eta:R2:Method
                                       1.1
                                               21
                                       0.9
gamma:eta:R2:Method
                        7 0.00307
                                               21
                                                   18816 0.5684497
p:gamma:eta:R2:Method
                        7 0.00308
                                       0.9
                                               21
                                                   18816 0.5651083
Residuals
                      6272
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Prediction Error Model:

```
Analysis of Variance Table
                             Pillai approx F num Df den Df
                                                               Pr(>F)
(Intercept)
                          1 0.99958
                                     5027601
                                                   3
                                                       6270 < 2.2e-16 ***
                          1 0.06360
                                                   3
                                                       6270 < 2.2e-16 ***
                                         142
                                                       6270 < 2.2e-16 ***
gamma
                          1 0.43493
                                        1609
                                                   3
eta
                          1 0.99826
                                     1201956
                                                   3
                                                       6270 < 2.2e-16 ***
R2
                          1 0.99118
                                      234856
                                                  3
                                                       6270 < 2.2e-16 ***
Method
                          7 0.87097
                                         367
                                                 21
                                                      18816 < 2.2e-16 ***
                          1 0.03254
                                          70
                                                       6270 < 2.2e-16 ***
p:gamma
                                                   3
                          1 0.00083
                                                       6270 0.155656
p:eta
                                           2
                                                   3
                          1 0.07579
                                         171
                                                  3
                                                       6270 < 2.2e-16 ***
gamma:eta
                          1 0.00353
                                           7
                                                   3
                                                       6270 6.063e-05 ***
p:R2
                          1 0.04235
                                          92
                                                   3
                                                       6270 < 2.2e-16 ***
gamma:R2
                          1 0.00021
                                           0
                                                  3
                                                       6270 0.726919
eta:R2
                          7 0.20968
                                          67
                                                      18816 < 2.2e-16 ***
p:Method
                                                 21
                                                      18816 < 2.2e-16 ***
gamma:Method
                          7 0.41067
                                         142
                                                 21
                          7 0.14667
                                                      18816 < 2.2e-16 ***
eta:Method
                                          46
                                                 21
                         7 0.26131
                                          85
R2:Method
                                                 21
                                                      18816 < 2.2e-16 ***
                          1 0.00200
                                           4
                                                  3
                                                       6270 0.005629 **
p:gamma:eta
                          1 0.00669
                                          14
                                                  3
                                                       6270 3.855e-09 ***
p:gamma:R2
                          1 0.00027
                                                  3
                                                       6270
                                                             0.641880
p:eta:R2
                                           1
                                           4
gamma:eta:R2
                          1 0.00188
                                                  3
                                                       6270
                                                             0.008216 **
p:gamma:Method
                          7 0.20889
                                          67
                                                 21
                                                      18816 < 2.2e-16 ***
p:eta:Method
                          7 0.01058
                                           3
                                                 21
                                                      18816 1.262e-06 ***
gamma:eta:Method
                          7 0.03617
                                          11
                                                 21
                                                      18816 < 2.2e-16 ***
p:R2:Method
                          7 0.07252
                                          22
                                                 21
                                                      18816 < 2.2e-16 ***
gamma:R2:Method
                          7 0.09446
                                          29
                                                 21
                                                      18816 < 2.2e-16 ***
                          7 0.00529
                                           2
                                                      18816 0.043606 *
eta:R2:Method
                                                 21
                                           3
                                                  3
p:gamma:eta:R2
                          1 0.00129
                                                       6270
                                                             0.044494 *
p:gamma:eta:Method
                          7 0.01106
                                           3
                                                 21
                                                      18816 4.137e-07 ***
p:gamma:R2:Method
                          7 0.04514
                                          14
                                                 21
                                                      18816 < 2.2e-16 ***
p:eta:R2:Method
                          7 0.00442
                                           1
                                                      18816 0.146295
                                                 21
                          7 0.00578
                                           2
gamma:eta:R2:Method
                                                 21
                                                      18816
                                                             0.020300 *
                         7 0.00321
p:gamma:eta:R2:Method
                                           1
                                                 21
                                                      18816
                                                             0.509954
Residuals
                      6272
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

☐ Study of Effect Effect Plot: Prediction Error Effect Plot: Estimation Error cbind(Y1, Y2, Y3) ~ p * gamma * eta : cbind(Y1, Y2, Y3) ~ p * gamma * eta : eta: 0.1 eta: 0.8 eta: 0.1 eta: 0.8 0.5 -1.5 gamma: 0.2 gamma: 0.2 0.4 -1.0 -0.3 -0.5 -0.2 -Effect 0.0 0.5 -1.5 gamma: 0.9 gamma: 0.9 0.4 -1.0 -0.3 -0.5 -0.2 -0.0 -20 250 250 250 20 20 250 20 p p

Response - Y1 - Y2 - Y3

Discussion and Conclusion

Response - Y1 - Y2 - Y3