

Modelling Computation

Marco Carbone

IT University of Copenhagen

October 2014

Computational Models?

Which tasks can be carried out by a computer? Which can't?

Example. A program (a compiler) takes another program as input and computes an (executable) program.

Example. A program P takes another program Q as input and decides if Q terminates on any input.

What is a *computational model*?

We shall consider three classical computational models in detail:

- Finite automata (or finite state machines)
- Grammars
- Turing machines

Strings and Languages (I)

- An alphabet Σ is a finite set of symbols.
- A **string** ω over Σ is a finite sequence of symbols from Σ .
- A language A is a set of strings over some Σ .
- \bullet ϵ is the **empty string**.

Example. If $\Sigma=\{0,1\}$ then 100111 is a string over Σ and |100111|=6. ϵ is a string over any Σ .

Strings and Languages (II)

- Given $\omega_1 = a_1 a_2 \dots a_k$ and $\omega_2 = b_1 b_2 \dots b_l$, $\omega_1 \omega_2$ denotes their concatenation $a_1 a_2 \dots a_k b_1 b_2 \dots b_l$.
- Similarly, AB is the concatenation of two languages defined as $AB = \{\omega\omega' : \omega \in A \text{ and } \omega' \in B\}.$
- A^* denotes the set made by concatenating zero or more strings from A (the Kleene closure).

Example. Given $A = \{000, 0\}$ and $B = \{1\}$,

- \bullet $AB = \{0001, 01\}$
- $B^* = \{\epsilon, 1, 11, 111, 1111, 11111, \ldots\}$

Finite Automata (I)

Informally, a **Finite Automaton** (FA) consists of **states** and **transitions** between states. Only one **start** state, and some states are **accepting**.

Below is a **state diagram** of a FA M_1 with start state q_1 and accept state q_3 : Beginning in q_1 M_1 processes an input string, say 000111,

reading (from left to right) the next symbol and taking the matching transition. If it terminates in q_3 the output is **accept**, otherwise **reject**.

Exercise. Is 000111 accepted, is 10110?

Finite Automata (II)

Example A Java *identifier* is a sequence of letters and digits, starting with a letter. The symbols \$ and _ (underscore) are letters. **Ok** is the accepting state.

The FA below is a *recognizer* for the language of Java identifiers.

Note. We used (abuse of notation) the shorthand of having multiple input symbols on one edge.

Finite Automata (III)

A Finite Automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- Σ is a finite set, the *alphabet*,
- $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- q_0 is the **start** state, and
- $F \subseteq Q$ is the set of **accept** states.

Example. M_1 from slide 5 can be defined by:

$$(Q, \Sigma, \delta, q_0, F)$$

where
$$Q=\{q_1,q_2,q_3\}$$
, $\Sigma=\{0,1\}$, $q_0=q_1$, $F=\{q_3\}$, and
$$\delta=\{(q_1,0,q_1),(q_1,1,q_2),(q_2,0,q_1),(q_2,1,q_3),(q_3,0,q_3),(q_3,1,q_3)\}$$

Finite Automata (IV)

The set of all strings A accepted by a FA M is the **language** of M, denoted by L(M)=A. We say that M recognizes A.

Exercise. What's the language recognized by

Exercise. Define a recognizer for

 $\{\omega\in\{0,1\}^*:\omega \text{ contain at least four 1's}\}.$ Is there a recognizer for $\{\omega\in\{0,1\}^*:\omega \text{ contains the substring 1010}\}$?

Exercise. Let $\Sigma = \{0, 1\}$. Define a recognizer for \emptyset and one for $\{\epsilon\}$.

Finite Automata (V)

The notion of acceptance and recognition can be defined as below.

Let $M=(Q,\Sigma,\delta,q_0,F)$ and let $\omega=a_1\ldots a_k$ be a string over Σ . M accepts ω if there exists a sequence $r_0,r_1,\ldots,r_k\in Q$ such that

- 1 $r_0 = q_0$,
- **2** $\delta(r_i, a_{i+1}) = r_{i+1}$ for $i = 0, \dots, k-1$, and
- 3 $r_k \in F$.

M recognizes A if $A = \{\omega : M \text{ accepts } \omega\}$

Example. The set of Java identifiers is recognized by some FA.

Example. $\{\omega \in \{0,1\}^* : \omega \text{ contains at least four 1's} \}$ is recognized by some FA.

Example. \emptyset and $\{\epsilon\}$ are recognized by some FA.

Non-deterministic FA's (I)

The FA's seen until now are all **deterministic**, in a given state and reading next input the next state is uniquely determined.

In a **non-deterministic** FA (NFA) several possible choices for the next state, and hence several possible computations, may exists.

Example. In q_1 N_1 below may chose between staying in q_1 or move to q_2 on input 1. In q_2 it may move immediately (due to $e = \epsilon$) to q_3 or stay. In q_3 it terminates on input 0.

 N_1 accepts ω if there is a computation accepting ω . N_1 accepts 101, 0111, and . . . ?

Non-deterministic FA's (II)

Viewed as *parallel computation* non-determinism lets several copies of the NFA run concurrently. When an NFA makes a choice it splits into as many copies as choices and each copy proceeds separately.

Example. N_1 executes the string 101 concurrently:

$$\{(q_1, 101)\} \rightarrow \{(q_1, 01), (q_2, 01), (q_3, 01)\} \\ \rightarrow \{(q_1, 1), (q_3, 1), (q_3, 01)\} \\ \rightarrow \{(q_1, \epsilon), (q_2, \epsilon), (q_4, \epsilon), (q_3, 01)\}$$

 \rightarrow symbolizes a concurrent computation step, and each set contains pairs of the current state and the remaining input for each concurrent computation instance.

Non-deterministic FA's (III)

Exercise. What's the language recognized by N_1 and by N_2

Non-deterministic FA's (IV)

Formally a NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of **states**,
- Σ is a finite set, the *alphabet*,
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ is the *transition function*,
- q_0 is the **start** state, and
- $F \subseteq Q$ is the set of **accept** states.

Example. N_1 from above can be defined by: $(Q, \Sigma, \delta, q_0, F)$ where $Q = \{q_1, q_2, q_3, q_4\}, \Sigma = \{0, 1\}, q_0 = q_1, F = \{q_4\}, \text{ and } \delta = \{ (q_1, 0, \{q_1\}), (q_1, 1, \{q_1, q_2\}), (q_1, \epsilon, \emptyset), (q_2, 0, \{q_3\}), (q_2, 1, \emptyset), (q_2, \epsilon, \{q_3\}), (q_3, 0, \emptyset), (q_3, 1, \{q_4\}), (q_3, \epsilon, \emptyset), (q_4, 0, \emptyset), (q_4, 1, \emptyset), (q_4, \epsilon, \emptyset) \}$

NFA's seems to have more computational power than FA's, but ...

Theorem. Every NFA has a FA recognizing the same language.

Example. How to determinise

Idea: Construct a FA that simulates it! The initial state should be $r_1 = \{q_1\}$.

$$(r_1, 0, r_1), (r_1, 1, \{q_1, q_2, q_3\})$$

NFA's seems to have more computational power than FA's, but

Theorem. Every NFA has a FA recognizing the same language.

Example. How to determinise

Idea: Construct a FA that simulates it! The initial state should be $r_1=\{q_1\}$. Let $r_2=\{q_1,q_2,q_3\}$ $(r_1,0,r_1),\,(r_1,1,r_2),\,(r_2,0,\{q_1,q_3\}),\,(r_2,1,\{q_1,q_2,q_3,q_4\})$

NFA's seems to have more computational power than FA's, but

Theorem. Every NFA has a FA recognizing the same language.

Example. How to determinise

Idea: Construct a FA that simulates it! The initial state should be $r_1=\{q_1\}$. Let $r_2=\{q_1,q_2,q_3\}$, and let $r_3=\{q_1,q_3\}$ and $r_4=\{q_1,q_2,q_3,q_4\}$.

$$(r_1, 0, r_1), (r_1, 1, r_2), (r_2, 0, r_3), (r_2, 1, r_4), (r_3, 0, r_1), (r_3, 1, r_4), (r_4, 0, r_3), (r_4, 1, r_4)$$

The accepting state is r_4 because $q_4 \in r_4$.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA recognizing A, define a FA recognizing A by:

$$M = (Q', \Sigma, \delta', q_0', F')$$

where

- $\bullet \ Q' = \mathcal{P}(Q)$
- $\bullet \ q_0' = \{q_0\}$
- $\delta'(R, a) = \{ q \in Q : q \in E(\delta(r, a)) \text{ for some } r \in R \}$
- $F' = \{ R \in Q' : R \text{ contains a state in } F \}$

where

 $E(R) = \{q \in Q : q \text{ can be reached from } R \text{ by } 0 \text{ or more } \epsilon \text{ arrows} \}$