EME 150A LECTURE 11

October 19, 2015

HW 3 PROB #4

if d << re
then represent orre
are sufficient, to
Using ro is most
conservative

Contact Stress

when two objects are pressed together are pressed together area contact develops.

Theory developed 1882 Hextz Hertzian Hertian Contact Stresses

Assumptions:

- loads are perpendicular to the surface - no friction smooth, continous surfaces

- Small strain theory

General Case two radii of curreture

Special Case: Two Spheres

$$Q = \frac{3}{8} \frac{3F(1-\nu_1^3)/E_1 + (1-\nu_3^3)/E_2}{\sqrt{a_1 + \frac{1}{a_2}}}$$

Subscripts match to patentially different diometer Spheres

Along the z axis is max stress.

$$\sqrt{3} = \sqrt{2} = -\frac{P_{\text{max}}}{1 + \frac{2^3}{a^2}}$$

Fig 3-37 Sphere contact stress as function of depth into sphere

Fig 3-39 Cylindrical

Special Case Cylindrical Contact

$$b = \frac{2F}{TR} \frac{(1-v_1^2)/E_1 + (1-v_2^2)}{I} = \frac{3-73}{3}$$

$$53 = 52 = -P_{max}$$
 $\sqrt{1 + \frac{2^2}{b^2}}$

Pitting: spalling due to fatigue in roller bearings

brinelling'. Permanent indentation of hadd

spalling! flaking of muterial from surface

See course website for links to Photos and more into