

Low Drop Voltage Regulator

Features

- 5 V, and variable output voltage
- Output voltage tolerance ≤ ±4%
- 400 mA current capability
- · Low-drop voltage
- Inhibit input
- Very low current consumption
- · Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)

Potential applications

Automotive applications especially with tight space constraints.

Product validation

Qualified for Automotive Applications. Product Validation according to AEC-Q100/101.

Description

The OPTIREGTM Linear TLE4276 is a low-drop voltage regulator in a TO package. The IC regulates an input voltage up to 40 V to $V_{\rm Q,nom}$ = 5.0 V (V50), and adjustable voltage (V). The maximum output current is 400 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is short-circuit-proof and includes temperature protection which turns off the device at overtemperature.

Туре	Package	Marking		
TLE4276SV	PG-TO220-5	4276V		
TLE4276GV50	PG-TO263-5	4276V50		
TLE4276GV	PG-TO263-5	4276V		
TLE4276DV50	PG-TO252-5	4276V50		
TLE4276DV	PG-TO252-5	4276V		

1

Low Drop Voltage Regulator

Table of Contents

1	Block Diagram	3
2	Pin Configuration	4
2.1	Pin Assignments	4
3	Functional Description	5
3.1	Typical Performance Graphs	11
4	Package information	. 13
5	Revision History	15

Block Diagram

Block Diagram 1

Block Diagram Figure 1

Pin Configuration

Pin Configuration 2

Pin Assignments 2.1

Figure 2 **Pin Configuration** (top view)

Table 1 **Pin Definitions and Functions**

Pin No.	Symbol	Function					
1	I	Input; block to ground directly at the IC with a ceramic capacitor.					
2	INH	Inhibit; low-active input.					
3	GND	Ground					
4	N.C. VA	Not connected for V50 Voltage Adjust Input; only for adjustable version. Connect an external voltage divider to determine the output voltage.					
5	Q	Output; block to GND with a ≥ 22 μF capacitor, ESR ≤ 3 Ω at 10 kHz					
Heatsink		Connect to GND.					

Low Drop Voltage Regulator

Functional Description

3 Functional Description

Functional Description

The OPTIREGTM Linear TLE4276 is a low-drop voltage regulator in a TO package. The IC regulates an input voltage up to 40 V to $V_{\rm Q,nom}$ = 5.0 V (V50), and adjustable voltage (V). The maximum output current is 400 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is short-circuit-proof and includes temperature protection which turns off the device at overtemperature.

Dimensioning Information on External Components

The input capacitor C_1 is necessary for compensation of line influences. Using a resistor of approx. 1Ω in series with C_1 , the oscillating of input inductivity and input capacitance can be damped. The output capacitor C_Q is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_Q \ge 22 \mu F$ and an ESR of $\le 3 \Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

Low Drop Voltage Regulator

Functional Description

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Lin	nit Values	Unit	Test Condition	
		Min.	Max.			
Input I	1			<u> </u>		
Voltage	V _I	-42	45	V	_	
Current	I ₁	_	_	_	Internally limited	
Inhibit INH						
Voltage	V_{INH}	-42	45	V	-	
Voltage Adjust Input VA		·				
Voltage	$V_{\sf VA}$	-0.3	10	V	-	
Output Q						
Voltage	V_{Q}	-1.0	40	V	_	
Current	I_{Q}	_	_	_	Internally limited	
Ground GND						
Current	I _{GND}	_	100	mA	-	
Temperature					_	
Junction temperature	$T_{\rm j}$	-40	150	°C	-	
Storage temperature	$T_{ m stg}$	-50	150	°C	_	

Note:

Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 3 ESD Rating

Parameter	Symbol	Limit Values		Unit	Notes	
		Min.	Max.			
ESD Capability	$V_{\rm ESD,HBM}$	2000	_	٧	Human Body Model	

Low Drop Voltage Regulator

Functional Description

Table 4 Operating Range

Parameter	Symbol	Lim	it Values	Unit	Remarks	
		Min.	Max.			
Input voltage	V_{I}	$V_{\rm Q}$ + 0.5	40	V	Fixed voltage devices V50	
Input voltage	V_{I}	$V_{\rm Q} + 0.5$	40	V	Variable device V	
Input voltage	V _I	4.5 V	40	V	Variable device V, V _Q < 4 V	
Junction temperature	T _i	-40	150	°C	-	
Thermal Resistance	, ,		-			
Junction ambient	R _{thj-a}	_	65	K/W	TO220	
Junction ambient	$R_{\rm thj-a}$	_	80	K/W	TO252, TO263 ¹⁾	
Junction case	R_{thi-c}	-	4	K/W	-	

¹⁾Package mounted on PCB $80 \times 80 \times 1.5$ mm; 35μ Cu; 5μ Sn; Footprint only; zero airflow.

Low Drop Voltage Regulator

Functional Description

Table 5 Characteristics

 $V_{\rm i}$ = 13.5 V; -40 °C < $T_{\rm i}$ < 150 °C (unless otherwise specified)

Parameter	Symbol	Limit Values Min. Typ. Max.		Unit	Measuring Condition	Measuring	
						Circuit	
Output voltage	V_{Q}	4.8	5.0	5.2	V	V50-Version $5 \text{ mA} < I_Q < 400 \text{ mA}$ $6 \text{ V} < V_I < 28 \text{ V}$	1
Output voltage	V_{Q}	4.8	5.0	5.2	V	V50-Version 5 mA < I_Q < 200 mA 6 V < V_I < 40 V	1
Output voltage tolerance	$\Delta V_{ m Q}$	-4	_	4	%	V-Version R2 < 50 kΩ V_Q + 1 V ≤ V_I ≤ 40 V V_I > 4.5 V 5 mA ≤ I_Q ≤ 400 mA	1
Output current limitation ¹⁾	I_{Q}	400	600	1100	mA	-	1
Current consumption; $Iq = I_1 - I_Q$	I _q	_	_	10	μΑ	V _{INH} = 0 V; Tj ≤ 100 °C	1
Current consumption; $Iq = I_1 - I_Q$	I _q	_	100	220	μΑ	I _Q = 1 mA	1
Current consumption; Iq = I _I - I _Q	I _q	-	5	10	mA	I _Q = 250 mA	1
Current consumption; Iq = I _I - I _Q	I _q	-	15	25	mA	I _Q = 400 mA	1
Drop voltage ¹⁾	V_{DR}	-	250	500	mV	V50 $IQ = 250 \text{ mA}$ $V_{DR} = V_{I} - V_{Q}$	1
Drop voltage ¹⁾	$V_{ m DR}$	_	250	500	mV	variable devices IQ = 250 mA $V_1 > 4.5 \text{ V}$ $V_{DR} = V_1 - V_Q$	1
Load regulation	$\Delta V_{\rm Q,Lo}$	-	5	35	mV	$I_{\rm Q}$ = 5 mA to 400 mA	1
Line regulation	$\Delta V_{\rm Q,Li}$	-	15	25	mV	$\Delta V_{l} = 12 \text{ V to } 32 \text{ V}$ 1 IQ = 5 mA	
Power supply ripple rejection	PSRR	-	54	-	dB	$f_{\rm r}$ = 100 Hz; 1 Vr = 0.5 Vpp	
Temperature output voltage drift	$\Delta V_{Q}/dT$	_	0.5	_	_	- mV/K	

Low Drop Voltage Regulator

Functional Description

Table 5 Characteristics (cont'd)

 V_i = 13.5 V; -40 °C < T_i < 150 °C (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Measuring Condition	Measuring
		Min.	Тур.	Max.			Circuit
Inhibit	1						-
Inhibit on voltage	V_{INH}	_	2	3.5	V	V _Q ≥ 4.9 V	1
Inhibit off voltage	V_{INH}	0.5	1.7	_	V	$V_{\rm Q} \le 0.1 \rm V$	1
Input current	I _{INH}	5	10	20	μΑ	V _{INH} = 5 V	1

¹⁾ Measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at V_I = 13.5 V.

Figure 3 Measuring Circuit

Figure 4 Application Circuit

Low Drop Voltage Regulator

Functional Description

Application Information for Variable Output Regulator TLE 4276 V

The output voltage of the TLE 4276 V can be adjusted between 2.5 V and 20 V by an external output voltage divider, closing the control loop to the voltage adjust pin VA.

The voltage at pin VA is compared to the internal reference of typical 2.5 V in an error amplifier. It controls the output voltage.

Figure 5 Application Detail External Components at Output for Variable Voltage Regulator

The output voltage is calculated according to **Equation (3.1)**:

$$V_{\rm O} = (R_1 + R_2)/R_2 \times V_{\rm ref}, \text{ neglecting } I_{\rm VA}$$
(3.1)

 $V_{\rm ref}$ is typically 2.5 V.

To avoid errors caused by leakage current I_{VA} , we recommend to choose the resistor value R_2 according to **Equation (3.2)**:

$$R_2 < 50 \text{ k}\Omega$$
 (3.2)

For a 2.5 V output voltage the output pin Q is directly connected to the adjust pin VA.

The accuracy of the resistors R_1 and R_2 add an additional error to the output voltage tolerance.

The operation range of the variable TLE 4276 V is V_Q + 0.5 V to 40 V. For internal biasing a minimum input voltage of 4.3 V is required. For output voltages below 4 V the voltage drop is 4.3 V - V_Q

infineon

Functional Description

3.1 Typical Performance Graphs

Typical Performance Characteristics V50

Voltage $V_{\rm DR}$ versus Output Current $I_{\rm Q}$

Current Consumption I_q versus Output Current I_Q (high load)

Max. Output Current I_Q versus Input Voltage V_I

Current Consumption I_q versus Output Current I_Q (low load)

infineon

Functional Description

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm J}$

Current Consumption I_q versus Input Voltage V_l

Low Voltage Behavior

High Voltage Behavior

12

infineon

Package information

4 Package information

Figure 6 PG-TO220-5 1)

Figure 7 PG-TO263-5 1)

Low Drop Voltage Regulator

Package information

Figure 8 PG-TO252-5 1)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

Low Drop Voltage Regulator

Revision History

Revision History 5

Revision	Date	Changes
2.81	2019-05-22	Updated layout (OPTIREG)
2.80	2018-01-10	Deleted obsolete products: TLE4276V50, TLE4276V85, TLE4276V10, TLE4276SV50, TLE4276SV85, TLE4276GV85 and TLE4276GV10 Updated Template

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-05-22 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Z8F55294382

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.