

生物医学工程学导论

Introduction to Biomedical Engineering

曹国华

上海科技大学生物医学工程学院

2022.09.15

Lecture 2: BME工程学基础 (I)

- □"面条塔" 挑战赛
- □工程学与科学
- □BME工程学基础

"面条塔"挑战赛

目标:

18分钟内, 搭建最高的面条塔, 用于支撑一个棉花糖

材料:

- 20 根面条
- 1 米长胶带
- 1 个棉花糖

规则:

- 与身边同学组队,每队3-4人
- 仅可使用以上材料, 且不可补充
- 棉花糖最高端与支撑桌面的距离为每队成绩

00:18:00

2022 "面条塔" 挑战赛事成绩

队伍	成绩	队伍	成绩
1队		11队	
2队		12队	
3队		13队	
4队		14队	
5队		15队	
6队		16队	
7队		17队	
8队		18队	
9队		19队	
10队		20队	

The Gaming Process

商学院毕业生

幼儿园毕业生

为什么幼儿园学生做得比商学院学生好?

工程思维!

"面条塔"挑战赛不同人群结果比较

反思 Reflection

- 合作
 - 正确合作带来优势
 - 合作的本质是什么?
- 工程学
 - 工程迭代思维
 - 从制造样品到改进样品多次迭代
 - 工程学基础

Lecture 2: BME工程学基础 (I)

- □"面条塔" 挑战赛
- □工程学与科学
- □BME工程学基础

Types of Engineers 工程学专业类别

Marine Aerospace □ Agricultural Mechanical □ Architectural ☐ Materials ☐ Automotive Mining □ Nuclear □ Biological □ Chemical □ Ocean □ Civil □ Petroleum ☐ Computer Systems □ Electrical □ Textile □ Environmental Transportation

Chemical Engineering 化学工程

设计产品和过程

15

Civil Engineering 土木工程

路、桥、建筑

Computer Engineering 计算机工程

计算机程序与软件

Electrical Engineering 电子工程

Mechanical Engineering 机械工程

什么是科学?

Science: pursuit and organization of knowledge and understanding about the nature and social world

什么是工程?

Engineering: Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.

Science 科学 vs. 工程 Engineering

Application:
Application of knowledge
应用:知识的应用

Discovery: Pursuit of knowledge 发现:知识的探索与积累

22

Science or Technology: Who comes first?

X光的发现,1901诺贝尔奖

量子力学,1922诺贝尔奖

现代量子计算机

Q: 先有science还是先有technology?

A: 以前是technology leads to science, 现在更多的是science leads to technology?

Scientific Mindset 科学思维

问题类别:它的机制和原理是怎样的? 使用**科学方法**

1. Hypothesis

An explanatory thought experiment is put forward as explanation using principles.

2. Experiment

Objective observation: Measurement and data, sometimes using mathematics as a tool for data analysis.

Sometimes experiments need to be repeated, and statistical analysis is carried out.

3. Results

Results of experiment are evidence.

4. Conclusion

Engineering Mindset 工程思维

问题:如何设计优秀的产品?

使用工程学设计方法

1. Define the Problem

Research what's been done before Lots of thinking

2. Create Criteria

May be known
May use scientific method to determine

- 3. Design Product Computer simulations
- 4. Optimization Improve it!
- 5. Build a prototype

 Lets customers know what they are getting

"面条塔"挑战赛不同人群结果比较

Lecture 2: BME工程学基础 (I)

- □"面条塔" 挑战赛
- □工程学与科学
- □BME工程学基础
 - 基础课程介绍
 - 医学影像基础

美国BME专业#I 约翰斯霍普金斯 的BME 专业课程体系

- 一系列基于项目的课程,其中
- ・大一:核心基础课程 (BME FOUNDATION):
 - ・数学、物理、化学、生物、编程

- 大二: 进阶课程 (BME BOOTCAMP):
 - 系统控制、建模、模拟
- 大三: 专业选修课程 (BME RESIDENCY)
- 大四: 专业实践课程 (BME PRACTICE)

BME本科专业课程体系

四、推荐性课程设置(共计学分140)

"生物医学工程"课程地图											
学期 板块	— (1) 22 学分(建议)	— (2) 23 学分(建议)	(3)	二 (1) 23 学分(建议)	二 (2) 22 学分(建议)	_ (3)	三 (1) 20 学分(建议)	三 (2) 20 学分(建议)	四 10 学分(建议)		
人文社 料通识 (28)	体育(1) +英 语	体育(1) +英语		中国近现代史 纲要(2)	世界/科技文明 通论(2)		毛泽东思想 概论(3)	马克思主义基 本原理(3)			
	中华文明通 论(3)	思想道德与法 治(2),文学与 写作课程群(3)		体育(1)+ 英语							
	设计思维(3)	经济学导论(3)			体育(1) +英语						
自然科 学通识 (37)	数学分析 I(5)/高等数学 I(4)	数学分析 II(5)/ 高等数学 II(4)		概率论与数理 統计 1/4)-建议 选修							
	线性代数(4)	普通物理 (4)		普通物理 II+实 验(4)-建议选修	普通化学 II+实 验(4) -建议选修						
	信息科技导 论(4)	現代生命科学 导论(3)		普通化学 (4)			-				
专业必	生物医学工程学导论(3)	Python 程序设 计(3)	署学期课程	生物医学信号 与系统 (4)	人体解剖生理 学(4)	暑学期课程		生物医学工程 综合实践(3)	毕业论文(6)		
條 (27)				生物医学电子学 (4)			L				
专业限 _2: Engi 选 (15)	neering Fou	ındation (1)			算法与数据结 构(Python)/ 生物医学信号 与系统II/ 生物医学电子		生物医学影像导论 / 生物医学工程仪器 I / 生物医学智能计算 /	医学图像处理 / 生物医学传感 器: 2	9		

Medical Imaging 医学影像学科方向 所需基础

(生物) 医学影像是做什么的?

可以内视的超人

Biomedical imaging is the science and technologies underlying the <u>acquisition</u>, <u>reconstruction</u>, <u>processing</u>, and <u>interpretation</u> of images of a biological object.

Biomedical Imaging vs. Medical Imaging

Biomedical imaging covers much **broader** topics. In addition to medical imaging, it includes topics in biological sciences and engineering.

Medical imaging: clinical/medical domain Biomedical imaging: research domain

Nano CT Micro CT Clinical CT

Major Medical Imaging Modalities 主要医学影像模态

List of major medical imaging modalities:

- X-rays
- CT (Computed Tomography)
- MRI (Magnetic Resonance Imaging) 磁共振成像
- US (Ultrasound) 超声成像
- PET (Positron Emission Tomography) 正电子断层扫描成像
- SPECT (Single-Photon Emission Computed Tomography) 单光子发射断层扫描成像

Multi-Modalities:

- PET/CT
- SPECT/CT
- PET/MRI
- ...

Example Medical Images

L2: Engineering Foundation (1)

医学影像设备市场

Number of scans each year in the U.S.,

CT: ~8000万

MRI: ~4000万

PET+SPECT: 1500-200万 (~75% SPECT)

中国每百万人口CT机拥有率 为美国的1/2,日本的1/5。

X-ray

 CT

SPECT

MRI

Ultrasound

PET

2维 & 3维 影像

2维

3维

A. 二维胸片

B.矢状位(sagittal view):将人体纵切为

左、右两部分

C.横断位(axial view):水平面,医生常

用的视角

D.冠状位 (coronal view): 也就是额状面

CT Data Acquisition 影像数据采集

CT如何扫描?

CT Image Reconstruction 图像重建

What signals do we measure?

$$I = I_0 e^{-\sum \mu_i \Delta x} \rightarrow S = 1/\Delta x \log I_0 / I = \sum \mu_i$$

How do we reconstruct CT images?

Solve a system of linear equations,

$$S_1$$
, S_2 , S_3 , S_4 , ... to find unknowns,

$$\mu_1$$
, μ_2 , μ_3 , μ_3 , ...

Image Interpretation 医生如何使用医学影像?

