Mat 102 - Matematik II / Calculus II Çalışma Soruları

Diziler

wolframalpha.com kodu.

Bir dizinin limitini bulmak için: limit (n!) / (n^n) as n->infinity kodunu kullanabilirsiniz.

1) Aşağıdaki dizilerin (varsa) limitini bulunuz

a)
$$\frac{5n+7}{3n-1}$$

b)
$$\frac{n+1}{e^n}$$
 c) $\frac{\sin n}{n^2}$

c)
$$\frac{\sin n}{n^2}$$

d)
$$\frac{(-1)^n}{n}$$

2) $\{a_n\}$ dizisi: $a_1=1,\ a_{n+1}=\sqrt{a_n+6},\ n=1,2,\ldots$ eşitlikleri ile tanımlanıyor. Bu dizinin

a) artan,

b) üstten 3 ile sınırlı,

c) yakınsak ve limitinin 3 olduğunu gösteriniz.

3) Aşağıdaki dizilerin yakınsaklıklarını veya ıraksaklıklarını inceleyiniz. Yakınsak iseler limitlerini bulunuz.

a)
$$a_n = \frac{\ln n}{n}$$
 (yak. ve lim = 0)

b)
$$a_n = \frac{1}{\sqrt[8]{n}} + \frac{1}{\sqrt[n]{3}}$$
 (yak. ve lim = 1)

c)
$$a_n = \frac{n!}{3^n}$$
 (ıraksak)

d)
$$a_n = \frac{2^n - 1}{2^n + 1}$$
 (yak. ve lim = 1)

e)
$$a_n = \frac{1 + (-1)^n}{2n}$$
 (yak. ve lim = 0)

e)
$$a_n = \frac{1 + (-1)^n}{2n}$$
 (yak. ve $\lim = 0$) f) $a_n = \begin{cases} \frac{1}{2} - \frac{1}{n} & n \text{ tek ise} \\ \frac{1}{2} + \frac{1}{n} & n \text{ cift ise} \end{cases}$ (yak. ve $\lim = \frac{1}{2}$)

g)
$$a_n = \frac{1}{n} \ln \left(\frac{1}{n} \right)$$
 (yak. ve lim = 0)

g)
$$a_n = \frac{1}{n} \ln \left(\frac{1}{n} \right)$$
 (yak. ve lim = 0) h) $a_n = \frac{1 + 2 + \dots + n}{n^2}$ (yak. ve lim = $\frac{1}{2}$)

i)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = ?$$

j)
$$a_n = \sqrt{n^2 + 3n} - n$$
 (yak. ve lim = 3/2)

4) (Bonus Sorular) Aşağıdaki dizilerin limitlerini (eğer mevcutsa) bulunuz.

(a)
$$a_n = \frac{1^n + 2^n + \dots + n^n}{n^n}$$

(b)
$$a_n = \sqrt[n]{n!}$$

5) $a_n = \frac{1}{n} \cos n$ olduğuna göre (a_n) dizisinin limitini bulunuz.

6) $a_n = \frac{2n^2 - n - 1}{\frac{5n^2 + n - 3}{5n^2 + n - 3}}$ olduğuna göre (a_n) dizisinin yakınsaklığını inceleyiniz.

7) $a_n = \sqrt{n+1} - n$ olduğuna göre (a_n) dizisinin yakınsaklığını inceleyiniz.

8) $a_n = n - \sqrt{n^2 - 4n}$, $n = 4, 5, 6, \dots$ olduğuna göre (a_n) dizisinin yakınsaklığını inceleyiniz.

1

- 9) $a_n = \left(\frac{n-3}{n}\right)^n$ olduğuna göre (a_n) dizisinin limitini bulunuz.
- **10)** $a_n = \frac{(n+1)^n}{n^{n+1}}$ olduğuna göre (a_n) dizisinin limitini bulunuz.
- 11) $a_n = \left(1 + \frac{1}{n^2}\right)^n$ olduğuna göre (a_n) dizisinin limitini bulunuz.
- 12) $\lim_{n\to\infty} \frac{\sqrt[n]{(n+1)(n+2)\dots 2n}}{n} = \frac{4}{e}$ olduğunu gösteriniz.
- 13) $\lim_{n\to\infty} \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ ifadesini hesaplayınız.
- 14) Genel terimi $a_n = 2.\underbrace{999...9}_{n}$ ile verilen $(a_n)_{n=1,2,...}$ dizisinin yakınsak olup olmadığını araştırınız ve eğer yakınsak ise limitini bulunuz.