

COK)3 COBETCKUX СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

..., <u>SU</u>..., 1804543 A3

(51)5 E 21 B 29/10

FOCULARICT BEHINGE PLATENTHOE ВЕДОМСТВО СССР (FOCHATELIT COCK)

RNHATAROEN ANHADNITO

K DATEHTY

12(1) \(\alpha\) 62860\(\delta\) 3 (22) 25.0\(\delta\) 90 (46) 23(03) \(\delta\) 25(03) \(\delta\) 75(0\(\delta\) \(\delta\)

(7)) Всесою зныи научно исследовательский esta tonnanded of tythologularing casa

жин, информацирастворомы циоз А тенры была жиминенко, МЭТ мосты. Modin B. Mindephrot 173) A. T. Program (BB) Transphrot Chino no. 2017 Abn. Am. 285-37.

4985 Авторекое свиде тельство СССР N. 904220 Jan E 2 (1979/42 1988

54) СОЕДИНЕНИЕ ПЛАСТЫРЕЙ ДЛЯ РЕмонта обрадных колонн

157 Испорнование при ремонте обсадных котойн и атключении нефтяных и газовых екважин Сминовти хрицевые цилиндрическиемчастки обласкы рем выполнены с ответнами выступамично впалинами в оиде кольцевых конических унастков. Концевая часть акупренный трубыльнополнена с профольныму проорезями влина которых мень ще дамны жоваененного участка. Найбольная толична концевых участков в зоне гоновновно выбирается по определенному соотношению. Эчо.

NAMED AND SELVE STANDONTO SALESTADOS ENTE перуегазрвых скважинга частности жсовдитинерино торойндовани не обсадных колонный женерино торойндование обсадных колонный OLKOOLEHMAN HAD LOLDKIN MAN JAOURNY LINSCLOB

denso hadope a ma spragron coxpareние герметычности соединения секция пластыря после его распрессовки:

На фион представлено срединение секции пластырнена филу - оскение наружной мізнутренней секций апрофильной их части: нафит 3 - сечение пластыря в месте их совдинения.

В обсадную колонну 1 спускаются секции пластыря: состоящие из наружной 2 и внутренией 3 секций продельно-гофрированных хруб с ципиндрическим унестком 4 в зоне сочленения, осаженным до описанной окружности профильной части пластыря и имеющим толщину стенки 5 и б. составляющую 2/3 или менее их толщины в профильной части.

На наружной сехции выполнены конидеские кольцевые канавки 7, а на внутренпед - кримческие выступы в и продольные прорези 9.

Жляжегоповления пластыря используют две трубные звистовки длиной по 9 метров. Их тофрируют по неей длине, оставляя неарагоффированными концевые участки длиная до 250 мм. Этот участок определяет длину сояденения наружной и внутренней секц пластыря при их сочленении. Цилиндрические концевые участки заготовок протачивают, уменьшая их толщину. обеспечивающую условие S1/S2 ≤2/3, где S1 - толщина каждой стенки на участке их сочленения, а S2 - толщина стенки прододь: но-гофрированных труб, причем на участке внутренней секции пластыря нарезают 3 конических выступа длиной до 70 мм с углом наклона около 1°, а на участке наружной секции пластыря нарезают ответные для вы ступов конические канавуи в заподражения с которыми они входят при сборке секций над устьем скважины.

После этого вдоль образующей цилиндвических участнов вод углом 120° прорезаются три прорези вириной 2-3 мм. длиной не более 200 мм и опрерстием диаметром 4-6 мм винукной часть продези, что позвочаст устанть пружение своиства концевототчаст картуровного своиства концево-

Собранные секлий ілаотыря отискаютсяйк месту каруйренка рем онтируемой ко- 25 до на мерасимотно сокаранняю риморующим устрометром до протного комтакта со слейкомобсальной пубых

никультеру радиодерогоры перекон и зоны не-Птрименения и редприезното соединеком обсединой гомбия рушения обсадных колони, обеспечивая герметичность соединения секций после его распрессовки в процессе ремонтно-изоляционных работ в скважине.

Формула изобретения

Соединение пластырей для ремонта обсадных колонн, включающее сочлененные посредством ответных выступов и впадин цилиндрические концевые участки продольно гофрированных труб, о т л и ч а ю щ е еся тем, что, очелью сохранения герметичности соединения после его распрессовки, выступы и впадины на концевых участках выполнены о виде кольчевых конических участков при этом концевая часть внутренней трубыемполнена с продольными прорезями, управы которых меньше длины сочлененного участка, а толщина стенки участков сочленения выбирается из соотношения

$$\frac{Sc}{S_0} \leq \frac{2}{3}$$

тре 50 - топщина каждой стенки на участке историенения;

\$2 — томщина стенки продольно-гофри-30 граванных труб.

Родактор

Составитель А.Ярыш Техред М.Моргентал

Корректор Л.Ливринц

Закая 1074

Тираж

Подписное

ВНИИЛИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5

[state seal] Union of Soviet Socialist
Republics

(19) \underline{SU} (11) $\underline{1804543}$

(51)5 E 21 B 29/10

USSR State Patent Office (GOSPATENT SSSR)

PATENT SPECIFICATION

- (21) 4862860/03
- (22) June 25, 1990
- (46) March 28, 1993, Bulletin No. 11
- (71) All-Union Scientific-Research and Planning Institute of Well Casing and Drilling Muds
- (72) A. T. Yarysh, V. G. Nikitchenko, M. L. Kisel'man, and V. A. Mishchenko(73) [illegible]
- (56) US Patent No. 2017451, cl. 285-37 (1935).

USSR Inventor's Certificate No. 907220, cl. E 21 B 39/[illegible] (1980) [illegible].

[vertically along right margin]

(19) <u>SU</u> (11) <u>1804543</u> A3

(54) CONNECTION OF PATCHES FOR REPAIR OF CASINGS

(57) Use: In repair of casings and shut-in of oil and gas wells

Essence: Terminal cylindrical portions of the patch are made with reciprocal ridges and grooves in the form of circular conic sections. The terminal portion of the inner tube is made with longitudinal slots, the length of which is less than the length of the joined portion. The greatest thickness of the terminal sections in the joining zone is selected according to a certain ratio. 3 drawings.

The invention relates to operation of oil and gas wells, in particular to connection of corrugated patches that can be used in repair of casings and shut-in of oil and gas formations.

The aim of the invention is to maintain leaktight sealing of the connection of patch sections after pressing.

Fig. 1 shows the connection of the patch sections; Fig. 2 shows a cross section of the outer and inner sections of the shaped portion; Fig. 3 shows a cross section of the patch where they are joined.

Patch sections are lowered into casing 1 that consist of outer 2 and inner 3 sections of longitudinally corrugated tubes with cylindrical portion 4 in the joining zone, swaged to the diameter of the described circumference of the shaped part of the patch and having wall thickness 5 and 6, equal to 2/3 or less of their thickness in the shaped part.

Circular conical grooves 7 are made in the outer section, while conical ridges 8 are made in the inner section.

Two tube blanks of length 9 meters each are used to make the patch. They are corrugated over the entire length, leaving uncorrugated the terminal portions, of length up to 250 mm. This portion determines the joining length of the outer and inner sections of the patch when they are joined together. The cylindrical terminal portions of the blanks are lathed, reducing their thickness, ensuring the condition $S_1/S_2 \le 2/3$, where S_1 is the thickness of each wall in their joining portion, and S_2 is the wall thickness for the longitudinally corrugated tubes, where 3 conical ridges of length up to 70 mm with tilt angle of about 1° are cut in a portion of the inner patch section, and cut in a portion of the outer patch section are conical grooves reciprocal to the ridges [illegible]

which they are inserted in assembling the sections above the wellhead.

After this, along the generatrix of the cylindrical portions at an angle of 120°, three slots are cut of width 2-3 mm, length no greater than 200 mm, and a hole of diameter 4-5 mm is cut in the lower portion of the slot, which makes it possible to enhance the elastic properties of the terminal portion of the inner section.

The patch is assembled at the wellhead. First, inner section 3 of the patch is lowered downhole, cylindrical portion facing upward, on a rod with an expander tool, and then section 2 is forced downward onto its cylindrical portion. This becomes possible because of the presence of longitudinal slots 9 in the inner section. As a result, conical grooves 7 of the outer section and conical ridges 8 of the inner section lock together, [illegible] joining, eliminating axial movement of the sections relative to each other.

The assembled patch sections are lowered to the location of the damage to the string to be repaired, and are expanded [illegible] by the coring device until they are in close contact with the casing wall.

Use of the proposed patch connection makes it possible to seal off the damaged zone

4

of casings, ensuring leaktightness of the connection of the sections after they are pressed in during downhole repair and isolation operations.

Claim

A connection of patches for repair of casings, including cylindrical terminal portions of longitudinally corrugated tubes joined by means of reciprocal ridges and grooves, distinguished by the fact that, with the aim of keeping the connection leaktight after it is pressed in, the ridges and grooves on the terminal portions are implemented in the form of circular conic sections, where the terminal portion of the inner tube is implemented with longitudinal slots, the length of which is less than the length of the joined portion, and the wall thickness in the joining portions is selected from the relationship

$$\frac{\underline{S_1}}{S_2} \leq \frac{2}{3}$$

where S₁ is the thickness of each wall in the portion where they are joined; S₂ is the wall thickness for the longitudinally corrugated tubes.

[see Russian original for figure] [see Russian original for figure] Α Α A-AFig. 2 В В [see Russian original for figure] Fig. 1 Fig. 3 Compiler A. Yarysh **Editor** Tech. Editor M. Morgental Proofreader L. Livrints Order 1074 Run Subscription edition All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries of the State Committee on Science and Technology [VNIIPI] 4/5 Raushkaya nab., Zh-35, Moscow 113035 "Patent" Printing Production Plant, Uzhgorod, 101 ul. Gagarina

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

Patent 1786241 A1 ATLANTA Patent 989038 **BOSTON** BRUSSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON LOS ANGELES MAIM MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC

Abstract 976019 Patent 959878 Abstract 909114 Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3 Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1 Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A1 Patent 1002514

PAGE 2 AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

A POLICE MAY O

OFFICIAL SEAL
MARIA A. SERNA
NOTARY PUBLIC
In and for the State of Texas
y commission expires 03-22-2003

Stamp, Notary Public

Harris County

Houston, TX