Mining Geo Referenced Periodic-Frequent Patterns in Temporal Databases

What is geo referenced periodic-frequent pattern mining?

Geo Referenced Periodic-Frequent pattern mining aims to discover all interesting patterns in a temporal database that have **support** no less than the user-specified **minimum support** (**minSup**) constraint, **periodicity** no greater than user-specified **maximum periodicity** (**maxPer**) constraint and **distance** between two items is no less than **maximum distance** (**maxDist**). The **minSup** controls the minimum number of transactions that a pattern must appear in a database and the **maxPer** controls the maximum time interval within which a pattern must reappear in the database.

What is the temporal database?

A temporal database is a collection of transactions at a particular timestamp, where each transaction contains a timestamp and a set of items.

A hypothetical temporal database containing the items **a**, **b**, **c**, **d**, **e**, **f**, **and g** as shown below

TS	Transactions	
1	a b c g	
2	b c d e	
3	a b c d	
4	a c d f	
5	a b c d g	
6	c d e f	
7	a b c d	
8	a e f	
9	a b c d	
10	b c d e	

Note: Duplicate items must not exist in a transaction.

about:srcdoc Page 1 of 6

Acceptable format of temporal databases in PAMI

Each row in a temporal database must contain timestamp and items.

1abcg

2 b c d e

3 a b c d

4 a c d f

5 a b c d g

6 c d e f

7 a b c d

8aef

9 a b c d

10 b c d e

What is the spatial database?

Spatial database contain the spatial (neighbourhood) information of items. It contains the items and its nearset neighbours satisfying the **maxDist** constraint.

Items	neighbours		
а	b, c, d		
b	a, e, g		
С	a, d		
d	а, с		
е	b, f		
f	e, g		
g	b, f		

Understanding the statisctics of database

about:srcdoc Page 2 of 6

To understand about the database. The below code will give the detail about the transactional database.

- Total number of transactions (Database size)
- Total number of unique items in database
- Minimum lenth of transaction that existed in database
- Average length of all transactions that exists in database
- Maximum length of transaction that existed in database
- Minimum periodicity exists in database
- Average periodicity exists in database
- Maximum periodicity exists in database
- Standard deviation of transaction length
- Variance in transaction length
- Sparsity of database

The sample code

import PAMI.extras.dbStats.temporalDatabaseStats as stats

```
obj = stats.temporalDatabaseStats('sampleInputFile.txt', ' ')
obj.run()
obj.printStats()
```

What is the input to geo referenced periodicfrequent spatial pattern mining algorithms

about:srcdoc Page 3 of 6

Algorithms to mine the geo referenced periodic-frequent patterns requires temporal database, neighbour database, minSup and maxPer (specified by user).

Input temporal database is accepted following formats:

```
In string format
  (/Users/Likhitha/Downlaods/sampleInputFile.txt)
```

- In URL format (https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/tra
- In DataFrame format (dataframe variable with heading TS and Transactions
- Spatial database in following formats:
 - In string format
 (/Users/Likhitha/Downlaods/sampleNeighbourFile.txt)
 - In URL format (https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/tra
 - In DataFrame format (dataframe variable with headings item and Neighbours)
- minSup should be mentioned in count (beween 0 to length of database) or
 __percentage (multiplied with length of database)
- maxPer should be mentioned in count (beween 0 to length of database) or
 __percentage (multiplied with length of database)
- seperator (delimiter used in input file) default delimiter is \t

What is the output of geo referenced periodicfrequent spatial pattern mining algorithms

The output of these algorithms is in two ways:

- Save the patterns in user specified output file.
- Returns the patterns in dataframe variable.

How to run the geo referenced periodic-frequent spatial pattern algorithm in terminal

about:srcdoc Page 4 of 6

- Download the code from github.
- Navigate to PAMI folder where you downloaded the file.
- Go to periodicFrequentSpatialPattern folder

Execute the following command on terminal.

python3 algorithmName.py path of Sample input file path of output
file path of neighbour file \$minSup\$ \$maxPer\$ seperator

Sample command to execute the GPFPMiner algorithm in periodicFrequentSpatialPattern/basic folder

```
python3 GPFPMiner.py /Users/Donwloads/inputFile.txt
/Users/Downloads/outputFile.txt 3 4 ' '
```

How to implement the GPFPMiner algorithm by importing PAMI package

Import the PAMI package executing: pip3 install PAMI

Run the below sample code by making simple changes

- Replace sampleInputFile name or path in place of iFile and sampleOutputFile name or path in place of oFile
- Specify the minSup (like 10 or 0.1) in place of minSup
- Specify the maxPer (like 10 or 0.1) in place of maxPer
- Specify the seperator of input file after maxPer. (If no seperator is specified the default tab seperator is considered for input file)

import PAMI.geoReferencedPeriodicFrequentPattern.GPFPMiner as alg
obj = alg.GPFPMiner(iFile, nFile, minSup, maxPer, sep)
obj.startMine()
obj.savePatterns(oFile) (to store the patterns in file)
Df = obj.getPatternsAsDataFrame() (to store the patterns in dataframe)
obj.printStats() (to print the no of patterns, runtime and memory consumption details)

about:srcdoc Page 5 of 6

What is the output of geo referenced periodicfrequent pattern mining algorithms

Returns the geo referenced pattern with support and periodicity respectively with \$minSup=4\$ and \$maxPer=3\$

The output in file format:

dca:5:3

cd:8:2

ca:6:2

c:9:2

da:5:3

d:8:2

ba:5:2

b:7:2

a:7:2

The output in DataFrame format:

		Patterns	Support	Periodicity
	0	d c a	5	3
	1	c d	8	2
	2	са	6	2
	3	С	9	2
	4	d a	5	3
	5	d	8	2
	6	b a	5	2
	7	а	7	2
	8	b	7	2

about:srcdoc Page 6 of 6