

Лекция 3

Структура коммутативного кольца

Содержание лекции:

Алгебраческая структура кольца по своей важности и фундаментальности не уступает структуре группы. В этой лекции мы опишем данную структуру и дадим определения связанным с ней объектам. Лекция является ознакомительной, но понятия вводимые в ней окажутся крайне полезными в дальнейшем.

Ключевые слова:

Согласование законов, дистрибутивность, кольцо, гомоморфизм колец, подкольцо, идеал кольца, фактор-кольцо, канонический кольцевой гомоморфизм, класс вычетов, делитель нуля, область целостности, нильпотент, обратимый элемент, главный идеал, поле.

A			
ABTO	n i i	TZ 3.7	nca.
Δ DIU	DDI.	\mathbf{r}	vca.

Трифанов А.И.

Москаленко М.А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

3.1 Согласование внутренних законов

Пусть на множестве M задано два всюду определенных закона композиции, обозначаемых через \circ и *. Закон композиции \circ называется дистрибутивным слева относительно закона *, если для любых элементов $x,y,z\in M$ имеет место равенство

$$x \circ (y * z) = (x \circ y) * (x \circ z).$$

Соответственно, дистрибутивность справа означает выполнение следующего равенства:

$$\forall x, y, z \in M \quad (y * z) \circ x = (y \circ x) * (z \circ x).$$

Закон, дистрибутивный и справа и слева называется двояко дистрибутивным.

Пример 3.1. Пусть на множестве M задано два всюду определенных закона композиции, обозначаемых через \circ и *, причем \circ наделяет M структурой группы. Если в M существует нейтральный элемент e относительно * и \circ двояко дистрибутивен относительно *, тогда элемент e является поглощающим относительно закона \circ . Действительно, пусть $x, y \in M$, рассмотрим композицию

$$x \circ y = x \circ (e * y) = (x \circ e) * (x \circ y) = e * (x \circ y).$$

Вообще говоря, из выведенного равенства не следует, что $(x \circ e) = e$, так как не доказано свойство всеобщности - мы показали лишь, что это верно для подмножества M_z композиций вида $z = x \circ y$. Чтобы $M_z = M$ достаточно потребовать существования групповой структуры на M относительно закона \circ .

3.2 Кольца и гомоморфизмы колец

 $Nota\ bene$ На протяжении всего раздела под кольцом R мы будем понимать ассоциативное и коммутативное кольцо с единицей.

Кольцом R называется множество замкнутое относительно двух согласованно заданных на нем бинарных операций, удовлетворяющих следующим аксиомам:

А1. Ассоциативность сложения:

$$\forall x, y, z \in R \quad (x+y) + z = x + (y+z);$$

А2. Существование нуля:

$$\exists \ 0 \in R: \quad x+0=x=0+x \quad \forall x \in R$$

А3. Существование противоположного:

$$\forall x \in R \quad \exists (-x): \quad x + (-1) = 0 = (-x) + x.$$

М1. Асоциативность умножения:

$$\forall x, y, z \in R \quad (xy)z = x(yz);$$

М2. Существование единицы:

$$\exists 1 \in R: 1 \cdot x = x = x \cdot 1, \forall x \in R;$$

М3. Коммутативность:

$$\forall x, y \in R \quad x \cdot y = y \cdot x;$$

D1. Дистрибутивность слева:

$$\forall x, y, z \in R \quad x \cdot (y+z) = xy + xz;$$

D2. Дистрибутивность справа:

$$\forall x, y, z \in R \quad (x+y) \cdot z = xz + yz;$$

Пример 3.2. Примеры колец:

1. Нулевое кольцо:

$$R: \quad 0=1 \quad \Rightarrow \quad \forall x \in R \quad x=1 \cdot x=0 \cdot x=0;$$

2. Целые числа:

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm m, \dots\};$$

3. Кольцо доичных дробей:

$$\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{m}{2^n}: \quad m \neq 2 \cdot k, \quad k \in \mathbb{Z}\right\}$$

4. Пифагорово кольцо:

$$\mathbb{Z}[\sqrt{2}] = \left\{ x + \sqrt{2}y : \quad x, y \in \mathbb{Z} \right\}$$
 (3.1)

5. Гауссово кольцо:

$$\mathbb{Z}[i] = \{x + iy : x, y \in \mathbb{Z}, i^2 = -1\};$$

6. Кольцо многочленов над Z от одного или нескольких параметров:

$$\mathbb{Z}[x] = \left\{ \sum a_j x^j : \quad a_j \in \mathbb{Z} \right\}, \quad \mathbb{Z}[x_1, x_2, \dots, x_n] = \left\{ \sum a_{j_1, j_2, \dots, j_n} x_1^{j_1} x_2^{j_2} \dots x_n^{j_n} \right\}$$

7. Кольцо матриц - пример некоммутативного кольца.

Пусть A и B - кольца. Гомоморфизмом колец называется отображение $f:A\to B$, со следующими свойствами:

• сохранение сложения:

$$\forall x, y \in R \quad f(x+y) = f(x) + f(y);$$

• сохранение умножения:

$$\forall x, y \in R \quad f(xy) = f(x) \cdot f(y);$$

• сохранение единицы:

$$f(1_A) = 1_B$$
.

Подмножество $S \subset R$ называется **подкольцом** кольца R, если оно является абелевой подгруппой R и содержит единицу R.

Nota bene Вложение - кольцевой гомоморфизм:

$$S < R \implies S \hookrightarrow R$$
:

Лемма 3.1. Пусть A, B, C - кольца и

$$f: A \to B, \quad q: B \to C,$$

- кольцевые гомоморфизмы, тогда $g \circ f : A \to C$ - кольцевой гомоморфизм.

3.3 Идеалы и фактор-кольца

Иделалом J в кольце R называется аддитивная подгруппа со свойством

$$RJ \subset J \quad (\forall x \in R, \quad \forall y \in J \quad xy \in J).$$

Пример 3.3. Найдем идеалы в кольце \mathbb{Z} . Пусть m - наименьшее положительное число, лежащее в идеале $J \triangleleft \mathbb{Z}$. Тогда $(m) = m \cdot \mathbb{Z}$. Других идеалов в кольце \mathbb{Z} содержащих элемент m нет. Действительно, пусть

$$z \in J = m \cdot \mathbb{Z} \quad \Rightarrow \quad z = m \cdot u + r, \quad r \in J, \quad r < m \quad \Rightarrow \quad r = \min(J).$$

Лемма 3.2. Пусть $J \triangleleft R$, тогда следующее отношение является отношением эквивалентности на R:

$$x \sim y \Leftrightarrow x - y \in J$$
.

ightharpoons

Утверждение следует из прямой проверки свойств:

R.
$$x - x = 0 \in J \implies x \sim x$$
;

S.
$$x \sim y \implies x - y \in J \implies y - x = -(x - y) \in J \implies x \sim y$$
;

T.
$$x \sim y$$
, $y \sim z \implies x - z = (x - y) + (y - z) \in J \implies x \sim z$.

4

 ${\it Nota \ bene}$ Фактор-множество R/J состоит из классов эквивалентности вида

$$\bar{x} = x + J$$
.

Лемма 3.3. Фактор-множество R/J, наделенное операциями, индуцированными из R имеет структуру кольца:

$$\bar{x} + \bar{y} = \overline{x + y}, \quad \bar{x} \cdot \bar{y} = \overline{x \cdot y}, \quad \bar{0} = J.$$

 \blacktriangleright

Проверяем непосредственно свойства операций:

1.
$$\bar{x} + \bar{y} = (x+J) + (y+J) = (x+y) + J = \overline{x+y}$$
,

2.
$$\bar{x} \cdot \bar{y} = (x+J) \cdot (y+J) = xy + J = \overline{xy}$$
.

3.
$$\bar{0} \cdot \bar{x} = J \cdot (x + J) = J = \bar{0}$$
.

4

Множество R/J называется фактор-кольцом кольца R по идеалу J. Отображение $\varphi:R\to R/J$, действующее как

$$x \mapsto \bar{x} = x + J$$
,

является гомоморфизмом, который называется каноническим.

Пример 3.4. Элементами фактор-кольца $\mathbb{Z}/(m) \triangleq \mathbb{Z}/m\mathbb{Z}$ являются *классы вычетов* по модулю m:

$$\bar{0} = \{x \in \mathbb{Z} : x = 0 \mod(m)\},$$

$$\bar{1} = \{x \in \mathbb{Z} : x = 1 \mod(m)\},$$

$$\dots \dots$$

$$\overline{m-1} = \{x \in \mathbb{Z} : x = (m-1) \mod(m)\}.$$

Лемма 3.4. Пусть $f: A \to B$ - гомоморфизм колец, тогда

$$\ker f \leq A$$
, $\operatorname{Im} f \leq B$
 $A/\ker f \simeq \operatorname{Im} f$.

Покажем, что $\ker f$ - идеал в кольце A:

$$x \in \ker f \quad \Rightarrow \quad f(x) = 0 \quad \Rightarrow \quad \forall y \in A \quad f(xy) = f(x)f(y) = 0 \quad \Rightarrow \quad xy \in \ker f.$$

То, что ${\rm Im}\, f$ - подкольцо в B следует из определения кольцевого гомоморфизма. Последнее утверждение следует из биективности и линейности отображения:

$$(x + \ker f) \mapsto f(x).$$

•

3.4 Делители нуля. Нильпотенты

Делителем нуля в кольце R называется всякий элемент $x \neq 0$, такой что

$$\exists y \neq 0: \quad xy = 0.$$

Пример 3.5. В кольце $\mathbb{Z}/6\mathbb{Z}$ делителями нуля являются элементы $\bar{2}$ и $\bar{3}$.

| Областью целостности называется кольцо, в котором нет делителей нуля.

Пример 3.6. Областями целостности являются кольца \mathbb{Z} и $\mathbb{Z}/p\mathbb{Z}$, где p - простое.

Элемент $z \neq 0$ называется **нильпотентом**, если

$$\exists n \in \mathbb{N} : z^n = 0.$$

Nota bene Всякий нильпотент является делителем нуля. Обратное верно не всегда.

3.5 Обратимые элементы. Поле

Обратимым элементом кольца называется всякий элемент $u \in R$ такой что

$$\exists\,v\in R\quad u\cdot v=1$$

 $Nota\ bene$ В паре u, v оба элемента являются обратимыми.

Лемма 3.5. Множество обратимых элементов кольца R образует мультипликативную группу, обозначаемую R^* .

 $\|$ Идеал вида $(x) = x \cdot R, x \in R$ называется **главным идеалом** кольца R.

Лемма 3.6. Имеет место эквивалентность:

$$x \in R^* \quad \Leftrightarrow \quad (x) = (1) \triangleq R.$$

Полем называется ненулевое кольцо, в котором каждый ненулевой элемент обратим.

Лемма 3.7. Всякое поле K является областью целостности.

Пусть $x, y \in K$ такие что xy = 0. По определению K имеем

$$\exists u, v : ux = 1, \quad yv = 1.$$

Откуда сразу получаем:

$$1 = (ux) \cdot (yv) = u \cdot (xy) \cdot v = 0.$$

Nota bene Обратное, вообще говоря не верно: \mathbb{Z} - область целостности, но не поле.

Теорема 3.1. Пусть R - ненулевое кольцо, тогда следующие утверждения равносильны:

- (1) R поле;
- (2) в R нет идеалов, кроме (0) и (1);
- (3) любой гомоморфизм R в ненулевое кольцо инъективен.

Докажем соответствующие импликации:

- $(1) \Rightarrow (2)$: Пусть $J \leq R$ и $x \in J$, тогда $(1) = (x) \subseteq J \quad \Rightarrow \quad J = (1)$.
- $(2) \Rightarrow (3)$: Пусть $f: R \to B$ - кольцевой гомоморфизм. Тогда

$$\ker f \leq R$$
, $\ker R \neq R \Rightarrow \ker f = 0$,

откуда следует инъективность.

• $(3) \Rightarrow (1)$ Пусть $x \notin R^*$, тогда

$$(x) \neq (1) \quad \Rightarrow \quad B = R/(x) \neq 0, \quad \varphi : R \to R/(x)$$

Из инъективности канонического отображения φ следует, что (x)=0 и x=0.