euen

ennidütni3

4.3.3 Koordinatengleichung einer Ebene

$\begin{cases} \frac{1}{2} \cdot J + \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \cdot S + \begin{pmatrix} 1 \\ 1 \\ 3, E \end{pmatrix} = \overline{X0} : \text{A sine Ebene E: } \frac{1}{2} = \overline{X0}$ (1) Von einer Parameterdarstellung zu einer parameterfreien Gleichung

In Abschnitt 4.3.2 haben wir gesehen, wie man prüft, ob ein Punkt $P(x_1|x_2|x_3)$ in der Ebene E liegt.

Dabei sucht man nach Werten für s und t, die die Vektorgleichung

ob mit diesen Werten auch die dritte Gleichung erfüllt wird. Aus zwei der Gleichungen des Systems werden die Werte für s und t ermittelt und anschließend überprüft,

- Für das obige Gleichungssystem erhält man aus der zweiten Gleichung $t=x_2-1$.
- Setzt man dies in die erste Gleichung ein, so ergibt sich $2s + x_2 1 = x_1 x$ und nach s umgestellt
- . ξ , ξ ξx = $(1 \zeta x) \cdot \xi$ + $(\zeta x \xi, 0 \zeta x \xi, 0) \cdot \lambda$ nem thädre Setzt man hier nun $t = x_2 - 1$ und $s = 0,5x_1 - 0,5x_2$ in die dritte Gleichung des Systems ein, so $s = 0.5 x_1 - 0.5 x_2$.

In dieser Gleichung kommen die Parameter s und t nicht mehr vor, man spricht deshalb auch von einer Zusammengefasst und umgestellt ergibt sich daraus die Gleichung $2x_1 + 3x_2 - x_3 = 1,5$.

Koordinaten also die Gleichung $2x_1 + 3x_2 - x_3 = 1,5$. parameterfreien Gleichung der Ebene E. Liegt ein Punkt $P(x_1|x_2|x_3)$ in der Ebene L, so erfüllen seine

solche Gleichung auch Koordinatengleichung der Ebene E genannt. Da in dieser Gleichung ausschließlich die Koordinaten eines Punktes als Variable vorkommen, wird eine

(2) Von der Lösungsmenge einer Koordinatengleichung zur Parameterdarstellung

Wir betrachten dazu noch einmal die Koordinatengleichung $2x_1 + 3x_2 - x_3 = 1,5$ der Ebene E aus der andere Punkte, die nicht in E liegen und deren Koordinaten auch die Koordinatengleichung erfüllen? Liegt ein Punkt P in der Ebene E, so erfüllen seine Koordinaten die Koordinatengleichung. Gibt es noch

bigen Wert, also z. B. $x_1 = s$ und $x_2 = t$ mit s, $t \in \mathbb{R}$ und stellen nach x_3 um. So ergibt sich: Einführung (1) und untersuchen die Lösungsmenge dieser Gleichung. Wir wählen für x_1 und x_2 einen belie-

$$s = \frac{rx}{1}$$
 bund als Vektorgleichung geschrieben
$$(x_2) = \frac{rx}{1} + \frac{rx}{2} + \frac{rx}{2} + \frac{rx}{2} + \frac{rx}{2} + \frac{rx}{2}$$

dieselbe Ebene E beschrieben, wie durch eine Parameterdarstellung von E. die Ebene E aus der Einführung (1) (siehe dazu Aufgabe 4). Durch die Koordinatengleichung wird also Diese Vektorgleichung kann man als Parameterdarstellung einer Ebene auffassen. Sie beschreibt ebenfalls

Information

Koordinatengleichungen einer Ebene

Wir verallgemeinern die Uberlegungen aus der Einführung:

(1) Jede Ebene kann durch eine **Koordinatengleichung** der Form $a \cdot x_1 + b \cdot x_2 + c \cdot x_3 = d$

(2) Jede Koordinatengleichung der Form $a \cdot x_1 + b \cdot x_2 + c \cdot x_3 = d$ mit a, b, c, $d \in \mathbb{R}$ und $a \neq 0$ oder seine Koordinaten die Koordinatengleichung erfüllen. a, b, c, $d \in \mathbb{R}$ beschrieben werden. Ein Punkt P $(x_1|x_2|x_3)$ liegt genau dann in der Ebene, wenn

 $b \neq 0$ oder $c \neq 0$ beschreibt eine Ebene. Zu jeder Lösung $(x_1 | x_2 | x_3)$ gehört ein Punkt P $(x_1 | x_2 | x_3)$,

der in der Ebene liegt.