TeoriaComputacion_6

January 28, 2020

Teoría de la Computación Gramáticas de Contexto Libre Prof. Wladimir Rodriguez wladimir.rodriguez@outlook.com Departamento de Computación

0.1 Contenido

- Árbol de derivación.
- Ambigüedad.
- Algoritmos de Simplificación de Gramáticas:
- Eliminación de Símbolos y Producciones Inútiles.
- Eliminación de Producciones Nulas.
- Eliminación de Producciones Unitarias.
- Formas Normales:
 - Forma Normal de Chomsky.
 - Forma Normal de Greibach.

0.2 Gramáticas de Contexto Libre

• Una gramática G = (V, T, P, S) se dice que es de contexto libre o de tipo 2 si y solo si todas las producciones tienen la forma:

$$A \to \alpha$$

donde $A \in V$ y $\alpha \in (V \cup T)^*$.

• Los lenguajes generados por estas gramáticas se llaman también de contexto libre o de tipo 2.

0.3 Arbol de Derivación

- $S \rightarrow a b c$
- $S \rightarrow (S+S)$

- $S \rightarrow (S*S)$
- Esta es una gramática libre de contexto: En la parte izquierda de las producciones solo aparece una variable. Al lenguage generado por esta gramática pertenece la palabra ((a+b)*c). Solo hay que aplicar la siguiente cadena de producciones

$$S \Rightarrow (S*S) \Rightarrow ((S+S)*S) \Rightarrow ((a+S)*S) \Rightarrow ((a+b)*S) \Rightarrow ((a+b)*c)$$

0.3.1 Derivación:

$$S \Rightarrow (S*S) \Rightarrow ((S+S)*S) \Rightarrow ((a+S)*S) \Rightarrow ((a+b)*S) \Rightarrow ((a+b)*c)$$

0.3.2 Árbol:

0.4 Construcción

- Cada nodo del árbol va a contener un símbolo.
- En el nodo raíz se pone el símbolo inicial S.
- Se efectúa una ramificación del árbol por cada producción que se aplique: Si a la variable de un nodo, A, se le aplica una determinada regla $A \to \alpha$, entonces para cada símbolo que aparezca en α se añade un hijo con el símbolo correspondiente, situados en el orden de izquierda a derecha.
- Este proceso se repite para todo paso de la derivación.
- Si la parte derecha es una cadena vacía, entonces se añade un solo hijo, etiquetado con ϵ .
- En cada momento, levendo los nodos de izquierda a derecha se lee la palabra generada.

0.5 Ejemplo

$$S \to aAS, \qquad S \to a, \qquad A \to SbA, \qquad A \to SS, \qquad A \to ba$$

• La palabra aabbaa tiene asociado el árbol:

0.6 Árboles y Derivaciones

- Un árbol de derivación puede proceder de dos cadenas de derivación distintas.
 - Se llama derivación por la izquierda asociada a un árbol a aquella en la que siempre se deriva primero la primera variable (más a la izquierda) que aparece en la palabra.
 - Se llama derivación por la derecha asociada a un árbol a aquella en la que siempre se deriva primero la última variable (más a la derecha) que aparece en la palabra.

0.7 Ejemplo

- Dado el árbol de la palabra aabbaa

• Derivación por la izquierda:

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabAS \Rightarrow aabbaS \Rightarrow aabbaa$$

• Derivación por la derecha

$$S \Rightarrow aAS \Rightarrow aAa \Rightarrow aSbAa \Rightarrow aSbbaa \Rightarrow aabbaa$$

0.8 Gramática Ambigua

• Una gramática se dice ambigua si existe una palabra con dos árboles de derivación distintos.

• Ejemplo: La gramática aSa, AAA, Aambigua, que palabra aaaaatiene los dosarboles de derivación siguientes: ya

0.9 Lenguaje Inherentemente Ambiguo

- Un lenguaje de tipo 2 es inherentemente ambiguo si toda gramática que lo genera es ambigua.
- Ejemplo: El lenguaje generado por la gramática anterior $S \to AA, A \to aSa, A \to a$, no es inherentemente ambiguo.
- Este lenguaje es $\{a^{2+3i}:i\ 0\}$ y puede ser generado por la gramática: $S\to aa, S\to aaU, U\to aaaU, U\to aaaU, Q\to aaAU,$
- Unico árbol para a^5 :

0.10 Ejemplo 1

• $E \to I, E \to I - E, E \to E - I, I \to a \ b \ c \ d$ es ambigua, ya que la palabra a-b-c admite dos árboles de derivación distintos:

- Eliminando la producción $E \to I - E$ la gramática deja de ser ambigua.

0.11 Ejemplo 2

• Lenguaje:

$$L = \{a^n b^n c^m d^m : n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n : n \ge 1, m \ge 1\}$$

• Gramática:

$$S \rightarrow AB, A \rightarrow ab, A \rightarrow aAb, B \rightarrow cd, B \rightarrow cBd, S \rightarrow aCd, C \rightarrow aCd, C \rightarrow bDc, C \rightarrow bc, D \rightarrow bDc, D \rightarrow bCd, C \rightarrow b$$

• La palabra *aabbccdd* tiene dos árboles de derivación distintos:

0.12 Símbolos y Producciones Inútiles

• Un símbolo $X \in (V \cup T)$ se dice útil si y solo si existe una cadena de derivaciones en G tal que

$$S \Rightarrow^* X \Rightarrow^* w \in T^*$$

- Una producción se dice útil si y solo si todos sus símbolos son útiles. Esto es equivalente a que pueda usarse en la derivación de alguna palabra del lenguaje asociado a la gramática.
- Eliminando todos los símbolos y producciones inútiles el lenguaje generado por la gramática no cambia.

0.13 Algoritmo

- El algoritmo para eliminar los símbolos y producciones inútiles consta de dos pasos:
 - 1. Eliminar las variables desde las que no se puede llegar a una palabra de T y las producciones en las que aparezcan.
 - 2. Eliminar aquellos símbolos que no sean alcanzables desde el símbolo inicial, S, y las producciones en las que estos aparezcan.

0.14 Orden de los Algoritmos

• Es importante aplicar los algoritmos anteriores en el orden especificado.

$$S \to AB$$
, $S \to a$, $A \to a$

- En el primer paso se elimina B y la producción $S \to AB$.
- Entonces en el segundo se elimina la variable A y la producción $A \to a$.
- Si aplicamos primero el segundo algoritmo, entonces no se elimina nada.
- Al aplicar después el primero de los algoritmos se elimina B y la producción $S \to AB$.
- Donde todavía nos queda la variable inútil A.

$$S \to a, \qquad A \to a$$

0.15 Primera Parte

- Se diseña un algoritmo calculando V_t , conjunto de variables que se pueden subtituir por símbolos terminales.
- Condición Básica: Si $A \to u$, y $u \in T^*$, entonces $A \in V_t$
- Condición Recursiva: Si $A \to \beta_1 \cdots \beta_k$ y cada β_i está en $T \cup V_t$, entonces $A \in V_t$.
- 1. Vt = 0
- 2. Para cada producción de la forma $A \to w$, A se introduce en V_t .
- 3. Mientras V_t cambie
 - 1. Para cada producción $B \to \alpha$
 - 1. Si todas las variables de α pertenecen a V_t
 - 1. B se introduce en V_t
- 4. Eliminar las variables que esten en V y no en V_t
- 5. Eliminar todas las producciones donde aparezca una variable de las eliminadas en el paso anterior

0.16 Ejemplo

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$
 $A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$
 $\vdots V_i = \{\}$
 $S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$
 $A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$
 $\vdots V_i = \{\}$
 $S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$
 $A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$
 $\vdots V_i = \{B,\}$
 $S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$
 $A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$
 $\vdots V_i = \{B,\}$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$
 $\vdots V_i = \{B,\}$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B,C\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B,C\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B,C,D\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B,C,D\}$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B,C,D\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow ooV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

• $V_t = \{B, C, D, W\}$

$$S oup gAe, \qquad S oup aYB, \qquad S oup cY \qquad \boxed{A oup bBY}$$
 $A oup ooC \qquad B oup dd \qquad B oup D \qquad C oup jVB$
 $C oup gi \qquad D oup n \qquad U oup kW \qquad V oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup Yhm$
 $\cdot V_i = \{B, C, D, W\}$
 $S oup gAe, \qquad S oup aYB, \qquad S oup cY \qquad A oup bBY$
 $C oup gi \qquad D oup n \qquad U oup kW \qquad V oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup Yhm$
 $\cdot V_i = \{B, C, D, W\}$
 $S oup gAe, \qquad S oup aYB, \qquad S oup cY \qquad A oup bBY$
 $C oup gi \qquad D oup n \qquad U oup kW \qquad V oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup Yhm$
 $\cdot V_i = \{B, C, D, W, A\}$
 $S oup gAe, \qquad S oup aYB, \qquad S oup cY \qquad A oup bBY$
 $A oup oOC \qquad B oup dd \qquad B oup D \qquad C oup jVB$
 $C oup gi \qquad D oup n \qquad U oup kW \qquad V oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup baXXX$
 $V oup oV \qquad W oup c \qquad X oup fV \qquad Y oup hym$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W, A, U\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W, A, U\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W, A, U\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_i = \{B, C, D, W, A, U\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$
 $A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$
 $C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$
 $V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$

$$\begin{array}{c} \bullet v_i = \{B,C,D,W,A,U\} \\ \hline S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY \\ \hline C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX \\ \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\begin{array}{c} \bullet v_i = \{B,C,D,W,A,U\} \\ \hline S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY \\ \hline A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB \\ \hline C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad \overline{V} \rightarrow baXXX \\ \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\begin{array}{c} \bullet v_i = \{B,C,D,W,A,S\} \\ \hline S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY \\ \hline A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB \\ \hline C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad \overline{V} \rightarrow Yhm$$

$$\begin{array}{c} \bullet v_i = \{B,C,D,W,A,S\} \\ \hline \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow baXXX \\ \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow baXXX \\ \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow baXXX \\ \hline \hline V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\begin{array}{c} \bullet v_i = \{B,C,D,W,A,S\} \\ \hline \end{array}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot V_t = \{B, C, D, W, A, S\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot V_t = \{B, C, D, W, A, S\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot V_t = \{B, C, D, W, A, S\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$V \rightarrow OV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad \boxed{X \rightarrow fV} \qquad Y \rightarrow Yhm$$

$$\cdot v_t = \{B, C, D, W, A, S\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad \boxed{Y \rightarrow Yhm}$$

$$\cdot v_t = \{B, C, D, W, A, S\}$$

$$S \rightarrow gAe, \qquad S \rightarrow aYB, \qquad S \rightarrow cY \qquad A \rightarrow bBY$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D \qquad C \rightarrow jVB$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW \qquad V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot v_t = \{B, C, D, W, A, S\} \qquad V - V_t = \{V, X, Y\}$$

$$S \rightarrow gAe,$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW$$

$$V \rightarrow baXXX$$

$$V \rightarrow oV \qquad W \rightarrow c \qquad X \rightarrow fV \qquad Y \rightarrow Yhm$$

$$\cdot V_t = \{B, C, D, W, A, S\} \qquad V - V_t = \{V, X, Y\}$$

$$S \rightarrow gAe,$$

$$A \rightarrow ooC \qquad B \rightarrow dd \qquad B \rightarrow D$$

$$C \rightarrow gi \qquad D \rightarrow n \qquad U \rightarrow kW$$

$$W \rightarrow c$$

0.17 Segunda Parte

• Realizamos una búsqueda recursiva a partir del símbolo inicial S de todos los símbolos que se pueden alcanzar a partir de el.

$$S \to aAd$$
, $S \to fX$, $A \to b$, $A \to CEd$, ...

- $V_S =$ conjunto de variables obtenidas
- $T_S =$ conjunto símbolos terminales obtenidos
- J = conjunto variables por analizar
- 1. $J = \{S\}, V_S = \{S\}, T_S = \emptyset$
- 2. Mientras $J \neq \emptyset$
 - 1. Extraer un elemento de $J: A, (J = J \{A\}).$
 - 2. Para cada produccion de la forma $A \to \alpha$
 - 1. Para cada variable B en α
 - 1. Si B no está en V_S añadir B a J y a V_S
 - 2. Poner todos los símbolos terminales de α en T_S
- 3. Eliminar todas las variables que no estén en V_S y todos los símbolos terminales que no estén en T_S .
- 4. Eliminar todas las producciones donde aparezca un símbolo o variable de los eliminados en el paso anterior.

$$S \rightarrow gAe$$
,
 $A \rightarrow ooC$ $B \rightarrow dd$ $B \rightarrow D$
 $C \rightarrow gi$ $D \rightarrow n$ $U \rightarrow kW$
 $W \rightarrow c$

 $V_s = \{S\}J = \{S\}T_s = \{\}$ Variable analizada:

$$S \rightarrow gAe$$
,

$$A \rightarrow ooC$$
 $B \rightarrow dd$

$$B \rightarrow dd$$

$$B \rightarrow D$$

$$C \rightarrow gi$$

$$D \rightarrow n$$

$$U \rightarrow kW$$

$$W \rightarrow c$$

$$V_s = \{S\}J = \{\}T_s = \{\}$$
Variable analizada: S

$$S \rightarrow gAe$$
,

$$A \to ooC$$
 $B \to dd$

$$B \rightarrow dd$$

$$B \rightarrow D$$

$$C \rightarrow gi$$
 $D \rightarrow n$ $U \rightarrow kW$

$$D \rightarrow n$$

$$U \rightarrow kW$$

$$W \rightarrow c$$

$$V_s = \{S,A\}J = \{A\}T_s = \{g,e\}$$
Variable analizada:

$$S \rightarrow gAe$$
,

$$A \to ooC$$
 $B \to dd$

$$B \rightarrow dd$$

$$B \rightarrow D$$

$$C \rightarrow gi$$

$$D \rightarrow n$$

$$D \rightarrow n \qquad U \rightarrow kW$$

$$W \rightarrow c$$

$$V_s = \{S,A\}J = \{\}T_s = \{g,e\}$$
Variable analizada: A

$$S \rightarrow gAe$$
,
 $A \rightarrow ooC$ $B \rightarrow dd$ $B \rightarrow D$
 $C \rightarrow gi$ $D \rightarrow n$ $U \rightarrow kW$
 $W \rightarrow c$

 $V_s = \{S,A,C\}J = \{C\}T_s = \{g,e,o\}$ Variable analizada:

$$S \to gAe$$
,
 $A \to ooC$ $B \to dd$ $B \to D$
 $C \to gi$ $D \to n$ $U \to kW$
 $W \to c$

 $V_s = \{S,A,C\}J = \{\}T_s = \{g,e,o\}$ Variable analizada: C

$$S \rightarrow gAe$$
,
 $A \rightarrow ooC$ $B \bigstar dd$ $B \bigstar D$
 $C \rightarrow gi$ $D \bigstar n$ $U \bigstar kW$
 $W \bigstar c$

$$V_s = \{S,A,C\}J = \{\}T_s = \{g,e,o,i\}$$
Variable analizada:

- Unica posible derivación: $S \Rightarrow gAe \Rightarrow gooCe \Rightarrow googie$
- Lenguaje generado: $\{googie\}$

0.18 Lenguaje Vacío

- Si el lenguaje generado por una gramática es vacío, esto se detecta en que la variable S resulta inútil en el primer algoritmo. En ese caso se pueden eliminar directamente todas las producciones, pero no el símbolo S.
- Ejemplo:

$$S \to aSb,$$
 $S \to bcD,$ $S \to cSE,$ $E \to aDb,$ $F \to abc,$ $E \to abF$

• $V_t = \{F, E\},$ $L(G) = \emptyset$

0.19 Formas Normales

- Definen unas características que deben de verificar todas las producciones de una gramática.
 - Producciones nulas
 - Producciones unitarias
 - Forma normal de Chomsky
 - Forma normal de Greibach

0.20 Motivación: El problema de la Pertenencia

• Problema: Dada una gramática independiente del contexto G y una palabra u, ¿pertenece u a L(G)?

• Si la palabra es generada, nos sale en esta búsqueda. Si la palabra no es generada, ¿hasta qué profundidad tenemos que generar para convencernos de que no se puede?

0.21 Producciones Nulas

- $A \to \epsilon$
- Algoritmo que dada una gramática G, construye una gramática G_n sin producciones nulas y tal que $L(G_n) = L(G) \{\epsilon\}$.
- Si tenemos,

$$A \to \epsilon$$
, $D \to aABcD \Rightarrow aABc \Rightarrow aBc$

- Añadimos $D \to aBc$
- Si también $B \to \epsilon$, entonces habría que añadir

$$D \to aBc, \qquad D \to aAc, \qquad D \to ac$$

0.22 Variables Anulables

• Si tenemos $C \to AB, \, A \to \epsilon, \, B \to \epsilon$, habría que añadir, al quitar las producciones nulas:

$$C \to A, \qquad C \to B, \qquad C \to \epsilon$$

- Y después habría que eliminar $C \to \epsilon$
- Nosotros vamos a calcular desde el principio todas las variables, E, tales que en algún momento aparece $E \to \epsilon$. Estas variables se dicen anulables. Son variables tales que $E \Rightarrow^*$
- Después vamos a eliminar todas las producciones nulas y a añadir las producciones que compensen esta eliminación.

0.23 Algoritmo (1)

- H es el conjunto de las variables anulables
- Cálculo de Variables Anulables:

- 1. H =
- 2. Para cada producción $A \to \epsilon$, se hace $H = H \cup \{A\}$
- 3. Mientras H cambie
 - 1. Para cada produccion $B \to A_1 A_2 \cdots A_n$, donde $A_i \in H$ para todo $i = 1, \dots, n$, se hace $H = H \cup \{B\}$

0.24 Algoritmo (2)

- Eliminar y Añadir:
 - 1. Se eliminan todas las producciones nulas de la gramática
 - 2. Para cada produccion de la gramática de la forma $A \to \alpha_1, \dots \alpha_n$, donde $\alpha_i \in V \cup T$.
 - 1. Se añaden todas las producciones de la forma $A \to \beta_1, \dots, \beta_n$, donde $\beta_i = \alpha_i$ si $\alpha_i \in H$ y $(\beta_i = \alpha_i) \lor (\beta_i = \epsilon)$ si $\alpha \in H$ y no todos los β_i puedan ser nulos al mismo tiempo

0.25 Palabra Vacía

- $\bullet\,$ Si G generaba inicialmente la palabra nula, entonces la nueva gramática no la genera.
- Se puede saber si se pierde la palabra vacía comprobando si $S \in H$.
- Si tenemos una gramática G, podemos construir una gramática G_v con una sola producción nula y que genera el mismo lenguaje que G más la palabra vacía. Para ello se añade una nueva variable, S_v , que pasa a ser el símbolo inicial de la nueva gramática, G_v . También se añaden dos producciones:

$$S_v \to S, \qquad S_v \to \epsilon$$

0.26 Ejemplo

• Eliminar las producciones nulas de la siguiente gramática:

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $B \to \varepsilon$, $A \to aA$, $A \to \varepsilon$, $C \to AB$

• Cálculo de $H = \{\}$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $B \to \varepsilon$, $A \to aA$, $C \to AB$

• Cálculo de $H = \{A, B\}$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $B \to \varepsilon$, $A \to aA$, $A \to \varepsilon$, $C \to AB$

• Cálculo de $H = \{A, B, C\}$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $B \to \varepsilon$, $A \to aA$, $A \to \varepsilon$, $C \to AB$

• Cálculo de $H = \{A, B, C, S\}$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $B \times \varepsilon$, $A \to aA$, $A \times \varepsilon$, $C \to AB$

- Cálculo de $H = \{A, B, C, S\}$
- \bullet Al ser S anulable la palabra vacía puede generarse mediante esta gramática.

0.27 Ejemplo: Segunda Parte

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $A \to aA$, $C \to AB$

$$H = \{A, B, C, S\}$$

$$H = \{A,B,C,S\}$$

$$S \rightarrow ABb$$
, $S \rightarrow ABC$, $C \rightarrow abC$, $B \rightarrow bB$, $A \rightarrow aA$, $C \rightarrow AB$, $S \rightarrow Ab$, $S \rightarrow Bb$, $S \rightarrow b$, $S \rightarrow AB$, $S \rightarrow AC$, $S \rightarrow BC$, $S \rightarrow A$, $S \rightarrow B$, $S \rightarrow C$,

 $H = \{A, B, C, S\}$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $A \to aA$, $C \to AB$, $S \to Ab$, $S \to Bb$, $S \to b$, $S \to AB$, $S \to AC$, $S \to BC$, $S \to A$, $S \to B$, $S \to C$, $C \to ab$,

 $H = \{A,B,C,S\}$

$$S \rightarrow ABb, \quad S \rightarrow ABC, \quad C \rightarrow abC, \quad B \rightarrow bB,$$
 $A \rightarrow aA, \quad C \rightarrow AB, \quad S \rightarrow Ab, \quad S \rightarrow Bb,$
 $S \rightarrow b, \quad S \rightarrow AB, \quad S \rightarrow AC, \quad S \rightarrow BC,$
 $S \rightarrow A, \quad S \rightarrow B, \quad S \rightarrow C, \quad C \rightarrow ab,$
 $B \rightarrow b,$

$$H = \{A, B, C, S\}$$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $A \to aA$, $C \to AB$, $A \to AB$, A

$$H = \{A, B, C, S\}$$

$$S oup ABb, \quad S oup ABC, \quad C oup abC, \quad B oup bB,$$
 $A oup aA, \quad C oup AB, \quad S oup Ab, \quad S oup Bb,$
 $S oup b, \quad S oup AB, \quad S oup AC, \quad S oup BC,$
 $S oup A, \quad S oup B, \quad S oup C, \quad C oup ab,$
 $B oup b, \quad A oup a, \quad C oup A,$

$$H = \{A, B, C, S\}$$

$$S \to ABb$$
, $S \to ABC$, $C \to abC$, $B \to bB$, $A \to aA$, $C \to AB$, $S \to Ab$, $S \to Bb$, $S \to b$, $S \to AB$, $S \to AC$, $S \to BC$, $S \to A$, $S \to B$, $S \to C$, $C \to ab$, $B \to b$, $A \to a$, $C \to B$, $C \to A$,

$$H = \{A, B, C, S\}$$

0.28 Producciones Unitarias

$$A \to B$$
, $A, B \in V$

- Si queremos eliminar $A \to B$, perdemos la posibilidad de

$$A \Rightarrow B \Rightarrow \alpha$$

- Para eliminar $A \to B$, añadimos todas las producciones $A \to \alpha$ donde $B \to \alpha$ es una producción - Si tenemos $B \to C$ introduciríamos una unitaria que habría que eliminar después. Para poder eliminar todas de una vez calculamos, H: conjunto de parejas (A,B) tales que B derivable a partir de A.

0.29 Algoritmo

- 1. H =
- 2. Para toda producción de la forma $A \to B$, la pareja (A, B) se introduce en H.
- 3. Mientras H cambie
 - 1. Para cada dos parejas $(A, B), (B, C) \in H$
 - 1. Si la pareja $(A, C) \notin H$

(A,C) se introduce en H

- 4. Se eliminan las producciones unitarias
- 5. Para cada pareja $(B, A) \in H$
 - 1. Para cada producción $A \in \alpha$
 - 1. Se añade una producción $B \in \alpha$

0.30 Ejemplo

$$S \to aBc$$
, $S \to A$, $A \to aAb$, $A \to B$, $A \to ccBS$, $B \to dc$,

• Cálculo de $H = \{\}$

$$S \to aBc$$
, $S \to A$, $A \to aAb$, $A \to B$, $A \to ccBS$, $B \to dc$.

• Cálculo de $H = \{(S, A), (A, B)\}$

$$S \to aBc$$
, $S \to A$, $A \to aAb$, $A \to B$, $A \to ccBS$,

• Cálculo de $H = \{(S, A), (A, B), (S, B)\}$

 $B \rightarrow dc$.

$$S \to aBc$$
, $S \not R$, $A \to aAb$, $A \not R$, $A \to ccBS$,

 $B \rightarrow dc$

• Cálculo de $H = \{(S, A), (A, B), (S, B)\}$

$$S \to aBc$$
, $A \to aAb$, $A \to cd$, $B \to ccBS$, $B \to dc$,

• Cálculo de $H = \{(S, A), (A, B), (S, B)\}$

$$S \rightarrow aBc$$
, $A \rightarrow aAb$, $A \rightarrow cd$, $B \rightarrow ccBS$, $B \rightarrow dc$, $S \rightarrow aAb$, $S \rightarrow cd$,

$$S \to aBc$$
, $A \to aAb$, $A \to cd$, $B \to ccBS$, $B \to dc$, $S \to aAb$, $S \to cd$, $A \to ccBS$, $A \to dc$,

$$S \rightarrow aBc$$
, $A \rightarrow aAb$, $A \rightarrow cd$, $B \rightarrow ccBS$, $B \rightarrow dc$, $S \rightarrow aAb$, $S \rightarrow cd$, $A \rightarrow ccBS$, $A \rightarrow dc$, $S \rightarrow ccBS$, $S \rightarrow dc$,

- Cálculo de $H = \{(S, A), (A, B), (S, B)\}$
- Esta es la gramática resultante:

$$S \rightarrow aBc$$
, $A \rightarrow aAb$, $A \rightarrow cd$, $B \rightarrow ccBS$, $B \rightarrow dc$, $S \rightarrow aAb$, $S \rightarrow cd$, $A \rightarrow ccBS$, $A \rightarrow dc$, $S \rightarrow ccBS$, $S \rightarrow dc$,

- Cálculo de $H = \{(S,A), (A,B), (S,B)\}$

0.31 El problema de la Pertenencia

• Problema: Dada una gramática independiente del contexto G y una palabra u, ¿pertenece u a L(G)?

- Si la palabra es generada, nos sale en esta búsqueda. Si la palabra no es generada, ¿hasta qué profundidad tenemos que generar para convencernos de que no se puede?
- 2n-1 (en cada paso o sacamos al menos un nuevo símbolo terminal (n) o aumenta al menos en 1 la longitud (n-1))

0.32 Forma Normal de Chomsky

• Todas las producciones tienen la forma

$$A \to BC$$
, $A \to a$,

donde $A, B, C \in V, a \in T$.

- El algoritmo se aplica a gramáticas sin producciones nulas ni unitarias
- Hay dos operaciones básicas:
- Eliminar terminales en producciones que no sean $A \to a$
- $\bullet\,$ Eliminar producciones con una longitud en la parte derecha mayor de 2
- Paso 1: Eliminar terminales en producciones que no sean $A \to a$:

• Paso 2: Eliminar producciones con una longitud en la parte derecha mayor de 2:

0.33 Algoritmo

- 1. Para cada producción $A \to \alpha_1 \cdots \alpha_n, \ \alpha_i \in (V\ T), \ n \geq 2$
 - 1. Para cada α_i , si α_i es terminal: $\alpha_i = a \in T$
 - 1. Se añade la producción $C_a \to a$
 - 2. Se cambia α_i por C_a en $A \to \alpha_1 \cdots \alpha_n$
- 2. Para cada producción de la forma $A \to B_1 \cdots B_m, m \ge 3$
 - 1. Se añaden (m-2) variables D_1, D_2, \dots, D_{m-2} (distintas para cada producción)
 - 2. La producción $A \to B_1 \cdots B_m$ se reemplaza por

$$A \to B_1 D_1, \ D_1 \to B_2 D_2, \ \cdots, \ D_{m-2} \to B_{m-1} B_m$$

0.34 Ejemplo

$$S oup bA$$
, $S oup aB$, $A oup bAA$, $A oup AS$, $A oup a$, $B oup aBB$ $B oup bS$, $B oup b$
 $S oup C_b A$, $S oup C_a B$, $A oup C_b AA$, $A oup AS$, $A oup a$, $B oup C_a BB$, $B oup C_b S$, $B oup b$
 $S oup C_b A$, $S oup C_a B$, $A oup C_b AA$, $A oup AS$, $A oup a$, $A oup a$, $A oup AB$, $A oup$

$$S \to C_b A$$
, $S \to C_a B$, $A \to A S$, $A \to a$, $B \to C_a B B$, $B \to C_b S$, $B \to b$, $C_a \to a$ $C_b \to b$ $A \to C_b D_1$, $D_1 \to A A$, $B \to C_a E_1$, $E_1 \to B B$,

• Resultado:

$$\begin{split} S &\to C_b A, \quad S \to C_a B, & A \to A S, \\ A &\to a, & B \to C_b S, \quad B \to b \\ C_a &\to a & C_b \to b & A \to C_b D_1, \quad D_1 \to A A, \\ B &\to C_a E_1, \quad E_1 \to B B, \end{split}$$