Congratulations! You passed!

Grade received 90% Latest Submission Grade 90% To pass 80% or higher

Go to next item

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/1 point
	○ a ^[3] (7)(8)	
	$\bigcirc \ a^{[8](7)(3)}$	
	(a)(3)(8)(7)	
	$a^{[8](3)(7)}$	
	∠ ⁷ Expand	
	⊘ Correct	
2.	Suppose you don't face any memory-related problems. Which of the following make more use of vectorization.	1/1 point
	\bigcirc Mini-Batch Gradient Descent with mini-batch size $m/2$.	
	Batch Gradient Descent	
	Stochastic Gradient Descent, Batch Gradient Descent, and Mini-Batch Gradient Descent	
	all make equal use of vectorization. Stochastic Gradient Descent	
	Stochastic Gradient Descent	
	∠ ⁿ Expand	
	 Correct Yes. If no memory problem is faced, batch gradient descent processes all of the training set in one pass, 	
	maximizing the use of vectorization.	
3.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between? Check all that are	1/1 point
	true.	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the	
	minl-batch.	
	✓ Correct	
	If the mini-batch size is 1, you end up having to process the entire training set before	
	making any progress.	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	✓ Correct	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	∠ ⁿ Expand	
	⊘ Correct	
	Great, you got all the right answers.	
4.	While using mini-batch gradient descent with a batch size larger than 1 but less than m the plot of the cost	0/1 point
	function J looks like this:	o, z polite

North Market Mar

Which of the following do you agree with?

- No matter if using mini-batch gradient descent or batch gradient descent something is wrong.
- If you are using batch gradient descent, this looks acceptable. But if you're using mini-

batch gradient descent, something is wrong. If you are using mini-batch gradient descent or batch gradient descent this looks If you are using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong. ∠ Expand No. The cost is larger than when the process started, this is not right at all. $\textbf{5.} \ \ \text{Suppose the temperature in Casablanca over the first two days of March are the following:}$ 1/1 point March 1st: $heta_1=10^\circ~{
m C}$ March 2nd: $heta_2=25^\circ~{
m C}$ Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t = eta v_{t-1} + (1-eta)\, heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{ ext{corrected}}$ is the value you compute with bias correction. What are these values? \bigcirc $v_2=15$, $v_2^{ ext{corrected}}=20$. ∠⁷ Expand Correct. $v_2=eta v_{t-1}+ig(1-etaig)\, heta_t$ thus $v_1=5,v_2=15$. Using the bias correction $rac{v_t}{1-eta^t}$ we get $\frac{15}{1-(0.5)^2} = 20.$ 6. Which of the following is true about learning rate decay? 1/1 point It helps to reduce the variance of a model. The intuition behind it is that for later epochs our parameters are closer to a minimum thus The intuition behind it is that for later epochs our parameters are closer to a minimum thus it is more convenient to take smaller steps to prevent large oscillations. We use it to increase the size of the steps taken in each mini-batch iteration. ∠⁷ Expand **⊘** Correct $\label{lem:correct.} Correct.\ Reducing the learning rate with time reduces the oscillation around a minimum.$ 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the 1/1 point temperature: $v_t=eta v_{t-1}+(1-eta) heta_t$. The red line below was computed using eta=0.9 . What would happen to your red curve as you vary $\beta ?$ (Check the two that apply) temperature days $\hfill \Box$ Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right.

True, remember that the red line corresponds to eta=0.9. In lecture we had a yellow

