CS 450: Numerical Anlaysis¹ Numerical Optimization

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Numerical Optimization

▶ Our focus will be on *continuous* rather than *combinatorial* optimization:

$$\min_{m{x}} f(m{x})$$
 subject to $m{g}(m{x}) = m{0}$ and $m{h}(m{x}) \leq m{0}$

where $f \in \mathbb{R}^n \to \mathbb{R}$ is assumed to be differentiable.

- ightharpoonup Without the constraints, i.e. with g=0 and h=0, the problem is unconstrained.
- With constraints, the constrained optimization problem restricts the solution to elements of the feasible region: $\{x: g(x) = 0 \text{ and } h(x) \leq 0\}$.
- ▶ We consider linear, quadratic, and general nonlinear optimization problems:
 - If f, g, and h are affine (linear and constant terms only) then we have linear programming problem.
 - If f is quadratic while g and h are linear, then we have a quadratic programming problem, for which specialized methods exist.
 - Generally, we have a nonlinear programming problem.

Local Minima and Convexity

Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a *local* rather than *global* minimum:

If the input domain is infinite or the global minimum is in an infinitesimally narrow trough, it may be impossible to find the global minimum in finite time.

- ► A set is convex if it includes all points on any line, while a function is (strictly) convex if its (unique) local minimum is always a global minimum:
 - Set S is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in S, \quad \alpha \in [0, 1], \quad \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y} \in S.$$

Function f is convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

A function may have a unique global minima but not be convex.

Existence of Local Minima

► Level sets are all points for which f has a given value, sublevel sets are all points for which the value of f is less than a given value:

$$L(z) = \{ \boldsymbol{x} : f(\boldsymbol{x}) = z \}$$
$$S(z) = \{ \boldsymbol{x} : f(\boldsymbol{x}) \le z \}$$

- ▶ If there exists a closed and bounded sublevel set in the domain of feasible points, then *f* has has a global minimum in that set:
 - Need a value z such that S(z) has finite size, is contiguous, and includes its own boundary.

Optimality Conditions

ightharpoonup If x is an interior point in the feasible domain and is a local minima,

$$abla f(oldsymbol{x}) = egin{bmatrix} rac{df}{dx_1}(oldsymbol{x}) & \cdots rac{df}{dx_n}(oldsymbol{x}) \end{bmatrix}^T = oldsymbol{0}:$$

- ▶ If $\frac{df}{dx_i}(x) < 0$ an infinitesimal increment to x_i improves the solution,
- if $\frac{df}{dx_i}(x) > 0$ an infinitesimal decrement to x_i improves the solution.
- ightharpoonup Critical points $oldsymbol{x}$ satisfy $abla f(oldsymbol{x}) = oldsymbol{0}$ and can be minima, maxima, or saddle points:

For scalar function f, can distinguish the three by considering sign of f''(x).

Hessian Matrix

▶ To ascertain whether a critical point x, for which $\nabla f(x) = 0$, is a local minima, consider the *Hessian matrix*:

$$m{H}_f(m{x}) = m{J}_{
abla f}(m{x}) = egin{bmatrix} rac{d^2 f}{dx_1^2}(m{x}) & \cdots & rac{d^2 f}{dx_1 dx_n}(m{x}) \ dots & \ddots & dots \ rac{d^2 f}{dx_n dx_1}(m{x}) & \cdots & rac{d^2 f}{dx_n^2}(m{x}) \end{bmatrix}$$

The Hessian matrix is always symmetric if f is twice differentiable.

If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite: If $H_f(x^*)$ is not positive semi-definite, there exists normalized vector s such that $s^T H_f(x^*) s < 0$, which means that for a sufficiently small α , $\hat{x} = x^* + \alpha s$ will have be a better solution, $f(\hat{x}) < f(x^*)$, since the gradient is zero at x^* and decreases for an infinitesimal perturbation of x^* in the direction s.

Optimality on Feasible Region Border

▶ Given an equality constraint g(x) = 0, it is no longer necessarily the case that $\nabla f(x^*) = 0$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

$$\exists \boldsymbol{\lambda} \in \mathbb{R}^n, \quad -\nabla f(\boldsymbol{x}^*) = \boldsymbol{J}_{\boldsymbol{a}}^T(\boldsymbol{x}^*) \boldsymbol{\lambda}$$

- \triangleright λ are referred to as the Lagrange multipliers.
- This condition implies that at x^* , the direction in which f decreases is in the span of directions moving along which would exit the feasible region.
- Such *constrained minima* are critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$, so they satisfy:

$$abla \mathcal{L}(oldsymbol{x}^*,oldsymbol{\lambda}) = egin{bmatrix}
abla f(oldsymbol{x}^*) + oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x}^*)oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}^*) \end{bmatrix} = oldsymbol{0}$$

Seeking λ^* to obtain a function $k(x) = \mathcal{L}(x, \lambda^*)$ with maximum global minimum is the dual optimization problem.

Sensitivity and Conditioning

The condition number of solving a nonlinear equations is $1/f'(x^*)$, however for a minimizer x^* , we have $f'(x^*) = 0$, so conditioning of optimization is inherently bad:

Consider perturbation of function values for a function that changes slowly near the minimum.

▶ To analyze worst case error, consider how far we have to move from a root x^* to perturb the function value by ϵ :

$$\epsilon = f(x^* + h) - f(x^*) = \underbrace{f'(x^*)h}_{0} + \frac{1}{2}f''(x^*)h^2 + O(h^3)$$

- **>** so the function value changes by $\frac{1}{2}f''(x^*)h^2$, which implies we need $h=O(\sqrt{\epsilon})$,
- ightharpoonup a perturbation to the function value in the kth significant digit, could result in the solution changing in the k/2th significant digit.

Golden Section Search

Demo: Golden Section Proportions **Activity:** Golden Section Search

- ▶ Given bracket [a, b] with a unique local minimum (f is unimodal on the interval), golden section search considers consider points $f(x_1), f(x_2)$, $a < x_1 < x_2 < b$ and discards subinterval $[a, x_1]$ or $[x_2, b]$:
 - ▶ If a function is strictly convex and bounded on [a, b], it is unimodal on that interval, but a unimodal function may be non-convex.
 - ▶ Because the function is unimodal, if we have $f(x_1) < f(x_2)$ then the unique local minima f in [a,b] has to be in the interval $[a,x_2]$.
 - So, if $f(x_1) < f(x_2)$ can restrict search to $[a, x_2]$ and otherwise to $[x_1, b]$.
 - x_2 so one of them can be effectively reused in the next iteration: For example, when $f(x_1) > f(x_2)$, x_2 is inside $[x_1, b]$ and we would like x_2 to

 \triangleright Since one point remains in the interval, golden section search selects x_1 and

- serve as the x_1 for the next iteration. To ensure this, and minimize resulting interval length, we pick
 - To ensure this, and minimize resulting interval length, we pie $x_2 = a + (b-a)(\sqrt{5}-1)/2$ and $x_1 = b (b-a)(\sqrt{5}-1)/2$.
- Consequently, the convergence of golden secetion search is linear with constant $(\sqrt{5}-1)/2$ per function evaluation.

Newton's Method for Optimization

- At each iteration, approximate function by quadratic and find minimum of quadratic function:
 - Pick quadratic function \hat{f} as first three terms of Taylor expansion of f about x_k , matching value and first two derivatives of f at x_k .
- ▶ The new approximate guess will be given by $x_{k+1} x_k = -f'(x_k)/f''(x_k)$:

$$f(x) \approx \hat{f}(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

since the function is quadratic, we can find its unique critical point to find its minima,

$$\hat{f}'(x_{k+1}) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0.$$

Successive Parabolic Interpolation

- ► Interpolate f with a quadratic function at each step and find its minima: Given three points, there is a unique quadratic function interpolating them.
- ▶ The convergence rate of the resulting method is roughly 1.324

 By comparison, the convergence of golden section search is linear with a constant of 0.618, while Newton's method converges quadratically.

Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search: Combination of Newton and golden section search
 - achieves quadratic convergence locally,
 - is guaranteed convergence provided unimodality of function.
- Backtracking and step-size control:
 - Can take smaller step $x_{k+1} = x_k \alpha_k f'(x_k)/f''(x_k)$ for some $\alpha_k < 1$.
 - ▶ Can backtrack and choose smaller α_k if $f(x_{k+1}) > f(x_k)$.

General Multidimensional Optimization

- ▶ Direct search methods by simplex (*Nelder-Mead*): Form a n+1-point polytope in n-dimensional space and adjust worst point (highest function value) by moving it along a line passing through the centroid of the remaining points.
- ▶ Steepest descent: find the minimizer in the direction of the negative gradient:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)$$

such that $f(x_{k+1}) = \min_{\alpha_k} f(x_k - \alpha_k \nabla f(x_k))$, i.e. perform a line search (solve 1D optimization problem) in the direction of the negative gradient.

Convergence of Steepest Descent

- ➤ Steepest descent converges linearly with a constant that can be arbitrarily close to 1:
 - Convergence is slow locally, in the worst case, and generally depends on the Hessian near the minima.
 - If the gradient is changing quickly, it serves as good approximation only within a small local neighborhood, so the line search may result in arbitrarily small steps.
- ▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^TAx + c^Tx$ where A is symmetric positive definite, consider the error $e_k = x_k x^*$:
 - ightharpoonup We can quantify the error using the norm, $||x||_A = x^T A x$, as

$$\lim_{k \to \infty} \frac{||e_{k+1}||_{\boldsymbol{A}}}{||e_k||_{\boldsymbol{A}}} = \frac{\sigma_{\textit{max}}(\boldsymbol{A}) - \sigma_{\textit{min}}(\boldsymbol{A})}{\sigma_{\textit{max}}(\boldsymbol{A}) + \sigma_{\textit{min}}(\boldsymbol{A})}$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- Convergence rate depends on the conditioning of A, since

$$\frac{\sigma_{\max}(\boldsymbol{A}) - \sigma_{\min}(\boldsymbol{A})}{\sigma_{\max}(\boldsymbol{A}) + \sigma_{\min}(\boldsymbol{A})} = \frac{\kappa(\boldsymbol{A}) - 1}{\kappa(\boldsymbol{A}) + 1}.$$

Gradient Methods with Extrapolation

We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k (\boldsymbol{x}_k - \boldsymbol{x}_{k-1})$$

▶ The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

$$\lim_{k \to \infty} \frac{||e_{k+1}||_{\mathbf{A}}}{||e_k||_{\mathbf{A}}} = \frac{\sqrt{\kappa(\mathbf{A})} - 1}{\sqrt{\kappa(\mathbf{A})} + 1}$$

Nesterov's gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method

The *conjugate gradient method* is capable of making the optimal choice of α_k and β_k at each iteration of an extrapolation method:

$$(\alpha_k, \beta_k) = \operatorname*{argmin}_{\alpha_k, \beta_k} \left[f \Big(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k (\boldsymbol{x}_k - \boldsymbol{x}_{k-1}) \Big) \right]$$

- For SPD quadratic programming problems, conjugate gradient is an optimal 1st order method, converging in n iterations.
- ▶ It implicitly computes Lanczos iteration, searching along **A**-orthogonal directions at each step.
- Parallel tangents implementation of the method proceeds as follows
 - 1. Perform a step of steepest descent to generate \hat{x}_k from x_k .
 - 2. Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k .

Nonlinear Conjugate Gradient

- ightharpoonup Various formulations of conjugate gradient are possible for nonlinear objective functions, which differ in how they compute β below
- ► Fletcher-Reeves is among the most common, computes the following at each iteration
 - 1. Perform 1D minimization for α in $f(x_k + \alpha s_k)$
 - 2. $x_{k+1} = x_k + \alpha s_k$
 - 3. Compute gradient $g_{k+1} = \nabla f(x_{k+1})$
 - 4. Compute $\beta = g_{k+1}^T g_{k+1} / (g_k^T g_{k+1})$
 - 5. $s_{k+1} = -g_{k+1} + \beta s_k$

Conjugate Gradient for Quadratic Optimization

- Conjugate gradient is an optimal iterative method for quadratic optimization, $f(x) = \frac{1}{2}x^TAx b^Tx$
- ► For such problems, it can be expressed in an efficient and succinct form, computing at each iteration
 - 1. $\alpha = \boldsymbol{r}_k^T \boldsymbol{r}_k / \boldsymbol{s}_k^T \boldsymbol{A} \boldsymbol{s}_k$
 - 2. $x_{k+1} = x_k + \alpha s_k$
 - 3. Compute gradient $r_{k+1} = r_k \alpha_k A s_k$
 - **4**. Compute $\beta = r_{k+1}^T r_{k+1} / (r_k^T r_{k+1})$
 - 5. $s_{k+1} = r_{k+1} + \beta s_k$
- Note that for quadratic optimization, the negative gradient -g corresponds to the residual r=b-Ax

Krylov Optimization

- Conjugate Gradient finds the minimizer of $f(x) = \frac{1}{2}x^TAx b^Tx$ within the Krylov subspace of A:
 - ightharpoonup It constructs Krylov subspace $\mathcal{K}_k(A,b) = \operatorname{span}(b,Ab,\ldots,A^{r-1}b)$.
 - At the kth step conjugate gradient yields iterate

$$m{x}_k = ||m{b}||_2 m{Q}_k m{T}_k^{-1} m{e}_1,$$

where $m{Q}_k$ are the Lanczos vectors associated with $m{\mathcal{K}}_k(m{A},m{b})$ and $m{T}_k=m{Q}_k^Tm{A}m{Q}_k.$

ightharpoonup This choice of x_k minimizes f(x) since

$$egin{aligned} \min_{oldsymbol{x} \in \mathcal{K}_k(oldsymbol{A}, oldsymbol{c})} f(oldsymbol{x}) &= \min_{oldsymbol{y} \in \mathbb{R}^k} f(oldsymbol{Q}_k oldsymbol{y}) \ &= \min_{oldsymbol{y} \in \mathbb{R}^k} oldsymbol{y}^T oldsymbol{Q}_k oldsymbol{y} - oldsymbol{b}^T oldsymbol{Q}_k oldsymbol{y} \ &= \min_{oldsymbol{y} \in \mathbb{R}^k} oldsymbol{y}^T oldsymbol{T}_k oldsymbol{y} - ||oldsymbol{b}||_2 oldsymbol{e}_1^T oldsymbol{y} \end{aligned}$$

is minimized by $y = ||b||_2 T_k^{-1} e_1$.

Newton's Method

Newton's method in n dimensions is given by finding minima of n-dimensional quadratic approximation:

$$f(oldsymbol{x}_k + oldsymbol{s}) pprox \hat{f}(oldsymbol{s}) = f(oldsymbol{x}_k) + oldsymbol{s}^T
abla f(oldsymbol{x}_k) + rac{1}{2} oldsymbol{s}^T oldsymbol{H}_f(oldsymbol{x}_k) oldsymbol{s}.$$

The minima of this function can be determined by identifying critical points

$$oldsymbol{0} =
abla \hat{f}(oldsymbol{s}) =
abla f(oldsymbol{x}_k) + oldsymbol{H}_f(oldsymbol{x}_k) oldsymbol{s},$$

thus to determine s we solve the linear system,

$$\boldsymbol{H}_f(\boldsymbol{x}_k)\boldsymbol{s} = -\nabla f(\boldsymbol{x}_k).$$

Assuming invertibility of the Hessian, we can write the Newton's method iteration as

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - \underbrace{oldsymbol{H}_f(oldsymbol{x}_k)^{-1}
abla f(oldsymbol{x}_k)}_{}.$$

Quadratic convergence follows by equivalence to Newton's method for solving nonlinear system of optimality equations $\nabla f(x) = 0$.

Quasi-Newton Methods

• Quasi-Newton methods compute approximations to the Hessian at each step:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{B}_k^{-1} \nabla f(\boldsymbol{x}_k)$$

where α_k is a line search parameter. Quasi-Newton methods can be more robust than Newton's method, as the Newton's method step can lead to a direction in which the objective function is strictly increasing.

- ► The *BFGS* method is a secant update method, similar to Broyden's method:
 - At each iteration, perform a rank-2 update to B_k using $s_k = x_{k+1} x_k$ and $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$:

$$oldsymbol{B}_{k+1} = oldsymbol{B}_k + rac{oldsymbol{y}_k oldsymbol{y}_k^T}{oldsymbol{y}_k^T oldsymbol{s}_k} - rac{oldsymbol{B}_k oldsymbol{s}_k oldsymbol{S}_k^T oldsymbol{B}_k}{oldsymbol{s}_k^T oldsymbol{B}_k oldsymbol{s}_k}$$

- ightharpoonup Can update inverse with $O(n^2)$ work, but its more stable and efficient to update a symmetric indefinite factorization.
- The BFGS method also preserves symmetry of the Hessian approximation.

Nonlinear Least Squares

An important special case of multidimensional optimization is *nonlinear least* squares, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

For example, consider fitting
$$f_{[x_1,x_2]}(t)=x_1\sin(x_2t)$$
 so that

$$\begin{bmatrix} f_{[x_1,x_2]}(1.5) \\ f_{[x_1,x_2]}(1.9) \\ f_{[x_1,x_2]}(3.2) \end{bmatrix} \approx \begin{bmatrix} -1.2 \\ 4.5 \\ 7.3 \end{bmatrix}.$$

► We can cast nonlinear least squares as an optimization problem and solve it by Newton's method:

Define residual vector function r(x) so that $r_i(x) = y_i - f_x(t_i)$ and minimize

$$\phi(x) = \frac{1}{2}||r(x)||_2^2 = \frac{1}{2}r(x)^Tr(x).$$

Now the gradient is $\nabla \phi(x) = J_{r}^{T}(x)r(x)$ and the Hessian is

$$m{H}_{\phi}(m{x}) = m{J}_{m{r}}^T(m{x}) m{J}_{m{r}}(m{x}) + \sum_{i=1}^m r_i(m{x}) m{H}_{r_i}(m{x}).$$

Gauss-Newton Method

► The Hessian for nonlinear least squares problems has the form:

$$oldsymbol{H}_{\phi}(oldsymbol{x}) = oldsymbol{J_r}^T(oldsymbol{x}) oldsymbol{J_r}(oldsymbol{x}) + \sum_{i=1}^m r_i(oldsymbol{x}) oldsymbol{H}_{r_i}(oldsymbol{x}).$$

The second term is small when the residual function r(x) is small, so approximate $H_\phi(x) pprox \hat{H}_\phi(x) = J_x^T(x)J_x(x).$

► The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - \hat{oldsymbol{H}}_{\phi}(oldsymbol{x}_k)^{-1}
abla\phi(oldsymbol{x}_k) = oldsymbol{x}_k - (oldsymbol{J}_{oldsymbol{r}}^T(oldsymbol{x}_k)oldsymbol{J}_{oldsymbol{r}}(oldsymbol{x}_k))^{-1}oldsymbol{J}_{oldsymbol{r}}^T(oldsymbol{x}_k)oldsymbol{r}(oldsymbol{x}_k).$$

Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems $J_r(x_k)s_k \cong r(x_k), x_{k+1} = x_k + s_k$.

► The Levenberg-Marquardt method incorporates Tykhonov regularization into the linear least squares problems within the Gauss-Newton method.

Constrained Optimization Problems

▶ We now return to the general case of *constrained* optimization problems:

$$\min_{m{x}} f(m{x})$$
 subject to $m{g}(m{x}) = m{0}$ and $m{h}(m{x}) \leq m{0}$

When f is quadratic, while h, g is linear, this is a quadratic optimization problem.

- Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:
 - sequential quadratic programming: solve an unconstrained quadratic optimization problem at each iteration,
 - penalty-based methods: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems,
 - active set methods: define sequence of optimization problems with inequality constrains ignored or treated as equality constraints.

Sequential Quadratic Programming

▶ Sequential quadratic programming (SQP) corresponds to using Newton's method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$,

$$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix}
abla f(oldsymbol{x}) + oldsymbol{J}_{oldsymbol{g}}^T(oldsymbol{x})oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$

lacktriangle At each iteration, SQP computes $egin{bmatrix} m{x}_{k+1} \ m{\lambda}_{k+1} \end{bmatrix} = egin{bmatrix} m{x}_k \ m{\lambda}_k \end{bmatrix} + egin{bmatrix} m{s}_k \ m{\delta}_k \end{bmatrix}$ by solving

$$egin{aligned} oldsymbol{H}_{\mathcal{L}}(oldsymbol{x}_k,oldsymbol{\lambda}_k) & egin{bmatrix} oldsymbol{s}_k \ oldsymbol{\delta}_k \end{bmatrix} = -
abla \mathcal{L}(oldsymbol{x}_k,oldsymbol{\lambda}_k) \end{aligned}$$

where

$$m{H}_{\mathcal{L}}(m{x}_k,m{\lambda}_k) = egin{bmatrix} m{B}(m{x}_k,m{\lambda}_k) & m{J}_{m{g}}^T(m{x}_k) \ m{J}_{m{g}}(m{x}_k) & m{0} \end{bmatrix} \quad ext{with} \quad m{B}(m{x},m{\lambda}) = m{H}_f(m{x}) + \sum_{i=1}^m \lambda_i m{H}_{g_i}(m{x})$$

Inequality Constrained Optimality Conditions

- ► The *Karush-Kuhn-Tucker (KKT)* conditions hold for local minima of a problem with equality and inequality constraints, the key conditions are
 - lacktriangle First, any minima x^* must be a feasible point, so $g(x^*)=0$ and $h(x^*)\leq 0$.
 - We say the *i*th inequality constraint is active at a minima x^* if $h_i(x^*) = 0$.
 - The collection of equality constraints and active inequality constraints q^* , satisfies $q^*(x^*) = 0$.
 - The negative gradient of the objective function at the minima must be in the row span of the Jacobian of this collection of constraints:

$$-
abla f(m{x}^*) = m{J}_{m{q}^*}^T(m{x}^*) m{\lambda}^* \quad ext{where } m{\lambda}^* ext{ are Lagrange multiplers of constraints in } m{q}^*.$$

- ► To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:
 - Active set q_k contains all equality constraints and all inequality constraints that are exactly satisfied or violated at x_k .
 - Perform one step of Newton's method to minimize $\mathcal{L}_k(x, \lambda) = f(x) + \lambda^T q_k(x)$ with respect to x and λ , then update active set.

Penalty Functions

▶ Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. *Penalty* functions are effective for equality constraints g(x) = 0:

$$\phi_{\rho}(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2}\rho\boldsymbol{g}(\boldsymbol{x})^{T}\boldsymbol{g}(\boldsymbol{x})$$

is a simple merit function, and its solutions x_{ρ}^* satisfy $\lim_{\rho\to\infty} x_{\rho}^* = x^*$. However, the Hessian of ϕ_{ρ} becomes increasingly ill-conditioned for large ρ , leading to slow convergence.

► The augmented Lagrangian function provides a more numerically robust approach:

$$\mathcal{L}_{
ho}(oldsymbol{x},oldsymbol{\lambda}) = f(oldsymbol{x}) + oldsymbol{\lambda}^Toldsymbol{g}(oldsymbol{x}) + rac{1}{2}
hooldsymbol{g}(oldsymbol{x})^Toldsymbol{g}(oldsymbol{x})$$

Barrier Functions

- **Barrier functions (interior point methods)** provide an effective way of working with inequality constraints $h(x) \le 0$:
 - Provided we start at a feasible point, modify objective function so it diverges to ∞ when approaching border of feasible region.
 - Inverse barrier function:

$$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \frac{1}{h_i(\boldsymbol{x})}.$$

Logarithmic barrier function:

$$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{m} \log(-h_{i}(\boldsymbol{x})).$$

- lacktriangle When using sufficiently small steps, we have $m{x}_{\mu}^* o m{x}^*$ as $\mu o 0$.
- **Barrier** and penality methods solve a sequence (for different values of ρ or μ) of unconstrained problems, requiring multiple executions of e.g., Newton's method