SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

(A) $[H^+] = [OH^-] = \sqrt{K_w}$ for a neutral solution at all temperatures.

Which of the following expressions is/are not true ?

	(B) $[H^{\dagger}] > \sqrt{K_w} \& [OH]$	$(K_{\rm w}) < \sqrt{K_{\rm w}}$ for an acidic s	solution							
	(C) $[H^+] < \sqrt{K_w} \& [OH^-] > \sqrt{K_w}$ for an alkaline solution									
	(D) $[H^{+}] = [OH^{-}] = 10^{-7} M$ for a neutral solution at all temperatures									
2.	Addition of HCl will not suppress the ionization of-									
	(A) acetic acid	(B) Benzoic acid	(C) H ₂ S	(D) Sulphuric acid						
3.	An acid solution of pH 6 is diluted thousand times. The pH of solution becomes approx-									
	(A) 6.96	(B) 6	(C) 4	(D) 9						
4.	pOH of H_2O is 7.0 at 298 K. If water is heated at 350 K, which of the following should be true?									
	(A) pOH will decrease									
	(B) pOH will increase									
	(C) pOH will remain 7.0									
	(D) concentration of H^{+} is	ons will increase but that	of OH will decrease							
5.	Which of the following solution will have a pH exactly equal to 8 ?									
	(A) 10^{-8} M HCl solution	at 25 C	(B) $10^{-8}\mathrm{M}~\mathrm{H}^{^+}$ solution at 25							
	(C) 2 10^{-6} M Ba(OH) ₂ solution at 25 C (D) 10^{-6} M NaOH solution at 50 C									
6.	The number of hydroger	n ions in 10 mL of a solu	ution with pH = 13 is-							
	(A) 10^{13}	(B) 6.023 10 ⁸	(C) $6.023 10^{13}$	(D) 6.023 10 ¹⁰						
7.	At 55 C autoprotolysis of it is-	constant of water is 4 10	0^{-14} . If a given sample of v	water has a pH of 6.9, then						
	(A) acidic	(B) basic	(C) neutral	(D) explosive						
8.	0.1 mol HCl is dissolved	l in distilled water of volu	ume V then V $\stackrel{\lim}{\longrightarrow}$	∞ (pH) _{solution} is equal to-						
	(A) zero	(B) 1	(C) 7	(D) 14						
9.	A 50 mL solution of pH = 1 is mixed with a 50 mL solution of pH = 2. then pH of the mixture will be nearly-									
	(A) 0.76	(B) 1.26	(C) 1.76	(D) 2.26						
10.	The pH of a solution of	btained by mixing 50 mL	of 0.4 N HCl and 50 r	nL of 0.2 N NaOH is-						
	(A) - log 2	(B) $- \log 0.2$	(C) 1.0	(D) 2.0						
11.	The pH of a solution is increase OH^- ion concer		ficient base is added to in	crease the pH to 12.0. The						
	(A) 5 times	(B) 1000 times	(C) 10^5 times	(D) 4 times						
12.	Which of the following s	solution will have pH clos	se to 1.0 ?							
	(A) $100 \text{ mL of } \text{M}/10\text{H}\text{G}$	Cl + 100 mL of $M/10$ N	NaOH							
	(B) 55 mL of M/10 HC	Cl + 45 mL of $M/10$ Na	ОН							
	(C) $10 \text{ mL of } \text{M}/10 \text{ HC}$	Cl + 90 mL of M/10 Na	ОН							
		+ 25 mL of M/5 NaOH								
13.				$1.8 ext{ } 10^{-5}$ respectively. The						
		acids will be approximate		(D) 16						
	(A) 1 : 4	(B) 4 : 1	(C) 1 : 16	(D) 16 : 1						

14.	Which of the following is true-								
	(A) pk_b for OH^- is -1.74 at 25 C								
	(B) the equilibrium constant for the reaction between I 10^{10}	$HA (pK_a = 4)$ and NaC	OH at 25 C will be equal to						
	(C) the pH of a solution containing 0.1 M HCOOH ($k_a = 1.8 10^{-4}$) and 0.1 M HOCN. ($k_a = 3.2 10^{-4}$) will be nearly (3 – $\log 7$).								
	(D) all the above are correct.								
15.	Which statement/relationship is correct ?								
	(A) upon hydrolysis of salt of a strong base and wea	k acid gives a solutio	n with $pH < 7$						
	(B) $pH = -log \frac{1}{[H^+]}$								
	(C) only at 25 $$ C the pH of water is 7								
	(D) the value of pK_w at 25 C is 7								
16.	If 50 mL of 0.2 (M) KOH is added to 40 mL of 0.5 (K = $1.8 ext{ } 10^{-4}$) :	(M) HCOOH. The pH	of the resulting solution is						
	(A) 3.75 (B) 5.6 (C)	7.5	(D) 3.4						
17.	50% neutralization of a solution of formic acid (K $_{\!a}\!=\!$ having a hydrogen ion concentration of-	$2 10^{-4}$) with NaOH	I would result in a solution						
	(A) $2 10^{-4}$ (B) 3.7 (C)	2.7	(D) 1.85						
18.	The correct order of increasing $[H_3O^\dagger]$ in the following	ng aqueous solution is	ş-						
	(A) $0.01 \text{ M H}_2\text{S} < 0.01 \text{ M H}_2\text{SO}_4 < 0.01 \text{ M NaCl} < 0.01 \text{ M}$	$< 0.01 \text{ M NaNO}_2$							
	(B) $0.01 \text{ M NaCl} < 0.01 \text{ M NaNO}_2 < 0.01 \text{ M H}_2\text{S} < 0.01 \text{ M H}_2\text{SO}_4$								
	(C) $0.01 \text{ M NaNO}_2 < 0.01 \text{ M NaCl} < 0.01 \text{ M H}_2\text{S} < 0.01 \text{ M H}_2\text{SO}_4$								
	(D) $0.01 \text{ M H}_2\text{S} < 0.01 \text{ M NaNO}_2 < 0.01 \text{ M NaCl}$	- -							
19.	The sodium salt of a certain weak monobasic organ 0.1 M solution at 25 °C. Given that the ionic product dissociation constant of the acid?								
	(A) $\approx 1 10^{-10}$ (B) $\approx 1 10^{-9}$ (C)	3.33 10 ⁻⁹	(D) 3.33 10 ⁻¹⁰						
20.	The correct order for the increasing extent of hydroly	ysis is-							
	(A) $PO_4^{3-} < HPO_4^{2-} < H_2PO_4^{-}$ (B)	$H_2PO_4^- < HPO_4^{2-} < 1$	PO ₄ ³⁻						
	(C) $HPO_4^{2-} < PO_4^{3-} < H_2PO_4^{-}$ (D)	$PO_4^{3-} < H_3PO_4^{-} < H_3^{-}$	PO ₄ ²⁻						
21.	The correct order of increasing pH of decimolar solu	ition of each of the f	ollowing in-						
	(A) $NH_4NO_3 < NaNO_3 < NaHCO_3 < Na_2CO_3$								
	(B) $NaNO_3 < NH_4NO_3 < NaHCO_3 < Na_2CO_3$								
	(C) $NaNO_3 < NH_4NO_3 < Na_2CO_3 < NaHCO_3$								
	(D) $Na_2CO_3 \le NaHCO_3 \le NaNO_3 \le NH_4NO_3$								
22.	When 100 mL of 0.4 M $\mathrm{CH_{3}COOH}$ are mixed with 10	00 mL of 0.2 M NaOl	H, the [H ₃ O ⁺] in the solution						
	is approximately : $[K_a(CH_3COOH) = 1.8 10^{-5}]$								
	(A) $1.8 10^{-6}$ (B) $1.8 10^{-5}$ (C)	9 10 ⁻⁶	(D) $9 10^{-5}$						
23.	A solution is 0.1 M $\rm CH_3COOH$ and 0.1 M $\rm CH_3COO$ significantly, of the solution ?)Na. Which of the fo	llowing will change the pH						
	(A) addition of water								
	(B) addition of $\mathrm{CH_{3}COONa}$ without change in volum	е							

(C) addition of $\mathrm{CH_{3}COOH}$ without change in volume

(D) none will change the pH significantly

38.	The solubility of Fe(OH)3 would be maximum in-					
	(A) 0.1 M NaOH (B) 0.1 M HCl	(C) 0.1 M KOH (D) 0.1 M H ₂ SO ₄				
39.	Arrange in increasing order of solubility of AgBr i	n solutions given :				
	(i) 0.1 M NH_3 (ii) 0.1 M AgNO_3	(iii) 0.2 M NaBr (iv) pure water				
	(A) (iii) $<$ (ii) $<$ (iv) $<$ (i)	(B) (iii) < (ii) < (i) < (iv)				
	(C) $(iii) < (ii) = (i) < (iv)$	(D) (ii) < (iii) < (iv) < (i)				
40.	The solubility product of $BaCrO_4$ is 2.4 10^{-10} M 2 . T precipitation in a 6 10^{-4} M K_2CrO_4 solution is-	The maximum concentration of $\mathrm{Ba(NO_3)_2}$ possible without				
	(A) $4 10^{-7} M$ (B) $1.2 10^{10} M$	(C) $6 10^{-4} M$ (D) $3 10^{-4} M$				
41.	When water is saturated with both solids, calculate	and AgCNS are $1.7 ext{ } 10^{-10}$ and $1.0 ext{ } 10^{-12}$ respectively. ate the ratio [Cl ⁻]/[CNS ⁻] and also [Ag ⁺] in the solution.				
	(A) $1.3 10^2, 1.7 10^{-5} M$	(B) $1.7 10^2$, $1.308 10^{-5} M$				
	(C) $1.3 10^4$, $1.308 10^{-4}$ M	(D) $1.7 10^3$, $1.67 10^{-6}$ M				
42.	under equilibrium is $8.426 \cdot 10^{-5} \text{M}$. If the ratio of is 2.087 , what is the solubility product of CaCO ₃					
		(C) $9.60 10^{-8}$ (D) $4.80 10^{-9}$				
43.	The solubility of Ag_2CO_3 in water at 25 °C is 1 solution? Assume no hydrolysis of CO_3^{2-} ion.	$10^{-4} \mathrm{mole/litre.}$ What is its solubility in 0.1 M $\mathrm{Na_2CO_3}$				
	(A) $6.323 10^{-6} mole/litre$	(B) $4.74 10^{-5}$ mole/litre				
	(C) 3.16 10 ⁻⁶ mole/litre	(D) $5.51 10^{-5} mole/litre$				
44.		$$ mol L^{-1} at 25 $$ C. Its solubility product is equal to-				
	(A) 108 x^2 (B) 36 x^3	(C) 36 x^5 (D) 108 x^5				
45.	of solutions of-	cipitation of AgCl will occur only when equal volumes				
	(A) $10^{-4}~\text{M}~\text{Ag}^{^+}$ and $10^{-4}~\text{M}~\text{Cl}^-$ are mixed					
		(D) $10^{-10}~\text{M Ag}^{^+}$ and $10^{-10}~\text{M Cl}^{^-}$ are mixed				
46.	The solubility of $CaF_2(K_{sp} = 3.4 10^{-11})$ in 0.1					
	(A) $3.4 10^{-12} M$ (B) $3.4 10^{-10} M$					
47.	·	ned when equal volumes of the following are mixed.				
	(A) 10^{-4} M $Ca^{2+} + 10^{-4}$ M F	(B) 10^{-2} M Ca ²⁺ + 10^{-3} M F				
4.0	(C) 10^{-5} M Ca ²⁺ + 10^{-3} M F	(D) 10^{-3} M ca ²⁺ + 10^{-5} M F ⁻				
48.	\boldsymbol{S}_4 respectively what is the correct relationship be	Cl_2 , 0.01 M NaCl & 0.05 M AgNO ₃ be S_1 , S_2 , S_3 & etween these quantities. Neglect any complexation.				
	(A) $S_1 > S_2 > S_3 > S_4$	(B) $S_1 > S_2 = S_3 > S_4$				
40	(C) $S_1 > S_3 > S_2 > S_4$ The collidition and dust Ma(OLI) in success at 25 of	(D) $S_4 > S_2 > S_3 > S_1$				
49.		C is $8.9 10^{-13}$ (mole dm ⁻³) ³ while that of Al(OH) ₃ is solubilities of Mg(OH) ₂ and Al(OH) ₃ in water in de of the ratio. S_1/S_2 ?				
	(A) 10 ⁵ (B) 10 ⁴	(C) 10^6 (D) 10^3				
50.		on of common salt, pure NaCl is precipitated because-				
	(A) HCl is highly ionised in solution					
	(B) HCl is highly soluble in water					
	(C) the solubility product of NaCl is lowered by F	HCl				
	(D) the ionic product of $[Na^{\dagger}]$ $[Cl^{\top}]$ exceeds the so	olubility product of NaCl				

(A) acetic acid against NaOH (B) aniline hydrochloride against NaOH (C) sodium carbonate against HCl (D) barium hydroxide against oxalic acid 52. The pH indicators are-(A) salts of strong acids & strong bases (B) salts of weak acids & weak bases (C) either weak acids or weak bases (D) either strong acids or strong bases 53. What fraction of an indicator Hln is in the basic form at a pH of 6 if pK_a of the indicator is 5 ? (C) $\frac{10}{11}$ (A) $\frac{1}{2}$ (B) $\frac{1}{11}$ (D) $\frac{1}{10}$ 54. An acid-base indicator which is a weak acid has a pK_a value = 5.5. At what concentration ratio of sodium acetate to acetic acid would the indicator show a colour half-way between those of its acid and conjugate base forms ? pK_a of acetic acid = 4.75(A) 4.93 : 1 (B) 6.3:1(C) 5.62 : 1 (D) 2.37:1

A certain indicator (an organic dye) has $pK_a = 5$. For which of the following titrations may it be suitable.

51.

CHECK YOUR GRASP						A	NSW	ER I	KEY	EXERCISE -1			E -1		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	D	Α	Α	В	В	В	С	В	С	С	D	В	D	С
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	Α	Α	С	Α	В	Α	В	D	Α	С	В	D	D	D	Α
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	В	Α	D	D	А	В	В	D	Α	Α	В	D	С	D	Α
Que.	46	47	48	49	50	51	52	53	54						
Ans.	С	В	С	В	D	С	С	С	С						

EXERCISE-02 BRAIN TEASERS

(C) NH₄

(D) N₂H₄

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

(B) NH₂OH

Out of the following, amphiprotic species are

1.

2.

The conjugate acid of $\ensuremath{NH_2^-}\xspace$ is-

(A) NH₃

	(I) HPO ₃ ²⁻	(II) OH-	(iii) $H_2PO_4^-$	(IV) HCO ₃						
	(A) I, III, IV	(B) I and III	(C) III and IV	(D) All						
3.	pH of an aqueous	s solution of NaCl at 85 C	C should be-							
	(A) 7	(B) > 7	(C) < 7	(D) 0						
4.	1 CC of 0.1 N H	Cl is added to 99 CC solu	tion of NaCl. The pH of	the resulting solution will be-						
	(A) 7	(B) 3	(C) 4	(D) 1						
5.	10 mL of $\frac{M}{200}$ H	$\rm H_2SO_4$ is mixed with 40 mL	, of $\frac{M}{200}$ H ₂ SO ₄ . The pH	H of the resulting solution is-						
	(A) 1	(B) 2	(C) 2.3	(D) none of these						
6.	If pK_b for fluoride ic is-	on at 25 C is 10.83, the ioni	zation constant of hydrofluo	ric acid in water at this temperature						
	(A) $1.74 10^{-5}$	(B) $3.52 10^{-3}$	(C) $6.75 10^{-4}$	(D) $5.38 10^{-2}$						
7.	If $K_1 \& K_2$ be first and second ionisation constant of $H_3 PO_4$ and $K_1 >> K_2$ which is incorrect-									
	(A) $[H^+] = [H_2PO_2]$	[]	(B) $[H^+] = \sqrt{K_1[H_3]}$	(B) $[H^+] = \sqrt{K_1[H_3PO_4]}$						
	(C) $K_2 = [HPO_4^{-2}]$	(C) $K_2 = [HPO_4^{-2}]$ (D) $[H^+] = 3[PO_4^{3-}]$								
8.		rolysis of a salt of weak aci the solution is 0.2 M, the		$1\ \mathrm{M}$ solution is found to be 50% . the salt should be-						
	(A) 100 %	(B) 50 %	(C) 25 %	(D) none of these						
9.	What is the percentage hydrolysis of NaCN in N/80 solution when the dissociation constant for HCN is $1.3 ext{ } 10^{-9}$ and $K_w = 1.0 ext{ } 10^{-14}$									
	(A) 2.48	(B) 5.26	(C) 8.2	(D) 9.6						
10.	pH of 0.01 M (N	$(H_4)_2SO_4$ and 0.02 M NH_4O_4	DH buffer solution (p ${ m K_a}$ o	$f NH_4^+ = 9.26$) is-						
	(A) 9.26	(B) 4.74	(C) $4.74 + \log 2$	(D) none						
11.		The range of most suitable indicator which should be used for titration of X^-Na^+ (0.1 M, 10 mL) with 0.1 M HCl should be (Given : $k_{b(X^-)} = 10^{-6}$)								
	(A) 2 - 3		(C) 6 - 8	(D) 8-10						
12.		bled into water, If disprope	` ,	• •						
	_	$(1) \longrightarrow HNO_2(aq.) + HNO_3$		2 2 3						
	The concentration		•	nole of $\mathrm{NO_2}$ gas in 1 litre $\mathrm{H_2O}$ is						
	(A) $^{\sim}$ 5 10^{-4}		(B) $^{\sim}$ 4.8 10^{-5}							
	(C) $^{\sim}$ 4.8 10^{-3}		(D) $^{\sim} 2.55 10^{-2}$							
13.	If K_{sp} for $HgSO_4$ is	s $6.4 10^{-5}$, then solubility	y of this substance in mo	le per m³ is-						
	(A) $8 10^{-3}$	(B) $6.4 10^{-5}$	(C) $8 10^{-6}$	(D) none of these						
14.	Which of the follo	owing is most soluble in w	ater ?							
	(A) $MnS(K_{sp} = 8)$	10^{-37})	(B) $ZnS(K_{sp} = 7)$	(B) $ZnS(K_{sp} = 7 10^{-16})$						
	(C) $Bi_2S_3(K_{sp} = 1)$	10^{-72})	(D) $Ag_3(PO_4)$ (K_{sp}	= 1.8 10 ⁻⁸)						

15.	How many moles NH_3 must be added to 2.0 litre of 0.80 M $AgNO_3$ in order to reduce the Ag^+ concentration to 5 10^{-8} M. K_f of $[Ag(NH_3)_2^+] = 10^8$									
	(A) 0.4	(B) 2	(C) 3.52	(D) 4						
16.				of BaCl_2 Solution (10 ⁻¹ M) and hat a precipitate may be obtained?						
	(B) 2 : 1(C) 1 : 2(D) precipitate cann	ot obtained for any pos	ssible ratio							
17.	At 18 C, the solubility of CdS in water is $6.33 10^{-15}$ M. What is the concentration of Cd ⁺ ion in a solution of pH = 1 saturated with H_2S gas, in which concentration of $H_2S = 0.1$ M? The product of the first and second ionization constants of H_2S is $1.1 10^{-22}$ at this temperature.									
	(A) $6.343 10^{-8} M$		(B) 4. $368 10^{-8}$	M						
	(C) $4.368 10^{-9} M$		(D) $3.643 10^{-8}$ M	M						
18.	$100~\text{mL}$ of $0.02~\text{M}$ benzoic acid (pK $_{a}$ = 4.2) is titrated using $0.02~\text{M}$ NaOH. pH after $50~\text{mL}$ and $100~\text{mL}$ of NaOH have been added are-									
	(A) 3.50,7	(B) 4.2, 7	(C) 4.2, 8.1	(D) 4.2, 8.25						
19.	What is the pH of solution made by adding 3.9 g NaNH $_2$ into water to make a 500 mL solution $K_b(NH_3)=2$ 10^{-5} [Na = 23, N = 14, H = 1]									
	(A) 13.3	(B) 0.7	(C) 5.3	(D) 13.7						
20.	10.2 g of acetic anhydride was added to 989.8 g of water to make a solution with a density of 1g/mL. If the k_a of acetic acid is 2 10^{-5} , the pH of the solution would be [C = 12, H = 1, O = 16]									
	(A) 2.7	(B) 3.7	(C) 4.7	(D) 5.7						
21.	A well is dug in a bed of rock containing fluorspar (CaF ₂). If the well contains 20000 L of water, what is the amount of F^- in it ? $K_{sp} = 4 10^{-11}$									
	(A) 4.3 mol	(B) 6.8 mol	(C) 8.6 mol	(D) 13.6 mol						
22.	If HA + NaOH —	\rightarrow NaA + H ₂ O	$\Delta H = -12 \text{ kcal}$							
	and HB + NaOH -	\rightarrow NaB + H_2O	$\Delta H = -11 \text{ kcal}$							
	then equimolar solu	ition of which acid has	higher pH-							
	(A) HA		(B) HB							
	(C) both have same	р Н	(D) information ins	(D) information insufficient						
23.		Cl the pH of resulting solu		aniline was mixed with 0.1 M, 0.01 M solution of aniliniumchloride						
	(A) 6	(B) 6.5	(C) 5	(D) 5.5						
24.			$_{\rm a}$ = 4.20) and 1M $\rm C_6H_5CC$ mL buffer [log 2 = 0.3] ?	OONa is 4.5, what is the volume						
	(A) 200 mL	(B) 150 mL	(C) 100 mL	(D) 50 mL						
25.	What is the differer M NaOH.	nce in pH for $1/3$ and	2/3 stages of neutralisation	n of 0.1 M $\mathrm{CH_{3}COOH}$ with 0.1						
	$(A) - 2 \log 3$	(B) $2\log(1/4)$	(C) $2\log(2/3)$	$(D) - 2 \log 2$						
26.		on at the same tempe		the value of the rate constant of ant of the forward reaction is						

(A) 10^{-9}

(B) 10^9

(D) 10⁻²⁰

(C) 10^{-5}

- 27. The pH of 1.0 M NaHSO₄ solution will be (given that K_1 and K_2 for H_2SO_4 equal to ∞ and 10^{-2} respectively)-
 - (A) nearly 1.0

(B) between 2 and 3

(C) between 1.2 and 1.8

- (D) between 3 and 4
- 28. 0.1 millimole of $CdSO_4$ are present in 10 mL acid solution of 0.08 N HCl. Now H_2S is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling off H_2S and making the solution 100 mL by adding H_2O is-
 - (A) 2

(B) 4

(C) 6

- (D) 8
- Zn salt is mixed with $(NH_4)_2$ S of molarity 0.021 M. The amount of Zn^{2+} remains unprecipitated in 12 mL of this solution would be (Given : K_{SP} ZnS = 4.51 10^{-24})
 - (A) 1.677 10⁻²² g

(B) 1.767 10⁻²² g

(C) $2.01 10^{-23} g$

- (D) none of these
- 30. The self ionisation constant for pure formic acid, $K = [HCOOH_2^+]$ [HCOO-] has been estimated as 10^{-6} at room temperature. The density of formic acid is 1.22 g/cm^3 . The percentage of formic acid molecules in pure formic acid that are concerted to formate ion would be-
 - (A) 0.002 %
- (B) 0.004 %
- (C) 0.006 %
- (D) 0.008 %

BRAIN TEASERS							ANS	WER	KEY	7				EXERCIS	E -2
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	Α	С	С	В	В	С	D	В	Α	Α	В	Α	D	D	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	D	С	Α	Α	С	В	С	С	D	D	Α	Α	Α	В

TRUE / FALSE

- 1. When a solution of a weak monoprotic acid is titrated against a strong base, at half-neutralization point, $pH = \frac{1}{2} pK_a$
- 2. A solution of sodium acetate and ammonium acetate can act as a buffer.
- 3. If the solubility of the salt $Li_3Na_3(AlF_6)_2$ is x, then its solubility product would be 2916 x^8 .
- **4.** A buffer has maximum buffer capacity when the ratio of salt to acid is 10.
- 5. In the presence of a common ion (incapable of froming complex ion), the solubility of salt decreases.
- 6. The ionic product of water changes if a few drops of acid or base are added to it.
- 7. When equilibrium is attained, the concentration of each of the reactants & products become equal.
- 8. The reaction, $HCN + OH^- \Leftrightarrow CN^- + H_2O$ is displaced to the right indicating that the acid strength of HCN is greater than water & the base strength of CN^- is greater than that of OH^- .
- **9.** The hydroxyl ion is hydrated to give several ionic species like $H_2O_2^{-2}$, $H_3O_3^{-3}$ and $H_4O_4^{-4}$.
- 10. Ostwald's dilution formula is applicable to weak as well as strong electrolytes.
- 11. CO₂ is a Lewis base
- **12.** Solution whether neutral, acidic or basic contain both H⁺ & OH⁻ ions.
- 13. The ionic product of a saturated solution is equal to solubility product constant of its solute.
- 14. A Lewis base is a substance which can donate a pair of electrons?
- 15. If ionic product is less than k_{sp} , no precipitation will occur.
- 16. A buffer has definite pH value which changes on keeping it or on diluting it.
- 17. A salt of strong acid with a strong base does not undergo hydrolysis
- 18. HCl does not act as an acid in benzene
- 19. Water acts as a base when ammonia is dissolved in it.
- **20.** In the reaction, $SnCl_4 + 2Cl^- \longrightarrow [SnCl_6]^{2-}$, $SnCl_4$ is a Lewis acid.
- 21. The strength of an oxy acid increases with increase in the EN value of central atom.
- 22. In aqueous solution the hydronium ion is further hydrated to give species like $H_5O_2^+$, $H_7O_3^+$ and $H_9O_4^+$

FILL IN THE BLANKS

- 1. In a mixture of weak acid and its salt, the ratio of concentration of salt to acid is increased ten fold. The pH of the solution would by unit.
- 2. The solubility of CH_3COOAg in water considering hydrolysis of CH_3COO^- ions would be than that ignoring the hydrolysis.
- 3. From an equimolar solution of Cl^- and Br^- ions, the addition of Ag^+ will selectively precipitates $(K_{sp}$ of AgCl & AgBr are $1 \quad 10^{-10} & 1 \quad 10^{-13}$ respectively).
- **4.** The solubility of AgCl in NH_3 is than the solubility in pure water because of complex ion, $[Ag(NH_3)_2]^+$ formation.
- 5. The hydrolytic constant K_h for the hydrolytic equilibrium

$$H_2PO_4^- + H_2O \longrightarrow H_3PO_4 + OH^- \text{ is } 1.4 \quad 10^{-12}$$

6. Given the equilibrium constants

$$Cl^- + HgCl^+ \rightleftharpoons HgCl_2$$
; $K_1 = 3 10^6$

$$HgCl_2 + Cl^- \rightleftharpoons HgCl_3$$
; $K_2 = 8.9$

The equilibrium constants for the dispropotionation equilibrium.

$$2\text{HgCl}_{2} \rightleftharpoons \text{HgCl}^{+} + \text{HgCl}_{3}^{-} \text{ is-}$$

- 7. If the salts M_2X , QY_2 and PZ_3 have same solubilities (<<< 1), their K_{sp} values are related as
- 8. K_a for an acid HA is $1 10^{-6}$. K_b for A^- would be
- 9. An aqueous solution of K_2SO_4 has pH nearly equal to
- 10. The pH of a solution which is 0.1~M sodium acetate and 0.01~M acetic acid (pK $_a$ = 4.74) would be
- 11. The conjugative acid of sulphate (SO_4^{2-}) is
- 12. The value of K_{ij} with increase in temperature.
- 13. AgCl is soluble in aqueous sodium chloride solution than in pure water.
- 14. The buffer HCOOH/HCOONa will have pH than 7.
- 15. In the reaction $I_2 + I^- \longrightarrow I_3$, I_2 acts as
- 16. An equimolar solution of NaNO₂ and HNO₂ can act as a solution.
- 17. Larger the value of pK_a, is the acid
- 18. Between Na⁺ & Ag⁺ ion, is a stronger Lewis acid.
- 19. Salt of strong acids and weak base undergo hydrolysis
- 20. For salts of weak acid with weak bases, degree of hydrolysis is of concentration of the salt in solution.
- 21. The solubility of $KAl(SO_4)_2$ in terms of its solubility product is
- **22.** The dissociation constant of NH_4OH is $1.8 10^{-5}$. The hydrolysis constant of NH_4^+ ions at 25 C would be
- 23. solution of $CuSO_4$ is due to the hydrolysis of ions
- 24. The colour of unionized form of phenolphthalein is whereas that of ionized form is
- **25.** In general, in aqueous solution $pH + pOH = \dots$ at all temperatures.
- **26.** The ionization constant of water is related to ionic product by the expression
- 27. The smaller the value of K_a of a weak acid, is the hydrolysis constant of its conjugate base.

MATCH THE COLUMN

1. Match the effect of addition of 1 M NaOH to 100 mL 1 M CH₂COOH (in Column I) with pH (in Column II) :

	Column-I		Column-II
(A)	25 mL of NaOH	(p)	pK _a
(B)	50 mL of NaOH	(q)	pK _a + log 3
(C)	75 mL of NaOH	(r)	pK _a – log 3
(D)	100 mL of NaOH	(s)	$\frac{1}{2} \left[pK_{w} + pK_{a} - \log 2 \right]$

2. When we titrate sodium carbonate solution (in beaker) with hydrochloric acid.

	Column-I		Column-II
(A)	At the start of titration	(p)	Buffer solution of HCO_3^- and CO_3^{2-}
(B)	Before the first equivalent point	(q)	Buffer solution of H_2CO_3 and HCO_3^-
(C)	At the first equivalent point	(r)	Amphiprotic anion,
			$pH = 1/2(pK_{a_1} + pK_{a_2})$
(D)	Between the first and second equivalent	(s)	Hydrolysis of CO ₃ ²⁻
	points		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: On dilution of a concentrated solution of CH_3COOH , the concentration of $[H^{\dagger}]$ decreases Because

Statement-II: Because increase in the volume is more than the increase in degree of ionisation

2. Statement-I: pH of boiling water is less than the water at 4 C

Because

Statement-II: Because density of water is maximum at 4 C

3. Statement-I: Solubility of BaSO₄ in 0.1 M Na₂SO₄ is 10^{-9} M hence its K_{sp} is 10^{-18}

Because

Statement-II: Because for $BaSO_4 K_{sn} = (s)^2$

4. Statement-I: Aqueous solution of CH₃COONH₄ is found to be neutral

Because

Statement-II: because this salt does not undergo hydrolysis

Statement-I: An aqueous solution of HCl is a much better conductor of electricity than an aqueous solution of CH₂COOH of the same concentration.

Because

Statement-II: The freezing point depression and the boiling point elevation of weak electrolytes are significantly less than for strong electrolytes of the same concentration.

6. Statement-I: $CH_3NH_3^+CH_3NH_2$ is acid base conjugate pair.

Because

Statement-II: H_3O^+ , OH^- is acid base conjugate pair.

7. Statement-I: The equilibrium constant for the reaction,

$$HONO(aq.) + CN^{-}(aq) \rightleftharpoons HCN (aq.) + ONO^{-}(aq.) is 1.1 10^{6}$$

Because

Statement-II : This shows that $CN^{\scriptscriptstyle{-}}\textsc{is}$ stronger base than $ONO^{\scriptscriptstyle{-}}$

COMPREHENSION BASED QUESTIONS

Comprehension # 1

The importance of pH maintenance in Blood

Maintenance of the pH in blood and in intracellular fluids is absolutely crucial to the processes that occur in living organisms. This primarily because the functioning of enzymes-catalysts for these processes - is sharply pH dependent. The normal pH value of blood plasma is 7.4. Severe illness or death can result from sustained variations of a few tenths of pH unit.

Among the factors that lead to a condition of acidosis, in which there is decreases in the pH of blood are heart failure, kidney failure diabetes mellitus, persistent diarrhoea or a long term high protein diet. A temporary condition acidosis may result from prolonged, intensive exercise. Alkalosis, which causes increase in pH of blood, may occur as a result of severe vomiting overbreathing or exposure to high altitudes.

Several factors are involved in the control of the pH of blood. A particularly important one is the ratio of dissolved HCO3 to H2CO3. CO2(g) is moderately soluble in water and in aqueous solution reacts only to a limited extent to produce H2CO3.

In the H_2CO_3 , HCO_3^- buffer system we deal only with the first ionisation step $(K_{a_1}): H_2CO_3$ is weak acid and HCO_3^- is the conjugate base (salt). CO_2 enters the blood from tissues as the by - product of metabolic reaction. In lungs, CO_2 (g) is exchanged for O_2 (g), which is transported throughout the body by the blood.

- 1. The pH of blood stream is maintained by a proper balance of H2CO3 and NaHCO3 concentration. What volume of 5 M NaHCO $_3$ solution should be mixed with a 10 mL sample of blood which is 2 M in $\mathrm{H_2CO}_3$ in order to maintain its pH?:
 - (A) 40 mL
- (B) 38 mL
- (C) 50 mL
- (D) 78 mL

- 2. Important diagnostic analysis in the blood is :
 - (A) $[H_{2}PO_{4}^{-}]/[HPO_{4}^{-}]$

(B) $[HCO_3^-]/[CO_2]$

(C) $[CO_3^{2-}]/[HCO_3^{2-}]$

- (D) $[PO_{A}^{3-}]/[HPO_{A}^{2-}]$
- 3. Following reaction occurs in the body:

$$\mathsf{CO_2} \, + \, \mathsf{H_2O} \, \ensuremath{ \Longleftrightarrow} \, \ \, \mathsf{H_2CO_3} \, \ensuremath{ \Longleftrightarrow} \, \ \, \mathsf{H}^{\scriptscriptstyle +} \, + \, \mathsf{HCO_3}^{\scriptscriptstyle -}$$

If CO₂ escapes from the system:

- (A) pH will decreases
- (B) pH will increases
- (C) [H₂CO₂] remains unchanged
- (D) forward reaction is promoted

Comprehension # 2

Phosphoric acid is of great importance in fertilizer production. Besides, phosphoric acid and its various salts have a number of application in metal treatment, food, detergent and toothpaste industries.

$$pK_{a_1} = 2.12, pK_{a_2} = 7.21, pK_{a_3} = 12.32$$

Small quantities of phosphoric acid are extensively used to impart the sour or tart taste to many soft drinks such as colas and roots beers, in which a density of $1.00~{\rm g~mL^{-1}}$ contains 0.05% by weight of phosphoric acid.

Phosphoric acid is used as a fertiliser for agriculture and an aqueous soil digesting. $1.00 ext{ } 10^{-3} ext{ M}$ phosphoric acid is found to have pH = 7. Zinc is an essential micronutrient for plant growth. Plants can absorb zinc in water soluble from only. In the given soil, zinc phosphate is only the source of zinc and phosphate ions, K_{sp} (zinc phosphate) = 9.1 10^{-33} .

- 1. Phosphoric acid is a tribasic acid with three-step ionisation constants. Thus, its structure is :

- 2. What is the pH of the cola assuming that the acidity of the cola arises only from phosphoric acid and second and third ionisation constants are of no importance?
 - (A) 2.2
- (B) 3.3

- (C) 4.4
- (D) 1.8

- 3. Molar concentration of phosphate ion in the soil with pH 7 is :
 - (A) 1.2 10⁻⁴ M

 10^{-4} M (B) 2.2

(C) $1 10^{-3} M$

- (D) 1.1 $10^{-10} M$
- Concentration of $[Zn^{2+}]$ in the soil is : 4.

Comprehension Based Questions

Comprehension #1 : 1. D

Comprehension #2 : 1. C

(A) 9.1 $10^{-5} M$

 $10^{-9}\ M$ (B) 5.7

 $10^{-10}~\mathrm{M}$ (C) 4.0

 10^{-6} M (D) 3.0

MIS	SCELLAN	NEOUS TYPE QUEST	ION	ANSWE	R KE	Y		EXERCISE -3
•	<u>True</u>	/ False						
	1. F	2.	F	3.	T	4.	F	
	5. T			7.		8.		
	9 . F			11.		12.		
	13 . T			15.		16.		
	17 . T			19.	F	20.	T	
	21 . T	22.	T					
•	<u>Fill i</u>	n the Blanks						
	1.	Increase, one	2.	Greater	3.	Br^{-} ion	4.	Greater
	5.	$7.14 10^{-3}$	6.	3 10-6	7.	$M_2X = QY_2 > PZ_3$	8.	10-8
	9.	7	10.	5.74	11.	HSO ₄ -	12.	Increases
	13.	Less	14.	Less	15.	Lewis acid	16.	Buffer
	17.	Weaker	18.	$Ag^{\scriptscriptstyle +}$	19.	Cationic	20.	Independent
	21.	$(K_{sp}/4)^{1/4}$	22.	$5.556 10^{-10}$	23.	Acidic, Cu ⁺⁺	24.	Colourless, Pink
	25.	pK _w (not 14 !!)	26.	$k_W = k[H_2O]$	27.	Greater		
•	<u>Match</u>	n the Column						
	1. A	(r), B - (p), C - (q), D -	(s)	2. A - (s), B - (p), C	- (r), D -	(q)		
•	<u>Asser</u>	tion - Reason (Questi	ons				
	1. A	2. B		3. I)	4. (С	
	5 . B	6. C	!	7. <i>A</i>	A			

3. B

3. B

4. B

2. B

2. A

- 1. Calculate
 - (i) K_a for H_2O $(K_w = 10^{-14})$

- (ii) K_b for $B(OH)_4$, $K_a(B(OH)_2) = 6$ 10^{-10}
- (iii) K_a for HCN, K_b (CN⁻) = 2.5 10^{-5}
- Calculate the ratio of degree of dissociation (α_2/α_1) when 1 M acetic acid solution is diluted to $\frac{1}{100}$ times. 2. (Given $K_a = 1.8 10^{-5}$)
- Calculate the ratio of degree of dissociation of acetic acid and hydrocyanic acid (HCN) in 1 M their respective 3. solution of acids (Given $K_{a(CH_{2}COOH)} = 1.8 10^{-5}$; $K_{a(HCN)} = 6.2 10^{-10}$]
- 4. Calculate:
 - (a) $\rm\,K_{a}$ for a monobasic acid whose 0.10 M solution has pH of 4.50
 - (b) K_h for a monoacidic base whose 0.1 M solution has a pH of 10.50
- 5. Calculate pH of following solution:
 - (a) 0.1 M HCl

- (b) $0.1 \text{ M H}_2\text{SO}_4 (50 \text{ mL}) + 0.4 \text{ M HCl } 50 \text{ (mL)}$
- (c) 0.1 M CH₃COOH ($K_a = 1.8 10^{-5}$) (d) 0.1 M NH₄OH ($K_b = 1.8 10^{-5}$)

(e) 10⁻⁸ M HCl

(f) 10^{-10} M NaOH

(g) 10^{-6} M CH₂COOH

- (h) 10^{-8} M CH₂COOH
- $0.1 \text{ M HA} + 0.1 \text{ M HB } [\text{K}_2(\text{HA}) = 2 \quad 10^{-5}; \text{ K}_2(\text{HB}) = 4 \quad 10^{-5}]$
- Decimolar solution of Baryta (Ba(OH)₂), diluted 100 times.
- (k) 10^{-3} mole of KOH dissolved in 100 L of water.
- (l) 0.5 M HCl (25 mL) + 0.5 M NaOH (10 mL) + 40 mL H₂O
- (m) equal volume of HCl solution (PH = 4) + 0.0019 N HCl solution
- The value of K_{w} at the physiological temperature (37 °C) is 2.56 10^{-14} . What is the pH at the neutral 6. point of water at this temperature, where there are equal number of H⁺ and OH⁻?
- 7. Calculate the number of H⁺ present in one mL of solution whose pH is 13
- Calculate change in concentration of H^{\dagger} ion in one litre of water, when temperature changes from 298 8. K to 310 K. Given $K_{...}(298) = 10^{-14}$, $K_{...}(310) = 2.56 10^{-14}$.
- (i) K_w for H_2O is $9.62 10^{-14}$ at 60 C. What is pH of water at 60 C. 9.
 - (ii) What is the nature of solution at 60 C whose.

(a)
$$pH = 6.7$$

(b)
$$pH = 6.35$$

- 10. The pH of aqueous solution of ammonia is 11.5. Find molarity of solution. $K_{L}(NH_{A}OH) = 1.8 10^{-5}$.
- The solution of weak monoprotic acid which is 0.01 M has pH = 3. Calculate K_a of weak acid. 11.
- 12. Boric acid is a weak monoprotic acid. It ionizes in water as

$$B(OH)_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+ : K_a = 5.9 \quad 10^{-10}$$

Calculate pH of 0.3 M boric acid.

- Calculate $[H^{\dagger}]$ and $[CHCl_{2}COO^{-}]$ in a solution that is 0.01 M in HCl and 0.01 M in CHCl₂COOH. Take 13. $(K_a = 2.55 10^{-2}).$
- Calculate $[H^{\dagger}]$, $[CH_3COO^{-}]$ and $[C_7H_5O_7^{-}]$ in a solution that is 0.02 M in acetic acid and 0.01 M in benzoic 14. acid. $K_a(acetic) = 1.8 10^{-5}$, $K_a(benzoic) = 6.4 10^{-5}$.
- At 25 C, the dissociation constant of HCN and HF are 4 10^{-10} and 6.7 10^{-4} . Calculate the pH of 15. a mixture of 0.1 M HF and 0.1 M HCN.

POLYPROTIC ACIDS & BASES

- Determine the $[S^{2-}]$ in a saturated (0.1 M) H_2S solution to which enough HCl has been added to produce a $[H^+]$ of 2 10^{-4} . $K_1 = 10^{-7}$, $K_2 = 10^{-14}$
- 17. Calculate $[H^{+}]$, $[H_{2}PO_{4}^{-}]$, $[HPO_{4}^{2^{-}}]$ and $[PO_{4}^{3^{-}}]$ in a 0.01 M solution of $H_{3}PO_{4}$. Take $K_{1} = 7.225 \quad 10^{-3}$, $K_{2} = 6.8 \quad 10^{-8}$, $K_{3} = 4.5 \quad 10^{-13}$.
- Calculate the pH of a 0.1 M solution of $H_2NCH_2CH_2NH_2$; ethylenediamine (en). Determine the en H_2^{2+} concentration in the solution. K_{b_1} and K_{b_2} values of ethylenediamine are 8.5 10^{-5} and 7.1 10^{-8} respectively.
- 19. What are the concentration of H^+ , HSO_4^- , SO_4^{-2} & H_2SO_4 in a 0.20 M solution of sulphuric acid ? Given : $H_2SO_4 \longrightarrow H^+ + HSO_4^-$; strong

$$HSO_4^- \iff H^+ + SO_4^{2-}; K_2 = 1.3 \quad 10^{-2} M$$

BUFFER SOLUTION

- 20. Determine [OH $^-$] of a 0.050 M solution of ammonia to which has been added sufficient NH $_4$ Cl to make the total [NH $_4^+$] equal to 0.100. [K $_{b(NH}_3)$ = 1.8 10 $^{-5}$]
- 21. Calculate the pH of a solution prepared by mixing 50.0 mL of 0.200 M $HC_2H_3O_2$ and 50.0 mL of 0.100 M NaOH. [$K_{a(CH_3COOH)}=1.8 10^{-5}$]
- 22. A buffer of pH 9.26 is made by dissolving x moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK_{h} of ammonia is 4.74, calculate value of x.
- 23. 50 mL of 0.1 M NaOH is added to 75 mL of 0.1 M NH_4Cl to make a basic buffer. If pK_a of NH_4^+ is 9.26, salculate pH.
- **24.** (a) Determine the pH of a 0.2 M solution of pyridine C_5H_5N . $K_h = 1.5 10^{-9}$
 - (b) Predict the effect of addition of pyridinium ion $C_5H_5NH^+$ on the position of the equilibrium. Will the pH be raised or lowered?
 - (c) Calculate the pH of 1.0 L of 0.10 M pyridine solution to which 0.3 mol of pyridinium chloride $C_EH_ENH^+Cl$, has been added, assuming no change in volume.
- 25. A buffer solution was prepared by dissolving 0.02 mol propionic acid & 0.015 mol sodium propionate in enough water to make 1.00 L of solution. (K_a for propionic acid is 1.34 10^{-5})
 - (a) What is the pH of the buffer?
 - (b) What would be the pH if $1.0 ext{ } 10^{-5}$ mol HCl were added to 10 mL of the buffer ?
 - (c) What would be the pH if $1.0 10^{-5}$ mol NaOH were added to 10 mL of the buffer.
 - (d) Also report the percent change in pH of original buffer in case (b) and (c)
- **26.** A solution was made up of 0.01 M in chloroacetic acid ClCH₂COOH and also 0.002 M in sodium chloracetate ClCH₂COONa. What is $[H^{\dagger}]$ in the solution? $K_2 = 1.5 10^{-3}$.

INDICATORS

- A certain solution has a hydrogen ion concentration 4 10^{-3} M. For the indicator thymol blue, pH is 2.0 when half the indicator is in unionised from. Find the % of indicator in unionised form in the solution with $[H^+] = 4 10^{-3}$ M.
- 28. Bromophenol blue is an indicator with a K_a value of 6 10^{-5} . What % of this indicator is in its basic form at a pH of 5 ?
- 29. An acid base indicator has a K_a of 3 10^{-5} . The acid form of the indicator is red & the basic form is blue. By how much must the pH change in order to change the indicator form 75% red to 75% blue?

HYDROLYSIS

- 30. What is the OH⁻ concentration of a 0.08 M solution of CH₃COONa. $[K_a(CH_3COOH) = 1.8 10^{-5}]$
- 31. Calculate the pH of a 2.0 M solution of $NH_4Cl.[K_h(NH_2) = 1.8 10^{-5}]$

- 32. 0.25 M solution of pyridinium chloride $C_5H_6N^+Cl^-$ was found to have a pH of 2.699. What is K_b for pyridine, C_5H_5N ?
- 33. Calculate the extent of hydrolysis & the pH of $0.02 \text{ M CH}_3\text{COONH}_4$ [K,(NH₂) = $1.8 10^{-5}$, K,(CH₂COOH) = $1.8 10^{-5}$]
- 34. Calculate the percent hydrolysis in a 0.06 M solution of KCN.[$K_a(HCN) = 6 10^{-10}$]
- 35. Calculate the extent of hydrolysis of 0.005 M $\rm K_2CrO_4$. $\rm [K_2=3.1\ 10^{-7}\ for\ H_2CrO_4]$ (It is essentially strong for first ionization).
- 36. A 0.010 M solution of $PuO_2(NO_3)_2$ was found to have a pH of 4.0. What is the hydrolysis constant k_h for PuO_2^{2+} , and what is K_h for PuO_2OH^+ ?
- 37. Calculate the pH of $1.0 10^{-3} \, \text{M}$ sodium phenolate, $NaOC_6H_5 \, K_a$ for HOC_6H_5 is $1.05 \, 10^{-10}$.
- **38.** What is the pH of 0.1 M NaHCO₃? $K_1 = 4.5 10^{-7}$, $K_2 = 4.5 10^{-11}$ for carbonic acids.
- 39. Calculate pH of 0.05 M potassium hydrogen phthalate, $KHC_8H_4O_4$.

$$H_{2}C_{8}H_{4}O_{4} + H_{2}O \iff H_{3}O^{+} + HC_{8}H_{4}O_{4}^{-}$$
 $pK_{1} = 2.94$
 $HC_{8}H_{4}O_{4}^{-} + H_{2}O \iff H_{3}O^{+} + C_{8}H_{4}O_{4}^{2-}$ $pK_{2} = 5.44$

- 40. Calculate OH^- concentration at the equivalent point when a solution of 0.1 M acetic acid is titrated with a solution of 0.1 M NaOH. K for the acid = $1.9 10^{-5}$.
- **41.** The acid ionization hydrolysis constant of Zn^{2+} is 1.0 10^{-9}
 - (a) Calculate the pH of a 0.001 M solution of ZnCl₂
 - (b) What is the basic dissociation constant of Zn(OH)⁺?

ACID BASE REACTIONS & TITRATIONS

- 42. Calculate the hydronium ion concentration and pH at the equivalence point in the reaction of 22.0 mL of 0.10 M acetic acid, CH₂COOH, with 22.0 mL of 0.10 M NaOH.
- 43. Calculate the hydronium ion concentration and the pH at the equivalence point in a titration of 50.0 mL of 0.40 M NH₂ with 0.40 M HCl.
- **44.** In the titration of a solution of a weak acid HX with NaOH, the pH is 5.8 after 10.0 mL of NaOH solution has been added and 6.402 after 20.0 mL of NaOH has been added. What is the ionization constant of HX ?
- 45. The equivalent point in a titration of 40.0~mL of a solution of a weak monoprotic acid occurs when 35.0~mL of a 0.10~M NaOH solution has been added. The pH of the solution is 5.75~after the addition of 20.0~mL of NaOH solution. What is the dissociation constant of the acid ?
- 46. A weak base (50.0 mL) was titrated with 0.1 M HCl. The pH of the solution after the addition of acid 10.0 mL and 25.0 mL were found to be 9.84 and 9.24, respectively. Calculate K_b of the base and pH at the equivalence point.
- 47. A weak acid (50.0 mL) was titrated with 0.1 M NaOH. The pH values when 10.0 mL and 25.0 mL of base have been added are found to be 4.16 and 4.76, respectively. Calculate K_a of the acid and pH at the equivalence point.
- 48. CH₃COOH (50 mL, 0.1 M) is titrated against 0.1 M NaOH solution. Calculate the pH at the addition of 0 mL, 10 mL, 20 mL, 25 mL, 40 mL, 50 mL of NaOH. K_2 of CH_3 COOH is 2 10^{-5} .

SOLUBILITY & SOLUBILITY PRODUCT'S

- **49.** The values of K_{sp} for the slightly soluble salts MX and OX_2 are each equal to 4.0 10^{-18} . Which salt is more soluble? Explain your answer fully.
- 50. The solubility of $PbSO_4$ water is 0.038 g/L. Calculate the solubility product constant of $PbSO_4$.
- **51.** Calculate the solubility of $Mg(OH)_2$ in water. $K_{sp} = 1.2 10^{-11}$.

- **52.** How many mol $CuI(K_{sp} = 5 10^{-12})$ will dissolve in 1.0 L of 0.10 M NaI solution ?
- 53. What is the solubility (in mol/L) of Fe(OH)₃ in a solution of pH = 8.0? $[K_{sp} \text{ for Fe(OH)}_3 = 1.0 \quad 10^{-36}]$
- Calculate the solubility of A_2X_3 in pure water, assuming that neither kind of ion reacts with water. For A_2X_3 , $[K_{sp} = 1.1 10^{-23}]$
- **55.** What mass of Pb^{2+} ion is left in solution when 50.0 mL of 0.20 M $Pb(NO_3)_2$ is added to 50.0 mL of 1.5 M NaCl ? [Given K_{sn} for $PbCl_2$ 1.7 10^{-4}]
- 56. A solution has a Mg^{2^+} concentration of 0.0010 mol/L. will $Mg(OH)_2$ precipitate if the OH^- concentration of the solution is $[K_{sp} = 1.2 \quad 10^{-11}]$
 - (a) 10^{-5} mol/L
- (b) 10^{-3} mol/L ?
- 57. Calculate solubility of $PbI_2(K_{sp} = 1.4 10^{-8})$ in water at 25, which is 90% dissociated.
- 58. Calculate the Simultaneous solubility of AgSCN and AgBr. $K_{sp}(AgSCN) = 1.1 10^{-12}$, $K_{sp}(AgBr) = 5 10^{-13}$.
- **59.** Calculate F^- in a solution saturated with respect of both MgF_2 and SrF_2 . K_{sp} (MgF_2) = 9.5 10^{-9} , K_{sp} (SrF_2) = 4 10^{-9} .

COMPLEXATION EQUILIBRIA

- Assuming no change in volume, calculate the minimum mass of NaCl necessary to dissolve 0.010 mol AgCl in 100 L solution. $[K_f(AgCl_2^-) = 3 \quad 10^5, K_{sp} = (AgCl) = 1 \quad 10^{-10}]$
- 61. How much AgBr could dissolve in 1.0 L of 0.40 M NH₃? Assume that $Ag(NH_3)_2^+$ is the only complex formed. $[K_1(Ag(NH_3)_2^+) = 1 \quad 10^8, K_{sp}(AgBr) = 5 \quad 10^{-13}]$
- **62.** A solution of 0.1 M Cl^- , 0.1 M Br^- and 0.1 M Γ solid $AgNO_3$ is gradually added to this solution. Assuming that the addition of $AgNO_3$ does not change the volume. Answer the following :
 - (a) What conc. of Ag^+ ions will be required to start precipitation of each of the three ions.
 - (b) Which ion will precipitate first
 - (c) What will be the conc. of this ion when the second ion start precipitating.
 - (d) What will be the conc. of both ions when the third ion start precipitating.

Given :
$$K_{sp}$$
 (AgCl) = 1.7 10^{-10} , K_{sp} (AgBr) = 5 10^{-13} K_{sp} (AgI) = 8.5 10^{-17} .

- 63. The solubility of $CaCO_3$ is 7 mg/litre. Calculate the solubility product of $BaCO_3$ from this information and from the fact that when Na_2CO_3 is added slowly to a solution containing equimolar concentration of Ca^{+2} and Ba^{+2} , no precipitate is formed until 90% of Ba^{+2} has been precipitated as $BaCO_3$.
- A solution containing $0.10~M~Zn^{2^+}$ and $0.10~M~Fe^{2^+}$ is saturated with H_2S . What must be the H^+ concentration to separate these ions by selective precipitating ZnS. What is the smallest Zn^{2^+} concentration that can be achieved without precipitating any of Fe^{2^+} as FeS.

$$K_{sp}ZnS = 1.2 \quad 10^{-23}, \ K_{sp}FeS = 3.7 \quad 10^{-19}.$$
 [Take : [H₂S] = 0.1 M and K₁ = 1.1 \quad 10^{-7}, \quad K₂ = 1 \quad 10^{-14}]

- $\textbf{65.} \hspace{0.5in} \text{(a)} \hspace{0.5in} \text{Will} \hspace{0.5in} \text{Mg(OH)}_2 \hspace{0.5in} \text{precipitate from a solution that is } 0.01 \hspace{0.5in} \text{M in MgCl}_2 \hspace{0.5in} \text{and also } 0.10 \hspace{0.5in} \text{M in NH}_3.$
 - (b) What NH_4^+ must maintained to prevent the precipitation of $Mg(OH)_2$ from a solution that is $0.010 \ MgCl_2$ in $0.1 \ MNH_3 \ K_{sp} \ Mg \ (OH)_2 = 2.5 \ 10^{-11}$, $K_b \ NH_3 = 1.8 \ 10^{-5}$
- Calculate the solubility of AgCN in a buffer solution of pH 3. Neglect any complexation. Take $K_{sp}(AgCN) = 3.2 10^{-16}$, $K_{sp}(HCN) = 6.4 10^{-10}$.
- 67. Silver ion forms $Ag(CN)_2^-$ in the presence of excess CN^- . How much KCN should be added to 1 litre of a 0.0005 M Ag^+ solution in order to reduce $[Ag^+]$ to 1 10^{-19} K_b $Ag(CN)_2^- = 1$ 10^{-21} .

68. How many moles of solid NaOH must be added to 1.0 litre of H_2O in order to dissolve 0.10 mole of $Zn(OH)_2$ according to the equation

$$Zn(OH)_2 + 2OH^- \longrightarrow Zn(OH)_4^{2-}$$

 $K_{sp}Zn(OH)_2 = 4.5 \quad 10^{-17}, K_{inst}Zn(OH)_4^{2-} = 3.6 \quad 10^{-16}.$

CON	CEPTUAL SUBJECTIVE	EXERCISE	ANSWER	KF'	Y		EXERCISE-4(A)
	(i) 1.8 10 ⁻¹⁶ , (ii)					3.	
	(a) $K_a = 10^{-8}$, (b)) 4 10	۷.	10	3.	170.4
5.	(a) $R_a = 10^{\circ}$, (b)		2 27	(d)	11 12	(0)	6.97,
3.	(a) +1, (b) (f) 6.996, (g)						11.30
	(k) 9 (l)	1, (m		(1)	2.01,	U)	11.50
_				0	0.6 10-7		
	6.795 (i) 6.51 ; (ii)			ο.	0.0 10		
	0.556 M			1 9	1 27		
l	$[H^{+}] = 1.612 10^{-2} \text{N}$				4.07		
	$[H^{+}] = 1.012 - 10^{-3}M, [CH_{3}C]$	2			1 10 ⁻⁴ M		
l	2.08] - 0.	.4 10 141		
l	$[H^{+}] = [H_{2}PO_{4}^{-}] = 5.$			O-8 IE	20 ³⁻ 1 = 5 44	L1 10	0^{-18}
	pH = 11.46 ,[enH ₂ ²⁺]		•		•		34 M, 0.0116 M, 0
	$[OH^{-}] = 9.0 10^{-6}$,.1			4.74		
	9.56	24 . (a) pH	H = 9.239(b)				
l							n 0.96 % on base addition
I	$[H^+] = 2.5 10^{-3}$						
I	$[OH^{-}] = 6.664 \ 10^{-6}$	· n·					$K_b = 6.25 10^{-10}$
	0.56%, pH=7 34 .	1.667 %					10^{-6} ; 10^{-8}
	pH = 10.43						5.12 10 ⁻⁶ M
	(a) 6 (b) 1 10				8.71		
	$7.94 10^{-7}$		10^{-6}	46.	1.73 10	⁵ , 5.2	7
l	$K_a = 1.73 10^{-5}, pH$	-					
48.	(i) 2.85, (ii) 4.0969	, (iii) 4.5229,(iv) 4.699 (v)	5.301	(vi) 8.69	9	
49.	OX ₂ is more soluble	50 . 1.6 10)-8	51.	$1.4 10^{-4}$	52.	$[Cu^+] = 5 10^{-11} M$
53.	$10^{-18} M$	54. 1.0 10	⁻⁵ mol/lit	55.	12 mg		
56.	(a) no precipitation w	ill occur, (b)	a precipitate	will fo	rm	57.	$1.6 10^{-3}$
58.	$4 10^{-7} \text{ mol/L AgB}$	r, 9 10 ⁻⁷ mol/	L AgSCN	59.	$[F^-] = 3$	10 ⁻³ M	1
60.	19.5 kg	61. 2.8 10	0^{-3} M				
62.	(a) $8.5 10^{-16}$, 5	$10^{-12}, 1.7 10^{-12}$	⁹ (b) I ⁻ (c)	1.7	10^{-5} (d) B	$sr^- = 2$	$2.9 10^{-4}, I^- = 5 10^{-8}$
63.	$4.9 10^{-10}$	64. 5.5 10	$^{-3} \leq [H^+] \leq 0$	96, 3.	$.24 10^{-6}$		
65.	(a) yes (b) 0.036 M	66. s = 2.23	10^{-5} M	67.	3.236 10) ⁻³ mo	l 68 . 1.09 mol

1. A solution of volume V contains n_1 moles of QCl and n_2 moles of RCl where QOH and ROH are two weak bases of dissociation constants k_1 and k_2 respectively. Show that the pH of the solution is given by

$$pH = \frac{1}{2}log\left[\left(\frac{k_1k_2}{k_W}\right)\frac{V}{(n_1k_2 + k_1n_2)}\right]$$

State assumptions, if any

2. EDTA, often abbreviated as H_4Y , forms very stable complexes with almost all metal ions. Calculate the fraction of EDTA in the fully protonated form, H_4Y in a solution obtained by dissolving 0.1 mol Na_4Y in 1 lit. The acid dissociation constants of H_4Y :

$$k_1 = 1.02 \quad 10^{-2}, \ k_2 = 2.13 \quad 10^{-3}, \ k_3 = 6.92 \quad 10^{-7}, \ k_4 = 5.50 \quad 10^{-11}:$$

3. Calculate the solubility of solid zinc hydroxide at a pH of 5,9 and 13. Given :

$$Zn(OH)_2(s) \rightleftharpoons Zn(OH)_2(aq)$$
 $k_1 = 10^{-6} M$ (1)

$$Zn(OH)_2(aq) \rightleftharpoons Zn(OH)^+ + OH^- \qquad k_2 = 10^{-7} M$$
 (2)

$$Zn(OH)^+ \rightleftharpoons Zn^{2+} + OH^- \qquad \qquad k_3 = 10^{-4} M \qquad (3)$$

$$Zn(OH)_{2}(aq) + OH^{-} \rightleftharpoons Zn(OH)_{3}^{-}$$
 $k_{4} = 10^{3} M^{-1}$ (4)

$$Zn(OH)_{3}^{-} + OH^{-} \rightleftharpoons Zn(OH)_{4}^{2-}$$
 $k_{5} = 10 M^{-1}$ (5)

4. The standard free energy of formation for AgCl at 298 K is $-109.7 \text{ kJ mole}^{-1}$.

 ΔG (Ag⁺) = 77.2 kJ/mole, ΔG (Cl⁻) = -131.2 kJ/mole. Find the solubility of AgCl in 0.05 M KCl. Neglect any complication due to complexation :-

- 5. Salt mixture containing $Cu_3(AsO_4)_2$ ($K_{sp} = 8 10^{-36}$) and $Pb_3(AsO_4)_2$ ($K_{sp} = 4.096 10^{-36}$) is shaken with water. Find the concentration of metal cations in the solution at equilibrium. Neglect any hydrolysis of the dissolved ions.
- 6. (a) At what minimum pH will $1.0 ext{ } 10^{-3} ext{ mol of Al(OH)}_3 ext{ go into } 1 ext{ L solution as } [Al(OH)_4].$
 - (b) At what minimum pH will $1.0 10^{-3}$ mol of $Al(OH)_3$ go into 1 L solution as Al^{3+} ?

 $\text{Given} \,:\, K_{_{SP}} \, [\text{Al(OH)}_{_3}] \,=\, 5.0 \, \quad 10^{-33} \,\, \text{and for} \,\, [\text{Al(OH)}_{_4}^-] \,\, \Leftrightarrow \,\, \text{Al}^{^{3+}} \,+\, 4\text{OH}^- \,\, . \,\, K \,\equiv\, 1.3 \, \quad 10^{-34}.$

- 7. A solution contains HCl, Cl_2HCCOOH & CH_3COOH at concentrations 0.09 M in HCl, 0.09 M in Cl_2HCCOOH & 0.1 M in CH_3COOH , pH for the solution is 1. Ionization constant of $\text{CH}_3\text{COOH} = 10^{-5}$. What is the magnitude of K for dichloroacetic acid?
- 8. A solution of ammonia bought for cleaning the windows was found to be 10% ammonia by mass, having a density of $0.935~g.mL^{-1}$. What is the pH of the solution. Take K_b for protonation of ammonia = $5.5~10^{-6}$.
- **9.** The k_w of water at two different temperature is :-

T 25 C 50 C
$$k_{...}$$
 1.08 10^{-14} 5.474 10^{-14}

Assuming that ΔH of any reaction is independent of temperature, calculate the enthalpy of neutralization of a strong acid and strong base.

- 10. What is the pH of a 1.0 M solution of acetic acid ? To what volume must 1 litre of the solution be diluted so that the pH of the resulting solution will be twice the original value. Given $K_a = 1.8 10^{-5}$:
- 11. A handbook states that the solubility of methylamine CH_3NH_2 (g) in water at 1 atm pressure at 25 C is 959 volumes of CH_3NH_2 (g) per volume of water (pk_b = 3.39) :-
 - (a) Estimate the max. pH that can be attained by dissolving methylamine in water.
 - (b) What molarity NaOH (aq.) would be required to yield the same pH?

12. Mixture of solutions. Calculate the pH of the following solutions.

For
$$H_3PO_4$$
; $K_{a_1} = 7.5 \times 10^{-3}$, $K_{a_2} = 6.2 \times 10^{-8}$, $K_{a_3} = 10^{-12}$

- (a) 50 mL of 0.12 M $H_3PO_4 + 20$ mL of 0.15 M NaOH;
- (b) 50 mL of 0.12 M $H_3PO_4 + 40$ mL of 0.15 M NaOH ;
- (c) 40 mL of 0.12 M $H_3PO_4 + 40 \text{ mL}$ of 0.18 M NaOH;
- (d) 40 mL of 0.10 M $H_2PO_4 + 40$ mL of 0.25 M NaOH.
- 13. Mixtured of solutions. Calculate the pH of the following solution.

Use data of above question & For H_2CO_3 ; $K_1 = 4.2 \times 10^{-7}$, $K_2 = 4.8 \times 10^{-11}$

- (a) 40 mL of 0.050 M $Na_2CO_3 + 50 \text{ mL}$ of 0.040 M HCl;
- (b) 40 mL of 0.020 M $Na_3PO_4 + 40$ mL of 0.040 M HCl;
- (c) 50 mL of 0.10 M $Na_3PO_4 + 50$ mL of 0.10 M NaH_2PO_4 ;
- (d) 40 mL of 0.10 M $H_3PO_4 + 40$ mL of 0.10 M Na_3PO_4 .
- 14. When a 40 mL of a 0.1 M weak base is titrated with 0.16 M HCl, the pH of the solution at the end point is 5.23. What will be the pH if 15 mL of 0.12 M NaOH is added to the resulting solution :-
- 15. A buffer solution was prepared by dissolving 0.05 mol formic acid & 0.06 mol sodium formate in enough water to make 1.0 L of solution. K_a for formic acid is $1.80 10^{-4}$.
 - (a) Calculate the pH of the solution.
 - (b) If this solution were diluted to 10 times its volume, what would be the pH?
 - (c) If the solution in (b) were diluted to 10 times its volume, what would be the pH?
- 16. How many moles of sodium hydroxide can be added to 1.00 L of a solution 0.1 M in NH_3 & 0.1 M in NH_4Cl without changing the pOH by more than 1.00 unit? Assume no change in volume. $K_b(NH_a) = 1.8 10^{-5}$.
- 17. Calculate the OH $^-$ concentration and the H_3PO_4 concentration of a solution prepared by dissolving 0.1 mol of Na_3PO_4 in sufficient water to make 1 L of solution $K_1 = 7.1 10^{-3}$, $K_2 = 6.3 10^{-8}$, $K_3 = 4.5 10^{-13}$.
- 18. If 0.00050 mol NaHCO₃ is added to 1 litre of a buffered solution at pH 8.00, how much material will exist in each of the three forms H_2CO_3 , HCO_3^- and CO_3^{2-} ? For H_2CO_3 , $K_1 = 5 10^{-7}$, $K_2 = 5 10^{-13}$.
- 19. Equilibrium constant for the acid ionization of Fe^{3+} to $Fe(OH)^{+2}$ and H^{+} is 6.5 10^{-3} . What is the max. pH, which could be used so that at least 95% of the total Fe^{3+} in a dilute solution. exists as Fe^{3+} .
- 20. How much Na_2HPO_4 must be added to one litre of 0.005 M solution of NaH_2PO_4 in order to make a 1 L of the solution of pH = 6.7 ? K_1 = 7.1 10^{-3} , K_2 = 6.3 10^{-8} , K_3 = 4.5 10^{-13} for H_3PO_4 .
- 21. The indicator phenol red is half in the ionic form when pH is 7.2. If the ratio of the undissociated form to the ionic form is 1:5, find the pH of the solution. With the same pH for solution, if indicator is altered such that the ratio of undissociated form to dissociated form becomes 1:4, find the pH when 50% of the new indicator is in ionic form:
- 22. A buffer solution, 0.080 M in Na_2PO_4 and 0.020 M in Na_3PO_4 , is prepared. The electrolytic oxidation of 1.0 m mol of the organic compound RNHOH is carried out in 100 mL of the buffer. The reaction is RNHOH + $H_2O \longrightarrow RNO_2 + 4H^+ + 4e$

Calculate the approximate pH of the solution after the oxidation is complete?

- 23. A solution of weak acid HA was titrated with base NaOH. The equivalence point was reached when 36.12 mL of 0.1 M NaOH has been added. Now 18.06 mL of 0.1 M HCl were added to titrated solution, the pH was found to be 4.92. What will be the pH of the solution obtained by mixing 10 mL of 0.2 M NaOH and 10 mL of 0.2 M HA:-
- 24. A weak base BOH was titrated against a strong acid. The pH at 1/4th equivalence point was 9.24. Enough strong base was now added (6m. eq.) to completely convert the salt. The total volume was 50 mL. Find the pH at this point :-
- 25. An organic monoprotic acid [0.1 M] is titrated against 0.1 M NaOH. By how much does the pH change between one fourth and three fourth stages of neutralization? If at one third stage of neutralization, the pH is 4.45 what is the dissociation constant of the acid? Between what stages of neutralization may the pH change by 2 units?

26. The salt Zn(OH)₂ is involved in the following two equilibria,

$$Zn(OH)_{2}$$
 (s) \rightleftharpoons Zn^{2+} (aq) + $2OH^{-}$ (aq)

$$K_{sp} = 1.2 10^{-17}$$

$$Zn(OH)_{2}$$
 (s) + $2OH^{-}$ (aq) \rightleftharpoons $[Zn(OH)_{4}]^{2-}$ (aq) ;

$$K_c = 0.13$$

Calculate the pH of solution at which solubility is minimum.

27. What is the solubility of AgCl in 0.20 M NH₃?

Given :
$$K_{sp}(AgCl) = 1.7 10^{-10} M^2$$
, $K_1 = [Ag(NH_3)^+] / [Ag^+][NH_3] = 2.33 10^3 M^{-1}$ and $K_2 = [Ag(NH_3)^+] / [Ag(NH_3)^+] [NH_3] = 7.14 10^3 M^{-1}$.

- 28. Predict whether or not AgCl will be precipitated from a solution which is 0.02 M in NaCl and 0.05 M in $KAg(CN)_2$. Given $K_{inst}(Ag(CN)_2^-) = 4.0 10^{-19} M^2$ and $K_{sn}(AgCl) = 2.8 10^{-10} M^2$.
- Equal volumes of 0.02 M $AgNO_3$ and 0.02 M HCN were mixed. Calculate $[Ag^{\scriptscriptstyle \dagger}]$ at equilibrium. Take 29. $K_a(HCN) = 9 \quad 10^{-10}, K_{sp}(AgCN) = 4 \quad 10^{-16} :$
- Show that solubility of a sparingly soluble salt $M^{2^+}A^{2^-}$ in which A^{2^-} ions undergoes hydrolysis is given by : 30.

$$S = \sqrt{K_{\rm sp} \left(1 + \frac{[H^+]}{K_2} + \frac{[H^+]^2}{K_1 K_2} \right)}$$

where K_1 and K_2 are the dissociation constant of acid $H_2A.K_{_{\rm SD}}$ is solubility product of MA.

BRAIN STORMING SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE-4(B)

 $3.82 \quad 10^{-26}$ 2.

- 10 M, 1.12 10⁻⁶ M, 2 10^{-4} M 3.
- **4.** $K_{sp} = 1.723 \quad 10^{-10}, s = 3.446 \quad 10^{-9} M$
- **5.** $[Cu^{+2}] = 8.825 10^{-8}, [Pb^{+2}] = 7.119 10^{-8}$
- **6.** (a) pH = 9.415
- (b) pH = 4.23
- $k_{a_0} = 1.25 10^{-2}$

- 8. pH = 11.74
- **9.** $\Delta H_{\text{pout}} = -51952.6 \text{ J} = -51.95 \text{ kJ/mole}$
- **10.** $V = 2.77 10^4 L$

- **11**. (a) 13.097
- (b) 0.1252
- **12**. (a) 2.12
- (b) 4.66
- (c) 7.2

- **13**. (a) 8.347
- (b) 4.66
- (c) 9.6
- (d) 12 (d) 7.2

- **14.** 9.1628
- **15.** (a) pH = 3.823
- (b) pH = 3.846 (c) pH = 3.9899

- 16. 0.0818 moles
- **17.** $[OH^{-}] = 3.73 \quad 10^{-2} \text{ M}, [H_{3}PO_{4}] = 5.93 \quad 10^{-18} \text{ M}$
- **18.** $[H_2CO_3] = 9.85 10^{-6} M, [HCO_3^-] = 4.9 10^{-4} M, [CO_3^{-2}] = 2.45 10^{-8} M$
- **19.** pH = 0.908
- **20.** 1.6 m mole

21. pH = 7.9, 7.3

22. 7.81

23. pH = 9

- **24.** pH = 11.22
- **25.** 0.9542, $pk_a = 4.751$, $\frac{1}{11}$ th & $\frac{10}{11}$ th stages of neutralization **26.** pH = 9.99, $s = 10^{-9}$ M

- **27**. 9.6 10⁻³ M
- 28. precipitate will occur
- **29.** $[Ag^+] = 6.66 \quad 10^{-5} \text{ M}$

		_			
1.	How many litres of water		litre of an aqueous solution	of HCl with a pH of 1	
	(A) 0.1 L	(B) 0.9 L	(C) 2.0 L	(D) 9.0 L	
2.			Q is 3. The value of the ion 10^{-3} (D) $1 ext{ } 10^{-5}$	[AIEEE-2	
3.	, ,	` '	ar solubility of this compou		
0.	The H _{sp} for Ch(OH)3 is	1.0 10 . The more	ar solutionity of this compou	[AIEEE-2	011]
	(A) $\sqrt[2]{1.6 \times 10^{-30}}$	(B) $\sqrt[4]{1.6 \times 10^{-30}}$ (C)	C) $\sqrt[4]{1.6 \times 10^{-30} / 27}$ (D)	1.6 10 ⁻³⁰ /27	
4.	An acid HA ionises as HA \rightleftharpoons H ⁺ + A ⁻				
	The pH of 1.0 M soluti	on is 5. Its dissociatio	n constant would be :-	[AIEEE-	2011]
	(A) 1 10 ⁻¹⁰	(B) 5	(C) 5 10 ⁻⁸	(D) 1 10 ⁻⁵	
5.			10^{-13} . The quantity of pota A solution of silver nitrate to		of AgBr is :-
	(A) $5.0 10^{-8} g$	(B) $1.2 10^{-10} g$ (C)	C) $1.2 10^{-9}$ g(D) $6.2 10^{-9}$) ⁻⁵ g	
6.	In aqueous solution the	ionization constants f	or carbonic acid are		
	$K_1 = 4.2 10^{-7} \text{ and } K$	$_2 = 4.8 10^{-11}$			
	Select the correct states	ment for a saturated (0.034 M solution of the ca	rbonic acid :-	
				[AIEEE-2	010]
	(A) The concentration of	$f H^+$ is double that of	CO ₃ ²⁻		
	(B) The concentration of	$f CO_3^{2-} is 0.034 M$			
	(C) The concentration of	of ${\rm CO_3}^{2-}$ is greater that	n that of HCO ₃ -		
	(D) The concentrations	of H^+ and HCO_3^- are	e approximately equal		
7.	At 25 C, the solubility	producct of Mg(OH) ₂	is $1.0 ext{ } 10^{-11}$. At which pF	H, will Mg^{2+} ions start pr	ecipitating in
	the form of Mg(OH) ₂ fr	om a solution of 0.00	$1 \text{ M Mg}^{2+} \text{ ions } ?$	[AIEEE-2	010]
	(A) 8	(B) 9	(C) 10	(D) 11	
8.	Solid Ba(NO ₃) ₂ is gradu precipitate begin to form		10 ⁻⁴ M Na ₂ CO ₃ solution.	At what concentration	of Ba ²⁺ will a
	$(K_{SP} \text{ for Ba } CO_3 = 5.1)$			[AIEEE-2	0001
		(B) 8.1 10 ⁻⁷ M	(C) 4.1 10 ⁻⁵ M		009]
9.			K_{b} of a weak base, BOH, is		ueous solution
	of the corresponding sa			[AIEEE-2	
		(B) 4.79	(C) 7.01	(D) 9.22	•
10.		of the sparingly soluble	e strong electrolyte AglO ₃ (n	nolecular mass = 283) tl	ne equilibrium
	which sets in is -	. 37		[AIEEE-2	
	$AglO_3 \longrightarrow Ag_0^+$	· , + IO-		•	•
		-	\boldsymbol{D}_3 at a given temperature	is $1.0 - 10^{-8}$ what is	the mass of
	AgIO ₃ contained in 100			, write is	210 111000 OI
		(B) $2.83 10^{-3} g$	(C) $1.0 10^{-7} g$	(D) 1.0 10 ⁻⁴ g	
	. ,	. ,	٠,	` '	

- 11. The solubility product of a salt having general formula MX_2 , in water is : 4 10^{-12} . The concentration of M^{2^+} ions in the aqueous solution of the salt is [AIEEE-2005] (A) $1.0 \quad 10^{-4}$ M (B) $2.0 \quad 10^{-6}$ M (C) $4.0 \quad 10^{-10}$ M (D) $1.6 \quad 10^{-4}$ M
- **12.** Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be **[AIEEE-2005]** (A) $3.88 10^6$ (B) $3.98 10^8$ (C) $3.98 10^{-6}$ (D) $3.68 10^{-6}$
- 13. The molar solubility in mol L^{-1} of a sparingly soluble salt MX_4 is 's'. The corresponding solubility product is K_{SP} . 's' is given in terms of K_{SP} by relation : [AIEEE-2004]
 - (A) $s = (K_{SP} / 128)^{1/4}$ (B) $s = (128K_{SP})^{1/4}$ (C) $s = (256K_{SP})^{1/5}$ (D) $s = (K_{SP}/256)^{1/5}$
- 14. The solubility of $Mg(OH)_2$ is x mole/lit. then its solubility product is(A) x^3 (B) $5x^3$ (C) $4x^3$ (D) $2x^2$
- 15. The solubility in water of a sparingly soluble salt AB_2 is $1.0 ext{ } 10^{-5} ext{ mol } L^{-1}$. Its solubility product will be [AIEEE-2003]
 - (A) 1 10^{-15} (B) 1 10^{-10} (C) 4 10^{-15} (D) 4 10^{-10}

JEE-[N	MAIN] : PREVIOUS YEAR	QUESTION	S ANSWER KE	Y	EXERCIS	SE -5[A]
1.	(D)	2.	(D)	3.	(C)	4.	(A)
5.	(C)	6.	(D)	7.	(C)	8.	(D)
9.	(C)	10.	(B)	11.	(A)	12.	(C)
13.	(D)	14.	(C)	15.	(C)		

1.	Which of the following	statement(s) is/are corre	ct ?		[JEE	1998]		
	(A) the pH of $1.0 ext{ } 10^{-8}\text{M}$ solution of HCl is 8							
	(B) the conjugate base of $H_2PO_4^-$ is HPO_4^{2-}							
	(C) autoprotolysis constant of water increases with temperature							
	(D) when a solution of a weak monoprotic acid is titrated against a strong base, at half - point pH = $(1/2)$ pK _a .							
2.	A buffer solution can be prepared from a mixture of-							
	(A) sodium acetate and acetic acid in water							
	(B) sodium acetate and hydrochloric acid in water							
	(C) ammonia and ammonium chloride in water							
	(D) ammonia and sodium hydroxide in water.							
3.	The pH of $0.1~M$ solution of the following salts increases in the order-					1999]		
	(A) NaCl < NH ₄ Cl < NaCN < HCl							
	(B) HCl < NH ₄ Cl < NaCl < NaCN							
	(C) NaCN < NH ₄ Cl < NaCl < HCl							
	(D) HCl < NaCl < NaCN < NH ₄ Cl							
4.	An aqueous solution of $6.3~g$ oxalic acid dihydrate is made up to $250~mL$. The volume of required to completely neutralise $10~mL$ of this solution is-							
	(A) 40 mL	(B) 20 mL	(C) 10 mL	(D) 4 mL				
5.	For sparingly soluble salt ApBq, the relationship of its solubility product (Ls) with its solubility (S) is-							
					[JEE	2001]		
	(A) Ls = S^{p+q} , $p^{p}.q^{q}$	(B) Ls = S^{p+q} , $p^{p}.q^{p}$	(C) Ls = $S^{pq} p^p.q^q$	(D) Ls = S^p	^q , (p [.] q) ^r	p+q		
6.	A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with 10^{-16} M sulphide ion. If K_{sp} MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first ? [JEE 2003]							
	(A) FeS	(B) MnS	(C) HgS	(D) ZnS				
7.	HX is a weak acid ($K_a = 10^{-5}$). It forms a salt NaX (0.1 M) on reacting with caustic soda. The degree of hydrolysis of NaX is-							
	(A) 0.01 %	(B) 0.0001 %	(C) 0.1 %	(D) 0.5 %				
8.	${\rm CH_3NH_2}(0.1~{\rm mole},~{\rm K_b}=5~10^{-4})$ is added to 0.08 moles of HCl and the solution is diluted to one litre resulting hydrogen ion concentration is-							
	(A) 1.6 10 ⁻¹¹	(B) 8 10 ⁻¹¹	(C) 5 10 ⁻⁵	(D) 2 10 ⁻¹	2			

SUBJECTIVES:

- 9. Given : $Ag(NH_3)_2^+ \rightleftharpoons Ag^+ + 2 NH_3$, $K_c = 6.2 \quad 10^{-8} \& K_{sp}$ of $AgCl = 1.8 \quad 10^{-10}$ at 298 K. Calculate the concentration of the complex in 1.0 M aqueous ammonia. [JEE 1998]
- 10. What will be the resultant pH when 200 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 300 mL of an aqueous solution of NaOH (pH = 12.0)? [JEE 1998]
- 11. The solubility of $Pb(OH)_2$ in water is 6.7 10^{-6} M. Calculate the solubility of $Pb(OH)_2$ in a buffer solution of pH = 8.
- 12. The average concentration of SO_2 in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of SO_2 in water at 298 K is 1.3653 moles litre⁻¹ and the pK_a of H₂SO₃ is 1.92, estimate the pH of rain on that day. [JEE 2000]
- 13. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25 C.
 - (a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
 - (b) If 6g of NaOH is added to the above solution, determine final pH. Assume there is no change in volume on mixing. K_a of acetic acid is $1.75 10^{-5}$ M. [JEE 2002]
- 14. Will the pH of water be same at 4 C and 25 C? Explain. [JEE 2003]
- 15. 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given $K_a(HA)=5$ 10^{-6} and $\alpha << 1$. [JEE 2004]
- 16. CH_3NH_2 (0.1 mole, $K_b = 5 10^{-4}$) is added to 0.08 moles of HCl and the solution is diluted to one litre, resulting hydrogen ion concentration is
 - The species present in solution when ${\rm CO_2}$ is dissolved in water :

(B) 8 10⁻¹¹

(A) CO_2 , H_2CO_3 , HCO_3^- , CO_2^- (B) H_2CO_3 , CO_3^{2-} [JEE 2006]

(C) $5 10^{-5}$

(D) $MX > M_3X > MX_2$

(D) 2 10⁻² [JEE 2005]

- (C) $\mathrm{CO_3}^{2-}$, $\mathrm{HCO_3}^{-}$ (D) $\mathrm{CO_2}$, $\mathrm{H_2CO_3}$
- Solubility product constants (K_{SP}) of salts of types MX, MX $_2$ and M $_3$ X at temperature 'T' are 4.0 10^{-8} , 3.2 10^{-14} and 2.7 10^{-15} , respectively. Solubilities (mol dm $^{-3}$) of the salts at temperature 'T' are in the order :
 - (A) $MX > MX_2 > M_3X$ (B) $M_3X > MX_2 > MX$ [JEE 2008]
 - 2
- 19. 2.5 mL of $\frac{2}{5}$ M weak monoacidic base (K_b = 1 10⁻¹² at 25 C) is titrated with $\frac{2}{15}$ M HCl in water at 25 C.

The concentration of H⁺ at equivalence point is [JEE 2008]

 $(K_w = 1 \quad 10^{-14} \text{ at } 25 \text{ C})$

(C) $MX_2 > M_3X > MX$

(A) $1.6 10^{-11}$

17.

(A) $3.7 \quad 10^{-13} \text{ M}$ (B) $3.2 \quad 10^{-7} \text{ M}$ (C) $3.2 \quad 10^{-2} \text{ M}$ (D) $2.7 \quad 10^{-2} \text{ M}$

- 20. The dissociation constant of a substituted benzoic acid at $25 \, \text{C}$ is $1.0 \, 10^{-4}$. The pH of a $0.01 \, \text{M}$ solution of its sodium salt is [JEE 2009]
- 21. In 1 L saturated solution of AgCl $[K_{sp}(AgCl) = 1.6 \quad 10^{-10}]$, 0.1 mol of CuCl $[K_{sp}(CuCl) = 1.0 \quad 10^{-6}]$ is added. The resultant concentration of Ag^+ in the solution is 1.6 $\quad 10^{-x}$. The value of 'x' is.
- 22. The K_{sp} of Ag_2CrO_4 is 1.1 10^{-12} at 298 K. The solubility (in mol/L) of Ag_2CrO_4 in a 0.1 M $AgNO_3$ solution is [JEE 2013]
 - (A) 1.1 10⁻¹¹
- *(B) 1.1 10⁻¹⁰
- (C) 1.1 10⁻¹²
- (D) 1.1 10⁻⁹
- 23. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (HA, 1M) is $1/100^{th}$ of that of a strong acid (HX, 1M), at 25° C. The K_a of HA is [JEE 2013]
 - *(A) 1 10⁻⁴
- (B) 1 10⁻⁵
- (C) $1 10^{-6}$
- (D) $1 10^{-3}$

JEE-[AD	/ANCED] : PREVIOUS YEAR QUESTIONS			EXERCISE -	5[B]
1.	В,С	2.	A,B,C		
3.	В	4.	Α		
5.	A	6.	С		
7.	A	8.	В		
9.	$[Ag(NH_3)_2^+] = 0.0539$	10.	pH = 11.3010		
11.	$s = 1.203 10^{-3} \text{ M}$	12.	0.4948		
13.	(a) 0.0175 %, pH = 1, (b) 4.75	14.	NO		
15.	pH = 9	16.	В		
17.	A	18.	D		
19.	D	20.	8		
21.	7	22.	A		
23.	A				