## **Supplementary Materials for...**

'Plagioclase-saturated melt hygrothermobarometry and plagioclase-melt equilibria using machine learning'

- Supplementary Table 1: Calibration dataset for the thermometers, hygrometers, barometers, and the anorthite content model. See separate .xlsx spreadsheet.
- Supplementary Table 2: Calibration dataset for the plagioclase-saturated classifier. See separate .xlsx spreadsheet.
- Supplementary Table 3: Monte Carlo analytical uncertainty simulation input (ten experimental liquid compositions + weighted mean errors of electron microprobe glass oxide analyses) and output. See separate .xlsx spreadsheet.
- Appendix 1: Error propagation of temperature and water content estimates for hygrometry and barometry (p.2)
- o Supplementary Figures S.1 to S.4 (p.3-6)

## Appendix 1: Error propagation of temperature and water content estimates for hygrometry and barometry

The ML H<sub>2</sub>O-independent thermometer and T-dependent hygrometer provides an uncertainty value (standard deviation; SD) from the T or H<sub>2</sub>O prediction of each individual glass compositional analysis. For n=50, a uniform distribution within the SD on every temperature or water content estimate predicted by the H<sub>2</sub>O-independent thermometer and T-dependent hygrometer is sampled. For example, if the thermometer returns a value of 900 °C and a SD of  $\pm$  50 °C, 50 points are sampled between 850–950 °C according to a uniform distribution. All 50 temperature/water content estimates are then input into the T-dependent hygrometer or H<sub>2</sub>O-dependent barometer for each glass analysis. The maximum absolute difference to the mean value is the maximum uncertainty associated with a given pre-eruptive water content/pressure estimate.

## **Supplementary Figures**



**S.1:** Plots of variable importance vs. input parameter for the H<sub>2</sub>O-dependent thermometer (A), T-dependent hygrometer (B), and H<sub>2</sub>O-dependent barometer (C), highlighting the most important variables used by the ExtraTrees algorithm to make predictions.



**S.2:** Plots illustrating the strong non-linearity between temperature and (A) MgO (wt.%), (B) FeOt (wt.%), and (C) CaO (wt.%) in the liquid. Colour coding reflects the SiO<sub>2</sub> (wt.%) of the liquid.



**S.3:** Temperature vs.  $H_2O$  (wt.%) of experimental glass compositions with colour coding showing the (A)  $FeO_t$  (wt.%), (B)  $SiO_2$  (wt.%), and (C) MgO (wt.%) contents in the liquid.



**S.4:** Temperature of experimental glass compositions vs. An content (mol%) of experimental plagioclase with colour coding showing the (A) CaO (wt.%), (B) SiO<sub>2</sub> (wt.%), and (C) MgO (wt.%) contents in the liquid.