CSC446 A3

Peiqi Wang 1001132561

April 4, 2019

Problem 1

Implement Ritz-Galerkin method on equidistant grid with piecewise linear hat function for

$$-y'' + y = (\pi^2 + 1)\sin(\pi x) \quad x \in (0, 1)$$
$$y(0) = 1 \quad y'(1) = \frac{1}{2}(e - \frac{1}{e}) - \pi$$

where the real solution to the problem is given by

$$y(x) = \frac{1}{2}(e^x + e^{-x}) + \sin(\pi x)$$

solution. Note this BVP is a special case of BVP that appeared in the textbook, so

$$a_{k,l} = \left\langle \varphi_l', \varphi_k' \right\rangle + \left\langle \varphi_l, \varphi_k \right\rangle = \begin{cases} \frac{2(h^2 + 3)}{3h} & l = k \\ \frac{h^2 - 6}{6h} & l = k - 1, k + 1 \\ 0 & \text{otherwise} \end{cases}$$

for $k = 1, 2, \dots, m - 1$. Let

$$\varphi_0(x) = \left(\frac{1}{2}\left(e - \frac{1}{e}\right) - \pi\right)x + 1$$

satisfies the boundary conditions. Now we compute the right hand side of the linear system

$$\begin{aligned} b_k &= \langle f, \varphi_k \rangle - a_{k,0} = \langle f, \varphi_k \rangle - \langle \varphi_0, \varphi_k \rangle \\ &= \int_0^1 (\pi^2 + 1) \sin(\pi x) \varphi_k(x) dx - \int_0^1 \varphi_0(x) \varphi_k(x) dx \\ &= \int_{(k-1)h}^{kh} (\pi^2 + 1) \sin(\pi x) \left(1 - k + \frac{x}{h} \right) dx + \int_{kh}^{(k+1)h} (\pi^2 + 1) \sin(\pi x) \left(1 + k - \frac{x}{h} \right) dx \\ &- \int_{(k-1)h}^{kh} \left(\left(\frac{1}{2} \left(e - \frac{1}{e} \right) - \pi \right) x + 1 \right) \left(1 - k + \frac{x}{h} \right) dx \\ &- \int_{kh}^{(k+1)h} \left(\left(\frac{1}{2} \left(e - \frac{1}{e} \right) - \pi \right) x + 1 \right) \left(1 + k - \frac{x}{h} \right) dx \end{aligned}$$

for $k = 1, 2, \dots, m - 1$. To allow for arbitrary approximate $y_m(x)$ at x = 1, we have a basis function $\varphi_m(x)$ supported over $[x_{m-1}, x_m]$ only. The corresponding entries in A and b is as follows

$$a_{m,m-1} = \frac{h^2 - 6}{6h}$$

$$a_{m,m} = \frac{h^2 + 3}{3h}$$

$$b_m = \langle f, \varphi_k \rangle - \left(-\langle \varphi_0'', \varphi_k \rangle + \langle \varphi_0, \varphi_k \rangle \right)$$

$$= \int_{(m-1)h}^{mh} (\pi^2 + 1) \sin(\pi x) \left(1 - m + \frac{x}{h} \right) dx$$

$$- \int_{(m-1)h}^{mh} \left(\left(\frac{1}{2} \left(e - \frac{1}{e} \right) - \pi \right) x + 1 \right) \left(1 - m + \frac{x}{h} \right) dx$$

Due to complexity of integrands that arises in the problem, we will numerically integrate all integrals with 5-point Gaussian Quadrature. Implementation is in appendix. We have maximum error as follows

m	max error	ratio
10	0.0014590704	0.0000000000
20	0.0003643921	0.2497426391
40	0.0000910745	0.2499354110
80	0.0000227698	0.2500132232
160	0.0000056924	0.2499964951
320	0.0000014231	0.2499961108
640	0.0000003558	0.2500486353

We see as h = 1/m halves, the maximum error decreases by a factor of 4.

Problem 2

Repeat qestion 1, but use cubic B-spline basis instead of piecewise linear hat basis function.

solution. Due to complexity of integrands that arises in the problem, we will numerically integrate all integrals with 5-point Gaussian Quadrature. We use the same φ_0 as previously described. Generic formula for A and b is given by

$$a_{k,l} = \int_0^1 \left[B_l'(x) B_k'(x) + B_l(x) B_k(x) \right] dx$$

$$b_k = \int_0^1 \left[f(x) B_k(x) + \varphi_0''(x) B_k(x) - \varphi_0(x) B_k(x) \right] dx = \int_0^1 \left[f(x) B_k(x) - \varphi_0(x) B_k(x) \right] dx$$

since $\varphi_0''(x)$ is a zero function on [0, 1]. First derivates of φ_k are computed from online integral calculator. Implementation is in appendix. Maximum error is given as follows

m	max error	ratio
10	0.0000139296	0.0000000000
20	0.0000008599	0.0617307527
40	0.0000000535	0.0622524299
80	0.000000033	0.0624312541
160	0.0000000002	0.0622318081
320	0.000000000	0.0596110771
640	0.000000000	0.6453057277

As h halves, the maximum error decreases by a factor of 16. This expected for cubic basis functions, which makes erray decrease proportional to h^4 . Compared to problem 1, where the linear hat basis function makes error decrease proportional to h^2 , error for solution using B-spline basis decreases much faster.

Problem 3

two-point byp

$$-y'' + 10^4 y = 0 x \in (0,1)$$

$$y(0) = y(1) = 1$$

where real solution is

$$y(x) = c_1 e^{100x} + c_2 e^{-100x}$$

where

$$c_1 = \frac{1 - e^{-100}}{e^{100} - e^{-100}} \quad c_2 = \frac{e^{100} - 1}{e^{100} - e^{-100}}$$

solution. Use $\varphi_0(x) = 1$ and so $\varphi_0'(x) = 0$ for $x \in (0,1)$. We have

$$a_{k,l} = \left\langle \varphi_l', \varphi_k' \right\rangle + \left\langle 10^4 \varphi_l, \varphi_k \right\rangle = \int_0^1 \varphi_l'(x) \varphi_k'(x) + 10^4 \varphi_l(x) \varphi_k(x) dx$$

$$b_k = \left\langle f, \varphi_k \right\rangle - a_{k,0} = \left\langle 0, \varphi_k \right\rangle - \int_0^1 \varphi_0'(x) \varphi_k'(x) + 10^4 \varphi_0(x) \varphi_k(x) dx = -10^4 \int_0^1 \varphi_k(x) dx$$

where

$$\varphi'_{k}(x) = \begin{cases} \frac{1}{x_{k} - x_{k-1}} & x \in [x_{k-1}, x_{k}] \\ \frac{1}{x_{k} - x_{k+1}} & x \in [x_{k}, x_{k+1}] \\ 0 & \text{otherwise} \end{cases}$$

We will numerically integrate all integrals with 5-point Gaussian Quadrature. We adapt new grid such that error over each element is approximately equal (reference). After plotting the real solution, we noticed that y' has large magnitude near 0 and 1. So we choose a monitor function such that the adapted grid point is dense near 0 and 1. In particular, we used absolute value of the logit function

$$M(x) = \left| \log \frac{x}{1 - x} \right|$$

and constructed the grid as follows

Implementation is in appendix. We compare the maximum error using the equidistant (left) and adapted (right) grid.

m .	max error	ratio	m	max error	ratio
9	0.2415051781	0.0000000000	9	0.1609113342	0.0000000000
19	0.1815659068	0.7518095811	19	0.0509483141	0.3166235267
39	0.0888420639	0.4893102756	39	0.0087430834	0.1716069225
79	0.0269767436	0.3036483223	79	0.0020603703	0.2356571727
. •			159	0.0025347227	0.2595274714
159	0.0060326729	0.2236249487			
319	0.0015075440	0.2498965323	319	0.0001357461	0.2538625282
639	0.0003743138	0.2482937903	639	0.0000340911	0.2511385551

We noticed that, with the same number of basis functions, the maximum error on the adapted grid is at least an order of magnitude smaller to that of the equidistant grid. \Box

Problem 4

2d byp

$$-\nabla^2 u = -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 32x(1-x) + 32y(1-y) \qquad x \in (0,1) \quad y \in (0,1)$$

with Dirichlet boundary, where the real solution is

$$u(x,y) = 16x(1-x)y(1-y)$$

solution. Galerkin's equation for the above problem is derived in class, resulting in m^2 unknowns. Note

$$\langle \varphi_k, \varphi_l \rangle = \begin{cases} \frac{2h}{3} & k = l \\ \frac{h}{6} & |k - l| = 1 \\ 0 & \text{otherwise} \end{cases} \qquad \langle \varphi'_k, \varphi'_l \rangle = \begin{cases} \frac{2}{h} & k = l \\ -\frac{1}{h} & |k - l| = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$a_{(k,l),(i,j)} = \left\langle \varphi_i', \varphi_k' \right\rangle \left\langle \varphi_j, \varphi_l \right\rangle + \left\langle \varphi_i, \varphi_k \right\rangle \left\langle \varphi_j', \varphi_l' \right\rangle$$

$$= \begin{cases} \frac{8}{3} & i = k \land j = l \\ -\frac{1}{3} & (j = l \land |i - k| = 1) \lor (i = k \land |j - l| = 1) \\ -\frac{1}{3} & |k - i| = 1 \land |l - j| = 1 \end{cases}$$

$$0 & \text{otherwise}$$

$$b_{(k,l)} = \left\langle f, \varphi_{k,l} \right\rangle$$

$$= \int_0^1 \int_0^1 f(x, y) \varphi_{k,l}(x, y) dx dy$$

$$= \int_0^1 \int_0^1 (32x(1 - x) + 32y(1 - y)) \varphi_k(x) \varphi_l(y) dx dy$$

$$= \int_0^1 \int_0^1 [32x(1 - x) \varphi_k(x)] \varphi_l(y) + \varphi_k(x) \left[32y(1 - y) \varphi_l(y) \right] dx dy$$

$$= \left(\int_0^1 32x(1 - x) \varphi_k(x) dx \right) \left(\int_0^1 \varphi_l(y) dy \right) + \left(\int_0^1 \varphi_k(x) dx \right) \left(\int_0^1 32y(1 - y) \varphi_l(y) dy \right)$$

$$= h \left(\int_0^1 32x(1 - x) \varphi_k(x) dx + \int_0^1 32y(1 - y) \varphi_l(y) dy \right)$$

for $k, l, i, j = 1, 2, \dots, m$. We can still use 5-point Gaussian Quadrature to integrate $b_{k,l}$ by using Fubini's theorem to simplify the expression of $b_{k,l}$ as shown above. Implementation is in appendix. Maximum error is given as follows

max error	ratio
0.0079210491	0.0000000000
0.0019684524	0.2485090538
0.0004913844	0.2496298242
0.0001228007	0.2499076098
0.0000306973	0.2499769097
0.0000076742	0.2499941906
0.0000019185	0.2499979504
	0.0079210491 0.0019684524 0.0004913844 0.0001228007 0.0000306973 0.0000076742

As h halves, the maximum error decreases by a factor of 4.

Appendix

```
\% 'n'-point Gaussian Quadrature
         given function 'f' with lower/upper limit 'a'/'b'
function int = gq(f,a,b,order)
     assert (any (order == [5]), 'only_support_{5}-point_gauss_quadrature');
     gq5\_points = [
         -1/3*sqrt(5-2*sqrt(10/7))
         +1/3*\mathbf{sqrt}(5-2*\mathbf{sqrt}(10/7))
         -1/3*\mathbf{sqrt}(5+2*\mathbf{sqrt}(10/7))
         +1/3*\mathbf{sqrt}(5+2*\mathbf{sqrt}(10/7))
     ];
     gq5_weights = [
         128/225
         (322+13*\mathbf{sqrt}(70)) / 900
         (322+13*\mathbf{sqrt}(70)) / 900
         (322-13*\mathbf{sqrt}(70)) / 900
         (322-13*\mathbf{sqrt}(70)) / 900
     ];
    \% \ over \ [-1.1]
     fx = arrayfun(@(x,w) w*f(x*(b-a)/2+(a+b)/2), ...
         gq5_points, gq5_weights);
     int = (b-a)/2 * sum(fx);
end
```

Problem 1 code

```
clear all;
global m;
ms = [10, 20, 40, 80, 160, 320, 640];
\% ms = [10];
fprintf('m\tmax_error\tratio\n');
for iter = 1: size(ms, 2)
    m=ms(iter);
    h=1/m;
    [A, b] = assembly();
    c = A \setminus b;
    e = \operatorname{arrayfun}(@(i) \operatorname{abs}(y(i*h) - (c(i)+\operatorname{varphi0}(i*h))), \dots
         1:m);
    max_e = max(e);
    xs = arrayfun(@(i)i*h,1:m);
    plot (xs, arrayfun (@(i) y(i*h), 1:m), '-', ...
          xs, arrayfun(@(i) (c(i)+varphi0(i*h)), 1:m), '---');
    ratio = 0;
    if iter = 1
         ratio = max_e / pre_max_e;
    \mathbf{fprintf}(\ \%d \ t \%.10 \ f \ \%.10 \ f \ n', m, max_e, ratio);
    pre_max_e = max_e;
end
function [A, b] = assembly()
    global m;
    h = 1/m;
    A = \mathbf{sparse}(m,m);
    b = zeros(m, 1);
    for k = 1:m
         if k = 1
             A(k,k-1) = (h^2-6)/(6*h);
         end
         if k = m
             A(k,k) = 2*(h^2+3)/(3*h);
             A(k, k+1) = (h^2-6)/(6*h);
             b(k) = gq(@(x) (f(x)-varphi0(x)).*(1-k+x./h), (k-1)*h, k*h, 5) ...
                  + gq(@(x) (f(x)-varphi0(x)).*(1+k-x./h), k*h, (k+1)*h, 5);
         else
             A(k,k) = (h^2+3)/(3*h);
             b(k) = gq(@(x) (f(x)-varphi0(x)).*(1-k+x./h), (k-1)*h, k*h, 5);
         end
    end
end
```

```
function fx = f(x)

fx = (\mathbf{pi}^2+1)*\mathbf{sin}(\mathbf{pi}*x);

end

function yx = y(x)

yx = 1/2*(\mathbf{exp}(x)+\mathbf{exp}(-x)) + \mathbf{sin}(\mathbf{pi}*x);

end

function varphi0x = varphi0(x)

varphi0x = (1/2*(\mathbf{exp}(1)-\mathbf{exp}(-1)) - \mathbf{pi})*x + 1;

end

function varphi0p = varphi0prime()

varphi0p = (1/2*(\mathbf{exp}(1)-\mathbf{exp}(-1)) - \mathbf{pi});

end
```

Problem 2 code

```
clear all;
global m;
ms = [10, 20, 40, 80, 160, 320, 640];
\% ms = [10];
fprintf('m\tmax_error\tratio\n');
for iter = 1: size(ms, 2)
    m=ms(iter);
    h=1/m;
    [S, P] = getSP();
    [A, b] = assembly();
    c = A \setminus b;
    nodes = zeros(1, m); % at x_{-}\{i=1\} to 1
    for k = -2:(m-1)
         Bk_support = S(k+3,:);
         for i = Bk\_support(1): Bk\_support(2)
              nodes(i+1) = nodes(i+1) + c(k+3)*B(k, P(k+3,i+1), (i+1)*h);
         end
    end
    e = arrayfun(@(i) abs(y(i*h) - (nodes(i)+varphi0(i*h))), \dots
         1:m);
    \max_{e} = \max(e);
    xs = arrayfun(@(i)i*h,1:m);
    plot (xs, arrayfun (@(i) y(i*h), 1:m), '-', ...
          xs, \operatorname{arrayfun}(@(i) (c(i)+\operatorname{varphi0}(i*h)), 1:m), '--');
    ratio = 0;
    if iter = 1
         ratio = max_e / pre_max_e;
    end
    fprintf('\%d\t\%.10f\t\%.10f\n', m, max_e, ratio);
    pre_max_e = max_e;
end
function [A, b] = assembly()
    global m;
    h = 1/m;
    N = m+2;
    A = \mathbf{sparse}(N,N);
    b = zeros(N,1);
    \% k = Bk; l = Bl;
    \% \ a_{-}\{k,l\} \ on \ [x_{-}i, x_{-}\{i+1\}]
         contributed by B_{-}\{k\}^{\hat{}}Pk, B_{-}\{l\}^{\hat{}}Pl
```

```
akl = @(i, Bk, Pk, Bl, Pl) \dots
         gq(@(x) (Bp(Bl,Pl,x)*Bp(Bk,Pk,x) + B(Bl,Pl,x)*B(Bk,Pk,x)), \dots
              i * h, (i+1)*h, 5);
    \% \ b_{-}k \ on \ /x_{-}i \ , \ x_{-}\{i+1\}/
              contributed by B_{-}\{k\}^Pk, B_{-}\{l\}^Pl
    bk = @(i, Bk, Pk) \dots
         gq(@(x) (f(x) - varphi0(x))*B(Bk,Pk,x), \dots
              i * h, (i+1)*h, 5);
    [S, P] = getSP();
    for k = -2:(m-1)
         for l = -2:(m-1)
              Bk_{\text{-}support} = S(k+3,:);
              Bl\_support = S(1+3,:);
              support = [
                  \max(Bk\_support(1), Bl\_support(1)), \ldots
                  min(Bk\_support(2), Bl\_support(2)), \ldots
              ];
              % support does not overlap, so <math>a_{-}\{k,l\} = 0
              if support(1) > support(2)
                   continue;
              end
             A(k+3, l+3) = 0;
              for i = support(1): support(2)
                  A(k+3,l+3) = A(k+3,l+3) + akl(i,k,P(k+3,i+1),l,P(l+3,i+1));
              end
         end
         Bk_support = S(k+3,:);
         for i = Bk\_support(1): Bk\_support(2)
              b(k+3) = b(k+3) + bk(i,k,P(k+3,i+1));
         end
    \mathbf{end}
end
function fx = f(x)
    fx = (\mathbf{pi}^2 + 1) * \mathbf{sin} (\mathbf{pi} * x);
end
function yx = y(x)
    yx = 1/2*(exp(x)+exp(-x)) + sin(pi*x);
end
function varphi0x = varphi0(x)
    varphi0x = (1/2*(exp(1)-exp(-1)) - pi)*x + 1;
end
function varphi0p = varphi0prime()
    varphi0p = (1/2*(exp(1)-exp(-1)) - pi);
```

end

```
function [S, P] = getSP()
    global m;
    N = m+2;
    \% support (m+2)x2
              where [S(k+3,1), S(k+3,2)+1] is support for basis B_{-k}
    S = zeros(N, 2);
    S(1,:) = [0, 1];
                               % B_{-}\{-2\}
    S(2,:) = [0, 2];
                               % B_{-}\{-1\}
    for i = 3:(m-1)
         S(i,:) = [i-3, i];
    \mathbf{end}
    S(m,:)
            = [m-3, m-1]; \% B_{-}\{m-3\}
    S(m+1,:) = [m-2, m-1]; \% B_{-}\{m-2\}
    S(m+2,:) = [m-1, m-1]; \% B_{-}\{m-1\}
    \% polynomial (m+2)xm
              where P(k+3, i+1) is \{0,1,2,3\}-th polynomial
                  for cubic\ B_{-}k\ (k = -2, ..., m-1)
                  on [x_i, x_{-i}, x_{-i}, x_{-i}, x_{-i}] (i = 0, ..., m-1)
    P = zeros(N,m);
    P(:,:) = -1;
    P(1,1:2) = [0, 1];  % B_{-}\{-2\}
    P(2,1:3) = [0, 1, 2]; \% B_{-}(-1)
    for i = 3:(m-1)
         P(i,(i-2):(i+1)) = [0, 1, 2, 3];
    end
    P(m, (m-2):m) = [0, 1, 2]; \% B_{-}\{m-3\}
    P(m+1,(m-1):m) = [0,1]; \% B_{-}\{m-2\}
    P(m+2,m:m) = [0];
                                 \% B_{-}\{m-1\}
end
\% polynomial function for 'i'-th basis function 'B<sub>-</sub>i'
         and 'k'-th polynomial 'P_k' for 'B_i' where k \setminus in \{0,1,2,3\}
function Bx = B(i, k, x)
    global m;
    h = 1/m;
    if i == -2
         switch k
         case 0
              Bx = (3)*(x/h) - (9/2)*(x/h)^2 + (7/4)*(x/h)^3;
              Bx = (1/4)*((2*h-x)/h)^3;
         otherwise
              warning ('k_{\neg}\in = \{0,1\} = for = B_{\neg}\{-2\} \setminus n');
         end
         return;
    end
    if i = -1
```

```
switch k
         case 0
             Bx = (3/2)*(x/h)^2 - (11/12)*(x/h)^3;
             Bx = (-3/2) + (9/2)*(x/h) - (3)*(x/h)^2 + (7/12)*(x/h)^3;
         case 2
              Bx = (1/6)*((3*h-x)/h)^3;
         otherwise
              warning ('k_{-} \ln \{0,1,2\} \inf B_{-} \{-1\} ');
         end
         return:
    end
    i f
         (i = m-1 \&\& any(k = [1 \ 2 \ 3])) \mid | \dots
         (i = m-2 \&\& any(k = [2 3])) \mid | \dots
         (i == m-3 &&
                           k == 3
         warning ('k_not_right_value_for_for_B_{m-1,m-2,m-3}\n');
         return;
    \quad \text{end} \quad
    assert ((i \ge 0 \&\& i \le m-1), 'invalid_basis_i');
    l = i *h;
    r = (i+4)*h;
    switch k
    case 0
         Bx = (1/6)*((x-1)/h)^3;
    case 1
         Bx = (2/3) - (2)*((x-1)/h) + (2)*((x-1)/h)^2 - (1/2)*((x-1)/h)^3;
    case 2
         Bx = (-22/3) + (10)*((x-1)/h) - (4)*((x-1)/h)^2 + (1/2)*((x-1)/h)^3;
    case 3
         Bx = (1/6)*((r-x)/h)^3;
    otherwise
         warning ('k_{-} \ln_{-} \{0, 1, 2, 3\} \inf_{-} \text{for } B_{-} \ln_{-} \};
         return:
    \mathbf{end}
end
% first order derivative of polynomial function for 'i'-th basis function 'B_i'
         and 'k'-th polynomial 'P_k' for 'B_i' where k \setminus in \{0,1,2,3\}
function Bx = Bp(i, k, x)
    global m;
    h = 1/m;
    if i == -2
         switch k
         case 0
             Bx = (21*x^2)/(4*h^3) - (9*x)/(h^2) + 3/h;
         case 1
              Bx = -(3*(2*h-x)^2)/(4*h^3);
         otherwise
              warning ('Bp: _{k}_ \in _{1} \in _{1} \in _{2} for _{2}B_ \( \left( -2) \n' \);
         end
```

```
return;
end
if i = -1
     switch k
     case 0
           Bx = -x*(11*x-12*h)/(4*h^3);
     case 1
          Bx = 9/(2*h) - (6*x)/(h^2) + (7*x^2)/(4*h^3);
     case 2
          Bx = -(3*h-x)^2/(2*h^3);
     otherwise
           warning ('Bp: _{k}_{\sim} \in \{0,1,2\}_{\sim}  for _{B}_{\sim} \{-1\} \in [-1]);
     end
     return;
end
i f
     (i = m-1 \&\& any(k = [1 \ 2 \ 3])) \mid | \dots
     (i = m-2 \&\& any(k = [2 3])) \mid | \dots
     (i == m-3 &&
                            k == 3
     warning ('Bp: _{\text{Lk}} not _{\text{right}} value _{\text{for}} for _{\text{B}} _{\text{Lm}-1,m-2,m-3} \setminus n');
     return;
end
assert ((i \ge 0 \&\& i \le m-1), 'Bp: _i invalid _i basis _i');
l = i *h;
r = (i+4)*h;
switch k
case 0
     Bx = (x-1)^2/(2*h^3);
case 1
     Bx = -2/h + 4*(x-1)/h^2 - 3*(x-1)^2/(2*h^3);
case 2
     Bx = 10/h - 8*(x-1)/h^2 + 3*(x-1)^2/(2*h^3);
case 3
     Bx = -(r-x)^2/(2*h^3);
otherwise
     warning ('Bp: _{\underline{k}}_ \in _{\underline{l}} \in _{\underline{l}} \left(0,1,2,3\right) _{\underline{l}} for _{\underline{l}} B_i\n');
end
```

end

Problem 3 code

```
clear all;
global m grid;
logit = @(x) log(x/(1-x));
abs_logit = @(x) abs(logit(x));
abs\_logit\_scaled = @(x) 0.1*abs(logit(x));
\% \ ms = /9/;
ms = [9 \ 19 \ 39 \ 79 \ 159 \ 319 \ 639];
fprintf('m\tmax_error\tratio\n');
for iter = 1: size(ms, 2)
    m = ms(iter);
    h = 1/(m+1);
     grid = 0:h:1;
     grid = error_equidistribution(abs_logit_scaled, grid);
     [A, b] = assembly();
     c = A \setminus b;
     e = arrayfun(@(i) abs(y(grid(i+1)) - (c(i)+1)), \dots
     \max_{e} = \max(e);
     \mathbf{plot}(\mathbf{grid}(2:\mathbf{end}-1), \mathbf{arrayfun}(@(i) \mathbf{y}(\mathbf{grid}(i+1)), 1:\mathbf{m}), '-', \dots
           grid(2:end-1), arrayfun(@(i)(c(i)+1), 1:m), '---');
     ratio = 0;
     if iter = 1
          ratio = max_e / pre_max_e;
    end
     \mathbf{fprintf}(\ '\%d \setminus t\%.10 \, f \setminus t\%.10 \, f \setminus n', m, max_e, ratio);
     pre_max_e = max_e;
end
function [A, b] = assembly()
     global m grid;
    A = \mathbf{sparse}(m,m);
    b = zeros(m, 1);
    % formula over [x_{-}\{i\}, x_{-}\{i+1\}] for lhs/rhs
               note 'i' is 0-indexed
     akl = @(i,k,l) \dots
         gq(@(x) Bp(k,x)*Bp(l,x) + (10^4)*B(k,x)*B(l,x), \dots
               grid (i
                             +1), \ldots
               \mathbf{grid} (i+1)
                             +1), 5);
    bk = @(i,k) \dots
          -(10^4)* gq(@(x) B(k,x), ...
               grid (i
                             +1), \dots
```

```
grid(i+1 +1), 5);
    for k = 1:m
         for l = 1:m
              if l == k
                  A(k,l) = akl(k-1,k,l) + akl(k,k,l);
              elseif l = k-1
                  A(k,l) = akl(l,k,l);
              elseif l == k+1
                  A(k,l) = akl(k,k,l);
             end
         end
         b(k) = bk(k-1,k) + bk(k,k);
    end
end
\% \ basis \ B_{-}k \ at \ `x`
        where 'k' is 0-indexed
function Bx = B(k, x)
    global grid;
    l = \mathbf{grid}(k-1)
                       +1);
    c = grid(k)
                       +1);
    r = \mathbf{grid}(k+1)
                       +1);
    if x >= 1 & x <= c
         Bx = (x-1)/(c-1);
    elseif x >= c & x <= r
         Bx = (r-x)/(r-c);
    else
         warning('B: _out_of_support');
    end
end
\% \ basis \ B_{-}k ' at 'x'
         where 'k' is 0-indexed
function Bx = Bp(k, x)
    global grid;
    l = \mathbf{grid}(k-1)
                       +1);
    c = grid(k)
                       +1);
    r = \mathbf{grid}(k+1)
                       +1);
    if x >= 1 \&\& x <= c
         Bx = 1/(c-1);
    elseif x >= c & x <= r
         Bx = 1/(c-r);
    else
         warning('B:_out_of_support');
    end
\mathbf{end}
```

```
function yx = y(x)
    c_1 = (1 - \exp(-100)) / (\exp(100) - \exp(-100));
    c_2 = (\exp(100) - 1)/(\exp(100) - \exp(-100));
    yx = c_1 * exp(100*x) + c_2 * exp(-100*x);
end
function yx = yp(x)
    yx = (100*exp(-100*x)*(exp(200*x)-exp(100)))/(exp(100)+1);
end
function yx = ypp(x)
    yx = (10000*\exp(-100*x)*(\exp(200*x)+\exp(100)))/(\exp(100)+1);
end
function phix = varphi0(x)
    phix = 1;
end
% Given monitor function that approximates erorr
%
         and original grid, returns a new grid with equal error distribution
         reference: https://www.math.uci.edu/~chenlong/226/Ch4AFEM.pdf
%
function xs = error_equidistribution (M, xs)
    \operatorname{cdf} = \operatorname{arrayfun}(@(i) \operatorname{gq}(M, \operatorname{xs}(i), \operatorname{xs}(i+1), 5), 1:(\operatorname{max}(\operatorname{size}(\operatorname{xs})) - 1));
    cdf = [0, cumsum(cdf)];
    cdf = cdf/cdf(end);
    ys = 0:1/(length(xs)-1):1;
    [cdf, index] = unique(cdf);
    xs = interp1(cdf, xs(index), ys);
end
function explore_monitor()
    xs1 = 0:1/100:1;
    logit = @(x) log(x/(1-x));
    abs\_logit = @(x) abs(logit(x));
    xs2 = error_equidistribution(abs_logit, xs1);
    plot(xs1, arrayfun(@y,xs1), ...
     xs1, arrayfun(abs_logit,xs1), ...
     xs2, zeros(size(xs2)), 'o');
end
```

Problem 4 code

```
clear all;
global m;
\% \ ms = [9];
ms = [9 \ 19 \ 39 \ 79 \ 159 \ 319 \ 639];
fprintf('m\tmax_error\tratio\n');
for iter = 1: size(ms, 2)
    m = ms(iter);
    h = 1/(m+1);
    [A, b] = assembly();
    c = A \setminus b;
    actual = zeros(m,m);
    expected = zeros(m,m);
    for p = 1:m^2
         [i, j] = p2ij(p);
         actual(i,j) = c(p);
         expected (i, j) = u(i*h, j*h);
    end
    e = arrayfun(@(x) abs(x), expected-actual);
    max_e = max(e, [], 'all');
    % [X,Y] = meshgrid(h:h:1-h);
    \% mesh(X, Y, e);
    ratio = 0;
    if iter = 1
         ratio = max_e / pre_max_e;
    \mathbf{fprintf}(\ '\%d \setminus t\%.10 \, f \setminus t\%.10 \, f \setminus n', m, max_e, ratio);
    pre_max_e = max_e;
end
function [A, b] = assembly()
    global m;
    h = 1/(m+1);
    % construct 'A'
    \% 3 integral values for 'a<sub>-</sub>{kl}'
    dfull
           = zeros(m^2, 1) + 8/3;
           = zeros(m^2,1) - 1/3;
    dside
    dcorner = zeros(m^2, 1) - 1/3;
    \% pad zeros at certain locations -> block diagonal
    fillzerosat = m:m:m^2;
    b1 = dside;
    b1(fillzerosat) = 0;
    b2 = dcorner;
```

```
b2(fillzerosat) = 0;
    b = [-m-1, -m, -m+1,
                           -1,0,1,
                                            m-1, m, m+1;
    B = [b2, dside, b2, b1, dfull, b1,
                                         b2, dside, b2];
    B(:,3) = flip(B(:,1));
    B(:,6) = flip(B(:,4));
    B(:,9) = flip(B(:,7));
    A = \mathbf{spdiags}(B, b, m^2, m^2);
    % construct 'b'
    b = zeros(m^2, 1);
    % part of (half) the function for 'bkl'
    bkl_{-} = @(k) ...
        gq(@(x) 32*x*(1-x)*hat(k,x), (k-1)*h, k*h, 5) + ...
        gq(@(x) 32*x*(1-x)*hat(k,x), k*h, (k+1)*h, 5);
    % evaluate the integral for `b_{k, l}`
    bkl = @(k,l) \dots
        h*(bkl_{-}(k) + bkl_{-}(l));
    for j = 1:m
         for i = 1:m
             p = ij2p(i,j);
             b(p) = bkl(i,j);
        end
    end
end
function [i,j] = p2ij(p)
    global m;
    j = floor((p-1) / m) + 1;
    i = mod(p-1, m) + 1;
end
function p = ij2p(i,j)
    global m;
    p = i + (j-1)*m;
end
function fx = hat(k, x)
    global m;
    h = 1/(m+1);
    l = (k-1)*h;
    c = k*h;
    \mathbf{r} = (\mathbf{k} + 1) * \mathbf{h};
    if x >= 1 \&\& x <= c
         fx = 1-k+x/h;
    elseif x >= c \&\& x <= r
         fx = 1+k-x/h;
    else
        % warning('hat function should not reach here ...');
```

```
\begin{array}{l} & fx \, = \, 0\,; \\ & \textbf{end} \\ \\ \textbf{function} & fxy \, = \, f\left(x\,,y\right) \\ & fxy \, = \, 32*x*(1-x) \, + \, 32*y*(1-y)\,; \\ \textbf{end} \\ \\ \textbf{function} & uxy \, = \, u(x\,,y) \\ & uxy \, = \, 16*x*(1-x)*y*(1-y)\,; \\ \textbf{end} \end{array}
```