ANALISI MATEMATICA 1

Area dell'Ingegneria dell'Informazione

Appello del 09.09.2024

TEMA 1 (svolgimento)

Esercizio 1 (punti 8) Si consideri la funzione

$$f(x) = \sin\left(\frac{x}{x^2 + 1}\right)$$

- (a) determinarne il dominio, il segno ed eventuali simmetrie
- (b) calcolare i limiti ed eventuali asintoti agli estremi del dominio;
- (c) calcolare la derivata e discutere la derivabilità di f (compresi i limiti della derivata ove necessario); discutere la monotonia di f e determinare l'estremo inferiore e l'estremo superiore di f ed eventuali punti di minimo e massimo relativo ed assoluto;
- (d) fare un abbozzo qualitativo del grafico di f.

[Suggerimento: si può sfruttare il fatto che $-\frac{\pi}{2} < -1 < \frac{x}{x^2+1} < 1 < \frac{\pi}{2}$.]

Svolgimento.

(a). Il dominio è: $dom f = \mathbb{R}$. La funzione è dispari in quanto

$$f(-x) = \sin\left(\frac{-x}{x^2 + 1}\right) = -\sin\left(\frac{x}{x^2 + 1}\right) = -f(x).$$

Segno: Osservo che f(0)=0. Per x>0, siccome $0<\frac{x}{x^2+1}<1<\frac{\pi}{2}$ e ricordando che $\sin(\theta)>0$ per ogni $\theta\in(0,\pi/2)$, concludo che f(x)>0 $\forall x>0$. Per simmetria di f, deduco che f(x)<0 $\forall x<0$.

(b). Calcoliamo i limiti agli estremi del dominio. Utilizzo il cambio di variabile $y = \frac{x}{x^2+1} \to 0$, as $x \to \pm \infty$, così da avere

$$\lim_{x \to \pm \infty} \sin\left(\frac{x}{x^2 + 1}\right) = \lim_{y \to 0} \sin y = 0.$$

L'asse y=0 è quindi un asintoto orizzontale per f in $\pm \infty$.

(c). La funzione è derivabile su \mathbb{R} per il teorema sulla derivabilità della funzione composta. Usando anche il teorema sull'algebra delle derivate si ha, per ogni fissato $x \in \mathbb{R}$

$$f'(x) = \cos\left(\frac{x}{x^2+1}\right) \frac{x^2+1-2x^2}{(x^2+1)^2} = \cos\left(\frac{x}{x^2+1}\right) \frac{1-x^2}{(x^2+1)^2}.$$

Ne deduciamo: $f'(x) \ge 0 \iff 1-x^2 \ge 0 \iff |x| \le 1$. Dunque f è strettamente decrescente su $(-\infty, -1)$ e su $(1, +\infty)$, è strettamente crescente su (-1, 1), presenta un punto di minimo assoluto in x = -1, e uno di massimo assoluto in x = 1. Il minimo di f è $f(-1) = -\sin(1/2)$, il massimo di f è $f(1) = \sin(1/2)$. (d). Segue grafico.

Figure 1: abbozzo del grafico della funzione dell'esercizio 1.

Esercizio 2 (punti 8) Si consideri nel piano complesso l'equazione:

$$z - i|z|^2 = 5 - 4\bar{z}$$

Determinarne le soluzioni esprimendole in forma algebrica e rappresentarle nel piano di Gauss.

Svolgimento. Poniamo z = x + iy, $x, y \in \mathbb{R}$. L'equazione assegnata è allora equivalente a:

$$x + iy - i(x^2 + y^2) = 5 - 4(x - iy) \iff 5x - 5 + i(y - x^2 - y^2 - 4y) = 0$$

$$\iff \begin{cases} 5x = 5 \\ -3y - x^2 - y^2 = 0 \end{cases}$$

$$\iff \begin{cases} x = 1 \\ y^2 + 3y + 1 = 0 \end{cases}$$

Le soluzioni di $y^2 + 3y + 1 = 0$ sono date da $y_{1,2} = \frac{-3 \pm \sqrt{9-4}}{2}$, dunque le soluzioni sono

$$z_1 = 1 - i \left(\frac{3 + \sqrt{5}}{2} \right), \qquad z_2 = 1 + i \left(\frac{-3 + \sqrt{5}}{2} \right).$$

Esercizio 3 (punti 8) Studiare la convergenza della seguente serie al variare di $\alpha > 0$:

$$\sum_{n=1}^{+\infty} \frac{\log(\cosh n)}{(n^4 + 2n - 1)^{\alpha}}.$$

Svolgimento. Osservo che il termine $a_n = \frac{\log(\cosh n)}{(n^4+2n-1)^{\alpha}}$ è definitivamente strettamente positivo in quanto $\cosh(n) > 1$, $\forall n > 2$; posso pertanto applicare tutti i criteri per le serie a segno positivo. Per poter applicare il criterio del confronto asintotico, consideriamo

$$\log(\cosh n) = \log\left(\frac{e^n + e^{-n}}{2}\right) = \log\left(\frac{e^n}{2}\left\{1 + e^{-2n}\right\}\right) = \log(e^n) - \log(2) + \log(1 + e^{-2n}) \sim n, \ n \to \infty,$$

dove abbiamo usato che $\log(e^n) = n$ e $\log(2) + \log(1 + e^{-2n}) = o(n)$, per $n \to \infty$. Inoltre,

$$(n^4 + 2n - 1)^{\alpha} = n^{4\alpha} (1 + \frac{2}{n^3} - \frac{1}{n^4})^{\alpha} \sim n^{4\alpha}, \ n \to \infty$$

dove abbiamo usato che $\left(1 + \frac{2}{n^3} - \frac{1}{n^4}\right)^{\alpha} \sim 1 + \alpha\left(\frac{2}{n^3} - \frac{1}{n^4}\right) \sim 1$ per $n \to +\infty$.

Ne deduciamo:

$$a_n \sim \frac{n}{n^{4\alpha}} = \frac{1}{n^{4\alpha-1}}, \ n \to +\infty.$$

Per il criterio del confronto asintotico, la serie è dunque convergente se e solo se $4\alpha - 1 > 1$, ovvero $\alpha > 1/2$.

Esercizio 4 (punti 8) Si consideri la funzione

$$f_{\alpha}(x) = (\arcsin x)^{\alpha} (1 - x^2)^{\alpha - 2}$$

- (a) Calcolare $\int_0^1 f_2(x) dx$.
- (b) Studiare la convergenza di $\int_0^1 f_{\alpha}(x) dx$, al variare di $\alpha \in \mathbb{R}$.

Svolgimento. (a) Scriviamo $f_2(x) = \arcsin^2(x)$. Usando la sostituzione $t = \arcsin x$, $dx = \cos t \, dt$, otteniamo:

$$\int_0^1 \arcsin^2 x \, dx = \int_0^{\pi/2} t^2 \cos t \, dt.$$

Usiamo la formula di integrazione per parti nell'ultimo integrale con: $f(t) = t^2$, $g'(t) = \cos t$, da cui otteniamo f'(t) = 2t, $g(t) = \sin t$:

$$\int_0^{\pi/2} t^2 \cos t \, dt = \left[t^2 \sin t \right]_0^{\pi/2} - \int_0^{\pi/2} 2t \sin t \, dt.$$

Usiamo un'altra volta la formula di integrazione per parti nell'ultimo integrale con f(t) = 2t, $g'(t) = -\sin t$, da cui otteniamo f'(t) = 2, $g(t) = \cos(t)$:

$$\int_0^{\pi/2} 2t(-\sin t) dt = \left[2t\cos t\right]_0^{\pi/2} - \int_0^{\pi/2} 2\cos t dt = \left[2t\cos t - 2\sin t\right]_0^{\pi/2}.$$

Riassumendo i calcoli, otteniamo:

$$\int_0^1 \arcsin^2 x \, dx = \int_0^{\pi/2} t^2 \cos t \, dt = \left[t^2 \sin t + 2t \cos t - 2 \sin t \right]_0^{\pi/2} = \frac{\pi^2}{4} - 2.$$

- (b) Studiamo l'insieme dom $f_{\alpha} \cap [0,1]$ al variare di $\alpha \in \mathbb{R}$. Si ha:
- Se $\alpha \geq 2$: dom $f_{\alpha} = \mathbb{R}$, dunque l'integrale è definito, ovvero converge;
- Se $0 \le \alpha < 2$: $[0,1] \cap \text{dom} f_{\alpha} = [0,1)$, ovvero abbiamo un estremo di integrazione impropria per $x \to 1^-$;
- Se $\alpha < 0$: $[0,1] \cap \text{dom} f_{\alpha} = (0,1)$, ovvero abbiamo due estremi di integrazione impropria per $x \to 0^+$ e $x \to 1^-$.

Studiamo i comportamenti asintotici di f_{α} per $x \to 0^+$ e $x \to 1^-$:

• Per $x \to 0^+$ si ha:

$$f_{\alpha}(x) = (x + o(x))^{\alpha} (1 + o(1))^{\alpha - 2} \sim x^{\alpha}.$$

Per il criterio del confronto asintotico, in 0^+ l'integrale converge se e solo se $-\alpha < 1 \iff \alpha > -1$.

• Per $x \to 1^-$ si ha:

$$f_{\alpha}(x) = (\pi/2)^{\alpha} (1+x)^{\alpha-2} (1-x)^{\alpha-2} \sim (\pi/2)^{\alpha} 2^{\alpha-2} (1-x)^{\alpha-2}.$$

Per il criterio del confronto asintotico, in 1⁻ l'integrale converge se e solo se $2-\alpha < 1 \iff \alpha > 1$.

Riassumendo:

- Se $\alpha \geq 2$: l'integrale converge;
- Se $0 \le \alpha < 2$: (estremo di integrazione impropria per $x \to 1^-$) l'integrale converge se e solo se $\alpha > 1$;
- Se $\alpha < 0$: (due estremi di integrazione impropria per $x \to 0^+$ e $x \to 1^-$) l'integrale converge se e solo se $\alpha > 1$ e $\alpha > -1$. Ovvero in questo intervallo di α l'integrale diverge in quanto $\alpha < 0$ è incompatibile con $\alpha > 1$.

In conclusione, l'integrale converge se e solo se $\alpha > 1$.

Tempo: due ore e mezza (comprensive di domande di teoria). Viene corretto solo ciò che è scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni e calcolatrici di qualsiasi tipo.