Computer vision homework 2 By Achal Shah, Shubham Kumar, Kushal Kokje

Part 1

Approach used

- 1. We apply SIFT on given two input images and find matching descriptors by by looking at the ratio of the Euclidean distance between the closest match and the second-closest match and comparing it with some threshold.
- 2. We have written code so that program take input one query image and compare it with another set of images and generates a list in the decreasing order of number of matching descriptors.

Decisions

1. Threshold for ratio of closest match and the second-closest match is set to 0.85.

How to run Code

Part 1.1 Visualization of SIFT matches

Command ./a2 part1 input_image1.png input_image2.png

Example test on bigben_14.jpg and bigben_3.jpg

Sift correspondences

Part 1.2 Find best matches for query image

Command ./a2 part1 query_image.png img_1.png img_2.png ... img_n.png

Part 1.3 Checking precision

Command ./a2 part1 query_image.png <full path of folder part1_images>/*.jpg

Conclusion

- Sift matching is not a good measure because we got very low precision
- Bigben attraction was easy to find with the tuned parameter
- sanmarco was difficult attractions to find

Note: We could have find above attractions as well with different thresholds

Retrieval (Example log, find full log file on github part1_evaluation.log)

For query image: images/part1_images/bigben_14.jpg

81 matches for: images/part1_images/bigben_10.jpg
55 matches for: images/part1_images/bigben_14.jpg
51 matches for: images/part1_images/bigben_12.jpg
46 matches for: images/part1_images/tatemodern_13.jpg
45 matches for: images/part1_images/louvre_4.jpg
45 matches for: images/part1_images/colosseum_12.jpg
43 matches for: images/part1_images/tatemodern_16.jpg
43 matches for: images/part1_images/sanmarco_20.jpg
42 matches for: images/part1_images/londoneye_21.jpg
42 matches for: images/part1_images/londoneye_21.jpg

Attraction	Precision
Bigben_14	0.3
colosseum_3	0.1
eiffel_6	0.3
empirestate_12	0.1
londoneye_9	0.1
louvre_9	0.1
notredame_8	0.1
sanmarco_5	0
tatemodern_6	0.3
trafalgarsquare_6	0.3

Part 2: Estimating homography

1. Ransac

Input:

We have sift correspondences from part 1. We will run RANSAC on that to eliminate false matching

Approach Used:

- 1. Pick 4 matching pairs at random
- 2. Estimate homography using following equation:

$$\begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_7 \\ m_8 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x'_1 & -y_1x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y'_1 & -y_1y'_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x'_2 & -y_2x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y'_2 & -y_2y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x'_3 & -y_3x'_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y'_3 & -y_3y'_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4x'_4 & -y_4x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4y'_4 & -y_4y'_4 \end{bmatrix} \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ x'_3 \\ x'_4 \\ y'_4 \end{bmatrix}$$

- **3.** Calculate error by multiplying homography matrix with other SIFT correspondences.
- 4. Declare an inlier if error is below threshold
- 5. Calculate number of inliers and outliers and find outlier ratio
- 6. Monitor outlier ratio and maintain homography for best inliers
- 7. Repeat steps 1 to 6 for n number of trials

Good model parameters:

- 1. Number of trials, n = 4000
- 2. Error threshold to declare inlier, e = 70

Observation:

- 1. If we increase error threshold then we are getting more inliers with many false positives
- 2. If we decrease error threshold then we get less inliers with a few false positives
- 3. We tuned these parameters by experience and finally these are the parameters which worked well for some images

Command:

./a2 part2_1 n_iterations error_threshold query_img target_images

i.e. ./a2 part2_1 4000 100 bigben_14.jpg bigben_3.jpg

Challenges faced:

- Clmg solver did not work for me because B vector was multi dimensional
 - We used Clmg inverse and dot functions to calculate homography
- Fix value of ransac parameters doesn't generalize well

Conclusion

- Ransac reduced some of the false matching but precision is still not good
- Bigben attraction was easy to find with the tuned parameter
- colosseum was difficult attractions to find

Note: We could have find above attractions as well with different ransac parameters

For query image: images/part1_images/bigben_14.jpg

30 matches for: images/part1_images/bigben_14.jpg
10 matches for: images/part1_images/bigben_12.jpg
9 matches for: images/part1_images/trafalgarsquare_25.jpg
8 matches for: images/part1_images/eiffel_7.jpg
7 matches for: images/part1_images/tatemodern_24.jpg
7 matches for: images/part1_images/tatemodern_16.jpg
7 matches for: images/part1_images/tatemodern_11.jpg
7 matches for: images/part1_images/eiffel_1.jpg
7 matches for: images/part1_images/bigben_10.jpg
6 matches for: images/part1_images/trafalgarsquare_15.jpg

Retrieval (Example log, find full log file on github part2_1_evaluation.log)

Attraction	Precision
Bigben_14	0.4
colosseum_3	0
eiffel_6	0.2
empirestate_12	0.2
londoneye_9	0.1
louvre_9	0.1
notredame_8	0.1
sanmarco_5	0.1
tatemodern_6	0.2
trafalgarsquare_6	0.4

Example test on bigben_14.jpg and bigben_3.jpg

Sift correspondences

Ransac Output e = 70, trials = 4000

Ransac Output e = 150, trials = 4000

2. Summary matches

Input:

We have sift descriptors for both query and target images

Approach used:

- 1. Take some random value of quantization factor w and number of levels k
- 2. Initialize xi vector with a random value between 0 to 1 in uniform distribution
- 3. Multiply xi with sift descriptors of both images and divide them by quantization factor 2
- 4. For each sift descriptors we have k dimensional summary vector
- 5. Find summary vectors in target images which are identical to summary vectors in query image (nearest neighbours)
- 6. Repeat step 5 for n number of trials and pick all unique nearest neighbours from all rounds.
- 7. Take these nearest neighbours and calculate euclidean distance between them and query image in 128D sift space
- 8. Find closest points as per minimum distance and declare them a match if it is below error threshold

Good model parameters:

- 1. Number of trials. n = 10
- 2. Length of summary vector, k = 5
- 3. Quantization factor, w = 300

Observation:

- 1. If we increase value of k, we don't get any nearest neighbour because probability of getting identical vectors is very low.
- 2. If we decrease value of w, we don't get any nearest neighbour because probability of getting identical vectors is very low
- 4. Higher values of w and lower values of k worked best for us
- 5. Number of trials also helped us to improve calculation of nearest neighbours in random space.

Command:

./a2 part2_2 w k num_trials query_img target_images i.e. ./a2 part2_2 500 3 100 bigben_14.jpg bigben_3.jpg

Challenges faced:

- With large k and too small w, we did not get any match

Conclusion

- Summary quantization improved retrieval speed and accuracy for some of the attractions.
- notredame attraction was easy to find with the tuned parameter
- londoneye was difficult attractions to find
- With small k, we get a noticeable improvement in speed.

Note: We could have find above attractions as well with different w and k

Retrieval (Example log, find full log file on github part2_2_evaluation.log)

For query image: images/part1_images/notredame_8.jpg

101 matches for: images/part1_images/notredame_3.jpg
97 matches for: images/part1_images/colosseum_4.jpg
87 matches for: images/part1_images/bigben_2.jpg
84 matches for: images/part1_images/notredame_5.jpg
83 matches for: images/part1_images/notredame_14.jpg
82 matches for: images/part1_images/sanmarco_4.jpg
82 matches for: images/part1_images/louvre_15.jpg
75 matches for: images/part1_images/trafalgarsquare_15.jpg
73 matches for: images/part1_images/sanmarco_19.jpg
73 matches for: images/part1_images/eiffel_5.jpg

Attraction	Precision	SIFT Matching time	Summary Quantization time K = 3 & w= 100
Bigben_14	0.3		
colosseum_3	0.2		
eiffel_6	0.1		
empirestate_12	0.2	~220 seconds	~150 seconds
londoneye_9	0.1		
louvre_9	0.1		
notredame_8	0.4		
sanmarco_5	0.1		
tatemodern_6	0.2		
trafalgarsquare_6	0.4		

Sift correspondences

Summary quantization w = 100, k = 3, numTrials = 1

Summary quantization w = 100, k = 2, numTrials = 1

Summary quantization w = 10, k = 2, numTrials = 10

Summary quantization w = 300, k = 5, numTrials = 10

Summary quantization w = 1000, k =10 , numTrials = 100

Part 3: Image Warping

1. Apply a given 3x3 transformation matrix to an input image (affine transformation)

<u>Approach used</u>: Inverse warping with bilinear interpolation

Execution step:

./a2 part3 lincoln.png

Input Image : lincoln.png

Output Image:

2. Image Sequence Warping Application

Approach used:

Get the Transformation coordinates between reference image and target image from part 2 and apply the returned transformation on the target image.

Execution Step:

./a2 part3 2298146191_888de5b755_z_d.jpg 3268706748_0d2c67f3c3_z_d.jpg 4085417699_cf3c254916_z_d.jpg 9623070553_683d9a28c4_z_d.jpg

Input Image:

2298146191_888de5b755_z_d.jpg <----- first Image (reference)

3268706748_0d2c67f3c3_z_d.jpg 4085417699_cf3c254916_z_d.jpg 9623070553_683d9a28c4_z_d.jpg

Output Image:

3268706748_0d2c67f3c3_z_d-warped.png 4085417699_cf3c254916_z_d-warped.png 9623070553_683d9a28c4_z_d-warped.png

