Chapter 9 Decision Analysis

- 9.1 Context and basic steps (most important part)
- 9.2 Example
- 9.3 Multistage decision analysis (example)
- 9.4 Hierarchical decision analysis (example)
- 9.5 Personal vs. institutional decision analysis

- Potential decisions d
 - or actions a

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.
- Probability distributions of consequences given decisions
 p(x | d)
 - in decision making the decisions are controlled and thus p(d) does not exist

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.
- Probability distributions of consequences given decisions $p(x \mid d)$
 - in decision making the decisions are controlled and thus p(d) does not exist
- Utility function U(x) maps consequences to real value
 - e.g. euro or expected lifetime
 - instead of utility sometimes cost or loss is defined

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.
- Probability distributions of consequences given decisions $p(x \mid d)$
 - in decision making the decisions are controlled and thus p(d) does not exist
- Utility function U(x) maps consequences to real value
 - e.g. euro or expected lifetime
 - instead of utility sometimes cost or loss is defined
- Expected utility $E[U(x) \mid d] = \int U(x)p(x \mid d)dx$

- Potential decisions d
 - or actions a
- Potential consequences x
 - x may be categorical, ordinal, real, scalar, vector, etc.
- Probability distributions of consequences given decisions
 p(x | d)
 - in decision making the decisions are controlled and thus p(d) does not exist
- Utility function U(x) maps consequences to real value
 - e.g. euro or expected lifetime
 - instead of utility sometimes cost or loss is defined
- Expected utility $E[U(x) \mid d] = \int U(x)p(x \mid d)dx$
- Choose decision d*, which maximizes the expected utility

$$d^* = \arg\max_{d} \mathrm{E}[U(\mathbf{x}) \mid d]$$

Example of decision making: 2 choices

 Helen is going to pick mushrooms in a forest, while she notices a paw print which could made by a dog or a wolf

Example of decision making: 2 choices

- Helen is going to pick mushrooms in a forest, while she notices a paw print which could made by a dog or a wolf
- Helen measures that the length of the paw print is 14 cm and goes home to Google how big paws dogs and wolves have, and tries then to infer which animal has made the paw print

observed length has been marked with a horizontal line

Example of decision making: 2 choices

- Helen is going to pick mushrooms in a forest, while she notices a paw print which could made by a dog or a wolf
- Helen measures that the length of the paw print is 14 cm and goes home to Google how big paws dogs and wolves have, and tries then to infer which animal has made the paw print

observed length has been marked with a horizontal line

Likelihood of wolf is 0.92 (alternative being dog)

 Helen assumes also that in her living area there are about one hundred times more free running dogs than wolves, that is a priori probability for wolf, before observation is 1%.

- Helen assumes also that in her living area there are about one hundred times more free running dogs than wolves, that is a priori probability for wolf, before observation is 1%.
- Likelihood and posterior

Animal	Likelihood	Posterior probability
Wolf	0.92	0.10
Dog	0.08	0.90

- Helen assumes also that in her living area there are about one hundred times more free running dogs than wolves, that is a priori probability for wolf, before observation is 1%.
- Likelihood and posterior

Animal	Likelihood	Posterior probability
Wolf	0.92	0.10
Dog	0.08	0.90

Posterior probability of wolf is 10%

• Helen has to make decision whether to go pick mushrooms

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero
- · Helen assigns positive utility 1 for getting fresh mushrooms

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero
- Helen assigns positive utility 1 for getting fresh mushrooms
- Helen assigns negative utility -1000 for a event that she goes to the forest and wolf attacks (for some reason Helen assumes that wolf will always attack)

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero
- Helen assigns positive utility 1 for getting fresh mushrooms
- Helen assigns negative utility -1000 for a event that she goes to the forest and wolf attacks (for some reason Helen assumes that wolf will always attack)

	Animal	
Decision d	Wolf	Dog
Stay home	0	0
Go to the forest	-1000	1

Utility matrix U(x)

- Helen has to make decision whether to go pick mushrooms
- If she doesn't go to pick mushrooms utility is zero
- Helen assigns positive utility 1 for getting fresh mushrooms
- Helen assigns negative utility -1000 for a event that she goes to the forest and wolf attacks (for some reason Helen assumes that wolf will always attack)

	Animal	
Decision d	Wolf	Dog
Stay home	0	0
Go to the forest	-1000	1

Utility matrix U(x)

	Expected utility
Action d	$E[U(x) \mid d]$
Stay home	0
Go to the forest	-100+0.9

Utilities for different actions

Maximum likelihood decision would be to assume that there is a wolf

- Maximum likelihood decision would be to assume that there is a wolf
- Maximum posterior decision would be to assume that there is a dog

- Maximum likelihood decision would be to assume that there is a wolf
- Maximum posterior decision would be to assume that there is a dog
- Maximum utility decision is to stay home, even if it is more likely that the animal is dog

- Maximum likelihood decision would be to assume that there is a wolf
- Maximum posterior decision would be to assume that there is a dog
- Maximum utility decision is to stay home, even if it is more likely that the animal is dog
- Example illustrates that the uncertainties (probabilities) related to all consequences need to be carried on until final decision making

- You decide to earn money by selling a seasonal product
 - You pay 7€ per each, and sell them 10€ each
 - You need to decide how many (N) items to buy

- You decide to earn money by selling a seasonal product
 - You pay 7€ per each, and sell them 10€ each
 - You need to decide how many (N) items to buy
 - You ask your friends how many they used to sell and estimate a distribution for how many you might sell

Decision making in sales

· Common task in commerce and restaurants

· Actual utility functions are rarely linear

- Actual utility functions are rarely linear
 - the expected utility is 5€ for
 - a) 100% of receiving 5€
 - b) 50% of losing 1M€ and 50% of winning 1.00001M€

- Actual utility functions are rarely linear
 - the expected utility is 5€ for a) 100% of receiving 5€
 - b) 50% of losing 1M€ and 50% of winning 1.00001M€
 - most gambling has negative expected utility (but the excitement of the game may have positive utility)

- Actual utility functions are rarely linear
 - the expected utility is 5€ for
 - a) 100% of receiving 5€
 - b) 50% of losing 1M€ and 50% of winning 1.00001M€
 - most gambling has negative expected utility (but the excitement of the game may have positive utility)
- What is the cost of human life?

- Actual utility functions are rarely linear
 - the expected utility is 5€ for
 - a) 100% of receiving 5€
 - b) 50% of losing 1M€ and 50% of winning 1.00001M€
 - most gambling has negative expected utility (but the excitement of the game may have positive utility)
- What is the cost of human life?
- Multiple parties having different utilities

Model selection as decision problem

 Choose the model that maximizes the expected utility of using the model to make predictions / decisions in the future

• 95 year old has a tumor that is malignant with 90% prob

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used
 - expected lifetime is 20.3 months if cancer and surgery, but the probability of dying in surgery is 35% (for 95 year old)

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used
 - expected lifetime is 20.3 months if cancer and surgery, but the probability of dying in surgery is 35% (for 95 year old)
 - expected lifetime is 5.6 months if cancer and no treatment

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used
 - expected lifetime is 20.3 months if cancer and surgery, but the probability of dying in surgery is 35% (for 95 year old)
 - expected lifetime is 5.6 months if cancer and no treatment
- Which treatment to choose?
 - quality adjusted life time
 - 1 month is subtracted for the time spent in treatments

- 95 year old has a tumor that is malignant with 90% prob
- Based on statistics
 - expected lifetime is 34.8 months if no cancer
 - expected lifetime is 16.7 months if cancer and radiation therapy is used
 - expected lifetime is 20.3 months if cancer and surgery, but the probability of dying in surgery is 35% (for 95 year old)
 - expected lifetime is 5.6 months if cancer and no treatment
- Which treatment to choose?
 - quality adjusted life time
 - 1 month is subtracted for the time spent in treatments
- Quality adjusted life time
 - See the book for the multi-stage decision making

- Which experiment would give most additional information
 - decide values x_{n+1} for the next experiment
 - which values of x_{n+1} would reduce the posterior uncertainty or increase the expected utility most

- Which experiment would give most additional information
 - decide values x_{n+1} for the next experiment
 - which values of x_{n+1} would reduce the posterior uncertainty or increase the expected utility most
- Example 1
 - biopsy in the cancer example

- Which experiment would give most additional information
 - decide values x_{n+1} for the next experiment
 - which values of x_{n+1} would reduce the posterior uncertainty or increase the expected utility most
- Example 1
 - biopsy in the cancer example
- Example 2
 - Imagine that in bioassay the posterior uncertainty of LD50 is too large
 - which dose should be used in the next experiment to reduce the variance of LD50 as much as possible?
 - this way less experiments need to be made (and less animals need to be killed)

- Which experiment would give most additional information
 - decide values x_{n+1} for the next experiment
 - which values of x_{n+1} would reduce the posterior uncertainty or increase the expected utility most
- Example 1
 - biopsy in the cancer example
- Example 2
 - Imagine that in bioassay the posterior uncertainty of LD50 is too large
 - which dose should be used in the next experiment to reduce the variance of LD50 as much as possible?
 - this way less experiments need to be made (and less animals need to be killed)
- Example 3
 - optimal paper helicopter wing length

Bayesian optimization

- Design of experiment
- Used to optimize, for example,
 - machine learning / deep learning model structures, regularization, and learning algorithm parameters
 - material science
 - engines
 - drug testing
 - part of Bayesian inference for stochastic simulators

Start with a small number of experiments

Gaussian process model – posterior draws

- · Thompson sampling:
 - pick one posterior draw (function)
 - find the wing length corresponding to the max. of that draw
 - make the next observation with that wing length

Gaussian process model – Thompson sampling

- Thompson sampling: Wing length (cm)
 - pick one posterior draw (function)
 - find the wing length corresponding to the max. of that draw
 - make the next observation with that wing length

Gaussian process model – Thompson sampling

- Thompson sampling: Wing length (cm)
 - pick one posterior draw (function)
 - find the wing length corresponding to the max. of that draw
 - make the next observation with that wing length

33 BO obs. post. Wasserstein-1 distance \approx 0.77 33 first obs. post. Wasserstein-1 distance \approx 1.36

33 BO obs. post. Wasserstein-1 distance \approx 0.77 33 first obs. post. Wasserstein-1 distance \approx 1.36

We obtain about 50% increase in efficiency

Examples of big Bayesian decision making success stories

- Bayesian optimization of ML algorithms
- Bayesian optimization of new medical molecules
- Bayesian optimization of new materials
- A/B testing
- Customer retention / satisfaction
- Marketing