Universidade Federal do Rio de Janeiro

Trabalho Final de Sistemas Lineares I

Alunos Igor Abreu da Silva

DRE 112053874

Curso Engenharia Eletrônica

Turma 2016/1

Professor Natanael Nunes de Moura Junior

Rio de Janeiro, 15 de Julho de 2016

Conteúdo

1	Que	stão 1
	1.1	Circuito 1
		1.1.1 Determinar a função do circuto
		1.1.2 Resposta ao degrau unitário 4
		1.1.3 Resposta a rampa unitário 4
		1.1.4 Resposta a onda quadrada
	1.2	Circuito 2
		1.2.1 Determinar a função do circuto 6
	1.3	Circuito 3
		1.3.1 Determinar a função do circuto 8
	1.4	Circuito 4
		1.4.1 Determinar a função do circuto
	1.5	Circuito 5
		1.5.1 Determinar a função do circuto
2	Que	$\operatorname{st ilde{a}o} 2$ 15
	2.1	Item a
	2.2	Item b
	2.3	Item c
	2.4	Item d
	2.5	Item e
	2.6	Item f
	2.7	Item g
	2.8	Item h
	2.9	Item i
	2.10	Item j
	2.11	Item k
	2.12	Item l
3	Que	stão 3 15
	3.1	Item a
		3.1.1 Variando em α
		3.1.2 Variando em β
	3.2	Item b
		3.2.1 Variando em α
		3.2.2 Variando em β
	3.3	Item c
		3.3.1 Variando em α
		3.3.2 Variando em β

	3.4	Item d	15
		3.4.1 Variando em α	15
		3.4.2 Variando em β	15
	3.5	Item e	15
		3.5.1 Variando em α	15
		3.5.2 Variando em β	15
	3.6	Item f $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
		3.6.1 Variando em α	15
		3.6.2 Variando em β	15
	3.7	Item g	15
		3.7.1 Variando em α	15
		3.7.2 Variando em β	15
	3.8	Item h	15
		3.8.1 Variando em α	15
		3.8.2 Variando em β	15
	3.9	Item i \ldots	15
		3.9.1 Variando em α	15
		3.9.2 Variando em β	15
	3.10	Item j	15
		3.10.1 Variando em α	15
		3.10.2 Variando em β	15
	3.11	Item k	15
		3.11.1 Variando em α	15
		3.11.2 Variando em β	15
1	Con	aluaã a	1 5
4	Con	clusão	15
5	Refe	erências	16
т	•_4_	J. D:	
L	ista	de Figuras	
	1	Circuito 1	1
	2	Circuito 1 - Polos e Zeros	2
	3	Circuito 1 - Diagrama de Bode	3
	4	Circuito 1 - Resposta ao degrau unitário	4
	5	Circuito 1 - Resposta a rampa unitária	4
	6	Circuito 1 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$	5
	7	Circuito 1 - Resposta ao primeiro harmônico da série de Fou-	
		rier de um onda quadrada com $\omega = \frac{1}{8}\pi$	5
	8	Circuito 2	6

9	Circuito 2 - Polos e Zeros	7
10	Circuito 2 - Diagrama de Bode	8
11	Circuito 3	8
12	Circuito 3 - Polos e Zeros	10
13	Circuito 3 - Diagrama de Bode	10
14	Circuito 4	11
15	Circuito 4 - Diagrama de Bode	11
16	Circuito 5	12
17	Circuito 5 - Polos e Zeros	13
18	Circuito 5 - Diagrama de Bode	14

1 Questão 1

1.1 Circuito 1

Nesta sessão será resolvida toda a parte necessária para encontra a função/utilidade de cada um dos circuitos. Analisaremos todos os pontos correspondentes aos itens (a), (b), (c), (d), (e) e (f) do trabalho final.

Serão assumidos aqui que os sistemas encontram-se o zerados no instante $t=0^-.$

1.1.1 Determinar a função do circuto

Figura 1: Circuito 1

Podemos modelar o circuito 1 em relação ao nó após R1. Teríamos a seguinte equação:

$$\frac{V_{in} - V_{out}}{R1} - \frac{V_{out}}{R2} - \frac{C\partial V_{out}}{\partial t} - \frac{1}{L} \int V_{out} \partial t = 0$$

Para encontrarmos a E.D.O do circuito, vamos derivar toda esta expressão e separar V_{out} e V_{in} , encontrando a seguinte relação:

$$\frac{\partial V_{in}}{\partial t} \left(\frac{1}{R_1} \right) = \frac{C \partial^2 V_{out}}{\partial t^2} + \frac{\partial V_{out}}{\partial t} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + \frac{V_{out}}{L}$$

Em posse da E.D.O, utilizaremos Laplace para encontrar a função de Transferência do Circuito.

$$X(S)\left(\frac{1}{R_1}\right) = Y(S)\left(S^2C + S\left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \frac{1}{L}\right) \Rightarrow$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{SR_2L}{S^2(R_1R_2LC) + S(R_1L + R_2L) + R_1R_2}$$

Afim de facilitar os cálculos, tomaremos os seguintes valores para cada elemento do circuito:

- $R_1 = 10\Omega;$
- $R_2 = 100\Omega;$
- C = 1F;
- L = 1H;

Apos aplicar os valores comercias em H(S), temos:

$$H(S) = \frac{100S}{1000S^2 + 110S + 110}$$

Utilizando essa função no MatLab para encontrar os polos (quando se zera o denominador), zeros (quando se zera o numerador) e o diagrama de Bode, obtemos o seguintes gráficos:

Figura 2: Circuito 1 - Polos e Zeros

Figura 3: Circuito 1 - Diagrama de Bode

Analisando-se este circuito, pode-se afirmar que o mesmo é um filtro passa faixa operando na largura de banda de aproximadamente $0.11 \, \mathrm{rad/sec}$ em um intervalo $[0.28,\,0.39] \, \mathrm{rad/sec}$.

1.1.2 Resposta ao degrau unitário

Figura 4: Circuito 1 - Resposta ao degrau unitário

1.1.3 Resposta a rampa unitário

Figura 5: Circuito 1 - Resposta a rampa unitária

1.1.4 Resposta a onda quadrada

Figura 6: Circuito 1 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$

Figura 7: Circuito 1 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com $\omega=\frac{1}{8}\pi$

1.2 Circuito 2

1.2.1 Determinar a função do circuto

Figura 8: Circuito 2

Para modelarmos utilizaremos as seguintes equações:

$$I_1 = I_{in} - I_{out}$$

$$R_2 I_{out} + \frac{L\partial I_{out}}{\partial t} - R_1 I_1 + \frac{1}{C} \int I_{out} \partial t = 0$$

Substituindo I_1 para colocarmos a equação em função de I_{in} e I_{out} e derivando-a para removermos a Integral, temos a E.D.O:

$$\frac{\partial I_{in}}{\partial t}(R_1) = \frac{\partial^2 I_{out}}{\partial t^2}(L) + \frac{\partial I_{out}}{\partial t}(R_1 + R_2) + \frac{I_{out}}{C}$$

Transformando essa E.D.O em Laplace, obtemos:

$$X(S)(SR_1) = Y(S)\left(S^2 + S(R_1 + R_2) + \frac{1}{C}\right) \Rightarrow$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{S(R_1C)}{S^2(LC) + S(R_1C + R_2C) + 1}$$

Escolhendo os seguintes valores para cada elemento do circuito:

• $R_1 = 10\Omega;$

- $R_2 = 100\Omega;$
- C = 1F;
- L = 1H;

Encontramos a seguinte função de transferência:

$$H(S) = \frac{10S}{S^2 + 110S + 1}$$

A partir dessa função obtemos os seguintes polos, zeros e diagrama de Bode:

Figura 9: Circuito 2 - Polos e Zeros

Figura 10: Circuito 2 - Diagrama de Bode

Assim como o circuito da figura 1, temos também um filtro passa faixa que opera nas faixas entre 0.01 rad/seg e 86.5 rad/seg

1.3 Circuito 3

1.3.1 Determinar a função do circuto

Figura 11: Circuito 3

Este circuito, também conhecido como topologia de Sallen-Key, sabendo

que o Amp Op possui impedância infinita em sua entrada, que $V^-=V^+$, que $V^-=V_{out}$ e chamando V_a da tensão que passa por C_1 , obtemos:

$$V_a = V_{out} + R_2 C_2 \frac{\partial V_{out}}{\partial t}$$

Utilizando a lei dos nós entre R_1 e R_2 e já substituindo V_a por V_{out} temos:

$$\frac{V_{in}}{R_1} = R_2 C_1 C_2 \frac{\partial^2 V_{out}}{\partial t^2} + \left(C_2 + \frac{R_2 C_2}{R_1}\right) \frac{\partial V_{out}}{\partial t} + \frac{V_{out}}{R_1}$$

Com esta E.D.O, podemos encontrar a seguinte função de transferência utilizando o mesmo método empregado nos circuitos anteriores, com isso temos:

$$H(S) = \frac{1}{S^2 (R_1 R_2 C_1 C_2) + S (R_1 C_2 + R_2 C_2) + 1}$$

Utilizando os valores para cada elemento do circuito:

- $R_1 = 10\Omega;$
- $R_2 = 100\Omega;$
- $C_1 = 2F$;
- $C_2 = 1F$;

Encontramos a seguinte função de transferência:

$$H(S) = \frac{1}{2000S^2 + 110S + 1}$$

Que nos gera os seguintes polos, zeros e diagrama de Bode:

Figura 12: Circuito 3 - Polos e Zeros

Figura 13: Circuito 3 - Diagrama de Bode

Pela a analise do diagrama de Bode, pode-se afirmar que esse circuito $\acute{\rm e}$ um filtro passa alta com frequência no seu menor polo de $0.01~{\rm rad/sec}$.

1.4 Circuito 4

1.4.1 Determinar a função do circuto

Figura 14: Circuito 4

Esse circuito, conhecido como buffer, é utilizado como um isolador. Como V_{in} é igual a V_{out} , sua função de transferência H(S) = 1. Não existem polos nem zeros para esse circuito e seu diagrama de Bode permanece em 0.

Figura 15: Circuito 4 - Diagrama de Bode

1.5 Circuito 5

1.5.1 Determinar a função do circuto

Figura 16: Circuito 5

Esse circuito pode ser escrito como:

$$\frac{V_{in}}{R} + C \frac{\partial V_{out}}{\partial t} = 0$$

Transformando esta E.D.O com Laplace utilizando o mesmo método dos circuitos passados, obtemos:

$$H(S) = \frac{-1}{RCS}$$

Tomando os seguintes valores para os elementos do circuito:

- $R = 10\Omega$;
- C = 1F;

Temos a seguinte equação de transferência:

$$H(S) = \frac{-1}{10S}$$

A partir dessa equação, obtemos os seguintes polos, zeros e diagrama de Bode:

Figura 17: Circuito 5 - Polos e Zeros

Este circuito corresponde a um filtro passa baixa integrador de apenas um polo.

Figura 18: Circuito 5 - Diagrama de Bode

2 Questão 2

- 2.1 Item a
- 2.2 Item b
- 2.3 Item c
- 2.4 Item d
- 2.5 Item e
- 2.6 Item f
- 2.7 Item g
- 2.8 Item h
- 2.9 Item i
- 2.10 Item j
- 2.11 Item k
- 2.12 Item 1

3 Questão 3

- 3.1 Item a
- 3.1.1 Variando em α
- 3.1.2 Variando em β
- 3.2 Item b
- 3.2.1 Variando em α
- 3.2.2 Variando em β
- 3.3 Item c
- 3.3.1 Variando em α
- 3.3.2 Variando em β
- 3.4 Item d
- 3.4.1 Variando em α
- 3.4.2 Variando em β
- 3.5 Item e
- 3.5.1 Variando em α
- 3.5.2 Variando em β

15

5 Referências

- [1] Chapman, S.J. Electric Machinery Fundamentals, 4th Edition;
- [2] Fitzgerald, A. E. Máquinas Elétricas, 2da Edição;