Home

Course Information

Course Supervisor

Dr. Péter Galambos peter.galambos@irob.uni-obuda.hu

Teachers

Tamás D. Nagy tamas.daniel.nagy@irob.uni-obuda.hu

Borsa Détár detar.borsa@gmail.com

Schedule

Okt. hét	Dátum	Témakör	Számonkérés
1.	márc. 3	Követelmények ismertetése. ROS bevezetés. Fejlesztőkörnyezet felállítása.	-
2.	márc. 10	Fejlesztőkörnyezet felállítása. Linux alapok. ROS 1 és ROS 2. Egyszerű próbakódok futtatása. ROS package. Az alapvető ROS kommunikáció, publisher és subscriber implementálása.	_
3.	márc. 17	Python alapok. ROS kommunikáció implementációjának gyakorlása, példafeladatok megoldása.	-

Okt. hét	Dátum	Témakör	Számonkérés
4.	márc. 24	Robotikai alapfogalmak, da Vinci sebészrobot programozása szimulált környezetben I.	-
5.	márc. 31	Verziókövetés, Git. Projekt labor I.	-
7.	ápr. 14	Roslaunch, ROS paraméter szerver. Rosbag.	-
8.	ápr. 21	Saját üzenetek definiálása. ROS service, ROS action fogalma, felhasználása.	ZH1
9.	ápr. 28	Kinematika, inverz kinematika, szimulált robotkar programozása csukló-, és munkatérben I.	-
10.	máj. 5	URDF, webes felületek illesztése: RosBridge és RoslibJS.	-
11.	máj. 12	Kálmán-szűrő. Szenzoros adatok gyűjtése és feldolgozása ROS környezetben.	-
12.	máj. 19	Szenzorfúzió Kálmán-szűrővel. Odometria-IMU szenzorfúzió implementációja mobil robot platformra.	-
13.	máj. 26	Projekt labor II.	ZH2
14.	jún. 2	Kötelező programok bemutatása.	Pót ZH
14+1.	jún. 9	-	Aláíráspótló: csak kötprog

Course Requirements

Project

- Proved to be the student's own work
- Running results valid output
- Grading: completeness of the soultion, proper ROS communication, proper structure of the program, quality of implementation, documentation

Grading

Personal attendance on the classes is mandatory (min 70%).

To pass the course, Tests and the Project must be passed (grade 2). One of the Test can be taken again.

Grade

 $(Jegy = (Test1 + Test2 + 2 \land Project) / 4)$

Antal Bejczy Center for Intelligent Robotics (BARK/IROB)

ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT

https://irob.uni-obuda.hu

irob-saf

(iRob Surgical Automation Framework)

https://github.com/ABC-iRobotics/irob-saf

PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform