Programación Científica

Caso de estudio: Osciladores acoplados

04 de julio de 2022

Simular la evolución de un sistema de osciladores acoplados según se muestra en la figura:

La posición de cada masa se calculará como una combinación lineal de los modos normales cuyas frecuencias se encontrarán numéricamente, según:

$$x_i(t) = \sum_{k=0}^{N} a_{ki} \text{Cos}(\omega_k t + \phi_k)$$

 a_{ki} : es la componente *i*-ésima del vector propio correspondiente a la frecuencia ω_k ϕ_k : es la fase del modo normal k que permite establecer las condiciones iniciales.

Paramétros:

- ω_k se medirá en términos ω_0 , la cual es la menor de las frecuencias, es decir $\omega_0^2 = \frac{k_{min}}{m}$
- N = 4.6 y 10

El problema de los valores propios se resolverá con el método QR

Actividades

- 1. Simular la evolución del sistema para N=4,6, y 10, con $k_i=1$, $\forall i$ y observar las características de los modos normales.
- 2. Simular la evolución del sistema para N=4,6 y 10, con $k_{2i+1}=5k_{2i}$. Para cada simulación:
 - Graficar la evolución temporal de las posiciones de los osciladores.
 - Estimar las frecuencias de la modulación de la amplitud.
- 3. Para cada caso graficar las frecuencias ω_i de los modos normales en función i

Estructura del Reporte

1. Introducción

- Descripción del sistema de estudio.
- Ecuaciones del movimiento y ecuación de valores propios.
- Planteamiento del problema.

2. Metodología

- Estructura del programa utilizado.
- Condiciones de las simulaciones.
- Procedimiento para el análisis y el tratamiento de los datos.

3. Resultados

- Esquema de los modos normales de oscilación para $k_i = 1$.
- Gráficos representativos de la evolución de las posiciones de las partículas.
- Tabla con las frecuencias de la modulación de la amplitud.
- Gráfico con la variación de las frecuencias propias ω_i vs i para cada caso

4. Conclusiones

Las conclusiones deben relacionarse directamente con lo presentado en la sección anterior.

Fecha de entrega del reporte: 11 de julio de 2022

Marco V Bayas