

Some applications Digital communication Biomedical Radar High-speed computing Memories Sensor networks Reconfigurable hardware Energy conversion and more... http://www.vrg.utoronto.ca/EG/

7

http://www.vrg.utoronto.ca/EG/

Speakers:

- Prof. J. Rose
- Prof. W.T. Ng
- Prof. R. Genov
- Prof. Y. Sun

FPGA Research: Architecture, CAD, Soft Processors and Systems

Jonathan Rose
Computer Engineering Group
and Electronics Group

FPGAs vs. Custom Silicon (ASICs)

- Advantages of FPGAs
 - Instant fabrication: Seconds vs. Months
 - Low cost prototyping; \$100 vs. \$1M
 - Cheaper at low volume
 - Don't need to sweat deep-submicron issues!
- Disadvantages of FPGAs
 - 20-30x more area
 - 3-4x slower
 - 10x more power consumption

Field-Programmable Gate Arrays

- Are pre-fabricated digital chips
 - Programmed to become anything
 - Including large systems!

If VLSI is the Technology of Our Time ...

FPGAs <u>Democratize</u> Technology of Our Time

- Make it accessible to everyone
 - Not just the rich who can afford ASICs
 - The small outfit in Singapore, Texas, Winnipeg
 - Small parts of large companies

My Goal

- To replace all digital silicon with FPGAs!
 - By making them better (architecture, CAD, ease of creation)
 - And <u>using</u> them in new ways for new applications
- The score so far:
 - \$4B FPGA, \$31B Custom Silicon (ASICs)
 - But 99% of all design is done with FPGAs!
 - Very few ASICs gather most of the market

How: Computer-Aided Design

- Better tools make FPGAs faster, smaller, lower power
- High Level Synthesis
- Logic Synthesis
- Packing (memory, special structures, logic)
- Placement
- Routing
- To optimize: area, speed, power (dynamic and static)

How: FPGA Research: Architecture

- Make better FPGAs by improving their architecture
 - What is the logic
 - How to make the routing better
- Central Question of FPGA Architecture:

What logic should be made "hard"?

- Where can we reduce the costly flexibility?
 - Deep question with interesting theoretical & practical branches

How: The Creation of FPGAs Themselves

- Automated Layout of FPGAs themselves
- Automated Circuit Design of FPGAs
- Current Project:
 - Automating the transistor-level design of FPGAs

Systems & Applications

- The Transmogrifier Project
 - Creation of programmable systems
- New System: The Transmogrifier-4:
- Interested in applications on
 - Vision
 - Graphics
 - Bioinformatics simulation
- Next Generation: Transmogrifier-5
 - Super cheap
 - Portable wireless/full system

Soft Processor Rapid Exploration (SPREE) Input: Processor Description Hand-coded components, Datapath CAD/Compiler: 1. Verifies ISA against datapath 2. Instantiates Datapath 3. Generates Control Output: Synthesizable Verilog

Soft Processors

- For FPGAs to conquer, they must have good processors
- Soft processors are processors built on FPGA fabric
 - Fabric makes them slower, bigger than hard processors
 - Must use FPGA's flexibility to get this back!
- Example Projects:
 - Exploration of Soft Processor Micro-architecture
 - Super Small Soft Processor
 - Super Fast Soft Processor

May 12, 2006

Smart Power ICs & Device Fabrication

Prof. W.T. Ng

Associate Chair, Undergraduate Studies

AKM

HVCMOS – Customized VLSI Fabrication Process for Smart PIC applications

A variety of HV, Power MOSFETs can be integrated onto the IC chip, accommodating both data processing and power electronic circuits.

HVCMOS – Customized VLSI Fabrication Process for Smart PIC applications

RF Devices: Lateral BJT on SOI

base-poly

Best Young Researcher

May 12, 2006

Award at ISPSD 2005 M.I-Shan Sun

University of Toronto

High Efficiency Integrated DC-DC Converters

- Integrated PWM controller allows high switching speed e.g. > 5MHz
- Accurate gate drive timing to reduce unwanted switching losses.
- Requires predictive gate timing to make sure that the gate signal arrives at exactly the right moment.

High Efficiency Integrated DC-DC Converters

☐ Design versatile digital controllers for various mode of DC-DC switching operations

☐ Use of miniaturized inductors to build true chipsize DC-DC converter modules.

Pads for IC