ЛЕКЦІЯ 3. МЕТОДИ СОРТУВАННЯ.

3.1. Задача сортування

Загальна задача сортування полягає в наступному:

нехай дано множину елементів, яка є індексованою, тобто довільно пронумерованою від l до n . Необхідно індексувати цю множину елементів так, щоб з умови i < j витікало $a_i < a_j$ - для всіхi,j = l..n.

Отже, процес сортування полягає у послідовних перестановках елементів доти, доки їх індексація не узгодиться з їх впорядкованістю.

Будемо розглядати ефективність <u>алгоритмі</u>в у термінах розмірності множини з точки зору простоти програмування. Задачу сортування зручніше розглядати в застосуванні до одновимірних <u>масив</u>ів (векторів).

Нехай маємо вектор з n елементів R_1 , R_2 , ..., R_n .. Задача сортування полягає у тому, щоб знайти таку перестановку елементів вектора, після якої вони розмістилися б у зростаючому порядку їх значень.

Сортування називається стійким, якщо елементи з однаковими значеннями залишаються на попередньому місці. Для простоти аналізу будемо вважати, що всі елементи масиву, який сортується, займають однакові кванти пам'яті і ніякі два елементи не можуть мати рівних значень, але в алгоритмах такий випадок повинен бути передбачений.

Наведемо основні алгоритми у формальному аспекті і розглянемо на прикладах їх роботу.

3.2.Метод простої вибірки.

Задано масив елементів R_1 , R_2 , ..., R_n . Даний алгоритм реорганізує масив у висхідному порядку, тобто для його елементів буде мати місце співвідношення $R_i < R_j$ - для всіх i,j=1..n

<u>Алгоритм S.</u>

- S1. Цикл за індексом проходження. Повторювати кроки S2 S4 при \models 1..n-1.
- S2. Зафіксувати перший поточний елемент: встановити $R0 = R_i$.
- S3. Пошук найменшого значення *min* R_i для елементів з індексом j=i+1,i+2,...,n
- S4. Перестановка елементів. Якщо $min R_i < R0$ та j != i, то $min R_i < -> R0$
- S5. Кінець. Вихіл.
- 3 <u>алгоритм</u>у S видно, що для сортування потрібно виконати n-l проходження послідовності елементів. Одним проходженням називаємо пошук елементу з наступним найменшим значенням.

Проведемо невеликий аналіз <u>алгоритм</u>у. При першому проходженні, коли знаходиться елемент з найменшим значенням, порівнюється n-l елементів. У загальному випадку при i-му проходженні у процесі сортування порівнюється n-lелементів. Тоді загальна кількість порівнянь,

4.3.2014 АІСД ПІ: Сортування даних Сортування вибіркою. Метод простої вибірки. Метод бульбашки. Швидкий метод сортування. Порівняння алгор... які треба виконати для сортування масиву із *п* елементів буде:

$$\Sigma(n-i) = (n-1) + (n-2) + ... + (n-n+1) = 1/2n(n-1), i=1..n-1$$

Таким чином, ефективність <u>алгоритм</u>у пропорційна величині n^2 (говорять, що<u>алгоритм</u> S має ефективність $O(n^2)$).

Кількість перестановок елементів залежить від того, як на початку був відсортований масив. Але, оскільки при одному проходженні у даному алгоритмі потрібно виконати не більш як одну перестановку, максимальна кількість перестановок при такому сортуванні дорівнює величині n-l.

3.3. Метод бульбашки.

Другим добре відомим методом із класу вибірки є метод, що ґрунтується на ідеї спливаючої бульбашки . На відміну від попереднього в даному <u>алгоритм</u>і два елементи обмінюються місцями, як тільки виявлено, що між ними порушений порядок.

Алгоритм В.

Задано <u>масив</u> елементів R_1 , R_2 , ..., R_n .

Даний <u>алгоритм</u> реорганізує <u>масив</u> у висхідному порядку, тобто для його елементів буде мати місце співвідношення $R_i < R_i$ - для всіх i,j = 1..n

- В1. Цикл за індексом проходження. Повторювати кроки В2 і В3 при i=1..n-1.
- В2. Ініціалізація прапорця перестановки: встановити Fl=0.,
- В3. Виконання проходження. Повторювати при j=1,2,...,n-i: якщо $R_{j+1} < R_j$, то встановити Flg=1 та переставити місцями елементи $R_j < -> R_{j+1}$; якщо Fl=0, то завершити виконання алгоритму.
- В4. Кінець. Вихід.

Робота алгоритму В очевидна. Перед кожним проходженням змінна Fl приймає значення нуль. Її значення аналізується в кінці кожного кроку. Якщо воно не змінилося, сортування виконане повністю. Характеристика сортування бульбашкою в гіршому випадку складає l/2n(n-1) порівнянь і l/2n(n-1) перестановок. Середня кількість проходжень приблизно дорівнює величині $1,25n\ddot{O}$ n. Наприклад, якщо n=10, потрібно виконати шість проходжень послідовності.

Середня кількість порівнянь і перестановок також пропорційна величині n^2 . Отже складність <u>алгоритм</u>у сортування бульбашкою становить $O(n^2)$. Цей метод неефективний для <u>масив</u>ів великого розміру. Існує багато модифікацій даного <u>алгоритм</u>у.

3.4. Швидкий метод сортування

В класі алгоритмів вибірки слід відзначити так зване швидке сортування, в якому виконується наступна схема обмінів .

 ${\cal E}$ два вказівники i та j , причому на початку i=1, j=n. , де n кількість елементів масиву. Довільним чином вибирається за базовий будь-який елемент з масиву (перший, середній або останній). Нехай, наприклад, це буде перший елемент $X=R_I$. Встановлюємоi=I (від першого) , j=n (від останнього), якщо знайдено $R_i>=X$ та $R_j< X$, то потрібно провести обмін $R_i<->R_j$ при умові що i< j . Після першого обміну збільшуємо i на одиницю та шукаємо $R_i>=X$. Якщо такий елемент знайдено то j зменшуємо на одиницю і шукаємо $R_j< X$. Проводимо наступний обмін. Якщо $R_i>=X$ не знайдено, а i>=j , то перша ітерація закінчена. Отже, алгоритм працює за принципом "спалюванню свічки з обох кінців". Масив буде розділений наступним чином: R_I , R_2 ,..., R_{i-I} , R_i , R_{i+I} ,..., R_n причому $R_I< X$, I=I,...,I:I; $R_m<=X$, m=i+I,...,n. В лівій частині масиву будуть стояти всі елементи, що є меншими від базового, а в правій — що є більшими та сам базовий елемент. Потім до кожної з цих підмножин рекурсивно застосовується даний метод. Рекурсія закінчується, коли всі підмножини будуть складатися з одного елементу, або весьмасив буде впорядкований.

Розглянемо приклад:

Нехай масив включає наступні елементи:

53264137

Встановлюємо i=1, j=8, X=5.

Для \models 1 виконується умова 5>=5, для j=7 виконується умова 3<5. Оскільки i<j, то проводимо обмін місцями знайдених елементів 5<->3. Повторюємо кроки для новоутвореного масиву 3 3 2 6 4 1 5 7 :для \models 4, 6>5, для j=6, 1<5, i<j, проводимо обмін місцями елементів 6<->1. При наступній ітерації умова i<j не виконається

3 3 2 1 4 <u>6 5 7</u>, і=8, ј=5 і>ј, отже перший прохід розділить <u>масив</u> на дві частини. Рекурсивно відсортовуємо по черзі обидві частини.

<u>Час роботи алгоритму</u> швидкого сортування залежить від збалансованості, що характеризує розбиття. Збалансованість, у свою чергу залежить від того, який елемент обрано як базовий (відносно якого елемента виконується розбиття). Якщо розбиття збалансоване, то асимптотично <u>алгоритм</u> працює так само швидко як і <u>алгоритм</u> сортування злиттям. У найгіршому випадку, асимптотична поведінка <u>алгоритм</u>у настільки ж погана, як і в <u>алгоритм</u>у сортування включенням.

• Найгірше розбиття. Найгірша поведінка має місце у тому випадку, коли процедура, що виконує розбиття, породжує одну підзадачу з (n-1) елементом, а другу - з 0 елементами. Нехай таке незбалансоване розбиття виникає при кожному рекурсивному виклику. Для самого розбиття потрібен час $\Theta(n)$. Тоді рекурентне співвідношення для часу роботи, можна записати наступним чином:

$$T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n).$$

Розв'язком такого співвідношення ϵ : $T(n) = \Theta(n^2)$.

- Найкраще розбиття. В найкращому випадку процедура поділу ділить задачу на дві підзадачі, розмір кожної з яких не перевищує (n/2). Час роботи описується нерівністю: $T(n) \le 2 \cdot T(n/2) + \Theta(n)$. Тоді: $T(n) = O(n \cdot \log(n))$ асимптотично найкращий час.
- Середній випадок. Математичне очікування часу роботи <u>алгоритм</u>у на всіх можливих вхідних <u>масив</u>ах $\epsilon O(n \cdot \log(n))$, тобто середній випадок ближчий до найкращого.

4.3.2014	АіСД ПІ: Сортування да	аних. Сортування вибіркою.	Метод простої	вибірки. Мет	од бульбашки.	Швидкий метод сортування	. Порівняння алгор