Text classification

- Problem statement
- Logistic regression model
- Simple document embeddings models
- Neural networks for classification, FastText
- Convolutional neural networks for text classification
- Data processing in text classification

Problem statement

Problem statement

Data:

- $d \in D$ set of documents
- $c \in C$ set of labels

Problem statement

Data:

- $d \in D$ set of documents
- $c \in C$ set of labels

Types of classification:

- binary classification |C| = 2, $\forall d \in D \leftrightarrow c \in C$
- multiclass classification $|C| = K, K > 2, \forall d \in D \leftrightarrow c \in C$
- multilabel classification |C| = K, K > 2, $\forall d \in D \leftrightarrow C' \subseteq C$

spam detection (binary)C = {spam, not spam}

spam detection (binary)C = {spam, not spam}

Здравствуйте!

До 30 апреля по всей России объявлены нерабочие дни.

Мы верим, что Вы очень ответсть отнеслись к сложившейся ситуации. Надеемся, что Вы планируете остаться дома со своей семьей и минимизировать внешние контакты. Это важно именно сейчас, чтобы защитить себя и других.

Меня зовут Бакаре Тунде, я брат первого нигерийского космонавта, майора ВВС Нигерии Абака Тунде. Мой брат стал первым африканским космонавтом, который отправился с секретной миссией на советскую станцию «Салют-6» в далеком 1979 году.

Sentiment analysis (multiclass)
 C = {negative, positive, neutral}

Sentiment analysis (multiclass)
 C = {negative, positive, neutral}

Пончик или пышка — круглое или кольцеобразное, жаренное во фритюре хлебобулочное изделие, с начинкой или без неё. Пышка в узком смысле слова — пончик без начинки с дыркой посередине.

Обожаю пончики на завтрак! Это лучшее начало трудового дня, они заряжают энергией и хорошим настроением меня и всю мою семью. Гомер С.

Никогда больше не стану покупа: — у вас пончики. В пончике должна быть ОДНА дырка посредине, а в вашем пончике я нашла 15! Ну это никуда не годится!

Articles tagging (multilabel)
 C = {sport, politics, health, ...}

Articles tagging (multilabel)
 C = {sport, politics, health, ...}

«Зенит» на своем YouTube-канале провел онлайн-трансляцию тренировки футболистов в самоизоляции. Занятие прошло под руководством тренера по физподготовке Андреа Сканавино.

Посольство Северной Кореи в РФ поблагодарило КПРФ за телеграмму, направленную партией северокорейскому лидеру Ким Чен Ыну по случаю годовщины саммита РФ и КНДР, сообщил РИА Новости депутат от КПРФ Казбек Тайсаев.

Real classes

		Class 0	Class 1	
	Class 0	True positive (tp)	False positive (fp)	
	Class 1	False negative (fn)	True negative (tn)	

Real classes

Predicted classes

	Class 0	Class 1	
Class 0	True positive (tp)	False positive (fp)	
Class 1	False negative (fn)	True negative (tn)	

Accuracy

$$Acc = \frac{tp+tn}{tp+tn+fp+fn}$$

Real classes

	Class 0	Class 1	
Class 0	True positive (tp)	False positive (fp)	
Class 1	False negative (fn)	True negative (tn)	

- Accuracy
- Precision

$$Acc = \frac{tp+tn}{tp+tn+fp+fr}$$
$$Pr = \frac{tp}{tp+fp}$$

Real classes

	Class 0	Class 1	
Class 0	True positive (tp)	False positive (fp)	
Class 1	False negative (fn)	True negative (tn)	

- Accuracy
- Precision
- Recall

$$Acc = \frac{tp+tn}{tp+tn+fp+fn}$$

$$Pr = \frac{tp}{tp+fp}$$

$$R = \frac{tp}{tp+fn}$$

Real classes

	Class 0	Class 1	
Class 0	True positive (tp)	False positive (fp)	
Class 1	False negative (fn)	True negative (tn)	

- Accuracy
- Precision
- Recall
- F-score

$$Acc = \frac{tp + tn}{tp + tn + fp + fn}$$

$$Pr = \frac{tp}{tp + fp}$$

$$R = \frac{tp}{tp + fn}$$

$$F_1 = \frac{2}{1/Pr + 1/R} = \frac{2 \cdot Pr \cdot R}{Pr + R}$$

Real classes

	Class 0	Class 1	Class 2
Class 0	tn_{00}	fn_{10}	tn_{02}
Class 1	fp_{10}	tp_1	fp_{12}
Class 2	tn_{20}	fn_{12}	tn_{22}

Real classes

Predicted classes

		Class 0	Class 1	Class 2
Class	5 0	tn_{00}	fn_{10}	tn_{02}
Class	5 1	fp_{10}	tp_1	fp_{12}
Class	5 2	tn_{20}	fn_{12}	tn_{22}

Micro-averaging

$$Pr_{micro} = \frac{\sum tp_i}{\sum tp_i + \sum \sum fp_{ij}}$$

$$R_{micro} = \frac{\sum tp_i}{\sum tp_i + \sum \sum fn_{ij}}$$

Real classes

Predicted classes

	Class 0	Class 1	Class 2
Class 0	tn_{00}	fn_{10}	tn_{02}
Class 1	fp_{10}	tp_1	fp_{12}
Class 2	tn_{20}	fn_{12}	tn_{22}

Micro-averaging

$$Pr_{micro} = \frac{\sum tp_i}{\sum tp_i + \sum \sum fp_{ij}}$$

$$R_{micro} = \frac{\sum tp_i}{\sum tp_i + \sum \sum fn_{ij}}$$

Macro-averaging

$$Pr_{macro} = \frac{\sum Pr_i}{|C|}$$

$$R_{macro} = \frac{\sum R_i}{|C|}$$

Features for text classification

- Features for classification can be extracted from text:
 - smileys count
 - words (and n-grams!)
 - syntactic structure

Features for text classification

- Features for classification can be extracted from text:
 - smileys count
 - words (and n-grams!)
 - syntactic structure
- External information can be useful, too:
 - author's age
 - number of citations

Text classification models

- Text classification can be solved by the same models, as the classical classification task:
 - linear models
 - metric models
 - decision trees
 - neural networks
 - •

Text classification models

- Text classification can be solved by the same models, as the classical classification task:
 - linear models
 - metric models
 - decision trees
 - neural networks
- Model type can be chosen based on
 - data type and amount
 - performance requirements, complexity of customization and support

Multiclass classification

- Binary classification model can always be adapted to multiclass case
- Two possible strategies:

Multiclass classification

- Binary classification model can always be adapted to multiclass case
- Two possible strategies:
 - «One-vs-rest»
 - train a model for each class, the model can divide one class from the rest classes

Multiclass classification

- Binary classification model can always be adapted to multiclass case
- Two possible strategies:
 - «One-vs-rest»
 - train a model for each class, the model can divide one class from the rest classes
 - «One-vs-one»:
 - Train a classifier for each pair of classes
 - Useful for classifiers that work poorly with big data
 - Final class is chosen by majority vote

Main conclusions

- Text classification problem statement and approaches are similar to classical ones
- Main quality metrics are accuracy, precision, recall, F-score
- You can apply most of classical models
- Binary models can be adapted to multiclass case

Logistic regression model

Linear models

Let x be a vector representation of a document,
 y - document class, w - a vector of linear model weights

Linear models

- Let x be a vector representation of a document, y document class, w a vector of linear model weights
- Model can be trained with different loss functions:
 - \circ Logistic $\log(1 + \exp(-y\langle x, \omega \rangle))$
 - Hinge-loss $\max(0, 1 y(x, \omega))$
 - Quadratic $\frac{1}{2}(y \langle x, \omega \rangle))^2$

Linear models

- Let x be a vector representation of a document, y document class, w a vector of linear model weights
- Model can be trained with different loss functions
- Model can have different regularization:
 - Lasso:

$$\alpha \parallel w \parallel_1$$

Ridge:

$$\alpha \parallel w \parallel_2$$

• ElasticNet:

$$\alpha \parallel w \parallel_1 + \beta \parallel w \parallel_2$$

Logistic regression

- Linear model with logistic loss function simple and good solution for text classification
- Model output:

$$p(c = 1|d) = \frac{1}{1 + \exp(-z)}, z = \omega^T x$$

w - a vector of linear model weights

x - a vector representation of a document

In multiclass case we replace logistic function with softmax

Logistic regression

Advantages

- Fast training
- Interpretability
- Easy inference

Disadvantages

 Linear model can't cope with difficult cases (and non-linear dependencies)

Threshold binarization

• Output of logistic regression is a probability of class 1

You should choose a threshold for probability binarization

Threshold binarization

Output of logistic regression is a probability of class 1

You should choose a threshold for probability binarization

Threshold binarization

 Standard threshold is 0.5 but in order to take into account the specifics of the data it is better to select the threshold on the validation set

Vowpal Wabbit

- An efficient cross-platform tool for training linear models on big data
- Originally a product of Yahoo!, now Microsoft
- Supports basic loss functions, regularization

Vowpal Wabbit

- An efficient cross-platform tool for training linear models on big data
- Originally a product of Yahoo!, now Microsoft

- Supports basic loss functions, regularization
- Uses several optimization methods, main one -SGD
- Trains model in streaming, constantly retrains model on new data
- Uses hashing trick for RAM usage optimization memory
- Can be applied as console application, or C++, C#, Java and Python package

Main conclusions

- Logistic regression model is often used for text classification
- It is important to select the binarization threshold after model training
- Vowpal Wabbit allows to train linear models on large-scale data

Simple document embeddings models

Basic text representations

REMINDER

- Document from collection size m with a vocabulary with size n can be represented with an embedding of size n:
 - Bag of words
 - o TF-IDF
 - SVD on a BoW matrix

Word embeddings averaging

 In order to obtain document embedding you can calculate the average of embeddings of words (such as word2vec, GloVe or FastText)

It is simple and quite effective

Weighted average

You can add weights into averaging

Weights can be obtained from TF-IDF matrix

Weighted average

- You can add weights into averaging
 - Weights can be obtained from TF-IDF matri

 Zero weights of stop-words and unimportant words allow us to obtain a good embedding even for long documents

Doc2vec model

- Methods of training document embeddings similar to word2vec
- Two models: Distributed Memory and Distributed Bag of Words

 Quoc Le, Tomas Mikolov. Distributed Representations of Sentences and Documents // ICML. — 2014.

Similar to CBOW word2vec

- Similar to CBOW word2vec
- Slide with window over document words

- Along with words we use documents (paragraphs) in training
- Add one-hot vector sized m of document in each window

- Along with words we use documents (paragraphs) in training
- Add one-hot vector sized m of document in each window

Distributed Bag of Words doc2vec

- Similar to Skip-gram word2vec
- Model is trained to predict random word from a random window based on one-hot embedding of a document, where there word comes from

Distributed Bag of Words doc2vec

- Similar to Skip-gram word2vec
- Model is trained to predict random word from a random window based on one-hot embedding of a document, where there word comes from

Distributed Bag of Words doc2vec

- Similar to Skip-gram word2vec
- Model is trained to predict random word from a random window based on one-hot embedding of a document, where there word comes from

Main conclusions

- Basic document representations Bow and TF-IDF
- SVD can be used for dimension reduction
- Averaging word embeddings is a common approach
- doc2vec model allows to obtain document embeddings

Neural networks for classification, FastText

Fully connected networks for classification

- Linear models can't cope with difficult dependencies
- Fully connected networks can be more difficult and flexible
- Due to large amount of weights such networks usually consist of 2-3 layers
- Input embedding can be pretrained or trained during the network training

- Suppose we have pretrained word embeddings
- We train a two-layer fully connected neural network to solve classification problem
- We calculate average of input embeddings as input
- To predict classes we calculate softmax

 Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, Hal Daumé III. Deep Unordered Composition Rivals Syntactic Methods for Text Classification // IJCNLP. — 2015.

- *f* activation function
- W_i weight matrix of layer i

discounts w_r

- *f* activation function
- W_i weight matrix of layer i

$$a = \frac{1}{r} \sum_{i=1}^{r} w_i$$

- *f* activation function
- W_i weight matrix of layer i

$$a = \frac{1}{r} \sum_{i=1}^{r} w_i$$
$$h = f(W_1^T a)$$

- *f* activation function
- W_i weight matrix of layer i

$$a = \frac{1}{r} \sum_{i=1}^{r} w_i$$

$$h = f(W_1^T a)$$

$$o = f(W_2^T h)$$

- *f* activation function
- W_i weight matrix of layer i

$$a = \frac{1}{r} \sum_{i=1}^{r} w_i$$

$$h = f(W_1^T a)$$

$$o = f(W_2^T h)$$

$$s = \operatorname{softmax}(o)$$

Word dropout

Dropout regularization prevents from overfitting

Word dropout

- Dropout regularization prevents from overfitting
- Instead of vanishing outputs we will randomly exclude words from input

Advantages

- Is faster than complex architectures
- Often shows quality comparable to complex models
- Interpretable output probabilities

Disadvantages

- Does not take into account syntactic links, which can be partially corrected by using N-grams
- A large number of parameters compared to a linear classifier requires more training data

FastText

- FastText already familiar library for getting vector representations
- Can work with character n-grams
- Optimizes RAM consumption with hashing trick
- Can be trained in parallel on CPU
- Has a console application version as well as C++ and Python package

FastText as a classifier

- The architecture remains the same
- The first layer is a matrix of weights that correspond to features: words, character and word n-grams
- The second layer is a K-classes classifier
- Both matrices are trained simultaneously
- Input one-hot encoded vectors of features
- Output classes probabilities from softmax

 Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov. Bag of Tricks for Efficient Text Classification // EACL. — 2017.

FastText as a classifier

- The first layer is a matrix of weights that correspond to features: words, character and word n-grams
- The second layer is a K-classes classifier
- Output classes probabilities from softmax Softmax «politics» Avg. . $\mathbf{V} \in \mathbb{R}^{k \times K}$ $\mathbf{W} \in \mathbb{R}^{n \times l}$ 1 «culture» 1 hidden state output

embedding

Input data format

- Collection is a text file, each line one document
- Each line contains class label and text (no more than 1024 tokens)

_label__review __label__negative i don't like your service literally can't stand it any more

Формат входных данных

- Collection is a text file, each line one document
- Each line contains class label and text (no more than 1024 tokens)

_label__review __label__negative i don't like your service literally can't stand it any more

- _label_ a key word for class label
- text contains only raw words
- N-grams are collected automatically during training process

Main conclusions

- Texts can be classified with shallow neural networks
- DAN architecture includes several fully connected layers and an average embedding of words as an input
- Syntax can be partially taken into account through the use of dictionary N-gram features
- FastText can be trained quite fast on large-scale data without GPU
- FastText operates both with words and character and word n-grams

Convolutional neural networks for text classification

Convolutional Neural Network

- Convolutional neural networks (CNN) were a breakthrough in image processing
- It turns out that they work pretty well with texts, too
- In classification problem CNN allows to work with local word context without using word n-grams
- CNN can be trained much faster than recurrent networks and show comparable results in text classification

CNN components

- Input layer contains features embeddings (word embeddings, for example)
- Convolutional layer extracts local features from input embeddings
- Discretization layer (pooling) extracts global features with maximal signal
- Fully connected layer a classifier trained on resulting representations

Convolutional layer

- Convolutional layer extracts local features from input embeddings
- Is based on convolution with kernel:

• Input data is a matrix:

3	0	1	5	0
2	6	2	4	3
2	4	1	3	6
3	0	1	5	0
2	6	2	4	3

$$(-1 \times 3) + (0 \times 0) + (1 \times 1) +$$

$$(-2 \times 2) + (0 \times 6) + (2 \times 2) +$$

$$(-1 \times 3) + (0 \times 0) + (1 \times 1) +$$

 $(-2 \times 2) + (0 \times 6) + (2 \times 2) +$
 $(-1 \times 2) + (0 \times 4) + (1 \times 1)$

$$(-1 \times 3) + (0 \times 0) + (1 \times 1) +$$

 $(-2 \times 2) + (0 \times 6) + (2 \times 2) +$
 $(-1 \times 2) + (0 \times 4) + (1 \times 1) = -3$

$$(-1 \times 0) + (0 \times 1) + (1 \times 5) +$$

 $(-2 \times 6) + (0 \times 2) + (2 \times 4) +$
 $(-1 \times 4) + (0 \times 1) + (1 \times 3) = 0$

Convolutional layer

- Several kernels (filters) are applied in each layer
- Each filter creates its own feature map:

- Pooling aggregates a fragment of feature map into a scalar
- Aggregating function can be different
- Usually, max pooling is applied

- Pooling aggregates a fragment of feature map into a scalar
- Aggregating function can be different
- Usually, max pooling is applied

- Pooling aggregates a fragment of feature map into a scalar
- Aggregating function can be different
- Usually, max pooling is applied

21	8	8	12
12	19	9	7
8	10	4	3
18	12	9	12

- Pooling aggregates a fragment of feature map into a scalar
- Aggregating function can be different
- Usually, max pooling is applied

Γ	21	8	8	12
	12	19	9	7
	8	10	4	3
	18	12	9	12

- Usually, shallow networks with one convolutional layer and one pooling are used
- Input is a matrix of word embeddings

really
liked
that
movie

Yoon Kim. Convolutional Neural Networks for Sentence Classification // EMNLP.
 — 2014.

- Usually, shallow networks with one convolutional layer and one pooling are used
- Input is a matrix of word embeddings

- Input is padded to fixed length
- <pad> token
 embedding must
 not affect the
 pooling!

- One-dimensional filters are used
- First dimension k corresponds to a number of words in the local context
- Second dimension is fixed and equal to word embeddings length

- One-dimensional filters are used
- First dimension k corresponds to a number of words in the local context
- Second dimension is fixed and equal to word embeddings length

- One-dimensional filters are used
- First dimension k corresponds to a number of words in the local context
- Second dimension is fixed and equal to word embeddings length

- One-dimensional filters are used
- There can be several filters of different lengths

- One-dimensional filters are used
- There can be several filters of different lengths
- Then we use max-over-time pooling instead of pooling
- It chooses one feature from each map

- One-dimensional filters are used
- There can be several filters of different lengths
- k-max pooling can be applied

Input embeddings

- Word embeddings can be trained in the first layer from scratch
- Pretrained word2vec or GloVe embeddings can be used
- Embeddings can be both frozen and tuned during network training

Input embeddings

- Word embeddings can be trained in the first layer from scratch
- Pretrained word2vec or GloVe embeddings can be used
- Embeddings can be both frozen and tuned during network training
- Several input channels can be used
- For example, both channels have input word2vec embeddings, but the first one is frozen and the second is tuned
- Convolution is applied to both inputs, the result can be summarized

What's next

- One-hot character embeddings can be used as input
- The number of convolutional and polling layers can be increased
- It is useful to add non-linear layers
- Dropout can be added after fully connected layers

 Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification // NIPS. — 2015.

Main conclusions

- Convolutional networks originally designed for image processing work good with texts
- Input data is a matrix of word or character embeddings
- Filters of different sizes and max-over-time pooling can be used
- In classification problems, CNN allow to take into account the local context of words without explicitly using dictionary N-grams

Data processing in text classification

Classification solution steps

- Choosing the right quality metric
- Training data collection
- Data preprocessing
- Feature collection
- Choosing the model
- Model tuning

Data collection

- Even raw (unlabeled) texts can be difficult to collect
- If there is data in open sources, you can use web-crawling:
 - Some websites have public API's
 - If they don't, you can use web-scraping (for example, Scrapy package for Python)

Data collection

- Even raw (unlabeled) texts can be difficult to collect
- If there is data in open sources, you can use web-crawling:
- Some websites have public API's
- If they don't, you can use web-scraping (for example, Scrapy package for Python)
- Sometimes proper data doesn't exist at all
- You can use the power of crowdsourcing:
 - Yandex Toloka
 - Amazon Mechanical Turk
 - •

Data markup

- Unlabeled texts are useful as is
- But classification problem requires labeled data
- In practice, marking up small samples is often done manually by yourself
- Sometimes part of the documents can be marked up by defining simple heuristic rules:
 - By particular words inclusion
 - By regular expression
- In all other cases you can use assessors (better), or crowdsourcing (faster)

Additional markup and active learning

- Models can be applied to data that changes dynamically over time
- Examples: news, memes
- Once trained, model can become obsolete with time
- Usually it is necessary to collect additional data and tune model on regular basis

Additional markup and active learning

- Models can be applied to data that changes dynamically over time
- Examples: news, memes
- Once trained, model can become obsolete with time
- Usually it is necessary to collect additional data and tune model on regular basis
- We can reduce the amount of additionally marked data by choosing samples that can provide useful information for the model
- Idea: send the samples where the model is least confident

