LAB 2 - Torsion Test Debanjan Manna (190255) [Dataset 1] AE351 21st Jan 2022

• OBJECTIVE:

Perform a torsion (shear) test on a shaft with a circular cross-section and measure *the shear modulus*, *G* of material using two different methods [Shear Stress vs. Shear Strain Plot and Torque vs. Angle of Twist plot].

• INTRODUCTION AND THEORY:

G -- Shear Modulus or Rigidity Modulus Polar Moment of Inertia, $J = (\pi^*r^4/2)$, for solid circle. Length of the Sample, L

Solid

- 1. Torque Calculation : Torque T = load * arm length
- 2. Relation between Shear Stress, τ_{XY} , and Shear Strain, γ_{XY} : $\tau_{XY} = G^* \gamma_{XY}$ and $\tau_{XY} = (T^*r)/J$
- 3. Relation between Torque, T and Deflection Angle, θ : T= (GJ/L)* θ
- 4. Calculation of Shear Strain from the Strain Rosset (0 $^{\circ}$, 45 $^{\circ}$, and 90 $^{\circ}$ strain gauge)

$$\boldsymbol{\varepsilon}_{\text{n}}(\boldsymbol{\theta}) = \boldsymbol{\varepsilon}_{\text{X}} \text{cos} \boldsymbol{\theta} + \boldsymbol{\varepsilon}_{\text{Y}} \text{sin}(\boldsymbol{\theta}) + \boldsymbol{\gamma}_{\text{XY}} \text{sin}(\boldsymbol{\theta}) \text{cos}(\boldsymbol{\theta});$$

By Applying this formula(or equivalently applying the Mohr's Circle transformation) to θ =0°, θ =45° and θ =90° and further reducing it we can obtain the following relation:

Shear strain $\gamma_{XY} = 2\varepsilon_{45} - \varepsilon_0 - \varepsilon_{90}$

EQUIPMENT AND OPERATING CONDITIONS:

- 1. Torsion test fixtures for holding the specimen and for applying the torque.
- 2. Carefully machined cylindrical shaft of aluminum mounted with a 0-45-90 strain gage rosette.
 - Aluminium 6063-T6
 - The Rod is fixed at one end and at the free end torque can be applied.
 - The Strain Rosset is used to measure the strain rate at the point.
- 3. A mechanical Dial gauge (to measure the vertical deflection)

- 4. Electrical Strain indicator equipment to display the measured strains.
 - The 0° strain gauge is connected to Channel 6.
 - The 45° strain gauge is connected to Channel 7.
 - The 90° strain gauge is connected to Channel 8.
 - The indicator shows strain value in micrometre/m ≡ 10⁻⁶.
- 5. Weights of 5N each (this will be used to generate torque)

- Some Important Dimensions:

- h = Vertical deflection of torque arm at gage location = dial gauge reading
- r = Radius of the rod being twisted = 10mm
- s = Arm length till the location of the deflection gage
 - = Distance b/w shaft centre and dial gauge = 135mm
- L = Length of the rod between two fixed ends (mm) = 687mm
- d = Torque arm = 340 mm (170mm)*2

PROCEDURE:

- 1. Setup the experimental devices properly as shown and described in the above figures.
- 2. Apply loads to the torque arm. The load range and the load increment will be increased by 5N each time
- 3. At each load, record (and Note down) the three strain gauge readings, and the vertical deflection of the torque arm.
- 4. Determine the torque, shear strain, and the angle of twist for each applied load. Tabulate all measurements and calculations.
- 6. Use the measured data to generate plots of Shear Stress vs. Shear Strain (τ_{XY} and γ_{XY}), and Torque vs. Angle of Twist (T vs. θ).
- 7. Using linear regression to fit the data. Calculate shear modulus, G using the slope of the Linear Regression line for each of the two plots separately.
 - Collected Data : [DATASET 1]

S. No.	Load (N)	$\epsilon_0 (x \ 10^6)$	$\epsilon_{45} (x \ 10^6)$	$\epsilon_{90} (x \ 10^6)$	h (mm)
1	5	0	19.6	0.017	0.41
2	10	-1	38.2	0.013	0.82
3	15	0	59.5	0.018	1.24
4	20	-2	77.8	0.015	1.68
5	25	-3	98.1	0.011	2.11

• RESULTS AND DISCUSSION:

(a) Calculations and Plots

Data Used: DATASET 1

Total DataPoints -- 5

- I am using MatLab Script to analyze and plot the Data

Polar Moment of Inertia, $J = (\pi^*r^4/2) = 15707.96 \text{ mm}^4$

Torque T = load * d angle of Twist θ = arctan(h/s) Shear strain γ_{XY} = $2\varepsilon_{45}$ - ε_0 - ε_{90} Shear stress τ_{XY} = (T*r)/J

S. No.	Load (N)	ϵ_0 (x 10 ⁻⁶)	ε ₄₅ (x 10 ⁻⁶)	ε ₉₀ (x 10 ⁻⁶)	h (mm)	θ=tan ⁻¹ (h/s) (radian)	T=load*d (Nm)	$ au_{XY}$ (MPa)	$\gamma_{XY}(x \ 10^{-6})$
1	5	0	19.6	0.017	0.41	0.00304	1.7	1.082254	39.183
2	10	-1	38.2	0.013	0.82	0.00607	3.4	2.164508	77.387
3	15	0	59.5	0.018	1.24	0.00918	5.1	3.246762	119
4	20	-2	77.8	0.015	1.68	0.01244	6.8	4.329015	157.6
5	25	-3	98.1	0.011	2.11	0.01563	8.5	5.411269	199.2

1. Plot of the Shear Stress vs Shear Strain data [for all 5 datapoints]

Shear Stress, τ_{XY} (MPa)	Shear Strain, γ _{XY} (x 10 ⁻⁶)
1.082254	39.183
2.164508	77.387
3.246762	119
4.329015	157.6
5.411269	199.2

Equation of the Linear Regression line: $y = 2.704*10^{10}x + 4.386*10^4$

Shear Modulus (from this plot) G_1 = Slope of the Linear Regression line = $2.704*10^{10}$ Pa = 27.04 GPa

2. Plot of the Torque vs Theta data [for all 5 datapoints]

θ=tan ⁻¹ (h/s) (radian)	T=load*d (Nm)
0.00304	1.7
0.00607	3.4
0.00918	5.1
0.01244	6.8
0.01563	8.5

- PLOT2

Equation of the Linear Regression line: y = 538.7*x + 0.105

Shear Modulus (from this plot)
$$G_2$$
 = Slope of (above) Linear Regression line*(J/L) = 538.7 N-m * $(687*10^{-3}/15707.96*10^{-12})m^{-3}$ = 23.56 GPa

- PLOT3

Observe that we can directly obtain G_2 from Plot3.

b. Discussion and error analysis:

Published Value of Shear Modulus, G of Aluminium 6063 -T6 is 25.8 GPa.

% Error formula = |Approximate value – Exact Value|/Exact value * 100.

%error in G_1 (wrt Published value of G) = |(25.80-27.04)|/25.80 * 100 = 4.81% %error in G_2 (wrt Published value of G) = (25.80-23.56)/25.80 * 100 = 8.68%

c. Sources of Error:

- 1. The dial gauge and strain gauge reading should be set to 0 prior to placing the weight on the pan
- 2. Before taking the strain reading you should make sure that there is no oscillation in the pan after the loading.
- 3. Insert the connections of the strain gauge into the electrical strain measuring device properly.

Conclusion :

--Summary of the Calculations done for the Given Sample-- *(Reporting data up to 2 significant digits)

Shear Modulus Calculated from Shear Stress Vs Shear Strain data, G ₁	27.04 GPa
Shear Modulus Calculated from Angle of Twist vs Torque data, G ₂	23.56 GPa
%error in G ₁ (wrt Published value of G)	4.81%
%error in G ₂ (wrt Published value of G)	8.68%

Also from the error we can comment that the method I (calculating G from Shear Stress Vs Shear Strain plot) employed is more correct.

Reference:

- http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6063T6 (for Al6063-T6 data)
- Pictures from Google and Lectures

Appendix :

The Matlab code used:

```
%% Stress Vs Strain
%strain data: E_0 -- 0deg Strain Gauge || E_45 -- 45deg Strain Gauge ||
% E_90 -- 90deg Strain Gauge || Shear_Strain
E_0 = [0;-1;0;-2;-3].*10^-6;
E_45 = [19.6;38.2;59.5;77.8;98.1].*10^-6;
E_90 = [0.017;0.013;0.018;0.015;0.011].*10^-6;
Shear_Strain = 2*E_45 - E_90 - E_0;
%Shear_Stress
Shear_Stress = [1.082254;2.164508;3.246762;4.329015;5.411269].*10^6;
plot(Shear_Strain,Shear_Stress,'xk');
xlabel("Shear Strain (mm/mm)");
ylabel("Shear Stress (Pa)");
%% Torque Vs Theta
% torque -- T || Deflection Angle -- Theta
T = [1.7; 3.4; 5.1; 6.8; 8.5]
Theta = [0.00304;0.00607;0.00918;0.01244;0.01563] .* (15707.96 * 10^-9 / 687);
plot(Theta,T,'xR');
xlabel("Theta * J/L (radian - mm^3");
ylabel("Torque (N-m)");
T = [1.7; 3.4; 5.1; 6.8; 8.5]
Theta = [0.00304;0.00607;0.00918;0.01244;0.01563];
plot(Theta,T,'xR');
xlabel("Theta (radian)");
ylabel("Torque (N-m)");
```