Parliamo di Strutture di controllo

Teorema di Jacopini-Bohm (1966)

Un qualsiasi algoritmo può essere espresso utilizzando esclusivamente le tre strutture di controllo:

- sequenza,
- selezione
- e iterazione.

sequenza

sequenza

Esempio - Struttura di sequenza

Dati la misura della base b e dell'altezza h di un rettangolo, calcola l'area del rettangolo S.

selezione

selezione

Esempio - Struttura di selezione

Dati due numeri a e b, calcola il maggiore.

Esempio 1 - Iterazione indefinita precondizionale

Calcola la **Somma** dei primi **N** numeri naturali, senza utilizzare la formula di Gauss $S_n = \frac{n(n+1)}{2}$.

	na de	ei primi N numeri naturali					
Flow-chart		Pseudolinguaggio		Trace table (Input N=5)			
	n°	Istruzione	n*	Cont < N	Contatore	Somma	
INIZIO	1	INIZIO	3		0		
	2	Leggi il numero N	4			0	
Laggi M	3	Assegna al Contatore il valore 0	5	Vero			
Leggi N	4	Assegna alla Somma il valore 0	7		1		
	5	Mentre il Contatore < N fai				0+1=1	
Contatore = 0	6	Inizio	5	Vero			
	7		7		2		
Somma = 0	8	00 0	8			1+2=3	
-	9		5	Vero			
F	_	Scrivi Somma	7		3		
tatore < N	11	FINE	8			3+3=6	
V	1		_	Vero			
re = Contatore + 1			7		4		
tore = contatore + 1			8			6+4=10	
Samuel Caratatana			5	Vero			
Somma + Contatore			7		5		
Scrivi Somma			8			10+5=15	
			5	Falso			
	7		10			15	
			11	FINE			

Esempio 2 - Iterazione indefinita postcondizionale

Calcola la **Somma** dei primi **N** numeri naturali, senza utilizzare la formula di Gauss $S_n = \frac{n(n+1)}{2}$.

Esempio 3 - Iterazione definita enumerativa

Calcola la **Somma** dei primi **N** numeri naturali, senza utilizzare la formula di Gauss $S_n = \frac{n(n+1)}{2}$.

Flow-chart	Pseudolinguaggio			Trace table (N=5)			
	n°	Istruzione	n°	Contatore	Somma		
INIZIO	1	INIZIO	3		0		
Somma = 0 Contatore = 1, N	2	Leggi il numero N	4	1			
	3	Assegna alla Somma il valore 0	6		0+1=1		
	4	4 Ripeti con Contatore da 1 a N		2			
	5 Inizio	6		1+2=3			
	6	Aggiungi alla somma il contatore	4	3			
	7	Fine	6		3+3=6		
_	8		4	4			
	9	Scrivi Somma	6		6+4=10		
Somma = Somma + Contatore	10	FINE	4	5	30.00		
			6		10+5=19		
			9		15		
			10	FIN	IE.		

Esempio 4 - Iterazione indefinita precondizionale

Dati due numeri A e B, calcola il Prodotto dei i due numeri utilizzando solo l'operazione di addizione.

	Proc	lotto di due numeri		1979			
Flow-chart		Pseudolinguaggio	Trace table (Input: A=6; B=4)				
	n°	Istruzione	n°	Cont < B	Contatore	Prodotto	
INIZIO	1	INIZIO	4		0		
INIZIO	2	Leggi il numero A	5			0	
	3	Leggi il numero B	6	Vero			
/ Leggi A /	4	Assegna al Contatore il valore 0	8		1		
	5	Assegna al Prodotto il valore 0	9			0+6=6	
Leggi B	6	Mentre il Contatore < B fai		Vero			
	7	Inizio	8		2		
Contators - 0	8		9			6+6=12	
Contatore = 0	9		6	Vero			
	10		8		3		
Prodotto = 0	_	Scrivi Prodotto	9			12+6=1	
	12	FINE	6	Vero			
Contatore < B			8		4		
Contatore < B			9			18+6=24	
V			6	Falso		1	
ntatore = Contatore + 1			11			24	
			12		FINE		
Scrivi Prodotto							

Fino a qui è tutto chiaro ???

La conoscenza che non entra nella carne è solo **rumore**!

Domande?

Facciamo pratica

