

Trabajo Práctico 2 Programación Dinámica For The Win

TEORÍA DE ALGORITMOS (75.29) Curso Buchwald - Genender

Nombre	Padrón
Denise Dall'Acqua	108645
Martín Alejo Polese	106808
Nicolás Agustín Riedel	102130

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Ecuación de recurrencia	4
2.	Demostración del Algortimo	4
3.	Algoritmo planteado y complejidad	5
4.	Variabilidad	5
5.	Ejemplos de ejecución	5
6.	Medición empírica	5
7.	Conclusiones	5

Consigna

Introducción

Seguimos con la misma situación planteada en el trabajo práctico anterior, pero ahora pasaron varios años. Mateo ahora tiene 7 años. Los mismos años que tenía Sophia cuando comenzaron a jugar al juego de las monedas. Eso quiere decir que Mateo también ya aprendió sobre algoritmos greedy, y lo comenzó a aplicar. Esto hace que ahora quién gane dependa más de quién comience y un tanto de suerte.

Esto no le gusta nada a Sophia. Ella quiere estar segura de ganar siempre. Lo bueno es que ella comenzó a aprender sobre programación dinámica. Ahora va a aplicar esta nueva técnica para asegurarse ganar siempre que pueda.

Consigna

- 1. Hacer un análisis del problema, plantear la ecuación de recurrencia correspondiente y proponer un algoritmo por programación dinámica que obtenga la solución óptima al problema planteado: Dada la secuencia de monedas m1,m2 mn,sabiendo que Sophia empieza el juego y que Mateo siempre elegirá la moneda más grande para sí entre la primera y la última moneda en sus respectivos turnos, definir qué monedas debe elegir Sophia para asegurarse obtener el máximo valor acumulado posible. Esto no necesariamente le asegurará a Sophia ganar, ya que puede ser que esto no sea obtenible, dado por cómo juega Mateo. Por ejemplo, para [1, 10, 5], no importa lo que haga Sophia, Mateo ganará.
- 2. Demostrar que la ecuación de recurrencia planteada en el punto anterior en efecto nos lleva a obtener el máximo valor acumulado posible.
- 3. Escribir el algoritmo planteado. Describir y justificar la complejidad de dicho algoritmo. Analizar si (y cómo) afecta a los tiempos del algoritmo planteado la variabilidad de los valores de las monedas.
- 4. Realizar ejemplos de ejecución para encontrar soluciones y corroborar lo encontrado. Adicionalmente, el curso proveerá con algunos casos particulares que deben cumplirse su optimalidad también.
- 5. Hacer mediciones de tiempos para corroborar la complejidad teórica indicada. Agregar los casos de prueba necesarios para dicha corroboración (generando sus propios sets de datos). Esta corroboración empírica debe realizarse confeccionando gráficos correspondientes, y utilizando la técnica de cuadrados mínimos. Para esto, proveemos una explicación detallada, en conjunto de ejemplos.
- 6. Agregar cualquier conclusión que les parezca relevante.

Resolución

1. Ecuación de recurrencia

A continuación se mostrará la ecuación de recurrencia hallada para este problema

$$T(monedas, inicioFila, finFila) = \begin{cases} K_1 & si & K_1 > K_2 \\ K_2 & si & K_1 < K_2 \end{cases}$$

Siendo

$$K_1 = monedas[inicioFila] + T(monedas, S(monedas, inicioFila + 1, finFila))$$

 $K_2 = monedas[finFila] + T(monedas, S(monedas, inicioFila, finFila - 1))$

donde

$$S(monedas, inicioFila, finFila) = \left\{ \begin{array}{ll} (inicioFila+1, finFila) & si & monedas[inicioFila] > monedas[finFila] \\ \\ (inicioFila, finFila-1) & si & monedas[inicioFila] < monedas[finFila] \\ \end{array} \right.$$

NOTA:

monedas = El vector con los valores de las monedas inicioFila = Es el valor de la primera moneda del vector monedas finFila = Es el valor de la última moneda del vector monedas

Nuestra función T(monedas, inicioFila, finFila) nos otorga la ganancia que consiguió Sophia al momento de jugar con una cantidad de n monedas contra Mateo. En esta, podemos observar como nuestras variables K_1 y K_2 realizan llamados recursivos a T teniendo en cuenta como variables inicioFila y finFila la salida de otra función llamada S(monedas, inicioFila, finFila), que son las dos posibles decisiones que puede tomar mateo al elegir una moneda (recordemos que mateo sigue las reglas del juego estríctamente).

2. Demostración del Algortimo

Para que la ecuación de recurrencia sea la solución óptima, osea que nos de el máximo valor acumulado posible, basta con verificar que:

- 1. La solución óptima de un problema grande puede obtenerse combinando soluciones óptimas de subproblemas más pequeños.
- 2. Esta descomposición debe hacerse de tal manera que no se omita ninguna posibilidad relevante para la solución óptima.
- 3. Se debe tomar una decisión sobre cuál subproblema o combinación de subproblemas proporciona el valor máximo.
- Nuestro caso base sería: Si no hay monedas, Sophia tendría ganancia cero ya que no habría monedas para seleccionar.
- Si Sophia agarra la primera moneda, podemos calcular su ganancia como el valor de esa moneda, más lo que ella recolectará en turnos posteriores. Esto teniendo en cuenta que Mateo siempre sigue las reglas del juego de manera óptima. En este punto del análisis, se ve como el problema se divide en subproblemas, osea por cada turno de Sophia.

- Si Sophia agarra la última moneda, realizamos la misma lógica anterior, nada más que para la última moneda.
- Luego, elegimos cuál de los dos escenarios logra obtener la máxima ganancia. A medida que vamos maximizando los escenarios locales, finalmente llegaremos al óptimo global de nuestro problema, osea la ganacia máxima posible que puede obtener Sophia.
- 3. Algoritmo planteado y complejidad
- 4. Variabilidad
- 5. Ejemplos de ejecución
- 6. Medición empírica
- 7. Conclusiones