

Trajectory Planning in Dynamic Environments

TUM

Proposal

Goal:

- Trajectory planning on **dynamic environments**, as it has a lack of research
 - Currently only in static and algorithms for this exists

Related work:

- MPNet -> State of the art in Trajectory Planning with RL
 - Target data is traditional methods
 - Calculations are using an NNs
- SAC + SAC-X (Scheduled Auxiliary Control) -> implemented
- Meta-RL -> 2nd priority

Example Usage Case:

Environment

- Grid Continious environment in Open Al Gym
 - 512 x 512 pixel size
 - 5 obstacles
 - 2 moving obstacles

e.g. "a Museum room"

- 1. Obstacle Avoidance
 - Collision prediction: We look into the next step and give penalty for collision

- 1. (Sparse) Obstacle Avoidance
- **Predictive obstacle avoidance**: We look into the next step and give increasing penalty for getting close to an obstacle

2. Target Seeking

- Target proximity checkpoints: If the agent reaches a distance threshold to the target it gets a reward

(**History:** We track the step history of the agent for subtask 3 and 4)

3. Waiting: If the agent waits (e.g. moving obstacle passes) for certain amount fo steps it gets a reward

(**History**: We track the step history of the agent for subtask 3 and 4)

4. Consistency: If the agents behavior is consistent (e.g. moving in one direction consecutively) for certain amount of steps it gets a reward

Our Assumptions

For environment:

- We know obstacle IDs and use them in obstacle sorting
- We use super sparse rewards:
 - (+1) for reaching the target
 - (-5) for **collision**
- All subtask rewards are in [0,1] interval

For features:

- We use an environment seed
 - we train on same set of environments for every version
 - we test on unseen environments

Neural Network structure for SAC

Same structure for ActorNet, CriticNet and ValueNet ->

Input:

- Position of Agent, Target, Obstacles
- Velocity of Agent, Obstacles

Output (ActorNet):

- Velocity of Agent (mean and std)

Input (26) Hidden layers (2*256) Output (2)

Neural Network structure for SAC-Q

Same structure for ActorNet, CriticNet and ValueNet ->

Input:

- Position of Agent, Target, Obstacles
- Velocity of Agent, Obstacles

Output (ActorNet):

- Velocity of Agent (mean and std)

SAC to SAC-X

- We added different subtasks and we train them separately with same replay buffer
- We use a **scheduler to switch between** different subtasks
- Example for subtask: moving toward target, moving away from obstacles ... (more later)

Scheduling Strategies

- SAC
 - no subtasks -> no scheduling
- SAC-X
 - SAC-U
 - random
 - SAC-Q
 - depending on previous subtasks

Scheduling Strategies

SAC-U

Choose a new subtask **randomly** from a **uniform** distribution

Scheduling Strategies

SAC-Q

Choose a new subtask based on all past subtasks and potential future reward

$$P(\text{subtask} = i) = \frac{exp(R(\text{subtask} = i)/\eta)}{\sum_{k=1}^{N} exp(R(\text{subtask} = k)/\eta)}$$

Choose **subtask 1** as its with **higher probability**

Subtask 2: Target Seeking

Why SAC-Q

- In different situations, different skills can be utilized
- SAC-U does not work well with our main task, because we want to choose a new subtask based on current situation and quickly go back to main task

Subtask 1: Obstacle Avoidance

Our modification on SAC-Q

Problem of SAC-Q:

- It is **impossible to store** and train all possible subtask combinations
- We can just take several past subtasks (here 3)
- But now we may lose a lot of state information
- >> Add state information into scheduler!
- We classify the distance into "close", "middle" and "far".

Sample balancing

Problem:

- It is hard for agent to reach target at the early stages of training
- Agent has far more **negative samples** than **positive samples**

Solution 1:

- Store the trajectory of successful runs into a new replay buffer
- In every training episode, randomly take half data from this replay buffer with successful trajectories

Sample balancing

Problem:

- It is hard for agent to reach target at the early stages of training
- Agent has far more negative samples than positive samples

Solution 2:

- **Pretraining** is a good method to generate **positive samples** and we still use it.
 - Generated previously with **A-Star planner** and fed to the replay buffer

A-Star planner trajectory

SAC for continuous dynamic environment

Statistics	Base model (no features, only super-sparse rewards)	w/ Action smoothing (history size:3)	w/ Obstacle Sort	w/ Time Penalty	w/ Radius Checkpoint s	w/o pretrain and w/ obstacle sort
Accuracy	0.51	0.37	0.66	0.38	0.58	0.09
Mean ± Std reward	-19.4±29.99	-27.3±29.01	-9.9±28.16	-27.2±29.12	-15.2±29.61	-45.05±15.74
Mean steps to finish	20.77	33.98	27.65	36.78	19.88	7.42

SAC-Q for continuous dynamic environment

Statistics	Base model (all features, only super-sparse rewards)	w/o Action smoothing (history size:3)	w/o Action filtering	w/o Obstacle sorting	w/o Time penalty
Accuracy	0.03	0.18	0.12	0.05	0.13
Mean ± Std main reward	-1.43±2.28	-1.61±2.51	-1.49±2.39	-1.73±2.43	-0.74±1.91
Mean ± Std of steps to finish	5.79±5.49	19.81±28.78	34.50±44.42	9.23±8.88	18.52±23.29
		Moving Quickly	Movement in target direction		We need lots of steps

SAC-Q for continuous dynamic environment

Statistics	Base model (all subtasks, only super-sparse rewards)	w/o Collision prediction	w/o Predictive obstacle avoidance	w/o Target proximity checkpoints	w/o Waiting	w/o Step consistency
Accuracy	0.03	0.10	0.03	0.09	0.08	0.04
Mean ± Std main reward	-1.430±2.28	-1.39±2.32	-1.28±2.21	-1.21±2.23	-1.34±2.29	-1.55±2.34
Mean ± Std of steps to finish	5.78±5.48	13.59±18.04	6.25±5.16	36.19±47.40	7.31±8.75	12.55±16.06

⁻ Randomness in our scheduler

- Many skills

Exploit vs explore

SAC vs SAC-Q

- SAC-Q can learn different methods to avoid obstacles
- SAC is more **greedy**, has **better accuracy**

- *Model used for gifs:
- SAC-Q w/o Action Smoothing
- with all skills

SAC

- would not work if the obstacle
 was on the way to the target
- avoids moving obstacle
- does not wait around the target for long

SAC-Q

- avoids moving obstacle
- exploits "waiting" reward

SAC-Q

- avoids obstacles or not based on chosen skills
- hardly reaches target

SAC-Q

 moving obstacle coming from the target direction is confusing

SAC-Q

can **run away** from a moving obstacle

SAC-Q

fast reaction to avoid moving obstacle

SAC-Q

- can learn to wait

Conclusions

- Obstacle sorting makes agent pay more attention to closest obstacle
- Pretraining and sample balancing play an important role on making the training faster
- All the subtasks we use increase the performance individually
 - Where "Predictive obstacle avoidance" and "Step consistency" have the biggest effect
- Our experiments show that **SAC-Q** doesnt work well <u>yet</u>
 - increase training time
 - make the model more **complex**

mean reward curve of **SAC** during training

mean reward curve of SAC-Q during training

Thank you for your attention:) Questions?

APPENDIX

Environment (before)

- **Grid environment** in Open Al Gym
 - 10x10 size
 - 5 obstacles

