Sound Dynamic Deadlock Prediction in Linear Time

Florian Rudaj

Agenda

- Einleitung
- Die Vorhersage von Deadlocks
- Dynamische Deadlock-Analyse
- Sync-preserving Deadlocks
- Fazit

Einleitung

- In nebenläufigen Programmen müssen Ressourcen geteilt werden
- Gleichzeitige Zugriffe auf geteilte Ressourcen können zu Inkonsistenzen führen
- Mutex und Locks dieser als Lösung

Einleitung

- Deadlocks sind schwer zu verhindern
- Aber daraus entstehende Problematik: Deadlocks
- Deadlocks sind schwer reproduzierbar und damit schwer zu debuggen

Einleitung

- Programm enthält Deadlock
- Tritt auf wenn beide Threads den jeweils ersten Mutex locken
- Der jeweils zweite Lock kann nicht reserviert werden, da er bereits belegt ist

```
func simple_deadlock() {
    x := 0
    var xMutex sync.Mutex
    var yMutex sync.Mutex
    go func() {
        xMutex.Lock()
        yMutex.Lock()
        x, y = doWork(x, y)
        yMutex.Unlock()
        xMutex.Unlock()
    }()
    yMutex.Lock()
    xMutex.Lock()
    x, y = doOtherWork(x, y)
    xMutex.Unlock()
    yMutex.Unlock()
```

Die Vorhersage von Deadlocks

- Deadlocks müssen vorhergesagt werden, ansonsten können Threads stecken bleiben
- Dynamische Deadlock-Analyse
 - Effizient
 - Liefert wenige oder keine False-Positives

- Grundlage: Trace
- Trace ist Aufzeichnung der abgelaufenen Operationen im Programm
- Dazu gehört: Acquire- und Release von Locks
- Je nach Methode auch Reads/Writes oder auch Forks/Joins relevant

```
func simple_deadlock() {
    x := 0
    y := 0
    var xMutex sync.Mutex
    var yMutex sync.Mutex
    go func() {
        xMutex.Lock()
        yMutex.Lock()
        x, y = doWork(x, y)
        yMutex.Unlock()
        xMutex.Unlock()
    }()
    yMutex.Lock()
    xMutex.Lock()
    x, y = doOtherWork(x, y)
    xMutex.Unlock()
    yMutex.Unlock()
```

```
acq(y)
     acq(x)
     rel(x)
4
     rel(y)
5
                   acq(x)
6
                   acq(y)
7
                   rel(y)
8
                   rel(x)
9
```

- Analyse durch Lock-Graphen sehr einfach
- Schritt 1: Erstelle Graph aus Acquire- und Releaseoperationen:
 - Locks sind Knoten
 - Kanten zwischen Knoten entstehen, wenn ein Thread einen Lock hält und den nächsten reservieren will
- Schritt 2:
 - Überprüfe den Graphen auf Zyklen
 - Sage Deadlock vorher, wenn Zyklus im Graph existiert

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6		acq(x)
7		acq(y)
8		rel(y)
9		rel(x)

Es gibt die Locks x und y im Trace -> Knoten x und y im Graph

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6		acq(x)
7		acq(y)
8		rel(y)
9		rel(x)

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6		acq(x)
7		acq(y)
8		rel(y)
9		rel(x)

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x
 In T2 wird nach Lock x Lock y reserviert
- → Kante von x nach y

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6		acq(x)
7		acq(y)
8		rel(y)
9		rel(x)

Es gibt die Locks x und y im Trace

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x
 In T2 wird nach Lock x Lock y reserviert
- → Kante von x nach y

→ Der resultierende Graph enthält einen Zyklus, also wird ein Deadlock vorhergesagt.

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6	acq(x)	
7	acq(y)	
8	rel(y)	
9	rel(x)	

Es gibt die Locks x und y im Trace

→ Knoten x und y im Graph

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6	acq(x)	
7	acq(y)	
8	rel(y)	
9	rel(x)	

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6	acq(x)	
7	acq(y)	
8	rel(y)	
9	rel(x)	

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x
 In T1 wird nach Lock x Lock y reserviert
- → Kante von x nach y

1	T1	T2
2	acq(y)	
3	acq(x)	
4	rel(x)	
5	rel(y)	
6	acq(x)	
7	acq(y)	
8	rel(y)	
9	rel(x)	

- → Knoten x und y im Graph
 In T1 wird nach Lock y Lock x reserviert
- → Kante von y nach x
 In T1 wird nach Lock x Lock y reserviert
- → Kante von x nach y

- → Der resultierende Graph enthält einen Zyklus, also wird ein Deadlock vorhergesagt.
- → False-Positive, da alle Events im gleichen Trace

- False-Positives sind wegen des daraus folgenden Aufwands unerwünscht
- Sync-preserving Deadlocks sind Untermenge aller Deadlocks
- Meiste in der Praxis vorkommenden Deadlocks sind Sync-preserving Deadlocks
- Lassen sich ohne False-Positives vorhersagen

- Für Vorhersage: Umordnung der Events im Original-Trace
- Dafür Sync-preserving Correct Reordering

Deadlock-Patterns:

Sind Sequenzen $D=< e_0, e_1, \dots, e_{k-1}>$ mit k eigenständigen Threads t_0, \dots, t_{k-1} und k eigenständigen Locks l_0, \dots, l_{k-1} , sodass:

- thread(e_i) = t_i
- op(e_i) = acq(l_i)
- $l_i \in HeldLks_{\delta}(e_{(i+1)\%k})$
- $HeldLks_{\delta}(e_i) \cap HeldLks_{\delta}(e_j) = \emptyset$

Ein Deadlock-Pattern ist eine notwendige aber keine hinreichende Bedingung für einen tatsächlichen Deadlock

- Es werden nur wohlgeformte Traces betrachet
- Wohlgeformte Traces unterliegen der Lock-Semantik, die sich wie folgt definiert:

Wenn ein Lock l bei einem Event e von Thread t reserviert wird, dann muss jede spätere Reservierung von einem Event e' desselben Locks l ein Vorgängerevent e'' haben, welches den Lock l in Thread t zwischen e und e' freigibt. Wenn e'' das frühste Release-Event ist sind e und e'' passende Acquire- und Release-Events. Dies wird durch $e = match_{\delta}(e'')$ bezeichnet.

Eine Umordnung ρ vom Trace δ ist ein Correct Reordering wenn folgende Regeln eingehalten werden:

- Subset: $Events_{\rho} \subseteq Events_{\delta}$
- Thread-Order: Für jede $e, f \in Events_{\delta}$ mit $e \leq_{TO}^{\delta} f$ wenn $f \in Events_{\rho}$, dann $e \in Events_{\rho}$ und $e \leq_{TO}^{\rho} f$
- Last-Write: Für jedes Read-Event $r \in Events_{\rho}$ haben wir $rf(r) \in Events_{\rho}$ und rf(r) = rf(r)

- Deadlock-Pattern: $\langle e_3, e_8 \rangle$
- Lock-Semantik besteht

```
T2
         T1
0
      acq(y)
      w(a)
^{2}
      acq(x)
3
     rel(x)
      rel(y)
                    acq(x)
6
                    r(a)
7
                    acq(y)
8
                    rel(y)
9
                    rel(x)
10
```

```
T1 T2
1 e1:acq(y)
2 e6:acq(x)
3 e2:w(a)
4 e7:r(a)
```

- Subset: $Events_{\rho} \subseteq Events_{\delta}$
- Thread-Order: Für jede $e,f\in Events_\delta$ mit $e\leq_{TO}^\delta f$ wenn $f\in Events_\rho$, dann $e\in Events_\rho$ und $e\leq_{TO}^\rho f$
- Last-Write: Für jedes Read-Event $r \in Events_{\rho}$ haben wir $rf(r) \in Events_{\rho}$ und $rf_{\rho}(r) = rf_{\delta}(r)$

 Damit ein Correct Reordering Sync-preserving ist, müssen alle Acquire-Events auf denselben Lock in der gleichen Reihenfolge sein wie im Original-Trace.

```
T2
         T1
0
      acq(y)
      w(a)
2
      acq(x)
3
      rel(x)
4
      rel(y)
5
                    acq(x)
6
                    r(a)
                    acq(y)
8
                    rel(y)
9
                    rel(x)
10
```

```
T1 T2
1 e1:acq(y)
2 e6:acq(x)
3 e2:w(a)
4 e7:r(a)
```

→ Das Correct Reordering ist auch sync-preserving!

```
0
    e1:acq(y)
                 e6:acq(x)
     e2:w(a)
                 e7:r(a)
     e3:acq(x)
                 e8:acq(y)
6
```

- Wie findet man nun ein Sync-preserving Correct Reordering für ein Deadlock Pattern?
- Problem: Events und deren Anordnung müssen gefunden werden
- Sync-preserving Closure reduziert dieses Problem auf die Überprüfung, ob eine wohldefinierte Menge an Events ein Event aus dem Deadlock-Pattern enthält

Definition Sync-preserving Closure:

Zu einem Trace δ und einem $S \subseteq Events_{\delta}$ ist die Sync-preserving Closure die kleinste Menge S', sodass:

- a) $S \subseteq S'$
- b) Für jedes $e, e' \in Events_{\delta}$ gilt, dass $e \leq_{TO}^{\delta} e'$ oder $e = rf_{\delta}(e')$, wenn $e' \in S'$, dann $e \in S'$
- c) Für jeden Lock l jede zwei eigenständige Events $e, e' \in S'$ mit op(e) = op(e') = acq(l), wenn $e \leq_{tr}^{\delta} e'$ dann $match_{\delta}(e) \in S'$ s

	TO	T1	T2
e1.	fork(T2)		
e2.			acq(z)
e3.			acq(y)
e4.			acq(x)
e5.			rel(x)
e6.			rel(y)
e7.			rel(z)
e8.	acq(z)		
e9.	fork(T1)		
e10.		acq(x)	
e11.		acq(y)	
e12.		rel(y)	
e13.		rel(x)	
e14.	join(T1)		
e15.	rel(z)		
L			

```
Deadlock-Pattern: \langle e_4, e_{11} \rangle

S = \{e_3, e_{10}\}

S' = \text{SPClosure}(S)

S' = \{e_3, e_{10}\}

S' = \{e_3, e_2, e_{10}, e_9, e_8\} wegen Thread-Order

\Rightarrow Zwei Acq-Events für Lock z e_2 und e_8

\Rightarrow Nach Lock-Semantik muss e_7 hinzugefügt werden

S' = \{e_3, e_2, e_{10}, e_9, e_8, e_7\}

S' = \{e_3, e_2, e_{10}, e_9, e_8, e_7, e_6, e_5, e_4\} wegen Thread-Order

\Rightarrow e4 aus dem Deadlock Pattern ist in S'

\Rightarrow Kein Sync-preserving Deadlock
```

Fazit

- Die Vorhersage von Sync-preserving Deadlocks kann ohne False-Positives geschehen
- Sync-preserving Deadlocks decken die meisten in der Praxis auftretenden Deadlocks ab
- False-Negatives können dennoch auftreten