

Motivation

- We have introduced a Fourier Series for analyzing periodic signals. What about aperiodic signals? (e.g., a pulse instead of a pulse train)
- We can view an aperiodic signal as the limit of a periodic signal as $T \to \infty$.
- The harmonic components are spaced $\, \omega_0 = \frac{2\pi}{T} \,$ apart.
- As $T \to \infty$, $\omega_0 \to 0$, then $k\omega_0$ becomes continuous.
- The Fourier Series becomes the Fourier Transform.

$$\widetilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad c_k = \frac{1}{T} \int_{-T/2}^{T/2} \widetilde{x}(t) e^{-jk\omega_0 t} dt$$

$$c_{k} = \frac{\sin(k\omega_{0}T_{1})}{k\pi} = \frac{2\sin(k2\pi(T_{1}/T))}{k\omega_{0}T}$$
$$T_{1} \text{ fixed, } T \to \infty, k\omega_{0} \to \omega$$
$$Tc_{k} = \frac{2\sin(\omega T_{1})}{\omega}$$

Derivation of Analysis Equation

- Assume x(t) has a finite duration.
- Define $\widetilde{x}(t)$ as a periodic extension

$$\widetilde{x}(t) = \begin{cases} x(t) & -\frac{T}{2} \le t \le \frac{T}{2} \\ periodic & |t| > \frac{T}{2} \end{cases}$$

• As $T \to \infty$, $\widetilde{x}(t) \to x(t)$

• Recall our Fourier series pair:
$$\widetilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad c_k = \frac{1}{T} \int_{-T/2}^{T/2} \widetilde{x}(t) \ e^{-jk\omega_0 t} \ dt$$
 • Since $\mathbf{x}(t)$ and $\widetilde{x}(t)$ are identical over this interval:

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} \widetilde{x}(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt$$

$$X(j\omega) = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Derivation of the Synthesis Equation

• **Recall:**
$$\widetilde{x}(t) = x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \ for -\frac{T}{2} \le t \le \frac{T}{2}$$
• We can substitute **for** c_k the sampled value **of** $X(j\omega)$:

$$\widetilde{x}(t) = x(t) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{T}X(j\omega_0)\right) e^{jk\omega_0 t}$$

$$= \frac{1}{2\pi} \sum_{n=0}^{\infty} \omega_0 X(j\omega_0) e^{jk\omega_0 t}$$

$$\begin{split} &=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\omega_{0}X(j\omega_{0})\,e^{jk\omega_{0}t}\\ \bullet &\text{ As }T\to\infty,\,\omega_{0}\to0,\,\sum_{k=-\infty}^{\infty}\omega_{0}\to\int\!d\omega,k\omega_{0}\to\omega \end{split}$$

and we arrive at our Fourier Transform pair:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (synthesis)

$$X(j\omega) = \frac{1}{T} \int_{0}^{\infty} x(t) e^{-j\omega t} dt$$
 (analysis

 $X(j\omega) = \frac{1}{T} \int_{-\infty}^{\infty} x(t) \ e^{-j\omega t} dt$ (analysis)
• Note the presence of the eigenfunction: $e^{st} \Big|_{s=j\omega} = e^{j\omega t}$

• Also note the symmetry of these equations (e.g., integrals over time and frequency, change in the sign of the exponential, difference in scale factors).

Frequency Response of a CT LTI System

• Recall that the impulse response of a CT system, h(t), defines the properties of that system.

 $h(t) \Leftrightarrow H(j\omega)$

• We apply the Fourier Transform to obtain the system's frequency response:

$$\begin{array}{c} x(t) \\ X(j\omega) \end{array} \xrightarrow[h(t) \Leftrightarrow H(j\omega) \end{array} \xrightarrow[Y(j\omega)]{} \begin{array}{c} y(t) \\ Y(j\omega) \end{array}$$

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) e^{j\omega t} d\omega$$
$$H(j\omega) = \frac{1}{T} \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$

except that now this is valid for finite duration (energy) signals as well as periodic signals!

How does this relate to what you have learned in circuit theory?

Existence of the Fourier Transform

- Under what conditions does this transform exist?
 - x(t) can be infinite duration but must satisfy these conditions:
 - a) Finite energy $\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$

In this case, there is zero energy in the error

$$e(t) = x(t) - \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 Then $\int_{-\infty}^{\infty} |e(t)|^2 dt = 0$

- b) Dirichlet conditions (including $\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$)
 - (i) $\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega = \frac{1}{2} [x(t-0) + x(t+0)]$ $= \begin{cases} x(t) & \text{at points of continuity} \\ \text{midpoint at discontinuity} \end{cases}$
 - (ii) Gibb' s phenomenon
- c) By allowing impulses in x(t) or in $X(j\omega)$, we can represent even *more* signals

E.g. It allows us to consider FT for periodic signals

Q

Example: Impulse Function

Example #1

$$X(j\omega) = \int_{-\infty}^{+\infty} \delta(t)e^{-j\omega t} dt = 1$$

$$\downarrow \downarrow$$

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{j\omega t} d\omega$$
 — Synthesis equation for $\delta(t)$

$$x(t) = \delta(t - t_0)$$

$$X(j\omega) = \int_{-\infty}^{+\infty} \delta(t - t_0) e^{-j\omega t} dt$$
$$= e^{-j\omega t_0} \qquad --\text{Linear phase shift in } \omega$$

Summary

- Motivated the derivation of the CT Fourier Transform by starting with the Fourier Series and increasing the period: $T\to\infty$
- Derived the analysis and synthesis equations (Fourier Transform pairs).
- Applied the Fourier Transform to CT LTI systems and showed that we can
 obtain the frequency response of an LTI system by taking the Fourier
 /Transform of its impulse response.
- Discussed the conditions under which the Fourier Transform exists.
 Demonstrated that it can be applied to periodic signals and infinite duration signals as well as finite duration signals.
- Worked several examples of important finite duration signals.
- Introduced the Fourier Transform of a periodic signal.
- Applied this to a cosinewave and a pulse train.

Linearity

• Recall our expressions for the Fourier Transform and its inverse:

$$x(t) = \frac{1}{2\pi} \int_{-\pi}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (synthesis)

$$X(j\omega) \equiv X(\omega) = \frac{1}{T} \int_{-T}^{\infty} x(t) e^{-j\omega t} dt$$
 (analysis)

• The property of linearity:

$$\mathcal{F}\{ax(t)+by(t)\}=aX(j\omega)+bY(j\omega) \ \Rightarrow \ ax(t)+by(t) \leftrightarrow aX(j\omega)+bY(j\omega)$$

Proof:

$$\mathcal{F}\left\{ax(t) + by(t)\right\} = \frac{1}{T} \int_{-\infty}^{\infty} \left\{ax(t) + by(t)\right\} e^{-j\omega t} dt$$

$$= \frac{1}{T} \int_{-\infty}^{\infty} ax(t) e^{-j\omega t} dt + \frac{1}{T} \int_{-\infty}^{\infty} by(t) e^{-j\omega t} dt$$

$$= a \left\{\frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt\right\} + b \left\{\frac{1}{T} \int_{-\infty}^{\infty} y(t) e^{-j\omega t} dt\right\}$$

$$= aX(j\omega) + bY(j\omega)$$

1 2

Time Shift

• Time Shift:

$$x(t-t_0) \leftrightarrow X(j\omega)e^{-j\omega c_0}$$

Proof:

$$\mathcal{F}\left\{x(t-t_0)\right\} = \frac{1}{T} \int_{-\infty}^{\infty} x(t-t_0) e^{-j\omega t} dt$$

make a change of variables : $\lambda = t - t_0$, which implies $t = \lambda + t_0$

$$\mathcal{F}\{x(t-t_0)\} = \frac{1}{T} \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega(\lambda+t_0)} d\lambda$$
$$= \frac{1}{T} \left\{ \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega\lambda} d\lambda \right\} e^{-j\omega t_0}$$
$$= X(j\omega) e^{-j\omega t_0}$$

- Note that this means time delay is equivalent to a linear phase shift in the frequency domain (the phase shift is proportional to frequency).
- We refer to a system as an all-pass filter if:

$$|X(j\omega)| = 1$$
 $\angle X(j\omega) \neq 0$

• Phase shift is an important concept in the development of surround sound.

> Time Scaling

Time Scaling:

$$x(at) \leftrightarrow \frac{1}{|a|} X(\frac{j\omega}{a})$$

Proof:

$$\mathcal{F}\{x(at)\} = \frac{1}{T} \int_{0}^{\infty} x(at) e^{-j\omega t} dt$$

assume a > 0, make a change of variables: $\lambda = at$, which implies $t = \lambda / a$, and $dt = (1/a)d\lambda$

$$\mathcal{F}\{ax(t)\} = \frac{1}{T} \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega(\frac{\lambda}{a})} (\frac{1}{a}) d\lambda$$
$$= (\frac{1}{a}) \left\{ \frac{1}{T} \int_{-\infty}^{\infty} x(\lambda) e^{-j(\omega/a)\lambda} d\lambda \right\}$$
$$= (\frac{1}{a}) X(\frac{j\omega}{a})$$

- Generalization for $\alpha < 0$, the negative value is offset by the change in the limits of integration.
- What is the implication of $\alpha < 1$ on the time-domain waveform? On the frequency response? What about $\alpha > 1$?
- Any real-world applications of this property? Hint: sampled signals.78

20

Time Reversal

• Time Reversal:

$$x(-t) \leftrightarrow X(-j\omega)$$

Proof:

$$\mathcal{F}\{x(-t)\} = \frac{1}{|a|} X(\frac{j\omega}{a}) \bigg|_{a=-1} = X(-j\omega)$$

We can also note that for real-valued signals:

$$X(-j\omega) = |X(-j\omega)| \angle X(-j\omega)$$
$$= |X(j\omega)| \angle X(-j\omega) = X^*(j\omega) \quad \text{(complex conjugate)}$$

- $^{\prime}$ \cdot Time reversal is equivalent to conjugation in the frequency domain.
- Can we time reverse a signal? If not, why is this property useful?

Multiplication by a Power of t

• Multiplication by a power of t:

$$t^{n}x(t) \leftrightarrow (j)^{n} \frac{d^{n}}{d\omega^{n}} X(j\omega)$$

Proof:

$$X(j\omega) = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

differentiate with respect to ω :

$$\frac{dX(j\omega)}{d\omega} = \frac{1}{T} \int_{-\infty}^{\infty} (-jt) \ x(t) \ e^{-j\omega t} dt$$

multiply by j:

$$j\frac{dX(j\omega)}{d\omega} = (j)\frac{1}{T}\int_{-\infty}^{\infty} (-jt) x(t) e^{-j\omega t} dt$$
$$= \frac{1}{T}\int_{-\infty}^{\infty} (t) x(t) e^{-j\omega t} dt = \mathcal{F}\{t \ x(t)\}$$

ullet We can repeat the process for higher powers of t.

22

> Multiplication by a Complex Exponential (Modulation)

• Multiplication by a complex exponential:

$$x(t)e^{j\omega t} \leftrightarrow X(j(\omega-\omega_0))$$
 for any real number ω_0

Proof:

$$\mathcal{F}\left\{x(t)e^{j\omega_0 t}\right\} = \frac{1}{T} \int_{-\infty}^{\infty} x(t)e^{j\omega_0 t} e^{-j\omega t} dt$$
$$= \frac{1}{T} \int_{-\infty}^{\infty} x(t)e^{-j(\omega - \omega_0)t} dt$$
$$= X(j(\omega - \omega_0))$$

- Why is this property useful?
- First, another property:

$$x(t)\cos(\omega_0 t) = x(t)\left[\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}\right] \leftrightarrow \frac{1}{2}\left[X(j(\omega + \omega_0)) + X(j(\omega - \omega_0))\right]$$

 This produces a translation in the frequency domain. How might this be useful in a communication system?

Differentiation / Integration

• <u>Differentiation in the Time Do</u>main:

$$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(j\omega)$$

• Integration in the Time Domain:

$$\int_{-\infty}^{t} x(\lambda)d\lambda \leftrightarrow \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$$

- What are the implications of time-domain differentiation in the frequency domain?
- Why might this be a problem? Hint: additive noise.
- \bullet How can we apply these properties? Hint: unit impulse, unit step, \dots

24

Convolution in the Time Domain

• Convolution in the Time Domain:

$$x(t) * h(t) \leftrightarrow X(j\omega)H(j\omega)$$

• Proof:

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda)h(t - \lambda)d\lambda$$

$$\mathcal{F}\{x(t) * h(t)\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\lambda)h(t - \lambda)d\lambda\right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(\lambda) \left[\int_{-\infty}^{\infty} h(t - \lambda)e^{-j\omega t} dt\right] d\lambda$$
change of variables: $\gamma = t - \lambda \Rightarrow d\gamma = dt$

$$= \int_{-\infty}^{\infty} x(\lambda) \left[\int_{-\infty}^{\infty} h(\gamma)e^{-j\omega(\gamma + \lambda)} d\gamma\right] d\lambda$$

$$= \left[\int_{-\infty}^{\infty} x(\lambda)e^{-j\omega\lambda} d\lambda\right] \left[\int_{-\infty}^{\infty} h(\gamma)e^{-j\omega\gamma} d\gamma\right]$$

 $= X(j\omega)H(j\omega)$

≻Other Important Properties

• Multiplication in the Time Domain:

$$x(t) \bullet y(t) \leftrightarrow \frac{1}{2\pi} [X(j\omega) * Y(j\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda) Y(\omega - \lambda) d\lambda$$

• Parseval's Theorem:

$$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^{2} d\omega$$

Duality:

 $X(t) \leftrightarrow 2\pi \ x(-\omega)$

• **Note:** please read the textbook carefully for the derivations and interpretation of these results.

