Quali

Nome	e	Cognome:

	Sia f una funzione da A a B , dove A e B sono insiemi finiti di cardinalità n e m , rispettivamente. fra le affermazioni seguenti NON sono vere?
$\Box_V\Box_F$	A. f è necessariamente suriettiva se $n > 0$ e $m = 1$;
$\square_V\square_F$	B. f è necessariamente suriettiva se $n > m$;
$\Box_V\Box_F$	C. f è necessariamente iniettiva se $n=0$;
$\Box_V\Box_F$	P. D. f può essere suriettiva se $n > m$.
Es 2.	Scrivere la definizione di insieme delle parti di un insieme.
	Motivare la risposta
$\Box_V \Box_F$ $\Box_V \Box_F$ $\Box_V \Box_F$ $\Box_V \Box_F$	La chiusura transitiva della relazione $R = \{(1,2), (2,1), (1,3), (3,2)\} \subseteq \mathbf{N} \times \mathbf{N}$ è A. $\mathbf{N} \times \mathbf{N}$; B. $\{1,2,3\} \times \{1,2,3\}$; C. $\{(1,1), (2,2), (3,3), (2,3), (3,1)\}$; D. una relazione di equivalenza su $\mathbf{N} \times \mathbf{N}$;
Es 4.	Scrivere la definizione di <i>numerabilità</i> di un insieme e fare un esempio.
	Rispondere qui
Es 5.	Dimostrare che per ogni $n\geq 2$ si ha $\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x},$
	dove x è un numero reale.
	Rispondere qui

	Rispondere qui
Es 7.	Vero o Falso? (N.B. Le lettere A,B,C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).
$\Box_V\Box_E$	A. Se $A \models B \lor C$ e $B \models \neg C$ allora $(A \to C) \models \neg B$;
, -	Motivare la risposta
$\Box_V\Box_F$	B. Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile;
	Motivare la risposta
I . 0	T. /
	L'enunciato seguente è una tautologia?
$\Box_V\Box_F$	$ A. \exists x (A(x) \to \neg B(x)) \to \neg \forall x (B(x) \to A(x)); $
	Motivare la risposta
Es 9.	Formalizzare la proposizione seguente con un enunciato nel linguaggio predicativo $\mathcal L$ composto
	da un simbolo \in di relazione binaria.
	${\bf A.}$ Ogni insieme X è intersezione di un qualche coppia di insiemi X e Y .
	Rispondere qui

 $\mathbf{Es} \;\; \mathbf{6.} \;\; \mathrm{Definire}$ il concetto di interpretazione nella logica predicativa.