Mostafa Sabri

Lecture 2

- 1.3 Vector Equations
- 1.4 The matrix equation $A\mathbf{x} = \mathbf{b}$

Vectors in \mathbb{R}^2

A vector in \mathbb{R}^2 is denoted by a column vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ or an ordered pair (x_1, x_2) , where $x_1, x_2 \in \mathbb{R}$.

Two vectors are equal iff their ordered entries are equal. Note that $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Addition and subtraction is defined component-wise:

$$\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}.$$

For $c \in \mathbb{R}$, we define scalar multiplication $c \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$.

Geometric description of \mathbb{R}^2

Given
$$\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, find $3\mathbf{u} - 2\mathbf{v}$.

Vectors are pictured by arrows. We can identify vectors in \mathbb{R}^2 geometrically with the point (a, b).

Parallelogram Rule for Addition

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} .

Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Display $\mathbf{u} + \mathbf{v}$, $2\mathbf{u}$, $\frac{1}{2}\mathbf{u}$ and $-\mathbf{u}$ on the plane.

Vectors in \mathbb{R}^n

A vector in \mathbb{R}^n is a column vector $\mathbf{u} = \begin{bmatrix} u_2 \\ \vdots \\ ... \end{bmatrix}$

The zero vector **0** is the vector with all entries zero.

Algebraic Properties of \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars c, d,

(i)
$$u + v = v + u$$

(ii)
$$(u + v) + w = u + (v + w)$$

(iii)
$$u + 0 = 0 + u = u$$

(iv)
$$u + (-u) = -u + u = 0$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(
$$viii$$
) $1u = u$

Linear Combinations

We say that $\mathbf{y} \in \mathbb{R}^n$ is a *linear combination* of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ if there exist scalars $c_1, \dots, c_p \in \mathbb{R}$ such that

$$\mathbf{y} = \sum_{i=1}^{p} c_i \mathbf{v}_i = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

The c_i can be regarded as weights.

Linear Combinations

1. Based on the figure, write \mathbf{u} and \mathbf{w} as linear combinations of the vectors \mathbf{v}_1 and \mathbf{v}_2 .

2. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -5 \end{bmatrix}$. Is \mathbf{u} a linear

combination of \mathbf{v}_1 and \mathbf{v}_2 ?

Span

Let $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$. We say that $\mathbf{u} \in \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ if

$$\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

for some $c_i \in \mathbb{R}$, i.e. if **u** is a linear combination of the **v**_i.

Let $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (0, 1, 2)$ and $\mathbf{u} = (1, -2, 2)$. Is \mathbf{u} in the plane defined by Span $\{\mathbf{v}_1, \mathbf{v}_2\}$?

If A is a matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and $\mathbf{x} \in \mathbb{R}^n$, we define the product

$$A\mathbf{x} = \begin{bmatrix} \mathbf{\alpha}_1 & \mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= x_1 \mathbf{\alpha}_1 + x_2 \mathbf{\alpha}_2 + \cdots + x_n \mathbf{\alpha}_n$$

Compute
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
.

Systems of equations

We note that given a system of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$
(1)

if we define

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

then the system can be written as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b},\tag{2}$$

where \mathbf{a}_j are the columns of A,

$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \dots \quad \mathbf{a}_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

In other words,

$$A\mathbf{x} = \mathbf{b} \tag{3}$$

Thm: The following statements are equivalent:

- (a) $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) The vector **b** is a linear combination of the columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ of A.
- (c) The augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ gives a consistent system.

<u>Proof.</u> Indeed, $(a) \iff (b)$ by equations (2) and (3). Also, $(c) \iff (a)$ by equations (3) and (1).

Thm. Let A be an $m \times n$ matrix. The following statements are equivalent.

- (a) For each $\mathbf{b} \in \mathbb{R}^n$, equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each $\mathbf{b} \in \mathbb{R}^n$ is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^n .
- (d) A has a pivot position in every row.

<u>Proof.</u> $(a) \iff (b) \iff (c)$ by the previous theorem and the span definition. Let us prove $(d) \iff (a)$.

Let *U* be an echelon form of *A*. So $\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \sim \begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ for some **d**.

If (d) holds then each row of U has a pivot position, so there can be no pivot in the last augmented column, and the system has a solution for any \mathbf{b} .

Conversely, if (d) is false, then the last row of U is all zero. Choose **b** such that **d** has 1 in its last entry. Then the last row of $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ reads as 0 = 1, hence the system is inconsistent.

П

This shows that $(d) \iff (a)$ and we are done.

Properties of Ax

Thm : If A is an $m \times n$ matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, $c \in \mathbb{R}$, then

1.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
,

2.
$$A(cu) = c(Au)$$
.

Proof. 1. By definition,
$$A(\mathbf{u} + \mathbf{v}) = \sum_{i=1}^{n} (u_i + v_i) \mathbf{a}_i = \sum_{i=1}^{n} u_i \mathbf{a}_i + \sum_{i=1}^{n} v_i \mathbf{a}_i = A\mathbf{u} + A\mathbf{v}$$
.

2.
$$A(c\mathbf{u}) = \sum_{i=1}^{n} (cu_i) \mathbf{a}_i = c \sum_{i=1}^{n} u_i \mathbf{a}_i = c(A\mathbf{u}).$$

П

Computing $A\mathbf{x} = \mathbf{b}$

Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all b_1, b_2 ? If not, describe the set of (b_1, b_2) for which it is compatible.

Note that by definition

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{bmatrix}$$

Computing $A\mathbf{x} = \mathbf{b}$

This works for any size. Hence,

When defined, the i-th entry of the column vector $A\mathbf{x}$ is

$$\sum_{j=1}^n a_{ij} x_j = a_{i1} x_1 + \cdots + a_{in} x_n.$$

Compute
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.