

RV College of Engineering

DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Even Semester 2023)

Date	13/05/2024	Time	10:00 to	1:30 AM
TEST	Test-I	Maximum Marks	50	
		Course cours	MA221TC	
Semester	II	Programs	B. E. (AIML,BT	,CD,CS,CY,IS

Instructions: Answer all questions.

Sl. No.				Questions				М	вт	СО
1(a)	From the follo 50 and 75 usi					ho obtaine	d marks between			
	Marks	30-40	40-50	50-60	0 60	-70	70 - 80	6	L2	3
	Number of students	31	73	124	159)	190			
1(b)	Using Lagran	nge Interpo	lation Form	ula fit a poly	ynomial for	the given o	lata:			
	x	0	1	3	5			4	L2	2
	y(x)	1	5	49	23	1				
2	The followin steam:									
	V	40	50	60	70	80				
		304.5	270.4	250.2	204.6	184.9		10	L3	3
						e rate of c	hange of pressure			
	with respect	to volume	at $V=50$ an	$d\frac{d^{2}}{dV^{2}}$ at V=	70.					
3(a).	If $F(D) = (I$ the general s			the linear di	fferential of	perator, wi	th $D = \frac{d}{dz}$. Obtain	4	LI	1
3(b)	Find the par given $y(0)$:			initial val	ue problem	$\frac{d^2y}{dt^2} + 4\frac{d^2y}{dt^2}$	$\frac{dy}{dt} + 4y = 18e^{-t},$	6	L2	2
4	Solve $\frac{d^2y}{dx^2}$ –			method of v	variation of	parameters		10	L2	2
5	Obtain the ra		cement x in	a rotating o		ance s from	n the axis is given	10	L3	4

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars	COI	CO2	CO3	CO4	LI	L2	L3	L4	L5	L6
Distribution	Max Marks	4	20	16	10	4	26	20	-	-	

....All the best....

Go, change the world

Department of Mathematics Academic Year 2023-2024 (Even Semester 2023)

Date	18/06/2024	Time	10:00 to 1	1:30 AM
Test	Test-II	Maximum Marks	50	0
Course Title	Number Theory, Vector Calc Methods	ulus and Computational	Course Code	MA221TC
Semester	п	Programs	B.E. (AIML, BT, C	D, CS, CY, ISI

Instructions: Answer all questions.

SI. No.	Questions	М	вт	со
l(a)	By using the Euclidean algorithm, find the greatest common divisor d of 1166 and 256, and find integers x and y to satisfy $1166x + 256y = d$.	6	L2	2
1(b)	Find the remainder when 16 ⁵³ is divided by 7.	4	L1	1
2	Given the public key $(e, n) = (7,51)$, encrypt plain text LIV, where the alphabets $A, B, C,, X, Y, Z$ are assigned the numbers $3,4,5,, 26,27,28$. Give the cipher text and find the private key d .	10	L3	4
3(a)	Find all solutions of linear congruence $18x \equiv 30 \pmod{42}$.	5	L2	2
3(b)	A particle moves along the curve whose parametric equation is given by $x = (t^3 + 1)$, $y = t^2$, $z = (2t + 5)$, where 't' is time. Find the component of its acceleration at time $t = 2$ in the direction of the vector $\hat{i} + \hat{j} + \hat{k}$.	5	L1	2
4(a)	Find the values of a and b such that the surfaces $5x^2 - 2yz = 9z$ and $ax^2 + by^3 = 4$ cut orthogonally at $(1, -1, 2)$.	5	L2	3
4(b)	Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $. Evaluate $\nabla^2 r^n$. Reduce the final answer in terms of r .			
5	Find the curl of the vector field	5	L2	1
	$\vec{F} = (y \sin z + y \cos(xy))\hat{i} + (x \sin z + x \cos(xy))\hat{j} + xy \cos z \hat{k}.$ If \vec{F} is irrotational then find the scalar potential ϕ of \vec{F} such that $\nabla \phi = \vec{F}$.	10	L3	3

	Particulars	-		- Adiloniy	CO-Course	Outcome	s, M-Mar	cs			
Marks Distribution	rencuers	COI	CO2	CO3	CO4	LI	1.2	1.3	14	16	
Distribution	Max Marks	9	16	15	10					LS	L6
			1.0	13	10	9	21	20	-		

Department of Mathematics Academic Year 2023-2024 (Even Semester 2024)

Date	01/07/2024	Time	10:00 AM to	12 NOON
Test	Improvement Test (Quiz & Test)	Maximum Marks	10+50=	=60
Course Title	Number Theory, Vector Calculus and	Computational Methods	Course Code	MA221TC
Semester	II	Programs	B.E. (AIML, BT, CI	O, CS, CY, IS)

Instructions: Answer all questions

PART - A

S.No.	Questions	M	ВТ	СО
1	If the general solution of a differential equation is $y = c_0 + c_1 e^{-x} \sin x + c_2 e^{-x} \cos x$, then the differential equation is	2	Ll	1
2	The Wronskian of $y_1 = \cos 2x$, $y_2 = \sin 2x$ is	2	Ll	1
3	Reduce the Cauchy's equation $x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = \frac{1}{x}$ to a differential equation with constant coefficients	2	L2	2
4	The value of $\frac{1}{\pi} \oint_C (3y - e^{\cos(x^2)}) dx + (7x + \sqrt{y^4 + 11}) dy$ where $C: x^2 + y^2 = 9$ oriented positively is	2	L2	. 2
	Let S be the portion of the plane $2x + y = 4$ in the first octant bounded by $z = 1$ and $z = 4$. The surface integral $\iint_S (x \hat{i} + y\hat{j} + z\hat{k}) \cdot \hat{n} dS$, over the region R in terms of double integral with the limits is given by, where R being the projection of S taken on yz —plane.	2	L3	3

PART - B

S.No.	Questions	М	ВТ	СО
la	Obtain the particular integral of the differential equation $y'' - y = x \cos x$.	4	L2	2
16	Determine the displacement x at time $t > 0$ from the equilibrium position of the mass- spring system governed by the differential equation $t^2x'' + tx' + x = 2\cos^2(\log t)$.	6	L3	1
2	Using the method of variation of parameters solve the differential equation: $\frac{d^2y}{dx^2} + y = \frac{1}{1+\sin x}.$	10	L2	2
3a	Find the work done by the force $\vec{F}(x,y) = 2xy \hat{\imath} + 4y^2 \hat{\jmath}$ acting along the piecewise curve consisting of the line segments from $(-2,2)$ to $(0,0)$ and from $(0,0)$ to $(2,3)$.	6	L3	3
3b	Evaluate the line integral $\int_C \vec{F} \cdot \hat{T} ds$, where $\vec{F} = 2xy \hat{\imath} + x^2 \hat{\jmath}$ being the conservative field, along any smooth curve C joining the point $(0,0)$ to $(1,1)$.	4	L2	4
4	Verify Green's theorem for $\oint_C (x^2 - y^2) dx + (2y - x) dy$, where C consists of the boundary of the region in the first quadrant bounded by the graphs $y = x^2$ and $y = x^3$.	10	L3	3
5	Use the surface integral in Stokes' theorem to determine the circulation of the field $\vec{F} = y \hat{\imath} + xz$ is around the boundary of the triangle cut from the plane $x + y + z = 1$ by the first octant, counterclockwise when viewed from above.	10	L4	4

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars	COI	CO2	CO3	CO4	LI	L2	L3	L4	L5	L6
Distribution	Max Marks	10	18	18	14	4	22	24	10	W 7	-

DEPARTMENT OF MATHEMATICS

Course: Number theory, Vector calculus and Computational methods	CIE-I SCHEME AND SOLUTION	Date: 13-05-2024
Course code: MA221TC	II Semester	

)			Answer all que	stions		
	Less than (x)	No of students (y)	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
	40	31				
			73			
	50	104		51		
			124		-16	
	60	228		35		12
			159		-4	
	70	387		31		
			190			
	80	577				
			$x_n = 80,$	x = 75		
			$p = \frac{75 - 80}{10}$	$\frac{0}{0} = -0.5$		
	$y_{75} = y_{n^+} p \nabla y_n$	$+\frac{p(p+1)}{2!}\nabla^2 y_n + \frac{p(p+1)}{2!}$	$\nabla^{3} y_n + \dots$	$\cdots \frac{p(p+1)\dots(p+n)}{n!}$	$\frac{1}{n} \nabla^n y_n$	
	$y_{75} = 577$	$7 - 0.5(190) - \frac{0.5(190)}{1}$	$\frac{0.5)(31)}{2!} - \frac{0.5(0.5)}{0.5}$	$\frac{5)(1.5)(-4)}{3!} - \frac{0}{3!}$	0.5(0.5)(1.5)(2 4!	.5)(12)
	= 477.9063 ~ 47	78 students				
	∴ 50-75	marks obtained by 478	3-104 =374			
1	Lagrange	e Interpolation				

$$f(x) = \frac{(x - x_1)(x - x_2)\dots(x - x_n)}{(x_0 - x_1)(x_0 - x_2)\dots(x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2)\dots(x - x_n)}{(x_1 - x_0)(x_1 - x_2)\dots(x_1 - x_n)} y_1 + \dots + \frac{(x - x_0)(x - x_1)\dots(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)\dots(x_n - x_{n-1})} y_n$$

	_ (x	(x-1)(x-3)(x-3)	$\frac{(x-5)}{(5)} + \frac{(x-0)}{(1-0)}$	(x-3)(x-5)	$\frac{(x-0)(x)}{5}$	$(x-5)_{49}$	
		()(-)($\begin{array}{c c} 5) & (1-0) \\ \hline -0)(x-1)(x-1) \\ \hline -0)(5-1)(5-1) \end{array}$	/ - /	(3-0)(3-1)	$(-1)(3-5)^{-1}$	2
		(5		$-3x^2 + \frac{19}{4}x +$	1		2
			•	$-3x^2 + 4.75x$			
2	v	P	First diff	Second diff	Third diff	Fourth diff	
	40	304.5					
			-34.1				
	50	270.4		13.9			
			-20.2		-39.3		
	60	250.2		-25.4		90.6	
	70	204.6	-45.6	25.9	51.3		3
		204.0	-19.7	23.3			
	80	184.9					
			<i>p</i> =	$\frac{45 - 40}{10} = 0.5$			1
	$v_{45} = P_0$	$p + p\Delta P_0 + p + \frac{p(p-1)}{2!}$	$\frac{1}{2}\Delta^2 P_0 + \frac{p(p-1)(p-1)}{3!}$	$\Delta^{3}P_{0}+$			
	=	304.5 + 0.5(-1)	$34.1) + \frac{0.5(-0.5)}{2}$	$\frac{(5)(13.9)}{(1)} + \frac{0.5(1)}{(1)}$	-0.5)(-1.5)(-	39.3)	1
			0.5(-0.5)(-1.5)		5.		
				9.7172			1
		$\left(\frac{dP}{d}\right)$	$a = \frac{1}{h} \left[\Delta P_0 - \frac{1}{2} \Delta^2 R \right]$		$\Lambda^4 P_0 + \dots$		
		ν-30	, -				1
		=	$=\frac{1}{10}\left[-20.2-\frac{1}{2}\right]$	$(-25.4) + \frac{1}{3}(51)$	3)		1
			=	0.96			
		$\left(\frac{d^2P}{dv^2}\right)_{v=70} = \frac{1}{h^2}$	$\Big[\nabla^2 P_n + \nabla^3 P_n +$	$\frac{11}{12}\nabla^4 P_n + \frac{5}{6}\nabla^5 P_n$	$+\frac{137}{180}\nabla^6 P_n + \cdots$]	
			$=\frac{1}{100}[-3]$	25.4 – 39.3]			1
			=-(0.647			1
	<u> </u>						

2(0)		
3(a)	$(D^4 - \omega^4)v = 0$	
	$m^4 - \omega^4 = (m^2 - \omega^2)(m^2 + \omega^2) = 0$ $m = \pm \omega, \pm i\omega$	2
	$v = C_1 e^{\omega z} + C_2 e^{-\omega z} + C_3 \cos \omega z + C_4 \sin \omega z$	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
3(b)	$(D^2 + 4D + 4)y = 18e^{-t}$	<u> </u>
	$m^2 + 4m + 4 = 0$	1
	m = -2, -2	1
	$y_c = (C_1 + C_2 t) e^{-2t}$	1
	$18e^{-t}$	
	$y_p = \frac{18e^{-t}}{\left((-1)^2 - 4 + 4 \right)}$	
	$y_p = \frac{18e^{-t}}{(D^2 + 4D + 4)}$	
	Replace D by -1 $y_p = 18e^{-t}$	1
	$y = y_c + y_p$	
	$y = (C_1 + C_2 t)e^{-2t} + 18e^{-t}$	
	$y' = -2(C_1 + C_2t)e^{-2t} + C_2e^{-2t} - 18e^{-t}$	1
	$y(0) = 0 = C_1 + 18$	
	$C_1 = -18$	
	$y'(0) = 4 = -2(-18) + C_2 - 18$	1
	$C_2 = -14$	1
	$y = -(18 + 14t)e^{-2t} + 18e^{-t}$	
4	A E $m^2 - 1 = 0, m = \pm 1$	1
	$y_c = C_1 e^x + C_2 e^{-x}$	1
	$y_p = uy_1 + vy_2$	
	$y_1 = e^x, y_2 = e^{-x}$	
	$w = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -2$	1
		1
	$u = -\int \frac{y_2 X}{w} dx = -\int \frac{e^{-x} e^{-2x} \cos(e^{-x})}{-2} dx$	1
	$= -\frac{1}{2} \int e^{-2x} \cos(e^{-x})(-e^{-x}) dx$	1
	$Put z = e^{-x}, dz = -e^{-x}dx$	
	$= -\frac{1}{2} \int z^2 \cos z dz$	1
	L J	

	$= -\frac{1}{2}[z^2 \sin z - 2z(-\cos z) + 2(-\sin z)]$	1
	$= -\frac{1}{2}e^{-2x}\sin e^{-x} - e^{-x}(\cos e^{-x}) + \sin e^{-x}$	1
	$v = \int \frac{y_1 X}{w} dx = \int \frac{e^x e^{-2x} \cos(e^{-x})}{-2} dx$	
	$= \frac{1}{2} \int \cos(e^{-x})(-e^{-x}) dx = -\frac{1}{2} \int \cos z dz$	1
	$= \frac{1}{2}\sin z = \frac{1}{2}\sin e^{-x}$	
	$y_p = uy_1 + vy_2$	
	$= -\frac{1}{2}e^{-x}\sin e^{-x} - (\cos e^{-x}) + e^{x}\sin e^{-x} + \frac{e^{-x}}{2}\sin e^{-x}$	1
	$= -\cos e^{-x} + e^x \sin e^{-x}$	1
	$y = C_1 e^x + C_2 e^{-x} - \cos e^{-x} + e^x \sin e^{-x}$	
5	Dividing by 2,	
	$s^2x'' + \frac{3}{2}sx' - \frac{1}{2}x = \frac{\cos(\log s)}{2s} - s$	
	Put $s = e^t$ or $t = logs$, $sx' = Dx$, $s^2x'' = D(D-1)x$	1
	Equation becomes.	
	$\left[D(D-1)\frac{3}{2}D - \frac{1}{2} \right] x = \frac{\cos t}{2e^t} - e^t$	1
	A.E $m^2 + \frac{1}{2}m - \frac{1}{2} = 0$	
	$m = -1, \frac{1}{2}$	1
		1
	C.F is $C_1 e^{-t} + C_2 e^{\frac{t}{2}} = C_1 s^{-1} + C_2 s^{\frac{1}{2}}$	
	$\frac{1}{D^2 + \frac{1}{2}D - \frac{1}{2}} \left(\frac{e^{-t}\cos t}{2} - e^t \right) = \frac{1}{2} \frac{1}{\left(D^2 + \frac{1}{2}D - \frac{1}{2}\right)} \left(e^{-t}\cos t \right) - \frac{1}{\left(D^2 + \frac{1}{2}D - \frac{1}{2}\right)} e^t$	
	PI 1: consider $\frac{1}{2} \frac{1}{\left(D^2 + \frac{1}{2}D - \frac{1}{2}\right)} e^{-t} \cos t = \frac{1}{2} e^{-t} \frac{1}{((D-1)^2 + \frac{1}{2}(D-1) - \frac{1}{2})} \cos t$	1
	$= \frac{1}{2}e^{-t}\frac{1}{\left(-1 - \frac{3}{2}D\right)}\cos t = -\frac{1}{2}e^{-t}\frac{\left(1 - \frac{3}{2}D\right)}{\left(1 - \frac{9}{4}D^2\right)}\cos t = -\frac{1}{2}e^{-t}\frac{1}{\left(1 - \frac{9}{4}D^2\right)}\left(\cos t + \frac{3}{2}\sin t\right)$	1+1
	$= -\frac{e^{-t}}{13} [2\cos t + 3\sin t]$	
	PI 2: consider $\frac{1}{(D^2 + \frac{1}{2}D - \frac{1}{2})} e^t = e^t$	1
	$\therefore \frac{1}{2(D^2 + \frac{1}{2}D - \frac{1}{2})} (e^{-t}\cos t - 2e^t) = -\frac{1}{13s} [2\cos(\log s) + 3\sin(\log s)] - s$	1
	$y = C_1 s^{-1} + C_2 s^{\frac{1}{2}} - \frac{1}{13s} [2\cos(\log s) + 3\sin(\log s)] - s$	1

Department of Mathematics Academic year 2023-2024 (Even Semester 2023)

Date	18/06/2024	Time	10:00 to 11:3	30 PM
Test	Test-II	Maximum Marks	50	
Course Title	itle Number Theory, Vector Calculus and Computational		Course Code	MA221TC
Methods				
Semester	II	Programs	B.E. (AIML, BT, CD,	CS, CY, IS)

SCHEME AND SOLUTION

Sl.		
No.	Questions	M
1(a)	$1166 = 4 \times 256 + 142$; $256 = 1 \times 142 + 114$	1+1
	$142 = 1 \times 114 + 28$; $114 = 4 \times 28 + 2$; $28 = 14 \times 2 + 0$	1
	gcd(1166,256) = 2	1
	$2 = 5 \times 114 - 4 \times 142 = 41 \times 256 - 9 \times 1166$	1+1
1(b)	$16 \equiv 2 \pmod{7},$	1
	$2^3 \equiv 1 \pmod{7}, 2^{53} = 2^{17 \times 3 + 2} = (2^3)^{17} \times 2^2 \equiv 1 \times 2^2 \pmod{7}$	2
	$16^{53} \equiv 2^{53} \; (mod \; 7) \equiv 4 \; (mod \; 7)$	1
2	$\phi(51) = 32,$	1
	Plain text $L = 14$, $I = 11$, $V = 24$	
	Cipher Text:	2
	L: $14^7 \equiv 23 \pmod{51}$ $L \to U$ I: $11^7 \equiv 20 \pmod{51}$ $I \to R$	$\frac{2}{2}$
	$V: 24^7 \equiv 12 \pmod{51} \qquad V \longrightarrow J$	2
	Cipher text is URJ	1
	Private key $(d, 32)$	
	$7d \equiv 1 \pmod{32} \Rightarrow d = 23$	2
3(a)	gcd(18,42) = 6, Therefore, the linear congruence has 6 incongruent solutions.	1
	Solutions are $x \equiv 4 \pmod{42}$,	2
2(1)	$x \equiv 11 \pmod{42}, \ x \equiv 18 \pmod{42}, \ x \equiv 25 \pmod{42}, \ x \equiv 32 \pmod{42}, \ x \equiv 39 \pmod{42}$	1+1
3(b)	$\vec{r}(t) = (t^3 + 1)\mathbf{i} + t^2\mathbf{j} + (2t + 5)\mathbf{k}$	1
	$\vec{v}(t) = \frac{d\vec{r}}{dt} = 3t^2 \mathbf{i} + 2t \mathbf{j} + 2\mathbf{k}, \vec{a}(t) = 6t \mathbf{i} + 2\mathbf{j}$	1
	$\vec{a}(2) = 12\mathbf{i} + 2\mathbf{j}$	1
	$\vec{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \hat{u} = \frac{1}{\sqrt{3}} (\mathbf{i} + \mathbf{j} + \mathbf{k})$	1
	Component of acceleration = $\vec{a}(2) \cdot \hat{u} = \frac{14}{\sqrt{3}}$	1
4a	Let $\phi_1 = 5x^2 - 2yz - 9z$ and $\phi_2 = ax^2 + by^3$	1
	$\nabla \phi_1 = 10x\mathbf{i} - 2z\mathbf{j} - (2y + 9)\mathbf{k}, \nabla \phi_2 = 2ax\mathbf{i} + 3by^2\mathbf{j}$	1
	At $(1,-1,2)$	
	$\vec{n}_1 = \nabla \phi_1 = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{k}, \vec{n}_2 = \nabla \phi_2 = 2a\mathbf{i} + 3b\mathbf{j}$	1 1
	$\vec{n}_1 \cdot \vec{n}_2 = 0 \Rightarrow 20a - 12b = 0 \Rightarrow 5a = 3b$ As (1 13) Figure 21 $\frac{1}{2}$ $\frac{1}{2$	1
	As $(1, -1, 2)$ lies on $ax^2 + by^3 = 4$, $a - b = 4 \Rightarrow 3a - 3b = 12 \Rightarrow a = -6$, $b = -10$	1
	The point $(1, -1, 2)$ is not on the surface ϕ_1	5
4b	$r = \sqrt{x^2 + y^2 + z^2}, \ \nabla^2 r^n = \frac{\partial^2}{\partial x^2} (r^n) + \frac{\partial^2}{\partial y^2} (r^n) + \frac{\partial^2}{\partial z^2} (r^n)$	
	$\frac{\partial}{\partial x}(r^n) = nr^{n-1}\frac{\partial r}{\partial x} = nxr^{n-2}$ $\frac{\partial}{\partial x^2}(r^n) = \frac{\partial}{\partial x}(nxr^{n-2}) = nr^{n-2} + nx(n-2)r^{n-3}\frac{\partial r}{\partial x} = nr^{n-2} + n(n-2)x^2r^{n-4}$	1
	$\frac{\partial}{\partial x^2}(r^n) = \frac{\partial}{\partial x}(nxr^{n-2}) = nr^{n-2} + nx(n-2)r^{n-3}\frac{\partial}{\partial x} = nr^{n-2} + n(n-2)x^2r^{n-4}$	
	Similarly	2
	<u> </u>	

Department of Mathematics

Academic year 2023-2024 (Even Semester 2023)

		$\frac{\partial^2}{\partial y^2}(r^n) = nr^{n-2} + n(n-2)y^2r^{n-4} \text{ and } \frac{\partial^2}{\partial z^2}(r^n) = nr^{n-2} + n(n-2)z^2r^{n-4}$	1 1
		$\nabla^2 r^n = n(n+1)r^{n-2}$	
Ī	5	j k	
		$\left \begin{array}{ccc} curl \ \vec{F} = \left \begin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \end{array} \right \right $	1
		$y \sin z + y \cos(xy)$ $x \sin z + x \cos(xy)$ $xy \cos z$	1
		$= [x\cos z - x\cos z]\mathbf{i} - [y\cos z - y\cos z]\mathbf{j} + [\sin z + \cos(xy) - xy\sin(xy) - \sin z - \cos(xy) + xy\sin(xy)]\mathbf{k}$	1+1+1
		= 0	1
		Hence \vec{F} is irrotational.	
		Let ϕ be the potential of \vec{F} .	
		$\frac{\partial \phi}{\partial x} = y \sin z + y \cos(xy), \frac{\partial \phi}{\partial y} = x \sin z + x \cos(xy), \frac{\partial \phi}{\partial z} = xy \cos z$	1
		$d\phi = [y\sin z + y\cos(xy)]dx + [x\sin z + x\cos(xy)]dy + xy\cos z dz$	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
		$= d(xy\sin z) + d(\sin(xy))$	1 1
		$\phi = xy\sin z + \sin(xy) + c$	1

Note: Appropriate marks maybe awarded for the alternative methods.

	3	et	(-1,2)		
			(2,3)		
			ye 3 x		
			(0,0)		1
			$W = \int_{C} \vec{F} \cdot \overrightarrow{dr} = \int_{C_{1}} \vec{F} \cdot \overrightarrow{dr} + \int_{C_{2}} \vec{F} \cdot \overrightarrow{dr}$		
			Along $C_{1} \cdot u = \int_{C_{1}}^{C_{1}} dr + \int_{C_{2}} F \cdot dr$		
			Along C_1 : $y = -x \Rightarrow dy = -dx$, $0 \le x \le -2$		1
			$\int_{C_1} 2xy dx + 4y^2 dy = \int_{-2}^0 -2x^2 dx - 4x^2 dx = -2^4 = -16$		
			Along C_2 : $y = \frac{3}{2}x \Rightarrow dy = \frac{3}{2}dx$		2
			$\int_{C_2} 2xy dx + 4y^2 dy = \int_0^2 (3x^2 dx + \frac{27}{2}x^2 dx) = 44$		
	2		W = -16 + 44 = 28		2
	1 3	b	Since F is conservative, scalar potential $\phi = x^2y$		
			$\therefore \int_{C} \vec{F} \cdot \hat{T} ds = \phi \big]_{0,0}^{1,1} = 1$		2
	4				2
			2 (1,1)		
			y 7 / y 2 3		1
		-	(0,0)		
		A	Along C_1 : $y = x^3 \Rightarrow dy = 3x^2 dx$		
		S	$(x^2 - y^2)dx + (2y - y)dy - (1/2)$		
		A	$\int_{C_1}^{C_1} (x^2 - y^2) dx + (2y - x) dy = \int_0^1 (x^2 - x^6) dx + (2x^3 - x) 3x^2 dx = \frac{37}{84}$ $\log C_2: y = x^2 \Rightarrow dy = 2x dx$	1	2
1		I	$(x^2 - v^2)dx + (2v - v) = c0$		
		-6	$\int_{2}^{2} (x^{2} - y^{2}) dx + (2y - x) dy = \int_{1}^{0} (x^{2} - x^{4}) dx + (2x^{2} - x) 2x dx = -\frac{7}{15}$		2
			$J_C(x^2 - y^2)dx + (2y - x)dy = \frac{37}{84} - \frac{7}{15} = -\frac{11}{420}$		1
		KF	HS:		
		\int_{R}	$\int (-1+2y) dy dx = \int_{x=0}^{1} \int_{y=x^3}^{x^2} (-1+2y) dy dx = \int_{0}^{1} (-x^2+x^4+x^3-x^6) dx = -\frac{11}{420}$	2	+2
1 5	5	Sto	kes' theorem		
		Ø _C F	$\vec{r}. \hat{n} ds = \iint_{S} \nabla \times \vec{F}. \hat{n} dS = \iint_{R_{XY}} \nabla \times \vec{F}. \frac{\nabla \phi}{ \nabla \phi \cdot \hat{k} } dA.$		
		1		1	
		Whe	ere $\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & xz & x^2 \end{vmatrix} = -x\hat{i} - 2x\hat{j} + (z - 1)\hat{k}$		
				2	
			$x + y + z - 1$, $\nabla \phi = \hat{\iota} + \hat{\jmath} + \hat{k}$		
			$\vec{F} \cdot \nabla \phi = -4x - y$ and $\nabla \phi \cdot \hat{k} = 1$	1	
		wet	ake projection on the xy - plane, $R_{xy} = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le 1 - x\}.$	2	
		Thus	$\iint_{R_{xy}} \nabla \times \vec{F} \cdot \frac{\nabla \phi}{ \nabla \phi \cdot \hat{k} } \ dA = \int_0^1 \int_0^{1-x} (-4x - y) \ dy \ dx = -\frac{5}{6}.$	2	

Department of Mathematics Academic Year 2023-2024 (Even Semester 2024) Scheme and solution

Course: Number Theory, Vector Calculus and Computational Methods Course code: MA221TC		Improvement CIE (QUIZ & TEST)	Maximum marks: 10+50=6	50
e ourse	code: MA2211C	Second semester 2023-2024 Physics Cycle : AIML, BT, CD, CS		
Q.No		2 4 3 153	The state of the s	
1.1	$m(m^2 - (-1 + i - 1 - i)m + D(D^2 + 2D + 2)y = 0$	PART A – Quiz $(-1+i)(-1-i)) = 0$		Marks
1.2	$W(y_1, y_2) = 2$			1+1
1.3	$(D^3 - 2D^2 + D)y = e^t$			2
1.4	$I = \frac{1}{\pi}(7-3)9\pi = 36$			2
	$\int_{1}^{4} \int_{0}^{4} 2 dy dz$			2
				. 2

Q.No	PART B	
la	$x\cos x = Re(xe^{ix})$	Mark
	$P, I = e^{ix} \frac{1}{(D+i)^2 - 1} x = e^{ix} \frac{1}{D^2 + 2iD - 2} x$	1
	$P.l. = -\frac{e^{ix}}{2} \left(1 - \frac{D^2 + 2iD}{2} \right)^{-1} x = -\frac{e^{ix}}{2} \left[1 + \frac{D^2 + 2iD}{2} + \dots \right] x$	1
	$P.I = -\frac{1}{2}e^{ix}(x+i) = -\frac{1}{2}(\cos x + i\sin x)(x+i)$	
	$\therefore P.I. = -\frac{1}{2} \left(x \cos x - \sin x \right) $	1
16	Let $t = e^z \Rightarrow z = \log t$	1
	The given equation becomes $(D^2 + 1)x = 2\cos^2 z$	1
	$m = \pm i$	1
	$x_c = c_1 \cos z + c_2 \sin z = c_1 \cos(\log t) + c_2 \sin(\log t)$	2
	$x_p = \frac{2\cos^2 z}{D^2 + 1} = \frac{1 + \cos 2z}{D^2 + 1}$	
		1
	$x_p = \frac{1}{D^2 + 1} + \frac{\cos 2z}{D^2 + 1} = 1 - \frac{\cos 2z}{3} = 1 - \frac{\cos 2(\log t)}{3}$	2
	$\therefore x = x_c + x_p$	
2	$A.E.: m^2 + 1 = 0 \Rightarrow m = \pm i$	-
	$y_c = c_1 \cos x + c_2 \sin x$	3
	$W(\cos x, \sin x) = 1$	1
	$A(x) = -\int \frac{\sin x}{1 + \sin x} dx = -\int \frac{\sin x - \sin^2 x}{1 - \sin^2 x} dx = -\int \frac{\sin x}{\cos^2 x} dx + \int \tan^2 x dx = -\sec x + \tan x - x$	2
	$B(x) = \int \frac{\cos x}{1 + \sin x} dx = \log(1 + \sin x)$	2
	$y_p = (-\sec x + \tan x - x)\cos x + \log(1 + \sin x)\sin x$	1
	Therefore, $y = y_c + y_p$	1

02

02

2

USN [RV230003]

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

H Semester B. E. Regular / Supplementary Examinations Aug-2024

(Common to AI, BT, CS, CY, CD & IS)

NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

Find x at y = 2 given:

1.10

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

3. Mathematics hand book to be provided.

		PART-A	M	вт	CO	
1	1.1	The sum of positive divisors of 864 is	02	1	1	1
	1.2	Compute 6 ¹⁰⁰ modulo 7.	02	2	2	
	1.3	If $\phi(x, y, z) = xy^2z^3 - x^3y^2z$ then find $\nabla \phi$.	02	2	2	
	1.4	Show that the vector function $\vec{f} = 2xyz\hat{\imath} + (xy - y^2z)\hat{\jmath} + (x^2 - zx)\hat{k}$ is solenoidal.	02	1	2	
	1.5	If \vec{F} represents the velocity of a fluid then $\int_{c} \vec{F} \cdot d\vec{r}$ represents			and the	
		of \vec{f} around C and if \vec{F} is force then $\int_{C} \vec{F} \cdot d\vec{r}$ represents	00	1	1	di
			02	1	1	
	1.6	The value of $\int_{C} (y^2 + 2yx)dx + (2xy + x^2)dy$ where C is the circle				0
		$x^2 + y^2 = 9$ is	02	1	1	
	1.7	Solve the differential equation $\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 0$.	02	1	2	50
	1.8	Find the particular integral of $(D^2 + 4)y = 2 \sin x \cos x$.	02	2	2	
	1.9	Construct the forward difference table: x 0 2 4 6				

PART-B

3

y -1 3 8 11

2	a	By using the Euclidean algorithm, find the greatest common divisor d of 1769 and 2378 and then find integers x and y to satisfy		F-2/30	-15
		1769x + 2378y = d.	08	3	3
	b	Find the last two digits of 3333 ⁴⁴⁴⁴ .	08	3,	3
3	а	A particle moves along the curve $\vec{r} = 2t^2 \hat{\imath} + (t^2 - 4t)\hat{\jmath} + (3t - 5)\hat{k}$. Find the components of velocity and acceleration in the direction of the			
	b	vector $\vec{c} = \hat{i} - 3\hat{j} + 2\hat{k}$ at $t = 1$. Find the constants a and b so that the surface $3x^2 - 2y^2 - 3z^2 + 8 = 0$	08	2	2
		is orthogonal to the surface $ax^2 + y^2 = bz$ at the point $(-1, 2, 1)$.	08	3	2
		OR			

					1
4	a	Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $, then prove that	00	0	2
	b	$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r).$ Show that $\vec{f} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$ is irrotational.	08	2	2
		Find the function ϕ such that $\vec{f} = grad \phi$.	08	3	2
					-
5	a	Find the work done in moving a particle in the force filed	00	3	3
	b	$\hat{f} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the straight line $(0,0,0)$ to $(2,1,3)$. Show that area enclosed by a simple closed curve C is given by	80	3	3
		$\frac{1}{2}$ $\oint \{x dy - y dx\}$. Using this, find the area bounded by the ellipse with	00	3	4
		axes 2a and 2b.	08	3	
6	a	Using Divergence theorem, evaluate			
		$\iint_{S} [(x^{2} - yz)\hat{i} + (y^{2} - zx)\hat{j} + (z^{2} - xy)\hat{k}].\hat{n}ds \text{over}$			
		the surface of the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.	08	3	3
	b	Evaluate by Stokes theorem $\oint_C (x+y)dx + (2x-z)dy + (y+z)dz$, C is			
		the boundary of the triangular surface with vertices $(0,0,0)$, $(1,0,0)$,	15		
		and (1,1,0).	08	3	4
7	a	Solve the differential equation: $(D^2 - 4D + 4)y = x^2e^{2x} + \sin^2 x$.	08	2	3
	b	Solve the differential equation $y'' + a^2y = sec(ax)$ using the method of	00	2	2
		variation of parameters. OR	08	3	3
8	а	Find the general solution of the differential equation: $\frac{d^2y}{dt^2} = \frac{dy}{dt} = \frac{1}{2} $			
	b	$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = (x^2 + 7x + 5)$	08	2	3
	U	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$	08	3	3
9	a	The table gives the distance in nautical miles (y) of the visible			
		horizon for the given heights (x) in feet above the earth's surface:			
		x 150 200 250 300 350 400			
		y 13.03 15.04 16.81 18.42 19.90 21.27			
		Find the values of y when $x = 160ft$ and $x = 410ft$.	08	3	4
	b	Find y' and y" at $x = 1.2$, given: $ x = 1.0 = 1.2 = 1.4 = 1.6 = 1.8 = 2.0 $			
		x 1.0 1.2 1.4 1.6 1.8 2.0 y 2.72 3.32 4.06 4.96 6.05 7.39	08	2	3
		OR			
10	a	By using the Lagrange's interpolation formula fit a polynomial to the			
		data given:			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Hence find y when $x = 2$.	08	3	4
	b	The following table gives the temperature θ (in degree Celcius) of a			
		cooling body at different instants of time t (in seconds)			
		t 1 3 5 7 9 θ 85.3 74.5 67.0 60.5 54.3			
		[0] 03.0] 7 1.0] 01.0] 01.0]			
		Find approximately the rate of cooling at $t = 3$ seconds and	00	-	
		t = 7 seconds.	08	2	3