CONTENT: Finding place values and values

Examples

Identify the place value of each digit in the number below

Find the value of each digit in the number below

Find the sum of the values of 3 and 6 in the number 34562

Find the product of the values of 4 and 6 in the number 4062 4 0 6 2 Tens= $6\times10=60$ Thousands= $4\times10000=40000$ Product $=40000\times60$ =240000

Find the product of the value of 8 and the place value of 3 in the number 53862

5 3 8 6 2

Hundreds=8x100=800

Thousands=1000

Product

=800 x 1000 =800000

ACTIVITY

- 1. Find the place value of each of the digits with a ring in the following numbers.
- a) 4(7)6 5

b) (5)6 9 3 8

- C) 4 0(6)5 7
- 2. Find the value of each of the digits with a ring in the following numbers.
 - a) 3 7 4
- b) 4(2)5 8 9
- c) 46 9 594
- 3. Find the sum of the values of 4 and 6 in the number 63478.
- 4. Workout the product of the values of 3 and 5 in the number 3765.
- 6. Represent the following numbers on an abacus.
- a) 4302

b) 3205

c) 2520

TOPIC: WHOLE NUMBERS

CONTENT: Writing whole numbers in words and in figures

Examples

Write the following numbers in words

a) 8 2 9 6 3 5

Thousands	Units
829	635

829,635= Eight hundred twenty nine thousand six hundred thirty five.

b) 99035

Million	Thousands	Units
	99	035

99,035=Ninety nine thousand thirty five.

c) 40215

Million	Thousands	Units
	40	215

40,215=Forty thousand two hundred fifteen.

- 2. Write the following in figures
 - a) Forty nine thousand fifteen.

b) Ninety six thousand forty. 96000

96040

Million	Thousands	Units
	3	048

3048=Three thousand forty eight.

ACTIVITY

- 1. Write the following numbers in words.
- a) 4 7 6 5 b) 5 6 9 3 8 C) 40657
- d) 55009

- 2. Write the following in figures.
- a) Forty six thousand eighty five.
- b) Seventy two thousand two hundred fifty thirteen.
- c) Ninety hundred four thousand nineteen.

TOPIC: WHOLE NUMBERS

CONTENT: Forming numbers using digits

Examples

- 1. Given the digits 3,4,6 write down all the 3-digit numbers formed using the digits above.
- =346,364,436,463,634,643
- 2. Given the digits 0,4,1 write down all the 3-digit numbers formed using the digits above.
- =104,140,403,430
- 3. Given the digits 2,4,1 and6
- a) Write down the smallest 4-digit number that can be formed using the above digits.
- =1246

b) Write down the largest 4-digit number that can be formed using the above digits.

=6421

- 4. Given the digits 2,0,4 and1
- a) Write down the smallest 4-digit number that can be formed using the above digits.

=1024

b) Write down the largest 4-digit number that can be formed using the above digits.

=4210

Activity

- 1. Given the digits 5,9 and 6 write down all the 3-digit numbers formed using the digits above.
- 2. Given the digits 0,6 and 7 write down all the 3-digit numbers formed using the digits above.
- 3. Given the digits 9,8,1 and2
- a) Write down the smallest 4-digit number that can be formed using the above digits.
- b) Write down the largest 4-digit number that can be formed using the above digits.
- c) Find the sum of the smallest and the largest numbers formed.
- 4. Given the digits 3,8,0 and2
 - a) Write down the smallest 4-digit number that can be formed using the above digits.
 - b) Write down the largest 4-digit number that can be formed using the above digits.
 - c) Find the sum of the smallest and the largest numbers formed.

CONTENT: Writing whole numbers in expanded form using place values and values Examples

- 1. Expand the following using place values
 - a.) 9812

TH	Н	T	0
9	8	1	2

b) 23012

TTH	TH	Н	Т	0	=(2×10000) + (3×100) + (0×10) + (1×10)+ (2×1)
2	3	0	1	2	

- 2. Expand the following using values
- a) 927

Н	Т	0
9	2	7

$$=(9\times100) + (2\times10) + (7\times1)$$

b) 4812

TH	Н	Т	0
4	8	1	2

$$=(4\times1000) + (8\times100) + (1\times10) + (2\times1)$$

Activity

- 1.Expand the following using place values.
- a) 234

b) 3427

c) 7924

- 2.Expand the following using values.
 - a) 534

b) 7269

c) 68934

CONTENT: Writing whole numbers in expanded form using powers of ten

. Xampies

- 1 Expand the following using place values
 - a) 9812

10 ³	10 ²	10 ¹	10°
9	8	1	2

 $9812=(9\times10^3)+(8\times10^2)+(1\times10^1)+(2\times10^0)$

b) 23512

10 ⁴	10 ³	10 ²	10¹	10°
2	3	5	1	2

 $=(2\times10^4)+(3\times10^3)+(5\times10^2)+(1\times10^1)+(2\times10^0)$

a) 927

10 ²	10 ¹	10°	
9	2	7	

$$=(9\times10^2)+(2\times10^1)+(7\times10^0)$$

Activity

- 1.Expand the following using powers of ten.
- a) 234

b) 3427

c) 7924

c) 534

d) 7269

c) 68934

CONTENT: Rounding off whole numbers

Examples

1. Round 578 off to the nearest tens. b) 3 6 4

5 7 8 +1 0 5 8 0 3 6 4 +0 0 3 6 0

2. Round 5378 off to the nearest hundreds

5378 +100 5400 b) 3 6 3 8

3 6 3 8 +0 0 0 3 6 0 0

3. Round 5378 off to the nearest thousands

25&7& _+1000 26000 b) 23978 +0000 23000

Activity

1. Round off the following to the nearest tens

a) 234

b) 3427

c) 7929

2. Round off the following to the nearest hundreds.

a) 534

b) 7269

c) 68934

3. Round off the following to the nearest thousands.

a) 8421

b) 8269

c) 12934

4. Round off 236578 to the nearest ten thousands.

CONTENT: Writing natural numbers in Roman Numerals

Basics of Roman Numerals

1	5	10	50	100	500	1000
	٧	X	L	\mathcal{C}	Q	W

4 =IV	6=VI	9=IX	2=11	3=111
40 =XL	60=LX	90=XC	20=XX	30=XXX
400 =CD	600=DC	900= <i>C</i> M	200= <i>CC</i>	300= <i>CCC</i>
			2000=MM	3000=MMM

1. Convert 96 into Roman numerals

$$96 = 90 + 6$$

2. Convert LIX in Hindu Arabic numerals

Activity

1. Write the following numbers in Roman Numerals

- a) 54
- b) 49
- c) 99
- d) 955 e) 415

2. Write the following Roman Numerals into Hindu Arabic Numerals

a) LIX

- b) XCIX c) LXXXIV d) MDCIV

3. Alex is XLIX years old. Express his years in Hindu Arabic numerals

CONTENT: BASES

Names of different bases

BASES	NAMES
Base two	Binary base
Base three	Ternary base
Base four	Quaternary base
Base five	Quinary base
Base six	Senary base
Base seven	Septernary base
Base eight	Octal base
Base nine	Nonary base
Base ten	Denary base/Decimal base

Converting non-decimal bases to decimal base(base ten) and decimal base to non-decimal base;

1. Convert 213 four to base ten

42	4 ¹	4 ⁰		
2	1	3		
$= (2x4^2) + (1x4^1) + (3x4^0)$				

$$= (2x4x4) + (1x4) + (3x1)$$

$$=39_{ten}$$

Alternative two(using place values)

2. Change 13_{ten} into binary system

В	NO	REM	
2	13	1	↑
2	6	0	
2	3	1	
2	1	1	ı
	0		

13_{ten}=1101_{ten}

3. Change 304 five into base three

5 ²	5 ¹	5 ⁰
3	0	4

- $= (3x5^2) + (0x5^1) + (4x5^0)$
- = (3x5x5) + (1x4) + (3x1)

=79_{ten} to base three

	I					
,		В	NO	REM	.	
(4×5°)	 	3	79	1	1	=2221 _{three}
(3x1)		3	26	2	ı	
		3	8	2	ı	
		3	2	2	ı	
$304_{\text{five}} = 2221_{\text{three}}$			0			

- 4. Convert the following into base ten (decimal base)
- a) 1011_{two}
- b) 1101_{two}
- c) 101_{two}
- d) 111_{two}

- d) 121_{three}
- e) 202_{five} f) 301_{four}
- g) 123_{five}

- 5.Convert 19_{ten} into base two
- 6.Convert 212_{four} into base five
- 5. Convert 10_{ten} into base two
- 6. Convert 101_{two} into base

- 7. Change 103 four into binary base
- 8. Convert 26_{ten} into base two
- 9.Express 103_{four} into base ten.

Finding the unknown base

1. Given that $21_n = 13_{ten}$, Find base n

$$2n + 1-1 = 13-1$$
 $2n = 12$
 $\frac{2n^{1}}{2_{1}} = \frac{12^{6}}{2_{1}}$
 $n = 6$

n is base six

2. Given that $32_y = 43_{five}$, Find base y

$$(3xy^1) + (2xy^0) = (4x5^1) + (3x5^0)$$

 $(3xy) + (2x1) = (4x5) + (3x1)$
 $3y + 2 = 20 + 3$

$$3y + 2 = 23$$

 $3y + 2 - 2 = 23 - 2$
 $3y = 21$
 $3y = 21$

y is base seven

3. Given that $203_y = 35_{ten}$, Find base y

$$\begin{array}{c|cccc} y^2 & y^1 & y^0 \\ \hline 2 & 0 & 3 \end{array} = 35$$

$$(2xy^2) + (0xy^1) + (3xy^0) = 35$$

 $2y^2 + 0 + 3 = 35$
 $2y^2 + 3 = 35$
 $2y^2 + 3 - 3 = 35 - 3$
 $2y^2 = 32$

$$y^{2} = 16$$

$$\sqrt{y^{2}} = \sqrt{16}$$

y = 4y is base four

Evaluation activity

1. Given that $23_k = 15_{ten}$, find the value of k

2. If $24_h = 40_{five}$, find base h

3. Given that $32_n = 17_{ten}$, find base n

4. If $23_p = 11_{ten}$, find the value of p

5. Given that $23_x = 1101_{two}$, Find the value x

6. Given that $101_r = 17_{ten}$, find base r

7. If $202_g = 26_{seven}$, find the value of g

8. Given that $203_y = 35_{ten}$, find the value of y

Addition and subtraction of numbers in non-decimal bases

Examples

$$3. Workout: 3 3 3_{five}$$

$$-2 2_{five}$$

$$3 1 1_{five}$$

Evaluation activity

1. Workout $1010_{two} + 101_{two}$

2.Add 104_{five} + 232_{five}

3. Subtract 154_{seven}- 36_{seven}

4. Workout 213 five + 122 five

5.Add 342_{six} + 104_{six}

6. Workout 11_{two} + 1_{two}

7. Subtract 1110_{two} - 10_{two}

8.Add 203_{four} + 33_{four}

9. Workout 110 three- 11 three

10. Subtract 204 five - 32 five

11. The table below shows addition in base five. Complete it correctly

+	2	3	4
1	3		10
2			
3		11	

Multiplication of numbers in non- decimal bases

Examples

1. Workout: 10_{two}x 11_{two}

2. Workout: $102_{five} \times 13_{five}$

$1\overset{1}{0}2_{\text{five}}$
x1 3 _{five}
3 1 1 _{five} +1 0 20 _{five}
1 3 31 _{five}

Evaluation activity

1. Workout
$$10_{two} \times 11_{two}$$

2. Workout
$$104_{\text{five}} \times 32_{\text{five}}$$

5. Workout
$$42_{six} \times 14_{six}$$

6. Workout
$$11_{two} \times 11_{two}$$

7. Workout
$$1110_{two} \times 10_{two}$$

11. The table below shows multiplication in base five. Complete it correctly.

X	2	3	4
1	2		4
2			
3		14	