

# Financial Optimisation

Is real estate the most successful way to optimise our finances?

Presented by Pauline, Samuel, Venkata and Max



## Core Goal:

#### Aim:

To compare and contrast returns of portfolios with varying weights of alternate asset classes.

### Hypothesis:

The housing market due to being an investment safe haven and a prevalent conservative safety net against inflation for everyday investors. It can be predicted that portfolios which include a greater amount of investments in the real estate market will provide a greater return than those that do not.

- Questions Raised by the Group
- Why do people invest

  in the housing
- market above other —
- forms of
  - investments?

- Steady cash flow
- Protect against inflation
- **Profits**

## Questions Raised by the Group

What Assets Best
Represent Common
Investment
Portfolios?

**Realestate** → "VNQ" Real Estate ETF.

Bonds → "AGG" a representation of investment grade bonds.

**Commodities** → "GLD" a stock that gives access to the gold market.

Stocks → "SPY" S&P 500 ETF.





### **Exploring the Data**

We were able to begin to explore the data through concatenating it:

```
# Concatenate all daily returns data
combined_returns_close_rf = pd.concat([agg_returns, vnq_returns, gld_returns, spy_returns, rf_rate_data], axis="columns", join="inner")
combined_returns_close_rf
```

And renaming the columns, to make it easier to read.

```
# Rename all daily returns with different financial assets and risk free rate
combined_returns_close_rf.columns=['AGG', 'VNQ', 'GLD', 'SPY', 'RF RATE']
combined_returns_close_rf
```

|            | AGG       | VNQ       | GLD       | SPY       | RF RATE  |
|------------|-----------|-----------|-----------|-----------|----------|
| 2016-10-03 | -0.002935 | -0.018561 | -0.002626 | -0.003004 | 0.000009 |
| 2016-10-04 | -0.003390 | -0.013861 | -0.034711 | -0.004868 | 0.000009 |
| 2016-10-05 | -0.001343 | -0.020488 | -0.001571 | 0.004705  | 0.000009 |
| 2016-10-06 | 0.000000  | 0.000730  | -0.009273 | 0.000788  | 0.000009 |
| 2016-10-07 | 0.000179  | -0.001701 | 0.000420  | -0.003707 | 0.000009 |
|            |           |           |           |           |          |
| 2022-07-11 | 0.004643  | -0.002172 | -0.005360 | -0.011424 | 0.000059 |
| 2022-07-12 | 0.001377  | -0.003918 | -0.003717 | -0.008849 | 0.000060 |
| 2022-07-13 | 0.003633  | -0.004808 | 0.004788  | -0.005252 | 0.000065 |
| 2022-07-14 | -0.003522 | -0.009003 | -0.014047 | -0.002429 | 0.000065 |
| 2022-07-15 | 0.003927  | 0.016951  | -0.002008 | 0.019105  | 0.000064 |

## Cleaning the Data =

df\_portfolio.count()

# Checking for null
df\_portfolio.isnull()

We concluded -through using Python- that the data did not have any nulls.

| AGG | open        | 0 |
|-----|-------------|---|
|     | high        | 0 |
|     | low         | 0 |
|     | close       | 0 |
|     | volume      | 0 |
|     | trade_count | 0 |
|     | vwap        | 0 |
| VNQ | open        | 0 |
|     | high        | 0 |
|     | low         | 0 |
|     | close       | 0 |
|     | volume      | 0 |
|     | trade_count | 0 |
|     | vwap        | 0 |
|     |             |   |

| GLD  | open        | 0 |
|------|-------------|---|
|      | high        | 0 |
|      | low         | 0 |
|      | close       | 0 |
|      | volume      | 0 |
|      | trade_count | 0 |
|      | vwap        | 0 |
| SPY  | open        | 0 |
|      | high        | 0 |
|      | low         | 0 |
|      | close       | 0 |
|      | volume      | 0 |
|      | trade_count | 0 |
|      | vwap        | 0 |
| dtyp | e: int64    |   |

## **Historic View of Performance**

Annualised Mean:

```
# Annualized Mean:
df_portfolio_date_time.groupby(pd.Grouper(freq='12M')).mean().drop("2016-09-30 00:00:00+00:00")
```

#### Annualised Standard Deviation (volatility)

```
# Annualized standard deviation (volatility):
df_portfolio_date_time.groupby(pd.Grouper(freq='12M')).std().drop("2016-09-30 00:00:00+00:00")
```

#### 200 Days Moving Average:

```
# AGG 20, 50, 200 days Moving Average

ax = combined_close['AGG'].rolling(window=20).mean().plot(figsize=(20, 10), title='AGG 20, 50, 200 days Moving Average')

combined_close['AGG'].rolling(window=50).mean().plot(ax=ax, figsize=(20, 10), title='AGG 20, 50, 200 days Moving Average')

combined_close['AGG'].rolling(window=200).mean().plot(ax=ax, figsize=(20, 10), title='AGG 20, 50, 200 days Moving Average')

ax.legend(['MA20', 'MA50', 'MA200'])
```

#### **Determining Volatility**

```
# Calculate variance of all daily returns of SPY
spy_variance = combined_close['SPY'].var()
spy_variance
```

Variance:

```
# Calculate covariance of all daily returns of VNQ vs. SPY
agg_covariance = combined_close['AGG'].cov(combined_close['SPY'])
agg_covariance
```

Calculate covariance of all daily returns of VNQ vs. SPY

```
# Calculate beta of all daily returns of AGG
agg_beta = agg_covariance / spy_variance
agg_beta
```

Calculate beta of all daily returns of AGG:

#### To Plot the Data

Calculate 30-day rolling covariance of AGG vs SPY and plot the data

```
# Calculate 30-day rolling covariance of AGG vs. SPY and plot the data
agg_rolling_covariance = combined_close['AGG'].rolling(window=30).cov(combined_close['SPY'])
agg_rolling_covariance.hvplot(figsize=(20, 10), title='Rolling 30-Day Covariance of AGG Returns vs. SPY')
```

Calculate 30-day rolling beta of AGG and plot the data

```
# Calculate 30-day rolling beta of AGG and plot the data
agg_rolling_beta = agg_rolling_covariance / spy_rolling_variance
agg_rolling_beta.hvplot(figsize=(20, 10), title='Rolling 30-Day Beta of AGG')
```

#### **P**Sharpe ratio:

```
# Sharpe ratio
sharpe_ratios = ((combined_returns_close_rf.mean()-combined_returns_close_rf['RF RATE'].mean()) * 252) / (combined_returns_close_rf.std() * np.sqrt(252))
sharpe_ratios
```

#### → Monte Carlo Simulation →

```
# Configuring a Monte Carlo simulation to forecast ten years cumulative returns on AGG
MC_agg_ten_year = MCSimulation(
    portfolio_data = df_portfolio,
    weights = [1,0,0,0],
    num_simulation = 500,
    num_trading_days = 252*10
)
```

# Running a Monte Carlo simulation to forecast ten years cumulative returns on AGG MC\_agg\_ten\_year.calc\_cumulative\_return()

```
# Plot simulation outcomes on AGG
agg_line_plot = MC_agg_ten_year.plot_simulation()
```

```
# Plot probability distribution and confidence intervals on AGG
agg_dist_plot = MC_agg_ten_year.plot_distribution()
```

#### **Conclusion of Data**

AGG -0.499998 VNQ 0.081308 GLD 0.355018 SPY 0.595763 RF RATE 0.000000











#### **Implications of Data**



```
# Fetch summary statistics from the Monte Carlo simulation results for VNQ
vnq_tbl = MC_vnq_ten_year.summarize_cumulative_return()
# Print summary statistics
print(vng tbl)
                500.000000
count
                  1.089042
mean
                  0.762508
                  0.140278
min
                  0.577118
25%
50%
                  0.855512
75%
                  1.414426
                  6.160681
                  0.254660
95% CI Lower
95% CI Upper
                  3.029485
Name: 2520, dtype: float64
```

The standard deviation of AGG is 0.11. The standard deviation of VNQ is 0.76.

The standard deviation of GLD is 0.75.
The standard deviation of SPY is 1.72.

The standard deviation of diversified portfolio is 0.36.

There is a 95% chance that an initial investment of \$10,000 in AGG over the next 10 years will end within the range of \$6024.2 and \$10165.95. There is a 95% chance that an initial investment of \$10,000 in VNQ over the next 10 years will end within the range of \$2546.6 and \$30294.85.

There is a 95% chance that an initial investment of \$10,000 in GLD over the next 10 years will end within the range of \$5745.68 and \$35319.95.

There is a 95% chance that an initial investment of \$10,000 in SPY over the next 10 years will end within the range of \$7623.26 and \$70946.55.

There is a 95% chance that an initial investment of \$10,000 in the diversified portfolio that contains all four assets with equal weights over the next 10 years will end within the range of \$7975.11 and \$22043.39.

#### Risk Seeking: SPY & GLD

## Considering both risk and return or risk averse: the diversified portfolio

#### Not recommended: AGG

```
# Assuming the average inflation rate from the past 10 years continues at 2.5% for the next 10 years inflation rate = 0.025
```

```
# Calculating the amount of money we will end up with if the initial $10000 investment grows at the rate of inflation inflation_result = 10000 * (1 + inflation_rate)**10 inflation_result
```

12800.845441963567

#### **Postmortem**



## What Difficulties Arose And How Were They Handled?

- Incomplete data
- How to pull risk free data?
- AGG is not a representation of inflation





#### **Postmortem**



## What Additional Questions Arose?

What is hedging in the banking sense





## **Postmortem**

What other research could be done with more time?

- Understand the meaning of hedging better
- Try other assets
- Find a way to pull 10 years worth of data
- Crypto
- Forex
- Different metals (commodity)
- Use both fundamental and technical analysis on historical data, then forecasting
- Utilities (water, electricity)
- Freight/logistics
- Green Energy (Lithium)

#### References

- Bellucco, A. (2022). *Beta: Definition, Calculation, and Explanation for Investors*. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/terms/b/beta.asp">https://www.investopedia.com/terms/b/beta.asp</a>
- Charles Schwab. (2022). Filtering the Market Using Technical Analysis. Retrieved 7 November 2022, from <a href="https://www.schwab.com/learn/story/filtering-market-using-technical-analysis">https://www.schwab.com/learn/story/filtering-market-using-technical-analysis</a>
- Complete Dissertation. (2022). *Pearson's Correlation Coefficient Statistics Solutions*. Retrieved 7 November 2022, from <a href="https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/">https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/</a>
- Cussen, M. (2022). *The Top 5 Ways to Hedge Against Inflation*. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/articles/investing/060916/top-5-ways-hedge-against-inflation.asp">https://www.investopedia.com/articles/investing/060916/top-5-ways-hedge-against-inflation.asp</a>
- Fernando, J. (2022). *Inflation: What It Is, How It Can Be Controlled, and Extreme Examples*. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/terms/i/inflation.asp">https://www.investopedia.com/terms/i/inflation.asp</a>
- Fernando, J. (2022). Sharpe Ratio Formula and Definition With Examples. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/terms/s/sharperatio.asp">https://www.investopedia.com/terms/s/sharperatio.asp</a>

#### References

- Hayes, A. (2022). What Is the Bloomberg Aggregate Bond Index, Who Tracks the Agg? Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/terms/l/lehmanaggregatebondindex.asp#toc-composition-of-the-bloomberg-aggregate-bond-index">https://www.investopedia.com/terms/l/lehmanaggregatebondindex.asp#toc-composition-of-the-bloomberg-aggregate-bond-index</a>
- Hoz, J. D. L. (2022). *AGG: 3 Bond Market Trends*. Seeking Alpha. Retrieved 7 November 2022, from <a href="https://seekingalpha.com/article/4545548-agg-three-bond-market-trends">https://seekingalpha.com/article/4545548-agg-three-bond-market-trends</a>
- iShares by BlackRock. (2022). *iShares Core U.S. Aggregate Bond ETF* | *AGG.* Retrieved 7 November 2022, from <a href="https://www.ishares.com/us/products/239458/ishares-core-total-us-bond-market-etf">https://www.ishares.com/us/products/239458/ishares-core-total-us-bond-market-etf</a>
- Lynn, S. (2022). *Delete Rows & Columns in DataFrames using Pandas Drop.* Retrieved 7 November 2022, from <a href="https://www.shanelynn.ie/pandas-drop-delete-dataframe-rows-columns/">https://www.shanelynn.ie/pandas-drop-delete-dataframe-rows-columns/</a>
- Nasdaq Data Link. (2022). *Get Financial Data Directly Into Python*. Nasdaq Data Link. Retrieved 7 November 2022, from <a href="https://data.nasdaq.com/tools/python">https://data.nasdaq.com/tools/python</a>
  Nasdaq Data Link. (2022). *USAGE*. Retrieved 7 November 2022, from <a href="https://docs.data.nasdaq.com/docs/in-depth-usage">https://docs.data.nasdaq.com/docs/in-depth-usage</a>
- Pandas. (2022). pandas.DataFrame.reset\_index pandas 1.5.1 documentation. Retrieved 7 November 2022, from
- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reset\_index.html

#### References

- Pandas. (2022). pandas.DatetimeIndex pandas 1.5.1 documentation. Retrieved 7 November 2022, from <a href="https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html">https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html</a>
- Peters, K. (2022). 9 Assets for Protection Against Inflation and the ETFs that Track Them. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/articles/investing/081315/9-top-assets-protection-against-inflation.asp">https://www.investopedia.com/articles/investing/081315/9-top-assets-protection-against-inflation.asp</a>
- Potters, C. (2022). *Risk-Seeking Definition*. Investopedia. Retrieved November 6, 2022, from <a href="https://www.investopedia.com/terms/r/risk-seeking.asp">https://www.investopedia.com/terms/r/risk-seeking.asp</a>
- Palmer, B. (2022). Why Is the Consumer Price Index Controversial? Investopedia. Retrieved 7 November 2022, from <a href="https://www.investopedia.com/articles/07/consumerpriceindex.asp">https://www.investopedia.com/articles/07/consumerpriceindex.asp</a>
- Quora. (2022). How does one calculate daily Treasury bill (T bill) returns?. Retrieved 7 November 2022, from <a href="https://www.quora.com/How-does-one-calculate-daily-Treasury-bill-T-bill-returns">https://www.quora.com/How-does-one-calculate-daily-Treasury-bill-T-bill-returns</a>
- Trader University. (2022). Has Bitcoin Failed As An Inflation Hedge? Youtube. Retrieved 7 November 2022, from <a href="https://www.youtube.com/watch?v=LqVGjziEpDk">https://www.youtube.com/watch?v=LqVGjziEpDk</a>