Python Supervised Learning with scikit-learn

Integrated Master's in Informatics Engineering

Learning and Extraction of Knowledge 2018/2019

Synthetic Intelligence Lab

Filipe Gonçalves

César Analide

What is machine learning?

- The art and science of:
 - Giving computers the ability to learn to make decisions from data
 - ... without being explicitly programmed!
- Examples:
 - Learning to predict whether an email is spam or not
 - Clustering wikipedia entries into different categories

Reinforcement learning

- Software agents interact with an environment
 - Learn how to optimize their behavior
 - Given a system of rewards and punishments
 - Draws inspiration from behavioral psychology
- Applications
 - Economics
 - Genetics
 - Game playing
- AlphaGo: First computer to defeat the world champion in Go

Supervised/Unsupervised learning

- Supervised learning: Uses labeled data
 - Predictor variables/features and a target variable
 - Aim: Predict the target variable, given the predictor variables
 - Classification: Target variable consists of categories
 - Regression: Target variable is continuous
- Unsupervised learning: Uses unlabeled data
 - Uncovering hidden patterns from unlabeled data
 - Example:
 - Grouping customers into distinct categories (Clustering)

Naming conventions

- Features = predictor variables = independent variables
- Target variable = response variable = dependent variable
- Example:

Features

Target Variable

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

setosa setosa setosa setosa setosa

Supervised Learning

- Automate time-consuming or expensive manual tasks
 - Example: Doctor's diagnosis
- Make predictions about the future
 - Example: Will a customer click on an ad or not?
- Need labeled data
 - Historical data with labels
 - Experiments to get labeled data
 - Crowd-sourcing labeled data

Exploratory data analysis

The Iris dataset

- Features:
 - Petal length
 - Petal width
 - Sepal length
 - Sepal width
- Target variable: Species
 - Versicolor
 - Virginica
 - Setosa

The Iris dataset in scikit-learn

```
In [1]: from sklearn import datasets
In [2]: import pandas as pd
In [3]: import numpy as np
In [4]: import matplotlib.pyplot as plt
In [5]: plt.style.use('ggplot')
In [6]: iris = datasets.load_iris()
In [7]: type(iris)
Out[7]: sklearn.datasets.base.Bunch
In [8]: print(iris.keys())
dict_keys(['data', 'target_names', 'DESCR', 'feature_names', 'target'])
In [9]: type(iris.data), type(iris.target)
Out[9]: (numpy.ndarray, numpy.ndarray)
In [10]: iris.data.shape
Out[10]: (150, 4)
In [11]: iris.target_names
Out[11]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
```


Exploratory data analysis

```
In [12]: X = iris.data
In [13]: y = iris.target
In [14]: df = pd.DataFrame(X, columns=iris.feature_names)
In [15]: print(df.head())
   sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                5.1
                                  3.5
                                                    1.4
                                                                      0.2
0
                4.9
                                  3.0
                                                    1.4
                                                                      0.2
                4.7
                                  3.2
                                                    1.3
                                                                      0.2
                4.6
                                  3.1
                                                    1.5
                                                                      0.2
                5.0
                                  3.6
                                                    1.4
                                                                      0.2
```


Visual Exploratory Data Analysis

Scikit-learn fit and predict

- All machine learning models implemented as Python classes
 - They implement the algorithms for learning and predicting
 - Store the information learned from the data
- Training a model on the data = 'fitting' a model to the data
 - .fit() method
- To predict the labels of new data: .predict() method

Clustering using KNN

- Basic idea: Predict the label of a data point by
 - Looking at the 'k' closest labeled data points
 - Taking a majority vote

Using scikit-learn to fit a classifier

```
In [1]: from sklearn.neighbors import KNeighborsClassifier
In [2]: knn = KNeighborsClassifier(n_neighbors=6)
In [3]: knn.fit(iris['data'], iris['target'])
Out[3]: KNeighborsClassifier(algorithm='auto', leaf_size=30,
   ...: metric='minkowski',metric_params=None, n_jobs=1,
   ...: n_neighbors=6, p=2,weights='uniform')
In [4]: iris['data'].shape
Out[4]: (150, 4)
In [5]: iris['target'].shape
Out[5]: (150,)
```


Predicting on unlabeled data

```
In [6]: prediction = knn.predict(X_new)
In [7]: X_new.shape
Out[7]: (3, 4)
In [8]: print('Prediction {}'.format(prediction))
Prediction: [1 1 0]
```


Using Logistic Regression

```
In [1]: from sklearn.linear_model import LogisticRegression
In [2]: lr = LogisticRegression()
In [3]: lr.fit(X_train, y_train)
In [4]: lr.predict(X_test)
In [5]: lr.score(X_test, y_test)
```


Using Support Vector Machines

```
In [1]: import sklearn.datasets
In [2]: wine = sklearn.datasets.load wine()
In [3]: from sklearn.svm import SVC
In [4]: svm = SVC() # default hyperparameters
In [5]: svm.fit(wine.data, wine.target);
In [6]: svm.score(wine.data, wine.target)
Out[6]: 1.
```


Supervised learning in Python

- We will use scikit-learn/sklearn (Python3 + Pip required)
 - Integrates well with the SciPy stack
- Links (Windows)
 - Python (download & install) https://www.python.org/downloads/
 - During install, activate option "Add Python to environment variables"
 - Pip (download) https://bootstrap.pypa.io/get-pip.py
 - Open the Command Prompt and navigate to the get-pip.py file.
 - Run the following command: python get-pip.py
- Linux
 - Terminal -> sudo apt-get install python3 python3-pip
- Mac
 - Terminal -> sudo easy_install pip

Python Supervised Learning with scikit-learn

Integrated Master's in Informatics Engineering

Learning and Extraction of Knowledge 2018/2019

Synthetic Intelligence Lab

Filipe Gonçalves

César Analide

