

Project - Advanced Statistics for Physics Analysis

Multivariate analysis in particle physics and separation of signal from background using a Deep Neural Network

Student

Fabio Semenzato

Introduction

Multivariate analysis in particle physics and separation of signal from background using a Deep Neural Network

- Lots of data
- Lots of features

	lcstar_MM_F	Lambda_c_MM_F	Lambda_b0_MM_F	lc_p_ProbNNp_F	lcZDecLSigma_F	lcstarZDecLSigma_F	lcDecTime_F	lcstarDecTime_F	lbDecTime_F
0	2667.468	2308.289	4500.151	0.9987966	3.7409363	0.64662420	0.3047157	0.10524536	1.146613
1	2697.567	2308.289	4531.314	0.9987966	3.6852982	0.25769106	0.2985286	0.03501043	1.157879
2	2670.196	2308.289	4521.702	0.9987966	3.7632043	0.22716732	0.3074197	0.04779404	1.167280
3	2698.279	2308.289	4551.235	0.9987966	3.7061355	-0.12590024	0.3010732	-0.02033100	1.178410
4	2800.471	2286.779	5256.411	0.9909659	6.3935475	-0.64229697	0.3180268	-0.05100102	3.035080
5	2741.149	2279.552	4214.323	0.9739404	4.1540904	-1.19302950	0.6868992	-0.28974180	1.920715
6	2776.752	2279.670	4418.528	0.7637424	-1.8190205	0.46489272	-0.3238385	0.10154445	1.491546
7	2776.752	2279.670	4813.781	0.7637424	-2.1368237	-0.06115993	-0.4398269	-0.01484417	1.371934
8	2776.752	2279.670	4540.744	0.7637424	-1.7646810	0.36948892	-0.3399683	0.08543953	1.302051
9	2704.588	2285.433	4292.723	0.9611492	0.8521455	-1.03829300	0.1111045	-0.26846078	3.279141

- Many background data
- Few interesting events

Objectives

- Find the best fraction of background samples to be used during training
- Find the best parameters to be used for the Boosted Decision Tree
- Find the best parameters to be used for the Deep Neural Network
- Predict the labels of the data acquired in the experiment

Artificial Intelligence

Decision Tree

Steps:

- Find best separation line among features and values
- In each branch thus created, the process is repeated until termination condition
- At the end of each termination branch there's a leaf, telling to which group the sample belongs

Cons:

- Decision trees love orthogonal decision boundaries

Boosting

"Boosting [...] refers to any Ensemble method that can combine severak weak learners into a strong learner."

A. Gèron

Wisdom of the crowd

Blind boosters:

Random forest classifier

Smart boosters:

Cannot be parallelized

- AdaBoost
- Gradient boosting

Smart Boosters

Adapting Boosting (AdaBoost):

- Increase loss weights of the sample misclassified by the previous classifier
- In the final prediction, predictors have weights depending on their overall accuracy on the training set

Gradient Boosting:

Trains predictors on misclassified samples by the previous classifier

Neural Networks

People and Funds over time

Initially based on brain's architecture

Nowadays whole different thing

1943: A neurophysiologist and a matematician introduce the first Artificial Neural Network

1980s:

SVM Random Forest

Nowadays: - More data avilable

- More computing power

- Training algorithms

improves

-More funds

1960s:

Data description

Data cuts

Unusable Features

"Broken" features:

- Lambda_b0_BKGCAT_F
- Icstar BKGCAT F
- Lambda_c_BKGCAT_F

		pair1_3pi_F	Lambda_b0_BKGCAT_F	lcstar_BKGCAT_F	Lambda_c_BKGCAT_F	au_pion0_ProbNNpi_F
	0	852.4460	4.5915e-41	2.897943e-08	4.5915e-41	0.8897798
5	1	852.4460	4.5915e-41	2.897943e-08	4.5915e-41	0.8897798
	2	852.4460	4.5915e-41	2.897943e-08	4.5915e-41	0.8897798
3	3	878.7152	4.5915e-41	2.897943e-08	4.5915e-41	0.5428184
Dackyi vuiid	4	236.9293	4.5915e-41	2.897943e-08	4.5915e-41	0.9975619
2'	5	716.9175	4.5915e-41	2.897943e-08	4.5915e-41	0.9868126
2	6	603.5337	4.5915e-41	2.897943e-08	4.5915e-41	0.9437394
ă	7	603.5337	4.5915e-41	2.897943e-08	4.5915e-41	0.9868126
_	8	234.9984	4.5915e-41	2.897943e-08	4.5915e-41	0.9679128
	9	299.0599	4.5915e-41	2.897943e-08	4.5915e-41	0.9481228
_		pair1_3pi_F	Lambda_b0_BKGCAT_F	lcstar_BKGCAT_F	Lambda_c_BKGCAT_F	tau_pion0_ProbNNpi_F
₹	0	754.2185	10	0	0	0.9960517
=	1	571.5563	10	0	0	0.9691991
<u> </u>	2	812.8149	10	0	0	0.8418677
ח	3	748.3558	10	0	0	0.9889790
ָל ב	4	566.7918	10	0	0	0.7840963
אַנ	5	281.1272	10	0	0	0.9668434
Jiiidiated sigila	6	356.0302	10	10	10	0.7380860
≦ .	7	1036.1909	10	10	10	0.9932866
=	8	559.2961	10	10	10	0.9977948
,	9	848.2168	10	0	0	0.990769:

"Biased" features:

- pair_lcstar_F
 Pair mass ∧_{*}*
- Features used for cuts

Usable Features

Key concept: Frequency discrepancies must be possibly caused by signals, not by cuts $\xrightarrow{\text{Expected \# of signal events is}}$

Random Forest

Random Forest – Best Parameters

200 300 400 500 600 700

Best # of background samples \rightarrow 1100 (with # of signal samples \rightarrow 1043)

- Best # of trees: 400
- Best # features: 5
- Best # nodes: 150
- Best terminal nodes size: 150
- Best importance choice: FALSE

Random Forest - Result

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
0 378 48
1 69 399
```

Accuracy : 0.8691

95% CI: (0.8452, 0.8905)

Probability of being a background event

■ Signal ■ Background

0.4

0.6

prob

8.0

1.0

0.0

0.2

Useful Data

Useful features: features that present an asymmetry in the frequency

Useful

Deleted features: tau_pion0_ProbNNpi_F, tau_pion1_ProbNNpi_F, tau_pion2_ProbNNpi_F, lcstar_pim_ProbNNpi_F, lcstar_pip_ProbNNpi_F,

Lambda_b0_ENDVERTEX_CHI2_F, Lambda_c_ENDVERTEX_CHI2_F,

lcstar_ENDVERTEX_CHI2_F"

Random Forest - Useful

- Best # of background samples \rightarrow 1100 1100 (with # of signal samples \rightarrow 1043)
- Best # of trees: 135 400 ← Original ones
- Best # features: 3 5
- Best # nodes: 30 150
- Best terminal nodes size: 27 150
- Best importance choice: TRUE FALSE

Confusion Matrix and Statistics

Reference Prediction 0 1 0 367 60 1 80 387

Accuracy : 0.8434

95% CI : (0.8179, 0.8666)

86.9% → **84.3%**

Probability of being a background event

Optimized Data

Optimized features: features that present a correlation less than 0.8 in module

4_ lcstarZDecLSigma_F

5_ lcDecTime_F

6_ lcstarDecTime_F

7_ IbDecTime_F

8_ lcDecVerChi2_F

9_lcstarDecVerChi2_F 10_lbDecVerChi2_F

11_ Lambda_b0_DIRA_OWNPV_F

12_pair0_3pi_F

13_ pair1_3pi_F

Correlated Features:

Deleted Feature: IcZDecLSigma_F

^{*}Data used: Data LHCb

Random Forest - Optimized

- Best # of background samples \rightarrow 1100 1100 (with # of signal samples \rightarrow 1043)
- Best # of trees: 135 400 ← Original ones
- Best # features: 3 5
- Best # nodes: 40 150
- Best terminal nodes size: 30 150
- Best importance choice: TRUE FALSE

Confusion Matrix and Statistics

Reference Prediction 0 1 0 357 49 1 90 398

Accuracy : 0.8445

95% CI : (0.8191, 0.8677)

86.9% → **84.5**%

Probability of being a background event

Ensemble Forest

Confusion Matrix and Statistics

Reference Prediction 0 1 0 372 46 1 75 401

> Accuracy: 0.8647 95% CI: (0.8405, 0.8864)

Probability of being a background event

86.9% → **86.5%**

Even if the forests are different, they don't learn different patterns

AdaBoost

Parameters to be tuned:

- Maximum depth of each tree
- Maximum number of rounds

- Best maximum depth: 4
- Best maximum # of rounds: 350

AdaBoost - Results

AdaBoost:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 381 43 1 66 404

> Accuracy: 0.8781 95% CI: (0.8548, 0.8988)

Random Forest:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 378 48 1 69 399

> Accuracy: 0.8691 95% CI: (0.8452, 0.8905)

86.9% → 87.8% → + 0.9%

Probability of being a background event

Gradient Boosting

Parameters to be tuned:

- Maximum depth of each tree
- Maximum number of rounds
- Scaling contribution for the next tree
- Minimum loss reduction required to make a further partition on a leaf node
- # of rounds of patience before early stopping the algorithm if the validation accuracy stops increasing

- Best maximum # of rounds: 300
- Best scaling contribution: 0.57
- Best minimum loss reduction: 0
- Best early stopping # of rounds: 50

Gradient Boosting - Results

Gradient Boosting:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 385 44 1 62 403

> Accuracy: 0.8814 95% CI: (0.8584, 0.9019)

AdaBoost:

Confusion Matrix and Statistics

Reference Prediction 0 1 0 381 43 1 66 404

> Accuracy: 0.8781 95% CI: (0.8548, 0.8988)

87.8% → **88.1%** → + 0.3%

Probability of being a background event

Parameters to be tuned:

- Number of layers
- Number of neurons per layer
- Regularizer
- Activation function
- Optimizer
- Number of epochs
- Batch size
- Callback functions

Parameters to be tuned:

- Number of layers
- · Number of neurons per layer
- Regularizer
- Activation function
- Optimizer
- Number of epochs
- Batch size
- Callback functions

Parameters to be tuned:

- Number of layers
- Number of neurons per layer
- Regularizer
- Activation function
- Optimizer
- Number of epochs
- Batch size
- Callback functions

Reduce risk of overfitting

• L1 or L2 regularizer

Add I1 or I2 norm of the weights to the loss function

Dropout

Probability p (to be tuned) of dropping out each neuron

Batch normalization

Parameters to be tuned:

- Number of layers
- Number of neurons per layer
- Regularizer
- Activation function
- Optimize
- Number of epochs
- Batch size
- Callback functions

Key problem: gradient saturation

• Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

Gradient saturation

ReLU

$$f(x) = \max(0, x)$$

• ELU

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha \cdot (e^x - 1) & \text{if } x < 0 & 0 < \alpha < 1 \end{cases}$$

 Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ a \cdot x & \text{if } x < 0 \end{cases} \quad 0 < a <$$

Parameters to be tuned:

- Number of layers
- Number of neurons per layer
- Regularizer
- Activation function
- Optimizer
- Number of epochs
- Batch size
- Callback functions

Key problems:

- don't fall into local minima
- stabilize around global minimum

 Nesterov Accelerated Gradient optimizer

Calculate the gradient of the cost function not at the local position but slightly ahead in the direction of the momentum

RMSProp optimizer

Accumulate gradients from the most recent iterations, with an exponential decay average of the squares

Adam optimizer

ADAptive Moment estimation: like RMSProp but takes into consideration the normal (not squared) average as well

Training & validation loss

Neural Networks – Best Parameters

Parameters to be tuned:

- Number of layers
- Number of neurons per layer
- Regularizer
- Activation function
- Optimizer
- Number of epochs
- Batch size
- Callback functions

Batch Normalization + Dropout (p = 0.5)

ReLU

RMSProp

400

25

- Early stopping: patience 100
- Reducing LR: patience 25, factor 0.6

Voting Classifier

1 Layer: 700

2 Layers: 90 + 180

3 Layers: 250 + 130 + 80

4 Layers: 100 + 70 + 50 + 30

5 Layers: 100 + 70 + 50 + 30 + 20

Neural Networks – Summary Models

Model

Model: "sequential"

Output	Shape	Param #
(None,	700)	15400
(None,	700)	0
(None,	700)	2800
(None,	1)	701
	(None,	(None, 700) (None, 700) (None, 700) (None, 1)

Total params: 18,901 Trainable params: 17,501 Non-trainable params: 1,400

Model

Model: "sequential_4"

Layer (type)	Output	Shape	Param #
dense_14 (Dense)	(None,	100)	2200
dropout_10 (Dropout)	(None,	100)	0
batch_normalization_v1_10 (BatchNor	(None,	100)	400
dense_15 (Dense)	(None,	70)	7070
dropout_11 (Dropout)	(None,	70)	0
batch_normalization_v1_11 (BatchNor	(None,	70)	280
dense_16 (Dense)	(None,	50)	3550
dropout_12 (Dropout)	(None,	50)	Θ
batch_normalization_v1_12 (BatchNor	(None,	50)	200
dense_17 (Dense)	(None,	30)	1530
dropout_13 (Dropout)	(None,	30)	Θ
batch_normalization_v1_13 (BatchNor	(None,	30)	120
dense_18 (Dense)	(None,	20)	620
dropout_14 (Dropout)	(None,	20)	0
batch_normalization_v1_14 (BatchNor	(None,	20)	80
dense 19 (Dense)	(None,	1)	21

Total params: 10,071 Trainable params: 15,531 Non-trainable params: 540 Model: "sequential 1"

Output	Shape	Param #
(None,	90)	1980
(None,	90)	Θ
(None,	90)	360
(None,	180)	16380
(None,	180)	Θ
(None,	180)	720
(None,	1)	181
	(None, (None, (None, (None,	(None, 90) (None, 90) (None, 90) (None, 180) (None, 180) (None, 180) (None, 180)

Total params: 19,621
Trainable params: 19,081
Non-trainable params: 540

Model

Model: "sequential 2"

Layer (type)	Output	Shape	Param #
dense_5 (Dense)	(None,	250)	5500
dropout_3 (Dropout)	(None,	250)	0
batch_normalization_v1_3 (BatchNorm	(None,	250)	1000
dense_6 (Dense)	(None,	130)	32630
dropout_4 (Dropout)	(None,	130)	Θ
batch_normalization_v1_4 (BatchNorm	(None,	130)	520
dense_7 (Dense)	(None,	80)	10480
dropout_5 (Dropout)	(None,	80)	Θ
batch_normalization_v1_5 (BatchNorm	(None,	80)	320
dense_8 (Dense)	(None,	1)	81

Total params: 50,531
Trainable params: 49,611
Non-trainable params: 920

Model: "sequential_3"

Layer (type)	Output	Shape	Param #
dense_9 (Dense)	(None,	100)	2200
dropout_6 (Dropout)	(None,	100)	0
batch_normalization_v1_6 (BatchNorm	(None,	100)	400
dense_10 (Dense)	(None,	70)	7070
dropout_7 (Dropout)	(None,	70)	0
batch_normalization_v1_7 (BatchNorm	(None,	70)	280
dense_11 (Dense)	(None,	50)	3550
dropout_8 (Dropout)	(None,	50)	0
batch_normalization_v1_8 (BatchNorm	(None,	50)	200
dense_12 (Dense)	(None,	30)	1530
dropout_9 (Dropout)	(None,	30)	0
batch_normalization_v1_9 (BatchNorm	(None,	30)	120
dense 13 (Dense)	(None,	1)	31

Total params: 15,381 Trainable params: 14,881 Non-trainable params: 500

Neural Networks – Results

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
0 376 49
1 71 398
```

Accuracy: 0.8658 95% CI: (0.8417, 0.8874)

86.6% < 86.9% < 88.1%

Neural Random Gradient Network Forest Boosting

No reasons why Neural Networks should perform better than Random Forests

Probability of being a Signal event

Final Ensemble

Classifiers used:

- Random forest all features
- Random forest useful features
- Random forest optimized features
- Ensemble Forest
- AdaBoost
- Gradient Boosting
- Neural Networks (5 of them considered separately)

Final Ensemble - Results

Classifiers Comparison

Theoretical # of interesting events

How to:

1) Fit all data ($feature m(\Lambda_b^0)$) with the most suitable distribution

6000

datas or\$data lhcb\$Lambda b0 MM F

7000

Histogram of datas or\$data Ihcb\$Lambda b0 MM F

Regions where signals are present have been left out

Gamma distribution

 $\alpha \simeq 3.84$ $\beta \simeq 0.0032$

 Difference between fitted distribution and data, constrained to positive values

3) Cut with the cuts used selecting the background and sum the counts

3000

4000

5000

Theoretical # of interesting events:

7363

Final Prediction

All complementary data

Complementary data with cuts

Theoretical number

Sum of counts:

7713

7363