Recursion
La function calling itself
otni nevalo neslaret si maldora a
us spid ant sulos of anoldorg restlems
bus pram
3 mb bes plan.
Ex:
Jum 20) = 1, 12 + 10
2 3 4 4 5 5 7 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6
T T T T T T T T T T T T T T T T T T T
How to write a fecusive cade?
1) Assurption: - downe your Junction voorts
Lugari relland a rob
2) main legic: Lolving bigger Problem with
molder Problem.
3) Base care: Las men et smallest i/p me
lon on

```
function call Tracing
 int add(int x, int y) {
     return x + y;
 }
                                        x -2250
                               SMP
 int mul(int x, int y, int z) -
                                        g = 40
     return x * y * z;
                                       X -30
 }
                               x lum
                                        8-75-1
 int sub(int x, int y) {
                                         x =10,7=20
                               x bbo
```

return x - y;

}

void print(int x) {

cout << x << endl;
}

cout << x << endl;

nions

x=1019=50

F1 = 30

Over when ro, find its factorial.
51, = 5x4x3x2x1=> 120
dactorial (N) = Jactorial (N-1) + N
Jack (5) = Jack (4) *5
0%=1
_ '
3 (or 4mi) 2007 [revlue 3 (0== m) 8:
13 CN 5 50) 5 moon ,)
teng= fact (N-1) *N
(quet newless
13
foct (3)

func fact (int 10=3) & E1 newberg 10== 112 8: temp = fact (N-1) *N - ; gifter newless func fact (int 10=2) { E1 newlers (0==10 8: 1 * (1-on to be = gust Guet newless func fact (int 10=1) } El neuter & 10==10 g: temp: Jack (N-1) *N ; fuet newless func fact (int 10=0) } El newton & 10== 112 8: temp = gact (N-1) *N gust newless

		func fact (int 10) &
		[1 senture 3 (0== n) b: 1
		2 tong = fact (N-1) * N
X	N=0 Jack	janet newlere E
×	N=1 Jack	3
*	100 Jack	909(3) = P
*	n:3	
	6	

000 Z	<u>_</u>	oma	cci)		لموسن وي	<u> </u>			
~ ~ ~						6			
	0	,		2	ے .	5 8	13	51	

$$\frac{1}{2} \frac{1}{6} \rightarrow 8$$

$$\frac{1}{6} \rightarrow \frac{1}{6} \rightarrow \frac{$$

s cas dif tmi		
\$ (110==1) B;		
a newtere		
ے ا		
refran 4:9cn-1) + 4:pcn-5	-)	
\		
3		
₹ ²		Nal
	x 4:2	
4.9(3) ~ '	× 4; b	N20
4:9(3)	1	
2(1)	× 4.P	N=1
1 9(3)	X	
	x 4.P	NJZ
(ask surje	v 416	
	× 9; p	N= 3

```
0 veg hiven 9, m \rightarrow calculate <math>a^m
   e.g, q=2, m=3 -> 8.
          95 - 27 * L
      fow (a, m) = fow (a, m-1) * a
            Junc Power (a, m) &
                if (m==0) & yetuen 1]
              Helun Power (a, m-1) * a
              Power (2, 3)
                Power (2, 2)
                   1 92
                  Power (2,1)
                 Pener (2,0)
```

Pow (a, m) - Pow (a, m/2) * Pow (a, m/2)
me add
60m (d'w) = 60m (d'w/ ³) # 60m (d'w) ³) # a
$J_{A} \longrightarrow J_{B} * J_{B} * J_{B}$
func four (a, m) E
[] newless & (0==m) fi
13 (m1.5==0) {
(2/11/2) mad * (2/11/2) mardens
اع و/هو فر
; D*(21, w) mod * (21, w/2) +a.
3

29 * 2

J, = J, * J,

210 = 25 * 25

29= 24 + 24 + 2

ه و

210

m===m

func Pow (a, m)
[1 menters & (0==m) }!
ig (m.1.5==0) {
(EILL'E) mod * (TVW'D) cnod venter
; D*(EIU.b) mad * (E/W'b) cood ventere
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(Pow (2,2)
Parata 22 3-
152 San (210)
1 (2'0) for (5'0) 6 or (5'0) 6 or (5'0) 6 or (5'0)
for (5,0)

		C 6 31 44
\sim	4007	Exponentiation

- fast Expanentiation
func Pens 2 (arm)
[] neuteur ? (0==m) fi
temp = four (a, m/2);
13 (w. 5==0) E
, quet # quet ,
\ \ \ _3
e/ve &
's * friet * quet newlere
2
7 1024
bor (5,10)
532
Pero (2,5)
2 34
form (5, 5)
7 25
(cr, c) cus
72,
fans (2,0)

```
Time Couplerity
                             T(0) = 1
int factorial(int N) { → T(m)
   // base case
   if (N == 0) {
      return 1;
   // recursive case
   return N * factorial(N-1);
}
                   → Tem-1)
                        ~ secondance felation
          T(m) = T(m-1) + 1
       T(m) = T(m-1) + 1 -
                    T (m-1) = T (m-2) + 1
    >> T(m) = T(m-2)+2
                    -Tm-2) = Tm-3)+1
     =) Tm1 = Tm-3) +3 ~
       Den euc
         Tm) = T (m-k) + k
                        ij
                             m-k = 0,
                               m = k
         T(m) = T (m-m) + m
          TM1 = T60) + m
           Tun1 = 1+m.
          T. C-3 OM),
```

```
(m) < - > 1 cm)
                                       (1)T \simeq 1 = (0)T
    [ ] newless & (0==m) };
    id (m1.2==0) {
          ( 2/1 , b) mod * ( 2/1 , b) modern
       ١٩
        e120 8
         ; D*(c/m, p) was * (2/m, p) cusp newlere
          Tm) = T(m2) + T(m2) +1
     => Tm)= 21(m/2)+1
                     J- - 31(2)+1
         T(m) = 2(27(my)+1) +1
   => T m) = 47 (my) + 3,

T(my) = 27 (my) +1
     => T (m) - 8T (m) +7
                     TUNE = 27 (M/6)+1
     => TW1= 16T (m) + 15
T(m) = \frac{\partial^{k}}{\partial x} \times T\left(\frac{m}{\partial x}\right) + \frac{\partial^{k}}{\partial x} = 1
                m=1=) m= 2 k= log_n
```

 $Tm1 = g^{1} \log_{2} m + T \left(\frac{m}{g^{1} \log_{2} m} \right) + g^{1} \log_{2} m - 1$ $Tm1 = m + T \left(1 \right) + m - 1$ Tm1 = m + m - 1 $T(m1 = 2m - 1) = T \cdot C \rightarrow 0m$

func Pens 2 (a.m) => Tm)

if (m==0) & neturn 13

if (m:\2==0) &

if (m:\2==0) &

vehun temp + temp;

2

else &

neturn temp + temp + a;

T(1)=1.

=) $Tom_2 = Tom_2 = Tom_4 + 1$ =) $Tom_2 = Tom_4 + 1$

$$= > T(m) = T(\frac{m}{8}) + \frac{9}{8}$$

$T(m) = T\left(\frac{m}{g_k}\right) + k$	
Twn= T(1)+ log27	<u></u>
Tm)= 1+10927	3 = 1
T. C - O(10g2m)	w= 5€
	k = 1002~

```
Function fibonacci(int n){
   if(n == 0 || n == 1) return n;
   return fibonacci(n-1) + fibonacci(n-2);
}
```

Tm1= Tm-1)+ Tm-2)+1

\<u>__</u>

```
Another way of calculating T.C
           T.C.s Time taken by one Junchien call *
                                                   no. of functions
int factorial(int N) {
                                                       (w took
                                     Jack (6)
   // base case
                                         7
   if (N == 0) {
                                                        (1-00 took
                                       fact (5)
      return 1;
                                                          fock-2)
                                          7
                                        fact (4)
  // recursive case
   return N * factorial(N-1);
                                          7
                                         Joer(3)
                                           tock (2)
                                            fact (1)
                                               tactor
                    T.C-> 1 * m => 00m.
```



```
Function fibonacci(int n){
   if(n == 0 \mid \mid n == 1) return n;
   return fibonacci(n-1) + fibonacci(n-2);
}
                            3(S)
                                             5.00 0 cm
                        d(u)
                   913)
                                       200
                         A(1) 7(2)
                 7(2)
                                     cab
                              しいり
                    rab
             dc1)
```