THE CLAIMS

	I claim:
1	1. A laser, comprising:
2	a first optically reflective element;
3	a second optically reflective element opposed to and aligned with said first optically reflective
4	element to define a laser cavity having an optical axis;
5	a laser dye gain element having a laser dye and which is interposed between said first and
6	second optically reflective elements along said optical axis for transforming an optical pump
7	signal into a resonant optical signal;
	•
8	a laser diode system for generating and injecting said optical pump signal into said laser cavity
9	along said optical axis, where said optical pump signal is a sequence of optical pulses having a
10	duration of about $n\tau_p$ where τ_f represents a flourescence lifetime of said laser dye, and
11	$3 \le n \le 25$.
1	2. The laser of claim 1 wherein said optical pump signal has a pulse period in the range of
2	about 1 Khz to 1 Mhz.

3. The laser of claim 1 wherein said laser dye gain element includes a host material selected 1 2 from the group that includes porous glass, plastic, and sol-gels. 1 4. The laser of claim 3 wherein said plastic consists essentially of modified polymethyl 2 methacrylate. 1 5. The laser of claim 1 wherein said first optically reflective element has a curved reflective 2 surface. 1 6. The laser of claim 5 wherein said first and second optically reflective elements define a 2 nearly hemispherical resonator. 1 7. A method for generating a laser output signal, comprising the steps of: 2 generating an optical pump signal that is a sequence optical pulses each having a duration of about $n\tau_0$ where τ_f represents a flourescence lifetime of a laser dye and $3 \le n \le 25$; 3 directing said optical pump signal into an optical resonant cavity having a laser dye gain 4 5 element that contains said laser dye for transforming said optical pump signal into an excited 6 optical signal; 7 resonating said excited optical signal in said optical resonant cavity; and N:\Projects\Patent\MAKPat\82948\82948app02.wpd

8	emitting a portion of said excited optical signal from said optical resonant cavity.
1	8. The method of claim 7 wherein said optical pump signal has a pulse period in the range of
2	about 1 Khz to 1 Mhz.
1	9. The method of claim 7 wherein said laser dye gain element includes a host material
2	selected from the group that includes porous glass, plastic, and sol-gels.
1	11. The method of claim 9 wherein said plastic consists essentially of modified polymethyl
2	methacrylate.
1	12. The method of claim 7 wherein said optical resonant cavity is a nearly hemispherical
2	resonator.