Tree Indexes

Alvin Cheung Fall 2022

Reading: R & G Chapter 10

Simple Idea?

Input Heap File

- **Step 1:** Sort heap file & leave some space
 - Pages physically stored in logical order (sequential access)
 - Maintenance as new records are added/deleted is a pain, can lead to B updates in the worst case (move everything down or up)

- Step 2: Use binary search on this sorted heap file: log₂(B) pages read
 - Fan-out of 2 → deep tree → lots of I/Os
 - Examine entire records just to read key during search: would prefer log₂(K) where K is number of pages to store keys << B

Let's fix these assumptions

- Idea: Keep separate (compact) key lookup pages, laid out sequentially
 - Maintain key → recordID mapping [We'll revisit this later]
- No need to sort heap file anymore! Just sort key lookup pages
- Use binary search on lookup pages as opposed to on all of the data pages
 - Still have a deep tree due to fan-out of 2 → lots of I/Os
- Also, maintenance of the key lookup pages is a pain! Worst case K updates

Let's fix these assumptions, take 2

Idea: repeat the process!

 Lookup pages for the lookup pages

 And then lookup pages for the lookup pages for the lookup pages,

- Let's set fanout to be >> 2
- That is essentially the idea behind B+ Trees ...
- We'll find out why the pointers are helpful later

Enter the B+ Tree, More Formally

- Dynamic Tree Index
 - Always Balanced
 - High fanout
 - Support efficient insertion & deletion
 - Grows at root not leaves!
- "+"? B-tree that stores data entries in leaves only
 - Helps with range search

B+ Trees: How to Read an Interior Node

Node[..., (K_L, P_L), (K_R, P_R)...]

means that

All tuples in range $K_L \le K < K_R$ are in tree P_L

Example of a B+ Tree

- Property 1: Nodes in a B+ tree must obey an occupancy invariant
 - Guarantees that lookup costs are bounded
 - Invariant: each interior node is full beyond a certain minimum: in this case [and typically], at least half full
 - This minimum, d, is called the order of the tree
 - Here, max # of entries = 4. Thus d = 2.
 - Guarantee: d <= # entries <= 2d. In this tree, 2 <= # entries <= 4
 - Root doesn't need to obey this invariant
 - Same invariant holds for leaf nodes: at least half full (d may differ, here it is the same)

Example of a B+ Tree

- Property 1: Nodes in a B+ tree must obey an occupancy invariant
 - Each interior/leaf node is full beyond a certain minimum d
- Property 2: Leaves need not be stored in sorted order (but often are)
 - Next and prev. pointers help examining them in sequence [useful as we will see soon]

B+ Trees and Scale

- How many records can this height 1 B+ tree index?
 - Max entries = 4; Fan-out (# of pointers) = 5
 - Height 1: 5 (pointers from root) x 4 (slots in leaves) = 20 Records

B+ Trees and Scale Part 2

- How many records can this height 3 B+ tree index?
 - Fan-out = 5; Max entries = 4
 - **Height 3:** 5 (root) x 5 (level 2) x 5 (level 3) x 4 (leaves) = 5^3 x 4 = 500 Records

Extending this: B+ Trees in Practice

- (Warning: Sloppy back-of-the-envelope calculation!)
- Say 128KB pages, with around 40B per (val, ptr) pair
 - Max entries = roughly 128KB/40B = approx. 3000
 - Max fanout = 3000+1 = approx. 3000
 - Say 2/3 are filled on average
 - Average fan-out/entries = approx. 2000

- At these capacities
 - Height 1: 2000 (pointers from root) x 2000 (entries per leaf) = $2000^2 = 4,000,000$
 - Height 2: 2000 (pointers from root) x 2000 (pointers from level 2) x 2000 (entries per leaf) = $2000^3 = 8,000,000,000$ records!!
- Core takeaway: Even depths of 3 allow us to index a massive # of records!

Searching the B+ Tree

- Procedure:
 - Find split on each node (Binary Search)
 - Follow pointer to next node

Searching the B+ Tree: Find 27

- Find key = 27
 - Find split on each node (Binary Search)
 - Follow pointer to next node

Searching the B+ Tree: Fetch Data

Searching the B+ Tree: Find 27 and up

- Find keys >=27
 - Find 27 first, then traverse leaves following "next" pointers in leaf
 - This is an example of a range scan: find all values in [a, b]
 - Benefit: no need to go back up the tree! Saves I/Os

Inserting 26* into a B+ Tree Part 1

Find the correct leaf

Inserting 26* into a B+ Tree Part 2

- Find the correct leaf
- If there is room in the leaf just add the entry

Inserting 26* into a B+ Tree Part 3

- Find the correct leaf
- If there is room in the leaf just add the entry
 - Sort the leaf page by key

Inserting 8* into a B+ Tree: Find Leaf

Find the correct leaf

Inserting 8* into a B+ Tree: Insert

- Find the correct leaf
 - Split leaf if there is not enough room

Inserting 8* into a B+ Tree: Split Leaf

- Find the correct leaf
 - Split leaf if there is not enough room
 - Redistribute entries evenly

Inserting 8* into a B+ Tree: Split Leaf, cont

- Find the correct leaf
 - Split leaf if there is not enough room
 - Redistribute entries evenly
 - Fix next/prev pointers

Inserting 8* into a B+ Tree: Fix Pointers

- Find the correct leaf
 - Split leaf if there is not enough room
 - Redistribute entries evenly
 - Fix next/prev pointers

Inserting 8* into a B+ Tree: Mid-Flight

Something is still wrong!

Inserting 8* into a B+ Tree: Copy Middle Key

- Copy up from leaf the middle key and pointer to the orphan leaf
 - This is what we need to access it

Inserting 8* into a B+ Tree: Split Parent, Part 1

- Copy up from leaf the middle key and pointer to the orphan leaf
- No room in parent? (Parent now has 2d+1 instead of 2d)
 - Recursively split index nodes
 - Redistribute the rightmost d+1 keys

Inserting 8* into a B+ Tree: Split Parent, Part 2

- Copy up from leaf the middle key and pointer to the orphan leaf
- No room in parent? Recursively split index nodes
 - Redistribute the rightmost d+1 keys
 - Not enough: we now have two roots!

Inserting 8* into a B+ Tree: Root Grows Up

- No room in parent? Recursively split index nodes
 - Redistribute the rightmost d+1 keys
- To fix, create a new root:
 - Push up from interior node the middle key (and assoc. pointer)

Inserting 8* into a B+ Tree: Root Grows Up, Pt 2

- Net effect
 - d keys on the left and right => invariant satisfied!
 - middle key pushed up
- Consolidate 5* into left node

Inserting 8* into a B+ Tree: Root Grows Up, Pt 3

- Net effect
 - d keys on the left and right
 - middle key pushed up
- Here, we ended up creating a new root and increasing depth => rare

Copy up vs Push up!

The **leaf** entry (5) was **copied** up

We can't lose the original key: all keys must be in leaves

The **index** entry (17) was **pushed** up

We don't need it any more for routing => convince yourself!

B+ Tree Insert: Algorithm Sketch

- Find the correct leaf L.
- 2. Put data entry onto L.
 - If L has enough space, done!
 - Else, must split L (into L and a new node L2)
 - Redistribute entries evenly, copy up middle key (and ptr to L2)
 - Insert index entry pointing to L2 into parent of L.

B+ Tree Insert: Algorithm Sketch Part 2

- Step 2 can happen recursively
 - To split index node, redistribute entries evenly, but push up middle key (and ptr to new index node). (Contrast with leaf splits)
- Splits "grow" tree
 - Tree growth: gets wider if possible from bottom up
 - Worst case, adds another level with a new root
 - Ensures balance & therefore the logarithmic guarantee

We will skip deletion

- In practice, occupancy invariant often not enforced during deletion
- Just delete leaf entries and leave space
 - If new inserts come, great
 - This is common
- If page becomes completely empty, can delete
 - Parent may become underfull
 - That's OK too
- No need to delete inner pages even if empty
 - Only used for lookups
- Guarantees still attractive: log_F(total number of inserts)
- Textbook describes algorithm for rebalancing and merging on deletes

BULK LOADING B+-TREES

Bulk Loading of B+ Tree

- Suppose we want to build an index on a large table from scratch
- Would it be efficient to just call insert repeatedly
 - Q: No ... Why not?
 - Constantly need to search from root
 - Modifying random pages: poor cache efficiency
 - Leaves poorly utilized (typically half-empty)

Smarter Bulk Loading a B+ Tree

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
 - We'll learn a good disk-based sort algorithm soon!
- Fill leaf pages to some fill factor > d (e.g. ¾)
 - Updating parent until full

Smarter Bulk Loading a B+ Tree Part 2

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to some fill factor > d (e.g. ¾)
 - Update parent until full
 - Then create new sibling and copy over half: same as in index node splits for insertion

Smarter Bulk Loading a B+ Tree Part 3

- Lower left part of the tree is never touched again
- Occupancy invariant maintained:
 - leaves filled beyond d, rest of the nodes via insertion split procedure

Smarter Bulk Loading a B+ Tree Part 4

- Benefits: Better
 - Cache utilization than insertion into random locations
 - Utilization of leaf nodes (and therefore shallower tree)
 - Layout of leaf pages (more sequential)

Summary

- B+ Tree is a powerful dynamic indexing structure
 - Inserts/deletes leave tree height-balanced; log_FN cost
 - High fanout (F) means height rarely more than 3 or 4.
 - Higher levels stay in cache, avoiding expensive disk I/O
 - Almost always better than maintaining a sorted file.
 - Widely used in DBMSs!
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large data set.