PLP - 27 TOPIC 27—PROPERTIES & CONGRUENCE

Demirbaş & Rechnitzer

PROPERTIES OF RELATIONS

TOO GENERAL

- Definiton of relation is too(?) general
- Usually require additional properties to be interesting
- Consider "is divisible by" on integers. Has useful properties
 - \circ For all $n \in \mathbb{Z}$, we know $n \mid n$
 - \circ For all $a,b,c\in\mathbb{Z}$, if $a\mid b$ and $b\mid c$ then $a\mid c$
- Notice that ≤ on reals has similar properties
 - \circ For all $x \in \mathbb{R}$, we know $x \leq x$
 - \circ For all $x,y,z\in\mathbb{R}$, $x\leq y$ and $y\leq z$ then $x\leq z$

Such additional *structure* make those relations more interesting and useful

3 USEFUL PROPERTIES

DEFINITION:

Let R be a relation on a set A. Then R is

- ullet reflexive when $orall a \in A, a \mathrel{R} a$
- ullet symmetric when $orall a,b,a\ R\ b \implies b\ \overline{R\ a}$
- ullet transitive when $orall a,b,c,(a\ R\ b)\wedge(b\ R\ c)\implies a\ R\ c$

Relations on ${\mathbb Z}$	<	\leq	=	\neq		1
reflexive	F	Т	Т	F	Т	F
symmetric	F	F	Т	Т	F	F
transitive	Т	Т	Т	F	Т	F

PICTURES

EXAMPLES — GOOD FOR CLASS

Let R be the relation "is a subset of" on $\mathcal{P}\left(\mathbb{Z}
ight)$

Let R be the relation "lives within 10km of" on the set of people watching now.

CONGRUENCE

CONGRUENCE MODULO n

THEOREM:

Let $n \in \mathbb{N}$ then the relation of congruence modulo n is reflexive, symmetric and transitive.

Scratch work

- Let *n* be a fixed real number.
- Recall that $a \equiv b \pmod n$ when $n \mid (a-b) must$ know definitions
- Three things to prove, so three sub-proofs
- This uses

$$P \implies (Q \land R \land S) \equiv (P \implies Q) \land (P \implies R) \land (P \implies S)$$

REFLEXIVE

congruence modulo n is reflexive

Scratch work

- ullet Need to show $orall a \in \mathbb{Z}, n \mid (a-a)$
- So let a be any integer, then $a-a=0=n\cdot 0$
- Hence $n \mid (a-a)$.

PROOF.

Fix $n \in \mathbb{N}$, and let $a \in \mathbb{Z}$. Then since $(a-a) = n \cdot 0$, it follows that $n \mid (a-a)$. Hence $a \equiv a \pmod n$ as required.

SYMMETRIC

congruence modulo n is symmetric

Scratch work

- ullet Need to show $orall a,b\in \mathbb{Z}, (n\mid (a-b))\implies (n\mid (b-a))$
- So let a, b be any integers, and assume that $n \mid (a b)$
- ullet Hence $a-b=n\cdot k$ and thus b-a=n(-k)

PROOF.

Fix $n \in \mathbb{N}$, and let $a,b \in \mathbb{Z}$. Assume that $a \equiv b \pmod n$, and so $(a-b) = n \cdot k$ for some $k \in \mathbb{Z}$.

This tells us that (b-a)=n(-k) and so $n\mid (b-a)$ and thus $b\equiv a\pmod n$ as we needed.

TRANSITIVE

congruence modulo n is transitive

Scratch work

- ullet Need to show $orall a,b,c\in \mathbb{Z}, (n\mid (a-b))\wedge (n\mid (b-c))\implies (n\mid (a-c))$
- ullet So let a,b,c be any integers, and assume that $n\mid (a-b)$ and $n\mid (b-c)$
- Hence $a-b=n\cdot k$ and $b-c=n\cdot \ell$
- We need to say something about a-c easy! $a-c=n(k+\ell)$

PROOF.

Fix $n\in\mathbb{N}$, and let $a,b,c\in\mathbb{Z}$. Assume that $a\equiv b\pmod n$ and $b\equiv c\pmod n$. So $a-b=nk,b-c=n\ell$ for some $k,\ell\in\mathbb{Z}$

Hence $(a-c)=n(k+\ell)$ and so $n\mid (a-c)$ and thus $a\equiv c\pmod n$ as we needed.

$$(1, 2)$$
 $(2, 1)$
 $((2, 2), (-1, 1))$
 $((2, 2), (-1, 1))$

