自动控制原理试卷解答(2003-2004学年第一学期)

$$\frac{C(s)}{R(s)} = \frac{G_1G_3 + G_2G_3(1 + G_1)}{1 + 2G_1 + G_1G_3 + G_2 + G_1G_2}$$

_,

- (1) K = 50, $c_m = 1.163$, $t_p = 0.36$ (秒), $c(\infty) = 1$;
- (2) 令 $\varsigma=0.707$,可求出 K=25 ,此时 $\omega_n=\frac{10}{\sqrt{2}}$, $t_s=0.7$ (秒),所以,不可能选择

K 值使 $t_s < 0.2$ 秒。

三、

(1) 开环零点 $z_1=z_2=-2$,开环极点为 $p_1=-2$, $p_2=0.5$; 实轴上区间[-2,0.5]为根轨迹部分。起始角 $\theta_{p1}=0^0$, $\theta_{p2}=-180^0$,分离点 d=-0.18,根轨迹与虚轴的交点为原点和 $\pm j0.603$ 。终止角 $\varphi_z=\pm 90^0$

(2) 系统稳定时 K 的取值范围是 1 < K < 1.5 ,稳态误差 $e_{rss} = \frac{1}{1-K}$, $2 < \left| e_{rss} \right| < \infty$ 。

四、Nyquist 曲线如下图所示,根据 Nyquist 判据可知,闭环系统稳定。(开环不稳定根的个数 P=0)

五、

(1) $G_0(s)$ 的 Bode 图如下:

根据渐近频率特性曲线,截止频率 $\omega_c \approx 7.07 \, rad \, / \, s$, 稳定裕度 $\gamma = 35.26^0$

校正后 $G_0(s)G_c(s)$ 的Bode图如下。根据渐近频率特性曲线,可以求得截止频率

 $\omega_c = 2 rad / \sec$,稳定裕度 $\gamma = 62.51^0$

(2) 校正后低频段基本不变,校正前后稳态精度不变;中频段截止频率减小,相稳定裕度提高;高频段幅频曲线下降,抗高频干扰能力有所提高。

六、

(1) 稳定条件:
$$T_1 + T_2 > T_1 T_2 K_1 K_2$$

(2)
$$G_c(s) = -\frac{T_1 s + 1}{K_1}$$

(3)
$$G_c(s) = -\frac{1}{K_1}$$