

Deseñando su modelo

Existen muchas formas de diseñar un modelo basado en agentes, depende de:

- El fenómeno a ser modelado.
- Su nivel de conocimiento sobre el tema.
- Qué tan cómodo se siente con la herramienta (NetLogo).
- Su forma y estilo de modelar.

Categorías de modelamiento

- Basados en el fenómeno
 - Usted tiene un fenómeno identificado.
 - El fenómeno a estudiar tiene ciertos patrones y características.
 - Se le conoce como patrón de referencia.
 El modelo en espiral de las galaxias

 - Los patrones fractales de las plantas
 - La oscilación de las poblaciones cuando las especies interactúan
 - Objetivo: diseñar un modelo que capture el patrón de referencia.
- Modelado exploratorio
 - Se definen el comportamiento local de los agentes.
 - Se identifican patrones emergentes.

Preguntas de investigación

- ¿Cómo una colonia de hormigas realiza el forrajeo en busca de alimento?
- ¿Cómo una bandada de gansos vuela en una formación en V?

Ninguna en específico

• Exploramos el espacio de diseño del modelo y gradualmente refinamos nuestra pregunta dirigida específicamente a nuestro modelo

¿Cómo implementar el modelo?

- Aproximación top-down
 - En esta aproximación el investigador diseña primero todo el
 - modelo
 - Conoce exactamente la pregunta a responder.

 - Tiene un patrón de referencia
 Diseña el ambiente y la reglas
 Antes de escribir cualquier línea de código!
- Aproximación bottom-up

 - El código y el modelo co-evolucionan.
 Se selecciona el dominio o fenómeno de interés.

 - No se tiene una pregunta específica Se empieza a con una idea general sobre las reglas de interacción.
 - Ejemplo, observar el comportamiento de un mercado económico.
 Formular algunos agentes vendedores y compradores

- "El objetivo supremo de toda teoría es hacer los elementos básico irreducibles tan simples y concretos como sea posible, sin sacrificar su adecuada representación" - Albert Einstein (1933)
- "Todo debe ser tan simple como sea posible, pero no tan simple que pierda su objetivo" Albert
- "Todos los modelo son incorrectos, pero algunos son útiles" - George Box (1979)

Consideraciones

- Si los elementos en nuestro modelo son homogéneos (se comportan igual) y perfectamente mezclados (sin componente espacial) y la dependencia de la población de una especie depende específicamente de otra especie.
 - Utilice un modelo basado en ecuaciones.
- Si el modelo considera las dinámicas de ubicación espacial y de consumo de energía de las poblaciones bajo análisis y es heterogéneo
 - Utilice un modelo basado en agentes
 - Los seres vivos que dependen de otra especie (interacción) tienen un efecto en el manejo de los recursos y energía, además cambian sobre el tiempo.

Simulación hacada en agentes

Reformulando la pregunta

- Bajo el enfoque de la simulación basada en agentes
 - ¿Podemos encontrar los parámetros en los cuales dos especies pueden mantener niveles positivos de población en un área limitada cuando una especie es predadora y la otra toma recursos del ambiente?

Simulación basada en agentes

¿Qué agentes seleccionar para el modelo?

- Se deben seleccionar aquellos que en nuestro modelo son componentes:
 - Autónomos
 - Tienen propiedades
 - Estados
 - Comportamientos
- ¿cuál es el grado de granularidad correcto?
 - ¿Átomos o moléculas?
 - ¿Órganos o células?

Simulación basada en agentes

La nueva herramienta para investigación en ciencia e ingenieria

Las propiedades de los agentes

Es importante determinar las propiedades que permitan conceptualizar los agentes y sus interacciones con otros agentes y el ambiente.

- 1. Nivel de energía
- 2. Ubicación
- 3. Orientación

Las propiedades del ambiente

- Las ovejas consumen recursos (césped)
- Por lo tanto los agentes estacionarios indican la presencia o no del recurso.
- El entorno es toroidal horizontal y verticalmente, de tal forma que las ovejas no se queden estancadas en los limites.
- Podemos agregar más atributos como obstáculos, ríos, altura del suelo, para afectar el paso de las ovejas, pero esto no va en la dirección de la pregunta de investigación.

Comportamientos de los agentes

- Se ocupan una posición aleatoria.
- Se mueven.
- Se reproducen.
- Mueren.
- Las ovejas consumen el césped.
- Los lobos comen ovejas.

Simulación basada en agentes

La nueva herramienta para investigación en ciencia e ingenieria

Diseñando los pasos de simulación

- · Los lobos y las ovejas
 - Se mueven
 - Mueren
 - Comen
 - Se reproducen
- El cesped
 - Crece

Simulación basada en agentes
La nueva herramienta para investigación en ciencia e ingeniería

¿Qué parámetros?

- El número inicial de lobos
- El número inicial de ovejas
- ¿cuánto le cuesta a los animales moverse?

Lotka-Volterra

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

$$\frac{dy}{dt} = \delta xy - \gamma y$$

x is the number of sheep

