Abgabe - Übungsblatt [10]

[Felix Lehmann]

[Markus Menke]

28. Januar 2021

Aufgabe 1

Zuerst zeigen wir per Induktion über i, dass $A^i = V \cdot \Lambda^i \cdot V^{-1}$

IV: Die Aussage gelte für ein beliebiges aber festes n.

IA: n = 1:

Trivial, die Zerlegung $A = V \cdot \Lambda \cdot V^{-1}$ existiert nach Aufgabenstellung

IS:
$$n\mapsto n+1$$
:
$$A^{n+1}=A^n\cdot A\stackrel{\mathbb{N}}{=}V\cdot \Lambda^n\cdot V^{-1}\cdot A=V\cdot \Lambda^n\cdot V^{-1}\cdot V\cdot \Lambda\cdot V^{-1}=V\cdot \Lambda^n\cdot E\cdot \Lambda\cdot V^{-1}=V\cdot \Lambda^{n+1}\cdot V^{-1}$$

Dies galt zu zeigen.

$$g(A) := \sum_{n=0}^{\infty} c_i \cdot A^i = \sum_{n=0}^{\infty} c_i \cdot V \cdot \Lambda^i \cdot V^{-1}$$
$$= V \cdot \left(\sum_{n=0}^{\infty} c_i \cdot \Lambda^i\right) \cdot V^{-1} = V \cdot diag(f(\lambda_1), ..., f(\lambda_1)) \cdot V^{-1}$$

Dies galt zu zeigen.

Aufgabe 2

And some more text . . .