19. Oryginał transformaty $\frac{z}{(z-2)^2}$ wynosi

B) $n2^n$

A) 1, 1, 0, 0, 1, 1, B) 1, 0, 1, 0, 1, 0, ...

20. Splot ciągu $1,0,1,0,1,0,\dots$ z ciągiem $1,0,0,0,0,0,\dots$ daje ciąg

A) 2n + 1

T	EORIA REGULACJI – EGZAMIN 2020
ke	ody prawidłowych odpowiedzi (A,B,C) należy zaznaczyć w formularzu interentowym i wysłać go w ciągu 30 minut
1.	Który ze wskaźników może być stosowany jako kryterium miary uchybu regulacji? A) $Q=\varepsilon(t)$ B) $Q=\int_0^\infty \varepsilon(t)dt$ C) $Q=\int_0^\infty \varepsilon^2(t)dt$ D) $Q=\varepsilon(0)$
2.	Obiekt o transmitancji $K(z)=\frac{z}{z^2+2z+2}$ jest A) stabilny oscylacyjny B) stabilny nieoscylacyjny C) niestabilny oscylacyjny D) niestabilny nieoscylacyjny
3.	Obiekt o transmitancji $K(s)=\frac{k}{-s+1}$ objęto pętlą ujemnego sprzężenia zwrotnego. Dla jakich k otrzymany układ jest stabilny?
	A) $k < -1$ B) $k > -1$ C) $k < 1$ D) $k > 1$
4.	Splot funkcji $1(t)$ z funkcją t daje funkcję A) $\delta(t)$ B) $1(t)$ C) $\frac{t^2}{2}$ D) $2t^2$
5.	Obiekt o transmitancji $K(s)=\frac{1}{s+1}$ pobudzono sygnałem $u(t)=1(t)$ przy warunku początkowym $y(0)=1$. Jaka jest jego odpowiedź? A) $y(t)=0$ B) $y(t)=1(t)$ C) $y(t)=1-e^{-t}$ D) $y(t)=e^{-t}$
6.	Jaką wartość ma odpowiedź skokowa obiektu o transmitancji $K(s)=\frac{2s}{s+4}$ w chwili $t=0$? A) 0 B) 1 C) 2 D) $\frac{1}{2}$
7.	Oryginał transformaty $\frac{1}{(s^2+1)^2}$ przy $t\to\infty$ A) dąży do 0 B) dąży do stałej $\neq 0$ C) ma oscylacje o stałej amplitudzie D) ma oscylacje narastające
8.	Obiekt dyskretny opisany równaniem $y_n=u_n+2u_{n-i}$ ma biegun transmitacji w punkcie A) 0 B) 1 C) 2 D) nie ma bieguna
9.	Jeżeli wszystkie współczynniki wielomianu charakterystycznego obiektu 2. rzędu mają ten sam znak to obiekt ten jest A) stabily B) niestabilny C) na granicy stabilności D) nie wiadomo
10.	Obiekt o transmitancji $K(s)=\frac{1}{(s+1)^2}$ pobudzono sygnałem $u(t)=\sin(t+4)$. Jaką amplitudę w stanie ustalonym ma sinusoida na wyjściu? A) $1/2$ B) 1 C) 2 D) 4
11.	Współczynnik wzmocnienia w stanie ustalonym obiektu o transmitancji $K(s)=\frac{s+4}{s(s+1)(s+2)}$ wynosi A) 1 B) 2 C) 4 D) nie istnieje
12.	Regulator dyskretny o transmitancji $K_R(z)=1+\frac{2}{z-1}$ jest regulatorem typu A) P B) PI C) I D) PID
13.	Obiekt stabilny o odpowiedzi impulsowej $\{k_n\}$ pobudzono białym szumem o wartości oczekiwanej równej 1. Ile jest równa wartość oczekiwana sygnału wyjściowego? A) $\sum_{n=0}^{\infty} k_n$ B) $\sum_{n=0}^{\infty} k_n^2$ C) $\sum_{n=0}^{\infty} k_n $ D) $\sum_{n=0}^{\infty} k_n^{-1}$
14.	Z ilu liczb składa się warunkek początkowy obiektu o rzędzie m ? A) $m-1$ B) m C) $m+1$ D) $2m-1$
15.	Zestaw charakterystyk na których osobno przedstawia się wzmocnienie amplitudy i zmianę fazy nazywa się charakterystykami A) amplitudowo-fazowymi B) Bodego C) Michajłowa D) Fouriera
16	
	Który z obiektów jest liniowy A) $y(t)=2u(t)+1$ B) $y_n=\sum_{i=0}^5 u_{n-i}^i$ C) $y(t)=\int_0^e e^{-\tau}u(t-\tau)d\tau$ D) $y(t)=u(t)u(t-1)$
17.	Zachodzi twierdzenie $Z\Longrightarrow T$. Które wnioskowanie jest prawdziwe? A) $T\Longrightarrow Z$ B) $\mathrm{nie}Z\Longrightarrow\mathrm{nie}T$ C) $\mathrm{nie}T\Longrightarrow\mathrm{nie}Z$ D) $\mathrm{nie}T\Longrightarrow Z$
18.	Współczynnik wzmocnienia w stanie ustalonym obiektu o transmitancji $K(z) = \frac{6z}{z-2}$ ma wartość

D) $D^2 \{n2^{n+1}\}$

C) 1, 2, 3, 4, 5, 6, ... D) 1, 1, 2, 2, 3, 3, ...

C) $D\{(n+1)2^n\}$