

数电习题课

2021年12月

第一次作业

- 1.2 将下列各数转换为十进制数。
- $(1) (1101011)_2 (2) (121.01)_3 (3) (123.4)_5$

- (4) (67.24)₈ (5) (2014.8)₉ (6) (15C.38)₁₆

(4) 55.31 (5) 1471.9 (6) 348.219

- 1.3 完成下列数制转换:
- (1) $(1.234)_{10}$ =()_B=()_O=()_H
- (2) $73.4=()_{B}=()_{O}=()_{H}$
- (3) 2014.8=()_B=()_O=()_H

(2) $73.4 = (1001001.0110)_{B} = (111.31)_{O} = (49.6)_{B}$

- 1.5 完成下列加减法。
- (1) $(110111)_2+(11011)_2$
- $(2) (110111)_2 (11011)_2$
- $(5) (A385)_{H} + (5241)_{H}$

- (2) $(11100)_{2}$
- $(5) (F5C6)_{H}$

第一次作业

1.7 在字长为5位的数字系统中,写出下列真值定点纯小数的原码、反码和补码。

(1) +1111 (2) -1111 (3) +0000 (4) -0000 (5) +1010 (6) -1010

真值	原码	反码	补码
+1111	01111	01111	01111
-1111	11111	10000	10001
+0000	00000	00000	00000
-0000	10000	11111	00000
+1010	01010	01010	01010
-1010	11010	10101	10110

1.10 将下列各数表示为定点纯小数的原码、反码和补码(机器字长为9位)。

(1)
$$\frac{11}{64}$$

$$(2) \frac{13}{128}$$

$$(3) \frac{15}{256}$$

$$\frac{15}{256}$$
 (4) $-\frac{11}{64}$ (5) $-\frac{13}{128}$

(1)
$$\frac{11}{64}$$
 (2) $\frac{13}{128}$ (3) $\frac{15}{256}$ (4) $-\frac{11}{64}$ (5) $-\frac{13}{128}$ (6) $-\frac{15}{256}$

$$(6) -\frac{15}{256}$$

真值	原码	反码	补码
11/64	000101100	000101100	000101100
15/256	000001111	000001111	000001111
-15/256	100001111	111110000	111110001

第一次作业

1.12 完成下列代码的转换。

$$(1010111.01110101)_{BCD} = ()_{10} = ()_{\hat{x}3} = ($$

								4	200
382 4	4 2	2	Teb_L	2.4年 (株)	1 (60/24)	66 LD	TIT	de	Sales
20	13	- 3	种十	12年 福川	1.657	BUILT	10.55	257 715	777

十进制整数	8421 码	2421 码	余3码
0	0000	0000	0011
165001	0001	0001	0100
2/6	0010	0010	0101
3	0011	0011	0110
4 1000	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

 $(1010111.01110101)_{BCD} = (57.75)_{10} = (10001010.10101)_{\oplus 3 \oplus 3}$ $=(10111101.11011011)_{2421}=(111001.11)_2=(100101.00)_{gray}$

- 1.17 用反演法求下列函数的反函数,用对偶法则求下列函数的对偶式。
- (1) F = AB + (A + B)(C + D + E)
- (2) $F=(A+BC)(\overline{A}+\overline{D}E)$
- (3) $F=A \oplus \overline{B} \oplus 1$

$$(1) \overline{F} = (\overline{A} + \overline{B}) (A\overline{B} + \overline{C}D\overline{E})$$

$$F' = (A + B) (\overline{A}B + CDE)$$

$$(2) \overline{F} = \overline{A} (\overline{B} + C) + A (D + \overline{E})$$

$$F' = A (B + \overline{C}) + \overline{A} (D + \overline{E})$$

$$(3) \overline{F} = \overline{A} \odot B \odot 0 = \overline{A} \odot \overline{B}$$

$$F' = A \odot \overline{B} \odot 0 = A \odot B$$

1.18 用代数法证明下列等式。(1) AB+BC+CA=(A+B)(B+C)(C+A)

$$(1) \, \cancel{A} \, \cancel{2} = (A+B)(B+C)(C+A)$$

$$= (AB+AC+BB+BC)(C+A)$$

$$= (AB+AC+B*1+BC)(C+A)$$

$$= [(A+1)B+AC+BC](C+A)$$

$$= [(C+1)B+AC](C+A)$$

$$= (B+AC)(C+A)$$

$$= BC+ACC+AB+AAC$$

$$= BC+AC+AB+AC$$

$$= AB+BC+CA$$

$$= \cancel{E} \, \cancel{2} \, \cancel{2}$$

1.20 求下列函数的最小项标准式和最大项标准式。

(1)
$$F = \overline{(AB + ABD)}(B + CD)$$

(2)
$$F = (\overline{A} + C)(A + B)(C + \overline{D})$$

(3)
$$F = (\overline{A} \oplus B)(A \oplus \overline{B}) + B \oplus C \oplus D$$

$$(1)F = \overline{(AB + ABD)}(B + CD)$$

$$= \overline{AB}(B + CD)$$

$$= (\overline{A} + \overline{B})(B + CD)$$

$$= \overline{AB} + \overline{A}CD + \overline{B}B + \overline{B}CD$$

$$= \overline{AB}(C + \overline{C})(D + \overline{D}) + \overline{A}(B + \overline{B})CD + (A + \overline{A})\overline{B}CD$$

$$= \overline{AB}CD + \overline{AB}C\overline{D} + \overline{AB}C\overline{D} + \overline{AB}C\overline{D} + \overline{AB}CD + A\overline{B}CD$$

$$= m_{11} + m_7 + m_0 + m_5 + m_4 + m_3$$

$$= \sum m^4(3,4,5,6,7,11)$$

$$= \prod M^4(0,1,2,8,9,10,12,13,14,15)$$

1.20 求下列函数的最小项标准式和最大项标准式。

(1)
$$F = \overline{(AB + ABD)}(B + CD)$$

(2)
$$F = (\overline{A} + C)(A + B)(C + \overline{D})$$

(3)
$$F = (\overline{A} \oplus B)(A \oplus \overline{B}) + B \oplus C \oplus D$$

(2)
$$F = (\bar{A} + C)(A + B)(C + \bar{D})$$

 $= (\bar{A} + C + B)(\bar{A} + C + \bar{B})(A + B + C)(A + B + \bar{C})(A + C + \bar{D})(\bar{A} + C + \bar{D})$
 $= (\bar{A} + B + C + D)(\bar{A} + B + C + \bar{D})(\bar{A} + \bar{B} + C + D)(\bar{A} + \bar{B} + C + \bar{D})(A + B + C + D)(A + B + C + \bar{D})$
 $= (A + B + \bar{C} + D)(A + B + \bar{C} + \bar{D})(A + B + C + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})$
 $= M_0 M_1 M_2 M_3 M_5 M_8 M_9 M_{12} M_{13}$
 $= \prod M^4 (0,1,2,3,5,8,9,12,13)$
 $= \sum m^4 (4,6,7,10,11,14,15)$

$$(3) F = \sum m^4(0, 1, 2, 3, 4, 7, 9, 10, 12, 13, 14, 15) = \prod M^4(5, 6, 8, 11)$$

- 1.22 用卡诺图化简下列各式为最简与或式及最简或与式。
- (1) $F = \sum_{m} m^4 (1,4,5,6,7,9,14,15)$
- (2) $F = \prod M^{3}(0,1,3,4,5)$
- (3) $F = \sum_{m} m^{4}(1,4,5,7,12,14,15)$
- (4) $F = \prod M^4(1,7,9,13,15) + d(2,4,12)$

$$(1) F = \overline{AB} + BC + \overline{BCD} = (B + \overline{C})(B + D)(\overline{A} + \overline{B} + C)$$

$$(2) F = AB + B\overline{C} = B \left(A + \overline{C} \right)$$

$$(3) F = B\overline{C}\overline{D} + \overline{A}\overline{C}D + BCD + ABC = (B + \overline{C})(B + D)(\overline{A} + C + \overline{D})(A + \overline{C} + D)$$

$$(4) F = \overline{D} + \overline{B}C + \overline{A}B\overline{C} = (B + C + \overline{D})(\overline{B} + \overline{C} + \overline{D})(\overline{A} + C + \overline{D})$$

(3) $F = \sum_{m} m^{4}(1,4,5,7,12,14,15)$

AB	00	101	11	10	-	- AB	00	01	.11	10	_
CD		A				00	1			(
01	(01			(1	8
11	A TOTAL	1	0		8	n	-		ABC	(1	1
10	- Tr.T		W			10	0	D	5+8)	K	
		F					058	+25+	É FE	- 1.	THE.

$$(3) F = B\overline{C}\overline{D} + \overline{A}\overline{C}D + BCD + ABC = (B + \overline{C})(B + D)(\overline{A} + C + \overline{D})(A + \overline{C} + D)$$

- 1.23 用代数法或禁止逻辑法将下列函数用最少的与非门实现,并画出逻辑电路图。
 - (2) $F = \overline{A}B + A\overline{C} + A\overline{B}$
 - (4) $F=(\overline{A}+\overline{B})(AB+C)$

$$(2) F = \overline{A\overline{ABC}} \cdot \overline{B\overline{ABC}}$$

$$(4) F = (\bar{A} + \bar{B})(AB + C) = \bar{A}AB + \bar{A}C + AB\bar{B} + \bar{B}C = \bar{A}C + \bar{B}C = \overline{AB}C = \overline{\overline{AB}C}$$

2.2 列出习题图 2.2 所示电路的输出函数表达式,并化简该表达式,用最简逻辑电路 实现。

- 2.5 设 4 位 二进制数,试设计下述要求的判断电路: $(1)F = \sum m^3(0,3,5,6,9,10,12,15)$
- (1) 4位二进制数中间有偶数个1;
- (2) 4位二进制数中间有两个1;
- (3) 4位二进制数中间有一个1。

$$(2)F = \sum m^3(3,5,6,9,10,12)$$

$$(3)F = \sum m^3(1,2,4,8)$$

2.8 用与非门设计一个将 8421 码转换成 2421 码的转换电路。

令8421码为ABCD, 2421码为WXYZ, 则

$$W = A + BC + BD$$

$$X = A + BC + BD$$

$$Y = A + BC + BCD$$

$$Z = D$$

$$W = \overline{A + BC + BD} = \overline{A} \cdot \overline{BC} \cdot \overline{BD}$$

$$X = \overline{A + BC + B\overline{D}} = \overline{A} \cdot \overline{BC} \cdot \overline{B\overline{D}}$$

$$Y = \overline{A + \overline{BC} + B\overline{C}D} = \overline{A} \cdot \overline{BC} \cdot \overline{B\overline{C}D}$$

CDAB	00	0	+}	10
00	0	1	d	
0 1	0	0	d	1
11	0	1	d	d
10	0	1	d	d
		X		

CDAB	00	0 1	Н	10
00	0	0	d	
01	0	1	d	١
<i>(</i>)	0	ı	d	d
10	0	ı	d	d
		W		

CDAB	00	0	-11	lο	_
00	0	0	d	I	_
01	0	I	d	1	
11	l	0	d	d	
10	l	0	d	d	
		Υ			

- 2.11 用代数法判断下列函数是否存在逻辑险象,如果有的话,设法消除之。
- (1) $F = \overline{AB} + \overline{BC} + AC$
- (2) $F=(A+C+\overline{D})(\overline{B}+C+D)(\overline{B}+\overline{C})(B+D)$

(1) 静态1险象(1→0),
$$BC = 11, F = A + \overline{A}; AC = 00, F = B + \overline{B}; AB = 10, F = C + \overline{C}$$

 $F = \overline{A}B + \overline{B}\overline{C} + AC + BC + \overline{A}\overline{C} + A\overline{B}$

(2) 静态0险象(0→1),
$$ACD = 000, F = B \cdot \overline{B}; ABD = 011, F = C \cdot \overline{C}; ABC = 010, F = D \cdot \overline{D}$$

$$F = (A + C + \overline{D})(\overline{B} + C + D)(\overline{B} + \overline{C})(B + D)(A + C)(A + \overline{B})(C + D)(\overline{C} + D)$$

2.8 用与非门设计一个将 8421 码转换成 2421 码的转换电路。

令8421码为ABCD, 2421码为WXYZ, 则

$$W = A + BC + BD$$

$$X = A + BC + BD$$

$$Y = A + BC + BCD$$

$$Z = D$$

- 2.11 用代数法判断下列函数是否存在逻辑险象,如果有的话,设法消除之。
- (1) $F = \overline{AB} + \overline{BC} + AC$
- (2) $F=(A+C+\overline{D})(\overline{B}+C+D)(\overline{B}+\overline{C})(B+D)$

检查表达式中是否存在某个变量X,它同时以原变量和反变量的形式出现:并能在特定条件下简化成下面形式之一:

$$X + \overline{X}$$

(1) 静态1险象(1→0),
$$BC = 11, F = A + \overline{A}; AC = 00, F = B + \overline{B}; AB = 10, F = C + \overline{C}$$

 $F = \overline{A}B + \overline{B}\overline{C} + AC + BC + \overline{A}\overline{C} + A\overline{B}$

(2) 静态0险象(0→1),
$$ACD = 000, F = B \cdot \overline{B}; ABD = 011, F = C \cdot \overline{C}; ABC = 010, F = D \cdot \overline{D}$$

$$F = (A + C + \overline{D})(\overline{B} + C + D)(\overline{B} + \overline{C})(B + D)(A + C)(A + \overline{B})(C + D)(\overline{C} + D)$$

- 2.13 用二进制译码器 74LS138 及与非门实现下列单输出及多输出函数表示的电路。
- (1) $F = \sum_{m=1}^{m} (2,3,6,8,12)$
- (2) $F = \prod M^4(2,3,6,8,12)$
- (3) $\begin{cases} F(A,B,C,D) = \sum m(2,3,6,8,12) \\ G(A,B,C,D) = \prod M(2,3,6,8,12) \end{cases}$
- (4) $\begin{cases} F(A,B,C) = \sum m(0,4,6) \\ G(C,D,E) = \prod M(1,2) \end{cases}$

(3)
$$\begin{cases} F(A,B,C,D) = \sum m(2,3,6,8,12) \\ G(A,B,C,D) = \prod M(2,3,6,8,12) \end{cases}$$
(4)
$$\begin{cases} F(A,B,C) = \sum m(0,4,6) \\ G(C,D,E) = \prod M(1,2) \end{cases}$$

为了方便也可以将F直接取反得到G

2.18 最多用一个 SSI 器件和一个 MSI 器件 (74LS138, 74LS153, 74LS151) 实现下列功能。

- (1) $F = \overline{X}YZ + X\overline{Y}Z$
- (2) $F = X\overline{Y}\overline{Z} + X\overline{Y} + Z$

首先给出最小项表达式

$$(1)F = \sum m^3(3,5)$$

$$(2)F = \sum m^3(1,3,4,5,6,7)$$

其次画出电路,例如在74LS138 中找到对应输出即可

3.2 试画出维持阻塞 D 型触发器在习题图 3.2 所示波形图作用下的 Q 端波形, 触发器初始状态为 0。

激励函数表达式: $Q^{n+1} = \overline{Q} \cdot D_1$

3.5 分析习题图 3.5 所示时序电路,写出激励方程、激励转换表及状态输出表,画出状态图。

习题图 3.5

(1) 列出激励函数及输出函数表达式:

$$J_{0} = X \cdot y$$

$$K_{0} = X \cdot \overline{y} + y \cdot Q_{1}$$

$$J_{1} = X \cdot Q_{0} + y$$

$$K_{1} = y \cdot \overline{Q_{0}} + X \cdot \overline{y} \cdot Q_{0}$$

$$Z = Q_{1} \cdot Q_{0} + \overline{Q_{1}} \cdot \overline{Q_{0}}$$

(2) 列出状态变量的次态方程:

$$\begin{aligned} &Q_0^{n+1} &= J_0 \cdot \overline{Q_0} + \overline{K_0} \cdot Q_0 \\ &= x \cdot \overline{y} \cdot \overline{Q_0} + \overline{x} \cdot \overline{y} \cdot Q_0 + \overline{x} \cdot \overline{Q_1} \cdot Q_0 + y \cdot \overline{Q_1} \cdot Q_0 \\ &Q_1^{n+1} &= J_1 \cdot \overline{Q_1} + \overline{K_1} \cdot Q_1 \\ &= x \cdot \overline{Q_1} \cdot Q_0 + y \cdot \overline{Q_1} + \overline{x} \cdot \overline{y} \cdot Q_1 + \overline{y} \cdot Q_1 \cdot \overline{Q_0} + y \cdot Q_1 \cdot Q_0 + \overline{x} \cdot Q_1 \cdot Q_0 \end{aligned}$$

$$\begin{split} & \mathcal{Q_0}^{n+1} \ = \ J_0 \cdot \overline{\mathcal{Q}_0} \ + \ \overline{K_0} \cdot \mathcal{Q}_0 \\ & = \ X \cdot \overline{y} \cdot \overline{\mathcal{Q}_0} \ + \ \overline{X} \cdot \overline{y} \cdot \mathcal{Q}_0 \ + \ \overline{X} \cdot \overline{\mathcal{Q}_1} \cdot \mathcal{Q}_0 \ + \ \overline{y} \cdot \overline{\mathcal{Q}_1} \cdot \mathcal{Q}_0 \\ & \mathcal{Q_1}^{n+1} \ = \ J_1 \cdot \overline{\mathcal{Q}_1} \ + \ \overline{K_1} \cdot \mathcal{Q}_1 \\ & = \ X \cdot \overline{\mathcal{Q}_1} \cdot \mathcal{Q}_0 \ + \ y \cdot \overline{\mathcal{Q}_1} \ + \ \overline{X} \cdot \overline{y} \cdot \mathcal{Q}_1 \ + \ \overline{y} \cdot \mathcal{Q}_1 \cdot \overline{\mathcal{Q}_0} \ + \ y \cdot \mathcal{Q}_1 \cdot \mathcal{Q}_0 \ + \ \overline{X} \cdot \mathcal{Q}_1 \cdot \mathcal{Q}_0 \end{split}$$

(3) 列二进制状态表:

Q_1Q_0	00	01	10	11
00	00	10	01	10
01	01	11	10	11
10	10	00	11	00
11	11	10	00	10

(4) 列状态/输出表: 设定00=A, 01=B, 10=C, 11=D

现态
$$S = Q_1 Q_0$$

输出 $Z = Q_1 \cdot Q_0 + \overline{Q_1} \cdot \overline{Q_0}$

xy S	00	01	10	11	Z
Α	Α	С	В	С	1
В	В	D	С	D	0
С	С	Α	D	Α	0
D	D	С	Α	C	1

(5) 画状态图:

xy S	00	01	10	11	Z
А	Α	С	В	С	1
В	В	D	С	D	0
С	C	Α	D	Α	0
D	D	С	Α	С	1

(6) 电路特性说明: 电路有 4 个状态,状态指甲呢转换由输入 $x \times y$ 控制。当 xy=00 时,在时钟脉冲作用下,原状态保持不变; 当 xy=10 时,在时钟脉冲作用下,状态在 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 中循环,并且在 $A \times D$ 状态时输出 1; 当 $xy=01 \times 11$ 时,状态转换顺序与起始状态有关,若起始状态为 A 或 C,则状态在 $A \times C$ 之间循环,若起始状态为 B,则状态将是 $B \rightarrow D \rightarrow C \rightarrow A$,以后在 $A \times C$ 之间循环。

3.6 试分析习题图 3.6 所示电路的功能。要求写出激励方程、输出函数,画出状态图,

激励方程和输出函数如下:

$$D_1 = \overline{Q_1}, D_2 = Q_1 \oplus Q_2, F = Q_1 \cdot Q_2$$

状态图:

则可知: 该电路是一个模 4 循环计数器, 每当完成一次循环计数就输出一次 1。

3.7 分析习题图 3.7 所示同步时序电路。写出激励方程、激励转换表及状态输出表。设对应 Q_2Q_1 =00~11 的状态名为 S_0 ~ S_3 。

(1) 激励方程: $EN_1 = Y$, $EN_2 = XYQ_1$ 输出: $Z = XQ_2$

(2) T触发器:
$$Q_1^{n+1} = EN_1 \cdot \overline{Q_1} + \overline{EN_1} \cdot Q_1 = Y\overline{Q_1} + \overline{Y}Q_1$$

$$Q_2^{n+1} = EN_2 \cdot \overline{Q_2} + \overline{EN_2} \cdot Q_2 = \overline{X}Y\overline{Q_2}Q_1 + XQ_2 + \overline{Y}Q_2 + Q_2\overline{Q_1}$$

3.7 分析习题图 3.7 所示同步时序电路。写出激励方程、激励转换表及状态输出表。设 对应 $Q_2Q_1=00\sim11$ 的状态名为 $S_0\sim S_3$ 。

$$\begin{array}{lll} \mathcal{Q}_{1}^{\;n+1} \; = \; E N_{1} \; \cdot \; \overline{\mathcal{Q}_{1}} \; + \; \overline{E N_{1}} \; \cdot \; \mathcal{Q}_{1} \; = \; Y \, \overline{\mathcal{Q}_{1}} \; + \; \overline{Y} \mathcal{Q}_{1} \\ \\ \mathcal{Q}_{2}^{\;n+1} \; = \; E N_{2} \; \cdot \; \overline{\mathcal{Q}_{2}} \; + \; \overline{E N_{2}} \; \cdot \; \mathcal{Q}_{2} \; = \; \overline{X} Y \, \overline{\mathcal{Q}_{2}} \mathcal{Q}_{1} \; + \; X \mathcal{Q}_{2} \; + \; \overline{Y} \mathcal{Q}_{2} \; + \; \overline{Q}_{2} \mathcal{Q}_{1} \end{array}$$

③激励转换表:

8.6.	00	01	10	11
00	00	01	00	01
01	01	10	01	00
10	10	H	10	11
11	11	00	1.	10

田城/输收 图状态图:1000

8-6.Y	00	01	10	11
S.	S/I	Syl	5%	Sil
Sı	Syl	541 541	Syo	5%
S		,,	10	7
53	53/0	S./b	Sofo	Syl

当 Y=0 时,系统不变化;当 Y=1 时,若 X=0,是模 4 加 1 计数器;若 X=1,系统在 A-B,C-D 之间 循环。

3.9 用一个4位二进制计数器 74LS163 设计一个模 10 计数器, 其计数序列为 3, 4, 5, ···, 11, 12, 3, 4, ···。

3.14 化简习题图 3.10 所示原始状态表。

化简结果

	00	01	11
A'	A'/1	B'/0	C'/1
B'	A'/0	C'/0	B'/1
C'	A'/1	B'/0	B'/1

3.16 分别用 D 触发器、J-K 触发器和 T 触发器设计习题图 3.12 所示状态表所对应的电路,两个状态变量为 Q_2,Q_1 ,且状态分配为: A=00,B=01,C=11,D=10。

SX	0	1	Z
A	В	D	- 0
В	C	В	0
C	В	A	0
D	В	C	- 1

3.16 根据题目给定的状态表,进行化简,得已知状态表为最小化状态表,则列出二进制状态表得:

Q_2Q_1	0	1	Z
00	01	10	0
01	11	01	0
11	01	00	0
10	01	11	1

	Q_2Q_1	0	1	Z
	00	01	10	0
	01	11	01	0
8	11	01	00	0
	10	01	11	1

(1) 用 D 触发器,确定激励函数及输出函数表达式:

Q_2Q_1	0	1
00	0	1
01	1	0
11	0	0
10	0	1

Q_2Q_1	0	1
00	1	0
01	1	1
11	1	0
10	1	1

D₂

D1

所以
$$D_2 = x\overline{Q_1} + \overline{xQ_2}Q_1$$
, $D_1 = x + \overline{Q_2}Q_1 + \overline{Q_2}Q_1$, $Z = \overline{Q_2}Q_1$

3.19 试设计一个五进制可逆计数器。

分别用 000~100 表示 5 进制计数器中的 5 个状态,设当 x=1 时,加 1 计数,当 x=0 时,减 1 计数;则可直接得到二进制状态表。此表无需化简和状态分配,根据状态表可画出各激励函数的卡诺图。

考虑多输出函数的公用与项情况,可得到激励函数的逻辑表达式:

$$J_{2} = \overline{xQ_{1}Q_{0}} + xQ_{1}Q_{0}, K_{2} = 1$$

$$J_{1} = \overline{xQ_{2}} + x, K_{1} = \overline{xQ_{1}Q_{0}} + x$$

$$J_{0} = Q_{1}\overline{Q_{0}} + \overline{xQ_{2}} + x\overline{Q_{2}}, K_{0} = 1$$

X	0	1
$Q_2Q_1Q_0$		
000	100	001
001	000	010
010	001	011
011	010	100
100	011	000

$Q_2Q_1Q_0$	0	1
000	100	001
001	000	010
010	001	011
011	010	100
100	011	000

J	K	Q"	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$J_2 = \overline{XQ_1Q_0} + XQ_1Q_0$$

$$K_2 = 1$$

Q_2 Q_2	00	01	11	10
00	1	d	d	0
01	0	d	d	0
11	0	d	d	1
10	0	d	d	0

AQ_2 Q_2Q_1	00	01	11	10
00	d	1	1	d
01	d	d	d	d
11	d	d	d	d
10	d	d	d	d

J2

X	0	1
$Q_{2}Q_{1}Q_{0}$	100	001
001	000	010
010	001	011
011	010	100
100	011	000

J	K	Q''	Q" + 1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J_1	=	$\overline{XQ}_2 + X$
K_{1}	=	$\overline{XQ_1Q_0} + X$

Q_2 Q_2	00	01	11	10
00	0	1	0	0
01	0	d	d	1
11	d	d	d	d
10	d	d	d	d

Q_2 Q_2	00	01	11	10
00	d	d	d	d
01	d	d	d	d
11	0	d	d	1
10	1	d	d	0

K1

$$J_{0} = Q_{1}\overline{Q_{0}} + \overline{x}Q_{2} + x\overline{Q_{2}}$$

$$K_{0} = 1$$

Q_2 Q_2	00	01	11	10
00	0	1	0	1
01	d	d	d	d
11	d	d	d	d
10	1	d	d	1

Q_2 Q_2	00	01	11	10
00	d	d	d	d
01	1	d	d	1
11	1	d	d	1
10	d	d	d	d

JO

第

第四次作业

$$J_2 = \overline{xQ_1Q_0} + xQ_1Q_0, K_2 = 1$$

$$J_1 = \overline{xQ_2} + x, K_1 = \overline{xQ_1Q_0} + x$$

$$J_0 = Q_1\overline{Q_0} + \overline{xQ_2} + x\overline{Q_2}, K_0 = 1$$

$$CLK$$

谢谢大家

