Intro to Math Reasoning HW 7b

Ozaner Hansha

October 31, 2018

Problem 1

Problem: Prove that for any relation R on A that for all $a \in A$:

$$R$$
 is reflexive \iff graph $(I_A) \subseteq \operatorname{graph}(R)$

where I_A is the identity relation on A.

Solution: This is obvious because, by definition, for a relation R to be reflexive its graph must contain the set of all pairs of the form (a, a) where $a \in A$:

$$(\forall a \in A) \ aRa \equiv (a, a) \in \operatorname{graph}(R)$$

and the graph of the identity relation on A, by definition, is simply the set of all (a,a) where $a \in A$:

$$graph(I_A) \equiv \{(a, a) \mid a \in A\}$$

And so any pair $(a, b) \in \operatorname{graph}(I_A)$ must also be in R:

$$aI_Ab \rightarrow aRb$$

And so the left is a subset of the right.

Problem 2

Problem: Prove that for any relation R on A that for all $a \in A$:

$$R$$
 is anti-reflexive \iff graph $(R) \setminus \text{graph}(I_A) = \emptyset$

Solution: By definition, for a relation R to be anti-reflexive its graph cannot contain any pair of the form (a, a) where $a \in A$:

$$(\forall a \in A) \neg (aRa) \equiv (a, a) \not\in \operatorname{graph}(R)$$

and the graph of the identity relation on A, by definition, is simply the set of all (a, a) where $a \in A$:

$$graph(I_A) \equiv \{(a, a) \mid a \in A\}$$

And so any pair $(a, b) \in \operatorname{graph}(I_A)$ cannot also be in R:

$$aI_Ab \rightarrow \neg (aRb)$$

This means that no element of the graph of I_A is in the graph of the R and so they are disjoint.

Problem 3

Problem: Prove that for any relation R on A that for all $a \in A$:

$$R$$
 is symmetric \iff $(R = \Re)$

where \Re is the reverse of R.

Solution: This should be quite clear as all symmetric relations satisfy the following:

$$(\forall a, b \in A) \ aRb \rightarrow bRa$$

And since a and b were arbitrary indistinguishable variables from A, the stronger statement:

$$(\forall a, b \in A) \ aRb \equiv bRa$$

holds as well. Along with the definition of the reverse of R:

$$a\Re b \equiv bRa$$

it's clear that for all a and b:

$$aRb \equiv bRa \equiv a\Re b$$

Thus the relations are actually equivalent, given symmetry.

Problem 4

Problem: Prove that for any relation R on A that for all $a, b \in A$:

$$R$$
 is anti-symmetric \iff $(aRb \land \neg (a\Re b) \rightarrow a = b)$

Solution: All anti-symmetric relations satisfy the following:

$$(\forall a, b \in A) \ aRb \land \neg(bRa) \rightarrow a = b$$

And as shown in Problem 3, $aRb \equiv bRa \equiv a \Re b$, and so the two statements above are actually equivalent.

Problem 5

Part a

Problem: Prove that the following relation C on the set of finite subsets of \mathbb{Z} is a partial order:

$$xCy \equiv |x| \le |y|$$

Solution: This is not a partial order because, due to anti-symmetry, no two distinct elements x and y can satisfy the following:

$$xCy \wedge yCx$$

Yet, consider the sets $\{1,2\}$ and $\{-1,-2\}$. These sets are both clearly finite subsets of \mathbb{Z} as well as not equivalent. Yet the definition of C states that:

$$\{1,2\}C\{-1,-2\} \equiv |\{1,2\}| \le |\{-1,-2\}| \equiv 2 \le 2$$

$$\{-1,-2\}C\{1,2\} \equiv |\{-1,-2\}| \le |\{1,2\}| \equiv 2 \le 2$$

It cannot be the case that both of those statements are true and C is a partial order. Thus, because $2 \le 2$, C is not a partial order.

Part b

Problem: Prove that the following relation E on the set of finite subsets of \mathbb{Z} is a partial order:

$$xEy \equiv |x| = |y|$$

Solution: This is not a partial order because, due to anti-symmetry, no two distinct elements x and y can satisfy the following:

$$xCy \wedge yCx$$

Yet, consider the sets $\{1,2\}$ and $\{-1,-2\}$. These sets are both clearly finite subsets of \mathbb{Z} as well as not equivalent. Yet the definition of C states that:

$$\{1,2\}C\{-1,-2\} \equiv |\{1,2\}| = |\{-1,-2\}| \equiv 2 = 2$$

$$\{-1,-2\}C\{1,2\} \equiv |\{-1,-2\}| = |\{1,2\}| \equiv 2 = 2$$

It cannot be the case that both of those statements are true and C is a partial order. Thus, because 2=2, C is not a partial order.