# Cryptanalysis of PLWE Based on Zero-Trace Quadratic Roots

Efe İzbudak ephemer410liberior.org

January 18, 2025

## Ideal lattices

## Definition (Ideal lattice)

An ideal lattice is in integer lattice  $\mathcal{L}(\mathcal{B}) \subset \mathbb{Z}^n$  isomorphic as a  $\mathbb{Z}$ -module to some ideal of  $\mathcal{R} = \mathbb{Z}[x]/(f)$  where f is irreducible, monic, and of degree n.

#### Ideal lattices

#### Definition (Ideal lattice)

An ideal lattice is in integer lattice  $\mathcal{L}(\mathcal{B}) \subset \mathbb{Z}^n$  isomorphic as a  $\mathbb{Z}$ -module to some ideal of  $\mathcal{R} = \mathbb{Z}[x]/(f)$  where f is irreducible, monic, and of degree n.

#### Example

Consider  $\Re = \mathbb{Z}[x]/(1+x^2)$  which can be embedded into  $\mathbb{C}^2$  via the Minkowski canonical embedding.

$$\sigma \colon \mathcal{R} \to \mathbb{C}^2$$
$$1 \mapsto (1,1)$$
$$x \mapsto (i,-i)$$

Then the vectors (1,0,1,0), (0,1,0,-1) generate an ideal lattice in  $\mathbb{R}^4$ .

#### Discrete Gaussians

## Definition (Elliptic Gaussian)

We say that a random variable X has the continuous **elliptic** N-dimensional Guassian distribution of mean zero and covariance matrix  $\Sigma$  if it has probability density function

$$\rho_{\textbf{r}}(\textbf{x}) = \frac{1}{\sqrt{(2\pi)^N \mathrm{det}(\Sigma)}} \mathrm{exp}\left(-\frac{1}{2}\textbf{x}^\mathrm{T} \Sigma^{-1}\textbf{x}\right)$$

#### Discrete Gaussians

## Definition (Elliptic Gaussian)

We say that a random variable X has the continuous **elliptic** N-dimensional Guassian distribution of mean zero and covariance matrix  $\Sigma$  if it has probability density function

$$\rho_{\textbf{r}}(\textbf{x}) = \frac{1}{\sqrt{(2\pi)^N \mathrm{det}(\Sigma)}} \mathrm{exp}\left(-\frac{1}{2}\textbf{x}^\mathrm{T} \Sigma^{-1}\textbf{x}\right)$$

# Definition (Discrete Gaussian)

Let  $\mathcal{L}$  be a full-rank lattice in  $\mathbb{R}^N$ . We say that the discrete random variable X supported on  $\mathcal{L}$  is a **discrete elliptic Gaussian random variable** if it has the probability distribution

$$\Pr[X = \mathbf{x}] = \frac{\rho_{\mathbf{r}}(\mathbf{x})}{\rho_{\mathbf{r}}(\mathcal{L})} \text{ for all } \mathbf{x} \in \mathcal{L}.$$

#### Definition of PLWE

## Definition (PLWE Distribution)

Let f(x) be a monic irreducible polynomial in  $\mathbb{Z}[x]$ . For prime q, denote by  $\mathbb{O}_f$  the quotient ring  $\mathbb{Z}[x]/(f(x))$  and set  $R_q = \mathbb{O}_f/q\mathbb{O}_f$ . For  $s \in R$  and  $\chi$  an error distribution over R, the PLWE distribution  $\mathbb{B}_{s,\chi}$  is given by

$$a \leftarrow U(R_a), \quad e \leftarrow \chi, \quad b = a \cdot s + e, \quad \text{return } (a, b)$$

#### Definition of PLWE

## Definition (PLWE Distribution)

Let f(x) be a monic irreducible polynomial in  $\mathbb{Z}[x]$ . For prime q, denote by  $\mathbb{O}_f$  the quotient ring  $\mathbb{Z}[x]/(f(x))$  and set  $R_q = \mathbb{O}_f/q\mathbb{O}_f$ . For  $s \in R$  and  $\chi$  an error distribution over R, the PLWE distribution  $\mathbb{B}_{s,\chi}$  is given by

$$a \leftarrow U(R_q)$$
,  $e \leftarrow \chi$ ,  $b = a \cdot s + e$ , return  $(a, b)$ 

#### Definition (Decision PLWE)

Given m independent samples  $(a_i, b_i) \in R_q \times R_q$ ,  $i \in \{1, ..., m\}$  determine whether these samples are

- (i) from  $\mathcal{B}_{s,\chi}$  for some fixed s
- (ii) from the uniform distribution on  $R_q \times R_q$

Conditions and overview

Let  $\mathcal{R}_q = \mathbb{F}_q[x]/(f(x))$  where f is a monic irreducible polynomial in  $\mathbb{Z}[x]$  with a simple root  $\alpha$  modulo q. If

- 1.  $\alpha$  is small.
- 2. Order of  $\alpha$  is small.

then for smallness interval  $\Sigma$  with  $|\Sigma| < q$  and M samples, the Decision-PLWE problem can be solved in polynomial time with probability  $1 - (|\Sigma|/q)^M$ .

$$\alpha = 1$$

• Use CRT to attain  $\mathbb{F}_q[x]/(f(x))\simeq \mathbb{F}_q[x]/(x-1)\times \mathbb{F}_q/(g(x))$  for f(x)=(x-1)g(x).

$$\alpha = 1$$

- Use CRT to attain  $\mathbb{F}_q[x]/(f(x))\simeq \mathbb{F}_q[x]/(x-1)\times \mathbb{F}_q/(g(x))$  for f(x)=(x-1)g(x).
- $\psi_{\alpha} \colon \mathcal{R}_q \to \mathbb{F}_q[x]/(x-1)$  is the evaluation at  $\alpha$ .

$$\alpha = 1$$

- Use CRT to attain  $\mathbb{F}_q[x]/(f(x))\simeq \mathbb{F}_q[x]/(x-1)\times \mathbb{F}_q/(g(x))$  for f(x)=(x-1)g(x).
- $\psi_{\alpha} \colon \mathcal{R}_q \to \mathbb{F}_q[x]/(x-1)$  is the evaluation at  $\alpha$ .
- Given (a, b = as + e), consider

$$\psi_1(e) = b(1) - a(1)s(1) = \sum_{i=0}^{N-1} e_i$$

which are sampled from a discrete gaussian with standard deviation  $\sqrt{N}\sigma=\mathcal{O}(q^{1/4})$ 

$$\alpha = 1$$

- Use CRT to attain  $\mathbb{F}_q[x]/(f(x))\simeq \mathbb{F}_q[x]/(x-1)\times \mathbb{F}_q/(g(x))$  for f(x)=(x-1)g(x).
- $\psi_{\alpha} \colon \mathcal{R}_q \to \mathbb{F}_q[x]/(x-1)$  is the evaluation at  $\alpha$ .
- Given (a, b = as + e), consider

$$\psi_1(e) = b(1) - a(1)s(1) = \sum_{i=0}^{N-1} e_i$$

which are sampled from a discrete gaussian with standard deviation  $\sqrt{N}\sigma = \mathcal{O}(g^{1/4})$ 

• For correct guess s(1),  $e(1) \in [-\sqrt{N}\sigma, \sqrt{N}\sigma]$  with probability at least 0.65.

$$\alpha = 1$$

- Use CRT to attain  $\mathbb{F}_q[x]/(f(x))\simeq \mathbb{F}_q[x]/(x-1)\times \mathbb{F}_q/(g(x))$  for f(x)=(x-1)g(x).
- $\psi_{\alpha} \colon \mathcal{R}_{\alpha} \to \mathbb{F}_{\alpha}[x]/(x-1)$  is the evaluation at  $\alpha$ .
- Given (a, b = as + e), consider

$$\psi_1(e) = b(1) - a(1)s(1) = \sum_{i=0}^{N-1} e_i$$

which are sampled from a discrete gaussian with standard deviation  $\sqrt{N}\sigma={\rm O}(g^{1/4})$ 

- For correct guess s(1),  $e(1) \in [-\sqrt{N}\sigma, \sqrt{N}\sigma]$  with probability at least 0.65.
- Method: Guess  $s(1) \in \mathbb{F}_q$  and check if  $e(1) \in [-\sqrt{N}\sigma, \sqrt{N}\sigma]$

 $\alpha$  has small order

• If  $\alpha \neq 1$  is a root of order r, then again construct isomorphism  $\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(x-\alpha) \times \mathbb{F}_q/(g(x))$  for  $f(x) = (x-\alpha)g(x)$ .

 $\alpha$  has small order

- If  $\alpha \neq 1$  is a root of order r, then again construct isomorphism  $\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(x-\alpha) \times \mathbb{F}_q/(g(x))$  for  $f(x) = (x-\alpha)g(x)$ .
- Given (a, b = as + e), consider

$$\psi_{\alpha}(e) = b(\alpha) - a(\alpha)s(\alpha) = \sum_{j=0}^{r-1} \sum_{i=0}^{\lfloor \frac{N}{r} \rfloor - 1} e_{ir+j} \alpha^{j}$$

where  $\sum_{i=0}^{\lfloor \frac{N}{r} \rfloor - 1} e_{ir+j}$  are sampled from a discrete gaussian with standard deviation  $\sqrt{\frac{N}{r}} \sigma$ .

 $\alpha$  has small order

- If  $\alpha \neq 1$  is a root of order r, then again construct isomorphism  $\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(x-\alpha) \times \mathbb{F}_q/(g(x))$  for  $f(x) = (x-\alpha)g(x)$ .
- Given (a, b = as + e), consider

$$\psi_{\alpha}(e) = b(\alpha) - a(\alpha)s(\alpha) = \sum_{j=0}^{r-1} \sum_{i=0}^{\lfloor \frac{N}{r} \rfloor - 1} e_{ir+j} \alpha^{j}$$

where  $\sum_{i=0}^{\lfloor \frac{N}{r} \rfloor - 1} e_{ir+j}$  are sampled from a discrete gaussian with standard deviation  $\sqrt{\frac{N}{r}}\sigma$ .

• Method: Guess  $s(\alpha) \in \mathbb{F}_q$  and check if  $e(\alpha) \in \Sigma = \left[ -\sqrt{\frac{N}{r}} \sigma, \sqrt{\frac{N}{r}} \sigma \right]$ 

Setup: Simplified version

• Assume  $x^2+1$  is irreducible over  $\mathbb{F}_q$  and  $x^2+1\mid f(x)$  in  $\mathbb{F}_q[x]$ . Note that it is reducible over  $\mathbb{F}_{q^2}$ .

#### Setup: Simplified version

- Assume  $x^2+1$  is irreducible over  $\mathbb{F}_q$  and  $x^2+1\mid f(x)$  in  $\mathbb{F}_q[x]$ . Note that it is reducible over  $\mathbb{F}_{q^2}$ .
- Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + 1$ .

#### Setup: Simplified version

- Assume  $x^2 + 1$  is irreducible over  $\mathbb{F}_q$  and  $x^2 + 1 \mid f(x)$  in  $\mathbb{F}_q[x]$ . Note that it is reducible over  $\mathbb{F}_{q^2}$ .
- Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + 1$ .
- Note that  $\operatorname{Tr}_{q^2/q}(\alpha) = \alpha + \alpha^q = \alpha + (-\alpha) = 0$ .

#### Setup: Simplified version

- Assume  $x^2 + 1$  is irreducible over  $\mathbb{F}_q$  and  $x^2 + 1 \mid f(x)$  in  $\mathbb{F}_q[x]$ . Note that it is reducible over  $\mathbb{F}_{q^2}$ .
- Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + 1$ .
- Note that  $\operatorname{Tr}_{q^2/q}(\alpha) = \alpha + \alpha^q = \alpha + (-\alpha) = 0$ .
- For PLWE sample (a, b = as + e) we have

$$\begin{aligned} \operatorname{Tr}(b(\alpha) - a(\alpha)s(\alpha)) &= \operatorname{Tr}(e(\alpha)) \\ &= \sum_{i=0}^{N-1} e_{i}\operatorname{Tr}(\alpha^{i}) = 2\sum_{j=0}^{\lfloor \frac{N-1}{2} \rfloor} e_{2j}(-1)^{j} \end{aligned}$$

#### Setup: Simplified version

- Assume  $x^2 + 1$  is irreducible over  $\mathbb{F}_q$  and  $x^2 + 1 \mid f(x)$  in  $\mathbb{F}_q[x]$ . Note that it is reducible over  $\mathbb{F}_{q^2}$ .
- Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + 1$ .
- Note that  $\operatorname{Tr}_{q^2/q}(\alpha) = \alpha + \alpha^q = \alpha + (-\alpha) = 0$ .
- For PLWE sample (a, b = as + e) we have

$$\begin{aligned} \operatorname{Tr}(b(\alpha) - a(\alpha)s(\alpha)) &= \operatorname{Tr}(e(\alpha)) \\ &= \sum_{i=0}^{N-1} e_{i} \operatorname{Tr}(\alpha^{i}) = 2 \sum_{j=0}^{\lfloor \frac{N-1}{2} \rfloor} e_{2j} (-1)^{j} \end{aligned}$$

•  $\Sigma = \left[-2\sqrt{\lfloor\frac{N-1}{2}\rfloor}\sigma, 2\sqrt{\lfloor\frac{N-1}{2}\rfloor}\sigma\right]$  is the smallness region containing at most  $4\sqrt{\lfloor\frac{N-1}{2}\rfloor}\sigma + 1$  elements

Setup: General quadratics

• Assume  $x^2 + \rho$  is irreducible,  $x^2 + \rho \mid f(x)$  in  $\mathbb{F}_q[x]$ , and r is the multiplicative order of  $\rho \mod n$ . Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + \rho$ .

Setup: General quadratics

- Assume  $x^2 + \rho$  is irreducible,  $x^2 + \rho \mid f(x)$  in  $\mathbb{F}_q[x]$ , and r is the multiplicative order of  $\rho \mod n$ . Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + \rho$ .
- For PLWE sample (a, b = as + e) we have for  $N^* := \lfloor \frac{N-1}{2} \rfloor$

$$\operatorname{Tr}(b(\alpha) - a(\alpha)s(\alpha)) = \operatorname{Tr}(e(\alpha))$$

$$= 2\sum_{k=0}^{r-1} (-\rho)^k \sum_{i=0}^{\lfloor \frac{N^*}{r} \rfloor - 1} e_{2(ir+k)}$$

#### Setup: General quadratics

- Assume  $x^2 + \rho$  is irreducible,  $x^2 + \rho \mid f(x)$  in  $\mathbb{F}_q[x]$ , and r is the multiplicative order of  $\rho \mod n$ . Let  $\alpha \in \mathbb{F}_{q^2}$  be a root of  $x^2 + \rho$ .
- For PLWE sample (a, b = as + e) we have for  $N^* := \lfloor \frac{N-1}{2} \rfloor$

$$\operatorname{Tr}(b(\alpha) - a(\alpha)s(\alpha)) = \operatorname{Tr}(e(\alpha))$$

$$= 2\sum_{k=0}^{r-1} (-\rho)^k \sum_{i=0}^{\lfloor \frac{N^*}{r} \rfloor - 1} e_{2(ir+k)}$$

• For this case,  $|\Sigma| \leqslant \left(4\sqrt{\frac{N^*}{r}}\sigma + 1\right)^r$ 

 $\mathcal{R}_{q,0}$  case

• Define  $\Re_{q,0} = \{p(x) \in \Re_q \mid p(\alpha) \in \mathbb{F}_q\}$  which has  $\mathbb{F}_q$ -dimension N-1.

 $\mathcal{R}_{a,0}$  case

- Define  $\Re_{q,0} = \{p(x) \in \Re_q \mid p(\alpha) \in \mathbb{F}_q\}$  which has  $\mathbb{F}_q$ -dimension N-1.
- Instead of guessing  $s(\alpha) \in \mathbb{F}_{q^2}$  and checking if

$$\frac{1}{2}\mathrm{Tr}(b(\alpha)-a(\alpha)s(\alpha))=\frac{1}{2}\mathrm{Tr}(b(\alpha))-\frac{1}{2}a(\alpha)\mathrm{Tr}(s(\alpha))\in\Sigma$$

it is enough to guess  $\operatorname{Tr}(s(\alpha)) \in \mathbb{F}_q$ .

 $\mathcal{R}_{a,0}$  case

- Define  $\Re_{q,0} = \{p(x) \in \Re_q \mid p(\alpha) \in \mathbb{F}_q\}$  which has  $\mathbb{F}_q$ -dimension N-1.
- Instead of guessing  $s(lpha) \in \mathbb{F}_{q^2}$  and checking if

$$\frac{1}{2}\mathrm{Tr}(b(\alpha)-a(\alpha)s(\alpha))=\frac{1}{2}\mathrm{Tr}(b(\alpha))-\frac{1}{2}a(\alpha)\mathrm{Tr}(s(\alpha))\in\Sigma$$

it is enough to guess  $\operatorname{Tr}(s(\alpha)) \in \mathbb{F}_q$ .

• This attack requires  $\mathfrak{O}(Mq)$   $\mathbb{F}_q$ -multiplications for M samples.

#### Setup for probability analysis

Denote 
$$p^*(x) := \sum_{j=0}^{N^*} p_{2j} x^j$$
 and  $\Re_q^* := \mathbb{F}_q/(f^*(x))$ .

#### Lemma

Given  $(a, b) \in \mathbb{R}_{q,0} \times \mathbb{R}_q$  and  $g \in \mathbb{F}_q$ ,

$$(\operatorname{Tr}(b(\alpha) - a(\alpha)g))/2 \in \Sigma \iff b^*(-\rho) - ga^*(-\rho) \in \Sigma$$

and as such the new attack on samples  $(a_i, b_i) \in \mathcal{R}_{q,0} \times \mathcal{R}_q$  gives the same result as the old attack on samples  $(a_i^*, b_i^*) \in \mathcal{R}_q^* \times \mathcal{R}_q^*$ .

#### Setup for probability analysis

Denote 
$$p^*(x) := \sum_{j=0}^{N^*} p_{2j}x^j$$
 and  $\Re_q^* := \mathbb{F}_q/(f^*(x))$ .

#### Lemma

Given  $(a, b) \in \mathbb{R}_{q,0} \times \mathbb{R}_q$  and  $g \in \mathbb{F}_q$ ,

$$(\operatorname{Tr}(b(\alpha) - a(\alpha)g))/2 \in \Sigma \iff b^*(-\rho) - ga^*(-\rho) \in \Sigma$$

and as such the new attack on samples  $(a_i, b_i) \in \mathbb{R}_{q,0} \times \mathbb{R}_q$  gives the same result as the old attack on samples  $(a_i^*, b_i^*) \in \mathbb{R}_q^* \times \mathbb{R}_q^*$ .

#### Proof.

Follows from  $f(\alpha) = f^*(-\rho) = 0$ .

Setup for probability analysis

#### Lemma

If a  $\stackrel{\$}{\leftarrow} \Re_{q,0}$ , then  $a^* \stackrel{\$}{\leftarrow} \Re_q^*$  with probability  $\mathfrak{O}(q^{-N^*})$ .

#### Setup for probability analysis

#### Lemma

If a  $\stackrel{\$}{\leftarrow} \Re_{q,0}$ , then a\*  $\stackrel{\$}{\leftarrow} \Re_q^*$  with probability  $\mathfrak{O}(q^{-N^*})$ .

Sketch of proof.

Write  $a = a_0 + a_1$  where

$$a_0(x) = \sum_{j=0}^{N^*} a_{2j} x^{2j}, \quad a_1(x) = \sum_{j=0}^{N^*} (a_{2j+1} x^{2j}) x.$$

Fix  $a_0$ . Note that any  $N^*$ -tuple  $(a_1, a_3, \ldots, a_{2N^*+1})$  for  $a_1(x)$  with  $\sum_{j=0}^{N^*} a_{2j+1}(-\rho)^{2j} = 0$  gives rise to the same polynomial  $a^*(x)$ .

Probability analysis

#### Proposition

For  $|\Sigma| < q$  and M the number of input samples from  $\Re_{q,0} \times \Re_q$ , the attack we have described succeeds with probability  $1 - \left(\frac{|\Sigma|}{q}\right)^M$ .

#### Probability analysis

## Proposition

For  $|\Sigma| < q$  and M the number of input samples from  $\Re_{q,0} \times \Re_q$ , the attack we have described succeeds with probability  $1 - \left(\frac{|\Sigma|}{q}\right)^M$ .

Sketch of proof.

Write

$$(a(x), b(x)) = (a_0(x), b_0(x)) + (a_1(x), b_1(x))$$

for  $a_0(x) = a^*(x^2)$ ,  $b_0(x) = b^*(x^2)$  and  $a_1(\alpha) = 0$ . Show that the attack output for starred and non-starred samples are the same.

Setup for general attack

# Definition $(X_0)$

Given a distribution X over  $\mathcal{R}_q \times \mathcal{R}_q$ , let  $X_0$  denote the random variable which samples X until it obtains (a,b) with  $a \in \mathcal{R}_{q,0}$  and returns (a,b) with the number of queries (count) of X.

#### Setup for general attack

# Definition $(X_0)$

Given a distribution X over  $\mathcal{R}_q \times \mathcal{R}_q$ , let  $X_0$  denote the random variable which samples X until it obtains (a,b) with  $a \in \mathcal{R}_{q,0}$  and returns (a,b) with the number of queries (count) of X.

#### Proposition

With the notations above,

- 1. If X is uniform over  $\Re_q \times \Re_q$ , then  $X_0$  is uniform over  $\Re_{q,0} \times \Re_q$ .
- 2. If X is a PLWE distribution then  $X_0$  is a  $\Re_{q,0} \times \Re_q$ -valued PLWE distribution.

#### Setup for general attack

# Definition $(X_0)$

Given a distribution X over  $\mathcal{R}_q \times \mathcal{R}_q$ , let  $X_0$  denote the random variable which samples X until it obtains (a,b) with  $a \in \mathcal{R}_{q,0}$  and returns (a,b) with the number of queries (count) of X.

#### Proposition

With the notations above,

- 1. If X is uniform over  $\mathbb{R}_q \times \mathbb{R}_q$ , then  $X_0$  is uniform over  $\mathbb{R}_{q,0} \times \mathbb{R}_q$ .
- 2. If X is a PLWE distribution then  $X_0$  is a  $\Re_{q,0} \times \Re_q$ -valued PLWE distribution.

#### Remark

count ~ Geom $(q^{-1})$  so  $\mathbb{E}[\text{count}] = q = \mathcal{O}(N^2)$ .



#### Setup for general attack

• Let  $\ell = \mathcal{O}(p(N))$  be the maximum number of samples to generate. The probability that for  $\ell$  samples in  $\mathcal{R}_q^2$ , at least  $k \leq \ell$  of them belong to  $\mathcal{R}_{q,0} \times \mathcal{R}_q$  is (by normal approximation)

$$P[\mathcal{B}(\ell, q^{-1}) \geqslant k] \approx P\left[Z \geqslant \frac{k - \ell q^{-1}}{\sqrt{\ell q^{-1}(1 - q^{-1})}}\right]$$

where  $\mathcal B$  denotes a random variable with the binomial distribution of parameters  $\ell$  and  $q^{-1}$ .

#### Setup for general attack

• Let  $\ell = \mathcal{O}(p(N))$  be the maximum number of samples to generate. The probability that for  $\ell$  samples in  $\mathcal{R}_q^2$ , at least  $k \leq \ell$  of them belong to  $\mathcal{R}_{q,0} \times \mathcal{R}_q$  is (by normal approximation)

$$P[\mathcal{B}(\ell, q^{-1}) \geqslant k] \approx P\left[Z \geqslant \frac{k - \ell q^{-1}}{\sqrt{\ell q^{-1}(1 - q^{-1})}}\right]$$

where  $\mathcal B$  denotes a random variable with the binomial distribution of parameters  $\ell$  and  $q^{-1}$ .

• This probability is  $\approx 1/2$  for  $k \approx \ell q^{-1} > 5$ .

#### Setup for general attack

• Let  $\ell = \mathcal{O}(p(N))$  be the maximum number of samples to generate. The probability that for  $\ell$  samples in  $\mathcal{R}_q^2$ , at least  $k \leq \ell$  of them belong to  $\mathcal{R}_{q,0} \times \mathcal{R}_q$  is (by normal approximation)

$$P[\mathcal{B}(\ell, q^{-1}) \ge k] \approx P\left[Z \ge \frac{k - \ell q^{-1}}{\sqrt{\ell q^{-1}(1 - q^{-1})}}\right]$$

where  $\mathcal B$  denotes a random variable with the binomial distribution of parameters  $\ell$  and  $q^{-1}$ .

- This probability is  $\approx 1/2$  for  $k \approx \ell q^{-1} > 5$ .
- We choose k so that  $1-\left(\frac{|\Sigma|}{q}\right)^k\geqslant \theta$  where  $\theta$  is the desired success probability.

# New attack General attack

- 1. Sample from  $\mathcal{R}_q \times \mathcal{R}_q$  until k samples fall in  $\mathcal{R}_{q,0} \times \mathcal{R}_q$ .
- 2. Apply the trace attack on the k samples.

1.  $\alpha = 1$  is never a root of  $\Phi_n(x)$  modulo  $q \nmid n$ .

- 1.  $\alpha = 1$  is never a root of  $\Phi_n(x)$  modulo  $q \nmid n$ .
- 2. For  $q=1 \mod n$  (so  $\mathbb{F}_q^{\times}$  contains a cyclic subgroup of order n), the roots of  $\Phi_n(x)$  have order n (since they are the primitive nth roots).

- 1.  $\alpha = 1$  is never a root of  $\Phi_n(x)$  modulo  $q \nmid n$ .
- 2. For  $q=1 \mod n$  (so  $\mathbb{F}_q^{\times}$  contains a cyclic subgroup of order n), the roots of  $\Phi_n(x)$  have order n (since they are the primitive nth roots).
- 3. It is unlikely (heuristic) for  $\Phi_n(x)$  to have an irreducible quadratic factor with 0 linear term.

- 1.  $\alpha = 1$  is never a root of  $\Phi_n(x)$  modulo  $q \nmid n$ .
- 2. For  $q=1 \mod n$  (so  $\mathbb{F}_q^{\times}$  contains a cyclic subgroup of order n), the roots of  $\Phi_n(x)$  have order n (since they are the primitive nth roots).
- 3. It is unlikely (heuristic) for  $\Phi_n(x)$  to have an irreducible quadratic factor with 0 linear term.
- 4. For conductor  $n = p^k$  and  $q = 1 + p^A u$  for (u, p) = 1 and  $2 \le A < k$

$$\Phi_{p^k}(x) = \prod_{\rho \in \Omega(p^A)} (x^{p^{k-A}} - \rho)$$

where  $\Omega(p^A)$  is the set of primitive  $p^A$ th roots of unity. Attack is efficient for A=2 but the subspace  $\Re_{q,0}$  has dimension  $\approx N/2$  and weak samples are rare.

#### References



Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange, "Provably Weak Instances of Ring-LWE,"

In: Advances in Cryptology – CRYPTO 2015, R. Gennaro and M. Robshaw, Eds., no. 9215 in Lecture Notes in Computer Science, Berlin, Heidelberg, 2015, Springer Berlin Heidelberg, pp. 63–92.