

- O1 Problem Statement & Background
- 02 Data Import & Cleaning
- 03 Exploratory Data Analysis (EDA)
- **04** Data Visualization
- 05 Conclusions and Recommendations

- O1 Problem Statement & Background
- 02 Data Import & Cleaning
- 03 Exploratory Data Analysis (EDA)
- 04 Data Visualization
- O5 Conclusions and Recommendations

Problem Statement

We are part of the National Environment Agency (NEA) taskforce to

develop a set of air quality early warning systems to predict potential periods of air quality deterioration, allowing the government to take necessary precautionary actions.

As such, we would provide insights to the impact that the various weather factors have on air quality.

Background

- Ongoing Climate Change
- Return of El Nino and La Nina
- Recurrent transboundary
 SouthEast Asian (SEA) Haze

- O1 Problem Statement & Background
- 02 Data Import & Cleaning
- 03 Exploratory Data Analysis (EDA)
- 04 Data Visualization
- O5 Conclusions and Recommendations

Data Cleaning and Import

- Import datasets in 2 batches
 - 1) Weather Related
 - 2) Air Quality Related

- Data Source: Data.gov.sg
- Data collected from similar period,
 with similar date-time formatting

Data Dictionary

Feature	Туре	Dataset	Description	
date	datetime	all datasets	1982, January to 2023, May	
year	datetime	all datasets	1982 to 2023	
month	datetime	all datasets	Jan - Dec, represented by 01 - 12 respectively	Weather
rainy_days	int	rainfall-monthly-number-of-rain-days	The number of rain days (day with rainfall amount of 0.2mm or more) in a month recorded	
total_rainfall	float	rainfall-monthly-total	The total monthly rainfall in mm	
max_daily_rainfall	float	rainfall-monthly-highest-daily-total	The highest daily total rainfall for the month	
mean_rh	float	relative-humidity-monthly-mean	The monthly mean relative humidity recorded	
min_daily_temp	float	Surface Air Temperature Monthly Mean Daily Maximum	The monthly mean daily minimum temperature recorded	
max_daily_temp	float	surface-air-temperature-monthly-mean-daily-minimum	The monthly mean daily maximum temperature recorded	
extr_max_temp	float	${\it Surface Air Temperature Monthly Absolute Extreme Maximum}$	The monthly extreme maximum air temperature recorded	
extr_min_temp	float	${\it Surface Air Temperature Monthly Absolute Extreme Minimum}$	The absolute extreme minimum air temperature recorded	
mean_sunshine_hrs	float	sunshine-duration-monthly-mean-daily-duration	The monthly mean sunshine hours in a day recorded	Air Quality
ozone_max_mean	float	air-pollutant-ozone	Annual daily maximum 8-hr means for ozone (µg/m3)	
pm2.5_mean	float	air-pollutant-particulate-matter-pm2-5	Annual means for PM2.5 (µg/m3)	
pm10_mean	float	Air Pollutant Particulate Matter PM10	Annual 24-hr means (99th percentile) for PM10 (µg/m3)	
co_max_mean	float	Air Pollutant Carbon Monoxide 2nd Maximum 8 Hour Mean	Annual maximum 8-hr means for carbon monoxide (mg/m3)	
no2_mean	float	AirPollutantNitrogenDioxide	Annual means for nitrogen dioxide (µg/m3)	
so2_mean	float	AirPollutantSulphurDioxide	Annual means for sulphur dioxide (µg/m3)	
psi	float	historical-24-hr-psi	Historical regional 24-hr PSI	

- O1 Problem Statement & Background
- 02 Data Import & Cleaning
- 03 Exploratory Data Analysis (EDA)
- 04 Data Visualization
- 05 Conclusions and Recommendations

Charting yearly mean of various weather conditions

- Weather conditions are correlated to each other
- Total rainfall and max daily rainfall have a stronger correlation
- Mean sunshine hours is inversely correlated to the relative humidity and rainfall

Charting yearly mean of various air pollutants

 Correlation between ozone, pm2.5 and pm10

Correlation between weather conditions

Correlation between weather conditions vs air pollutants

Monthly Trend of Total Rainfall

- Singapore observed highest rainfall towards the end of year through first month of the year.
- Meanwhile, drier months is between February and March.

Mean Minimum Daily Temperatures

Mean Maximum Daily Temperatures

Mean Minimum Daily Temperatures

Mean Maximum Daily Temperatures

Total Rainfall

- Seasonal pattern (occuring yearly) is observed, with total rainfall peaking at the end of the year.
- Trend: Total rainfall gradually decreases over time

Maximum Daily Temperature

- Seasonal pattern (occuring yearly) is observed, with maximum daily temperature peaking at the front part of the year and falling.
- Trend: Maximum daily temperature gradually increases over time

Yearly mean of air pollutants, against Singapore and WHO's air quality targets

Pollutant	Singapore Targets by 2020	Long Term Targets	
Sulphur Dioxide (SO ₂)	24-hour mean: 50μg/m³ (WHO Interim Target)	24-hour mean: 20μg/m ³ (WHO Final)	
Particulate Matter (PM _{2.5})	Annual mean: 12µg/m³ (Sustainable Singapore Blueprint target) 24-hour mean: 37.5µg/m³ (WHO Interim Target)	Annual mean: 10μg/m ³ (WHO Final)	
Particulate Matter (PM ₁₀)	Annual mean: 20 μg/m ³ (WHO Final)		
Ozone	8-hour mean: 100µg/m³ (WHO Final)		
Nitrogen Dioxide (NO ₂)	Annual mean <mark>: 40μg/m³</mark> 1-hour mean: 200μg/m³ (WHO Final)		
Carbon Monoxide (CO)	8-hour mean: 10mg/m ³ 1-hour mean: 30mg/m ³ (WHO Final)		

Yearly mean of air pollutants, against Singapore and WHO's air quality targets

Distributions of Air Quality Index

- Both PSI and PM2.5 distribution have a positively skewed distribution
- Average at 50 and 14, respectively.

Correlation between Rainfall/Temperature and Air Quality Indexes

- O1 Problem Statement & Background
- 02 Data Import & Cleaning
- 03 Exploratory Data Analysis (EDA)
- 04 Data Visualization
- 05 Conclusions and Recommendations

Conclusion

We can see the effects of global warming in the graphs, with temperatures generally rising, and total rainfall amounts falling over time. From the research done, theory tells us it is likely possible that decreased rainfall, and hotter temperatures should lead to deterioration of air quality. However, the correlation is not strong, and conducting a more in-depth analysis would be necessary to gain further insights. As majority of the pollutant datasets only provide a yearly mean, data was of lower granularity.

Key Takeaways/ Recommendations

- Temperature and rainfall are seasonal variables, and the seasonality remains quite stable over time for the Singapore context.
- Relative humidity seems to have a slightly stronger correlation to the various pollutants, so this relationship could be further explored for the modelling and prediction stage.
- It is also important to note that while our focus is currently on weather and its impact on air quality, we would need to consider several other factors in order to develop a comprehensive air quality early warning system.

