Amortizovaná složitost

- průměrný čas na vykonání operace v sekvenci operací v nejhorším případě
- nevyužívá pravděpodobnost -> průměrný čas na operaci je skutečně zaručený
- asymptotická složitost:
 - o porovnání efektivity a rychlosti algoritmů
 - horní asymptotický odhad
 - o dolní asymptotický odhad
 - optimální asymptotický odhad

Prioritní fronta

- abstraktní datový typ
- každý element má přiřazenu svou prioritu
- z fronty jsou vybrány dříve elementy s nejnižší (nejvyšší) prioritou
- operace:
 - o void push(Element e) vloží element s prioritou
 - Element pull() odebere element s nejnižší (nejvyšší) prioritou

Binární halda

- implementace prioritní fronty
- stromová struktura
- pro všechny prvky platí pravidlo: pokud A je potomek B, pak B <= A
- operace:
 - insert(x)
 - O(log n)
 - 1. přidáme prvek na konec haldy
 - 2. dokud je větší než rodič, tak prohazovat
 - delete(x)
 - O(log n)
 - 1.
 - o merge(H1, H2)
 - O(m + n)
 - accessMin()
 - O(1)
 - deleteMin()
 - O(log n)
 - decrease(x, value)
 - O(log n)
- obrázek reprezentace binární haldy v paměti

D-regulární halda

- d udává stupeň štěpení
- pro d = 2 je halda binární halda
- operace a jejich složitost je analogická s binární haldou
- přesná složitost se liší základem logaritmu (základ je d)

Binomiální halda

- množina binomiálních stromů řádu 1, ..., log(n)
- každý řád je zastoupený maximálně jedním stromem
- každý vrchol je menší nebo roven svým potomkům
- má 2ⁱ vrcholů
- má hloubku i
- jeho kořen má i synů
- strom řádu i vznikne ze dvou stromů řádu i-1
- operace:
 - o insert amortizovaná složitost je konstantní
 - o min konstantní
 - o merge O(log n)

Fibonacciho halda

Neorientované a orientované grafy

- graf
 - základní objekt teorie grafů
 - o reprezentace množiny objektů, které mohou být propojeny
 - o dvojice G = <V, E>
 - vrcholy, spojují je hrany
 - V je neprázdná množina vrcholů
- neorientovaný
 - hrana je dvouprvková množina {u, v}: E ⊆ {{u, v} | u,v ∈ V, u ≠ v}
 - na pořadí vrcholů nezáleží
- orientovaný
 - o hrana je uspořádaná dvojice <u, v>
 - o na pořadí vrcholů záleží

Reprezentace grafu

- matice sousednosti
- matice incidence
- matice vzdáleností
- seznam sousedů

Prohledávání

- do hloubky (DFS)
 - o nejdříve se prohledávají potomci, potom sourozenci
 - implementován pomocí
 - zásobníku (LIFO)
 - rekurze (paměťově náročnější)
 - o algoritmus:

```
to_visit.push(n);
}
olimits do visit.push(n);
}
olimits do visit.push(n);
}
olimits do visit.push(n);
limits do visit.push(n);
olimits do visit.push
```

Topologické uspořádání

- taková posloupnost uzlů u_i, u_i, že pro každou hranu mezi dvěma uzly platí i < j
- z toho vychází podmínka acykličnosti grafu
- používá se pro plánování na sobě závislých činností
- algoritmus topologického uspořádání vychází z procházení grafu do hloubky (pořadí uzavření uzlů v opačně orientovaném grafu)

Souvislost

pro každé dva vrcholy x, y existuje cesta z x do y

Strom

- souvislý graf bez cyklů
- přidání libovolné hrany vznikne cyklus
- odebrání libovolné hrany přestane být souvislý
- má |V| 1 hran
- každé dva vrcholy jsou spojeny pouze jednou cestou
- list = uzel, který nemá žádné potomky
- kořen = uzel, který není potomkem

Minimální kostra

- kostra H grafu G je podgraf takový, že V(G) = V(H)
- minimální kostra je kostra, která má minimální sumu vah svých hran
- algoritmy:
 - Jarníkův-Primův O(|V(G)| * |E(G)|)
 - z libovolného uzlu rozšiřují minimální kostru
 - označím potomky a z nich připojím nejmenší hranu
 - Borůvkův O(log |V(G)| * |E(G)|)
 - na začátku jsou všechny uzly samostatné komponenty
 - ke každé komponentě přidám nejmenší hranu
 - Kruskalův O(log |V(G)| * |E(G)|)

Lexikální analyzátor

- obvykle je to stavový automat
- na vstupu dostává text
- generuje lexikální symboly
 - o jsou terminálními pro syntaktickou analýzu
 - o popsány regulárními výrazy nebo gramatikou
 - o mohou mít atributy (např. hodnotu proměnné)
- ignoruje některé části textu (bílé znaky, komentáře, ...)
- nestará se o smysl výstupních konstrukcí
- obvykle implementován pomocí deterministického konečného automatu

Syntaktický strom

- výstup překladače u interpretovaných jazyků
- vnitřní uzly jsou operátory
- listy jsou operandy
- používá se k optimalizaci kódu

Syntaktický analyzátor shora dolů

- = parsování
- bere výstup z lexikálního analyzátoru
- kontroluje správnost podle LL(1) gramatiky
- realizuje se zásobníkovým automatem
 - o na začátku tam je neterminál
 - v každém kroku se rozvine podle gramatiky
 - o když nejde dál rozvinout (je tam terminál), podívá se na vstup a porovná ho
 - když je zásobník prázdný, slovo bylo přijato

LL(1) gramatiky

- deterministické zpracování
- k rozhodnutí stačí znát jeden následující symbol

Rozkladové tabulky

- pro rozvinutí neterminálu v syntaktické analýze
- tabulka neterminálů na terminály
- výpočet pomocí FIRST (a pokud je prázdný, tak i podle FOLLOW)

- FIRST
- FOLLOW

- definice konečného automatu
- regulární jazyk
- vztah konečného automatu a regulárního jazyka

Algoritmy vyhledávání v textu s lineární a sublineární složitostí

- naivní algoritmus
- Boyer-Moore
 - o tabulka GSS (Good Suffix Shift)

Využití konečných automatů pro přesné a přibližné hledání v textu

- determinisitcký konečný automat
- nedeterministický konečný automat
- Hammingova vzdálenost
- Levenshteinova vzdálenost

Obecná 05

Algoritmus

- = dobře definovaný proces (posloupnost výpočetních kroků), který zpracuje vstup a vydá výstup
- algoritmus A řeší úlohu U, pokud pro každý vstup vydá správné řešení

Správnost algoritmu

- algoritmus se musí zastavit
- po zastavení vydá algoritmus správný výstup
- variant
 - = přirozené číslo, které se s každým proběhnutím cyklu zmenšuje až dosáhne své minimální hodnoty
 - o zaručuje ukončení algoritmu v konečném počtu kroků
- invariant
 - = tvrzení, které platí před vstupem do cyklu

- o pokud platí před vykonáním cyklu, platí i po každém provedení cyklu
- zaručuje správnost řešení

Složitost algoritmu

- master theorem
- omega, omikron, theta

Složitost úlohy

převod úloh

Třída P a NP

Rozhodovací úloha

- její řešení je buď ano nebo ne
- často v sobě obsahují konstrukční úlohu (např. pokud chci zjisti, zda existuje maximální tok, musím ho najít)
- každou úlohu lze zakódovat pomocí vhodné abecedy do slov

Turingův stroj

- sedmice TS = (Q, E, T, q0, d, B, F)
- TS rozhodne jazyk L, pokud pro každé slovo w náleží E se v konečném počtu kroků zastaví

Nedeterministický algoritmus

Třída P

- rozhodovací úloha U patří do třídy P, pokud existuje TS, který rozhodne jazyk L_u v polynomiálním čase
- příklady:
 - existuje kostra grafu ceny menší nebo rovno C?
 - o existuje orientovaná cesta v acyklickém grafu z vrcholu a do b menší než d?
 - existuje přípustný tok alespoň velikosti k?
 - existuje řez, který má kapacitu menší nebo rovnu k?

Třída NP

 rozhodovací úloha U leží ve třídě NP, pokud existuje nedeterministický TS, který rozhodne jazyk L_u v polynomiálním čase

NP-úplné úlohy

- úloha U je ve třídě NP
- všechny NP úlohy se polynomiálně redukují na U

NP-těžké úlohy

některá NPC úloha se polynomiálně redukuje na U

Cookeova věta

- = úloha SAT je NP-úplná
- = libovolný nedeterministický Turingův stroj lze v polynomiálním čase převést na problém splnitelnosti booleovských formulí v konjunktivním normálním tvaru
- SAT je splňování formulí v konjunktivním normálním tvaru
- důkaz:
 - o úloha SAT je ve třídě NP
 - o nedeterministický algoritmus vygeneruje ohodnocení logických proměnných
 - v polynomiálním čase lze ověřit, jestli je formule v daném ohodnocení pravdivá,
 či ne

Heurisitiky na řešení NP-těžkých úloh

- 2-aproximační algoritmus
 - jestliže instance I splňuje trojúhelníkovou nerovnost, pak existuje polynomiální algoritmus, který pro I najde trasu délky D, kde D <= 2 OPT(I)
 - o postup:
 - instanci I považujeme za úplný graf G
 - v G najdeme minimální kostru
 - kostru prohledáme do hloubky
 - zapíšeme první výskyt každého uzlu jako trasu
- Christofidesův algoritmus
 - jestliže instance I splňuje trojúhelníkovou nerovnost, pak existuje polynomiální algoritmus, který pro I najde trasu délky D, kde D <= 3/2 OPT(I)
 - o postup:
 - instanci I považujeme za úplný graf G
 - v G najdeme minimální kostru
 - vytvoříme úplný graf H pouze s vrcholy, které mají v kostře lichý stupeň
 - v H najdeme nejlevnější perfektní párování P
 - hrany z P přidáme do kostry
 - sestrojíme eulerovský tah a zapíšeme vrcholy trasy

Pravděpodobnostní algoritmy

- randomizovaný Turingův stroj
 - TS se dvěma nebo více páskami
 - první páska má stejnou roli jako u deterministického TS
 - druhá páska obsahuje náhodnou posloupnost 0 a 1
- třída RP
 - jazyk L patří do RP, pokud existuje RTS takový, že:
 - i. jestli w nepatří do L, pak se RTS zastaví v F s pravděpodobností 0
 - ii. jestli w patří do L, pak se RTS zastaví v F s pravděpodobností 0,5
 - iii. každý běh RTS trvá maximálně p(n) kroků
 - Millerův test prvočíselnosti
 - Turingův stroj Monte-Carlo
 - splňuje podmínky 1 a 2
 - ii. nemusí pracovat v polynomiálním čase
- třída ZPP
 - jazyk L patří do třídy ZPP, pokud existuje RTS takový, že:
 - i. jestli w nepatří do L, pak RTS zastaví v F s pravděpodobností 0
 - ii. jestli w patří do L, pak RTS zastaví v F s pravděpodobností 1
 - iii. střední hodnota počtu kroků RTS v jednom běhu je p(n)
 - o tzn. neuděláme chybu, ale nemůžeme zaručit polynomiální běh
 - Turingův stroj Las-Vegas

Obecná 07

Metoda větví a mezí

- $z = ILP(A, B, c, z^*)$
- řešit pomocí LP
- x_i jsou celočíselné -> konec, jinak:
 - rozdělit na dvě podúlohy
 - o $z' = ILP(A', B', c, z^*)$ pro $x_i \le k$
 - o z" = ILP(A", B", c, z*) pro $x_i \le k + 1$
- z více řešení vybrat lepší
- neexistuje přípustné řešení ->konec, jinak:
 - jestli z > z*, tak na krok č. 3, jinak konec

Algoritmy pro celočíselné lineární programování

- větve a meze
- metoda sečných nadrovin
 - o řeší se LP
 - v každé iteraci se přidá podmínka tak, že:
 - optimální řešení LP se stane nepřípustným

- žádné celočíselné řešení se nestane nepřípustným
- (batoh, toky)

Formulace optimalizačních a rozhodovacích problémů pomocí celočíselného lineárního programování

- dělení kořisti
- nejkratší cesta v grafu
- problém asymetrického obchodního cestujícího
- logické formule
- alespoň 1 ze 2 podmínek
- metoda větví a mezí

Toky a řezy

- síť = pětice (G, I, u, s, t), kde
 - G je orientovaný graf
 - o I je dolní omezení hran
 - u je horní omezení hran
 - o s je zdroj a t spotřebič
- tok = ohodnocení hran v síti, kde pro každý vrchol (kromě s, t) platí Kirchhofův zákon
 - přípustný tok: f_e = <l_e, u_e>
- problém maximálního toku
 - o chceme najít takový přípustný tok,
 - o Ford-Fulkrsonův alg. (postupné zlepšování propustnosti toku)
 - najdi přípustný tok f_e pro všechny e náleží E(G)
 - ii. najdi zlepšující cestu; pokud neexistuje, ukonči se
 - iii. spočítej kapacitu zlepšující cesty a zlepši tok z s do t, opakuj 2
 - o problém minimálního řezu
 - celočíselnost
- rozhodovací problém přípustného toku v síti
- nejlevnější tok v síti

Multikomoditní toky

nejlevnější multikomoditní toky

Obecná 08

Nejkratší cesty

- Dijkstrův alg.
- Bellman-Fordův alg.

Floydův alg.

Úloha obchodního cestujícího

- Hamiltonovská kružnice
- důkaz, že je to NP-úplný problém
 - polynomiální redukcí vytvořím instanci TSP tak, že každému vrcholu grafu G odpovídá vrchol v úplném neorientovaném grafu K
 - váha hrany {i, j} v K je:
 - 1, pokud {i, j} náleží E(G)
 - 2, pokud {i, j} nenáleží E(G)
- heuristika Nejbližší soused
- 2-aproximační algoritmus
- 3/2-aproximační algoritmus
 - složitost metrického cestujícího (převodem z HK)
- TSP pomocí ILP

Heuristiky a aproximační algoritmy

- heuristika Nejbližší soused
- 2-aproximační algoritmus
- 3/2-aproximační algoritmus

Metoda dynamického programování

- Rothkopf P||Cmax
- batoh

Problém batohu

- přidání položky
 - jdi na [y + 1, x + cena]
 - o nastav na z + váha
- nepřidání položky
 - o jdi na [y + 1, x]
 - nastav na zdrojové pole
- při možnosti více řešení se vybere to výhodnější
- O(C * n)
 - o lze polynomem omezit délu vstupu n
 - nelze omezit velikost vstupu

Pseudo-polynomiální algoritmy

- pseudopolynomiální algoritmus
- stavový prostor je konstruován díky celočíselným vstupům
- ze dvou řešení si ponecháme to výhodnější

- Rothkopf P||Cmax
- batch

Rozvrhování na jednom procesoru

- Bratley's algorithm
- metoda větví a mezí

Rozvrhování na více procesorech

- McNaughtonův
- List scheduling
- Longest Processing Time first
- úrovňový algoritmus P|pmtn,prec|Cmax

Rozvrhování projektu s časovými omezeními

- množina nepreemptivních úloh je reprezentována vrcholy v orientovaném grafu
- každý uzel je ohodnocen p_i (doba vykonání úlohy)
- hrany jsou temporální omezení l_{i,j} (s_i + l_{i,j} <= s_i)
- typy:
 - l_{i,i} = p_i ... úloha j může začít po dokončení úlohy i
 - o l_{i,i} > p_i ... úloha j může začít až za nějaký čas po dokončení úlohy i (schnutí laku)
 - 0 < l_{i,i} < p_i ... dílčí část úlohy i je možné použít pro úlohu j
 - I_{i,j} = 0 ... úloha i musí začít dříve nebo ve stejný okamžik, jako úloha j
 - I_{i,i} < 0 .. úloha i musí začít dříve nebo maximálně o |I_{i,i}| později

Programování s omezujícími podmínkami

- trojice (X, D, C)
- X = {x1, ..., xn} ... konečná množina proměnných
- D = {D1, ..., Dn} ... konečná množina domén
 - Di obsahuje možné hodnoty pro xi
- C = {C1, ..., Cn} .. konečná množina omezení
- CSP
 - o může pokračovat optimalizací (např. větve a meze)
 - možnost složitějších podmínek oproti ILP
- hranová konzistence
- revize hrany