PrediCare Al Breast Cancer Diagnosis

Capstone Project Presentation 22.11.2023

OUR TEAM

Helene Schönewolf

Entrepreneur | Data Scientist

María José Zapata

Physiotherapist | Data Scientist

Yen Ramisch

PhD Analytical Chemist | Data Scientist

TABLE OF CONTENTS

01. BREAST CANCER & DIAGNOSIS

- 02. DATA & BASELINE MODEL
- 03. IMAGE SEGMENTATION & CLASSIFICATION
- **04.** ACCESSIBILITY (WEB APP)

01. BREAST CANCER & DIAGNOSIS

Breast Cancer - Most common Cancer in Women worldwide

2.3 M women diagnosed globally with breast cancer (2020)

20 % missed breast cancer diagnoses during check ups

30 % global death rate

Reduce mortality by:

- health promotion for early detection
- early diagnosis

Breast Cancer - Early Detection

Physical exams

Mammography (X-ray) Sonography (ultrasound) Biopsy, gene sequencing, tumor board

X-Ray vs. Ultrasound Imaging

	X-ray	Ultrasound	
	•	Differentiation of cystic/fluid and solid lesions	
Advantages		Non ionizing radiation, safe fore repeated examinations	
		No breast compression	
Disadvantages	In many countries no accessibility	Need much more practice	
	: : Harmful radiation	Difficult to interpret	

Ultrasound Image Analysis: normal, benign, malignant

	normal	benign	malignant
Shape & Margins	consistent, symmetrical appearance	: regular, well-defined : borders of mass	irregular, poorly-defined, spiculated mass
Echogenicity		: homogeneous, similar to surrounding tissue	heterogeneous
Shadowing	: : not present :	more pronounced	less pronounced

- Identification of anomalies (node/tumor)
- 2. Inspecting the shape of node/tumor
- 3. Inspecting the texture of the node/tumor (in comparison to the surrounding tissue)

Objective

Identifying anomalies and predicting malignancy of breast tumors based on breast ultrasound images

Providing patients with a tool to help them detect breast cancer earlier

Improve survival rate

02. DATA & BASELINE MODEL

Original Data Set - BUSI dataset

Ultrasound images of women's breast collected in 2018

600 female patients (age 25-75) 780 images (500 x 500, png)

3 categories:

- Normal: 133 (17,05 %)
- Benign: 427 (54,74 %)
- Malignant: 210 (26,92 %)

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data in Brief. 2020 Feb;28:104863. DOI: 10.1016/j.dib.2019.104863.

What the data set looks like

LEFT BREAST

Baseline Model: Support Vector Machine (SVM)

Data cleaning

- 1. Deleting misclassified images, duplicates and images of axilla
- 2. Creating unique masks on those images that have more than one mask
- 3. Data augmentation (rotation, translation, shear, zoom) to create balanced data set

Letter to the Editor. Re: "[Dataset of breast ultrasound images by W. Al-Dhabyani, M. Gomaa, H. Khaled & A. Fahmy, Data in Brief, 2020, 28, 104863]". https://doi.org/10.1016/j.dib.2023.109247

14

Image Recognition Process

Segmentation Classification Pre-**Feature** processing extraction CNN (U-net) / Histogram of Data cleaning **SVM** Masking Oriented Gradient Random Forest Augmentation (HOG) Contouring Balancing Local Binary Pattern Thresholding ResNet-50 Reduce noise (LBP)

Feature Extraction Image texture/characteristics

Original image

Local Binary Pattern (LBP)

Histogram of Oriented Gradients (HOG)

Image segmentation - U-net

Identify anomalies and determine their shapes

60

40

80 100 120

120

120 -

0

100 120

40 60 80

Intersection over Union (IoU):

0.77

Image classification: Transfer Learning

Input:

original images
LBP images

HOG images

Binary masks

- Conv
- Max Pool
- Residual block
- Average Pool
- Dense & Dropout

ResNet50 (Residual Neural Network with 50 layers) New dense layers

Evaluation of the models

04. ACCESSIBILITY

Web app

PrediCare

AI Breast Cancer Diagnosis

PrediCare - Al Breast Cancer Diagnosis

THANK YOU FOR THE ATTENTION!

Do you have any questions?

