Intégration - TD12 Limites et Intégrales

Exercice 1. Formule de la moyenne

- a) On considère $a < b \in \mathbb{R}$ et f,g deux fonction continues sur [a,b] avec g positive. Montrer qu'il existe $c \in [a,b]$ tel que $\int_a^b f(t)g(t)dt = f(c)\int_a^b g(t)dt$.
- b) Soit f une fonction continue au voisinage de 0, déterminer $\lim_{x\to 0}\frac{1}{x^2}\int_0^x tf(t)dt$ et $\lim_{x\to 0^+}\int_x^{2x}\frac{f(t)}{t}dt$

Exercice 2. Calculs de limites

a) Soit $f:[0,e]\longrightarrow \mathbb{R}$ continue. Montrer que

$$\lim_{n \to +\infty} n \int_{1}^{1+\frac{1}{n}} f(x^n) dx = \int_{1}^{e} \frac{f(x)}{x} dx$$

b) Calculer la limite de $I_n = \int_0^1 (\ln(1+x))^n dx$.

Exercice 3. Intégrales de Wallis

Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt$$

- a) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- b) Calculer $\lim_{n\to+\infty} I_n$.
- c) Prouver la relation de récurrence $I_n = \frac{n-1}{n}I_{n-2}$. En déduire que nI_nI_{n-1} est une suite constante.
- d) En déduire un équivalent de I_n quand $n \to +\infty$.

Exercice 4. Lemme de Riemann-Lebesgue

a) Soit f une fonction de classe \mathcal{C}^1 sur [a,b] à valeurs dans \mathbb{R} . Montrer que

$$\lim_{n \to +\infty} \int_{a}^{b} f(x)e^{inx}dx = 0$$

b) On suppose seulement f continue. Le résultat subsiste-t-il? Et si f est seulement réglée?