CS6240 Project Training Prediction Ebird Data

Jakkappanavar Harsha Shenoy Priyanka

KNN vs. GBT vs. Random Forest

- > KNN dependent on selection of centers, may provide local best results
- > GBT is slow running algorithm training one tree at a time. It has probability of overfitting data and its parameters are not easy to tune
- > Random Forests train each tree independently, using a random sample of the data. This randomness helps to make the model more robust than a single decision tree, and less likely to overfit on the training data.

Implementation

Features Information

- > Total Features = 1659
- > Features used = 19
- > Accuracy = 81.2%

COUNT_TYPE	P0P00_SQMI	DIST_IN_WET_VEG_FRESH
EFFORT_DIST	HOUSING_DENSITY	NUMBER_OF_OBSERVERS
EFFORT_HRS	ELEV_GT	ELEV_NED
BCR	CAUS_TEMP_AVG	CAUS_PREC
CAUS_SNOW	DIST_FROM_FLOWING_FRE SH	DIST_IN_FLOWING_FRESH
DIST_FROM_STANDING_FR ESH	DIST_IN_STANDING_FRESH	DIST_FROM_WET_VEG_FR ESH_
MONTH		

Preprocessing

- Clearing header column
- > Filter column if it does not have year, month & day
- > If tuple contains "?" ignore feature
- Generating RDD of LabeledPoint containing label as 1 or 0 based on the existence of target bird & sparse vector of features
- Data is divided in 70:30 format, former for training, later for prediction

Random Forest Algorithm

- > Random forest are ensemble of decision trees
- > Parameters tuned are as follows —

```
- numClasses = 2 (1|0)
```

- featureSubsetStrategy = auto

- numTrees = 75

- impurity = gini

- maxDepth = 15

- maxBins = 40

- categoricalFeaturesInfo =
 [month, count_type, caus_temp_avg, bcr, caus_prec, caus_snow,
 dist_from_wet_veg, dist_in_wet_veg, dist_from_flowing_fresh,
 dist_in_flowing_fresh, dist_from_standing_fresh,
 dist_in_standing_fresh]

Prediction

The model saved after running the Random forest algorithm is used to predict presence of Red-winged Blackbird