

ING. ROBERTO ISAAC SUASTE MARTINEZ

CONTENIDO

Modo de Operación del ADC

Subrutina de Adquisición y Conversión de Datos

PROCEDIMIENTO DE UNA CONVERSIÓN A/D

Subrutina de Inicialización del ADC

1. Configuración de Puertos

- Deshabilitar los pines de salida (TRIS)
- Configurar los pines como analógicos (ANSEL)

2. Configuración del módulo ADC

- Configurar el voltaje de referencia
- Seleccionar el reloj de conversión del ADC
- Seleccionar el canal de entrada del ADC
- Activar el módulo ADC

3. Configurar la interrupción por ADC (Opcional)

- Habilitar las interrupciones globales
- Habilitar las interrupciones por periféricos
- Habilitar la interrupción por ADC
- Borrar la bandera de interrupción por ADC

Subrutina de Adquisición y Conversión de Datos

- 1. Esperar el tiempo de adquisición requerido (100ms)
- 2. Comenzar la conversión ajustando en 1 el bit GO/DONE
- Esperar a que la conversión AD se complete, checando lo siguiente:
 - Checar el estado del bit GO/DONE
 - Esperar la interrupción por ADC (en caso de que este habilitada)
- 4. Leer el Resultado del ADC:
- 5. Limpiar la bandera del ADC (requuerido en caso de que la interrupción este activada)

Subrutina de Adquisición y Conversión de Datos

Una vez ya el resultado este en los registros ADRESH y ADRESL:

- 1. Respaldamos dicho resultado en RPG llamados DATOH y DATOL.
- 2. Posteriormente mandamos llamar a la subrutina de BIN BCD la cual convertirá el valor binario a un sistema BCD.
- 3. Una vez tengamos el resultado en BCD lo convertimos a ASCII sumándole el valor de 30.

Respalda el resultado Binario del ADC en RPG's DATOH y DATOL

Subrutina BIN-BCD
Binario a BCD

Unidades + 30

Decenas + 30

Centenas + 30

Millares + 30

DESPLIEGUE DE DATOS

Subrutina de Adquisición y Conversión de Datos

Una vez ya teniendo los datos de la conversión en ASCII, ya nos es posible enviarlos a algún periférico de salida, como:

- 1. LED'S
- Pantallas de LCD
- Dispositivos Móviles (Comunicación Serial)

Para habilitar el módulo ADC, el bit ADON del registro ADCONO debe estar en "1"

Si ajustamos el bit GO/DONE del registro ADCONO en "1", entonces comenzará la Conversión Analógica Digital.

 Para manejar generar internamente un voltaje, vea la sección 14.0 "FRV (Voltaje de Referencia Fijo)

Selección del Canal

Existen 14 selecciones de canal disponibles:

- Pines Analógicos AN<11:0>
- Salida DAC (Convertidor Digital Analógico)
- Salida FVR (Voltaje de Referencia Fijo)

Los bits CHS del Registro ADCONO determinan que canal esta conectado al circuito de muestreo:

**Cuando se cambian los canales, un retardo es requerido antes de la siguiente conversión.

Configuración del Registro ADCON0

REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

0 0 0 0 0 1

Configuración del Registro ADCONO

```
bit 7
              Unimplemented: Read as '0'
              CHS<4:0>: Analog Channel Select bits
bit 6-2
              00000 = AN0
              00001 = AN1
              00010 = AN2
              00011 = AN3
              00100 = AN4
              00101 = AN5
              00110 = AN6
              00111 = AN7
              01000 = AN8
              01001 = AN9
              01010 = AN10
              01011 = AN11
              01100 = Reserved. No channel connected.
              11101 = Reserved. No channel connected.
              11110 = DAC output(1)
              11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(2)
```

		0	0	0	0	0	0		
--	--	---	---	---	---	---	---	--	--

Configuración del Registro ADCONO

bit 1 GO/DONE: A/D Conversion Status bit

1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.

0 = A/D conversion completed/not in progress

bit 0 ADON: ADC Enable bit

1 = ADC is enabled

0 = ADC is disabled and consumes no operating current

0 0 0 0 0 1

Selección del Voltaje de Referencia

El Voltaje de Referencia del ADC puede ser generado internamente por software o externamente suministrado.

En esta ocasión se trabajará con el voltaje externamente suministrado por el programador.

 Para manejar generar internamente un voltaje, vea la seccion 14.0 "FRV (Voltaje de Referencia Fijo)

- Los Bits ADPREF del registro ADCON1 proporcionan el control del Voltaje de Referencia Positivo. El cual puede ser:
- VREF + Pin
- VDD
- FVR 2.028V
- FVR 4.096V
- Los Bits ADNREF del registro ADCON1 proporcionan el control del Voltaje de Referencia Negativo. El cual puede ser:
- VREF + Pin
- VSS

Configuración del Registro ADCON1 Voltaje de Referencia

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM	ADCS<2:0>		_	ADNREF	ADPREF<1:0>		
bit 7							bit 0

		()	()	()	()
		O	U	U	U

Configuración del Registro ADCON1 Voltaje de Referencia

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0				
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>				
bit 7	•			•			bit 0				
	bit 3	Unimplem	ented: Read as '	0'							
	bit 2	0 = VREF- is connected to Vss 1 = VREF- is connected to external VREF- pin ⁽¹⁾									
	bit 1-0	00 = VREF 01 = Rese 10 = VREF	+ is connected to rved + is connected to	VDD external VREF+ pi	ce Configuration bi n ⁽¹⁾ tage Reference (F\						

Selección de la Fuente de Reloj para la Conversión

La Fuente de Reloj de Conversión es ajustable por software a través de los bits ADCS del registro ADCON1. Existen 7 posibles opciones de Reloj.

- FOSC/2
- FOSC/4
- FOSC/8
- FOSC/16
- FOSC/32
- FOSC/64
- FRC (Oscilador Interno Dedicado)

- El tiempo para completar una conversión de bits se define como TAD.
- Una conversión de 10 bits requiere 11.5 periodos TAD.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)							
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	1.0-6.0 μs ^(1,4)							

- Las celdas sombreadas están fuera del rango recomendado.
- La fuente FRC tiene un tiempo TAD típico de 1.6 s por VDD.
- Para tiempos de conversiones mas rápidas se recomienda la selección de otra fuente de reloj.

Configuración del Registro ADCON1 Fuente de Reloj del ADC

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPREF<1:0>	
bit 7							bit 0

bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits

000 = Fosc/2

001 = Fosc/8

010 = Fosc/32

011 = FRC (clock supplied from a dedicated RC oscillator)

100 = Fosc/4

101 = Fosc/16

110 = Fosc/64

111 = FRC (clock supplied from a dedicated RC oscillator)

1 1	1 0	0	0	0
-----	-----	---	---	---

Selección del Formato del Resultado

- El resultado de la conversión analógica a digital de 10 bits, puede ser suministrada en 2 formatos:
- Justificación a la Izquierda
- Justificación a la Derecha

▶ El bit ADFM del registro ADCON1 controla el formato de salida

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

Configuración del Registro ADCON1 Selección del Formato de Resultado

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

- 1 = Right justified. Six Most Significant bits of ADRESH are set to '0' when the conversion result is loaded.
- 0 = Left justified. Six Least Significant bits of ADRESL are set to '0' when the conversion result is loaded.

1	1	1	1	0	0	0	0

Configuración del Registro ADCON1 Valor Final

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

1 1 1	1	0	0	0	0
-------	---	---	---	---	---

GRACIAS POR SU ATENCION