Calcolo delle Probabilità e Statistica 2021/2022

Scheda di esercizi 6 - Vettori aleatori discreti

Esercizio 1. Siano X e Y due variabili aleatorie discrete con densità discreta congiunta parzialmente data da:

,	X Y	0	1	2	p_X
	2		0.1		
	4	0.1			0.6
	p_Y	0.3	0.4		1

- (a) Completare la tabella.
- (b) X ed Y sono indipendenti?
- (c) Calcolare $\mathbb{P}(XY \leq 3)$.

Esercizio 2. Sia X una variabile aleatoria discreta con legge uniforme sull'insieme $\{-1,1\}$, quindi $X \sim Unif(\{-1,1\})$.

(a) Determinare la densità discreta di X.

Sia ora Y un'altra variabile aleatoria discreta, indipendente da X, ma con la stessa legge di X. Sia inoltre Z = XY.

- (b) Trovare la densità discreta congiunta di X e Z e le densità marginali.
- (c) $X \in Z$ sono indipendenti?

Esercizio 3. Un dispositivo elettronico genera una coppia di numeri casuali X_1 e X_2 con densità discreta congiunta

X_1	X_2	-1	0	1
-	-1	$\frac{p^2}{2}$	$\frac{2p(1-p)}{5}$	$\frac{(1-p)^2}{2}$
	0	$\frac{2p(1-p)}{5}$	$\frac{2p(1-p)}{5}$	$\frac{2p(1-p)}{5}$
	1	$\frac{(1-p)^2}{2}$	$\frac{2p(1-p)}{5}$	$\frac{p^2}{2}$

dove il parametro p può essere regolato a piacere.

(a) Determinare i valori ammissibili per il parametro p.

Un secondo dispositivo elettronico elabora i numeri casuali X_1 e X_2 per ottenerne il prodotto M.

- (b) Calcolare valore atteso e varianza di M.
- (c) Determinare la densità discreta di M.

Esercizio 4. Un perito elettrotecnico deve costruire un sistema costituito da tre componenti in serie. Egli pesca i tre componenti da una scatola in cui vi sono tre componenti *nuovi*, due *usati ma funzionanti* e due *difettosi*. Siano

X = "numero di componenti *nuovi* pescati dalla scatola",

Y = "numero di componenti usati ma funzionanti pescati dalla scatola".

- (a) Determinare la densità discreta congiunta di X ed Y e le densità marginali.
- (b) Le variabili X ed Y sono indipendenti?

- (c) Calcolare $\mathbb{E}[X]$, $\mathbb{E}[Y]$, Var(X), Var(Y), $\mathbb{E}[XY]$, Cov(X, Y).
- (d) Calcolare la densità discreta, il valore atteso e la varianza del numero di componenti pescati funzionanti.
- (e) Calcolare la probabilità che l'apparecchio funzioni.

Esercizio 5. Sia D il risultato del lancio di un dado a tre facce. Sulla base del risultato si lancino D monete. Sia T il numero di teste così ottenuto.

- (a) Trovare la densità discreta congiunta di D e T e le densità marginali.
- (b) Qual è il valore atteso di T?

Esercizio 6*. Siano X e Y variabili aleatorie discrete con Var(X) > 0 e Var(Y) > 0. Indichiamo $\mathbb{E}[X]$ e $\mathbb{E}[Y]$ rispettivamente con μ_X e μ_Y . Analogamente, indichiamo Var(X) e Var(Y) rispettivamente con σ_X^2 e σ_Y^2 . Sia infine $\rho_{X,Y}$ il coefficiente di correlazione, dato da

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}.$$

Si mostri che

$$\rho_{X,Y} = \pm 1 \iff Y = aX + b, \text{ per qualche } a \neq 0 \text{ e } b \in \mathbb{R}.$$

Esercizio 7. Un dado a quattro facce viene lanciato due volte. Si considerino le variabili aleatorie

X = "prodotto dei valori apparsi nei due lanci"

Y = "valore massimo che appare nei due lanci"

Determinare congiunta e marginali di X e Y.

Esercizio 8. Si lancia un dado a quattro facce. Sia X la variabile aleatoria che indica il risultato del lancio del dado. Dopo aver lanciato il dado, si estrae una pallina da un'urna contenente X palline numerate da 1 a X. Sia

$$Y =$$
 "no della pallina estratta".

Determinare congiunta e marginali di X e Y.

Esercizio 9. Un dado a tre facce viene lanciato due volte. Siano X e Y i risultati ottenuti nei due lanci.

- a) Determinare la funzione di distribuzione congiunta e le marginali di X e Y.
- Si considerino le variabili aleatorie U = XY e V = |X Y|.
- b) Determinare la funzione di distribuzione congiunta e le marginali di U e V.
- c) Dire se U e V sono indipendenti.
- d) Calcolare $\mathbb{P}(|U V| \leq 1)$.

Esercizio 1.

(a)

X Y	0	1	2	p_X
2	0.2	0.1	0.1	0.4
4	0.1	0.3	0.2	0.6
p_Y	0.3	0.4	0.3	1

(b) X ed Y non sono indipendenti, infatti, ad esempio, $p_{(X,Y)}(2,0) \neq p_X(2)p_Y(0)$.

(c)

$$\mathbb{P}(XY \le 3) = \sum_{(x_i, y_j): x_i y_j \le 3} p_{(X,Y)}(x_i, y_j)$$
$$= p_{(X,Y)}(2,0) + p_{(X,Y)}(2,1) + p_{(X,Y)}(4,0) = 0.4.$$

Esercizio 2.

(a)

$$\begin{array}{c|c|c|c} X & -1 & 1 \\ \hline p_X & 1/2 & 1/2 \end{array}$$

(b)

X Z	-1	1	p_X
-1	1/4	1/4	1/2
1	1/4	1/4	1/2
p_Z	1/2	1/2	1

(c) Sì

Esercizio 3.

- (a) Il risultato è $0 \le p \le 1$. Infatti, affinché $p_{(X_1,X_2)}$ sia effettivamente una densità discreta, devono valere le seguenti condizioni:
 - $0 \le p_{(X_1,X_2)}(i,j) \le 1$, per ogni i,j = -1,0,1;
 - $\sum_{i,j} p_{(X_1,X_2)}(i,j) = 1.$

In altri termini, deve valere che

$$\begin{cases} 0 \le \frac{p^2}{2} \le 1\\ 0 \le \frac{2p(1-p)}{5} \le 1\\ 0 \le \frac{(1-p)^2}{2} \le 1\\ p^2 + 2p(1-p) + (1-p)^2 = 1 \end{cases}$$

L'uguaglianza vale sempre, qualunque sia il valore del parametro p. Le disuguaglianze sono tutte simultaneamente verificate se e solo se $0 \le p \le 1$.

(b) Dato che M è una funzione di X_1 e X_2 , infatti $M=X_1X_2$, possiamo calcolare valore atteso e varianza tramite le seguenti formule:

$$\mathbb{E}[M] = \sum_{i,j=-1,0,1} i \, j \, p_{(X_1,X_2)}(i,j),$$

$$\operatorname{Var}(M) = \sum_{i,j=-1,0,1} i^2 \, j^2 \, p_{(X_1,X_2)}(i,j) - (\mathbb{E}[M])^2.$$

Otteniamo $\mathbb{E}[M] = 2p - 1$ e Var(M) = 2p(1-p).

(c)

$$\begin{array}{c|cccc} M & -1 & 0 & 1 \\ \hline p_M & (1-p)^2 & 2p(1-p) & p^2 \end{array}$$

Esercizio 4.

(a) Si ha che $S_X = \{0, 1, 2, 3\}$ e $S_Y = \{0, 1, 2\}$. Inoltre, per ogni $(x_i, y_j) \in S_X \times S_Y$, vale che

$$p_{(X,Y)}(x_i, y_j) = \begin{cases} \frac{\binom{3}{x_i}\binom{2}{y_j}\binom{2}{3-(x_i+y_j)}}{\binom{7}{3}}, & \text{se } x_i + y_j = 1, 2, 3, \\ 0, & \text{altrimenti.} \end{cases}$$

Quindi

X Y	0	1	2	p_X
0	0	2/35	2/35	4/35
1	3/35	12/35	3/35	18/35
2	6/35	6/35	0	12/35
3	1/35	0	0	1/35
p_Y	10/35	20/35	5/35	1

(b) No, infatti, ad esempio, $p_{(X|Y)}(0,0) \neq p_X(0)p_Y(0)$.

(c) $\mathbb{E}[X] = 45/35$, $\mathbb{E}[Y] = 30/35$, Var(X) = 24/49, Var(Y) = 20/49, $\mathbb{E}[XY] = 30/35$, Cov(X, Y) = -12/49.

(d) Sia

Z = "numero di componenti funzionanti pescati dalla scatola".

Allora Z = X + Y. Inoltre Z è una v.a. discreta, infatti il suo supporto è un insieme finito ed è dato da $S_Z = \{1, 2, 3\}$.

Infine

$$\mathbb{E}[Z] = \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y] = \frac{75}{35},$$

$$Var(Z) = Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) = \frac{20}{40}.$$

(e) $\mathbb{P}(Z=3) = p_Z(3) = 2/7$.

Esercizio 5.

(a) Si noti che per determinare $p_{(D,T)}(n,k) = \mathbb{P}(\{D=n\} \cap \{T=k\})$, conviene utilizzare la regola della catena:

$$\mathbb{P}(\{D=n\} \cap \{T=k\}) = \mathbb{P}(T=k|D=n)\,\mathbb{P}(D=n).$$

Si noti inoltre che $p_D(n) = \mathbb{P}(D=n) = 1/3$, per ogni n=1,2,3; mentre $\mathbb{P}(T=k|D=n)$ è la probabilità di ottenere k teste sapendo di aver lanciato n monete, ovvero di ottenere k successi in n prove di Bernoulli tutte con probabilità di successo p=1/2, quindi

$$\mathbb{P}(T = k | D = n) = \binom{n}{k} \frac{1}{2^n}.$$

D T	0	1	2	3	p_D
1	$\frac{1}{2}\frac{1}{3} = \frac{1}{6}$	$\frac{1}{2}\frac{1}{3} = \frac{1}{6}$	0	0	$\frac{1}{3}$
2	$\frac{1}{4}\frac{1}{3} = \frac{1}{12}$	$\frac{1}{2}\frac{1}{3} = \frac{1}{6}$	$\frac{1}{4}\frac{1}{3} = \frac{1}{12}$	0	$\frac{1}{3}$
3	$\frac{1}{8}\frac{1}{3} = \frac{1}{24}$	$\frac{3}{8}\frac{1}{3} = \frac{1}{8}$	$\frac{3}{8}\frac{1}{3} = \frac{1}{8}$	$\frac{1}{8}\frac{1}{3} = \frac{1}{24}$	1/3
p_T	$\frac{7}{24}$	$\frac{11}{24}$	$\frac{5}{24}$	$\frac{1}{24}$	1

(b)
$$\mathbb{E}[T] = 1$$
.

Esercizio 6*. Dimostriamo che

$$\rho_{X,Y} = \pm 1 \qquad \Longleftrightarrow \qquad Y = \frac{\rho_{X,Y}\sigma_Y}{\sigma_X}X + \frac{\mu_Y\sigma_X - \rho_{X,Y}\sigma_Y\mu_X}{\sigma_X},$$

da cui segue il risultato richiesto con $a=\frac{\rho_{X,Y}\sigma_Y}{\sigma_X}$ e $b=\frac{\mu_Y\sigma_X-\rho_{X,Y}\sigma_Y\mu_X}{\sigma_X}$. A tale scopo, è sufficiente mostrare che la variabile aleatoria

$$Z \; = \; \frac{1}{\sigma_Y} Y - \frac{\rho_{X,Y}}{\sigma_X} X$$

è costante. Infatti se Z è costante allora necessariamente coincide con il suo valore atteso, ovvero

$$Z = \mathbb{E}[Z] = \mathbb{E}\left[\frac{1}{\sigma_Y}Y - \frac{\rho_{X,Y}}{\sigma_X}X\right] = \frac{1}{\sigma_Y}\mathbb{E}[Y] - \frac{\rho_{X,Y}}{\sigma_X}\mathbb{E}[X] = \frac{1}{\sigma_Y}\mu_Y - \frac{\rho_{X,Y}}{\sigma_X}\mu_X.$$

Quindi, in conclusione, vale che

$$\frac{1}{\sigma_Y}Y - \frac{\rho_{X,Y}}{\sigma_X}X = \frac{1}{\sigma_Y}\mu_Y - \frac{\rho_{X,Y}}{\sigma_X}\mu_X.$$

Resta dunque da dimostrare che Z è costante. Ricordiamo che una variabile aleatoria è costante se e solo se ha varianza nulla. Calcoliamo dunque la varianza della variabile aleatoria Z e verifichiamo che è uguale a zero. Si ottiene

$$\operatorname{Var}\left(\frac{1}{\sigma_{Y}}Y - \frac{\rho_{X,Y}}{\sigma_{X}}X\right) = \operatorname{Var}\left(\frac{1}{\sigma_{Y}}Y\right) + \operatorname{Var}\left(-\frac{\rho_{X,Y}}{\sigma_{X}}X\right) + 2\operatorname{Cov}\left(\frac{1}{\sigma_{Y}}Y, -\frac{\rho_{X,Y}}{\sigma_{X}}X\right)$$

$$= \frac{1}{\sigma_{Y}^{2}}\operatorname{Var}(Y) + \frac{\rho_{X,Y}^{2}}{\sigma_{X}^{2}}\operatorname{Var}(X) - 2\frac{\rho_{X,Y}}{\sigma_{X}\sigma_{Y}}\operatorname{Cov}(Y, X) = 1 - \rho_{X,Y}^{2} = 0,$$

dove l'ultima uguaglianza, ovvero $1 - \rho_{X,Y}^2 = 0$, vale se e solo se $\rho_{X,Y} = \pm 1$.

Esercizio 7.

X Y	1	2	3	4	p_X
1	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
2	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
3	0	0	$\frac{1}{8}$	0	$\frac{1}{8}$
4	0	$\frac{1}{16}$	0	$\frac{1}{8}$	$\frac{3}{16}$
6	0	0	$\frac{1}{8}$	0	$\frac{1}{8}$
8	0	0	0	$\frac{1}{8}$	$\frac{1}{8}$
9	0	0	$\frac{1}{16}$	0	$\frac{1}{16}$
12	0	0	0	$\frac{1}{8}$	$\frac{1}{8}$
16	0	0	0	$\frac{1}{16}$	$\frac{1}{16}$
p_Y	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{7}{16}$	1

Esercizio 8.

X Y	1	2	3	4	p_X
1	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0	$\frac{1}{4}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{4}$
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
p_Y	$\frac{25}{48}$	$\frac{13}{48}$	$\frac{7}{48}$	$\frac{1}{16}$	1

Esercizio 9.

a)

X Y	1	2	3	p_X
1	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
2	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
3	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
p_Y	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

b) Si ha che

Quindi

~ V				i
U	0	1	2	p_U
1	$\frac{1}{9}$	0	0	$\frac{1}{9}$
2	0	$\frac{2}{9}$	0	$\frac{2}{9}$
3	0	0	$\frac{2}{9}$	$\frac{2}{9}$
4	$\frac{1}{9}$	0	0	$\frac{1}{9}$
6	0	$\frac{2}{9}$	0	$\frac{2}{9}$
9	$\frac{1}{9}$	0	0	$\frac{1}{9}$
p_V	$\frac{1}{3}$	$\frac{4}{9}$	$\frac{2}{9}$	1

- c) No, infatti ad esempio $p_{(U,V)}(1,0) \neq p_U(1) p_V(0)$.
- d) Abbiamo che

$$\mathbb{P}(|U - V| \le 1) = \sum_{i,j: |u_i - v_j| \le 1} p_{(U,V)}(u_i, v_j)
= p_{(U,V)}(1,0) + p_{(U,V)}(1,2) + p_{(U,V)}(2,1) + p_{(U,V)}(3,2) = \frac{5}{9}.$$