TECHNISCHE UNIVERSITNCHEN, LEHRSTUHL FR ELEKTRISCHE ANTRIEBE UND LEISTUNGSELEKTRONIK

Projekt: Identifikation eines Duffing Systems mit einem Neuronalen Netz

Maximilian Schermer, Matrikelnummer: 03664650, Maximilian Sperr, Matrikelnummer: 03658841, Giulio Evangelisti, Matrikelnummer: 03659301

December 19, 2018

1 Duffing System

System beschreiben, Simulationsergebnisse des Duffing Systems zeigen.

2 Identifikationsmodell

Als Identifikationsmodell dient das General Dynamic Neuronal Network (GDNN) welches aus drei versteckten Schichten mit zweimal zwei und einmal einem Neuron (2-2-1) besteht. In der Eingangs sowie in der Ausgangsschicht befindet sich ein Neuron und die verschiedenen Schichten sind miteinander ber Tapped Delay Lines gekoppelt. Die Tapped Delay Lines sind wie folgt aufgebaut:

Schicht 1	Schicht 2	Schicht 3
$DI^{1,1} = \{1, 2, 3\}$	$DL^{2,1} = \{0\}$	$DL^{3,2} = \{0\}$
$DL^{1,1} = \{1, 2, 3\}$	$DL^{2,2} = \{1, 2, 3\}$	$DL^{3,3} = \{1, 2, 3\}$
$DL^{1,2} = \{1, 2, 3\}$	$DL^{2,3} = \{1, 2, 3\}$	
$DL^{1,3} = \{1, 2, 3\}$		

Die Identifikation findet mittels eines NARX Modells statt, d.h. der Systemausgang und das Anregungssignal sind die Einge fr das neuronale Netz. Das GDNN wurde wegen seiner hohen Approximationsfgkeit ausgewt.

Im folgenden wurde die zur Verfgung gestellte Identifikationssoftware GDNN Version A verwendet.

3 Systemanregung

Wegen der starken Frequenzabhigkeit unseres Systems, kann dieses nicht mit einem APRBS-Signal angeregt werden. Dies wrde zu Amplitudenschwankungen des Systems fhren welche den Lernprozess stren. Aus diesem Grund werden als Anregungssignal zwei Chirp Signale miteinander verbunden. Das erste Chirp Signale hat eine steigende Frequenz $[0; \frac{2}{\pi}]$ und das zweite eine abfallende Frequenz $[\frac{2}{\pi}; 0]$. Somit wird gewleistet, dass alle Frequenzen bzw. Kreisfrequenzen [0; 4] der Frequenzantwort durchlaufen werden.

Figure 3.1: Anregungssignal

4 Identifikationsergebnisse

Der Lernprozess wird ber 100s ausgefhrt. Dabei ergeben sich folgende Identifikationsergebnisse: Obwohl das System sehr starke Nichtlinearitn aufweist, erzielen wir gute Identifikationsergebnisse bis zu einem Fehler von 10^{-6} . Dieses Ergebnis ist zufriedenstellend. Anfangs kommt es zu starken Abweichung, da der Lernprozess nicht weit fortgeschritten ist.

Figure 4.1: Anregungssignal, Ausgang System, Ausgang Modell

Figure 4.2: Verlauf des Fehlers

Eine erneute Identifikation ber 80s mit anschliender Validierung ber 20s, bei der der Lernprozess abgeschaltet wird, ergab folgende Ergebnisse:

Figure 4.3: Anregungssignal, Ausgang System, Ausgang Modell mit Validierung nach 80s

Figure 4.4: Verlauf des Fehlers mit Validierung nach 80s

Die Ergebnisse zeigen, dass der Fehler nach abschalten des Lernens zwar ansteigt, aber die Identifikation weiterhin gute Resultate liefert.

5 Anpassung des Identifikationsmodells

5.1 DERUNG MODELLSTRUKTUR

Wird die Modellstruktur so abgewandelt, dass keine zeitliche Verzgerungen (TDL) zwischen den Schichten existieren und die Rckfhrungen bestehen bleiben, so ergeben sich folgende Ergebnisse:

Figure 5.1: Anregungssignal, Ausgang System, Ausgang Modell mit GDNN ohne TDL

Figure 5.2: Verlauf des Fehlers mit GDNN ohne TDL

5.2 DERUNG ANREGUNGSSIGNAL

Eine derung des Anregungssignals auf ein klassisches APRBS Signal erzeugt den bereits schon angesprochene schlechten Lernprozess. Die Modellstruktur entspricht wieder der Struktur des zu Anfang angesprochene GDNN-Modells.

Figure 5.3: Anregungssignal, Ausgang System, Ausgang Modell mit APRBS-Signal

Figure 5.4: Verlauf des Fehlers mit APRBS-Signal

5.3 DERUNG AUF STATISCHES MODELL (MLP)

Eine derung des Modells auf ein statisches Modell welches einem MLP entspricht, liefert ebenfalls einen schlechten Lernprozess. Dies liegt vor allem daran, dass das MLP die starke Nichtlinearites Duffing Systems nicht identifizieren kann.

Figure 5.5: Anregungssignal, Ausgang System, Ausgang Modell mit MLP-Modell

Figure 5.6: Verlauf des Fehlers mit MLP-Modell