0.1 群论与数论

定义 0.1 (整除)

 $\Diamond n \in \mathbb{Z} \setminus \{0\}$, 而 $m \in \mathbb{Z}$ 。 我们说 n 整除 m, 记作 $n \mid m$, 若

 $m \in n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$

命题 0.1

若 $n \in \mathbb{Z}$, 则 $n\mathbb{Z} \triangleleft \mathbb{Z}$ 。

注 这里的加法和乘法都是通常意义下的整数加法和整数乘法.

$$f(m) = mn$$
.

则对 $\forall m_1, m_2 \in (\mathbb{Z}, +)$, 都有

 $f(m_1 + m_2) = (m_1 + m_2)n = m_1n + m_2n = f(m_1) + f(m_2).$

故 $f \in (\mathbb{Z}, +)$ 到 $(\mathbb{Z}, +)$ 的群同态。因此由命题**??**可知 $n\mathbb{Z} = \operatorname{im}(f) < \mathbb{Z}$ 。又因为 \mathbb{Z} 是阿贝尔群,因此由命题**??**可知 $n\mathbb{Z} < \mathbb{Z}$.

命题 0.2

证明 (i) 若 $A = \{0\}$, 则 $A = 0\mathbb{Z}$ 。

(ii) 若 $A \neq \{0\}$, 则由 $(A,+) < (\mathbb{Z},+)$ 可知,A 在加法逆元下封闭。从而 $A \cap \mathbb{N}_1 \neq \emptyset$,否则 $A \subset \mathbb{Z} - \mathbb{N}_1$ 且 $A \neq \{0\}$,于是任取 $x \in A \subset \mathbb{Z} - \mathbb{N}_1$ 且 $x \neq 0$,则其加法逆元 $-x \in A$,但 $-x \in \mathbb{N}_1$,这与 $A \subset \mathbb{Z} - \mathbb{N}_1$ 矛盾!

令 $n = \min(A \cap \mathbb{N}_1)$ (n 的良定义是因为良序公理),则 $n \in A$ 。我们断言 $A = n\mathbb{Z}$ 。

注意到 $n\mathbb{Z} = \{nm : m \in \mathbb{Z}\} = \langle n \rangle$, 故我们只需证 $A = \langle n \rangle$ 。

任取 $m \in \mathbb{Z}$,则由 $n \in A$ 及 A 在加法下封闭可知, $nm = n + n + \cdots + n \in A$ 。故 $\langle n \rangle \subset A$ 。

 m^{\uparrow}

任取 $a \in A$,假设 $a \notin n\mathbb{Z}$,则由带余除法可知,存在 $q,r \in \mathbb{Z}$,使得 a = qn + r,其中 $0 \le r \le n - 1$ 。因为 $a \notin n\mathbb{Z}$,所以 $r \ne 0$ 。又 $qn \in \langle n \rangle \subset A$, $a \in A$ 。故由 A 对加法和加法逆元封闭可知, $r = a - qn \in A$ 。而 $1 \le r \le n - 1 < n$,这与 $n = \min(A \cap \mathbb{N}_1)$ 矛盾! 故 $a \in n\mathbb{Z}$ 。

推论 0.1

任意的无限循环群 $\langle x \rangle$ ($|x| = \infty$) 的子群都是形如 $\langle x^n \rangle = \{x^{nm} : m \in \mathbb{Z}\}$ 的形式,进而都是正规子群。即对任意的无限循环群 $\langle x \rangle$ ($|x| = \infty$),任取 $A < \langle x \rangle$,则一定存在 $n \in \mathbb{Z}$,使得 $A = \langle x^n \rangle$,并且 $A \lhd \langle x \rangle$.

证明 由命题??可知,任意无限循环群 $\langle x \rangle (|x| = \infty)$ 都同构于整数加群 $(\mathbb{Z}, +)$.

定义 0.2 (同余 (模 n))

令 $n \in \mathbb{N}_1$, 而 $a,b \in \mathbb{Z}$ 。我们说a同余b (模n), 记作 $a \equiv b \mod n$, 若

$$a + n\mathbb{Z} = b + n\mathbb{Z}$$

$$a - b \in n\mathbb{Z}$$

定义 0.3 (模 n 的同余类)

令 $n \in \mathbb{N}_1$,则 \mathbb{Z}_n 定义为

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$$

 \mathbb{Z}_n 中的每个元素,被称为一个 $\notin n$ 的同余类。

홫 笔说

笔记 不难发现, $0, \dots, n-1$ 分别代表了n 个同余类。

命题 0.3

$$\mathbb{Z}_n = \{k + n\mathbb{Z} : 0 \leqslant k \leqslant n - 1\}$$

其中枚举法中的这些陪集是两两不同的。

证明 首先证明这里列完了所有的陪集。令 $m \in \mathbb{Z}$,根据带余除法,我们可以找到 $q \in \mathbb{Z}$,以及 $0 \le r \le n-1$,使得

$$m = qn + r$$
.

由于

$$qn \in n\mathbb{Z}$$
,

因此 $m + n\mathbb{Z} = r + n\mathbb{Z} \in \{k + n\mathbb{Z} : 0 \le k \le n - 1\}$ 。这就证明了最多只有这 n 个同余类。

接下来证明这 n 个同余类是互异的。假如 $k+n\mathbb{Z}=k'+n\mathbb{Z}$,其中 $0 \le k,k' \le n-1$,则 $k-k' \in n\mathbb{Z}$ 。但是 $-(n-1) \le k-k' \le (n-1)$ 。而在这个范围内唯一 n 的倍数就是 0,于是 k-k'=0,或 k=k'。这就证明了这 n 个同余类是互异的。

综上所述,

$$\mathbb{Z}_n = \{k + n\mathbb{Z} : 0 \leqslant k \leqslant n - 1\}.$$