嵌入式系统 Embedded System

毛维杰

杭州 • 浙江大学 • 2021

w

第一章 嵌入式系统概述

- 嵌入式系统诞生于微型计算机时代,与通用计算机的发展 道路完全不同,形成了单芯片为基础的技术发展道路。
 - □通用计算机按高速、海量的技术发展
 - □ 嵌入式系统则为满足对象要求,按照嵌入式、智能化 控制的要求发展
- 随着半导体工艺的提高,经过最近二十几年的发展,已经 在很大程度上改变了人们的生活、工作和娱乐方式
- 应用广泛,具有无数的种类,每类都具有自己独特的个性
 - □ MP3、数码相机与打印机就有很大的不同
 - □汽车中更是具有多个嵌入式系统,使汽车更轻快、更 干净、更容易驾驶

嵌入式系统的概念

- 嵌入机械或电气系统内部、具有专属功能的智能化计算机系统。通常要求实时计算性能,具有一定的复杂性。被嵌入的系统通常是包含硬件和机械部件的完整设备。
- 由于微型计算机无法满足绝大多数对象体系嵌入式要求的体积、价位、可靠性,因此嵌入式系统的发展需要依靠集成度的提高。
 - □ 首先是计算机芯片化,成为单片微型计算机(SCMP)
 - □ 其后是满足对象体系的控制要求,单片机不断从SCMP向微控制器 (MCU)和片上系统(SoC)发展
- 软件具有可裁剪性、通用性、可移植性
- 无论怎么发展变化,都改变不了以下技术本质
 - □ 内含计算机
 - □嵌入到对象体系中
 - □ 满足对象智能化控制要求

嵌入式系统的定义

- 目前,对嵌入式系统的定义多种多样,但没有一种定义是 全面的。下面给出两种比较合理定义:
 - □ 从<mark>技术</mark>的角度定义:以应用为中心、以计算机技术为基础、软件 硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗 严格要求的专用计算机系统。
 - □ 从系统的角度定义: 嵌入式系统是设计完成复杂功能的硬件和软件,并使其紧密耦合在一起的计算机系统。术语嵌入式反映了这些系统通常是更大系统中的一个完整的部分,称为嵌入的系统。 嵌入的系统中可以共存多个嵌入式系统。
- 根据IEEE(国际电机工程师协会)的定义,嵌入式系统是"控制、监视或者辅助设备、机器运行的装置"(原文为devices used to control, monitor, or assist the operation of equipment, machinery or plants)。

简明扼要地了解一个嵌入式系统

- 为了简洁地描述一个嵌入式产品和与之配套的 专用计算机系统,我们主要了解它的三个核心 要素:
 - □功能和性能
 - □处理器芯片
 - □操作系统或者监控程序

嵌入式处理器

- 早期的嵌入式系统通常使用普通个人计算机(PC)中的通用处理器。随着大量先进的微处理器制造技术的发展,越来越多的嵌入式系统用嵌入式处理器建造,而不是用通用目的的处理器。这些嵌入式处理器可以大致分为以下几类:
 - ▶ 注重嵌入式处理器的尺寸、能耗和价格——应用于 PDA等不注重计算的设备
 - ▶ 注重嵌入式处理器的性能——应用于路由器等计算密 集型的设备
 - ▶ 注重嵌入式处理器的<mark>性能、尺寸、能耗和价格——</mark>应 用于移动电话等设备

嵌入式处理器

- 嵌入式处理器可以分为以下几大类:
 - □ 嵌入式微处理器
 Embedded Micro-Processor Uint, EMPU
 - □ 微控制器
 Micro-Controller Uint, MCU
 - DSP处理器Digital Signal Processor Uint, DSP
 - □ 片上系统(**SOC**)
 System on Chip,SoC

W

嵌入式处理器

■ 分类——嵌入式微处理器

□ 嵌入式微处理器的基础是通用计算机中的CPU

将微处理器装配在专门设计的电路板上,只保留和嵌入式应用 有关的母板功能,可以大幅度减小系统体积和功耗。为了满足 嵌入式应用的特殊要求,嵌入式微处理器在功能上和标准微处 理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方 面一般都做了各种增强

□ 单板计算机

和工控计算机相比,嵌入式微处理器具有体积小、重量轻、成本低、可靠性高的优点,但是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,又降低了系统的可靠性,技术保密性也较差。嵌入式微处理器及其存储器、总线、外设等安装在一块电路板上,称为单板计算机。如STD-BUS、PC104等

嵌入式处理器

■ 分类——嵌入式微控制器

> 又称单片机

将整个计算机系统集成到一块芯片中。以某一种微处理器内核为核心,内部集成ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、WatchDog、I/O、串行口、PWM、A/D、D/A、Flash、EEPROM等必要功能和外设。

> 微控制器

和嵌入式微处理器相比,最大特点是单片化,体积大大减小,功耗和成本下降、可靠性提高。是目前嵌入式系统工业的主流。片上外设资源一般比较丰富,适合于控制,因此称微控制器

> 数量最多

品种和数量最多,有代表性的通用系列包括8051、P51XA、MCS-251、MCS-96/196/296、C166/167、ARM芯片等。目前MCU占嵌入式系统约70%的市场份额

M

嵌入式处理器

■ 分类——嵌入式DSP处理器

> 特殊设计

对系统结构和指令进行了特殊设计,适合于执行DSP算法,编译效率较高,指令执行速度也较高。在数字滤波、FFT、谱分析等方面,DSP算法正在大量进入嵌入式领域,DSP应用正从在通用单片机中以普通指令实现DSP功能,过渡到采用嵌入式DSP处理器

➤ TI、Motorola

有代表性的产品是Texas Instruments的TMS320系列、Motorola的DSP56000系列。TMS320包括用于控制的C2000系列、移动通信的C5000系列、性能更高的C6000和C8000系列。DSP56000目前已经发展成为DSP56000、56100、56200、56300等几个不同系列。PHILIPS公司近年也推出了基于可重置嵌入式DSP结构、低成本、低功耗技术上制造的R.E.A.L DSP处理器,特点是具备双Harvard结构和双乘/累加单元,应用目标是大批量消费类产品

嵌入式处理器

- 分类——嵌入式片上系统(SOC)
 - EDA / VLSI

随着EDA的推广和VLSI设计的普及化,在一个硅片上实现一个更为复杂的系统的时代已来临,这就是System On Chip(SOC)。各种通用处理器内核将作为SOC设计公司的标准库,和许多其它嵌入式系统外设一样,成为VLSI设计中一种标准的器件。除个别无法集成的器件以外,整个嵌入式系统大部分均可集成到一块或几块芯片中去,应用系统电路板将变得很简洁,对于减小体积和功耗、提高可靠性非常有利

▶ 通用/专用

SoC可以分为通用和专用两类。通用系列包括Infineon的 TriCore、Motorola的M-Core、某些ARM系列器件、Echelon和 Motorola联合研制的Neuron芯片等。专用SoC一般专用于某个或某类系统中,不为一般用户所知。

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟、复位和时序

MCS-51简介

- MCS-51(8051)是一种8位的单片机,由 Intel公司于1981年在MCS48基础上推出的系列产品。
- MCS-51系列包括: 8031、8051、8751、8032、8052、8752、80c51等,习惯上称为51单片机。
- Intel将MCS-51核心技术授权给很多公司,目前有众多IC设计商,如ATMEL、飞利浦、华邦等公司,相继开发了功能更多、更强大的相容产品。

51单片机兼容产品

■ ATMEL 89c52

■ AD AdµC812

■ WINBORD W78E51B

■ PHILIPS P87LPC764

■ CYGNAL C8051

•

MCS-51单片机组成

■ 不同型号MCS-51单片机CPU处理能力和指令系统完全兼容,只是存储器和I/O接口的配置有所不同。

MCS-51单片机的组成:

- 1. 8位CPU
- 2. 片内ROM/EPROM、RAM
- 3. 片内并行 I/O接口
- 4. 片内16位定时器/计数器
- 5. 片内中断处理系统
- 6. 片内全双工串行I/O口

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟、复位和时序

T2/P1.0	1		40	Vcc M
T2EX/P1.1	2		39	P0.0
P1.2	3		38	P0.1
P1.3	4		37	P0.2
P1.4	5		36	P0.3
P1.5	6		35	P0.4
P1.6	7		34	P0.5
P1.7	8		33	P0.6
RST/VPD	9	8031	32	P0.7
RXD/P3.0	10	8051	31	EA/V _{PP}
TXD/P3.1	11	8751	30	ALE/PROG
INT0/P3.2	12	8032	29	PSEN
INT1/P3.3	13	8052	28	P2.7
T0/P3.4	14	8752	27	P2.6
T1/P3.5	15		26	P2.5
WR/P3.6	16		25	P2.4
RD/P3.7	17		24	P2.3
XTAL2	18		23	P2.2
XTAL1	19		22	
Vss	20		21	P2.1
. 55	_ 5			P2.0

MCS-51硬件 结构简图

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟、复位和时序

CPU结构

■ MCS-51的CPU由运算器和控制器组成。

运算器

- 核心: ALU (算术逻辑运算单元)
 - □能够完成加、减、乘、除等算术运算及与、或、非、 异或等逻辑操作;
 - □还具有较强的位处理能力:位置1、位清零、位 "与"、位"或"等操作;
 - □ 通过对运算结果的判断,影响程序状态寄存器相关 位的内容。
- 算术运算和逻辑操作都必须在<mark>寄存器</mark>的配合下 才能完成。

ALU相关寄存器

- ■累加器A
 - □存放第一操作数及操作结果的专用寄存器,也 称ACC; (E0H)
- ■累加器B
 - □也称B寄存器,乘、除法运算时用作累加器功能;(F0H)
- 程序状态字PSW
 - □存放程序运行时指令操作的辅助结果

程序状态字PSW

D7	D6	D5	D4	D3	D2	D 1	$\mathbf{D0}$
Су	AC	F0	RS1	RS0	OV	_	P

Cy (Carry):进位

AC (Auxiliary Carry):辅助进位(半进位)

F0 (Flag):用户标志

RS1、RS0: 寄存器组选择控制位

OV (Overflow):溢出(有符号数)

P(Parity):奇偶标志

控制器

- 控制器完成指挥控制工作,协调单片机各部分 正常工作,是整个单片机的指挥中心。
- 控制器主要作用:
 - □指令的读出、译码和执行
 - □ 指挥并控制运算器、存储器和输入输出设备之间的 数据流。
- 控制器电路包括:
 - □程序计数器PC、指令寄存器IR、指令译码器ID、 时序与控制电路等。

指令寄存器和指令译码器

■ 指令寄存器中存放指令代码。CPU执行指令时,由程序存储器中读取的指令代码送入指令存储器,经译码器译码后由定时与控制电路发出相应的控制信号,完成指令所指定的操作。

程序计数器PC(Program Counter)

- PC用于存放CPU下一条要执行的指令地址, 是一个 16 位的专用寄存器, 可寻址范围是0000H~0FFFH共 64 KB。
- 程序中的每条指令存放在ROM区的某一单元,并都有自己的存放地址。 CPU 要执行哪条指令时,就把该条指令所在的单元的地址送上地址总线。 在顺序执行程序中,当PC的内容被送到地址总线后,会自动加 1,即(PC)←(PC)+1,又指向CPU下一条要执行的指令地址。

w

指令执行过程(1)

- ■单片机工作过程实质就是执行程序的过程。
- 冯•诺依曼结构的三段式:

指令执行过程(2)

■取指:

□根据程序指针PC中的值,从程序存储器中读出现行指令:

■译码:

□由指令译码器对现行指令进行译码,分析该指令要求实现什么操作,如加、减运算、数据传输等,并由控制器发出相应的控制信号;

■ 执行指令:

□取出操作数,完成指令要求的操作。

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟、复位和时序

半导体存储器种类

Random Access Memory (RAM)

Read-Only Memory (ROM)

存储器组织方式

- 普林斯顿 (Princeton) 结构:
 - □程序存储器、数据存储器及I/O接口统一编址的方式;
 - □在通用计算机中普遍使用,ARM7也属于这一类
- 哈佛 (Harvard) 结构:
 - □程序存储器与数据存储器(含**I/O**接口)分开编址的方式;
 - □执行效率高,结构复杂,单片机以及ARM9~11采用这种结构。
- 51单片机采用哈佛结构。

MCS-51寄存器配置(逻辑空间)

w

MCS-51寄存器配置(物理空间)

寻址空间

- 是单片机控制总线的数目,数目越多寻址能力就 越大。
- 16位总线的寻址空间是64KB(2¹⁶ Bytes), 32 位总线的寻址空间是4GB(2³² Bytes)
- 可扩展的存储空间容量受到单片机寻址能力的限制,对MCS-51单片机最大存储器容量是64KB。

程序存储器

- 51单片机程序存储器片内、片外统一编址,由 EA 引脚的电平控制访问片内还是片外存储器。
- EA=1,程序从片内存储器0000H开始执行,当PC超过片内存储器容量(4KB),自动转向片外存储器空间执行。
- EA=0,从片外存储器0000H开始执行。

数据存储器

■ 51单片机有128B或256B的片内单独数据存储器空间; 64KB片外数据存储器空间。

■ 51单片机通过不同的指令分别访问片内、 片外数据存储器,消除物理空间编址重复 的问题。

片内数据存储器

- ■工作寄存器R0~R7
 - □ 00H~1FH
- ■位寻址区
 - **□20H~2FH**
 - □位地址为: 00H~7FH
- ■用户RAM区
 - \square 30H \sim 7FH

w

工作寄存器

■ R0~R7

- □ 最常用的寄存器区域,涉及指令数量最多,寻址速度最快。
- □共4组,任何时刻,只能选择一组工作寄存器组。

RS1	RS0	寄存器组	片内RAM地址	通用寄存器名称
0	0	0组	00H~07H	R0~R7
0	1	1组	08H~0FH	R0~R7
1	0	2组	10H~17H	R0~R7
1	1	3组	18H~1FH	R0~R7

位寻址区 00-7FH

内部RAM的20H~ 2FH单元为位寻址区, 既可作为一般单元用 字节寻址,也可对它 们的位进行寻址。位 地址为00H~7FH。 CPU能直接寻址这些 位(称MCS-51具有 布尔处理功能),位 地址分配如右表所示。

字节地址	位地址							
	D ₇	De	Ds	D₄	Da	D ₂	D ₁	Do
2FH	7FH	7EH	7DH	7CH	7BH	7AH	79H	78H
2EH	77H	76H	75H	74H	73H	72H	71H	70H
2DH	6FH	6EH	6DH	6CH	6BH	6AH	69H	68H
2CH	67H	66H	65H	64H	63H	62H	61H	60H
2BH	5FH	5EH	5DH	5CH	5BH	5AH	59H	58H
2AH	57H	56H	55 H	54H	53H	52H	51H	50H
29H	4FH	4EH	4DH	4CH	4BH	4AH	49H	48H
28H	47H	46H	45H	44H	43H	42H	41H	40H
27H	3FH	3EH	3DH	3CH	звн	3AH	39H	38H
26H	37H	36H	35H	34H	33H	32H	31H	30H
25H	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
24H	27H	26H	25H	24H	23H	22H	21H	20H
23H	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
22H	17H	16H	15H	14H	13H	12H	11H	10H
21H	0FH	0EH	0DH	0CH	0BH	0AH	09H	08H
20H	07H	06H	05H	04H	03H	02H	01H	00H

特殊寄存器SFR

- 占用字节地址: 80H~FFH
- 位寻址寄存器:
 - □ 其字节地址可被8整除。
- 专用寄存器:
 - □ A、B、PSW、DPTR、SP
 - ☐ TMOD、TCON、SCON ...
- I/O接口寄存器:
 - □ P0、P1、P2、P3、SBUF

100

堆栈指针SP(Stack Pointer)

- 堆栈操作是在内存RAM区专门开辟出来的按照 "*先进后出*"原则进行数据存取的一种工作方式;
- 主要用于子程序调用及返回和中断处理断点的保护及返回;
- SP用来指示堆栈所处的位置,在进行操作之前, 先用指令给SP赋值,以规定栈区在RAM区的起始 地址(栈底层)。当数据推入栈区后,SP的值也 自动随之变化。MCS - 51 系统复位后,SP初始化 为07H。

数据指针寄存器DPTR

■ 数据指针DPTR是一个 16 位的专用寄存器, 其 高位字节寄存器用DPH表示, 低位字节寄存器 用DPL表示。

■ DPTR 主要用来存放 16 位地址, 当对 64 KB 外部数据存储器空间寻址时, 作为间址寄存器 用。在访问程序存储器时, 用作基址寄存器。

特殊功能寄存器。	功能名称。	物理地址。	可否位寻妣。
B.1	寄存器 B.1	F0H. ₁	គាលូ
A (ACC) .	多加 器 1	E0H.1	न्यू.₁
PSW.1	程序状态字(标志寄存器)。	$D0H_{c1}$	न्यू.
IP.1	中断优先级控制寄存器。	B8H. ₁	គាលូ
P3.1	P3 口数据寄存器。	B0H. ₁	គាលូ
E.1	中断允许控制寄存器。	A8H. ₁	គាលូ
P2.1	P2 口数据寄存器。	A0H. ₁	គាល្
SBUF.1	申行口发送/接收数据够冲寄存器。	99H. ₁	术可以。
SCON.	申行口控制寄存器。	98H. ₁	គាល្ក
P1.1	P1 D数据寄存器。	90H. ₁	គាល្ក
TH1.1	T1 计数器高 8 位寄存器。	8DH. ₁	不可以。
TH0.1	T0 计数器高 8 位寄存器。	8CH.,	不可以。
TL1.1	T1 计数器低 8 位寄存器。	8BH. ₁	不可以。
TL0.1	T0 计数器低 8 位寄存器。	8 AH .1	本可以
TMOD.	定时器/计数器方式控制寄存器。	89H. ₁	不可以。
TCON.	定时器控制寄存器。	88H. ₁	可以。
PCON.	电源控制寄存器。	87H. ₁	不可以
DPH.1	数据核针寄存器高 8 位。	83H. ₁	不可以。
DPL.	数据核针寄存器低 8 位。	82H. ₁	不可以。
SP.1	惟 楼撒针寄存器□	81H. ₁	术可以。
P0.1	PO 口数据寄存器。	80H. ₁	គាបូ.

P43(P44) 表2-5,6

w

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟和时序

其它封装: QFP、PLCC

电源

■ Vcc: 正电源,+5V

■ Vss: 负电源,0V,GDN

■ 注意点: 极性、颜色、粗细......

时钟引脚(晶振)

- 时钟信号: 单片机工作基准频率
- 来源:
 - □外接时钟脉冲信号
 - □振荡电路(晶振、RC振荡)
- 晶振特点:
 - □定时准确,稳定
 - □防震差,易碎

w

时钟接口电路

(a) 内部时钟方式:

晶振频率:1.2~12MHz

振荡电容:10~30pF(典型值为30pF)

注意点:晶振和电容的质量

RST (复位电路)

- RST/V_{PD}: 复位信号端和后备电源输入端。
 - □输入10ms以上高电平脉冲,单片机复位。

其它控制引脚

■ EA/V_{pp}: 片外程序存储器选择/编程电压;

■ ALE/PROG: 地址锁存允许/编程脉冲信号;

■ PSEN: 片外程序存储器读选通,低电平有效。

通用输入/输出(I/O)端口

- **■** P0□ (P0.0~P0.7)
 - □ 8位准双向I/O口,可作为通用I/O口,作输出口使用需外接上拉电阻。
 - □8位双向三态(漏极开路) I/O口,可作为外部扩展时的数据总线/低8位地址总线的分时复用口。
- P1□ (P1.0~P1.7)
 - □8位准双向I/O口,可作为通用I/O口,内部具有上拉电阻。

I/O口 (2)

- P2□ (P2.0~P2.7)
 - □8位准双向I/O口,内部具有上拉电阻。双功能端口,可作为通用I/O口,又可作为外部扩展时的高8位地址总线。
- P3□ (P3.0~P3.7)
 - □8位准双向I/O口,内部具有上拉电阻。双功能端口,作为通用I/O口时,功能与P1口相同,常用第二功能。

w

1/0口功能

- (1) 普通输入输出功能
 - (2) 第二功能
 - □P0: 片外存储器地址低8位 片外存储器数据
 - □**P1**: 无
 - □P2: 片外存储器地址高8位
 - □P3: 见下页

P3口第二功能

P3 口引脚线号	第二功能标记	第二功能注释
P3. 0	RXD	串行口数据接收输入端
P3. 1	TXD	串行口数据发送输出端
P3. 2	ĪNT0	外部中断 0 请求输入端
P3. 3	ĪNT1	外部中断 1 请求输入端
P3. 4	Т0	定时/计数器 0 外部输入端
P3. 5	T1	定时/计数器 1 外部输入端
P3. 6	$\overline{\mathbf{W}}\mathbf{R}$	片外数据存储器写选通端
P3. 7	$\overline{ ext{RD}}$	片外数据存储器读选通端

P0 Vs P1

读I/O口

■ 读引脚:读取某个引脚上电压信息(例如:以 接口为源操作数的传送指令 MOV A, P1);

- 读锁存器: (I/O口作为目的操作数)
 - □不直接读取引脚信息,而是读锁存器Q端数据,为了适应"读-修改-写"类指令的需要。
 - □"读-修改-写"类指令:与管脚相关的位操作指令。
 - □ P1=00111100B;
 - □ **P1.3=0**: (ANL P1,11110111B)

w

第二章 MCS-51硬件系统

- § 2-1 MCS-51简介
- § 2-2 MCS-51组成结构
- § 2-3 单片机工作原理
- § 2-4 存储空间和寄存器
- § 2-5 MCS-51引脚与功能
- § 2-6 时钟和时序

单片机的时序

- 时序: CPU在执行指令时所需控制信号 的时间顺序称为时序。
- 时序是用定时单位来描述的,MCS-51 的时序单位有四个,分别是节拍、状态、机器周期和指令周期。

时序(2)

■ 节拍:又称为振荡周期(用P表示),定义为单片机提供时钟信号的振荡源(OSC)的周期。它是时序中的最小单位。

■ 状态:用S表示,单片机振荡脉冲经过二分频后即得到整个单片机工作系统的状态。一个状态有两个节拍,前半周期对应的节拍定义为P1,后半周期对应的节拍定义为P2。

时序(3)

■ 机器周期:

- □ 完成一个基本操作所需的时间。 一个机器周期包含12个时钟周期,即有6个状态,分别表示为S1~S6。
- □若晶振为6MHz,则机器周期为2µs,若晶振为12MHz,则机器周期为1µs。

■ 指令周期:

- □ 执行一条指令所需要的时间称为指令周期。它是时 序中的最大单位。
- □一个指令周期通常含有**1**~**4**个机器周期。指令所包含的机器周期数决定了指令的运算速度。

Ŋ0

定时单位

M.

片外三总线

- 总线(Bus):公用信息通道,各部件分时共享总线资源,对总线资源的管理和分配称作"总线仲裁"。
- 片外数据总线:8位,P0
- 片外地址总线: 16位, P2(高8位), P0(低8位)
- 片外控制总线: 6根, ALE、PSEN、RD、WR、RST、EA

片外三总线与片外芯片的连接关系图

MCS-51指令的取指/执行时序

- 单片机执行指令: 取指、译码、执行;
- ALE信号是用于锁存低8位地址的选通信号,每出现一次 该信号,单片机即进行一次读指令操作;
- 当指令为多字节或多周期指令时,只有第一个ALE信号进 行读指令操作,其余ALE信号为无效操作或读操作数操作。

1. 单字节单周期指令(例如INC A)

由于是单字节指令,因此只需进行一次读指令操作。当第二个ALE有效时,由于PC没有加1,所以读出的还是原指令,属于一次无效的操作。

2. 双字节单周期指令(例如ADD A,#data)

这种情况下对应于ALE的两次读操作都是有效的,第一次是读指令操作码,第二次是读指令第二字节(本例中是立即数)。

3. 单字节双周期指令(例如INC DPTR)

两个机器周期共进行**4**次读指令的操作,但其中后三次的读操作全是无效的。

4. 单字节双周期(MOVX类指令)

如前述每个机器周期内有两次读指令操作,但MOVX类指令情况有所不同,因为执行这类指令时,先在ROM读取指令,然后对外部RAM进行读/写操作。第一机器周期时,与其它指令一样,第一次读指令操作码有效,第二次读指令操作无效。第二机器周期时,对外部RAM访问,不产生读指令操作。

读写片外RAM的时序图

思考题(1)

- 1、80C51单片机的存储器在结构上有何特点?在物理上和逻辑上各有哪几种地址空间?访问片内RAM和片外RAM的指令格式有何区别?
- 2、80C51单片机内RAM低128个存储单元划分为哪3个主要部分?各部分主要功能是什么?
- 3、程序存储器的哪些单元被保留用于特定场合?
- 4、什么是堆栈? 堆栈有哪些功能? 堆栈指针SP的作用 是什么? 在程序设计时,为什么还要对SP重新赋值?
- 5、80C51单片机的布尔处理机包括哪些部分?它们具有哪些功能?共有多少个单元可以位寻址?

思考题(2)

- 6、80C51单片机的节拍、状态、机器周期、指令周期是如何设置的? 当主频为12MHz时,各种周期等于多少微秒?
- 7、说明80C51单片机的程序状态字PSW的主要功能。
- 8、80C51单片机的片内外最大存储容量可达多少?
- 9、80C51单片机片外数据存储器与片内数据存储器地址 允许重复,并与程序存储器地址也允许重复,如何区分?
- 10、80C51单片机复位有哪几种方法? 复位后单片机的初始状态,即各寄存器及RAM中的状态如何?
- 11、80C51单片机的4个I/O口在使用上有哪些分工和特点? 在用作通用I/O口时,需注意什么?