Linguistics 409 – Spring 2013 Computational Linguistics M/W/F 9:00 - 9:50 in HUM 119

Instructor: Dr. Kevin B. McGowan Office Hours: Monday 10:00 - 11:00am

kmcgowan@rice.edu Wednesdays 3:00 - 4:00pm

208 Herring Hall or by appointment

Course Description and Goals

This course is designed to do two things:

- 1. This course is primarily an introduction to computational linguistics (with a strong emphasis on the *linguistics*). We will work our way through regular expressions, finite state automata, finite state transducers and morphology, N-gram models, part of speech (POS) tagging, hidden Markov models, text-to-speech, automatic speech recognition, computational phonology, context free grammars (CFGs), syntactic parsing, statistical parsers, feature unification grammars, computational lexical semantics, and computational approaches to discourse. As we cover each computational topic we will also reflect on related advances in research on human language processing and cognition.
 - This is pretty ambitious. We may not get to all of it, and we won't go very deeply into any one topic. It is reasonable to think of this as a survey course –like Ling 200 only much, much harder.
- 2. Secondarily, but just as essentially, this course will introduce (or reinforce!) a set of skills necessary to do computational linguistics. These will include basic UNIX skills, probability, phonetic transcription, phonological analysis, morphological analysis, syntactic parsing, lamda

Required Course Background Prerequisites: LING 200 or equivalent knowledge of linguistics. What I assume you remember from this course:

- the basics of phonetics, phonology, morphology, syntax, semantics, and discourse.
- the general goals of the scientific study of language.

Required Textbooks

Daniel Jurafsky and James H. Martin. 2008. Speech and Language Processing: An Introduction to Natural Language Processing Computational Linguistics, and Speech Recognition Second Edition, ISBN 0-13-187321-0. Important: Be sure you get the second edition; the first edition is ancient and buggy.

Allen Downey. 2012. Think Python: How to Think Like a Computer Scientist. ISBN: 144933072X Available free from: http://www.greenteapress.com/thinkpython/

The Jurafsky & Martin book should be available at the bookstore or through online retailers. You cannot get away without having and, crucially, reading Jurafsky and Martin. Any other materials we use in class—handouts, exercises, assignments—will be distributed via OwlSpace.

Course Requirements

1. Homework Assignments & Quizzes

70%

There will be several homework assignments and quizzes over the course of the semester. Your lowest homework or quiz grade will be excluded from the calculation of final grades.

3. Take-home final exam

15%

Homework Information

Homework sheets will be available for download from OwlSpace. Completed homeworks are to be uploaded to the course website. Unless otherwise indicated on the assignment, hardcopy assignments will not be accepted. I vastly prefer PDF or RTF to proprietary file formats. Please don't give me Word files. Would you give someone a can of delicious beans that could only be properly opened by a single company's proprietary opener? Would you give someone a book that could only be read under a particular brand of lightbulb? No, because those things would be ridiculous.

Late Homework Policy

I will accept late homework if you ask in advance for an extension. "In advance" means more than 24 hours before the assignment is due. I have been very forgiving about this in the past and it leads to students getting in the habit of not handing in work and me grading piles and piles of work at the end of the semester that I should have been able to do as the semester progressed. I intend not to be very forgiving this semester.

Honor Policy

Appropriating someone else's work and portraying it as your own is cheating. Collaborating with someone and portraying that work as solely your own is cheating. Obtaining answers to homework assignments or exams from previous semesters is cheating. Falsifying data or experimental results is cheating. (The foregoing is not intended to be a complete list. A complete description of Rice's Honor Code, plagiarism, and other general information can be found at the Rice Honor Council Web page at http://honor.rice.edu/). If you are caught cheating, you will be referred to the Honor Council. If you are unsure about whether a specific action is cheating, you may check with the intstructor. Some general guidelines are:

- Do not look at notes, assignments, or exams from previous semesters.
- Do not seek solutions to homework problems or exams from outside sources, including books (other than the textbook) or the internet.
- Do not copy other (current or former) students homework assignments. To minimize this temptation, always type up your homework answers by yourself, separately from your study group or other students in the class.
- Once you have started to work on your acoustics or final exam, do not discuss it with other students, until after you have turned it in and the exam time is over.
- Do not falsify data or other results in your homeworks or Extra Credit project.
- Cite all sources used and cite and designate all quotations as such.

Study Groups

I encourage students to form study groups to talk about readings and lectures, and especially to discuss and work through understanding how to solve homework problems. Invite me if you want and I'll try to come. However, after you figure/argue them out together, you must do the work and type up your homework answers entirely on your own, separately from the other study group members. You must also list the names of all of the members of your group at the top of your assignment. Failure to list study group members is an unethical misappropriation of others' contributions without acknowledgement; here I refer you to the previous section.

Americans with Disabilities Act

If any student in the class has a documented disability needing academic adjustments or accommodations, please get in touch with me during the first two weeks of class. All discussions will remain confidential. Students with disabilities will also need to contact Disability Support Services in the Ley Student Center. I look forward to working with you to make this class enjoyable and accessible for all.

Preliminary Class & Reading Schedule

Readings are in **boldface**. Except for Chapter 1, readings should be completed prior to the first day they are listed. Please note that this schedule is preliminary: dates and topics and even readings are subject to change.

Monday	Wednesday	FRIDAY
Jan 7th 1	9th 2	11th 3
Overview & What is	What is	Regular Expressions
Computational	Computational	JM ch2 pp 17 - 26
Linguistics? 1	Linguistics? 2	
JM ch1		
14th 4	16th 5	18th 6
Regular Expressions	Basic UNIX skills 1	Basic UNIX skills 2
JM ch2 pp 26 - 44		
21st	23rd 7	25th 8
	Morphology	Finite State
	JM ch. 3 pp 45 -	Transducers
	52	JM ch. 3 pp 52 -
		67
28th 9	30th 10	[Feb 1st] 11
Stemming, Spelling,	Probability for	N-Gram models
Edit Distance	Linguists	JM ch. 4 pp 81 -
JM ch. 3 pp 68 -	Abney (OwlSpace)	97
79		
4th 12	6th 13	8th 14
N-Gram models	Smoothing, Backoff,	Part of Speech
JM ch. 4 pp 81 -	& Interpolation	Tagging
97	JM ch. 4 pp 97 -	JM ch. 5 pp 123 -
11.1	109	139
11th 15	13th 16	15th 17
Part of Speech	Part of Speech	Hidden Markov
Tagging JM ch. 5 pp 139 -	Tagging JM ch. 5 pp 149 -	Models JM ch. 6 pp 173 -
149	157	183
18th 18	20th 19	22nd 20
Hidden Markov	MaxEnt	MaxEnt
Models	JM ch. 6 pp 192 -	JM ch. 6 pp 201 -
JM ch. 6 pp 184 -	200	207
192		
25th	27th	Mar 1st
4.1	0.1	0.1
4th 21	6th 22	8th 23
MaxEnt	Speech Synthesis	Speech Synthesis
JM ch. 6 pp 207 -	JM ch. 8 pp 249 -	JM ch. 8 pp 262 -
213	261	276

Monday	Wednesday	FRIDAY
11th 24	13th 25	15th 26
Speech Synthesis	ASR	ASR
JM ch. 8 pp 276 -	JM ch. 9 pp 285 -	JM ch. 9 pp 303 -
284	302	314
18th 27	20th 28	22nd 29
ASR	Context Free	Context Free
JM ch. 9 pp 314 -	Grammars	Grammars
331	JM ch. 12 pp 385 -	JM ch. 12 pp 404 -
	404	414
25th 30	27th 31	29th
Syntactic Parsing	Syntactic Parsing	
JM ch. 13 pp 427 -	JM ch. 13 pp 443 -	
443	457	
Apr 1st 32	3rd 33	5th 34
Statistical Parsing	Statistical Parsing	Machine Translation
JM ch. 14 pp 459 -	JM ch. 14 pp 479 -	JM ch. 25 pp 859 -
479	486	879 (s1-4)
8th 35	10th 36	12th 37
Machine Translation	Meaning	Computational
JM ch. 25 pp 879 -	JM ch. 17 pp 545 -	Semantics
899 (s5-10)	580	JM ch. 18 pp 583 -
		598 &605 - 607
15th 38	17th 39	19th 40
Lexical Semantics	Computational	Computational
JM ch. 19 pp 611 -	Lexical Semantics	Lexical Semantics
633	JM ch. 20 pp 637 -	JM ch. 20 pp 650 -
	650	676