

Anuncios

- Nueva sección
- Cambios en flujo de clase
- Cambios en las tareas y lecturas
- Sondeo
 - Cálculo

Discusión tarea

- Inversa y descomposición LU
- Cifrado de Hill

Introducción

¿Cálculo?

- Estudia las variaciones en funciones f(x) = y
 - Límites
 - Derivadas
 - Integrales

Límites

¿Qué pasa cuando $x = \infty$?

- $\bullet f(x) = 1$
- $\bullet f(x) = x$
- $\bullet f(x) = x 1$
- $\bullet f(x) = \frac{1}{x}$
- $\bullet f(x) = \frac{x}{x^2}$
- $\cdot f(x) = \log(x)$
- f(x) = sen(x)

¿Qué pasa cuando x se acerca mucho a 0?

- $\bullet f(x) = 1$
- $\bullet f(x) = x$
- $\bullet f(x) = x 1$
- $\bullet f(x) = \frac{1}{x}$
- $f(x) = \frac{x}{x^2}$
- $\bullet f(x) = \log(x)$
- f(x) = sen(x)

Derivada

- Cuál es el cambio instantáneo de la función en cierto punto
- Ejemplo
 - Si a las 6:15 vas a 64 Km/h y a las 6:21 vas a 73Km/h
 - ¿Cuál fue el cambio de velocidad? ¿Es instantáneo?
 - Si a las 6:15 vas a 64 Km/h y a las 6:16 vas a 66Km/h
 - ¿Cuál fue el cambio de velocidad?¿Es instantáneo?
 - Si a las 6:15:12 vas a 64.46 Km/h y a las 6:15:42 vas a 65.54 Km/h
 - ¿Cuál fue el cambio de velocidad?¿Es instantáneo?

•

. Integral

- · Cuál es el área bajo la curva que describe la función
- Ejemplo
 - Si a las 6:15 vas a 64 Km/h y a las 6:21 vas a 73Km/h
 - ¿Cuál fue la distancia recorrida?
 - Si a las 6:15 vas a 64 Km/h, a las 6:21 vas a 73Km/h y revisas la velocidad cada minuto
 - ¿Cuál fue la distancia recorrida?
 - Si a las 6:15 vas a 64 Km/h, a las 6:21 vas a 73Km/h y revisas la velocidad cada 10 segundos
 - ¿Cuál fue la distancia recorrida?

¿Métodos Numéricos?

- Funciones en mundo real
 - No se pueden calcular
 - No existe
 - Es muy costoso calcularla
 - Las variables y restricciones son muy complicadas

- Diferencias finitas
 - Adelante
 - Atrás
 - Centrales
- Integración numérica
 - Trapecio
 - Simpson
 - Integración adaptativa

¿Función Multivariable?

- Depende de 2 más variables
- $\bullet f(x,y) = x^2 + y^2$
- $f(x, y, z) = x^2 + y^2 + z^2$
- $f(x, y) = (x^2, y^2)$

Cambio del cálculo a multivariable

- Derivadas parciales/direccionales
- Integración múltiple
- Campos vectoriales
- Ecuaciones diferenciales