Atividade 38 - Jeacado da curva característica de dúctos squais es parametros Peopapação Objetivos - Jeacae a cueva (não linear) característica de diodos retificador e zener, Farametrizando as - avaliar as pesistências internas aparentes nas varias gamas de lensage de diodos setheador e gener. mas to zonas I(V Holerial , amperimetro (nx-mx, resolução de 4,5 dígito) a voltimeter (0,1mV-15V; " " → fonte de tensão variavel (0-15V) → peristência de 15 × 2 (Ro figura 8) de proteção do ciecuito -) conjunto de varios diodes montados en placas com terminais - comutador of for eletpicos para ligações do circuito fundamentes leceicos - lennar aplicada no disdo - Diado - TEST Vo = Va - Va - KI pelificador -RI- TENOR > (rentido dipeto) (sentido inverso) Bueva capaclepistica & Lei de Shockley. I=Io (ent -1) · copeenles elevadas · diodos longe da zona de avalanche Presistencias equivalentes -> Poc = V/I (estática) - RAC = OV/ DI (dinâmica) - d. zonek funciona and petificador Regime de avalanche leva à sia destruição a inverse a diecto

-gsquema Ufontagem (a): Rdiodo 4 Rv (sentido directo) Li consente no diodo duprezável Hontagem (6) Rdiodo » RA e Rdiodo ~ Rv (sentido inverso) Plano de ação → Chegas ao laboratório e ligal amperimetro e voltimetro 1) Perpapar montagen (a) pola o díodo elhificador (sentido diacto) 2) Escolher as escalar adequadas V E CON; 15]V e J E [nA, mA] 3) Avaliar a gama experimental so sentido directo e localizar sona 4) Mariar a lensur e rogistar Io(vo) (har ponto alé deixar de ver pelação linear entre I e V) 5) Ripeka para o diado fener 6) Peopapae a montagem (6) e inventer sentido (trocar fos) 7) Tique poucos pontos para o d. retificador e mais para o d. Force (vou estar constante e depois toocar arouito) 28/03/2022 - Terminal comum poets; Kerninal partiro remello porto gerador Análise de dados - Diodo cetificados - Escala prudente = escala - prindentes utilizada = D.G. MA (coppense) - de pto utilizado Denam estar agui!

SENTIDO DIRETO								
I (± 0,0001 mA)	In (I)	U (± 0,001 V)	In (I) ajuste	Resíduos	Aj Shockley (I)	Resíduos2	R _{est} (Ω)	R _{din} (Ω)
0,0080	-4,828313737	0,3096	-5,34645591	0,518142172	0,004765009	0,0032	3,87E+04	-2,87E+05
0,0078	-4,853631545	0,3670	-4,11906034	-0,73457121	0,016259786	-0,0085	4,71E+04	2,03E+03
0,0305	-3,490028595	0,4132	-3,13179808	-0,35823051	0,04363926	-0,0131	1,35E+04	8,97E+02
0,0515	-2,966173471	0,4320	-2,72915246	-0,23702101	0,065274589	-0,0138	8,39E+03	5,92E+02
0,0775	-2,557477343	0,4474	-2,39985121	-0,15762613	0,090731452	-0,0132	5,77E+03	4,03E+02
0,1213	-2,109488463	0,4650	-2,0226516	-0,08683686	0,132304182	-0,0110	3,83E+03	2,93E+02
0,1602	-1,831332244	0,4764	-1,77888314	-0,0524491	0,168826597	-0,0086	2,97E+03	2,52E+02
0,1727	-1,756199294	0,4796	-1,71152607	-0,04467323	0,18058999	-0,0079	2,78E+03	2,28E+02
0,2012	-1,603455841	0,4861	-1,57274911	-0,03070673	0,207474028	-0,0063	2,42E+03	2,02E+02
0,2261	-1,4867779	0,4911	-1,46540546	-0,02137244	0,230984318	-0,0049	2,17E+03	1,83E+02
0,8925	-0,113728765	0,5550	-0,0990191	-0,01470966	0,905725407	-0,0132	6,22E+02	1,97E+01
0,2529	-1,374761125	0,4960	-1,36062779	-0,01413334	0,256499699	-0,0036	1,96E+03	1,67E+02
0,2792	-1,275826908	0,5004	-1,26696938	-0,00885753	0,281684007	-0,0025	1,79E+03	1,52E+02
0,3123	-1,163791015	0,5054	-1,15962573	-0,00416529	0,313603533	-0,0013	1,62E+03	1,38E+02
0,3369	-1,087969129	0,5088	-1,08692285	-0,00104628	0,337252675	-0,0004	1,51E+03	1,28E+02
0,3708	-0,992092445	0,5132	-0,99390594	0,001813496	0,370128165	0,0007	1,38E+03	1,22E+02
0,3903	-0,940839605	0,5155	-0,94322776			0,0009	1,32E+03	1,15E+02
0,4136	-0,882855956	0,5182	-0,88592079	0,003064835	0,412334325	0,0013	1,25E+03	1,09E+02
0,4321	-0,839098236	0,5202	-0,84294056	0,003842326	0,430442916	0,0017	1,20E+03	1,04E+02
0,4597	-0,777181176	0,5231	-0,78178462	0,00460344	0,457588662	0,0021	1,14E+03	9,85E+01
0,4797	-0,73459437	0,5250	-0,73965972	0,005065345	0,477276297	0,0024	1,09E+03	9,52E+01
0,5091	-0,675110818	0,5278	-0,67978676	0,004675943	0,506725034	0,0024	1,04E+03	9,14E+01
0,5288	-0,63714499	0,5296	-0,641297		0,526608967	0,0022	1,00E+03	8,59E+01
0,5486	-0,6003857	0,5313	-0,60494557	0,004559867	0,546104151	0,0025	9,69E+02	8,40E+01
0,5674	-0,566690757	0,5329	-0,57116011		0,564869745	0,0025	9,39E+02	8,14E+01
0,5857	-0,534947566	0,5344	-0,53929915	0,004351584	0,583156815	0,0025	9,12E+02	7,89E+01
0,6103	-0,493804639	0,5364	-0,49781575	0,004011106	0,607856925	0,0024	8,79E+02	7,68E+01
0,6301	-0,461876742	0,5379	-0,46531328	0,003436542		0,0022	8,54E+02	7,47E+01
0,6475	-0,434636485	0,5392	-0,43751513	0,002878642	0,64563876	0,0019	8,33E+02	7,16E+01
0,6686	-0,402569305	0,5407	-0,4052265	0,002657193		0,0018	8,09E+02	7,00E+01
0,6886	-0,373094728	0,5421	-0,37529002		0,68708998	0,0015	7,87E+02	6,89E+01
0,7037	-0,35140315	0,5431	-0,35305149	0,001648345	0,702541015	0,0012	7,72E+02	6,79E+01
0,7205	-0,327809864	0,5443	-0,32867465		0,719877192	0,0006	7,55E+02	6,46E+01
0,7386	-0,302998777	0,5454	-0,30365631	0,00065753	0,738114508	0,0005	7,38E+02	6,23E+01
0,7548	-0,281302465	0,5464	-0,28205928		0,754228975	0,0006	7,24E+02	6,28E+01
0,7712	-0,259807536	0,5475	-0,26003458	0,000227047	0,771024921	0,0002	7,10E+02	6,20E+01
0,7870	-0,239527031	0,5485	-0,23907905	-0,00044798	0,787352641	-0,0004	6,97E+02	6,04E+01
0,8067	-0,214803427	0,5496	-0,21363304	-0,00117038		-0,0009	6,81E+02	5,83E+01
0,8285	-0,188138442	0,5509	-0,18647638	-0,00166206	0,829878162	-0,0014	6,65E+02	5,67E+01
0,8486	-0,164167346	0,5521	-0,16209954	-0,00206781	0,850356559	-0,0018	6,51E+02	5,58E+01
0,8710	-0,138113302	0,5533	-0,13537054	-0,00274276	0,873392227	-0,0024	6,35E+02	7,91E+01
0,9077	-0,096841351	0,5553	-0,09260414	-0,00423721	0,911554275	-0,0039	6,12E+02	5,21E+01
0,9317	-0,070744405	0,5566	-0,06587514	-0,00486926	0,936247753	-0,0045	5,97E+02	5,03E+01
0,9514	-0,049820695	0,5575	-0,04470578	-0,00511492		-0,0049	5,86E+02	4,98E+01
0,9751	-0,025215249	0,5587	-0,0194736	-0,00574164		-0,0056	5,73E+02	5,42E+01
0,9775	-0,022756987	0,5589	-0,01669379	-0,0060632	0,98344478	-0,0059	5,72E+02	5,72E+02
		· · · · · · · · · · · · · · · · · · ·						

Substituindo os papametos de ajuste linear na Lei de Shockley, oblém-se o seguinte ajuste à cueva experimental I(U): 0.9 0,8 0,001 0,7 Residuos Aj Shockley -0,001^{0,49} 0,51 0,6 -0,002 0.5 -0,003 -0,0040.3 -0,005 0,2 -0.006 0.49 0,53 U/V Figured 4. Gráfico de I (U) e pespetivo ajusti de Shockley sem so portos duridosos Embora se evidencie uma liguira tendência nos períduos, estes encontram-se distribuídos em valores baixos, o que poderá indiciae que a Lei de Shockley se adequa a esta gama experimental. 4 Sentido inverso I (± 0,001 μA) U (±0,0001 V) $R_{est}(\Omega)$ $R_{din}(\Omega)$ Poscala poudente = O.G. MA-NA -0,138 -1,8715 1,36E+07 #DIV/0! -0,138-3,1045 2,25E+07 -2,08E+09 Bocala uklizada = 0.9. MA -0,137-5,1889 3,79E+07 #DIV/0! -0,137-6,6303 4,84E+07 #DIV/0! -0,137 -7,3892 5,39E+07 #DIV/0! -0,137-8,1387 5,94E+07 #DIV/0! IO~ I= 0,137 MA = 1,37×10" A -0,137-9,506 6,94E+07 -9,67E+08 -0,136-10,4737,70E+07 -1,32E+09 -Esa de espesas que a ordem de -0,135-11,7927 8,74E+07 8,47E+08 -0,136-12,649,29E+07 #DIV/0! grandeza opincidisse nos dojs valspel -0,136 -13,991,03E+08 #DIV/0! -0,136-14,739 1,08E+08 1,08E+08 de Is, contido vepifica-se uma diferença claso eppo ausociado Jomemos, agora, alenção às ordens de grandeza das resistências: Rest (-12): 10 - 109 Rdin (-12): 108 - 109 Estel valopes coincidem com o elpepado, havendo, apenas lizeira variação de uma ordem de grandeza.

SENTIDO DIRETO U (± 0,00001 V) I / mA Incerteza (I) / mA In (I) In (I) ajuste Resíduos Aj Shockley Resíduos $R_{est}(\Omega)$ $R_{din}(\Omega)$ иA convertido em mA 0,000001 -6,43775 0.54885 -7,010300987 0,572549338 0,0009025 0,000697 3,43E+05 6,40E+03 0.001600 0,232287424 0,0097924 0.012353 0.000001 -4.39386 0.61770 -4.626143754 0.002561 5.00E+04 1.59E+03 0.030860 0.000001 -3.47829 0.64704 -3,610149953 0,131855521 0,0270478 0,003812 2,10E+04 8,08E+02 0.048200 0.000001 -3.0324 0.66105 -3.125007719 0.092611461 0.0439366 0.004263 1.37E+04 5.40E+02 0,000001 -2,70635 0.67109 -2.777339765 0.07098812 0.0622038 0,004576 1,00E+04 4,06E+02 0.066780 0,085190 0,000001 0,67856 0,004623 7,97E+03 3,17E+02 -2.46287 -2.518666496 0.055795273 0.080567 0.106970 0.000001 -2.23521 -2,279731349 0,044524491 0,1023117 0.004658 6.41E+03 2.64E+02 0.68546 0,124200 0,000001 -2,08586 0.69001 -2,122172665 0,036310555 0,1197711 0,004429 5,56E+03 2,18E+02 0,150920 0,000001 -1,89101 0.69583 -1,920636062 0,029630678 0,1465137 0,004406 4,61E+03 1,86E+02 0.171040 0.000001 -1 76586 0.69958 -1 790780003 0 024922172 0.16683 0.004210 4.09F+03 1.68F+02 0,188150 0,000001 -1,67052 0.70245 -1.691396833 0.020881071 0.184262 0,003888 3,73E+03 1,47E+02 0.70835 -1.487089968 0.010433167 0.2260295 mudanca de escala (mA) 0.2284 0.0001 -1.47666 0.002371 3.10F+03 1.20F+02 0.2641 0.0001 -1.33143 0.71264 -1.338534637 0.007107177 0.2622296 0.001870 2.70E+03 1.06E+02 0.294 0,0001 -1,22418 0.71580 -1,229109265 0,004933754 0,292553 0,001447 2,43E+03 5,77E+01 0,7416 0,0001 -0,29895 0,74162 -0,335007017 0,036061753 0,7153331 0,026267 1,00E+03 5,50E+01 0,0001 -1,12763 0,71864 -1,130764944 0,003135706 0,3227862 0,001014 2,22E+03 8,72E+01 0,3238 0.3465 0,0001 -1,05987 0.72062 -1,062200945 0,002328484 0,3456941 0,000806 2,08E+03 8,13E+01 0.3716 0.0001 -0.98994 0.72266 -0.991559249 0.001621977 0.3709978 0.000602 1.94E+03 7.56E+01 0.3995 0,0001 -0,91754 0.72477 -0.918493573 0.00095206 0.3991198 0.000380 1.81E+03 7.06E+01 0,0001 0,72664 -0,853738686 0,000422753 0,4258199 0,000180 1,71E+03 6,77E+01 0,426 -0,85332 0.4449 0.0001 -0.80991 0.72792 -0.809414484 -0.00049126 0.4451186 -0.000219 1.64E+03 6.35E+01 0.4638 0.0001 -0.7683 0.72912 -0.767860546 -0.00044131 0.4640047 -0.000205 1.57E+03 6.24E+01 0,4819 0,0001 -0,73002 0,73025 -0,728730587 0.0001 -0.68617 0.5035 0.73150 -0.685445234 -0.00072633 0.5038658 -0.000366 1.45E+03 5.82E+01 0,5224 0,0001 -0,64932 0,73260 -0,647354123 -0,00196758 0,5234289 -0,001029 1,40E+03 5,42E+01 0.5451 0.0001 -0.60679 0.73383 -0.604761336 0,5623 0,0001 -0,57572 0,73474 -0.573249599 0.5828 0,0001 -0,53991 0.73574 -0.538621317 -0,00128989 0,5835522 -0,000752 1,26E+03 4,90E+01 0,6024 0,0001 -0,50683 0,73670 -0,505378166 -0,00145544 0,6032774 -0,000877 1,22E+03 4,67E+01 0.6311 0.0001 -0,46029 0.73804 -0.458976268 -0,00131468 0,6319302 -0,000830 1,17E+03 4,51E+01 0.6495 0.0001 -0.43155 0.73887 -0.430234794 -0.00131765 0.6503564 -0.000856 1.14E+03 4.33E+01 0,6705 0,0001 -0,39973 0,73978 -0,398723057 0.6911 0,0001 -0,36947 0.74065 -0.368596451 0,7371 0,0001 -0,30503 0,74249 -0.304880412 -0,0001513 0,7372115 -0,000112 1,01E+03 3,98E+01 0,7474 0,0001 -0,29115 0,74290 -0,290682816 -0,00047195 0,7477528 -0,000353 9,94E+02 3,77E+01 0.7726 0,0001 -0,25799 0.74385 -0,257785948 -0,00020788 0,7727606 -0,000161 9,63E+02 3,54E+01 0.7955 0.0001 -0.22878 0.74466 -0.00073411 0.8133969 -0.000597 9.17F+02 3.46F+01 0.0001 -0.20727 0.74533 0.8128 -0.20653609 0,74606 -0,181257444 -0,00038434 0,8342206 -0,000321 8,95E+02 3,17E+01 0.8339 0.0001 -0.18164 -0,153554818 0,001684869 0,8576537 0,8591 0,0001 -0,15187 0,74686 0,001446 8,69E+02 3,32E+01 0,8799 0,0001 -0,12795 0,74755 -0,129661304 0,001714289 0,8783929 0,001507 8,50E+02 3,48E+01 0,8983 0,0001 -0,10725 0,74819 -0,107499203 0,000248012 0,8980772 0,000223 8,33E+02 3,07E+01 0.9286 0,0001 -0,07408 0.74912 -0,075294901 0,001217697 0,9274699 0,001130 8,07E+02 2,97E+01 0.9522 0.0001 -0.04898 0.74982 -0.051055103 0.002074921 0.9502263 0.001974 7.87E+02 -0.036857507 0.002266063 0.9638135 0.002187 7.77E+02 7.77E+02 0.966 0.0001 -0.03459 0.75023

-0,0193 -10,029 5,20E+05 0,00E+00 0,0001 -0,0839 0,0001 -10.029 1,20E+05 0.00E+00 6,23E+04 0.0001 -10,029 2 75F+01 -0.16100.0001 -10,031 4,29E+04 3,17E+01 -0.2336 -10,032 3,78E+04 2,75E+01 -0,2651 0,0001 -0.30140,0001 -10,033 3,33E+04 0,00E+00 2,64E+04 -10,033 2,94E+04 -0,34100,0001 #DIV/0! -0,000140 0.000001 -1,030 7,36E+06 0.000001 -2,587 1,85E+07 #DIV/O! -0.000140 estel valopes from mediato em -3,400 2,43E+07 #DIV/0! -0,000140 0,000001 #DIV/0! -0,000140 0,000001 -4,426 3,16E+07 MA e posteriormente convertidos em mi -5,373 #DIV/O -0,000140 0.000001 3.84E+07 -0,000140 0.000001 -6.778 4,84E+07 -9,30E+08 -7.708 5.55E+07 #DIV/0! -0,000139 0,000001 5,83E+07 -0,000139 0,000001 -8,109 5,83E+07 estátical, populamente petistencial ellepaumentam grando invegenos o sentido da e, poplanto, a peristência dinâmica num panh de condubaca lende bapa or, dado que 70 lende para O (figura 12). Figura 12: Gráfico de I(U) no rentido invento -0.15 -0.2 -0.25 IONI = 0,0938 mA -0.3 = 9,38 ×10 - A -0,35 este valor difere do an 2 mole -10 V, repificando - se a parete deathico (em módulo da coesene). o mesmo também poderia aconterer entre - 8,5 V o - 10 V, pelo que se doviam lee tipado mais dados, para tado mais fiel. as resistencial. tilam-se al enquadra-se no value esperado entre 1 sua ordem de grandeza conssante o e o díodo usado, fouto de um possível Us opdons de grandeza das peristências estão d acopdo com a polapização: maiores no sentido inverso da corrente Papa o diodo perificador, os resultados mostram que talvez a gama experimental não seja a mais adequada; já para o tener, a aleabriedade dos reviduos evidencia que pram feitos bons ajustes.