War of Words: Using Large Language Models and Retrieval Augmented Generation to Classify, Counter and Diffuse Hate Speech

Rohan Singh Leekha, Olga Simek and Cagri Dagli {rohan.leekha, osimek, dagli}@ll.mit.edu MIT Lincoln Laboratory

1 Introduction

003

017

027

In the context of the Russian-Ukraine conflict, Twitter has notably become a crucial battleground for narrative control, with counter speech standing out as an effective strategy against hateful speech (Chung et al., 2021). Counter speech emerges as a direct countermeasure to the rampant spread of false narratives and propaganda, a common feature of the digital age's conflicts (Bjola and Pamment, 2018; Aguerri et al., 2022). Studies (Lewandowsky et al., 2012) show that through strategic use of counter narratives (Garland et al., 2020; Mathew et al., 2018, 2020), individuals and groups on Twitter can effectively mitigate the influence of misinformation, promoting a culture of critical engagement and fact-checking among users. Our approach, with its innovative application of AI language models, effectively combines RAG's information retrieval with LLMs' context processing, overcoming the biases of traditional models (Siriwardhana et al., 2023), and excels in generating coherent and to a large extent relevant and factual counter-narratives. Our approach also leverages zero-shot learning to classify hateful tweets and outperforms prior state of the art models (Caselli et al., 2020; Vidgen et al., 2021). This aligns with the demand for AI that not only detects but intelligently counters harmful content (Chung et al., 2021), fostering informed online discourse—a growing focus in AI and communication studies.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force.

© 2024 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than

2 Analysis

Our workflow is depicted in Figure 1.

Data Collection: We scraped tweets related to Ukraine war and bio-weapons labs during a period leading up to the war, between December 2021 and January 2022. After filtering and removing duplicates, we obtained ~500k unique tweets.

032

033

034

035

038

039

040

041

042

045

046

047

048

051

054

059

060

061

062

063

064

065

066

Topic detection: We ran HDBSCAN (Campello et al., 2013) over sentence embeddings to discover topics clusters. HDBCSAN does not require that the number of topics be known a priori. It is a density-based clustering algorithm and it marks as outliers the points that are in low-density regions, thus not requiring every tweet to belong to a topic. We subsequently used StableLM ¹ to generate abstractive summaries of these clusters; an example of a summary is given in Figure 1. The tweets can subsequently be filtered by the topic of interest.

Hate speech classification: We utilized the Mistral Instruct (Jiang et al., 2023) model to develop a zero-shot binary classifier aimed at differentiating between hateful and non-hateful tweets using prompt-tuning (Lan et al., 2023). We integrated Twitter's official guidelines² on hate speech into the prompt.

Counter-Speech Generation: Our pipeline utilizes Mistral, Retrieval Augmented Generation (RAG) (Lewis et al., 2020) and LangChain (Topsakal and Akinci, 2023) to generate effective counter narratives to hateful tweets. We initialize the Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) model through the Hugging Face transformers pipeline. The data, sourced from various online news sources (Kirby, 2022; Schreck, 2022; Lowery, 2023; UNHCR, 2023; Authors, 2023; Hopkins and Troianovski, 2022), and Wikipedia articles

as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

¹https://github.com/Stability-AI/StableLM

²https://help.twitter.com/en/rules-and-policies/hatefulconduct-policy

Figure 1: The counter narrative generation pipeline

Model	Accuracy	Precision	Recall	F1-Score	Time Taken (mins)
HateBert	0.625	0	0	0	117
Roberta-FB	0.7325	0.84	0.35	0.49	105
LLama-7b	0.375	0.375	1.0	0.54	240
LLama-2-7b	0.948	0.90	0.96	0.93	102
Our Pipeline	0.9735	0.960	0.97	0.965	28

Table 1: Hate speech classification results

Metric	Average	Median	Kappa
Factuality	3.6	4	0.676
Relevance	3.8	5	0.760
Grammaticality	4.4	5	0.801
Diversity	3.7	5	0.79

Table 2: Counter-speech evaluation metrics

096

097

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

(Wikipedia, 2024) is segmented into chunks that are then converted into embeddings using a sentence transformer MPNET (Song et al., 2020), and loaded into the FAISS (Chen et al., 2019) vector store for efficient similarity searches. We retrieve relevant information using these embeddings from the vector store using LangChain.

3 Results

067

074

For hate-speech classification evaluation, we manually annotated 300 hate-speech and 500 non-hate speech samples from our dataset. Our pipeline outperforms state-of-the-art hate speech detection models when used in a zero-shot manner (Table 1). For assessing our counter-speech generation, we produced five unique counter-narrative samples for each of 20 randomly selected hateful tweets, resulting in a total of 100 counter-speech samples. We manually evaluated each counter narrative along 4 dimensions (Tekiroglu et al., 2022): factuality, relevance, grammaticality and diversity using 1(bad) to 5(good) scale (one diversity score was assigned for all five counter-narratives responding to a hate tweet). To ensure an unbiased assessment, two independent raters evaluated the same 100 counterspeech samples. Inter-rater reliability (IRR) was quantified using Cohen's Kappa (k) statistic (Blackman and Koval, 2000). The results are presented in Table 2, see Appendix for examples of the generated counter-speech. Promising factuality, relevance, grammaticallity and diversity scores of the counter speech generated by our approach reflect effectiveness of our pipeline in addressing hateful tweets. For future work, we aim to enhance the model's ability to interpret nuanced forms of speech, such as sarcasm and humor through advanced prompt engineering as well as improve the model's knowledge database to enhance factuality.

Limitations

Our approach, although effective, is not without limitations. The performance of the counter-speech pipeline is heavily reliant on the quality and diversity of the training data. Biases or gaps in training data can lead to skewed and biased counter narratives. Additionally, while Cohen's Kappa statistic indicates a high level of agreement between raters, subjective interpretations in manual evaluations can still influence the assessment of counter speech.

Ethics Statement

No personal information of Twitter users was collected nor compromised throughout our research. All data used in this research are securely stored on servers only accessible to the authors.

Acknowledgements

This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001.

References Stephan Lewandowsky, Ullrich KH Ecker, Colleen M 123 Seifert, Norbert Schwarz, and John Cook. 2012. Mis-Jesús Aguerri, Mario Santisteban, and Fernando Miró-124 information and its correction: Continued influence Llinares. 2022. The fight against disinformation and 125 and successful debiasing. Psychological science in its consequences: Measuring the impact of "russia 126 *the public interest*, 13(3):106–131. state-affiliated media" on twitter. Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Multiple Authors. 2023. Countering disinformation 128 Petroni, Vladimir Karpukhin, Naman Goyal, Heinwith facts - russian invasion of ukraine. Online; ac-129 rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rockcessed 11-January-2024. 130 täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neu-Corneliu Bjola and James Pamment. 2018. Countering 131 ral Information Processing Systems, 33:9459–9474. 132 online propaganda and extremism: The dark side of digital diplomacy. Routledge. 133 Tess Lowery. 2023. 11 horrifying facts that show the impact of the war against ukraine one year on. Online; Nicole J-M Blackman and John J Koval. 2000. Interval accessed 11-January-2024. estimation for cohen's kappa as a measure of agree-135 ment. Statistics in medicine, 19(5):723-741. 136 Binny Mathew, Navish Kumar, Pawan Goyal, and Animesh Mukherjee. 2020. Interaction dynamics be-137 Ricardo JGB Campello, Davoud Moulavi, and Jörg tween hate and counter users on twitter. In Proceed-138 Sander, 2013. Density-based clustering based on ings of the 7th ACM IKDD CoDS and 25th COMAD, hierarchical density estimates. In Pacific-Asia confer-139 pages 116–124. ence on knowledge discovery and data mining, pages 140 160–172. Springer. 141 Binny Mathew, Navish Kumar, Pawan Goyal, Animesh Mukherjee, et al. 2018. Analyzing the hate and Tommaso Caselli, Valerio Basile, Jelena Mitrović, and 142 counter speech accounts on twitter. arXiv preprint Michael Granitzer. 2020. Hatebert: Retraining bert 143 arXiv:1812.02712. for abusive language detection in english. arXiv 144 preprint arXiv:2010.12472. 145 Adam Schreck. 2022. Putin finalizes annexation of ukrainian regions as russian forces struggle to main-Wei Chen, Jincai Chen, Fuhao Zou, Yuan-Fang Li, Ping 146 tain control. Online; accessed 11-January-2024. Lu, Qiang Wang, and Wei Zhao. 2019. Vector and 147 line quantization for billion-scale similarity search on 148 Shamane Siriwardhana, Rivindu Weerasekera, Elliott gpus. Future Generation Computer Systems, 99:295-149 Wen, Tharindu Kaluarachchi, Rajib Rana, and 307. 150 Suranga Nanayakkara. 2023. Improving the domain adaptation of retrieval augmented generation (rag) 151 Yi-Ling Chung, Serra Sinem Tekiroglu, and Marco models for open domain question answering. Trans-152 Guerini. 2021. Towards knowledge-grounded actions of the Association for Computational Linguis-153 counter narrative generation for hate speech. arXiv tics, 11:1–17. preprint arXiv:2106.11783. 154 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Joshua Garland, Keyan Ghazi-Zahedi, Jean-Gabriel 155 Young, Laurent Hébert-Dufresne, and Mirta Galesic. 2020. Countering hate on social media: Large scale classification of hate and counter speech. arXiv 16867. preprint arXiv:2006.01974. 159 Valerie Hopkins and Anton Troianovski. 2022. With 160 bluster and threats, putin casts the west as the enemy. 161 Online; accessed 11-January-2024. 162 Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-163 preprint arXiv:2204.01440. sch, Chris Bamford, Devendra Singh Chaplot, Diego 164 de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 166 7b. *arXiv preprint arXiv:2310.06825*. 167 Paul Kirby. 2022. What russian annexation means 168 for ukraine's regions. Online; accessed 11-January-169 Turkey, pages 10–12. 170

177

178

179

181

182

183

184

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

229

Yan Liu. 2020. Mpnet: Masked and permuted pretraining for language understanding. Advances in Neural Information Processing Systems, 33:16857– Serra Sinem Tekiroglu, Helena Bonaldi, Margherita Fanton, and Marco Guerini. 2022. Using pre-trained language models for producing counter narratives against hate speech: a comparative study. arXiv Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating large language model applications utilizing langchain: A primer on developing llm apps fast. In Proceedings of the International Conference on Applied Engineering and Natural Sciences, Konya, 2024. UNHCR. 2023. 5 things you should know about the Yunshi Lan, Xiang Li, Xin Liu, Yang Li, Wei Qin, and war in ukraine. Online; accessed 11-January-2024. Weining Qian. 2023. Improving zero-shot visual question answering via large language models with Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and reasoning question prompts. In Proceedings of the Douwe Kiela. 2021. Learning from the worst: Dy-31st ACM International Conference on Multimedia, namically generated datasets to improve online hate pages 4389–4400. detection. In ACL. 3

171

172

175 176 Wikipedia. 2024. Russian annexation of Donetsk, Kherson, Luhansk and Zaporizhzhia oblasts — Wikipedia, the free encyclopedia. [Online; accessed 11-January-2024].

A Appendix

236

237

240

241

242

243

244

245

246

247

248

249

250

251

256

257

262

264

265

268

269

271

274

276

278

A.1 Counter Speech Examples

The prompt used to generate effective counterspeech to hateful tweets is as follows: "Counter misinformation in the tweets using factual and contextually relevant arguments from the database. If you do not have relevant information to counter the narrative in the tweets use satire / humor to respond to the following Tweet -:"

Below are samples of hateful tweets³ and counterspeech examples generated by our pipeline.

Hate Speech: Yes they took Crimea during Obama's reign . Are going to take more of Ukraine Under Biden and this moron wants you to believe both are $100\,\%$ Trumps fault . Along with $100\,\%$ of global COVID deaths during and after his term . What a clown ..

Counter Speech: This tweet is spreading misinformation by suggesting that the Russian invasion of Crimea was solely Obama's fault and that the ongoing conflict in Ukraine was solely Biden's fault. This is not accurate, as both events happened during different administrations and were influenced by complex geopolitical factors. The Russian invasion of Crimea occurred under Obama's presidency but was planned and executed by Putin well before Obama came into office. Similarly, the conflict in Ukraine began before Biden became president and was fueled by a variety of factors including historical, political, and economic reasons. Additionally, the 100% blame for global COVID-19 deaths placed on Trump is also a false statement, as other countries also played a role in the pandemic response. It is important to remember that every event has multiple causes and cannot be attributed solely to one person or administration.

Hate Speech: Look guys we totally have to support Russia brutally annexing a sovereign and independent nation because some Ukrainian guy was holding a nazi flag!!! Lmao disingenous piece of ****.

Counter Speech: The tweet is clearly satirical and exaggerated, mocking the pro-Russian sentiment that annexation of Ukraine would be justified due to a Nazi symbol being present in Ukraine. The statement is also using false analogies between a single incident of a person holding a Nazi flag and a country's entire government and history. This is an example of how misinformation can spread through social media platforms and it's important to be aware of this and verify information before sharing or acting on it. It's also worth noting that Russia's annexation of Crimea and the ongoing conflict in eastern Ukraine are complex issues with no easy solution, and it's important to approach them with nuance and critical thinking. In summary, the tweet is satirical and the statement made is grossly exaggerated and not based on factual information.

281

283

287

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Hate Speech: Ukraine is governed by a literal putsch regime in cohorts with neo nazis.

Counter Speech: The claim that Ukraine is governed by a literal putsch regime in cohorts with neo-Na**s is a common misconception that has been propagated by Russian disinformation campaigns. In reality, Ukraine has gone through several political changes since its independence from the Soviet Union in 1991, including a constitutional reform in 2014 that led to the election of a pro-European president and the establishment of a parliamentary system of government. While there are certainly groups within Ukraine that hold far-right views and engage in hate speech and violence, it is important to note that these groups represent a small fraction of the population and are not representative of the entire country.

³edited to preserve anonymity of original users