Contents

1	Лекція №1		
	1.1	Інтуітивні визначення	2
	1.2	Бітова та арифметична складність	2
	1.3	Схема Горнера	٠
	1.4	Числа Фібоначі	;
2	Лекція №2		
	2.1	Символи Ландау та нотація Кнута	4
	2.2	Ієрархія функцій за швидкістю росту	٦
3	Лекція №3		
	3.1	Коректність алгоритмів	7
	3.2	Складність у найгіршому випадку	8
	3.3	Складність у середньому	Ć
4	Лекція №4		
	4.1	Нижні границі складності та оптимальні алгоритми	10
	4.2	Метод грубої сили	10
	4.3	Алгоритм Карацуби	11
5	Лекція №5		
	5.1	Метод декомпозиції	12
	5.2	Розв'язання рекурентних співвідношень методом підстановки	13
	5.3	Оцінка дерева рекурсії	14
6	Лекція №6		
	6.1	Основна теорема методу декомпозиції	15
	6.2	Доведення основної теореми	16
7	Лекція №7		
	7.1	Форми представлення поліномів	19
	7.2	Інтерполяційна формула Лагранжа	20
	7.3	Інтерполяційна формула Ньютона	21

1.1 Інтуітивні визначення

Алгоритм - чітка скінченна однозначно визначена послідовніть (порядок) дій/кроків, яка призводить до очікуваного результату.

Властивості алгоритмів:

- Коректність (алгоритм розв'язує те, що трбеа і правильно)
- Ефективність (скільки ресурсів буде витрачати алгоритм)

Позначення:

x - якась задача з параметрами.

T(x) - часова складність (к-ть кроків які зробить алгоритм, щоб розв'язати певну задачу).

S(x) - просторова складність (це к-ть додаткової пам'яті, щоб завершити алгоритм).

n = |x| - розмір вхідних даних.

Складність буває:

- 1. У найгіршому випадку $T(n) = \max_{x, |x|=n} T(x)$
- 2. У середньому $\overline{T}(n) = \sum_{x: |x|=n} Pr(x)T(x)$

Pr(x) - ймовірність отримати складність x.

3. Майже завжди: майже $\forall x: T(x) = T_n$

1.2 Бітова та арифметична складність

Бітові операції

Архітектури працюють з регістрами = двійкові вектори фік. довжини $n\ (n=16,\ 32,\ 64\dots)$ Бітові (логічні) операції: $\lor,\ \land,\ \oplus,\ \gg,\ \ll.$

Кожна операція реалізується окремим вентелем (gate) \longrightarrow складність реалізації булевої функції = к-ть гейтів.

Рівнем вище можна вважати, що бітова операція над регістром атомарна.

Бітова складність = к-ть бітових операцій, яку виконує алгоритм.

Арифметичні операції

$$x = (x_{n-1}, \dots, x_1, x_0) = x_0 + 2x_1 + 4x_2 + \dots + 2^{n-1}x_{n-1}; x_i = \{0, 1\}$$

Арифметичні операції: $+ \mod 2^n$, $- \mod 2^n$, $\cdot \mod 2^n$, $\div \mod 2^n$, порівняння.

Зазвичай бітова складність ариф. операцій $\sim n^{const}$

Адитивна складність: +, -, vs

Мультиплікативна складність: •

Оцінювання ефективності:

- 1. Вибір множини базових операцій.
- 2. Підрахунок / оцінювання к-ті операцій.
- 3. Обмеження часу роботи у конкретному обчисл. середовищі.

Додавання у стовпчик.

Лема: $\forall i : C_i \in \{0, 1\}$

У найгіршому випадку T(n) = 1 + 2(n-1) = 2n - 1 - додавань цифр.

У найкращому випадку $T(n) = n \Rightarrow n \leqslant T(n) \leqslant 2n - 1$

1.3 Схема Горнера

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + ax + a_0$

Метод грубої сили: $1+2+\ldots+n=\frac{n(n+1)}{2}$ множень чисел. Горнер: $p(x)=(((a_nx+a_{n-1})x+a_{n-2})x+\ldots+a)x+a_0\Rightarrow n$ множень чисел. $x^{a} = x^{a_0 + 2a_1 + 2^2 a_2 + \dots + 2^t a_t} = x^{a_0} \cdot (x^2)^{a_1} \cdot (x^2)^{a_2} \cdot \dots \cdot (x^2)^{a_t}$

Найгірший випадок 2t.

Середне $t + \frac{1}{2}(t-1) + 1 = \frac{3}{2}t - \frac{1}{2}$; $T(t) = \Theta(t)$ $x^a = (...(((x^{a_t})^2x^{a_{t-1}})^2x^{a_{t-2}})^2...)x^0$

1.4 Числа Фібоначі

 $f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n, n \ge 0$

Метод грубої сили

Алгоритм обчислення числа фібоначі: $A1(n) \longrightarrow f_n$

- 1. Якщо n = 0 повернути 0.
- 2. Якщо n = 1 повернути 1.
- 3. Інакше n = 0 повернути A1(n-1) + A1(n-2).

$$T(n) = T(n-1) + T(n-2) + 3, n \ge 2$$

$$T(0) = 1, T(1) = 2 \Rightarrow T(n) \geqslant f_n$$

Ідея "динамічного програмування"

- 1. f[0] = 0, f[1] = 1
- 2. Для всіх інших від 2 до n: f[i] = f[i-1] + f[i-2]

3

3. Повторюємо f[n]

$$T(n) = n - 2$$

Формула Біне

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

 $T(n) = 2\log_2 n + 2\log_2 n + 1 = 4\log_2 n + 1$ - Множення ірраціональних чисел.

Матриці

$$\mathbf{Q} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{Q}^{\mathbf{n}} = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$

n - множень матриці.

 $32\log_2 n$ - множень цілих чисел.

Лекція №2

2.1Символи Ландау та нотація Кнута

 $f, q: \mathbb{N} \to \mathbb{R}$

$$f = o(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f = o(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f = O(g) \Leftrightarrow \exists C > 0, n_0 \in \mathbb{N}, \forall n \geqslant n_0 : |f(n)| \leqslant C \cdot |g(n)|$$

$$f = \omega(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ also } g = o(f)$$

$$f = \Omega(g) \Leftrightarrow \exists C > 0, n_0 \in \mathbb{N}, \forall n \geqslant n_0 : |f(n)| > C|g(n)| \text{ also } g = \mathsf{O}(f)$$

$$f = \Theta(g) \Leftrightarrow \exists C_1, C_2 > 0, n_0 \in \mathbb{N}, \forall n \geqslant n_0 : C_1|g(n)| \leqslant |f(n)| \leqslant C_2|g(n)|$$

$$f \sim g \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 \text{ also } f(n) = g(n) + o(g(n))$$

$$\sum_{k=1}^{n} \Theta(f(k)) \neq \Theta(f(1)) + \Theta(f(2)) + \dots + \Theta(f(n))$$

$$\Theta(1)$$
 або $\mathsf{O}(n)$ - const.

o(1) - нескінченно мала функція.

Твердження: $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = C; \ 0 < C < \infty \Rightarrow f = \Theta(g)$

$$\left. \begin{array}{c} f(n) = n \sin(n) \\ g(n) = n \end{array} \right\} \Rightarrow f = \mathsf{O}(g)$$

Твердження: $f = O(g), \forall n \in \mathbb{N}, g(n) \neq 0 \Rightarrow \exists C > 0, \forall n \in \mathbb{N}: |f(n)| \leqslant C|g(n)|$

Наслідок: Ω та Θ аналогічно.

Твердження:
$$\Lambda \in \{\mathsf{O}, \Omega, \Theta\}, \ f,g>0, \ f=\Lambda$$
 Для $h:\ \mathbb{N} \to \mathbb{N}$ нехай $F(n)=\sum_{k=1}^{h(n)}f(k), \ G(n)=\sum_{k=1}^{h(n)}g(k).$

Тоді
$$F = \Lambda(G)$$

2.2 Ієрархія функцій за швидкістю росту

Твердження: Нехай маємо поліном $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + ax + a_0; \ a_n \neq 0, x \to \infty.$

Тоді:

1.
$$p(x) \in \Theta(x^n)$$

 $p(x) \sim a_n x^n$

- 2. $p(x) = o(x^t), \forall t > n$. Поліном домінується.
- 3. $p(x) = o(e^x)$. Поліном домінується.
- 4. $p(\ln x) = o(x^t), \forall t > 0$. Поліном домінується.

Теорема (про ієрархію функцій)

Нехай $0 < \varepsilon < 1, C > 1, n \in \mathbb{N}, n \to \infty$

Тоді:

$$\varepsilon^n \prec C \prec \ln(\ln(n)) \prec \ln(n) \prec n^\varepsilon \prec n \prec n^C \prec C^n \prec n! \prec n^n \prec C^{C^n} \prec$$
 - домінація.

Які можуть бути оцінки складності.

1.
$$T(n) = \Theta(f(n))$$
, $\left(= \mathsf{O}(f(n)), = \Omega(f(n))\right)$

2.
$$T(n) = f(n) + o(f(n))$$
 abo $T(n) \sim f(n)$

3.
$$T(n) = f(n) + \Theta(q(n))$$

Класи алгоритмів за часовою складністю:

- 1. Поліноміальні: $T(n) = \Theta(n^C)$
- 2. Експоненційні: $T(n) = \Theta(C^n) \ \left(\Theta(C^{pol(n^y)})\right)$
- 3. Субекспоненційні: $n^2 \prec T(n) \prec C^n$

За просторовою складністю:

- 1. Константні: $S(n) = \Theta(1)$
- 2. Логарифмічні: $S(n) = \Theta(\ln(n))$
- 3. Поліноміальні: $S(n) = \Theta(n^C)$

Оцніка $f(n) = \mathsf{O}(\mathsf{g})$ точно, якщо \exists послідовніть $n(k), k \in \mathbb{N},$ яка нескінченно зростає, що:

$$\left. \begin{array}{l} \varphi = f(n_k) \\ \psi = g(n_k) \end{array} \right\} \Rightarrow \varphi(n_k) = \Omega(\psi(k)) \left(\Rightarrow \varphi(k) = \Theta(\psi(k)) \right)$$

Твердження $f = \mathsf{O}(g)$ - точна оцінка $\Leftrightarrow f(n) \neq o(g)$

Алгоритми факторизації

Задача: $N \in \mathbb{N}$. Знайти d|N, 1 < d < N або сказати, що N просте. (| - ділення)

1. Сито Ератосфена.

Перебираємо d від 2 до $\frac{N}{2}$ та перевіряємо N:d?

$$T(n) = \frac{N}{2} - 1 = \Theta(N)$$

$$n = \log_2 N = T(n) = \Theta(2^n)$$

2. Уточнення Фібоначі.

Лема: $N=a\cdot b\Rightarrow \min\{a,\,b\}\leqslant \sqrt{N}\leqslant \max\{a,\,b\}\Rightarrow$ Перебираємо $d\leqslant \sqrt{N}\Rightarrow T(n)==\Theta(\sqrt{N})\bigg(T(n)=\Theta(2^{n/2})\bigg)$

3. 1974: Алгоритм Лемана $T(N) = \Theta(\sqrt{N})$ 1975: Алгоритм Шенкса $T(N) = \Theta\sqrt[4]{N}$

Нотація Ленстри

 $L_N[\alpha,\ C]=e^{(C+o(1))(\ln(N))^{\alpha}(\ln(\ln(n)))^{1-\alpha}},$ де C>0 , $0\leqslant \alpha\leqslant 1$

Якщо $\alpha = 0 \Rightarrow$ поліноміальна.

Якщо $\alpha = 0 \Rightarrow$ експоненційна.

Якщо $\alpha_1 < \alpha_2 \Rightarrow L_N[\alpha_1, \ C_1] = o(L_N[\alpha_2, \ C_2])$

1981: Метод квадратичного сита $T(N) = L_N \left[\frac{1}{2}, \ 1 \right]$. Доведена оцінка.

1991-93: Метод сита числового поля $T(N) = L_N \left[\frac{1}{3}, \left(\frac{64}{9} \right)^3 \right]$

3.1 Коректність алгоритмів

Алгоритм коректний:

- 1. Завершує роботу за скінченний час (завершуваність).
- 2. Результат роботи = розв'язок поствленої задачі.

Методи доведення коректності:

- 1. Інваріант алгоритму: певна величина / функція / об'єкт / твердження, які:
 - (а) Перед початком роботи він є коректним.
 - (b) Якщо перед довільним кроком ϵ істинним \Rightarrow після виконання також ϵ істинним.
 - (с) Після завершення алгоритму істинність інваріанту показує розв'язок задач.
 - = інваріант циклу.
- 2. Напівінваріант алгоритму функції, які монотонно спадають під час роботи алгоритму.

Приклади:

- 1. Сортування вставками.
- 2. Алгоритм Евкліда.

$$d = \gcd(a, b), a \geqslant b$$

$$\forall i: d = \gcd(r_{i-1}, r_i)$$

$$f(i) = r_{i+1}$$

- 3. (a) Поки n > 3 виконувати:
 - (b) Якщо n : 2, то $n = \frac{n}{2} + 1$
 - (c) інакше n = n + 1

$$f(n) = n - (-1)^n$$
 - монотонно спадає

- (a) Поки n > 1 виконувати:
- (b) Якщо n:2, то $n = \frac{n}{2}$
- (c) інакше n = 3n + 1

3.2 Складність у найгіршому випадку

Алгоритм A, який за входом x обчислює y = A(x).

Нехай $C_A^T(x)$ - часові витрати, $C_A^S(x)$ - витрати за пам'ятю.

Визначимо певну метрику ||x|| (розмір входу) і шукаємо оцінки виду $C_A^*(x) \leqslant f_*(||x||)$ $x_n = \{x : ||x|| = n\}$

Складність A у найгіршому випадку $T_A(n) = \max_{x \in X_n} C_A^T(x)$

Зауваження:

- 1. $C_A^T =$ к-ть певних операцій $C_A^S =$ к-ть значень, які зберігаються $\left. \begin{array}{c} \\ \end{array} \right\}$ цілочисельні.
- 2. Не враховуємо накладні витрати.
- 3. C_A^T залежить від витрат базових операцій.
- 4. $T_1(n) < T_2(n) \Rightarrow \forall x : C_1^T(x) < C_2^T(x)$
- 5. $A(x) = A_2(A_1(x)) \Rightarrow T(n) = T_1(n) + T_2(n)$
- 6. T'(n), T''(n) складність за різними операціями $\Rightarrow T(n) \leqslant T'(n) + T''(n)$

Приклади:

1. Сортування вставками:

Варіант 1: порівнюємо x_i з $x_{i-3}, x_{i-2}, ..., x_1$

Варіант 2: порівнюємо x_i з $x_1, x_2, ..., x_{i-1}$

Найгірший випадок:
$$x_1>x_2>...>x_n$$

$$T_1'(n)=T_1''(n)=1+2+...+n-1=\frac{n(n-1)}{2}$$

$$T_1(n)=n(n-1)$$

2. К-ть порівнянь =
$$\begin{cases} k, \ k < i \\ k - 1, \ k = i \end{cases}$$

Найгірший випадок: $x_1 < x_2 < ... < x_n$

K-ть обмінів: i-k

Найгірший випадок: $x_1 > x_2 > ... > x_n$ $T_2''(n) = \frac{n(n-1)}{2}$

$$T_2''(n) = \frac{n(n-1)}{2}$$

Сумарна к-ть операцій:
$$\begin{cases} i,\ k<1\\ i-1,\ k=i \end{cases}$$

Найгірший випадок: $x_1 > x_2 > ... > x_n$

Наигіріний випадок:
$$x_1 > x_2 > \dots > x_n$$

$$T_2(n) = \sum_{i=2}^n i = \frac{n(n+1)}{2} - 1 = \frac{n^2 + n - 2}{2}$$

$$\frac{T_1(n)}{T_2(n)} = \frac{n^2 - n}{\frac{n^2 + n - 2}{2}} \to 2$$

$$\frac{T_1(n)}{T_2(n)} = \frac{n^2 - n}{\frac{n^2 + n - 2}{2}} \to 2$$

3.3 Складність у середньому

Нехай на X_n задано розподіл $p_n(x)$.

Тоді складність алгоритму
$$A$$
 у середньому: $\overline{T}_A(n) = \sum_{x \in X_n} p_n(x) \cdot C_A^T(x)$

Зауваження:

- 1. $\overline{T}_A(n) \leqslant T_A(n)$
- 2. Якщо $\overline{T}'(n), \, \overline{T}''(n)$ складність за різними операціями, $\overline{T}(n) = \overline{T}'(n) + \overline{T}''(n)$
- 3. Складність у середньому не завжди адекватно відображає складність алгоритму.

Приклади:

1. Сортування вставками.

$$\overline{T}'(n)$$
 - сер. к-ть порівнянь.

Нехай
$$\xi_i$$
 - витрати на кроці $i, i = \overline{2,n} \Rightarrow \overline{T}'(n) = M(\xi_2 + \xi_3 + ... + \xi_n) = \sum_{i=2}^n M(\xi_i)$

Нехай $H_{u,v}$ - подія у перестановці $(x_1,...,x_n)$ серед елементів $x_1,...,x_{v-1}$ рівно u елементів меньші за x_v .

- 1. Обираємо $x_1, ..., x_v$ C_n^k варіантів.
- 2. x_v елемент номер u+1 за зростанням. $x_1,...,x_{v-1}$ представлень як завгодно (v-1)!

3.
$$x_{v+1},...,x_n - (n-v)! \Rightarrow \text{K-Tb } C_n^k(v-1)!(n-v)! = \frac{n!}{v} \Rightarrow Pr\{H_{u,v}\} = \frac{1}{v}$$

 $N_{k,i}$ - к-ть порівнянь, якщо x_i потрібно поставити на k.

$$\begin{split} N_{k,i} &= \begin{cases} i-k+1, \ k>1 \\ i-1, \ k=1 \end{cases} \\ M\xi_i &= \sum_{k=1}^i N_{k,i} \cdot Pr\{H_{k,i}\} = \frac{1}{i} \bigg((i-1) + \sum_{k=2}^i (i-k+1) \bigg) = \frac{1}{i} ((i-1)+1+2+3+\ldots+(i-1)) = \\ &= \frac{1}{i} \bigg(\frac{i(i+1)}{2} - 1 \bigg) = \frac{i}{2} + \frac{1}{2} - \frac{1}{i} \\ \overline{T}'(n) &= \sum_{i=2}^n \bigg(\frac{i}{2} + \frac{1}{2} - \frac{1}{i} \bigg) = \frac{1}{2} \bigg(\frac{n(n+1)}{2} - 1 \bigg) + \frac{n-1}{2} - \bigg(\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \bigg) \\ \text{Оскільки } H_n &= \ln(n) + \Theta(1), \text{ то } \overline{T}'(n) = \frac{n^2}{4} + \Theta(n) \end{split}$$

Нехай η_i - к-ть обмінів на i-тому кроці $\Rightarrow \xi_i < \eta_i \leqslant \xi_i + 1 \Rightarrow \overline{T}''(n) = \frac{n^2}{4} + \Theta(n)$

4.1 Нижні границі складності та оптимальні алгоритми

f(n) - нижня границя складності для алгоритмів класу \mathfrak{A} , якщо $\forall A \in \mathfrak{A} \colon T_A(n) \geqslant f(n)$ Приклади:

1. Пошук min/max елементу у довільному масиві.

$$T(n) \geqslant n-1$$

Якщо треба min & max, то

$$T(n) \geqslant \left\lceil \frac{2n}{2} \right\rceil - 2$$

2. Піднесення до степеня множенням.

$$a \to a^m$$

Початок: а

Середина $a^{m_1}, a^{m_2}, ..., a^{m_t}$

 $\max\{a^{m_1},...,a^{m_t}\}$ не більше ніж подвоється.

Кінець:
$$a^m \Rightarrow$$
 к-ть кроків $\geqslant \left\lceil \log_2 m \right\rceil$

3. Сортування за рахунок порівнянь та обмінів.

Може бути реалізовано за допомогою бінарного дерева.

Складність = тах висоти дерева

листів =
$$n! \Rightarrow 2^{T(n)} \geqslant n! \Rightarrow T(n) \geqslant \log_2 n! \geqslant n \log_2 n - 2n$$

 $A\in\mathfrak{A}$ - оптимальний за складністю, якщо $T_A(n)$ - нижня границя складності $\forall A'\in\mathfrak{A}$

f(n) - асимптотична нижня границя для \mathfrak{A} , якщо $\forall A \in \mathfrak{A} : T_A(n) = \Omega(f(n))$

Асимптотично оптимальний за складністю алгоритм. Це такий алгоритм з класу $\mathfrak A$ складність якого ϵ асимптотичною нижньою границею для всіх інших алгоритмів.

4.2 Метод грубої сили

Прямий підхід до розв'язування задач зазвичай застосованийна на безпосередньому формулюванні задачі, її об'єктів та концепцій.

У комбінаторних задачах - метод вичерпного перебору.

Зауваження:

- 1. Застосовний до дуже широкого спектру задач.
- 2. Для багатьох задач дає цілком раціональні розв'язки.
- 3. Вартість розробки більш ефективного алгоритму може бути завелика, якщо задач небагато, а грубою силою вони ров'язуються за прийнятний час.
- 4. Навіть якщо М.Г.С(метод грубої сили) дає неефективний алгоритм у загальному випадку, він може бути ефективним для невеликих задач.

5. Може виступати еталоном складністі.

Приклади:

- 1. Пошук тіп елементу у масиві.
- 2. Додавання у стовпчик цілком раціонально.

Множення у стовпчки $\Theta(n^2)$

Але для $n \leq 512$ бітів краще МГС (множення у стовичик).

3. Задача комівояжера.

 $\mathfrak E$ граф, шукаємо послідовніть вершин $V_0,V_1,...,V_{n-1}$ $V_0=V-n.$ (V_{n-1},V_n) - ребра.

Лобовий метод n!

Фіксуємо першу вершину - (n-1)!

Фіксуємо напрямок обходу - $\frac{(n-1)!}{2}$

4.3 Алгоритм Карацуби

Метод декомпозиції (поділяй і володарюй).

X, Y - Z_n цифрові числа. (основа B)

$$X \cdot Y$$
 у стовичик: $T_1(2n) = 4n^2 + \Theta(n)$

$$X = X_1 \cdot B^n + X_0, Y = Y_1 \cdot B^n + Y_0$$

$$X \cdot Y = (X_1 \cdot B^n + X_0) \cdot (Y_1 \cdot B^n + Y_0) = X_1 Y_1 \cdot B^{2n} + (X_1 Y_0 + X_0 Y_1) B^n + X_0 Y_0$$

$$T_2(2n) = 4T_1(n) + \Theta(n) = 4n^2 + \Theta(n)$$

$$(X_1 + X_0)(Y_1 + Y_0) = X_0Y_0 + X_1Y_1 + (X_1Y_0 + X_0Y_1)$$

$$X \cdot Y = X_1 Y_1 B^{2n} + ((X_1 + X_0)(Y_1 + Y_0) - X_0 Y_0 - X_1 Y_1) B^n + X_0 Y_0$$

$$T_3(2n) = 3T_1(n) + \Theta(n) = 3n^2 + \Theta(n)$$

$$T_k(n) = \begin{cases} \Theta(1), & n = 1\\ 3T\left(\frac{n}{2}\right) + \Theta(n), & n > 1 \end{cases} \Rightarrow T_k = \Theta\left(n^{\log_2 3}\right)$$

Зауваження.

$$T_k(n) = T_k\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T_k\left(\left\lceil \frac{n}{2} \right\rceil\right) + T_k\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) + \Theta(n)$$

5.1 Метод декомпозиції

- 1. Вхідна задача розбивається на підзадачі, розмір яких у рази меньший.
- 2. Підзадачі розв'язуються рекурсивно, для маленьких підзадач можна використати інший алгоритм.
- 3. Розв'язок вхідної задачі збирається з розв'язків підзадач (за необхідності).

$$\begin{cases} \varphi(n), n \leq n_0 \\ a \cdot T\left(\frac{n}{b} + f(n)\right), n > n_0 \end{cases}$$

 n_0 - розмір атомарних задач

 $\varphi(n)$ - складность розв'язку атомарних задач

Неатомарні задачі розбиваються на a підзадач розміру $\frac{n}{b}$

f(n) - складність збірки.

Приклади:

1. Бінарний пошук.

Вхід: відсортований масив A.

Вихід: Номер a у A або помилка.

$$T(n) = \begin{cases} \Theta(1), n = 1\\ T\left(\frac{n}{2}\right) + \Theta(1), n > 1 \end{cases}$$

2. Пошук тах підмасиву.

Вхід: довільний масив A.

Вихід: $i_{i,j}:A[i]+...A[j] \to \max$

Груба сила: C_n^2 підзадач, $T(n) = \Theta(n^2)$

Декомпозиція:

 $\max A[i, j] = \max[i, k] + \max A[k+1, j]; i = 1...k; j = k+1...n$

Складність: $\Theta(n)$

 $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

5.2 Розв'язання рекурентних співвідношень методом підстановки

- 1. Метод підстановки.
 - інтуїтивно припускаємо який розв'язок і доводимо, що розв'язок саме такий.

Приклади:

1.
$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n, T(1) = 1$$
Припустимо: $T(n) = O(n\log_2 n) \Rightarrow \exists c > 0. \ T(n) \leqslant cn\log_2 n$

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \leqslant 2c\left\lfloor \frac{n}{2} \right\rfloor \log\left\lfloor \frac{n}{2} \right\rfloor + n \leqslant 2c\frac{n}{2}(\log_2 n - 1) + n = cn\log_2 n + n(1-c) \leqslant en \log_2 n.$$
 При $en c \geqslant 1$
Але $T(1) = 1, \ n\log_2 n = 0 \Rightarrow n_0 = 2$

$$T(2) = 4 \leqslant c2\log_2 n$$

$$T(3) = 5 \leqslant c3\log_2 n \Rightarrow c \geqslant 2$$
2. $T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$

$$T(n) = O(n) \Rightarrow \exists c > 0: \ T(n) \leqslant cn$$

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \leqslant c\left(\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil\right) + 1 \leqslant cn + 1$$

$$T(n) \leqslant cn - d, \ d > 0 \Rightarrow T(n) \leqslant cn + 1 - 2d \leqslant cn - d, \ \text{для } d \geqslant 1$$
3. $T(n) = 2T(\sqrt{n}) + \log_2 n$

3.
$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

Заміна $m = \log_2 n$, $S(m) = T(2^m)$
 $T(2^m) = 2T(2^{m/2}) + m$
 $S(m) = 2S\left(\frac{m}{2}\right) + m$
 $S(m) = O(m\log_2 m)$
 $T(n) = S(\log_2 n) = O(\log_2 n \cdot \log_2(\log_2 n))$

5.3 Оцінка дерева рекурсії

Приклади:

(див. перший малюнок дерева в лекції №05-5)

1.
$$T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n) = 3T\left(\frac{n}{2}\right) + cn$$

Рівень $k: 3^k$ задач.

Складність $\frac{cn}{2^k}$

Ост. рівень:
$$n^{\log_2 3}$$
 задач складності $T(1) = \Theta(1) \Rightarrow T(n) = \sum_{k=0}^{n-1} 3^k \cdot \frac{cn}{2^k} + \Theta(n^{\log_2 3}) =$

$$= \left| t = \log_2 n \right| = \frac{cn(\frac{3}{2})^t - 1}{\frac{3}{2} - 1} + \Theta(n^{\log_2 3}) = \left| \frac{3^{\log_2 n}}{2^{\log_2 n}} = \frac{n^{\log_2 3}}{n} \right| = 2cn \frac{n^{\log_2 3}}{n} - 2cn + \Theta(n^{\log_2 3}) =$$

$$= \Theta(n^{\log_2 3})$$

(див. другий малюнок дерева в лекції №05-5)

2.
$$T(n)=3T\left(\frac{n}{2}\right)+\Theta(n^2)=3T\left(\frac{n}{2}\right)+cn^2$$
 ("поганий "Карацуба)

Рівень $k: 3^k$ задач.

Складність $\frac{cn^2}{4^k}$

Ост. рівень:
$$n^{\log_2 3}$$
 задач складності $T(1) = \Theta(1) \Rightarrow T(n) = \sum_{k=0}^{n-1} 3^k \cdot \frac{cn^2}{4^k} + \Theta(n^{\log_2 3}) < \infty$

$$< cn^2 \sum_{k=0}^{\infty} \left(\frac{3}{4}\right)^k + \Theta(n^{\log_2 3}) = 4cn^2 + \Theta(n^{\log_2 3}) = O(n^2)$$

Але: $T(n) \geqslant cn^2 \Rightarrow T(n) = \Theta(n^2)$

(див. третій малюнок дерева в лекції №05-5)

3.
$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \Theta(n)$$

Кожен рівень:

Складність: $\leq cn$

 \max висота = $\log_{3/2} n$

Tomy $T(n) \leqslant c n \log_{3/2} n$

$$T(n) = O(n\log_2 n)$$

6.1 Основна теорема методу декомпозиції

Нехай
$$T(n)=egin{cases} \Theta(1),n\leqslant n_0\\ aT\Big(rac{n}{b}\Big)+f(n),n>n_0 \end{cases}$$
 $a\geqslant,\,b>1,\,f(n)\geqslant 0,\,rac{n}{b}$ - ціле число.

- 1. Якщо $\exists \varepsilon > 0 : f(n) = O(n^{\log_b n \varepsilon})$, то $T(n) = \Theta(n^{\log_b a})$
- 2. Якщо $f(n) = \Theta(n^{\log_b a})$, то $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Якщо $\exists \varepsilon > 0: f(n) = \Omega(n^{\log_b a + \varepsilon})$

$$\exists 0 < c < 1: \ af\left(\frac{n}{b}\right) \leqslant cf(n) \Rightarrow T(n) = \Theta(f(n))$$
 - Умова регулярності.

Приклади:

- 1. Алгоритм Карацуби. $T(n)=3T\left(\frac{n}{2}\right)+\Theta(n)$ $a=3,\ b=2,\ f(n)=n,\ n^{\log_b a}=n^{\log_2 3}\approx n^{0.58}$ $\varepsilon=0.1,\ n=O(n^{0.580-\varepsilon})$ \Rightarrow 1й випадок: $T(n)=\Theta(n^{\log_2 3})$
- 2. Бінарний пошук. $T(n)=T\left(\frac{n}{2}\right)$ $a=1,\ b=2,\ f(n)=n^0=1,\ n^{\log_b a}=n^{\log_2 1}=n^0$ \Rightarrow 2й випадок: $T(n)=\Theta(n^0\log n)=\Theta(\log n)$
- 3. Пошук максимального підмасиву. $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ $a=2,\ b=2,\ f(n)=n,\ n^{\log_b a}=n^{\log_2 2}=n$ \Rightarrow 2й випадок: $T(n)=\Theta(n\log n)$
- 4. $T(n)=3T\left(\frac{n}{4}\right)+n\log_2 n$ $a=3,\ b=4,\ f(n)=n\log_2 n,\ n^{\log_b a}=n^{\log_4 3}\approx n^{0.79}$ $\forall 0<\varepsilon<0.2:\ f(n)=\Omega(n^{0.79+\varepsilon})$ $3f\left(\frac{n}{4}\right)=3\frac{n}{4}\log_2\frac{n}{4}\leqslant \frac{3n}{4}\log_2 n$ для $c=\frac{3}{4}$ \Rightarrow 3й випадок: $T(n)=\Theta(n\log_2 n)$

5.
$$T(n) = 2T\left(\frac{n}{2}\right) + n\log_2 n$$

 $a = 2, b = 2, f(n) = n\log_2 n, n^{\log_b a} = n^1$
 $f(n) = \Omega(n)$
Але $\forall \varepsilon > 0$: $f(n) = o(n^{1+\varepsilon})$
 \Rightarrow теорема не застосовна.

6.2 Доведення основної теореми

Доведення основної теореми: $n = b^t$, $n_0 = 1$

(див. малюнок дерева в лекції №06-1)

t+1 рівень $t = \log_b n$

k-й рівень a^k підзадач.

Складність підзадачі
$$f\left(\frac{n}{b^k}\right)$$
 або $\Theta(1)$

Складність останнього рівня $a^t\Theta(1) = a^{\log_b n}\Theta(1) = (b^{\log_b a})^{\log_b n}\Theta(1)$

$$\Theta(1) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{k=0}^{t-1} a^k f\left(\frac{n}{b^k}\right)$$
. Позначимо $W(n) = \sum_{k=0}^{t-1} a^k f\left(\frac{n}{b^k}\right)$

$$\begin{split} &1. \ \, f(n) = O(n^{\log_b a - \varepsilon}) \\ &\Rightarrow W(n) = O\left(\sum_{k=0}^{t-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a - \varepsilon}\right) \Rightarrow \\ &\Rightarrow n^{\log_b a - \varepsilon} \sum_{k=0}^{t-1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^k = n^{\log_b a - \varepsilon} \sum_{k=0}^{t-1} (b^\varepsilon)^k = n^{\log_b a - \varepsilon} \Theta(b^{\varepsilon t}) = \Theta(n^{\log_b a - \varepsilon} n^\varepsilon) = \Theta(n^{\log_b a}) \Rightarrow \\ &\Rightarrow W(n) = O(n^{\log_b a}) \\ &T(n) = \Theta + O = \Theta(n^{\log_b a}) \end{split}$$

2.
$$f(n) = \Theta(n^{\log_b a})$$

$$\Rightarrow W(n) = O\left(\sum_{k=0}^{t-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a}\right) \Rightarrow$$

$$\Rightarrow n^{\log_b a} \sum_{k=0}^{t-1} \left(\frac{a}{b^{\log_b a}}\right)^k = n^{\log_b a} \cdot t \Rightarrow$$

$$W(n) = \Theta(n^{\log_b a} \cdot \log n)$$

$$T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log n) = \Theta(n^{\log_b a} \log n)$$
3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$

$$W(n) \geqslant f(n) \Rightarrow W(n) = \Omega(f(n))$$

$$a^k f\left(\frac{n}{b^k}\right) \leqslant c^k f(n), c < 1$$

$$W(n) \leqslant f(n) \sum_{k=0}^{t-1} c^k = f(n) \cdot \Theta(1) \Rightarrow W(n) = O(f(n)) \Rightarrow W(n) = \Theta(f(n))$$

$$T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$$

Доведення основної теореми: довільне n

1.
$$T(n) = aT\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)$$

2. $T(n) = aT\left(\left\lceil \frac{n}{b} \right\rceil\right) + f(n)$

$$x \geqslant \lfloor x \rfloor > x + 1$$
$$x \leqslant \lceil x \rceil < x + 1$$

Нехай n_k - розмір задачі на рівні k.

(1)
$$n_k = \begin{cases} n, k = 0 \\ \left\lfloor \frac{n_{k-1}}{b} \right\rfloor, k \geqslant 1 \end{cases} \Rightarrow n_k \leqslant \frac{n}{b^k}$$

Якщо
$$t = \lfloor \log_b n \rfloor$$
, то $n_t \leqslant \frac{n}{b^{\lfloor \log_b n \rfloor}} < \frac{n}{b^{\log_b n - 1}} = \frac{n}{n/b} = b$

 $\Rightarrow t+1$ - рівень у дереві рекурсії.

Складність останнього рівня $a^{\log const} \leqslant a^t \Theta(1) = a^{\lfloor \log_b n \rfloor} \Theta(1) \leqslant a^{\log const} \Rightarrow \Theta(n^{\log a})$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{k=0}^{t-1} a^k f(n_k), t = \lfloor \log_b n \rfloor$$

(2)
$$n_k = \begin{cases} n, k = 0 \\ \left\lceil \frac{n_{k-1}}{b} \right\rceil, k \leqslant 1 \end{cases}$$

$$n_1 = \left\lceil \frac{n}{b} \right\rceil \leqslant \frac{n_0}{b} + 1$$

$$n_2 = \left\lceil \frac{n_1}{b} \right\rceil \leqslant \frac{n}{b} + 1 + \frac{1}{b}$$

$$n_k \leqslant \frac{n}{b^k} + 1 + \frac{1}{b} + \dots + \frac{1}{b^k} < \frac{n}{b^k} + \frac{1}{1 - \frac{1}{b}} = \frac{n}{b^k} + \frac{b}{b - 1}$$

Для
$$t = \lfloor \log_b n \rfloor$$

Для
$$t = \lfloor \log_b n \rfloor$$

$$n_t < \frac{n}{b^k} + \frac{b}{b-1} < const$$

Зауваження та доповнення

1. Якщо рекурента виду
$$T(n)\leqslant ... \Rightarrow T(n)=O(...)$$
 $T(n)\geqslant ... \Rightarrow T(n)=\Omega(...)$

2. Спрощений вигляд основної теореми:

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^d) \Rightarrow \begin{cases} \Theta(n^d), d > \log_b a \\ \Theta(n^d \log n), d = \log_b a \\ \Theta(n^{\log_b a}), d < \log_b a \end{cases}$$

3. З умови регулярності випливає, що $f(n) = \Omega(...)$ Дадаткові випадки:

(a)
$$f(n) = \Theta(n^{\log_b a} \log^m n)$$
 (для $m > -1$) $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{m+1} n)$
(b) $f(n) = \Theta\left(\frac{n^{\log_b a}}{\log n}\right) \Rightarrow T(n) = \Theta(n^{\log_b a} \log(\log n))$
(c) $f(n) = \Theta\left(\frac{n^{\log_b a}}{\log^m n}\right)$ (для $m > 1$) $\Rightarrow T(n) = \Theta(n^{\log_b a})$

- 4. Існують узагальнення основної теореми:
 - (а) теорема Аккра-Баззі

$$T(n) = \sum_{i} a_{i} T\left(\frac{a}{b_{i}} + b_{i}(n)\right) + f(n)$$

7.1 Форми представлення поліномів

Поліноми:

1. Канонічне представлення: $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_i x + a_0, \ a_i \in \mathbb{F}(R), \ a_n \neq 0 \Rightarrow deg(p) = n$ $a_n = 1$: унітарний (нормований) поліном.

 $p(x) \leftrightarrow (a_0, a_i, ..., a_{n-1}, a_n)$

Операції:

- (a) Додавання: (n+1) додавання коеф. $=\Theta(n)$
- (b) Множення полінома на скаляр: $\alpha \cdot p(x) \leftrightarrow (\alpha a_0, \alpha a_1, ..., \alpha a_n) \Rightarrow$ $\Rightarrow (n+1)$ множення $= \Theta(n)$
- (c) Множення двох поліномів: $p(x) \cdot q(x)$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_i x + a_0$, $q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_i x + b_0 \Rightarrow p(x) \cdot q(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n} x^{2n}$ $C_k = \sum_{i=0}^k a_i b_{x-i} \leqslant k+1$ множення.

Загалом буде $\Theta(n^2)$ множень

- (d) Обчислення значення у точці. Схема Горнера $\Rightarrow n$ множень $= \Theta(n)$
- 2. Представлення поліному через корені:

$$p(x) = \beta(x - z_1)(x - z_2)...(x - z_n)$$

$$p(x) \leftrightarrow (\beta_1(z_1, z_2, ..., z_n))$$

Операції:

- (а) Додавання ?
- (b) Множення на скаляр: $\alpha \cdot p(x) \leftrightarrow (\alpha\beta, (z_1, ..., z_n)) \Rightarrow 1$ множення.
- (c) Множення поліномів: $p(x) = \beta_1(x z_1)...(x z_n), q(x) = \beta_2(x t_1)...(x z_n)$ $p(x) \cdot q(x) = \beta_1\beta_2(x z_1)...(x z_n) \cdot (x t_1)...(x t_n) \Rightarrow 1$ множення + об'єднання мультимножин коренів.
- (d) Обчислення значення у точці: $p(x_0) = \beta(x_0 z_1)...(x_0 z_n) \Rightarrow n$ множень.

Проблема: не знайдено ефект. алгоритмів точного знаходження коренів поліному.

Перехід до канонічної форми:

$$(x-z_1) \\ (x-z_1)(x-z_2) = x^2 + (-z_1-z_2)x + z_1z_2 \\ (x-z_1)(x-z_2)(x-z_3) \\ (x-z_1)(x-z_2)...(x-z_n) \\ (x-z_1)(x-z_2)...(x-z_n) \\ (x-z_1)(x-z_2)...(x-z_n) \\ \Rightarrow 1+2+...+n = \frac{n(n+1)}{2} \text{ множень} = \Theta(n^2)$$

$$-z_1=a_0, \ 1=a_1 \\ z_1z_2=a_0, \ -z_1-z_2=a_1, \ 1=a_2 \Rightarrow +1 \text{ множення}. \\ \Rightarrow +2 \text{ множення}. \\ \Rightarrow +(n+1) \text{ множення}. \\ \Rightarrow n \text{ множень}.$$

7.2 Інтерполяційна формула Лагранжа

3. Представлення поліному через значення у точках.

Наслідок з основної теореми алгебри: поліном степеня n однозначно відновлюється за значенням у n+1 різних точках.

$$p(x) \leftrightarrow \{(x_i, y_i)\}, y_i = p(x_i), i = \overline{0, m}, m \geqslant n$$

Перехід від канонічного до даного: (m+1) разів схема Горнера $\Rightarrow \Theta(mn)$

Операції:

- (a) Додавання: m+1 додавань $(y_i + y_i')$
- (b) Множення на скаляр: m+1 множень $\alpha \cdot y_i$
- (c) Множення двох поліномів: m+1 множень $(y_i \cdot y_i')$

Але:

- (a) Поліноми задаються на однакових $\{x_i\}$
- (b) $m \geqslant 2n$
- 4. Обчислення значення поліному в точці ?
- 5. Перехід до канонічного представлення ?

Інтерполяційна формула Лагранжа:

$$\{(x_i,y_i)\}, i=\overline{0,m} \\ p(x) = y_0 \frac{(x-x_1)(x-x_2)...(x-x_m)}{(x_0-x_1)(x_0-x_2)...(x_0-x_m)} + y_1 \frac{(x-x_0)(x-x_2)...(x-x_m)}{(x_1-x_0)(x_1-x_2)...(x_1-x_m)} + y_2 \frac{(x-x_0)(x-x_1)(x-x_3)...(x-x_m)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)...(x_2-x_m)} + ... + y_m \frac{(x-x_0)(x-x_1)...(x-x_{m-1})}{(x_m-x_0)(x_m-x_1)...(x_m-x_{m-1})}$$
 Перехід до канонічної форми:

- 1. Обчислення $\{\lambda_k\}$, $\lambda=\frac{y_k}{(x_k-x_0)(x_k-x_1)...(x_k-x_m)}$ (немає x_k-x_k) \Rightarrow m множень на один коеф. $\Rightarrow m(m+1)$ множень усього.
- 2. Обчислення у канонічній формі $\{\lambda_k(k)\}: \lambda_k(x-x_0)(x-x_1)...(x-x_m) \Rightarrow \frac{m(m+1)}{2}$ множень на один поліном. Усього (m+1) поліном $\Rightarrow \Theta(m^3)$

3.
$$p(x) = l_0 + l_1(x) + ... + l_m(x)$$

Значення поліному у точці:

$$p(x) = \lambda_0(x - x_1)(x - x_2)...(x - x_m) + \lambda_1(x - x_0)(x - x_2)...(x - x_m) + ... + \lambda_m(x - x_0)...(x - x_{m-1})$$

- 1. $\{\lambda_k\}$ передобчислення $\Rightarrow \Theta(m^2)$ операцій, $\Theta(m)$ пам'яті.
- 2. Підстановка значення: m множень у кожному доданку $\Rightarrow m(m+1)$ множень загалом $= \Theta(m^2)$

Додавання нової точки у опис поліному:

- (a) Обчислення значення p()
- (b) Переобчислення усіх $\{\lambda_k\}$

7.3 Інтерполяційна формула Ньютона

$$p(x) \to \{(x_i,y_i)\}$$

$$p(x) = d_0 + d_1(x-x_0) + d_2(x-x_0)(x-x_1) + ... + d_m(x-x_0)(x-x_1)...(x-x_{m-1})$$
 Пояснення: $d_0 = y_0, \ d_1(x-x_0) = y_1 - y_0, \ ...$
$$d_k = d_k(x_0,x_1,...,x_k) \text{ - пронормовані } \Delta^k \text{ від } x_0,x_1,...$$

$$d_k = \sum_{t=0}^k \frac{y_t}{\prod\limits_{i \neq t}^k (x_t - x_i)}$$

$$d_0 = y_0$$

$$d_1 = \frac{y_0}{(x_0 - x_1)} + \frac{y_1}{(x_1 - x_0)}$$

$$d_2 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)} + \frac{y_1}{(x_1 - x_0)(x_1 - x_2)} + \frac{y_2}{(x_2 - x_0)(x_2 - x_1)}$$

1. Обчислення коеф. $\{d_k\}$

Ідея: якщо зберігати усі доданки ($\Theta(m)$ пам'яті), то d_k обчислюється за k множень (множення доданків на нові коеф.) +k множень (обчислення нового доданку) \Rightarrow 2k множень. \Rightarrow разом буде 2(1+2+...+m)=m(m+1) операцій.

2. Перехід до канонічної форми:

$$p(x)=d_0+d_1(x-x_0)+d_2(x-x_0)(x-x_1)+...+d_m(x-x_0)(x-x_{m-1})$$
 $d_0=0$ - 0 операцій $d_1(x-x_0)$ - 1 операція $d_2(x-x_0)(x-x_1)$ - 2 операції $d_3(x-x_0)(x-x_1)(x-x_2)$ - 2 операції $x(x-x_0)(x-x_0)(x-x_1)$ - 2 операції $x(x-x_0)(x-x_0)(x-x_0)$ - 3 операції $x(x-x_0)(x-x_0)$ - 4 операції $x(x-x_0)(x-x_0)$ - 5 операції $x(x-x_0)(x-x_0)$ - 6 операції $x(x-x_0)(x-x_0)$ - 7 операцій множення.

3. Обчислення поліному в точці:

$$p(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_m(x - x_0)(x - x_1) \dots (x - x_{m-1}) =$$

$$= (\dots(((d_m(x - x_{m-1}) + d_{m-1})(x - x_{m-2}) + d_{m-2})(x - x_{m-3}) + d_{m-3}) \dots + d_1)(x - x_0) + d_0$$

$$\Rightarrow \text{ m множень}$$