# Problem Set 1

#### D. Zack Garza

## November 9, 2019

### **Contents**

| 1 | Prob | blem 6 |  |  |  |  |   |  |  |      |   |  |  |  |  |      |  |  |      |  | 1 |
|---|------|--------|--|--|--|--|---|--|--|------|---|--|--|--|--|------|--|--|------|--|---|
|   | 1.1  | Part 1 |  |  |  |  | _ |  |  | <br> | _ |  |  |  |  | <br> |  |  | <br> |  | 1 |

### 1 Problem 6

#### 1.1 Part 1

Let  $M = S^2$  as a smooth manifold, and consider a vector field on M,

$$X: M \to TM$$

We want to show that there is a point  $p \in M$  such that X(p) = 0.

Every vector field on a compact manifold without boundary is complete, and since  $S^2$  is compact with  $\partial S^2 = \emptyset$ , X is necessarily a complete vector field.

Thus every integral curve of X exists for all time, yielding a well-defined flow

$$\phi: M \times \mathbb{R} \to M$$

and thus a one-parameter family

$$\phi_t: M \to M \in \text{Diff}(M, M).$$

In particular,  $\phi_0 = \mathrm{id}_M$ , and  $\phi_1 \in \mathrm{Diff}(M, M)$ . Moreover  $\phi_0$  is homotopic to  $\phi_1$  via the homotopy

$$H: M \times I \to M$$
  
 $(p,t) \mapsto \phi_t(p).$ 

We can now apply the Lefschetz fixed-point theorem to  $\phi_0$  and  $\phi_1$ . For an arbitrary map  $f: M \to M$ , we have

$$\Lambda(f) = \sum \operatorname{Tr}$$