RECEIVED CENTRAL FAX CENTER

MAR 3 0 2007

Amendments to the Claims:

- 1. (Currently amended) A method of detection in a multiple-input, multiple-output wireless communication system, comprising the steps of:
- (a) receiving a signal representing a set of P symbols, one symbol transmitted from each of P antennas where P is a positive integer greater than 2:
- (b) jointly estimating a subset of P_1 symbols of said set of P symbols where P_1 is a positive integer;
- (c) after step (b), jointly estimating a subset of P_2 symbols of said set of P symbols where P_2 is a positive integer and wherein said subset of P_1 symbols and said subset of P_2 symbols are members of a partition of said set of P symbols and $P_1 + P_2$ is greater than 2 and wherein $P_1 = P_2 = P/2$ when there are 2 antennas.
- 2. (Cancelled)
- 3. (Original) The method of claim 1, further comprising:
- (a) after step (c) of claim 1, for each m in the set $\{3, ..., M\}$, jointly estimating a subset of P_m symbols of said set of P symbols where P_m is a positive integer and wherein said subset of P_m symbols is a member of a partition of said set of P symbols and $P_1 + P_2 + ... + P_M = P$ where M is a positive integer.
- (Original) The method of claim 3, wherein:

(a)
$$P_1 = P_2 = \dots = P_M = P/M$$
.

- 5. (Original) The method of claim 1, wherein:
- (a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates \mathbf{F}_1 \mathbf{r} where \mathbf{r} is a Q-vector of said received signals of step (a) of claim 1 and \mathbf{F}_1 is a P_1 \mathbf{x} Q matrix for zero-forcing estimation;
- (b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates \mathbf{F}_2 ($\mathbf{r} \mathbf{G}_1$ s⁽¹⁾) where \mathbf{F}_2 is a $P_2 \times Q$ matrix for zero-forcing estimation, \mathbf{G}_1 is a $Q \times P_1$

matrix for zero-forcing feedback cancellation, and $s^{(1)}$ is the P_1 -vector estimation result of step (b) of claim 1.

6. (Original) The method of claim 1, wherein:

- (a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates \mathbf{F}_1 \mathbf{r} where \mathbf{r} is a Q-vector of said received signals of step (a) of claim 1 and \mathbf{F}_1 is a P_1 \mathbf{x} Q matrix for minimum mean square error estimation
- (b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates \mathbf{F}_2 ($\mathbf{r} \mathbf{G}_1$ s⁽¹⁾) where \mathbf{F}_2 is a $P_2 \times Q$ matrix for minimum mean square error estimation, \mathbf{G}_1 is a $Q \times P_1$ matrix for zero-forcing feedback cancellation, and s⁽¹⁾ is the P_1 -vector estimation result of step (b) of claim 1.

7. (Original) The method of claim 1, wherein:

- (a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates \mathbf{F}_1 \mathbf{r} where \mathbf{r} is a Q-vector of said received signals of step (a) of claim 1 and \mathbf{F}_1 is a P_1 \mathbf{x} Q matrix for minimum mean square error estimation
- (b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates \mathbf{F}_2 ($\mathbf{r} \mathbf{G}_1$ s⁽¹⁾) where \mathbf{F}_2 is a $P_2 \times Q$ matrix for minimum mean square error estimation including feedback error compensation, \mathbf{G}_1 is a $Q \times P_1$ matrix for zero-forcing feedback cancellation including feedback error compensation, and $\mathbf{s}^{(1)}$ is the P_1 -vector estimation result of step (b) of claim 1.

8. (Original) The method of claim 1, wherein:

(a) said subset of P_1 symbols of step (b) of claim 1 is determined according to signal-to-interference-plus-noise ratios of said P symbols prior to a decision in said estimating.

9. (Original) The method of claim 1, wherein:

(a) said subset of P_1 symbols of step (b) of claim 1 is determined according to projected signal-to-interference-plus-noise ratios of said P symbols after a decision in said estimating.

TI-34889, Page 3

and

- 10. (Original) The method of claim 1, wherein:
 - (a) said jointly estimating of step (b) of claim 1 includes a maximum likelihood decision;
 - (b) said jointly estimating of step (c) of claim 1 includes a maximum likelihood decision.
- 11. (Original) The method of claim 1, wherein:
 - (a) said jointly estimating of step (b) of claim 1 includes a soft decision; and
 - (b) said jointly estimating of step (c) of claim 1 includes a soft decision.
- 12. (Original) The method of claim 1, further comprising:
- (a) jointly re-estimating said subset of P_1 symbols using error compensation determined by said jointly estimating said subset of P_2 symbols of step (c) of claim 1.