FYS3150 Project 1

Your name(s) here (Dated: August 31, 2021)

https://github.com/nevlunghavn/fys3150

PROBLEM 1

Given the one-dimensional Poisson equation

$$-\frac{d^2u}{dx^2} = f(x) = 100e^{-10x},\tag{1}$$

we wish to show that

$$u(x) = 1 - (1 - e^{-10})x - e^{-10x}$$
(2)

is a solution. Differentiating 2 twice

$$\frac{du}{dx} = (1 - e^{-10})x - e^{-10x}$$

$$\Rightarrow -\frac{d^2u}{dx^2} = 100e^{-10x}$$

$$= f(x)$$

PROBLEM 2

- The C++ program problem2.cpp in the github repository is a basic program consisting of three functions: a function to generate and return the x array, a function to evaluate equation 2 at each x value and return the u(x) array and the main function which calls the former and writes the results to a file.
- The Python program problem2.py in the github repository is used to read the data file produced by the C++ program and plot the data using matplotlib. The resuling plot is shown in figure 1.

Next up is a table, created using the table and tabular environments. We refer to it by table I. Finally, we can list algorithms by using the algorithm environment, as demonstrated here for algorithm 1.

Number of points	Output
10	0.3086
100	0.2550

TABLE I. Write a descriptive caption here, explaining the content of your table.

FIG. 1. Equation 2 is evalated at a descrete set of points shown in red. The blue line has no significance and is only a visual aid.

Algorithm 1 Some algorithm

Some maths, e.g $f(x) = x^2$.

ightharpoonup Here's a comment

for i = 0, 1, ..., n - 1 do

Do something here

 $\mathbf{while} \ \mathrm{Some} \ \mathrm{condition} \ \mathbf{do}$

Do something more here

Maybe even some more math here, e.g $\int_0^1 f(x) dx$