```
Loading necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import scale
from sklearn.model_selection import train_test_split
#Loading the dataset
from google.colab import drive
drive.mount("/content/gdrive")
df = pd.read_csv(*/content/gdrive/My Drive/Sample
Data/Churn Modelling.csv", header = 0)
Mounted at /content/gdrive
df.head()
  RowNumber CustomerId Surname CreditScore Geography Gender Age
0
          1
                15634602 Hargrave
                                            619
                                                   France Female
                                                                    42
                                                    Spain Female
1
           2
                15647311
                              Hill
                                            608
                                                                    41
           3
2
                15619304
                              Onio
                                            502
                                                   France Female
                                                                     42
3
                15701354
                              Boni
                                            699
                                                   France
                                                           Female
                                                                     39
4
          5
                15737888 Mitchell
                                            850
                                                    Spain Female
                                                                    43
             Balance NumOfProducts HasCrCard IsActiveMember
   Tenure
θ
        2
                0.00
                                  1
                                             1
                                                             1
1
        1
            83807.86
                                  1
                                             Θ
                                                             1
2
        8 159660.80
                                  3
                                             1
3
        1
                0.00
                                  2
                                             Θ
                                                             Θ
4
        2
                                             1
                                                              1
           125510.82
                                  1
  EstimatedSalary Exited
Θ
         101348.88
                         1
1
         112542.58
                         θ
2
                         1
         113931.57
3
          93826.63
                         0
```

79084.10

df.shape

(10000, 14) df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
Θ	RowNumber	10000 non-null	int64
2	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4 5	Geography	10000 non-null	object
	Gender	10000 non-null	object
6 7 8	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
	es: float64(2), i ry usage: 1.1+ MB		(3)

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

df.describe(include='all')

	RowNumber	CustomerId	Surname	CreditScore	Geography
Gender count 10000	10000.00000	1.000000e+04	10000	10000.000000	10000
unique	NaN	NaN	2932	NaN	3
top Male	NaN	NaN	Smith	NaN	France
freq 5457	NaN	NaN	32	NaN	5014
mean NaN	5000.50000	1.569094e+07	NaN	650.528800	NaN
std NaN	2886.89568	7.193619e+04	NaN	96.653299	NaN
min NaN	1.00000	1.556570e+07	NaN	350.000000	NaN
25% NaN	2500.75000	1.562853e+07	NaN	584.000000	NaN

50%	5000.50000	1.569074e+07	Na	N 652.	000000	NaN
NaN 75%	7500.25000	1.575323e+07	Na	N 719	000000	NaN
NaN	7500.25000	1.3/33236+0/	140	/10.	000000	Non
max	10000.00000	1.581569e+07	Na	N 850.	000000	NaN
NaN			,,,,			
	Age	Tenure		Balance	NumO	fProducts
HasCrCa			-			
count 10000.0	10000.000000 0000	10000.000000	100	00.00000	100	90.000000
unique NaN	NaN	NaN		Nati	1	NaN
top	NaN	NaN		Nat	1	NaN
freq NaN	NaN	NaN		Nat	1	NaN
mean 0.70550	38.921800	5.012800	764	85.889288	1	1.530200
std	10.487806	2.892174	623	62397.405202		0.581654
0.45584 min	18.000000	0.000000		0.000000)	1.000000
0.00000 25%	32.000000	3.000000		0.000000)	1.000000
0.00000 50%	37.000000	5.000000	971	98.540000	1	1.000000
1.00000 75%	44.000000	7.000000	1276	44.240000)	2.000000
1.00000 max	92.000000	10.000000	2508	98.090000)	4.000000
1.00000						
	IsActiveMembe	r EstimatedSa	lary	Ex	cited	
count	10000.00000			10000.00		
unique	Na		NaN		NaN	
top	Na		NaN		NaN	
freq	Na O F1F16		NaN	0.70	NaN	
mean	0.51516				3700	
std min	0.49979				2769 10000	
25%	0.00000				0000	
50%	1.00000				00000	
75%	1.00000				00000	
max	1.00000				00000	
ma = df	.max()					
ma						

10000

15815690

RowNumber

CustomerId

Surname	Zuyeva
CreditScore	850
Geography	Spain
Gender	Male
Age	92
Tenure	10
Balance	250898.09
NumOfProducts	4
HasCrCard	1
IsActiveMember	1
EstimatedSalary	199992.48
Exited	1
dtype: object	

mi = df.min()
mi

RowNumber	1
CustomerId	15565701
Surname	Abazu
CreditScore	350
Geography	France
Gender	Female
Age	18
Tenure	θ
Balance	0.0
NumOfProducts	1
HasCrCard	θ
IsActiveMember	Θ
EstimatedSalary	11.58
Exited	θ

dtype: object

df.describe()

	RowNumber	CustomerId	CreditScore	Age
Tenure	. \			000 00 0-0
count	10000.00000	1.000000e+04	10000.000000	10000.000000
10000.	000000			
mean	5000.50000	1.569094e+07	650.528800	38.921800
5.0128	300			
std	2886.89568	7.193619e+04	96.653299	10.487806
2.8921	74			
min	1.00000	1.556570e+07	350.000000	18.000000
0.0000	000			
25%	2500.75000	1.562853e+07	584.000000	32.000000
3.0000	900			
50%	5000.50000	1.569074e+07	652.000000	37.000000
5.0000	900			
75%	7500.25000	1.575323e+07	718.000000	44.000000
7.0000	900			

10000.00000 1.581569e+07 850.000000 92.000000 max 10.000000

	Balance	NumOfProducts	HasCrCard	IsActiveMember	1
count	10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.000000	1.000000	0.00000	0.000000	
25%	0.000000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	
	EstimatedSalary	Exited			
count	10000.000000				
mean	100090.239881	0.203700			
std	57510.492818	0.402769			
min	11.580000	0.000000			
25%	51002.110000	0.00000			
50%	100193.915000	0.000000			
75%	149388.247500	0.000000			
max	199992.480000	1.000000			

#Measure of central tendency

#Mean

df.mean()/100

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber	50.005000
CustomerId	156909.405694
CreditScore	6.505288
Age	0.389218
Tenure	0.050128
Balance	764.858893
NumOfProducts	0.015302
HasCrCard	0.007055
IsActiveMember	0.005151
EstimatedSalary	1000.902399
Exited	0.002037
dtype: float64	

#Median

df.median()/100

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber	50.00500
CustomerId	156907.38000
CreditScore	6.52000
Age	0.37000
Tenure	0.05000
Balance	971.98540
NumOfProducts	0.01000
HasCrCard	0.01000
IsActiveMember	0.01000
EstimatedSalary	1001.93915
Exited	0.00000
44 63	

dtype: float64

Mode

df.mode()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	
Age 8	1	15565701	Smith	850.0	France	Male	
37.0	2	15565706	NaN	NaN	NaN	NaN	
NaN 2	3	15565714	NaN	NaN	NaN	NaN	
NaN 3	4	15565779	NaN	NaN	NaN	NaN	
NaN 4 NaN	5	15565796	NaN	NaN	NaN	NaN	

9995	9996	15815628	NaN	NaN	NaN	NaN	
NaN 9996	9997	15815645	NaN	NaN	NaN	NaN	
NaN 9997	9998	15815656	NaN	NaN	NaN	NaN	
NaN 9998	9999	15815660	NaN	NaN	NaN	NaN	
NaN 9999 NaN	10000	15815690	NaN	NaN	NaN	NaN	

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	١
0	2.0	0.0	1.0	1.0	1.0	
0 1 2	NaN	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	
+ + +					* * *	
9995	NaN	NaN	NaN	NaN	NaN	
9996	NaN	NaN	NaN	NaN	NaN	
9997	NaN	NaN	NaN	NaN	NaN	
9998	NaN	NaN	NaN	NaN	NaN	
9999	NaN	NaN	NaN	NaN	NaN	
	Estimat	edSalary	Exited			
Θ		24924.92	0.0			
		NaN	NaN			
2		NaN	NaN			
3		NaN	NaN			
1 2 3 4		NaN	NaN			
		27.5	2.12			
9995		NaN	NaN			
9996		NaN	NaN			
9997		NaN	NaN			

[10000 rows x 14 columns]

NaN

NaN

NaN

NaN

#Data Visualization

#Univariate Analysis Univariate analysis is the simplest form of analysis where we explore a single variable.

Count Plot

9998

9999

This gives a count of frequency plot in the form of a bar graph

```
sns.countplot(df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f16252859d0>

#Histogram

```
plt.figure(1,figsize=(20,8))
n=0
for x in
["CreditScore", "Age", "Tenure", "Balance", "NumOfProducts", "EstimatedSala
ry"]:
    n += 1
    plt.subplot(2,3, n)
    plt.subplots_adjust(hspace=0.5, wspace=0.5)
    plt.ylabel("frequency")
    sns.distplot(df[x])
    plt.title('Histogram of {}'.format(x))
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed

in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

For categorical values

sns.histplot(x='Age',data=df,hue=df['Tenure'],color='blue')
<matplotlib.axes. subplots.AxesSubplot at 0x7f1624b4f050>

#Distplot

sns.distplot(df["Age"],color='green')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f162322d1d0>

#Skewness of dataset

df.skew()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber	0.000000
CustomerId	0.001149
CreditScore	-0.071607
Age	1.011320
Tenure	0.010991
Balance	-0.141109
NumOfProducts	0.745568
HasCrCard	-0.901812
IsActiveMember	-0.060437
EstimatedSalary	0.002085
Exited	1.471611

dtype: float64

sns.distplot(df['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexibility) or 'histplot' (an

axes-level function for histograms).
warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f16230d8190>

#Boxplot
df.boxplot(column=['EstimatedSalary'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f162470a350>

#Bivariate Analysis Bivariate Analysis is used when we have to explore the relationship between 2 different variables

Barplot

sns.barplot(df["NumOfProducts"],df["Age"])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1623232210>

#Linear plot

sns.lineplot(df["Age"],df["NumOfProducts"], color='blue')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43:
FutureWarning: Pass the following variables as keyword args: x, y.
From version 0.12, the only valid positional argument will be 'data',
and passing other arguments without an explicit keyword will result in
an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1622eede10>

#Scatter Plot

sns.scatterplot(df['Age'], df['RowNumber'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1622e81c90>

#Point PLot
sns.pointplot(x='Age',y='Tenure',data=df)
<matplotlib.axes._subplots.AxesSubplot at 0x7f1622d9a150>

#Regplot

sns.regplot(df['Age'],df['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1622bb91d0>

#Multivariate analysis

sns.scatterplot(x=df['EstimatedSalary'],y=df['Age'],hue=df["Gender"])
<matplotlib.axes._subplots.AxesSubplot at 0x7f1620314990>

#Pairplot

sns.pairplot(data=df[["RowNumber", "Age", "Tenure", "Balance", "NumOfProdu
cts"]],kind="kde")

<seaborn.axisgrid.PairGrid at 0x7f16202bd7d0>

Handling missing values df.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False

```
EstimatedSalary False
Exited False
dtype: bool
The dataset provides doesn't hav
```

The dataset provides doesn't have any null values. Creating a custom dataset to show the missing value handling

```
cust_dataset = pd.DataFrame({
    "a": [1,2,3],
   "b": [4, None, None],
    "c": [5,6,None]
cust dataset
   a
        b
            C
  1 4.0 5.0
1 2 NaN 6.0
2
  3 NaN NaN
cust_dataset.isnull().any()
     False
а
b
     True
      True
c
dtype: bool
Fill the missing values using the mean
mean_values = cust_dataset.mean()
cust_dataset.fillna(mean_values, inplace=True)
cust_dataset
       b
  1 4.0 5.0
1 2 4.0 6.0
2 3 4.0 5.5
#Identifying outliers and replacing them
sns.boxplot(x=df['Age'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f162308ad90>
```



```
q1 = df['Age'].quantile(0.25)
q3 = df['Age'].quantile(0.75)
iqr = q3 - q1
iqr

12.0

df.loc[df['Age'] < q1 - 1.5*iqr, 'Age'] = q1
df.loc[df['Age'] > q3 + 1.5*iqr, 'Age'] = q3
sns.boxplot(x=df['Age'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f1625ae8b50>

Checking for categorical columns and perform encoding df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	1
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	Θ	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1

```
3
          93826.63
                          0
4
          79084.10
                          8
df["Geography"].unique()
array(['France', 'Spain', 'Germany'], dtype=object)
surnames = df["Surname"].unique()
surname encoding = {}
for i in range(len(surnames)):
  surname_encoding[surnames[i]] = i
len(surname_encoding)
2932
the categorial columns are gender and geography and surname encoding
df["Geography"].replace({"France":0, "Spain":1, "Germany":3},
inplace=True)
df["Gender"].replace({"Female":0, "Male":1}, inplace=True)
df["Surname"].replace(surname_encoding, inplace=True)
df.head()
   RowNumber CustomerId Surname CreditScore Geography Gender Age
0
           1
                 15634602
                                 0
                                             619
                                                           0
                                                                        42
                                             688
1
           2
                 15647311
                                  1
                                                           1
                                                                    Θ
                                                                        41
           3
2
                 15619304
                                  2
                                             502
                                                           Θ
                                                                        42
3
           4
                 15701354
                                 3
                                                           Θ
                                                                        39
                                             699
4
           5
                 15737888
                                 4
                                             850
                                                           1
                                                                        43
                       NumOfProducts HasCrCard IsActiveMember
             Balance
   Tenure
        2
Θ
                 0.00
                                    1
                                                                1
1
        1
            83807.86
                                    1
                                               0
                                                                1
2
        8
           159660.80
                                    3
                                                1
                                                                0
3
        1
                 0.00
                                    2
                                               0
                                                                Θ
4
        2
           125510.82
                                    1
                                               1
                                                                1
   EstimatedSalary Exited
Θ
         101348.88
                          1
1
         112542.58
                          Θ
2
         113931.57
                          1
3
          93826.63
                          0
4
          79084.10
```

```
Spliting the data into dependant and independant set
```

```
y = df['Exited']
X = df.drop(columns=['Exited'], axis=1)
X.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	0	619	Θ	Θ	42
1	2	15647311	1	608	1	Θ	41
2	3	15619304	2	502	Θ	Θ	42
3	4	15701354	3	699	θ	Θ	39
4	5	15737888	4	850	1	0	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	1
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	Θ	0	
4	2	125510.82	1	1	1	

```
EstimatedSalary
0 101348.88
1 112542.58
2 113931.57
3 93826.63
4 79084.10
```

Scaling independant variables

```
column_name = X.columns
```

```
[ 1.7315312 , -0.11935577, 1.1569636 , ..., 0.64609167,
       -1.03067011, -0.12523071],
      [ 1.73187761, -0.87055909, -0.47667543, ..., 0.64609167,
       -1.03067011, -1.07636976]])
X = pd.DataFrame(X, columns =column name)
X.head()
  RowNumber CustomerId Surname CreditScore Geography
Gender \
0 -1.731878 -0.783213 -1.224703
                                    -0.326221 -0.815465 -1.095988
1 -1.731531 -0.606534 -1.223367
                                    -0.440036 -0.000326 -1.095988
2 -1.731185
            -0.995885 -1.222032
                                    -1.536794 -0.815465 -1.095988
3 -1.730838 0.144767 -1.220696 0.501521 -0.815465 -1.095988
4 -1.730492 0.652659 -1.219360
                                     2.063884 -0.000326 -1.095988
              Tenure Balance NumOfProducts HasCrCard
       Age
IsActiveMember \
0 0.457039 -1.041760 -1.225848
                                   -0.911583 0.646092
0.970243
1 0.342361 -1.387538 0.117350
                                   -0.911583 -1.547768
0.970243
2 0.457039 1.032908 1.333053
                                   2.527057 0.646092
1.030670
3 0.113004 -1.387538 -1.225848
                                  0.807737 -1.547768
1.030670
4 0.571717 -1.041760 0.785728
                                   -0.911583 0.646092
0.970243
  EstimatedSalary
         0.021886
         0.216534
         0.240687
        -0.108918
        -0.365276
#Spliting data into training and testing datasets
x_train, x_test, y_train, y_test = train_test_split(X,y)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((7500, 13), (2500, 13), (7500,), (2500,))
```

Θ

1

2

3