Contextual Models: Transformers

Luciano Barbosa

Traditional Word Embedding

- Vocabulary built using the training set
- Words not present mapped to UNK

Subword Tokenization

- Mitigates the problem with out-of-vocabulary words
- Rare words are broken into substrings
- Frequent words are kept

```
"unfortunately" = "un" + "for" + "tun" + "ate" + "ly"

"anyplace" = "any" + "place"

"anyhow" = "any" + "how"

"anywhere" = "any" + "where"
```


Subword Tokenization

- Critical for languages with many variations in word structure
- Ex: Swahili (spoken in Kenya, Tanzania, and Uganda)

Subword Tokenization: Byte-pair **Encoding (BPE)**

- Goal: to represent the corpus with the least amount of tokens
- Algorithm:
- Start the vocabulary with all characters and the "end of word" symbol
- 2. Merge the most frequent tokens
- 3. Decrements the frequency of the two tokens
- Repeat until the desired vocabulary (e.g., pre-defined vocabulary 4. size)

BPE: Words in the Corpus

WORD	FREQUENCY	WORD	FREQUENCY
d e e p	3	b u i l d	1
learning	3	train	1
t h e	2	a n d	1
m o d e l s	2	deploy	1
F I o y d h u b	1	B u i l d	1
i s	1	m o d e l s	1
fastest	1	i n	1
w a y	1	cloud	1
t o	1	Train	1

BPE: Characters in the Corpus

NUMBER	TOKEN	FREQUENCY	NUMBER	TOKEN	FREQUENCY
1		24	15	g	3
2	е	16	16	m	3
3	d	12	17		3
4	I	11	18	b	2
5	n	10	19	h	2
6	i	9	20	F	1
7	а	8	21	Н	1
8	0	7	22	f	1
9	S	6	23	w	1
10	t	6	24	,	1
11	r	5	25	В	1
12	u	4	26	С	1
13	р	4	27	Т	1
14	у	3			

BPE: Merge

NUMBER	TOKEN	FREQUENCY	NUMBER	TOKEN	FREQUENCY
1		24	16	g	3
2	е	16 - 7 = 9	17	m	3
3	d	12 - 7 = 5	18		3
4	Ī	11	19	b	2
5	n	10	20	h	2
6	i	9	21	F	1
7	а	8	22	Н	1
8	0	7	23	f	1
9	de	7	24	w	1
10	s	6	25	í	1
11	t	6	26	В	1
12	r	5	27	С	1
13	u	4	28	Т	1
14	р	4			
15	у	3			

BPE

Wordpiece

- Similar ao BPE
- Algorithm:
- Start the vocabulary with all characters and the "end of word" symbol
- 2. Merge the tokens with the highest score
- 3. Decrements the frequency of the two tokens
- 4. Repeat until the desired vocabulary (e.g., pre-defined vocabulary size)

```
score = (freq\_of\_pair)/(freq\_of\_first\_element \times freq\_of\_second\_element)
```

high probability of they occur together than separated

Wordpiece

Word	Token(s)
surf	['surf']
surfing	['surf', '##ing']
surfboarding	['surf', '##board', '##ing']
surfboard	['surf', '##board']
snowboard	['snow', '##board']
snowboarding	['snow', '##board', '##ing']
snow	['snow']
snowing	['snow', '##ing']

Contextual Representations

Limitation of word embeddings: same representation for different meanings

Solution: learn contextual representations

Transformers: Architecture

- Encoder: builds a representation of the input (embeddings)
- Decoder: outputs probabilities based on the encoder's output and other inputs

source: https://huggingface.co/course/chapter1/4

Transformers: Encoder

source: https://huggingface.co/course/chapter1/5

cin.ufpe.br

Transformers: Encoder

source: https://huggingface.co/course/chapter1/5

Transformers: Encoder

source: https://huggingface.co/course/chapter1/5

Self-Attention

All words in the sentence have influence in the word representation

https://jalammar.github.io/illustrated-transformer/

Examples of Self-Attention

Gender-specific term

Layer: 5 \$ The The girl girl and and the the boy boy walked walked home home She She

Name

Occupation

cin.ufpe.br

She

He

Transformers: Decoder

source: https://huggingface.co/course/chapter1/6

cin.ufpe.br

Transformers: Decoder

source: https://huggingface.co/course/chapter1/4

cin.ufpe.br

Transformers: Decoder

source: https://huggingface.co/course/chapter1/6

BERT: Bidirectional Encoder Representations from Transformers

BERT: Two Steps

Pre-training: Masked Language Model

Use the output of the masked word's position to predict the masked word

Randomly mask 15% of tokens

Input

Img-Source: https://jalammar.github.io/illustrated-transformer/

Pre-training: Next-Sentence Prediction

Img-Source: https://jalammar.github.io/illustrated-transformer/

Pre-training

source: https://huggingface.co/course/chapter1/4

BERT: Details

Data: Wikipedia (2.5B words) + BookCorpus (800M words)

BERT-Base: 110M

BERT-Large: 340M

Img-Source: https://jalammar.github.io/illustrated-transformer/

cin.ufpe.br

Fine-tuning (Transfer Learning)

Sentence Pair Classification

Single Sentence Classification

Sequence Tagging

Question Answering

Sentence Classification: Sentiment Analysis

Img-Source: https://jalammar.github.io/illustrated-transformer/

Pair Classification: Article-Table Matching

Model	Table	News	acc.@k=1	5	10	100
D140-	(Title,Content)	(Title,Content)	.426	.574	.622	.831
BM25	(Title,Content,Table Content)	(Title,Content)	.372	.588	.703	.838
TF-IDF	(Title,Content,Table Content)	(Title,Content)	.453	.642	.730	.892
	(Title,Content)	(Title)	.250	.439	.507	.669
USE	(Title,Content)	(Content)	.237	.419	.520	.851
	(Title,Content)	(Title,Content)	.243	.466	.561	.838
D01/	(Title)	(Title)	.297	.507	.581	.824
Doc2Vec	(Title,Content)	(Title,Content)	.223	.378	.487	.737
BERTpublic	(Title,Content)	(Title)	.155	.291	.372	.574
NewsBERT	(Title,Content)	(Title,Content)	.458	.725	.779	.824

Model	Table	News	acc.@k=1	5	10	100
	(Title)	(Title)	.422	.602	.656	.719
NewsBERT	(Title)	(Title,Content)	.438	.677	.746	.8
Newsbert	(Title,Content)	(Title)	.176	.244	.313	.588
	(Title,Content)	(Title,Content)	.458	.725	.779	.824
	(Title)	(Title)	.545	.773	.833	.939
ser near	(Title)	(Title,Content)	.53	.818	.871	.955
NT-BERT	(Title,Content)	(Title)	.545	.795	.841	.932
	(Title,Content)	(Title,Content)	.553	.856	.879	.947
CAST PROPERTY AND ADDRESS.	(Title, Hypernyms, Content)	(Title)	.575	.811	.858	.961
NTH-BERT	(Title, Hypernyms, Content)	(Title, Hypernyms)	.543	.803	.858	.953
	(Title, Hypernyms, Content)	(Title, Hypernyms, Content)	.669	.898	.953	.976

Lees et al. Collocating News Articles with Structured Web Tables. International Workshop on News Recommendation and Intelligence, 2021

Generative Pretrained Transformer (GPT)

- Transformer decoder com 12 camadas
- 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers
- Byte-pair encoding com 40.000 merges
- Treinado no BooksCorpus: mais de 7.000 livros (sentenças longas)
- Demo: https://demo.allennlp.org/next-token-lm

GPT-2 vs BERT

https://jalammar.github.io/illustrated-gpt2/

GPT-2 Models

Model Dimensionality: 768

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

GPT-2

https://jalammar.github.io/illustrated-gpt2/

GPT-2: Masked Self-Attention

GPT-3

- 175 billion of parameters
- (100x > GPT-2)
- Corpus:
- 45TB
- Common Crawl, WebText2, Books1, Books2 e Wikipedia

96 layers

GPT-3 In-context Learning

The three settings we explore for in-context learning		Traditional fine-tuning (not used for GPT-3)					
Zero-	Fine-tuning The model predicts the answer given only a natural language discription of the task. No gradient updates are performed. Fine-tuning The model is trained via repeated gradient large corpus of example tasks.			Fine-tuning			
				model is trained via repeated gradient up e corpus of example tasks.	ent updates using a		
	Translate English to French:	task description		sea otter => loutre de mer	example #1		
	cheese =>	prompt		ψ			
				+			
One-	shot			peppermint => menthe poivrée	example #2		
n ad	dition to the task description, the model s	sees a single		Ψ.			
exam	ple of the task. No gradient updates are	performed.					
				. ↓			
	Translate English to French:	task description		***			
	sea otter => loutre de mer	example		-	annual dat		
	cheese =>	prompt		plush giraffe => girafe peluche	example #N		
				gradient update			
Few-	shot dition to the task description, the model s	ease a four		cheese =>	prompt		
	ples of the task. No gradient updates are						
	Translate English to French:	task description					
	sea otter => loutre de mer	examples					
	peppermint => menthe poivrée						
	plush girafe => girafe peluche						

Source: https://arxiv.org/pdf/2005.14165.pdf

ChatGPT (GPT-3.5)

- Supervised Fine Tuning (SFT) Model
- Fine-tuning the GPT-3 model on a large labeled dataset
- Inputs and prompts from users of the OpenAl API platform
- Manual labelers needed to create examples of categories not covered by OpenAl API users