Math 176/Econ 135 Mathematics of Finance Lecture 1

Professor Jeffrey Ludwig

- Jeff's background
 - MIT for undergraduate in aeronautics and astronautics
 - MIT for Masters and PhD in computer science
 - Career on Wall Street in quantitative trading
 - Credit Suisse, Proprietary Index Arbitrage Trader
 - PIMCO Portfolio Manager, Head of Equity Derivatives
 - Millennium Partners Hedge Fund, Portfolio Manager
 - Most recently Director of Jump Labs
 - R&D for Jump Trading, a high frequency trading (HFT) firm
 - Focus on long term collaborations with academia

Sailing

Rogue Waves

Rogue waves are an open water phenomenon, in which winds, currents, non-linear phenomena such as solitons, and other circumstances cause a wave to briefly form that is far larger than the "average" large occurring wave

Course Overview

- Course content
 - Financial Markets, Risk, Hedging and Arbitrage
 - Review of Probability Theory
 - Basic Options: Puts, Calls, and Put/Call Parity
 - Black–Scholes Option Pricing Theory
- Exams
 - Two exams during class
 - Final exam
- Course Grade:
 - 10% homework
 - 25% each exam
 - 40% final exam
- My office hours

OPTIONS PRICING THEORY

A MODEL FOR STOCK PRICES

HEDGING•ARBITRAGE•RISK•PDF•EFFICIENT MARKET

Outline for Today

- Hedging
 - Managing bets or investments to eradicate risk
- Arbitrage
 - Capturing profit without risk
- Expected Value for discrete random variables
 - When should I play the Powerball lottery?
- Fair Bet
 - Expected value is zero

Simple Sports Betting

- You're betting \$100 on the UCLA vs. USC football game
- UCLA fan offers you 3:1 odds on UCLA winning
- USC fan offers you 3:2 odds on USC winning
- Possible profits with a single bet, in dollars

	UCLA Wins	USC Wins
UCLA fan (3:1 odds)	-100	+300
USC fan (3:2 odds)	+150	-100

Is there a way to bet with both fans such that we are guaranteed to win?

- Total bet is \$100
 - Place \$x bet with UCLA fan
 - Place \$(100 x) with USC fan
- Summary of possible profits, in dollars

	UCLA Wins	USC Wins
UCLA fan (3:1 odds)	-x	+3 • x
USC fan (3:2 odds)	+3/2 • (100 − x)	-(100 - x)

Example of "Hedging"

Hedging: managing bets or investments to eradicate risk

If we don't want to lose money...

	UCLA Wins	USC Wins
UCLA fan (3:1 odds)	-x	+3 • x
USC fan (3:2 odds)	+3/2 • (100 − x)	-(100 - x)

• Set
$$Profit_{(UCLA\ wins)} > 0$$
 $-x + 3/2 \cdot (100 - x) > 0$ $-x + 150 - 3/2x > 0$ $150 - (5/2) \cdot x > 0$ $x < 60$
• Set $Profit_{(USC\ wins)} > 0$ $3x - (100 - x) > 0$ $3x - 100 + x > 0$ $4x - 100 > 0$ $x > 25$

 Choose 25 < x < 60 and profit is positive no matter what happens! (recall x is the amount we bet with UCLA fan)

"Arbitrage": profit without risk

 Let's define x* as the number of dollars bet with the UCLA fan to guarantee a profit p* no matter who wins the game

Profit_(UCLA wins) = Profit_(USC wins) = p*
$$150 - (5/2)x^* = 4x^* - 100$$

$$250 = (13/2)x^*$$

$$x^* = 500/13$$

$$x^* = $38.46$$

$$p^* = 4x^* - 100$$

$$p^* = 4(500/13) - 100$$

$$p^* = $53.85$$

Derivation of General Case

- Team A fan takes Team A and gives you O_A: 1 odds: you place \$x bet with Team A fan
- Team B fan takes Team B and gives you O_B: 1 odds: you place \$(n-x) bet with Team B fan
- Summary of possible profits, in dollars:

	Team A wins	Team B wins
Team A fan (O _A :1 odds)	-x	+O _A x
Team B fan (O _B :1 odds)	+O _B (n-x)	-(n-x)

- Profit_A = profit given Team A wins
- Profit_B = profit given Team B wins
- Choose x such that Profit_A > 0 and Profit_B > 0

	Team A wins	Team B wins
Team A fan (O _A :1 odds)	-x	+O _A x
Team B fan (O _B :1 odds)	+O _B (n-x)	-(n-x)

$$Profit_A > 0: -x + O_B (n-x) > 0$$
 $Profit_B > 0: O_A x - (n-x) > 0$ $-(1+O_B)x + O_B n > 0$ $(1+O_A)x - n > 0$ $x < O_B n/(1+O_B)$ $x > n / (1+O_A)$

$$n/(1 + O_A) < x < O_B n/(1 + O_B)$$

Back to previous example for UCLA vs. USC game:

$$O_{\Delta} = 3$$
 $O_{B} = 3/2$

$$100/(1+3) < x < 3/2(100)/(1+3/2)$$

 $25 < x < 60$

"Arbitrage": profit without risk

 A bet of x* with fan A guarantees a profit p* no matter who wins the game

$$Profit_{A} = Profit_{B}$$

$$-x^* + O_{B}(n - x^*) = O_{A}x^* - (n - x^*)$$

$$x *= n(1 + O_B) / (2 + O_A + O_B)$$

$$p * = n(O_AO_B - 1) / (2 + O_A + O_B)$$

• Suppose that X_d is a discrete random variable that takes on values $\{x_1, x_2, x_3, ..., x_n\}$ with probabilities $\{p_1, p_2, p_3, ..., p_n\}$

- Suppose that X_d is a discrete random variable that takes on values $\{x_1, x_2, x_3, ..., x_n\}$ with probabilities $\{p_1, p_2, p_3, ..., p_n\}$
- The probabilities p_i have to sum up to one when you are dealing with mutually exclusive events that encompass all possible outcomes

$$\sum_{i=1}^{n} p_i = 1$$

- Suppose that X_d is a discrete random variable that takes on values $\{x_1, x_2, x_3, ..., x_n\}$ with probabilities $\{p_1, p_2, p_3, ..., p_n\}$
- The probabilities p_i have to sum up to one when you are dealing with mutually exclusive events that encompass all possible outcomes

$$\sum_{i=1}^{n} p_i = 1$$

• The Expected Value of X_d is:

$$E(X_d) = \sum_{i=1}^n x_i \cdot p_i$$

- Suppose that X_d is a discrete random variable that takes on values $\{x_1, x_2, x_3, ..., x_n\}$ with probabilities $\{p_1, p_2, p_3, ..., p_n\}$
- The probabilities p_i have to sum up to one when you are dealing with mutually exclusive events that encompass all possible outcomes

$$\sum_{i=1}^{n} p_i = 1$$

• The Expected Value of X_d is:

$$E(X_d) = \sum_{i=1}^n x_i \cdot p_i$$

• For example, if X_d takes values of 1,2, and 4 with probabilities $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{1}{4}$, respectively, then we have

$$E(X_d) = (1 \cdot \frac{1}{4}) + (2 \cdot \frac{1}{2}) + (4 \cdot \frac{1}{4}) = 2\frac{1}{4}$$

Five white balls are drawn without replacement from a drum that holds 69 balls, each bearing a number between 1 and 69, where order does not matter. Then, a red Powerball is drawn from a drum holding 26 balls, each bearing a number between 1 and 26.

What is the probability of winning the jackpot?

Five white balls are drawn without replacement from a drum that holds 69 balls, each bearing a number between 1 and 69, where order does not matter. Then, a red Powerball is drawn from a drum holding 26 balls, each bearing a number between 1 and 26.

What is the probability of winning the jackpot?

Number of possible outcomes is:

$$\binom{69}{5}\binom{26}{1} = \frac{69 \times 68 \times 67 \times 66 \times 65}{5 \times 4 \times 3 \times 2 \times 1} \times \frac{26}{1} = 292201338$$

So odds of winning is:

$$\frac{1}{292201338}$$

Five white balls are drawn without replacement from a drum that holds 69 balls, each bearing a number between 1 and 69, where order does not matter. Then, a red Powerball is drawn from a drum holding 26 balls, each bearing a number between 1 and 26.

MATCHING COMBINATION	PRIZES	CURRENT ODDS (1 IN)	PREVIOUS ODDS (1 IN)
5 white balls and the Powerball The grand prize		292,201,338	175,223,510
5 white balls	\$1,000,000	11,688,054	5,153,633
4 white balls and the Powerba	\$50,000 (formerly \$10,000)	913,129	648,976
4 white balls	\$100	36,525	19,088
3 white balls and the Powerball\$100		14,494	12,245
3 white balls	\$7	580	360
2 white balls and the Powerba	II\$7	701	706
1 white balls and the Powerball\$4		92	111
The Powerball	\$4	38	55

\$758.7 million jackpot

[A. Horton, "How Powerball manipulated the odds to make another massive jackpot," Washington Post, 22 Aug. 2017. https://www.washingtonpost.com/news/wonk/wp/2017/08/22/how-powerball-manipulated-the-odds-to-make-another-massive-jackpot]

MATCHING COMBINATION	PRIZES	CURRENT ODDS (1 IN)	PREVIOUS ODDS (1 IN)
5 white balls and the Powerball The grand prize		292,201,338	175,223,510
5 white balls	\$1,000,000	11,688,054	5,153,633
4 white balls and the Powerball\$50,000 (formerly \$10,000)		913,129	648,976
4 white balls	\$100	36,525	19,088
3 white balls and the Powerball\$100		14,494	12,245
3 white balls	\$7	580	360
2 white balls and the Powerball\$7		701	706
1 white balls and the Powerball\$4		92	111
The Powerball	\$4	38	55

What is the expected payout for buying a \$2 ticket, with a \$758.7 million jackpot?

MATCHING COMBINATION	PRIZES	CURRENT ODDS (1 IN)	PREVIOUS ODDS (1 IN)
5 white balls and the Powerball The grand prize		292,201,338	175,223,510
5 white balls	\$1,000,000	11,688,054	5,153,633
4 white balls and the Powerba	\$50,000 (formerly \$10,000)	913,129	648,976
4 white balls	\$100	36,525	19,088
3 white balls and the Powerball\$100		14,494	12,245
3 white balls	\$7	580	360
2 white balls and the Powerba	II\$7	701	706
1 white balls and the Powerball\$4		92	111
The Powerball	\$4	38	55

What is the expected payout for buying a \$2 ticket, with a \$758.7 million jackpot?

$$\frac{\$758.7M}{292201338} + \frac{\$1M}{11688054} + \frac{\$50000}{913129} + \frac{\$100}{36525} + \frac{\$100}{14494} + \frac{\$7}{580} + \frac{\$7}{701} + \frac{\$4}{92} + \frac{\$4}{38}$$

$$2.597 + 0.086 + 0.055 + 0.003 + 0.007 + 0.012 + 0.010 + 0.044 + 0.105$$

MATCHING COMBINATION	PRIZES	CURRENT ODDS (1 IN)	PREVIOUS ODDS (1 IN)
5 white balls and the Powerball The grand prize		292,201,338	175,223,510
5 white balls	\$1,000,000	11,688,054	5,153,633
4 white balls and the Powerball\$50,000 (formerly \$10,000)		913,129	648,976
4 white balls	\$100	36,525	19,088
3 white balls and the Powerball\$100		14,494	12,245
3 white balls	\$7	580	360
2 white balls and the Powerba	all\$7	701	706
1 white balls and the Powerba	II\$4	92	111
The Powerball	\$4	38	55

(At \$500 million jackpot, expected payout is \$2.03)

How would things look under the old rules?

- A bet is fair when the expected value of the winnings is zero
- Let's revisit the UCLA / USC football game:
 - UCLA fan gives us 3:1 odds
 - What is the implied probability of UCLA winning, based on the UCLA fan's view, assuming a fair bet?
 - How does this compare to the USC fan's view?

• $P_{UCLA}(UCLA)$ is the probability that UCLA will win implicitly believed by the UCLA fan when he gives us odds. Our winnings W in a single bet with the UCLA fan satisfy:

$$W = \begin{cases} -100, & \text{with probability} = P_{UCLA}(UCLA) \\ +300, & \text{with probability} = (1 - P_{UCLA}(UCLA)) \end{cases}$$

• $P_{UCLA}(UCLA)$ is the probability that UCLA will win implicitly believed by the UCLA fan when he gives us odds. Our winnings W in a single bet with the UCLA fan satisfy:

$$W = \begin{cases} -100, & \text{with probability} = P_{UCLA}(UCLA) \\ +300, & \text{with probability} = (1 - P_{UCLA}(UCLA)) \end{cases}$$

• Assuming a fair bet, the expected value of our winnings E(W) must be zero:

$$E(W) = (-100) \cdot P_{UCLA}(UCLA) + 300 \cdot (1 - P_{UCLA}(UCLA)) = 0$$

$$P_{UCLA}(UCLA) = \frac{3}{4} = 75\%$$

• $P_{UCLA}(UCLA)$ is the probability that UCLA will win implicitly believed by the UCLA fan when he gives us odds. Our winnings W in a single bet with the UCLA fan satisfy:

$$W = \begin{cases} -100, & \text{with probability} = P_{UCLA}(UCLA) \\ +300, & \text{with probability} = (1 - P_{UCLA}(UCLA)) \end{cases}$$

• Assuming a fair bet, the expected value of our winnings E(W) must be zero:

$$E(W) = (-100) \cdot P_{UCLA}(UCLA) + 300 \cdot (1 - P_{UCLA}(UCLA)) = 0$$

$$P_{UCLA}(UCLA) = \frac{3}{4} = 75\%$$

• In the general case of Fan A offering a fair bet with odds of O_A : 1 we have

$$P_A(A) = \frac{O_A}{1 + O_A}$$

• $P_{UCLA}(UCLA)$ is the probability that UCLA will win implicitly believed by the UCLA fan when he gives us odds. Our winnings W in a single bet with the UCLA fan satisfy:

$$W = \begin{cases} -100, & \text{with probability} = P_{UCLA}(UCLA) \\ +300, & \text{with probability} = (1 - P_{UCLA}(UCLA)) \end{cases}$$

• Assuming a fair bet, the expected value of our winnings E(W) must be zero:

$$E(W) = (-100) \cdot P_{UCLA}(UCLA) + 300 \cdot (1 - P_{UCLA}(UCLA)) = 0$$

$$P_{UCLA}(UCLA) = \frac{3}{4} = 75\%$$

• In the general case of Fan A offering a fair bet with odds of O_A : 1 we have

$$P_A(A) = \frac{O_A}{1 + O_A}$$

• What does the USC fan implicitly believe to be the probability that USC will win?

$$P_{USC}(USC) = \frac{\frac{3}{2}}{1 + \frac{3}{2}} = \frac{3}{5} = 60\%$$

Summary

- Hedging
 - Managing bets or investments to eradicate risk
 - Choose x such that $n/(1 + O_A) < x < O_B n/(1+O_B)$ to hedge
- Arbitrage
 - Capturing profit without risk
 - Choose $x = x^*$ and earn an arbitrage profit p^*
- Expected Value for discrete random variables
 - When should I play the Powerball lottery?
 - Play when Expected Value of winning exceeds cost of ticket
- Fair Bet
 - The person offering the bet should be willing to take either side of the bet: the expected value of our winnings is zero