PRÁCTICA 3: INSTRUMENTOS ÓPTICOS

1. MICROSCOPIO

Dos lentes convergentes separadas una distancia mayor que la suma de las focales.

Aumento lateral microscopio: $\Gamma'_{mic} = \beta'_{ob} \times \Gamma'_{oc}$

aumento lateral objetivo:
$$\beta'_{ob} = \frac{-t}{f'_{ob}}$$
 donde $t = d - (f'_{ob} + f'_{oc})$

aumento lateral ocular :
$$\Gamma'_{oc} = \frac{-S_p}{f_{oc}}$$

· Realización experimental:

Analizar variación aumento lateral con la distancia entre objetivo y ocular

Objetivo: Lente 75 mm de focal Ocular: Lente 100 mm de focal

medimos aumento entre 300 y 500

$$\beta' \circ \beta J = \frac{y'}{y} \quad ; \quad Sp = 250 \text{ mm}$$

PARTE 1	EXP	TEOR		TEORICO	EXP
d	y'/y	beta'_ob	Gamma'_oc	Gamma_Mic	Gamma_Mic
300	1,4	-1,6666667	-2,5	4,16666667	3,5
350	2,3	-2,3333333	-2,5	5,83333333	5,75
400	2,7	-3	-2,5	7,5	6,75
450	3,5	-3,6666667	-2,5	9,16666667	8,75
500	4,2	-4,3333333	-2,5	10,8333333	10,5

$$\Gamma_{\rm OC} = \frac{-250}{100} = 2.5$$

$$y = 0'034 \times - 6'55$$

$$\Gamma' = m \cdot d + b$$

$$donde \ m = \frac{-S_p}{f'_{ob} \ f'_{oc}} \ y \ b = S_p \left(\frac{1}{f'_{ob}} + \frac{1}{f'_{oc}}\right)$$

$$M = 0' 034 = \frac{-Sp}{f'_{0b}f'_{0c}} \implies Sp = -255 mm$$

 $f'_{0b}f'_{0c} = 15 mm$
 $f'_{0c} = 100 mm$

2. Anteojos

Anteojo astronómico

dos Lentes Convergentes

OB gran focal (imagen real invertida)

DC (imagen en infinito, invertida y mayor tamaño)

Aumento visual teórico : $1' = -\frac{f'ob}{f'oc}$

Aumento visual experimental : $\Gamma' = \frac{\varphi_{PE}}{\varphi_{PS}}$

Trazado de rayos:

diámetro PE = diámetro OB

A) ASTRON			
diam_PE	diam_PS	Gamma_ exp	Gamma_teo
36,42	10	-3,642	-4

aumento negativo: imagen invertida

aumento mayor que 1 : imagen más grande que el objeto

2. Anteojo terrestre

Imagen derecha

· 1 lente

Objetivo, ocular y sistema inversor: CONVERGENTES

Aumento visual teórico :
$$\Gamma' = -\frac{f_{ob}'}{f_{oc}'} \beta \quad ; \quad \beta' = \frac{a'}{a}$$

beta'		Gamma_teo	diam_PS	diam_PE	Gamma_exp
	-1	4	9,37	36,42	3,886873

nos aicen que
$$\beta' = -1 \Rightarrow \alpha = -a'$$

$$\frac{1}{\alpha'} - \frac{1}{\alpha} = \frac{1}{f'}$$
 (como $f' = 100$ mm $\Rightarrow \alpha = 200$ mm)

2. DOS lentes

Aumento visual teórico:
$$\Gamma' = \frac{f_{ob}'}{f_{oc}'} \frac{f_2'}{f_1'}$$

la distancia d entre las lentes es arbitraria (los rayos son paralelos dentro)

SI son dos Lentes Convergentes

Gamma_teo	diam_PS	diam_PE	Gamma_exp
4	8,48	36,42	4,29481132

Trazado de rayos anteojo terrestre:

Figura 1.32:Anteojo terrestre

3. Anteojo de Galileo

OB convergente

OC divergente

Pupila de salida virtual entre OB y DC como DC tiene f' negativa el aumento es positivo : imagen derecha