Double Integrals in Polar Coordinates

$$R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$$

(b)
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

$$r^2 = x^2 + y^2$$
 $x = r\cos\theta$ $y = r\sin\theta$

The regions in Figure 1 are special cases of a polar rectangle

$$R = \{(r, \theta) \mid a \le r \le b, \alpha \le \theta \le \beta\}$$

2 Change to Polar Coordinates in a Double Integral If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_R f(x, y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$

EXAMPLE 1 Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

SOLUTION The region R can be described as

$$R = \{(x, y) \mid y \ge 0, \ 1 \le x^2 + y^2 \le 4\}$$

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by $1 \le r \le 2$, $0 \le \theta \le \pi$. Therefore, by Formula 2,

$$\iint_{R} (3x + 4y^{2}) dA = \int_{0}^{\pi} \int_{1}^{2} (3r \cos \theta + 4r^{2} \sin^{2} \theta) r dr d\theta$$

$$= \int_{0}^{\pi} \int_{1}^{2} (3r^{2} \cos \theta + 4r^{3} \sin^{2} \theta) dr d\theta$$

$$= \int_{0}^{\pi} \left[r^{3} \cos \theta + r^{4} \sin^{2} \theta \right]_{r=1}^{r=2} d\theta = \int_{0}^{\pi} (7 \cos \theta + 15 \sin^{2} \theta) d\theta$$

$$= \int_{0}^{\pi} \left[7 \cos \theta + \frac{15}{2} (1 - \cos 2\theta) \right] d\theta$$

$$= 7 \sin \theta + \frac{15\theta}{2} - \frac{15}{4} \sin 2\theta \Big|_{0}^{\pi} = \frac{15\pi}{2}$$

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

SOLUTION If we put z=0 in the equation of the paraboloid, we get $x^2+y^2=1$. This means that the plane intersects the paraboloid in the circle $x^2+y^2=1$, so the solid lies under the paraboloid and above the circular disk D given by $x^2+y^2 \le 1$ [see Figures 6 and 1(a)]. In polar coordinates D is given by $0 \le r \le 1$, $0 \le \theta \le 2\pi$. Since $1-x^2-y^2=1-r^2$, the volume is

$$V = \iint_{D} (1 - x^{2} - y^{2}) dA = \int_{0}^{2\pi} \int_{0}^{1} (1 - r^{2}) r dr d\theta$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} (r - r^{3}) dr = 2\pi \left[\frac{r^{2}}{2} - \frac{r^{4}}{4} \right]_{0}^{1} = \frac{\pi}{2}$$