BOARD QUESTION PAPER: MARCH 2018

Note:

- i. All questions are compulsory.
- ii. Answers of both the sections should be written in same answer book.
- iii. Draw well labelled diagrams and write balanced equations wherever necessary.
- iv. Figures to the right indicate full marks.
- v. Use of logarithmic table is allowed.
- vi. Every new question must be started on a new page.

				SECTI	ON – I					
Q.1.		et and questio		st appropriate	answer	from the given alternatives for each	[7]			
	i.	The pr	rocess in which th	e value of $\Delta U = 0$) is					
		(A)	adiabatic		(B)	isothermal				
		(C)	isobaric		(D)	isochoric				
	ii.	An ionic crystal lattice has $\frac{r^+}{r^-}$ radius ratio of 0.320, its coordination number is								
		(A)	3		(B)	4				
		(C)	6		(D)	8				
	iii.	In hydrogen-oxygen fuel cell, the carbon rods are immersed in hot aqueous solution of								
		(A)	K Cl		(B)	КОН				
		` /	H_2SO_4		(D)					
	iv.	The cl	hemical formula o	f willemite is						
			ZnS		(B)	$ZnCO_3$				
		(C)	ZnO		(D)	Zn_2SiO_4				
	v.	The oxidation state of nitrogen in dinitrogen trioxide is								
		(A)	+1		(B)	+2				
		(C)	+3		(D)	+4				
	vi.	Which of the following 0.1 M aqueous solutions will exert highest osmotic pressure?								
		(A)	$Al_2(SO_4)_3$		(B)	Na_2SO_4				
		(C)	$MgCl_2$		(D)	KCl				
	vii.	The half-life period of zero order reaction $A \rightarrow$ product is given by								
		(A)	$\frac{\left[A\right]_{0}}{k}$		(B)	$\frac{0.693}{k}$				
		(C)	$\frac{[A]_0}{2k}$		(D)	$\frac{2[A]_0}{k}$				

Q.2. Answer any SIX of the following:

[12]

- i. Derive the relation between elevation of boiling point and molar mass of solute.
- ii. State third law of thermodynamics. Give 'two' uses.
- iii. Draw a neat and labelled diagram of lead storage battery.
- iv. Ionic solids are hard and brittle. Explain.

- v. A certain reaction occurs in the following steps:
 - $a. \qquad Cl_{(g)} + O_{3(g)} \rightarrow ClO_{(g)} + O_{2(g)}$
 - b. $ClO_{(g)} + O_{(g)} \rightarrow Cl_{(g)} + O_{2(g)}$
 - 1. What is the molecularity of each of the elementary steps?
 - 2. Identify the reaction intermediate and write the chemical equation for overall reaction.
- vi. Define: a. Semipermeable membrane
 - b. Reference electrode
- vii. What is the action of chlorine on:
 - a. CS₂
 - b. Excess NH₃
- viii. Write the chemical equations involved in van Arkel method for refining zirconium metal.

Q.3. Answer any THREE of the following:

[9]

- i. Write balanced chemical equations for the following:
 - a. Phosphorus reacts with magnesium.
 - b. Flowers of sulphur boiled with calcium hydroxide.
 - c. Action of ozone on hydrogen peroxide.
- ii. The density of iron crystal is 8.54 gram cm⁻³. If the edge length of unit cell is 2.8 Å and atomic mass is 56 gram mol⁻¹, find the number of atoms in the unit cell.
 - (Given: Avogadro's number = 6.022×10^{23} , 1 Å = 1×10^{-8} cm)
- iii. How many faradays of electricity are required to produce 13 gram of aluminium from aluminium chloride solution?
 - (Given: Molar mass of Al = $27.0 \text{ gram mol}^{-1}$)
- iv. Calculate the internal energy at 298 K for the formation of one mole of ammonia, if the enthalpy change at constant pressure is 42.0 kJ mol⁻¹.
 - (Given : $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

[7]

Q.4. Answer any ONE of the following:

- i. Define:
 - a. Enthalpy of atomization
- b. Enthalpy of vaporization
- ii. Draw the structure of IF₇. Write its geometry and the type of hybridization.
- iii. a. State Henry's law.
 - b. 22.22 gram of urea was dissolved in 300 grams of water. Calculate the number of moles of urea and molality of the urea solution.
 - (Given: Molar mass of urea = 60 gram mol^{-1})

OR

- i. What is the action of carbon on the following metal oxides:
 - a. Fe₂O₃ in blast furnace
 - b. ZnO in vertical retort furnace
- ii. Write the molecular and structural formulae of:
 - a. Thiosulphuric acid
 - b. Dithionous acid
- iii. The reaction $A + B \rightarrow \text{products}$ is first order in each of the reactants.
 - a. How does the rate of reaction change if the concentration of A is increased by factor 3?
 - b. What is the change in the rate of reaction if the concentration of A is halved and concentration of B is doubled?

BOARD QUESTION PAPER: MARCH 2018

1	N	oto	•
	N	ote	i

- i. All questions are compulsory.
- ii. Answers of both the sections should be written in same answer book.
- iii. Draw well labelled diagrams and write balanced equations wherever necessary.
- Figures to the right indicate full marks. iv.

v. vi.	Every new question must be started on a new page.													
SECTION – II														
Q.5.		ct an questi		the	most	appropriate			the	given	altern	atives	for each	[7]
	i.	A po	lymer us	ed in	paints	is								
		(A)	nomex				(B)	thiok	ol					
		(C)	saran				(D)	glypta	al					
	ii.	i. The number of primary and secondary hydroxyl groups in ribose are respective								ectively.				
		(A)	1, 3				(B)	2, 3						
		(C)	3, 1				(D)	3, 2						
	iii.	The ligand diethylenetriamine is												
		(A)	monode	entate			(B)	biden	tate					
		(C)	tridenta	te			(D)	tetrad	lentat	e				
	iv.	Prop (A) (C)	propan- allyl ald	·1-ol	on with	h diborane in	presence o (B) (D)	f alkali propa propa	n-2-c	ol	i peroxi	de give	es	
	V.	Baey (A) (B) (C) (D)	alkaline alkaline	d pota e pota e pota	assium ssium (ssium)	dichromate dichromate permanganate permanganat								
	vi.	A + i	2Na — Dry ether 2-Brom	$\rightarrow 2,$ $10-2-n$ $10-2,2$ $10-3-n$	2,5,5-7 nethyll -dimet nethyll	hylpropane outane	exane + 2N	aBr						
	vii.	An a (A) (C)	ntifertilit novestr veronal	ol	g is	·	(B) (D)	histar equar						

Q.6. Answer any SIX of the following:

[12]

- i. Write balanced chemical equations for the conversion of CrO_4^{2-} to $Cr_2O_7^{2-}$ in acidic medium and $Cr_2O_7^{2-}$ to CrO_4^{2-} in basic medium.
- ii. Explain the geometry of $\left[\text{Co(NH}_3)_6\right]^{3+}$ on the basis of hybridisation. (Z of Co = 27)
- iii. Why ethanol has higher boiling point than ethane?
- iv. Write only reactions for the preparation of benzophenone from benzonitrile.
- v. What is the action of p-toluenesulphonylchloride on ethylamine and diethylamine?
- vi. What are amino acids? Write the correct reaction for formation of peptide bond between amino acids.
- vii. Define:
 - a. Antiseptics

- b. Antioxidants
- viii. Explain only reaction mechanism for alkaline hydrolysis of tert-butylbromide.

Q.7. Answer any THREE of the following:

[9]

- i. Complete and rewrite the balanced chemical equations:
 - a. Chlorobenzene $\xrightarrow{\text{NaCN} + \text{CuCN} \atop 473 \text{K, pressure}}$?
 - b. Isobutyraldehyde $\xrightarrow{50\% \text{KOH}}$?
 - c. Butanone + 2,4-dinitrophenyl hydrazine $\xrightarrow{H^+}$?
- ii. Prepare carbolic acid from benzene sulphonic acid.
 - Write a chemical equation for the action of neutral ferric chloride on phenol.
- iii. Explain the preparation and uses of nylon-2-nylon-6.
- iv. How glucose is prepared from cane sugar?
 Write the formula of the complex: copper (II) hexacyanoferrate (II).

Q.8. Answer any ONE of the following:

[7]

- i. What is lanthanide contraction?
- ii. Explain the cause of lanthanide contraction.
- iii. Draw the structures of chloroxylenol and adenine.
- iv. How are ethylamine and ethylmethylamine distinguished by using nitrous acid?

OR

- i. What is the action of the following reagents on ethanoic acid?
 - a. $LiAlH_4 / H_3O^+$
 - b. PCl₃, heat
 - c. P_2O_5 , heat
- ii. Identify 'A' and 'B' in the following reaction and rewrite the complete reaction:

$$CH_3 - CH_2 - Br + AgCN \xrightarrow{\quad \Delta \quad} A \xrightarrow{\quad N_a/C_2H_5OH \quad} B$$

iii. Explain Hoffmann bromamide degradation reaction.