

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
17. Januar 2002 (17.01.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/04487 A2

(51) Internationale Patentklassifikation?: C07K 14/00

(72) Erfinder; und

(21) Internationales Aktenzeichen: PCT/EP01/07973

(75) Erfinder/Anmelder (nur für US): FORSSMANN,
Wolf-Georg [DE/DE]; Blücherstrasse 5, 30175 Hannover (DE). CONEJO-GARCIA, Jose-Ramon [ES/DE];
Feodor-Lynen-Strasse 31, 30625 Hannover (DE). ADERMANN, Knut [DE/DE]; Feodor-Lynen-Strasse 31, 30625
Hannover (DE).

(22) Internationales Anmeldedatum:
11. Juli 2001 (11.07.2001)

(74) Anwälte: MEYERS, Hans-Wilhelm usw.; Postfach 10 22
41, 50462 Köln (DE).

(25) Einreichungssprache: Deutsch

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,

(30) Angaben zur Priorität:
100 33 505.5 11. Juli 2000 (11.07.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme
von US): IPF PHARMACEUTICALS GMBH [DE/DE];
Feodor-Lynen-Strasse 31, 30625 Hannover (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING AND USING NOVEL HUMAN DEFENSINS AS BIOLOGICALLY ACTIVE PROTEINS FOR TREATING INFECTIONS AND OTHER ILLNESSES

(54) Bezeichnung: VERFAHREN ZUR GEWINNUNG UND ANWENDUNG NEUER HUMANER DEFENSINE ALS BIOLOGISCH AKTIVE EIWEISSTOFFE ZUR BEHANDLUNG VON INFektIONEN UND ANDEREN ERKRANKUNGEN

(57) Abstract: The invention relates to novel peptides taken from human blood, hBD-5 (human beta-defensin 5), hBD-6, hBD-7, hBD-8, hBD-10, hBD-11, hBD-12, hBD-13, hBD-14, hBD-15, hBD-16, hBD-17, hBD-18, hBD-19, hBD-20, hBD-22, hBD-23, hBD-24, hBD-25, hBD-26, hBD-27, hBD-28, hBD-29, hBD-30, hBD-31 and hBD-32 and the derivatives thereof, the structure of the same having been elucidated so that they can be used therapeutically, diagnostically and commercially as medicaments. Said peptides can be produced by means of biotechnological, recombinant methods and chemical synthesis, and can be proteolytically derived from corresponding precursor proteins.

[Fortsetzung auf der nächsten Seite]

WO 02/04487 A2

BEST AVAILABLE COPY

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) **Zusammenfassung:** Die Erfindung betrifft die neuen Peptide aus menschlichem Blut, hBD-5 (humanes beta-Defensin-5), hBD-6, hBD-7, hBD-8, hBD-10, hBD-11, hBD-12, hBD-13, hBD-14, hBD-15, hBD-16, hBD-17, hBD-18, hBD-19, hBD-20, hBD-22, hBD-23, hBD-24, hBD-25, hBD-26, hBD-27, hBD-28, hBD-29, hBD-30, hBD-31 und hBD-32 und ihre Derivate, die zum Zwecke der therapeutischen, diagnostischen und gewerblichen Verwendung als Arzneimittel in ihrer Struktur aufgeklärt wurde. Die Peptide können mittels biotechnologischer, rekombinanter Verfahren, chemischer Synthese sowie aus korrespondierenden Vorläuferproteinen proteolytisch hergestellt werden.

Verfahren zur Gewinnung und Anwendung neuer humaner Defensine als
biologisch aktive Eiweisstoffe zur Behandlung von Infektionen und anderen
Erkrankungen

5 Die Erfindung betrifft Peptide vom human Defensintyp, ein Verfahren zur
Gewinnung von dieser Peptide in reiner oder partiell aufgereinigter Form aus
menschlichen und tierischen Körperflüssigkeiten, die die Fähigkeit besitzen,
die bakterielle Invasion bei Entzündungserkrankungen zu verhindern,
Nukleinsäuren, die für diese Peptide kodieren, Arzneimittel enthaltend diese
10 Peptide, sowie Verwendungen dieser Peptide zur Behandlung verschiedener
Erkrankungen.

Diese Peptide lassen sich insbesondere aus Haemofiltrat oder Haemodialysat
aus menschlichem und tierischem Blut gewinnen. Diese Stoffe sind als humane
15 Defensine klassifiziert und können zum Zwecke (1) der medizinischen und
gewerblichen Verwendung als Medikament und (2) der Analyse von
Erkrankungen benutzt werden.

Die Stoffe mit den Kurzbezeichnungen hBD-5 (humanes beta-Defensin-5),
20 hBD-6, hBD-7, hBD-8, hBD-10, hBD-11, hBD-12, hBD-13, hBD-14, hBD-15,
hBD-16, hBD-17, hBD-18, hBD-19, hBD-20, hBD-22, hBD-23, hBD-24, hBD-
25, hBD-26, hBD-27, hBD-28, hBD-29, hBD-30, hBD-31 und hBD-32, wurden
erstmals aus dem Haemofiltrat Nierenkranke nach Ultrafiltration am
Haemodialyseapparat gewonnen und über einen antibakteriellen Hemmtest
25 funktionell charakterisiert. Zur Darstellung der Defensinpeptide wurde ein
patentiertes Verfahren (Forssmann, 1988; DE 3633707 C1) verfeinert, welches
zuvor für Gewinnung von Eiweißstoffen aus Haemofiltrat erfunden wurde. Aus
den mit diesem Verfahren gewonnenen Molekülen mit einem Molekulargewicht
unter 20 kDalton, die bei veno-venöser oder arterio-venöser Shuntverbindung
30 abfiltriert werden, können die Peptidfraktionen enthaltend die humanen
Defensinpeptide durch einen Funktionstest erkannt werden. Das bisher
bekannte Verfahren wurde benutzt, um die Rohpeptidextrakte zu gewinnen,

- 2 -

mit denen bei der Anwendung des LEHRERschen Radialdiffusionstest ein starker Effekt festgestellt wurde, indem das Wachstum von Bakterien in Kultur unter dem Einfluss dieser Substanz stark gehemmt wird.

5 Es wurde weiter festgestellt, dass bei weiteren Reinigungsverfahren diese biologischen Aktivitäten konzentriert werden konnten, bis schließlich verschiedene einheitliche Eiweißstoffe identifiziert und in ihrer Struktur aufgeklärt wurden. Vorteilhafterweise können diese Stoffe aus dem bisher als wertlos betrachteten Haemofiltrat aufgereinigt werden, um als wirtschaftlich 10 verwertbare Substanzen benutzt zu werden. Die erfindungsgemäßen Peptide lassen sich durch chemische Synthese und durch gentechnologische Produktion gewinnen, sie lassen sich einsetzen u.a. als pathognomonisches Diagnosemerkmal für die Analyse von entzündlichen Erkrankungen des Magen-Darm-, Respirations- und Urogenitaltraktes sowie anderer Epithelorgane.

15

Die vorliegende Erfindung betrifft Peptide mit der Aminosäuresequenz
 $Z_N-C-X_m-X_1-X-C-X_2-X_n-C-X-X-X-X_3-X_o-C-X_p-C-C-Z_c$

wobei Z_N ein Aminosäurerest oder ein Peptidrest von bis zu 30 Aminosäuren ,
20 Z_c ein Aminosäurerest oder ein Peptidrest von bis zu 30 Aminosäuren,

X = eine beliebige Aminosäure

X_m = 3-6 beliebige Aminosäuren

X_n = 2-3 Aminosäuren

X_o = 5-9 Aminosäuren

25 X_p = 4-6 Aminosäuren

X_1 = G, A oder P

X_2 = R, K, W, Q oder A ist

X_3 = E oder H ist.

Insbesondere bevorzugt werden Peptide mit den folgenden Sequenzen:

- 3 -

(a) hBD-5

Z_{N2}-CRVRGGRCAVLSCPKEEQIGKCSTRGRKCC-Z_{C2}

(b) hBD-6

5 Z_{N3}-CGYGTARCRKKCRSQEYRIGRCPTYACC-Z_{C3}

(c) hBD-7

Z_{N4}-CRRSEGFCQEYCNYMETQVGYCSKKDACC-Z_{C4}

10 (d) hBD-8

Z_{N5}-CKLGRGKCRKECLENEKPDGNCRNFLCC-Z_{C5}

(e) hBD-10

15 Z_{N7}-CHMQQGICRLFFCHSGEKKRGICSDPWNRCC-Z_{C7}

(f) hBD-11

Z_{N8}-CERPNGSCRDFCLETEIHVGRCNLNSRPCC-Z_{C8}

20 (g) hBD-12

Z_{N9}-CNKLKGTCNNCGKNEELIALCQKSLKCC-Z_{C9}

(h) hBD-13

Z_{N10}-CLNLSGVCRDVCKVVEDQIGACRRRMKCC-Z_{C10}

25 (i) hBD-14

Z_{N11}-CWGKSGRCRTTCKESEVYYILCKTEAKCC-Z_{C11}

(j) hBD-15

Z_{N12}-CWNFRGSCRDECLKNERVYVFCVSGKLCC-Z_{C12}

30

(k) hBD-16

Z_{N13}-CWNNYVQGHCRKICRVNEVPEALCENGRYCC-Z_{C13}

- 4 -

(l) hBD-17

Z_{N14} -CWNLYGKCRYRCSKKERVYVYCINNKMC $-Z_{C14}$

5 (m)hBD-18

Z_{N15} -CWNRSGHCRKQCKDGEAVKDTCKNLRACC- Z_{C15}

(n)hBD-19

Z_{N16} -CLMGLGRCRDHCVDEKEIQKCKMKKCC- Z_{C16}

10

(o)hBD-20

Z_{N17} -CWMDGHCRLLCKDGEDSIIRCRNRKRCC- Z_{C17}

(p) Z_N Z_C hBD-22

Z_{N19} -CMGNNSGICRASCKNEQPYLYCRNCQSCC- Z_{C19}

15

(q)hBD-23

Z_{N20} -CWKGQQGACQTYCTRQETYMHLCPDASLCC- Z_{C20}

(r) hBD-24

20 Z_{N21} -CELYQGMCRNACREYEIQYLTCPNDQKCC- Z_{C21}

(s) hBD-25

Z_{N22} -CWIKGHCRKNCKPGEQVKPCKNGDYCC- Z_{C22}

(t) hBD-26

25 Z_{N23} -CYYGTGRCRKSCKEIERKKEKCGEKHICC- Z_{C23}

(u)hBD-27

Z_{N24} -CLGLPKCWNYRCEPLHAYAFYCLLPTSCC- Z_{C24}

30 (v)hBD-28

Z_{N25} -CVSNTPGYCRTCCHWGETALFMCNASRKCC- Z_{C25}

- 5 -

(w) hBD-29

Z_{N26} -CWKNNVGHCRRLCLDTERYILLCRNKLSCC- Z_{C26}

(x) hBD-30

5 Z_{N27} -CFNKVTGYCRKKCKVGERYEIGCLSGKLCC- Z_{C27}

(y) hBD-31

Z_{N28} -CLNDVGICKKKCKPEEMHVNGWAMCGKQRDCC- Z_{C28}

10 (z) hBD-32

Z_{N29} -CWNFRGSCRDECLKNERVYVFCVSGKLCC- Z_{C29}

wobei

15

Z_{N2} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IINTLQKYY und seine N-terminal verkürzten Fragmente, bedeutet,

20 Z_{C2} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RRKK und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N3} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFELDRI und seine N-terminal verkürzten Fragmente, bedeutet,

25 Z_{C3} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LRKWDESLLNRTKP und seine C-terminal verkürzten Fragmente, bedeutet,

30 Z_{N4} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKVVD und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C4} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LH, bedeutet,

- 6 -

Z_{N5} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFAVCES und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C5} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren,
5 insbesondere den Peptidrest RQRI und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N7} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest NTI und seine N-terminal verkürzten Fragmente, bedeutet,

10 Z_{C7} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VSNTDEEGKEKPEMD und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N8} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GKFKEI und seine N-terminal verkürzten
15 Fragmente, bedeutet,

Z_{C8} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LPLGHQPRIEST und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N9} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren,
20 insbesondere den Peptidrest NAFFDEK und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C9} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RTIQP und seine C-terminal verkürzten Fragmente, bedeutet,

25 Z_{N10} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest DLGPVEGH und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C10} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren,
insbesondere den Peptidrest RTWWIL und seine C-terminal verkürzten
30 Fragmente, bedeutet,

- 7 -

Z_{N11} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EVMK und seine N-terminal verkürzten Fragmente, bedeutet,

5 Z_{C11} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VDPKYVPVKPKL und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N12} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RIET und seine N-terminal verkürzten Fragmente, bedeutet,

10 Z_{C12} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKPKDQPHLPQHIKN und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N13} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest TEQLKK und seine N-terminal verkürzten 15 Fragmente, bedeutet,

Z_{C13} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LNIKELEA und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N14} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, 20 insbesondere den Peptidrest TPGGTQR und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C14} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VKPKYQPKERWWPF und seine C-terminal verkürzten Fragmente, bedeutet,

25 Z_{N15} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest PAYSGEKK und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C15} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, 30 insbesondere den Peptidrest IPSNEDHRRV und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N16} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest FIGLRR und seine N-terminal verkürzten Fragmente, bedeutet,

5 Z_{C16} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VGPKVVKLIK und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N17} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VE, bedeutet,

10 Z_{C17} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VPSR und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N19} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest HILR und seine N-terminal verkürzten Fragmente, bedeutet,

15 Z_{C19} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LQSYMR und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N20} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFKR und seine N-terminal verkürzten 20 Fragmente, bedeutet,

Z_{C20} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LSYALK und seine C-terminal verkürzten Fragmente, bedeutet,

Z_{N21} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, 25 insbesondere den Peptidrest PWNP und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C21} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKLSVK und seine C-terminal verkürzten Fragmente, bedeutet,

30 Z_{N22} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest QKS und seine N-terminal verkürzten Fragmente, bedeutet,

- 9 -

Z_{C22} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IPSNTDS und seine C-terminal verkürzten Fragmente, bedeutet,

5 Z_{N23} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GWIRR und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C23} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VPKEKDK und seine C-terminal verkürzten Fragmente, bedeutet,

10 Z_{N24} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest QSS und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C24} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LE, bedeutet,

15 Z_{N25} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GSK und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C25} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ISYSFLPK, bedeutet,

20 Z_{N26} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest FEPQK und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C26} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ISIISHEY, bedeutet,

25 Z_{N27} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKK und seine N-terminal verkürzten Fragmente, bedeutet,

Z_{C27} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ANDEEEK, bedeutet,

30 Z_{N28} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest WYVKK und seine N-terminal verkürzten Fragmente, bedeutet,

- 10 -

Z_{C28} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VPADR, bedeutet,

Z_{N29} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IET und seine N-terminal verkürzten Fragmente,

5 bedeutet,

Z_{C29} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LK, bedeutet,

und die zyklischen, amidierten, acetylierten, sulfatierten, phosphorylierten, glycosylierten, und oxydierten Derivate sowie Peptidfragmente, die aus den

10 oben beschriebenen Aminosäuresequenzen abgeleitet werden.

Für die oben beschriebenen neuen Defensinpeptide wurden folgende kodierende Nukleinsäuresequenzen (cDNAs) gefunden, die auch Gegenstand der vorliegenden Erfindung sind:

15

(a) hBD-5

ATGAGGATCCATTATCTTCTGTTGCTTGCTCTTCCTGTTTTGGTGCCTGTTCC
AGGTCATGGAGGAATCATAAACACATTACAGAAATATTATTGCAGAGTCAGAGGC
GGCCGGTGTGCTGTGCTCAGCTGCCTTCAAAGGAGGAACAGATCGGCAAGTGC
20 TCGACGCGTGGCGAAAATGCTGCCGAAGAAAGAAA

(b) hBD-6

CGAATTGAAATTGGACAGAACATATGTGGTTATGGGACTGCCGTTGCCGGAAGAA
ATGTCGCAGCCAAGAACATACAGAACATTGGAAGATGTCCCACACCTATGCATGCTGT
25 TTGAGAAAATGGATGAGAGCTTACTGAATCGTACAAAACCC

(c) hBD-7

ATTTAAAAGTTGTTGACTGCAGGAGAACGTGAAGGGCTTCTGCCAAGAACACTGTAA
TTATATGGAAACACAAGTAGGCTACTGCTCTAAAAAGAAAGACGCCTGCTGTTTA
30 CATTAAAACGTATGTTGC

(d) hBD-8

- 11 -

TTTGTGCTGTGAGTCGTGCAAGCTGGCGGGAAAATGCAGGAAGGAGTGC
TTGGAGAATGAGAAGCCGATGGAAATTGCAGGCTGAACCTTCTGCTGCAGA
CAGAGGATC

5 (e) hBD-10

AAATACCATCTGCCGTATGCAGCAAGGGATCTGCAGACTTTTCTGCCATTCT
GGTAGAGAAAAAGCGTGACATTGCTCTGATCCCTGGAATAGGTGTTGCGTATCAA
ATACAGATGAAGAAGGAAAAGAGAAACCAGAGATGGATGGCAGATCTGGATCT
AAAATATAAGCTCCC

10

(f) hBD-11

AGGGGAGCAGGGCTACTCACCTCCAGCCTTGTCACTCCAGGGCAAATTCAAGG
AGATCTGTGAACGTCCAATGGCTCCTGCGGACTTTGCCTCGAAACAGAAAT
CCATGTTGGGAGATGTTAAATAGCCGACCTGCTGCCTGCCTGGGCATCA
15 ACCAAGAATTGAGAGCACTACACCCAAAAAGGAC

(g) hBD-12

CTCAAGACCCACCCAGTCATGAGGACTTCCCTTCTCTGCCGTGCTCTCT
TTCTGACCCAGCCAAGAACATGCATTGATGAGAAATGCAACAAACTAAAGG
20 GACATGCAAGAACAAATTGCGGGAAAATGAAGAACCTATTGCTCTGCCAGAA
GTCTCTGAAATGCTGCGGACCATCCAGCCATGTGGAGCATTAGAT

(h) hBD-13

GTGATTTGGGTCTGTGGAAGGTCAATTGTCTCAATTGTCTGGTGTGAGAAG
25 AGATGTCTGCAAAGTAGTAGAACATCAAATTGGTGCCTGCCGAAGAAGGATGAA
GTGTTGTAGAACATGGTGGATTAAATGCCAACACCAACTTATCATGTCA
GATTATCAAGAACCCCTAAACATAAGTTGAAA

(i) hBD-14

30 GAAGTCATGAAATGTTGGGGCAAGTCAGGCAGGTGCAGAACACATGTAAAGAA
AGTGAAGTATACTATATTATGCAAAACTGAGGCTAAGTGCTGTGGATCCCA
AGTATGTACCTGTAAAACCAAAATTAACAGACACAAATACAAGCCTGGAATCAAC

- 12 -

TTCTGCAGTCTGACACCTCTCTTCCAACCTTGAGTCTAACATCATGGGATCCTG
CAGTTCTAT

(j) hBD-15

5 GCAGGGATTGAAACATGTTGGAATTTCTGGCTCCTGCCGTACGAATGCCTGA
AGAATGAAAGGGTCTATGTTCTCGGTGAGTGGTAAACTGTGCTGTTGAAGCC
CAAGGACCAGCCACATTACACAGCATATAAAGAAT

(k) hBD-16

10 TGAGGAAGGTAGCATAGTGTGCAGTTCACTGGACCAAAAGCTTGGCTGCACCT
CTTCTGGAAAGCTGGCCATGGGGTCTTCATGATCATTGCAATTCTGCTGTTCCAG
AAACCCACAGTAACCGAACAACTTAAGAAGTGCTGGAATAACTATGTACAAGGAC
ATTGCAGGAAAATCTGCAGAGTAAATGAAGTGCTGAGGCACATGTGAAAATG
GGAGATACTGTTGCCTCAATATCAAGGAACTGGAAGCATGTAAAAAAATTACAAA
15 GCCACCTCGTCAAAGCCAGCAACACTGCACTGACTCTCAAGACTATGTTACA
ATAATAGAAAATTCCCAAGCCTGAAGACACAGTCTACA

(l) hBD-17

20 GGACTTGCAGCTTCATTTGGGCTGCCTAGCCATGAAGCTCCTTGCTGACTT
TGACTGTGCTGCTCTTATCCCAGCTGACTCCAGGTGGCACCCAAAGATGCTG
GAATCTTATGGCAAATGCCGTTACAGATGCTCCAAGAAGGAAAGAGTCTATGTT
TACTGCATAAATAATAAAATGTGCTGCGTGAAGGCCAAGTACCAAGGCCAAAGAAA
GGTGGTGGCCATT

25 (m)hBD-18

TTCCAAGGACCATGAAACTCCTGCTGCTGGCTTCCATGCTTGCTCCTAC
CCCAAGTGATCCCAGCCTATAGTGGTAAAAAAATGCTGGAACAGATCAGGGC
ACTGCAGGAAACAATGCAAAGATGGAGAAGCAGTGAAAGATACTGCAAAATC
TTCGAGCTTGCATTCCATCCAATGAAGACCAACAGGCGAGTCCCTGCGACATC
30 TCCCACACCCCTTGAGTGACTCAACACCAGGAATTATTGATGATATTTAACAGTAA
GGTTCACGACAGACTACTTGAAGTAAGCAGCAAGAAAGATATGGTTGAAGAGT
CTGAGGCGGGAAAGGGAACTGAGACCTCTTCCAAATGTTACCATAGCTCA

(n) hBD-19

ACCATGAAGCTCCTTTCCATCTTGCCAGCCTCATGCTACAGTACCAAGGTGA
ACACAGAATTATTGGCTTGAGACGCTGTTAATGGGTTGGGGAGATGCAGGG
5 ATCACTGCAATGTGGATGAAAAAGAGATACAGAAATGCAAGATGAAAAAATGTTG
TGTGGACCAAAAGTGGTAAATTGATTAAAAACTACCTACAATATGGAACACCA
AATGTACTTAATGAAGACGTCCAAGAAATGCTAAAACCTGCCAAGAATTCTAGTG
CTGTGATAACAAAGAAAACATATTTATCTGTTCTCCCCAAATCAAAGCACTAGC
10 TTTTTGCTAATACCAACTTGTCACTCATTCAAATGCCACCCCTATGAACTCTGC
CACCATCAGCACTATGACCCCAGGACAGATCACATACACTGCTACTTCTACCAAG
AGTAACACCAAAGAAAGCAGAGATTCTGCCACTGCCCGCCACCACAGCACCA
CCTCCACCAACATACTGCCAACACCATCACTGGAGCTAGAGGAAGCAGAAGAG
CAG

15 (o) hBD-20

TAGAGTGTGGATGGATGGACACTGCCGGTTGTTGCAAAGATGGTGAAGACA
GCATCATACTGCTGCCGAAATCGTAAACGGTGCTGTGTTCTAGTCGTTATTTAAC
AATCCAACCAGTAACAATTATGGAATCCTGGCTGGACCACTCCTCAGATGTCC
20 ACAACAGCTCCAAAATGAAGACAAATATAACTAATAGATAGAAA

20

(p) hBD-22

AGCAAAGCTCATCTCTGCCGTGCTGCAGGGAACCCATTTCCTCCCTGCAGCT
CAGCCACCTCCTCCTCTCAGGTCTGCCAGCCATGAAACTCTTACCTGTTCTG
25 CCATCCTCTGGCCATAGAAGAACCAAGTGTATCAGGCCAACGCCACATCCTCG
ATGCATGGGTAACAGTGGATTGTAGGGCCTCTGCAAAAAGAACGAACAGCC
CTACCTCTATTGCAGAAATTGTCAGTCCTGCTGCCCTCAGTCCTACATGAGGATA
AGCATTCTGGCAAAGAGGAAAATACCGACTGGTCTTATGAGAAGCAGTGGCCA
AGACTACCT

30 (q) hBD-23

- 14 -

TGAATTCAAACGGTGCTGGAAGGGTCAAGGGGCCTGCCAAACTTACTGCACAAG
GCAAGAAACTTACATGCACCTGTGCCCGGATGCGTCCCTGTGCTGTCTCCTAT
GCATTGAAACCTCCACCGTCCCCAAGCATGAATATGAG

5 (r) hBD-24

CCTTCCAATCCATGTGAGCTTACCAAGGCATGTGCAGAAACGCCTGCAGAGAA
TATGAAATCCAATACTTAACCTGCCAAATGATCAAAAGTGCTGCCTGAAACTTTC
TGTGAAAATAACCAGTTCTAAAAATGTGAAGGAGGATTACGACTCTAACTCCAAC
TTGTCAGTTACAAACAGTTCAAGCTACTCTCACATT

10

(s) hBD-25

CCAAAAATCTTGCTGGATCATAAAAGGACACTGCAGGAAAAACTGCAAACCTGGT
GAACAGGTTAAAAGCCATGTAAAAATGGTGAATTGCTGCATTCCAAGCAACA
CAGATTCT

15

(t) hBD-26

ATGGATGGATCAGAAGGTGCTATTATGGAAC TGCGAGATGCAGGAAATCATGCA
AAGAAATTGAGAGGAAGAAAGAAAAATGTGGGGAAAAACATATTGCTGTGTCC
CTAAAGAAAAGGATAAACTATCACACATTACGACCAAAAAGAGAGACAAGTGAGCT

20

ATATATC

(u) hBD-27

CAATCCTCCTGCCTGGCCTCCAAAGTGCTGGAATTAGGTGTGAGCCACTGC
ACCTGGCCTATGCCTTTATTGCCTCCTGCCTACCTCCTGCTGTTGGAATGTGA
25 AAGCAAGACTGGAGCTACCTTGGACTATGAAAAACAAGGACCTCACC

(v) hBD-28

GGGTCAAAATGTGTGAGTAACACCCCAGGATACTGCAGGACATGTTGCCACTGG
GGGGAGACAGCATTGTCATGTGCAACGCTTCCAGAAAATGCTGCATCAGCTACT
30 CCTTCCTGCCGAAGCCTGACCTACCAACAGCTATCGTAACCACTGGCAATCAAG
GAGAAGAAAACACACAAAGGAAAGACAAGAACAAACGACCGTAACATCA

- 15 -

(w) hBD-29

TTTGAACCCCAAAATGTTGGAAGAATAATGTAGGACATTGCAGAACGACGATGTT
TAGATACTGAAAGGTACATACTCTTGTAGGAACAAGCTATCATGCTGCATTCT
ATAATATCACATGAATATACTCGACGACCAGCATTCTGTGATTCACCTAGAGG
5 ATATAACATTGGATTATAGTGATGTGGACTCTTACTGGTCCCCAGTATCTATG
TTGAATGATCTGATAACATTGACACAACTAAATTGGAGAAACCATGACACCTG
AGACCAAACTCCTGAGACTACTATGCCACCATCTGAGGCCACTACTCCCAGAC
TACTATGCCACCATCTGAGACTGCTACTCCGAGACTATGCCACCACCTCTCAG
ACAGCTCTTACTCATAAT

10

(x) hBD-30

CTCAAAAAATGCTTCATAAAAGTAACAGGCTATTGCAGGAAGAAATGCAAG
GTAGGAGAAAGATATGAAATAGGATGTCTAAGTGGAAATTATGTTGTGCT
AATGATGAAGAAGAGAAAAACATGTGTCATTAAGAACGCCACATCAACATT
15 CTGGTGAGAAGCTGAGTGTGCTGCAGGATTACATCATCTTACCCACCACATCA
CCATTTCACAGTC

(y) hBD-31

ATGAAGTCCCTACTGTTACCCCTGCAGTTTATGCTCCTGGCCAATTGG
20 TCTCAGGTAATTGGTATGTGAAAAGTGTCTAACGACGTTGGAATTGCAA
GAAGAAGTGCAAACCTGAAGAGATGCATGTAAAGAATGGTGGCAATGTG
CGGCAAACAAAGGGACTGCTGTGTCAGCTGACAGACGTGCTAATTATCC
TGTTTCTGTGTCAGACAAAGACTACAAGAATTCAACAGTAACAGCAACA
ACAGCAACACAACATTGATGATGACTACTGCTTCGATGTCTCGATGGCTC
25 CTACCCCCGTTCTCCACTGGT

(z) hBD-32

ATTGAAACATGTTGGAATTTCGTGGCTCTGCCGTGACGAATGCCTGAAG
AATGAAAGGGTCTATGTTCTGCGTGAGTGGTAAACTGTGCTGTTGAAGC
30 CCAAGGACCAGCCACATTACACAGCATATAAAGAAT

- 16 -

Während durch die Analyse der entsprechenden kodierenden Nukleotidsequenzen die Gene der neuen Defensinpeptide hBD-5, hBD-6, hBD-7, hBD-8, hBD-10, hBD-11, hBD-12 und hBD-13, auf Chromosom 8 gefunden wurden, konnten die Gene der erfindungsgemäßen neuen Defensinpeptide

5 hBD-14, hBD-15, hBD-16, hBD-17, hBD-18, hBD-19, hBD-20, hBD-22, hBD-23, hBD-24, hBD-25, hBD-26, hBD-27, hBD-28, hBD-29, hBD-30, hBD-31 und hBD-32 überraschenderweise Chromosom 20 zugeordnet werden.

Damit ist weiter Aufgabe der vorliegenden Erfindung, die neuen Peptide hBD-5

10 bis hBD-32 bereitzustellen, die dadurch gekennzeichnet sind, daß diese jeweils als ein gut zugängliches Arzneimittel mit biologisch und therapeutischer Aktivität eines natürlichen Stoffes verwenden werden können.

Die vorliegende Erfindung stellt des weiteren ein Herstellungsverfahren für die

15 erfindungsgemäßen Peptide sowie die Verwendung der erfindungsgemäßen Peptide als Arzneimittel für verschiedene therapeutische und diagnostische Indikationen bereit. Dazu können die Defensinpeptide als hochreine Stoffe oder - wenn für die bestimmte Verwendung ausreichend - innerhalb eines teilweise aufgereinigten Peptidgemisches oder als Gemisch mehrerer der 20 erfindungsgemäßen hochreinen Defensinpeptide verwandt werden.

Die erfindungsgemäßen Peptide können eingesetzt werden zur Behandlung von Erkrankungen, die bei bakteriellen Organbesiedlungen entstehen.

25 Die erfindungsgemäßen Peptide sind weiterhin einsetzbar zur Behandlung von Erkrankungen des menschlichen Organismus, insbesondere mit Beteiligung des Magen-Darm-Traktes, der Atemwege und des Urogenitalapparates.

Die erfindungsgemäßen Peptide können in einer weiteren Ausgestaltung der

30 Erfindung eingesetzt werden zur Behandlung von Erkrankungen des menschlichen Organismus, insbesondere mit Beteiligung des Intugementes und seiner Anhangsdrüsen.

- 17 -

Die erfindungsgemäßen Peptide können auch eingesetzt werden zur Behandlung von Systemerkrankungen bei Überproduktion oder Mangel der Defensinpeptide, insbesondere durch gegen die Defensinpeptide gebildete Antikörper oder zur Verwendung in der Substitutionstherapie.

5

In einer weiteren Ausführungsform der Erfindung können die erfindungsgemäßen Peptide zur Behandlung von chronischen Erkrankungen, teils vergesellschaftet mit den bereits erwähnten Erkrankungen eingesetzt werden, indem diese in geeigneter Form für die Behandlung benutzt werden.

10

Die erfindungsgemäßen Peptide können weiterhin eingesetzt werden zur Behandlung von Erkrankungen im akuten Stadium.

15

Die erfindungsgemäßen Peptide können eingesetzt werden zur Behandlung der Störung der Fertilität, insbesondere bei Krankheiten der mit Oocyten verbundenen Spermienpenetrationsstörungen und Inidationsstörungen sowie Maturationsstörungen im männlichen Reproduktionsapparates, sowie als Kontrazeptivum.

20

Die erfindungsgemäßen Peptide können eingesetzt werden zur Diagnose der bereits erwähnten Erkrankungen, indem beispielsweise Antikörper gegen eines oder mehrere der erfindungsgemäßen Peptide oder seiner Derivate oder ihrer Fragmente hergestellt werden und die Blutkonzentration eines oder mehrerer der erfindungsgemäßen Peptide über immunologische Verfahren gemessen wird.

25

Die vorliegende Erfindung betrifft weiter verschiedene Verfahren zur Herstellung der erfindungsgemäßen neuen Defensinpeptide oder ihrer Derivate dadurch gekennzeichnet, dass dieses über eine prokaryontische oder eine eukaryontische Expression hergestellt und chromatographisch gereinigt werden, sowie ein weiteres Verfahren zur Herstellung der Defensinpeptide ihrer Derivate, indem man sie aus menschlichem Blut über Chromatographie-

- 18 -

Verfahren in bekannter Weise isoliert, und schließlich ein Verfahren zur Herstellung der Defensinpeptide oder ihrer Derivate, indem man diese Defensinpeptide durch die üblichen Verfahren der Festphasen- und Flüssigphasen-Synthese aus den geschützten Aminosäuren, die in der 5 angegebenen Sequenz enthalten sind, herstellt, deblockiert und es mit den gängigen Chromatographie-Verfahren reinigt.

Die Defensinpeptide werden chemisch synthetisiert und als Arzneimittel zubereitet. Auch die gentechnologische Herstellung durch Verwendung übliche 10 Vektoren ist erarbeitet. Auf diesem Wege wird die neuen Defensinpeptide sowohl (1) in prokaryontischen als auch (2) in eukaryontischen Organismen hergestellt. Hierfür stehen verschiedene Expressionsvektoren routinemässig zur sekretorischen oder direkten cytoplasmatischen Expression zur Verfügung.

15 Die Arzneimittelzubereitungen enthalten eines oder mehrere der erfindungsgemäßen neuen Defensinpeptide oder ein physiologisch verträgliches Salz dieser Peptide. Die Form und Zusammensetzung der Arzneimittel, welche eines oder mehrere der neuen Defensinpeptide enthalten, richtet sich nach der Art der Verabreichung. Die Arzneimittel eines oder 20 mehrere der neuen Defensinpeptide enthaltend können parenteral, intranasal, oral und mittels Inhalation verabreicht werden. Vorzugsweise werden diese Arzneimittel enthaltend eines oder mehrere der neuene Defensinpeptide mit einem Injektionspräparat, entweder als Lösung oder als Lyophilisat zur Auflösung unmittelbar vor Gebrauch konfektioniert. Die 25 Arzneimittelzubereitungen können außerdem Hilfsstoffe enthalten, die abfülltechnisch bedingt sind, einen Beitrag zur Löslichkeit, Stabilität oder Sterilität des Arzneimittels leisten oder den Wirkungsgrad der Aufnahme in den Körper erhöhen.

30 Die zu verabreichende Tagesdosis für die erfindungsgemäßen Defensinpeptide hängt von der Indikation und der Anwendung bestimmter Derivate ab. Bei i.v./i.m. Injektion liegt sie im Bereich von 100 bis 1200 Einheiten (μ g)/Tag, bei

täglicher subcutaner Injektion vorzugsweise bei 300 - 2400 Einheiten (μg)/Tag.

Die Bestimmung der biologischen Aktivität für die erfindungsgemäßen neuen Defensinpeptide basiert auf Messungen gegen international gebräuchliche Referenzpräparationen für antibiotische Substanzen.

Die erfindungsgemäßen neuen Defensinpeptide hBD-5, hBD-6, hBD-7, hBD-8, hBD-10, hBD-11, hBD-12, hBD-13, hBD-14, hBD-15, hBD-16, hBD-17, hBD-18, hBD-19, hBD-20, hBD-22, hBD-23, hBD-24, hBD-25, hBD-26, hBD-27, hBD-28, hBD-29, hBD-30, hBD-31 und hBD-32, sind dadurch gekennzeichnet, dass sie sich besonders auch für die Langzeit-Therapie bei Infektionserkrankungen eignen, da sie über eine ausgezeichnete biologische Wirksamkeit verfügen und andererseits auch bei Dauerbehandlung keine Immunreaktion auslösen.

15

Aufgrund der biologischen Wirkung der erfindungsgemäßen Defensinpeptide ist gezeigt, dass die erfindungsgemäßen Präparate weiter als Mittel zur Therapie von infektiösen Erkrankungen vieler Epithelorgane anwendbar sind.

20 Zur Bestimmung der Aktivität wurden beispielhaft die Peptide hBD10, hBD17 und hBD19 auf ihre antimikrobielle Wirkung hin getestet. Im Radial-Diffusions-Assay konnten die in Tabelle 1 angegebenen Aktivitäten der Peptide gegen verschiedene Bakterienstämme gemessen werden. Dabei bedeutet (+) die Bildung eines Hemmhofes und (-) keine Bildung eines Hemmhofs. Tabelle 1

	hBD10	hBD17	hBD19
Escherichia coli	(+)	(+)	(+)
Staphylococcus carnosus	(+)	(+)	(+)
Saccharomyces cerevisiae	(+)	(+)	(-)

25 Für eine genauere Bestimmung der antibiotischen Aktivität wurde die minimale inhibitorische Konzentration (MIC) der o.g. Defensine nach Standardmethoden bestimmt. Die Befunde sind in Tabelle 2 angegeben, wobei die MIC-Werte Konzentrationen in [$\mu\text{g}/\text{ml}$] entsprechen (nd = nicht gemessen). Tabelle 2

	hBD10	hBD17	hBD19
Escherichia coli	nd	nd	nd
Staphylococcus carnosus	<50	<25	<25
Saccharomyces cerevisiae	nd	nd	nd

Weiterhin wurden Strukturanalysen mit hBD16 durchgeführt. Abbildung 1 zeigt die in Lösung gefundene NMR-Struktur von hBD16.

- 5 Die räumliche Lage der Cysteine Cys 6, 15, 29 und 35 zeigt, dass die Verbrückung dieser Positionen nicht zwingend eine Strukturveränderung bedeuten muss, die zu einer Verminderung der Aktivität führt. Dieses konnte anhand des Vergleichs zweier Verbrückungsmuster gezeigt werden (Figur 2).

Patentansprüche

5 1. Peptide mit der Aminosäuresequenz

 $Z_N-C-X_m-X_1-X-C-X_2-X_n-C-X-X-X_3-X_o-C-X_p-C-C-Z_C$

wobei Z_N ein Aminosäurerest oder ein Peptidrest von bis zu 30 Aminosäuren ,
 Z_C ein Aminosäurerest oder ein Peptidrest von bis zu 30 Aminosäuren,

10 X = eine beliebige Aminosäure X_m = 3-6 beliebige Aminosäuren X_n = 2-3 Aminosäuren X_o = 5-9 Aminosäuren X_p = 4-6 Aminosäuren15 X_1 = G, A oder P X_2 = R, K, W, Q oder A ist X_3 = E oder H ist.

2. Peptid nach Anspruch 1 mit der Aminosäuresequenz

20 (aa) hBD-5

 $Z_{N2}-CRVRGGRCAVLSCLPKEEQIGKCSTRGRKCC-Z_{C2}$

Z_{N2} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren,
insbesondere den Peptidrest IINTLQKYY und seine N-terminal verkürzten
Fragmente und Z_{C2} einen Aminosäurerest oder einen Peptidrest von bis zu 30

25 Aminosäuren, insbesondere den Peptidrest RRKK und seine C-terminal
verkürzten Fragmente, bedeutet bedeutet.

3. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(bb) hBD-6

 Z_{N3} -CGYGTARCRKKCRSQEYRIGRCPTYACC- Z_{C3}

5 Z_{N3} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFELDRI und seine N-terminal verkürzten Fragmente und Z_{C3} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LRKWDESLLNRTKP und seine C-terminal verkürzten Fragmente, bedeutet.

4. Peptid nach Anspruch 1 mit der Aminosäuresequenz

10 (cc) hBD-7

 Z_{N4} -CRRSEGFCQEYCNYMETQVGYCSKKKDACC- Z_{C4}

15 Z_{N4} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKVVD und seine N-terminal verkürzten Fragmente und Z_{C4} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LH, bedeutet.

5. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(dd)hBD-8

 Z_{N5} -CKLGRGKCRKECLENEKPDGNCRNLNFLCC- Z_{C5}

20 Z_{N5} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFAVCES und seine N-terminal verkürzten Fragmente und Z_{C5} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RQRI und seine C-terminal verkürzten Fragmente, bedeutet.

25

6. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(ee) hBD-10

 Z_{N7} -CHMQQQGICRLFFCHSGEKRGICSDPWNRCC- Z_{C7}

30 Z_{N7} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest NTI und seine N-terminal verkürzten Fragmente und Z_{C7} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VSNTDEEGKEKPEMD und seine C-

terminal verkürzten Fragmenten, bedeutet.

7. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(ff) hBD-11

5 Z_{N8} -CERPNGSCRDFCLETEIHVGRCLNSRPCC- Z_{C8}

Z_{N8} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GKFKEI und seine N-terminal verkürzten Fragmenten und Z_{C8} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LPLGHQPRIEST und seine C-terminal verkürzten Fragmenten, bedeutet.

10

8. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(gg)hBD-12

Z_{N9} -CNKLKGTCNNCGKNEELIALCQKSLKCC- Z_{C9}

15 Z_{N9} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest NAFFDEK und seine N-terminal verkürzten Fragmenten und Z_{C9} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RTIQP und seine C-terminal verkürzten Fragmenten, bedeutet.

20

9. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(hh)hBD-13

Z_{N10} -CLNLSGVCRDVCKVVEDQIGACRRRMKCC- Z_{C10}

25 Z_{N10} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest DLGPVEGH und seine N-terminal verkürzten Fragmenten und Z_{C10} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RTWWIL und seine C-terminal verkürzten Fragmenten, bedeutet.

30 10. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(ii) hBD-14

Z_{N11} -CWGKSGRCRTTCKESEVYYILCKTEAKCC- Z_{C11}

Z_{N11} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EVMK und seine N-terminal verkürzten Fragmente und Z_{C11} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VDPKYVPVKPKL und seine C-terminal verkürzten Fragmente bedeutet.

5 11. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(jj)hBD-15

Z_{N12}-CWNFRGSCRDECLKNERVYVFCVSGKLCC-Z_{C12}

10 Z_{N12} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest RIET und seine N-terminal verkürzten Fragmente und Z_{C12} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKPKDQPHLPQHIKN und seine C-terminal verkürzten Fragmente bedeutet.

15

12. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(kk)hBD-16

Z_{N13}-CWNNYYQGHCRKICRVNEVPEALCENGRYCC-Z_{C13}

20 Z_{N13} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest TEQLKK und seine N-terminal verkürzten Fragmente und Z_{C13} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LNIKELEA und seine C-terminal verkürzten Fragmente bedeutet.

25 13. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(ll) hBD-17

Z_{N14}-CWNLYGKCRYRCSKKERVYVYCINNKMCC-Z_{C14}

30 Z_{N14} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest TPGGTQR und seine N-terminal verkürzten Fragmente und Z_{C14} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VKPKYQPKERWWPF und seine C-terminal verkürzten Fragmente, bedeutet.

14. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(mm)hBD-18

Z_{N15} -CWNRSGHCRKQCKDGEAVKDTCKNLRACC- Z_{C15}

5 Z_{N15} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest PAYSGEKK und seine N-terminal verkürzten Fragmente und Z_{C15} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IPSNEDHRRV und seine C-terminal verkürzten Fragmente, bedeutet.

10

15. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(nn)hBD-19

Z_{N16} -CLMGLGRCRDHCNVDEKEIQKCKMKKCC- Z_{C16}

15 Z_{N16} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest FIGLRR und seine N-terminal verkürzten Fragmente und Z_{C16} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VGPKVVKLIK und seine C-terminal verkürzten Fragmente, bedeutet.

20 16. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(oo)hBD-20

Z_{N17} -CWMDGHCRLLCKDGEDSIIRCRNRKRCC- Z_{C17}

25 Z_{N17} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VE und Z_{C17} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VPSR und seine C-terminal verkürzten Fragmente, bedeutet.

17. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(pp)hBD-22

30 Z_{N19} -CMGNSGICRASCKNEQPYLYCRNCQSCC- Z_{C19}

Z_{N19} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest HILR und seine N-terminal verkürzten Fragmente,

bedeutet und Z_{C19} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LQSYMR und seine C-terminal verkürzten Fragmente, bedeutet.

5 18. Peptid nach Anspruch 1 mit der Aminosäuresequenz
(qq)hBD-23

Z_{N20} -CWKGQQGACQTYCTRQETYMHLCPDASLCC- Z_{C20}

10 Z_{N20} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest EFKR und seine N-terminal verkürzten Fragmente und Z_{C20} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LSYALK und seine C-terminal verkürzten Fragmente, bedeutet.

15 19. Peptid nach Anspruch 1 mit der Aminosäuresequenz
(rr)hBD-24

Z_{N21} -CELYQGMCRNACREYEIQYLTCPNDQKCC- Z_{C21}

20 Z_{N21} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest PWNP und seine N-terminal verkürzten Fragmente und Z_{C21} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LKLSVK und seine C-terminal verkürzten Fragmente, bedeutet.

25 20. Peptid nach Anspruch 1 mit der Aminosäuresequenz
(ss)hBD-25

Z_{N22} -CWIIKGHCRKNCKPGEQVKKPCKNGDYCC- Z_{C22}

30 Z_{N22} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest QKS und seine N-terminal verkürzten Fragmente und Z_{C22} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IPSNTDS und seine C-terminal verkürzten Fragmente, bedeutet.

21. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(tt)hBD-26

 $Z_{N23}\text{-CYYGTGRCRKSCKEIERKKEKGKHICC-Z}_{C23}$

5 Z_{N23} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GWIRR und seine N-terminal verkürzten Fragmente und Z_{C23} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest VPKEKDK und seine C-terminal verkürzten Fragmente, bedeutet.

22. Peptid nach Anspruch 1 mit der Aminosäuresequenz

10 (uu)hBD-27

 $Z_{N24}\text{-CLGLPKCWNYRCEPLHLAYAFYCLLPTSCC-Z}_{C24}$

15 Z_{N24} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest QSS und seine N-terminal verkürzten Fragmente und Z_{C24} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LE, bedeutet.

23. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(vv)hBD-28

 $Z_{N25}\text{-CVSNTPGYCRTCCHWGETALFMCNASRKCC-Z}_{C25}$

20 Z_{N25} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest GSK und seine N-terminal verkürzten Fragmente und Z_{C25} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ISYSFLPK, bedeutet.

25 24. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(ww)hBD-29

 $Z_{N26}\text{-CWKNNGHRRCLDTERYILLCRNKLSCC-Z}_{C26}$

30 Z_{N26} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest FEPQK und seine N-terminal verkürzten Fragmente und Z_{C26} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ISIISHEY, bedeutet.

- 28 -

25. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(xx)hBD-30

Z_{N27} -CFNKVTGYCRKKCKVGERYEIGCLSGKLCC- Z_{C27}

Z_{N27} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren,

5 insbesondere den Peptidrest LKK und seine N-terminal verkürzten Fragmente und Z_{C27} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest ANDEEEK, bedeutet.

26. Peptid nach Anspruch 1 mit der Aminosäuresequenz

10 (yy)hBD-31

Z_{N28} -CLNDVGICKKKCKPEEMHVKNNGWAMCGKQRDCC- Z_{C28}

Z_{N28} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest WYVKK und seine N-terminal verkürzten Fragmente und Z_{C28} einen Aminosäurerest oder einen Peptidrest von bis zu 30

15 Aminosäuren, insbesondere den Peptidrest VPADR, bedeutet.

27. Peptid nach Anspruch 1 mit der Aminosäuresequenz

(zz) hBD-32

Z_{N29} -CWNFRGSCRDECLKNERVYVFCVSGKLCC- Z_{C29}

20 Z_{N29} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest IET und seine N-terminal verkürzten Fragmente und Z_{C29} einen Aminosäurerest oder einen Peptidrest von bis zu 30 Aminosäuren, insbesondere den Peptidrest LK, bedeutet.

25 28. Peptide nach einem der Ansprüche 1 bis 27, wobei die Peptide die zyklischen, amidierten, acetylierten, sulfatierten, phosphorylierten, glycosylierten, und oxydierten Derivate sowie Peptidfragmente, die aus den oben beschriebenen Aminosäuresequenzen abgeleitet werden und eine ähnliche biologische Aktivität aufweisen, sind.

30

29. Verfahren zur Herstellung der Defensinpeptide oder ihrer Derivate und Fragmente nach mindestens einem der Ansprüche 1 bis 28, dadurch

gekennzeichnet, dass diese über eine prokaryontische oder eine eukaryontische Expression hergestellt und gereinigt werden.

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass man die
5 Peptide aus menschlichem Blut über an sich bekannte übliche Chromatographie-Verfahren in bekannter Weise isoliert.

31. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass man die
Defensinpeptide oder ihre Derivate durch die üblichen Verfahren der
10 chemischen Festphasen- und Flüssigphasen-Peptidsynthese aus den geschützten Aminosäuren, die in den angegebenen Sequenzen nach mindestens einem der Ansprüche 1 bis 28 enthalten sind, herstellt, deblockiert und es mittels an sich bekannter Verfahren reinigt.

15 32. Arzneimittel, enthaltend eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 als aktiven Wirkstoff neben üblichen Hilfs- und Zusatzstoffen.

20 33. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von Erkrankungen, die bei bakteriellen Organbesiedlungen entstehen.

25 34. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von Erkrankungen des menschlichen Organismus, insbesondere mit Beteiligung des Magen-Darm-Traktes, der Atemwege und des Urogenitalapparates.

30 35. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von Erkrankungen des menschlichen Organismus, insbesondere

mit Beteiligung des Intugementes und seiner Anhangsdrüsen.

36. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von Systemerkrankungen bei Überproduktion oder Mangel der Defensinpeptide, insbesondere durch gegen die Defensinpeptide gebildete Antikörper oder zur Verwendung der Defensinpeptide nach mindestens einem der Ansprüche 1 bis 28 zur Substitutionstherapie.
- 10 37. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von chronischen Erkrankungen, teils vergesellschaftet mit Erkrankungen gemäß Ansprüchen 33 bis 36, indem es in geeigneter Form für die Behandlung benutzt wird.
- 15 38. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung von akuten Erkrankungen gemäß Ansprüchen 33 bis 37, indem es in geeigneter Form für die Behandlung in der Intensivpflege dieser Erkrankungen benutzt wird.
- 20 39. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Behandlung der Störung der Fertilität, insbesondere bei Krankheiten der mit Oocyten verbundenen Spermienpenetrationsstörungen und Inidationsstörungen sowie Maturationsstörungen im männlichen Reproduktionsapparates, sowie als Kontrazeptivum.
- 25 40. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 zur Diagnose von Erkrankungen, insbesondere nach den Ansprüchen 33 bis 39, indem spezifische Antikörper gegen eines oder mehrerer der Defensinpeptide

- 31 -

nach mindestens einem der Ansprüche 1 bis 28 oder seiner Derivate oder seiner Fragmente hergestellt werden und die Blutkonzentration eines oder mehrerer der Defensinpeptide nach einem der Ansprüche 1 bis 28 über immunologische Verfahren gemessen wird.

5

41. Verwendung eines oder mehrerer der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28 in verschiedenen galenischen Applikationsformen, insbesondere der lyophilisierten, mit Mannit aufgenommenen Form in sterilen Ampullen zur Auflösung in physiologischer Kochsalzlösung und/oder Infusionslösungen zur wiederholten Einzelinjektion und/oder Dauerinfusion in Mengen von 300 Mikrogramm bis 300 Milligramm eines oder mehrerer der Defensinpeptide nach Anspruch 1 pro Therapie-Einheit.

10

15

42. Verwendung der von den Defensinpeptiden nach mindestens einem der Ansprüche 1 bis 28 abgeleiteten Gensonden und Genen zur lokalen und systemischen Gentherapie der Indikationen gemäß einem der Ansprüche 33 bis 39 in epithelialen Geweben und Organen.

20

43. Nukleinsäuresequenz codierend für eines oder mehrere der Defensinpeptide oder seiner Derivate oder seiner Fragmente nach mindestens einem der Ansprüche 1 bis 28

44. Nukleinsäure mit der Sequenz

25

ATGAGGATCCATTATCTTCTGTTGCTTGCTCTCCTGTTGGTGCCTGTTCCAG
GTCATGGAGGAATCATAAACACATTACAGAAATATTATTGCAGAGTCAGAGGCGGCC
GGTGTGCTGTGCTCAGCTGCCTCAAAGGAGGAACAGATCGGCAAGTGCTCGACG
CGTGGCCGAAAATGCTGCCGAAGAAAGAAA
kodierend für das Defensinpeptid hBD-5.

30

45. Nukleinsäure mit der Sequenz

- 32 -

CGAATTGAAATTGGACAGAATATGTGGTTATGGGACTGCCGTTGCCGGAAGAAATG
TCGCAGCCAAGAACATCAGAATTGGAAGATGTCCAACACACCTATGCATGCTGTTGAG
AAAATGGGATGAGAGCTTACTGAATCGTACAAAACCC

kodierend für das Defensinpeptid hBD-6.

5

46. Nukleinsäure mit der Sequenz

ATTTAAAAGTTGTTGACTGCAGGAGAAGTGAAGGCTTCTGCCAAGAACATCTGTAATT
ATATGGAAACACAAGTAGGCTACTGCTCTAAAAAGAAAGACGCCTGCTGTTACATT
AAAACGTGATGTTGC

10 kodierend für das Defensinpeptid hBD-7.

47. Nukleinsäure mit der Sequenz

TTTGCTGTCTGTGAGTCGTGCAAGCTTGGTCGGGAAAATGCAGGAAGGAGTGCTT
GGAGAACATGAGAACGCCCAGGAAATTGCAGGCTGAACCTTCTGCTGCAGACAGA

15 GGATC

kodierend für das Defensinpeptid hBD-8.

48. Nukleinsäure mit der Sequenz

AAATACCATCTGCCGTATGCAGCAAGGGATCTGCAGACTTTTCTGCCATTCTGGT
20 GAGAAAAAGCGTGACATTGCTCTGATCCCTGGAATAGGTGTTGCGTATCAAATACA
GATGAAGAAGGAAAAGAGAACCCAGAGATGGATGGCAGATCTGGATCTAAAATAT
AAGCTCCC

kodierend für das Defensinpeptid hBD-10.

25 49. Nukleinsäure mit der Sequenz

AGGGGAGCGGGCTACTCACCTCCAGCCTTGTCACTCCAGGGCAAATTCAAGGAG
ATCTGTGAACGTCCAAATGGCTCCTGTCGGACTTTGCCTCGAAACAGAAATCCAT
GTTGGGAGATGTTAAATAGCCGACCCCTGCTGCCTGCCTCTGGGCATCAACCAAGA
ATTGAGAGCACTACACCCAAAAAGGAC

30 kodierend für das Defensinpeptid hBD-11.

50. Nukleinsäure mit der Sequenz

- 33 -

CTCAAGACCCACCCCAGTCATGAGGACTTCCCTTTCTCTTGCCGTGCTCTCTT
CTGACCCCAGCCAAGAACATGCATTGGATGAGAAATGCAACAAACTAAAGGGACA
TGCAAGAACAAATTGCCGGAAAAATGAAGAACCTATTGCTCTGCCAGAAGTCTG
AAATGCTGTCGGACCATCCAGCCATGTGGGAGCATTAGAT

5 kodierend für das Defensinpeptid hBD-12.

51. Nukleinsäure mit der Sequenz

GTGATTGGGTCTGTGGAAAGGTCAATTGCTCAATTGCTGGTGTGAGAAGAG
ATGTCTGCAAAGTAGTAGAACATCAAATTGGTGCCTGCCGAAGAAGGATGAAGTGT
10 GTAGAACATGGTGGATTAAATGCCAATTCAACACCACTTATCATGTCAGATTATCA
AGAACCCCTAACATAAGTTGAAA

kodierend für das Defensinpeptid hBD-13.

52. Nukleinsäure mit der Sequenz

15 GAAGTCATGAAATGTTGGGGCAAGTCAGGCAGGTGCAGAACACATGTAAGAAAG
TGAAGTATACTATATATTATGCAAAACTGAGGCTAAGTGCTGTGGATCCCAAGTAT
GTACCTGTAAAACAAAATTAACAGACACAAATACAAGCCTGGAATCAACTTCTGCA
GTCTGACACCTCTTCAACCTTGAGTCTAACATCATGGGATCCTGCAGTTCTAT
kodierend für das Defensinpeptid hBD-14.

20

53. Nukleinsäure mit der Sequenz

GCAGGATTGAAACATGTTGGAATTTCGTGGCTCCTGCCGTGACGAATGCCTGAAGA
ATGAAAGGGTCTATGTTCTGCGTGAGTGGTAAACTGTGCTGTTGAAGCCCAAGG
ACCAGCCACATTACACAGCATATAAGAAAT

25 kodierend für das Defensinpeptid hBD-15.

54. Nukleinsäure mit der Sequenz

TGAGGAAGGTAGCATAGTGTGCAGTCCTGGACCAAAAGCTTGGCTGCACCTCTT
CTGGAAAGCTGCCATGGGTCTTCATGATCATTGCAATTCTGCTGTTCCAGAAACC
30 CACAGTAACCGAACAACTTAAGAACATGCTGGAATAACTATGTACAAGGACATTGCAG
GAAAATCTGCAGAGTAAATGAAGTGCCTGAGGCACATGTGAAAATGGGAGATACTG
TTGCCTCAATATCAAGGAACTGGAAGCATGTAAAAAAATTACAAAGCCACCTCGTCC

- 34 -

AAAGCCAGCAACACTTGCAGTCAAGACTATGTTACAATAATAGAAAATTTC
CCAAGCCTGAAGACACAGTCTACA
kodierend für das Defensinpeptid hBD-16.

5 55. Nukleinsäure mit der Sequenz

GGACTTGCAGCTTCATTTGGGCTGCCTAGCCATGAAGCTCCTTTGCTGACTTG
CTGTGCTGCTGCTCTTATCCCAGCTGACTCCAGGTGGCACCCAAAGATGCTGGAATC
TTTATGGCAAATGCCGTTACAGATGCTCCAAGAAGGAAAGAGTCTATGTTACTGCA
TAAATAATAAAATGTGCTGCGTGAAGCCCAAGTACCAGCCAAAAGAAAGGTGGTGGC

10 CATT

kodierend für das Defensinpeptid hBD-17.

56. Nukleinsäure mit der Sequenz

TTCCCAAGGACCATGAAACTCCTGCTGGCTCTCCTATGCTTGTGCTCCTACCCC
15 AAGTGATCCCAGCCTATAGTGGTAAAAAAATGCTGGAACAGATCAGGGCACTGCA
GGAAACAATGCAAAGATGGAGAACAGTGAAGATACTGCAAAATCTCGAGCTT
GCTGCATTCCATCCAATGAAGACCACAGGGCAGTCCCTGCGACATCTCCCACACCCT
TGAGTGACTCAACACCAGGAATTATTGATGATATTTAACAGTAAGGTTACGACAG
ACTACTTGAAGTAAGCAGCAAGAAAGATATGGTGAAGAGTCTGAGGCGGGAAAGG
20 GGAAC TGAGACCTCTTCCAAATGTTACCATAGCTCA
kodierend für das Defensinpeptid hBD-18.

57. Nukleinsäure mit der Sequenz

ACCATGAAGCTCTTTCTATCTTGCCAGCCTATGCTACAGTACCCAGGTGAACA
25 CAGAATTATTGGCTTGAGACGCTGTTAATGGGTTGGGAGATGCAGGGATCACT
GCAATGTGGATGAAAAGAGATACTGAAATGCAAGATGAAAAATGTTGTGGAC
CAAAAGTGGTTAAATTGATTAAAACCTACAATATGGAACACCAAATGTACTAA
TGAAGACGTCCAAGAAATGCTAAAACCTGCCAGAATTCTAGTGTGATAACAAAG
AAAACATATTTATCTGTTCTCCCCAAATCAAAGCACTAGCTTTTGCTAATACCA
30 ACTTTGTCATCATTCCAAATGCCACCCCTATGAACTCTGCCACCATCAGCACTATGAC
CCCAGGACAGATCACATACTGCTACTTCTACCAAGAGTAACACCAAAGAAAGCAG

- 35 -

AGATTCTGCCACTGCCTGCCACCACCAAGCACCACCTCCACCAAACATACTGCCAAC
ACCATCACTGGAGCTAGAGGAAGCAGAAGAGCAG
kodierend für das Defensinpeptid hBD-19.

5 58. Nukleinsäure mit der Sequenz

TAGAGTGTGGATGGATGGACACTGCCGGTTGTTGCAAAGATGGTGAAGACAGC
ATCATACTGCCGAAATCGTAAACGGTGCTGTTCCTAGTCGTTATTAACAATCC
AACCAGTAACAATTATGGAATCCTGGCTGGACCACTCCTCAGATGTCCACAAACAG
CTCCAAAAATGAAGACAAATATAACTAATAGATAGAAA

10 kodierend für das Defensinpeptid hBD-20.

59. Nukleinsäure mit der Sequenz

AGCAAAGCTCATCTCTGCCGTGCTGCAGGGAACCCATTTCCTTCCCCTGCAGCTCA
GCCACCTCCTCCTCTCAGGTCTGCCAGCCATGAAACTTCTTACCTGTTCTGCCAT
15 CCTTCTGCCATAGAAGAACCAAGTGATATCAGGCAAACGCCACATCCTCGATGCAT
GGGTAAAGTGGATTGTAGGGCCTTGCACAAAGAACGAAACAGCCCTACCTCTA
TTGCAGAAATTGTCAGTCCTGCTGCCCTCAGTCCTACATGAGGATAAGCATTCTGG
CAAAGAGGAAAATACCGACTGGTCTTATGAGAAGCAGTGGCCAAGACTACCT

kodierend für das Defensinpeptid hBD-22.

20

60. Nukleinsäure mit der Sequenz

TGAATTCAAACGGTGCTGGAAGGGTCAAGGGGCCTGCCAAACTTACTGCACAAGGC
AAGAAACTTACATGCACCTGTGCCCGATGCGTCCCTGTGCTCTCCTATGCAT
TGAAACCTCCACCGTCCCCAAGCATGAATATGAG

25 kodierend für das Defensinpeptid hBD-23.

61. Nukleinsäure mit der Sequenz

CCTTGGAAATCCATGTGAGCTTACCAAGGCATGTGCAGAAACGCCTGCAGAGAATAT
GAAATCCAATCTAACCTGCCAAATGATCAAAGTGCTGCCTGAAACTTCTGTGA
30 AAATAACCAGTTCTAAAATGTGAAGGAGGATTACGACTCTAACTCCAACCTGTCAGT
TACAAACAGTTCAAGCTACTCTCACATT

kodierend für das Defensinpeptid hBD-24.

62. Nukleinsäure mit der Sequenz

CCAAAAATCTGCTGGATCATAAAAGGACACTGCAGGAAAATGCAAACCTGGTGA
ACAGGGTTAAAAGCCATGTAAAAATGGTGACTATTGCTGCATTCCAAGCAACACAGA

5 TTCT

kodierend für das Defensinpeptid hBD-25.

63. Nukleinsäure mit der Sequenz

ATGGATGGATCAGAAGGTGCTATTATGGAACTGGCAGATGCAGGAAATCATGCAA
10 GAAATTGAGAGGAAGAAGAAAAATGTGGGGAAAAACATATTGCTGTGTCCCTAAA
GAAAAGGATAAACTATCACACATTACGACCAAAAGAGACAAGTGAGCTATATC
kodierend für das Defensinpeptid hBD-26.

64. Nukleinsäure mit der Sequenz

15 CAATCCTCCTGCCTTGGCCTCCAAAGTGCTGGAATTAGGTGTGAGCCACTGCAC
CTGGCCTATGCCCTTATTGCCTCCTGCCTACCTCCTGCTGTTGGAATGTGAAAGCA
AGACTGGAGCTTACCTGGACTATGAAAAACAAGGACCTCACC
kodierend für das Defensinpeptid hBD-27.

20 65. Nukleinsäure mit der Sequenz

GGGTCAAAATGTGTGAGTAACACCCCCAGGATACTGCAGGACATGTTGCCACTGGGG
GGAGACAGCATTGTTATGTGCAACGCTTCCAGAAAATGCTGCATCAGCTACTCCTT
CCTGCCGAAGCCTGACCTACCACAGCTATCGGTAACTGGCAATCAAGGAGAA
GAAACACACAAAGGAAAGACAAGAACAAACGACCGTAACATCA

25 kodierend für das Defensinpeptid hBD-28.

66. Nukleinsäure mit der Sequenz

30 TTTGAACCCC AAAATGTTGGAAGAATAATGTAGGACATTGCAGAAGACGATGTTA
GATACTGAAAGGTACATACTCTTGTAGGAACAAAGCTATCATGCTGCATTTCTATAA
TATCACATGAATATACTCGACGACCAGCATTCTGTGATTCACCTAGAGGATATAAC
ATTGGATTATAGTGATGTGGACTCTTTACTGGTCCCCAGTATCTATGTTGAATGAT
CTGATAACATTGACACAACTAAATTGGAGAAACCATGACACCTGAGACCAAACTC

- 37 -

CTGAGACTACTATGCCACCACATCTGAGGCCACTACTCCCGAGACTACTATGCCACCAC
CTGAGACTGCTACTTCCGAGACTATGCCACCACCTTCTCAGACAGCTCTTACTCATAA

T

kodierend für das Defensinpeptid hBD-29.

5

67. Nukleinsäure mit der Sequenz

CTCAAAAAATGCTTCATAAAAGTAACAGGGCTATTGCAGGAAGAAATGCAAGGTAGGA
GAAAGATATGAAATAGGATGTCTAAGTGGAAATTATGTTGTGCTAATGATGAAGAA
GAGAAAAAAACATGTGTCACTTAAGAACGCCACATCAACATTCTGGTGAGAAGCTGAGT

10

GTGCTGCAGGATTACATCATCTTACCCACCACCACTTTCACAGTC

kodierend für das Defensinpeptid hBD-30.

68. Nukleinsäure mit der Sequenz

ATGAAGTCCCTACTGTTACCCCTTGCAGTTTATGCTCCTGGCCAATTGGTCTCAG
15 GTAATTGGTATGTGAAAAAGTGTCTAACGACGTTGGAATTGCAAGAAGAAGTGCA
AACCTGAAGAGATGCATGTAAAGAAATGGTGGCAATGTGCGGCAAACAAAGGGAC
TGCTGTGTTCCAGCTGACAGACGTGCTAATTATCCTGTTCTGTGTCAGACAAAGA
CTACAAGAATTCAACAGTAACAGCAACACAGCAACAACAACTTGATGATGACTAC
TGCTTCGATGTCTCGATGGCTCCTACCCCCGTTCTCCCACGGT

20

kodierend für das Defensinpeptid hBD-31.

69. Nukleinsäure mit der Sequenz

ATTGAAACATGTTGGAATTTCGTGGCTCCTGCCGTGACGAATGCCTGAAGAATGAA
AGGGTCTATGTTCTCGGTGAGTGGTAAACTGTGCTGTTGAAGCCCAAGGACCAG
25 CCACATTACACAGCATATAAAGAAT

kodierend für das Defensinpeptid hBD-32.

- 1 / 2 -

hBD16-norm

Figur 1

- 2 / 2 -

HBD-16:

hBD-16: green

with S-S-bonds between residues: 6-35, 15-29, 19-36

hBD-16: red

with S-S-bonds between residues: 6-15, 29-35, 19-36

Figur 2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.