Oscillatore sinusoidale a ponte di Wien con OpAmp

Lorenzo Cavuoti

27 Novembre 2018

- **0)** Lo scopo dell'esperienza è realizzare un oscillatore sinusoidale a ponte di Wien. Ho montato il primo circuito di figura 1, i componenti, misurati con il multimetro digitale, risultano:
 - $R1 = 9.89 \pm 0.08 k\Omega$
 - $R2 = 9.91 \pm 0.08k\Omega$
 - $R3 = 10.05 \pm 0.08k\Omega$
 - $R4 = 9.81 \pm 0.08k\Omega$
 - $R5 = 9.81 \pm 0.08k\Omega$
 - $Rpot = 10.63 \pm 0.08k\Omega$
 - $C1 = 10.2 \pm 0.4nF$
 - $C2 = 10.2 \pm 0.4nF$
- 1) Ho alimentato l'OpAmp con $V_{CC}=14.88\pm0.08V$ e $V_{EE}=-15.09\pm0.08V$ e ho inviato all'ingresso un segnale sinusoidale di ampiezza $V_S=260\pm10mV$, successivamente ho variato la frequenza tra circa $0.5 \mathrm{kHz}$ e $3 \mathrm{kHz}$ e per ciascun valore ho misurato l'ampiezza e lo sfasamento di V_A , i dati presi sono riportati in tabella 1 e 2 e nel grafico 2. Lo sfasamento risulta nullo per $f_{0mis}=1.61\pm0.06$ kHz, l'errore è stato stimato variando la frequenza fino a quando non si notava uno sfasamento tra V_S e V_A , il valore è in accordo con la teoria $f_{0att}=1/2\pi R_1C_1=1.57\pm0.06\mathrm{kHz}$. Successivamente si è tenuta la frequenza costante e si è girato il potenziometro, si nota che quando la resistenza verso terra del potenziometro aumenta il guadagno diminuisce, e viceversa, come previsto dalla teoria. Infine mantenendo la frequenza del segnale di ingresso a f_0 e aumentando $V_{Spp}=4.1\pm0.2V$ si ha $V_{App}=3.4\pm0.1V$ (pp indica l'ampiezza picco picco), il guadagno per $f=f_0$ quindi diminuisce all'aumentare dell'ampiezza.

Figura 1: Schema circuitale dei due circuiti usati nell'esperienza, a destra l'oscillatore a ponte di Wien

f[kHz]	V_{Spp} [mV]	V_{App} [mV]	βA_V
0.52 ± 0.005	510 ± 20	370 ± 20	0.73 ± 0.04
0.723 ± 0.007	510 ± 20	440 ± 20	0.86 ± 0.06
0.946 ± 0.009	510 ± 20	480 ± 20	0.94 ± 0.06
1.40 ± 0.01	510 ± 20	510 ± 20	1.00 ± 0.06
1.93 ± 0.02	510 ± 20	510 ± 20	1.00 ± 0.06
2.34 ± 0.02	510 ± 20	500 ± 20	0.97 ± 0.06
2.90 ± 0.03	510 ± 20	480 ± 20	0.93 ± 0.06

Tabella 1: Tabella dell'open loop gain βA_V in funzione della frequenza di V_{in}

f[kHz]	fase [gradi]
0.511 ± 0.005	45.7 ± 0.5
0.706 ± 0.007	34.6 ± 0.4
0.964 ± 0.01	22.5 ± 0.3
1.44 ± 0.01	7.66 ± 0.09
2.14 ± 0.02	-7.63 ± 0.08
2.90 ± 0.03	-19.2 ± 0.2

Tabella 2: Tabella della fase in funzione della frequenza di $V_{in}=510\pm20mV$

Figura 2: Grafico dell'open loop gain e della fase in funzione della frequenza

Figura 3: Segnale sinusoidale di Vout

- 2) Ho collegato il terminale positivo di ingresso dell'OpAmp alla rete di feedback disconnettendo il generatore (secondo ciruito di figura 1). Il segnale V_{out} presenta una forma sinusoidale (figura 3), inoltre si nota che girando il potenziometro in senso orario, quindi aumentando la resistenza verso terra, l'ampiezza di V_{out} diminuisce, fino ad avere un segnale piatto. Invece se si gira il potenziometro il senso antiorario, ovvero diminuendo la resistenza verso terra, l'ampiezza di V_{out} aumenta, se si gira ancora la sinusoide viene leggermente distorta, fino ad avere clipping a $V_{outpp} = 28 \pm 1V$ figura 4
- 3) La frequenza di oscillazione risulta $f=1.62\pm0.01$ kHz, ottenuta invertendo la misura del periodo con i cursori, la frequenza è in accordo con la teoria con la misura del punto 1. Si nota inoltre che la frequenza non dipende dalla tensione di alimentazione dell'OpAmp e neanche dalla posizione del potenziometro finchè non si ha clipping: se il segnale presenta clipping la frequenza aumenta, come si nota in figura 4. Variando la posizione del potenziometro il valore del segnale che cambia maggiormente risulta l'ampiezza di V_{out} .
- 4) Ho posizionato il potenziometro in modo da creare il segnale V_{out} con minore ampiezza possibile, successivamente ho staccato la rete di feedback e connesso il generatore di funzioni con un segnale sinusoidale di ampiezza $V_{inpp}=0.51\pm0.02$ V misurata con l'oscilloscopio, il segnale in uscita risulta $V_{outpp}=1.53\pm0.06$ V $A_V=3.0\pm0.2$ compatibile con il guadagno atteso dalla teoria $A_V=3$ per ottenere $\beta A_V=1$

Figura 4: Clipping di V_{out}

5) E'stato ricollegato il circuito del punto 2 togliendo però i diodi, si osserva che V_{out} passa da un segnale piatto alla saturazione variando la posizione del potenziometro, senza la possibilità di avere un segnale di ampiezza intermedia, in particolare se $|V_{CC}| > |V_{EE}|$ si ha saturazione in basso (figura 5), invece se $|V_{CC}| < |V_{EE}|$ si ha saturazione in alto (figura 6), tuttavia più $|V_{CC}| - |V_{EE}|$ è piccolo meno clipping si ha, fino a non essere più visibile con l'oscilloscopio. Si nota anche che la frequenza di oscillazione rimane la stessa entro l'incertezza di misura del tempo dell'oscilloscopio.

I due diodi svolgono il ruolo di limitare l'ampiezza del segnale in uscita, infatti quando $V_{out} > V_{th}$ (dove con V_{th} si indica la tensione di soglia del diodo) il diodo ha una resistenza molto minore di R_3 e possiamo considerare la caduta di potenziale trascurabile ai capi del resistore. Successivamente questo segnale rientra nell'OpAmp che amplifica la differenza tra V- e V+ ma a causa del diodo l'ampiezza di V- è variata poco rispetto a V+, di conseguenza l'ampiezza del segnale in uscita diminuisce.

Figura 5: Saturazione in basso di V_{out} per $\left|V_{CC}\right|>\left|V_{EE}\right|$

Figura 6: Saturazione in alto di V_{out} per $\left|V_{CC}\right|<\left|V_{EE}\right|$