Т ФИЗИКА АТОМНОГО ЯДРА АТОМНОЕ ЯДРО

Заряд и размеры атомного ядра

Заряд атомного ядра

р-протон

Состав атомного ядра

Радиус атомного ядра

$$R=1,3 \cdot 10^{-15} \cdot \sqrt[3]{A}$$
 m.

п-нейтрон

Обозначение изотопа

Z-число протонов в ядре, зарядовое число N-число нейтронов в ядре A=Z+N-число нуклонов в ядре, массовое число

${}_{z}^{A}X_{N}$

Ядерное взаимодействие нуклонов

Ядерные силы притяжения между любыми двумя нуклонами одинаковы

Обменные силы

Энергия связи атомных ядер

$$m_n = 1,6749 \cdot 10^{-27} \text{ kg} = 1,00866 \text{ a.e.m.}$$

Дефект массы

$$\Delta m = Zm_p + Nm_n - m_s$$

Энергия связи

$$E_{cs} = \Delta mc^2$$

Удельная энергия связи

$$f = \frac{E_{ce}}{A}$$

Энергетические эквиваленты

$$1M \ni B = 1,602 \cdot 10^{-13}$$
Джс
1a.e.м. · $c^2 = 931,5 M \ni B$

Зависимость удельной энергии связи атомных ядер от массового числа

2 ЯДЕРНЫЕ РЕАКЦИИ

Первая осуществленная человеком ядерная реакция:

$$^{14}_{7}N + ^{4}_{2}He \longrightarrow ^{17}_{8}O + ^{1}_{1}H$$

Реакция деления ядра урана

$$^{235}_{92}U_{143} + ^{1}_{0}n_{1} \longrightarrow ^{134}_{54}Xe_{80} + ^{100}_{38}Sr_{62} + ^{1}_{0}n_{1} + ^{1}_{0}n_{1}$$

Выход ядерной реации:

$$A + a \longrightarrow B + b$$

$$E = \Delta m \cdot c^{2}, \quad \Delta m = m_{A} + m_{a} - m_{B} - m_{b}$$

Реакция синтеза ядра гелия из ядер водорода:

3 РАДИОАКТИВНОСТЬ

Электронный бета-распад (n \rightarrow p + ē + \hat{v})

Позитронный бета-распад (р \rightarrow n + e[†]+ $_{V}$)

Закон радиоактивного распада

$$N = N_o \cdot 2^{-\frac{t}{T}}$$

N_e и N - количества радиоактивных ядер в моменты времени 0 и t, T - период полураспада.

Активность

$$A = \lambda \cdot N, \quad \lambda = \frac{\ln 2}{T},$$

где A - скорость распада, λ- постоянная распада. Единица активности - 1 беккерель = 1 распад/с

Основные процессы, сопровождающие прохождение быстрых заряженных частиц через вещество

Длина пробега альфа-частиц и бета-частиц в воздухе и воде

Энергия ч	астиц	0,5 MaB	5 МэВ	
Воздух	$\alpha \stackrel{\rightharpoonup}{=} \\ \beta \stackrel{\rightharpoonup}{=} \\ \vdots$	0,3 см	$\alpha \stackrel{\longrightarrow}{=} 3,5 \text{ cm}$ $\beta \stackrel{\longrightarrow}{=} $	25 M
Вода	$\alpha \stackrel{\overrightarrow{\longrightarrow}}{\underset{\beta}{\overset{\rightarrow}{\longrightarrow}}}$	0,004 mm	α	26 MM

Основные процессы, сопровождающие прохождение рентгеновского и гамма-излучения через вещество

Поглощение гамма-излучения в веществе

Энергия гамма-квантов	Толщина слоя вещества, ослабляющего поток гамма излучения в десять раз			
	Вода	Бетон	Свинец	
0,5 MaB	24 cm	12 cm	1,3 см	
1,0 MaB	33 см	16 cm	2,9 см	
5,0 MaB	76 cm	36 см	4,7 cm	

5 методы регистрации частиц

Метод фотоэмульсий

Урановая руда

След на фотопленке от излучений урановой руды

Камера Вильсона

Сцинтилляционный метод

Трековая камера

Стереоснимок следов частиц, возникших при столкновении протона с антипротоном в стримерной камере

Ионизационная камера

Карманный дозиметр

Счетчик Гейгера-Мюллера

Схема включения счетчика Гейгера-Мюллера

Радиометр

Единицы СИ доз ионизирующего излучения

Наименование	Единицы				
величины	Наимено- вание	Обозна- чение	Определение		
Экспозиционная доза облучения	кулон на килограмм	Кл/кг	Кулон на килограмм равен экспозиционной дозе рентгеновского и гамма-излучений, при которой со- пряженная корпускулярная эмиссия в сухом атмос- ферном воздухе массой 1 кг производит ионы, несу- щие электрический заряд каждого знака, равный 1 Кл		
Мощность экспозиционной дозы	ампер на килограмм	А/кг	Ампер на килограмм равен мощности экспозиции ной дозы рентгеновского и гамма-излучений, при котором за время 1 с сухому атмосферному воздуху передается экспозиционная доза излучения 1 Кл/кг		
Поглощенная доза излучения	грэй	Гр	Грэй равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж		
Мощность поглощенной дозы излучения	грэй в секунду	Гр/с	Грэй в секунду равен мощности поглощенной дозы излучения, при которой за время 1 с облученным веществом поглощается доза излучения 1 Гр		
Эквивалентная доза излучения	зиверт	Зв	Зиверт равен эквивалентной дозе излучения, при которой поглощенная доза равна 1 Гр и коэффициент К качества излучения равен единиц		
Мощность эквивалентной дозы излучения	зиверт в секунду	38/c	Зиверт в секунду равен мощности эквивалентной дозы излучения, при которой за время 1 с облучае- мым веществом поглощается эквивалентная доза излучения 1 Зв		

Коэффициент К качества излучения для некоторых видов излучения

Рентгеновское и гамма-излучения 1 Электроны, позитроны, β-излучение 1 Нейтроны с энергией ≤ 0,1-10 МэВ 10 Протоны с энергией ≤ 10 МэВ 10 α'-излучение с энергией 10 МэВ 20

Связь единиц дозы излучения СИ с внесистемными единицами

1 рентген = 1P = 2,58 · 10⁻⁴ Кл/кг Биологический эквивалент рентгена (бэр) 1 бэр = 0,01 Зв Экспозиционной дозе 1 Р рентгеновского и гамма-излучения соответствует эквивалентная доза ≈ 0,01 Зв (1 Зв≈100 Р) ФИЗИКА АТОМНОГО ЯДРА

ДОПУСТИМЫЕ И ОПАСНЫЕ ДОЗЫ ОБЛУЧЕНИЯ

Естественные источники радиации

1 м3в Внутреннее облучение, обусловленное радоном и продуктами его распада, попадающими

в организм

при дыхании

0,35 мЗВ обусловленное естественными изотопами в тканях организма

Космическое излучение 0,3 м3в

Внешнее гамма-излучение 0.35 m3B

Средняя общая эквивалентная доза облучения человека от естественных источников радиации равна

Внутреннее облучение,

2 мЗв/год или

0,2 бэр/год

Предельно допустимые эквивалентные дозы облучения

Для профессионалов —	за год	50 мЗв (5 бэр)
Для ограниченной	за год	5 мЗв (0,5 бэр)
части населения	за 70 лет	350 мЗв (35 бэр)

Предельно допустимая мощность экспозиционной дозы

Для профессионалов (1700 рабочих часов в год): 30 мкЗв/час (3 мбэр/час)*

 Мощности экспозиционной дозы 3 мбэр/час для рентгеновского и гамма-излучения соответствует экспозиционная доза 3 мР/час

Опасные дозы однократного общего облучения

Гибель отдельных клеток крови и половых клеток: 0,1-0,5 Зв (10-50 бэр)

Нарушения в работе кроветворной системы: 0,5-1,0 Зв (50-100 бэр)

Острая лучевая болезнь (≈50% смертельных исходов): 3-5 Зв (300-500 бэр)

Доля ядерной энергетики в общей выработке электроэнергии в 2000 году

Цепная реакция деления ядер урана

Схема атомной электростанции

- реактор,
- 2 топливные элементы,
- 3 регулирующие стержни,
- 4 nap,
- 5 турбина,
- 6 электрогенератор,
- 7 конденсатор,
- 8 охлаждающая вода,
- 9 насос,
- 10 подогреватель,
- 11 бетонная защита

ФИЗИКА АТОМНОГО ЯДРА ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Фундаментальные элементарные частицы

Ква	арки		Лептоны	
Обозначение	Электрический заряд	Название	Обозначение	Электрический заряд
u	+ <mark>2</mark> e	Электрон	0	- 0
c	+2/3 e	Мюон	μ	- 0
t	+2/3 e	Таон	τ	-е
d	- <u>1</u> e	Электронное нейтрино	V.	0
5	- <u>1</u> e	Мюонное нейтрино	V_{μ}	0
b	- <u>1</u> e	Таонное нейтрино	Vt	0

Фундаментальные взаимодействия

	Сильное	Электромагнитное	Слабое	Гравитацион- ное
Взаимодействующие частицы	кварки, нуклоны	частицы с электрическими зарядами	кварки, лептоны	все частицы
Радиус действия сил	10 ⁻¹⁵ M	00	10 ⁻¹⁷ M	œ
Относительная сила взаимодействия	1	10°	10°	10**
Частицы - носители взаимодействия	глюоны, мезоны	фотоны	промежуточ-	гравитоны (?)

