

## TNSDC - GENERATIVE AI FOR ENGINEERING FINAL PROJECT



SUBMITTED BY: Dharshan S (311521104002)



## PROJECT TITLE

# Conversion of Text to Speech



## **AGENDA**

- > PROBLEM STATEMENT
- >> PROJECT OVERVIEW
- > WHO ARE THE END USERS?
- > YOUR SOLUTION AND ITS VALUE PROPOSITION
- > THE WOW IN YOUR SOLUTION
- > MODELLING
- > RESULTS



## PROBLEM STATEMENT

The project addresses the need for accurate and natural-sounding text-to-speech conversion. It aims to ensure that synthesized speech reflects the original text's meaning and nuances while evaluating and improving the conversion process.



3/21/2024 Annual Review

## PROJECT OVERVIEW

This project demonstrates text-to-speech conversion using Python's gTTS module and evaluates the accuracy of the transcription. It leverages generative AI to convert written text into natural-sounding speech. The process involves importing libraries, performing conversion, saving audio, playback, and assessing accuracy through character-level comparison. By integrating generative AI techniques, the project showcases the potential for more immersive and realistic speech synthesis.



3/21/2024 Annual Review

F

## WHO ARE THE END USERS?

**Visually Impaired Individuals:** People who are blind or have low vision can use text-to-speech technology to access written content, such as books, websites, and documents, through synthesized speech output.

**Language Learners:** Individuals learning a new language can utilize text-to-speech systems to improve pronunciation, language comprehension, and listening skills by listening to synthesized speech representations of written text.

**Automated Customer Service Systems:** Companies deploying automated customer service systems can employ text-to-speech technology to provide voice-based interactions and assistance to customers, enhancing user experience and efficiency.

**Educational Institutions:** Teachers and students in educational institutions can leverage text-to-speech technology for a variety of purposes, including providing audio versions of textbooks, creating multimedia presentations, and accommodating students with reading disabilities.

**Smart Device Users:** Consumers using smart devices such as smartphones, tablets, and smart speakers can interact with text-to-speech systems for tasks such as voice search, voice commands, and receiving spoken notifications and reminders.

3/21/2024 Annual Review 6

### YOUR SOLUTION AND ITS VALUE PROPOSITION

#### **Solution Overview:**

• Text-to-Speech Conversion System with Generative AI Integration

#### **Value Proposition:**

- Enhanced Accessibility: Our solution empowers visually impaired individuals to access written content through synthesized speech, promoting inclusivity and accessibility in digital communication.
- Natural and Expressive Speech: Leveraging generative AI techniques, our system delivers natural-sounding and expressive speech outputs, enhancing user engagement and comprehension.
- **Time Efficiency:** Save time and effort by automating the text-to-speech conversion process, enabling users to quickly convert written text into speech for various applications without manual intervention.
- Customization Options: Tailor synthesized speech to individual preferences with customizable parameters such as pitch, speed, and tone, providing users with personalized speech outputs that suit their preferences and needs.
- **Versatility:** Our system's scalability and compatibility with different platforms and devices ensure its versatility for diverse applications, from language learning tools to automated voice interfaces in smart devices.



## THE WOW IN YOUR SOLUTION

Natural Human-like Speech: Experience synthesized speech outputs that closely resemble natural human speech, creating a truly immersive and engaging listening experience.

**Effortless Customization:** Effortlessly customize speech synthesis parameters such as pitch, speed, and tone to create personalized speech outputs tailored to individual preferences and application requirements.

**Seamless Integration:** Seamlessly integrate the text-to-speech conversion system into existing applications, websites, and devices, enhancing user experience and accessibility without disrupting workflow.

**Real-time Feedback:** Receive real-time feedback on the accuracy and quality of synthesized speech outputs, enabling users to monitor and adjust speech synthesis parameters for optimal results.

**Enhanced Accessibility:** Empower individuals with visual impairments or reading difficulties to access written content through synthesized speech, promoting inclusivity and accessibility in digital communication.



## MODELLING

#### **Architecture:**

The text-to-speech system combines the gTTS module with generative AI techniques. The gTTS module converts text to speech, while the AI component improves speech quality and naturalness.

#### **Training Process:**

The generative AI model learns from large human speech datasets, adjusting parameters iteratively to minimize differences between synthesized and real speech.

#### **Loss Functions:**

Various loss functions are used to optimize the generative AI model's performance. Common ones include mean squared error (MSE) for speech waveform synthesis and categorical cross-entropy for linguistic feature prediction

#### **Evaluation Metrics:**

The system assesses synthesized speech with metrics like word error rate (WER) and naturalness ratings, ensuring accuracy and user satisfaction.

#### **Integration:**

The gTTS module handles basic text-to-speech conversion, while the generative AI model enhances speech quality, seamlessly integrated into the conversion pipeline.

3/21/2024 An ual Review

## **RESULT**

The text-to-speech conversion system successfully synthesized speech outputs with high accuracy and naturalness, enhancing user experience and accessibility.

**Discriminator Loss**: Reflects the discriminator network's effectiveness in distinguishing between real and synthesized speech during training, indicating the network's ability to discern natural speech from artificially generated speech.

**Generator Loss:** Measures the success of the generator network in producing realistic speech outputs, demonstrating its capability to deceive the discriminator by generating natural-sounding speech.

**Speech Synthesis Accuracy:** Represents the accuracy of the text-to-speech system in converting input text into speech, providing insights into the system's effectiveness in preserving semantic meaning and linguistic nuances.

**User Satisfaction Metrics:** User feedback surveys and subjective evaluations assess user satisfaction with the synthesized speech outputs, considering factors such as naturalness, intelligibility, and overall listening experience.

<u>Demo Link: https://github.com/Dharshan-11/IBM-PROJECT-Gen-Al.git</u>

3/21/2024 An ual Review 10