Problem 1. Determine (with brief explanation only; no proof required) whether or not each of the following subsets is a subspace of \mathbb{R}^3 .

- **a.** $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 0\}$
- **b.** $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 x_3 = 0\}$
- **c.** $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_3\}$
- **a.** Yes: This is a subspace as it is non empty as $\vec{0}$ is an element. The equation being equal to zero would imply any two added together would be equal to zero and any being multiplied by a scalar would be equal to zero as well.
- **b.** No: Consider the two vectors $(1,0,0), (0,1,1) \in \mathbb{R}^3$ both would be in the set but adding them together would give (1,1,1) which is not in the set.
- **c.** Yes: Nonempty as $\vec{0}$ is an element. As the set would be equal to $\{(x,y,x)\in\mathbb{R}^3\}$ any two added together would be of the form (a,b,a)+(c,d,c)=(a+c,b+d,a+c). As scalar multiplication is distributed the 1st and last elements of any vector would still be equal.

Problem 2. Let V be an arbitrary \mathbb{K} -vector space and U_1, U_2 be arbitrary subspaces of V. Prove or disprove each of the following.

- (a) $U_1 \cap U_2$ is a subspace of V.
- (b) $U_1 \cup U_2$ is a subspace of V.
- (a) Proof. Suppose V is an arbitrary \mathbb{K} -vector space and U_1, U_2 are arbitrary subspaces of V. Consider the set $U_1 \cap U_2$ as both subspaces contain the zero vector we have that $\vec{0} \in U_1 \cup U_2$. Now $\forall \vec{x}, \forall \vec{y} \in U_1 \cap U_2$ we have $\vec{x}, \vec{y} \in U_1$ and $\vec{x}, \vec{y} \in U_2$ as U_1 is a subspace we have $\vec{x} + \vec{y} \in U_1$ by the same reasoning $\vec{x} + \vec{y} \in U_2$ hence $\vec{x} + \vec{y} \in U_1 \cap U_2$. Let $\lambda \in \mathbb{K}$ and $\vec{v} \in U_1 \cap U_2$ as U_1, U_2 are both subspaces we have $\lambda \vec{x} \in U_1$ and $\lambda \vec{x} \in U_2$ hence $\lambda \vec{x} \in U_1 \cap U_2$.
- (b) Disproof. Let $V = \mathbb{R}^2$ be a \mathbb{R} -vector space. Consider the two sets $U_1 = \{(x,0) \in \mathbb{R}^2\}$ and $U_2 = \{(0,x) \in \mathbb{R}^2\}$ these are both subspaces of \mathbb{R}^2 however $U_1 \cup U_2 = \{(x,0) \in \mathbb{R}^2 \text{ or } (0,y) \in \mathbb{R}^2\}$. Adding the two vectors $(1,0), (0,1) \in U_1 \cup U_2$ we have (1,0)+(0,1)=(1,1) but $(1,1) \notin U_1 \cup U_2$.

Problem 3. Given two vectors $\mathbf{u} = (x_1, \dots, x_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n , recall that the *dot product* is defined as

$$\mathbf{u} \cdot \mathbf{v} = x_1 y_1 + \dots + x_n y_n.$$

Let U and N be the following subspaces of \mathbb{R}^3 :

$$U = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$
$$N = \{\mathbf{v} \in \mathbb{R}^3 : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every } \mathbf{u} \in U\}$$

Find the missing vector entry that makes the following statement true (and provide a proof):

$$N = \left\{ (x, x, -x) \in \mathbb{R}^3 : x \in \mathbb{R} \right\}.$$

Proof. The set should be $N=\{(x,x,-x)\in\mathbb{R}^3:x\in\mathbb{R}\}$. Let $(x,y,x+y)\in U$ and let $(a,a,-a)\in N$ the $(x,y,x+y)\cdot (a,a,-a)=ax+ay+-a(x+y)=ax+ay+-ax+-ay=0$. Now to show that N is a subspace. We have that $(0,0,0)\in N$. Now let $(x,x,-x),(y,y,-y)\in N$ adding the vectors yields (x,x,-x)+(y,y,-y)=(x+y,x+y,-(x+y)) as $x+y\in\mathbb{R}$ we get that $(x+y,x+y,-(x+y))\in\mathbb{R}^3$. Let $\lambda\in\mathbb{R}$ and $(x,x,-x)\in N$ as $\lambda x\in\mathbb{R}$ we get $(\lambda x,\lambda x,-\lambda x)\in N$ therefore N is a subspace.

Problem 4. Let U_1 and U_2 be the following subspaces of \mathbb{Q}^4 :

$$U_1 = \{(x, y, z, y) : x, y, z \in \mathbb{Q}\}$$

$$U_2 = \{(0, x, 0, -x) : x \in \mathbb{Q}\}$$

Prove that $\mathbb{Q}^4 = U_1 \oplus U_2$.

Proof. Let U_1 and U_2 be as defined above. Let $(x, y + a, z, y - a) \in U_1 \oplus U_2$ then we have $x, y + a, z, y - a \in \mathbb{Q}$ which implies $(x, y + a, z, y - a) \in \mathbb{Q}^4$ so we have $U_1 \oplus U_2 \subseteq \mathbb{Q}^4$. Now let $(a, b, c, d) \in \mathbb{Q}^4$ consider the two vectors $(a, \frac{b+d}{2}, c, \frac{b+d}{2}) \in U_1$ and $(0, \frac{b-d}{2}, 0, -\frac{b-d}{2}) \in U_2$ adding these two vectors we get

$$(a, \frac{b+d}{2}, c, \frac{b+d}{2}) + (0, \frac{b-d}{2}, 0, -\frac{b-d}{2}) = (a, b, c, d)$$

therefore we have $\mathbb{Q}^4 \subseteq U_1 \oplus U_2$ which implies $\mathbb{Q}^4 = U_1 \oplus U_2$.

Suppose $(x, y, z, w) \in U_1 \cap U_2$ then we have x = z = 0, and w = -y by the definition of the vectors in U_1 we also get y = -y which implies y = 0 therefore $U_1 \cap U_2 = \{\vec{0}\}$.

Problem 5. Recall that $\mathcal{P}_m(\mathbb{K})$ is the \mathbb{K} -vector space of polynomials of degree (at most) m and with coefficients in \mathbb{K} .

- **a.** Find a list of four distinct, nonzero polynomials that span $\mathcal{P}_2(\mathbb{R})$.
- **b.** Prove that the polynomials found in part (a) is linearly dependent.
- **a.** The four polynomials that span $\mathcal{P}_2(\mathbb{R})$ are $S = \{x^1 + 1, x^2 1, x, 1\}$. This is shown to span $\mathcal{P}_2(\mathbb{R})$ by letting $ax^2 + bx + c \in \mathcal{P}_2(\mathbb{R})$ we have $a(x^2 + 1) + bx + (c - a)1 = ax^2 + bc + c$ as an arbitrary element of $\mathcal{P}_2(\mathbb{R})$ was equal to a linear combination of the elements of S we have span $(S) = \mathcal{P}_2(\mathbb{R})$.
- **b.** *Proof.* We have $(x^2 + 1) + (-1) \cdot (x^2 1) + 0x + -2 \cdot (1) = 0$ as the coefficients are not all zero then we have it is linearly dependent.