Лабораторная работа №2 МОСТОВОЙ МЕТОД ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЙ

• Цель: освоить мостовой метод измерения сопротивлений.

Схема:

$$R_x = \frac{R_3}{R_2} R_{\scriptscriptstyle M}$$

• Измерения:

Измерения	R ₂ , Ом	R ₃ , Ом	R _м , Ом	R _x , Ом	<r>, Ом</r>
	50	100	684	1368	
R_{x}	50	200	341	1364	1367
	100	400	342	1368	
R_6	100	400	125	500	
	100	300	167	501	500
	100	200	250	500	
	50	100	947	1894	
	100	200	910	1820	1864
	100	300	626	1878	
	100	100	368	368	
	70	300	85	364	365
	90	200	163	362	

А так же с помощью омметра: $R_x = 1326(O_M)$, $R_3 = 489(O_M)$, $\frac{R_x R_6}{R_x + R_6} = 357$, $R_x + R_6 = 1815(O_M)$.

1867 - 366

Рассчет соединений R_x и R_6 :

- Расчет погрешностей:
- 1. $\Delta R_2 = \Delta R_3 = \Delta R_{\scriptscriptstyle M} = 1 (O_{\scriptscriptstyle M});$
- 2. Для отдельно взятого измерение Rx по формуле $\Delta R_x = R_x \sqrt{\left(\frac{\Delta R_3}{R_3}\right)^2 + \left(\frac{\Delta R_2}{R_2}\right)^2 + \left(\frac{\Delta R_M}{R_M}\right)^2}$
- 3. Для среднего значения R по следующему принципу (см. аналитические методы прикладной физики):

$$R_x = \sum_{i=1}^n rac{R_{xi}}{n}$$
, следовательно $\Delta R_x = \sqrt{\sum_{k=1}^n \left(rac{\partial}{\partial\,R_{xk}}igg(\sum_{i=1}^n rac{R_{xi}}{n}igg)\Delta R_{xk}igg)^2} =$
 $= \left[m$.к. все члены суммы без R_k пропадут $\right] = \sqrt{\sum_{k=1}^n \left(rac{\Delta R_{xk}}{n}
ight)^2}$

Итого, получаем:

$\Delta R_{\rm M} = \Delta R_3 = \Delta R_2$, Om	$\Delta R_{_{\! X}}$, Ом	ΔR, Om
	31 28 15	15
4	7 6 6	4
'	42 20 20	17
	5 7 5	3

$$R_x = 1367 \pm 15$$

$$R_6 = 500 \pm 4$$

$$R_x + R_6 = 1864 \pm 17$$

$$\frac{R_x R_6}{R_x + R_6} = 365 \pm 3$$

Вывод:

Мостовой метод позволяет измерить неизвестное сопротивление, зная остальные сопротивления цепи и установив мост в состояние равновесия.

Хотя мостовой метод позволяет избавиться от погрешности мультиметра, взамен для точного результата он требует точности градуировки известных магазинов сопротивлений.

Формулы для рассчета параллельного и последовательного соединений резисторов дают значения совпадающие с опытным измерением таких соединений.

Если между двумя точками цепи не протекает ток, то если их соеденить проводником, поведение цепи не изменится.