Forecasting de Series Temporales

Dr. Marcelo Risk

Data Mining de Series Temporales, Maestría en Explotación de Datos y Descubrimiento de Conocimientos, FCEyN UBA

2020

Sinopsis

Introducción

Estacionaridad de una ST

Forecasting Lineal

Descomposición clásica

Forecasting STL (Seasonal and Trend decomposition using Loess)

Modelos ARMA

Forecasting ARIMA

Introducción al Forecasting

- ► Forecasting: es la predicción del futuro (!!!), en base al pasado...
- ► Condición fundamental: el pasado debe ser *estacionario*, entonces debe pasar pruebas de *estacionaridad*.
- Métodos: forecasting lineal, STL y ARIMA.

Estacionaridad de una serie de tiempo (ST)

- Definición: una serie se considera estacional cuando su media y varianza no varían con el tiempo.
 - ST estacionaria: modelización con TF y ARMA, es posible forecasting.
 - ▶ **ST** no estacionaria: desestacionarla, ó utilizar métodos tiempo-frecuencia (wavelets), no es posible forecasting.
- Pruebas de estacionaridad: Augmented Dickey-Fuller test y KPSS Test for Level Stationarity.

Pruebas de estacionaridad: Augmented Dickey-Fuller test

- Es una prueba de la *raiz unitaria* (unit root) de un proceso estocástico (aleatorio), en el caso que la *raiz unitaria* es 1, es no estacionario.
- ► La H₀ la ST tiene raiz unitaria, y la H₁ es estacionaria.
- ► Función adf.test() en R.

Pruebas de estacionaridad: KPSS (Kwiatkowski, Phillips, Schmidt, and Shin) Test

- Es una prueba de estacionaridad.
- ▶ La H_0 la ST es estacionaria, y la H_1 tiene raiz unitaria.
- Función kpss.test() en R.

Pruebas de estacionaridad: combinación de resultados de ADF y KPSS

ADF	KPSS	decisión
P < 0.05	$P \ge 0.05$	estacionaria
P < 0.05	P < 0.05	indefinida
<i>P</i> ≥ 0,05	$P \ge 0.05$	indefinida
<i>P</i> ≥ 0,05	P < 0,05	no estacionaria

```
library ( tseries )  N = 256  tiempo = 0:(N-1)  \times n <- rnorm(N)  plot (tiempo,xn,type='l')
```



```
print (adf. test (xn))
# Augmented Dickey-Fuller Test
# data: xn
# Dickey-Fuller = -5.8844, Lag order = 6, p-value = 0.01
# alternative hypothesis: stationary
print (kpss. test (xn))
# KPSS Test for Level Stationarity
# data: xn
\# KPSS Level = 0.10597, Truncation lag parameter = 3,
    p-value = 0.1
```

Decisión: ST estacionaria

```
N = 256
tiempo = 0:(N-1)
x <- 5*sin(10*2*pi*tiempo/N) + rnorm(N)
plot(tiempo,x,type='l')
```



```
print (adf. test (x))
# Augmented Dickey-Fuller Test
# data: x
# Dickey-Fuller = -11.894, Lag order = 6, p-value = 0.01
# alternative hypothesis: stationary
print (kpss. test (x))
# KPSS Test for Level Stationarity
# data: x
\# KPSS Level = 0.04288, Truncation lag parameter = 3,
    p-value = 0.1
```

Decisión: ST estacionaria

```
N = 256
tiempo = 0:(N-1)

e <- rnorm(N)
xcumsum <- cumsum(e)
plot(tiempo,xcumsum,type='l')</pre>
```



```
print (adf. test (xcumsum))
# Augmented Dickey-Fuller Test
# data: xcumsum
# Dickey-Fuller = -2.5171, Lag order = 6, p-value = 0.3581
# alternative hypothesis: stationary
print (kpss. test (xcumsum))
# KPSS Test for Level Stationarity
# data: xcumsum
# KPSS Level = 5.7438, Truncation lag parameter = 3, p-value
    = 0.01
```

Decisión: ST no estacionaria

Ejemplo ST no estacionaria, uso de diff()

```
xcumsum.diff <- diff(xcumsum)
tiempo2 <- tiempo
length(tiempo2) <- length(xcumsum.diff)
plot(tiempo2,xcumsum.diff,type='l')</pre>
```

Ejemplo ST no estacionaria, uso de diff()

Ejemplo ST no estacionaria, uso de diff()

```
print (adf. test (xcumsum))
# Augmented Dickey-Fuller Test
# data: xcumsum.diff
# Dickey-Fuller = -5.052, Lag order = 6, p-value = 0.01
# alternative hypothesis: stationary
print (kpss. test (xcumsum))
# KPSS Test for Level Stationarity
# data: xcumsum.diff
\# KPSS Level = 0.1551, Truncation lag parameter = 3, p-value
    = 0.1
```

Decisión: ST estacionaria!!

Ejemplo ST indefinida

```
\label{eq:mean_section} \begin{split} m &= 0.3 \\ b0 &= 10 \\ \text{xtrend} &< -\sin(10*2*\text{pi*tiempo/N}) + \sin(30*2*\text{pi*tiempo/N}) + \\ &\quad rnorm(N) + m*\text{tiempo} + b0 \\ \text{plot} & (\text{tiempo,xtrend,type='l'}) \end{split}
```

Ejemplo ST indefinida

Ejemplo ST indefinida

```
print (adf. test (xtrend))
# Augmented Dickey-Fuller Test
# data: xtrend
# Dickey-Fuller = -4.7415, Lag order = 6, p-value = 0.01
# alternative hypothesis: stationary
print (kpss. test (xtrend))
# KPSS Test for Level Stationarity
# data: xtrend
# KPSS Level = 6.4856, Truncation lag parameter = 3, p-value
    = 0.01
```

Decisión: ST indefinida...

Ejemplo ST indefinida, detrended

```
Im.xtrend <- Im(xtrend ~ tiempo)
print (summary(Im.xtrend))
xtrend.d <- xtrend - (Im.xtrend$ coefficients [1] +
    Im.xtrend$ coefficients [2] *tiempo)
plot(tiempo,xtrend.d,type='l')</pre>
```

Ejemplo ST indefinida, detrended

Ejemplo ST indefinida, detrended

```
print (adf. test (xtrend.d))
# Augmented Dickey-Fuller Test
# data: xtrend
# Dickey-Fuller = -4.7415, Lag order = 6, p-value = 0.01
# alternative hypothesis: stationary
print (kpss. test (xtrend.d))
# KPSS Test for Level Stationarity
# data: xtrend
\# KPSS Level = 0.047681, Truncation lag parameter = 3,
    p-value = 0.1
```

Decisión: ST estacionaria!!

```
N = 250
tiempo = 0:(N-1)
m = 0.3
b0 = 10
x < -15*sin(2*pi*tiempo/N) + 5*sin(5*2*pi*tiempo/N) +
   rnorm(N,sd=10) + m*tiempo + b0
x < -ts(x)
plot(tiempo,x,type='l')
```



```
fit .tslm <- tslm(x ~ trend)
f <- forecast(fit .tslm, h=20,level=c(80,95))
plot(f, ylab="x", xlab="tiempo")
lines (fitted (fit .tslm), col="blue")
summary(fit.tslm)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 22.6260 1.5340 14.75 <2e-16 ***
# trend 0.1958 0.0106 18.48 <2e-16 ***
```



```
par(mfrow=c(1,2))
res <- ts(resid( fit .tslm))
plot .ts(res, ylab="res (x)")
abline (0,0)
Acf(res)</pre>
```



```
print (dwtest( fit .tslm, alt="two.sided"))
# Durbin—Watson test
# data: fit .tslm
\# DW = 1.2978, p-value = 1.719e-08
# alternative hypothesis: true autocorrelation is not 0
par(mfrow=c(1,1))
bins <- hist(res, breaks='FD', xlab='Residuos',
     main='Histograma de residuos')
xx < -40:40
lines (xx, 1300*dnorm(xx,0,sd(res)),col=2)
```


Descomposición clásica

- ▶ Descompone una ST en sus componentes estacionales, tendencia e irregular (resto).
- Utiliza medias móviles.
- Opciones componentes aditivas o multiplicativas.

Descomposición clásica

```
library (fpp)

data(elecequip) # viene en el fpp
plot(elecequip)

fit .decomp <- decompose(elecequip, type='additive')
plot(fit .decomp)</pre>
```

Descomposición clásica

Descomposición clásica

Forecasting STL (Seasonal and Trend decomposition using Loess)

- Descompone una ST en sus componentes estacionales, tendencia e irregular (resto).
- Utiliza el algoritmo loess, el cual realiza ajustes locales para una ventana.
- Opciones componentes aditivas o multiplicativas.

```
library (fpp)
data(elecequip) # viene en el fpp
plot (elecequip)
fit . stl <- stl(elecequip, t.window=15, s.window="periodic",
    robust=TRUE)
plot (fit . stl)
eeadj <- seasadj(fit.stl) # remueve la componente estacional
plot(naive(eeadj), xlab="index",
     main="Forecasting de datos con estacionalidad removida")
fcast <- forecast(fit . stl , method="naive")
plot(fcast, ylab="index",
     main="Forecasting completo")
```


Modelos ARMA

- ► Modeliza una ST como la respuesta al impulso de un filtro con componentes autoregresivas (AR) y/o de media móvil (MA).
- ► Tres variantes:
 - ▶ puro AR, orden **p**
 - puro MA, orden q
 - combinado ARMA, orden p y orden q
- Ecuación ARMA: $y_n = ar_1y_{n-1} + ar_2y_{n-2} + ar_3y_{n-3} + ... + ar_py_{n-p} + ma_1x_n + ma_2x_{n-1} + ma_3x_{n-3} + ... + ma_qx_{n-(q-1)}$

```
N = 256
tiempo = 0:(N-1)
x < -\sin(10*2*pi*tiempo/N) + \sin(30*2*pi*tiempo/N) +
    rnorm(N)
par(mfrow=c(2,2))
plot (tiempo,x,type='l')
x. fft < spec.pgram(x,plot=TRUE,taper = 0, log ='no')
x.ar8 < - spec.ar(x, plot=TRUE, log = 'no', order=8)
x.ar6 <- spec.ar(x,plot=TRUE,log ='no',order=6)
```



```
par(mfrow=c(2,2))
x.ar4 <- spec.ar(x,plot=TRUE,log ='no',order=4)
x.ar3 <- spec.ar(x,plot=TRUE,log ='no',order=3)
x.ar2 <- spec.ar(x,plot=TRUE,log ='no',order=2)
x.ar1 <- spec.ar(x,plot=TRUE,log ='no',order=1)</pre>
```



```
m = 0.1
b0 = 10
x < -x + m*tiempo + b0
par(mfrow=c(2,2))
plot (tiempo,x,type='l')
x. fft < spec.pgram(x,plot=TRUE,taper = 0, log ='no',detrend
    = FALSE
x.ar8 < - spec.ar(x, plot = TRUE, log = 'no', order = 8)
x.ar6 <- spec.ar(x, plot=TRUE, log = 'no', order=6)
```



```
par(mfrow=c(2,2))
x.ar4 <- spec.ar(x,plot=TRUE,log ='no',order=4)
x.ar3 <- spec.ar(x,plot=TRUE,log ='no',order=3)
x.ar2 <- spec.ar(x,plot=TRUE,log ='no',order=2)
x.ar1 <- spec.ar(x,plot=TRUE,log ='no',order=1)</pre>
```



```
par(mfrow=c(2,2))
x.ar4 <- spec.ar(xdif, plot=TRUE,log ='no',order=4)
x.ar3 <- spec.ar(xdif, plot=TRUE,log ='no',order=3)
x.ar2 <- spec.ar(xdif, plot=TRUE,log ='no',order=2)
x.ar1 <- spec.ar(xdif, plot=TRUE,log ='no',order=1)</pre>
```


Efecto del uso de diff()

```
# efecto de diff
x1 < - rep(0,N+1)
x1[5] < -1
x1. diff < - diff(x1)
par(mfrow=c(2,2))
plot(x1,type='l')
plot (x1. diff, type='l')
plot(Mod(fft(x1)), type='l')
plot(Mod(fft(x1. diff )), type='l')
```

Efecto del uso de diff()

- Modeliza una ST con un ARMA (cualquiera de las tres variantes) y opción de diferenciar los datos antes, bajo la forma ARIMA(p, d, q), donde p es el orden AR, d el orden de diferenciación (diff), y q el orden MA.
- Opciones:
 - ightharpoonup puro AR: ARIMA(p, 0, 0)
 - ightharpoonup puro MA: ARIMA(0,0,q)
 - combinado ARMA: ARIMA(p, 0, q)
 - **ombinado** ARMA con un nivel de diff: ARIMA(p, 1, q)

Forecasting ARIMA, determinación de los órdenes p y q

Determinación de los órdenes p y q en base a la ACF y la PACF de la ST:

	AR(p)	MA(q)	ARMA(p,q)
ACF	disminuye	corta en <i>q</i>	disminuye
	gradualmente		gradualmente
PACF	corta en p	disminuye	disminuye
		gradualmente	gradualmente

Forecasting ARIMA, determinación de los órdenes p y q

- Determinación del modelo de acuerdo a medidas relativas, en todos los casos se opta por el modelo con la menor medida relativa:
 - Criterio de información de Akaike (AIC)
 - AIC corregido (AICc)
 - Criterio de información Bayesiano (BIC)

```
data(usconsumption) # viene en el fpp
plot (usconsumption [,1])
fit .arima <- auto.arima(usconsumption[,1],seasonal=FALSE)
print ( fit .arima)
# Series: usconsumption[, 1]
# ARIMA(0,0,3) with non-zero mean
#
# Coefficients:
          ma1 ma2 ma3 intercept
    0.2542 0.2260 0.2695 0.7562
# s.e. 0.0767 0.0779 0.0692 0.0844
#
# sigma^2 estimated as 0.3953: \log likelihood = -154.73
# AIC=319.46 AICc=319.84 BIC=334.96
plot (forecast (fit .arima, h=10), include=80)
```


Forecasts from ARIMA(0,0,3) with non-zero mean


```
par(mfrow=c(1,2))
Acf(usconsumption [,1], main="")
Pacf(usconsumption [,1], main="")
fit .arima2 < Arima(usconsumption[,1], order=c(0,0,3))
print ( fit .arima2)
# Series: usconsumption[, 1]
# ARIMA(0,0,3) with non-zero mean
#
# Coefficients:
          ma1 ma2 ma3 intercept
   0.2542 0.2260 0.2695 0.7562
# s.e. 0.0767 0.0779 0.0692 0.0844
#
# sigma^2 estimated as 0.3953: \log \text{ likelihood} = -154.73
# AIC=319.46 AICc=319.84 BIC=334.96
#
plot ( forecast ( fit .arima2))
```


Forecasts from ARIMA(0,0,3) with non-zero mean


```
fit .arima3 < Arima(usconsumption[,1], order=c(3,0,0))
print ( fit .arima3)
# Series: usconsumption[, 1]
# ARIMA(3,0,0) with non-zero mean
#
# Coefficients:
          ar1 ar2 ar3 intercept
       0.2366 0.1603 0.1909
                                 0.7533
# s.e. 0.0763 0.0774 0.0759 0.1153
#
# sigma^2 estimated as 0.3921: \log likelihood = -154.08
# AIC=318.16 AICc=318.54 BIC=333.66
#
plot (forecast (fit .arima3))
```

Forecasts from ARIMA(3,0,0) with non-zero mean


```
fit .arima4 \leftarrow Arima(usconsumption[,1], order=c(3,0,3))
print ( fit .arima4)
# Series: usconsumption[, 1]
# ARIMA(3,0,3) with non-zero mean
#
  Coefficients:
#
              ar2 ar3 ma1 ma2
          ar1
                                                    ma3
    intercept
#
       0.5487 0.4810 -0.4132 -0.2950 -0.4055 0.4796
    0.7545
# s.e. 0.3340 0.2159 0.2513 0.3181 0.2074 0.1650
    0.0968
#
# sigma^2 estimated as 0.3939: \log likelihood = -152.96
# AIC=321.92 AICc=322.84 BIC=346.71
#
plot ( forecast ( fit .arima4))
```

Forecasts from ARIMA(3,0,3) with non-zero mean


```
fit .arima5 < Arima(usconsumption[,1], order=c(3,1,3))
print ( fit .arima5)
# Series: usconsumption[, 1]
\# ARIMA(3,1,3)
#
# Coefficients:
           ar1
                ar2 ar3 ma1
                                           ma2
                                                   ma3
       -0.2747 0.4921 0.2266 -0.4611 -0.7180 0.1791
# s.e. 0.2610 0.2169 0.1046 0.2650 0.3289 0.2025
#
# sigma^2 estimated as 0.3996: \log likelihood = -155.33
# AIC=324.66 AICc=325.39 BIC=346.32#
#
plot ( forecast ( fit .arima5))
```


