NYCU-EE DCS-2021

HW05

Design: Convolution

資料準備

- 1. 從 TA 目錄資料夾解壓縮
 - % tar -xvf ~dcsta01/HW05.tar
- 2. 解壓縮資料夾 HW05 包含以下:
 - A. 00 TESTBED/
 - B. 01_RTL/
 - C. 02 SYN/
 - D. 09_UPLOAD/

Block Diagram

設計描述

CNN 是在 AI、Machine Learning 中常見的架構,而常見的 CNN 網路裡可分為 Convolutional layer、Maxpolling 等,而這次作業主要做一層 Convolutional+Maxpooling 的計算。

Convolutional 分為 filter 跟 image 兩部分,主要利用 filter 在 image 上移動計算,而會得出一張新的特徵圖片(feature map),以下以這次作業為例分為 4 部分介紹,filter、image、計算、output。

注意,這次的 pattern 也要由你們寫,助教僅提供一組測資,請想辦法讀檔 讀進去測(之前上課有教過),並且自己創造更多測資。

● Filter

Filter 皆為 3X3 的大小,總共 9 個數字,各自可能為 0~7,用以下圖表示。Filter 3x3 分別用 ABCDEFGHI 代表其中的數值,方便之後的計算說明。

Filter 的數值由 pattern 給進 design,而順序依照上圖 ABCDEFGHI 的順序給值。由 in_data 給值。

●Image

Image 皆為 8X8 的大小,總共 64 個數字,各自可能為 0^{7} ,用以下 6X6 圖示意。 分別用 $A1^{8}$ 0、B1 $B1^{8}$ 8...代表其中的數值,方便之後的計算說明。

Image 的數值資料也是由 pattern 給進去 design,而順序依照 A1~A6 並且由上而下。由 in_data 給值。

●計算

計算部分由 filter 跟 image 進行 convolution 卷積計算,這次的作業 image 為 8X8 進行 3x3 的 image 計算,並且每次移動 filter 的步數為 1 步(向右或向下移動的距離),經 convolution 算出來的圖像為 6X6 的大小,最後經過maxpooling,output 出 3X3 的 feature map,從下面的流程圖可以看出來。

(以下圖示為 6X6 img 出來的結果,本作業 img 為 8X8)

下圖是 convolution 出來的圖像()。

G1	G2	G3	G4
Н1	H2	Н3	H4
I1	12	13	14
J1	J2	J3	J4

Step1.由一開始(左上角)開始進行

Α	В	С	A4	A5	A6
D	Е	F	В4	B5	В6
G	Н	ı	C4	C5	C6
D1	D2	D3	D4	D5	D6
E1	E2	ЕЗ	E4	E5	E6
F1	F2	F3	F4	F5	F6

把 filter 遮上 image 並將相對應的數值進行相乘,最後全部相加: Result = A1*A+A2*B+A3*C+B1*D+B2*E+B3*F+C1*G+C2*G+C3*I = 124 124 便為新圖像的結果,位置為 G1。

Step2.filter 向右移動一格

如上圖所示,將 filter 向右移動一格,再將相對應的數值進行相乘相加。 Result = A2*A+A3*B+A4*C+B2*D+B3*E+B4*F+C2*G+C3*G+C4*I = 154 154 便為新圖像的結果,位置為 G2。

Step3~4.重複 step2

重複 step2 一直向右移動 filter 並且計算,得到相對應結果。下圖為 step5 的步驟。

A1	A2	А3	Α	В	С
B1	В2	В3	D	Ε	F
C1	C2	СЗ	G	Н	ı
D1	D2	D3	D4	D5	D6
E1	E2	ЕЗ	E4	E5	E6
F1	F2	F3	F4	F5	F6

Step5.往下移動

由 step1 的 filter 位置往下移動一格,並計算,得到相對應結果。

Step6~8.重複 step2

重複 step2 一直向右移動 filter 並且計算,得到相對應結果。下圖為 step10 的步驟。

重複前面的步驟

得到一張完整的 4X4 的圖片。

•convolution output

計算完成後,如下圖所示。

最後步驟

對 convolution 的 output 做 maxpooling,方法是於鄰近的 4 個值中找出最大的值,作為 downsampling 後的 output

最後再依照 O1 O2 O3 O4 的順序輸出圖片(使用 out_data)。

Signal name	Number of bit	Description
clk	1 bit	Clock
rst_n	1 bit	Asynchronous active-low reset
image_valid	1 bit	為 1 時代表給 image 資料,連續給滿 64 cycle
filter_valid	1 bit	為 1 時代表給 filter 資料,連續給滿 9 cycle
in_data	3 bits	為連續資料,依據 image_valid 跟 filter_valid 判斷是哪種資料。

P.S.每組 pattern 都是 先給 filter 再給 image 的資料。

Output

Signal name	Number of	Description
out_valid	1 bit	必須在 image_valid 落下後 100cycle 內拉 起,out_valid 持續 9 個 cycle。
out	9 bits	依序輸出計算完後的結果,共9 cycle。

Example Waveform

Pattern input

Pattern output

Specification

- 1. Top module name : Conv (File name: Conv.sv)
- 2. 所有 output 必須為 0,在非同步負準位 reset。
- 3. 02 SYN result 不行有 error 且不能有 latchs。
- 4. Clock period 最大 7ns。
- 5. Input delay = 0.5 * Clock period Output delay = 0.5 * Clock period •
- 6. 本次作業你們要自己寫 Pattern 去測試自己的 Design,寫法可以參考以前助教給的 Pattern,Pattern 要測試 Design 是否符合 Specifications 2~5 點。
- 7. Clock period 以 0.1ns 為單位,例如 5.1ns, 4.2ns...,不要有 5.17ns, 4.16ns...。

上傳檔案

- 1. Code 在 09_UPLOAD 上傳。→ ./01_upload [your cycle time]
- 2. report_dcsxx.pdf, xx is your server account. 上傳至 new E3。
- 3. 請在 5/28 15:30 pm 之前上傳

Grading Policy

- 1. Pass the RTL& Synthesis simulation. 60%
- 2. Performance = A(area) x T (simulation time)。30% (simulation time 是總模擬時間、不是每組 Pattern 的 Latency 總和)。
- 3. Report 10%
- 4. Bonus +5% 這次作業會找 Performance 不錯的同學上台分享自己的寫法、架構, 如果願意上台分享可以加分(要準備 PPT)。

Note

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) ./01_run
- 2. 02 SYN/ (Synthesis) ./01 run dc

報告請簡單且重點撰寫,不超過兩頁 A4,並包括以下內容

- 1. 描述你的設計方法,包含但不限於如何加速(減少 critical path)或降低面積。
- 2. 心得報告,不侷限於此次作業,對於作業或上課內容都可以寫下。
- 3. 遇到的困難與如何解決。

參考資料:

https://medium.com/@chih.sheng.huang821/%E5%8D%B7%E7%A9%8D%E7%A5%9
E%E7%B6%93%E7%B6%B2%E8%B7%AF-convolutional-neural-network-cnn%E5%8D%B7%E7%A9%8D%E8%A8%88%E7%AE%97%E4%B8%AD%E7%9A%84%E6%
AD%A5%E4%BC%90-stride-%E5%92%8C%E5%A1%AB%E5%85%85-padding94449e638e82