MATH 2242 (Calculus IV) Course Outline — Vector Calculus (Marsden)

1.5 n-Dimensional Euclidean Space

- \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n
- Addition

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- Scalar multiplication
- Inner/Dot Product

$$(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = \sum_{i=1}^n x_i y_i$$

- Norm/Length/Magnitude
 - $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$
- Standard basis vectors

$$\mathbf{e}_1 = (1, 0, \dots, 0), \, \mathbf{e}_2 = (0, 1, \dots, 0), \, \dots, \, \mathbf{e}_n = (0, 0, \dots, 1)$$

- Theorems
 - $(\alpha \mathbf{x} + \beta \mathbf{y}) \cdot \mathbf{z} = \alpha (\mathbf{x} \cdot \mathbf{z}) + \beta (\mathbf{y} \cdot \mathbf{z})$
 - Prove the above theorem.
 - $x \cdot y = y \cdot x$
 - $\mathbf{x} \cdot \mathbf{x} \ge 0$
 - $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$
 - $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$ (the Cauchy-Schwarz inequality)
 - (Example) Prove the Cauchy-Schwarz inequality.
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (the triangle inequality)
 - (Example) Prove the triangle inequality.
- Matrices

$$\blacksquare A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- Addition A + B
- Scalar Mutiplication αA
- \blacksquare Transposition A^T
- Vectors as Matrices

$$\mathbf{a} = (a_1, a_2, \dots, a_n) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
$$\mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Matrix Multiplication
 - If A has m rows and B has n columns, then M = AB is an $m \times n$ matrix.
 - Coordinate ij of M = AB is given by $m_{ij} = \mathbf{a_i} \cdot \mathbf{b_j}$ where $\mathbf{a_i}^T$ is the ith row of A and $\mathbf{b_j}$ is the jth column of B.
 - \blacksquare (Example 4) Compute AB and BA for

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 \blacksquare (Example 5) Compute AB for

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Matrices as Linear Transformations
 - An $m \times n$ matrix A gives a function from \mathbb{R}^n to \mathbb{R}^m : $\mathbf{x} \mapsto A\mathbf{x}$
 - This linear transformation satsifies $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$

■ (Example 7) Express
$$A$$
x where $x = (x_1, x_2, x_3)$ and $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$.

- (Example) Compute where the points (-1, -1, 0), (0, 1, 0), (1, -1, 1), and (2, 1, 1) in \mathbb{R}^3 get mapped to in \mathbb{R}^4 by $A\mathbf{x}$ from the previous example. Then plot the projections of the original points in \mathbb{R}^3 onto their first two coordinates in \mathbb{R}^2 , and compare this with the projection plot of their images in \mathbb{R}^4 onto their first two coordinates in \mathbb{R}^2 .
- Identity and Inverse
 - The $n \times n$ identity matrix I satisfies $i_{jj} = 1$ and $i_{jk} = 0$ when $j \neq k$. That is:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- If $AA^{-1} = A^{-1}A = I$, then A is invertable and A^{-1} is its inverse.
- Determinant
 - Let A_i be the submatrix of A with the first column and ith row removed. Then $\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} \det(A_i)$
 - (Example) Prove that

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1$$

and

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

$$= (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1)$$

- (Example) Prove that the inverse of the matrix $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ is $\frac{1}{\det A} \begin{bmatrix} b_2 & -a_2 \\ -b_1 & a_1 \end{bmatrix}$.
- An $n \times n$ matrix is invertable if and only if its determinant is nonzero.
- HW: 1-18, 21-24

2.3 Differentiation

- Functions $\mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^m$
 - $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) \text{ where } f_i : \mathbb{R}^n \to \mathbb{R}$

• Partial Derivative Matrix

- We say **f** is differentiable at \mathbf{x}_0 if $\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) \approx \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)]\mathbf{h}$ whenever $\mathbf{h} \approx \mathbf{0}$.
- (Example) Prove that this is equivalent to saying $\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)](\mathbf{x} \mathbf{x}_0)$ whenever $\mathbf{x} \approx \mathbf{x}_0$.
- (Example) Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x,y) = (x^2 + y^2, xy)$, and let $\mathbf{T} = \mathbf{Df}(1,0)$. Compute $\mathbf{f}(1.1, -0.1)$ and $\mathbf{f}(1,0) + \mathbf{T}(0.1, -0.1)$.
- If each $\frac{\partial f_i}{\partial x_j}$: $\mathbb{R}^n \to \mathbb{R}$ is a continuous function near \mathbf{x}_0 , then we say \mathbf{f} is strongly differentiable or class C^1 at \mathbf{x}_0 . All C^1 functions are differentiable.
- Gradient
 - If $f: \mathbb{R}^n \to \mathbb{R}$, then the gradient vector function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\nabla f(\mathbf{x}) = (\mathbf{D}f(\mathbf{x}))^T = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$
- Linearizations and Tangent Hyperplanes
 - For $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and a point $\mathbf{x}_0 \in \mathbb{R}^n$, let the linearization of \mathbf{f} at \mathbf{x}_0 be $\mathbf{L}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + [\mathbf{D}\mathbf{f}(\mathbf{x}_0)](\mathbf{x} \mathbf{x}_0)$. Note $\mathbf{f}(\mathbf{x}) \approx \mathbf{L}(\mathbf{x})$ whenever $\mathbf{x} \approx \mathbf{x}_0$.
 - (Example 5) Recall that the tangent plane to a surface z = f(x, y) given by $f : \mathbb{R}^2 \to \mathbb{R}$ passing through $\mathbf{x}_0 \in \mathbb{R}^3$ is given by the normal vector ∇f . Show that z = L(x, y) gives an equation for the tangent plane to the surface $z = x^2 + y^4 + e^{xy}$ at the point (1, 0, 2).
- HW: 1-3, 5-21

2.5 Properties of the Derivative

- Sum/Product/Quotient Rules
 - $\mathbf{D}[\alpha \mathbf{f}] = \alpha \mathbf{D} \mathbf{f}$

 - $\mathbf{D}[fg] = g\mathbf{D}f + f\mathbf{D}g$
 - $\mathbf{D}\left[\frac{f}{g}\right] = \frac{g\mathbf{D}f f\mathbf{D}g}{g^2}$
 - (Example) Prove the sum rule above.

- Chain Rule
 - $\quad \blacksquare \ \mathbf{D}[\mathbf{f} \circ \mathbf{g}] = \mathbf{D}\mathbf{f}(\mathbf{g})\mathbf{D}\mathbf{g}$
 - (Example) Find the rate of change of $f(x,y) = x^2 + y^2$ along the path $\mathbf{c}(t) = (t^2, t)$ when t = 1.
 - (Example 2) Verify the Chain Rule for $f(u, v, w) = u^2 + v^2 w$ and $\mathbf{g}(x, y, z) = (x^2y, y^2, e^{-xz})$.
 - (Example 3) Compute $\mathbf{D}[\mathbf{f} \circ \mathbf{g}](1,1)$ where $\mathbf{f}(u,v) = (u+v,u,v^2)$ and $\mathbf{g}(x,y) = (x^2+1,y^2)$.
- HW: 6-13, 15-16

3.2 Taylor's Theorem

- Single-variable Taylor Series
 - $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ $= f(x_0) + f'(x_0)(x x_0) + \frac{1}{2}f'(x_0)(x x_0)^2 + \frac{1}{6}f'(x_0)(x x_0)^3 + \dots$ $f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)$
- First-Order Taylor Formula
 - $f(\mathbf{x}) \approx L(\mathbf{x}) = f(\mathbf{x}_0) + [\mathbf{D}f(\mathbf{x}_0)](\mathbf{x} \mathbf{x}_0) = f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)(x_i x_{0i})$
- Second-Order Taylor Formula
 - $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)(x_i x_{0,i}) + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0)(x_i x_{0,i})(x_j x_{0,j})$
 - (Example) Use the second-order Taylor formula for $f(x,y) = \sqrt{x+2y}$ near the point (2,1) to approximate $\sqrt{4.05}$.
 - (Example 3) Find linear and quadratic functions of x, y which approximate $f(x, y) = \sin(xy)$ near the point $(1, \pi/2)$.
- HW: 3-7, 12

4.3 Vector Fields

• Vector Fields

- A vector field is a map $f: \mathbb{R}^n \to \mathbb{R}^n$ assinging an *n*-dimensional vector to each point in \mathbb{R}^n
- (Example 1) The velocity field of a fluid may be modeled as a vector field.
- (Example 2) Sketch the rotary motion given by the vector field $\mathbf{V}(x,y) = (-y,x)$.
- Gradient Vector Fields

 - (Example) The derivative of a scalar function $f: \mathbb{R}^n \to \mathbb{R}$ in the direction given by a unit vector \mathbf{v} is given by $\nabla f \cdot \mathbf{v}$. Show that the maximum value of a directional derivative for a fixed point is given by $\|\nabla f\|$ and attained by the direction $\frac{1}{\|\nabla f\|}\nabla f$.
 - (Example 4) If temperature is given by T(x, y, z), then the energy or heat flux field is given by $\mathbf{J} = -k\nabla T$ where k is the conductivity of the body. Level sets are called isotherms.
 - (Example 5) The gravitational potential of bodies with mass m, M is given by $V = -\frac{mMG}{r}$ where G is the gravitational constant and r is the distance between the bodies, and the gravitational force field is given by $\mathbf{F} = -\nabla V$. Show that $\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r}$, where \mathbf{r} is the vector pointing from the center of mass M to the center of mass m.
 - A vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is conservative iff there exists a potential function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.
 - (Example) Show that $\mathbf{W} = (2y + 1, 2x)$ is conservative.
 - (Example 7) Show that V = (y, -x) is not conservative.
- Flow Lines
 - A flow line for a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is a path $\mathbf{c}: \mathbb{R} \to \mathbb{R}^n$ satisfying $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$.
 - (Example 8) Show that $\mathbf{c}(t) = (\cos t, \sin t)$ is a flow line for $\mathbf{F} = (-y, x)$, and find some other flow lines.
- HW: 1-12, 17-21

4.4 Divergence and Curl

- Divergence
 - The divergence of a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is denoted by $\operatorname{div} \mathbf{F}: \mathbb{R}^n \to \mathbb{R}$ and defined by $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \sum_{i=1}^n \frac{\partial F_i}{\partial x_i}$

- (Examples 3-5) Compute the divergences of $\mathbf{F} = (x, y)$, $\mathbf{G} = (-x, -y)$ and $\mathbf{H} = (-y, x)$ at any point on \mathbb{R}^2 . How does divergence correspond with the motion described by the vector field plots?
- (Example) Compute the divergence of $\mathbf{F} = (x^2, y)$ various points and interpret those values against a plot of the vector field.

• Curl

- The curl of a three-dimensional vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is denoted by curl $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ and defined by curl $\mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}\right)$
- The scalar curl of a two-dimensional vector field $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ is denoted by scurl $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}$ and defined by scurl $\mathbf{F} = \text{curl } \mathbf{F} \cdot \mathbf{k} = \frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}$
- (Example) Compute the scalar curl of $\mathbf{F} = (x, y)$, $\mathbf{G} = (-x, -y)$ and $\mathbf{H} = (-y, x)$ at every point in \mathbb{R}^2 . How does this scalar curl correspond with the motion described by the vector field plots?
- (Example) Compute the curl of $\mathbf{F} = (y, -x, z)$ at every point in \mathbb{R}^3 . How does curl correspond with the motion described by the vector field plot?
- Facts about ∇f , div **F**, curl **F**
 - The curl of a conservative field is zero: curl $\nabla f = \nabla \times (\nabla f) = \mathbf{0}$.
 - (Example) Prove the above theorem.
 - (Example) Prove that $\mathbf{F} = (x^2 + z, y z, z^3 + 3xy)$ is not a conservative field.
 - The divergence of a curl field is zero: div curl $\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = 0$
 - Many identities on pg. 255 of Marsden text.
 - (Example) Sketch proof of identity #8: $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$.
- HW: 1-4, 9-17, 22-25, 29-30

5.3 The Double Integral Over More General Regions

- Hypervolume
 - The hypervolume $HV_1(D)$ of an interval D = [a, b] in \mathbb{R} is just its length b a.
 - The hypervolume of a well-behaved bounded subset $D \subseteq \mathbb{R}^{n+1}$ is defined for each $n \in \{1, 2, ...\}$ by

$$HV_{n+1}(D) = \int_{x_i \in I} HV(D_i) dx_i = \int_{x_i = a}^{x_i = b} HV_n(D_i) dx_i$$

where I = [a, b] is an interval containing all values x_i included in the *i*th coordinate of D, and D_i is the projection of all points in D onto \mathbb{R}^n by removing the *i*th coordinate.

■ (Example) For n = 1 and $D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, f(x) \le y \le g(x)\}$, we have that

$$HV_2 = A = \int_{x \in [a,b]} g(x) - f(x) \, dx = \int_a^b g(x) - f(x) \, dx.$$

■ (Example) For n=2 and $D\subseteq R^3$ including values of x between a and b, we have that

$$HV_3 = V = \int_{x=a}^{x=b} A(x) dx$$

where A(x) is the area of the cross-section of D taken by fixing each value of x (or similar for y).

- Double Integrals
 - For a bounded region $D \subseteq \mathbb{R}^2$ and continuous nonnegative $f: D \to \mathbb{R}$, the double integral

$$\iint_D f \, dA$$

is defined to be the volume of $\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, 0 \le z \le f(x, y)\}.$

■ We may apply the definition of volume above to get

$$\iint_D F \, dA = \int_{x=a}^{x=b} A(x) \, dx$$

where D lies between the lines x = a and x = b.

■ If D is described by $a \le x \le b$ and $\phi_1(x) \le y \le \phi_2(x)$, then

$$\iint_D F \, dA = \int_{x=a}^{x=b} A(x) \, dx = \int_{x=a}^{x=b} \left[\int_{y=\phi_1(x)}^{y=\phi_2(x)} f(x,y) \, dy \right] \, dx$$

■ Similarly, if D is described by $c \le y \le d$ and $\psi_1(y) \le x \le \psi_2(y)$, then

$$\iint_D F \, dA = \int_{y=c}^{y=d} \left[\int_{x=\psi_1(y)}^{x=\psi_2(y)} f(x,y) \, dx \right] \, dy$$

- If f is sometimes negative on the domain D, then $\iint_D f dA$ is the net volume between z = f(x, y) and D (volume above the xy plane minus volume below) and the above formulas still hold.
- Iterated integrals

■ An iterated integral is a shorthand for the expansion of two or more nested integrals, that is:

$$\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \, dy \, dx = \int_{x=a}^{x=b} \left[\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} f(x, y) \, dy \right] \, dx$$

- (Example) Sketch the region of integration for $\int_0^\pi \int_{-x}^x \cos(y) \, dy \, dx$, evaluate it, and interpret it as the signed volume of a region in \mathbb{R}^3 .
- (Example) Express $\iint_R (12x^3y 1) dA$ where R is the rectangle with vertices (0,0),(3,0),(3,2),(0,2) as an interated integral, then evaluate it.
- (Example) Express $\iint_T (12x^3y 1) dA$ where T is the triangle with vertices (0,0), (1,0), (1,1) as an interated integral, then evaluate it.
- Applications
 - $\iint_D 1 dA$ is the area of D
 - $\frac{1}{A(D)} \iint_D f(x,y) dA$ is the average value of the function f restricted to D
- HW: 1-9

5.4 Changing the Order of Integration

- Rectangular regions of integration
 - For constant bounds of integration:

$$\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy$$

- (Example) Verify that $\int_0^1 \int_1^2 x^2 + 2xy \, dy \, dx = \int_1^2 \int_0^1 x^2 + 2xy \, dx \, dy$.
- Nonrectangular regions of integration
 - Bounds of integration cannot be directly swapped; however, by interpreting the region of integration new bounds may be found in the other order.
 - (Example) Verify that $\int_0^4 \int_0^{\frac{4-y}{2}} x + y \, dx \, dy$ and $\int_0^2 \int_0^{4-2x} x + y \, dy \, dx$ share the same region of integration and are equal.
 - (Example) Evaluate $\int_1^e \int_0^{\log x} \frac{(2x-e)\sqrt{1+e^y}}{e-e^y} dy dx$.
- Estimating double integrals
 - If $g(x,y) \le f(x,y) \le h(x,y)$ for $(x,y) \in D$, then $\iint_D g(x,y) dA \le \iint_D f(x,y) dA \le \iint_D h(x,y) dA$.

- (Example 3) Prove that $\frac{1}{\sqrt{3}} \leq \iint_D \frac{1}{\sqrt{1+x^6+y^8}} dA \leq 1$ where D is the unit square.
- (Example) Prove that $e \leq \iint_D e^{x^2y+y} dA \leq \frac{e^2}{2}$ where D is the unit square.
- HW: 1-5, 7-10

5.5 The Triple Integral

- Triple Integrals
 - For a bounded region $D \subseteq \mathbb{R}^3$ and nonnegative $f: D \to \mathbb{R}$, the triple integral

$$\iiint_D f \, dV$$

is defined to be the hypervolume of $\{(x,y,z,w)\in\mathbb{R}^4:(x,y,z)\in D, 0\leq w\leq f(x,y,z)\}.$

- Applications
 - $\iiint_D 1 \, dV$ is the volume of D
 - $\frac{1}{V(D)} \iiint_D f(x,y,z) dV$ is the average value of the function f restricted to D
 - If $\rho(x, y, z)$ gives the density of a solid at the coordinate (x, y, z), then $\iiint_D \rho(x, y, z) dV$ calculates its overall mass.
- Rectangular Boxes
 - If $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$, then

$$\iiint_{B} f \, dV = \int_{a_{3}}^{b_{3}} \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y, z) \, dx \, dy \, dz$$
$$= \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{a_{3}}^{b_{3}} f(x, y, z) \, dz \, dx \, dy$$
$$= \text{etc.}$$

- (Example) Write $\iiint_D e^{x+y+z} dV$ where $D = [0,4] \times [0,2] \times [1,3]$ as a few different iterated integrals, then evaluate one.
- General regions of integration
 - If $E \subseteq \mathbb{R}^2$ and $D = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in E, \gamma_1(x, y) \le z \le \gamma_2(x, y)\}$, then

$$\iiint_D f(x, y, z) dV = \iint_E \left[\int_{\gamma_1(x, y)}^{\gamma_2(x, y)} f(x, y, z) dz \right] dA$$

(and similar for x, y instead of z).

- (Example 5) Express $\iiint_W x \, dV$ where W is the solid for which x, y, z are positive and $x^2 + y^2 \le z \le 2$ as a few different iterated integrals.
- (Example 6) Express $\iiint_W x \, dV$ where W is the solid in \mathbb{R}^3 above the triangle with vertices (0,0,0),(1,0,0),(1,1,0) and between the surfaces $z=x^2+y^2$ and z=2 as an iterated integral, then evaluate it.
- HW: 1-6, 11-17, 25-28