MATH 2418: Linear Algebra

Assignment# 3

Due: 09/14 Wednesday

Term Fall, 2016

Solution

[First Name]

[Last Name]

[Net ID]

Recommended Text Book Problems (do not turn in): [Sec 2.2: # 1, 2, 4, 6, 8, 12, 14, 32]; [Sec 2.3: # 1, 3, 4, 7, 9, 18, 30];

1

1. Given linear system
$$\begin{cases} 2x+4y-2z=2\\ 4x+9y-3z=4\\ -2x-3y+7z=10 \end{cases}.$$

- (a) Solve by reducing into upper triangular form and back substitution.
- (b) List all multipliers used and circle all the pivots.

@ Ang. matrix
$$\begin{bmatrix}
2 & 4 & -2 & 2 \\
4 & 9 & -3 & 4 \\
-2 & -3 & 7 & 10
\end{bmatrix}$$

$$R_{3}+R_{1}$$

$$\begin{bmatrix}
2 & 4 & -2 & 2 \\
0 & 1 & 1 & 0 \\
0 & 1 & 5 & 12
\end{bmatrix}$$

$$R_{3}-R_{2}$$

$$\begin{bmatrix}
2 & 4 & -2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 4 & 12
\end{bmatrix}$$

$$U.T. form.$$

$$4z = 12$$

$$z = 3$$

$$y + z = 0$$

$$y = -3$$

$$2x + 4y - 2z = 2$$

$$2x + 4(-3) - 2(3) = 2$$

$$2x = 20$$

$$x = 10$$

$$x = 10$$

$$x = 10$$

(b) Multipliers:

$$l_{21} = 2$$
 $l_{31} = -1$, $l_{32} = 1$
(2) $4 - 2$ 2
0 (1) 1 0 \rightarrow pivots
0 0 (4) 1^2 circled

2. Consider the linear system
$$\begin{cases} ax + 2y = -2 \\ 3x + 6y = -6 \end{cases}$$

- (a) For what values of a does the elimination break down (1) permanently (2) temporarily?
- (b) Solve the system after fixing the temporary break down.
- (c) Solve the system in case of permanent break down.

So elimination fails temporarily if a=0.

① Ang matrix
$$\begin{bmatrix} a & 2 & -2 \\ 3 & 6 & -6 \end{bmatrix}$$

If
$$a=1$$

$$\begin{bmatrix} 1 & 2 & -2 \\ 3 & 6 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
elimination fails permanently if $a=1$.

(b) When
$$a=0$$

$$\begin{bmatrix} 0 & 2 & -2 \\ 3 & 6 & -6 \end{bmatrix} R_1 \Leftrightarrow R_2 \begin{bmatrix} 3 & 6 & -6 \\ 0 & 2 & -2 \end{bmatrix}$$

$$3x + 6y = -6 \Rightarrow 3x + 6(-1) = -6 \Rightarrow x = 0$$

Sof:
$$x = 0, y = -1$$

(In case of permanent breakdown

$$\begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\chi = -2t \stackrel{?}{=} 2$$

$$x = -2t = 2$$

Sof: $x = -2t - 2$, $y = t$

3. Consider a
$$3 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

- (a) Reduce matrix A into upper triangular form using elimination steps.
- (b) Write down the matrices E_{21}, E_{31}, E_{32} that put A into triangular form.
- (c) Write down the matrix M such that MA is upper triangular.

4. Let
$$A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 3 & 1 \\ 1 & 4 & 0 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 11 \\ 4 \\ 6 \end{bmatrix}$

- (a) Write down the elementary matrices that reduce A into an upper triangular matrix.
- (b) Write down the corresponding upper triangular system $U\mathbf{x} = \mathbf{c}$
- (c) Solve the system

(b)
$$Ux = C$$

$$x_1 + 4x_2 + \cdot = 6$$

$$11x_2 + x_3 = 16$$

$$\frac{31}{11}x_3 = \frac{89}{11}$$
or
$$0 = \frac{31}{11} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 16 \\ \frac{89}{11} \end{bmatrix}$$

(c)
$$\frac{31}{11} \times_3 = \frac{89}{11} \Rightarrow x_3 = \frac{89}{31}$$

 $11 \times_2 + \frac{89}{31} = \frac{16}{31} \Rightarrow x_1 = \frac{407}{31} \Rightarrow x_2 = \frac{407}{11 \cdot 31} = \frac{37}{31}$
 $11 \times_2 + \frac{89}{31} = \frac{16}{31} \Rightarrow x_1 = \frac{6}{31} = \frac{148}{31} = \frac{38}{31}$
 $11 \times_2 + \frac{89}{31} = \frac{16}{31} \Rightarrow x_1 = \frac{6}{31} = \frac{148}{31} = \frac{38}{31}$
 $11 \times_2 + \frac{89}{31} = \frac{6}{31} \Rightarrow x_1 = \frac{6}{31} = \frac{148}{31} = \frac{38}{31}$
 $11 \times_2 + \frac{89}{31} = \frac{16}{31} \Rightarrow x_1 = \frac{37}{31} \Rightarrow x_2 = \frac{89}{31}$

5. Let
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $F = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- (a) Find the products EF and FE. Is EF = FE?
- (b) Write down the matrices E^{-1} and F^{-1} .
- (c) Find the products $F^{-1}E^{-1}(EF)$ and $E^{-1}F^{-1}(EF)$.

$$FE = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow Perform R_1 = R_1 - 3R_3.$$

(b)
$$E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 5 & 1 & -15 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E^{-1}F^{-1}(EF) = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 5 & 1 & -15 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & -15 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -15 \\ 0 & 0 & 1 \end{bmatrix}$$

- 6. True or False. Circle your answer.
 - (a) **T** (a) Consider the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 4 & 5 & b_1 \\ 0 & r & b_2 \end{bmatrix}$. The existence and uniqueness of the solution depends on all of r, b_1, b_2 .
 - (b) $\mathbf{\hat{T}}$ **F**: If AB = I and BC = I then A = C.
 - (c) **(c)** F: If P is a permutation matrix (a matrix that switches two rows) then $P^{100} = I$.
 - (d) T (F) If elimination fails permanently, the system has no solution.
 - (e) **T** From There is only one possible linear system which reduces to $\begin{cases} x + y = 1 \\ 2y = 3 \end{cases}$ after one elimination step.
 -) Does not depend on b1.
 - $BC = T \Rightarrow A(BC) = AT$ $\Rightarrow (AB) C = A$ $\Rightarrow TC = A$ =) C=A
- C) Since $p^2 = I =$ $p^{2K} = I$ d) Still can have infinitely many solutions. (e) x+y=1 x+y=4 x+3y=4 x+3y=4C) Since x=1 x+y=1 x+3y=4 x+3y=4 x+3y=4 x+3y=4 x+3y=4 x+3y=4 x+3y=4 x+3y=4 x+3y=4