Chapitre Miroirs

7.0 Définitions

Comme les dioptres, il y a des miroirs convexes et concaves dépendant de \bar{SC} .

Comme les lentilles, les indices objet et images sont les mêmes.

On étudie les miroirs dans les conditions de Gauss.

On hachure le coté où la lumière ne passe pas.

7.0. Réflexion sur un miroir sphérique

Changer le sens de parcours de la lumière est équivalent à prendre l'opposé de l'indice.

On change le sens positif de parcours selon si le rayon appartient à l'objet ou à l'image.

On considère \bar{SC} dans le sens positif du milieu objet.

Théorème o.1: Relation de conjugaison des mi-

 $\frac{1}{Sa_i}-\frac{1}{SA_o}=\frac{-2}{SC}=V$ avec le sens positif de Sai dans le sens opposé de SAo et de SC

Le grandissement vaut $\frac{S\bar{a}_i}{S\bar{A}_o}$ mais avec des sens différents.

Théorème o.2: Foyers objet/image

 $Sar{F}_o=rac{ar{SC}}{2}.$ Il se trouve au milieu de SC. Les foyers objets/images

OPTIQUE GÉOMÉTRIQUE & Miroirs, Construction

sont au même endroit mais non confondus car ils gardent leur rôle respectif. La distance focale vaut $f_i=S\bar{F}_i=1/V$ et la distance focale objet vaut $f_o=S\bar{F}_i=-1/V$

Convergence et convexité

Un miroir convexe est convergent et un miroir concave sera divergent.

7.0.Construction

On se sert des mêmes règles de constrcution que pour les dioptres