DIGITAL IMAGE ANALYSIS

(CSL-461)

REPORT for

ASSIGNMENT-1

Submitted by: Parul (2016CSB1048)

DIGITAL IMAGE ANALYSIS

Table of Contents

1	NEGATIVE:	2
2	LOG TRANSFORMATION:	3
3	GAMMA TRANSFORMATION:	4
4	BIT PLANE SLICING:	5
5	GRAY LEVEL SLICING:	8
6	CONTRAST STRETCHING:	9
7	ROTATION:	10
8	TRANSLATION:	11
9	RESIZING/SCALING:	12
10	SHEARING:	13
11	HISTOGRAM EQUALISATION:	14
12	HISTOGRAM MATCHING:	15
13	ADAPTIVE HISTOGRAM EQUALISATION:	17
14	IMAGE RECONSTRUCTION USING TIE POINTS:	18

1 **NEGATIVE**:

Figure 1: Original Image

Figure 2: Transformed Image

2 LOG TRANSFORMATION:

Figure 3: Original Image

Figure 4: Transformed image(s=30*log (1+r))

3 GAMMA TRANSFORMATION:

Figure 5: Original Image

Figure 6: Transformed Image (gamma=0.5)

Figure 7: Transformed Image (gamma=2)

4 BIT PLANE SLICING:

Figure 8: Original Image

Figure 9: Transformed Image (bit plane 8)

Figure 10: Transformed Image (bit plane 7)

Figure 11: Transformed Image (bit plane 6)

Figure 12: Transformed Image (bit plane 5)

Figure 13: Transformed Image (bit plane 4)

Figure 14: Transformed Image (bit plane 3)

Figure 15: Transformed Image (bit plane 2)

Figure 16: Transformed Image (bit plane 1)

5 GRAY LEVEL SLICING:

Figure 17: Original Image

Figure 18: Transformed image (Gray levels 125 to 200)

6 CONTRAST STRETCHING:

Figure 19: Original Image

Figure 20: Transformed Image (r1=100, s1=30, r2=150, s2=200)

7 ROTATION:

Figure 21: Original Image

Figure 22: Rotated Image (45 degrees) - Nearest neighborhood Interpolation

Figure 23: Rotated Image (45 degrees) - Bilinear Interpolation

8 TRANSLATION:

Figure 24: Translated Image

9 RESIZING/SCALING:

Figure 25: Original Image [512X512 pixels]

Figure 26: Resized Image (Horizontal: 2, Vertical: 0.25, Bilinear Interpolation) [1024X128 pixels]

(PSNR = 46.5902 dB)

Figure 27: Resized Image (Horizontal: 2, Vertical: 0.25, Nearest Neighborhood Interpolation) [1024X128 pixels] (PSNR = 39.4299 dB)

10 SHEARING:

Figure 28: Original Image

Figure 29: Horizontally Sheared (Bilinear Interpolation)

Figure 30: Vertically Sheared (Bilinear Interpolation)

Figure 31: Vertically Sheared (Nearest Neighborhood Interpolation)

11 HISTOGRAM EQUALISATION:

Figure 32: Original Image

Figure 33: Transformed image (PSNR = 50.8795 dB)

12 HISTOGRAM MATCHING:

Figure 34: Original Image-1

Figure 35: Original Image-2

Figure 36: Image formed by Histogram Matching

13 ADAPTIVE HISTOGRAM EQUALISATION:

Figure 37: Original Image

Figure 38: Transformed Image

14 IMAGE RECONSTRUCTION USING TIE POINTS:

Figure 39: Original Sheared Image

Figure 40: Desired un-sheared image

Figure 41: Transformed Image

Figure 42: Difference of un-sheared original image and the image constructed using tie points