

ALUNO(A):	DATA: / /
DISCIPLINA:	PROFESSOR: Carlos Henrique
ASSUNTO:	
TURMA:	NOTA:

GEOMETRIA ANALÍTICA

1. O Plano Cartesiano

A cada ponto P do plano cartesiano corresponde um par ordenado (x, y) de números reais e escrevemos P(x, y) para indicar este ponto.

Dois eixos orientados (x e y) são dispostos ortogonalmente, dando a origem à divisão do plano em quatro partes, cada uma denominada quadrante. Os quatro quadrantes são numerados no sentido anti - horário, e os eixos e a intersecção entre eles são denominados, respectivamente, eixo das abscissas (x), eixo das ordenadas (y) e origem (0) do sistema de coordenadas cartesianas.

A reta que divide ao meio os quadrantes ímpares é chamada de **bissetriz dos quadrantes ímpares** e a que divide os quadrantes pares é a **bissetriz dos quadrantes pares**.

Observações:

I. Os pontos pertencentes ao eixo 0x possuem ordenadas nulas.

$$P \in 0x \leftrightarrow P = (x, 0)$$

II. Os pontos pertencentes ao eixo 0y possuem abscissas nulas.

$$P \in Oy \leftrightarrow P = (0, y)$$

III. Todos os pontos da bissetriz dos quadrantes ímpares possuem abscissas iguais à ordenada e vice versa.

$$A \in b_i \leftrightarrow A = (a, a)$$

IV. Todos os pontos da bissetriz dos quadrantes pares possuem abscissas e ordenadas opostas e vice - versa.

$$B \in b_p \leftrightarrow B = (b, -b)$$

Exercícios

01. Situe no mesmo sistema de eixos cartesianos os pontos A(3, 4), B(- 2, 3), C(2, 0), D(0, - 3)

$$E(\frac{-3}{2}, -5), F(-1, 1) E G(2, -2).$$

- O2. Determine o valor de k, sabendo que o ponto A(
 2k 1, k+2) pertence à bissetriz dos quadrantes ímpares.
- **03.** O ponto P(3k+6, k+2) pertence à bissetriz dos quadrantes pares, pergunta se:
 - a) Qual a ordenada do ponto P?
 - b) Em que quadrante encontra se o ponto P?

c) Qual a distância do ponto P à origem?

2. Distância entre dois pontos

Dados dois pontos distintos do plano cartesiano, chama - se **distância** entre eles a medida do segmento de reta que tem os dois pontos por extremidade. Sendo $A(x_a, y_a)$ e $B(x_b, y_b)$, aplicando Pitágoras temos:

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 ou
$$d_{AB} = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

Exercícios

04. Sejam os ponto A(- 3, 1) e B(4, 3). A distância entre eles é

- a) 10
- b) $\sqrt{15}$
- c) $\sqrt{53}$
- d) 2
- e) 16

05. A distância entre A(1, 3) e B(5, 6) é:

- a) 5
- b) 10
- c) 15
- d) 20
- e) 25

06. (UFRGS) A distância entre os pontos A(- 2, y) e B(6, 7) é 10. O valor de y é:

- a) 1
- b) 0
- c) 1 ou 13
- d) 1 ou 10
- e) 2 ou 12

07. Qual o ponto do eixo das ordenadas que eqüidista dos pontos A(2, - 1) e B(6, 3)?

- a) (0,5)
- b) (5,0)
- c) (2,3)
- d) (6,2)
- e) (1,0)

08. O comprimento da circunferência de diâmetro CD, sendo C(2, 1) e D(10, 7) é:

- a) 5π
- b) 10π
- c) 20_π
- d) 17π
- e) 29π

3. Ponto médio

Sendo A(x_a , y_a), B(x_b , y_b) e M(x_M , y_M) o seu ponto médio, temos:

4. Área de um triângulo

Consideramos um triângulo de vértices A(xA, yA), B(xB, yB) e $C(x_C, y_C)$ a sua área é dada por:

 $\mathbf{B}(x_B, y_B)$ $\mathbf{C}(x_C, y_C)$

M é o ponto que divide o segmento AB ao meio.

Exercícios

09. Sendo A(1, 3) e B(7, 13) as extremidades do segmento AB, seu ponto médio é:

- a) (4, 8)
- b) (2, 4)
- c) (8, 16)
- d) (1, 2)
- e) (3, 4)

5, 2) uma das 10. extremidades do segmento de reta AB e M(- 2, 4) o seu ponto médio, o ponto B vale:

- a) (1, 6)
- b) (2, 12)
- c) (5, 4)
- d) (2, 2)
- e) (0, 1)

- $= \frac{1}{2} \begin{vmatrix} x_A & y_A \\ x_B & y_B \\ x_C & y_C \end{vmatrix} \quad \text{ou} \quad A = \frac{1}{2} \begin{vmatrix} x_A & x_B & x_C & x_A \\ y_A & y_B & y_C & y_A \end{vmatrix}$

Exercícios

11. Calcular a área do triângulo de vértices A(1,3), B(4,1) e C(6,5).

- a) 16
- b)
- 10 c)
- d) 12
- 8 e)

12. Calcular a área do triângulo de vértices A(1,1), B(7,8) e C(1,10).

- a) 27
- b) 54
- 32 c)

- d) 19
- 43 e)
- 13. Calcular a área do quadrilátero de vértices A(1,3), B(5,1), C(6,5) e D(3,7).
- a) 17
- b) 34
- 10 c)
- d) 6
- 8 e)

- d) 12
- e)
- 15. Os pontos (1,3), (2,7) e (4,k) do plano cartesiano estão alinhados se, e somente se:
 - a) k = 11
 - b) k = 12
 - c) k = 13
 - d) k = 14
 - k = 15e)

5 Condição de alinhamento de três pontos

Sendo $A(x_A, y_A)$, $B(x_B, y_B)$ e $C(x_C, y_C)$ três pontos distintos É toda equação do tipo y = ax + b, onde $\delta a \epsilon$ é chamado de dois a dois, são colineares ou estão alinhados, se e somente se: coeficiente angular (ou declividade) e $\delta b\epsilon$ é chamado de coeficiente linear.

$$\begin{vmatrix} x_A & y_A \\ x_B & y_B \\ x_C & y_C \\ x & y_A \end{vmatrix} = 0 \quad \text{ou} \quad \begin{vmatrix} x_A & x_B & x_C & x_A \\ y_A & y_B & y_C & y_A \end{vmatrix} = 0$$

6. Equação reduzida da reta

Exemplos:

$$y = 2x - 3 \begin{cases} a = 2 \\ b = -3 \end{cases}$$

$$2x + y - 1 = 0 \begin{cases} a = -\frac{2}{3} \\ b = \frac{1}{3} \end{cases}$$

$$y = 5x + 1 \begin{cases} a = 5 \\ b = 1 \end{cases}$$
 $5x + 4y = 0 \begin{cases} a = -\frac{5}{4} \\ b = 0 \end{cases}$

Coeficiente angular de uma reta

O coeficiente angular de uma reta é um número real δaε que

14. O valor de x para que os pontos A(x,0), B(3,1) e

- 4,2) sejam colineares é:

0 a)

Exercícios

- b) 10
- 3 c)

epresenta a sua inclinação (α).

Por definição, temos que:

$$a = tg \alpha$$

São quatro as possibilidades para o coeficiente angular:

 α é nulo \Leftrightarrow a = 0

α é reto ⇔ a não existe

Reta inclinada para a direita

Reta inclinada para esquerda

 α é agudo \Leftrightarrow a > 0

 α é agudo \Leftrightarrow a > 0

Para determinarmos o valor do coeficiente angular (a) faremos:

$$a = \frac{-med.y}{med.x} \qquad \text{ou} \qquad a = \frac{y_B - y_A}{x_B - x_A}$$

ou
$$a = \frac{\Delta y}{\Delta x}$$

Observação: $\pmb{\delta b}\pmb{\epsilon}$ é a ordenada do ponto onde a reta intersecciona o eixo y.

Exercícios

16. Os coeficientes angular e linear da reta 3y2x + 12 = 0 são respectivamente:

- a) 2/3 e 4
- b) 3/2 e 12
- c) 2/3 e 12

- d) 2/3 e 4
- e) 3/2 e 4

17. Os pontos A(x, 0) e B(3, y), pertencem a reta de equação x γ 3y + 9 = 0. A distância entre eles é:

- a) $\sqrt{10}$
- b) 2
- c) $3\sqrt{10}$
- d) $4\sqrt{10}$
- e) 10

18. A reta da figura abaixo tem como coeficiente angular e linear, respectivamente:

- a) 1/2 e 2
- b) 2 e 1/2
- c) 1/2 e 2
- d) 2 e 1/2
- e) 2 e 1/2

19. Determine a equação reduzida da reta:

- d) $y = x \gamma 3$
- e) y = -3x + 2
- 20. Determine a equação geral da reta
- a) $x \gamma 2y 4 = 0 8$ b) $2x + y \gamma 2 = 0$
- c) $4x \gamma 2y \gamma 4 = 0$
- d) $x \gamma y + 2 = 0$
- e) $x \gamma y + 4 = 0$
- 21. Determine a equação da reta que passa pelos pontos A(

- a) 4x + 3y + 1 = 0
- b) 3x + 4y + 1 = 0
- c) x + y + 3 = 0
- d) $x + y \gamma 4 = 0$
- e) $x \gamma y \gamma 1 = 0$

Exercícios

7. Ponto de intersecção entre duas retas

Para determinarmos o ponto de intersecção entre duas retas basta resolvermos o sistema formado pelas suas equações.

-) (2 4)

d) (1, 2)

- e) (3, 4)
- **23.** Obtenha o ponto de intersecção entre as retas r: y = 2x 6 e s: y = 3x + 2.
 - a) (8, 22)
 - b) (1, 2)
 - c) (4, 10)
 - d) (5, 6)
 - e) (4, 12)
- 24. As retas de equação x γ 3y γ 2 = 0 e y = x γ 2k interceptam se no ponto (k+1, k 1) determine o valor de k e o ponto de intersecção entre as duas retas, respectivamente.
 - a) 1 e (2, 0)
 - b) 2 e (1, 0)
 - c) 5e(2,0)
 - d) 1 e (0, 2)
 - e) 2 e (1, 2)

8. Equação do feixe de retas

As retas não - verticais que passam por $P(x_0, y_0)$ são dadas pela equação:

22. Obtenha o ponto de intersecção entre

as retas r:
$$2x + 5y \gamma 9 = 0 e s$$
: $y = -2x \gamma 3$.

- a) (3, 3)
- b) (2, 2)
- c) (5, 22)

Exercícios

25. Obtenha a equação da reta que por P e tem declividade a.

a)
$$P(2, 3)$$
; $a = 2$

b)
$$P(-2, 1); a = -2$$

c) P(4, 0);
$$a = -\frac{1}{2}$$

26. Escreva a equação fundamental da reta que passa pelo ponto P e tem inclinação α .

a)
$$P(2, 8) e \alpha = 45 \cap$$

b) P(- 4, 6) e
$$\alpha$$
 = 30 \cap

c)
$$P(3, -1) e \alpha = 120 \cap$$

9. Posição relativa entre retas

Retas paralelas

Dadas duas retas r e s não - verticais dadas pelas equações:

(r)
$$y = a_1x + b_1$$

(s)
$$y = a_2x + b_2$$

Para essas retas, temos as seguintes possibilidades:

PARALELAS COINCIDENTES

Exercícios

27. Determine o valor de $\delta m\epsilon$ para que as retas 2x 3y - 1 = 0 e mx + 4y γ 3 = 0 sejam paralelas.

28. Escreva a equação da reta que passa pelo ponto

P(3, - 3) e é paralela à reta
$$2x \gamma 3y$$
 - 6 = 0.

a)
$$2x \gamma y + 9 = 0$$

b)
$$2x \gamma 3y \gamma 15 = 0$$

c)
$$3x + 2y \gamma + 15 = 0$$

d)
$$x \gamma 2y + 9 = 0$$

e)
$$3x \gamma 2y + 15 = 0$$

29. Determine a equação da reta que passa pelo ponto A(3, 2) e

é paralela à reta $4x \gamma y + 1 = 0$.

a)
$$y = 2x \gamma 3$$

b)
$$y = 4x \gamma 10$$

c)
$$y = -x + 15$$

Obtenha a equação da mediatriz do segmento

d)
$$y = x + 5$$

e)
$$y = -4x + 5$$

b)
$$y = x + 4$$

c)
$$y = 3x + 2$$

d)
$$y = - x + 5$$

e)
$$y = - x \gamma 12$$

10. Retas perpendiculares

Dadas duas retas r e s não - verticais dadas pelas equações:

(r)
$$y = a_1x + b_1$$

(s)
$$y = a_2x + b_2$$

Para essas retas, temos a seguinte possibilidade:

de reta AB, sendo A(3, 2) e B(7, 4). y = -2x + 13

32.

a)

b)
$$y = 2x \gamma 13$$

c)
$$y = x + 1$$

d)
$$y = 13x + 2$$

e)
$$y = x \gamma 4$$

11. Distância entre ponto e reta

A distância entre o ponto e a reta (r) Ax + By + C = 0 é dada pela

seguinte expressão:

 $d_{\rm Pr} = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$

Exercícios

30. Determine o valor de $\delta k\epsilon$ para que as retas 3x5y + 10 = 0 e kx + 3y γ 21 = 0 sejam perpendiculares.

- a) 1
- b)
- c) - 10
- d) 15
- e)

Escreva a equação da reta que passa pelo ponto P(1, 5) e é perpendicular à reta de equação x + 3y - 12 =0.

 $y = -2x \gamma 1$

Exercícios

33. Calcule a distância do ponto P(2, 6) à reta $3x \gamma$ $4y \gamma 2 = 0$.

- a) 32
- b) 10

e) 2

35. Escreva a equação reduzida da circunferência de raio 12 e concêntrica com a circunferência $(x + 2)^2 + (y + 3)^2$ = 64. Qual é a área da coroa circular determinada por essas duas circunferências?

12. Circunferência

Equação reduzida

Consideremos uma circunferência de centro $C(x_c,\,y_c)$ e raio R, teremos:

Exercícios

34. Determine a equação reduzida da circunferência de centro C e raio R.

a)
$$\begin{cases} C(3,5) \\ R = 2 \end{cases}$$

b)
$$\begin{cases} C(0,0) \\ R = \sqrt{7} \end{cases}$$

c)
$$\begin{cases} C(0,4) \\ R = 9 \end{cases}$$

36. Determine a equação da circunferência de centro em (3, 5) e raio igual a 4.

a)
$$x^2 + y^2 \gamma 2x \gamma 8y + 1 = 0$$

b)
$$x^2 + y^2 + 2x + 8y - 1 = 0$$

c)
$$x^2 + y^2 \gamma 8x + 2y + 1 = 0$$

d)
$$x^2 + y^2 \gamma 8x \gamma 8y + 4 = 0$$

e)
$$x^2 + y^2 + 2x \gamma 8y - 8 = 0$$

13. Equação geral

$$Ax^2 + By^2 + Dx + Ey + F = 0$$

Condições para ser circunferência:

1.
$$\mathbf{A} = \mathbf{B} \neq \mathbf{O}$$
 (coef. de x^2 = coef. y^2)

2. **C = 0** (não pode aparecer **xy**)

3. R > 0 (O raio de ver ser um número real)

Coordenadas do centro:

$$C = \left(\frac{-\cos f.x}{2}; \frac{-\cos f.y}{2}\right)$$

Raio:

$$R = \sqrt{(x_c)^2 + (y_c)^2 - F}$$

Exercícios

37. Determine a equação geral da circunferência de centro C(3, 5) e raio R igual 4.

a)
$$x^2 + y^2 + 10x + 6y - 18 = 0$$

b)
$$x^2 + y^2 + 2x + 8y - 1 = 0$$

c)
$$x^2 + y^2 \gamma 6x - 10y + 18 = 0$$

d)
$$x^2 + y^2 \gamma 8x \gamma 8y + 4 = 0$$

e)
$$x^2 + y^2 + 2x \gamma 8y - 27 = 0$$

38. Determine o centro e o raio da circunferência $x^2 + y^2 - 10x + 4y - 20 = 0 \text{ , respectivamente:}$

- b) (5,2) e 5
- c) (2,2) e 2
- d) (3,4) e 1
- e) (5, 2) e 7

39. Calcule a área de um quadrado inscrita na circunferência $x^2 + y^2 - 4x - 6y - 3 = 0$

- a) 2u.a.
- b) 4u.a.
- c) 8u.a.
- d) 16u.a.
- e) 64u.a.

40. Determine o valor de k para que a equação $x^2 + y^2 + 4x - 2y + k = 0$ represente uma circunferência:

- a) k > 5
- b) k < 5
- c) k > 10
- d) k < 15

e) k = 20

41. Escreva a equação da circunferência de centro C(3,5) e tangente a reta (r) $5x + 12y \gamma$ 10 = 0

a)
$$x^2 + y^2 \gamma 6x \gamma 10y + 9 = 0$$

b)
$$x^2 + y^2 + 12x + 38y - 1 = 0$$

c)
$$x^2 + y^2 \gamma 8x + 15y + 1 = 0$$

d)
$$x^2 + y^2 \gamma 8x \gamma 8y + 7 = 0$$

e)
$$x^2 + y^2 + 2x \gamma + 11y - 8 = 0$$

14. Posições relativas

14.1. Ponto e circunferência

Para uma circunferência de centro $C(x_c,y_c)$ e raio R e um ponto P qualquer, compararemos o seguimento de reta PC com R.

Há três casos possíveis:

1∩) Se d_{PC} = R, então P pertence à circunferência.

2∩) Se d_{PC} > R, então P é externo à circunferência.

 $3 \cap$) Se $d_{PC} < R$, então P é interno à circunferência.

Interno

Pertence

Externo

Exercícios

41. Determine a posição do ponto P(53) em relação a circunferência $(x-2)^2+(y-4)^2=9$

- a) externo
- b) interno
- c) pertence
- d) centro
- e) n.d.a.

14.3. Duas circunferências

Dadas duas circunferências, uma de centro C_1 e raio R_1 e a outra de centro C_2 e raio R_2 , compararemos o seguimento de reta C_1C_2 e R_1 + R_2 .

14.2. Reta e circunferência

Se substituirmos o valor de uma das variáveis (x ou y) da reta na equação da circunferência, obteremos uma equação do $2 \cap$ grau (na outra variável).

Calculando o discriminante (Δ) da equação obtida, poderemos ter:

- $1 \cap$) Se $\Delta > 0$, então a reta será **secante** à circunferência (2 pontos de interseção).
- $2\cap$) Se Δ = 0, então a reta será **tangente** à circunferência (1 ponto de interseção).
- $3\cap$) Se Δ < 0, então a reta é **externa** à circunferência (não existe ponto de interseção).

Há três possibilidades:

- $1 \cap$) Se $dC_1C_2 = R_1 + R_2$, então as circunferências são tangentes (1 ponto de interseção).
- $2\cap$) Se $dC_1C_2 > R_1 + R_2$, então as circunferências são externas (não existe ponto de interseção).
- $3\cap$) Se $dC_1C_2 < R_1 + R_2$, então as circunferências são secantes (2 pontos de interseção).

Secante

 $\Delta > 0$

Tangente

 $\Delta = 0$

Externa

Δ<0

Exercícios

- **42.** Determine a posição relativa da reta x γ y + 1 = 0 em relação ao círculo $x^2 + y^2 4x 1 = 0$:
 - a) secante
 - b) tangente
 - c) externa
 - d) n.d.a.

Externas

 $dC_1C_2 > R_1 + R_2$

7. Determine a equação da reta que passa pelos pontos A(

Exercícios

01. Qual a posição relativa entre as circunferências

(λ) $x^2 + y^2 - 6x - 10y + 9 = 0$ e (δ) $x^2 + y^2 + 2x - 4y + 4 = 0$.

- a) tangente
- b) secante
- c) externas
- d) coincidentes
- e) n.d.a.

8. Dados os pontos A(2,4), B(8,5) e C(5,9). Pede - se:

a) O ponto médio de \overline{AB} .

1, - 2) e B(5,2).

- b) A distância entre os pontos A e C.
- c) Um equação de reta que passa por A e B.
- d) Considere os A, B e C como vértice de um triângulo. Calcule

as coordenadas do baricentro e também o perímetro para esse triângulo.

Exercícios

1. Calcule a distância entre os pontos dados:

- a) A(3,7) e B(1,4)
- b) E(3,1) e F(3,5)
- c) H(2, 5) e O(0,0)
- 2. Demonstre que o triângulo com os vértices A(0,5), B(3,
- 2) e C(3, 2) é isósceles e calcule seu perímetro.
- Determine o ponto médio do segmento de extremidades:
 - a) A(1,6) e B(5,4)
 - b) A(1, 7) e B(3, 5)
 - c) A(4, 2) e B(2, 4)

4. Uma das extremidades de um segmento é o ponto A(-

- 2, 2). Sabendo que M(3, -2) é o ponto médio desse segmento, calcule as coordenadas do ponto B(x,y), que é a outra extremidade do segmento.
- **5** Determine a equação da reta que passa pelo ponto A(4,2) e tem inclinação de 45° com eixo das abscissas.
- 6. Determine a equação da reta que passa pelos pontos A(1,4) e tem coeficiente angular 2.

- 9. (Puc rio 1999) O valor de x para que os pontos (1,3),(2,4), e (x,0) do plano sejam colineares é:
 - a) 8.
 - b) 9.
 - c) 11.
 - d) 10.
 - e) 5
- **10.** Os pontos A(5, 2) e C(3, 4) são extremidades de uma diagonal de um quadrado. Qual o perímetro desse quadrado?
- 11. Se o ponto P(2,k) pertence à reta de equação: 2x + 3y1 = 0, então o valor de k é:
 - a) 1.
 - b) 0.
 - c) 2.
 - d) 1.
 - e) 2.
- **12.** (Puc rio) Os pontos (0,8), (3,1) e (1,y) do plano são colineares. O valor de y é igual a:

a) 5

b) 6

c) 17/3

d) 11/2

e) 5,3

- 13. Escreva uma equação da reta que passa pelo ponto(1,
- 6) e tem inclinação de 60° com o eixo das abcissas.
- **14.** A distância do ponto A(a,1) ao ponto B(0,2) é igual a 3. Calcule o valor de a.
- 15 (Cesgranrio) A distância entre os pontos M(4, 5) eN(1,7) do plano x0y vale:
 - a) 14
 - b) 13
 - c) 12
 - d) 9
 - e) 8
- **16.** (Uerj γ modificado)) No sistema de coordenadas cartesianas a seguir, está representado o triângulo ABC.

Em relação a esse triângulo, demonstre que ele é retângulo;

17. (Unesp 2003) Dados dois pontos, A e B, com coordenadas cartesianas (- 2, 1) e (1, - 2), respectivamente, conforme a figura,

calcule a distância entre A e B, e Sabendo - se que as coordenadas cartesianas do baricentro do triângulo ABC são (xG, yG) = $\left(\frac{2}{3},\ 1\right)$, calcule as coordenadas (x_C, y_C) do vértice C do triângulo.

QUESTÃO	GABARITO			
1.	a) √13			
	b) 4			
	c) $\sqrt{29}$			
2.	Perímetro = 2√58 +6			
3.	a) M(- 3,5)			
	b) M(1, - 6)			
	c) M(- 3, - 3)			
4.	(8, - 2)			
5	y= x - 2			
6.	y= 2x + 6			
7.	Y=2/3x + 2/3 - 2			
8.	a) (5;9/2)			
	b) d= √34			
	c) Y= 1/6x - 1/3+4			
	d) G(5,6) e perímetro =			
	$\sqrt{34} + \sqrt{37} + 5$			
9.	Alternativa D			
10.	8 unidades de			
	comprimento.			
11.	Alternativa D			
12.	Alternativa C			
13.	$y = \sqrt{3} x - \sqrt{3} - 6$			
	(Eq. Reduzida)			
14.	a=2√2			
15	Alternativa B			
16.	$\overrightarrow{AB} = (6, -2)$ $ \overrightarrow{AB} = \sqrt{40}$			
	AB = ₹40 AC = (2, 2)			
	$ \overrightarrow{AC} = \sqrt{8}$			
	BC = (4, 4)			
	BC = √32			
	Logo: $ \overrightarrow{AB} ^2 = \overrightarrow{AC} ^2 + \overrightarrow{BC} ^2$			
17.	Logo: $ AB ^2 = AC ^2 + BC ^2$ AB = $3\sqrt{2}$ e C (3; 4)			

e) 22

 (USP) Duas irmãs receberam como herança um terreno na forma do quadrilátero ABCD, representado abaixo em um sistema de coordenadas. Elas pretendem dividi γ lo construindo uma cerca reta perpendicular ao lado AB e passando pelo ponto P = (a,0). O valor de a para que se obtenham dois lotes de mesma área é:

- a) $\sqrt{5} 1$
- b) $5-2\sqrt{2}$
- c) $5 \sqrt{2}$
- d) $\sqrt{5} + 2$
- e) $5 + 2\sqrt{2}$
 - 2. (USP) Suponha que um fio suspenso entre duas colunas de mesma altura h, situadas à distância d (ver figura), assuma a forma de uma parábola.

Suponha também que:

i) a altura mínima do fio ao solo seja igual a 2;

ii) a altura do fio sobre um ponto no solo que dista d/4 de uma das colunas seja igual a h/2.

Se h = 3d/8, então d vale:

- a) 14
- b) 16
- c) 18
- d) 20

3. (ITA) Considere o sistema $\begin{cases} (x-y)^2 + x(1+2y) \le 7/8 \\ x-y+a=0 \end{cases}$, se a = ao é o número

real positivo para o qual a solução do sistema, x = xo, y = yo, é única, podemos afirmar que:

- a) $\frac{xo}{yo} = \frac{7}{3}$
- $b) \frac{yo}{xo} = \frac{6}{5}$
- c) $\frac{xo}{yo} = -\frac{6}{5}$
- d) $\frac{yo}{xo} = -\frac{3}{5}$
- e) $xoyo = -\frac{15}{8}$
 - **4.** (UNESP) Obter os pontos da reta y = mx + b que distam $\sqrt{1+m^2}$ de (0,b).
 - 5. (USP) Uma das diagonais de um quadrado está contida na reta x + y = 4. Determine seus vértices sabendo que um deles é o ponto (1,1).
 - 6. (USP) Calcule a área de um triângulo equilátero com um vértice no ponto (0,0) e os outros dois sobre a parábola y = x2.
 - 7. (ITA) As retas y = 0 e 4x + 3y + 7 = 0 são retas suportes das diagonais de um paralelogramo. Sabendo que estas diagonais medem 4 cm e 6 cm, então, a área deste paralelogramo, em cm2, vale:
 - a) 36/5
 - b) 27/4
 - c) 44/3
 - d) 48/3
 - e) 48/5
- 8. (ITA) A equação da reta bissetriz do ângulo agudo que a retay = mx, m > 0, forma com o eixo dos x é:

a)
$$y = \frac{1 + \sqrt{1 + m^2}}{m} x$$

b)
$$y = \frac{1 - \sqrt{1 + m^2}}{m} x$$

c)
$$y = \frac{-1 - \sqrt{1 + m^2}}{m} x$$

d)
$$y = \frac{-1 + \sqrt{1 + m^2}}{m} x$$

- e) n.d.a.
- (ITA) A área do polígono, situado no primeiro quadrante, que é delimitado pelos eixos coordenados e pelo conjunto

 $\{(x,y) \in R2 : 3x2 + 2y2 + 5xy \gamma \ 9x \gamma \ 8y + 6 = 0\}$ é igual a:

a)
$$\sqrt{6}$$

b)
$$\frac{5}{2}$$

c)
$$2\sqrt{2}$$

d) 3

e)
$$\frac{10}{3}$$

r e s são concorrentes e ambas são tangentes à C.

11.(ITA) Considere os pontos A: (0, 0) e B: (2, 0) e C: (0, 3). Seja P: (x, y) o ponto da intersecção das bissetrizes internas do triângulo ABC. Então x + y é igual a:

a)
$$12/(5 + \sqrt{13})$$

b)
$$8/(2 + \sqrt{11})$$

c)
$$10/(6 + \sqrt{13})$$

- d) 5
- e) 2

12.(ITA) Duas retas r_1 e r_2 são paralelas à reta 3x - y =37 e tangentes à circunferência $x^2 + y^2 - 2x - y = 0$. Se d₁ é a distância de r₁ até a origem e d₂ é a distância de r₂ até a origem, então d₁ + d₂ é igual a:

a)
$$\sqrt{12}$$

b)
$$\sqrt{15}$$

c)
$$\sqrt{7}$$

d)
$$\sqrt{10}$$

e)
$$\sqrt{5}$$

13. (USP) Na figura a seguir A,B e D são colineares e o valor

10. (ITA) São dadas as retas r: x - $y + 1 + \sqrt{2} = 0$ e s: $\sqrt{3} x + y_{da}$ abscissa m do ponto C é positivo. Sabendo - se que a área $2\sqrt{3} = 0$ e a circunferência C: $x^2 + 2x + y^2 = 0$. Sobre a posição do triângulo retângulo ABC é 5/2, determine a valor de m. relativa desses três elementos, podemos afirmar que:

- a) r e s são paralelas entre si e ambas são tangentes à C.
- r e s são perpendiculares entre si e nenhuma delas é b) tangente a C.
- r e s são concorrentes, r é tangente à C e s não é tangente à C.
- tangente à C.

14. (USP) Na figura a seguir, os pontos A,B e C são vértices de um triângulo retângulo, sendo $\stackrel{\frown}{B}$ o ângulo reto. Sabendo r e s são concorrentes, s é tangente à C e r não é se que A = (0,0), B pertence à reta x γ 2y = 0 e P = (3,4) é o centro da circunferência inscrita no triângulo ABC, determinar as coordenadas:

- a) do vértice B.
- b) do vértice C

15 (ITA - **2007**) Sejam *A*: (*a*, 0), *B*: (0, *a*) e *C*: (*a*, *a*), pontos do plano cartesiano, em que *a* é um número real não - nulo. Nas alternativas abaixo, assinale a equação do lugar geométrico dos pontos *P*: (*x*, *y*), cuja distância à reta que passa por *A* e *B* é igual à distância de *P* ao ponto *C*.

a)
$$x^2 + y^2 + y$$

b)
$$x^2 + y^2 + 2xy + 2ax + 2ay + 3a^2 = 0$$

c)
$$x^2 + y^2 = 2xy + 2ax + 2ay + 3a^2 = 0$$

d)
$$x^2 + y^2 \gamma 2xy \gamma 2ax \gamma 2ay \gamma 3a^2 = 0$$

e)
$$x^2 + y^2 + 2xy \gamma 2ax \gamma 2ay \gamma 3a^2 = 0$$

3.

4. A
$$(1, b \gamma m) e B (1, b + m)$$

6.
$$3\sqrt{3}$$

13.
$$m=2+\frac{5\sqrt{2}}{2}$$

b) O centro do círculo estará no ponto da forma (m, 2(m+1)), ou seja seu lugar geométrico é uma reta de equação y = 2(x+1), desconsiderando o segmento que une os pontos (- 2, - 2) e (1,4).

16. (IME) Dada a equação:

$$x2 + y2 - 2mx \gamma 4(m+1) y + 3m + 14 = 0$$

- a) Determine os valores de m, para que esta equação corresponda a um circulo.
 - b) Determine o lugar geométrico dos centros desses círculos.

GABARITO