

2^a Prova de Cálculo Numérico

Professor: Carlos Alexandre Silva	Data : /06/2018
Alun@:	Valor: 20 pts
Alun@:	

- 1. (5,0 pts) Para $f(x) = \sqrt[3]{x-1}$, definida no intervalo $x \in (1,+\infty)$, sejam $x_0 = 1,5, x_1 = 1,6$ e $x_2 = 1,9$. Construa polinômios interpoladores de grau um $(P_1(x), \text{ interpolação linear})$, grau dois $(P_2(x), \text{ interpolação quadrática})$ e grau 3 $(P_3(x), \text{ interpolação cúbica})$ para determinar uma aproximação de f(1,7) e encontre o erro absoluto para cada aproximação no ponto 1, 7. Plote as funções $f(x), P_1(x), P_2(x)$ e $P_3(x)$ em um mesmo gráfico, inserindo nome nos eixos, título e legenda. Determine as equações dos polinômios $P_1(x), P_2(x)$ e $P_3(x)$. Faça uma interpretação dos resultados.
- 2. Suspeita-se que grande quantidade de tanino em folhas maduras de carvalho inibam o crescimento das larvas da mariposa de inverno (*Operophtera bromata L., Geometridae*), as quais danificam muito essas árvores em determinados anos. A tabela a seguir relaciona o peso médio de duas amostras de larvas em certos momentos nos primeiros 28 dias após o nascimento. A primeira amostra foi criada em folhas novas de carvalho, enquanto a segunda amostra foi criada em folhas maduras da mesma árvore.

Dia	0	6	10	13	17	20	28
Peso médio da amostra 1 (mg)	6,67	17,33	42,67	37,33	30,10	29,31	28,74
Peso médio da amostra 2 (mg)	6,67	16,11	18,89	15,00	10,56	9,44	8,89

- a) (2,0 pts) Use a interpolação de Lagrange para aproximar a curva de peso médio para cada amostra. Plote o seu gráfico junto com os pontos dados inserindo nome nos eixos, título e legenda.
- b) (2,0 pts) Encontre um peso médio máximo e mínimo aproximado para cada amostra.
- 3. A tabela abaixo mostra as alturas e pesos de uma amostra de nove homens entre as idades de 25 a 29 anos, extraída ao acaso entre funcionários de uma grande indústria:

Altura	183	173	168	188	158	163	193	163	178	cm
Peso	79	69	70	81	61	63	79	71	73	kg

Em todos os gráficos, coloque nome nos eixos, título no gráfico e legenda (quando for cabível).

- a) (1,0 pt) Faça o diagrama de dispersão dos dados e observe que parece existir uma relação linear entre a altura e peso.
- b) (1,0 pt) Faça um ajuste linear que descreva o comportamento do peso em função da altura, isto é, peso = f(altura). Determine a equação do ajuste.
- c) (2,0 pts) Estime o peso de um funcionário com 175 cm de altura; e estime a altura de um funcionário com 80 kg.
- d) (2,0 pts) Ajuste agora a reta que descreve o comportamento da altura em função do peso, isto é, altura = g(peso). Determine a equação do ajuste.

- e) (2,0 pts) Resolva o item (c) com essa nova função e compare os resultados obtidos.
- 4. Considere um pato em pleno vôo. Para aproximar o perfil superior do pato, são escolhidos pontos ao longo da curva pelos quais se deseja que a curva de aproximação passe. A tabela abaixo lista as coordenadas de 21 pontos dados em relação ao sistema de coordenadas superposto mostrado na figura abaixo.

- a) (1,0 pt) Use o algoritmo de *spline* cúbico para encontrar as equações dos polinômios cúbicos para a formação do *spline* e plote o resultado da interpolação.
- b) (1,0 pt) Use o algoritmo de interpolação de Lagrange (grau n=20) e compare graficamente a interpolação por spline e por Lagrange.
- c) (1,0 pt) Discuta sobre o resultado que você encontrou.