MACROECONOMICS

73-240

REVIEW FOR MIDTERM 1

Shu Lin Wee

This version: October 2, 2019

Midterm 1

- 1) When: October 7 Monday, during class time
- 2) Covers Lectures 1 to 9 (includes Pareto Optimality)
- 3) Which is the same as Chapters 1,2,4,5 in textbook
- 4) Bring a pen! don't bring a calculator

Format

- 10 Short Questions (60% of midterm score)
 - Each Question is worth 6 points
- **2** 3 Long Problems (40% of midterm score)
 - One 10 points problem
 - Two 15 points problem

Some advice: Plan your time accordingly. You should give yourself at least 40 minutes for the long problems.

What did we cover?

- 1 Measurement:
 - How to calculate GDP
 - Real vs. Nominal values
 - How to calculate a price index and inflation
- 2 Modeling an aggregate economy:
 - Household
 - Firm
 - Government
 - Putting them together in a competitive equilibrium (CE)
- 3 Thinking about Private vs. Social Optimality:
 - Social Planner

Measurement: GDP

3 ways to measure GDP

- Product Approach: Sum of value-added (value added =final value less value of intermediate goods)
- Expenditure Approach: Sum of all spending on newly produced final goods and services
- Income Approach: Sum of all income earned from newly produced final goods and services

Goal: Know how to measure this in data

Measurement: Real vs. Nominal

1) Nominal GDP is the market value of all final goods and services measured at current prices.

Nominal GDP =
$$\sum_{x} P_{x,t} Q_{x,t}$$

2) Real GDP is the market value of all final goods and services measured at constant prices

Real GDP =
$$\sum_{x} P_{x,b} Q_{x,t}$$

where b denotes the base year

Note: Not testing on chain weights since no calculators allowed.

Goal: Be able to talk about the productive capacity of an economy by focusing on Real values.

Measurement: Prices and inflation

1) Price Indices:

• GDP Deflator (Paasche Index)

$$\text{GDP Deflator}_t = \frac{\text{Nominal GDP}_t}{\text{Real GDP}_t} \times 100$$

• CPI (Laspeyres Index)

$$CPI_t = \frac{E_t}{E_b} \times 100 = \frac{\sum_x P_{x,t} Q_{x,b}}{\sum_x P_{x,b} Q_{x,b}}$$

where E denotes expenditure and b denotes the base year.

2) Inflation:

Inflation_t =
$$\left(\frac{P_t}{P_t - 1} - 1\right) \times 100$$

Goal: Should be able to construct price indices and know the representation of Business differences between them and what they measure.

Modeling the Economy: the Household

- 1) Constraints:
 - Time: $l + N^s = h$
 - Budget:

c = income (types of income received depends on the question!)

- 2) Preferences:
 - Utility function used to describe preferences
 - Must know assumptions we make!

Goal: Know how to write down the household's problem

Modeling the Economy: the Household

A standard Household problem:

$$\max_{c,\ell} U(c,\ell)$$

s.t.

$$c = wN^s + \pi - T$$

and

$$N^s = h - \ell$$

Solving, you get two optimality conditions:

• Choice must be desirable

$$MRS_{\ell,c} = \frac{\partial U(c,\ell)/\partial \ell}{\partial U(c,\ell)/\partial c} = w = \text{opportunity cost of leisure}$$

• Choice must be affordable

$$c = wN^s + \pi - T$$

Modeling the Economy: the Household

Given any household problem, you should know:

- How to set-up the household's problem
 - Graphically (budget constraint and indifference curve)
 - Analytically
- How to characterize optimality conditions
- Comparative statics: e.g. what happens when π changes?
 - income vs substitution effects (IE vs. SE)
- Going from 1 to many: assumptions for aggregation

Modeling the Economy: the Firm

- 1) Production Function: Y = zF(K, N)
 - Production function simply converts inputs into output
 - Assumptions about zF(K, N).
- 2) Firm's objective: maximize profits, takes (z, K, w) as given

$$\max_{N^d} \pi = zF(K, N^d) - wN^d$$

3) Characterize firm's optimality condition:

MB of 1 more unit of N = MPN = w = MC of 1 more unit of N

Goal: Be able to set-up and solve the firm's problem!

Modeling the Economy: the Govt

- 1) has exogenous spending G (forced to spend G)
- 2) must collect enough tax revenue to finance G
 - With lump-sum taxes

$$G = T$$

• With distortionary taxes (depends on what the tax instrument is)

$$\underbrace{\text{tax rate} \times \text{tax base}}_{\text{tax revenue}} = G$$

Goal: Understand how the government's choice of tax instrument affects the household and firm's problem.

- 1) Know the definition of a competitive equilibrium (CE).
 - The definition tells you what variables are exogenous (z, K, G)
 - the definition tells you what agents are doing
 - Household privately optimizes
 - Firm privately optimizes
 - Govt balances its budget
 - the definition tells you how they come together:
 - Markets clear (Labor and Goods markets)

- 2) Know how to graph a competitive equilibrium (CE).
 - From the Firm: use production function Y = zF(K, N) to draw Y in terms of l.
 - From the Govt: know G. Together with the Y = zF(K, N) from firm, can draw PPF

$$PPF: C = zF(K, h - \ell) - G$$

- From the HH: get budget constraint (BC) & indifference curve (IC)
- Putting together: a CE must be:
 - Feasible (on PPF)
 - Affordable (on BC)
 - Desirable

$$\underbrace{MRS_{\ell,c}}_{\text{slope of IC}} = \underbrace{w}_{\text{slope of BC}} = \underbrace{MPN = MRT_{\ell,c}}_{\text{slope of PPF}} \quad \underbrace{\text{CarnegieMellon}}_{\text{SCHOOL OF BUSINESS}}$$

- 3) Know how to analytically characterize a competitive equilibrium (CE).
 - Characterize optimality from the Household problem
 - Characterize optimality from the Firm's problem
 - Govt balances its budget
 - Bring agents together using markets:
 - \bullet When labor market clears, Household and firms face same wage rate:

$$MRS_{\ell,c} = w^* = MPN$$

• When goods market clears, how much output firms produce is equal to total output demanded by households and govt:

$$Y = C + G$$

A standard example: characterize the competitive equilibrium:

- $Pirm production function <math>Y = zK^{\alpha}N^{1-\alpha}$
- lacktriangle Lump-sum tax T to finance spending G
- Firm is born with capital.

- 4) Know how outcomes change in our aggregate economy if exogenous variable changes
 - How does economy react if z or K or G changes?

Privately vs. Socially Optimal

- 1) Social Planner's problem is the benchmark for deciding what is socially optimal.
 - Know how to set up social planner problem

$$\max_{C,\ell} U(C,\ell)$$

s.t.

$$C = zF(K, h - \ell) - G$$

Observe that social planner wants to make households happy by maximizing their utility while respecting the feasibility constraints (PPF).

Privately vs. Socially Optimal

- 2) Social Planner's solution is always socially optimal.
 - Know how to characterize the social planner's optimality conditions

$$\underbrace{MRS_{l,c}}_{\text{slope of IC}} = \underbrace{MRT_{l,c}}_{\text{slope of PPF}}$$

and PPF

- 3) With lump-sum taxes and under certain conditions:
 - First welfare theorem: a CE is Pareto Optimal
 - Second welfare theorem: any Pareto Optimum can be achieved by a CE with suitable transfers.
- 4) if exist distortionary taxes or externalities or missing markets or non-competitive firms

 Tepper
 - A CE fails to be pareto optimal

Good luck on midterm 1!

