A Comparative Study on Vocabulary Reduction for Phrase Table Smoothing

Yunsu Kim, Andreas Guta, Joern Wuebker*, Hermann Ney

{surname}@cs.rwth-aachen.de

ACL 2016 First Conference on Machine Translation - 12th August, 2016

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

*Lilt, Inc.

Phrase Table Smoothing

Phrase translation probability: Sparsity problem

$$p(ilde{f}| ilde{e}) = rac{N(ilde{f}, ilde{e})}{N(ilde{e})}$$

- Phrase vocabulary is huge!
- Bilingual training data is limited

Smoothing methods

- ► Word-based lexicon (a.k.a. IBM-1 lexical models) [Brown & Pietra+ 93]
- ▶ Good-Turing/Kneser-Ney smoothing [Foster & Kuhn⁺ 06]
- ⇒ Any others? Linguistically/mathematically motivated?

Vocabulary Reduction

Reduce the vocabulary size: Word-to-label mapping

$$f \longmapsto c(f)$$

- ightharpoonup c = c word classes, part-of-speech tags, morphological stems, ...
- Denser distribution on a smaller vocabulary
- Widely used in various NLP tasks

For phrases:

$$f_1 f_2 \longmapsto c(f_1) c(f_2)$$

- Robust to rare phrases
- Local context preserved
- ightharpoonup Flexibility in choosing c

Vocabulary Reduction: Key Questions for Phrase-based SMT

To maximize the phrase table smoothing performance...

- 1. Which label vocabulary should we choose?
 - ► Size, structure, linguistic property, ...
- 2. How to apply a label mapping to phrase pairs?
 - **►** Model forms
- 3. How much training data do we need?

Word Classes from Brown Clustering

Word class: group of words with similar syntactic/semantic roles

- Automatically clustered from training data
- Examples [Brown & deSouza⁺ 92]
 - **Class 1:** had hadn't hath would've could've should've must've might've
 - **▷ Class 2:** head body hands eyes voice arm seat eye hair mouth

Clustering parameters: adjust the vocabulary structure

- Clustering iterations
- Initialization
- Number of classes
- ⇒ Easy to obtain various label vocabularies!

Smoothing Models

map-all: map every word in a phrase at once [Wuebker & Peitz⁺ 13]

$$egin{aligned} f_1\,f_2 &\longmapsto \,c(f_1)\,c(f_2) &e_1\,e_2 &\longmapsto \,c(e_1)\,c(e_2) \ &p(ilde{f}| ilde{e}) = p(c(ilde{f})|c(ilde{e})) \end{aligned}$$

map-each: map each word in a phrase at a time (this work)

Comparison of Clustering Iterations

Statistical significance: ‡ = 95%, † = 90% Number of classes = 100

Comparison of Initializations

	Initialization	BLEU [%]
Baseline		28.3
+ map-each	random	28.9 [‡]
	top-frequent	29.0 [‡]
	same-countsum	28.8 [‡]
	same-#words	28.9 [‡]
	count-bins	29.0 [‡]

- ▶ random: randomly assign words to classes
- top-frequent: top-frequent words have their own classes, while all other words are in the last class
- ▶ same-countsum: each class has almost the same sum of word unigram counts
- same-#words: each class has almost the same number of words
- count-bins: each class represents a bin of the total count range

Comparison of Label Vocabulary Size

	#vocab (source)	BLEU [%]
Baseline		28.3
+ map-each	100	29.0 [‡]
(word class)	200	28.9 [†]
	500	28.7
	1000	28.7
	10000	28.7
+ map-each (POS)	52	28.9 [†]
+ map-each (lemma)	26744	28.8

▶ Little difference with respect to the vocabulary size

Comparison of Smoothing Models

	IWSLT 2012	WMT 2015	WMT 2014	WMT 2015
	de-en	fi-en	en-de	en-cs
	BLEU	BLEU	BLEU	BLEU
	[%]	[%]	[%]	[%]
Baseline	28.3	15.1	14.6	15.3
+ map-all	28.6 [‡]	15.3 [‡]	14.8 [‡]	15.4 [‡]
+ map-each	29.0 [‡]	15.8 [‡]	15.1 [‡]	15.8 [‡]

▶ map-each outperforms map-all consistently

Comparison of Training Data Size

- ▶ Bigger improvement for larger training data
- More OOV words for smaller training data: not handled by the smoothing

Conclusion

Vocabulary reduction for phrase table smoothing

- 1. yields up to +0.7% BLEU
- 2. is almost equally effective with any word-label mapping (e.g. randomized labels)
 - Emphasizes the sparsity of the standard phrase translation model
 - ► Linguistic explanation?
- 3. performs better when mapping one word in a phrase at a time (map-each)
- 4. more suitable for large-scale translation tasks

Related work

Similar comparative experiments on neural machine translation systems [Sennrich & Haddow 16]

Thank you for your attention

Yunsu Kim

kim@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

References

- [Brown & deSouza⁺ 92] P.F. Brown, P.V. deSouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai: Class-based n-gram Models of Natural Language. *Computational Linguistics*, Vol. 18, No. 4, pp. 467–479, December 1992.
- [Brown & Pietra⁺ 93] P.F. Brown, V.J.D. Pietra, S.A.D. Pietra, R.L. Mercer: The Mathematics of Statistical Machine Translation: Parameter Estimation. *Computational Linguistics*, Vol. 19, No. 2, pp. 263–311, June 1993.
- [Foster & Kuhn⁺ 06] G. Foster, R. Kuhn, H. Johnson: Phrasetable Smoothing for Statistical Machine Translation. In *2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006)*, pp. 53–61, Sydney, Austrailia, July 2006.
- [Sennrich & Haddow 16] R. Sennrich, B. Haddow: Linguistic Input Features Improve Neural Machine Translation. In *Proceedings of ACL 2016 1st Conference on Machine Translation (WMT 2016)*, pp. 83–91, Berlin, Germany, August 2016.
- [Wuebker & Peitz⁺ 13] J. Wuebker, S. Peitz, F. Rietig, H. Ney: Improving Statistical Machine Translation with Word Class Models. In *Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013)*, pp. 1377–1381, Seattle, USA, October 2013.

Appendix: Position-dependent Weights for map-each

► (inverse) unigram of the replaced word

$$rac{1}{w_j} = rac{N(f_j)}{\sum_{f'} N(f')}$$

► (inverse) source phrase replacement probability

$$rac{1}{w_j} = rac{N(f_{b_k} \ ... \ f_j \ ... \ f_{j_k})}{\sum_{f'} N(f_{b_k} \ ... \ f' \ ... \ f_{j_k})}$$

▶ factorizing likelihood

$$w_j = N(c^{(j)}(ilde{f}))$$