Tiva Based Daughter Board for Firebird V Hardware And Software Manual.

eRTS Lab IIT Bombay

June 19, 2017

1 Credits

Version 1.0 June 19, 2017

Documentation Author(Alphabetical Order):

- 1. Ayush Gaurav, Intern eYSIP 2017
- 2. Nagesh K, Intern eYSIP 2017

Credits(Alphabetical Order):

- 1. Prof Kavi Arya, CSE IIT Bombay
- 2. Nex Robotics Pvt. Ltd.
- 3. Piyush Manavar, Team e-Yantra
- 4. Saurav Shandilya, Team e-Yantra

₂ Notice

The contents of this manual are subject to change without notice. All efforts have been made to ensure the accuracy of contents in this manual. However, should any errors be detected, e-yantra welcomes your corrections. You can send us your queries / suggestions at Contact Us

Table Of Content

1	\mathbf{C}	redits	2
2	Notice Introduction Tiva Based Daughter Board 4.1 Technical Specification Hardware Manual:	3	
3	T4		6
	\mathbf{T}^{2}	iva Based Daughter Board	6
5		ardware Manual: Voltage Regulation on the Daughter Board	6 7
		5.1.1 Powering Micro-controller	7 7
		5.1.2 Powering Servos	
	5.2	Level Converters	8
		Sensors	8
		5.3.1 3.3V sensors	9
		5.3.2 5V sensors	9
	5.4	Port Expander	10
	5.5	External ADC	10
	5.6	LCD Interfacing	11
	5.7	USB Communication	12
		Programing the Controller	
	5.9	Reset Switch	13
	5.10	Servo Connectors	13
	5.11	TM4C123GH6PM Micro-controller:	14
	5.12	Pin Functionality	17
		5.12.1 Pin of uC	17
		5.12.2 Robot Main Board Connections	18

TABLE OF CONTENT Manual for Tiva Based Daughter Board for Firebird V.

	5.12.3 Pin Connection Of Plug And Play Board	20
3		22
	6.1 Code Composer Studio:	22
	6.1.1 Download CC Studio:	22
	6.1.2 Installing C C Studio:	22
	6.1.3 Create a New Project	24
	6.1.4 Add Path and Build Variables	24
	6.2 driver.lib	29
	6.3 Buzzer	29
	6.4 Programming the Robot	31
	6.5 Using Debugger of The Programmer	31
	6.6 Simple I/O Operation	31
	6.7 Robot Direction Control	33
	6.8 Robot Position Control Using Interrupts	33
	6.9 Timers and its Interrupts	33
	6.10 Robot Speed Control	33
	6.11 LCD Interfacing	33
	6.12 Analog To Digital Converter	33
	6.13 Serial Communication	
	6 14 I2C Communication	33

3 Introduction

4 Tiva Based Daughter Board

There are two daughter boards one with the launchpad and other one with the Arm Cortex M4 based uC. Almost all the specification are same unless mentioned otherwise.

4.1 Technical Specification

Microcontroller:

TM4C123gh6pm (ARM architecture based Microcontroller)
To know more about the microcontroller please refer to datasheet.

Sensors:

Three white line sensors (extendable to 7)
Five Sharp GP2Y0A02YK IR range sensor (One in default configuration)
Eight analog IR proximity sensors
Two position encoders

Indicators:

 2×16 Characters LCD Buzzer

Communication:

USB Communication

Wireless ZigBee Communication (2.4GHZ) (if XBee wireless module is installed) Bluetooth communication(Can be interfaced on external UART0 available on the board) Simplex infrared communication (From infrared remote to robot) I2C Communication

Battery Life:

2 Hours, while motors are operational at 75% of time

Locomotion:

Two DC geared motors in differential drive configuration and caster wheel at front as support

Top Speed: 24 cm / second Wheel Diameter: 51mm

Position encoder: 30 pulses per revolution Position encoder resolution: 5.44 mm

5 Hardware Manual:

5.1 Voltage Regulation on the Daughter Board

The voltage source available on the Firebird is 9.6V. But the TIVA platform works on 3.3V and the servos can operate upto 6V. So there must be 3 different voltage levels on the board. The uC based board has 2 voltage regulators and the plug and play board has 1 voltage regulator. In the uC based board the 9.6 volts is 3.3V to power the microcontroller. In the plug and play board the there is an inbuilt voltage regulator, so it is directly connected connected to 5v, 300mA source. The servo in both the boards has a separate 5V regulator.

5.1.1 Powering Micro-controller

The boards have different powering circuits. In the plug and play board is connected to 5V source on Pin 10. In the uC based board the 9.6V source available on Pin 29 is reduced to 3.3V. Refer to the schematic below for further details.

5.1.2 Powering Servos

The servo motors can operate safely up to 6V, beyond this voltage they get damaged. Also, the servos require high current. There is a separate power line for servos taken from Pin 29 and reduced to 5V using the voltage regulator. Refer the schematic for further details.

$_{5.2}$ Level Converters

The TIVA platform operates at 3.3V and the Firebird operates at 5V. Directly connecting these pins to the TIVA may be fatal. So to interface these sensors, a level converter is used. A bidirectional MOS-FET based level converter used. The level converter is necessary is for input pins. In the boards Level converter is used for interfacing the position encoders of the motors. Refer the schematic for further details.

NOTE: If the user wishes to interface extra sensors using the GPIOs provided on the board, then external level converters have to used if the output of the sensor is above 3.3V.

5.3 **Sensors**

The firebird V has as many as 22 sensors, but maximum 12 sensors can be interfaced directly with the controller. The daughter board has interfaced 20 of those 22 sensors using external I2C bases ADC. Sensors that were not included in the daughter board are current sensor and battery monitoring sensor. These sensors are working either on 3.3V or on 5V. Interfacing 3.3V sensors are simple and can be directly connected to the controller. On the other hand 5V can not be directly interfaced so a different approach is taken which will be mentioned in the 5V sensors sub heading.

5.3.1 3.3V sensors

The output white line sensors and IR Proximity sensors vary from 0 to 3.3V. Hence these sensors can be interfaced directly with the microcontroller. Refer the table below for pin connections.

IR Proximity Sensors	Pin Name(uC)	Pin Name(Plug and Play)
1	PE1	PB5
2	PE3	PD0
3	PE5	PD3
4	PE4	PD1
5	PB5	PE5
6	External ADC IN6	External ADC IN7
7	External ADC IN7	PE0
8	External ADC IN0	External ADC IN0
White Line Sensors	Pin Name(uC)	Pin Name(Plug and Play)
1	PD2	PE1
2	PD1	PE2
3	PD0	PE3
4	External ADC IN1	External ADC IN2
5	External ADC IN2	External ADC IN3
6	External ADC IN3	External ADC IN4
7	External ADC IN4	External ADC IN5

5.3.2 5V sensors

Sharp Sensors are the only sensors on board that works on 5V supply. The output of the sharp sensor ranges from 0-5V and according to the output we have a formula to calculate the distance. While uC has VREF as 3.3V so these sensors cannot be directly connected. The approach we followed is to feed the output of the sensor to a buffer and then using a voltage divider convert 0-5 range to 0-3V range. For better understanding refer to the schematic below. There is a also table which tells about the pin connection.

p-5V to 0-3V Convertor

Sharp Sensors	Pin Name(uC)	Pin Name(Plug and Play)
1	PE0	PB4
2	PE2	External ADC IN1
3	PD3	PD2
4	External ADC IN5	External ADC IN6
5	PB4	PE4

5.4 Port Expander

TM4C123GH6PM has only 64 pins out which only 43 are GPIO pins. This limits our application to read input and respond correspondingly. To increase the number of GPIO and there interrupts we have used I2C compatible a port expander MCP23017. It has 2 PORTS A and B, with each port having 8 Pins. The interrupts on each pin can also be monitored. To read more about it, download the datasheet from here. The schematic of the connection is shown below. Keep in mind that I2C SCL and SDA have already been pulled up using 10K resistor.

Port Expander For Plug and Play

5.5 External ADC

It has already been mentioned that adc channels on the microcontroller is limited to 12 while firebird has

22 sensors available. We have interfaced an external ADC which is also I2C compatible. It has 8 channel with 12 bit resolution. To read more about it, download the datasheet from here. The schematic of the connection is shown below. Keep in mind that I2C SCL and SDA have already been pulled up using 10K resistor.

5.6 LCD Interfacing

LCD can be interfaced in 8bit or 4 bit interfacing mode. In 8 bit mode it requires 3 control line and 8 data lines. To reduce number of I/Os required, Fire Bird V robot uses 4 bit interfacing mode which requires 2 control lines and 4 data lines. In this mode upper and lower nibble of the data/command byte needs to be sent separately. RW(Read/Write) control line of lcd is grounded so it can only work in write mode.

The EN line is used to tell the LCD that microcontroller has sent data to it or microcontroller is ready to receive data from LCD. This is indicated by a high-to-low transition on this line. To send data to the LCD, program should make sure that this line is low (0) and then set the other two control lines as required and put data on the data bus. When this is done, make EN high (1) and wait for the minimum amount of time as specified by the LCD datasheet, and end by bringing it to low (0) again.

When RS is low (0), data is treated as a command or special instruction by the LCD (such as clear screen, position cursor, etc.). When RS is high (1), data being sent is treated as text data which should be displayed on the screen.

written to the LCD.//

LCD Connections of Plug and Play board

LCD Connections of uC based board

LCD	Pin Name(uC)	Pin Name(Plug and Play)
RS	PF0	PD6
EN	PF2	PD7
DB4	PD4	PA2
DB5	PD5	PA3
DB6	PD6	PA4
DB7	PD7	PA5

USB Communication

Fire Bird V's main board has USB port socket. Microcontroller accesses USB port via main board socket. All its pins are connected to the microcontroller adapter board via main board's socket connector.FT232 is a USB to TTL level serial converter. It is used for adding USB connectivity to the microcontroller adapter board. With onboard USB circuit Fire Bird V can communicate serially with the PC through USB port without the use of any external USB to Serial converter. Microcontroller socket uses USB port from the main board. Data transmission and reception is indicated suing TX and RX LEDs which are located near the FT232 IC. This IC is only on the uC based board. Plug and play board has its own usb port on TIVA launcpad. The schematic of ft232 is shown below.

JUSB To Serial Convertor

5.8 Programing the Controller

5.9 Reset Switch

The Plug and play board makes use of reset button present on the TIVA launchpad. The uC based has a switch connected to the reset the reset pin 38 of the microcontroller. The schematic is given below.

5.10 Servo Connectors

The microcontroller board has three Servo connectors. It can be used for driving servo motors of camera pod or any other attachment. Power for the servo connector is provided by the "5V servo supply" voltage regulator. Both the board have different pwm pins for servo which can be seen from the schematic.

Servo Connections for Plug and Play Board

Servo Connections for uC based Board

$_{5.11}$ TM4C123GH6PM Micro-controller:

The TivaTM C Series ARM Cortex-M4 microcontrollers provide top performance and advanced integration. The product family is positioned for cost-conscious applications requiring significant control processing and connectivity capabilities such as:

- Low power, hand-held smart devices
- Gaming equipment
- Home and commercial site monitoring and control
- Motion control
- Medical instrumentation
- Test and measurement equipment
- Factory automation
- Fire and security

5.11 TM4C123GH6PM Micro-controller Daughter Board for Firebird V.

- Smart Energy/Smart Grid solutions
- Intelligent lighting control
- Transportation

Schematic Of the connections is shown below.

5.12 Pin Functionality

5.12.1 Pin of uC

Pin No.	Pin	Complete Pin Connections
1	PB6	Servo Motor 1
2	VDDA	VDD filtered through capcitors
3	GNDA	Ground
4	PB7	Servo Motor 2
5	PF4	Pin 53 Right Motor 1
6	PE3	16 IR proximity Sensor 2
7	PE2	Output of Second OpAmp of lm324
8	PE1	12 IR Proximity Sensor 1
9	PE0	output of First OpAmp of lm324
10	PD7	28 DB7 of LCD Data
11	VDD	VDD filtered through capcitors
12	GND	Ground
13	PC7	13 Zigbee Rx
14	PC6	14 Zigbee Tx
15	PC5	FT232
16	PC4	FT232
17	PA0	External UART
18	PA1	External UART
19	PA2	Buzzer
20	PA3	63 Right Position Encoder Interrupt
21	PA4	64 Left Position Encoder Interrupt
22	PA5	55 Right Motor 2
23	PA6	54 Right Motor Pwm
24	PA7	Servo Motor 3
25	VDDC	Connected to VDDC on 56
26	VDD	VDD filtered through capcitors
27	GND	Ground
28	PF0	22 RS of LCD
29	PF1	INT A and B of to GPIO expander shorted and connected
30	PF2	24 EN of LCD
31	PF3	50 Left Motor PWM
32	WAKE	Ground
33	HIB	NC
34	XOSC0	32.7 KHz crystals(One End)
35	GNDX	Cap to crystal
36	XOSC1	32.7 KHz crystals(Other End)
37	VBAT	3.3 Volts
38	RST	Reset Switch
39	GND	Ground
40	OSC1	16 MHz crystal(One end)
41	OSC1	16 MHz crystal(Other end)
42	VDD	VDD filtered through capcitors
43	PD4	26 DB4 Of LCD
44	PD5	25 DB5 of LCD
45	PB0	51 Left Motor 1

46	PB1	52 Left Motor 2
47	PB2	I2C ADC SCL
48	PB3	I2C ADC SDA
49	PC3	JTAG TDO
50	PC2	JTAG TDI
51	PC1	JTAG TMS
52	PC0	JTAG TCK
53	PD6	27 DB6 Of LCD
54	VDD	VDD filtered through capcitors
55	GND	Ground
56	VDDC	Connected to VDDC on 25
57	PB5	46 IR Proximity Sensor 5
58	PB4	Output of First OpAmp of lm358
59	PE4	43 IR Proximity Sensor 4
60	PE5	42 IR Proximity Sensor 3
61	PD0	32 White Line Sensor 3
62	PD1	31 White Line Sensor 2
63	PD2	30 White Line Sensor 1
64	PD3	Output of Third OpAmp of lm324

5.12.2 Robot Main Board Connections

Pin	Pin Name	Functionality	PIN on	Pin on
Out			DB	Pluggable
				В
1	Current sensor	Current sense analog value	Not Using	
2	IR Proximity sensor 8	IR Proximity sensor 8 analog value	External	
			Adc INT0	
3	GND	Ground	Ground	
4	DATA+	USB connection going to the AT-	C4	
		MEGA2560 USB connection with uC		
5	DATA-	microcontroller via FT232 USB to serial	PC5	
		USB connection with uC		
6	VCC	USB converter. Connect TO VCC of		
		FT232		
7	5V System	"5V System Voltage. Can be used for pow-		
		ering up any digital device with current		
		limit of 400mA."		
8 5V System "5V System V		"5V System Voltage. Can be used for pow-		
		ering up any digital device with current		
		limit of 300mA."		
9	5V System	"5V System Voltage. Can be used for pow-		
		ering up any digital device with current		
		limit of 300mA."		
10	5V System	"5V System Voltage. Can be used for pow-		
		ering up any digital device with current		
		limit of 400mA."		
11	SHARP IR Range Sensor	Analog output of Sharp IR range Sensor 1	PE0(lm324	
	1		1)	
12	IR Proximity Sensor 1	Analog output of IR Proximity sensor 1	PE1	

1.0	VD DVD	WD 11.0 11.	DOF
13	XBee RXD	XBee wireless module Serial data in	PC7
14	XBee TXD	XBee wireless module Serial data out	PC6
15	SHARP IR Range Sensor 2	Analog output of Sharp IR range sensor 2	PE2(lm324 2)
16	IR Proximity Sensor 2	Analog output of IR Proximity sensor 2	PE3
17	RSSI	To capture the RSSI signal	
18	MOSI	MOSI of the Controller/NC create extra expansion headers	
19	MISO	MISO of controller/NC create extra ex-	
20	SCK	pansion headers SCK of the controller/NC create extra ex-	
20	SCK	pansion headers	
21	SSI	SS of the controller/ NC create extra expansion headers	
22	RS	connected to RS of LCD normal I/O	PF0
23	RW	connected to RW of LCD normal I/O	GND
24	EN	connected to EN of LCD normal I/O	PF2
25	DB5	data pin of lcd normal I/O	PD5
26	DB4	data pin of lcd normal I/O	PD4
27	DB6	data pin of lcd normal I/O	PD6
28	DB7	data pin of lcd normal I/O	PD7
29	V Battery System	ADC to check the level of battery voltage	
30	WL1	Analog output of white line sensor 1	PD2
31	WL2	Analog output of white line sensor 2	PD1
32	WL3	Analog output of white line sensor 3	PD0
33	"Sharp IR Sensors 1 and 5	Analog output of white line sensor 3	1 00
	Disable"		
34	IR Proximity Sensor Disable		
35	5V System	"5V system Voltage. Can be used for pow-	up any
		ering	digital device.
			Current
			Limit:
			400mA."
36	WL4	Analog output of white line sensor 4	External
30	VV L4	Analog output of writte line sensor 4	Adc INT1
37	WL5	Analog output of white line sensor 5	External
31	WLS	Analog output of white line sensor 5	Adc INT2
38	WL6	Analog output of white line sensor 6	External Adc INT3
39	WL7	Analog output of white line sensor 7	External
		Thato, cachar of white mie sensor !	Adc INT4
40	White Line Sensors Disable		
41	Sharp IR Range Finder 3	Analog output of Sharp IR range sensor 3	PD3 (lm
			324 3)
42	IR Proximity Sensor 3	Analog output of IR Proximity sensor 3	PE5
43	IR Proximity Sensor 4	Analog output of IR Proximity sensor 4	PE4
	· ·	→ •	<u> </u>

44	Sharp IR Range Finder 4	Analog output of Sharp IR range sensor 4	in 5 ex (lm
			324 5)
45	Sharp IR Range Finder 5	Analog output of Sharp IR range sensor 5	PB4
			$(lm358\ 1)$
46	IR Proximity Sensor 5	Analog output of IR Proximity sensor 5	PB5
47	C11	motor not present	
48	C1	PWM not present	
49	c12	not present	
50	PWM L	left motor PWM(timer pin in PWM mode)	PF3
51	L1	left motor pin1 normal I/O	PB0
52	L2	left motor pin2 normal I/O	PB1
53	R1	right motor pin1 normal I/O	PF4
54	PWM R2	right motor PWM(timer pin in PWM	PA6
		mode)	
55	R2	right motor pin2	PA5
56	NC	•	
57	NC		
58	NC		
59	NC		
60	NC		
61	NC		
62	Position encoder left Out-		
	put of Left position en-		
	coder (0-5V) PA4		
63	Position encoder right		
	Output of Right position		
	encoder (0-5V) PA3		
64	position enocder C2 Out-		
	put of C2 position encoder		
	(0-5V)		
65	Position encoder C1 Out-		
	put of C1 position encoder		
	(0-5V)		
66	C22	NC	
67	C21	NC	
68	C2	Pwm	NC
69	IR Prox6	Analog output of IR Proximity sensor 6	INT6
		External Adc	
70	IR Prox7	Analog output of IR Proximity sensor 7	INT7
		External Adc	
71	Buzzer	Input, V¿0.65V turns on the Buzzer	PA2
72	DAC Out	NC	
73	RS232 TX	NC	
74	RS232 RX	NC	

5.12.3 Pin Connection Of Plug And Play Board

Pin	Pin Connection on Main	Function
Name	Board	
PA0		Used for Programming

PA1		Ugad for Dragramming
	0.0	Used for Programming
PA2	26	DB4 of LCD
PA3	27	DB5 of LCD
PA4	28	DB6 of LCD
PA5	29	DB7 of LCD
PA6		I2C
PA7		I2C
PB0	14	Zigbee Tx
PB1	13	Zigbee RX
PB2	62	Position encoder of left motor
PB3	52	L2
PB4	11	Sharp IR1
PB5	12	IR 1
PB6		Servo
PC0		
PC1		
PC2		
PC3		
PC4	53	R1
PC5	54	PWM of right motor
PC6	55	R2
PC7		Interrupt of port expander
PD0	16	IR 2
PD1	43	IR Prox 4
PD2	41	Sharp IR 3
PD3	42	IR Prox 3
PD4		
PD5		
PD6	22	RS of LCD
PD7	24	EN of LCD
PE0	70	IR 7
PE1	30	WL1
PE2	31	WL2
PE3	32	WL3
PE4	45	Sharp IR 5
PE5	46	IR 5
PE6	10	1100
PE7		
PF0	63	Position encoder of right motor
PF1	00	Servo
PF2	50	PWM of left motor
PF3	51	L1
PF4	71	Buzzer

$_{6}$ Software Manual:

6.1 Code Composer Studio:

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. This description is directly taken from the website of Texas Instruments and click to know more about CC Studio

6.1.1 Download CC Studio:

At the time of writing this document Version 7 was the latest one. You can check for the latest at Download CCS. (do not download any beta versions). There will be two installer files. The web installer will require Internet access until it completes. If the web installer version is unavailable or you can't get it to work, download, unzip and run the offline version. The offline download will be much larger than the installed size of CCS since it includes all the possible supported hardware.

6.1.2 Installing C C Studio:

After the installer has started follow the steps mentioned below:

1. Accept the Software License Agreement and click Next.

2. Select the destination folder and click next.

3. Select the processors that your CCS installation will support. You must select "TM4C12X Arm Cortex M4". You can select other architectures, but the installation time and size will increase.

4. Select debug probes and click finish

- 5. The installer process should take 15 30 minutes, depending on the speed of your connection. The offline installation should take 10 to 15 minutes. When the installation is complete, uncheck the "Launch Code Composer Studio v7" checkbox and then click Finish. There are several additional tools that require installation during the CCS install process. Click "Yes" or "OK" to proceed when these appear.
- 6. Install TivaWare for C Series (Complete). Download and install the latest full version of TivaWare from: TivaWare. The filename is SW-TM4C-x.x.exe. This workshop was built using version 1.1. Your version may be a later one. If at all possible, please install TivaWare into the default location.

You can find additional information at these websites:

Main page: www.ti.com/launchpad Tiva C Series TM4C123G LaunchPad: http://www.ti.com/tool/ek-tm4c123gxl

TM4C123GH6PM folder:

http://www.ti.com/product/tm4c123gh6pm BoosterPack webpage: www.ti.com/boosterpack

LaunchPad Wiki:

www.ti.com/launchpadwiki

For understanding the launchpad properly and to learn more about Tiva it is strongly recommended to go through the webpage TIva Worshops and download and read the workbook

6.1.3 Create a New Project

To create new project follow the steps mentioned:

1. Click File then New and then CCS Projects

2. Select Target and connection as shown in the photo. Give a name to your project and save in a location. Click Finish. A main.c file will be open

6.1.4 Add Path and Build Variables

The path and build variables are used for:

- Path variable when you ADD (link) a file to your project, you can specify a "relative to" path. The default is PROJECT_LOC which means that your linked resource (like a .lib file) will be linked relative to your project directory.
- Build variable used for items such as the search path for include files associated with a library i.e. it is used when you build your project.

Variables can either have a PROJECT scope (that they only work for this project) or a WORKSPACE scope (that they work across all projects in the workspace). In the next step, we need to add (link) a library file and then add a search path for include files. First, we'll add these variables MANUALLY as WORKSPACE variables so that any project in your workspace can use the variables. Refer to the workbook by TI for adding as PROJECT

6.1.4.1 Adding a Path Variable

To add a path variable,:

• Right-click on your Window Tab and select Preference.

• Expand General list in the upper left-hand corner as shown and then expand the Resource list and click on Linked Resources: We want to add a New variable to specify exactly where you installed TivaWare.

- Click New
- When the New Variable dialog appears, type TIVAWARE_INSTALL for the name.

• For the Location, click the Folder... button and navigate to your TivaWare installation. Click on the folder name and then click OK.

• Click OK. You should see your new variable listed in the Variables list.

6.1.4.2 Adding a Build Variable

Now let's add a build variable that we will use in the include search path for the INCLUDE files associated with the TivaWare driver libraries.

• Click on Code Composer Studio Build and then the Variables tab:

- Click the Add button. When the Define a New Build Variable dialog appears, insert TIVAWARE_INSTALL into the Variables name box.
- Change the Type to Directory and browse to your Tivaware installation folder.

- Click OK.
- Click OK again to save and close the Build Properties window.

6.2 driver.lib

6.3 Buzzer

Located in the folder "Buzzer_Beep" folder in the documentation. In this example, we will load buzzer beep code in Tiva based Fire Bird V. Now we will see in detail the structure of this code. This experiment demonstrates the simple operation of Buzzer ON/OFF with one some delay. Buzzer is connected to PORTF 4 pin of the Tiva Launchpad. If you have uC based board then it is connected to PORTA 2. Concepts covered: Output operation, generating delay Note: Make sure that you have included driver.lib Buzzer is connected at PF4/PA2 on Tiva launchPad/uC To turn it on make PF4/PA2 pin logic 1 This experiment demonstrates the simple operation of Buzzer ON/OFF with one delay. Buzzer is connected to PF4 on plug and play board and to PA2 on uC board.

Concepts covered: Output operation, generating delay, setting operating frequency of the board. #include jstdint.h; #include jstdbool.h; #include "inc/hw_types.h" #include "inc/hw_memmap.h"

/*****Remove the comments if you are using uC board*****

```
#define buzzerEnable SYSCTL_PERIPH_GPIOF
#define buzzer GPIO_PORTF_BASE
#define buzzerPin GPIO_PIN_4
#define buzzerOn() GPIOPinWrite(buzzer,buzzerPin,255)
#define buzzerOff() GPIOPinWrite(buzzer,buzzerPin,0)
/*************/
void setupCLK();
void peripheralEnable();
void configIOPin();
void delay_ms(uint64_t delay);
void delay_ms(uint64_t delay);
int main(void) {
setupCLK();
peripheralEnable();
configIOPin();
while(1){
buzzerOn();
delay_ms(1000);
buzzerOff();
delay_ms(1000);
  * This function is used to setup Clock frequency of the controller
* It can be changed through codes
* In this we have set frequency as 40Mhz
* Frequency is set by SYSDIV which can be found in data sheet for different frequencies
void setupCLK(){
SysCtlClockSet(SYSCTL\_SYSDIV\_5 \mid SYSCTL\_USE\_PLL \mid SYSCTL\_XTAL\_16MHZ \mid SYSCTL\_OSC\_MAINSCRIPTION \mid SYSCTL\_SYSDIV\_5 \mid SYSCTL\_5 \mid SYSCTL
/**********
*EnablingSystemPeripherals
*buzzerPortinthiscase
*buzzerPinforbuzzeroutput
************
voidperipheralEnable(){
SysCtlPeripheralEnable(buzzerEnable);
/****************
*ConfiguringPinasInputOrOutput
************
voidconfigIOPin(){
GPIOPinTypeGPIOOutput(buzzer, buzzerPin);
/*****Justincaseyouarenot familiar with macros*****
GPIOPinTypeGPIOOutput(buzzer, GPIO\_PIN\_4);
```

6.4 Programming the Robot

6.5 Using Debugger of The Programmer

6.6 Simple I/O Operation

This experiment demonstrates the simple I/O operations. This example is only for plug and play board, but this should not discourage you from understanding the example as it provide very important example of I/O on TIVA platform.

Concepts covered:

input/Output operation, generating exact delay

Connections:

Switch2 PF0

Red led PF1

Blue led PF2

Green led PF3

Switch1 PF4

Explanation of the working:

In this lab you have to use switch SW1, SW2 and RGB LED present on Tiva C series board. 1. Use switch SW1 to Turn on Red LED on first switch press, Green LED on second switch press and Blue LED on third switch press. Repeat the same cycle next switch press onwards. Note that LED should remain on for the duration switch is kept pressed i.e. LED should turn off when switch is released.

```
#include ¡stdint.h;

#include ¡stdbool.h;

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "inc/hw_gpio.h" //To unlock locked pins for GPIO

#include "driverlib/sysctl.h"

#include "driverlib/gpio.h"
```

```
#define userSwitch1 GPIO_PIN_0
#define redLed GPIO_PIN_1
#define blueLed GPIO_PIN_2
#define greenLed GPIO_PIN_3
#define userSwitch2 GPIO_PIN_4
#define LOCK_F (*((volatile unsigned long *)0x40025520))
#define CR_F (*((volatile unsigned long *)0x40025524))
void setupCLK();
void configIOPin();
void delay_ms(uint64_t delay);
void delay_us(uint64_t delay);
int main(){
setupCLK();
SysCtlDelay(3);
configIOPin();
unsigned char pinData=1;
unsigned char state=2;
unsigned char countSwitch2=0;
unsigned char flagSW1=0;
unsigned char flagSW2=0;
while(1){
pinData=GPIOPinRead(GPIO_PORTF_BASE,userSwitch2 | userSwitch1);
if((pinData\&0x01) == 0)
flagSW1 = 1;
elseif((flagSW1 == 1)\&\&(pinData\&0x01) == 1){
countSwitch2+=1;
flagSW1 = 0;
if((pinData\&0x10) == 0){
GPIOPinWrite(GPIO\_PORTF\_BASE, redLed|blueLed|greenLed, state);
flagSW2 = 1;
elseif(((flagSW2 == 1)\&\&(pinData\&0x10) == 0x10)){
flagSW2 = 0;
GPIOPinWrite(GPIO\_PORTF\_BASE, redLed|blueLed|greenLed, 0);
state = state * 2;
if(state > 8)
state = 2;
delay\_ms(5);
*This function is used to set up Clock frequency of the controller
* Enabling System Peripherals \\
*PORTFinthiscase
voidsetupCLK(){
SysCtlClockSet(SYSCTL\_SYSDIV\_4|SYSCTL\_USE\_PLL|SYSCTL\_XTAL\_16MHZ|SYSCTL\_OSC\_MASSIVE STATES AND ASSOCIATION AND ASSOCIATION OF STATES AND ASSOCIATIO
SysCtlPeripheralEnable(SYSCTL\_PERIPH\_GPIOF);
```

```
*ConfiguringPinasInputOrOutput
*PF0bydefaultislockedandcannot
*beused as input un less it is unlocked
******************
voidconfigIOPin(){
GPIOPinTypeGPIOOutput(GPIO\_PORTF\_BASE,
redLed|blueLed|greenLed);
HWREG(GPIO\_PORTF\_BASE + GPIO\_O\_LOCK) = GPIO\_LOCK\_KEY;
HWREG(GPIO\_PORTF\_BASE + GPIO\_O\_CR) = 0x01;
HWREG(GPIO\_PORTF\_BASE + GPIO\_O\_LOCK) = 0;
GPIOPinTypeGPIOInput(GPIO\_PORTF\_BASE,
userSwitch2|userSwitch1);
GPIOPadConfigSet(GPIO\_PORTF\_BASE
, userSwitch2|userSwitch1, GPIO_STRENGTH_12MA, GPIO_PIN_TYPE_STD_WPU);
/*************
*CalculatingDelays
***********
voiddelay\_ms(uint64\_tdelay){
SysCtlDelay(delay*(SysCtlClockGet()/3000));
voiddelay\_us(uint64\_tdelay){
SysCtlDelay(delay*(SysCtlClockGet()/3000000UL));
```

- 6.7 Robot Direction Control
- 6.8 Robot Position Control Using Interrupts
- 6.9 Timers and its Interrupts
- 6.10 Robot Speed Control
- 6.11 LCD Interfacing
- 6.12 Analog To Digital Converter
- 6.13 Serial Communication
- 6.14 I2C Communication