

Ch-07 Alternating Current

Daily Practice Problem 02

Q1. An ac voltage is represented by

 $E = 220\sqrt{2}cos(50\pi)t$

How many times will the current become zero in 1 s?

- **a.** 50 times
- **b.** 100 times
- c. 30 times
- d. 25 times

Q2. If a direct current of value a ampere is superimposed on an alternative current $I = b \sin \omega t$ flowing through a wire, what is the effective value of the resulting current in the circuit?

- a. $\left[a^2 \frac{1}{2}b^2\right]^{1/2}$
- b. $[a^2 + b^2]^{1/2}$
- c. $\left[\frac{a^2}{2} + b^2\right]^{1/2}$
- d. $\left[a^2 + \frac{1}{2}b^2\right]^{1/2}$

Q3. If $i_1 = 3 \sin \omega t$ and $i_2 = 4 \cos \omega t$, then i_3 is

- **a.** $5 \sin(\omega t + 53^{\circ})$
- **b.** $5 \sin(\omega t + 37^{\circ})$
- c. $5 \sin(\omega t + 45^\circ)$
- **d.** $5 \sin(\omega t + 53^{\circ})$

Q4. In a certain circuit current changes with time according to $i = 2\sqrt{t}$. r.m.s. value of current between t = 2 to t = 4s will be

- **a.** 3 A
- **b.** $3\sqrt{3} A$
- **c.** $2\sqrt{3} A$
- **d.** $(2-\sqrt{2}) A$

Q5. A resistance of 20 ohms is connected to a source of an alternating potential $V = 220 sin(100\pi t)$. The time taken by the current to changaram its peak value to r.m.s value is

- **a.** 0.2 sec
- **b.** 0.25 sec

- **c.** $25 \times 10^{-3} sec$
- **d.** $2.5 \times 10^{-3} sec$
- **Q6.** Determine the rms value of a semicircular current wave which has a maximum value of a.

- **a.** $(1/\sqrt{2})a$
- **b.** $\sqrt{3/2} \ a$
- **c.** $\sqrt{2/3} \ a$
- **d.** $(1/\sqrt{3}) a$
- Q7. A sinusoidal alternating current of peak value I_0 passes through a heater of resistance R. What is the mean power output of the heater?
 - **a.** $I_0^2 R$
 - **b.** $\frac{I_0^2 R}{2}$

- **c.** $2I_0^2 R$
- **d.** $\sqrt{2} I_0^2 R$
- **Q8.** The voltage time (V-t) graph for triangular wave having peak value V_0 is as shown in figure.

The rms value of V in time interval from t =0 to T/4 is

- **a.** $\frac{V_0}{\sqrt{3}}$
- **b.** $\frac{V_0}{2}$
- d. None of these

ANSWERS

1. a

2. d

3. a

4. c

5. d

6. c

7. b

8. a