Factorial Designs

BIOE 498/598 PJ

Spring 2021

A factorial design studies multiple factors set at discrete intervals.

A factorial design studies multiple factors set at discrete intervals.

A design with k factors set at L levels is called an L^k factorial design.

A factorial design studies multiple factors set at discrete intervals.

A design with k factors set at L levels is called an L^k factorial design.

A factorial design includes runs with every combination of factors set at every level.

Sample factorial designs

2² Factorial design

x_1	<i>x</i> ₂
_	_
+	_
_	+
+	+

2³ Factorial design

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃
_	_	_
+	_	_
_	+	_
+	+	_
_	_	+
+	_	+
_	+	+
+	+	+

3² Factorial design

-			
	<i>x</i> ₁	<i>X</i> ₂	
	_	_	
	0	_	
	+	_	
	_	0	
	0	0	
	+	0	
	_	+	
	0 +	+	
	+	+	

Why do we use factorial designs?

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Why do we use factorial designs?

- ► Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Factorial designs find better optima

The problem with OFAT: Interactions

Using interaction plots for diagnosis

Table 3.1 Mooney	y Vise	cosity	$of\ Silica$	B at 100	$)^{\circ}C$	
Naphthene Oil (phr)			Filler	(phr)		
	0	12	24	36	48	60
0	25	30	35	40	50	60
10	18	21	24	28	33	41
20	13	15	17	20	24	29
30	11	14	15	17	18	25

Why do we use factorial designs?

- Factorial designs find better optima.
- ► Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Factorial designs seem less efficient...

Imagine an experiment with four factors, each with two levels (-, +). We want three replicates for each level.

One Factor at a Time Design

- ▶ 3 runs at level (-)
- ▶ 4 factors \times 3 runs at (+) = 12 runs
- ▶ 15 total runs

Factorial Design

 $ightharpoonup 2^4 = 16$ total runs

... until you look at the designs

OFAT J. .: ---

O	FAI	desig	'n
x_1	x_2	<i>X</i> 3	<i>X</i> ₄
_	_	_	_
_	_	_	_
_	_	_	_
+	_	_	_
+	_	_	_
+	_	_	_
_	+	_	_
_	+	_	_
_	+	_	_
_	_	+	_
_	_	+	_
_	_	+	_
_	_	_	+
_	_	_	+
_	_	_	+

Fa	Factorial design					
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄			
_	_	_	_			
+	_	_	_			
_	+	_	_			
+	+	_	_			
_	_	+	_			
+	_	+	_			
_	+	+	_			
+	+	+	_			
_	_	_	+			
+	_	_	+			
_	+	_	+			
+	+	_	+			
_	_	+	+			
+	_	+	+			
_	+	+	+			
+	+	+	+			

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Imagine a design with n variables at k levels. After the initial design, adding another replicate requires

- nk runs for a OFAT design
- $ightharpoonup \sim k$ runs for a factorial design

Why do we use factorial designs?

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

What are the other factors doing when x_3 is high?

OFAT design				F	ac	ctoria	l des	ign	
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄		X	1	x_2	<i>X</i> ₃	<i>X</i> ₄
_	_	_	_		_	-	_	_	_
_	_	_	_		+	-	_	_	_
_	_	_	_		_	-	+	_	_
+	_	_	_		+	-	+	_	_
+	_	_	_		_	-	_	+	_
+	_	_	_		+	-	_	+	_
_	+	_	_		_	-	+	+	_
_	+	_	_		+	-	+	+	_
_	+	_	_		_	-	_	_	+
_	_	+	_		+	-	_	_	+
_	_	+	_		_	-	+	_	+
_	_	+	_		+	-	+	_	+
_	_	_	+		_	-	_	+	+
_	_	_	+		+	-	_	+	+
_	_	_	+		_	-	+	+	+
					+	_	+	+	+

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

For factorial designs:

 β_i is the effect of moving x_i from — to + averaged over all other factors at all levels.

Factorial designs are nested

Factorial design

		0
<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
_	_	_
_	_	_
+	_	_
+	_	_
_	+	_
_	+	_
+	+	_
+	+	_
_	_	+
_	_	+
+	_	+
+	_	+
_	+	+
_	+	+
+	+	+
+	+	+
	+ + + + +	+ + - + + + + + + + + + + + +

Whe	n <i>x</i> ₃	= -
x_1	x_2	<i>X</i> ₄
_	_	_
+	_	_
_	+	_
+	+	_
_	_	+
+	_	+
_	+	+
+	+	+

When
$$x_3 = +$$
 x_1 x_2 x_4
 $+$ $+$ $+$ $+$ $+$ $+$ $+$
 $+$ $+$ $+$

Rank revisited

The rank of a matrix quantifies the number of linearly independent rows or columns.

The column rank of a matrix is always equal to the row rank.

$$rank(\mathbf{X}) = rank(\mathbf{X}^{\mathrm{T}})$$

This limits the rank to be at most the smaller dimension of the matrix.

$$rank(\mathbf{X}) \leq min\{m, n\}$$
 if $dim(\mathbf{A}) = m \times n$

If the above equality holds, we say that the matrix is full rank.

Rank and linear modeling

Each parameter in a linear model requires one independent piece of information.

The linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ is solvable if and only if the design matrix \mathbf{X} is full rank.

Solvability vs. power

A model is solvable if the design matrix is full rank. However, we need "extra" rows (degrees of freedom) to estimate the model's uncertainty.

Consider the one parameter model $y = \beta x + \epsilon$. Given data (x,y) = (3,6):

$$\hat{\beta} = x^{-1}y = 2$$

Solvability vs. power

A model is solvable if the design matrix is full rank. However, we need "extra" rows (degrees of freedom) to estimate the model's uncertainty.

Consider the one parameter model $y = \beta x + \epsilon$. Given data (x,y) = (3,6):

$$\hat{\beta} = x^{-1}y = 2$$

Substituting back we see that

$$\epsilon = y - \hat{\beta}x = 6 - 2 \times 3 = 0$$

With one data point our estimate is always exact!

Solvability vs. power

A model is solvable if the design matrix is full rank. However, we need "extra" rows (degrees of freedom) to estimate the model's uncertainty.

Consider the one parameter model $y = \beta x + \epsilon$. Given data (x,y) = (3,6):

$$\hat{\beta} = x^{-1}y = 2$$

Substituting back we see that

$$\epsilon = \mathbf{v} - \hat{\beta}\mathbf{x} = 6 - 2 \times 3 = 0$$

With one data point our estimate is always exact! Now let's use two data points: (x,y) = (3,6) and (x,y) = (4,12).

$$\hat{\beta} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}^{+} \begin{pmatrix} 6 \\ 12 \end{pmatrix} = 2.64$$

$$\epsilon_1 = y_1 - \hat{\beta}x = 6 - 2.64 \times 3 = -1.92$$

$$\epsilon_2 = y_2 - \hat{\beta}x = 12 - 2.64 \times 4 = 1.44$$

What does this mean for factorial designs?

A full factorial design with n variables has 2^n experiments. It also has 2^n coefficients (intercept, first-order, and interaction). We can fit a model to a full factorial design but will have no information leftover to estimate the error.

We have three options if we want statistical power behind our factorial designs:

- 1. perform replicates of some (or all) runs
- 2. only estimate a subset of the 2^n coefficients
- 3. some combination of 1 & 2

What does this mean for factorial designs?

A full factorial design with n variables has 2^n experiments. It also has 2^n coefficients (intercept, first-order, and interaction). We can fit a model to a full factorial design but will have no information leftover to estimate the error.

We have three options if we want statistical power behind our factorial designs:

- 1. perform replicates of some (or all) runs
- 2. only estimate a subset of the 2^n coefficients
- 3. some combination of 1 & 2
- ► For small *n* designs we perform replicates since there are already few runs and the interactions are probably significant.
- ▶ For large *n* designs we drop coefficients for higher order terms since we already have lots of runs and the higher-order interactions are most likely zero.

Summary

Factorial designs produce more information with fewer runs than OFAT designs.

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Summary

Factorial designs produce more information with fewer runs than OFAT designs.

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

As the number of factors increases, factorial designs become **more** efficient.

However, the number of runs can be prohibitive, and we rarely need to estimate higher-order interactions.

Summary

Factorial designs produce more information with fewer runs than OFAT designs.

- Factorial designs find better optima.
- Factorial designs are more efficient.
- Factorial designs make better estimates of effect sizes.

As the number of factors increases, factorial designs become **more** efficient.

However, the number of runs can be prohibitive, and we rarely need to estimate higher-order interactions.

Fractional factorial designs require fewer runs by purposefully ignoring the higher-order terms.