

On considère la fonction suivante définie sur] – $\frac{4}{18}; +\infty[$:

$$f(x) = \ln(18x + 4) - 4x + 2$$

- 1. Calculer la limite de f en $-\frac{4}{18}$
- 2. Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** En déduire le nombre de solutions de f(x) = 0 et un encadrement d'amplitude 10^{-2} de cette solution.

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to -\frac{4}{18}^+} \ln(18x+4) = -\infty$$

$$\lim_{x \to -\frac{4}{18}^+} -4x+2 = \frac{4}{18} \times 4 + 2$$
donc
$$\lim_{x \to -\frac{4}{18}^+} \ln(18x+4) + 4x + 2 = -\infty$$

2.

$$\lim_{x \to +\infty} \ln(18x + 4) = +\infty$$

$$\lim_{x \to +\infty} -4x + 2 = -\infty$$
donc
$$\lim_{x \to +\infty} \ln(18x + 4) - 4x + 2 = -\infty$$
 par dominance de x

3.

$$f'(x) = \frac{18}{18x+4} - 4$$

$$= \frac{18-4 - (18x+4)}{18x+4}$$

$$= \frac{18-72x-16)}{18x+4}$$

$$= \frac{2-72x}{18x+4}$$

$$= \frac{2-72x}{18x+4}$$

4.

$$f'(x) > 0 \Leftrightarrow \frac{2 - 72x}{18x + 4} > 0$$
$$\Leftrightarrow 2 - 72x > 0 \text{ car } 18x + 4 > 0$$
$$\Leftrightarrow x < \frac{2}{72}$$

5. On a:

х	$-\frac{4}{18} \qquad \qquad \frac{2}{72} \qquad \qquad +\infty$
g'(x)	+ 0 -
g(x)	3.3929662856652 -∞

6. Comme la fonction g est continue, croissante de $-\infty$ à 3.3929662856652 > 0, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_1 \in]-\frac{4}{18}; \frac{2}{72}[$ tel que $g(\alpha_1)=0$.

Comme la fonctiong est continue, croissante de 3.3929662856652 > 0 à $-\infty$

Logarithme TG

, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_2 \in]-\frac{4}{18};+\infty[$ tel que $g(\alpha_2)=0.$