Assignment #2: Rootkit

ECE 650 - Fall 2016

Due by 11:59pm eastern time on Monday, February 29

General Instructions

- 1. You will work individually on this assignment.
- 2. The code for this assignment should be developed and tested using a Linux Virtual machine that you may create at the following location:

https://vm-manage.oit.duke.edu/vm_manage

You must select following image: vcl-ubuntu14-generic

Other environments, unfortunately due to complexity, will not be able to be supported.

3. You must follow this assignment spec carefully, and turn in everything that is asked (and in the proper formats, as described). Due to the large class size, this is required to make grading more efficient. Particularly for this assignment, much of the testing will be automated. If you do not follow exact instructions for your submission materials (file names, program output, etc.) points will be deducted.

Overview

In this assignment, you will implement a portion of Rootkit functionality in order to gain:

- 1. Hands-on practice with kernel programming
- 2. A detailed understanding of the operation of system calls within the kernel
- 3. Practice with fork/exec to launch child processes
- 4. An understanding of the types of malicious activities that attackers may attempt against a system (particularly against privileged systems progams).

Our assumption will be that via a successful exploit of a vulnerability, you have gained the ability to execute privileged code in the system. Your "attack" code will be represented by a small program that you will write, which will (among a few other things, described below) load a kernel module that will conceal the presence of your attack program as well as some of its malicious activities. The specific functionality required of the attack program and kernel module (as well as helpful hints about implementing this functionality) are described next.

Tips on Working with the Virtual Machine

```
sudo apt-get install gcc
sudo apt-get install emacs
```

In order to build your kernel module, you will also need to install the source code for your Ubuntu Linux image. To do that you can use these commands:

```
sudo apt-get install linux-source -y
cd /usr/src
ln -s linux-source-3.13.0/linux-source-3.13.0.tar.bz2 .
tar -xzf linux-source-3.13.0.tar.bz2
```

Detailed Submission Instructions

Your submission will include 3 (and only 3) files:

- sneaky_mod.c The source code for your sneaky module with functionality as described below.
- 2. **sneaky_process.c** The source code for your sneaky (attack) program with functionality as described below.
- 3. **Makefile** A makefile that will compile "sneaky_process.c" into "sneaky_process", and will compile "sneaky_mod.c" into "sneaky_mod.ko". In most cases, this will simply be the example Makefile provided with the skeleton module example code.

You will submit a single zip file named "hw2.zip" to your sakai dropbox location, e.g.:

```
zip hw2.zip sneaky_mod.c sneaky_process.c Makefile
```

Attack Program

Your attack program (named sneaky_process.c) will give you practice with executing system calls by calling relevant APIs (for process creation, file I/O, and receiving keyboard input from standard input) from a user program. Your program should operate in the following steps:

- 1. Your program will perform 1 malicious act. It will copy the /etc/passwd file (used for user authentication) to a new file: /tmp/passwd. Then it will open the /etc/passwd file and print a new line to the end of the file that contains a username and password that may allow a desired user to authenticate to the system. This line added to the password file should be exactly the following:
 - sneakyuser:abc123:2000:2000:sneakyuser:/root:bash
- Your program will load the sneaky module (sneaky_mod.ko) using the "insmod" command. Note that when loading the module, your sneaky program will also pass its process ID into the module. You may reference the following page for an understanding of how to pass arguments to a kernel module upon loading it: http://www.tldp.org/LDP/lkmpg/2.6/html/x323.html
- 3. Your program will then enter a loop, reading a character at a time from the keyboard input until it receives the character 'q' (for quit). Then the program will exit this waiting loop. Note this step is here so that you will have a chance to interact with the system while: 1) your sneaky process is running, and 2) the sneaky kernel module is loaded. This is the point when the malicious behavior will be tested.
- 4. Your program will unload the sneaky kernel module using the "rmmod" command
- 5. Your program will restore the /etc/passwd file (and remove the addition of "sneakyuser" authentication information) by copying /tmp/passwd to /etc/passwd.

Recall that a process can execute a new program by: 1) using fork() to create a child process and 2) the child process can use some flavor of the exec*() system call to execute a new program. You will want your parent attack process to wait on the new child process (e.g. using the waitpid(...) call) after each fork() of a child.

Sneaky Kernel Module (a Linux Kernel Module – LKM)

Your sneaky kernel module will implement the following subversive actions:

- 1. It will hide the "sneaky_process" executable file from both the 'ls' and 'find' UNIX commands. For example, if your executable file named "sneaky_process" is located in /home/userid/hw2:
 - a. "ls /home/userid/hw2" should show all files in that directory except for "sneaky process".
 - b. "cd /home/userid/hw2; 1s" should show all files in that directory except for "sneaky_process"
 - c. "find /home/userid -name sneaky_process" should not return any
 results
- 2. In a UNIX environment, every executing process will have a directory under /proc that is named with its process ID (e.g /proc/1480). This directory contains many details about the process. Your sneaky kernel module will hide the /proc/<sneaky_process_id> directory (note hiding a directory with a particular name is equivalent to hiding a file!). For example, if your sneaky process is assigned process ID of 500, then:
 - a. "1s /proc" should now show a sub-directory with the name "500"
 - b. "ps -a -u <your_user_id>" should not show an entry for process 500 named "sneaky_process" (since the 'ps' command looks at the /proc directory to examine all executing processes).
- 3. It will hide the modifications to the /etc/passwd file that the sneaky_process made. It will do this by opening the saved "/tmp/passwd" when a request to open the "/etc/passwd" is seen. For example:
 - a. "cat /etc/passwd" should return contents of the original password file without the modifications the sneaky process made to /etc/passwd.
- 4. It will hide the fact that the sneaky_module itself is an installed kernel module. The list of active kernel modules is stored in the /proc/modules file. Thus, when the contents of that file are read, the sneaky_module will remove the contents of the line for "sneaky_mod" from the buffer of read data being returned. For example:
 - a. "1smod" should return a listing of all modules except for the "sneaky mod"

Your overall submission will be tested by compiling your kermel module and sneaky process, running the sneaky process, and then executing commands as described above to make sure your module is performing the intended subversive actions.

Helpful Hints and Tips for Implementing sneaky_mod.c

• This assignment should not require a tremendous amount of code. For example, in my sample solution, the sneaky_process.c file has approximately 120 lines of code, and the sneaky_mod.c file has approximately 200 lines.

- Recall that you can inspect the system calls made by a command using the "strace" UNIX command, e.g. "strace Is".
- For these subversive actions in the sneaky kernel module, you will need to hijack (and possibly modify the contents being returned by) system calls.
 - o For #1 and #2, read up on the "getdents" system call (get directory entries): int getdents(unsigned int fd, struct linux_dirent *dirp, unsigned int count). I would highly recommend reading the 'man getdents' page (including code sample). It will fill in an array of "struct linux_dirent" objects, one for each file or directory found within a directory. You should also place the following struct definition at the top of your sneaky_mod.c code to make sure that the "struct linux_dirent" is interpreted correctly:

- For #2, you can know the "sneaky_process" pid by using the module_param(...) technique described here: http://www.tldp.org/LDP/lkmpg/2.6/html/x323.html
- For #3, you should check out the "open" system call (as in the skeleton kermel module posted). Note that if, say, you wanted to pass a new string filename to the open system call function, that string has to be in "user space" and not something defined in your kernel space module. You can use the "copy_to_user(...)" function to achieve that:

```
copy_to_user(void __user *to, const void *from, unsigned
long nbytes)
```

Hint, for the user buffer, could you use the character buffer passed into the open(...) call?

- o For #4, you may want to check out the "read" system call.
- If there are pieces of the skeleton module code that you are interested to understand more deeply, please ask on piazza! I'd be glad to give detailed descriptions.
- Have fun with this assignment! Try out other sneaky actions, if you'd like, once you get the hang of it.