Wyznaczanie homologii symplicjalnych kompleksu Vietorisa-Ripsa

Jeżeli zmienna/argument funkcji pojawia się w różnych miejscach programu, to o ile nie zostało powiedziane inaczej, jej definicja się nie zmienia.

1. Nietrywialne przykłady do obliczania grup homologii użyte w projekcie:

Torus, Butelka Kleina, 2-Sfera, Rzeczywista płaszczyzna rzutowa

2. Generowanie danych wejściowych

GenerateRandomSet[n_, k_, LowerLeft_, UpperRight_]

Parametry

- *n* wymiar przestrzeni
- *k* liczba generowanych punktów
- LowerLeft, UpperRight lewy dolny i prawy górny róg hiperprostopadłościanu

Funkcja zwraca listę punktów o współrzędnych całkowitych w przestrzeni \mathbb{R}^n .

GenerateDistanceMatrix[points_, r_]

Parametry

- points zbiór wierzchołków kompleksu
- r promień

Funkcja tworzy macierz, w której każdy element to odległość euklidesowa między dwoma punktami.

3. Konstrukcja kompleksu symplicjalnego

VietorisRipsComplex[points_, distanceMatrix_, r_, maxDim_ : 10]

Parametry

- distanceMatrix macierz odległości
- maxDim przybliżony szacunek wymiaru, do którego obliczenia będą sensowne. Domyślnie jest ustawiony na 10. Funkcja generuje kompleks symplicjalny Vietorisa-Ripsa.

BuildSimplicialComplex[inputSimplices_, maxDim_ : 10]

Parametry

• inputSimplices - lista sympleksów, z których kompleks ma być zbudowany

Funkcja generuje kompleks symplicjalny na podstawie podanych sympleksów.

Wyznaczanie homologii symplicjalnych kompleksu Vietorisa-Ripsa

4. Funkcje odpowiadające za wizualizację

DrawNeighborhoods[showNeighborhoods_, vertices_, r_, showIndices_]

Parametry

- showNeighborhoods zmienna logiczna, która kontroluje, czy mają być rysowane otoczenia 0-sympleksów
- vertices wierzchołki kompleksu
- r promień, który odpowiada za rozmiar otoczeń
- showIndices lista punktów, które mają być uwzględnione w wizualizacji

Jeśli *showNeighborhoods* jest ustawione na *True*, to dla każdego punktu wskazanego w *showIndices* rysowana jest kula o środku w tym punkcie i promieniu $\frac{r}{2}$. Barwa każego otoczenia jest ustawiona ze zredukowaną przezroczystością, co pozwala uwidocznić sąsiadujące otoczenia.

```
DrawOneSimplices[vertices_, distanceMatrix_, r_, showIndices_]
DrawTwoSimplices[vertices_, distanceMatrix_, r_, showIndices_]
```

Funkcja rysuje 1-sympleksy/2-sympleksy pomiędzy punktami, które spełniają warunek Vietorisa-Ripsa.

```
ManipulateComplex[vertices_, distanceMatrix_, R_]
```

Funkcja Manipulate, odpowiedzialna za interaktywną wizualizację kompleksu w przestrzeni 2D, która korzysta z powyższych funkcji.

5. Analiza struktury kompleksu

CountSimplices[complex_]

Parametry

• complex - kompleks utworzony za pomocą wcześniej podanej funkcji

Funkcja zwraca ilość sympleksów dla każdego wymiaru w podanym kompleksie symplicjalnym.

```
GenerateGraph[complex_, n_]
```

Funkcja generuje reprezentację graficzną kompleksu symplicjalnego w postaci grafu. Jest głównie używana by ocenić, czy liczba składowych spójnych (czyli β_0) jest poprawna.

```
ShowConnectedComponents[complex_]
```

Funkcja zwraca składowe spójne kompleksu, co jest potrzebne do wyliczenia β_0 :

- ComplexConnectedComponents = ShowConnectedComponents[SimplicialComplex];
- Betti0 = Length[ComplexConnectedComponents];

CountPotentiallyNontrivialHomologies[complex_]

Funkcja zliczająca, dla których wymiarów istnieją sympleksy w podanym kompleksie, w celu eliminacji redundantnych obliczeń dla trywialnych grup homologii.

Wyznaczanie homologii symplicjalnych kompleksu Vietorisa-Ripsa

6. Obliczenia macierzowe

ColumnEchelonForm[matrix_]

Funkcja sprowadza macierz do postaci kolumnowo-eszelonowej.

BorderMatrix[complex_, k_]

Funkcja konstruuje symplicjalny operator brzegu dla podanego wymiaru k.

 $ranks = {};$

Tablica do przechowywania rzędów macierzy brzegu.

ShowBorderMatrices[SimplicialComplex_, PotentiallyNontrivialHomologies_]

Funkcja zwraca nietrywialne macierze homomorfizmu brzegu dla danego kompleksu symplicjalnego.

7. Wyznaczanie liczb Bettiego

DisplayBettiNumbers[SimplicialComplex_, PotentiallyNontrivialHomologies_, ranks_, CardSn_]

Parametry:

- *CardSn* = Normal[CountSimplices[SimplicialComplex]]
- *PotentiallyNontrivialHomologies:* CountPotentiallyNontrivialHomologies[SimplicialComplex]
- *CardSn* = Normal[CountSimplices[SimplicialComplex]]

Funkcja zlicza i wyświetla liczby Bettiego.