Trabajo regresión lineal múltiple

Estudiantes

Rojas Martinez, Ivan Santiago Hernandez Ruiz, Juan Sebastian Londoño Montoya, Wilson Duván Perez Garcia, Pablo

Docente

Isabel Cristina Ramirez Guevara

Asignatura

Analisis de Regresion

Sede Medellín Enero de 2022

Índice

1.	Base de datos	1
	1.1. Breve Descripción de los Datos	1
2.	Análisis descriptivo	2
	2.1. Grafico de dispersión con Matriz de Correlaciones	2
3.	Modelo Ajustado de Regresion Lineal Multiple(MRLM)	3
	3.1. Tabla de parámetros ajustados	3
	3.2. Ecuación Ajustada	3
	3.3. Tabla Anova	3
	3.4. Prueba de significancia del Modelo	3
	3.5. Coeficiente de determinación	4
4.	Coeficientes de regresión estandarizados	4
5 .	Significancia individual de los parámetros del modelo	4
	5.1. Tabla de la significancia individual de los parámetros	4
	5.2. Pruebas de hipotesis	4
6.	Ejercicio6	5
7.	Ejercicio7	5
8.	Residuales estudentizados vs. Valores ajustados	5
	8.1. Gráfico de los residuales estudentizados vs. Valores ajustados	5
9.	Prueba de normalidad para los residuales estudentizados	6
	9.1. Gráfico q-norm residuales estudentizados	6
10). Diagnostico sobre la presencia de observaciones atipicas, de balance o y/o influenciales	o 6
11	l.Ejercicio11	13
12	2.Ejercicio 12	15

13.Eje	ericio13	16
14.Sel	ección del modelo	16
Índi	ce de figuras	
Índi	ce de cuadros	
3.	Tabla ANOVA para el modelo	3
2.	Resumen de los coeficientes	3
4.	Resumen de los coeficientes	4

Se realizará una análisis de regresión lineal múltiple(RLM):

$$y_i = \beta_0 + \beta_{1i}x_1 + \beta_2x_{2i} + \dots + \beta_kx_{ki} + \varepsilon_i, \ \varepsilon \stackrel{iid}{\sim} N(0, \sigma^2)$$

Con la intencion de validar si dicho modelo es adecuado para

1. Base de datos

1.1. Breve Descripción de los Datos

La base de datos corresponden al puntaje de admision de estudiantes de posgrados pertenecientes a universidades de la India. Cuenta con 400 observaciones y 9 variables. De las cuales vamos a analizar un total de 100 estudiantes y 6 variables de interes.

Variables	Descripción
Chance.of.Admit:	Posibilidad de ser admitido.
GRE Score:	Examen que tiene como finalidad medir la capacidad de razonamiento verbal, razonamiento cuantitativo, y habilidades para
TOEFL Score:	pensar y escribir de forma analítica. Prueba estandarizada de dominio del idioma inglés.
SOP:	Ensayo de admisión o solicitud de postgrado.
LOR: CGPA:	Carta de recomendación. Promedio general acumulado en el pregrado.

2. Análisis descriptivo

2.1. Grafico de dispersión con Matriz de Correlaciones

Cuadro 3: Tabla ANOVA para el modelo

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA)	5	2.3674478	0.4734896	65.99381	0
Residuals	94	0.6744272	0.0071748	NA	NA

3. Modelo Ajustado de Regresion Lineal Multiple(MRLM)

3.1. Tabla de parámetros ajustados

Cuadro 2: Resumen de los coeficientes

	Estimación	Error estándar	T_0	Valor P
β_0	-1.7723	0.3007	-5.8939	0.0000
β_1	0.0041	0.0017	2.4400	0.0166
β_2	0.0029	0.0031	0.9417	0.3488
β_3	0.0120	0.0119	1.0098	0.3152
β_4	0.0428	0.0143	3.0023	0.0034
β_5	0.0757	0.0263	2.8756	0.0050

3.2. Ecuación Ajustada

Con base en la tabla de parámetros estimados se obtiene la ecuación de regresión ajustada:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} + \dots + \hat{\beta}_5 X_{i5}, \quad i = 1, 2, \dots, 100$$

$$\widehat{Y}_i = -1.7723 + 0.0041X_{i1} + 0.0029X_{i2} - 0.0120X_{i3} + 0.0428X_{i4} + 0.0757X_{i5}, \quad i = 1, 2, \dots, 100$$

3.3. Tabla Anova

3.4. Prueba de significancia del Modelo

$$\begin{cases} H_0: \beta_1 = \dots = \beta_5 = 0 \\ H_1: \text{Al menos un } \beta_j \neq 0 \end{cases}$$

3.5. Coeficiente de determinación

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

$$R^{2} = \frac{2.3674478}{2.3674478 + 0.6744272} = 0.7782857$$

4. Coeficientes de regresión estandarizados

Coeficientes estimados, sus I.C, Vifs y Coeficientes estimados estandarizados

	Estimación	Limites.2.5	Limites.97.5	Vif	Coef.Std
(Intercept)	-1.7722651	-2.3693009	-1.1752294	0.000000	0.0000000
GRE.Score	0.0041091	0.0007654	0.0074528	5.691210	0.0495542
TOEFL.Score	0.0029116	-0.0032277	0.0090508	5.858052	0.0194023
SOP	0.0120402	-0.0116343	0.0357148	1.928844	0.0119389
LOR	0.0428307	0.0145058	0.0711556	2.519579	0.0405706
CGPA	0.0757081	0.0234330	0.1279833	4.615227	0.0525903

5. Significancia individual de los parámetros del modelo

5.1. Tabla de la significancia individual de los parámetros

Cuadro 4: Resumen de los coeficientes

	Estimación	Error estándar	T_0	Valor P
β_0	-1.7723	0.3007	-5.8939	0.0000
β_1	0.0041	0.0017	2.4400	0.0166
β_2	0.0029	0.0031	0.9417	0.3488
β_3	0.0120	0.0119	1.0098	0.3152
β_4	0.0428	0.0143	3.0023	0.0034
β_5	0.0757	0.0263	2.8756	0.0050

5.2. Pruebas de hipotesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

$$\begin{cases} H_0: \beta_2 = 0 \\ H_1: \beta_2 \neq 0 \end{cases}$$

$$\begin{cases} H_0: \beta_3 = 0 \\ H_1: \beta_3 \neq 0 \end{cases}$$

$$\begin{cases} H_0: \beta_4 = 0 \\ H_1: \beta_4 \neq 0 \end{cases}$$

$$\begin{cases} H_0: \beta_5 = 0 \\ H_1: \beta_5 \neq 0 \end{cases}$$

- 6. Ejercicio6
- 7. Ejercicio7
- 8. Residuales estudentizados vs. Valores ajustados
- 8.1. Gráfico de los residuales estudentizados vs. Valores ajustados

- Prueba de normalidad para los residuales estuden-9. tizados
- 9.1. Gráfico q-norm residuales estudentizados

Normal Q-Q Plot

10. Diagnostico sobre la presencia de observaciones atipicas, de balanceo y/o influenciales

```
## Influence measures of
    lm(formula = data$Chance.of.Admit ~ ., data = data) :
##
##
                                    dfb.SOP
                                             dfb.LOR dfb.CGPA
##
         dfb.1
                dfb.GRE.
                          dfb.TOEF
                                                                  dffit cov.r
## 1
       0.015973 -0.005271 -0.000885
                                   0.010661 -0.024639
                         0.034326 -4.49e-03 -0.022518 -1.79e-03 -0.056504 1.105
      -0.024402 0.089374 -0.049594 -2.27e-02 0.092619 -1.18e-01
## 3
                                                              0.213646 1.005
## 4
      -0.146856 0.086964 -0.039096 3.90e-02 -0.271542 1.05e-01
                                                               0.319520 0.966
      -0.021116  0.031828  -0.043631  -1.08e-01  0.005196  3.90e-02
## 5
                                                               0.150002 1.081
      -0.141724  0.061166  -0.037386  9.77e-02  -0.252847  1.41e-01
## 6
                                                               0.313284 1.060
```

```
## 7
      -0.000457 0.008477
                          0.050364 -5.48e-02 0.107665 -1.05e-01 0.157786 1.087
       0.114484 -0.026751 -0.010652 -4.42e-02
                                             0.206779 -1.07e-01
                                                                 0.260972 1.052
## 8
       0.030175 -0.047175
                          0.017687 -5.13e-02 -0.085702 7.61e-02 0.149108 1.145
## 9
       0.331213 -0.336547
                           0.264130 -7.77e-02 0.323458 -1.01e-01 -0.519954 0.629
## 10
## 11
       0.274899 -0.435231
                          0.332579 -3.85e-02 -0.156837 2.08e-01 -0.582385 0.759
## 12
      -0.008881 0.010344 -0.008548 -3.61e-03 0.022573 -3.28e-03 0.044150 1.088
## 13
       0.020921 -0.015918
                          0.011308 1.51e-02 -0.044372 -2.35e-03 -0.096725 1.067
## 14
       0.066481 -0.074405
                           0.087449
                                    3.07e-02 0.015934 -4.92e-02 0.114265 1.151
      -0.020685 0.026567 -0.041123 5.93e-02 -0.128505 4.48e-02 0.151365 1.097
## 15
       0.025571 -0.034946
                          0.043923 -4.62e-02 0.097394 -3.15e-02 -0.128213 1.062
## 16
## 17
       0.004144 - 0.004799
                          0.013229 -1.55e-02 0.024002 -1.68e-02 -0.035468 1.095
## 18
      -0.019400
                0.032642 -0.014545
                                    3.59e-02 -0.011729 -3.35e-02 0.057146 1.119
                0.032455 -0.017848 -3.99e-02 0.089071 -5.98e-02 -0.139737 1.053
## 19
      -0.004595
## 20
       0.064999 -0.057361 -0.007345
                                    3.40e-03 -0.017908 6.56e-02
                                                                 0.103144 1.112
## 21
      -0.013257 -0.014360
                          0.095139
                                    2.85e-02 -0.145174 -5.83e-02
                                                                 0.260675 1.019
## 22
      -0.077504 0.023602
                           0.061565 -1.24e-02 -0.115764 -1.39e-02
                                                                 0.179340 1.143
## 23
       0.023989 -0.039710
                          0.031889
                                    1.38e-02 0.040631
                                                       5.31e-03
                                                                 0.092445 1.112
## 24
      -0.006252 -0.008693
                          0.012712
                                    8.08e-03 -0.003257
                                                        1.02e-02
                                                                 0.042630 1.116
                                                                 0.282553 1.103
## 25
      -0.124820
                0.008542
                          0.016489 -5.15e-02 -0.163031
                                                        1.71e-01
       0.011731 -0.004207 -0.004059
                                    8.36e-04 0.000665 -3.30e-04 -0.021018 1.117
## 26
## 27
      -0.011184  0.014573  -0.017092  3.03e-02  -0.018890
                                                       5.01e-03
                                                                 0.043659 1.093
## 28
       0.015479 -0.011365 0.005564 -1.95e-02 0.008679
                                                        3.29e-04
                                                                 0.030514 1.140
## 29
                 0.028826 -0.115292 -2.49e-02 -0.022679 -3.50e-03
                                                                 0.295331 1.043
       0.089603
## 30
      -0.113045
                0.181667 -0.099887 -1.10e-01 -0.047718 -9.79e-02
                                                                 0.340113 1.063
## 31
       0.198657 -0.079822 -0.166260 -1.05e-02
                                             0.006879
                                                        1.78e-01
                                                                 0.375503 0.961
## 32
      -0.051491
                 0.085395 -0.076129 3.43e-02
                                             0.005311 -2.82e-02
                                                                 0.100998 1.219
                 0.003431
## 33
      -0.013715
                          0.007064 -2.34e-02
                                              0.008446
                                                        2.70e-03
                                                                 0.033081 1.155
                                              0.004706 -4.90e-03 -0.011655 1.171
       0.009161 -0.008044
                          0.007108 4.24e-04
## 34
## 35
      -0.011816  0.006516  -0.031057  -2.48e-02
                                              0.014565
                                                        4.89e-02
                                                                 0.076932 1.150
## 36
       0.061927 -0.049089
                          0.000340 4.18e-02
                                              0.074195
                                                        1.17e-02
                                                                 0.140805 1.111
       0.088374 -0.089525
                          0.058479 -1.43e-03
                                              0.046613 -6.19e-04
## 37
                                                                 0.099095 1.232
## 38
       0.289491 -0.429309
                          0.423333 -4.91e-01 0.031771
                                                       9.97e-02
                                                                 0.694648 1.066
## 39
       0.052161 -0.066482
                          0.122254 5.63e-02 -0.113521 -7.53e-02
                                                                 0.251884 1.107
## 40
      -0.255487
                 0.232718 -0.326200 -1.17e-01 -0.215678
                                                       3.35e-01 -0.477976 1.079
## 41
      -0.277706
                 0.346912 -0.434158 -4.85e-03 -0.106308
                                                       2.07e-01 -0.497296 0.988
## 42
       0.084137 -0.082768 0.058895 7.84e-02 0.108972 -4.59e-02 -0.218716 1.004
                0.026640 -0.011987
                                    6.10e-02 0.123882 -1.05e-01 -0.180700 1.112
## 43
       0.013603
## 44
      -0.018278
                 ## 45
      -0.014287 -0.021290 -0.016245
                                    3.08e-02 -0.048117
                                                        1.02e-01
                                                                 0.167914 1.044
                0.004356 -0.059844
                                    1.46e-01 -0.041006
                                                       5.42e-02
                                                                 0.213723 1.031
## 46
       0.007463
## 47
      -0.002662
                0.008571 -0.008722
                                    1.63e-02 -0.031293 -9.99e-04 -0.046295 1.112
## 48
       0.068405 -0.029890
                          0.004641 -5.31e-03 0.049188 -3.87e-02 -0.108445 1.114
## 49
       0.029021 -0.027530
                          0.021785 -3.67e-02 0.075908 -1.40e-02 0.086286 1.134
## 50
      -0.037297
                 0.035597
                          0.020621 -4.45e-02 0.057919 -6.79e-02
                                                                 0.115376 1.103
## 51
```

```
## 52
        0.000729 -0.005882
                            0.007035 1.86e-02 -0.012222 1.43e-03 -0.026790 1.169
       -0.160106
                  0.142206
                            0.082089
                                      9.95e-02 -0.034187 -2.55e-01
                                                                    0.327963 1.215
## 53
       -0.093182
                  0.076644
                            0.053409
                                      1.11e-01 -0.101269 -1.33e-01
                                                                    0.237963 1.109
## 54
       -0.018067
                  0.018214
                            0.043723 -1.96e-02
                                               0.043928 -8.83e-02
                                                                    0.109819 1.115
## 55
## 56
       -0.087691
                  0.138606 -0.077528
                                      3.09e-02
                                               0.000688 -1.02e-01
                                                                    0.177323 1.129
## 57
       -0.118490
                  0.211814 -0.059031 -1.04e-01
                                                0.122542 -2.61e-01
                                                                    0.407980 1.054
## 58
        0.014636 -0.005705 -0.002282
                                      2.59e-02 -0.015036 -3.71e-03
                                                                    0.037494 1.159
## 59
       -0.022431 -0.005830 -0.021343 -4.07e-02 -0.005099 8.32e-02 -0.107246 1.183
                                               0.240416 -2.42e-01 -0.420743 0.980
## 60
        0.047541
                  0.003836
                            0.048042
                                      2.08e-01
## 61
                                               0.018216 -4.29e-02 -0.182073 1.026
       -0.012294 -0.055765
                            0.124552 -2.84e-03
## 62
       -0.081901 -0.008995
                            0.126685 -1.66e-01
                                                0.069436 -4.59e-02 -0.272327 0.990
## 63
       -0.057222
                  0.062205 -0.042738
                                      2.05e-02 -0.012725 -1.06e-02 -0.073869 1.109
## 64
       -0.012667
                  0.005902
                           0.017642 -9.38e-02
                                                0.090919 -2.98e-02 -0.167268 1.006
## 65
        0.175776 -0.087560 -0.048097
                                      2.40e-01
                                                0.000367 -1.04e-02 -0.407973 0.718
## 66
        0.129238 -0.019008 -0.046649
                                      1.14e-01
                                                0.100351 -1.12e-01 -0.353366 0.728
                                               0.195107 -1.67e-01 -0.403104 0.931
## 67
        0.155795
                  0.000649 -0.086083
                                      1.89e-01
                                      2.48e-02 -0.001391 -6.70e-02 -0.157145 0.960
## 68
       -0.039722
                  0.037537
                            0.014270
## 69
       -0.064875
                  0.096831
                            0.005195
                                      9.56e-02 -0.019210 -1.69e-01 -0.224471 1.049
                  0.012221 -0.030933 -2.56e-02 0.009103 -2.35e-03 -0.093566 1.069
## 70
        0.014708
        0.000075 -0.000283
                            0.000299
                                      8.24e-05
                                                0.000287
                                                          6.69e-05
                                                                    0.000828 1.122
## 71
       -0.020166
                  0.023640 -0.032527
                                      1.13e-02 -0.001191
                                                          1.77e-02
                                                                    0.046797 1.167
## 72
                                                                    0.222919 1.086
## 73
        0.094859 -0.092866 -0.001896
                                      4.41e-02 0.088543
                                                          7.29e-02
## 74
        0.137421 -0.136186
                           0.004666
                                      6.64e-02 0.017041
                                                          1.22e-01
                                                                    0.252313 1.020
## 75
       -0.021091
                  0.018772 -0.003615
                                      2.49e-02 -0.034008 -8.94e-03 -0.045077 1.188
## 76
        0.028506
                  0.001118 -0.061666
                                      1.17e-01 -0.066943
                                                          4.16e-02 -0.151314 1.180
## 77
       -0.025741
                  0.014689 0.001279 -1.50e-02 -0.019196
                                                          5.39e-03
                                                                    0.041335 1.104
## 78
        0.127688 -0.081097 -0.172463
                                      3.78e-02 -0.310500
                                                          3.46e-01
                                                                    0.509345 0.944
        0.030019 -0.000635 -0.033715
                                      2.78e-02 -0.030049
                                                          1.39e-02
                                                                    0.082230 1.127
## 79
        0.111463 -0.020275 -0.100074 -1.26e-01 -0.016872
                                                                    0.320202 1.060
## 80
                                                          7.94e-02
## 81
       -0.026938 0.032904 -0.054656
                                      1.47e-01 -0.053523
                                                          1.93e-02 -0.188881 1.055
        0.008637 -0.003825 -0.005465 -4.43e-03 -0.006818
                                                          7.62e-03 -0.023089 1.130
## 82
## 83
        0.098485 -0.084766 -0.026844
                                      1.24e-01 0.054883
                                                          7.97e-02
                                                                    0.281096 1.005
## 84
        7.59e-02
                                                                    0.269832 1.063
## 85
       -0.042854
                  0.040413 -0.028288
                                      8.92e-03 -0.006532
                                                          3.63e-03
                                                                    0.055436 1.132
## 86
       -0.060438
                  0.124849 -0.180635
                                      1.27e-01 -0.070342
                                                          4.58e-02
                                                                    0.218606 1.113
## 87
        0.016725
                  0.009047 -0.022808
                                      8.29e-02 -0.008040 -2.18e-02
                                                                    0.103772 1.079
       -0.006190
                  0.008571 -0.001700
                                      8.79e-03 -0.010627 -8.03e-03
                                                                    0.030202 1.078
## 88
## 89
       -0.011000
                  0.006249 -0.012024 -2.30e-02 -0.006780
                                                          2.29e-02 -0.035760 1.122
## 90
        0.020258 -0.021429
                            0.007697
                                      3.48e-02 -0.013044
                                                          1.02e-02 0.059259 1.089
       -0.001317 -0.019541 -0.000741 -2.70e-02 -0.038467
                                                          6.19e-02 -0.074524 1.142
## 91
## 92
       -0.342180
                  0.033477
                            0.170196 -5.82e-01 -0.145039
                                                          2.59e-01 -0.776410 0.982
## 93
       -0.396022
                  0.201905
                            0.139874 -2.95e-01 0.018618 -1.16e-01 -0.605135 0.825
## 94
       -0.086032
                  0.013961
                            0.078864 -1.12e-02 -0.022405 -3.13e-02 -0.172054 1.066
                                      1.32e-01 -0.021645 -7.56e-03 -0.267881 0.985
## 95
       -0.084618
                  0.025508
                            0.023474
## 96
       -0.050721
                  0.039164 -0.001385 1.53e-01 -0.013264 -5.24e-02 -0.203312 1.086
```

```
-0.049015 0.000753
                             0.053381 2.65e-04 -0.008551 -1.66e-02 -0.126933 1.050
## 97
                             0.071999 -1.24e-02
                                                0.017486 -3.54e-02
## 98
       -0.002882 -0.028471
                                                                      0.087095 1.146
## 99
       -0.000438 -0.006485
                             0.015672
                                      7.69e-03 0.005817 -9.51e-03
                                                                      0.026547 1.128
   100
      0.004924 -0.011130
                             0.015630 -1.58e-03 0.008346 -4.14e-03
                                                                      0.025468 1.088
##
         cook.d
                   hat inf
## 1
       1.82e-04 0.0393
## 2
       5.37e-04 0.0401
## 3
       7.57e-03 0.0310
## 4
       1.68e-02 0.0435
## 5
       3.77e-03 0.0441
## 6
       1.63e-02 0.0720
## 7
       4.17e-03 0.0489
## 8
       1.13e-02 0.0572
## 9
       3.74e-03 0.0831
## 10
       4.15e-02 0.0290
## 11
       5.35e-02 0.0512
## 12
       3.28e-04 0.0251
## 13
       1.57e-03 0.0243
## 14
       2.20e-03 0.0823
       3.84e-03 0.0530
## 15
## 16
       2.75e-03 0.0297
## 17
       2.12e-04 0.0292
       5.50e-04 0.0507
## 18
## 19
       3.27e-03 0.0290
## 20
       1.79e-03 0.0530
## 21
       1.13e-02 0.0453
## 22
       5.40e-03 0.0871
## 23
       1.44e-03 0.0507
## 24
       3.06e-04 0.0465
## 25
       1.33e-02 0.0851
## 26
       7.44e-05 0.0463
## 27
       3.21e-04 0.0283
## 28
       1.57e-04 0.0657
## 29
       1.45e-02 0.0615
## 30
       1.92e-02 0.0796
## 31
       2.31e-02 0.0534
## 32
       1.72e-03 0.1291
## 33
       1.84e-04 0.0778
## 34
       2.29e-05 0.0892
## 35
       9.96e-04 0.0769
       3.33e-03 0.0594
## 36
## 37
       1.65e-03 0.1379
## 38
       7.90e-02 0.1543
## 39
       1.06e-02 0.0806
```

40

3.78e-02 0.1160

```
## 41
       4.05e-02 0.0863
## 42
       7.94e-03 0.0321
## 43
       5.47e-03 0.0684
## 44
       4.48e-04 0.0342
## 45
       4.71e-03 0.0324
## 46
       7.60e-03 0.0387
## 47
       3.61e-04 0.0441
## 48
       1.98e-03 0.0553
## 49
       1.25e-03 0.0662
## 50
       2.24e-03 0.0493
## 51
       4.40e-02 0.1218
## 52
       1.21e-04 0.0885
## 53
       1.80e-02 0.1550
## 54
       9.47e-03 0.0786
## 55
       2.03e-03 0.0563
## 56
       5.28e-03 0.0776
## 57
       2.75e-02 0.0907
## 58
       2.37e-04 0.0810
## 59
       1.94e-03 0.1044
## 60
       2.91e-02 0.0678
## 61
       5.52e-03 0.0299
       1.23e-02 0.0397
## 62
## 63
       9.18e-04 0.0458
## 64
       4.65e-03 0.0218
## 65
       2.61e-02 0.0241
## 66
       1.97e-02 0.0191
## 67
       2.65e-02 0.0518
       4.08e-03 0.0132
## 68
## 69
       8.40e-03 0.0473
## 70
       1.47e-03 0.0247
## 71
       1.15e-07 0.0499
##
   72
       3.69e-04 0.0880
## 73
       8.31e-03 0.0635
## 74
       1.06e-02 0.0436
## 75
       3.42e-04 0.1035
   76
##
       3.85e-03 0.1076
##
   77
       2.88e-04 0.0367
## 78
       4.23e-02 0.0759
## 79
       1.14e-03 0.0604
## 80
       1.70e-02 0.0736
## 81
       5.96e-03 0.0416
## 82
       8.98e-05 0.0566
## 83
       1.31e-02 0.0455
## 84
       1.21e-02 0.0637
```

85

5.17e-04 0.0608

```
## 86
       8.00e-03 0.0767
## 87
       1.81e-03 0.0320
##
  88
       1.54e-04 0.0150
## 89
       2.15e-04 0.0510
       5.91e-04 0.0283
## 90
## 91
       9.35e-04 0.0708
       9.77e-02 0.1403
## 92
## 93
       5.84e-02 0.0661
## 94
       4.95e-03 0.0421
       1.19e-02 0.0376
##
  95
## 96
       6.91e-03 0.0591
## 97
       2.70e-03 0.0249
## 98
       1.28e-03 0.0755
## 99
       1.19e-04 0.0552
       1.09e-04 0.0221
## 100
##
       dfb.1_ dfb.GRE. dfb.TOEF dfb.SOP dfb.LOR dfb.CGPA dffit cov.r cook.d
                                                                                    hat
## 1
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 2
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                                                       FALSE FALSE FALSE
                                    FALSE
## 3
        FALSE
                  FALSE
                           FALSE
                                             FALSE
                                                                           FALSE FALSE
                                                       FALSE FALSE FALSE
        FALSE
                                                                           FALSE FALSE
## 4
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                           FALSE
                                    FALSE
## 5
        FALSE
                  FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                                                       FALSE FALSE FALSE
## 6
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                                           FALSE FALSE
## 7
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 8
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 9
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE
                                                                     TRUE
                                                                           FALSE FALSE
## 10
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE
                                                                     TRUE
## 11
        FALSE
                  FALSE
                                                                           FALSE FALSE
                                                       FALSE FALSE FALSE
## 12
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                                           FALSE FALSE
        FALSE
## 13
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 14
        FALSE
                  FALSE
## 15
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 16
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 17
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 18
        FALSE
                  FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                           FALSE
## 19
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 20
        FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                  FALSE
                           FALSE
## 21
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 22
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 23
        FALSE
                                    FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
                  FALSE
                           FALSE
                                             FALSE
## 24
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 25
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 26
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 27
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
## 28
        FALSE
                  FALSE
                            FALSE
                                    FALSE
                                             FALSE
                                                       FALSE FALSE FALSE
                                                                           FALSE FALSE
```

##	29	FALSE	FALSE	FALSE	FALSE						
##	30	FALSE	FALSE	FALSE	FALSE						
##	31	FALSE	FALSE	FALSE	FALSE						
##	32	FALSE	TRUE	FALSE	FALSE						
##	33	FALSE	FALSE	FALSE	FALSE						
##	34	FALSE	FALSE	FALSE	FALSE						
##	35	FALSE	FALSE	FALSE	FALSE						
##	36	FALSE	FALSE	FALSE	FALSE						
##	37	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	TRUE	${\tt FALSE}$	FALSE
##	38	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	39	FALSE	FALSE	FALSE	FALSE						
##	40	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	41	FALSE	FALSE	FALSE	FALSE						
##	42	FALSE	FALSE	FALSE	FALSE						
##	43	FALSE	FALSE	FALSE	FALSE						
##	44	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	FALSE
##	45	FALSE	FALSE	FALSE	FALSE						
##	46	FALSE	FALSE	FALSE	FALSE						
##	47	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	FALSE
##	48	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE	TRUE		FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	61	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE		FALSE
	62	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
	63	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE		FALSE
	64	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE	TRUE		FALSE
	66	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	67	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE		FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	71	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE		FALSE
	72	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
##	73	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	r ALSE	FALSE	FALSE	FALSE

```
## 74
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
       FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                                      FALSE FALSE
## 75
                 FALSE
                                                   FALSE FALSE FALSE
## 76
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 77
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 78
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
                                                   FALSE FALSE FALSE
## 79
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                                      FALSE FALSE
## 80
       FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
                 FALSE
                          FALSE
## 81
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 82
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
## 83
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 84
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
## 85
       FALSE
                 FALSE
                                                                      FALSE FALSE
## 86
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
       FALSE
                 FALSE
                          FALSE
                                  FALSE
## 87
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
       FALSE
                 FALSE
                          FALSE
## 88
                                                   FALSE FALSE FALSE
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                                      FALSE FALSE
## 89
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 90
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 91
       FALSE
                FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                                                                      FALSE FALSE
## 92
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE TRUE FALSE
                                                                      FALSE FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
## 93
       FALSE
                FALSE
                                                                      FALSE FALSE
## 94
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
       FALSE
                 FALSE
                                                                      FALSE FALSE
## 95
                                          FALSE
                                                   FALSE FALSE FALSE
       FALSE
                FALSE
                          FALSE
                                  FALSE
                                                                      FALSE FALSE
## 96
       FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE
                FALSE
                                                                      FALSE FALSE
## 97
       FALSE
                FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
                                                   FALSE FALSE FALSE FALSE
## 98
       FALSE
                FALSE
                          FALSE
                                  FALSE
                                          FALSE
## 99
       FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
                FALSE
                          FALSE
## 100
       FALSE
                 FALSE
                          FALSE
                                  FALSE
                                          FALSE
                                                   FALSE FALSE FALSE FALSE
```

11. Ejercicio11

##

```
## Analysis of Variance Table
##
## Response: Chance.of.Admit
## Df Sum Sq Mean Sq F value Pr(>F)
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA) 5 2.35558 0.47112 90.573 < 2.2e-16
## Residuals 86 0.44733 0.00520
##
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

```
## Call:
## lm(formula = Chance.of.Admit ~ ., data = AdmissionPredict_sin_influencias)
##
## Residuals:
                    1Q
                          Median
                                        3Q
##
         Min
                                                  Max
## -0.189817 -0.041224 0.007218
                                  0.045167
                                            0.140378
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.9798608
                           0.2948862
                                      -6.714 1.93e-09 ***
## GRE.Score
                0.0057790
                           0.0016903
                                       3.419 0.000963 ***
                                       0.072 0.942945
## TOEFL.Score
                0.0002077
                           0.0028940
## SOP
                           0.0108883
                                       1.413 0.161385
                0.0153807
## LOR
                0.0403174
                           0.0125305
                                       3.218 0.001823 **
                           0.0241848
                0.0728150
                                       3.011 0.003420 **
## CGPA
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
##
## Residual standard error: 0.07212 on 86 degrees of freedom
## Multiple R-squared: 0.8404, Adjusted R-squared: 0.8311
## F-statistic: 90.57 on 5 and 86 DF, p-value: < 2.2e-16
```


Normal Q-Q Plot

12. Ejercicio 12

```
##
                   GRE.Score TOEFL.Score
                                                 SOP
                                                           LOR
                                                                     CGPA
## GRE.Score
                   1.0000000
                                0.8883788 0.5183744 0.6493865 0.8040898
                   0.8883788
## TOEFL.Score
                                1.0000000 0.5739543 0.5855924 0.8117425
## SOP
                   0.5183744
                                0.5739543 1.0000000 0.6050348 0.6515129
## LOR
                   0.6493865
                                0.5855924 0.6050348 1.0000000 0.7393324
## CGPA
                   0.8040898
                                0.8117425 0.6515129 0.7393324 1.0000000
## Chance.of.Admit 0.8078850
                                0.7800010 0.6136879 0.7428750 0.8326816
##
                   Chance.of.Admit
## GRE.Score
                          0.8078850
## TOEFL.Score
                          0.7800010
## SOP
                          0.6136879
## LOR
                          0.7428750
## CGPA
                          0.8326816
## Chance.of.Admit
                          1.0000000
##
     GRE.Score TOEFL.Score
                                    SOP
                                                 LOR
                                                            CGPA
##
      5.691210
                  5.858051
                               1.928844
                                            2.519579
                                                        4.615227
```

```
##
                   GRE.Score TOEFL.Score
                                                SOP
                                                           LOR
                                                                    CGPA
## GRE.Score
                   1.0000000
                                0.9061621 0.5769656 0.6945897 0.8381136
## TOEFL.Score
                   0.9061621
                                1.0000000 0.6269824 0.6213013 0.8266527
## SOP
                   0.5769656
                                0.6269824 1.0000000 0.6153549 0.6986389
## LOR
                   0.6945897
                                0.6213013 0.6153549 1.0000000 0.7571056
                                0.8266527 0.6986389 0.7571056 1.0000000
## CGPA
                   0.8381136
## Chance.of.Admit 0.8595873
                                0.8077359 0.6683703 0.7845642 0.8677695
                   Chance.of.Admit
##
## GRE.Score
                         0.8595873
## TOEFL.Score
                         0.8077359
## SOP
                         0.6683703
## LOR
                         0.7845642
## CGPA
                         0.8677695
## Chance.of.Admit
                         1.0000000
##
     GRE.Score TOEFL.Score
                                    SOP
                                                LOR
                                                            CGPA
##
      7.229071
                  6.690216
                               2.147637
                                           2.640310
                                                        5.224542
```

13. Ejericio13

14. Selección del modelo