Toxicophenomic assessment of the combined effect of metsulfuron-methyl exposure and deficit irrigation on Sinapis arvensis

Valentine Guzniczak^{1,2}, Signe M. Jensen¹ ¹Copenhagen University ²vg@plen.ku.dk

INTRODUCTION

- Climate change: increase in frequency and intensity of droughts might affect herbicide performance \rightarrow adapt risk assessment
- **Toxicophenomics**: acquisition of highdimensional phenotypic data on an organism-wide scale in ecotoxicological studies \rightarrow dynamically capture stress response
- → What value does toxicophenomic data add compared to other (omic) data for assessing multiple stressors?

METHODS

- Wild mustard (Sinapis arvensis)
- 3 levels of deficit irrigation (80%, 50%, and 30% of field capacity (FC)) (n=24 per level)
- 8 doses of metsulfuron methyl, LAS inhibitor herbicide (n=4 per dose per irrigation deficit level) -> drift effect
- Measurements
 - Non-destructive through a fully automated high-throughput phenotyping platform over 28 days after spraying \rightarrow graphs from last day Irrigation (%FC)
 - **Destructive** at the end of the 28 days
- Analysis
 - Dose-response analysis for all endpoints and measuring times
 - Benchmark dose estimation (dashed lines)

RESULTS MULTISPECTRAL MEASUREMENT

30%

50%

80%

Figure 3: Crop coverage (%) as a function of dose (g a.i. ha⁻¹). W2.3, W1.3, and W1.3 models were fit to the levels 80, 50 and 30%, respectively.

POROMETER

Figure 4: Quantum yield of PSII (PhiPS2) as a function of dose (g a.i. ha⁻¹). LL.4, W1.3, and W2.3 models were fit to the levels 80, 50 and 30%, respectively.

Dose (g a.i. ha⁻¹)

Figure 6: Chlorophyll content (µg/cm²) as a function

of dose (g a.i. ha⁻¹). LN.4, LN.4, and W1.4 models

were fit to the levels 80, 50 and 30%, respectively.

PIGMENT CONTENT Optical sensor

30

25

15

10

HARVEST

Figure 5: Leaf area (cm²) as a function of dose (g a.i. ha⁻¹). W2.4, W2.3, and LN.4 models were fit to the levels 80, 50 and 30%, respectively.

PIGMENT CONTENT LC-UV

- **Next step:** LC with UV detection to analyze pigment content in samples obtained during destructive harvest at the end of the experiment,
- Compare it to other data
- → Multi-omics

BENCHMARK DOSE

The benchmark dose (BMD) is the dose resulting in a small prespecified change (benchmark response, BMR), from the background level.

Figure 7: Empirical cumulative distribution function (ECDF) of the benchmark doses (BMD, g a.i. ha⁻¹) for all days combined.

