In Chapter 20, we cover the general structure of modern computer systems, with a focus on parallel system architectures. Chapter 21 and Chapter 22 describe how query processing can be implemented to exploit parallel and distributed processing. Chapter 23 presents a number of issues that arise in processing transactions in a parallel or a distributed database and describes how to deal with each issue. The issues include how to store data, how to ensure atomicity of transactions that execute at multiple sites, how to perform concurrency control, and how to provide high availability in the presence of failures.

We now consider the architecture of applications that use databases as their backend. Database applications can be partitioned into two or three parts, as shown in Figure 1.4. Earlier-generation database applications used a **two-tier architecture**, where the application resides at the client machine, and invokes database system functionality at the server machine through query language statements.

In contrast, modern database applications use a **three-tier architecture**, where the client machine acts as merely a front end and does not contain any direct database calls; web browsers and mobile applications are the most commonly used application clients today. The front end communicates with an **application server**. The application server, in turn, communicates with a database system to access data. The **business logic** of the application, which says what actions to carry out under what conditions, is embedded in the application server, instead of being distributed across multiple clients. Three-tier applications provide better security as well as better performance than two-tier applications.

Figure 1.4 Two-tier and three-tier architectures.