Vorlesung 2 - Ex 4

10.4.2025

Contents

	0.1	Lorentz Modell	4	
		0.1.1 Einstein Ratengleichungen	2	
		0.1.2 Atome in einem Magnetfeld	4	
	0.2	Lorentz Modell	4	
1 Quantenmechanik				
	1.1	Doppelspaltexperiment	1	

0.1 Lorentz Modell

fig 1.1

Dipolmoment: d = -ex(t)

Harmonischer Oszillator: $x(t) = x_0 \cos(\omega t)$

Abgestrahlte Leistung

$$P = \frac{e^2 x_0^2 \omega^4}{12\pi\epsilon_0 c^3}$$

Dies vergleichen wir mit der Energie des Elektrons selber

$$E = \frac{m}{2}\omega^2 x_0^2$$

und somit

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -P = \underbrace{-\frac{e^2\omega^2}{6\pi\epsilon_0 mc^3}}_{1/\tau} \cdot E = -\frac{E}{\tau}$$

also fällt die Energie exponentiell ab

Natrium

D-Linie: $\lambda = 589$ nm

 $\Gamma = \frac{1}{\tau} = 6 \cdot 10^7$ und der experimentelle fall

$$\Gamma_{exp} = 6 \cdot 10^7$$

Wasserstoff

 $\lambda = 121$ nm

$$\Gamma = 1.5 \cdot 10^9$$

$$\Gamma_{exp} = 6 \cdot 10^8$$

und für Yb $\lambda = 467$ nm

$$\Gamma = 10^8$$

$$\Gamma_{exp} = 10^{-7}$$

0.1.1 Einstein Ratengleichungen

Seien zwei zustände E_2 , E_1 mit E_1 Grundzustand. fig 1.2

Absorption: die änderung von E_2

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = N_1 \cdot B_{12} \cdot \rho(\omega)$$

für Stimulierte Emission

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = -N_2 \cdot B_{21} \cdot \rho(\omega)$$

für Spontane Emission

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = -N_2 \cdot A_{21}$$

und wir wissen über N_1 dass

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = -\frac{\mathrm{d}N_2}{\mathrm{d}t}$$

fig 1.3

Das Plank'sche Strahlungsgesetz

$$\rho(\omega) = \frac{\hbar \omega^3}{\pi^2 c^3} \frac{1}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1}$$

und wir finden dass

$$A_{21} = \frac{\hbar \omega_{12}^3}{\pi^2 c^3} B_{21} \tag{0.1}$$

mit B_{21} als Intrinsische Eigenschaft des Atoms von Einstein her.

0.1.2 Atome in einem Magnetfeld

Das bewegte Elektron ist ein Kreisstrom.

$$I = -\frac{er}{2\pi r}$$

besitzt ein Magnetisches moment

$$\mu = -\frac{1}{2}e\vec{r} \times \vec{v}$$

Ein Magnetisches Moment in einem externen Magnetfeld *B* hat die Wechselwirkungsenergie (Potentielle Energie)

$$V = -\vec{\mu} \cdot \vec{B}$$

0.2 Lorentz Modell

$$m\frac{\mathrm{d}r}{\mathrm{d}t} = \underbrace{-m\omega_0^2 r}_{H.O.} - \underbrace{er \times B}_{\text{Lorentzkraft}}$$

Contents

wir definieren $B = B_0 e_z$

$$\ddot{r} + 2\Omega_L \dot{r} \times e_z + \omega_0^2 r = 0 \qquad \Omega_L = \frac{eB}{2m} \tag{0.2}$$

Wir lösen mit dem Ansatz

$$r(t) = (xe_x + ye_y + ze_z)e^{-i\omega t}$$
(0.3)

und die matrixform ist dann

$$\begin{pmatrix} \omega_0^2 & -2i\omega\Omega_L & 0\\ 2i\omega\Omega_L & \omega_o^2 & 0\\ 0 & 0 & \omega_0^2 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \omega^2 \begin{pmatrix} x\\ y\\ z \end{pmatrix}$$
(0.4)

Eigenwertgleichung mit char. Polynom

$$\left[\omega^4 - (2\omega_0^2 + 4\Omega_L^2)\omega^2 + \omega_0^4\right](\omega^2 - \omega_0^2) = 0 \tag{0.5}$$

Wir nehmen an, dass $\Omega_L << \omega_0$. So finden wir dass $\omega \approx \omega_0 \pm \Omega_L$, und wir erhalten die Eigenvektoren

$$\begin{aligned} \omega &= \omega_0 - \Omega_L & \omega &= \omega_0 & \omega &= \omega_0 + \Omega_L \\ \begin{pmatrix} \cos(\omega t) \\ -\sin(\omega t) \\ 0 \end{pmatrix} & z_0 \begin{pmatrix} 0 \\ 0 \\ \cos(\omega_0 t) \end{pmatrix} & \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix} \end{aligned}$$
 (0.6)

1 Quantenmechanik

- diskrete Energieniveaus
- Abstrahlung von Energie führt zu Änderung des Zustands des Elektrons

Offene Fragen

- Auspaltung der D-Linie in Natrium.
- Anormaler Zeemaneffekt (Aufspaltung in Gerade Anzahl von Linien)

1.1 Doppelspaltexperiment

Konstruktive Interferenz für

$$\Delta \ell = n\lambda$$
, $n = 0, \pm 1, \pm 2, \cdots$

desuktrive Interferenzen für

$$\Delta \ell = (n + 1/2)\lambda$$

Die Intensität auf dem Schirm ist proportional zum Betragsquadrat der

$$I \propto |E_1 + E_2|^2 \tag{1.1}$$

$$I \propto |E_1|^2 + |E_2|^2 + \underbrace{2\text{Re}(E_1 * E_2)}_{\text{Interferenz}}$$
 (1.2)

Was passiert mit einem Teilchen auf dem Doppelspalt? deBroglie: Auch Teilchen haben Welleneigenschaften

$$\lambda = h/p$$

Einstein: Energie Impuls Beziehung

$$E = \hbar\omega = \sqrt{(mc^2)^2 + p^2c^2}$$

und für Masselose teilchen $E = pc = \hbar kc = \hbar \omega$ und somit ist $\omega = ck$

Für massive Teilchen $E = mc^2 \sqrt{1 + \frac{p^2}{m^2c^2}} \approx mc^2 + \frac{p^2}{2m}$ und damit gilt dann $\omega = \frac{\hbar k^2}{2m}$ mit kinetischer Energie kleiner als mc^2 .