STAT538A: Statistical Learning: the Way of the Kernel

Winter 2020

Lecture 2

Lecturer: Zaid Harchaoui

Scribe: Lang Liu

1 Reproducing Kernel Hilbert Space

Theorem 12 (Aronszajn, 1950). Let \mathcal{X} be a metric space and $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PSD kernel, there exists a unique Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)_{\mathcal{H}})$ of functions on \mathcal{X} satisfying the following conditions:

- (i) for all $x \in \mathcal{X}$, $\phi(x) := k(x, \cdot) \in \mathcal{H}$,
- (ii) the span of the set $\{\phi(x)|x\in\mathcal{X}\}$ is dense in \mathcal{H} , and
- (iii) for all $f \in \mathcal{H}$ and $x \in \mathcal{X}$, $f(x) = \langle \phi(x), f \rangle_{\mathcal{H}}$.

In particular, \mathcal{H} is an RKHS.

Proof The proof is divided into several steps.

Step 1. Construct an inner product space $\mathcal{H}_0 = \text{span}\{\phi(x) : x \in \mathcal{X}\}$ satisfying the conditions (i)-(iii). Recall that

$$\operatorname{span}\{\phi(x): x \in \mathcal{X}\} = \left\{ f = \sum_{i=1}^{s} \alpha_{i} \phi(x_{i}): x_{1} \dots, x_{s} \in \mathcal{X}, \alpha_{1}, \dots, \alpha_{s} \in \mathbb{R}, \text{and } s \in \mathbb{N} \right\},$$

it is easy to verify that \mathcal{H}_0 is a vector space, and conditions (i) and (ii) holds on \mathcal{H}_0 . Let $\langle \cdot, \cdot \rangle_{\mathcal{H}_0} : \mathcal{H}_0 \times \mathcal{H}_0 \to \mathbb{R}$ be a bivariate functional defined as

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{\substack{1 \le i \le s \\ 1 \le j \le r}} \alpha_i \beta_j k(x_i, y_j), \quad \text{for } f = \sum_{i=1}^s \alpha_i \phi(x_i) \text{ and } g = \sum_{j=1}^r \beta_j \phi(y_j).$$

In particular, we have

$$\langle f, \phi(x) \rangle_{\mathcal{H}_0} = \sum_{i=1}^s \alpha_i k(x_i, x) = f(x),$$

that is, the condition (iii) holds on \mathcal{H}_0 . Next, we will show that $\langle \cdot, \cdot \rangle_{\mathcal{H}_0}$ is an inner product on \mathcal{H}_0 . We only verify the positive definiteness here. Given any $f := \sum_{i=1}^s \alpha_i \phi(x_i) \in \mathcal{H}_0$, we have

$$\langle f, f \rangle_{\mathcal{H}_0} = \sum_{i = 1}^s \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

by the positive semi-definiteness of the kernel. Moreover, if $\langle f, f \rangle_{\mathcal{H}_0} = 0$ for some $f \in \mathcal{H}_0$, then for every $x \in \mathcal{X}$ and $\epsilon \in \mathbb{R}$, we obtain

$$\langle f + \epsilon \phi(x), f + \epsilon \phi(x) \rangle_{\mathcal{H}_0} = \langle f, f \rangle_{\mathcal{H}_0} + 2\epsilon \langle f, \phi(x) \rangle_{\mathcal{H}_0} + \epsilon^2 k(x, x) \ge 0.$$

This implies $4\langle f, \phi(x) \rangle_{\mathcal{H}_0}^2 - 4\langle f, f \rangle_{\mathcal{H}_0} k(x, x) \leq 0$. Notice that $\langle f, f \rangle_{\mathcal{H}_0} = 0$, it holds that $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}_0} = 0$. Since $x \in \mathcal{X}$ is arbitrary, we have $f \equiv 0$ on \mathcal{X} .

Step 2. Prove that the completion of \mathcal{H}_0 is a Hilbert space. Let $\{f_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathcal{H}_0 , i.e., $\|f_n - f_m\|_{\mathcal{H}_0} \to 0$ as $n, m \to \infty$. Then for any $x \in \mathcal{X}$, by Cauchy-Schwarz inequality, we have

$$|f_n(x) - f_m(x)| = |\langle f_n - f_m, \phi(x) \rangle_{\mathcal{H}_0}| \le ||f_n - f_m||_{\mathcal{H}_0} ||\phi(x)||_{\mathcal{H}_0} = ||f_n - f_m||_{\mathcal{H}_0} \sqrt{k(x, x)} \to 0$$

as $n, m \to \infty$. It follows that $\{f_n(x)\}_{n \in \mathbb{N}}$ is also a Cauchy sequence, and thus the limit $f(x) := \lim_{n \to \infty} f_n(x)$ exists. Therefore, we may view f as the limit of the sequence $\{f_n\}_{n \in \mathbb{N}}$ w.r.t. the norm $\|\cdot\|_{\mathcal{H}_0}$. Now let \mathcal{H} be the completion of \mathcal{H}_0 by adding all such limits of Cauchy sequences. By the continuity of the inner product, we can define a bivariate function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ as follows: $\forall f, g \in \mathcal{H}$, there exist two sequences $\{f_n\}_{n \in \mathbb{N}} \subset \mathcal{H}_0$ and $\{g_n\}_{n \in \mathbb{N}} \subset \mathcal{H}_0$ such that $\lim_{n \to \infty} f_n = f$ and $\lim_{n \to \infty} g_n = g$, then we define

$$\langle f, g \rangle_{\mathcal{H}} := \lim_{n \to \infty} \langle f_n, g_n \rangle_{\mathcal{H}_0}.$$

Let us verify the limit exists. Firstly, note that

$$\left| \|f_n\|_{\mathcal{H}_0} - \|f_m\|_{\mathcal{H}_0} \right| \le \|f_n - f_m\|_{\mathcal{H}_0} \to 0, \text{ as } n, m \to \infty,$$

so there exists a constant $c_f > 0$ such that $\lim_{n \to \infty} \|f_n\|_{\mathcal{H}_0} = c_f$. Similarly, there exists a constant $c_g > 0$ such that $\lim_{n \to \infty} \|g_n\|_{\mathcal{H}_0} = c_g$. This implies $(\langle f_n, g_n \rangle_{\mathcal{H}_0})_{n \ge 1}$ is a Cauchy sequence in \mathbb{R} since

$$\begin{aligned} \left| \langle f_n, g_n \rangle_{\mathcal{H}_0} - \langle f_m, g_m \rangle_{\mathcal{H}_0} \right| &\leq \left| \langle f_n, g_n - g_m \rangle_{\mathcal{H}_0} \right| + \left| \langle f_n - f_m, g_m \rangle_{\mathcal{H}_0} \right| \\ &\leq \left\| f_n \right\|_{\mathcal{H}_0} \left\| g_n - g_m \right\|_{\mathcal{H}_0} + \left\| f_n - f_m \right\|_{\mathcal{H}_0} \left\| g_m \right\|_{\mathcal{H}_0} \\ &\to 0 \quad \text{as } n, m \to \infty. \end{aligned}$$

Finally, it is not hard to verify that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner product. In fact, for $f, g, h \in \mathcal{H}$ associated with respective Cauchy sequences $\{f_n\}$, $\{g_n\}$ and $\{h_n\}$, we have

$$\langle f, f \rangle_{\mathcal{H}} = \lim_{n \to \infty} \langle f_n, f_n \rangle_{\mathcal{H}_0} \ge 0,$$

$$\langle f, ag \rangle_{\mathcal{H}} = \lim_{n \to \infty} \langle f_n, ag_n \rangle_{\mathcal{H}_0} = a \langle f, g \rangle_{\mathcal{H}},$$

$$\langle f, g + h \rangle_{\mathcal{H}} = \lim_{n \to \infty} \langle f_n, g_n + h_n \rangle_{\mathcal{H}_0} = \lim_{n \to \infty} (\langle f_n, g_n \rangle_{\mathcal{H}_0} + \langle f_n, h_n \rangle_{\mathcal{H}_0}) = \langle f, g \rangle_{\mathcal{H}} + \langle f, h \rangle_{\mathcal{H}}.$$

Therefore, \mathcal{H} is a Hilbert space of functions defined on \mathcal{X} .

Step 3. Verify that \mathcal{H} satisfies the conditions (i)-(iii) and is unique. By the definition of completion, conditions (i) and (ii) are automatically fulfilled. As for (iii), it follows from

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \langle \phi(x), f_n \rangle_{\mathcal{H}_0} = \langle \phi(x), f \rangle_{\mathcal{H}}.$$

In order to prove the uniqueness, we assume \mathcal{G} is another Hilbert space satisfying these conditions. We want to show that

$$\mathcal{G} = \mathcal{H} \quad \text{and} \quad \langle \; , \; \rangle_{\mathcal{G}} = \langle \; , \; \rangle_{\mathcal{H}}.$$
 (1)

We first observe that $\mathcal{H}_0 \subset \mathcal{G}$ because of the condition (ii). Also, according to condition (iii), for any $x, y \in \mathcal{X}, \langle \phi(x), \phi(y) \rangle_{\mathcal{G}} = k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$. By linearity of the inner product, for every $f, g \in \mathcal{H}_0$, we have $\langle f, g \rangle_{\mathcal{G}} = \langle f, g \rangle_{\mathcal{H}}$. Since both \mathcal{G} and \mathcal{H} are completions of \mathcal{H}_0 , (1) follows from the uniqueness of the completion. \blacksquare

Corollary 13. A function $k: \mathcal{X} \times \mathcal{X} : \to \mathbb{R}$ is a PSD kernel if and only if there is a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \to \mathcal{H}$, such that $\forall x, x' \in \mathcal{X}, k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$. We refer to the map ϕ as a feature map.

Proof "\Rightarrow": if k is a PSD kernel, then by Aronszajn's Theorem we know that there exists an RKHS \mathcal{H} , and, in particular, a Hilbert space of functions, such that $\phi(x) := k(x, \cdot) \in \mathcal{H}$ and $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ for every $x, x' \in \mathcal{X}$.

"←": it follows directly from the properties of inner product.

Remark One PSD kernel may correspond to multiple feature maps. For instance, let $\mathcal{X} = \mathbb{R}$ and k(x, x') = xx'. We consider the Hilbert space $\mathcal{H} := \mathbb{R}^2$, then both

$$\phi_1(x) = \begin{bmatrix} x/\sqrt{2} \\ x/\sqrt{2} \end{bmatrix}$$
 and $\phi_2(x) = \begin{bmatrix} \sqrt{2}x/\sqrt{3} \\ x/\sqrt{3} \end{bmatrix}$,

are feature maps of k.

Given any such feature map, we can define a PSD kernel by $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$. With an appropriate choice of ϕ , the kernel k usually admits a closed-form expression. Therefore, we can compute the inner product between two embedded data points $(\phi(x), \phi(x'))$ without actually working in the Hilbert space \mathcal{H} . This allows the computations in kernel methods to be tractable, and we usually call it the "kernel trick".

Next, we investigate some properties of an RKHS.

Definition 14 (Evaluation functional). Let \mathcal{H} be a Hilbert space of functions defined on \mathcal{X} . For any $x \in \mathcal{X}$, the evaluation functional at x is defined to be a linear operator $k_x : \mathcal{H} \to \mathbb{R}$ such that $k_x(f) = f(x)$ for all $f \in \mathcal{H}$.

It is straightforward to show that the inner product in a Hilbert space is a continuous linear operator. The next theorem verifies that the converse is also true.

Theorem 15 (Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space, and L be a continuous linear operator. Then there exists some $g \in \mathcal{H}$ such that

$$L(f) = \langle f, g \rangle_{\mathcal{H}}, \quad \forall f \in \mathcal{H}.$$

And we refer to g as the representer of the operator L.

The Riesz representation theorem provides a characterization of RKHS in terms of evaluation functionals.

Proposition 16. Let \mathcal{H} be a Hilbert space of functions defined on \mathcal{X} . Then \mathcal{H} is an RKHS if and only if for all $x \in \mathcal{X}$, the evaluation functional k_x is continuous.

Proof " \Rightarrow ": Let k be the reproducing kernel associated with \mathcal{H} . Given an arbitrary $x \in \mathcal{X}$, we want to show that for any sequence $(f_n)_{n \in \mathbb{N}}$ in \mathcal{H} such that $f_n \to f$ as $n \to \infty$, we have $k_x(f_n) = f_n(x) \to k_x(f) = f(x)$ as $n \to \infty$. In fact,

$$|f_n(x) - f(x)| = |\langle f_n, k(x, \cdot) \rangle_{\mathcal{H}} - \langle f, k(x, \cdot) \rangle_{\mathcal{H}}| = |\langle f_n - f, k(x, \cdot) \rangle_{\mathcal{H}}| \le ||f_n - f||_{\mathcal{H}} ||k(x, \cdot)||_{\mathcal{H}},$$

where the last inequality is due to the Cauchy-Schwarz inequality. Furthermore, we have

$$||k(x,\cdot)||_{\mathcal{H}} = \langle k(x,\cdot), k(x,\cdot) \rangle_{\mathcal{H}}^{1/2} = k(x,x)^{1/2} < \infty,$$

and it follows that $f_n(x) \to f(x)$ as $n \to \infty$.

"\(\infty\)": Note that k_x is linear, then by Riesz representation theorem, $\exists g_x \in \mathcal{H}$, s.t., $f(x) = k_x(f) = \langle f, g_x \rangle_{\mathcal{H}}$ for every $f \in \mathcal{H}$. For any $x, y \in \mathcal{X}$, let $k(x, y) = k_y(g_x) = \langle g_x, g_y \rangle_{\mathcal{H}} = g_x(y)$, then $k(x, \cdot) = g_x \in \mathcal{H}$ and k is a reproducing kernel: for all $f \in \mathcal{H}$,

$$\langle k(x,\cdot), f \rangle_{\mathcal{H}} = \langle g_x, f \rangle_{\mathcal{H}} = f(x).$$

It follows that \mathcal{H} is an RKHS.

Proposition 17. Let \mathcal{H} be an RKHS, then it admits a unique reproducing kernel, which is also a PSD kernel. Conversely, if k is a PSD kernel, then there exists an RKHS \mathcal{H} such that the reproducing property holds.

Proof " \Rightarrow ": Let $k(\cdot, \cdot)$ and $h(\cdot, \cdot)$ be two reproducing kernels associated with \mathcal{H} . Then for any $x \in \mathcal{X}$, we have:

$$\|k(x,\cdot) - h(x,\cdot)\|_{\mathcal{H}}^2 = \langle k(x,\cdot) - h(x,\cdot), k(x,\cdot) - h(x,\cdot) \rangle_{\mathcal{H}} = k(x,x) - h(x,x) - k(x,x) + h(x,x) = 0.$$

It follows that k and h are identical. Moreover, since $k(x,y) = \langle k(x,\cdot), k(y,\cdot) \rangle_{\mathcal{H}}$, we know that k is PSD by the positive definiteness of inner product.

" \Leftarrow ": If $k(\cdot, \cdot)$ is a PSD kernel, then there exists an RKHS \mathcal{H} with k being its reproducing kernel by Aronszajn's theorem. \blacksquare

2 Applications

One of the most attractive feature of reproducing kernel is its reproducing property. It allows us to perform efficient computations while still gaining the advantages of high-dimensional features. In the following, we show how one can apply the kernel trick to compute the distance between two functions.

To begin with, we consider two objects $x_1, x_2 \in \mathcal{X}$. They are mapped to two features $\phi(x_1), \phi(x_2) \in \mathcal{H}$, so it is natural to define a distance between two objects as the distance between their features in \mathcal{H} :

$$d_{\mathcal{H}}(x_1, x_2) := \|\phi(x_1) - \phi(x_2)\|_{\mathcal{H}}.$$

At first sight of this definition, it seems necessary to explicitly compute $\phi(x_1)$, $\phi(x_2)$ before computing this distance. However, this distance can actually be expressed in terms of inner products in \mathcal{H} , that is,

$$\|\phi(x_1) - \phi(x_2)\|_{\mathcal{H}}^2 = \langle \phi(x_1), \phi(x_1) \rangle_{\mathcal{H}} + \langle \phi(x_2), \phi(x_2) \rangle_{\mathcal{H}} - 2\langle \phi(x_1), \phi(x_2) \rangle_{\mathcal{H}}.$$

Applying the kernel in the above equality, we obtain the distance in terms of the kernel:

$$d_{\mathcal{H}}(x_1, x_2) = \sqrt{k(x_1, x_1) + k(x_2, x_2) - 2k(x_1, x_2)}.$$

The effect of kernel is easily understood in this example: it is possible to perform operations implicitly in feature space. This is of utmost importance for kernels that are easy to compute directly, but correspond to a complex feature space. For example, for Gaussian RBF kernel $k(x,y) = \exp(-\|x-y\|^2/\sigma^2)$ in which $x, y \in \mathbb{R}^d$, the square distance $d_{\mathcal{H}}(x,y)^2 = 2[1 - \exp(-\|x-y\|^2/\sigma^2)]$.

Then, we consider the following slightly more general problem. Let $S_X = \{x_1, \ldots, x_n\}$ be a fixed finite set of objects in \mathcal{X} . Is it possible to access how close a new object x is to the set of objects S_X ? Having mapped the set S_X and the object x into the feature space with the feature map ϕ , a natural way to measure the distance between the object x and the set S_X is to define it as the distance between $\phi(x)$ and the centroid of S_X in the feature space, where the centroid is defined as

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i).$$

In general, there is no reason to believe $\hat{\mu}$ should be the image of the feature map ϕ at an object $x' \in \mathcal{X}$, but it is well defined as an element of \mathcal{H} . Then, we can define the distance between x and S_X as follows:

$$d_{\mathcal{H}}(x, S_X) = \|\phi(x) - \hat{\mu}\|_{\mathcal{H}} = \left\|\phi(x) - \frac{1}{n} \sum_{i=1}^n \phi(x_i)\right\|_{\mathcal{H}}$$

Expanding the above distance in terms of inner products in the feature space and using the kernel trick, we have

$$d_{\mathcal{H}}(x, S_X) = \sqrt{k(x, x) - \frac{2}{n} \sum_{i=1}^{n} k(x, x_i) + \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i, x_j)}$$

This shows that the distance between x and S_X can be computed entirely from the kernels between pairs of objects in $\{x\} \cup S_X$, even though it is defined as a distance in the feature space between $\phi(x)$ and $\hat{\mu}$ that $\phi^{-1}(\hat{\mu})$ does not necessarily exist in \mathcal{X} .

As a further generalization, we can easily define the following function as a distance between two set of objects S_X and S_Y ,

$$d_{\mathcal{H}}(S_X, S_Y) = \sqrt{\frac{1}{|S_X|^2}} \sum_{x, x' \in S_X} k(x, x') + \frac{1}{|S_Y|^2} \sum_{y, y' \in S_Y} k(y, y') - \frac{2}{|S_X||S_Y|} \sum_{x \in S_X, y \in S_Y} k(x, y)},$$

where $|S_X|$ and $|S_Y|$ are the cardinalities of S_X and S_Y , respectively.