

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-173055

(43) Date of publication of application: 09.07.1996

(51)Int.CI.

A23K 1/16 A23K 1/16

A23K 1/18

A61K 47/36

(21)Application number: 06-340863

(71)Applicant: HOSHIDA SHINICHI

SEIBUTSU KAGAKU SANGYO

KENKYUSHO:KK YOUNICHI KAGAKU KENKYUSHO:KK

(22)Date of filing:

21.12.1994

(72)Inventor: HOSHIDA SHINICHI

KAWANO TAKASHI **IDOTA MITSURU**

(54) MANNOSE-BASED POLYSACCHARIDE-CONTAINING FEED

(57)Abstract:

PURPOSE: To obtain feed for domestic animals having excellent productivity and effective for preventing Salmonella pollution by mixing mannose-based polysaccharide. CONSTITUTION: Feed for domestic animals mixed with mannose-based polysaccharide prepared by enzyme-treatment of guar beans or refuse of copra squeezed oil, etc., is administrated to contribute to productivity such as reducing of fatty liver fowls or reducing of a non-standardized egg ratio and effectively prevent Salmonella pollution.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

· (12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-173055

(43)公開日 平成8年 (1996) 7月9日

(51) Int. Cl. ⁶		識別記号	Į.	庁内整理番号	FΙ	技術表示箇所
A23K	1/16	303	D			
·		304	С			
	1/18		В			
			D			
A61K	47/36		Z			•
				•	家情查審	未請求 請求項の数3 書面 (全4頁)
(21)出願番号		特願平6-3408	63		(71)出願人	594058241
						星田 真一
(22) 出願日		平成6年(1994)) 12	月21日		静岡県小笠郡菊川町青葉台3丁目9番地の20
	•		•		(71)出願人	391040238
			•			有限会社生物科学産業研究所
		用申請有り平月	或6年	F7月30日発行		静岡県磐田市高町41番地の3
の中日新聞に持	曷載				(71)出願人	
						株式会社養日化学研究所
						愛知県名古屋市守山区町北9番25号
					(72)発明者	星田 真一
						静岡県小笠郡菊川町青葉台3丁目9番地の20
					4	
		٠				最終頁に続く

(54) 【発明の名称】 マンノース系多糖体含有飼料

(57)【要約】

【目 的】生産性に優れ、かつサルモネラ汚染防止に有効なマンノース系多糖体配合の家畜用飼料を提供する。

【構 成】グアー豆、コプラ搾油残粕等を酵素処理して 調製したマンノース系多糖体を配合してなる家畜用飼料 を投与することによって、脂肪肝鶏の減少、格外卵率の 減少などの生産性に寄与すると共に、サルモネラ汚染防 止を有効に達成することを特徴とする。

【特許請求の範囲】

【請求項1】マンノース系多糖体を配合することを特徴 とする家畜用飼料

【請求項2】マンノース系多糖体を配合することにより、サルモネラ菌の汚染を防止することを特徴とする家 畜用飼料

【請求項3】マンナンを構成成分とする培地に、マンナーゼを産生する微生物を培養し、自己消化反応とマンナン部分分解反応とを同一系内で行うことを特徴とする飼料添加物マンノース系多糖体の製造方法

【発明の詳細な説明】

【0001】本発明は、マンノース系多糖体を配合することを特徴とする家畜用飼料に関するものである。 【0002】

【産業上の利用分野と従来の技術】近年、畜産業界では 飼料の高カロリー化に伴う蓄積脂肪の弊害、例えば産卵 鶏の脂肪肝による損耗、ブロイラー・肥育豚の腹腔脂肪 の過多等が問題となって来ている。

【0003】また、食中毒の原因菌としてのサルモネラ 菌の汚染も年々増加しており、畜産業界におけるサルモ 20 ネラ汚染の防止も、非常に重要な課題となって来てい る。

[0004]

【発明が解決しようとする課題】本発明は、マンノース系多糖体が家畜用飼料としての生産性に優れる事と、特にサルモネラ菌の防止に有用であることに基づいて、畜産業界にマンノース系多糖体含有飼料を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明に用いるマンノース系多糖体は、マンナンを含む素材を酵素分解して得られる。マンナンとは、マンノースを主な構成成分とする多糖類をいう。例えばその由来、構成などにより分類して示せば以下のものが挙げられる。

Φ 植物由来のマンナン

ココナッツ椰子から得られるコプラミール、フーク、南 アフリカ産椰子科植物Huacra Palm、ツクネ イモマンナン、ヤマイモマンナン。

@ グルコマンナン

コンニャクイモ、ユリ、スイセン、ヒガンバナ地下茎から得られるマンノースを含有するマンナン。

3 ガラクトマンナン

ローガストビーンガム、大豆種皮由来のソイビーンフル、タムソンガム、グアーガムなどのマンノースの外に ガラクトースを含有するマンナン。

のその他

キサンタンガムなどのマンノース以外に2種類以上の糖により構成されるマンナン。本発明のマンノース系多糖体は、前述のマンナンを構成成分とするものから選択されたマンナン含有組成物やマンナンそのものを酵素によ

り分解することにより得られる。使用する酵素は β -マンノシターゼ等を用いる。 β -マンノシターゼは、例えばバイオテクノロジーレター第10巻9号p. 661~ 664記載の方法により

Bacillus subtilis ATCC 12

Streptomyces olivochromogenes ATCC 21713

また、日本農芸化学会: Biosci. Biotech 10 Biochem., 56巻5号p. 822~824 (1992) に示される

Aspergillus niger IFO 666 2, IFO 8541

Penicillium wortmanni などの公知の当該酵素生産菌群より選ばれる菌株を培 養、発酵させることにより得られる。 このほか、Asp ergillus nigerによるendo型へミセ ルラーゼを用いる事もできる。 本発明では、 マンナンを 含む素材を酵素分解して得られるマンノース系多糖体を 有効成分とするのであるが、例えばグアーガムを原料と する方法は次の通りである。小麦フスマ90kg、脱脂 大豆100kg、ローガスト豆粉砕物(60メッシュ通 過)50kgに等量の水を加え、3kg/cm²で1時 間加圧殺菌した後、30m3 配酵タンクに移し水を加え て全量を10m³とする。培地の初発pHを5.5に、 液温を35℃に調節し、この培地に別に純粋培養したA spergillus saitoi ATCC143 32の種菌100gを接種し、通気攪拌培養をおこなっ た。 4日後、上記培養液1m³ をジャケット付き攪拌槽 30 へとり、市販グアーガム15kgを溶解させ15%クエ ン酸溶液にてpH5.0、50℃で3時間反応させた。 粘度の低くなった反応液をフィルタープレス濾過処理で 透明液とし、全量を1/4容量に減圧濃縮した。この液 に30kgのジャガイモ澱粉を懸濁させスプレー乾燥機 にて目的とするマンノース系多糖体を含む標品を得るこ とができる。その他、コプラミールをガラクトマンナー ゼ等で酵素処理することによっても得られるが、 本発明 に用いるマンノース系多糖体は、マンノースの繰り返し

単位が40~100個の多糖類を中心(30~80%) 40 とし、オリゴ糖も(5~30%)混在する糖組成物である。

[0006]

【発明の効果】以下に製造例を示し、調製して得たマンノース系多糖体粉末を用いて本発明の効果を具体的に実施例で説明する。

[0007]

【製造例1】あらかじめフラスコによる前培養した種歯を5% (v/v)、酵素生産培地(コプラミール4%、 KH2 PO4 1%、ペプトン0.9%、MgSO4・7 50 H2 OO.05%、酵母エキス0.2%、およびコーン

スティープリカー0.5%、pH5.4)40▲リット ル▼を投入、殺菌してなる60▲リットル▼容量の発酵 槽で96時間通気、攪拌培養をおこなう。十分所望の酵 素生産が終了した段階で発酵槽の温度を50℃に上げ2 回に分けて蒸煮コプラミール1 kgを発酵槽へ投入し酵 素反応、分解を12時間攪拌条件下で実施する。 得られ る反応物をプレコート濾過機にて完全に不溶物を取り除 き、全容をスプレードライヤーにて噴霧乾燥し目的のマ ンノース系多糖体を調整した。

【0008】前記した製造例1の製造方法は、液体培地 中で酵素マンナーゼの生産を行う行程と自己消化反応と マンナンの加水分解反応行程とを同一系内にて進めるこ とを特徴とする進歩性の高い技術である。その上に、培 地を下記のような固体培地に変えると本発明のマンノー ス系多糖体を製造する際の生産効率は顕著に改善され る。

[0009]

【製造例2】コプラミール(40~80メッシュ)10 0kgと糖蜜500gとを混練し、5g/▲リットル▼ のクエン酸を含むpH5.0にアルカリ中和調製された 緩衝液にて水分65%に調製してなる固体培地を蒸煮殺 菌したものをカワタ工業トロムメル型製麹機に仕込み、

Aspergillus niger IFO 854 1種菌培養液を接種後30℃にて4日間培養した。得ら れた培養物に100kgの蒸煮コプラミールとクエン酸 **緩衝液(pH5.0)100▲リットル▼を追加し、温** 度を50℃に上げて15時間反応を続けた。反応終了後 全量を1トン容量の攪拌槽へ移し、300▲リットル▼ の水を加えて攪拌しながらフィルタープレスにて濾過し た。 濾液を1/5容量に減圧濃縮し、等量のコーンミー ルを懸濁させ攪拌しながらドラム乾燥機にて乾燥し目的 10 物を得た。

[0010]

【実施例1】強制換羽後540日令のデカルプTX-3 5各2000羽を3区に分け、市販の成鶏飼料を対照区 に、また試験区には対照区と同一飼料に対し製造例にて 調製した粉末をマンノース系多糖体として0.05重量 %、0.25重量%となるように添加混合し、不断給餌 し飲水は自由摂取させた。

【 0011】投与開始後112日 (16週間) 後まで の各区の格外卵率、脂肪肝による死亡率の結果を下表に 20 示す。

【表1】

X	マンノース系多糖体の添加率(20)		т
		格外原率(%)	脂肪肝死亡率(0)
<u>'</u> _	無添加	2. 8	1. 52
_2	0. 05%		
3		1. 5	0. 84
	0. 25%	1. 2	0. 33

【0012】以上により、マンノース系多糖体を添加し た試験区は、

- (1)破卵、ヒビ卵、ザラツキ卵等の格外卵率が少な く、卵の商品価値を高める。
- (2) 脂肪肝鶏の発生が少なく、生存率、生産性向上さ せる。

ことに優れた結果を示した。

【0013】採卵鶏で、脂肪肝鶏の減少が認められたの と同様、マンノース系多糖体を与えたプロイラーでも腹 腔脂肪の減少が認められる。 但し、 マンノース系多糖体 の添加率を0.15重量%以上に設定すると、プロイラ 一の育成後期の増体が無添加の対照区よりも少なくなる 反面、対照区よりも油分の少ないあっさりした味の付加

価値の高い肉質の作出に有用となる。

【0014】こうした家禽特有の効果は、例えば従来の オリゴ糖等による家畜の下痢予防や増体についての効果 とは全く異なる作用によるものであり、本発明のマンノ 一ス系多糖体の独自の作用によるものと考えられる。 [0015]

【実施例2】市販の配合飼料を滅菌したものを飼料とし て用いて飼養した4日令のヒナ(鶏種ジュリア)のその う内に、サルモネラ・エンテリティディス

(Salmonella Enteritidis) 茵 8. 6×10 6 個/羽を投与した。また、滅菌飼料中に 40 は、試験区として製造例にて調製したマンノ多糖体の添 加率を下表のように設定混合して常時供与した。

	מתניו כיאכטיי	ころも
	マンノ多特体温度	
試験区1	0. 25%	
試験区2	1. 25%	
対照区	無添加	
	- MIAMAN	

各区のヒナは20羽とし、4日令時に5羽を殺処分し て、その盲腸及び脾臓より菌の分離をはかり、それ以降 の菌の回収は排泄された盲腸便にて週2回行った。サル 50 【0016】

モネラ菌存否の判定(+,一)は、常法により増菌の 上、定性判定を行った。

,

【結果1】 サルモネラ菌投与前(4日今時)のヒナは全

て陰性であった。

		< 13€12
— 表3	牌職	官膳
試験区1	_	
試験区2	_	
対照区		

. [0017]

【結果2】サルモネラ菌投与後59日間、飼養した際の

サルモネラ菌の排菌結果は表4のとおりであった。 【表4】

6

投与装日数	紅鷺溪!	共順 区2	対順区
3	+	+	+
8	+	+	+
10	+	+	+
13	+	+.	+
17	+	+	+
20	+	+	+
24	+	+	+
27	+	+	+
31	+	+	- +
34	+	+	
38	+	+	<u> </u>
41	+		- + -
45	_		_ <u>+</u> _
48			+
52			- +
56			+
59			+

【0018】以上により、マンノース系多糖体を添加した試験区は、サルモネラ菌を排除することに優れた結果を示した。なお、当該人工感染試験よりも緩やかな条件下である実際上でのインエッグ対策においては、マンノース系多糖体の使用濃度は更に低濃度に設定できるため、その実用性が大いに期待される。

【0019】以上の結果から、マンノース系多糖体配合 飼料は、畜産における生産性に寄与するばかりでなく、 非常に大きな問題点となっている食中毒の原因菌である サルモネラ菌の家畜腸内での定着防止に有用であること も判明したことから、本発明の当該産業上の利用性は極 めて大きいものと考えらる。

フロントページの続き

(72)発明者 川野 隆嗣 静岡県磐田市高町41番地の3

(72) 発明者 井戸田 満 愛知県名古屋市守山区町北9番25号