# Математическая статистика

#### 13 июня 2020 г.

## Содержание

| 1 | Постановка задач математической статистики                                                                                                                      | 2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | 1.1 Задачи теории вероятностей                                                                                                                                  | 2 |
|   | 1.2 Задачи математической статистики                                                                                                                            | 2 |
| 2 | Частота как оценка вероятности события и её свойства. Построение доверительного интервала для вероятности события на базе асимптотической нормальности частоты. |   |
| 3 | Функции потерь и функции риска, состоятельность оценки характеристики, достаточное условие для состоятельности оценки.                                          | 6 |
| 4 | Вид квадратичного риска в случае одномерной характеристики.                                                                                                     | 8 |

#### 1 Постановка задач математической статистики

Сравним задачи теории вероятностей и математической статистики

#### 1.1 Задачи теории вероятностей

Заданы:

- Вероятностное пространство  $\langle \Omega, \Sigma, P \rangle$ .
- Случайная величина  $X: \Omega \to \mathbb{R}^n$ .

Требуется получить различного рода характеристики величины X и величин , получающихся из X .

#### 1.2 Задачи математической статистики

Определение. Статистическим экспериментом называется четверка

$$\langle \mathfrak{X}, \mathcal{A}, P_{\theta}, \Theta \rangle$$
.

Здесь:

- $\mathfrak{X}$  множество наблюдений.
- $A \sigma$ -алгебра подмножеств X.
- $P_{\theta}$  известная с точностью до неизвестного параметра  $\theta$  вероятностная мера закон распределения наблюдаемых данных.
- $\Theta$  множество допустимых значений неизвестного параметра, то есть  $\theta \in \Theta$ .

Задачей математической статистики является получение той или иной информации о законе распределения наблюдаемых данных  $P = P_{\theta}$ .

Определение. Статистикой называется измеримая функция

$$f: \mathcal{X} \to A$$
.

Для произвольного A.

Определение. Пусть

$$\overline{X} = \langle X_1, \dots, X_n \rangle.$$

Где  $X_i \sim X$  — одинаково распределенные случайные величины. Соответствующая модель называется моделью независимой однородной выборки.

**Определение.** *Гипотезой H* называется подмножество  $\Theta$ :

$$H \subseteq \Theta$$
.

Перечислим некоторые задачи математической статистики.

- Оценивание параметра  $\theta$  или какой-либо функции  $g(\theta)$ , то есть построение статистики  $\hat{g}: \mathcal{X} \to \Theta$ . Оценивание может быть:
  - точечным, то есть указание численной оценки  $g(\theta)$
  - $\partial$ лительным, то есть указание множества, с фиксированной вероятностью содержащего  $g(\theta)$
- Проверка гипотез. Пусть имеется разбиение  $\Theta$  на гипотезы:  $\Theta = \bigsqcup_{n \in N} H_n$ . Тогда проеркой гипотезы назовем построение *теста* (*критерия*), то есть отображения

$$\varphi: \mathfrak{X} \to N$$
.

Которое по наблюдению выдает номер гипотезы, которому это наблюдение "соответствует".

Естественно, перечисленные задачи можно оценивать с точки зрения качества. В этом смысле всегда требуется с точки зрения какой-либо метрики построить "лучшую" оценку.

# 2 Частота как оценка вероятности события и её свойства. Построение доверительного интервала для вероятности события на базе асимптотической нормальности частоты.

Теорема 2.1. (Яков, Бернулли)

Пусть имеется  $\xi_i \sim \xi$  – последовательность одинаково распределенных и попарно независимых случайных величин. Пусть

$$\overline{\xi}_n = \frac{1}{n} \sum_{i=1}^n \xi_n = \frac{k_n}{n}.$$

Тогда

$$\overline{\xi}_n \underset{n \to +\infty}{\Longrightarrow} p.$$

**Теорема 2.2.** (Центральная предельная теорема, простейший вариант) Пусть случайные величины  $X_i \sim X$  независимы и одинаково распределены, причем  $\exists E(X), D(X)$ . Тогда для случайной величины

$$Y_n = \frac{\overline{X}_n - E(\overline{X}_n)}{\sigma(\overline{X}_n)}.$$

Верно:

$$F_{Y_n} \stackrel{\Longrightarrow}{\Longrightarrow} F_{N(0,1)}.$$

**Теорема 2.3.** (Свойства частоты как оценки p)

Пусть  $\xi \sim B(p)$ . Тогда

$$\hat{p} = \frac{k_n}{n}$$

Является несмещенной асимптотически нормальной оценкой p, то есть

$$E(\hat{p}) = p$$

$$\sqrt{n} \cdot (\hat{p} - p) = Y_n \xrightarrow[n \to +\infty]{} Y \sim N(0, \Delta^2(p)), \ \Delta^2(p) = p(1-p).$$

Доказательство.

• Покажем несмещенность:

$$E(\hat{p}) = E\left(\frac{k_n}{n}\right) = \frac{1}{n}np = p.$$

• Асимптотическая нормальность с нормирующим множителем  $\Delta^2(p) = p(1-p)$  следует непосредственно из центральной предельной теоремы.

На базе асимптотической нормальности можно построить доверительный интервал. Проделаем это на примере частоты. Выпишем определение асимптотической нормальности:

$$Y_n = \frac{\sqrt{n} \cdot (\hat{p} - p)}{\sqrt{p(1-p)}} \to N(0, 1).$$

Это буквально означает:

$$P_{n,\theta}(Y_n < t) \to F_{N(0,1)}(t).$$

Раскроем определение  $Y_n$ , возьмем его по модулю и воспользуемся квантилью:

$$\left|P_{n,\theta}\left(\left|\frac{\sqrt{n}\cdot(\hat{p}-p)}{\sqrt{p(1-p)}}\right|< t_{\gamma}\right) \to \gamma \Longleftrightarrow P_{n,\theta}\left(\frac{\sqrt{p(1-p)}}{\sqrt{n}}t_{\gamma}+\hat{p}>p>-\frac{\sqrt{p(1-p)}}{\sqrt{n}}t_{\gamma}+\hat{p}\right) \to \gamma.$$

Здесь 
$$\gamma = P(|\xi| < t_{\gamma}), \; \xi \sim N(0, 1).$$

# 3 Функции потерь и функции риска, состоятельность оценки характеристики, достаточное условие для состоятельности оценки.

**Определение.** Оценкой  $g(\theta)$  называется статистика вида

$$\hat{g}: \mathcal{X} \to g(\Theta).$$

**Определение.** Пусть  $\hat{g}(\theta)$  – оценка  $g(\theta)$ . Тогда функцией потерь называется неотрицательная функция  $l(\hat{g}, g(\theta))$ , характеризующая "близость" оценки к настоящему значению.

Замечание. Обычно в качестве функции потерь рассматривают функцию вида

$$l(\hat{g}, g(\theta)) = \omega(||\hat{g}, g(\theta)||).$$

Здесь  $\omega$  – неотрицательная монотонно возрастающая функция,  $\omega(0) = 0$ .

Замечание. *l* являтся случайной величиной.

Определение. Риском называется функция

$$R(\hat{g}, \theta) \stackrel{def}{=} E_{\theta}(l(\hat{g}, g(\theta))).$$

**Замечание.** Риск – функция параметра  $\theta$  и способа оценивания  $\hat{g}$ .

Опишем самые важные для нас виды функции потерь и риска.

Определение. Определим функцию потерь индикатором отклонений:

$$l^{\delta}(\hat{g}, g(\theta)) = \omega^{\delta}(\|\hat{g}, g(\theta)\|).$$

Где

$$\omega(t) = \mathbb{1}_{\delta}(t) = \begin{cases} 0, \ t < \delta \\ 1, \ t \ge \delta \end{cases}.$$

Соответствующий риск будет вероятностью отклонения:

$$R^{\delta}(\hat{g},\theta) = E_{\theta}(l(\hat{g},g(\theta))) = 0 \cdot P_{\theta}(\|\hat{g}-g(\theta)\| < \delta) + 1 \cdot P_{\theta}(\|\hat{g}-g(\theta)\| \ge \delta) = P_{\theta}(\|\hat{g}-g(\theta)\| \ge \delta).$$

**Определение.** При асимптотическом подходе оценка называется *состоятельной*, если

$$\forall \delta > 0 \ R^{\delta}(\hat{g}_n, \theta) = P_{n,\theta}(\|\hat{g}_n - g(\theta)\| \ge \delta) \xrightarrow[n \to +\infty]{} 0.$$

Или, что то же самое:

$$\hat{g}_n \xrightarrow[n \to +\infty]{P_{n,\theta}} g(\theta).$$

Определение. Квадратичной функцией потерь называется функция

$$l_2(\hat{g}, g(\theta)) = ||\hat{g} - g(\theta)||^2.$$

Соответствующий ей риск называется квадратичным:

$$R_2(\hat{g}, \theta) = E_{\theta}(\|\hat{g} - g(\theta)\|^2).$$

**Теорема 3.1.** (Достаточное условие для состоятельности оценки)  $R_2(\hat{g}_n,\theta) \xrightarrow[n \to +\infty]{} 0 \Longrightarrow$  оценка состоятельна.

Доказательство.

$$\begin{split} \forall \delta > 0 \ R^{\delta}(\hat{g}_n, \theta) &= P(\|\hat{g}_n - g(\theta)\| \ge \delta) = P(\|\hat{g}_n - g(\theta)\|^2 \ge \delta^2) \\ &\leq \frac{E_{\theta}(\|\hat{g}_n - g(\theta)\|^2)}{\delta^2} = \frac{R_2(\hat{g}_n, \theta)}{\delta^2} \xrightarrow[n \to +\infty]{} 0. \end{split}$$

### 4 Вид квадратичного риска в случае одномерной характеристики.

Определение. Смещением оценки называется величина

$$b(\hat{g},\theta) = g(\theta) - E_{\theta}(\hat{g}).$$

**Определение.** Оценка называется несмещенной, если  $b(\hat{g},\theta) = 0$ .

**Теорема 4.1.**  $R_2(\hat{g}, \theta) = D_{\theta}(\hat{g}) + b^2(\hat{g}, \theta)$ .

Доказательство.

$$R_{2}(\hat{g}, \theta) = E_{\theta}(\|\hat{g} - g(\theta)\|^{2}) = E_{\theta}(\hat{g} - E_{\theta}(\hat{g}) - (g(\theta) - E_{\theta}(\hat{g})))^{2}$$

$$= E_{\theta}(\hat{g} - E_{\theta}(\hat{g}))^{2} + (g(\theta) - E_{\theta}(\hat{g}))^{2} - \underbrace{2(g(\theta) - E_{\theta}(\hat{g}))(E_{\theta}\hat{g} - E_{\theta}\hat{g})}_{0}$$

$$= D_{\theta}\hat{g} + b^{2}(\hat{g}, \theta).$$

**Следствие 4.2.** Для одномерных несмещенных оценок квадратичный риск в точности равен дисперсии оценки:

$$R_2(\hat{g}, \theta) = D_{\theta}(\hat{g}).$$