COSC 304 - Fall 2019 - Midterm Exam Two

Duration: 75 minutes

	Name:			_
	s midterm consists of thre completing all questions.			l marks. You are responsible
Par	t A: This part consists of the best choice(s). (stions. Indicate your answ	ver by circling the letter of
1)	A table that is in 2 nd Nor	rmal form with no repe	eating attributes is in	
	a) BCNF Form be above	o) 2 nd Normal Form	c) 3 rd Normal Form	d) 4 th Normal Form
2)	Which of the following s candidate keys?	statements is true about	the table T(A,B,C,D, E)	of A,B and A, C are
	 a) A, B, C is a candidate b) B determines C and C c) If there are no partiale d) T is in 3NF e) D, E could be a super 	C determines B or transitive dependen	ncies in T, then T is in BC	NF
3)	The Oracle function NVI	L(foo, 'Bob') wil	I	
	b) return the value of coc) return NULL if the vd) return 'Bob' if the va	olumn foo if foo does alue of column foo is	•	
4)	-		in the normalized (BCNF) Circle <u>all</u> true statements)	table T(W,X,Y,Z), then
	 a) Z is a candidate key. b) Y could be the only of the could be just performed. d) (X,Y) is the only supper (X,Y) is a candidate. 	eart of some candidate ler key.	key.	
5)	If columns X, Y, Z unique together do not, then we	•	rows in table T(U,W,X,Y,	Z), but columns X, Y
	a) candidate key	b) partial key	c) primary key	d) super key

Part B Normalization (22 marks)

Question 1: The table T(a,b,c,d,e,f) has the following functional dependencies:

(7 marks)

- 1. a, c --> e
- 2. a, e --> b
- 3. a, e --> c
- **4.** b, c **-->** f
- 5. e, d --> c
- i. List two other *non-trivial* functional dependencies that can be derived from dependencies 1, 2, 3, 4 and 5 above. If you list more than two, the first two will be marked.

ii. For one of the functional dependencies you specified in (i) provide a justification using Armstrong's Axioms (as we did in class).

iii. What are the candidate keys for this relation?

Ouestion 2:

i) (3 marks) Suppose that in a table T(a, b, c, d, e, f), (a, c) and (a, d, e) are the only candidate keys **and table T is normalized to BCNF**. Check the appropriate column for each dependency below:

		TRUE	FALSE	CANNOT TELL
1.	$a, c \rightarrow d, e$			
2.	b → f			
3.	a, e → c			

ii) (3 marks) Suppose that in a table T(a, b, c, d, e), (c, d) is the **only** candidate key. Check the appropriate column for each dependency below:

		TRUE	FALSE	CAN NOT TELL
1.	c, d → e			
2.	$a, b, e \rightarrow c, d$			
3.	d → a			

Part B Normalization (continued)

Question 3: (9 marks)

Consider table T(A,B,C,D,E,F,G), which has the following functional dependencies:

- 1) B -> C
- 2) B -> G
- Identify the candidate key(s)? (1 mark)
- 3) C,G -> D
- 4) C,G -> F
- 5) A -> E
- Give one reason why T is not normalized. Be specific. (1 mark)
- Decompose relation T into a normalized set of relations following the process and notation used in class. For full marks, your decomposition should show all of your steps and clearly identify your resulting normalized set of relations **and constraints**. (7 marks).

Part C – SQL (14 Marks)

Fewbahr Department Store maintains a database for its three outlets in Ottawa, New York, and London. 4 tables track product sales and performance of sales employees. A set of sample rows for the tables are shown below.

EMPLOYEES			
EID	NAME		
103	Seth Myers Jack Carson David Spade		
	Jim Fallon Conan Obrien		

PRODUCTS			
PID	DESCRIPTION	PRICE	
	Oak Table Pine Desk	800 440	
LGH205	Lamp Post Double Bed	250 700	
	Nightstand	250	

	CUSTOMERS			
EID	Name	City		
20	Jason Jones	Ottawa		
21	Samantha Bee	Ottawa		
22	Lilly Singh	New York		
23	Rachel Riley	London		
24	Jim Kimmel	New York		

SALES			
PRO_ID	QUANTITY	EMP_ID	Cus_ID
FRN102	10	101	20
FRN101	10	105	22
FRN102	20	105	23
BED301	30	101	22
LGH205	10	104	21
FRN101	5	103	22
FRN101	10	104	21

Here are a few notes about this database:

- *EID* uniquely identifies an employee.
- *PID* uniquely identifies a product.
- *CID* uniquely identifies a customer.
- PRO ID, EMP ID, and CUS ID are each foreign keys referencing PID, EID, and CID, respectively.
- The first three characters of a PID indicate the type of product *FRN* indicates a *Furniture* product, *LGH* indicates a *Lighting* product, and *BED* indicates a *Bedroom* product.
- Each Customer is associated with the city of the closest store outlet.

Develop Oracle SQL queries to answer the following questions.

2) (4 marks) List the description (and type in parentheses) of all products that have had total sales exceed \$10,000. The format of the output should be as shown in the adjacent table.

Pine Desk (Furniture)
Oak Table (Furniture)
Double Bed (Bedding)

Part C – SQL (continued) - The tables are repeated here for your convenience.

E	EMPLOYEES			
EID	NAME			
101	Seth Myers			
103	Jack Carson			
105	David Spade			
104	Jim Fallon			
107	Conan Obrien			

	PRODUCTS	
PID	DESCRIPTION	PRICE
FRN102 LGH205 BED301	Oak Table Pine Desk Lamp Post Double Bed Nightstand	800 440 250 700 250

CUSTOMERS				
EID	Name	City		
20	Jason Jones	Ottawa		
21	Samantha Bee	Ottawa		
22	Lilly Singh	New York		
23	Rachel Riley	London		
24	Jim Kimmel	New York		

SALES				
PRO_ID	QUANTITY	EMP_ID	CUS_ID	
FRN102	10	101	20	
FRN101	10	105	22	
FRN102	20	105	23	
BED301	30	101	22	
LGH205	10	104	21	
FRN101	5	103	22	
FRN101	10	104	21	

2) (4 marks) For each city display a list of the total sales for furniture products, non-furniture products (*Other*) as well as the total of all products. The output of your query would look like this if the tables were limited to the data shown above.

CITY	FURNITURE	OTHER	TOTAL
London	8800	0	8800
New York	12000	21000	33000
Ottawa	12400	2500	14900

Part C – SQL (continued) - The tables are repeated here for your convenience.

EMPLOYEES				
EID	NAME			
101	Seth Myers			
103	Jack Carson			
105	David Spade			
104	Jim Fallon			
107	Conan Obrien			

PRODUCTS				
PID	DESCRIPTION	PRICE		
FRN102 LGH205 BED301	Oak Table Pine Desk Lamp Post Double Bed Nightstand	800 440 250 700 250		

CUSTOMERS				
EID	Name	City		
20	Jason Jones	Ottawa		
21 22	Samantha Bee Lilly Singh	Ottawa New York		
23 24	Rachel Riley Jim Kimmel	London New York		

SALES							
PRO_ID	QUANTITY	EMP_ID	CUS_ID				
FRN102	10	101	20				
FRN101	10	105	22				
FRN102	20	105	23				
BED301	30	101	22				
LGH205	10	104	21				
FRN101	5	103	22				
FRN101	10	104	21				

3) (6 marks) For each employee, list their Ottawa sales, New York sales and total sales. The output of your query would look like this if the tables were limited to the data shown above.

EID	Name	OTTAWA	NEW YORK	TOTAL
101	Myers	4400	21000	25400
103	Carson	0	4000	4000
104	Fallon	10500	0	10500
105	Spade	0	8000	16800
107	Obrien	0	0	0