Group 8

All State Purchase Prediction

Aji Somaraj Keerthana Ashok Kumar Neeraja Anil Ramkumar Sreeram Sai Kiran Vamaraju

AGENDA

- Objective
- Dataset Description
- Exploratory & Descriptive Analysis
- Modeling Techniques
- Model Evaluation
- Model Based on Data Pattern
- Conclusion

OBJECTIVE

- Our main objective is to predict whether a customer will opt for a particular insurance policy or not
- Customers receive a number of quotes with different coverage options
- Hence the need to analyze the factors that influence the customers purchase pattern
- If the purchase can be predicted sooner in the shopping window, the quoting process is shortened and becomes more cost and time effective

DATASET DESCRIPTION

• The dataset had **25 features** in total, representing customer demographics and other details.

Details	
Attributes	25
Instances	665249
Data Set Characteristics	Multivariate

Variable	Description				
customer_ID	A unique identifier for the customer				
shopping_pt	Unique identifier for the shopping point of a given customer				
record_type	o=shopping point, 1=purchase point				
day	Day of the week (o-6, o=Monday)				
time	Time of day (HH:MM)				
state	State where shopping point occurred				
location	Location ID where shopping point occurred				
group_size	How many people will be covered under the policy (1, 2, 3 or 4)				
homeowner	Whether the customer owns a home or not (o=no, 1=yes)				
car_age	Age of the customer's car				
car_value	How valuable was the customer's car when new				
risk_factor	An ordinal assessment of how risky the customer is (1, 2, 3, 4)				
age_oldest	Age of the oldest person in customer's group				
age_youngest	Age of the youngest person in customer's group				
married_couple	Does the customer group contain a married couple (o=no, 1=yes)				
C_previous	What the customer formerly had or currently has for product option C (o=nothing, 1, 2, 3,4)				
duration_previous	How long (in years) the customer was covered by their previous issuer				
A, B, C, D, E, F, G	The coverage options				
Cost	Cost of the quoted coverage options				

We are analyzing the data to build a model that will predict the coverage option B. B can have 2 options – o or 1

EXPLORATORY ANALYSIS

Overview of the dataset

```
> insurance<-read.csv("insurance.csv",header=TRUE)</p>
> str(insurance)
'data.frame': 665249 obs. of 25 variables:
$ customer_ID
                $ shopping_pt
               : int 1234567891...
$ record_type
               : int 0000000010...
$ day
               : int 0000000003...
$ time
               : Factor w/ 1204 levels "0:01", "0:09",...: 1120 1123 1123 1124 143 145 146 151 155 1141 ...
               : Factor w/ 36 levels "AL", "AR", "CO", ...: 11 11 11 11 11 11 11 11 12 ...
$ state
$ location
               : int 10001 10001 10001 10001 10001 10001 10001 10001 10001 10006 ...
$ group_size
               : int 222222221...
$ homeowner
               : int 00000000000...
$ car_age
              : int 2222222210 ...
              : Factor w/ 10 levels "", "a", "b", "c", ...: 8 8 8 8 8 8 8 8 8 6 ...
$ car_value
$ risk_factor
               : int 3 3 3 3 3 3 3 3 4 ...
$ age_oldest
              : int 46 46 46 46 46 46 46 46 46 28 ...
              : int 42 42 42 42 42 42 42 42 42 28 ...
$ age_youngest
$ married_couple : int 1 1 1 1 1 1 1 1 0 ...
$ C_previous
               : int 1111111113...
$ duration_previous: int 2 2 2 2 2 2 2 2 13 ...
$ A
                : int 1111111111...
$ B
                : int 0000000001...
$ C
                : int 222222223...
$ D
                : int 222222223...
$ E
                : int 1111111111...
$ F
                : int 222222220 ...
$ G
               : int 2111111112...
$ cost
                : int 633 630 630 630 630 638 638 638 634 755 ...
```

HANDLING MISSING VALUES

- Risk factor, C-previous and duration-previous had missing values in the dataset
- C-previous and duration-previous NA's were replaced with "o" assuming that the customer is currently not under coverage option "C".
- To impute the missing values of risk factor we built a regression model using those variables that has high correlations to the risk factor

DESCRIPTIVE ANALYSIS

FACTORS AFFECTING COVERAGE POLICY "B"

- Some of the characteristics of people who opt B policy belongs to
- State : SD,MT,ME,AR,NE
- Group-size: People with group size 4 tend to opt for policy B 53% of the time
- Car-age: People with older cars opt for the insurance coverage B

BASELINE MODEL

For coverage B, it can be seen that more number of customers opt for B=0 over B=1.

A baseline model that always predicts that customer will choose B=0 is taken

• This model gives an accuracy of 54.59% just by pure guessing. For other modelling to be effective, the accuracy of prediction should surpass the baseline accuracy.

```
> confusionMatrix(baselinemodel$B,train$B)
Confusion Matrix and Statistics
          Reference
Prediction
              Accuracy: 0.5459
                 95% CI: (0.5447, 0.5472)
    No Information Rate: 0.5459
    P-Value [Acc > NIR] : 0.5005
                  Kappa: 0
 Mcnemar's Test P-Value : <2e-16
            Sensitivity: 1.0000
            Specificity: 0.0000
         Pos Pred Value: 0.5459
         Neg Pred Value :
             Prevalence: 0.5459
         Detection Rate: 0.5459
   Detection Prevalence: 1.0000
      Balanced Accuracy: 0.5000
       'Positive' Class: 0
```

Modelling Techniques Logistic Model

- Taking into the factors that influence the purchase decision of the customer, we build models to do the prediction
- The dataset is initially split into training(75%) and test(25%) datasets
- A logistic model is built on the training dataset and it is validated using the test dataset
- We take the state, car-age and risk factors as these have greater influence on the purchase decisions of the customer

Logistic Regression Evaluation with Training Dataset

Logistic Regression Evaluation with Test Dataset

Decision tree model

- Decision Tree model is built on the Training data.
- It is evaluated with training and test dataset to compare the performance of model and accuracy.
- In a classification tree the predicted value is one of the possible levels of the response variable. i.e., either o or 1 for target variable B.

- The tree has 21 leaves.
- State is the first variable used to split, and it contains 504,494 observations

Decision Tree Evaluation with Training Dataset

```
Predicted
Actual 0 1
0 258607 91336
1 157524 133530

Error matrix for the Decision Tree model on train.csv [**train**] (proportions):

Predicted
Actual 0 1
0 258607 91336
1 157524 133530

Error matrix for the Decision Tree model on train.csv [**train**] (proportions):

Predicted
Actual 0 1 Error
0 0.40 0.14 0.26
1 0.25 0.21 0.54

Accuracy for Training Dataset is 61%

Overall error 39%, Averaged class error: 40%
```

Decision Tree Evaluation with Test Dataset

```
Predicted
Actual 0 1
0 9853 3273
1 5669 5457

Error matrix for the Decision Tree model on test.csv [**train**] (proportions):

Predicted
Actual 0 1
0 9853 3273
1 5669 5457

Error matrix for the Decision Tree model on test.csv [**train**] (proportions):

Predicted
Actual 0 1 Error
0 0.41 0.13 0.25
1 0.23 0.23 0.51

Accuracy for Training Dataset is 63%

Overall error 37%, Averaged class error: 38%
```

Random Forest to predict coverage option B

- Random forest builds hundreds of decision tress and select those ones with best accuracy.
- Number of Trees=100
 Number of Variables=3

Random Forest Evaluation with Training Dataset

Overall error=14.68%

Accuracy=85.32%

OOB estimate of error rate: 14.68% Confusion matrix:

0 1 class.error 0 314808 35135 0.1004021 1 58991 232063 0.2026806

Random Forest Evaluation with Test Dataset

Overall error=24.34%

Accuracy=75.66%

OOB estimate of error rate: 24.34% Confusion matrix:

0 1 class.error
0 10769 2357 0.1795673
1 3547 7579 0.3188028

MODEL EVALUATION

ROC curves for test data

An Receiver Operating Characteristics (ROC) chart plots the true positive rate against the false positive rate. The ROC has a form and interpretation similar to the risk chart, though it plots different measures on the axes.

Area under the curve is greatest for Random Forest out of the 3 models, hence it seems to be the best model

MODEL BASED ON DATA PATTERN

Majority of customers purchase the last quote viewed by them.

```
> # changed B from their last quote
> changedB <- ifelse(purchaseddata$B == lastquotedata$B, "No", "Yes")
> table(changedB)
changedB
   No Yes
90617 6392
> purchaseddata$changedB <- as.factor(changedB)
> lastquotedata$changedB <- as.factor(changedB)</pre>
```


The final quote correctly predicted the purchased options 50% to 75% of the time, with that percentage steadily increasing as customers review more quotes.

Model Evaluation with Dataset

```
> confusionMatrix(naivemodel$B,purchaseddata$B)
Confusion Matrix and Statistics
          Reference
Prediction
        0 48053 3621
        1 2771 42564
                                         Accuracy for the model=93.41%
              Accuracy: 0.9341
                 95% CI: (0.9325, 0.9357)
   No Information Rate: 0.5239
    P-Value [Acc > NIR] : < 2.2e-16
                 Kappa : 0.8678
 Mcnemar's Test P-Value : < 2.2e-16
            Sensitivity: 0.9455
            Specificity: 0.9216
        Pos Pred Value: 0.9299
        Neg Pred Value: 0.9389
            Prevalence: 0.5239
        Detection Rate: 0.4953
   Detection Prevalence: 0.5327
      Balanced Accuracy: 0.9335
       'Positive' Class: 0
```

CONCLUSION

Key Learnings:

- Customer demographics seem to have little effect on selection of purchased policy.
- The number of quotes received by a customer play a role in selection of purchased policy. Higher the number of quotes, more is the chances of selecting the last quoted policy.
- The last quoted policy has a strong impact on the outcome of the results. More than half of the time, it predicts the purchased policy correctly.

Results:

- Found a pattern in the dataset (I.e.) the last quote viewed by the customer is almost always purchased.
- Used the pattern to build the model. It had the highest predicting power over any other model.

Baseline Model		Logistic Regression		Decision Tree		Random Forest		Model based on	
								Data Pattern	
Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
54-59		60.33	60.06	61	63	85.32	75.66	93.41	

Business implementation:

Business can gain an insight into which option a customer is likely to end up choosing. They could nudge the customer toward that product (to increase their conversion rate), or towards a slightly more expensive product (in order to maximize their profit from that sale).