Last name _		
First name		

LARSON—MATH 610—CLASSROOM WORKSHEET 21 Linear Transformations.

Concepts & Notation

- (Sec. 3.1) linear transformation, range, rank, null space, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.
- (Sec. 3.3) isomorphism.
- (Sec. 3.4) matrix of T relative to (ordered) bases

Review

- 1. (Claim:) If V and W are finite-dimensional vector spaces over a field \mathbb{F} with dim $V = \dim W$, and $T: V \to W$ is a linear transformation then the following are equivalent:
 - (a) T is invertible,
 - (b) T is non-singular,
 - (c) T is onto (that is, the range of T is W).

New

2. If $T:V\to W$ is a linear transformation, when is T an isomorphism of V onto W? (If T is an isomorphism we say that vector spaces V and W are isomorphic).

3. If T an isomorphism of a vector space V onto a vector space W, why is T invertible and non-singular?

4. (Claim:) Eve	ery n -dimensional vector space over a field $\mathbb F$ is isomorphic to $\mathbb F^n$.
an m -dimension	ery linear transformation T from an n -dimensional vector space V to onal vector space W can be represented by a matrix A (with respect to for V and W ; in particular, different bases yield different A 's).