Théorie des ensembles

Fiche d'exercices n°1

Partie I: Définition d'ensembles (~20min)

Exercice I.1

Définir l'ensemble des entiers naturels strictements inférieurs à 5.

Exercice I.2

Définir l'ensemble des entiers relatifs divisibles par 3 de deux façons différentes.

Exercice I.3

Définir l'ensemble des nombres impaires strictements supérieurs à 3.

Exercice I.4

Définir l'ensemble des points du cercle $\mathcal C$ de centre $(a,b)\in\mathbb R^2$ et de rayon r.

Exercice I.5

Définir l'ensemble des points de tous les cercles dont l'aire est égale à 1.

Exercice I.6

Définir l'ensemble des points du disque ouvert $\mathcal D$ de centre $(a,b)\in\mathbb R^2$ et de rayon 2.

Partie II: Relations ensemblistes (~1h40)

Exercice II.1

Soient $A=\{1,2,3\}$ et $B=\{0,1,2,3\}$. Décrire les ensembles $A\cap B$, $A\cup B$ et $A\times B$.

Exercice II.2

Soient $A=\{0,2,4\}$ et $B=\{1,3,4,5\}$ dans le référentiel $E=\{0,1,2,3,4,5\}$. Déterminer les ensembles $\overline{A},\overline{B},A\cap B,\ A\cup B,\ A\setminus B,\ \mathcal{P}(A)$ et $A\times B$

Exercice II.3

Soient A=[1,3] et B=[2,4]. Déterminer les ensembles $A\cap B$ et $A\cup B$.

Exercice II.4

Déterminer le complémentaire dans $\mathbb R$ des ensembles suivants $A_1=]-\infty,0]$, $A_2=]-\infty,0[$, $A_3=]0,+\infty[$, $A_4=[0,+\infty[$, $A_5=]1,2[$, $A_6=[1,2[$

Exercice II.5 Soient $A=]-\infty,1[\cup]2,+\infty[$, $B=]-\infty,1[$ et $B=[2,+\infty[$. Comparer les ensembles \bar{A} et $\bar{B}\cap\bar{C}$

Exercice II.6

Soient $A=]-\infty,3]$, B=]-2,7] et $C=]-5,+\infty[$ trois parties de \mathbb{R} . Déterminer $A\cap B$, $A\cup B$, $B\cap C$, $B\cup C$, $\mathbb{R}\setminus A$, $A\setminus B$, $(\mathbb{R}\setminus A)\cap (\mathbb{R}\setminus B)$, $(\mathbb{R}\setminus A\cup B)$, $(A\cap B)\cup (A\cap C)$ et $A\cap (B\cup C)$

Exercice II.7

Soit $A=\{1,8,10\}$. Décrire $\mathcal{P}(A)$, l'ensemble des parties de A.

Exercice II.8

Soit $C_{red} = \llbracket 0; 2
rbracket, C_{green} = \llbracket 0; 2
rbracket, C_{blue} = \llbracket 0; 2
rbracket,$ Décrire $C_{red} imes C_{green} imes C_{blue}$.

Exercice II.9 (démo de cours)

Soient A, B et C trois parties d'un ensemble E. Montrer que

- $1. A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $2. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice II.10

- 1. Montrer que $(A \setminus B) \setminus C = A \setminus (B \cup C)$
- 2. Montrer que $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$

Exercice II.11

On donne la définition suivante $A\Delta B=(A\setminus B)\cup (B\setminus A)$

1. Montrer que

$$(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$$
$$(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$$

2. En déduire que

$$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$$

Partie III: Pour aller plus loin (~1h00)

Exercice III.1

Montrez les propriétés de cours suivantes:

$$(i)\ X\setminus (A\cap B)=(X\setminus A)\cup (X\setminus B)$$

$$(ii)\ X\setminus (A\cup B)=(X\setminus A)\cap (X\setminus B)$$

Exercice III.2

Soit E un ensemble et soit $\mathcal{P}(E)$ l'ensemble des parties de E. Pour A et B dans $\mathcal{P}(E)$, on appelle différence symétrique de A par B l'ensemble, noté $A\Delta B$ défini par : $A\Delta B=(A\cup B)\setminus(A\cap B)$

- 1. Montrer que $A\Delta B=(A\cap \overline{B})\cup (B\cap \overline{A})=(A\setminus B)\cup (B\setminus A).$
- 2. Calculer $A\Delta A$, $A\Delta \emptyset$ et $A\Delta E$.
- 3. Montrer que pour tous A, B et C dans $\mathcal{P}(E)$, on a :
 - a) Montrer que : $\overline{\left(A\cap\overline{B}\right)\cup\left(B\cap\overline{A}\right)}=\left(\overline{A}\cap\overline{B}\right)\cup\left(B\cap A\right)$
 - b) Montrer que:

$$(A\Delta B)\Delta C = (A\cap \overline{B}\cap \overline{C}) \cup (B\cap \overline{A}\cap \overline{C}) \cup (C\cap \overline{A}\cap \overline{B}) \cup (C\cap B\cap A)$$

- c) Montrer que $A\Delta(B\Delta C)=(C\Delta B)\Delta A$
- d) A l'aide du b), montrer que $(A\Delta B)\Delta C=(C\Delta B)\Delta A$
- e) En déduire que : $(A\Delta B)\Delta C = A\Delta (B\Delta C)$