Higher Category Theory Assignment 3

Matteo Durante

24th November 2020

Exercise 1

Proof. (1) Let $g \colon b \to b'$ be such that Gg is an isomorphism. Then there exists $f \colon Gb' \to Gb$ such that $Gg \cdot f = \mathrm{id}_{Gb'}$, $f \cdot Gg = \mathrm{id}_{Gb}$ and, since G is full, we have $g' \in \mathcal{D}(b',b) \cong \mathcal{C}(Gb',Gb)$ such that Gg' = f. Having $G(g \cdot g') = Gg \cdot Gg' = Gg \cdot f = \mathrm{id}_{Gb'}$, $G(g' \cdot g) = Gg' \cdot Gg = f \cdot Gg = \mathrm{id}_{Gb}$, by faithfullness $g \cdot g' = \mathrm{id}_{b'}$, $g' \cdot g = \mathrm{id}_{b}$.

- (2) We will refer to the diagram mentioned as $D: \mathcal{I} \to \mathcal{D}$ in order to distinguish it from the functor F defining the adjunction. Now, dualizing the proofs given in the solution of exercise 3 of the previous sheet, we see that the right adjoint G is fully faithful if and only if the natural transformation $\epsilon \colon FG \Rightarrow \mathrm{id}_{\mathcal{D}}$ induced by the adjunction is an isomorphism. Now, since left adjoints preserve colimits, taken the universal cocone $\lambda \colon GD \Rightarrow \mathrm{colim}_{\mathcal{I}} GD$ we get another one $F\lambda \colon FGD \Rightarrow F \mathrm{colim}_{\mathcal{I}} GD$. Composing with $\epsilon^{-1}D$, we get then a universal cocone $F\lambda \cdot \epsilon^{-1}D \colon D \Rightarrow F \mathrm{colim}_{\mathcal{I}} GD$, which exhibits $F \mathrm{colim}_{\mathcal{I}} GD \cong \mathrm{colim}_{\mathcal{I}} FGD$ as the colimit of D.
- (3) We may prove that (F, G, η, ϵ) defines a monadic adjunction, which will imply that G creates limits. By (2), \mathcal{D} admits coequalizers of G-split pairs and one has to prove that G preserves them. Also, by (1) we have conservativity, which allows us to apply Beck's theorem and conclude.

Exercise 2

Proof. (1) Notice that such an endofunctor ρ has to satisfy $\rho([n]) = [n]$. Consider σ_i^{n-1} . We know that it is the left inverse of δ_i^n and δ_{i-1}^n (if i > 0). From these considerations, we get that $\rho(\sigma_i^{n-1})$ has to be the left inverse of $\rho(\delta_i^n) = \delta_{n-i}^n$ and $\rho(\delta_{i-1}^n) = \delta_{n+1-i}^n$, which is enough to reconstruct it thanks to the injectivity of the right inverses and determine that it is precisely σ_{n-i-1}^{n-1} . This is enough to prove that, if such an endofunctor exists, then it is unique since these arrows generate Δ .

One verifies that all of these associations preserve the desired relations and, since Δ is obtained by taking the free category generated by these arrows and then quotienting by the aforementioned equations, we get that ρ does define an endofunctor $\Delta \to \Delta$, which

one can verify to be an involution as it defines one on the morphisms generating the category. It follows that it also defines an involution $\rho^* \colon \mathbf{sSet} \to \mathbf{sSet}$. Also, notice that the functor ρ is obtained simply by reversing the orderings of the elements of each [n], so it acts on the simplices by "inverting" the faces.

The isomorphism $\phi \colon N(\mathfrak{C})^{\mathrm{op}} \to N(\mathfrak{C}^{\mathrm{op}})$ is given by sending $f \colon \Delta^1 \to N(\mathfrak{C})^{\mathrm{op}}$ to $\rho^*(f)^{\mathrm{op}} \colon \Delta^1 \to N(\mathfrak{C}^{\mathrm{op}})$. Also, given a commutative triangle (f,g,h) exhibited by a 2-simplex $t \to N(\mathfrak{C})^{\mathrm{op}}$ in $N(\mathfrak{C})^{\mathrm{op}}$, we see that applying ρ^* turns it into another commutative triangle $(\rho^*(g), \rho^*(f), \rho^*(h))$ exhibited by $\rho^*(t)$. Looking at the description of ρ^* , we see that this actually corresponds to a commutative triangle in the category \mathfrak{C} and it returns our starting triangle (f,g,h) when we reapply ρ^* . But then, if $\rho^*(g) \cdot \rho^*(f) = \rho^*(h)$ in \mathfrak{C} , we get that $\rho^*(f)^{\mathrm{op}} \cdot \rho^*(g)^{\mathrm{op}} = \rho^*(h)^{\mathrm{op}}$ in $\mathfrak{C}^{\mathrm{op}}$. Similarly, $\rho^*(\mathrm{id}_x)^{\mathrm{op}} = \rho^*(s_0^0(x))^{\mathrm{op}} = s_0^0(\rho^*(x))^{\mathrm{op}} = \mathrm{id}_{\rho^*(x)}^{\mathrm{op}} = \mathrm{id}_x^{\mathrm{op}}$ and therefore our natural transformation is well defined. We still have to check that it is an isomorphism. To do this we show that $N(\mathfrak{C})^{\mathrm{op}}$ satisfies the Grothendieck-Segal condition and then we are done since the arrows are obtained by formally reversing the ones of $N(\mathfrak{C})$, while our natural transformation is just reversing them twice and therefore it is essentially an identity on maps.

$$\begin{array}{ccc} \mathbf{sSet}(\Delta^n,N(\mathfrak{C})^\mathrm{op}) & \longrightarrow \mathbf{sSet}(\Lambda^n_i,N(\mathfrak{C})^\mathrm{op}) \\ & & & \downarrow^{\rho^*} & & \downarrow^{\rho^*} \\ \mathbf{sSet}(\Delta^n,N(\mathfrak{C})) & \longrightarrow \mathbf{sSet}(\Lambda^n_{n-i},N(\mathfrak{C})) \end{array}$$

The vertical arrows and the bottom one in this commutative diagram are isomorphisms for all 0 < i < n, hence the top one has to be an isomorphism too.

(2) A similar proof applies to this case. Indeed, we may consider the commutative diagram

$$\mathbf{sSet}(\Delta^n, X^{\mathrm{op}}) \longrightarrow \mathbf{sSet}(\Lambda^n_i, X^{\mathrm{op}})$$

$$\downarrow^{\rho^*} \qquad \qquad \downarrow^{\rho^*}$$

$$\mathbf{sSet}(\Delta^n, X) \longrightarrow \mathbf{sSet}(\Lambda^n_{n-i}, X)$$

where the vertical arrows are isomorphisms and the bottom one is surjective for all 0 < i < n, which implies that the top one is surjective too.

Exercise 3

Proof. (i) It suffices to show that the functor $\mathbf{Cat}(-, \mathcal{C})$ is represented by \mathcal{C}^{\simeq} for each $\mathcal{C} \in \mathrm{Ob}(\mathbf{Cat})$. To this end, we note that for every $\mathcal{G} \in \mathbf{Gpd}$, any functor $F \colon \mathcal{G} \to \mathcal{C}$ factorizes uniquely through \mathcal{C}^{\simeq} , because F(f) is an isomorphism for any (iso-)morphism f in \mathcal{G} , and if F factorizes as

$$\mathfrak{G} \xrightarrow{F'} \mathfrak{C} \hookrightarrow \mathfrak{C}^{\simeq} \text{ and } \mathfrak{G} \xrightarrow{F''} \mathfrak{C} \hookrightarrow \mathfrak{C}^{\simeq}$$

then F' = F'' on objects while for any morphism f in \mathfrak{G} , F'(f) = F(f) = F''(f) (so F' = F''). This gives a bijection

$$\mathbf{Cat}(\mathfrak{G},\mathfrak{C}) \cong \mathbf{Gpd}(\mathfrak{G},\mathfrak{C}^{\simeq}).$$

To see the functoriality, take any $G \colon \mathcal{G} \to \mathcal{G}'$ in \mathbf{Gpd} . Then we have a commutative diagram

where $F, F \circ G$ factorize through $F', (F \circ G)'$ respectively. Note that $F' \circ G = (F \circ G)'$ since the composite $\mathcal{G} \xrightarrow{\mathcal{G}} \mathcal{G}' \xrightarrow{F'} \mathcal{C}^{\simeq} \hookrightarrow \mathcal{C}$ is $F \circ G$.

(ii) We claim that subgroupoids of EX are of the form

$$\coprod_{i \in I} EX_i$$

where $(X_i)_{i\in I}$ is a family of disjoint subsets of X. Indeed, such subcateories $\coprod_{i\in I} EX_i$ is a groupoid, and thus a subgroupoid of X. On the other hand, for any subgroupoid Y of X, we define I to be the set of isomorphism classes of objects in Y. Therefore $Y = \coprod_{i\in I} Ei$, which can be seen from the fact that $Ob(Y) = Ob(\coprod_{i\in I} Ei)$ and for any $x, y \in Ob(Y)$,

$$Y(x,y) = \coprod_{I} Ei(x,y) = \begin{cases} \emptyset & \text{if } x,y \text{ are not isomorphic} \\ \{(x,y)\} & \text{if } x,y \text{ are isomorphic} \end{cases}$$

- (iii) It is enough to show that for all small set X, the functor $\mathbf{Set}(\mathrm{Ob}(-), X)$ is represented by EX. To this end, for any map $F \colon \mathrm{Ob}(\mathcal{C}) \to X$, we define a functor \widetilde{F} by letting
 - $\widetilde{F}(x) = F(x)$ for any $x \in Ob(\mathfrak{C})$;
 - $\mathcal{C}(x,y) \to EX(Fx,Fy)$ is the constant map, sending each morphism $f\colon x\to y$ to (Fx,Fy).

and we get a bijection

$$\mathbf{Set}(\mathrm{Ob}(\mathfrak{C}),X) \to \mathbf{Cat}(\mathfrak{C},EX)$$

$$F \mapsto \widetilde{F}$$

$$\mathrm{Ob}(F) \longleftrightarrow F$$

(the verification of them being mutually inverse is straightforward).

As for the functoriality, take any functor $G: \mathcal{C} \to \mathcal{C}'$. Then the diagram

is commutative. Here $\widetilde{F} \circ G = F \circ \mathrm{Ob}(G)$ because they both equal to $F \circ \mathrm{Ob}(G)$ on objects and hence they are the same on morphisms (since the map between hom sets $\mathfrak{C}(x,y) \to EX(F(G(x)),F(G(y)))$ is the constant map).

(iv) Let us denote the functor sending X to its associated discrete category by Disc. We write $C: \mathcal{C} \to \mathbf{Set}$ for the constant functor sending each $X \mapsto *$. We will show that the functor $\mathbf{Cat}(\mathcal{C}, \mathsf{Disc}(-))$ is represented by $\pi_0(\mathcal{C})$ for all $\mathcal{C} \in \mathsf{Ob}(\mathbf{Cat})$. First of all, we define a map

$$\Phi \colon \operatorname{\mathbf{Set}}(\pi_0(\mathcal{C}),S) \to \operatorname{\mathbf{Cat}}(\mathcal{C},\operatorname{Disc}(S))$$

by letting for every $F : \pi_0(\mathcal{C}) \to S$

- $\mathrm{Ob}(\Phi(F))$: $\mathrm{Ob}(\mathfrak{C}) \to S, X \mapsto F \circ \iota_X(*),$ and
- $\bullet \ \, \mathcal{C}(X,Y) \to \mathsf{Disc}(S)(\Phi X,\Phi Y) \,\, \mathrm{be} \,\, \left\{ \begin{array}{ll} \varnothing, & \text{ if } \Phi X \neq \Phi Y \\ \{\mathrm{id}\}, & \text{ if } \Phi X = \Phi Y, \end{array} \right.$

where $\iota: C \to \pi_0(\mathcal{C})_{\mathcal{C}}$ is the coprojection.

Next we intend to define an inverse Ψ to Φ . For any functor $G: \mathcal{C} \to \mathsf{Disc}(S)$, note that G(X) = G(Y) if there is a morphism $X \to Y$ in \mathcal{C} . From this we get a cocone $C \to S_{\mathcal{C}}$ with $C(X) \to S$ sending $* \mapsto G(X)$, which defines a unique map $\mathsf{colim}_{\mathcal{C}} C \to S$ via the universal property of colimits and we denote it by $\Psi(G)$.

To see that Ψ and Φ are mutually inverse, we have

$$\Phi \circ \Psi(G)(X) = \Psi(G) \circ \iota_X(*) = G(X)$$

for all $X \in \text{Ob}(\mathcal{C})$ and $G \colon \mathcal{C} \to \text{Disc}(S)$, and

$$(\Psi \circ \Phi(F)) \circ \iota_X(*) = (\Psi(X \mapsto F \circ \iota_X(*))) \circ \iota_X(*) = F \circ \iota_X(*)$$

for all $X \in \text{Ob}(\mathcal{C})$ and $F \colon \pi_0(\mathcal{C}) \to S$. Therefore $\Psi \circ \Phi = \text{id}$. Also, since the target of $\Phi \circ \Psi(G)$ is $\mathsf{Disc}(S)$, in which the hom sets are either \emptyset or id, we have $\Phi \circ \Psi = \text{id}$.

As for the functoriality, one has the following commutative diagram

$$\begin{split} \mathbf{Set}(\pi_0(\mathcal{C}),S) & \stackrel{\sim}{=\!\!\!=\!\!\!=} \mathbf{Cat}(\mathcal{C},\mathsf{Disc}(S)) & F \longmapsto \Phi(F) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \mathbf{Set}(\pi_0(\mathcal{C}),S') & \stackrel{\sim}{=\!\!\!=} \mathbf{Cat}(\mathcal{C},\mathsf{Disc}(S')) & s \circ F \mapsto \Phi(s \circ F) == \mathsf{Disc}(s) \circ \Phi(F) \end{split}$$

for any map $s \colon S \to S'$ of sets. Here the equality is because

$$\Phi(s \circ F)(X) = (s \circ F) \circ \iota_X(*)$$

and

$$\mathsf{Disc}(s) \circ \Phi(F)(X) = s \circ \mathsf{Ob}(\Phi(F))(X) = s \circ (F \circ \iota_X(*))$$

for all $X \in Ob(\mathcal{C})$.

(v) For a groupoid \mathfrak{G} , $\pi_0(\mathfrak{G})$ is the set of isomorphism classes of \mathfrak{G} . This can be seen by verifying the universal property of colimits. For the moment we denote by $\pi'_0(\mathfrak{G})$ the set of isomorphism classes. Define the coprojections $\iota_X \colon C(X) \to \pi'_0(\mathfrak{G})$ by sending $* \mapsto [X]$ (the isomorphism class of $X \in \mathrm{Ob}(\mathfrak{G})$). Suppose that we have a cocone $F \colon C \to S_{\mathfrak{G}}$ for some small set S. Then we can define a map

$$f \colon \pi'_0(\mathfrak{G}) \to S$$

by $[X] \mapsto F_X(*)$. This is well-defined, since $F_X = F_Y \circ \mathrm{id}_*$ whenever $X \cong Y$. Such f is unique, since if there is another $f' \colon \pi'_0(\mathfrak{G}) \to S$, then

$$f'([X]) = f' \circ \iota_X(*) = F_X(*) = f \circ \iota_X(*) = f([X])$$

for all $X \in \text{Ob}(\mathfrak{G})$. This shows $\pi'_0(\mathfrak{G}) \cong \pi_0(\mathfrak{G})$.