Geometric Shapes: Solid Objects

Module 3 Lecture 6

CZ2003

Learning Objectives

- To understand how solids can be used in solving data visualization problems
- To understand solids as objects with 3 degree of freedom
- To understand what mathematical representations are the most efficient for defining and displaying solids
- To understand how different coordinate systems can be used together for deriving mathematical representations of solids
- To understand solids as objects created by moving surfaces
- To understand how complex solids can be created from combinations of other solids

Geometric Shapes

- · Geometry has no color and texture
- Points
- Curves
- Surfaces
- · Solid objects

CZ2003

Geometric Shapes

- · Geometry has no color and texture
- Points 0 degree of freedom shape
- Curves 1 degree of freedom shape
- · Surfaces 2 degree of freedom shape
- Solid objects 3 degree of freedom shape
- 2 and 3 dimensional spaces
- · Time is yet another dimension
- Displayed as pixels, voxels, polylines, and shaded polygons

Z2003 CZ2001

Solid Objects

- · Voxels (volume elements)
- Parametric representation
- · Explicit (variant of implicit) representation

CZ2003

Solid Objects

- Voxels (volume elements)
- Parametric representation
- Explicit (variant of implicit) representation

Voxels

 Voxel (volumetric pixel or Volumetric Picture Element) is a volume element, representing a value on a regular grid in three dimensional space.

C72003

Using Parametric Functions for Defining Solid Objects

• Let's add one more degree of freedom which is an additional parameter

Circular Disk. Parametric Representation

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$

$$r = [0, R], \theta = [0, 2\pi]$$

Two parameters to define a 2D disk!

CZ2003

Elliptical Disk. Parametric Representation

$$x=a *k *cos(\theta)$$

 $y=b *k *sin(\theta)$ $k = [0, 1], \theta = [0, 2\pi]$

Two parameters to define an elliptical disk!

CZ2003

Solid Sphere

Parametric

$$x = r\cos\varphi\sin\theta$$

$$y = r \sin \varphi$$

 $z = r \cos \varphi \cos \theta$

$$-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$$
$$-\pi \le \theta \le \pi$$
$$0 \le r \le R$$

Three parameters!

• Parametric

Solid Ellipsoid

Three parameters!

Parametrically-defined Solid Box

22003

Parametrically-defined Solid Cylinder

Parametrically-defined Solid Box

CZ200

Parametrically-defined Solid Cone

 $cone_radius(\tau) = radius + \tau(0 - radius) = radius(1 - \tau), \tau = [0,1]$

Solid Sweeping

- Shapes are created by moving curve, surface or solid along some path
- Sweeping of curves generates surfaces, sweeping of surfaces produces solids, sweeping of solids creates solids
- Two particular cases of sweeping-translational and rotational sweeping--can be easily defined parametrically

CZ2003

Parametric Representation of Translational Sweeping. Solid Cylinder.

Translational and Rotational Sweeping

CZ2003

Parametric Representation of Rotational Sweeping.
Solid Sphere.

Parametric Representation of Rotational Sweeping. Solid Cone

CZ2003

Parametric Representation of Rotational Sweeping. Solid Anything

C72003

Experimenting with Sweeping

Experimenting with Sweeping

$$x = u$$

$$y = w * u \cos v$$

$$z = w * u \sin v$$

$$0 \le u \le 1$$

$$0 \le v \le 2\pi$$

$$0 \le w \le 1$$

Rotational sweeping

Experimenting with Sweeping

Experimenting with Sweeping

Experimenting with Sweeping

x= -1 + 2*u y= 2*w z= -1 + 2*v u=[0,1], v=[0,1], w=[0,1]

Experimenting with Sweeping

CZ2003

Experimenting with Sweeping

```
x= (0.1^*v^*\cos(u^*2^*\pi) + 0.7 + 0.3^*w) * \sin(w^*6^*\pi + \pi/2)
y= 0.1^*v^*\sin(u^*2^*\pi) + 1^*w
z= (0.1^*v^*\cos(u^*2^*\pi) + 0.7 + 0.3^*w) * \cos(w^*6^*\pi + \pi/2)
u=[0,1], v=[0,1], w=[0,1]
```


Experimenting with Sweeping

C72003

Experimenting with Sweeping

Experimenting with Sweeping

 $\begin{aligned} & x = (0.1^*v^*cos(u^*2^*\pi) + 0.7) * sin(w^*6^*\pi) \\ & y = 0.1^*v^*sin(u^*2^*\pi) + 1^*w \\ & z = (0.1^*v^*cos(u^*2^*\pi) + 0.7) * cos(w^*6^*\pi) \\ & u = [0,1], \ v = [0,1], \ w = [0,1] \end{aligned}$

Experimenting with Sweeping

```
 \begin{array}{l} x = (0.1^* v^* cos(u^* 2^* \pi) + 0.7) * sin(w^* 6^* \pi + \pi/2) \\ y = 0.1^* v^* sin(u^* 2^* \pi) + 1^* w \\ z = (0.1^* v^* cos(u^* 2^* \pi) + 0.7) * cos(w^* 6^* \pi + \pi/2) \\ u = [0,1], v = [0,1], w = [0,1] \end{array}
```


CZ2003

Summary

Solid objects can be defined by

- Sets of voxels
- Parametric Representation with 3 parameters

Experimenting with Sweeping

 $\begin{aligned} & \mathsf{x} = (0.1^* \mathsf{v}^* \mathsf{cos}(\mathsf{u}^* 2^* \pi) + 0.7 + 0.3^* \mathsf{w}) * \mathsf{sin}(\mathsf{w}^* 6^* \pi + \pi / 2) \\ & \mathsf{y} = 0.1^* \mathsf{v}^* \mathsf{sin}(\mathsf{u}^* 2^* \pi) + 1^* \mathsf{w} \\ & \mathsf{z} = (0.1^* \mathsf{v}^* \mathsf{cos}(\mathsf{u}^* 2^* \pi) + 0.7 + 0.3^* \mathsf{w}) * \mathsf{cos}(\mathsf{w}^* 6^* \pi + \pi / 2) \\ & \mathsf{u} = [0,1], \ \mathsf{v} = [0,1], \ \mathsf{w} = [0,1] \end{aligned}$

Z2003