Chapter 15 — Precipitation Equilibrium

Michael Brodskiy

Instructor: Mr. Morgan

March 24, 2021

- Example Decomposition: $NaCl(s) \rightleftharpoons Na^+(s) + Cl^-(s)$
 - 1. $K_{sp} = [Na^+][Cl^-]$
- Solutions can only hold a set number of ions, over that solid forms
- Ion Product (P) Concentration not necessarily at equilibrium
 - 1. $P > K_{sp}$ then there is solid
 - 2. $P < K_{sp}$ then there is no solid
 - 3. $P = K_{sp}$ then there is no solid and it is at equilibrium
- Water Solubility How much can dissolve
 - 1. Example: Fe(OH)₂ has a solution of $2.5 \cdot 10^{-5} [\rm M]$

$$K_{sp} = [\text{Fe}] [\text{OH}]^2$$

= $(2.5 \cdot 10^{-5}) (2.5 \cdot 10^{-5})^2$
= $1.56 \cdot 10^{-14}$

2. Example: 1[g] CaF₂ $(K_{sp} = 1.5 \cdot 10^{-10})$ is dissolved in 1[L] of water at 80[° C]. Calculate the mass precipitation at 25[° C]

$$CaF_2 \rightleftharpoons Ca^{2+} + 2 F^-$$

$$K_{sp} = [Ca^{2+}] [F^-]^2$$

$$1.5 \cdot 10^{-10} = (x) (2x)^2$$

$$x = .000347 [M]$$

$$.000347 \cdot 78 = .974[g] \text{ not dissolved}$$

$$1 - .974 = .026[g] \text{ dissolved}$$

- Common Ion Effect Dissolving an ionic compound in water that already has that ion in it (e.g. dissolving $CaCO_3$ in Na_2CO_3 carbonate, CO_3^{2-} , is the common ion)
 - 1. Ionic solids are less soluble in a solution with a common ion
 - 2. Example: Calculate solubility of CaCO₃ ($K_{sp}=5\cdot 10^{-9}$) in pure water and in a .1[M] solution of Fe(CO₃)₂
 - (a) Pure:

$$5 \cdot 10^{-9} = (x)(x)$$
$$x = 7.07 \cdot 10^{-5} [M]$$

(b) $.1[M]Fe(CO_3)_2$

$$5 \cdot 10^{-9} = (x)((.1)(2))$$
$$x = 2.5 \cdot 10^{-8} [M]$$