实验四: 模拟信号的数字化及编码

一、实验目的

- 1. 掌握低通信号的抽样及重建过程;
- 2. 掌握 PCM 的编码及译码过程;
- 3. 掌握汉明码的编码及译码过程;
- 4. 掌握卷积码的编码及译码过程。

二、实验原理

1. 低通信号的抽样定理

对于带宽受限的信号,抽样定理表明,采用一定速率的抽样后可以由抽样序列无失真地重建恢复原始信号。抽样的过程是将输入的模拟信号与抽样信号相乘而得,通常抽样信号是一个周期为T的周期脉冲信号,抽样后得到的信号称为抽样序列。理想抽样信号定义如下:

$$\delta_T(t) = \sum_n p(t - nT_s),$$

其中 $p(t) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0 \end{cases}$, $f_s = \frac{1}{T_s}$ 称为抽样速率。因此抽样后的信号为:

$$x_{s}(t) = x(t)\delta_{T}(t) = \sum_{k=-\infty}^{\infty} x(kT_{s}) p(t-kT_{s})$$

一个频带为 $[0, f_H]$ 的低通信号x(t),可以无失真地被抽样速率 $f_s \ge 2f_H$ 的抽样序列所恢复,即:

$$x(t) = \frac{\sin 2\pi f_H t}{2\pi f_H t} * \sum_{k=-\infty}^{\infty} x(kT_s) \delta_T(t - kT_s) = \sum_{k=-\infty}^{\infty} x(kT_s) \frac{\sin 2\pi f_H(t - kT_s)}{2\pi f_H(t - kT_s)},$$

其中*代表卷积运算。

2. PCM 编码及译码

对模拟信号进行抽样、量化,将量化后的信号电平值变换为二进制码组的过程称为编码, 其逆过程称为译码。

A 律对数压缩特性:

$$f(x) = \begin{cases} \frac{Ax}{1 + \ln A} & 0 \le x \le \frac{1}{A} \\ \frac{1 + \ln Ax}{1 + \ln A} & \frac{1}{A} \le x \le 1 \end{cases}$$

实际应用中采用 13 折线近似 A 律压缩特性。输入的信号经过抽样、量化后,每个抽样值编码成 8 个比特的二进制码组。量化时,A 律中的每个区间又被均匀量化成 16 个量化电平,其编码规则为:

$$b_0 \quad b_1 b_2 b_3 \quad b_4 b_5 b_6 b_7$$

其中:

- b_0 为极性码, $b_0=0$ 时对应输入为负, $b_0=1$ 时对应输入为正;
- b₁b₂b₂ 为段落码,对应8个区间;
- $b_4b_5b_6b_7$ 为段内码,对应 16 个量化电平值。

A 律的国际标准 PCM 编码表如下所示。(注意,这里的编码表与教材中的编码表略有不同,教材中量化级间隔为 $\Delta^* = \frac{1}{128} \times \frac{1}{16} = \frac{1}{2048}$,段内量化间隔分别为 1,1,2,4,8,16,32,

64。此时如果令 $\Delta = \frac{1}{2}\Delta^*$,同时段内量化间隔变为 2 倍,则会变为下表所示的情形。)

A 律 PCM 编码,单位: $\Delta = \frac{1}{4096}$

	1	<u> </u>	T		T
段落编码	区间范围/ ▲	量化间隔/ ▲	量化区间/ ▲	量化输出/▲	PCM 编码
000	[0, 32)	2	[0, 2)	1	1 000 0000
			[2, 4)	3	1 000 0001
			[4, 6)	5	1 000 0010
				•••	
			[30, 32)	31	1 000 1111
001	[32, 64)	2	[32, 34)	33	1 001 0000
			[34, 36)	35	1 001 0001
			[36, 38)	37	1 001 0010
			[62, 64)	63	1 001 1111
010	[64, 128)	4	[64, 68)	66	1 010 0000
			[68, 72)	70	1 010 0001
			[72, 76)	74	1 010 0010
			[124, 128)	126	1 010 1111
011	[128, 256)	8	[128, 136)	132	1 011 0000
			[136, 144)	140	1 011 0001
			[144, 152)	148	1 011 0010
			[248, 256)	252	1 011 1111
100	[256, 512)	16	[256, 272)	264	1 100 0000
			[272, 288)	280	1 100 0001
			[288, 304)	296	1 100 0010
			[496, 512)	504	1 100 1111
101			[512, 544)	528	1 101 0000
			[544, 576)	560	1 101 0001
	[512, 1024)	32	[576, 608)	592	1 101 0010
			[992, 1024)	1008	1 101 1111
110	[1024, 2048)	64	[1024, 1088)	1056	1 110 0000
			[1088, 1152)	1120	1 110 0001
			[1152, 1216)	1184	1 110 0010
			[1984, 2048)	2016	1 110 1111
111	[2048, 4096)	128	[2048, 2176)	2112	1 111 0000
			[2176, 2304)	2240	1 111 0001
			[2304, 2432)	2368	1 111 0010
					1

译码是编码的逆过程。译码的作用是把接收到的 PCM 信号还原成量化后的原样值信号。例如,设译码器输入的 PCM 码字(除极性码外)为"111 0011",表示样值位于第 8 段落的序号为 3 的量化间隔内。因此,其对应的译码电平应该在此间隔的中间,以便减小最大误码误差(详见教材 P300)。

3. 汉明码编码及译码

汉明码具有的共同特性是: $(n,k) = (2^m - 1, 2^m - 1 - m)$ 。 式中, m 是大于等于 3 的正整数例如, m = 3 时,有(7,4)汉明码。MATLAB 提供了生成汉明码的函数 hammgen,以及用汉明码进行编码译码的 encode 和 decode 函数。

(1) h=hammgen (m):

产生一个 $m \times n$ 的汉明校验矩阵h,其中, $n = 2^m - 1$ 。需要注意的是,产生的校验矩阵的形式h = [IP], $I = m \times m$ 的单位矩阵。

(2) [h.g]=hammgen(m):

产生一个 $m \times n$ 的汉明校验矩阵h 和 h 相对应的生成矩阵g, 其中, $n = 2^m - 1$ 。

 $h = [\mathbf{I} \ \mathbf{P}]$, $\mathbf{I} \ge m \times m$ 的单位矩阵。而 $g = [\mathbf{P} \ \mathbf{I}]$,其中, $\mathbf{I} \ge (n-m) \times (n-m)$ 的单位矩阵,这与前面讨论的生成的矩阵形式不同。

- (3) code = encode (msg, n, k, 'type/fmt')或 code=encode (msg, n, k): code=encode (msg, n, k, 'type/fmt')可以进行一般的线性分组编码、循环编码和Hamming 编码。所选用的编码方式由 type 指定。它的值可以是 linear、cyclic 或hamming,分别对应上面提到的 3 种编码方式, fmt 参数取值可以是 binary 或 decimal,分别用来说明输入待编码数据是二进制还是十进制。当使用 code=encode (msg, nk)时,默认的是使用 Hamming 编码。
- (4) msg=decode(code, n, k, 'type/fmt') 或 msg=decode(code, n, k): msg=decode(code, n, k, 'type/fmt')用来对编码数据进行译码,其 type/fmt 的取值与encode 函数的 type/fmt 的取值相对应。当使用 msg=decode(code, n, k)时,默认的是对Hamming 编码程进行译码。

4. 卷积码编码及译码

MATLAB 提供了卷积码的函数编码 convenc 和相应的 Viterbi 译码函数 vitdec。卷积码的编码函数主要有以下四个:

(1) code=convenc (msg, trellis):

完成输入信号 msg 的卷积编码,其中 trellis 代表编码多项式,但其必须是 MATLAB 的网格结果,需要利用 poly2trellis 函数将多项式转化为网格表达式。msg 的比特数必须为 log2(trellis.numInputSymbols)。

(2) code=convenc(msg, trellis, puncpat):

作用与 1 类似,其中 puncpat 定义凿孔模式。

(3) code=convenc(msg, trellis, ...init state):

init state 指定编码寄存器的初始状态。

(4) decoded=vitdec(code, trellis, tblen, opmode, dectype):

对码字 code 进行 Viterbi 译码。trellis 表示产生码字的卷积编码器,tblen 表示回

溯的深度,opmode 指明译码器的操作模式,dectype 则给出译码器判决的类型,如软判决和硬判决。

三、实验内容

- 1. 设低通信号 $x(t) = \cos 0.15\pi t + \sin 2.5\pi t + \cos 4\pi t$ 。
- (1) 画出该低通信号的波形;
- (2) 画出抽样速率为 $f_s = 4$ Hz 的抽样序列;
- (3) 画出抽样序列恢复出的原始信号。
- 2. 设输入信号为 $x(t) = A_c \sin 2\pi t$ 对x(t)信号进行抽样、量化和 A 律 PCM 编码,经过传输后,接收端进行 PCM 译码,过载电平v=1V。
 - (1) 画出经过 PCM 编码、译码后的波形与未编码波形的对比图;
- (2)设信道没有误码,画出不同幅度 A_c 情况下($A_c^2/A_0^2 = -70 \sim 0$ dB, $A_0 = 1V$),PCM 译码后的量化信噪比。此时仿真框图可以表示为:

仿真中噪声功率可以用 $mean((x-y).^2)$ 来计算,其中 x 表示信号的抽样值序列,y 表示量化信号值序列。

- 3. 设消息比特个数为 1000000, 仿真进行(7,4) 汉明编码的 QPSK 调制通过 AWGN 信道后的 误比特率性能,信噪比范围为 0 dB 到 10 dB。
- 4. 设消息比特个数为 1000000, 仿真 BPSK 调制在 AWGN 信道下使用卷积码的误比特率性能, 信噪比范围为 0dB 到 10dB, 其中卷积码约束长度为 7, 生成多项式为[171,133], 码率为二分之一,译码分别采用硬判决译码和软判决译码。

四、实验要求

1. 每次完成实验后按要求完成实验报告,实验报告格式如下:

- 一、实验目的 二、实验内容 三、实验程序(标明代码注释) 四、实验结果(图形添加标题) 五、实验分析(分析现象及原因)
- 2. 实验报告满分 5 分,最终实验成绩根据报告内容进行评定,请注意逾期提交报告或报告格式不符合要求都将影响最终实验成绩。
- 3. 请于 12 月 24 日晚 12: 00 前提交实验报告至邮箱: zy2002424@buaa.edu.cn, 命名格式为: "学号+姓名+第 X 次实验报告"。