

State of Art

Artificial neural network is computational model that is inspired by the structure and function of biological neural networks.

Usage:

- Classification
- Regression analysis
- Prediction
- Data processing
- Control

Drawback:

•Time consuming learning process

Neural Network

Parallelization of Algorithm

- Neuron parallelization
- Layer parallelization
- Dataset parallelization
- Parallel atomic operations

CUDA Technology

Kernel <<<dim3 GridDimensions, dim3 BlockDimensions>>> (A, B, C);

Implementation

Epoch

Key Aspects of Implementation

- Batch backpropagation algorithm
- Robust approach with variable stepping size
- Parallel operations on matrix data structures

Execution

Nvidia Tesla C2050

Processor clock rate	1.15 GHz
Number of processor cores	448
Maximum block dimensions	(1024, 1024, 64)
Maximum grid dimensions	(65535, 65535, 1)
Warp size	32
Compute capability	2.0

Network configuration

Network configuration	784-25-15-10
Initial learning rate	0.5
Momentum	0.7
Desired error	0.04

Dataset

Number of patterns	10 000
Number of input values	784
Number of output values	10
Value range	(01)

Performance Results

Comparison of FANN sequential algorithm and CUDA parallel algorithm after 256 training epochs

Average total time (s)

Average epoch time (ms)

