Dual Induction CLT for High-dimensional m-dependent Data

Heejong Bong ¹ Arun Kumar Kuchibhotla ² Alessandro Rinaldo ³

¹ Department of Statistics, University of Michigan

² Department of Statistics & Data Science, Carnegie Mellon University

Central Limit Theorem (CLT)

If $X_1, ..., X_n$ are independent random variables with $\mathbb{E}[X_i] = 0$ and $\text{Var}[X_i] = \sigma_i^2$, then for large enough n,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i \approx \frac{1}{\sqrt{n}}\sum_{i=1}^n Y_i,$$

where Y_i are independent $N(0,\sigma_i^2)$ random variables.

- CLT provides reference distributions for data summaries under minimal assumptions.
- Finite-sample error bounds for the Gaussian approximation is presented by Berry-Esseen bounds.

Berry-Esseen Bound

• The desired rate is $n^{-1/2}$ based on univariate cases:

$$\mu_{\mathcal{A}}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} Y_{i}\right) \equiv \sup_{A \in \mathcal{A}} \left| \mathbb{P}\left[\sum_{i=1}^{n} X_{i} \in A\right] - \mathbb{P}\left[\sum_{i=1}^{n} Y_{i} \in A\right] \right|$$

$$\leq C \frac{1}{\sqrt{\mathbf{n}}} \frac{\bar{\nu}_{3}}{\bar{\sigma}^{3}},$$

where $\mathscr{A} \equiv \{(-\infty, r] : r \in \mathbb{R}\}, \ \bar{\nu}_3 \equiv \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i^3] \text{ and } \bar{\sigma}^2 \equiv \frac{1}{n} \sum_{i=1}^n \sigma_i^2.$

• In high-dim. settings, [1]'s work on d-dim. hyper-rectangles (\mathcal{R}_d) drew huge attention for its surprisingly efficient polylogarithmic term on d despite suboptimal $n^{-1/8}$ rate:

$$\mu_{\mathcal{R}_d}\left(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i\right) \leq C\left(\frac{\log^7(\mathrm{dn})}{n}\right)^{1/8}.$$

- Recently, [2, 3] established the optimal $n^{-1/2}$ rate up to log terms, assuming non-degenerate covariance and finite third/fourth moments.
- Similar attempts under m-dependence (see Settings) have obtained $n^{-1/6}$ at best [4].
- Our contribution: the first $n^{-1/2}$ rate high-dimensional Berry-Esseen bound under m-dependence.

Settings

• m-dependence: for a positive integer m,

 $X_i \perp \!\!\! \perp X_j$ for i and j such that $i - j \geq m$.

• nondegenerate covariance: for some σ_{\min} , $\underline{\sigma} > 0$ and any interval $I \subseteq [n]$,

$$\min_{k \in [p]} \operatorname{Var} \left[\sum_{i \in I} Y_i(k) \right] \ge \sigma_{\min}^2 \cdot I \quad \text{and}$$

$$\lambda_{\min} \left(\operatorname{Var} \left[\sum_{i \in I} Y_i \ Y_j : j \in I^C \right] \right) \ge \underline{\sigma}^2 \cdot \max\{ \ I - 2m, 0 \}.$$

• finite *q*-th moment:

$$\bar{L}_q \equiv \frac{1}{n} \sum_{i=1}^n L_{q,i} \text{ and } \bar{\nu}_q = \frac{1}{n} \sum_{i=1}^n \nu_{q,i}.$$

where $L_{q,i} \equiv \max_{k=1,...,d} \mathbb{E}[X_i(k)]^q$ and $\nu_{q,i} \equiv \mathbb{E}[\|X_i\|_{\infty}^q]$, i=1,...,n.

Main Results

Under the aforementioned assumptions, if $q \ge 3$,

$$\mu_{\mathcal{R}_d} \left(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i \right)$$

$$\leq \frac{C \log(n/m)}{\sigma_{\min}} \sqrt{\frac{\log(dn/m)}{n}} \left[(m+1)^2 \frac{\bar{L}_3}{\underline{\sigma}^2} \log^2(d) + \left((m+1)^{q-1} \frac{\bar{\nu}_q}{\underline{\sigma}^2} \right)^{1/(q-2)} \log^{1\vee 2/(q-2)}(d) \right]$$

for some universal constant C > 0. If $q \ge 4$,

$$\mu_{\mathcal{R}_{d}}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} Y_{i}\right)$$

$$\leq \frac{C \log(n/m)}{\sigma_{\min}} \sqrt{\frac{\log(dn/m)}{n}}$$

$$\times \left[(m+1)^{2} \frac{\bar{L}_{3}}{\underline{\sigma}^{2}} \log^{3/2}(d) + (m+1)^{3/2} \frac{\bar{L}_{4}^{1/2}}{\underline{\sigma}} \log(d) + \left((m+1)^{q-1} \frac{\bar{\nu}_{q}}{\underline{\sigma}^{2}}\right)^{1/(q-2)} \log(d) \right]$$

for some universal constant C > 0.

- We used the relationship between the Kolmogorov-Smirnov distance and anti-concentration inequalities.
- Newly developed dual-induction argument established the $n^{-1/2}$ rate.

Comparisons to Existing Results

• high-dim independent cases (i.e., m = 0)

		our result	[3]
minimum eigenvalue		of every $Var[X_i]$	of $\frac{1}{n} \sum_{i=1}^{n} \text{Var}[X_i]$
moment term		$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\ X_i\ _{\infty}^3]$	$\max_{i=1,\ldots,n} \mathbb{E}[\ X_i\ _{\infty}^4]$
sample complexity		$\frac{1}{\sqrt{n}}$ up to logarithmic factors	
dimension complexity	bounded a.s.	$\log^4(d) = o(n)$	$\log^3(d) = o(n)$
	sub-Gaussian	$\log^4(d) = o(n)$	$\log^4(d) = o(n)$
	sub-exponential	$\log^5(d) = o(n)$	$\log^5(d) = o(n)$
	sub-Weibull(α)	$\log^{3+2/\alpha}(d) = o(n)$	$\log^{3+2/\alpha}(d) = o(n)$

- 1-dim m-dependent cases, vs. [5]:
 - same optimal dependence on m

Discussions

- Applications to inference on high-dimensional time-series data
- Extension to weaker dependence structure
- Extension to graph dependence structure

References

Bong, H., Kuchibhotla, A. K., & Rinaldo, A. (2022). High-dimensional Berry-Esseen Bound for *m*-dependent Random Samples. *arXiv preprint arXiv:2212.05355*.

Bong, H., Kuchibhotla, A. K., & Rinaldo, A. (2023). Dual Induction CLT for High-dimensional m-dependent Data. arXiv preprint arXiv:2306.14299.

[1] Chernozhukov, V., Chetverikov, D., & Kato, K. (2013). Gaussian Approximations and Multiplier Bootstrap for Maxima of Sums of High-dimensional Random Vectors. *The Annals of Statistics*, 41(6), 2786-2819.

[2] Kuchibhotla, A. K., & Rinaldo, A. (2020). High-dimensional CLT for Sums of Non-degenerate Random Vectors: $n^{-1/2}$ -rate. arXiv preprint arXiv:2009.13673.

[3] Chernozhukov, V., Chetverikov, D., & Koike, Y. (2023). Nearly optimal central limit theorem and bootstrap approximations in high dimensions. *The Annals of Applied Probability*, 33(3), 2374-2425.

[4] Chang, J., Chen, X., & Wu, M. (2021). Central limit theorems for high dimensional dependent data. arXiv preprint arXiv:2104.12929.

[5] Shergin, V. V. (1980). On the convergence rate in the central limit theorem for m-dependent random variables. *Theory of Probability & Its Applications*, 24(4), 782-796.

³ Department of Statistics & Data Sciences, The University of Texas at Austin