

# Linguagens Formais e Autômatos

Prof. Alex Luciano Roesler Rese, MSc.

Adaptado: Rafael de Santiago, Dr.



#### Minimização de Autômato Finito

- Objetivo é gerar o autômato com menor número de estados possível;
- Consiste basicamente em unificar estados equivalentes;
- O autômato mínimo (AM) é único (salvo casos de isomorfismo);
- Definição formal:
- O AM =  $(\Sigma, Q, \alpha, q0, F)$  de uma Linguagem L é tal que para qualquer outro AFD M' =  $(\Sigma, Q', \alpha', q0', F')$  que aceita L tem-se que #Q' >= #Q







#### Requisitos da Minimização

- O Autômato deve ser determinístico;
- Não pode ter estados inacessíveis;
- A função de transição deve ser uma função total, ou seja, deve estar definida para todos os símbolos do alfabeto em todos os estados;
  - Para isso cria-se um estado não final e adicionam-se transições para este estado para todos os símbolos não previstos do alfabeto







#### Estados Inacessíveis

Não são atingíveis a partir do estado inicial.



$$\Sigma = \{0, 1\}$$







## Função de Transição Total

Todos os símbolos devem ter transições em todos os estados.

$$\Sigma = \{0, 1\}$$









### Função de Transição Total

Todos os símbolos devem ter transições em todos os estados.



$$\Sigma = \{0, 1\}$$

Cria-se um estado não final para os símbolos não previstos.







#### Algoritmo de Minimização

- Passo 1 Construir uma tabela formando pares de estados não repetidos.
- Passo 2 Marcar todos os pares trivialmente não equivalentes (pares {finais, não finais})
- Passo 3 Marcar estados não equivalentes
- Passo 4 Unificar estados equivalentes
- Passo 5 Excluir estados inúteis (Estados que nunca levam a um estado final)







#### Marcar Estados Não Equivalentes

- Para cada par de estados  $\{qu, qv\}$  não marcado, e para cada símbolo a do alfabeto, suponha que  $\alpha(qu, a)$ =Pu e  $\alpha(qv, a)$  = Pv
  - Se Pu = Pv o par não deve ser marcado (podem ser equivalentes)
  - Se Pu != Pv e o par {Pu, Pv} não está marcado então {qu, qv} é incluído em uma lista iniciada em {Pu, Pv}
  - Se Pu != Pv e o par {Pu, Pv} está marcado então:
    - {qu, qv} deve ser marcado (não são equivalentes);
    - Se {qu, qv} inicia uma lista, marcar todos os pares da lista (e, recursivamente se algum destes pares iniciar outra lista)

















#### Passo 1- Criar Tabela











Passo 2- Marcar Pares trivialmente não equivalentes

| q <sub>1</sub> | Х              |       |                |                |                |
|----------------|----------------|-------|----------------|----------------|----------------|
| q <sub>2</sub> | Х              |       |                |                |                |
| q <sub>3</sub> | Х              |       |                |                |                |
| q <sub>4</sub> |                | Χ     | Χ              | Χ              |                |
| q <sub>5</sub> |                | Х     | Х              | Х              |                |
|                | q <sub>0</sub> | $q_1$ | q <sub>2</sub> | q <sub>3</sub> | q <sub>4</sub> |









| $q_1$          | Х              |       |                |                    |                   |    |
|----------------|----------------|-------|----------------|--------------------|-------------------|----|
| q <sub>2</sub> | Х              |       | _              | (q <sub>0</sub> ,q | 4}                |    |
| q <sub>3</sub> | Х              |       | -              | →{                 | q <sub>0</sub> ,q | 4) |
| q <sub>4</sub> |                | Χ     | Х              | Х                  |                   |    |
| q <sub>5</sub> |                | Х     | Х              | Х                  |                   |    |
|                | q <sub>0</sub> | $q_1$ | q <sub>2</sub> | q <sub>3</sub>     | q <sub>4</sub>    |    |

Passo 3.1 - Analisar Par  $\{q_0, q_4\}$ 

$$\delta(\mathsf{q}_0,\,\mathsf{0})=\mathsf{q}_2$$

$$\delta(q_4, 0) = q_3$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_4, 1) = q_2$$

 $\{q_2, q_3\}$  e  $\{q_1, q_2\}$  não estão marcados. Inclui-se  $\{q_0, q_4\}$  em uma lista iniciada nestes pares









| q <sub>1</sub> | Х              | →{q <sub>0</sub> ,q <sub>5</sub> } |                |                    |                   |    |
|----------------|----------------|------------------------------------|----------------|--------------------|-------------------|----|
| q <sub>2</sub> | Х              |                                    | <u> </u>       | (q <sub>0</sub> ,q | 4}                |    |
| q <sub>3</sub> | Х              |                                    |                | →{                 | q <sub>0</sub> ,q | 4) |
| q <sub>4</sub> |                | Х                                  | Х              | Х                  |                   |    |
| q <sub>5</sub> |                | Х                                  | Х              | Х                  |                   |    |
|                | q <sub>0</sub> | $q_1$                              | q <sub>2</sub> | q <sub>3</sub>     | q <sub>4</sub>    |    |

Passo 3.2 - Analisar Par  $\{q_0, q_5\}$ 

$$\delta(q_0, 0) = q_2$$
  
 $\delta(q_5, 0) = q_2$ 

$$\delta(q_0, 1) = q_1$$
  
 $\delta(q_5, 1) = q_3$ 

 $\{q_2, q_2\}$  não deve ser marcado.  $\{q_1, q_3\}$  não está marcado. Inclui-se  $\{q_0, q_5\}$  em uma lista iniciada neste par.









| q <sub>1</sub> | Х              |       | ►{q <sub>0</sub> , | q <sub>5</sub> }   |                   |    |
|----------------|----------------|-------|--------------------|--------------------|-------------------|----|
| q <sub>2</sub> | Х              | X ·   | <b>-</b>           | (q <sub>0</sub> ,q | 4}                |    |
| q <sub>3</sub> | Х              | _     | •                  | <b>→</b> {         | q <sub>0</sub> ,q | 4} |
| q <sub>4</sub> | Χ              | Χ     | Χ                  | Χ                  |                   |    |
| q <sub>5</sub> |                | Х     | Х                  | Х                  |                   |    |
|                | q <sub>0</sub> | $q_1$ | q <sub>2</sub>     | q <sub>3</sub>     | $q_4$             |    |

Passo 3.3 - Analisar Par  $\{q_1, q_2\}$ 

$$\delta(q_1, 0) = q_1$$
  
 $\delta(q_2, 0) = q_4$ 

$$\delta(q_1, 1) = q_0$$
  
 $\delta(q_2, 1) = q_5$ 

 $\{q_1, q_4\}$  está marcado, logo  $\{q_1, q_2\}$  também será marcado.  $\{q_1, q_2\}$  inicia uma lista,  $\{q_0, q_4\}$  será marcado.









| $q_1$          | Х     |       | ►{q <sub>0</sub> , | q <sub>5</sub> }   |                   |    |
|----------------|-------|-------|--------------------|--------------------|-------------------|----|
| q <sub>2</sub> | Х     | X ·   | _                  | (q <sub>0</sub> ,q | 4}                |    |
| q <sub>3</sub> | Х     | X     |                    | →{                 | q <sub>0</sub> ,q | 4) |
| q <sub>4</sub> | Χ     | Χ     | Х                  | Χ                  |                   |    |
| q <sub>5</sub> | X     | Х     | х                  | х                  |                   |    |
|                | $q_0$ | $q_1$ | q <sub>2</sub>     | q <sub>3</sub>     | $q_4$             |    |

Passo 3.4 - Analisar Par  $\{q_1, q_3\}$ 

$$\delta(q_1, 0) = q_1$$
  
 $\delta(q_3, 0) = q_5$ 

$$\delta(q_1, 1) = q_0$$
  
 $\delta(q_3, 1) = q_4$ 

 $\{q_1, q_5\}$  está marcado, logo  $\{q_1, q_3\}$  também será marcado.  $\{q_1, q_3\}$  inicia uma lista,  $\{q_0, q_5\}$  será marcado.











Passo 3.5 - Analisar Par  $\{q_2, q_3\}$ 

$$\delta(q_2, 0) = q_4$$

$$\delta(q_2, 1) = q_5$$
  
 $\delta(q_3, 1) = q_4$ 

 $\{q_4, q_5\}$  não está marcado. Inclui-se  $\{q_2, q_3\}$  em uma lista iniciada <u>neste</u> par.











Passo 3.6 - Analisar Par  $\{q_4, q_5\}$ 

$$\delta(q_4, 0) = q_3$$
$$\delta(q_4, 0) = q_3$$

$$\delta(q_4, 1) = q_2$$

$$\delta(\mathsf{q}_5,\,\mathsf{1})=\mathsf{q}_5$$

 $\{q_2, q_3\}$  não está marcado. Inclui-se  $\{q_4, q_5\}$  na lista deste par.























#### Exercícios

Minimize o autômato a seguir:









#### Exercícios

Minimize o autômato a seguir:







