Single-Source Shortest Paths

DEFINITION:

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbf{R}$ mapping edges to real-valued weights. The weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the following sum:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

The shortest-path weight from u to v is defined as

$$\delta(u,v) = \begin{cases} \min\{ w(p) : u \stackrel{p}{\leadsto} v \}, & \text{if there is a path from } u \text{to } v \\ \infty, & \text{otherwise.} \end{cases}$$

A shortest path from a vertex u to a vertex v is defined as any path p with weight $w(p) = \delta(u, v)$.

Examples: weights can be distances, times, costs, etc.

Note that breadth-first search algorithm finds shortest paths for unweighted graphs (that is, where w(u, v) = 1 for any edge $(u, v) \in E$).

DEFINITION:

Given a graph G = (V, E). In the *single-source shortest-paths* problem (SSSP) we want to find a shortest path from a given source vertex $s \in V$ to every vertex $v \in V$.

EXAMPLES:

- 1. Single-destination shortest-paths problem: reverse of the single-source shortest-paths problem. We need to find a shortest path to a given destination vertex f from every vertex v.
- 2. Single-pair shortest-path problem: subproblem of SSSP. We need to find a shortest path from u to v for given vertices u and v.

All-pairs shortest-paths problem: collection of SSSP where source vertices are all the vertices from V. We need to find a shortest path from u to v for every pair of vertices u and v.

C) Teresa Leyk Slide 3 Graphs-SSSP

The shortest path from S to Y is not unique.

$$S \Rightarrow U \Rightarrow X \Rightarrow Y$$

$$S \Rightarrow U \Rightarrow V \Rightarrow Y$$

$$S \rightarrow U \rightarrow X \rightarrow Y$$

Negative Cycles in SSSP

Find the shortest path from a to d:

- path $\langle a, c, e, d \rangle$: weight = -12 + 3 2 = -11.
- path $\langle a, c, e, d, a, c, e, d \rangle$: weight = -12 + 3 2 + (10 12 + 3 2) = -12.
- path $\langle a, c, e, d, a, c, e, d, a, c, e, d \rangle$: weight = -12 + 3 2 + (10 12 + 3 2) + (10 12 + 3 2) = -13

if we continue doing this we get decreasing sequence of weights of this path.

Therefore, its weight is $\delta(a,d) = -\infty$ (since in this way we can obtain any negative number ≤ -11).

To avoid such situations we assume that graphs have no negative-weight cycles.

- A shortest path problem is well defined for a graph without negative cycles.
- Sub-paths of the shortest paths are the shortest paths.

Let G = (V, E) be directed, weighted graph and $p = (v_1, v_2, ..., v_k)$ be a shortest path in G, then for every $1 \le i \le j \le k$, $p_{ij} = (v_i, v_{i+1}, ..., v_j)$ is the shortest sub-path of p.

p can be decomposed into $v_1 \longrightarrow v_i \longrightarrow v_j \longrightarrow v_k$ and $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$

Suppose that there exits a sub-path p'_{ij} , and $w'(p'_{ij}) < w(p_{ij})$ so the weight of new path is $w(p_{1i}) + w'(p'_{ij}) + w(p_{jk}) < w(p)$ and its contradicts the assumption that p is the shortest path.

• There are not positive-weight cycles on shortest path from the source to destination.

Let $p = (v_0, v_1, ..., v_k)$ be a shortest path and $c = (v_i, v_{i+1}, ..., v_j)$ with w(c) > 0 and $p' = (v_0, v_1, ..., v_i, v_{j+1}, v_{j+2}, ..., v_k)$. w(p') = w(p) - w(c) < w(p) then p cannot be a shortest path or w(c) = 0. If a shortest path has 0-weight cycles then we can remove them.

• A shortest path is any acyclic path in a graph G = (V, E) which contains at most V distinct vertices and at most |V| - 1 edges.

Shortest-Path Tree

DEFINITION:

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbf{R}$, and assume that G contains no negative-weight cycles reachable from the source vertex $s \in V$. A shortest-paths tree rooted at s is a directed subgraph G' = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$, such that

V' is the set of vertices reachable from s in G.

G' forms a rooted tree with root s

for all $v \in V'$, the unique simple path from s to v in G' is a shortest path from s to v in G.

Shortest paths and shortest-paths trees are not necessarily unique. There can be two or more shortest-paths trees with the same root.

Relaxation

Further we will use the following property of shortest-path weights.

LEMMA 1:

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbf{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

For each vertex $v \in V$, we assign a field d[v] (shortest-path estimate), which is an upper bound on the weight of a shortest path from source s to v. We also assign a field $\pi[v]$ which is a predecessor of v in an algorithm, or it is NIL.

Initialize-Single-Source(G, s):

```
for (each vertex v \in V) { d[v] = \infty; \pi[v] = \text{NIL}; } d[s] = 0;
```

Relax(u, v, w):

if
$$(d[v] > d[u] + w(u, v))$$
 { $d[v] = d[u] + w(u, v)$; $\pi[v] = u$; }

Dijkstra's Algorithm

Dijkstra's algorithm solves SSSP problem on a weighted, directed graph G = (V, E) for the case in which all edge weights are **nonnegative**. We assume here that $w(u, v) \ge 0$ for each edge $(u, v) \in E$.

This algorithm uses a set S of vertices for which the shortest-path weights from the source vertex s have been determined. That is, if $v \in S$, then $d[v] = \delta(s, v)$. A priority queue Q contains all the vertices in V - S, ordered by d values. In this implementation it is assumed that G is represented by adjacency lists.

```
\mathbf{Dijkstra}(G, w, s):
Initialize-Single-Source(G, s);
S = \emptyset;
initialize Q to contain all v \in V;
while (Q! = \emptyset) {
  u = \text{Extract-Min}(Q);
  S = S \cup \{u\};
  for (each vertex v \in Adj[u])
     Relax(u, v, w);
} /* end of while */
```


C) Teresa Leyk Slide 12 Graphs-SSSP

iter	$\Pi[v]$	d[a]	d[b]	d[c]	d[d]	d[e]
0	_	0	∞	∞	∞	∞
1	a	0	2(a)	12 (a)	∞	∞
2	b	0	2 (a)	10 (b)	∞	11(b)
3	c	0	2 (a)	10(b)	16 (c)	11(b)
4	e	0	2(a)	10(b)	13(e)	11(b)
5	d	0	2(a)	10(b)	13(e)	11(b)

C) Teresa Leyk Slide 13 Graphs-SSSP

Correctness

THEOREM:

If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E) with nonnegative weight function w and source s, then at termination, $d[u] = \delta(s, u)$ for all vertices $u \in V$.

COROLLARY:

If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E) with nonnegative weight function w and source s, then at termination, the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is a shortest-paths tree rooted at s. Notation:

$$V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \cup \{s\} \text{ and } E_{\pi} = \{(\pi[v], v) \in E : v \in V_{\pi} - \{s\}\}.$$

C) Teresa Leyk Slide 14 Graphs-SSSP

Analysis

Assume that the priority queue Q is implemented as a binary heap.

Initialization (steps 1–3) takes O(V) time. The time to build the binary heap is O(V) (step 3).

The while loop has |V| iterations, since after each vertex has been extracted from Q it is inserted in S, and is never inserted back in Q.

The **for** loop is executed |E| times overall, since each edge in the adjacency list Adj[v] is examined exactly once during the course of the algorithm and the total number of edges in all adjacency lists is |E|.

Extract-Min takes $O(\lg V)$ time. There are |V| such operations.

After the assignment d[v] = d[u] + w(u, v) (in Relax) we must heapify the priority queue Q which takes $O(\lg V)$ time. There are at most |E|such operations.

Total running time: $O(V \lg V + E \lg V) = O((V + E) \lg V)$.

SSSPs in a DAG

Let G = (V, E) be a directed weighted, weighted, topologically sorted graph. The DAG shortest path algorithm computes the shortest path in O(V + E).

DAG-Shortest-Parth-Algorithm(G,u,s)

C) Teresa Leyk Slide 16 Graphs-SSSP

Teresa Levk Slide 17 **Graphs-SSSP**

Bellman-Ford(G, w, s)

```
Initialize-Single-Source(G,s) for i=1 to |V[G]-1| do for each edge (u,v) \in E[G] do RELAX(u,v,w) for each edge (u,v) \in E[G] do if d[v]>d[u]+w(u,v) then return FALSE return TRUE
```

Running time O(VE) for sparse graph and $O(V^3)$ for dense graphs.

C) Teresa Leyk Slide 18 Graphs-SSSP

C) Teresa Leyk Slide 19 Graphs-SSSP