```
Chapter 5 - Outlier Analysis

Segment 8 - Extreme Value Analysis Using Univariate Methods
```

```
In [1]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from pylab import rcParams
```

```
In [3]: address = 'C:/Users/danal/Desktop/ExerciseFiles/Data/iris.data.csv'
    df = pd.read_csv(filepath_or_buffer=address, header=None, sep=',')

df.columns = ['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Specential Columns')
```

```
In [5]: x = df.iloc[:,0:4].values
y = df.iloc[:,4].values
df[:5]
```

Out[5]:

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Identifying outliers from Tukey boxplots

```
In [6]: df.boxplot(return_type='dict')
plt.plot()
```

Out[6]: []


```
In [7]: Sepal_Width = x[:,1]
    iris_outliers = (Sepal_Width > 4)
    df[iris_outliers]
```

Out[7]:

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
15	5.7	4.4	1.5	0.4	setosa
32	5.2	4.1	1.5	0.1	setosa
33	5.5	4.2	1.4	0.2	setosa

```
In [8]: Sepal_Width = x[:,1]
    iris_outliers = (Sepal_Width <2.05)
    df[iris_outliers]</pre>
```

Out[8]:

	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
60	5.0	2.0	3.5	1.0	versicolor

Applying Tukey outlier labeling

```
In [10]: pd.options.display.float_format = '{:.1f}'.format
x_df = pd.DataFrame(x)
print(x_df.describe())
```

	0	1	2	3
count	150.0	150.0	150.0	150.0
mean	5.8	3.1	3.8	1.2
std	0.8	0.4	1.8	0.8
min	4.3	2.0	1.0	0.1
25%	5.1	2.8	1.6	0.3
50%	5.8	3.0	4.3	1.3
75%	6.4	3.3	5.1	1.8
max	7.9	4.4	6.9	2.5