NOI p 普及模拟赛

2021年1月3日

题目名称	qiu	sky	dog
题目类型	传统型	传统型	传统型
目录	qiu	sky	dog
可执行文件名	qiu	sky	dog
输入文件名	qiu.in	sky.in	dog.in
输出文件名	qiu.out	sky.out	dog.out
每个测试点时限	1.0s	2.0s	2.0s
内存限制	2GB	256MB	512MB

提交源程序文件名 注意事项:

对于	C++	语言	qiu.cpp	sky.cpp	dog.cpp
对于	С	语言	qiu.c	sky.c	dog.c

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 3. C/C++ 中函数 main() 的返回值类型必须是 int, 值为 0。
- 4. 编译选项为-O2 -std=c++11。
- 5. 如果对题目有疑问(如样例出锅),可以找出题人。
- 6. 考试时间 8:00 至 13:00

(qiu) 球

题目描述

小 P 在二维平面的原点 (0,0), 他现在朝着 y 轴正方向。

他会以如下方式放 $10^{10^{100}}$ 个球,第 i 个的重量为 i:

在 i 步,他会放下第 i 个球;若他的右方第一个整点没有放球,那么向右转;向前走一单位长度。

前 25 步为:

 $21 \ 22 \ 23 \ 24 \ 25$

20 7 8 9 10

 $19 \ 6 \ 1 \ 2 \ 11$

18 5 4 3 12

17 16 15 14 13

小 P 回询问 q 次,所有横坐标在 $[x_1, x_2]$ 中,纵坐标在 $[y_1, y_2]$ 中的整点,上面球的重量的和,答案可能很大,对 2^{63} 取模。

输入格式

从 qiu.in 中读入数据

- 第一行一个整数 q。
- 接下来 q 行, 每行四个整数 x_1, x_2, y_1, y_2 。

输出格式

输出到 qiu.out 中

• 一行一个整数, 你的答案。

样例输入

1

0 0 0 1

样例输出

9

样例解释

1 + 8 = 9.

数据规模

令 W 为满足以下条件的最小正整数: $0 \le x_1, x_2, y_1, y_2 \le W$ 。

有: $W \le 10^{18}, x_1 \le x_2, y_1 \le y_2, q \le 10^6$ 。

- Subtask 1(1'): $W \le 10^4$.
- Subtask 2(2'): $W \leq 10^7$.
- Subtask 3(3'): $W \le 10^9$.
- Subtask 4(4'): $W \leq 10^{12}$.
- Subtask 5(5'): q = 1.
- Subtask 6(85'): $W \le 10^{18}$.

(sky) 星空

题目背景

2021 元旦, 小 P 注视着星空, 眼睑通红

苦中带涩不是常态吗, 我们得用笑容面对苦涩

使劲揉揉眼睛, 我将不负过去, 不畏将来

题目描述

星空中充斥着星辰, 小 P 想将其一一配对, 一个星辰用两个参数描述 a_i, b_i 分别表示其大小和闪烁程度。

两个星辰 i,j 可以配对,当且仅当 $a_i \leq a_j$ 并且获得 $b_j - b_i$ 的整体闪烁程度 (因为小 P 眼睑通红看不清楚,所以会相互抵消)

一个星辰配对后无法再次配对,小 P 想知道对于 $k \in [1, \lfloor \frac{n}{2} \rfloor]$ 求出至多配 对 k 的最大闪烁程度和

输入格式

从 sky.in 中读入数据

- 一行一个整数 n 表示 n 颗星辰
- 接下来 n 行, 每行 2 个整数分别表示 a_i, b_i

输出格式

输出到 sky.out 中

• $\pm \lfloor \frac{n}{2} \rfloor$ 行, 第 i 行表示 k = i 的答案

样例输入

- 6
- 1 1
- 4 5
- 1 4
- 1 9
- 5 9
- 8 10

样例输出

- 9
- 14
- 18

数据规模

对于所有数据,满足 $n \le 10^5, a_i \le 10^9, b_i \le 10^9$

- Subtask 1(13'): $n \le 100$.
- Subtask 2(9'): $n \le 1000$.
- Subtask 3(7): 所有 a_i 均相等。
- Subtask 4(18'): $b_i \le 1000$.
- Subtask 5(13'): $n \le 5000$.
- Subtask 6(40')

(dog) 嫖怪

题目背景

社会生产力的发展, 使得人们的消费能力与需求与日俱增。

正因如此, 小 P 搬运食品的速度已经远远无法跟上机房嫖怪们的需求了

若再不想些对策,小 P 那点可怜的劳动价值也要被血腥的嫖怪资本家们 榨取殆尽了……

题目描述

小 P 用食品贮藏点的方式储存自己的食品,且一开始没有任何贮藏点。接下来会有 q 个操作。

type = 2: 对抗操作。

为了应对可能发生的事件, 小 P 会模拟自己与嫖怪们的对抗过程。

具体地,对抗从 0s 时刻开始,在时间段 $(ts,ts+1s],t\in N$ 间,小 P 会在 ts+0.5s 时选择一个贮藏点,向其中投放 1 单位食品。嫖怪们则会在 ts+1s 时选择一个贮藏点,至多取出 2 单位的食品。

如果一个食品贮藏点贮藏的食品单位数 ≤ 0 ,嫖怪们就会认为它不再具有利用价值并摧毁它。若被摧毁的食品贮藏点达到了 K 个,小 P 就不得不修建新储藏点了。

但是小 P 很懒惰,因此他希望被摧毁点数达到 K 个的时刻尽量大。小 P 认为嫖怪们也很懒惰,因此小 P 认为他们希望这个时刻尽量小。

对于这个操作, 你需要输出对抗结束的时刻 T, 这显然是个整数。

这个操作不具有后效性。

type = 1: 修改操作。

小 P 会将储存食品数为 X 的贮藏点的数目改为 Y。

这个操作具有后效性。

输入格式

从 dog.in 中读入数据

- 一行一个整数 q 表示 q 次询问
- 接下来 q 行,每行第一个整数 type,表示操作类型。
- 若 type=1,则接下来两个正整数 X, Y,表示小 P 的修改,意义同题目描述。
- 若 type=2,则接下来一个正整数 K,表示小 P 的模拟对抗,意义同题目描述。

输出格式

输出到 dog.out 中

- 对于每个 type=2 的操作,输出一个整数 T,表示小 P 模拟对抗结束的时刻。
- 注意:每个 type=2 的操作是小 P 的模拟对抗,不具有后效性。

样例 1 输入

8

 $1 \quad 1 \quad 1$

2 1

1 2 3

2 3

1 2 2

2 3

1 3 3

2 4

样例 1 输出

1

4

5

6

样例 1 解释

下面用 (X,Y) 表示一个据点。其中 X 为编号,Y 为初始储存食品数,操作序列中只有编号,且按时间排序。

对于第二个 type = 2 的操作。现有据点为 (1,1),(2,2),(3,2),(4,2),

那么小 P 的操作序列为 4,3,3,1, 嫖怪的操作序列则为 2,3,3,1。这是合乎题意的,且对双方而言都最优。

样例 2

见选手文件夹下/2.in 与/2.out。他满足子任务 2 的限制。

样例 3

见选手文件夹下/3.in 与/3.out。他满足子任务 3 的限制。

样例 4

见选手文件夹下/4.in 与/4.out。他满足子任务 4 的限制。

数据规模

对于所有数据,满足 $q \leq 10^6, type \in 1, 2, X, Y \leq 10^6, K \leq$ 当前贮藏点的总数

- Subtask 1(10'): $q \le 5, X, Y \le 3$.
- Subtask 2(30'): 所有 X 均相等。
- Subtask 3(10'): $q \le 1000, X \le 1000, Y \le 10^6$.
- Subtask 4(50'): 无特殊限制。