Capitolo 2

Successioni

2.1 Limiti di successioni

limiti

Si usa il termine "successione" per indicare una sequenza interminabile di elementi presi da un certo insieme. Più precisamente:

succ

Definizione 2.1.1 Sia X un insieme. Una successione a valori in X è una funzione a: $\mathbb{N} \to X$. Gli elementi a(0), a(1), a(2), eccetera, si dicono termini della successione e si denotano più brevemente con a_0 , a_1 , a_2 , e così via. Nel termine generico a_n è contenuta la legge di formazione della successione. La successione $a: \mathbb{N} \to X$ si denota con $\{a_n\}_{n\in\mathbb{N}}$ o anche semplicemente con $\{a_n\}$, confondendola impropriamente con l'insieme dei suoi termini.

A noi interesseranno per lo più (ma non solo) successioni a valori reali o complessi. Molto spesso sarà utile considerare successioni definite non su tutto \mathbb{N} ma solo per tutti i numeri naturali maggiori di un intero fissato, cioè funzioni $a: \{n \in \mathbb{N} : n \geq n_0\} \to X$.

essucc

Esempi 2.1.2 (1) $\{\frac{1}{n}\}$ è una successione reale, definita solo per $n \in \mathbb{N}^+$: si ha $a_1 = 1$, $a_2 = 1/2$, $a_3 = 1/3$, ..., dunque $a_n = 1/n$ per ogni $n \in \mathbb{N}^+$.

- (2) Se $q \in \mathbb{C}$ è un numero fissato, $\{q^n\}$ è una successione complessa (reale se $q \in \mathbb{R}$) ed i suoi termini sono 1, q, q^2 , q^3 , eccetera. In particolare: se q=1 la successione vale costantemente 1; se q=-1 la successione prende solo i valori 1 e -1 alternativamente, infinite volte; se q=i, analogamente, la successione $\{i^n\}$ assume ciclicamente i quattro valori 1, i, -1, -i.
- (3) $\{n!\}$ è la successione reale 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...; essa cresce molto rapidamente al crescere dell'indice n.
- (4) Posto $a_n = \sum_{k=0}^n q^k$, con $q \in \mathbb{C}$ fissato, $\{a_n\}$ è una successione i cui termini, come sappiamo, sono (esempio 1.6.4 (4))

$$a_n = \begin{cases} \frac{1-q^{n+1}}{1-q} & \text{se } q \neq 1, \\ n+1 & \text{se } q = 1. \end{cases}$$

(5) La legge di formazione di una successione può essere data induttivamente anziché in modo esplicito: ad esempio

$$\begin{cases} a_0 = 1 & \text{se } n = 0 \\ a_{n+1} = 1 + \frac{1}{a_n} & \text{se } n \ge 1, \end{cases}$$

è una successione definita per ricorrenza, ove ciascun elemento (salvo a_0) è definito in termini del precedente; si ha

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = \frac{3}{2}$, $a_3 = \frac{5}{3}$, $a_4 = \frac{8}{5}$, $a_5 = \frac{13}{8}$, $a_6 = \frac{21}{13}$,

e possiamo calcolarne quanti vogliamo, ma non è facile determinare una legge esplicita che esprima il termine generale a_n in funzione solo di n.

A noi interesserà il comportamento di una data successione per valori molto grandi di n. A questo scopo è fondamentale la nozione di limite:

Definizione 2.1.3 Sia $\{a_n\} \subseteq \mathbb{C}$, sia $L \in \mathbb{C}$. Diciamo che L è il limite della successione $\{a_n\}$ al tendere di n a $+\infty$, oppure che la successione $\{a_n\}$ converge a L per n che tende $a + \infty$, se vale la condizione seguente:

$$\forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : \quad |a_n - L| < \varepsilon \quad \forall n > \nu.$$

Ciò significa che comunque si fissi un margine di errore $\varepsilon > 0$, si può trovare una soglia ν al di là della quale per ogni indice n il corrispondente elemento a_n differisce da L (in modulo) per meno di ε . In tal caso scriveremo

$$\lim_{n \to \infty} a_n = L, \quad \text{oppure} \quad a_n \to L \quad \text{per } n \to \infty.$$

Osservazioni 2.1.4 (1) Se la successione $\{a_n\}$ è reale e L è reale, la definizione di limite non cambia di una virgola: naturalmente il modulo $|a_n - L|$ diventa un valore assoluto.

dopolim

- (2) Nella definizione non cambia nulla se si concede alla soglia ν di essere un numero reale anziché un numero naturale: l'importante è che per tutti gli indici $n \in \mathbb{N}$ che sono maggiori di ν valga la disuguaglianza $|a_n L| < \varepsilon$. In particolare, non è affatto necessario scegliere il minimo ν possibile: ciò oltretutto può complicare terribilmente i conti.
- (3) La condizione $|a_n L| < \varepsilon$ è tanto più vincolante e significativa quanto più ε è piccolo; minore è ε , più saremo costretti a scegliere una soglia ν grande. Si noti che la condizione, apparentemente meno forte,

"esiste un numero K>0 tale che per ogni $\varepsilon>0$ si può trovare una soglia ν per cui risulta $|a_n-L|< K\varepsilon$ per ogni $n>\nu$ "

è equivalente a dire che $\lim_{n\to\infty} a_n = L$: infatti il numero $K\varepsilon$ è un arbitrario numero positivo esattamente come lo era ε , per cui non c'è perdita di generalità (si ricordi il lemma dell'arbitrarietà di ε , lemma 1.10.1).

Nel caso di successioni *reali*, c'è anche la nozione di successione divergente a $+\infty$ oppure $-\infty$:

succdiv

Definizione 2.1.5 Sia $\{a_n\} \subseteq \mathbb{R}$. Diciamo che la successione $\{a_n\}$ ha limite $+\infty$ per $n \to +\infty$, ovvero che essa diverge positivamente per $n \to +\infty$, se

$$\forall M > 0 \quad \exists \nu \in \mathbb{N} : \quad a_n > M \quad \forall n > \nu.$$

Analogamente, diciamo che la successione $\{a_n\}$ ha limite $-\infty$ per $n \to +\infty$, ovvero essa diverge negativamente per $n \to +\infty$, se

$$\forall M > 0 \quad \exists \nu \in \mathbb{N} : \quad a_n < -M \quad \forall n > \nu.$$

In altre parole, la successione è divergente se, fissato un numero M arbitrariamente grande, esiste sempre una soglia ν al di là della quale tutti i termini della successione sono ancora più grandi di M (se il limite è $+\infty$), ovvero ancora più piccoli di -M (se il limite è $-\infty$).

dopodiv

Esempi 2.1.6 (1) $\lim_{n\to\infty} \frac{1}{n} = 0$. Infatti, fissato $\varepsilon > 0$, la relazione $|\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon$ è verificata non appena $n > \frac{1}{\varepsilon}$. Quindi la definizione è soddisfatta se si sceglie $\nu = \frac{1}{\varepsilon}$; se si vuole $\nu \in \mathbb{N}$, si potrà prendere $\nu = \left[\frac{1}{\varepsilon}\right] + 1$.

(2) $\lim_{n\to\infty} \frac{n}{n-10} = 1$ (questa successione è definita per $n \ge 11$). Infatti, dato $\varepsilon > 0$ si

$$\left| \frac{n}{n-10} - 1 \right| < \varepsilon \quad \iff \quad \frac{n}{n-10} - 1 < \varepsilon \quad \iff \quad n > 10 \left(1 + \frac{1}{\varepsilon} \right),$$

per cui basta scegliere $\nu=10\left(1+\frac{1}{\varepsilon}\right)$, o anche $\nu=\frac{20}{\varepsilon}$ (purché sia $\varepsilon\leq1$).

(3) Se $q \in \mathbb{C}$ e |q| < 1, allora $\lim_{n \to \infty} q^n = 0$. Infatti, ciò è banale se q = 0; se $q \neq 0$, dato $\varepsilon > 0$ si ha $|q^n| = |q|^n < \varepsilon$ se e solo se $n > \log_{|q|} \varepsilon$ (si ricordi che la funzione $\log_{|q|}$ è decrescente essendo |q| < 1). Se, invece, $|q| \ge 1$ e $q \notin [1, +\infty[$, la successione $\{q^n\}$ non ha limite (esercizio 2.1.7). Osserviamo però che se $q \in \mathbb{R}$ e $q \ge 1$

$$\lim_{n \to \infty} q^n = \begin{cases} 1 & \text{se } q = 1\\ +\infty & \text{se } q > 1. \end{cases}$$

Ciò è evidente se q=1; se q>1 basta osservare che $q^n>M$ se e solo se $n>\log_q M$, dato che la funzione \log_q stavolta è crescente. Di conseguenza, se $q\in\mathbb{C}$ e |q|>1 allora la successione reale $\{|q|^n\}$ diverge a $+\infty$.

(4) Per ogni $q \in \mathbb{C}$ con |q| < 1 si ha $\lim_{n \to \infty} \sum_{k=0}^n q^k = \frac{1}{1-q}$. Infatti

$$\left| \sum_{k=0}^{n} q^{k} - \frac{1}{1-q} \right| = \left| \frac{1-q^{n+1}}{1-q} - \frac{1}{1-q} \right| = \frac{|q|^{n+1}}{|1-q|},$$

quindi

$$\left| \sum_{k=0}^{n} q^k - \frac{1}{1-q} \right| = \frac{|q|^{n+1}}{|1-q|} < \varepsilon \quad \iff \quad n+1 > \log_{|q|}(\varepsilon|1-q|).$$

Ma anche senza questo calcolo esplicito, che oltretutto non è sempre possibile, si poteva osservare che, per l'esempio 2.1.6 (3), si ha $\lim_{n\to\infty} q^n = 0$; quindi esiste certamente

un ν tale che $|q^{n+1}| < \varepsilon |1-q|$ per ogni $n > \nu$. Di conseguenza risulta, per tutti gli n superiori a quel ν ,

$$\left| \sum_{k=0}^{n} q^{k} - \frac{1}{1-q} \right| = \frac{|q|^{n+1}}{|1-q|} < \varepsilon.$$

- (5) $\lim_{n\to\infty} n! = +\infty$. Infatti, ovviamente n! > M non appena, ad esempio, n > M.
- (6) Si ha

$$\lim_{n \to \infty} \log_b n = \left\{ \begin{array}{ll} +\infty & \text{se } b > 1 \\ -\infty & \text{se } 0 < b < 1. \end{array} \right.$$

Infatti se M > 0 risulta

$$\left\{ \begin{array}{ll} \log_b n > M & \Longleftrightarrow \quad n > b^M & \text{se } b > 1, \\ \log_b n < -M & \Longleftrightarrow \quad n > b^{-M} & \text{se } 0 < b < 1. \end{array} \right.$$

(7) Se a > 0, si ha $\lim_{n\to\infty} a^{1/n} = 1$. La cosa è evidente se a = 1, perché in tal caso addirittura $|a^{1/n} - 1| = |1 - 1| = 0$ per ogni $n \in \mathbb{N}^+$. Se a > 1, ricordando l'esempio 1.8.3 (1) abbiamo $\inf_{n\in\mathbb{N}^+} a^{1/n} = 1$; dunque, dato $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ tale che

$$1 < a^{1/\nu} < 1 + \varepsilon.$$

D'altra parte, essendo a > 1 si ha $a^{1/n} < a^{1/\nu}$ per $n > \nu$: dunque a maggior ragione

$$|a^{1/n} - 1| = a^{1/n} - 1 < \varepsilon \qquad \forall n > \nu,$$

che è la tesi. Infine se 0 < a < 1 si ha $\frac{1}{a} > 1$ e quindi, per quanto già provato, per ogni $\varepsilon > 0$ esiste ν tale che

$$\left| \left(\frac{1}{a} \right)^{1/n} - 1 \right| = \left(\frac{1}{a} \right)^{1/n} - 1 < \varepsilon \qquad \forall n > \nu;$$

dunque, moltiplicando per $a^{1/n}$.

$$|1 - a^{1/n}| = 1 - a^{1/n} < \varepsilon \cdot a^{1/n} < \varepsilon \qquad \forall n > \nu,$$

e la tesi è provata anche in questo caso.

(8) Non è chiaro a priori se la successione $\{n^{1/n}\}$ abbia limite per $n \to \infty$: l'esponente tende a rimpicciolire il numero, la base tende ad accrescerlo. Osserviamo intanto che $n^{1/n} \ge 1$ per ogni $n \in \mathbb{N}^+$; d'altra parte, se per ogni $n \ge 2$ applichiamo la disuguaglianza delle medie (teorema 1.8.2) agli n numeri positivi $a_1 = \ldots = a_{n-2} = 1$, $a_{n-1} = a_n = \sqrt{n}$, si ottiene

$$n^{\frac{1}{n}} = \left(\prod_{k=1}^{n} a_k\right)^{\frac{1}{n}} < \frac{1}{n} \sum_{k=1}^{n} a_k = 1 - \frac{2}{n} + \frac{2}{\sqrt{n}} < 1 + \frac{2}{\sqrt{n}}.$$

Da qui segue che, per ogni fissato $\varepsilon > 0$, risulta

$$n^{\frac{1}{n}} < 1 + \varepsilon$$
 purché $\frac{2}{\sqrt{n}} < \varepsilon$,

ossia purché $n > 4/\varepsilon^2$. In conclusione,

$$\lim_{n \to \infty} n^{1/n} = 1.$$

Osservazione 2.1.7 Se una certa proprietà p(n) è verificata per ogni numero naturale maggiore di una data soglia ν (ossia, in altri termini, se essa vale per tutti i naturali salvo al più un numero finito), diremo che tale proprietà è vera definitivamente. Così, nell'esempio 2.1.6 (8) si ha per ogni $\varepsilon > 0$

$$\frac{2}{\sqrt{n}} < \varepsilon$$
 definitivamente,

in quanto, come si è visto, tale condizione è vera per tutti gli $n > 4/\varepsilon^2$.

Analogamente, la definizione di limite può essere riformulata come segue: si ha $a_n \to L$ per $n \to \infty$ se e solo se per ogni $\varepsilon > 0$ risulta $|a_n - L| < \varepsilon$ definitivamente, e si ha $a_n \to +\infty$ oppure $a_n \to -\infty$ per $n \to \infty$ se e solo se per ogni M > 0 risulta $a_n > M$ definitivamente, oppure $a_n < -M$ definitivamente.

Successioni limitate

Un'importante classe di successioni è quella delle successioni limitate (che *non* significa "dotate di limite"!).

Definizione 2.1.8 (i) Sia $\{a_n\}$ una successione reale o complessa. Diciamo che $\{a_n\}$ è limitata se esiste M > 0 tale che

$$|a_n| \le M \qquad \forall n \in \mathbb{N}.$$

(ii) Sia $\{a_n\}$ una successione reale. Diciamo che $\{a_n\}$ è limitata superiormente (oppure limitata inferiormente) se esiste $M \in \mathbb{R}$ tale che

$$a_n \le M \quad \forall n \in \mathbb{N} \qquad oppure \qquad a_n \ge M \quad \forall n \in \mathbb{N}.$$

Ovviamente, una successione reale è limitata se e solo se è limitata sia superiormente che inferiormente. Inoltre, ricordando che

$$\max\{|\text{Re}z|, |\text{Im}z|\} \le |z| \le |\text{Re}z| + |\text{Im}z| \qquad \forall z \in \mathbb{C},$$

deduciamo che una successione complessa $\{a_n\}$ è limitata se e solo se le due successioni reali $\{\operatorname{Re} a_n\}$, $\{\operatorname{Im} a_n\}$ sono entrambe limitate.

convlim | Proposizione 2.1.9 Ogni successione convergente è limitata; il viceversa è falso.

Dimostrazione Sia $\lim_{n\to\infty} a_n = L$. Allora, scelto $\varepsilon = 1$, esiste $\nu \in \mathbb{N}$ tale che

$$|a_n - L| < 1$$
 $\forall n > \nu;$

quindi se $n > \nu$ si ha

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|,$$

mentre se $n = 0, 1, 2, \dots, \nu$ risulta evidentemente

$$|a_n| \le \max\{|a_k| : k \in \mathbb{N}, k \le \nu\}.$$

In definitiva tutti i numeri $|a_n|$ sono non superiori alla quantità

$$M = \max\{1 + |L|, |a_0|, |a_1|, \dots, |a_{\nu}|\}.$$

La successione $\{(-1)^n\}$ mostra che il viceversa è falso. \square

Per le successioni reali divergenti si ha un risultato della stessa natura (esercizio 2.1.8).

Proprietà algebriche dei limiti

Proviamo anzitutto l'unicità del limite:

uniclim Proposizione 2.1.10 Il limite di una successione reale o complessa, se esiste, è unico.

Dimostrazione Supponiamo per assurdo che $\{a_n\}$ converga a L ed anche a M, con $L \neq M$; supponiamo L e M entrambi finiti. Fissato ε tale che $0 < \varepsilon < \frac{1}{2}|L - M|$, si ha per ipotesi

$$|a_n - L| < \varepsilon$$
 definitivamente; $|a_n - M| < \varepsilon$ definitivamente;

quindi, scegliendo un n che superi la maggiore delle due soglie, si ha anche

$$|L - M| = |L - a_n + a_n - M| \le |L - a_n| + |a_n - M| < 2\varepsilon < |L - M|,$$

e questo è assurdo. Pertanto deve essere L=M.

Lasciamo al lettore diligente l'analisi dei casi in cui L, o M, è $\pm \infty$.

Vediamo ora come si comportano i limiti rispetto alle operazioni algebriche.

operlim Teorema 2.1.11 Siano $\{a_n\}$, $\{b_n\}$ successioni reali o complesse. Se $a_n \to L$ e $b_n \to M$ per $n \to \infty$, con L e M finiti, allora:

(i)
$$a_n + b_n \to L + M \ per \ n \to \infty;$$

(ii)
$$a_n \cdot b_n \to L \cdot M \ per \ n \to \infty$$
.

Supposto inoltre $M \neq 0$, si ha:

(iii)
$$\frac{1}{b_n} \to \frac{1}{M} \ per \ n \to \infty;$$

(iv)
$$\frac{a_n}{b_n} \to \frac{L}{M} per n \to \infty$$
.

Dimostrazione (i)-(ii) Fissato $\varepsilon > 0$, si ha

$$|a_n - L| < \varepsilon$$
 definitivamente, $|b_n - M| < \varepsilon$ definitivamente;

quindi risulta definitivamente

$$|a_n + b_n - L - M| \le |a_n - L| + |b_n - M| < 2\varepsilon,$$

e ciò prova (i), tenuto conto dell'osservazione 2.1.4 (3). Inoltre

$$|a_n b_n - LM| = |a_n b_n - L b_n + L b_n - LM| \le$$

 $\le |a_n - L| \cdot |b_n| + |L| \cdot |b_n - M| < \varepsilon(|b_n| + |L|).$

D'altra parte, la successione $\{b_n\}$, essendo convergente, è limitata da una costante K > 0, in virtù della proposizione 2.1.9; ne segue

$$|a_n b_n - LM| < \varepsilon(K + |L|)$$
 definitivamente,

il che prova (ii), tenuto nuovamente conto dell'osservazione 2.1.4 (3).

(iii) Osserviamo anzitutto che b_n è definitivamente diversa da 0 essendo $M \neq 0$, ed anzi si ha $|b_n| \geq C > 0$ definitivamente (esercizio 2.1.9). Quindi per ogni $\varepsilon > 0$ si ha

$$\left| \frac{1}{b_n} - \frac{1}{M} \right| = \frac{|M - b_n|}{|b_n| \cdot |M|} < \frac{\varepsilon}{C|M|}$$
 definitivamente,

da cui la tesi.

(iv) Segue da (ii) e (iii). □

Per un analogo risultato nel caso di successioni (reali) divergenti si rimanda all'esercizio 2.1.18.

Limiti e ordinamento

Vediamo adesso come si comportano i limiti rispetto alla struttura d'ordine di \mathbb{R} .

confronto

Teorema 2.1.12 (di confronto) Siano $\{a_n\}$, $\{b_n\}$ successioni reali. Se $a_n \to L$ e $b_n \to M$ per $n \to \infty$, e se

$$a_n < b_n$$
 definitivamente,

allora si ha $L \leq M$.

Dimostrazione Supponiamo, per fissare le idee, che $L, M \in \mathbb{R}$ e, per assurdo, che L > M; scegliamo $0 < \varepsilon < \frac{1}{2}(L - M)$. Sia ν la soglia tale che

$$a_n \le b_n$$
, $|L - a_n| < \varepsilon$, $|M - b_n| < \varepsilon$ $\forall n > \nu$.

Per tali n si ha anche

$$L - \varepsilon < a_n \le b_n < M + \varepsilon$$
,

da cui $0 < L - M < 2\varepsilon$ per ogni $\varepsilon > 0$. Ciò è assurdo, per il lemma dell'arbitrarietà di ε (lemma 1.10.1).

Il caso $L = \pm \infty$ oppure $M = \pm \infty$ è analogo. \square

Esercizi 2.1

1. Si provi che si ha $\lim_{n\to\infty} a_n = L$, con $L \in \mathbb{C}$, se e solo se risulta $\lim_{n\to\infty} (a_n - L) = 0$.

limri

- 2. Sia $\{a_n\} \subseteq \mathbb{C}$. Si provi che $\{a_n\}$ ha limite $L \in \mathbb{C}$ se e solo se le due successioni reali $\{\operatorname{Re} a_n\}$ e $\{\operatorname{Im} a_n\}$ convergono entrambe, con limiti $\operatorname{Re} L$ e $\operatorname{Im} L$ rispettivamente.
- 3. Si provi che se $a_n \to L$, allora $|a_n| \to |L|$. È vero il viceversa?
- 4. Si provi che se $a_n \to 0$ e $\{b_n\}$ è limitata, allora $a_n \cdot b_n \to 0$.

limtel

5. Dimostrare che se $a_n \to L$, allora

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0.$$

È vero il viceversa?

6. Dimostrare che se $a_n \to L$ e $L \neq 0$, allora

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.$$

È vero il viceversa? Che succede se L=0?

geocompl

7. Si dimostri che se $q \in \mathbb{C}$, $|q| \ge 1$ e $q \ne 1$ allora la successione $\{q^n\}$ non ha limite.

divill

8. Provare che se $\{a_n\}$ è una successione reale divergente, allora $\{a_n\}$ non è limitata, ma che il viceversa è falso.

teops

- 9. (Teorema della permanenza del segno) Sia $\{a_n\} \subseteq \mathbb{C}$. Provare che:
 - (i) se $\lim_{n\to\infty}a_n\neq 0,$ allora esiste $\delta>0$ tale che

$$|a_n| \ge \delta$$
 definitivamente;

(ii) se $\{a_n\} \subseteq \mathbb{R}$ e se $\lim_{n\to\infty} a_n > 0$, allora esiste $\delta > 0$ tale che

$$a_n \ge \delta$$
 definitivamente.

10. Provare che

$$\lim_{n \to \infty} \frac{n}{a^n} = 0 \qquad \forall a > 1,$$

e dedurre che

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \qquad \forall a > 1, \quad \forall b \in \mathbb{R}.$$

limlog

11. Provare che

$$\lim_{n\to\infty}\frac{\log_a n}{n}=0 \qquad \forall a>0,\ a\neq 1,$$

e dedurre che

$$\lim_{n \to \infty} \frac{\log_a n}{n^b} = 0 \qquad \forall a > 0, \ a \neq 1, \quad \forall b > 0.$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0 \qquad \forall a > 1.$$

13. Provare che

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0.$$

14. Provare che

$$\lim_{n \to \infty} \sqrt[n]{n^a} = 1 \qquad \forall a \in \mathbb{R}.$$

15. Provare che

$$\lim_{n \to \infty} \sqrt[n]{n!} = +\infty.$$

[Traccia: ricordare l'esercizio 1.6.18.]

16. Calcolare, se esistono:

(i)
$$\lim_{n \to \infty} \sqrt[n]{2^n + 3^n}$$
, (ii) $\lim_{n \to \infty} \sqrt[n]{(-2)^n + 3^n}$, (iii) $\lim_{n \to \infty} \sqrt[n]{2^n + (-1)^{n+1}}$.

17. Calcolare, se esiste, $\lim_{n\to\infty} a_n$, ove $a_n=1$ se n è pari e $a_n=2^{-n}$ se n è dispari.

bot

18. Siano $\{a_n\}$ e $\{b_n\}$ successioni reali. Dimostrare che:

- (i) se $a_n \to +\infty$ e b_n è limitata inferiormente, allora $a_n + b_n \to +\infty$;
- (ii) se $a_n \to -\infty$ e b_n è limitata superiormente, allora $a_n + b_n \to -\infty$;
- (iii) se $a_n \to +\infty$ e $b_n \ge K > 0$ definitivamente, allora $a_n \cdot b_n \to +\infty$;
- (iv) se $a_n \to +\infty$ e $b_n \le K < 0$ definitivamente, allora $a_n \cdot b_n \to -\infty$;
- (v) se $a_n \to -\infty$ e $b_n \ge K > 0$ definitivamente, allora $a_n \cdot b_n \to -\infty$;
- (vi) se $a_n \to -\infty$ e $b_n \le K < 0$ definitivamente, allora $a_n \cdot b_n \to +\infty$;
- (vii) se $a_n \to +\infty$ oppure $a_n \to -\infty$, allora $1/a_n \to 0$;
- (viii) se $a_n \to 0$ e $a_n \neq 0$ definitivamente, allora $1/|a_n| \to +\infty$ (questo vale anche se $\{a_n\} \subseteq \mathbb{C}$);
- (ix) se $a_n \to 0$ e $a_n > 0$ definitivamente, allora $1/a_n \to +\infty$;
- (x) se $a_n \to 0$ e $a_n < 0$ definitivamente, allora $1/a_n \to -\infty$;
- (xi) negli altri casi, cioè per le cosiddette forme indeterminate seguenti:
 - (a) $+\infty \infty$ (per il limite di $a_n + b_n$ quando $a_n \to +\infty$ e $b_n \to -\infty$),
 - (b) $0 \cdot (\pm \infty)$ (per il limite di $a_n \cdot b_n$ quando $a_n \to 0$ e $b_n \to \pm \infty$),
 - (c) $\frac{\infty}{\infty}$ (per il limite di $\frac{a_n}{b_n}$ quando $a_n \to \pm \infty$ e $b_n \to \pm \infty$),
 - (d) $\frac{0}{0}$ (per il limite di $\frac{a_n}{b_n}$ quando $a_n \to 0$ e $b_n \to 0$),

si mostri con esempi che il corrispondente limite può essere un numero reale qualunque, oppure $\pm\infty$, oppure può non esistere.

cara

- 19. (Teorema dei carabinieri) Siano $\{a_n\}, \{b_n\}, \{c_n\}$ successioni reali tali che $a_n \leq$ $b_n \leq c_n$ definitivamente. Si provi che se $a_n \to L$ e $c_n \to L$ (con $L \in \mathbb{R}$ oppure $L = \pm \infty$), allora $b_n \to L$.
- 20. Calcolare, se esistono, i seguenti limiti:

(i)
$$\lim_{n \to \infty} \left(\sqrt{4n} - \sin 3^n 8^{-\sqrt{n}} \right)$$
, (ii) $\lim_{n \to \infty} n \cos \frac{1}{n}$,

(iii)
$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right)$$
, (iv) $\lim_{n \to \infty} n \sin^2 \frac{1}{\sqrt{n}}$,

(v)
$$\lim_{n \to \infty} {2n \choose n}$$
, (vi) $\lim_{n \to \infty} 2^{-n^2} n!$,

(v)
$$\lim_{n \to \infty} {2n \choose n}$$
, (vi) $\lim_{n \to \infty} 2^{-n^2} n!$, (vii) $\lim_{n \to \infty} (4^n + 10^n - 11^n)$, (viii) $\lim_{n \to \infty} (3^{n+1} - 3^{\sqrt{n^2+1}})$.

21. Dimostrare che se $\{a_n\} \subseteq \mathbb{R}, a_n \to L \in L > 0$, allora

$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{L} \quad \forall k \in \mathbb{N}^+, \qquad \lim_{n \to \infty} \sqrt[n]{a_n} = 1.$$

22. Si provi che se $\{a_n\}\subseteq]0,\infty[$ e $a_n\to L,$ con $L\in [0,\infty[$, allora

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=0}^{n-1} a_k} = L.$$

È vero il viceversa? Che succede se $L = +\infty$?

potcont

- 23. Sia $\{b_n\}$ una successione di numeri positivi tale che $b_n \to b$, con b > 0. Si provi che $b_n^x \to b^x$ per ogni $x \in \mathbb{R}$.
- 24. (Teorema di Cesàro) Sia $\{a_n\}$ una successione reale o complessa. Si provi che se $a_n \to \lambda$, allora

$$\frac{a_1 + a_2 + \ldots + a_n}{n} \to \lambda.$$

Si estenda questo risultato al caso $\{a_n\} \subset \mathbb{R}$ e $\lambda = \pm \infty$. [Traccia: fissato $\varepsilon > 0$, sia $\nu \in \mathbb{N}$ tale che $|a_n - \lambda| < \varepsilon$ per ogni $n \ge \nu$. Si osservi che, per n grande, la quantità $\frac{1}{n}\sum_{k=\nu+1}^{n}a_k$ è vicina a λ , mentre $\frac{1}{n}\sum_{k=1}^{\nu}a_k$ è vicino a 0...]

Serie 2.2

serie

Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione $\{a_n\}$ reale o complessa, andiamo a costruire una nuova successione $\{s_n\}$ in questo modo:

$$\begin{cases} s_0 = a_0 \\ s_{n+1} = s_n + a_{n+1} & \forall n \in \mathbb{N}. \end{cases}$$