CST 311 Algorithm Analysis & Design

Al Lake
Oregon Institute of Technology
Chapter 2
Getting Started

Sorting Problem

- An algorithm contains input, output and a procedure.
- The sorting problem is defined as:
 - Input: A sequence of n numbers $(a_1, a_2, ..., a_n)$.
 - Output: A permutation or reordering $(a'_1, a'_2, ..., a'_n)$ of the input sequence such that $a'_1 \le a'_2 \le ... \le a'_n$.
- The numbers that are sorted are know as keys.

Pseudocode

- The pseudocode for insertion sort is presented as a procedure called Insertion-Sort, which takes as a parameter an array A[1..n] containing a sequence of length n that is to be sorted.
- The input numbers are sorted in place, rearranged within the array.
- A constant number of the array elements are stored outside the array at any time.
- The inpute array A contains the sorted output sequence when the sort is finished.

Insertion-Sort

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

Loop invariants and the correctness of insertion sort

Analyzing an Algorithm

- Analyzing an algorithm means to predict the resources that the algorithm requires.
- Principally, the computational time is measured.

Analysis of Insertion Sort

- Input size: depends on the problem being solved.
 - Number of items in the input
 - Total number of bits needed to represent the input
- Running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.

Insertion-Sort

Insertion-Sort(A)		cost	times
1 for	$j \leftarrow 2 \text{ to } length[A]$	c_1	n
2 do $key \leftarrow A[j]$		Co	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	$i \leftarrow j-1$	C4	n-1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

Worst-case Running Time

- Worst-case running time is generally the longest running time for any input of size n.
- Worst-case running time is an upper bound on the running time for any input.

Average Case

- Average-case or the expected running time of an algorithm is a probabilistic analysis technique.
- Average-case will require defining what constitutes the 'average' input for the problem.
- Often, we will assume that all inputs of a given size are equally likely. [how realistic is this?]
- Sometimes we will use a randomized algorithm [what are the drawbacks for this?]

Order of Growth

- In order to easily accomplish the analysis of the insertion sort we will use simplifying abstractions.
- The worst-case running time is:
 - $an^2 + bn + c$
 - For some constants a, b, and c, that depend on the statement costs c_i.
 - So the rate of growth will be an²
 - Since the lower-order terms are relatively insignificant for large n.
 - Worst-case time of $\Theta(n^2)$

Divide-and-conquer

- Algorithms are generally recursive in structure.
- Algorithm analysis is typically a divide-and-conquer approach.
 - Divide the problem into a numer of subproblems
 - Conquer the subproblems by solving them recursively
 - Combine the solutions to the subproblems

Analyzing Divide-andconquer Algorithms

- When an algorithm contains a recursive call to itself, its running time can be describedby a recurrence equation or recurrence.
- The recurrence describes the overall running time on a problem of size n in terms of the running time on smaller inputs.