240A Winter 2022: Computing Assignment IV

DUE: 6pm on 3/3. Upload to Canvas an RMD file and either a PDF or html file.

Your compiled file should contain slides that you will present during discussion (if your group is chosen).

One selected group will present problem 1 and the other will present problem 2

1. Power of a t-test

You will generate data from a regression model with one right-hand-side variable. The model is:

$$y_i = \beta_0 + x_i \beta_1 + e_i,$$

where $\beta_0 = 0$, $x_i \sim iidN(0,1)$, and $e_i = \sum_{j=1}^J z_{ji}^2 - J$, where $z_{ji} \sim iidN(0,1)$. The error, e_i , is distributed as $\chi^2_{(J)}$ minus its mean. I chose this structure because it implies that the finite sample distribution of estimators and test-statistics is not normal.

You are interested in the power of a two-sided t-test of $H_0: \beta_1 = 0$.

- 1. Simulate the power curve for the test for J = 1 and $n \in \{25, 100\}$. Plot the power against β_1 for each of the two values of n. Include on your plot the asymptotic power curve (which we derived in class).
- 2. Simulate the power curve for the test for $J \in \{1, 5\}$ and n = 100. Plot the power against β_1 for each of the two values of J. Include on your plot the asymptotic power curve (which we derived in class).
- 3. Simulate the power curve for the test for J=1 and $\beta_1 \in \{2/n^{0.4}, 2/n^{0.5}, 2/n^{0.6}\}$. Plot the power against n for each of the three sequences of β_1 .

2. Testing a hypothesis about the ratio of coefficients

Consider the model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i$$

You want to test $H_0: \beta_1/\beta_2 = \theta_0$. Your test will be based on a Wald statistic using either the bootstrap or asymptotic theory.

Suppose the data generating process is $\beta_0 = 0$, $\beta_1 = 1$, $\beta_2 \in \{0.1, 0.5, 1\}$, $x_{ji} \sim iidN(0, 1)$, and $e_i \sim iidN(0, 3)$. Hansen (2021) shows this example in Section 9.17 of his book.

Questions

- 1. Derive the Wald statistic and apply the delta method to obtain its asymptotic null distribution. Call this statistic W_0 .
- 2. It is possible to re-write the null hypothesis as $H_0: \beta_1 \theta_0\beta_2 = 0$. Derive the Wald statistic and apply the delta method to obtain its asymptotic null distribution. Call this statistic W_1 .
- 3. Compare the size of four test procedures: (i) Reject if W_0 exceeds the 0.9 quantile of its asymptotic null distribution, (ii) Reject if W_1 exceeds the 0.9 quantile of its asymptotic null distribution, (iii) Reject if W_0 exceeds the 0.9 quantile of its bootstrap distribution under the null, (iv) Reject if W_1 exceeds the 0.9 quantile of its bootstrap distribution under the null.

Simulation Procedure

- 1. Draw a sample of size n=25 from the DGP. Regress y_i on x_{1i} and x_{2i} to obtain the OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$.
- 2. Compute W_0 and W_1 . We are simulating the size of the testing procedures, which means that the null hypothesis is true. That means, when $\beta_2 = 0.1$, we test $H_0: \beta_1/\beta_2 = 10$, when $\beta_2 = 0.5$, we test $H_0: \beta_1/\beta_2 = 2$, and when $\beta_2 = 1$, we test $H_0: \beta_1/\beta_2 = 1$. More simply, use $\theta_0 = 1/\beta_2$
- 3. Use a pairs bootstrap to draw 200 bootstrap samples. For each bootstrap resample, compute W_0^* and W_1^* . Remember that you need to re-center the statistic so that the null hypothesis is true in the bootstrap world.
- 4. Repeat step 1-3 a large number of times. For each run, you will return the result of the four tests.
- 5. Report the rejection rate and interpret the results.