

III. országos magyar matematikaolimpia XXX. EMMV Déva, 2020. február 11–16.

XI. osztály – I. forduló

1. feladat. Az $(x_n)_{n\in\mathbb{N}^*}$ valós számsorozatot a következőképpen értelmezzük:

$$x_1 = 1$$
 és $x_{n+1} = n \cdot x_n + n - 1$,

bármely $n \ge 1$ esetén. Ha

$$a_n = \sum_{k=1}^n \frac{1}{1+x_k}$$
 és $b_n = \sum_{k=1}^n \frac{k-1}{1+x_{k+1}}$,

számítsd ki a következő határétékeket:

- a) $\lim_{n\to\infty} a_n$;
- b) $\lim_{n\to\infty}b_n$.
- **2. feladat.** Ha $A \in \mathcal{M}_2(\mathbb{R})$, akkor igazold a

$$\frac{8}{3}\det(A^2 + A + I_2) \ge (1 - \det A)^2 + (1 + \operatorname{Tr} A)^2$$

egyenlőtlenséget!

- **3. feladat.** Az $(x_n)_{n\geq 1}$ sorozatot a következőképpen értelmezzük: $x_1\in (0,1)$ és $x_{n+1}=x_n-x_n^{k+1}$, minden $n\in \mathbb{N}^*$ esetén, ahol $k\in \mathbb{N}^*$ rögzített.
 - a) Igazold, hogy a sorozat konvergens és számítsd ki a határértékét!
 - b) Számítsd ki a $\lim_{n\to\infty} n^{\frac{1}{k}}x_n$ határértéket!
- **4. feladat.** Legyen $n \geq 2$ egy természetes szám és $A, B \in \mathcal{M}_n(\mathbb{C})$, úgy, hogy $\det(A) = 1$ és a B mátrix összes eleme egyes. Igazold, hogy ha $\det(A^{-1} + B) = 1$, akkor A elemeinek összege nulla!