Semi-Supervised Learning

Machine Learning Meetup Aachen Andrei Ionita 5th September, 2017

Start-ups

Overview

- 1. What and why SSL?
- 2. Definition
- 3. Self-Training
- 4. Co-Training
- 5. Graph-based learning
- 6. SSL in Nature
- 7. Conclusion

What is it?

- Between Supervised and Unsupervised ML
- Training Phase with
 - Examples $x_1, ..., x_l$ that have labels $y_1, ..., y_l$
 - unlabeled examples $x_{l+1}, ..., x_{l+u}$
 - $l \ll u$
- Take advantage of the unlabeled data in the Test Phase

Why we need it?

- Lots of available data that is unlabeled
 - Images on the web
 - Categories of documents, keywords, etc.
- Labeling is costly
- Unlabeled data is abundant and cheap

Applications

- Natural Language Parsing
 - Penn Chinese Treebank
 - 2 years for 4000 sentences
- Document classification
- Spam detection
- Handwriting detection
- Video/Audio recognition
- many others, more than you think

Transductive vs. Inductive

- Vapnik (70s) introduced
 - Transductive learning: infer the correct labels for the given unlabeled data
 - Inductive learning: infer the correct mapping X to Y
- Most SSL algorithms are inductive

Self-Training

- 1. Classifier C is trained with the labeled data
- 2. C is used to classify the unlabeled data
- 3. Add determined labeled data to the training set
 - Variations:
 - Add most confident labeled object
 - Add all labeled objects
 - Add all labeled objects, weighed by confidence
- 4. Back to step 1; repeat as long as feedback loop is positive

Self-Training (2)

Propagating 1-nearest-neighbor applied to the 100-little-green-alien data.

Self-Training: Problem

• A mistake can be used to reinforce itself

Figure 2.4: Propagating 1-nearest-neighbor illustration featuring an outlier: (a) after first few iterations, (b,c) steps highlighting the effect of the outlier, (d) final labeling of all instances, with the entire rightmost cluster mislabeled.

Co-Training

- Two different and independent perspectives
- Two features of an object
 - e.g. content and subject of emails
 - Task: spam detection

Co-Training (2)

- 1. Train two models independently on the same training pool
- 2. Determine and add most confident k emails for each
 - Add positive and negative labels for both models
 - Keep proportion of positive:negative labels
- 3. Go back to Step 1
- 4. Continue until all are labeled

The result surpasses the ones where each model is trained separately and applied on a test set.

Applications of Co-Training?

• Actor/Actress Recognition using Audio and Video sequence

Co-EM

- 1. Train two classifiers on features A and B
- 2. Probabilistically label all unlabeled data by applying A
- 3. Train B on A's tentatively labeled data, re-label all initially unlabeled (probabilistically)
- 4. Re-training A on B's tentatively labeled data, re-label all initially unlabeled (probabilistically)
- 5. Repeat until the classifiers converge

Co-EM improves on Co-Training

Extensions

- Even when the features split is random, results are better
- Find a split that achieves maximum independency!
- The algorithms are more robust against the underlying assumptions that the classifiers make
- Multiview: train multiple classifiers on different features
 - Classify unlabeled data with all classifiers
 - Add majority vote label

Graph-based regularization

- Represent each example (labeled/unlabeled) as vertex in a graph
- Nearby vertices should have similar labels (label smoothness property)

Graph-based learning

- Edges = similarity weights computed from features
- Heavy edges correspond to vertices that have the same label

Graph-based learning (2)

- Objective: calculate similarity on all paths
- Predict labels that
 - (1) minimize the loss on labeled data
 - (2) ensures the smoothness of labeled and unlabeled data

05/09/2017

Graph-based learning (3)

• Person identification: time, color, face edges

image 4005

neighbor 1: time edge

neighbor 2: color edge

neighbor 3: color edge

neighbor 4: color edge

neighbor 5: face edge

Graph-based learning (4)

- Electric network interpretation
- Edges as resistors with conductance w_{ij}
- 1 Volt battery connects to labeled points
- The voltage at the nodes are the labeled values

05/09/2017

Graph-based learning (5)

- Random walk interpretation
- Random walk interpretation Randomly walk from node i to j with probability $\frac{w_{ij}}{\sum_k w_{ik}}$
- Stop when arriving at a labeled node

05/09/2017

SSL in Nature

- Visual Recognition with temporal association
- A human can recognize a face in motion, even if she knows it from two angles
- However: transforming a face A to another face B by artificially rotating goes unnoticed

Conclusion

- Unlabeled data is everywhere
- SSL combines labeled and unlabeled data
- It achieves a better performance than
 - Supervised machine learning
 - Clustering
- Widely used
 - Document/Image classification
 - Video/Audio recognition
 - Handwriting recognition

References and Image Sources

- Semi-Supervised Learning Tutorial, Xiaojin Zhu, ICML 2007
- Semi-Supervised Learning, Piyush Rai, 2011, University Utah
- Data Mining Practical Machine Learning, Witten, Frank, Hall
- Semi-Supervised Learning, Chapelle, Schölkopf, Zien
- Semi-Supervised Learning Literature Survey, Xiaojin Zhu, 2008

...Thank you!