Note This problem set is not yet complete. I will add some problems about deductions after we cover the relevant content in Friday's class.

- 1. Recall that we defined first-order languages in a fairly minimalist way, which includes only two logical connectives \neg , \lor , and one quantifier \forall . This problem shows how the other common symbols \land , \rightarrow , \exists can be defined in terms of these, and confirms that the semantics are as we would expect.
 - (a) For a formula α and variable u in a first-order language \mathcal{L} , we will write $(\exists u)(\alpha)$ as short-hand for the formula

$$(\neg(\forall u)((\neg\alpha))).$$

- (More informally, we can also omit some parentheses and write simply $\neg \forall u \neg \alpha$). Let s be a vaf for an \mathcal{L} -structure \mathcal{A} with universe A. Prove that $(\exists u)(\alpha)$ is true in \mathcal{A} with s if and only if there is $a \in A$ such that α is true in \mathcal{A} with s[u|a].
- (b) For two formulas α, β , we will write $\alpha \wedge \beta$ as short-hand for the formula $(\neg((\neg\alpha) \vee (\neg\beta)))$ (or, less formally, $\neg(\neg\alpha \vee \neg\beta)$). Prove that $\alpha \wedge \beta$ is true in \mathcal{A} with s if and only if both α and β are true in \mathcal{A} with s.
- (c) For two formulas α, β , we will write $\alpha \to \beta$ as short-hand for the formula $((\neg \alpha) \lor \beta)$. Prove that if $\alpha \to \beta$ and α and both true in \mathcal{A} with s, then so is β .
- 2. Prove that the \mathcal{L}_{NT} -formula $(\forall x)(=+x0x)$ (i.e. more informally, the formula $(\forall x)(x+0=x)$) logically implies the formula =+000 (i.e. more informally, the formula 0+0=0).
- 3. Let \mathcal{L} be a first-order language, and let \mathcal{A} be a structure for \mathcal{L} .
 - (a) Let ϕ be a sentence in \mathcal{L} (i.e. a formula with no free variables). Prove that ϕ is true in \mathcal{A} if and only if $(\neg \phi)$ is not true in \mathcal{A} .
 - (b) Give an example to show that the conclusion of part (a) does not necessarily hold if ϕ has a free variable.
- 4+ {IOU: More problems to be posted after Friday's class}