Synthetic Dataset Report

Original Dataset Overview:

The original dataset, Coles_cleaned.csv, contains **20,608 rows** and **8 columns**, representing product-level data from a retail store. Key fields include:

• product_code: Unique identifier

category: Product category

• item name: Name of the item

best_price and item_price: Pricing metrics

unit_price and best_unit_price: Unit-based pricing

• link: Product URL

This dataset formed the basis for creating a synthetic dataset simulating weekly discounts over an 8-week promotional period.

Synthetic Dataset Summary:

The cleaned synthetic dataset, Coles_synthetic_8weeks_v3_cleaned.csv, was derived using a custom rule-based discount logic. It contains:

- 164,864 rows
- 19,782 unique products
- 8 weeks of coverage
- Each product appears exactly once per week

Discount Strategy Logic

- One random brand per category per week receives a 50% discount (excluding Coles).
- 2. 30% of remaining brands get randomly assigned 20% or 30% discounts.
- 3. 20% of remaining brands get 10% discounts.
- 4. Coles brand items only receive 20% or 30% discounts, never 50%.
- 5. All other items remain at full price.
- 6. All discounted prices were rounded up to the nearest \$0.50.

Dataset Quality Assessment:

Quality Assurance Checks:

Performed using the script quality_check.py and notebook advanced_quality_check.ipynb.

Category	Description	Result
Missing Values	No missing values across columns	<u> </u>
		Pass
Weekly Coverage	All 8 weeks present, each product appears once per	<u>~</u>
	week	Pass
Discount Logic	Coles never received 50% off, only one 50%-off brand	<u>~</u>
	per week	Pass
Discount	Discounted prices correctly rounded to \$0.50	<u>~</u>
Accuracy		Pass
Price Outliers	Prices capped to a min of \$1.00 and max of \$100.00	<u>~</u>
		Pass
Clustering Check	4 clean clusters detected via K-Means	<u>~</u>
		Pass
Z-Score Outliers	1.8% rows flagged, mostly minor edge cases	<u>~</u>
		Pass

Visualizations and Interpretations:

• K-Means Cluster Distribution:

What it shows:

The results of clustering all rows based on price and discount-related features.

• Interpretation:

- Cluster 0: Regular-priced or non-discounted items
- Cluster 2 & 3: Discounted but moderately priced items
- Cluster 1: High-end or rare items, either expensive or deeply discounted

• Significance:

- The presence of **4 distinct clusters** indicates the dataset has **good structural segmentation**.
- This ensures LightGBM can differentiate between types of promotional behaviors during training.
- Lack of micro-clusters or noise post-cleaning confirms data quality and logical grouping.

• Boxplots of Discounted Prices (Weeks 1, 4, 8)

• What they show:

Category-wise spread of DiscountedPrice values for select weeks. These visualizations check for:

- Outliers
- Central tendency (median)
- Price spread consistency

• Interpretation:

- Median and quartile ranges are stable across weeks, showing price consistency
- No values exceed \$100 or fall below \$1, confirming effective price capping
- No category dominates or exhibits extreme variance, implying pricing fairness across product types
- Supports model training by providing stable learning boundaries without skewed data