C	Contents		7		nbinatorics	15
1	Data structures	3		7.1 7.2	Factorial	15 16
_	1.1 Disjoint set with rollback	3		7.3	Lucas theorem	16
	1.2 Min-Max queue	3		7.4	Stars and bars	16
	1.3 Sparse table	3		7.5	N choose K	16
		3		7.6	Catalan	16
	1.4 Squirtle decomposition			7.7	Burnside's lemma	16
	1.5 In-Out trick	3		7.8	Prime factors of N!	16
	1.6 Parallel binary search	3				
	1.7 Mo's algorithm	4	8	Nun	nber Theory	16
	1.8 Ordered tree	4		8.1	Goldbach conjecture	16
	1.9 Unordered tree	4		8.2	Sieve of Eratosthenes	16
	1.10 D-dimensional Fenwick tree	4		8.3	Phi of euler	16
	1.11 Dynamic segment tree	5		8.4	Miller-Rabin	16
	1.12 Persistent segment tree	5		8.5	Pollard-Rho	17
	1.13 Wavelet tree	5		8.6	Amount of divisors	17
	1.14 Li Chao tree	5		8.7	Bézout's identity	17
	1.15 Treap	6		8.8	GCD	17
				8.9	LCM	17 17
2	Graphs	6			Chinese remainder theorem	17
	2.1 Tarjan algorithm (SCC)	6		0.11	Chinese remainder theorem	11
	2.2 Kosaraju algorithm (SCC)	7	9	Mat	h	17
	2.3 Two Sat	7		9.1	Progressions	17
	2.4 Topological sort	7		9.2	Mod multiplication	17
	2.5 Cutpoints and Bridges	7		9.3	Fpow	17
	2.6 Detect a cycle	7		9.4	Fibonacci	17
	2.7 Euler tour for Mo's in a tree	7				
	2.8 Lowest common ancestor (LCA)	7	10		metry	18
	2.9 Guni	8			Real	18
	2.10 Centroid decomposition	8			Point	18
	2.11 Heavy-light decomposition	8			Angle Between Vectors	18
	2.12 Link-Cut tree	8			Area Poligon	18
					Area Poligon In Circle	18
3	Flows	9			Closest Pair Of Points	19 19
	3.1 Dinic $\mathcal{O}(min(E \cdot flow, V^2 E))$	9			Distance Point Line	19
	3.2 Min cost flow $\mathcal{O}(min(E \cdot flow, V^2 E))$	10			Get Circle	19
	3.3 Hopcroft-Karp $\mathcal{O}(E\sqrt{V})$	10			Ontersects Line	19
	3.4 Hungarian $\mathcal{O}(N^3)$	11			Intersects Line Segment	19
					2 Intersects Segment	19
4	Strings	11			3 Is Convex	19
	4.1 Hash	11			1 Perimeter	20
	4.2 KMP	12			6 Point In Convex Polygon logN	20
	4.3 KMP automaton	12			8 Point In Polygon	20
	4.4 Z algorithm	12		10.17	7 Point In Segment	20
	4.5 Manacher algorithm	12		10.18	Points Of Tangency	20
	4.6 Suffix array	12			Projection	20
	4.7 Suffix automaton	13			Projection Line	20
	4.8 Aho corasick	13			Reflection Line	20
	4.9 Eertree	14			2 Signed Distance Point Line	20
	4.0 Educe	11			Sort Along Line	20
5	Dynamic Programming	14		10.24	Intersects Line Circle	20
-	5.1 Matrix Chain Multiplication	14	11	P :+ ·	tricks	21
	5.2 Digit DP	14	11		Bitset	21
	5.3 Knapsack 0/1	14		11.1	DIUDOU	41
	5.4 Convex Hull Trick $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)$	14				
	5.5 Divide and conquer $\mathcal{O}(kn^2) \Rightarrow \mathcal{O}(k \cdot nlogn)$.	15				
	5.6 Knuth optimization $\mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2)$	15				
	5.7 Do all submasks of a mask	15				
6	Game Theory	15				
J	6.1 Grundy Numbers	15 15				
	o.i Oranay mambolo	10				

Think twice, code once Template

```
tem.cpp
 #pragma GCC optimize("Ofast,unroll-loops,no-stack-
     protector")
 #include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
 #include "debug.h"
 #else
 #define debug(...)
 #endif
#define df(b, e) ((b) > (e))
#define fore(i, b, e) for (auto i = (b) - df(b, e); i
     != e - df(b, e); i += 1 - 2 * df(b, e))
 #define sz(x) int(x.size())
 #define all(x) begin(x), end(x)
 #define f first
 #define s second
 #define pb push_back
using 1li = long long;
using ld = long double;
using ii = pair<int, int>;
using vi = vector<int>;
 int main() {
   cin.tie(∅)->sync_with_stdio(∅), cout.tie(∅);
   // solve the problem here D:
   return 0;
  debug.h
 template <class A, class B>
ostream & operator << (ostream &os, const pair<A, B> &
   return os << "(" << p.first << ", " << p.second << "</pre>
       )";
}
 template <class A, class B, class C>
basic_ostream<A, B> & operator << (basic_ostream<A, B>
      &os, const C &c) {
   os << "[";
   for (const auto &x : c)
    os << ", " + 2 * (&x == &*begin(c)) << x;
   return os << "]";</pre>
void print(string s) { cout << endl; }</pre>
 template <class H, class... T>
 void print(string s, const H &h, const T&... t) {
   const static string reset = "\033[0m";
   bool ok = 1;
   do {
     if (s[0] == '\"') ok = 0;
     else cout << "\033[1;34m" << s[0] << reset;</pre>
    s = s.substr(1);
   } while (s.size() && s[0] != ',');
   if (ok) cout << ": " << "\033[3;95m" << h << reset;</pre>
  print(s, t...);
Randoms
mt19937 rng(chrono::steady_clock::now().
```

```
time_since_epoch().count());
uniform_int_distribution<>(1, r)(rng);
```

Fastio

```
char gc() { return getchar_unlocked(); }
 void readInt() {}
 template <class H, class... T>
 void readInt(H &h, T&&... t) {
   char c, s = 1;
   while (isspace(c = gc()));
   if (c == '-') s = -1, c = gc();
   for (h = c - '0'; isdigit(c = gc()); h = h * 10 + c
   h *= s;
   readInt(t...);
 }
 void readFloat() {}
 template <class H, class... T>
 void readFloat(H &h, T&&... t) {
   int c, s = 1, fp = 0, fpl = 1;
   while (isspace(c = gc()));
   if (c == '-') s = -1, c = gc();
   for (h = c - '0'; isdigit(c = gc()); h = h * 10 + c
       - '0');
  h *= s;
   if (h == '.')
     for (; isdigit(c = gc()); fp = fp * 10 + c - '0',
         fpl *= 10):
   h += (double)fp / fpl;
   readFloat(t...);
Compilation (gedit /.zshenv)
 touch a_in{1..9} // make files a_in1, a_in2,..., a_in9
 tee {a..m}.cpp < tem.cpp // "" with tem.cpp like base</pre>
 cat > a_in1 // write on file a_in1
 gedit a_in1 // open file a_in1
 rm -r a.cpp // deletes file a.cpp :'(
 red='\x1B[0;31m'
 green='\x1B[0;32m'
 noColor='\x1B[0m'
 alias flags='-Wall -Wextra -Wshadow -
     D_GLIBCXX_ASSERTIONS -fmax-errors=3 -02 -w'
 go() { g++ --std=c++11 $2 ${flags} $1.cpp && ./a.out }
 debug() { go $1 -DLOCAL < $2 }</pre>
 run() { go $1 "" < $2 }
 random() { // Make small test cases!!!
  g++ --std=c++11 $1.cpp -o prog
  g++ --std=c++11 gen.cpp -o gen
  g++ --std=c++11 brute.cpp -o brute
  for ((i = 1; i <= 200; i++)); do
   printf "Test case #$i"
   ./gen > in
   diff -uwi <(./prog < in) <(./brute < in) > $1_diff
   if [[ ! $? -eq 0 ]]; then
   printf "${red} Wrong answer ${noColor}\n"
   break
   printf "${green} Accepted ${noColor}\n"
   fi
  done
 test() {
  g++ --std=c++11 $1.cpp -o prog
  for ((i = 1; i \le 50; i++)); do
   [[ -f $1_in$i ]] || break
   printf "Test case #$i'
   diff -uwi <(./prog < $1_in$i) $1_out$i > $1_diff
```

```
if [[ ! $? -eq 0 ]]; then
                                                              T qmin() { return front().f; }
   printf "${red} Wrong answer ${noColor}\n"
                                                            };
                                                           1.3
                                                                 Sparse table
   printf "${green} Accepted ${noColor}\n"
                                                            template <class T, class F = function<T(const T&,</pre>
   fi
                                                                 const T&)>>
 done
                                                            struct Sparse {
}
                                                              int n;
Bump allocator
                                                              vector<vector<T>> sp;
static char buf[450 << 20];</pre>
                                                              F fun:
void* operator new(size_t s) {
   static size_t i = sizeof buf; assert(s < i);</pre>
                                                              Sparse(vector<T> &a, const F &fun) : n(sz(a)), sp(1
                                                                  + __lg(n)), fun(fun) {
  return (void *) &buf[i -= s];
                                                                sp[0] = a;
void operator delete(void *) {}
                                                                for (int k = 1; (1 << k) <= n; k++) {
                                                                  sp[k].resize(n - (1 << k) + 1);
     Data structures
                                                                  fore (1, 0, n - (1 << k) + 1) {
                                                                    int r = 1 + (1 << (k - 1));
     Disjoint set with rollback
                                                                    sp[k][1] = fun(sp[k - 1][1], sp[k - 1][r]);
struct Dsu {
   vector<int> pr, tot;
                                                                }
   stack<ii> what;
   Dsu(int n = 0) : pr(n + 5), tot(n + 5, 1) {
                                                              T query(int 1, int r) {
    iota(all(pr), ∅);
                                                                int k = _{-}lg(r - l + 1);
   }
                                                                return fun(sp[k][1], sp[k][r - (1 << k) + 1]);
                                                              }
   int find(int u) {
                                                            };
    return pr[u] == u ? u : find(pr[u]);
                                                                  Squirtle decomposition
                                                           1.4
   }
                                                           The perfect block size is squirtle of N
   void unite(int u, int v) {
    u = find(u), v = find(v);
                                                            int blo[N], cnt[N][B], a[N];
    if (u == v)
      what.emplace(-1, -1);
                                                            void update(int i, int x) {
    else {
                                                              cnt[blo[i]][x]--;
      if (tot[u] < tot[v])</pre>
                                                              a[i] = x;
         swap(u, v);
                                                              cnt[blo[i]][x]++;
      what.emplace(u, v);
                                                            }
      tot[u] += tot[v];
      pr[v] = u;
                                                            int query(int 1, int r, int x) {
    }
                                                              int tot = 0:
   }
                                                              while (1 \le r)
                                                                if (1 % B == 0 && 1 + B - 1 <= r) {
   ii rollback() {
                                                                  tot += cnt[blo[1]][x];
    ii last = what.top();
                                                                  1 += B;
    what.pop();
                                                                } else {
    int u = last.f, v = last.s;
                                                                  tot += (a[1] == x);
    if (u != -1) {
                                                                  1++;
      tot[u] -= tot[v];
                                                                }
      pr[v] = v;
                                                              return tot;
    }
                                                            }
    return last;
                                                           1.5 In-Out trick
   }
};
                                                            vector<int> in[N], out[N];
                                                            vector<Query> queries;
1.2
     Min-Max queue
 template <class T>
                                                            fore (x, 0, N) {
struct MinQueue : deque< pair<T, int> > {
                                                              for (int i : in[x])
   // add a element to the right {val, pos}
                                                                add(queries[i]);
   void add(T val, int pos) {
                                                              // solve
    while (!empty() && back().f >= val)
                                                              for (int i : out[x])
      pop_back();
                                                                rem(queries[i]);
    emplace_back(val, pos);
                                                            }
                                                           1.6 Parallel binary search
   // remove all less than pos
  void rem(int pos) {
                                                            int lo[Q], hi[Q];
    while (front().s < pos)</pre>
                                                            queue<int> solve[N];
      pop_front();
                                                            vector<Query> queries;
```

fore (it, 0, 1 + __lg(N)) {

}

```
fore (i, 0, sz(queries))
    if (lo[i] != hi[i]) {
      int mid = (lo[i] + hi[i]) / 2;
      solve[mid].emplace(i);
   fore (x, 0, n) {
    // simulate
    while (!solve[x].empty()) {
      int i = solve[x].front();
       solve[x].pop();
       if (can(queries[i]))
        hi[i] = x;
      else
         lo[i] = x + 1;
    }
  }
}
      Mo's algorithm
1.7
 vector<Query> queries;
 // N = 1e6, so aprox. sqrt(N) +/- C
uniform_int_distribution<int> dis(970, 1030);
 const int blo = dis(rng);
 sort(all(queries), [&](Query a, Query b) {
   const int ga = a.1 / blo, gb = b.1 / blo;
   if (ga == gb)
     return (ga & 1) ? a.r < b.r : a.r > b.r;
   return a.1 < b.1;
});
```

int 1 = queries[0].1, r = 1 - 1;

for (Query &q : queries) {

while (r < q.r)
add(++r);</pre>

while (r > q.r)

while (1 < q.1)

while (1 > q.1)

ans[q.i] = solve();

rem(r--);

rem(1++);

add(--1);

To make it faster, change the order to hilbert(l, r)

```
lli hilbert(int x, int y, int pw = 21, int rot = 0) {
   if (pw == 0)
      return 0;
   int hpw = 1 << (pw - 1);
   int k = ((x < hpw ? y < hpw ? 0 : 3 : y < hpw ? 1 :
      2) + rot) & 3;
   const int d[4] = {3, 0, 0, 1};
   lli a = 1LL << ((pw << 1) - 2);
   lli b = hilbert(x & (x ^ hpw), y & (y ^ hpw), pw - 1
      , (rot + d[k]) & 3);
   return k * a + (d[k] ? a - b - 1 : b);
}</pre>
```

Mo's algorithm with updates in $\mathcal{O}(n^{\frac{b}{3}})$

- Choose a block of size $n^{\frac{2}{3}}$
- Do a normal Mo's algorithm, in the Query definition add an extra variable for the updatesSoFar
- Sort the queries by the order (l/block, r/block, updatesSoFar)
- If the update lies inside the current query, update the data structure properly

```
struct Update {
   int pos, prv, nxt;
};

void undo(Update &u) {
```

```
if (1 <= u.pos && u.pos <= r) {
        rem(u.pos);
        a[u.pos] = u.prv;
        add(u.pos);
      } else {
       a[u.pos] = u.prv;
    }
  • Solve the problem :D
    l = queries[0].l, r = l - 1, upd = sz(updates) - 1;
    for (Query &q : queries) {
      while (upd < q.upd)</pre>
        dodo(updates[++upd]);
      while (upd > q.upd)
       undo(updates[upd--]);
      // write down the normal Mo's algorithm
      Ordered tree
 #include <ext/pb_ds/assoc_container.hpp>
 #include <ext/pb_ds/tree_policy.hpp>
 using namespace __gnu_pbds;
 template <class K, class V = null_type>
 using ordered_tree = tree<K, V, less<K>, rb_tree_tag,
     tree_order_statistics_node_update>;
 // less_equal<K> for multiset, multimap (?
 #define grank order_of_key
 #define qkth find_by_order
1.9 Unordered tree
 struct chash {
   const uint64_t C = uint64_t(2e18 * 3) + 71;
   const int R = rng();
   uint64_t operator ()(uint64_t x) const {
     return __builtin_bswap64((x ^ R) * C); }
 };
 template <class K, class V = null_type>
 using unordered_tree = gp_hash_table<K, V, chash>;
       D-dimensional Fenwick tree
 template <class T, int ...N>
 struct Fenwick {
   T v = 0;
   void update(T v) { this->v += v; }
   T query() { return v; }
 template <class T, int N, int ...M>
 struct Fenwick<T, N, M...> {
   #define lsb(x) (x & -x)
   Fenwick<T, M...> fenw[N + 1];
   template <typename... Args>
   void update(int i, Args... args) {
     for (; i <= N; i += lsb(i))</pre>
       fenw[i].update(args...);
   template <typename... Args>
   T query(int 1, int r, Args... args) {
    T v = 0;
     for (; r > 0; r -= lsb(r))
      v += fenw[r].query(args...);
     for (--1; 1 > 0; 1 -= 1sb(1))
      v -= fenw[1].query(args...);
     return v;
```

```
}
                                                                  Per* t = new Per(1, r);
                                                                  if (1 == r) {
};
                                                                     t->sum = v;
        Dynamic segment tree
1.11
                                                                    return t;
                                                                  }
 struct Dyn {
                                                                  t->L = L->update(p, v);
   int 1, r;
                                                                  t \rightarrow R = R \rightarrow update(p, v);
   11i sum = 0;
                                                                  return t->pull();
  Dyn *L, *R;
  Dyn(int 1, int r) : 1(1), r(r), L(0), R(0) \{\}
                                                                11i qsum(int 11, int rr) {
                                                                  if (r < ll || rr < l)
   void pull() {
                                                                    return 0;
    sum = (L ? L->sum : 0);
                                                                  if (ll <= l && r <= rr)
     sum += (R ? R->sum : 0);
   }
                                                                    return sum;
                                                                  return L->qsum(11, rr) + R->qsum(11, rr);
                                                                }
   void update(int p, lli v) {
                                                              };
    if (1 == r) {
       sum += v;
                                                             1.13
                                                                     Wavelet tree
       return;
                                                              struct Wav {
                                                                #define iter int * // vector<int>::iterator
     int m = (1 + r) >> 1;
     if (p <= m) {
                                                                int lo, hi;
       if (!L)
                                                                Wav *L, *R;
         L = new Dyn(1, m);
                                                                vi amt;
      L->update(p, v);
     } else {
                                                                Wav(int lo, int hi) : lo(lo), hi(hi), L(∅), R(∅) {}
       if (!R)
         R = new Dyn(m + 1, r);
                                                                void build(iter b, iter e) { // array 1-indexed
       R->update(p, v);
                                                                  if (lo == hi || b == e)
    }
                                                                    return;
    pull();
                                                                  amt.reserve(e - b + 1);
   }
                                                                  amt.pb(0);
                                                                  int m = (lo + hi) >> 1;
   1li qsum(int ll, int rr) {
                                                                   for (auto it = b; it != e; it++)
                                                                    amt.pb(amt.back() + (*it <= m));</pre>
     if (rr < l || r < ll || r < l)</pre>
       return 0;
                                                                  auto p = stable_partition(b, e, [=](int x) {
     if (11 <= 1 && r <= rr)
                                                                    return x <= m;</pre>
       return sum;
                                                                  });
     int m = (1 + r) >> 1;
                                                                   (L = new Wav(lo, m))->build(b, p);
     return (L ? L->qsum(11, rr) : 0) +
                                                                   (R = new Wav(m + 1, hi)) -> build(p, e);
            (R ? R->qsum(11, rr) : ∅);
  }
};
                                                                int qkth(int 1, int r, int k) {
                                                                  if (r < 1)
        Persistent segment tree
1.12
                                                                    return 0;
                                                                  if (lo == hi)
 struct Per {
                                                                    return lo;
   int 1, r;
                                                                   if (k <= amt[r] - amt[l - 1])</pre>
   11i sum = 0;
                                                                     return L->qkth(amt[1 - 1] + 1, amt[r], k);
   Per *L, *R;
                                                                   return R->qkth(l - amt[l - 1], r - amt[r], k - amt
                                                                       [r] + amt[1 - 1]);
  Per(int 1, int r) : 1(1), r(r), L(∅), R(∅) {}
   Per* pull() {
                                                                int qleq(int 1, int r, int mx) {
    sum = L -> sum + R -> sum;
                                                                  if (r < 1 || mx < lo)</pre>
    return this;
                                                                    return 0;
   }
                                                                  if (hi <= mx)</pre>
                                                                    return r - 1 + 1;
   void build() {
                                                                  return L->qleq(amt[l - 1] + 1, amt[r], mx) +
    if (1 == r)
                                                                          R \rightarrow qleq(l - amt[l - 1], r - amt[r], mx);
       return;
                                                                }
     int m = (1 + r) >> 1;
                                                              };
     (L = new Per(1, m))->build();
     (R = new Per(m + 1, r)) \rightarrow build();
                                                             1.14 Li Chao tree
    pull();
   }
                                                              struct Fun {
                                                                11i m = 0, c = inf;
   Per* update(int p, lli v) {
                                                                1li operator ()(lli x) const { return m * x + c; }
    if (p < 1 || r < p)
                                                              };
```

return this;

```
struct LiChao {
                                                                 t->ch[0] = p.s;
  Fun f;
                                                                 return {p.f, pull(t)};
  11i 1, r;
                                                               }
                                                               auto p = split(t->ch[1], val);
  LiChao *L, *R;
                                                               t->ch[1] = p.f;
  LiChao(11i 1, 11i r, Fun f = {}):
                                                               return {pull(t), p.s};
    1(1), r(r), f(f), L(0), R(0) {}
                                                             }
   void add(Fun &g) {
                                                             pair<Treap, Treap> splitsz(Treap t, int sz) {
     if (f(1) \le g(1) \&\& f(r) \le g(r))
                                                               // <= sz goes to the left, > sz to the right
                                                               if (!t)
    if (g(1) < f(1) && g(r) < f(r)) {
                                                                 return {t, t};
      f = g;
                                                               push(t);
      return;
                                                               if (sz <= gsz(t->ch[0])) {
                                                                 auto p = splitsz(t->ch[0], sz);
    11i m = (1 + r) >> 1;
                                                                 t->ch[0] = p.s;
    if (g(m) < f(m))
                                                                 return {p.f, pull(t)};
      swap(f, g);
                                                               auto p = splitsz(t->ch[1], sz - gsz(t->ch[0]) - 1);
     if (g(1) \le f(1))
      L = L ? (L->add(g), L) : new LiChao(1, m, g);
                                                               t->ch[1] = p.f;
     else
                                                               return {pull(t), p.s};
     R = R ? (R->add(g), R) : new LiChao(m + 1, r, g);
   }
                                                             Treap merge(Treap 1, Treap r) {
  lli query(lli x) {
                                                               if (!1 || !r)
    if (1 == r)
                                                                 return 1 ? 1 : r;
       return f(x);
                                                               push(l), push(r);
                                                               if (l->pri > r->pri)
    11i m = (1 + r) >> 1;
    if (x \le m)
                                                                 return 1->ch[1] = merge(1->ch[1], r), pull(1);
       return min(f(x), L ? L->query(x) : inf);
     return min(f(x), R ? R->query(x) : inf);
                                                                 return r->ch[0] = merge(1, r->ch[0]), pull(r);
  }
};
                                                             Treap qkth(Treap t, int k) { // 0-indexed
                                                               if (!t)
1.15
        Treap
                                                                 return t;
 typedef struct Node* Treap;
                                                               push(t);
struct Node {
                                                               int sz = gsz(t->ch[0]);
  uint32_t pri = rng();
                                                               if (sz == k)
   int val;
                                                                 return t;
   Treap ch[2] = \{0, 0\};
                                                               return k < sz? qkth(t->ch[0], k) : qkth(t->ch[1], k
   int sz = 1, flip = 0;
                                                                    - sz - 1);
  Node(int val) : val(val) {}
                                                             }
};
                                                             int qrank(Treap t, int val) { // 0-indexed
void push(Treap t) {
                                                               if (!t)
   if (!t)
                                                                 return -1;
    return;
                                                               push(t);
   if (t->flip) {
                                                               if (val < t->val)
     swap(t->ch[0], t->ch[1]);
                                                                 return qrank(t->ch[0], val);
     for (Treap ch : t->ch) if (ch)
                                                               if (t->val == val)
      ch->flip ^= 1;
                                                                 return gsz(t->ch[0]);
    t \rightarrow flip = 0;
                                                               return gsz(t->ch[0]) + qrank(t->ch[1], val) + 1;
  }
                                                            }
}
                                                             Treap insert(Treap t, int val) {
Treap pull(Treap t) {
                                                               auto p1 = split(t, val);
   #define gsz(t) (t ? t->sz : 0)
                                                               auto p2 = split(p1.f, val - 1);
   t->sz = 1;
                                                               return merge(p2.f, merge(new Node(val), p1.s));
   for (Treap ch : t->ch)
                                                            }
    push(ch), t->sz += gsz(ch);
   return t;
                                                            Treap erase(Treap t, int val) {
                                                               auto p1 = split(t, val);
                                                               auto p2 = split(p1.f, val - 1);
pair<Treap, Treap> split(Treap t, int val) {
                                                               return merge(p2.f, p1.s);
  // <= val goes to the left, > val to the right
                                                            }
  if (!t)
    return {t, t};
                                                            2
                                                                 Graphs
   push(t);
                                                            2.1
                                                                   Tarjan algorithm (SCC)
   if (val < t->val) {
                                                             vector<vi> scc;
    auto p = split(t->ch[0], val);
```

```
int tin[N], fup[N];
                                                               kosaraju(2 * n); // size of the two-sat is 2 * n
bitset<N> still;
                                                               vi ans(n + 1, 0);
stack<int> stk;
                                                               fore (u, 1, n + 1) {
int timer = 0;
                                                                 if (scc[u] == scc[neg(u)])
                                                                   return {0, ans};
void tarjan(int u) {
                                                                 ans[u] = scc[u] > scc[neg(u)];
   tin[u] = fup[u] = ++timer;
   still[u] = true;
                                                               return {1, ans};
                                                             }
   stk.push(u);
   for (int v : graph[u]) {
                                                            2.4
                                                                   Topological sort
    if (!tin[v])
      tarjan(v);
                                                                   Cutpoints and Bridges
    if (still[v])
                                                             int tin[N], fup[N], timer = 0;
       fup[u] = min(fup[u], fup[v]);
                                                             void findWeakness(int u, int p = 0) {
   if (fup[u] == tin[u]) {
                                                               tin[u] = fup[u] = ++timer;
    scc.pb({});
                                                               int children = 0;
    int v;
                                                               for (int v : graph[u]) if (v != p) {
    do {
                                                                 if (!tin[v]) {
      v = stk.top();
                                                                   ++children:
      stk.pop();
                                                                   findWeakness(v, u);
      still[v] = false;
                                                                   fup[u] = min(fup[u], fup[v]);
       scc.back().pb(v);
                                                                   if (fup[v] >= tin[u] && p) // u is a cutpoint
    } while (v != u);
                                                                   if (fup[v] > tin[u]) // bridge u -> v
   }
}
                                                                 fup[u] = min(fup[u], tin[v]);
2.2
      Kosaraju algorithm (SCC)
                                                               if (!p && children > 1) // u is a cutpoint
 int scc[N], k = 0;
                                                             }
char vis[N];
vi order;
                                                            2.6
                                                                 Detect a cycle
                                                             bool cycle(int u) {
void dfs1(int u) {
                                                               vis[u] = 1;
  vis[u] = 1;
                                                               for (int v : graph[u]) {
   for (int v : graph[u])
                                                                 if (vis[v] == 1)
    if (vis[v] != 1)
                                                                   return true;
       dfs1(v);
                                                                 if (!vis[v] && cycle(v))
   order.pb(u);
                                                                   return true;
                                                               vis[u] = 2;
void dfs2(int u, int k) {
                                                               return false;
  vis[u] = 2, scc[u] = k;
                                                             }
   for (int v : rgraph[u]) // reverse graph
                                                            2.7
                                                                  Euler tour for Mo's in a tree
    if (vis[v] != 2)
                                                            Mo's in a tree, extended euler tour tin[u] = ++timer, tout[u]
       dfs2(v, k);
                                                            = \underset{\bullet}{+} \underset{u \,=\, lca(u,\,v),\, query(tin[u],\, tin[v])}{+}
}
                                                              • u \neq lca(u, v), query(tout[u], tin[v]) + query(tin[lca],
void kosaraju() {
                                                                tin[lca])
   fore (u, 1, n + 1)
    if (vis[u] != 1)
                                                                 Lowest common ancestor (LCA)
       dfs1(u);
                                                             const int LogN = 1 + _{-}lg(N);
   reverse(all(order));
                                                             int pr[LogN][N], dep[N];
   for (int u : order)
    if (vis[u] != 2)
                                                             void dfs(int u, int pr[]) {
       dfs2(u, ++k);
                                                               for (int v : graph[u])
}
                                                                 if (v != pr[u]) {
                                                                   pr[v] = u;
2.3
      Two Sat
                                                                   dep[v] = dep[u] + 1;
 void add(int u, int v) {
                                                                   dfs(v, pr);
   graph[u].pb(v);
   rgraph[v].pb(u);
                                                             }
                                                             int lca(int u, int v){
void implication(int u, int v) {
                                                               if (dep[u] > dep[v])
   \#define neg(u) ((n) + (u))
                                                                 swap(u, v);
   add(u, v);
                                                               fore (k, LogN, ∅)
   add(neg(v), neg(u));
                                                                 if (dep[v] - dep[u] >= (1 << k))
                                                                   v = pr[k][v];
                                                               if (u == v)
pair<bool, vi> satisfy(int n) {
                                                                 return u;
```

```
fore (k, LogN, 0)
                                                              for (int v : graph[u])
     if (pr[k][v] != pr[k][u])
                                                                if (!rem[v])
      u = pr[k][u], v = pr[k][v];
                                                                  solve(v, u);
                                                            }
   return pr[0][u];
                                                           2.11
int dist(int u, int v) {
  return dep[u] + dep[v] - 2 * dep[lca(u, v)];
                                                            int dfs(int u) {
void init(int r) {
   dfs(r, pr[0]);
   fore (k, 1, LogN)
                                                                pr[v] = u;
    fore (u, 1, n + 1)
      pr[k][u] = pr[k - 1][pr[k - 1][u]];
                                                                sz[u] += dfs(v);
}
2.9
      Guni
                                                                  heavy[u] = v;
 int tin[N], tout[N], who[N], sz[N], heavy[N], color[N
                                                              return sz[u];
                                                            }
 int timer = 0;
 int dfs(int u, int pr = 0){
   sz[u] = 1, tin[u] = ++timer, who[timer] = u;
   for (int v : graph[u]) if (v != pr) {
                                                              if (heavy[u] != 0)
    sz[u] += dfs(v, u);
                                                                hld(heavy[u], h);
    if (sz[v] > sz[heavy[u]])
      heavy[u] = v;
                                                                  hld(v, v);
   return tout[u] = timer, sz[u];
                                                            }
                                                            template <class F>
void guni(int u, int pr = 0, bool keep = 0) {
   for (int v : graph[u])
    if (v != pr && v != heavy[u])
      guni(v, u, ⁰);
                                                                  swap(u, v);
   if (heavy[u])
    guni(heavy[u], u, 1);
   for (int v : graph[u])
    if (v != pr && v != heavy[u])
                                                                swap(u, v);
       fore (i, tin[v], tout[v] + 1)
                                                              if (u != v)
         add(color[who[i]]);
   add(color[u]);
                                                            }
   // Solve the subtree queries here
   if (keep == 0)
    fore (i, tin[u], tout[u] + 1)
      rem(color[who[i]]);
}
                                                              });
2.10 Centroid decomposition
                                                            }
 int cdp[N], sz[N];
bitset<N> rem;
                                                              11i sum = 0;
int dfsz(int u, int p = 0) {
   sz[u] = 1;
   for (int v : graph[u])
                                                              });
     if (v != p && !rem[v])
                                                              return sum;
      sz[u] += dfsz(v, u);
                                                            }
   return sz[u];
                                                           2.12
 int centroid(int u, int n, int p = 0) {
                                                            struct Node {
   for (int v : graph[u])
                                                              int val, mx = 0;
     if (v != p && !rem[v] && 2 * sz[v] > n)
      return centroid(v, n, u);
   return u:
                                                            };
void solve(int u, int p = 0) {
                                                            void push(Splay u) {
   cdp[u = centroid(u, dfsz(u))] = p;
                                                              if (!u || !u->flip)
   rem[u] = true;
                                                                return;
```

```
Heavy-light decomposition
int pr[N], dep[N], sz[N], heavy[N], head[N], pos[N],
    who[N], timer = 0;
Lazy* tree; // generally a lazy segtree
  sz[u] = 1, heavy[u] = head[u] = 0;
  for (int v : graph[u]) if (v != pr[u]) {
    dep[v] = dep[u] + 1;
    if (sz[v] > sz[heavy[u]])
void hld(int u, int h) {
  head[u] = h, pos[u] = ++timer, who[timer] = u;
  for (int v : graph[u])
    if (v != pr[u] && v != heavy[u])
void processPath(int u, int v, F fun) {
  for (; head[u] != head[v]; v = pr[head[v]]) {
    if (dep[head[u]] > dep[head[v]])
    fun(pos[head[v]], pos[v]);
  if (dep[u] > dep[v])
    fun(pos[heavy[u]], pos[v]);
  fun(pos[u], pos[u]); // process lca(u, v) too?
void updatePath(int u, int v, lli z) {
  processPath(u, v, [&](int 1, int r) {
    tree->update(1, r, z);
11i queryPath(int u, int v) {
  processPath(u, v, [&](int 1, int r) {
    sum += tree->qsum(1, r);
     Link-Cut tree
typedef struct Node* Splay;
  Splay ch[2] = \{0, 0\}, p = 0;
 int sz = 1, flip = 0;
  Node(int val) : val(val), mx(val) {}
```

```
swap(u->ch[0], u->ch[1]);
  for (Splay v : u->ch)
    if (v) v->flip ^= 1;
  u \rightarrow flip = 0;
void pull(Splay u) {
  #define gsz(t) (t ? t->sz : 0)
  u->sz = 1, u->mx = u->val;
  for (Splay v : u->ch) if (v) {
    push(v);
    u \rightarrow sz += gsz(v);
    u \rightarrow mx = max(u \rightarrow mx, v \rightarrow mx);
  }
}
int dir(Splay u) {
  if (!u->p) return -2; // root of the LCT component
  if (u->p->ch[0] == u) return 0; // left child
  if (u->p->ch[1] == u) return 1; // right child
  return -1; // root of current splay tree
void add(Splay u, Splay v, int d) {
  if (v) v->p = u;
  if (d \ge 0) u \ge ch[d] = v;
void rot(Splay u) { // assume p and p->p propagated
  int x = dir(u);
  Splay g = u - p;
  add(g->p, u, dir(g));
  add(g, u->ch[x ^ 1], x);
  add(u, g, x ^ 1);
  pull(g), pull(u);
void splay(Splay u) {
  #define isRoot(u) (dir(u) < 0)
  while (!isRoot(u) && !isRoot(u->p)) {
    push(u->p->p), push(u->p), push(u);
    rot(dir(u) == dir(u->p) ? u->p : u);
    rot(u);
  }
  if (!isRoot(u)) push(u->p), push(u), rot(u);
  push(u);
}
// puts u on the preferred path, splay (right subtree
    is empty)
void access(Splay u) {
  for (Splay v = u, last = 0; v; v = v->p) {
    splay(v); // now switch virtual children, i don't
        know what this means!!
    // if (last) v->vsub -= last->sub;
    // if (v->ch[1]) v->vsub += v->ch[1]->sub;
    v->ch[1] = last, pull(v), last = v;
  }
  splay(u);
}
void rootify(Splay u) {
  access(u), u->flip ^= 1, access(u);
Splay lca(Splay u, Splay v) {
  if (u == v) return u;
  access(u), access(v);
  if (!u->p) return 0;
  return splay(u), u->p ?: u;
```

```
}
 bool connected(Splay u, Splay v) {
   return lca(u, v);
 }
 void link(Splay u, Splay v) { // make u parent of v,
     make sure they aren't connected
   if (!connected(u, v)) {
     rootify(v), access(u);
     add(v, u, ∅), pull(v);
}
 void cut(Splay u) { // cut u from its parent
   access(u);
   u - ch[0] = u - ch[0] - p = 0;
  pull(u);
 void cut(Splay u, Splay v) { // if u, v adj in tree
   rootify(u), access(v), cut(v);
 Splay getRoot(Splay u) {
   access(u);
   while (u->ch[0])
     u = u - ch[0], push(u);
   return access(u), u;
 Splay lift(Splay u, int k) {
   push(u);
   int sz = gsz(u->ch[0]);
   if (sz == k)
     return splay(u), u;
   return k < sz? lift(u->ch[0], k) : lift(u->ch[1], k
        - sz - 1):
 }
 Splay ancestor(Splay u, int k) {
   return access(u), lift(u, gsz(u->ch[0]) - k);
 }
 Splay query(Splay u, Splay v) {
  return rootify(u), access(v), v;
 }
 Splay lct[N];
     Flows
3.1
      Dinic \mathcal{O}(min(E \cdot flow, V^2E))
If the network is massive, try to compress it by looking for
patterns. Dinic with scaling works in \mathcal{O}(EV \cdot log(maxCap)).
 template <class F>
 struct Dinic {
   struct Edge {
     int v, inv;
     F cap, flow;
     Edge(int v, F cap, int inv) :
       v(v), cap(cap), flow(₀), inv(inv){}
   F eps = (F) 1e-9, lim = (F) 1e-9;
   const bool scaling = 0;
   int s, t, n, m = 0;
   vector< vector<Edge> > g;
   vi dist, ptr;
   Dinic(int n, int ss = -1, int tt = -1) :
```

```
n(n), g(n + 5), dist(n + 5), ptr(n + 5) {
                                                                        inv) {}
     s = ss == -1 ? n + 1 : ss;
     t = tt == -1 ? n + 2 : tt;
                                                                int s, t, n, m = 0;
                                                                vector< vector<Edge> > g;
   void add(int u, int v, F cap) {
                                                                vector<Edge*> prev;
     g[u].pb(Edge(v, cap, sz(g[v])));
                                                                vector<C> cost;
     g[v].pb(Edge(u, 0, sz(g[u]) - 1));
                                                                vi state;
     lim = (scaling ? max(lim, cap) : lim);
                                                                Mcmf(int n, int ss = -1, int tt = -1):
     m += 2;
   }
                                                                  n(n), g(n + 5), cost(n + 5), state(n + 5), prev(n + 5)
                                                                      + 5) {
   bool bfs() {
                                                                  s = ss == -1 ? n + 1 : ss;
                                                                  t = tt == -1 ? n + 2 : tt;
     fill(all(dist), -1);
     queue<int> qu({s});
     dist[s] = 0;
     while (sz(qu) \&\& dist[t] == -1) {
                                                                void add(int u, int v, C cost, F cap) {
       int u = qu.front(); qu.pop();
                                                                  g[u].pb(Edge(u, v, cost, cap, sz(g[v])));
                                                                  g[v].pb(Edge(v, u, -cost, 0, sz(g[u]) - 1));
       for (Edge &e : g[u]) if (dist[e.v] == -1)
         if (scaling ? e.cap - e.flow >= lim : e.cap -
                                                                  m += 2;
              e.flow > eps) {
           dist[e.v] = dist[u] + 1;
           qu.push(e.v);
                                                                bool bfs() {
                                                                  fill(all(state), 0);
     }
                                                                  fill(all(cost), numeric_limits<C>::max());
     return dist[t] != -1;
                                                                  deque<int> qu;
   }
                                                                  qu.push_back(s);
                                                                  state[s] = 1, cost[s] = 0;
   F dfs(int u, F flow = numeric_limits<F>::max()) {
                                                                  while (sz(qu)) {
     if (flow <= eps || u == t)</pre>
                                                                    int u = qu.front(); qu.pop_front();
       return max<F>(0, flow);
                                                                    state[u] = 2;
     for (int &i = ptr[u]; i < sz(g[u]); i++) {</pre>
                                                                    for (Edge &e : g[u]) if (e.cap - e.flow > eps)
       Edge &e = g[u][i];
                                                                      if (cost[u] + e.cost < cost[e.v]) {</pre>
       if (e.cap - e.flow > eps && dist[u] + 1 == dist[
                                                                        cost[e.v] = cost[u] + e.cost;
            e.v]) {
                                                                        prev[e.v] = \&e;
        F pushed = dfs(e.v, min<F>(flow, e.cap - e.flow
                                                                        if (state[e.v] == 2 || (sz(qu) \&& cost[qu.
                                                                             front()] > cost[e.v]))
             ));
         if (pushed > eps) {
                                                                          qu.push_front(e.v);
           e.flow += pushed;
                                                                        else if (state[e.v] == 0)
           g[e.v][e.inv].flow -= pushed;
                                                                          qu.push_back(e.v);
           return pushed;
                                                                        state[e.v] = 1;
         }
       }
     }
                                                                  return cost[t] != numeric_limits<C>::max();
     return 0;
   }
                                                                pair<C, F> minCostFlow() {
   F maxFlow() {
                                                                  C cost = 0; F flow = 0;
     F flow = 0;
                                                                  while (bfs()) {
     for (lim = scaling ? lim : 1; lim > eps; lim /= 2)
                                                                    F pushed = numeric_limits<F>::max();
       while (bfs()) {
                                                                    for (Edge* e = prev[t]; e != nullptr; e = prev[e
         fill(all(ptr), 0);
         while (F pushed = dfs(s))
                                                                      pushed = min(pushed, e->cap - e->flow);
           flow += pushed;
                                                                    for (Edge* e = prev[t]; e != nullptr; e = prev[e
                                                                        ->u]) {
     return flow;
                                                                      e->flow += pushed;
   }
                                                                      g[e->v][e->inv].flow -= pushed;
                                                                      cost += e->cost * pushed;
};
                                                                    }
      Min cost flow O(min(E \cdot flow, V^2E))
                                                                    flow += pushed;
If the network is massive, try to compress it by looking for
patterns.
                                                                  return make_pair(cost, flow);
 template <class C, class F>
                                                               }
 struct Mcmf {
                                                             };
   static constexpr F eps = (F) 1e-9;
                                                             3.3
                                                                  Hopcroft-Karp \mathcal{O}(E\sqrt{V})
   struct Edge {
     int u, v, inv;
                                                              struct HopcroftKarp {
     F cap, flow;
                                                                int n, m = 0;
     C cost;
                                                                vector<vi> g;
     Edge(int u, int v, C cost, F cap, int inv) :
                                                                vi dist, match;
       u(u), v(v), cost(cost), cap(cap), flow(∅), inv(
```

```
HopcroftKarp(int _n) : n(5 + _n), g(n + 5), dist(n +
                                                                       d = min(d, fx[s[k]] + fy[j] - a[s[k]][j]);
        5), match(n + 5, 0) {}
                                                                    fore (j, 0, m)
                                                                     fy[j] += (t[j] < 0 ? 0 : d);
   void add(int u, int v) {
                                                                    fore (k, 0, q + 1)
    g[u].pb(v), g[v].pb(u);
                                                                     fx[s[k]] = d;
    m += 2:
   }
                                                                 }
                                                               }
   bool bfs() {
                                                               C cost = 0;
     queue<int> qu;
                                                               fore (i, 0, n) cost += a[i][x[i]];
     fill(all(dist), -1);
                                                               return make_pair(cost, x);
     fore (u, 1, n + 1)
       if (!match[u])
         dist[u] = 0, qu.push(u);
                                                                  Strings
                                                            4
     while (!qu.empty()) {
       int u = qu.front(); qu.pop();
                                                            4.1
                                                                 \mathbf{Hash}
       for (int v : g[u])
                                                             vi p = {10006793, 1777771, 10101283, 10101823, 1013635
         if (dist[match[v]] == -1) {
                                                                  9, 10157387, 10166249};
           dist[match[v]] = dist[u] + 1;
                                                             vi mod = {999992867, 1070777777, 999727999, 10000008223
           if (match[v])
                                                                  , 1000009999, 1000003211, 1000027163, 1000002193,
             qu.push(match[v]);
                                                                   1000000123};
                                                             int pw[2][N], ipw[2][N];
     }
     return dist[0] != -1;
                                                             struct Hash {
   }
                                                               vector<vi> h;
   bool dfs(int u) {
                                                               Hash(string &s): h(2, vi(sz(s) + 1, 0)) {
     for (int v : g[u])
                                                                  fore (i, 0, 2)
       if (!match[v] || (dist[u] + 1 == dist[match[v]]
                                                                   fore (j, 0, sz(s)) {
           && dfs(match[v]))) {
                                                                     lli x = s[j] - 'a' + 1;
         match[u] = v, match[v] = u;
                                                                     h[i][j + 1] = (h[i][j] + x * pw[i][j]) % mod[i]
         return 1;
                                                                          1:
                                                                   }
     dist[u] = 1 << 30;
                                                               }
    return 0;
                                                               array<lli, 2> cut(int 1, int r) {
                                                                 array<lli, 2> f;
   int maxMatching() {
                                                                  fore (i, 0, 2) {
     int tot = 0;
                                                                   f[i] = (h[i][r + 1] - h[i][l] + mod[i]) \% mod[i]
     while (bfs())
       fore (u, 1, n + 1)
                                                                   f[i] = f[i] * ipw[i][1] % mod[i];
         tot += match[u] ? 0 : dfs(u);
                                                                 }
     return tot;
                                                                 return f;
   }
};
                                                               array<lli, 2> query() {
3.4
      Hungarian \mathcal{O}(N^3)
                                                                 return {0, 0};
n jobs, m people
template <class C>
 pair<C, vi> Hungarian(vector< vector<C> > &a) {
                                                               template <class... Range>
                                                               array<lli, 2> query(int 1, int r, Range&&... rge) {
   int n = sz(a), m = sz(a[0]), p, q, j, k; // n \le m
                                                                 array < 11i, 2 f = cut(1, r);
  vector<C> fx(n, numeric_limits<C>::min()), fy(m, ∅);
  vi x(n, -1), y(m, -1);
                                                                 array<lli, 2> g = query(rge...);
   fore (i, 0, n)
                                                                  fore (i, 0, 2) {
     fore (j, 0, m)
                                                                   f[i] += g[i] * pw[i][r - 1 + 1] % mod[i];
       fx[i] = max(fx[i], a[i][j]);
                                                                   f[i] %= mod[i];
   fore (i, 0, n) {
                                                                 }
     vi t(m, -1), s(n + 1, i);
                                                                 return f;
     for (p = q = 0; p \le q \&\& x[i] \le 0; p++)
                                                               }
       for (k = s[p], j = 0; j < m && x[i] < 0; j++)
         if (abs(fx[k] + fy[j] - a[k][j]) < eps && t[j]</pre>
                                                             shuffle(all(p), rng), shuffle(all(mod), rng);
              < 0) {
           s[++q] = y[j], t[j] = k;
                                                             fore (i, 0, 2) {
           if (s[q] < 0) for (p = j; p \ge 0; j = p)
                                                               ipw[i][0] = inv(pw[i][0] = 1LL, mod[i]);
             y[j] = k = t[j], p = x[k], x[k] = j;
                                                               int q = inv(p[0], mod[i]);
         }
                                                               fore (j, 1, N) {
     if (x[i] < 0) {</pre>
                                                                 pw[i][j] = 1LL * pw[i][j - 1] * p[0] % mod[i];
       C d = numeric_limits<C>::max();
                                                                  ipw[i][j] = 1LL * ipw[i][j - 1] * q % mod[i];
       fore (k, 0, q + 1)
                                                             }
         fore (j, 0, m) if (t[j] < 0)
```

```
KMP
4.2
```

```
period = n - p[n - 1], period(abcabc) = 3, n \mod period \equiv 0
 vi lps(string &s) {
   vi p(sz(s), ₀);
   int j = 0;
   fore (i, 1, sz(s)) {
     while (j && s[i] != s[j])
       j = p[j - 1];
     if (s[i] == s[j])
       j++;
    p[i] = j;
   }
   return p;
 }
 // how many times t occurs in s
 int kmp(string &s, string &t) {
   vi p = lps(t);
   int j = 0, tot = 0;
   fore (i, 0, sz(s)) {
     while (j && s[i] != t[j])
       j = p[j - 1];
     if (s[i] == t[j])
       j++;
    if (j == sz(t))
       tot++; // pos: i - sz(t) + 1;
   }
   return tot;
      KMP automaton
 int go[N][A];
 void kmpAutomaton(string &s) {
   s += "$";
   vi p = lps(s);
   fore (i, 0, sz(s))
     fore (c, 0, A) {
       if (i && s[i] != 'a' + c)
         go[i][c] = go[p[i - 1]][c];
       else
         go[i][c] = i + ('a' + c == s[i]);
     }
   s.pop_back();
      Z algorithm
4.4
 vi zf(string &s) {
   vi z(sz(s), ₀);
   for (int i = 1, l = 0, r = 0; i < sz(s); i++) {
     if (i <= r)
       z[i] = min(r - i + 1, z[i - 1]);
     while (i + z[i] < sz(s) \&\& s[i + z[i]] == s[z[i]])
       ++z[i];
     if (i + z[i] - 1 > r)
      l = i, r = i + z[i] - 1;
   }
   return z:
     Manacher algorithm
 vector<vi> manacher(string &s) {
   vector<vi> pal(2, vi(sz(s), 0));
   fore (k, 0, 2) {
     int 1 = 0, r = 0;
     fore (i, 0, sz(s)) {
       int t = r - i + !k;
       if (i < r)
         pal[k][i] = min(t, pal[k][l + t]);
       int p = i - pal[k][i], q = i + pal[k][i] - !k;
       while (p \ge 1 \& q + 1 < sz(s) \& s[p - 1] == s[
           q + 1]
```

```
++pal[k][i], --p, ++q;
      if (q > r)
        1 = p, r = q;
    }
 }
  return pal;
}
```

4.6Suffix array

- Duplicates $\sum_{i=1}^{n} lcp[i]$
- Longest Common Substring of various strings Add not Used characters between strings, i.e. a+\$+b+#+cUse two-pointers to find a range [l, r] such that all not Used characters are present, then query(lcp[l+1],..,lcp[r]) for that window is the common length.

```
struct SuffixArray {
  int n;
  string s;
  vi sa, lcp;
  SuffixArray(string &s): n(sz(s) + 1), s(s), sa(n),
      lcp(n) {
    vi top(max(256, n)), rk(n);
    fore (i, 0, n)
      top[rk[i] = s[i] & 255]++;
    partial_sum(all(top), top.begin());
    fore (i, 0, n)
      sa[--top[rk[i]]] = i;
    vi sb(n);
    for (int len = 1, j; len < n; len <<= 1) {</pre>
      fore (i, 0, n) {
        j = (sa[i] - len + n) % n;
        sb[top[rk[j]]++] = j;
      }
      sa[sb[top[0] = 0]] = j = 0;
      fore (i, 1, n) {
        if (rk[sb[i]] != rk[sb[i - 1]] || rk[sb[i] +
             len] != rk[sb[i - 1] + len])
          top[++j] = i;
        sa[sb[i]] = j;
      }
      copy(all(sa), rk.begin());
      copy(all(sb), sa.begin());
      if (j >= n - 1)
        break;
    for (int i = 0, j = rk[lcp[0] = 0], k = 0; i < n - 0
          1; i++, k++)
      while (k \ge 0 \&\& s[i] != s[sa[j - 1] + k])
        lcp[j] = k--, j = rk[sa[j] + 1];
  char at(int i, int j) {
    int k = sa[i] + j;
    return k < n ? s[k] : 'z' + 1;</pre>
  bool count(string &t) {
    ii lo(0, n - 1), hi(0, n - 1);
    fore (i, 0, sz(t)) {
      while (lo.f + 1 < lo.s) {</pre>
        int mid = (lo.f + lo.s) / 2;
        (at(mid, i) < t[i] ? lo.f : lo.s) = mid;
      while (hi.f + 1 < hi.s) {</pre>
        int mid = (hi.f + hi.s) / 2;
        (t[i] < at(mid, i) ? hi.s : hi.f) = mid;
      int p1 = (at(lo.f, i) == t[i] ? lo.f : lo.s);
      int p2 = (at(hi.s, i) == t[i] ? hi.s : hi.f);
```

4.7 Suffix automaton

- len[u] len[link[u]] = distinct strings
- Number of different substrings (dp)

$$diff(u) = 1 + \sum_{v \in trie[u]} diff(v)$$

• Total length of all different substrings (2 x dp)

$$totLen(u) = \sum_{v \in trie[u]} diff(v) + totLen(v)$$

- Leftmost occurrence pos[u] = len[u] 1if is **clone** then pos[clone] = pos[q]
- All occurrence positions
- Smallest cyclic shift

Construct sam of s + s, find the lexicographically smallest path of sz(s)

• Shortest non-appearing string

```
nonAppearing(u) = \min_{v \in trie[u]} nonAppearing(v) + 1
struct SuffixAutomaton {
  vector< map<char, int> > trie;
  vi link, len;
  int last;
  SuffixAutomaton() { last = newNode(); }
  int newNode() {
    trie.pb(\{\}), link.pb(-1), len.pb(\emptyset);
    return sz(trie) - 1;
  void extend(char c) {
    int u = newNode();
    len[u] = len[last] + 1;
    int p = last;
    while (p != -1 && !trie[p].count(c)) {
      trie[p][c] = u;
      p = link[p];
    if (p == -1)
      link[u] = 0;
    else {
      int q = trie[p][c];
      if (len[p] + 1 == len[q])
        link[u] = q;
        int clone = newNode();
        len[clone] = len[p] + 1;
        trie[clone] = trie[q];
        link[clone] = link[q];
        while (p != -1 && trie[p][c] == q) {
          trie[p][c] = clone;
          p = link[p];
        link[q] = link[u] = clone;
      }
    }
   last = u;
  }
```

```
// number of different substrings (dp)
    string s = "";
    while (kth > ∅)
      for (auto &[c, v] : trie[u]) {
        if (kth <= diff(v)) {</pre>
          s.pb(c), kth--, u = v;
          break;
        kth -= diff(v);
    return s;
  void occurs() {
    // occ[u] = 1, occ[clone] = 0
    vi who;
    fore (u, 1, sz(trie))
      who.pb(u);
    sort(all(who), [&](int u, int v) {
      return len[u] > len[v];
    for (int u : who)
      occ[link[u]] += occ[u];
  int queryOccurences(string &s, int u = 0) {
    for (char c : s) {
      if (!trie[u].count(c))
        return 0;
      u = trie[u][c];
    }
    return occ[u];
  int longestCommonSubstring(string &s, int u = ∅) {
    int mx = 0, clen = 0;
    for (char c : s) {
      while (u && !trie[u].count(c)) {
        u = link[u];
        clen = len[u];
      if (trie[u].count(c))
        u = trie[u][c], clen++;
      mx = max(mx, clen);
    }
    return mx;
  string smallestCyclicShift(int n, int u = 0) {
    string s = "";
    fore (i, 0, n) {
      char c = trie[u].begin()->f;
      s += c;
      u = trie[u][c];
    }
    return s;
  int leftmost(string &s, int u = 0) {
    for (char c : s) {
      if (!trie[u].count(c))
        return -1:
      u = trie[u][c];
    }
    return pos[u] - sz(s) + 1;
  }
};
    Aho corasick
struct AhoCorasick {
```

string qkthSubstring(lli kth, int u = 0) {

```
vector< map<char, int> > trie;
   vi link, cnt;
   AhoCorasick() { newNode(); }
   int newNode() {
    trie.pb({}), link.pb(0), cnt.pb(0);
     return sz(trie) - 1;
   void insert(string &s, int u = 0) {
     for (char c : s) {
       if (!trie[u][c])
         trie[u][c] = newNode();
       u = trie[u][c];
    }
    cnt[u]++;
   }
   int go(int u, char c) {
     while (u && !trie[u].count(c))
       u = link[u];
     return trie[u][c];
   }
   void pushLinks() {
     queue<int> qu;
     qu.push(∅);
     while (!qu.empty()) {
       int u = qu.front();
       qu.pop();
       for (auto &[c, v] : trie[u]) {
         if (v == 0) {
           v = trie[link[u]][c];
           continue;
         link[v] = u ? go(link[u], c) : 0;
         cnt[v] += cnt[link[v]];
         qu.push(v);
       }
    }
   }
   int match(string &s, int u = 0) {
    int ans = 0;
     for (char c : s)
       u = go(u, c), ans += cnt[u];
     return ans:
   }
 };
4.9
      Eertree
 struct Eertree {
   vector< map<char, int> > trie;
   vi link, len;
   string s = "$":
   int last;
   Eertree() {
    last = newNode(), newNode();
    link[0] = 1, len[1] = -1;
   }
   int newNode() {
    trie.pb({}), link.pb(0), len.pb(0);
     return sz(trie) - 1;
   }
   int go(int u) {
     while (s[sz(s) - len[u] - 2] != s.back())
```

```
return u;
   }
   void extend(char c) {
     s += c;
     int u = go(last);
     if (!trie[u][c]) {
       int v = newNode();
       len[v] = len[u] + 2;
       link[v] = trie[go(link[u])][c];
       trie[u][c] = v;
     last = trie[u][c];
   }
 };
     Dynamic Programming
     Matrix Chain Multiplication
 int dp(int 1, int r) {
   if (1 > r)
     return 0LL;
   int &ans = mem[l][r];
   if (!done[l][r]) {
     done[1][r] = true, ans = inf;
     fore (k, l, r + 1) // split in [l, k] [k + 1, r]
       ans = min(ans, dp(1, k) + dp(k + 1, r) + add);
   }
   return ans;
 }
5.2
      Digit DP
Counts the amount of numbers in [l, r] such are divisible by k.
(flag nonzero is for different lengths)
It can be reduced to dp(i, x, small), and has to be solve like
f(r) - f(l-1)
 #define state [i][x][small][big][nonzero]
 int dp(int i, int x, bool small, bool big, bool
      nonzero) {
   if (i == sz(r))
     return x % k == 0 && nonzero;
   int &ans = mem state;
   if (done state != timer) {
     done state = timer;
     ans = 0;
     int lo = small ? 0 : 1[i] - '0';
     int hi = big ? 9 : r[i] - '0';
     fore (y, lo, max(lo, hi) + 1) {
       bool small2 = small | (y > 1o);
       bool big2 = big | (y < hi);
       bool nonzero2 = nonzero | (x > 0);
       ans += dp(i + 1, (x * 10 + y) % k, small2, big2,
             nonzero2);
     }
   }
   return ans;
 }
5.3 Knapsack 0/1
 for (auto &cur : items)
   fore (w, W + 1, cur.w) // [cur.w, W]
     umax(dp[w], dp[w - cur.w] + cur.cost);
      Convex Hull Trick \mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)
dp[i] = \min_{j < i} (dp[j] + b[j] * a[i])
dp[i][j] = \min_{k < j} (dp[i-1][k] + b[k] * a[j])
b[j] \ge b[j+1] optionally a[i] \le a[i+1]
 // for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a / b
 struct Line {
   mutable lli m, c, p;
```

u = link[u];

```
bool operator < (const Line &1) const { return m < 1</pre>
        .m; }
   bool operator < (lli x) const { return p < x; }</pre>
   1li operator ()(lli x) const { return m * x + c; }
 struct DynamicHull : multiset<Line, less<>>> {
   lli div(lli a, lli b) {
     return a / b - ((a ^ b) < 0 && a % b);
   bool isect(iterator x, iterator y) {
     if (y == end())
       return x->p = inf, 0;
     if (x->m == y->m)
       x->p = (x->c > y->c ? inf : -inf);
     else
       x->p = div(x->c - y->c, y->m - x->m);
     return x->p >= y->p;
   void add(lli m, lli c) {
     auto z = insert(\{m, c, \emptyset\}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
     if (x != begin() && isect(--x, y))
       isect(x, y = erase(y));
     while ((y = x) != begin() && (--x)->p >= y->p)
       isect(x, erase(y));
   }
   lli query(lli x) {
     if (empty()) return 0LL;
     auto f = *lower_bound(x);
     return f(x);
   }
 };
5.5
       Divide and conquer \mathcal{O}(kn^2) \Rightarrow \mathcal{O}(k \cdot nlogn)
Split the array of size n into k continuous groups. k \leq n
cost(a, c) + cost(b, d) \le cost(a, d) + cost(b, c) with a \le b \le c \le d
 void dc(int cut, int 1, int r, int optl, int optr) {
   if (r < 1)
     return;
   int mid = (1 + r) / 2;
   pair<lli, int> best = {inf, -1};
   fore (p, optl, min(mid, optr) + 1) {
     11i nxtGroup = dp[~cut & 1][p - 1] + cost(p, mid);
     if (nxtGroup < best.f)</pre>
       best = {nxtGroup, p};
   dp[cut & 1][mid] = best.f;
   int opt = best.s;
   dc(cut, 1, mid - 1, optl, opt);
   dc(cut, mid + 1, r, opt, optr);
 fore (i, 1, n + 1)
   dp[1][i] = cost(1, i);
 fore (cut, 2, k + 1)
   dc(cut, cut, n, cut, n);
       Knuth optimization \mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2)
dp[l][r] = \min_{l \le k \le r} \{dp[l][k] + dp[k][r]\} + cost(l, r)
 fore (len, 1, n + 1)
```

fore (1, 0, n) {

int r = 1 + len - 1;
if (r > n - 1)

```
break;
if (len <= 2) {
    dp[l][r] = 0;
    opt[l][r] = 1;
    continue;
}
dp[l][r] = inf;
fore (k, opt[l][r - 1], opt[l + 1][r] + 1) {
    lli cur = dp[l][k] + dp[k][r] + cost(l, r);
    if (cur < dp[l][r]) {
        dp[l][r] = cur;
        opt[l][r] = k;
    }
}</pre>
```

5.7 Do all submasks of a mask

```
for (int B = A; B > 0; B = (B - 1) & A)
```

6 Game Theory

6.1 Grundy Numbers

```
If the moves are consecutive S = \{1, 2, 3, ..., x\} the game can be
solved like stackSize \pmod{x+1} \neq 0
 int mem[N];
 int mex(set<int> &st) {
   int x = 0;
   while (st.count(x))
     x++:
   return x;
 }
 int grundy(int n) {
   if (n < 0)
     return inf;
   if (n == 0)
     return 0;
   int &g = mem[n];
   if (g == -1) {
     set<int> st;
     for (int x : {a, b})
       st.insert(grundy(n - x));
     g = mex(st);
   }
   return g;
 }
```

7 Combinatorics

Combinatorics table					
Number	Factorial	Catalan			
0	1	1			
1	1	1			
2	2	2			
3	6	5			
4	24	14			
5	120	42			
6	720	132			
7	5,040	429			
8	40,320	1,430			
9	362,880	4,862			
10	3,628,800	16,796			
11	39,916,800	58,786			
12	479,001,600	208,012			
13	6,227,020,800	742,900			

7.1 Factorial

```
fac[0] = 1LL;
```

```
fore (i, 1, N)
  fac[i] = lli(i) * fac[i - 1] % mod;
ifac[N - 1] = fpow(fac[N - 1], mod - 2);
fore (i, N - 1, 0)
  ifac[i] = lli(i + 1) * ifac[i + 1] % mod;
```

7.2 Factorial mod smallPrime

```
lli facMod(lli n, int p) {
    lli r = 1LL;
    for (; n > 1; n /= p) {
        r = (r * ((n / p) % 2 ? p - 1: 1)) % p;
        fore (i, 2, n % p + 1)
            r = r * i % p;
    }
    return r % p;
}
```

7.3 Lucas theorem

Changes $\binom{n}{k}$ mod p, with $n \ge 2e6, k \ge 2e6$ and $p \le 1e7$

$$\binom{n}{k} \equiv \prod_{i=0}^{n} \binom{n_i}{k_i} \bmod p$$

7.4 Stars and bars

Enclosing n objects in k boxes

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

7.5 N choose K

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k_1, k_2, ..., k_m} = \frac{n!}{k_1! * k_2! * ... * k_m!}$$
lli choose(int n, int k) {
 if (n < 0 || k < 0 || n < k)
 return OLL;
 return fac[n] * ifac[k] % mod * ifac[n - k] % mod;
}

lli choose(int n, int k) {
 double r = 1;
 fore (i, 1, k + 1)
 r = r * (n - k + i) / i;
 return lli(r + 0.01);
}

7.6 Catalan
 catalan[0] = llL;
fore (i, 0, N) {
 catalan[i + 1] = catalan[i] * lli(4 * i + 2) % mod * fpow(i + 2, mod - 2) % mod;
}

7.7 Burnside's lemma

$$|classes| = \frac{1}{|G|} \cdot \sum_{x \in G} f(x)$$

7.8 Prime factors of N!

```
vector< pair<lli, int> > factorialFactors(int n) {
  vector< pair<lli, int> > fac;
  for (lli p : primes) {
    if (n < p)
       break;
    lli mul = 1LL, k = 0;
    while (mul <= n / p) {</pre>
```

```
mul *= p;
       k += n / mul;
     fac.emplace_back(p, k);
   }
   return fac;
 }
     Number Theory
8
8.1
       Goldbach conjecture
  • All number \geq 6 can be written as sum of 3 primes
  • All even number > 2 can be written as sum of 2 primes
8.2
      Sieve of Eratosthenes
Numbers up to 2e8
 int erat[N >> 6];
 #define bit(i) ((i >> 1) & 31)
 #define prime(i) !(erat[i >> 6] >> bit(i) & 1)
 void bitSieve() {
   for (int i = 3; i * i < N; i += 2) if (prime(i))</pre>
     for (int j = i * i; j < N; j += (i << 1))
       erat[j >> 6] |= 1 << bit(j);
 }
To factorize divide x by factor[x] until is equal to 1
 void factorizeSieve() {
   iota(factor, factor + N, ∅);
   for (int i = 2; i * i < N; i++) if (factor[i] == i)</pre>
     for (int j = i * i; j < N; j += i)
       factor[j] = i;
 }
Use it if you need a huge amount of phi[x] up to some N
 void phiSieve() {
   isp.set(); // bitset<N> is faster
   iota(phi, phi + N, ∅);
   fore (i, 2, N) if (isp[i])
     for (int j = i; j < N; j += i) {
       isp[j] = (i == j);
       phi[j] /= i;
       phi[j] *= i - 1;
  }
8.3
     Phi of euler
 lli phi(lli n) {
   if (n == 1)
     return 0;
   11i r = n;
   for (11i i = 2; i * i <= n; i++)
     if (n % i == 0) {
       while (n % i == ∅)
         n \neq i;
       r -= r / i;
     }
   if (n > 1)
     r = r / n;
   return r;
 }
     Miller-Rabin
8.4
bool compo(lli p, lli d, lli n, lli k) {
   11i x = fpow(p % n, d, n), i = k;
   while (x != 1 && x != n - 1 && p % n && i--)
     x = mul(x, x, n);
```

}

return x != n - 1 && i != k;

if (n < 2 || n % 6 % 4 != 1)

bool miller(lli n) {

```
return (n | 1) == 3;
                                                                 g = \gcd(a_1, a_2, ..., a_n)
   int k = __builtin_ctzll(n - 1);
   lli d = n >> k;
                                                                8.8 GCD
   for (lli p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
                                                                a \le b; gcd(a + k, b + k) = gcd(b - a, a + k)
        , 37}) {
     if (compo(p, d, n, k))
                                                                8.9 LCM
       return 0:
     if (compo(2 + rng() % (n - 3), d, n, k))
                                                                x = p * lcm(a_1, a_2, ..., a_k) + q, 0 \le q \le lcm(a_1, a_2, ..., a_k)
       return 0:
                                                                 x \pmod{a_i} \equiv q \pmod{a_i} as a_i \mid lcm(a_1, a_2, ..., a_k)
   }
   return 1;
                                                                        Euclid
                                                                8.10
 }
                                                                 pair<lli, lli> euclid(lli a, lli b) {
      Pollard-Rho
                                                                   if (b == 0)
                                                                     return {1, 0};
 11i f(11i x, 11i c, 11i mod) {
                                                                   auto p = euclid(b, a % b);
   return (mul(x, x, mod) + c) % mod;
                                                                   return {p.s, p.f - a / b * p.s};
                                                                 }
 1li rho(lli n) {
                                                                8.11
                                                                        Chinese remainder theorem
   while (1) {
                                                                 pair<lli, lli> crt(pair<lli, lli> a, pair<lli, lli> b)
     111 x = 2 + rng() \% (n - 3), c = 1 + rng() \% 20, y
           = f(x, c, n), g;
                                                                   if (a.s < b.s)
     while ((g = \_gcd(n + y - x, n)) == 1)
                                                                     swap(a, b);
       x = f(x, c, n), y = f(f(y, c, n), c, n);
                                                                   auto p = euclid(a.s, b.s);
     if (g != n) return g;
                                                                   11i g = a.s * p.f + b.s * p.s, l = a.s / g * b.s;
   }
                                                                   if ((b.f - a.f) % g != 0)
   return -1;
                                                                     return {-1, -1}; // no solution
 }
                                                                  p.f = a.f + (b.f - a.f) \% b.s * p.f \% b.s / g * a.s;
                                                                   return \{p.f + (p.f < 0) * 1, 1\};
 void pollard(lli n, map<lli, int> &fac) {
                                                                 }
   if (n == 1) return;
   if (n % 2 == 0) {
                                                                9
                                                                     Math
     fac[2]++;
                                                                       Progressions
     pollard(n / 2, fac);
                                                                9.1
     return;
                                                                Arithmetic progressions
   if (miller(n)) {
                                                                    a_n = a_1 + (n-1) * diff
     fac[n]++;
                                                                    \sum_{i=1}^{n} a_i = n * \frac{a_1 + a_n}{2}
     return;
   11i x = rho(n);
                                                                Geometric progressions
   pollard(x, fac);
   pollard(n / x, fac);
                                                                    a_n = a_1 * r^{n-1}
                                                                    \sum_{k=1}^{n} a_1 * r^k = a_1 * \left(\frac{r^{n+1} - 1}{r - 1}\right) : r \neq 1
8.6
      Amount of divisors
 lli divs(lli n) {
   1li cnt = 1LL;
                                                                9.2
                                                                     Mod multiplication
   for (lli p : primes) {
                                                                lli mul(lli x, lli y, lli mod) {
     if (p * p * p > n)
                                                                   11i r = 0LL;
       break;
                                                                   for (x \% = mod; y > 0; y >>= 1) {
     if (n % p == 0) {
                                                                     if (y \& 1) r = (r + x) \% mod;
       11i k = 0;
                                                                     x = (x + x) \% mod;
       while (n > 1 \& n \% p == 0)
                                                                   }
         n /= p, ++k;
                                                                   return r;
       cnt *= (k + 1);
                                                                 }
   }
                                                                9.3
                                                                      Fpow
   11i sq = mysqrt(n); // A binary search, the last x *
                                                                 1li fpow(lli x, lli y, lli mod) {
        x <= n
                                                                   lli r = 1;
   if (miller(n))
                                                                   for (; y > 0; y >>= 1) {
     cnt *= 2;
                                                                     if (y & 1) r = mul(r, x, mod);
   else if (sq * sq == n && miller(sq))
                                                                     x = mul(x, x, mod);
     cnt *= 3;
                                                                   }
   else if (n > 1)
                                                                   return r;
     cnt *= 4;
                                                                 }
   return cnt;
                                                                9.4 Fibonacci
      Bézout's identity
                                                                     \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} fib_{n+1} & fib_n \\ fib_n & fib_{n-1} \end{bmatrix}
a_1 * x_1 + a_2 * x_2 + \dots + a_n * x_n = g
```

10 Geometry

10.1 Real

```
const ld eps = 1e-9;
#define eq(a, b) abs((a) - (b)) \le eps
 #define neq(a, b) !eq(a, b)
 #define geq(a, b) (a) - (b) >= eps
 #define leq(a, b) (a) - (b) \leq eps
 #define ge(a, b) !leq(a, b)
 #define le(a, b) !geq(a, b)
10.2 Point
int sgn(ld x) {
   return x > 0 ? 1 : (x < 0 ? -1 : 0);
 template <class T>
 struct Point {
   typedef Point<T> P;
   T x, y;
   explicit Point(T x = 0, T y = 0) : x(x), y(y) {}
   P operator + (const P &p) const {
    return P(x + p.x, y + p.y); }
   P operator - (const P &p) const {
    return P(x - p.x, y - p.y); }
   P operator * (T k) const {
    return P(x * k, y * k); }
   P operator / (T k) const {
    return P(x / k, y / k); }
   T dot(const P &p) { return x * p.x + y * p.y; }
   T cross(const P &p) { return x * p.y - y * p.x; }
   double length() const { return sqrtl(norm()); }
   T norm() const { return sq(x) + sq(y); }
   double angle() { return atan2(y, x); }
   P perp() const { return P(-y, x); }
   P unit() const { return (*this) / length(); }
   P rotate (double angle) const {
    return P(x * cos(angle) - y * sin(angle),
              x * sin(angle) + y * cos(angle)); }
   bool operator == (const P &p) const {
    return eq(x, p.x) && eq(y, p.y); }
   bool operator != (const P &p) const {
    return neq(x, p.x) \mid\mid neq(y, p.y); }
   friend ostream & operator << (ostream &os, P &p) {</pre>
    return os << "(" << p.x << ", " << p.y << ")";
   }
};
using P = Point<double>;
double ccw(P a, P b, P c) {
  return (b - a).cross(c - a);
```

```
10.3 Angle Between Vectors
 double angleBetween(P a, P b) {
   double x = a.dot(b) / a.length() / b.length();
   return acos(max(-1.0, min(1.0, x)));
 }
        Area Poligon
10.4
 double area(vector<P> &pts) {
   double sum = 0;
   fore (i, 0, n)
     sum += pts[i].cross(pts[(i + \frac{1}{2}) % sz(pts)]);
   return abs(sum / 2);
}
        Area Poligon In Circle
10.5
 vector<P> intersectLineCircle(const P &a, const P &v,
     const P &c, ld r) {
   1d h2 = r * r - v.cross(c - a) * v.cross(c - a) / v.
   P p = a + v * v.dot(c - a) / v.norm();
   if (eq(h2, 0))
     return {p}; // line tangent to circle
   else if (le(h2, 0))
     return {}; // no intersection
   else {
     point u = v.unit() * sqrt(h2);
     return {p - u, p + u}; // two points of
         intersection (chord)
   }
 bool pointInLine(const P &a, const P &v, const P &p) {
   return eq((p - a).cross(v), 0);
 bool pointInSegment(const P &a, const P &b, const P &p
     ) {
   return pointInLine(a, b - a, p) && leq((a - p).dot(b
        - p), 0);
 int pointInCircle(const P &c, ld r, const P &p) {
   ld 1 = (p - c).length() - r;
   return (le(1, 0) ? 1 : (eq(1, 0) ? -1 : 0));
 }
 vector<P> intersectSegmentCircle(const P &a, const P &
     b, const point &c, ld r) {
   vector<P> points = intersectLineCircle(a, b - a, c,
       r), ans;
   for (const P &p : points) {
     if (pointInSegment(a, b, p)) ans.pb(p);
   return ans;
 ld signed_angle(const P &a, const P &b) {
   return sgn(a.cross(b)) * acosl(a.dot(b) / (a.length
       () * b.length()));
 1d intersectPolygonCircle(const vector<P> &points,
     const P &c, ld r) {
   int n = points.size();
   ld ans = 0;
   for (int i = 0; i < n; ++i) {
     P p = points[i], q = points[(i + 1) % n];
     bool p_inside = (pointInCircle(c, r, p) != 0);
     bool q_inside = (pointInCircle(c, r, q) != 0);
     if (p_inside && q_inside) {
       ans += (p - c).cross(q - c);
     } else if (p_inside && !q_inside) {
       P s1 = intersectSegmentCircle(p, q, c, r)[0];
       P s2 = intersectSegmentCircle(c, q, c, r)[0];
       ans += (p - c).cross(s1 - c) + r * r *
           signed_angle(s1 - c, s2 - c);
```

```
} else if (!p_inside && q_inside) {
                                                              low.pop_back(), up.pop_back();
      P s1 = intersectSegmentCircle(c, p, c, r)[0];
                                                              low.insert(low.end(), all(up));
      P s2 = intersectSegmentCircle(p, q, c, r)[0];
                                                              return low;
      ans += (s_2 - c).cross(q - c) + r * r *
                                                            }
           signed_angle(s1 - c, s2 - c);
                                                           10.8
                                                                  Distance Point Line
    } else {
                                                            double distancePointLine(P a, P v, P p){
      auto info = intersectSegmentCircle(p, q, c, r);
                                                              return (proj(p - a, v) - (p - a)).length();
      if (info.size() <= 1) {</pre>
                                                            }
        ans += r * r * signed_angle(p - c, q - c);
      } else {
                                                           10.9
                                                                   Get Circle
        P s2 = info[0], s3 = info[1];
                                                            pair<P, double> getCircle(P m, P n, P p){
        P s1 = intersectSegmentCircle(c, p, c, r)[0];
                                                              P c = intersectLines((n + m) / 2, (n - m).perp(), (p)
        P s4 = intersectSegmentCircle(c, q, c, r)[0];
                                                                   + m) / 2, (p - m).perp());
        ans += (s^2 - c).cross(s^3 - c) + r * r * (
                                                              double r = (c - m).length();
             signed_angle(s1 - c, s2 - c) +
                                                              return {c, r};
             signed_angle(s3 - c, s4 - c));
                                                            }
      }
    }
                                                           10.10 Intersects Line
  }
                                                            int intersectLinesInfo (P a1, P v1, P a2, P v2) { // v
   return abs(ans) / 2;
                                                                 1 = b - a, v2 = d -
                                                              if (v1.cross(v2) == 0)
                                                                return (a2 - a1).cross(v1) == 0 ? -1 : 0; // -1:
       Closest Pair Of Points
                                                                    infinity Ps, 0: no Ps
pair<P, P> cpp(vector<P> points) {
                                                              else
   sort(all(points), [&](P a, P b) {
                                                                return 1; // single P
    return le(a.y, b.y);
                                                            }
   }):
   set<P> st;
                                                            P intersectLines (P a1, P v1, P a2, P v2) {
   ld ans = inf;
                                                              return a1 + v1 * ((a2 - a1).cross(v2) / v1.cross(v2)
   P p, q;
                                                                  );
   int pos = 0, n = sz(points);
                                                            }
   fore (i, 0, n) {
    while (pos < i && geq(points[i].y - points[pos].y,</pre>
                                                           10.11
                                                                      Intersects Line Segment
          ans))
                                                            int intersectLineSegmentInfo(P a, P v, P c, P d) {
      st.erase(points[pos++]);
                                                              P v2 = d - c;
    auto lo = st.lower_bound({points[i].x - ans - eps,
                                                              ld det = v.cross(v2);
          -inf}):
                                                              if (det == 0) {
    auto hi = st.upper_bound({points[i].x + ans + eps,
                                                                if ((c - a).cross(v) == 0)
          -inf});
                                                                 return -1; // infinity points
     for (auto it = lo; it != hi; ++it) {
      ld d = (points[i] - *it).length();
                                                                 return 0; //no points
      if (le(d, ans))
                                                              } else
        ans = d, p = points[i], q = *it;
                                                                 return sgn(v.cross(c - a)) != sgn(v.cross(d - a))
    st.insert(points[i]);
                                                            }
   }
                                                                     Intersects Segment
                                                           10.12
  return {p, q};
                                                            int intersectSegmentsInfo(const P &a, const P &b,
                                                                const P &c, const P &d) {
10.7
        Convex Hull
                                                              P v1 = b - a, v2 = d - c;
 vector<P> convexHull(vector<P> &pts) {
                                                              int t = sgn(v1.cross(c - a)), u = sgn(v1.cross(d - a))
   int n = sz(pts);
                                                                  ));
   vector<P> low, up;
                                                              if (t == u) {
   sort(all(pts), [&](P a, P b) {
                                                                if (t == 0) {
    return a.x == b.x ? a.y < b.y : a.x < b.x;
                                                                  if (PInSegment(a, b, c) || PInSegment(a, b, d)
   }):
                                                                      || PInSegment(c, d, a) || PInSegment(c, d,
   pts.erase(unique(all(pts)), pts.end());
                                                                      b))
   if (n \le 2)
                                                                    return -1; // infinity Ps
    return pts;
                                                                  else
   fore (i, 0, n) {
                                                                    return 0; // no P
    while(sz(low) \ge 2 \& (low.end()[-1] - low.end()[-1]
                                                                } else
         2]).cross(pts[i] - low.end()[-1]) <= 0)
                                                                  return 0; // no P
      low.pop_back();
    low.pb(pts[i]);
                                                                  return sgn(v2.cross(a - c)) != sgn(v2.cross(b -
                                                                      c)); // 1: single P 0: no P
   fore (i, n, 0) {
                                                            }
    while(sz(up) \ge 2 \&\& (up.end()[-1] - up.end()[-2])
                                                           10.13
                                                                     Is Convex
         .cross(pts[i] - up.end()[-1]) \le 0)
      up.pop_back();
                                                            bool isConvex(vector<P> pts) {
    up.pb(pts[i]);
                                                              int n = sz(pts);
                                                              bool hasPos = false, hasNeg = false;
```

```
fore (i, 0, n) {
                                                                 > 0)
    P first = pts[(i + 1) % n] - pts[i];
                                                                 ans ^= 1;
    P second = pts[(i + 2) % n] - pts[(i + 1) % n];
                                                            }
                                                            return ans ? 1 : 0; // inside, outside
    double sign = first.cross(second);
    if (sign > 0) hasPos = true;
    if (sign < 0) hasNeg = true;</pre>
  }
                                                                     Point In Segment
                                                          10.17
   return !(hasPos && hasNeg);
                                                           bool pointInSegment(P a, P b, P p){
                                                             return (b - a).cross(p - a) == 0 && (a - p).dot(b -
10.14
          Perimeter
                                                                 p) <= 0;
 double perimeter(vector<P> &pts){
   int n = sz(pts);
   double sum = 0;
                                                                     Points Of Tangency
                                                          10.18
   fore (i, 0, n)
                                                           pair<P, P> pointsOfTangency(P c, double r, P p){
     sum += (pts[(i + 1) % n] - pts[i]).length();
                                                             P v = (p - c).unit() * r;
   return sum;
                                                             double cos_theta = r / (p - c).length();
}
                                                             double theta = acos(max(-1.0, min(1.0, cos_theta)));
          Point In Convex Polygon logN
10.15
                                                             return {c + v.rotate(-theta), c + v.rotate(theta)};
// log(n)
                                                           }
// first preprocess: seg = process(points)
 // for each query: PInConvexPolygon(seg, p - pts[0])
                                                          10.19
                                                                     Projection
 vector<P> process(const vector<P> &pts) {
                                                           P proj(P a, P v){
   int n = sz(pts);
                                                             v = v / v.unit();
   rotate(pts.begin(), min_element(all(pts), [&](P a, P
                                                             return v * a.dot(v);
    return a.x == b.x ? a.y < b.y : a.x < b.x;
   }), pts.end());
                                                          10.20
                                                                     Projection Line
   vector<P> seg(n - 1);
   fore (i, 0, n - 1)
                                                           P projLine(P a, P v, P p){
    seg[i] = pts[i + 1] - pts[0];
                                                             return a + proj(p - a, v);
   return seg;
                                                          10.21
                                                                     Reflection Line
bool PInConvexPolygon(const vector<P> &seg, const P &p
     ) {
                                                           P reflectionLine(P a, P v, P p){
   int n = sz(seg);
                                                             return a * 2 - p + proj(p - a, v) * 2;
   if (neq(seg[0].cross(p), 0) && sgn(seg[0].cross(p))
                                                           }
       != sgn(seg[0].cross(seg[n - 1])))
     return false:
                                                          10.22
                                                                     Signed Distance Point Line
   if (neq(seg[n - 1].cross(p), 0) && sgn(seg[n - 1].
       cross(p)) != sgn(seg[n - 1].cross(seg[0])))
                                                           double signedDistancePointLine(P a, P v, P p){
    return false:
                                                             return v.cross(p - a) / v.length();
   if (eq(seg[0].cross(p), 0))
                                                           }
    return geq(seg[0].length(), p.length());
   int 1 = 0, r = n - 1;
                                                          10.23
                                                                     Sort Along Line
   while (r - 1 > 1) {
     int m = 1 + ((r - 1) >> 1);
                                                           void sortAlongLine(P a, P v, vector<P> & pts){
     if (geq(seg[m].cross(p), 0))
                                                             sort(pts.begin(), pts.end(), [&](P u, P w){
      1 = m;
                                                               return u.dot(v) < w.dot(v);</pre>
    else
                                                             });
                                                           }
      r = m:
   return eq(fabs(seg[l].cross(seg[l + 1])), fabs((p -
                                                          10.24
                                                                     Intersects Line Circle
       seg[1]).cross(p - seg[1 + 1])) +
                                                           vector<P> intersectLineCircle(P a, P v, P c, double r)
           fabs(p.cross(seg[1])) + fabs(p.cross(seg[1 +
                                                             P p = proj_line(a, v, c);
}
                                                             double d = (p - c).length();
          Point In Polygon
10.16
                                                             double h = sq(r) - sq(d);
 int pointInPolygon(const vector<P> &pts, P p) { // O(N
                                                             if(h == 0)
                                                             return {p}; //line tangent to circle
  int n = sz(pts), ans = 0;
                                                             else if(h < 0)
  fore (i, 0, n) {
                                                             return {}; //no intersection
  P = pts[i], b = pts[(i + 1) % n];
                                                             else {
  if (pointInSegment(a, b, p))
                                                               P u = v.unit() * sqrt(h);
      return -1; // on perimeter
                                                               return {p - u, p + u}; //two Ps of intersection (
   if (a.y > b.y)
       swap(a,b);
   if (a.y \le p.y \&\& b.y > p.y \&\& (a - p).cross(b - p)
```

11 Bit tricks

$\mathrm{Bits}++$				
Operations on int	Function			
x & -x	Least significant bit in x			
lg(x)	Most significant bit in x			
c = x&-x, r = x+c;	Next number after x with same			
(((r^x) » 2)/c) r	number of bits set			
builtin_	Function			
popcount(x)	Amount of 1's in x			
clz(x)	0's to the left of biggest bit			
ctz(x)	0's to the right of smallest bit			

11.1 Bitset

Bitset <size></size>				
Operation	Function			
_Find_first()	Least significant bit			
_Find_next(idx)	First set bit after index idx			
any(), none(), all()	Just what the expression says			
set(), reset(), flip()	Just what the expression says x2			
to_string('.', 'A')	Print 011010 like .AA.A.			