OUTILS MATHÉMATIQUES 5

Vecteurs : produit scalaire, projection, dérivée temporelle, fonction composée

1 Vecteur

1.1 Sens de rotation associé à un vecteur

Règle du tire-bouchon: On appelle sens de rotation direct autour de la direction \vec{u} le sens de rotation qui fait avancer un tire-bouchon dans le sens de \vec{u} .

Convention utilisée

Le vecteur \vec{n} représente la **normale** au plan (direction orthogonale). En vue de dessus, le sens de rotation direct est le **sens trigonométrique**. En vue de dessous, le sens de rotation direct est le **sens horaire**.

➤ Base directe

Une base orthonormée de l'espace $(\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$ est

directe si:

• on peut faire coïncider $\overrightarrow{u_x}$ avec le pouce, $\overrightarrow{u_y}$ avec l'index et $\overrightarrow{u_z}$ avec le majeur de la main droite (règle des trois doigts de la main droite).

• en faisant tourner un tire-bouchon de $\overrightarrow{u_x}$ vers $\overrightarrow{u_y}$, le tire-bouchon se déplace dans le sens de $\overrightarrow{u_z}$ (règle du tire-bouchon).

1.2 Norme d'un vecteur

Vecteur en coordonnées cartésiennes

$$\vec{a} = a_x \vec{u_x} + a_y \vec{u_y} + a_z \vec{u_z} \quad \text{ou} \quad \vec{a} = \begin{vmatrix} a_x \\ a_y \\ a_z \end{vmatrix}$$

$$\triangleright \quad \underline{\textbf{Définition}} : \text{La norme du vecteur } \vec{a} \text{ est } : ||\vec{a}|| = a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Produit scalaire de deux vecteurs

 \triangleright <u>Définition</u>: Le produit scalaire de a par b est le scalaire algébrique : $|\vec{a} \cdot \vec{b}| = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos(\vec{a}, \vec{b}) = ab\cos(\theta)$

Propriétés : Le produit scalaire est symétrique et bilinéaire :

$$\begin{cases} \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \\ \left(k_1 \overrightarrow{a_1} + k_2 \overrightarrow{a_2} \right) \cdot \vec{b} = k_1 \overrightarrow{a_1} \cdot \vec{b} + k_2 \overrightarrow{a_2} \cdot \vec{b} \end{cases}$$

Expression en coordonnées cartésiennes

Soient deux vecteurs $\vec{a} = a_x \overrightarrow{u_x} + a_y \overrightarrow{u_y} + a_z \overrightarrow{u_z}$ et $\vec{b} = b_x \overrightarrow{u_x} + b_y \overrightarrow{u_y} + b_z \overrightarrow{u_z}$

Le produit scalaire est :

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

> Application

Le produit scalaire caractérise l'orthogonalité :

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

$$\vec{a} \cdot \vec{b} > 0 \Leftrightarrow (\vec{a} \cdot \vec{b})$$
 aigu

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
 $\vec{a} \cdot \vec{b} > 0 \Leftrightarrow (\vec{a} \cdot \vec{b})$ aigu $\vec{a} \cdot \vec{b} < 0 \Leftrightarrow (\vec{a} \cdot \vec{b})$ obtus

Projection d'un vecteur

Que signifie « projeter un vecteur »?

Définition:

Propriété:

> Exemple

La projection du vecteur \vec{a} sur le vecteur unitaire $\vec{u_x}$ est la composante a_x :

La projection du vecteur \vec{a} sur le vecteur unitaire $\overrightarrow{u_y}$ est la composante a_y :

4 Dérivation temporelle

➤ <u>Vecteur constant</u>

Si
$$\vec{a} = \overrightarrow{cste}$$
, alors $\frac{d\vec{a}}{dt} = \vec{0}$

Dérivée d'une somme de vecteurs

$$\frac{d(\vec{a} + \vec{b})}{dt} = \frac{d\vec{a}}{dt} + \frac{d\vec{b}}{dt}$$

Dérivée d'un produit d'un vecteur par un scalaire

$$\frac{d(f(t)\vec{a})}{dt} = \frac{df(t)}{dt}\vec{a} + f(t)\frac{d\vec{a}}{dt}$$

Dérivée d'un produit scalaire de deux vecteurs

$$\frac{d(\vec{a} \cdot \vec{b})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt}$$

Dérivée d'une fonction composée

$$\frac{d(\vec{f}[g(t))]}{dt} = \frac{d(\vec{f}[g(t))]}{dg} \cdot \frac{dg(t)}{dt}$$

Exemple: