

Foundations of Machine Learning (ECE 5984)

- Generative Learning Algorithms -

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Generative vs Discriminative

Discriminative Models

Discriminative Models

Generative Models

Generative Models

Discriminative vs. Generative

Discriminative Approach

Generative Approach

$$\underset{y}{\operatorname{argmax}} p(y|x)$$

$$\underset{y}{\operatorname{argmax}} p(y|x) = \underset{y}{\operatorname{argmax}} \frac{p(x|y)p(y)}{p(x)}$$
$$= \underset{y}{\operatorname{argmax}} p(x|y)p(y)$$

Classification where input feature x are continuous variables

$$D = \{ (x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)}) \}, \qquad x^{(i)} \in \mathbb{R}^d, \qquad y^{(i)} \in \{0, 1\}$$

Classification where input feature x are continuous variables

$$D = \{ \left(x^{(1)}, y^{(1)} \right), \dots, \left(x^{(N)}, y^{(N)} \right) \}, \qquad x^{(i)} \in \mathbb{R}^d, \qquad y^{(i)} \in \{0, 1\}$$

$$p(y) = \text{Bern } (\phi)$$

$$p(x|y=0) = N(\mu_0, \Sigma)$$

$$p(x|y=1) = N(\mu_1, \Sigma)$$
 Shared Covariance

Classification where input feature x are continuous variables

$$p(y) = \phi^{y} (1 - \phi)^{1 - y}$$

$$p(x|y = 0) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_0)^{\mathsf{T}} \Sigma^{-1} (x - \mu_0)\right)$$

$$p(x|y = 1) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_1)^{\mathsf{T}} \Sigma^{-1} (x - \mu_1)\right)$$

• Given data D, we want to maximize likelihood!

 $\operatorname{argmax} \log p(D|\phi, \mu_0, \mu_1, \Sigma) =$

$$\begin{split} \operatorname{argmax} \log p(D; \phi, \mu_0, \mu_1, \Sigma,) &= \log \prod_{i=1}^N p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma,) \\ &= \log \prod_{i=1}^N p\big(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma\big) p(y^{(i)}; \phi) \\ &= \sum_{i=1}^N \log p\big(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma\big) + \sum_{i=1}^N \log p(y^{(i)}; \phi) \end{split}$$

$$\frac{\partial \log p}{\partial \phi} =$$

$$\frac{\partial \log p}{\partial \phi} = \frac{\partial}{\partial \phi} \left(\sum_{i=1}^{N} y^{(i)} \log \phi + (1 - y^{(i)}) \log(1 - \phi) \right)$$

$$= \frac{1}{\phi} \sum_{i=1}^{N} y^{(i)} - \frac{1}{1 - \phi} \sum_{i=1}^{N} (1 - y^{(i)}) = 0$$

$$\frac{1}{\phi} \sum_{i=1}^{N} y^{(i)} = \frac{1}{1 - \phi} \sum_{i=1}^{N} (1 - y^{(i)}) \qquad \sum_{i=1}^{N} y^{(i)} = N\phi \qquad \phi^* = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$

$$\phi^* = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$

$$\frac{\partial \log p}{\partial \mu_1} =$$

$$\frac{\partial \log p}{\partial \mu_1} = \frac{\partial}{\partial \mu_1} \sum_{i=1}^{N} \log p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma)$$
$$= \frac{\partial}{\partial \mu_1} \sum_{i \in \{j|y^{(j)}=1\}} \log p(x^{(i)}|y^{(i)}; \mu_1, \Sigma)$$

$$\mu_1^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\} x^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 1\}} \qquad \mu_0^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 0\} x^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 0\}}$$

$$\frac{\partial \log p}{\partial \Sigma} =$$

$$\frac{\partial \log p}{\partial \Sigma} = \frac{\partial}{\partial \Sigma} \sum_{i=1}^{N} \log p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma)$$

$$\Sigma^* = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \mu_{y^{(i)}} \right) \left(x^{(i)} - \mu_{y^{(i)}} \right)^{\mathsf{T}}$$

Testing

• Given a new data x^{new}

$$\underset{y}{\operatorname{argmax}} p(y|x^{new}) = \underset{y}{\operatorname{argmax}} \frac{p(x^{new}|y)p(y)}{p(x)} = \underset{y}{\operatorname{argmax}} p(x^{new}|y)p(y)$$

Compute
$$p(x^{new}|y = 0), p(y = 0), p(x^{new}|y = 1), p(y = 1)$$

Linear Decision Boundary

Linear Discriminant Analysis

$$p(y = 1|x) = 0.5$$
$$= p(y = 0|x)$$

Linear Decision Boundary

Linear Discriminant Analysis

$$\log p(y = 1|x) = \log p(y = 0|x)$$

Linear Decision Boundary

Linear Discriminant Analysis

$$\log p(y = 1|x) = \log p(y = 0|x)$$

$$(x - \mu_0)^{\mathsf{T}} \Sigma^{-1} (x - \mu_0) = (x - \mu_1)^{\mathsf{T}} \Sigma^{-1} (x - \mu_1) + \text{const}$$

$$x^{\mathsf{T}} \Sigma^{-1} x - 2\mu_0^{\mathsf{T}} \Sigma^{-1} x + \mu_0^{\mathsf{T}} \mu_0 = x^{\mathsf{T}} \Sigma^{-1} x - 2\mu_1^{\mathsf{T}} \Sigma^{-1} x + \mu_1^{\mathsf{T}} \mu_1 + \text{const}$$

$$-2(\mu_0^{\mathsf{T}} \Sigma^{-1} + \mu_1^{\mathsf{T}} \Sigma^{-1}) x + \mu_0^{\mathsf{T}} \mu_0 - \mu_1^{\mathsf{T}} \mu_1 + \text{const} = 0$$

Quadratic Decision Boundary

Quadratic Discriminant Analysis, no shared covariance!

$$\log p(y = 1|x) = \log p(y = 0|x)$$

Quadratic Decision Boundary

Quadratic Discriminant Analysis, no shared covariance!

$$\log p(y = 1|x) = \log p(y = 0|x)$$

$$\log \frac{1}{|\Sigma_0|^{\frac{1}{2}}} + (x - \mu_0)^{\mathsf{T}} \, \Sigma_0^{-1} (x - \mu_0) = \log \frac{1}{|\Sigma_1|^{\frac{1}{2}}} + (x - \mu_1)^{\mathsf{T}} \, \Sigma_1^{-1} (x - \mu_1) + \text{const}$$

Quadratic Decision Boundary

• Quadratic Discriminant Analysis, no shared covariance!

LDA vs QDA

LDA vs QDA

GDA vs Logistic Regression

- GDA makes stronger assumption: p(x|y) is a gaussian
- If the assumption is true, then GDA is "asymptotically efficient"
 - The best possible model when $N \to \infty$
- When data is not Gaussian, logistic regression beats GDA when N is large
- GDA is usually better than logistic regression when N is small
- GDA is a generative model, so we can sample!

How To Generate Samples?

How to Generate Samples?

numpy.random.normal

random.normal(loc=0.0, scale=1.0, size=None)

Random Number Generators

• Sampling from a uniform distribution over [0,1)

numpy.random.rand

```
random. rand(d0, d1, ..., dn)
```

Pseudo Random Number Generators

Linear Congruential Generators

$$X_{n+1} = (aX_n + c) \bmod d$$

seed =
$$X_0 = 1$$

 $a = 5, c = 3, d = 9$

$$0 \le c < d$$

$$X_0 = 1$$

$$X_1 = (5 \cdot 1 + 3) \mod 9 = 8$$

$$X_2 = (5 \cdot 8 + 3) \mod 9 = 7$$

$$X_3 = (5 \cdot 7 + 3) \mod 9 = 2$$

$$X_4 = (5 \cdot 2 + 3) \mod 9 = 4$$

. . .

Sampling From Gaussian Distribution

Inverse transform sampling

Probability Density Function

Cumulative Density Function

Sampling From Gaussian Distribution

• Standard Normal Distribution N(0, 1)

Probability Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Cumulative Density Function

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

Inverse transform sampling

... the denser the samples are around it

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz$$

Inverse transform sampling

Naïve Bayes

(Discrete Input Features)

$$\underset{y}{\operatorname{argmax}} p(y|x) = \underset{y}{\operatorname{argmax}} \frac{p(x|y)p(y)}{p(x)}$$
$$= \underset{y}{\operatorname{argmax}} p(x|y)p(y)$$

- Each vocabulary is one feature dimension
- We encode each email as a feature vector $x \in \{0,1\}^{|V|}$
 - One-hot encoding
- $x_j = 1$, iff the vocabulary x_j appears in the email

$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	1	a Skku University Buy He She 	$\underset{y}{\operatorname{argmax}} p(x y)p(y)$
x = 1	$= \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \in \{0,1\}^{ V }$		y: spam or notx: input
ŀ			

• We want to model the probability of any word x_j appearing in an email given the email is spam or not

Issues

- What if |V| (the number of vocabulary) is large?
- Example: |V| =3
- 2^3 possible outcome, 2^3 classification

$$p(x|y) \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(categorical distribution)

- Naïve Bayes
- $p(x_j|y=k)$ is a Bernoulli distribution

$$p(x|y = k) = \prod_{j=1}^{|V|} p(x_j|y = k)$$

- Not a right assumption in practice
 - If y=1 (spam), then, knowledge of 'buy' presence does not affect on your beliefs about other words, e.g., 'price'

• Both $p(x_i|y=1)$ and p(y=1) are Bernoulli distributions

$$p(x|y=k) = \prod_{j=1}^{|V|} p(x_j|y=k) \qquad \phi \in [0,1]^{|V| \times 2} \qquad \theta \in [0,1]$$

$$p(x_{j} = 1|y = 1) = \phi_{j1}$$

$$p(y = 1) = \theta$$

$$p(x_{j} = 0|y = 1) = 1 - \phi_{j1}$$

$$p(y = 0) = 1 - \theta$$

$$p(x_{j} = 1|y = 0) = \phi_{j0}$$

$$p(x_{j} = 0|y = 0) = 1 - \phi_{j0}$$

$$\log L(\phi, \theta) = \log \prod_{i=1}^{N} p(x^{(i)}, y^{(i)}; \phi, \theta)$$

$$\log L(\phi, \theta) = \log \prod_{i=1}^{N} p(x^{(i)}, y^{(i)}; \phi, \theta)$$

$$= \log \prod_{i=1}^{N} p(x^{(i)}|y^{(i)}; \phi) p(y^{(i)}; \theta)$$

$$= \log \prod_{i=1}^{N} p(y^{(i)}; \theta) \prod_{j=1}^{|V|} p(x_{j}^{(i)}|y^{(i)}; \phi)$$

$$= \sum_{i=1}^{N} \log p(y^{(i)}; \theta) + \sum_{i=1}^{N} \sum_{j=1}^{|V|} \log p(x_{j}^{(i)}|y^{(i)}; \phi)$$

$$\begin{split} \frac{\partial L}{\partial \phi_{l1}} &= \frac{\partial}{\partial \phi_{l1}} \sum_{i=1}^{N} \log p \left(y^{(i)}; \theta \right) + \sum_{i=1}^{N} \sum_{j=1}^{|V|} \log p \left(x_{j}^{(i)} | y^{(i)}; \phi \right) \\ &= \frac{\partial}{\partial \phi_{l1}} \sum_{i \in \{k | y^{(k)} = 1\}} \sum_{j=1}^{|V|} \log p \left(x_{j}^{(i)} | y^{(i)}; \phi \right) \\ &= \frac{\partial}{\partial \phi_{l1}} \sum_{i \in \{k | y^{(k)} = 1\}} \sum_{j=1}^{|V|} \log \left(\phi_{j1}^{x_{j}^{(i)}} (1 - \phi_{j1})^{\left(1 - x_{j}^{(i)} \right)} \right) = \frac{\partial}{\partial \phi_{l1}} \sum_{i \in \{k | y^{(k)} = 1\}} \log \left(\phi_{l1}^{x_{l}^{(i)}} (1 - \phi_{l1})^{\left(1 - x_{l}^{(i)} \right)} \right) \\ &= \frac{\partial}{\partial \phi_{l1}} \sum_{i \in \{k | y^{(k)} = 1\}} x_{l}^{(i)} \log \phi_{l1} + \left(1 - x_{l}^{(i)} \right) \log (1 - \phi_{l1}) \\ &= \sum_{i \in \{k | y^{(k)} = 1\}} \frac{x_{l}^{(i)}}{\phi_{l1}} - \frac{1 - x_{l}^{(i)}}{(1 - \phi_{l1})} = 0 \end{split}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{x_l^{(i)}}{\phi_{l1}} = \sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{1 - x_l^{(i)}}{(1 - \phi_{l1})}$$

$$\frac{1}{\phi_{l1}} \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \frac{1}{(1 - \phi_{l1})} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$(1 - \phi_{l1}) \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i=1}^N 1\{y^{(i)} = 1\}$$

$$\phi_{l1}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 1\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{N_1}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{x_l^{(i)}}{\phi_{l1}} = \sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{1 - x_l^{(i)}}{(1 - \phi_{l1})}$$

$$\frac{1}{\phi_{l1}} \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \frac{1}{(1 - \phi_{l1})} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$(1 - \phi_{l1}) \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i=1}^N 1\{y^{(i)} = 1\}$$

$$\phi_{l1}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 1\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{N_1}$$

$$\phi_{l0}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 0\}x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 0\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = 0\}x_l^{(i)}}{N_0}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{x_l^{(i)}}{\phi_{l1}} = \sum_{i \in \{k \mid y^{(k)} = 1\}} \frac{1 - x_l^{(i)}}{(1 - \phi_{l1})}$$

$$\frac{1}{\phi_{l1}} \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \frac{1}{(1 - \phi_{l1})} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$(1 - \phi_{l1}) \sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1 - x_l^{(i)}$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i \in \{k \mid y^{(k)} = 1\}} 1$$

$$\sum_{i \in \{k \mid y^{(k)} = 1\}} x_l^{(i)} = \phi_{l1} \sum_{i=1}^N 1\{y^{(i)} = 1\}$$

$$\phi_{l1}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 1\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}x_l^{(i)}}{N_1}$$

$$\phi_{l0}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 0\} x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = 0\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = 0\} x_l^{(i)}}{N_0}$$

$$\phi_{lk}^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = k\} x_l^{(i)}}{\sum_{i=1}^N 1\{y^{(i)} = k\}} = \frac{\sum_{i=1}^N 1\{y^{(i)} = k\} x_l^{(i)}}{N_k}$$

$$\frac{\partial L}{\partial \theta} \log L(\phi, \theta) = \frac{\partial L}{\partial \theta} \sum_{i=1}^{N} \log p(y^{(i)}; \theta) + \sum_{i=1}^{N} \sum_{j=1}^{|V|} \log p(x_j^{(i)}|y^{(i)}; \phi)$$
$$= \frac{\partial L}{\partial \theta} \sum_{i=1}^{N} \log p(y^{(i)}; \theta)$$

$$\theta^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = 1\}}{N} = \frac{N_1}{N}$$

$$\theta_k^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = k\}}{N} = \frac{N_k}{N}$$

Testing

$$\underset{k}{\operatorname{argmax}} p(y = k) \prod_{j=1}^{d} p(x_j^{new} | y = k)$$

Testing

$$\underset{k}{\operatorname{argmax}} p(y = k) \prod_{j=1}^{d} p(x_j^{new} | y = k)$$

$$\underset{k}{\operatorname{argmax}} \ \theta_k^* \prod_{j=1}^d \phi_{jk}^* x_j^{new} \left(1 - \phi_{jk}^*\right)^{1 - x_j^{new}}$$

Laplace Smoothing

- What if we have not seen a word "skku" before?
- Then,

$$p(x_{30}|y=1;\phi) = \phi_{30,1} = 0$$

$$p(y = 1|x) = \frac{p(y = 1) \prod_{j=1}^{d} p(x_j|y = 1)}{p(x)}$$

$$= \frac{p(y = 1) \prod_{j=1}^{d} p(x_j|y = 1)}{p(y = 0) \prod_{j=1}^{d} p(x_j|y = 0) + p(y = 1) \prod_{j=1}^{d} p(x_j|y = 1)} = \frac{0}{0}$$

Laplace Smoothing

- Statistically, it is a bad idea to say probability is 'zero' just because you haven't seen it!
- So, add '1' to numerator, K to denominator

$$\theta_k^* = \frac{\sum_{i=1}^N 1\{y^{(i)} = k\}}{N} \qquad \longrightarrow \qquad \theta_k^* = \frac{1 + \sum_{i=1}^N 1\{y^{(i)} = k\}}{K + N}$$

$$\phi_{lk}^* = \frac{\sum_{i=1}^{N} 1\{y^{(i)} = 1\}x_l^{(i)}}{N_k} \longrightarrow \phi_{lk}^* = \frac{1 + \sum_{i=1}^{N} 1\{y^{(i)} = 1\}x_l^{(i)}}{K + N_k}$$