Problema de nota 10

Alexandru Popa

Univeristatea din București

1 Maximum factorization

Some basic definitions:

Definition 1. A factorization of w is a tuple of strings (u_1, u_2, \ldots, u_k) such that $w = u_1 u_2 \cdots u_k$. For example, one of the several factorizations of the word w = abaab is (ab, a, ab) since $w = ab \cdot a \cdot ab$ (where \cdot is the symbol for concatenation).

Definition 2. An equality-free factorization is a factorization with all distinct factors. For example, given the word w = abaab the factorization (ab, a, ab) is NOT equality-free since the first and the third factor are equal. However, (a, baab), (ab, aa, b) and (aba, ab) are all equality-free factorizations.

Definition 3. A gapped equality factorization of string w over alphabet Σ is a tuple (u_1, u_2, \ldots, u_k) such that $w = \alpha_0 u_1 \alpha_1 u_2 \alpha_2 \cdots \alpha_{k-1} u_k \alpha_k$, with $u_i \in \Sigma^+$ and $\alpha_i \in \Sigma^*$ and u_i are all distinct. For example, a gapped equality free factorization of w = abaab is: (a, ab), where α_0 and α_2 are the empty strings, $u_1 = a$, $\alpha_1 = ba$, $u_2 = ab$.

Definition 4. The size of a factorization represents the number of factors.

The problem is the following:

Problem 1. We are given a word w together with an equality-free gapped factorization of size k $w = \alpha_0 u_1 \alpha_1 u_2 \alpha_2 \cdots \alpha_{k-1} u_k \alpha_k$.

Find in polynomial time an equality-free factorization of w without gaps of size at least k, if such a factorization exists. If such a factorization does not exist, your algorithm should output "Impossible".

Example 1. For example if w = aaab and we are given the gapped factorization (a, ab), a factorization with the same size without gaps is (aa, ab).

Example 2. For example if w = aaba and we are given the gapped factorization (a, ab), a factorization with the same size without gaps is (aa, ba).

A weaker version of the problem is:

Problem 2. We are given a word w together with an equality-free gapped factorization of size k $w = \alpha_0 u_1 \alpha_1 u_2 \alpha_2 \cdots \alpha_{k-1} u_k \alpha_k$.

Find in polynomial time an equality-free factorization of w without gaps of size at least k/1000, if such a factorization exists. If such a factorization does not exist, your algorithm should output "Impossible".