AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (original) A process for the polymerization of at least one aliphatic C_{2-20} or aromatic C_{4-20} hydrocarbyl mono- or multiolefin in the presence of a catalyst and an aluminum comprising co-catalyst, characterized in that the catalyst comprises a composition of a metal-organic reagent, a spectator ligand and optionally at least one equivalent of a hydrocarbylating agent.
- 2. (original) A process according to claim 1, wherein the metal-organic reagent is represented by ML_jX_p , wherein M is a metal from group 3-11, or the lanthanide series, X a monoanionic ligand bonded to M, L a neutral ligand bonded to M, j representing an integer denoting the number of neutral ligands L and p is the valence of the metal M.
- 3. (currently amended) Process according to claim 1-or-2, wherein the hydrocarbylating agent comprises a metal or a metalloid chosen from group 1, 2, 11, 12, 13 or 14.
- 4. (original) A process according to claim 3, wherein the hydrocarbylating agent comprises Li, Mg, Zn, or Al.

IJPEIJ et al Serial No. **10/567,097** July 10, 2008

- 5. (currently amended) Process according to claim 4, wherein the hydrocarbylating agent $_{\neg}$ is a C_{1} - C_{20} trihydrocarbyl aluminum or aluminoxane.
- 6. (currently amended) Process according to <u>claim 1-5 claim 1</u>, carried out in the presence of a base other than the hydrocarbylating agent.
- 7. (currently amended) A process according to <u>claim 1-6 claim 1</u>, wherein the spectator ligand is an imine ligand, or the HA adduct thereof, wherein HA represents an acid, of which H represents its proton and A its conjugate base.
- 8. (currently amended) A process according to <u>claim 2-7 claim 2</u>, wherein the metalorganic reagent comprises a group 4 metal and a cyclopentadienyl comprising ligand.
- 9. (currently amended) A process according to claim 1-8 claim 1, in the presence of between 5 to 10 equivalents of a spectator ligand, preferably an imine ligand.
- 10. (currently amended) A process according to elaim 1-5 claim 1, wherein the spectator ligand is represented by $(HA_1)_q$ - Z_n - $(A_2H)_r$, wherein A_1 and A_2 are monoacidic cyclopentadienyl comprising ligands, with q and r representing an integer denoting the number of Cp ligands with q+r = 1 or 2, optionally linked by n parallel bridging groups Z, A_1 , A_2 separately, or bonded via Z together forming a bidentate diacidic spectator ligand.

- 11. (currently amended) A process according to $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand according to the formula $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand according to the formula $\frac{1-7}{2}$ claim 1, wherein the ligand is a ligand according to the formula $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand according to the formula $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand according to the formula $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand bonded $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand bonded $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand $\frac{1-5}{2}$ bonding cycloperation $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand $\frac{1-5}{2}$ claim 1, wherein the ligand $\frac{1-5}{2}$ bonding cycloperation $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand is a ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand point $\frac{1-5}{2}$ claim 1, wherein the ligand point $\frac{1-5}{2}$
- 12. (currently amended) A process according to claim 10-or-11, wherein the metal is a group 4 or group 5 metal, or a metal selected from the lanthanide series.
- 13. (currently amended) A process according to <u>claim 1-6 claim 1</u>, wherein the ligand, represented by $(Ar-R-)_sY(-R-DR'_n)_q$, with, Y representing an anionic moiety of S bonded to M of the metal-organic compound, R an optional bridging group between the Y moiety and the DR'_n and/or Ar group, D a hetero atom chosen from group 15 or 16, R' an optional substituent, Ar an electron-donating aryl group, n the number of R' groups bonded to D, q and s integers with $q + s \ge 1$.
- 14. (original) A process according to claim 13, wherein the metal is a group 4 metal with a valency of 3.

IJPEIJ et al Serial No. **10/567,097** July 10, 2008

15. (currently amended) A process according to elaim 1-5 claim 1, wherein the ligand is represented by

wherein Z is a bridging group, between two donor atom containing groups (D), D a group comprising a hetero atom chosen from group 15 or 16, and R is a substituent.

16. (original) A process according to claim 15, wherein the metal is a metal from Group 7- 11.

17. (currently amended) Polymer obtainable with the process of claims 1-16 claim 1.

18. (original) Polymer obtainable with the process of claim 12, wherein Y is an imine group.

19. (original) Polymer obtainable with the process of claim 18, wherein the imine is a ketimide, phosphinimide, guanidine, or iminoimidazoline.

20. (original) Polymer obtainable with the process of claim 13 wherein D is a ketimide, phosphinimide, guanidine, or an iminoimidazoline.