K+F projekt dokumentáció ACSG Kft.

Időszak: 2022.11.01. - 2022.12.31.

Készítette: Wenesz Dominik

Advanced Cableharness Solution Group

Tartalomjegyzék

1.	Össz	zefoglaló	2
2.	Obj	jektum detektáló alrendszer	2
	2.1.	Hardver változtatások	2
	2.2.	Deep Learning	3
	2.3.		3
			3
			3
			3
		9	3
	2.4.	VI	3
	2.5		3
	2.0.		3
		•	3
			3
	26		3
	۷.0.	IXOHAIQZIO	J
3.	Rob	oot manipulátor	3
		Végberendezés kiválasztása	3
			4
4.	Irod	dalomiegyzék	4

1. Összefoglaló

A dokumentum által specifikált időintervallumban a detektáló rendszerben történtek főbb előrelépések. Először is a későbbi skálázhatóságra való tekintettel hardveres területen változtattunk a feldolgozó egységet és kamerarendszert illetőleg. Ezenfelül a hagyományos képfeldolgozási módszerek után a mélytanuláson alapuló módszerek applikálhatóságát vizsgáltuk.

A másik terület, melyben munkálatok folytak, az a manipulátor megfogójának milyenségének kiválasztása, többféle csatlakozóházon való tesztelése. Ez explicit nem a robotkar pontosságának mérését jelenti, hanem a kereskedelemben fellelhető végberendezések egymással való összehasonlítását (pl.: strapabíróság, felvehető objektum paraméterei, felvehető objektumok számossága, objektumdetektáló rendszerre való illeszthetősége, stb.). A robot pontosságának vizsgálata a következő két hónapos indőintervallumra esedékes.

2. Objektum detektáló alrendszer

2.1. Hardver változtatások

Az objektum detektálás szempontjából a Jetson Nano és a RaspberryPi V2.1-es kamera elegendőnek tekinthető, azonban azon megfontolásból, hogy a későbbiekben a rendszer bővíthető legyen, esetlegesen párhuzamosan több feladatot is el tudjon látni, például egyszerre több különálló kamerakép alapján több egymástól független párhuzamos program/algoritmus futhasson párhuzamosan valós időben, vagy egy komplex, egész gyártócellára kiterjedő optimalizációs rendszer is futtaható legyen, arra a konklúzióra jutottunk, hogy egy nagyobb erőforrásokkal rendelkező feldolgozó egységet használunk. Így esett a választás a Jetson Xavier NX-re, melynek adatlapja megtalálható mellékelve a dokumentációs mappában.

1. ábra. Jeston Xavier NX Edge System

Ezen modul előnye, hogy több memóriát, nagyobb számítókapacitású CPU-t és nagyobb teljesítményű GPU-t tartalmaz, melyek amint azt későbbiekben láthatjuk a mélytanulásos objektumdetektáló módszerekhez elengedhetetlenek.

A kamera modul választásában szintén változtattunk, mivel a RPi V2.1 képminősége a kisebb objektumoknál már nem bizonyult megfelelőnek, illetve nem bővíthető gyárilag lencserendszerrel, így precíz hangolása nehézkes. Ezen indokoknál fogva választottuk a RaspBerryPi HQ detektort a hozzá tartozó lencserendszerrel (optikával) együtt, melyet könnyedén tudunk precízen hangolni. A szenzor és az optika adatlapja szintén megtalálható a dokumentáció megfelelő almappájában.

2. ábra. Optikával és optika nélkül felszerelt RPi HQ kamera

2.2. Deep Learning

(leírás +kép)

2.3. Objektum detektálás mélytanulás alapon

(leírás + kép)

2.3.1. Bounding box

(leírás +kép)

2.3.2. Semantic segmentation

(leírás +kép)

2.3.3. Instance segmentation

(leírás +kép)

2.3.4. Keypoint detection

(leírás +kép)

2.4. Projekt során nem vizsgálandó hálóarchitektúrák

2.5. Vizsgált hálóarchitektúrák

- 2.5.1. Egyszerű konvolúciós háló U-net
- 2.5.2. SSD
- 2.5.3. YOLO

2.6. Konklúzió

3. Robot manipulátor

3.1. Végberendezés kiválasztása

(...)

3.2. Modellezés

A dokumentum által tárgyalt időszakon belül a használt SCARA robot gépészeti modellezése, jellemző adatainak, melyek a későbbiekben a szimulációknál, digitális ikernél releváns adatként szolgálhatnak, adatlapból és mérésekből történő meghatározása, CAD modell elkészítése, illetőleg a gyártócella hasonló megfontolások alapján történő modellezése is megtörtént. (képek...)

3. ábra. CAD modellek

4. Irodalomjegyzék