

Adaptive Object Detection with Dual Multi-Label Prediction

Zhen Zhao, Yuhong Guo, Haifeng Shen, Jieping Ye

Problem: Cross-Domain Object Detection

- > Problem Setting
 - o A source domain with a large number of annotated images
 - o A target domain with only unannotated images
 - o Aim to learn a good object detector for the target domain
- ➤ Previous cross-domain object detection methods apply adversarial feature alignment to bridge domain divergence.
- ➤ However, an image can contain **multiple different objects** and the global image features can have **complex multimodal structures**. Standard image-level feature alignment can fail to handle this issue.

Proposed Approach: MCAR

- MCAR: Multi-label Conditional distribution Alignment and detection Regularization model
- The first work that exploits multi-label prediction as an auxiliary task for cross-domain object detection

MCAR: Overall Architecture

Auxiliary Multi- Label Prediction

Multi-label Conditional adversarial feature alignment (MC)

Prediction consistency Regularization (PR)

Multi-Label Prediction

> Transform object detection into an object recognition problem:

Bounding boxes' labels
$$c_i^s \rightarrow y_i^s$$
, $y_i^s \in \{0,1\}^K$

- > Solve the object recognition task as a multi-label prediction problem
 - o Train K binary classifiers by minimizing the following cross-entropy loss:

$$\mathcal{L}_{multi} = -\frac{1}{n_s} \sum_{i=1}^{n_s} \left[\mathbf{y}_i^{s\top} \log(\mathbf{p}_i^s) + (1 - \mathbf{y}_i^s)^{\top} \log(1 - \mathbf{p}_i^s) \right]$$

$$\mathbf{p}_{ik}^s = M_k(F(x_i^s))$$

$$\mathbf{p}_{ik}^s = M_k(F(x_i^s))$$
Reature
Map
Multi-label classifer

Multi-label learning

Multi-Label Conditional Adversarial Feature Alignment

➤ Use multi-label prediction results as the category information for the conditional adversary, i.e., domain discriminator:

$$D(F(x_i), \mathbf{p}_i) = FC(f(F(x_i)) \otimes \mathbf{p}_i)$$

 \triangleright Deploy a conditional adversarial training loss, L_{adv} , to perform multimodal feature distribution alignment

$$\min_{F} \max_{D} \mathcal{L}_{adv} = -\frac{1}{2} (\mathcal{L}_{adv}^{s} + \mathcal{L}_{adv}^{t})$$

$$\mathcal{L}_{adv}^{s} = -\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} (1 - D(F(x_{i}^{s}), \mathbf{p}_{i}^{s}))^{\gamma} \log(D(F(x_{i}^{s}), \mathbf{p}_{i}^{s}))$$

$$\mathcal{L}_{adv}^{t} = -\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} D(F(x_{i}^{t}), \mathbf{p}_{i}^{t})^{\gamma} \log(1 - D(F(x_{i}^{t}), \mathbf{p}_{i}^{t}))$$

o maintain the discriminability of the features

Prediction Consistency Regularization

- > Use multi-label prediction results to help object detection
 - Obtain object level labels from the object detector by combing the prediction results from the total N region proposals : $Q \in [0,1]^{K \times N}$
 - Compute an overall multi-object prediction probability vector q by taking the row-wise maximum over Q: $q_k = \max(Q(k, :))$, and renormalize
 - Enforce prediction consistency between p and q by minimizing the *KL* divergence based loss:

$$\mathcal{L}_{kl} = \mathcal{L}_{kl}^s + \mathcal{L}_{kl}^t$$

$$\mathcal{L}_{kl}^s = \frac{1}{2n_s} \sum_{i=1}^{n_s} (KL(\mathbf{p}_i^s, \mathbf{q}_i^s) + KL(\mathbf{q}_i^s, \mathbf{p}_i^s))$$

$$\mathcal{L}_{kl}^t = \frac{1}{2n_t} \sum_{i=1}^{n_t} (KL(\mathbf{p}_i^t, \mathbf{q}_i^t) + KL(\mathbf{q}_i^t, \mathbf{p}_i^t))$$

Over End-to-End Learning

> End-to-End Learning

- The detection loss of the base Faster-RCNN model, denoted as L_{det}
- Combine the detection loss, the multi-label prediction loss, the conditional adversarial feature alignment loss, and the prediction consistency regularization loss together for end-to-end deep learning:

$$\begin{cases} \mathcal{L}_{all} = \mathcal{L}_{det} + \lambda \mathcal{L}_{adv} + \mu \mathcal{L}_{multi} + \varepsilon \mathcal{L}_{kl} \\ \min_{F} \max_{D} \mathcal{L}_{all} \end{cases}$$

where λ , μ , and ε are trade-o parameters that balance the multiple loss terms.

Experiments

Multiple cross-domain multi-object detection tasks under different adaptation scenarios:

- Domain adaptation from real to virtual images
 PASCAL VOC to Watercolor2K and Comic2K respectively
- Domain adaption from normal/clear images to foggy images
 Cityscapes to Foggy Cityscapes

Adaptation from Real to Virtual Scenes

PASCAL VOC to Watercolor

Method	MC	PR	bike	bird	car	cat	dog	person	mAP
Source-only			68.8	46.8	37.2	32.7	21.3	60.7	44.6
BDC-Faster [31]			68.6	48.3	47.2	26.5	21.7	60.5	45.5
DA-Faster [2]			75.2	40.6	48.0	31.5	20.6	60.0	46.0
SW-DA [31]			82.3	55.9	46.5	32.7	35.5	66.7	53.3
SCL [34]			82.2	55.1	51.8	39.6	38.4	64.0	55.2
MCAR (Ours)	√		92.5	52.2	43.9	46.5	28.8	62.5	54.4
	√	✓	87.9	52.1	51.8	41.6	33.8	68.8	56.0
Train-on-Target			83.6	59.4	50.7	43.7	39.5	74.5	58.6

PASCAL VOC to Comic

Method	MC	PR	bike	bird	car	cat	dog	person	mAP
Source-only			32.5	12.0	21.1	10.4	12.4	29.9	19.7
DA-Faster			31.1	10.3	15.5	12.4	19.3	39.0	21.2
SW-DA			36.4	21.8	29.8	15.1	23.5	49.6	29.4
MCAR (Ours)	√		40.9	22.5	30.3	23.7	24.7	53.6	32.6
	✓	√	47.9	20.5	37.4	20.6	24.5	50.2	33.5

Adaptation from Normal to Foggy Scenes

Cityscapes to Foggy Cityscapes

Method	MC	PR	person	rider	car	truck	bus	train	motorbike	bicycle	mAP
Source-only			25.1	32.7	31.0	12.5	23.9	9.1	23.7	29.1	23.4
BDC-Faster [31]			26.4	37.2	42.4	21.2	29.2	12.3	22.6	28.9	27.5
DA-Faster [2]			25.0	31.0	40.5	22.1	35.3	20.2	20.0	27.1	27.6
SC-DA [44]			33.5	38.0	48.5	26.5	39.0	23.3	28.0	33.6	33.8
MAF [17]			28.2	39.5	43.9	23.8	39.9	33.3	29.2	33.9	34.0
SW-DA [31]			36.2	35.3	43.5	30.0	29.9	42.3	32.6	24.5	34.3
DD-MRL [19]			30.8	40.5	44.3	27.2	38.4	34.5	28.4	32.2	34.6
MTOR [1]			30.6	41.4	44.0	21.9	38.6	40.6	28.3	35.6	35.1
Dense-DA [40]			33.2	44.2	44.8	28.2	41.8	28.7	30.5	36.5	36.0
SCL [34]			31.6	44.0	44.8	30.4	41.8	40.7	33.6	36.2	37.9
MCAR (Ours)	√		31.2	42.5	43.8	32.3	41.1	33.0	32.4	36.5	36.6
	V	√	32.0	42.1	43.9	31.3	44.1	43.4	37.4	36.6	38.8
Train-on-Target			50.0	36.2	49.7	34.7	33.2	45.9	37.4	35.6	40.3

Qualitative Results

PASCAL VOC to Watercolor

Cityscapes to Foggy Cityscapes.

DA-Faster

SW-DA

MCAR(Ours)

Ground-Truth

Thank You!