TD - Logique du premier ordre

Exercice 1.

On donne la formule logique du premier ordre suivante :

$$\forall x. \forall y. \exists z. (\neg (x < a^2) \lor ((x + 2 < z) \land (z < y)))$$

- 1. Identifier les ensembles \mathcal{X} , \mathcal{S}_f , \mathcal{S}_p , les variables libres, les variables liées, leurs portées, les formules atomiques, les termes.
- 2. Dessiner son arbre syntaxique

Corrigé de l'exercice 1.

[Retour à l'énoncé]

Fait en classe

Exercice 2.

Traduire en formules logiques du premier ordre les phrases suivantes, en introduisant tous les prédicats nécessaires.

- 1. Dans une école, il existe des ordinateurs non connectés au réseau local
- ${\bf 2.}\;$ Dans toutes les écoles, tous les ordinateurs sont connectés à un réseau local
- **3.** Dans chaque école, au moins un ordinateur est connecté à la fois à un réseau local et au réseau Internet.

Corrigé de l'exercice 2.

[Retour à l'énoncé]

On introduit:

- deux termes constants local et internet
- un prédicat unaire ecole : ecole(x) renvoie vrai si x est une école
- deux prédicats binaires :
 - $\operatorname{ordi}(x,y)$ renvoie vrai si x est un ordinateur de l'école y
 - connecté(x,y) renvoie vrai si x est un ordinateur connecté au réseau y

1.

$$\exists o. (\mathtt{ordi}(o, e) \land \neg \mathtt{connect\'e}(o, \mathtt{local}))$$

Dans cette formule du 1er ordre, la variable o est liée mais e est libre.

2.

$$\forall e. (\mathtt{ecole}(e) \rightarrow (\forall o. (\mathtt{ordi}(o, e) \rightarrow \mathtt{connect\'e}(o, \mathtt{local}))))$$

Toutes les variables sont liées.

3.

$$\forall e. (\texttt{ecole}(e) \rightarrow (\exists o. (\texttt{ordi}(o, e) \land \texttt{connect\'e}(o, \texttt{local}) \land \texttt{connect\'e}(o, \texttt{internet})))$$

Exercice 3.

On considère l'algorithme (quadratique!) suivant de recherche d'un doublon dans un tableau t :

1. Voici 4 formules de la logique du premier ordre concernant un tableau t de taille n:

a.

$$\forall i. (i \in [0, n[\rightarrow (\forall j. (j \in [0, n[\rightarrow (i \neq j \rightarrow t[i] = t[j]))))))$$

b.

$$\forall i.(i \in [0, n[\rightarrow (\exists j.(j \in [0, n[\land (i \neq j \land t[i] = t[j])))))))$$

c.

$$\exists i. (i \in [0, n[\land (\forall j. (j \in [0, n[\rightarrow (i \neq j \rightarrow t[i] = t[j]))))))$$

d.

$$\exists i. (i \in [0, n[\land (\exists j. (j \in [0, n[\land (i \neq j \land t[i] = t[j]))))$$

Traduire chaque formule en français.

- 2. Quelle formule exprime le plus fidèlement la présence d'un doublon dans le tableau?
- 3. Écrire deux invariants de boucle, un pour la boucle interne et un pour la boucle externe du code fourni, sous la forme de deux formules de la logique propositionnelle.

Corrigé de l'exercice 3.

[Retour à l'énoncé]

- 1. Voici une interprétation des formules en français :
 - a. Toutes les valeurs du tableau sont égales, par exemple [|1; 1; 1; 1; 1; 1|]
 - b. Pour tout élément, il existe un autre élément ayant la même valeur, autrement dit, tout élément admet un doublon, par exemple [|1; 2; 3; 1; 3; 2; 3|]
 - c. Il existe un élément qui est égal à tous les autres, par exemple [|1; 1; 1; 1; 1; 1; 1]
 - d. On peut trouver deux éléments égaux : par exemple [|1; 2; 3; 1; 1; 1|] ou [|1; 2; 3; 4; 5; 1; 7|]
- 2. Toutes les formules décrivent des situations où il existe des doublons mais seule la dernière est parfaitement ajustée et n'exprime rien de plus.
- **3.** Boucle interne : i et j sont des variables libres :

$$\forall k. (k \in [i+1, j[\rightarrow a[k] \neq a[i]))$$

Boucle externe : i est libre

$$\forall k_1. (k_1 \in [0, i] \rightarrow \forall k_2. ((k_2 \in [0, n]) \rightarrow ((k_1 \neq k_2) \rightarrow a[k_1] \neq a[k_2])))$$