STAT 511: Homework 2 Due: 9/19/2014

This homework can be completely hand-written, except for 1(c) and 4(f)-4(g). Your answers for the R parts can be completely separate from your hand-written answers for the other problems, if you would like.

- 1. Let $y_i \sim \text{Binom}(n_i, p)$ for $i = 1, 2, \dots, m$ be m independent binomial random variables.
 - (a) Find the maximum likelihood estimate of p using calculus.
 - (b) Given the data in the following table, what is the MLE of p?

i	1	2	3	4	5	6	7	8	9	10
						62				
y_i	18	31	34	33	27	33	28	23	33	12

- (c) Use R to plot the likelihood function for a range of p values between zero and one. The "dbinom" function will be useful here. The example code in "MLE.ex.rain.r" shows a similar example with Bernoulli-distributed data.
- 2. Let $y_i \sim N(\mu, \sigma^2)$ for i = 1, 2, ..., n be n independent and identically-distributed Gaussian random variables. Assume that the variance is known: $\sigma^2 = 4$.
 - (a) Find the maximum likelihood estimate of μ . This will be $\hat{\mu}_{ML} = g(y_1, y_1, \dots, y_n)$ for some function $g(\cdot)$.
 - (b) Find $E(\hat{\mu}_{ML})$ and $Var(\hat{\mu}_{ML})$.
 - (c) Show that $\hat{\mu}_{ML} = \hat{\mu}_{OLS}$ where $\hat{\mu}_{OLS}$ is the value of μ that minimizes the sum of squared errors:

$$LS(\mu; \mathbf{y}) = \sum_{i=1}^{n} (y_i - \mu)^2$$

3. Let **y** be a $n \times 1$ random vector distributed as

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

where **X** is a $n \times p$ matrix of real numbers and β is a $p \times 1$ vector of real numbers.

- (a) What is the distribution of $\mathbf{z} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$?
- (b) What is the distribution of $\bar{\mathbf{y}} = \sum_{i=1}^{n} y_i/n$?
- 4. Let $\mathbf{z} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I})$ and $\mathbf{w} \sim N(\gamma \mathbf{1}, \mathbf{R})$ be independent multivariate normal distributions of dimension n.
 - (a) Let $\mathbf{b} = [\mathbf{z}'\mathbf{w}']'$ be a $2n \times 1$ column-vector formed by stacking \mathbf{z} and \mathbf{w} together. What is the distribution of \mathbf{b} ?
 - (b) What is the distribution of $(\mathbf{z} \mu \mathbf{1})'(\mathbf{z} \mu \mathbf{1})/\sigma^2$?
 - (c) What is the distribution of $\mathbf{y} = \mathbf{z} + \tau \cdot \mathbf{w}$?
 - (d) What is the distribution of $(\mathbf{w} \gamma \mathbf{1})' \mathbf{R}^{-1} (\mathbf{w} \gamma \mathbf{1})$?
 - (e) Let the i, j-th element of **R** be given by $R_{ij} = \exp(-|i-j|/10)$. What is $Cov(y_i, y_j)$? What is $cor(y_i, y_j)$?
 - (f) Do this question in R. Set $\mu = \gamma = 0$ and let n = 20. Use "rmvnorm" in the "mvtnorm" package to simulate 9 realizations of \mathbf{y} when $\sigma = \tau = 1$. The following code may be used to make the \mathbf{R} and \mathbf{I} matrices:

```
R=matrix(0,nrow=n,ncol=n)
for(i in 1:n){
   for(j in 1:n){
     R[i,j]=exp(-abs(i-j)/10)
   }
}
I=diag(n)
```

STAT 511: Homework 2 Due: 9/19/2014

- (g) Repeat (e) for $\sigma = 10$ and $\tau = 1$.
- (h) Repeat (e) for $\sigma = 1$ and $\tau = 10$.
- 5. Let x_1 and x_2 be independent, standard normal random variables. Show that the random variables $y = x_1 + x_2$ and $z = x_1 x_2$ are independent by showing that their covariance is zero. Note, zero covariance implies independence ONLY for normal random variables.
- 6. Suppose the value of a stock on Day i is x_i . On day i the value of the stock is distributed as follows:

$$x_i = \begin{cases} e_0 & , & i = 0 \\ x_{i-1} + e_i & , & i > 0 \end{cases}, e_t \overset{iid}{\sim} N(\mu, \sigma^2).$$

- (a) What is the expected value of the stock on Day 10?
- (b) What is the joint distribution of $(x_0, x_1, x_2, x_3, x_4)$? Hint: Write $\mathbf{x} = \mathbf{A}\mathbf{e}$ for some matrix \mathbf{A} .
- (c) What is $Cov(x_1, x_4)$?