

少出力表を描く

$q_{1}^{n+1}q_{0}^{n}$ $q_{1}^{n}q_{0}$	0	
00	01/0	(1/)
0	10 /0	00/0
10	11/0	01/0
1 [00/0	10/0

分出力関数を書く

$$\begin{cases}
J_0 = k_0 = 1 \\
J_1 = k_1 = y \oplus 2_0^n
\end{cases}$$

$$Y = y \overline{q}, n \overline{q}_0^n$$

分收能遷物関数

$$Q_{n+1}^{n+1} = \overline{J}_{1} \overline{q}_{n}^{n} + \overline{k}_{1} Q_{1}^{n} = (\chi \oplus Q_{0}^{n}) \overline{q}_{n}^{n} + \overline{\chi \oplus Q_{0}^{n}} Q_{1}^{n}$$

$$= \chi \oplus Q_{0}^{n} \oplus Q_{1}^{n}$$

演習图 ②

入为×/出为丫

出力関数

0

状能選務表

三見	伏巍、	次批說 ソンツリ	/z
-) 2	71	X=V	X = 1
U	O	00/0	01/0
U		00/0	11 /0
)	D	00/0	11/0
1		00/0	11/1