Matematikai statisztika

October 7, 2024

Tartalom

1	Alapfogalmak	2
	1.1 Kolmogorov-féle axiómarendszer	2

1 Alapfogalmak

1.1 Kolmogorov-féle axiómarendszer

Definíció. Ω legyen egy halmaz, jelölje a lehetséges kimenetelek halmazát. Ekkor legyen $\mathscr{A} \subseteq \mathcal{P}(\Omega)$ a megfigyelhető események családja, továbbá egy $\mathbf{P}: \mathscr{A} \to \mathbb{R}$ függvény. A valószínűségszámítás axiómái szerint az $(\Omega, \mathscr{A}, \mathbf{P})$ valószínűségi mező a következő tulajdonságokkal rendelkezik:

- 1. Minden $A \in \mathcal{A}$ esetén $\mathbf{P}(A) \geq 0$.
- 2. $\Omega \in \mathscr{A} \text{ és } \mathbf{P}(\Omega) = 1.$
- 3. Ha $A \in \mathcal{A}$, akkor $A^c \in \mathcal{A}$ is igaz.
- 4. Ha A_1, A_2, \ldots legfeljebb megszámlálható sok esemény, akkor

$$\bigcup_{k=1}^{\infty} A_k \in \mathscr{A}.$$

5. Ha A_1, A_2, \ldots legfeljebb megszámlálható sok páronként diszjunkt esemény, akkor

$$\mathbf{P}\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mathbf{P}(A_k).$$

Legyen A_1, A_2, \ldots legfeljebb megszámlálható sok esemény, ekkor

$$\bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{\infty} (A_k^c)^c = \left(\bigcup_{k=1}^{\infty} A_k^c\right)^c.$$

Azaz metszetre is zártak az események.

A valószínűségi mező definíciójából egy sor kézenfekvő tulajdonság vezethető le. Ezek közül tekintsük néhány igen egyszerűt:

1. Tetszőleges $A \in \mathcal{A}$ esetén $\mathbf{P}(A^c) = 1 - \mathbf{P}(A)$. Valóban

$$1 = \mathbf{P}(\Omega) = \mathbf{P}(A \cup A^c) = \mathbf{P}(A) + \mathbf{P}(A^c).$$

2. Ha $A, B \in \mathcal{A}$ és $A \subseteq B$, akkor $\mathbf{P}(A \backslash B) = \mathbf{P}(B) - \mathbf{P}(A)$, speciálisan $\mathbf{P}(B \backslash A) \ge 0$ miatt $\mathbf{P}(B) \ge \mathbf{P}(a)$. Valóban

$$(B\backslash A)\cup A=(B\cap A^c)\cup A=(B\cap A^c)\cup (B\cap A)=B\cup (A\cup A^c)=B\cap \Omega=B,$$
ebből

$$\mathbf{P}(B\backslash A) + \mathbf{P}(A) = \mathbf{P}(B).$$

Legyen $(A_n): \mathbb{N} \to \Omega$ egy halmazsorozat. Azt mondjuk, hogy a sorozat határértéke a \mathscr{H}