复习内容

两种思想方法:

- 从具体到一般,再从一般到具体
- 通过各种变换(等价变换、相似变换、合同变换)将 复杂问题化为简单问题来讨论

内容:

- 第一章 行列式
- 第二章 线性方程组
- 第三章 矩阵
- 第四章 线性空间和线性变换
- 第五章 特征值和特征向量
- 第六章 二次型

P202 习题 5.1 第 4 题 特征子空间

4. 设 λ_0 是 n 阶方阵 A 的一个特征值. 记 A 的属于 λ_0 的特征向量的全体及零向量为

$$W_{\lambda_0} = \left\{ \xi \in P^n \middle| A\xi = \lambda_0 \xi \right\}.$$

证明:

- (1) 若 $\xi_1, \xi_2 \in W_{\lambda_0}$, 则 $\xi_1 + \xi_2 \in W_{\lambda_0}$;
- (2) 若 $\xi_1 \in W_{\lambda_0}$,则对任意的 $k \in P$ 有 $k\xi_1 \in W_{\lambda_0}$;
- (3) 由(1), (2)导出 W_{λ_0} 为 P^n 的一个子空间,称为属于 λ_0 的特征子空间. 特征子空间 W_{λ_0} 中任意非零向量都是A的属于 λ_0 的特征向量.
- 证 (1) $\xi_1, \xi_2 \in W_{\lambda_0}$, 所以有 $A\xi_1 = \lambda_0 \xi_1$, $A\xi_2 = \lambda_0 \xi_2$, 而 $A(\xi_1 + \xi_2) = A\xi_1 + A\xi_2 = \lambda_0 \xi_1 + \lambda_0 \xi_2 = \lambda_0 (\xi_1 + \xi_2)$, 所以 $\xi_1 + \xi_2 \in W_{\lambda_0}$.
- $(2) \quad \xi_1 \in W_{\lambda_0} \quad , \qquad \text{所 以 } A\xi_1 = \lambda_0 \xi_1 \quad , \qquad \text{而}$ $A(k\xi_1) = kA\xi_1 = k\lambda_0 \xi_1 = \lambda_0 (k\xi_1) \, , \quad \text{因此 } k\xi_1 \in W_{\lambda_0} \, .$
- (3) 由 (1) , (2) 可 知 非 空 集 合 $W_{\lambda_0} = \{\xi \in P^n | A\xi = \lambda_0 \xi\}$ 中元素符合加法和数乘的封闭性,所以构成一个子空间.

第一章 行列式

本章主要学习了以下内容

- 一个概念(n阶行列式)
- 九类可直接计算出的行列式
- 三种计算行列式的方法(化简为九类可直接计算出的行列式,降阶,递推)
- *n*个未知量*n*个线性方程的线性方程组解公式(克拉默法则)

逆序数的计算方法

由此得出计算排列的逆序数的一个方法:

$$\tau(i_1 i_2 \cdots i_n) = \tau_1(i_1 \text{ 后面比 } i_1 \text{ 小的数的个数})$$
 $+ \tau_2(i_2 \text{ 后面比 } i_2 \text{ 小的数的个数})$
 $+ \cdots \cdots$
 $+ \tau_{n-1}(i_{n-1} \text{ 后面比 } i_{n-1} \text{ 小的数的个数}).$

据此方法计算得

$$\tau(15432) = 0 + 3 + 2 + 1 = 6,$$

所以 15432 为偶排列.

任一排列经过一次对换后必改变其奇偶性

二阶行列式

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

三阶行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$-a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$\sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

行列式的性质

- 性质 $1 D = D^{T}$
- 性质 2 如果行列式中两行(列)互换,行列式的值只改变一个符号。
- 推论 1 行列式中若有两行(列)对应元素全相等,则行列式为零。
- 性质 3 以数k乘行列式中某一行(列)中所有元素,等于用k乘以此行列式。
- 推论 2 若行列式中有一行(列)的元素全为零,则行列 式为零。
- 性质 4 如果行列式中两行(列)元素对应成比例,则行列式为零。
- 性质 5 分行(列)相加。

性质 5 (分行(列)相加性)

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \Box & \Box & \Box \\ b_{i1} + c_{i1} & b_{i2} + c_{i2} & \cdots & b_{in} + c_{in} \\ \Box & \Box & \Box & \Box \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \Box & \Box & \Box & \Box \\ a_{n1} & b_{i2} & \cdots & b_{in} \\ \Box & \Box & \Box & \Box \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \Box & \Box & \Box \\ \Box & \Box & \Box \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

推论3

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ b_{i1} + c_{i1} + \cdots + h_{i1} & b_{i2} + c_{i2} + \cdots + h_{i2} & \cdots & b_{in} + c_{in} + \cdots + h_{in} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{nn} \\ a_{n$$

性质 6 行列式的某一行(列)元素加上另一行(列)对 应元素的k倍,行列式不变。

$$D = \begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{22} & 0 & \cdots & 0 \\ a_{13} & a_{23} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{nn} \end{vmatrix}$$

$$= D^{T} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a_{22} \cdots a_{nn}$$

$$\begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & a_{1n} \\ 0 & 0 & 0 & \cdots & a_{2,n-1} & a_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & a_{n-2,3} & \cdots & a_{n-2,n-1} & a_{n-2,n} \\ 0 & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2,n-1} & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-2,1} & a_{n-2,2} & a_{n-2,3} & \cdots & 0 & 0 \\ a_{n-1,1} & a_{n-1,2} & 0 & \cdots & 0 & 0 \\ a_{n1} & 0 & 0 & \cdots & 0 & 0 \end{vmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2,n-1} & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-2,1} & a_{n-2,2} & a_{n-2,3} & \cdots & 0 & 0 \\ a_{n-1,1} & a_{n-1,2} & 0 & \cdots & 0 & 0 \\ a_{n1} & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$= (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-1} \cdots a_{n-1,2} a_{n1}$$

$$\begin{vmatrix} a_{11} & \cdots & a_{1r} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} & 0 & \cdots & 0 \\ c_{11} & \cdots & c_{1r} & b_{11} & \cdots & b_{1s} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{s1} & \cdots & c_{sr} & b_{s1} & \cdots & b_{ss} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & \cdots & a_{1r} & b_{11} & \cdots & b_{1s} \\ \vdots & & \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} & b_{s1} & \cdots & b_{ss} \\ \vdots & & \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} & c_{s1} & \cdots & c_{sr} \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1s} \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & b_{s1} & \cdots & b_{ss} \end{vmatrix}$$

$$\begin{vmatrix} 0 & \cdots & 0 & a_{11} & \cdots & a_{1r} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{r1} & \cdots & a_{rr} \\ b_{11} & \cdots & b_{1s} & c_{11} & \cdots & c_{1r} \\ \vdots & & \vdots & & \vdots \\ b_{s1} & \cdots & b_{ss} & c_{s1} & \cdots & c_{sr} \end{vmatrix}$$

$$= (-1)^{rs} \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix} \begin{vmatrix} b_{11} & \cdots & b_{1s} \\ \vdots & & \vdots \\ b_{s1} & \cdots & b_{ss} \end{vmatrix}$$

$$= \begin{vmatrix} c_{11} & \cdots & c_{1r} & a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{s1} & \cdots & c_{sr} & a_{r1} & \cdots & a_{rr} \\ b_{11} & \cdots & b_{1s} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ b_{s1} & \cdots & b_{ss} & 0 & \cdots & 0 \end{vmatrix}$$

范德蒙德行列式

 $\cdot (a_n - a_{n-1})$

克拉默(Cramer)法则[1]P33

设线性方程组

$$\begin{cases} a_{11}x_1 + a_{21}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_2 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_m = b_m \end{cases}$$

的系数行列 $D \neq 0$,则该方程有唯一解,其解为:

$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad \dots, \quad x_m = \frac{D_m}{D}$$

其中:

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{vmatrix}$$

$$D_{j} = \begin{vmatrix} a_{m1} & a_{m2} & \cdots & a_{mm} \\ a_{11} & \cdots & a_{1,j-1} & b_{1} & a_{1,j+1} & \cdots & a_{1m} \\ a_{21} & \cdots & a_{2,j-1} & b_{2} & a_{2,j+1} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{m,j-1} & b_{m} & a_{m,j+1} & \cdots & a_{mm} \end{vmatrix}$$

若 $a_{ij} \in P(i,j=1,2,\cdots,m)$, P 为某个数域,则解 x_1,x_2,\cdots,x_m 均属于P。

定理 1.4.1 行列式按行或按列展开

n阶行列式 $D = |a_{ij}|_n$ 等于它的任意一行(列)的各元素与其对应的代数余子式乘积之和,即

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} \quad (i = 1, 2, \dots, n)$$

$$D = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} (j = 1, 2, \dots, n)$$

$$\begin{aligned} a_{k1}A_{i1} + a_{k2}A_{i2} + \dots + a_{kn}A_{in} &= \begin{cases} D &, & i = k \\ 0 &, & i \neq k \end{cases} \\ a_{1k}A_{1j} + a_{2k}A_{2j} + \dots + a_{nk}A_{nj} &= \begin{cases} D &, & j = k \\ 0 &, & j \neq k \end{cases} \end{aligned}$$

定理 1.4.3 拉普拉斯(Laplace) 定理

设D为n阶行列式,任取定其中k行(列)($1 \le k < n$),则由这k行(列)构成的一切k阶子式 N_1,N_2,\cdots,N_t 与它们所对应的代数余子式 A_1,A_2,\cdots,A_t 乘积之和等于D,即

$$D = N_1 A_1 + N_2 A_2 + \dots + N_t A_t$$

其中 $t = C_n^k$

例如

$$D = \begin{vmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \times (-1)^{(1+3)+(1+2)} \begin{vmatrix} a_{23} & a_{24} \\ a_{43} & a_{44} \end{vmatrix}$$

$$= (a_{11}a_{44} - a_{14}a_{41})(a_{22}a_{33} - a_{23}a_{32})$$

行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 \end{vmatrix}$$
, (1) 求D的值; (2) 若记 M_{ij} , A_{ij} 分别为D中

元素 a_{ij} 的余子式和代数余子式,计算 $2A_{11}+3M_{12}+2M_{13}-A_{14}$ 。

解:
$$(1) D = -16$$

计算行列式**D** =
$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 1 & 0 & 1 & 1 \end{vmatrix}$$

$$= -20$$

07-08 秋冬期末 A 卷

解 x^4 的系数即为行列式对角线 4 项相乘的系数,所以系数是 4。记本题的行列式为 $|a_{ij}|$,则含 x^3 的项为:

$$(-1)^{\tau(2134)}a_{12}a_{21}a_{33}a_{44} = -6x^3$$

和

$$(-1)^{\tau(1243)}a_{11}a_{22}a_{34}a_{43} = -6x^3$$
 所以 x^3 的系数为 -12 。

在 5 阶行列式**D** =
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{53} & a_{53} & a_{54} & a_{55} \end{vmatrix}$$
中包含

$$a_{13}a_{25}$$
的所有正项是_____。

答案

 $a_{13}a_{25}a_{31}a_{44}a_{52}$, $a_{13}a_{25}a_{32}a_{41}a_{54}$, $a_{13}a_{25}a_{34}a_{42}a_{51}$

提示: 找出 1, 2, 4 的所有排列: $a_{13}a_{25}a_{3?}a_{4?}a_{5?}$

- $142 \quad 35142 +$
- 412 35412 -
- $421 \quad 35421 +$
- 241 35241 -
- $214 \quad 35214 +$

09-10 春夏期末 A 卷

计算排列43218765…(4n)(4n-1)(4n-2)(4n-3)的逆序数。

解 逆序数为

$$\overbrace{(3+2+1)+(3+2+1)+\cdots+(3+2+1)}^{n \uparrow (3+2+1)} = 6n_{\circ}$$

答案 当i = 1, j = 5时, $\tau(63172584) = 5 + 2 + 3 + 1 + 1 = 12$ 。

15

计算行列式:
$$\mathbf{D} = \begin{vmatrix} 1 & a & b & a \\ a & 0 & a & b \\ b & a & 1 & a \\ a & b & a & 0 \end{vmatrix} / \boxed{ 06-07 春夏期末 A 卷 }$$

$$\mathbf{P} = \begin{vmatrix} 1 & a & b & a \\ a & 0 & a & b \\ b & a & 1 & a \\ a & b & a & 0 \end{vmatrix} = \begin{bmatrix} C_3 - C_1 \\ C_4 - C_2 \\ C_2 \end{bmatrix} \begin{vmatrix} 1 & a & b - 1 & 0 \\ a & 0 & 0 & b \\ b & a & 1 - b & 0 \\ a & b & 0 & -b \end{vmatrix}$$

$$\frac{R_1 + R_3}{A} \begin{vmatrix} 1 + b & 2a & 0 & 0 \\ a & 0 & 0 & b \\ b & a & 1 - b & 0 \\ a & b & 0 & -b \end{vmatrix}$$

$$= (1 - b) \begin{vmatrix} 1 + b & 2a & 0 \\ a & 0 & b \\ a & b & -b \end{vmatrix}$$

$$\frac{R_2 + R_3}{A} (1 - b) \begin{vmatrix} 1 + b & 2a & 0 \\ 2a & b & 0 \\ a & b & -b \end{vmatrix}$$

$$= (1 - b)(-b) \begin{vmatrix} 1 + b & 2a \\ 2a & b \end{vmatrix}$$

$$= b(b - 1)(b(b + 1) - 4a^2)$$

′ 08-09 春夏期末 A 卷

计算行列式
$$\begin{vmatrix} 1 & 1 & 1+x & 1 \\ 1 & 1+x & 1 & 1+x \\ 1+x & 1 & 1+x & 1 \\ 1 & 1+x & 1 & 1 \end{vmatrix}$$
。

答案 $x^3(x+2)$

提示: $R_3 - R_1$, $R_4 - R_2$

计算行列式**D** =
$$\begin{vmatrix} x+1 & x & x & x \\ x & x+\frac{1}{2} & x & x \\ x & x & x+\frac{1}{3} & x \\ x & x & x & x+\frac{1}{4} \end{vmatrix}.$$

/ 08-09 秋冬期末 A ∮

答案

$$\mathbf{D} = \frac{1 + 10x}{24}$$

提示: $R_2 - R_1$, $R_3 - R_1$, $R_4 - R_1$, $C_1 + 2C_2 + 3C_3 + 4C_4$

07-08 春夏期末 A 券

 \bigcirc

$$((1-x^2)a)_{\circ}$$

 $\mathbf{A} = (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3), \ |\mathbf{A}| = a,$
 $|\mathbf{B}| = |\boldsymbol{\alpha}_1 + x\boldsymbol{\alpha}_2, \ x\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3|$

设
$$\alpha_1$$
, α_2 , α_3 都 是 3 维 列 向 量 , $A = (\alpha_1, \alpha_2, \alpha_3)$, $|A| = 1$, $B = (\alpha_1 + \alpha_2 + \alpha_3)$, $|A| = 1$,

$$\begin{aligned}
\mathbf{MF} & | \mathbf{B} | = \\
 & | \alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_1 + 2\alpha_2 + 3\alpha_3, \quad \alpha_1 + 4\alpha_2 + 9\alpha_3 | \\
 & \frac{C_3 - C_2}{C_2 - C_1} | \alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_2 + 2\alpha_3, \quad 2\alpha_2 + 6\alpha_3 | \\
 & \frac{C_3 - 2C_2}{C_2} | \alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_2 + 2\alpha_3, \quad 2\alpha_3 | \\
 & \frac{C_2 - 2C_3}{C_2} | \alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_2, \quad 2\alpha_3 | \\
 & = 2 | \alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_2, \quad \alpha_3 | \\
 & \frac{C_1 - C_2 - C_3}{C_2} | \alpha_1, \quad \alpha_2, \quad \alpha_3 | \\
 & = 2 | A | = 2
\end{aligned}$$

计算行列式**D** =
$$\begin{vmatrix} 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 5 \\ 4 & 9 & 17 & 25 \\ 8 & 27 & 65 & 125 \end{vmatrix}$$
。

09-10 春夏期末 A 卷

$$\mathbf{\hat{R}} \ \mathbf{D} = \begin{vmatrix} 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 5 \\ 4 & 9 & 17 & 25 \\ 8 & 27 & 65 & 125 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 5 \\ 4 & 9 & 1 & 25 \\ 8 & 27 & 1 & 125 \end{vmatrix}$$
$$= (3-2)(4-2)(5-2)(4-3)(5-3)(5-4)$$

+(3-2)(1-2)(5-2)(1-3)(5-3)(5-1)

$$= 12 + 48 = 60$$

/ 07-08 春夏期末 A 卷

计算行列式
$$D_4 = \begin{vmatrix} 2^5 - 2 & 2^4 - 2 & 2^3 - 2 & 2^2 - 2 \\ 3^5 - 3 & 3^4 - 3 & 3^3 - 3 & 3^2 - 3 \\ 4^5 - 4 & 4^4 - 4 & 4^3 - 4 & 4^2 - 4 \\ 5^5 - 5 & 5^4 - 5 & 5^3 - 5 & 5^2 - 5 \end{vmatrix}$$
。

$$\mathbf{\hat{R}} D_4 = \begin{vmatrix} 2^5 - 2 & 2^4 - 2 & 2^3 - 2 & 2^2 - 2 \\ 3^5 - 3 & 3^4 - 3 & 3^3 - 3 & 3^2 - 3 \\ 4^5 - 4 & 4^4 - 4 & 4^3 - 4 & 4^2 - 4 \\ 5^5 - 5 & 5^4 - 5 & 5^3 - 5 & 5^2 - 5 \end{vmatrix}$$

$$= 2 \cdot 3 \cdot 4 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \begin{vmatrix} 2^3 & 2^2 & 2 & 1 \\ 3^3 & 3^2 & 3 & 1 \\ 4^3 & 4^2 & 4 & 1 \\ 5^3 & 5^2 & 5 & 1 \end{vmatrix}$$

$$= 2880 \cdot (5-4) \cdot (5-3) \cdot (5-2) \cdot (4-3)$$
$$\cdot (4-2) \cdot (3-2)$$

= 34560

/ 09-10 春夏期末 A 卷

$$\sum_{k=1}^4 \sum_{j=1}^4 A_{jk}$$

$$\sum_{k=1}^{4} \sum_{j=1}^{4} A_{jk}$$

$$= (A_{11} + A_{21} + A_{31} + A_{41}) + (A_{12} + A_{22} + A_{32} + A_{42}) + (A_{13} + A_{23} + A_{33} + A_{43}) + (A_{14} + A_{24} + A_{34} + A_{44})$$

$$= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & 4 & 1 & 2 \\ 1 & 3 & 4 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \\ 2 & 1 & 4 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 1 & 2 & 1 \\ 3 & 4 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 1 & 2 & 1 \\ 3 & 4 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 1 & 2 & 1 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 4 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 1 & 2 & 3 \\ 1 & 3 & 4 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 1 & 2 & 3 \\ 1 & 3 & 1 & 2 \\ 1 & 3 & 4 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 1 & 3 \\ 4 & 1 & 1 & 2 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 1 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 1 & 3 \\ 4 & 1 & 1 & 2 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 1 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 1 & 1 \\ 4 & 1 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 2 & 3 & 1 & -3 \end{vmatrix} = -32 - 32 = -64$$

设
$$\alpha = \begin{bmatrix} 1, & 0, & 2, & 4 \end{bmatrix}^T$$
, $\beta = \begin{bmatrix} 2, & -1, & 3, & -1 \end{bmatrix}^T$, $A = \alpha \beta^T$, 计算 $|2E - A|$ 。

$$\mathfrak{M}: A = \alpha \beta^{T} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 4 \end{pmatrix} (2 \quad -1 \quad 3 \quad -1) = \begin{pmatrix} 2 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & -2 & 6 & -2 \\ 8 & -4 & 12 & -4 \end{pmatrix}$$

$$|2E - A| = \begin{vmatrix} 0 & 1 & -3 & 1 \\ 0 & 2 & 0 & 0 \\ -4 & 2 & -4 & 2 \\ -8 & 4 & -12 & 6 \end{vmatrix} = 2 \begin{vmatrix} 0 & -3 & 1 \\ -4 & -4 & 2 \\ -8 & -12 & 6 \end{vmatrix} = 2 \begin{vmatrix} 0 & -3 & 1 \\ -4 & -4 & 2 \\ 0 & -4 & 2 \end{vmatrix}$$

$$= -8*(-1)^{1+2} \begin{vmatrix} -3 & 1 \\ -4 & 2 \end{vmatrix} = -16.$$
 06-07 秋冬期末 A 卷

解二 因为 $\beta^{T}\alpha = 4$, $A\alpha = (\alpha\beta^{T})\alpha = \alpha(\beta^{T}\alpha) = 4\alpha$,所以 4 是A的特征值。又因为r(A) = 1,则|A| = 0,由此可知 0 是A的特征值,且所对应的齐次线性方程组-AX = 0的基础解系向量个数为 4-1=3,这说明 0 是A的特征多项式的三重根。所以2E - A特征值分别为:

$$\lambda_1 = 2 - 4 = -2$$

第9题的结果

$$\lambda_2 = \lambda_3 = \lambda_4 = 2 - 0 = 2$$

因此 $|2E - A| = \lambda_1 \lambda_2 \lambda_3 \lambda_4 = -16$

第二章 线性方程组

- 求解一般的线性方程组的方法——消元法
- 线性方程组理论——秩的概念

解线性方程组的方法——消元法

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

将增广矩阵

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

经过初等行变换变化为约化阶梯形矩阵

然后再求解。

线性方程组理论

一般的线性方程组

缓性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
有解 $\Leftrightarrow r(\overline{A}) = r = r(A)$

在有解的条件下:

- 有唯一解 \Leftrightarrow $r(\overline{A})=r(A)=r=n$
- 有无穷多解 \Leftrightarrow $r(\overline{A}) = r(A) = r < n$
- 若 $a_{ij} \in P$, $b_k \in P(i, k = 1, 2, \dots, m; j = 1, 2, \dots, n)$, P为某个数域,且自由未知量均在P中取值,则解 x_1, x_2, \dots, x_n 均属于P。

推论 1
当
$$m=n$$
时
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$
有唯一解 $\Leftrightarrow |a_{ij}|_n \neq 0$ 有无穷多解 $\Leftrightarrow |a_{ij}|_n = 0$

齐次线性方程组

齐次线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

的解情况如下:

- 只有零解 $\iff r(A)=r=n$
- 有非零解 \Leftrightarrow r(A)=r < n

● 若 $a_{ij} \in P(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$,P为某个数域,且自由未知量均在P中取值,则解 x_1, x_2, \dots, x_n 均属于P。

(12 分)设非齐次线性方程组AX = B的增广矩阵 \overline{A} 经初等行变换化为

$$\overline{A} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a+1 & a+1 & b-2 \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix}$$
,讨论当 a,b 取何值时,方程组有唯一

解、无解、有无穷多解; 当有无穷多解时, 求出其通解。

解:

- 1) 当a+1≠0时,方程组有惟一解; / 05-06 秋冬期末 A 卷
- 2) 当a+1=0, and $b-2\neq0$ 时,方程组无解;
- 3) 当a+1=0, and b-2=0时, $r(A)=r(\overline{A})=2<4$, 方程组有无穷多解。

此时

$$\overline{A} \to \cdots \to \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \to \begin{pmatrix}
1 & 0 & -1 & -1 & -1 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

转化为方程组

$$\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \\ x_3 = x_3 \\ x_4 = x_4 \end{cases} \Leftrightarrow t_1 = x_3, t_2 = x_4, \text{II}$$

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$
 与

 $x_1 + 2x_2 + x_3 = a - 1$ 有公共解,求a的值及所有公共解。

解:上述两个方程组有公共解,即将其联立后的方程组有解。
/ 06-07 春夏期末 A 卷

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$

相应的增广矩阵为

$$\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 3 & a^2 - 1 & 0 \\ 0 & 1 & 0 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & a - 1 & 1 - a \\ 0 & 0 & a^2 - 1 & 3(1 - a) \\ 0 & 1 & 0 & a - 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1-a \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & a^2-1 & 3(1-a) \\ 0 & 1 & 0 & a-1 \end{pmatrix}$$

当
$$a=1$$
 时, $r(A)=r(\overline{A})=2<3$,此时 $\overline{A}\to \begin{pmatrix} 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix}$,方程组有无穷多解,

其通解为 $k(1,0,-1)^T$ 。

由此可知必须有a=2,此时 $r(A)=r(\overline{A})=3$,方程组有唯一解,解为 $(0,1,-1)^T$ 。

(15 分) 问 k 为何值时,线性方程组
$$\begin{cases} x_1+x_2+kx_3=4\\ -x_1+kx_2+x_3=k^2 \end{cases}$$
 有唯一解、无解、无穷多解?在有解
$$x_1-x_2+2x_3=-4$$

的情况下,求出其全部解。 解:

/ 06-07 秋冬期末 A 卷

$$\overline{A} = \begin{pmatrix} 1 & 1 & k & 4 \\ -1 & k & 1 & k^2 \\ 1 & -1 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & k & 4 \\ 0 & k+1 & 1+k & k^2+4 \\ 0 & -2 & 2-k & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & k & 4 \\ 0 & 0 & \frac{1+k}{2}(4-k) & k(k-4) \\ 0 & 2 & k-2 & 8 \end{pmatrix}$$

由此可以知道

- $k \neq -1, k \neq 4$, r(A) = 3, r(A) = 3, 方程组有唯一解,解为:

$$x_1 = \frac{k^2 + 2k}{k+1}$$
, $x_2 = \frac{k^2 + 2k + 4}{k+1}$, $x_3 = -\frac{2k}{k+1}$.

• k=4, r(A)=2, $r(\overline{A})=2$, 方程组有无穷多解。此时

$$\overline{A} \to \begin{pmatrix} 1 & 1 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 8 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

方程组通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = K \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}, 其中 K 为任意常数。$$

设线性方程组

$$\begin{cases} x_1 - x_2 - x_3 + x_4 - x_5 = 1 \\ x_1 + x_2 - 3x_3 + x_4 + x_5 = 1 \end{cases}$$

- (1) 求该线性方程组的通解(要求用该方程组的一个特解与对应导出组的基础解系的线性组合之和来表示)
- (2) 写出该方程组解向量集合的一组极大线性无关组

08-09 春夏期末 A 卷

答案 特解

$$\xi_0 = \begin{bmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

基础解系

$$\eta_1 = \begin{bmatrix} 5 \\ 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \quad \eta_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \quad \eta_3 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \\ 3 \end{bmatrix}$$

通解

$$\boldsymbol{\xi} = \boldsymbol{\xi}_0 + k_1 \boldsymbol{\eta}_1 + k_2 \boldsymbol{\eta}_2 + k_3 \boldsymbol{\eta}_3$$

其中 k_1 , k_2 , k_3 为任意常数。

极大线性无关组为 ξ_0 , $\xi_0 + \eta_1$, $\xi_0 + \eta_2$, $\xi_0 + \eta_3$ 。

已知齐次线性方程组
$$\begin{cases} x_1+x_2+x_3=0\\ ax_1+bx_2+cx_3=0\\ a^2x_1+b^2x_2+c^2x_3=0 \end{cases}$$

- 问(1) a, b, c满足何种关系时,方程组仅有零解。
- (2) *a*, *b*, *c*满足何种关系时,方程组有无穷多解,并用基础解系表示他的全部解。

/ 07-08 春夏期末 A 卷

解 系数行列式

$$\mathbf{D} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

- (1) 当a, b, c两两互异时,方程组只有唯一零解。
- (2) 下面分四种情况讨论
- ① 当 $a = b \neq c$ 时与原方程组同解的方程组是

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_3 = 0 \end{cases}$$

方程组有无穷多解,全部解为 $k_1[1, -1, 0]^T$,其中 k_1 为任意常数。

② 当 $a = c \neq b$ 时与原方程组同解的方程组是

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 = 0 \end{cases}$$

方程组有无穷多解,全部解为 $k_2[1, 0, -1]^T$,其中 k_2 为任意常数。

③ 当 $b = c \neq a$ 时与原方程组同解的方程组是

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 = 0 \end{cases}$$

方程组有无穷多解,全部解为 $k_3[0, 1, -1]^T$,其中 k_3 为任意常数。

③ 当a = b = c时与原方程组同解的方程组是

$$\{x_1 + x_2 + x_3 = 0$$

方程组有无穷多解,全部解为 $k_4[1, -1, 0]^T + k_5[1, 0, -1]^T$,其中 k_4, k_5 为任意常数。

设线性方程组为

$$\begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 = 3\\ 4x_1 + 6x_2 + 3x_3 + 4x_4 = 5\\ 6x_1 + 9x_2 + 5x_3 + 6x_4 = 7\\ 8x_1 + 12x_2 + 7x_3 + \lambda x_4 = 9 \end{cases}$$

试就参数λ的值讨论方程组的解,并且在有解时求出它的解。(要求用方程组对应的导出组的基础解系和方程组的一个特解来表示)

解

07-08 秋冬期末 A 卷

$$\overline{A} = \begin{bmatrix}
2 & 3 & 1 & 2 & 3 \\
4 & 6 & 3 & 4 & 5 \\
6 & 9 & 5 & 6 & 7 \\
8 & 12 & 7 & \lambda & 9
\end{bmatrix}$$

$$\begin{array}{c}
R_2 - 2R_1 \\
R_3 - 3R_1 \\
\hline
R_4 - 4R_1
\end{array}$$

$$\begin{bmatrix}
2 & 3 & 1 & 2 & 3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 2 & 0 & -2 \\
0 & 0 & 3 & \lambda - 8 & -3
\end{bmatrix}$$

$$\begin{array}{c}
R_3 - 2R_2 \\
R_4 - 3R_2 \\
\hline
R_{34}
\end{array}$$

$$\begin{bmatrix}
2 & 3 & 1 & 2 & 3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & \lambda - 8 & 0 \\
0 & 0 & 0 & \lambda - 8 & 0 \\
0 & 0 & 0 & \lambda - 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{array}{c}
R_1 - R_2 \\
\hline
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & \lambda - 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

 $当\lambda = 8$ 时,解为

$$\begin{cases} x_1 = 2 - \frac{3}{2}x_2 - x_4, & \text{##} x_2, x_4 \text{##} \\ x_3 = -1 \end{cases}$$

通解为:

$$\xi = \begin{bmatrix} 2, & 0, & -1, & 0 \end{bmatrix}^{T} + k_{1} \begin{bmatrix} -\frac{3}{2}, & 1, & 0, & 0 \end{bmatrix}^{T} + k_{2} \begin{bmatrix} -1, & 0, & 0, & 1 \end{bmatrix}^{T}, 其中k_{1}, k_{2}$$
为任意常数。

当λ≠8时,解为

$$\begin{cases} x_1 = 2 - \frac{3}{2}x_2 \\ x_3 = -1 \end{cases}, 其中 x_2 为自由未知量。
$$x_4 = 0$$$$

通解为: $\xi = \begin{bmatrix} 2 & 0 & -1 & 0 \end{bmatrix}^T + k \left[-\frac{3}{2} & 1 & 0 & 0 \right]^T$, 其中k为任意常数。

/ 08-09 秋冬期末 A 卷

问参数a, b取何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a - 3)x_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

有解?在有解时,有多少解,且求出所有解。

解

$$\overline{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{bmatrix}$$

(1) 当 $a \neq 1$ 时,有唯一解,解为

$$x_1 = \frac{b-a+2}{a-1}, \quad x_2 = \frac{a-2b-3}{a-1},$$
 $x_3 = \frac{b+1}{a-1}, \quad x_4 = 0$

- (2) 当a = 1, $b \neq -1$ 时, r(A) = 2, $r(\overline{A}) = 3$, 所以方程组无解。
- (3) 当a = 1, b = -1时, $r(A) = 2 = r(\overline{A}) < 4$, 方程组有无穷多解, 解为

$$\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$$

$$\xi = \begin{bmatrix} -1, & 1, & 0, & 0 \end{bmatrix}^T + k_1 \begin{bmatrix} 1, & -2, & 1, & 0 \end{bmatrix}^T + k_2 \begin{bmatrix} 1, & -2, & 0, & 1 \end{bmatrix}^T$$

其中 k_1 , k_2 为任意常数。

- 下图是某地区的灌溉渠道网,各节点流出总量平衡, 流量和流向均已在图上标明。
 - (1) 确定各段的流量 x_1 , x_2 , x_3 , x_4 , x_5 ;
 - (2) 如果BC段渠道关闭,那么AD段的流量保持在什 么范围内,才能使所有段的流量不超过30?

解(1)根据图示,可以列出方程

$$\begin{cases} x_1 & +x_4 & =55 \\ x_1 - x_2 - x_3 & =20 \\ & x_3 & +x_5 =15 \\ & x_2 & +x_4 - x_5 =20 \end{cases}$$

$$/$$
复习时看一下
附录三的内容

解得

$$\begin{cases} x_1 = 55 - t_1 \\ x_2 = 20 - t_1 + t_2 \\ x_3 = 15 \\ x_4 = t_1 \\ x_5 = t_2 \end{cases} \neq \begin{cases} 0 \le t_1 \le 55 \\ 0 \le t_2 \le 15 \\ t_1 - t_2 \le 20 \end{cases}$$

(2) 关闭了BC段渠道,则 $x_3 = 0 \Rightarrow x_4 = t_2 = 15$ 。 由于各段的流量不超过 30, 所以 $55 - t_1 \le 30 \Rightarrow t_1 \ge$ 25,故25 $\leq t_1 \leq 30$ 。

设向量组

$$\alpha_1 = \begin{bmatrix} a \\ 2 \\ 10 \end{bmatrix}, \quad \alpha_2 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}, \quad \beta = \begin{bmatrix} 1 \\ b \\ c \end{bmatrix}$$

问: 当a, b, c满足什么条件时,

- (1) $\boldsymbol{\beta}$ 可由 α_1 , α_2 , α_3 线性表示,且表示法唯一?
- (2) $\boldsymbol{\beta}$ 不可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性表示?

 \mathbf{F} 设有数 k_1 , k_2 , k_3 , 使得 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + k_3 \boldsymbol{\alpha}_3 = \boldsymbol{\beta}$,

$$\overline{A} = [A \quad \beta] = [\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta]$$

$$= \begin{bmatrix} a & -2 & -1 & 1 \\ 2 & 1 & 1 & b \\ 10 & 5 & 4 & c \end{bmatrix}$$

$$\xrightarrow{R_{12}} \begin{bmatrix} 2 & 1 & 1 & b \\ 0 & -2 - \frac{a}{2} & -1 - \frac{a}{2} & 1 - \frac{ab}{2} \\ 0 & 0 & -1 & c - 5b \end{bmatrix}$$

- (1) 当 $-2-\frac{a}{2} \neq 0$ 时,即 $a \neq -4$ 时, $r(A) = r(\overline{A}) = 3$,方程组有唯一解, $\boldsymbol{\beta}$ 可由 α_1 , α_2 , α_3 线性表示,且表示法唯一。

$$\overline{A} = \begin{bmatrix} 2 & 1 & 0 & -b-1 \\ 0 & 0 & 1 & 1+2b \\ 0 & 0 & 0 & 1-3b+c \end{bmatrix}$$

当 $3b-c \neq 1$ 时, $r(A) \neq r(\overline{A})$,方程组无解,所以 β 不可由 α_1 , α_2 , α_3 线性表示。

(3) 当 a = -4,且 3b - c = 1 时,即 a = 4 时, $r(A) = r(\overline{A}) = 2 < 3$,则方程有无穷多解, β 可由 α_1 , α_2 , α_3 线性表示,且表示法不唯一。与下 面方程同解

$$\begin{cases} 2k_1 + k_2 = -b - 1 \\ k_3 = 1 + 2b \end{cases}$$

解得 $k_1 = t$, $k_2 = -2t - b - 1$, $k_3 = 1 + 2b$, 其中t为任意常数。因此有

$$\beta = t\alpha_1 - (2t + b + 1)\alpha_2 + (1 + 2b)\alpha_3$$

三元非齐次线性方程组AX = b的系数矩阵A的秩为1,

 $\eta_1, \, \eta_2, \, \eta_3$ 为AX = b的三个线性无关的解,且 $\eta_1 + \eta_2 = \begin{bmatrix} 1, \, 2, \, 3 \end{bmatrix}^T, \, \eta_2 + \eta_3 = \begin{bmatrix} 0, \, -1, \, 1 \end{bmatrix}^T, \, \eta_3 + \eta_1 = \begin{bmatrix} 1, \, 0, \, -1 \end{bmatrix}^T, \, 则非齐次线
性方程组<math>AX = b$ 的通解是

(要求用方程组对应的导出组的基础解系与方程组的一个特解来表示)

/ 07-08 秋冬期末 A 卷

解 因为矩阵**A**的秩为 1,则导出组**AX** = **O**的基础解系向量个数为 3-1=2。因为 η_1 , η_2 , η_3 为**AX** = **b**的三个线性无关的解,则

人
$$A(\eta_1 + \eta_2) = 2b$$
 $A(\eta_1 + \eta_2) = 2b$ $A(\eta_2 + \eta_3) = 2b$ $A(\eta_3 + \eta_1) = 2b$ $A(\eta_3 + \eta_1) = 2b$

为AX = b的解,且

$$(\eta_1 + \eta_2) - (\eta_2 + \eta_3) = \begin{bmatrix} 0, & 2, & 4 \end{bmatrix}^T$$

 $(\eta_3 + \eta_1) - (\eta_2 + \eta_3) = \begin{bmatrix} 1, & 3, & 2 \end{bmatrix}^T$

是对应的导出组的解,容易验证它们是线性无关的,因此它们是导出组的基础解系。由此可知非齐次线性方程组AX = b的通解是

$$\left[\frac{1}{2}, 1, \frac{3}{2}\right]^{T} + k_{1}[0, 2, 4]^{T} + k_{2}[1, 3, 2]^{T}$$

其中 k_{1} , k_{2} 为任意数。

08-09 秋冬期末 A 卷

设A是 5×4 矩阵,且r(A) = 2,4 维列向量 $b \neq 0$,线性方程组AX = b的3个解向量为

$$\alpha_1 = \begin{bmatrix} 1, & 0, & 1, & -1 \end{bmatrix}^T,$$

 $\alpha_2 = \begin{bmatrix} 2, & -1, & 1, & 0 \end{bmatrix}^T,$
 $\alpha_3 = \begin{bmatrix} 1, & 2, & 0, & 0 \end{bmatrix}^T$

则线性方程组AX = b的通解是_____。

解 因为r(A) = 2,则AX = O解空间的维数为 2。因为 α_1 , α_2 , α_3 为AX = b的解,则 $\alpha_2 - \alpha_1$, $\alpha_3 - \alpha_2$ 为 AX = O的解,容易验证 $\alpha_2 - \alpha_1$, $\alpha_3 - \alpha_2$ 线性无关,所以它是AX = O的基础解系。因此线性方程组 AX = b的通解是:

$$\alpha = \begin{bmatrix} 1, & 0, & 1, & -1 \end{bmatrix}^{T} + k_{1} \begin{bmatrix} 1, & -1, & 0, & 1 \end{bmatrix}^{T} + k_{2} \begin{bmatrix} -1, & 3, & -1, & 0 \end{bmatrix}^{T}$$

其中 k_1 , k_2 为任意常数。

设A是 $m \times n$ 矩阵,b是n维非零列向量,n维零列向量 ξ_0 是 线 性 方 程 组 AX = b 的 - 个 解 , η_1 , η_2 ,…, η_s 是齐次线性方程组AX = 0的一个基础解系,求证:

 ξ_0 , $\xi_0 + \eta_1$, $\xi_0 + \eta_2$,…, $\xi_0 + \eta_s$ 是线性方程组 AX = b解集合中的一个极大线性无关组。

证明 因为

/ 08-09 秋冬期末 A 卷

 $A\xi_0=b$,

 $A(\xi_0 + \eta_i) = A\xi_0 + A\eta_i = b$, $i = 1, 2, \dots, s$, 所以 ξ_0 , $\xi_0 + \eta_1$, $\xi_0 + \eta_2$, \dots , $\xi_0 + \eta_s$ 是线性方程

 \bigcirc

组
$$AX = \mathbf{b}$$
的解。如果数 $k_0, k_1, k_2, \dots, k_s$ 使得
$$k_0 \xi_0 + k_1 (\xi_0 + \eta_1) + k_2 (\xi_0 + \eta_2) + \dots + k_s (\xi_0 + \eta_s)$$
$$= \boldsymbol{\theta} \qquad (1)$$

式(1)即为

$$(k_0 + k_1 + k_2 + \dots + k_s) \xi_0 + k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s$$

= θ (2)

$$A[(k_0 + k_1 + k_2 + \dots + k_s)\boldsymbol{\xi}_0 + k_1\boldsymbol{\eta}_1 + k_2\boldsymbol{\eta}_2 + \dots + k_s\boldsymbol{\eta}_s] = A\boldsymbol{\theta} = \boldsymbol{\theta} \Longrightarrow$$

$$(k_0 + k_1 + k_2 + \dots + k_s) \mathbf{A} \boldsymbol{\xi}_0 + k_1 \mathbf{A} \boldsymbol{\eta}_1 + k_2 \mathbf{A} \boldsymbol{\eta}_2 + \dots + k_s \mathbf{A} \boldsymbol{\eta}_s = \boldsymbol{\theta} \Longrightarrow$$

$$(k_0 + k_1 + k_2 + \dots + k_s)\mathbf{b} = \mathbf{\theta}$$

$$\Rightarrow k_0 + k_1 + k_2 + \dots + k_s = 0$$
 (3)

把(3)式代入(2)式,得 $k_1\eta_1 + k_2\eta_2 + \cdots + k_s\eta_s = \theta$, 由于 η_1 , η_2 , \cdots , η_s 线性无关,所以

$$k_1 = k_2 = \dots = k_s = 0$$
 (4)

把(4)式代入(3)式, 得 $k_0 = 0$, 所以

$$k_0 = k_1 = k_2 = \dots = k_s = 0,$$

因此 ξ_0 , $\xi_0 + \eta_1$, $\xi_0 + \eta_2$, …, $\xi_0 + \eta_s$ 线性无关。 假设 ξ 是线性方程组AX = b的任一个解,则存在数 l_1 , l_2 , …, l_s 使得

$$\xi = \xi_0 + l_1 \eta_1 + l_2 \eta_2 + \dots + l_s \eta_s$$

= $(1 - l_1 - l_2 - \dots - l_s) \xi_0 + l_1 (\xi_0 + \eta_1) +$

$$l_2(\xi_0 + \eta_2) + \cdots + l_s(\xi_0 + \eta_s),$$

所以**\xi**可以由**\xi_0**,**\xi_0** + **\eta_1**,**\xi_0** + **\eta_2**, …,**\xi_0** + **\eta_s** 线性表示,因此**\xi_0**,**\xi_0** + **\eta_1**,**\xi_0** + **\eta_2**, …,**\xi_0** + **\eta_s**是 线性方程组**AX** = **b**解集合中的一个极大线性无关组。

/ 07-08 秋冬期末 A 卷

设A, B都是 $m \times n$ 矩阵,且r(A) + r(B) < n, 求证齐 次线性方程组AX = O和BX = O有非零的公共解。

证一 因为r(A) + r(B) < n,则

$$r\left(\begin{bmatrix} A \\ B \end{bmatrix}\right) \le r(A) + r(B) < n$$

从而

$$\begin{bmatrix} A \\ B \end{bmatrix} X = \mathbf{0}$$

有非零解,因此AX = O和BX = O有非零的公共解。

证二 因为r(A) + r(B) < n,则r(A) < n,r(B) < n,记

$$r(A) = r_1, r(B) = r_2$$

设齐次线性方程组AX = 0的基础解系为:

$$\xi_1, \ \xi_2, \ \dots, \ \xi_{n-r_1}$$

设齐次线性方程组BX = 0的基础解系为:

$$\eta_1, \eta_2, \ldots, \eta_{n-r_2}$$

因 为 $n-r_1+n-r_2=n+(n-r_1-r_2)>n$, 则 ξ_1 , ξ_2 , …, ξ_{n-r_1} , η_1 , η_2 , …, η_{n-r_2} 线性相关,从 而 存 在 不 全 为 零 的 数 l_1 , l_2 , …, l_{n-r_1} , k_1 , k_2 , …, k_{n-r_2} 使得 $l_1\xi_1+l_2\xi_2+\cdots+l_{n-r_1}\xi_{n-r_1}+k_1\eta_1+k_2\eta_2+\cdots$

$$l_1 \xi_1 + l_2 \xi_2 + \dots + l_{n-r_1} \xi_{n-r_1} + k_1 \eta_1 + k_2 \eta_2 + \dots + k_{n-r_2} \eta_{n-r_2} = \theta$$

$$l_1 \xi_1 + l_2 \xi_2 + \dots + l_{n-r_1} \xi_{n-r_1}$$

= $-(k_1 \eta_1 + k_2 \eta_2 + \dots + k_{n-r_2} \eta_{n-r_2})$

因为 l_1 , l_2 , ..., l_{n-r_1} 和 k_1 , k_2 , ..., k_{n-r_2} 中至少有一组数不全为零,不妨假设 l_1 , l_2 , ..., l_{n-r_1} 不全为零,则由 ξ_1 , ξ_2 , ..., ξ_{n-r_1} 的线性无关性知

$$l_1 \xi_1 + l_2 \xi_2 + \dots + l_{n-r_1} \xi_{n-r_1} \neq \theta$$

从而

$$l_1\xi_1 + l_2\xi_2 + \dots + l_{n-r_1}\xi_{n-r_1}$$

 $= -(k_1\eta_1 + k_2\eta_2 + \dots + k_{n-r_2}\eta_{n-r_2}) \neq \theta$
因为 $l_1\xi_1 + l_2\xi_2 + \dots + l_{n-r_1}\xi_{n-r_1}$ 和 $-(k_1\eta_1 + k_2\eta_2 + \dots + k_{n-r_2}\eta_{n-r_2})$ 分别是 $AX = O$ 和 $BX = O$ 的解,因此
 $AX = O$ 和 $BX = O$ 有非零的公共解。

第三章 矩阵

- 矩阵的概念及运算;
- 两种方法(矩阵分块和等价标准形);
- 秩。

伴随矩阵

$$A^* = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

$$AA^* = A^*A = |A|E$$

当
$$A$$
为可逆矩阵时, $A^{-1} = \frac{1}{|A|}A^*$

利用初等变换求逆矩阵。计算题常用此法。

处理"证明A可逆,且求出 A^{-1} "一类问题时,设法找一个B使

$$AB = E$$

这样就证明了A可逆,其逆为B,例如若 $A^2 = 2E$,则有

$$(A+E)(A-E)=E$$

所以A + E可逆,且 $(A + E)^{-1} = A - E$; A - E可逆,且 $(A - E)^{-1} = A + E$ 。

分块求逆

(a) 若

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_t \end{bmatrix}$$

则A可逆 $\leftrightarrow A_i$ 均可逆($i = 1, 2, \dots, t$)。A可逆时

$$A^{-1} = \begin{bmatrix} A_1^{-1} & 0 & \cdots & 0 \\ 0 & A_2^{-1} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_t^{-1} \end{bmatrix}$$

若

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & A_1 \\ 0 & 0 & \cdots & A_2 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & A_{t-1} & \cdots & 0 & 0 \\ A_t & 0 & \cdots & 0 & 0 \end{bmatrix}$$

则A可逆 $\Leftrightarrow A_i$ 均可逆 $(i=1,2,\cdots,t)$ 。A可逆时

$$A^{-1} = \begin{bmatrix} 0 & 0 & \cdots & 0 & A_t^{-1} \\ 0 & 0 & \cdots & A_{t-1}^{-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & A_2^{-1} & \cdots & 0 & 0 \\ A_1^{-1} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

(b)

$$\begin{bmatrix} A & O \\ C & B \end{bmatrix}, \begin{bmatrix} A & C \\ O & B \end{bmatrix}, \begin{bmatrix} C & A \\ B & O \end{bmatrix}, \begin{bmatrix} O & A \\ B & C \end{bmatrix}$$
可逆 $\Leftrightarrow A, B$ 可逆

且有

$$\begin{bmatrix} A & O \\ C & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{bmatrix}$$
$$\begin{bmatrix} A & C \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{bmatrix}$$
$$\begin{bmatrix} C & A \\ B & O \end{bmatrix}^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{bmatrix}$$

$$\begin{bmatrix} O & A \\ B & C \end{bmatrix}^{-1} = \begin{bmatrix} -B^{-1}CA^{-1} & B^{-1} \\ A^{-1} & O \end{bmatrix}$$

易出现的错误

设A, B是矩阵, 在矩阵计算中常见的错误有:

- \bullet AB = BA
- A是n阶矩阵,k是数,|kA| = k|A|,例如 |-A| = -|A|
- |AB| = |A||B| 错误原因:这里的A,B不一定是方阵。当A,B是同阶方阵时这个等式成立
- $\bullet (AB)^{-1} = A^{-1}B^{-1}$
- $(A + B)(A B) = A^2 B^2$
- $(A+B)^2 = A^2 + 2AB + B^2$
- $AB=0 \Rightarrow A=0$ 或B=0
- 若 $A \neq 0$, 月 $AB = AC \Rightarrow B = C$
- \bullet |A + B| = |A| + |B|
- \bullet $(A+B)^{-1} = A^{-1} + B^{-1}$

注意:以上都是常见的错误,而不是正确的结论

各种相似式子归类一

- |AB|=|A||B| (假设A, B是同阶方阵)
- $\bullet (AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$
- $(AB)^{-1} = B^{-1}A^{-1}$ (假设A, B是可逆矩阵)
- (*AB*)* = *B***A** (假设*A*, *B*是可逆矩阵)
- $|A + B| \neq |A| + |B|$ (假设A, B是同阶方阵)
- $(A + B)^{T} = A^{T} + B^{T}$ (假设A, B是同形矩阵)
- $(A + B)^{-1} \neq A^{-1} + B^{-1}$ (假设A,B是同阶可逆矩阵)
- $|kA| = k^n |A|$ (假设A是n阶方阵)
- $\bullet (kA)^{\mathrm{T}} = kA^{\mathrm{T}}$
- $(kA)^{-1} = \frac{1}{k}A^{-1}$ (假设A是可逆矩阵,且 $k \neq 0$)
- $|A^k| = |A|^k$ (假设A是方阵)
- $(kA)^* = k^{n-1}A^*$ (假设A是n阶可逆矩阵)
- \bullet $(A^{\mathrm{T}})^{\mathrm{T}} = A$
- $(A^{-1})^{-1} = A$ (假设A是可逆矩阵)
- $(A^*)^* \neq A$, $(A^*)^* = |A|^{n-2}A$ (假设A是可逆矩阵)

●
$$(A^*)^{-1} = (A^{-1})^*$$
 (假设 A 是可逆矩阵)

●
$$(A^{T})^{-1} = (A^{-1})^{T}$$
 (假设 A 是可逆矩阵)

●
$$|A^{-1}| = |A|^{-1}$$
 (假设 A 是可逆矩阵)

●
$$|A^{T}| = |A|$$
 (假设 A 是方阵)

●
$$|A^*| = |A|^{n-1}$$
 (假设 A 是可逆矩阵)

●
$$A^*A = |A|E$$
 (假设A是方阵, 不必要求A可逆)

●
$$A^{-1} = \frac{1}{|A|}A^*$$
 (假设 A 是可逆矩阵)

下面假设A, B, A_1 , A_2 , …, A_t 都是方阵。

$$\bullet \begin{vmatrix} A & O \\ O & B \end{vmatrix} = |A||B|$$

$$\bullet \begin{vmatrix} 0 & A \\ B & O \end{vmatrix} = (-1)^{rs} |A| |B|$$

$$\bullet \begin{vmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_t \end{vmatrix} = |A_1||A_2|\cdots|A_t|$$

下面假设A, B, A_1 , A_2 , …, A_t 都可逆。

$$\bullet \begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix}$$

$$\bullet \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{bmatrix} \\
\bullet \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_t \end{bmatrix}^{-1} = \begin{bmatrix} A_1^{-1} & 0 & \cdots & 0 \\ 0 & A_2^{-1} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_t^{-1} \end{bmatrix} \\
\bullet \begin{bmatrix} 0 & 0 & \cdots & A_1 \\ \vdots & \vdots & & \vdots \\ 0 & A_{t-1} & \cdots & 0 \\ A_t & 0 & \cdots & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 & \cdots & A_t^{-1} \\ \vdots & \vdots & & \vdots \\ 0 & A_2^{-1} & \cdots & 0 \\ A_1^{-1} & 0 & \cdots & 0 \end{bmatrix}$$

各种相似式子归类二

矩阵行列式

$$|kA| = k^n |A|$$
 (假设 A 是方阵)
 $|AB| = |A| |B|$ (假设 A , B 是同阶方阵)
 $|A + B| \neq |A| + |B|$ (假设 A , B 是同阶方阵)
 $|A^k| = |A|^k$ (假设 A 是方阵)

转置矩阵

$$(A^{\mathrm{T}})^{\mathrm{T}} = A$$
 $(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$ (假设 A , B 是同形矩阵)

$$(kA)^{T} = kA^{T}$$

 $|A^{T}| = |A|$ (假设A是方阵)
 $(AB)^{T} = B^{T}A^{T}$

伴随矩阵

$$A^*A = |A|E$$
 (假设 A 是方阵,不必要求 A 可逆)
 $A^* = |A|A^{-1}$, $|A^*| = |A|^{n-1}$ (假设 A 是可逆矩阵)
 $(AB)^* = B^*A^*$ (假设 A , B 是可逆矩阵)
 $(A^*)^{-1} = (A^{-1})^*$ (假设 A 是可逆矩阵)
 $(A^*)^* = |A|^{n-2}A$ (假设 A 是可逆矩阵)
 $|(A^*)^*| = |A|^{(n-1)^2}$ (假设 A 是可逆矩阵)
 $|A^*| = |A|^{n-1}$ (假设 A 是可逆矩阵)
 $(kA)^* = k^{n-1}A^*$ (假设 A 是可逆矩阵)

可逆矩阵

$$(AB)^{-1} = B^{-1}A^{-1}$$
 (假设 A , B 是可逆矩阵)
 $(A^{-1})^{-1} = A$ (假设 A 是可逆矩阵)
 $(kA)^{-1} = \frac{1}{k}A^{-1}$ (假设 A 是可逆矩阵,且 $k \neq 0$)
 $(A^{T})^{-1} = (A^{-1})^{T}$ (假设 A 是可逆矩阵)
 $|A^{-1}| = |A|^{-1}$ (假设 A 是可逆矩阵)
 $(A + B)^{-1} \neq A^{-1} + B^{-1}$ (假设 A , B 是可逆矩阵) \bigcirc

- 在证明题中利用下述一些有关秩的结论是很有用的。
 - $(1) \ r(A_{m \times n}) \le \min(m, \ n)$
 - (2) $r(A_{m \times n} B_{n \times t}) \le \min \left(r(A_{m \times n}), \ r(B_{n \times t}) \right)$
 - (3) 若A,B均为可逆矩阵,则 r(AC) = r(C), r(CB) = r(C), r(ACB) = r(C)

(4)
$$r \begin{pmatrix} A & O \\ O & B \end{pmatrix} = r \begin{pmatrix} O & A \\ B & O \end{pmatrix} = r(A) + r(B)$$

- *(5) $r(A + B) \le r(A) + r(B)$
- *(6) $r(A) + r(B) n \le r(AB) \le \min (r(A), r(B))$ 此处n是A的列数,也是B的行数
- *(7) 若AB=O,则 $r(A)+r(B) \le n$ 此处n是A的列数,也是B的行数
- *(8) 若A为列满秩矩阵,则r(AB) = r(B)若B为行满秩矩阵,则r(AB) = r(A)
- *(9) A, B, C为同阶方阵,则 $r(AB) + r(BC) \le r(B) + r(ABC)$
- *(10) 若A为n阶方阵,且 $A^2 = A$ (这类矩阵称为**幂等 矩阵**),则

$$r(A) + r(A - E) \le n$$

*(11) 若A为n阶方阵,且 $A^2 = E$ (这类矩阵称为**对合** 矩阵),则

$$r(A+E)+r(A-E) \le n$$

课件中的补充例题可以看一看。

设A, B, C为三阶可逆矩阵, / 05-06 秋冬期末 A 卷

(1) 化简等式(BC^T-E)^T·(AB⁻¹)^T+[(BA⁻¹)^T]⁻¹;

(2) 当
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
时,求出上式结果。

解: (1)
$$(BC^{T} - E)^{T} \cdot (AB^{-1})^{T} + [(BA^{-1})^{T}]^{-1}$$

$$= [AB^{-1}(BC^{T} - E)]^{T} + [(BA^{-1})^{-1}]^{T}$$

$$= [AC^{T} - AB^{-1}]^{T} + [AB^{-1}]^{T} = CA^{T}$$

已知3阶矩阵
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
,把 A 的第 1 行的 2 倍加

到第 3 行得到矩阵B,再把B的第 1 列与第 2 列对调得到矩阵C,求矩阵 C^{-1} 。

设A和X都是 4 阶矩阵,且满足AX = E - 2X,求矩阵

$$\mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K} = \mathbf{K} - 2\mathbf{K} \Rightarrow \mathbf{K} = (\mathbf{A} + 2\mathbf{E})^{-1},$$

$$X = \frac{1}{12} \begin{bmatrix} 5 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 \\ -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & 5 \end{bmatrix}$$

09-10 秋冬期末 A 卷

求满足关系式 $AC^{T}(E - BC^{-1})^{T} = E$ 的矩阵A,其中

$$\boldsymbol{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{C} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

解 因为 $AC^{\mathrm{T}}(E - BC^{-1})^{\mathrm{T}} = E \Rightarrow A[(E - BC^{-1})C]^{\mathrm{T}} =$ $E \Rightarrow A(C - B)^{\mathrm{T}} = E$, \square

$$\mathbf{A} = [(\mathbf{C} - \mathbf{B})^{\mathrm{T}}]^{-1} = \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}} \end{pmatrix}^{-1}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

/ 05-06 秋冬期末 A 卷 设矩阵 $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$, A^* 为其伴随矩阵,已知 $r(A^*) = 1$,求 a 。

解: 由于 $r(A^*)=1$,因此有r(A)=n-1=2。

$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1-a & 1-a^2 \\ 0 & a-1 & 1-a \\ 1 & 1 & a \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 2-a-a^2 \\ 0 & a-1 & 1-a \\ 1 & 1 & a \end{pmatrix}$$

$$\therefore \begin{cases} 2 - a - a^2 = 0 \\ a - 1 \neq 0 \end{cases} \Rightarrow a = -2 \circ$$

容易计算 |A|=2,则 $AA^*=2E$ 。由于 $2A^*B-AB=2E+A$,故

 $(4E-A^2)B = (2E+A)A$ 。可以验证 $2E \pm A$ 都是可逆阵,

$$B = (2E - A)^{-1}A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$A = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 2 & 2 & 0 & a & 4 \\ 1 & 0 & a & 1 & 5 \\ 2 & a & 3 & 5 & 4 \end{bmatrix}$$

$$R_{2} - 2R_{1} \atop R_{3} - R_{1} \atop R_{4} - 2R_{1} \atop R_{4} - R_{2} \atop R$$

因为r(A) = 4,所以 $a \neq 3$ 且 $a \neq 5$ 。

解二 在上面的求解过程中,变换到下面矩阵时采用另一种做法。

$$\begin{bmatrix}
1 & 3 & 2 & 2 & 1 \\
0 & -2 & -4 & a-4 & 0 \\
0 & 0 & a-6 & a-5 & -1 \\
0 & 0 & 3 & 5-a & a-2
\end{bmatrix}$$

$$\xrightarrow{R_4 + R_3}
\begin{bmatrix}
1 & 3 & 2 & 2 & 1 \\
0 & -2 & -4 & a-4 & 0 \\
0 & 0 & a-6 & a-5 & -1 \\
0 & 0 & a-3 & 0 & a-3
\end{bmatrix}$$

$$\xrightarrow{C_3 - C_5}
\begin{bmatrix}
1 & 3 & 2 & 2 & 1 \\
0 & -2 & -4 & a-4 & 0 \\
0 & 0 & a-5 & a-5 & -1 \\
0 & 0 & 0 & 0 & a-3
\end{bmatrix}$$

因为r(A) = 4,所以 $a \neq 3$ 且 $a \neq 5$ 。

解三
$$A = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 2 & 2 & 0 & a & 4 \\ 1 & 0 & a & 1 & 5 \\ 2 & a & 3 & 5 & 4 \end{bmatrix}$$

$$\begin{array}{c} C_2 - C_1 \\ C_3 - 2C_1 \\ \hline C_4 - 2C_1 \\ C_5 - 3C_1 \\ \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & -4 & a - 4 & -2 \\ 1 & -1 & a - 2 & -1 & 2 \\ 2 & a - 2 & -1 & 1 & -2 \\ \end{array}$$

$$\begin{array}{c} C_3 - 2C_5 \\ \hline C_4 - C_2 \\ \hline C_5 + 2C_2 \\ \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & a - 4 & -2 \\ 1 & -1 & a - 6 & 0 & 0 \\ 2 & a - 2 & 3 & 3 - a & 2a - 6 \\ \end{array}$$

$$\begin{array}{c} -\frac{1}{2}C_5 \\ \hline \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & a - 4 & 1 \\ 1 & -1 & a - 6 & 0 & 0 \\ 2 & a - 2 & 3 & 3 - a & 3 - a \\ \end{array} = \begin{array}{c} C_3 + (a - 6)C_2 \\ \hline \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & a - 4 & 1 \\ 1 & -1 & 0 & 0 & 0 \\ 2 & a - 2 & (a - 3)(a - 5) & 3 - a & 3 - a \\ \end{array} = \begin{array}{c} C_{45} \\ \hline C_{23} \\ \hline \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & a - 4 \\ 0 & -1 & 0 & 0 \\ 2 & 3 - a & a - 2 & (a - 3)(a - 5) & 3 - a \\ \end{array} = \begin{array}{c} C_{45} \\ C_{23} \\ \hline \end{array} = \begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 2 & 3 - a & a - 2 & (a - 3)(a - 5) & 3 - a \\ \end{array} = \begin{array}{c} 0 \\ 3 - a \end{array} = \begin{array}{c} 0 \\ 3 - a$$

因为r(A) = 4,所以 $a \neq 3$ 且 $a \neq 5$ 。

$$A = \begin{bmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & 1 - \frac{1}{n} \end{bmatrix}$$

求
$$(A-2E)^{-1}$$
。

解

$$A = \begin{bmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & -\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & 1 - \frac{1}{n} \end{bmatrix}$$

$$= E - \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

\$

$$B = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

则

$$\mathbf{B}^2 = n\mathbf{B}$$

从而

$$A^{2} = \left(E - \frac{1}{n}B\right)^{2} = E - \frac{2}{n}B + \frac{1}{n^{2}}B^{2} = E - \frac{1}{n}B$$

= A

由 $A^2 = A$ 可得

$$(A-2E)\left[-\frac{1}{2}(A+E)\right]=E$$

故

$$(A - 2E)^{-1} = -\frac{1}{2}(A + E)$$

$$= \begin{bmatrix} -1 + \frac{1}{2n} & \frac{1}{2n} & \cdots & \frac{1}{2n} \\ \frac{1}{2n} & -1 + \frac{1}{2n} & \cdots & \frac{1}{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2n} & \frac{1}{2n} & \cdots & -1 + \frac{1}{2n} \end{bmatrix}$$

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, 求: (1) \mathbf{A}^2 , (2) \mathbf{A}^{2011} / $10-11$ 秋冬期末 A 卷

解法一(1)

$$A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

则
$$A^2 = E + B$$
,且 $B^2 = O$

$$A^{2010} = (E + B)^{1005} = E + 1005B$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1005 & 1 & 0 \\ 1005 & 0 & 1 \end{bmatrix}$$

$$A^{2011} = \begin{bmatrix} 1 & 0 & 0 \\ 1005 & 1 & 0 \\ 1005 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1006 & 0 & 1 \\ 1005 & 1 & 0 \end{bmatrix}$$

设 4 阶矩阵
$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, 那么 $(2A)^* =$ _______。 $/$ $08-09$ 秋冬期末 A 卷

答案
$$\begin{bmatrix} 8 & 8 & 0 & 0 \\ 0 & 8 & 8 & 0 \\ 0 & 0 & 8 & 8 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

/ 08-09 秋冬期末 A 卷

设
$$A$$
 是 3 阶 矩 阵 , 且 $|A| = 2$, 则 $|2A^* - 3A^{-1}| = _____$ 。

答案 $\frac{1}{2}$

设
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
是可逆矩阵,且 $\mathbf{A}^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$,已知矩阵
$$\mathbf{M} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 4a_{21} + a_{31} & 4a_{22} + a_{32} & 4a_{23} + a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,求 \mathbf{M}^{-1} 。

解因为

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{AR_2} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 4a_{21} & 4a_{22} & 4a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\xrightarrow{R_2 + R_3} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 4a_{21} + a_{31} & 4a_{22} + a_{32} & 4a_{23} + a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= M$$

所以

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{aligned} \mathbf{M}^{-1} &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} b_{11} & \frac{1}{4}b_{12} & b_{13} \\ b_{21} & \frac{1}{4}b_{22} & b_{23} \\ b_{31} & \frac{1}{4}b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} b_{11} & \frac{1}{4}b_{12} & -\frac{1}{4}b_{12} + b_{13} \\ b_{21} & \frac{1}{4}b_{22} & -\frac{1}{4}b_{22} + b_{23} \\ b_{31} & \frac{1}{4}b_{32} & -\frac{1}{4}b_{32} + b_{33} \end{bmatrix} \end{aligned}$$

设
$$A$$
, B 分别是 m 和 n 阶可逆方阵, C 为 $m+n$ 阶方阵,且 $|A|=a$, $|B|=b$, $C=\begin{bmatrix} \boldsymbol{0} & A \\ B & \boldsymbol{0} \end{bmatrix}$, 则 $C^*=(-1)^{mn}\begin{bmatrix} \boldsymbol{0} & a\boldsymbol{B}^* \\ b\boldsymbol{A}^* & \boldsymbol{0} \end{bmatrix}$ 。

/ 06-07 秋冬期末 A 卷

设 A 是 n 阶矩阵,满足 $|A| \neq 0$,求证: (1) $|A^*| = |A|^{n-1}$, (2) $(A^*)^* = |A|^{n-2} A$ 。

证明: (1) 由于 $AA^* = |A|E$, 所以 $|A||A^*| = |A|^n$, 即得 $|A^*| = |A|^{n-1}$;

(2) 由于
$$A^*(A^*)^* = |A^*|E = |A|^{n-1}E$$
,所以有

$$(A^*)^* = |A|^{n-1} (A^*)^{-1} = |A|^{n-1} \frac{1}{|A|} A = |A|^{n-2} A$$

设A是n阶矩阵,满足 $A^3 = 2E$, $B = A^2 - 2A + E$,求证: B可逆,并求出 B^{-1} 。 / 06-07 春夏期末 A 卷

证明 因为 $A^3 = 2E$,所以

$$A^3 - E = (A - E)(A^2 + A + E) = E$$

于是

$$(A - E)^{-1} = A^2 + A + E$$

从而

$$B = A^2 - 2A + E = (A - E)^2$$

可逆,且

$$B^{-1} = (A - E)^{-1} \cdot (A - E)^{-1} = (A^2 + A + E)^2$$

$$= A^{4} + 2A^{3} + 3A^{2} + 2A + E$$

$$= 2A + 4E + 3A^{2} + 2A + E$$

$$= 3A^{2} + 4A + 5E$$

/ 08-09 春夏期末 A 卷

设A是n阶矩阵且 $A^3 = 2E$,若 $B = A^2 - 2A + 2E$,试证明: B可逆,并求出 B^{-1} 。

证一 因为
$$A^3 = 2E$$
,则
$$B = A^2 - 2A + 2E = A^3 + A^2 - 2A$$

$$= A(A^2 + A - 2E) = A(A - E)(A + 2E)$$
且 $A^{-1} = \frac{1}{2}A^2$ 。再 $A^3 = 2E$ 可得 $(A - E)(A^2 + A + E) = E$,所以 $(A - E)^{-1} = A^2 + A + E$ 。类似还可得到 $(A + 2E)(A^2 - 2A + 4E) = 10E$,所以 $(A + 2E)^{-1} = \frac{1}{10}(A^2 - 2A + 4E)$ 。故 B 可逆,且
$$B^{-1} = (A + 2E)^{-1}(A - E)^{-1}A^{-1}$$

$$= \frac{1}{10}(A^2 - 2A + 4E)(A^2 + A + E)\frac{1}{2}A^2$$

$$= \frac{1}{10}A^2 + \frac{3}{10}A + \frac{2}{5}E$$

证二 采用待定系数法。因为 $A^3 = 2E$,若 $A^2 - 2A + 2E$

可逆且逆矩阵是关于矩阵A的多项式,则逆矩阵必是 $aA^2 + bA + cE$ 形式。因此假设 $(A^2 - 2A + 2E)(aA^2 + bA + cE) = E$,则

$$aA^4 + (b - 2a)A^3 + (c - 2b + 2a)A^2 + (2b - 2c)A$$

 $+ 2cE = E$

由 $A^3 = 2E$,得

$$(c - 2b + 2a)A^{2} + (2a + 2b - 2c)A$$
$$+ (2b - 4a + 2c)E = E$$

$$\begin{cases} 2a - 2b + c = 0 \\ 2a + 2b - 2c = 0 \\ -4a + 2b + 2c = 1 \end{cases}$$

解之得

$$\begin{cases} a = \frac{1}{10} \\ b = \frac{3}{10} \\ c = \frac{2}{5} \end{cases}$$

故B可逆,且

$$\mathbf{B}^{-1} = \frac{1}{10}\mathbf{A}^2 + \frac{3}{10}\mathbf{A} + \frac{2}{5}\mathbf{E}$$

设A是n阶矩阵,且满足 $A^3 = 6E$,矩阵 $B = A^2 - 2A +$

4E,求证:矩阵B可逆,并且求出 B^{-1} 。

证明

因为 $A^3 = 6E$,则 $A^3 - 2A^2 + 4A + 2A^2 - 4A + 8E = 14E$

$$A(A^{2} - 2A + 4E) + 2(A^{2} - 2A + 4E) = 14E$$

$$(A^{2} - 2A + 4E)(A + 2E) = 14E$$

 $(A \quad ZA \mid AL)(A \mid ZL) =$

所以

$$(A^2 - 2A + 4E)^{-1} = \frac{1}{14}(A + 2E)$$

也可采用待定系数法。

/ 06-07 秋冬期末 A 卷

设A, B, C 是n 阶矩阵,且AB = BC = CA = E,则 $A^2 + B^2 + C^2 =$ _。

解 因为AB = BC = E,则 $A = B^{-1}$, $C = B^{-1}$,从而A = C 。 又因为AC = E ,则 $A^2 = E$ 。 同理可得 $B^2 = C^2 = E$,因此 $A^2 + B^2 + C^2 = 3E$

/ 06-07 秋冬期末 A 卷

设A是n阶矩阵,且 $A^2 + 2A - 4E = 0$,则 $(A - E)^{-1} = A + 3E$ 。

/ 06-07 秋冬期末 A 卷

设
$$n$$
阶矩阵 $B = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{bmatrix}$,其中

$$a_i \neq 0$$
, $b_i \neq 0$, $(i = 1, 2, \dots, n)$, 则 $r(B) = \underline{\hspace{1cm}}_{\circ}$

解

教材习题 4.6 第 9 题

$$B = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{bmatrix} = \square$$

$$1, 2, \dots, n$$
 ,则 $a_ib_i \neq 0$,从 而 $r\begin{pmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \end{pmatrix} =$

$$r([b_1 \quad b_2 \quad \cdots \quad b_n]) = 1$$
 ,且 $r(B) \geq 1$ 。 又因为

$$r(B) \le r \begin{pmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \end{pmatrix} = 1$$
,所以 $r(B) = 1$ 。

说 明 此 题 不 必 要 求 $a_i \neq 0$, $b_i \neq 0$, (i = 1, 2, ..., n) , 只 要 a_1 , a_2 , ..., a_n 中 至 少 有 一 个 不 为 零 , 并 且 b_1 , b_2 , ..., b_n 中也至少有一个不为零即可。 记住这个结论,经常要用到这个结论。

/ 09-10 春夏期末 A 卷

设A,B都是n阶矩阵,A可逆,且存在一个常数 λ ,满足矩阵 $A = (A - \lambda E)B$,求证: AB = BA。

证明 由 $A = (A - \lambda E)B$ 可得: $A = AB - \lambda B$, $AB = A + \lambda B$ 。

因为A可逆,则由 $A = (A - \lambda E)B$ 可得: $E = A^{-1}(A - \lambda E)B = (E - \lambda A^{-1})B$ 。

由此可知 $(E - \lambda A^{-1})$ 可逆,逆矩阵为B,所以 $B(E - \lambda A^{-1}) = E$ 。由此可得: $BA = A + \lambda B$ 因此AB = BA。

第四章 线性空间和线性变换

- 线性空间
- 同构
- 欧氏空间
- 线性变换

其中同构和线性变换不作要求。

定义 4.1.1 线性空间、向量

设P是一个数域,其中元素用a,b,c,…来表示,V是一个非空集合,其中元素用 α , β , γ ,…来表示,如果下列条件被满足就称V为P上的一个**线性空间**,V中的元素通常称为**向量**。

1. 加法

在V中定义一个**加法**,对于V中任意两个向量 α 与 β ,均有V中一个确定的向量 γ 与它们对应,这个向量称为 α 与 β 的和,记为 $\gamma = \alpha + \beta$ 。

2. 数乘

有一个**数量乘法**,对于P中每一个数k和V每一个

向量 α ,有V中一个确定的向量 δ 与它们对应,这个向量称为k与 α 的**数量乘积**,记为 $\delta = k \cdot \alpha$ 。

3. 八条运算规律

对任意的 α , β , $\gamma \in V$, 任意的k, $t \in P$, 加法和数量乘法满足下列运算规律:

- (1) 交換律 $\alpha + \beta = \beta + \alpha$
- (2) 结合律 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- (3) 在V中存在一个**零向量**,记为 θ ,对于V中的每一个向量 α ,都有 $\alpha + \theta = \alpha$
- (4) 对于V中每一个向量 α ,在V中存在一个向量 β 使 得 $\alpha + \beta = \theta$,这样的 β 称为 α 的一个**负向量**
- (5) $k \cdot (\boldsymbol{\alpha} + \boldsymbol{\beta}) = k \cdot \boldsymbol{\alpha} + k \cdot \boldsymbol{\beta}$
- (6) $(k+t) \cdot \alpha = k \cdot \alpha + t \cdot \alpha$
- (7) $(kt) \cdot \boldsymbol{\alpha} = k \cdot (t \cdot \boldsymbol{\alpha})$
- (8) $1 \cdot \boldsymbol{\alpha} = \boldsymbol{\alpha}$
- 一个非空集合
- 两个封闭的运算
- 八条运算规律

定义 4.2.2 线性相关、线性无关

设 α_1 , α_2 ,…, α_s 是数域P上的线性空间V中s个向量,如果存在P中不全为0的数 k_1 , k_2 ,…, k_s ,使得

$$k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_s \boldsymbol{\alpha}_s = \boldsymbol{\theta}$$

则称 α_1 , α_2 ,…, α_s **线性相关**,否则就称**线性无关**。

证明线性无关的方法

假设有一组数 k_1 , k_2 , …, k_s 使得

$$k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_s \boldsymbol{\alpha}_s = \boldsymbol{\theta}$$

如果能根据上面的假设证明

$$k_1 = k_2 = \dots = k_s = 0$$

则也就证明了 α_1 , α_2 , …, α_s **线性无关**

性质 4. 2. 3 在 P^n 中,设

$$\boldsymbol{\alpha}_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, \quad \boldsymbol{\alpha}_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \quad \cdots, \quad \boldsymbol{\alpha}_{S} = \begin{bmatrix} a_{1s} \\ a_{2s} \\ \vdots \\ a_{ns} \end{bmatrix}$$
$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{S} \end{bmatrix}$$

则

- (1) α_1 , α_2 , …, α_s 线性相关 $\Leftrightarrow r(A) < s$
- (2) α_1 , α_2 , …, α_s 线性无关 $\Leftrightarrow r(A) = s$

推论 1 在 P^n 中任意r(r > n)个向量必线性相关。

推论 2 设 α_1 , α_2 , …, $\alpha_n \in P^n$, 记 $A = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n]$, 则。

- (1) α_1 , α_2 , …, α_n 线性相关 $\Leftrightarrow |A| = 0$
- (2) α_1 , α_2 , …, α_n 线性无关 $\Leftrightarrow |A| \neq 0$

定理 4.3.1 向量组

 α_1 , α_2 , …, α_s ($s \ge 2$)线性相关 \Leftrightarrow α_1 , α_2 , …, α_s 中至少有一个向量是其余个 s-1向量的线性组合。

推论 向量组 α_1 , α_2 , …, α_s ($s \ge 2$)线性元关 \Leftrightarrow α_1 , α_2 , …, α_s 中每一个向量都不能经其余个s-1向量线性表示。

定理 4.3.2 若向量组

 α_1 , α_2 , …, α_s 线性无关,

而

 α_1 , α_2 , …, α_s , $\boldsymbol{\beta}$ 线性相关,

则

- β 必可经 α_1 , α_2 , …, α_s 线性表示,
- 且线性表示唯一。

定理 4.3.3 设向量组 α_1 , α_2 , …, α_r 中每一个向量都可经 β_1 , β_2 , …, β_s 线性表示, 若r > s, 则 α_1 , α_2 , …, α_s 线性相关。

定理 4.3.4 设向量组 α_1 , α_2 , …, α_r 中每一个向量都 可 经 β_1 , β_2 , …, β_s 线 性 表 示 , 若 α_1 , α_2 , …, α_r 线性无关,则 $r \leq s$ 。

定义 4.3.2 极大线性无关组

向量组 α_1 , α_2 , …, α_s 中的一部分 α_{i_1} , α_{i_2} , …, α_{i_r} 向量称为原向量组的一个**极大线性无关组**,如果

- (1) $\boldsymbol{\alpha}_{i_1}$, $\boldsymbol{\alpha}_{i_2}$, …, $\boldsymbol{\alpha}_{i_r}$ 线性无关
- (2) 再添加(如果可能)原向量组的任何一个向量 α_k 都有 α_{i_1} , α_{i_2} , …, α_{i_r} , α_k 线性相关

或

定义 4.3.2 极大线性无关组

向量组 α_1 , α_2 , …, α_s 中的一部分 α_{i_1} , α_{i_2} , …, α_{i_r} 向量称为原向量组的一个**极大线性无关组**,如果

- (1) $\boldsymbol{\alpha}_{i_1}$, $\boldsymbol{\alpha}_{i_2}$, …, $\boldsymbol{\alpha}_{i_r}$ 线性无关
- (2) α_1 , α_2 , …, α_s 中任何一个向量 α_k 均可经 α_{i_1} , α_{i_2} , …, α_{i_r} 线性表示

性质 4.3.1 向量组与其极大线性无关组等价。

性质 4.3.2 向量组的任意两个极大线性无关组必等价,从而它们所含的向量个数相等。

定义 4.4.3 过渡矩阵

设

$$\boldsymbol{\varepsilon}_1, \ \boldsymbol{\varepsilon}_2, \ \cdots, \ \boldsymbol{\varepsilon}_n \quad (I)$$

 $\boldsymbol{\varepsilon}_1', \ \boldsymbol{\varepsilon}_2', \ \cdots, \ \boldsymbol{\varepsilon}_n' \quad (II)$

n维线性空间V中的两组基。 $\boldsymbol{\varepsilon}_1'$, $\boldsymbol{\varepsilon}_2'$,…, $\boldsymbol{\varepsilon}_n'$ 经基(I) 线性表示为:

$$\mathbf{\varepsilon}_1' = m_{11}\mathbf{\varepsilon}_1 + m_{21}\mathbf{\varepsilon}_2 + \dots + m_{n1}\mathbf{\varepsilon}_n$$
 $\mathbf{\varepsilon}_2' = m_{12}\mathbf{\varepsilon}_1 + m_{22}\mathbf{\varepsilon}_2 + \dots + m_{n2}\mathbf{\varepsilon}_n$

$$\boldsymbol{\varepsilon}_n' = m_{1n}\boldsymbol{\varepsilon}_1 + m_{2n}\boldsymbol{\varepsilon}_2 + \dots + m_{nn}\boldsymbol{\varepsilon}_n$$

以 $\boldsymbol{\varepsilon}_1'$, $\boldsymbol{\varepsilon}_2'$,…, $\boldsymbol{\varepsilon}_n'$ 在基(I)下的坐标作为列向量构成的矩阵

$$M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix}$$

称为基(I)到(II)的**过渡矩阵**。

由定理 4.4.1 推论 3 之(3)可知, M为可逆矩阵, 且借助矩阵形式有

$$[\boldsymbol{\varepsilon}_1', \ \boldsymbol{\varepsilon}_2', \ \cdots, \ \boldsymbol{\varepsilon}_n'] = [\boldsymbol{\varepsilon}_1, \ \boldsymbol{\varepsilon}_2, \ \cdots, \ \boldsymbol{\varepsilon}_n]M$$

定理 4.4.2 设

$$\boldsymbol{\varepsilon}_1, \ \boldsymbol{\varepsilon}_2, \ \cdots, \ \boldsymbol{\varepsilon}_n \quad (I)$$

$$\boldsymbol{\varepsilon}_1', \ \boldsymbol{\varepsilon}_2', \ \cdots, \ \boldsymbol{\varepsilon}_n' \ (II)$$

n维线性空间V中的两组基,M是基(I)到(II)的过渡矩阵, α 是V中的一个向量, α 在基(I)和基(II)下的坐标分别为

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad X' = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix}$$

则

$$X = MX', \quad X' = M^{-1}X$$

定义 基变换公式、坐标变换公式

称

$$\begin{bmatrix} \boldsymbol{\varepsilon}_1', \ \boldsymbol{\varepsilon}_2', \ \cdots, \ \boldsymbol{\varepsilon}_n' \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_1, \ \boldsymbol{\varepsilon}_2, \ \cdots, \ \boldsymbol{\varepsilon}_n \end{bmatrix} M$$
为基变换公式。

称

$$X = MX', X' = M^{-1}X$$

为坐标变换公式。

在 P^n 空间有下面结论:

- (1) β 能(否)经 α_1 , α_2 , …, α_s 线性表示 ⇔非齐次线性方程组[α_1 α_2 … α_s] $X = \beta$ 有(没有)解
 - $\Leftrightarrow r([\boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \cdots \quad \boldsymbol{\alpha}_s])$ 是(否)等于 $r([\boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \cdots \quad \boldsymbol{\alpha}_s \quad \vdots \quad \boldsymbol{\beta}])$
- (2) α_1 , α_2 , …, α_s 线性无关

 ⇔齐次线性方程组[α_1 α_2 … α_s]X = 0只有零解

 ⇔ $r([\alpha_1 \ \alpha_2 \ \cdots \ \alpha_s]) = s$
- (3) α_1 , α_2 , …, α_s 线性相关 ⇔齐次线性方程组[α_1 α_2 … α_s] $X = \mathbf{0}$ 有非零解 ⇔ $r([\alpha_1 \ \alpha_2 \ \cdots \ \alpha_s]) < s$
- (4) α_1 , α_2 , …, α_n 是(否)能作为 P^n 的一组基 \Leftrightarrow 行列式 $|[\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n]|$ 是(否)不为零
- (5) 计算向量组 α_1 , α_2 , …, α_s 的极大线性无关组可通过对矩阵[α_1 α_2 … α_n]施行初等行变换

化阶梯形矩阵而推断出来。

而一般的维欧氏空间V,只要取定一组基,研究V中 向 量 α_1 , α_2 ,…, α_s 在 这 组 基 下 的 坐 标 X_{α_1} , X_{α_2} ,…, X_{α_s} (P^n 中向量!),即可将V中问题 转化为 P^n 中问题来解决。

定理 4.5.1 线性空间V的一个非空子集W,若关于V的加法和数乘封闭,则W就是V的一个子空间。

例 4.5.6 设V是数域P上的线性空间,

$$\alpha_1, \alpha_2, \cdots, \alpha_t$$

是V中一组向量,记

$$L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_t)$$

 $= \{k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_t \boldsymbol{\alpha}_t \mid k_1, k_2, \dots, k_t \in P\}$ 显然

 $\{\alpha_1, \alpha_2, \cdots, \alpha_t\} \subseteq L(\alpha_1, \alpha_2, \cdots, \alpha_t)$ 故 $L(\alpha_1, \alpha_2, \cdots, \alpha_t)$ 非空,且可验证关于V中加法,数乘封闭,从而 $L(\alpha_1, \alpha_2, \cdots, \alpha_t)$ 为V的子空间, 称为由 α_1 , α_2 ,…, α_t 生成的子空间。

以线性空间的观点来看齐次线性方程组 $A_{m\times n}X = \mathbf{0}$ 的解集合W是一个线性空间(P^n 的子空间),且 $\dim(W) = n - r$, 其中r = r(A)。 W的一组基 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$,…, $\boldsymbol{\xi}_{n-r}$ 就是 $AX = \mathbf{0}$ 的基础解系,从而 $AX = \mathbf{0}$ 的解全体可表示为

$$\xi = t_1 \xi_1 + t_2 \xi_2 + \dots + t_{n-r} \xi_{n-r}$$

其中 t_1 , t_2 , ..., t_{n-r} 为任意常数。

以线性空间的观点来看数域P上矩阵 $A = [a_{ij}]_{m \times n}$ 的列向量 α_1 , α_2 ,…, α_n 是 P^m 中向量,行向量 β_1 , β_2 ,…, β_m 是 P^n 中向量,且有

$$\dim L(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)$$

$$= r(A)$$

$$= \dim L(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_m)$$

例 4.11.2 设A为 $m \times n$ 实矩阵,求证:

$$r(A^{\mathrm{T}}A) = r(AA^{\mathrm{T}}) = r(A)$$

定义 4.8.1 内积,欧几里得空间(为欧氏空间)

设V是实数域 \mathbf{R} 上的一个线性空间,如果对V中任意两个向量 α 与 $\boldsymbol{\beta}$ 都有唯一确定的实数与它们对应,将这个实数记为 $(\alpha, \boldsymbol{\beta})$,且具有下列性质:

- (1) $(\alpha, \beta) = (\beta, \alpha)$
- (2) $(k\boldsymbol{\alpha}, \boldsymbol{\beta}) = k(\boldsymbol{\alpha}, \boldsymbol{\beta})$
- (3) $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$
- (4) $(\alpha, \alpha) \ge 0$, $\exists (\alpha, \alpha) = 0 \Leftrightarrow \alpha = \theta$

这里 α , β , γ 是V中任意向量,k是任意实数,则称 (α, β) 为向量 α , β 的内积。具有内积的实线性空间V称为**欧几里得空间**,简称为**欧氏空间**。

设 α, β 为 n 维欧氏空间中两个向量,且模 $\|\alpha\| = 2, \|\beta\| = 4$,求内积 $(4\alpha - 3\beta, 4\alpha + 3\beta)$ 。 / 05-06 秋冬期末 A 卷

解:
$$(4\alpha - 3\beta, 4\alpha + 3\beta) = (4\alpha, 4\alpha) + (4\alpha, 3\beta) + (-3\beta, 4\alpha) + (-3\beta, 3\beta)$$

= $16(\alpha, \alpha) - 9(\beta, \beta) = -80$

设在向量空间 R³中有两组基: 05-06 秋冬期末 A卷

(I)
$$\varepsilon_1 = (1,0,0)^T$$
, $\varepsilon_2 = (1,1,0)^T$, $\varepsilon_3 = (1,1,1)^T$

(II)
$$\eta_1 = \varepsilon_2, \eta_2 = \varepsilon_3 - \varepsilon_1, \eta_3 = \varepsilon_1 - \varepsilon_2 + \varepsilon_3$$
,

(1) 基(I) 到基(II) 的过渡矩阵M; 求

- (2) 若 α 在基(I) 下的坐标为 $X = (1,0,2)^{T}$,求 α 在 基(II)下的坐标Y:
- (3) 求在上述两组基下具有相同坐标的向量。

解:
$$(1)$$
 $(\eta_1, \eta_2, \eta_3) = (\varepsilon_2, \varepsilon_3 - \varepsilon_1, \varepsilon_1 - \varepsilon_2 + \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$

则过渡矩阵为
$$M = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
。

$$(2)$$
 $X = MY \Rightarrow Y = M^{-1}X$

$$(M,X) = \begin{pmatrix} 0 & -1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 2 & 3 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & \frac{3}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{3}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} \end{pmatrix}$$

所以
$$Y = \left(\frac{3}{2}, \frac{1}{2}, \frac{3}{2}\right)^T$$
。

(3)
$$X = MX \Rightarrow (M - E)X = 0$$

$$M - E = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{II} \quad X = k(1, 0, 1)^T \text{ o}$$

于是得到在上述两组基下有相同坐标的向量为

$$\beta = k(\varepsilon_1 + \varepsilon_3) = k(2,1,1)^T$$

/ 06-07 春夏期末 A 卷

设欧氏空间 R^3 的一组向量 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (2,-1,1)^T$, $\alpha_3 = (-2,1,5)^T$

- 求证: α₁,α₂,α₃是 R³的一组基;
- (2) 把 $\alpha_1, \alpha_2, \alpha_3$ 改造成 R^3 的标准正交基 $\beta_1, \beta_2, \beta_3$;
- (3) 求由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (4) 向量 δ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标是 $(1,2,0)^T$,求向

量 δ 在基 β_1,β_2,β_3 下的坐标。

解

$$(1) \quad \left(\alpha_{1},\alpha_{2},\alpha_{3}\right) = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 1 \\ 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & -5 & 5 \\ 0 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

可知秩为3,从而线性无关。

(2) 由于 $\alpha_1, \alpha_2, \alpha_3$ 是相互正交的,因此只需单位化即得标准正交基

$$\beta_1 = \frac{1}{\parallel \alpha_1 \parallel} \alpha_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \beta_2 = \frac{1}{\parallel \alpha_2 \parallel} \alpha_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix},$$

$$\beta_3 = \frac{1}{\parallel \alpha_3 \parallel} \alpha_3 = \frac{1}{\sqrt{30}} \begin{pmatrix} -2\\1\\5 \end{pmatrix}$$

(3)
$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} \frac{1}{\sqrt{5}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{6}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{30}} \end{bmatrix}$$

(4)
$$\delta = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = (\beta_1, \beta_2, \beta_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \frac{1}{\sqrt{5}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{6}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{30}} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

推出

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 & 0 \\ 0 & \sqrt{6} & 0 \\ 0 & 0 & \sqrt{30} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{5} \\ 2\sqrt{6} \\ 0 \end{pmatrix}.$$

已知 α_1 , α_2 , α_3 , α_4 和 $\beta_1 = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T$, $\beta_2 = \begin{bmatrix} 1 & 3 & 0 & 0 \end{bmatrix}^T$, $\beta_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$, $\beta_4 = \begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix}^T$ 是 \mathbf{R}^4 的 两 组 基 , 而 从 基 α_1 , α_2 , α_3 , α_4 到 β_1 , β_2 , β_3 , β_4 的过渡矩阵

为
$$\mathbf{M} = \begin{bmatrix} 4 & 3 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
。 $/$ 07-08 秋冬期末 A 卷

(1) 求基 α_1 , α_2 , α_3 , α_4 ;

(2) 求 向 量 $\delta = \alpha_1 + \alpha_2 + \alpha_3 - 2\alpha_4$ 在 基 β_1 , β_2 , β_3 , β_4 下的坐标;

答案

$$\alpha_1 = \begin{bmatrix} 1, & -2, & 0, & 0 \end{bmatrix}^T,$$
 $\alpha_2 = \begin{bmatrix} -2, & 9, & 0, & 0 \end{bmatrix}^T,$
 $\alpha_3 = \begin{bmatrix} 0, & 0, & 2, & 4 \end{bmatrix}^T,$
 $\alpha_4 = \begin{bmatrix} 0, & 0, & -3, & -7 \end{bmatrix}^T$
 $\delta = \begin{bmatrix} -2, & 3, & 13, & -5 \end{bmatrix}^T$

 $V = \{[a \quad b \quad c \quad d]^{\mathrm{T}} | a, b, c, d \in \mathbf{R}\},$ 设基 I 和基 II 分 别为

$$m{e}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \ m{e}_2 = egin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ \ m{e}_3 = egin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ \ m{e}_4 = egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$oldsymbol{arepsilon}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad oldsymbol{arepsilon}_2 = egin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad oldsymbol{arepsilon}_3 = egin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad oldsymbol{arepsilon}_4 = egin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- (1) 求基 I 到基 II 的过渡矩阵;
- (2) 分别求向量 $\alpha = [4 \ 3 \ 2 \ 1]^T$ 在基 I 和基 II 下的坐标;
- (3) 求一个向量**β**, 它在基 I 和基 II 下具有相同的 坐标。

 / 08-09 春夏期末 A 卷

解

(1) 因为 $\varepsilon_1 = e_1$, $\varepsilon_2 = e_1 - e_4$, $\varepsilon_3 = e_1 - e_3$, $\varepsilon_4 = e_1 - e_2$, 则基 I 到基 II 的过渡矩阵为

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

(2) 因为向量 $\alpha = [4 \ 3 \ 2 \ 1]^{T}$ 在基 I 下的坐标是 $X = [1, 1, 1, 1]^{T}$,则向量 $\alpha = [4 \ 3 \ 2 \ 1]^{T}$ 在基 II 下的坐标是

$$Y = M^{-1}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

(3) 设向量 β 在两组基下具有相同的坐标X,则 X = MX,即(M - E)X = O,解之得

$$X = k[1 \quad 0 \quad 0 \quad 0]^{T}$$
, k 为任意常数
所以 $\beta = k\epsilon_{1} = k[1 \quad 1 \quad 1]^{T}$ 。

在线性空间V中,设基 I 和基 II 分别为

$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\boldsymbol{\beta}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{\beta}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{\beta}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- (1) 求基 I 到基 II 的过渡矩阵;
- (2) 分别求向量 $\alpha = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T$ 在基 I 和基 II 下的 坐标;
- (3) 求一个向量 β ,它在基 I 和基 II 下具有相同的 坐标。

答案

$$(1) \mathbf{M} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{1}{6} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$$

(2) 向量 $\alpha = [2 \ 3 \ 1]^{T}$ 在基 I 和基 II 下的坐标分别

为

设V是实数域 \mathbf{R} 上的全体 2×2 矩阵,即

$$V = \mathbf{R}^{2 \times 2} = \left\{ \mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbf{R} \right\}$$

V的运算是普通矩阵的加法和数量乘法,V对于这两种运算成为线性空间,V的子集合

$$V_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a+b+c+d = 1; \ a,b,c,d \in \mathbf{R} \right\}$$
$$V_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a+b+c+d = 0; \ a,b,c,d \in \mathbf{R} \right\}$$

问V的子集合V₁和V₂对于V中的运算是否构成为V的子空间(要说明理由)?写出该子空间的一组基,并且求出它的维数。

解 因为V的零元素 $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 不在 V_1 中,所以 V_1 不是V的子空间(或者说明 V_1 对于V的加法或数乘运算不封闭)。

 V_2 是V的子空间,理由如下:

(1) 零元素
$$\mathbf{o} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in V_2$$
,所以 V_2 非空。

$$(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) + (d_1 + d_2)$$

$$= (a_1 + b_1 + c_1 + d_1) + (a_2 + b_2 + c_2 + d_2) = 0$$

$$\Rightarrow \alpha + \beta \in V_2$$

(3)
$$k\boldsymbol{\alpha} = \begin{bmatrix} ka_1 & kb_1 \\ kc_1 & kd_1 \end{bmatrix}$$
, $\mathbb{M} ka_1 + kb_1 + kc_1 + kd_1 = k(a_1 + b_1 + c_1 + d_1) = 0$

$\Rightarrow k\alpha \in V_2$

所以 V_2 是V的子空间。 V_2 的基是:

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

 $\dim(V_2) = 3_{\circ}$

在
$$\mathbf{R}^2$$
 中 , 由 基 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1, \ 2 \end{bmatrix}^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 2, \ 1 \end{bmatrix}^{\mathrm{T}}$ 到 基 $\boldsymbol{\beta}_1 = \begin{bmatrix} 1, \ 1 \end{bmatrix}^{\mathrm{T}}$, $\boldsymbol{\beta}_2 = \begin{bmatrix} 2, \ 3 \end{bmatrix}^{\mathrm{T}}$ 的 过 渡 矩 阵 是_____。向量 $\boldsymbol{\xi} = \begin{bmatrix} 3, \ 1 \end{bmatrix}^{\mathrm{T}}$ 在基 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 下 的坐标是____。

答案
$$M = \frac{1}{3} \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}, X = \begin{bmatrix} -\frac{1}{3}, \frac{5}{3} \end{bmatrix}^{\mathrm{T}}$$

/ 07-08 春夏期末 A 卷

设V是实数域 \mathbf{R} 上的全体 4×4 反对称矩阵所构成的线性空间,即

$$V = \left\{ \mathbf{A} = \left[a_{ij} \right]_{4 \times 4} \middle| \mathbf{A}^{\mathrm{T}} = -\mathbf{A}, \ a_{ij} \in \mathbf{R} \right\}$$

写 出 V 的 一 组 基 ($e_{12}-e_{21}$, $e_{13}-e_{31}$, $e_{14}-e_{41}$, $e_{23}-e_{32}$, $e_{24}-e_{42}$, $e_{34}-e_{43}$)。V 的维数是

(6)。设4阶矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -2 & 0 & 4 & -2 \\ -3 & -4 & 0 & -2 \\ -1 & 2 & 2 & 0 \end{bmatrix}$$
,写出 \mathbf{A}

在上面这组基下的坐标($[2, 3, 1, 4, -2, -3]^T$)。

/ 06-07 秋冬期末 A 卷

设 $\alpha_1 = (1,0,-1,2)^T$, $\alpha_2 = (2,-1,-2,6)^T$, $\alpha_3 = (3,1,a,4)^T$, $\beta = (4,-1,-5,10)^T$, 已知 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,

则
$$a = ______$$

07-08 春夏期末 A 卷

已知向量组 $\boldsymbol{\beta}_1 = \begin{bmatrix} 0, 1, -1 \end{bmatrix}^T, \boldsymbol{\beta}_2 = \begin{bmatrix} a, 2, -1 \end{bmatrix}^T, \boldsymbol{\beta}_3 = \begin{bmatrix} b, 1, 0 \end{bmatrix}^T$ 与向量组 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1, 2, -1 \end{bmatrix}^T, \boldsymbol{\alpha}_2 = \begin{bmatrix} 3, 0, 1 \end{bmatrix}^T, \boldsymbol{\alpha}_3 = \begin{bmatrix} 9, 6, -7 \end{bmatrix}^T$ 有相同的秩,且 $\boldsymbol{\beta}_3$ 可以由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示。求 \boldsymbol{a}, b 的值,并写出 $\boldsymbol{\beta}_3$ 由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示的一个表达式。

解

$$\begin{bmatrix} \boldsymbol{\alpha}_{1}, & \boldsymbol{\alpha}_{2}, & \boldsymbol{\alpha}_{3}, & \boldsymbol{\beta}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 9 & b \\ 2 & 0 & 6 & 1 \\ -3 & 1 & -7 & 0 \end{bmatrix}$$

$$\xrightarrow{R_{2} - 2R_{1}}{R_{3} + 3R_{1}} \begin{bmatrix} 1 & 3 & 9 & b \\ 0 & -6 & -12 & 1 - 2b \\ 0 & 10 & 20 & 3b \end{bmatrix}$$

$$-\frac{1}{6}R_{2}$$

$$\xrightarrow{R_{3} - 10R_{2}} \begin{bmatrix} 1 & 3 & 9 & b \\ 0 & 1 & 2 & -\frac{1}{6}(1 - 2b) \\ 0 & 0 & 0 & \frac{1}{3}(5 - b) \end{bmatrix}$$

因为 $\boldsymbol{\beta}_3$ 可以由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性表示,则 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_3) = 2$,由此可得b = 5。

$$\begin{bmatrix} 1 & 3 & 9 & b \\ 0 & 1 & 2 & -\frac{1}{6}(1-2b) \\ 0 & 0 & 0 & \frac{1}{3}(5-b) \end{bmatrix} = \begin{bmatrix} 1 & 3 & 9 & 5 \\ 0 & 1 & 2 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

由此可得:

$$\boldsymbol{\beta}_3 = \frac{1}{2}\boldsymbol{\alpha}_1 + \frac{3}{2}\boldsymbol{\alpha}_2$$

或

$$\boldsymbol{\beta}_3 = \left(\frac{1}{2} - 3t\right)\boldsymbol{\alpha}_1 + \left(\frac{3}{2} - 2t\right)\boldsymbol{\alpha}_2 + t\boldsymbol{\alpha}_3,$$

其中t为任意数。

$$\begin{bmatrix} \boldsymbol{\beta}_{1}, \ \boldsymbol{\beta}_{2}, \ \boldsymbol{\beta}_{3} \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & 5 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_{12}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & a & 5 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
R_{23} & \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 5 - a \end{bmatrix}
\end{array}$$

因为
$$r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = 2$$
,由此可得 $a = 5$ 。

09-10 秋冬期末 A 卷

向量组

$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{bmatrix} -1 \\ 2 \\ a \end{bmatrix}, \quad \boldsymbol{\alpha}_4 = \begin{bmatrix} 2 \\ 1 \\ c \end{bmatrix}$$

决定数a, c的值,使得向量组 α_1 , α_2 , α_3 , α_4 的 秩最小,并求出向量组 α_1 , α_2 , α_3 , α_4 的一个极大线性无关组,并用此极大线性无关组表示其它的向量。

答案
$$[\alpha_1, \alpha_2, \alpha_3, \alpha_4] \rightarrow \begin{bmatrix} 1 & 0 & 7 & -4 \\ 0 & 1 & -4 & 3 \\ 0 & 0 & a+18 & c-11 \end{bmatrix}$$

当 a=-18, c=11 时 秩 最 小 , 这 时 $r(\boldsymbol{\alpha}_1,\ \boldsymbol{\alpha}_2,\ \boldsymbol{\alpha}_3,\ \boldsymbol{\alpha}_4)=2$ 。

极大线性无关组是 α_1 , α_2 ,且 $\alpha_3 = 7\alpha_1 - 4\alpha_2$, $\alpha_4 = -4\alpha_1 + 3\alpha_2$ 。

设 V 是 欧 氏 空 间 , $\boldsymbol{\beta}$ 是 V 中 的 非 零 向 量 , $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, … , $\boldsymbol{\alpha}_s$ 是V 中 的 s 个 向 量 , 且 对 于 任 意 的 k, $(\boldsymbol{\beta}, \boldsymbol{\alpha}_k) > 0$, 当 $i \neq j$ 时 , $(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j) \leq 0$, 求证: $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, … , $\boldsymbol{\alpha}_s$ 是线性无关的。

/ 06-07 春夏期末 A 卷

证明 若

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s = \theta \tag{1}$$

其 中 k_1 , k_2 , …, k_s 为 数 。 不 妨 假 设 k_1 , k_2 , …, $k_r \ge 0$, k_{r+1} , k_{r+2} , …, $k_s \le 0$ 。由 (1)式可得

$$k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_r \boldsymbol{\alpha}_r$$

$$= -(k_{r+1} \boldsymbol{\alpha}_{r+1} + k_{r+2} \boldsymbol{\alpha}_{r+2} + \dots + k_s \boldsymbol{\alpha}_s)$$

$$\gamma = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_r \alpha_r$$
$$= -k_{r+1} \alpha_{r+1} - k_{r+2} \alpha_{r+2} - \dots - k_s \alpha_s$$

则

$$0 \leq (\boldsymbol{\gamma}, \ \boldsymbol{\gamma})$$

$$= (k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_r \boldsymbol{\alpha}_r, -k_{r+1} \boldsymbol{\alpha}_{r+1} - k_{r+2} \boldsymbol{\alpha}_{r+2} - \dots - k_s \boldsymbol{\alpha}_s)$$

$$= -\sum_{i=r+1}^{s} \sum_{j=1}^{r} k_i k_j (\boldsymbol{\alpha}_i, \ \boldsymbol{\alpha}_j) \leq 0$$

从而 $(\gamma, \gamma) = 0, \gamma = 0$ 。由此可得

$$0 = (\boldsymbol{\beta}, \boldsymbol{\gamma}) = (\boldsymbol{\beta}, k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_r \boldsymbol{\alpha}_r)$$
$$= \sum_{i=1}^r k_i (\boldsymbol{\beta}, \boldsymbol{\alpha}_i)$$

因为($\boldsymbol{\beta}$, $\boldsymbol{\alpha}_i$) > 0,则 $k_i = 0$, i = 1,2,…,r $0 = (\boldsymbol{\beta}, \boldsymbol{\gamma})$ $= (\boldsymbol{\beta}, -k_{r+1}\boldsymbol{\alpha}_{r+1} - k_{r+2}\boldsymbol{\alpha}_{r+2} - \dots - k_s\boldsymbol{\alpha}_s)$

$$=-\sum_{j=1}^{S}k_{j}(\boldsymbol{\beta}, \boldsymbol{\alpha}_{j})$$

因为($\boldsymbol{\beta}$, α_i) > 0,则

$$k_j = 0$$
, $j = r + 1$, $r + 2$, ..., s

因此 α_1 , α_2 , …, α_s 是线性无关。

/ 07-08 春夏期末 A 卷

2. 设A是 $m \times n$ 矩阵,B是 $m \times t$ 矩阵,r(B) = t。令 $C = (A, B)_{m \times (n+t)}, \ X^{(1)}, \ X^{(2)}, \ \cdots, \ X^{(r)}$ 为齐次线性方程组CX = 0的一个基础解系,设 $X^{(i)} = \begin{pmatrix} X_0^{(i)} \\ X_1^{(i)} \end{pmatrix}$,这里 $X_0^{(i)}$ 为 $X_1^{(i)}$ 的前n个元素。求证 $X_0^{(1)}, \ X_0^{(2)}, \ \cdots, \ X_0^{(r)}$ 线性无关。

证:

因为 $X^{(1)}$, $X^{(2)}$, …, $X^{(r)}$ 为齐次线性方程组CX = 0的一个基础解系,

所以
$$CX^{(i)} = (A, B)X^{(i)} = 0$$
,即

$$(A,B)X^{(i)} = (A,B) \begin{pmatrix} X_0^{(i)} \\ X_1^{(i)} \end{pmatrix} = AX_0^{(i)} + BX_1^{(i)} = 0.$$

假设

所以

性无关。

$$A\left(k_1X_0^{(1)} + k_2X_0^{(2)} + \dots + k_rX_0^{(r)}\right) + B\left(k_1X_1^{(1)} + k_2X_1^{(2)} + \dots + k_rX_1^{(r)}\right) = 0$$
。
由 (1) 知道, $B\left(k_1X_1^{(1)} + k_2X_1^{(2)} + \dots + k_rX_1^{(r)}\right) = 0$ 。
因为 $r(B) = t$,所以
 $k_1X_1^{(1)} + k_2X_1^{(2)} + \dots + k_rX_1^{(r)} = 0$ 。
再结合 (1) 可得 $k_1X^{(1)} + k_2X^{(2)} + \dots + k_rX^{(r)} = 0$ 。
由于 $X^{(1)}$, $X^{(2)}$, \dots , $X^{(r)}$ 线性无关,所以
 $k_1 = k_2 = \dots = k_r = 0$,即 $X_0^{(1)}$, $X_0^{(2)}$, \dots , $X_0^{(r)}$ 线

第五章 特征值和特征向量

- 特征值和特征向量
- 矩阵的对角化
- 矩阵相似理论和应用 实对称矩阵的对角化

定义4.10.2 相似

设A, $B \in P^{n \times n}$, 若存在可逆矩阵 $P \in P^{n \times n}$, 使

$$P^{-1}AP = B$$

则称A与B相似。

性质4. 10. 3 若A与B相似,则r(A) = r(B), |A| = |B|。

定义 5.1.1 特征值(或特征根), 特征向量

设A为数域P上的n阶方阵,如果存在数域P上的数 λ_0 和非零向量 ξ ,使得 $A\xi = \lambda_0\xi$,则称 λ_0 为A的一个**特征值**(或**特征根**),而 ξ 称为A的属于特征值 λ_0 的一个**特征向量**。

定理 5.1.1

设A为n阶方阵,则A能与对角矩阵相似的**充要条** 件为A有n个线性无关的特征向量。若A有n个线性无关的特征向量。 ξ_1 , ξ_2 ,…, ξ_n ,可记 $P = [\xi_1 \ \xi_2 \ \dots \ \xi_n]$,则P是一个可逆矩阵,且使得 $P^{-1}AP = \operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$ 此处 λ_1 , λ_2 ,…, λ_n 是A的特征值, ξ_i ($i = 1, 2, \dots, n$) 是属于特征值 λ_i 的特征向量

定理 5.1.2

- (1) λ_0 是A的一个特征值的充要条件为 λ_0 是A的特征 多项式 $f(\lambda)$ 在数域P中的一个根,即 $|\lambda_0 E A| = 0$ 。
- (2) 若 λ_0 是A的一个特征值,则属于 λ_0 的特征向量的全体是齐次线性方程组($\lambda_0 E A$)X = O的所有非零解。

矩阵对角化方法

设A是n阶方阵,判别A能否对角化可按下述步骤

进行:

对能对角化的矩阵A,对角化的具体步骤如下:

(1)解特征多项式

$$f(\lambda) = |\lambda E - A|$$

求出A的全部相异的特征值:

$$\lambda_1, \lambda_2, \dots, \lambda_s$$

(2) 将 λ_1 , λ_2 , …, λ_s 逐个代入

$$(\lambda_i E - A)X = \mathbf{0}, i = 1, 2, \dots, s$$

求得一个基础解系(即解空间 W_{λ_i} 的一组基)

$$\xi_{i1}, \xi_{i2}, \dots, \xi_{ir_i}$$

这是一组线性无关的特征向量。

(3) 因A可对角化,所以 $r_1 + r_2 + \cdots + r_s = n$,将这n个

线性无关的特征向量记为 ξ_1 , ξ_2 , …, ξ_n 。

$$(4) 取 P = [\boldsymbol{\xi}_1 \quad \boldsymbol{\xi}_2 \quad \cdots \quad \boldsymbol{\xi}_n], \text{ 则有}$$

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

其中 λ_i 是特征向量 ξ_i 所对应的特征值。

实对称矩阵对角化

- (1) 求出特征值和n个线性无关的特征向量。
- (2) 再用施密特正交化方法将线性无关向量组

$$\xi_{i1}, \ \xi_{i2}, \ \cdots, \ \xi_{ir_i}(i=1,2,\cdots,s)$$

改造成标准正交向量组

$$\eta_{i_1}, \ \eta_{i_2}, \ \cdots, \ \eta_{i_{r_i}} \ (i = 1, 2, \cdots, s)$$

目.

$$r_1 + r_2 + \dots + r_s = n$$

则

 $\eta_{11}, \dots, \eta_{1r_1}, \eta_{21}, \dots, \eta_{2r_2}, \dots, \eta_{s1}, \dots, \eta_{sr_s}$ 就是 R^n 的一组标准正交基,记

$$U = \begin{bmatrix} \boldsymbol{\eta}_{11} & \cdots & \boldsymbol{\eta}_{1r_1} & \cdots & \boldsymbol{\eta}_{s1} & \cdots & \boldsymbol{\eta}_{sr_s} \end{bmatrix}$$

则U就是正交矩阵,且

$$n_1 \uparrow$$

$$U^{-1}AU = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_1 & & & \\ & & \lambda_2 & & \\ & & & \lambda_2 & \\ & & & \ddots & \\ & & & \lambda_s & n_s \\ & & & \lambda_s \end{bmatrix}$$

其中主对角线上元素为A的全部特征值。

特征值和特征向量

设A为n阶方阵, λ_1 , λ_2 ,…, λ_n 是A的全体特征根(重根按重数计),则

(1)
$$\sum_{i=1}^{n} \lambda_i = \operatorname{tr} A, \ \lambda_1 \lambda_2 \cdots \lambda_n = |A|$$

- (2) A为可逆矩阵 $\Leftrightarrow \lambda_i \neq 0$, $i = 1,2,\cdots,n$
- (3) 设 $p(x) = a_k x^k + \cdots a_2 x^2 + a_1 x + a_0$,若 λ_0 是A的一个特征值,则

$$p(\lambda_0) = a_k \lambda_0^k + \cdots a_2 \lambda_0^2 + a_1 \lambda_0 + a_0$$

是 $p(A)$ 的一个特征值。同时若 ξ 是 A 的属于 λ_0 的特征向量,则 ξ 也是 $p(A)$ 的属于 $p(\lambda_0)$ 的特征向量。

特别地若A可对角化,则p(A)的全部特征值为 $p(\lambda_1)$, $p(\lambda_2)$,…, $p(\lambda_n)$

(4) A为可逆矩阵,若 λ_0 是A的一个特征值,则 λ_0^{-1} 是 A^{-1} 的一个特征值。同时若 ξ 是A的属于 λ_0 的特征向量,则 ξ 也是 A^{-1} 的属于 λ_0^{-1} 的特征向量。

矩阵	特征值	特征向量
A	λ_0	ξ
A^{-1}	λ_0^{-1}	ξ
A^*	$\lambda_0^{-1} A $	ξ
A^k	λ_0^k	ξ
p(A)	$p(\lambda_0)$	ξ

 \bigcirc

若 $A^k = \mathbf{0}$,则A的特征值均为零(参见例 5. 2. 6)

例 5.5.3

设n阶方阵A满足 $A^2 = A$,且 $r(A) = r(0 < r \le n)$,求|5E + A|。

解

先证A能对角化,由 $A^2 = A$ 可推出A的特征值或为 0,或为 1。下面设法求出它们的重数。

特征值 0 所对应的方程组(0E - A)X = O的基础解系所含向量个数

$$r_1 = n - r(A) = n - r$$

特征值 1 所对应的方程组(1E - A)X = O的基础解系 所含向量个数

$$r_2 = n - r(E - A)$$

由附录四练习题第二题第 3 小题知,此时r(A) + r(E-A) = n,故

$$r(E - A) = n - r(A) = n - r$$

从而 $r_2 = n - r(E - A) = r$ 。由 $r_1 + r_2 = n$ 知,A能与对角矩阵 Λ 相似,且 Λ 的主对角线上元素为r个 1,n - r个 0,即可逆矩阵P使得

$$P^{-1}AP = diag[1, \dots, 1, 0, \dots, 0]$$

再取多项式 $p(x) = x + 5$,利用性质 5. 3. 8 之 (2) 有 $|5E + A| = p^r(1)p^{n-r}(0) = 6^r 5^{n-r}$

矩阵相似的理论和应用

能对角化的矩阵就是与对角矩阵相似的矩阵,所以对角化是矩阵相似理论的一部分。

若A与B相似,则

- (1) r(A) = r(B)
- (2) A, B有相同的特征多项式, 从而

$$trA = trA$$
, $|A| = |B|$

(3) 设
$$p(x) = a_k x^k + \cdots a_2 x^2 + a_1 x + a_0$$
,则 $p(A) 与 p(B)$ 相似

性质 5.5.1

设A,B均为n阶方阵,且A,B均能对角化,则 A与B相似 \Leftrightarrow A,B有相同的特征多项式

课件中的补充例题可以看一看。

06-07 春夏期末 A 卷

设A, B都是3阶矩阵, 满足E + B = AB, 且A的特征 值为2,3,0,则**B**的特征值是_____

> 如果已知2E-A,3E-A,A不可逆,实际 上就是已知A的特征值为2,3,0

解 由 E + B = AB 得 E = (A - E)B, $B = (A - E)^{-1}$, 故的特征值为: 1, 1/2, -1。

求A的特征值和特征向量。

解 因为 $\beta^{T}\alpha = 3$, $A\alpha = (\alpha\beta^{T})\alpha = \alpha(\beta^{T}\alpha) = 3\alpha$,所 以 3 是A的特征值, $\eta_1 = k_1 \alpha (k_1 \neq 0)$ 是A的属于特征 值 3 的特征向量。又因为r(A) = 1,则|A| = 0,由此 可知 0 是 A 的特征值, 且所对应的齐次线性方程组 -AX = 0的基础解系向量个数为 2, 这谢 0 是 A的特 征多项式的二重根,因此A的 \Diamond 个特征值为: $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = 0$. 教材习题 4.6 因为 第9题的结果

$$A = \alpha \beta^{\mathrm{T}} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}$$

将 λ = 0代入齐次线性方程组(λ *E* - *A*)X = O,解之得基础解系为

 $\eta_2 = [-1, 2, 0]^T, \eta_3 = [-1, 0, 3]^T$ 故属于特征值 0 的特征向量为: $k_2\eta_2 + k_3\eta_3$, 其中 k_2, k_3 不同时为 0。

设二阶矩阵A有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$,求行列式 $|A^2 - 3A + 4E|$ 的值; / 05-06 秋冬期末 A 卷

 $\mathbf{H} f(\mathbf{A}) = \mathbf{A}^2 - 3\mathbf{A} + 4\mathbf{E}$ 的特征值为:

$$f(\lambda_1) = f(1) = 1^2 - 3 \times 1 + 4 = 2$$

$$f(\lambda_2) = f(2) = 2^2 - 3 \times 2 + 4 = 2$$

因此 $|A^2 - 3A + 4E| = f(1) \times f(2) = 4$

/ 07-08 秋冬期末 A 卷

设A是n阶矩阵,且 $A^2 = A$,r(A) = r,(r < n),则矩

阵
$$A$$
 的 特 征 值 为 ________, 行 列 式 $|E + A + A^2 + \dots + A^k| =$ ______。

解 由教材 P224 例 5. 5. 3 可知,因为 $A^2 = A$,r(A) = r,(r < n),则矩阵A的特征值为 0(n - r重根) 和 1(r)重 根), 令 $f(x) = 1 + x + x^2 + \dots + x^k$, 则 $E + A + A^2 + \dots + A^k$ 的特征值分别为:

$$f(0) = 1(n - r$$
重根)

$$f(1) = 1 + k(r$$
重根)

所 以
$$|\mathbf{E} + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^k| = f^{(n-r)}(0)f^r(0) = (1+k)^r$$
。

/ 09-10 秋冬期末 A 卷

设 A 是 4 阶 矩 阵 , 特 征 值 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = -2$, $\lambda_4 = 3$,求

- (1) $|2A^* 3A^{-1}|$;
- (2) $|A^3 2A^2 2A 3E|$;
- (3) $|(A^*)^*|_{\circ}$

答案

(1)
$$|A| = -12$$
, $A^* = |A|A^{-1} = -12A^{-1}$

$$|2A^* - 3A^{-1}| = |-24A^{-1} - 3A^{-1}| = |-27A^{-1}|$$
$$= -\frac{3^{11}}{4}$$

(2) 因为 $A^3 - 2A^2 - 2A - 3E$ 有一个特征值 $3^3 - 23^2 - 23 - 3 = 0$,所以 $|A^3 - 2A^2 - 2A - 3E| = 0$

(3)
$$|(A^*)^*| = |A|^{(n-1)^2} = (-12)^{3^2} = -12^9$$

设A是3阶实对称矩阵且 $A^3 = 8E$,求 $|A^2 + 3A - 2E|$ 的值。

/ 08-09 春夏期末 A 卷

解 因为A是3阶实对称矩阵,则存在可逆矩阵P使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

其中 λ_1 , λ_2 , λ_3 为A的特征值。由此可得

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \mathbf{P}^{-1}$$

$$\mathbf{A}^3 = \mathbf{P} \begin{bmatrix} \lambda_1^3 & 0 & 0 \\ 0 & \lambda_2^3 & 0 \\ 0 & 0 & \lambda_3^3 \end{bmatrix} \mathbf{P}^{-1}$$

因为 $A^3 = 8E$,则

$$\mathbf{P} \begin{bmatrix} \lambda_1^3 & 0 & 0 \\ 0 & \lambda_2^3 & 0 \\ 0 & 0 & \lambda_3^3 \end{bmatrix} \mathbf{P}^{-1} = 8\mathbf{E}$$

$$\begin{bmatrix} \lambda_1^3 & 0 & 0 \\ 0 & \lambda_2^3 & 0 \\ 0 & 0 & \lambda_3^3 \end{bmatrix} = 8\mathbf{P}^{-1}\mathbf{E}\mathbf{P} = 8\mathbf{E}$$

所以 $\lambda_1 = \lambda_2 = \lambda_3 = 2$ 。由此可知 $A^2 + 3A - 2E$ 的 3 个 特征值为 $2^2 + 3 \times 2 - 2 = 8$, 因此

$$|A^2 + 3A - 2E| = 8^3 = 512$$

 \bigcirc

且A有三个线性无关的特征向量,求实数x,v。

解 因为 $\lambda_1 + \lambda_2 + \lambda_3 = 1 + 4 + 5 = 10$,所以 $\lambda_3 = 6$ 。 由于A有三个线性无关的特征向量,所以当 $\lambda = 2$ 时, 齐次线性方程组(2E - A)X = O的解空间的维数为 2, 从而r(2E - A) = 3 - 2 = 1。由于

$$2\mathbf{E} - \mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ -x & -2 & -y \\ 3 & 3 & -3 \end{bmatrix}$$

$$\begin{array}{c|cccc}
R_2 + xR_1 \\
\hline
R_3 - 3R_1
\end{array}
\begin{bmatrix}
1 & 1 & -1 \\
0 & x - 2 & -x - y \\
0 & 0 & 0
\end{bmatrix}$$

于是x-2=0, -x-y=0, 因此x=2, y=-2。

设A是3阶实对称矩阵,特征值 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 6$,属于特征值 $\lambda_1 = \lambda_2 = 2$ 的特征向量为 $\alpha_1 = \begin{bmatrix} 1, -1, 0 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} 1, 0, -1 \end{bmatrix}^T$, $\alpha_3 = \begin{bmatrix} 0, 1, -1 \end{bmatrix}^T$,求

- (1) 属于特征值 $\lambda_3 = 6$ 的特征向量;
- (2) 矩阵A。

/ 06-07 春夏期末 A 卷

解(1)因为

$$\begin{bmatrix} \boldsymbol{\alpha}_1, & \boldsymbol{\alpha}_2, & \boldsymbol{\alpha}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

$$\xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

则 α_1 , α_2 线性无关。令 $\beta = [x, y, z]^T$ 是属于特征值 $\lambda_3 = 6$ 的特征向量,则

$$\begin{cases} \boldsymbol{\beta} \perp \boldsymbol{\alpha}_1 \\ \boldsymbol{\beta} \perp \boldsymbol{\alpha}_2 \end{cases} \Rightarrow \begin{cases} x - y = 0 \\ x - z = 0 \end{cases}$$
$$\Rightarrow x = y = z \Rightarrow \boldsymbol{\beta} = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^{\mathrm{T}}$$

$$P = [\alpha_1, \alpha_2, \beta] = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

则

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix} \mathbf{P}^{-1} = \frac{1}{3} \begin{bmatrix} 10 & 4 & 4 \\ 4 & 10 & 4 \\ 4 & 4 & 10 \end{bmatrix}$$

设**A**是 3 阶实对称矩阵,特征值是**2**, **2**, **3**, 属于特征值 3 的特征向量是 $\alpha_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$,求矩阵**A**。

答案

$$\bigcirc$$

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}, \quad \mathbf{P}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

$$A = P \Lambda P^{-1}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 7 & 1 & 1 \\ 1 & 7 & 1 \\ 1 & 1 & 7 \end{bmatrix}$$

/ 07-08 春夏期末 A 卷

设 A, B 都 是 3 阶 实 可 逆 矩 阵, A 的 特 征 值 是 $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$, $\frac{1}{\lambda_3}$, 这 里 λ_1 , λ_2 , λ_3 是 互 不相同的 正整数 \mathcal{P} 若 B 的 特 征 值 是 -5, 1, 7, $B = (A^{-1})^2 - 6A$, 求 λ_1 , λ_2 , λ_3 , 并分别 写 出 与 A, A^{-1} , B 相似的对角形矩阵。

解 因为**A**的特征值是 $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$, $\frac{1}{\lambda_3}$, **B** = (A^{-1})² - 6A, 所以 A^{-1} 的特征值为 λ_1 , λ_2 , λ_3 , **B**的特征值为 $\lambda_1^2 - \frac{6}{\lambda_1}$, $\lambda_2^2 - \frac{6}{\lambda_2}$, $\lambda_3^2 - \frac{6}{\lambda_3}$ 。 因为**B**的特征值是 -5, 1, 7, 所以可令 $\lambda_1^2 - \frac{6}{\lambda_1} = -5$, $\lambda_2^2 - \frac{6}{\lambda_2} = 1$, $\lambda_3^2 - \frac{6}{\lambda_3} = 7$ 。因为 λ_1 , λ_2 , λ_3 是互不相同的正整数,解 $\lambda_1^2 - \frac{6}{\lambda_1} = -5$, $\lambda_2^2 - \frac{6}{\lambda_2} = 1$, $\lambda_3^2 - \frac{6}{\lambda_3} = 7$ 得 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$ 。所以与A, A^{-1} , **B**相似的对角形矩阵分别为:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} -5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

已知 3 阶矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ a & 4 & b \\ -3 & -3 & 5 \end{bmatrix}$$
有三个线性无关的特

征向量, $\lambda = 2$ 是二重特征值,求可逆矩阵P,使得 $P^{-1}AP$ 是对角矩阵,写出此对角矩阵。

答案

 \bigcirc

/ 07-08 秋冬期末 A 卷

$$\lambda_{1} = \lambda_{2} = 2, \quad \lambda_{3} = 6$$

$$\mathbf{P} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}, \quad \mathbf{P}^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 2 & 2 \\ 3 & 3 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

/ 09-10 春夏期末 A 卷

设 3 阶矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 \end{bmatrix}$$

(1) 求正交矩阵Q使得 $Q^{-1}AQ = Q^{T}AQ = \Lambda(\Lambda \mathbb{A}\mathbb{B} 3 \text{ 阶对角矩阵})$,并写出对角矩阵 Λ ;

(2) 求 A^{10} 。

 \bigcirc

解

(1) **A** 的 特 征 多 项 式
$$f(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - 1 & -2 & 1 \\ -2 & \lambda - 1 & -1 \\ 1 & -1 & \lambda + 2 \end{vmatrix} = \lambda(\lambda - 3)(\lambda + 3).$$

特征值 $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = -3$ 。

属 于 特 征 值 $\lambda_1 = 0$ 的 特 征 向 量 是 $\alpha_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{bmatrix}^T$,

属于特征值 $\lambda_2 = 3$ 的特征向量是 $\alpha_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}^T$,属于特征值 $\lambda_3 = -3$ 的特征向量是 $\alpha_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{bmatrix}^T$,

$$\diamondsuit \mathbf{Q} = \begin{bmatrix} \mathbf{\alpha}_1 & \mathbf{\alpha}_2 & \mathbf{\alpha}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix},$$

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

(2)
$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{T}}$$

$$\mathbf{A}^{10} = \mathbf{Q} \mathbf{\Lambda}^{10} \mathbf{Q}^{\mathrm{T}} = \begin{bmatrix} 2 \times 3^9 & 3^9 & 3^9 \\ 3^9 & 2 \times 3^9 & -3^9 \\ 3^9 & -3^9 & 2 \times 3^9 \end{bmatrix}$$

/ 06-07 秋冬期末 A 卷

设**A**是3阶实对称矩阵,特征值为1, -1, -1,属于特征值1的特征向量为**\beta** = $\begin{bmatrix} 1, 0, -1 \end{bmatrix}^T$,求

- (1) 属于特征值-1的所有特征向量;
- (2) 矩阵**A**:
- (3) 求 A^{10} 。

解 (1) 设属于特征值—1的特征向量为 $X = [x_1, x_2, x_3]^T$,则 $X \perp \beta$,即

$$x_1 - x_3 = 0$$

从 而 有 两 个 线 性 无 关 的 特 征 向 量 $X_1 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, $X_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$,而且有 $X_1 \perp X_2$ 。因此属于特征值—1的所有特征向量为 $X_1 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_2 \mid X_2 \mid X_1 \mid X_2 \mid X_2 \mid X_2 \mid X_2 \mid X_1 \mid X_2 \mid X_2$

(2) 由(1)知,取

$$\mathbf{U} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

有

$$A = U \Lambda U^{\mathrm{T}}$$

$$= \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

(3)
$$\mathbf{A}^{10} = \mathbf{U} \mathbf{\Lambda}^{10} \mathbf{U}^{\mathrm{T}} = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{U}^{\mathrm{T}} = \mathbf{E}.$$

设A是元素全为 2 的n阶矩阵,则A的特征值是_____。

答案
$$2n$$
, 0 , 0 , \cdots , 0

设 α , β 为n维单位正交列向量,矩阵 $A = \alpha \beta^T + \beta \alpha^T$,求证 $\alpha + \beta \pi \alpha - \beta$ 都是A的特征向量,并分别求出它们对应的特征值。 $\frac{1}{05-06}$ 秋冬期末 Λ 卷

证明 因为 α , β 为n维单位正交列向量,所以

$$(\alpha, \beta) = \alpha^{T}\beta = \beta^{T}\alpha = 0, \quad \alpha^{T}\alpha = \beta^{T}\beta = 1$$

$$A(\alpha + \beta) = (\alpha\beta^{T} + \beta\alpha^{T})(\alpha + \beta)$$

$$= (\alpha\beta^{T} + \beta\alpha^{T})\alpha + (\alpha\beta^{T} + \beta\alpha^{T})\beta$$

$$= (\alpha\beta^{T}\alpha + \beta\alpha^{T}\alpha) + (\alpha\beta^{T}\beta + \beta\alpha^{T}\beta)$$

$$= \alpha + \beta$$

$$A(\alpha - \beta) = (\alpha\beta^{T} + \beta\alpha^{T})(\alpha - \beta)$$

$$= (\alpha\beta^{T} + \beta\alpha^{T})\alpha - (\alpha\beta^{T} + \beta\alpha^{T})\beta$$

$$= (\alpha\beta^{T}\alpha + \beta\alpha^{T}\alpha) - (\alpha\beta^{T}\beta + \beta\alpha^{T}\beta)$$

$$= -(\alpha - \beta)$$

因此 $\alpha + \beta$ 是A的属于特征值1的特征向量, $\alpha - \beta$ 是A的属于特征值—1的特征向量。

08-09 秋冬期末 A 卷

设矩阵 $A = E - X(X^TX)^{-1}X^T$,其中E是n阶单位矩阵,X是 $n \times m$ 实矩阵,且 $r(X) = m (\leq n)$,求证存在

正交矩阵 \mathbf{Q} ,使得 $\mathbf{Q}^{-1}A\mathbf{Q} = \begin{bmatrix} \mathbf{E}_{n-m} & \mathbf{0}_m \end{bmatrix}$,这里 \mathbf{E}_{n-m} 是(n-m)阶单位矩阵, $\mathbf{0}_m$ 是m阶零矩阵。

证 明 因 为 $A^{T} = [E - X(X^{T}X)^{-1}X^{T}]^{T} = E - X(X^{T}X)^{-1}X^{T} = A$,所以A是实对称矩阵。其次 $A^{2} = [E - X(X^{T}X)^{-1}X^{T}]^{2} = E - X(X^{T}X)^{-1}X^{T} = A$ 由于 $A^{2} = A$,所以A的特征值只能是 0 和 1。另外 $tr(A) = tr(E - X(X^{T}X)^{-1}X^{T})$ $= tr(E) - tr(X(X^{T}X)^{-1}X^{T})$ $= tr(E) - tr((X^{T}X)^{-1}X^{T}X)$ $= n - tr(E_{m}) = n - m$ 所以特征值 1 是A的n - m重特征值,特征值 0 是A的m

所以特征值 1 是A的n-m重特征值 0 是A的m重特征值 0 是A的m重特征值 0 因此存在正交矩阵 0 ,使得0 0 0 。

第六章 二次型

己知实矩阵

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

问:

- (1) *t* 取值在什么范围时, *A* 为正定矩阵?为什么? (2) *t* 取何值时, *A* 与 *B* 等价?为什么?
- (3) t 取何值时, A与 C相似?为什么?
- (4) t 取何值时, A与 D合同?为什么?

05-06 秋冬期末 A 卷。 第6章习题 6.5 第 9 题

(1) $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}$ 正定 $\Leftrightarrow A$ 的所有顺序主子式都大于零,即有

$$|2|=2>0, \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}=3>0, \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{vmatrix}=3t>0.$$
 所以要求 $t>0$ 即可.

(2) A 与 B 等 价 充 要 条 件 是 秩 (A)= 秩 (B), 因 为

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{bmatrix} \xrightarrow{\eta \oplus g \oplus g} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$
, 所以秩(B)=2, 所以要求秩(A)=2. 而

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix} \xrightarrow{\eta \not = g \not = h} \begin{bmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & t \end{bmatrix}, \quad \text{只有当} t = 0 \text{ 时秩}(A) = 2, \quad \text{所以当} t = 0 \text{ 时} A \subseteq B$$

等价.

(3) A = C相似,则必有 tr = tr C,所以有 t + 4 = 9,从而得到 t = 5. 所以 $t \neq 5$ 时 A与 C 不 相 似 , 当 t=5 时 , A 与 C 都 能 与 对 角 矩 阵 相 似 , 且 $|\lambda E - A| = |\lambda E - C| = (\lambda - 1)(\lambda - 3)(\lambda - 5)$, 所以 A = C 相似(参见习题 6.4 的第 4 题).

(4) A = D合同则要求秩相等并且有相同的正惯性指数. $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, 所以

秩(D)=3, 又由于 $|\lambda E - D|$ =($\lambda - 2$)($\lambda^2 - 2\lambda - 1$), 所以D的正惯性指数为 2. 而

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & t \end{bmatrix} \operatorname{Id} |\lambda E - A| = (\lambda - t)(\lambda - 1)(\lambda - 3), \text{ 所以要秩为 3 则}$$

t ≠ 0, 要正惯性指数为 2, 则要求 t ≤ 0, 因此当 t < 0时 A ⊨ D合同.

设
$$A = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}$$
, $B = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_3 & 0 \\ 0 & 0 & a_2 \end{bmatrix}$, 则当 $C = \mathbb{R}$ 时, $C^TAC = B$ 。

 \bigcirc

解 记 $X = [x_1, x_2, x_3]^T$, $Y = [y_1, y_2, y_3]^T$, 矩阵 A 所对应的二次型为

即
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} Y = CY$$
,则
$$f(x_1, x_2, x_3) = X^{T}AX = Y^{T}C^{T}ACY$$

$$= a_1y_1^2 + a_3y_2^2 + a_2y_3^2 = Y^{T}BY$$
因此 $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 。

已知二次型

/ 07-08 春夏期末 A 卷

 $f(x_1, x_2, x_3) = 3x_1^2 + 3x_2^2 + 4x_3^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3$

- (1) 写出二次型的矩阵。
- (2) 用正交线性替换 X = QY 化二次型 $f(x_1, x_2, x_3)$ 为标准形。
 - (3) 求实对称矩阵 B 使得 $A = B^3$ 。

解: (1) 二次型的矩阵为
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
。

(2) 使用实对称矩阵对角化的方法,具体略。

$$Q^{T}AQ = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 8 \end{pmatrix}, \Leftrightarrow H = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix},$$

则有

$$A = Q \begin{pmatrix} -1 \\ -1 \\ 8 \end{pmatrix} Q^{T} = QH^{3}Q^{T} = (QHQ^{T})(QHQ^{T})(QHQ^{T})$$

。令 $B = QHQ^T = (?)$,则 $A = B^3$ 且 B 为实对称矩阵。

实 二 次 型 $f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + ax_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩是 2。

- (1) 写出二次型 $f(x_1, x_2, x_3)$ 的矩阵表示;
- (2) 求参数a及二次型 $f(x_1, x_2, x_3)$ 的矩阵特征值;
- (3) 指出方程 $f(x_1, x_2, x_3) = 1$ 表示何种二次曲面。

答案

(1)

08-09 春夏期末 A 卷

$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

(2)
$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - 5 & 1 & -3 \\ 1 & \lambda - 5 & 3 \\ -3 & 3 & \lambda - a \end{vmatrix}$$

$$= (\lambda - 4)(\lambda^2 - (6 + a)\lambda + 6a - 18)$$

因为二次型f的秩是 2,则 $\lambda_1 = 0$ 是A的特征值,且当 $\lambda_1 = 0$ 时 $|\lambda_1 E - A| = 0$ 。将 $\lambda_1 = 0$ 代入上式可解得 a = 3,则二次型f的特征多项式为

$$|\lambda \mathbf{E} - \mathbf{A}| = \lambda(\lambda - 4)(\lambda - 9)$$

由此可知**A**的另两个特征值为: $\lambda_2 = 4$, $\lambda_3 = 9$

(3)
$$f(x_1, x_2, x_3) = 1$$
是一个椭圆柱面。

在求参数a时也可按照下面方法:

$$A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & a \end{bmatrix} \xrightarrow{R_{12}} \begin{bmatrix} -1 & 5 & -3 \\ 5 & -1 & 3 \\ 3 & -3 & a \end{bmatrix}$$

$$\frac{R_2 + 5R_1}{R_3 + 3R_1} \begin{bmatrix} -1 & 5 & -3 \\ 0 & 24 & -12 \\ 0 & 12 & -9 + a \end{bmatrix}$$

$$R_3 - \frac{1}{2}R_2 \begin{bmatrix} -1 & 5 & -3 \\ 0 & 24 & -12 \\ 0 & 0 & -3 + a \end{bmatrix}$$

因为二次型f的秩是 2,则A的秩也是 2,所以a = 3。

设A是实对称矩阵,B是正定矩阵。求证AB的特征值全是实数。 07-08春夏期末 A卷

证: 因为B是正定矩阵,所以存在可逆矩阵C使得 $B = C^TC$ 。所以 AB与矩阵 $C(AB)C^{-1} = C(AC^TC)C^{-1} = CAC^T$ 相似。因为A是实对称矩阵,所以 CAC^T 是实对称矩阵,所以 CAC^T 的特征值全是实数,从而AB的特征值全是实数。

- 已知A,C都是n阶正定矩阵,矩阵方程AX + XA = C只有唯一解,且n阶方阵B是该矩阵方程的解,求证:
 - (1) **B**是对称矩阵;

07-08 秋冬期末 A 券

(2) **B**是正定矩阵。

证

(1) 因为A,C都是正定矩阵,则A,C都是对称矩阵。因为B是AX + XA = C的解,则

$$AB + BA = C$$

 $(AB + BA)^{\mathrm{T}} = C^{\mathrm{T}}$
 $AB^{\mathrm{T}} + B^{\mathrm{T}}A = C$

由此可知 B^{T} 也是方程AX + XA = C的解,由解的唯一性知 $B^{T} = B$,所以B是对称矩阵。

(2) 由AB + BA = C两边取共轭得 $\overline{AB} + \overline{BA} = \overline{C}$,由于A,C都是实对称矩阵,则 $A\overline{B} + \overline{B}A = C$,由此可知 \overline{B} 也是方程AX + XA = C的解,由解的唯一性知 $\overline{B} = B$,所以B是实对称矩阵。设 λ 是B的特征值,非零向量 ξ 是B的属于特征值 λ 的特征向量,则 $B\xi = \lambda\xi$ 。由此可得

$$\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{B} \boldsymbol{\xi} + \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{A} \boldsymbol{\xi} = \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{\xi}$$
$$(\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{A}) \lambda \boldsymbol{\xi} + (\lambda \boldsymbol{\xi})^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\xi} = \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{\xi}$$

$2\lambda \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\xi} = \boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{\xi}$

设A是n阶矩阵,则A既是正定矩阵又是正交矩阵的充分必要条件A是单位矩阵。

 $w \to B \to A$ 是正交矩阵,则 $A^TA = E$ 。又因为A是正定矩阵,则 $A^T = A$ 。由此可知 $A^2 = E$ 。从而A的特征值为 1 或-1。又因为A是正定矩阵,则A的特征值全大于 0,因此A的特征值只能是 1。故存在正交矩阵Q,使得 $Q^{-1}AQ = Q^TAQ = E$, $A = QEQ^{-1} = E$ 。 \Leftrightarrow 因为A = E,则 $A^T = A$, $A^TA = E$ 。所以A既是正定矩阵又是正交矩阵。

- 已 知 实 二 次 型 $f(x_1, x_2, x_3) = (x_1 \overline{x})^2 + (x_2 \overline{x})^2 + (x_3 \overline{x})^2$,其中 $\overline{x} = \frac{1}{3}(x_1 + x_2 + x_3)$ 。
 - (1) 写出二次型 $f(x_1, x_2, x_3)$ 的矩阵;
 - (2) 用 正 交 线 性 替 换 X = CY 化 二 次 型 $f(x_1, x_2, x_3)$ 为标准形。

此题在此计算比较复杂,要小心,在后面的计算也不简单, 不过解题方法是熟知的 解

$$f(x_1, x_2, x_3)$$

$$= (x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2$$

$$= \sum_{i=1}^3 x_i^2 - 2\left(\sum_{i=1}^3 x_i\right) \overline{x} + 3\overline{x}^2$$

$$= \sum_{i=1}^3 x_i^2 - \frac{2}{3}\left(\sum_{i=1}^3 x_i\right)^2 + \frac{1}{3}\left(\sum_{i=1}^3 x_i\right)^2$$

$$= \sum_{i=1}^3 x_i^2 - \frac{1}{3}\left(\sum_{i=1}^3 x_i\right)^2$$

$$= \frac{2}{3}(x_1^2 + x_2^2 + x_3^2) - \frac{2}{3}(x_1x_2 + x_1x_3 + x_2x_3)$$

所以二次型矩阵是

$$\begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

(2)

$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \lambda - \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \lambda - \frac{2}{3} \end{vmatrix} = \lambda(\lambda - 1)^2$$

特征值是: $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 1$ 。

属于特征值入1=0的线性无关的特征向量是

$$\boldsymbol{\alpha}_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}^{\mathrm{T}}$$

属于特征值 $\lambda_2 = \lambda_3 = 1$ 的线性无关的特征向量是

$$\alpha_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}^{\mathrm{T}}, \quad \alpha_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix}^{\mathrm{T}}$$

\$

$$\mathbf{C} = [\alpha_1 \quad \alpha_2 \quad \alpha_3] = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$

$$\mathbf{X} = \mathbf{C}\mathbf{Y} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix} \mathbf{Y}$$

则
$$f(x_1, x_2, x_3) = y_2^2 + y_3^2$$
。

09-10 春夏期末 A 卷

设A是实对称矩阵,如果存在非零列向量 α ,有 $\alpha^{T}A\alpha > 0$,则A至少有一个特征值大于零。

证(用反证法证)因为A是实对称矩阵,则存在正交矩阵 U 使 得 U^TAU = diag[λ_1 , λ_2 , …, λ_n] , 其 中 λ_1 , λ_2 , …, λ_n 为A的特征值,经过正交线性替换 X = UY 后 二 次 型 $f = X^TAX = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$ 。若结论不成立,则A的特征值全部小于或等于零,则对于任何的向量X,都有 $X^TAX \leq 0$,与题设矛盾,所以矩阵A至少有一个特征值大于零。

设二次型 $f(x_1, x_2, x_3) = X^T A X$,经过正交线性替换 X = Q Y后变为 $f(x_1, x_2, x_3) = 2 y_1^2 + 2 y_2^2 - y_3^2$,且Q的最后一列是 $\left[\frac{1}{\sqrt{3}} \ \frac{1}{\sqrt{3}} \ \frac{1}{\sqrt{3}}\right]^T$ 。

- (1) 求正交线性替换X = QY;
- (2) 求二次型 $f(x_1, x_2, x_3) = X^T A X$;
- (3) 问上述所求的二次型是否唯一,请说明理由。

09-10 秋冬期末 A 卷

(1) f的特征值是 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = -1$, 所以属于特征值 $\lambda_3 = -1$ 的特征向量是

$$\boldsymbol{\alpha}_3 = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}^{\mathrm{T}}$$

设属于特征值 $\lambda_1 = \lambda_2 = 2$ 的特征向量是

$$\alpha = [x \ y \ z]^{\mathrm{T}}, \ \mathrm{i} \leq 2x^{2} + y^{2} + z^{2} = 1$$

由 $(\alpha, \alpha_3) = 0$ 可得x + y + z = 0,解之得属于特征值2的标准正交特征向量是

$$\alpha_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}^{\mathrm{T}}, \quad \alpha_2 = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix}^{\mathrm{T}}$$

则

$$\mathbf{Q} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

正交线性替换为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

(2)

$$f(x_1, x_2, x_3) = \mathbf{X}^{\mathrm{T}} \mathbf{A} \mathbf{X}$$

= $x_1^2 + x_2^2 + x_3^2 - 2x_1 x_2 - 2x_1 x_3 - 2x_2 x_3$

(3) 上面所求的二次型是唯一的。

如果还有一个正交线性替换X = RY,使得 $f = 2y_1^2 + 2y_2^2 - y_3^2$ 。这里 $R = [\eta_1 \quad \eta_2 \quad \eta_3]$,其中 η_1 , η_2 是属于特征值 2 的标准正交的特征向量, η_3 是属于特征值—1的标准特征向量。则

$$\begin{cases} \eta_1 = k_{11}\alpha_1 + k_{21}\alpha_2 \\ \eta_2 = k_{12}\alpha_1 + k_{22}\alpha_2 \\ \eta_3 = k_{33}\alpha_3 \end{cases}$$

$$\mathbf{R} = [\boldsymbol{\eta}_1 \quad \boldsymbol{\eta}_2 \quad \boldsymbol{\eta}_3]$$

$$= \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} k_{11} & k_{21} & 0 \\ k_{12} & k_{22} & 0 \\ 0 & 0 & k_{33} \end{bmatrix} = \mathbf{QS}$$

这里
$$S = \begin{bmatrix} k_{11} & k_{21} & 0 \\ k_{12} & k_{22} & 0 \\ 0 & 0 & k_{33} \end{bmatrix} = \begin{bmatrix} K & 0 \\ 0 & k_{33} \end{bmatrix}, 由于 R , Q 都$$

是正交矩阵,所以S也是正交矩阵,且

$$KK^{T} = E_{2}, k_{33}^{2} = 1$$

由

$$f(x_1, x_2, x_3) = X^{T}A_1X = Y^{T}R^{T}A_1RY$$

= $2y_1^2 + 2y_2^2 - y_3^2$
推得

$$A_{1} = R\Lambda R^{T} = QS\Lambda(QS)^{T}$$

$$= Q \begin{bmatrix} K & 0 \\ 0 & k_{33} \end{bmatrix} \begin{bmatrix} 2E_{2} & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} K^{T} & 0 \\ 0 & k_{33} \end{bmatrix} Q^{T}$$

$$= Q \begin{bmatrix} 2KK^{T} & 0 \\ 0 & -k_{33}^{2} \end{bmatrix} Q^{T} = Q \begin{bmatrix} 2E_{2} & 0 \\ 0 & -1 \end{bmatrix} Q^{T}$$

$$= Q\Lambda Q^{T} = A$$

因此二次型 $f(x_1, x_2, x_3)$ 是唯一的。

 $D = \begin{bmatrix} A & C \\ C^T & B \end{bmatrix}$ 是正定矩阵,其中A,B分别是m阶和n阶实对称矩阵,C是 $m \times n$ 矩阵。

(1) 计算
$$P^TDP$$
其中 $P = \begin{bmatrix} E_m & -A^{-1}C \\ O & E_n \end{bmatrix}$;

(2) 利用(1)的结果判断矩阵 $B - C^{T}A^{-1}C$ 是否为正定矩阵,并证明你的结论。

解

(1)
$$P^{T}DP = \begin{bmatrix} E_{m} & O \\ -C^{T}A^{-1} & E_{n} \end{bmatrix} \begin{bmatrix} A & C \\ C^{T} & B \end{bmatrix} \begin{bmatrix} E_{m} & -A^{-1}C \\ O & E_{n} \end{bmatrix}$$
$$= \begin{bmatrix} A & C \\ O & B - C^{T}A^{-1}C \end{bmatrix} \begin{bmatrix} E_{m} & -A^{-1}C \\ O & E_{n} \end{bmatrix}$$
$$= \begin{bmatrix} A & O \\ O & B - C^{T}A^{-1}C \end{bmatrix}$$

(2) 矩阵 $\mathbf{B} - \mathbf{C}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{C}$ 是正定矩阵。

由于
$$D = M = \begin{bmatrix} A & O \\ O & B - C^{T}A^{-1}C \end{bmatrix}$$
合同,所以 M 正

定。因为对m维列向量 $X = [0, 0, \dots, 0]^{\mathrm{T}}$ 和任意的n

维非零实列向量
$$Y = \underbrace{[y_1, y_2, \dots, y_n]}_{n}^{T}, \diamondsuit Z = \begin{bmatrix} X \\ Y \end{bmatrix},$$

则 $Z \neq 0$,且 $Z^{T}MZ = Y^{T}(B - C^{T}A^{-1}C)Y > 0$,所以 $B - C^{T}A^{-1}C$ 正定。

设A是n阶实矩阵,如果对任何n维非零向量X,都有 $X^{T}AX > 0$,求证: |A| > 0。

证明 因为对于任意的n维非零列向量X,有 $X^{T}AX > 0$ 。

- (1) 如果 λ_0 是**A**的一个**实**特征值, $X_0 \neq 0$ 是对应的一个实特征向量,则 $AX_0 = \lambda_0 X_0$,由此可得 $X_0^T A X_0 = \lambda_0 X_0^T X_0 > 0$,而 $X_0^T X_0 > 0$,所以 $\lambda_0 > 0$ 。
- (2) 如果 λ_0 是A的一个虚特征值a + bi,a,b是实数, $b \neq 0$,由于虚根成对出现,所以a bi也是A的一个特征值,所以(a + bi)(a bi) > 0。由(1)和(2)知|A| > 0。