Лабораторная работа № 5

Алгебра логики

Цель работы: Изучить основы алгебры логики.

Задача научиться:

- применять загоны логики для упрощения логических выражений;
- строить таблицы истинности;
- строить логические схемы сложных выражений.

Теоретическая часть

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример: «3 – простое число» является высказыванием, поскольку оно истинно.

Не всякое предложение является логическим высказыванием.

Пример: предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма — это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример: «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной.

Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Высказывания, образованные из других высказываний с помощью логических связок, называются **составными (сложными)**. Высказывания, которые не являются составными, называются элементарными (простыми).

Пример: высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример: Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая

связка, A, B – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1. Основные логические операции

Обозначение операции	Читается	Название операции	Альтернативные обозначения
_	HE	Отрицание (инверсия)	Черта сверху
^	И	Конъюнкция (логическое умножение)	·&
V	ИЛИ	Дизъюнкция (логическое сложение)	+
\rightarrow	Если то	Импликация	
\leftrightarrow	Тогда и только тогда	Эквиваленция	~
XOR	Либолибо	Исключающее ИЛИ (сложение по модулю 2)	⊕

HE Операция, выражаемая словом «не», называется **отрицанием** и обозначается чертой над высказыванием (или знаком \neg). Высказывание $\neg A$ истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть A=«Сегодня пасмурно», тогда ¬А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « \cdot » (может также обозначаться знаками $\stackrel{\wedge}{}$ или &). Высказывание А \cdot В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизьюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком (или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны.

Пример. Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно.

ЕСЛИ ... ТО Операция, выражаемая связками «если ..., то», «из ... следует», «... влечет ...», называется **импликацией** (лат. implico – тесно связаны) и обозначается знаком \rightarrow . Высказывание $A \rightarrow B$ ложно тогда и только тогда, когда A истинно, а B ложно.

Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно ...», называется **эквиваленцией** или двойной

импликацией и обозначается знаком \leftrightarrow или \sim . Высказывание $A \leftrightarrow B$ истинно тогда и только тогда, когда значения A и B совпадают.

Пример. Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО ... **ЛИБО** Операция, выражаемая связками «Либо ... либо», называется **исключающее ИЛИ** или сложением по модулю 2 и обозначается XOR или \square . Высказывание $A \square B$ истинно тогда и только тогда, когда значения A и B не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизьюнкцию и отрицание:

$$A \rightarrow B = \neg A \vee B$$
.

Эквиваленцию можно выразить через отрицание, дизьюнкцию и конъюнкцию:

$$A \leftrightarrow B = (\neg A \lor B) \land (\neg B \lor A)$$
.

Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию:

$$A \text{ XOR } B = (\neg A \land B) \lor (\neg B \& A)$$

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Пример. $F(A,B) = A \& B \lor A$ – логическая функция двух переменных A и B.

Значения логической функции для разных сочетаний значений входных переменных — или, как это иначе называют, наборов входных переменных — обычно задаются специальной таблицей. Такая таблица называется **таблицей истинности**.

Приведем таблицу истинности основных логических операций (табл. 2)

A	В	$\neg A$	A & B	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$	A XOR B
1	1	0	1	1	1	1	0
1	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1
0	0	1	0	0	1	1	0

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.

Алгоритм построения таблиц истинности для сложных выражений:

- 1. Определить количество строк:
- количество строк = 2^n + строка для заголовка,
- n количество простых высказываний.
- 2. Определить количество столбцов: количество столбцов = количество переменных + количество логических операций;
- определить количество переменных (простых выражений);
- определить количество логических операций и последовательность их выполнения.
- 3. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так: $\neg (A \& B)$.

1. Определить количество строк:

На входе два простых высказывания: A и B, поэтому n=2 и количество строк $=2^2+1=5$.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (А и В) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

Таблица 3. Таблица истинности для логической операции ¬(А&В)

A	В	A & B	¬(A&B)
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	1

Подобным образом можно составить таблицу истинности для формулы ИЛИ–НЕ, которую можно записать так: $\neg (A \lor B)$.

Таблица 4. Таблица истинности для логической операции $\neg (A \lor B)$

A	В	$A \lor B$	$\neg (A \lor B)$
1	1	1	0
1	0	1	0
0	1	1	0
0	0	0	1

Примечание: И–НЕ называют также «штрих Шеффера» (обозначают |) или «антиконъюнкция»; ИЛИ–НЕ называют также «стрелка Пирса» (обозначают \downarrow) или «антидизъюнкция».

Пример 2. Составить таблицу истинности логического выражения $C = \neg A \& B \lor A \& \neg B$.

Решение:

1. Определить количество строк:

На входе два простых высказывания: A и B, поэтому n=2 и количество строк $=2^2+1=5$.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (А и В) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7.

Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

Таблица 5. Таблица истинности для логической операции $C = \neg A \& B \lor A \& \neg B$

A	В	$\neg A$	$\neg B$	¬A & B	A & ¬B	C
1	1	0	0	0	0	0
1	0	0	1	0	1	1
0	1	1	0	1	0	1
0	0	1	1	0	0	0

Логические формулы можно также представлять с помощью языка логических схем.

Существует три базовых логических элемента, которые реализуют три основные логические операции:

логический элемент «И» – логическое умножение – конъюнктор; логический элемент «ИЛИ» – логическое сложение – дизъюнктор; логический элемент «НЕ» – инверсию – инвертор.

Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из "кирпичиков".

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс — логический смысл сигнала — 1, нет импульса — 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.

Алгоритм построения логических схем.

- 1. Определить число логических переменных.
- 2. Определить количество логических операций и их порядок.
- 3. Изобразить для каждой логической операции соответствующий ей логический элемент.
 - 4. Соединить логические элементы в порядке выполнения логических операций.

Пример. По заданной логической функции $F(A,B) = \neg A \& B \lor A \& \neg B$ построить логическую схему.

Решение.

- 1. Число логических переменных = 2 (А и В).
- 2. Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция лизъюнкции.
 - 3. Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизьюнктор.
- 4. Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов).

Логические законы и правила преобразования логических выражений

Если две формулы A и B одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными.

В алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений.

1) Закон двойного отрицания:

$$A = \neg (\neg A)$$
;

- 2) Переместительный (коммутативный) закон:
- для логического сложения: $A \lor B = B \lor A$;
- для логического умножения: $A \wedge B = B \wedge A$;
- 3) Сочетательный (ассоциативный) закон:
- для логического сложения: $(A \lor B) \lor C = A \lor (B \lor C)$;
- для логического умножения: $(A \wedge B) \wedge C = A \wedge (B \wedge C)$;
- 4) Распределительный (дистрибутивный) закон:
- для логического сложения: $(A \lor B) \land C = (A \& C) \lor (B \& C)$;
- для логического умножения: $(A \land B) \lor C = (A \lor C) \land (B \lor C)$;
- 5) Законы де Моргана:
- для логического сложения: $\neg (A \lor B) = \neg A \& \neg B$;

- для логического умножения: $\neg (A \land B) = \neg A \lor \neg B$;
- 6) Закон идемпотентности:
- для логического сложения: $A \lor A = A$;
- для логического умножения: $A \wedge A = A$;
- 7) Законы исключения констант:
- для логического сложения: $A \lor 1 = 1$, $A \lor 0 = A$;
- для логического умножения: $A \wedge 1 = A$, $A \wedge 0 = 0$;
- 8) Закон противоречия:

A &
$$\neg A = 0$$
:

9) Закон исключения третьего:

$$A \vee \neg A = 1$$
;

- 10) Закон поглощения:
- для логического сложения: $A \lor (A \land B) = A$;
- для логического умножения: $A \wedge (A \vee B) = A$;
- 11) Правило исключения импликации:

$$A \rightarrow B = \neg A \lor B$$
;

12) Правило исключения эквиваленции:

$$A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$$
.

Справедливость этих законов можно доказать составив таблицу истинности выражений в правой и левой части и сравнив соответствующие значения.

Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется **минимизацией** функции.

Пример: Упростить логическое выражение $\neg (A \lor B) \land (A \& \neg B)$.

Решение:

Согласно закону де Моргана:

$$\neg (A \lor B) \land (A \& \neg B) \lor A = \neg A \& \neg B \& (A \& \neg B) \lor A$$
.

Согласно сочетательному закону:

$$\neg A \& \neg B \& (A \& \neg B) \lor A = \neg A \& A \& \neg B \& \neg B \lor A.$$

Согласно закону противоречия и закону идемпотентности:

$$\neg A \& A \& \neg B \& \neg B \lor A = 0 \land \neg B \& \neg B = 0 \& \neg B \lor A$$
.

Согласно закону исключения 0:

$$0 \& \neg B = 0$$

Окончательно получаем $\neg (A \lor B) \land (A \& \neg B) \lor A = 0 \lor A = A$

В данной работе необходимо составить таблицу истинности логического выражения, построить схему логической функции и упростить логическое выражение заданные каждому студенту в соответствии с его вариантом, записать ход рассуждений и полученные результаты.

Содержание отчета

- 1. Текст задания (с данными своего варианта).
- 2. Представление по каждому пункту задания подробного решения.

Задания

1. Составить таблицу истинности логического выражения С.

Варианты задания:

№ варианта	С
1	$(\neg (A \& B)) \leftrightarrow (A \lor \neg B) \text{ XOR } A$
2	$(A \& B) \leftrightarrow (\neg A \& B) XOR B$
3	$(A \& B) \leftrightarrow (\neg B \rightarrow \neg A) \text{ XOR } A$
4	$\neg (A \lor B) \leftrightarrow (\neg A \& \neg B) \text{ XOR } B$
5	$(A \lor B) \leftrightarrow \neg (A \& \neg B) \text{ XOR B}$
6	$\neg (A \& B) \leftrightarrow (\neg A \lor B) \text{ XOR } A$
7	$\neg (A \to B) \leftrightarrow (\neg A \lor B) \text{ XOR } A$
8	$(\neg A \& B) \leftrightarrow (\neg B \to A) \text{ XOR } B$
9	$(A \lor \neg B) \leftrightarrow \neg (B \& A) XOR A$
10	$(\neg B \& A) \leftrightarrow (A \rightarrow \neg B) \text{ XOR } B$
11	$(\neg A \lor \neg B) \leftrightarrow (\neg B \& A) XOR A$
12	$(\neg B \to \neg A) \leftrightarrow (A \lor B) \text{ XOR B}$
13	$\neg (B \lor A) \leftrightarrow (\neg A \to B) \text{ XOR } A$
14	$(\neg (A \& B)) \leftrightarrow (\neg A \rightarrow B) \text{ XOR } B$
15	$(\neg A \rightarrow \neg B) \leftrightarrow (B \& A) \text{ XOR } B$
16	$(\neg A \lor \neg B) \leftrightarrow (B \lor \neg A) \text{ XOR } A$

2. <u>Построить логическую схему функции F(A,B).</u> Варианты задания

№варианта F(A,B) $\neg (A \& B) \lor (\neg (B \lor A))$ 1 2 $\neg (A \lor B) \land (A \& \neg B)$ 3 $\neg (A \lor B) \land (A \lor \neg B)$ $\neg ((\neg A \lor B) \land (\neg B \lor A))$ 4 $(\neg A \lor B) \land (\neg B \lor \neg A)$ 5 $(\neg A \lor B) \land \neg (A \lor \neg B)$ 6 $\neg (\neg A \& \neg B) \lor (A \lor B)$ 7 8 $(\neg A \lor B) \lor \neg (A \& B)$ $(A \& B) \lor ((A \lor B) \land \neg A)$ 9 $\neg ((\neg A \lor B) \& A) \land \neg B$ 10 $\neg (A \lor \neg B) \lor \neg (A \lor B)$ 11 $\neg A \& \neg B \lor \neg (A \lor B)$ 12 $\neg A \lor B \lor \neg (\neg B \lor A)$ 13 (¬A & ¬B) ∨(¬A & B) 14 (¬A & B) ∨(A & ¬B) 15 $\neg (A \& (B \lor A) \land \neg B)$ 16

:

3. Упростить логическое выражение D.

Варианты задания:

№ варианта	D
1	$(\neg A \& B) \lor (A \& \neg B) \lor (A \& B)$
2	$(\neg A \& \neg B) \lor (\neg A \& B) \lor (A \& B)$
3	$\neg (A \& B) \lor (\neg (B \lor C))$
4	¬(¬A & C) ∨ (B & ¬C)
5	$\neg A \lor B \lor \neg (\neg B \lor A) \lor A \& B$
6	$\neg A \& B \lor \neg (A \lor B) \lor A$
7	$\neg (A \lor \neg B) \lor \neg (A \lor B) \lor A \& B$
8	$(A \& B) \lor ((A \lor B) \land (\neg A \lor \neg B))$
9	$\neg ((\neg A \lor B) \& A) \land (\neg A \lor \neg B)$
10	$(\neg A \lor B) \lor (B \lor C) \lor (A \& C)$
11	$\neg (\neg A \& \neg B) \lor ((\neg A \lor B) \& A)$
12	$(\neg A \lor B) \land (A \lor \neg B) \land (B \lor A)$
13	$(\neg A \lor B) \land (\neg B \lor \neg A) \land (\neg C \lor A)$
14	$\neg ((\neg A \lor B) \land (\neg B \lor A)) \lor (A \lor B)$
15	$\neg (A \lor B) \land (A \lor \neg B)$
16	$\neg (A \lor B) \land (A \& \neg B)$

Вопросы для защиты работы

- 1. Что такое высказывание (приведите пример)?
- 2. Что такое составное высказывание (приведите пример)?
- 3. Как называются и как обозначаются (в языке математики) следующие операции: ИЛИ, НЕ, И, ЕСЛИ ... ТО, ТОГДА И ТОЛЬКО ТОГДА, ЛИБО ...ЛИБО?
- 4. Укажите приоритеты выполнения логических операций.
- 5. Составьте таблицу истинности для следующих операций: отрицание, конъюнкция, дизъюнкция, импликация, эквиваленция.
 - 6. Изобразите функциональные элементы: конъюнктор, дизъюнктор, инвертор.
 - 7. Какие логические выражения называются равносильными?
 - 8. Записать основные законы алгебры логики.