EG2106 芯片应用手册

MOS 管驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2018年11月11日	EG2106 数据手册初稿

目 录

1.	特性		1
2.	描述		1
3.	应用领	领域	1
4.	引脚		2
	4.1	引脚定义	
	4.2	引脚描述	
5.	结构	框图	
6.		· · · 应用电路	
7.		ー/、 C. F 特性	
	7.1	极限参数	
	7.2	典型参数	
	7.3	开关时间特性	
8.	_	设计	
0.		Vcc 端电源电压	
	8.2	输入逻辑信号要求和输出驱动器特性	6
	8.3	自举电路	
^	0.0	日学电路····································	
9.	- • • • •	尺寸SOP8 封装尺寸	-
	9.1	5UP8	8

EG2106 芯片数据手册 V1.0

1. 特性

- 高端悬浮自举电源设计,耐压可达 600V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- VCC 和 VB 端电源带欠压保护
- 低端 VCC 电压范围 10V-20V
- 输出电流能力 IO+/- 0.3 A/0.6A
- 内建死区控制电路
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道高电平有效,控制低端 LO 输出
- 外围器件少
- 封装形式: SOP-8

2. 描述

EG2106 是一款高性价比的 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、欠压保护电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源 DC-DC 中的驱动电路。

EG2106 高端的工作电压可达 600V,低端 Vcc 的电源电压范围宽 10V~20V。该芯片输入通道 HIN 内建了一个 200K 下拉电阻,LIN 内建了一个 200K 下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO+/- 0.3/0.6A,采用 SOP8 封装。

3. 应用领域

- 移动电源高压快充开关电源
- 无线充电驱动器变频水泵控制器
- DC-DC 电源
- 无刷电机驱动器

4. 引脚

4.1 引脚定义

图 4-1. EG2106 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述		
1	1 VCC Power		芯片工作电源输入端, 电压范围 10V-20V,外接一个高频 1uF 旁路		
ı			电容能降低芯片输入端的高频噪声		
			逻辑输入信号高电平有效,控制高端功率 MOS 管的导通与截止		
2	HIN	I	"0"是关闭功率 MOS 管		
			"1"是开启功率 MOS 管		
			逻辑输入信号高电平有效,控制低端功率 MOS 管的导通与截止		
3	LIN	I	"0"是关闭功率 MOS 管		
			"1"是开启功率 MOS 管		
4	GND	GND	芯片的地端。		
5	LO	0	输出控制低端 MOS 功率管的导通与截止		
6	VS	0	高端悬浮地端		
7	НО	0	输出控制高端 MOS 功率管的导通与截止		
8	VB	Power	高端悬浮电源		

5. 结构框图

图 5-1. EG2106 内部电路图

6. 典型应用电路

图 6-1. EG2106 典型应用电路图

7. 电气特性

7.1 极限参数

		温14万44	目。心	且上	出 片
符号	参数名称	测试条件	最小	最大	单位
高端悬浮电源	VB	-	-0.3	600	V
高端悬浮地端	VS	-	VB-20	VB+0.3	V
高端输出	НО	-	VS-0.3	VB+0.3	V
低端输出	LO	-	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	20	V
高通道逻辑信号 输入电平	HIN	-	-0.3	VCC+0.3	V
低通道逻辑信号 输入电平	LIN	-	-0.3	VCC+0.3	V
TA	环境温度	-	-45	125	°C
Tstr	储存温度	-	-55	150	°C
TL	焊接温度	T=10S	-	300	°C

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

工具外沿明 左 T▲ 参数名称	25°C VCC 1 符号	测试条件	世 最小	典型	最大	单位
电源	Vcc	· ·	10	15	20	V
静态电流	Icc	输入悬空, Vcc=15V	-	200	300	uA
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	-	-	V
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V
输入逻辑信号高 电平的电流	lin(H)	Vin=5V	-	-	30	uA
输入逻辑信号低 电平的电流	lin(L)	Vin=0V	-10	-	-	uA
VCC 电源欠压关键	折特性					
Vcc 开启电压	Vcc(on)	-	7.6	8.6	9.6	٧
Vcc 关断电压	Vcc (off)	-	7.1	8.1	9.1	V
VB 电源欠压关断	· 持性					
VB 开启电压	VB(on)	-	7.6	8.6	9.6	V
VB 关断电压	VB (off)	-	7.0	8.0	9.0	V
低端输出 LO 开关	时间特性					
开延时	Ton	见图 7-1	-	350	450	nS
关延时	Toff	见图 7-1	-	300	400	nS
上升时间	Tr	见图 7-1	-	70	170	nS
下降时间	Tf	见图 7-1	-	35	90	nS
高端输出 HO 开关	时间特性					
开延时	Ton	见图 7-2	-	350	450	nS
关延时	Toff	见图 7-2	-	300	400	nS
上升时间	Tr	见图 7-2	-	70	170	nS
下降时间	Tf	见图 7-2	-	35	90	nS
IO 输出最大驱动能力						
IO 输出拉电流	IO+	Vo=0V,VIN=VIH PW≤10uS	-	0.3	-	Α
IO 输出灌电流	IO-	Vo=12V,VIN=VIL PW≤10uS	-	0.6	-	Α

7.3 开关时间特性

图 7-1. 低端输出 LO 开关时间波形图图

7-2. 高端输出 HO 开关时间波形图

8. 应用设计

8.1 Vcc 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,芯片电源电压范围 10V-20V。

8.2 输入逻辑信号要求和输出驱动器特性

EG2106 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2106 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 0.6A 和最大输出电流可达 0.3A,高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 350nS、关断传导延时为 300nS。低端输出开通传导延时为 350nS、关断传导延时为 300nS。低端输出开通的上升时间为 80nS、关断的下降时间为 35nS。高端输出开通的上升时间为 80nS、关断的下降时间为 35nS。

输入信号和输出信号逻辑功能图如图 8-2:

图8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出			
输入、输出逻辑					
HIN	LIN	НО	LO		
0	0	0	0		
0	1	0	1		
1	0	1	0		
1	1	0	0		

从真值表可知,当输入逻辑信号 HIN 为"1"和 LIN 为"0"时,驱动器控制输出 HO 为"1"上管打开,LO 为"0"下管关断;当输入逻辑信号 HIN 为"0"和 LIN 为"1"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管打开;在输入逻辑信号 HIN 和 LIN 同时为"1"或者 HIN 和 LIN 同时为"0"时,驱动器控制输出 HO、LO 为"0"将上、下功率管同时关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG2106 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG2106可以使用外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 VC 自举电容已充到足够的电压(VC=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。

图 8-3. EG2106 自举电路结构

9. <u>封装尺寸</u>

9.1 SOP8 封装尺寸

