STRUTTURE ALGEBRICHE

OPERAZIONE INTERNA SU UN INSIEME

Dato l'insieme A, la funzione $\varphi: A \times A \to A$ è detta *operazione interna*; denotiamo $\varphi(a,b) = a \oplus b$

 $\forall a, b, c$ appartenenti ad A:

L'operazione \oplus si dice: associativa se $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

commutativa se $a \oplus b = b \oplus a$

L'elemento $e \in A$ si dice *elemento neutro* per \oplus se $\forall a$ vale $a \oplus e = e \oplus a = a$.

L'elemento $a \in A$ si dice *simmetrico* di a rispetto $a \oplus se \exists a' \in A$ tale che $a \oplus a' = a' \oplus a = e$.

L'elemento $r \in A$ si dice regolare rispetto a \oplus se $r \oplus a = r \oplus b$, $a \oplus r = b \oplus r \Leftrightarrow a = b$

L'elemento $s \in A$ si dice *singolare* rispetto a \oplus se $s \oplus a = a \oplus s = s$.

L'operazione ® si dice *distributiva* rispetto a \oplus se a ® $(b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

GRUPPOIDI E SEMIGRUPPI

Un insieme G e un'operazione interna \oplus ad esso associata definiscono la struttura (G, \oplus) detta *gruppoide*.

Se ⊕ è associativa la struttura è un *semigruppo*.

Se ⊕ è anche commutativa il gruppoide e il semigruppo si dicono *commutativi* (o *abeliani*)

MONOIDI

La struttura (G, \oplus) è detta *monoide* se \oplus è associativa ed esiste l'elemento neutro e di \oplus Se \oplus è anche commutativa il monoide si dice *commutativo* (o *abeliano*)

CRIIPPI

La struttura (G,\oplus) è detta *gruppo* se valgono le seguenti proprietà:

- ⊕ è associativa.
- esiste l'elemento neutro e di \oplus
- esiste il simmetrico rispetto a ⊕

Se \oplus è anche commutativa il gruppo si dice *commutativo* (o *abeliano*).

Proprietà dei gruppi: $\forall x \in G, x \text{ è regolare.}$

- $\forall x \in G, x'$ è il simmetrico di $x \Rightarrow \forall a, b \in G, (a \oplus b)' = b' \oplus a'$

- $a,b \in G$, valgono: $a \oplus x = b \Rightarrow x = a' \oplus b$, $x \oplus a = b \Rightarrow x = b \oplus a'$

- $\forall a \in G$, f: $G \to G$ con $f(x) = a \oplus x \Rightarrow f$ è biettiva.

SOTTOGRUPPI E CLASSI LATERALI

Dati il gruppo (G, \oplus) e l'insieme $S \subseteq G$, (S, \oplus) si dice *parte stabile* di G se S è chiuso rispetto a \oplus .

Dati il gruppo (G, \oplus) e l'insieme $S \subseteq G$, (S, \oplus) si dice *sottogruppo* di G se S è chiuso rispetto a \oplus , S contiene l'elemento neutro di G e $\forall x \in S$ esiste il suo simmetrico rispetto a \oplus .

Dati il gruppo (G,\oplus) e il suo sottogruppo (S,\oplus) si dicono

Un sottogruppo si dice normale se le sue classi laterali destre coincidono con le sinistre.

Se il gruppo (G, \oplus) è commutativo ogni sottogruppo è normale.

ANELLI

Un insieme A e due operazioni interne \oplus e \otimes ad esso associate definiscono la struttura (A, \oplus, \otimes) detta *anello* se:

- (A,⊕) è un gruppo commutativo
- (A,⊗) è un semigruppo
- vale la proprietà distributiva di \otimes rispetto a \oplus .

Se il semigruppo (A, \otimes) è commutativo, l'anello si dice *commutativo*.

Se (A, \otimes) è un monoide, l'anello si dice *unitario*.

L'anello (A, \oplus, \otimes) contiene: 0 (elemento neutro rispetto a \oplus)

-a (simmetrico di a rispetto a \oplus)

1 (elemento neutro rispetto a ⊗)

L'elemento a si dice *unitario* se $a' \otimes a = a \otimes a' = 1$

Dati $a,b \neq 0$, $a \in b$ si dicono divisori dello zero se $a \otimes b = 0$ oppure $b \otimes a = 0$

Un anello commutativo privo di divisori dello zero è detto anello d'integrità.

Proprietà di un anello: $\forall a \in A, a \otimes 0 = 0 \otimes a = 0$

 $- \forall a,b \in A, a \oplus (-b) = (-a) \oplus b = -(a \oplus b)'$

 $- \forall a,b \in A, (-a) \oplus (-b) = a \oplus b$

SOTTOANELLI E IDEALI

Dati L'anello (A, \oplus, \otimes) e l'insieme $S \subseteq A$, (S, \oplus, \otimes) si dice *sottoanello* di A se:

- (S, \oplus) è sottogruppo del gruppo (A, \oplus)
- (S, \otimes) è parte stabile di (A, \otimes)

Il sottoanello (I, \oplus, \otimes) si dice *ideale* dell'anello A se $\forall a \in A, \forall i \in I$ vale $(i \otimes a)$ et $(a \otimes i) \in I$

CORPI E CAMPI

L'insieme K è detto *corpo* rispetto alle operazioni interne \oplus e \otimes se:

- K è un gruppo commutativo rispetto a \oplus .
- K \ $\{e\}$ è un gruppo rispetto a \otimes (dove e = elemento neutro per \oplus).
- vale la proprietà distributiva di \otimes rispetto a \oplus . $\forall a,b,c \in K$, $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ Se \otimes è anche commutativa, K si dice corpo commutativo (o *campo*).

Proprietà di un corpo K:

- 1. $\forall a \in K, a \otimes e = e \otimes a = e$
- 2. ⊗ è associativa
- 3. $\forall a,b \in K$, $a \otimes b = e \Rightarrow a = e$ oppure b = e oppure entrambi
- 4. $\forall a,b \in K$, $a' \oplus b = a \oplus b' = (a \oplus b)'$; $a' \oplus b' = a \oplus b$
- 5. $\forall a \in K, a \neq e, (a')'' = (a'')'$