Grade received 80% Latest Submission Grade 80% To pass 80% or higher

Go to next item

1.	If searching among a large number of hyperparameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and not rely on chance. True or False?	1/1 point
	○ True	
	∠ ^A Expand	
	⊙ Correct	
2.	If it is only possible to tune two parameters from the following due to limited computational resources. Which two would you choose?	1/1 point
	□ ε in Adam.	
	ightharpoons The eta parameter of the momentum in gradient descent. $ ightharpoons$ Correct	
	Correct. This hyperparameter can increase the speed of convergence of the training, thus is worth tuning.	
	β_1, β_2 in Adam.	
	✓ Correct	
	Correct. This might be the hyperparameter that most impacts the results of a model.	
	∠^ Expand	
	Correct Great, you got all the right answers.	
3.	During hyperparameter search, whether you try to babysit one model ("Panda" strategy) or train a lot of models in parallel ("Caviar") is largely determined by:	1/1 point
	The amount of computational power you can access	
	The number of hyperparameters you have to tune	
	Whether you use batch or mini-batch optimization	
	The presence of local minima (and saddle points) in your neural network	
	∠ ⁷ Expand	
	⊗ Correct	
4.	If you think β (hyperparameter for momentum) is between 0.9 and 0.99, which of the following is the recommended way to sample a value for beta?	1/1 point
	r = np.random.rand() beta = 1-10**(-r-1)	
	r = np.random.rando beta = r0.9 + 0.09	
	r = np.random.rand() beta = r'0.09 + 0.9	
	r = np.random.rand0 beta = 1-10"(- r + 1)	
	∠ ⁿ Expand	
	⊘ Correct	

	new hardware or computational power is acquired. True/False?	
	○ True	
	False	
	7	
	∠ [≯] Expand	
	Correct. As the data changes for the model, it might be beneficial to tune some of the hyperparameters	
	again.	
6.	When using batch normalization it is OK to drop the parameter $b^{[\ell]}$ from the forward propagation since it will be	0/1 point
	subtracted out when we compute $ ilde{z}^{[l]} = \gamma z_{ ext{normalize}}^{[l]} + eta^{[l]}$. True/False?	
	○ True	
	False	
	∠ [™] Expand	
	(X) Incorrect	
	Incorrect. Since in the normalization process the values of $z^{[l]}$ are re-centered at the origin, it is irrelevant	
	to add the $b^{[l]}$ parameter.	
7.	In the normalization formula $z_{norm}^{(i)}=\frac{z^{(i)}-\mu}{\sqrt{\sigma^2+z}},$ why do we use epsilon?	1/1 point
	in the normalization formula $z_{norm}=rac{\sqrt{\sigma^2+arepsilon}}{\sqrt{\sigma^2+arepsilon}}$, why do we use epsilon?	1/1 point
	To speed up convergence	
	To avoid division by zero	
	\bigcirc In case μ is too small	
	To have a more accurate normalization	
	*	
	∠ [∞] Expand	
	⊘ Correct	
8.	Which of the following are true about batch normalization?	0 / 1 point
	When using batch normalization we introduce two new parameters $\gamma^{[l]}, eta^{[l]}$ that must be	
	"learned" or trained.	
	✓ Correct	
	Correct. Batch normalization uses two parameters eta and γ to compute $ ilde{z}^{(i)}=eta z_{norm}^{(i)}+\gamma$.	
	$oxed{ eta}^{[l]}$ and $\gamma^{[l]}$ are hyperparameters that must be tuned by random sampling in a logarithmic	
	scale.	
	This should not be selected	
	Incorrect. These are parameters that must be learned. They can be learned with gradient descent, gradient descent with momentum, RMSprop, and Adam, like all the	
	gradient descent, gradient descent with momentum, hwisprop, and Adam, like all the other parameters.	
	$z_{torm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2}}$	
	$\frac{\omega_{norm} - \sqrt{\sigma^2}}{\sqrt{\sigma^2}}$.	
	The parameters \$\$\gamma^{[[i])\$\$ and \$\$\beta^{[[i])\$\$ set the variance and mean of \$\$\widetilde[z]^{[ii]}\$\$.	
	∠ ² Expand	
	⊗ Incorrect	
	You didn't select all the correct answers	
9.	After training a neural network with Batch Norm, at test time, to evaluate the neural network on a new example you should:	1/1 point
	\bigcirc Skip the step where you normalize using μ and σ^2 since a single test example cannot be normalized.	
	Perform the needed normalizations, use	
	μ	
	Use the most recent mini-batch's value of μ and σ^- to perform the needed normalizations. If you implemented Batch Norm on mini-batches of (say) 256 examples, then to evaluate	
	on one test example, duplicate that example 256 times so that you're working with a mini-	
	batch the same size as during training.	

