# Effects of harvest on populations

Reading:

Jennings et al. 2001 – Chapter 7

#### Conceptual population model



#### Review of exponential mortality

 If following a single cohort, then we can track the mortality losses to the cohort

$$\frac{dN}{dt} = -ZN$$

$$N_t = N_0 e^{-Zt}$$

Useful for modeling changes in a cohort over time;
 very common in fisheries science

#### Derive equations for the following:

S – annual survival (proportion living after one year)

A – the annual mortality rate (proportion dying per year)

#### Review of exponential mortality

Formulas for converting from instantaneous to annual rates:

- Z = total <u>instantaneous</u> mortality rate
- S = <u>annual</u> survival rate (proportion surviving in a year)

$$S = e^{-Z}$$
  $Z = -\ln(S)$ 

• A = <u>annual</u> mortality rate (proportion dying in a year)

$$A = 1 - e^{-Z}$$

### Deterministic theory of fishing

 For fished populations, total mortality (Z) is composed of mortality due to harvest and mortality due to natural causes:

$$Z = F + M$$

- F = instantaneous fishing mortality rate
- M = instantaneous natural mortality rate
  - Includes all non-fishing mortality

## Deterministic theory of fishing

Restate our exponential mortality equations:

$$\frac{dN}{dt} = -(F + M)N$$

$$N_t = N_0 e^{-(F+M)t}$$

#### Baranov Catch Equation

 How can we calculate how many fish die from fishing (or from natural causes)?

• Baranov catch equation:

$$C_t = \frac{F}{Z}(1 - e^{-Z})N_t$$

- Where  $C_t = \text{catch in year t}$
- What does this mean in words?

#### Baranov Catch Equation

- How can we calculate how many fish die from fishing (or from natural causes)?
- Baranov catch equation:

$$C_t = \frac{F}{Z}(1 - e^{-Z})N_t$$

- Where C<sub>t</sub> = catch in year t
- What does this mean in words?
  - Catch = (fraction of mortality due to fishing)\*(Proportion dying)\*abundance
  - Catch = (fraction of mortality due to fishing)\*(total number of deaths)
- What would the equation be for fraction of fish dying from natural causes?



#### Baranov Catch Equation

• Other forms:

$$C_t = \frac{F}{Z}(N_t - N_{t+1})$$

$$C_t = \frac{F}{Z}(N_t - N_t e^{-Z})$$

$$C_t = \frac{FA}{Z} N_t$$

$$C = F\overline{N}$$

N(bar) is the average abundance over the course of a year

#### Converting to annual rates

- Annual rates
  - A = proportion of population dying in 1 year
  - **u** = <u>exploitation rate</u> (e.g., proportion of population dying from fishing in 1 year)
  - v = proportion of population dying from natural causes in one year

$$A = u + v$$

#### Converting to annual rates

- Type II fishery (continuous fishery)
  - fishing and natural mortality continuous throughout the year; more common
  - Calculating u requires info on 2 of the following: F,M,Z

$$u = \frac{F}{Z}(1 - e^{-Z}) = \frac{FA}{Z}$$

$$u = \frac{F}{Z}(1 - e^{-Z}) = \frac{FA}{Z}$$
  $v = \frac{M}{Z}(1 - e^{-Z}) = \frac{MA}{Z}$ 

- Type I fishery (pulse fishery)
  - Fishing occurs in short pulse (days/weeks), natural mortality elsewhere; less common

$$u = 1 - e^{-F}$$
  $v = 1 - e^{-M}$ 

#### Catch in Difference Model

 Catch (C) is the product for the difference equation:

$$C_t = u_t N_t$$

- $u_t$  = exploitation rate at time t
- N<sub>+</sub> = abundance at time t
- (Assumes catch occurs in one pulse)

We can incorporate Catch into the logistic model...

#### Note:

<u>Difference equation</u> – time is viewed as discrete points <u>Differential equation</u> – time is used as a continuous variable

## Review of Logistic Model

#### Logistic growth model

Sidenote: equations work with B or N



Discrete version 
$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

- Density-dependent
  - Per-capita growth rate varies with pop. size
- Key parameters:
  - r=intrinsic rate of increase
     K=carrying capacity
- Equilibrium = carrying capacity
- Shape: logistic ("S-shaped")
- For fisheries models:
  - Foundation for production models







#### Surplus production

$$B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K}\right)$$

Biomass<sub>t+1</sub> = Biomass<sub>t</sub> + surplus production (SP)

$$SP = rB_t \left( 1 - \frac{B_t}{K} \right)$$

• <u>Surplus production</u> = the excess biomass generated above what is needed to maintain the population at its current biomass.

#### Logistic model with harvest

Logistic growth model adjusted for fishing mortality
 (F) or exploitation rate (u)

$$\begin{pmatrix} \text{Biomass} \\ \text{next year} \end{pmatrix} = \begin{pmatrix} \text{Biomass} \\ \text{this year} \end{pmatrix} + \begin{pmatrix} \text{Surplus} \\ \text{production} \end{pmatrix} - (\text{Catch})$$

Discrete version (difference equation): 
$$B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K}\right) - C_t$$

$$B_{t+1} = B_t + rB_t \left( 1 - \frac{B_t}{K} \right) - uB_t$$

How can we ensure the Catch doesn't deplete a stock?

#### Surplus production and MSY

#### Set Catch to SP



- MSY = largest catch (yield) that can be supported by the population over an indefinite period
- B<sub>msv</sub> = Biomass at which MSY is generated

#### Surplus production and MSY



#### How hard should we fish to get MSY and keep the pop. at $B_{MSY}$ ?

- u<sub>msv</sub> = exploitation rate that generates MSY
- $F_{msv}$  = instantaneous fishing mortality rate that generates MSY

## What happens to pop. through time at different exploitation rates (u)?



What do you notice about the Biomass?

#### Yield over time



- What do you notice about the yield over time?
- → MSY is when we maximize this longterm yield

#### How to calculate MSY

$$B_{t+1} = B_t + rB_t \left( 1 - \frac{B_t}{K} \right) - uB_t$$

$$u_{MSY} = \frac{r}{2}$$

$$B_{MSY} = \frac{K}{2}$$

$$MSY = u_{MSY}B_{MSY} = \frac{rK}{4}$$

#### Management Quantities

## To be continued when we get into stock assessments...

| Maximum surplus production (MSY)                   | rK/4 |
|----------------------------------------------------|------|
| Stock size for MSY (B <sub>MSY</sub> )             | K/2  |
| Rate of exploitation at MSY (u <sub>MSY</sub> )    | r/2  |
| Effort required to achieve MSY (E <sub>MSY</sub> ) | r/2q |
| Maximum rate of exploitation (u <sub>max</sub> )   | r    |
| Effort at maximum rate of                          | r/q  |
| exploitation (E <sub>max</sub> )                   |      |

## Summary 1

Exponential mortality model

$$N_t = N_0 e^{-(F+M)t}$$

- describes cohort abund. through time
- Divide total inst. Mortality into: Z=M+F
- Definitions
  - A, S, Z, u, v, F, and M
  - Exploitation rate (u)
  - Type I and II fisheries

$$C_t = \frac{F}{Z}(1 - e^{-Z})N_t$$

- Baranov Catch Equation (many variants)
  - Catch = (fraction of mortality due to fishing)\*(Proportion dying)\*abundance
- Know MSY concepts!
  - how MSY related to logistic growth and surplus prod.
  - MSY, B<sub>MSY</sub>, u<sub>MSY</sub>, F<sub>MSY</sub>

#### 2 Logistic growth & surplus production

- Key concepts from the simple model:
  - K, r
  - Surplus production
  - MSY, Bmsy
  - u<sub>MSY</sub> and F<sub>MSY</sub>





#### 3 Instantaneous & annual mortality

| Instantaneous<br>rate  | Annual rate (proportion)                | Relationship*                                      |
|------------------------|-----------------------------------------|----------------------------------------------------|
| Z<br>Total mortality   | A<br>Annual mortality                   | $A = 1-e^{-Z}$<br>$S = 1-A = e^{-Z}$<br>Z = -ln(S) |
| F<br>Fishing mortality | u<br>Exploitation rate                  | u = FA/Z                                           |
| M<br>Natural mortality | v<br>Prob. death from<br>natural causes | v = MA/Z                                           |
| Z = F+M                | A = u+v                                 |                                                    |

For u or v, need 2 of the following: F, M, Z

<sup>\*</sup>Note: u and v relationships assume Type II fishery that operates continuously throughout the year