Mathematics 172 Homework, April 3, 2019.

A commercial hog farm has 1,000 pigs that are keep together. At some point a virus starts in the population of pigs. Assume that the following SIR model gives a description of the progress of the virus

$$S' = -.001SI$$
$$I' = .001SI - .2I$$
$$R' = .2I$$

1. For those of you how did not get full credit on the quiz on using Euler's method, do three Euler step of length 1 starting with the values S(0) = 990, I(0) = 10, and R(0) = 0. Solution: The result of doing this is

$S(1) \approx 980.10$	$I(1) \approx 17.90$	$R(1) \approx 2.00$
$S(2) \approx 962.56$	$I(2) \approx 31.86$	$R(2) \approx 5.58$
$S(3) \approx 931.89$	$I(3) \approx 56.16$	$R(3) \approx 11.95$

2. What is the *contact number*, which we have also called *basic reproduction number*? Solution: It is

$$c = \frac{.2}{.001} = 200$$

3. Use the equation

$$I' = .001SI - .2I = I(.001S - .2)$$

to show that the maximum of I occurs when S = 200. Solution: The formula for I' shows that I' = 0 when S = .1/.001 = 200. Thus the maximum occurs when S = 200.

4. Recall that we showed in class that S and I are related by

$$I = I_0 - c(S - S_0) + c \ln(S/S_0),$$

where in our case c=200. Since the maximum occurs when S=c use this to show that the maximum of I is

$$I_{\text{max}} = I_0 + (S_0 - c) + c \ln(c/S_0)$$

which in our case is

$$I_{\text{max}} = I_0 + (S_0 - 200) + 200 \ln(200/S_0).$$

- **5.** Use the formula to find I_{max} in the following cases
 - (a) $S_0 = 999$ and $I_0 = 1$. Solution: $I_{\text{max}} = 478.31$.
 - (b) $S_0 = 990$, $I_0 = 10$. Solution: $I_{\text{max}} = 480.12$.
 - (c) $S_0 = 700$, $I_0 = 300$. Solution: $I_{\text{max}} = 549.45$.
- (d) $S_0 = 100$, $I_0 = 900$. Solution: $I_{\rm max} = 900$, which in not what the formula for $I_{\rm max}$ above gives. (It gives $I_{\rm max} = 938, 63$.) Why does the formula not apply, or if it does apply how do we interpret it?