2006 G3

Ezra Guerrero Alvarez

October 24, 2021

2006 G3

2006 G3

Let ABCDE be a convex pentagon such that

$$\angle BAC = \angle CAD = \angle DAE$$
 and $\angle ABC = \angle ACD = \angle ADE$.

The diagonals BD and CE meet at P. Prove that the line AP bisects the side CD.

Note that there is a spiral similarity with center A taking $B \to C \to D \to E$. Thus, the spiral similarity takes $\overline{\mathrm{BD}}$ to $\overline{\mathrm{CE}}$. Therefore, since $P = \overline{\mathrm{BD}} \cap \overline{\mathrm{CE}}$, we have AEDP and ABCP cyclic. Thus, since $\angle CBP = \angle DCP$ from the spiral similarity, we have

$$\angle DCP = \angle CBP = \angle CAP$$
,

giving (ABCP) tangent to $\overline{\text{CD}}$. Analogously, (AEDP) is tangent to $\overline{\text{CD}}$. Thus, since $\overline{\text{AP}}$ is the radical axis of these two circles, it bisects their common external tangent $\overline{\text{CD}}$.