Chapter 10 Naïve Bayes Classification

Classification is a predictive modeling problem that involves assigning a label to a given input data sample. Naive Bayes is among one of the simplest and powerful algorithms for classification based on Bayes' Theorem with an assumption of independence among predictors. Naive Bayes model is easy to build and particularly useful for very large data sets.

10. 1 Introduction

he Naive Bayes classifier assumes that the presence of a feature in a class is unrelated to any other feature. Even if these features depend on each other or upon the existence of the other features, all of these properties independently contribute to the probability that a particular fruit is an apple or an orange or a banana and that is why it is known as "Naive".

A Naive Bayes classifier is a probabilistic machine learning model that's used for classification task. The crux of the classifier is based on the Bayes theorem. Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and P(x|c). Look at the equation below:

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability

Predictor Prior Probability

$$P(c \mid X) = P(x, |c) \times P(x, |c) \times \cdots \times P(x, |c) \times P(c)$$

Above.

P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes).

P(c) is the prior probability of class.

P(x|c) is the likelihood which is the probability of predictor given class.

P(x) is the prior probability of predictor.

Naïve Bayes Algorithm (for discrete input attributes) has two phases

1. Learning Phase: Learning is easy, just create probability tables. Given a training set S,

For each target value of c_i ($c_i = c_1, \dots, c_L$)

$$\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$$

For every attribute value x_{jk} of each attribute X_j ($j = 1, \dots, n$; $k = 1, \dots, N_j$)

$$\hat{P}(X_i = x_{ik} \mid C = c_i) \leftarrow \text{estimate } P(X_i = x_{ik} \mid C = c_i) \text{ with examples in } \mathbf{S};$$

2. Test Phase: Given an unknown instance $\mathbf{X}' = (a_1', \dots, a_n')$ Look up tables to assign the label c^* to \mathbf{X}' if

$$[\hat{P}(a_1'\mid c^*)\cdots\hat{P}(a_n'\mid c^*)]\hat{P}(c^*) > [\hat{P}(a_1'\mid c)\cdots\hat{P}(a_n'\mid c)]\hat{P}(c), \quad c\neq c^*, \ c=c_1,\cdots,c_L$$
 Classification is easy, just multiply probabilities

Example:

PlayTennis: training examples

					1
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Pain	3.401.4	LUah	Chuomo	No.

The <u>learning phase</u> for tennis example

$$P(\text{Play=Yes}) = 9/14$$

$$P(\text{Play}=No) = 5/14$$

We have four variables, we calculate for each the conditional probability table

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

Ou	tlook	Play=Yes	Play=No
Sı	ınny	2/9	3/5
Ov	ercast	4/9	0/5
R	Rain	3/9	2/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

The test phase for the tennis example

- Test Phase
 - Given a new instance of variable values,
 x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
 - Given calculated Look up tables

P(Outlook=Sunny | Play=Yes) = 2/9 P(Temperature=Cool | Play=Yes) = 3/9 P(Huminity=High | Play=Yes) = 3/9 P(Wind=Strong | Play=Yes) = 3/9 P(Play=Yes) = 9/14 P(Outlook=Sunny | Play=No) = 3/5 P(Temperature=Cool | Play=No) = 1/5 P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=No) = 3/5P(Play=No) = 5/14

Use the MAP rule to calculate Yes or No

P(Yes | X'): [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053P(No | X'): [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact P(Yes | x') < P(No | x'), we label x' to be "No".

When the predictors take up a continuous value and are not discrete, we assume that these values are sampled from a Gaussian (Normal) distribution.

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Example

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Divorced|Yes)=1/7

For taxable income:

If class=No: sample mean=110 sample variance=2975
If class=Yes: sample mean=90 sample variance=25

P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10-9 = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

10.2 Applications of Naive Bayes Algorithms

- Real time Prediction: Naive Bayes is an eager learning classifier and it is sure fast. Thus, it could be used for making predictions in real time.
- Multi class Prediction: This algorithm is also well known for multi class prediction feature. Here we can predict the probability of multiple classes of target variable.
- Text classification/ Spam Filtering/ Sentiment Analysis: Naive Bayes classifiers mostly used in text classification (due to better result in multi class problems and independence rule) have higher success rate as compared to other algorithms. As a result, it is widely used in Spam filtering (identify spam e-mail) and Sentiment Analysis (in social media analysis, to identify positive and negative customer sentiments)
- Recommendation System: Naive Bayes Classifier and Collaborative Filtering together builds a Recommendation System that uses machine learning and data mining techniques to filter unseen information and predict whether a user would like a given resource or not