

ISSUED BY Shenzhen BALUN Technology Co., Ltd.



**FOR** 

### **CDMA 1x Advanced Feature Phone**

ISSUED TO HOPERUN MMAX DIGITAL PTE. LTD

152 BEACH ROAD #13-06 GATEWAY EAST SINGAPORE 189721





Report No: BL-SZ14400004-701

EUT Type: CDMA 1x Advanced Feature Phone

Model Name: MXC-550

Brand Name: UMX

FCC ID: 2AB5L-MXC550

Test Standard: FCC 47 CFR Part 20.19

ANSI C63.19: 2007

KDB 285076 D01 HAC Guidance v04

M-Rating: E-Field: M4

H-Field: M4

Test conclusion: PASS

Test Date: May 20, 2014

Date of Issue: Jun 24, 2014

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B. 1st FL.Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055

TEL: +86-755-66850100 FAX: +86-755-61824271 www.baluntek.com



## **Revision History**

VersionIssue DateRevisionsRev. 01May 29, 2014Initial IssueRev. 02Jun 24, 2014Second edition

### **TABLE OF CONTENTS**

| 1 | GE  | NERAL INFORMATION                                  | 4    |
|---|-----|----------------------------------------------------|------|
|   | 1.1 | Identification of the Testing Laboratory           | 4    |
|   | 1.2 | Identification of the Responsible Testing Location | 4    |
|   | 1.3 | Test Environment Condition                         | 4    |
|   | 1.4 | Announce                                           | 4    |
| 2 | PR  | ODUCT INFORMATION                                  | 6    |
|   | 2.1 | Applicant                                          | 6    |
|   | 2.2 | Manufacturer                                       | 6    |
|   | 2.3 | General Description for Equipment under Test (EUT) | 6    |
|   | 2.4 | Technical Information                              | 6    |
|   | 2.5 | EUT Air Interface description                      | 7    |
|   | 2.6 | Ancillary Equipment                                | 7    |
| 3 | SU  | MMARY OF TEST RESULTS                              | 8    |
|   | 3.1 | Test Standards                                     | 8    |
|   | 3.2 | HAC Test Configuration and Setting                 | 8    |
|   | 3.3 | Summary Of HAC M-Rating                            | 8    |
|   | 3.4 | ANSI C63.19 HAC RF Categories                      | 9    |
|   | 3.5 | HAC Test Uncertainty                               | . 10 |
| 4 | SA  | TIMO HSC MEASUREMENT SYSTEM                        | . 11 |
|   | 4.1 | Definition of Hearing Aid Compatibility (HAC)      | . 11 |
|   | 4.2 | SATIMO HAC System                                  | . 11 |
| 5 | SY  | STEM VERIFICATION                                  | . 17 |
|   | 5.1 | System Check Procedure                             | . 17 |
|   | 5.2 | Validation Procedure                               | . 17 |
|   | 5.3 | System Validation Setup                            | . 18 |
|   | 5.4 | System Validation Results                          | . 18 |
| 6 | Pro | be Modulation Factor (PMF)                         | . 19 |



|    | 6.1  | PMF Summary                             | . 20 |
|----|------|-----------------------------------------|------|
| 7  | НА   | C RF IMMUNITY MEASUREMENT PROCEDURES    | . 21 |
|    | 7.1  | HAC Measurement Process Diagram         | . 21 |
|    | 7.2  | HAC RF Test Setup                       | . 22 |
|    | 7.3  | RF Emission Measurement Procedure       | . 22 |
| 8  | СО   | NDUCTED RF OUPUT POWER                  | . 23 |
| 9  | 11   | HAC RF Emission Test Results            | . 24 |
|    | 9.1  | E-Filled Emission Test Results          | . 24 |
|    | 9.2  | H-Filled Emission Test Results          | . 24 |
| 1( | ) TE | ST EQUIPMENTS LIST                      | . 25 |
| 11 | 1 RE | FERENCES                                | . 26 |
| Α  | NNEX | A HAC TEST RESULT OF SYSTEM VERIFICAION | . 27 |
| Α  | NNEX | B HAC TEST SETUP PHOTOS                 | . 31 |
| Α  | NNEX | C HAC RF MEASUREMENT RESULT             | . 32 |
| Α  | NNEX | D CALIBRATION FOR PROBE AND DIPOLE      | . 51 |



### 1 GENERAL INFORMATION

### 1.1 Identification of the Testing Laboratory

| Company Name | Shenzhen BALUN Technology Co., Ltd.                                 |
|--------------|---------------------------------------------------------------------|
| Address      | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, |
| Address      | Nanshan District, Shenzhen, Guangdong Province, P. R. China         |
| Phone Number | +86 755 6683 3402                                                   |
| Fax Number   | +86 755 6182 4271                                                   |

### 1.2 Identification of the Responsible Testing Location

| Test Location             | Shenzhen BALUN Technology Co., Ltd.                                   |  |  |
|---------------------------|-----------------------------------------------------------------------|--|--|
| Address                   | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,   |  |  |
| Address                   | Nanshan District, Shenzhen, Guangdong Province, P. R. China           |  |  |
|                           | The laboratory has been listed by Industry Canada to perform          |  |  |
|                           | electromagnetic emission measurements. The recognition numbers of     |  |  |
|                           | test site are 11524A-1.                                               |  |  |
|                           | The laboratory has been listed by US Federal Communications           |  |  |
|                           | Commission to perform electromagnetic emission measurements. The      |  |  |
|                           | recognition numbers of test site are 832625.                          |  |  |
| Accreditation Certificate | The laboratory has met the requirements of the IAS Accreditation      |  |  |
|                           | Criteria for Testing Laboratories (AC89), has demonstrated            |  |  |
|                           | compliance with ISO/IEC Standard 17025:2005. The accreditation        |  |  |
|                           | certificate number is TL-588.                                         |  |  |
|                           | The laboratory is a testing organization accredited by China National |  |  |
|                           | Accreditation Service for Conformity Assessment (CNAS) according to   |  |  |
|                           | ISO/IEC 17025. The accreditation certificate number is L6791.         |  |  |
|                           | All measurement facilities used to collect the measurement data are   |  |  |
| Description               | located at Block B, FL 1, Baisha Science and Technology Park, Shahe   |  |  |
| Description               | Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.        |  |  |
|                           | China 518055                                                          |  |  |

#### 1.3 Test Environment Condition

| Ambient Temperature          | 20 to 22 °C   |
|------------------------------|---------------|
| Ambient Relative<br>Humidity | 30 to 60 %    |
| Ambient Pressure             | 86 to 106 kPa |

#### 1.4 Announce

- (1) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (2) The test report is invalid if there is any evidence and/or falsification.
- (3) The results documented in this report apply only to the tested sample, under the conditions and modes of



operation as described herein.

- (4) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.



## 2 PRODUCT INFORMATION

## 2.1 Applicant

| Applicant | HOPERUN MMAX DIGITAL PTE. LTD                       |
|-----------|-----------------------------------------------------|
| Address   | 152 BEACH ROAD #13-06 GATEWAY EAST SINGAPORE 189721 |

### 2.2 Manufacturer

| Manufacturer | HOPERUN MMAX DIGITAL PTE. LTD                       |
|--------------|-----------------------------------------------------|
| Address      | 152 BEACH ROAD #13-06 GATEWAY EAST SINGAPORE 189721 |

## 2.3 General Description for Equipment under Test (EUT)

| EUT Type               | CDMA 1x Advanced Feature Phone |
|------------------------|--------------------------------|
| Model Under the test   | MXC-550                        |
| Series Model Name      | N/A                            |
| Difference description | N/A                            |
| Hardware Version       | N/A                            |
| Software Version       | N/A                            |
| Dimensions             | 109×48×16 mm                   |
| Weight                 | 120 g                          |
| Network and Wireless   | CDMA BC0/BC10/BC1              |
| connectivity           | Bluetooth,                     |
| Display                | TFT-LCD,                       |
| Chipset                | N/A                            |

### 2.4 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

| Operating Mode   | CDMA: CDMA Voice;                                     |
|------------------|-------------------------------------------------------|
| Operating Mode   | Bluetooth: V2.1+EDR                                   |
|                  | CDMA BC0 (US Cellular): 824.70MHz ~ 848.31 MHz;       |
| Frequency Range  | CDMA BC10 (US Secondary 800): 817.90MHz ~ 823.10 MHz; |
| Trequency Nange  | CDMA BC1 (US PCS): 1851.25MHz ~ 1908.75 MHz;          |
|                  | Bluetooth: 2402MHz ~ 2480MHz                          |
| Antonno Tuno     | WWAN: PIFA Antenna                                    |
| Antenna Type     | Bluetooth: PIFA Antenna                               |
| DTM              | Not Support                                           |
| Hotspot Function | Not Support                                           |
| Environment      | Uncontrolled                                          |
| EUT Stage        | Portable Device                                       |



## 2.5 EUT Air Interface description

| Air Interface | Band | Туре  | C63.19<br>Tested | Simultaneous<br>Transmitter | ОТТ | Power<br>Reduction |
|---------------|------|-------|------------------|-----------------------------|-----|--------------------|
|               | BC0  | Voice | Yes              | Bluetooth                   | NA  | Not Support        |
| CDMA          | BC10 | Voice | Yes              | Bluetooth                   | NA  | Not Support        |
|               | BC1  | Voice | Yes              | Bluetooth                   | NA  | Not Support        |
| Bluetooth     | 2450 | Data  | No               | CDMA                        | NA  | Not Support        |

# 2.6 Ancillary Equipment

|                       | Battery                          |                               |  |
|-----------------------|----------------------------------|-------------------------------|--|
|                       | Brand Name                       | N/A                           |  |
|                       | Model No                         | AB043446LA                    |  |
| Ancillary Equipment 1 | Serial No                        | N/A                           |  |
|                       | Capacitance                      | 800mAh                        |  |
|                       | Rated Voltage                    | 3.7V                          |  |
|                       | Extreme Voltage                  | Low: 3.4V / High:4.2V         |  |
|                       | AC Adapter (Charger for Battery) |                               |  |
|                       | Brand Name                       | N/A                           |  |
| Ancillary Equipment 2 | Model No                         | N/A                           |  |
| Anomary Equipment 2   | Serial No                        | (n.a. marked #1 by test site) |  |
|                       | Rated Input                      | ~ 100-240V, 50/60Hz           |  |
|                       | Rated Output                     | == 5V, 600mA                  |  |
| Ancillary Equipment 3 | Stereo Headset                   |                               |  |
| Ancillary Equipment 4 | USB Data Cable                   |                               |  |



### 3 SUMMARY OF TEST RESULTS

#### 3.1 Test Standards

| No. | Identity                      | Document Title                                                                                                 |  |  |  |  |
|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | FCC 47 CFR                    | Hearing aid-compatible mobile handsets.                                                                        |  |  |  |  |
| 2   | Part 20.19  ANSI C 63.19:2007 | American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and |  |  |  |  |
|     | KDB 285076 D01                | Hearing Aids Provides equipment authorization guidance for mobile handsets                                     |  |  |  |  |
| 3   | HAC Guidance                  | subject to the requirements of Section 20.19 for hearing aid                                                   |  |  |  |  |
|     | v04                           | compatibility                                                                                                  |  |  |  |  |

### 3.2 HAC Test Configuration and Setting

For HAC RF emission testing, the EUT was linked and controlled by wireless communication test set. Communication between the EUT and the wireless communication test set was established by air link. The distance between the EUT and the communicating antenna of the test set is larger than 50 cm and the output power radiated from the wireless communication test set antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the wireless communication test set to radiate maximum output power during HAC testing.

## 3.3 Summary Of HAC M-Rating

| Band               | Measurem      | M-Rating |    |
|--------------------|---------------|----------|----|
| CDMA BC0 (Voice)   | E-Field (V/m) | 108.34   | M4 |
| CDIVIA BCU (VOICE) | H-Field (A/m) | 0.27     | M4 |
| CDMA DC40 (Voice)  | E-Field (V/m) | 157.53   | M4 |
| CDMA BC10 (Voice)  | H-Field (A/m) | 0.32     | M4 |
| CDMA BC1 (Voice)   | E-Field (V/m) | 37.55    | M4 |
|                    | H-Field (A/m) | 0.10     | M4 |



### 3.4 ANSI C63.19 HAC RF Categories

#### 3.4.1 RF Emissions

The ANSI Standard presents performance requirements for acceptable interoperability of hearing with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

#### <960MHz Limit:

| Categor<br>y | AWF<br>(dB) | Limits for E-Field Emission (V/m) | Limits for H-Field Emission (A/m) |
|--------------|-------------|-----------------------------------|-----------------------------------|
| M1           | 0           | 631.0 - 1122.0                    | 1.91 - 3.39                       |
| IVI I        | <b>-</b> 5  | 473.2 - 841.4                     | 1.43 - 2.54                       |
| M2           | 0           | 354.8 - 631.0                     | 1.07 - 1.91                       |
| IVI∠         | -5          | 266.1 - 473.2                     | 0.80 - 1.43                       |
| M3           | 0           | 199.5 - 354.8                     | 0.6 - 1.07                        |
| IVIO         | -5          | 149.6 - 266.1                     | 0.45 - 0.80                       |
| 0            |             | <199.5                            | <0.60                             |
| M4           | -5          | <149.6                            | <0.45                             |

Hearing aid and WD near-field categories as defined in ANSI PC 63.19. During testing, the hearing aid must maintain an input-referenced interference level of less than 55dB a gain compression of less than 6dB.

#### >960MHz Limit:

| Categor<br>y | AWF<br>(dB) | Limits for E-Field Emission (V/m) | Limits for H-Field Emission (A/m) |
|--------------|-------------|-----------------------------------|-----------------------------------|
| M1           | 0           | 199.5 - 354.8                     | 0.6 - 1.07                        |
|              | -5          | 149.6 - 266.1                     | 0.45 - 0.8                        |
| M2           | 0           | 112.2 - 199.5                     | 0.34 - 0.6                        |
|              | -5          | 84.1 - 149.6                      | 0.25 - 0.45                       |
| М3           | 0           | 63.1 - 112.2                      | 0.19 - 0.34                       |
|              | -5          | 47.3 - 84.1                       | 0.15 - 0.25                       |
| M4           | 0           | <63.1                             | <0.19                             |
|              | -5          | <47.3                             | <0.15                             |

#### 3.4.2 Articulation Weighing Factor (AWF)

| Standard     | Technology      | AWF |
|--------------|-----------------|-----|
| T1/T1P1/3GPP | UMTS(WCDMA)     | 0   |
| IS-95        | CDMA            | 0   |
| iden         | GSM(22and 11Hz) | 0   |
| J-STD-007    | GSM(217Hz)      | -5  |

AWF has been developed from information presented to the committee regarding the interference potential of the various modulation types according to ANSI PC 63.19



### 3.5 HAC Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in ANSI C 63.19:2007. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Una antainte Campanant           | Uncertain                 | Prob. | Div   | C: (E) | C: (II) | Std. Und | :. (+/- %) |
|----------------------------------|---------------------------|-------|-------|--------|---------|----------|------------|
| Uncertainty Component            | ty Value                  | Dist. | Div.  | Ci (E) | Ci (H)  | E        | Н          |
| Measurement System               |                           |       |       |        |         |          |            |
| Probe calibration                | 6.00                      | N     | 1.000 | 1      | 1       | 6.00     | 6.00       |
| Axial Isotropy                   | 2.02                      | R     | 1.732 |        | 1       | 1.17     | 1.17       |
| Sensor Displacement              | 14.30                     | R     | 1.732 | 1      | 0.217   | 8.26     | 1.79       |
| Boundary effect                  | 2.50                      | R     | 1.732 | 1      | 1       | 0.87     | 0.87       |
| Phantom Boundary Effect          | 6.89                      | R     | 1.732 | 1      | 0       | 3.52     | 0.00       |
| Linearity                        | 2.58                      | R     | 1.732 | 1      | 1       | 1.49     | 1.49       |
| Scaling tp PMR Calibration       | 9.02                      | N     | 1.000 | 1      | 1       | 9.02     | 9.02       |
| System detection limits          | 1.30                      | R     | 1.732 | 1      | 1       | 0.75     | 0.75       |
| Readout Electronics              | 0.25                      | R     | 1.732 | 1      | 1       | 0.14     | 0.14       |
| Reponse Time                     | 1.23                      | R     | 1.732 | 1      | 1       | 0.71     | 0.71       |
| Integration Time                 | 2.15                      | R     | 1.732 | 1      | 1       | 1.24     | 1.24       |
| RF ambient Conditions            | 2.03                      | R     | 1.732 | 1      | 1       | 1.17     | 1.17       |
| RF Reflections                   | 9.09                      | R     | 1.732 | 1      | 1       | 5.25     | 5.25       |
| Probe positioner                 | 0.63                      | N     | 1.000 | 1      | 0.71    | 0.63     | 0.45       |
| Probe positioning                | 3.12                      | N     | 1.000 | 1      | 0.71    | 3.12     | 2.22       |
| Extrapolation and Interpolation  | 1.18                      | R     | 1.732 | 1      | 1       | 0.68     | 0.68       |
| Test sample Related              |                           |       |       |        |         |          |            |
| Test sample positioning Vertical | 2.73                      | R     | 1.732 | 1      | 0.71    | 1.58     | 1.12       |
| Test sample positioning Lateral  | 1.19                      | R     | 1.732 | 1      | 1       | 0.69     | 0.69       |
| Device holder and Phantom        | 2.20                      | N     | 1.000 | 1      | 1       | 2.20     | 2.20       |
| Power drift                      | 4.08                      | R     | 1.732 | 1      | 1       | 2.36     | 2.36       |
| Phantom and Setup Related        | Phantom and Setup Related |       |       |        |         |          |            |
| Phantom Thickness                | 2.00                      | N     | 1.000 | 1      | 0.6     | 2.00     | 1,20       |
| Combined Std. Uncertainty(k=1)   |                           |       |       |        |         | 16.18    | 13.25      |
| Expanded Uncertainty on Power    |                           |       |       |        |         | 32.35    | 26.50      |
| Expanded Uncertainty on Field    |                           |       |       |        |         | 16.18    | 13.25      |



#### 4 SATIMO HSC MEASUREMENT SYSTEM

### 4.1 Definition of Hearing Aid Compatibility (HAC)

On July 10.2003.the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

#### Compatibility Tests involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions.
- RF Magnetic- field emissions.
- T-coil mode, magnetic-signal strength in the audio band.
- T-coil mode, magnetic-signal frequency response through the audio band.
- T-coil mode, magnetic-signal and noise articulation index.

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

### 4.2 SATIMO HAC System

SATIMO HAC System Diagram:





#### 4.2.1 Robot

The SATIMO HAC system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:



- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

#### 4.2.2 HAC E-Field Probe



| Serial Number:                                      | SN 24/13 EPH41                  |  |
|-----------------------------------------------------|---------------------------------|--|
| Frequency:                                          | 0.7GHz – 2.5GHz                 |  |
| Probe length:                                       | 330mm                           |  |
| Length of one dipole:                               | 3.3mm                           |  |
| Maximum external diameter:                          | 8mm                             |  |
| Probe extremity diameter:                           | 5mm                             |  |
| Distance between dipoles/probe extremity:           | 3mm                             |  |
|                                                     | Dipole 1:R1=2.1807 MΩ           |  |
| Resistance of the three dipole (at the connector ): | Dipole 2:R1=2.0612 MΩ           |  |
|                                                     | Dipole 3:R3=2.1892 M $\Omega$   |  |
| Connector (HIROSE series SR30)                      | 6 wire male (Hirose SR30series) |  |



#### **E-Field Probe Calibration Process**

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

#### **LINEARITY**

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 2V/m to 1000V/m).



#### **SENSITIVITY**

The sensitivity factors of the three dipoles were determined using the waveguide method outlined in the fore mentioned standards.



| Frequency<br>(GHz) | Normz dipole 1<br>(μV/(V/m) <sup>2</sup> ) | Normz dipole 2<br>(μV/(V/m) <sup>2</sup> ) | Normz dipole 3<br>(μV/(V/m) <sup>2</sup> ) |
|--------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 0.7GHz-2.5GHz      | 6.54                                       | 4.86                                       | 5.80                                       |
| Frequency          | DCP dipole 1                               | DCP dipole 2                               | DCP dipole 3                               |
| (GHz)              | (mV)                                       | (mV)                                       | (mV)                                       |
| 0.7GHz-2.5GHz      | 96                                         | 96                                         | 92                                         |



#### **ISOTROPY**

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.



Isotropy: +/- 1.22% (+/- 0.05 dB)

#### 4.2.3 HAC H-Field Probe



| Serial Number:                                      | SN 24/13 EPH49                  |  |
|-----------------------------------------------------|---------------------------------|--|
| Frequency:                                          | 0.7GHz – 2.5GHz                 |  |
| Probe length:                                       | 330mm                           |  |
| Length of one dipole:                               | 3.3mm                           |  |
| Maximum external diameter:                          | 8mm                             |  |
| Probe extremity diameter:                           | 5mm                             |  |
| Distance between dipoles/probe extremity:           | 3mm                             |  |
|                                                     | Dipole 1:R1=0.289 MΩ            |  |
| Resistance of the three dipole (at the connector ): | Dipole 2:R1=0.287 MΩ            |  |
|                                                     | Dipole 3:R3=0.281 MΩ            |  |
| Connector (HIROSE series SR30)                      | 6 wire male (Hirose SR30series) |  |

#### **Calibration Method Procedure**

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.



#### **LINEARITY**

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 0.01A/m to 2A/m).



#### **SENSITIVITY**

The sensitivity factors of the three dipoles were determined using the waveguide method outlined in the fore mentioned standards.

| Frequency<br>(GHz) | Normz loop 1<br>(μV/(A/m) ²) | Normz loop 2<br>(μV/(A/m) <sup>2</sup> ) | Normz loop 3<br>(μV/(A/m) <sup>2</sup> ) |
|--------------------|------------------------------|------------------------------------------|------------------------------------------|
| 0.7GHz-1.0GHz      | 0.062                        | 0.072                                    | 0.068                                    |
| 1.7GHz-2.5GHz      | 0.35                         | 0.41                                     | 0.37                                     |
| Frequency          | DCP dipole 1                 | DCP dipole 2                             | DCP dipole 3                             |
| (GHz)              | (mV)                         | (mV)                                     | (mV)                                     |
| 0.7GHz-2.5GHz      | 112                          | 102                                      | 106                                      |



Calibration Curves @ 835MHz



Calibration Curves @ 1900MHz



#### **ISOTROPY**

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.







#### 5 SYSTEM VERIFICATION

### 5.1 System Check Procedure

The input signal was an unmodulated continuous wave. The following points were taken into consideration in performing this check:

- Average Input Power P = 100mW RMS (20dBm RMS) after adjustment for return loss
- · The test fixture must meet the 2 wavelength separation criterion
- The proper measurement of the 1 cm probe to dipole separation, which is measured from top surfaceof the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is shown in the following diagram:



Separation Distance from Dipole to Field Probe

RF power was recorded using both an average reading meter and a peak reading meter. Readings of the probe are provided by the measurement system. To assure proper operation of the near-field measurement probe the input power to the dipole shall be commensurate with the full rated output power of the wireless device (e.g. - for a cellular phone wireless device the average peak antenna input power will be on the order of 100mW (i.e. - 20dBm) RMS after adjustment for any mismatch.

#### 5.2 Validation Procedure

A dipole antenna meeting the requirements given in PC63.19 was placed in the position normally occupied by the WD. The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recorde. Using the near-field measurement system, scan the antenna over the radiating dipole and record the greatest field reading observed. Due to the nature of E-fields about free-space dipoles, the two E-field peaks measured over the dipole are averaged to compensate for non-paralellity of the setup see manufacturer method on dipole calibration certificates, Field strength measurements shall be made only when the probe is stationary. RF power was recorded using both an average and a peak power reading meter.

Setup for Desired Output Power to Dipole

Output Power Meter

Output Power Meter

Generator

Reference Dipole

Power Meter

Reference Dipole

Reference Dipole

Reference Dipole

Reference Dipole

Reference Dipole



### 5.3 System Validation Setup



Using this setup configuration, the signal generator was adjusted for the desired output power 20dBm (100mW) at a specified frequency. The reference power from the coupled port of the directional coupler is recorded. Next, the output cable is connected to the reference dipole

## 5.4 System Validation Results

Comparing to the original HAC value provided by SATIMO, the validation data should be within its specification of 10 %.

| Frequency                             | Input Power<br>(dBm) | E-field Result<br>(V/m) | Target Field<br>(V/m) | Tolerance<br>(%) | Date       |
|---------------------------------------|----------------------|-------------------------|-----------------------|------------------|------------|
| 835 MHz                               | 20.0                 | 205                     | 220.4                 | -6.99            | 2014/05/20 |
| 1880MHz                               | 20.0                 | 161.52                  | 153.4                 | 5.29             | 2014/05/20 |
| Frequency                             | Input Power          | H-field Result          | Target Field          | Tolerance        | Date       |
| , , , , , , , , , , , , , , , , , , , | (dBm)                | (A/m)                   | (A/m)                 | (%)              |            |
| 835 MHz                               | 20.0                 | 0.448                   | 0.445                 | -0.67            | 2014/05/20 |
| 1880MHz                               | 20.0                 | 0.447                   | 0.445                 | 0.45             | 2014/05/20 |



## 6 Probe Modulation Factor (PMF)

The HAC standard ANSI C63.19-2011 requires measurement of the peak envelope E-field and H-field of the wireless device. Paragraph 4.2.2.1 and C.3.1 of that standard describes the probe modulation factor that shall be applied to convert the probe reading to peak envelope field. The PMF measurement procedure is as follows.

- a. Install a validation dipole for the appropriate frequency band under the Test Arch Phantom and select the proper phantom section according to the probe type installed (E-field or H-field). Move the probe to the point with the highest field, with very similar field contributions from all channels. Switch the arm power off and do not move the probe between the subsequent CW and modulated measurement.
- b. The modulated signal to the dipole must be monitored to record peak amplitude and compared to a CW signal with the same peak envelope level.
- c. Do not move the setup after the coupler between the modulated and the CW measurement. For modulated signal measurement, connect the modulated signal using the appropriate frequency via the cable to the dipole.
- d. Run the multi-meter in the procedure with the corresponding modulation setting in continuous mode.
- e. Adjust the signal amplitude to achieve the same field level display in the multi-meter as during the WD field scan.
- f. Read the envelope peak on the monitor in order to adjust the CW signal later to the same level.
- g. Switch the signal source off and verify that the ambient and instrumentation noise level is at least 10 dB lower.
- h. For CW measurement, change the signal to CW at the same center frequency, without touching or moving the dipole or probe in the setup.
- Adjust the CW signal amplitude to the same peak level on the spectrum analyzer.
- j. Run the multi-meter in the CW procedure in continuous mode.
- k. Read the multi-meter total field display and note it together with the probe ID, modulation type and frequency.
- Calculate the PMF as the ratio between the CW multi-meter field reading and the reading for the applicable modulation.





## 6.1 PMF Summary

| Probe         | Frequency<br>(MHz) | Signal Type | E-Field<br>(V/m) | PMF  |
|---------------|--------------------|-------------|------------------|------|
| E-Field Probe | 835                | CDMA        | 233.64           | 0.87 |
|               |                    | CW          | 203.27           |      |
|               |                    | CDMA        | 178.21           | 0.90 |
|               | 1880               | CW          | 158.61           | 0.89 |

| Probe         | Frequency<br>(MHz) | Signal Type | H-Field<br>(A/m) | Tolerance<br>(%) |
|---------------|--------------------|-------------|------------------|------------------|
| H-Field Probe | 835                | CDMA        | 0.491            | 0.00             |
|               |                    | CW          | 0.422            | 0.90             |
|               | 1000               | CDMA        | 0.518            | 0.00             |
|               | 1880 CV            | CW          | 0.456            | 0.88             |



### 7 HAC RF IMMUNITY MEASUREMENT PROCEDURES

### 7.1 HAC Measurement Process Diagram





#### 7.2 HAC RF Test Setup



Reference and plane for RF emission measurements

#### 7.3 RF Emission Measurement Procedure

The following illustrate a typical RF emissions test scan over a wireless communications device:

- Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- b. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- c. The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- d. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- e. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- f. The measurement system measured the field strength at the reference location.



## 8 CONDUCTED RF OUPUT POWER

The CDMA measurement conducted power as following:

| В      | SAND       | CDMA BC0     |         |         | CDMA BC10 |        |        |  |
|--------|------------|--------------|---------|---------|-----------|--------|--------|--|
| Ch     | nannel     | 1013 384 777 |         | 476     | 526       | 684    |        |  |
| Freque | ency (MHz) | 824.70       | 836.52  | 848.31  | 817.90    | 819.10 | 823.10 |  |
| RC 1   | SO55 (dBm) | 29.01        | 29.15   | 28.58   | 28.28     | 28.55  | 28.90  |  |
| RC 3   | SO55 (dBm) | 29.08        | 29.15   | 28.63   | 28.30     | 28.57  | 28.90  |  |
| RC 3   | SO32 (dBm) | 29.05        | 29.13   | 28.60   | 28.26     | 28.56  | 28.86  |  |
| В      | SAND       | CDMA BC1     |         |         | I         |        |        |  |
| Ch     | nannel     | 25           | 600     | 1175    | 1         | 1      | 1      |  |
| Freque | ency (MHz) | 1851.25      | 1880.00 | 1908.75 | 1         | 1      | 1      |  |
| RC 1   | SO55 (dBm) | 27.58        | 28.00   | 27.46   | 1         | /      | /      |  |
| RC 3   | SO55 (dBm) | 27.60        | 28.01   | 27.49   | 1         | /      | /      |  |
| RC 3   | SO32 (dBm) | 27.55        | 28.01   | 27.41   | 1         | /      | /      |  |

#### Bluetooth mode:

| Mode             | GFSK   |              |            | π/4-DQPSK |           |            |  |
|------------------|--------|--------------|------------|-----------|-----------|------------|--|
| Channel          | 1      | 1 39         |            | 1         | 39        | 79         |  |
| Frequency (MHz)  | 2402   | 2441         | 2480       | 2402      | 2441      | 2480       |  |
| Peak Power (dBm) | 8.653  | 9.103        | 9.281      | 9.422     | 9.879     | 10.03      |  |
|                  | 8-DPSK |              |            |           |           |            |  |
| Mode             |        | 8-DPSK       |            |           | BLE       |            |  |
| Mode<br>Channel  | 1      | 8-DPSK<br>39 | 79         | 1         | BLE<br>19 | 40         |  |
|                  | 1 2402 |              | 79<br>2480 | 1 2402    |           | 40<br>2480 |  |



## 9 11 HAC RF Emission Test Results

## 9.1 E-Filled Emission Test Results

| Band  | Mode  | Ch.  | Freq.<br>(MHz) | Peak E-Field<br>(V/m) | M-Rating | Meas.<br>No. |
|-------|-------|------|----------------|-----------------------|----------|--------------|
|       |       | 1013 | 824.70         | 108.34                | M4       | 1#           |
| BC 0  | Voice | 384  | 836.52         | 79.82                 | M4       | 2#           |
|       |       | 777  | 848.31         | 80.07                 | M4       | 3#           |
|       |       | 476  | 817.90         | 157.53                | M4       | 7#           |
| BC 10 | Voice | 526  | 819.10         | 129.08                | M4       | 8#           |
|       |       | 684  | 823.10         | 128.30                | M4       | 9#           |
|       |       | 25   | 1851.25        | 37.55                 | M4       | 13#          |
| BC 1  | Voice | 600  | 1880.00        | 33.29                 | M4       | 14#          |
|       |       | 1175 | 1908.75        | 32.11                 | M4       | 15#          |

### 9.2 H-Filled Emission Test Results

| Band  | Mode  | Ch.  | Freq.<br>(MHz) | Peak H-Field<br>(A/m) | M-Rating | Meas.<br>No. |
|-------|-------|------|----------------|-----------------------|----------|--------------|
|       |       | 1013 | 824.70         | 0.27                  | M4       | 4#           |
| BC 0  | Voice | 384  | 836.52         | 0.10                  | M4       | 5#           |
|       |       | 777  | 848.31         | 0.08                  | M4       | 6#           |
|       |       | 476  | 817.90         | 0.32                  | M4       | 10#          |
| BC 10 | Voice | 526  | 819.10         | 0.28                  | M4       | 11#          |
|       |       | 684  | 823.10         | 0.29                  | M4       | 12#          |
|       |       | 25   | 1851.25        | 0.10                  | M4       | 16#          |
| BC 1  | Voice | 600  | 1880.00        | 0.08                  | M4       | 17#          |
|       |       | 1175 | 1908.75        | 0.07                  | M4       | 18#          |



## **10 TEST EQUIPMENTS LIST**

| Description                     | Manufacturer | Model              | Serial No.          | Cal. Date  | Cal. Due   |
|---------------------------------|--------------|--------------------|---------------------|------------|------------|
| PC                              | Dell         | N/A                | N/A                 | N/A        | N/A        |
| 800-950MHz Dipole               | SATIMO       | SIDB835            | SN 18/12 DHA41      | 2013/08/07 | 2014/08/06 |
| 1700-2000MHz Dipole             | SATIMO       | SIDB1900           | SN 18/12 DHB46      | 2013/08/07 | 2014/08/06 |
| E-Field Probe                   | SATIMO       | SCE                | SN 24/13 EPH41      | 2013/08/07 | 2014/08/06 |
| H-Field Probe                   | SATIMO       | SCH                | SN 24/13 HPH49      | 2013/08/07 | 2014/08/06 |
| Antenna                         | SATIMO       | ANTA3              | SN 17/13 ZNTA45     | N/A        | N/A        |
| MultiMeter                      | Keithley     | MultiMeter<br>2000 | 4024022             | 2014/02/13 | 2015/02/12 |
| Signal Generator                | R&S          | SMF100A            | 1167.0000k02/104260 | 2014/02/17 | 2015/02/16 |
| Power Meter                     | Agilent      | 5738A              | 11290               | 2013/10/22 | 2014/10/21 |
| Power Sensor                    | R&S          | NRP-Z21            | 103971              | 2013/12/12 | 2014/12/11 |
| Power Amplifier                 | SATIMO       | 6552B              | 22374               | 2013/08/05 | 2014/08/04 |
| Wireless Communication Test Set | Agilent      | 8960-E5515C        | MY50260493          | 2013/09/07 | 2014/09/06 |
| Wireless Communication Test Set | R&S          | CMU 200            | 123666              | 2013/09/07 | 2014/09/06 |
| Network Analyzer                | R&S          | 5071C              | EMY46103472         | 2013/12/12 | 2014/12/11 |



### 11 REFERENCES

- 1 FCC 47 CFR Part 20.19 "Hearing aid-compatible mobile handsets."
- 2 ANSI C 63.19:2007 "American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011
- 3 KDB 285076 D01 HAC Guidance v04, "provides equipment authorization guidance for mobile handsets subject to the requirements of Section 20.19 for hearing aid compatibility
- 4 KDB 285076 D02, T-Coil testing for CMRS IP v01r01 provides guidance for T-Coil tests for voice-over-IP (e.g. LTE and Wi-Fi) CMRS based Telephone Services.
- 4 SATIMO COMOHAC\_V4
- 5 SATIMO OPENHAC\_V4



### ANNEX A HAC TEST RESULT OF SYSTEM VERIFICAION

## E-Field System Check Data(835MHz Head)

## **Experimental conditions.**

| Grid size (mm x mm) | 50.0, 50.0 |
|---------------------|------------|
| Step (mm)           | 5          |
| Band                | 835 MHz    |
| Channel             |            |
| Signal              | CW         |
| Date of measurement | 2014-05-20 |

## **HAC Measurement Results**

Frequency (MHz): 835.000000

Probe Modulation Factor = 1.000000

Maximum value of total field = 205 V/m

E in V/m

#### SURFACE HAC



| Grid | 1: | 194. 51 | Grid | 2: | 198. 12 | Grid | 3: | 177. 56 |
|------|----|---------|------|----|---------|------|----|---------|
| Grid | 4: | 192. 69 | Grid | 5: | 205. 00 | Grid | 6: | 178. 98 |
| Grid | 7: | 181. 13 | Grid | 8: | 194. 18 | Grid | 9: | 176. 51 |



# H-Field System Check Data(835MHz Body)

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0 |
|---------------------|------------|
| Step (mm)           | 5          |
| Band                | 835 MHz    |
| Channel             |            |
| Signal              | CW         |
| Date of measurement | 2014-05-20 |

## **HAC Measurement Results**

Frequency (MHz): 835.000000

Probe Modulation Factor = 1.000000

Maximum value of total field = 0.448 A/m

H in A/m

### **SURFACE HAC**



#### H in A/m

| Grid 1: 0 | 0. 302 | Grid | 2: | 0. 421 | Grid | 3: | 0. 336 |
|-----------|--------|------|----|--------|------|----|--------|
| Grid 4: 0 | ). 381 | Grid | 5: | 0. 449 | Grid | 6: | 0. 332 |
| Grid 7: 0 | ). 370 | Grid | 8: | 0. 400 | Grid | 9: | 0. 239 |



# E-Filed System Check Data (1880MHz)

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0 |
|---------------------|------------|
| Step (mm)           | 5          |
| Band                | 1880 MHz   |
| Channel             |            |
| Signal              | CW         |
| Date of measurement | 2014-05-20 |

## **HAC Measurement Results**

Frequency (MHz): 1880.000000

Probe Modulation Factor = 1.000000

Maximum value of total field = 161.52V/m

### **SURFACE HAC**



| Grid | 1: | 145. 51 | Grid | 2: | 158. | 33 | Grid | 3: | 136. 11 |
|------|----|---------|------|----|------|----|------|----|---------|
| Grid | 4: | 151. 64 | Grid | 5: | 161. | 52 | Grid | 6: | 142. 95 |
| Grid | 7: | 141. 52 | Grid | 8: | 148. | 62 | Grid | 9: | 126. 77 |



# H-Filed System Check Data (1880MHz)

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0 |
|---------------------|------------|
| Step (mm)           | 5          |
| Band                | 1880 MHz   |
| Channel             |            |
| Signal              | CW         |
| Date of measurement | 2014-05-20 |

## **HAC Measurement Results**

Frequency (MHz): 1880.000000

Probe Modulation Factor = 1.000000

Maximum value of total field = 0.447 A/m

### **SURFACE HAC**



#### H in A/m

| Grid 1: 0.424 | Grid 2: 0.434 | Grid 3: 0.384 |
|---------------|---------------|---------------|
| Grid 4: 0.437 | Grid 5: 0.447 | Grid 6: 0.415 |
| Grid 7: 0.432 | Grid 8:0.415  | Grid 9: 0.361 |



## ANNEX B HAC TEST SETUP PHOTOS

#### E-Filed Measurement Test Setup



#### H-Filed Measurement Test Setup





## ANNEX C HAC RF MEASUREMENT RESULT

#### TABLE OF MEASUREMENT RESULT LIST

| <u>Band</u>  | <u>Mode</u> | <u>PARAMETERS</u>                         |  |  |
|--------------|-------------|-------------------------------------------|--|--|
|              |             | Measurement 1: E-field on Low Channel     |  |  |
|              | E-Filed     | Measurement 2: E-field on Middle Channel  |  |  |
| CDMA BC 0    |             | Measurement 3: E-field on High Channel    |  |  |
| CDIVIA BC 0  |             | Measurement 4: H-field on Low Channel     |  |  |
|              | H-Filed     | Measurement 5: H-field on Middle Channel  |  |  |
|              |             | Measurement 6: H-field on High Channel    |  |  |
|              |             | Measurement 7: E-field on Low Channel     |  |  |
|              | E-Filed     | Measurement 8: E-field on Middle Channel  |  |  |
| CDMA BC 10   |             | Measurement 9: E-field on High Channel    |  |  |
| CDIVIA BC 10 |             | Measurement 10: H-field on Low Channel    |  |  |
|              | H-Filed     | Measurement 11: H-field on Middle Channel |  |  |
|              |             | Measurement 12: H-field on High Channel   |  |  |
|              |             | Measurement 13: E-field on Low Channel    |  |  |
|              | E-Filed     | Measurement 14: E-field on Middle Channel |  |  |
| CDMA BC 1    |             | Measurement 15: E-field on High Channel   |  |  |
|              |             | Measurement 16: H-field on Low Channel    |  |  |
|              | H-Filed     | Measurement 17: H-field on Middle Channel |  |  |
|              |             | Measurement 18: H-field on High Channel   |  |  |



В

## **MEASUREMENT 1**

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | Low             |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

## **HAC Measurement Results**

Lower Band (Channel 1013):

Frequency (MHz): 824.70000

Probe Modulation Factor = 0.870000

Maximum value of total field = 108.34 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

**SURFACE HAC** 



| Grid 1: 72.67 | Grid 2: 90.64     | Grid 3: 89.72 |
|---------------|-------------------|---------------|
| Grid 4: 96.38 | Grid 5:<br>108.34 | Grid 6: 98.13 |
| Grid 7: 86.33 | Grid 8:<br>106.31 | Grid 9: 99.48 |



## **MEASUREMENT 2**

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | Middle          |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

## **HAC Measurement Results**

Lower Band (Channel 384):

Frequency (MHz): 836.52000

Probe Modulation Factor = 0.870000

Maximum value of total field = 79.82 V/m

### Hearing Aid Near-Field Category: M4 (AWF 0 dB)

#### SURFACE HAC



| Grid 1 | l: | 39. | 14 | Grid | 2: | 67. | 10 | Grid | 3: | 66. | 51 |
|--------|----|-----|----|------|----|-----|----|------|----|-----|----|
| Grid 4 | 1: | 51. | 82 | Grid | 5: | 79. | 82 | Grid | 6: | 71. | 61 |
| Grid 7 | 7: | 51. | 16 | Grid | 8: | 79. | 34 | Grid | 9: | 72. | 25 |



## **MEASUREMENT 3**

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | High            |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

## **HAC Measurement Results**

Lower Band (Channel 777):

Frequency (MHz): 848.31000

Probe Modulation Factor = 0.870000

Maximum value of total field = 80.07 V/m

### Hearing Aid Near-Field Category: M4 (AWF 0 dB)

#### SURFACE HAC



| Grid | 1: | 45. | 20 | Grid | 2: | 70. | 15 | Grid | 3: | 67. | 80 |
|------|----|-----|----|------|----|-----|----|------|----|-----|----|
| Grid | 4: | 53. | 45 | Grid | 5: | 80. | 07 | Grid | 6: | 70. | 56 |
| Grid | 7: | 53. | 23 | Grid | 8: | 78. | 73 | Grid | 9: | 70. | 66 |



## **MEASUREMENT 4**

## **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | Low             |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

## **HAC Measurement Results**

Lower Band (Channel 1013):

Frequency (MHz): 824.70000

Probe Modulation Factor = 0.900000

Maximum value of total field = 0.27 A/m

### Hearing Aid Near-Field Category: M4 (AWF 0 dB)

#### SURFACE HAC



H in A/m

| Grid | 1: | 0. 18 | Grid | 2: | 0. 27 | Grid | 3: | 0. 20 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0. 18 | Grid | 5: | 0. 27 | Grid | 6: | 0. 20 |
| Grid | 7: | 0. 07 | Grid | 8: | 0. 13 | Grid | 9: | 0. 13 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | Middle          |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

# **HAC Measurement Results**

Lower Band (Channel 384):

Frequency (MHz): 836.52000

Probe Modulation Factor =0.900000

Maximum value of total field = 0.10 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## SURFACE HAC



H in A/m

| Grid | 1: | 0. 07 | Grid | 2: | 0. 10 | Grid | 3: | 0. 09 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0.07  | Grid | 5: | 0. 10 | Grid | 6: | 0. 09 |
| Grid | 7: | 0.04  | Grid | 8: | 0.07  | Grid | 9: | 0.09  |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0      |  |  |
|---------------------|-----------------|--|--|
| Step (mm)           | 5               |  |  |
| Band                | BC0_US_Cellular |  |  |
| Channel             | High            |  |  |
| Signal              | CDMA            |  |  |
| Date of measurement | 2014-05-20      |  |  |

# **HAC Measurement Results**

Lower Band (Channel 777):

Frequency (MHz): 848.3100

Probe Modulation Factor =0.900000

Maximum value of total field = 0.08 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



| Grid | 1: | 0.05 | Grid | 2: | 0. 07 | Grid | 3: | 0. 10 |
|------|----|------|------|----|-------|------|----|-------|
| Grid | 4: | 0.05 | Grid | 5: | 0.08  | Grid | 6: | 0. 10 |
| Grid | 7: | 0.04 | Grid | 8: | 0.07  | Grid | 9: | 0. 10 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |  |  |
|---------------------|-----------------------|--|--|
| Step (mm)           | 5                     |  |  |
| Band                | BC10_Secondary_800MHz |  |  |
| Channel             | Low                   |  |  |
| Signal              | CDMA                  |  |  |
| Date of measurement | 2014-05-20            |  |  |

# **HAC Measurement Results**

Lower Band (Channel 476):

Frequency (MHz): 817.90000

Probe Modulation Factor = 0.870000

Maximum value of total field = 157.53 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

**SURFACE HAC** 



E in V/m

| Grid 1:<br>126.93 | Grid 2:<br>127.68 | Grid 3: 90.54 |
|-------------------|-------------------|---------------|
| Grid 4:<br>158.17 | Grid 5:<br>157.53 | Grid 6: 90.82 |
| Grid 7:<br>136.01 | Grid 8:<br>135.81 | Grid 9: 89.78 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |  |  |
|---------------------|-----------------------|--|--|
| Step (mm)           | 5                     |  |  |
| Band                | BC10_Secondary_800MHz |  |  |
| Channel             | Middle                |  |  |
| Signal              | CDMA                  |  |  |
| Date of measurement | 2014-05-20            |  |  |

# **HAC Measurement Results**

Lower Band (Channel 526):

Frequency (MHz): 819.100000

Probe Modulation Factor = 0.870000

Maximum value of total field = 129.08 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



E in V/m

| Grid 1:<br>102.48 | Grid 2:<br>103.07 | Grid 3: 78.89 |
|-------------------|-------------------|---------------|
| Grid 4:<br>129.57 | Grid 5:<br>129.08 | Grid 6: 82.01 |
| Grid 7:<br>111.11 | Grid 8:<br>111.50 | Grid 9: 82.05 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |  |  |
|---------------------|-----------------------|--|--|
| Step (mm)           | 5                     |  |  |
| Band                | BC10_Secondary_800MHz |  |  |
| Channel             | High                  |  |  |
| Signal              | CDMA                  |  |  |
| Date of measurement | 2014-05-20            |  |  |

# **HAC Measurement Results**

Lower Band (Channel 684):

Frequency (MHz): 823.10000

Probe Modulation Factor = 0.870000

Maximum value of total field = 128.30 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

**SURFACE HAC** 



E in V/m

| Grid 1:<br>101.75 | Grid 2:<br>102.01 | Grid 3: 79.06 |
|-------------------|-------------------|---------------|
| Grid 4:<br>128.61 | Grid 5:<br>128.30 | Grid 6: 81.98 |
| Grid 7:<br>110.97 | Grid 8:<br>111.17 | Grid 9: 82.17 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |  |  |
|---------------------|-----------------------|--|--|
| Step (mm)           | 5                     |  |  |
| Band                | BC10_Secondary_800MHz |  |  |
| Channel             | Low                   |  |  |
| Signal              | CDMA                  |  |  |
| Date of measurement | 2014-05-20            |  |  |

# **HAC Measurement Results**

Lower Band (Channel 476):

Frequency (MHz): 817.90000

Probe Modulation Factor = 0.900000

Maximum value of total field = 0.32 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



| Grid | 1: | 0. 22 | Grid | 2: | 0. 33 | Grid | 3: | 0. 29 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0. 21 | Grid | 5: | 0. 32 | Grid | 6: | 0. 29 |
| Grid | 7: | 0. 08 | Grid | 8: | 0. 17 | Grid | 9: | 0. 20 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |
|---------------------|-----------------------|
| Step (mm)           | 5                     |
| Band                | BC10_Secondary_800MHz |
| Channel             | Middle                |
| Signal              | CDMA                  |
| Date of measurement | 2014-05-20            |

# **HAC Measurement Results**

Lower Band (Channel 526):

Frequency (MHz): 819.10000

Probe Modulation Factor = 0.900000

Maximum value of total field = 0.28 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



| Grid | 1: | 0. 19 | Grid | 2: | 0. 29 | Grid | 3: | 0. 24 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0. 18 | Grid | 5: | 0. 28 | Grid | 6: | 0. 24 |
| Grid | 7: | 0.07  | Grid | 8: | 0. 14 | Grid | 9: | 0. 16 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0            |
|---------------------|-----------------------|
| Step (mm)           | 5                     |
| Band                | BC10_Secondary_800MHz |
| Channel             | High                  |
| Signal              | CDMA                  |
| Date of measurement | 2014-05-20            |

# **HAC Measurement Results**

Lower Band (Channel 684):

Frequency (MHz): 823.10000

Probe Modulation Factor = 0.900000

Maximum value of total field = 0.28 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



| Grid | 1: | 0. 19 | Grid | 2: | 0. 28 | Grid | 3: | 0. 24 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0. 18 | Grid | 5: | 0. 29 | Grid | 6: | 0. 25 |
| Grid | 7: | 0. 08 | Grid | 8: | 0. 14 | Grid | 9: | 0. 16 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | Low                    |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 25):

Frequency (MHz): 1851.25000

Probe Modulation Factor = 0.890000

Maximum value of total field = 37.55 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



## E in V/m

| Grid 1: | 31. 53 | Grid | 2: | 38. | 10 | Grid | 3: | 36. | 10 |
|---------|--------|------|----|-----|----|------|----|-----|----|
| Grid 4: | 31. 48 | Grid | 5: | 37. | 55 | Grid | 6: | 32. | 05 |
| Grid 7: | 24. 75 | Grid | 8: | 27. | 47 | Grid | 9: | 21. | 22 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | Middle                 |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 600):

Frequency (MHz): 1880.00000

Probe Modulation Factor = 0.890000

Maximum value of total field = 33.29 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



## E in V/m

| Grid | 1: | 28. | 54 | Grid | 2: | 33. | 28 | Grid | 3: | 37. | 93 |
|------|----|-----|----|------|----|-----|----|------|----|-----|----|
| Grid | 4: | 29. | 35 | Grid | 5: | 33. | 29 | Grid | 6: | 30. | 03 |
| Grid | 7: | 25. | 91 | Grid | 8: | 28. | 57 | Grid | 9: | 21. | 65 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | High                   |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 1175):

Frequency (MHz): 1908.75000

Probe Modulation Factor = 0.890000

Maximum value of total field = 32.11 V/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



E in V/m

| Grid 1: | 26. 77 | Grid | 2: | 31. | 65 | Grid | 3: | 35. | 13 |
|---------|--------|------|----|-----|----|------|----|-----|----|
| Grid 4: | 28. 72 | Grid | 5: | 32. | 11 | Grid | 6: | 28. | 67 |
| Grid 7: | 25. 94 | Grid | 8: | 28. | 21 | Grid | 9: | 20. | 32 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | Low                    |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 25):

Frequency (MHz): 1851.25000

Probe Modulation Factor = 0.880000

Maximum value of total field = 0.10 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



H in A/m

| Grid | 1: | 0.04  | Grid | 2: | 0. 10 | Grid | 3: | 0. 12 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0.04  | Grid | 5: | 0. 10 | Grid | 6: | 0. 11 |
| Grid | 7: | 0. 04 | Grid | 8: | 0. 07 | Grid | 9: | 0. 09 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | Middle                 |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 600):

Frequency (MHz): 1880.00000

Probe Modulation Factor = 0.880000

Maximum value of total field = 0.08 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



| Grid | 1: | 0.04 | Grid | 2: | 0.08  | Grid | 3: | 0. 11 |
|------|----|------|------|----|-------|------|----|-------|
| Grid | 4: | 0.03 | Grid | 5: | 0.07  | Grid | 6: | 0. 10 |
| Grid | 7: | 0.04 | Grid | 8: | 0. 07 | Grid | 9: | 0. 09 |



# **Experimental conditions**

| Grid size (mm x mm) | 50.0, 50.0             |
|---------------------|------------------------|
| Step (mm)           | 5                      |
| Band                | BC1_North_American_PCS |
| Channel             | High                   |
| Signal              | CDMA                   |
| Date of measurement | 2014-05-20             |

# **HAC Measurement Results**

Lower Band (Channel 1175):

Frequency (MHz): 1908.75000

Probe Modulation Factor = 0.880000

Maximum value of total field = 0.07 A/m

## Hearing Aid Near-Field Category: M4 (AWF 0 dB)

## **SURFACE HAC**



H in A/m

| Grid | 1: | 0.04  | Grid | 2: | 0. 07 | Grid | 3: | 0. 12 |
|------|----|-------|------|----|-------|------|----|-------|
| Grid | 4: | 0.03  | Grid | 5: | 0.06  | Grid | 6: | 0. 10 |
| Grid | 7: | 0. 03 | Grid | 8: | 0.06  | Grid | 9: | 0. 08 |



## ANNEX D CALIBRATION FOR PROBE AND DIPOLE



## **COMOHAC E-Field Probe Calibration Report**

Ref: ACR.219.13.13.SATU.A

# SHENZHEN BALUN TECHNOLOGY CO., LTD. ROOM 601, EAST TOWER, NANSHAN SOFTWARE PARK, 10128 SHENNAN ROAD, SHENZHEN, 518084, CHINA SATIMO COMOHAC E-FIELD PROBE

SERIAL NO.: SN 24/13 EPH41

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



07/08/2013

Summary:

This document presents the method and results from an accredited COMOHAC E-Field Probe calibration performed in SATIMO USA using the CALIBAIR test bench, for use with a SATIMO COMOHAC system only. All calibration results are traceable to national metrology institutions.





Ref. ACR 219.13.13.SATU.A

|               | Name          | Function        | Date     | Signature     |
|---------------|---------------|-----------------|----------|---------------|
| Prepared by:  | Jérôme LUC    | Product Manager | 8/7/2013 | 25            |
| Checked by :  | Jérôme LUC    | Product Manager | 8/7/2013 | 25            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/7/2013 | tum Puthowski |

|               | Customer Name                             |
|---------------|-------------------------------------------|
| Distribution: | Shenzhen BALUN<br>Technology Co.,<br>Ltd. |

| Issue | Date     | Modifications   |
|-------|----------|-----------------|
| A     | 8/7/2013 | Initial release |
|       |          |                 |
|       |          |                 |
|       |          |                 |
|       |          |                 |

Page: 2/8











Ref: ACR.219.13.13.SATU.A

#### TABLE OF CONTENTS

| 1 | Dev | vice Under Test4              |   |
|---|-----|-------------------------------|---|
| 2 | Pro | duct Description4             |   |
|   | 2.1 | General Information           | 4 |
| 3 | Me  | asurement Method4             |   |
|   | 3.1 | Linearity                     | 4 |
|   | 3.2 | Sensitivity                   | 4 |
|   | 3.3 |                               | 5 |
|   | 3.4 | Probe Modulation Response     | 5 |
| 4 | Me  | asurement Uncertainty5        |   |
| 5 | Cal | ibration Measurement Results5 |   |
|   | 5.1 | Sensitivity in air            | 6 |
|   | 5.2 | Linearity                     | 7 |
|   | 5.3 | Isotropy                      | 7 |
| 6 | Lis | t of Equipment                |   |

Page: 3/8











Ref. ACR 219 13 13 SATU A

#### 1 DEVICE UNDER TEST

| Device Under Test                        |                       |  |  |
|------------------------------------------|-----------------------|--|--|
| Device Type                              | COMOHAC E FIELD PROBE |  |  |
| Manufacturer                             | Satimo                |  |  |
| Model                                    | SCE                   |  |  |
| Serial Number                            | SN 24/13 EPH41        |  |  |
| Product Condition (new / used)           | New                   |  |  |
| Frequency Range of Probe                 | 0.7GHz-2.5GHz         |  |  |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=1.265 MΩ |  |  |
|                                          | Dipole 2: R2=1.267 MΩ |  |  |
|                                          | Dipole 3: R3=1.228 MΩ |  |  |

A yearly calibration interval is recommended.

#### 2 PRODUCT DESCRIPTION

#### 2.1 GENERAL INFORMATION

Satimo's COMOHAC E field Probes are built in accordance to the ANSI C63.19 and IEEE 1309 standards.



Figure 1 - Satimo COMOHAC E field Probe

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 3.3 mm |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 5 mm   |
| Distance between dipoles / probe extremity | 3 mm   |

#### 3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

#### 3.1 LINEARITY

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 2V/m to 1000A/m).

#### 3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using the waveguide method outlined in the fore mentioned standards.

Page: 4/8









Ref. ACR 219 13 13 SATU A

#### 3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.

#### 3.4 PROBE MODULATION RESPONSE

The modulation factor was determined by illuminating the probe with a reference wave from a standard dipole 10 mm away, applying first a CW signal and then a modulated signal (both at same power level). The modulation factor is the ratio, in linear units, of the CW to modulated signal reading.

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528 and IEC/CEI 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| ERROR SOURCES                                       | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor | ci  | Standard<br>Uncertainty (%) |
|-----------------------------------------------------|--------------------------|-----------------------------|---------|-----|-----------------------------|
| Incident or forward power                           | 3,00%                    | Rectangular                 | √3      | 1   | 1.732%                      |
| Reflected power                                     | 3,00%                    | Rectangular                 | √3      | - 1 | 1.732%                      |
| Field homogeneity                                   | 3.00%                    | Rectangular                 | √3      | 1   | 1.732%                      |
| Field probe positioning                             | 5.00%                    | Rectangular                 | √3      | 1   | 2,887%                      |
| Field probe linearity                               | 3,00%                    | Rectangular                 | √3      | 1   | 1.732%                      |
| Combined standard uncertainty                       |                          |                             |         |     | 4.509%                      |
| Expanded uncertainty<br>95 % confidence level k = 2 |                          |                             |         |     | 9.0%                        |

### 5 CALIBRATION MEASUREMENT RESULTS

| Calibration Parameters |       |  |  |  |
|------------------------|-------|--|--|--|
| Lab Temperature        | 21 °C |  |  |  |
| Lab Humidity           | 45 %  |  |  |  |

Page: 5/8











Ref: ACR.219.13.13.SATU.A

## 5.1 SENSITIVITY IN AIR

| Normx dipole 1<br>$(\mu V/(V/m)^2)$ | Normy dipole 2 $(\mu V/(V/m)^2)$ | Normz dipole 3<br>(μV/(V/m) <sup>2</sup> ) |
|-------------------------------------|----------------------------------|--------------------------------------------|
| 6.54                                | 4.86                             | 5.80                                       |

| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 96           | 96           | 92           |

## Calibration curves





Page: 6/8









Ref: ACR.219.13.13.SATU.A

## 5.2 LINEARITY



Linearity: 8+/-1.49% (+/-0.07dB)

## 5.3 ISOTROPY



Page: 7/8









Ref. ACR 219.13.13.SATU.A

## 6 LIST OF EQUIPMENT

| Equipment Summary Sheet          |                         |                    |                                               |                                                  |  |
|----------------------------------|-------------------------|--------------------|-----------------------------------------------|--------------------------------------------------|--|
| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                         |  |
| HAC positioning ruler            | Satimo                  | TABH12 SN 42/09    | Validated. No cal required.                   | Validated. No ca required.                       |  |
| COMOHAC Test Bench               | Version 2               | NA.                | Validated. No cal required.                   | Validated. No ca<br>required.                    |  |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                          |  |
| Reference Probe                  | Satimo                  | EPH28 SN 08/11     |                                               | Characterized prior to<br>test. No cal required. |  |
| Reference Probe                  | Satimo                  | HPH38 SN31/10      | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.    |  |
| Multimeter                       | Keithley 2000           | 1188656            | 11/2010                                       | 11/2013                                          |  |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 12/2010                                       | 12/2013                                          |  |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.    |  |
| Power Meter                      | HP E4418A               | US38261498         | 11/2010                                       | 11/2013                                          |  |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 11/2010                                       | 11/2013                                          |  |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.    |  |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal required.                   | Validated. No cal required.                      |  |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                      |  |
| Waveguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                      |  |
| Temperature / Humidity<br>Sensor | Control Company         | 11-661-9           | 3/2012                                        | 3/2014                                           |  |

Page: 8/8









## COMOHAC H-Field Probe Calibration

Ref: ACR.219.14.13.SATU.A

# SHENZHEN BALUN TECHNOLOGY CO., LTD. ROOM 601, EAST TOWER, NANSHAN SOFTWARE PARK, 10128 SHENNAN ROAD, SHENZHEN, 518084, CHINA SATIMO COMOHAC H-FIELD PROBE

SERIAL NO.: SN 24/13 HPH49

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



07/08/2013

#### Summary:

This document presents the method and results from an accredited COMOHAC H-Field Probe calibration performed in SATIMO USA using the CALIBAIR test bench, for use with a SATIMO COMOHAC system only. All calibration results are traceable to national metrology institutions.





Ref. ACR 219.14.13.SATU.A

|               | Name          | Function        | Date     | Signature     |
|---------------|---------------|-----------------|----------|---------------|
| Prepared by:  | Jérôme LUC    | Product Manager | 8/7/2013 | 73            |
| Checked by :  | Jérôme LUC    | Product Manager | 8/7/2013 | 25            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/7/2013 | tum tuthowshi |

|               | Customer Name                             |
|---------------|-------------------------------------------|
| Distribution: | Shenzhen BALUN<br>Technology Co.,<br>Ltd. |

| Issue | Date     | Modifications   |  |
|-------|----------|-----------------|--|
| A     | 8/7/2013 | Initial release |  |
|       |          |                 |  |
|       |          |                 |  |
|       |          |                 |  |

Page: 2/9











Ref. ACR 219 14 13 SATU A

#### 1 DEVICE UNDER TEST

| Device Under Test                      |                       |  |
|----------------------------------------|-----------------------|--|
| Device Type                            | COMOHAC H FIELD PROBE |  |
| Manufacturer                           | Satimo                |  |
| Model                                  | SCH                   |  |
| Serial Number                          | SN 24/13 HPH49        |  |
| Product Condition (new / used)         | New                   |  |
| Frequency Range of Probe               | 0.7GHz-2.5GHz         |  |
| Resistance of Three Loops at Connector | Loop 1: R1=0.289 MΩ   |  |
|                                        | Loop 2: R2=0.287 MΩ   |  |
|                                        | Loop 3: R3=0.281 MΩ   |  |

A yearly calibration interval is recommended.

#### 2 PRODUCT DESCRIPTION

#### 2.1 GENERAL INFORMATION

Satimo's COMOHAC H field Probes are built in accordance to the ANSI C63.19 and IEEE 1309 standards.



Figure 1 - Satimo COMOHAC H field Probe

| Probe Length                             | 330 mm |
|------------------------------------------|--------|
| Dimension of one loop                    | 3.3 mm |
| Maximum external diameter                | 8 mm   |
| Probe Tip External Diameter              | 5 mm   |
| Distance between loops / probe extremity | 3 mm   |

#### 3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

## 3.1 LINEARITY

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 0.01A/m to 2A/m).

Page: 4/9









Ref: ACR 219.14.13.SATU A

#### 3.2 SENSITIVITY

The sensitivity factors of the three loops were determined using the waveguide method outlined in the fore mentioned standards.

#### 3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.

#### 3.4 PROBE MODULATION RESPONSE

The modulation factor was determined by illuminating the probe with a reference wave from a standard dipole 10 mm away, applying first a CW signal and then a modulated signal (both at same power level). The modulation factor is the ratio, in linear units, of the CW to modulated signal reading.

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528 and IEC/CEI 62209 standards were followed to generate the measurement uncertainty associated with an H-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |         |    |                             |
|------------------------------------------------------------|--------------------------|-----------------------------|---------|----|-----------------------------|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor | ci | Standard<br>Uncertainty (%) |
| Incident or forward power                                  | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |
| Reflected power                                            | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |
| Field homogeneity                                          | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |
| Field probe positioning                                    | 5.00%                    | Rectangular                 | √3      | 1  | 2.887%                      |
| Field probe linearity                                      | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |
| Combined standard uncertainty                              |                          |                             |         |    | 4.509%                      |
| Expanded uncertainty<br>95 % confidence level k = 2        |                          |                             |         |    | 9.0%                        |

## 5 CALIBRATION MEASUREMENT RESULTS

| Calibration Parameters |       |  |  |
|------------------------|-------|--|--|
| Lab Temperature        | 21 °C |  |  |
| Lab Humidity           | 45 %  |  |  |

Page: 5/9









Ref: ACR 219.14.13.SATU.A

## 5.1 SENSITIVITY IN AIR

| Frequency   | Normx loop 1<br>(mV/(A/m) <sup>2</sup> ) | Normy loop 2<br>(mV/(A/m) <sup>2</sup> ) | Normz loop 3<br>(mV/(A/m) <sup>2</sup> ) |
|-------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 0.7-1.0 GHz | 0.062                                    | 0.072                                    | 0.068                                    |
| 1.7-2.5 GHz | 0.35                                     | 0.41                                     | 0.37                                     |

| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 112          | 102          | 106          |

## Calibration curves



Loop 1 Loop 2 Loop 3

Calibration curves at 835 MHz

#### Calibration curves



Loop 2 Loop 3

Calibration curves at 1900 MHz

Page: 6/9









Ref: ACR 219.14.13.SATU.A

## 5.2 LINEARITY



Linearity: 1+/-1.83% (+/-0.08dB)

Linearity at 835 MHz



Linearity: 1+/-1.36% (+/-0.06dB)

Linearity at 1900 MHz











Ref: ACR 219.14.13.SATU.A

## 5.3 ISOTROPY





Isotropy at 835 MHz

Isotropy at 1900 MHz

Page: 8/9









Ref. ACR 219 14 13 SATUA

## 6 LIST OF EQUIPMENT

| Equipment Summary Sheet          |                         |                    |                                               |                                               |  |  |
|----------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |
| HAC positioning ruler            | Satimo                  | TABH12 SN 42/09    | Validated. No cal required.                   | Validated. No cal required.                   |  |  |
| COMOHAC Test Bench               | Version 2               | NA.                | Validated. No cal required.                   | Validated. No cal<br>required.                |  |  |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                       |  |  |
| Reference Probe                  | Satimo                  | EPH28 SN 08/11     | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Reference Probe                  | Satimo                  | HPH38 SN31/10      | Characterized prior to test. No cal required. |                                               |  |  |
| Multimeter                       | Keithley 2000           | 1188656            | 11/2010                                       | 11/2013                                       |  |  |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 12/2010                                       | 12/2013                                       |  |  |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Power Meter                      | HP E4418A               | US38261498         | 11/2010                                       | 11/2013                                       |  |  |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 11/2010                                       | 11/2013                                       |  |  |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal required.                   | Validated. No cal required.                   |  |  |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                   |  |  |
| Waveguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                   |  |  |
| Temperature / Humidity<br>Sensor | Control Company         | 11-661-9           | 3/2012                                        | 3/2014                                        |  |  |

Page: 9/9









## **HAC Reference Dipole Calibration Report**

Ref: ACR.219.16.13.SATU.A

# SHENZHEN BALUN TECHNOLOGY CO., LTD. ROOM 601, EAST TOWER, NANSHAN SOFTWARE PARK, 10128 SHENNAN ROAD, SHENZHEN, 518084, CHINA SATIMO COMOHAC REFERENCE DIPOLE

FREQUENCY: 800-950MHZ SERIAL NO.: SN 18/12 DHA41

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



07/08/2013

#### Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in SATIMO USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.





Ref. ACR 219.16.13.SATU.A

|               | Name          | Function        | Date     | Signature     |
|---------------|---------------|-----------------|----------|---------------|
| Prepared by:  | Jérôme LUC    | Product Manager | 8/7/2013 | JES           |
| Checked by :  | Jérôme LUC    | Product Manager | 8/7/2013 | 25            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/7/2013 | ALM FASTHAUST |

|               | Customer Name                             |
|---------------|-------------------------------------------|
| Distribution: | Shenzhen BALUN<br>Technology Co.,<br>Ltd. |

| Issue | Date     | Modifications   |  |
|-------|----------|-----------------|--|
| A     | 8/7/2013 | Initial release |  |
|       |          |                 |  |
|       |          |                 |  |
|       |          |                 |  |
|       |          |                 |  |

Page: 2/8











Ref: ACR.219.16.13.SATU.A

#### TABLE OF CONTENTS

| 1 | Inti | oduction4                     |   |
|---|------|-------------------------------|---|
| 2 | De   | vice Under TEst4              |   |
| 3 | Pro  | duct Description4             |   |
|   | 3.1  | General Information           | 4 |
| 4 | Me   | asurement Method4             |   |
|   | 4.1  | Return Loss Requirements      | 5 |
|   | 4.2  | Reference Dipole Calibration  | 5 |
| 5 | Me   | asurement Uncertainty5        |   |
|   | 5.1  | Return Loss                   | 5 |
|   | 5.2  | Validation Measurement        | 5 |
| 6 | Cal  | ibration Measurement Results6 |   |
|   | 6.1  | Return Loss                   | 6 |
|   | 6.2  | Validation measurement        | 6 |
| 7 | Lis  | t of Equipment 8              |   |

Page: 3/8











Ref. ACR 219 16 13 SATU A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                      |  |  |
|--------------------------------|--------------------------------------|--|--|
| Device Type                    | COMOHAC 800-950 MHz REFERENCE DIPOLE |  |  |
| Manufacturer                   | Satimo                               |  |  |
| Model                          | SIDB835                              |  |  |
| Serial Number                  | SN 18/12 DHA41                       |  |  |
| Product Condition (new / used) | New                                  |  |  |

A yearly calibration interval is recommended.

#### 3 PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

Satimo's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.



Figure 1 - Satimo COMOHAC Validation Dipole

#### 4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

Page: 4/8









Ref. ACR 219 16 13 SATU A

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

#### 4.2 REFERENCE DIPOLE CALIBRATION

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by SATIMO.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Gain |
|----------------|------------------------------|
| 400-6000MHz    | 0.1 dB                       |

#### 5.2 VALIDATION MEASUREMENT

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |            |                     |                             |
|------------------------------------------------------------|--------------------------|-----------------------------|------------|---------------------|-----------------------------|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor    | Uncertainty<br>(dB) | Standard<br>Uncertainty (%) |
| RF reflections                                             | 0.1                      | R                           | √3         | 0.06                |                             |
| Field probe conv. Factor                                   | 0.4                      | R                           | √3         | 0.23                |                             |
| Field probe anisotropy                                     | 0.25                     | R                           | √3         | 0.14                |                             |
| Positioning accuracy                                       | 0.2                      | R                           | √3         | 0.12                |                             |
| Probe cable placement                                      | 0.1                      | R                           | $\sqrt{3}$ | 0.06                |                             |
| System repeatability                                       | 0.2                      | R                           | √3         | 0.12                |                             |
| EUT repeatability                                          | 0,4                      | N                           | 1          | 0.40                |                             |
| Combined standard uncertainty                              |                          |                             |            | 0.52                |                             |
| Expanded uncertainty<br>95 % confidence level k = 2        |                          |                             |            | 1.00                | 13.0                        |

Page: 5/8











Ref. ACR 219.16.13.SATU.A

## 6 CALIBRATION MEASUREMENT RESULTS

## 6.1 RETURN LOSS



| Frequency (MHz) | Worst Case Return Loss (dB) | Requirement (dB) |
|-----------------|-----------------------------|------------------|
| 800-950 MHz     | -14.55                      | -10              |

## 6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to SATIMO's simulated results.

#### Measurement Condition

| Software Version                          | OpenHAC V2      |  |
|-------------------------------------------|-----------------|--|
| HAC positioning ruler                     | SN 42/09 TABH12 |  |
| E-Field probe                             | SN 08/11 EPH28  |  |
| H-Field probe                             | SN 31/10 HPH38  |  |
| Distance between dipole and sensor center | 10 mm           |  |
| E-field scan size                         | X=150mm/Y=20mm  |  |
| H-field scan size                         | X=40mm/Y=20mm   |  |
| Scan resolution                           | dx=5mm/dy=5mm   |  |
| Frequency                                 | 835 MHz         |  |
| Input power                               | 20 dBm          |  |
| Lab Temperature                           | 21°C            |  |
| Lab Humidity                              | 45%             |  |

Page: 6/8









Ref: ACR.219.16.13.SATU.A

#### Measurement Result

|               | Measured | Internal Requirement |
|---------------|----------|----------------------|
| E field (V/m) | 214.61   | 220.4                |
| H field (A/m) | 0.43     | 0.445                |





Page: 7/8









Ref. ACR 219 16 13 SATUA

## 7 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                                  |  |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|--------------------------------------------------|--|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                         |  |  |  |
| HAC positioning ruler              | Satimo                  | TABH12 SN 42/09    | Validated. No cal required.                   | Validated. No ca<br>required.                    |  |  |  |
| COMOHAC Test Bench                 | Version 2               | NA.                | Validated. No cal required.                   | Validated. No ca<br>required.                    |  |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                          |  |  |  |
| Reference Probe                    | Satimo                  | EPH28 SN 08/11     | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.    |  |  |  |
| Reference Probe                    | Satimo                  | HPH38 SN31/10      | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required. |  |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 11/2010                                       | 11/2013                                          |  |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2010                                       | 12/2013                                          |  |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required. |  |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 11/2010                                       | 11/2013                                          |  |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 11/2010                                       | 11/2013                                          |  |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.    |  |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 3/2012                                        | 3/2014                                           |  |  |  |

Page: 8/8









## **HAC Reference Dipole Calibration Report**

Ref: ACR.219.17.13.SATU.A

# SHENZHEN BALUN TECHNOLOGY CO., LTD. ROOM 601, EAST TOWER, NANSHAN SOFTWARE PARK, 10128 SHENNAN ROAD, SHENZHEN, 518084, CHINA SATIMO COMOHAC REFERENCE DIPOLE

FREQUENCY: 1700-2000MHZ SERIAL NO.: SN 18/12 DHB46

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



07/08/2013

## Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in SATIMO USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.





Ref: ACR.219.17.13.SATU.A

|               | Name          | Function        | Date     | Signature    |
|---------------|---------------|-----------------|----------|--------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/7/2013 | 75           |
| Checked by :  | Jérôme LUC    | Product Manager | 8/7/2013 | 25           |
| Approved by:  | Kim RUTKOWSKI | Quality Manager | 8/7/2013 | Acm Pathnish |

|               | Customer Name                             |
|---------------|-------------------------------------------|
| Distribution: | Shenzhen BALUN<br>Technology Co.,<br>Ltd. |

| Issue | Date     | Modifications   |  |
|-------|----------|-----------------|--|
| A     | 8/7/2013 | Initial release |  |
|       |          |                 |  |
|       |          |                 |  |
|       |          |                 |  |

Page: 2/8











Ref: ACR.219.17.13.SATU.A

#### TABLE OF CONTENTS

| 1 | Intr | oduction4                     |   |
|---|------|-------------------------------|---|
| 2 | De   | vice Under TEst4              |   |
| 3 | Pro  | duct Description4             |   |
|   | 3.1  | General Information           | 4 |
| 4 | Me   | asurement Method4             |   |
|   | 4.1  | Return Loss Requirements      | 5 |
|   | 4.2  | Reference Dipole Calibration  | 5 |
| 5 | Me   | asurement Uncertainty5        |   |
|   | 5.1  | Return Loss                   | 5 |
|   | 5.2  | Validation Measurement        | 5 |
| 6 | Cal  | ibration Measurement Results6 |   |
|   | 6.1  | Return Loss                   | 6 |
|   | 6.2  | Validation measurement        | 6 |
| 7 | Lis  | t of Equipment 8              |   |

Page: 3/8











Ref: ACR.219.17.13.SATU.A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                        |  |  |  |
|--------------------------------|----------------------------------------|--|--|--|
| Device Type                    | COMOHAC 1700-2000 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | Satimo                                 |  |  |  |
| Model                          | SIDB1900                               |  |  |  |
| Serial Number                  | SN 18/12 DHB46                         |  |  |  |
| Product Condition (new / used) | New                                    |  |  |  |

A yearly calibration interval is recommended.

#### 3 PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

Satimo's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.



Figure 1 - Satimo COMOHAC Validation Dipole

#### 4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

Page: 4/8









Ref: ACR 219 17 13 SATU A

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

#### 4.2 REFERENCE DIPOLE CALIBRATION

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by SATIMO.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Gain |
|----------------|------------------------------|
| 400-6000MHz    | 0.1 dB                       |

#### 5.2 VALIDATION MEASUREMENT

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |            |                     |                             |
|------------------------------------------------------------|--------------------------|-----------------------------|------------|---------------------|-----------------------------|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor    | Uncertainty<br>(dB) | Standard<br>Uncertainty (%) |
| RF reflections                                             | 0.1                      | R                           | √3         | 0.06                |                             |
| Field probe conv. Factor                                   | 0.4                      | R                           | $\sqrt{3}$ | 0.23                |                             |
| Field probe anisotropy                                     | 0.25                     | R                           | $\sqrt{3}$ | 0.14                |                             |
| Positioning accuracy                                       | 0.2                      | R                           | √3         | 0.12                |                             |
| Probe cable placement                                      | 0.1                      | R                           | $\sqrt{3}$ | 0.06                |                             |
| System repeatability                                       | 0.2                      | R                           | $\sqrt{3}$ | 0.12                |                             |
| EUT repeatability                                          | 0.4                      | N                           | 1          | 0.40                |                             |
| Combined standard uncertainty                              |                          |                             |            | 0.52                |                             |
| Expanded uncertainty<br>95 % confidence level k = 2        |                          |                             |            | 1.00                | 13.0                        |

Page: 5/8











Ref: ACR.219.17.13.SATU.A

#### 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS



| Frequency (MHz) | Worst Case Return Loss (dB) | Requirement (dB) |
|-----------------|-----------------------------|------------------|
| 1700-2000 MHz   | -16.31                      | -10              |

## 6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to SATIMO's simulated results.

#### Measurement Condition

| Software Version                          | OpenHAC V2      |  |
|-------------------------------------------|-----------------|--|
| HAC positioning ruler                     | SN 42/09 TABH12 |  |
| E-Field probe                             | SN 08/11 EPH28  |  |
| H-Field probe                             | SN 31/10 HPH38  |  |
| Distance between dipole and sensor center | 10 mm           |  |
| E-field scan size                         | X=150mm/Y=20mm  |  |
| H-field scan size                         | X=40mm/Y=20mm   |  |
| Scan resolution                           | dx=5mm/dy=5mm   |  |
| Frequency                                 | 1900 MHz        |  |
| Input power                               | 20 dBm          |  |
| Lab Temperature                           | 21°C            |  |
| Lab Humidity                              | 45%             |  |

Page: 6/8









Ref: ACR.219.17.13.SATU.A

#### Measurement Result

|               | Measured | Internal Requirement |
|---------------|----------|----------------------|
| E field (V/m) | 149.90   | 153.4                |
| H field (A/m) | 0.45     | 0.445                |





Page: 7/8









Ref: ACR.219.17.13.SATU.A

## 7 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |
| HAC positioning ruler              | Satimo                  | TABH12 SN 42/09    | Validated. No cal required.                   | Validated. No ca required.                    |  |  |
| COMOHAC Test Bench                 | Version 2               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                       |  |  |
| Reference Probe                    | Satimo                  | EPH28 SN 08/11     |                                               | Characterized prior to test. No cal required. |  |  |
| Reference Probe                    | Satimo                  | HPH38 SN31/10      | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 11/2010                                       | 11/2013                                       |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2010                                       | 12/2013                                       |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 11/2010                                       | 11/2013                                       |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 11/2010                                       | 11/2013                                       |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 3/2012                                        | 3/2014                                        |  |  |

Page: 8/8



