Белорусский Государственный Университет Информатики и Радиоэлектроники

Факультет компьютерных систем и сетей

Кафедра ЭВМ

Лабораторная работа №1

Тема «Корреляционный анализ»

Выполнил: Проверил:

Студент группы 7М2432 Марченко В.В.

Канаш В.Н.

Задание:

Входные данные: п объектов, каждый из которых характеризуется двумя числовыми признаками: $\{x_i\}_{i=1}^n$ и $\{y_i\}_{i=1}^n$.

Требуется исследовать степень взаимосвязи между двумя признаками некоторых объектов. Для каждого набора данных необходимо выполнить следующие задания:

- 1. Визуализировать данные на плоскости в виде точек с координатами $\{(x_i, y_i)\}_{i=1}^n$.
- 2. Статистически оценить коэффициент корреляции Пирсона между признаками *х* и *у*.
- 3. Проверить статистическую гипотезу о некоррелированности признаков x и y на уровне значимости 0,05.

Исходные данные:

- 1) значения объёма исследуемой выборки (n) 10000;
- 2) значения вектора математических ожиданий (a) -(-1, 1);
- 3) корреляционных матриц (R) для моделируемой выборки из гауссовских случайных векторов $-\binom{1}{0.1} \binom{0.1}{2}$

Все описанные выше задания требуется выполнить для двух наборов данных.

- 1. Смоделированные независимые случайные векторы (X, Y), имеющие гауссовское распределение с заданным математическим ожиданием а и корреляционной матрицей R.
- 2. Реальные статистические данные из заданного набора (выдаются преподавателем).

Варианты реальных наборов данных №6. Wine

Название файла: 06-wine.txt

Ссылка: http://archive.ics.uci.edu/ml/datasets/Wine

Первый признак: alcohol (столбец № 2)

Второй признак: color-intensity (столбец № 11)

Результаты:

1. Изображения данных в виде точек на плоскости:

- 2. Статистические оценки коэффициентов корреляции Пирсона для каждого набора данных, сравнение статистической оценки коэффициента корреляции Пирсона с реальным коэффициентом корреляции Пирсона для смоделированных данных:
 - а) Данные из wine.csv:

```
data: x and y
t = 8.6542, df = 176, p-value = 3.056e-15
alternative hypothesis: true correlation is not equal to 0
5 percent confidence interval:
    0.5430304    0.5496808
sample estimates:
        cor
0.5463642
```

Число стьюдента для уровня значимости 0.05 и степеней свободы 200 равно 1.971

Т.к. |t| > 1,971, то гипотеза о некоррелированности отвергается.

b) Данные из модуляции по выборке:

Число Стьюдента для уровня значимости 0,05 и степеней свободы >100 равно 1,96.

Т.к. |t| > 1,96, то гипотеза о некоррелированности отвергается.

Листинг программы:

```
require(MASS)
analyse_cor <- function(x, y) {
   print(cor.test(x, y))
   dev.new()
   plot(x, y)
}
dat <- read.table("wine.csv", sep=",")
analyse_cor(dat$V2, dat$V11)

n <- 10000
a <- c(-1, 1)
r <- cbind(c(1, 0.1), c(0.1, 2))
dat <- mvrnorm(n, a, r)
analyse_cor(dat[,1], dat[,2])</pre>
```

Анализируемые данные:

14.23	5.64
13.2	4.38
13.16	5.68
14.37	7.8
13.24	4.32
14.2	6.75
14.39	5.25
14.06	5.05
14.83	5.2
13.86	7.22
14.1	5.75
14.12	5
13.75	5.6
14.75	5.4
14.38	7.5
13.63	7.3
14.3	6.2
13.83	6.6
14.19	8.7
13.64	5.1
14.06	5.65
12.93	4.5
13.71	3.8
12.85	3.93
13.5	3.52
13.05	3.58
13.39	4.8
13.3	3.95
13.87	4.5

	1
14.02	4.7
13.73	5.7
13.58	6.9
13.68	3.84
13.76	5.4
13.51	4.2
13.48	5.1
13.28	4.6
13.05	4.25
13.07	3.7
14.22	5.1
13.56	6.13
13.41	4.28
13.88	5.43
13.24	4.36
13.05	5.04
14.21	5.24
14.38	4.9
13.9	6.1
14.1	6.2
13.94	8.90
13.05	7.2
13.83	5.6
13.82	7.05
13.77	6.3
13.74	5.85
13.56	6.25
14.22	6.38
13.29	6
13.72	6.8
12.37	1.95
12.33	3.27
12.64	5.75
13.67	3.8
12.37	4.45
12.17	2.95
12.37	4.6
13.11	5.3
12.37	4.68
13.34	3.17
12.21	2.85
12.29	3.05
13.86	3.38
13.49	3.74
12.99	3.35
11.96	3.21

11.66	3.8
13.03	4.6
11.84	2.65
12.33	3.4
12.7	2.57
12	2.5
12.72	3.9
12.08	2.2
13.05	4.8
11.84	3.05
12.67	2.62
12.16	2.45
11.65	2.6
11.64	2.8
12.08	1.74
12.08	2.4
12.08	3.6
12.69	3.05
12.29	2.15
11.62	3.25
12.47	2.6
11.81	2.5
12.29	2.9
12.37	4.5
12.29	2.3
12.08	3.3
12.6	2.45
12.34	2.8
11.82	2.06
12.51	2.94
12.42	2.7
12.25	3.4
12.72	3.3
12.22	2.7
11.61	2.65
11.46	2.9
12.52	2
11.76	3.8
11.41	3.08
12.08	2.9
11.03	1.9
11.82	1.95
12.42	2.06
12.77	3.4
12	1.28
11.45	3.25

14.50	
11.56	6
12.42	2.08
13.05	2.6
11.87	2.8
12.07	2.76
12.43	3.94
11.79	3
12.37	2.12
12.04	2.6
12.86	4.1
12.88	5.4
12.81	5.7
12.7	5
12.51	5.45
12.6	7.1
12.25	3.85
12.53	5
13.49	5.7
12.84	4.92
12.93	4.6
13.36	5.6
13.52	4.35
13.62	4.4
12.25	8.21
13.16	4
13.88	4.9
12.87	7.65
13.32	8.42
13.08	9.40
13.5	8.60
12.79	10.8
13.11	7.1
13.23	10.52
12.58	7.6
13.17	7.9
13.84	9.01
12.45	7.5
14.34	13
13.48	11.75
12.36	7.65
13.69	5.88
12.85	5.58
12.96	5.28
13.78	9.58
13.73	6.62
13.45	10.68
15.43	10.00

12.82	10.26
13.58	8.66
13.4	8.5
12.2	5.5
12.77	9.899999
14.16	9.7
13.71	7.7
13.4	7.3
13.27	10.2
13.17	9.3
14.13	9.2