# The Nearest Neighbor Algorithm

- A lazy learning algorithm
  - The "learning" does not occur until the test example is given
  - In contrast to so called "eager learning"
    algorithms (which carries out learning without knowing the test example, and after learning training examples can be discarded)

# **Nearest Neighbor Algorithm**

- Remember all training examples
- Given a new example x, find the its closest training example <x<sup>i</sup>, y<sup>i</sup>> and predict y<sup>i</sup>



How to measure distance – Euclidean (squared):

$$\left\|\mathbf{x} - \mathbf{x}^i\right\|^2 = \sum_{i} (x_i - x_j^i)^2$$

#### **Decision Boundaries: The Voronoi Diagram**

- Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point.
- These areas can be viewed as zones of control.



#### **Decision Boundaries: The Voronoi Diagram**

- Decision boundaries are formed by a subset of the Voronoi diagram of the training data
- Each line segment is equidistant between two points of opposite class.
- The more examples that are stored, the more fragmented and complex the decision boundaries can become.



# **Decision Boundaries**



With large number of examples and possible noise in the labels, the decision boundary can become nasty!

We end up overfitting the data

# **K-Nearest Neighbor**

Example:



Find the **k** nearest neighbors and have them vote. Has a smoothing effect. This is especially good when there is noise in the class labels.

## Effect of K

K=1 K=15





Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Larger k produces smoother boundary effect and can reduce the impact of class label noise.

But when K = N, we always predict the majority class

## Question: how to choose k?

 Can we choose k to minimize the mistakes that we make on training examples (training error)?



## Distance Weighted Nearest Neighbor

- It makes sense to weight the contribution of each example according to the distance to the new query example
  - Weight varies inversely with the distance, such that examples closer to the query points get higher weight
- Instead of only k examples, we could allow all training examples to contribute
  - Shepard's method (Shepard 1968)

# **Curse of Dimensionality**

- kNN breaks down in high-dimensional space
  - "Neighborhood" becomes very large.
- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-nn. Suppose our query point is at the origin.
  - In 1-dimension, we must go a distance of 5/5000 = 0.001 on the average to capture 5 nearest neighbors
  - In 2 dimensions, we must go  $\sqrt{0.001}$  to get a square that contains 0.001 of the volume.
  - In d dimensions, we must go  $(0.001)^{1/d}$





# The Curse of Dimensionality: Illustration

 With 5000 points in 10 dimensions, we must go 0.501 distance along each dimension in order to find the 5 nearest neighbors



#### The Curse of Noisy/Irrelevant Features

- NN also breaks down when data contains irrelevant/noisy features.
- Consider a 1-d problem where query x is at the origin, our nearest neighbor is  $x_1$  at 0.1, and our second nearest neighbor is  $x_2$  at 0.5.
- Now add a uniformly random noisy feature.
  - $P(||x_2' x|| < ||x_1' x||) \approx 0.15.$



# **Curse of Noise (2)**

Location of  $x_1$  versus  $x_2$ 



#### **Problems of k-NN**

- Nearest neighbor is easily misled by noisy/irrelevant features
- One approach: Learn a distance metric:
  - that weights each feature by its ability to minimize the prediction error, e.g., its mutual information with the class.
  - that weights each feature differently or only use a subset of features and use cross validation to select the weights or feature subsets
  - Learning distance function is an active research area

# **Nearest Neighbor Summary**

#### Advantages

- Learning is extremely simple and intuitive,
- Very flexible decision boundaries
- Variable-sized hypothesis space

#### Disadvantages

- distance function must be carefully chosen or tuned
- irrelevant or correlated features have high impact and must be eliminated
- typically cannot handle high dimensionality
- computational costs: memory and classification-time computation
  - To reduce the cost of finding nearest neighbors, use data structure such as kd-tree