В	T	S-	V	(R	S')0	1	-23-	1:	36	5
---	---	----	---	----	----	----	---	------	----	----	---

Reg. No.

B. Tech. Degree V Semester Regular/Supplementary Examination January 2023

CS/EC/IT/CE/EE/ME/SE 19-200-0501 NUMERICAL AND STATISTICAL METHODS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

CO1: Solve algebraic and transcendental equations by numerical methods.

CO2: Solve numerical differentiation and integration problems.

CO3: Compute the mean and variance of a probability distribution including the binomial Distribution.

CO4: Test hypothesis on data.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze, L5 - Evaluate,

L6 - Create

PO - Programme Outcome

PART A
(Answer ALL questions)

		(Answer ALL questions)	*			
		$(8\times3=24)$	Marks	BL	CO	PO
I.	(a)	Find the missing term in the following table.	3	L2	1	1.1
	()	x 0 1 2 3 4				
		f(x) 1 3 9 - 81				
	(b)	A devotee of Newton-Raphson method used the method to solve the	3	L3	1	1.1
		equation $x^{100} = 0$ using the initial estimate $x_0 = 0.1$. Calculate the next				
		three estimate using Newton method.				
	(c)	The f(x) is given by	3	L3	2	1.1
		x 0 0.5 1			*	
		f(x) 1 0.8 0.5				
		Then using Trapezoidal rule what is the value of $\int_0^1 f(x)dx$?				
	<i>(</i> 1)		3	L2	2	1.1
	(d)	Using Runge-kutta method of order 4 what is the value of $y(0.1)$ for	<i>3</i> .	1.12	2	1.1
		y' = x - 2y, $y(0) = 1$ taking $h = 0.1$.				
	, (c	Given.	3	L2	3	1.1
	`	x 0 1 2				
		y 0 1.1 2.1				
		Then which is the best fit straight line?				
	(f)	If $P(1) = P(2)$ then what is the mean of the Poisson distribution.	3	L2	3	1.1
	(g)	A random sample of 400 items gives the mean 4.45 and the variance	3	L3	4	1.1
		as 4. Can the samples be regarded as drawn from the normal				
		population with mean 4? (At 5% level of significance).	2	τ 1	4	1 1
	(h)	Derive the formula for sampling distribution of means.	3	L1	4	1.1
		PART B				
		$(4\times12=48)$				
II.	(a)	Using regular-falsi method compute the real root of the following	6	L3	1	1.1
11.	(4)	equations correct to three decimal places.				
		$2x - \log x = 7$				
NG	(d)	Using Newton's divided difference interpolation find the polynomial	6	L3	1	1.1
NCES		of the given data				

of the given data

x	-1	0	1	3	
f(x)	2	1	0	-1	
				OR	

D15	V (10 L	5)-01-25-1505				
			Marks	BL	CO	PO
III.	(a)	If $y(1) = -3$, $y(3) = 9$, $y(4) = 30$, $y(6) = 132$ find the Lagrange's interpolation polynomial that takes the same values as y at the given	6	L3	1	1.1
	(b)	points. Solve the following equation by Gauss-Seidel method $2x + y + 6z = 9,8x + 3y + 2z = 13,x + 5y + z = 7$.	6	L3	1	1.1
IV.	(a)	Find the $y'(0)$ and $y''(0)$ from the following table $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	L5	2	1.1
	(b)	Apply Euler's method to solve $y' = x + y$, $y(0) = 0$ choosing the step length = 0.2 (carry out 6 steps).	6	L5	2	1.1
		OR				
V.	(a)	Solve $y' = 3x + y^2$, $y(0) = 1$. Using Taylor's series method and compute $y(0.1)$.	6	L4	2	1.1
	(b)	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using:	6	L4	2	1.1
		 (i) trapezoidal rule (ii) Simpson's 1/3 rd rule (iii) Simpson's 3/8 th rule. 				
VI.	(a)	From an urn containing 3 red and 2 white balls a man is to draw 2 balls at random without replacement, being promised ₹20 for each red ball he draws and ₹10 for each white one. Find his expectation	6	L4	3	1.1
	(b)	ball he draws and ₹10 for each white one. Find his expectation. Fit a binomial distribution for the following data. X 0 1 3 4	6	L4	3	1.1
VII.	(a)	In a normal distribution 31% of the items are under 45 and 81% are over 64. Find the mean and standard deviation of the distribution.	6	L5	3	1.1
	(b)	By the method of least squares find the straight line that best fits the following data.	6	L5	3	1.1
	•	x 1 2 3 4 5 y 14 27 40 55 68				
VIII.	(a)	A die was thrown 60 times and the following frequency distribution was observed.	6	L4	4	1.1
	(b)	Two samples of 9 and 7 individuals have variances 4.8 and 9.6 respectively. Is the variance 9.6 significantly greater than the variance 4.6? OR	6	L4	4 .	1.1
IX.	(a)	A machine produces 16 imperfect articles in a sample of 500. After machine is overhauled, it produces 3 imperfect articles in a batch of 100. Has the machine been improved.	6	L4	4	1.1
	(b)	In a sample of 500 people from a state 280 take tea and rest take coffee. Can we assume that tea and coffee are equally popular in the state at 5% level of significance?	6	L4	4	1.1