$\begin{array}{c} \textbf{Skill Mastery Quiz 4} \\ \textbf{Communicating in Math (MTH 210-01)} \end{array}$ Winter 2020

Name:

L3-3 Construct a truth table for $P \to (Q \vee R)$.

P	Q	R	$Q \vee R$	$P \to (Q \vee R)$
\overline{T}	Т	Т	Т	T
Τ	F	Γ	Т	ightharpoons T
\mathbf{F}	Т	Т	Т	${ m T}$
\mathbf{F}	F	Т	Т	${ m T}$
${ m T}$	Т	F	Т	ightharpoons T
${ m T}$	F	F	F	F
\mathbf{F}	Т	F	Т	m T
\mathbf{F}	F	F	F	T

L4-3 Write the set $\{\ldots, -5, -3, 1, 1, 3, 5, \ldots\}$ using set builder notation.

As usual there are many ways to do this. One way is $\{x \in \mathbb{Z} \mid x = 2n + 1 \text{ for some } n \in \mathbb{Z}\}.$

L5-2 Write a useful negation of the following statement:

There exists $n \in \mathbb{N}$ such that if $a \in \mathbb{N}$ then $\frac{1}{n} < a$.

Useful negations don't start with "It is not true that..." and avoid the word not in cases where it could be replaced (e.g., don't use "not even").

A negation is: "for all $n \in \mathbb{N}$, $a \in \mathbb{N}$ and $\frac{1}{n} \geq a$." A negation that is slightly better worded is "for all $n \in \mathbb{N}$ there exists $a \in \mathbb{N}$ such that $\frac{1}{n} \geq a$."

P3-1 The following statement is incorrect:

If n is an integer then $n^2 \equiv 1 \pmod{3}$.

Show the statement is false using a counterexample. You should clearly explain why the counterexample you found shows the statement is false.

This statement is false and there are many counterexamples. For example, consider n = 0. Note n is an integer and $n^2 = 0$. However, $3 \nmid 0 - 1$ (because there is no integer x such that 3x = -1, and therefore $n^2 \not\equiv 1 \pmod{3}$. Thus we have found an n that makes the hypothesis true and the conclusion false, making the statement false.