Math 172 Assignment 11 Tuesday, April 24, 2018

Problems 1 - 6 on Sakai

1. If *W* and *V* are algebraic sets, show that $W \cap V$ is an algebraic set.

2. If *W* and *V* are algebraic sets, show that $W \cup V$ is an algebraic set.

3. Show that the set $D = \{(x, x) : x \in \mathbb{R} \text{ but } x \neq 1\}$ is NOT an algebraic set. (Hint: if $f \in K[x, y]$ vanishes on D, what can be said about f(1, 1)?)

4. Given any monomial order, show that for nonzero polynomials f and g, that $\operatorname{multidegree}(fg) = \operatorname{multidegree}(f) + \operatorname{multidegree}(g)$. Also, $\operatorname{multidegree}(f+g) \leq \max$ $\operatorname{multidegree}(f)$, $\operatorname{multidegree}(g)$ with equality if $\operatorname{multidegree}(f)$ is not equal $\operatorname{multidegree}(g)$.

5. The grevlex monomial order is defined by comparing by the total degree first, then comparing exponents of the last indeterminate x_n but reversing the outcome (so the monomial with smaller exponent is larger in the ordering), followed (in case of a tie) by a similar comparison of x_{n-1} , and so forth ending with x1. Show that graded lex order and grevlex order are the same for monomials with 1 and 2 indeterminates, but find an example of two monomials (involving up to 3 indeterminates) for which lex and grevlex order those monomials differently.

6. Perform polynomial division on $(x^3y + y)$ by f = (xy + 2x) and $g = (x^3 + 1)$ to get a remainder term, and show that the remainder depends on the order of f and g in the polynomial division.