El protocolo IPv6

Integrantes:

Martín Moloeznik, Nicolás Paz Reyes martinmoloeznik@gmail.com, rubenpaz2105@gmail.com

 $Repositorio: \verb|https://github.com/N1CO-P4Z/Protocolo-IPv6||$

Índice

1.	Introducción			
	IPv6 SLAAC and EUI-64 Basics2.1. Configuración del Router en IPv62.2. Observación de PDUs y Diagramas			
3.	Escenario 2: Neighbor Discovery y NDP	3		
4.	Conclusiones	3		
5.	Referencias	3		

Introducción 1.

El protocolo IPv6 fue desarrollado para reemplazar a IPv4 debido a la necesidad de una mayor cantidad de direcciones IP en el mundo. Dentro de IPv6 existen mecanismos esenciales para la configuración de direcciones y la comunicación entre dispositivos, entre los cuales se destacan SLAAC, EUI-64 y el protocolo Neighbor Discovery (NDP).

2. IPv6 SLAAC and EUI-64 Basics

2.1. Configuración del Router en IPv6

Figura 1: Figura 1: Red a ensayar

Aquí se detalla la configuración necesaria en el router, incluyendo la activación de IPv6, asignación de direcciones LLA y GUA, y otros comandos.

2.2. Observación de PDUs y Diagramas

Utilizando el paquete bytefield se pueden dibujar diagramas de los campos de los mensajes ICMPv6, por ejemplo:

48 bit mac			00-E0-F9-98-8A-07])	
separar medio			00-E0-F9	98-8A-07		
insertar FF-FE			00-E0-F9 FF-FE 98-8A-07			
primeros 2 hexa			0000-0000-E0-F9 FF-FE 98-8A-07			Header
48 bit mac			00-E0-F9-98-8A-07			
48 bit mac			00-E0-F9-98-8A-07			
48 bit mac			00-E0-F9-98-8A-07			
0	4	12			32	
Ver:6	TRFC		$FLOW\ LABEL$			
	PL:12		NEXT:0x3a	HOP LIMIT:255		Header
SRC IP:FE80::2E0:F9FF:FE98:8A07						

`

Este paquete es muy útil para representar gráficamente la estructura de los paquetes (PDU), facilitando la explicación de campos y su función en protocolos como IPv6. Se recomienda su uso cada vez que se necesite visualizar la segmentación de datos en un diagrama, lo que ayuda a clarificar cómo se organiza la información en cada mensaje.

3. Escenario 2: Neighbor Discovery y NDP

En esta sección se describe el proceso de descubrimiento de vecinos en IPv6, incluyendo:

- Configuración de las interfaces en el router y dispositivos.
- Flujo de mensajes de NDP y explicación de cada uno (por ejemplo, RS y RA).
- Análisis de los PDUs involucrados y la conversión de direcciones MAC.

4. Conclusiones

Aquí se sintetizan los resultados obtenidos y se discuten las ventajas y desventajas de la autoconfiguración en IPv6, así como el impacto del proceso de Neighbor Discovery en el rendimiento de la red.

5. Referencias

Para la elaboración de este informe utilizamos el contenido de los siguientes videos.

- Video 1: "IPv6 SLAAC and EUI-64 Basics in Packet Tracer", Dan Alberghetti, 2019, at https://www.youtube.com/watch?v=yMK1NVHksDE.
- Video 2: "IPv6 NDP and ICMPv6 using Packet Tracer", Dan Alberghetti, 2020, at https://www.youtube.com/watch?v=y2GpG9a0IFI
- Video 3: "Detección de vecinos IPv6 (Packet Tracer Lab 9.3.4)", RedesNetw channel, 2022, at https://www.youtube.com/watch?v=ZBVXbgF39gw