

IN THE CLAIMS:

1-2. (Cancelled).

3. (Currently Amended): A vehicle suspension system comprising:
a plurality of springs;
a plurality of dampers, each corresponding to one of the springs; and
a plurality p of actuators for generating control force applied to the suspension system,

wherein:

the suspension system is formalized represented by an equation (1); and

the equation (1) is decoupled into n modal equations,

wherein the equation (1) is a linear matrix equation having a plurality n of degrees of freedom, and the linear matrix equation includes a damping matrix for a viscous damping, wherein the equation (1) is

$$M\ddot{x}(t) + C(\dot{x}(t) - \dot{u}(t)) + K(x(t) - u(t)) = Pf(t)$$

wherein:

n and p respectively denote the number of degrees of freedom of the suspension system and the number of independent actuators;

M , C , and K respectively denote a mass matrix, a damping matrix, and a stiffness matrix, each of which is symmetrically $n \times n$, the mass matrix M being a positive definite matrix, the damping matrix C being a positive semi-definite matrix, and the stiffness matrix K being a positive definite matrix;

P denotes an $n \times p$ real matrix corresponding to positions of the actuators,

$x(t)$ and $u(t)$ respectively denote $n \times 1$ state and disturbance vectors; and

$f(t)$ denotes comprises the control force applied to the suspension system, denoted as a $p \times 1$ external force vector.

4. (Currently Amended): The vehicle suspension system of claim 3, wherein a proportional relationship $k_j = \alpha \times c_j$ is satisfied between each pair of a spring coefficient k_j of a j -th j^{th} spring and a damping coefficient c_j of a j -th j^{th} damper corresponding to the j -th j^{th} spring; wherein α is a constant.

5. (Currently Amended): The vehicle suspension system of claim 4, wherein the number n and the number p are equal,

the suspension system further comprising:

a detecting unit for detecting at least one of the state vector $x(t)$ and its velocity $\dot{x}(t)$; and

a controller for controlling the actuators on the basis of the detected one of the state vector $x(t)$ or its velocity $\dot{x}(t)$,

wherein the controller controls the actuators by an actuating force of $f = Q^{-1} \hat{f}$, wherein:

$Q = S^T P$, $\hat{f}_i = -C_{Si} \dot{\xi}_i$, and $x(t) = S \xi(t)$ are satisfied;

C_{Si} is a damping coefficient of a sky-hook damper connected to an i -th i^{th} mode;

and

S is a matrix consisting of eigenvectors of the stiffness matrix K and is normalized with respect to the mass matrix M .

6. (Currently Amended): The vehicle suspension system of claim 4, wherein the number p is less than the number n ,

the suspension system further comprising:

a detecting unit for detecting at least one of the state vector $x(t)$ and its velocity $\dot{x}(t)$; and

a controller for controlling the actuators on the basis of the detected one of the state vector $x(t)$ or its velocity $\dot{x}(t)$,

wherein the controller controls the actuators by an actuating force of

$$\hat{f}_i = -F_{Si} \text{sign}(\dot{\xi}_i) = \sum_{j=1}^p Q_{ij} f_j, \quad f(t) \text{ that satisfies}$$

wherein:

$Q = S^T P$ and $x(t) = S \xi(t)$ are satisfied;

F_{Si} is a frictional force of a sky-hook coulomb friction damper connected to an i^{th} mode; and

S is a matrix consisting of eigenvectors of the stiffness matrix K and is normalized with respect to the mass matrix M .

7. (Currently Amended): The vehicle suspension system of claim 6, wherein the actuating force $f(t)$ satisfies

$$\left\{ \begin{array}{ll} \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) \geq 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) \geq 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) \geq 0, & f_j = -F_A \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) \geq 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) \geq 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) < 0, & f_j = -F_1 \\ \vdots & \vdots \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) < 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) < 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) \geq 0, & f_j = -F_{(2^n-2)} \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) < 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) < 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) < 0, & f_j = -F_B \end{array} \right\}$$

with respect to $i = 1, \dots, n$ and $j = 1, \dots, p$,

wherein:

F_A is a value in a range of zero(0) to F_P ;

F_B is a value in a range of zero(0) to F_N ;

F_k for $k = 1, \dots, (2^n - 2)$ is a value between F_P and F_N ; and

F_P and F_N respectively denote a positive maximum force and a negative maximum force that a j^{th} j^{th} actuator can generate.

8. (Original): The vehicle suspension system of claim 7, wherein the actuating force $f(t)$ satisfies

$$\left\{ \begin{array}{l} \text{if } Q_{ij} \text{sign}(\dot{\xi}_i) \geq 0 \text{ for } i = 1, \dots, n, \quad f_j = -F_A \\ \text{if } Q_{ij} \text{sign}(\dot{\xi}_i) < 0 \text{ for } i = 1, \dots, n, \quad f_j = -F_B \\ \text{Otherwise,} \quad \quad \quad f_j = 0 \end{array} \right\}$$

with respect to $i = 1, \dots, n$ and $j = 1, \dots, p$.

9. (Original): The vehicle suspension system of claim 8, wherein values of F_A and F_P are equal, and values of F_B and F_N are equal.

10. (Currently Amended): A method for controlling a vehicle suspension system, the vehicle suspension including a plurality of dampers and a plurality of actuators, the vehicle suspension system being formalized represented by an equation (1) and being transformed to a decoupled equation (2), the method comprising:

calculating a velocity vector $\dot{x}(t)$ of a state vector $x(t)$ of equation (1);

calculating an actuating force $f(t)$ such that the actuating force $f(t)$ satisfies

$f(t) = (S^T P)^{-1} (-C_{Si})(S^T K S)^{-1} (S^T K) \dot{x}(t)$, the C_{Si} being a damping coefficient of a sky-hook damper connected to an i -th i^{th} mode; and

actuating the actuators by the calculated actuating force $f(t)$,

wherein:

the equation (1) is

$$M\ddot{x}(t) + C(\dot{x}(t) - \dot{u}(t)) + K(x(t) - u(t)) = Pf(t), \text{ and}$$

the equation (2) is

$$I\ddot{\xi}(t) + \text{diag}[2\zeta_i \omega_i] (\dot{\xi}(t) - \dot{\eta}(t)) + \Lambda_K (\xi(t) - \eta(t)) = \hat{f}(t)$$

wherein:

n and p respectively denote the number of degrees of freedom of the suspension system and the number of independent actuators;

M , C , and K respectively denote a mass matrix, a damping matrix, and a stiffness matrix, each of which is symmetrically $n \times n$, the mass matrix M being a positive definite matrix, the damping matrix C being a positive semi-definite matrix, and the stiffness matrix K being a positive definite matrix;

P denotes an $n \times p$ real matrix corresponding to positions of the actuators,

$x(t)$ and $u(t)$ respectively denote $n \times 1$ state and disturbance vectors;

$f(t)$ denotes a $p \times 1$ external force vector;

I is an $n \times n$ unit matrix;

S is a matrix consisting of eigenvectors of the stiffness matrix K and is normalized with respect to the mass matrix M ; and

$$Q = S^T P, \hat{f} = Qf(t), x(t) = S\xi(t), u(t) = S\eta(t),$$

$S^T K S = \text{diag}[\omega_i^2] = \Lambda_K$, and $S^T C S = \hat{C} = \text{diag}[2\zeta_i \omega_i]$ are satisfied by the matrix S .

11. (Currently Amended): A method for controlling a vehicle suspension system, the vehicle suspension including a plurality of dampers and a plurality of actuators, the vehicle suspension system being formalized represented by an equation (1) and being transformed to a decoupled equation (2), the method comprising:

calculating a velocity vector $\dot{x}(t)$ of a state vector $x(t)$ of the equation 1;

calculating an actuating force $f(t)$ such that the actuating force $f(t)$ satisfies

$$\left\{ \begin{array}{l} \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) \geq 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) \geq 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) \geq 0, \quad f_j = -F_A \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) \geq 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) \geq 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) < 0, \quad f_j = -F_1 \\ \vdots \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) < 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) < 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) \geq 0, \quad f_j = -F_{(2^i-2)} \\ \text{if } Q_{1j} \text{sign}(\dot{\xi}_1) < 0 \& Q_{2j} \text{sign}(\dot{\xi}_2) < 0 \& \cdots Q_{nj} \text{sign}(\dot{\xi}_n) < 0, \quad f_j = -F_B \end{array} \right\}$$

with respect to $i = 1, \dots, n$ and $j = 1, \dots, p$; and

actuating the actuators by the calculated actuating force $f(t)$,

wherein:

F_A is a value in a range of zero (0) to F_P ;

F_B is a value in a range of zero (0) to F_N ;

F_k for $k = 1, \dots, (2^n - 2)$ is a value between F_P and F_N ;

F_P and F_N respectively denote a positive maximum force and a negative maximum force that a j -th j^{th} actuator can generate;

the equation (1) is

$$M\ddot{x}(t) + C(\dot{x}(t) - \dot{u}(t)) + K(x(t) - u(t)) = Pf(t); \text{ and}$$

the equation (2) is

$$I\ddot{\xi}(t) + \text{diag}[2\zeta_i \omega_i](\dot{\xi}(t) - \dot{\eta}(t)) + \Lambda_K(\xi(t) - \eta(t)) = \hat{f}(t)$$

wherein:

n and p respectively denote the number of degrees of freedom of the suspension system and the number of independent actuators;

M , C , and K respectively denote a mass matrix, a damping matrix, and a stiffness matrix, each of which is symmetrically $n \times n$, the mass matrix M being a positive definite matrix, the damping matrix C being a positive semi-definite matrix, and the stiffness matrix K being a positive definite matrix;

P denotes an $n \times p$ real matrix corresponding to positions of the actuators,

$x(t)$ and $u(t)$ respectively denote $n \times 1$ state and disturbance vectors;

$f(t)$ denotes a $p \times 1$ external force vector;

I is an $n \times n$ unit matrix;

S is a matrix consisting of eigenvectors of the stiffness matrix K and is normalized with respect to the mass matrix M ; and

$$Q = S^T P, \hat{f} = Qf(t), x(t) = S\xi(t), u(t) = S\eta(t),$$

$S^T K S = \text{diag}[\omega_i^2] = \Lambda_K$, and $S^T C S = \hat{C} = \text{diag}[2\zeta_i \omega_i]$ are satisfied by the matrix S .

12. (Original): The method of claim 11, wherein the actuating force $f(t)$ satisfies

$$\left\{ \begin{array}{l} \text{if } Q_{ij} \text{sign}(\dot{\xi}_i) \geq 0 \text{ for } i = 1, \dots, n, \quad f_j = -F_A \\ \text{if } Q_{ij} \text{sign}(\dot{\xi}_i) < 0 \text{ for } i = 1, \dots, n, \quad f_j = -F_B \\ \text{Otherwise,} \quad \quad \quad f_j = 0 \end{array} \right\}$$

with respect to $i = 1, \dots, n$ and $j = 1, \dots, p$.

13. (Original): The method of claim 12, wherein values of F_A and F_P are equal, and values of F_B and F_N are equal.