中国股市条件波动率模型的估计与检验

蒋志强*、储丽娅#

*zqjiang.ecust@qq.com

#cherry_8621@163.com

收益率模型

$$\begin{cases} r_t = \underline{\mu_t} + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$$

收益率模型
$$\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$$

μ, 的设定:

- > 常数
- **➢ ARMA过程**

$$r_t = \phi_0 + \sum_{p=1}^{P} \phi_p r_{t-p} + \sum_{q=1}^{Q} \theta_q \epsilon_{t-q} + \epsilon_t$$

有:
$$Var[r_t|I_{t-1}] = \sigma_t^2$$

收益率模型
$$\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$$

σ_t^2 的设定:

- > ARCH
- > GARCH
- > EGARCH
- > ARCH-M

收益率模型 $\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$

Z_i 的设定:

- > 标准正态分布
- > 标准t分布
- > 标准的广义误差分布
- > 混合正态分布
- **>**

ARCH

> **ARCH**(1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2, \quad \alpha_0 > 0, 0 < \alpha_1 < 1.$$

\rightarrow ARCH(q)

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 \equiv \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- ✓ 保证 $\sigma_t^2 > 0$, 要求 $\alpha_i > 0$ (i = 0, 1, ..., q)
- \checkmark 保证平稳,要求 $\sum_{i=1}^{q} \alpha_i < 1$

GARCH

 \succ GARCH(p, q)

$$\sigma_t^2 = \omega + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- \checkmark 保证 $\sigma_t^2 > 0$, 要求 α_i $\beta_i > 0$ (i = 0,1,...,q)
- ✓ 保证平稳,要求

$$\sum_{i=1}^{p} \beta_i + \sum_{i=1}^{q} \alpha_i < 1$$

EGARCH

 \succ EGARCH(p, q)

$$\log \sigma_t^2 = \omega + \sum_{i=1}^p \beta_i \log \sigma_{t-i}^2 + \sum_{i=1}^q \alpha_i (|z_{t-i}| - E|z_{t-i}|) + \sum_{i=1}^q \theta_i z_{t-i}$$

✓ **杠杆效应** Leverage effect: $\theta_i < 0$

Z_t 设定

> 标准正态分布

$$f(z_t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z_t^2}{2}}$$

\rightarrow 标准 t 分布

$$g(x) = \frac{\Gamma((v+1)/2)}{\sqrt{v\pi}\Gamma(v/2)} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2},$$

$$f(z_t) = \sigma g(\sigma z_t), \quad \sigma \equiv \sqrt{v/(v-2)}.$$
 $v(v > 2)$

实验流程

- 1. 数据描述性统计
- 2. 检验ARCH效应
- 3. ARCH(1)和GARCH(1,1)模型参数估计 和条件异方差检验
- 4. EGARCH(1,1)模型参数估计、杠杆效应检验和条件异方差检验

描述性统计

统计量	MATLAB函数
交易日天数	length
均值	mean
标准差	std
偏度	skewness
峰度	kurtosis
最大值	max
最小值	min
自相关系数	autocorr

检验收益率的ARCH效应

ARCH效应检验(条件异方差?)

Engle(1982)'s ARCH test

• Denote $\hat{\epsilon}_t$ as the demeaned return series, and run regression:

$$\hat{\epsilon}_t^2 = \alpha_0 + \alpha_1 \hat{\epsilon}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-2}^2 + \dots + \alpha_m \hat{\epsilon}_{t-m}^2 + u_t.$$

• Record the R^2 of the regression, then under the null hypothesis of no ARCH effect

$$T \cdot R^2 \stackrel{a}{\sim} \chi^2(m)$$
.

检验ARCH效应

```
h = archtest(res)
h = archtest(res,Name,Value)
[h,pValue] = archtest(___)
[h,pValue,stat,cValue] = archtest(___)
```

Example:

```
ret_demeaned = ret - mean(ret);
```

```
[h, pValue, stat] = archtest(ret_demeaned, 'Lags', 2);
```


模型参数原理

- 1. 推导收益率条件概率分布
- 2. 似然函数
- 3. 极大化似然函数估计模型参数

ARCH(1)参数估计

ARCH(1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2. \end{cases}$$

Conditional density:

$$f(r_t|r_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left[-\frac{(r_t-\mu)^2}{2\sigma_t^2}\right].$$

Log likelihood function:

$$L(\theta) \equiv \ln f(r_T, \dots, r_t | r_0) = \sum_{t=1}^{T} \ln f(r_t | r_{t-1})$$
$$= -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2}$$

GARCH(1, 1)参数估计

GARCH(1,1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2, \end{cases}$$

Log likelihood function:

$$L(\theta) \equiv -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2},$$

where $\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2$.

• Initial value σ_0^2 : Bollerslev proposes using sample variance:

$$\hat{\sigma}^2 \equiv \frac{1}{T} \sum_{t=1}^{T} (r_t - \mu)^2$$

EARCH(1, 1)参数估计

EGARCH(1,1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \log \sigma_t^2 = \omega + \beta_1 \log \sigma_{t-1}^2 + \alpha_1(|z_{t-1}| - E|z_{t-1}|) + \theta z_{t-1}. \end{cases}$$

Log likelihood function:

$$L(\theta) \equiv -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2},$$

where

$$\sigma_t^2 = \exp\left[\omega + \beta_1 \log \sigma_{t-1}^2 + \alpha_1(|z_{t-1}| - E|z_{t-1}|) + \theta z_{t-1}\right].$$

• Initial value σ_0^2 :

$$\hat{\sigma}^2 \equiv \frac{1}{T} \sum_{t=1}^{T} (r_t - \mu)^2$$

MATLAB估计模型参数

fit_to_garch = garch('Offset', NaN,
'GARCH', NaN, 'ARCH', NaN,
'GARCHLags', 1, 'ARCHLags', 1);

[EstPars_GARCH, EstParsCov_GARCH] = estimate(fit_to_garch, ret)

自学matlab garch函数和egarch函数

https://www.mathworks.com/help/econ/specify-garch-models-using-garch.html

https://www.mathworks.com/help/econ/specify-egarch-models-using-egarch.html

MATLAB估计模型参数

GARCH(1, 1)	Conditional V	ariance Model wit	h Offset (Gaus	sian Distribution)
	Value	StandardError	TStatistic	PValue
Constant	5. 0872e-06	6.7316e-07	7. 5571	4. 1215e-14
GARCH {1}	0.83909	0.0068551	122. 4	0
ARCH (1)	0.15865	0.0081759	19.404	7. 106e-84
Offset	0.00019495	0.0001412	1. 3807	0. 16738

```
EstPars_GARCH =
```

garch - 属性:

Description: "GARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution)"

Distribution: Name = "Gaussian"

P: 1 Q: 1

Constant: 5.08717e-06

GARCH: {0.839088} at lag [1] ARCH: {0.158646} at lag [1]

Offset: 0.000194952

EstParsCov_GARCH =

1.0e-04 *

0.0000	-0.0000	0.0000	0.0000
-0.0000	0.4699	-0.4724	0.0013
0.0000	-0.4724	0.6684	-0.0013
0.0000	0.0013	-0.0013	0.0002

MATLAB估计模型参数

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2, \end{cases}$$

GARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution):

	Value	StandardError	TStatistic	PValue
Constant	5. 0872e-06	6.7316e-07	7. 5571	4. 1215e-14
GARCH {1}	0.83909	0.0068551	122. 4	0
ARCH {1}	0. 15865	0.0081759	19. 404	7.106e-84
Offset	0.00019495	0.0001412	1. 3807	0. 16738

检验冲击 Z_t 的ARCH效应

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2, \end{cases}$$

- 1. 利用估计参数计算 ε_t
- 2. 设 $\sigma_0=0$, 计算 σ_t
- 3. 计算冲击 $Z_t = \varepsilon_t / \sigma_t$
- 4. 利用archtest检验 Z_t

基于GARCH(1, 1)的收益率模拟

- 1.设置模型参数 [garch]
- 2.利用标准正态分布产生随机数 [simulate]

```
simulate_garch = garch('Offset', 0.000245, 'GARCH', 0.8869,
'ARCH', 0.1010, 'Constant', 5.18*10^-6, 'GARCHLags', 1,
'ARCHLags', 1);
[vlt_sim_garch, ret_sim_garch] = simulate(simulate_garch, 1000);
```


文献阅读

- 2-2004AER Risk and volatility econometric models and financial practice.pdf
- 2-波动率预测_GARCH模型与隐含波动率_郑振龙.pdf
- 2-基于GARCH模型的波动率与隐含波动率实证分析_以上证50ETF期权为例_杨晓辉.pdf
- 2-中国股票市场的波动率预测模型及其SPA检验_魏宇.pdf