Naphon Santisukwongchot

Profile summary

Student

Thammasat business school Business administration: Finance

Aug 2017 - May 2021

Present

Associate account manager

N-Squared eCommerce, Bangkok Oct 2021 - May 2023

Seeking a career transition into data science. Excellent understanding and proficiency of platforms for effective data analysis, including Excel, Python, R, and SQL. Strong communication, organizational and analytical skills.

Technical strengths

Business Intelligence: Looker, Power BI, Tableau

Data Analysis: Pandas, NumPy

Data Visualization: Matplotlib, Seaborn

Machine Learning: Scikit-Learn

Microsoft Office: Excel, PowerPoint, Word

Programming: Python, R, SQL

Skills

- ♦ Attention to Detail
- ♦ Collaboration
- ♦ Problem Solving
- ♦ IELTS 6

Business Acumen

♦ Critical Thinking

♦ Regression , Classification, Clustering

Insurance Cost Analysis (1)

Importing library

Import frameworks

pandas, numpy: Data manipulation matplotlib, seaborn: Data visualization

Sklearn:

Machine learning

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_score, train_test_split
```

Insurance Cost Analysis (2)

Data wrangling

- ♦ df.info(): identify 'Null' in columns.
- ♦ There are missing values in age and smoker column

— Handle missing data

- ♦ Continuous attributes (age), replace with mean
- ♦ Categorical attributes (smoker), replace with **mode**
- ♦ Update data types

```
df df df
```


df.info()

2 bmi 2771 non-null float64
3 no of children 2771 non-null int64
4 smoker 2764 non-null object
5 region 2771 non-null int64
6 charges 2771 non-null float64
dtypes: float64(2), int64(3), object(2)
memory usage: 130.0+ KB

RangeIndex: 2771 entries, 0 to 2770 Data columns (total 7 columns):

-	ca coramino (cocar	, соташить,	
#	Column	Non-Null Count	Dtype
9515	70 555555		
0	age	2771 non-null	int32
1	gender	2771 non-null	int64
2	bmi	2771 non-null	float64
3	no_of_children	2771 non-null	int64
4	smoker	2771 non-null	int32
5	region	2771 non-null	int64
6	charges	2771 non-null	float64
dt	ypes: float64(2),	int32(2), int64(3)
mer	mory usage: 130.0	KB	

is_smoker = df['smoker'].value_counts().idxmax()
df["smoker"].replace(np.nan, is_smoker, inplace=True)

age is a continuous variable, replace with mean age
mean_age = df['age'].astype('float').mean(axis=0)
df["age"].replace(np.nan, mean_age, inplace=True)

Update data types
df[["age","smoker"]] = df[["age","smoker"]].astype("int")

Insurance Cost Analysis (3)

df.corr()									
	age	gender	bmi	no_of_children	smoker	region	charges		
age	1.000000	-0.026584	0.112859	0.037126	-0.022290	-0.006969	0.298892		
gender	-0.026584	1.000000	0.042766	0.015693	0.083125	0.022360	0.062959		
bmi	0.112859	0.042766	1.000000	-0.001642	0.011824	0.271200	0.199906		
no_of_children	0.037126	0.015693	-0.001642	1.000000	0.007016	-0.025594	0.066551		
smoker	-0.022290	0.083125	0.011824	0.007016	1.000000	0.053839	0.789141		
region	-0.006969	0.022360	0.271200	-0.025594	0.053839	1.000000	0.054018		
charges	0.298892	0.062959	0.199906	0.066551	0.789141	0.054018	1.000000		

Exploratory data analysis -

- ⋄ df.corr() : compute correlation across columns
- ♦ sns.regplot : visualize the relationship between
- 'bmi' and 'charges'
- ⋄ sns.boxplot : visualize the distribution, spread, and outliers in smoker category

Insurance Cost Analysis (4)

Conducting model

- ♦ Conduct linear regression model
- ♦ Using only 'smoker' to predict 'charges': R2 = 0.62

```
X = df[['smoker']]
Y = df['charges']
lm = LinearRegression()
lm.fit(X,Y)
print(lm.score(X, Y))
0.6227430402464125
```

♦ Using 'All features' to predict 'charges': R2 = 0.75

```
Z = df[["age", "gender", "bmi", "no_of_children", "smoker", "region"]]
lm.fit(Z,Y)
print(lm.score(Z, Y))
```

0.7505888664568174

Model refinement

♦ Split the data into training and test set, 20%

```
x_train, x_test, y_train, y_test = train_test_split(Z, Y, test_size=0.2, random_state=1)
```

```
RidgeModel=Ridge(alpha=0.1)
RidgeModel.fit(x_train, y_train)
yhat = RidgeModel.predict(x_test)
print(r2_score(y_test,yhat))
```

0.7254198858412217

```
pr = PolynomialFeatures(degree=2)
x_train_pr = pr.fit_transform(x_train)
x_test_pr = pr.fit_transform(x_test)
RidgeModel.fit(x_train_pr, y_train)
y_hat = RidgeModel.predict(x_test_pr)
print(r2_score(y_test,y_hat))
```

◇ Conduct ridge regression with alpha = 0.1:R2 = 0.73

♦ Perform polynomial transformation with degree = 2: R2 = 0.82

Contact

Naphon Santisukwongchot

emoney euro@hotmail.com (+66)89 738 3632

https://www.linkedin.com/in/naphon1999/ https://github.com/naphon1999 https://www.datacamp.com/portfolio/naphon1999 https://drive.google.com/drive/folders/1-3x -Xmho0 3z5u3PA6VKZi2-nY90oixK?usp=sharing

Data Source

https://drive.google.com/file/d/1YbSAGYHV0sVyGRT Y3eYdqn9nX-S3GCjQ/view?usp=drive_link

Certifications & Developments

Data Science Bootcamp 10: DataRockie

Data Analyst in SQL & Python: DataCamp

Google Advanced Data Analytics : Google

IBM Data Science: IBM

Machine Learning : DeepLearning.Al