1 \mathbb{R} und \mathbb{C}

Ordnungsvollständigkeit: Seien $A, B \subseteq \mathbb{R}$ s. d.

(i) $A \neq \emptyset$ (ii) $\forall a \in A \ \forall b \in B \ a \leq b$

Dann: $\exists c \in \mathbb{R}$ s.d. $\forall a \in A \ a \leqslant c \ \forall b \in B \ c \leqslant b$

Korollar 1.1.7 (Archimedisches Prinzip) Sei $x > 0y \in$

 \mathbb{R} Dann: $\exists n \in \mathbb{N} \quad y \leqslant n * x$

Satz 1.1.8 $\forall t \ge 0, t \in \mathbb{R}$ hat $x^2 = t$ eine Lösung in \mathbb{R}

Satz 1.1.10 $\forall x, y \in \mathbb{R}$ (i) $|x| \ge 0$ (ii) |xy| = |x||y|

(iii) $|x+y| \le |x| + |y|$ (iv) $|x+y| \ge ||x| - |y||$

Satz 1.1.11 (Young'sche Ungleichung) $\forall \varepsilon > 0, \forall x, y \in$

 $2|xy| \leq \varepsilon x^2 + \frac{1}{\varepsilon}y^2$ R gilt:

Definition 1.1.12 Sei $A \subset \mathbb{R}$ (i) / (ii) $c \in \mathbb{R}$ ist eine **obere/untere Schranke** von \overline{A} wenn $\forall a \in A$ $a \leq / \geq$ c. A ist nach oben/unten beschränkt, wenn es eine obere/untere Schranke gibt. (iii) / (iv) $m \in \mathbb{R}$ ist ein **Maximum/Minimum** von \overline{A} wenn $\overline{m} \in A$ und \overline{m} **obere/untere Schranke** von A ist.

Satz 1.1.15 Sei $A \subseteq \mathbb{R}$, $A \neq \emptyset$ Sei A nach oben/unten beschränkt. Dann gibt es eine kleinste obere/ grösste untere Schranke von A: $c := \sup A / c := \inf A$ genannt **Supremum/Infimum** von A

Korollar 1.1.16 Seien $A \subseteq B \subseteq \mathbb{R}$ Wenn B nach oben/unten beschränkt ist, folgt sup $A \leq \sup B$ $\inf B \leq \inf A$

Konvention: Wenn *A* **nicht beschränkt ist**, definieren wir sup $A = +\infty$ bzw. inf $A = -\infty$

Satz 1.3.4 (Fundamentalsatz der Algebra) Sei $n \ge 1$ 1, $n \in \mathbb{N}$, $a_i \in \mathbb{C}$ und $P(z) = z^n + a_{n-1}z^{n-1} + ... + a_0$ Dann $\exists z_1,...,z_n \in \mathbb{C}$, so dass $P(z) = (z-z_1)(z-z_1)$ $(z_2)...(z-z_n)$

Folgen und Reihen

2.1 Grenzwert einer Folge

Definition 2.1.1 Eine Folge (reeller Zahlen) ist eine Abbildung $a : N^* \longrightarrow \mathbb{R}$. Wir schreiben a_n statt a(n)und bezeichnen eine Folge mit $(a_n)_{n\geq 1}$

höchstens eine reelle Zahl $l \in \mathbb{R}$ mit der Eigenschaft: $\forall \varepsilon > 0$ ist die Menge $\{n \in \mathbb{N} : a_n \notin [l - \varepsilon, l + \varepsilon]\}$ endlich.

Definition 2.1.4 Eine Folge $(a_n)_{n\geqslant 1}$ ist **konvergent**, wenn es $l \in \mathbb{R}$ gibt, so dass $\forall \varepsilon > 0$ die Menge $\{n \in \mathbb{R} \}$ \mathbb{N} : $a_n \notin]l - \varepsilon$, $l + \varepsilon[\}$ endlich ist.

Lemma 2.1.6 Sei $(a_n)_{n\geq 1}$ eine Folge. Folgende Aussagen sind äquivalent (1) $(a_n)_{n\geq 1}$ konvergiert gegen (2) $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass $|a_n - l| <$ $l = \lim_{n \to \infty} a_n$ $\varepsilon \quad \forall n \geqslant N$

Satz 2.1.8 Seien $(a_n)_{n\geqslant 1}$, $(b_n)n\geqslant 1$ konvergent mit $a = \lim_{n \to \infty} a_n, b = \lim_{n \to \infty} b_n$ (1) $(a_n + b_n)_{n \ge 1}$ ist kon-

vergent: $\lim_{n\to\infty} (a_n+b_n) = a+b$ (2) $(a_n\cdot b_n)_{n\geqslant 1}$ ist konvergent: $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$ (3) Sei $\forall n \geqslant$ $1 \ b_n \neq 0 \ \text{und} \ b \neq 0$. Dann ist $(\frac{a_n}{b})_{n \geq 1}$ konvergent und $\lim_{n\to\infty} (\frac{a_n}{b_n})_{n\geqslant 1} = \frac{a}{b}$ (4) Wenn $\exists K\geqslant 1$ mit $\forall n\geqslant K$: $a_n \leq b_n$, folgt $a \leq b$

Beispiel 2.1.9 $b \in \mathbb{Z}$: $\lim_{n \to \infty} (1 + \frac{1}{n})^b = 1$. Das folgt aus $\lim_{n \to \infty} (1 + \frac{1}{n}) = 1$ unde wiederholter Anwendung von Satz 2.1.8 (2) und (3).

2.2 Satz von Weierstrass

Definition 2.2.1 (1) [(2)] $(a_n)_{n\geqslant 1}$ ist monoton wachsend [fallend] wenn: $\overline{a_n} \le [\geqslant] a_{n+1} \ \forall n \geqslant 1$

Satz 2.2.2 (Weierstrass) Sei $(a_n)_{n\geqslant 1}$ monoton wachsend [fallend] und nach oben [unten] beschränkt. Dann **konvergiert** $(a_n)_{n\geqslant 1}$ mit $\lim a_n = \sup\{a_n : n \geqslant$ 1} [$\lim a_n = \inf\{a_n : n \ge 1\}$]

Beispiel 2.2.3 Sei $a \in \mathbb{Z}$ und $0 \leqslant q < 1$. Dann gilt $\lim_{n \to \infty} n^n q^n = 0$. Wir können annehmen, dass q > 0. Sei $x_n = n^a q^n$; dann folgt: $x_{n+1} = (n+1)^a q^{n+1} =$ $(\frac{n+1}{n})^a q \cdot n^a q^n = (1 + \frac{1}{n})^a \cdot q \cdot x_n$. Also: $x_{n+1} = (1 + \frac{1}{n})^n \cdot q \cdot x_n$. $\frac{1}{n})^a \cdot q \cdot x_n$. Da $\lim_{n \to \infty} (1 + \frac{1}{n})^a = 1$ (**Beispiel 2.1.9**), gibt es ein n_0 , so dass $(1+\frac{1}{n})^a < \frac{1}{a} \ \forall n \geqslant n_0$. Es folgt: $x_{n+1} < \frac{1}{n}$ Lemma 2.1.3 Sei $(a_n)_{n\geq 1}$ eine Folge. Dann gibt es $x_n \ \forall n \geq n_0$. Da für $x_n > 0 \ \forall n \geq 1$ die Folge nach wenn $c \leq a$, $b \leq d$

unten beschränkt ist und für $n \ge n_0$ monoton fallend ist. Sei $l = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (1 + \frac{1}{n})^a \cdot q x^n =$ $q \cdot \lim_{n \to \infty} x_n = q \cdot l$. Also $(1 - q) \cdot l = 0$ woraus l = 0folgt.

Bemerkung 2.2.24 In Beispiel 2.2.3 wird zweimal die folgende einfache Tatsache verwendet: Sei $(a_n)_{n\geq 1}$ eine **konvergente** Folge mit $\lim_{n\to\infty} a_n = a$ und $k \in \mathbb{N}$. Dann ist die durch $b_n := a_{n+k}$ $n \ge 1$ definierte Folge **konvergent** und $\lim b_n = a$.

Lemma 2.2.7 (Bernoulli Ungleichung) $(1+x)^n \ge 1+$ $n \cdot x \quad \forall n \in \mathbb{N}, x > -1$

2.3 Limes superior und Limes inferior

Limes inferior/ superior: Sei $(a_n)_{n\geqslant 1}$ eine **beschränkte Folge**. Sei $\forall n \ge 1$: $b_n = \inf\{a_k : k \ge n\}$, $c_n = \sup\{a_k : k \ge n\}$ Dann folgt $\forall n \ge 1$ $b_n \le b_{n+1}$ (monoton wachsend) und $c_n \ge c_{n+1}$ (monoton fallend) und beide Folgen beschränkt. Wir definieren: $\lim \inf a_n := \lim b_n$ $\limsup a_n := \lim c_n$

2.4 Cauchy Kriterium

Lemma 2.4.1 $(a_n)_{n\geq 1}$ konvergiert genau dann, wenn $(a_n)_{n\geqslant 1}$ beschränkt und $\liminf a_n = \limsup a_n$

Satz 2.4.2 (Cauchy Kriterium) $(a_n)_{n\geq 1}$ ist genau dann **kovergent, wenn** $\forall \varepsilon > 0 \exists N \ge 1$, so dass $|a_n - a_m| <$ $\varepsilon \quad \forall n, m \geqslant N$

2.5 Satz von Bolzano-Wierstrass

Definition 2.5.1 Ein abgeschlossenes Intervall $I \subseteq$ \mathbb{R} ist von der Form (1) [a,b] $a \leq b$ $a,b \in$ \mathbb{R} (2) $[a, +\infty[$ $a \in \mathbb{R}$ (3) $]-\infty, a]$ $a \in \mathbb{R}$ (4) $]-\infty,+\infty[=\mathbb{R}$

Bemerkung 2.5.2 Ein Intervall $I \subseteq \mathbb{R}$ ist genau dann abgeschlossen, wenn für jede konvergente Folge $(a_n)_{n\geqslant 1}$ mit $a_n\in I$ $\lim a_n\in I$.

Bemerkung 2.5.3 Seien I = [a, b], J = [c, d] mit $a \le a$ $b, c \leq d, a, b, c, d \in \mathbb{R}$. Dann ist $I \subseteq I$ genau dann,

Satz 2.5.5.5 (Cauchy-Cantor) Sei $I_1 \supseteq I_2 \supseteq ...I_n \supseteq I_{n+1} \supseteq ...$ eine Folge abgeschlossener Intervalle mit $\mathcal{L}(I_1) < +\infty$ Dann gilt $\bigcap_{n\geqslant 1} I_n \neq \emptyset$. Falls **zudem** $\lim_{n\to\infty} \mathcal{L}(I_n) = 0$ gilt, enthält $\bigcap_{n\geqslant 1} I_n$ **genau einen Punkt**.

Definition 2.5.7 Eine **Teilfolge** einer Folge $(a_n)_{n\geqslant 1}$ ist eine Folge $(b_n)_{n\geqslant 1}$, wobei $b_n=a_{l(n)}$ und $l:\mathbb{N}^*\longrightarrow \mathbb{N}^*$ eine **Abbildung** mit der Eigenschaft l(n)< l(n+1) $\forall n\geqslant 1$

Satz 2.5.9 (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

Definition 2.6.1 Eine **Folge in** \mathbb{R}^d ist eine Abbildung $a: \mathbb{N}^* \longrightarrow \mathbb{R}^d$. Wir schreiben a_n statt a(n) und bezeichnen die Folge mit $(a_n)_{n \ge 1}$

Definition 2.6.2 Eine Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist **konvergent**, wenn $\exists a \in \mathbb{R}^d$, so dass $\forall \varepsilon > 0 \exists N \geqslant 1$ mit $\|a_n - a\| < \varepsilon \quad \forall n \geqslant N$

Satz 2.6.3 Sei $b=(b_1,...,b_d)$. Folgende Aussagen sind äquivalent: (1) $\lim_{n\to\infty} a_n=b$ (2) $\lim_{n\to\infty} a_{nj}=b_j$ $\forall 1\leqslant j\leqslant d$

Bemerkung 2.6.4 Sei $x = (x_1, ..., x_d)$. Dann ist $\forall 1 \le j \le d$: $x_j^2 \le \sum_{i=1}^d x_i^2 = ||x||^2 \le d \cdot \max_{1 \le i \le d} x_i^2$ woraus $|x_j| \le ||x|| \le \sqrt{d} \cdot \max_{1 \le i \le d} |x_i|$ folgt.

Bemerkung 2.6.5 Eine konvergente Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist beschränkt. Das heisst: $\exists R\geqslant 0$ mit $\|a_n\|\leqslant R$ $\forall n\geqslant 1$

Satz 2.6.6 (1) Eine Folge $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn sie eine Cauchy Folge ist: $\forall \varepsilon > 0 \,\exists N \geqslant 1$ mit $\|a_n - a_m\| < \varepsilon \quad \forall n, m \geqslant N$. (2) Jede beschränkte Folge hat eine konvergente Teilfolge.

2.7 Reihen

Definition 2.7.1 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, wenn die Folge $(S_n)_{n\geqslant 1}$ der Partialsummen konvergiert. In diesem Fall definieren wir: $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n$

Beispiel 2.7.2 (Geometrische Reihe) Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert $\sum_{k=0}^{\infty} q^k$ und dessen Wert ist: $\frac{1}{1-q}$. Sei $S_n = \sum_{k=0}^n q^k = 1 + q + ... + q^n$. $q \cdot S_n = q + ... + q^n + q^{n+1}$ woraus $(1-q)S_n = 1 - q^{n+1}$ folgt. Es gilt also: $S_n = \frac{1-q^{n+1}}{1-q}$ Nun zeigen wir die Konvergenz: $|S_n - \frac{1}{1-q}| = |\frac{q^{n+1}}{1-q}| = |\frac{q^{n+1}}{1-q}|$. Es folgt aus Beispiel 2.2.3 Reihe. Wenn: $\lim_{n \to \infty} \sup \frac{|a_{n+1}|}{|a_n|} < 1$ kovergiert die Reihe und $0 \le |q| < 1$: $\lim_{n \to \infty} |S_n - \frac{1}{1-1}| = \lim_{n \to \infty} \frac{|q|^{n+1}}{|1-q|} = 0$. Somit konvergiert $(S_n)_{n \ge 1}$ gegen $\frac{1}{1-q}$.

Beispiel 2.7.3 (Harmonische Reihe) Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.

Satz 2.7.4 Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{j=1}^{\infty} b_j$ konvergent sowie $\alpha \in \mathbb{C}$. Dann ist: (1) $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{j=1}^{\infty} b_j)$ (2) $\sum_{k=1}^{\infty} (\alpha \cdot a_k)$ konvergent und $\sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha \cdot \sum_{k=1}^{\infty} a_k$

Satz 2.7.5 (Cauchy Kriterium) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, wenn: $\forall \varepsilon > 0 \,\exists N \geqslant 1$ mit $|\sum_{k=n}^{m} a_k| < \varepsilon \quad \forall m \geqslant n \geqslant N$.

Satz 2.7.6 Sei $\sum_{k=1}^{\infty} a_k$ eine Reiehe mit $a_k \ge 0 \quad \forall k \in \mathbb{N}^*$. $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn die Folge $(S_n)_{n \ge 1}, S_n = \sum_{k=1}^n a_k$ der Partialsummen nach oben beschränkt ist.

Korollar 2.7.7 (Vergleichssatz) Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ Reihen mit: $0 \le a_k \le b_k \quad \forall k \ge 1$. Dann gelten: $\sum_{k=1}^{\infty} b_k$ konvergent $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergent $\Longrightarrow \sum_{k=1}^{\infty} b_k$ divergent Die Implikationen treffen auch zu, wenn $\exists K \ge 1$ mit

 $0 \leqslant a_k \leqslant b_k \ \forall k \geqslant K$ Definition 2.7.9 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist absolut konvergent, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Satz 2.7.10 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt: $|\sum_{k=1}^{\infty} a_k| \leqslant \sum_{k=1}^{\infty} |a_k|$ Satz 2.7.12 (Leibniz 1682) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \ \forall n\geqslant 1$ und $\lim_{n\to\infty} a_n=0$. Dann konvergiert $S:=\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ und es gilt: $a_1-a_2\leqslant S\leqslant a_1$ Definition 2.7.14 Eine Reihe $\sum_{n=1}^{\infty} a_n'$ ist eine Umordnung der Reihe $\sum_{n=1}^{\infty} a_n$

gibt, so dass $a'_n = a_{\phi(n)}$ Satz 2.7.16 (Drichlet 1837) Wenn $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit demselben Grenzwert. Satz 2.7.17 (Quotientenkriterium, Cauchy 1821) Sei $(\overline{a_n})_{n\geqslant 1}$ mit $a_n \neq 0 \quad \forall n \geqslant 1$ und $\sum_{n=1}^{\infty} a_n$ eine Reihe. Wenn: $\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$ kovergiert die Reiehe $\sum_{n=1}^{\infty} a_n$ absolut. Wenn: $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$ divergiert die Reihe Beispiel 2.7.18 (Exponentialfunktion) Für $z \in \mathbb{C}$ betrachte die Reihe: $1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ mit allgemeinem Glied $a_n = \frac{z^n}{n!}$. Fann folgt für $z \neq 0$: $\frac{|a_{n+1}|}{|a_n|} = \left| \frac{z^{n+1}}{(n+1)!} \frac{n!}{z^n} \right| = \frac{|z|}{n+1}$. Also gilt: $\lim_{n \to \infty} rac{|a_{n+1}|}{|a_n|} = 0$ und die Reihe konvergiert für alle $z \in \mathbb{C}$. Wir definieren die **Exponentialfunktion**: $\exp z :=$ $1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots=\sum_{n=0}^{\infty}\frac{z^n}{n!}$ Bemerkung 2.7.19 Das Quotientenkriterium versagt, wenn z. B. unenedlich viele Glieder a_n der Reihe verschwinden (= 0 sind) Satz 2.7.20 (Wurzelkriterium, Cauchy 1821) (1) $\limsup \sqrt[n]{|a_n|} < 1 \Longrightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut. (2) $\limsup \sqrt[n]{|a_n|} > 1 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ und } \sum_{n=1}^{\infty} |a_n|$ **divergieren**. Konvergenzradius ρ : Sei $(c_k)_{k \ge 0}$ eine Folge (in \mathbb{R} oder \mathbb{C}). Wenn $\limsup_{k \to \infty} \sqrt[k]{|c_k|}$ existiert, definieren wir: $\rho = +\infty$ wenn $\limsup \sqrt[k]{|c_k|} = 0$ und $\rho = \frac{1}{\limsup \sqrt[k]{|c_k|}}$ wenn $\limsup_{k\to\infty} \sqrt[k]{|c_k|} > 0$ Riemann Zeta Funktion Sei s > 1 und $\zeta(s) =$ $\overline{\sum_{n=1}^{\infty} \frac{1}{n^s}}$. Wir wissen, dass $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert. Die Reihe konvergiert $\forall s > 1$ Korollar 2.7.21 Die Potenzreihe $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut $\forall |z| < \rho$ und **divergiert** $\forall |z| > \rho$. **Definition 2.7.22** $\sum_{k=0}^{\infty} b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,i>0} a_{ii}$, wenn

es eine **Bijektion** $\sigma : \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ **gibt**, mit $b_k = a_{\sigma(k)}$.

 $\overline{B} \geqslant 0$ gibt, so dass $\sum_{i=0}^{m} \sum_{i=0}^{m} |a_{ij}| \leqslant B \quad \forall m \geqslant 0$. monoton, wenn f [streng] monoton wachsend oder Dann kovergieren die folgenden Reihen absolut: fallend ist. $S_i := \sum_{i=0}^{\infty} a_{ij} \quad \forall i \geqslant 0 \text{ und } U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geqslant 0$ sowie $\sum_{i=0}^{\infty} S_i$ und $\sum_{j=0}^{\infty} U_j$ und es gilt: $\sum_{i=0}^{\infty} S_i$ $\sum_{i=0}^{\infty} U_i$ Und jede lineare Anordnug der Doppelreihe konvergiert absolut mit gleichem Grenzwert. Definition 2.7.24 Das Cauchy Produkt der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ ist die Reihe: $\sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} a_{n-j}b_j) =$ $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \dots$ Satz 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ absolut konvergieren, konvergiert ihr Cauchy Produkt und es gilt: $\sum_{n=0}^{\infty} (\sum_{i=0}^{\infty} a_{n-i}b_i) = (sum_{i=0}^{\infty}a_i)(\sum_{i=0}^{\infty}b_i).$ Anwendung 2.7.27 (Exponential funktion) $\forall z, w \in$ \mathbb{C} : $\exp(w+z) = \exp(w) \exp(z)$. Wir berechnen das Cauchy Produkt der Reihen: $\sum_{i=0}^{\infty} \frac{w^i}{i!}$, $\sum_{i=0}^{\infty} \frac{z^i}{i!}$. Dies ist: $\sum_{n=0}^{\infty}(\sum_{j=0}^{n}\frac{w^{n-j}}{(n-j)!}\frac{z^{j}}{j!})$ Woraus die Behauptung folgt. Satz 2.7.28 Sei $f_n : \mathbb{N} \longrightarrow \mathbb{R}$ eine Folge. Wir nehmen an, dass: (1) $f(j) := \lim_{n \to \infty} f_n(j) \quad \forall j \in \mathbb{N}$ existiert (2) es eine Funktion $g: \mathbb{N} \longrightarrow [0, \infty[$ gibt, so dass 2.1 $|f_n(j)| \leqslant g(j) \quad \forall j \geqslant 0, \ \forall n \geqslant 0$ 2.2 $\sum_{i=0}^{\infty} g(j)$ kon**vergiert.** Dann folgt: $\sum_{j=0}^{\infty} f(j) = \lim_{j \to 0} \sum_{j=0}^{j} nftyf_n(j)$. Korollar 2.7.29 (Exponential funktion) $\forall z \in \mathbb{C}$ kon**vergiert** die Folge $((1+\frac{z}{n})^n)_{n\geqslant 1}$ und $\lim_{n\to\infty}(1+\frac{z}{n})^n=$ exp(z)

Stetige Funktionen

Definition 3.1.1

3.1 Reellwertige Funktionen

[oben/unten] beschränkt wenn $f(D) \subseteq \mathbb{R}$ nach [oben/unten] beschränkt ist. **Definition 3.1.2** Eine Funktion $f: D \longrightarrow \mathbb{R}$, wobei $D \subseteq \mathbb{R}$, ist: (1) [(2)] [streng] monoton wachsend, wenn $\forall x,y \in \overline{D} \quad x \leqslant [<]y \Rightarrow f(x) \leqslant [<]f(y)$ (3) [4] [streng] monoton fallend, wenn $\forall x, y \in$

Satz 2.7.23 (Cauchy 1821) Wir nehmen an, dass es $D \times \{(-]y \Rightarrow f(x) \ge [>]f(y) \}$ [5) [6) [streng]

3.2 Stetigkeit

Definition 3.2.1 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$. Die Funktion $\overline{f:D\longrightarrow \mathbb{R}}$ ist in x_0 stetig, wenn $\forall \varepsilon>0$ $\exists \delta>0$, so dass $\forall x \in D$ die Implikation: $|x - x_0| < \delta \Rightarrow$ $|f(x) - f(x_0)| < \varepsilon$ gilt

Definition 3.2.2 Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig, wenn sie in jedem Punkt von D stetig ist.

Satz 3.2.4 Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig, wenn für **jede Folge** $(a_n)_{n\geq 1}$ in *D* die folgende Implikation gilt: $\lim_{n\to\infty}a_n=x_0\Longrightarrow\lim_{n\to\infty}f(a_n)=\widecheck{f}(x_0).$

Korollar 3.2.5 Seien $x_0 \in D \subseteq \mathbb{R}$, $\lambda \in \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}, g: D \longrightarrow \mathbb{R}$ beide stetig in x_0 : (1) f+g, $\lambda \cdot f$, $f \cdot g$ sind **stetig** in x_0 . (2) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \longrightarrow \mathbb{R}, x \longmapsto \frac{f(x)}{g(x)}$ **stetig** in x_0

Definition 3.2.6 Eine polynomielle Funktion P: $\mathbb{R} \longrightarrow \mathbb{R}$ ist eine Funktion der Form: P(x) = $a_n x^n + ... + a_0$ wobei: $a_n, ..., a_0 \in \mathbb{R}$. Wenn $a_n \neq 0$ ist, ist *n* der Grad von *P*. Korollar 3.2.7 Polynomielle **Funktionen** sind auf ganz \mathbb{R} **stetig**.

Korollar 3.2.8 Seien P, Q polynomielle Funktionen auf \mathbb{R} mit $Q \neq 0$. Seien $x_1, ..., x_m$ die Nullstellen von Q. Dann ist $\frac{P}{O}: \mathbb{R} \setminus \{x_1, ..., x_m\} \longrightarrow \mathbb{R}, x \longmapsto \frac{P(x)}{O(x)}$ stetig.

3.3 Zwischenwertsatz

Satz 3.3.1 (Zwischenwertsatz, Bolzano 1817) Seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b)**gibt es ein** z zwischen a und b mit f(z) = c.

3.4 Min-Max Satz

ist nach

Definition 3.4.2 Ein **Intervall** $I \subset \mathbb{R}$ ist **kompakt**, wenn es von der Form $I = [a, b], a \leq \bar{b}$ ist.

Lemma 3.4.3 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ und $f,g:D \longrightarrow \mathbb{R}$ stetig in x_0 . So sind |f|, $\max(f,g)$, $\min(f,g)$ stetig in x_0 . Lemma 3.4.4 Sei $(x_n)_{n\geq 1}$ eine konvergente Folge in \mathbb{R} mit Grenzwert $\lim_{n \to \infty} x_n \in \mathbb{R}$. Sei $a \leq b$. Wenn $\{x_n: n \geqslant 1\} \subseteq [a,b]$, folgt: $\lim_{n\to\infty} x_n \in [a,b]$. Satz 3.4.5 Sei $f: I = [a, b] \longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit: $f(u) \leqslant f(x) \leqslant f(v) \quad \forall x \in I$. Insbesondere ist f beschränkt.

3.5 Umkehrabbildung

Satz 3.5.1 Seien $D_1, D_2 \subseteq \mathbb{R}, f : D_1 \longrightarrow D_2, g :$ $D_2 \longrightarrow \mathbb{R}$ und $x_0 \in D_1$. Wenn f in x_0 und g in $f(x_0)$ stetig sind, so ist $g \circ f : D_1 \longrightarrow \mathbb{R}$ in x_0 stetig. Korollar 3.5.2 Wenn in **Satz 3.5.1** f auf D_1 und g auf D_2 stetig sind, ist $g \circ f$ auf D_1 stetig. Satz 3.5.3 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng **monoton**. Dann ist $J := f(i) \subseteq \mathbb{R}$ ein Intervall und $f^{-1}: I \longrightarrow I$ ist stetig, streng monoton.

3.6 Reelle Exponentialfunktion

Satz 3.6.1 exp : $\mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv. Korollar 3.6.2 $\exp(x) > 0 \quad \forall x \in \mathbb{R}$. Aus der Potenzreihendarstel**lung** von exp folgt ausserdem: $\exp(x) > 1 \quad \forall x > 0$. Wenn y < z ist, folgt (aus 2.7.27) $\exp(z) = \exp(y + z)$ (z-y) = exp(y) exp(z-y) und da exp(z-y) > 1ist folgt folgendes Korollar: Korollar 3.6.3 $\exp(z)$ > Korollar 3.6.4 $\exp(x) \ge 1 +$ $exp(y) \quad \forall z > y$ $x \quad \forall x \in \mathbb{R}$ Korollar 3.6.5 Der natürlich Logarithmus $\ln :]0, +\infty[\longrightarrow \mathbb{R}$ ist eine streng monoton wachsende, stetige, bijektive Funktion. Des weiteren gilt $\ln(a \cdot b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[$. Korollar 3.6.6 (1) / (2) Für a > /< 0 ist $]0, +\infty[\longrightarrow]0, +\infty[, x \longmapsto]$ $\overline{x^a}$ eine stetige, streng monoton wachsende/fallende Bijektion. $\forall a, b \in \mathbb{R}, \forall x > 0$: (3) $\ln(x^a) = a \ln(x)$ (4) $x^{a} \cdot x^{b} = x^{a+b}$ (5) $(x^{a})^{b} = x^{a \cdot b}$

3.7 Konvergenz von Funktionenfolgen

Definition 3.7.1 Die Funktionenfolge $(f_n)_{n\geq 0}$ kon**vergiert punktweise** gegen eine Funktion $f: D \longrightarrow \mathbb{R}$, wenn $\forall x \in D$: $f(x) = \lim_{n \to \infty} f_n(x)$. Definition 3.7.3 (Weierstrass 1841) Die Folge $f_n:D\longrightarrow\mathbb{R}$ konvergiert gleichmässig in D gegen $f:D \longrightarrow \mathbb{R}$, wenn gilt: $\forall \varepsilon > 0 \exists N \ge 1$, so dass: $\forall n \ge N, \forall x \in$ $D: |f_n(x) - f(x)| < \varepsilon$. Satz 3.7.4 Sei $D \subseteq \mathbb{R}$ und $f_n: D \longrightarrow \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen, die (in D) gleichmässig gegen eine Funktion $f: D \longrightarrow \mathbb{R}$ konvergiert. Dann ist f (in D) stetig. Definition 3.7.5 Eine Funktionenfolge $f_n: D \longrightarrow \mathbb{R}$ ist gleichmässig konver**gent**, wenn $\forall x \in D$ der **Grenzwert** $f(x) := \lim_{n \to \infty} f_n(x)$ existiert und die Folge $(f_n)_{n\geqslant 0}$ gleichmässig gegen f konvergiert. Korollar 3.7.6 Die Funktionenfolge $f_n: D \longrightarrow \mathbb{R}$ konvergiert genau dann gleichmässig in *D*, wenn: $\forall \varepsilon > 0 \exists N \ge 1$, so dass $\forall n, m \ge N$ und $\forall x \in D: |f_n(x) - f_m(x)| < \varepsilon.$ Korollar 3.7.7 Sei $D \subseteq \mathbb{R}$. Wenn $f_n : D \longrightarrow \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion $f(x) := \lim_{n \to \infty} f_n(x)$ stetig. Definition 3.7.8 Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig (in D), wenn die durch $S_n(x) := \sum_{k=0}^{\infty} f_k(x)$ definierte Funktionenfolge gleichmässig konvergiert. Satz 3.7.9 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Folge stetiger Funk**tionen**. Wir nehmen an, dass $|f_n(x)| \leq c_n \ \forall x \in D$ und, dass $\sum_{n=0}^{\infty} c_n$ konvergiert. Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ **gleichmässig** in *D* und deren Grenzwert $f(x) := \sum_{n=0}^{\infty} f_n(x)$ ist eine in D stetige Funk-**Definition 3.7.10** Die Potenzreihe $\sum_{k=0}^{\infty} c_k x^k$ hat **positiven Konvergenzradius**, wenn $\limsup_{k \to \infty} \sqrt[k]{|c_k|}$ existiert. Der Konvergenzradius ist dann definiert für $\limsup \sqrt[k]{|c_k|} = 0$, als: $\rho = +\infty$ $ho = rac{1}{\limsup \sqrt[k]{|c_k|}} \quad ext{für } \limsup_{k o \infty} \sqrt[k]{|c_k|} > 0. \quad ext{Satz 3.7.11}$ Sei $\sum_{k=0}^{k\to\infty}$ eine Potenzreihe mit positivem Konvergen-

gilt: $\forall 0 \leq r < \rho$ konvergiert $\sum_{k=0}^{\infty} c_k x^k$ gleichmässig auf [-r, r], insbesondere ist $f:]-\rho, \rho[\longrightarrow \mathbb{R}$ stetig.

3.8 Trigonometrische Funktionen

Satz 3.8.1 $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ und $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ sind stetige Funktionen. Satz 3.8.2 Sei $z \in \mathbb{C}$ (1) $\exp iz =$ $\cos(z) + i\sin(z)$ (2) $\cos(z) = \cos(-z)$ und $\sin(-z) =$ $-\sin(z)$ (3) $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ (4) $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w), \cos(z+w)$ $w) = \cos(z)\cos(w) - \sin(z)\sin(w)$ (5) $\cos^2(z) + \cos^2(z)$ $\sin^2(z) = 1$ Korollar 3.8.3 $\sin(2z) = 2\sin(z)\cos(z)$, $\cos(2z) = \cos^2(z) - \sin^2(z)$

3.9 Die Kreiszahl π

Satz 3.9.1 Die Sinusfunktion hat auf $]0, +\infty[$ mindestens eine Nullstelle. Sei $\pi := \inf\{t > 0 : \sin t =$ 0}. (1) $\sin \pi = 0, \pi \in]2,4[$ (2) $\forall x \in]0, \pi[:$ (3) $e^{i\pi/2} = i$ Korollar 3.9.2 $x \ge 1$ $\sin x > 0$ $\sin x \geqslant x - \frac{x^3}{3!} \quad \forall 0 \leqslant x \leqslant \sqrt{6}$ Korollar 3.9.3 Sei $x \in \mathbb{R}$ (1) $e^{i\pi} = -1, e^{2i\pi} = 1$ (2) $\sin(x + \frac{\pi}{2}) =$ $\cos(x)$, $\cos(x + \frac{\pi}{2}) = -\sin(x)$ (3) $\sin(x + \pi) =$ $-\sin(x), \sin(x + 2\pi) = \sin(x)$ (4) $\cos(x + \pi) =$ $-\cos(x)$, $\cos(x+2\pi) = \cos(x)$ (5) Nullstellen von $\mathbf{Sinus} = \{k \cdot \pi : k \in \mathbb{Z}\}\$ $\sin(x) > 0 \quad \forall x \in$ $|2k\pi,(2k+1)\pi[,k\in\mathbb{Z}\sin(x)<0\ \forall x\in](2k+1)\pi[$ $1)\pi_{k}(2k+2)\pi[$, $k \in \mathbb{Z}$ (6) Nullstellen von Cosinus $= \left\{ \frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z} \right\} \cos(x) > 0 \quad \forall x \in] - \frac{\pi}{2} +$ $2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, k \in \mathbb{Z} \cos(x) < 0 \quad \forall x \in] \frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, k \in \mathbb{Z}]$

3.10 Grenzwerte von Funktionen

Definition 3.10.1 $x_0 \in \mathbb{R}$ ist ein **Häufungspunkt** der Menge D, wenn $\delta > 0$: $(|x_0 - \delta, x_0 + \delta|) \setminus \{x_0\} \cap D \neq \emptyset$ \emptyset . Definition 3.10.3 Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$ ein Häu**fungspunkt** von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$, bezeichnet mit $\lim_{x \to x_0} f(x) = A$,

zradius $\rho > 0$ und $f(x) := \sum_{k=0}^{\infty} c_k c^k$, $|x| < \rho$. Dann wenn $\forall \varepsilon > 0 \exists \delta > 0$, so dass $\forall x \in D \cap (]x_0 - \delta, x_0 + \delta = 0$ $\delta[\setminus \{x_0\}]$: $|f(x) - A| < \varepsilon$. Bemerkung 3.10.4 (1) Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häufungspunkt von D. Dann gilt $\lim_{x \to a} f(x) = A$ genau, dann wenn für jede Folge $(a_n)_{n\geqslant 1}$ in $D\setminus \{x_0\}$ mit $\lim_{n\to\infty} a_n = x_0$ folgendes gilt: $\lim_{n\to\infty} f(a_n) = A$. (2) Sei $x_0 \in D$. Dann ist fgenau dann stetig, wenn $\lim_{x\to x_0} f(x) = f(x_0)$. (3) Mittels (1) zeigt man leicht, dass wenn $f,g:D\longrightarrow \mathbb{R}$ und $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ existieren: $\lim_{x \to x_0} (f + g)(x) =$ $\lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \text{ und } \lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot$ $\lim g(x)$ folgen. (4) Seien $f,g:D \longrightarrow \mathbb{R}$ mit $f \leqslant g$. Dann folgt $\lim_{x \to x_0} f(x) \leqslant \lim_{x \to x_0} g(x)$ falls beide Grenzwerte existieren. (5) Wenn $g_1 \leqslant f \leqslant g_2$ und $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x), \text{ so existiert } l := \lim_{x \to x_0} f(x)$ und $l = \lim_{x \to x_0} g_1(x)$ Satz 3.10.6 Seien $D, E \subseteq \mathbb{R}, x_0$ **Häufungspunkt** von $D, f : D \longrightarrow E$ eine **Funktion**. Wir nehmen an, dass $y_0 := \lim_{x \to x_0} f(x)$ existiert und $y_0 \in E$. Wenn $g : E \longrightarrow \mathbb{R}$ in y_0 stetig ist, folgt: $\lim_{x \to \infty} g(f(x)) = g(y_0).$

4 Differenzierbare Funktionen

4.1 Die Ableitung

Definition 4.1.1 f ist in x_0 **differenzierbar**, wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x-0)}{x-x_0}$ existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Bemerkung 4.1.2 Es ist oft von Vorteil in der Definition von $f'(x_0)$, $x = x_0 + h$ zu setzen, so dass: $f'(x_0) =$ $\lim_{h \to \infty} \frac{f(x_0 + h) - f(x_0)}{h}$

Satz 4.1.3 (Weierstrass 1861) Sei $f: D \longrightarrow \mathbb{R}, x_0 \in$ D Häufungspunkt von D. Folgende Aussagen sind äquivalent: (1) f ist in x_0 differenzierbar Es gibt $c \in \mathbb{R}$ und $r : D \longrightarrow \mathbb{R}$ mit: 2.1 f(x) =

Jonas Degelo Analysis I FS2020

 $f(x_0) + c(x - x_0) + r(x)(x - x_0)$ 2.2 $r(x_0) = 0$ und r ist **stetig** in x_0 Wenn dies zutrifft, ist $c = f'(x_0)$ eindeutig bestimmt.

Satz 4.1.4 Eine Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 genau dann differenzierbar, wenn es eine Funktion $\phi: D \longrightarrow \mathbb{R}$ gibt, die in x_0 stetig ist und f(x) = $f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$. In diesem Fall gilt: $\phi(x) = f'(x)$.

Korollar 4.1.5 Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häu**fungspunkt** von *D*. Wenn f in x_0 **differenzierbar** ist, ist f in x_0 stetig.

Definition 4.1.7 $f: D \longrightarrow \mathbb{R}$ ist in D differenzierbar, wenn für jeden Häufungspunkt $x_0 \in D$, f in x_0 differenzierbar ist.

Satz 4.1.9 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ ein Häufungspunkt $\overline{\text{von } D \text{ und } f_{i}g}: d \longrightarrow \mathbb{R} \text{ in } x_0 \text{ differenzierbar. Dann}$ gelten: (1) f + g ist in x_0 differenzierbar und (f + g) $g'(x_0) = f'(x_0) + g'(x_0)$ (2) $f \cdot g$ ist in x_0 differen**zierbar** und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ (3) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g}$ in x_0 differenzierbar und $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

Satz 4.1.11 Seien $D, E \subseteq \mathbb{R}$, sei $x_0 \in D$ ein Häu**fungspunkt**, sei $f: D \longrightarrow E$ eine in x_0 differen**zierbare Funktion**, so dass $y_0 := f(x_0)$ ein **Häufungspunkt** von *E* ist und sei $g: E \longrightarrow \mathbb{R}$ eine in y_0 **differenzierbare Funktion**. Dann ist $g \circ f : D \longrightarrow \mathbb{R}$ in x_0 differenzierbar und $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$

Korollar 4.1.12 Sei $f: D \longrightarrow E$ eine bijektive Funk**tion**, sei $x_0 \in D$ ein **Häufungspunkt**. Wir nehmen an f ist in x_0 differenzierbar und $f'(x_0) \neq 0$. Zudem nehmen wir an f^{-1} ist in $y_0 = f(x_0)$ **stetig**. Dann ist y_0 ein Häufungspunkt von E, f^{-1} ist in y_0 differenzierbar und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

Definition 4.2.1 Sei $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}$ und $x_0 \in D$. (1) (2) f besitzt ein lokales Maximum [Minimum] nun: $y^2 = \sin^2 x = 1 - \cos^2 x$ woraus mit $\cos c > 0$ in x_0 , wenn $\exists \delta > 0$ mit: $f(x) \leqslant [\geqslant] f(x_0) \quad \forall x \in \text{folgt: } \cos x = \sqrt{1-y^2}$. Wir erhalten also $\forall y \in]-1,1[$

Satz 4.2.2 Sei $f:]a, b[\longrightarrow \mathbb{R}, x_0 \in]a, b[$. Wir nehmen an, f ist in x_0 differenzierbar. (1) Wenn $f'(x_0) > 0$ ist, $\exists \delta > 0$ mit: $f(x) > f(x_0) \overline{\forall x} \in]x_0, x_0 + \delta[$ $f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$ (2) Wenn $f'(x_0) < 0$ ist, $\exists \delta > 0$ mit: $f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$ $f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$ (3) Wenn f in x_0 ein **lokales Extremum** besitzt, folgt $f'(x_0) = 0$.

Satz 4.2.3 (Rolle 1690) Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Wenn f(a) = f(b), so gibt es $\xi \in]a,b[$ mit: $f'(\xi)=0.$

Satz 4.2.4 (Lagrange 1797) Sei $f \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Es gibt $\xi \in a, b$ mit: f(b) – $f(a) = f'(\xi)(b - a).$

Korollar 4.2.5 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig und in |a,b| differenzierbar. (1) Wenn $f'(\xi) = 0 \quad \forall \xi \in]a,b|$ ist, ist f konstant. (2) Wenn $f'(\xi) = g'(\xi) \quad \forall \xi \in$ |a,b| ist, gibt es $c \in \mathbb{R}$ mit: $f(x) = g(x) + c \quad \forall x \in \mathbb{R}$ [a,b]. (3) [4] Wenn $f'(\xi) \geqslant [>]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a,b] [strikt] monoton wachsend. (5) [(6) Wenn $f'(\xi) \leq [<]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a,b][strikt] monoton fallend. (7) Wenn es $M \ge 0$ gibt, mit: $|f'(\xi)| \leq M \quad \forall \xi \in]a,b[$, folgt $\forall x_1,x_2 \in [a,b]$: $|f(x_1) - f(x_2)| \le M|x_1 - x_2|$. Beispiel 4.2.6 (1) arcsin: Da $\sin' = \cos \operatorname{und} \cos(x) > 0 \ \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}$ folgt aus Korollar 4.2.5 (4), dass die Sinusfunktion auf $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ strikt monoton wachsend ist. Also ist $\sin : \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1, 1\right]$ bijektiv. Wir definieren $\arcsin: \begin{bmatrix} -1,1 \end{bmatrix} \longrightarrow \begin{bmatrix} -\frac{\pi}{2},\frac{\pi}{2} \end{bmatrix}$ als die Umkehrfunktion von sin. Nach Korollar 4.1.12 ist sie auf]-1,1[differenzierbar und für $y = \sin x$, $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ folgt nach 4.1.12: $\arcsin'(y) = \frac{1}{\sin'(x)} = \frac{1}{\cos x}$. Wir verwenden $]x_0 - \delta, x_0 + \delta[\cap D]$ (3) f besitzt ein **lokales Extremum** $\arcsin'(y) = \frac{1}{\sqrt{1-y^2}}$. (2) arccos: Eine analoge Diskus-

in x_0 , wenn es ein **lokales Minimum oder Maximum** sion, wie in (1) zeigt, dass cos : $[0,\pi] \longrightarrow [-1,1]$ strikt monoton fallend ist und $[0, \pi]$ auf [-1, 1] bijektiv abbildet. Sei: arccos : $[-1,1] \longrightarrow [0,\pi]$ die Umkehrfunktion. Sie ist auf]-1,1[differenzierbar und $\arccos'(y) = \frac{-1}{\sqrt{1-y^2}} \ \forall y \in]-1,1[.$ (3) arctan: Für $x \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ hatten wir die Tangensfunktion definiert: $\tan x = \frac{\sin x}{\cos x}$ und deren Ableitung berechnet: $\tan' x = \frac{1}{\cos^2 x}$. Also ist $\tan \operatorname{auf}] - \frac{\pi}{2}, \frac{\pi}{2} [$ streng monoton wachsend mit $\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty, \lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty.$

Also ist tan :] $-\frac{\pi}{2},\frac{\pi}{2}[\longrightarrow]-\infty,\infty[$ bijektiv. Sei arctan : $]-\infty,\infty[\longrightarrow]-\frac{\pi}{2},\frac{\pi}{2}[$ die Umkehrfunktion. Dann ist arctan differenzierbar und für $y = \tan x$: arctan'(y) = $\cos^{x} = \frac{1}{1+\nu^{2}}$.

Satz 4.2.9 (Cauchy) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[differenzierbar. Es gibt $\xi \in]a,b[$ mit: $g'(\xi)(f(b)-f(a))=f'(\xi)(g(b)-g(a))$. Wenn $g'(x)\neq 0$ $0 \quad \forall x \in]a,b[$ ist, folgt: $g(a) \neq g(b)$ und $\frac{f(b)-f(a)}{g(b)-g(a)} =$

Satz 4.2.10 (Bernoulli 1691/92, de l'Hôpital 1696) Seien $f,g:]a,b[\longrightarrow \mathbb{R}$ differenzierbar mit $g'(x) \neq \emptyset$ 0 $\forall x \in]a, b[$. Wenn $\lim_{x \to b^-} f(x) = 0$, $\lim_{x \to b^-} g(x) = 0$ und

 $\lim_{x \to b^-} \frac{f'(x)}{g'(x)} =: \lambda \text{ existiert, folgt: } \lim_{x \to b^-} \frac{f(x)}{g(x)} = \lim_{x \to b^-} \frac{f'(x)}{g'(x)}.$

Bemerkung 4.2.11 Der Satz gilt auch wenn: b = $\lambda = +\infty$ $x \to a^+$ Definition 4.2.13 (1) fist **konvex** (auf *I*), wenn $\forall x, y \in I$, $x \leq y$ und $\lambda \in [0,1]$ folgendes gilt: $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$

(2) f ist streng konvex, wenn $\forall x, y \in I, x < y$ und $\lambda \in]0,1[$ folgendes gilt: $f(\lambda x + (1-\lambda)y) < \lambda f(x) +$ $(1-\lambda)f(y)$

Bemerkung 4.2.14 Sei $f: I \longrightarrow \mathbb{R}$ konvex. Ein einfacher Induktionsbeweis zeigt, dass $\forall n \geqslant$ 1, $\{x_1, ..., x_n\} \subseteq I$ und $\lambda_1, ... \lambda_n$ in [0, 1] mit $\sum_{i=1}^n \lambda_i = 1$ folgendes gilt: $f(\sum_{i=1}^{n} \lambda_i x_i) \leq \sum_{i=1}^{n} \lambda_i f(x_i)$

Lemma 4.2.15 Sei $f: I \longrightarrow \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, wenn

Jonas Degelo Analysis I FS2020

 $\forall x_0 < x < x_1 \text{ in } I \text{ folgendes gilt: } \frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f(x_1) - f(x)}{x_1 - x}$

Satz 4.2.16 Sei $f:]a,b[\longrightarrow \mathbb{R}$ differenzierbar. f ist genau dann (streng) konvex, wenn f' (streng) monoton wachsend ist.

Korollar 4.2.17 Sei $f: a, b \longrightarrow \mathbb{R}$ zweimal differenzierbar in a, b. f ist (streng) konvex, wenn $f'' \ge 0$ (bzw. f'' > 0) auf a, b[.

Definition 4.3.1 (1) Für $n \ge 2$ ist f n-mal differen**zierbar in** D, wenn $f^{(n-1)}$ in D **differenzierbar** ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die *n*-te Ableitung von f (2) f ist n-mal stetig differenzierbar in D, wenn f n-mal differenzierbar in D & $f^{(n)}$ in D stetig ist. (3) Die Funktion f ist in D glatt, wenn sie $\forall n \geqslant 1$ *n*-mal differenzierbar ist.

Bemerkung 4.3.2 Es folgt aus Korollar 4.1.5, dass für $n \ge 1$ eine *n*-mal differenzierbare Funktion (n-1)mal stetig differenzierbar ist.

Satz 4.3.3 (analog zu Satz 4.1.9) Sei $D \subseteq \mathbb{R}$ wie in Definition 4.3.1, $n \ge 1$ und $f, g : D \longrightarrow \mathbb{R}$ n-mal differen-(1) f + g ist *n*-mal differenzierbar **zierbar** in *D*. und $(f+g)^{(n)} = f^{(n)} + g^{(n)}$ (2) $f \cdot g$ ist *n*-mal dif**ferenzierbar** und $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$.

Satz 4.3.5 Sei $D \subseteq \mathbb{R}$ wie in **Definition 4.3.1**, $n \geqslant 1$ und $f,g:D \longrightarrow \mathbb{R}$ *n*-mal differenzierbar in *D*. Wenn $g(x) \neq 0 \quad \forall x \in D \text{ ist, ist } \frac{f}{g} \text{ in } D \text{ } n\text{-mal differenzier-}$ bar.

Satz 4.3.6 Seien $E, D \subseteq \mathbb{R}$ Teilmengen für die **jeder** Punkt Häufungspunkt ist. Seien $f: D \longrightarrow E$, $g: E \longrightarrow \mathbb{R}$ *n*-mal differenzierbar. Dann ist $f \circ g$ *n*-mal differenzierbar und $(g \circ f)^{(n)}(x) =$ $\sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$ wobei $A_{n,k}$ ein Polynom in den Funktionen f', $f^{(2)}$, ..., $f^{n+1-k)}$ ist.

Satz 4.4.1 Seien $f_n:]a,b[\longrightarrow \mathbb{R}$ eine Funktionenfolge wobei f_n einmal in a,b $\forall n \ge 1$ stetig differenzier**bar** ist. Wir nehmen an, dass sowohl die Folge $(f_n)_{n\geq 1}$ wie auch $(f'_n)_{n\geqslant 1}$ **gleichmässig** in]a,b[mit $\lim_{n\to\infty} f_n=:f$

und $\lim_{n\to\infty} f_n' =: p$ konvergieren. Dann ist f stetig dif**ferenzierbar** und f' = p.

Satz 4.4.2 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit pos Konvergenzradius $\rho > 0$. Dann ist $f(x) = \sum_{k=0}^{\infty} c_k (x - x)^k$ $(x_0)^k$ auf $(x_0 - \rho, x_0 + \rho)$ differenzierbar und f'(x) = 0 $\sum_{k=0}^{\infty} k c_k (x - x_0)^{k-1} \quad \forall x \in]x_0 - \rho, x_0 + \rho[.$

4.4.1 ist f auf $]x_0 - \rho, x_0 + \rho[$ glatt und $f^{(j)}(x) =$ $\sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{k-j}$. Insbesondere ist $c_j = \frac{f^{(j)}(x_0)}{i!}$.

Satz 4.4.5 Sei $f : [a,b] \longrightarrow \mathbb{R}$ stetig und in [a,b](n+1)-mal differenzierbar. Für jedes $a < x \le b$ gibt es $\xi \in]a, x[$ mit: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k +$ $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$

Korollar 4.4.6 (Taylor Approximation) Sei *f* $[c,d] \longrightarrow \mathbb{R}$ stetig und in [c,d] (n+1)-mal differen**zierbar**. Sei c < a < d. $\forall x \in [c,d] \exists \xi$ zwischen x und a, so dass: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^k$

Korollar 4.4.7 Sei $n \ge 0$, $a < x_0 < b$ und $f : [a, b] \longrightarrow$ \mathbb{R} in a, b = (n + 1)-mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n)}(x_0) = 0$. (1) Wenn n gerade ist und x_0 eine lokale Extremalstelle ist, folgt $f^{(n+1)}(x_0) = 0$. (2) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) > 0$ ist, ist x_0 eine strikt lokale Minimalstelle. (3) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) < 0$ ist, ist x_0 eine strikt lokale Maximalstelle.

Korollar 4.4.8 Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in [a,b]zweimal stetig differenzierbar. Sei $a < x_0 < b$. Annahme: $f'(x_0) = 0$. (1) Wenn $f^{(2)}(x_0) > 0$ ist, ist x_0 eine strikt lokale Minimalstelle. (2) Wenn $f^{(2)}(x_0)$ < 0 ist, ist x_0 eine strikt lokale Maximalstelle.

Riemann Integral

5.1 Definition und Integrabilitätskriterien

Definition 5.1.1 Eine **Partition** von *I* ist eine endliche Teilmenge $P \subseteq [a,b]$ wobei $\{a,b\} \subseteq P$. Es gilt: $n := \operatorname{card} P - 1 \geqslant 1$ und es gibt genau eine Bijek-Korollar 4.4.3 Unter der Voraussetzung von Satz tion $\{0,1,2,...,n\} \longrightarrow P$, $j \mapsto x_j$ mit der Eigenschaft $i < j \Longrightarrow x_i < x_i$.

> Eine **Partition** P' ist eine Verfeinerung von P, wenn $P \subset P'$. Offensichtlich ist die Vereinigung $P_1 \cup P_2$ zweier Partitionen wieder eine Partition. Insbesondere haben zwei Partitionen immer eine gemeinsame Vereinigung. Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine **beschränkte Funktion**, das heisst es gibt $M \geqslant 0$ mit $|f(x)| \leq M \quad \forall x \in [a,b]. \text{ Sei } P = \{x_0, x_1, ..., x_n\}$ eine **Partition** von *I*. Insbesondere gilt: $x_0 = a <$ $x_1 < ... < x_n = b$ Länge des Teilintervalls $[x_{i-1}, x_i]$, $\delta_i := x_i - x_{i-1}, i \geqslant 1$

Untersumme $s(f, P) := \sum_{i=1}^{n} f_i \delta_i$, $f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$

Obersumme $S(f, P) := \sum_{i=1}^{n} F_i \delta_i, F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$

Lemma 5.1.2 (1) Sei P' eine Verfeinerung von P. Dann gilt: $s(f, P) \leq s(f, P') \leq S(f, P') \leq S(f, P)$. (2) Für beliebige Partitionen P_1, P_2 gilt: $s(f, P_1) \leq S(f, P_2)$. Sei $\mathcal{P}(I)$ die Menge der Partitionen von I. Wir definieren: s(f) =sup s(f, P), S(f) $P \in \mathcal{P}(I)$

inf S(f, P).

Definition 5.1.3 Eine **beschränkte Funktion** f: \longrightarrow R ist (Riemann) integrierbar, wenn s(f) = S(f). In diesem Fall bezeichnen wir den **gemeinsamen Wert** von s(f) und S(f) mit $\int_a^b f(x) dx$. Satz 5.1.4 Eine beschränkte Funktion ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists P \in \mathcal{P}(I)$: $S(f, P) - s(f, P) < \varepsilon$.

Satz 5.1.8 (Du Bois-Reymond 1875, Darboux 1875) Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau

dann integrierbar, wenn $\forall \varepsilon > 0 \,\exists \delta > 0$, so dass: $\forall P \in \mathcal{P}_{\delta}(I), S(f,P) - s(f,P) < \varepsilon$. Hier bezeichnet $\mathcal{P}_{\delta}(I)$ die Menge der Partitionen P, für welche $\max_{1 \leqslant i \leqslant n} \delta_i \leqslant \delta$.

Korollar 5.1.9 Die beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau dann integrierbar mit $A:=\int_a^b f(x) \, dx$, wenn: $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall P \in \mathcal{P}(I)$ mit $\delta(P) < \delta$ und $\xi_1,...,\xi_n$ mit $\xi_i \in [x_{i-1},x_i]$, $P = \{x_0,...,x_n\}$ $|A - \sum_{i+1}^n f(\xi_i)(x_i - x_{i-1})| < \varepsilon$.

Satz 5.2.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt, integrierbar und $\lambda \in \mathbb{R}$. Dann sind f+g, $\lambda \cdot f$, $f \cdot g$, |f|, $\max(f,g)$, $\min(f,g)$ und (falls $|g(x)| \ge \beta > 0 \quad \forall x \in [a,b]$) $\frac{f}{g}$ integrierbar.

Bemerkung 5.2.2 Sei ϕ : $[c,d] \longrightarrow \mathbb{R}$ eine beschränkte Funktion. Dann ist (*) sup $|\phi(x) - \phi(y)| = x,y \in [c,c]$

 $\sup_{x \in [c,d]} \phi(x) - \inf_{x \in [c,d]} \phi(x).$ Einerseits gilt offensichtlich

 $\forall x, y \in [c, d]: \phi(x) \leqslant \sup_{[c, d]} \phi, \quad \phi \geqslant \inf_{[c, d]} \phi \text{ also ist }$

 $\phi(x) - \phi(y) \leq \sup_{[c,d]} \phi - \inf_{[c,d]} \phi$, woraus durch ver-

tauschen von x, y folgt: $|\phi(x) - \phi(y)| \leq \sup_{[c,d]} - \inf_{[c,d]} \phi$.

Andererseits sei $\varepsilon > 0$. Dann gibt es $\xi \in [c,d]$ und $\eta \in [c,d]$ $\phi(\xi) > \varepsilon$ und $\phi(\eta) < \inf_{[c,d]} \phi + \varepsilon$ woraus

 $\phi(\xi)-\phi(\eta)>\sup_{[c,d]}\phi-\inf_{[c,d]}\phi-2\varepsilon$ folgt. Dies zeigt die

Aussage (*)

Korollar 5.2.3 Seien P,Q Polynome und [a,b] ein Intervall in dem Q keine Nullstelle besitzt. Dann ist $[a,b] \longrightarrow \mathbb{R}, x \mapsto \frac{P(x)}{Q(x)}$ integrierbar.

Definition 5.2.4 Eine Funktion $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}$ ist in D **gleichmässig stetig**, wenn $\forall \varepsilon > 0 \ \exists \delta > 0$ $\forall x,y \in D: |x-y| < \delta \Longrightarrow |f(x)-f(y)| < \varepsilon.$

Satz 5.2.6 (Heine 1872) Sei $f : [a,b] \longrightarrow \mathbb{R}$ stetig in dem kompakten Intervall [a,b]. Dann ist f in [a,b] gleichmässig stetig.

Satz 5.2.7 Sei $f : [a, b] \longrightarrow \mathbb{R}$ stetig. So ist f integrierbar.

Satz 5.2.8 Sei $f:[a,b] \longrightarrow \mathbb{R}$ monoton. So ist f integrierbar.

Bemerkung 5.2.9 Seien a < b < c und $f : [a,c] \longrightarrow \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und (*) $\int_a^c f(x) \, dx = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx$. In der Tat ergibt die Summe einer Obersumme (respektive Untersumme) für $f|_{[a,b]}$ und $f|_{[b,c]}$ eine Obersumme (respektive Untersumme) für f. Wir erweitern jetzt die Definition von $\int_a^b f(x) \, dx$ auf: $\int_a^a f(x) \, dx = 0$ und wenn a < b, $\int_b^a f(x) \, dx := -\int_a^b f(x) \, dx$. Dann gilt (*) für alle Tripel a,b,c unter den entsprechenden Integrabilitätsvoraussetzungen.

Satz 5.2.10 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a, b sowie $f_1, f_2 : I \longrightarrow \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt: $\int_a^b (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx = \lambda_1 \int_1^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx$.

Satz 5.3.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, und $f(x) \leqslant g(x) \quad \forall x \in [a,b]$. Dann folgt: $\int_a^b f(x) \, dx \leqslant \int_a^b g(x) \, dx$. Korollar 5.3.2 Wenn $f:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, folgt: $|\int_a^b f(x) \, dx| \leqslant \int_a^b |f(x)| \, dx$.

Satz 5.3.3 (Cauchy-Schwarz Ungleichung) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar. Dann gilt: $|\int_a^b f(x)g(x) dx| \le \sqrt{\int_a^b f^2(x) dx} \sqrt{\int_a^b g^2(x) dx}$.

Satz 5.3.4 (Mittelwertsatz, Cauchy 1821) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So $\exists \xi \in [a,b]: \int_a^b f(x) dx = f(\xi)(b-a)$. Satz 5.3.6 (Cauchy 1821) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $g \geqslant 0 \quad \forall x \in [a,b]$. Dann gibt es $\xi \in [a,b]$ mit: $\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$.

Satz 5.4.1 (Fundamentalsatz der Analysis) Seien a < b und $f : [a,b] \longrightarrow \mathbb{R}$ stetig. Die Funktion $F(x) = \int_a^x f(t) dt$, $a \le x \le b$ ist in [a,b] stetig differenzierbar und $F'(x) = f(x) \quad \forall x \in [a,b]$.

Definition 5.4.2 Sei a < b und $f : [a,b] \longrightarrow \mathbb{R}$ **stetig.** Eine Funktion $F : [a,b] \longrightarrow \mathbb{R}$ heisst **Stammfunktion** von f, wenn F (**stetig) differenzierbar** in [a,b] ist und F' = f in [a,b] gilt.

Satz 5.4.3 (Fundamentalsatz der Differentialrechnung) Sei $f : [a, b] \longrightarrow \mathbb{R}$ stetig. So gibt es eine Stammfunktion F von f, die bis auf eine addidive Konstante eindeutig bestimmt ist und: $\int_a^b f(x) dx = F(b) - F(a)$.

Satz 5.4.5 (Partielle Integration) Seien $a < b \in \mathbb{R}$ und $f,g : [a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar. Dann gilt: $\int_a^b f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x) dx$.

Satz 5.4.6 (Substitution) Sei a < b, $\phi : [a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a,b]) \subseteq I$ und $f : I \longrightarrow \mathbb{R}$ eine stetige Funktion. Dann gilt: $\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_a^b f(\phi(t)) \phi'(t) dt$.

Korollar 5.4.8 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig. (1) Seien $a,b,c \in \mathbb{R}$, so dass das abgeschlossene Intervall mit Endpunkten $a+c,b+c \in I$. Dann gilt: $\int_{a+c}^{b+c} f(x) dx = \int_a^b f(t+c) dt$. (2) Seien $a,b,c \in \mathbb{R}$ mit $c \neq 0$, so dass das abgeschlossene Intervall mit den Endpunkten $ac,bc \in I$. Dann gilt: $\int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$.

Satz 5.5.1 Sei $f_n:[a,b]\longrightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen eine Funktion $f:[a,b]\longrightarrow \mathbb{R}$ konvergiert. So ist f beschränkt integrierbar und $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$.

Korollar 5.5.2 Sei $f_n: [a,b] \longrightarrow \mathbb{R}$ eine Folge **beschränkter, integrierbarer Funktionen**, so dass $\sum_{n=0}^{\infty} f_n$ auf [a,b] **gleichmässig konvergiert**. Dann gilt: $\sum_{n=0}^{\infty} \int_a^b f_n(x) dx = \int_a^b (\sum_{n=0}^{\infty} f_n(x)) dx$.

Korollar 5.5.3 Sei $f(x) = \sum_{n=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \le r < \rho$, f auf [-r,r] **integrierbar** und es gilt $\forall x \in]-\rho, \rho[: \int_0^x f(t) \, dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}.$

und integrierbar auf [a,b] für alle b > a. Wenn $\lim_{x \to a} \int_a^b f(x) dx$ existiert, bezeichnen wir den **Grenzwert** mit $\int_a^{\infty} f(x) dx$ und sagen, dass f auf $[a, +\infty]$ integrierbar ist.

Lemma 5.8.3 Sei $f: [a, \infty[\longrightarrow \mathbb{R} \text{ beschränkt und}]$ integrierbar auf $[a,b] \ \forall b > a$. (1) Wenn $|f(x)| \le$ $g(x) \quad \forall x \geqslant a \text{ und } g(x) \text{ auf } [a, \infty] \text{ integrierbar ist, ist } f$ auf $[a, \infty]$ integrierbar. (2) Wenn $0 \le g(x) \le f(x)$ und $\int_{a}^{\infty} g(x) dx$ divergiert, divergiert auch $\int_{a}^{\infty} f(x) dx$.

Satz 5.8.5 (McLaurin 1742) Sei $f: [1, \infty] \longrightarrow [0, \infty]$ monoton fallend. Die Reihe $\sum_{n=1}^{\infty} f(n)$ konvergiert genau dann, wenn $\int_{1}^{\infty} f(x) dx$ konvergiert.

Eine Situation, die zu einem uneigentlichen Integral führt, ist wenn $f:]a, b] \longrightarrow \mathbb{R}$ auf jedem Intervall $[a + \varepsilon, b]$, $\varepsilon > 0$ beschränkt und integrierbar ist, aber auf [a, b] nicht notwendigerweise beschränkt ist.

Definition 5.8.8 In dieser Situation ist $f:[a,b] \longrightarrow$ \mathbb{R} integrierbar, wenn $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) \, dx$ existiert.In diesem Fall wird der **Grenzwert** mit $\int_a^b f(x) dx$ beze-

ichnet. **Definition 5.8.11** Für s > 0 definieren wir $\Gamma(s) :=$ $\int_0^\infty e^{-x} x^{s-1} dx$.

Satz 5.8.12 (Bohr-Mollerup) (1) Die Gamma Funk**tion** erfüllt die Relationen: (a) $\Gamma(1) = 1$ $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$ (c) γ ist logarithmisch **konvex**, d.h. $\Gamma(\lambda x + (1 - \lambda)\overline{y}) \leqslant \Gamma(x)^{\lambda}\Gamma(y)^{1--\lambda}$ für alle x, y > 0 und $0 \le \lambda \le 1$.

(2) Die Gamma Funktion ist die einzige Funktion $]0,\infty[\longrightarrow]0,\infty[$, die (a), (b) und (c) erfüllt. Darüberhinaus gilt: $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0$ **Lemma 5.8.13** Sei p > 1 und q > 1 mit $\frac{1}{p} + 1q = 1$. Dann gilt $\forall a, b \geqslant 0$: $a \cdot b \leqslant \frac{a^p}{p} + \frac{b^q}{a}$. Satz 5.8.14 (**Hölder Ungleichung**) Seien p,q > 1 mit $\frac{1}{n} + \frac{1}{1}$. Für

Definition 5.8.1 Sei $f: [a, \infty] \longrightarrow \mathbb{R}$ beschränkt alle stetigen Funktionen $f, g: [a, b] \longrightarrow \mathbb{R}$ gilt: $\int_{a}^{b} |f(x)g(x)| dx \le ||f||_{n} ||g||_{a}$ Satz 5.9.3 Seien P, Q**Polynome** mit grad(P) < grad(Q) und Q mit **Produktzerlegung** (*) Dann gibt es A_{ii} , B_{ii} , $C_{ii} \in \mathbb{R}$ mit: $\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x - a_i)^2 + \beta_i^2)^j} + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{C_{ij}}{x - \gamma_i)^j}.$

6 Anhang A

Satz A.0.1 (Binomialsatz) $\forall x,y \in \mathbb{C}, n \geqslant 1$ gilt: $(x+y)^n = \sum_n kx^k y^{n-k}$.

7 Wichtige Beispiele

Ungerade und gerade Funktionen Sei f(x) eine gerade Funktion. Dann: f(x) = f(-x). Sei g(x) eine **ungerade** Funktion. Dann: -g(x) = g(-x). Das **Pro**dukt von 2 geraden Funktionen ist gerade. Das Produkt von 2 ungeraden Funktionen ist gerade. Das Produkt einer ungeraden und einer geraden Funktion, ist ungerade. Für ungerade Funktionen gilt: $\int_{-a}^{+a} g(x) dx = 0$. (Dies kann man sich graphisch vorstellen).

Konvergenztest für Reihen Gegeben: $\sum_{n=0}^{\infty} a_n$.

- (1) Spezieller Typ?
- 1.1 Geometrische Reihe: $\sum q^n$? Konvergent, wenn: |q| < 1.
- 1.2 Alternierende Reihe: $\sum (-1)^n a_n$? Konvergent, wenn: $\lim a_n = 0$.
- **1.3** Riemann Zeta: $\zeta(s) = \sum \frac{1}{n^s}$ Konvergent, wenn:
- **1.4** Teleskopreihe $\sum (b_n b_{n-1})$? Konvergent, wenn: $\lim b_n$ existiert.
- (2) Kein spezieller Typ:
- 2.1 $\lim a_n = 0$? Nein: **divergent**.
- **2.2 Quotientenkriterium** anwendbar?
- 2.3 Wurzelkriterium anwendbar?
- **2.4** Gibt es eine **konvergente Majorante**?
- 2.5 Gibt es eine divergente Minorante?
- 2.6 Nichts von all dem?

 \Longrightarrow kreativ sein.

Allgemeine Potenzen Wir können die Exponentialfunktion und den natürlichen Logarithmus verwenden, um allgemeine Potenzen zu definieren. Für x > 0und $a \in \mathbb{R}$ beliebig definieren wir: $x^a := \exp(a \ln x)$. Insbesondere: $x^0 = 1 \ \forall x > 0$.

Trigonometrische Funktionen Sinusfunktion für $z \in$

$$\mathbb{C} : \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}.$$

Kosinusfunktion für $z \in \mathbb{C}$: $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}$. Tangensfunktion für $z \notin$ $\frac{\pi}{2} + \pi \cdot \mathbb{Z}: \ \tan z = \frac{\sin z}{\cos z}.$ $z \notin \pi \cdot \mathbb{Z}: \cot z = \frac{\cos z}{\sin z}.$ Cotangensfunktion für

Hyperbelfunktionen $\forall x \in \mathbb{R}$: $\cosh x = \frac{e^x + e^{-x}}{2}$. $\frac{\sinh x = \frac{e^x - e^{-x}}{2}}{\sinh x} = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$ Es gilt offensichtlich: $\cosh x \geqslant 1 \ \forall x \in \mathbb{R}$, $\sinh x \geqslant$ $1 \ \forall x \in]0, +\infty[$, $\sin(0) = 0$. Daraus folgt: cosh ist auf $[0, \infty]$ strikt monoton wachsend, $\cosh(0) = 1$ und $\lim \cosh x = +\infty$. Also ist $\cosh : [0, \infty[\longrightarrow [1, \infty[$ bijektiv. Deren Umkehrfunktion wird mit arcosh: $[1,\infty] \longrightarrow [0,\infty[$ bezeichnet. Unter Verwendung von $\cosh^2 x - \sinh^2 x = 1 \ \forall x \in \mathbb{R} \ \text{folgt: arcosh'y} =$ $\frac{1}{\sqrt{y^2-1}} \ \forall y \in]1,+\infty[$. Analog zeigt man, dass sinh :

 $\mathbb{R} \longrightarrow \mathbb{R}$ streng monoton wachsend und bijektiv ist. Dessen Umkehrfunktion wird mit arsinh : $\mathbb{R} \longrightarrow \mathbb{R}$ bezichnet und es gilt: $\arcsin' y = \frac{1}{\sqrt{1+y^2}} \ \forall y \in \mathbb{R}.$

Für $\tanh x$ folgt: $\tanh' x = \frac{1}{\cosh^2 x} > 0$ Also ist \tanh auf R streng monoton wachsend und man zeigt, dass $\lim_{x \to +\infty} \tanh x = 1, \lim_{x \to -\infty} \tanh x = -1.$ Die Funktion $tanh : \mathbb{R} \longrightarrow]-1,1[$ ist bijektiv. Ihre Umkehrfunktion wird mit artanh :] -1,1[$\longrightarrow \mathbb{R}$ bezeichnet. Es gilt dann: $\operatorname{artanh}' y = \frac{1}{1-v^2} \ \forall y \in]-1,1[.$

7.1 Ableitungen

$$(ax^{z})' = azx^{z-1}$$

$$(x^{x})' = (e^{x \ln x})' = (\ln(x) + 1)e^{x}$$

$$(x \ln x)' = \ln(x) + 1$$

$$\begin{array}{l} e'^x = e^x \\ \sin' x = \cos x \\ \cos' x = -\sin x \\ \tan' x = \frac{1}{\cos^2 x} \\ \cot' x = -\frac{1}{\sin^2 x} \\ \ln' x = \frac{1}{x} \\ \arcsin' x = \frac{1}{\sqrt{1-x^2}} \\ \arccos' x = \frac{-1}{\sqrt{1-x^2}} \\ \arctan' x = \frac{1}{1+x^2} \\ \sinh' x = \cosh x \\ \cosh' x = \sinh x \\ \tanh' x = \frac{1}{\cosh^2 x} \\ \arcsinh' y = \frac{1}{\sqrt{1+y^2}} \quad \forall y \in \mathbb{R} \\ \arcsinh' y = \frac{1}{\sqrt{y^2-1}} \quad \forall y \in]1, +\infty[\\ \arctanh' y = \frac{1}{1-y^2} \quad \forall y \in]-1, 1[\end{array}$$

7.2 Integrale

$$\int x^{s} dx = \frac{x^{s+1}}{s+1} + C \quad s \neq -1 \qquad \int x^{s} dx = \ln x + C$$

$$\int \cos x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

```
\int \sinh x \, dx = \cosh x + C
\int \cosh x \, dx = \sinh x + C
\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C
\int \frac{1}{\sqrt{1+x^2}} \, dx = \arcsin x + C
\int \frac{1}{1+x^2} \, dx = \arctan x + C
\int \frac{1}{\sqrt{x^2-1}} \, dx = \arctan x + C
\int e^x \, dx = e^x + C
\int \ln x \, dx = x \ln x - x + C \text{ (verwende } \ln x = \ln x \cdot 1\text{)}
\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C
\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x
n \ge 1 \quad I_n = \int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}
\int (ax + b)^s \, dx = \frac{1}{a} \ln |ax + b| + C
```

7.3 Additionstheoreme

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = 4\cos^{3}x - 3\cos x$$

$$\tan 3x = \frac{3\tan x - \tan^{3}x}{1 - 3\tan^{2}x}$$

$$\sin^{2}\frac{x}{2} = \frac{1 - \cos x}{2}$$

$$\cos^{2}\frac{x}{2} = \frac{1 + \cos x}{2}$$

$$\tan^{2}\frac{x}{2} = \frac{1 - \cos x}{1 + \cos x} \tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

$$\sin x + \sin y = 2\sin \frac{x + y}{2}\cos \frac{x - y}{2}$$

$$\sin x - \sin y = 2\cos \frac{x + y}{2}\sin \frac{x - y}{2}$$

$$\cos x + \cos y = 2\cos \frac{x + y}{2}\cos \frac{x - y}{2}$$

$$\cos x - \cos y = -2\sin \frac{x + y}{2}\sin \frac{x - y}{2}$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

7.4 Grenzwerte

$$\lim_{x \to \infty} (1 + \frac{x}{n})^n = e^x$$

$$\forall \alpha \in \mathbb{R} \quad \lim_{x \to \infty} \sqrt[n]{n^{\alpha}} = 1$$

$$\lim_{x \to \infty} \sqrt[n]{n!} = \infty$$

$$\forall \alpha \in \mathbb{R}, |q| < 1 \quad \lim_{x \to \infty} n^{\alpha} \cdot q^n = 0$$

$$\lim_{x \to 0} \sqrt[x]{x} = \dots$$

$$\lim_{x \to 0} x^x = \dots$$