

EE2211 Introduction to Machine Learning

Lecture 1

Wang Xinchao xinchao@nus.edu.sg

Office Hour: Mon 9:30 - 10:30 AM

(Week 2-4, Week 10-12)

Course Contents

1

Introduction and Preliminaries (Xinchao)

- Introduction

Data Engineering

Introduction to Probability and Statistics

Fundamental Machine Learning Algorithms I (Yueming)

Systems of linear equations

- Least squares, Linear regression
- Ridge regression, Polynomial regression
- Fundamental Machine Learning Algorithms II (Yueming)
 - Over-fitting, bias/variance trade-off
 - Optimization, Gradient descent
 - Decision Trees, Random Forest

Performance and More Algorithms (Xinchao)

Performance Issues

- K-means Clustering

Neural Networks

No coding for

EXams

World's Largest Selfie

World's Largest Selfie

Outline

- What is machine learning?
 - Three Definition(s)
- When do we need machine learning?
 - Sometimes we need, sometimes we don't
- Applications of machine learning
- Types of machine learning
 - Supervised, Unsupervised, Reinforcement Learning
- Walking through a toy example on classification
- Inductive vs. Deductive Reasoning

What is machine learning?

Learning is any process by which a system improves performance from experience. - Herbert Simon

A computer program is said to learn

- from **experience E**
- with respect to some class of tasks T
- and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.

- Tom Mitchell

Machine Learning (Supervised Learning)

Machine Learning: field of study that gives computers the ability to learn without being explicitly programmed

- Arthur Samuel

AI, Machine Learning, and Deep Learning

Example of AI but not ML: Deductive Reasoning

NUS is in Singapore, Singapore is in Asia -> NUS is in Asia

When do we need machine learning?

Lack of human expertise (Navigating on Mars)

Involves huge amount of data (Genomics)

Learning is not always useful:

No need to "learn" to calculate payroll!

Task T, Performance P, Experience E

USPS

T: Digit Recognition

P: Classification Accuracy

E: Labelled Images

Task T, Performance P, Experience E

T: Email Categorization

P: Classification Accuracy

E: Email Data, Some Labelled

Task T, Performance P, Experience E

T: Playing Go Game

P: Chances of Winning

E: Records of Past Games

Task T, Performance P, Experience E

T: Identifying Covid-19 Clusters

P: Small Internal Distances

Larger External Distances

E: Records of Patients

Web Search Engine

Product Recommendation/

Language Translation

Photo Tagging

Virtual Personal Assistant

Portfolio Management

Traffic Prediction

Medical Diagnosis

Algorithmic Trading

Types of Machine Learning

Supervised Learning

Input:

- 1) Training Samples,
- 2) Desired Output (Teacher/Supervision)

Output:

A rule that maps input to output

Unsupervised Learning

Input:

Samples

Output:

Underlying patterns in data

Reinforcement Learning

Input:

Sequence of States, Actions, and Delayed Rewards

Output:

Action Strategy: a rule that maps the environment to action

Types of Machine Learning

Supervised Learning

Input:

- 1) Training Samples,
- 2) Desired Output (Teacher/Supervision)

Output: fundin

A rule that maps input to output

Data Output

Unsupervised Learning

Input:

Samples

Output:

Underlying patterns in data

Reinforcement Learning

Input:

Sequence of States, Actions, and Delayed Rewards

Output:

Action Strategy: a rule that maps the environment to action

Supervised Learning

Regression

- Given $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Learn a function $f(\mathbf{x})$ to predict real-valued y given \mathbf{x}

Supervised Learning

Data

Regression

(Continuous)

x

Classification

(Categorical)

Classification

- Given $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)$
- Learn a function $f(\mathbf{x})$ to predict categorical y given \mathbf{x}

Types of Machine Learning

Supervised Learning

Input:

- 1) Training Samples,
- 2) <u>Desired Output</u> (Teacher/Supervision)

Output:

A rule that maps input to output

Unsupervised Learning

Input:

Samples

Output:

Underlying patterns in data

Reinforcement Learning

Input:

Sequence of States, Actions, and Delayed Rewards

Output:

Action Strategy: a rule that maps the environment to action

Unsupervised Learning

Clustering

- Given $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$, without labels
- Output Hidden Structure Behind

Types of Machine Learning

Supervised Learning

Input:

- 1) Training Samples,
- 2) Desired Output (Teacher/Supervision)

Output:

A rule that maps input to output

Unsupervised Learning

Input:

Samples

Output:

Underlying patterns in data

Reinforcement Learning

Input:

Sequence of States, Actions, and Delayed Rewards

Output:

Action Strategy: a rule that maps the environment to action

Reinforcement Learning

Breakout Game

Training 15 minutes

Training 30 minutes

Reinforcement Learning

- Given sequence of <u>states</u> and <u>actions</u> with (delayed)
 rewards R
- Output a policy $\pi(a, s)$, to guide us what action a to take in state s

(S:) Ball Location,
Paddle Location, Bricks

A: left, right

R: <u>positive reward</u> Knocking a brick clearing all bricks

negative reward
Missing the ball

zero reward Cases in between

Supervised Unsupervised Reinforcement

Quiz Time!

Unsupervised

Reinforcement

Step 1: Feature Extraction

Extract Attributes of Samples

Step2: Sample Classification
Decide Label for a Sample

Feature Extraction

	Color —	Size -	Shape –	Label ·
90	Blue	Large	Ring	Yes
	Red	Large	Triangle	Yes
	Orange	Large	Diamond	Yes
•	Green	Small	Circle	Yes
\Rightarrow	Yellow	Small	Arrow	No
	Blue	Large	Rectangle	No
	Red	Large	Circle	No
♦	Green	Small	Diamond	No
	Yellow	Large	Triangle	?

Feature Extraction

Color	Size	Shape	Label
Blue	Large	Ring	Yes
Red	Large	Triangle	Yes
Orange	Large	Diamond	Yes
Green	Small	Circle	Yes
Yellow	Small	Arrow	No
Blue	Large	Rectangle	No
Red	Large	Circle	No
Green	Small	Diamond	No

Feature Extraction

Color	Size	Shape	Label
Blue	Large	Ring	Yes
Red	Large	Triangle	Yes
Orange	Large	Diamond	Yes
Green	Small	Circle	Yes
Yellow	Small	Arrow	No
Blue	Large	Rectangle	No
Red	Large	Circle	No
Green	Small	Diamond	No

	Similarity			
$\dot{\gamma}$	Color	Size	Shape	Tota
	0 /	1	0	1
	0	1	1/	2
LA	0	1	0	1
· O	0	0	0	0
- △ ⇒	1	0	0	1
- 🔼 🗀	0	1	0	1
~ △	0	1	0	1
_ 🛆 💠	0	0	0	0

Nearest Neighbor Classifier:

- Find the "nearest neighbor" of a sample in the feature space
- 2) Assign the label of the nearest neighbor to the sample

Inductive vs. Deductive Reasoning

Main Task of Machine Learning: to make inference

Two Types of Inference

Inductive

- To reach **probable** conclusions
- Not all needed information is available, causing uncertainty

ML topics

Probability and Statistics

Deductive

- To reach logical conclusions deterministically
- All information that can lead to the correct conclusion is available

Rule-based reasoning

NUS is in Singapore, Singapore is in Asia -> NUS is in Asia

Inductive Reasoning

Note: humans use inductive reasoning all the time and not in a formal way like using probability/statistics.

B. C. by Johnny hart HOW CAN ANYONE LOOK, STUPID I HAVE . IF THAT AINT PROOF COULD BE A LUCKY PROVE THAT "NO EXAMINED OVER EIGHT WHAT IS IT? COINCIDENCE HUNDRED THOUSAND TWO SNOWFLAKES SPECIMENS WITHOUT A ARE ALIKE"? SINGLE DUPLICATION !-Publishers-Hall Syndicate, 1968

Ref: Gardener, Martin (March 1979). "MATHEMATICAL GAMES: On the fabric of inductive logic, and some probability paradoxes" (PDF). Scientific American. 234

Summary by Quick Quiz

Three Components in ML Definition

Task T, Performance P, Experience E

Three Types of in ML

Supervised Learning
Unsupervised Learning
Reinforcement Learning

Inductive and Deductive

Inductive: Probable / Deductive: Rule-based

Two Types of Supervised Learning

Classification, Regression

One Type of Unsupervised Learning

Clustering

Example of a Classifier Model

Nearest Neighbor Classifier

Practice Question (Type of Question to Expect in Exams)

Which of the following statement is true?

- A. Nearest Neighbor Classifier is an example of unsupervised learning
- B. Nearest Neighbor Classifier is an example of deductive learning
- C. Nearest Neighbor Classifier is an example of feature extraction
- D. None of the above is correct.

