CHAPTER 2

Section 2.4

1. Some examples are:

 $\pi r^2 h$ volume of a cylinder :

 $\pi r (l+r)$ surface area of a cone:

> lwhvolume of a cuboid :

Figure 1: z = 3 - x - 3y

Figure 2: z = 3 - x - 3y

2. (a)

Figure 3: $z = x^2 + y^2 + 1$ (b)

Figure 4: $z = x^2 + y^2 + 1$

Figure 5: $z = \sin(x + y)$

(c)

Figure 6: $z = \sin(x + y)$

Figure 7: $z = e^{xy}$

Figure 8: $z = e^{xy}$

(d)

- 3. (a) The level surfaces of $u = x^2 + y^2 + z^2$ are spheres centered at the point (x, y, z) = (0, 0, 0) and with radius $r = \sqrt{u}$.
 - (b) The level surfaces of u = x + y + z are planes, where a particular value for u denotes the point of intersection of the plane with the x, y and z axes.
 - (c) The level surfaces of $w = x^2 + y^2 z$ are hyperbolic paraboloids with the saddle point located at point (x, y, z) = (0, 0, -w).
 - (d) The level surface of $w = x^2 + y^2$ is a hyperbolic paraboloid with its saddle point located at at point (x, y, z) = (0, 0, 0).

4. (a)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{1 + x^2 + y^2} = \frac{0+0}{1+0+0} = 0$$

(b) Let x = y. Then the limit becomes

$$\lim_{(x,y)\to(0,0)} \frac{x}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{x}{2x^2} = \lim_{(x,y)\to(0,0)} \frac{1}{2x} = \infty$$

Next, let x = 0. Then the limit becomes

$$\lim_{(x,y)\to(0,0)} \frac{x}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{0}{0 + y^2} = \frac{0}{0 + 0} = 0$$

Hence, the limit does not exist.

(c)

$$\lim_{(x,y)\to(0,0)} \frac{(1+y^2)\sin x}{x} = \left(\lim_{y\to 0} 1 + y^2\right) \lim_{x\to 0} \frac{\sin x}{x} = (1)(1) = 1$$

To show that $\lim_{x\to 0} \sin x/x = 1$ we use the sandwich theorem:

$$\sin x \le x \le \tan x \quad \to \quad 1 \le \frac{x}{\sin x} \le \frac{\tan x}{\sin x} \quad \to \quad 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

Next, note that

$$\lim_{x \to 0} \frac{1}{\cos x} = \frac{1}{1} = 1$$

Hence,

$$\lim_{x \to 0} \frac{x}{\sin x} = 1 \qquad \Longrightarrow \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(d)

$$\lim_{(x,y)\to(0,0)} \frac{1+x-y}{x^2+y^2} = \frac{1+0-0}{0+0} = \infty$$

5. (a) Let us consider the limit

$$\lim_{(x,y)\to(0,0)} z = \lim_{(x,y)\to(0,0)} \frac{x}{x-y} = \lim_{x\to 0} \left(\lim_{y\to 0} \frac{x}{x-y}\right) = \lim_{x\to 0} \frac{x}{x-0} = \lim_{x\to 0} 1 = 1$$

However

$$\lim_{(x,y)\to(0,0)} z = \lim_{(x,y)\to(0,0)} \frac{x}{x-y} = \lim_{y\to 0} \left(\lim_{x\to 0} \frac{x}{x-y}\right) = \lim_{y\to 0} \frac{0}{0-y} = 0$$

Hence, the limit at (x, y) = (0, 0) does not exist and so the function z is discontinuous at that point.

Figure 9: z = x/(x - y)

(b) Let us consider the limit

$$\lim_{(x,y)\to(0,0)} z = \lim_{(x,y)\to(0,0)} \ln\left(x^2 + y^2\right) = \lim_{x\to 0} \left(\lim_{y\to 0} \ln\left(x^2 + y^2\right)\right) = \lim_{x\to 0} \ln x^2 = -\infty$$

However, the point (x,y)=(0,0) is not in the domain of z, as the function is not defined there. Hence, strictly speaking z is continuous over its domain of definition $x,y\in(0,\infty)$ and has an infinite discontinuity at the point (x,y)=(0,0) as it is not defined there.

Figure 10: z = x/(x - y)

- 6. (a) The function e^a where a is an arbitrary real valued scalar is defined for any a, positive or negative. Hence, the domain may be formally defined as $\{x, y \in \mathbb{R} \mid \infty < x, y < \infty\}$.
 - (b) The domain for the function $z = \ln(x^2 + y^2 1)$ is given by $\{x, y \in \mathbb{R} \mid x^2 + y^2 > 1\}$.
 - (c) The set in which the function $z = \sqrt{1 x^2 y^2}$ is defined is the closed region $\{x, y \in \mathbb{R} \mid x^2 + y^2 \le 1\}$.
 - (d) The set in which the function u = xy/z is defined is an open set, excluding the points lying in the xy plane (i.e. z = 0). It is not a domain, since not all points

in the open set can be joined by a broken line.

7. Let f(x,y) be defined in domain D and continuous at the point (x_1,y_1) of D, so that $\lim_{(x,y)\to(x_1,y_1)} f(x,y) = c = f(x_1,y_1)$. Substituting $\epsilon = (1/2)f(x_1,y_1)$ in (2.3) then gives

$$|f(x,y) - f(x_1,y_1)| < \frac{1}{2}f(x_1,y_1)$$

which is equivalent to stating that there is a neighbourhood of (x_1, y_1) in which $f(x, y) > (1/2)f(x_1, y_1) > 0$. Rewriting the absolute inequality gives

$$-\frac{1}{2}f(x_1, y_1) < f(x, y) - f(x_1, y_1) < \frac{1}{2}f(x_1, y_1)$$
$$0 < f(x, y) - \frac{1}{2}f(x_1, y_1) < f(x_1, y_1)$$
$$f(x_1, y_1) > f(x, y) - \frac{1}{2}f(x_1, y_1) > 0$$

Focusing on the second inequality we find

$$f(x,y) > \frac{1}{2}f(x_1,y_1)$$

And since the starting assumption was that $f(x_1, y_1) > 0$ clearly $(1/2)f(x_1, y_1) > 0$ as well.

- 8. Suppose that the domain D could consist of two open sets E_1 and E_2 with no point in common. Next let us choose point P in E_1 and Q in E_2 and join them by a broken line in D. We will regard this line as a path from point P to Q and let s be the distance from P along the path so that the path is given by continuous functions x = x(s) and y = y(s), where $0 \le s \le L$, with s = 0 at point P and s = L at point Q. Now consider a function f(s) and let f(s) = -1 if (x(s), y(s)) is in E_1 and let f(s) = 1 if (x(s), y(s))is in E_2 . Furthermore, let this function f(s) be some linear combination of x(s) and y(s), i.e. f(s) = ax(s) + by(s), where a and b are arbitrary scalars. Now since both x(s)and y(s) are continuous for $0 \le s \le L$ then according to (2.7) so will be f(s). Next, we apply the intermediate value theorem: If f(x) is continuous for $a \le x \le b$ and f(a) < 0, f(b) > 0, then f(x) = 0 for some x between a and b. Hence, since f(s) is continuous for $0 \le s \le L$ and f(0) = -1 < 0 and f(L) = 1 > 0, then f(s) = 0 for some $s = s_0$ between 0 and L. But $f(s_0) = 0$ does not correspond to a point $(x(s_0), y(s_0))$ lying in either E_1 or E_2 . In other words, a section of the path representing the broken line connecting points P and Q and given by continuous functions x(s) and y(s) doesn't belong to either E_1 or E_2 . But this contradicts the definition of a domain D, which states that two points P and Q belonging to two different non-overlapping open sets E_1 and E_2 cannot be joined by a broken line.
- 9. Let the set A consist of all points (x, y) for which the continuous function f(x, y) > 0 in domain D. Let (x_1, y_1) be such a point. We can choose $f(x_1, y_1)$ arbitrarily small

as long as $f(x_1, y_1) > 0$. Then with the help of the answer to Problem 7 we can verify that there is a neighborhood of $f(x_1, y_1)$ in which $f(x, y) > (1/2)f(x_1, y_1) > 0$. In other words, no matter how small $f(x_1, y_1)$ is, as long as $f(x_1, y_1) > 0$ and f(x, y)is continuous, there will always exist a neighborhood of (x_1, y_1) of radius δ where $f(x,y) > (1/2)f(x_1,y_1) > 0$. Hence, the set A is an open set. A similar reasoning can be applied to conclude that the set B is an open set. Together, A and B form two non-overlapping open sets. Next, imagine choosing a point (x, y) = P in A and a point (x,y)=Q in B and join them by a continuous (broken) line in D. Let $s, 0 \le s \le L$ denote the distance along the path in the same way as for Problem 8, i.e. the path is from P to Q and is given by the continuous functions x = x(s) and y = y(s). Now we apply the intermediate value theorem; since f(s) is continuous for $0 \le s \le L$ and f(0) > 0 and f(L) < 0, then f(s) = 0 for some $s = s_0$ between s = 0 and s = L. Let us suppose the opposite; that $f(s) \neq 0$ for any s. This would imply that D consists of the two non-overlapping open sets A and B only, which as we concluded in Problem 8 contradicts the definition of a domain D; stating that two points P and Q belonging to two different non-overlapping open sets A and B cannot be joined by a (broken) line.

10. (a) Let
$$|\mathbf{x}| = \sqrt{x_1^2 + \dots + x_n^2}$$
 in V^n . If $|\mathbf{x}| = \sqrt{x_1^2 + \dots + x_n^2} < \epsilon$ then $|\mathbf{x}|^2 = x_1^2 + \dots + x_n^2 < \epsilon^2 \implies |x_1| < \epsilon, \dots, |x_n| < \epsilon$

For n=2, the result may be geometrically interpreted by stating that if the length of a vector \mathbf{x} with origin at point $(x_1, x_2) = (0, 0)$, i.e. $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2}$ is smaller than some $\epsilon > 0$, then there exists a neighborhood of (0, 0) where $|x_1| < \epsilon$ and $|x_2| < \epsilon$.

(b) Suppose that
$$|x_1| < \delta, \dots, |x_n| < \delta$$
 then $x_1^2 < \delta^2, \dots, x_n^2 < \delta^2$ and so $x_1^2 + \dots + x_n^2 < \delta^2 + \dots + \delta^2 = n\delta^2$ $n \ge 0$

Taking square roots next gives

$$\sqrt{x_1^2 + \dots + x_n^2} = |\mathbf{x}| < \sqrt{n}\delta < n\delta$$

where the right most inequality clearly holds, since $\sqrt{n} < n$.

(c) To show continuity of the mapping $\mathbf{y} = \mathbf{f}(\mathbf{x})$ at the point \mathbf{x}^0 , where $\mathbf{x} \in V^n$ and $\mathbf{y} \in V^m$, we choose a $\delta > 0$ for a given $\epsilon > 0$ small enough such that

$$|f_1(x_1,\ldots,x_n)-f_1(x_1^0,\ldots,x_n^0)| < \frac{\epsilon}{m},\ldots,|f_m(x_1,\ldots,x_n)-f_m(x_1^0,\ldots,x_n^0)| < \frac{\epsilon}{m}$$

for
$$|\mathbf{x} - \mathbf{x}^0| = \sqrt{(x_1 - x_1^0)^2 + \dots + (x_n - x_n^0)^2} < \delta$$
. Squaring and summing gives

$$\left[f_1(x_1,\ldots,x_n) - f_1(x_1^0,\ldots,x_n^0)\right]^2 + \cdots + \left[f_m(x_1,\ldots,x_n) - f_m(x_1^0,\ldots,x_n^0)\right]^2 < \frac{\epsilon^2}{m}$$

Finally, taking square roots of both sides of the inequality gives

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^0)| < \frac{\epsilon}{\sqrt{m}} < \epsilon$$

In conclusion, since we haven chosen δ such that $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^0)| < \epsilon/\sqrt{m}$, it will certainly satisfy $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^0)| < \epsilon$, since $\epsilon > \epsilon/\sqrt{m}$.

(d) Squaring the inequality that signifies continuity for the mapping y = f(x) gives

$$[f_1(x_1,\ldots,x_n)-f_1(x_1^0,\ldots,x_n^0)]^2+\cdots+[f_m(x_1,\ldots,x_n)-f_m(x_1^0,\ldots,x_n^0)]^2<\epsilon^2$$
 which implies that

$$[f_1(x_1,\ldots,x_n)-f_1(x_1^0,\ldots,x_n^0)]^2 < \epsilon^2,\ldots,[f_m(x_1,\ldots,x_n)-f_m(x_1^0,\ldots,x_n^0)]^2 < \epsilon^2$$

Taking square roots of both sides then finally results in

$$|f_1(\mathbf{x}) - f_1(\mathbf{x}^0)| < \epsilon, \dots, |f_m(\mathbf{x}) - f_m(\mathbf{x}^0)| < \epsilon$$

from which we may conclude that each of the functions $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ is continuous at (x_1^0, \ldots, x_n^0) .

11. Let us for the moment assume that the limit $P_n \to P_0$ is not unique so that there exists a $P_n \to P_0'$, $P_0' \neq P_0$ and lets take $\epsilon = (1/3)d(P_0, P_0') = (1/3)|P_0' - P_0|$. We thus have $|P_n - P_0| < \epsilon$ and $|P_n - P_0'| < \epsilon$. Then

$$|P_0' - P_0| = \underbrace{|P_n - P_0 + P_0' - P_n| \le |P_n - P_0| + |P_0' - P_n|}_{\text{triangle inequality}} < \frac{2}{3}|P_0' - P_0|$$

which is clearly a contradiction and so we must conclude that in fact $P_0 = P'_0$, i.e. the limit P_0 is unique.

12. To show that a set E in the plane is closed if and only if for every convergent sequence of points P_n in E the limit of the sequence is in E we will try to prove the opposite and see that it produces a contradiction. First, suppose E is closed and $P_0 \to P_0$, with P_n in E for all n, but the limit P_0 not in E (i.e. $P_0 \in \mathbb{R} \setminus E$). According to section (2.2), since E is closed, $\mathbb{R} \setminus E$ is open. Now since $P_0 \in \mathbb{R} \setminus E$ and the set is open there will exist a neighborhood of P_0 of radius ϵ such that $d(P, P_0) < \epsilon$ which is completely contained in $\mathbb{R} \setminus E$ and so implies $P \notin E$. But this would mean there exists an N such that for all $n \geq N$, $P_n \in \mathbb{R} \setminus E$, which contradicts the assumption that the sequence P_n is entirely contained in E.

Next, suppose E is such that whenever $P_n \in E$ and $P_n \to P_0$, then $P_0 \in E$. To show that E is closed, we need to prove that $\mathbb{R} \setminus E$ is open, meaning that a neighborhood of a point $P \in \mathbb{R} \setminus E$ of radius $\epsilon > 0$ is contained entirely in $\mathbb{R} \setminus E$. Let us suppose the opposite however, that P_0 is a point not in E ($P_0 \in \mathbb{R} \setminus E$), but has at least

one point of its neighborhood in E. In other words, suppose a neighborhood of P_0 of arbitrary radius $\epsilon > 0$ will contain at least one point that lies in E, in particular consider $\epsilon = 1, \epsilon = 1/2, \ldots, \epsilon = 1/n$. Let $P_n \in E$ be such a point and let its distance to $P_0 \in \mathbb{R} \setminus E$ satisfy the condition $d(P_n, P_0) < 1/n$. Then for $\epsilon = 1/n$ we arrive at $P_n \to P_0$ (see Problem 11 for the definition of the limit of a convergent series), which implies $P_n \in \mathbb{R} \setminus E$. But this is contradictory to the original assumption that $P_n \in E$. Hence, this proves that E is closed and in conclusion we have proven that a set E is closed if and only if for every convergent sequence of point P_n in E, the limit of the sequence P_0 is in E.

- 13. (a) A set is called open if we can form a neighborhood of a point in the set of radius ϵ that is contained entirely in the set. In other words, this neighborhood does not contain any elements that are not part of the set. Since by definition the empty set does not contain any elements, the above statement can be applied to it without any problems and so it can be considered to be open.
 - (b) To show that a set E in the plane and its boundary is closed is equivalent to showing that the complement to this is an open set $\mathbb{R} \setminus \overline{E}$ where the set \overline{E} denotes the union of E and its boundary. To show that $\mathbb{R} \setminus \overline{E}$ is open is equivalent to showing that a neighborhood of a point $P \in \mathbb{R} \setminus \overline{E}$ of radius $\epsilon > 0$ is contained entirely in $\mathbb{R} \setminus \overline{E}$. We have already proven this as part of the second part of the solution to Problem 12 and so we won't repeat it again. Hence, we may conclude that a set E in the plane and its boundary are indeed closed.

Section 2.6

1. (a)

$$\frac{\partial z}{\partial x} = -\frac{2xy}{(x^2 + y^2)^2} \qquad \qquad \frac{\partial z}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

(b)

$$\frac{\partial z}{\partial x} = y^2 \cos xy \qquad \qquad \frac{\partial z}{\partial y} = \sin xy + xy \cos xy$$

(c)

$$\frac{\partial z}{\partial x} = \frac{3x^2 + 2xy - 2xz}{x^2 - 3z^2} \qquad \qquad \frac{\partial z}{\partial y} = \frac{x^2}{x^2 - 3z^2}$$

(d)

$$\frac{\partial z}{\partial x} = \frac{e^{x+2y}}{2\sqrt{e^{x+2y} - y^2}} \qquad \qquad \frac{\partial z}{\partial y} = \frac{e^{x+2y} - y}{\sqrt{e^{x+2y} - y^2}}$$

$$\frac{\partial z}{\partial x} = 3x\sqrt{x^2 + y^2} \qquad \qquad \frac{\partial z}{\partial y} = 3y\sqrt{x^2 + y^2}$$

$$\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - (x + 2y)^2}} \qquad \frac{\partial z}{\partial y} = \frac{2}{\sqrt{1 - (x + 2y)^2}}$$

(g)

$$\frac{\partial z}{\partial x} = \frac{e^x}{e^z + 1} \qquad \qquad \frac{\partial z}{\partial y} = \frac{2e^y}{e^z + 1}$$

(h)

$$\frac{\partial z}{\partial x} = -\frac{y+z}{x+2z} \qquad \qquad \frac{\partial z}{\partial y} = -\frac{2xy+z^2+xz}{2yz+xy}$$

2. Using a forward difference:

$$\left. \frac{\partial f}{\partial x} \right|_{(1,1)} \approx \frac{f(2,1) - f(1,1)}{1} = \frac{2 - (-1)}{1} = 3$$

$$\left. \frac{\partial f}{\partial y} \right|_{(1,1)} \approx \frac{f(1,2) - f(1,1)}{1} = \frac{-3 - (-1)}{1} = -2$$

Using a backward difference:

$$\left. \frac{\partial f}{\partial x} \right|_{(1,1)} \approx \frac{f(1,1) - f(0,1)}{1} = \frac{-1 - (-2)}{1} = 1$$

$$\left. \frac{\partial f}{\partial y} \right|_{(1,1)} \approx \frac{f(1,1) - f(1,0)}{1} = \frac{-1 - 1}{1} = -2$$

Using a centered difference:

$$\left. \frac{\partial f}{\partial x} \right|_{(1,1)} \approx \frac{f(2,1) - f(0,1)}{2} = \frac{2 - (-2)}{2} = 2$$

$$\left. \frac{\partial f}{\partial y} \right|_{(1,1)} \approx \frac{f(1,2) - f(1,0)}{2} = \frac{-3 - (-1)}{2} = -2$$

3. (a)

$$\left(\frac{\partial u}{\partial x}\right)_{y} = 2x \qquad \left(\frac{\partial v}{\partial y}\right)_{x} = -2$$

$$\left(\frac{\partial x}{\partial u}\right)_v = \frac{\partial x}{\partial u} = e^u \cos v$$
 $\left(\frac{\partial y}{\partial v}\right)_u = e^u \cos v$

$$\left(\frac{\partial x}{\partial u}\right)_y = \left[\frac{\partial}{\partial u}\left(u+2y\right)\right]_y = 1 \qquad \quad \left(\frac{\partial y}{\partial v}\right)_u = \left[\frac{1}{2}\frac{\partial}{\partial v}\left(u-v\right)\right]_u = -\frac{1}{2}$$

$$\left(\frac{\partial r}{\partial x}\right)_y = \frac{x}{\sqrt{x^2 + y^2}} \qquad \left(\frac{\partial r}{\partial \theta}\right)_x = \frac{x \sin \theta}{\cos^2 \theta} = x \sec \theta \tan \theta$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = \frac{ydx - xdy}{y^2}$$

$$dz = \frac{xdx + ydy}{x^2 + y^2}$$

$$dz = \frac{(y - y^2) dx + (x - x^2) dy}{(1 - x - y)^2}$$

$$dz = (x - 2y)^4 e^{xy} \left[\left(5 + xy - 2y^2 \right) dx + \left(-10 - 2xy + x^2 \right) dy \right]$$

$$dz = \frac{-ydx + xdy}{x^2 + y^2}$$

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy + \frac{\partial u}{\partial z}dz = -\frac{xdx + ydy + zdz}{(x^2 + y^2 + z^2)^{3/2}}$$

5. (a)

$$\Delta z = f\left(x + \Delta x, y + \Delta y\right) - f\left(x, y\right) = \left(x + \Delta x\right)^{2} + 2\left(x + \Delta x\right)\left(y + \Delta y\right) - x^{2} - 2xy|_{(1,1)}$$

$$= 2\left(x + y\right)\Delta x + 2x\Delta y + 2\Delta x\Delta y + \overline{\Delta x}^{2}|_{(1,1)}$$

$$= 2\left(1 + 1\right)\Delta x + 2\Delta y + 2\Delta x\Delta y + \overline{\Delta x}^{2}$$

$$= 4\Delta x + 2\Delta y + 2\Delta x\Delta y + \overline{\Delta x}^{2}$$

$$dz = 2\left(x + y\right)\Delta x + 2x\Delta y$$

$$= 2\left(1 + 1\right)\Delta x + 2\Delta y$$

$$= 4\Delta x + 2\Delta y$$

(b)

$$\Delta z = f\left(x + \Delta x, y + \Delta y\right) - f\left(x, y\right) = \frac{x + \Delta x}{x + \Delta x + y \Delta y} - \frac{x}{x + y}\Big|_{(1,1)}$$

$$= \frac{1 + \Delta x}{2 + \Delta x + \Delta y} - \frac{1}{2}$$

$$= \frac{\Delta x - \Delta y}{2\left(2 + \Delta x + \Delta y\right)}$$

$$= \frac{(\Delta x - \Delta y)\left(2 + \Delta x + \Delta y\right) - (\Delta x - \Delta y)\left(\Delta x + \Delta y\right)}{4\left(2 + \Delta x + \Delta y\right)}$$

$$= \frac{\Delta x - \Delta y}{4} - \frac{(\Delta x - \Delta y)\left(\Delta x + \Delta y\right)}{4\left(2 + \Delta x + \Delta y\right)}$$

$$dz = \frac{\Delta x - \Delta y}{4}$$

6. Given the data for point (x, y) = (1, 2) we get $\Delta x = 0.1$ and $\Delta y = -0.2$ for the point (x, y) = (1.1, 1.8), and so

$$dz = f_x(1,2) \Delta x + f_y(1,2) \Delta y = 2(0.1) + 5(-0.2) = -0.8$$

which gives the estimate

$$f(1.1, 1.8) = f(1, 2) + dz = 3 - 0.8 = 2.2$$

Next, for the point (x, y) = (1.2, 1.8) we have $\Delta x = 0.2$ and $\Delta y = -0.2$ and so

$$dz = 2(0.2) + 5(-0.2) = -0.6$$

which gives the estimate

$$f(1.2, 1.8) = 3 - 0.6 = 2.4$$

And lastly, for the point (x,y) = (1.3, 1.8) we have $\Delta x = 0.3$ and $\Delta y = -0.2$ and so

$$dz = 2(0.3) + 5(-0.2) = -0.4$$

which gives the estimate

$$f(1.3, 1.8) = 3 - 0.4 = 2.6$$

7. First off, we will show that the limit at the point (x, y) = (0, 0) does not exist for z = f(x, y). Let us consider approaching the point (x, y) = (0, 0) along the line x = y, such that

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2}{2x^2} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2}$$

Similarly, approaching the point (x,y) = (0,0) along the line x = -y result in

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{-x^2}{2x^2} = \lim_{x \to 0} -\frac{1}{2} = -\frac{1}{2}$$

Combined with the fact that f(0,0) = 0, we may conclude that there does not exists a unique limit at the point (x,y) = (0,0) and so the function $z = f(x,y) = xy/(x^2 + y^2)$ is discontinuous at this point. Taking partial derivatives gives

$$\frac{\partial f}{\partial x} = -\frac{y(x^2 - y^2)}{(x^2 + y^2)^2}$$
 $\frac{\partial f}{\partial y} = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$

Since f(x, y) is discontinuous at the point (x, y) = (0, 0), so will be $\partial f/\partial x$ and $\partial f/\partial y$ (i.e. the partial derivatives do not exist at this point). However, we can show this explicitly as well by once again taking limits. First, we will take the one-sided limit, approaching zero for positive y along the line x = 0 of $\partial f/\partial x$, giving

$$\lim_{y \to 0^+} \frac{\partial f}{\partial x} = -\frac{y(0 - y^2)}{(0 + y^2)^2} = \lim_{y \to 0^+} \frac{y^3}{y^4} = \lim_{y \to 0^+} \frac{1}{y} = \infty$$

However, approaching zero for negative y along the line x = 0 gives

$$\lim_{y \to 0^{-}} \frac{\partial f}{\partial x} = -\frac{y(0 - y^{2})}{(0 + y^{2})^{2}} = \lim_{y \to 0^{-}} \frac{y^{3}}{y^{4}} = \lim_{y \to 0^{-}} \frac{1}{y} = -\infty$$

Hence, the limit does not exist. A similar analysis for $\partial f/\partial y$ reveals that the limit for $\partial f/\partial y$ at the point (x,y)=(0,0) does not exist either and so we may conclude that $\partial f/\partial x$ and $\partial f/\partial y$ exist for all (x,y) and are continuous except at the point (x,y)=(0,0).

The fundamental lemma states that if a function z = f(x, y) has continuous partial derivatives in D, then z has a differential

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y$$

at every point (x, y) of D. Since we have just verified that the function $z = f(x, y) = xy/(x^2 + y^2)$ has continuous partial derivatives $\partial z/\partial x$ and $\partial z/\partial y$ except at (x, y) = (0, 0) (as f(x, y) is discontinuous there), we may conclude that z = f(x, y) has a differential for $(x, y) \neq (0, 0)$, which is of the form

$$dz = -\frac{y(x^2 - y^2)}{(x^2 + y^2)^2} \Delta x + \frac{x(x^2 - y^2)}{(x^2 + y^2)^2} \Delta y = \frac{x^2 - y^2}{(x^2 + y^2)^2} (-y\Delta x + x\Delta y)$$

Section 2.7

1. (a)

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x_1 & 2x_2 \\ 3x_2 & 3x_1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} x_2x_3 & x_1x_3 & x_1x_2 \\ 2x_1x_3 & 0 & x_1^2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{bmatrix} = \begin{bmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \\ 2x & 0 \end{bmatrix}$$

(e)
$$\left[\frac{\partial w}{\partial x} \quad \frac{\partial w}{\partial y} \quad \frac{\partial w}{\partial z} \right] = \begin{bmatrix} 2xyz & x^2z & x^2y \end{bmatrix}$$

(f)
$$\left[\frac{\partial w}{\partial x} \quad \frac{\partial w}{\partial y} \quad \frac{\partial w}{\partial z} \right] = \begin{bmatrix} 2x & 2y & -2z \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial t} \end{bmatrix} = \begin{bmatrix} 2t \\ 3t^2 \\ 4t^3 \end{bmatrix}$$

2. (a)

$$d\mathbf{y} = \mathbf{f_x}|_{\mathbf{x}=(2,1)} d\mathbf{x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\ x_{1} = 2, x_{2} = 1 \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \end{bmatrix} = \begin{bmatrix} 2x_1|_{x_1=2} & 2x_2|_{x_2=1} \\ x_2|_{x_2=1} & x_1|_{x_1=2} \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0.04 \\ 0.01 \end{bmatrix} = \begin{bmatrix} 0.18 \\ 0.06 \end{bmatrix}$$
$$\mathbf{f} (2.04, 1.01) = \mathbf{f} (2, 1) + d\mathbf{y} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.18 \\ 0.06 \end{bmatrix} = \begin{bmatrix} 5.18 \\ 2.06 \end{bmatrix}$$

$$d\mathbf{y} = \mathbf{f_x}|_{\mathbf{x}=(3,2,1)} d\mathbf{x} = \begin{bmatrix} x_2|_{x_2=2} & x_1|_{x_1=3} & -2x_3|_{x_3=1} \\ [x_2+x_3]_{x_2=2,x_3=1} & x_1|_{x_1=3} & x_1|_{x_1=3} \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \\ dx_3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 & -2 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 0.01 \\ -0.01 \\ 0.03 \end{bmatrix} = \begin{bmatrix} -0.07 \\ 0.09 \end{bmatrix}$$
$$\mathbf{f} (3.01, 1.99, 1.03) = \mathbf{f} (3, 2, 1) + d\mathbf{y} = \begin{bmatrix} 5 \\ 9 \end{bmatrix} + \begin{bmatrix} -0.07 \\ 0.09 \end{bmatrix} = \begin{bmatrix} 4.93 \\ 9.09 \end{bmatrix}$$

(c)

$$\begin{bmatrix} du \\ dv \\ dw \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} \Big|_{x=0,y=\pi/2} & \frac{\partial u}{\partial y} \Big|_{x=0,y=\pi/2} \\ \frac{\partial v}{\partial x} \Big|_{x=0,y=\pi/2} & \frac{\partial v}{\partial y} \Big|_{x=0,y=\pi/2} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$$

$$= \begin{bmatrix} e^x \cos y \Big|_{x=0,y=\pi/2} & -e^x \sin y \Big|_{x=0,y=\pi/2} \\ e^x \sin y \Big|_{x=0,y=\pi/2} & e^x \cos y \Big|_{x=0,y=\pi/2} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0.1 \\ 1.6 - (\pi/2) \end{bmatrix} \approx \begin{bmatrix} -0.03 \\ 0.1 \\ 0.2 \end{bmatrix}$$

$$\begin{bmatrix} u (0.1, 1.6) \\ v (0.1, 1.6) \\ w (0.1, 1.6) \end{bmatrix} = \begin{bmatrix} u (0, \pi/2) \\ v (0, \pi/2) \\ w (0, \pi/2) \end{bmatrix} + \begin{bmatrix} du \\ dv \\ dw \end{bmatrix} \approx \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} -0.03 \\ 0.1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} -0.03 \\ 1.1 \\ 2.2 \end{bmatrix}$$

$$d\mathbf{y} = \mathbf{f_x}|_{\mathbf{x}=(1,0,\dots,0)} d\mathbf{x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \Big|_{x_1=1,x_2=0,\dots,x_n=0} & \dots & \frac{\partial y_1}{\partial x_n} \Big|_{x_1=1,x_2=0,\dots,x_n=0} \\ \vdots & & & \vdots \\ \frac{\partial y_n}{\partial x_1} \Big|_{x_1=1,x_2=0,\dots,x_n=0} & \dots & \frac{\partial y_n}{\partial x_n} \Big|_{x_1=1,x_2=0,\dots,x_n=0} \end{bmatrix} \begin{bmatrix} dx_1 \\ \vdots \\ dx_n \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2x_2|_{x_2=0} & \dots & \dots & 2x_n|_{x_2=0} \\ 2x_1|_{x_1=1} & 0 & 2x_3|_{x_3=0} & \dots & 2x_n|_{x_n=0} \\ \vdots & & & \vdots \\ 2x_1|_{x_1=1} & \dots & 2x_{n-2}|_{x_{n-2}=0} & 0 & 2x_n|_{x_n=0} \\ 2x_1|_{x_1=1} & \dots & 2x_{n-2}|_{x_{n-2}=0} & 0 & 2x_n|_{x_n=0} \end{bmatrix} \begin{bmatrix} dx_1 \\ \vdots \\ dx_n \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & \dots & 0 \\ 2 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 2 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0.1 \\ \vdots \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\mathbf{f}(1,0.1,\ldots,0.1) = \mathbf{f}(1,0,\ldots,0) + d\mathbf{y} = \begin{bmatrix} 0\\1\\\vdots\\1 \end{bmatrix} + \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\\vdots\\1 \end{bmatrix}$$

3. (a)

$$\frac{\partial (u, v)}{\partial (x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 3(x^2 - y^2) & -6xy \\ 6xy & 3(x^2 - y^2) \end{vmatrix} = 9(x^2 - y^2)^2 + 36x^2y^2$$
$$= 9(x^2 + y^2)^2$$

$$\frac{\partial (u, v, w)}{\partial (x, y, z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix} = \begin{vmatrix} e^y \cos z & xe^y \cos z & -xe^y \sin z \\ e^y \sin z & xe^y \sin z & xe^y \cos z \end{vmatrix} = 0$$

(c)
$$\frac{\partial (f,g)}{\partial (u,v)} = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \end{vmatrix} = \begin{vmatrix} 2uvw & u^2w \\ 2uv^2 & 2u^2v \end{vmatrix} = 2u^3v^2w$$

(d)
$$\frac{\partial (f,g,h)}{\partial (x,y,z)} = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} & \frac{\partial h}{\partial z} \end{vmatrix} = \begin{vmatrix} 2x & 2 & 2z \\ yz & xz & xy \\ 0 & 0 & 2z \end{vmatrix} = 4z^{2} (x^{2} - y)$$

4. (a) The Jacobian determinant is given by

$$\frac{\partial (u, v)}{\partial (x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{vmatrix} = e^{2x} \left(\cos^2 y + \sin^2 y\right) = e^{2x}$$

Evaluating the Jacobian determinant at the point (x,y)=(1,0) then gives $\partial(u,v)/\partial(x,y)=e^2 \approx 7.39$.

(b) Squaring and adding the equations $u = e^x \cos y$ and $v = e^x \sin y$ gives

$$u^{2} + v^{2} = e^{2x} (\cos^{2} y + \sin^{2} y) = e^{2x}$$
 $0.9 \le x \le 1.1$

Dividing the second equation by the first gives

$$\frac{v}{u} = \frac{\sin y}{\cos y} = \tan y \implies v = (\tan y) u \qquad -0.1 \le y \le 0.1$$

These two equations describe a region R_{uv} which is bounded by arcs of the circles $u^2 + v^2 = e^{1.8}$, $u^2 + v^2 = e^{2.2}$ and the rays $v = (\tan -0.1)u$, $v = (\tan 0.1)u \rightarrow v = \pm(\tan 0.1)u$ (see the right (or left) half of Figure 11).

Figure 11: $u^2 + v^2 = e^{1.8}$, $u^2 + v^2 = e^{2.2}$, $v = \pm (\tan 0.1) u$

To find the area A_{uv} of this region we make use of the formula $A = (\theta/2)r^2$ and so

$$A_{uv} = 2\frac{0.1}{2} \left(e^{2.2} - e^{1.8} \right)$$

which gives for the ratio of the are of R_{uv} to that of R_{xy}

$$\frac{A_{uv}}{A_{xy}} = \frac{0.1}{0.04} \left(e^{2.2} - e^{1.8} \right) \approx 7.44$$

This answer is slightly higher than the value of the Jacobian determinant from part (a).

(c) The approximating linear mapping is given by

$$\begin{bmatrix} du \\ dv \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$$

The region R'_{uv} corresponding to the square R_{xy} of part (b) under this linear mapping is a tilted square in the uv plane. For dy = 0 we have $du = e^x \cos y dx$ and $dv = e^x \sin y$, so that (du, dv) follows a line of slope $\tan y$. For dx = 0 we have $du = -e^x \sin y dy$ and $dv = e^x \cos y dy$, so that (du, dv) follows a line of slope $-\cot y$. At the point (x, y) = (1, 0) we have du = edx and dv = edy and so the area of the square region R'_{uv} is given by $A'_{uv} = dudv = e^2 dx dy$. The ratio of the area of R'_{uv} to that of R_{xy} then is

$$\frac{A'_{uv}}{A_{xy}} = e^2 \approxeq 7.39$$

This is the same answer as was found for part (a) and slightly smaller than the answer to part (b).

5. (a) Any two vectors **u** and **v** in V² that are not parallel (i.e. such that **u** ≠ a**v** for some arbitrary scalar a) are linearly independent. As Figure 12 shows, the sum of two vectors **u** and **v** forms the edges of a parallelogram, since **a** = **v** and **u** = **b**. Now consider keeping the vector **v** fixed while scaling the vector **u** by some scalar 0 ≤ a ≤ 1, such that **x** = OP = a**u** + **v**. As should be clear from looking at the figure, the point P will then lie somewhere on the line segment formed by the vector **b** = **u**, which is the rightmost edge of the parallelogram. Similarly, keeping the vector **u** fixed while scaling the vector **v** by some scalar 0 ≤ b ≤ 1, such that **x** = OP = **u** + b**v** will result in the point P lying somewhere on the line segment formed by the vector **v**, which is the top edge of the parallelogram. Hence, it should not be hard to see that any combination **x** = OP = a**u** + b**v**, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 will result in a point P that is located somewhere inside or

on an edge of the parallelogram formed by the two linearly independent vectors $\mathbf{u} = \mathbf{b}$ and $\mathbf{v} = \mathbf{a}$.

Figure 12: $\mathbf{w} = \mathbf{u} + \mathbf{v}$

(b) Let

$$\mathbf{B} = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix}$$

be the matrix associated with the parallelogram of part (a) and the vector \mathbf{x} , such that

$$\mathbf{x} = \overrightarrow{OP} = a\mathbf{u} + b\mathbf{v} = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \qquad 0 \le a \le 1, 0 \le b \le 1$$

Then according to Section 1.4 the determinant of **B** may be interpreted as the area of the parallelogram: $A_{\mathbf{x}} = \det \mathbf{B}$. Similarly, let

$$C = \begin{bmatrix} Au & Av \end{bmatrix} = AB$$

be the matrix associated with the parallelogram obtained by the linear mapping y = Ax, such that

$$\mathbf{y} = \overrightarrow{OQ} = \mathbf{A} (a\mathbf{u} + b\mathbf{v}) = a\mathbf{A}\mathbf{u} + b\mathbf{A}\mathbf{v} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \qquad 0 \le a \le 1, 0 \le b \le 1$$

The area of this parallelogram then is given by

$$A_{\mathbf{v}} = \det \mathbf{C} = \det (\mathbf{AB}) = \det \mathbf{A} (\det \mathbf{B})$$

where the last equality holds because the determinant of a product of matrices is equal to the product of the determinant of each individual matrix. Hence, we observe that indeed as claimed $A_{\mathbf{y}} = \det \mathbf{A} (A_{\mathbf{x}})$.

6. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be linearly independent vectors in V^3 . A point P for which

$$\mathbf{x} = \overrightarrow{OP} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$$
 $0 \le a \le 1, 0 \le b \le 1, 0 \le c \le 1$

will then fill a parallelepiped in 3-dimensional space whose edges, properly directed, represent \mathbf{u} , \mathbf{v} and \mathbf{w} . Let

$$\mathbf{B} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$$

be the matrix associated with the parallelepiped and the vector \mathbf{x} , such that

$$\mathbf{x} = \overrightarrow{OP} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad 0 \le a \le 1, 0 \le b \le 1, 0 \le c \le 1$$

Then according to Section 1.4 the determinant of **B** may be interpreted as the volume of the parallelepiped: $V_{\mathbf{x}} = \det \mathbf{B}$. Similarly, let

$$C = \begin{bmatrix} Au & Av \end{bmatrix} = AB$$

be the matrix associated with the parallelepiped obtained by the linear mapping $\mathbf{y} = \mathbf{A}\mathbf{x}$, such that

$$\mathbf{y} = \overrightarrow{OQ} = \mathbf{A} \left(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} \right) = a\mathbf{A}\mathbf{u} + b\mathbf{A}\mathbf{v} + c\mathbf{A}\mathbf{w} \qquad 0 \le a \le 1, 0 \le b \le 1, 0 \le c \le 1$$

$$= \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

The volume of this parallelepiped then is given by

$$V_{\mathbf{y}} = \det \mathbf{C} = \det (\mathbf{AB}) = \det \mathbf{A} (\mathbf{B})$$

where the last equality holds because the determinant of a product of matrices is equal to the product of the determinant of each individual matrix. Hence, we observe that indeed as claimed $V_{\mathbf{v}} = \det \mathbf{A}(V_{\mathbf{x}})$.

Section 2.8

1. (a)
$$\frac{dy}{dx} = \frac{\partial y}{\partial u}\frac{du}{dx} + \frac{\partial y}{\partial v}\frac{dv}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$
 (b)
$$\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$$

(c)
$$\frac{dy}{dx} = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx} = \frac{1}{v}\left(\frac{du}{dx} - \frac{u}{v}\frac{dv}{dx}\right)$$

2.
$$\frac{dy}{dx} = \frac{\partial y}{\partial u}\frac{du}{dx} + \frac{\partial y}{\partial v}\frac{dv}{dx} = vu^{v-1}\frac{du}{dx} + u^v \ln u \frac{dv}{dx}$$

3.

$$\frac{dy}{dx} = \frac{\partial y}{\partial u}\frac{du}{dx} + \frac{\partial y}{\partial v}\frac{dv}{dx} = \left(\frac{\partial}{\partial u}\frac{1}{\log_v u}\right)\frac{du}{dx} + \frac{1}{v\ln u}\frac{dv}{dx} = -\frac{1}{\log_v^2 u}\frac{1}{u\ln v}\frac{du}{dx} + \frac{1}{v\ln u}\frac{dv}{dx}$$

$$= -\frac{\ln^2 v}{\ln^2 u}\frac{1}{u\ln v}\frac{du}{dx} + \frac{1}{v\ln u}\frac{dv}{dx}$$

$$= -\frac{\ln v}{u\ln^2 u}\frac{du}{dx} + \frac{1}{v\ln u}\frac{dv}{dx}$$

4. Let us start by finding dx/dt and dy/dt:

$$x^{3} + e^{x} - t^{2} - t = 1$$
 \implies $3x^{2} \frac{dx}{dt} + e^{x} \frac{dx}{dt} - 2t - 1 = 0$ \implies $\frac{dx}{dt} = \frac{2t + 1}{3x^{2} + e^{x}}$

and

$$yt^2 + y^2t - t + y = 0 \implies t^2 \frac{dy}{dt} + 2yt + 2yt \frac{dy}{dt} + y^2 - 1 + \frac{dy}{dt} = 0 \implies \frac{dy}{dt} = \frac{1 - 2yt - y^2}{1 + 2yt + t^2}$$

Hence,

$$\left. \frac{dy}{dt} \right|_{t=0} = \left[\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \right]_{t=0} = \left[e^x \cos y \frac{2t+1}{3x^2 + e^x} - e^x \sin y \frac{1-2yt-y^2}{1+2yt+t^2} \right]_{t=0} = 1$$

5. There is an error in the problem statement. It should read: Find dz/dt for t=5.

$$\frac{dz}{dt}\Big|_{t=5} = \left[3x^2 - 6xy\right]_{x=7,y=2} \frac{dx}{dt}\Big|_{t=5} - 3x^2 \left|\frac{dy}{dt}\right|_{t=5} = (63)(3) - (147)(-1) = 336$$

6. We first compute dx/dt and dy/dt:

$$\frac{dx}{dt} = 6e^{3t} + 2t - 1 \qquad \frac{dy}{dt} = 15e^{3t} + 3$$

Hence,

$$\frac{dz}{dt}\Big|_{t=0} = \frac{\partial z}{\partial x}\Big|_{x=4,y=4} \frac{dx}{dt}\Big|_{t=0} + \frac{\partial z}{\partial y}\Big|_{x=4,y=4} \frac{dy}{dt}\Big|_{t=0} = (7)(5) + (9)(18) = 197$$

7. We start by finding $\partial u/\partial r$ and $\partial u/\partial \theta$:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y}$$

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin \theta \frac{\partial u}{\partial x} + r \cos \theta \frac{\partial u}{\partial y}$$

Squaring both sides then gives

$$\begin{split} & \left(\frac{\partial u}{\partial r}\right)^2 = \cos^2\theta \left(\frac{\partial u}{\partial x}\right)^2 + \sin^2\theta \left(\frac{\partial u}{\partial y}\right)^2 + 2\sin\theta\cos\theta \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \\ & \left(\frac{\partial u}{\partial \theta}\right)^2 = r^2\sin^2\theta \left(\frac{\partial u}{\partial x}\right)^2 + r^2\cos^2\theta \left(\frac{\partial u}{\partial y}\right)^2 - 2r^2\sin\theta\cos\theta \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \end{split}$$

Finally, multiplying the second equation by $1/r^2$ and adding the result to the first gives

$$\left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

8. We start by finding $\partial w/\partial u$ and $\partial w/\partial v$

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} = \cosh v \frac{\partial w}{\partial x} + \sinh v \frac{\partial w}{\partial y}$$
$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v} = u \sinh v \frac{\partial w}{\partial x} + u \cosh v \frac{\partial w}{\partial y}$$

Squaring both sides then gives

$$\begin{split} & \left(\frac{\partial w}{\partial u}\right)^2 = \cosh^2 v \left(\frac{\partial w}{\partial x}\right)^2 + \sinh^2 v \left(\frac{\partial w}{\partial y}\right)^2 + 2\sinh v \cosh v \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \\ & \left(\frac{\partial w}{\partial v}\right)^2 = u^2 \sinh^2 v \left(\frac{\partial w}{\partial x}\right)^2 + u^2 \cosh^2 v \left(\frac{\partial w}{\partial y}\right)^2 + 2u^2 \sinh v \cosh v \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \end{split}$$

Finally, multiplying the second equation by $1/u^2$ and subtracting the result from the first gives

$$\left(\frac{\partial w}{\partial u}\right)^2 - \frac{1}{u^2} \left(\frac{\partial w}{\partial v}\right)^2 = \left(\frac{\partial w}{\partial x}\right)^2 - \left(\frac{\partial w}{\partial y}\right)^2$$

where we have made use of the identity $\cosh^2 v - \sinh^2 v = 1$.

9. Let us define u = ax + by. Then

$$\frac{\partial z}{\partial x} = \frac{dz}{du}\frac{\partial u}{\partial x} = a\frac{dz}{du} \qquad \qquad \frac{\partial z}{\partial y} = \frac{dz}{du}\frac{\partial u}{\partial y} = b\frac{dz}{du}$$

Multiplying $\partial z/\partial x$ by b, $\partial z/\partial y$ by a and subtracting finally gives

$$b\frac{\partial z}{\partial x} - a\frac{\partial z}{\partial y} = ab\frac{dz}{du} - ab\frac{dz}{du} = 0$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = 2\cot\left(x^2y^2 - 1\right)\left(xy^2dx + x^2ydy\right)$$

and so

$$\frac{\partial z}{\partial x} = 2 \cot (x^2 y^2 - 1) xy^2 \qquad \frac{\partial z}{\partial y} = 2 \cot (x^2 y^2 - 1) x^2 y$$

(b)

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = \frac{2xy^2 - 3x^3y^2 - 2xy^4}{\sqrt{1 - x^2 - y^2}}dx + \frac{2x^2y - 3x^2y^3 - 2x^4y}{\sqrt{1 - x^2 - y^2}}dy$$

and so

$$\frac{\partial z}{\partial x} = \frac{2xy^2 - 3x^3y^2 - 2xy^4}{\sqrt{1 - x^2 - y^2}} \qquad \frac{\partial z}{\partial y} = \frac{2x^2y - 3x^2y^3 - 2x^4y}{\sqrt{1 - x^2 - y^2}}$$

(c)

$$2xdx + 4ydy - 2zdz = 0 \qquad \Longrightarrow \qquad dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = \frac{xdx + 2ydy}{z}$$

and so

$$\frac{\partial z}{\partial x} = \frac{x}{z} \qquad \qquad \frac{\partial z}{\partial y} = \frac{2y}{z}$$

11. Let x' = xt and y' = yt. Then

$$\frac{\partial}{\partial t}f(x',y') = \frac{\partial}{\partial t}(t^n f(x,y))$$
$$\frac{\partial f}{\partial x'}\frac{\partial x'}{\partial t} + \frac{\partial f}{\partial y'}\frac{\partial y'}{\partial t} = nt^{n-1}f(x,y)$$
$$x\frac{\partial f}{\partial (xt)} + y\frac{\partial f}{\partial (yt)} = nt^{n-1}f(x,y)$$

Setting t = 1 then gives

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y)$$

12. If w = F(x, y, z, t) and x = f(t), y = g(t) and z = h(t) then

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} + \frac{\partial w}{\partial t}\frac{dt}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} + \frac{\partial w}{\partial t}\frac{dz}{dt}$$

Section 2.9

1. (a)

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{pmatrix} \frac{\partial y_i}{\partial u_j} \end{pmatrix} \begin{pmatrix} \frac{\partial u_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \frac{\partial y_1}{\partial u_2} \\ \frac{\partial y_2}{\partial u_1} & \frac{\partial y_2}{\partial u_2} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \end{bmatrix}$$

$$= \begin{bmatrix} u_2 - 3 & u_1 \\ 2u_2 + 2 & 2u_2 + 2u_1 - 1 \end{bmatrix} \begin{bmatrix} \cos 3x_2 & -3x_1 \sin 3x_2 \\ \sin 3x_2 & 3x_1 \cos 3x_2 \end{bmatrix}$$

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} \Big|_{x_1 = 0, x_2 = 0} = \begin{bmatrix} -3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 0 \\ 2 & 0 \end{bmatrix}$$

(b)

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{pmatrix} \frac{\partial y_i}{\partial u_j} \end{pmatrix} \begin{pmatrix} \frac{\partial u_i}{\partial x_j} \end{pmatrix}$$

$$= \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \frac{\partial y_1}{\partial u_2} & \frac{\partial y_1}{\partial u_3} \\ \frac{\partial y_2}{\partial u_1} & \frac{\partial y_2}{\partial u_2} & \frac{\partial y_2}{\partial u_3} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{bmatrix}$$

$$= \begin{bmatrix} 2u_1 - 3 & 2u_2 & 1 \\ 2u_1 + 2 & -2u_2 & -3 \end{bmatrix} \begin{bmatrix} x_2 x_3^2 & x_1 x_3^2 & 2x_1 x_2 x_3 \\ x_2^2 x_3 & 2x_1 x_2 x_3 & x_1 x_2^2 \\ 2x_1 x_2 x_3 & x_1^2 x_3 & x_1^2 x_2 \end{bmatrix}$$

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} \Big|_{x_1 = 1, x_2 = 1, x_3 = 1} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 4 & 1 \\ -4 & -3 & 3 \end{bmatrix}$$

(c)

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} \end{bmatrix} = \begin{pmatrix} \frac{\partial y_i}{\partial u_j} \end{pmatrix} \begin{pmatrix} \frac{\partial u_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \frac{\partial y_1}{\partial u_2} \\ \frac{\partial y_2}{\partial u_1} & \frac{\partial y_2}{\partial u_2} \\ \frac{\partial y_3}{\partial u_1} & \frac{\partial y_3}{\partial u_2} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \end{bmatrix}$$

$$= \begin{bmatrix} e^{u_2} & u_1 e^{u_2} \\ e^{-u_2} & -u_1 e^{-u_2} \\ 2u_1 & 0 \end{bmatrix} \begin{bmatrix} 2x_1 & 1 \\ 4x_1 & -1 \end{bmatrix}$$

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} \Big|_{x_1 = 1, x_2 = 0} = \begin{bmatrix} e^2 & e^2 \\ e^{-2} & -e^{-2} \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 6e^2 & 0 \\ -2e^{-2} & 2e^{-2} \\ 4 & 2 \end{bmatrix}$$

(d)

$$\begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \vdots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} \end{bmatrix} = \begin{pmatrix} \frac{\partial y_i}{\partial u_j} \end{pmatrix} \begin{pmatrix} \frac{\partial u_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \dots & \frac{\partial y_1}{\partial u_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial y_n}{\partial u_1} & \dots & \frac{\partial y_n}{\partial u_n} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} \\ \vdots & \vdots & \vdots \\ \frac{\partial u_n}{\partial x_1} & \frac{\partial u_n}{\partial x_2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2u_2 & 2u_3 & \dots & 2u_n \\ 2u_1 & 0 & 2u_3 & \dots & 2u_n \\ \vdots & \ddots & \ddots & \vdots \\ 2u_1 & \dots & 2u_{n-2} & 0 & 2u_n \\ 2u_1 & \dots & 2u_{n-2} & 2u_{n-1} & 0 \end{bmatrix} \begin{bmatrix} 2x_1 + x_2 & x_1 \\ 2x_1 + 2x_2 & 2x_1 \\ \vdots & \vdots & \vdots \\ 2x_1 + nx_2 & nx_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2 & 2 & \dots & 2 \\ 2 & 0 & 2 & \dots & 2 \\ 2 & \dots & 2 & 0 & 2 \\ 2 & \dots & 2 & 0 & 2 \\ 2 & \dots & 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 2 \\ \vdots & \vdots \\ 2 & n \end{bmatrix}$$

$$= \begin{bmatrix} 4(n-1) & n^2 + n - 2 \\ 4(n-1) & n^2 + n - 4 \\ \vdots & \vdots \\ 4(n-1) & n^2 + n - 2n \end{bmatrix}$$

2. (a)

$$\frac{\partial(z,w)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{vmatrix} \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}
= \begin{vmatrix} 3u^2 + 6uv + 2u & 3u^2 - 3v^2 - 2v \\ 3u^2 - 4u & 3v^2 \end{vmatrix}
\times \begin{vmatrix} \cos xy - xy\sin xy & -x^2\sin xy \\ \sin xy + xy\cos xy + 2x & x^2\cos xy - 2y \end{vmatrix}
\frac{\partial(z,w)}{\partial(x,y)} \Big|_{x=1,y=0} = \begin{vmatrix} 11 & -2 \\ -1 & 3 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix}
= 31$$

(b)

$$\begin{split} \frac{\partial \left(x,y\right)}{\partial \left(s,t\right)} &= \begin{vmatrix} \frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w} \end{vmatrix} \begin{vmatrix} \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} \\ \frac{\partial w}{\partial s} & \frac{\partial w}{\partial t} \end{vmatrix} \\ &= \begin{vmatrix} \frac{z}{\sqrt{z^2 + w^2}} & \frac{w}{\sqrt{z^2 + w^2}} \\ -\frac{wz}{(z^2 + w^2)^{3/2}} & \frac{z^2}{(z^2 + w^2)^{3/2}} \end{vmatrix} \begin{vmatrix} -\frac{1}{(s + t + 1)^2} & -\frac{1}{(s + t + 1)^2} \\ \frac{2}{(2s - t + 1)^2} & \frac{1}{(2s - t + 1)^2} \end{vmatrix} \\ \frac{\partial \left(x,y\right)}{\partial \left(s,t\right)} \Big|_{s=0,t=0} &= \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2^{3/2}} & \frac{1}{2^{3/2}} \end{vmatrix} \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} \\ &= -\frac{3}{2} \end{split}$$

3. (a) Let us consider component $\partial y_1/\partial x_1$ of $\mathbf{y_x} = (\partial y_i/\partial x_j)$:

$$\begin{split} \frac{\partial y_1}{\partial x_1} &= \frac{\partial y_1}{\partial u_1} \frac{\partial u_1}{\partial x_1} + \dots + \frac{\partial y_1}{\partial u_m} \frac{\partial u_m}{\partial x_1} \\ &= \frac{\partial y_1}{\partial u_1} \left(\frac{\partial u_1}{\partial v_1} \frac{\partial v_1}{\partial x_1} + \dots + \frac{\partial u_1}{\partial v_n} \frac{\partial v_n}{\partial x_1} \right) + \dots + \frac{\partial y_1}{\partial u_m} \left(\frac{\partial u_m}{\partial v_1} \frac{\partial v_1}{\partial x_1} + \dots + \frac{\partial u_m}{\partial v_n} \frac{\partial v_n}{\partial x_1} \right) \\ &= \left(\frac{\partial y_1}{\partial u_1} \dots \frac{\partial y_1}{\partial u_m} \right) \begin{pmatrix} \frac{\partial u_1}{\partial v_1} \frac{\partial v_1}{\partial x_1} + \dots + \frac{\partial u_1}{\partial v_n} \frac{\partial v_n}{\partial x_1} \\ \vdots \\ \frac{\partial u_m}{\partial v_1} \frac{\partial v_1}{\partial x_1} + \dots + \frac{\partial u_m}{\partial v_n} \frac{\partial v_n}{\partial x_1} \end{pmatrix} \\ &= \left(\frac{\partial y_1}{\partial u_1} \dots \frac{\partial y_1}{\partial u_m} \right) \begin{pmatrix} \frac{\partial u_1}{\partial v_1} \dots \frac{\partial u_1}{\partial v_n} \\ \vdots \\ \frac{\partial u_m}{\partial v_1} \dots \frac{\partial u_m}{\partial v_n} \end{pmatrix} \begin{pmatrix} \frac{\partial v_1}{\partial x_1} \\ \vdots \\ \frac{\partial v_n}{\partial x_1} \end{pmatrix} \\ &= \left(\frac{\partial y_1}{\partial u_m} \right) \left(\frac{\partial u_m}{\partial v_n} \right) \left(\frac{\partial v_n}{\partial x_1} \right) \end{split}$$

The other components of y_x can be derived in a similar way and so we find that

$$\mathbf{y_x} = \begin{pmatrix} \frac{\partial y_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \cdots & \frac{\partial y_1}{\partial u_m} \\ \vdots & & \vdots \\ \frac{\partial y_i}{\partial u_1} & \cdots & \frac{\partial y_i}{\partial u_m} \end{bmatrix} \begin{bmatrix} \frac{\partial u_1}{\partial v_1} & \cdots & \frac{\partial u_1}{\partial v_n} \\ \vdots & & \vdots \\ \frac{\partial u_m}{\partial v_1} & \cdots & \frac{\partial u_m}{\partial v_n} \end{bmatrix} \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \cdots & \frac{\partial v_1}{\partial x_j} \\ \vdots & & \vdots \\ \frac{\partial v_n}{\partial x_1} & \cdots & \frac{\partial v_n}{\partial x_j} \end{bmatrix}$$
$$= \mathbf{y_u u_v v_x}$$

(b) We start by finding all components of $\partial(z, w)/\partial(x, y)$:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \right) + \frac{\partial z}{\partial v} \left(\frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \right)$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \right) + \frac{\partial z}{\partial v} \left(\frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \right)$$

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial w}{\partial u} \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \right) + \frac{\partial w}{\partial v} \left(\frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \right)$$

$$\frac{\partial w}{\partial y} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial y} = \frac{\partial w}{\partial u} \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \right) + \frac{\partial w}{\partial v} \left(\frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \right)$$

which subsequently can all be arranged as a matrix multiplication:

$$\frac{\partial z}{\partial x} = \begin{pmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \\ \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{bmatrix} \begin{pmatrix} \frac{\partial s}{\partial x} \\ \frac{\partial v}{\partial x} \end{pmatrix} \\
\frac{\partial z}{\partial y} = \begin{pmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \\ \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial s}{\partial s} & \frac{\partial t}{\partial t} \end{bmatrix} \begin{pmatrix} \frac{\partial s}{\partial y} \\ \frac{\partial t}{\partial y} \\ \frac{\partial t}{\partial y} \end{pmatrix} \\
\frac{\partial w}{\partial x} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \\ \frac{\partial v}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{bmatrix} \begin{pmatrix} \frac{\partial s}{\partial x} \\ \frac{\partial t}{\partial x} \end{pmatrix} \\
\frac{\partial w}{\partial y} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \\ \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{bmatrix} \begin{pmatrix} \frac{\partial s}{\partial y} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{pmatrix} \\
\frac{\partial w}{\partial v} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial w}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \\ \frac{\partial v}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{pmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{bmatrix} \begin{pmatrix} \frac{\partial s}{\partial s} \\ \frac{\partial v}{\partial s} \end{pmatrix}$$

And so we find that

$$\frac{\partial (z, w)}{\partial (x, y)} = \begin{bmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial s} & \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial s} & \frac{\partial v}{\partial t} \end{bmatrix} \begin{bmatrix} \frac{\partial s}{\partial x} & \frac{\partial s}{\partial y} \\ \frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} \end{bmatrix} \\
= \frac{\partial (z, w)}{\partial (u, v)} \frac{\partial (u, v)}{\partial (s, t)} \frac{\partial (s, t)}{\partial (x, y)}$$

4.

$$\frac{\partial \left(z,w\right)}{\partial \left(x,y\right)} = \begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{bmatrix} = \frac{\partial \left(z,w\right)}{\partial \left(u,v\right)} \frac{\partial \left(u,v\right)}{\partial \left(x,y\right)} = \begin{bmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial w}{\partial u} & \frac{\partial w}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 26 \\ -8 & 1 \end{bmatrix}$$

5. Let us start by finding $\mathbf{u}_{\mathbf{x}}$:

$$\mathbf{u_x} = \begin{pmatrix} \frac{\partial u_i}{\partial x_j} \end{pmatrix} = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 + 2x_2 & -3 + 2x_1 \\ 2 - 3x_2 & 5 - 3x_1 \end{bmatrix}$$

which at $\mathbf{x} = (2,1)$ reduces to

$$\mathbf{u}_{\mathbf{x}}|_{x_1=2,x_2=1} = \begin{bmatrix} 3 & 1\\ -1 & -1 \end{bmatrix}$$

And so $\mathbf{w}_{\mathbf{x}}$ at $\mathbf{u} = (3,3)$ and $\mathbf{x} = (2,1)$ is given by

$$\mathbf{w_x} = \mathbf{w_u} \mathbf{u_x} = \begin{bmatrix} 2 & 11 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -5 & -9 \\ 16 & 2 \end{bmatrix}$$

6. (a)

$$d(\mathbf{u} + \mathbf{v}) = d\left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}\right) = \begin{bmatrix} d(u_1 + v_1) \\ d(u_2 + v_2) \\ d(u_3 + v_3) \end{bmatrix} = \begin{bmatrix} du_1 + dv_1 \\ du_2 + dv_2 \\ du_3 + dv_3 \end{bmatrix} = \begin{bmatrix} du_1 \\ du_2 \\ du_3 \end{bmatrix} + \begin{bmatrix} dv_1 \\ dv_2 \\ dv_3 \end{bmatrix}$$
$$= d\mathbf{u} + d\mathbf{v}$$

(b)

$$d(a\mathbf{u} + b\mathbf{v}) = d\left(\begin{bmatrix} au_1 + bv_1 \\ au_2 + bv_2 \\ au_3 + bv_3 \end{bmatrix}\right) = \begin{bmatrix} d(au_1 + bv_1) \\ d(au_2 + bv_2) \\ d(au_3 + bv_3) \end{bmatrix} = \begin{bmatrix} adu_1 + bdv_1 \\ adu_2 + bdv_2 \\ adu_3 + bdv_3 \end{bmatrix}$$
$$= \begin{bmatrix} adu_1 \\ adu_2 \\ adu_3 \end{bmatrix} + \begin{bmatrix} bdv_1 \\ bdv_2 \\ bdv_3 \end{bmatrix}$$
$$= ad\mathbf{u} + bd\mathbf{v}$$

(c)

$$d\left(\mathbf{A}\mathbf{u}\right) = d \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \\ = d \begin{pmatrix} \begin{bmatrix} a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\ a_{21}u_1 + a_{22}u_2 + a_{23}u_3 \\ a_{31}u_1 + a_{32}u_2 + a_{33}u_3 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} a_{11}du_1 + a_{12}du_2 + a_{13}du_3 \\ a_{21}du_1 + a_{22}du_2 + a_{23}du_3 \\ a_{31}du_1 + a_{32}du_2 + a_{33}du_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} du_1 \\ du_2 \\ du_3 \end{bmatrix}$$

$$= \mathbf{A}d\mathbf{u}$$

(d)

$$d(\mathbf{u} \cdot \mathbf{v}) = d(u_1v_1 + u_2v_2 + u_3v_3)$$

$$= d(u_1v_1) + d(u_2v_2) + d(u_3v_3)$$

$$= u_1dv_1 + (du_1)v_1 + u_2dv_2 + (du_2)v_2 + u_3dv_3 + (du_3)v_3$$

$$= (u_1dv_1 + u_2dv_2 + u_3dv_3) + (v_1du_1 + v_2du_2 + v_3du_3)$$

$$= \mathbf{u} \cdot d\mathbf{v} + \mathbf{v} \cdot d\mathbf{u}$$

(e)

$$d(\mathbf{u} \times \mathbf{v}) = d \begin{pmatrix} \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} d(u_2 v_3 - u_3 v_2) \\ d(u_3 v_1 - u_1 v_3) \\ d(u_1 v_2 - u_2 v_1) \end{bmatrix}$$

$$= \begin{bmatrix} u_2 dv_3 + v_3 du_2 - u_3 dv_2 - v_2 du_3 \\ u_3 dv_1 + v_1 du_3 - u_1 dv_3 - v_3 du_1 \\ u_1 dv_2 + v_2 du_1 - u_2 dv_1 - v_1 du_2 \end{bmatrix}$$

$$= \begin{bmatrix} u_2 dv_3 - u_3 dv_2 \\ u_3 dv_1 - u_1 dv_3 \\ u_1 dv_2 - u_2 dv_1 \end{bmatrix} + \begin{bmatrix} v_3 du_2 - v_2 du_3 \\ v_1 du_3 - v_3 du_1 \\ v_2 du_1 - v_1 du_2 \end{bmatrix}$$

$$= \mathbf{u} \times d\mathbf{v} + d\mathbf{u} \times \mathbf{v}$$

Section 2.11

1. (a) We start by defining $F(x, y, z) = 2x^2 + y^2 - z^2 - 3 = 0$. Next,

$$F_x dx + F_y dy + F_z dz = 4x dx + 2y dy - 2z dz = 0 \qquad \Longrightarrow \qquad dz = \frac{2x}{z} dx + \frac{y}{z} dy$$

And so

$$\frac{\partial z}{\partial x} = \frac{2x}{z} \qquad \qquad \frac{\partial z}{\partial y} = \frac{y}{z}$$

(b) We start by defining $F(x, y, z) = xyz + 2x^2z + 3xz^2 - 1 = 0$. Next,

$$F_x dx + F_y dy + F_z dz = (yz + 4xz + 3z^2) dx + xz dy + (xy + 2x^2 + 6xz) dz = 0$$

which gives

$$dz = -\frac{yz + 4xz + 3z^2}{xy + 2x^2 + 6xz}dx - \frac{z}{y + 2x + 6z}dy$$

And so

$$\frac{\partial z}{\partial x} = -\frac{yz + 4xz + 3z^2}{xy + 2x^2 + 6xz} \qquad \qquad \frac{\partial z}{\partial y} = -\frac{z}{y + 2x + 6z}$$

(c) We start by defining $F(x, y, z) = z^3 + xz + 2yz - 1 = 0$. Next,

$$F_x dx + F_y dy + F_z dz = z dx + 2z dy + (3z^2 + x + 2y) dz = 0$$

which gives

$$dz = -\frac{zdx + 2zdy}{3z^2 + x + 2y}$$

And so

$$\frac{\partial z}{\partial x} = -\frac{z}{3z^2 + x + 2y} \qquad \qquad \frac{\partial z}{\partial y} = -\frac{2z}{3z^2 + x + 2y}$$

(d) We start by defining $F(x, y, z) = e^{xz} + e^{yz} + z - 1 = 0$. Next,

$$F_x dx + F_y dy + F_z dz = ze^{xz} dx + ze^{yz} dy + (xe^{xz} + ye^{yz} + 1) dz = 0$$

which gives

$$dz = -\frac{ze^{xz}dx + ze^{yz}dy}{xe^{xz} + ye^{yz} + 1}$$

And so

$$\frac{\partial z}{\partial x} = -\frac{ze^{xz}}{xe^{xz} + ye^{yz} + 1} \qquad -\frac{ze^{yz}}{xe^{xz} + ye^{yz} + 1}$$

2. Let us define F(x, y, z, u) = 2x + y - 3z - 2u = 0 and G(x, y, z, u) = 2x + 2y + z + u = 0 and the associated system of equations

$$F_z dz + F_u du = -F_x dx - F_y dy$$
$$G_z dz + G_u du = -G_x dx - G_y dy$$

With the above system we associate the determinants

$$D = \begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}, \quad D_1 = \begin{vmatrix} -F_x dx - F_y dy & F_u \\ -G_x dx - G_y dy & G_u \end{vmatrix}, \quad D_2 = \begin{vmatrix} F_z & -F_x dx - F_y dy \\ G_z & -F_x dx - F_y dy \end{vmatrix}$$

Hence,

$$dz = -\frac{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dx - \frac{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dy \qquad du = -\frac{\begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dx - \frac{\begin{vmatrix} F_z & F_y \\ G_z & G_y \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dy$$

Re-arranging then gives

$$dx = -\frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dz - \frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}} dy = -\frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}} dz - \frac{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}}{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}} dy$$

from which follows

$$\left(\frac{\partial x}{\partial y}\right)_z = -\frac{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}}{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}} = -\frac{\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & -2 \\ 2 & 1 \end{vmatrix}} = -\frac{5}{4}$$

From the second equation we find similarly

$$dy = -\frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_y \\ G_z & G_y \end{vmatrix}} du - \frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_y \\ G_z & G_y \end{vmatrix}} \frac{\begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dx = -\frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_y \\ G_z & G_y \end{vmatrix}} du - \frac{\begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix}}{\begin{vmatrix} F_z & F_y \\ G_z & G_y \end{vmatrix}} dx$$

and so

$$\left(\frac{\partial y}{\partial x}\right)_{u} = -\frac{\begin{vmatrix} F_{z} & F_{x} \\ G_{z} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} = -\frac{\begin{vmatrix} -3 & 2 \\ 1 & 1 \end{vmatrix}}{\begin{vmatrix} -3 & 1 \\ 1 & 2 \end{vmatrix}} = -\frac{5}{7}$$

Rewriting dz as

$$dz = -\frac{\begin{vmatrix} F_{x} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{u} \\ G_{z} & G_{u} \end{vmatrix}} dx - \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{u} \\ G_{z} & G_{u} \end{vmatrix}} \left(-\frac{\begin{vmatrix} F_{z} & F_{u} \\ G_{z} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} du - \frac{\begin{vmatrix} F_{z} & F_{x} \\ G_{z} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} dx \right)$$

$$= -\left(\frac{\begin{vmatrix} F_{x} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{u} \\ G_{z} & G_{u} \end{vmatrix}} - \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} dx + \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{u} \end{vmatrix}} du \right)$$

$$= -\left(\frac{\begin{vmatrix} F_{x} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}} - \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{x} \\ G_{y} & G_{x} \end{vmatrix}} dx + \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} du \right)$$

$$= -\left(\frac{\begin{vmatrix} F_{x} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{u} \\ G_{x} & G_{u} \end{vmatrix}} - \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} dx + \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} du \right)$$

gives

$$\left(\frac{\partial z}{\partial u}\right)_{x} = \frac{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{z} & F_{y} \\ G_{z} & G_{y} \end{vmatrix}} = \frac{\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix}}{\begin{vmatrix} -3 & 1 \\ 1 & 2 \end{vmatrix}} = -\frac{5}{7}$$

Lastly

$$dy = -\frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_u & F_u \\ G_y & G_u \end{vmatrix}} \frac{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}}{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}} dx - \frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}} dz = -\frac{\begin{vmatrix} F_x & F_u \\ G_x & G_u \end{vmatrix}}{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}} dx - \frac{\begin{vmatrix} F_z & F_u \\ G_z & G_u \end{vmatrix}}{\begin{vmatrix} F_y & F_u \\ G_y & G_u \end{vmatrix}} dz$$

Hence

$$\left(\frac{\partial y}{\partial z}\right)_{x} = -\frac{\begin{vmatrix} F_{z} & F_{u} \\ G_{z} & G_{u} \end{vmatrix}}{\begin{vmatrix} F_{y} & F_{u} \\ G_{y} & G_{u} \end{vmatrix}} = -\frac{\begin{vmatrix} -3 & -2 \\ 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix}} = \frac{1}{5}$$

3.

$$du = -\frac{\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} dx - \frac{\begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} dy$$

(a)

$$\left(\frac{\partial u}{\partial x}\right)_{y} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} 2x & 4v \\ 2x & -2v \end{vmatrix}}{\begin{vmatrix} 2u & 4v \\ -2u & -2v \end{vmatrix}} = \frac{3x}{u}$$

$$\left(\frac{\partial u}{\partial y}\right)_{x} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} -2y & 4v \\ 2y & -2v \end{vmatrix}}{\begin{vmatrix} 2u & 4v \\ -2u & -2v \end{vmatrix}} = \frac{y}{u}$$

(b)

$$\left(\frac{\partial u}{\partial x}\right)_{y} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} u & -y \\ -v & e^{v} - x \end{vmatrix}}{\begin{vmatrix} e^{u} + x & -y \\ y & e^{v} - x \end{vmatrix}} = \frac{xu + yv - ue^{v}}{e^{u+v} - xe^{u} + xe^{v} - x^{2} + y^{2}}$$

$$\left(\frac{\partial u}{\partial y}\right)_{x} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} -v & -y \\ u & e^{v} - x \end{vmatrix}}{\begin{vmatrix} e^{u} + x & -y \\ y & e^{v} - x \end{vmatrix}} = \frac{ve^{v} - xv - yu}{e^{u+v} - xe^{u} + xe^{v} - x^{2} + y^{2}}$$

(c)

$$\left(\frac{\partial u}{\partial x}\right)_{y} = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} 2x + u & -2yv + u \\ u & -2y \end{vmatrix}}{\begin{vmatrix} x + v & -2yv + u \\ x & -2y \end{vmatrix}} = -\frac{4xy + 2yu - 2yuv + u^{2}}{2xy + 2yv - 2xyv + xu}$$

$$\left(\frac{\partial u}{\partial y}\right)_{x} = -\frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} = -\frac{\begin{vmatrix} -v^{2} & -2yv + u \\ -2v & -2y \end{vmatrix}}{\begin{vmatrix} x + v & -2yv + u \\ x & -2y \end{vmatrix}} = -\frac{2yv^{2} - 2uv}{2xy + 2yv - 2xyv + xu}$$

4. Let us define $F(x, y, z, u, v) = x^2 + y^2 + z^2 - u^2 + v^2 - 1 = 0$ and $G(x, y, z, u, v) = x^2 - y^2 + z^2 + u^2 + 2v^2 - 21 = 0$ and the associated system of equations

$$F_u du + F_v dv = -F_x dx - F_y dy - F_z dz$$

$$G_u du + G_v dv = -G_x dx - G_y dy - G_z dz$$

With the above system we associate the determinants

$$D = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}, \qquad D_1 = \begin{vmatrix} -F_x dx - F_y dy - F_z dz & F_v \\ -G_x dx - G_y dy - G_z dz & G_v \end{vmatrix},$$

$$D_2 = \begin{vmatrix} F_u & -F_x dx - F_y dy - F_z dz \\ G_u & -G_x dx - G_y dy - G_z dz \end{vmatrix}$$

Hence,

$$du = -\frac{\begin{vmatrix} F_{x} & F_{v} \\ G_{x} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} dx - \frac{\begin{vmatrix} F_{y} & F_{v} \\ G_{y} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} dy - \frac{\begin{vmatrix} F_{z} & F_{v} \\ G_{z} & G_{v} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} dz = \frac{xv}{3uv} dx + \frac{yv}{uv} dy + \frac{zv}{3uv} dz$$

$$dv = -\frac{\begin{vmatrix} F_{u} & F_{x} \\ G_{u} & G_{x} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}} dx - \frac{\begin{vmatrix} F_{u} & F_{y} \\ G_{u} & G_{y} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} dy - \frac{\begin{vmatrix} F_{u} & F_{z} \\ G_{u} & G_{z} \end{vmatrix}}{\begin{vmatrix} F_{u} & F_{v} \\ G_{u} & G_{v} \end{vmatrix}} dz = -\frac{2xu}{3uv} dx - \frac{2zu}{3uv} dz$$

(a)

$$du(1,1,2) = \frac{1}{9}(dx + 3dy + 2dz)$$
 $dv(1,1,2) = -\frac{1}{3}(dx + 2dz)$

(b)

$$\left. \frac{\partial u}{\partial x} \right|_{x=1,y=1,z=2} = \frac{1}{9}$$
 $\left. \frac{\partial v}{\partial y} \right|_{x=1,y=1,z=2} = 0$

(c) Let us start by finding dx, dy and dz:

$$dx = 0.1 \qquad \qquad dy = 0.2 \qquad \qquad dz = -0.2$$

and so

$$du\left(1,1,2\right) = \frac{1}{9}\frac{3}{10} = \frac{1}{30} \qquad \qquad dv\left(1,1,2\right) = -\frac{1}{3}\left(-\frac{3}{10}\right) = \frac{1}{10}$$

which gives

$$u(1.1, 1.2, 1.8) \approx u(1, 1, 2) + du(1, 1, 2) = 3 + \frac{1}{30} \approx 3.033$$

 $v(1.1, 1.2, 1.8) \approx v(1, 1, 2) + dv(1, 1, 2) = 2 + \frac{1}{10} = 2.1$

5.

$$\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = -\frac{1}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} \begin{bmatrix} \begin{vmatrix} F_x & F_v \\ G_x & G_v \\ F_u & F_x \\ G_u & G_x \end{vmatrix} \begin{vmatrix} F_y & F_v \\ G_y & G_v \\ F_u & F_y \\ G_u & G_y \end{vmatrix} \end{bmatrix}$$
$$= \frac{1}{3yu - 4xu + 4x^2 + 9xy + 8xv} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

where

$$a = 8uv + 4u^{2} - 8xy - 4xu$$

$$b = -3u^{2} - 8x^{2} - 9xu$$

$$c = 4xy - 3y^{2} - 6yu - 4xv - 9yv - 4uv - 8v^{2}$$

$$d = 4x^{2} - 3xy + 6xu + 3uv$$

6. (a)

$$\left(\frac{\partial x_1}{\partial x_3}\right)_{x_4} = -\frac{\frac{\partial (F_1, F_2)}{\partial (x_3, x_2)}}{\frac{\partial (F_1, F_2)}{\partial (x_1, x_2)}} = -\frac{\begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix}}{\begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix}} = \frac{1}{2}, \quad \left(\frac{\partial x_1}{\partial x_4}\right)_{x_3} = -\frac{\frac{\partial (F_1, F_2)}{\partial (x_4, x_2)}}{\frac{\partial (F_1, F_2)}{\partial (x_1, x_2)}} = -\frac{\begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix}}{\begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix}} = -1$$

(b)

$$\left(\frac{\partial x_1}{\partial x_3} \right)_{x_2} = -\frac{\frac{\partial \left(F_1, F_2 \right)}{\partial \left(x_3, x_4 \right)}}{\frac{\partial \left(F_1, F_2 \right)}{\partial \left(x_1, x_4 \right)}} = -\frac{\begin{vmatrix} 0 & 2 \\ -1 & 4 \end{vmatrix}}{\begin{vmatrix} 3 & 2 \\ 5 & 4 \end{vmatrix}} = -1, \quad \left(\frac{\partial x_4}{\partial x_3} \right)_{x_2} = -\frac{\frac{\partial \left(F_1, F_2 \right)}{\partial \left(x_3, x_1 \right)}}{\frac{\partial \left(F_1, F_2 \right)}{\partial \left(x_4, x_1 \right)}} = -\frac{\begin{vmatrix} 0 & 3 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}} = \frac{3}{2}$$

(c)

$$\frac{\partial (x_1, x_2)}{\partial (x_3, x_4)} = \begin{vmatrix} \left(\frac{\partial x_1}{\partial x_3}\right)_{x_4} & \left(\frac{\partial x_1}{\partial x_4}\right)_{x_3} \\ \left(\frac{\partial x_2}{\partial x_3}\right)_{x_4} & \left(\frac{\partial x_2}{\partial x_4}\right)_{x_3} \end{vmatrix} = \begin{vmatrix} 1/2 & -1 \\ -3/2 & 1 \end{vmatrix} = -1$$

$$\frac{\partial (x_3, x_4)}{\partial (x_1, x_2)} = \begin{vmatrix} \left(\frac{\partial x_3}{\partial x_1}\right)_{x_2} & \left(\frac{\partial x_3}{\partial x_2}\right)_{x_1} \\ \left(\frac{\partial x_4}{\partial x_1}\right)_{x_2} & \left(\frac{\partial x_4}{\partial x_2}\right)_{x_1} \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ -3/2 & -1/2 \end{vmatrix} = -1$$

7. If F(x, y, z) = 0 then $F_x dx + F_y dy + F_z dz = 0$ and so provided that $F_x \neq 0$, $F_y \neq 0$ and $F_z \neq 0$ at the points considered

$$\left(\frac{\partial z}{\partial x}\right)_y = -\frac{F_x}{F_z} \qquad \qquad \left(\frac{\partial x}{\partial y}\right)_z = -\frac{F_y}{F_x} \qquad \qquad \left(\frac{\partial y}{\partial z}\right)_x = -\frac{F_z}{F_y}$$

from which follows

$$\left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x = \left(-\frac{F_x}{F_z}\right) \left(-\frac{F_y}{F_x}\right) \left(-\frac{F_z}{F_y}\right) = -1$$

8. (a) The relation

$$\frac{\partial U}{\partial V} - T \frac{\partial p}{\partial T} + p = 0$$

implies that if dU = adV + bdT and dp = cdV + edT are the expressions for dU and dp in terms of dV and dT then

$$\frac{\partial U}{\partial V} = a, \qquad \qquad \frac{\partial p}{\partial T} = e$$

Substituting for this in the relation (a) gives a - Te + p = 0.

(b) Treating U and V as the independent variables we assume the relations $dT = \alpha dV + \beta dU$ and $dp = \gamma dV + \delta dU$. Solving these two equation for dU and dp in terms of dV and dT gives

$$dU = -\frac{\alpha}{\beta}dV + \frac{1}{\beta}dT \qquad dp = \left(\gamma + \frac{\alpha\delta}{\beta}\right)dV + \frac{\delta}{\beta}dT$$

from which follows $a = -\alpha/\beta$ and $e = \delta/\beta$. Substituting for a and e in the equation a - Te + p = 0 from part (a) gives $\alpha + T\delta - p\beta = 0$. Since

$$\alpha = \frac{\partial T}{\partial V} \qquad \qquad \delta = \frac{\partial p}{\partial U} \qquad \qquad \beta = \frac{\partial T}{\partial U}$$

the equation $\alpha + T\delta - p\beta = 0$ can be written as

$$\frac{\partial T}{\partial V} + T \frac{\partial p}{\partial U} - p \frac{\partial T}{\partial U} = 0$$

(c) Treating V and p as the independent variables we assume the relations $dT = \alpha dp + \beta dV$ and $dU = \gamma dp + \delta dV$. Solving these two equations for dU and dp in terms of dV and dT gives

$$dU = \frac{\gamma}{\alpha}dT + \left(\delta - \frac{\beta\gamma}{\alpha}\right)dV \qquad dp = \frac{1}{\alpha}dT - \frac{\beta}{\alpha}dV$$

from which follows $a = \delta - (\beta \gamma)/\alpha$ and $e = 1/\alpha$. Substituting for a and e in the equation a - Te + p = 0 from part (a) gives $\alpha(\delta + p) - \beta \gamma - T = 0$. Since

$$\alpha = \frac{\partial T}{\partial p}$$
 $\beta = \frac{\partial T}{\partial V}$ $\gamma = \frac{\partial U}{\partial p}$ $\delta = \frac{\partial U}{\partial V}$

the equation $\alpha(\delta + p) - \beta \gamma - T = 0$ can be written as

$$T - p\frac{\partial T}{\partial p} + \left(\frac{\partial T}{\partial V}\frac{\partial U}{\partial p} - \frac{\partial T}{\partial p}\frac{\partial U}{\partial V}\right) = T - p\frac{\partial T}{\partial p} + \frac{\partial (T, U)}{\partial (V, p)} = 0$$

(d) Treating p and T as the independent variables we assume the relations $dV = \alpha dp + \beta dT$ and $dU = \gamma dp + \delta dT$. Solving these two equations for dU and dp in terms of dV and dT gives

$$dU = \frac{\gamma}{\alpha}dV + \left(\delta - \frac{\beta\gamma}{\alpha}\right)dT \qquad dp = \frac{1}{\alpha}dV - \frac{\beta}{\alpha}dT$$

from which follows $a = \gamma/\alpha$ and $e = -\beta/\alpha$. Substituting for a and e in the equation a - Te + p = 0 from part (a) gives $\gamma + T\beta + p\alpha = 0$. Since

$$\alpha = \frac{\partial V}{\partial p} \qquad \beta = \frac{\partial V}{\partial T} \qquad \gamma = \frac{\partial U}{\partial p}$$

the equation $\gamma + T\beta + p\alpha = 0$ can be written as

$$\frac{\partial U}{\partial p} + T \frac{\partial V}{\partial T} + p \frac{\partial V}{\partial p} = 0$$

(e) Treating U and p as the independent variables we assume the relations $dT = \alpha dp + \beta dU$ and $dV = \gamma dp + \delta dU$. Solving these two equations for dU and dp in terms of dV and dT gives

$$dU = \frac{1}{\beta \gamma - \alpha \delta} (\gamma dT - \alpha dV) \qquad dp = \frac{1}{\beta \gamma - \alpha \delta} (-\delta dT + \beta dV)$$

from which follows $a = \alpha/(\alpha\delta - \beta\gamma)$ and $e = \delta/(\alpha\delta - \beta\gamma)$. Substituting for a and e in the equation a - Te + p = 0 from part (a) gives $\alpha - T\delta + p(\alpha\delta - \beta\gamma) = 0$. Since

$$\alpha = \frac{\partial T}{\partial p}$$
 $\beta = \frac{\partial T}{\partial U}$ $\gamma = \frac{\partial V}{\partial p}$ $\delta = \frac{\partial V}{\partial U}$

the equation $\alpha - T\delta + p(\alpha\delta - \beta\gamma) = 0$ can be written as

$$\frac{\partial T}{\partial p} - T \frac{\partial V}{\partial U} + p \left(\frac{\partial T}{\partial p} \frac{\partial V}{\partial U} - \frac{\partial T}{\partial U} \frac{\partial V}{\partial p} \right) = \frac{\partial T}{\partial p} - T \frac{\partial V}{\partial U} + p \frac{\partial (V, T)}{\partial (U, p)} = 0$$

(f) Treating T and U as the independent variables we assume the relations $dV = \alpha dT + \beta dU$ and $dp = \gamma dT + \delta dU$. Solving these two equations for dU and dp in terms of dV and dT gives

$$dU = \frac{1}{\beta}dV - \frac{\alpha}{\beta}dT \qquad dp = \frac{\delta}{\beta}dV + \left(\gamma - \frac{\alpha\delta}{\beta}\right)dT$$

from which follows $a = 1/\beta$ and $e = \gamma - (\alpha \delta)/\beta$. Substituting for a and e in the equation a - Te + p = 0 from part (a) gives $T(\beta \gamma - \alpha \delta) - p\beta - 1 = 0$. Since

$$\alpha = \frac{\partial V}{\partial T}$$
 $\beta = \frac{\partial V}{\partial U}$ $\gamma = \frac{\partial p}{\partial T}$ $\delta = \frac{\partial p}{\partial U}$

the equation $T(\beta \gamma - \alpha \delta) - p\beta - 1 = 0$ can be written as

$$T\left(\frac{\partial V}{\partial U}\frac{\partial p}{\partial T} - \frac{\partial V}{\partial T}\frac{\partial p}{\partial U}\right) - p\frac{\partial V}{\partial U} - 1 = T\frac{\partial (p, V)}{\partial (T, U)} - p\frac{\partial V}{\partial U} - 1 = 0$$

Section 2.12

1. Using the relations $x = r \cos \theta$ and $y = r \sin \theta$ we find $F(x, y, r) = x^2 + y^2 - r^2 = 0$ and $G(x, y, \theta) = y - x \tan \theta = 0$.

(a)

$$dx = -\frac{\begin{vmatrix} F_r & F_y \\ G_r & G_y \end{vmatrix}}{\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}} dr - \frac{\begin{vmatrix} F_\theta & F_y \\ G_\theta & G_y \end{vmatrix}}{\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}} d\theta = \frac{1+0}{\cos\theta + \sin\theta \tan\theta} dr - \frac{0+r\tan\theta}{\cos\theta + \sin\theta \tan\theta} d\theta$$

 $= \cos\theta dr - r\sin\theta d\theta$

$$dy = -\frac{\begin{vmatrix} F_x & F_r \\ G_x & G_r \end{vmatrix}}{\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}} dr - \frac{\begin{vmatrix} F_x & F_\theta \\ G_x & G_\theta \end{vmatrix}}{\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}} d\theta = \frac{0 + \tan \theta}{\cos \theta + \sin \theta \tan \theta} dr + \frac{r}{\cos \theta + \sin \theta \tan \theta} d\theta$$
$$= \sin \theta dr + r \cos \theta d\theta$$

(b)

$$dr = -\frac{\begin{vmatrix} F_x & F_\theta \\ G_x & G_\theta \end{vmatrix}}{\begin{vmatrix} F_r & F_\theta \\ G_r & G_\theta \end{vmatrix}} dx - \frac{\begin{vmatrix} F_y & F_\theta \\ G_y & G_\theta \end{vmatrix}}{\begin{vmatrix} F_r & F_\theta \\ G_r & G_\theta \end{vmatrix}} dy = \frac{1+0}{\sec \theta - 0} dx + \frac{\tan \theta + 0}{\sec \theta - 0} dy$$

$$= \cos \theta dx + \sin \theta dy$$

$$d\theta = -\frac{\begin{vmatrix} F_r & F_x \\ G_r & G_x \end{vmatrix}}{\begin{vmatrix} F_r & F_\theta \\ G_r & G_\theta \end{vmatrix}} dx - \frac{\begin{vmatrix} F_r & F_y \\ G_r & G_y \end{vmatrix}}{\begin{vmatrix} F_r & F_\theta \\ G_r & G_\theta \end{vmatrix}} dy = -\frac{\tan \theta - 0}{r \sec \theta - 0} dx + \frac{1+0}{r \sec \theta - 0} dy$$

$$= -\frac{\sin \theta}{r} dx + \frac{\cos \theta}{r} dy$$

(c)
$$dx = \cos\theta dr - r\sin\theta d\theta \implies \left(\frac{\partial x}{\partial r}\right)_{\theta} = \cos\theta$$
$$dr = \cos\theta dx + \sin\theta dy \implies dx = \sec\theta dr - \tan\theta dy \implies \left(\frac{\partial x}{\partial r}\right)_{y} = \sec\theta$$
$$dr = \cos\theta dx + \sin\theta dy \implies \left(\frac{\partial r}{\partial x}\right)_{y} = \cos\theta$$

$$dr = \cos\theta dx + \sin\theta \left(\sin\theta dr + r\cos\theta d\theta\right) \implies 6$$

$$dr = \sec \theta dx + r \tan \theta d\theta \implies \left(\frac{\partial r}{\partial x}\right)_{\theta} = \sec \theta$$

(d)
$$\frac{\partial (x,y)}{\partial (r,\theta)} = \begin{vmatrix} \left(\frac{\partial x}{\partial r}\right)_{\theta} & \left(\frac{\partial x}{\partial \theta}\right)_{r} \\ \left(\frac{\partial y}{\partial r}\right)_{\theta} & \left(\frac{\partial y}{\partial \theta}\right)_{r} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{vmatrix} = r\cos^{2}\theta + r\sin^{2}\theta = r$$

$$\frac{\partial \left(r,\theta\right)}{\partial \left(x,y\right)} = \begin{vmatrix} \left(\frac{\partial r}{\partial x}\right)_{y} & \left(\frac{\partial r}{\partial y}\right)_{x} \\ \left(\frac{\partial \theta}{\partial x}\right)_{y} & \left(\frac{\partial \theta}{\partial y}\right)_{x} \end{vmatrix} = \begin{vmatrix} \cos\theta & \sin\theta \\ -\left(\sin\theta\right)/r & \left(\cos\theta\right)/r \end{vmatrix} = \frac{\cos^{2}\theta}{r} + \frac{\sin^{2}\theta}{r} = \frac{1}{r}$$

Note that

$$\frac{\partial \left(x,y\right)}{\partial \left(r,\theta\right)} \frac{\partial \left(r,\theta\right)}{\partial \left(x,y\right)} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} \begin{vmatrix} \cos \theta & \sin \theta \\ -\left(\sin \theta\right)/r & \left(\cos \theta\right)/r \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

Hence, the Jacobian of the inverse mapping is the reciprocal of the Jacobian of the mapping.

2. (a)

$$u = \frac{1}{5}x + \frac{2}{5}y$$

$$v = -\frac{2}{5}x + \frac{1}{5}y$$

(b)

$$\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} \left(\frac{\partial x}{\partial u}\right)_v & \left(\frac{\partial x}{\partial v}\right)_u \\ \left(\frac{\partial y}{\partial u}\right)_v & \left(\frac{\partial y}{\partial v}\right)_u \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 5$$

$$\frac{\partial (u,v)}{\partial (x,y)} = \begin{vmatrix} \left(\frac{\partial u}{\partial x}\right)_y & \left(\frac{\partial u}{\partial y}\right)_x \\ \left(\frac{\partial v}{\partial x}\right)_y & \left(\frac{\partial v}{\partial y}\right)_x \end{vmatrix} = \begin{vmatrix} 1/5 & 2/5 \\ -2/5 & 1/5 \end{vmatrix} = \frac{1}{5}$$

3. (a)

$$\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} \left(\frac{\partial x}{\partial u}\right)_v & \left(\frac{\partial x}{\partial v}\right)_u \\ \left(\frac{\partial y}{\partial u}\right)_v & \left(\frac{\partial y}{\partial v}\right)_u \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} = 4\left(u^2 + v^2\right)$$

(b) We start by computing

$$dx = 2udu - 2vdv dy = 2udv + 2vdu$$

Solving the second equation for du and inserting for du in the first equation results in

$$dx = 2u\left(\frac{dy - 2udv}{2v}\right) - 2vdu = \frac{u}{v}dy - 2\left(\frac{u^2}{v} + v\right)dv$$

Rearranging gives

$$dv = \frac{v}{2(u^2 + v^2)} \left(-dx + \frac{u}{v} dy \right)$$

From which we can read of

$$\left(\frac{dv}{dx}\right)_y = -\frac{v}{2\left(u^2 + v^2\right)}$$

Similarly, solving the second equation for dv and inserting for dv in the first equation gives

$$du = \frac{u}{2(u^2 + v^2)} \left(dx + \frac{v}{u} dy \right)$$

And so

$$\left(\frac{du}{dx}\right)_{y} = \frac{u}{2\left(u^2 + v^2\right)}$$

4. If $J = \partial(x,y)/\partial(u,v)$ then

$$\frac{1}{J} = \frac{\partial (u, v)}{\partial (x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

Hence,

$$\frac{1}{J}\frac{\partial y}{\partial v} = \left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)\frac{\partial y}{\partial v} = \frac{\partial u}{\partial x} - \left(\frac{\partial u}{\partial y}\frac{\partial y}{\partial v}\right)\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - 0 \cdot \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x}$$

$$-\frac{1}{J}\frac{\partial x}{\partial v} = \left(-\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)\frac{\partial x}{\partial v} = \left(-\frac{\partial u}{\partial x}\frac{\partial x}{\partial v}\right)\frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} = 0 \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y}$$

$$-\frac{1}{J}\frac{\partial y}{\partial u} = \left(-\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)\frac{\partial y}{\partial u} = \left(-\frac{\partial u}{\partial x}\frac{\partial y}{\partial u}\right)\frac{\partial v}{\partial y} + \frac{\partial v}{\partial x} = 0 \cdot \frac{\partial v}{\partial y} + \frac{\partial v}{\partial x} = \frac{\partial v}{\partial x}$$

$$\frac{1}{J}\frac{\partial x}{\partial u} = \left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\right)\frac{\partial x}{\partial u} = \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y}\left(\frac{\partial v}{\partial x}\frac{\partial x}{\partial u}\right) = \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \cdot 0 = \frac{\partial v}{\partial y}$$

Using the results from Problem 1 we find

$$\frac{1}{J}\frac{\partial y}{\partial \theta} = \frac{1}{r}(r\cos\theta) = \cos\theta = \frac{\partial r}{\partial x} \qquad -\frac{1}{J}\frac{\partial x}{\partial \theta} = -\frac{1}{r}(-r\sin\theta) = \sin\theta = \frac{\partial r}{\partial y}$$
$$-\frac{1}{J}\frac{\partial y}{\partial r} = -\frac{1}{r}\sin\theta = \frac{\partial \theta}{\partial x} \qquad \qquad \frac{1}{J}\frac{\partial x}{\partial r} = \frac{1}{r}\cos\theta = \frac{\partial \theta}{\partial y}$$

5. Let us start by defining 1/J explicitly by expanding the determinant along the first row, which gives

$$\frac{1}{J} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = (v_y w_z - v_z w_y) u_x - (v_x w_z - v_z w_x) u_y + (v_x w_y - v_y w_x) u_z$$

$$= \frac{\partial (v, w)}{\partial (y, z)} u_x - \frac{\partial (v, w)}{\partial (x, z)} u_y + \frac{\partial (v, w)}{\partial (x, y)} u_z$$

And so

$$\begin{split} \frac{1}{J} \frac{\partial \left(y,z\right)}{\partial \left(v,w\right)} &= \frac{\partial \left(v,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(v,w\right)} u_x - \frac{\partial \left(v,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(v,w\right)} u_y + \frac{\partial \left(v,w\right)}{\partial \left(x,y\right)} \frac{\partial \left(y,z\right)}{\partial \left(v,w\right)} u_z \\ &= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial u}{\partial x} - \left(0\right) \frac{\partial u}{\partial y} + \left(0\right) \frac{\partial u}{\partial z} \\ &= \frac{\partial u}{\partial x} \\ \frac{1}{J} \frac{\partial \left(z,x\right)}{\partial \left(v,w\right)} &= \frac{\partial \left(v,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(v,w\right)} u_x - \frac{\partial \left(v,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(v,w\right)} u_y + \frac{\partial \left(v,w\right)}{\partial \left(x,y\right)} \frac{\partial \left(z,x\right)}{\partial \left(v,w\right)} u_z \\ &= \left(0\right) \frac{\partial u}{\partial x} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial u}{\partial y} + \left(0\right) \frac{\partial u}{\partial z} \\ &= \frac{\partial u}{\partial y} \\ \frac{1}{J} \frac{\partial \left(x,y\right)}{\partial \left(v,w\right)} &= \frac{\partial \left(v,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(v,w\right)} u_x - \frac{\partial \left(v,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(v,w\right)} u_y + \frac{\partial \left(v,w\right)}{\partial \left(v,w\right)} \frac{\partial \left(x,y\right)}{\partial \left(v,w\right)} u_z \\ &= \left(0\right) \frac{\partial u}{\partial x} - \left(0\right) \frac{\partial u}{\partial y} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial u}{\partial z} \\ &= \frac{\partial u}{\partial z} \end{split}$$

Similarly, expanding 1/J across the second row gives

$$\frac{1}{J} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = -(u_y w_z - u_z w_y) v_x + (u_x w_z - u_z w_x) v_y - (u_x w_y - u_y w_x) v_z
= -\frac{\partial (u, w)}{\partial (y, z)} v_x + \frac{\partial (u, w)}{\partial (x, z)} v_y - \frac{\partial (u, w)}{\partial (x, y)} v_z$$

And so

$$\begin{split} \frac{1}{J} \frac{\partial \left(y,z\right)}{\partial \left(w,u\right)} &= -\frac{\partial \left(u,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(w,u\right)} v_x + \frac{\partial \left(u,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(w,u\right)} v_y - \frac{\partial \left(u,w\right)}{\partial \left(x,y\right)} \frac{\partial \left(y,z\right)}{\partial \left(w,u\right)} v_z \\ &= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial v}{\partial x} + \left(0\right) \frac{\partial v}{\partial y} - \left(0\right) \frac{\partial v}{\partial z} \\ &= \frac{\partial v}{\partial x} \\ \frac{1}{J} \frac{\partial \left(z,x\right)}{\partial \left(w,u\right)} &= -\frac{\partial \left(u,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(w,u\right)} v_x + \frac{\partial \left(u,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(w,u\right)} v_y - \frac{\partial \left(u,w\right)}{\partial \left(x,y\right)} \frac{\partial \left(z,x\right)}{\partial \left(w,u\right)} v_z \\ &= \left(0\right) \frac{\partial v}{\partial x} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial v}{\partial y} - \left(0\right) \frac{\partial v}{\partial z} \\ &= \frac{\partial v}{\partial y} \\ \frac{1}{J} \frac{\partial \left(x,y\right)}{\partial \left(w,u\right)} &= -\frac{\partial \left(u,w\right)}{\partial \left(y,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(w,u\right)} v_x + \frac{\partial \left(u,w\right)}{\partial \left(x,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(w,u\right)} v_y - \frac{\partial \left(u,w\right)}{\partial \left(x,y\right)} \frac{\partial \left(x,y\right)}{\partial \left(w,u\right)} v_z \\ &= \left(0\right) \frac{\partial v}{\partial x} + \left(0\right) \frac{\partial v}{\partial y} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial v}{\partial z} \\ &= \frac{\partial v}{\partial z} \end{split}$$

Lastly, expanding 1/J across the third row gives

$$\frac{1}{J} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = (u_y v_z - u_z v_y) w_x - (u_x v_z - u_z v_x) w_y + (u_x v_y - u_y v_x) w_z$$

$$= \frac{\partial (u, v)}{\partial (y, z)} w_x - \frac{\partial (u, v)}{\partial (x, z)} w_y + \frac{\partial (u, v)}{\partial (x, y)} w_z$$

And so

$$\begin{split} \frac{1}{J} \frac{\partial \left(y,z\right)}{\partial \left(u,v\right)} &= \frac{\partial \left(u,v\right)}{\partial \left(y,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(u,v\right)} w_{x} - \frac{\partial \left(u,v\right)}{\partial \left(x,z\right)} \frac{\partial \left(y,z\right)}{\partial \left(u,v\right)} w_{y} + \frac{\partial \left(u,v\right)}{\partial \left(x,y\right)} \frac{\partial \left(y,z\right)}{\partial \left(u,v\right)} w_{z} \\ &= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial w}{\partial x} - \left(0\right) \frac{\partial w}{\partial y} + \left(0\right) \frac{\partial w}{\partial z} \\ &= \frac{\partial w}{\partial x} \\ \frac{1}{J} \frac{\partial \left(z,x\right)}{\partial \left(u,v\right)} &= \frac{\partial \left(u,v\right)}{\partial \left(y,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(u,v\right)} w_{x} - \frac{\partial \left(u,v\right)}{\partial \left(x,z\right)} \frac{\partial \left(z,x\right)}{\partial \left(u,v\right)} w_{y} + \frac{\partial \left(u,v\right)}{\partial \left(x,y\right)} \frac{\partial \left(z,x\right)}{\partial \left(u,v\right)} w_{z} \\ &= \left(0\right) \frac{\partial w}{\partial x} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial w}{\partial y} + \left(0\right) \frac{\partial w}{\partial z} \\ &= \frac{\partial w}{\partial y} \\ \frac{1}{J} \frac{\partial \left(x,y\right)}{\partial \left(u,v\right)} &= \frac{\partial \left(u,v\right)}{\partial \left(y,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(u,v\right)} w_{x} - \frac{\partial \left(u,v\right)}{\partial \left(x,z\right)} \frac{\partial \left(x,y\right)}{\partial \left(u,v\right)} w_{y} + \frac{\partial \left(u,v\right)}{\partial \left(x,y\right)} \frac{\partial \left(x,y\right)}{\partial \left(u,v\right)} w_{z} \\ &= \left(0\right) \frac{\partial w}{\partial x} - \left(0\right) \frac{\partial w}{\partial y} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \frac{\partial w}{\partial z} \\ &= \frac{\partial w}{\partial z} \end{split}$$

6. (a) The Jacobian J is given by

$$J = \frac{\partial (x, y, z)}{\partial (\rho, \phi, \theta)} = \begin{vmatrix} x_{\rho} & x_{\phi} & x_{\theta} \\ y_{\rho} & y_{\phi} & y_{\theta} \\ z_{\rho} & z_{\phi} & z_{\theta} \end{vmatrix} = \begin{vmatrix} \sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & 0 \end{vmatrix}$$
$$= \rho^{2} \sin \phi$$

(b)

$$\frac{\partial \rho}{\partial y} = \frac{1}{J} \frac{\partial (z, x)}{\partial (\phi, \theta)} = \frac{1}{J} (z_{\phi} x_{\theta} - z_{\theta} x_{\phi}) = \frac{1}{\rho^2 \sin \phi} (\rho^2 \sin^2 \phi \sin \theta) = \sin \phi \sin \theta$$

$$\frac{\partial \phi}{\partial z} = \frac{1}{J} \frac{\partial (x, y)}{\partial (\theta, \rho)} = \frac{1}{J} (x_{\theta} y_{\rho} - x_{\rho} y_{\theta}) = \frac{1}{\rho^2 \sin \phi} (-\rho \sin^2 \phi) = -\frac{\sin \phi}{\rho}$$

$$\frac{\partial \theta}{\partial x} = \frac{1}{J} \frac{\partial (y, z)}{\partial (\rho, \phi)} = \frac{1}{J} (y_{\rho} z_{\phi} - y_{\phi} z_{\rho}) = \frac{1}{\rho^2 \sin \phi} (-\rho \sin \theta) = -\frac{\sin \theta}{\rho \sin \phi}$$

7. Let F(x,y,u,v)=f(u,v)-x=0 and G(x,y,u,v)=g(u,v)-y=0, so that (see

section 2.10)

$$\left(\frac{\partial x}{\partial u}\right)_{v} = -\frac{\frac{\partial (F,G)}{\partial (u,y)}}{\frac{\partial (F,G)}{\partial (x,y)}} = -\frac{\begin{vmatrix} f_{u} & 0 \\ g_{u} & -1 \end{vmatrix}}{\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}} = f_{u}$$

$$\left(\frac{\partial u}{\partial x}\right)_{y} = -\frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}} = -\frac{\begin{vmatrix} -1 & f_{v} \\ 0 & g_{v} \end{vmatrix}}{\begin{vmatrix} f_{u} & f_{v} \\ g_{u} & g_{v} \end{vmatrix}} = \frac{g_{v}}{f_{u}g_{v} - f_{v}g_{u}}$$

and

$$\left(\frac{\partial y}{\partial v}\right)_{u} = -\frac{\frac{\partial (F,G)}{\partial (v,x)}}{\frac{\partial (F,G)}{\partial (y,x)}} = -\frac{\begin{vmatrix} f_{v} & -1 \\ g_{v} & 0 \end{vmatrix}}{\begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix}} = g_{v}$$

$$\left(\frac{\partial v}{\partial y}\right)_{x} = -\frac{\frac{\partial (F,G)}{\partial (y,u)}}{\frac{\partial (F,G)}{\partial (v,u)}} = -\frac{\begin{vmatrix} 0 & f_{u} \\ -1 & g_{u} \end{vmatrix}}{\begin{vmatrix} f_{v} & f_{u} \\ g_{v} & g_{u} \end{vmatrix}} = -\frac{f_{u}}{f_{v}g_{u} - f_{u}g_{v}}$$

Hence,

$$\left(\frac{\partial x}{\partial u}\right)_v \left(\frac{\partial u}{\partial x}\right)_y = \frac{f_u g_v}{f_u g_v - f_v g_u} = \left(\frac{\partial y}{\partial v}\right)_u \left(\frac{\partial v}{\partial y}\right)_x$$

Similarly

$$\left(\frac{\partial x}{\partial v}\right)_{u} = -\frac{\frac{\partial \left(F,G\right)}{\partial \left(v,y\right)}}{\frac{\partial \left(F,G\right)}{\partial \left(x,y\right)}} = -\frac{\begin{vmatrix} f_{v} & 0 \\ g_{v} & -1 \end{vmatrix}}{\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}} = f_{v}$$

$$\left(\frac{\partial v}{\partial x}\right)_{y} = -\frac{\frac{\partial \left(F,G\right)}{\partial \left(x,u\right)}}{\frac{\partial \left(F,G\right)}{\partial \left(v,u\right)}} = -\frac{\begin{vmatrix} -1 & f_{u} \\ 0 & g_{u} \end{vmatrix}}{\begin{vmatrix} f_{v} & f_{u} \\ g_{v} & g_{u} \end{vmatrix}} = \frac{g_{u}}{f_{v}g_{u} - f_{u}g_{v}}$$

and

$$\left(\frac{\partial u}{\partial y}\right)_{x} = -\frac{\frac{\partial (F,G)}{\partial (y,v)}}{\frac{\partial (F,G)}{\partial (u,v)}} = -\frac{\begin{vmatrix} 0 & f_{v} \\ -1 & g_{v} \end{vmatrix}}{\begin{vmatrix} f_{u} & f_{v} \\ g_{u} & g_{v} \end{vmatrix}} = -\frac{f_{v}}{f_{u}g_{v} - f_{v}g_{u}}$$

$$\left(\frac{\partial y}{\partial u}\right)_{v} = -\frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (y,x)}} = -\frac{\begin{vmatrix} f_{u} & -1 \\ g_{u} & 0 \end{vmatrix}}{\begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix}} = g_{u}$$

So that again

$$\left(\frac{\partial x}{\partial v}\right)_{u} \left(\frac{\partial v}{\partial x}\right)_{u} = \frac{f_{v}g_{u}}{f_{v}g_{u} - f_{u}g_{v}} = \left(\frac{\partial u}{\partial y}\right)_{x} \left(\frac{\partial y}{\partial u}\right)_{v}$$

Lastly

$$\left(\frac{\partial x}{\partial y}\right)_{u} = -\frac{\frac{\partial \left(F,G\right)}{\partial \left(y,v\right)}}{\frac{\partial \left(F,G\right)}{\partial \left(x,v\right)}} = -\frac{\begin{vmatrix} 0 & f_{v} \\ -1 & g_{v} \end{vmatrix}}{\begin{vmatrix} -1 & f_{v} \\ 0 & g_{v} \end{vmatrix}} = \frac{f_{v}}{g_{v}} \quad \left(\frac{\partial y}{\partial x}\right)_{u} = -\frac{\frac{\partial \left(F,G\right)}{\partial \left(x,v\right)}}{\frac{\partial \left(F,G\right)}{\partial \left(y,v\right)}} = -\frac{\begin{vmatrix} -1 & f_{v} \\ 0 & g_{v} \end{vmatrix}}{\begin{vmatrix} 0 & f_{v} \\ -1 & g_{v} \end{vmatrix}} = \frac{g_{v}}{f_{v}}$$

which implies

$$\left(\frac{\partial x}{\partial y}\right)_u \left(\frac{\partial y}{\partial x}\right)_u = \frac{f_v}{g_v} \frac{g_v}{f_v} = 1$$

8. (a) If unique polar coordinates $(r, \phi_1, \dots, \phi_n)$ are to be assigned to $\mathbf{x} = (x_1, \dots, x_n)$, $n \geq 3$ then it is is trivial to see that $\mathbf{x} \neq \mathbf{0}$, since this would imply $\sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{|\mathbf{x}|^2} = r = 0$ and hence $\phi_1, \dots, \phi_{n-1}$ can take on any arbitrary value. Next, consider $\phi_1 = \cos^{-1}(x_1/r)$, $0 \leq \phi_1 \leq \pi$ and choose $\phi_1 = 0$ or $\phi_1 = \pi$. This would imply $|x_1| = r$ and hence, $x_2 = x_3 = \dots = 0$, which contradicts the assumption that unique polar coordinates are assigned to \mathbf{x} whenever (x_{n-1}, x_n) is not (0,0), since then $\phi_2, \dots, \phi_{n-1}$ can be chosen arbitrarily. Thus we conclude that if unique polar coordinates are to be assigned to \mathbf{x} , $n \geq 3$ then $0 < \phi_1 < \pi$. Similarly, consider $\phi_2 = \cos^{-1}(x_2/(r\sin\phi_1))$, $0 \leq \phi_2 \leq \pi$ and choose $\phi_2 = 0$ or $\phi_2 = \pi$. This would imply $|x_2| = r\sin\phi_1$, which for $\phi_1 = \pi/2$ gives $x_1 = x_3 = x_4 = \dots = 0$. Again, this contradicts the assumption that unique polar coordinates are assigned to \mathbf{x} whenever (x_{n-1}, x_n) is not (0,0), since $\phi_3, \dots, \phi_{n-1}$ can be chosen arbitrarily. In conclusion, if unique polar coordinates are to be assigned to \mathbf{x} , $n \geq 3$ then $0 < \phi_2 < \pi$.

By induction, we can prove that a similar reasoning holds for all ϕ up to ϕ_{n-2} . Consider $\phi_{n-2} = \cos^{-1}(x_{n-2}/(r\sin\phi_1...\sin\phi_{n-3}))$, $0 \le \phi_{n-2} \le \pi$ and choose $\phi_{n-2} = 0$ or $\phi_{n-2} = \pi$. This would imply $|x_{n-2}| = r\sin\phi_1...\sin\phi_{n-3}$, which for $\phi_1 = \cdots = \phi_{n-3} = \pi/2$ gives $x_1 = x_2 = \cdots = x_{n-3} = x_{n-1} = x_n = 0$.

This contradicts the assumption that unique polar coordinates are assigned to \mathbf{x} whenever (x_{n-1}, x_n) is not (0,0), since ϕ_{n-1} could be chosen arbitrarily. Hence, if unique polar coordinates are to be assigned to \mathbf{x} , $n \geq 3$ then $0 < \phi_{n-2} < \pi$ and more generally, we conclude $0 < \phi_1, \ldots, \phi_{n-2} < \pi$.

Lastly, consider $\phi_{n-1} = \cos^{-1}(x_{n-1}/(r\sin\phi_1...\sin\phi_{n-2})), \ 0 \le \phi_{n-1} \le 2\pi$ and choose $\phi_{n-1} = 0$ or $\phi_{n-1} = 2\pi$. This would imply $x_{n-1} = r\sin\phi_1...\sin\phi_{n-2}$, which for $\phi_1 = \cdots = \phi_{n-2} = \pi/2$ gives $x_{n-1} = r$ and so $x_1 = x_2 = \cdots = x_{n-2} = x_n = 0$. This contradicts the assumption that unique polar coordinates are assigned to \mathbf{x} whenever (x_{n-1}, x_n) is not (c, 0) with c = r > 0 for $\phi_1 = \cdots = \phi_{n-2} = \pi/2$, since $\phi_{n-1} = 0$ and $\phi_{n-1} = 2\pi$ results in the same value for x_{n-1} . Thus we conclude that if unique polar coordinates are to be assigned to \mathbf{x} , $n \ge 3$ then $0 < \phi_{n-1} < 2\pi$.

(b) The Jacobian J_n can be written as

$$J_n = \frac{\partial (x_1, \dots, x_n)}{\partial (r, \phi_1, \dots, \phi_{n-1})} = \frac{\partial (x_1, \rho, \phi_2, \dots, \phi_{n-1})}{\partial (r, \phi_1, \dots, \phi_{n-1})} \frac{\partial (x_1, \dots, x_n)}{\partial (x_1, \rho, \phi_2, \dots, \phi_{n-1})}$$

where $x_1 = r \cos \phi_1$ and $\rho = r \sin \phi_1$. The first term on the right hand side is of the form

The second term on the right hand side is of the form

e second term on the right hand side is of the form
$$J_{n-1} = \begin{vmatrix}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & \cos \phi_2 & -\rho \sin \phi_2 & 0 & \cdots & \cdots & 0 \\
0 & \sin \phi_2 \cos \phi_3 & \rho \cos \phi_2 \cos \phi_3 & -\rho \sin \phi_2 \sin \phi_3 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & & \vdots \\
0 & \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_4 & 0 \\
0 & \beta_1 & \beta_2 & \beta_3 & \cdots & \cdots & \beta_4 \\
0 & \gamma_1 & \gamma_2 & \gamma_3 & \cdots & \cdots & 0
\end{vmatrix}$$

$$= \begin{vmatrix}
\cos \phi_2 & -\sin \phi_2 & 0 & \cdots & \cdots & 0 \\
\sin \phi_2 \cos \phi_3 & \cos \phi_2 \cos \phi_3 & -\sin \phi_2 \sin \phi_3 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
\alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_4 & 0 \\
\beta_1 & \beta_2 & \beta_3 & \cdots & \alpha_4 & 0 \\
\beta_1 & \beta_2 & \beta_3 & \cdots & \alpha_4 & 0
\end{vmatrix}$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_1 \qquad \alpha_2 \qquad \alpha_3 \qquad \cdots \qquad \alpha_4 \qquad 0$$

$$= \alpha_$$

where

$$\alpha_{1} = \sin \phi_{2} \cdots \sin \phi_{n-3} \cos \phi_{n-2} \qquad \alpha_{2} = \cos \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-3} \cos \phi_{n-2}$$

$$\alpha_{3} = \sin \phi_{2} \cos \phi_{3} \sin \phi_{4} \cdots \sin \phi_{n-3} \cos \phi_{n-2} \qquad \alpha_{4} = -\sin \phi_{2} \cdots \sin \phi_{n-3} \sin \phi_{n-2}$$

$$\beta_{1} = \sin \phi_{2} \cdots \sin \phi_{n-2} \cos_{n-1} \qquad \beta_{2} = \cos \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-2} \cos \phi_{n-1}$$

$$\beta_{3} = \sin \phi_{2} \cos \phi_{3} \sin \phi_{4} \cdots \sin \phi_{n-2} \cos \phi_{n-1} \qquad \beta_{4} = -\sin \phi_{2} \cdots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$\gamma_{1} = \sin \phi_{2} \cdots \sin \phi_{n-2} \sin \phi_{n-1} \qquad \gamma_{2} = \cos \phi_{2} \sin \phi_{3} \cdots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$\gamma_{3} = \sin \phi_{2} \cos \phi_{3} \sin \phi_{4} \cdots \sin \phi_{n-2} \sin \phi_{n-1} \qquad \gamma_{4} = \sin \phi_{2} \cdots \sin \phi_{n-2} \cos \phi_{n-1}$$

Expanding J_{n-1} along the first row gives

$$J_{n-1} = \begin{vmatrix} \cos \phi_3 & -\sin \phi_3 & 0 & \cdots & 0 \\ \sin \phi_3 \cos \phi_4 & \cos \phi_3 \cos \phi_4 & -\sin \phi_3 \sin \phi_4 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ \alpha_1^* & \alpha_2^* & \alpha_3^* & \cdots & \alpha_4^* & 0 \\ \beta_1^* & \beta_2^* & \beta_3^* & \cdots & \cdots & \beta_4^* \\ \gamma_1^* & \gamma_2^* & \gamma_3^* & \cdots & \cdots & \gamma_4^* \end{vmatrix} \rho^{n-2} \sin^{n-3} \phi_2$$

where we have made use of the identity $\sin^2 \theta + \cos^2 \theta = 1$ and repeated application of rule III for determinants from section 1.4 and where

$$\alpha_1^* = \sin \phi_3 \cdots \sin \phi_{n-3} \cos \phi_{n-2} \qquad \alpha_2^* = \cos \phi_3 \sin \phi_4 \cdots \sin \phi_{n-3} \cos \phi_{n-2}$$

$$\alpha_3^* = \sin \phi_3 \cos \phi_4 \sin \phi_5 \cdots \sin \phi_{n-3} \cos \phi_{n-2} \qquad \alpha_4^* = -\sin \phi_3 \cdots \sin \phi_{n-3} \sin \phi_{n-2}$$

$$\beta_1^* = \sin \phi_3 \cdots \sin \phi_{n-2} \cos \phi_{n-1} \qquad \beta_2^* = \cos \phi_3 \sin \phi_4 \cdots \sin \phi_{n-2} \cos \phi_{n-1}$$

$$\beta_3^* = \sin \phi_3 \cos \phi_4 \sin \phi_5 \cdots \sin \phi_{n-2} \cos \phi_{n-1} \qquad \beta_4^* = -\sin \phi_3 \cdots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$\gamma_1^* = \sin \phi_3 \cdots \sin \phi_{n-2} \sin \phi_{n-1} \qquad \gamma_2^* = \cos \phi_3 \sin \phi_4 \cdots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$\gamma_3^* = \sin \phi_3 \cos \phi_4 \sin \phi_5 \cdots \sin \phi_{n-2} \sin \phi_{n-1} \qquad \gamma_4^* = \sin \phi_3 \cdots \sin \phi_{n-2} \cos \phi_{n-1}$$

Repeating the same procedure of expanding the remaining determinant and making use of the identity $\sin^2\theta + \cos^2\theta$ and rule III from section 1.4 will then eventually result in

$$\frac{\partial (x_1, \dots, x_n)}{\partial (x_1, \rho, \phi_2, \dots, \phi_{n-1})} = J_{n-1} = \rho^{n-2} \sin^{n-3} \phi_2 \cdots \sin \phi_{n-2} \begin{vmatrix} \cos \phi_{n-1} & -\sin \phi_{n-1} \\ \sin \phi_{n-1} & \cos \phi_{n-1} \end{vmatrix}$$
$$= \rho^{n-2} \sin^{n-3} \phi_2 \cdots \sin \phi_{n-2}$$

And so finally we find

$$J_n = \frac{\partial (x_1, \dots, x_n)}{\partial (r, \phi_1, \dots, \phi_{n-1})} = \frac{\partial (x_1, \rho, \phi_2, \dots, \phi_{n-1})}{\partial (r, \phi_1, \dots, \phi_{n-1})} \frac{\partial (x_1, \dots, x_n)}{\partial (x_1, \rho, \phi_2, \dots, \phi_{n-1})}$$
$$= rJ_{n-1}$$
$$= r^{n-1} \sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \cdots \sin \phi_{n-2}$$

Section 2.13

Figure 13: $x = \sin t$, $y = \cos t$, $z = \sin^2 t$

1. (a)

(b) Using the equation $\overrightarrow{P_1P} = (t - t_1)\mathbf{r}'(t_1)$ with $t_1 = \pi/3$ we find

$$x = \frac{1}{2} \left(t - \frac{\pi}{3} \right) + \frac{\sqrt{3}}{2}$$
 $y = -\frac{\sqrt{3}}{2} \left(t - \frac{\pi}{3} \right) + \frac{1}{2}$ $z = \frac{\sqrt{3}}{2} \left(t - \frac{\pi}{3} \right) + \frac{3}{4}$

(c) Firstly, note that the velocity vector $\mathbf{v} = x_t \mathbf{i} + y_t \mathbf{j} + z_t \mathbf{k}$ will be tangent to the curve. If we are looking for a plane cutting the curve at right angles at the point P we can use the equation $\mathbf{n} \cdot \overrightarrow{P_1P} = 0$ where we let $\mathbf{n} = \mathbf{v}$ and $P_1 = (\sqrt{3}/2, 1/2, 3/4)$, i.e. the point P for which $t = \pi/3$ from the previous question. Hence, we find

$$\mathbf{v} \cdot \overrightarrow{P_1 P} = \left(\frac{1}{2}\mathbf{i} - \frac{\sqrt{3}}{2}\mathbf{j} + \frac{\sqrt{3}}{2}\mathbf{k}\right) \cdot \left[\left(x - \frac{\sqrt{3}}{2}\right)\mathbf{i} + \left(y - \frac{1}{2}\right)\mathbf{j} + \left(z - \frac{3}{4}\right)\mathbf{k}\right]$$
$$= \frac{1}{2}\left(x - \sqrt{3}y + \sqrt{3}z - \frac{3\sqrt{3}}{4}\right)$$

And so an equation for a plane cutting the curve at right angles at P is given by

$$x - \sqrt{3}y + \sqrt{3}z - \frac{3\sqrt{3}}{4} = 0$$

2. (a) If the curve from problem 1(b) lies in the surface $x^2 + 2y^2 + z = 2$ it should hold that

$$F(x, y, z) = F[f(t), q(t), h(t)] = 0$$

For the curve from problem 1(b) this implies

$$F[f(t), g(t), h(t)] = \sin^2 t + 2\cos^2 t + \sin^2 t - 2 = 0$$

which indeed is the case.

(b) The equation for a plane containing the tangent line to a surface and a curve that lies in this surface is given by

$$\frac{\partial F}{\partial x}\Big|_{(x_1, y_1, z_1)} (x - x_1) + \frac{\partial F}{\partial y}\Big|_{(x_1, y_1, z_1)} (y - y_1) + \frac{\partial F}{\partial z}\Big|_{(x_1, y_1, z_1)} (z - z_1) = 0$$

For the surface $x^2 + 2y^2 + z = 2$ and the curve from problem 1(b) and the point $P = (\sqrt{3}/2, 1/2, 3/4)$ for which $t = \pi/3$ which is both on the surface and curve this gives

$$\sqrt{3}x + 2y + z = \frac{13}{4}$$

(c) If the tangent line to the curve at the point P lies in the tangent plane to the surface then the dot product between a vector parallel to the tangent line and the normal vector to the tangent plane at the point P will be 0. Let the vector $\mathbf{v} = 2(x_t\mathbf{i} + y_t\mathbf{j} + z_t\mathbf{k}) = \sqrt{3}\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ be a vector parallel to the tangent line to

the curve at the point P and let the normal to the tangent plane at the point P be given by $\mathbf{n} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$. Then it is easy to verify that

$$\mathbf{v} \cdot \mathbf{n} = \left(\sqrt{3}\mathbf{i} + 2\mathbf{j} + \mathbf{k}\right) \cdot \left(\mathbf{i} - \sqrt{3}\mathbf{j} + \sqrt{3}\mathbf{k}\right) = 0$$

which thus concludes the prove.

3. (a)

$$\begin{split} \frac{d}{dt} \left(\mathbf{u} + \mathbf{v} \right) &= \frac{d}{dt} \left[\left(u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k} \right) + \left(v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} \right) \right] \\ &= \left(\frac{du_x}{dt} \mathbf{i} + \frac{du_y}{dt} \mathbf{j} + \frac{du_z}{dt} \mathbf{k} \right) + \left(\frac{dv_x}{dt} \mathbf{i} + \frac{dv_y}{dt} \mathbf{j} + \frac{dv_z}{dt} \mathbf{k} \right) \\ &= \frac{d\mathbf{u}}{dt} + \frac{d\mathbf{v}}{dt} \end{split}$$

(b)

$$\frac{d}{dt} [g(t)\mathbf{u}] = \frac{d}{dt} [g(t)(u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})]$$

$$= \frac{d}{dt} [g(t)u_x\mathbf{i} + g(t)u_y\mathbf{j} + g(t)u_z\mathbf{k}]$$

$$= \left[g(t)\frac{du_x}{dt} + g'(t)u_x\right]\mathbf{i} + \left[g(t)\frac{du_y}{dt} + g'(t)u_y\right]\mathbf{j} + \left[g(t)\frac{du_z}{dt} + g'(t)u_z\right]\mathbf{k}$$

$$= g(t)\left(\frac{du_x}{dt}\mathbf{i} + \frac{du_y}{dt}\mathbf{j} + \frac{du_z}{dt}\mathbf{k}\right) + g'(t)(u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})$$

$$= g(t)\frac{d\mathbf{u}}{dt} + g'(t)\mathbf{u}$$

(c)

$$\frac{d}{dt} (\mathbf{u} \cdot \mathbf{v}) = \frac{d}{dt} \left[(u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}) \cdot (v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}) \right]
= \frac{d}{dt} (u_x v_x + u_y v_y + u_z v_z)
= u_x \frac{dv_x}{dt} + \frac{du_x}{dt} v_x + u_y \frac{dv_y}{dt} + \frac{du_y}{dt} v_y + u_z \frac{dv_z}{dt} + \frac{du_z}{dt} v_z
= \left(u_x \frac{dv_x}{dt} + u_y \frac{dv_y}{dt} + u_z \frac{dv_z}{dt} \right) + \left(\frac{du_x}{dt} v_x + \frac{du_y}{dt} v_y + \frac{du_z}{dt} v_z \right)
= (u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}) \cdot \left(\frac{dv_x}{dt} \mathbf{i} + \frac{dv_y}{dt} \mathbf{j} + \frac{dv_z}{dt} \mathbf{k} \right)
+ \left(\frac{du_x}{dt} \mathbf{i} + \frac{du_y}{dt} \mathbf{j} + \frac{du_z}{dt} \mathbf{k} \right) \cdot (v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k})
= \mathbf{u} \cdot \frac{d\mathbf{v}}{dt} + \frac{d\mathbf{u}}{dt} \cdot \mathbf{v}$$

(d)

$$\begin{split} \frac{d}{dt}\left(\mathbf{u}\times\mathbf{v}\right) &= \frac{d}{dt}\left[\left(u_{y}v_{z}-u_{z}v_{y}\right)\mathbf{i}+\left(u_{z}v_{x}-u_{x}v_{z}\right)\mathbf{j}+\left(u_{z}v_{x}-u_{x}v_{z}\right)\mathbf{k}\right] \\ &= \left(u_{y}\frac{dv_{z}}{dt}+\frac{du_{y}}{dt}v_{z}-u_{z}\frac{dv_{y}}{dt}-\frac{du_{z}}{dt}v_{y}\right)\mathbf{i}+\left(u_{z}\frac{dv_{x}}{dt}+\frac{du_{z}}{dt}v_{x}-u_{x}\frac{dv_{z}}{dt}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{j} \\ &+\left(u_{z}\frac{dv_{x}}{dt}+\frac{du_{z}}{dt}v_{x}-u_{x}\frac{dv_{z}}{dt}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{k} \\ &= \left(u_{y}\frac{dv_{z}}{dt}-u_{z}\frac{dv_{y}}{dt}+\frac{du_{y}}{dt}v_{z}-\frac{du_{z}}{dt}v_{y}\right)\mathbf{i}+\left(u_{z}\frac{dv_{x}}{dt}-u_{x}\frac{dv_{z}}{dt}+\frac{du_{z}}{dt}v_{x}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{j} \\ &+\left(u_{z}\frac{dv_{x}}{dt}-u_{x}\frac{dv_{z}}{dt}+\frac{du_{z}}{dt}v_{x}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{k} \\ &= \left(u_{y}\frac{dv_{z}}{dt}-u_{z}\frac{dv_{y}}{dt}\right)\mathbf{i}+\left(u_{z}\frac{dv_{x}}{dt}-u_{x}\frac{dv_{z}}{dt}\right)\mathbf{j}+\left(u_{z}\frac{dv_{x}}{dt}-u_{x}\frac{dv_{z}}{dt}\right)\mathbf{k} \\ &+\left(\frac{du_{y}}{dt}v_{z}-\frac{du_{z}}{dt}v_{y}\right)\mathbf{i}+\left(\frac{du_{z}}{dt}v_{x}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{j}+\left(\frac{du_{z}}{dt}v_{x}-\frac{du_{x}}{dt}v_{z}\right)\mathbf{k} \\ &=\mathbf{u}\times\frac{d\mathbf{v}}{dt}+\frac{d\mathbf{u}}{dt}\times\mathbf{v} \end{split}$$

4. If $|\mathbf{u}(t)| \equiv a$ then $|\mathbf{u}'(t)| \equiv 0$, since the derivative of a constant is zero. Hence,

$$|\mathbf{u}'(t)| = \frac{d}{dt}(\mathbf{u} \cdot \mathbf{u}) = \mathbf{u} \cdot \frac{d\mathbf{u}}{dt} + \frac{d\mathbf{u}}{dt} \cdot \mathbf{u} = 2\mathbf{u} \cdot \frac{d\mathbf{u}}{dt} = 0 \implies \mathbf{u} \cdot \frac{d\mathbf{u}}{dt} = 0$$

By definition, two non-zero vectors are said to be perpendicular when their dot product is zero, and so we may conclude that indeed \mathbf{u} is perpendicular to $d\mathbf{u}/dt$. The locus of P such that $\overrightarrow{OP} = \mathbf{u}$ will be a constant as well.

5. (a) If $v = |\mathbf{v}(t)| \equiv 1$ then $v_t = |\mathbf{v}'(t)| \equiv 0$, since the derivative of a constant is zero. Hence,

$$|\mathbf{v}'(t)| = \frac{d}{dt}(\mathbf{v} \cdot \mathbf{v}) = 2\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} \implies \mathbf{v} \cdot \frac{d\mathbf{v}}{dt} = 0$$

By definition, two non-zero vectors are said to be perpendicular when their dot product is zero, and so we may conclude that indeed \mathbf{v} is perpendicular to $d\mathbf{v}/dt = d\mathbf{v}/ds = \mathbf{a}$. Since $\mathbf{a} = d^2\mathbf{r}/dt^2$ and $\mathbf{v} = d\mathbf{r}/dt$ the equation for the osculating place may be written as

$$\overrightarrow{PQ} \cdot \frac{d\mathbf{r}}{dt} \times \frac{d^2\mathbf{r}}{dt^2} = 0$$

where t is an arbitrary parameter along the curve, provided that $(d\mathbf{r}/dt) \times (d^2\mathbf{r}/dt^2) \neq \mathbf{0}$.

(b) The vectors **v** and **a** at the point $t = \pi/3$ for the curve of problem 1 are given by

$$\mathbf{v}(\pi/3) = \frac{1}{2}\mathbf{i} - \frac{\sqrt{3}}{2}\mathbf{j} + \frac{\sqrt{3}}{2}\mathbf{k} \qquad \mathbf{a}(\pi/3) = -\frac{\sqrt{3}}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} - \mathbf{k}$$

The cross product of \mathbf{v} and \mathbf{a} then becomes

$$\mathbf{v} \times \mathbf{a} = (v_y a_z - v_z a_y) \mathbf{i} + (v_z a_x - v_x a_z) \mathbf{j} + (v_x a_y - v_y a_x) \mathbf{k} = \frac{3\sqrt{3}}{4} \mathbf{i} - \frac{1}{4} \mathbf{j} - \mathbf{k}$$

The point P for $t = \pi/3$ is given by

$$P = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{3}{4}\right) \implies \overrightarrow{PQ} = \left(x - \frac{\sqrt{3}}{2}\right)\mathbf{i} + \left(y - \frac{1}{2}\right)\mathbf{j} + \left(z - \frac{3}{4}\right)\mathbf{k}$$

And so we find

$$\overrightarrow{PQ} \cdot \mathbf{v} \times \mathbf{a} = 0 \implies 3\sqrt{3}x - y - 4z = 1$$

6. (a) Assuming $v = |\mathbf{v}| = 1$ we can write

$$|\mathbf{r}' \times \mathbf{r}''| = \left| \frac{d\mathbf{r}}{dt} \times \frac{d^2\mathbf{r}}{dt^2} \right| = |\mathbf{v} \times \mathbf{a}| = |\mathbf{T} \times \frac{d\mathbf{T}}{ds}| = |\mathbf{T} \times \kappa \mathbf{N}| = \kappa |\mathbf{T} \times \mathbf{N}| = \kappa$$

where $|\mathbf{T} \times \mathbf{N}| = 1$ follows from the fact that \mathbf{T} and \mathbf{N} are perpendicular unit vectors. The binormal vector \mathbf{B} may then be written as

$$\mathbf{B} = \mathbf{T} \times \mathbf{N} = \mathbf{T} \times \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} = \frac{\mathbf{r}' \times \mathbf{r}''}{\kappa} = \frac{\mathbf{r}' \times \mathbf{r}''}{|\mathbf{r}' \times \mathbf{r}''|}$$

To show that $(\mathbf{T}, \mathbf{N}, \mathbf{B})$ is a positive triple of unit vectors we compute

$$\mathbf{B} \cdot \mathbf{B} = \mathbf{T} \times \mathbf{N} \cdot \mathbf{B} = 1$$

which is positive and hence, concludes the proof.

(b) From $|\mathbf{T} \times \mathbf{N}| = |\mathbf{B}| = 1$ it follows that

$$\frac{d|\mathbf{B}|}{ds} = \frac{d}{ds}(\mathbf{B} \cdot \mathbf{B}) = 2\mathbf{B} \cdot \frac{d\mathbf{B}}{ds} = 0 \implies \frac{d\mathbf{B}}{ds} \cdot \mathbf{B} = 0$$

Next, rewriting $d\mathbf{B}/ds$ as

$$\frac{d\mathbf{B}}{ds} = \frac{d}{ds} \left(\mathbf{T} \times \mathbf{N} \right) = \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \frac{d\mathbf{T}}{ds} \times \mathbf{N}$$

it follows that

$$\frac{d\mathbf{B}}{ds} \cdot \mathbf{T} = \mathbf{T} \cdot \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \mathbf{T} \cdot \frac{d\mathbf{T}}{ds} \times \mathbf{N} = \frac{d\mathbf{N}}{ds} \cdot \mathbf{T} \times \mathbf{T} + \mathbf{T} \cdot \frac{d\mathbf{T}}{ds} \times \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}$$
$$= \frac{d\mathbf{N}}{ds} \cdot \mathbf{0} + \frac{1}{\kappa} \mathbf{T} \cdot \mathbf{0}$$
$$= 0$$

(c) Since $\mathbf{N} \cdot \mathbf{N} = 1$ it follows that

$$\frac{d}{ds}(\mathbf{N} \cdot \mathbf{N}) = 2\mathbf{N} \cdot \frac{d\mathbf{N}}{ds} = 0 \implies \mathbf{N} \cdot \frac{d\mathbf{N}}{ds} = 0$$

Hence, **N** and $d\mathbf{N}/ds$ are perpendicular and $d\mathbf{N}/ds$ lies in the plane spanned by the vectors **T** and **B** and can be expressed as a linear combination of **T** and **B**: $d\mathbf{N}/ds = \mu\mathbf{T} + \tau\mathbf{B}$. Next, substituting for $d\mathbf{N}/ds$ in the equation

$$\frac{d\mathbf{B}}{ds} = \frac{d}{ds} \left(\mathbf{T} \times \mathbf{N} \right) = \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \frac{d\mathbf{T}}{ds} \times \mathbf{N} = \mathbf{T} \times \frac{d\mathbf{N}}{ds} + \frac{d\mathbf{T}}{ds} \times \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds}$$

results in

$$\frac{d\mathbf{B}}{ds} = \mathbf{T} \times \frac{d\mathbf{N}}{ds} = \mathbf{T} \times (\mu \mathbf{T} + \tau \mathbf{B}) = \mathbf{T} \times \tau \mathbf{B} = -\tau \mathbf{B} \times \mathbf{T} = -\tau \mathbf{N}$$

The constant τ may also be written as

$$\begin{split} \tau &= -\mathbf{N} \cdot \frac{d\mathbf{B}}{ds} = -\frac{1}{\kappa} \frac{d\mathbf{T}}{ds} \cdot \left(\mathbf{T} \times \frac{d\mathbf{N}}{ds} \right) = -\frac{1}{\kappa} \frac{d\mathbf{T}}{ds} \cdot \left(\mathbf{T} \times \frac{1}{\kappa} \frac{d\mathbf{T}}{ds^2} \right) = -\frac{1}{\kappa^2} \mathbf{r}'' \cdot (\mathbf{r}' \times \mathbf{r}''') \\ &= -\frac{1}{\kappa^2} \left(\mathbf{r}'' \times \mathbf{r}' \right) \cdot \mathbf{r}''' \\ &= \frac{(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''}{|\mathbf{r}' \times \mathbf{r}''|^2} \\ &= |\mathbf{v} \times \mathbf{a}|^{-2} \mathbf{v} \times \mathbf{a} \cdot \mathbf{w} \end{split}$$

where $\mathbf{w} = \mathbf{r}''' = d\mathbf{a}/ds = d\mathbf{a}/dt$, since ds/dt = v = 1.

(d) Starting from $\mathbf{N} = \mathbf{B} \times \mathbf{T}$ and using the fact that

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N} \qquad \frac{d\mathbf{B}}{ds} = -\tau \mathbf{N} \qquad \mathbf{T} = \mathbf{N} \times \mathbf{B} \qquad \mathbf{B} = \mathbf{T} \times \mathbf{N}$$

we find

$$\frac{d\mathbf{N}}{ds} = \mathbf{B} \times \frac{d\mathbf{T}}{ds} + \frac{d\mathbf{B}}{ds} \times \mathbf{T} = \mathbf{B} \times \kappa \mathbf{N} - \tau \mathbf{N} \times \mathbf{T} = -\kappa \mathbf{T} + \tau \mathbf{B}$$

7. (a) First, note that

$$\mathbf{v} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = v\mathbf{T}$$

Hence,

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt}(v\mathbf{T}) = \frac{dv}{dt}\mathbf{T} + v\frac{d\mathbf{T}}{ds}\frac{ds}{dt} = \frac{dv}{dt}\mathbf{T} + v^2\kappa\mathbf{N} = \frac{dv}{dt}\mathbf{T} + \frac{v^2}{\rho}\mathbf{N}$$

(b)

$$v^{-3}|\mathbf{v} \times \mathbf{a}| = v^{-3} \left| v \mathbf{T} \times \left(\frac{dv}{dt} \mathbf{T} + v^2 \kappa \mathbf{N} \right) \right| = v^{-3} \left| \mathbf{T} \times v \frac{dv}{dt} \mathbf{T} + \mathbf{T} \times v^3 \kappa \mathbf{N} \right|$$
$$= v^{-3} \left| \mathbf{T} \times v^3 \kappa \mathbf{N} \right|$$
$$= \kappa |\mathbf{T} \times \mathbf{N}|$$
$$= \kappa$$

where $|\mathbf{T} \times \mathbf{N}| = 1$ because \mathbf{T} and \mathbf{N} are perpendicular unit vectors.

- (c) We have already proved this as part of problem 6(c).
- (d) If $\kappa \equiv 0$ then $d\mathbf{T}/ds \equiv \mathbf{0}$, which implies $\mathbf{T} = \mathbf{b}$ is a constant vector. Hence, note that

$$\frac{d}{ds}(\mathbf{r} \times \mathbf{T}) = \mathbf{r} \times \frac{d\mathbf{T}}{ds} + \mathbf{T} \times \mathbf{T} = \mathbf{r} \times \mathbf{0} = \mathbf{0}$$

which implies the vector $\mathbf{r} \times \mathbf{T} = \mathbf{r} \times \mathbf{b} = \mathbf{c}$ is a constant vector also. This is a vector equation for a straight line, since

$$\mathbf{r} \times \mathbf{b} = \mathbf{c}$$
 \Longrightarrow $(b_3y - b_2z)\mathbf{i} + (b_1z - b_3x)\mathbf{j} + (b_2x - b_1y)\mathbf{k} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$

And so

$$z = \bar{b}_1 y + \bar{c}_1$$
 $z = \bar{b}_2 x + \bar{c}_2$ $y = \bar{3}x + \bar{c}_3$

where $\bar{b}_1 = b_3/b_2$, $\bar{c}_1 = -c_1/b_2$, $\bar{b}_2 = b_3/b_1$, $\bar{c}_2 = c_2/b_1$, $\bar{b}_3 = b_2/b_1$ and $\bar{c}_3 = -c_3/b_1$.

(e) From the equation $\mathbf{B} = \mathbf{T} \times \mathbf{N}$ it follows that $\mathbf{T} \perp \mathbf{B}$ (\mathbf{T} is perpendicular to \mathbf{B}). Hence

$$\mathbf{T} \cdot \mathbf{B} = \left[\frac{d}{ds} \left(\mathbf{r} - \mathbf{r}_0 \right) \right] \cdot \mathbf{B} = 0$$

where \mathbf{r}_0 is some arbitrary constant vector. Next, since $\tau = 0$ we find that $d\mathbf{b}/ds = \mathbf{0}$ and so $\mathbf{B} = \mathbf{b}$ where \mathbf{b} is some constant vector. As such, we can write

$$\left[\frac{d}{ds} \left(\mathbf{r} - \mathbf{r}_0 \right) \right] \cdot \mathbf{B} = \frac{d}{ds} \left[\mathbf{b} \cdot \left(\mathbf{r} - \mathbf{r}_0 \right) \right] = 0 \quad \Longrightarrow \quad \mathbf{b} \cdot \left(\mathbf{r} - \mathbf{r}_0 \right) = a$$

where a is some arbitrary scalar. Lastly, we can rewrite $\mathbf{b} \cdot (\mathbf{r} - \mathbf{r}_0) = a$ as

$$\mathbf{b} \cdot (\mathbf{r} - \mathbf{r}_0) = a$$
$$b_1 (x - x_0) + b_2 (y - y_0) + b_3 (z - z_0) = a$$
$$b_1 x + b_2 y + b_3 z - (b_1 x_0 + b_2 y_0 + b_3 z_0 + a) = 0$$

This last form may be identified with equation (1.25) with $A = b_1$, $B = b_2$, $C = b_3$ and $D = -b_1x_0 - b_2y_0 - b_3z_0 - a$. In other words, we have proven that when $\tau \equiv 0$ the binormal vector **B** becomes the constant vector **b**, which is the normal vector to the plane in which lies the vector **r**, representing the path of the curve traced out by the point P moving in space at speed $v = ds/dt \neq 0$.

- 8. In order to find an equation for the tangent plane at the point $P = (x_1, y_1, z_1)$ for the given surface we make use of equation (2.100). In order to find a vector equation for the normal line to the tangent plane at the point $P = (x_1, y_1, z_1)$ we will make use of the fact that $\nabla F = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$ is parallel to this line and the point P lies on the line so that $\overrightarrow{P_1P} = t\nabla F|_{(x_1,y_1,z_1)}$ where t is an arbitrary parameter describes this line (this essentially is equation (1.27) with $\mathbf{v} = \nabla F|_{(x_1,y_1,z_1)}$).
 - (a) Let us first define F(x, y, z) as

$$F(x, y, z) = x^2 + y^2 + z^2 - 9 = 0$$

The equation for the tangent plane at the point P = (2, 2, 1) is then given by

$$2x + 2y + z = 9$$

The equations for the normal line at the point P = (2, 2, 1) are given by

$$x = 2 + 4t$$
 $y = 2 + 4t$ $z = 1 + 2t$

or alternatively

$$\frac{x-2}{2} = \frac{y-2}{2} = z - 1$$

(b) F(x, y, z) is of the form

$$F(x, y, z) = e^{x^2 + y^2} - z^2 = 0$$

The equation for the tangent plane at the point P = (0, 0, 1) is given by

$$z = 1$$

The equations for the normal line at the point P = (0, 0, 1) are given by

$$x = 0 y = 0 z = 1 - 2t$$

(c) F(x, y, z) is of the form

$$F(x, y, z) = x^3 - xy^2 + yz^2 - z^3 = 0$$

The equation for the tangent plane at the point P = (1, 1, 1) is given by

$$2x - y - z = 0$$

The equations for the normal line at the point P = (1, 1, 1) are given by

$$x = 1 + 2t \qquad \qquad y = 1 - t \qquad \qquad z = 1 - t$$

or alternatively

$$\frac{x-1}{2} = 1 - y = 1 - z$$

- (d) The procedure breaks down for the surface given by $F(x, y, z) = x^2 + y^2 z^2 = 0$ at the point P = (0, 0, 0), since $\nabla F|_{(0,0,0)} = \mathbf{0}$ and so equation (2.100) fails to determine a plane.
- (e) F(x, y, z) is of the form

$$F(x, y, z) = xy - z = 0$$

The equation for the tangent plane at the point $P = (x_1, y_1, z_1)$ where $x_1y_1 = z_1$ is given by

$$xy_1 + x_1y - z = x_1y_1 = z_1$$

The equations for the normal line at the point $P = (x_1, y_1, z_1)$ where $x_1y_1 = z_1$ are given by

$$x = x_1 + y_1 t$$
 $y = y_1 + x_1 t$ $z = z_1 - t$

or alternatively

$$\frac{x - x_1}{y_1} = \frac{y - y_1}{x_1} = z_1 - z$$

(f) F(x, y, z) is of the form

$$F(x, y, z) = xy + yz + xz - 1 = 0$$

The equation for the tangent plane at the point $P = (x_1, y_1, z_1)$ where $x_1y_1 + y_1z_1 + x_1z_1 = 1$ is given by

$$(y_1 + z_1) x + (x_1 + z_1) y + (y_1 + x_1) z = 2 (x_1 y_1 + x_1 z_1 + y_1 z_1) = 2$$

The equations for the normal line at the point $P = (x_1, y_1, z_1)$ where $x_1y_1 + y_1z_1 + x_1z_1 = 1$ are given by

$$x = x_1 + (y_1 + z_1) t$$
 $y = y_1 + (x_1 + z_1) t$ $z = z_1 + (y_1 + x_1) t$

or alternatively

$$\frac{x - x_1}{y_1 + z_1} = \frac{y - y_1}{x_1 + z_1} = \frac{z - z_1}{y_1 + x_1}$$

9. Let us define F(x, y, z) as F(x, y, z) = f(x, y) - z = 0. Then according to equation (2.100)

$$\frac{\partial F}{\partial x}\Big|_{(x_1, y_1, z_1)} (x - x_1) + \frac{\partial F}{\partial y}\Big|_{(x_1, y_1, z_1)} (y - y_1) + \frac{\partial F}{\partial z}\Big|_{(x_1, y_1, z_1)} (z - z_1) = 0$$

we end up with

$$z - z_1 = \frac{\partial f}{\partial x} \Big|_{(x_1, y_1, z_1)} (x - x_1) + \frac{\partial f}{\partial y} \Big|_{(x_1, y_1, z_1)} (y - y_1)$$

The equations of the normal line may be determined from the vector equation $\overrightarrow{P_1P} = t\nabla F|_{(x_1,y_1,z_1)}$ where $P_1 = (x_1,y_1,z_1)$, t is some arbitrary parameter and $\nabla F|_{(x_1,y_1,z_1)} = F_x(x_1)\mathbf{i} + F_y(y_1)\mathbf{j} + F_z(z_1)\mathbf{k}$. Hence,

$$x = x_1 + \frac{\partial f}{\partial x}\Big|_{(x_1, y_1, z_1)} t \qquad y = y_1 + \frac{\partial f}{\partial y}\Big|_{(x_1, y_1, z_1)} t \qquad z = z_1 - t$$

or alternatively

$$\frac{x - x_1}{f_x(x_1, y_1, z_1)} = \frac{y - y_1}{f_y(x_1, y_1, z_1)} = z_1 - z$$

10. (a) The tangent plane at the point P = (1, 1, 2) is given by

$$z-2=2(x-1)+2(y-1)$$

The equations for the normal line at the point P = (1, 1, 2) are given by

$$\frac{x-1}{2} = \frac{y-1}{2} = 2 - z$$

(b) The tangent plane at the point P = (2/3, 2/3, 1/3) is given by

$$z - \frac{1}{3} = -2\left(x - \frac{2}{3}\right) - 2\left(y - \frac{2}{3}\right)$$

The equations for the normal line at the point P = (2/3, 2/3, 1/3) are given by

$$\frac{x-2/3}{2} = \frac{y-2/3}{2} = z - \frac{1}{3}$$

(c) The tangent plane at the point P = (2, 1, 2) is given by

$$z = x - 2y + 2$$

The equations for the normal line at the point P = (2, 1, 2) are given by

$$x - 2 = \frac{1 - y}{2} = 2 - z$$

The tangent plane at the point P = (3/5, 4/5, 0) is given by

$$5z = 6x + 8y - 10$$

The equations for the normal line at the point P = (3/5, 4/5, 0) are given by

$$\frac{x-3/5}{6/5} = \frac{y-4/5}{8/5} = -z$$

11. Let two surfaces in space be given by F(x, y, z) and G(x, y, z). Then the vector $\nabla F \times \nabla G$ is of the form

$$\nabla F \times \nabla G = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} \mathbf{i} + \begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix} \mathbf{j} + \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix} \mathbf{k}$$

and so the vector equation $d\mathbf{r} \times (\nabla F \times \nabla G)$ representing the tangent line (i.e. the intersection of the two tangent planes of each surface at the point P) at the point $P = (x_1, y_1, z_1)$ is of the form

$$\begin{split} d\mathbf{r} \times (\nabla F \times \nabla G) &= \left(\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix} (y - y_1) - \begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix} (z - z_1) \right) \mathbf{i} \\ &+ \left(\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} (z - z_1) - \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix} (x - x_1) \right) \mathbf{j} \\ &+ \left(\begin{vmatrix} F_z & F_x \\ G_z & G_x \end{vmatrix} (x - x_1) - \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} (y - y_1) \right) \mathbf{k} = \mathbf{0} \end{split}$$

where it is assumed all partial derivatives are evaluated at the point $P = (x_1, y_1, z_1)$. Rearrangement and substitution then allows for the equation above to be written as equation (2.108). Alternatively, we can use equation (1.27) with $\mathbf{v} = \nabla F|_{(x_1,y_1,z_1)} \times \nabla G|_{(x_1,y_1,z_1)}$ and $\overrightarrow{P_1P} = d\mathbf{r}$.

(a) Defining F(x, y, z) and G(x, y, z) as

$$F(x, y, z) = 2x + y - z - 6 = 0$$
 $G(x, y, z) = x + 2y + 2z - 7 = 0$

gives at the point P = (3, 1, 1)

$$\nabla F|_{(3,1,1)} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} \qquad \nabla G|_{(3,1,1)} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

And so the equations for the tangent line are given by

$$\frac{x-3}{4} = \frac{y-1}{-5} = \frac{z-1}{3}$$

or in terms of an arbitrary parameter t

$$x = 3 + 4t$$
 $y = 1 - 5t$ $z = 1 + 3t$

(b) Defining F(x, y, z) and G(x, y, z) as

$$F(x,y,z) = x^2 + y^2 + z^2 - 9 = 0 G(x,y,z) = x^2 + y^2 - 8z^2 = 0$$

gives at the point P = (2, 2, 1)

$$\nabla F|_{(2,2,1)} = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$$
 $\nabla G|_{(2,2,1)} = 4\mathbf{i} + 4\mathbf{j} - 16\mathbf{k}$

And so

$$\nabla F|_{(2,2,1)} \times \nabla G|_{(2,2,1)} = -72\mathbf{i} + 72\mathbf{j} = -72(\mathbf{i} - \mathbf{j})$$

Hence, the equations for the tangent line become

$$x = 2 + t \qquad \qquad y = 2 - t \qquad \qquad z = 1$$

(c) Defining F(x, y, z) and G(x, y, z) as

$$F(x,y,z) = x^2 + y^2 - 1 = 0$$
 $G(x,y,z) = x + y + z = 0$

gives at the point P = (1, 0, -1)

$$\nabla F|_{(1,0,-1)} = 2\mathbf{i} \qquad \qquad \nabla G|_{(1,0,-1)} = \mathbf{i} + \mathbf{j} + \mathbf{k}$$

And so

$$\nabla F|_{(1,0,-1)} \times \nabla G|_{(1,0,-1)} = -2\mathbf{j} + 2\mathbf{k}$$

Hence, the equations for the tangent line become

$$x = 1 y = -t z = -1 + t$$

(d) Defining F(x, y, z) and G(x, y, z) as

$$F(x, y, z) = x^2 + y^2 + x^2 - 9 = 0$$
 $G(x, y, z) = x^2 + 2y^2 + 3z^2 - 9 = 0$

gives at the point P = (3, 0, 0)

$$\nabla F|_{(3,0,0)} = 6\mathbf{i}$$
 $\nabla G|_{(3,0,0)} = 6\mathbf{i}$

The procedure breaks down, since

$$\nabla F|_{(3,0,0)} \times \nabla G|_{(3,0,0)} = \mathbf{0}$$

In other words, the tangent planes at the point P = (3, 0, 0) are parallel (i.e. they do not intersect each other) and so the tangent line at the given point does not exist.

12. To show that the curve given by the cross-section of the two surfaces

$$F(x, y, z) = x^2 - y^2 + z^2 - 1 = 0$$
 $G(x, y, z) = xy + xz - 2 = 0$

is tangent to the surface $H(x,y,z) = xyz - x^2 - 6y + 6 = 0$ at the point $P_1 = (1,1,1)$ is equivalent to showing that the dot product of the normal to the surface H(x,y,z) (i.e. the gradient) at the point P_1 is perpendicular to the tangent vector of the curve at the point P_1 . Let us first find the tangent vector to the curve. To this end, we first will use the vector equation $d\mathbf{r} \times (\nabla F|_{(1,1,1)} \times \nabla G|_{(1,1,1)}) = \mathbf{0}$ to find the equations for the tangent line. Hence, at the point $P_1 = (1,1,1)$ we find

$$\nabla F_{(1,1,1)} = 2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \qquad \qquad \nabla G_{(1,1,1)} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$$

And so

$$\nabla F_{(1,1,1)} \times \nabla G_{(1,1,1)} = -4\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$$

Hence, the equations for the tangent line become

$$x = 1 - 4t$$
 $y = 1 + 2t$ $z = 1 + 6t$

Choosing t = 1 we find $P_2 = (-3, 3, 7)$. Then $\overrightarrow{P_2P_1} = 2(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 2\mathbf{v}$, where \mathbf{v} is a tangent vector to the curve at the point $P_1 = (1, 1, 1)$. Lastly, we evaluate

$$\mathbf{v} \cdot \nabla H|_{(1,1,1)} = (-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot (-\mathbf{i} - 5\mathbf{j} + \mathbf{k}) = 0$$

which thus confirms that the given curve is tangent to the given surface at the point (1,1,1).

13. Firstly, note that the vector $\nabla F \times \nabla G$ is perpendicular to both ∇F and ∇G and is tangent to the curve F(x,y,z), G(x,y,z) at the point (x_1,y_1,z_1) . As such, a plane normal to the curve at the point (x_1,y_1,z_1) will be perpendicular to the vector $\nabla F \times \nabla G$. Next, let the vector $d\mathbf{r} = (x-x_1)\mathbf{i} + (y-y_1)\mathbf{j} + (z-z_1)\mathbf{k}$ be some vector lying wholly in the normal plane. It then follows that $d\mathbf{r} \cdot \nabla F \times \nabla G = 0$, which is the equation for a plane normal to the curve F(x,y,z), G(x,y,z) at the point (x_1,y_1,z_1) . In rectangular coordinates the equation for the plane is given by

$$Ax + By + Cz + D = 0$$

where $A = f_y g_z - f_z g_y$, $B = f_z g_x - f_x g_z$, $C = f_x g_y - f_y g_x$ and $D = -Ax_1 - By_1 - Cz_1$. The normal plane to the curve of Problem 11(b) at the point (2, 2, 1) is given by

$$x - y = 0$$

The normal plane to the curve of Problem 11(c) at the point (1, 0, -1) is given by

$$y - z + 1 = 0$$

14. Let the vector $\mathbf{v} = (dx/dt)\mathbf{i} + (dy/dt)\mathbf{j} + (dz/dt)\mathbf{k}$ be a vector tangent to the curve $x = t^2$, y = t, z = 2t at the point (0,0,0). Hence,

$$\mathbf{v}(0) = 2(0)\mathbf{i} + \mathbf{j} + 2\mathbf{k} = \mathbf{j} + 2\mathbf{k}$$

Let **v** be the normal vector to some plane that contains the point (1,0,0). Hence, the vector $d\mathbf{r} = (x-1)\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ will be a vector lying wholly in this plane whenever

$$d\mathbf{r} \cdot \mathbf{v} = (x-1)(0) + y(1) + z(2) = y + 2z = 0$$

15. Let some arbitrary level surface be given by the function F(x, y, z) = c, where c is a real valued constant and let $P = (x_0, y_0, z_0)$ be a point on this level surface, i.e. $F(x_0, y_0, z_0) = c$. Furthermore, let $\mathbf{r}(t)$ be a parametric representation for a curve on this surface with $\mathbf{r}(t_0) = (x_0, y_0, z_0)$. Next, consider the function G(t) =

F(x(t), y(t), z(t)). Since the curve is on the level surface we have G(t) = F(x(t), y(t), z(t)) = c. Differentiation with respect to t and evaluating at the point t_0 then gives

$$\frac{dG}{dt} = \frac{\partial F}{\partial x}\bigg|_{(x_0, y_0, z_0)} \frac{dx}{dt}\bigg|_{t_0} + \frac{\partial F}{\partial y}\bigg|_{(x_0, y_0, z_0)} \frac{dy}{dt}\bigg|_{t_0} + \frac{\partial F}{\partial z}\bigg|_{(x_0, y_0, z_0)} \frac{dz}{dt}\bigg|_{t_0} = 0$$

which also may be written in vector form as the dot product

$$\nabla F|_{(x_0, y_0, z_0)} \cdot \frac{d\mathbf{r}}{dt} \bigg|_{t_0} = 0$$

Since this dot product is zero it shows that the gradient to the surface F(x, y, z) = c is perpendicular to the tangent to any curve that lies on this surface.

(a) The gradient vector of the function $F = x^2 + y^2 + z^2$ is given by

$$\nabla F = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$$

(b) The gradient vector of the function $G = 2x^2 + y^2$ is given by

$$\nabla G = 4x\mathbf{i} + 2y\mathbf{j}$$

16. (a) Let us define the parametric equation G(u,v) = F(f(u,v),g(u,v),h(u,v)) = c corresponding to the surface F(x,y,z) = c. Partial differentiation then gives

$$\begin{split} \frac{\partial G}{\partial u} &= \frac{\partial F}{\partial x} \frac{\partial f}{\partial u} + \frac{\partial F}{\partial y} \frac{\partial g}{\partial u} + \frac{\partial F}{\partial z} \frac{\partial h}{\partial u} = \nabla F \cdot \left(\frac{\partial f}{\partial u} \mathbf{i} + \frac{\partial g}{\partial u} \mathbf{j} + \frac{\partial h}{\partial u} \mathbf{k} \right) = 0 \\ \frac{\partial G}{\partial v} &= \frac{\partial F}{\partial x} \frac{\partial f}{\partial v} + \frac{\partial F}{\partial y} \frac{\partial g}{\partial v} + \frac{\partial F}{\partial z} \frac{\partial h}{\partial v} = \nabla F \cdot \left(\frac{\partial f}{\partial v} \mathbf{i} + \frac{\partial g}{\partial v} \mathbf{j} + \frac{\partial h}{\partial v} \mathbf{k} \right) = 0 \end{split}$$

Since it follows from this that ∇F is perpendicular to both $f_u \mathbf{i} + g_u \mathbf{j} + h_u \mathbf{k}$ and $f_v \mathbf{i} + g_v \mathbf{j} + h_v \mathbf{k}$ we may conclude that

$$\nabla F \times \left[\left(\frac{\partial f}{\partial u} \mathbf{i} + \frac{\partial g}{\partial u} \mathbf{j} + \frac{\partial h}{\partial u} \mathbf{k} \right) \times \left(\frac{\partial f}{\partial v} \mathbf{i} + \frac{\partial g}{\partial v} \mathbf{j} + \frac{\partial h}{\partial v} \mathbf{k} \right) \right] = \mathbf{0}$$

which in turn implies that ∇F and the vector $(f_u \mathbf{i} + g_u \mathbf{j} + h_u \mathbf{k}) \times (f_v \mathbf{i} + g_v \mathbf{j} + h_v \mathbf{k})$ are parallel. Hence, since ∇F is normal to the surface at the point (x_1, y_1, z_1) , it follows that the vector

$$\left(\frac{\partial f}{\partial u}\mathbf{i} + \frac{\partial g}{\partial u}\mathbf{j} + \frac{\partial h}{\partial u}\mathbf{k}\right) \times \left(\frac{\partial f}{\partial v}\mathbf{i} + \frac{\partial g}{\partial v}\mathbf{j} + \frac{\partial h}{\partial v}\mathbf{k}\right) \equiv \frac{\partial (g,h)}{\partial (u,v)}\mathbf{i} + \frac{\partial (h,f)}{\partial (u,v)}\mathbf{j} + \frac{\partial (f,g)}{\partial (u,v)}\mathbf{k}$$

is normal to the surface at the point (x_1, y_1, z_1) .

(b) The equation for the tangent plane in terms of the parametric variables u and v is given by

$$\left(\frac{\partial(g,h)}{\partial(u,v)}\mathbf{i} + \frac{\partial(h,f)}{\partial(u,v)}\mathbf{j} + \frac{\partial(f,g)}{\partial(u,v)}\mathbf{k}\right) \cdot d\mathbf{r} = 0$$

(c) Firstly, note that $x = f(u, v) = \cos u \cos v$, $y = g(u, v) = \cos u \sin v$ and $z = h(u, v) = \sin u$. Evaluating the relevant partial derivatives at the point for which $u = \pi/4$, $v = \pi/4$ gives

$$\frac{\partial f}{\partial u}\Big|_{(\pi/4,\pi/4)} = -\frac{1}{2} \qquad \frac{\partial g}{\partial u}\Big|_{(\pi/4,\pi/4)} = -\frac{1}{2} \qquad \frac{\partial h}{\partial u}\Big|_{(\pi/4,\pi/4)} = \frac{\sqrt{2}}{2}$$

$$\frac{\partial f}{\partial v}\Big|_{(\pi/4,\pi/4)} = -\frac{1}{2} \qquad \frac{\partial g}{\partial v}\Big|_{(\pi/4,\pi/4)} = \frac{1}{2} \qquad \frac{\partial h}{\partial v}\Big|_{(\pi/4,\pi/4)} = 0$$

The normal to the tangent plane to the surface at the point for which $u = \pi/4$ and $v = \pi/4$ then is given by

$$\left[\left(\frac{\partial f}{\partial u} \mathbf{i} + \frac{\partial g}{\partial u} \mathbf{j} + \frac{\partial h}{\partial u} \mathbf{k} \right) \times \left(\frac{\partial f}{\partial v} \mathbf{i} + \frac{\partial g}{\partial v} \mathbf{j} + \frac{\partial h}{\partial v} \mathbf{k} \right) \right]_{(\pi/4, \pi/4)} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1/2 & -1/2 & \sqrt{2}/2 \\ -1/2 & 1/2 & 0 \end{vmatrix}$$

And so the tangent plane itself is given by

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1/2 & -1/2 & \sqrt{2}/2 \\ -1/2 & 1/2 & 0 \end{vmatrix} \cdot \left[\left(x - \frac{1}{2} \right) \mathbf{i} + \left(y - \frac{1}{2} \right) \mathbf{j} + \left(z - \frac{\sqrt{2}}{2} \right) \mathbf{k} \right] = x + y + \sqrt{2}z = 2$$

- (d) Firstly, note that $\sqrt{x^2 + y^2 + z^2} = \sqrt{\cos^2 u \cos^2 v + \cos^2 u \sin^2 v + \sin^2 u} = 1$, which is the radius of the unit sphere. Next, the azimuth of the sphere is given by $\tan^{-1}(y/x) = \tan^{-1}(\cos u \sin v/(\cos u \cos v)) = \tan^{-1}\tan v = v$. Lastly, the inclination angle of the sphere is given by $\cos^{-1} z = \cos^{-1}\sin u = \cos^{-1}\cos(u \pi/2) = u \pi/2$.
- 17. Let us define the two surfaces F(x, y, z) = f(x, y) z = 0 and G(x, y, z) = g(x, y) z. Then using (2.108) the equation for the tangent line is given by

$$\frac{x - x_1}{\begin{vmatrix} \partial f/\partial y & -1 \\ \partial g/\partial y & -1 \end{vmatrix}} = \frac{y - y_1}{\begin{vmatrix} -1 & \partial f/\partial x \\ -1 & \partial g/\partial x \end{vmatrix}} = \frac{z - z_1}{\begin{vmatrix} \partial f/\partial x & \partial f/\partial y \\ \partial g/\partial x & \partial g/\partial y \end{vmatrix}}$$

or more succinctly

$$\frac{x - x_1}{\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}} = \frac{y - y_1}{\frac{\partial f}{\partial x} - \frac{\partial g}{\partial x}} = \frac{z - z_1}{\frac{\partial (f, g)}{\partial (x, y)}}$$

18. The differential relations corresponding to the equations F(x, y, z, t), G(x, y, z, t) and H(x, y, z, t) can be treated like a system of linear equations:

$$F_x dx + F_y dy + F_z dz = -F_t dt$$

$$G_x dx + G_y dy + G_z dz = -G_t dt$$

$$H_x dx + H_y dy + H_z dz = -H_t dt$$

Cramer's rule (section 1.5) then tells us that

$$dx = -\frac{\begin{vmatrix} F_t & F_y & F_z \\ G_t & G_y & G_z \\ H_t & H_y & H_z \end{vmatrix}}{\begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}} dt \qquad dy = -\frac{\begin{vmatrix} F_x & F_t & F_z \\ G_x & G_t & G_z \\ H_x & H_t & H_z \end{vmatrix}}{\begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}} dt \qquad dz = -\frac{\begin{vmatrix} F_x & F_y & F_t \\ G_x & G_y & G_t \\ H_x & H_y & H_t \end{vmatrix}}{\begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}} dt$$

Similarly to (2.102) these differential relations represents the intersection of three tangent planes at the point (x_1, y_1, z_1) at the point considered; the intersection of these planes is the tangent line to the curve. Recognizing that $dx = x - x_1$, $dy = y - y_1$ and $dz = z - z_1$ the equations for the tangent line may, similar to (2.108), be written in the symmetric form

$$\frac{x - x_1}{\begin{vmatrix} F_t & F_y & F_z \\ G_t & G_y & G_z \\ H_t & H_y & H_z \end{vmatrix}} = \frac{y - y_1}{\begin{vmatrix} F_x & F_t & F_z \\ G_x & G_t & G_z \\ H_x & H_t & H_z \end{vmatrix}} = \frac{z - z_1}{\begin{vmatrix} F_x & F_y & F_t \\ G_x & G_y & G_t \\ H_x & H_y & H_t \end{vmatrix}}$$

or

$$\frac{x-x_1}{\frac{\partial \left(F,G,H\right)}{\partial \left(t,y,z\right)}} = \frac{y-y_1}{\frac{\partial \left(F,G,H\right)}{\left(x,t,z\right)}} = \frac{z-z_1}{\frac{\partial \left(F,G,H\right)}{\partial \left(x,y,t\right)}}$$

- 19. (a) If $d\mathbf{r}/dt \equiv 0$ then $\mathbf{r}(t) = \mathbf{c} = \overrightarrow{OP}$, where \mathbf{c} is some constant vector for any value $t_1 \leq t \leq t_2$. Hence, since the point O is fixed this implies that the point P has to be fixed also.
 - (b) Since both $\mathbf{r}(t)$ and $\mathbf{r}(t_0)$ correspond to a point P and P_0 on the curve, the vector $\mathbf{r}(t) \mathbf{r}(t_0)/(t-t_0)^{n+1}$ will intersect the curve at least twice (i.e. once at the point P and once at the point P_0) and hence, is a secant to the curve. To obtain the tangent vector to the curve at point $P_0 = \mathbf{r}(t_0)$, we let $t \to t_0$ and take the limit

$$\lim_{t \to t_0} \frac{\mathbf{r}(r) - \mathbf{r}(t_0)}{(t - t_0)^{n+1}} = \lim_{t \to t_0} \frac{\mathbf{r}'}{(n+1)(t - t_0)^n} = \dots = \lim_{t \to t_0} \frac{1}{(n+1)!} \frac{d^{n+1}\mathbf{r}}{dt^{n+1}}$$
$$= \frac{1}{(n+1)!} \frac{d^{n+1}\mathbf{r}}{dt^{n+1}} \Big|_{t=t_0}$$

were we have used the fact that

$$\frac{d\mathbf{r}}{dt} = \mathbf{0}, \frac{d^2\mathbf{r}}{dt^2} = \mathbf{0}, \dots, \frac{d^n\mathbf{r}}{dt^n} = \mathbf{0}, \frac{d^{n+1}\mathbf{r}}{dt^{n+1}} \neq \mathbf{0}$$

for $t = t_0$ together with l'Hôspital rule.

(c) Since the arc length s represents the distance along the path we have

$$\left| \frac{d\mathbf{r}}{dt} \right|^2 = \left(\frac{df}{dt} \right)^2 + \left(\frac{dg}{dt} \right)^2 + \left(\frac{dh}{dt} \right)^2 = \left(\frac{ds}{dt} \right)^2$$

And so

$$\left|\frac{d\mathbf{r}}{ds}\right|^2 = \left(\frac{df}{ds}\right)^2 + \left(\frac{dg}{ds}\right)^2 + \left(\frac{dh}{ds}\right)^2 = \left[\left(\frac{df}{dt}\right)^2 + \left(\frac{dg}{dt}\right)^2 + \left(\frac{dh}{dt}\right)^2\right] \left(\frac{dt}{ds}\right)^2 = 1$$

In conclusion, $d\mathbf{r}/ds$ is a unit vector and hence, always a tangent vector to the curve.

Figure 14: circular helix and its tangential developable

20. (a)

(b) To demonstrate that along a chosen ruling of a tangential developable all points of the surface have the same tangent plane, we compute

$$\frac{d\mathbf{r}}{du} \cdot \mathbf{v}(u) \times \frac{d\mathbf{v}}{du} = \frac{d\mathbf{r}}{du} \cdot \frac{d\mathbf{r}}{du} \times \frac{d\mathbf{v}}{du} = \frac{d\mathbf{v}}{dt} \cdot \frac{d\mathbf{r}}{du} \times \frac{d\mathbf{r}}{du} = 0$$

where $d\mathbf{r}/du$ represents the tangent vector to the curve that is parallel to the chosen ruling and $\mathbf{v}(u) \times d\mathbf{v}/du$ is a vector that is both perpendicular to $\mathbf{v}(u)$ and $d\mathbf{v}/du$.

Section 2.14

1.