МдАД: Математический анализ

Зима 2019

Занятие 2: 29 Января

Преподаватель: Антон Савостьянов

Асситент: Даяна Мухаметшина

Контакты: *Антон Савостьянов, почта*: a.s.savostyanov@gmail.com, *telegram*: @mryodo Даяна Мухаметшина, почта: dayanamuha@gmail.com, *telegram*: @anniesss1

Правила игры: Домашние задания следует присылать в читаемом виде не позднее чем через две недели (после выдачи задания) в системе Classroom. В выполнении домашнего задания ценен любой прогресс

2.1 О-большое и о-малое

Зачастую в практических задачах бывает полезно не столько оценить поведение функции в точке (например, рассмотреть ее предел), сколько оценить ее поведение относительно некой другой функции. Более того, в задачах, связанных с алгоритмической обработкой данных, функция сложности или времени работы алгоритма плотно привязана к получаемым на вход неизвестным данным; поэтому вместо указания точного времени выполнения той или иной процедуры указывается только ее поведение относительно набора известных функций.

Определение 2.1. Пусть даны функции f(x) и g(x), определенные в окрестности точки a (a вполне может быть и бесконечным). Говорят, что функция f является O-большим от функции g в окрестности точки a, если найдется такая константа C>0, что для любого x из данной окрестности точки a:

$$|f(x)| \le C \cdot |g(x)|$$

Другими словами, в окрестности точки a отношение |f|/|g| ограничено (если, конечно, задано: для этого требуется, чтобы функция g не принимала 0 в какой-нибудь окрестности точки a. Ясно, что такого требования нет в первой формулировке определения, поэтому данным отношением пользоваться следует аккуратно).

Обозначение:
$$f(x) = \underline{O}(g(x)), \quad x \to a.$$

Определение 2.2. Пусть даны функции f(x) и g(x), определенные в окрестности точки a (a вполне может быть и бесконечным). Говорят, что функция f является o-малым от функции g в окрестности точки a, если для любой константы C>0 найдется такая окрестность точки a, что для любого x из нее:

$$|f(x)| \le C \cdot |g(x)|$$

Перепишем формулировку при помощи кванторов:

$$\forall C > 0 : \exists \delta > 0 : \forall x : |x - a| < \delta \Rightarrow |f(x)| \le C|g(x)| \Leftrightarrow \left| \frac{f(x)}{g(x)} \right| \le C$$

Несложно увидеть, что написанное здесь дословно совпадает с определением предела функции:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Говорят также, что функция f обладает более высоким порядком малости по сравнению с функцией g.

Обозначение: $f(x) = \overline{o}(g(x)), \quad x \to a.$

Упражнение 1. Качественно опишите, что значат для функции f(x) следующие равенства:

a)
$$f(x) = \underline{O}(x), \ x \to a$$
 b) $f(x) = \overline{o}(x), \ x \to a$

Упражнение 2. Как вы думаете, что означают следующие равенства:

a)
$$e^x = 1 + x + \frac{x^2}{2!} + \overline{o}(x^2), \ x \to 0$$
 b) $n! = \underline{O}\left(\left(\frac{n}{e}\right)^{n + \frac{1}{2}}\right), \ n \to +\infty$

Определение 2.3. Пусть даны функции f(x) и g(x), определенные в окрестности точки a (a вполне может быть и бесконечным). Говорят, что функция f эквивалентна функции g в окрестности точки a, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение: $f(x) \sim g(x), \quad x \to a.$

Упражнение 3. Проверьте, верны ли следующие равенства (если да, докажите их, если нет, опровергните):

a)
$$\sin^2 x = \overline{o}(x), \ x \to 0$$
 b) $\sin x = \overline{o}(x), \ x \to 0$ c) $\sin x = \overline{o}(x), \ x \to \pm \infty$
d) $e^{20}x^n = \overline{o}(x^{n+1}), \ x \to +\infty$ e) $e^{20}x^n \neq \overline{o}(x^{n-1}), \ x \to 0$
f) $(x-1)^2 \left(5 + \sin\frac{1}{x-1}\right) = \underline{O}((x-1)^2 + (x-1)^3), \ x \to 1$

Упражнение 4. Считая знаки равенства знаками принадлежности к классу (то есть $f(x) = \overline{o}(x)$ должно читать как «функция f принадлежит классу функций, которые бесконечно малы по сравнению с x»), докажите следующие равенства:

a)
$$\overline{o}(x^n) + \overline{o}(x^m) = \overline{o}(x^n), \ x \to 0, \ n < m$$
 b) $\underline{O}(x^n) + \underline{O}(x^m) = \underline{O}(x^m), \ x \to +\infty, \ n < m$ c) $\overline{o}(x^m) + \underline{O}(x^n) = \underline{O}(x^n), \ x \to 0, \ n < m$ d) $x^k \cdot \overline{o}(x^n) = \overline{o}(x^{n+k}, \ x \to 0$

2.2 Непрерывность и дифференцируемость

Определение 2.4. Функция f(x) называется непрерывной в точке a, если

$$\lim_{x \to a} f(x) = f(a),$$

то есть предел функции в точке равен ее значению. Функция называется *непрерывной на множестве* (например, на отрезке), если она непрерывна в каждой точке данного множества.

Упражнение 5. Докажите, что если функция f(x) непрерывна в точке x=a, то выполняется:

$$f(x) = f(a) + \overline{o}(x - a), x \to a$$

Теорема 2.5 (о промежуточном значении, Вейерштрасса-2). Если непрерывная на отрезке f(x) функция принимает значения A и B, то она принимает все значения между ними.

Замечание 2.6. Одним из применений данной теоремы является широко известный метод поиска корней серединным делением, а также алгоритмы бинарного поиска в программировании.

Определение 2.7. Пусть дана функция f(x), выбрана точка $x_0=a$. Приращением аргумента Δx будем называть разность между выбранной точкой a и произвольной точкой x: $\Delta x=x-a$; соответствующим приращением функции будем называть разность между значениями функции в выбранной и произвольной точках: $\Delta f=f(x)-f(a)$; несложно сообразить, что отношение $\frac{\Delta f}{\Delta x}$ есть тангенс угла наклона прямой, проходящей через точки (a,f(a)) и (x,f(x)) (такую прямую называют секущей). Предельное значение такого отношения носит название производной $\frac{df}{dx}=f'(a)$ в данной точке:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

Часто рассматривают производную не в исключительной точке, а в каждой, то есть смотрят на f'(x) — функцию, которая для каждого x возвращает значение производной в данной точке. Такую функцию тоже называют производной.

Определение 2.8. Функцию, называют $\partial u \phi \phi$ еренцируемой, если ее приращение в точке $x_0 = a$ хорошо аппроксимируется линейной функцией:

$$\Delta f = f(a + \Delta x) - f(a) = A \cdot \Delta x + \overline{o}(\Delta x),$$

где Δx — есть приращение аргумента в данной точке, а A — некое вещественное число. Несложно показать, что A = f'(a).

Величина $df = A \cdot \Delta x = f'(a) \cdot \Delta x = f'(a) dx$ есть линейная составляющая приращения функции и называется дифференциалом функции.

Теорема 2.9 (критерий дифференцируемости). Для функций одной переменной и только для них наличие производной в точке эквивалентно дифференцируемости в ней; более того, наилучшее линейное приближение функции реализуется на касательной в данной точке.

С геометрической точки зрения дифференцируемость означает две вещи:

- отсутствие «углов»: возможность проведения касательной в данной точке;
- хорошую приближаемость прямой в данной точке.

Упражнение 6. Пользуясь определением, посчитайте производные следующих функций в произвольной точке a:

a)
$$f(x) = 2018$$
 b) $f(x) = x^2$ c) $f(x) = x^n$ d) $f(x) = \sin x$

Замечание 2.10. Для взятия производной существует набор правил (в том числе и арифметических):

1. если
$$f(x) \equiv c$$
, то $f' = 0$

2.
$$(x^a)' = ax^{a-1}$$

3.
$$(e^x) = e^x$$

4.
$$(f \pm g)' = f' \pm g'$$

5. (правило Лейбница) (fg)' = f'g + g'f

$$6. \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

7. (производная сложной функции) $(f(g(x))' = f'(g(x)) \cdot g'(x)$

Упражнение 7. Вычислите производные данных функций по правилам:

a)
$$x^4 + 5x - 6$$
 b) $f(x) = \sqrt{2x} + 3e^{-x}$ c) $f(x) = \frac{x^2}{1 + 2x}$ d) $f(x) = \ln x$
e) $f(x) = \sin \cos x$ f) $f(x) = x^x$

Определение 2.11. Касательной к графику функции f(x) в точке a называется прямая, наиболее похожая на f(x) в окрестности данной точки, проходящая через точку (a,f(a)). Она же есть предельное положение секущих, описанных нами выше. Ее уравнение может быть записано как:

$$y = f'(a)(x - a) + f(a)$$

Упражнение 8. Найдите уравнение касательной к графику функции $f(x) = \frac{e^x}{x}$ в точке x = 1.

2.3 Построение графиков функций

Существует общая процедура исследования функции для построения графика. Следует понимать, что получающаяся картинка не является точным графиком функции; на самом деле, она просто отображает некоторые найденные качественные характеристики функции, которые достаточно точно определяют нашу кривую.

Процедура исследования может быть описана следующим образом:

- 1. Найти область определения функции и нули (такие x_0 , что $f(x_0) = 0$). Часто это бывает сделать сложно и/или невозможно, поэтому ценно хотя представление о количестве нулей.
- 2. Вычислить производную данной функции f'(x).
- 3. Установить промежутки монотонности нашей функции: интервалы возрастания и убывания.

Определение 2.12. Отрезок или интервал (говорят, сегмент) I из области определения функции f(x) называется промежутком возрастания (убывания), если для любых двух a и $b \in I$ выполняется f(a) < f(b) (f(a) > f(b)), если a < b. Аналогично можно определить нестрогую монотонность.

Замечание 2.13. Правило для определения промежутков возрастания по производной:

- (a) если f'(x) > 0 на данном интервале, то функция f(x) монотонно возрастает;
- (b) если f'(x) < 0 на данном интервале, то функция f(x) монотонно убывает.
- 4. Определить локальные экстремумы (точки минимума и максимума).

Определение 2.14. Точкой глобального максимума (минимума) называется такая точка a, что для любого x из области определения f(x) < f(a) (f(x) > f(a)), а само значение f(a) называется глобальным максимумом (минимумом).

Определение 2.15. Точкой локального максимума (минимума) называется такая точка a, что для любого x из некоторой (довольно узкой) окрестности точки a верно, что f(x) < f(a) (f(x) > f(a)), а само значение f(a) называется локальным максимумом (минимумом). Локальный минимум ил максимум называются также локальными экстремумами.

Определение 2.16. Точка a называет c тационарной для функции f(x), если f'(a) = 0.

Замечание 2.17 (необходимое условие экстремума). Если функция f(x) имеет экстремум в точке a и дифференцируема в ней, то a является стационарной точкой функции f.

Обратное неверно!

Упражнение 9. Придумайте функцию, у которой:

- (а) достигается экстремум в точке, в которой она не дифференцируема;
- (b) стационарная точка не является экстремумом.

Замечание 2.18 (достаточное условие экстремума). Если точка a стационарная для функции f(x) (то есть f'(a)=0) и в точке a меняет свой характер монотонности, то точка a — локальный экстремум, причем:

- (a) если f'(x) при переходе через точку a меняет знак с "минуса"на "плюс то a локальный минимум;
- (b) если f'(x) при переходе через точку a меняет знак с "плюса"на "минус то a локальный максимум.

Упражнение 10. Проверьте примеры из предыдущего упражнения с помощью данного условия. Все ли верно?

Замечание 2.19 (Достаточное условие экстремума в терминах старшей производной). Если точка a стационарная для функции f(x) (то есть f'(a)=0) и дважды дифференцируема в ней (то есть можно взять производную от производной), причем $f''(a) \neq 0$, то:

- (a) если f''(a) > 0, то a локальный минимум;
- (b) если f''(a) < 0, то a локальный максимум.
- 5. Установить выпуклость функции и точки перегиба.

Определение 2.20. *Хордой* называется отрезок, соединяющий две точки на графике функции.

Определение 2.21. Функция называется *выпуклой вверх* на отрезке [a;b], если лежит выше любой хорды на данном отрезке. Аналогично определяется выпуклость вниз (вогнутость).

Замечание 2.22. Если у функции существует вторая производная на области исследования, то:

- (a) если f''(x) > 0 на данном интервале, то функция f(x) выпукла вниз (вогнута);
- (b) если f''(x) < 0 на данном интервале, то функция f(x) выпукла вверх (выпукла).

Определение 2.23. *Точкой перегиба* называется такая точка a, что при переходе через нее меняется характер выпуклости.

Замечание 2.24 (необходимое условие точки перегиба). Если функция f(x) имеет перегиб в точке a и дважды дифференцируема в ней, то f''(a) = 0. Обратное неверно!

Замечание 2.25 (достаточное условие точки перегиба). Если первая производная f'(x) непрерывна в окрестности точки a, вторая производная f''(a) = 0 или не существует и вторая производная f''(x) меняет знак при переходе через точку a, то точка a является точкой перегиба.

6. Найти асимптоты графика функции.

Определение 2.26. *Асимптотой* называется прямая, к которой стремится функция при приближении одной из координат графика к бесконечности. Выделяют два вида асимптот: вертикальные и наклонные.

Определение 2.27. Вертикальной асимптотой называется прямая $x=a<\infty$, если выполняется хотя бы одно из следующих равенств:

$$\lim_{x \to a-0} f(x) = \pm \infty \qquad \lim_{x \to a+0} f(x) = \pm \infty$$

Замечание 2.28. Если функция непрерывна на всем множестве действительных чисел \mathbb{R} , то она не может иметь вертикальных асимптот!

Определение 2.29. Наклонной асимптотой называется прямая вида y=kx+b, к которой стремится функция при приближении x к бесконечности. Числа k и b могут быть вычислены следующим образом:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
$$b = \lim_{x \to \pm \infty} f(x) - k \cdot x$$

Нужно отметить, что асимптоты на разных бесконечностях совпадать не обязаны, равно как и присутствовать вообще.

Упражнение 11. Пользуясь описанной выше процедурой, постройте насколько возможно графики следующих функций, указав:

- 1. промежутки монотонности
- 2. локальные экстремумы
- 3. точки перегиба
- 4. асимптоты

a)
$$f(x) = xe^{2x}$$
 b) $f(x) = \frac{x^4}{x^3 - 1}$ c) $f(x) = \frac{x^3 + 1}{x}$ d) $f(x) = \ln \sin x$

Интегралы и площади 2.4

К сожалению, если вдаваться в подробности интегрального исчисления, то мы неизбежно увязнем в огромном числе формальностей. С точки зрения математики, введение таких формальностей позволило существенно продвинуться вперед в прикладном смысле, однако в нашем случае такие применения не столь важны.

Определение 2.30. Первообразной F(x) для функции f(x) называется функция, для которой: F'(x) = f(x). Несложно заметить, что из одной первообразной легко получить другую, добавлением константы: (G(x))' = (F(x) + C)' = F'(x) + C' = f(x).

Теорема 2.31. Если одна из первообразных функции f(x) имеет вид F(x), то все первообразные данной функции имеют вид F(x) + C (то есть нет других первообразных, кроме как полученных вертикальным сдвигом).

Несложно понять, что речь идет об обратном действии к взятию производной; такое действие называется интегрированием, а множество всех первообразных — неопределенным интегралом. Обозначение: $\int f(x)dx = F(x) + C$.

Упражнение 12. При помощи интегрирования укажите такую функцию f(x), что:

(a)
$$f'(x) = \sin x$$

(d)
$$f'(x) = f(x)$$

$$(g) f''(x) = -f(x)$$

(b)
$$f'(x) = \sin x + \cos x$$

(e)
$$f'(x) = 2f(x)$$

(b)
$$f'(x) = \sin x + \cos x$$
 (e) $f'(x) = 2f(x)$ (h) $f''(x) = -f(x) + 1$

(c)
$$f'(x) = x^2$$

(f)
$$f''(x) = x^2$$

(i)
$$x^2f'' + xf' + f = 0$$

Теорема 2.32 (Замена переменной). Пусть дан интеграл $\int f(x)dx$; пусть также нашлась биективная замена x=g(t). Тогда эквивалентный интеграл будет $\int f(x)dx=$ $\int f(g(t))dg(t) = \int f(g(t))g'(t)dt$. Такое рассуждение верно и в обратную сторону.

Например, рассмотрим интеграл $\int \frac{xdx}{1+x^2}$:

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{dx^2}{1+x^2} = \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = \frac{1}{2} \ln(1+x^2) + C$$

Теорема 2.33 (Интегрирование по частям). Пусть дан интеграл $\int u(x)v'(x)dx$. Тогда можно воспользоваться следующим преобразованием: $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$. Такой метод удобно применять, когда под интегралом стоит сложная функция с простой производной.

Например, рассмотрим интеграл $\int \arctan x dx$:

$$\int \arctan x \, dx = \int \arctan x \cdot 1 \, dx = \arctan x - \int x \cdot \frac{1}{1+x^2} \, dx = \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

Теперь обратимся к определенному интегралу. Фактически, определенным интегралом называется площадь под графиком функции на заданном отрезке; при этом площадь ориентирована: если функция отрицательна, то площадь идет с минусом, а если положительна, то с плюсом.

Теорема 2.34 (Формула Ньютона-Лейбница). Пусть требуется вычислить определенный интеграл функции f(x) на отрезке [a;b]. Тогда $\int_a^b f(x)dx = F(b) - F(a)$, где F(x) — любая первообразная функции f(x).

Упражнение 13. Вычислите следующие определенные интегралы:

(a)
$$\int_{1}^{4} (x^2 + 2x + 3) dx$$
 (d) $\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$

(d)
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

(g)
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

(b)
$$\int_{1}^{3} \frac{2}{x^4} dx$$

(e)
$$\int_0^1 x e^{-x^2} dx$$

(e)
$$\int_0^1 x e^{-x^2} dx$$
 (h) $\int_0^1 (x-1)^2 5 dx$

(c)
$$\int_0^1 10^x dx$$

(f)
$$\int_0^{+\infty} e^x \cos x dx$$
 (i) $\int_2^3 \frac{1}{x^2 - 1} dx$

(i)
$$\int_2^3 \frac{1}{x^2-1} dx$$

Числовые ряды 2.5

Определение 2.35. Числовым рядом называется формальное выражение вида

$$\sum_{n=1}^{+\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots,$$

где все a_i — некие действительные числа.

Сумму первых n чисел называют частичной суммой ряда:

$$S_n = \sum_{i=1}^n a_i$$

Суммой ряда называют предел последовательности частичных сумм:

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left[\sum_{i=1}^n a_i \right]$$

В зависимости от того существует ли этот предел или нет, ряд называют сходящимся и расходящимся соответственно.

Упражнение 14. Вычислите частичные суммы рядов:

(a)
$$1+2+3+4+\dots$$
 (c) $\frac{2}{3\cdot 5} + \frac{2}{5\cdot 7} + \frac{2}{7\cdot 9} + \dots$

(b)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$$
 (d) $1 - 1 + 1 - 1 + 1 - 1 + \dots$

Часто оказывается так, что вычислить сумму ряда гораздо сложнее, чем установить его сходимость. Поэтому используют набор признаков для качественного анализа ряда на предмет наличия суммы.

Замечание 2.36 (Необходимое свойство сходимости). Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится, то $a_n \to 0$.

Замечание 2.37 (Признак сравнения). Пусть есть два ряда $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$, состоящие только из положительных членов, причем, начиная с некоторого $n, a_n < b_n$. Тогда:

(a) если
$$\sum_{n=1}^{+\infty}b_n \to$$
, то и $\sum_{n=1}^{+\infty}a_n \to$; (b) если $\sum_{n=1}^{+\infty}a_n \not\to$, то и $\sum_{n=1}^{+\infty}b_n \not\to$;

Упражнение 15. Используя ряд $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$, покажите сходимость такого ряда: $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$

Как Вы думаете, к чему сходится такой ряд?