IMC 2019: AN END-TO-END, LARGE-SCALE MEASUREMENT OF DNS-OVER-ENCRYPTION: HOW FAR HAVE WE COME?

ORIGINAL AUTHORS: CHAOYI LU + 9

PAPER SUMMARY PRESENTATION BY LAM YONGXIAN

BACKGROUND

BACKGROUND: DNS ARCHITECTURE

BACKGROUND: DNS OVER ENCRYPTION

- DNS Encryption
- SSL Authentication (PKI)

BACKGROUND: DNS OVER ENCRYPTION PROTOCOLS

BACKGROUND: DOE STANDARDIZED PROTOCOLS

BACKGROUND: DOE STANDARDIZED PROTOCOLS

DNS-over-TLS using kdig shell command

```
$ kdig @1.1.1.1 +tls example.com

;; TLS session (TLS1.2)-(ECDHE-ECDSA-SECP256R1)-(AES-128-GCM)

;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 24012

;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1</pre>
```

DNS-over-HTTPSvia browser http request

https://dns.google.com/resolve?name=example.com&type=A

```
{"Status": 0,"TC": false,"RD": true,"RA": true,"AD": true,"CD": false,"Question":[ {"name":
"example.com.","type": 1}],"Answer":[ {"name": "example.com.","type": 1,"TTL": 19159,"data":
"93.184.216.34"}]}
```

BACKGROUND: EVALUATION CRITERIA

Table 1: Comparison of different DNS-over-Encryption protocols

Category	Criterion	DNS-over-TLS	DNS-over-HTTPS	DNS-over-DTLS	DNS-over-QUIC	DNSCrypt
Protocol Design	Uses other application-layer protocols Provides fallback mechanism	0	•	•	•	•
Security	Uses standard TLS Resists DNS traffic analysis	•	•	• •	•	•
Usability	Minor changes for client users Minor latency above DNS-over-UDP	0	• •	0	•	0
Deployability	Runs over standard protocols Supported by mainstream DNS software	•	•	•	0	0 •
Maturity	Standardized by IETF Extensively supported by resolvers	•	•	•	0	0

Scope of study focuses on DNS-over-TLS and DNS-over-HTTPS

BACKGROUND: DOE CLIENT-SIDE (MAY 2019)

Table 8: Current implementations of DNS-over-Encryption (last updated on May 1, 2019).

		DoT	DoH	DC	Since Ver.
	Firefox		/		Firefox 62.0
	Chrome		/		Chromium 66
	IE				
Browser	Safari				
	Opera				
	Yandex			/	
	Tenta	/	/		Tenta v2
os	Android	1			Android 9
	Linux (systemd)	1			systemd 239
	Windows				
	macOS				

¹ DoE is short for DNS-over-Encryption. DC is short for DNSCrypt. QM is short for QNAME minimization.

 $^{^{2}}$ DNS-over-DTLS and DNS-over-QUIC do not have implementations yet.

³ All surveyed software is the latest version at the last update (May 1, 2019).

⁴ For OS, we only consider built-in support.

BACKGROUND: DOE RESOLVER SOFTWARES (MAY 2019)

Table 8: Current implementations of DNS-over-Encryption (last updated on May 1, 2019).

Catagory	Name	DoE			Others	
Category	Name	DoT	DoH	DC	DNSSEC	QM
	Unbound	/		/	/	/
	BIND				1	1
DNS	Knot Res	1	/		1	✓
Software	dnsdist	1	/	/	1	
	CoreDNS	1			1	
(Server)	AnswerX				1	
	Cisco Registrar					
	MS DNS				1	
DNS Software	Ldns (drill)				✓	-
	Stubby	1			1	-
	BIND (dig)				1	-
(Stub)	Go DNS			/		-
	Knot (kdig)	1			/	-

BACKGROUND: DOE ON PUBLIC DNS (MAY 2019)

Table 8: Current implementations of DNS-over-Encryption

Others

QM

DNSSEC

DC

SERVERS
TO OFFER DNS-OVER-ENCRYPTION

Discovering open DNS-over-TLS resolvers

- Scan over Port 853 using ZMap
- Internet wide scan
- Query over getdns
- Verify SSL certificate chain using OpenSSL

Limitations

- Only open resolvers, not local ones deployed by ISPs
- Local deployment scarce among ISPs (~0.3% for researcher's own domain)

SERVERS: METHODOLOGY

Discovering open DNS-over-HTTPS resolvers

- URI templates on large datasets
- Common path templates (e.g., /dns-query and /resolve)

Unknown URL patterns will be overlooked

SERVERS: METHODOLOGY

SERVERS: KEY OBSERVATION I

"Except for large providers, there are many small providers which are less-known and missed by the public resolver lists. However, a quarter of DoT providers use invalid SSL certificates on their resolvers, which exposes

their users to security risks."

Finding 1.1: 1.5K open <u>DoT resolvers</u> are mostly owned by large providers, but there are also ones run by small providers which are absent from public resolver lists. By contrast, the number of open <u>DoH resolvers</u> is small.

~17 public DoH resolvers

SERVERS: KEY OBSERVATION I

"Except for large providers, there are many small providers which are less-known and missed by the public resolver lists. However, a quarter of DoT providers use invalid SSL certificates on their resolvers, which exposes their users to security risks."

DNS Resolver

CLIENTS
TO USE DNS-OVER-ENCRYPTION

Measurement of Reachability

- SOCK5 Measurement Platform
- ~1 14000 vantage points globally
- DoT, DoH, and DNS-over-TCP query on 3 public resolvers

Limitations

Researcher's Proxy Network only allows TCP Traffic

DNS Queries & Certificates

DNS/TCP & DoT

Ports & Webpages

Figure 5: Proxy network architecture

Table 3: Evaluation of client-side dataset

Test	Platform	# Distinct IP	# Country	# AS
Reachability	ProxyRack (Global)	29,622	166	2,597
	Zhima (Censored)	85,112	1 (CN)	5

CLIENTS: METHODOLOGY

CLIENTS: KEY OBSERVATION 2

"Over 99% global users can normally access large DNS-over-Encryption servers, whilst less than 1% clients are experiencing problems caused by IP conflict, censorship and TLS interception."

CLIENTS: KEY OBSERVATION 2

"Over 99% global users can normally access large DNS-over-Encryption servers, whilst less than 1% clients are experiencing problems caused by IP conflict, censorship and TLS interception."

Measurement of Performance

- 8257 proxy nodes
- Relative performance overhead between DNS-over-Encryption and DNS
- Assumption: Connection reuse, only ameasure DNS transaction time

Figure 5: Proxy network architecture

Limitations

TCP only. Does not measure DNS-over-UDP and reusing connection is not possible under UDP.

Table 3: Evaluation of client-side dataset

Test	Platform	# Distinct IP	# Country	# AS
Performance	ProxyRack (Global)	8,257	132	1,098

"DNS/TCP has equivalent performance to DNS/UDP with reused connections..."

CLIENTS: METHODOLOGY

CLIENTS: KEY OBSERVATION 3

"When connection is reused, encrypting DNS transactions introduces a **tolerable overhead** on query latency for global clients, and can perform well as clear-text DNS."

USAGE
DNS-OVERENCRYPTION TRAFFIC

Observing DNS-over-TLS traffic

- Uses Port 853
- 18-month NetFlow dataset between Jul 2017 to Jan 2019
- Collected by the backbone routers of a large Chinese ISP
- Dataset scanned by NetworkScan Mon and not generated by automated scanners

Limitations

Passive datasets contain geographical bias

USAGE: METHODOLOGY

USAGE: KEY OBSERVATION 4 (DOT)

"Although still at a small scale compared to traditional DNS, real-world traffic to DNS-over-Encryption services is observed, and reflects a **growing usage** in recent months."

"the top five netblocks account for 44% of all DoT traffic, and the top 20 account for 60%" "(96%) netblocks are only active **for less than one week**"

Finding 4.1: DoT traffic to large public resolvers is still at a small scale, mostly coming from both **centralized clients** and **temporary users**.

Figure 12: DoT traffic to Cloudflare DNS per /24 network. The size indicates the proportion of DoT traffic, and the color shows the active time of each network.

USAGE: KEY OBSERVATION 4 (DOT)

"Although still at a small scale compared to traditional DNS, real-world traffic to DNS-over-Encryption services is observed, and reflects a **growing usage** in recent months."

"about 2-3 orders of magnitude less than traditional DNS..."

Figure 11: Traffic to Cloudflare and Quad9 DNS

Observing DNS-over-HTTPS traffic

- DNSDB and 360 PassiveDNS are two large passive DNS
- Datasets maintained by Farsight
 Security and Qihoo 360 respectively

Limitations

- Passive datasets contain geographical bias
- Underestimating the query volume due to DNS Caching

USAGE: METHODOLOGY

USAGE: KEY OBSERVATION 4 (DOH)

"Although still at a small scale compared to traditional DNS, real-world traffic to DNS-over-Encryption services is observed, and reflects a **growing usage** in recent months."

Figure 13: Query volume of popular DoH domains

DISCUSSION ALMOST...

DISCUSSION: RECOMMENDATIONS

Dataset & code release

https://dnsencryption.info/imc19-doe.html

DNS Research @ Tsinghua

IMC2019 Video & Slides

https://chaoyi.lu/publications.html

RESOURCES

THANK YOU

LAMYONGXIAN@U.NUS.EDU