$12a_{0723} (K12a_{0723})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{22} - u^{21} + \dots - 2u + 1 \rangle$$

$$I_2^u = \langle u^9 + 3u^7 + u^6 + 3u^5 + 2u^4 - u^3 + u^2 - 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 31 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{22} - u^{21} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{12} + 3u^{10} + 3u^{8} - 2u^{6} - 4u^{4} - u^{2} + 1 \\ -u^{12} - 4u^{10} - 6u^{8} - 2u^{6} + 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{14} + 5u^{12} + 10u^{10} + 7u^{8} - 4u^{6} - u^{5} - 8u^{4} - 2u^{3} - 2u^{2} - u + 1 \\ u^{21} + 7u^{19} + \dots + u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{15} - 4u^{13} - 6u^{11} + 8u^{7} + 6u^{5} - 2u^{3} - 2u \\ u^{15} + 5u^{13} + 10u^{11} + 7u^{9} - 4u^{7} - 8u^{5} - 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{21} + 4u^{20} - 24u^{19} + 24u^{18} - 64u^{17} + 68u^{16} - 80u^{15} + 100u^{14} - 24u^{13} + 68u^{12} + 52u^{11} - 16u^{10} + 36u^9 - 52u^8 - 28u^7 - 28u^6 - 32u^5 + 8u^4 + 4u^3 + 4u^2 + 4u - 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{22} + 13u^{21} + \dots + 2u + 1$
c_{2}, c_{8}	$u^{22} - u^{21} + \dots - 2u + 1$
c_3, c_4, c_5 c_7, c_9, c_{10}	$u^{22} - 2u^{21} + \dots - u + 2$
c_6, c_{11}, c_{12}	$u^{22} - u^{21} + \dots + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{22} - 7y^{21} + \dots + 2y + 1$
c_{2}, c_{8}	$y^{22} + 13y^{21} + \dots + 2y + 1$
c_3, c_4, c_5 c_7, c_9, c_{10}	$y^{22} - 30y^{21} + \dots + 19y + 4$
c_6, c_{11}, c_{12}	$y^{22} + 17y^{21} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.946141 + 0.011490I	-13.5904 - 5.0425I	-10.78024 + 2.84693I
u = 0.946141 - 0.011490I	-13.5904 + 5.0425I	-10.78024 - 2.84693I
u = 0.416424 + 0.993762I	0.95586 + 5.59232I	-9.07345 - 8.52361I
u = 0.416424 - 0.993762I	0.95586 - 5.59232I	-9.07345 + 8.52361I
u = -0.327821 + 1.035380I	-3.20510 - 2.90050I	-16.7585 + 6.2360I
u = -0.327821 - 1.035380I	-3.20510 + 2.90050I	-16.7585 - 6.2360I
u = 0.153534 + 0.829883I	-0.664834 + 0.970955I	-10.56839 - 6.31245I
u = 0.153534 - 0.829883I	-0.664834 - 0.970955I	-10.56839 + 6.31245I
u = -0.373530 + 0.720587I	3.67591 - 1.72367I	-3.04572 + 4.67737I
u = -0.373530 - 0.720587I	3.67591 + 1.72367I	-3.04572 - 4.67737I
u = -0.768463 + 0.066318I	-2.56255 + 4.06172I	-9.74928 - 3.64554I
u = -0.768463 - 0.066318I	-2.56255 - 4.06172I	-9.74928 + 3.64554I
u = -0.454887 + 1.179480I	-5.83119 - 8.50268I	-12.8572 + 7.0300I
u = -0.454887 - 1.179480I	-5.83119 + 8.50268I	-12.8572 - 7.0300I
u = 0.425814 + 1.198730I	-9.89307 + 4.30260I	-17.3404 - 3.7895I
u = 0.425814 - 1.198730I	-9.89307 - 4.30260I	-17.3404 + 3.7895I
u = 0.487685 + 1.287980I	-17.5204 + 10.1457I	-13.8263 - 5.6856I
u = 0.487685 - 1.287980I	-17.5204 - 10.1457I	-13.8263 + 5.6856I
u = -0.481775 + 1.292500I	17.8662 - 5.0843I	-17.1007 + 2.8764I
u = -0.481775 - 1.292500I	17.8662 + 5.0843I	-17.1007 - 2.8764I
u = 0.476877 + 0.292674I	2.80571 - 1.90068I	-4.89982 + 3.73749I
u = 0.476877 - 0.292674I	2.80571 + 1.90068I	-4.89982 - 3.73749I

II.
$$I_2^u = \langle u^9 + 3u^7 + u^6 + 3u^5 + 2u^4 - u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

The Arc colorings
$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u^3 \\ u^3 + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^6 - u^4 + 1 \\ u^6 + 2u^4 + u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u^7 - u^6 - 2u^5 - 2u^4 - u^3 - u^2 + u + 1 \\ u^6 + 2u^4 - u^3 + u^2 - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^7 + 2u^5 - 2u \\ -u^6 - 2u^4 + u^3 - u^2 + u + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^3 \\ u^5 + u^3 + u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^3 \\ u^5 + u^3 + u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^6 - u^4 + 1 \\ -u^8 - 2u^6 - 2u^4 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^5 - u \\ u^7 + u^5 - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^4 - u^2 + 1 \\ -u^6 - 2u^4 - u^2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -14

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^9 + 6u^8 + 15u^7 + 15u^6 - 5u^5 - 24u^4 - 13u^3 + 7u^2 + 6u - 1$
$c_2, c_6, c_8 \\ c_{11}, c_{12}$	$u^9 + 3u^7 + u^6 + 3u^5 + 2u^4 - u^3 + u^2 - 2u - 1$
c_3, c_4, c_5 c_7, c_9, c_{10}	$(u^3 + u^2 - 2u - 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^9 - 6y^8 + \dots + 50y - 1$
$c_2, c_6, c_8 \\ c_{11}, c_{12}$	$y^9 + 6y^8 + 15y^7 + 15y^6 - 5y^5 - 24y^4 - 13y^3 + 7y^2 + 6y - 1$
c_3, c_4, c_5 c_7, c_9, c_{10}	$(y^3 - 5y^2 + 6y - 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.948532	-17.6243	-14.0000
u = 0.193528 + 1.054680I	-0.704972	-14.0000
u = 0.193528 - 1.054680I	-0.704972	-14.0000
u = 0.777314	-6.34475	-14.0000
u = -0.388657 + 1.205470I	-6.34475	-14.0000
u = -0.388657 - 1.205470I	-6.34475	-14.0000
u = 0.474266 + 1.294140I	-17.6243	-14.0000
u = 0.474266 - 1.294140I	-17.6243	-14.0000
u = -0.387056	-0.704972	-14.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^9 + 6u^8 + 15u^7 + 15u^6 - 5u^5 - 24u^4 - 13u^3 + 7u^2 + 6u - 1)$ $\cdot (u^{22} + 13u^{21} + \dots + 2u + 1)$
c_2, c_8	$(u^9 + 3u^7 + \dots - 2u - 1)(u^{22} - u^{21} + \dots - 2u + 1)$
$c_3, c_4, c_5 \\ c_7, c_9, c_{10}$	$((u^3 + u^2 - 2u - 1)^3)(u^{22} - 2u^{21} + \dots - u + 2)$
c_6, c_{11}, c_{12}	$(u^9 + 3u^7 + \dots - 2u - 1)(u^{22} - u^{21} + \dots + u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^9 - 6y^8 + \dots + 50y - 1)(y^{22} - 7y^{21} + \dots + 2y + 1)$
c_2, c_8	$(y^9 + 6y^8 + 15y^7 + 15y^6 - 5y^5 - 24y^4 - 13y^3 + 7y^2 + 6y - 1)$ $\cdot (y^{22} + 13y^{21} + \dots + 2y + 1)$
$c_3, c_4, c_5 \\ c_7, c_9, c_{10}$	$((y^3 - 5y^2 + 6y - 1)^3)(y^{22} - 30y^{21} + \dots + 19y + 4)$
c_6, c_{11}, c_{12}	$(y^9 + 6y^8 + 15y^7 + 15y^6 - 5y^5 - 24y^4 - 13y^3 + 7y^2 + 6y - 1)$ $\cdot (y^{22} + 17y^{21} + \dots + 2y + 1)$