Decimal digit	(BCD) 8421	Excess-3	84-2-1	2421
0	0000	0011	0000	0000
1	0001	0100	0111	0001
2	0010	0101	0110	0010
3	0011	0110	0101	0011
4	0100	0111	0100	0100
5	0101	1000	1011	1011
6	0110	1001	1010	1100
7	0111	1010	1001	1101
8	1000	1011	1000	1110
9	1001	1100	1111	1111

Thurs a hit Curry and a		Four-bit Gray code		
Three bit Gray code		Gray code	Decimal equivalent	
Decimal	Cyclic	0000	0	
0	0000	0001	1	
1	0001	0011 0010	2 3	
2	0011	0110	4	
3	0010	0111 0101	5 6	
4	0110	0100	7	
5	0100	1100	8	
6	1100	1101 1111	9 10	
7	1110	1110	11	
8	1010	1010	12	
9	1000	1011 1001	13 14	
		1000	15	

Decimal	Binary	Gray	
0	0000	0000	except for the most significant bit
1	0001	0001	position, all columns are "reflected" about
2	0010	0011	the midpoint; in the most significant bit
3	0011	0010	position, the top half is all 0's and the
4	0100	0110	bottom half all 1's.
5	0101	0111	A decimal number can be converted to
6	0110	0101	Gray code by first converting it to binary.
7	0111	0100	The binary number is converted to the
8	1000	1100	Gray code by performing a modulo-2 sum
9	1001	1101	of each digit
10	1010	1111	(starting with the least significant digit)
11	1011	1110	with its adjacent digit. For example, if the
12	1100	1010	binary
13	1101	1011	representation of a decimal number is
14	1110	1001	
15	1111	1000	

Code conversion:

if the binary representation of a decimal number is

$$b_3$$
 b_2 b_1 b_0

$$G_3 = b_3$$

$$G_2 = b_3 \oplus b_2$$

 $G_2 = b_3 \oplus b_2$ \oplus indicates exclusive-OR operation

$$G_1 = b_2 \oplus b_1$$

$$0 \oplus 0 = 0$$

$$G_0 = b_1 \oplus b_0$$

$$0 \oplus 1 = 1$$

$$1 \oplus 0 = 1$$

$$1 \oplus 1 = 0$$

As an example let us convert decimal 14 to Gray code.

Decimal		Bina	·V		$G_3 = b_3$	= 1
	b_3	b_2	٠.	b_0	$G_2 = b_3 \oplus b_2 = 1 \in$	$\oplus 1 = 0$
14	1	1	1	0	$G_1 = b_2 \oplus b_1 = 1$	$\oplus 1 = 0$
	G_3	G_2	G_1	G_0	$G_0 = b_1 \oplus b_0 = 1$	$\oplus 0 = 1$
	1	0	0	1		

The conversion of a Gray code word to its decimal equivalent is done by following this sequence in reverse. In other words, the Gray code word is converted to binary and

$$G_3$$
 G_2 G_1 G_0
1 1 1 0

$$b_3 = G_3 = 1$$

$$G_2 = b_3 \oplus b_2$$

$$\therefore b_2 = G_2 \oplus b_3 \quad \text{(since } G_2 \oplus b_3 = b_3 \oplus b_2 \oplus b_3)$$

$$= 1 \oplus 1 \quad \text{(since } G_2 = 1 \text{ and } b_3 = 1)$$

Thus the binary equivalent of the Gray code word 1110 is 1011, which is equal to Decimal 11.

$$G_1 = b_2 \oplus b_1$$

$$\therefore b_1 = G_1 \oplus b_2$$
$$= 1 \oplus 0$$

$$= 1$$

$$G_0 = b_1 \oplus b_0$$

$$b_0 = 1$$

Single-Variable Theorems

$$0 \cdot 0 = 0$$

$$1 + 1 = 1$$

$$1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$1+0=0+1=1$$

$$0 + 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$1 + 0 = 0 + 1 = 1$$
If $x = 0$, then $\overline{x} = 1$

If
$$x = 1$$
, then $\bar{x} = 0$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x + 0 = x$$

$$x \cdot x = x$$

$$x + x = x$$

$$x \cdot \overline{x} = 0$$

$$x + \overline{x} = 1$$

$$\overline{\overline{x}} = x$$

$$x \cdot y = y \cdot x$$

$$x + y = y + x$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x + (y + z) = (x + y) + z$$

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

$$x + y \cdot z = (x + y) \cdot (x + z)$$

$$x + x \cdot y = x$$
Absorption

TABLE 2.2 BOOLEAN ALGEBRA POSTULATES AND THEOREMS

Expression	Dual
P2(a): a+0=a	$P2(b): a \cdot 1 = a$
P3(a): a+b=b+a	P3(b): ab = ba
P4(a): a + (b + c) = (a + b) + c	P4(b): a(bc) = (ab)c
P5(a): a + bc = (a + b)(a + c)	P5(b): a(b+c) = ab + ac
$P6(a): a + \bar{a} = 1$	$P6(b): a \cdot \bar{a} = 0$
T1(a): a + a = a	$T1(b): a \cdot a = a$
T2(a): a+1=1	$T2(b): a \cdot 0 = 0$
$T3: \overline{\bar{a}} = a$	
T4(a): a + ab = a	T4(b): a(a+b) = a
$T5(a): a + \bar{a}b = a + b$	$T5(b): a(\bar{a}+b) = ab$
$T6(a): ab + a\bar{b} = a$	$T6(b): (a+b)(a+\bar{b}) = a$
$T7(a): ab + a\bar{b}c = ab + ac$	$T7(b): (a+b)(a+\bar{b}+c) = (a+b)(a+c)$
$T8(a): \overline{a+b} = \tilde{a}\tilde{b}$	$T8(b): \overline{ab} = \overline{a} + \overline{b}$
$T9(a): ab + \bar{a}c + bc = ab + \bar{a}c$	$T9(b): (a+b)(\bar{a}+c)(b+c) = (a+b)(\bar{a}+c)$
$T10(a): f(x_1, x_2, \dots, x_n) = x_1 f(1, \dots, x_n)$	$(x_1, \ldots, x_n) + \bar{x}_1 f(0, x_2, \ldots, x_n)$
1 2 / 1	$f(0, x_2, \dots, x_n)[\bar{x}_1 + f(1, x_2, \dots, x_n)]$

$$x \cdot (x + y) = x$$

$$x \cdot y + x \cdot \overline{y} = x$$

Combining

$$(x+y)\cdot(x+\overline{y})=x$$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

DeMorgan's theorem

$$x + \overline{x} \cdot v = x + v$$

$$x\cdot(\overline{x}+y)=x\cdot y$$

$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

$$(x+y)\cdot(y+z)\cdot(\overline{x}+z)=(x+y)\cdot(\overline{x}+z)$$

Consensus