

ARMY RESEARCH LABORATORY

A Wideband Coaxial Technique for Measuring Permittivity of Materials at Microwave Frequencies

by Robert Tan

ARL-TR-1082

June 1996

19960617 094

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 1

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE			<i>Form Approved OMB No. 0704-0188</i>
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY <i>(Leave blank)</i>	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	June 1996	Final, from 6/14/94 to 3/12/95	
4. TITLE AND SUBTITLE A Wideband Coaxial Technique for Measuring Permittivity of Materials at Microwave Frequencies			5. FUNDING NUMBERS PE: 62120
6. AUTHOR(S) Robert Tan			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory Attn: AMSRL-WT-NF 2800 Powder Mill Road Adelphi, MD 20783-1197			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-1082
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1197			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES AMS code: 622120.1400011 ARL PR: 6WM841			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.		12b. DISTRIBUTION CODE	
13. ABSTRACT <i>(Maximum 200 words)</i> An analytical solution for the intrinsic impedance of a material is applied to a method of measuring the dielectric and loss tangent with the use of a coaxial test fixture and a vector network analyzer. The use of the equations is best suited for determining the electrical properties of lossy dielectrics over large frequency ranges. The method is unique in that it is not a numerical technique nor does it neglect reflections from any of the material surfaces.			
14. SUBJECT TERMS permittivity, microwave			15. NUMBER OF PAGES 13
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

Contents

1. Introduction	5
2. Calculations	6
3. Limitations	6
4. Experimental Results	7
5. Discussion and Conclusions	9
References	9
Distribution	11

Figures

1. Classical three-region problem	5
2. Comparison of ARL's calculations and NIST's EPSMU software: ϵ_r' and ϵ_r'' plotted as a function of frequency for nylon	7
3. Comparison of ARL's calculations and NIST's EPSMU software: ϵ_r' and ϵ_r'' plotted as a function of frequency for crosslinked polystyrene	8

1. Introduction

An analytical solution for the intrinsic impedance of a material has been found, given the transmitted and reflected transverse electromagnetic (TEM) wave, for the classical three-region problem. This problem is illustrated in figure 1, where regions one and three are air, and region two is the material under test.

Equations (1) and (2) are the well-known solutions for the transmitted and reflected TEM waves.

$$S_{21} = \frac{4e^{-idk}\eta_0\eta_2}{(\eta_0 + \eta_2)^2 \frac{1 - e^{-2idk}(\eta_0 - \eta_2)^2}{(\eta_0 + \eta_2)^2}}. \quad (1)$$

$$S_{11} = \frac{-\eta_0 + \frac{\eta_2 \left(1 + \frac{e^{-2idk}(\eta_0 - \eta_2)}{\eta_0 - \eta_2} \right)}{1 - \frac{e^{-2idk}(\eta_0 - \eta_2)}{\eta_0 + \eta_2}}}{\eta_0 + \frac{\eta_2 \left(1 + \frac{e^{-2idk}(\eta_0 - \eta_2)}{(\eta_0 - \eta_2)} \right)}{1 - \frac{e^{-2idk}(\eta_0 - \eta_2)}{\eta_0 + \eta_2}}}, \quad (2)$$

where d = region length and k = wave number. Mathematica™ was used to solve these equations in terms of the intrinsic impedance of the material η_2 ; regions one and three have the same intrinsic impedance η_0 . This solution is unique [1,2] in that it is not a numerical solution nor does it neglect reflections from the interface of region 2 with region 3. The solution can be used along with coaxial vector network analyzer measurements to provide a simple way of determining the intrinsic impedance and permittivity of nonmagnetic materials. The technique described in this paper is complementary to cavity methods: it is best suited for lossy materials over large

Figure 1. Classical three-region problem: regions one and three are air, and region two is the material under test.

frequency ranges, whereas cavity techniques are better suited for measuring low-loss materials at single frequencies.

2. Calculations

Solving equation (2) for k results in

$$k = -\frac{i}{d} \ln \frac{-\sqrt{-\eta_2^2 + S_{11}\eta_2^2 - 2S_{11}\eta_2\eta_0 + \eta_0^2} + S_{11}\eta_0^2}{\sqrt{-\eta_2^2 + S_{11}\eta_2^2 + 2S_{11}\eta_2\eta_0 + \eta_0^2} + S_{11}\eta_0^2}. \quad (3)$$

Substituting k from equation (3) into equation (1) gives S_{21} (eq (4)) as a function of S_{11} , η_0 , and η_2 :

$$S_{21} = \frac{-4\eta_0\eta_2\sqrt{-\eta_2^2 + S_{11}\eta_2^2 + 2S_{11}\eta_2\eta_0 + \eta_0^2} + S_{11}\eta_0^2}{(\eta_0 + \eta_2)^2\sqrt{-\eta_2^2 + S_{11}\eta_2^2 - 2S_{11}\eta_2\eta_0 + \eta_0^2} + S_{11}\eta_0^2} \left(1 - \frac{(\eta_0 - \eta_2)\left(-\eta_2^2 + S_{11}\eta_2^2 + 2S_{11}\eta_2\eta_0 + \eta_0^2 + S_{11}\eta_0^2\right)}{(\eta_0 + \eta_2)\left(-\eta_2^2 + S_{11}\eta_2^2 - 2S_{11}\eta_2\eta_0 + \eta_0^2 + S_{11}\eta_0^2\right)} \right). \quad (4)$$

Now, solving equation (4) for η_2 and letting $\eta_0 = 376.789 \Omega$ for air results in equation (5), which expresses the intrinsic impedance of the material in terms of the scattering parameters S_{11} and S_{21} :

$$\eta_2 = \frac{376.789\sqrt{-1 - 2S_{11} - S_{11}^2 + S_{21}^2}}{\sqrt{-1 + 2S_{11} - S_{11}^2 + S_{21}^2}}. \quad (5)$$

S_{11} and S_{21} in equation (5) are in terms of voltage and are complex numbers. The dielectric constant and loss tangent can then be calculated from the intrinsic impedance, if the material is nonmagnetic. The intrinsic impedance η equals $(z/y)^{1/2}$, where $y = \omega\epsilon'' + j\omega\epsilon'$, and $z = \omega\mu'' + j\omega\mu'$ [3]. If we let $\mu'' = 0$ for no magnetic losses and solve for the complex permittivity ϵ , in terms of permeability (μ') and η , we get

$$\epsilon' - j\epsilon'' = \mu'/\eta, \quad (6)$$

where the relative dielectric constant, ϵ_r , is ϵ'/ϵ_0 , and the loss tangent, $\tan \delta$, is ϵ''/ϵ' [3]. A program was written using PV-wave™ that solves for ϵ' and ϵ'' as a function of frequency, using equation (5) to determine the intrinsic impedance and equation (6), with $\mu' = 4\pi \times 10^{-7} \text{ H/m}$ (free space μ_0), to determine permittivity, given measured S -parameters as a function of frequency.

3. Limitations

When $\tan \delta$ is at or below about 0.1, there are errors at frequencies where the material sample is an integer multiple of a half wavelength because the magnitude of S_{11} is such a small number. But these errors are easily recognized as stray points at integer multiples of a half wavelength. When $\tan \delta$

is at or below about 0.01, the imaginary part of permittivity ϵ_r'' tends to have large error simply because the numbers are so small. Also, the phase of S_{11} cannot be accurately measured for small magnitudes of S_{11} ; therefore, if accurate results are desired for the imaginary part of the permittivity, the use of the equations will be limited to lossy dielectric materials ($\tan \delta > 0.1$).

4. Experimental Results

The National Institute of Standards and Technology (NIST) supplied S -parameter measurements for two dielectric material samples, cross-linked polystyrene and nylon. A 7-mm-diameter, 10-cm-long air line coaxial fixture was used to make the measurements. The cross-linked polystyrene and nylon were 55 and 15 mm long, respectively. The samples were placed in the air line such that the sample was flush with the port 1 side of the coaxial air line, and S -parameter measurements were made on a vector network analyzer from 10 MHz to 1 GHz. The relative permittivities— ϵ_r' and ϵ_r'' , of cross-linked polystyrene and nylon, respectively—were calculated with the use of the program described above, but with corrections for the phase of S_{21} because the material samples were shorter than the air line. Corrections were also used to account for the small air gaps between the center conductor and the material and the outer conductor and the material [4]. The results compare with results given by NIST, which used its EPSMU software [4], with relatively good agreement, despite the low $\tan \delta$ (<0.1) of both nylon and cross-linked polystyrene (see fig. 2 and 3). The curve in the data near 10 MHz is attributed to the accuracy of the S -parameter measurements at these low frequencies.*

Figure 2. Comparison of ARL's calculations and NIST's EPSMU software: (a) ϵ_r' plotted as a function of frequency for nylon.

*Discussion with M. Janezic of National Institute of Standards and Technology, April 1995.

Figure 2 (cont'd).
Comparison of ARL's calculations and NIST's EPSMU software: (b) ϵ_r'' plotted as a function of frequency for nylon.

Figure 3. Comparison of ARL's calculations and NIST's EPSMU software: (a) ϵ_r' and (b) ϵ_r'' plotted as a function of frequency for crosslinked polystyrene.

5. Discussion and Conclusions

Using equation (5), the intrinsic impedance of a material (including magnetic materials) can be calculated from S -parameter measurements of a simple coaxial test fixture containing the material. The complex permittivity can be calculated from the intrinsic impedance using equation (6) if the material is nonmagnetic. The technique is intended to provide a simple way to determine the intrinsic impedance and/or the permittivity of non-magnetic materials. The equations can be solved on a scientific calculator or, preferably, by a simple program. If accurate results are desired for the loss-tangent, then the measurement technique is limited to lossy dielectrics. One should keep in mind that the measurement is related to the physics of the S -parameter measurements. At frequencies where the material sample is an integer multiple of a half wavelength, there are larger errors, especially if it is a low-loss material. These errors result because, at these frequencies, the magnitude S_{11} tends to be a very small number; also, phase error in the network analyzer measurement increases as the magnitude of the signal decreases. The materials measurement is only as good as the S -parameter measurements.

References

1. A. Nicolson, "Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques," *IEEE Trans. Inst. Meas.* **19**, No. 4, November 1970, pp 377–382.
2. Ching-Lieh Li and Kun-Mu Chen, "Determination of Electromagnetic Properties of Materials Using Flanged Open-Ended Coaxial Probe-Full-Wave Analysis," *IEEE Trans. Inst. Meas.* **44**, No. 1, February 1995, pp 19–27.
3. R. Herrington, *Time-Harmonic Electromagnetic Fields*, McGraw-Hill, 1961.
4. J. Baker-Jarvis, M. Janezic, J. Grosvenor, Jr., and R. Geyer, *Transmission/Reflection and Short-Circuit Line Methods for Measuring Permeability*, National Institute of Standards and Technology (NIST) Technical Note 1355-R, December 1993.

Distribution

Admnstr Defns Techl Info Ctr Attn DTIC-OCP 8725 John J Kingman Rd Ste 0944 FT Belvoir VA 22060-6218	US Army BRDEC Attn STRBE-NA R Weaver FT Belvoir VA 22060-5606
Advncd Rsrch Proj Agcy Attn DSO B Hui 3701 N Fairfax Dr Arlington VA 22203	US Army CECOM Intllgnc/Elect Warfare Drctr Attn AMSEL-RD-IEW-SPO D Helm Vint Hill Farm Sta Warrenton VA 22186-5100
HQ Dfns Nuc Agcy Attn RAEE G Baker Attn RAEE LTC M Lynch 6801 Telegraph Rd Alexandria VA 22310-3398	Comdt US Army Infantry Schl Attn ATSH-CD-E K Sines FT Benning GA 31905-5400
Ofc of the Secy of Defs Attn ODDR/R & AT-ET S Gontarek The Pentagon Washington DC 20301	Cmdr US Army Matl Cmnd Attn AMCAQ-AP J Kreck 5001 Eisenhower Ave Alexandria VA 22333-0001
Army Matl Comnd Attn AMCRD-AR J Aveta 5001 Eisenhower Ave Alexandria VA 22333-0001	US Army Mis Cmnd Attn AMSMI-RD-WS-UB R D Barber Attn AMSMI-RD-WS-UB D Holder Redstone Arsenal AL 35898-5000
HQ, Dept of the Army Dep Chf of Staf Oprs & Plns Attn DAMO-FDI LTC R Morton Room 2C536 The Pentagon Washington DC 20310-0460	US Army Night Vision & Electronic Sensor Attn AMSEL-RD-NV-ADS-SP M Kovach FT Monmouth NJ 07703-5206
Ofc of the Assist Scy of the Army for Rsrch Dev & Acqstn Attn SARD-TT Dr F Milton Attn SARD-TT C Nash Rm 3E479 The Pentagon Washington DC 20310-0103	US Army Prgm Mgr—Firefinder Attn SFAE-IEW-FF A Dirienzo FT Monmouth NJ 07703-5305
US Army CECOM Attn AMSEL-RD-NV-ADS-SP R Irwin Attn AMSEL-RD-NV-ADS-SP R Torisio FT Monmouth NJ 07703-5206	Cmdr US Army Sp & Strtg Cmnd Attn CSSD-AT-C I Merritt Attn CSSD-EC-E R Berg PO Box 1500 Huntsville AL 35807-3801
	US Army TRADOC Attn ATCD-G J Gray FT Monroe VA 23651

Distribution

Nvl Rsrch Lab Attn Code 4650 T Andreadis Attn Code 4650 T Wieting 4555 Overlook Avenue SW Washington DC 20375-5000	Jaycor Attn W Crevier 3700 State Stret Ste 300 Santa Barbara CA 93105
Sp & Nav Warfare Systs Comnd Attn SPAWAR 332 J Albertine 2451 Crystal Park Arlington VA 22245-5200	Mssn Rsrch Corp Attn J McAdoo Attn M Bollen 8560 Cinderbed Rd Newington VA 22122
US Air Force Rome Lab Attn ERPT T Pesta Griffiss AFB NY 13441-5700	Sci Applications Intrntl Corp Attn MS 2-3-1 G Bergeron 1710 Goodridge Dr McLean VA 22102
Depart of the Air Force US Air Force Phillips Lab Attn PL/WS W L Baker Bldg 413 Attn PL/WSH H Dogliani Attn PL/WSH M Harrison Attn PL/WSH S Mason Attn PL/WSH W Snyder Attn PL/WSM P Vail Bldg 909 3550 Aberdeen Ave SE Kirtland AFB NM 87117-5776	SRI Intrntl Attn G August 333 Ravenswood Ave Menlo Park CA 94025
Cmdr Wright Rsrch Dev Ctr Attn WRDC/ELM T Kemerley Bldg 620 Area B Wright Patterson AFB OH 45433-7408	Teledyne Brown Engrg Attn R E Lewis Cummings Research Park Huntsville AL 35807-7007
Lawrence Livermore Natl Lab Attn L-86 H S Cabayan PO Box 808 Livermore CA 94550	US Army Rsrch Lab Attn AMSRL-WT I May Attn AMSRL-SL J Wade Attn AMSRL-WT J Rocchio Attn AMSRL-WT G Klem Attn AMSRL-SL-I D Bassett Bldg 433 Aberdeen Proving Ground MD 21005-5001
IITRI Electromagnetic Compatability Anlys Ctr Attn J Weidner 185 Admiral Cochrane Dr Annapolis MD 21402	US Army Research Attn AMSRL-SL-EA G Mares Attn AMSRL-SL-EA J Palomo White Sands Missile Range NM 88002-5513
	US Army Rsrch Lab Attn AMSRL-EP-IA E Baidy Attn AMSRL-EP-M V Gelnovatch

Distribution

US Army Rsrch Lab (cont'd)
Attn AMSRL-EP-RA E Hakim
Attn AMSRL-SL-EI J Nowak
FT Monmouth NJ 07703

US Army Rsrch Lab
Attn AMSRL-IS-TA C Glenn
Attn AMSRL-OP-SD-TA Mail & Records
Mgmt
Attn AMSRL-OP-SD-TL Tech Library
(3 copies)
Attn AMSRL-OP-SD-TP Tech Pub (5 copies)

US Army Rsrch Lab (cont'd)
Attn AMSRL-SE-RU J McCorkle
Attn AMSRL-WT-N E Scannell
Attn AMSRL-WT-NA R A Kehs
Attn AMSRL-WT-NF L Jasper
Attn AMSRL-WT-NF R Kaul
Attn AMSRL-WT-NF R Tan (10 copies)
Attn AMSRL-WT-NF T Bock
Attn AMSRL-WT-NH G Huttlin
Attn AMSRL-WT-NH J Corrigan
Adelphi MD 20783-1197