

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)		
	Technical Paper				
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER 2303		
			5e. TASK NUMBER M1A3		
			5f. WORK UNIT NUMBER 346127		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048			11. SPONSOR/MONITOR'S NUMBER(S)		
12. DISTRIBUTION / AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
20030127 205					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
			A		Leilani Richardson
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code) (661) 275-5015
Unclassified	Unclassified	Unclassified			

18 Feb

2303m1 H.B

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

31 Oct 2001

SUBJECT: Authorization for Release of Technical Information, Control Number: **AFRL-PR-ED-TP-2001-218**
Brent D. Viers, et al., "Basic and Applied Research on Hybrid Organic/Inorganic Materials for
Propulsion and Space"

American Chem Soc Wkshp: Org/Inorg Hybrids
(Napa, CA, 17-20 November 2001) (DEADLINE: 16 Nov 01)

(Statement A)

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Results – BAM of Isobutyltrisilanol-POSS

- Non-equilibrium phase transition induced by pressure
- Supersaturation results in non-equilibrium 2-D dendritic growth of the more condensed phase
- Pressure relaxation drives the system to the equilibrium state characterized by round domains
- Observed in a few other surfactant systems*

* Iimura, K.-I.; et al. *Langmuir* 2001, 17, 4602

17

POSS-PDMS Blends

$$\Delta G^{*,\sigma} = \int_{\Pi}^{\Pi^*} (A_{12} - x_1 A_1 - x_2 A_2) d\Pi$$

18

Basic and Applied Research on Hybrid Organic/Inorganic Materials for Propulsion and Space

POSS is NOT just the smallest silica

Dr. Brent D. Viers
Propulsion Sciences Division
Edwards Air Force Research Lab

Dr. Shawn H. Phillips, Dr. Timothy S. Haddad, Dr. Rusty Blanski, Maj. Steve Svejda Ph.D.,
Prof. Andre Y. Lee, Justin Leland, Pat Ruth, Brian Moore,
Capt. Rene Gonzalez, Prof. Patrick T. Mather, Prof. Frank Feher, Prof. Benjamin S. Hsiao,
Professor Alan Esker, Katie Farmer, Joe Polidan

POSS = Polyhedral Oligomeric Silsesquioxane

- Traditional silsesquioxane chemistry focused on "T-Resins"
- The maximization of property enhancements in polymers results from interaction at the ~~—~~-level (Edwards AFRL/PRSM → POSS monomers)

Motivation – Filled Nanofluids

Blends Confined at the Air/Water Interface

Small Sample Requirements

1-2 nm "2-D" Polymer, Interphase, & Inorganic Core

Subphase Affinity is an Important Variable

- A/W poor solvent for PDMS & PtBA \Rightarrow solvent exclusion
- A/W good solvent for PVAc \Rightarrow chain swelling
(must consider water's contribution)

Experimental – Brewster Angle Microscopy

Surface heterogeneity ($>20\mu\text{m}$) is observable by this technique.

Monitor

30mW@688nm
(100:1 p+s light)

p-Polarizer

Black Plate

Film

11

Experimental – Systems Studied

Polymers – Structural Models for Adhesive Polymers

PtBA: $M_n \approx 25k$

PVAc: $M_n \approx 1200k$

POSS Derivatives

- Octaisobutyl-POSS
- Isobutyltrisilanol-POSS
- Cyclopentyltrisilanol-POSS
- Cyclohexyltrisilanol-POSS

12

PDMS Langmuir Blodgett Analysis

- Inherent dimensionality effects

- Highly sensitive to functionality

Lenk, Koberstein, et. Al. *Langmuir*, 10, 1857

- “al.” should not be capitalized

- Please add a comma after “al.” to separate the journal name

Results – P-A Isotherms of POSS

Weak Interactions

Stronger Interactions

Results – BAM of Isobutyltrisilanol-POSS

- Non-equilibrium phase transition induced by pressure
- Supersaturation results in non-equilibrium 2-D dendritic growth of the more condensed phase
- Pressure relaxation drives the system to the equilibrium state characterized by round domains
- Observed in a few other surfactant systems*

*Timora,K.-I.;et al. *Langmuir* 2001, 17, 4602

17

I suggest adding
a comma here to
separate the authors
from the journal
name

POSS-

$$\Delta G^{*,\sigma} = \int_{\Pi}^{\Pi^*} (A_{12} - x_1 A_1 - x_2 A_2) d\Pi$$

18

Results – 80 wt% iBu₇T₇/PtBA Blend

- Ideal uniform blends (0-100 wt% POSS, 1-3), LB<50wt% POSS
- Dendritic domains form at 4 (50-100 wt%) POSS, size \uparrow as POSS \uparrow , round domains (POSS < 50 wt%)
- Banded structure \Rightarrow PtBA collapse
- $6^* = 60$ wt% $i\text{Bu}_7\text{T}_7/\text{PtBA}$ blend

Scales correspond to 500 μm .

19

20

21

22

Results – 50wt% Isobutyltrisilanol-POSS/PVAc

Scales correspond to 500 μm .

23

Summary: POSS Blends

- POSS derivatives exhibit surfactant properties that vary with structure
- Homogeneous films with near ideal mixing for $\text{iBu}_7\text{T}_7 + \text{PDMS}$, PVAc or PtBA ($P < 18 \text{ mN} \cdot \text{m}^{-1}$), but BAM shows samples are dispersions
- For $P > 18 \text{ mN} \cdot \text{m}^{-1}$, non-equilibrium dendritic domains form for pure iBu_7T_7 & $\text{iBu}_7\text{T}_7 + \text{PtBA}$ ($> 50\text{wt\% POSS}$), round domains as POSS
- $\text{iBu}_7\text{T}_7 + \text{PDMS}$ uniform dispersions ($>\text{mm}$), $\text{iBu}_7\text{T}_7 + \text{PVAc}$ immiscible ($>\text{mm}$)

Morphology of POSS/PN Diblock Copolymers (TEM)

10wt% of CyPOSS

10wt % of CpPOSS

- CyPOSS is more soluble in the polymer matrix than CpPOSS
- Also seen for random polymers, resulting in a greater ΔT_g for CyPOSS

27

Morphology of POSS/PN Diblock Copolymers (TEM)

30wt % of CyPOSS

30wt% of CpPOSS

28

Morphology of POSS/PN Diblock Copolymers (TEM)

30wt % of CyPOSS

29

Morphology of POSS/PN Diblock Copolymers (TEM)

30wt % of CyPOSS

30

Tensile Storage Modulus Variation with POSS Content at Three Temperatures

Up to 50 weight % of POSS-norbornene was incorporated into the norbornene copolymer without adversely affecting the room temperature modulus, and increasing the use temperature of these materials over 50 °C.

33

TEM of 50CpPOSS/PN & 50CyPOSS/PN

50CyPOSS/PN

"Coarse" Cylinder Nanostructure
(Diameter ~ 12nm)

50CpPOSS/PN

"Fine" Cylinder Nanostructure
(Diameter ~ 6nm)

← Nanostructure ?

CyPOSS-rich domains may entrain more unoriented PN chains than CpPOSS-rich domains, which could reduce the recoverable strain.

34

TEM of 4X drawn 50CpPOSS/PN & 50CyPOSS/PN

35

Reanalysis of the *Random* 50 CyPOSS/PN System

50% CyPN

FT reconstruction

- Strong anisotropy and correlations noted-hints at assembled structure

36

Summary: POSS copolymers

- A variety of POSS "monomers" can be copolymerized into common systems (styrenic, acrylics, polyimides, etc.)
- The polymerization parameters don't appear to be greatly affected, and the POSS is compatible with the matrix (optically transparent)
- The model POSS-norbornene copolymers show distinct differences in mechanical behavior and morphology for differences in POSS corona chemistry (cyclopentyl vs. cyclohexyl)
- Evidence of larger scale structures.

37

Variations on the theme-POSS corona chemistry

Differing POSS corona polymers being synthesized

38

Polymeric Materials for Aerospace

- Offer many advantages
 - Lightweight
 - Easy to process
 - Versatility
 - Optically transparent or opaque
 - Rubbery or stiff
 - Conductive or insulating
- However, their use is limited due to severe degradation in operation (Low Earth Orbit, high speed, high flux)

39

POSS Reinforcement-Pi-K motor

CHAR-063 ABLATION RATE

EPDM-Kevlar STANDARD (S10) / EPDM-V₈T₈ (T10)

POSS Reinforcement-CSD tests

- 40-lb ITM Motor

- A series of POSS/EPDMs were tested

- Most promising was Vi8T8

41

Goal: Develop Multi-Functional, Space-Resistant Materials

Bond	Dissociation Energy (EV)	λ (nm)	Material
-C ₆ H ₄ -C(=O)-	3.9	320	Kapton®
C-N	3.2	390	Kapton®
CF ₃ -CF ₃	4.3	290	FEP Teflon®
CF ₂ -F	5.5	230	FEP Teflon®
Si-O	8.3	150	Nanocomposite
Zr-O	8.1	150	Nanocomposite
Al-O	5.3	230	Nanocomposite

Objectives

- Increase Space Resistance (AO, particle & VUV radiation, thermal cycling) of Polymeric Materials
- Self-Passivating/Self-Rigidizing/Self-Healing based on organic/ inorganic nanocomposite incorporation

42

Atomic Oxygen Resistance of POSS Siloxane

Sample Treatment	O	C	Si
As entered	18.5	65.0	16.6
2.0 hr	33.8	48.4	17.8
24.6 hr	49.1	22.1	28.8
63.0 hr	55.7	16.3	28.0
4.8 hr air	52.8	19.5	27.7

XPS survey spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

Atomic Oxygen Resistance of POSS Siloxane

High Resolution C 1s and O 1s spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

Atomic Oxygen Resistance of POSS Siloxane

High Resolution Si 2p spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

45

Summary: Aerospace Polymers

- POSS can be compatibilized into traditional systems in high loadings (>50 wt%), allowing great opportunity for ceramic formation
- The reactive POSS corona, or the incompletely oxidized silsesquioxane core might favor the formation of the protective ceramic coating

46