MODELOS DE COMPUTACION

Preguntas Tipo Test - Tema 4

Indicar si son verdaderas o falsas las siguientes afirmaciones:

- 1. Si un lenguaje de tipo 2 viene generado por una gramática ambigua, siempre puedo encontrar una gramática no ambigua que genere el mismo lenguaje.
- 2. En una gramática de tipo 2 ambigua no puede existir una palabra generada con un único árbol de derivación.
- 3. Dada una gramática independiente del contexto, siempre se puede construir una gramática sin transiciones nulas ni unitarias que genere exactamente el mismo lenguaje que la gramática original.
- 4. Una gramática independiente del contexto es ambigua si existe una palabra que puede ser generada con dos cadenas de derivación distintas.
- 5. Un lenguaje inherentemente ambiguo puede ser generado por una gramática ambigua.
- 6. El lenguaje de las palabras sobre {0,1} con un número impar de ceros es independiente del contexto.
- 7. Si en una producción de una gramática independiente del contexto, uno de los símbolos que contiene es útil, entonces la producción es útil.
- 8. Todo árbol de derivación de una palabra en una gramática independiente del contexto está asociado a una única derivación por la izquierda.
- 9. Para poder aplicar el algoritmo que hemos visto para transformar una gramática a forma normal de Greibach, la gramática tiene que estar en forma normal de Chomsky necesariamente.
- 10. Sólo hay una derivación por la derecha asociada a un árbol de derivación.
- 11. Si una gramática independiente del contexto no tiene producciones nulas ni unitarias, entonces si u es una palabra de longitud n generada por la gramática, su derivación se obtiene en un número de pasos no superior a 2n-1.
- 12. Cada árbol de derivación de una palabra en una gramática de tipo 2, tiene asociada una única derivación por la izquierda de la misma.
- 13. Existe un lenguaje con un número finito de palabras que no puede ser generado por una gramática libre de contexto.
- 14. La gramática compuesta por las reglas de producción $S \to AA, A \to aSa, A \to a$ no es ambigua.
- 15. Para poder aplicar el algoritmo que transforma una gramática en forma normal de Greibach es necesario que la gramática esté en forma normal de Chomsky.
- 16. Un lenguaje libre de contexto es inherentemente ambiguo si existe una gramática ambigua que lo genera.
- 17. La gramática compuesta por las reglas de producción $S \to A, A \to aSa, A \to a$ es ambigua.
- 18. Para generar una palabra de longitud n en una gramática en forma normal de Chomsky hacen falta exactamente 2n-1 pasos de derivación.
- 19. Es imposible que una gramática esté en forma normal de Chomsky y Greibach al mismo tiempo.
- 20. En una gramática independiente del contexto, si una palabra de longitud n es generada, entonces el número de pasos de derivación que se emplean debe de ser menor o igual a 2n-1.

- 21. El algoritmo que pasa una gramática a forma normal de Greibach produce siempre el mismo resultado con independencia de cómo se numeren las variables.
- 22. La gramática compuesta por la siguientes reglas de producción $\{S \to A|BA|SS, B \to a|b, A \to a\}$ es ambigua.
- 23. Si una palabra de longitud n es generada por una gramática en forma normal de Greibach, entonces lo es con n pasos de derivación exactamente.
- 24. En una gramática independiente del contexto puede existir una palabra que es generada con dos derivaciones por la izquierda distintas que tienen el mismo árbol de derivación.
- 25. Una gramática independiente del contexto genera un lenguaje que puede ser representado por una expresión regular.
- 26. Para cada autómata finito no determinista M existe una gramática independiente de contexto G tal que L(M) = L(G).
- 27. Para que un autómata con pila sea determinista es necesario que no tenga transiciones nulas.
- 28. El algoritmo que pasa una gramatica a forma normal de Greibach produce siempre el mismo resultado con independencia de cómo se numeren las variables.
- 29. El conjunto de cadenas generado por una gramática independiente del contexto en forma normal de Greibach puede ser reconocido por un autómata finito no determinista con transiciones nulas.
- 30. La intersección de dos lenguajes regulares da lugar a un lenguaje independiente del contexto.
- 31. Si L_1 y L_2 son independientes del contexto, no podemos asegurar que $L_1 \cap L_2$ también lo sea.