Closed Sets

Notation

Let (X, \mathcal{T}) be a topological space and $p \in X$:

$$\mathcal{U}_p = \{ U \in \mathcal{T} \mid p \in U \}$$

Definition: Limit Point

Let (X, \mathcal{T}) be a topological space, $A \subset X$, and $p \in X$. To say that p is a *limit point* of A means:

$$\forall U \in \mathcal{U}_p, (U - \{p\}) \cap A \neq \emptyset$$

Example

Let $X=\mathbb{R}$ and A=(1,2). Verify that 0 is a limit point of A in the indiscrete and cofinite topologies but not in the standard nor discrete topologies.

Indiscrete: Since $0 \notin (1,2)$, it follows that $(\mathbb{R} - \{0\}) \cap (1,2) = (1,2) \neq \emptyset$.

Therefore 0 is a limit point of (1, 2).

Cofinite: Assume $U \in \mathcal{T}$.

This means that $U = \mathbb{R} - X$ where X is some finite set. But (1,2) is uncountable and so:

$$(U - \{0\}) \cap (1, 2) = U \cap (1, 2)$$

$$= (\mathbb{R} - X) \cap (1, 2)$$

$$= (\mathbb{R} \cap (1, 2)) - (X \cap (1, 2))$$

$$= (1, 2) - (X \cap (1, 2))$$

$$\neq \emptyset$$

Therefore 0 is a limit point of (1, 2).

Standard: Let $\epsilon = \frac{1}{2}$.

$$B(0,\frac{1}{2})\cap(1,2)=\emptyset$$

Therefore 0 is not a limit point of (1, 2).

Discrete: Consider $[0,1] \in \mathcal{T}$.

$$0 \in [0,1]$$
 but $[0,1] \cap (1,2) = \emptyset$.

Therefore 0 is not a limit point of (1, 2).

Theorem

Let (X, \mathscr{T}) be a topological space, $A \subset X$, and $p \in X$ but $p \notin A$. p is not a limit point of A iff there exists $U \in \mathcal{U}_p$ such that $U \cap A = \emptyset$.

Proof. If $p \notin A$ then the definition of a limit point becomes: p is a limit point of A iff for all $U \in \mathcal{U}_p, U \cap A \neq \emptyset$. Negating both sides of the equivalence yields an equivalent proposition and gives the desired result.

Definition: Isolated Point

Let (X, \mathscr{T}) be a topological space, $A \subset X$, and $p \in X$. To say that p is an *isolated point* in A means that $p \in A$ and p is not a limit point of A.

Theorem

Let (X, \mathscr{T}) be a topological space, $A \subset X$, and $p \in X$. If p is an isolated point in A then there exists $U \in \mathscr{T}$ such that $U \cap A = \{p\}$.

Proof. Assume that p is an isolated point in A. This means that $p \in A$ and p is not a limit point of A. Thus, there exists $U \in \mathcal{U}_p$ such that $(U - \{p\}) \cap A = \emptyset$. But $p \in U$ and $p \in A$.

Therefore
$$U \cap A = \{p\}$$
.

Example

Give examples of sets A in various topological spaces (X, \mathcal{T}) with:

1. A limit point of A that is an element of A.

Let
$$X = \mathbb{R}$$
 and $A = (-1, 1)$.

For standard, discrete, indiscrete, cofinite, and cocountable: p=0.

2. A limit point of A that is not an element of A.

Let
$$X = \mathbb{R}$$
 and $A = (-1, 1)$.

For standard, indiscrete, cofinite, and cocountable: p=1. For discrete, no such limit points can exist because if $p \notin A$ then $\{p\} \in \mathcal{T}$ and $\{p\} \cap A = \emptyset$.

3. An isolated point in A.

Let
$$X = \mathbb{R}$$
 and $A = \mathbb{Z}$.

For standard, discrete, indiscrete, cofinite, and cocountable: p=0.

4. A point not in A that is not a limit point of A.

Let
$$X = \mathbb{R}$$
 and $A = \mathbb{N}$.

For standard, discrete, indiscrete, cofinite, and cocountable: p = 0.

Notation

Let (X, \mathcal{T}) be a topological space and $A \subset X$:

$$A' = \{x \in X \mid x \text{ is a limit point of } A\}$$

Definition: Closure

Let (X, \mathscr{T}) be a topological space and let $A \subset X$. The *closure* of A in X, denoted by \bar{A} , is given by:

$$\bar{A} = A \cup A'$$

Definition: Closed

Let (X, \mathscr{T}) be a topological space and let $A \subset X$. To say that A is *closed* means that $\bar{A} = A$. Thus, A contains all of its limit points.

Example

Which sets are closed in a set X with the following topologies?:

Discrete: All $A \subset X$.

If $p \notin A$ then it cannot be a limit point for A (see above), and therefore each A contains all of its limit points. Thus every $A \subset X$ is actually clopen.

Indiscrete: Only \emptyset and X.

Assume $p \in X$. Since $p \notin \emptyset$, $(X - \{p\}) \cap \emptyset = \emptyset$ and so p is not a limit point for \emptyset . Since X contains everything then it must contain its limit points. For any other $A \subset X$, assume $p \neq A$. Then: $(\mathbb{R} - \{p\}) \cap A = A \neq \emptyset$ and thus p is a limit point for A not in A and therefore A is not closed.

Cofinite: \emptyset , X, and all finite sets.

Assume $p \in X$ and $U \in \mathscr{T}$ such that $p \in U$. Since $p \notin \emptyset$, $(U - \{p\}) \cap \emptyset = \emptyset$ and so p is not a limit point for \emptyset . Since X contains everything then it must contain its limit points.

Now, assume A is finite and $p \notin A$. Let $U = X - A \in \mathcal{T}$. Then:

$$(U - \{p\}) \cap A = U \cap A$$

$$= (X - A) \cap A$$

$$= (X \cap A) - (A \cap A)$$

$$= A - A$$

$$= \emptyset$$

Thus p is not a limit point for A and therefore A is closed.

Finally, assume A is infinite and $p \notin A$. Assume $U \in \mathcal{T}$ and $p \in U$. But U = X - F for some finite set F. Then:

$$(U - \{p\}) \cap A = U \cap A$$

$$= (X - F) \cap A$$

$$= (X \cap A) - (F \cap A)$$

$$= A - (F \cap A)$$

$$\neq \emptyset$$

Thus p is a limit point for A not in A and therefore A is not closed.

Cocountable: \emptyset , X, and all countable sets.

Assume $p \in X$ and $U \in \mathscr{T}$ such that $p \in U$. Since $p \notin \emptyset$, $(U - \{p\}) \cap \emptyset = \emptyset$ and so p is not a limit point for \emptyset . Since X contains everything then it must contain its limit points.

Now, assume A is countable and $p \notin A$. Let $U = X - A \in \mathcal{T}$. Then:

$$(U - \{p\}) \cap A = U \cap A$$

$$= (X - A) \cap A$$

$$= (X \cap A) - (A \cap A)$$

$$= A - A$$

$$= \emptyset$$

Thus p is not a limit point for A and therefore A is closed.

Finally, assume A is uncountable and $p \notin A$. Assume $U \in \mathscr{T}$ and $p \in U$. But U = X - C for some countable set C. Then:

$$(U - \{p\}) \cap A = U \cap A$$

$$= (X - C) \cap A$$

$$= (X \cap A) - (C \cap A)$$

$$= A - (C \cap A)$$

$$\neq \emptyset$$

Thus p is a limit point for A not in A and therefore A is not closed.

Lemma

Let (X, \mathscr{T}) be a topological space, $A \subset X$, and $p \in X$:

$$p \in \bar{A} \iff \forall U \in \mathcal{U}_p, U \cap A \neq \emptyset$$

Proof. By definition, $p \in \bar{A}$ iff $p \in A$ or $\forall U \in \mathcal{U}_p, (U - \{p\}) \cap A \neq \emptyset$. Assume that $U \in \mathcal{U}_p$. If $p \in A$ then $p \in U \cap A \neq \emptyset$. If $p \notin A$ then $(U - \{p\}) \cap A = U \cap A$. In either case: $p \in A$ or $\forall U \in \mathcal{U}_p, (U - \{p\}) \cap A \neq \emptyset$ is logically equivalent to $\forall U \in \mathcal{U}_p, U \cap A \neq \emptyset$.

Theorem

Let (X, \mathcal{T}) be a topological space. For all $A \subset X$:

$$\bar{\bar{A}} = \bar{A}$$

Proof. $\bar{\emptyset} = \bar{\emptyset} = \emptyset$ is vacuously true, so assume $A \neq \emptyset$.

 $ar{A}\subset ar{A}$ by definition, so assume $p\in ar{A}$. This means that for all $U\in \mathcal{U}_p, U\cap ar{A}\neq \emptyset$. So assume that $U\in \mathcal{U}_p$ and $x\in U\cap ar{A}$, meaning $x\in U$ and $x\in ar{A}$. But this is only true if $U\cap A\neq \emptyset$ and so $p\in ar{A}$.

Therefore $\bar{A} = \bar{A}$.

Theorem

Let (X, \mathcal{T}) be a topological space. For all $A \subset X$, A is closed iff X - A is open.

Proof. X is closed iff $X - X = \emptyset$ is open is true, so assume that $A \neq X$.

 \implies Assume A is closed.

Assume $p \in X - A$. Since $p \notin A$, p is not a limit point of A. Thus, there exists a neighborhood U_p of p such $U_p \cap A = \emptyset$. But this means that $U_p \subset X - A$.

Therefore X - A is open.

 \iff Assume X - A is open.

Assume $p \in X - A$. So there exists a neighborhood U_p of p such that $U_p \subset X - A$. But this means that $U_p \cap A = \emptyset$ and hence p is not a limit point of A. Thus A contains all of its limit points.

Therefore A is closed.

Theorem

Let (X, \mathscr{T}) be a topological space, $U \subset X$ open, and $A \subset X$ closed. U - A is open and A - U is closed.

Proof.

1. $U-A=U\cap (X-A)$. But U and X-A are both open.

Therefore U - A is open.

2. $X-(A-U)=X-(A\cap (X-U))=(X-A)\cap (X-(X-U))=(X-A)\cap U.$ But X-A and U are both open and so X-(A-U) is open.

Therefore A-U is closed.

Theorem

Let (X, \mathcal{T}) be a topological space:

- 1. \emptyset is closed.
- 2. X is closed.
- 3. The union of finitely many closed sets is closed.
- 4. Let $\{A_{\alpha}: \alpha \in \lambda\}$ be a family of closed sets. $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is closed.

Proof.

- 1. X is open, so $X X = \emptyset$ is closed.
- 2. \emptyset is open, so $X \emptyset = X$ is closed.
- 3. $X \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X A_i)$.

But the $X - A_i$ are open and thus $X - \bigcup_{i=1}^n A_i$ is open.

Therefore $\bigcup_{i=1}^n A_i$ is closed.

4. $X - \bigcap_{\alpha \in \lambda} A_{\alpha} = \bigcup_{\alpha \in \lambda} (X - A_{\alpha}).$

But the $X-A_{\alpha}$ are open and thus $X-\bigcap_{\alpha\in\lambda}A_{\alpha}$ is open.

Therefore $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is closed.

Example

Give an example to show that the union of infinitely many closed sets in a topological space may be a set that is not closed.

Consider the standard topology on R and the family of closed sets: $\{[-a,a]:a\in[0,1)\}$. The union of these sets is (-1,1), which is open.

Example

Give examples of topological spaces and sets in them that are:

- 1. closed but not open.
- 2. open but not closed.
- 3. both open and closed.
- 4. neither open nor closed.

1. closed but not open.

 $\textbf{Standard:} \ [0,1].$

Discrete: None

Indiscrete: None

Cofinite: $\{1, 2, 3\}$

Cocountable: \mathbb{Q}

2. open but not closed.

Standard: (0,1).

Discrete: None

Indiscrete: None

Cofinite: $\mathbb{R} - \{1, 2, 3\}$

Cocountable: $\mathbb{R} - \mathbb{Q}$

3. both open and closed.

For all topologies, both \emptyset and \mathbb{R} .

Discrete: (0,1)

4. neither open nor closed.

Standard: (0,1]

Discrete: None

Indiscrete: (0,1)

Cofinite: (0,1)

Cocountable: (0,1)

Example

State whether each of the following sets are open, closed, both, or neither.

- 1. In \mathbb{Z} with the cofinite topology:
 - (a) $\{0,1,2\}$ (closed)
 - (b) $\{n \in \mathbb{Z} \mid n \text{ is a prime number}\}$ (neither)
 - (c) $\{n \in \mathbb{Z} \mid |n| \ge 10\}$ (open)
- 2. In \mathbb{R} with the standard topology:

(a)
$$(0,1)$$
 (open)

(b)
$$(0,1]$$
 (neither)

(c)
$$[0,1]$$
) (closed)

(d)
$$0, 1$$
 (closed)

(e)
$$\left\{\frac{1}{n} \mid n \in N\right\}$$
 (neither)

3. In \mathbb{R}^2 with the standard topology:

(a)
$$\{(x,y) | x^2 + y^2 = 1\}$$
 (closed)

(b)
$$\{(x,y) | x^2 + y^2 > 1\}$$
 (open)

(c)
$$\{(x,y) | x^2 + y^2 \ge 1\}$$
 (closed)

Notation

Let (X, \mathcal{T}) be a topological space and $A \subset X$:

$$C = \{B \subset X \mid B \text{ is closed}\}$$

$$C_A = \{B \in C \mid A \subset B\}$$

Theorem

Let (X, \mathscr{T}) be a topological space and $A \subset X$. The closure of A equals the intersection of all closed sets containing A:

$$\bar{A} = \bigcap \mathcal{C}_A$$

Thus, \bar{A} is the smallest closed set containing A.

Proof. Since $A \subset \bar{A}$ and \bar{A} is closed, $\bar{A} \in \mathcal{C}_A$ and so:

$$\bar{A}\supset\bigcap\mathcal{C}_{A}$$

ABC:

$$\bar{A} \supsetneq \bigcap \mathcal{C}_A$$

This means that there exists some $B' \in \mathcal{C}_A$ such that:

$$\bar{A} \supseteq \bar{A} \cap B' \supset A$$

where $\bar{A} \cap B' \in \mathcal{C}$.

This would imply that there exists some closed set containing A with less limit points of A than \bar{A} , which contradicts the definition of \bar{A} .

Therefore,
$$\bar{A} = \bigcap \mathcal{C}_A$$
.

Example

Let $X = \mathbb{R}$ and let:

$$A = \{0\}$$

$$B = (0, 1)$$

$$C = [0, 1]$$

$$D = \{1, 2, 3\}$$

topology	\bar{A}	\bar{B}	\bar{C}	\bar{D}	$ar{\mathbb{Z}}$	$\mathbb{R}^-\mathbb{Q}$
discrete	A	B	C	D	\mathbb{Z}	$\mathbb{R} - \mathbb{Q}$
indiscrete	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}
cofinite	A	\mathbb{R}	\mathbb{R}	D	\mathbb{R}	\mathbb{R}
standard	A	C	C	D	\mathbb{Z}	\mathbb{R}

Theorem

Let (X, \mathscr{T}) be a topological space and $A, B \subset X$:

1.
$$A \subset B \implies \bar{A} \subset \bar{B}$$

2.
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof.

1. Assume $A \subset B$.

Assume $p \in \bar{A}$. This means that:

$$\forall U \in \mathcal{U}_p, U \cap A \neq \emptyset$$

But $A \subset B$ and so

$$\forall U \in \mathcal{U}_p, U \cap B \neq \emptyset$$

meaning that $p \in \bar{B}$ as well.

Therefore $\bar{A} \subset \bar{B}$.

2. (\subset) Since $A \subset \bar{A}$ and $B \subset \bar{B}$:

$$A \cup B \subset \bar{A} \cap \bar{B}$$

But $\bar{A}\cap \bar{B}$ is closed and the smallest closed set containing $A\cup B$ is $\overline{A\cup B}$. Therefore:

$$A \cup B \subset \overline{A \cup B} \subset \bar{A} \cup \bar{B}$$

 (\supset) Since $A \subset A \cup B$:

$$\bar{A} \subset \overline{A \cup B}$$

and similarly:

$$\bar{B}\subset \overline{A\cup B}$$

Therefore:

$$\bar{A} \cup \bar{B} \subset \overline{A \cup B}$$

Example

Let (X, \mathcal{T}) be a topological space and $\{A_{\alpha} : \alpha \in \lambda\}$ be a family of subsets of X. It is not necessarily the case that:

$$\overline{\bigcup_{\alpha \in \lambda} A_{\alpha}} = \bigcup_{\alpha \in \lambda} \overline{A_{\alpha}}$$

Consider the counterexample where $(\mathbb{R},\mathscr{T}_{\mathrm{std}})$ and $A=\{[-\alpha,\alpha]\,|\,\alpha\in(0,1)\}$:

$$\overline{\bigcup_{\alpha \in \lambda} A_{\alpha}} = [-1, 1] \neq (-1, 1) = \bigcup_{\alpha \in \lambda} \overline{A_{\alpha}}$$

Example

Let (R^2, \mathscr{T}) :

1. Topologist's Sine Curve

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \middle| x \in (0, 1) \right\}$$

$$\bar{S} = S \cup \{(1, \sin(1))\} \cup \{(0, y) \mid y \in [-1, 1]\}$$

2. Topologists Comb

$$C = \{(x,0) \mid x \in [0,1]\} \cap \bigcup_{n=1}^{\infty} \left\{ \left(\frac{1}{n},1\right) \right) \mid y \in [0,1] \right\}$$

$$\bar{C} = C \cup \{(0,y) \, | \, y \in [0,1]\}$$

Example

In $(\mathbb{R}, \mathscr{T}_{\mathsf{std}})$, the Cantor set \mathcal{C} is a non-empty subset of [0,1] such that:

- 1. C is closed.
- 2. C contains no non-empty open intervals.
- 3. $\mathcal C$ contains no isolated points.