

Microwave Radar and Millimiter Radar

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

25 de Agosto de 2023

Visão Geral

Microwave Radar
 Aplicações
 Fatores de Performance

Millimeter-Wave Radar Aplicações Fatores de Performance

Microwave Radar I

- A porção do espectro eletromagnético considerada uma frequência útil para radares práticos é entre 3 e 100 GHz;
- A maioria dos radares convencionais operam nas bandas L, S C ou X;
- A lista de letras (Figura) foi adotada como medida de segurança durante a Segunda Guerra Mundial, e foi mantida por conveniência;

Band	Frequency Range	Units
VHF	30-300	MHz
UHF	300-1,000	MHz
P	230-1,000	MHz
L	1,000-2,000	MHz
S	2,000-4000	MHz
C	4,000-8,000	MHz
X	8,000-12,500	MHz
K _u	12.5-18	GHz
K	18-26.5	GHz
Ka	26.5-40	GHz
Millimeter	> 30	GHz

Fonte:

(EVERETT, 1995)

Figura 1: Bandas de frequência designadas para frequências de radares (IEEE Standard 521-1976).

Microwave Radar II

- O cálculo de distância é obtido por métodos TOF, CW phase Detection ou CW Frequency Modulation;
- Pulsed Systems pode detectar alvos em distâncias de até centenas de quilômetros, dependendo na medida do tempo de propagação de uma onda propagada na velocidade da luz.
- Near-field measurements (menos de 100 km) são mais difíceis para esse tipo de sistema;
 - Pois sinais nítidos de curta duração são difíceis de se gerar para distâncias inferiores a um pé.
- Radares de onda contínua (CW) são efetivos para curtas distâncias.
 - Pois *phase-detection* ou *frequency-shift* não são dependentes na velocidade da onda;
 - Além de também serem adequadas para medir a velocidade de objetos em movimento por meio de métodos Doppler.

Aplicações I

- Amplamente empregados em:
 - Vigilância militar e comercial;
 - Aplicações de navegação;
 - Detecção de curto alcance (radar de alerta de controle para aeronaves);
 - Indicadores de nível de tanques;
 - Controles de tráfego;
 - Sensores de movimento e detectores de presença
- As microondas são ideais para detecção de logo alcance, porque a resolução é geralmente boa, a atenuação dos feixes na atmosfera é minima;
 - Operando em distâncias de alguns metros a algumas centenas de metros.
- Equipamentos de transmissão, recepção e processamento da forma de onda estão amplamente disponíveis.

Fatores de Performance I

- Aumentar o diâmetro do refletor resulta em uma melhoria na capacidade de alcance devido ao feixe de saída estar focalizado, e quanto mais larga a área da antena, maior a superfície de recepção/transmissão.
 - Porém isso pode apresentar desvantagens em manipular um sistema mecânico com alta carga inercial.

Fonte: (EVERETT, 1995)

Figura 2: Configurações comuns das antenas de microondas incluem: (A) prato refletor com ponto focal. (B) Antena tipo corneta. (C) matrizes bidimensionais de microfita

Fatores de Performance II

• Muitas aplicações comerciais usam a antena tipo corneta

Millimeter-Wave Radar I

 O Frequency Modulated Continuous Wave Radar (Radar de Onda contínua com Modulação de Frequência ou FMCW), é uma técnica alternativa ao Phase-Shift Measurement;

Aplicações I

- Os usos mais comuns incluem:
 - Sensoriamento ambiental;
 - Radar de imagem com alta resolução;
 - Espectroscopia;
 - Equipamentos de telêmetro;
 - Frenagem de automóveis.
- Embora, o uso mais comum seja rastreamento e designação de alvos com fins militares (1995).
- A estreita largura de feixe das transmissões de ondas milimétricas é altamente imune a problemas de reflexão do sol.
 - Radares de busca de microondas de longo alcance e feixe largo para aquisição inicial e depois mudando para um radar de rastreamento milimétrico para controle do sistema de armas
- Sistemas de ondas milimétricas de curto alcance e baixa potência parecem ser adequados para evitar colisões e necessidades de navegação de um robô móvel externos.

Aplicações II

- a capacidade de usar antenas menores é uma característica dominante que influencia a seleção de ondas milimétricas em microondas.
 - As três plataformas mais diretamente afetadas: satélites, mísseis e mini-RPVs (*Remotely Piloted Vehicles*).

Fatores de Performance I

O

EVERETT, H.R. Sensors for Mobile Robots. [S.I.]: CRC Press, 1995. ISBN 9781439863480. Disponível em: jhttps://books.google.com.br/books?id=s0BZDwAAQBAJ¿.

Microwave Radar and Millimiter Radar

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

25 de Agosto de 2023

