Solutions to Exercise Set 4

Problem 1

Tableaus T_1, T_2, T_3 and T_4 have the following characteristics:

		T_1	T_2	T_3	T_4
i)	primal-feasible				
ii)	dual-feasible	abla			\checkmark
iii)	optimal			$ \mathbf{A}$	
iv)	primal-unbounded				
$\mathbf{v})$	dual-unbounded				
vi)	primal-degenerated	abla			
vii)	${ m dual ext{-}degenerated}$	\checkmark	$ \sqrt{} $		

Problem 2

d)
$$\begin{array}{rclcrcl} \text{Max} & w & = & 5y_1 & + & 12y_2 & + & 6y_3 \\ \text{s.t.} & & 2y_1 & & + & y_3 & = & 3 \\ & & -y_1 & + & 3y_2 & & \leq & 0 \\ & & 2y_1 & + & 4y_2 & & \leq & -1 \\ & & y_1 & & & \geq & 0 \\ & & & y_2 & & \in & \mathbb{R} \\ & & & & y_3 & \leq & 0 \\ \end{array}$$

e)
$$\begin{array}{rclcrcl} \text{Min} & w & = & 8y_1 & + & 6y_2 & - & 3y_3 \\ \text{s.t.} & & -y_1 & + & 2y_2 & & \geq & 0 \\ & & 4y_1 & & & \geq & 5 \\ & & 2y_1 & + & y_2 & + & y_3 & = & 1 \\ & & & y_1 & & \geq & 0 \\ & & & & y_2 & & \in & \mathbb{R} \\ & & & & & y_3 & \leq & 0 \\ \end{array}$$

Problem 3

In order to produce 1000 items, the factory needs at least 1 ton of M1, 0.6 ton of M2, and 0.3 ton of M3.

a) Let x_i be the quantity (in tons) of alloy i that the factory needs to purchase. The primal LP is given by:

$$(PLP) \begin{cases} \text{Min} & z = 3x_1 + x_2 + 4x_3 \\ \text{s.t.} & x_1 + 4x_2 + x_3 \ge 10 \\ & 3x_1 + 6x_2 + 6x_3 \ge 6 \\ & 6x_1 + 3x_3 \ge 3 \\ & x_1 + x_2 + x_3 \ge 0 \end{cases}$$

Note that each inequality has been multiplied by 10.

b) Dual problem:

$$(DLP) \begin{cases} \text{Max} & w = 10y_1 + 6y_2 + 3y_3 \\ \text{s.t.} & y_1 + 3y_2 + 6y_3 \le 3 \\ 4y_1 + 6y_2 & \le 1 \\ y_1 + 6y_2 + 3y_3 \le 4 \\ y_1 & y_2 & y_3 \ge 0 \end{cases}$$

c) PLP in standard form:

Slack variable x_{3+i} represents the surplus of metal M_i , i = 1,2,3. The initial tableau is dual-feasible but not primal-feasible. Let's apply the dual simplex algorithm (phase II):

$$T_0 = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & z \\ \hline -1 & -4 & -1 & 1 & 0 & 0 & 0 & -10 \\ -3 & -6 & -6 & 0 & 1 & 0 & 0 & -6 \\ -6 & 0 & -3 & 0 & 0 & 1 & 0 & -3 \\ \hline 3 & 1 & 4 & 0 & 0 & 0 & 1 & 0 \\ \hline -3 & -1/4 & -4 & 0 & 0 & 0 & 1 & 0 \\ \hline \end{array}$$

ratio

$$T_1 = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & z \\ 1/4 & 1 & 1/4 & -1/4 & 0 & 0 & 0 & 5/2 \\ -3/2 & 0 & -9/2 & -3/2 & 1 & 0 & 0 & 9 \\ -\mathbf{6} & 0 & -3 & 0 & 0 & 1 & 0 & -3 \\ 11/4 & 0 & 15/4 & 1/4 & 0 & 0 & 1 & -5/2 \\ -11/24 & & -5/4 & & & & & \end{bmatrix}$$

ratio

$$T_2 = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & z \\ \hline 0 & 1 & 1/8 & -1/4 & 0 & 1/24 & 0 & 19/8 \\ 0 & 0 & -15/4 & -3/2 & 1 & -1/4 & 0 & 39/4 \\ 1 & 0 & 1/2 & 0 & 0 & -1/6 & 0 & 1/2 \\ \hline 0 & 0 & 19/8 & 1/4 & 0 & 11/24 & 1 & -31/8 \\ \hline \end{bmatrix}$$

Tableau T_2 is optimal. The factory needs to order $x_1 = 1/2$ ton of alloy 1, $x_2 = 19/8$ tons of alloy 2. There is no need of alloy 3. The surplus of metal M2 is 39/4 tons. The minimal cost is 31/8.

Problem 4

a) Primal constraints can be written as:

$$\begin{array}{cccc} x_1 & - & x_2 & \leq 2 \\ x_1 & - & x_2 & \geq 3 \end{array}$$

We conclude that there is no feasible solution.

b) Dual problem:

c) Dual constraints can be written as:

$$y_1 - y_2 \ge 3$$

 $y_1 - y_2 < 3$

The dual problem has no solution neither.