Lecture 3: Basic Neural Networks: multi-layer neural networks

Lan Xu SIST, ShanghaiTech Fall, 2021

Announcement

- Tutorial and TA office hour
 - Location & Tutorial & Office hour
 - □ Please vote on Piazza
- Quiz 1 results are out
 - Check with TAs if you have any question
- A1 will be out soon
 - After the holiday
- Reference reading is listed at the end of lecture slides.

Outline

- Multi-layer neural networks
 - Limitations of single layer networks
 - Networks with single hidden layer
 - Sequential network architecture and variants
- Inference and learning
 - Forward and Backpropagation
 - Examples: one-layer network
 - □ General BP algorithm

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

- Binary classification
 - \square A neuron estimates $P(y=1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$
 - □ Its decision boundary is linear, determined by its weights

Capacity of single neuron

Can solve linearly separable problems

$$\mathcal{D} = \mathcal{D}^{+} \cup \mathcal{D}^{-}$$
$$\exists \mathbf{w}^{*}, \mathbf{w}^{*T}\mathbf{x} > 0, \ \forall \mathbf{x} \in \mathcal{D}^{+}$$
$$\mathbf{w}^{*T}\mathbf{x} < 0, \ \forall \mathbf{x} \in \mathcal{D}^{-}$$

Examples

Capacity of single neuron

Can't solve non linearly separable problems

Can we use multiple neurons to achieve this?

- Can't solve non linearly separable problems
- Unless the input is transformed in a better representation

Capacity of single neuron

Can't solve non linearly separable problems

Unless the input is transformed in a better representation

Adding one more layer

- Single hidden layer neural network
 - 2-layer neural network: ignoring input units

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

Q: What if using linear activation in hidden layer?

Capacity of neural network

- Single hidden layer neural network
 - Partition the input space into regions

- Single hidden layer neural network
 - □ Form a stump/delta function

Capacity of neural network

Single hidden layer neural network

Multi-layer perceptron

- Boolean case
 - ☐ Multilayer perceptrons (MLPs) can compute more complex Boolean functions
 - MLPs can compute any Boolean function
 - Since they can emulate individual gates
 - □ MLPs are universal Boolean functions

Capacity of neural network

- Universal approximation
 - □ Theorem (Hornik, 1991)

A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.

- The result applies for sigmoid, tanh and many other hidden layer activation functions
- Caveat: good result but not useful in practice
 - How many hidden units?
 - □ How to find the parameters by a learning algorithm?

General neural network

Multi-layer neural network

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit

- Naming conventions; a N-layer neural network:
 - N − 1 layers of hidden units
 - One output layer

Multilayer networks

network: sequence of parallelized weighted sums and non-linearities

define
$$\mathbf{x}^{(0)} \equiv \mathbf{x}$$
, $\mathbf{x}^{(1)} \equiv \mathbf{h}$, etc.

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)} \mathbf{T} \mathbf{x}^{(0)}$$
 $\mathbf{s}^{(2)} = \mathbf{W}^{(2)} \mathbf{T} \mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$ $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

Multilayer networks

Why more layers (deeper)?

- A deep architecture can represent certain functions more compactly
 - ☐ (Montufar et al., NIPS'14)
 - Functions representable with a deep rectifier net can require an exponential number of hidden units with a shallow one.

Why more layers (deeper)?

- A deep architecture can represent certain functions more compactly
 - □ Example: Boolean functions
 - There are Boolean functions which require an exponential number of hidden units in the single layer case
 - require a polynomial number of hidden units if we can adapt the number of layers
 - Example: multivariate polynomials (Rolnick & Tegmark, ICLR'18)
 - Total number of neurons m required to approximate natural classes of multivariate polynomials of n variables
 - grows only linearly with n for deep neural networks, but grows exponentially when merely a single hidden layer is allowed.

Why more layers (deeper)?

https://youtu.be/aircAruvnKk?list=PLZHQObOWTQDN U6R1_67000Dx_ZCJB-3pi

Other network connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

information may not be able to propagate easily make shorter paths to output

residual & highway connections

Deep residual learning for image recognition, He et al., 2016 Highway networks, Srivastava et al., 2015

dense (concatenated)

Densely connected convolutional networks, Huang et al., 2017

Outline

- Multi-layer neural networks
 - □ Limitations of single layer networks
 - □ Neural networks with single hidden layer
 - Sequential network architecture and variants
- Inference and learning
 - Forward and Backpropagation
 - Examples: one-layer network
 - General BP algorithm

Computation in neural network

- We only need to know two algorithms
 - □ Inference/prediction: simply forward pass
 - □ Parameter learning: needs backward pass
- Basic fact:
 - □ A neural network is a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

 All the f functions are linear + (simple) nonlinear (differentiable a.e.) operators

Inference example: Forward Pass

What does the network compute?

Output of the network can be written as:

$$h_j(x) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$

 $o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj})$

(j indexing hidden units, k indexing the output units, D number of inputs)

Forward Pass in Python

Example code for a forward pass for a 3-layer network in Python:

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Can be implemented efficiently using matrix operations

Parameter learning: Backward Pass

- Supervised learning framework
 - Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
 - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} t_k^{(n)})^2$
 - Cross-entropy loss: $-\sum_{k} t_{k}^{(n)} \log o_{k}^{(n)}$
- Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where η is the learning rate (and E is error/loss)

Backward pass

- Backpropagation
 - □ An efficient method for computing gradients in NNs
 - □ A neural network as a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

and the loss ${\cal L}$ is a function of the network output

→ use <u>chain rule</u> to calculate gradients

Backward pass

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Gradient descent iteration

Forward pass

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)\intercal}\mathbf{x}^{(0)}$$
 $\mathbf{s}^{(2)} = \mathbf{W}^{(2)\intercal}\mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$ $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

Backward pass

calculate $\nabla_{W^{(1)}}\mathcal{L}, \nabla_{W^{(2)}}\mathcal{L}, \ldots$ let's start with the final layer: $\nabla_{W^{(L)}}\mathcal{L}$

to determine the chain rule ordering, we'll draw the dependency graph

Gradient descent iteration

Backward pass

note
$$\nabla_{\mathbf{W}^{(L)}}\mathcal{L}\equiv rac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}}$$
 is notational convention

Gradient descent iteration

Backward pass

now let's go back one more layer...

again we'll draw the dependency graph:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{x}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$$

The order needs to be reversed for Jacobians! See LN04 for details

Let's take a single layer network

• Let's take a single layer network and draw it a bit differently

Output of unit k

Output layer activation function

Net input to output unit k

Weight from input i to k

Input unit i

• Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} =$$

Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$

• Error gradient is computable for any continuous activation function g(), and any continuous error function

Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \underbrace{\frac{\partial E}{\partial o_k}}_{\delta_k^o} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$

Example: Single Layer Network

Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \delta_k^o \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$

Example: Single Layer Network

Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \underbrace{\delta_k^o \cdot \frac{\partial o_k}{\partial z_k}}_{\delta_k^z} \frac{\partial z_k}{\partial w_{ki}}$$

Example: Single Layer Network

Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \delta_k^z \frac{\partial z_k}{\partial w_{ki}} = \delta_k^z \cdot x_i$$

Outline

- Multi-layer neural networks
 - Limitations of single layer networks
 - □ Neural networks with single hidden layer
 - □ Sequential network architecture and variants
- Inference and learning
 - □ Forward and Backpropagation
 - □ Examples: one-layer network
 - □ General BP algorithm

An implementation perspective

Example: Univariate logistic least square model

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Univariate chain rule

- A structured way to implement it
 - ☐ The goal is to write a program that efficiently computes the derivatives

Computing the loss:

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\frac{d\mathcal{L}}{dy} = y - t$$

$$\frac{d\mathcal{L}}{ds} = \frac{d\mathcal{L}}{dy}\sigma'(s)$$

$$\frac{d\mathcal{L}}{dw} = \frac{d\mathcal{L}}{ds}x$$

$$\frac{d\mathcal{L}}{db} = \frac{d\mathcal{L}}{ds}$$

Computation graph

- Represent the computations using a computation graph
 - □ Nodes: inputs & computed quantities
 - □ Edges: which nodes are computed directly as function of which other nodes

Univariate chain rule

- A shorthand notation
 - \square Use $\delta_y := d\mathcal{L}/dy$, called the error signal
 - □ Note that the error signals are values computed by the program

Computing the loss:

$$s = wx + b$$

$$y = \sigma(s)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Compute Derivatives

Computing the derivatives:

$$\delta_y = y - t$$

$$\delta_s = \delta_y \sigma'(s)$$

$$\delta_w = \delta_s x$$

$$\delta_b = \delta_s$$

Multivariate chain rule

The computation graph has fan-out > 1

L₂-Regularized regression

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R}$

Multiclass logistic regression

$$z_{\ell} = \sum_{j} w_{\ell j} x_{j} + b_{\ell}$$
 $y_{k} = \frac{e^{z_{k}}}{\sum_{\ell} e^{z_{\ell}}}$
 $\mathcal{L} = -\sum_{j} t_{k} \log y_{k}$

Multivariable chain rule

Recall the distributed chain rule

The shorthand notation:

$$\delta_t = \delta_x \frac{dx}{dt} + \delta_y \frac{dy}{dt}$$

General Backpropagation

Given a computation graph

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)

 v_N denotes the variable we're trying to compute derivatives of (e.g. loss)

General Backpropagation

Example: univariate logistic least square regression

Forward pass:

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$

Backward pass:

$$\delta_{\mathcal{L}_{\text{reg}}} =$$

$$\delta_{\mathcal{R}} =$$

$$=$$

$$=$$

$$\delta_{w} =$$

$$\delta_{\mathcal{L}} =$$

$$=$$

$$\delta_{b} =$$

$$\delta_{b} =$$

$$=$$

$$=$$

General Backpropagation

Backprop as message passing:

- Each node receives a set of messages from its children, which are aggregated into its error signal, then it passes messages to its parents
- Modularity: each node only has to know how to compute derivatives w.r.t. its arguments – local computation in the graph

Patterns in backward flow

Multiplicative node

$$\frac{\partial L}{\partial y_j^{(k-1)}} = \frac{\partial L}{\partial o_i^{(k)}} \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} = y_l^{(k-1)} \frac{\partial L}{\partial o_i^{(k)}}$$

Dotto

Patterns in backward flow

Max node

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

Computation cost

- Forward pass: one add-multiply operation per weight
- Backward pass: two add-multiply operations per weight

 For a multilayer network, the cost is linear in the number of layers, quadratic in the number of units per layer

Backpropagation

- Backprop is used to train the majority of neural nets
 - Even generative network learning, or advanced optimization algorithms (second-order) use backprop to compute the update of weights
- However, backprop seems biologically implausible
 - □ No evidence for biological signals analogous to error derivatives
 - All the existing biologically plausible alternatives learn much more slowly on computers.
 - □ So how on earth does the brain learn???

Coding examples

- Getting familiar with Pytorch
 - Python Tutorial: https://cs231n.github.io/python-numpy-tutorial/
 - PyTorch in 60 mins: https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz. html
- Predicting house prices
 - https://d2l.ai/chapter_multilayer-perceptrons/kaggle-houseprice.html

Summary

- Multi-layer neural networks
- Inference and learning
 - Forward and Backpropagation
- Next time ...
 - Modern topics about MLP, CNN
 - Quiz 2: Open book, but no electronic device is allowed.

Reference:

- □ d2l.ai: 4.1-4.3, 4.7
- □ DLBook: Chapter 6