

Training Energy-Based Normalizing Flow with Score-Matching Objectives

Chen-Hao Chao¹, Wei-Fang Sun¹², Yen-Chang Hsu³, Zsolt Kira⁴, and Chun-Yi Lee¹

¹ Elsa Lab, National Tsing Hua University, Hsinchu City, Taiwan ² NVIDIA AI Technology Center, NVIDIA Corporation, Santa Clara, CA, USA ³ Samsung Research America, Mountain View, CA, USA ⁴ Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Examples [4-6]:

Example [7]:

 $\Delta \mathbf{W} \longrightarrow (\mathbf{I} + \boldsymbol{\epsilon})\mathbf{W} - \mathbf{W}$

O Triangular [4]

Related Works

In this work, we establish a connection between the parameterization of flow-based and energy-based generative models, and present a new flow-based modeling approach called energy-based normalizing flow (EBFlow). We demonstrate that by optimizing EBFlow with score-matching objectives, the computation of Jacobian determinants for linear transformations can be entirely bypassed. This feature enables the use of arbitrary linear layers in the construction of flow-based models without increasing the computational time complexity of each training iteration from $\mathcal{O}(D^2L)$ to $\mathcal{O}(D^3L)$ for an L-layered model that accepts D-dimensional inputs. The experimental results demonstrate that our approach achieves a significant speedup compared to maximum likelihood training.

Specially Designed Linear Transformations

Specially Designed Optimization Methods

O Diagonal [5]

Accelerating Maximum Likelihood Training of Flow-Based Models

• (√) Complexity can be reduced significantly. • (X) Impose architectural constraints on the model.

 $\underline{\Delta f(\mathbf{W})} \longrightarrow f((\mathbf{I} + \boldsymbol{\epsilon})\mathbf{W}) - f(\mathbf{W}) = \langle \nabla_{\mathbf{W}} f(\mathbf{W}) \mathbf{W}^{\mathrm{T}}, \boldsymbol{\epsilon} \rangle + o(\mathbf{W}) \quad : \nabla_{\mathbf{W}} \log |\det \mathbf{W}| \mathbf{W}^{\mathrm{T}} = (\mathbf{W}^{\mathrm{T}})^{-1} \mathbf{W}^{\mathrm{T}} = \mathbf{I}.$

• (\checkmark) Complexity of each update is $\mathcal{O}(D^2L)$. • (\times) An error term proportional to the weight matrix **W**.

 \bigcirc Linear (W): $\rightarrow \mathcal{O}(D^3)$

Non-Linear $(\eta): \rightarrow \mathcal{O}(D)$

∴ The determinant calculation is bypassed.

Background

Flow-Based Models

Flow-based models parameterize probability density functions (pdf) $p(\cdot;\theta)$ using a prior distribution $p_{\mathbf{u}}$ of a variable \mathbf{u} and an invertible mapping $g = g_L \circ \cdots \circ g_1$, where $g_i(\cdot; \theta): \mathbb{R}^D \to \mathbb{R}^D$ \mathbb{R}^D , $i \in \{1, ..., L\}$. Let $x_0 = x$ be an input vector, and $x_i = g_i \circ$ $\cdots \circ g_1(x_0)$ be a transformed vector. Based on the change of variable theorem, the pdf $p(\cdot; \theta)$ can be expressed as: $p(\mathbf{x};\theta) = p_{\mathbf{u}}(g(\mathbf{x};\theta)) \left[\left| \det(\mathbf{J}_{g_i}(\mathbf{x}_{i-1};\theta)) \right| \right],$

$$p(x;\theta) = p_{\mathbf{u}}(g(x;\theta)) \prod_{i=1}^{n} |\det(\mathbf{J}_{g_i}(x_{i-1};\theta))|,$$
 where and \mathbf{J}_{g_i} represents the Jacobian of g_i . A conventional approach to optimize θ is maximum likelihood (ML) training,

approach to optimize θ is maximum likelihood (ML) training, which involves minimizing the Kullback-Leibler (KL) **divergence** $\mathbb{D}_{KL}[p_{\mathbf{x}}(\mathbf{x})||p(\mathbf{x};\theta)]$ between the true pdf $p_{\mathbf{x}}$ and $p(x;\theta)$. The ML loss is written as:

$$\mathcal{L}_{ML}(\theta) = \mathbb{E}_{p_{\mathbf{X}}(\mathbf{x})}[-\log p(\mathbf{x};\theta)]. \tag{2}$$

Energy-Based Models

Energy-based models are formulated based on a Boltzmann distribution, which is expressed using a scalar-valued energy function $E(\cdot;\theta):\mathbb{R}^D\to\mathbb{R}$ and a normalizing constant $Z(\theta) = \int \exp(-E(x; \theta)) dx$ as the following equation:

$$p(\mathbf{x};\theta) = \exp(-E(\mathbf{x};\theta))Z^{-1}(\theta).$$
 (3)

Optimizing θ in Eq. (3) through directly evaluating $\mathcal{L}_{ML}(\theta)$ in Eq. (2) is computationally infeasible due to the integral in $Z(\theta)$. To address this, a widely-used technique is to $\mathcal{L}_{FDSSM}(\theta) = \mathbb{E}_{p_{\mathbf{X}}(\mathbf{x})p_{\xi}(\boldsymbol{\varepsilon})}[2E(\mathbf{x};\theta) - E(\mathbf{x} + \boldsymbol{\varepsilon};\theta) - E(\mathbf{x} - \boldsymbol{\varepsilon};\theta)]$ reformulate $abla_{ heta}\mathcal{L}_{ML}(heta)$ as its sampling-based variant $\nabla_{\theta} \mathcal{L}_{SML}(\theta)$, which is written as follows:

$$\mathcal{L}_{SML}(\theta) = \mathbb{E}_{p_{\mathbf{X}}(\mathbf{x})}[E(\mathbf{x};\theta)] - \mathbb{E}_{sg(p(\mathbf{x};\theta))}[E(\mathbf{x};\theta)], \quad (4)$$

where $sg(\cdot)$ indicates the stop-gradient operator.

Another line of studies suggests optimizing heta by minimizing the Fisher divergence $\mathbb{D}_F[p_{\mathbf{x}}(\mathbf{x})||p(\mathbf{x};\theta)]$ through score matching (SM). Several SM techniques, including sliced score matching (SSM) [1], finite difference sliced score matching (FDSSM) [2], and denoising score matching (DSM) [3], have been proposed. These losses are written as:

$$\mathcal{L}_{SSM}(\theta) = \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})p_{\mathbf{v}}(\mathbf{v})}[\|\nabla_{\mathbf{x}}E(\mathbf{x};\theta)\|^{2} - \mathbf{v}^{T}\nabla_{\mathbf{x}}E(\mathbf{x};\theta)\mathbf{v}], \tag{5}$$

$$\mathcal{L}_{FDSSM}(\theta) = \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})p_{\xi}(\boldsymbol{\varepsilon})} [2E(\mathbf{x};\theta) - E(\mathbf{x} + \boldsymbol{\varepsilon};\theta) - E(\mathbf{x} - \boldsymbol{\varepsilon};\theta)] + \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})p_{\xi}(\boldsymbol{\varepsilon})} \Big[(E(\mathbf{x} + \boldsymbol{\varepsilon};\theta) - E(\mathbf{x} - \boldsymbol{\varepsilon};\theta))^{2} / 8 \Big], \quad (6)$$

$$\mathcal{L}_{DSM}(\theta) = \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})p_{\sigma}(\widetilde{\mathbf{x}}|\mathbf{x})} [\nabla_{\mathbf{x}} E(\mathbf{x};\theta) + (\mathbf{x} - \widetilde{\mathbf{x}})/\sigma^{2}], \tag{7}$$

where $p_{\mathbf{v}}$ is a Rademacher distribution, p_{σ} is a Gaussian with standard deviation σ , and p_{ξ} is a uniform distribution with $\|\boldsymbol{\varepsilon}\| = \xi$.

Experiments

Density Modeling

Model Architecture:

Fully-Connected (FC) based:

Convolutional Neural Network (CNN) based

Generative Flow (Glow) [5]:

Training Methods:

Baseline (ML) EBFlow (SML, SSM, DSM, FDSSM)

Figure 2 (Left). Runtime comparison of different objective functions used in EBFlow and the baseline method for different input sizes. Table 1 (Right). The performance (i.e., NLL and Bits/Dim) and throughput (i.e., Batch/Sec.) of the FC-based and CNN-based models trained with the baseline and the proposed method on MNIST and CIFAR-10. Each result is reported in terms of the mean and confidence interval of three independent runs.

models trained using SSM, DSM, and FDSSM losses on the MNIST dataset.

Figure 3. The norm of $\nabla_{\theta} \mathcal{L}_{SSM}(\theta)$ of an FC-based shaded area depict the mean and 95% confidence interval of three independent runs.

Data Generation

MCMC Generation

• Complexity: $\mathcal{O}(D^2LT)$

• Sampler: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla_{\mathbf{x}_t} E(\mathbf{x}_t; \theta) + \sqrt{2\alpha} \mathbf{z}, t \in \{1, ..., T\}$

• t: the index of an iteration • α : the step size

T: the total number of iterations Inverse Generation

• Complexity: $\mathcal{O}(D^3L)$

• Sampler: $\mathbf{x} = g^{-1}(\mathbf{u}; \theta)$, where $\mathbf{u} \sim p_{\mathbf{u}}$.

(NLL=1,637) on the inverse generation task.

• **z**: noises sampled from a Gaussian

Figure 4. A comparison between (a) Glow trained Figure 5. A qualitative demonstration of the FCwith our method (NLL=728) and (b) the model in [2] based models trained using the DSM objective on the imputation task.

Methodology

Energy-Based Normalizing Flow (EBFlow)

Let S_n and S_l be the sets of non-linear and linear transformations in $g(\cdot;\theta)$. Our key observation is that the parametric density function $p(\cdot;\theta)$ can be explicitly factorized into an unnormalized density and a corresponding normalizing constant as follows:

$$p(\mathbf{x}; \theta) = p_{\mathbf{u}}(g(\mathbf{x}; \theta)) \prod_{i=1}^{L} |\det(\mathcal{J}_{g_i}(\mathbf{x}_{i-1}; \theta))|$$

$$= p_{\mathbf{u}}(g(\mathbf{x}; \theta)) \prod_{g_i \in \mathcal{S}_n} |\det(\mathcal{J}_{g_i}(\mathbf{x}_{i-1}; \theta))| \prod_{g_i \in \mathcal{S}_l} |\det(\mathcal{J}_{g_i}(\theta))|$$

$$\triangleq \exp(-E(\mathbf{x}; \theta)) Z^{-1}(\theta),$$
(8)

where the energy function $E(\cdot;\theta)$ and the normalizing constant $Z(\theta)$ are selected as follows:

$$E(\mathbf{x};\theta) = -\log p_{\mathbf{u}}(g(\mathbf{x};\theta)) \prod_{g_i \in \mathcal{S}_n} \left| \det(\mathcal{J}_{g_i}(\mathbf{x}_{i-1};\theta)) \right|, Z^{-1}(\theta) = \prod_{g_i \in \mathcal{S}_l} \left| \det(\mathcal{J}_{g_i}(\theta)) \right|. (9)$$

By isolating the computationally expensive terms in $p(\cdot;\theta)$, the parametric pdf becomes suitable for the training methods of energy-based models.

Techniques for Enhancing the Training of EBFlow

Training flow-based models with SM objectives is challenging as the training process is numerically unstable and usually exhibits significant variances [1,2]. To address these issues, we propose to adopt the following two techniques:

• Match after Preprocessing (MaP):

Figure 1. An illustrative example of training EBFlow with a numerically sensitive layer. In this example, the logit preprocessing layer exhibits extremely large derivatives when its input values are near zeros or ones.

Proposition. Let p_j be a pdf modeled as $p_{\mathbf{u}}(g_L \circ \cdots \circ g_j(\cdot)) \prod_{i=j+1}^L |\det(\mathbf{J}_{g_i})|$, where $j \in \{0, ..., L-1\}$. It follows that:

$$\mathbb{D}_F[p_{\mathbf{x}_i}||p_j] = 0 \Leftrightarrow \mathbb{D}_F[p_{\mathbf{x}}||p_0] = 0. \tag{10}$$

Exponential Moving Average (EMA) [8]:

$$\tilde{\theta} \leftarrow m\tilde{\theta} + (1-m)\theta_i,$$
 (11)

where $\tilde{\theta}$ is a set of shadow parameters, θ_i is the model's parameters at the i-th iteration, and m is the momentum parameter.

References [1] Song et al. A Scalable Approach to Density and Score Estimation, UAI, 2019. [2] Pang et al. Efficient Learning of Generative Models via Finite-Difference Score Matching, NeurIPS, 2020. [3] P. Vincent. A Connection between Score Matching and Denoising Autoencoders, Neural Computation, 2011. [4] Song et al. MintNet: Building Invertible Neural Networks with Masked Convolutions, NeurIPS, 2019.

- [5] Kingma et al. Glow: Generative Flow with Invertible 1x1 Convolutions, NeurIPS, 2018. [6] Meng et al. ButterflyFlow: Building Invertible Layers with Butterfly Matrices, ICML, 2022.
- [7] Gresele et al. Relative Gradient Optimization of the Jacobian Term in Unsupervised Deep Learning, NeurIPS, 2020.
- [8] Song et al. Improved Techniques for Training Score-Based Generative Models, NeurIPS, 2020.

Acknowledgement TWCC INVIDIA. /NSTC

lance_chao@gap.nthu.edu.tw cylee@cs.nthu.edu.tw

Questions?

