St Andrew's Junior College

2022 Preliminary Examination H2 Mathematics Paper 1 (9758/01)

Q	Solution	Mark scheme
1(i)	$4(x+y)^{2} + (x-y)^{2} = 20 (1)$	
	Differentiate (1) with respect to x	
	$8(x+y)\left(1+\frac{dy}{dx}\right)+2(x-y)\left(1-\frac{dy}{dx}\right)=0$	
	$8(x+y)+8(x+y)\frac{dy}{dx}+2(x-y)-2(x-y)\frac{dy}{dx}=0$	
	$10x + 6y + (8x + 8y - 2x + 2y)\frac{dy}{dx} = 0$	
	$\frac{dy}{dx} = -\frac{10x + 6y}{6x + 10y} = -\frac{2(5x + 3y)}{2(3x + 5y)}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5x + 3y}{3x + 5y} \text{ (Shown)}$	
(ii)	Since the tangents are perpendicular to the line $y = x$, hence the	
	gradient of tangents = - 1	
	$\frac{\mathrm{d}y}{\mathrm{d}y} = -\frac{5x + 3y}{\mathrm{d}y} = -1$	
	dx = 3x + 5y	
	5x + 3y = 3x + 5y	
	2x = 2y	
	x = y (*)	
	Substituting into (1);	

Q	Solution	Mark scheme
	$4(x+x)^2 + (x-x)^2 = 20$	
	$4(2x)^2 = 20$	
	$4x^2 = 5$	
	$x^2 = \frac{5}{4}$	
	$x = \pm \frac{\sqrt{5}}{2}$	
	Given $y = x$ from (*)	
	When $x = \frac{\sqrt{5}}{2}$, $y = \frac{\sqrt{5}}{2}$	
	When $x = -\frac{\sqrt{5}}{2}$, $y = -\frac{\sqrt{5}}{2}$	
	Hence, the points are $\left(\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$ and $\left(-\frac{\sqrt{5}}{2}, -\frac{\sqrt{5}}{2}\right)$	
	$y - \frac{\sqrt{5}}{2} = -\left(x - \frac{\sqrt{5}}{2}\right)$	
	$=-x+\frac{\sqrt{5}}{2}$	
	$y = -x + \sqrt{5}$	

Q	Solution	Mark scheme
	$y - \left(-\frac{\sqrt{5}}{2}\right) = -\left(x - \left(-\frac{\sqrt{5}}{2}\right)\right)$	
	$=-x-\frac{\sqrt{5}}{2}$	
	$y = -x - \sqrt{5}$	
	The equation of the tangents are $y = -x + \sqrt{5}$ and $y = -x - \sqrt{5}$.	

Q	Solution	Mark scheme
2(i)	,, 6 6	
	$y = \frac{6}{4 - x^2} = \frac{6}{(2 - x)(2 + x)}$	
	Asymptotes are $x = 2$, $x = -2$, $y = 0$	
	Intersections with axes:	
	When $x = 0$, $y = \frac{6}{2(2)} = \frac{3}{2}$ (Also the stationary point)	
	$y = 6 - x^2$	
	Intersections with axes:	
	When $x = 0$, $y = 6 = > (0, 6)$	
	When $y = 0$,	
	$6 - x^2 = 0$	
	$x^2 = 6$	
	$x = \sqrt{6} \text{ or } -\sqrt{6}$ $(\sqrt{6}, 0) \text{ or } (-\sqrt{6}, 0)$	
	$(\sqrt{6},0)$ or $(-\sqrt{6},0)$	

Q	Solution	Mark scheme
2 (i)	ν	
	$(-1.5344, 3.6458)$ $(-\sqrt{6}, 0)$ $(0, 6)$ $(1.5344, 3.6458)$ $y = \frac{6}{4 - x^2}$ $(-2.7651, -1.6458)$ $(2.7651, -1.6458)$ $y = 6 - x^2$ $x = -2$ $x = 2$	
(ii)	The <i>x</i> -coordinates of the intersection points between the graphs	
	$y = \frac{6}{4 - x^2}$ and $y = 6 - x^2$ are -2.77, -1.53, 1.53 and 2.77 (to 3)	
	sig. fig.)	
	For $\frac{6}{4-x^2} < 6-x^2$	
	From the graph above,	
(:::)	-2.77 < x < -2 or -1.53 < x < 1.53 or 2 < x < 2.77	
(iii)	Replace x with $-x$,	

Q	Solution	Mark scheme
	after the reflection about the <i>y</i> -axis, the solution is:	
	$\Rightarrow 2 < x < 2.77 \text{ or } -1.53 < x < 1.53 \text{ or } -2.77 < x < -2$	
	Replace x with $x+4$,	
	after the translation of 4 units in the negative x direction,	
	$\Rightarrow 2 < x + 4 < 2.77 \text{ or } -1.53 < x + 4 < 1.53 \text{ or } -2.77 < x + 4 < -2$	
	$\Rightarrow -2 < x < -1.23 \text{ or } -5.53 < x < -2.47 \text{ or } -6.77 < x < -6$	
	the solution set is therefore	
	$\{x \in \mathbb{R} : -6.77 < x < -6 \text{ or } -5.53 < x < -2.47 \text{ or } -2 < x < -1.23\}$	

Q	Solution	Mark Scheme
3(i)	Given $f(-1) = f(2) = 0$ but $-1 \neq 2$ and $-1, 2 \in D_f$, f is not a one-to-	
	one function. Hence, f does not have an inverse.	
(ii)	Let $y = f(x) = ax^3 + bx^2 + cx + d$	
	Curve passes through $(0,-3)$	
	d = -3	
	$y = f(x) = ax^3 + bx^2 + cx - 3$	
	Curve passes through $(-1,0)$	
	$-a+b-c=3 \qquad(1)$	
	Curve passes through $(2,0)$	
	8a + 4b + 2c = 3(2)	
	$\frac{\mathrm{d}y}{1} = 3ax^2 + 2bx + c$	
	ax	
	Tangent to the curve at $x = 1$ is a horizontal line, $\frac{dy}{dx} = 0$,	
	3a + 2b + c = 0(3)	
	Solving (1), (2) and (3) using GC, $a = \frac{3}{2}$, $b = 0$, $c = -\frac{9}{2}$,	
	The equation of the curve is $y = f(x) = \frac{3}{2}x^3 - \frac{9}{2}x - 3$	

Q	Solution	Mark Scheme
(iii)	$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$	
(iv)	Smallest $k = 1$	
(v)	The graphs of $y = f(x)$ and $y = f^{-1}(x)$ are reflections of each other about the line $y = x$.	
(vi)	Since the graphs $y = f(x)$, $y = f^{-1}(x)$ and $y = x$ intersect at the same point, the solution of $f^{-1}(x) = f(x)$ is the same as the solution of $f(x) = x$. $\Rightarrow \frac{3}{2}x^3 - \frac{9}{2}x - 3 = x$ $\Rightarrow 3x^3 - 11x - 6 = 0 \text{ (shown)}$ Solving the equation using GC, $x = 2.14(3 \text{ s.f.})$ since $x \ge 1$	
(vii)	$R_{f} = [-6, \infty) \not\subseteq D_{g} = (-5, \infty)$ Hence gf does not exist	

Q	Solution	Mark Scheme
4 (i)	y = $\frac{x+1}{2x-1}$ $y = \frac{1}{2}$ $x = \frac{1}{2}$	Mark Scheme
	From the graph above,	
	$x \le -1$ or $x > \frac{1}{2}$	

Q	Solution	Mark Scheme
(ii)	$\int_{-2}^{0} \left \frac{x+1}{2x-1} \right \mathrm{d}x$	
	$= \int_{-2}^{0} \left \frac{1}{2} + \frac{3}{2(2x-1)} \right dx$	
	$= \int_{-2}^{-1} \left(\frac{1}{2} + \frac{3}{2(2x-1)} \right) dx + \int_{-1}^{0} -\left(\frac{1}{2} + \frac{3}{2(2x-1)} \right) dx$	
	$= \left[\frac{1}{2}x + \frac{3}{4}\ln 2x - 1 \right]_{-2}^{-1} - \left[\frac{1}{2}x + \frac{3}{4}\ln 2x - 1 \right]_{-1}^{0}$	
	$= \left[-\frac{1}{2} + \frac{3}{4} \ln(3) - \left(-1 + \frac{3}{4} \ln(5) \right) \right] - \left[0 - \left(-\frac{1}{2} + \frac{3}{4} \ln 3 \right) \right]$	
	$= -\frac{1}{2} + \frac{3}{4} \ln 3 - \left(-1 + \frac{3}{4} \ln \left(5\right)\right) - \frac{1}{2} + \frac{3}{4} \ln 3$	
	$= -1 + \frac{3}{2} \ln 3 + 1 - \frac{3}{4} \ln 5$	
	$=\frac{3}{2}\ln 3 - \frac{3}{4}\ln 5$ (Shown)	

Q	Solution	Mark Scheme
5(i)	When $x = -\frac{1}{2}$, $y = \frac{1}{2} \tan^{-1} (-1) = \frac{1}{2} \left(-\frac{\pi}{4} \right) = -\frac{\pi}{8}$.	
	When $x = 0$, $y = \frac{0}{2} + \frac{1}{4} - \frac{\pi}{8} = \frac{1}{4} - \frac{\pi}{8}$	
	y-coordinate of $P = -\frac{\pi}{8}$; y-coordinate of $Q = \frac{1}{4} - \frac{\pi}{8}$	

$$= \pi \int_{-\frac{\pi}{8}}^{0} \left(\frac{1}{2} \tan(2y)\right)^{2} dy - \frac{\pi}{3} \left(\frac{1}{2}\right)^{2} \left[\frac{1}{4} - \frac{\pi}{8} - \left(-\frac{\pi}{8}\right)\right]$$

$$= \frac{\pi}{4} \int_{-\frac{\pi}{8}}^{0} \tan^{2}(2y) dy - \frac{\pi}{48}$$

$$= \frac{\pi}{4} \int_{-\frac{\pi}{8}}^{0} (\sec^{2}(2y) - 1) dy - \frac{\pi}{48}$$

$$= \frac{\pi}{4} \left[\frac{1}{2} \tan(2y) - y\right]_{-\frac{\pi}{8}}^{0} - \frac{\pi}{48}$$

$$= \frac{\pi}{4} \left[0 - \left(-\frac{1}{2} + \frac{\pi}{8}\right)\right] - \frac{\pi}{48}$$

$$= \frac{\pi}{4} \left(\frac{1}{2} - \frac{\pi}{8}\right) - \frac{\pi}{48}$$

$$= \frac{\pi}{8} \left(\frac{5}{6} - \frac{\pi}{4}\right) \text{ units}^{3}$$

Alternatively (more tedious mtd):

Required volume

$= \pi \int_{-\frac{\pi}{8}}^{0} \left(\frac{1}{2} \tan \left(2y \right) \right)^{2} dy - \pi \int_{-\frac{\pi}{8}}^{\frac{1}{4} - \frac{\pi}{8}} 4 \left(y - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^{2} dy$
$= \frac{\pi}{4} \int_{-\frac{\pi}{8}}^{0} \tan^{2}(2y) dy - 4\pi \int_{-\frac{\pi}{8}}^{\frac{1}{4} - \frac{\pi}{8}} \left(y - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^{2} dy$
$= \frac{\pi}{4} \int_{-\frac{\pi}{8}}^{0} \left(\sec^{2} (2y) - 1 \right) dy - 4\pi \int_{-\frac{\pi}{8}}^{\frac{1}{4} - \frac{\pi}{8}} \left(y - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^{2} dy$
$= \frac{\pi}{4} \left[\frac{1}{2} \tan(2y) - y \right]_{-\frac{\pi}{8}}^{0} - 4\pi \left[\frac{\left(y - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^{3}}{3} \right]_{-\frac{\pi}{8}}^{\frac{1}{4} - \frac{\pi}{8}}$
$= \frac{\pi}{4} \left[0 - \left(-\frac{1}{2} + \frac{\pi}{8} \right) \right] - \frac{4}{3} \pi \left[\left(\frac{1}{4} - \frac{\pi}{8} - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^3 - \left(-\frac{\pi}{8} - \left(\frac{1}{4} - \frac{\pi}{8} \right) \right)^3 \right]$
$=\frac{\pi}{4}\left(\frac{1}{2}-\frac{\pi}{8}\right)-\frac{4}{3}\pi\left[\left(\frac{1}{4}\right)^{3}\right]$
$=\frac{\pi}{4}\left(\frac{1}{2}-\frac{\pi}{8}\right)-\frac{\pi}{48}$
$=\frac{\pi}{8}\left(\frac{5}{6}-\frac{\pi}{4}\right) \text{ units}^3$

6(i)	Using Ratio Theorem,	
	$\overrightarrow{OP} = \frac{(1-\lambda)\mathbf{a} + \lambda\mathbf{b}}{1-\lambda+\lambda}$	
	$OF = \frac{1-\lambda+\lambda}{1-\lambda+\lambda}$	
	$= (1 - \lambda)\mathbf{a} + \lambda\mathbf{b}$	
	$\overrightarrow{OA} \bullet \overrightarrow{OP}$	
	$\cos(\angle AOP) = \frac{\overrightarrow{OA} \cdot \overrightarrow{OP}}{ \overrightarrow{OA} \overrightarrow{OP} }$	
	$\mathbf{a} \cdot [(1-\lambda)\mathbf{a} + \lambda \mathbf{b}]$	
	$= \frac{\mathbf{a} \cdot \left[(1 - \lambda) \mathbf{a} + \lambda \mathbf{b} \right]}{ \mathbf{a} (1 - \lambda) \mathbf{a} + \lambda \mathbf{b} }$	
	$= \frac{(1-\lambda)\mathbf{a} \cdot \mathbf{a} + \lambda \mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} (1-\lambda)\mathbf{a} + \lambda \mathbf{b} }$	
	$ \mathbf{a} (1-\lambda)\mathbf{a} + \lambda \mathbf{b} $	
	$= \frac{(1-\lambda) \mathbf{a} ^2 + 0}{ \mathbf{a} (1-\lambda)\mathbf{a} + \lambda\mathbf{b} }$	
	$= \frac{ \mathbf{a} (1-\lambda)\mathbf{a} + \lambda\mathbf{b} }{ \mathbf{a} (1-\lambda)\mathbf{a} + \lambda\mathbf{b} }$	
	since $\mathbf{a} \cdot \mathbf{b} = 0$ as \mathbf{a} and \mathbf{b} are perpendicular	
	$(1-\lambda) \mathbf{a} $	
	$= \frac{(1-\lambda) \mathbf{a} }{ (1-\lambda)\mathbf{a}+\lambda\mathbf{b} } \text{ (shown)}$	
(ii)	$[(1-\lambda)\mathbf{a} + \lambda\mathbf{b}] \bullet [(1-\lambda)\mathbf{a} + \lambda\mathbf{b}]$	
	$= (1 - \lambda)\mathbf{a} \bullet (1 - \lambda)\mathbf{a} + (1 - \lambda)\mathbf{a} \bullet \lambda\mathbf{b} + \lambda\mathbf{b} \bullet (1 - \lambda)\mathbf{a} + \lambda\mathbf{b} \bullet \lambda\mathbf{b}$	
	$= (1-\lambda)^2 \mathbf{a} ^2 + \lambda (1-\lambda) \mathbf{a} \cdot \mathbf{b} + \lambda (1-\lambda) \mathbf{b} \cdot \mathbf{a} + \lambda^2 \mathbf{b} ^2$	
	$= (1-\lambda)^2 \mathbf{a} ^2 + \lambda^2 \mathbf{b} ^2,$	
	since $\mathbf{a} \cdot \mathbf{b} = 0$ given that \mathbf{a} and \mathbf{b} are perpendicular	
	(Proven)	

Given also that OP bisects $\angle AOB$,

$$\angle AOP = \frac{\pi}{4}$$
,

$$\cos \frac{\pi}{4} = \frac{(1-\lambda)|\mathbf{a}|}{|(1-\lambda)\mathbf{a} + \lambda\mathbf{b}|}$$

$$\frac{1}{\sqrt{2}} = \frac{(1-\lambda)|\mathbf{a}|}{|(1-\lambda)\mathbf{a} + \lambda\mathbf{b}|}$$

$$\frac{1}{2} = \frac{(1-\lambda)^2 |\mathbf{a}|^2}{\left|(1-\lambda)\mathbf{a} + \lambda \mathbf{b}\right|^2}$$

$$= \frac{(1-\lambda)^2 |\mathbf{a}|^2}{\left[(1-\lambda)\mathbf{a} + \lambda \mathbf{b}\right] \cdot \left[(1-\lambda)\mathbf{a} + \lambda \mathbf{b}\right]}$$

$$=\frac{(1-\lambda)^2 \left|\mathbf{a}\right|^2}{\left(1-\lambda\right)^2 \left|\mathbf{a}\right|^2 + \lambda^2 \left|\mathbf{b}\right|^2}$$

$$(1-\lambda)^2 |\mathbf{a}|^2 + \lambda^2 |\mathbf{b}|^2 = 2(1-\lambda)^2 |\mathbf{a}|^2$$

Hence
$$(1-\lambda)^2 |\mathbf{a}|^2 = \lambda^2 |\mathbf{b}|^2$$

$$\frac{\left|\mathbf{a}\right|^2}{\left|\mathbf{b}\right|^2} = \frac{\lambda^2}{\left(1 - \lambda\right)^2}$$

$$\frac{|\mathbf{a}|}{|\mathbf{b}|} = \frac{\lambda}{(1-\lambda)}$$

$$\frac{|\mathbf{a}|}{|\mathbf{b}|} = \pm \frac{\lambda}{1 - \lambda} = \frac{\lambda}{1 - \lambda} \text{, reject } -\frac{\lambda}{1 - \lambda} \text{ since } 0 < \lambda < 1 \text{ and ratio of length}$$

is positive.

7(i) The rate of temperature change of a dead animal body is given by

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -a(\theta - \theta_0)$$
, where $a > 0$.

$$\frac{1}{(\theta - \theta_0)} \frac{\mathrm{d}\theta}{\mathrm{d}t} = -a$$

Integrating both sides

$$\int \frac{1}{\theta - \theta_0} d\theta = -a dt$$

 $\ln(\theta - \theta_0) = -at + C$, since $\theta - \theta_0 > 0$

where a and C are arbitrary constants.

$$\theta - \theta_0 = e^{-at+C} = Ae^{-kt}$$
, where $A = e^C$ and $k = a$

$$\Rightarrow \theta = \theta_0 + Ae^{-kt}$$
 (Shown)

(ii) $\theta_0 = 24$.

When t=0, $\theta = 36$ is $\frac{d\theta}{dt} = -2.5$ °C,

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - \theta_0), \text{ where } k > 0.$$

$$-2.5 = -k (36-24) \therefore k = \frac{5}{24}$$

Using $\theta = \theta_0 + Ae^{-kt}$

$$36 = 24 + A$$

$$\therefore A = 12$$

iii	$\theta = 24 + 12e^{-\frac{5}{24}t}$	
iv	A constant rate of decrease is not possible as the temperature of the	
	body of the dead animal will become 0°C or even negative at some	
0()	point in time, which is lower than the surrounding temperature.	
8(a)	Since the equation has all real coefficients, complex roots occur in	
	complex conjugate pairs.	
	Since $z = \frac{5}{3} - \frac{\sqrt{11}}{3}i$ is a complex root \Rightarrow its conjugate $z = \frac{5}{3} + \frac{\sqrt{11}}{3}i$	
	exists as a root of the equation.	

	$(z - (-2))(z - \left(\frac{5}{3} - \frac{\sqrt{11}}{3}i\right))(z - \left(\frac{5}{3} + \frac{\sqrt{11}}{3}i\right)) = 0$ $(z + 2)(z^2 - \frac{10}{3}z + 4) = 0 (*)$	
	$z^{3} - \frac{4}{3}z^{2} - \frac{8}{3}z + 8 = 0$ $\Rightarrow 3z^{3} - 4z^{2} - 8z + 24 = 0 (\#)$	
	$\therefore a = -4, b = -8, c = 24$	
8b (i)	$w = \frac{e^{i\theta} + e^{i\phi}}{e^{i\theta} - e^{i\phi}}$ $i\left(\frac{\theta + \phi}{2}\right) \qquad i\left(\frac{\theta - \phi}{2}\right) \qquad -i\left(\frac{\theta - \phi}{2}\right)$	
	$= \frac{e^{i\left(\frac{\theta+\phi}{2}\right)}}{e^{i\left(\frac{\theta+\phi}{2}\right)}} \times \frac{e^{i\left(\frac{\theta-\phi}{2}\right)} + e^{-i\left(\frac{\theta-\phi}{2}\right)}}{e^{i\left(\frac{\theta-\phi}{2}\right)} - e^{-i\left(\frac{\theta-\phi}{2}\right)}}$	
	$= \frac{2\cos\left(\frac{\theta - \phi}{2}\right)}{2i\sin\left(\frac{\theta - \phi}{2}\right)}$	
	$=\frac{1}{\mathrm{i}}\cot\left(\frac{\theta-\phi}{2}\right)$ $(\theta-\phi)$	
	$= -i\cot\left(\frac{\theta - \phi}{2}\right)$ $= e^{-i\frac{\pi}{2}}\cot\left(\frac{\theta - \phi}{2}\right)$	

Alternative method:

$$w = \frac{e^{i\theta} + e^{i\phi}}{e^{i\theta} - e^{i\phi}}$$

$$= \frac{(\cos\theta + i\sin\theta) + (\cos\phi + \sin\phi)}{(\cos\theta + i\sin\theta) - (\cos\phi + \sin\phi)}$$

$$= \frac{(\cos\theta + \cos\phi) + i(\sin\theta + \sin\phi)}{(\cos\theta - \cos\phi) + i(\sin\theta - \sin\phi)}$$

$$= \frac{2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right) + i\left(2\sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)\right)}{-2\left(\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)\right) + i\left(2\cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)\right)}$$

$$= \frac{\cos\left(\frac{\theta - \phi}{2}\right)\left(\cos\left(\frac{\theta + \phi}{2}\right) + i\sin\left(\frac{\theta + \phi}{2}\right)\right)}{\sin\left(\frac{\theta - \phi}{2}\right)\left(-\sin\left(\frac{\theta + \phi}{2}\right) + i\sin\left(\frac{\theta + \phi}{2}\right)\right)}$$

$$= \cot\left(\frac{\theta - \phi}{2}\right)\frac{\left(\cos\left(\frac{\theta + \phi}{2}\right) + i\sin\left(\frac{\theta + \phi}{2}\right)\right)}{i\left(\cos\left(\frac{\theta + \phi}{2}\right) + i\sin\left(\frac{\theta + \phi}{2}\right)\right)}$$

$$= \frac{1}{i}\cot\left(\frac{\theta - \phi}{2}\right) = e^{i\left(\frac{-\pi}{2}\right)}\cot\left(\frac{\theta - \phi}{2}\right) \text{ (Shown)}$$

b (ii)	$ w = \left e^{-i\frac{\pi}{2}} \cot\left(\frac{\theta - \phi}{2}\right) \right = \left e^{-i\frac{\pi}{2}} \right \left \cot\left(\frac{\theta - \phi}{2}\right) \right = \left \cot\left(\frac{\theta - \phi}{2}\right) \right $	
	$\left(-\frac{\pi}{2}, \text{ if } \cot\left(\frac{\theta-\phi}{2}\right) > 0\right)$	
	$\arg(w) = \begin{cases} \frac{\pi}{2}, & \text{if } \cot\left(\frac{\theta - \phi}{2}\right) < 0 \end{cases}$	

9(i)	Let T_n denote the distance covered by a runner from Besto on the
	<i>n</i> th training session.

Since T_n follows an arithmetic progression with common difference 250,

$$T_n = 400 + 250(n-1)$$

Given that $T_n \ge 20000$,

 $400 + 250(n-1) \ge 20000$

n	T_n
79	19900 < 20 000
80	20150 > 20 000
81	20400 > 20 000

The minimum value of n is 80.

(i) Let T_n denote the distance covered by a runner from Besto on the nth training session.

Since T_n follows an arithmetic progression with common difference 250,

$$T_n = 400 + 250(n-1)$$

Given that $T_n \ge 20000$,

$$400 + 250(n-1) \ge 20000$$

$$250(n-1) \ge 19600$$

$$n-1 \ge 78.4$$

$$n \ge 79.4$$

	The mi	nimum number of sess	ions for a runner to complete	at least
	20 km			
(ii)	n	Total distance cover	red in the <i>nth</i> stage	
	1	2(50)		
	2	2(50)+2(150)		
		=2(50)+2(3)(50)		
		=2(50)[1+3]		
	3	2(50)+2(150)+2((450)	
		=2(50)+2(3)(50)	$+2(3)^2(50)$	
		$= 2(50)[1+3+3^2]$		
	n	2(50)+2(3)(50)+	$2(3)^{2}(50)+\cdots+2(3)^{n-1}(50)$	
		$=2(50)[1+3+3^2+$	$\cdots + 3^{n-1}$	
		$=100\left[\frac{1(3^{n}-1)}{3-1}\right]$ $=50(3^{n}-1)$		
(iii)	To fine	d the number of compl	eted stages: $50(3^n-1) \le 4200$	0
	n		$50(3^n-1)$	
	5		12100 < 42 000	
	6		36400 < 42 000	
	7		109300 > 42 000	
	After c	ompleting 6 stages, the	e runner completed 36 400 m.	

Distance	remaining =	42	000 -	36	400 =	560	0

Given that $OP_7 = 50 \times 3^6 = 36450 > 5600$, the runner from Besto is running away from O at a distance of 5600 m and has not reached P_7 .

(iv) On the 10^{th} session, a runner from Choco would have completed $400(1.1)^9$ m

From 11th session onwards, using the new plan designed by

Choco, a runner will complete $400(1.1)^9 \left(1 + \frac{r}{100}\right)^{60}$.

$$400(1.1)^9 \left(1 + \frac{r}{100}\right)^{60} \ge 20000$$

$$(1 + \frac{r}{100})^{60} \ge 21.205$$

Let
$$x = \frac{r}{100}$$

$\frac{r}{100} \ge 0.05222$	
$r \ge 5.222 = 5.22$ (to 3 sf)	

10i	$X = (13 - 11\sin\theta)(13 - 11\cos\theta)$	
	$\frac{dX}{d\theta} = (-11\cos\theta)(13 - 11\cos\theta) + (13 - 11\sin\theta)(11\sin\theta)$	
	$= -143\cos\theta + 121\cos^2\theta + 143\sin\theta - 121\sin^2\theta$	
	$= 143\sin\theta - 143\cos\theta + 121(\cos\theta - \sin\theta)(\cos\theta + \sin\theta)$	
	$=143\sin\theta-143\cos\theta-121(\sin\theta-\cos\theta)(\cos\theta+\sin\theta)$	
	$=11(13(\sin\theta-\cos\theta))-121(\sin\theta-\cos\theta)(\cos\theta+\sin\theta)$	
	$=11(\sin\theta-\cos\theta)(13-11\sin\theta-11\cos\theta)$ (Shown)	
(ii)	$\frac{dX}{d\theta} = 0$ $\Rightarrow 11(\sin\theta - \cos\theta)(13 - 11\sin\theta - 11\cos\theta) = 0$ $\Rightarrow \sin\theta - \cos\theta = 0 \text{ or } 13 - 11\sin\theta - 11\cos\theta = 0$ $\Rightarrow \tan\theta = 1 \text{ or } 11\sin\theta + 11\cos\theta = 13(\#)$	
	Using <i>R</i> -formula to equation (1), $\sqrt{2}\sin(\theta + \alpha) = \frac{13}{11}$ where $\tan \alpha = 1$ $\Rightarrow \alpha = \frac{\pi}{2}$	

$\therefore \sqrt{2} \sin(\theta + \frac{\pi}{4})$	_ 13
$\therefore \sqrt{2} \sin(\theta + \frac{1}{4})$	=
7	11

$$\sin(\theta + \frac{\pi}{4}) = \frac{13}{11\sqrt{2}} - --(*)$$

$$\sin(\theta + \frac{\pi}{4}) = \frac{13}{11\sqrt{2}} - --(*)$$
where $k = \frac{13}{11\sqrt{2}}$ and $\alpha = \frac{\pi}{4}$
Solving $\tan \theta = 1$,

$$\Rightarrow \theta = \frac{\pi}{4}$$

$$\Rightarrow \sin(\theta + \frac{\pi}{4}) = 0.83567$$

$$\Rightarrow \theta + \frac{\pi}{4} = 0.98935$$

$$\Rightarrow \sin(\theta + \frac{\pi}{4}) = 0.83567$$

$$\Rightarrow \theta + \frac{\pi}{4} = 0.98935$$

$$\Rightarrow \theta = 0.20396 \text{ since } 0 \le \theta \le \frac{\pi}{4}$$

iii

Using first derivative test

θ	0.78	$\frac{\pi}{4}$	0.79
$\frac{\mathrm{d}X}{\mathrm{d}\theta}$	0.215 >0	0	-0.183 <0

Hence *X* is a maximum when $\theta_1 = \frac{\pi}{4}$

Using first derivative test

θ	0.203	0.20396	0.204
dX	-0.06997 <0	0	0.00318 >0
$\overline{\mathrm{d} \theta}$			

Hence *X* is a minimum when $\theta_2 = 0.20396$

Alternatively, use second derivative test

$$\frac{\mathrm{d}X}{\mathrm{d}\theta} = -143\cos\theta + 121\cos^2\theta + 143\sin\theta - 121\sin^2\theta$$

$$\frac{\mathrm{d}^2 X}{\mathrm{d}\theta^2} = 143\sin\theta - 242\cos\theta\sin\theta + 143\cos\theta - 242\sin\theta\cos\theta$$

$$= 143\sin\theta - 484\cos\theta\sin\theta + 143\cos\theta$$

$$=143\sin\theta-484\cos\theta\sin\theta+143\cos\theta$$

$$\left. \frac{\mathrm{d}^2 X}{\mathrm{d}\theta^2} \right|_{\theta = \frac{\pi}{4}} = -39.8 < 0$$

$$\frac{d^{2}X}{d\theta^{2}}\bigg|_{\theta=\frac{\pi}{4}} = -39.8 < 0$$

$$\frac{d^{2}X}{d\theta^{2}}\bigg|_{\theta=0.20396} = 72.999 > 0$$

Hence *X* is a maximum when $\theta = \frac{\pi}{4}$ and *X* is a minimum when $\theta = 0.20396$.

iv The greatest possible value of *X* is 27.3 m² when $\theta = \frac{\pi}{4}$.

	To find the minimum area covered by grass, we have to use the maximum			
	area X.			
	The area covered by grass			
	$=676-4(27.3)-\pi(11)^2$			
	$=187 \text{ m}^2$.			