Recursive Bayesian estimation of atom numbers

Article: Generation and detection of sub-Poissonian atom number distribution in a one-dimensional optical lattice

Freja Thilde Pedersen & Christoffer Østfeldt Niels Bohr Institute

Introduction to the problem

- 1D atomic trap with cesium atoms
- Measuring number of atoms non-demolishing
 - QND
 - Calibration $\phi = N_{at}\bar{\phi_1}$

Introduction to the problem

• Shot noise limited $\delta \phi = {1 \over 2 \sqrt{q N_{
m ph}}} \ , \ q = \epsilon (1-I) {\cal V} \eta = 0.40 \pm 0.04$

- Power trade off between precision and lifetime
 - Natural 1/e life time: 6.8 ms

Red data long lifetime, but noisy.

Goal of the article

- To estimate the atom number evolution with time
- Normal approach:
 - Measure stronger: then we will lose atoms
 - Measure longer and take average: the value we want to measure change in each realization
- Solution: measure weakly and update atom number estimator from previous measurements in each time step.

Recursive Bayesian estimation

- Include all losses as Markov process. Binomial
- Likelihood is estimated to be normal, i.e. gaussian shot noise is added to a given measurement.
- Posterior from last time step as prior for current estimation.

Recursive Bayesian estimation

• Fano factor: $F=(\Delta N_{\rm at})^2/\langle N_{\rm at} \rangle$ =-14 dB \to sub-poissonian

Recursive Bayesian estimation

Minimum fano factor is gaussianly distributed - it works!

