3 – Linguagens Livres de Contexto

Aula 12

Sumário

Capítulo 3 – Linguagens Livres de Contexto

- 3.1. Gramáticas Livres de Contexto
 - 3.1.1. Árvore de Derivação
 - 3.1.2. Ambiguidade
 - 3.1.3. Simplificação de Gramáticas Livres de Contexto
 - 3.1.4. Recursão à Esquerda
- 3.2. Autômato com pilha
- 3.3. Propriedades das Linguagens Livres de Contexto

Sumário

Capítulo 3 – Linguagens Livres de Contexto

3.1. Gramáticas Livres de Contexto

- 3.1.1. Árvore de Derivação
- 3.1.2. Ambiguidade
- 3.1.3. Simplificação de Gramáticas Livres de Contexto
- 3.1.4. Recursão à Esquerda
- 3.2. Autômato com pilha
- 3.3. Propriedades das Linguagens Livres de Contexto

Hierarquia de Chomsky

Tipo 0. Gramáticas com estruturas de frase

Tipo 1. Gram. Sensíveis ao contexto

- Nenhuma das regras de produção pode reduzir o comprimento da forma sentencial que for substituida
- Se $\alpha \rightarrow \beta$ então $|\alpha| <= |\beta|$

Tipo 2. Gram. Livres de contexto

- As regras tem apenas uma Variavel do lado esquerdo
- Não pode ter terminal do lado esquerdo
- Ex:
 - $A \rightarrow \beta$
 - Aa → β, não pode

Tipo 3. Gram. Regulares

- Deve ser Linear à direita ou à esquerda
- Ex:
 - A → aB | a
 - B → Ba | a
 - A → ABa, Não pode

Linguagens Livres de Contexto

- Estudo da classe de linguagens tipo 2
- É de fundamental importância
 - Tem um universo mais abrangente que as LR
 - Entretanto é uma classe relativamente restrita
 - Fácil definir linguagens que não pertencem a ela
 - Tem melhor aplicabilidade às linguagens de programação
 - Analisadores sintáticos
 - Tradutores de linguagens
 - Processadores de texto em geral

Linguagens Livres de Contexto

- Tem melhor aplicabilidade às linguagens de programação
 - Analisadores sintáticos
 - Tradutores de linguagens
 - Processadores de texto em geral
 - Ex:
 - Parênteses balanceados
 - begin begin end end
 - {{...}}
 - ((...))
 - Blocos e estruturas de controle
 - If <cond> then if <cond> then ... else else

Linguagens Livres de Contexto

- Estudaremos duas abordagens (Formalismos):
 - 1. Autômato com Pilha
 - Formalismo operacional ou reconhecedor
 - Análogo ao Autômato finito não-determinístico
 - Memória auxiliar: PILHA
 - Pode ser lida ou gravada
 - 2. Gramática livre de contexto
 - Formalismo axiomático ou gerador
 - Gramática com restrições da forma das regras de produção

• DEFINIÇÃO FORMAL:

$$G = (V, T, P, S)$$

- V conjunto finito de símbolos, variáveis ou não-terminais
- T conjunto finito de símbolos, terminais
- P produções
 - $\bullet \quad (V_U T)^+ \ \rightarrow \ (V_U T)^+$
 - Qualquer regra é da forma $A \rightarrow \alpha$
 - A é variável de V
 - α é palavra de (V _U T)*
- O lado esquerdo é composto por uma única variável

Livre de contexto??

- Sendo nossas produções do tipo
 - \forall \rightarrow α
- Em uma derivação qualquer, A deriva em α
 - Sem depender de qualquer análise
 - Não depende dos simbolos que antecedem ou que a sucedem, isto é "contexto"
 - Afinal regras desse tipo não pode: Aa → β, não pode
 - Como n\u00e3o dependem, pode-se dizer que s\u00e3o "livres de contexto"

• Seja a seguinte linguagem

$$L = \{ a^n b^n \mid n \ge 0 \}$$

Esta linguagem é regular?

Seja a seguinte linguagem

$$L = \{ a^n b^n \mid n \ge 0 \}$$

- Esta linguagem é regular?
- R: Pelo teorema que vimos no capitulo anterior, se conseguirmos criar um Automato para esta linguagem ela será regular
- Chamamos esta linguagem de *duplo balanceamento*
 - Muito utilizado em linguagens de programação

• Seja a seguinte linguagem

$$L = \{ a^n b^n \mid n \ge 0 \}$$

$$G = (\{S\},\{a,b\}, P, S)$$

GLC

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

Seja a seguinte linguagem

$$L = \{ a^n b^n \mid n > = 0 \}$$

$$s \rightarrow asb$$

 $s \rightarrow \epsilon$

 $G = (\{S\},\{a,b\}, P, S)$

Derivação da palavra <u>aabb</u>

$$S \rightarrow aSb \rightarrow aaSbb \rightarrow aabb$$

Expressões Aritméticas

L ={expressões aritméticas com colchetes balanceados, dois operadores e um operando}

- $G = (\{E\}, \{+, *, [,], x\}, P, E)$
- Derivação da palavra [x + x] * x

$$E \Rightarrow E * E \Rightarrow [E] * E \Rightarrow [E + E] * E$$
$$\Rightarrow [x + E] * E \Rightarrow [x + x] * E \Rightarrow [x + x] * x$$

GLC
$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow [E]$$

$$E \rightarrow X$$

GLC

 $E \rightarrow E + E$

 $E \rightarrow E * E$

Gramática livre de contexto

Expressões Aritméticas

L ={expressões aritméticas com colchetes balanceados, dois operadores e um operando}

- $G = (\{E\}, \{+, *, [,], x\}, P, E)$
- Derivação da palavra [x + x] * x

$$E \Rightarrow E * E \Rightarrow [E] * E \Rightarrow [E + E] * E$$
$$\Rightarrow [x + E] * E \Rightarrow [x + x] * E \Rightarrow [x + x] * x$$

 $\mathsf{E} \to [\mathsf{E}]$ $E \rightarrow x$

Existe outras formas de fazer essa derivação? Quais?

Sumário

- Capítulo 3 Linguagens Livres de Contexto
 - 3.1. Gramáticas Livres de Contexto
 - 3.1.1. Árvore de Derivação
 - 3.1.2. Ambiguidade
 - 3.1.3. Simplificação de Gramáticas Livres de Contexto
 - 3.1.4. Recursão à Esquerda
 - 3.2. Autômato com pilha
 - 3.3. Propriedades das Linguagens Livres de Contexto

- Árvore de derivação
 - representa a derivação de uma palavra na forma de árvore
 - parte do símbolo inicial como a raiz
 - termina em símbolos terminais como folhas
- Conveniente em muitas aplicações
 - Compiladores
 - Processadores de texto

- Definição:
 - Raiz: símbolo inicial
 - Vértices interiores: variáveis
 - se A é um vértice interior e X_1 , X_2 ,..., X_n são os "filhos" de A
 - $A \rightarrow X_1$, X_2 ,..., X_n é uma produção da gramática
 - X₁, X₂,...,X_n são ordenados da esquerda para a direita
 - Vértice folha ou folha: terminal ou o símbolo vazio
 - se vazio: único filho de seu pai $(A \rightarrow \epsilon)$

- Exemplo 1
 - Derivando aabb

- Exemplo 1
 - Derivando aabb

- Exemplo 2
 - Derivando [x + x] * x

- Exemplo 1
 - Derivando aabb

Note que podemos fazer derivações DISTINTAS para uma mesma PALAVRA

- Exemplo 2
 - Derivando [x + x] * x

- Uma derivação pode ser classificada de acordo com a forma de aplicação
 - Mais a direita, ou
 - Mais a esquerda
- Derivação mais a direita
 - Sequencia de produções <u>aplicada</u> sempre <u>à variáve</u>l mais a <u>direita</u> da palavra
 - Ex: x+x*x
 - $E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$
- Derivação mais a esquerda
 - Sequencia de produções *aplicada* sempre *à variáve*l mais a *esquerda* da palavra
 - Ex: x+x*x
 - $E \Rightarrow E^*E \Rightarrow E^*E \Rightarrow X^*E \Rightarrow X$

Sumário

- Capítulo 3 Linguagens Livres de Contexto
 - 3.1. Gramáticas Livres de Contexto
 - 3.1.1. Árvore de Derivação
 - 3.1.2. Ambiguidade
 - 3.1.3. Simplificação de Gramáticas Livres de Contexto
 - 3.1.4. Recursão à Esquerda
 - 3.2. Autômato com pilha
 - 3.3. Propriedades das Linguagens Livres de Contexto

- <u>Definição</u>: Uma gramática ambígua é ambígua se existe uma palavra associada a <u>duas ou mais árvores</u> de derivação
- Exemplo:
 - Seja a palavra x + x * x

- É possível construir mais de uma derivação a direita ou esquerda
- Seja a palavra x + x * x
- À esquerda
 - $E \Rightarrow E + E \Rightarrow X + E \Rightarrow X + E * E \Rightarrow X + X * E \Rightarrow X + X * X$
 - $E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow X+E*E \Rightarrow X+X*E \Rightarrow X+X*X$
- À direita
 - $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * X \Rightarrow E + X * X \Rightarrow X + X * X$
 - $E \Rightarrow E * E \Rightarrow E * X \Rightarrow E + E * X \Rightarrow E + X * X \Rightarrow X + X * X$

• Seja a gramática G

Gramática $S \rightarrow \mathbf{a}AB\mathbf{e}$ $A \rightarrow A\mathbf{b}\mathbf{c} \mid \mathbf{b}$ $B \rightarrow \mathbf{d}$

Esta gramática é ambígua?

Qual das derivações são válidas para a gramática G?

Gramática $S \rightarrow aXa$ $X \rightarrow \epsilon \mid bY$ $Y \rightarrow \epsilon \mid cXc \mid d$

Derivação 1
S →
axa →
aa

S →
axa →
abYa →
acXca →
acca

S →
axa →
abYa →
abcXcda →
abccda

Esta gramática é ambígua?

Derivação 4
S →
axa →
abYa →
abcXca →
abcbYcaabc →
bdca

- Exercicio 3.5, livro. Seja a gramática **G** abaixo:
- $G=({S},{a,b}, P, S)$

GLC S → SS | aSa | bSb | ε

- Qual a linguagem gerada?
- Esta gramática é ambígua?
- Para a palavra aabbaaaa
 - Construa uma arvore de derivação
 - Para a árvore construída, determine a derivação mais a esquerda e mais a direita

• Seja a gramática **G** abaixo:

```
expr_list → expr_list expr_ptv | expr_ptv;

expr_ptv → expr PTVIRG;

expr → expr MAIS expr | expr MENOS expr | INTEIRO;
```

- Faça algumas derivações;
- Esta gramática é ambígua?