

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Infineon Technologies Bipolar GmbH & Co. KG

DD171N	DD171NKA	DD171NKI
ND171N		

Elektrische Eigenschaften / Electrical properties

Höchstzulässige Werte / Maximum rated values

Periodische Spitzensperrspannung repetitive peak reverse voltages	$T_{vj} = -40^{\circ}C\ T_{vjmax}$	V_{RRM}	1200 1400 1600 1800	
Stoßspitzensperrspannung non-repetitive peak reverse voltage	$T_{vj} = +25^{\circ}C \ T_{vj \ max}$	V _{RSM}	1300 1500 1700 1900	1
Durchlaßstrom-Grenzeffektivwert maximum RMS on-state current		I _{FRMSM}	270	А
Dauergrenzstrom average on-state current	T _C = 100°C	I _{FAVM}	171	A
Stoßstrom-Grenzwert surge current	$T_{vj} = 25 \text{ °C}, t_P = 10 \text{ ms}$ $T_{vj} = T_{vj \text{ max}}, t_P = 10 \text{ ms}$	I _{FSM}	6.600 5.600	
Grenzlastintegral I²t-value	$T_{vj} = 25 \text{ °C}, t_P = 10 \text{ ms}$ $T_{vj} = T_{vj \text{ max}}, t_P = 10 \text{ ms}$	I²t	218.000 157.000	_

Charakteristische Werte / Characteristic values

Durchlaßspannung on-state voltage	$T_{vj} = T_{vj max}$, $i_F = 500 \; A$	V _F	max.	1,26	V
Schleusenspannung threshold voltage	$T_{vj} = T_{vj max}$	V _(TO)		0,75	V
Ersatzwiderstand slope resistance	$T_{vj} = T_{vj max}$	r _T		0,8	mΩ
Sperrstrom reverse current	$T_{vj} = T_{vjmax}$, $v_R = V_{RRM}$	i _R	max.	20	mA
Isolations-Prüfspannung insulation test voltage	RMS, f = 50 Hz, t = 1 sec RMS, f = 50 Hz, t = 1 min	V _{ISOL}		3,0 2,5	

Thermische Eigenschaften / Thermal properties

Innerer Wärmewiderstand thermal resistance, junction to case	pro Modul / per Module, Θ = 180° sin pro Zweig / per arm, Θ = 180° sin pro Modul / per Module, DC pro Zweig / per arm, DC	R _{thJC}	max. max. max. max.	0,130 0,260 0,126 0,252	°C/W
Übergangs-Wärmewiderstand thermal resistance, case to heatsink	pro Modul / per Module pro Zweig / per arm	R _{thCH}	max. max.		°C/W
Höchstzulässige Sperrschichttemperatur maximum junction temperature		T _{vj max}		150	°C
Betriebstemperatur operating temperature		Тсор	- 40)+150	°C
Lagertemperatur storage temperature		T _{stg}	- 40)+150	°C

prepared by:	A.Glunz	date of publication:	2016-01-28
approved by:	M.Leifeld	revision:	3.1

Netz-Dioden-Modul Rectifier Diode Module

DD171N

Infineon Technologies Bipolar GmbH & Co. KG

Mechanische Eigenschaften / Mechanical properties

Gehäuse, siehe Anlage			Seite 3	
case, see annex			page 3	
Si-Element mit Druckkontakt Si-pellet with pressure contact				
Innere Isolation internal insulation			AIN	
Anzugsdrehmoment für mechanische Anschlüsse mounting torque	Toleranz ±15%	M1	6	Nm
Anzugsdrehmoment für elektrische Anschlüsse terminal connection torque	Toleranz ±10%	M2	6	Nm
Gewicht weight		G	typ. 310	g
Kriechstrecke creepage distance			15	mm
Schwingfestigkeit vibration resistance	f = 50 Hz		50	m/s²
A I	file-No.		E 83336	

N

Datenblatt / Data sheet

(infineon

Netz-Dioden-Modul **Rectifier Diode Module**

DD171N

Infineon Technologies Bipolar GmbH & Co. KG

Netz-Dioden-Modul Rectifier Diode Module

DD171N

Analytische Elemente des transienten Wärmewiderstandes Z _{thJC} für DC Analytical elements of transient thermal impedance Z _{thJC} for DC								
Pos. n	1	2	3	4	5	6	7	
R _{thn} [°C/W]	0,0094	0,0224	0,0586	0,162				
T _n [s]	0,0014	0,0253	0,267	1,68				

Analytische Funktion / Analytical function:

$$Z_{thJC} \ = \sum_{n=1}^{n_{max}} R_{thn} \left[1 \ - e^{\frac{-t}{\tau_n}} \right]$$

Transienter innerer Wärmewiderstand je Zweig / Transient thermal impedance per arm $Z_{thJC} = f(t)$

Parameter: Stromflußwinkel Θ / Current conduction angle Θ

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Infineon Technologies Bipolar GmbH & Co. KG

Natürliche Kühlung / Natural cooling 3 Module pro Kühler / 3 modules per heatsink Kühler / Heatsink type: KM17 (60W)								
Analytische Elemente des transienten Wärmewiderstandes Z _{thCA} Analytical elements of transient thermal impedance Z _{thCA}								
Pos. n	1	2	3	4	5	6	7	
R _{thn} [°C/W]	0,0505	0,1235	1,616					
T _n [s]	2,97	21,4	1180					

Verstärkte Kühlung / Forced cooling
3 Module pro Kühler / 3 modules per heatsink
Kühler / Heatsink type: KM17 (Papst 4650)

Analytische Elemente des transienten Wärmewiderstandes Z thca
Analytical elements of transient thermal impedance Z thca

Pos. n	1	2	3	4	5	6	7
R _{thn} [°C/W]	0,026	0,119	0,515				
T _n [s]	2,41	13,6	354				

Analytische Funktion / Analytical function:

$$Z_{thCA} = \sum_{n=1}^{n_{max}} R_{thn} \left[1 - e^{\frac{-t}{\tau_n}} \right]$$

Infineon Technologies Bipolar

GmbH & Co. KG

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Durchlassverlustleistung je Zweig / On-state power loss per arm $P_{FAV} = f(I_{FAV})$

Parameter: Stromflußwinkel / Current conduction angle Θ

Höchstzulässige Gehäusetemperatur / Maximum allowable case temperature $T_C = f(I_{FAVM})$

Strombelastung je Zweig / Current load per arm

Berechungsgrundlage P_{TAV}
Calculation base P_{TAV}

Parameter: Stromflußwinkel Θ / Current conduction angle Θ

infineon

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Infineon Technologies Bipolar GmbH & Co. KG

Höchstzulässiger Ausgangsstrom / Maximum rated output current ID

B2- Zweipuls-Brückenschaltung / Two-pulse bridge circuit

Gesamtverlustleistung der Schaltung / Total power dissipation at circuit Ptot

Parameter:

Wärmewiderstand zwischen den Gehäusen und Umgebung / Thermal resistance cases to ambient RthCA

Höchstzulässiger Ausgangsstrom / Maximum rated output current I_D

B6- Sechspuls-Brückenschaltung / Six-pulse bridge circuit

Gesamtverlustleistung der Schaltung / Total power dissipation at circuit Ptot

Parameter:

Wärmewiderstand zwischen den Gehäusen und Umgebung / Thermal resistance cases to ambient R_{thCA}

infineon

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Sperrverzögerungsladung / Recovered charge Q_r = f(-di/dt)

 $T_{vj} = T_{vjmax}$, $v_R \le 0.5 \ V_{RRM}$, $v_{RM} = 0.8 \ V_{RRM}$

Parameter: Durchlaßstrom / On-state current iFM

Grenzstrom je Zweig / Maximum overload on-state current per arm $I_{F(OV)M} = f(t)$, $v_{RM} = 0.8 V_{RRM}$

a: Leerlauf / No-load conditions

b: Vorlaststrom je Zweig / Pre-load current per arm I_{FAV(vor)} = I_{FAVM}

T_a = 35°C, verstärkte Luftkühlung / Forced air cooling Kühlkörper / Heatsink type: KM17 (Papst 4650)

T_a = 45°C, natürliche Luftkühlung / Natural air cooling Kühlkörper / Heatsink type: KM17 (60W)

infineon

Netz-Dioden-Modul
Rectifier Diode Module

DD171N

Überstrom je Zweig / Overload on-state current IF(OV)

B6- Sechspuls-Brückenschaltung, 120° Rechteck / Six-pulse bridge circuit, 120° rectangular Kühlkörper / Heatsink type KM17 (60W) Natürliche Kühlung bei / Natural cooling at $T_A = 45$ °C

Parameter: Vorlaststrom je Zweig / Pre-load current per arm IFAV(vor)

Überstrom je Zweig / Overload on-state current IF(OV)

B6- Sechspuls-Brückenschaltung, 120° Rechteck / Six-pulse bridge circuit 120° rectangular Kühlkörper / Heatsink type KM17 (Papst 4650) Verstärkte Kühlung bei / Forced cooling at $T_A = 35$ °C

Parameter: Vorlaststrom je Zweig / Pre-load current per arm IFAV(vor)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

<u>DD171N14K DD171N18K ND171N18K ND171N14K DD171N16K DD171N12K ND171N16K ND171N12K ND171N12K ND171N12K-A DD171N12K-A DD171N18KHPSA2 ND171N16KHPSA2 DD171N16KHPSA2 DD171N16KHPSA2 ND171N18KHPSA2 ND171N18KHP</u>