Subset Mex

Aufgabenname	Subset Mex
Eingabedatei	Standardeingabe
Ausgabedatei	Standardausgabe
Zeitlimit	1 Sekunde
Speicherlimit	256 Megabytes

Eine *Multimenge* ist eine Sammlung von Elementen, ähnlich einer Menge, wobei Elemente mehrfach vorkommen können. Das Folgende ist ein Beispiel einer Multimenge:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Gegeben eine Multimenge S, welche aus nicht-negativen Ganzzahlen besteht, und einem nichtnegativen ganzzahligen Zielwert n, wobei n nicht in S enthalten ist. Dein Ziel ist es, n in Seinzufügen, indem du den folgenden 3-stufigen Prozess wiederholt durchführst:

- 1. Wähle eine (möglicherweise leere) Teilmenge *T* von *S* aus. Hierbei ist *T* eine Menge bestehend aus unterschiedlichen Zahlen, welche in *S* vorkommen.
- 2. Lösche alle Elemente in *T* aus *S* (entferne jeweils nur eine Instanz von jedem Element).
- 3. Füge **mex**(*T*) in *S* ein, wobei **mex**(*T*) die kleinste nicht-negative Ganzzahl ist, welche nicht in *T* enthalten ist. Der Name **mex** steht für **minimum excluded** *value* (minimaler ausgeschlossener Wert).

Dein Ziel ist es, die minimale Anzahl an auszuführenden Operation zu bestimmen, sodass n ein Teil von S wird.

Da die Grösse von S sehr gross sein kann, wird sie in Form einer Liste (f_0 , ..., f_{n-1}) der Länge n angegeben, wobei f_i angibt, wie oft die Zahl i in S vorkommt. Zur Erinnerung: n ist die Ganzzahl, welche wir in S einfügen wollen.

Eingabe

Die erste Zeile enthält eine einzelne Ganzzahl t (1 $\leq t \leq$ 200) — die Anzahl der Testfälle. Es folgen t Paare von Zeilen. Jedes Paar beschreibt einen Testfall:

- Die erste Zeile von jedem Testfall enthält eine einzelne Ganzzahl n (1 ≤ n ≤ 50), welche die in S einzufügende Ganzzahl repräsentiert.
- Die zweite Zeile von jedem Testfall enthält n Ganzzahlen $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), welche die Multimenge S darstellt, wie oben erklärt.

Ausgabe

Gib für jeden Testfall eine einzelne Zeile mit der minimalen Anzahl Operationen aus, welche benötigt werden, um das Ziel zu erreichen.

Teilaufgaben

```
1. (5 Punkte): n ≤ 2.
```

2. (17 Punkte): $n \le 20$.

3. (7 Punkte): $f_i = 0$.

4. (9 Punkte): f_i ≤ 1.

5. (20 Punkte): $f_i \le 2000$.

6. (9 Punkte): $f_0 \le 10^{16}$ und $f_j = 0$ (für alle $j \ne 0$).

7. (10 Punkte): Es gibt einen Wert i, für welchen $f_i \le 10^{16}$ und $f_j = 0$ (für alle $j \ne i$).

8. (23 Punkte): Keine weiteren Einschränkungen.

Beispiele

Standardeingabe	Standardausgabe
2	4
4	10
0 3 0 3	
5	
4 1 0 2 0	

Bemerkung

Im ersten Beispiel haben wir zu Beginn $S = \{1,1,1,3,3,3\}$ und unser Ziel ist es, 4 in S einzufügen. Wir können die folgenden Schritte machen.

- 1. wähle $T = \{\}$, dann wird S zu $\{0, 1, 1, 1, 3, 3, 3\}$
- 2. wähle $T = \{0, 1, 3\}$, dann wird $S zu \{1, 1, 2, 3, 3\}$
- 3. wähle $T = \{1\}$, dann wird S zu $\{0, 1, 2, 3, 3\}$
- 4. wähle $T = \{0, 1, 2, 3\}$, dann wird $S zu \{3, 4\}$