

our first proof (by construction)

even odd

For all then

our first proof (by construction)

Theorem

For all integers n, if n is even, then n^2 is even.

- Find the **formal definitions** for any terms in the theorem:
 - an integer n is called **even** if there is an integer k where n=2k
 - an integer n is called odd if there is an integer k where n=2k+1
- What is the grammatical structure of the theorem?
 - For all integers n, if n is even, then n^2 is even.

our first proof (by construction)

<u>Theorem</u>

For all integers n, if n is even, then n^2 is even.

