# 1 Der große Primzahlsatz

# 1.1 Elementare Primzahlverteilung

**Satz 1.5:** Die Menge  $\mathbb{P}$  ist unendlich.

<u>Beweis:</u> Ang.  $\mathbb{P} = \{p_1, \dots, p_r\}$  endlich.  $N = p_1 + \dots + p_r + 1 \not$  Fund. der Arithmetik

Satz 1.7: Die Reihe  $\sum_{p\in\mathbb{P}} \frac{1}{p}$  divergiert. Beweis: Ang. Reihe konvergiert  $\nleq$  Divergenz harmonische Reihe.

**Lemma 1.9:** 
$$n \in \mathbb{N}, p \in \mathbb{P}, 0 \leq j \leq n$$
. Dann gilt:   
 (i)  $v_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor = \sum_{k=1}^{\lfloor \frac{\log n}{\log p} \rfloor} \lfloor \frac{n}{p^k} \rfloor$  (Legendre) (ii)  $v_p(\binom{n}{j}) \leq \frac{\log n}{\log p}$  (iii)  $p^{v_p(\binom{n}{j})} \leq n$  (iv)  $\binom{n}{j} \leq n^{\pi(n)}$  (v)  $2^n \leq \binom{2n}{n} \leq 4^n$ 

(iii) 
$$p^{v_p(\binom{n}{j})} \le n$$
 (iv)  $\binom{n}{j} \le n^{\pi(n)}$  (v)  $2^n \le \binom{2n}{n} \le 4^n$ 

Korollar 1.10:  $\pi(2n) - \pi(n) < \log 4 \cdot \frac{n}{\log n}$ 

Beweis:  $\pi(2n) - \pi(n) = \#\{p|n und jedes dieser p taucht nur im Zähler von <math>\binom{2n}{n}$  auf. Beh. folgt mit Lemma 1.9.

**Proposition 1.11:** (i)  $n \ge 3 : \pi(n) > \frac{2}{3} \frac{n}{\log n}$  (ii)  $n \ge 2 : \pi(n) < 2 \frac{n}{\log n}$ 

### 1.2 Das Bertrandsche Postulat

**Lemma 2.1:** Zu  $n \in \mathbb{N}$  gibt es n aufeinanderfolgende Zahlen, die nicht prim sind.

**Lemma 2.6:** 
$$n \in \mathbb{N}, x \in \mathbb{R}_{\geq 0}$$
: (i)  $\log n = \sum_{d|n} \Lambda(d)$  (ii)  $\Psi(x) = \sum_{k=1}^{\infty} \theta\left(x^{\frac{1}{k}}\right)$ 

Satz 2.7: Für x>1 gibt es eine Primzahl in (x,2x] Beweis:  $\theta(x)=\sum_{p\leq x}\log p$  und zeigen:  $\theta(x)-\theta\left(\frac{x}{2}\right)>0$  für  $x\geq 2$ .  $\log(\lfloor x\rfloor!)=\sum_{e\leq x}\Psi\left(\frac{x}{e}\right)$ ,  $\Psi(x)-\Psi\left(\frac{x}{2}\right)\leq \frac{x}{2}\log 6$  und  $\Psi(x)-\Psi\left(\frac{x}{2}\right)\geq (x-1)\log 2-\log(x+1)-\frac{x}{3}\log 6$ . Nach Lemma 2.6(ii) gilt  $\Psi(x) \leq \theta(x) + 2\Psi\left(x^{\frac{1}{2}}\right)$ . Beh. folgt, wenn  $e^{\sqrt{x}} > 1 + x$  für x > 36.

### 1.3 Zahlentheoretische Funktionen

**Definition 3.1:** zt./arithmetische Funktion:  $f: \mathbb{N} \to \mathbb{C}$ ,  $\mathfrak{A}$  Menge der zt. Funktionen

**Definition 3.1:** zt./arithmetische Funktion: 
$$f: \mathbb{N} \to \mathbb{C}$$
,  $\mathfrak{A}$  Menge der zt. Funktionen **Beispiel 3.2:** (i)  $e(n) = \lfloor \frac{1}{n} \rfloor = \begin{cases} 1 & n=1 \\ 0 & \text{sonst} \end{cases}$  (ii)  $\mathfrak{1}(n) = 1$  (iii)  $\tau(n) = \#\{d: d|n\}$  (iv)  $\sigma_k(n) = \sum_{d|n} d^k$  (v)  $\Lambda(n) = \begin{cases} \log p & n=p^k \\ 0 & \text{sonst} \end{cases}$  (Mangoldt)  $\to \Psi(x) = \sum_{n \leq x} \Lambda(n)$  (vi)  $\varphi(n) = \#\{k \in \mathbb{N} | 1 \leq k \leq n, \operatorname{ggT}(n, k) = 1\}$  (Eulersche  $\varphi$ -Funktion) (vii)  $\mu(1) = 1, \mu(n) = \begin{cases} (-1)^k & n \text{ quadratfrei} \\ 0 & \text{sonst} \end{cases}$  (Möbiussche  $\mu$ -Funktion)

(iv) 
$$\sigma_k(n) = \sum_{d|n} d^k$$
 (v)  $\Lambda(n) = \begin{cases} \log p & n = p^k \\ 0 & \text{sonst} \end{cases}$  (Mangoldt)  $\to \Psi(x) = \sum_{n \le x} \Lambda(n)$ 

(vi) 
$$\varphi(n) = \#\{k \in \mathbb{N} | 1 \le k \le n, \operatorname{ggT}(n, k) = 1\}$$
 (Eulersche  $\varphi$ -Funktion)

(vii) 
$$\mu(1) = 1, \mu(n) = \begin{cases} (-1)^k & n \text{ quadratfrei} \\ 0 & \text{sonst} \end{cases}$$
 (Möbiussche  $\mu$ -Funktion)

**Definition 3.3:**  $f, g \in \mathfrak{A}$ , Dirichlet faltung:  $(f * g)(n) = \sum_{ab=n} f(a)g(b) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$ 

$$\textbf{Proposition 3.6:} \text{ (i) } \mu*\mathbb{1}=e \quad \text{ (ii) } \varphi*\mathbb{1}=id \quad \text{ (iii) } \mu*id=\varphi \quad \text{ (iv) } \Lambda*\mathbb{1}=\log p$$

**Definition 3.7:**  $0 \neq f \in \mathfrak{A}$  multiplikativ, falls f(mn) = f(m)f(n), ggT(n,m) = 1 und falls für alle strikt multiplikativ. (Bsp.:  $\sigma_k$ ,  $\mu$ ,  $\varphi$  mult.)

**Bemerkung 3.8:** (i) f invertierbar  $\Leftrightarrow f(1) \neq 0$  (ii)  $(\mathfrak{A}, +, *)$  nullteilerfreier Ring mit neu-(iii) f, g mult.  $\Rightarrow f * g$  mult.  $f(1) = 1, f^{-1}$  mult.

1

**Definition 3.10:**  $f \in \mathfrak{A} : F = f * \mathbb{1}$  Summatorfunktion (f mult.  $\Leftrightarrow F$  mult.)

**Satz 3.12:** (Möbiusscher Umkehrsatz) 
$$F(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} F(d) \mu\left(\frac{n}{d}\right)$$

**Definition 3.13:** formale Ableitung: 
$$f'(n) = f(n) \log n \Rightarrow (f+g)' = f'+g', (\alpha f)' = \alpha f', (f*g)' = f'*g + f*g', (f^{-1})' = -f'*(f'*f)^{-1}, f' \equiv 0 \Leftrightarrow f \in \mathbb{C}e$$

### 1.4 Wachstumsverhalten zt. Funktionen

**Definition 4.1:** 
$$f(x) = \mathcal{O}(g(x))$$
, falls  $\exists C > 0$  mit  $|f(x)| \le C|g(x)| \, \forall x$   $f(x) = g(x) + \mathcal{O}(h(x))$ , falls  $f(x) - g(x) = \mathcal{O}(h(x))$   $f(x) = \mathcal{O}(g(x)), g(x) = \mathcal{O}(f(x))$  und  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \Rightarrow f \sim g$  (asymptotisch gleich)

Lemma 4.2: 
$$f_1 = \mathcal{O}(h) = f_2 \Rightarrow \alpha_1 f_1 + \alpha_2 f_2 = \mathcal{O}(h), f = g + \mathcal{O}(h) \Rightarrow fp = gp + \mathcal{O}(hp)$$

**Lemma 4.3:** Euler-Mascheroni-Konstante: 
$$\gamma_E = \lim_{N \to \infty} \left( \sum_{n=1}^{\infty} \frac{1}{n} - \log N \right) \approx \frac{1}{\sqrt{3}}$$
  
Beweis:  $a_N = \sum_{n=1}^{\infty} \frac{1}{n} - \log N$ ,  $a_N - a_{N+1} > 0$ ,  $a_N > 0$ 

 $\begin{aligned} &\textbf{Satz 4.6:} \text{ (Eulersche Summenformel:) } 0 < a < b, f: [a,b] \rightarrow \mathbb{R} \text{ stetig diffbar } \Rightarrow \sum_{a < n \leq b} f(n) = \\ & \int_a^b f(t) \mathrm{d}t + \int_a^b (t - \lfloor t \rfloor) f'(t) \mathrm{d}t - f(b) (b - \lfloor b \rfloor) (a - \lfloor a \rfloor) \\ & \underline{\text{Beweis:}} \ m = \lfloor a \rfloor + 1, M = \lfloor b \rfloor, n, n + 1 \in [a,b] \cap \mathbb{N} : \int_{n-1}^n \lfloor t \rfloor f'(t) \mathrm{d}t = n f(n) - (n-1) f(n-1) - f(n) \Rightarrow \\ & \int_m^M \lfloor t \rfloor f'(t) \mathrm{d}t = \sum_{n=m}^M (n f(n) - (n-1) f(n-1) - f(n)) = M f(M) - (m-1) f(m) - \sum_{a < n \leq b} f(n) \\ & \text{und } \int_a^m \lfloor t \rfloor f'(t) \mathrm{d}t = (m-1) (f(m) - f(a)), \int_M^b \lfloor t \rfloor f'(t) \mathrm{d}t = M (f(b) - f(M)) \Rightarrow \sum_{a < n \leq b} f(n) = \\ & - \int_a^b \lfloor t \rfloor f'(t) \mathrm{d}t + \lfloor b \rfloor f(b) - \lfloor a \rfloor f(a). \text{ Partielle Integration: } \int_a^b \lfloor t \rfloor f'(t) \mathrm{d}t = b f(b) - a f(a) - \int_a^b t f'(t) \mathrm{d}t. \end{aligned}$ 

Satz 4.7: (i) 
$$\sum_{n \leq x} \frac{1}{n} = \log x + \gamma_E + \mathcal{O}\left(\frac{1}{x}\right)$$
 (ii)  $\sum_{n \leq x} n^{-s} = \frac{x^{1-s}}{1-s} + \zeta(s) + \mathcal{O}(x^{-s}), s > 1$  (iii)  $\sum_{n \geq x} n^{-s} = \mathcal{O}(x^{1-s}), s \in \mathbb{R}, s > 1$  (iv)  $\sum_{n \leq x} \frac{x^{1-s}}{1-s} + \mathcal{O}(x^{\beta}), \beta = \max\{0, -s\}, s < 1\}$  Beweis: Eulersche Summenformel und  $\int_1^\infty \frac{t - \lfloor t \rfloor}{t^2} dt = 1 - \gamma_E$ 

Satz 4.8:  $\sum_{n \leq x} \tau(n) = x \log x + (2\gamma_E - 1)x + \mathcal{O}(\sqrt{x})$ Beweis:  $\sum_{n \leq x} \tau(n) = \sum_{n \leq x} \sum_{qd=n} 1 = 2 \sum_{qd \leq x, q \leq d} 1 - \lfloor \sqrt{x} \rfloor$  (Quadratzahlen doppelt gezählt und unterhalb von  $x \lfloor \sqrt{x} \rfloor$  Quadratzahlen).

$$\begin{array}{l} \textbf{Satz 4.10:} \ x \geq 2: \sum_{n \leq x} \sigma_1(n) = \frac{1}{2} \zeta(2) x^2 + \mathcal{O}(x \log x) \\ \underline{\textbf{Beweis:}} \ n = qd \ \text{und Summen umformen mit Satz 4.7:} \ \sum_{n \leq x} \sum_{d \mid n} d = \sum_{q \leq x} \sum_{d \leq \frac{x}{q}} d = \\ \sum_{q \leq x} \left( \frac{x^2}{2q^2} + \mathcal{O}\left(\frac{x}{q}\right) \right) = \frac{1}{2} x^2 \sum_{x \leq q} q^{-2} + \mathcal{O}\left(x \sum_{q \leq x} q^{-1}\right). \end{array}$$

Satz 4.11: 
$$\alpha > 0, \alpha \neq 1, \beta = \max\{1, \alpha\}, \delta = \max\{1, 1 - \alpha\}, x \geq 2$$
:  
(i)  $\sum_{n \leq x} \sigma_{\alpha}(n) = \frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1} + \mathcal{O}(x^{\beta})$  (ii)  $\sum_{n \leq x} \sigma_{-\alpha}(n) = \zeta(\alpha+1)x + \mathcal{O}(x^{\delta})$  (iii)  $\sum_{n \leq x} \sigma_{-1}(n) = \zeta(2)x + \mathcal{O}(\log x)$ 

**Proposition 4.12:** 
$$F,G:[1,\infty)\to\mathbb{C}:G(x)=\sum_{n\leq x}F\left(\frac{n}{x}\right),x\geq 1\Leftrightarrow F(x)=\sum_{n\leq x}\mu(n)G\left(\frac{n}{x}\right)$$

Korollar 4.13: Wahrscheinlichkeit, dass n natürliche Zahlen teilerfremd sind:  $\frac{1}{\zeta(n)}$ 

#### 1.5 Analytische Theorie der Dirichlet-Reihen

**Definition 5.1:** f zt. Fkt., Dirichlet-Reihe:  $D_f(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ 

**Definition 5.2:** Winkelbereich:  $s_0 \in \mathbb{C}, 0 \le \alpha \le \pi : W(s_0, \alpha) := \{s_0 + re^{it} | r \ge 0, -\alpha \le t \le \alpha\}$ 

Lemma 5.3: (Abelsches Lemma:) (i) f zt. Fkt.,  $F:[0,\infty)\to\mathbb{C}, F(x)=\sum_{n\leq x}f(n),g:(a,b]\to\mathbb{C}$  stetig und stückweise diffbar:  $\sum_{a\leq n\leq b}f(n)g(n)=F(b)g(b)-F(a)g(a)-\int_a^bF(t)g'(t)dt$  (ii) partielle Summation: f,g zt. Fkt.,  $F(M,N)=\sum_{n=M}^Nf(n),N\geq M:\sum_{n=M}^Nf(n)g(n)=\sum_{n=M}^{N-1}F(M,n)(g(n)-g(n+1))+F(M,N)g(N)$  Beweis: (ii) nachrechnen (i) mit (ii) (M=|a|+1,N=|b|) und F(0)=0 nachrechnen

**Satz 5.4:** (i) Existiert  $s_0 \in \mathbb{C}$ , s.d.  $D_f(s_0)$  konvergiert, so konvergiert die Reihe auf jedem Kompaktum und jedem Winkelbereich in  $\{s \in \mathbb{C} : \Re(s) > \Re(s_0)\}$  gleichmäßig. Außerdem:  $W(s_0, \alpha), \alpha < \frac{\pi}{2}$ 

(ii) Konvergenzabszisse der beschränkten Konvergenz:  $\exists \sigma_b$ , s.d  $D_f(s)$  für alle s mit  $\begin{cases} \Re(s) > \sigma_b \text{ konv.} \\ \Re(s) < \sigma_b \text{ div.} \end{cases}$ 

(iii)  $D_f(s)$  ist auf Halbebene  $\{s \in \mathbb{C} | \Re(s) > \sigma_b\}$  holomorph, Ableitungen gegeben durch  $D_f^{(k)}(s) = (-1)^k \sum_{n=1}^{\infty} f(n) (\log n)^k n^{-s}$  und insbesondere  $D_f'(s) = -D_{f'}(s)$ 

<u>Beweis:</u> (i)  $(Es_0 = 0 \Rightarrow D_f(0))$  konvergiert. Beh. für Winkelbereiche  $W(s_0, \alpha)$ : Partielle Summation für  $g(n) = n^{-s}$  und  $|n^{-s} - (n+1)^{-s}| \le \frac{1}{\cos \alpha} (n^{-\sigma} - (n+1)^{-\sigma})$ , dann folgt glm. Konvergenz mit Cauchy-Kriterium (ii),(iii) alle Summanden holomorph  $\Rightarrow$  nach Satz von Weierstraass  $D_f(s)$  und damit Ableitungen holomorph

**Korollar 5.6:** f zt. Fkt.,  $\sigma_b(f) < \infty$ , dann gilt für  $t \in \mathbb{R}$ :  $\lim_{\sigma \to \infty} D_f(\sigma + it) = f(1)$ 

**Satz 5.7:** (i) Existiert  $s_0 \in \mathbb{C}$ , s.d.  $D_f(s_0)$  absolut konvergiert, so konvergiert  $D_f(s)$  in der Halbebene  $\{s \in \mathbb{C} | \Re(s) \geq \Re(s_0)\}$  absolut gleichmäßig

(ii) Konvergenzabszisse der absoluten Konvergenz:  $\exists \sigma_a$ , s.d  $D_f(s)$  für alle s mit

$$\begin{cases} \Re(s) > \sigma_a \text{ abs. konv.} \\ \Re(s) < \sigma_a \text{ nicht abs. konv.} \end{cases}$$
 Dabei gilt  $\sigma_b(f) \le \sigma_a(f) \le \sigma_b(f) + 1$ 

<u>Bèweis:</u> (i)  $s_0 = \sigma_0 + it_0$ ,  $s = \sigma + it$  einsetzen und abschätzen (ii)  $\sigma_b \le \sigma_a$ , da aus absoluter Konvergenz auch Konvergenz folgt. Sei  $\sigma > \sigma_b + 1 : \sum_{n=1}^{\infty} f(n) n^{-(\sigma-1)}$  konvergiert,  $f(n) n^{-(\sigma-1)}$  Nullfolge und beschränkt durch c. zzg.:  $D_f(\sigma + \varepsilon)$  absolut konvergent  $\Rightarrow \sigma_a \le \sigma_b + 1$ 

Satz 5.9: f zt. Fkt.,  $F(x) = \sum_{n \leq x} f(x)$ ,  $x \geq 0$ . Wenn  $D_f(s)$  an der Stelle 0 divergiert, dann gilt:  $\sigma_b(f) = \limsup_{n \to \infty} \frac{\log |f(N)|}{\log N} = \inf\{\alpha \in \mathbb{R} : F(x) = \mathcal{O}(x^{\alpha})\} \ (\log(0) = -\infty)$ Beweis:  $\gamma := \inf\{\alpha \in \mathbb{R} : F(x) = \mathcal{O}(x^{\alpha})\} \Rightarrow \gamma, \sigma_b \geq 0$ , da  $D_f(0)$  divergiert und  $(f(N))_N$  keine Nullfolge. 3 Schritte: (1)  $\sigma_b \geq \gamma$  (2)  $\gamma \geq \sigma_b$  (3)  $\gamma = \limsup_{n \to \infty} \frac{\log |f(N)|}{\log N}$ 

**Satz 5.10:** (Satz von Landau:)  $f: \mathbb{N} \to [0, \infty)$  nichtnegative zt. Fkt. mit  $\sigma_a = \sigma_b \in \mathbb{R}$ . Dann hat  $D_f(s)$  in  $s_0 = \sigma_a$  keine hebbare Singularität, d.h. es gibt keinen Kreis um  $\sigma_a$ , in den  $D_f(s)$  holomorph fortgesetzt werden kann.

**Lemma 5.11:** Für  $k \in \mathbb{N}, \sigma > \sigma_a < \infty$  gilt:  $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T D_f(\sigma + it) k^{\sigma + it} dt = f(k)$ 

**Lemma 5.12:** f, g zt. Fkt. mit  $\sigma_a(f), \sigma_a(g)$ , dann gilt für  $\Re(s) > \max\{\sigma_a(f), \sigma_a(g)\}$ :  $D_f(s)D_g(s) = \sum_{n=1}^{\infty} \frac{f*g(n)}{n^s} = D_{f*g}(s)$ . Insbesondere für  $f(1) \neq 0$ :  $D_f(s)D_{f^{-1}}(s) = 1$  für  $\Re(s) > \max\{\sigma_a(f), \sigma_a(f^{-1})\}$ 

**Korollar 5.13:** (i) 
$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}, \Re(s) > 1$$
 (ii)  $\sum_{n=1}^{\infty} \varphi(n) n^{-s} = \frac{\zeta(s-1)}{\zeta(s)}, \Re(s) > 2$  (iii)  $\sum_{n=1}^{\infty} \sigma_{\alpha}(n) n^{-s} = \zeta(s) \zeta(s-\alpha), \alpha \in \mathbb{C}, \Re(s) > \max\{1, \Re(\alpha) + 1\}$ 

**Satz 5.14:** (Identitätssatz für Dirichlet-Reihen:) f,g zt. Fkt. mit konv. Dirichletreihe für  $\Re(s) > c$ : (i) Existiert nicht diskrete Teilmenge  $N \subseteq \{s \in \mathbb{C} : \Re(s) > c\}$  mit  $D_f(s) = D_g(s) \ \forall \ s \in N$ , so gilt  $f(n) = g(n) \ \forall \ n \in \mathbb{N}$ 

(ii) Gilt  $D_f(s_k) = D_g(s_k)$  für  $(s_k)_k \in \mathbb{C}$  mit  $\sigma_k = \Re(s_k) \to \infty, k \to \infty$ , dann  $f(n) = g(n) \ \forall \ n \in \mathbb{N}$ 

<u>Beweis:</u> (i) Id.Satz für holomorphe Fkt. und (ii) (ii)  $h(n) = f(n) - g(n) \Rightarrow D_h(s_k) = 0 \ \forall \ k$ , Annahme:  $h \not\equiv 0$  und Widerspruch

**Korollar 5.15:**  $\sigma_b(f) < \infty$ . Existiert  $n_0 \in \mathbb{N}$  mit  $f(n_0) \neq 0$  oder  $s_0 \in \mathbb{C}$  mit  $D_f(s_0) \neq 0$ , so existiert  $c > \sigma_b$  mit  $D_f(s) \neq 0 \ \forall \ s \in \mathbb{C}, \Re(s) > c$ .

Beweis: Ang. c existiert nicht  $\Rightarrow \exists s_k \in \mathbb{C}, \Re(s_k) > k, D_f(s_k) = 0 \Rightarrow D_f(s) = 0 \ \forall \ \Re(s) > \sigma_b \Rightarrow f(n) = 0 \ \forall \ n \in \mathbb{N}.$ 

Satz 5.16:  $f \not\equiv 0, \sigma_a(f) < \infty$ : f multiplikativ  $\Leftrightarrow$  Dirichlet-Reihe  $D_f(s)$  besitzt absolut konvergente Produktdarstellung  $D_f(s) = \prod_{p \in \mathbb{P}} \left( \sum_{\nu=1}^{\infty} f(p^{\nu}) p^{-\nu s} \right), \sigma > \sigma_a$  (Euler-Produkt) besitzt. Beweis:  $\prod_{n=1}^{\infty} a_n$  konvergiert absolut  $\Leftrightarrow \sum_{n=1}^{\infty} |a_n - 1|$  konvergiert.

$$\begin{array}{ll} \textbf{Korollar 5.17:} \ (\text{i}) \ \zeta(s) = \prod_p (1-p^{-s})^{-1}, \sigma > 1 & (\text{ii}) \ \frac{1}{\zeta(s)} = \prod_p (1-p^{-s}), \sigma > 1 \\ (\text{iii}) \ \frac{\zeta(s-1)}{\zeta(s)} = \prod_p \frac{1-p^{-s}}{1-p^{1-s}}, \sigma > 2 \\ (\text{iv}) \ \zeta(s)\zeta(s-\alpha) = \prod_p [(1-p^{-s})(1-p^{\alpha-s})]^{-1}, \alpha \in \mathbb{C}, \Re(s) > \max\{1, \Re(\alpha)+1\} \\ \underline{\text{Beweis:}} \ \text{Korollar 5.13, Satz 5.16 und } \sum_{\nu=0}^{\infty} p^{-\nu s} = (1-p^{-s})^{-1} \end{array}$$

## 1.6 Der große Primzahlsatz

**Lemma 6.1:** Für 
$$x > 0$$
 gilt:  $0 \le \frac{\Psi(x)}{x} - \frac{\theta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log 2}$ . Insb.:  $\lim_{x \to \infty} \left(\frac{\Psi(x)}{x} - \frac{\theta(x)}{x}\right) = 0$ .

 $\begin{array}{l} \textbf{Lemma 6.2: } \text{F\"{u}r } x \geq 2 \text{ gilt: (i) } \theta(x) = \pi(x) \log x - \int_2^x \frac{\pi(t)}{t} \mathrm{d}t & \text{(ii) } \pi(x) = \frac{\theta(x)}{\log x} + \int_2^x \frac{\theta(t)}{t} (\log t)^2 \mathrm{d}t \\ \underline{\text{Beweis: (i) Abelsche Summation: }} f(n) = \chi_{\mathbb{P}}(n), F(x) = \pi(x), g(n) = \log n, a = 1, b = x \\ \text{(ii) Abelsche Summation: } f(n) = \chi_{\mathbb{P}}(n) \log n, F(x) = \theta(x), g(n) = \log n, a = \frac{3}{2}, b = x \\ \end{array}$ 

Satz 6.3: (i) 
$$\pi(x) \sim \frac{x}{\log x} \Leftrightarrow$$
 (ii)  $\theta(x) \sim x \Leftrightarrow$  (iii)  $\Psi(x) \sim x$  Beweis: mit Lemma 6.2

**Satz 6.4:**  $\zeta(s)$  besitzt meromorphe Fortsetzung in die Halbebene  $\Re(s)>0$ . Die Fortsetzung ist holomorph bis auf einen einfachen Pol mit Residuum 1 in s=1. Es gilt  $\zeta(s)\neq 0$  für  $\Re(s)>1$  und  $\zeta(s)>0$  für  $0<\sigma<1$ .

**Lemma 6.5:** Für 
$$\sigma > 1, t \in \mathbb{R} : \zeta^3(\sigma) \cdot |\zeta(\sigma + it)|^4 \cdot |\zeta(\sigma + it)| \ge 1$$

**Satz 6.6:** Für 
$$t \in \mathbb{R} \setminus 0$$
 gilt  $\zeta(1+it) \neq 0$ 

**Bemerkung 6.7:** Nullstellen von  $\zeta(s)$  eng mit  $\pi(x)$  verbunden:  $\pi(x) = \frac{x}{\log x} + \mathcal{O}(x^{\beta} \log x), \beta = \sup\{\Re(s)|\zeta(s) = 0\} \to \text{Riemannsche Vermutung: } \beta = \frac{1}{2}$ 

**Lemma 6.8:** Für 
$$\Re(s) > 1$$
 gilt:  $-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=2}^{\infty} \Lambda(s) n^{-s} = s \int_{1}^{\infty} \frac{\Psi(t)}{t^{s+1}} dt$   
 $\underline{\text{Beweis:}} \Re(s) > 1 : \zeta(s) = e^{G(s)}, G(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\log n} n^{-s} \Rightarrow \frac{\zeta'(s)}{\zeta(s)} = -G(s) = -\frac{d}{ds} \left( \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\log n} n^{-s} \right) = \sum_{n=2}^{\infty} \Lambda(n) n^{-s} \text{ und } \Psi(x) = \Lambda(x) \Rightarrow \sum_{n=2}^{\infty} \Lambda(n) n^{-s} = s \int_{1}^{\infty} \frac{\Psi(t)}{t^{s+1}} dt.$ 

Satz 6.9: (von Tauber:)  $F:[0,\infty)\to\mathbb{C}$  beschränkt und auf jedem Intervall [0,R] Riemannintbar für R>0.  $\Rightarrow G(s)=\int_0^\infty F(x)e^{-xs}\mathrm{d}x,\Re(s)>0$  ist holomorph. Hat G in jeden Punkt der imaginären Achse eine holomorphe Fortsetzung in eine Umgebung des Punktes, dann existiert das uneigentl. Integral  $\int_0^\infty F(x)\mathrm{d}x=G(0)$ .

Satz 6.10: Sei  $f:[1,\infty)\to [0,\infty)$  monoton steigend und  $f(x)=\mathcal{O}(x)$ . Dann ist  $g(s):=s\int_1^\infty f(x)x^{-s-1}\mathrm{d}x$  holomorph für  $\Re(s)>1$ . Es gebe  $\gamma>0$ , s.d.  $g(s)-\frac{\gamma}{s-1}$  für jedes  $t\in\mathbb{R}$  eine holomorphe Fortsetzung in 1+it besitzt, dann gilt  $\lim_{x\to\infty}\frac{f(x)}{x}=\gamma$ .

Satz 6.11: (Großer Primzahlsatz:) Es gilt  $\pi(x) \sim \frac{x}{\log x}, x \to \infty$ .

### 1.7 Der Dirichlet'sche Primzahlsatz

**Definition 7.1:** Sei  $N \in \mathbb{N}$ .  $\chi : \mathbb{N} \to \mathbb{C}$  heißt Dirichlet'scher Charakter modulo N, wenn ein Gruppenhom.  $\tilde{\chi} : (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$  existiert mit  $\chi(n) = \begin{cases} \tilde{\chi}(n+N\mathbb{Z}) & \operatorname{ggT}(n,N) = 1 \\ 0 & \operatorname{sonst} \end{cases}$ 

**Bemerkung 7.2:** G endl. abelsche Gruppe,  $\tilde{\chi}: G \to \mathbb{C}^*$ : (i)  $G \simeq \hat{G} := \text{Hom}(G, \mathbb{C}^*)$ 

(ii) zu  $g \in G \setminus \{1\}$  existiert ein  $\tilde{\chi} \in \hat{G}$  mit  $\tilde{\chi}(g) \neq 1$  (iii) G kanonisch isomorph zu  $\hat{G}$  via  $g \mapsto (\tilde{\chi} \mapsto \tilde{\chi}(g))$  (iv) für  $\tilde{\chi} \in G$  gilt:  $\sum_{g \in G} \chi(g) = \begin{cases} \#G & \tilde{\chi} \equiv 1 \\ 0 & \text{sonst} \end{cases}$ 

(v) für 
$$g \in G$$
 gilt:  $\sum_{\tilde{\chi} \in \hat{G}} \tilde{\chi}(g) = \begin{cases} \#G & g = 1\\ 0 & \text{sonst} \end{cases}$ 

 $\chi_0(n) = \begin{cases} 1 & \text{ggT}(n, N) = 1 \\ 0 & \text{sonst} \end{cases}$  Hauptcharakter modulo N.

Satz 7.3: (i)  $\sum_{n(N)} \chi(n) = \begin{cases} \varphi(N) & \chi = \chi_0 \\ 0 & \text{sonst} \end{cases}$  (ii)  $\frac{1}{\varphi(N)} \sum_{n(N)} \chi_1(n) \overline{\chi_2(n)} = \begin{cases} 1 & \chi_1 = \chi_2 \\ 0 & \text{sonst} \end{cases}$ 

(iii) 
$$n \in \mathbb{Z} : \sum_{\chi(N)} \chi(n) = \begin{cases} \varphi(N) & n \equiv 1(N) \\ 0 & \text{sonst} \end{cases}$$

(iv) 
$$\operatorname{ggT}(n, N) = 1 : \frac{1}{\varphi(n)} \sum_{\chi(N)} \chi(n) \overline{\chi(n')} = \begin{cases} 1 & n \equiv n'(N) \\ 0 & \text{sonst} \end{cases}$$

**Definition 7.4:** Sei  $\chi$  ein Charakter modulo N. Dann heißt  $L(\chi, s) := D_{\chi}(s) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$  die Dirichlet'sche L-Reihe zu  $\chi$ .

**Proposition 7.5:** Es gilt  $\sigma_a(\chi_0) = \sigma_b(\chi_0) = 1$  und  $L(\chi_0, s) = \prod_{p \mid N} (1 - p^{-s}) \zeta(s) = \prod_{p \nmid N} (1 - p^{-s})^{-1} \neq 0$  für  $\Re(s) > 1$ .  $L(\chi_0, s)$  besitzt meromorphe Fortsetzung für  $\Re(s) > 0$  mit genau einem einfachen Pol in s = 1 mit Residuum  $\frac{\varphi(N)}{N}$ .

**Proposition 7.6:** Für  $\chi \neq \chi_0$  gilt  $\sigma_a(\chi) = 1, \sigma_b(\chi) = 0$ .  $L(\chi, s)$  ist für  $\Re(s) > 0$  holomorph und es gilt  $L(\chi, s) = \prod_{p \nmid N} (1 - \chi(p)p^{-s})^{-1}$  für  $\Re(s) > 1$ .

**Lemma 7.7:** Sei  $\chi$  Charakter mod N. Für  $\Re(s) > 1$  gilt:  $-\frac{L'(\chi,s)}{L(\chi,s)} = \sum_{n=2}^{\infty} \Lambda(n)\chi(n)n^{-s}$  und  $L(\chi,s) = \exp(G_{\chi}(s)), G_{\chi}(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)\chi(n)}{\log n}n^{-s}$ .

**Lemma 7.8:** Sei  $\chi$  reeller Charakter mod N. Dann gilt für  $\Re(s) > 1 : \zeta(s)L(\chi,s) = \sum_{n=1}^{\infty} a(n)n^{-s}$  mit  $a(n) \in \mathbb{R}_{\geq 0} \ \forall \ n \ \text{und} \ a(m^2) \geq 1 \ \forall \ m$ .

**Satz 7.9:** (i)  $L(\chi, 1+it) \neq 0 \ \forall t \in \mathbb{R} \setminus \{0\}$  (ii)  $\chi \neq \chi_0$ :  $L(\chi, 1) \neq 0$ 

**Definition 7.10:** Für ggT(r, N) = 1 sei  $\pi_{r,N}(x) := \#\{p \in \mathbb{P} : p \le x, p \equiv r(N)\}, \ \theta_{r,N}(x) := \sum_{p \le x, p \equiv r(N)} \log p \text{ und } \Phi_{r,N}(x) = \sum_{n \le x, n \equiv r(N)} \Lambda(n)$ 

Proposition 7.11:  $\lim_{x\to\infty} \frac{\Phi_{r,N}(x)}{x} = \frac{1}{\varphi(N)}$ 

Satz 7.12: (Dirichlet'scher Primzahlsatz:)  $\pi_{r,N}(x) \sim \frac{1}{\varphi(N)} \frac{x}{\log x}$ 

### 1.8 Aufgaben

**Aufgabe 1.1:** Menge der PZ der Form  $4n+3, n \in \mathbb{N}$  ist unendlich: Ang.  $\tilde{\mathbb{P}} = \{p_1, \dots, p_k\}, k < \infty \Rightarrow N = 4p_1 \cdots p_k - 1, N \equiv 3(4)$ , ungerade und  $p_i \nmid N$ . Sei  $N = q_1 \cdots q_r$  Primfaktorzerlegung. Ang.  $q_i \equiv 1(4) \Rightarrow N \equiv 1(4) \not = \exists j \text{ mit } q_j \equiv 3(4) \text{ und } q_j \notin \tilde{\mathbb{P}}$ .

**Aufgabe 2.1:** (i)  $\frac{n}{\varphi(n)} = \sum_{d|n} \frac{|\mu(d)|}{\varphi(d)}$ :  $f = \frac{|\mu|}{\varphi}, g = \frac{id}{\varphi}$ , zzg.:  $f * \mathbb{1} = g$ . f, g mult.  $\Rightarrow$  Beh. für Primzahlpotenzen. (ii)  $\tau(n^a) = \sum_{d|n} a^{\omega(d)}$  (iii)  $2^{\omega(d)} = \sum_{d|n} |\mu(d)|$ 

Aufgabe 3.1: Konv. von Dirichletreihen ganz normal mit Majoranten- oder Wurzelkriterium.

**Aufgabe 3.2:**  $f: \mathbb{N} \to \mathbb{C}$  zt. Fkt. und für  $x \geq 1, F(x) := \sum_{n \leq x} f(n)$ . Wenn  $D_f(s)$  in s = 0 divergiert, gilt für  $s \in \mathbb{C}, \Re(s) > \sigma_b$ :  $D_f(s) = s \int_1^\infty \frac{F(x)}{x^{s+1}} dx$ .

Aufgabe 3.3:  $\sum_{p \le x} \frac{1}{p} \sim \log \log x, x \to \infty : \sum_{n \le x} \frac{1}{n} \sim \int_1^x \frac{1}{t} dt = \log x$ 

**Aufgabe 3.4:** (i)  $\sum_{n=1}^{\infty} \tau(n^2) n^{-s} = \frac{\zeta^3(s)}{\zeta(2s)}, \Re(s) > 1$ : Euler-Produkt und geometrische Reihe (ii)  $\sum_{n=1}^{\infty} \tau^2(n) n^{-s} = \frac{\zeta^4(s)}{\zeta(2s)}, \Re(s) > 1$ : analog

**Aufgabe 3.5:**  $f: \mathbb{N} \to \mathbb{C}, f(1) \neq 0, \sigma_a < \infty, D_f(s) \neq 0$ , dann gilt für  $\sigma > c \geq \sigma_a : D_f(s) = \exp(D_g(s)), D_g(s) = \log(f(1)) + \sum_{n=2}^{\infty} \frac{f'*f^{-1}}{\log n} n^{-s}.$  G(s), s.d.  $\zeta(s) = e^{G(s)} : \text{Sei } f = i \equiv 1 \Rightarrow f'(n) = \ln(n), f^{-1}(n) = \mu(n) \Rightarrow G(s) = \sum_{n=2}^{\infty} \frac{\ln *\mu(n)}{\ln(n)} n^{-s} = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\ln(n)} n^{-s}, \sigma > \sigma_b(i) = 1.$ 

Aufgabe 4.2:  $Li(x) = \int_2^x \frac{1}{\log t} dt \sim \frac{x}{\log x}$ 

**Aufgabe 5.1:** Dirichlet'sche Charaktere mod N angeben: 1.  $\#(\mathbb{Z}/N\mathbb{Z})^{\times} = \#$  Dirichlet'sche Charaktere mod N 2. immer Hauptcharakter 3. andere Charaktere: eind. bestimmt durch Werte in  $(\mathbb{Z}/N\mathbb{Z})^{\times}$ ,  $\chi(g) \in \mathbb{C}^{\times} = \{z \in \mathbb{C} : |z| = 1\}$ ,  $\sum_{g(N)} \chi(g) = 0$ , Multiplikativität ausnutzen

# 2 Die Riemannsche $\zeta$ -Funktion und Dirichlet'sche L-Reihen

### 2.1 Die $\Gamma$ -Funktion

**Definition 1.1:** Die Γ-Funktion ist für  $\Re(s) > 0$  definiert durch  $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$ .

**Proposition 1.2:** Das Integral  $\Gamma(s)$  konvergiert für  $\Re(s) > 0$  absolut und stellt dort eine holomorphe Funktion dar.

Satz 1.4: Die Γ-Funktion besitzt eine meromorphe Fortsetzung auf ganz  $\mathbb{C}$ . Diese ist holomorph bis auf einfache Pole in  $s=-m, m\in\mathbb{N}_0$  mit  $Res_{-m}\Gamma(s)=\frac{(-1)^m}{m!}$ . Sie ist gegeben durch die Partialbruchentwicklung  $\Gamma(s)=\int_1^\infty t^{s-1}e^{-t}\mathrm{d}t+\sum_{m=0}^\infty\frac{(-1)^m}{m!}\frac{1}{s+m}$ . Es gilt  $\Gamma(s+1)=s\Gamma(s)$  für  $s\in\mathbb{C}\setminus\{-\mathbb{N}_0\}$  und  $\Gamma(m+1)=m!, m\in\mathbb{N}_0$ .  $\Gamma(s)$  ist auf jedem  $\nu_{a,b}:=\{s\in\mathbb{C}: a\leq\Re(s)\leq b\}, 0< a< b$  beschränkt.

**Satz 1.5:** (Eindeutigkeitssatz von Wielandt:) Sei  $F : \mathbb{H} \to \mathbb{C}$  holomorph mit F(s+1) = sF(s) und beschränkt auf jedem Vertikalstreifen  $\nu_{a,b}$ . Dann gilt  $F(s) = F(1)\Gamma(s)$ .

**Lemma 1.6:** Sei  $\sum_{n=1}^{\infty} f_n(z)$  eine absolut gleichmäßig konvergente Reihe holomorpher Funktionen auf dem Gebiet  $D \subseteq \mathbb{C}$ . Dann definiert  $F(z) = \prod_{n=1}^{\infty} (1 + f_n(z))$  eine holomorphe Funktion auf D. Die Nullstellenmenge von F ist die Vereinigung der Nullstellenmengen von  $1 + f_n(z), n \in \mathbb{N}$ 

**Lemma 1.7:** Die Reihe  $\sum_{n=1}^{\infty} \left( \left( 1 + \frac{s}{n} \right) e^{-\frac{s}{n}} - 1 \right)$  konvergiert absolut lokal gleichm. auf  $\mathbb{C}$ , damit auch  $\prod_{n=1}^{\infty} \left( 1 + \frac{s}{n} \right) e^{-\frac{s}{n}}$ , was damit eine ganze Funktion mit Nullstellen in  $-\mathbb{N}$  darstellt.

**Satz 1.8:** Für  $s \in \mathbb{C}$  ist  $g(s) := \frac{1}{\Gamma(s)} = se^{\gamma_E s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) e^{-\frac{s}{n}}$  ganze Funktion.

Korollar 1.9:  $\Gamma(s)$  nullstellenfrei auf  $\mathbb{C}$ .

**Korollar 1.10:** (Produktsatz von Gauß:) Für  $s \in \mathbb{C} \setminus \{-\mathbb{N}_0\}$  gilt:  $\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1) \dots (s+n)}$ .

Satz 1.11: (Eulers Reflektionsformel:) Für  $s \in \mathbb{C} \setminus \mathbb{Z}$ :  $\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$ .

**Korollar 1.12:** Für  $n \in \mathbb{N}_0$  gilt:  $\Gamma\left(\frac{1}{2} + n\right) = \sqrt{\pi} \prod_{k=0}^{n-1} \left(k + \frac{1}{2}\right)$ .

Korollar 1.13: Für  $s \in \mathbb{C}$  gilt:  $\frac{\sin(\pi s)}{\pi} = s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right)$ 

Satz 1.14: (Legendre'sche Verdopplungsf.:) Für  $s \not\in \left(-\frac{1}{2}\mathbb{N}_0\right)$  gilt:  $\Gamma(2s) = \frac{1}{\sqrt{\pi}}2^{2s-1}\Gamma(s)\Gamma\left(s+\frac{1}{2}\right)$ .

### 2.2 Die Riemann'sche (-Funktion

Satz 2.1: (Partialbruchzerlegung des Cotangens:) Für  $z \in \mathbb{C} \setminus \mathbb{Z}$  gilt:  $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ .

**Definition 2.2:** Sei  $g(z) = \frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{1}{n!} B_n z^n, 0 < |z| < 2\pi$ . Dann heißt  $B_n, n \in \mathbb{N}_0$  die n-te Bernoulli-Zahl.

**Lemma 2.3:** (i)  $B_n \in \mathbb{Q} \ \forall \ n \in \mathbb{N}_0$  (ii)  $B_1 = -\frac{1}{2}$  und  $B_{2n+1} = 0$  für  $n \in \mathbb{N}$  (iii)  $B_0 = 1, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}$  (iv)  $B_n = \frac{1}{n+1} \sum_{k=0}^{n-1} \binom{n+1}{k} B_k, n \in \mathbb{N}$ 

**Satz 2.4:** Für  $k \in \mathbb{N}$  gilt:  $\zeta(2k) = (-1)^{k+1} \frac{(2\pi)^{2k}}{2(2k)!} B_{2k} \in \mathbb{Q} \cdot \pi^{2k}$ .

**Definition 2.6:** Für  $u, v \in \mathbb{C}, \tau \in \mathbb{H}$  heißt  $\theta(u, v; \tau) := \sum_{n \in \mathbb{Z}} e^{\pi i (n+u)^2 \tau + 2\pi i (n+u)v}$  die Theta-Reihe in  $\tau$  mit Charakteristik (u, v).

**Lemma 2.7:** Die Theta-Reihe konvergiert absolut kompakt gleichmäßig auf  $\mathbb{C} \times \mathbb{C} \times \mathbb{H}$  und ist holomorph als Funktion von  $u \in \mathbb{C}, v \in \mathbb{C}, \tau \in \mathbb{H}$ .

**Satz 2.8:** (Theta-Transformationsformel:) Es gilt:  $\theta\left(-v, u; -\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}}e^{-2\pi i u v}\theta(u, v; \tau)$ .

Bemerkung 2.9: (Poisson'sche Summenformel:)  $f: \mathbb{R} \to \mathbb{R}$  Schwartzfunktion (alle Ableitungen fallen schnell ab) und  $\hat{f}(f)(\omega) = \int \langle --\infty^{\infty} f(t) e^{-2\pi i \omega t} dt$  ihre Fouriertransformierte, dann gilt  $\sum_{n \in \mathbb{Z}} f(n) = \sum_{m \in \mathbb{Z}} \hat{f}(m)$ .

Korollar 2.10: Es sei  $\vartheta(iy) = \theta(0,0;iy)$  Theta-Nullwert, dann gilt für y > 0:  $\vartheta\left(\frac{1}{y}\right) = \sqrt{y}\vartheta(y)$ .

Satz 2.11: Sei  $\xi(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ . Dann besitzt  $\xi(s)$  eine meromorphe Fortsetung in die gesamte s-Ebene, die bis auf einfache Pole in s=0,1 mit Residuen  $Res_{s=1}(\xi)=1, Res_{s=0}(\xi)=-1$  holomorph ist. Es gilt die Funktionalgleichung  $\xi(1-s)=\xi(s)$  und wir haben die Integraldarstellung  $\xi(s)=\frac{1}{2}\int_{1}^{\infty}(\vartheta(y)-1)(y^{\frac{s}{2}}+y^{\frac{1-s}{2}})\frac{\mathrm{d}y}{y}+\frac{1}{1-s}-\frac{1}{s}$ .

**Korollar 2.12:** Es gilt  $\xi\left(\frac{1}{2}+it\right) \in \mathbb{R}, t \in \mathbb{R}$ .

Korollar 2.13: Die  $\zeta$ -Funktion besitzt eine meromorphe Fortsetzung in die gesamte s-Ebene. Diese ist holomorph bis auf einen einfachen Pol in s=1 mit Residuum  $Res_{s=1}(\zeta)=1$ . Wir haben  $\zeta(1-s)=2^{1-s}\pi^{-s}\cos\left(\frac{\pi s}{2}\right)\zeta(s)$  und  $\zeta(0)=\frac{1}{2},\zeta(1-2n)=-\frac{B_n}{2n},n\in\mathbb{N}$  und triviale Nullstellen  $\zeta(-2n)=0,n\in\mathbb{N}$ .

### 2.3 Dirichlet'sche Charaktere und Gauß'sche Summen

**Definition 3.1:** Sei  $\chi$  ein Dirichlet'scher Charakter mod N. Ein Teiler M von N heißt induzierter Modul von  $\chi$ , falls gilt:  $\chi(m) = \chi(n) \ \forall \ m, n \in \mathbb{Z}$  mit  $m \equiv n(M), \operatorname{ggT}(m, N) = \operatorname{ggT}(n, N) = 1$ . Der kleinste induzierte Modul heißt der Führer von  $\chi$ . Hat  $\chi$  Führer N, so nennen wir  $\chi$  primitiv

Satz 3.3: Seien  $\chi, \chi_0$  Charaktere mod N. Für M|N gilt: M induzierter Modul von  $\chi \Leftrightarrow \forall n \in \mathbb{Z}, n \equiv 1(M), \operatorname{ggT}(n, N) = 1$  gilt  $\chi(n) = 1 \Leftrightarrow \operatorname{Es}$  gibt einen Charakter  $\Psi$  mod M mit  $\chi = \chi_0 \Psi$ , wobei  $\Psi$  eindeutig bestimmt.

**Korollar 3.4:** Für einen Charakter  $\chi$  mod N gilt:  $\chi$  primitiv  $\Leftrightarrow$  zu M|N,M < N existieren  $m,n \in \mathbb{Z}, \operatorname{ggT}(m,N) = \operatorname{ggT}(n,N) = 1, m \equiv n(N)$  und  $\chi(m) \neq \chi(n) \Leftrightarrow$  zu jedem M|N,M < N existiert  $n \in \mathbb{Z}, \operatorname{ggT}(n,N) = 1, n \equiv 1(M)$  und  $\chi(n) = 1$ .

**Korollar 3.5:**  $\chi$  Charakter mod N, Führer M. Dann existiert  $\Psi$  Charakter mod M mit  $\chi = \chi_0 \Psi$ .  $\Psi$  ist eindeutig bestimmt und primitiv.

**Definition 3.6:** Wenn  $\chi$  ein Charakter mod  $N, m \in \mathbb{Z}$ , dann heißt  $G(m, \chi) := \sum_{n(N)} \chi(n) e\left(\frac{mn}{N}\right)$ , wobei  $e(\alpha) = e^{2\pi i \alpha}$ , die Gauß'sche Summe zu m und  $\chi$   $(G(1, \chi) = G(\chi))$ .

**Lemma 3.8:** Sei  $\chi$  Charakter mod N. Für  $m \in \mathbb{Z}$ , ggT(m, N) = 1 gilt:  $G(m, \chi) = \overline{\chi(m)}G(\chi)$ .

**Satz 3.10:** Sei  $\chi$  primitiver Charakter mod N, dann gilt: (i)  $G(m,\chi) = \overline{\chi(m)}G(\chi) \ \forall \ m \in \mathbb{Z}$  (ii)  $G(\chi)G(\overline{\chi}) = \chi(-1)N$  (iii)  $|G(m,\chi)| = \sqrt{N}$ , falls  $\operatorname{ggT}(m,N) = 1$ .

**Lemma 3.11:**  $\chi$  Charakter mod N,  $\Psi$  Charakter mod M,  $ggT(N,M) = 1 \Leftrightarrow \chi\Psi$  Charakter mod MN und  $G(\chi\Psi) = \chi(M)\Psi(N)G(\chi)G(\Psi)$ .

**Lemma 3.12:** Sei  $\Psi$  Charakter mod  $M, m \in \mathbb{Z}, N \in \mathbb{Z}, M | N$ , dann gilt:

$$\begin{split} &\text{(i) } \sum_{n(N)} \Psi(n) e\left(\frac{mn}{N}\right) = \begin{cases} 0 & \frac{N}{M} \nmid m \\ \frac{N}{M} G\left(\frac{mM}{N}, \Psi\right) & \frac{N}{M} \mid m \end{cases} \\ &\text{(ii) Ist } \chi = \chi_0 \Psi \text{ mod } N, \ \Psi \text{ primitiv: } G(m, \chi) = G(\Psi) \sum_{d \mid \text{ggT}\left(\frac{N}{M}, m\right)} d\mu \left(\frac{N}{Md}\right) \Psi\left(\frac{N}{Md}\right) \overline{\Psi}\left(\frac{m}{d}\right). \ \text{Für } g := \text{ggT}\left(\frac{N}{M}, m\right) \text{ gilt: } G\left(\frac{N}{M}, \chi\right) = G(\Psi) g\frac{\varphi\left(\frac{N}{M}\right)}{\varphi(g)}. \end{split}$$

**Korollar 3.13:**  $\chi$  Charakter mod N:  $\chi$  primitiv  $\Leftrightarrow G(m,\chi) = \overline{\chi(m)}G(\chi) \ \forall \ m \in \mathbb{Z}$ 

**Definition 3.14:**  $n \in \mathbb{N}_0$ , n-tes Bernoulli-Polynom:  $B_n(x) = \sum_{k=0}^n B_{n-k} \binom{n}{k} x^k \in \mathbb{Q}[x]$ .

Satz 3.16: (i) 
$$B_n(0) = B_n, n \in \mathbb{N}_0$$
 (ii)  $\frac{\mathrm{d}}{\mathrm{d}x}B_n(x) = nB_{n-1}(x), n \in \mathbb{N}$  (iii)  $\sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} = \frac{te^{xt}}{e^t-1}, x \in \mathbb{C}, |t| \le 2\pi$  (iv)  $B_n(1-x) = (-1)^n B_n(x)$  (v)  $B_n(x+1) = B_n(x) + nx^{n-1}$  (vi)  $\sum_{k=1}^N k^n = \frac{B_{n+1}(N+1) - B_{n+1}(0)}{n+1} = \sum_{j=0}^n (-1)^j \binom{n}{j} B_j \frac{N}{n+1-j}$ 

**Definition 3.18:** Ist  $\chi$  Charakter mod N, dann heißt  $B_{n,\chi} = N^{n-1} \sum_{k=0}^{N-1} \chi(k) B_n\left(\frac{k}{N}\right) \in \mathbb{Q}(\chi)$ die n-te verallgemeinerte Bernoulli-Zahl.

**Lemma 3.19:** 
$$\chi$$
 Charakter mod  $N$ , dann gilt: (i)  $B_{0,\chi} = \begin{cases} \frac{\varphi(N)}{N} & \chi = \chi_0 \\ 0 & sonst \end{cases}$  (ii) für  $\chi(-1) = 1$  ( $\chi$  gerade):  $B_{n,\chi} = 0$ , falls  $n$  ungerade

(ii) für  $\chi(-1) = 1$  ( $\chi$  gerade):  $B_{n,\chi} = 0$ , falls n ungerade

(iii) für  $\chi(-1) = -1$  ( $\chi$  ungerade):  $B_{n,\chi} = 0$ , falls n gerade

### 2.4 Dirichlet'sche L-Reihen

**Lemma 4.1:** Charakter  $\chi$  mod N induziert von Charakter  $\Psi$  mod M|N, dann gilt:  $L(\chi,s)=$  $\prod_{p|n} (1 - \Psi(p)p^{-s}) L(\Psi, s), \Re(s) = 1.$ 

**Proposition 4.2:** Sei  $\chi_0$  der Hauptcharakter mod N>1. Dann besitzt  $L(\chi_0,s)=\prod_{n|N}(1-1)$  $p^{-s}$ ) $\zeta(s)$  eine meromorphe Fortsetzung auf  $\mathbb{C}$ . Diese ist holomorph bis auf einen einfachen Pol in s=1 mit Residuum  $\frac{\varphi(N)}{N}$  und es gilt  $L(\chi_0,-2n)=0, n\in\mathbb{N}_0$ 

Satz 4.3: Sei  $\chi$  ein Charakter mod N>1. Ist  $\chi$  primitiv und gerade, so besitzt  $\Lambda(\chi,s):=$  $\left(\frac{\pi}{N}\right)^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)L(\chi,s)$  eine Fortsetzung als ganze Funktion in s mit Funktionalgleichung  $\Lambda(\chi,s)=1$  $\varepsilon\Lambda(\overline{\chi}, 1-s), \ \varepsilon = \frac{G(\chi)}{\sqrt{N}}$ . Es gilt  $\Lambda(\chi, s) \neq 0$  für  $\Re(s) \geq 1$  oder  $\Re(s) \leq 0$ .  $L(\chi, s)$  ist eine ganze Funktion mit Nullstellen  $L(\chi, -2n) = 0, n \in \mathbb{N}_0$ .

Satz 4.4: Sei  $\chi$  ein Charakter mod N>1. Ist  $\chi$  primitiv und ungerade, so besitzt  $\Lambda(\chi,s):=$  $\left(\frac{\pi}{N}\right)^{-\frac{s}{2}}\Gamma\left(\frac{s+1}{2}\right)L(\chi,s)$  eine Fortsetzung als ganze Funktion in s mit Funktionalgleichung  $\Lambda(\chi,s)=0$  $-\frac{iG(\chi)}{\sqrt{N}}\Lambda(\overline{\chi},1-s).$  Es gilt  $\Lambda(\chi,s)\neq 0$  für  $\Re(s)\geq 1$  oder  $\Re(s)\leq 0.$   $L(\chi,s)$  ist eine ganze Funktion mit Nullstellen  $L(\chi, 1-2n) = 0, n \in \mathbb{N}$ .

Korollar 4.5: Sei  $\chi$  ein Charakter mod  $N>1,\,\chi\neq\chi_0,$  dann besitzt  $L(\chi,s)$  eine Fortsetzung als ganze Funktion und für alle  $n \in \mathbb{N}_0$  mit  $\chi(-1) = (-1)^n$  gilt  $L(\chi, -n) = 0$ .

**Satz 4.6:** Sei  $\chi$  ein Charakter mod  $N>1, \chi\neq\chi_0$ , dann gilt für alle  $n\in\mathbb{N}_0$ .  $L(\chi,-n)=-\frac{N^n}{n+1}\sum_{k=1}^{N-1}\chi(k)B_{n+1}\left(\frac{k}{N}\right)=-\frac{1}{n+1}B_{n+1,\chi}$ .

Satz 4.7: Sei  $\chi$  ein primitiver Charakter mod  $N > 1, n \in \mathbb{N}_0$ : (i)  $\chi$  ungerade:  $L(\chi, 2n + 1) = \frac{G(\chi)}{2N} \frac{(2\pi i)^{2n+1}}{(2n+1)!} \sum_{k=1}^{N-1} \overline{\chi(k)} B_{2n+1} \left(\frac{k}{N}\right) = \frac{G(\chi)}{2(2n+1)!} \left(\frac{2\pi i}{N}\right)^{2n+1} B_{2n+1,\overline{\chi}}.$ (ii)  $\chi$  gerade:  $L(\chi, 2n) = -\frac{G(\chi)}{2N} \frac{(2\pi i)^{2n}}{(2n)!} \sum_{k=1}^{N-1} \overline{\chi(k)} B_{2n} \left(\frac{k}{N}\right) = -\frac{G(\chi)}{2(2n)!} \left(\frac{2\pi i}{N}\right)^{2n} B_{2n,\overline{\chi}}.$ 

(ii) 
$$\chi$$
 gerade:  $L(\chi, 2n) = -\frac{G(\chi)}{2N} \frac{(2\pi i)^{2n}}{(2n)!} \sum_{k=1}^{N-1} \overline{\chi(k)} B_{2n} \left(\frac{k}{N}\right) = -\frac{G(\chi)}{2(2n)!} \left(\frac{2\pi i}{N}\right)^{2n} B_{2n,\overline{\chi}}$ 

Korollar 4.8:  $\chi$  ungerader primitiver Charakter mod  $N>1 \Leftrightarrow L(\chi,1)=\frac{\pi i G(\chi)}{N^2}\sum_{k=1}^{N-1}\overline{\chi(k)}\cdot k$ .

# 2.5 Aufgaben

**Aufgabe 6.1:**  $A\subseteq \mathbb{P}: \nu(A):=\lim_{x\to\infty} \frac{\#\{p\in A:p\leq x\}}{\pi(x)}$  natürliche Dichte

Aufgabe 6.2:  $A\subseteq \mathbb{P}: \alpha(A):=\lim_{s\searrow 1} \frac{\sum_{p\in A} p^{-s}}{\log(1/(1-s))}$  analytische Dichte

**Aufgabe 6.5:**  $F:(0,\infty)\to\mathbb{R}, F(x+1)=xF(x), F(1)=1$  und  $\log(F(x))$  konvex  $\Rightarrow F(x)=\Gamma$ : zzg.:  $\Gamma(1)=1,\log(\Gamma(x))$  konvex, Eindeutigkeit

**Aufgabe 7.1:** 
$$\pi \cot(\pi z) = \frac{\sin'(z)}{\sin(z)} = \frac{d}{dz} \left( \log \left( \pi z \prod_{n=1}^{\infty} \left( 1 - \frac{z^2}{n^2} \right) \right) \right) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$$

**Aufgabe 7.2:** 
$$(-1)^{n+1}B_{2n} > 0, n \in \mathbb{N} : 0 < \zeta(2k) = (-1)^{k+1}B_{2k}\frac{(2\pi)^{2k}}{2(2k)!} \text{ und } \frac{(2\pi)^{2k}}{2(2k)!} > 0$$

**Aufgabe 7.3:** 
$$\zeta(2) = \int_0^1 \int_0^1 \frac{1}{1 - xy} dx dy = \frac{\pi^2}{6}$$

Aufgabe 8.1: 
$$\sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!} = \sum_{k=0}^{N-1} \frac{\chi(k) t e^{kt}}{e^{Nt}-1}, \chi \text{ Charakter mod } N, \, |t| < \frac{2\pi}{N}$$

# 3 Klassenzahlen quadratischer Formen

### 3.1 Binäre quadratische Formen und Reduktionstheorie

**Definition 1.1:**  $a, b, c \in \mathbb{Z}$ , nicht alle 0:  $Q = [a, b, c] := aX^2 + bXY + cY^2 \in \mathbb{Z}[X, Y]$  quadratische Form mit Koeffizienten a, b, c. Die Zahl  $D := b^2 - 4ac$  heißt Diskriminante von Q ( $D \equiv 0, 1(4)$ , im Folgenden:  $D \neq 0, D \neq \square$ ). Mit  $A_Q = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix}$  bezeichnet man die Gram-Matrix von Q.Grundform:

$$Q_0 = \begin{cases} \left[1, 0, -\frac{D}{2}\right] & D \equiv 0(4) \\ \left[1, 1, \frac{1-D}{2}\right] & D \equiv 1(4) \end{cases}$$

 $\alpha\delta - \beta\gamma = 1$  heißen äquivalent oder ähnlich  $(Q \sim Q')$ . Ähnliche Formen haben die selbe Diskriminante.

**Bemerkung 1.6:** Für Q = [a, b, c] mit D < 0 ab sofort a > 0 (Q positive definite). Für Q = [a, b, c]mit D > 0 ist Q indefinit.

Satz 1.7: Die Anzahl der Ähnlichkeitsklassen q.F. von Diskriminante D ist endlich.

Bemerkung 1.8:  $[a, b, c] \sim [a', b', c']$  dann gilt ggT(a, b, c) = ggT(a', b', c')

**Definition 1.9:** Eine q.F. heißt Q = [a, b, c] heißt primitiv, falls ggT(a, b, c) = 1.

$$\begin{aligned} \textbf{Definition 1.10:} & \text{ Zu eine Diskriminante } D \text{ heißt} \\ h(D) := \begin{cases} \#\{\ddot{\mathbf{A}} \text{hnlichkeitskl. primitiver q.F. mit Diskr. } D\} & D > 0 \\ \#\{\ddot{\mathbf{A}} \text{hnlichkeitskl. primitiver, pos. def. q.F. mit Diskr. } D\} & D < 0 \end{cases} & \text{Klassenzahl von } D. \end{aligned}$$

 $\textbf{Satz 1.11:} \ \, \text{Sei} \ \, D < 0 \ \, \text{Diskriminante, dann ist jede pos. def. q.F. mit Diskr. } \, D \ \, \text{zu genau einer q.F.} \, \, [a,b,c] \ \, \text{mit } D = b^2 - 4ac, \begin{cases} -a < b \leq a < c \\ \text{oder } 0 \leq b \leq a = c \end{cases} \, \text{(reduzierte q.F.)}.$ 

**Bemerkung 1.13:** h(D) für D < 0 bestimmen: primitive reduzierte q.F. mit  $a \le \sqrt{\frac{|D|}{3}}$  und für mögliche a zugehörige b mit  $-a < b \le a$  oder  $0 \le b \le a$  bestimmen. Dann  $c = \frac{b^2 - D}{4a}$ bestimmen. Wichtig:  $a, b, c \in \mathbb{Z}$ .

### 3.2 Der Kronecker-Charakter

**Definition 2.1:** Für  $m > 0, D \equiv 0, 1(4), D \neq \square$  definiert man den Kronecker-Charakter durch

$$\chi_{D}(m) = \left(\frac{D}{m}\right) \text{ via } \chi_{D}(p) = 0, p \in \mathbb{P}, p \neq 2, p|D, \ \chi(2) = \begin{cases} 1 & D \equiv 1(8) \\ -1 & D \equiv 5(8) \end{cases}.$$

$$\text{Für } m = \prod_{j=1}^{r} p_{j}^{\nu_{j}} \text{ gilt } \chi_{D}(m) = \prod_{j=1}^{r} (\chi_{D}(p_{j}))^{\nu_{j}} \text{ mit } \chi_{D}(p) = \left(\frac{D}{p}\right) \equiv D^{\frac{p-1}{2}}(p).$$

Für 
$$m = \prod_{j=1}^r p_j^{\nu_j}$$
 gilt  $\chi_D(m) = \prod_{j=1}^r (\chi_D(p_j))^{\nu_j}$  mit  $\chi_D(p) = \left(\frac{D}{p}\right) \equiv D^{\frac{p-1}{2}}(p)$ .

**Lemma 2.2:** (i)  $\chi_D(m) = 0$ , ggT(D, m) > 1 (ii)  $\chi_D(m) = \pm 1$ , ggT(D, m) = 1 (iii)  $\chi_D(m_1 m_2) = 1$  $\chi_D(m_1)\chi_D(m_2)$ 

Satz 2.3: (Quadratisches Reziprozitätsgesetz:)  $p, q \in \mathbb{P} \setminus \{2\}$ , dann gilt: (i)  $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$  (ii)  $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$  (iii)  $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ 

**Proposition 2.4:**  $D \equiv 0, 1(4), D \neq \square$ , dann ist  $\chi_D$  ein reeller Charakter mod |D|.

**Definition 2.5:**  $D \equiv 0, 1(4), D \neq \Box$  heißt Fundamentaldiskriminante, falls D ungerade und quadratfrei oder D gerade und  $\frac{D}{4}$  quadratfrei. Jede Diskriminante D ist von der Form  $D = f^2 D_0, f \in$  $\mathbb{N}, D_0$  Fundamentaldiskr.

**Satz 2.6:** Jeder primitive reelle Dirichlet'sche Charakter ist von der Form  $\chi_D$  für eine Fundamentaldiskr. D.

**Definition 2.7:** Für  $n, m \in \mathbb{N}$  teilerfremd sei  $S(n, m) := \sum_{x(m)} e\left(\frac{x^2n}{m}\right)$  die quadratische Gauß-Summe von m, n.

**Lemma 2.8:** (i) ggT(m, m') = 1 : S(n, mm') = S(nm', m)S(nm, m') (ii)  $p \in \mathbb{P}, \delta = \begin{cases} 1 & p \text{ ungerade} \\ 2 & p \text{ gerade} \end{cases}$ , für  $\ell > 2\delta, p \nmid n$ :  $S(n, p^{\ell}) = pS(n, p^{\ell-2})$ 

**Lemma 2.9:** Für  $2 \nmid n$  gilt: (i) S(n,2) = 0 (ii)  $S(n,4) = 2(1+i^n)$  (iii)  $S(n,8) = 4e\left(\frac{n}{8}\right)$ 

**Lemma 2.10:**  $p \in \mathbb{P} \setminus \{2\}, p \nmid n : S(n,p) = \left(\frac{n}{p}\right) S(1,p) = \left(\frac{n}{p}\right) G(\chi_{p'}), p' = (-1)^{\frac{p-1}{2}} p$ 

Satz 2.11:  $S(1,p) = \begin{cases} \sqrt{p} & p \equiv 1(4) \\ i\sqrt{p} & p \equiv 3(4) \end{cases}$ 

Satz 2.12: Sei D Fundamentaldiskr., dann gilt:  $G(\chi_D) = \begin{cases} \sqrt{D} & \chi(-1) = 1 \Leftrightarrow D > 0 \\ i\sqrt{|D|} & \chi_D(-1) = -1 \Leftrightarrow D < 0 \end{cases}$ 

**Lemma 2.13:** Sei  $n>0, D\equiv 0, 1(4), \operatorname{ggT}(n,D)=1.$  Dann ist die Anzahl der mod 4n verschiedenen Lösungen von  $x^2\equiv D(4n)$  genau  $2\sum_{f\mid n,f} \prod_{f\mid f\mid f} \chi_D(f)$ .

## 3.3 Darstellungen ganzer Zahlen durch quadratische Formen

Lemma 3.1: Es seien ggT(x,y)=1, Q=[a,b,c], Diskr.  $D\neq \square$ . Ist (x,y) eine Lösung von Q(x,y)=n, dann gibt es eindeutig bestimmte  $r,s\in \mathbb{Z}$  mit sx-ry=1, s.d.  $\ell=(2ax+by)r+(bx+2cy)s$  eine Lösung von  $\ell^2\equiv D(4n), 0\leq \ell<2n$  ist.

Satz 3.2: Seien  $(x_1,y_1),(x_2,y_2)$  Lösungen von Q(x,y)=n, die zum selben  $\ell$  korrespondieren, dann gilt  $2ax_1+(b+\sqrt{D})y_1=(2ax_2+(b+\sqrt{D})y_2)\left(\frac{t+u\sqrt{D}}{2}\right),$  wobei  $t,u\in\mathbb{Z}$  mit  $t^2-Du^2=4$  (Pell'sche Gleichung)

**Definition 3.3:** Ist (x,y) eine Lösung von Q(x,y)=n, dann auch  $(x,y)g^T$  mit  $g^TA_Qg=A_Q,g\in \mathrm{SL}_2(\mathbb{Z})$ . Dann heißt g ein Automorphismus von Q. Aut(Q) bezeichnet die Automorphismengruppe von Q.

**Satz 3.4:** (i) Sei Q eine primitive q.F. mit Diskriminante D < 0, dann gilt

$$\omega_D := \#Aut(Q) = \begin{cases} 6 & D = -3\\ 4 & D = -4\\ 2 & \text{sonst} \end{cases}$$

(ii) Es gibt genau  $\omega_D$  Lösungen von Q(x,y) zum selben  $\ell$ .

**Lemma 3.5:** Sei Q = [a,b,c] eine primitive q.F. mit Diskriminante  $D \neq \square$ , dann liefert  $(t,u) \mapsto \left(\frac{t-bu}{2} - cu}{au - \frac{t+bu}{2}}\right)$  eine Bijektion zwischen den Lösungen (t,u) der Pell'schen Gleichung und Aut(Q) (Gruppenisomorphismus bzgl.  $(t_1,u_1)(t_2,u_2) = \left(\frac{t_1t_2+Du_1u_2}{2},\frac{t_1u_2+t_2u_1}{2}\right)$ )

**Satz 3.6:** Sei Q eine primitive q.F. mit Diskriminante  $D > 0, D \neq \square$ , dann gilt  $Aut(Q) \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ .

**Definition 3.7:**  $\varepsilon_0 = \frac{t_0 + \sqrt{D}u_0}{2}$  (minimal) heißt eine Grundeinheit von Q bzw. D.

**Definition 3.9:** Sei Q eine q.F. mit Diskriminante  $D \neq \square$ , dann definiert man für  $n \in \mathbb{Z}$  die Darstellungsanzahl von n durch Q als  $R(n,Q) = \#Aut(Q) \setminus \{(x,y) \in \mathbb{Z} | Q(x,y) = n\}$ . Gesamtdarstellungsanzahl:  $R(n) = \sum_{n=1}^{h(D)} R(n,Q_j)$ ,  $Q_j$  Vertreter der Ähnlichkeitsklassen.

**Satz 3.10:** Sei D eine Fundamentaldiskr.,  $n \in \mathbb{Z} \setminus \{0\}$ , dann gilt  $R(n) = \sum_{d|n} \chi_D(d)$ . Insbesondere ist R(n) und damit alle  $R(n, Q_i)$  endlich.

**Korollar 3.12:** Sei D eine Fundamentaldiskr., dann gilt  $\frac{1}{N} \sum_{n=1}^{N} R(n) \to L(\chi_D, 1), N \to \infty$ .

Satz 3.13: Sei Q eine primitive q.F. mit Diskriminante  $D>0, D\neq \square,$  dann gilt:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} R(n, Q) = \begin{cases} \frac{2\pi}{\omega_D \sqrt{|D|}} & D < 0\\ \frac{\log \varepsilon_0}{\sqrt{D}} & D > 0. \end{cases}$$

### 3.4 Klassenzahlformeln

**Satz 4.1:** (Dirichlet'sche Klassenzahlformel:) Für  $D \neq \square$  Diskriminante gilt:

$$h(D) = \begin{cases} \frac{\omega_D \sqrt{|D|}}{2\pi} L(\chi_D, 1) & D < 0\\ \frac{\sqrt{D}}{\log \varepsilon_0} & D > 0. \end{cases}$$

**Lemma 4.2:** Für  $0 < \theta < 2\pi$  gilt:  $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n} = -\log\left(2\sin\left(\frac{n\theta}{2}\right)\right) + i\left(\frac{\pi}{2} - \frac{\theta}{2}\right).$ 

Satz 4.3: Für einen primitiven Dirichlet'schen Charakter  $\chi$  mod N>1 gilt:  $L(\chi,1)=-\frac{1}{\overline{G(\chi)}}\sum_{n=1}^{N-1}\overline{\chi}(n)\log\left(\sin\left(\frac{\pi n}{N}\right)\right)+\frac{i\pi}{NG(\chi)}\sum_{n=1}^{N-1}\overline{\chi}(n)n$ 

 ${\bf Satz}$ 4.4: (Klassenzahlformel:) Sei D Fundamentaldiskr., dann gilt:

$$h(D) = \begin{cases} -\frac{\omega_D}{2|D|} \sum_{n=1}^{|D|-1} \chi_D(n)n & D < 0\\ -\frac{1}{\log \varepsilon_0} \sum_{n=1}^{D-1} \chi_D(n) \log \left(\sin\left(\frac{\pi n}{D}\right)\right) & D > 0. \end{cases}$$

**Satz 4.6:** Sei D < -4 Furndamentaldiskr.:  $h(D) = \frac{1}{2-\chi_D(2)} \sum_{0 < k < \frac{|D|}{2}} \chi_D(k)$ , d.h. es gibt im Intervall  $\left[0, \frac{|D|}{2}\right]$  mehr Zahlen mit  $\chi_D(k) = 1$  als mit  $\chi_D(k) = -1$  und der Überschuss ist genau

$$\begin{cases} h(D) & D \equiv 1(8) \\ 2h(D) & D \equiv 0(4) \\ 3h(D) & D \equiv 5(8). \end{cases}$$

## 3.5 Wachstum von Klassenzahlen

**Lemma 5.1:** Für  $\Re(s) > 0: \left| \zeta(s) - \frac{1}{1-s} \right| \leq \frac{|s|}{\Re(s)}$ .

**Lemma 5.3:** Für  $\sigma > 0$ :  $|L(\chi_D, s)| \le \frac{|Ds|}{\sigma}$  und  $0 < L(\chi_D, 1) < 2 + \log(|D|)$ .

**Lemma 5.4:** (Cauchy'sche Ungleichung:) Sei  $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$  eine holomorphe Funktion für  $|z - z_0| \le r$  und sei dort  $|f(z)| \le M$ , dann gilt  $|a_n| \le Mr^{-n}$ .

**Proposition 5.5:** Seien  $D_1, D_2$  Diskr.,  $Z(s) := \zeta(s) L(\chi_{D_1}, s) L(\chi_{D_2}, s) L(\chi_{D_1D_2}, s)$ . Dann gilt für  $\Re(s) > 1 : Z(s) = \sum_{n=1}^{\infty} a_n n^{-s}, a_1 = 1, a_n \ge 0, n \ge 2$ .

**Proposition 5.7:** Seien  $D_1, D_2$  Fundamentaldiskr.,  $|D_1| > |D_2| > 1$ . Sei Z(s) wie oben und  $\rho := L(\chi_{D_1}, s) L(\chi_{D_2}, s) L(\chi_{D_1D_2}, s)$ . Für  $0 < \delta < a < 1$  gilt dann:  $Z(a) > \frac{1}{2} - \frac{c_1\rho}{1-a} |D_1D_2|^{c_2(1-a)}, c_1 = c_1(\delta), c_2 = c_2(\delta) > 0$ .

**Satz 5.8:** (Siegel:) Sei D Fundamentaldiskr. und  $\varepsilon > 0$ , dann:  $(L(\chi_D, 1))^{-1} = \mathcal{O}(|D|^{\varepsilon}), |D| \to \infty$ .

 $\textbf{Satz 5.10:} \text{ (Siegel:) Für Diskr. } D \neq \square \text{ gilt: } \lim_{D \to -\infty} \frac{\log h(D)}{|D|} = \tfrac{1}{2}, \\ \lim_{D \to \infty} \frac{\log (h(D) \log(\varepsilon_0))}{\log D} = \tfrac{1}{2}.$ 

### 3.6 Aufgaben

**Aufgabe 9.1:** Q, Q' ähnlich? 1. Diskr. gleich? 2.  $[a, b, c] \circ T^n = [a, 2an + b, an^2 + bn + c], [a, b, c] \circ J = [c, -b, a]$  und ähnliche reduzierte Form finden. 3. Gleiche reduzierte Form?

**Aufgabe 10.4:** Kettenbruchentw. für  $\alpha \in \mathbb{R}$ :  $\alpha_0 = \alpha, a_0 = \lfloor \alpha_0 \rfloor, \alpha_{n+1} = (\alpha_n - a_n)^{-1}, a_n = \lfloor \alpha_n \rfloor \Rightarrow \alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} = [a_0; a_1, a_2, \dots]$  abbrechend , wenn  $\alpha \in \mathbb{Q}$  und periodisch, wenn  $\exists A, B, C \in \mathbb{Z}, B^2 - 4AC \neq \square : A\alpha^2 + B\alpha + C = 0.$ 

**Aufgabe 10.5:** n-ter Näherungsbruch:  $\frac{p_n}{q_n} = [a_0; a_1, \dots, a_n], \text{ ggT}(p_n, q_n) = 1: p_{-2} = 0, p_{-1} = 1, p_i = a_i p_{i-1} + p_{i-2}, q_{-2} = 1, q_{-1} = 0, q_i = a_i q_{i-1} + q_{i-2} \Rightarrow \exists \ n: (t, u) = (2p_n, 2q_n)$  Lösung von  $t^2 - Du^2 = 4$ .

 $\begin{array}{l} \textbf{Aufgabe 11.1:} \ h(D) \ \text{mit Klassenzahlformeln berechnen für } D>0: \\ \varepsilon_0^{h(D)} = \left(\prod_{1 \leq n \leq D-1, \chi_D(n) = -1} \sin\left(\frac{\pi n}{D}\right)\right) \left(\prod_{1 \leq n \leq D-1, \chi_D(n) = 1} \sin\left(\frac{\pi n}{D}\right)\right)^{-1}. \end{array}$ 

## 4 Partitionen und die Kreismethode

## 4.1 Definition, elementare Eigenschaften und erzeugende Funktion

**Definition 1.1:** Als Partition einer Zahl  $n \in \mathbb{N}$  bezeichnet man eine endliche Folge  $\lambda = (\lambda_1, \dots, \lambda_r), \lambda_1 \ge \dots \ge \lambda_r \ge 1, \lambda_i \in \mathbb{N}$  und schreibt  $\lambda \vdash n$ .  $\lambda_i$  heißen Teile der Partition und r Länge. # Partitionen von  $n := p(n) \ (p(0) = 1)$ .

**Definition 1.3:** Unter der erzeugenden Funktion einer Folge  $(a_n)_{n=0}^{\infty} \in \mathbb{C}^{\mathbb{N}_0}$  versteht man die (formale) Potenzreihe  $\sum_{n=0}^{\infty} a_n q^n \in \mathbb{C}[q]$  (konvergent mindestens für |q| < 1).

**Definition 1.5:**  $H \subseteq \mathbb{N}, d \in \mathbb{N}$ , dann definiert man für  $n \in \mathbb{N}$  (i)  $p(H; n) := \#\{\lambda \vdash n | \lambda_j \in H\}$  (ii)  $p(H, d; n) := \#\{\lambda \vdash n | \lambda_j \in H, \lambda_j \neq \lambda_{j+d+1}, j = 1, \dots, r-d-1\}$ 

**Satz 1.6:** Seien 
$$F(q) = \sum_{n=0}^{\infty} p(H;n)q^n$$
,  $F_d(q) = \sum_{n=0}^{\infty} p(H,d;n)q^n$ . Für  $|q| < 1$  gilt:  $F(q) = \prod_{n \in H} (1-q^n)^{-1}$ ,  $F_d(q) = \prod_{n \in H} \frac{(1-q^{(d+1)n})}{(1-q^n)}$ .

Korollar 1.7: Die Anzahl der Partitionen von n in ungerade Teile ist gleich der Anzahl der Partitionen in verschiedene Teile.

**Beispiel 1.9:** Ferrers-Diagramm:  $(8,5,3,3,2,1) \vdash 22$ 



**Definition 1.10:** Für eine Partition  $\lambda = (\lambda_1, \dots \lambda_r)$  ist die konjugierte Partition  $\lambda' = (\lambda'_1, \dots, \lambda'_s)$  gegeben dadurch, dass  $\lambda'_i$  die Anzahl der Teile von  $\lambda$  größer gleich i ist (Konjugieren = Transponieren des Ferrers-Diagramms).

**Satz 1.12:** Die Anzahl der Partitionen von n in höchstens m Teile ist gleich der Anzahl der Partitionen von n, wo kein Teil größer als m ist.

Satz 1.13:  $p_e(\mathbb{N}, 1; n) - p_o(\mathbb{N}, 1; n) = \begin{cases} (-1)^m & n = \frac{1}{2}m(3m \pm 1) \\ 0 & \text{sonst} \end{cases}$  mit  $p_e$  Partition gerader Länge und  $p_o$  Partition ungerader Länge.

Korollar 1.14: (Pentagonalzahlensatz:) Für |q| < 1 gilt:  $\prod_{n=1}^{\infty} (1-q^n) = 1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} (1+q^m) = \sum_{m \in \mathbb{Z}} (-1)^m q^{\frac{1}{2}m(3m-1)}$ .

**Korollar 1.15:** (Euler:) Für n>0 gilt die Rekursion  $p(n)=\sum_{m=1}^{\infty}(-1)^{m+1}\left[p\left(n-\frac{1}{2}m(3m-1)\right)+p\left(n-\frac{1}{2}m(3m+1)\right)\right].$ 

### 4.2 Die Dedekind'sche $\eta$ -Funktion und Thetafunktion

Satz 2.1: (Jacobi-Tripelprodukt:)  $\tau \in \mathbb{H}, z \in \mathbb{C}$  und  $\vartheta(z;\tau) = \Theta(0,z;\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau + 2\pi i n z}$  (Jacobi-Thetafunktion), dann gilt:  $\vartheta(z;2\tau) = \prod_{n=1}^{\infty} (1-q^{2n})(1+q^{2n-1}\zeta)(1-q^{2n})(1+q^{2n-1}\zeta^{-1})$  mit  $q:=e^{2\pi i \tau}$  und  $\zeta:=e^{2\pi i z}$ .

**Definition 2.2:** Für  $\tau \in \mathbb{H}$  ist die Dedekind'sche  $\eta$ -Funktion definiert durch  $\eta(\tau) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n), q = e^{2\pi i \tau}$ .

**Lemma 2.3:** (i) Für  $\tau \in \mathbb{H}$  gilt  $\eta(\tau) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \chi_{12}(n) q^{\frac{n^2}{24}}$  (ii)  $\eta\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \eta(\tau)$  (iii)  $\eta(\tau+1) = e\left(\frac{1}{24}\right) \eta(\tau)$ 

Satz 2.5: Für  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}), c > 0, \tau \in \mathbb{H} \text{ gilt: } \eta\left(\frac{a\tau+b}{c\tau+d}\right) = \sqrt{\frac{c\tau+d}{i}}e\left(\frac{1}{24}\left(\frac{a+d}{c}+12s(-d,c)\right)\right)\eta(\tau).$ 

Bemerkung 2.6:  $F(q) = \sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} (1-q^n)^{-1} = \frac{q^{\frac{1}{24}}}{\eta(\tau)}, q = e^{2\pi i \tau}.$ 

Satz 2.7:  $x = \exp\left(\frac{2\pi i h}{k} - \frac{2\pi z}{k^2}\right), x' = \exp\left(\frac{2\pi i H}{k} - \frac{2\pi}{z}\right), \Re(z) > 0, k \in \mathbb{N}, h \in \mathbb{Z}, \ \mathrm{ggT}(h, k) = 1, hH \equiv -1(k), \ \mathrm{dann \ gilt} \ F(x) = e^{\pi i s(h, k)} \left(\frac{z}{k}\right)^{\frac{1}{2}} \exp\left(\frac{\pi}{12z} - \frac{\pi z}{12k^2}\right) F(x').$ 

**Bemerkung 2.8:** |z| klein  $\Rightarrow x \approx e\left(\frac{h}{k}\right), x' \approx 0 \Rightarrow F\left(e\left(\frac{h}{k}\right)\right) \approx z^{\frac{1}{2}}e\left(\frac{\pi}{12z}\right)$  bis auf konstanten Faktor.

## 4.3 Eine asymptotische Formel für p(n) und ein Plan des Beweises

**Satz 3.1:** Für  $n \to \infty$  gilt  $p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$ .

Bemerkung 3.2: Kreismethode: Ziel: Asymptotisches Verhalten für zt. Fkt. a(n) Vorgehen: (i) betrachte erzeugende Funktion  $A(q) = \sum_{n=0}^{\infty} a(n)q^n, |q| < 1$  (ii) bestimme Singularitäten von A(q) (iii)  $a(n) = \frac{1}{2\pi i} \int_C \frac{A(q)}{q^{n+1}} \mathrm{d}q$  (iv) teile Kontur C auf, s.d. A(q) gut abgeschätzt werden kann Hier: F(q) hat Singularität  $\Leftrightarrow q = e\left(\frac{h}{k}\right)$ 

### 4.4 Farey-Brüche und Ford-Kreise

**Definition 4.1:** Die Menge  $\mathcal{F}_n$  der Farey-Brüche von Ordnung n ist die Menge aller gekürzten Brüche in [0,1] mit Nenner  $\leq n$ , sortiert nach aufsteigender Größe.

**Lemma 4.3:** Gilt  $\frac{a}{b} \leq \frac{c}{d}$ , dann liegt ihre Mediante  $\frac{a+c}{b+d}$  dazwischen:  $\frac{a}{b} \leq \frac{a+c}{b+d} \leq \frac{c}{d}$ .

**Lemma 4.4:** Seien  $0 \le \frac{a}{b} < \frac{c}{d} \le 1$  mit bc - ad = 1. Dann sind  $\frac{a}{b}$  und  $\frac{c}{d}$  in  $\mathcal{F}_n$  aufeinanderfolgend für  $\max\{b,d\} \le n \le b+d-1$ .

**Lemma 4.5:** Seien  $0 \le \frac{a}{b} < \frac{c}{d} \le 1$  mit bc - ad = 1 und sei  $\frac{h}{k}$  die Mediante. Dann gilt  $\frac{a}{b} < \frac{h}{k} < \frac{c}{d}$  und bh - ak = 1 = ck - dh.

**Proposition 4.6:** (i) Es gilt  $\mathcal{F}_{n+1} \supseteq \mathcal{F}_n$ . Jeder Bruch in  $\mathcal{F}_{n+1} \setminus \mathcal{F}_n$  ist Mediante zweier aufeinanderfolgender Brüche in  $\mathcal{F}_n$ . (ii) Sind  $\frac{a}{b} < \frac{c}{d}$  aufeinanderfolgende Brüche in  $\mathcal{F}_n$ , so gilt bc - ad = 1.

**Definition 4.7:** Für  $\frac{h}{k} \in \mathbb{Q}$ , ggT(h, k) = 1, heißt der Kreis in  $\mathbb{C}$  mit Radius  $\frac{1}{2k^2}$  und Mittelpunkt  $\frac{h}{k} + \frac{i}{2k^2}$  der zugehörige Ford-Kreis  $(\mathcal{C}(h, k))$ .

**Lemma 4.8:** Zwei verschieden Ford-Kreise C(a,b), C(c,d) berühren sich entweder in genau einem Punkt oder schneiden sich nicht. Sie berühren sich gdw.  $bc - ad = \pm 1$ , also insbesondere, wenn  $\frac{a}{b}$ ,  $\frac{c}{d}$  aufeinanderfolgende Farey-Brüche sind.

**Proposition 4.9:** Seien  $\frac{h_1}{k_1} < \frac{h}{k} < \frac{h_2}{k_2}$  drei aufeinanderfolgende Farey-Brüche. Dann sind die beiden Berührpunkte  $\alpha_1 = \alpha_1(h,k)$  und  $\alpha_2 = \alpha_2(h,k)$  von  $\mathcal{C}(h,k)$  mit  $\mathcal{C}(h_1,k_1)$  bzw.  $\mathcal{C}(h_2,k_2)$  genau gegeben durch  $\alpha_1 = \frac{h}{k} - \frac{k_1}{k(k^2+k_1^2)} + \frac{i}{k^2+k_1^2}$ ,  $\alpha_2 = \frac{h}{k} + \frac{k_2}{k(k^2+k_2^2)} + \frac{i}{k^2+k_2^2}$ . Der Punkt  $\alpha_1$  liegt auf dem Halbkreis mit Durchmesser  $\left[\frac{h_1}{k_1},\frac{h}{k}\right]$ .

## 4.5 Der Rademacher-Pfad und eine Reihendarstellung für p(n)

Bemerkung 5.1: Idee: Ford-Kreise für Integrationsweg von  $p(n) = \frac{1}{2\pi i} \int_C \frac{F(q)}{q^{n+1}} \mathrm{d}q$ . Statt in |q| < 1 lässt sich auch beliebiger Pfad  $i \mapsto i+1$  in  $\tau$ -Ebene wählen. Unter  $\tau \mapsto e^{2\pi i \tau} = q$  geht dieser über geschlossenen Weg um q = 0.

**Definition 5.2:** Für  $N \in \mathbb{N}$  definiert man den Rademacher-Pfad P(N) von i nach i+1 wie folgt: Für aufeinanderfolgende Farey-Brüche  $\frac{h_1}{k_1} < \frac{h}{k} < \frac{h_2}{k_2}$  in  $\mathcal{F}_N$  teilen die Berührpunkte der Fordkreise  $\mathcal{C}(h_1,k_1),\mathcal{C}(h,k)$  und  $\mathcal{C}(h_2,k_2)$  den Kreis  $\mathcal{C}(h,k)$  in einen oberen und einen unteren Bogen. P(N) ist die Vereinigung der oberen Bögen, wobei für  $\frac{0}{1},\frac{1}{1} \in \mathcal{F}_N$  nur obere Bögen im Intervall [0,1] gewählt werden.



**Lemma 5.3:** Die Abbildung  $\tau\mapsto z:=-ik^2\left(\tau-\frac{h}{k}\right),$  ggT(h,k)=1 bildet  $\mathcal{C}(h,k)$  auf den Kreis K mit Radius  $\frac{1}{2}$  und Mittelpunkt  $\frac{1}{2}$  ab. Die Berührpunkte  $\alpha_1$  und  $\alpha_2$  aus Prop. 4.9 werden abgebildet auf  $z_1(h,k)=\frac{k^2}{k^2+k_1^2}+i\frac{kk_1}{k^2+k_1^2}, z_2(h,k)=\frac{k^2}{k^2+k_2^2}-i\frac{kk_2}{k^2+k_2^2}.$  Der obere Bogen, der  $\alpha_1$  mit  $\alpha_2$  verbindet, bildet auf den Bogen ab, der nicht die imaginäre Achse berührt.

**Lemma 5.4:** (i) Es gilt  $|z_1| = \frac{k}{\sqrt{k^2 + k_1^2}}, |z_2| = \frac{k}{\sqrt{k^2 + k_2^2}}$  (ii) Sei z ein beliebiger Punkt auf der Sehne, die  $z_1$  und  $z_2$  gerade verbindet, dann gilt  $|z| < \frac{\sqrt{2}k}{N}$  wenn  $\frac{h_1}{k_1} < \frac{h}{k} < \frac{h_2}{k_2}$  drei aufeinanderfolgende Farey-Brüche in  $\mathcal{F}_N$  sind. Die Länge der Sehne ist  $\leq \frac{2\sqrt{2}k}{N}$ .

**Satz 5.5:** (Rademacher) Für 
$$n \geq 1$$
 gilt  $p(n) = \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{\infty} A_k(n) \sqrt{k} \frac{\mathrm{d}}{\mathrm{d}n} \left( \frac{\sinh\left(\frac{\pi}{k}\sqrt{\frac{2}{3}(n-\frac{1}{24})}\right)}{\sqrt{n-\frac{1}{24}}} \right)$ , wo  $A_k(n) := \sum_{h(k)^*} e^{\pi i s(h,k) - 2\pi i n \frac{h}{k}}$ .