AM101378.ST25.txt SEQUENCE LISTING

					SEC	QUENC	CE LI	STI						
<110>	Wyetl	n												
<120>	Modi	fied	ADAN	ITS4	mole	ecule	es							
<130>	AM10	1378												
<160>	53													
<170>	Pate	ntIn	vers	sion	3.1									
<210> <211> <212> <213>	<211> 837 <212> PRT													
<400>	1													
Met Sei 1	~ Gln	Thr	Gly 5	Ser	His	Pro	Gly	Arg 10	Gly	Leu	Ala	Gly	Arg 15	Trp
Leu Tr	o Gly	Ala 20	Gln	Pro	Cys	Leu	Leu 25	Leu	Pro	Ile	val	Pro 30	Leu	Ser
Trp Lei	u Val 35	Trp	Leu	Leu	Leu	Leu 40	Leu	Leu	Ala	Ser	Leu 45	Leu	Pro	Ser
Ala Arg 50	g Leu	Ala	Ser	Pro	Leu 55	Pro	Arg	Glu	Glu	Glu 60	Ile	val	Phe	Pro
Glu Ly: 65	s Leu	Asn	Gly	Ser 70	٧a٦	Leu	Pro	Gly	Ser 75	Gly	Аlа	.Pro	Ala	Arg 80
Leu Lei	ı Cys	Arg	Leu 85	Gln	Ala	Phe	Gly	Glu 90	Thr	Leu	Leu	Leu	Glu 95	Leu
Glu Gli	n Asp	Ser 100	Gly	val	Gln	Val	Glu 105	Gly	Leu	Thr	val	Gln 110	Туг	Leu
Gly Gl	n Ala 115	Pro	Glu	Leu	Leu	Gly 120	Gly	Ala	Glu	Pro	Gly 125	Thr	Tyr	Leu
Thr Gly		Ile	Asn	Gly	Asp 135	Pro	Glu	Ser	val	Ala 140	Ser	Leu	His	Trp
Asp G1: 145	y Gly	Ala	Leu	Leu 150	Gly	٧a٦	Leu	Gln	Tyr 155	Arg	Gly	Ala	Glu	Leu 160
His Le	u Gln	Pro	Leu 165	Glu	Gly	Glу	Thr	Pro 170	Asn	Ser	Ala	Gly	Gly 175	Pro

								AM	1013	78.s	T25.	txt			
Gly	Ala	His	11e 180	Leu	Arg	Arg	Lys						G1n 190	Gly	Pro
Met.	Cys	Asn 195	val	Lys	Ala	Pro	Leu 200	Gly	ser	Pro	Ser	Pro 205	Arg	Pro	Arg
Arg	A]a 210	Lys	Arg	Phe	Ala	Ser 215	Leu	Ser	Arg	Phe	va1 220	Glu	Thr	Leu	va1
va 1 225	Ala	Asp	Asp	Lys	Met 230	Аla	Ala	Phe	His	G]y 235	Αla	Gly	Leu	Lys	Arg 240
Tyr	Leu	Leu	Thr	Va1 245	Met	Ala	Ala	Ala	Ala 250	Lys	Αla	Phe	Lys	His 255	Pro
ser	Ile	Arg	Asn 260	Pro	val	Ser	Leu	Va1 265	val	Thr	Arg	Leu	va1 270	Ile	Leu
Glу	Ser	Gly 275	Glu	Glu	Gly	Pro	G1n 280	val	G1y	Pro	Ser	Ala 285	Αla	Gไn	Thr
Leu	Arg 290	Ser	Phe	Cys	Ala	Trp 295	Gln	Arg	Gly	Leu	Asn 300	Thr	Pro	Glu	Asp
ser 305	Asp	Pro	Asp	His	Phe 310	Asp	Thr	Ala	Ile	Leu 315	Phe	Thr	Arg	Gln	Asp 320
Leu	Cys	Gly	val	ser 325	Thr	Cys	Asp	Thr	Leu 330	Gly	Met	Αla	Asp	Va1 335	Gly
Thr	val	Cys	Asp 340	Pro	Ala	Arg	Ser	Cys 345	Ala	Ile	٧al	Glu	Asp 3.50	Asp	Gly
Leu	Gln	Ser 355	Ala	Phe	Thr	Аlа	Ala 360	His	Glu	Leu	Gly	Нis 365	٧a٦	Phe	Asn
Met	Leu 370	His	Asp	Asn	ser	Lys 375	Pro	Cys	Ile	Ser	Leu 380	Asn	Gly	Pro	Leu
ser 385	Thr	Ser	Arg	ніѕ	va1 390	Met	Ala	Pro	val	Met 395	Ala	His	val	Asp	Pro 400
Glu	Glu	Pro	Trp	ser 405	Pro	Cys	Ser	Ala	Arg 410	Phe	Ile	Thr	Asp	Phe 415	Leu
Asp	Asn	Gly	Tyr 420	Gly	His	Cys	Leu	Leu 425	Asp	Lys	Pro	Glu	Ala 430	Pro	Leu

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435
440
445 Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro 450 460 Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 465 470 475 480 Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly 485 490 495 Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu 500 505 510 Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro 515 520 525 Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser 530 540 Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu 545 550 560 Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr 565 570 575 Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His 580 585 590 Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro 595 600 605 Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln 610 615 620 Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp 625 630 635 640 Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg 645 650 655 Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe 660 665 670 Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln 675 680 Page 3

Ser	Gly 690	Ser	Phe	Arg	Lys	Phe 695	Arg	Tyr	Gly	Tyr	Asn 700	Asn	val	Val	Thr	
11e 705	Pro	Ala	Gly	Ala	Thr 710	His	Ile	Leu	Val	Arg 715	Gln	Gln	Gly	Asn	Pro 720	
Gly	His	Arg	Ser	11e 725	туг	Leu	Ala	Leu	Lys 730	Leu	Pro	Asp	Gly	Ser 735	туг	
Ala	Leu	Asn	Gly 740	Glu	Tyr	Thr	Leu	Met 745	Pro	Ser	Pro	Thr	Asp 750	∨al	val	
Leu	Pro	Gly 755	Ala	val	Ser	Leu	Arg 760	Tyr	Ser	Gly	Аlа	Thr 765	Аlа	Ala	Ser	
Glu	Thr 770	Leu	Ser	Gly	His	Gly 775	Pro	Leu	Ala	Gln	Pro 780	Leu	Thr	Leu	Gln	
Va1 785	Leu	val	Ala	Gly	Asn 790	Pro	Gln	Asp	Thr	Arg 795	Leu	Arg	Туг	Ser	Phe 800	
Phe	val	Pro	Arg	Pro 805	Thr	Pro	Ser	Thr	Pro 810	Arg	Pro	Thr	Pro	Gln 815	Asp	
Trp	Leu	ніѕ	Arg 820	Arg	Аlа	Gln	Ile	Leu 825	Glu	Ile	Leu	Arg	Arg 830	Arg	Pro	
Trp	Αla	Gly 835	Arg	Lys												
<210 <211 <212 <213	L> : 2> i	2 1294 DNA Artif	ficia	al												
<220 <223)> }>	This	is a	an ai	rtifi	icia	l DNA	A sec	quenc	ce cl	loned	d by	PCR	amp	lificati	ion
<220 <221 <222 <223	l> 1 ?>	misc_ (1) artif	(129	94)	NA SE	equer	ıce									
<400 cca1		2 cca g	gacag	gcto	cg ca	atcc	eggga	a ggg	gcti	ggc	aggg	gcgct	tgg (ctgtg	gggag	60
ccca	acc	ctg o	ctc	ctgc1	c co	cati	tgtg	c cgc	tcto	ctg	gcto	ggtgi	gg d	ctgct	tctgc	120
tacı	gct	ggc o	ctctc	ctcc1	tg co	ctca	agcco	ggo	tggd	cag	ccc	ctc	cc o	ggga	ıggagg	180
										2200	1					

AM101378.ST25.txt agatcgtgtt tccagagaag ctcaacggca gcgtcctgcc tggctcgggc gcccctgc	ca 240
ggctgttgtg ccgcttgcag gcctttgggg agacgctgct actagagctg gagcagga	
ccggtgtgca ggtcgagggg ctgacagtgc agtacctggg ccaggcgcct gagctgct	
gtggagcaga gcctggcacc tacctgactg gcaccatcaa tggagatccg gagtcggt	
catctctgca ctgggatggg ggagccctgt taggcgtgtt acaatatcgg ggggctga	
tccacctcca gcccctggag ggaggcaccc ctaactctgc tgggggacct ggggctca	
tcctacgccg gaagagtcct gccagcggtc aaggtcccat gtgcaacgtc aaggctcc	
ttggaagccc cagccccaga ccccgaagag ccaagcgctt tgcttcactg agtagatt	
tggagacact ggtggtggca gatgacaaga tggccgcatt ccacggtgcg gggctaaa	
gctacctgct aacagtgatg gcagcagcag ccaaggcctt caagcaccca agcatccg	
atcctgtcag cttggtggtg actcggctag tgatcctggg gtcaggcgag gaggggcc	
aagtggggcc cagtgctgcc cagaccctgc gcagcttctg tgcctggcag cggggcct	
acacccctga ggactcggac cctgaccact ttgacacagc cattctgttt acccgtca	gg 960
acctgtgtgg agtctccact tgcgacacgc tgggtatggc tgatgtgggc accgtctg	tg 1020
acccggaaat gggcgaattc ccactcggag ctgtgccatt gtggaggatg atgggctc	ca 1080
gtcagccttc actgctgctc atgaactggg tcatgtcttc aacatgctcc atgacaac	tc 1140
caagccatgc atcagtttga atgggccttt gagcacctct cgccatgtca tggcccct	gt 1200
gatggctcat gtggatcctg aggagccctg gtccccctgc agtgcccgct tcatcact	ga 1260
cttcctggac aatggctatg ggcactgtct ctta	1294
<210> 3 <211> 1421 <212> DNA <213> Artificial <220> <223> This is an artificial DNA sequence cloned by PCR	
<400> 3 ctccaagcca tgcatcagtt tgaatgggcc tttgagcacc tctcgccatg tcatggcc	.cc 60
tgtgatggct catgtggatc ctgaggagcc ctggtccccc tgcagtgccc gcttcatc	ac 120
tgacttcctg gacaatggct atgggcactg tctcttagac aaaccagagg ctccattg	ca 180
tctgcctgtg actttccctg gcaaggacta tgatgctgac cgccagtgcc agctgacc	tt 240
cgggcccgac tcacgccatt gtccacagct gccgccgccc tgtgctgccc tctggtgc	tc 300
tggccacctc aatggccatg ccatgtgcca gaccaaacac tcgccctggg ccgatggc	ac 360
accctgcggg cccgcacagg cctgcatggg tggtcgctgc ctccacatgg accagctc	ca 420
ggacttcaat attccacagg ctggtggctg gggtccttgg ggaccatggg gtgactgc Page 5	

tcggacctgt gggggtggtg	tccagttctc	ctcccgagac	tgcacgaggc	ctgtcccccg	540
gaatggtggc aagtactgtg	agggccgccg	tacccgcttc	cgctcctgca	acactgagga	600
ctgcccaact ggctcagccc	tgaccttccg	cgaggagcag	tgtgctgcct	acaaccaccg	660
caccgacctc ttcaagagct	tcccagggcc	catggactgg	gttcctcgct	acacaggcgt	720
ggcccccag gaccagtgca	aactcacctg	ccaggcccgg	gcactgggct	actactatgt	780
gctggagcca cgggtggtag	atgggacccc	ctgttccccg	gacagctcct	cggtctgtgt	840
ccagggccga tgcatccatg	ctggctgtga	tcgcatcatt	ggctccaaga	agaagtttga	900
caagtgcatg gtgtgcggag	gggacggttc	tggttgcagc	aagcagtcag	gctccttcag	960
gaaattcagg tacggataca	acaatgtggt	cactatcccc	gcgggggcca	cccacattct	1020
tgtccggcag cagggaaacc	ctggccaccg	gagcatctac	ttggccctga	agctgccaga	1080
tggctcctat gccctcaatg	gtgaatacac	gctgatgccc	tcccccacag	atgtggtact	1140
gcctggggca gtcagcttgc	gctacagcgg	ggccactgca	gcctcagaga	cactgtcagg	1200
ccatgggcca ctggcccagc	ctttgacact	gcaagtccta	gtggctggca	acccccagga	1260
cacacgcctc cgatacagct	tcttcgtgcc	ccggccgacc	ccttcaacgc	cacgccccac	1320
tccccaggac tggctgcacc	gaagagcaca	gattctggag	atccttcggc	ggcgcccctg	1380
ggcgggcagg aaataacctc	actatgcggc	cgcagtcagt	C .		1421
<210> 4 <211> 4307 <212> DNA <213> Homo sapiens				·	
<211> 4307 <212> DNA	agagacagag	gaggaaagag	acagagacaa	aggcacagcg	60
<211> 4307 <212> DNA <213> Homo sapiens <400> 4					60 120
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag	aggcacagaa	gcggcccaga	cagagtccta	cagagggaga	
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc	aggcacagaa acacaggcag	gcggcccaga ggagagacaa	cagagtccta agatccagga	cagagggaga aaggagggct	120
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag	aggcacagaa acacaggcag gccagacccc	gcggcccaga ggagagacaa tgggcacctc	cagagtccta agatccagga tcccaagccc	cagagggaga aaggagggct aaggactaag	120 180
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa	aggcacagaa acacaggcag gccagacccc ggtcctcagc	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa	cagagtccta agatccagga tcccaagccc actttgcctc	cagagggaga aaggagggct aaggactaag tgaccttggc	120 180 240
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa tttcccat ttcctttaac	aggcacagaa acacaggcag gccagacccc ggtcctcagc tacagagagg	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa agctttccaa	cagagtccta agatccagga tcccaagccc actttgcctc agctagggtg	cagagggaga aaggagggct aaggactaag tgaccttggc tggaggactt	120 180 240 300
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa ttttctccat ttcctttaac aggagtcaa gccccaggc	aggcacagaa acacaggcag gccagacccc ggtcctcagc tacagagagg tccctcccag	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa agctttccaa ctgcagtacc	cagagtccta agatccagga tcccaagccc actttgcctc agctagggtg agtgccatgt	cagagggaga aaggagggct aaggactaag tgaccttggc tggaggactt cccagacagg	120 180 240 300 360
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa ttttctccat ttcctttaac aggagtcaa gccccaggc ggtgccctag acggcctcag	aggcacagaa acacaggcag gccagacccc ggtcctcagc tacagagagg tccctcccag tggcagggcg	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa agctttccaa ctgcagtacc ctggctgtgg	cagagtccta agatccagga tcccaagccc actttgcctc agctagggtg agtgccatgt ggagcccaac	cagagggaga aaggagggct aaggactaag tgaccttggc tggaggactt cccagacagg cctgcctcct	120 180 240 300 360 420
<211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa ttttctccat ttcctttaac aggagtccaa gcccccaggc ggtgccctag acggcctcag ctcgcatccc gggaggggct	aggcacagaa acacaggcag gccagacccc ggtcctcagc tacagagagg tccctcccag tggcagggcg cctggctggt	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa agctttccaa ctgcagtacc ctggctgtgg gtggctgctt	cagagtccta agatccagga tcccaagccc actttgcctc agctagggtg agtgccatgt ggagcccaac ctgctactgc	cagaggaga aaggagggct aaggactaag tgaccttggc tggaggactt cccagacagg cctgcctcct	120 180 240 300 360 420 480
<pre><211> 4307 <212> DNA <213> Homo sapiens <400> 4 cacagacaca tatgcacgag gaagaaggca gagacagggc ggccagagaa gctgcagaag caggaggaga gtttggagaa ttttctccat ttcctttaac aggagtccaa gcccccaggc ggtgccctag acggcctcag ctcgcatccc gggaggggct gctccccatt gtgccgctct</pre>	aggcacagaa acacaggcag gccagacccc ggtcctcagc tacagagagg tccctcccag tggcagggcg cctggctggt ccagcccct	gcggcccaga ggagagacaa tgggcacctc ccttctgaaa agctttccaa ctgcagtacc ctggctgtgg gtggctgctt cccccgggag	cagagtccta agatccagga tcccaagccc actttgcctc agctagggtg agtgccatgt ggagcccaac ctgctactgc gaggagatcg	cagaggaga aaggagggct aaggactaag tgaccttggc tggaggactt cccagacagg cctgcctcct tggcctctct	120 180 240 300 360 420 480 540

ggggctgaca	gtgcagtacc	tgggccaggc	gcctgagctg	ctgggtggag	cagagcctgg	780
cacctacctg	actggcacca	tcaatggaga	tccggagtcg	gtggcatctc	tgcactggga	840
tgggggagcc	ctgttaggcg	tgttacaata	tcggggggct	gaactccacc	tccagcccct	900
ggagggaggc	acccctaact	ctgctggggg	acctggggct	cacatcctac	gccggaagag	960
tcctgccagc	ggtcaaggtc	ccatgtgcaa	cgtcaaggct	cctcttggaa	gccccagccc	1020
cagaccccga	agagccaagc	gctttgcttc	actgagtaga	tttgtggaga	cactggtggt	1080
ggcagatgac	aagatggccg	cattccacgg	tgcggggcta	aagcgctacc	tgctaacagt	1140
gatggcagca	gcagccaagg	ccttcaagca	cccaagcatc	cgcaatcctg	tcagcttggt	1200
ggtgactcgg	ctagtgatcc	tggggtcagg	cgaggagggg	ccccaagtgg	ggcccagtgc	1260
tgcccagacc	ctgcgcagct	tctgtgcctg	gcagcggggc	ctcaacaccc	ctgaggactc	1320
ggaccctgac	cactttgaca	cagccattct	gtttacccgt	caggacctgt	gtggagtctc	1380
cacttgcgac	acgctgggta	tggctgatgt	gggcaccgtc	tgtgacccgg	ctcggagctg	1440
tgccattgtg	gaggatgatg	ggctccagtc	agccttcact	gctgctcatg	aactgggtca	1500
tgtcttcaac	atgctccatg	acaactccaa	gccatgcatc	agtttgaatg	ggcctttgag	1560
cacctctcgc	catgtcatgg	cccctgtgat	ggctcatgtg	gatcctgagg	agccctggtc	1620
cccctgcagt	gcccgcttca	tcactgactt	cctggacaat	ggctatgggc	actgtctctt	1680
agacaaacca	gaggctccat	tgcatctgcc	tgtgactttc	cctggcaagg	actatgatgc	1740
tgaccgccag	tgccagctga	ccttcgggcc	cgactcacgc	cattgtccac	agctgccgcc	1800
gccctgtgct	gccctctggt	gctctggcca	cctcaatggc	catgccatgt	gccagaccaa	1860
acactcgccc	tgggccgatg	gcacaccctg	cgggcccgca	caggcctgca	tgggtggtcg	1920
ctgcctccac	atggaccagc	tccaggactt	caatattcca	caggctggtg	gctggggtcc	1980
ttggggacca	tggggtgact	gctctcggac	ctgtgggggt	ggtgtccagt	tctcctcccg	2040
agactgcacg	aggcctgtcc	cccggaatgg	tggcaagtac	tgtgagggcc	gccgtacccg	2100
cttccgctcc	tgcaacactg	aggactgccc	aactggctca	gccctgacct	tccgcgagga	2160
gcagtgtgct	gcctacaacc	accgcaccga	cctcttcaag	agcttcccag	ggcccatgga	2220
ctgggttcct	cgctacacag	gcgtggcccc	ccaggaccag	tgcaaactca	cctgccaggc	2280
ccgggcactg	ggctactact	atgtgctgga	gccacgggtg	gtagatggga	cccctgttc	2340
cccggacagc	tcctcggtct	gtgtccaggg	ccgatgcatc	catgctggct	gtgatcgcat	2400
cattggctcc	aagaagaagt	ttgacaagtg	catggtgtgc	ggaggggacg	gttctggttg	2460
cagcaagcag	tcaggctcct	tcaggaaatt	caggtacgga	tacaacaatg	tggtcactat	2520
ccccgcgggg	gccacccaca	ttcttgtccg	gcagcaggga	aaccctggcc	accggagcat	2580

			44101270 C	T35 +v+		
ctacttggcc	ctgaagctgc	cagatggctc	AM101378.S ctatgccctc		acacgctgat	2640
gccctccccc	acagatgtgg	tactgcctgg	ggcagtcagc	ttgcgctaca	gcggggccac	2700
tgcagcctca	gagacactgt	caggccatgg	gccactggcc	cagcctttga	cactgcaagt	2760
cctagtggct	ggcaaccccc	aggacacacg	cctccgatac	agcttcttcg	tgccccggcc	2820
gaccccttca	acgccacgcc	ccactcccca	ggactggctg	caccgaagag	cacagattct	2880
ggagatcctt	cggcggcgcc	cctgggcggg	caggaaataa	cctcactatc	ccggctgccc	2940
tttctgggca	ccggggcctc	ggacttagct	gggagaaaga	gagagcttct	gttgctgcct	3000
catgctaaga	ctcagtgggg	aggggctgtg	ggcgtgagac	ctgcccctcc	tctctgccct	3060
aatgcgcagg	ctggccctgc	cctggtttcc	tgccctggga	ggcagtgatg	ggttagtgga	3120
tggaaggggc	tgacagacag	ccctccatct	aaactgcccc	ctctgccctg	cgggtcacag	3180
gagggagggg	gaaggcaggg	agggcctggg	ccccagttgt	atttatttag	tatttattca	3240
cttttattta	gcaccaggga	aggggacaag	gactagggtc	ctggggaacc	tgacccctga	3300
cccctcatag	ccctcaccct	ggggctagga	aatccagggt	ggtggtgata	ggtataagtg	3360
gtgtgtgtat	gcgtgtgtgt	gtgtgtgtga	aaatgtgtgt	gtgcttatgt	atgaggtaca	3420
acctgttctg	ctttcctctt	cctgaatttt	attttttggg	aaaagaaaag	tcaagggtag	3480
ggtgggcctt	cagggagtga	gggattatct	ttttttttt	ttctttcttt	ctttctttt	3540
tttttttgag	acagaatctc	gctctgtcgc	ccaggctgga	gtgcaatggc	acaatctcgg	3600
ctcactgcat	cctccgcctc	ccgggttcaa	gtgattctca	tgcctcagcc	tcctgagtag	3660
ctgggattac	aggctcctgc	caccacgccc	agctaatttt	tgttttgttt	tgtttggaga	3720
cagagtctcg	ctattgtcac	cagggctgga	atgatttcag	ctcactgcaa	ccttcgccac	3780
ctgggttcca	gcaattctcc	tgcctcagcc	tcccgagtag	ctgagattat	aggcacctac	3840
caccacgccc	ggctaatttt	tgtatttta	gtagagacgg	ggtttcacca	tgttggccag	3900
gctggtctcg	aactcctgac	cttaggtgat	ccactcgcct	tcatctccca	aagtgctggg	3960
attacaggcg	tgagccaccg	tgcctggcca	cgcccaacta	atttttgtat	ttttagtaga	4020
gacagggttt	caccatgttg	gccaggctgc	tcttgaactc	ctgacctcag	gtaatcgacc	4080
tgcctcggcc	tcccaaagtg	ctgggattac	aggtgtgagc	caccacgccc	ggtacatatt	4140
ttttaaattg	aattctacta	tttatgtgat	ccttttggag	tcagacagat	gtggttgcat	4200
cctaactcca	tgtctctgag	cattagattt	ctcatttgcc	aataataata	cctcccttag	4260
aagtttgttg	tgaggattaa	ataatgtaaa	taaagaacta	gcataac		4307

<210> 5 <211> 42 <212> DNA <213> Artificial

```
<220>
<223> PCR primer
<400> 5
                                                                           42
aaatgggcga attcccacca tgtcccagac aggctcgcat cc
<210>
       6
<211>
       8
<212>
       DNA
<213>
       artificial
<220>
<223> 8-bp tail sequence
<400> 6
aaatgggc
                                                                            8
<210>
       7
<211>
<212>
       6
       DNA
<213>
       Artificial
<220> <223> EcoRI site
<400> 7
gaattc
                                                                            6
       8
5
<210>
<211>
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Kozak sequence
<400>
                                                                            5
ccacc
<210>
       9
<211>
       26
<212>
       DNA
<213>
       Artificial
<220>
<223>
       PCR primer
<400> 9
taagagacag tgcccatagc cattgt
                                                                           26
<210>
       10
<211>
       26
<212>
       DNA
<213>
       Artificial
<220>
<223>
       PCR primer
```

<400> ctccaa	10 gcca tgcatcagtt tgaatg	26
<210> <211> <212> <213>	11 41 DNA Artificial	
<220> <223>	PCR fragment	
<400> gactga	11 ctgc ggccgcatag tgaggttatt tcctgcccgc c	41
<210> <211> <212> <213>	12 8 DNA Artificial	
<220> <223>	8-bp tail sequence	
<400> gactga	12 ct	8
<210> <211> <212> <213>	13 8 DNA Artificial	
<220> <223>	NotI site	
<400> gcggcc	13 gc	8
<210> <211> <212> <213>	14 2542 DNA Artificial	
<220> <223>	PCR cloned ADAMTS4 cDNA	
<400> gaattc	14 ccac catgtcccag acaggctcgc atcccgggag gggcttggca gggcgctggc	60
tgtggg	gagc tcaaccctgc ctcctgctcc ccattgtgcc gctctcctgg ctggtgtggc	120
tgcttc	tgct actgctggcc tctctcctgc cctcagcccg gctggccagc cccctcccc	180
gggagg	agga gatcgtgttt ccagagaagc tcaacggcag cgtcctgcct ggctcgggcg	240
cccctg	ccag gctgttgtgc cgcttgcagg cctttgggga gacgctgcta ctagagctgg	300
agcagg	actc cggtgtgcag gtcgaggggc tgacagtgca gtacctgggc caggcgcctg	360
agctgc	tggg tggagcagag cctggcacct acctgactgg caccatcaat ggagatccgg	420

agtcggtggc atctctgcac	tgggatgggg	gagccctgtt	aggcgtgtta	caatatcggg	480
gggctgaact ccacctccag	cccctggagg	gaggcacccc	taactctgct	gggggacctg	540
gggctcacat cctacgccgg	aagagtcctg	ccagcggtca	aggtcccatg	tgcaacgtca	600
aggctcctct tggaagcccc	agccccagac	cccgaagagc	caagcgcttt	gcttcactga	660
gtagatttgt ggagacactg	gtggtggcag	atgacaagat	ggccgcattc	cacggtgcgg	720
ggctaaagcg ctacctgcta	acagtgatgg	cagcagcagc	caaggccttc	aagcacccaa	780
gcatccgcaa tcctgtcagc	ttggtggtga	ctcggctagt	gatcctgggg	tcaggcgagg	840
aggggcccca agtggggccc	agtgctgccc	agaccctgcg	cagcttctgt	gcctggcagc	900
ggggcctcaa cacccctgag	gactcggacc	ctgaccactt	tgacacagcc	attctgttta	960
cccgtcagga cctgtgtgga	gtctccactt	gcgacacgct	gggtatggct	gatgtgggca	1020
ccgtctgtga cccggctcgg	agctgtgcca	ttgtggagga	tgatgggctc	cagtcagcct	1080
tcagtgctgc tcatcaactg	ggtcatgtct	tcaacatgct	ccatgacaac	tccaagccat	1140
gcatcagttt gaatgggcct	ttgagcacct	ctcgccatgt	catggcccct	gtgatggctc	1200
atgtggatcc tgaggagccc	tggtccccct	gcagtgcccg	cttcatcact	gacttcctgg	1260
acaatggcta tgggcactgt	ctcttagaca	aaccagaggc	tccattgcat	ctgcctgtga	1320
ctttccctgg caaggactat	gatgctgacc	gccagtgcca	gctgaccttc	gggcccgact	1380
cacgccattg tccacagctg	ccgccgccct	gtgctgccct	ctggtgctct	ggccacctca	1440
atggccatgc catgtgccag	accaaacact	cgccctgggc	cgatggcaca	ccctgcgggc	1500
ccgcacaggc ctgcatgggt	ggtcgctgcc	tccacatgga	ccagctccag	gacttcaata	1560
ttccacaggc tggtggctgg	ggtccttggg	gaccatgggg	tgactgctct	cggacctgtg	1620
ggggtggtgt ccagttctcc	tcccgagact	gcacgaggcc	tgtcccccgg	aatggtggca	1680
agtactgtga gggccgccgt	acccgcttcc	gctcctgcaa	cactgaggac	tgcccgactg	1740
gctcagccct gaccttccgc	gaggagcagt	gtgctgccta	caaccaccgc	accgacctct	1800
tcaagagctt cccagggccc	atggactggg	ttcctcgcta	cacaggcgtg	gcccccagg	1860
accagtgcaa actcacctgc	caggcccggg	cactgggcta	ctactatgtg	ctggagccac	1920
gggtggtaga tgggaccccc	tgttccccgg	acagctcctc	ggtctgtgtc	cagggccgat	1980
gcatccatgc tggctgtgat	cgcatcattg	gctccaagaa	gaagtttgac	aagtgcatgg	2040
tgtgcggagg ggacggttct	ggttgcagca	agcagtcagg	ctccttcagg	aaattcaggt	2100
acggatacaa caatgtggtc	actatccccg	cgggggccac	ccacattctt	gtccggcagc	2160
agggaaaccc tggccaccgg	agcatctact	tggccctgaa	gctgccagat	ggctcctatg	2220
ccctcaatgg tgaatacacg	ctgatgccct	cccccacaga	tgtggtactg	cctggggcag	2280

tcagcttgcg	ctacagcggg	gccactgcag	cctcagagac	actgtcaggc	catgggccac	2340
tggcccagcc	tttgacactg	caggtcctag	tggctggcaa	ccccaggac	acacgcctcc	2400
gatacagctt	cttcgtgccc	cggccgaccc	cttcaacgcc	acgccccact	ccccaggact	2460
ggctgcaccg	aagagcacag	attctggaga	tccttcggcg	gcgcccctgg	gcgggcagga	2520
aataacctca	ctatgcggcc	gc				2542

<210> 15

<211> 625

<212> PRT

<213> Homo sapiens

<400> 15

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Page 12 Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 315 310 315

Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu 370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly 385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu 405 410 415

Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys 420 425 430

								AM	1013	78.S	T25.	txt				
Ser	Pro	Asp 435	Ser	Ser	Ser	val	Cys 440				Arg		Ile	His	Ala	
Gly	Cys 450	Asp	Arg	Ile	Ile	G]y 455	Ser	Lys	Lys	Lys	Phe 460	Asp	Lys	Cys	Met	
va1 465	Cys	Gly	Gly	Asp	G1y 470	Ser	Gly	Cys	Ser	Lys 475	Gln	Ser	Gly	Ser	Phe 480	
Arg	Lys	Phe	Arg	Туг 485	Gly	Tyr	Asn	Asn	Val 490	val	Thr	Ile	Pro	Ala 495	Gly	
Ala	Thr	His	11e 500	Leu	val	Arg	Gln	G]n 505	Gly	Asn	Pro	Gly	ніs 510	Arg	Ser	
Ile	Tyr	Leu 515	Ala	Leu	Lys	Leu	Pro 520	Asp	Gly	Ser	Tyr	Ala 525	Leu	Asn	Gly	
Glu	Tyr 530	Thr	Leu	Met	Pro	Ser 535	Pro	Thr	Asp	val	va1 540	Leu	Pro	Gly	Ala	
Val 545	Ser	Leu	Arg	Tyr	Ser 550	Gly	Ala	Thr	Ala	Ala 555	Ser	Glu	Thr	Leu	ser 560	
Glу	His	Gly	Pro	Leu 565	Ala	Gln	Pro	Leu	Thr 570	Leu	Gln	Val	Leu	Val 575	Ala	
Gly	Asn	Pro	G1n 580	Asp	Thr	Arg	Leu	Arg 585	Tyr	Ser	Phe	Phe	Val 590	Pro	Arg	
Pro	Thr	Pro 595	Ser	Thr	Pro	Arg	Pro 600	Thr	Pro	Gln	Asp	Trp 605	Leu	His	Arg	
Arg	Ala 610	Gln	ıle	Leu	Glu	11e 615	Leu	Arg	Arg	Arg	Pro 620	Trp	ΑΊa	Gly	Arg	
Lys 625																
<210 <211 <211 <213	L> 1 2> [L6 L875 DNA Homo	sapi	ens							÷					
<400 ttt		l6 cac t	gagt	agat	t to	gtgqa	agaca	a cto	ıgtad	jtga	caga	itgac	caa d	jatao	ıccgca	. 60
															ıaggcc	120
															itcctg	180
										age				_	-	

gggtcaggcg	aggagggcc	ccaagtgggg	cccagtgctg	cccagaccct	gcgcagcttc	240
tgtgcctggc	agcggggcct	caacacccct	gaggactcgg	accctgacca	ctttgacaca	300
gccattctgt	ttacccgtca	ggacctgtgt	ggagtctcca	cttgcgacac	gctgggtatg	360
gctgatgtgg	gcaccgtctg	tgacccggct	cggagctgtg	ccattgtgga	ggatgatggg	420
ctccagtcag	ccttcagtgc	tgctcatcaa	ctgggtcatg	tcttcaacat	gctccatgac	480
aactccaagc	catgcatcag	tttgaatggg	cctttgagca	cctctcgcca	tgtcatggcc	540
cctgtgatgg	ctcatgtgga	tcctgaggag	ccctggtccc	cctgcagtgc	ccgcttcatc	600
actgacttcc	tggacaatgg	ctatgggcac	tgtctcttag	acaaaccaga	ggctccattg	660
catctgcctg	tgactttccc	tggcaaggac	tatgatgctg	accgccagtg	ccagctgacc	720
ttcgggcccg	actcacgcca	ttgtccacag	ctgccgccgc	cctgtgctgc	cctctggtgc	780
tctggccacc	tcaatggcca	tgccatgtgc	cagaccaaac	actcgccctg	ggccgatggc	840
acaccctgcg	ggcccgcaca	ggcctgcatg	ggtggtcgct	gcctccacat	ggaccagctc	900
caggacttca	atattccaca	ggctggtggc	tggggtcctt	ggggaccatg	gggtgactgc	960
tctcggacct	gtgggggtgg	tgtccagttc	tcctcccgag	actgcacgag	gcctgtcccc	1020
cggaatggtg	gcaagtactg	tgagggccgc	cgtacccgct	tccgctcctg	caacactgag	1080
gactgcccga	ctggctcagc	cctgaccttc	cgcgaggagc	agtgtgctgc	ctacaaccac	1140
cgcaccgacc	tcttcaagag	cttcccaggg	cccatggact	gggttcctcg	ctacacaggc	1200
gtggcccccc	aggaccagtg	caaactcacc	tgccaggccc	gggcactggg	ctactactat	1260
gtgctggagc	cacgggtggt	agatgggacc	ccctgttccc	cggacagctc	ctcggtctgt	1320
gtccagggcc	gatgcatcca	tgctggctgt	gatcgcatca	ttggctccaa	gaagaagttt	1380
gacaagtgca	tggtgtgcgg	aggggacggt	tctggttgca	gcaagcagtc	aggctccttc	1440
aggaaattca	ggtacggata	caacaatgtg	gtcactatcc	ccgcgggggc	cacccacatt	1500
cttgtccggc	agcagggaaa	ccctggccac	cggagcatct	acttggccct	gaagctgcca	1560
gatggctcct	atgccctcaa	tggtgaatac	acgctgatgc	cctccccac	agatgtggta	1620
ctgcctgggg	cagtcagctt	gcgctacagc	ggggccactg	cagcctcaga	gacactgtca	1680
ggccatgggc	cactggccca	gcctttgaca	ctgcaggtcc	tagtggctgg	caacccccag	1740
gacacacgcc	tccgatacag	cttcttcgtg	ccccggccga	ccccttcaac	gccacgcccc	1800
actccccagg	actggctgca	ccgaagagca	cagattctgg	agatccttcg	gcggcgcccc	1860
tgggcgggca	ggaaa					1875

<210> 17 <211> 482 <212> PRT

<213> Homo sapiens

<400> 17

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 . 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255 Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270 Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285 Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300 Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 305 310 315 320 Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365 Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu 370 375 380 Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly 385 390 395 400 Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu 405 410 415 Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430 Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala 435 440 445 Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met 450 460 Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe 465 470 475 480 Arg Lys

Page 17

<210> 18 <211> 1446 <212> DNA <213> Homo sapiens	
<400> 18 tttgcttcac tgagtagatt tgtggagaca ctggtggtgg cagatgacaa gatggccgca	60
ttccacggtg cggggctaaa gcgctacctg ctaacagtga tggcagcagc agccaaggcc	120
ttcaagcacc caagcatccg caatcctgtc agcttggtgg tgactcggct agtgatcctg	180
gggtcaggcg aggagggcc ccaagtgggg cccagtgctg cccagaccct gcgcagcttc 2	240
tgtgcctggc agcggggcct caacacccct gaggactcgg accctgacca ctttgacaca	300
gccattctgt ttacccgtca ggacctgtgt ggagtctcca cttgcgacac gctgggtatg	360
gctgatgtgg gcaccgtctg tgacccggct cggagctgtg ccattgtgga ggatgatggg	420
ctccagtcag ccttcagtgc tgctcatcaa ctgggtcatg tcttcaacat gctccatgac	480
aactccaagc catgcatcag tttgaatggg cctttgagca cctctcgcca tgtcatggcc	540
cctgtgatgg ctcatgtgga tcctgaggag ccctggtccc cctgcagtgc ccgcttcatc	600
actgacttcc tggacaatgg ctatgggcac tgtctcttag acaaaccaga ggctccattg	660
catctgcctg tgactttccc tggcaaggac tatgatgctg accgccagtg ccagctgacc	720
ttcgggcccg actcacgcca ttgtccacag ctgccgccgc cctgtgctgc cctctggtgc	780
tctggccacc tcaatggcca tgccatgtgc cagaccaaac actcgccctg ggccgatggc	840
acaccctgcg ggcccgcaca ggcctgcatg ggtggtcgct gcctccacat ggaccagctc	900
caggacttca atattccaca ggctggtggc tggggtcctt gggggaccatg gggtgactgc	960
tctcggacct gtgggggtgg tgtccagttc tcctcccgag actgcacgag gcctgtcccc 10	020
cggaatggtg gcaagtactg tgagggccgc cgtacccgct tccgctcctg caacactgag 10	080
gactgcccga ctggctcagc cctgaccttc cgcgaggagc agtgtgctgc ctacaaccac 13	140
cgcaccgacc tcttcaagag cttcccaggg cccatggact gggttcctcg ctacacaggc 12	200
gtggccccc aggaccagtg caaactcacc tgccaggccc gggcactggg ctactactat 12	260
gtgctggagc cacgggtggt agatgggacc ccctgttccc cggacagctc ctcggtctgt 1	320
gtccagggcc gatgcatcca tgctggctgt gatcgcatca ttggctccaa gaagaagttt 1	380
gacaagtgca tggtgtgcgg aggggacggt tctggttgca gcaagcagtc aggctccttc 14	440
aggaaa 14	446
<210> 19	

<210> 19 <211> 369 <212> PRT <213> Homo sapiens

<400> 19

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 55

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 . 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Cys Ala 245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr $260 \hspace{1cm} 265 \hspace{1cm} 270$

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 315 320

Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365

Thr

<210> 20 <211> 1107 <212> DNA <213> Homo sapiens

<400> 20

60 tttgcttcac tgagtagatt tgtggagaca ctggtggtgg cagatgacaa gatggccgca 120 ttccacggtg cggggctaaa gcgctacctg ctaacagtga tggcagcagc agccaaggcc 180 ttcaagcacc caagcatccg caatcctgtc agcttggtgg tgactcggct agtgatcctg 240 gggtcaggcg aggagggcc ccaagtgggg cccagtgctg cccagaccct gcgcagcttc tgtgcctggc agcggggcct caacacccct gaggactcgg accctgacca ctttgacaca 300 360 gccattctgt ttacccgtca ggacctgtgt ggagtctcca cttgcgacac gctgggtatg 420 gctgatgtgg gcaccgtctg tgacccggct cggagctgtg ccattgtgga ggatgatggg 480 ctccagtcag ccttcagtgc tgctcatcaa ctgggtcatg tcttcaacat gctccatgac aactccaagc catgcatcag tttgaatggg cctttgagca cctctcgcca tgtcatggcc 540 600 cctgtgatgg ctcatgtgga tcctgaggag ccctggtccc cctgcagtgc ccgcttcatc 660 actgacttcc tggacaatgg ctatgggcac tgtctcttag acaaaccaga ggctccattg Page 20

catctgcctg tgactttccc tggcaaggac tatgatgctg accgccagtg ccagctgacc	720
ttcgggcccg actcacgcca ttgtccacag ctgccgccgc cctgtgctgc cctctggtgc	780
tctggccacc tcaatggcca tgccatgtgc cagaccaaac actcgccctg ggccgatggc	840
acaccctgcg ggcccgcaca ggcctgcatg ggtggtcgct gcctccacat ggaccagctc	900
caggacttca atattccaca ggctggtggc tggggtcctt gggggaccatg gggtgactgc	960
tctcggacct gtgggggtgg tgtccagttc tcctcccgag actgcacgag gcctgtcccc	1020
cggaatggtg gcaagtactg tgagggccgc cgtacccgct tccgctcctg caacactgag	1080
gactgcccga ctggctcagc cctgacc	1107
<210> 21 <211> 5 <212> PRT <213> Artificial	
<220> <223> Neopeptide	
<220> <221> MISC_FEATURE <222> (4)(5) <223> X can be any amino acid	
<400> 21	
Ala Arg Gly Xaa Xaa 1 5	
<210> 22 <211> 435 <212> PRT <213> Artificial	
<220> <223> Original catalytic construct	
<400> 22	
Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp 1 5 10 15	
Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30	
Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 35 40 45	

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 60

Glu 65	Lys	Leu	Asn	Gly	Ser 70	٧a٦	Leu	Pro	Gly	Ser 75	Gly	Ala	Pro	Ala	Arg 80
Leu	Leu	Cys	Arg	Leu 85	Gln	Ala	Phe	Gly	Glu 90	Thr	Leu	Leu	Leu	Glu 95	Leu
Glu	Gln	Asp	Ser 100	Gly	val	Gln	∨al	Glu 105	Gly	Leu	Thr	val	Gln 110	туr	Leu
Gly	Gln	Ala 115	Pro	Glu	Leu	Leu	Gly 120	Gly	Ala	Ģlu	Pro	Gly 125	Thr ·	Tyr	Leu
Thr	Gly 130	Thr	Ile	Asn	Gly	Asp 135	Pro	Glu	Seŗ	val	Ala 140	Ser	Leu	His	Ţгр
Asp 145	Gly	Gly	Ala	Leu	Leu 150	Gly	val	Leu	Gln	Tyr 155	Arg	Gly	Ala	Glu	Leu 160
His	Leu	Gln	Pro	Leu 165	Glu	[°] Gly	Gly	Thr	Pro 170	Asn	Ser	Ala	Gly	Gly 175	Pro
Gly	Ala	His	Ile 180	Leu	Arg	Arg	Lys	Ser 185	Pro	Ala	Ser	Gly	Gln 190	Gly	Pro
Met	Cys	Asn 195	val	Lys	Ala	Pro	Leu 200	Gly	Ser	Pro	Ser	Pro 205	Arg	Pro	Arg
Arg	Ala 210	Lys	Arg	Phe	Ala	Ser 215	Leu	Ser	Arg	Phe	val 220	Glu	Thr	Leu	۷a٦
va1 225	Ala	Asp	Asp	Lys	Met 230	Ala	Ala	Phe	His	Gly 235	Ala	Gly	Leu	Lys	Arg 240
Tyr	Leu	Leu		Val 245		Ala	Ala	Ala	Ala 250	Lys	Ala	Phe	L <u>y</u> s	His 255	Pro
Ser	Ile	Arg	Asn 260	Pro	val	Ser	Leu	va1 265	val	Thr	Arg	Leu	va1 270	Ile	Leu
Gly	Ser	Gly 275	Glu	Glu	Gly	Pro	G]n 280	val	Gly	Pro	Ser	Ala 285	Ala	Gln	Thr
Leu	Arg 290	Ser	Phe	Cys	Ala	Trp 295	Gln	Arg	Gly	Leu	Asn 300	Thr	Pro	Glu	Asp
Ser 305	Asp	Pro	Asp	His	Phe 310	Asp	Thr	Ala		Leu 315 age		Thr	Arg	Gln	Asp 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn 355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro 385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu His His 420 425 430

His His His 435

<210> 23

<211> 6

<212> PRT

<213> Artificial

<220>

<223> His tag

<400> 23

His His His His His 1

<210> 24

<211> 697

<212> PRT

<213> Artificial

<220>

<223> Truncated ADAMTS4 molecule

<400> 24

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser Page 23 Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 35 40 45 Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 55 60 Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 65 70 75 80 Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 85 90 95 Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 105 110 Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 115 120 125 Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140 Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 155 160 His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175 Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190 Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg 195 200 205 Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 215 220 Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 225 230 235 240 Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu 265 270

								AM	1013	78.S	T25.	txt			
Gly	Ser	G1y 275	Glu	Glu	Gly	Pro	Gln 280						Ala	Gln	Thr
Leu	Arg 290	Ser	Phe	Cys	Ala	Trp 295	Gln	Arg	Gly	Leu	Asn 300	Thr	Pro	Glu	Asp
Ser 305	Asp	Pro	Asp	His	Phe 310	Asp	Thr	Ala	Ile	Leu 315	Phe	Thr	Arg	Gln	Asp 320
Leu	Cys	Gly	va1	Ser 325	Thr	Cys	Asp	Thr	Leu 330	Gly	Met	Ala	Asp	Val 335	Gly
Thr	val	Cys	Asp 340	Pro	Ala	Arg	Ser	Cys 345	Ala	Ile	val	Glu	Asp 350	Asp	Gly
Leu	Gln	Ser 355	Alā	Phe	Thr	Аla	Ala 360	ніѕ	Glu	Leu	Gly	ніs 365	٧a٦	Phe	Asn
Met	Leu 370	His	Asp	Asn	Ser	Lys 375	Pro	Cys	Ile	Ser	Leu 380	Asn	Gly	Pro	Leu
Ser 385	Thr	Ser	Arg	His	va1 390	Met	Ala	Pro	val	Met 395	Ala	Нis	٧a٦	Asp	Pro 400
Glu	Glu	Pro	Trp	Ser 405	Pro	Cys	Ser	Ala	Arg 410	Phe	Ile	Thr	Asp	Phe 415	Leu
Asp	Asn	Gly	Tyr 420	Gly	His	Cys	Leu	Leu 425	Asp	Lys	Pro	Glu	Ala 430	Pro	Leu
His	Leu	Pro 435	val	Thr	Phe	Pro	Gly 440	Lys	Asp	Tyr	Asp	Ala 445	Asp	Arg	Gln
Cys	G1n 450	Leu	Thr	Phe	Gly	Pro 455	Asp	Ser	Arg	His	Cys 460	Pro	Gln	Leu	Pro
Pro 465	Pro	Cys	Ala		Leu 470	Trp	Cys	Ser	Gly	Ніs 475	Leu	Asn	Gly	His	Ala 480
Met	Cys	G1n	Thr	Lys 485	His	Ser	Pro	Trp	А1а 490	Asp	Gly	Thr	Pro	Cys 495	Gly
Pro	Ala	Gln	Ala 500	Cys	Met	Gly	Gly	Arg 505	Cys	Leu	His	Met	Asp 510	Gln	Leu
Gln	Asp	Phe 515	Asn	Ile	Pro	Gln	Ala 520	Gly	Gly	Тгр	Gly	Pro 525	Trp	Gly	Pro

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser 530 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu 545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr 565 570 575

Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His 580 585 590

Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro 595 600 605

Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln 610 620

Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp 625 630 635 640

Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg 645 650 655

Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe 660 665 670

Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Gly Ser 675 680 685

Ala Trp Ser His Pro Gln Phe Glu Lys 690 695

<210> 25

<211> 11

<212> PRT <213> Artificial

<220>

<223> Construct C tag sequence

<400> 25

Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 26

<211> 686

<212> PRT

<213> Artificial

<220>

<223> Truncated ADAMTS4 construct D

<400> 26

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser

Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 35 40 45

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg 195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Page 27 Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr 275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp 290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp 305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335

Thr Val Cys Ásp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn 355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro 385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu 420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln 435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro 450 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 465 470 475 480

AM101378.ST25.txt Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly 485 490 495 Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu 500 510 Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro 515 525 Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser 530 540 Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu 545 550 560 Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr 565 570 575 Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro 595 600 605 Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln 610 620 Ala Arg Ala Leu Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp 625 630 635 Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg 645 650 655 Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser 675 680 685 <210> 27 858 <211> <212> PRT

<212> PRT <213> Artificial <220>

<223> modified ADAMTS4 molecule

<400> 27

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp Page 29

15

1

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30 Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 35 40 45 Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 60 Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 65 70 75 80 Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 85 90 95 Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 105 110 Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 115 120 125 Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140 Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 160 His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175 Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190 Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg 195 200 205 Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 220 Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255

Page 30

AM101378.ST25.txt Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu 265 270 Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr 275 280 285 Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp 290 295 300 Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp 305 310 315 320 Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335 Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 350 Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn 355 365 Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 375 380 Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415 Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Gly Ser Gly 420 425 430 Ser Gly Asp Asp Asp Asp Lys Ala Pro Leu His Leu Pro Val Thr Phe 435 440 445 Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Phe Gly 450 455 460 Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala Ala Leu 465 470 475 480 Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr Lys His
485 490 495 Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala Cys Met 500 505 510

Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn Ile Pro 515 525 Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg 530 540 Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro 545 550 560 Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe 565 570 575 Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe 580 585 590 Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys 595 600 Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala 610 620 Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr 625 630 635 640 Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro 645 650 655 Asp Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys 660 665 670 Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met Val Cys 675 680 685 Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys 690 695 700 Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr 705 710 715 720 His Ile Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr 725 730 735 Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr 740 745 750 Thr Leu Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser 755 760 765 Page 32

Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His 770 780

Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn 785 790 795 800

Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr 805 810 815

Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala 820 825 830

Gln Ile Leu Glu Ile Leu Arg Arg Pro Trp Ala Gly Arg Lys Gly 835 840 845

Ser Ala Trp Ser His Pro Gln Phe Glu Lys 850 855

<210> 28

<211> 10

<212> PRT

<213> Artificial

<220>

<223> construct E insertion sequence

<400> 28

Gly Ser Gly Ser Gly Asp Asp Asp Asp Lys 1 10

<210> 29

<211> 846

<212> PRT

<213> Artificial

<220>

<223> ADAMTS4 with active-site mutation

<400> 29

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp 1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro Page 33 55

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 75 80 Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 85 90 95 Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 105 110 Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 115 120 125 Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140 Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 155 160 His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175 Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190 Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 220 Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 225 230 235 240 Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255 Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr 275 280 285 Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp 290 295 300

Ser 305	Asp	Pro	Asp	His	Phe 310	Asp	Thr		1013 Ile				Arg	Gln	Asp 320
Leu	Cys	Gly	val	Ser 325	Thr	Cys	Asp	Thr	Leu 330	Gly	Met	Ala	Asp	Va1 335	Gly
Thr	val	Cys	Asp 340	Pro	Ala	Arg	Ser	Cys 345	Ala	Ile	val	Glu	Asp 350	Asp	Gly
Leu	Gln	Ser 355	Ala	Phe	Thr	Ala	Ala 360	His	Gln	Leu	Gly	His 365	∨al	Phe	Asn
Met	Leu 370	His	Asp	Asn	Ser	Lys 375	Pro	Cys	Ile	Ser	Leu 380	Asn	Gly	Pro	Leu
Ser 385	Thr	Ser	Arg	His	va1 390	Met	Ala	Pro	٧a٦	Met 395	Ala	His	val	Asp	Pro 400
Glu	Glu	Pro	Trp	Ser 405	Pro	Cys	Ser	Аlа	Arg 410	Phe	Ile	Thr	Asp	Phe 415	Leu
Asp	Asn	Gly	Tyr 420	Gly	His	Cys	Leu	Leu 425	Asp	Lys	Pro	Glu	Ala 430	Pro	Leu
His	Leu	Pro 435	val	Thr	Phe	Pro	Gly 440	Lys	Asp	Tyr	Asp	Ala 445	Asp	Arg	Gln
Cys	G1n 450	Leu	Thr	Phe	Gly	Pro 455	Asp	Ser	Arg	ніѕ	Cys 460	Pro	Gln	Leu	Pro
Pro 465	Pro	Cys	Ala	Ala	Leu 470	Тгр	Cys	Ser	Gly	ніs 475	Leu	Asn	Gly	His	А1а 480
Met	Cys	Gln	Thr	Lys 485	His	Ser	Pro	Trp	Ala 490	Asp	Gly	Thr	Pro	Cys 495	Gly
Pro	Ala	Gln	Ala 500	Cys	Met	Gly	Gly	Arg 505	Cys	Leu	His	Met	Asp 510	Gln	Leu
Gln	Asp	Phe 515	Asn	Ile	Pro	Gln	Ala 520	Gly	Gly	Trp	Gly	Pro 525	Trp	Gly	Pro
Тгр	Gly 530	Asp	Cys	Ser	Arg	Thr 535	Cys	Gly	Gly	Gly	val 540	Gln	Phe	Ser	ser
Arg 545	Asp	Cys	Thr	Arg	Pro 550	val	Pro	Arg	Asn	G]y 555	Gly	Lys	Tyr	Cys	G]u 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr 565 570 575 Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His 580 585 590 Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro 595 600 605 Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln 610 620 Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp 625 630 635 640 Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg 645 650 655 Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe 660 665 670 Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln 675 680 685 Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr 690 695 700 Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro 705 710 720 Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr 725 730 735 Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val 740 745 750 Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser 755 760 765 Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln 770 780 Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe 785 790 795 800 Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Page 36

Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro 820 825 830

Trp Ala Gly Arg Lys Val Asp Tyr Lys Asp Asp Asp Asp Lys 835 840 845

30 9 <210>

<211>

<212> **PRT**

<213> Artificial

<220>

<223> FLAG tag sequence

<400> 30

Val Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 31

<211> 584

<212> PRT

<213> Artificial

<220>

<223> Truncated ADAMTS4 ASM

<400> 31

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu 85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu Page 37

120 Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140 Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 155 160 His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175 Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190 Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg 195 200 205 Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 220 Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255 Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr 275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp 290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp 305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn 355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu 420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro 450 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 465 470 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu 500 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro 515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser 530 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu 545 550 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Val 565 570 575

Asp Tyr Lys Asp Asp Asp Lys 580

<210>

32 529 <211>

<212> **PRT** Artificial <213>

<220>

<223> Truncated ADAMTS4 ASM <400> 32

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp 1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 35 40 45

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg 65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Glu Leu 85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu 100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu 115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp 130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu 145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro 165 170 175

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro 180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg 195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val 210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 225 230 235 240

AM101378.ST25.txt Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro 245 250 255 Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu 260 265 270 Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr 275 280 285 Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp 290 295 300 Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp 305 310 315 320 Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335 Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 345 350 Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn 355 360 365 Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 375 380 Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro 385 390 395 400 Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415 Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu 420 425 430 His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln 435 440 445 Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro 450 460 Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 465 470 475 480 Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly 485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu 500 Gln Asp Phe Asn Ile Pro Gln Ala Val Asp Tyr Lys Asp Asp Asp Asp 515 525 Lys <210> 33 <211> <212> 42 DNA <213> Artificial <220> <223> PCR primer <400> 33 taaatcgaat tcccaccatg tcccagacag gctcgcatcc cg 42 <210> 34 37 <211> <212> DNA <213> Artificial <220> <223> PCR: primer <400> 34 37 tattatgtct actgggcagt cctcagtgtt gcaggag <210> 35 37 <211> <212> DNA Artificial <213> <220> <223> PCR primer <400> 35 tattatgtct acagcctgtg gaatattgaa gtcctgg 37 <210> 36 <211> 53 <212> DNA Artificial <213> <220> <223> Flag1 sequence <400> 36 aattcctatg ctagtgctat cgtagactac aaggatgacg atgacaagta agc 53 <210> 37 <211> 53

Page 42

	AM101378.ST25.txt	
<212> DNA <213> Artificial		
<220> <223> Flag2 sequence		
<400> 37 ggccgcttac ttgtcatcgt	catccttgta gtctacgata gcactagcat agg	53
<210> 38 <211> 3916		
<212> DNA <213> Artificial		
<220> <223> cloning vector		•
<400> 38		
agcgcccaat acgcaaaccg	cctctccccg cgcgttggcc gattcattaa tgcagctggc	60
acgacaggtt tcccgactgg	aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc	120
tcactcatta ggcaccccag	gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa	180
ttgtgagcgg ataacaattt	cacacaggaa acagctatga ccatgattac gccaagcttg	240
gtaccgagct cggatccact	agtaacggcc gccagtgtgc tggaattcct atgctagtgc	300
tatcgtagac tacaaggatg	acgatgacaa gtaagcggcc gctcgagcat gcatctagag	360
ggcccaattc gccctatagt	gagtcgtatt acaattcact ggccgtcgtt ttacaacgtc	420
gtgactggga aaaccctggc	gttacccaac ttaatcgcct tgcagcacat ccccctttcg	480
ccagctggcg taatagcgaa	gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc	540
tgaatggcga atgggacgcg	ccctgtagcg gcgcattaag cgcggcgggt gtggtggtta	600
cgcgcagcgt gaccgctaca	cttgccagcg ccctagcgcc cgctcctttc gctttcttcc	660
cttcctttct cgccacgttc	gccggctttc cccgtcaagc tctaaatcgg gggctccctt	720
tagggttccg atttagagct	ttacggcacc tcgaccgcaa aaaacttgat ttgggtgatg	780
gttcacgtag tgggccatcg	ccctgataga cggtttttcg ccctttgacg ttggagtcca	840
cgttctttaa tagtggactc	ttgttccaaa ctggaacaac actcaaccct atcgcggtct	900
attcttttga tttataaggg a	attttgccga tttcggccta ttggttaaaa aatgagctga	960
tttaacaaat tcagggcgca	agggctgcta aaggaaccgg aacacgtaga aagccagtcc	1020
gcagaaacgg tgctgacccc (ggatgaatgt cagctactgg gctatctgga caagggaaaa	1080
cgcaagcgca aagagaaagc	aggtagcttg cagtgggctt acatggcgat agctagactg	1140
ggcggtttta tggacagcaa (gcgaaccgga attgccagct ggggcgccct ctggtaaggt	1200
tgggaagccc tgcaaagtaa a	actggatggc tttcttgccg ccaaggatct gatggcgcag	1260
gggatcaaga tctgatcaag	agacaggatg aggatcgttt cgcatgattg aacaagatgg	1320

			AM101378.S	T25.txt		
attgcacgca	ggttctccgg	ccgcttgggt		ttcggctatg	actgggcaca	1380
acagacaatc	ggctgctctg	atgccgccgt	gttccggctg	tcagcgcagg	ggcgcccggt	1440
tctttttgtc	aagaccgacc	tgtccggtgc	cctgaatgaa	ctgcaggacg	aggcagcgcg	1500
gctatcgtgg	ctggccacga	cgggcgttcc	ttgcgcagct	gtgctcgacg	ttgtcactga	1560
agcgggaagg	gactggctgc	tattgggcga	agtgccgggg	caggatctcc	tgtcatctcg	1620
ccttgctcct	gccgagaaag	tatccatcat	ggctgatgca	atgcggcggc	tgcatacgct	1680
tgatccggct	acctgcccat	tcgaccacca	agcgaaacat	cgcatcgagc	gagcacgtac	1740
tcggatggaa	gccggtcttg	tcgatcagga	tgatctggac	gaagagcatc	aggggctcgc	1800
gccagccgaa	ctgttcgcca	ggctcaaggc	gcgcatgccc	gacggcgagg	atctcgtcgt	1860
gatccatggc	gatgcctgct	tgccgaatat	catggtggaa	aatggccgct	tttctggatt	1920
caacgactgt	ggccggctgg	gtgtggcgga	ccgctatcag	gacatagcgt	tggatacccg	1980
tgatattgct	gaagagcttg	gcggcgaatg	ggctgaccgc	ttcctcgtgc	tttacggtat	2040
cgccgctccc	gattcgcagc	gcatcgcctt	ctatcgcctt	cttgacgagt	tcttctgaat	2100
tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	cccttattcc	cttttttgcg	2160
gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	tgaaagtaaa	agatgctgaa	2220
gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	tcaacagcgg	taagatcctt	2280
gagagttttc	gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	tctgctatgt	2340
catacactat	tatcccgtat	tgacgccggg	caagagcaac	tcggtcgccg	ggcgcggtat	2400
tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg	2460
acagtaagag	aattatgcag	tgctgccata	accatgagtg	ataacactgc	ggccaactta	2520
cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	ttttgcacaa	catgggggat	2580
catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	aagccatacc	aaacgacgag	2640
agtgacacca	cgatgcctgt	agcaatgcca	acaacgttgc	gcaaactatt	aactggcgaa	. 2700
ctacttactc	tagcttcccg	gcaacaatta	atagactgga	tggaggcgga	taaagttgca	2760
ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	ttgctgataa	atctggagcc	2820
ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	cagatggtaa	gccctcccgt	2880
atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	atgaacgaaa	tagacagatc	2940
gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	cagaccaagt	ttactcatat	3000
atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	ggatctaggt	gaagatcctt	3060
tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	cgttccactg	agcgtcagac	3120
cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	ttctgcgcgt	aatctgctgc	3180
ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt Page	tgccggatca 44	agagctacca	3240

actcttttc cgaaggtaac	tggcttcagc	agagcgcaga	taccaaatac	tgtccttcta	3300
gtgtagccgt agttaggcca	ccacttcaag	aactctgtag	caccgcctac	atacctcgct	3360
ctgctaatcc tgttaccagt	ggctgctgcc	agtggcgata	agtcgtgtct	taccgggttg	3420
gactcaagac gatagttacc	ggataaggcg	cagcggtcgg	gctgaacggg	gggttcgtgc	3480
acacagccca gcttggagcg	aacgacctac	accgaactga	gatacctaca	gcgtgagcat	3540
tgagaaagcg ccacgcttcc	cgaagggaga	aaggcggaca	ggtatccggt	aagcggcagg	3600
gtcggaacag gagagcgcac	gagggagctt	ccagggggaa	acgcctggta	tctttatagt	3660
cctgtcgggt ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgctc	gtcagggggg	3720
cggagcctat ggaaaaacgc	cagcaacgcg	gcctttttac	ggttcctggc	cttttgctgg	3780
ccttttgctc acatgttctt	tcctgcgtta	tcccctgatt	ctgtggataa	ccgtattacc	3840
gcctttgagt gagctgatac	cgctcgccgc	agccgaacga	ccgagcgcag	cgagtcagtg	3900
agcgaggaag cggaag					3916
<210> 39 <211> 5676 <212> DNA <213> Artificial <220> <223> cloning vector					
<400> 39 aagctcgagc gcgggacgtc	ctttgtttac	gtcccgtcgg	cgctgaatcc	cgcggacgac	60
ccctctcggg gccgcttggg	agtctctcgt	ccccttctcc	gtctgccgtt	ccagccgacc	120
acggggcgca cctctctta	cgcggtctcc	ccgtctgtgc	cttctcatct	gccggtccgt	180
gtgcacttcg cttcacctct	gcacgttgca	tggagaccac	cgtgaacgcc	catcagatcc	240
tgcccaaggt cttacataag	aggactcttg	gactctcagc	aatgtcaacg	accgaccttg	300
aggcctactt caaagactgt	gtgtttaagg	actgggagga	gctgggggag	gagattaggt	360
taaaggtctt tgtattagga	ggctgtaggc	ataaattggt	ctgcgcacca	gcaccatgca	420
actttttcac ctctgcctaa	tcatctcttg	tacatgtccc	actgttcaag	cctccaagct	480
gtgccttggg tggctttggg	gcatggacat	tgacccttat	aaagaatttg	gagctactgt	540
ggagttactc tcgtttttgc	cttctgactt	ctttccttcc	gtcagctcga	gtttaccact	600
ccctatcagt gatagagaaa	agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	660
aaagtgaaag tcgaggtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	720
gaggtcgagt ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	gtttaccact	780
ccctatcagt gatagagaaa	agtgaaagtc	gaggtcgagt	ttaccactcc	ctatcagtga	840

tagaaaagtg	aaagtgaaag	tcgaggtcga	AM101378.S gtcgaggggg		ggggtggggg	900
cgcgttcgtc	ctcactctct	tccgcatcgc	tgtctgcgag	ggccagctgt	tgggctcgcg	960
gttgaggaca	aactcttcgc	ggtctttcca	gtactcttgg	atcggaaacc	cgtcggcctc	1020
cgaacggtac	tccgccaccg	agggacctga	gcgagtccgc	atcgaccgga	tcggaaaacc	1080
tctcgactgt	tggggtgagt	actccctctc	aaaagcgggc	atgacttctg	cgctaagatt	1140
gtcagtttcc	aaaaacgagg	aggatttgat	attcacctgg	cccgcggtga	tgcctttgag	1200
ggtggccgcg	tccatctggt	cagaaaagac	aatctttttg	ttgtcaagct	tgaggtgtgg	1260
caggcttgag	atctggccat	acacttgagt	gacaatgaca	tccactttgc	ctttctctcc	1320
acaggtgtcc	actcccaggt	ccaactgcag	acttcgaatt	ctactgagtc	gacacttcta	1380
gactacccgg	gaatgcggcc	gccgcaaatt	ctaacgttac	tggccgaagc	cgcttggaat	1440
aaggccggtg	tgcgtttgtc	tatatgttat	tttccaccat	attgccgtct	tttggcaatg	1500
tgagggcccg	gaaacctggc	cctgtcttct	tgacgagcat	tcctaggggt	ctttcccctc	1560
tcgccaaagg	aatgcaaggt	ctgttgaatg	tcgtgaagga	agcagttcct	ctggaagctt	1620
cttgaagaca	aacaacgtct	gtagcgaccc	tttgcaggca	gcggaacccc	ccacctggcg	1680
acaggtgcct	ctgcggccaa	aagccacgtg	tataagatac	acctgcaaag	gcggcacaac	1740
cccagtgcca	cgttgtgagt	tggatagttg	tggaaagagt	caaatggctc	tcctcaagcg	1800
tattcaacaa	ggggctgaag	gatgcccaga	aggtacccca	ttgtatggga	tctgatctgg	1860
ggcctcggtg	cacatgcttt	acatgtgttt	agtcgaggtt	aaaaaacgtc	taggcccccc	1920
gaaccacggg	gacgtggttt	tcctttgaaa	aacacgattg	ctcgagccat	catggttcga	1980
ccattgaact	gcatcgtcgc	cgtgtcccaa	aatatgggga	ttggcaagaa	cggagaccta	2040
ccctggcctc	cgctcaggaa	cgagttcaag	tacttccaaa	gaatgaccac	aacctcttca	2100
gtggaaggta	aacagaatct	ggtgattatg	ggtaggaaaa	cctggttctc	cattcctgag	2160
aagaatcgac	ctttaaagga	cagaattaat	atagttctca	gtagagaact	caaagaacca	2220
ccacgaggag	ctcattttct	tgccaaaagt	ttggatgatg	ccttaagact	tattgaacaa	2280
ccggaattgg	caagtaaagt	agacatggtt	tggatagtcg	gaggcagttc	tgtttaccag	2340
gaagccatga	atcaaccagg	ccacctcaga	ctctttgtga	caaggatcat	gcaggaattt	2400
gaaagtgaca	cgtttttccc	agaaattgat	ttggggaaat	ataaacttct	cccagaatac	2460
ccaggcgtcc	tctctgaggt	cçaggaggaa	aaaggcatca	agtataagtt	tgaagtctac	2520
gagaagaaag	actaacagga	agatgctttc	aagttctctg	ctccctcct	aaagctatgc	2580
atttttata	agaccatggg	acttttgctg	gctttagatc	ataatcagcc	ataccacatt	2640
tgtagaggtt	ttacttgctt	taaaaaacct	cccacacctc	cccctgaacc	tgaaacataa	2700
aatgaatgca	attgttgttg	ttaacttgtt	tattgcagct Page		acaaataaag	2760

caatagcatc	acaaatttca	caaataaagc	attttttca	ctgcattcta	gttgtggttt	2820
gtccaaactc	atcaatgtat	cttatcatgt	ctggatcccc	ggccaacggt	ctggtgaccc	2880
ggctgcgaga	gctcggtgta	cctgagacgc	gagtaagccc	ttgagtcaaa	gacgtagtcg	2940
ttgcaagtcc	gcaccaggta	ctgatcatcg	atgctagacc	gtgcaaaagg	agagcctgta	3000
agcgggcact	cttccgtggt	ctggtggata	aattcgcaag	ggtatcatgg	cggacgaccg	3060
gggttcgaac	cccggatccg	gccgtccgcc	gtgatccatc	cggttaccgc	ccgcgtgtcg	3120
aacccaggtg	tgcgacgtca	gacaacgggg	gagcgctcct	tttggcttcc	ttccaggcgc	3180
ggcggctgct	gcgctagctt	ttttggcgag	ctcgaattaa	ttctgcatta	atgaatcggc	3240
caacgcgcgg	ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	3300
tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	3360
cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	3420
aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgccccct	3480
gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	3540
agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	3600
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcaatgctca	3660
cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	3720
cccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	3780
gtaagacacg	acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	3840
tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	3900
acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	3960
tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	4020
attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	4080
gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	4140
ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	4200
taaacttggt	ctgacagtta	ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	4260
ctatttcgtt	catccatagt	tgcctgactc	cccgtcgtgt	agataactac	gatacgggag	4320
ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	4380
gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	4440
ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	4500
gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	tcgtggtgtc	acgctcgtcg	4560
tttggtatgg	cttcattcag	ctccggttcc	caacgatcaa	ggcgagttac	atgatccccc	4620

			AM101378.S	T25 tvt		
atgttgtgca	aaaaagcggt	tagctccttc		tcgttgtcag	aagtaagttg	4680
gccgcagtgt	tatcactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	4740
tccgtaagat	gcttttctgt	gactggtgag	tactcaacca	agtcattctg	agaatagtgt	4800
atgcggcgac	cgagttgctc	ttgcccggcg	tcaatacggg	ataataccgc	gccacatagc	4860
agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	4920
ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgtg	cacccaactg	atcttcagca	4980
tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	5040
aagggaataa	gggcgacacg	gaaatgttga	atactcatac	tcttcctttt	tcaatattat	5100
tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	tatttgaatg	tatttagaaa	5160
aataaacaaa	taggggttcc	gcgcacattt	ccccgaaaag	tgccacctga	cgtctaagaa	5220
accattatta	tcatgacatt	aacctataaa	aataggcgta	tcacgaggcc	ctttcgtctc	5280
gcgcgtttcg	gtgatgacgg	tgaaaacctc	tgacacatgc	agctcccgga	gacggtcaca	5340
gcttgtctgt	aagcggatgc	cgggagcaga	caagcccgtc	agggcgcgtc	agcgggtgtt	5400
ggcgggtgtc	ggggctggct	taactatgcg	gcatcagagc	agattgtact	gagagtgcac	5460
catatgcggt	gtgaaatacc	gcacagatgc	gtaaggagaa	aataccgcat	caggcgccat	5520
țcgccattca	ggctgcgcaa	ctgttgggaa	gggcgatcgg	tgcgggcctc	ttcgctatta	5580
cgccagctgg	cgaaaggggg	atgtgctgca	aggcgattaa	gttgggtaac	gccagggttt	5640
tcccagtcac	gacgttgtaa	aacgacggcc	agtgcc			5676
<210> 40	•					
<211> 845				•		

<212>

PRT <213> Artificial

<220> <223> ADAMTS4 ASM with insertion

<400>

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp $1 \hspace{1cm} 15$

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser 20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser 40 45

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro 50 60

6 3	Lvc	Lou	A cn	61 14	Can	va1	1 011	AM	1013	78.s	T25.	txt	D	47-	A
65	Lys	Leu	ASI	GIY	70	vai	Leu	Pro	GIY	75	GIY	АІА	Pro	АІа	Arg 80
Leu	Leu	Cys	Arg	Leu 85	Gln	Ala	Phe	Gly	Glu 90	Thr	Leu	Leu	Leu	Glu 95	Leu
Glu	Gln	Asp	Ser 100	Gly	val	Gln	val	Glu 105	Gly	Leu	Thr	val	G]n 110	Tyr	Leu
Gly	Gln	Ala 115	Pro	Glu	Leu	Leu	Gly 120	Gly	Ala	Glu	Pro	Gly 125	Thr	Tyr	Leu
Thr	Gly 130	Thr	Ile	Asn	Gly	Asp 135	Pro	Glu	Ser	val	А]а 140	Ser	Leu	His	Trp
Asp 145	Gly	Gly	Ala	Leu	Leu 150	Gly	٧a٦	Leu	Gln	Tyr 155	Arg	Gly	Ala	Glu	Leu 160
His	Leu	Gln	Pro	Leu 165	G7u	Gly	Gly	Thr	Pro 170	Asn	Ser	Ala	Gly	Gly 175	Pro
Gly	Аla	His	11e 180	Leu	Arg	Arg	Lys	Ser 185	Pro	Ala	Ser	Gly	Gln 190	Gly	Pro
Met	Cys	Asn 195		Lys	ΑΊа	Pro	Leu 200	Gly	Ser	Pro	Ser	Pro 205	Arg	Pro	Arg
Arg	Ala 210	Lys	Arg	Phe	Ala	Ser 215	Leu	Ser	Arg	Phe	∨a1 220	Glu	Thr	Leu	٧a٦
Va1 225	Ala	Asp	Asp	Lys	меt 230	Ala	Αla	Phe	ніѕ	G]y 235	Ala	Gly	Leu	Lys	Arg 240
Tyr	Leu	Leu	Thr	Val 245	Met	Ala	Аlа	Ala	Ala 250	Lys	Ala	Phe	Lys	His 255	Pro
Ser	Ile	Arg	Asn 260	Pro	val	Ser	Leu	va1 265	۷al	Thr	Arg	Leu	Val 270	Ile	Leu
Gly	Ser	G1y 275	Glu	Glu	G]y	Pro	G1n 280	٧al	σΊу	Pro	Ser	Ala 285	Ala	G1n	Thr
Leu	Arg 290	Ser	Phe	Cys	Αla	Trp 295	Gln	Arg	Glу	Leu	Asn 300	Thr	Pro	Glu	Asp
Ser 305	Asp	Pro	Asp	His	Phe 310	Asp	Thr	Ala	Ile	Leu 315	Phe	Thr	Arg	Gln	Asp 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly 325 330 335 Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly 340 345 Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn 355 360 365 Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu 370 380 Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu 405 410 415 Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu 420 425 430 His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln 435 440 445 Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro 450 455 460 Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala 465 470 475 Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly 485 490 495 Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu 500 505 510 Gln Asp Phe Asn Ile Pro Gln Trp Ser His Pro Gln Phe Glu Lys Ala 515 520 525 Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys 530 540 Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro 545 550 560 Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser 565 570 575 Page 50

Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu 580 585 590 Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe 595 600 605 Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln 610 620 Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr 625 630 635 640 Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser 645 650 655 Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg 660 665 670 Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly 675 680 685 Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg 690 695 700 Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile 705 710 715 720 Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala 725 730 735 Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu 740 745 750 Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg 755 760 765 Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro 770 775 780 Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln 785 790 795 800 Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser 815 Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Page 51

```
Leu Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys
                             840
<210>
       41
<211>
       8
<212>
       PRT
       Artificial
<213>
<220>
<223> strep tag
<400> 41
Trp Ser His Pro Gln Phe Glu Lys 5
<210> 42
<211> 15
<212> DNA
      Artificial
<213>
<220>
<223>
      DNA insert
<400> 42
catgggcagc tcgag
                                                                         15
<210> 43
<211> 34
<212> DNA
<213> Artificial
<220>
<223>
      insert in pMT21
<400> 43
ctgcaggcga gcctgaattc ctcgagccat catg
                                                                         34
<210> 44
<211> 8
<212> DNA
<213> Artificial
<220>
<223> Cla1 linker
<400> 44
                                                                          8
catcgatg
<210> 45
<211>
       68
<212>
       DNA
<213>
       Artificial
<220>
```

<223	S> [ONA a	adapt	cor											
<400> 45 cgaggttaaa aaacgtctag gccccccgaa ccacggggac gtggttttcc tttgaaaaac															
acga	ittgo	ς .													
<211 <212	<210> 46 <211> 223 <212> PRT <213> Artificial														
<220> <223> furin-processed construct B															
<400)> 4	46													
Phe 1	Ala	Ser	Leu	Ser 5	Arg	Phe	٧a٦	Glu	Thr 10	Leu	val	Val	Ala	Asp 15	Asp
Lys	Met	Ala	Ala 20	Phe	His	Gly	Аlа	G]y 25	Leu	Lys	Arg	Tyr	Leu 30	Leu	Thr
۷a٦	Met	Ala 35	Ala	Ala	Ala	Lys	Ala 40	Phe	Lys	His	Pro	Ser 45	Ile	Arg	Asn
Pro	Va1 50	Ser	Leu	val	Val	Thr 55	Arg	Leu	va1	Ile	Leu 60	Gly	Ser	Gly	Glu
Glu 65	Glу	Pro	Gln	٧a٦	Gly 70	Pro	Ser	Ala	Ala	G]n 75	Thr	Leu	Arg	Ser	Phe 80
Cys	Аlа	Trp	Gln	Arg 85	Gly	Leu	Asn	Thr	Pro 90	Glu	Asp	Ser	Asp	Pro 95	Asp
His	Phe	Asp	Thr 100	Ala	Ile	Leu	Phe	Thr 105	Arg	Gln	Asp	Leu	Cys 110	Gly	val .
Ser	Thr	Cys 115	Asp	Thr	Leu	Gly	Met 120	Ala	Asp	٧a٦	Gly	Thr 125	val	Cys	Asp
Pro	Ala 130	Arg	Ser	Cys	Ala	Ile 135	val	Glu	Asp	Asp	Gly 140	Leu	Gln	Ser	Ala
Phe 145	Thr	Ala	Ala	His	Glu 150	Leu	Gly	His	Val	Phe 155	Asn	Met	Leu	His	Asp 160
Asn	Ser	Lys	Pro	Cys 165	Ile	Ser	Leu	Asn	Gly 170	Pro	Leu	Ser	Thr	Ser 175	Arg
His	۷al	Met	Ala	Pro	٧a٦	Met	Ala	ніѕ		Asp age		Glu	Glu	Pro	Trp

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu His His His His His 210 220

<210> 47

<211> 485

<212> PRT

<213> Artificial

<220>

<223> furin-processed construct C

<400> 47

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175 Page 54

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205 Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220 Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240 Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255 Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270 Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285 Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300 Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 305 310 315 320 Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335 Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365 Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu 370 375 380 Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly 385 390 400 Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu 405 410 415 Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys

430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala 435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met 450 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Gly Ser Ala Trp Ser His 465 470 475 480

Pro Gln Phe Glu Lys 485

<210>

474

<211> <212> PRT

<213> Artificial

<220>

<223> furin-processed construct D

<400>

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140 Page 56

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175 His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190 Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205 Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220 Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240 Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255 Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270 Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285 Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300 Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 305 310 315 320 Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr $325 \hspace{1cm} 330 \hspace{1cm} 335$ Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350 Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365 Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu 370 380 Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Page 57

390

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu 405 410 415

Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys 420 425 430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala 435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe Asp Lys Cys Met 450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser 465 470

<210> 49

<211> 646

<212> PRT

<213> Artificial

<220>

<223> furin-processed construct E

<400> 49

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125 Page 58

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 140 Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160 Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175 His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190 Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205 Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220 Gly Ser Gly Ser Gly Asp Asp Asp Lys Thr Phe Pro Gly Lys Asp 225 230 235 240 Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg 255 His Cys Pro Gln Leu Pro Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly 265 270 His Leu Asn Gly His Ala Met Cys Gln Thr Lys His Ser Pro Trp Ala 275 280 285 Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala Cys Met Gly Gly Arg Cys 290 295 300 Leu His Met Asp Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly 315 310 315Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly 325 330 335 Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn 340 350 Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn 355 360 365 Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln 375

Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly 385 390 400 Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln 405 410 415 Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu 420 430 Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser 445 Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg Ile Ile 450 455 460 Gly Ser Lys Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly 465 470 475 480 Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly 485 490 495 Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val 500 505 510 Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala Leu Lys 515 520 525 Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro 530 540 Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser 545 550 560 Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala 565 570 575

Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr 580 585 590

Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro 595 600 605

Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Leu Glu 610 620

AM101378.ST25.txt

Ile Leu Arg Arg Pro Trp Ala Gly Arg Lys Gly Ser Ala Trp Ser
625 630 635 640

His Pro Gln Phe Glu Lys 645

<210> 50

<211> 634 <212> PRT

<213> Artificial

<220>

<223> furin-processed construct G

<400> 50

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Page 61

190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205 Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220 Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240 Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255 Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270 Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285 Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300 Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 305 310 315 320 Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335 Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu 355 360 365 Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu 370 375 380 Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly 385 390 395 400 Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu 405 410 415

Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430

AM101378.ST25.txt Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala 435 440 445 Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe Asp Lys Cys Met 450 460 Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe 465 470 475 480 Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly
485 490 495 Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser 500 505 510 Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly 515 525 Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala 530 540 Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser 545 550 560 Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg 580 585 590 Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg 595 600 600 Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Pro Trp Ala Gly Arg 610 620 Lys Val Asp Tyr Lys Asp Asp Asp Asp Lys 51 372 <210> <212> PRT Artificial <213> <220> <223> furin-processed construct H <400>

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp

Page 63

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30 Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45 Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60 Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80 Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95 His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125 Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140 Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160 Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175 His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190 Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220 Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255

AM101378.ST25.txt Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270 Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285 Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300 Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys 305 310 315 Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr 325 330 335 Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr 340 345 350 Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Val Asp Tyr Lys Asp 355 360 365 Asp Asp Asp Lys 370 52 <210> <211> 317 <212> PRT <213> Artificial <220> <223> furin-processed construct I 52 <400> Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10 15 Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30 Val Met Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45 Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 55 60 Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80 Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp

Page 65

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr 225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn 290 295 300

Ile Pro Gln Ala Val Asp Tyr Lys Asp Asp Asp Lys
305 310 315

<210> 53

<211> 633

<212> PRT

<213> Artificial

<220>

<223> furin-processed construct F

<400> 53

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp 1 5 10

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu 50 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe 65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala 130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp 145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg 165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp 180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr 195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val 210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Page 67 Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala 245 250 255

230

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr 260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala 275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Trp Ser His Pro Gln Phe Glu 290 295 300

Lys Asp Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly 305 310 315 320

Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val 325 330 335

Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly 340 350

Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu 355 360 365

Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala 370 380

Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met 385 390 395 400

Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys 405 - 410 415

Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu Glu Pro 420 425 430

Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys
435 440 445

Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser 450 455 460

Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly 465 470 480

Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn 485

Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln

Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln 500 510

Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro 515 520 525

Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro 530 540

Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala 545 550 555 560

Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro 565 570 575

Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu 580 585 590

Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro 595 600 605

Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu 610 620

Arg Arg Arg Pro Trp Ala Gly Arg Lys 625 630