第4章作业:

 $({\bf A4-1}){\bf 1}$ 、已知连续传递函数 $D(s)=\frac{1}{s^2+0.2s+1}$,采样周期 ${\bf T=0.5s}$,若分别采用向前差分法、向后差分法和 tustin 方法将其离散化,试画出 ${\bf s}$ 域和 ${\bf z}$ 域对应极点的位置,并说明其稳定性。

- 2、一个温控系统的对象为: $G(s) = \frac{0.8e^{-\tau s}}{T_1 s + 1}$,其中 $\tau = 10$ 秒, $T_1 = 60$ 秒。给温控系统的设计指标为: ①采样周期为: T=15 秒; ②系统的阶跃响应无超调且 Ts<300 秒。要求:
 - (1)设计一个 PID 控制器 D(z) 以实现设计指标,并通过仿真验证设计结果。
- (2) 检验当 τ =15、30、60、90 秒时,仍采用前面设计的 PID 控制器 D(z) 是 否可以达到预定的指标要求?考虑一下,若不可该怎么办?