Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа: К3120 К работе допущен:

Студент: Скворцов И.В. Работа выполнена:

Преподаватель: Попов А. С. Отчет принят:

Рабочий протокол и отчёт по лабораторной работе №1.04

Исследование равноускоренного вращательного движения

(маятник Обербека)

1. Цель работы.

- 1. Проверить основной закон динамики вращений.
- 2. Проверить зависимость момента инерции от положения масс относительно оси вращения.

2. Задачи.

- 1. Измерить время падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчет ускорение груза, углового ускорения крестовины и моменты сила натяжения нити.
- 3. Расчет момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.

5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования

Равноускоренное вращательное движение маятника Обербека.

4. Метод экспериментального исследования.

Эмпирический лабораторный экспериментальный

5. Рабочие формулы и исходные данные.

Ускорение груза:

$$a = \frac{2 * h}{t^2} \tag{1}$$

Ускорение крестовины:

$$\varepsilon = \frac{2*a}{d} \tag{2}$$

Сила натяжения нити:

$$T = m(g - a) (3)$$

Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a) \tag{4}$$

Основной закон динамики вращения крестовины:

$$I\varepsilon = M - M_{Tp} \tag{5}$$

Момент инерции крестовины:

$$I = I_0 + 4m_{YT}R^2 (6)$$

Расстояние между осью вращения и центром утяжелителя:

$$R = l_1 + (n-1)l_0 + 0.5b (7)$$

6. Измерительные приборы

Таблица 1 — Измерительные приборы.

№ и/п	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Линейка на вертикали	Цифровой	[0; 700], мм	0.5, мм
2	Секундомер цифровой	Цифровой	[0; 60], c	0.0005, c

7. Схема установки

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Рисунок 1 — Схема экспериментальной установки

8. Результаты прямых измерений и их обработка.

Macca		По	ложение	утяжелит	еля	
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	4.522	5.339	6.152	7.275	8.184	11.587
267.0 ± 1.0	4.673	5.289	6.303	7.118	7.269	12.152
207.0 ± 1.0	4.779	5.133	6.252	6.814	8.385	9.917
	4.658	5.25367	6.23567	7.069	7.946	11.21867
	3.001	3.864	4.522	4.884	6.408	6.867
487.0 ± 1.5	3.509	3.813	4.728	5.084	6.458	6.712
407.0 ± 1.0	3.505	3.711	4.678	5.184	5.847	6.73
	3.3383	3.796	4.64267	5.05067	6.23767	6.76967
	2.593	3.204	3.712	4.168	4.676	5.591
707.0 ± 2.0	2.643	3.155	3.41	3.916	4.879	5.562
101.0 ± 2.0	2.545	3.053	3.505	4.526	4.625	5.543
	2.59367	3.1373	3.5423	4.203	4.7267	5.5653
	2.136	2.593	3.559	3.456	4.173	4.473
927.0 ± 2.5	2.137	2.594	3.203	3.51	4.17	4.83
941.0 ± 2.0	2.135	2.492	3.001	3.459	4.218	4.47
	2.136	2.55967	3.254	3.475	4.187	4.591

Таблица 2 — Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

9. Расчет результатов косвенных измерений.

1) Пример вычисления значения t_{cp} для 1 риски и массы груза 267г:

$$t_{cp} = \frac{4.522 + 4.673 + 4.779}{3} = (4.658), c$$

2) Δt для первого значения t_{cp} :

$$\Delta t = 0.321, \ c$$

3) Рассчитаем ускорение α , угловое ускорение ε и момента M силы натяжения нити.

α , M/c^2	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
1 груз	0.0645251	0.0507227	0.0360049	0.0280163	0.022173	0.011123
2 груза	0.1256228	0.097157343	0.0649520	0.0548820	0.03598	0.030548
3 груза	0.2081132	0.1422350	0.111570	0.0792392	0.06266	0.045200
4 груза	0.3068495	0.2136786	0.1322187	0.1159360	0.0798586	0.066422

 $\overline{\text{Таблица 3}} - \overline{\text{Значение } \alpha}$ ускорение груза

ε , рад $/c^2$	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
1 груз	2.805441	2.205338	1.565432755	1.218103627	0.964057	0.48363
2 груз	5.461862	4.224232	2.824003255	2.386177717	1.564429	1.32820
3 груз	9.048401	6.184133	4.850889122	3.445184907	2.724521	1.96525
4 груз	13.34128	9.290377	5.748639868	5.040696876	3.472116	2.88792

Таблица 4 — Значение ε углового ускорения

М, Н*м	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
1 груз	0.0597855	0.059870311	0.0599606	0.0600097	0.060045	0.060113
2 груз	0.1083626	0.108681541	0.1090422	0.1091550	0.109367	0.109427
3 груз	0.1559736	0.157044915	0.1575435	0.1580692	0.158338	0.158622
4 груз	0.2024037	0.204389957	0.2061267	0.2064739	0.207243	0.207529

Таблица 5 — Значение M момента сила натяжения нити

4) Рассчитаем погрешность для первых значений ε, α, M :

$$\Delta a = 0.00087, \, \text{м}/c^2 \quad \varepsilon_a = 1.35\% \quad \alpha = 0.95$$
 $\Delta \varepsilon = 0.0943, \, \text{рад}/c^2 \quad \varepsilon_\varepsilon = 3.37\% \quad \alpha = 0.95$ $\Delta M = 0.00068, \, \text{H*}_{\text{M}} \quad \varepsilon_M = 1.1\% \quad \alpha = 0.95$

5) С помощью метода наименьших квадратов вычислим момент I инерции крестовины с утяжелителями и момент силы трения M_{Tp} для каждого положения утяжелителя.

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
M_{Tp}	0.0293	0.0204	0.0104	0.0166	0.0122	0.0121
I	0.0133	0.0204	0.0327	0.0386	0.0557	0.0558

Таблица 6 — Значения M_{Tp} и I, полученные с помощью МНК

6) Посчитаем R^2 и занесем в таблицу.

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
R	0.0485	0.0735	0.086	0.0985	0.111	0.1235
R^2	0.002352	0.005402	0.0073	0.009702	0.0123	0.015252
I	0.013350	0.0204633	0.0327528	0.0386421	0.0557029	0.0558086

Таблица 7 — Таблица со значениями R, R^2, I

7) На основе вышеприведенных данных, с помощью мнк найдем m_{YT} и I_0 из зависимости $I=I_0+4m_{YT}R^2$. Посчитаем их погрешность.

$$m_{YT}=0.9175,$$
 кг
$$\Delta m_{yt}=0.5S_b=0.206,$$
 кг $\epsilon_{m_{YT}}=22\%$
$$I_0=0.0041,~\mathrm{H^*M}$$

$$\Delta I_0=2S_a=0.000802,~\mathrm{H^*M}$$
 $\epsilon_{I_0}=19.6\%$

10. Графики

Рисунок 2 — График зависимости $M(\varepsilon)$

Рисунок 3 — График зависимости $I(\mathbb{R}^2)$

11. Окончательные результаты

$$lpha = (0.0645 \pm 0.0009) \ {\rm M}/c^2; \quad \varepsilon_{lpha} = 1.35\%; \quad \alpha = 0.95.$$
 $\varepsilon = (2.81 \pm 0.09) \ {\rm pag}/c^2; \quad \varepsilon_{\varepsilon} = 3.37\%; \quad \alpha = 0.95.$ $M = (0.0598 \pm 0.0007) \ {\rm H^*M}; \quad \varepsilon_M = 1.1\%; \quad \alpha = 0.95.$ $m_{YT} = (0.92 \pm 0.21) \ {\rm Kr}; \quad \varepsilon_{m_{YT}} = 22\%; \quad \alpha = 0.95.$

 $I_0 = (0.0041 \pm 0.0008) \text{ kg*m^2}; \quad \varepsilon_{I_0} = 19.6\%; \quad \alpha = 0.95.$

12. Выводы и анализ результатов работы

В ходе лабораторной работы был подвергнут проверке основной закон динамики вращения. Анализ график зависимости $M(\varepsilon)$ позволяет сделать сделать вывод, что зависимость является линейной, полученные экспериментальные значения совпадают с теоретическими в пределах погрешности. Рассматривая график зависимости $I(R^2)$ можно убедиться в предположении, что момент инерции прямо пропорционален квадрату расстояния до утяжелителей.