שעור 10 פולינומים

10.1 חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה

משפט 10.1

הפולינום המינימלי הוא יחיד.

הוכחה: נניח שיש שני פולינומים $f_1(x) \neq f_2(x)$ ו- $f_2(x)$ ו- $f_1(x)$ מאותו סדר, כלומר

$$f_1(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
,

$$f_2(x) = \beta_0 + \beta_1 x + \ldots + \beta_{k-1} x^{k-1} + x^k$$
.

כך ש
$$f_2(A)=0$$
 -ו $f_1(A)=0$ אז

$$(f_1 - f_2)(A) = 0 .$$

. סתירה. k - פולינום מסדר קטן פולינום $(f_1-f_2)(x)$

משפט 10.2 משפט חילוק של פולינומים

יחידים כך שr(x),q(x) פולינמים פולינמים כך ש- deg $g \leq \deg f$ יחידים כך שf(x),g(x) יהיו

$$f(x) = q(x) \cdot g(x) + r(x)$$

כאשר

$$\deg \, r(x) < \deg \, g(x), \qquad \ \deg \, g(x) \leq \deg \, f(x) \,\, .$$

משפט 10.3 פולינום שמתאפס ע"י A מחלק את הפולינום המינימלי

תהי f(A)=0 מטריצה ריבועית ויהי f(x) פולינום. אם $A\in \mathbb{F}^{n\times n}$ אז $A\in \mathbb{F}^{n\times n}$

 $m_A(x) \mid f(x)$.

הוכחה: נחלק את f(x) ב- $m_A(x)$. לפי משפט חילוק פולינומים,

$$f(x) = m_A(x) \cdot q(x) + r(x)$$

אז .deg $r(x) < \deg m_A(x)$ כאשר

$$f(A) = q(A)m_A(A) + r(A) .$$

.r(A)=0 לכן $m_A(A)=0$ ו f(A)=0

A מתאפס ע"י מתאפס או הוא לא פולינום האפס אבל r(x) מתאפס ע"י איי אווr(x)

לכן r(x) אם"ם r(x) = 0, כלומר r(x) = 0 פולינום האפס.

 $m_A(x) \mid f(x) \mid f(x) = q(x) \cdot m_A(x)$ כלומר קיבלנו ש-

מסקנה 10.1 פולינום המינימלי מחלק את הפולינום האופייני

תהי $m_A(x)$ הפולינום המינימלי של $p_A(x)$ הפולינום המינימלי של $A\in\mathbb{F}^{n imes n}$

$$m_A(x) \mid p_A(x)$$
.

הוכחה: לפי משפט קיילי המילטון , $p_A(A)=0$, הפולינום המינימלי מחלק כל פולינום המתאפס ע"י A, לכן המילטון . $m_A(x)|p_A(x)$

A משפט A בחזקת הסדר של פולינום המתאפס ע"י A בחזקת הסדר של $p_A(x)$ משפט

$$p_A(x) \mid f^n(x)$$
.

.deg $p_A(x) = n$ הוכחה:

.deg $p_A(x) \leq \deg f^n(x)$ ולכן ,deg $f(x) \geq 1$ אינו פולינום קבוע, ז"א ולכן ,f(x) אינו פולינום קבוע, ז"א ולכן ,f(x) ב- f(x) ב- $f^n(x)$ ע"י האלגוריתם איוקלידי:

$$f^{n}(x) = q(x)p_{A}(x) + r(x)$$
, (*1)

 $\deg r(x) < \deg p_A(x) \le \deg f^n(x)$

ונקבל ה- נציב (1*) נציב (2*) אז $p_A(x) = q_1(x) m_A(x)$ אז איז $m_A(x) | p_A(x)$

$$f^{n}(x) = q_{1}(x)q(x)m_{A}(x) + r(x)$$
 (*2)

 $.m_A(x)\mid f^n(x)$ לכן $f^n(A)=0$ לכן f(A)=0 לכן $.m_A(x)\nmid f^n(x)$ אז $.m_A(x)\nmid f^n(x)$ סתירה. $r(x)\neq 0$

A משפט A גורם אי-פריק של הפולינום הואפייני מחלק כל פולינום המתאפס ע"י

תהי $A\in\mathbb{F}^{n\times n}$ מטריצה ריבועית. יהי $p_A(x)$ הפולינום האופייני של $A\in\mathbb{F}^{n\times n}$ מטריצה ריבועית. יהי f(A)=0 הפולינום המתאפס ע"י A, כלומר אם f(A)=0, אז

$$(x-\lambda_0) \mid f(x)$$
.

הוכחה:

A אם $(x-\lambda_0)$ גורם אי-פריק של $p_A(x)$, אז $(x-\lambda_0)$ אם $(x-\lambda_0)$

-ט כך q(x), r(x) ב- $(x-\lambda_0)$ ב- $(x-\lambda_0)$ כך ש- נחלק בולינומים היימים פולינומים לפי משפט חילוק

$$f(x) = q(x)(x - \lambda_0) + r(x)$$

.
$$\deg r(x)<\deg (x-\lambda_0)\leq \deg f(x)$$
 כאשר . $\deg r(x)=0$ אז $\deg (x-\lambda_0)=1$ ז"א $(x)=c\in\mathbb F$ פולינום קבוע: $r(x)$ כאשר $r(x)$ סקלר. $r(x)$ וקטור עצמי השייך ל- x .

$$0 = f(A)\mathbf{v} = q(A)(A - \lambda_0 I)\mathbf{v} + c\mathbf{v}$$

אז הוא הוקטור עצמי השייך ל- v, אז v הוא הוקטור עצמי השייך ל- $(A-\lambda_0)$ v = Av - λ_0 v = λ_0 v - λ_0 v = 0 לכן c=0, ואז נקבל

$$f(x) = q(x)(x - \lambda_0) ,$$

 $(x-\lambda_0)\mid f(x)$ א"ז.

10.2 מחלק משותף

הגדרה 10.1 מחלק משותף

יהיו $h(x)\in\mathbb{F}[x]$ נקרא שדה $p_1(x),\dots,p_k(x)\in\mathbb{F}[x]$ יהיו פולינומים מעל שדה $p_1(x),\dots,p_k(x)\in\mathbb{F}[x]$ אם לכל $p_1(x),\dots,p_k(x)$ אם לכל $p_1(x),\dots,p_k(x)$

הגדרה 10.2 מחלק משותף מקסימלי

 $h(x)\in\mathbb{F}[x]$ פולינום מתוקן פולינום שוים מאפס מעל שדה $p_1(x),\dots,p_k(x)\in\mathbb{F}[x]$ נקרא מחלק משותף מקסימלי של $p_1(x),\dots,p_k(x)$ אם:

- $p_1(x),\dots,p_k(x)$ שלק משותף של h (1
- h(x) אז מחלק גם את q(x) אז $p_1(x),\ldots,p_k(x)$ אם משותף של משותף של (2

.(greatest common divisor) gcd (p_1,p_2,\ldots,p_k) - מחלק משותף מקסימלי מסומן ב

משפט 10.6

נגדיר . $\mathbb F$ מעל שדה מאפס פולינומים פולינומים פולינומים $p_1(x),\dots,p_k(x)\in\mathbb F[x]$ יהיו

$$I = \{q_1p_1 + q_2p_2 + \dots + q_kp_k \mid q_1, q_2, \dots, q_k \in \mathbb{F}[x]\}$$

כלומר, I הוא אוסף כל "הצירופים הלינאריים" של $p_1(x),\dots,p_k(x)$ של הצירופים הלינאריים" הם הפולינומים: $q_1(x),q_2(x),\dots,q_k(x)$

- $.p_1(x), \ldots, p_k(x) \in I$ (1
- $q(x)L(x)\in I$ אם $q(x)\in \mathbb{F}[x]$ ואם $L(x)\in I$ אם (2
 - $\mathbb{F}[x]$ תת-מרחב ליניארי של I (3

הוכחה: תרגיל בית.

משפט 10.7

נגדיר $\mathbb F$ מעל שדה מאפס פולינומים פולינומים פולינומים $p_1(x),\dots,p_k(x)\in\mathbb F[x]$ יהיו

$$I = \{q_1(x)p_1(x) + q_2(x)p_2(x) + \dots + q_k(x)p_k(x) \mid q_1(x), q_2(x), \dots, q_k(x) \in \mathbb{F}[x]\}$$

נניח גם שלפחות אחד מהפולינומים $p_1(x),\ldots,p_k(x)$ אינו פולינום האפס.

- םרט לפולינום אמעלתו קטנה ממעלתו לא כך ששום פולינום פולינום אינו און האפס אינו אייך ל $h(x) \in I$ סרט לפולינום האפס אינו אייך ל- I
 - $p_1(x), p_2(x), \dots, p_k(x)$ של משותף משותף מחלק הוא h(x) (2
 - k(x) אז k(x) אז או $k(x) \in \mathbb{F}[x]$ אם $k(x) \in \mathbb{F}[x]$ או מחלק משותף של

הוכחה:

- לפחות אחד מהפולינומים $p_1(x), p_2(x), \dots, p_k(x)$ אינו פולינום האפס, נסיק מחלק (1) של טענה 10.6 שיש ב- I לפחות פולינום אחד שאינו אפס כלומר פולינום שמעלתו אי -שלילית. לכל קבוצה לא ריקה של מספרים שלמים אי -שלילייסקיים מינימום, נובע שקיים פולינום $\hat{h}(x) \in I$ ממעלה מינימלית. כלומר, שום פולינום שמעלתו קטנה ממעלתו של $\hat{h}(x)$ פרט לפולינום האפס אינו שייך ל I. אם נסמן ב- I את המקדם העליון של I אז הפולינום I אז הפולינום I הוא פולינום מתוקן. ממשפט 10.6 סעיף (3) ובע שום פולינום שמעלתו קטנה ממעלתו של I שווה למעלתו של I שווה למעלתו של I שווה למעלתו של I I ברט לפולינום האפס אינו שייך ל I
 - L(x)=q(x)h(x) -יהי $q(x)\in \mathbb{F}[x]$ נוכיח שקיים ביים. עם יהי נוכיח נוכיח מכיוון ש- h(x) ב- h(x) אינו פולינום האפס ניתן לחלק את h(x) ב- h(x)

$$L(x) = q(x)h(x) + r(x)$$

10.6 מכיוון ש- של משפט (2) ו- (2) אזי מסעיפים מכיוון ש- ו- $h(x), L(x) \in I$ כאשר $\deg(r) < \deg(h)$

ש- אh(x) של מינימליות מינימליות לפ
g $(r) < \deg(h)$ - מכיוון ש- $.r(x) = L(x) - h(x)q(x) \in I$
 .r(x) = 0

L(x) מחלק h(x) ולכן ולכן L(x)=q(x)h(x)

ימים המקיימים פולינומים $g_1(x),g_2(x),\ldots,g_k(x)\in\mathbb{F}[x]$ יהיו (3

$$p_1(x) = g_1(x)k(x), \quad p_2(x) = g_2(x)k(x), \quad \cdots \quad p_k(x) = g_k(x)k(x).$$

מכיוון ש- $q_1(x),q_2(x),\dots,q_k(x)\in\mathbb{F}[x]$ שקיימים נובע שקיימים $h(x)\in I$ -ש

$$h(x) = q_1 p_1(x) + \dots + q_k(x) p_k(x) .$$

לכן

$$h(x) = q_1(x)g_1(x)k(x) + \dots + q_k(x)g_k(x)k(x) = \left(q_1(x)g_1(x) + \dots + q_k(x)g_k(x)\right)k(x)$$

h(x) מחלק את k(x)

משפט 10.8

יהיו מהפולינומים שלפחות אחד מהפולינומים $p_1(x),\dots,p_k(x)\in\mathbb{F}[x]$ יהיו $p_1(x),\dots,p_k(x)\in p_1(x),\dots,p_k(x)$ אינו פולינום האפס.

- $p_1(x),\dots,p_k(x)$ ל- $h(x)\in\mathbb{F}[x]$ קיים מחלק משותף מקסימלי יחיד
- $a.h=q_1p_1+q_2p_2+\cdots+q_kp_k$ שעבורם $a_1(x),\ldots,a_k(x)\in\mathbb{F}[x]$ קיימים (2

הוכחה: קיומו של מחלק משותף מקסימלי נובע משפט ?? והגדרה 10.2.

. במהלך ההוכחה של חלק (3) של טענה ?? הוכחנו גם את קיומו של [x], כנדרש, [x] של טענה ?? הוכחנו גם את קיומו של

נותרנו עם הוכחת היחידות.

אם מחלקים משותפים מקסימליים של $p_1(x),\dots,p_k(x)$ אז מתכונת (2) בהגדרה 10.2 נובע שהם אם h(x),h'(x) הם מחלקים מתוקנים מתוקנים שמחלקים זה את זה הם שווים.

הגדרה 10.3 פולינמים זרים

 \mathbb{F} יהיו $p_1(x), p_2(x)$ פולינומים מעל שדה

. אומרים פרט לפולינומי אם אין להם מחלקים אם אין ו- p_2 ו- ו- ו- p_2 אומרים אין להם אין להם אין אינומי הקבועים.

 $\gcd(p_1,p_2)=1$ במילים אחרות, p_2 ו- p_2 זרים אם

משפט 10.9 פולינמים זרים

. פולינומים שאינם אפס פולינומים $p_1(x), p_2(x) \in \mathbb{F}[x]$ יהיו

 $q_1(x)p_1(x)+q_2(x)p_2(x)=1$ שעבורם $q_1(x),q_2(x)$ פולינומים פולינומים פולינומים $q_1(x)$

הוכחה:

כיוון אם

 $q_1(x)p_1(x)+q_2(x)p_2(x)=1$ שעבורם $q_1(x),q_2(x)\in\mathbb{F}[x]$ אז ממשפט 10.8 נובע שקיימים $\gcd(p_1,p_2)=1$

כיוון רק אם

 $q_1(x)p_1(x)+q_2(x)p_2(x)=1$ עעבורם $q_1(x),q_2(x)\in\mathbb{F}[x]$ נניח שקיימים .deg(k)=0 - עלינו להוכיח ש p_1 ו- p_2 עלינו להוכיח שk(x) מחלק משותף של p_2 ו- p_3 מחלק את p_4 מחלק את p_4 מחלק את p_5 בן ש- לשם כך, די להוכיח ש p_4 מחלק את p_5 ואמנם קיימים פולינומים p_4 כך ש-

$$p_1(x) = g_1(x)k(x)$$
, $p_2(x) = g_2(x)k(x)$.

לכן,

$$1 = q_1(x)g_1(x)k(x) + q_2(x)g_2(x)k(x) = \left(q_1(x)g_1(x) + q_2(x)g_2(x)\right)k(x) .$$

1 מחלק את k(x) בפרט,

10.3 כפולה משותפת

הגדרה 10.4 כפולה משותפת

יהיו $q(x)\in\mathbb{F}[x]$ פולינומים שונים מאפס מעל שדה $p_1(x),\ldots,p_k(x)\in\mathbb{F}[x]$ יהיו פולינומים פולינומים שונים מאפס מעל שדה $p_1(x),\ldots,p_k(x)\in\mathbb{F}[x]$ משותפת של $p_1(x),\ldots,p_k(x)$ אם לכל $p_1(x),\ldots,p_k(x)$

הגדרה 10.5 כפולה משותפת מינימלית

יהיו $q(x)\in\mathbb{F}[x]$ נקרא כפולה משותפת פולינומים פולינו

- $p_1(x),\ldots,p_k(x)$ אות משותפת משותפת מפולה מוא כפולה q(x)
- פרט לפולינום האפס, אינו כפולה משותפת של q(x) שום פולינום שמעלתו קטנה ממעלתו של פולינום האפס, אינו כפולה משותפת של . $p_1(x),\ldots,p_k(x)$