Index

Bond-charge model of optical Collinear phase matching, 121, Cross-coupling, 206 122, 125 properties, 259–262 Crystal systems, 41, 42, 46, 76 Bonds, σ and π , 257, 258 Collision-induced resonances, Cubic crystal, 45, 76, 192 single and double, 257, 258 184 D Boundary conditions, 87–90, 97, Collisional dephasing, 278, 279 Damping, quantum mechanical, 117–119, 268, 475, 477, Commutator, quantum phenomenological, 156 524, 588-590 mechanical, 156, 159, 160, Debye relaxation equation, 361, Bragg scattering (of light by 162, 169, 170, 180 sound waves), 403, 405 Compressibility, 393–396, 398, Debye-Hückel screening, 237, Brillouin frequency, 401, 424, 423, 425 238 426, 427, 456 Compton wavelength, 565, 597 Degeneracy factor, 20, 92, 205 Brillouin linewidth, 427, 428, Conduction band, 235-242, 509 Denominator function, 23, 24 430, 442, 448, 451, 455 Confocal parameter, 111–114, Density Brillouin scattering, 419–421, 116, 375 of final states, 534, 535 425, 426, 431, 433, Constant-pump approximation, Density matrix, 274–276, 436–438, 441, 443, 444, 101, 112, 430, 457, 472, 278-282, 288-291, 449, 452 474 293–295, 305, 308, 309 spontaneous, 404, 425, 433 Constitutive relations, 496, 584, diagonal elements of, 154, stimulated, 419–421, 425, 157 426, 431, 436–438, Continuity equation, 444, 446, equation of motion for, 441, 443, 444, 449, 447, 517 274–276, 280, 291 452 Contour integration, 57, 58, 60, formulation of quantum Bulk modulus, 395, 408 114 mechanics, 139, 151 Contracted notation, 38, 45, 498 C off-diagonal elements of, Conversion between systems of 154, 156-158, 282 Carbon disulfide, 208, 224, 229, units, 61, 583, 595, 598 245, 257, 267, 327, 374 Determinant (of matrix), 89, 331 Conversion efficiency, 97 Cascaded optical nonlinearities, Dextrorotatory, 264, 265 Counterpropagating waves, 338, 133 Dextrose, 264 344, 420, 427, 486 Cauchy's theorem, 57 Diamond, 48, 49, 208, 223, 232 Counterrotating waves, 349 Causality, 54–56 structure, 48, 49 Coupled-amplitude equations, Centrosymmetric media, 27, 121 Dielectric constant, 119, 120, 72, 81, 82, 84–87, 92, 94, Chaos (in stimulated Brillouin 166, 192, 194, 195, 236, 95, 97, 100, 102, 103, scattering), 437 237, 383, 389, 392, 393, 131–133, 315, 317, 429, Cherenkov cone, 129 395, 398, 403, 405, 406, 438, 439, 456, 457, Chiral materials, 264, 269 419, 422, 423, 510, 512, 516–518, 520 Chiral nematic liquid crystal, 513, 515, 561, 566 for difference-frequency Dielectric permittivity, tensor, 266 generation, 131 490 Chiral nematic phase, 266 for stimulated Brillouin Circular polarization, 213, 214, relaxation time, 508, 517 scattering, 438 491, 567 Difference-frequency Closure condition of quantum for sum-frequency generation, 6, 8, 9, 26, mechanics, 253 generation, 92, 100 100–103, 116, 131, 264 Critical phase matching, 123, Coherent buildup length, 73, 81 Diffraction, 113, 321–324, 326, Coherent Stokes Raman 124 339, 408–411, 413, 414, scattering (CSRS), 484 Cross-correlation, 440 416, 547, 548

differentian lamath 540	Effective value of d coefficient	Ethanal 200 222 206 421 452
diffraction length, 548	Effective value of d coefficient,	Ethanol, 208, 232, 396, 431, 453
length, 436	40, 108 Einstein A coefficient 168, 461	Excitons, 238, 239
Diffusion, 402, 507, 510, 513,	Einstein A coefficient, 168, 461	Expansion coefficients, 152, 185
527, 528	Electric-dipole approximation,	Expectation value, quantum
constant, 510, 527	159, 185	mechanical, 142, 153–155
field strength, 513	Electromagnetically induced	Exponential growth, 101, 104,
Dipole, 65, 72, 73	transparency (EIT), 184,	379, 420, 430, 431, 470,
Dipole dephasing rate, 157, 168,	185, 200	483
314	Electron–ion recombination	Extraordinary polarization, 76,
Dipole moment, 1, 50, 61, 144,	rate, 561	77, 515
146, 154, 158, 163, 167,	Electron–positron pair creation,	
168, 171, 188, 191–193,	565	\mathbf{F}
195, 196, 223, 224, 276,	Electronic nonlinearities,	Fabry-Perot interferometer, 350,
278–280, 282, 289–291,	nonresonant, 217, 319	377
296, 300, 303, 304, 306,	low-frequency limit, 222	Fast light, 317
308, 315	quantum mechanical	Feedback, 102, 103, 105, 420
induced, 278, 279, 289,	treatment of, 218	Fermat's principle, 322, 323
291, 300, 303, 304,	Electrooptic effect, 204, 495,	Fermi level, 576
306, 387	496, 498, 499, 502, 506,	Fermi–Dirac distribution, 576
operator, matrix	507	Fermi's golden rule, 530, 535
representation of, 158	linear, 495, 496, 498, 499,	Ferroelectric domains, 83
Dirac delta function, 533	507	Ferroelectric materials, 50, 80,
Dirac notation, 153	quadratic, 495, 498	83
Director (of liquid crystal),	Electrooptic modulators, 500,	Feynman diagrams, 177, 178,
266–268	503, 506	183
Dispersion (of refractive index),	Electrostriction, 207, 212, 217,	Filamentation, 322
76–78, 80, 256	223, 348, 364, 420, 421,	Fluctuations, 106, 318,
Dispersion relation, 573,	424–426, 443, 444, 454	381–384, 390–393, 395,
577–579	electrostrictive stimulated	402, 419, 434, 444
Dispersionless medium, 2, 4, 16,	Brillouin and Rayleigh	adiabatic and isobaric
192, 478, 550	scattering, 420, 443,	fluctuations, 395, 402,
Dispersive lineshape, 284	444, 451, 452	444
Dispersive medium, 69, 107,	Enantiomers, 264	
594	Energy density (of optical field),	entropy fluctuations, 381, 402
Dissipative medium, 69	35–37, 423, 496, 497, 586,	
Donors, 509, 510, 512	587, 592, 593	relation to light scattering,
Doppler broadening, 288	Energy eigenstates, 5, 139, 141,	382, 383
Dressed states (atomic),	152–154, 259, 290, 303,	Fluence, 233, 234, 243, 526
302–304, 306, 317–319	530, 531	Foreign-gas broadening, 278
Drude model, 525, 571,	Energy transfer (between optical	Four-wave mixing, 274, 307,
573–575, 579	beams), 360, 364	308, 317, 318, 320, 322,
Drude-Lorentz model, 575	Entangled photons, 126	328, 331, 332, 338, 339,
T	Entanglement, 126, 127	343–349, 375, 376, 379,
E	Equation of state	438, 439, 457, 471–474,
Effective susceptibility, 204,	(thermodynamics), 394,	518–520
212, 213	396	Brillouin-enhanced, 457

contribution to stimulated Raman scattering, 316 degenerate, 338, 339,	Gold, 574, 576 Grating wavevector, 361, 512–514 Group index and group velocity, 131, 317 Group theory, 41, 62 Group velocity dispersion (GVD), 365, 370–374, 547, 548 H Half-wave voltage, 503 Hamiltonian (quantum mechanical operator), 139, 140, 152, 153, 156, 159, 162, 274, 275, 281, 296, 297, 530, 531 Harmonic generation, 1, 4–7, 10, 19, 24, 25, 38–40, 42, 45, 60, 75, 78, 83, 86, 91, 92, 97–99, 111–117, 121, 131–133, 137, 138, 148–151, 197, 199, 210, 555–558 Harmonic oscillator form of density matrix equations, 291 Heat capacity, 231, 232, 527	I Ideal gas, 232, 391, 394, 396,
for stimulated	291	Intrinsic permutation symmetry,
Gallium arsenide, 45, 47, 48, 80, 83 Gauss (unit of magnetic field), 591, 598	Hermitian operator, 153 Hexagonal (crystal), 42, 46, 51, 76 High-harmonic generation,	Isotropic materials, 42, 50, 51, 164, 209, 210, 212, 424 nonlinear, propagation through, 213
Gaussian laser beams, 111, 112, 131, 133 focused, 132 Gaussian system of units, 130, 133, 583, 590, 594, 596 Generator (stimulated Brillouin	555–558 Homeotropic alignment, 268 Hot electron, 576 Hydrodynamic model, 574 Hydrogen, 250, 251, 269, 465 Hyperbolic secant pulse, 378	J Jacobi elliptic functions, 86, 95 Jitter energy, 553 Joule heating, 525, 527, 586, 593
scattering), 420, 421, 426, 433, 435 contrasted with amplifier, 420, 421	Hyperpolarizability, 196, 197, 255, 259, 260 bond, 259, 260 Hysteresis, 353	K KDP, 49, 499, 500, 502 Keldysh mechanism, 525

Kerr effect, 204, 364 electrooptic, 204 optical, 204, 364 Kleinman symmetry, 37–39, 45, 47, 212, 223, 262, 265 Kramers–Kronig relations, 2, 56, 57, 59, 60, 62, 239, 317 k surface, 122 KTP, 83, 109	Maker and Terhune (A and B) notation, 218, 222, 223, 230 Manley–Rowe relations, 83, 85, 93, 132 Maxwell field, 192 Maxwell–Boltzmann distribution, 237 Maxwell's equations, 65, 119, 192, 584, 586–588,	Nonlinear Schrödinger equation, 372, 378, 541, 546 Nonlocal response, 437 Nonresonant excitation, 3, 32, 146, 148, 178, 183, 218 Normal dispersion, 75, 76 Normal surface, 122
Kurtosis, 254, 255	591–593	0
120200010, 20 1, 200	Mean-field approximation, 350,	Octopole moment, 255
L Landau–Placzek relation, 403 Laplacian differential operator,	351 Methanol, 208, 431, 453 Microscopy, nonlinear optical, 99	Oersted (unit of magnetic field), 591, 598 Ohm's law, 517, 584, 591
337	Miller's rule, 26, 255	Optical activity, 216, 264 Optical bistability, 14, 349, 350,
transverse Laplacian, 110, 337	Mobility, 510, 517 Mode structure (of OPO), 106	352, 353, 355, 356, 376, 377
Lasing without inversion, 184 Levorotatory, 264, 265	Modulation index, 414, 512, 521 Modulational instability, 378	absorptive, 376
Lifetime, 157, 198, 276, 280,	Molecular orientation effect,	refractive, 14, 349, 350, 376, 377
397, 428, 436, 444, 448,	229, 231, 245, 334, 486	Optical damage, 11, 359, 456,
456, 534 Lightning rod effect, 580	Molecular vibrations, 466–468, 483	523, 524, 526, 527, 529
Linewidth (of OPO), 108	Monoclinic (crystal), 42, 46, 53,	threshold for, 527
Liquid, 2, 28, 42, 192, 208, 209,	76	Optical indicatrix, 497, 498
223, 232, 419, 422, 436, 443	Moving focus model (of self focusing), 333	Optical parametric oscillation, 9, 104
Liquid crystals, 249, 266–268 Lithium niobate, 78–80, 83,	Multiphoton absorption, 528–530, 538	Optical phase conjugation, 184, 334, 336, 343, 375, 376
109, 499, 500, 510	Multiphoton ionization and	Optical rectification, 5, 6, 26
Lorentz local field, 192–194 Lorentz model, 569, 572	dissociation, 523, 527, 529, 559, 560	Optical shock waves, 541, 550, 551
Lorentz model (of atom), 20, 23, 25, 166, 218, 388, 416	N	Optical switching, 349, 356, 377 Optimum focusing (in SHG),
25, 100, 218, 388, 410 Lorentz–Lorenz law, 194, 198,	Nanoparticle, 576	133
256	Negative-frequency	Ordinary polarization, 77
Lorentzian lineshape, 389, 534	components, 7, 18, 33 Nematic phase, 266	Orthogonal transformation, 496
Lossless medium, 4, 35, 37, 45, 72, 85, 146	Nitrogen, 416, 442 Noncentrosymmetric media, 2,	Orthonormality condition, 141, 531
	21	Orthorhombic (crystal), 42, 46,
M	Noncollinear phase matching,	53, 76 Oscillator strangth 165, 166
Mach–Zehnder interferometer, 356	121, 123, 124 Noncritical phase matching,	Oscillator strength, 165, 166, 255, 256
Magnetic permeability, 585, 592	123, 124	sum rule for, 165

Parametric amplification, 9, 100–103, 105 Parametric and nonparametric processes, 14 Parametric fluorescence, 9 Paraxial wave equation, 109, 110, 131, 327 Parity, definite or fixed, 253, 275 "Particle-in-a-box", 576 Pauli principle, 240 Permittivity, 2, 68, 422, 583, 585, 592, 595, 598 Perturbation theory, 138, 140, 146, 175, 179, 183, 249, 252, 253, 307, 312 of atomic wave function, 138, 179 time-independent, 249 Phase conjugation, 184, 334–336, 338, 343–349, 375, 376, 437–441, 491, 492 aberration correction by, 336 by stimulated Brillouin scattering, 437–440 polarization properties of, 345–347, 376 vector, 346–349, 491, 492 Phase of focused Gaussian beam, 246 Phase shift (as origin of two-beam coupling), 359	curve, 80, 81 methods of achieving, 76 quasi-phase-matching, 133 Phonon lifetime, 397, 428, 436, 444, 448, 456 Photon energy-level, 9, 14 Photon occupation number, 461, 462 Photonic switching, 184 Photorefractive effect, 50, 207, 365, 507–509, 521, 552 Photovoltaic current, 510 Physical constants, 3, 409, 597, 598 Planar alignment (of liquid crystal), 268 Plasma frequency, 236, 561, 563, 569–572, 574 Plasma nonlinearities, 561, 562 Plasma screening effects, 237, 239 Plasmonics, 569, 574, 580 Pockels effect, 495, 507 Point groups, 41, 42, 45, 48–50, 62 Poisson probability distribution, 391 Polar crystals, 50 Polarizability, 3, 167, 168, 192, 193, 197, 213, 221, 223, 224, 226–229, 253, 254, 259–262, 382, 387–390, 416, 466, 486, 487 Polarization, 1–8, 10–12, 16–20,	nonlinear, 2, 5–8, 10–12,
scattering, 437–440 polarization properties of, 345–347, 376 vector, 346–349, 491, 492 Phase of focused Gaussian beam, 246	Polar crystals, 50 Polarizability, 3, 167, 168, 192, 193, 197, 213, 221, 223, 224, 226–229, 253, 254, 259–262, 382, 387–390, 416, 466, 486, 487	Poynting theorem, 36, 132, 586, 592 Poynting vector, 73, 79, 387, 586, 587, 592, 593 Probability amplitude, 141, 142, 152, 153, 155, 157, 188,

Raman–Nath scattering (in acoustooptics), 412, 413 Retarded time, 372, 544 critical power for, 321, 327, 327, 327, 544	Pump depletion (in stimulated Brillouin scattering), 431, 437 Q Quadrupole moment, 253, 255 Quantum electrodynamics (QED), 565 nonlinear, 565 Quantum mechanics, 5, 13, 20, 22, 35, 85, 86, 137–139, 142, 145, 151–155, 165, 166, 249–251, 253 Quartz, 49, 74, 266 Quasiphase-matching, 79–83, 109, 131, 133 Quasistatic approximation, 580 R Rabi frequency, 189, 282, 287, 294, 298–300, 304–308, 310, 312, 317 Rabi oscillations, 274, 295, 300, 305, 306, 319 damped, 305, 306 Rabi sidebands, 301, 306, 317, 318 Racemic mixtures, 264, 265 Raman anti-Stokes scattering, 459, 460 Raman scattering, 16, 443, 444, 459–463, 465–467, 473, 474, 478, 480, 483–485, 492 spontaneous, 16 stimulated, 16, 443, 444, 460–463, 465–467, 473, 474, 478, 480, 483–485, 492 Raman Stokes scattering, 459, 460 Raman susceptibility, 469–472	Rate equation, 509, 561 Rate-of-dilation tensor, 445 Rayleigh resonance, 318 Rayleigh scattering, 443, 444, 448, 449, 452, 453 spontaneous, 452 stimulated, 443, 444, 449, 452–454 Rayleigh-wing scattering, 381, 382, 384, 486, 488–492 polarization properties of, 490, 492 spontaneous, 382, 383, 459 stimulated, 382, 459, 486, 492 Reality of physical fields, 45 Recombination, electron—hole, 236, 561 Reflection, nonlinear optics in, 116 Refractive index, calculated quantum mechanically, 218 Relativistic effects, 553, 554, 562, 565 relativistic change in mass, 554, 562 Relaxation processes, 138, 139, 276, 277, 279, 280, 290, 319 Relaxation time, 276, 278, 307, 382, 487, 508, 517 Residue theorem, 57 Resonance, one-, two-, and three-photon, 21, 138, 150, 172, 200, 318, 347 Resonance enhancement, 137, 150 Resonant excitation, 4, 139, 168, 169, 218, 274, 288, 344 Response time, 207, 217, 232–234, 236, 266, 267, 319, 487, 507, 517	Rotating wave approximation, 532 Rotation of the polarization ellipse, 215, 216, 245 Rydberg constant, 150, 223, 239 Rydberg levels of atom, 150 S Sapphire, 223, 559 Saturable absorption, 14, 99, 273 Saturation, 1, 4, 14, 221, 240, 243, 273, 274, 284–286, 288, 307 effects, 1, 4, 240, 243, 274 intensity, 14, 273, 285, 286, 288, 351 spectroscopy, 307 Scattering of light, 381, 385, 400, 403, 405, 416, 420, 443, 444, 491 cross section, 385–390, 416, 460, 463, 464 from moving grating, 363 scalar, 384 scattering coefficient, 384–386, 391, 392, 394, 416, 419 spontaneous, 419 tensor, 384 Schrödinger picture, 160 Second-harmonic generation, 1, 4–7, 19, 24, 25, 38–40, 42, 45, 60, 75, 78, 83, 86, 91, 92, 97–99, 111, 113, 115–117, 131–133 Self-action effects, 206, 321–323, 327, 333, 567 Self-broadening (of atomic resonance), 278 Self-focusing, 11, 321–327, 332–334, 374, 519, 551, 564, 567
	Raman susceptibility, 469–472	319, 487, 507, 517	564, 567
	•		_

self-focusing angle, 323, 324	Spontaneous and stimulated light scattering contrasted,	in quasi-static limit, 251 linear, 2, 24, 30, 41, 42, 55,
transient, 334	419	56, 62, 142–144, 161,
Self-induced transparency, 378	Spontaneous emission, 168, 276	163–166, 188, 193,
Self-phase modulation,	Spontaneous parametric down	194, 198, 200, 282,
365–368, 372, 377	conversion, 124	286, 315, 521
Self-steepening, 541, 546, 548,	Square-well potential, 259, 269	calculated using
550, 551	Stark effect, 221, 222, 242, 250,	density matrix, 161
Self-trapping, 321, 322,	318	nonlinear, 16–21, 24–26,
324–328	Statcoulomb, 590, 591, 594, 598	31–35, 37, 39, 41, 42,
Semiconductor nonlinearities,	Stimulated emission, 532, 533	44, 45, 47, 50, 59–61,
235	Stimulated emission depletion,	85, 91, 112, 116,
Sidebands, 301, 306, 307, 314,	100	137–139, 146,
316–318, 378, 379, 466,	Stimulated Rayleigh scattering,	148–151, 171–174,
467, 473, 479	16, 317, 443, 444, 449,	182, 192, 195, 196,
Silica, 370, 373, 374, 377	452–454	199, 200, 204, 207,
fused, 207, 208, 223, 232,	Stochastic properties of	210–212, 218,
233, 245, 370, 373,	stimulated Brillouin	220–223, 244, 245,
374, 396, 456, 548	scattering, 437	495, 507
Silicon, 510	Stokes relation, 356, 445, 455	of two-level atom, 285, 319
Simultaneous equations, 89	for viscosity, 416, 442, 445,	Raman, 469–472
Singly resonant optical	455	second-order, 3, 5, 18, 20,
parametric oscillator, 102,	Stokes scattering, 398, 400, 426,	25, 27, 33, 37, 41,
105, 106	430, 454, 460	44–47, 50, 55, 56, 61,
Slow light, 184, 317	Stokes–anti-Stokes coupling,	62, 116, 121, 144–146, 148, 169, 172, 175,
Slowly-varying amplitude	316, 473, 474, 480, 492 Strain antia tansar, 405	183, 196, 495, 521
approximation, 429, 450	Strain-optic tensor, 405 Sum-frequency generation, 6–8,	third-order, 20, 26, 31, 50,
Sodium vapor, 151	18, 19, 25, 39, 40, 65, 66,	51, 56, 61, 62, 138,
Solitons, 328, 365, 372–374,	70, 74, 75, 86, 92, 100, 101,	146–148, 150, 169,
377, 378, 521	130, 132, 150, 184, 189	179–183, 191, 198,
spatial, 328, 374, 521	Supercontinuum generation	199, 209, 210, 218,
Sound, velocity of, 395, 396,	(SCG), 551	222, 223, 230, 274,
403, 405, 408, 425, 426,	Surface nonlinear optics, 98	285, 286, 288, 315,
428, 442, 446	Surface plasmon polariton	319, 424, 425
Sound absorption coefficient,	(SPP), 569, 576–579, 581	Systems of units, 2, 130, 583,
397, 428, 447	Susceptibility, 2, 3, 5, 13, 14,	594, 596
Space-time coupling, 541, 546,	16–21, 24–28, 30–35,	,
550	37–39, 41, 42, 44–47, 50,	T
Spatial symmetry, 41, 44, 50,	51, 55, 56, 59–62, 85, 91,	Tensor properties, 28, 61, 229,
209	112, 116, 121, 132,	245, 265, 466, 490, 510,
Spatial walk-off, 129, 130	137–139, 142–151, 161,	566
Specific heat, 396, 402	163–167, 169, 171–175,	of isotropic materials, 245
Speckle, 439, 441	179–184, 188, 191–196,	of the molecular orientation
Sphere, polarizability of, 580	198–200, 495, 507, 521	effect, 245

Tetragonal crystals, 42, 46, 53, 76 Thermal conductivity, 231, 232, 397, 402, 527 Thermal equilibrium, 156, 169, 199, 200, 226, 229, 236, 277, 395, 460	Triclinic crystal, 42, 46, 53, 76 Trigonal crystal, 42, 46, 52, 76 Two-beam coupling, 511, 514, 516, 517, 519–521 photorefractive, 511, 517 transient, 517, 521 Two-level approximation, 274	Vibrations, molecular, 466–468, 483 Virtual transitions, 236, 241 Viscosity, 397, 416, 442, 445, 454, 455
Thermal nonlinear optical effects, 231–234 Thermal stimulated Brillouin and Rayleigh scattering, 444	Two-level atom, 158, 240, 274–277, 279, 280, 285, 288, 293, 295, 296, 302, 305–308, 313, 316, 319 density matrix treatment of,	Water, 208, 232, 385, 396, 402, 409, 416, 419, 529 Wave equation, 3, 5, 65, 67–71, 91, 109, 110, 117, 120, 131, 316, 320, 327, 330, 337,
Thermodynamics, first law of, 423 Third-harmonic generation, 10, 60, 99, 114, 115, 132, 137, 138, 148–151, 197, 199, 210	158 Two-photon absorption, 15, 16, 132, 200, 241–243, 359, 528, 530, 535, 536, 538 Type I and type II phase matching, 76	340, 342, 362, 368, 369, 371, 397, 398, 402, 406, 407, 542–545, 548, 550, 586, 587, 593 acoustic, 428 Wavefront radius of curvature,
Thomas–Fermi screening, 262 Thompson scattering, 389 Three-photon resonance, 138, 150, 318 Threshold condition, 104, 105 THz generation, 129, 130 THz radiation, 127, 129, 130 Tilted-pulse-front method, 127, 129 Time-domain description, 50 Titanium dioxide, 208 Tomography, 99 Total internal reflection, 325, 326	U Ultrashort laser pulses, 541, 546 Undepleted-pump approximation, 88, 91, 92, 132 Underdense plasma, 561 Uniaxial crystals, 40, 42, 76–78, 501 Upconversion, 86, 130 V Valence band, 235, 236, 238–240, 574, 576 Vector phase matching, 121	111, 375 Wavefunction, 138–141,
Trap density, 513, 514, 521 Trap level, 280	Vector potential, dimensionless, 555	Z-scan, 324, 374, 375 Zincblende structure, 45, 47–49