

Teste Intermédio

Matemática A

Resolução (Versão 1)

Duração do Teste: 90 minutos | 30.04.2014

12.º Ano de Escolaridade

RESOLUÇÃO

GRUPO I

1. Resposta (A)

Tem-se: $\log(100b) = \log 100 + \log b = 2 + 2014 = 2016$

2. Resposta (B)

Se $x_n = \left(1 + \frac{1}{n}\right)^n$ ou se $x_n = e + \frac{1}{n}$, tem-se $\lim x_n = e$. Como $\lim_{x \to e} h(x) = +\infty$, pode concluir-se que, nos dois casos, se tem $\lim h(x_n) = +\infty$

Se $x_n=1-\frac{1}{n}$, tem-se que x_n tende para 1, por valores inferiores a 1, pelo que $\lim h(x_n)=+\infty$

Se $x_n = \left(1 + \frac{1}{n}\right)^3$, tem-se que x_n tende para 1, por valores superiores a 1, pelo que $\lim h(x_n) = -\infty$

3. Resposta (B)

Tem-se:
$$f''(x) = \left(\frac{1}{2}x^2 - \ln x\right)' = x - \frac{1}{x} = \frac{x^2 - 1}{x}$$

Para
$$x > 0$$
, tem-se $\frac{x^2 - 1}{x} = 0 \Leftrightarrow x = 1$

Como f''(1) = 0, f''(x) < 0 em]0,1[e f''(x) > 0 em $]1,+\infty[$, conclui-se que o gráfico da função f tem um único ponto de inflexão (cuja abcissa é 1).

4. Resposta (D)

Tem-se:
$$\cos^2\left(\frac{x}{12}\right) - \sin^2\left(\frac{x}{12}\right) = \cos\left(2 \times \frac{x}{12}\right) = \cos\left(\frac{x}{6}\right)$$

5. Resposta (C)

A probabilidade pedida é $P(B \mid \overline{A})$

Tem-se:
$$P(B \mid \overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})}$$

Como $B \cap \overline{A}$ é o acontecimento contrário de $\overline{B} \cup A$, vem $P(B \cap \overline{A}) = 1 - P(\overline{B} \cup A)$

Portanto,
$$P(B \mid \overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = \frac{1 - P(\overline{B} \cup A)}{1 - P(A)} = \frac{1 - 0.92}{1 - 0.44} = \frac{0.08}{0.56} = \frac{8}{56} = \frac{1}{7}$$

GRUPO II

1.1. Para x > 0, tem-se:

$$f'(x) = \left(\frac{3x + \ln x}{x}\right)' = \frac{(3x + \ln x)' \times x - (3x + \ln x) \times (x)'}{x^2} =$$

$$= \frac{\left(3 + \frac{1}{x}\right) \times x - (3x + \ln x) \times 1}{x^2} = \frac{3x + 1 - 3x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

Portanto,
$$f'(1) = \frac{1 - \ln 1}{1^2} = \frac{1 - 0}{1} = 1$$

Assim, a reta t tem declive 1. A equação reduzida da reta t é, portanto, da forma y = x + b

Como
$$f(1) = \frac{3 + \ln 1}{1} = \frac{3 + 0}{1} = 3$$
, o ponto de tangência tem coordenadas $(1, 3)$

Assim,
$$3 = 1 + b$$
, pelo que $b = 2$

A equação reduzida da reta t é, portanto, y = x + 2

1.2. Assíntota vertical

Uma vez que a função f é contínua em $]-\infty,0]$ e em $]0,+\infty[$, apenas a reta de equação x=0 poderá ser assíntota vertical do gráfico da função f

Tem-se:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{3x + \ln x}{x} = \frac{3 \times 0 + (-\infty)}{0^+} = \frac{-\infty}{0^+} = -\infty$$

Portanto, a reta de equação x = 0 é a única assíntota vertical do gráfico de f

Assíntota horizontal

Tem-se:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x + \ln x}{x} = \lim_{x \to +\infty} \left(3 + \frac{\ln x}{x}\right) = 3 + 0 = 3$$

Assim, a reta de equação y=3 é assíntota do gráfico de f quando $x \to +\infty$

Assíntota não vertical

Tem-se:
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{2x + 1 + e^{-x}}{x} = \lim_{x \to -\infty} \left(2 + \frac{1}{x} + \frac{e^{-x}}{x}\right) = 2 + 0 + \lim_{x \to -\infty} \frac{e^{-x}}{x} = 2 + \lim_{y \to +\infty} \frac{e^{y}}{-y} = 2 - \lim_{y \to +\infty} \frac{e^{y}}{y} = 2 - (+\infty) = -\infty$$

Como $\lim_{x\to -\infty} \frac{f(x)}{x} = -\infty$, conclui-se que não existe assíntota não vertical do gráfico de f quando $x\to -\infty$

1.3. Como a reta AB é paralela à bissetriz dos quadrantes pares, o seu declive é igual a -1

Tem-se: $f(a) = \frac{3a + \ln a}{a} = 3 + \frac{\ln a}{a}$ e $f(-a) = -2a + 1 + e^a$, pelo que o ponto A tem coordenadas $\left(a, 3 + \frac{\ln a}{a}\right)$ e o ponto B tem coordenadas $\left(-a, -2a + 1 + e^a\right)$

coordenadas $\left(a,3+\frac{\ln a}{a}\right)$ e o ponto B tem coordenadas $\left(-a,-2a+1+e^a\right)$ Portanto, o declive da reta AB é dado por $\frac{3+\frac{\ln a}{a}-\left(-2a+1+e^a\right)}{a-\left(-a\right)}=\frac{2+\frac{\ln a}{a}+2a-e^a}{2a}$

Assim, a solução da equação $\frac{2+\frac{\ln x}{x}+2x-e^x}{2x}=-1$, no intervalo]0,1[, é o valor de a

Ora,
$$\frac{2 + \frac{\ln x}{x} + 2x - e^x}{2x} = -1 \Leftrightarrow 2 + \frac{\ln x}{x} + 4x - e^x = 0$$

Para resolver esta equação, recorremos às potencialidades gráficas da calculadora.

Na figura, está representada parte do gráfico da função definida por $y=2+\frac{\ln x}{x}+4x-e^x$

O zero desta função, no intervalo $\]0,1[$, $\$ 6 o valor de $\ a$

Conclusão: $a \approx 0.413$

2.1. Tem-se:

$$f'(t) = [(4t+2)e^{3,75-t}]' = (4t+2)' \times e^{3,75-t} + (4t+2) \times (e^{3,75-t})' =$$

$$= 4e^{3,75-t} + (4t+2)(-e^{3,75-t}) = e^{3,75-t}(4-4t-2) = e^{3,75-t}(2-4t)$$

$$f'(t) = 0 \Leftrightarrow e^{3,75-t}(2-4t) = 0 \Leftrightarrow \underbrace{e^{3,75-t} = 0}_{\text{eq. impossivel}} \lor 2-4t = 0 \Leftrightarrow 2-4t = 0 \Leftrightarrow t = 0,5$$

Tem-se o seguinte quadro:

t	0	0,5	6
f'	+	0	_
f	7	Máx.	٦

Portanto, a função f é crescente no intervalo [0;0,5] e é decrescente no intervalo [0,5;6]

A função f atinge o máximo quando t = 0.5

Assim, é às 12 horas de segunda-feira da próxima semana que será máximo o número de alunos com gripe.

2.2. O esquema apresentado abaixo evidencia que as 18 horas de quinta-feira da próxima semana correspondem a $t=3+\frac{3}{4}=3{,}75$

Tem-se f(3,75) = 17

Portanto, às 18 horas de quinta-feira da próxima semana, 17 dos 300 alunos da escola estarão com gripe.

O acontecimento «pelo menos um dos alunos escolhidos estar com gripe» é o acontecimento contrário do acontecimento «nenhum dos alunos escolhidos estar com gripe».

Portanto, a probabilidade pedida é $1 - \frac{283\,C_3}{300\,C_3} \approx 0.16$

3.1. O ponto P tem ordenada igual à do ponto V, pelo que o ponto P tem ordenada 6

Portanto,
$$\overline{AP} = 6$$

Tem-se
$$\overline{AV}^2 = \overline{AP}^2 + \overline{PV}^2$$
, pelo que $10^2 = 6^2 + \overline{PV}^2$, donde $\overline{PV} = 8$

Portanto, o vértice $\,V\,$ tem cota igual a $\,8\,$

3.2. O ponto B tem coordenadas (12, 6, 0) e o ponto V tem coordenadas (6, 6, 8)

Portanto, o ponto
$$M$$
 é o ponto de coordenadas $\left(\frac{12+6}{2}, \frac{6+6}{2}, \frac{0+8}{2}\right) = (9, 6, 4)$

O ponto C tem coordenadas (6, 12, 0)

Tem-se, então,
$$\overrightarrow{CM} = M - C = (9, 6, 4) - (6, 12, 0) = (3, -6, 4)$$

Portanto, uma condição cartesiana da reta CM é $\frac{x-6}{3} = \frac{y-12}{-6} = \frac{z}{4}$

3.3. O vetor \overrightarrow{DV} é normal ao plano.

O ponto D tem coordenadas (0,6,0)

Tem-se, então,
$$\overrightarrow{DV} = V - D = (6, 6, 8) - (0, 6, 0) = (6, 0, 8)$$

Assim, qualquer plano perpendicular à aresta [DV] tem uma equação da forma 6x + 8z = d

Como se pretende que o plano passe no ponto P(6,6,0), tem-se $6 \times 6 + 8 \times 0 = d$, ou seja, d = 36

Portanto, uma equação cartesiana do plano que passa no ponto P e que é perpendicular à aresta $\begin{bmatrix} DV \end{bmatrix}$ é 6x + 8z = 36

4. De acordo com a sugestão, seja β a amplitude do ângulo FSP

Seja M o ponto médio de $\lceil PS \rceil$

Tem-se:

$$sen \beta = \frac{\overline{FM}}{\overline{FS}} = \frac{\overline{FM}}{4}, \text{ pelo que } \overline{FM} = 4 \operatorname{sen} \beta$$

$$\cos \beta = \frac{\overline{MS}}{\overline{FS}} = \frac{\overline{MS}}{4}$$
, pelo que $\overline{MS} = 4\cos \beta$

Portanto, a área do triângulo [PSF] é dada por

$$\frac{\overline{PS} \times \overline{FM}}{2} = \frac{2 \times 4\cos\beta \times 4\sin\beta}{2} = 16\sin\beta\cos\beta = 8 \times 2\sin\beta\cos\beta = 8\sin(2\beta)$$

De acordo com a figura ao lado, tem-se $\beta + \alpha + \beta + \frac{\pi}{2} = 2\pi$,

pelo que
$$2\beta = 2\pi - \frac{\pi}{2} - \alpha = \frac{3\pi}{2} - \alpha$$

Tem-se, então,
$$8 \operatorname{sen}(2\beta) = 8 \operatorname{sen}\left(\frac{3\pi}{2} - \alpha\right) = -8 \cos \alpha$$

Portanto, a área lateral da pirâmide é igual a

$$4 \times (-8\cos\alpha)$$
, ou seja, $-32\cos\alpha$