Large Salem Sets Avoiding Polynomial Patterns

Jacob Denson*

August 29, 2023

Abstract

TODO

Adapting the discrete strategy of (TODO) to the continuous setting, and together with the translation dimension boosting argument of Schmerkin, we prove the existence of a Salem set $E \subset [0,1]$ such that for $x_1, x_2, x_3, x_4 \in E$ with $x_1 \neq x_2$ and $x_3 \neq x_4, x_1 - x_2 \neq (x_3 - x_4)^2$.

We construct E as follows. Fix an integer $k \ge 20$, and consider a family of subsets $R_n \subset \{0, \ldots, k-1\}$ for each $n \ge 0$. Define

$$E = \left\{ \sum_{n=1}^{\infty} a_n k^{-n} : a_n \in R_n \text{ for all } n \geqslant 1 \right\}.$$

We claim that E avoids patterns if $\{R_n\}$ are chosen suitably well. Let us begin by making an apriori assumption that for each n, $1 \notin R_n - R_n$. Let us suppose that there exists $x_1, x_2, x_3, x_4 \in E$ such that $x_1 - x_2 = (x_3 - x_4)^2$. Write

$$x_1 = \sum_{n=1}^{\infty} a_n k^{-n}$$
, $x_2 = \sum_{n=1}^{\infty} b_n k^{-n}$, $x_3 = \sum_{n=1}^{\infty} c_n k^{-n}$, and $x_4 = \sum_{n=1}^{\infty} d_n k^{-n}$.

Let $\delta_n = a_n - b_n$, and $\varepsilon_n = c_n - d_n$. Then

$$\sum_{n=1}^{\infty} \delta_n k^{-n} = \left(\sum_{n=1}^{\infty} \varepsilon_n k^{-n}\right)^2.$$

Let i be the first index such that $\delta_i \neq 0$, and j the first index where $\varepsilon_j \neq 0$. Then

$$k^{-i} < \sum_{n=1}^{\infty} \delta_n k^{-n} < k^{1-i}$$
 and $k^{-2j} < \left(\sum_{n=1}^{\infty} \varepsilon_n k^{-n}\right)^2 < k^{2-2j}$.

Equality is thus only possible if $k^{-2j} < k^{1-i}$ (so i < 2j + 1) and $k^{-i} < k^{2-2j}$ (so i > 2j - 2). Thus i = 2j - 1 or i = 2j.

^{*}University of Madison Wisconsin, Madison, WI, jcdenson@wisc.edu

Assume first that i is even, so that 2j = i. Write $(U, V, W) = (\delta_i, \delta_{i+1}, \delta_{i+2})$ and $(A, B, C) = (\varepsilon_j, \varepsilon_{j+1}, \varepsilon_{j+2})$. Then

$$\left| \sum_{n=1}^{\infty} \delta_n k^{-n} - (Uk^{-i} + Vk^{-i-1} + Wk^{-i-2}) \right| < k^{-i-2}$$

and

$$\left| \left(\sum_{n=1}^{\infty} \varepsilon_n k^{-n} \right)^2 - \left(A k^{-j} + B k^{-j-1} + C k^{-j-2} \right)^2 \right| < \left(2A + 2B k^{-1} + (2C+1)k^{-2} \right) k^{-i-2},$$

and so

$$\left| \left(U + Vk^{-1} + Wk^{-2} \right) - \left(A + Bk^{-1} + Ck^{-2} \right)^2 \right| < \left(1 + 2A + 2Bk^{-1} + (2C + 1)k^{-2} \right)k^{-2}$$

We have

$$\left| \left(U + Vk^{-1} + Wk^{-2} \right) - \left(A + Bk^{-1} + Ck^{-2} \right)^2 \right| > (A - 1)^2 - k,$$

and so we obtain that $(A-1)^2 < 1.006k$, and thus $A < 1.23k^{1/2}$, which means

$$\left| \left(U + Vk^{-1} + Wk^{-2} \right) - \left(A + Bk^{-1} + Ck^{-2} \right)^2 \right| < 3.16k^{-3/2}.$$

Now

$$\left| \left[\left(U + Vk^{-1} + Wk^{-2} \right) - \left(A + Bk^{-1} + Ck^{-2} \right)^{2} \right] - \left[\left(U - A^{2} - 2AB/k \right) + \left(V/k - B^{2}/k^{2} - 2AC/k^{2} \right) \right] \right|$$

$$< 3.05k^{-1}$$

and so

$$|(U - A^2 - 2AB/k) + (V/k - B^2/k^2 - 2AC/k^2)| < 3.76k^{-1}$$

This only occurs if $|U - A^2 - 2AB/k| \le 2 + 3.31k^{-1/2}$.

How about if i is odd? A similar reduction as above shows that

$$|(U + Vk^{-1} + Wk^{-2}) - k^{-1}(A + Bk^{-1} + Ck^{-2})^{2}|$$

$$< (1 + 2Ak^{-1} + 2Bk^{-2} + (2C + 1)k^{-3})k^{-2}$$

$$< 3.1k^{-2}.$$

Thus

$$|(U - A^2k^{-1}) + (Vk^{-1} - 2ABk^{-2} + Wk^{-2} - 2ACk^{-3} - B^2k^{-3})| < 5.1k^{-2}$$

which implies $|U - A^2k^{-1}| \le 1 + 1.1k^{-1/2}$. Thus we have reduced the problem to choosing $\{R_j, R_{2j-1}\}$ appropriately.

We find such choices computationally. First, let's suppose $\{R_j\}$ is constant for all j, equal to some common set $R \subset \{0, \ldots, k-1\}$. Our goal is thus to choose R such that the difference set R - R does not contain X, Y, Z, with $X, Y \neq 0$, such that

$$|X - Y^2 - 2YZ/k| \le 2 + 2.1k^{-1/2}$$
 or $|X - Y^2k^{-1}| \le 1 + 1.1k^{-1/2}$ or $|X| \le 1$.

For any choice of R, the resulting set have covering number $|R|^n$ at a length scale k^{-n} , and one can show the resulting set is Ahlfors-regular, with dimension $\log_k |R|$.

$$|(a_i - b_i)k^{-i} - (c_j - d_j)^2 k^{-2j}| \le k^{-i} + (2k - 1)k^{-2j}.$$

If $2j \ge i$, then

$$|(a_i - b_i)k^{2j-i} - (c_j - d_j)^2| \le k^{2j-i} + (2k-1).$$

If $i \ge 2j$, then we have

$$|(a_i - b_i) - (c_j - d_j)^2 k^{i-2j}| \le 1 + (2k - 1)k^{i-2j}.$$

If i > 2j, then $|(a_i - b_i) - (c_j - d_j)^2 k^{i-2j}|$ If 2j > i + 2, then we conclude that

$$|(a_i - b_i)k^{-i} - (c_j - d_j)^2 k^{-2j}| \le (1 + 2/k - 1/k^2)k^{-i}.$$

Since $a_i - b_i$ and $(c_j - d_j)^2$ are both even

TODO: Argue that we reach a contradiction unless 2j = i, and $(a_i - b_i) = (c_i - d_i)^2$.

Provided we choose R_i so that $R_i - R_i$ is disjoint from $(R_j - R_j)^2$, except at the origin, we reach a contradiction, which allows us to conclude that the resulting set E is squarefree. We have $N(k^{-n}) \sim \prod_{j \leq n} |R_j|$, and so the Minkowski dimension of E is equal to

$$\frac{1}{\log k} \lim_{n \to \infty} \frac{1}{n} \sum_{j \le n} \log(|R_j|).$$

We can argue that E has the same Hausdorff dimension similarly, i.e. by taking a limiting probality measure and proving a Frostman condition.