23. Analytische Geometrie

23.1. Quadriken

K sei ein Körper, $f \in K[X_1, \ldots, X_n]$

$$f(X_1, \dots, X_n) = \sum_{i_1, \dots, i_n \in \mathbb{N}} \alpha_{i_1, \dots, i_n} \underbrace{X_1^{i_1} \dots X_n^{i_n}}_{=: X_{\underline{i}}} = \sum_{\underline{i} \in \mathbb{N}^n} \alpha_{\underline{i}} \cdot \underline{X}^{\underline{i}}$$

i heißt **Multiindex**.

Definition: Für $\underline{i} \in \mathbb{N}^n$ sei $|\underline{i}| := i_1 + \ldots + i_n$ der **Grad** von $\underline{X}^{\underline{i}}$. Der **(Gesamt-)Grad** von f ist $\deg(f) := \max\{|\underline{i}| : \alpha_i \neq 0\}$.

Ziel: Beschreibe die Nullstellenmenge $\mathcal{N}(f) := \{x = (x_1, \dots, x_n \in K^n \mid f(x_1, \dots, x_n) = 0\}$ für ein Polynom f mit $\deg(f) = 2$.

Bemerkung: Den Fall eines oder mehrerer Polynome vom Grad 1 erledigt die lineare Algebra. Mehrere Polynome vom Grad ≥ 2 behandelt die **Kommutative Algebra und algebraische Geometrie**.

Vorarbeit: Klassifiziere die Menge $\mathcal{N}(f)$ durch Klassifizierung der Polynome. (Erinnerung: Klasseneinteilung entspricht einer Äquivalenzrelation)

Dazu sei $G \leq \operatorname{Aut}_{\operatorname{aff}}(K^n)$ (Untergruppe).

Definiere hiermit eine Äquivalenzrelation auf Polynomen bzw. auf Teilmengen $T \subseteq K^n$.

$$f_1 \approx_G f_2 : \iff \exists \mu \in K^{\times} \exists \varphi \in G : f_2 = \mu \cdot (f_1 \circ \phi)$$

 $M_1 \sim_G M_2 : \iff \exists \varphi \in G : M_2 = \varphi(M_1)$

Klar: $f_1 \approx_G f_2 \implies \mathcal{N}(f_1) \sim_G \mathcal{N}(f_2)$

Ziel: Klassifiziere die Polynome für spezielle G.

• Affine Klassifikation (für $Char(K) \neq 2$):

$$G = \operatorname{Aut}_{\operatorname{aff}}(K^n) = \{ \varphi = (A, b) \mid A \in \operatorname{GL}_n(K), b \in K^n \}$$

• Euklidische Klassifikation:

$$G = \operatorname{Aut}_{\operatorname{aff}}(\mathbb{R}^n) = \{ (A, b) \mid A \in O_n, b \in \mathbb{R}^n \}$$

Sei nun Char(K) $\neq 2$.

Vorbereitung: Jedes Polynom f mit deg(f) = 2 hat die Form

$$f(X_1, \dots, X_n) = \sum_{i,j=1}^{n} \alpha_{ij} X_i X_j + 2 \sum_{i=1}^{n} \beta_i X_i + \gamma$$

mit einer symmetrischen Matrix $A = (\alpha_{ij}) \neq 0, b = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \in K^n, y \in K.$

Beweis: (Symmetrie von A)

Falls A nicht symmetrisch ist, ersetze A durch

$$\frac{1}{2}\left(A + A^{\top}\right) =: A'$$

Beachte: Für
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$
 gilt

$$f\left(x^{\top}\right) = x^{\top} A x + 2b^{\top} x + \gamma$$

$$mit A^{\top} = A.$$

 $Q := \mathcal{N}(f)$ heißt affine Quadrik.

Lemma:

Für f wie oben und $\varphi = (C, d) \in \operatorname{Aut}_{\operatorname{aff}}(K^n)$ sei $g(y) := (f \circ \varphi)(y)$. Dann ist

$$g(y) = y^{\top} A' y + 2b'^{\top} y + \gamma'$$

wobei $A' := C^{\top}AC, b' := C^{\top}(Ad + b), \gamma' := f(d).$

Beweis:

$$\begin{split} f\left(\varphi(y)\right) &= f(Cy+d) \\ &= \underbrace{(Cy+d)^\top}_{y^\top C^\top + d^\top} A(Cy+d) + 2b^\top (Cy+d) + \gamma \\ &= y^\top \underbrace{C^\top AC}_{=:A'} y + d^\top ACy + \underbrace{y^\top C^\top Ad}_{=d^\top A^\top Cy = d^\top ACy} + 2b^\top Cy + \underbrace{d^\top Ad + 2b^\top d + \gamma}_{=:\gamma'} \\ &= y^\top A'y + 2b'^\top y + \gamma' \end{split}$$

Prinzip der Klassifikation: Zu gegebenem f finde (C, d), so dass A', b", γ' eine einfache, übersichtliche "Normalform" annehmen.

Bemerkung: φ bewirkt Wechsel des Koordinatensystems $y = \varphi^{-1}(x) = D_{\mathcal{L}}(x)$. y beschreibt $Q = \mathcal{N}(f)$ im Koordinatensystem \mathcal{L} .

Satz 36 (Satz von der quadratischen Ergänzung):

Sei $A \in K^{n \times n}$ symmetrisch vom Rang r und $\operatorname{Char}(K) \neq 2$. Dann existiert $C \in \operatorname{GL}_n(K)$ so dass

$$C^{\top}AC = \operatorname{diag}(\alpha_1, \dots, \alpha_r, 0, \dots, 0)$$

Beweis: Sei $A = (\alpha_{ij})$ mit $\alpha_{ij} = \alpha_{ji}$ für alle i, j.

Nutze eine Variante des Gaußalgorithmus; es genügt Diagonalgestalt zu erreichen, den Rest erledigen Vertauschungsmatrizen V_{ij} .

 $\nu\text{-ter}$ Schritt: Angenommen die Zeilen (Spalten) mit einer Nummer kleiner ν haben die gewünschte Form. Dann ist:

$$A_{\nu} := \begin{pmatrix} * & & 0 & & \\ & \ddots & & \ddots & \\ & & * & & 0 \\ 0 & & * & \cdots & * \\ & \ddots & \vdots & \ddots & \vdots \\ & & 0 & * & \cdots & * \end{pmatrix}$$

Unterscheide folgende Fälle:

(1) $\alpha_{\nu\nu} \neq 0$:

Mache Zeilenumformung: Subtrahiere Vielfaches der ν -ten Zeile von der unteren Zeile, so dass dort die ν -te Spalte Null wird.

Dies geht mit

$$C' := I - \sum_{k=\nu+1}^{n} \frac{\alpha_{k\nu}}{\alpha_{\nu\nu}} E_{k\nu} : \quad C' A_{\nu} = (\beta_{ij})$$

mit $\beta_{\nu+1,\nu} = \ldots = \beta_n = 0$. Die ν -te Zeile ist $\beta_{\nu j} = \alpha_{\nu j} (= \alpha_{j\nu})$.

- (2) $\alpha_{\nu\nu} = 0$, $\alpha_{kk} \neq 0$ für ein $k > \nu$: Bilde $A'_{\nu} := V_{\nu k} A_{\nu} V_{\nu k}$, dann weiter wie in Fall 1.
- (3) $\alpha_{kk} = 0$ für $k = \nu, \dots, n$: Ist $\alpha_{k\nu} = 0 \,\forall k \geq \nu$, so ist bereits A_{ν} diagonal bis Zeile ν . Sonst sei $\beta := \alpha_{k\nu} \neq 0$ für ein $k > \nu$ (addiere die k-te Zeile zur ν -ten). Nutze

die Additionsmatrix $T := A_{\nu k}(1) = I + E_{\nu k}$ mit $T^{\top} = I + E_{k\nu}$. Dann folgt $A'_{\nu} := TA_{\nu}T^{\top}$ hat $\alpha'_{\nu\nu} = 2\beta \neq 0$ (da $\operatorname{Char}(K) \neq 2$). Fahre fort wie in Fall 1.

Vorsicht: Die $\alpha_1, \ldots, \alpha_n$ sind im allgemeinen nicht eindeutig.

Satz 37 (Trägheitssatz von Sylvester):

Sei $A \in K^{n \times n}$ symmetrisch vom Rang r.

(1) Für $K = \mathbb{C}$ existiert $C \in \mathrm{GL}_n(\mathbb{C})$ mit

$$C^{\top}AC = \operatorname{diag}(\underbrace{1,\ldots,1}_r,0,\ldots,0)$$

(2) Für $K = \mathbb{R}$ existiert $C \in GL_n(\mathbb{R})$ mit

$$C^{\top}AC = \operatorname{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{q},0,\ldots,0)$$

wobei p, q durch A eindeutig bestimmt sind.

Beweis: (1) Nach Satz 36 mit $D := diag(\beta_1, ..., \beta_r, 0, ..., 0)$. Weiteres umformen liefert:

$$D^{\top} \cdot \operatorname{diag}(\alpha_1, \dots, \alpha_r, 0, \dots, 0) \cdot D = \operatorname{diag}(\beta_1^2 \alpha_1, \dots, \beta_r^2 \alpha_r, 0, \dots, 0)$$

Falls β_i Nullstelle von $X^2 - \frac{1}{\alpha_i}$ ist, existiert in \mathbb{C} immer in eine Diagonalmatrix $\operatorname{diag}(1,\ldots,1,0,\ldots,0)$.

(2) Ähnlich für \mathbb{R} . Vorzeichen berücksichtigen

Restbehauptung: p ist eindeutig bestimmt durch ABehauptung: $p = \max \{ \dim U \mid U \leq \mathbb{R}^n \text{ mit } s_A|_U \text{ positiv definit} \}$ wobei $s_A(x,y) := \langle Ax, y \rangle$.

Sei anderes C' mit zugehörigem p', q'. Setze

$$b_i := Ce_i$$

$$b'_i := C'e_i$$

$$U := \langle b_1, \dots, b_p \rangle$$

$$U' := \langle b'_1, \dots, b'_{p'} \rangle$$

$$V := \langle b_{p+1}, \dots, b_{p+q} \rangle$$

$$V' := \langle b'_{p'+1}, \dots, b'_{p'+q'} \rangle$$

Dann sind $s_A|_U$, $s_A|_{U'}$, $-s_A|_V$, $-s_A|_{V'}$ positiv definit.

Für
$$W := \operatorname{Kern}(\Lambda_A) = \langle b_{r+1}, \dots, b_n \rangle = \langle b'_{r+1}, \dots, b'_n \rangle$$
 gilt

$$\mathbb{R}^n = U \oplus V \oplus W = U' \oplus V' \oplus W$$

Damit folgt

$$U \cap (V' \oplus W) = 0,$$

denn

$$\forall x \in U \cap (V' \oplus W) : s_A(x, x) \ge 0, s_A(x, x) \le 0 \implies s_A(x, x) = 0$$
$$\implies x = 0$$

Damit folgt $p = \dim U \le \dim U' = p'$, da

$$\dim U' + \dim(V' + W) = n$$

$$\geq \dim(U + V' + W)$$

$$= \dim(U \oplus V' + W)$$

$$= \dim U + \dim(V' + W)$$

Aus Symmetriegründen folgt p = p'.

Fortsetzung der Polynomklassifikation (deg = 2) über beliebigem Körper K: Aus obigem Lemma und Satz 37 folgt: Der quadratische Anteil der Polynome $f(x) = x^{T}Ax + 2b^{T}x + \gamma$ lässt sich durch eine geeignete affine Abbildung $\varphi = (C, d)$ auf folgende einfache Gestalt bringen:

$$\alpha_1 x_1^2 + \alpha_2 x_2^2 + \ldots + \alpha_n x_n^2$$

Beachte: Abändern von C, etwa $C_1 = \operatorname{diag}(\underbrace{1, \dots, 1}_r, B)$ mit $B \in \operatorname{GL}_{n-r}(K)$, ändert den quadratischen Anteil **nicht**.

Nächste Vereinfachung: linearer Term $2b'^{\top}y$ Kann eventuell $2b'^{\top}y = 0$ erreicht werden?

$$b' \stackrel{\mathrm{Def.}}{=} C^{\top} (Ad + b) = 0 \Longleftrightarrow Ad + b = 0$$

Das heißt das LGS Az = -b hat die Lösung z = d.

Definition: Falls eine Lösung d existiert, so heißt d **Mittelpunkt** der Quadrik.

Beachte:

$$y = d + t \in \mathcal{N}(f) \implies d - t \in \mathcal{N}(f)$$

Beweis: f(d+t) = 0, das heißt:

$$(d+t)^{\top} A(d+t) + 2b^{\top} (d+t) + \gamma = 0$$
$$(d+t)^{\top} A(d+t) + 2(-Ad)^{\top} (d+t) + \gamma = 0$$
$$(d+t)^{\top} A(d+t) - 2d^{\top} A(d+t) + \gamma = 0$$
$$\iff (d-t)^{\top} A(d+t) + \gamma = 0$$

$$f(d-t) = (d-t)^{\top} A(d-t) + 2(-Ad)^{\top} (d-t) + \gamma$$

= $-(d-t)^{\top} A(d+t) + \gamma$
= 0

Affine Klassifikation der Quadriken mit Mittelpunkt:

(1) Fall $K = \mathbb{C}$:

(a)
$$f = X_1^2 + \ldots + X_r^2$$
 $(\gamma' = 0)$

(b)
$$f = X_1^2 + \ldots + X_r^2 + 1 \quad (\gamma' \neq 0)$$

(2) Fall $K = \mathbb{R}$:

(a)
$$f = X_1^2 + \ldots + X_p^2 - X_{p+1}^2 - \ldots - X_{p+q}^2$$
 (ohne Einschränkung $p \ge q$)

(b)
$$f = X_1^2 + \ldots + X_p^2 - X_{p+1}^2 - \ldots - X_{p+q}^2 + 1 \quad (\gamma' \neq 0)$$

Beispiel: n = r = 2

- (1) Ellipse: $f = X_1^2 + X_2^2 1$
- (2) Hyperbel: $f = X_1^2 X_2^2 + 1$

Affine Klassifikation der Quadriken ohne Mittelpunkt:

Jetzt sei Az = -b unlösbar. Es ist aber auch für A Diagonalform erreichbar: $A = \text{diag}(\alpha_1, \dots, \alpha_r, 0, \dots, 0)$, wobei r = rg(A) ist.

Daraus folgt: es existiert ein d mit

$$Ad + b =: c \in \langle e_{r+1}, \dots, e_n \rangle \quad (c \neq 0)$$

Nun wähle $C_1 = \operatorname{diag}(\underbrace{1,\ldots,1}_{r},B)$, so dass $C_1^{\top}c = -e_{r+1}$.

$$C_1^{\top}c = C_1^{\top}(Ad+b) =: b'$$

Beachte: c bleibt unverändert wenn d durch d+y mit $y \in \langle e_{r+1}, \ldots, e_n = \operatorname{Kern}(\Lambda_A)$ ersetzt wird.

Somit:
$$f = \alpha_1 X_1^2 + \ldots + \alpha_r X_r^2 \underbrace{-2X_{r+1}}_{2b'^\top X} + \gamma'$$

Schließlich: affine Transformation $\varphi = \left(I, \frac{1}{2}\gamma' e_{r+1}\right)$ führt zu

$$f = \alpha_1 X_1^2 + \ldots + \alpha_r X_r^2 - 2\left(X_{r+1} + \frac{1}{2}\gamma'\right) + \gamma'$$
$$= \alpha_1 X_1^2 + \ldots + \alpha_r X_r^2 - 2X_{r=1}$$

(1) Fall
$$K = \mathbb{C}$$
: $f = X_1^2 + \ldots + X_r^2 - 2X_{r+1}$ (für $r < n$)

(2) Fall
$$K = \mathbb{R}$$
: $f = X_1^2 + \ldots + X_p^2 - X_{p+1}^2 - \ldots - X_{p+q}^2 - 2X_{r+1}$ $(p \ge q)$

Euklidische Klassifikation

$$(\varphi = (x \mapsto Cx + d) \text{ mit } C \in O_n \text{ sei zugelassen})$$

Zur Diagonalisierung von A verwende den Spektralsatz. Das heißt, es existiert $C \in O_n$: $C^{\top}AC = \operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0)$, wobei ohne Beschränkung der Allgemeinheit $\lambda_1 \geq \dots \geq \lambda_r$ sei.

Der Rest ist wie oben. Damit erhalten wir folgende Normalformen:

- (1) $\lambda_1 X_1^2 + \ldots + \lambda_r X_r^2$ (bis auf einen gemeinsamen Faktor $\mu \neq 0$ eindeutig)
- (2) $\lambda_1 X_1^2 + \ldots + \lambda_r X_r^2 + 1$

(3)
$$\lambda_1 X_1^2 + \ldots + \lambda_r X_r^2 - 2X_{r+1}$$

Definition: Die Zahlen $|\lambda_i|^{-\frac{1}{2}}$ heißen **Halbachsenlängen**, die Geraden $\langle e_i \rangle$ $(i=1,\ldots,r)$ heißen die **Hauptachsen** der Quadrik in Normalform. Der Übergang in Normalform heißt auch **Hauptachsentransformation**.

23.2. Der Tangentialraum

Sei K ein beliebiger Körper.

Definition: Die Nullstellenmenge $\mathcal{F} = \mathcal{N}(f)$ eines Polynoms $f \in K[X_1, \dots, X_n]$ heißt **Hyper-fläche**.

Im folgenden sei stets $\mathcal{N}(f) \neq \emptyset$. Es sei $P \in \mathcal{F} \subseteq K^n$ ein Punkt auf der Hyperfläche. Betrachte die Geraden $G = P + \langle u \rangle$ mit $u \in K^n$.

$$Q \in G : Q = P + \tau u \quad \text{mit } u \in K^n$$

Beachte: $P \in \mathcal{F}$ impliziert $T | f(P + Tu) \in K[T]$ (da Nullstelle bei T = 0).

Definition: Eine Gerade heißt **Tangente** an \mathcal{F} in P, falls $T^2 \mid f(P + Tu)$ gilt.

Ziel: Bestimme alle Tangenten durch P (d.h. u variiert).

Dazu schreibe:

$$f(P+Tu) = \alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots$$
 mit $\alpha_i = \alpha_i(u)$

Es gilt: $\alpha_1 \in \text{Hom}(K^n, K)$. Daraus folgt: es existiert ein Vektor $J_p(f) := J_p \in K^{1 \times n}$ mit $\alpha_1(u) = J_p \cdot u$. J_p heißt **Jacobi-Matrix**.

In Analogie zur Analysis schreibe

$$J_p =: \left. \frac{\partial f}{\partial x} \right|_{x=p}$$

Es gilt

$$J_p = \left. \left(\frac{\partial f}{\partial X_1}, \dots, \frac{\partial f}{\partial X_n} \right) \right|_{x=p}$$

Das heißt:

$$G = P + \langle u \rangle$$
 ist Tangente $\iff J_p u = 0 \iff u \in J_p^{\perp}$

Definition: (a) $P \in \mathcal{F}$ heißt **regulär**, falls $J_p \neq 0$. Die Hyperebene $T_p(\mathcal{F}) := P + J_p^{\perp}$ heißt **Tangentialraum**.

(b) Sonst heißt P singulär (oder Singularität).

Beispiel: (1) "Kurven" y = p(x) mit $p(x) \in K[x]$

$$f(X,Y) = Y - p(X)$$

 $\mathcal{N}(f)$ ist Singularitätenfrei, da

$$J_p = \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}\right)\Big|_{(X,Y)=P}$$
$$= \left(\frac{\partial p}{\partial X}, 1\right)\Big|_{(X,Y)=P}$$
$$\neq 0$$

(2) Kurve
$$y^2 - x^3$$
 $f(X,Y) = Y^2 - X^3$
$$J_p = \left(3X^2, 2Y\right)_{(X,Y)=P} = 0 \Longleftrightarrow P = (0,0)$$

Also: (0,0) ist die einzige Singularität.

Satz 38:

Sei φ eine Affinität von K^n und \mathcal{F} eine Hyperfläche. Dann gilt

- (1) $P \in \mathcal{F}$ regulär $\Longleftarrow \varphi(P)$ regulär in $\varphi(\mathcal{F})$
- (2) P regulär $\iff T_{\varphi(P)}(\varphi(\mathcal{F})) = \varphi(T_p(\mathcal{F}))$

Beweis: (1) $\varphi(\mathcal{F}) = \mathcal{N}\left(f \circ \varphi^{-1}\right)$

Taylorentwicklung von $f \circ \varphi^{-1}$ bei $\varphi(P)$ Schreibe:

$$\varphi^{-1}(x) = Ax + b$$

mit $A = (\alpha_{ij}) \in GL_n(K)$. Kettenregel anwenden auf $f \circ \varphi^{-1}(X) = f(AX + b)$ mit

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}, AX + b = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}.$$

$$\frac{\partial f}{\partial X_i} (AX + b) \Big|_{X = \varphi(P)} = \sum_{j=1}^n \frac{\partial f}{\partial X_j} \Big|_{Y = P} \cdot \frac{\partial (AX + b)_j}{\partial X_i} \Big|_{X = \varphi(P)}$$

$$= J_p(f) \cdot \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}$$

Damit folgt:

$$J_{\varphi(P)}\left(f \circ \varphi^{-1}\right) = J_P(f) \cdot A$$

$$P \text{ regulär in } \mathcal{F} \iff J_P(f) \neq 0$$

$$\stackrel{\exists A^{-1}}{\iff} J_{\varphi(P)}\left(f \circ \varphi^{-1}\right) \neq 0$$

$$\iff \varphi(P) \text{ regulär in } \varphi(\mathcal{F})$$

(2)
$$T_{\varphi(P)}(\varphi(\mathcal{F})) = \varphi(P) + J_{\varphi(P)} \left(f \circ \varphi^{-1} \right)^{\perp}$$

$$\stackrel{!}{=} \varphi \underbrace{\left(P + J_{P}(f)^{\perp} \right)}_{=T_{P}(\mathcal{F})}$$

$$J_{P}(f)Av = 0 \iff Av \in J_{P}(f)^{\perp}$$

$$\iff v \in A^{-1} \left(J_{P}(f)^{\perp} \right)$$

Beachte: $A^{-1} = \Lambda_{\varphi}$

Beispiel:
$$\mathcal{F} = Q$$
 Quadrik mit $f(P) = P^{\top}AP + 2b^{\top}P + \gamma = 0$ $(A = A^{\top})$. Damit folgt:
$$f(P + Tu) = \underbrace{f(P)}_{=0} + 2TP^{\top}Au + 2Tb^{\top}u + T^{2}u^{\top}Au$$
$$= T \cdot 2\left(P^{\top}A + b^{\top}\right)u + T^{2}u^{\top}Au$$
$$= T \cdot J_{P}(f) \cdot u + T^{2}u^{\top}Au$$

P singulär genau dann wenn f(P) = 0 und AP = -b (das liefert entweder eine Hyperebene oder die leere Menge).

Folgerung (aus Satz 38):

- (1) Alle Singularitäten bleiben bei Affinitäten erhalten
- (2) Es genügt die Normalformen der affinen Klassifikation auf Singularitäten zu untersuchen

23.3. Die oskulierende Quadrik

Sei $\mathcal{F} = \mathcal{N}(f) \in K^n$ Hyperfläche, $P \in \mathcal{F}$ regulärer Punkt mit

$$T_P(\mathcal{F}) = \left\{ P + (\lambda_1, \dots, \lambda_n)^\top, \, \lambda_i \in K, \, \left(\frac{\partial f}{\partial X_1}, \dots, \frac{\partial f}{\partial X_n} \right)_{X = P} \cdot (\lambda_1, \dots, \lambda_n)^\top = 0 \right\}$$

Die definierende Gleichung ist aus der formalen Taylorentwicklung um P ablesbar.

$$f\left(P + (\lambda_1, \dots, \lambda_n)^{\top}\right) = f(P) + \frac{\partial f}{\partial X}\Big|_{X=P} \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial X_i X_j}\Big|_{X=P} \lambda_i \lambda_j + \text{ h\"ohere Terme}$$

(Dabei ist $Char(K) \neq 2$)

Daher sagt man: Der Tangentialraum approximiert \mathcal{F} in einer Umgebung von P in "erster" Näherung (d.h. Terme vom Grad größer 2 weglassen). Die Approximation wird besser je höher der Grad der zugelassenen Terme ist.

Wir lassen nun nur Terme bis zum Grad 2 zu.

Definition: Die Quadrik

$$Q_{P,\mathcal{F}} := \left\{ P + \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \mid \frac{\partial f}{\partial X} \bigg|_{X=P} \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} + \frac{1}{2} \sum_{i,j} \left. \frac{\partial^2 f}{\partial X_i X_j} \right|_{X=P} \cdot \lambda_i \lambda_j = 0 \right\}$$

heißt oskulierende Quadrik zu \mathcal{F} im Punkt P (auch Schmieg-Quadrik genannt).

Bemerkung: Die oskulierende Quadrik ist eine affine Invariante wie der Tangentialraum, d.h. für jede Affinität φ gilt:

$$Q_{\varphi(P),\varphi(\mathcal{F})} = \varphi(Q_{P,\mathcal{F}})$$

Beweis: wie für den Tangentialraum.

Beispiel: Die Torusfläche

$$\mathcal{T} = \mathcal{N}(f) \subset \mathbb{R}^3$$
 für

$$f(x, y, z) = (R^2 - r^2 + x^2 + y^2 + z^2) - 4R^2(x^2 + y^2)$$

Wir benötigen eine Liste der partiellen Ableitungen:

$$f_x = 4x(-R^2 - r^2 + x^2 + y^2 + z^2)$$

$$f_y = 4y(-R^2 - r^2 + x^2 + y^2 + z^2)$$

$$f_z = 4z(R^2 - r^2 + x^2 + y^2 + z^2)$$

Welche singulären Punkte $f|_P = 0 = f_x|_P = f_y|_P = f_z|_P$ existieren?

• Fall 0 < r < R:

$$R^2 - r^2 + x^2 + y^2 + z^2 > 0 \quad \forall x, y, z \in \mathbb{R}$$

Aus P=(x,y,z) singulär folgt z=0 (da $f_z|_P=0$). Währe $x\neq 0$ oder $y\neq 0$, so ergäbe $f_x=f_y=0$

 $x^2 + y^2 = R^2 + r^2$

In f einsetzen:

$$(2R^2)^2 = 4R^2(R^2 + r^2)$$
 Widerspruch!

Also folgt x = y = z = 0. Aber: $f(0,0,0) = R^2 - r^2 > 0$, da R > r, d.h. $(0,0,0) \notin \mathcal{T}$.

Damit sind alle Punkte auf \mathcal{T} regulär.

• Fall $r \ge R > 0$: Es gibt singuläre Punkte. Welche? Übung.

23.4. Durchschnitte von Hyperebenen

Sei K ein beliebiger Körper, $R = K[X_1, \dots, X_n]$.

Problem: Beschreibe die (gemeinsamen) Nullstellen endlich vieler vorgegebener Polynome $f_i \in \mathbb{R}$.

Mit $\mathcal{F}_i := \mathcal{N}(f_i)$ betrachte also

$$\mathcal{D} := igcap_{i=1}^n \mathcal{F}_i = \mathcal{N}(f_1, f_2, \dots, f_m)$$

Eine Gerade $G = P + \langle u \rangle$ heißt Tangente an \mathcal{D} in $P \in \mathcal{D}$, wenn G Tangente an jede Hyperfläche \mathcal{F}_i ist, d.h.

$$\left(\frac{\partial f_i}{\partial X_1}, \dots, \frac{\partial f_i}{\partial X_n}\right)_{Y=P} \cdot u = 0 \quad \forall i$$

d.h. mit der Jacobi-Matrix:

$$J_{P} = \begin{pmatrix} \frac{\partial f_{1}}{\partial X_{1}} & \cdots & \frac{\partial f_{1}}{\partial X_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial X_{1}} & \cdots & \frac{\partial f_{m}}{\partial X_{n}} \end{pmatrix}_{X=P} \in K^{m \times n}$$

Es gilt: $J_P \cdot u = 0$.

Definition: Die $\mathcal{F}_1, \ldots, \mathcal{F}_m$ schneiden sich in $P \in \mathcal{D}$ transversal wenn $\operatorname{rg}(J_P) = m$. Dann heißt P regulärer Punkt von \mathcal{D} und

$$T_{P,\mathcal{D}} := P + \operatorname{Kern}(\Lambda_{J_P})$$

heißt Tangentialraum.

Bemerkung: $T_{P,\mathcal{D}} = T_{P,\mathcal{F}_1} \cap \ldots \cap T_{P,\mathcal{F}_n}$ bei transversalem Schneiden.

Beispiel: Die orthogonale Gruppe $O_n = \{A = (\alpha_{rs}) \in \mathbb{R}^{n \times n} \mid A \cdot A^{\top} = I\}$

(1) O_n ist der Durchschnitt von Hyperflächen (Quadriken) im \mathbb{R}^3 .

Der zugehörige Polynomring ist

$$R = \mathbb{R}[X_{11}, X_{12}, \dots, X_{1n}, X_{21}, \dots, X_{n1}, \dots, X_{nn}] \in \mathbb{R}[X]$$

Nach Definition von O_n gilt:

$$O_n = \left\{ (\alpha_{rs}) \mid \sum_{k=1}^n \alpha_{ik} \cdot \alpha_{jk} = \delta_{ij} \right\}$$

d.h. $\alpha_{rs} \in \mathbb{R}^{n^2}$ ist Nullstelle des Polynoms

$$f_{ij}(X) = \sum_{k=1}^{n} X_{ik} X_{jk} - \delta_{ij} \in \mathbb{R}$$

Beachte: $f_{ij} = f_{ji}$, daraus folgt $O_n = \bigcap_{1 \le i \le j \le n} \mathcal{F}_{ij}$ mit $\mathcal{F}_{ij} := \mathcal{N}(f_{ij})$.

(2) Die \mathcal{F}_{ij} schneiden sich transversal in P = I.

Also insbesondere

$$T_{I,O_n} = \bigcap_{i \le j} T_{I,\mathcal{F}_{ij}}$$

mit

$$\dim T_{I,O_n} = n^2 - \operatorname{card} \{(i,j) \mid 1 \le i \le j \le n\}$$

$$= n^2 - \sum_{j=1}^n j$$

$$= n^2 - \frac{n(n+1)}{2}$$

$$= \frac{1}{2}n(n-1)$$

Beweis (der Transversalität): Aus $\frac{\partial f_{ik}}{\partial X_{pq}} =: f_{ik,pq}$ folgt: Jacobi-Matrix $J_I = \alpha_{ik,pq}$) $\in \mathbb{R}^{\frac{n(n+1)}{2} \times n^2}$ mit $\alpha_{ik,pq} := f_{ik,pq}|_{X=I}$.

$$\frac{\partial f_{ik}}{\partial X_{pq}} = \sum_{j=1}^{n} \frac{\partial X_{ij} X_{kj}}{\partial X_{pq}}$$

$$= \sum_{j=1}^{n} \left(X_{ij} \frac{\partial X_{kj}}{\partial X_{pq}} + X_{kj} \frac{\partial X_{ij}}{\partial X_{pq}} \right)$$

$$= X_{iq} \delta_{kp} + X_{kq} \delta_{ip}$$

Auswerten bei P = I liefert $\delta_{iq}\delta_{kp} + \delta_{kq}\delta_{ip} = \alpha_{ik,pq}$.

Bilde das Skalarprodukt zweier Zeilen von J_I (Zeile ik mit Zeile jl):

$$\sum_{pq} \alpha_{ik,pq} \cdot \alpha_{jl,pq} = \sum_{pq} (\delta_{iq}\delta_{kp} + \delta_{kq}\delta_{ip}) (\delta_{jq}\delta_{lp} + \delta_{lq}\delta_{jp})$$

$$= \delta_{ji}\delta_{lk} + \delta_{li}\delta_{jk} + \delta_{jk}\delta_{li} + \delta_{lk}\delta_{ji}$$

$$= 2 (\delta_{ij}\delta_{lk} + \delta_{jl}\delta_{jk})$$

$$= \begin{cases} 0 & \text{für } ik \neq jl \\ 2 \vee 4 & \text{für } ik = jl \end{cases}$$

 $\delta_{il}\delta_{jk} = 1$ impliziert i = l, j = k und wegen $i \leq k, j \leq l$ gilt $i \leq k = j \leq l = i$, also ik = ii = il.

Damit folgt: Die Zeilen von J_I sind paarweise orthogonal und jeweils ungleich Null. $\operatorname{rg}(J_I)$ ist gleich der Anzahl Zeilen. Das heißt die \mathcal{F}_{ij} schneiden sich transversal bei I.

(3) Der Tangentialraum bei I ist

$$T_{I,O_n} = I + \bigoplus_{i < k} \mathbb{R}(\underbrace{E_{ik} - E_{ki}}_{=:B_{ik}})$$

Beweis: Die B_{ik} sind offenbar linear unabhängig im \mathbb{R}^{n^2} , also

$$\dim \langle B_{ik} \mid i < k \rangle = \sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2}$$

und
$$B_{ik} \in \text{Kern}(\Lambda_{J_I})$$
, da $J_I \cdot B_{ik} = 0$ (leicht).

Definition: Eine Untergruppe $\mathcal{J} \leq \operatorname{GL}_n(K)$ (wie hier O_n), die als Durchschnitt von Hyper-flächen definiert ist, heißt **algebraische (Matrizen-)Gruppe**.

Bemerkung: Solche \mathcal{J} haben den großen Vorzug, dass Regularität an einem Punkt $Q \in \mathcal{J}$ sich auf alle anderen Punkte von \mathcal{J} überträgt.

Satz 39:

Sei $\mathcal J$ eine algebraische Gruppe mit mindestens einem Punkt. Dann ist jeder Punkt $Q\in\mathcal J$ regulär und

$$T_{Q,\mathcal{J}} = Q \cdot T_{I,\mathcal{J}} = \{Q \cdot T \mid T \in T_{I,\mathcal{J}}\}$$

Beweis: $\Lambda_Q: B \mapsto Q \cdot B$ ist eine Affinität von $K^{n \times n}$.

Schon gesehen: Affinitäten erhalten die Regularität und führen Tangentialräume ineinander über.

Korollar:

 Q_n ist Singularitätenfrei und die Dimension von T_{P,O_n} ist $\frac{n(n-1)}{2}.$