

	#1' = VB-	eind 1		
	Fret is reduce	ed		
	F= LLB	until	F=0	
50	bar will slow moves at ste	- until,	Cind = VB	, i'=

What happens if an external load is applied after machine reaches steady-state?		The LINEAR MACHINE AS A Motor
<u> </u>	Vβ	
LOAD TIND (Dat with Stow Wowy)		after machine reaches steady-state: 1. Fact = $\frac{L}{F_{LORD}} - \frac{R}{F_{IND}}$ (ban will slow down)

The LINEAR DC MACHIN	
What happens if we apply	a force in the
direction of motion of a	machine of steady-state.
~ ~ ~	
1. Fret = Fapp + Fino	bor acclusates to rig.
2. eind = v- Bl	A
2. Eind = VBX	eind \$ > VB
3. 1 = VB - EIND	120 (1
3. / =	1 < 0 (reverses dire

Motor AND A GENERATOR. 2. When Cond > VB => generalor when VB > Cond => motor 3. When machine moved capally to right it was a generalor. When machine moved slowly to right it was a mator.	1.	SAME MACHINE ACTS AS BOTH A
when VB > End => motor 3. When machine moved rapidly to right it was a generalor. When machine moved showly to right		
3. When muchine moved rapidly to right it was a generator. When muchine moved showly to right	2.	When Cood > VB => generator
It was a generalor. When machine moved slowly to right	,	when VB > End => motor
When machine moved slowly to right	3,	When machine moved rapidly to right
		it was a generator.
it was a motor.	\	when machine moved slowly to right
	/	it was a motor.
The machine did NOT reverse direction	The	machine did NOT reverse direction

G	11ven: VB = 120 , R = 0.312 , B = 0.1T, L=10m
a)	What is the max. starting current?
	$i = \frac{V_B - e_{rod}}{R} = \frac{120 - (0 = 4 stort - q)}{0.3} = \frac{400}{120}$
b)	What is the steady-state velocity?
	eind = VBl = Ve at steady-state
	$V = \frac{VB}{BL} = \frac{120}{(0.1)(10m)} = 120 \text{m/s}$

c) What is steady-state speed if a 30-N force pointing to the right is applied?

Steady-state occurs when
$$|F_{ino}| = |F_{npp}| = i NB$$

so $L = \frac{30N}{(10m)(0.1)} = 30^{\frac{1}{2}}$ upword in bar then $C_{inol} = V_B + i R = 120 + 30(0.3) = 129V$

and $V = \frac{C_{inol}}{BL} = \frac{129}{(0.1)(10)} = \frac{129}{129} = \frac$

d) What is the electoral mech pawer produced by the har?

$$P_{mech} = F \cdot V = 30N \cdot 129 \, \text{m/s} = 3,870 \, \text{m/s}$$

$$P_{elect} = c_{ind} \cdot 6 = 129^{V} \cdot 30^{A} = 3,870 \, \text{m/s}$$

e) What is the steady-stake speed if a 30N force in the left direction is apphied to the bar.

Fapp = Find = Lilb at steady-state $i = \frac{Find}{\beta L} = 30^{4}$ (down through bar) $eind = V_B - iR = 120 - 9 = 111^V$ $v_{ss} = \frac{eind}{\beta L} = \frac{111}{(0.1)(10)} = \frac{111}{2} \frac{m}{s}$ The machine is acting as a motor.

f) If the bar is initially unloaded and the magnetic field changes to 0.08T, find Vss.

Initially eind = VB since bar is unloaded

finally eind = VB also since bar with still be unloaded.

Cind = VB = Vss Bl

Vss = (0.08)(10m) = 150 m/s

When the flux is reduced, the bar will speed-up. This also happens in de metals.