Optimization for Data Science

Stéphane Gaïffas

November 8, 2016

Abstract

In this short note we give basic convergence proofs for stochastic gradient descent, using classical arguments from literature.

1 Stochastic Gradient Descent (SGD)

We want to minimize

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

keeping in mind the main example

$$f_i(x) = \ell(b_i, \langle a_i, x \rangle) + \frac{\lambda}{2} ||x||_2^2.$$

Introduce the ball $B = \{x \in \mathbb{R}^d : ||x|| \le r\}$. We'll restrict the iterateds of SGD inside this ball.

We study in this section the Stochastic Gradient Algorithm (SGD) that procedes uses the following iteration

$$x_t = \operatorname{proj}_B(x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1}))$$
(1)

where at each iteration t, we sample i_t uniformly in $\{1, \ldots, n\}$, so that the sequence $(i_t)_t$ is i.i.d.

Let us stress that in this note, $\nabla f_i(x)$ will stand for any subgradient of the subdifferential $\partial f_i(x)$ of f_i . It is indeed not required that the f_i are differentiable, but only that the subgradients of all f_i are bounded by some constant.

We denote by \mathcal{F}_t the minimal σ -field that makes i_1, \ldots, i_t measurable. We need the following properties on the conditional expectation:

$$\mathbb{E}[\nabla f_{i_t}(x_{t-1})|\mathcal{F}_{t-1}] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{t-1}) = \nabla f(x_{t-1})$$
 (2)

and the chain rule of conditional expectation, that says that

$$\mathbb{E}[\mathbb{E}[\cdot|\mathcal{F}_{t-1}]] = \mathbb{E}[\cdot]. \tag{3}$$

Theorem 1.1. Consider (x_t) a sequence given by (1) with $\eta_t = \frac{2r}{b\sqrt{t}}$. Assume that f is convex, that $\|\nabla f_i(x)\| \le b$ for any $i = 1, \ldots, n$, any $x \in B$ and any $\nabla f_i(x) \in \partial f_i(x)$. Furthermore, assume that any $x_* \in \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$ belongs to B. Then, the following inequality holds

$$\mathbb{E}f\left(\frac{1}{t}\sum_{s=0}^{t-1}x_s\right) - f(x_*) \le \frac{3rb}{\sqrt{t}}.$$

This proves that the convergence rate of averaged SGD is $O(1/\sqrt{t})$ under under convexity, when subgradients are bounded (once again, no differentiability or L-smoothness is required here).

Proof. Write

$$||x_{t} - x_{*}||^{2} = ||\operatorname{proj}_{B}(x_{t-1} - \eta_{t} \nabla f_{i_{t}}(x_{t-1})) - x_{*}||^{2}$$

$$= ||\operatorname{proj}_{B}(x_{t-1} - \eta_{t} \nabla f_{i_{t}}(x_{t-1})) - \operatorname{proj}_{B}(x_{*})||^{2}$$

$$\leq ||x_{t-1} - \eta_{t} \nabla f_{i_{t}}(x_{t-1}) - x_{*}||^{2}$$

$$= ||x_{t-1} - x_{*}||^{2} + \eta_{t}^{2} ||\nabla f_{i_{t}}(x_{t-1})||^{2} - 2\eta_{t} \langle \nabla f_{i_{t}}(x_{t-1}), x_{t-1} - x_{*} \rangle.$$

In the first line, we used Equation (1), in the second we used that by assumption $x_* \in B$, for the third we used the fact that $\|\operatorname{proj}_B(x) - \operatorname{proj}_B(y)\| \le \|x - y\|$ and the last line is simple algebra. We assumed that $\|\nabla f_{i_t}(x_{t-1})\|^2 \le b^2$, so we arrive at

$$||x_t - x_*||^2 \le ||x_{t-1} - x_*||^2 + \eta_t^2 b^2 - 2\eta_t \langle \nabla f_{i_t}(x_{t-1}), x_{t-1} - x_* \rangle.$$

Now, taking the conditional expectation $\mathbb{E}[\cdot|\mathcal{F}_{t-1}]$ on both sides leads to

$$\mathbb{E}[\|x_{t} - x_{*}\|^{2} | \mathcal{F}_{t-1}] \leq \|x_{t-1} - x_{*}\|^{2} + \eta_{t}^{2} b^{2} - 2\eta_{t} \mathbb{E}[\langle \nabla f_{i_{t}}(x_{t-1}), x_{t-1} - x_{*} \rangle | \mathcal{F}_{t-1}]$$

$$= \|x_{t-1} - x_{*}\|^{2} + \eta_{t}^{2} b^{2} - 2\eta_{t} \langle \mathbb{E}[\nabla f_{i_{t}}(x_{t-1}) | \mathcal{F}_{t-1}], x_{t-1} - x_{*} \rangle$$

$$= \|x_{t-1} - x_{*}\|^{2} + \eta_{t}^{2} b^{2} - 2\eta_{t} \langle \nabla f(x_{t-1}), x_{t-1} - x_{*} \rangle.$$

In the first line, we used the fact that x_{t-1} is \mathcal{F}_{t-1} -measurable, on the second line we used linearity of the conditional expectation and we used Equation (2) in the third line.

By convexity of f and by definition of the subdifferential, we have that

$$f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle$$

for any $x, y \in \mathbb{R}^d$ and any $\nabla f(x) \in \partial f(x)$. This entails

$$\mathbb{E}[\|x_t - x_*\|^2 | \mathcal{F}_{t-1}] \le \|x_{t-1} - x_*\|^2 + \eta_t^2 b^2 - 2\eta_t (f(x_{t-1}) - f(x_*)).$$

Now, taking the expectation $\mathbb{E}[\cdot]$ on both sides, we obtain using Equation (3) that

$$\mathbb{E}||x_t - x_*||^2 \le \mathbb{E}||x_{t-1} - x_*||^2 + \eta_t^2 b^2 - 2\eta_t (\mathbb{E}f(x_{t-1}) - f(x_*)).$$

Now, simple algebra leads to

$$\mathbb{E}f(x_{t-1}) - f(x_*) \le \frac{1}{2\eta_t} (\mathbb{E}||x_{t-1} - x_*||^2 - \mathbb{E}||x_t - x_*||^2) + \frac{b^2\eta_t}{2}.$$

Let us now consider the following sum

$$\sum_{s=1}^{t} (\mathbb{E}f(x_{s-1}) - f(x_{*})) \leq \frac{1}{2} \sum_{s=1}^{t} \frac{1}{\eta_{s}} (\mathbb{E}||x_{s-1} - x_{*}||^{2} - \mathbb{E}||x_{s} - x_{*}||^{2}) + \frac{b^{2}}{2} \sum_{s=1}^{t} \eta_{s}$$

$$= \frac{1}{2} \left(\frac{1}{\eta_{1}} \mathbb{E}||x_{0} - x_{*}||^{2} - \frac{1}{\eta_{t}} \mathbb{E}||x_{t} - x_{*}||^{2} \right)$$

$$+ \frac{1}{2} \sum_{s=1}^{t-1} \left(\frac{1}{\eta_{s+1}} - \frac{1}{\eta_{s}} \right) \mathbb{E}||x_{s} - x_{*}||^{2} + \frac{b^{2}}{2} \sum_{s=1}^{t} \eta_{s}$$

$$\leq \frac{2r^{2}}{\eta_{1}} + 2r^{2} \sum_{s=1}^{t-1} \left(\frac{1}{\eta_{s+1}} - \frac{1}{\eta_{s}} \right) + \frac{b^{2}}{2} \sum_{s=1}^{t} \eta_{s}$$

$$\leq \frac{2r^{2}}{\eta_{1}} + \frac{2r^{2}}{\eta_{t}} + \frac{b^{2}}{2} \sum_{s=1}^{t} \eta_{s}.$$

We used simple algebra in the first and second lines, and the fact that $||x_t - x_*|| \le 2r$ for any t in the third and last lines (since x_t and x_* belong to B).

Now, we can conclude the proof by noticing that $\sum_{s=1}^t \frac{1}{\sqrt{s}} \le 2\sqrt{t} - 1$ (this comes by induction, using the following trick $\frac{1}{\sqrt{s}} \le \frac{2}{\sqrt{s} + \sqrt{s-1}} = 2(\sqrt{s} - \sqrt{s-1})$), so that

$$\sum_{s=1}^{t} (\mathbb{E}f(x_{s-1}) - f(x_*)) \le 3rb\sqrt{t}$$

and using the convexity of f yields

$$\mathbb{E}f\left(\frac{1}{t}\sum_{s=0}^{t-1}x_s\right) - f(x_*) \le \frac{1}{t}\sum_{s=0}^{t-1}(\mathbb{E}f(x_s) - f(x_*)) \le \frac{3rb}{\sqrt{t}},$$

which concludes the proof of Theorem 1.1.

Under strong convexity, the rate is better, as described in the next Theorem.

Theorem 1.2. Assume the same as in Theorem 1.1, and assume that f is μ -strongly convex. If (x_t) is a sequence given by (1) with $\eta_t = \frac{2}{\mu(t+1)}$, we have

$$\mathbb{E}f\left(\frac{2}{t(t+1)}\sum_{s=1}^{t} sx_{s-1}\right) - f(x_*) \le \frac{2b^2}{\mu(t+1)}.$$

Proof. We start similarly as in the proof of Theorem 1.1 and get

$$\mathbb{E}[\|x_t - x_*\|^2 | \mathcal{F}_{t-1}] \le \|x_{t-1} - x_*\|^2 + \eta_t^2 b^2 - 2\eta_t \langle \nabla f(x_{t-1}), x_{t-1} - x_* \rangle.$$

But now, we use the fact that since f is μ -strongly convex, we have

$$f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

for any $x,y\in\mathbb{R}^d$ and any $\nabla f(x)\in\partial f(x)$. This entails using some simple algebra, and taking the expectation $\mathbb{E}[\cdot]$ on both sides, that

$$\mathbb{E}f(x_{t-1}) - f(x_*) \le \frac{1}{2} \left(\frac{1}{\eta_t} - \mu \right) \mathbb{E} \|x_{t-1} - x_*\|^2 - \frac{1}{2\eta_t} \mathbb{E} \|x_t - x_*\|^2 + \frac{b^2 \eta_t}{2}$$

$$= \frac{\mu(t-1)}{4} \mathbb{E} \|x_{t-1} - x_*\|^2 - \frac{\mu(t+1)}{4} \mathbb{E} \|x_t - x_*\|^2 + \frac{b^2}{\mu(t+1)}.$$

Now, write

$$\sum_{s=1}^{t} s \mathbb{E}(f(x_{s-1}) - f(x_*)) = \frac{\mu}{4} \sum_{s=1}^{t} \left((s-1)s \mathbb{E} ||x_{s-1} - x_*||^2 - s(s+1) \mathbb{E} ||x_s - x_*||^2 \right) + \frac{b^2}{\mu} t$$

$$\leq \frac{b^2}{\mu} t,$$

and by convexity of f, we obtain

$$\mathbb{E}f\left(\frac{2}{t(t+1)}\sum_{s=1}^{t}sx_{s-1}\right) - f(x_*) \le \frac{2}{t(t+1)}\sum_{s=1}^{t}s(\mathbb{E}f(x_{s-1}) - f(x_*)) \le \frac{2b^2}{\mu(t+1)}$$

which concludes the proof of the theorem.