Cours n°3

- □ Régions homogènes → BF de l'image
- ☐ Filtre passe-bas
 - Somme de pixels

- □ Contours → HF de l'image
- □ Filtre passe-haut
 - Différence de pixels

Exercices

□ Ex1: Détection de bords par convolution discrète en 1D

Soit le signal d'entrée constitué de 7 échantillons unité représenté ci-après

Donnez les résultats de la convolution

par : [-1 0 1]

Cf analogie avec le calcul de la dérivée du profil

Dérivées 1ères d'une image

→ Dérivées spatiales d'une image :

$$I_{x} = \frac{I(x+1,y) - I(x-1,y)}{2}$$

$$I_{y} = \frac{I(x,y+1) - I(x,y-1)}{2}$$

→ Ce qui correspond aux filtres passe-hauts suivants :

0	0	0
-1/2	0	1/2
0	0	0

0	-1/2	0
0	0	0
0	1/2	0

Approximation du Gradient (en x)

$$\bullet \frac{\partial f}{\partial x} = \lim_{\Delta_x \to 0} \frac{f(x + \Delta_x, y) - f(x, y)}{\Delta_x} = \lim_{\Delta_x \to 0} \frac{f(x, y) - f(x - \Delta_x, y)}{\Delta_x}$$

 $\Delta_z = 1 \blacktriangleright \text{Masque de convolution} \blacktriangleright \boxed{1} \boxed{-1} \text{ ou} \boxed{-1} \boxed{1}$

$$\bullet \frac{\partial f}{\partial x} = \lim_{\Delta_x \to 0} \frac{f(x + \Delta_x, y) - f(x - \Delta_x, y)}{2\Delta_x}$$

 $\Delta_x = 1 \blacktriangleright \text{Masque de convolution} \blacktriangleright \boxed{1 \mid 0 \mid -1}$

Approximation du Gradient (en y)

Masque de convolution \blacktriangleright $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ ou $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ ou $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ ou $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Image original

Gradient en x

Gradient en y

Dérivées 1ères d'une image

Idée : ajouter une moyenne pondérée avec les dérivées des voisins, afin de rendre l'estimation plus robuste au bruit :

Filtre de Robert

$$\frac{\partial f}{\partial x} \approx f(x,y) - f(x-1,y-1)$$

$$\frac{\partial f}{\partial y} \approx f(x-1,y) - f(x,y-1)$$

On obtient respectivement, les masques suivants,

1	0
0	-1

et

0	1
-1	0

Sensible au bruit

Filtre pour détecter les diagonales

Sobel

Filtre de Prewitt

Filtre Moyenneur + Gradient

-1	0	1
-1	0	1
-1	0	1

et

-1	-1	-1
0	0	0
1	1	1

et

Filtre Gaussien + Gradient = Filtre de Sobel

-1	0	1
-2	0	2
-1	0	1

et

La dérivation accentue le bruit, d'où : le filtre de Sobel

Ce qui nous intéresse, c'est le module du gradient ainsi que sa direction (normale au contour):

$$I_s = ||\nabla I(i,j)|| = \sqrt{I_x^2 + I_y^2}, \quad I_\theta = \arctan\left[\frac{I_y}{I_x}\right]$$

□ Exemple

Image originale

Image des contours (opérateur Sobel + seuillage)

Dérivées premières

□ Sensibilité au bruit

- la dérivée est sensible au bruit. Il faut faire un filtrage gaussien avant de l'utiliser.
- À noter: D*(G*I) = (D*G)*I. On peut donc utiliser directement la dérivée d'une gaussienne!

Dérivées secondes

$$\frac{\partial^2 f}{\partial x^2}(x,y) = f(x+1,y) + f(x-1,y) - 2f(x,y) \frac{\partial^2 f}{\partial y^2}(x,y) = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacien de f :

$$\Delta f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

Quel est le masque correspondant ?

Dérivées secondes

$$I_{xx} = I(x+1, y) - 2I(x, y) + I(x-1, y)$$

$$I_{yy} = I(x, y+1) - 2I(x, y) + I(x, y-1)$$

$$\Delta I = I_{xx} + I_{yy}$$

Masques correspondants :

→ Autres formes :

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Dérivées secondes

Les contours sont aux passages par zéro du laplacien

Comparaison gradient / laplacien

Amplitude du gradient (Sobel)

- Les contours correspondent aux passages à zéro du Laplacien de l'image.
- Etant basé sur la dérivée seconde, le Laplacien amplifie plus le bruit que le filtre de Sobel.

$$\Delta f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

Laplacien

Laplacien d'une image

Dérivée seconde

L'estimation de la dérivée seconde étant par nature très sensible aux bruit, il convient d'effectuer un prétraitement de filtrage fort de l'image, conduisant pour un filtre passebas ϕ à

$$\phi * (\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y))$$

 ϕ gaussien \rightarrow filtre LOG (Laplacian Of Gaussian).

Laplacian of Gaussian (LoG)

Comme dans le cas du gradient, on peut utiliser la propriété de symétrie de la convolution pour intégrer le filtrage du bruit à l'opérateur.

$$LoG*I = \nabla^2*G*I = \nabla^2G*I$$

Donner la formule de LoG(x,y)

G(x,y) =
$$\frac{1}{s\sqrt{2p}} e^{-\left[\frac{(x^2+y^2)}{2s^2}\right]}$$

Gaussienne 2D

Variance, $\sigma^2 = .25$

Variance, $\sigma^2 = 4.0$

Laplacian of Gaussian (LoG)

- On peut combiner le Laplacien avec un Filtrage Gaussien pour obtenir le Laplacien de Gaussienne
 - La Gaussienne lisse l'image et rend les contours flous, mais conserve leurs positions (paramètre σ au choix)
 - Le Laplacien donne (toujours) les passages par zéro aux contours

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Laplacian of Gaussian (LoG)

FIGURE 10.15 (a) Original image. (b) Sobel gradient (shown for comparison). (c) Spatial Gaussian smoothing function. (d) Laplacian mask. (e) LoG. (f) Thresholded LoG. (g) Zero crossings. (Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

- ☐ Filtres dérivatifs sensibles au bruit
- □ Autre moyen pour obtenir l'image des contours ?

□ Différences de gaussiennes

□ Différences of Gaussians (DoG)

result = Gauss(s1)**image - Gauss(s2)**image

Rehaussement de contours

Utilisation des détecteurs de contours pour rehausser l'image

Rehaussement de contours

Pour rehausser les contours, on retranche à l'image :

- □ Son laplacien
- ☐ Ou une DoG

Rehaussement des arêtes par soustraction du laplacien

$$O(x,y) = I(x,y) - \nabla^2 I(x,y)$$

Arête en forme de rampe Laplacien appliqué à une rampe du Laplacien de l'image originale

Profil d'une arête en forme de rampe

Profil du résultat

Profil de l'arête rehaussée

Rehaussement de contours par application du Laplacien

Avant

Après

Rehaussement de contours par application du Laplacien

Originale

Gradient horizontal

Gradient vertical

Résumé

Laplacien

Roberts

Sobel

Domaine de Fourier

Filtrage PB

Domaine de Fourier

Filtre passe-bas idéal

Source: Gonzalez & Wood

Domaine de Fourier

■ Filtre passe-bas de Butterworth

Fonction de transfert

Source: Gonzalez & Wood

Filtrage passe-haut

Domaine de Fourier

Filtres idéal passe-haut

Butterworth

Gaussian

Source: Gonzalez & Wood

Domaine de Fourier

Application du filtre passe-haut idéal

Rayon 15

Rayon 30

Rayon 80

Source: Gonzalez & Wood

Domaine de Fourier

Application du filtre passe-haut de Butterworth (ordre 2)

Rayon 15

Rayon 30

Rayon 80

Source: Gonzalez & Woods

Détection de points

- Détecteur de Moravec (1980)
- Détecteur de Harris (1986)

Détecteur de Harris (1986)

Détection de points

Détecteur de Harris (1986):

où *l(u,v)* est l'intensité lumineuse au point *(u,v)*

$$M = \begin{bmatrix} \left(\frac{\partial I}{\partial u}\right)^2 & \left(\frac{\partial I}{\partial u}\right)\left(\frac{\partial I}{\partial v}\right) \\ \left(\frac{\partial I}{\partial u}\right)\left(\frac{\partial I}{\partial v}\right) & \left(\frac{\partial I}{\partial v}\right)^2 \end{bmatrix}$$

Si , en certains points, les valeurs singulières de la matrice M sont élevées, alors un petit déplacement dans n'importe quelle direction induira une importante modification sur l'intensité des niveaux de gris. Cela indique que ces points sont des coins. La fonction proposée par Harris est la suivante : $r = det(M) - k \left[trace(M) \right]^2$

où k est une constante, dont la valeur dépend de l'échelle de la localisation du coin (k=0.04 est une suggestion de Harris, mais une approche multi-échelle est plus appropriée).

Détection de points

- un coin est défini comme un maximum local de la fonction r,
- un coin a un contenu informatif important et sa détection par le détecteur de Harris est invariant par rotation et par changement affine de la luminosité.
- afin d'éviter de détecter des « faux » coins (outliers) conséquemment à du bruit dans l'image, il peut être judicieux de filtrer les images (contenant les composantes de M) avec une fonction gaussienne.

Opérations entre images

Images aérienne de la ville de Cincinnati

Opérations entre images

Images aérienne de la ville de Cincinnati

Sources:

- Cours Traitement d'images, A. Dieterlen, Univ. Haute-Alsace
- Cours Analyse d'images, Olivier Coulon, ESIL, Univ Med
- Cours Traitement d'images, LORIA
- □ Vision par ordinateur, Alain Boucher
- Vision industrielle, Christophe DOIGNON,
 Master Sciences pour l'Ingénieur, spécialité
 Mécatronique, Univ Strasbourg
- Cours de traitement d'images, Vincent BARRA
- ☐ Introduction to Computer Vision, RS Gaborski

Détection de contours

Magnitude du gradient

$$\max(\nabla f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \qquad |\nabla f| = \sqrt{G_x^2 + G_y^2}$$

$$\left| \overrightarrow{\nabla} f \right| = \sqrt{G_x^2 + G_y^2}$$

Laplacien

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Détection de contours

☐ Filtre passe-haut linéaire

Gradient

- Comment peut on obtenir les contours de l'image avec ce masque ?
 - → Exercice en 1D

Détection de contours

donne les contours verticaux

Gradient en x

donne les contours horizontaux

Gradient en y

130

Image originale

Gradients en x

Gradient en y

Rehaussement de contours

- Autre possibilité : utilisation du laplacien
 - Exercice en 1D [1 -2 1]
 - Dérivée 2ème de l'image

$$\Delta f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Rehaussement de contours

- Autre possibilité : utilisation du laplacien
 - Dérivée 2ème de l'image

Image Original

Dérivée 2nd en X

Dérivée 2nd en Y

Laplacien

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

ou

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Exercices

□ Détection de points de contours avec le Laplacien

Soit les 2 masques et l'image suivants :

Quel masque est le plus efficace ?

5	5	5	5	5	5	5
4	5	5	5	5	5	5
3	4	5	5	5	5	5
3	3	4	5	5	5	5
3	3	3	4	4	4	4
3	3	3	3	3	3	3
3	3	3	3	3	3	3

Image