Introduction to Theoretical Computer Science Oct 25

Markus Bläser Saarland University

Organization

CMS:

- cms.sic.saarland/ti2324
- Registration until Saturday, October 28th, 23:59

Lectures:

- Wednesdays 14:15–16:00, Fridays 8:30–10:00
- Lectures only in person, but will be recorded
- Recordings will be available a few days later
- Lecture notes and slides in the CMS

Organization (2)

Tutorials:

- A new exercise sheet every friday
- Submitted until the following friday at 8:00 in the CMS
- Submissions can be in either English or German
- Groups of up to 3 people, groups have to be formed until November 1st in the CMS
- You can search for group members in the CMS-Forum
- Weekly tutorials tuesdays in English or German
- Select time and language preferences until October 28th in the CMS
- Weekly Office Hours thursdays 14:15–16:00

Organization (3)

Exams:

- ▶ Admission: 50% of all regular points on the exercise sheets
- Dates: February 20th and March 20th, 2024.

Words (Chapter A.3)

- Finite set Σ (alphabet).
- ightharpoonup Elements in Σ are called *symbols* or *letters*.
- ▶ A (finite) *word* over Σ is a mapping $w : \{1, ..., \ell\} \rightarrow \Sigma$.
- Words are also called strings.
- $ightharpoonup \ell$ is the *length* of w.
- ► The *empty word* ε has length 0.

$$z: \emptyset \rightarrow \overline{Z}$$

$$\bigvee_{z} = \bigvee_{(z) = b} \qquad ab$$

$$\bigvee_{|y| \in V} \bigvee_{|y| \in$$

Words (2)

We can write a word $w: \{1, \dots, \ell\} \to \Sigma$ as

- ▶ a table of values,
- ▶ in a compact way as $w(1)w(2)...w(\ell)$,
- even more compact as $w_1w_2...w_\ell$.

Words (3)

$$Z = \{a_b\}$$
 $Z^2 = \{a_a, a_b, b_a, b_b\}$
 $Z^* = \{c, a_b, a_a, a_b, b_a, b_b, a_aa, \dots$

- $ightharpoonup \Sigma^n$ are all words of length n.
- $ightharpoonup \Sigma^* := \bigcup_{n=0}^{\infty} \Sigma^n$ are all finite words.
- $\Sigma^0 = \{\varepsilon\}$
- We identify Σ with Σ^1 .

w(1) = a

Forile set set of funding of mydolo 213 -> I

Concatenation:

- \triangleright $w:\{1,\ldots,\ell\}\to\Sigma, x:\{1,\ldots,k\}\to\Sigma.$
- ightharpoonup The concatenation of w and x is a mapping

$$\ldots, \ell\} \to \Sigma, x : \{1, \ldots, k\} \to \Sigma.$$
ncatenation of w and x is a mapping

$$\begin{split} \{1,\dots,\ell+k\} &\to \Sigma \\ i &\mapsto \begin{cases} w(i) & \text{if } 1 \leq i \leq \ell \\ x(i-\ell) & \text{if } \ell+1 \leq i \leq \ell+k. \end{cases} \end{split}$$

- \triangleright We denote the new word with wx.
- \triangleright w^i denotes the i-fold concatenation of w with itself.
- \triangleright $\varepsilon w = w \varepsilon = w$.

Words (5)

$$x = aa$$
 $y = abaub$
 $v = ab$
 $v = b$

Subwords:

- \mathbf{x} is a *subword* (or *substring*) of \mathbf{y} if there are words \mathbf{u} and \mathbf{v} with $\mathbf{y} = \mathbf{u} \mathbf{x} \mathbf{v}$.
- ▶ If $u = \varepsilon$, then x is called a *prefix*. $v \times v = ab$ and $v \times v = ab$
- ▶ If $v = \varepsilon$, then x is a *suffix*.

Chapter 1: Finte automata

Finite automata

Example: coffee vending machine

- Accepts 10 cent and 20 cent coins.
- ▶ If 40 cents or more are inserted, the machine brews a coffee.
- The machine does not give change.
- As long as less than 40 Cent are inserted, one can press the "Money back" button.

Finite automata

$$Q = \{0c, 10c, 20c, 30c, 75es \}$$

$$T = \{1, 2, 75\}$$
Table on the previous shide

Definition (1.1)

A finite automaton is described by a 5-tuple $(Q, \Sigma, \delta, q_0, Q_{acc})$:

- 1. Q is a finite set, the set of states.
- 2. Σ is a finite set, the *input alphabet*.
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
- **4.** $q_0 \in Q$ is the start state.
- 5. $Q_{acc} \subseteq Q$ is the set of accepting states.

Computations

Definition (1.2)

Let $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ be a finite automaton and $w\in\Sigma^*$, |w|=n.

- 1. As sequence $s_0, \dots, s_n \in Q$ is a computation of M on w, if
 - 1.1 $s_0 = q_0$,
 - 1.2 for all $0 \le v < n$: $\delta(s_v, w_{v+1}) = s_{v+1}$,
- 2. The computation is accepting, if in addition $s_n \in Q_{\rm acc}$. Otherwise it is called *rejecting*.

Regular languages

Definition (1.4)

- 1. A finite automaton $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ accepts a word $w\in\Sigma^*$, if there is an accepting computation of M on w. Otherwise M rejects w.
- 2. $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$ is the language recognized by M.
- 3. $A \subseteq \Sigma^*$ is a regular language, if there is an M with A = L(M).
- 4. REG is the set of all regular languages.

How to design a finite automaton?

 $L_1 = \{w \in \{0, 1\}^* \mid 000 \text{ is a subword of } w\}.$

1610001

100100

Extended transition function

$$\delta^*:Q\times\Sigma^*\to Q$$

Inductive definition or the word length

$$\begin{split} \delta^*(q,\epsilon) &= q \\ \delta^*(q,\nu\sigma) &= \begin{cases} \delta(\delta^*(q,\nu),\sigma) & \text{if } \delta^*(q,\nu) \text{ is defined} \\ \text{undefined} & \text{otherwise} \end{cases} \end{split}$$

Observation: M accepts $w \iff \delta^*(q_0, w) \in Q_{acc}$

Lobres !

Lemma (1.5)

For all $q \in Q$ and $x, y \in \Sigma^*$, we have

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y),$$

if $\delta^*(q, xy)$ is defined.

$$\frac{1}{5}(0,000) = \frac{1}{5}(0,000) = \frac{1$$