COMPLÉMENTS SUR LES SUITES

Résumé

Nous poussons plus loin ici l'étude des suites numériques. Les suites arithmético-géométriques captivent l'attention des mathématiciens et des chercheurs car elles combinent des modèles de croissance linéaire et exponentielle, elles sont donc très intéressantes. Enfin, la notion de limite est établie

1 Suites arithmético-géométriques

Définition

Soient $a, b \in \mathbf{R}$ et (u_n) une suite numérique définie sur \mathbf{N} par la relation de récurrence :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = a \times u_n + b.$$

 (u_n) est appelée **suite arithmético-géométrique** de paramètres a et b.

Remarques \blacktriangleright Les suites arithmétiques et géométriques sont des cas particuliers des suites arithmético-géométriques (pour, respectivement, a=1 et b=0).

► La relation de récurrence est affine mais nous allons voir que ce n'est pas le cas de la forme explicite.

Propriété

Une suite $(u_n)_{n \in \mathbb{N}}$ est arithmético-géométrique de paramètres $a \neq 1$ et b et de premier terme u_0 si, et seulement si, pour tout $n \in \mathbb{N}$,

$$u_n = a^n(u_0 - r) + r$$
 où $r = \frac{b}{1 - a}$.

Démonstration. Admise pour le moment.

Exercice

Déterminer, dans chacun des cas, la forme générale des suites définies sur ${\bf N}$ par :

1.
$$\forall n \in \mathbb{N}$$
, $u_{n+1} = 6u_n + 5$, $u_0 = 0$

2.
$$\forall n \in \mathbb{N}$$
, $u_{n+1} = -5u_n + 12$, $u_1 = 1$

3.
$$\forall n \in \mathbb{N}$$
, $u_{n+1} = u_n - 10$, $u_2 = 2$.

Propriété | Somme des premiers termes

Soit (u_n) une suite arithmético-géométrique de paramètres $a \neq 1$ et b et de premier terme u_0 .

$$\forall n \in \mathbb{N}, \qquad S_n = \sum_{k=0}^n u_k = (u_0 - r) \frac{1 - a^{n+1}}{1 - a} + (n+1)r \qquad \text{où } r = \frac{b}{1 - a}$$

Démonstration. Admise.

Exercice

Soit u une suite arithmético-géométrique de paramètres $a \neq 1$ et $b \in \mathbf{R}$.

1. Calculer
$$S_{12}$$
 pour $a = \frac{1}{2}$, $b = \frac{3}{2}$ et $u_0 = 1$.

2. Déterminer, pour tout m > n, $\sum_{k=n}^{m} u_k$ pour a et b quelconques.

Exercice | Problème

Le nombre d'arbres d'une forêt, en milliers d'unités, est modélisé par la suite (u_n) où u_n est le nombre d'arbres, en milliers, au cours de l'année (2023+n). En 2023, la forêt possède 50 000 arbres. Afin d'entretenir cette forêt vieillissante, un organisme régional d'entretien des forêts décide d'abattre chaque année 5% des arbres existants et de replanter 3 000 arbres.

1. Montrer que la situation peut être modélisée par $u_0 = 50$ et pour tout entier naturel n par la relation :

$$u_{n+1} = 0.95u_n + 3.$$

2. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = 60 - u_n$.

П

- a) Montrer que la suite (v_n) est une suite géométrique de raison 0,95.
- **b)** Calculer v_0 . Déterminer l'expression de v_n en fonction de n.
- c) Démontrer que pour tout entier naturel n, $u_n = 60 10 \times 0.95^n$.
- **3.** Déterminer le nombre d'arbres de la forêt en 2028. On donnera une valeur approchée arrondie à l'unité.
- **4. a)** Vérifier que pour tout entier naturel n, on a l'égalité :

$$u_{n+1} - u_n = 0.5 \times 0.95^n$$
.

- b) En déduire la monotonie de la suite.
- **5.** Déterminer l'année à partir de laquelle le nombre d'arbres de la forêt aura dépassé de 10% le nombre d'arbres de la forêt en 2023.

2 Convergence d'une suite

2.1 Suites convergentes

Définition

Une suite (u_n) **converge** vers un réel ℓ si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang. ℓ est appelée **limite** de la suite (u_n) .

On utilisera les notations:

$$\lim_{n \to +\infty} u_n = \ell \qquad \text{ou} \qquad u_n \xrightarrow[n \to +\infty]{} \ell.$$

Exemple Une suite constante égale à ℓ converge vers ℓ .

Théorème

Si (u_n) converge vers un réel, cette limite est unique.

Démonstration. Supposons, par l'absurde, qu'il y ait deux limites ℓ_1 et ℓ_2 distinctes. Ainsi, la différence absolue $|\ell_2 - \ell_1|$ est strictement positive. On l'appelle ϵ .

Les intervalles $I_1 = \left] \ell_1 - \frac{\epsilon}{4}; \ell_1 + \frac{\epsilon}{4} \right[$ et $I_2 = \left] \ell_2 - \frac{\epsilon}{4}; \ell_2 + \frac{\epsilon}{4} \right[$ contiennent chacun tous les termes de la suite à partir d'un rang n_0 (on peut prendre le même rang pour ℓ_1 et ℓ_2 sans perdre de généralité).

Cependant, c'est impossible puisque les intervalles sont disjoints par contruction et les termes de rang supérieurs à n_0 seront soit strictement dans I_1 soit strictement dans I_2 .

2.2 Suites divergentes

Définition

Une suite est dite **divergente** si elle ne converge pas.

Exemple La suite de terme général $(-1)^n$ ne converge pas car elle alterne indéfiniment entre 1 et -1. Elle est donc divergente.

Définition

Une suite (u_n) **tend vers** $+\infty$ si tout intervalle a; $+\infty$ [contient tous les termes de la suite à partir d'un certain rang.

On utilisera les notations:

$$\lim_{n\to+\infty}u_n=+\infty \qquad \text{ou} \qquad u_n\underset{n\to+\infty}{\longrightarrow}\infty.$$

Exemple Toute suite arithmétique de raison r > 0 tend vers $+\infty$.

Remarques ► On peut définir de même une suite qui **tend vers** $-\infty$ avec des intervalles $]-\infty$; a[.

- ▶ Toute suite qui tend vers $+\infty$ ou $-\infty$ est divergente.
 - 2.3 Convergences usuelles

Propriété

Les suites de termes général n, n^2 , \sqrt{n} et, dans le cas général, n^{α} avec $\alpha > 0$ sont **divergentes** de limite $+\infty$.

Démonstration. Soient $\alpha > 0$ et (u_n) de terme général n^{α} .

On considère I un intervalle a; $+\infty$ [avec a > 0. Cherchons un rang n_0 tel que tous les termes de la suites soient dans I à partir de n_0 .

Posons n_0 le plus petit entier strictement supérieur à $a^{\frac{1}{\alpha}}$.

Par stricte croissance de $x \mapsto x^{\alpha}$ sur \mathbf{R}_+ (car $\alpha > 0$), on a que :

$$\forall n \geqslant n_0, \qquad n^{\alpha} \geqslant n_0^{\alpha} > \left(a^{\frac{1}{\alpha}}\right)^{\alpha} = a$$

C'est-à-dire, $\forall n \ge n_0, u_n \ge u_{n_0} > a$ donc $\forall n \ge n_0, u_n \in I$.

Propriété

Les suites de termes général $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{1}{\sqrt{n}}$ et, dans le cas général, $\frac{1}{n^{\alpha}}$ avec $\alpha > 0$ sont **convergentes** de limite 0.

Démonstration. Soient $\alpha > 0$ et (u_n) de terme général $\frac{1}{n^{\alpha}}$.

On considère I un intervalle]-a; a[avec a > 0. Cherchons un rang n_0 tel que tous les termes de la suites soient dans I à partir de n_0 .

Posons n_0 le plus petit entier strictement supérieur à $\frac{1}{a^{\frac{1}{\alpha}}}$.

Par stricte décroissance de $x \mapsto \frac{1}{x^{\alpha}}$ sur \mathbf{R}_+ (car $\alpha > 0$), on a que :

$$\forall n \geqslant n_0, \qquad 0 < \frac{1}{n^{\alpha}} \leqslant \frac{1}{n_0^{\alpha}} < \frac{1}{\left(a^{\frac{1}{\alpha}}\right)^{\alpha}} = a$$

C'est-à-dire, $\forall n \ge n_0, 0 < u_n \le u_{n_0} < a \text{ donc } \forall n \ge n_0, u_n \in I.$

Algorithmique & Programmation | Algorithme de seuil

Soit (u_n) la suite définie par $\forall n \in \mathbb{N}, u_n = 2n^3 - 7$.

On admet que $\lim_{n\to+\infty}u_n=+\infty$ mais on souhaite obtenir le premier rang n à partir duquel la suite reste dans un intervalle $]a;+\infty[$ pour tout $a\in \mathbf{R}$. C'est possible avec la fonction Python suivante.

```
1 def seuil(a):
2    u=-7
3    n=0
4    while u<=a:
5         n=n+1
6         u=2*n**3-7
7    return n</pre>
```

Le code seuil (1000) permet de savoir que pour a = 1000 alors n = 8.

3 Opérations sur les limites

On considère dans cette section deux suites (u_n) et (v_n) .

Théorème | Limite d'une somme

Soient ℓ et ℓ' deux réels.

$\lim_{n\to+\infty}u_n$	ℓ	ℓ	ℓ	+∞	$-\infty$	+∞
$\lim_{n\to+\infty}v_n$	ℓ'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{n\to+\infty}u_n+v_n$	$\ell + \ell'$	+∞	-∞	+∞	-∞	?

Exemples $\blacktriangleright \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ et } \lim_{n \to +\infty} n = +\infty \text{ donc } \lim_{n \to +\infty} \frac{1}{n} + n = +\infty.$

Remarque Le dernier cas indiqué dans le tableau est appelé une **forme indéterminée**. Cela veut dire qu'on ne peut pas directement déterminer la limite de la somme et qu'il va falloir l'étudier plus en détail.

Théorème | Limite d'un produit

Soient ℓ et ℓ' deux réels.

$\lim_{n\to+\infty}u_n$	ℓ	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	0
$\lim_{n\to+\infty}v_n$	ℓ'	+∞	+∞	$-\infty$	$-\infty$	±∞
$\lim_{n\to+\infty}u_n\times v_n$	$\ell\ell'$	+∞	$-\infty$	$-\infty$	+∞	?

Dans le cas d'un produit "entre infinis", la règle des signes s'applique aussi.

Exemples
$$\blacktriangleright \lim_{n \to +\infty} 1 + \frac{1}{n} = 1 \text{ et } \lim_{n \to +\infty} 7 - \frac{1}{\sqrt{n}} = 7 \text{ donc}$$
:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) \left(7 - \frac{1}{\sqrt{n}}\right) = 1 \times 7 = 7.$$

 $\lim_{n \to +\infty} \sqrt{n} = +\infty \text{ et } \lim_{n \to +\infty} -n^3 = -\infty \text{ donc } \lim_{n \to +\infty} -\sqrt{n} n^3 = -\infty.$

Théorème | Limite d'un quotient

Soient ℓ et ℓ' deux réels. a peut désigner ici $+\infty$ ou $-\infty$.

$\lim_{n\to+\infty}u_n$	ℓ	ℓ	±∞	0
$\lim_{n\to+\infty}v_n$	$\ell' \neq 0$	±∞	±∞	0
$\lim_{n\to+\infty}\frac{u_n}{v_n}$	$\frac{\ell}{\ell'}$	0	?	?

Si $v_n > 0$ pour tout $n \in \mathbb{N}$

or the Francisco				
$\lim_{n\to+\infty}u_n$	$\ell > 0$	$\ell < 0$		
$\lim_{n\to+\infty}v_n$	0	0		
$\lim_{n\to+\infty}\frac{u_n}{v_n}$	+∞	$-\infty$		

Si $v_n < 0$ pour tout $n \in \mathbb{N}$

,,,	L	
$\lim_{n\to+\infty}u_n$	$\ell > 0$	$\ell < 0$
$\lim_{n\to+\infty}v_n$	0	0
$\lim_{n\to+\infty}\frac{u_n}{v_n}$	$-\infty$	+∞

 $\lim_{n \to +\infty} 2 - \frac{7}{n} = 2 \text{ et } \lim_{n \to +\infty} n^4 = +\infty \text{ donc } \lim_{n \to +\infty} \frac{2 - \frac{7}{n}}{n^4} = 0.$

Théorème | Théorème de comparaison

Soient (u_n) et (v_n) deux suites telles que, à partir d'un certain rang, $u_n \leq v_n$.

$$\blacktriangleright \text{ Si } \lim_{n \to +\infty} u_n = +\infty \text{ alors } \lim_{n \to +\infty} v_n = +\infty.$$

$$ightharpoonup$$
 Si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

Démonstration. Prouvons le premier point. La preuve sera similaire pour le second. Supposons que $\lim_{n \to +\infty} u_n = +\infty$ et notons n_1 le rang évoqué dans l'énoncé.

Soit I = a; $+\infty$ [avec $a \in \mathbb{R}$.

Montrons qu'il existe un rang tel qu'après, tous les termes de la suite (ν_n) soient dans I. Par hypothèse sur (u_n) , il existe un rang n_2 tel que :

$$\forall n \geqslant n_2, u_n > a$$
.

En considérant n_0 , le maximum entre n_1 et n_2 , on a bien :

$$\forall n \geqslant n_0, v_n \geqslant u_n > a.$$

Soit u_n de terme général n et v_n de terme général $n+2+(-1)^n$. On a:

$$\forall n \geqslant 0, u_n \leqslant v_n \text{ car } \forall n \in \mathbb{N}, 2 + (-1)^n \geqslant 1.$$

Ainsi, comme $\lim_{n \to +\infty} n = +\infty$ alors $\lim_{n \to +\infty} n + 2 + (-1)^n = +\infty$.

Théorème | Théorème des gendarmes

Soient (u_n) , (v_n) et (w_n) des suites réelles telles que, à partir d'un certain rang, $u_n \le v_n \le w_n$.

Si (u_n) et (w_n) convergent vers le même réel ℓ alors (v_n) converge aussi vers ℓ .

Démonstration. Appelons n_1 le rang évoqué en énoncé.

Soit I = a; b[un intervalle ouvert contenant ℓ . Montrons qu'il contient (ν_n) à partir d'un certain rang n_0 .

 (u_n) est contenue dans I à partir d'un rang n_u et (w_n) à partir de n_w par définition de la convergence vers ℓ .

En posant n_0 le maximum entre n_1 , n_u et n_w , on a bien que :

$$\forall n \geqslant n_0$$
, $a < u_n \leqslant v_n \leqslant w_n < b$.

Corollaire | Comportement asymptotique des suites géométriques

Soit $q \in \mathbf{R}$.

	<i>q</i> ≤ −1	-1 < q < 1	q = 1	q > 1
$\lim_{n\to+\infty}q^n$		0	1	+∞

Démonstration. On admet pour le moment que $\forall n \in \mathbb{N}, \forall x > 0, (1+x)^n \geqslant 1+nx$.

- ▶ Si q > 1, en posant q = 1 + x, on a que $\forall n \in \mathbb{N}, q^n = (1 + x)^n \geqslant 1 + nx$. Ainsi, par le théorème de comparaison, comme $1 + nx \xrightarrow[n \to +\infty]{} +\infty$ alors $q^n \xrightarrow[n \to +\infty]{} +\infty$.
- ► Si q = 1 ou q = 0, on est face à suite de termes constants.

- ► Si 0 < q < 1, on peut se ramener au premier cas en posant $a = \frac{1}{q}$. Ainsi, $\forall n \in \mathbb{N}, q^n = \frac{1}{a^n}$ et comme a > 1, alors $a^n \xrightarrow[n \to +\infty]{} +\infty$ et donc $\frac{1}{a^n} \xrightarrow[n \to +\infty]{} 0$.
- ▶ Si -1 < q < 0, alors on applique le théorème des gendarmes à $-(-q)^n \le q^n \le (-q)^n$ où 0 < -q < 1.

Ainsi,
$$\lim_{n \to +\infty} (-q)^n = 0$$
 et donc $0 \le \lim_{n \to +\infty} q^n \le 0$.

Remarque On connaît désormais les limites de toutes les suites géométriques en raisonnant sur le premier terme et la raison q.

Définitions

Soit (u_n) une suite.

- ▶ Si $\forall n \in \mathbb{N}, u_n \leq M$ pour $M \in \mathbb{R}$, alors (u_n) est **majorée** par M et M est un majorant de (u_n) .
- ▶ Si $\forall n \in \mathbb{N}, m \leq u_n$ pour $m \in \mathbb{R}$, alors (u_n) est **minorée** par m et m est un minorant de (u_n) .
- \blacktriangleright (u_n) est **bornée** si elle est majorée et minorée.

Exemples \blacktriangleright Les suites de terme généraux $(-1)^n$ ou $\sin(n)$ sont bornées : majorées par 1 et minorées par -1.

- ▶ La suite de terme général $2 + \sqrt{n}$ est minorée par 2.
- ▶ Une suite strictement décroissante est majorée par son premier terme.

Théorème | Convergence monotone

- ▶ Une suite croissante et majorée est convergente.
- ▶ Une suite décroissante et minorée est convergente.

Démonstration. Admise.

Corollaire

- ▶ Une suite croissante non majorée tend vers $+\infty$.
- ▶ Une suite décroissante non minorée tend vers $-\infty$.

Démonstration. Prouvons le premier point.

Soient (u_n) une suite croissante non majorée et $I =]a; +\infty[$ où $a \in \mathbb{R}$. Montrons que I contient (u_n) à partir d'un certain rang.

Par non majoration, il existe un rang n_0 tel que $u_{n_0} > a$. (u_n) étant croissante sur \mathbb{N} , on a nécessairement que $\forall n \geqslant n_0, u_n \leqslant u_{n_0} > a$. C'est-à-dire, $\forall n \geqslant n_0, u_n \in I$.