Exam in **Mathematical Finance**, winter term 2016/2017, Mathematisches Seminar, CAU Kiel

Lecturer: Prof. Dr. Jan Kallsen

Exercise	1	2	3	4	5	6	Σ
Points							

Page 2/8 of the exam in Mathematical Finance

Name / Matriculation number:	
------------------------------	--

Hints

- This exam contains 6 exercises.
- You have 180 minutes of time.
- You may give your answers in **German or English**.
- If not stated differently, please give reasons for your answer.
- If a certain type of computation is required several times in an exercise, you may **provide your computation for one example** in detail and state only the results for the remaining cases.
- Any numerical solution obtained from your calculations needs to be provided with a precision of four digits after the decimal point.
- Make sure that your handwriting is readable. Non-readable answers will be considered as wrong.

Page 3/8 of the exam in Mathematical Finance

Name / Matriculation number: _	
--------------------------------	--

Exercise 1 (2 + 2 + 2 + 2 + 2 + 2 = 10 points)

Suppose that $S = (S^0, S^1)$ is an arbitrage-free market with time horizon N = 10. The process $S^0 > 0$ models a deterministic bond and S^1 models the price of a risky asset. Moreover, let $\varphi = (\varphi^0, \varphi^1)$ denote a trading strategy and denote by $\hat{V}(\varphi)$ the associated discounted price process. Do we know whether ...

- (a) ... there exists a probability measure \tilde{P} such that $\hat{S}_n^2 := \hat{V}_0(\varphi) + \varphi \cdot \hat{S}_n$ is a \tilde{P} -martingale?
- (b) ... the process \hat{S}^2 coincides with the discounted price process $\hat{V}(\varphi)$?
- (c) ... the upper and lower price of a European put option on S^1 with strike 100 and maturity 10 coincide?
- (d) ... the upper and lower price of an option with payoff $S_{10}^1 100$ at time 10 coincide?

If yes, why? If no, why?

(e) Suppose that both a European call and a European put on S^1 with strike 100 and maturity 10 are traded in the market above. How are the price process of these two options related?

Please give detailed reasons to your answers!

Page 4/8 of the exam in **Mathematical Finance**

Name / Matriculation number: _____

Exercise 2 (2 + 6 + 5 + 2 = 15 points)

We consider a market with time horizon N = 2 and price process $S = (S^0, S^1)$ that is given by the following tree. The numbers on the edges denote the P-transition probabilities.

Moreover, we consider a put option on the maximum of S^1 with strike 20 and maturity N = 2, i.e. an option with payoff $H := (20 - \max\{S_0^1, S_1^1, S_2^1\})^+$.

Tasks:

- (a) Give reasons why there exist a unique fair price process S^2 and a perfect hedging strategy φ for the put.
- (b) Determine S^2 and φ , and insert them appropriately in the tree above.
- (c) Determine the Doob decomposition of the process S^1 with respect to the measure P.
- (d) Is the process S^1 a (sub/super-)martingale with respect to the measure P or neither? Give reason to your answer!

Page 5/8 of the exam in Mathematical Finance

Name / Matriculation number: _____

Exercise 3 (4 + 4 = 8 points)

We consider the Ito-process

$$X_t = 1 + X \cdot W_t$$

where W denotes a standard Brownian motion.

Tasks:

(a) Compute the Ito process representation of $Y_t := tX_t$, i.e. write Y_t in the form

$$Y_t = Y_0 + \ldots \cdot I_t + \ldots \cdot W_t.$$

(b) Compute the Ito process representation of $Z_t := X_t \log(X_t)$, i.e. write Z_t in the form

$$Z_t = Z_0 + \ldots \cdot I_t + \ldots \cdot W_t$$
.

Page 6/8 of the exam in Mathematical Finance

Name / Matriculation number:

Exercise 4 (11 + 3 = 14 points)

Let $X_0 := 0$ and suppose that X_1, X_2, X_3 are i.i.d. random variables such that

$$P(X_1 = 1) = 2/3$$
 and $P(X_1 = -1/2) = 1/3$.

Moreover, denote by $\mathscr{F} := (\mathscr{F}_n)_{n \in \{0,\dots,3\}}$ the filtration generated by the process $(X_n)_{n \in \{0,\dots,3\}}$ and let \mathscr{T} denote the set of stopping times with values in $\{0,\dots,3\}$.

Tasks:

(a) Define
$$S_0:=0$$
 and $S_n:=\frac{1}{n}\sum_{k=1}^n X_k$ for $n\in\{1,...,3\}$. Calculate
$$\sup_{\tau\in\mathscr{T}} \mathrm{E}(S_\tau).$$

(b) Determine the optimal stopping times τ_f, τ_s related to the latter stopping problem.

Page 7/8 of the exam in **Mathematical Finance**

Name / Matriculation number:

Exercise 5 (5 points)

Consider a market (S^0, S^1, S^2) with numeriare S^0 which evolves according to the following tree.

$$\begin{pmatrix} S_0^0 \\ S_0^1 \\ S_0^2 \\ S_0^2 \end{pmatrix} \qquad \begin{pmatrix} S_1^0 \\ S_1^1 \\ S_1^2 \\ S_1^2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 110 \\ 120 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 50 \\ 55 \end{pmatrix} \qquad \begin{pmatrix} 1/7 \\ 1/7 \\ 1/7 \\ 1/7 \\ 1/7 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 100 \\ 110 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 90 \\ 100 \end{pmatrix}$$

Question: Is the latter market arbitrage-free? Is it complete? Give reason to your answer!

Exercise 6 (5 + 3 = 8 points)

We consider a market (S^0, S^1, D^1) with time horizon n=2 and a predictable process φ^1 . The process S^0 models the price of an asset which does not pay any dividends. The process S^1 models the price of an asset which pays dividends. The cumulative dividend process associated to S^1 is given by D^1 . Assume that the processes S^0, S^1, D^1 and φ^1 evolve according to the following tree.

Task:

- (a) Determine a predictable process φ^0 such that the resulting portfolio $\varphi = (\varphi^0, \varphi^1)$ is self-financing with $V_0(\varphi) = 12$.
- (b) Determine the value process $V(\varphi)$ associated to the portfolio φ from task (a).