

Efficient adaptive step size control for exponential integrators

Pranab Jyoti Deka

with Lukas Einkemmer

Exponential Rosenbrock Schemes

Initial Value Problem (1D)

$$\frac{\partial u}{\partial t} = f(u) \qquad u(t=0) = u^0$$

$$\frac{\partial u}{\partial t} = \mathcal{J}(u) u + \mathcal{F}(u)$$

Linear term

Nonlinear remainder

Exponential Rosenbrock Schemes

Rosenbrock-Euler scheme (2nd order)
(Hochbruck 2006)

$$u^{n+1} = u^n + \varphi_1(\mathcal{J}(u^n)\Delta t)f(u^n)\Delta t$$

$$\varphi_{I+1}(z) = \frac{1}{z} \left(\varphi_I(z) - \frac{1}{I!} \right), \ I \ge 1$$

$$\varphi_0(z) = e^z$$

Matrix Exponential

Exponential Rosenbrock Schemes

EXPRB43 (3rd order error estimate)

Internal Stages

$$a^{n} = u^{n} + \varphi_{1} \left(\frac{1}{2} \mathcal{J}(u^{n}) \Delta t\right) f(u^{n}) \frac{1}{2} \Delta t$$

$$b^{n} = u^{n} + \varphi_{1} \left(\mathcal{J}(u^{n}) \Delta t\right) f(u^{n}) \Delta t$$

$$+ \varphi_{1} \left(\mathcal{J}(u^{n}) \Delta t\right) \left(\mathcal{F}(a^{n}) - \mathcal{F}(u^{n})\right) \Delta t$$

$$u^{n+1} = u^n + \varphi_1 (\mathcal{J}(u^n)\Delta t) f(u^n)\Delta t + \varphi_3 (\mathcal{J}(u^n)\Delta t) (-14\mathcal{F}(u^n) + 16\mathcal{F}(a^n) - 2\mathcal{F}(b^n))\Delta t$$

$$u^{n+1} = u^n + \varphi_1 \left(\mathcal{J}(u^n) \Delta t \right) f(u^n) \Delta t$$
$$+ \varphi_3 \left(\mathcal{J}(u^n) \Delta t \right) \left(-14 \mathcal{F}(u^n) + 16 \mathcal{F}(a^n) - 2 \mathcal{F}(b^n) \right) \Delta t$$
$$+ \varphi_4 \left(\mathcal{J}(u^n) \Delta t \right) \left(36 \mathcal{F}(u^n) - 48 \mathcal{F}(a^n) + 12 \mathcal{F}(b^n) \right) \Delta t$$

Butcher Tableau

(Hochbruck & Ostermann 2010)

3rd order solution

4th order solution

Leja points are defined recursively in a sequence

Given $K \subset C$ and $z \in K$

$$\xi_m \in \arg\max \prod_{i=0}^{m-1} |z - \xi_i|, \qquad m > 0$$

$$|\xi_0 = \max |z|$$

Advantages:

- 1. Computation of a polynomial at 'm+1' points does not require the re-computation at 'm' points (unlike Chebyshev points)
- 2. Modest memory requirements

Why do we need them?

- Adapt step size depending on the needs (if characteristic time scales vary drastically)
- Free users from selecting suitable step size
- Free users from having to determine the accuracy at every time step
- Able to detect onset of numerical instabilities and prevent them
- Increase computational efficiency

Traditional Step Size Controller

$$\Delta t^{n+1} = \Delta t^n \times \left(\frac{\operatorname{tol}}{e^n}\right)^{1/(p+1)}$$

tol — ▶ user-prescribed tolerance

 $e^n \longrightarrow$ error incurred at time step 'n'

 $p \longrightarrow$ order of the integration method

Step size for the next time step is chosen based on the error incurred and the step size at the present time step.

Proposed Step Size Controller Einkemmer (2018)

Principle: for iterative methods

Advantages of using a smaller step size:

- Computationally cheap
- More accurate solution
- Global error: Proposed Cont. ≤ Traditional Cont.

Computational Cost

$$c^n = \frac{i^n}{\Delta t^n}$$
No. of matrix-vector products

$$T^{n+1} = T^n - \gamma
abla C^n(T^n)$$
 $T = \ln{(\Delta t)}$
 $C(T) = \ln{c}(\Delta t)$
 $\nabla C^n(T^n) pprox \frac{C^n(T^n) - C^n(T^{n-1})}{T^n - T^{n-1}}$

$$\nabla C^{n}(T^{n}) \approx \frac{C^{n}(T^{n}) - C^{n}(T^{n-1})}{T^{n} - T^{n-1}}$$

$$= \frac{C^{n}(T^{n}) - C^{n-1}(T^{n-1})}{T^{n} - T^{n-1}} + \frac{C^{n-1}(T^{n-1}) - C^{n}(T^{n-1})}{T^{n} - T^{n-1}}$$

$$\approx \frac{C^{n}(T^{n}) - C^{n-1}(T^{n-1})}{T^{n} - T^{n-1}}$$

Proposed Step Size Controller

$$T^{n+1} = T^n - \gamma \frac{C^n(T^n) - C^{n-1}(T^{n-1})}{T^n - T^{n-1}}$$

$$\Delta t^{n+1} = \Delta t^n \exp(-\gamma \Delta)$$

$$\Delta = rac{\ln c^n - \ln c^{n-1}}{\ln \Delta t^n - \ln \Delta t^{n-1}}$$

$$\Delta t^{n+1} = \Delta t^n imes egin{cases} \lambda & ext{if } 1 \leq s < \lambda \ \delta & ext{if } \delta \leq s < 1 \ s & ext{otherwise} \end{cases}$$

$$s = \exp(-\alpha \tanh(\beta \Delta))$$

Non-penalized: parameters have been chosen to incur the minimum possible cost

Penalized: if trad. cont. performs better than nonpenalized – penalty is imposed!

```
Non-penalized \alpha=0.65241444 \quad \beta=0.26862269 \quad \lambda=1.37412002 \quad \delta=0.64446017 Penalized \alpha=1.19735982 \quad \beta=0.44611854 \quad \lambda=1.38440318 \quad \delta=0.73715227
```

Factors δ and λ have been incorporated to ensure that step size changes by atleast $\delta\Delta t$ or $\lambda\Delta t$.

$$\Delta t = \min(\Delta t_{\text{traditional}}, \Delta t_{\text{proposed}})$$

Our Work

Application of the proposed step size controller on a few nonlinear problems

Viscous Burgers' Equation

• Inviscid Burgers' Equation

Porous Medium Equation

Periodic boundary conditions:

1D - [0, 1]

2D - [0, 1] x [0, 1]

Peclet Number (η): Ratio of advection to diffusion

Viscous Burgers' Equation

Inviscid Burgers' Equation

 $t = 3.25\eta \times 10^{-2}$

 $\frac{\partial u}{\partial t} = \frac{1}{2} \left(\frac{\partial u^2}{\partial x} + \frac{\partial u^2}{\partial y} \right)$

2D

$$u(x, t = 0) = 2 + \epsilon_1 \sin(\omega_1 x) + \epsilon_2 \sin(\omega_2 x + \phi)$$

$$\omega_1=2\pi$$
, $\omega_2=8\pi$, and $\phi=0.3$ $\epsilon_1=\epsilon_2=10^{-2}$

Porous Medium Equation

Viscous Burgers' Equation

(EXPRB43 vs. RKF45)

dashed lines – EXPRB43, dotted lines – RKF45 tol: 10^{-4} , 10^{-7} , 10^{-8}

Parameters	SDIRK23	EXPRB43	RKF45
$N = 100, \eta = 10$	$10^4 - 3 \cdot 10^4$	$10^3 - 4 \cdot 10^3$	$1.5 \cdot 10^3 - 4 \cdot 10^5$
$N = 100, \eta = 100$	$5 \cdot 10^4 - 2 \cdot 10^5$	$2 \cdot 10^4 - 3 \cdot 10^4$	$6 \cdot 10^4 - 4 \cdot 10^5$
$N = 700, \eta = 10$	$5 \cdot 10^4 - 1.5 \cdot 10^5$	$10^4 - 4 \cdot 10^4$	$2 \cdot 10^3 - 3.5 \cdot 10^6$
$N = 700, \eta = 100$	$5 \cdot 10^5 - 1.5 \cdot 10^6$	$10^5 - 2 \cdot 10^5$	$7 \cdot 10^4 - 3.5 \cdot 10^6$

SDIRK23 (Einkemmer 2018)

RKF45

Traditional; Non-penalized; Penalized

Viscous Burgers' Equation

Inviscid Burgers' Equation

Results not yet available!

Porous Medium Equation

Traditional; Non-penalized; Penalized

Conclusions

 Proposed step size controller has better performance than traditional controller in majority of the cases (lenient to intermediate tolerance)

- Multiple small step sizes incur less computational effort than 1 large step size
- EXPRB43 has superior performance than (explicit) RKF45 and (implicit) SDIRK23