MIDTERM 1 CS 373: THEORY OF COMPUTATION

Date: Thursday, October 4, 2012.

Instructions:

- This is a closed book exam. No notes, cheat sheets, textbook, or printed material allowed.
- You have 90 minutes to solve this exam.
- This exam has 5 problems each worth 10 points. However, not all problems are of equal difficulty.
- Please write your name on the top of every page in the space provided.
- If your solution does not fit in the space provided, and continues onto one of the back sheets, please indicate clearly where we should look for the solution.
- Unless otherwise stated, "prove that", "show that" for a problem means you need to formally prove what you are claiming.
- You may use, without proof, any result that you were asked to prove in the homework or was proved in the lecture. If you use such a result, please explicitly state the result (like "'Perfect shuffle of regular languages is regular' was proved in a homework", instead of "this was shown in a homework").

Name	
Netid	

Discussion: T 2:00-2:50 T 3:00-3:50 W 1:00-1:50 W 4:00-4:50 W 5:00-5:50

Problem	Maximum Points	Points Earned	Grader
1	10		
2	10		
3	10		
4	10		
5	10		
Total	50		

Problem 1. [Category: Comprehension] **True/False.** Decide for each statement whether it is true or false. Circle **T** if the statement is *necessarily true*; circle **F** if it it is not necessarily true. Each correct answer is worth **1 point**.

- (a) Let Σ and Δ be two alphabets. For a set A, let |A| denote the number of elements in A. Then for all n, $|\Sigma^n| = |\Delta^n|$.
- (b) Suppose M is a DFA such that $\epsilon \in \mathbf{L}(M)$. Then the initial state of M must be a final state. \mathbf{T}
- (c) For language L_1 and L_2 over the alphabet Σ , $L_1 \setminus L_2$ denotes the difference between the two sets, i.e., it is the set of all strings that belong to L_1 but not L_2 . If L_1 and L_2 are regular then $L_1 \setminus L_2$ is regular. \mathbf{F}
- (d) There is an NFA N with n states, such that any DFA recognizing $\mathbf{L}(N)$ has at least 2^n states. \mathbf{T}
- (e) If $L \subseteq \{0\}^*$ then L is regular. \mathbf{F}
- (f) Let $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ be languages. Then $L_1^* \cap \Sigma^0 = L_2^* \cap \Sigma^0$. **T**
- (g) Suppose R_1, R_2 are regular expressions such that $\mathbf{L}(R_1) = \mathbf{L}(R_2)$. Then R_1 and R_2 have the same number of operators. $\mathbf{T} = \mathbf{F}$
- (h) Since regular languages are closed under homomorphism, non-regular languages are also closed under homomorphisms. That is, if L is not regular and h is a homomorphism then h(L) is not regular. \mathbf{F}
- (i) The following is correct proof showing that the language $A = \{a^n b^n \mid n \geq 0\}$ is not regular: Let $h: \{a,b\}^* \to \{0,1\}^*$ be a homomorphism given by h(a) = 0 and h(b) = 1. Then since $A = h^{-1}(L_{0n1n})$, A is not regular. (Recall that $L_{0n1n} = \{0^n 1^n \mid n \geq 0\}$.)
- (j) There is a non-regular language L that satisfies the pumping lemma.

Problem 2. [Category: Comprehension+Proof] For a binary string $w \in \{0,1\}^*$, let $\llbracket w \rrbracket$ denote the number

Figure 1: DFA A recognizing L_3

whose binary representation is given by w; here we will assume that the rightmost symbol is the least significant bit. We could define this inductively as

$$\llbracket \epsilon \rrbracket = 0 \quad \llbracket w0 \rrbracket = 2 \times \llbracket w \rrbracket \quad \llbracket w1 \rrbracket = 2 \times \llbracket w \rrbracket + 1$$

Thus, for example, $\llbracket 10 \rrbracket = (2^1 \times 1) + (2^0 \times 0) = 2$ and $\llbracket 101 \rrbracket = (2^2 \times 1) + (2^1 \times 0) + (2^0 \times 1) = 5$. Let $L_3 = \{w \in \{0,1\}^* \mid \llbracket w \rrbracket \mod 3 = 0\}$ is the collection of all binary strings w that are multiples of 3. (Recall $a \mod b = c$ means that c is the remainder when a is divided by b.)

The DFA A (shown in Figure 1) recognizes the language L_3 . The states of A keep track of the remainder when the input string is divided by 3; thus, reaching state q_i means that the remainder is i. The transitions of A are defined based on the observation that

$$[\![wa]\!] \mod 3 = (2([\![w]\!] \mod 3) + a) \mod 3$$

(a) Answer the following:

$$\hat{\delta}_A(q_0, 111) =$$
 _______ [1 point] $\hat{\delta}_A(q_2, 101) =$ ______ [1 point]

(b) Let us define

$$L_A(q_0, q_1) = \{ w \in \{0, 1\}^* \mid \hat{\delta}_A(q_0, w) = \{q_1\} \}$$

$$L_A(q_1, q_0) = \{ w \in \{0, 1\}^* \mid \hat{\delta}_A(q_1, w) = \{q_0\} \}$$

Answer the following questions:

(i) Is
$$100 \in L_A(q_0, q_1)$$
? ______

(ii) Is
$$100 \in L_A(q_1, q_0)$$
? ______

(iii) Is
$$1000 \in L_A(q_0, q_1)$$
? ______ [1 point]

(iv) Is
$$1000 \in L_A(q_1, q_0)$$
? ______ [1 point]

(c) Describe formally the strings that belong to $L_A(q_0, q_1)$ and $L_A(q_1, q_0)$. (Don't repeat the definitions in part(b) but rather come up with a description based on how the automaton A works.) [2 points]

(d) Let M with initial state q_0 be any DFA that recognizes L_3 . Prove that $\hat{\delta}_M(q_0, \epsilon) \neq \hat{\delta}_M(q_0, 1)$. [2 points]

Problem 3. [Category: Comprehension+Design] For a string $w = a_1 a_2 \cdots a_n \in \Sigma^*$ where each $a_i \in \Sigma$, $w^R = a_n a_{n-1} \cdots a_1$ is the "reverse" of w. For a language $A \subseteq \Sigma^*$, $A^R = \{w^R \mid w \in A\}$.

(a) For
$$L_1 = \{\epsilon, 01, 11, 100\}$$
 what is L_1^R ?

[1 point]

(b) For
$$L_2 = \mathbf{L}(0^*(10)^*(0 \cup 1)^*)$$
, give a regular expression describing L_2^R .

[1 point]

(c) Regular languages are closed under the "reversing" operation. That is, if A is regular then A^R is regular. This can be shown by constructing an NFA M^R recognizing A^R , given a DFA M recognizing A. Essentially, the NFA M^R "reverses" the direction of the transitions of M and has a new initial state that has ϵ -transitions to the final states of M. Complete the formal definition of M^R based on this intuition.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA recognizing A. The NFA $M^R=(Q^R,\Sigma,\delta^R,q_0^R,F^R)$ where

(i)
$$Q^R =$$

[2 points]

(ii)
$$q_0^R =$$

[1 point]

(iii)
$$F^R =$$

[1 point]

(iv) Describe the transition function
$$\delta^R$$
.

[3 points]

Problem 4. [Category: Proof] Complete the following proof by induction that $\mathbf{L}(M^R) = (\mathbf{L}(M))^R$, where the DFA M and NFA M^R are as defined in Problem 3.

(a) The correctness can be established by capturing the relationship between computations of M and computation of M^R . The statement to be proved by induction is [2 points]

 $\forall w \in \Sigma^*. \ \forall q \in Q. \ q_0 \xrightarrow{w}_M q \text{ iff } _$

The proof of this statement by induction on |w| is as follows.

(b) Prove the base case.

[2 points]

(c) State the induction hypothesis.

[1 point]

(d) Prove the induction step.

[3 points]

(e) Using the statement in part (a), prove that $\mathbf{L}(M^R) = (\mathbf{L}(M))^R$.

[2 points]

Problem 5. [Category: Proof] As in Problem 2, for a binary string $w \in \{0,1\}^*$, let $\llbracket w \rrbracket$ denote the number whose binary representation is given by w where the rightmost symbol is the least significant bit; the formal inductive definition of $\llbracket w \rrbracket$ is given in Problem 2. Let $L_{m3} \subseteq \{0,1,\#\}^*$ be the language

$$L_{m3} = \{x \# y \mid x, y \in \{0, 1\}^* \text{ and } [\![y]\!] = 3 \times [\![x]\!] \}$$

Prove that L_{m3} is not regular. You may use any of the proof techniques discussed in class. [10 points]