Оглавление

	Построение ортонормированного базиса	
Лекция 4: Ортонормированный базис и ориентация ба-		
зиса		02.10.2023
	TT	

0.1 Построение ортонормированного базиса

Теорема 1. Ортонормированный баис существует.

Доказательство. (Ортогонализация Грама-Шмидта)

Есть $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ – ЛНЗ

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} \qquad |\mathbf{u}_1| = 1$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \alpha \mathbf{u}_1 \qquad \mathbf{w}_2 \perp \mathbf{u}_1 \qquad \mathbf{u}_2 = \frac{\mathbf{w}_2}{|\mathbf{w}_2|}$$

$$|\mathbf{u}_2| = 1 \qquad \mathbf{u}_2 \perp \mathbf{u}_1$$

$$(\mathbf{u}_1, \mathbf{w}_2) = 0$$

$$(\mathbf{u}_1, \mathbf{v}_2 - \alpha \mathbf{u}_1) = 0$$

$$(\mathbf{u}_1, \mathbf{v}_2) - \alpha(\mathbf{u}_1, \mathbf{u}_1) = 0$$

$$\alpha = (\mathbf{u}_1, \mathbf{v}_2)$$

Пусть $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{k-1}$ построены Построим \mathbf{u}_k

$$\mathbf{w}_{k} = \mathbf{v}_{k} - \alpha_{1}\mathbf{u}_{1} - \alpha_{2}\mathbf{u}_{2} - \dots - \alpha_{k-1}\mathbf{u}_{k-1}$$

$$\mathbf{w}_{k} \perp \mathbf{u}_{i} \qquad (i \leq k-1)$$

$$0 = (\mathbf{w}_{k}, \mathbf{u}_{i}) = (\mathbf{v}_{k}, \mathbf{u}_{i}) - \alpha_{i}(\mathbf{u}_{i}, \mathbf{u}_{i})$$

$$\alpha_{i} = (\mathbf{v}_{k}, \mathbf{u}_{i})$$

$$\mathbf{u}_{k} = \frac{\mathbf{w}_{k}}{|\mathbf{w}_{k}|}$$

Строим $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ с помощью данного алгоритма.

Замечание. $\mathbf{u}_i - \mathrm{JK} \ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_i$

Вывод. Если $\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n$ – базис $\Rightarrow \mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_n$ — ОНБ, т.е. если $\dim V=n,\ \mathrm{TO}\ \exists\ \mathrm{OHB}$

Пусть V - евклидово пространство, $\dim V = n, \mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ – ОНБ, $\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + ... + a_n\mathbf{u}_n$, то можем записать $\mathbf{w} = (a_1, ..., a_n)$, соответственно $\mathbf{v} = b_1\mathbf{u}_1 + b_2\mathbf{u}_2 + ... + b_n\mathbf{u}_n$, тогда

$$\begin{split} (\mathbf{w},\mathbf{v}) &= (a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n, b_1\mathbf{u}_1 + b_2\mathbf{u}_2 + \ldots + b_n\mathbf{u}_n) = \\ &= a_1b_1(\mathbf{u}_1,\mathbf{u}_1) + a_1b_2(\mathbf{u}_1,\mathbf{u}_2) + \ldots + a_1b_n(\mathbf{u}_1,\mathbf{u}_n) + \\ &+ a_2b_1(\mathbf{u}_2,\mathbf{u}_2) + a_2b_2(\mathbf{u}_2,\mathbf{u}_2) + \ldots + a_2b_n(\mathbf{u}_2,\mathbf{u}_n) + \\ &+ a_nb_1(\mathbf{u}_n,\mathbf{u}_2) + a_nb_2(\mathbf{u}_n,\mathbf{u}_2) + \ldots + a_nb_n(\mathbf{u}_n,\mathbf{u}_n) = \\ &= a_1b_1 + a_2b_2 + \ldots + a_nb_n \end{split}$$

0.2 Ориентация базиса

Определение 1 (Неформальное). На плоскости: $\mathbf{a} = (a_1, a_2); \mathbf{b} = (b_1, b_2)$

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = S_{\mathbf{a},\mathbf{b}}$$
 (ориентированная площадь)

В пространстве: $\mathbf{a} = (a_1, a_2, a_3); \mathbf{b} = (b_1, b_2, b_3); \mathbf{c} = (c_1, c_2, c_3)$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = V_{\mathbf{a},\mathbf{b},\mathbf{c}} \ (\text{ориентированный объем})$$

Определение 2 (Формальное).

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_1 b_3 c_2 - a_2 b_1 c_3 - a_3 b_2 c_1$$

Мнемоническое правило:

По бирюзовой стрелке сложение, по зеленой – вычитание.

Оглавление 2

Замечание. Данные свойства справедливы для матриц любого порядка.

Свойства.

- 1. Если строку или столбец умножить на α , то определитель тоже умножится на α .
- 2. Если меняем 2 строки или столбца, то знак определителя меняется.
- 3. Если есть 2 одинаковых строки, то определитель равен 0.
- 4. Если к одному из векторов прибавить вектор кратный другому, то определитель не поменяется.
- 5. Определитель единичной матрицы равен 1.

$$\begin{vmatrix} a_1 + \alpha b_1 & a_2 + \alpha b_2 & a_3 + \alpha b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} =$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \alpha \begin{vmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Теорема 2. (Доказательство будет на алгебре)

$$\exists ! f : M_n(\mathbb{R}) \mapsto \mathbb{R}$$

такая, что, удовлетворяет свойствам 1-5.

Теорема 3.

$$\det(AB) = \det A \cdot \det B$$

Определение 3 (Ориентация). ${\bf i}, {\bf j}, {\bf k}$ – ОНБ («правая тройка»), ${\bf a}, {\bf b}, {\bf c}$ – векторы.

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
$$\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$$
$$\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$$

Если $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} > 0$, то $(\mathbf{a},\mathbf{b},\mathbf{c})$ называется правой тройкой векторов.

Если $\det < 0$, то $({\bf a},{\bf b},{\bf c})$ называется левой тройкой векторов. Если $\det = 0$, то $({\bf a},{\bf b},{\bf c})$ – ЛЗ.

Выводы:

- 1. Ориентация бывает только у ЛНЗ троек у базисов.
- 2. Ориентаций бывает ровно 2.
- 3. Одинаковость ориентаций является эквивалентностью.