Artificial Intelligence Fundamentals

Learning: Identification Trees,
Disorder

Egg fight problem

Champion ?	Multiple layers of painting?	Big ?	Origin ?	Top?
No	?	No	Chicken	Round
No	Yes	Yes	Duck	Pointed
Yes	?	No	Guinea hen	Round
Yes	Yes	No	Guinea hen	Pointed
Yes	No	No	Chicken	Pointed
No	No	Yes	Duck	Flat
No	?	No	Chicken	Flat
No	?	Yes	Chicken	Flat

Why we cannot use a nearest neighbor algorithm?

Data set

- Non numeric
- Some characteristics don't matter
- Some characteristics do matter, but only part of the time
- Cost some of the tests can be more expensive that others

We need a method that enables computers to learn by assembling tests into an *identification tree*.

How we build that tree? What will be a good characteristic of that tree?

Occam's razor

- The word is inherently simple. Therefore the smallest identification tree that is consistent with the samples is the one that is most likely to identify unknown objects correctly.
- How we can construct the smallest identification tree?

Tests

Champion ?	Multiple layers of painting?	Big ?	Top?
No	?	No	Round
Yes	No	No	Pointed
No	?	No	Flat
No	?	Yes	Flat

Final identification tree

Measuring the disorder - entropy

$$D(set) = -\frac{P}{T}\log_2\frac{P}{T} - \frac{N}{T}\log_2\frac{N}{T}$$

Measuring the error of the test

$$E(Test) = \sum_{\substack{SETS \\ PRODUCED}} D(set) * \frac{\# of \ samples \ in \ set}{\# of \ samples \ handled \ by \ test}$$

$$E(Test \text{ Painting}) = 0.8 * \frac{1}{2} + 1 * \frac{1}{4} + 1 * \frac{1}{4} = 0.9$$

$$E(Test Big) = 0 * \frac{3}{8} + 0.9 * \frac{5}{8} \approx 0.56$$

$$E(Test \ Origin) = 0.8 * \frac{1}{2} + 0 * \frac{1}{4} + 0 * \frac{1}{4} = 0.4$$

$$E(Test Top) = 1 * \frac{1}{4} + 0.9 * \frac{3}{8} + 0 * \frac{3}{8} = 0.5875$$

Numeric data

