

GWE #3

Database, Data Warehouse, Data Lakes

Database vs Data Warehouse vs Data Lake

Data Warehouse

VS

Data Lake

VS

Database

- integrated
- for reporting purpose

- Schema-on-read
 - for ML purpose

- CRUD
- Operational purpose (software)

Database

Data Warehouse

Data Lakes

Kenapa Data Lakes

Data Lakes

Data Data

unstructured

Users

Data Scientists, Data Analysts

Use cases

Stream Processing, Machine Learning, Real time analysis

Data Warehouse

Data

Structured

Users

Business Analysts

Use cases

Batch Processing. Bi, Reporting

Raw

Data Lakes contain unstructured, semi-structured and structured data with minimal processing. It can be used to contain unconventional data such as log and sensor data

Large

Data Lakes contain vast amounts of data in the order of petabytes. Since the data can be in any form or size, large amounts of unstructured data can be stored indefinitely and can be transformed when in use only

Undefined

Data in data lakes can be used for a wide variety of applications, such as Machine Learning, Streaming analytics, and Al

Refined

Data Warehouses contain highly structured data that is cleaned, pre-processed and refined. This data is stored for very specific use cases such as BI.

Smaller

Data Warehouses contain less data in the order of terabytes. In order to maintain data cleanliness and health of the warehouse, Data must be processed before ingestion and periodic purging of data is necessary

Relational

Data Warehouses contain historic and relational data, such as transaction systems, operations etc

Kenapa Data Lakes

Kepemilikan dapat dibagi secara terbatas

Simple Data Management with more Context

Fondasi bagi Al dan ML

More Security & Governance

SQL

NoSQL

S = Structured

Q = Query

L = Language

N = Not

O = Only

S = Structured

Q = Query

L = Language

NoSQL

-> sistem manajemen database yang tidak memiliki relasi.

Document Store

Key-Value Store

Wide-Column Store

Graph Store

SQL

name	age	gpa	fullTime
Spongebob	32	3.2	false
Patrick	38	1.5	false
Sandy	27	4.0	true

```
{
  name: 'Spongebob',
  age: 30,
  gpa: 3.2,
  fullTime: false,
},
{
  name: 'Patrick',
  age: 38,
  gpa: 1.5,
  fullTime: false,
},
{
  name: 'Sandy',
  age: 27,
  gpa: 4,
  fullTime: true,
}
```


each row = each document

Pros & Cons

SQL

- + Easy querying on relationships
- + More organized & structured (minim error)
- + Atomic
- Prepared structure
- Hard to Scale (horizontal scaling)

NoSQL

- + Flexible
- + Enabled Sharding

- Ease loss of consistency

Pros & Cons

Vertical Scaling

Horizontal Scaling

Horizontal scaling is when you have a multiple instances serving your transactions. To scale out, you add instances (called nodes).

Pros & Cons

```
title : 'movie',
 actors : [
     _id: 'actor_id1',
     name: 'actor1'
     _id: 'actor_id'2,
     name: 'actor2'
 plot: '...',
 reviews: [...],
 . . .
 name : 'actor1',
 movies : [
    _id: 'movie_id1',
    name: "moviel'
    _id: 'movie_id2',
    name: "movie2'
],
biography: '...',
pictures: [...],
2700
```


So which one?

