1) Colcolore

Detroducioner la trosformazione del pisur

$$\begin{cases} \frac{x}{y} = y \\ \frac{x}{y}^2 = y \end{cases} \qquad \psi(x,y) = (xy, \frac{x^2}{y})$$

Nel piece (4,0),  $\Upsilon(A) = [1,2] \times [1,2]$  $\times^3 = UV$ 

$$\frac{\mathcal{J}(x''')}{\mathcal{J}(x''')} = \begin{pmatrix} x & \frac{A}{\lambda} - \frac{A}{\lambda_5} \\ \frac{A}{\lambda} & \frac{A}{\lambda_5} \end{pmatrix}$$

$$\left| \frac{\partial (u,v)}{\partial (x,y)} \right| = -\frac{x^2}{y} - \frac{2x^2}{y} = -\frac{3x^2}{y} = -3\sqrt{3}$$

e duple 
$$\left|\frac{\mathcal{D}(X,u)}{\mathcal{D}(u,v)}\right| = -\frac{1}{3\sqrt{v}}$$

derivati  $\int_{A} x^{3} dx dy = \int_{A} u \sqrt{-\frac{4}{3}v} du dv = \frac{1}{3} \int_{(a,c)} u du dv$ 

$$= \frac{1}{3} \int_{1}^{2} u \, du \cdot \int_{1}^{2} dv = \frac{1}{3} \cdot \frac{1}{2} u^{2} \Big|_{1}^{2} = \frac{1}{6} (4-1) = \frac{1}{2}$$

2) Si cousidui la funtione a valori vettoriali F: AcR2->R3

$$F(u,\sigma) = \left(\frac{1}{u\sigma}, \log[(u-\sigma)(u+\sigma)], u^2-v^2\right)$$

Determinant il alominio noturale A di f à copposativo sol piano Dise se si trotto di un insieme aperto, diverso, limitato, commesso per archi. Stabiler se  $\mp$   $\bar{z}$  differii able sul perto  $(1,\frac{1}{2})$  e determinante la unighise approssimatione limere di  $\bar{x}$  in tale perto

dow 
$$\overline{T}$$
: 
$$\begin{cases} u \neq 0 \\ (u - V)(u + \sigma) > 0 \end{cases} \begin{cases} u \neq 0 \\ v \neq 0 \\ (u - V)(u + v) > 0 \end{cases}$$



h'insieme A è quello
colorato qui a franco
privato ohi punti ohlh'one
ohlhe en in ben. I punti ohlhe
cette J= e v=-e non
8 ppartengent and A.

A é qui noti apecto, nou é chimo, nou é limitoto e non é connessor pou archi.

be composet of F sour & funcion  $F_i:A\to\mathbb{R}$ , i=1,2,3 olds obe  $F_4(u,v)=\frac{1}{4V}$ ,  $F_2(u,v)=\log\left[(u-v)(u+v)\right]_{\mathcal{I}}$   $F_3(u,v)=u^2V^2$ 

Sow furiou di Closse  $C^{60}$  su A obto cle  $F_{1}$   $\varepsilon$  une furioue resionale,  $F_{2}$  è composto del byantur e de un petinoni,  $F_{2}$  è un petinoni. Anidi  $F_{2}$  differmieble su A per : l'escure du differmieble total. In particobre le E un pube  $(1,\frac{4}{2}) \in A$ .

Esiste duque la uniglier oppositione limine di F in tale puto Esiste la furtione office

$$\begin{cases}
 \begin{bmatrix}
 I_{1} \\
 I_{2}
 \end{bmatrix} = \begin{cases}
 2 \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 2 \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] \in \mathbb{R}^{3} \quad (x)$$

$$\frac{1}{2} \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 -\frac{1}{2} \\
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] = \begin{pmatrix}
 I_{2}
 \end{bmatrix} + J_{F}(\frac{1}{2}) \left[ (h_{1}, h_{2}) \right] +$$

animhi 
$$(*)$$
 =  $(h_{1},h_{2})$  \( >>  $(2,\log\frac{3}{4},\frac{3}{4})$  +  $(\frac{-2}{3},\frac{-4}{3})$   $(\frac{h_{1}}{h_{1}})$  =  $(2,\log\frac{3}{4},\frac{1}{4})$  +  $(-2h_{1}-4h_{2},\frac{4}{3}h_{1}-\frac{8}{3}h_{2},2h_{1}-h_{2})$ 

3) Determinant la solution de problem de (andry 
$$(y^1 = t^2 e^{y-t})$$
 (x)  $(y^1 = t^2 e^{y-t})$ 

(\*) è m'eque ione à variable aparable.

 $y' = t^2 e^{-t} e^{y'}$  do ai  $y' e^{-y} = t^2 e^{-t}$  e integrando subs ; numbri  $\int e^{-y} dy = \int t^2 e^{-t} dt$  aise

 $-e^{-\gamma} = -t^{2}e^{-t} + 2\int te^{-t} dt = -t^{2}e^{-t} - 2te^{-t} + 2\int e^{-t} dt$   $= -t^{2}e^{-t} - 2te^{-t} - 2e^{-t} + c$   $= -e^{-t}(t^{2} + 2t + 2) + c$ 

Qui whi = = e t (t2+2++2) +c

Poide y(-1)=0 offerism 1=e(1)+c vise c=1-eQuinti  $y=-\log(e^{-t}(t^2+2t+2)+1-e)$ 

Dere la définitione di sotto ini une competto e sagnitiviente competto de Rui Dinostrare che ma funione continua  $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$  trosformo invieni competta in invieni competta

the instance i composto on i chino e limitolo  $K \subset \mathbb{R}^n$  i segui obuti composto on  $V (An)_{n \in \mathbb{N}} \subset K$ ,  $\exists (An)_{n \in \mathbb{N}}$ successione estable tole  $a_{n_k} \to \overline{a} \in K$ 

Sappieus de K = competto J=0 K = segui dente competto

Per dissistan qui obi che f(K) = competto J=0 J

(4) semulte (4) come sollohicanion convergate o f(x)

 $f(x_{u_K}) \longrightarrow f(\bar{x})$  un  $f(x_{u_K}) = y_{u_K}$  quindi  $(y_u)$  come sottom(conious convergent o  $f(\bar{x})$ ) che appartieur a f(k) obto che  $\bar{x} \in k$ . On whi f(k) è seque tishe ente compolito.