Pre-Deployment Testing, Augmentation and Calibration of Cross-Sensitive Sensors

Balz Maag, Olga Saukh, David Hasenfratz*, Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland *Sensirion AG, Staefa, Switzerland

Air Pollution

Active Research and Development

Numerous research projects and start-ups

- Similar approach
 - Small and low-cost air quality monitoring systems

Low-cost Air Quality Sensors

Pro's:

- Small
- Cheap (1\$ 100\$)
- Low power consumption

SGX Sensortech AlphaSense CO-B4 MiCS-OZ-47 O₃

Con's:

- Low target pollutant concentrations, often at sensitivity boundaries
- Environmental conditions affect sensor output
- Low selectivity, i.e. sensors are cross-sensitive to multiple substances
- Need frequent re-calibration

Limiting Effects

- Datasheet information
 - Sparse or not provided at all
 - Laboratory results do not cover deployment conditions

ENVIRONMENTAL

	Sensitivity @ -20°C (% output @ -20°C/output @ 20°C) @ 2ppm $\mathrm{NO_2}$ Sensitivity @ 50°C (% output @ 50°C/output @ 20°C) @ 2ppm $\mathrm{NO_2}$ Zero @ -20°C	40 to 70 120 to 135 ±10 60 to 380
CROSS SENSITIVITY	H ₂ S sensitivity % measured gas @ 5ppm H ₂ S NO sensitivity % measured gas @ 5ppm NO Cl ₂ sensitivity % measured gas @ 5ppm Cl ₂ SO ₂ sensitivity % measured gas @ 5ppm SO ₂ CO sensitivity % measured gas @ 5ppm CO H ₂ sensitivity % measured gas @ 100ppm H ₂ C ₂ H ₄ sensitivity % measured gas @ 100ppm C ₂ H ₄ NH ₃ sensitivity % measured gas @ 20ppm NH ₃ CO ₂ sensitivity % measured gas @ 5% Vol CO ₂	<-130 < 4 < 100 < -20 < 0.1 < 0.1 < 0.1 < 0.1
	O ₃ sensitivity % measured gas @ 100ppb O ₃ Halothane sensitivity % measured gas @ 100ppm Halothane	30 to 65 < 0.1

Datasheet, NO2-B4 Nitrogen Dioxide Sensor, Alphasense

secondhand smoke, smoke generated from burning of wood and paper, volatiles of wine (alcohol) and cosmetics, ammonia, hydrogen sulfide, hydrogen, carbon monoxide, propane, methane, styrene, propylene glycol, phenol, acetone, thinner, insecticide, correction fluid, benzene, formaldehyde and so on.

Datasheet, TP401-A Indoor Air Quality Sensor, Shenzen Dovelet Sensors Technology CO., LTD

- Ignoring these effects limits performance
- Goal: Understand sensor characteristics under deployment-related conditions

Example: Alphasense NO₂-B4 Sensor

- Deployed at high-quality monitoring station
- Ordinary Least-Squares (OLS) calibration to nitrogen dioxide (NO₂) reference measurements

Root-Mean-Square-Error (RMSE) = 12.4 ppb (50%)

Sensor is highly cross-sensitive to ozone (O_3) , temperature and humidity

Sensor Calibration

Simple sensor calibration

Ordinary Least-Squares (OLS):

$$r = \beta_0 + \beta_1 s_1 + \varepsilon$$

Sensor array calibration

Multiple Least-Squares (MLS):

$$r = \beta_0 + \beta_1 s_1 + \beta_2 s_2 + \beta_3 s_3 + \varepsilon$$

Used to compensate for cross-sensitivities

Example: Alphasense NO₂-B4 Sensor revised

- Multiple Least-Squares (MLS) sensor array calibration
 - NO₂-B4, SGX O₃, humidity and temperature

• RMSE = 4.6 ppb (18%)

Challenges

Testing

Identify ALL

- cross-sensitivities and
- 2. environmental dependencies
- 3. under deploymentrelated conditions.

Augmentation

Select low-cost sensors and augment to optimal sensor array

Calibration

Sensor array calibration for

- accurate measurements
- 2. with long-term stability

Challenges

Testing

Identify ALL

- cross-sensitivities and
- 2. environmental dependencies
- 3. under deploymentrelated conditions.

Augmentation

Select low-cost sensors and augment to optimal sensor array

Calibration

Sensor array calibration for

- accurate measurements
- 2. with long-term stability

Sensor Testing: Signals

- In-field measurements
 - Measurements next to high-quality monitoring stations,
 e.g. run by governmental authorities
- Sensor-under-test s
- Various reference signals $r_i \in R$, e.g. pollutants, temperature, humidity...
- Standardization for scale-invariant results

Sensor Testing: Inverse Calibration

Inverse calibration

Multiple Least-Squares

$$s = \beta_0 + \beta_1 r_1 + \beta_2 r_2 + \beta_3 r_3 + \varepsilon$$

Sensor Testing: Regression Error

- Regression estimation \hat{u}
 - Explained part of the sensor signal with given references
- Regression error ε
 - Unexplained part of the sensor signal
- Reason for substantial error can be two-fold
 - Uncaptured cross-sensitivities
 - Sensor noise

Sensor Testing: Error Decomposition

FFT of typical O₃ concentration

- Error decomposition: Low-pass filter (cut-off: $\frac{1}{24h}$)
 - Low-frequent part ε_P : Uncaptured cross-sensitivities
 - High-frequent part ε_N : Sensor noise

Experimental Evaluation

- Various low-cost sensors
- Governmental high-quality station (NABEL) in Duebendorf, Switzerland
 - 20 different reference signals
- 15 months of data

Alphasense NO₂-B4 Sensor

SGX O₃ and Alphasense CO-B4

Similar results: Highly sensitive to target gas. Adding T & H reduces error components.

Dovelet Air Quality Sensor

Not sensitive to any pollutants.

Unqualified sensor for outdoor air quality measurements.

Testing Conclusion

- Need O₃, humidity and temperature measurements to compensate for crosssensitivities of the NO₂ sensor
- 2. O₃ and CO sensor depend on humidity and temperature

Testing

Augmentation

Calibration

Identify ALL

- cross-sensitivities and
- 2. environmental dependencies
- 3. under deploymentrelated conditions.

Select low-cost sensors and augment to optimal sensor array Sensor array calibration for

- accurate measurements
- 2. with long-term stability

Deployment goal: | Monitor pollutants | O3, CO and NO2

Testing

Augmentation

Calibration

Identify ALL

- cross-sensitivities
 and
- 2. environmental dependencies
- 3. under deploymentrelated conditions.

Select low-cost sensors and augment to optimal sensor array Sensor array calibration for

- accurate measurements
- 2. with long-term stability

Deployment goal: Monitor pollutants O3, CO and NO2

Testing

Augmentation

Calibration

Identify ALL

- cross-sensitivities
 and
- 2. environmental dependencies
- 3. under deploymentrelated conditions.

Select low-cost sensors and augment to optimal sensor array Sensor array calibration for

- accurate measurements
- 2. with long-term stability

Deployment goal: Monitor pollutants O3, CO and NO2

Calibration Stability: O₃

- Calibration error vs. different training frequencies over 12 months
- Training time: 4 weeks

Calibration to O₃ reference

- Decreasing error with increasing calibration frequency
- OLS requires monthly recalibration to achieve same error when calibrating the array every 4 months

Calibration Stability: CO

- Increasing error at f = 2: Unstable parameters during summer
- Sensor array calibration beneficial

Calibration Stability: NO₂

Calibration Frequency [1/(12 months)]

- Decreasing error
- MLS outperforms OLS

Conclusions

- Low-cost sensors suffer from cross-sensitivities and meteorological dependencies
- In-field testing using reference measurements to explain sensor-under-test
- Quantify amount of captured and uncaptured cross-sensitivities and sensor noise
- Improved accuracy and stability when calibrating an augmented sensor array

Thank You!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

