שיעור 4 רציפות בנקודה

4.1 הגדרה: (רציפות בנקודה)

a נניח ש-f(x) פונקציה המוגדרת בנקודה a ובסביבה של

נקרא רציפה בנקודה a אם

,
$$\lim_{x\to a}f(x)=f(a)$$
 בדדי הדו-צדדי, $\lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)$.1

$$\lim_{x \to a} f(x) = f(a) .2$$

מכיוון ש הפונקציה. $\lim_{x \to a} f(x) = f(a) = f(\lim_{x \to a} x)$ מקבלים , $\lim_{x \to a} x = a$ מכיוון ש מקבלים , מקבלים , מקבלים וווע ש

דוגמאות.

$$\lim_{x o 0}e^{rac{\sin x}{x}}=e^{\lim_{x o 0}rac{\sin x}{x}}=e^1=e$$
 (1 דוגמא

$$\lim_{x o0}rac{\ln(1+x)}{x}=\lim_{x o0}\ln\left[(1+x)^{1/x}
ight]=\ln\left[\lim_{x o0}(1+x)^{1/x}
ight]=\ln e=1$$
 (2 דוגמא

4.2 משפט. (תכונות של פונקציה רציפה)

- a בנקודה $f\cdot g$, f-g , f+g , g אז הפונקציות בנקודה g(x) ו- g(x) ו- g(x) רציפות בנקודה $g(a)\neq 0$ בתנאי $g(a)\neq 0$ בתנאי $g(a)\neq 0$
- נניח ש f רציפה f רציפה g רציפה g פונקציה g פונקציה g רציפה בנקודה g
 - 3) כל פונקציה אלמנטרית רציפה בכל נקודה פנימית של תחוף הגדרתה.

4.3 הגדרה: (אי-רציפות בנקודה)

. עצמה a בונקציה המוגדרת בסביבה של נקודה a אבל אב בהכרח בנקודה פונקציה תהי

א) אם קיימים הגבולות החד-צדדים הסופיים ו-

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$$

f(x) או ש f(a) לא מוגדר, אומרים כיa היא נקודת אי-רציפות סליקה של

נקודה a היא נקודת אי-רציפות ממין ראשון של בא הוא קיימים הגבולות ממין ממין ממין ממין אם נקודה אי-רציפות החד-צדדים הסופיים בא נקודה אי-רציפות $\lim_{x\to a^+}f(x)+B$ -ו , $\lim_{x\to a^-}f(x)=A$

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x) .$$

 $\lim_{x o a^-}f(x)$ נקודה a נקראת אי רציפות ממין שני של פונרציה f(x) אם לפaחות אחד הגבולות החד צדדיים $\lim_{x o a^+}f(x)$ או $\lim_{x o a^+}f(x)$ או לא קיים.

$$x=-4$$
 בנקודה בנקודה $f(x)=rac{x^2-16}{x+4}$.4.4

$$\lim_{x \to -4} \frac{x^2 - 16}{x + 4} = \lim_{x \to -4} \frac{(x + 4)(x - 4)}{x + 4} = \lim_{x \to -4} (x - 4) = -8$$

. לכן אי-רציפות אי-רציפות אי-רציפות לכן x=-4 לכן לא מוגדרת בנקודה f(x)

$$.f(x)=egin{cases} rac{\sin x}{x} & x
eq 0 \ , \ 2 & x=0 \ . \end{cases}$$
 4.5

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin x}{x} = 1 \ ,$$

אבל f(0)=2 נקודת אי-רציפות סליקה. f(0)=2 אבל f(0)=1 איי

$$f(x) = rac{x}{|x|}$$
 1.6 דוגמא.

נקודת אי-רציפות. x=0

$$\lim_{x \to 0^+} \frac{x}{|x|} = \lim_{x \to 0^+} \frac{x}{x} = 1 \ , \qquad \lim_{x \to 0^-} \frac{x}{|x|} = \lim_{x \to 0^-} \frac{x}{-x} = -1$$

לכן x=0 נקודת אי-רציפות ממין ראשון.

$$f(x) = egin{cases} x-1 & -1 < x < 2 \ , \ 2-x & 2 \le x \le 4 \ . \end{cases}$$
 4.7

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x - 1) = 1 \ , \qquad \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2 - x) = 0 \ .$$

. לכן x=2 נקודת אי-רציפות ממין ראשון x=2

$$f(x)=\arctan\left(rac{2}{x-1}
ight)$$
 .4.8

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \arctan\left(\frac{2}{x-1}\right) = -\frac{\pi}{2} \ , \qquad \lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \arctan\left(\frac{2}{x-1}\right) = \frac{\pi}{2} \ .$$

. נקודת אי רציפות ממין ראשון x=1

.4.9 דוגמא.

$$f(x) = \frac{1}{x - 2}$$

$$\lim_{x \to 2^+} \frac{1}{x - 2} = \infty$$

לכן x=2 נקודת אי-רציפות ממים שני.

.4.10 דוגמא.

$$f(x) = \sin\left(\frac{1}{x}\right)$$

$$\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right)$$

לא קיים. לכן x=0 נקודת אי-רציפות ממים שני.

.4.11 דוגמא.

מצאו את נקודות אי הרציפות של הפונרציה הבאה וברר את סוגן:

$$f(x) = \frac{x}{x+3} + 2^{-1/x^2}$$

x=0,-3 נקודות אי רציפות: נקודות

 $\underline{x = -3}$

$$\lim_{x \to -3^+} \left(\frac{x}{x+3} + 2^{-1/x^2} \right) = \infty$$

. נקודת אי-רציפות ממין שניx=-3

 $\underline{x=0}$

$$\lim_{x \to 0} \left(\frac{x}{x+3} + 2^{-1/x^2} \right) = 0 + 0 = 0$$

lacksquareנקודת אי-רציפות סליקה. x=0

.4.12 דוגמא.

מצאו את נקודות אי הרציפות של הפונרציה הבאה וברר את סוגן:

$$f(x) = \frac{x^2 - 9}{x^2 - 2x - 3} + \frac{\tan x}{x}$$

-----_

פיתרון.

 $.\frac{\pi}{2}+n\pi$, x=-1,3,0יביפות: אי רציפות נקודות אי

$$\lim_{x\to -1^-} \left(\frac{x^2-9}{x^2-2x-3} + \frac{\tan x}{x}\right) = -\infty$$

. נקודת אי-רציפות ממין שניx=-1

x = 3

$$\lim_{x \to 3} \left(\frac{x^2 - 9}{x^2 - 2x - 3} + \frac{\tan x}{x} \right) = \frac{3}{2} + \frac{\tan 3}{3} = 0$$

. נקודת אי-רציפות סליקה x=3

x = 0

$$\lim_{x \to 0} \left(\frac{x^2 - 9}{x^2 - 2x - 3} + \frac{\tan x}{x} \right) = 3 + 1 = 4$$

. נקודת אי-רציפות סליקה x=0

 $x = \frac{\pi}{2} + n\pi$

$$\lim_{x \to \left(\frac{\pi}{2} + n\pi\right)^{-}} \left(\frac{x^2 - 9}{x^2 - 2x - 3} + \frac{\tan x}{x}\right) = \infty.$$

. נקודת ממין ממין אי-רציפות ממין שני. $x=rac{\pi}{2}+n\pi$

4.13 דוגמא.

נתונה פונקציה

$$f(x) = \begin{cases} 2^{-x} & x \le 1\\ ax^2 & -1 < x \le 1\\ \sqrt{x+b} & x > 1 \end{cases}$$

 $x \in \mathbb{R}$ עבור אילו ערכי f(x) a,b עבור אילו

פיתרון.

x=-1 אי-רציפות בנקודה

$$\lim_{x \to -1^-} f = 2^{-(-1)} = 2$$
 ,
$$\lim_{x \to -1^+} f = a(-1)^2 = a$$
 .
$$a = 2$$
 אם $x = -1$ -ביפה ב- f רציפה ב- f רציפה ב- f

x=1 אי-רציפות בנקודה

$$\lim_{x o 1^-}f=a1^2=a(=2)$$
 ,
$$\lim_{x o 1^+}f=\sqrt{1+b}$$
 . לכן f רציפה ב- $x=1$ אם $x=1$.

דוגמא.

נתונה פונקציה

$$f(x) = \begin{cases} \frac{\sin^2\left(\sqrt{a^2 + 1} \cdot x\right)}{2x^2} & x < 0\\ b & x = 0\\ x + 5 & x > 0 \end{cases}$$

- f(x) = 0 -ביפה ב- f(x) = a, b א.
- ירציפות ממין ראשון? x=0 הנקודה f(x) a,b עבור אילו ערכי
 - ג. עבור אילו ערכי f(x) a,b הנקודה x=0 הנקודה f(x) אי-רציפות סליקה?

פיתרון.

.N

$$\begin{split} \lim_{x \to 0^{-}} f(x) &= \lim_{x \to 0^{-}} \frac{\sin^{2}\left(\sqrt{a^{2}+1} \cdot x\right)}{2x^{2}} \\ &= \lim_{x \to 0^{-}} \frac{a^{2}+1}{2} \frac{\sin^{2}\left(\sqrt{a^{2}+1} \cdot x\right)}{\left(\sqrt{a^{2}+1} \cdot x\right)^{2}} \\ &= \lim_{x \to 0^{-}} \frac{a^{2}+1}{2} \ , \\ \lim_{x \to 0^{+}} f(x) &= \lim_{x \to 0^{+}} (x+5) \\ &= 5 \ , \end{split}$$

 $\frac{a^2+1}{2}=5=b$ כדי ש- f תהיה רציפה נדרש כי $f=\lim_{x\to 0^+}f=\lim_{x\to 0^+}f=f(0)$ ווה מתקיים אם f=0 . כדי ש- f=0

$$b = 5$$
, $a = \pm 3$.

תהיה x=0 לכן $b\in\mathbb{R}$ קיים לכל $\lim_{x\to 0^-}f(x)=\frac{a^2+1}{2}$ והגבול הגבול לכל $\lim_{x\to 0^+}f(x)=5$ והגבול לכן האי-רציפות ממין ראשון אם

$$\frac{a^2+1}{2} \neq 5 \qquad \Rightarrow \qquad a \neq \pm 3$$