Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2010.
df

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000	
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47
200449	209448 rows × 17 columns										
◀											•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6666 entries, 11 to 191927
Data columns (total 17 columns):
     Column
              Non-Null Count Dtype
     -----
              -----
---
                              ----
0
     date
              6666 non-null
                              object
 1
     BEN
              6666 non-null
                              float64
 2
     CO
              6666 non-null
                              float64
 3
     EBE
              6666 non-null
                              float64
 4
     MXY
              6666 non-null
                              float64
 5
                              float64
     NMHC
              6666 non-null
 6
     NO_2
              6666 non-null
                              float64
 7
     NOx
              6666 non-null
                              float64
                              float64
 8
     OXY
              6666 non-null
 9
     0 3
                              float64
              6666 non-null
 10
    PM10
              6666 non-null
                              float64
 11
    PM25
              6666 non-null
                              float64
 12
     PXY
              6666 non-null
                              float64
 13
     SO 2
              6666 non-null
                              float64
                              float64
 14
    TCH
              6666 non-null
 15
    TOL
              6666 non-null
                              float64
 16 station 6666 non-null
                              int64
dtypes: float64(15), int64(1), object(1)
memory usage: 937.4+ KB
```

In [11]:

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

Out[11]:

	BEN	TOL	тсн
11	0.78	1.99	1.55
23	0.70	2.62	1.48
35	0.58	0.84	1.54
47	0.33	1.21	1.44
59	0.38	0.49	1.54
191879	0.60	2.94	1.34
191891	0.41	1.11	1.31
191903	0.57	2.95	1.36
191915	0.34	1.09	1.32
191927	0.43	2.80	1.38

6666 rows × 3 columns

Line chart

In [12]:

```
data.plot.line(subplots=True)
```

Out[12]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [13]:

```
data.plot.line()
```

Out[13]:

<AxesSubplot:>

Bar chart

In [14]:

b=data[0:50]

In [15]:

b.plot.bar()

Out[15]:

<AxesSubplot:>

Histogram

In [16]:

data.plot.hist()

Out[16]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [17]:

data.plot.area()

Out[17]:

<AxesSubplot:>

Box chart

In [18]:

data.plot.box()

Out[18]:

<AxesSubplot:>

Pie chart

In [19]:

```
b.plot.pie(y='BEN' )
```

Out[19]:

<AxesSubplot:ylabel='BEN'>

Scatter chart

In [20]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

Out[20]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [21]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6666 entries, 11 to 191927
Data columns (total 17 columns):

D G C G	COTAMILIS	(cocar in coramin	٠,٠
#	Column	Non-Null Count	Dtype
0	date	6666 non-null	object
1	BEN	6666 non-null	float64
2	CO	6666 non-null	float64
3	EBE	6666 non-null	float64
4	MXY	6666 non-null	float64
5	NMHC	6666 non-null	float64
6	NO_2	6666 non-null	float64
7	NOx	6666 non-null	float64
8	0XY	6666 non-null	float64
9	0_3	6666 non-null	float64
10	PM10	6666 non-null	float64
11	PM25	6666 non-null	float64
12	PXY	6666 non-null	float64
13	S0_2	6666 non-null	float64
14	TCH	6666 non-null	float64
15	TOL	6666 non-null	float64
16	station	6666 non-null	int64
d+\\n	.c. £1+	61/1E\ in+61/1\	object/1

dtypes: float64(15), int64(1), object(1)

memory usage: 937.4+ KB

```
In [22]:
```

```
df.describe()
```

Out[22]:

	BEN	CO	EBE	MXY	NMHC	NO_2	
count	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.0
mean	0.648425	0.296280	0.840585	0.839959	0.243378	33.888744	47.5
std	0.395346	0.133296	0.508031	0.382263	0.115730	23.465169	41.2
min	0.170000	0.090000	0.140000	0.110000	0.000000	1.290000	2.7
25%	0.380000	0.200000	0.470000	0.590000	0.180000	15.752500	19.4
50%	0.540000	0.260000	0.755000	1.000000	0.220000	29.320000	36.7
75%	0.810000	0.340000	1.000000	1.000000	0.280000	47.657500	62.1
max	5.110000	1.590000	5.190000	6.810000	0.930000	133.399994	409.2
4							•

In [23]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [24]:

sns.pairplot(df1[0:50])

Out[24]:

<seaborn.axisgrid.PairGrid at 0x1e6db036850>

In [25]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[25]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>

In [26]:

sns.heatmap(df1.corr())

Out[26]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [111]:
```

In [112]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [113]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[113]:

LinearRegression()

In [114]:

```
lr.intercept_
```

Out[114]:

28078940.864442065

In [115]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[115]:

	Co-efficient
BEN	-34.991509
СО	169.287030
EBE	16.889120
MXY	-8.950140
NMHC	-75.485838
NO_2	0.312985
NOx	-0.626738
OXY	30.132175
O_3	0.076435
PM10	-0.162293
PXY	-4.783814
SO_2	1.781796
тсн	42.165548
TOL	9.666856

In [116]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[116]:

<matplotlib.collections.PathCollection at 0x1e6ec61a4c0>

ACCURACY

```
In [117]:
lr.score(x_test,y_test)
Out[117]:
0.4179054524604561
In [118]:
lr.score(x_train,y_train)
Out[118]:
0.4315656379957823
Ridge and Lasso
In [119]:
from sklearn.linear_model import Ridge,Lasso
In [120]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[120]:
Ridge(alpha=10)
Accuracy(Ridge)
In [121]:
rr.score(x_test,y_test)
Out[121]:
0.4056035229335304
In [122]:
rr.score(x_train,y_train)
Out[122]:
0.4193276233024624
In [123]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[123]:
```

Lasso(alpha=10)

```
In [124]:
```

```
la.score(x_test,y_test)
```

Out[124]:

0.18344759737444682

Accuracy(Lasso)

```
In [125]:
```

```
la.score(x_train,y_train)
```

Out[125]:

0.17829658999839737

Accuracy(Elastic Net)

```
In [126]:
```

```
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
```

Out[126]:

ElasticNet()

In [127]:

```
en.coef_
```

Out[127]:

```
array([-0. , 0.19545881, 2.94342568, -1.19054764, -1.31923906, 0.05983388, -0.12082628, 0.40926303, -0.01846025, -0.12404605, -0. , 2.57206502, 0. , 7.04094312])
```

In [128]:

```
en.intercept_
```

Out[128]:

28079025.73235495

In [129]:

```
prediction=en.predict(x_test)
```

```
In [130]:
```

```
en.score(x_test,y_test)
```

Out[130]:

0.23954371788037176

Evaluation Metrics

```
In [131]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

30.817089282844215 1069.284707566054 32.699919075833414

Logistic Regression

```
In [132]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [133]:
```

```
In [134]:
```

```
feature_matrix.shape
```

Out[134]:

(6666, 14)

In [135]:

```
target_vector.shape
```

Out[135]:

(6666,)

In [136]:

from sklearn.preprocessing import StandardScaler

```
In [137]:
fs=StandardScaler().fit_transform(feature_matrix)
In [138]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[138]:
LogisticRegression(max_iter=10000)
In [139]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [140]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [141]:
logr.classes_
Out[141]:
array([28079024, 28079099], dtype=int64)
In [142]:
logr.score(fs,target_vector)
Out[142]:
0.8660366036603661
In [143]:
logr.predict_proba(observation)[0][0]
Out[143]:
0.0
In [144]:
logr.predict_proba(observation)
Out[144]:
array([[0., 1.]])
```

Random Forest

```
In [145]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [146]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[146]:

RandomForestClassifier()

In [147]:

In [148]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[148]:

In [149]:

```
grid_search.best_score_
```

Out[149]:

0.9303471924560651

In [150]:

```
rfc_best=grid_search.best_estimator_
```

In [151]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[151]:

```
[Text(2576.6470588235293, 1993.2, 'CO <= 0.225\ngini = 0.5\nsamples = 2962</pre>
\nvalue = [2301, 2365] \setminus class = b'),
  Text(1542.705882352941, 1630.8000000000002, 'NMHC <= 0.255\ngini = 0.195
\nsamples = 989 \quad = [1357, 167] \quad = a'),
   Text(722.1176470588234, 1268.4, 'BEN <= 0.305\ngini = 0.347\nsamples = 47
7\nvalue = [553, 159]\nclass = a'),
   Text(262.5882352941176, 906.0, 'NMHC <= 0.115\ngini = 0.488\nsamples = 13
6\nvalue = [85, 116]\nclass = b'),
   Text(131.2941176470588, 543.599999999999, 'gini = 0.0\nsamples = 40\nval
ue = [55, 0] \setminus ass = a'),
   amples = 96\nvalue = [30, 116]\nclass = b'),
   value = [20, 3] \setminus ass = a'),
   Text(525.1764705882352, 181.199999999999999, 'gini = 0.149 \nsamples = 80 \n
value = [10, 113]\nclass = b'),
   Text(1181.6470588235293, 906.0, 'TOL <= 0.835\ngini = 0.154\nsamples = 34
1\nvalue = [468, 43]\nclass = a'),
   \nsamples = 169\nvalue = [259, 3]\nclass = \frac{a'}{a},
   Text(787.7647058823529, 181.19999999999999ggini = 0.0\nsamples = 120\nv
alue = [184, 0]\nclass = a'),
   Text(1050.3529411764705 12.1999999999999, 'gini = 0.074 mples = 49
\nvalue = [75, 3]\nclass = a\),
   Text(1444.2352941176468, 543.599999999999, 'MXY <= 0.795\ngini = 0.27\ns
amples = 1 value = [209, 40]\nclass '),
   Text(1312.941176470588, 181.19999999999982, 'gini = 0.165 \ln s amples = 93 \ln s
value = [120, 12]\nclass = a'),
    Te 1575.5294117 59, 181.199999 9(1), 'gini = 64\nsamples 59
\nvalue = [89, 28] \times nclass = a'),
   Text(2363.2941176470586 1268.4 TOL < 205\ngini = 0.02\nsamples =
 \frac{1}{\sqrt{\frac{1}{1000} - \frac{1}{1000}}} = \frac{1}{1000} = \frac{1}{10
   Text(2232.0, 906.0, 'NO 2 <= 18.56 / ngini = 0.008 / nsamples = 496 / nvalue = 18.56 / nv
[78891-0227] 3 191-026 ] 191-05 191-05 191-074 1 191-075
   Text(1909.411/64/056822, 543.5999999999999999, NITHE <= 0.275\ngin1 = 0.003
\nspace{1} \nspace{1
   Text(1838.1176470588234, 181.19999999999999, 'gini = 0.05 \nsamples = 30 \n
value = [38, 1] \setminus nclass = a'),
alue = [611, 0] \setminus ass = a'),
   amples = 83\nvalue = [139, 2]\nclass = a'),
ACCUSACY 41176470586, 181.1999999999982, 'gini = 0.102\nsamples = 28
Linear Regression.0.4375656379957823 Lue = [104, 0]\nclass = a'),
   Text(2494.5882352941176, 906.0, 'gini = 0.363\nsamples = 16\nvalue = [16,
Ridge1Regression:0.4193276233024624
   Text(3610.588235294117, 1630.8000000000002, '0 3 <= 5.67\ngini = 0.42\nsa
The less \bar{R}_{egr} \bar{R}_{e
0] \nclass = a'),
Elastic Net Regression 10:73,954273.78,8037M-76 <= 0.305\ngini = 0.386\nsamples = 1
881\nvalue = [779, 2198]\nclass = b'),
Lbeyistic Regression: 0.8660366036603660 <= 0.265\ngini = 0.296\nsamples = 167
5\nvalue = [478, 2174]\nclass = b'),
   Text(3019.7647058823527, 543.599999999999, 'EBE <= 0.395\ngini = 0.466\n
Random Eosest Ava 102471924256,0656]\nclass = b'),
   Text(2888.4705882352937, 181.1999999999982, 'gini = 0.44\nsamples = 70\n
value = [70, 34] \setminus (ass = a'),
   Text(3151.0588235294117, 181.1999999999982, 'gini = 0.426\nsamples = 328
```

```
\nvalue = [156, 352]\nclass = b'),

Text(3544_941176470588, 543.5999999999999, 'TOL <= 1.535\ngini = 0.217\ns

Rmpleom_15_9(Rsalise suitable 1708]\nis dataset,

Text(3413.6470588235293, 181.1999999999982, 'gini = 0.476\nsamples = 150
\nvalue = [97, 152]\nclass = b'),

Text(3676.235294117647, 181.1999999999999, 'gini = 0.158\nsamples = 1127
\nvalue = [155, 1636]\nclass = b'),

Text(4201.411764705882, 906.0, 'EBE <= 1.52\ngini = 0.137\nsamples = 206
\nvalue = [301, 24]\nclass = a'),

Text(4070.117647058823, 543.599999999999, 'NO_2 <= 24.94\ngini = 0.02\nsamples = 100\nvalue = [304, 21\nclass = a')
```