

departamento de engenharia informática

LEI - Computação Gráfica

prof. André Perrotta, prof. Evgheni Polisciuc

Exame Normal

TA 1	-			
	O.	m	Δ	۱
1 1	•		·	

Número:

Duração: 90min

15 de Janeiro, 2024

valor max: 20

Formulário

sejam os vetores $\vec{A}(a_1,a_2,a_3)$ e $\vec{B}(b_1,b_2,b_3)$ produto escalar:

$$\vec{A} \bullet \vec{B} = \sum_{i=1}^{3} a_i b_i = |\vec{A}| |\vec{B}| \cos \theta$$

produto vetorial:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - b_2a_3)\hat{x} + (a_3b_1 - b_3a_1)\hat{y} + (a_1b_2 - b_1a_2)\hat{z}$$

transformações geométricas:

$$T = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Proj_{perspectiva_{openGl}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \quad Proj_{ortogonal} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Modelo de Phong para iluminação:

	0°	30°	45°	60°	90°
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

$$\vec{R} = 2(\vec{L} \bullet \vec{N})\vec{N} - \vec{L}$$

$$I_{vertice} = I_{luz_{amb}} K_{mat_{amb}} + I_{luz_{dif}} K_{mat_{dif}} \cos \theta + I_{luz_{spec}} K_{mat_{spec}} \cos \gamma^{ns}$$

Conceitos

$\mathbf{Q}1$	(3	val	or	es)
V -	v	1 441		VD,

	Na conceptualização e implementação de uma cena 3D utilizando o pipeline poligonal do OpenGl realizamos operações em 4 sistemas de coordenadas (ou espaços). Sobre estes sistemas, responda de forma clara, objetiva e sucinta as seguintes perguntas:
(a) (1 valor): Quais são esses 4 sistemas de coordenadas?
(b) (2 valores): Qual a função de cada um desses sistemas de coordenadas?

Q2 (2 valores)

O OpenGl foi implementado de forma a possibilitar o uso de um mesmo operador para a realização das transformações geométricas utilizadas em seu pipeline. Ou seja, podemos aplicar qualquer transformação em um vértice utilizando a seguinte relação:

$$v' = OP \times v$$
, onde OP é o operador da transformação.

Explique de forma clara, objetiva e sucinta, o conceito matemático que fundamenta esta estratégia de implementação.

Geometria e transformações

Q3 (2 valores)

Determine uma rotina de desenho OpenGL (vértices e respetiva primitiva de desenho) que permita desenhar a figura representada na imagem. Utilize código ou pseudo-código OpengL. (Atenção ao desenho da figura com preenchimento (GL_FILL, cinza-claro) e sem preenchimento (GL_LINE, preto), que deve poder ser obtido sem alteração da primitiva de desenho escolhida).

resp:

figura geométrica: em preto seu contorno, em cinza seu preenchimento

Q4 (3 valores)

Determine as transformações geométricas necessárias para transformar o triângulo BCE no triângulo CDE, representando-as de duas formas:

 $\triangle BCE \to \triangle CDE$

	(1 valor): Ind				s e ordem cor	reta.	
(b)	(2 valores): F	R epresentação	o da matriz fi	$\operatorname{nal}\left(M ight)$ resu	ltante das tra	nsformações.	

Visualização, projeção e recorte

Q5 (4 valores)

Considere uma aplicação desenvolvida em OpenGl e configurada com uma janela quadrada (largura=altura). Mais, considere que no inicio do programa é configurado o recorte (glViewPort) para toda a tela e que seu volume de projeção é configurado através da função qlFrustum(left, right, bottom, top, near, far) com os seguintes valores:

$$glFrustum(\tfrac{-1}{200},\tfrac{1}{200},\tfrac{-1}{200},\tfrac{1}{200},\tfrac{\sqrt{3}}{200},100\tfrac{\sqrt{3}}{2})$$

A imagem abaixo mostra uma vista lateral do volume de projeção definido.

vista lateral do volume de projeção

Com base na imagem e na informação fornecida, responda às questões:

(a) (1 valor): Qual o	valor do ângulo θ	?(justifique)		

) (1 valor):	: Qual o valor da	a distância d?(just	tifique)		
			-		

Considere agora que, para além da projeção, é também definida uma vista da cena utilizando o algoritmo UVN implementado na função $lookat(p\vec{o}s,tar\vec{g}et,\vec{up})$ com os seguintes valores:
$lookat(0, 0, \frac{\sqrt{3}}{2}, 0, 0, 0, 0, 1, 0)$
E, alteram-se os valores de recorte, utilizando a função $glViewport(x0,y0,width,height)$ com os seguintes valores:
$glViewport(\frac{w}{2},\frac{h}{2},\frac{w}{2},\frac{h}{2})$, onde w e h referem à largura e altura da janela da aplicação.
Após estas definições é então desenhada uma linha entre os vértices $A(\frac{-1}{2},0,-\frac{\sqrt{3}}{2})$ e $B(\frac{1}{2},0,-\frac{\sqrt{3}}{2})$.
(a) (1 valor): Qual a distância entre os vértices A e B em coordenadas mundo 3D? (justifique)
(b) (1 valor): Qual a distância entre os vértices A e B em pixels na janela da aplicação? (justifique)

Iluminação

Q6 (6 valores)

A imagem abaixo mostra uma cena realizada em OpenGl formada por um malha de retângulos de resolução (2,1), duas fontes de luz, L_1 e L_2 , e um observador situado na posição obs(0,1,1). A malha foi construida de forma a atribuir materiais com cores determinadas para cada vértice conforme é mostrado na tabela. Os coeficientes de reflexão ambiente k_A , difusa k_D e especular k_S do material são iguais a 1 ($k_A = k_D = k_S = 1$) e o coeficiente de especularidade n_S também vale 1 ($n_S = 1$). A normal $\vec{N}(0,1,0)$ é a mesma em todos os vértices. As fontes de luz estão configuradas conforme especificado abaixo.

$$\begin{split} L_{2_{pos}} &= (0,1,0,0) \\ L_{2_{amb}}(R,G,B) &= (0,0,0) \\ L_{2_{dif}}(R,G,B) &= (1,0,0) \\ L_{2_{spec}}(R,G,B) &= (0,0,0) \end{split}$$

G

В

(a	a) (2 valor): Qual é o vértice com maior intensidade de luz? (justifique)

(b) (2 valor): Qual é o vértice com menor intensidade de luz? (justifique)

(c) (2 valor): Qual a cor e intensidade de luz, em valores R, G, B), no vértice 1? (justifique)