The sample size, *n*, is 49. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 49 ceil$	13	61.96
Q2	$\lceil 0.5 \times 49 \rceil$	25	62.48
Q3	$\lceil 0.75 \times 49 \rceil$	37	62.79

We determine the IQR.

$$IQR = Q3 - Q1$$

= 62.79 - 61.96
= 0.83

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $61.96 - 1.5 \times 0.83$
= 60.715
upper boundary = Q3 + $1.5 \times IQR$
= $62.79 + 1.5 \times 0.83$
= 64.035

We determine the outliers.

outliers =
$$\{60.34, 60.42\}$$

We identify the ends of the whiskers: 60.74 and 63. We plot the boxplot.

The sample size, *n*, is 45. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 45 ceil$	12	12.06
Q2	$\lceil 0.5 \times 45 \rceil$	23	13.91
Q3	$\lceil 0.75 \times 45 \rceil$	34	16.04

We determine the IQR.

$$IQR = Q3 - Q1$$

= 16.04 - 12.06
= 3.98

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $12.06 - 1.5 \times 3.98$
= 6.09
upper boundary = Q3 + $1.5 \times IQR$
= $16.04 + 1.5 \times 3.98$
= 22.01

We determine the outliers.

outliers =
$$\{24.33\}$$

We identify the ends of the whiskers: 10.51 and 21.15. We plot the boxplot.

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 imes 28 ceil$	7	60.7
Q2	$\lceil 0.5 \times 28 \rceil$	14	70.77
Q3	$\lceil 0.75 \times 28 \rceil$	21	75.01

We determine the IQR.

$$IQR = Q3 - Q1$$

= 75.01 - 60.7
= 14.31

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $60.7 - 1.5 \times 14.31$
= 39.235
upper boundary = Q3 + $1.5 \times IQR$
= $75.01 + 1.5 \times 14.31$
= 96.475

We determine the outliers.

outliers =
$$\{97.9, 99.51, 101.91, 114.35, 114.75\}$$

We identify the ends of the whiskers: 50.5 and 92.81. We plot the boxplot.

The sample size, *n*, is 42. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 imes 42 ceil$	11	76.78
Q2	$\lceil 0.5 \times 42 \rceil$	21	90.84
Q3	$\lceil 0.75 \times 42 \rceil$	32	99.06

We determine the IQR.

$$IQR = Q3 - Q1$$

= 99.06 - 76.78
= 22.28

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $76.78 - 1.5 \times 22.28$
= 43.36
upper boundary = Q3 + $1.5 \times IQR$
= $99.06 + 1.5 \times 22.28$
= 132.48

We determine the outliers.

outliers =
$$\{24.61\}$$

We identify the ends of the whiskers: 45.46 and 109.76. We plot the boxplot.

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 24 \rceil$	6	39.43
Q2	$\lceil 0.5 \times 24 \rceil$	12	40.22
Q3	$\lceil 0.75 \times 24 \rceil$	18	40.87

We determine the IQR.

$$IQR = Q3 - Q1$$

= 40.87 - 39.43
= 1.44

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 39.43 $- 1.5 \times 1.44$
= 37.27
upper boundary = Q3 + 1.5 $\times IQR$
= 40.87 + 1.5 $\times 1.44$
= 43.03

We determine the outliers.

outliers =
$$\{36.72\}$$

We identify the ends of the whiskers: 38.45 and 42.98. We plot the boxplot.

The sample size, *n*, is 45. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 45 \rceil$	12	25.55
Q2	$\lceil 0.5 \times 45 \rceil$	23	29.57
Q3	$\lceil 0.75 \times 45 \rceil$	34	34.81

We determine the IQR.

$$IQR = Q3 - Q1$$

= 34.81 - 25.55
= 9.26

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $25.55 - 1.5 \times 9.26$
= 11.66
upper boundary = Q3 + $1.5 \times IQR$
= $34.81 + 1.5 \times 9.26$
= 48.7

We determine the outliers.

outliers =
$$\{50.62\}$$

We identify the ends of the whiskers: 20.07 and 47.84. We plot the boxplot.

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	52.31
Q2	$\lceil 0.5 \times 32 \rceil$	16	52.46
Q3	$\lceil 0.75 \times 32 \rceil$	24	52.67

We determine the IQR.

$$IQR = Q3 - Q1$$

= $52.67 - 52.31$
= 0.36

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $52.31 - 1.5 \times 0.36$
= 51.77
upper boundary = Q3 + $1.5 \times IQR$
= $52.67 + 1.5 \times 0.36$
= 53.21

We determine the outliers.

outliers =
$$\{51.49, 51.6, 53.61\}$$

We identify the ends of the whiskers: 51.98 and 53.12. We plot the boxplot.

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 15]	4	49.19
Q2	$\lceil 0.5 \times 15 \rceil$	8	50.02
Q3	$\lceil 0.75 \times 15 \rceil$	12	53.06

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.06 - 49.19
= 3.87

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $49.19 - 1.5 \times 3.87$
= 43.385
upper boundary = Q3 + $1.5 \times IQR$
= $53.06 + 1.5 \times 3.87$
= 58.865

We determine the outliers.

outliers =
$$\{\}$$

We identify the ends of the whiskers: 44.15 and 54.65. We plot the boxplot.

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 28 ceil$	7	53.8
Q2	$\lceil 0.5 \times 28 \rceil$	14	57.25
Q3	$\lceil 0.75 \times 28 \rceil$	21	63.46

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 63.46 - 53.8$$

$$= 9.66$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $53.8 - 1.5 \times 9.66$
= 39.31
upper boundary = Q3 + $1.5 \times IQR$
= $63.46 + 1.5 \times 9.66$
= 77.95

We determine the outliers.

outliers =
$$\{78.69, 83.04\}$$

We identify the ends of the whiskers: 50.15 and 73.2. We plot the boxplot.

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	68.66
Q2	$\lceil 0.5 \times 56 \rceil$	28	70.24
Q3	$\lceil 0.75 \times 56 \rceil$	42	72.05

We determine the IQR.

$$IQR = Q3 - Q1$$

= 72.05 - 68.66
= 3.39

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $68.66 - 1.5 \times 3.39$
= 63.575
upper boundary = Q3 + $1.5 \times IQR$
= $72.05 + 1.5 \times 3.39$
= 77.135

We determine the outliers.

outliers =
$$\{63.56, 77.14, 77.54\}$$

We identify the ends of the whiskers: 64.37 and 76.14. We plot the boxplot.

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 15]	4	44.07
Q2	$\lceil 0.5 \times 15 \rceil$	8	45.25
Q3	$\lceil 0.75 \times 15 \rceil$	12	48.16

We determine the IQR.

$$IQR = Q3 - Q1$$

= $48.16 - 44.07$
= 4.09

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $44.07 - 1.5 \times 4.09$
= 37.935
upper boundary = Q3 + $1.5 \times IQR$
= $48.16 + 1.5 \times 4.09$
= 54.295

We determine the outliers.

outliers =
$$\{55.44\}$$

We identify the ends of the whiskers: 40.61 and 51.62. We plot the boxplot.

The sample size, *n*, is 35. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 35 ceil$	9	37.73
Q2	$\lceil 0.5 imes 35 \rceil$	18	43.93
Q3	$\lceil 0.75 \times 35 \rceil$	27	45.87

We determine the IQR.

$$IQR = Q3 - Q1$$

= $45.87 - 37.73$
= 8.14

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $37.73 - 1.5 \times 8.14$
= 25.52
upper boundary = Q3 + $1.5 \times IQR$
= $45.87 + 1.5 \times 8.14$
= 58.08

We determine the outliers.

outliers =
$$\{16.03\}$$

We identify the ends of the whiskers: 27.55 and 49.26. We plot the boxplot.

The sample size, *n*, is 25. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 25 \rceil$	7	60.86
Q2	$\lceil 0.5 \times 25 \rceil$	13	61.68
Q3	$\lceil 0.75 imes 25 ceil$	19	62.82

We determine the IQR.

$$IQR = Q3 - Q1$$

= $62.82 - 60.86$
= 1.96

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $60.86 - 1.5 \times 1.96$
= 57.92
upper boundary = Q3 + $1.5 \times IQR$
= $62.82 + 1.5 \times 1.96$
= 65.76

We determine the outliers.

outliers =
$$\{66.27, 66.36\}$$

We identify the ends of the whiskers: 60.09 and 63.86. We plot the boxplot.

The sample size, *n*, is 40. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 40 ceil$	10	40.32
Q2	$\lceil 0.5 \times 40 \rceil$	20	40.91
Q3	$\lceil 0.75 \times 40 \rceil$	30	41.65

We determine the IQR.

$$IQR = Q3 - Q1$$

= 41.65 - 40.32
= 1.33

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $40.32 - 1.5 \times 1.33$
= 38.325
upper boundary = Q3 + $1.5 \times IQR$
= $41.65 + 1.5 \times 1.33$
= 43.645

We determine the outliers.

outliers =
$$\{43.87, 43.9\}$$

We identify the ends of the whiskers: 40 and 43.35. We plot the boxplot.

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	[0.25 × 15]	4	76.4
Q2	$\lceil 0.5 \times 15 \rceil$	8	77.99
Q3	$\lceil 0.75 imes 15 ceil$	12	79.05

We determine the IQR.

$$IQR = Q3 - Q1$$

= $79.05 - 76.4$
= 2.65

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $76.4 - 1.5 \times 2.65$
= 72.425
upper boundary = Q3 + $1.5 \times IQR$
= $79.05 + 1.5 \times 2.65$
= 83.025

We determine the outliers.

outliers =
$$\{\}$$

We identify the ends of the whiskers: 73.98 and 79.72. We plot the boxplot.

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	51.24
Q2	$\lceil 0.5 \times 32 \rceil$	16	52.49
Q3	$\lceil 0.75 \times 32 \rceil$	24	53.77

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.77 - 51.24
= 2.53

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.24 - 1.5 \times 2.53$
= 47.445
upper boundary = Q3 + $1.5 \times IQR$
= $53.77 + 1.5 \times 2.53$
= 57.565

We determine the outliers.

outliers =
$$\{57.69\}$$

We identify the ends of the whiskers: 50.24 and 55.76. We plot the boxplot.

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	42.37
Q2	$\lceil 0.5 \times 32 \rceil$	16	42.59
Q3	$\lceil 0.75 \times 32 \rceil$	24	42.68

We determine the IQR.

$$IQR = Q3 - Q1$$

= 42.68 - 42.37
= 0.31

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $42.37 - 1.5 \times 0.31$
= 41.905
upper boundary = Q3 + $1.5 \times IQR$
= $42.68 + 1.5 \times 0.31$
= 43.145

We determine the outliers.

outliers =
$$\{41.12, 41.68, 41.85\}$$

We identify the ends of the whiskers: 42.02 and 42.98. We plot the boxplot.

The sample size, *n*, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 63 ceil$	16	77.6
Q2	$\lceil 0.5 \times 63 \rceil$	32	82.64
Q3	$\lceil 0.75 \times 63 \rceil$	48	85.3

We determine the IQR.

$$IQR = Q3 - Q1$$

= $85.3 - 77.6$
= 7.7

We determine the outlier boundaries.

lower boundary = Q1
$$-1.5 \times IQR$$

= $77.6 - 1.5 \times 7.7$
= 66.05
upper boundary = Q3 + $1.5 \times IQR$
= $85.3 + 1.5 \times 7.7$
= 96.85

We determine the outliers.

outliers =
$$\{61.9, 62.75\}$$

We identify the ends of the whiskers: 70.67 and 89.88. We plot the boxplot.

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	62.41
Q2	$\lceil 0.5 \times 54 \rceil$	27	63.88
Q3	$\lceil 0.75 \times 54 \rceil$	41	66.98

We determine the IQR.

$$IQR = Q3 - Q1$$

= 66.98 - 62.41
= 4.57

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $62.41 - 1.5 \times 4.57$
= 55.555
upper boundary = Q3 + $1.5 \times IQR$
= $66.98 + 1.5 \times 4.57$
= 73.835

We determine the outliers.

outliers =
$$\{76.09, 76.58\}$$

We identify the ends of the whiskers: 60.02 and 73.48. We plot the boxplot.

The sample size, *n*, is 48. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 48 ceil$	12	71.96
Q2	$\lceil 0.5 \times 48 \rceil$	24	90.31
Q3	$\lceil 0.75 imes 48 ceil$	36	101.1

We determine the IQR.

$$IQR = Q3 - Q1$$

= 101.1 - 71.96
= 29.14

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 71.96 $- 1.5 \times 29.14$
= 28.25
upper boundary = Q3 + 1.5 $\times IQR$
= 101.1 + 1.5 \times 29.14
= 144.81

We determine the outliers.

outliers =
$$\{19.63\}$$

We identify the ends of the whiskers: 45.84 and 108.74. We plot the boxplot.

The sample size, *n*, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 63 ceil$	16	32.97
Q2	$\lceil 0.5 \times 63 \rceil$	32	33.74
Q3	$\lceil 0.75 \times 63 \rceil$	48	34.43

We determine the IQR.

$$IQR = Q3 - Q1$$

= 34.43 - 32.97
= 1.46

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $32.97 - 1.5 \times 1.46$
= 30.78
upper boundary = Q3 + $1.5 \times IQR$
= $34.43 + 1.5 \times 1.46$
= 36.62

We determine the outliers.

outliers =
$$\{30.65\}$$

We identify the ends of the whiskers: 30.91 and 34.98. We plot the boxplot.

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	43.15
Q2	$\lceil 0.5 \times 72 \rceil$	36	44.05
Q3	$\lceil 0.75 \times 72 \rceil$	54	44.59

We determine the IQR.

$$IQR = Q3 - Q1$$

= 44.59 - 43.15
= 1.44

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $43.15 - 1.5 \times 1.44$
= 40.99
upper boundary = Q3 + $1.5 \times IQR$
= $44.59 + 1.5 \times 1.44$
= 46.75

We determine the outliers.

outliers =
$$\{40.64, 40.96\}$$

We identify the ends of the whiskers: 41.26 and 44.96. We plot the boxplot.

The sample size, *n*, is 48. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 48 ceil$	12	31.48
Q2	$\lceil 0.5 \times 48 \rceil$	24	33.49
Q3	$\lceil 0.75 \times 48 \rceil$	36	36.71

We determine the IQR.

$$IQR = Q3 - Q1$$

= 36.71 - 31.48
= 5.23

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 31.48 $- 1.5 \times 5.23$
= 23.635
upper boundary = Q3 + 1.5 $\times IQR$
= 36.71 + 1.5 \times 5.23
= 44.555

We determine the outliers.

outliers =
$$\{45.3\}$$

We identify the ends of the whiskers: 30.32 and 42.36. We plot the boxplot.

The sample size, *n*, is 25. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 25 \rceil$	7	83.17
Q2	$\lceil 0.5 \times 25 \rceil$	13	85.78
Q3	$\lceil 0.75 imes 25 ceil$	19	87.76

We determine the IQR.

$$IQR = Q3 - Q1$$

= 87.76 - 83.17
= 4.59

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $83.17 - 1.5 \times 4.59$
= 76.285
upper boundary = Q3 + $1.5 \times IQR$
= $87.76 + 1.5 \times 4.59$
= 94.645

We determine the outliers.

outliers =
$$\{74.09, 74.98\}$$

We identify the ends of the whiskers: 76.87 and 89.21. We plot the boxplot.

The sample size, *n*, is 36. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 36 ceil$	9	112.43
Q2	$\lceil 0.5 \times 36 \rceil$	18	117.77
Q3	$\lceil 0.75 \times 36 \rceil$	27	123.88

We determine the IQR.

$$IQR = Q3 - Q1$$

= 123.88 - 112.43
= 11.45

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 112.43 $- 1.5 \times 11.45$
= 95.255

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 123.88 + 1.5 \times 11.45
= 141.055

We determine the outliers.

outliers =
$$\{152.26\}$$

We identify the ends of the whiskers: 103.31 and 134.74. We plot the boxplot.

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 24 \rceil$	6	76.61
Q2	$\lceil 0.5 \times 24 \rceil$	12	78
Q3	$\lceil 0.75 \times 24 \rceil$	18	78.98

We determine the IQR.

$$IQR = Q3 - Q1$$

= $78.98 - 76.61$
= 2.37

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $76.61 - 1.5 \times 2.37$
= 73.055
upper boundary = Q3 + $1.5 \times IQR$
= $78.98 + 1.5 \times 2.37$
= 82.535

We determine the outliers.

outliers =
$$\{\}$$

We identify the ends of the whiskers: 73.17 and 79.89. We plot the boxplot.

The sample size, *n*, is 18. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 18]	5	61.4
Q2	$\lceil 0.5 \times 18 \rceil$	9	61.54
Q3	$\lceil 0.75 imes 18 \rceil$	14	61.65

We determine the IQR.

$$IQR = Q3 - Q1$$

= 61.65 - 61.4
= 0.25

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 61.4 $- 1.5 \times 0.25$
= 61.025
upper boundary = Q3 + 1.5 $\times IQR$
= 61.65 + 1.5 \times 0.25
= 62.025

We determine the outliers.

outliers =
$$\{62.04\}$$

We identify the ends of the whiskers: 61.24 and 61.98. We plot the boxplot.

The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 21 \rceil$	6	54.65
Q2	$\lceil 0.5 \times 21 \rceil$	11	56.93
Q3	$\lceil 0.75 \times 21 \rceil$	16	58.48

We determine the IQR.

$$IQR = Q3 - Q1$$

= $58.48 - 54.65$
= 3.83

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.65 - 1.5 \times 3.83$
= 48.905
upper boundary = Q3 + $1.5 \times IQR$
= $58.48 + 1.5 \times 3.83$
= 64.225

We determine the outliers.

outliers =
$$\{47.51, 47.59, 48.22\}$$

We identify the ends of the whiskers: 49.77 and 59.47. We plot the boxplot.

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	45.69
Q2	$\lceil 0.5 \times 54 \rceil$	27	49.53
Q3	$\lceil 0.75 \times 54 \rceil$	41	55.82

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.82 - 45.69
= 10.13

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $45.69 - 1.5 \times 10.13$
= 30.495
upper boundary = Q3 + $1.5 \times IQR$
= $55.82 + 1.5 \times 10.13$
= 71.015

We determine the outliers.

outliers =
$$\{25.73\}$$

We identify the ends of the whiskers: 33.48 and 59.75. We plot the boxplot.

The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 21 \rceil$	6	66.54
Q2	$\lceil 0.5 \times 21 \rceil$	11	67.84
Q3	$\lceil 0.75 \times 21 \rceil$	16	73.88

We determine the IQR.

$$IQR = Q3 - Q1$$

= 73.88 - 66.54
= 7.34

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $66.54 - 1.5 \times 7.34$
= 55.53
upper boundary = Q3 + $1.5 \times IQR$
= $73.88 + 1.5 \times 7.34$
= 84.89

We determine the outliers.

outliers =
$$\{48.53\}$$

We identify the ends of the whiskers: 61.09 and 79.93. We plot the boxplot.

The sample size, *n*, is 12. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 12]	3	83.15
Q2	$[0.5 \times 12]$	6	92.09
Q3	$\lceil 0.75 \times 12 \rceil$	9	102.85

We determine the IQR.

$$IQR = Q3 - Q1$$

= 102.85 - 83.15
= 19.7

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $83.15 - 1.5 \times 19.7$
= 53.6
upper boundary = Q3 + $1.5 \times IQR$
= $102.85 + 1.5 \times 19.7$
= 132.4

We determine the outliers.

outliers =
$$\{155.61\}$$

We identify the ends of the whiskers: 73.41 and 115.99. We plot the boxplot.

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	29.19
Q2	$\lceil 0.5 imes 72 \rceil$	36	36.46
Q3	$\lceil 0.75 \times 72 \rceil$	54	53.68

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.68 - 29.19
= 24.49

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 29.19 $- 1.5 \times 24.49$
= -7.545
upper boundary = Q3 + 1.5 $\times IQR$
= 53.68 + 1.5 $\times 24.49$
= 90.415

We determine the outliers.

outliers =
$$\{96.3\}$$

We identify the ends of the whiskers: 20.57 and 80.15. We plot the boxplot.

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	92.55
Q2	$\lceil 0.5 \times 72 \rceil$	36	107.62
Q3	$\lceil 0.75 \times 72 \rceil$	54	120.44

We determine the IQR.

$$IQR = Q3 - Q1$$

= 120.44 - 92.55
= 27.89

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $92.55 - 1.5 \times 27.89$
= 50.715
upper boundary = Q3 + $1.5 \times IQR$
= $120.44 + 1.5 \times 27.89$
= 162.275

We determine the outliers.

We identify the ends of the whiskers: 52.08 and 129.92. We plot the boxplot.

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Х
Q1	$\lceil 0.25 \times 56 \rceil$	14	11.94
Q2	$\lceil 0.5 \times 56 \rceil$	28	12.41
Q3	$\lceil 0.75 \times 56 \rceil$	42	12.74

We determine the IQR.

$$IQR = Q3 - Q1$$

= 12.74 - 11.94
= 0.8

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $11.94 - 1.5 \times 0.8$
= 10.74
upper boundary = Q3 + $1.5 \times IQR$
= $12.74 + 1.5 \times 0.8$

We determine the outliers.

outliers =
$$\{10.51, 10.56\}$$

= 13.94

We identify the ends of the whiskers: 10.75 and 12.99. We plot the boxplot.

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	54.41
Q2	$\lceil 0.5 \times 54 \rceil$	27	54.81
Q3	$\lceil 0.75 \times 54 \rceil$	41	55.28

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.28 - 54.41
= 0.87

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.41 - 1.5 \times 0.87$
= 53.105
upper boundary = Q3 + $1.5 \times IQR$
= $55.28 + 1.5 \times 0.87$
= 56.585

We determine the outliers.

outliers =
$$\{52.99\}$$

We identify the ends of the whiskers: 53.6 and 56.48. We plot the boxplot.

The sample size, *n*, is 27. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 27 \rceil$	7	51.36
Q2	$\lceil 0.5 \times 27 \rceil$	14	51.51
Q3	$\lceil 0.75 \times 27 \rceil$	21	51.64

We determine the IQR.

$$IQR = Q3 - Q1$$

= 51.64 - 51.36
= 0.28

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.36 - 1.5 \times 0.28$
= 50.94
upper boundary = Q3 + $1.5 \times IQR$
= $51.64 + 1.5 \times 0.28$
= 52.06

We determine the outliers.

outliers =
$$\{50.92\}$$

We identify the ends of the whiskers: 51.04 and 52.02. We plot the boxplot.

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 24 \rceil$	6	51.45
Q2	$\lceil 0.5 \times 24 \rceil$	12	51.57
Q3	$\lceil 0.75 \times 24 \rceil$	18	51.71

We determine the IQR.

$$IQR = Q3 - Q1$$

= 51.71 - 51.45
= 0.26

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.45 - 1.5 \times 0.26$
= 51.06
upper boundary = Q3 + $1.5 \times IQR$
= $51.71 + 1.5 \times 0.26$
= 52.1

We determine the outliers.

outliers =
$$\{52.3\}$$

We identify the ends of the whiskers: 51.19 and 51.84. We plot the boxplot.

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 28 ceil$	7	53.31
Q2	$\lceil 0.5 \times 28 \rceil$	14	56.66
Q3	$\lceil 0.75 \times 28 \rceil$	21	62.35

We determine the IQR.

$$IQR = Q3 - Q1$$

= $62.35 - 53.31$
= 9.04

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $53.31 - 1.5 \times 9.04$
= 39.75
upper boundary = Q3 + $1.5 \times IQR$
= $62.35 + 1.5 \times 9.04$
= 75.91

We determine the outliers.

outliers =
$$\{76.64, 77.13\}$$

We identify the ends of the whiskers: 50.45 and 70.42. We plot the boxplot.

The sample size, *n*, is 30. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 30 ceil$	8	53.42
Q2	$\lceil 0.5 imes 30 ceil$	15	54.03
Q3	$\lceil 0.75 \times 30 \rceil$	23	54.72

We determine the IQR.

$$IQR = Q3 - Q1$$

= 54.72 - 53.42
= 1.3

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $53.42 - 1.5 \times 1.3$
= 51.47
upper boundary = Q3 + $1.5 \times IQR$
= $54.72 + 1.5 \times 1.3$
= 56.67

We determine the outliers.

outliers =
$$\{51.28\}$$

We identify the ends of the whiskers: 52.01 and 54.98. We plot the boxplot.

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	12.24
Q2	$\lceil 0.5 \times 54 \rceil$	27	12.49
Q3	$\lceil 0.75 \times 54 \rceil$	41	12.75

We determine the IQR.

$$IQR = Q3 - Q1$$

= 12.75 - 12.24
= 0.51

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $12.24 - 1.5 \times 0.51$
= 11.475
upper boundary = Q3 + $1.5 \times IQR$
= $12.75 + 1.5 \times 0.51$
= 13.515

We determine the outliers.

outliers =
$$\{11.32\}$$

We identify the ends of the whiskers: 11.83 and 13.26. We plot the boxplot.

The sample size, *n*, is 20. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 20 ceil$	5	54.53
Q2	$\lceil 0.5 \times 20 \rceil$	10	54.92
Q3	$\lceil 0.75 \times 20 \rceil$	15	55.45

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.45 - 54.53
= 0.92

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.53 - 1.5 \times 0.92$
= 53.15
upper boundary = Q3 + $1.5 \times IQR$
= $55.45 + 1.5 \times 0.92$
= 56.83

We determine the outliers.

outliers =
$$\{56.91\}$$

We identify the ends of the whiskers: 53.58 and 56.28. We plot the boxplot.

The sample size, *n*, is 27. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 imes 27 ceil$	7	10.21
Q2	$\lceil 0.5 \times 27 \rceil$	14	10.56
Q3	$\lceil 0.75 \times 27 \rceil$	21	10.89

We determine the IQR.

$$IQR = Q3 - Q1$$

= 10.89 - 10.21
= 0.68

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $10.21 - 1.5 \times 0.68$
= 9.19
upper boundary = Q3 + $1.5 \times IQR$
= $10.89 + 1.5 \times 0.68$
= 11.91

We determine the outliers.

outliers =
$$\{12.16\}$$

We identify the ends of the whiskers: 10.02 and 11.72. We plot the boxplot.

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	33.23
Q2	$\lceil 0.5 \times 56 \rceil$	28	34.14
Q3	$\lceil 0.75 \times 56 \rceil$	42	34.7

We determine the IQR.

$$IQR = Q3 - Q1$$

= 34.7 - 33.23
= 1.47

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $33.23 - 1.5 \times 1.47$
= 31.025

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 34.7 + 1.5 \times 1.47
= 36.905

We determine the outliers.

outliers =
$$\{30.85\}$$

We identify the ends of the whiskers: 31.76 and 35. We plot the boxplot.

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	28.05
Q2	$\lceil 0.5 \times 56 \rceil$	28	30.11
Q3	$\lceil 0.75 \times 56 \rceil$	42	31.76

We determine the IQR.

$$IQR = Q3 - Q1$$

= 31.76 - 28.05
= 3.71

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 28.05 $- 1.5 \times 3.71$
= 22.485
upper boundary = Q3 + 1.5 $\times IQR$
= 31.76 + 1.5 \times 3.71
= 37.325

We determine the outliers.

outliers =
$$\{22.19\}$$

We identify the ends of the whiskers: 23.41 and 36.87. We plot the boxplot.

