

FCC Test Report

FCC ID : 2ADYF-A20

Equipment : 802.11 AC Wireless Internet Router

Model No. : A20

Brand Name : Art2Wave

Applicant : Art2Wave Inc

Address : 1901 South Bascom Ave, Suite 1300,

Campbell, CA 95008, USA

Standard : 47 CFR FCC Part 15.407

Received Date : Mar. 19, 2015

Tested Date : Apr. 14 ~ Apr. 27, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Ilac-MRA

TAF)
Testing Laboratory

Report No.: FR531903AN Page: 1 of 127

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	9
1.5	Testing Applied Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	10
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	
3	TRANSMITTER TEST RESULTS	14
3.1	Conducted Emissions	14
3.2	Emission Bandwidth	31
3.3	RF Output Power	36
3.4	Peak Power Spectral Density	39
3.5	Transmitter Radiated and Band Edge Emissions	45
3.6	Frequency Stability	124
4	TEST LABORATORY INFORMATION	127

Release Record

Report No.	Version	Description	Issued Date
FR531903AN	Rev. 01	Initial issue	May 25, 2015

Report No.: FR531903AN Page : 3 of 127

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.434MHz 41.61 (Margin -5.56dB) – AV	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5000.00MHz 53.00 (Margin -1.00dB) – AV [dBuV/m at 3m]: 5150.00MHz 53.00 (Margin -1.00dB) – AV	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: Non-beamforming mode 5150-5250MHz: 17.51 5725-5850MHz: 24.17 Beamforming mode 5150-5250MHz: 14.25 5725-5850MHz: 24.12	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR531903AN Page: 4 of 127

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
5150-5250	а	5180-5240	36-48 [4]	1	6-54 Mbps	
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	MCS 0-15	
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	MCS 0-15	
5150-5250	ac (VHT20)	5180-5240	36-48 [4]	2	MCS 0-9	
5150-5250	ac (VHT40)	5190-5230	38-46 [2]	2	MCS 0-9	
5150-5250	ac (VHT80)	5210	42 [1]	2	MCS 0-9	

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 3: 802.11n/ac supports beamforming mode.

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
5725-5850	а	5745-5825	149-165 [5]	1	6-54 Mbps		
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	MCS 0-15		
5725-5850	n (HT40)	5755-5795	151-159 [2]	2	MCS 0-15		
5725-5850	ac (VHT20)	5745-5825	149-165 [5]	2	MCS 0-9		
5725-5850	ac (VHT40)	5755-5795	151-159 [2]	2	MCS 0-9		
5725-5850	ac (VHT80)	5775	155 [1]	2	MCS 0-9		

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 3: 802.11n/ac supports beamforming mode.

1.1.2 Antenna Details

Ant. No.	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)		
AIII. NO.	Туре	Connector	2400~2483.5	5150~5250	5725~5850
1	PIFA	UFL	3.5	5.4	6.2

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 12Vdc from adapter 56Vdc from POE (POE is for support unit only)	
---	--

Report No.: FR531903AN Page: 5 of 127

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
		Brand Name: DVE				
	AC Adapter	Model Name: DSA-20CA-12				
1		Power Rating: I/P: 100-240Vac, 50/60Hz, 0.8A O/P: 12Vdc, 1.5A				
		Power Line: 1.5m non-shielded cable w/o core				
2	RJ45 cable	1.5m non-shielded cable without core				

1.1.5 Channel List

For Frequency band 5150-5250 MHz					
802.11 a / I	HT20 / VHT20	HT40 /	VHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)		
36	5180	38	5190		
40	5200	46	5230		
44	5220	VH ⁻	Г 80		
48	5240	42	5210		

For Frequency band 5725~5850 MHz					
802.11 a / F	T20 / VHT20	HT40 /	VHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)		
149	5745	151	5755		
153	5765	159	5795		
157	5785	VHT80			
161	5805	155	5775		
165	5825				

1.1.6 Test Tool and Duty Cycle

Test Tool	Hyperterminal, Version: 5.1				
	Mada	Non-Beamforming		Beamforming	
	Mode	Duty cycle (%)	Duty factor (dB)	Duty cycle (%)	Duty factor (dB)
Duty Cycle and Duty Footor	11a	99.29%	0.03		
Duty Cycle and Duty Factor	VHT20	99.26%	0.03	98.10%	0.08
	VHT40	98.23%	0.08	98.47%	0.07
	VHT80	95.27%	0.21	98.07%	0.08

Report No.: FR531903AN Page: 6 of 127

1.1.7 Power Setting

For Frequency band 5150-5250 MHz						
Modulation Mode	Test Frequency (MHz)	Powe	r Set			
Woddiation Wode	rest Frequency (WHZ)	Non-Beamforming	Beamforming			
11a	5180	64				
11a	5200	64				
11a	5240	64				
HT20	5180	46	44			
HT20	5200	46	44			
HT20	5240	46	44			
HT40	5190	62	48			
HT40	5230	62	48			
VHT20	5180	46	44			
VHT20	5200	46	44			
VHT20	5240	46	44			
VHT40	5190	62	48			
VHT40	5230	62	48			
VHT80	5210	54	46			

For Frequency band 5725~5850 MHz						
Modulation Mode	Test Frequency (MHz)	Powe	Power Set			
Wodulation Wode	rest Frequency (MHZ)	Non-Beamforming	Beamforming			
11a	5745	74				
11a	5785	90				
11a	5825	86				
HT20	5745	70	66			
HT20	5785	90	90			
HT20	5825	84	78			
HT40	5755	68	64			
HT40	5795	86	82			
VHT20	5745	70	66			
VHT20	5785	90	90			
VHT20	5825	84	78			
VHT40	5755	68	64			
VHT40	5795	86	82			
VHT80	5775	58	56			

Report No.: FR531903AN Page: 7 of 127

1.2 Local Support Equipment List

Support Equipment List							
No. Equipment Brand Model FCC ID Signal cable / L							
1	Notebook	DELL	Latitude E5420	DoC	RJ45, 8m non-shielded.		
2	POE	CISCO	AIR-PWRINJ1500-2		RJ45, 8m non-shielded.		

Note: POE is provided by applicant.

1.3 Test Setup Chart

Report No.: FR531903AN Page: 8 of 127

1.4 The Equipment List

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)							
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until							
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015				
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015				
RF Cable-CON Woken CFD200-NL CFD200-NL-001 Dec. 31, 2014 Dec. 30, 2015									
Measurement Software AUDIX e3 6.120210k NA NA NA									
Note: Calibration Interval of instruments listed above is one year.									

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (03CH03-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015			
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015			
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015			
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015			
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015			
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016			
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016			
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Int	erval of instruments lis	sted above is one year.						

Report No.: FR531903AN Page: 9 of 127

Test Item	RF Conducted							
Test Site	(TH01-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016			
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015			
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015			
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015			
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA			
Note: Calibration Inte	rval of instruments liste	d above is one year.						

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01

Note: FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 02, 2014.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters Un						
Bandwidth	±34.134 Hz					
Conducted power	±0.808 dB					
Frequency error	±34.134 Hz					
Power density	±0.463 dB					
Conducted emission	±2.670 dB					
AC conducted emission	±2.92 dB					
Radiated emission ≤ 1GHz	±3.99 dB					
Radiated emission > 1GHz	±5.52 dB					
Time	±0.1%					
Temperature	±0.6 °C					

Report No.: FR531903AN Page: 10 of 127

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	20°C / 66%	Kevin Ma
Radiated Emissions	03CH03-WS	24°C / 61%	Aska Huang Anderson Hung
RF Conducted	TH01-WS	22°C / 61%	Felix Sung

FCC site registration No.: 390588IC site registration No.: 10807C-1

Report No.: FR531903AN Page: 11 of 127

2.2 The Worst Test Modes and Channel Details

For Frequency band 5150-5250 MHz						
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration		
Conducted Emissions	VHT40	5230	MCS 0	1, 2, 3, 4		
Radiated Emissions ≤1GHz	VHT40	5230	MCS 0	1, 2, 3, 4		
	11a	5180 / 5200 / 5240	6 Mbps			
	HT20	5180 / 5200 / 5240	MCS 0			
RF Output Power	HT40	5190 / 5230	MCS 0	1, 3		
Kr Odipul rowei	VHT20	5180 / 5200 / 5240	MCS 0			
	VHT40	5190 / 5230	MCS 0			
	VHT80	5210	MCS 0	İ		
	11a	5180 / 5200 / 5240	6 Mbps			
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0	4		
Emission Bandwidth Peak Power Spectral Density	VHT40	5190 / 5230	MCS 0	1		
	VHT80	5210	MCS 0			
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0			
Emission Bandwidth	VHT40	5190 / 5230	MCS 0	3		
Peak Power Spectral Density	VHT80	5210	MCS 0			

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. Test configurations are listed as below:
 - 1) Configuration 1: Non-beamforming mode, Adapter mode
 - 2) Configuration 2: Non-beamforming mode, PoE mode
 - 3) Configuration 3: Beamforming mode, Adapter mode
 - 4) Configuration 2: Beamforming mode, PoE mode

Report No.: FR531903AN Page: 12 of 127

For Frequency band 5725-5850 MHz						
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration		
Conducted Emissions	VHT20	5785	MCS 0	1, 2, 3, 4		
Radiated Emissions ≤1GHz	VHT20	5785	MCS 0	1, 2, 3, 4		
	11a	5745 / 5785 / 5825	6 Mbps			
	HT20	5745 / 5785 / 5825	MCS 0			
RF Output Power	HT40	5755 / 5795	MCS 0	4.0		
Tri Odiput i Owei	VHT20	5745 / 5785 / 5825	MCS 0	1, 3		
	VHT40	5755 / 5795	MCS 0			
	VHT80	5775	MCS 0			
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps			
Emission Bandwidth	VHT20	5745 / 5785 / 5825	MCS 0			
6dB bandwidth	VHT40	5755 / 5795	MCS 0	1		
Peak Power Spectral Density	VHT80	5775	MCS 0			
Radiated Emissions >1GHz Emission Bandwidth 6dB bandwidth Peak Power Spectral Density	VHT20 VHT40 VHT80	5745 / 5785 / 5825 5755 / 5795 5775	MCS 0 MCS 0 MCS 0	3		
Frequency Stability	Un-modulation	5785		1, 3		

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. Test configurations are listed as below:
 - 1) Configuration 1: Non-beamforming mode, Adapter mode
 - 2) Configuration 2: Non-beamforming mode, PoE mode
 - 3) Configuration 3: Beamforming mode, Adapter mode
 - 4) Configuration 2: Beamforming mode, PoE mode

Report No.: FR531903AN Page: 13 of 127

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR531903AN Page: 14 of 127

3.1.4 Test Result of Conducted Emissions

Non- beamforming mode

	MHz	dBu∀	Line dBuV	Limit dB	Level dBuV	factor dB	loss dB	Remark
1*	0.439	39.12	47.09	-7.97	38.94	0.07	0.11	Average
2	0.439	42.45	57.09	-14.64	42.27	0.07	0.11	QP
3	1.568	28.67	46.00	-17.33	28.37	0.09	0.21	Average
4	1.568	33.76	56.00	-22.24	33.46	0.09	0.21	QP
5	4.478	30.15	46.00	-15.85	29.71	0.13	0.31	Average
6	4.478	42.66	56.00	-13.34	42.22	0.13	0.31	QP
7	5.031	30.80	50.00	-19.20	30.35	0.14	0.31	Average
8	5.031	38.34	60.00	-21.66	37.89	0.14	0.31	QP
9	11.076	40.66	50.00	-9.34	40.15	0.23	0.28	Average
10	11.076	45.78	60.00	-14.22	45.27	0.23	0.28	QP
11	18.571	41.11	50.00	-8.89	40.73	0.31	0.07	Average
12	18.571	43.37	60.00	-16.63	42.99	0.31	0.07	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dB) = Level (dBuV) - Limit Line (dBuV).

Report No.: FR531903AN Page: 15 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Power Phase	Neutral	Test Configuration	1

	Freq	Level	Limit	Over	Read	LISN	cable	
			Line	Limit	Level	factor	loss	Remark
	MHz	dBu∀	dBuV	dB	dBu∀	dB	dB	
1*	0.435	41.21	47.16	-5.95	41.03	0.07	0.11	Average
2	0.435	44.13	57.16	-13.03	43.95	0.07	0.11	QP
3	0.712	31.66	46.00	-14.34	31.44	0.08	0.14	Average
4	0.712	37.29	56.00	-18.71	37.07	0.08	0.14	QP
5	1.636	23.45	46.00	-22.55	23.14	0.09	0.22	Average
6	1.636	34.12	56.00	-21.88	33.81	0.09	0.22	QP
7	4.478	30.42	46.00	-15.58	29.97	0.14	0.31	Average
8	4.478	44.90	56.00	-11.10	44.45	0.14	0.31	QP
9	11.257	30.38	50.00	-19.62	29.86	0.25	0.27	Average
10	11.257	36.17	60.00	-23.83	35.65	0.25	0.27	QP
11	18.820	33.81	50.00	-16.19	33.42	0.33	0.06	Average
12	18.820	38.87	60.00	-21.13	38.48	0.33	0.06	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 16 of 127

40 30 20 10	VHT	HT20	Test Freq. (MHz)	5785	
Trequency (MHz) Freq Level Limit Limit Level factor loss Remark MHz dBuV dB dBuV dB dBuV dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.17 27.12 0.43 0.28 QP 11 4.574 27.58 46.00 -18.19 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.19 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.19 36.35 0.43 0.28 Average	Line	ine	Test Configuration	1	
Treq Level Limit Line Limit Level factor loss Remark dBuV dB dB dBuV dB dB dBuV dB dB dBuV dB dBuV dB dBuV dB d					
Treq Level Limit Line Limit Level factor loss Remark dBuV dB dB dBuV dB dB dBuV dB dB dBuV dB dBuV dB dBuV dB d	vel (dBuV)				
CISPR/CNS//Co 10 20 20 20 20 20 20 20 20 20 20 20 20 20					
CISPR/CNS/VC 10 10 10 10 10 10 10 10 10 1					
1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 47.37 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 QP 5* 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.42 26.95 0.32 0.31 Average			CIS	SPR/CNS/VCCI-B	
Trequency (MHz) Trequency			CISPF	R/CNS/VCCI-B AV	
30 20 10 0.150.2 0.5 1 2 Frequency (MHz) Freq Level Limit Over Limit Limit Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.06 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average			12		
20 10 0.150.2 0.5 1 2 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dB dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 QP 5* 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.17 27.12 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	₩₩₩			distriction with	
10 0.150.2 0.5 1 2 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -93.6 40.46 0.21 0.10 QP 5* 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average				ALL ALLING MANAL LUKTY	
Onto 150.2 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark dBuV dB dB Onto 150.38.38 56.00 -17.62 37.38 0.92 0.08 Average Onto 150.49.96 66.00 -16.04 48.96 0.92 0.08 QP Onto 150.49.96 0.70 -20.31 41.06 0.23 0.10 Average Onto 150.49.96 0.70 -20.31 41.06 0.23 0.10 QP Onto 150.49 0.70 -70.13 -93.6 40.46 0.21 0.10 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 0.70 QP Onto 150.49 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7		<u> </u>		11.64.17	
Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average					
Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average					
Line Limit Level factor loss Remark MHz dBuV dB dBuV dB dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 QP 11 2.54 27.58 46.00 -18.94 36.35 0.43 0.28 QP	50.2			20 30	
MHz dBuV dBuV dB dBuV dB dB dBuV dB dB 1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	Freq Leve				
1 0.150 38.38 56.00 -17.62 37.38 0.92 0.08 Average 2 0.150 49.96 66.00 -16.04 48.96 0.92 0.08 QP 3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	MHz dBu	dBuV dBuV dB dBuV	dB dB		
3 0.252 37.71 51.70 -13.99 37.38 0.23 0.10 Average 4 0.252 41.39 61.70 -20.31 41.06 0.23 0.10 QP 5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average			0.92 0.08 Average		
5* 0.304 40.77 50.13 -9.36 40.46 0.21 0.10 Average 6 0.304 41.85 60.13 -18.28 41.54 0.21 0.10 QP 7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	0.252 37.7	7.71 51.70 -13.99 37.38	0.23 0.10 Average		
7 0.456 30.81 46.76 -15.95 30.52 0.17 0.12 Average 8 0.456 33.96 56.76 -22.80 33.67 0.17 0.12 QP 9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	0.304 40.7	0.77 50.13 -9.36 40.46	0.21 0.10 Average		
9 2.900 27.83 46.00 -18.17 27.12 0.43 0.28 Average 10 2.900 37.06 56.00 -18.94 36.35 0.43 0.28 QP 11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average	0.456 30.8	0.81 46.76 -15.95 30.52	0.17 0.12 Average		
11 4.574 27.58 46.00 -18.42 26.95 0.32 0.31 Average					
- The state of the			~		

Report No.: FR531903AN Page: 17 of 127

Modulation	VHT20	Test Freq. (MHz)	5785	
Power Phase	Neutral	Test Configuration	1	
80 Level (dBu	ıV)			
70 60			SPR/CNS/VCCI-B	
50 40 30		CISPI	Whypphala	
10	V			
00.150.2	0.5 1 Frequ	2 5 10 ency (MHz)	20 30	
Freq MHz		LISN cable factor loss Remark dB dB		
4 0.253 5* 0.302 6 0.302 7 0.454 8 0.454 9 3.041 10 3.041 11 4.549		0.53 0.28 Average 0.53 0.28 QP		

Report No.: FR531903AN Page: 18 of 127

Modulation		VHT4	0			Test F	req. (N	/IHz)		5230	
Power Phase		Line				Test Configuration				2		
	aval (dBu	ın.										
80 ^L	_evel (dBu	v)										
70-												
											CISPR/CNS/	VCCLB
60											CISPRICINS	VCCI-B
50										CI	SPR/CNS/VC	CI-B AV
	Mich Man	8	+				110					
40	``` 		8		1 - 66-41	a hadiddd	1904 II	l.				
30	- TV 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	᠕ᠰᠰ	4 4 / M	MATHER THE				Myh	HALINA MA	444	Mad de la company de la compa	₩—
	1 1	/" / "	1 WW.	.,,1111,, 1	₩'	. 11 11 11 11	, Man, 1	' '	hulkur		, but	John Maria
20		W										
10												
0	0.150.2		0.5	1	Frequ	2 iency (MH	1-1	5		1	0 2	20 3
	P	T1	+ 1 1 x	0								
	Freq	Level	Limit	Over Limit	Read Level	LISN factor	cable loss	Rer	nark			
	MU	dBuV	dBu∀	dB	dBu∀	dB	dB					
	MHz											
1	0.150	31.78		-24.22	30.78	0.92	0.08		erage	:		
1 2 3		31.78 47.98	66.00	-24.22 -18.02 -16.85	30.78 46.98 34.69	0.92 0.92 0.23		QP	_			
2 3 4	0.150 0.150 0.247 0.247	31.78 47.98 35.02 40.78	66.00 51.87 61.87	-18.02 -16.85 -21.09	46.98 34.69 40.45	0.92 0.23 0.23	0.08 0.08 0.10 0.10	QP Ave	erage			
2	0.150 0.150 0.247	31.78 47.98 35.02 40.78 39.89	66.00 51.87 61.87 50.11	-18.02 -16.85	46.98 34.69	0.92 0.23	0.08 0.08 0.10	QP Ave QP Ave	_			
2 3 4 5* 6 7	0.150 0.150 0.247 0.247 0.305 0.305 0.456	31.78 47.98 35.02 40.78 39.89 41.61 28.74	66.00 51.87 61.87 50.11 60.11 46.76	-18.02 -16.85 -21.09 -10.22 -18.50 -18.02	46.98 34.69 40.45 39.58 41.30 28.45	0.92 0.23 0.23 0.21 0.21 0.17	0.08 0.08 0.10 0.10 0.10 0.10	QP QP Ave QP Ave	erage	:		
2 3 4 5* 6	0.150 0.150 0.247 0.247 0.305 0.305	31.78 47.98 35.02 40.78 39.89 41.61 28.74 33.64	66.00 51.87 61.87 50.11 60.11 46.76 56.76	-18.02 -16.85 -21.09 -10.22 -18.50	46.98 34.69 40.45 39.58 41.30	0.92 0.23 0.23 0.21 0.21 0.17	0.08 0.08 0.10 0.10 0.10 0.10	QP QP Ave QP Ave QP	erage erage	:		
2 3 4 5* 6 7 8	0.150 0.150 0.247 0.247 0.305 0.305 0.456	31.78 47.98 35.02 40.78 39.89 41.61 28.74 33.64 26.85 35.86	66.00 51.87 61.87 50.11 60.11 46.76 56.76 46.00 56.00	-18.02 -16.85 -21.09 -10.22 -18.50 -18.02 -23.12 -19.15 -20.14	46.98 34.69 40.45 39.58 41.30 28.45 33.35	0.92 0.23 0.23 0.21 0.21 0.17 0.17 0.41	0.08 0.08 0.10 0.10 0.10 0.12 0.12 0.28 0.28	QP Ave QP Ave QP Ave QP Ave	erage erage erage erage			

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 19 of 127

Modulation	VHT40	Test Freq. (MHz)	5230	
Power Phase	Neutral	Test Configuration	2	
80 Level (dBu	uV)			
70			SDD/GNS4/GGLD	
50			SPR/CNS/VCCI-B R/CNS/VCCI-B AV	
30			Made Marine Mari	
10			10.410	
0.150.2	0.5 1 Frequ	2 5 10 ency (MHz)	20 30	
Freq MHz		LISN cable factor loss Remark dB dB		
1 0.150 2 0.150 3 0.252 4 0.252	49.45 66.00 -16.55 48.52 38.51 51.69 -13.18 38.21	0.85 0.08 Average 0.85 0.08 QP 0.20 0.10 Average 0.20 0.10 QP		
5* 0.303 6 0.303 7 0.454 8 0.454 9 3.090	3 42.99 60.16 -17.17 42.72 4 30.19 46.80 -16.61 29.92 4 33.71 56.80 -23.09 33.44	0.17 0.10 Average 0.17 0.10 QP 0.15 0.12 Average 0.15 0.12 QP 0.55 0.28 Average		
10 3.090 11 4.501 12 4.501	35.31 56.00 -20.69 34.48 26.47 46.00 -19.53 25.45	0.55 0.28 QP 0.71 0.31 Average 0.71 0.31 QP		

Report No.: FR531903AN Page: 20 of 127

Modulation			VHT2	0			Test F	req. (N	(Hz		5	785	
Power Phase			Line	Line				Configu	ıratio	n	2		
											,		
	80 ^{Le}	evel (dBu	(V)				T						
	70												
	,												
	60										CISPE	R/CNS/V	CCI-B
										С	SPR/C	NS/VCC	I-B AV
	50		7								Mal.		
	40		<u> </u>					I P	M. k		9 M	Mary Mary	A/A
	- 17	W. J.C.M	' W\ ./I	\ 18k P	MAN.	aa A A Aaa	i Aawaa daa i	MAN MAN 5	+ H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maha.		11	Mary
	30	AL A	LAND .	M. 2 M.	M MILLY	M M A M	∖, , , , 	MAN A	1 70	11'			
	20												
	-												
	10												
	0.	150.2		0.5	1	Frequ	2 ency (MH	 7)	5		10	20	;
		Fred	Level	Limit	Over	Read	LISN	cable					
		rreq	Tevel	Line			factor		Rema	rk			
		MHz	dBu∀ 	dBu√	dB	dBu∀ 	dB	dB					
1*		0.428		47.29		39.12	0.07	0.11		age			
2		0.428		57.29 46.00			0.07 0.07	0.11	QP Aver	age			
4		0.573	34.86	56.00	-21.14	34.66	0.07	0.13	QP				
5 6		4.525 4.525	30.74 40.38	46.00 56.00			0.13		Aver	age			
7		5.194	29.67	50.00	-20.33	29.21	0.15	0.31	Aver	age			
8			35.16 39.41				0.15		QP Aver	age			
10		11.683	45.09	60.00	-14.91	44.60	0.23	0.26	QP				
11 12			31.60 36.70						Aver QP	age			
		20.003	00170	00.00	20100	33.31	3.33	3.03	*-				

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 21 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Power Phase	Neutral	Test Configuration	2
80 Level (dl 70	BuV)	CIS	SPR/CNS/VCCI-B
50 40 30 20		CISPE	RICNS/VCCI-B AV
10			
0.150.2	0.5 1 Fr	2 5 10 equency (MHz)	20 30
	Line Limit Lev	ad LISN cable el factor loss Remark uV dB dB	
2 0.4 3 0.5 4 0.5 5 1.5 6 1.5 7 4.5 8 4.5 9 11.2 10 11.2 11 18.0	26 39.72 47.33 -7.61 39. 26 43.89 57.33 -13.44 43. 58 32.36 46.00 -13.64 32. 58 37.51 56.00 -18.49 37. 52 30.84 46.00 -15.16 30. 52 36.51 56.00 -19.49 36. 74 30.86 46.00 -15.14 30. 74 41.32 56.00 -14.68 40. 57 33.12 50.00 -16.88 32. 57 38.79 60.00 -21.21 38. 39 32.63 50.00 -17.37 32. 39 37.89 60.00 -22.11 37.	71 0.07 0.11 QP 16 0.07 0.13 Average 31 0.07 0.13 QP 54 0.09 0.21 Average 21 0.09 0.21 QP 41 0.14 0.31 Average 87 0.14 0.31 QP 60 0.25 0.27 QP 22 0.32 0.09 Average	
	tead Level (dBuV) + LISN F - Level (dBuV) – Limit Line (actor (dB) + Cable Loss (dB).	

Report No.: FR531903AN Page: 22 of 127

Beamforming mode

			Line	Limit	Level	factor	loss	Remark
	MHz	dBu∀	dBu∀	dB	dBu∀	dB	dB	
1*	0.437	40.03	47.11	-7.08	39.85	0.07	0.11	Average
2	0.437	43.33	57.11	-13.78	43.15	0.07	0.11	QP
3	0.570	30.90	46.00	-15.10	30.70	0.07	0.13	Average
4	0.570	36.45	56.00	-19.55	36.25	0.07	0.13	QP
5	1.698	28.91	46.00	-17.09	28.59	0.10	0.22	Average
6	1.698	34.18	56.00	-21.82	33.86	0.10	0.22	QP
7	4.598	28.04	46.00	-17.96	27.60	0.13	0.31	Average
8	4.598	41.65	56.00	-14.35	41.21	0.13	0.31	QP
9	11.198	40.98	50.00	-9.02	40.48	0.23	0.27	Average
10	11.198	46.15	60.00	-13.85	45.65	0.23	0.27	QP
11	16.928	31.43	50.00	-18.57	31.01	0.29	0.13	Average
12	16.928	36.59	60.00	-23.41	36.17	0.29	0.13	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 23 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Power Phase	Neutral	Test Configuration	3

			Line	Limit	Level	factor	loss	Remark
	MHz	dBuV	dBuV	dB	dBu∀	dB	dB	
1*	0.437	40.71	47.11	-6.40	40.53	0.07	0.11	Average
2	0.437	44.93	57.11	-12.18	44.75	0.07	0.11	QP
3	0.708	32.22	46.00	-13.78	32.00	0.08	0.14	Average
4	0.708	37.72	56.00	-18.28	37.50	0.08	0.14	QP
5	1.636	26.82	46.00	-19.18	26.51	0.09	0.22	Average
6	1.636	37.84	56.00	-18.16	37.53	0.09	0.22	QP
7	4.549	29.50	46.00	-16.50	29.05	0.14	0.31	Average
8	4.549	41.63	56.00	-14.37	41.18	0.14	0.31	QP
9	11.198	33.87	50.00	-16.13	33.35	0.25	0.27	Average
10	11.198	39.08	60.00	-20.92	38.56	0.25	0.27	QP
11	17.109	32.76	50.00	-17.24	32.32	0.32	0.12	Average
12	17.109	37.96	60.00	-22.04	37.52	0.32	0.12	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 24 of 127

Modulation	VHT20		Test Freq.	(MHz)	5785
Power Phase	Line		Test Confi	iguration	3
			•		
80 Level (d	BuV)				
70					
70					
60				CI	SPR/CNS/VCCI-B
50				CISP	R/CNS/VCCI-B AV
50					
40	4 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	
_ [WW]		A ANT AND MEDIAM		Manufactura de la Joseph	Manadan Alay
30	[┍] ╏╲┢╢╏╶ [╏] ╶┢╃╏┩┨╁╏┼	IN III HAYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY	9 1/1	MII I III MANAYAYAY	Las Martinary Comp
20		diff the second	11	'	The state of the s
		1			
10					
0.150.2	0.5	1 Frequ	2 iency (MHz)	5 10	20 30
E	or Tomol Timit	•		1.0	
rr	eq Level Limit Line		LISN cab factor lo	ie ss Remark	
M	Hz dBuV dBuV	dB dBuV	dB	dB	
1 0.1	50 36.23 56.00			08 Average	
2 0.1	50 48.46 66.00 51 37.87 51.72	-17.54 47.46 -13.85 37.54		08 QP 10 Average	
4 0.2	51 40.90 61.72	-20.82 40.57	0.23 0.	10 QP	
	03 40.73 50.17 03 41.40 60.17			10 Average 10 QP	
7 0.4	54 30.66 46.80	-16.14 30.37	0.17 0.	12 Average	
	54 33.98 56.80 56 25.32 46.00			12 QP 29 Average	
10 3.1	56 32.93 56.00	-23.07 32.25	0.39 0.	29 QP	
11 4.5 12 4.5	01 24.83 46.00 01 38.29 56.00	-21.17 24.21 -17.71 37.67		31 Average 31 QP	

Report No.: FR531903AN Page: 25 of 127

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Modulation	VHT20	Test Freq. (MHz)	5785	
Power Phase	Neutral	Test Configuration	3	
80 Level (dBu) 70 60 40 10 00.150.2	Neutral O.5 1 Frequ Level Limit Over Read Line Limit Level dBuV dBuV dB dBuV 36.45 56.00 -19.55 35.52 47.81 66.00 -18.19 46.88 38.37 51.69 -13.32 38.07 40.48 61.69 -21.21 40.18 42.09 50.18 -8.09 41.82 42.78 60.18 -17.40 42.51 29.14 46.76 -17.62 28.87 33.53 56.76 -23.23 33.26 24.07 46.00 -21.93 23.28 24.07 46.00 -21.93 23.22 32.68 56.00 -23.32 31.83 27.05 46.00 -18.95 26.03	Test Configuration		
	ad Level (dBuV) + LISN Fac			

Report No.: FR531903AN Page: 26 of 127

Modulation		VHT4	0			Test F	req. (N	IHz)		5230		
Power Phase		Line				Test Configuration				4		
70 60 50 40 30		BuV)	Å	V/////////////////////////////////////	***************************************		112	May pay horas		PR/CNS/VC		
10												
·	0.150.2		0.5	1	Frequ	2 ency (MH		5	10	2	20	30
	Fr	eq Level	Limit	Over	Read	LISN	cable					
		r Hz dBuV	Line dBuV	Limit dB	Level dBuV	factor dB	loss dB	Remark				
1	0.1			-19.99	35.01	0.92	0.08	Average				
2	0.1			-17.58 -14.05	47.42 37.40	0.92	0.08	QP Average				
4	0.2			-21.09	40.36	0.23	0.10	QP	•			
5*	0.3			-9.57	40.29	0.21	0.10	Average	•			
6	0.3			-18.71	41.15	0.21	0.10	QP				
7	0.4			-17.61	28.86	0.17	0.12	_	•			
8 9	0.4			-22.90	33.57	0.17	0.12	QP				
10	3.0 3.0			-17.41 -18.95	27.91 36.37	0.40	0.28	Average QP	,			
11	4.4			-21.05	24.33	0.40		Average				

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 27 of 127

Modulation	VHT4	0		Test Fre	q. (MI	Hz)	5230	
Power Phase	Neutr	al		Test Co	nfigur	ation	4	
l evel	(dBuV)							
80 Level	(dBuv)							
70								
60						CI	SPR/CNS/VCC	I-B
50						CISP	R/CNS/VCCI-B	AV
50	. 6				1,2			
40		Ω		. Julidid 9	ı M			
30	₩₩₩₩	₩ ₩ ₩	<u> </u>			HALLIPH CALL PARTY OF THE PROPERTY OF THE PROP	Virging and supplement with	_
20	, , M, A	1 ///// ' '///	M. M	'	"	1 17	- " "	Mrygg.
10		, r						
10								
0.150.2	2	0.5	1 Frequ	2 ency (MHz)	5	10	20	30
I	req Level		ver Read		cable			
	MHz dBu\		mit Level dB dBuV	factor dB	loss dB	Remark		
1 0.	150 34.57	56.00 -21	.43 33.64	0.85	0.08	Average		
	150 48.59 250 38.52	66.00 -17 51.76 -13		0.85 0.20	0.08	QP Average		
4 0.	250 40.09	61.76 -21	.67 39.79	0.20	0.10	QP		
		3 50.20 -8 3 60.20 -17		0.17 0.17	0.10	Average QP		
		46.76 -18		0.17		Average		
8 0.	456 33.22	56.76 -23	.54 32.95	0.15	0.12	QP		
		46.00 -18 56.00 -20		0.55		Average QP		
		46.00 -17		0.55 0.71		Average		
		56.00 -13		0.71	0.31			

Report No.: FR531903AN Page: 28 of 127

Modulation		VHT2	0			Test F	req. (N	IHz)		5	5785	
Power Phase		Line				Test C	onfigu	ıratioı	า	4		
										l .		
	80 Level (dB	ıV)										
•												
;	70											
										CISDE	Z/CNS/VC	CLB
(60	_								CISER	CNSIVE	CI-B
		_							0	ISPR/C	NS/VCCI-	-B AV
•	50	7								MOVE		
	40	A 1/1					A	luk.	4.4	4 9 1	Marylus .	
		/W) //	私教业	الالمان	WARMA	Just Aluk	(الماعل	Maria M	Nalada.		121	
;	30 VIVI VIVI	- 1	JAN 3. M.	<u> </u>	MANAMAN			T THE PARTY	li.		ייוין ווו	MA.
						' "" '	T					
:	20											
	10											
	0											
	0.150.2		0.5	1	Frequ	2 ency (MH		5		10	20	30
	Freq	Level	Limit Line	Over Limit	Read Level	LISN factor	cable loss	Remar	-k			
	MH2	dBu∀	dBu∀	dB	dBu∀	dB	dB	21021102				
1*	0.433	40.42	47.20	-6.78	40.24	0.07	0.11	7				
2	0.433			-13.24	43.78	0.07	0.11	Avera QP	ige			
3	0.570	30.56	46.00	-15.44	30.36	0.07	0.13	Avera	ige			
4 5	0.570 2.273		56.00	-19.85 -19.98	35.95 25.67	0.07	0.13					
6	2.273		56.00		34.25	0.10	0.25	QP	ige			
7	4.549		46.00			0.13	0.31		ige			
0	4.549		56.00		40.38	0.13	0.31	QP				
8	11 120				39.94	0.23		Avera	ige			
9	11.139 11.139			-14.37	45.13	0.23	0.27	OP				
		45.63			45.13 30.81	0.23	0.27 0.12	QP Avera	ige			

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR531903AN Page: 29 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Power Phase	Neutral	Test Configuration	4
80 Level (dB 70 60 50 40 20	1	CI	SPR/CNS/VCCI-B R/CNS/VCCI-B AV
10			
0.150.2	0.5 1	2 5 10 juency (MHz)	20 30
Fred	M Level Limit Over Read	d LISN cable	
MH:		l factor loss Remark V dB dB	
1* 0.434 2 0.434		3 0.07 0.11 Average	
8 4.549 9 11.438 10 11.438 11 17.199	1 38.63 56.00 -17.37 38.4 2 27.82 46.00 -18.18 27.5 3 35.88 56.00 -20.12 35.5 2 29.71 46.00 -16.29 29.2 4 42.37 56.00 -13.63 41.9 3 32.80 50.00 -17.20 32.2 3 38.89 60.00 -21.11 38.3	3 0.07 0.13 QP 2 0.09 0.21 Average 3 0.09 0.21 QP 6 0.14 0.31 Average 2 0.14 0.31 QP 8 0.25 0.27 Average 7 0.25 0.27 QP 2 0.32 0.12 Average	
	ead Level (dBuV) + LISN Fa Level (dBuV) – Limit Line (d	ctor (dB) + Cable Loss (dB). BuV).	

Report No.: FR531903AN Page: 30 of 127

3.2 Emission Bandwidth

3.2.1 Limit of Emission bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup

Report No.: FR531903AN Page: 31 of 127

3.2.4 Test Result of Emission Bandwidth

Non-beamforming mode - Test Configuration 1

	For Frequency band 5150-5250 MHz											
	Emission Bandwidth											
		Freq.	2	26dB Band	width (MHz)		99% Bandv	vidth (MHz)			
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3		
11a	1	5180	20.64				16.92					
11a	1	5200	20.64				16.95					
11a	1	5240	20.64				16.93					
VHT20	2	5180	20.87	20.52			17.93	17.79				
VHT20	2	5200	20.87	20.52			17.96	17.78				
VHT20	2	5240	20.87	20.70			17.94	17.79				
VHT40	2	5190	41.04	41.04			36.56	36.58				
VHT40	2	5230	40.70	43.36			36.54	36.56				
VHT80	2	5210	83.48	82.32			76.16	76.08				

Report No.: FR531903AN Page: 32 of 127

		For Frequency band 5725-5850 MHz										
	Emission Bandwidth											
			О	BW Band	width (MH	z)		6dB B	andwidth	(MHz)		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)	
11a	1	5745	17.06				16.35				0.5	
11a	1	5785	22.37				16.35				0.5	
11a	1	5825	19.27				16.35				0.5	
VHT20	2	5745	18.05	17.82			17.57	17.57			0.5	
VHT20	2	5785	22.22	19.91			17.57	17.57			0.5	
VHT20	2	5825	18.71	18.15			17.57	17.57			0.5	
VHT40	2	5755	36.70	36.52			36.41	36.41			0.5	
VHT40	2	5795	37.32	36.86			36.41	36.41			0.5	
VHT80	2	5775	76.20	76.00			75.36	76.52			0.5	

Report No.: FR531903AN Page: 33 of 127

Beamforming mode - Test Configuration 3

	For Frequency band 5150-5250 MHz											
	Emission Bandwidth											
Mada		Freq.	2	26dB Band	width (MHz)	99% Bandwidth (MHz)					
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3		
VHT20	2	5180	20.70	20.52			17.91	17.79				
VHT20	2	5200	20.99	20.41			17.92	17.79				
VHT20	2	5240	21.04	20.52			17.92	17.79				
VHT40	2	5190	40.93	40.58			36.50	36.46				
VHT40	2	5230	41.04	40.58			36.50	36.48				
VHT80	2	5210	83.94	82.55			76.20	76.12				

Report No.: FR531903AN Page: 34 of 127

	For Frequency band 5725-5850 MHz										
	Emission Bandwidth										
			OBW Bandwidth (MHz)					6dB B	andwidth	(MHz)	
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)
VHT20	2	5745	17.96	17.81			17.57	17.57			0.5
VHT20	2	5785	21.56	19.43			17.62	17.57			0.5
VHT20	2	5825	18.11	17.91			17.57	17.62			0.5
VHT40	2	5755	36.54	36.48			36.41	36.41			0.5
VHT40	2	5795	36.84	36.60			36.41	36.41			0.5
VHT80	2	5775	76.24	76.04			75.36	76.06			0.5

Report No.: FR531903AN Page: 35 of 127

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency band 5150-5250 MHz									
Ope	erating Mode	Limit								
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)								
\boxtimes	Indoor access point	Conducted Power: 1 W								
	Fixed point-to-point access points	Conducted Power: 1 W								
	Mobile and portable client devices	Conducted Power: 250 mW								

Fred	quency Band (MHz)	Limit						
	5250 ~ 5350	250mW or 11dBm+10 log B						
	5470 ~ 5725	250mW or 11dBm+10 log B						
	5725 ~ 5850	1 W						
Note	Note: "B" is the 26dB emission bandwidth in MHz.							

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

Report No.: FR531903AN Page: 36 of 127

3.3.4 Test Result of Maximum Conducted Output Power

Non-beamforming mode - Test Configuration 1

			For Frequ	uency band	5150-5250) MHz			
			С	Conducted Power (dBm)				Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5180	16.42				43.853	16.42	30.00
11a	1	5200	16.38				43.451	16.38	30.00
11a	1	5240	16.49				44.566	16.49	30.00
HT20	2	5180	11.96	10.18			26.127	14.17	30.00
HT20	2	5200	12.14	10.25			26.961	14.31	30.00
HT20	2	5240	12.21	10.28			27.300	14.36	30.00
HT40	2	5190	13.54	15.05			54.583	17.37	30.00
HT40	2	5230	13.58	15.06			54.866	17.39	30.00
VHT20	2	5180	12.06	10.25			26.662	14.26	30.00
VHT20	2	5200	12.22	10.31			27.412	14.38	30.00
VHT20	2	5240	12.24	10.33			27.539	14.40	30.00
VHT40	2	5190	13.65	15.13			55.758	17.46	30.00
VHT40	2	5230	13.69	15.19			56.425	17.51	30.00
VHT80	2	5210	14.02	12.38			42.533	16.29	30.00

			For Freq	uency band	d 5725-5850	MHz			
			С	Conducted Power (dBm)				Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5745	17.85				60.954	17.85	29.80
11a	1	5785	21.21				132.130	21.21	29.80
11a	1	5825	20.45				110.917	20.45	29.80
HT20	2	5745	16.72	15.65			83.718	19.23	29.80
HT20	2	5785	21.11	21.02			255.596	24.08	29.80
HT20	2	5825	19.93	19.56			188.766	22.76	29.80
HT40	2	5755	15.73	14.66			66.653	18.24	29.80
HT40	2	5795	19.43	18.84			164.260	22.16	29.80
VHT20	2	5745	16.82	15.71			85.323	19.31	29.80
VHT20	2	5785	21.22	21.1			261.259	24.17	29.80
VHT20	2	5825	20.02	19.62			192.084	22.83	29.80
VHT40	2	5755	15.82	14.75			68.048	18.33	29.80
VHT40	2	5795	19.50	18.95			167.649	22.24	29.80
VHT80	2	5775	13.90	12.92			44.136	16.45	29.80

Note: The maximum antenna gain 6.20 dBi is higher than 6 dBi, so the limit shall be reduced to 30 dBm - (6.2 dBi - 6 dBi) = 29.8 dBm.

Report No.: FR531903AN Page: 37 of 127

Beamforming mode - Test Configuration 3

			For Freq	uency band	1 5150-5250	MHz			
			Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	/er (dBm)
HT20	2	5180	11.52	9.68			23.480	13.71	27.59
HT20	2	5200	11.63	9.76			24.017	13.81	27.59
HT20	2	5240	11.65	9.78			24.128	13.83	27.59
HT40	2	5190	10.19	11.85			25.758	14.11	27.59
HT40	2	5230	10.23	11.88			25.961	14.14	27.59
VHT20	2	5180	11.65	9.78			24.128	13.83	27.59
VHT20	2	5200	11.72	9.89			24.609	13.91	27.59
VHT20	2	5240	11.73	9.83			24.510	13.89	27.59
VHT40	2	5190	10.26	11.98			26.393	14.21	27.59
VHT40	2	5230	10.34	11.99			26.627	14.25	27.59
VHT80	2	5210	11.89	10.38			26.367	14.21	27.59

Note:

1. Directional gain = $5.40+10* \log(2/1) = 8.41 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 30 dBm - (8.41 dBi - 6 dBi) = 27.59 dBm.

			For Freq	uency band	1 5725-5850) MHz			
			Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
HT20	2	5745	15.66	14.52			65.127	18.14	26.79
HT20	2	5785	21.07	21.05			255.288	24.07	26.79
HT20	2	5825	18.24	18.03			130.214	21.15	26.79
HT40	2	5755	14.58	13.55			51.354	17.11	26.79
HT40	2	5795	18.36	17.63			126.492	21.02	26.79
VHT20	2	5745	15.73	14.62			66.384	18.22	26.79
VHT20	2	5785	21.13	21.08			257.951	24.12	26.79
VHT20	2	5825	18.36	18.12			133.412	21.25	26.79
VHT40	2	5755	14.72	13.65			52.822	17.23	26.79
VHT40	2	5795	18.43	17.78			129.642	21.13	26.79
VHT80	2	5775	13.43	12.43			39.528	15.97	26.79

Note:

1. Directional gain = $6.20+10*\log(2/1) = 9.21$ dBi > 6 dBi. Limit shall be reduced to 30 dBm - (9.21 dBi - 6 dBi) = 26.79 dBm.

Report No.: FR531903AN Page: 38 of 127

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz					
Оре	Operating Mode Limit					
	Outdoor access point	17 dBm / MHz				
\boxtimes	Indoor access point	17 dBm / MHz				
	Fixed point-to-point access points	17 dBm / MHz				
	Mobile and portable client devices	11 dBm / MHz				

Free	quency Band (MHz)	Limit
	5250 ~ 5350	11 dBm / MHz
	5470 ~ 5725	11 dBm / MHz
	5725 ~ 5850	30 dBm /500 kHz

Report No.: FR531903AN Page: 39 of 127

3.4.2 Test Procedures

For 5150 ~ 5250 MHz

- Method SA-1 (802.11a/VHT20/VHT40)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (VHT80 only)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

For 5725 ~ 5850 MHz

- Method SA-1 (802.11a/VHT20)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (VHT40/VHT80)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add $10 \log(1/x)$, where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR531903AN Page: 40 of 127

3.4.4 Test Result of Peak Power Spectral Density

Non-beamforming mode - Test Configuration 1

		<u> </u>						
	For Frequency band 5150-5250 MHz							
Co	ondition			Peak Power Spectra	al Density (dBm/MH	z)		
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	w/o D.F Duty Factor with D.F PPSD LIM				
11a	1	5180	3.41	0.00	3.41	17.00		
11a	1	5200	3.52	0.00	3.52	17.00		
11a	1	5240	3.40	0.00	3.40	17.00		
VHT20	2	5180	0.66	0.00	0.66	14.59		
VHT20	2	5200	0.63	0.00	0.63	14.59		
VHT20	2	5240	0.69	0.00	0.69	14.59		
VHT40	2	5190	1.39	0.00	1.39	14.59		
VHT40	2	5230	1.19	0.00	1.19	14.59		
VHT80	2	5210	-3.66	0.21	-3.45	14.59		

Note:

- 1. D.F is duty factor.
- 2. Test results of VHT20/VHT40/VHT80 are bin-by-bin summing measured value of each TX port.
- 3. For 2TX mode, Directional gain = 5.4+10* log(2/1) = 8.41 dBi > 6 dBi. Limit shall be reduced to 17 dBm (8.41 dBi 6 dBi) = 14.59 dBm.

Report No.: FR531903AN Page: 41 of 127

			For Frequency	band 5725-5850 MH	łz				
Co	ndition	1	F	Peak Power Spectral Density (dBm/500kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)			
11a	1	5745	3.62	0.00	3.62	29.80			
11a	1	5785	7.01	0.00	7.01	29.80			
11a	1	5825	6.14	0.00	6.14	29.80			
VHT20	2	5745	4.46	0.00	4.46	26.79			
VHT20	2	5785	9.40	0.00	9.40	26.79			
VHT20	2	5825	8.02	0.00	8.02	26.79			
VHT40	2	5755	0.66	0.00	0.66	26.79			
VHT40	2	5795	4.41	0.00	4.41	26.79			
VHT80	2	5775	-4.72	0.21	-4.51	26.79			

Note:

- 1. D.F is duty factor.
- 2. For 1TX mode, The maximum antenna gain 6.20dBi is higher than 6dBi, so the limit shall be reduced 30dBm (6.2dBi-6dBi) = 29.8dBm.
- 3. Test results of VHT20/VHT40/VHT80 are bin-by-bin summing measured value of each TX port.
- 4. For 2TX mode, directional gain = $6.2+10* \log(2/1) = 9.21 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 30 dBm (9.21 dBi 6 dBi) = 26.79 dBm.

Report No.: FR531903AN Page: 42 of 127

Beamforming mode - Test Configuration 3

	For Frequency band 5150-5250 MHz							
Co	ndition	1		Peak Power Spectra	al Density (dBm/MH	z)		
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	w/o D.F Duty Factor with D.F (dBm/MHz)				
VHT20	2	5180	0.99	0.00	0.99	14.59		
VHT20	2	5200	0.99	0.00	0.99	14.59		
VHT20	2	5240	0.97	0.00	0.97	14.59		
VHT40	2	5190	-1.09	0.00	-1.09	14.59		
VHT40	2	5230	-0.82	0.00	-0.82	14.59		
VHT80	2	5210	-4.77	0.00	-4.77	14.59		

Note:

- 1. D.F is duty factor.
- 2.
- Test result is bin-by-bin summing measured value of each TX port. Directional gain = $5.4+10*\log(2/1) = 8.41$ dBi > 6 dBi. Limit shall be reduced to 17 dBm (8.41 dBi 6 dBi) = 14.59 dBm.

Report No.: FR531903AN Page: 43 of 127

	For Frequency band 5725-5850 MHz							
Co	ndition		F	Peak Power Spectral	Density (dBm/500kl	Hz)		
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz) Duty Factor with D.F (dBm/500kHz) PPSD with D.F (dBm/500kHz)					
VHT20	2	5745	4.13	0.00	4.13	26.79		
VHT20	2	5785	9.84	0.00	9.84	26.79		
VHT20	2	5825	7.20	0.00	7.20	26.79		
VHT40	2	5755	0.19	0.00	0.19	26.79		
VHT40	2	5795	3.95	0.00	3.95	26.79		
VHT80	2	5775	-4.58	0.00	-4.58	26.79		

Note:

- 1. D.F is duty factor.
- 2. The maximum antenna gain 6.20dBi is higher than 6dBi, so the limit of 802.11a shall be reduced by 0.2dB.
- 3. Test results of VHT20/VHT40/VHT80 are bin-by-bin summing measured value of each TX port.
- 4. Directional gain = 6.2+10* log(2/1) = 9.21 dBi > 6 dBi. Limit shall be reduced to 30 dBm - (9.21 dBi - 6 dBi) = 26.79 dBm.

Report No.: FR531903AN Page: 44 of 127

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

	Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

	Un-restricted band emissions above 1GHz Limit					
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]					

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR531903AN Page: 45 of 127

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR531903AN Page: 46 of 127

3.5.3 Test Setup

Report No.: FR531903AN Page: 47 of 127

Non- beamforming mode

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 48 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	47.46	36.21	40.00	-3.79	49.09	-12.88	QP		
2	54.97	36.17	40.00	-3.83	49.79	-13.62	QP		
3	305.48	36.74	46.00	-9.26	49.25	-12.51	Peak		
4	494.63	37.25	46.00	-8.75	45.02	-7.77	Peak		
5	800.18	39.16	46.00	-6.84	41.72	-2.56	Peak		
6	885.54	40.25	46.00	-5.75	41.22	-0.97	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 49 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	307.42	38.25	46.00	-7.75	50.71	-12.46	Peak		
2	345.25	32.45	46.00	-13.55	44.02	-11.57	Peak		
3	528.58	40.53	46.00	-5.47	47.84	-7.31	Peak		
4	600.36	42.34	46.00	-3.66	48.06	-5.72	Peak		
5	800.18	37.50	46.00	-8.50	40.06	-2.56	Peak		
6	900.09	41.76	46.00	-4.24	42.43	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 50 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m			SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	54.25	36.85	40.00	-3.15	50.37	-13.52	OP		
2		34.17				-16.06	Peak		
3	307.42	33.59	46.00	-12.41	46.05	-12.46	Peak		
4	515.97	36.09	46.00	-9.91	43.54	-7.45	Peak		
5	800.18	38.48	46.00	-7.52	41.04	-2.56	Peak		
6	899.12	41.28	46.00	-4.72	41.96	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 51 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	148.34	34.95	43.50	-8.55	48.42	-13.47	Peak		
2	305.48	34.06	46.00	-11.94	46.57	-12.51	Peak		
3	456.80	35.97	46.00	-10.03	44.59	-8.62	Peak		
4	600.36	38.28	46.00	-7.72	44.00	-5.72	Peak		
5	800.18	37.02	46.00	-8.98	39.58	-2.56	Peak		
6	899.12	37.25	46.00	-8.75	37.93	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 52 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	10 10	36.46	10 00	-3.54	10 10	-12.94	OP		
2				-3.50		-12.94	•		
2	55.20	30.30	40.00	-3.50	49.90	-13.40	QP		
3	148.34	33.04	43.50	-10.46	46.51	-13.47	Peak		
4	473.29	36.86	46.00	-9.14	45.10	-8.24	Peak		
5	533.43	39.83	46.00	-6.17	47.09	-7.26	Peak		
6	900.09	39.34	46.00	-6.66	40.01	-0.67	Peak		
_									

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 53 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	105.66	34.95	43.50	-8.55	52.35	-17.40	Peak		
2	156.10	33.79	43.50	-9.71	47.33	-13.54	Peak		
3	217.21	34.60	46.00	-11.40	50.71	-16.11	Peak		
4	533.43	41.92	46.00	-4.08	49.18	-7.26	Peak		
5	600.36	42.11	46.00	-3.89	47.83	-5.72	Peak		
6	900.09	41.83	46.00	-4.17	42.50	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 54 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	55.22	36.91	40.00	-3.09	50.56	-13.65	QP		
2	150.28	33.87	43.50	-9.63	47.30	-13.43	Peak		
3	533.43	42.87	46.00	-3.13	50.13	-7.26	QP		
4	600.36	38.36	46.00	-7.64	44.08	-5.72	Peak		
5	800.18	38.48	46.00	-7.52	41.04	-2.56	Peak		
6	900.09	39.87	46.00	-6.13	40.54	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 55 of 127

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 56 of 127

Modulation	11a	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	45.93	54.00	-8.07	39.35	6.58	Average		
2	5150.00	58.89	74.00	-15.11	52.31	6.58	Peak		
3	10360.00	54.25	68.20	-13.95	37.84	16.41	Peak		
4	15540.00	44.12	54.00	-9.88	26.20	17.92	Average		
5	15540.00	56.57	74.00	-17.43	38.65	17.92	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 57 of 127

Modulation	11a	Test Freq. (MHz)	5200	
Polarization	Horizontal	Test Configuration	1	
90 Level (dBu\ 80 70			FCC PART15E	

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	52.75	54.00	-1.25	46.45	6.30	Average		
2	5000.00	55.76	74.00	-18.24	49.46	6.30	Peak		
3	10400.00	57.07	68.20	-11.13	40.58	16.49	Peak		
4	15600.00	44.11	54.00	-9.89	26.38	17.73	Average		
5	15600.00	56.36	74.00	-17.64	38.63	17.73	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 58 of 127

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1
Level (dBu	(M/m)		

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5000.00	51.79	54.00	-2.21	45.49	6.30	Average		
2	5000.00	62.30	74.00	-11.70	56.00	6.30	Peak		
3	10400.00	55.88	68.20	-12.32	39.39	16.49	Peak		
4	15600.00	44.28	54.00	-9.72	26.55	17.73	Average		
5	15600.00	56.27	74.00	-17.73	38.54	17.73	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 59 of 127

Modulation	11a	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5350.00	44.72	54.00	-9.28	37.69	7.03	Average		
2	5350.00		74.00		50.22	7.03	Peak		
3	5398.00	46.89	54.00	-7.11	39.75	7.14	Average		
4	5398.00	58.70	74.00	-15.30	51.56	7.14	Peak		
5	10480.00	55.57	68.20	-12.63	38.91	16.66	Peak		
6	15720.00	43.40	54.00	-10.60	26.03	17.37	Average		
7	15720.00	56.70	74.00	-17.30	39.33	17.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 60 of 127

Modulation	11a	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
4	F3F0 00	45.07	<u></u> .	0.03		7.03	A		
1	5350.00	45.07	54.00	-8.93	38.04	7.03	Average		
2	5350.00	58.47	74.00	-15.53	51.44	7.03	Peak		
3	5398.00	47.80	54.00	-6.20	40.66	7.14	Average		
4	5398.00	60.22	74.00	-13.78	53.08	7.14	Peak		
5	10480.00	55.01	68.20	-13.19	38.35	16.66	Peak		
6	15720.00	43.89	54.00	-10.11	26.52	17.37	Average		
7	15720.00	55.89	74.00	-18.11	38.52	17.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 61 of 127

Modulation	11a	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	1

	Freq. 6	Emission level dBuV/m		J	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5715.00	48.84	54.00	-5.16	41.31	7.53	Average		
2	5715.00	66.18	68.20	-2.02	58.65	7.53	Peak		
3	5725.00	76.56	78.20	-1.64	68.99	7.57	Peak		
4	11490.00	43.63	54.00	-10.37	26.36	17.27	Average		
5	11490.00	55.89	74.00	-18.11	38.62	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 62 of 127

Modulation 11	1a	Test Freq. (MHz)	5745
Polarization Ve	'ertical	Test Configuration	1

	Freq. E	Emission level dBuV/m		J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	46.65	54.00	-7.35	39.12	7.53	Average		
2	5715.00	62.64	68.20	-5.56	55.11	7.53	Peak		
3	5725.00	72.76	78.20	-5.44	65.19	7.57	Peak		
4	11490.00	43.06	54.00	-10.94	25.79	17.27	Average		
5	11490.00	54.89	74.00	-19.11	37.62	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 63 of 127

Modulation	11a	Test Freq. (MHz)	5785
PolarizationHorizontalTest Configuration		Test Configuration	1
90 Level (dE	uV/m)		
90			

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5625.00	61.09	68.20	-7.11	53.83	7.26	Peak		
2	5715.00	61.21	68.20	-6.99	53.68	7.53	Peak		
3	5725.00	61.79	78.20	-16.41	54.22	7.57	Peak		
4	5850.00	60.42	78.20	-17.78	52.53	7.89	Peak		
5	5860.00	60.19	68.20	-8.01	52.28	7.91	Peak		
6	5945.00	63.41	68.20	-4.79	55.33	8.08	Peak		
7	11570.00	45.80	54.00	-8.20	28.62	17.18	Average		
8	11570.00	58.21	74.00	-15.79	41.03	17.18	Peak		
9	17355.00	58.97	68.20	-9.23	39.75	19.22	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 64 of 127

4

5

6

7

8

9

5850.00

59.50 78.20 -18.70

5860.00 59.15 68.20 -9.05

5945.00 61.17 68.20 -7.03

11570.00 43.42 54.00 -10.58

11570.00 55.04 74.00 -18.96

17355.00 58.29 68.20 -9.91

Modulation	11a	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1
90 Level (dBuV	//m)		
80			
70			CC PAR 15E_B4
60	8 1	FCC	C PART15E (AVG)
50	7		
40			
30			
20			
10			
0 1000 66	000. 10000. 14000. 18000. Frequ	22000. 26000. 30000. 3 ency (MHz)	4000. 40000
Fr	eq. Emission Limit Margi	n SA Factor Remark	ANT Turn
	level	reading	High Table
М	Hz dBuV/m dBuV/m dB	dBuV dB	cm deg
	5.00 59.16 68.20 -9.04		
	5.00 57.81 68.20 -10.39 5.00 58.84 78.20 -19.36		

51.61

51.24

53.09

26.24

37.86

39.07

7.89

7.91

8.08

17.18

17.18

19.22

Peak

Peak

Peak

Peak

Peak

Average

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 65 of 127

Modulation	11a	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	1

		Emission level		Ü	reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
	F670 00								
1	5670.00	59.19	68.20	-9.01	51.80	7.39	Peak		
2	5850.00	77.00	78.20	-1.20	69.11	7.89	Peak		
3	5860.00	67.18	68.20	-1.02	59.27	7.91	Peak		
4	5983.00	59.43	68.20	-8.77	51.28	8.15	Peak		
5	11650.00	45.45	54.00	-8.55	28.38	17.07	Average		
6	11650.00	57.65	74.00	-16.35	40.58	17.07	Peak		
7	17475.00	58.45	68.20	-9.75	39.08	19.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 66 of 127

Modulation	11a	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	1
			•

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5670.00	58.70	68.20	-9.50	51.31	7.39	Peak		
2	5850.00	73.84	78.20	-4.36	65.95	7.89	Peak		
3	5860.00	65.80	68.20	-2.40	57.89	7.91	Peak		
4	5983.00	60.46	68.20	-7.74	52.31	8.15	Peak		
5	11650.00	43.35	54.00	-10.65	26.28	17.07	Average		
6	11650.00	54.96	74.00	-19.04	37.89	17.07	Peak		
7	17475.00	58.02	68.20	-10.18	38.65	19.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 67 of 127

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR531903AN Page: 68 of 127

Modulation	VHT20	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	1

	Freq. E	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	51.89	54.00	-2.11	45.59	6.30	Average		
2	5000.00	54.98	74.00	-19.02	48.68	6.30	Peak		
3	5150.00	47.44	54.00	-6.56	40.86	6.58	Average		
4	5150.00	59.32	74.00	-14.68	52.74	6.58	Peak		
5	10360.00	55.36	68.20	-12.84	38.95	16.41	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 69 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	52.87	54.00	-1.13	46.57	6.30	Average		
2	5000.00	56.15	74.00	-17.85	49.85	6.30	Peak		
3	5040.00	46.65	54.00	-7.35	40.27	6.38	Average		
4	5040.00	60.04	74.00	-13.96	53.66	6.38	Peak		
5	5360.00	47.68	54.00	-6.32	40.62	7.06	Average		
6	5360.00	59.33	74.00	-14.67	52.27	7.06	Peak		
7	10400.00	55.42	68.20	-12.78	38.93	16.49	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 70 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	51.96	54.00	-2.04	45.66	6.30	Average		
2	5000.00	54.91	74.00	-19.09	48.61	6.30	Peak		
3	5040.00	46.80	54.00	-7.20	40.42	6.38	Average		
4	5040.00	58.86	74.00	-15.14	52.48	6.38	Peak		
5	5360.00	47.48	54.00	-6.52	40.42	7.06	Average		
6	5360.00	60.26	74.00	-13.74	53.20	7.06	Peak		
7	10400.00	55.05	68.20	-13.15	38.56	16.49	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 71 of 127

Modulation	VHT20	Test Freq. (MHz)	5240			
Polarization	Horizontal Test Configuration		1			

					, , , , , , ,				
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5000.00	52.92	54.00	-1.08	46.62	6.30	Average		
2	5000.00	55.02	74.00	-18.98	48.72	6.30	Peak		
3	5080.00	46.76	54.00	-7.24	40.31	6.45	Average		
4	5080.00	60.13	74.00	-13.87	53.68	6.45	Peak		
5	5400.00	48.16	54.00	-5.84	41.02	7.14	Average		
6	5400.00	60.47	74.00	-13.53	53.33	7.14	Peak		
7	10480.00	54.91	68.20	-13.29	38.25	16.66	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 72 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	1
			•

				-					
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5000.00	51.77	54.00	-2.23	45.47	6.30	Average		
2	5000.00	54.83	74.00	-19.17	48.53	6.30	Peak		
3	5080.00	46.78	54.00	-7.22	40.33	6.45	Average		
4	5080.00	59.60	74.00	-14.40	53.15	6.45	Peak		
5	5400.00	47.30	54.00	-6.70	40.16	7.14	Average		
6	5400.00	60.45	74.00	-13.55	53.31	7.14	Peak		
7	10480.00	55.26	68.20	-12.94	38.60	16.66	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 73 of 127

PolarizationHorizontalTest Configuration1	

		mission level dBuV/m		Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	46.65	54.00	-7.35	39.12	7.53	Average		
2	5715.00	62.85	68.20	-5.35	55.32	7.53	Peak		
3	5725.00	75.67	78.20	-2.53	68.10	7.57	Peak		
4	11490.00	46.45	54.00	-7.55	29.18	17.27	Average		
5	11490.00	60.24	74.00	-13.76	42.97	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 74 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m		Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5715.00	47.93	54.00	-6.07	40.40	7.53	Average		
2	5715.00	63.63	68.20	-4.57	56.10	7.53	Peak		
3	5725.00	76.85	78.20	-1.35	69.28	7.57	Peak		
4	11490.00	49.53	54.00	-4.47	32.26	17.27	Average		
5	11490.00	61.05	74.00	-12.95	43.78	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 75 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5626.00	59.28	68.20	-8.92	52.02	7.26	Peak		
2	5715.00	58.15	68.20	-10.05	50.62	7.53	Peak		
3	5725.00	59.08	78.20	-19.12	51.51	7.57	Peak		
4	5850.00	59.87	78.20	-18.33	51.98	7.89	Peak		
5	5860.00	59.40	68.20	-8.80	51.49	7.91	Peak		
6	5943.00	62.97	68.20	-5.23	54.90	8.07	Peak		
7	11570.00	48.80	54.00	-5.20	31.62	17.18	Average		
8	11570.00	62.33	74.00	-11.67	45.15	17.18	Peak		
9	17355.00	59.84	68.20	-8.36	40.62	19.22	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 76 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1
on Lev	el (dBuV/m)		

	•	Emission level		Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5626.00	61.64	68.20	-6.56	54.38	7.26	Peak		
2	5715.00	62.35	68.20	-5.85	54.82	7.53	Peak		
3	5725.00	62.59	78.20	-15.61	55.02	7.57	Peak		
4	5850.00	61.23	78.20	-16.97	53.34	7.89	Peak		
5	5860.00	60.85	68.20	-7.35	52.94	7.91	Peak		
6	5943.00	63.97	68.20	-4.23	55.90	8.07	Peak		
7	11570.00	51.66	54.00	-2.34	34.48	17.18	Average		
8	11570.00	63.13	74.00	-10.87	45.95	17.18	Peak		
9	17355.00	60.31	68.20	-7.89	41.09	19.22	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 77 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5656.00	58.94	68.20	-9.26	51.58	7.36	Peak		
2	5850.00	74.22	78.20	-3.98	66.33	7.89	Peak		
3	5860.00	65.61	68.20	-2.59	57.70	7.91	Peak		
4	5983.00	61.03	68.20	-7.17	52.88	8.15	Peak		
5	11650.00	47.68	54.00	-6.32	30.61	17.07	Average		
6	11650.00	59.39	74.00	-14.61	42.32	17.07	Peak		
7	17475.00	58.46	68.20	-9.74	39.09	19.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 78 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
	11112	abav/iii	abav/iii	u u u	abav	ub		CIII	ucg
1	5656.00	60.96	68.20	-7.24	53.60	7.36	Peak		
1	3030.00	00.50	00.20	-/.24	33.00	7.50	reak		
2	5850.00	77.16	78.20	-1.04	69.27	7.89	Peak		
3	5860.00	67.01	68.20	-1.19	59.10	7.91	Peak		
4	5983.00	63.64	68.20	-4.56	55.49	8.15	Peak		
5	11650.00	51.02	54.00	-2.98	33.95	17.07	Average		
6	11650.00	63.08	74.00	-10.92	46.01	17.07	Peak		
7	17475.00	58.87	68.20	-9.33	39.50	19.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 79 of 127

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 80 of 127

Modulation	VHT40	Test Freq. (MHz)	5190
Polarization	Vertical	Test Configuration	1

	Freq. 6	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	51.90	54.00	-2.10	45.60	6.30	Average		
2	5000.00	55.05	74.00	-18.95	48.75	6.30	Peak		
3	5150.00	52.29	54.00	-1.71	45.71	6.58	Average		
4	5150.00	72.61	74.00	-1.39	66.03	6.58	Peak		
5	10380.00	55.40	68.20	-12.80	38.96	16.44	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 81 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	52.96	54.00	-1.04	46.66	6.30	Average		
2	5000.00	56.13	74.00	-17.87	49.83	6.30	Peak		
3	5150.00	46.92	54.00	-7.08	40.34	6.58	Average		
4	5150.00	58.87	74.00	-15.13	52.29	6.58	Peak		
5	5390.00	47.36	54.00	-6.64	40.25	7.11	Average		
6	5390.00	60.33	74.00	-13.67	53.22	7.11	Peak		
7	10460.00	55.28	68.20	-12.92	38.65	16.63	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 82 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	52.09	54.00	-1.91	45.79	6.30	Average		
2			74.00		48.68	6.30	Peak		
2	5000.00	54.96	74.00	-19.02	40.00	0.30	reak		
3	5150.00	47.02	54.00	-6.98	40.44	6.58	Average		
4	5150.00	60.40	74.00	-13.60	53.82	6.58	Peak		
5	5390.00	47.99	54.00	-6.01	40.88	7.11	Average		
6	5390.00	59.04	74.00	-14.96	51.93	7.11	Peak		
7	10460.00	55.11	68.20	-13.09	38.48	16.63	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 83 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	51.28	54.00	-2.72	43.75	7.53	Average		
2	5715.00	70.29	74.00	-3.71	62.76	7.53	Peak		
3	5725.00	72.74	78.20	-5.46	65.17	7.57	Peak		
4	11510.00	43.12	54.00	-10.88	25.85	17.27	Average		
5	11510.00	55.27	74.00	-18.73	38.00	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 84 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	52.79	54.00	-1.21	45.26	7.53	Average		
2	5715.00	69.63	74.00	-4.37	62.10	7.53	Peak		
3	5725.00	75.05	78.20	-3.15	67.48	7.57	Peak		
4	11510.00	43.55	54.00	-10.45	26.28	17.27	Average		
5	11510.00	55.90	74.00	-18.10	38.63	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 85 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5850.00	68.87	78.20	-9.33	60.98	7.89	Peak		
2	5860.00		54.00	-3.11	42.98	7.91	Average		
_							_		
3	5860.00	66.32	74.00	-7.68	58.41	7.91	Peak		
4	5937.00	60.81	68.20	-7.39	52.75	8.06	Peak		
5	11590.00	45.20	54.00	-8.80	28.05	17.15	Average		
6	11590.00	57.55	74.00	-16.45	40.40	17.15	Peak		
7	17385.00	45.52	54.00	-8.48	26.25	19.27	Average		
8	17385.00	57.78	74.00	-16.22	38.51	19.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 86 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
4	F050 00		70. 20	0.64					
1	5850.00	69.56	78.20	-8.64	61.67	7.89	Peak		
2	5860.00	52.67	54.00	-1.33	44.76	7.91	Average		
3	5860.00	66.87	74.00	-7.13	58.96	7.91	Peak		
4	5937.00	61.38	68.20	-6.82	53.32	8.06	Peak		
5	11590.00	46.59	54.00	-7.41	29.44	17.15	Average		
6	11590.00	58.47	74.00	-15.53	41.32	17.15	Peak		
7	17385.00	46.17	54.00	-7.83	26.90	19.27	Average		
8	17385.00	58.29	74.00	-15.71	39.02	19.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 87 of 127

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR531903AN Page: 88 of 127

^{*}Factor includes antenna factor, cable loss and amplifier gain

Modulation	VHT80	Test Freq. (MHz)	5210
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5000.00	51.99	<u></u>	2.01	45.60		A		
1	3000.00	51.99	54.00	-2.01	45.69	6.30	Average		
2	5000.00	54.74	74.00	-19.26	48.44	6.30	Peak		
3	5150.00	52.03	54.00	-1.97	45.45	6.58	Average		
4	5150.00	61.27	74.00	-12.73	54.69	6.58	Peak		
5	5350.00	45.68	54.00	-8.32	38.65	7.03	Average		
6	5350.00	58.71	74.00	-15.29	51.68	7.03	Peak		
7	10420.00	54.96	68.20	-13.24	38.43	16.53	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 89 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	50.48	54.00	-3.52	42.95	7.53	Average		
2	5715.00	65.39	74.00	-8.61	57.86	7.53	Peak		
3	5725.00	67.80	78.20	-10.40	60.23	7.57	Peak		
4	5850.00	62.36	78.20	-15.84	54.47	7.89	Peak		
5	5860.00	47.54	54.00	-6.46	39.63	7.91	Average		
6	5860.00	61.13	74.00	-12.87	53.22	7.91	Peak		
7	11550.00	43.71	54.00	-10.29	26.50	17.21	Average		
8	11550.00	55.66	74.00	-18.34	38.45	17.21	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 90 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	52.69	54.00	-1.31	45.16	7.53	Average		
2	5715.00	66.29	74.00	-7.71	58.76	7.53	Peak		
3	5725.00	69.62	78.20	-8.58	62.05	7.57	Peak		
4	5850.00	61.72	78.20	-16.48	53.83	7.89	Peak		
5	5860.00	47.86	54.00	-6.14	39.95	7.91	Average		
6	5860.00	61.32	74.00	-12.68	53.41	7.91	Peak		
7	11550.00	43.84	54.00	-10.16	26.63	17.21	Average		
8	11550.00	55.75	74.00	-18.25	38.54	17.21	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 91 of 127

Beamforming mode

3.5.9 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 92 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	47.52	36.64	40.00	-3.36	49.53	-12.89	QP		
2	55.21	36.18	40.00	-3.82	49.83	-13.65	QP		
3	305.24	37.11	46.00	-8.89	49.63	-12.52	Peak		
4	494.85	37.25	46.00	-8.75	45.01	-7.76	Peak		
5	800.25	39.09	46.00	-6.91	41.65	-2.56	Peak		
6	885.96	40.48	46.00	-5.52	41.44	-0.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 93 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	307.51	37.97	46.00	-8.03	50.42	-12.45	Peak		
2	345.41	32.99	46.00	-13.01	44.55	-11.56	Peak		
3	527.35	40.64	46.00	-5.36	47.97	-7.33	Peak		
4	600.27	42.71	46.00	-3.29	48.43	-5.72	Peak		
5	800.18	38.79	46.00	-7.21	41.35	-2.56	Peak		
6	900.09	41.29	46.00	-4.71	41.96	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 94 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV		Remark	ANT High cm	Turn Table deg
1		36.02	40.00			42.52	<u> </u>		
1	54.33	36.92	40.00	-3.08	50.45	-13.53	QP		
2	218.16	34.39	46.00	-11.61	50.45	-16.06	Peak		
3	307.38	34.28	46.00	-11.72	46.74	-12.46	Peak		
4	515.56	36.16	46.00	-9.84	43.61	-7.45	Peak		
5	800.18	39.77	46.00	-6.23	42.33	-2.56	Peak		
6	899.65	40.98	46.00	-5.02	41.66	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 95 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	148.52	35.18	43.50	-8.32	48.64	-13.46	Peak		
2	305.65	34.65	46.00	-11.35	47.16	-12.51	Peak		
3	456.27	36.70	46.00	-9.30	45.33	-8.63	Peak		
4	600.27	38.59	46.00	-7.41	44.31	-5.72	Peak		
5	800.24	37.87	46.00	-8.13	40.43	-2.56	Peak		
6	899.56	37.86	46.00	-8.14	38.54	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 96 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
4		26 71	40.00	2 20	40.66	12.05	<u> </u>		
1	49.51	36.71	40.00	-3.29	49.00	-12.95	QP		
2	53.45	36.23	40.00	-3.77	49.65	-13.42	QP		
3	148.42	33.84	43.50	-9.66	47.31	-13.47	Peak		
4	473.35	37.22	46.00	-8.78	45.46	-8.24	Peak		
5	533.62	40.60	46.00	-5.40	47.85	-7.25	Peak		
6	899.36	39.87	46.00	-6.13	40.55	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 97 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	4

	Freq. MHz	Emission level dBuV/m		J	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	105.53	35.22	43.50	-8.28	52.64	-17.42	Peak		
2	156.24	34.79	43.50	-8.71	48.33	-13.54	Peak		
3	217.42	35.14	46.00	-10.86	51.24	-16.10	Peak		
4	533.62	42.23	46.00	-3.77	49.48	-7.25	Peak		
5	600.24	42.38	46.00	-3.62	48.10	-5.72	Peak		
6	899.86	42.63	46.00	-3.37	43.30	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 98 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	55.38	36.75	40.00	-3.25	50.42	-13.67	QP		
2	150.43	34.89	43.50	-8.61	48.32	-13.43	Peak		
3	533.36	42.81	46.00	-3.19	50.07	-7.26	QP		
4	600.16	38.73	46.00	-7.27	44.45	-5.72	Peak		
5	800.18	38.97	46.00	-7.03	41.53	-2.56	Peak		
6	899.96	39.75	46.00	-6.25	40.42	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR531903AN Page: 99 of 127

3.5.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR531903AN Page: 100 of 127

Modulation	VHT20	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	45.16	54.00	-8.84	38.58	6.58	Average		
2	5150.00	56.46	74.00	-17.54	49.88	6.58	Peak		
3	10360.00	54.06	68.20	-14.14	37.65	16.41	Peak		
4	15540.00	43.70	54.00	-10.30	25.78	17.92	Average		
5	15540.00	54.98	74.00	-19.02	37.06	17.92	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 101 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m		Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5362.00	46.75	54.00	-7.25	39.69	7.06	Average		
2	5362.00	57.81	74.00	-16.19	50.75	7.06	Peak		
3	10400.00	54.76	68.20	-13.44	38.27	16.49	Peak		
4	15600.00	43.67	54.00	-10.33	25.94	17.73	Average		
5	15600.00	54.81	74.00	-19.19	37.08	17.73	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 102 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	3
			•

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5362.00	49.56	54.00	-4.44	42.50	7.06	Average		
2	5362.00	59.82	74.00	-14.18	52.76	7.06	Peak		
3	10400.00	54.33	68.20	-13.87	37.84	16.49	Peak		
4	15600.00	43.36	54.00	-10.64	25.63	17.73	Average		
5	15600.00	54.82	74.00	-19.18	37.09	17.73	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 103 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5350.00	45.01	54.00	-8.99	37.98	7.03	Average		
2	5350.00	57.33	74.00	-16.67	50.30	7.03	Peak		
3	5408.00	46.33	54.00	-7.67	39.19	7.14	Average		
4	5408.00	57.38	74.00	-16.62	50.24	7.14	Peak		
5	10480.00	54.35	68.20	-13.85	37.69	16.66	Peak		
6	15720.00	43.33	54.00	-10.67	25.96	17.37	Average		
7	15720.00	54.62	74.00	-19.38	37.25	17.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 104 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5350.00	45.25	54.00	-8.75	38.22	7.03	Average		
2	5350.00	55.89	74.00	-18.11	48.86	7.03	Peak		
3	5408.00	49.20	54.00	-4.80	42.06	7.14	Average		
4	5408.00	59.33	74.00	-14.67	52.19	7.14	Peak		
5	10480.00	54.02	68.20	-14.18	37.36	16.66	Peak		
6	15720.00	43.24	54.00	-10.76	25.87	17.37	Average		
7	15720.00	54.77	74.00	-19.23	37.40	17.37	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 105 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m		Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5715.00	47.37	54.00	-6.63	39.84	7.53	Average		
2	5715.00	61.78	74.00	-12.22	54.25	7.53	Peak		
3	5725.00	77.16	78.20	-1.04	69.59	7.57	Peak		
4	11490.00	44.83	54.00	-9.17	27.56	17.27	Average		
5	11490.00	58.67	74.00	-15.33	41.40	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 106 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	47.45	54.00	-6.55	39.92	7.53	Average		
2	5715.00	65.39	74.00	-8.61	57.86	7.53	Peak		
3	5725.00	76.10	78.20	-2.10	68.53	7.57	Peak		
4	11490.00	48.26	54.00	-5.74	30.99	17.27	Average		
5	11490.00	62.05	74.00	-11.95	44.78	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 107 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5626.00	61.44	68.20	-6.76	54.18	7.26	Peak		
2	5715.00	62.29	68.20	-5.91	54.76	7.53	Peak		
3	5725.00	62.67	78.20	-15.53	55.10	7.57	Peak		
4	5850.00	63.60	78.20	-14.60	55.71	7.89	Peak		
5	5860.00	62.84	68.20	-5.36	54.93	7.91	Peak		
6	5925.00	63.84	68.20	-4.36	55.81	8.03	Peak		
7	11570.00	45.96	54.00	-8.04	28.78	17.18	Average		
8	11570.00	59.71	74.00	-14.29	42.53	17.18	Peak		
9	17355.00	61.43	68.20	-6.77	42.21	19.22	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 108 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5626.00	60.76	68.20	-7.44	53.50	7.26	Peak		
2	5715.00	58.30	68.20	-9.90	50.77	7.53	Peak		
3	5725.00	66.73	78.20	-11.47	59.16	7.57	Peak		
4	5850.00	63.03	78.20	-15.17	55.14	7.89	Peak		
5	5860.00	62.30	68.20	-5.90	54.39	7.91	Peak		
6	5925.00	62.57	68.20	-5.63	54.54	8.03	Peak		
7	11570.00	51.33	54.00	-2.67	34.15	17.18	Average		
8	11570.00	65.18	74.00	-8.82	48.00	17.18	Peak		
9	17355.00	58.87	68.20	-9.33	39.65	19.22	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 109 of 127

Modulation VHT20 1		Test Freq. (MHz)				5	5825	5									
Polarization Horizontal			T	Test Configuration				(3)	3								
90 Level (dBuV/m)																	

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5850.00	77.17	78.20	-1.03	69.28	7.89	Peak		
2	5860.00	49.70	54.00	-4.30	41.79	7.91	Average		
3	5860.00	63.63	74.00	-10.37	55.72	7.91	Peak		
4	11650.00	44.93	54.00	-9.07	27.86	17.07	Average		
5	11650.00	58.87	74.00	-15.13	41.80	17.07	Peak		

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 110 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	3

	Freq. 6	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5850.00	76.06	78.20	-2.14	68.17	7.89	Peak		
2	5860.00	50.80	54.00	-3.20	42.89	7.91	Average		
3	5860.00	69.13	74.00	-4.87	61.22	7.91	Peak		
4	11650.00	50.06	54.00	-3.94	32.99	17.07	Average		
5	11650.00	64.12	74.00	-9.88	47.05	17.07	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 111 of 127

3.5.11 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR531903AN Page: 112 of 127

Modulation	VHT40	Test Freq. (MHz)	5190
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m		Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5150.00	51.46	54.00	-2.54	44.88	6.58	Average		
2	5150.00	69.83	74.00	-4.17	63.25	6.58	Peak		
3	10380.00	56.88	68.20	-11.32	40.44	16.44	Peak		
4	15570.00	43.24	54.00	-10.76	25.42	17.82	Average		
5	15570.00	56.35	74.00	-17.65	38.53	17.82	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 113 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.78	54.00	-9.22	37.75	7.03	Average		
2	5350.00	56.03	74.00	-17.97	49.00	7.03	Peak		
3	5393.00	46.34	54.00	-7.66	39.22	7.12	Average		
4	5393.00	57.26	74.00	-16.74	50.14	7.12	Peak		
5	10460.00	54.33	68.20	-13.87	37.70	16.63	Peak		
6	15690.00	43.69	54.00	-10.31	26.22	17.47	Average		
7	15690.00	55.23	74.00	-18.77	37.76	17.47	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 114 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5350.00	44.93	54.00	-9.07	37.90	7.03	Average		
2	5350.00	57.59	74.00	-16.41	50.56	7.03	Peak		
3	5393.00	46.81	54.00	-7.19	39.69	7.12	Average		
4	5393.00	59.08	74.00	-14.92	51.96	7.12	Peak		
5	10460.00	54.38	68.20	-13.82	37.75	16.63	Peak		
6	15690.00	43.21	54.00	-10.79	25.74	17.47	Average		
7	15690.00	54.61	74.00	-19.39	37.14	17.47	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 115 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m		Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5715.00	52.84	54.00	-1.16	45.31	7.53	Average		
2	5715.00	71.46	74.00	-2.54	63.93	7.53	Peak		
3	5725.00	73.49	78.20	-4.71	65.92	7.57	Peak		
4	11510.00	44.83	54.00	-9.17	27.56	17.27	Average		
5	11510.00	58.70	74.00	-15.30	41.43	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 116 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	52.09	54.00	-1.91	44.56	7.53	Average		
2	5715.00	69.88	74.00	-4.12	62.35	7.53	Peak		
3	5725.00	72.89	78.20	-5.31	65.32	7.57	Peak		
4	11510.00	46.35	54.00	-7.65	29.08	17.27	Average		
5	11510.00	60.27	74.00	-13.73	43.00	17.27	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 117 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5647.00	46.53	54.00	-7.47	39.20	7.33	Average		
2	5647.00	58.50	74.00	-15.50	51.17	7.33	Peak		
3	5850.00	66.88	78.20	-11.32	58.99	7.89	Peak		
4	5860.00	49.34	54.00	-4.66	41.43	7.91	Average		
5	5860.00	63.27	74.00	-10.73	55.36	7.91	Peak		
6	5957.00	48.51	54.00	-5.49	40.41	8.10	Average		
7	5957.00	59.56	68.20	-8.64	51.46	8.10	Peak		
8	11590.00	44.75	54.00	-9.25	27.60	17.15	Average		
9	11590.00	58.69	74.00	-15.31	41.54	17.15	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 118 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5647.00	47.81	54.00	-6.19	40.48	7.33	Average		
2	5647.00	59.21	74.00	-14.79	51.88	7.33	Peak		
3	5850.00	73.72	78.20	-4.48	65.83	7.89	Peak		
4	5860.00	52.65	54.00	-1.35	44.74	7.91	Average		
5	5860.00	69.43	74.00	-4.57	61.52	7.91	Peak		
6	5957.00	50.38	54.00	-3.62	42.28	8.10	Average		
7	5957.00	62.98	68.20	-5.22	54.88	8.10	Peak		
8	11590.00	48.87	54.00	-5.13	31.72	17.15	Average		
9	11590.00	63.05	74.00	-10.95	45.90	17.15	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 119 of 127

3.5.12 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 120 of 127

^{*}Factor includes antenna factor, cable loss and amplifier gain

Modulation	VHT80	Test Freq. (MHz)	5210
Polarization	Vertical	Test Configuration	3
			•

	•	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5150.00	51.55	54.00	-2.45	44.97	6.58	Average		
2	5150.00	64.23	74.00	-9.77	57.65	6.58	Peak		
3	5350.00	46.36	54.00	-7.64	39.33	7.03	Average		
4	5350.00	58.30	74.00	-15.70	51.27	7.03	Peak		
5	10420.00	55.49	68.20	-12.71	38.96	16.53	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 121 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	51.64	54.00	-2.36	44.11	7.53	Average		
2	5715.00	64.39	74.00	-9.61	56.86	7.53	Peak		
3	5725.00	65.83	78.20	-12.37	58.26	7.57	Peak		
4	5850.00	66.10	78.20	-12.10	58.21	7.89	Peak		
5	5860.00	47.82	54.00	-6.18	39.91	7.91	Average		
6	5860.00	66.64	74.00	-7.36	58.73	7.91	Peak		
7	11550.00	44.96	54.00	-9.04	27.75	17.21	Average		
8	11550.00	58.86	74.00	-15.14	41.65	17.21	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 122 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	52.49	54.00	-1.51	44.96	7.53	Average		
2	5715.00	66.37	74.00	-7.63	58.84	7.53	Peak		
3	5725.00	68.17	78.20	-10.03	60.60	7.57	Peak		
4	5850.00	61.30	78.20	-16.90	53.41	7.89	Peak		
5	5860.00	47.50	54.00	-6.50	39.59	7.91	Average		
6	5860.00	59.46	74.00	-14.54	51.55	7.91	Peak		
7	11550.00	45.60	54.00	-8.40	28.39	17.21	Average		
8	11550.00	59.53	74.00	-14.47	42.32	17.21	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR531903AN Page: 123 of 127

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR531903AN Page: 124 of 127

3.6.4 Test Result of Frequency Stability

Non-beamforming mode - Test Configuration 1

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	7.15	7.61	7.38	7.01	
T20°CVmin	5.80	6.20	5.99	6.06	
T50°CVnom	4.93	4.93	5.11	5.32	
T40°CVnom	4.84	5.00	5.12	4.98	
T30°CVnom	5.16	5.15	4.83	5.41	
T20°CVnom	4.30	4.67	4.40	4.23	
T10°CVnom	4.06	4.19	4.42	4.38	
T0°CVnom	3.69	3.84	3.85	3.88	
T-10°CVnom	3.29	3.49	3.16	2.88	
T-20°CVnom	1.02	1.32 0.99		1.26	
T-30°CVnom	5.85	6.39	6.53	5.49	
Vnom [Vac]: 120	Vr	max [Vac]: 138 Vmin [Vac]: 102		: 102	
Tnom [°C]: 20	Tn	nax [°C]: 50	Tmin [°C]: -30		

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	6.47	6.47	6.67	7.15	
T20°CVmin	4.94	4.88	4.89	5.37	
T50°CVnom	4.47	4.81	4.86	4.31	
T40°CVnom	4.88	5.13	5.39	4.93	
T30°CVnom	5.24	5.08	5.66	5.24	
T20°CVnom	4.06	4.58	3.74	4.13	
T10°CVnom	3.06	3.59	3.08	3.15	
T0°CVnom	2.88	3.48	3.13	3.48	
T-10°CVnom	2.20	2.55	2.42	2.44	
T-20°CVnom	1.94	2.02	1.58	2.41	
T-30°CVnom	3.36	3.70	3.12	3.55	
Vnom [Vac]: 120	V	max [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102	
Tnom [°C]: 20	Т	max [°C]: 50	Tmin [°C]: -3	Tmin [°C]: -30	

Report No.: FR531903AN Page: 125 of 127

Beamforming mode - Test Configuration 3

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	5.66	5.25	5.47	5.37	
T20°CVmin	5.08	5.06	4.84	5.22	
T50°CVnom	4.26	4.85	5.40	5.10	
T40°CVnom	4.61	4.46	4.76	4.43	
T30°CVnom	4.40	4.47	4.08	3.43	
T20°CVnom	3.99	3.95	2.98	3.68	
T10°CVnom	2.89	2.72	2.98	3.59	
T0°CVnom	3.60	3.27	2.76	3.53	
T-10°CVnom	2.63	2.15	2.63	2.40	
T-20°CVnom	1.36	1.01	1.11	1.28	
T-30°CVnom	4.94	5.20	5.08	5.36	
Vnom [Vac]: 120	\	/max [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102	
Tnom [°C]: 20	Т	「max [°C]: 50	Tmin [°C]: -30	0	

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	6.58	6.27	5.92	5.93	
T20°CVmin	4.58	5.06	5.19	5.41	
T50°CVnom	4.42	5.09	4.98	5.10	
T40°CVnom	3.97	4.23	4.45	3.80	
T30°CVnom	4.44	4.44	4.51	4.33	
T20°CVnom	3.33	3.74	3.81	3.41	
T10°CVnom	3.35	3.48	4.19	4.24	
T0°CVnom	3.18	2.95	2.89	2.87	
T-10°CVnom	1.85	0.99	1.74	1.88	
T-20°CVnom	1.77	2.04	1.72	1.62	
T-30°CVnom	2.80	2.38	2.59	2.43	
Vnom [Vac]: 120	V	max [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102	
Tnom [°C]: 20	Т	max [°C]: 50	Tmin [°C]: -30		

Report No.: FR531903AN Page: 126 of 127

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR531903AN Page: 127 of 127