PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA IOP224 INVESTIGACIÓN DE OPERACIONES

Tercera práctica (tipo a) Primer semestre 2024

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: con apuntes de clase (físicos o digitales) y calculadora no programable.
- No está permitido el uso de computadores ni celulares.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (4 puntos)

1.1) Considere una función de producción F(K, L), $F : \mathbb{R}^2_+ \to \mathbb{R}$ de clase C^2 . La tasa marginal de sustitución técnica (TMST) se define de la siguiente manera:

$$TMST_{K,L} = \frac{F_K}{F_L},$$

donde $F_K > 0$ y $F_L > 0$ son la productividad marginal de los factores K y L, respectivamente. Asuma que L es una función diferenciable de K: L = L(K). Demuestre que si F es cuasi cóncava, entonces la TMST es decreciente (en K).

1.2) Sea $F: \mathbb{R}^2_{++} \to \mathbb{R}$, $F(x_1, x_2)$ una función de producción diferenciable. La elasticidad de sustitución de esta función se define como

$$\sigma = \frac{d(x_2/x_1)}{dTMST} \frac{TMST}{x_2/x_1},$$

donde $TMST = \frac{F_{x_1}}{F_{x_2}}$. Si

$$F(x_1, x_2) = (\alpha_1 x_1^{\rho} + \alpha_2 x_2^{\rho})^{1/\rho}, \ \rho \neq 0, \ \alpha_i > 0,$$

demuestre que

$$\sigma = \frac{1}{1 - \rho}.$$

Pregunta 2 (4 puntos)

2.1) Considere el siguiente problema de maximización del beneficio «en el corto plazo» (lo que significa que uno de los dos insumos está fijo, por ejemplo $x_2 = k$):

$$\max_{x_1, q \ge 0} pq - w_1 x_1 - w_2 k$$
$$Ax_1^{\alpha} k^{\beta} = q$$

con $\alpha, \beta \in]0, 1[$, $A, k, w_1, w_2, p > 0$. Plantee el problema como un problema de optimización en una única variable y explique por qué la solución es interior. Luego, obtenga la solución al problema (x_1^*, q^*) y la función valor óptimo $\pi(p, w_1, w_2, k, \alpha, \beta, A)$.

2.2) El problema del monopolista consiste en lo siguiente; dada una función inversa de demanda p = p(q), su objetivo es resolver

$$\max_{q>0} p(q)q - c(q),$$

donde c(q) es la función de costos de la firma, que depende del nivel de producción q. Suponga que p(q) = a - bq y (i) $c(q) = c \cdot q^2$, (ii) $c(q) = c \cdot q$, con a, b, c > 0. Resuelva el problema del monopolista para ambos casos y compárelos. Finalmente, obtenga los beneficios del monopolista en ambos casos.

Pregunta 3 (4 puntos)

Sea $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ una muestra aleatoria correspondiente a una distribución normal $\mathcal{N}(\mu, \sigma^2)$. Se define la función de verosimilitud por:

$$L(x_1, x_2, ..., x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}.$$
(1)

Se denominan los estimadores de máxima verosimilitud de μ y σ^2 (que se denotan por $\hat{\mu}$ y $\hat{\sigma}^2$) a los valores para los que se alcanza el máximo valor de la función definida en (1). Calcule $\hat{\mu}$ y $\hat{\sigma}^2$, comprobando que se trata de un máximo. Asuma que no todos los x_i son iguales.

Pregunta 4 (3 puntos)

Considere una firma que posee una función de producción tipo CES

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \gamma_i x_i^{\rho}, \ 0 < \rho < 1, \ \gamma_i > 0.$$

3.1) Plantee el problema de maximización del beneficio de esta firma, asumiendo que los precios de los insumos son $w_1, ..., w_n > 0$ y el precio del bien que se produce es p = 1.

3.2) Resuelva el problema: verifique las condiciones de primer y segundo orden. Determine el beneficio de la firma cuando usa las cantidades óptimas de insumos.

Pregunta 5 (5 puntos)

Considere el siguiente modelo macroeconómico

$$Y = C_0 + C(Y - T_0 - T(Y), r) + I_0 + I(r, Y) + G_0$$

$$L_0 + L(Y, r) = M_0.$$

Las variables endógenas del modelo son Y, la producción y r, la tasa de interés. Considere los siguientes supuestos de comportamiento

$$0 < C_{Y_d} < 1, \ T_Y > 0, C_r < 0, I_Y > 0, I_r < 0$$

 $C_{Y_d} + I_Y < 1, L_Y > 0, L_r < 0,$

donde
$$Y^d = Y - T_0 - T(Y)$$
.

5.1) Determine los parámetros del modelo e identifique qué representan T(Y) e I(Y,r). Por ejemplo, L(Y,r) es la función de demanda monetaria y M_0 la oferta monetaria.

5.2) Determine
$$\frac{\partial Y}{\partial G_0}$$
 y $\frac{\partial r}{\partial G_0}$.

- 5.3) ¿Es cierto que un incremento de la oferta monetaria M_0 reduce la producción Y? Justifique.
- 5.4) ¿Es cierto que un incremento de la oferta monetaria M_0 incrementa la tasa de interés r? Justifique.

Bonus (2 puntos). Entregar en Paideia hasta el lunes 27 de mayo a las 22h00.

- 1) Sea \succeq una relación de preferencias racional sobre $X = \mathbb{R}^n_+$ y $u(\cdot)$ una función de utilidad que la representa. Demuestre que si \succeq es convexa, entonces $u(\cdot)$ es cuasi cóncava.
- 2) Considere el problema de minimización del costo

$$\min \mathbf{w} \cdot \mathbf{x}$$
s.a.: $f(\mathbf{x}) \ge q$

$$\mathbf{x} \ge \mathbf{0}$$

donde $q>0,\,\mathbf{w}\in\mathbb{R}^n_{++}$ y $f:\mathbb{R}^n_+\to\mathbb{R}.$ Sea

$$c(\mathbf{w}, q) = \min \left\{ \frac{w_1}{a_1}, ..., \frac{w_n}{a_n} \right\} q.$$

Determine la función de producción asociada a esta función de costos.

Profesor del curso: Jorge Chávez.

San Miguel, 24 de mayo del 2024