Туре		Description		Examples	
1□ Supervised Learning		Model learns from labeled data (data with known outputs)		Regression, Classification	
2□ Unsupervised Learning		Model learns from unlabeled data (no known outputs)		Clustering, Dimensionality Reduction	
□ Inside Super	vised Lo	earning, w	e have:		
Subtype	Outp	ut Type	e Examples		
Regression	Continu output	Jous	Linear Regression, Polynomial Regression		
Classificatio n	Catego output	rical	Logistic Regression, Decision Tree, Random Fo SVM, etc.		
Artificial Intellige		na			
 Machine Learning ├── Supervised Learning │					

Linear Regression

Linear Regression is a method used to find a linear relationship between independent variable(s) (X) and a dependent variable (Y).

Formula

Y = mx + c

If there are multiple variables (multiple linear regression):

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Symbo I	Meaning	Analogy
Y	Dependent variable (the value you're predicting)	e.g., Life Expectancy
X	Independent variable (the input)	e.g., GDP
b_0	Intercept \rightarrow value of Y when X = 0	Like "c" in y = mx + c
b ₁	Slope \rightarrow how much Y changes when X increases by 1 unit	Like "m" in y = mx + c
8	Error term \rightarrow difference between actual and predicted Y	The leftover or noise

B0 = Intercept(c) B1 = the slope(m)

Type Description

Simple Linear Regression

One independent variable

Multiple Linear Regression

More than one independent variable

Polynomial Linear

Regression

Uses higher powers of X (like X², X³) to model curved relationships

 $m = coefficient(s) \rightarrow how much Y changes when X changes$

 $c = intercept \rightarrow value of Y when X = 0$

MSE (Mean Squared Error): Measures average of squared prediction errors — lower is better.

RMSE (Root Mean Squared Error): Average error in actual units — shows how far predictions are from real values.

MAE (Mean Absolute Error): Average absolute difference between predicted and actual values.

R² (R-Square): Shows how much of the variation in the target is explained by the model.

Adjusted R²: R² adjusted for number of predictors — penalizes adding useless variables.

Adjusted R square = 1 - (1-R2) * (N-1) / N - p -1

Where:

Symbol Meaning
 R² Normal R-squared value
 N Total number of observations (rows)

p Number of independent variables (features/predictors)

☐ Why we need Adjusted R²

You said it perfectly —

R² always increases when you add more independent variables, even if those variables are **not actually useful** in prediction.

□ So, R² can **mislead you** — it'll look like your model is improving, but in reality, the model might just be becoming more complex and overfitted.

☐ How Adjusted R² fixes that

- Adjusted R² penalizes unnecessary variables (via the term p).
- If you add a new variable that **actually helps**, Adjusted R² will **increase**.
- If you add a variable that **doesn't help**, Adjusted R² will **decrease**.

This makes it a **better**, **fairer measure** of model performance when multiple predictors are used.

Variable	R²	Adjusted R ²		
1 Predictor	0.75	0.74		
3 Predictors	0.80	0.77		
6 Predictors	0.82	0.76		
 □ Notice: even though R² keeps rising, Adjusted R² starts dropping because not all predictors are useful. 				

☐ In short:

Metric	Meaning	Problem / Solution
R²	% of variation in Y explained by X	Always increases with new variables
Adjusted R²	Penalizes unnecessary predictors	Only increases if the new variable adds real value

□ Case 1 – Few useful variables	

Model Independent Variables (p) What they represent R² Adjusted R²

Model 1	1 → engine_size	Bigger engine → higher price	0.7 0	0.69
Model 2	$2 \rightarrow \text{engine_size}, \text{mileage}$	Mileage also affects price	0.8 2	0.81
Model 3	<pre>3 → engine_size, mileage, brand_rating</pre>	Brand also important	0.8	0.87

 \checkmark Here every new p (variable) adds real information, so $R^2 \uparrow$ and Adjusted $R^2 \uparrow$. The model truly got better.

☐ Case 2 – Adding useless variables

Now you start adding random columns like the color of the dashboard, number of cup holders, or serial number.

Model	Independent Variables (p)	Are they useful?	R²	Adjusted R ²
Model 4	+ dashboard_color	XNo relation to price	0.885	0.86
Model 5	+ cup_holders, serial_number	XStill no relation	0.89	0.84

 \square R² **keeps increasing a little** (because adding any variable can always fit the data a tiny bit more),

but **Adjusted R² drops** — it's punishing you for adding useless features.

When we add more independent variables (**p increases**), the denominator N - p - 1 **decreases**. As a result, the fraction value **increases**.

The a recall, the fraction value interested.

Since this entire fraction is **subtracted from 1**, the overall Adjusted R² **decreases** — unless the new variable actually improves R² a lot.

This means Adjusted R² **penalizes** the model for adding too many variables that don't truly help in prediction.

Case 2 = If p decreases denominator N - p - 1 increases and the fraction gets smaller, hence R square goes up.

☐ In short:

Change in p	Effect on Denominator	Effect on Fraction	Effect on Adjusted R ²
p increases	Denominator ↓	Fraction ↑	Adjusted R² ↓
p decreases	Denominator ↑	Fraction ↓	Adjusted R² ↑