VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS

<u>Dirbtinio Intelekto 4 laboratorinis darbas</u>

Darbą atliko: VU MIF ISI 3 kurso, 2 grupės, 1 pogrupio studentas Ignas Biekša

Turinys	
Dirbtinio Intelekto 4 laboratorinis darbas	1
Darbo tikslas	3
Duomenų aprašymas	3
Konvoliucinio neuroninio tinklo architektūros aprašymas, naudojami resursai	4
Tyrimo rezultatai:	5
Klasifikavimo matrica (confusion matrix)	17
30 Atsitiktinai pasirinktų įrašų klasifikavimo rezultatai	17
Išvados	18
Programos kodas:	18

Darbo tikslas

Apmokyti konvoliucinį neuroninį tinklą vaizdams klasifikuoti, atlikti tyrimą.

Duomenų aprašymas

Buvo naudojami CIFAR10 rinkinio vaizdai iš https://www.cs.toronto.edu/~kriz/cifar.html. Rinkinys susidaro iš 60000 32x32 formato nuotraukų. Rinkinį sudaro 10 klasių, kiekvienai po 6000 nuotraukų. Klasių pavadinimai: 'Plane', 'Car', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck'. Mokymo ir testavimo duomenys padalinti santykiu 1:5.

Pav. 1 Rinkinyje esančių vaizdų pavyzdys

Konvoliucinio neuroninio tinklo architektūros aprašymas, naudojami resursai

Modelis kuriamas naudojant TensorFlow biblioteką. Modelis sudarytas sekos formatu, jį sudaro sluoksniai: rescaling – kuris sunormalizuoja duomenų reikšmes į intervalą [0; 1], conv2d – konvoliucinio tinklo dvidimensinis sluoksnis, max_pooling2d – dvidimensinė skaičiavimo operacija, kuri sukompresuoja rezultato formatą. Flatten – paverčia rezultatus į vienos dimensijos masyvą. Dense – NT sluoksnis kuris pagal aktyvacijos funkciją sumažina rezultatų skaičių.

Hiperparametrai, kurie buvo keičiami norint rasti tiksliausią modelį per 10 epochų yra: aktyvacija – tiesinė (relu) ir sigmoidinė (sigmoid), paketo dydis – 32; 64; 128, optimizavimo algoritmas – gradiento nusileidimo su pagreičiu (sgd), gradiento nusileidimo su adaptyviu nuspėjimu (adam).

Naudojami resursai: CPU – Ryzen 5 3600, atmintis – 4 GB.

Model: "sequential"		.,
Layer (type)	Output Shape	Param #
rescaling (Rescaling)		0
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
max_pooling2d_1 (MaxPooling 2D)	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 10)	650
Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0		

Pav. 2 Konvoliucinio neuroninio tinklo modelio architektūra

Tyrimo rezultatai:

Ištestuoti modeliai su skirtingais hiperparametrais, nustatyta, kad tiksliausia kombinacija yra 3 – su tiesine aktyvacija, 64 paketo dydžiu ir nuspėjančio gradiento nusileidimo optimizavimu.

0	relu	32	sgd	0.5973
1	relu	32	adam	0.6873
2	relu	64	sgd	0.5292
3	relu	64	adam	0.6988
4	relu	128	sgd	0.4509
5	relu	128	adam	0.6833
6	sigmoid	32	sgd	0.1000
7	sigmoid	32	adam	0.5497
8	sigmoid	64	sgd	0.1000
9	sigmoid	64	adam	0.5129
10	sigmoid	128	sgd	0.1000
11	sigmoid	128	adam	0.4819

Pav. 3 12 hiperparametrų kombinacijų. Paskutiniame stulpelyje - jų tikslumas.

Žemiau yra pateikti grafikai su modelio tikslumo ir paklaidos pokyčiu kiekvienos epochos metu. Galime matyti, kad modelis nepersimoko.

Pav. 4 Modelio tikslumas per 10 epochų, hiperparametrai įvardinti grafiko pavadinime

Pav. 5 Modelio klaida per 10 epochų

Pav. 6 Modelio tikslumas per 10 epochų

Pav. 7 Modelio klaida per 10 epochų

Pav. 8 Modelio tikslumas per 10 epochų

Pav. 9 Modelio klaida per 10 epochų

Pav. 10 Modelio tikslumas per 10 epochų

Pav. 11 Modelio klaida per 10 epochų

Pav. 12 Modelio tikslumas per 10 epochų

Pav. 13 Modelio klaida per 10 epochų

Pav. 14 Modelio tikslumas per 10 epochų

Pav. 15 Modelio klaida per 10 epochų

Pav. 16 Modelio tikslumas per 10 epochų

Pav. 17 Modelio klaida per 10 epochų

Pav. 18 Modelio tikslumas per 10 epochų

Pav. 19 Modelio klaida per 10 epochų

Pav. 20 Modelio tikslumas per 10 epochų

Pav. 21 Modelio klaida per 10 epochų

Pav. 22 Modelio tikslumas per 10 epochų

Pav. 23 Modelio klaida per 10 epochų

Pav. 24 Modelio tikslumas per 10 epochų

Pav. 25 Modelio klaida per 10 epochų

Pav. 26 Modelio tikslumas per 10 epochų

Pav. 27 Modelio klaida per 10 epochų

Klasifikavimo matrica (confusion matrix)

Klasifikavimo matricoje matyti kad geriausiai atpažįstami yra automobiliai (803), varlės (823), ir laivai (847). Lėktuvai yra dažnai klaidinami su laivais (105).

rr-	7E0	16	20	0	10	С	11	0	100	28]
										_
[32	803	3	8	5	4	10	2	48	85]
[89	9	550	49	101	59	71	32	32	8]
[21	15	81	489	85	144	83	27	42	13]
										3]
[13	2	71	196	60	538	35	49	27	9]
[10	3	56	43	28	10	823	4	18	5]
[26	3	30	43	87	52	14	721	7	17]
										22]
[25	91	8	12	6	3	12	10	51	782]]

Pav. 28 Apskaičiuota klasifikavimo matrica su tiksliausiu modeliu (nr. 3) modelio tikslumas – 0.6988

30 Atsitiktinai pasirinktų įrašų klasifikavimo rezultatai

Buvo atsitiktinai parinkti įrašai ir naudotas modelis juos klasifikuoti.

	Correct	Label	Prediction
0	True	Frog	Frog
1	False	Cat	Deer
2	True	Ship	Ship
3	True	Plane	Plane
4	False	Dog	Bird
5	False	Cat	Ship
13	False	Cat	Dog
14	True	Bird	Bird
15	False	Plane	Bird
16	True	Car	Car
17	False	Car	Truck
18	True	Car	Car
19	True	Frog	Frog
20	True	Plane	Plane
21	False	Ship	Plane
22	True	Cat	Cat
23	False	Bird	Deer
24	True	Frog	Frog
25	True	Car	Car
26	True	Dog	Dog
27	False	Deer	Bird
28	True	Ship	Ship
29	False	Ship	Truck

Pav. 29 30 įrašų klasifikavimo pavyzdys

Išvados

Klasifikavimui buvo naudojamas nuotraukų rinkinys CIFAR10 sudarytas iš 60000 nuotraukų, 10 klasių. Buvo sukurtas modelis pasiteliant TensorFlow biblioteką. Buvo sudarytos hiperparametrų kombinacijos iš šių hiperparametrų: aktyvacija – relu, sigmoid, paketo dydis – 32; 64; 128, optimizavimo algoritmas – sgd, adam. Nustatyta, kad tiksliausia kombinacija yra su hiperparametrais relu, 64, adam, kurios tikslumas buvo 0.6988. Naudojant sigmoid ir sgd hiperparametrus pastebėta, kad tikslumas yra labiausiai nepastovus ir šokinėjantis, todėl šių hiperparametrų kombinacija yra netinkama norint pasiekti gerą tikslumą. Pastebėta, kad tikslumą būtų galima didinti didinant epochų skaičių. Iš klasifikavimo matricos matyti, kad daugiausiai yra klaidinami lėktuvai su laivais. Sėkmingiausiai atpažįstami automobiliai, varlės ir laivai.

Programos kodas:

```
from <a href="mailto:sklearn.metrics">sklearn.metrics</a> import accuracy_score, confusion_matrix,

classification_report

from <a href="mailto:sklearn.model_selection">sklearn.model_selection</a> import <a href="mailto:ParameterGrid">ParameterGrid</a>

from <a href="mailto:keras.datasets">keras.datasets</a> import <a href="mailto:cifar10">models</a>, <a href="mailto:layers">layers</a>

from <a href="mailto:path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"path:"pat
```

```
def displayDataset():
    for i in range(16):
        plt.subplot(4, 4, i+1)
        plt.xticks([])
        plt.yticks([])
        plt.imshow(train_images[i], cmap=plt.cm.binary)
        plt.xlabel(class_names[train_labels[i][0]])
    plt.show()
def createModel(activationFun):
    model = models.Sequential()
    model.add(layers.Input(shape=(32, 32, 3)))
    model.add(layers.Rescaling(scale=1.0 / 255))
    model.add(layers.Conv2D(
        32, (3, 3), activation=activationFun, input_shape=(32, 32, 3)))
    model.add((layers.MaxPooling2D(2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation=activationFun))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation=activationFun))
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation=activationFun))
    model.add(layers.Dense(10, activation='softmax'))
    return model
def trainModel(train images, train labels,
               epochs=10,
               activation='relu',
               batch size=32,
               optimizer='adam',
               setNum=1):
    model = createModel(activation)
    global debounce
    if not debounce:
        model.summary()
        debounce = True
    model.compile(optimizer=optimizer,
                  loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```

```
history = model.fit(train images, train labels, epochs=epochs,
                        validation_split=0.2, batch_size=batch_size)
    model.save(f'models/modelWSet{setNum}')
    return model, history
def evaluateModel(model, history, test_images, test_labels, **kwargs):
    if not history == None:
        plt.plot(history.history['accuracy'])
       plt.plot(history.history['val_accuracy'])
        plt.title(f'model accuracy\n{kwargs.__str__()}')
        plt.ylabel('accuracy')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
       plt.show()
       plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title(f'model loss\n{kwarqs. str ()}')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()
    loss, accuracy = model.evaluate(test images, test labels)
    print(f'Loss: {loss}')
    print(f'Accuracy: {accuracy}')
    return accuracy
if name == ' main ':
    debounce = False
    # using cifar from https://www.cs.toronto.edu/~kriz/cifar.html
    (train images, train labels), (test images, test labels) =
cifar10.load_data()
    class_names = ['Plane', 'Car', 'Bird', 'Cat',
                   'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']
    displayDataset()
```

```
grid = ParameterGrid({'activation': ['relu', 'sigmoid'], 'batch_size':
                     32, 64, 128], 'optimizer': ['sgd', 'adam']})
results = pd.DataFrame(list(grid))
allAccuracies = []
allModels = []
allHistories = []
for i in range(len(results)):
    if not Path(f'models/modelWSet{i}').exists():
        model, history = trainModel(
            train_images, train_labels, **grid[i], setNum=i)
        accuracy = evaluateModel(
            model, history, test_images, test_labels, **grid[i])
        allAccuracies.append(accuracy)
        allModels.append(model)
        allHistories.append(history)
        print(f'iteration {i}')
for i in range(len(results)):
    model = models.load model(f'models/modelWSet{i}')
    accuracy = evaluateModel(model, None, test_images, test_labels)
    allAccuracies.append(accuracy)
    allModels.append(models)
bestIndex = allAccuracies.index(max(allAccuracies))
print(f'most accurate set: modelWSet{bestIndex}')
print('model results:')
results['test_accuracies'] = allAccuracies
print(results)
bestModel = models.load model(f'models/modelWSet{bestIndex}')
yPred = bestModel.predict(test_images)
yPred = [np.argmax(i) for i in yPred]
confusion matrix = confusion matrix(test labels, yPred)
print(confusion matrix)
testAccuracy = accuracy_score(test_labels, yPred)
print(f'Best model accuracy: {testAccuracy}')
resultsdf = pd.DataFrame(classification report(
```

```
test_labels, yPred, output_dict=True))
resultsdf.columns = np.concatenate(
    (class_names, resultsdf.columns[10:].values))
resultsdf
print('prediction fragment:')
label = []
prediction = []
correct = []
indices = np.random.choice(
    np.where(np.array(yPred) == np.array(yPred))[0], 30)
for i in indices:
   correct.append(yPred[i] == test_labels[i][0])
    prediction.append(class_names[yPred[i]])
    label.append(class_names[test_labels[i][0]])
df = pd.DataFrame(
   {'Correct': correct, 'Label': label, 'Prediction': prediction})
print(df)
```