(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-196881 (P2000-196881A)

(43)公開日 平成12年7月14日(2000.7.14)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H 0 4 N	1/401		H04N	1/40	101A	5 C 0 7 2
	1/19			1/04	103E	5 C O 7 7
	1/409			1/40	101C	

審査請求 未請求 請求項の数4 OL (全 19 頁)

(21)出願番号	特顯平 10-374075	(71)出顧人 000006747
		株式会社リコー
(22)出願日	平成10年12月28日(1998.12.28)	東京都大田区中馬込1丁目3番6号
		(72)発明者 波塚 義幸
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(74)代理人 100078134
		弁理士 武 顕次郎 (外2名)
		Fターム(参考) 50072 AA01 BA08 CA12 EA05 FB12
		FB13 FB16 LA18 RA16 UA02
		5CO77 LL01 MMO3 MM27 MP01 MP04
		NP01 PP05 PP06 PP07 PP54
		PQ08 PQ23 RR09

(54) 【発明の名称】 画像処理装置

(57)【要約】

【課題】 SDFでの読み取り補正の最適化と圧板での 読み取り補正の最適化を独立に行い、コピーの出力画像 も、FAXの2値画像も最適再現可能な画像処理装置を 提供する。

【解決手段】 SDFを使用した第1の読み取りモードと圧板を使用した第2の読み取りモードとを備え、いずれかのモードで原稿を読み取り、読み取った画像情報をディジタル変換された画像信号に変換し、ディジタル変換された画像信号を顕像として出力可能な画像信号になるように処理する画像処理装置において、前記第1の読み取りモードと第2の読み取りモードとでそれぞれ読み取り補正の最適化を独立して行うため、前記2つのモードによって読み取り位置を切り替える圧板/背景板切り換え制御部111と、前記2つのモードに応じて最適なシェーディング補正を行わせるシェーディング補正部102と、前記2つのモードに応じて黒スジ補正及び白スジ補正を切り換えてスジ補正を行うスジ補正部112とを設けた。

1

【特許請求の範囲】

【請求項1】 シートスルー・ドキュメント・フィーダを使用した第1の読み取りモードと圧板を使用した第2の読み取りモードとを備え、いずれかのモードで原稿を読み取り、読み取った画像情報をディジタル変換された画像信号に変換し、ディジタル変換された画像信号を顕像として出力可能な画像信号になるように処理する画像処理装置において、

前記第1の読み取りモードと第2の読み取りモードとで それぞれ読み取り補正の最適化を独立して行う画像処理 手段を備えていることを特徴とする画像処理装置。

【請求項2】 前記画像処理手段は、前記第1の読み取りモードと第2の読み取りモードとによって読み取り位置を切り替える読み取り位置切り替え手段と、

前記2つのモードに応じて最適なシェーディング補正を 行わせる制御手段と、

前記2つのモードに応じて黒スジ補正及び白スジ補正を 切り換えてスジ補正を行うスジ補正手段と、を備えてい ることを特徴とする請求項1記載の画像処理装置。

【請求項3】 前記第1の読み取りモードと第2の読み取りモードとに応じてシェーディング補正データを切り替える手段と、

前記2つのモードに応じてシェーディング生成間隔を切り替える手段と、

前記2つのモードに応じてランプ点灯時間を制御する手段と、を備えていることを特徴とする請求項2記載の画像処理装置。

【請求項4】 第1の読み取りモードで原稿を読み取るときに黒スジ補正を行う手段と、シェーディング補正を行う際に使用するシェーディングデータの生成時に白スジ補正を行う手段と、白スジ検出のための設定値を前記第1の読み取りモードと第2の読み取りモードとに応じて任意に設定する手段とを備えていることを特徴とする請求項2記載の画像処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はディジタル画像装置 に係り、特にスキャナーから画像を読み込み転写紙に画 像を再生する装置に関する。

[0002]

【従来の技術】MFP(コピー、FAX等の複合機)において、コピー用の多値処理とFAX用の2値処理を区別し、平行動作及びそれぞれの画像処理を最適化する『画像処理装置』(特開平8-274986)等が発明されている。主に400dpiのシステムにおいて高画質を維持している。

[0003]

【発明が解決しようとする課題】しかしながら上記発明において、2値と多値の回路構成の共通化はなされておらず、更にコピー用の画像補正とFAX用画像補正で、

画像取り込み装置の特性を考慮されていなかった。システムの価格からコピーでは圧板での読み取りが主体で、FAXではシートスルー・ドキュメント・フィーダ(以下、「SDF」と略称する。)での読み取りが主体となっ

【0004】本発明は、斯かる点に鑑みてなされたもので、その目的は、階調性及び低濃度再現性を低コストの装置で実現し、読み取り装置の構成の違いを吸収することにある。特にSDFでの読み取り補正の最適化と圧板での読み取り補正の最適化を独立に行い、コピーの出力画像も、FAXの2値画像も最適再現可能な画像処理装置を提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するため、第1の手段は、SDFを使用した第1の読み取りモードと圧板を使用した第2の読み取りモードとを備え、いずれかのモードで原稿を読み取り、読み取った画像情報をディジタル変換された画像信号に変換し、ディジタル変換された画像信号を顕像として出力可能な画像信号になるように処理する画像処理装置において、前記第1の読み取りモードと第2の読み取りモードとでそれぞれ読み取り補正の最適化を独立して行う画像処理手段を備えていることを特徴とする。

【0006】第2の手段は、第1の手段において、前記画像処理手段が、前記第1読み取りモードと第2の読み取りモードとによって読み取り位置を切り替える読み取り位置切り替え手段と、前記2つのモードに応じて最適なシェーディング補正を行わせる制御手段と、前記2つのモードに応じて黒スジ補正及び白スジ補正を切り換えてスジ補正を行うスジ補正手段とを備えていることを特徴とする。

【0007】第3の手段は、第2の手段において、前記第1の読み取りモードと第2の読み取りモードとに応じてシェーディング補正データを切り替える手段と、前記2つのモードに応じてシェーディング生成間隔を切り替える手段と、前記2つのモードとに応じてランプ点灯時間を制御する手段とを備えていることを特徴とする。

【0008】第4の手段は、第2の手段において、第1 の読み取りモードで原稿を読み取るときに黒スジ補正を 40 行う手段と、シェーディング補正を行う際に使用するシェーディングデータの生成時に白スジ補正を行う手段 と、白スジ検出のための設定値を前記第1のモードと第 2のモードとに応じて任意に設定する手段とを備えていることを特徴とする。

[0009]

【発明の実施の形態】以下、本発明の実施形態について 図面を参照しながら説明する。図1は本実施形態に係る 画像処理装置の構成を示す機能ブロックである。

【0010】本実施形態に係る画像処理装置は、原稿を 50 光学的に読み取る読み取り部101、シェーディング補 正部102、スキャナァ補正部103、主走査電気変倍 部104、空間フィルタ処理部105、濃度補正部106、階調処理部107、PMW変調部108、書き込み部109、マトリクスRAM119、操作部120、CPU130、ROM140、RAM150、圧板/背景 板切り替え制御部111、スジ補正部112、及びモータパルス制御部113を備えている。

【0011】読み取り部101は、ここでは原稿濃度を 光源の反射光として読み取り、CCD等の撮像素子によ り電気信号に変換する。更にアナログ信号はディジタル 10 信号に変換する。ディジタル信号変換後の電気系に対 し、シェーディング補正部102において光源、光学系 の濃度ムラに関する補正を行う。ここでは原稿読み取り 前に、あらかじめ濃度基準となる白板を読んでおき、こ の読み取り信号をメモリに格納しておく。主走査方向の 各読み取り位置に対し、ドット単位で基準データと読み 取りデータの間で補正処理を行う。シェーディング補正 後のディジタル信号は反射率に関しリニアな特性となっ ている。これを原稿濃度に関しリニアな特性に変換す る。この変換は、あらかじめスキャナの読み取り特性を 測定しておき、その逆特性となる変換テーブルをRAM にダウンロードしておき、スキャナ γ 補正部103にお いて濃度リニアなデータに変換する。スキャナァ補正部 103においては濃度リニアな変換以外にも、低濃度部 を強調したり、逆にレベルを落としたりして補正効果を 高める。

【0012】読み取り部101並びにシェーディング補正部102は圧板読み取り、SDF読み取りに応じて原稿読み取り位置、データ補正量を切り替え、読み取り系の構成に応じて変更する。読み取ったデータに関して、圧板読み取り時はシェーディングデータに関する白スジ補正を、SDFに関してはシェーディングデータに関する白スジ補正の後、入力画像に対する黒スジ補正を行う。なお、圧板読み取りの切り替えは、圧板/背景板切り替え制御部111で行い、白スジや黒スジの補正はスジ補正部112で行う。

【0013】階調処理とは直接的な関係はないが、主走査方向の電気変倍処理が主走査電気変倍部104で実行できるようにこの画像処理装置でな構成されている。主走査電気変倍部104では、CCDでの読み取り1ライン単位で拡大、縮小を行う。この場合、コンボリューション法を使うことで、読み取り光学系でのMTFを保持したまま変倍処理を行い、画像データの解像力を維持する。幅走査方向に関しては機械的な制御により変倍処理を行う。なお、コンボリューション法は公知の技術なので、ここでの説明は割愛する。

【0014】空間フィルタ処理部105において階調処理のための前処理及び特徴量を抽出する。MTFの補正、平滑処理、エッジ線分の検出、変動閾値の設定等を主な機能として備える。この処理モジュールの出力はフ

ィルタ処理された画像データと周辺条件から算出された 2値化のための変動閾値とである。

【0015】空間フィルタ処理されたデータは濃度補正 部106に入力される。濃度補正部106では、画像デ ータ、変動閾値に対しそれぞれ濃度補正を連動して行 う。この濃度補正部106は書き込み系のγ補正及び濃 度ノッチに対する再生濃度の変換を行うブロックであ り、RAMから構成され任意の変換データをダウンロー ドできる。画像データ及び変動閾値用に同一のデータを ダウンロードする形が基本ではあるが、階調特性を意図 的に変化させる為に異なるデータを用いる場合もある。 【0016】濃度補正されたデータは階調処理部107 において書き込み系の特性に変換すべく、1 画素当たり の濃度データを面積階調に変換する。単純多値化、2値 化、ディザ処理、誤差拡散処理、位相制御等から構成さ れ、面積階調への変換はある領域内で量子化閾値を分散 させる。閾値の分散はマトリクスRAM119に任意の 値をダウンロードし、処理モードに応じてRAMアクセ ス手段を切り替え、適切な量子化を選択する。

【0017】階調処理されたデータはPWM変調部108において、書き込みレーザのためのパルス幅変調を行う。階調処理部107においての位相制御はPWM変調と連動させ、ドットの集約と分散を滑らかに実現し階調再現を行う。

【0018】PMW変調部108でPWM変調された画像データは書き込み部109においてレーザによる感光体への作像、転写、定着処理により転写紙に画像を再現する。この書き込み部109の構成はレーザプリンタとしての公知の構成なので、ここでの説明は省略する。なお、ここではレーザープリンタを書き込み系として示しているが、インクジェット等の現像方式ではPWM変調ブロック以下構成が異なるだけで、ドット再現のための位相制御までは共通なアプローチとして展開できる。

【0019】階調処理部107における階調処理の設定、濃度補正の切り替え等は操作部120からの操作モードに連動する。絵柄主体の原稿、文字主体の原稿等で処理モードを選択し、薄い原稿、濃い原稿に応じて濃度補正のパラメータも設定を変更する。実際のシステム制御は操作モードからの設定に対して、CPU130を介してシステムバス110経路でRAMへの設定値、処理パスの経路をそれぞれの機能ブロックに対し設定する。また、読み取りのためのキャリッジ移動制御は、モーターパルスのカウント数を検出し、モータパルス制御部113でスキャナ走行体の移動量を調整する。

【0020】なお、ROM140はCPU30の制御プログラムを始めとするスタティックなデータが格納され、RAM150はCPU130のデータエリアとして機能するとともに、CPU130の処理に使用するデータが格納される。

50 【0021】図2にスキャナγ補正部103と濃度補正

部106の概要を示す。同図(a)がスキャナ γ 補正、 同図(b)が濃度補正の変換テーブルを示す。図2 (a)の(1)の濃度特性は原稿濃度に対するシェーデ ィング補正後の画像データとの変換特性を示すもので、 リニアな特性にはなっていない。低濃度部では急激に立 ち上がり高濃度部では電気信号上飽和している。一般的 $(E \times p \ (\gamma))$ の特性となる。これを濃度リニアな信号 に変化させるために同図(2)に示す、Exp(1/ γ)の変換特性を乗じ濃度リニアな空間に信号を変換す る。これにより濃度信号のダイナミックレンジが増加す 10 る。

【0022】図2(b)の出力濃度補正は書き込み系の プロセル反応に対するア特性を補正し、さらに濃度変更 を実施するための変換テーブルをRAMにダウンロード し、特性値を乗ずる。具体的にはルックアップテーブル としてデータを参照し、置き換える。図2(b)では曲 線の上に凸は低濃度部を再現させ、下に凸は地肌に相当 する低濃度部を飛ばす特性を示す。モード、濃度ノッチ との兼ね合いでデータは任意の値を設定できる。

【0023】濃度再現性、階調再現性の自由度を与える ために変換パラメータはRAMへのダウンロードで任意 性を持たせる。対象となるRAMはスキャナ γ 補正、画 像データに関する濃度補正、変調閾値に対する濃度補 正、ディザ及び誤差拡散処理のための量子化閾値の設定 に関したもので、CPU130からのデータダウンロー ドとルックアップテーブルの切り替え手段は共通であ る。

【0024】図3にRAM301へのCPU130から のアクセス及びテーブル参照の切り替えの機能構成を示 す。RAMサイズは任意に設定可能であり、アドレス空 間は入力画像の1画素当たりの階調数だけあれば良い。 例えばCCDデータを8bitでA/D変換するシステ ムであれば、アドレス空間は8bitとなる。

【0025】RAM301へのアドレスに対し、データ ダウンロードのためのCPUアクセスモード時はCPU 130からのアドレスバスをマルチプレクサ302を介 して接続し、RAM301のデータ入力端子はCPU1 30からのデータを書き込む。RAM301はwrit e モードにて参照データをダウンロードする。本実施形 態においてはクロック (CLK) 同期の同期式RAMの 例を示しているが、非同期式RAMにおいてもCPUモ ードとデータ参照モードの切り替え方式は同じである。

【0026】通常の画像処理モードでは、RAM130 1へのアドレス端子へは被変換入力画像を接続し、RA M301はreadモードに設定する。これにより入力 データに対応する番地に格納されている、変換テーブル 値がRAM301の出力として算出される。RAM30 1での構成により回路構成、演算処理時間が軽減でき、 データの任意性確保できる。なお、READ/WRIT Eの指示はマルチプレクサ303を介してイネーブル端 50 択部511で選択する。RAM(3)553のアクセス

子に入力される。

【0027】図5に濃度補正部106及び階調処理部1 07の機能構成を示す。ルックアップテーブルとしての 参照RAMは3個有り、RAM(1)551、RAM (2)552、RAM(3)53で示している。RAM (1)551は変動閾値に対する濃度変換用 γ 補正テー ブル、RAM(2)552は画像データに対する濃度変 換用 γ 補正テーブル、RAM(3)553はディザ及び 誤差拡散閾値マトリクスRAMである。

【0028】2値処理用のパスと多値処理用のパスを構 成し、単純2値化処理に関しては変動2値化処理部50 1、先端画素制御処理部502及びバイナリフィルタ処 理部503の各画像処理部で各処理を実行し、2値選択 部511で2値を選択した上でさらに、選択部513か ら2値信号が出力される。ディザ及び誤差拡散処理は2 値、多値とも共通の回路、すなわち、2値/多値ディザ 処理部504及び2値/多値誤差拡散処理部505で実 施する。RAM(3)553のデータ内容、アドレス・ アクセス制御を選択部510が切り替えて前記ディザ処 理部504及び誤差拡散処理部505の2値/多値の処 理を切り替える。

【0029】多値レベル変換処理部506及び多値誤差 拡散処理部505の各処理に関しては濃度処理と合わせ て主走査方向前後の濃度分布によって、ドット形成のた めの位相情報を位相制御部507、508を付加する。 例えば3値化の場合、信号レベルは2bitを割り当 て、「00」、「01」、「10」、「11」の状態を 設定できる。通常これは4値化であるが、「00」を 白、「11」を黒に設定し、「01」、「10」ともP WMでのパルス幅を50%デューティとすれば、濃度レ ベルとしては3値となる。同じ50%デューティでも 「01」は右位相でドット形成領域内の右半分でレーザ を点灯させる。「10」は左位相でドット形成領域内の 左半分でレーザを点灯させる。PWM変調ブロック10 8との連動で以上のように位相と濃度を定義し、処理を 取り決める。

【0030】多値ディザの3値化においても、同様のパ ルスコード発生させる。これに関しては図7に示す。ま た、多値処理に関しては主走査方向の簡易エッジ検出を 簡易エッジ検出部514において行い、単純多値と多値 誤差拡散処理とを線分エッジ情報により選択部509で セレクトする。

【0031】図6にRAM(3)553をアドレス空間 8bitで構成した場合に2値ディザマトリクスのダウ ンロードで使用する場合の状況を示す。2値ディザマト リクスサイズとしては主走査方向4、6、8、16画 素、副走査方向4、6、8、16画素を任意の組み合わ せで設定可能である。必要線数、画像のライン間引き等 の状態に応じて組み合わせ及びパターンデータを2値選 は操作を簡便化する目的で、シーケンシャルなアクセス ではなく、2次元配列に基いてシークする。制御上構成 が簡単である。

【0032】図7はRAM(3)553を多値ディザマ トリクス用にアクセスする内容を示す図で、多値ディザ 用にマトリクスサイズ 4×4 (図7(a))、 6×6 (図7(b))、8×8(図7(c))、1画素あたり 3値化の状態を示す。マトリクスサイズのアクセスは2 次元配列とするが、主走査方向のアドレス数は2倍の数 を必要とする。図7(a)の4×4のマトリクスにおい 10 て、主走査方向は各画素2アドレスを割り当て、8アド レス参照する。Aの画素は内部的にAOとA1の閾値を 参照する。これによりそれぞれのマトリクス対応画素は 2個の閾値と比較演算を行う。左パルスの場合、AO< A1の大小関係からなる閾値を設定し、右パルスの場合 その逆に、AO>A1の関係で閾値を設定する。Aの位 置の画素がAO及びA1より小さければ量子化結果とし て「OO」が割り当てられ、AO及びA1何れよりも大 きい場合は「11」のコードをパルス領域全区間にわた るレーザー点灯時間として割り当てる。AOとA1の間 に被量子化画素がある場合、右パルス(右位相)と左パ ルス(左位相)で割り当てるコードが異なる。右パルス 系列を割り振られている場合「01」を、左パルス系列 を割り振られている場合「10」をそれぞれ量子化コー ドとする。図7(a)の残りのマトリクス画素及び図7 (b)、(c)においても同様の定義でパルスコードを 生成する。基本的には位相生成を考えて、閾値配列をR AMにダウンロードする事で実現する。

【0033】図8に2値及び多値誤差拡散処理の処理構成を示す。この処理構成は、加算演算部801、量子化選択部802、誤差演算部803、誤差演算部804、誤差重み付け積和部805、RAM(3)553(変動関値格納部806)とから機能的に構成され、入力画像と周辺誤差との積和結果に対する量子化関値を固定値と変動関値から選択する。固定値と変動関値の切り替えに関しては図4に示す。

【0034】変動閾値を使用する場合、RAM(3)553に或るブロック単位で繰り返す閾値を設定する。図8(b)は2値の場合の8×8のマトリクスの変動領域の閾値設定の一例を示す。閾値をブロック内で変動させることでテクスチャは低減される。また8×8のマトリクス領域で閾値の固定値と変動値を混在させる事で、エッジの保存と階調再現性のバランスを調整できる。

【0035】多値の場合は、対応マトリクスの1画素に対し、閾値を複数持たせ量子化コードを変更する。位相に関しては別途、主走査方向の変動濃度分布の状態で再配置する。誤差積和演算に関しては、1ラインFIFOを用いた2ライン×5画素の係数を示してあるが、これは単なる一例に過ぎず、マトリクサイズ、係数分布は変更は可能である。

【0036】図4に量子化のための閾値の変動閾値、固定閾値の切り替え構成を示す。モードの設定により、システムバス110経由で閾値の切り替えを行い、選択部401で変動閾値あるいは固定閾値のいずれかが選択さ

401で変動阈値あるいは固定阈値がいすれがか悪状される。変動関値に関しては誤差拡散の場合はRAM (3)553への設定値を主走査及び副走査方向のアドレス制御及び多値化のレベルで参照する閾値を制御す

る。単純2値化の場合は空間フィルタ部105で設定され、濃度補正された閾値を用いる。固定閾値はハード的に固定された値ではなく、CPU140経由でレジスタにセットされた値を固定値として使用し、固定値自体もモード、画像特性によって変更可能である。このように選択された閾値を用いて比較部402で入力画像データと比較し、その比較結果が出力される。

【0037】図9に空間フィルタ処理部105の概要を示す。空間フィルタ処理部105では、複数のラインメモリ901を用いて、2次元の画像マトリクス902を形成し、この2次元空間内で画像の周波数特性の補正及び濃度特性からの特徴量抽出を行う。

【0038】MTF補正部903は光学系でのMTF劣化を補正するため、主走査及び副走査独立にMTF補正係数、補正強度を自由設定できる構成とし、処理モード、読み取り原稿、光学系の種類に広く適応できるものとなっている。孤立点検出部904は、ジェネレーション劣化が予想される地肌ノイズ、原稿ノイズを検出する。画素配置の規則性を検出し完全な孤立点であるか、低濃度の網点原稿の一部であるか判別し、対象となる画素を絞り込む。孤立点除去部904においては、検出された孤立点を完全に取り去るのか、周辺画素の平均値で置き換えるか選択可能とし、ノイズ成分は削除する。細線化/太線化処理部906は主走査方向副走査方向独立に実施し、MTFの補正係数と連動させて、ライン濃度再現性の主副のバランスを調整する。

【0039】平滑処理部907は網点原稿とA/D変換時の折り返し歪みにより発生するモアレ成分の除去と、変動関値設定のための周囲情報を抽出する。エッジ検出部908は水平、垂直、左右斜め成分のエッジ線分を検出し、フィルタ処理適応化のための切り替え信号及び変動関値選択のための制御信号を生成する。セレクタ909でエッジ構成要素はMTF補正されたビデオパスを、非エッジ成分は平滑処理されたビデオパスをセレクトしフィルタ補正画像が選択される。

【0040】単純2値化のための変動関値設定は、平滑 画像信号、エッジ信号等により各画素毎に変動関値設定 部910で関値をセットする。

【0041】図10に閾値設定部910における閾値セットの概要を示す。閾値設定部910はレベル判定部1001とセレクタ1002とを備え、レベル判定部1001で、平滑処理された画像信号に対してはレジスタ設50 定されている上限値及び下限値と比較する。ノイズ及び

20

50

濃度安定領域での使用のため、それぞれの制限値で平滑 信号は規定する。下限値以下の場合は下限値で、上限値 以上の場合は上限値で、それぞれの平滑化信号を置き換 える。両制限値の関に存在する信号は、そのまま平滑化 信号を用いる。

【0042】セレクタ1002では、エッジ信号により レジスタにより設定される固定値を用いるか平滑処理系 の信号を用いるか選択する。地肌濃度に追従させる完全 な変動閾値の場合、非エッジ部は固定閾値にエッジ部は 平滑処理系信号を変動閾値として設定する。高濃度のエッジと低濃度のエッジを分離・再現させる場合、2段階 の閾値を設定する。この場合はエッジ部を固定値、非エッジ部を平滑処理系の信号に設定する。基本的には固定 式値が高濃度エッジのための2値化閾値、平滑データに 対する下限設定値が低濃度のエッジのための2値化閾値 として機能する。

【0043】図11に孤立点検出の概要を示す。孤立点 検出はマトリクス選択部1101、比較部1102、状 態遷移部1103、及び判定部1104の各機能ブロッ クによって行われる。マトリクス選択部1101では周 囲からの孤立の状態を検出するため、5×5もしくは7 ×7もしくは9×9の画像マトリクスの中で注目画素 (マトリクスの中心) 画素と最外周の画素とが完全に分 断されている場合孤立点とみなす。等倍時は7×7のマ トリクスサイズを用い、最大4×4の大きさまでの孤立 点を検出できる。縮小の場合は孤立点画素及び周辺画素 との間隔も縮小されるので、4×4の孤立点画素を50 %縮小で検出するためには5×5のマトリクスサイズで 画素サイズ2×2の固まりを検出すれば良い。逆に20 0%以上の拡大の場合は、原稿上の4×4の孤立点画素 も拡大され、9×9のマトリクスサイズまで拡張しない と検出できなくなり、拡大時に孤立点が残ってしまう。 変倍率に連動させkmxの値を変更する事で、孤立点検 出のためのマトリクスサイズを切り替える。

【0044】 5×5 ×5×9×9のマトリクスサイズ内での周囲画素の条件による孤立点検出だけでは原稿中の有用な情報である低濃度のディザパターンも削除してしまう。この不具合を解消するために、比較部1102においてk b t h の閾値との比較による制約、及び状態遷移部1103において状態遷移による制約を加え本当の孤立点のみを検出する。着目画素が白地または孤立点か否かをT1の値で示す。白地または孤立点の場合T1=1、そうでない場合T1=0となる。閾値判定では着目画素が白画素か否かをT2で示す。閾値より小さい場合T2=1で白地を示し、閾値以上の場合T2=0で非白地を示す。このT2により白地と孤立点を区別する。

【0045】状態遷移の判定にはT1、T2とこれらから連続する白画素数、孤立点のサイズをそれぞれ白画素数計数部1105及び孤立点サイズ計数部1106でカウントし、状態遷移のための条件とする。画素の状態は

まtateの値で示すが、直感的に着目画素は白画素が広く連続している領域であるPAPER、もしくは着目画素が孤立点であるDOT、もしくは着目画素が絵柄、文字または低濃度網点部または白画素が広く連続していない領域であるPICTの間を遷移する。状態はPAPERから始まる。

10

【0046】図12に検出された孤立点の補正処理を示す。孤立点の検出結果はresultで示され、MTF補正後の画像データmtfoに対し、補正処理を行う。このmtfoは強調処理されており、孤立点は増強されており、このままの処理を複数回繰り返す(孫コピーを取る)とジェネレーションは悪化し、黒のポチポチが目立つ低品質な出力となってしまう。

【0047】孤立点に関してはMTF強調はせず、周辺と平滑処理するか、白レベルに置き換える。選択部1201ではk modにより孤立点除去の処理の0N/0FFを切り替えて出力し、強度演算部1202で処理する場合の補正レベルをk tjで切り替える。この場合は強制的な白レベルへの変換を除去強度を最大とし、mtfoの1/32、1/8、1/2と補正レベルを弱めていく。

【0048】図13にシェーディング補正部102、ス キャナγ補正部103、スジ補正部112等のスキャナ 読み取り画像の補正手段系の詳細を示す。シェーディン グ補正はシェーディングデータ生成部1301における シェーディングデータの生成とシェーディング補正部1 305における入力画像のシェーディングデータによる 正規化の2つの処理によって行われる。シェーディング データはシェーディング用白基準データ生成部1301 で基準白板1606, 1611(図16)の読み取り信 号から生成するが、SDFと圧板によって読み取る基準 白板1606、1611を切り替える。この切り替えは 前述のように圧板/背景板切り替え制御部111によっ て行われる。圧板の場合、キャリッジがホームポジショ ンからスタートし、コンタクトガラス1605(図1 6)面に置載された原稿を読む前にコンタクトガラス上 端部に設定されている白板1606を読み取り、シェー ディング補正用の基準データを算出する。

【0049】SDFの場合は、コンタクトガラス1605面の基準白板1606とドキュメント・フィーダの背景板1609を読み取るモードの2種類が選択可能である。背景板1609の場合は読み取り位置にキャリッジを移動し、原稿が搬送される前に背景板1609に貼り付けられている白板1611の状態を透過ガラス面を通して読み取る。この場合、キャリッジの移動はホームポジションから1回だけの移動となる。SDF使用時のコンタクトガラス上の白板読み取りは、ホームポジションから白板下までキャリッジを移動させ、そこからドキュメント・フィーダ読み取り位置までキャリッジを逆戻りさせる必要がある。そのため、読み取り原稿が複数枚連

続する場合、キャリッジを頻繁に往復運動させなければ ならない。背景板1609の場合、キャリッジの往復運 動は必要ない。基本的にはSDFの場合、DFの背景板 1609を基準白板1611として利用する。

【0050】シェーディングデータの生成は基準白板1 606,1611を複数ライン読み取り重加算平均を行 う。背景板1609の場合、同一場所を複数回読み込む ことになるが、ランプの動乱、埃の散乱等により毎ライ ン読み取りデータのレベルは異なってくる。

ータに関し、ゴミ等の影響により白レベルがあまりにも 異なる場合、そのままシェーディング補正を行うと画像 の白黒反転も同時に行うので白スジ画像が発生してしま う。基準白板上の不正画素は白スジ検出部1303で白 スジ要因を検出し、周囲の正常画素から白スジ補正部1 304で基準白板データを補正し、ラインメモリ130 2に再度格納する。

【0052】圧板による原稿読み取り、SDFの背景板 1609によるシェーディングデータ生成は、原稿読み 取り毎に毎回基準データを作り直す。SDF及びコンタ クトガラス1605面上の白板1606を使う場合、高 速の機械ではキャリッジの移動が間に合わなくなる。高 速であればランプ変動はあまりないものとして、原稿数 枚に1回の頻度でシェーディング生成を間引く処理も組 み合わせとして実施している。

【0053】SDFの場合、キャリッジを背景板160 9の下に固定して、原稿を搬送させることによって画像 を読み取る。圧板の場合は原稿をコンタクトガラス16 05面に置載し、キャリッジを移動させることで画像を 読み取る。コンタクトガラス1605面にゴミが有る場 合、画像再生装置の出力としては入力と同一形状の点状 の画像として再生される。

【0054】一方、SDFの場合、固定された観測点に 点状のゴミがあっても、再生画像はスジ状に再現され る。そのため異常画像の存在が顕著となるので、SDF の場合は黒スジ補正を実施する。そこで、シェーディン グデータ生成後、原稿画像を読み取る前に、背景板16 09の下の読み取り面を単独で読み取り、黒スジ検出部 1306でゴミの有無を確認し、ゴミの検出された場所 をシェーディングデータとは別のラインメモリ1307 に格納し、原稿画像を読み込む時、黒スジ補正部130 8でゴミの存在する位置の画像は周辺の正常画素から補 正して、ゴミによる黒スジを軽減させる。ただし、誤検 出、未補正の可能性が残るので、ある量のゴミ画像を検 出した場合には、ゴミを取り除く警告も促す。

【0055】なお、ROM1311にはシェーディング 補正部1305がシェーディング補正を行う場合に参照 する補正テーブルが格納され、RAM1312にはスキ ャナγ補正部がγ特性を補正する際に参照する補正テー ブルが格納されている。また、符号1313はシェーデ 50 で補正値を算出する。

ィング用白基準データ生成部1301からのデータのピ ーク値を検出し、また、オート露光モードを設定するピ ーク検出・AEモード部である。また、符号1314は シェーディング用白基準データ生成部からのデータに基 づいてランプ出力を自動的に調整する自動調整部であ

【0056】図14に異常画素の検出手段を示す。 黒ス ジ/白スジとも異常画像の検出は同じである。信号論理 の向きのみが逆であるので白スジ補正のための異常画素 【0051】ラインメモリ1302に格納した白基準デ 10 検出を示す。本来一様な濃度分布の基準白板を読み取る と、白を示す信号レベルが検出される。そこにゴミが付 着した場合、周辺画素に比べ信号レベルが黒側に偏移す る。レベル差を閾値で判別し、異常画素を分別する。

【0057】注目画素S(n)に対し、8種類のパラメ ターを設定し、各閾値と該当する算出信号を比較する。 閾値は白スジとしての立ち上がり状態を検出する検出レ ベル(wulvth)、隣接画素との立ち上がりの度合 いを検出する閾値(wulth, wulth, wullth, wullt h)、立ち上がり状態を検出する検出レベル(wdlv th)、隣接画素との立ち上がりの度合いを検出する閾 値(wd1th wd2th, wd3th)とである。

【0058】自スジとしての異常画素の条件は、立ち上 がりの条件もしくは立ち上がりの条件のどちらかに対応 すれば良い。

【0059】立ち上がり条件は、S(n+1)がwu1 vthより大きく、S(n+1)-S(n)がwu1t hより大きいか、もしくはS(n+1)-S(n)がw u2thより大きく、かつS(n+2)-S(n)がw d3thより大きい場合、S(n)は立ち上がり途上の 異常画素となる。

【0060】立ち下がり条件は、S(n)がwd1vt hより大きく、S (n-1)-S ((n)がwd1th より大きいか、もしくはS(n-1)-S(n)がwd 2thより大きく、かつS(n-2)-S(n)がwd 3 t h より大きい場合、S((n)は立ち下がり途上の 異常画素となる。

【0061】本来の基準白板の信号レベルより明らかに 低い画素を検出する。

【0062】検出画素に関しての補正手段を図15に示 40 す。画素の並びをD(n-2)、D(n-1)、D (n)、D(n+1)、D(n+2)の5画素からなる ものとし、D(n)が異常画素として検出された場合を

【0063】入力信号の画素間のレベル推移を点線で示 す。D(n)に関しては1画素だけの異常画素であった ので、周辺画素において補正を行う。D(n-2)とD (n+2)の信号レベルを用いて、

 $D(n-2) + ((D(n+2) - D(N-2)) \times$ 2)/4

【0064】異常画素は1画素とは限らず、複数個連続する場合がある。その場合、異常画素(欠陥)画素の幅を補正して画像補正を行う。上記の1画素の欠陥画素の欠陥画素の場合(欠陥画素の幅+3)で正規化する。

【0065】一般式としては以下の補正式を当てはめる。

【0066】補正後のシェーディングデータ=<左参照画素>+((<右参照画素>-<左参照画素>)×<左参照画素からの画素数>)÷(<欠陥画素の幅>+3。r5or7)

分母の欠陥画素幅の拡張は、欠陥画素が1の場合3、欠陥画素が2の場合は5、欠陥画素が3の場合は7となる。

【0067】図16に読み取り部の構造を示す。スキャナはランプ1601を走行させ、ライン毎に画像を入力してCCDに結像する。ランプ1601の光を原稿に照射し、反射光をミラー1602,1603で受け、受光素子まで光路1604を結ぶ。一般的にはコンタクトガラスがあり、その上に原稿を載せ、ランプを走行させる。図の1605の部分がコンタクトガラス面で、原稿を置く場所になる。コンタクトガラス1605の左端(スキャナ走行体のホームポジション側)に基準白板1606が存在し、コンタクトガラス1605の裏面に貼り付けられている。その隣の黒く塗りつぶされた領域1607の下がスキャナのホームポジションになる。

【0068】シートスルー・DFの場合、原稿を移動させて画像を読み取る。ランプ(キャリッジ)1601はホームポジションから左側の原稿読み取り位置へ移動し、原稿を読み取るまでその場に停止したままランプ1601だけが点灯する。原稿は図の1608の部分から搬送され、背景板1609の下を通過して、曲面の形状に沿って1610から排紙される。搬送原稿は背景板1609でガラス面に押さえ付けられる。

【0069】原稿の読み取り手順を示す。圧板を使用して原稿を固定する場合、ホームボジションに待機している前記ランプ1601及びミラー1602,1603を搭載したキャリッジが、原稿読み取り開始とともに右方向に移動する。移動速度は拡大時は遅く、縮小時は速くなる。基準白板1606の下を通過する時、複数ラインにわたって白板画像を読み取り、シェーディングデータを生成する。その後、コンタクトガラス1605の上の原稿を読み取った後、格納されているシェーディングデータを基に、読み取り系のムラを補正する。

【 0 0 7 0 】キャリッジのホームポジションから右方向への直線移動で画像読み取りを完結するので、1 ジョブ毎にシェーディング生成、シェーディング補正をできる。

【0071】SDFの場合、ホームポジションから左方 向へキャリッジを移動し、走行体は停止しランプ160 1は点灯させたままとする。背景板1609に取り付け 50 14

てある基準白板1611を複数ラインに相当する時間読み取り、シェーディングデータを生成する。原稿の搬送を行う前に再度コンタクトガラス面を読み取り、ゴミ画像を検出する。背景板1609に対して暗い画素を検出対象とする。欠陥画素の位置情報をラインメモリ1307に格納し、シート搬入側1608から原稿を搬送し、画像を読み取る。読み取り画像に対しシェーディング補正、黒スジ補正を実施する(1305,1308)。また、シェーディング補正及び黒スジ補正を行った後、ス10キャナγ補正1309を行い、さらに、平滑化処理1310を実行する。

【0072】キャリッジはシート搬入側1608にセットされた原稿枚数が終了するまでホームポジションに戻る必要はなく、原稿一枚毎にシェーディング生成、シェーディング補正、黒スジ補正を実施する。

[0073]

【発明の効果】これまでの説明で明らかなように、本発明によれば以下のような効果を奏する。

【0074】請求項1記載の発明によれば、シートスルー・ドキュメント・フィーダを使用した第1の読み取りモードと圧板を使用した第2の読み取りモードとでそれぞれ読み取り補正の最適化を独立して行う画像処理手段を備えているので、階調性及び低濃度再現性を低コストの装置で実現し、読み取り装置の構成の違いを吸収することができる。また、コピーの出力画像も、FAXの2値画像も最適再現可能な画像処理装置を提供することができる。

【0075】請求項2記載の発明によれば、画像処理手段が、第1の読み取りモードと第2の読み取りモードとによって読み取り位置を切り替える読み取り位置切り替え手段と、前記2つのモードに応じて最適なシェーディング補正を行わせる制御手段と、前記2つのモードに応じて黒スジ補正及び白スジ補正を切り換えてスジ補正を行うスジ補正手段とを備えているので、読み取り画像の共通特性を保証することができる。

【0076】請求項3記載の発明によれば、前記2つのモードに応じてシェーディング補正データを切り替える手段と、前記2つのモードとに応じてシェーディング生成間隔を切り替える手段と、前記2つのモードに応じてランプ点灯時間を制御する手段とを備えているので、シェーディングデータの生成方法を2つのモードに応じて切り替えることができる。

【0077】請求項4記載の発明によれば、第1の読み取りモードで原稿を読み取るときに黒スジ補正を行う手段と、シェーディングデータ生成時に白スジ補正を行う手段と、白スジ検出のための設定値を前記2つのモードに応じて任意に設定する手段とを備えているので、モードの相違に依存する黒又は白スジ状の異常画像の発生を軽減させることができる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係る画像処理装置の全体 構成図を示すブロック図である。

【図2】本実施形態に係る画像形成装置の濃度変換特性を示す図で、(a)はスキャナー ィ補正の変換テーブルを、(b)は濃度補正の変換テーブルを示す。

【図3】本実施形態における濃度変更を実施するための変換テーブルをダウンロードしたRAMへのCPUからのアクセス及びテーブル参照の切り替えの機能構成を示すブロック図である。

【図4】本実施形態における2値化処理における固定値 10 と変動閾値の切り替えに構成を示すブロック図である。

【図5】本実施形態における濃度補正部及び階調処理部の機能構成を示すブロック図である。

【図6】本実施形態における2値用ディザマトリクスの 構成を示す図である。

【図7】本実施形態における多値用ディザマトリクスの 構成を示す図である。

【図8】本実施形態における2値及び多値誤差拡散処理の処理構成を示す図である。

【図9】本実施形態における空間フィルタ処理部の概要を示す図である。

【図10】本実施形態における閾値設定部における閾値 セットの概要を示す図である。

【図11】本実施形態における孤立点検出の概要を示す 図である。

【図12】本実施形態における孤立点の補正処理の機能 構成を示す図である。 【図13】本実施形態におけるスキャナの画像補正の機能構成を示す図である。

16

【図14】本実施形態における画像処理装置における黒 /白異常画素の検出方法を示す図である。

【図15】本実施形態における画像処理装置における黒 /白異常画素の補正方法を示す図である。

【図16】本実施形態における画像処理装置におけるS DF/圧板の構成を示す図である。

【符号の説明】

- 101 読み取り部
 - 102, 1305 シェーディング補正部
 - 103, 1309 スキャナ γ 補正部
 - 104 主走查電気変倍部
 - 105 空間フィルタ処理部
 - 106 濃度補正部
 - 107 階調処理部
 - 108 PWM変調部
 - 109 書き込み部
 - 110 マトリクスRAM
- 20 111 圧板/背景板切り替え制御部
 - 112 スジ補正部
 - 113 モータパルス制御部
 - 1301 シェーディング用白基準データ生成部
 - 1303 白スジ検出部
 - 1304 白スジ補正部
 - 1306 黒スジ検出部
 - 1307 黒スジ補正部

【図3】

【図3】

【図1】

【図4】

【図4】

【図5】

【図6】

【図6】

	th 015	42 G31	th 047	- th	th 970	t 0005	βΞ	th 127		159	th 175	th 191	th 207	th 223	23 9	th 255
	419	th 030	th 046	96 th	th 078	th 094	₽ 110	th 126		th 158	th 174	## 190	\$000 3000	th 222	238 238	25g
	th 013	029 th	4 5g	⊉8	th 07.7	063	100	th 125	14 th	th 157	th 173	th 189	4th 205	th 221	th 237	253 253
	1.h	th 028	th 044	th 060	th 076	th 092	th 108	th 124	140 140	th 156	th 172	th 188	th 204	th 220	th 236	252
	41 O	th O27	th 043	th 059	th 075	th 091	th 107	## 123	th 139	th 155	th 171	th 187	ф 203	th 219	th 235	th 251
	ch 010	rh 028	ch 042	th 058	th 074	060 41	th 106	th 122	th 138	th 154	th 170	th 186	₽ 202	th 218	th 234	th 250
	41 वी	th 025	th 041	th 057	th 073	th 089	th 105	th 121	th 137	th 153	th 169	th 185	th 201	th 217	th 233	th 249
	th 000	th 024	th 040	t.h 058	th 072	th 088	ch 104	ch 120	th 136	th 152	th 168	th 184	th 200	th 216	th 232	th 248
	uh 007	th 023	th 039	th 065	th 071	th 087	th 103	th 139	th 135	15.1 15.1	th 167	th 183	th 199	ch 215	th 231	th 247
	th 000	th 023	_{th} 038	th 054	th 070	th 086	th 102	th 118	th 134	120 120	th 166	th 182	th 198	th Z14	th 230	th 246
	ւհ 005	th 0 21	th 037	th 053	th 069	th 085	th 101	th 117	th 133	146 149	th 165	th 181	th 197	th 213	th 229	th 245
	th 004	th 020	th 036	th 052	th 068	th 084	th 100	th 116	th 132	th 148	164 164	th 180	th 196	th 212	th 228	tb 244
8	th 003	th 019	th 035	th 051	th 067	th 083	th 099	th 115	th 181	th 147	th 163	th 179	th 195	th 211	th 227	th 243
8	th 002	th 018	th 034	th 050	th 066	th 082	41 098	th 114	th 130	th 146	162 162	th 178	th 194	210 210	th 226	th 242
7	th 001	th 917	th 033	th 049	th 065	th 081	th 097	th 113	th 129	th 145	16. 16.	th 177	th 193	Z09	th 225	241 241
	th Dec	th 016	th 032	th 048	# 56 14	\$ 08 t	38c	th 112	th 128	14 th	₽ 09 1	th 176	th 192	th 208	th 224	th 240
TYY							'		1					l		
	•		vc	· —												
	4	.		— a	—											

【図7】

[図7]	es C	듔	ڻ ج	두	e E	fh	-fB	년
	pr Or	bg	90 0	병	⊕ ₩	- BB	38	Ьg
	a t	Þŧ	o.f	₫ŧ	ef	ff	g†	hf
	g 0	be	9	0	Ð 0	6	6	he
(左パ・XX) (右パ・XX)	Вd	pg	19 0	₽,	eq	fd	рЯ	P.
(o)	ac	þç	D	ę	0 6	ţ _c	D 26	· ho
2 1 1 88 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	å	qq	qo	ф	q	P	de de	슏
- 23 ag	es es	ba	a o	g p	8	g 4-	88	ha
面紫順系分割回来								

[図8]

【図8】

106	150	145	601	105	149	146	110
102	158	153	760	101	157	154	860
118	134	129	113	117	133	130	114
142	124	120	137	141	127	123	138
144	108	104	148	147	111	107	151
152	960	100	156	155	660	103	159
128	211	116	132	131	115	119	561
122	136	140	125	121	139	143	126
	128 152 144 142 118 102	128 152 144 142 118 102 112 096 108 124 134 158	128 i52 144 142 118 102 112 096 108 124 134 158 116 100 104 120 129 153	128 i52 144 142 118 102 112 096 108 124 134 158 116 100 104 120 129 153 132 156 148 137 113 097	128 i52 144 142 118 102 112 096 108 124 134 168 116 100 104 120 129 153 132 156 148 137 113 097 131 155 147 141 117 101	128 152 144 142 118 102 112 096 108 124 134 158 116 100 104 120 123 153 132 156 148 137 113 097 131 155 147 141 117 101 116 099 111 127 133 157	128 i52 144 142 118 102 112 096 108 124 134 158 116 100 104 120 123 158 132 156 148 137 113 097 131 155 147 141 117 101 115 099 111 127 133 157 119 103 107 123 154 154

【図9】

【図12】

【図12】

【図11】

【図11】

【図14】

[図14]

【図13】

【図13】

【図15】

【図15】

【図16】

【図16】

