Notes on Tufte's principles

Sam Clifford 2019-10-31

Tufte's principles for visualising data

A quick tour

- · Visual representations of data must tell the truth
- · Good graphical representations maximize data-ink and erase as much non-data-ink as possible
- · Avoid chartjunk: the excessive and unnecessary use of graphical effects in graphs
- · Produce high data density graphs

Graphical integrity

Visual representations of data must tell the truth

- 1. The visual representation of numbers, as physically measured on the graph, should be directly proportional to the numerical quantities represented
 - Lie Factor = the size of the effect shown in the graphic divided by the size of the effect in the data.
 - · Values over 1 overstate the effect & under 1 understate.
 - · Don't make points bigger to emphasise them as important
- 2. Clear, detailed and thorough labelling helps avoid graphical distortion and ambiguity. Write explanations of data on the graph. Label important events from data.
- 3. Show variation through data, not through design.
- 4. Ensure appropriate standardization & comparisons are used, e.g. CPI-adjusted or seasonally-adjusted.
- 5. The number of information carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
 - In practice, this means not mapping the same variable to two graphical elements
- 6. Graphics must not quote data out of context.

Figure 1: Improper emphasis of most and least fuel efficient cars. We only need look at vertical range to see these are the min and max

Figure 2: Fuel efficiency mapped to colour and y coordinate. Gradated pattern of colour implies there's another relationship with fuel efficiency being looked at.

Figure 3: Standard boxplot

Figure 4: Tufte-compliant boxplot maximising data ink

Maximising data: ink ratio

Good graphical representations maximize data-ink and erase as much non-data-ink as possible

- 1. Above all else, show data
- 2. Maximise the data-ink ratio
 - · ink on a graph that represents data
 - data-ink ratio = 1 minus the proportion of the graph that can be erased without loss of data-information
- 3. Erase non-data-ink
- 4. Erase redundant data-ink
- 5. Revise and edit

Avoid Chartjunk

If an element of a graph is to be included, it should be because it aids understanding and reveals information, not because it looks pretty

- Examples of chartjunk include but are not restricted to:
 - hatching (patterns instead of colours)
 - heavy grids
 - equally spaced lines, too close together, as in bar charts, histograms, boxplots
 - self-promoting graphs that demonstrate the graphical ability of the designer rather than displaying the data
 - 3D graphics that distort perspective (e.g. 3D pie charts)

Figure 5: High dimensional data set with points coloured by number of forward gears and shape mapped to transmission type

Figure 6: High dimensional data set with small multiples faceting by number of forward gears and transmission type

Maximising data density

- 1. Maximise data density and the amount of data shown, within reason
- 2. Apply the shrink principle
 - most graphs can be shrunk down very far without losing legibility or information
 - · this is because most graphs are quite sparse
- 3. Exploit **small multiples** to provide for comparisons across groups
 - · series of the same small graph repeated in one visual
 - · can compare a main relationship across one or more grouping variables
 - a great way to visualise large quantities of data, or when there are a high number of dimensions