Ski Rental

Yanze Song

The LOG Reading Group @ University of Alberta

November 5, 2023

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Problem Setup

Definition (Ski Rental Problem)

- Rent skis: \$1 per day
- Buy skis: \$B > 1
- Total *T* days of skiing (unknown)
- On each day t, a player will be told if she'll ski or not, and then she'll decide to buy or to rent.

Goal: Develop an algorithm that costs as little money as possible in all cases

Problem Setup

Define the optimization variables as follows:

$$x = egin{cases} 1 \text{, if buy skis} \ 0 \text{, else} \end{cases} \quad z_t = egin{cases} 1 \text{, if rent on day } t \ 0 \text{, else} \end{cases}$$

Then the offline problem can be formulated as follows:

$$\min_{x,z_i} B \cdot x + \sum_{i=1}^{T} z_i$$
s.t.: $x + z_i \ge 1$, $\forall i$

$$x \in \{0,1\}$$

$$z_i \in \{0,1\}, \ \forall i$$

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Performance Metric

Definition (Competitive Ratio)

- Compare with the offline optimal under all inputs
- A deterministic online algorithm is α -competitive if

$$\alpha = \max_{\sigma} \frac{\mathsf{c}(\mathsf{Alg}, \, \sigma)}{\mathsf{c}(\mathsf{Opt}, \, \sigma)}$$

• A randomized online algorithm is α -competitive if

$$\alpha = \max_{\sigma} \frac{\mathbb{E}[\mathsf{c}(\mathsf{ALG},\,\sigma)]}{\mathsf{c}(\mathsf{Opt},\,\sigma)}$$

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Algorithms: Deterministic

Algorithm (Alg_B)

Rent up to day B-1, and then buy skis on day B

• $(2 - \frac{1}{B})$ -competitive

Two cases to consider:

•
$$T < B$$
: $\frac{c(Alg_B)}{c(Opt)} = \frac{T}{T} = 1$

•
$$T \ge B$$
: $\frac{c(Alg_B)}{c(Opt)} = \frac{2B-1}{B} = 2 - \frac{1}{B}$

$$\alpha = \max_{\sigma} \frac{c(Alg,\sigma)}{c(Opt,\sigma)} = \max\{1,2-\frac{1}{B}\} = 2-\frac{1}{B}$$

Algorithms: Deterministic

Theorem ($Optimality of Alg_B$)

 $2 - \frac{1}{B}$ is the optimal C.R. among all deterministic algorithms.

All deterministic algorithms have the form:

 Alg_t : Rent up to day t-1, and buy on day t

Then two cases to consider:

•
$$t > B$$
: Let $T > t > B$, then $\frac{c(Alg_t)}{c(Opt)} = \frac{t-1+B}{B} \ge \frac{B+B}{B} > 2 - \frac{1}{B}$

•
$$t < B$$
: Let $t \le T \le \frac{t-1+B}{2-\frac{1}{B}} < B$, then $\frac{c(Alg_t)}{c(Opt)} = \frac{t-1+B}{T} \ge 2 - \frac{1}{B}$

A toy example (B = 4):

C.R.	T=1	T=2	T=3	T=4	T=5	T=6	
Alg_1	4/1	4/2	4/3	4/4	4/4	4/4	
Alg_2	1/1	5/2	5/3	5/4	5/4	5/4	
Alg ₃	1/1	2/2	6/3	6/4	6/4	6/4	
Alg_4	1/1	2/2	3/3	7/4	7/4	7/4	
Alg_5	1/1	2/2	3/3	4/4	8/4	8/4	
Alg ₆	1/1	2/2	3/3	4/4	5/4	9/4	

Each algorithm has its own expertise, i.e., is optimal w.r.t. a certain input T. In fact, the expertise of $\{Alg_t\}_{t=1}^4$ spans all possibilities of T, in other words, $\{Alg_t\}_{t\geq 5}$ are somehow useless (informally).

Idea

We give each algorithm a chance to be used - we construct a probability distribution $\{p_t\}_{t=1}^{\infty}$ on $\{Alg_t\}_{t=1}^{\infty}$.

Recall that, a randomized algorithm is α -competitive if

$$\alpha := \max_{\sigma} \frac{\mathbb{E}[c(ALG, \sigma)]}{c(Opt, \sigma)}$$

$$\Rightarrow \sum_{t=1}^{\infty} c(Alg_t, \sigma) \cdot p_t \leq \alpha \cdot Opt(\sigma), \ \forall \sigma$$

W.r.t. the toy example, if we want to achieve α -competitiveness, we need

$$4p_{1} + 1p_{2} + 1p_{3} + 1p_{4} + 1p_{5} + 1p_{6} + \ldots \leq 1\alpha$$

$$4p_{1} + 5p_{2} + 2p_{3} + 2p_{4} + 2p_{5} + 2p_{6} + \ldots \leq 2\alpha$$

$$4p_{1} + 5p_{2} + 6p_{3} + 3p_{4} + 3p_{5} + 3p_{6} + \ldots \leq 3\alpha$$

$$4p_{1} + 5p_{2} + 6p_{3} + 7p_{4} + 4p_{5} + 4p_{6} + \ldots \leq 4\alpha$$

$$4p_{1} + 5p_{2} + 6p_{3} + 7p_{4} + 8p_{5} + 5p_{6} + \ldots \leq 4\alpha$$

$$\vdots$$

Two observations:

- $p_t = 0$, $\forall t > B$ subtract the t^{th} from the $t + 1^{th}$ inequality
- After the Bth inequality, they're useless same as the Bth

After two simplifications:

- Keep the 1st inequality
- Subtract the t^{th} from the $t+1^{th}$ inequality

we then have

$$Bp_{1} + p_{2} + p_{3} + \dots + p_{B} \leq \alpha$$

$$Bp_{2} + p_{3} + \dots + p_{B} \leq \alpha$$

$$Bp_{3} + \dots + p_{B} \leq \alpha$$

$$\vdots$$

$$Bp_{B} \leq \alpha$$

We're to minimize α s.t. the above constraints, that is, we're to solve the following problem:

min:
$$\alpha$$
s.t.: $Bp_1 + p_2 + p_3 + \cdots + p_B \le \alpha$
 $Bp_2 + p_3 + \cdots + p_B \le \alpha$
 $Bp_3 + \cdots + p_B \le \alpha$
 \vdots
 $Bp_B \le \alpha$
 $p_t \in [0, 1], \ \forall \ t$

$$\sum_{t=1}^{\infty} p_t = 1$$

We may notice that

 α is minimized \Leftrightarrow all inequalities become equalities.

Proof for "⇒":

- ullet Assume lpha is minimized, and there exist a strict inequality
- We then can adjust p_t s.t. all become strict inequalities, and then α can be further pushed down contradicts with the minimality of α

Proof for "⇐":

- Assume all are equalities
- It becomes solving a linear system with full rank. There's only one solution, and hence the minimality is achieved

Algorithm

Choose
$$Alg_t$$
 with $p_t = \frac{\alpha}{B} (\frac{B-1}{B})^{B-t}$, where $\alpha = \frac{1}{1-(1-\frac{1}{B})^B}$

- $\frac{1}{1-(1-\frac{1}{n})^B}$ -competitive
- $\frac{1}{1-(1-\frac{1}{R})^B} < \frac{e}{e-1}$, $\forall B$; $\lim_{B \to \infty} \frac{1}{1-(1-\frac{1}{R})^B} = \frac{e}{e-1} \approx 1.58$

Theorem

 $\frac{1}{1-(1-\frac{1}{B})^B}$ is the optimal C.R. among all randomized algorithms.

Do we need to prove the optimality of α if we achieve it by solving the above optimization problem?

- ullet No, the optimality of lpha is guaranteed based on the procedures above
- The set of all deterministic algorithms is clear for this problem
- What if the problem is more complicated some hidden deterministic algorithms?
- Unrealistic to traverse all randomized algorithms

Theorem (Yao's Principle)

The expected cost of the best randomized algorithm on the worst-case input is no lower than the expected cost of the deterministic algorithm that performs the best on the worst-case input distribution, i.e., $\forall ALG, \forall X$:

$$\max_{x \in \mathcal{X}} \mathbb{E}[c(ALG, x)] \ge \min_{d \in D} \mathbb{E}[c(Alg_d, X)],$$

where

- ALG: Randomized algorithm, a random variable
- X: Input distribution, a random variable
- \mathcal{X} : Input set
- D: The set of all deterministic algorithms (indicies)

Theorem (Yao's Principle)

Under the competitive ratio context, we have $\forall ALG, \forall X$:

$$\max_{x \in \mathcal{X}} \frac{\mathbb{E}[c(ALG, x)]}{c(Opt.x)} \ge \min_{d \in D} \mathbb{E}[\frac{c(Alg_d, X)}{c(Opt, X)}],$$

or equivalently,

$$\underbrace{\min \max_{ALG} \max_{x \in \mathcal{X}} \frac{\mathbb{E}[c(ALG, x)]}{c(Opt, x)}}_{\text{optimal C.R.}} \ge \underbrace{\max_{X} \min_{d \in D} \mathbb{E}[\frac{c(Alg_d, X)}{c(Opt, X)}]}_{\text{lower bound (tight?)}}$$

We're then to construct the worst-case input distribution X.

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Primal:

$$\begin{aligned} & \underset{x,z_i}{\text{min:}} \;\; B \cdot x + \sum_{i=1}^T z_i \\ & \text{s.t.:} \quad x + z_i \geq 1, \; \forall \, i \\ & \quad x \in \{0,1\} \\ & \quad z_i \in \{0,1\}, \; \forall \, i \end{aligned}$$

 p^* is the opt value

• Relaxed Primal:

$$\min_{\substack{x,z_i \\ x,z_i}} B \cdot x + \sum_{i=1}^r z_i \\
s.t.: \quad x + z_i \ge 1, \ \forall i \\
x \ge 0 \\
z_i \ge 0, \ \forall i$$

 p_r^* is the opt value

Dual:

$$\max_{y_i} \sum_{i=1}^{T} y_i$$
s.t.:
$$\sum_{i=1}^{T} y_i \le B$$

$$0 \le y_i \le 1, \ \forall i$$

 d^* is the opt value

$$p^* \ge p_r^*$$
, by relaxation $p_r^* \ge d^*$, by weak duality $d^* \le p_r^* \le p^*$

Several clarifications:

- p_t : The primal objective value up to time t incurred by our algorithm
- d_t : The dual objective value up to time t incurred by our algorithm
- $\alpha:=\min_{\sigma}\frac{c(\mathit{Opt},\sigma)}{c(\mathit{Alg},\sigma)}\leq 1$, so we are to maximize α

So far,

- What we have: $d^* \leq p_r^* \leq p^*$
- Further more, we have $d_T \leq d^* \leq p_r^* \leq p^*$
- What we want: $\alpha p_T \leq p^*$
- The above holds if $\alpha p_T \leq d_T$

That is,

$$\alpha p_T \leq d_T + \text{primal}$$
 and dual feasibility $\Rightarrow \alpha$ -competitiveness

In the online manner, $\alpha p_T \leq d_T$ is hard to achieve, so we want to achieve some inequality at each step, and then the cumulative effect yields $\alpha p_T \leq d_T$, so

$$lpha p_T \leq d_T$$
 $\Leftrightarrow lpha (\sum_{t=1}^T (p_t - p_{t-1}) + p_0) \leq (\sum_{t=1}^T (d_t - d_{t-1}) + d_0)$
 $\Leftrightarrow lpha (p_t - p_{t-1}) \leq d_t - d_{t-1}, \ orall \ t, \ \text{if} \ p_0 = d_0 = 0$

That is, if $p_0 = d_0 = 0$, to achieve $\alpha p_T \leq d_T$, we need

$$\alpha \Delta p_t \leq \Delta d_t$$
, $\forall t$

which is called the incremental inequality.

Previously,

$$\alpha p_T \leq d_T + \text{primal and dual feasibility} \Rightarrow \alpha \text{-competitiveness}$$

Now, if $p_0 = d_0 = 0$,

$$\alpha \Delta p_t \leq \Delta d_t + \text{primal and dual feasibility} \Rightarrow \alpha \text{-competitiveness}$$

Generally, to design an α -competitive algorithm, we need:

- Primal and dual feasibility
- Initial conditions $(p_0, d_0, \text{ not always 0})$ and terminal conditions (e.g. a necessary condition for maximizing α)
- Update methods for the primal and dual variables s.t. the incremental inequality holds (depends on the initial and terminal conditions)

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

W.r.t. the relaxed problem, need to design x_0, y_0 , and the update methods for x_t, z_t, y_t .

Idea

Assume we want to use the following (very simple) idea:

- For feasibility and simplicity, choose $x_0 = y_0 = 0$
- Since deterministic, we buy on day G, i.e., $x_G = 1$, and keep $x_{t>G} = 1$
- For feasibility and simplicity, keep $x_t \in [0,1]$, $z_t = 1 x_t$, so keep $z_{t>G} = 0$
- $\Delta p_{t>G}=0$, no need for $\Delta d_{t>B}=y_{t>B}$ to leave the room for the primal variables to change, so $y_{t>G}=0$. Then we fully use, and evenly split B to $y_{t\leq G}$, i.e. $y_{t\leq G}=\frac{B}{G}$
- Due to the previous, $G \geq B$, or otherwise y_t is infeasible

For the fractional ski rental problem (relaxed primal), here's our design:

Initial condition:

$$x_0 = y_0 = 0$$

• **Terminal condition** (motivated by the optimality of Alg_B):

Buy on day
$$B$$
, i.e. $x_B = 1$, and $x_{t>B} = 1$

• Update method of the primal variable - incomplete:

$$x_t \in [0, 1], z_t = 1 - x_t$$
, so $z_{t>B} = 0$

Incremental inequality:

$$\alpha \Delta p_t \leq \Delta d_t \Rightarrow \alpha (B(x_t - x_{t-1}) + z_t) \leq y_t$$

• Update method of the dual variable:

$$y_{t < B} = 1$$
, and $y_{t > B} = 0$

Algorithm (Draft)

```
egin{aligned} x_0 &= 0 \ &	ext{for each day } t: \ &	ext{if } t < B: \ &	ext{update } x_t 	ext{ s.t. } \begin{cases} lpha(B(x_t - x_{t-1}) + z_t) \leq 1 	ext{ with } lpha 	ext{ and } z_t 	ext{ to be defined} \ &	ext{x}_B &= 1 \ &	ext{x}_t \in [0,1] \ &	ext{x}_t \in [0,1] \ &	ext{else:} \ &	ext{x}_t = 1, \ z_t = 0 \end{aligned}
```

Now we solve the (in)equalities:

•
$$\alpha(B(x_t - x_{t-1}) + (1 - x_t)) \le 1 \Leftrightarrow \underbrace{x_t \le (1 + \frac{1}{B-1})x_{t-1} + \frac{1 - \alpha}{\alpha(B-1)}}_{\text{update method for } x_t \text{ is here}}$$

•
$$x_t = (1 + \frac{1}{B-1})x_{t-1} + \frac{1-\alpha}{\alpha(B-1)} = \frac{\alpha-1}{\alpha}(1 - (1 + \frac{1}{B-1})^t)$$
 is a good candidate, increasing

•
$$x_B = 1 \Rightarrow \alpha = 1 - \frac{1}{(1 + \frac{1}{B-1})^B}$$

We then check if α -competitiveness is guaranteed (obvious):

- Primal and dual feasibility: $x_0 = 0, x_B = 1, x_t$ is increasing
- $\alpha(B(x_t x_{t-1}) + z_t) \leq 1$: Directly holds

Algorithm

```
x_0=0 for each day t: if t<B: x_t=(1+\frac{1}{B-1})x_{t-1}+\frac{1-\alpha}{\alpha(B-1)} \text{ with } \alpha=1-\frac{1}{(1+\frac{1}{B-1})^B} z_t=1-x_t \text{ else:} x_t=1,\ z_t=0
```

- $1 \frac{1}{(1 + \frac{1}{r-1})^B}$ -competitive for the **fractional** problem $(\alpha p_{r_T} \leq d_T \leq p_r^*)$
- $1 \frac{1}{(1 + \frac{1}{B-1})^B} > \frac{e-1}{e}$, $\forall B$; $\lim_{B \to \infty} 1 \frac{1}{(1 + \frac{1}{B-1})^B} = \frac{e-1}{e}$

We can derive the algorithm even **without** the intuition of the terminal condition $x_B = 1$:

Initial condition:

$$x_0 = y_0 = 0$$

Terminal condition:

Buy on day
$$G \ge B$$
, i.e. $x_G = 1$, and $x_{t>G} = 1$

• Update method of the primal variable - incomplete:

$$x_t \in [0,1], z_t = 1 - x_t$$
, so $z_{t>G} = 0$

Incremental inequality:

$$\alpha \Delta p_t \leq \Delta d_t \Rightarrow \alpha (B(x_t - x_{t-1}) + z_t) \leq y_t$$

• Update method of the dual variable:

$$y_{t \leq G} = \frac{B}{G}$$
, and $y_{t > G} = 0$

By the incremental inequality,

$$\alpha(B(x_t - x_{t-1}) + (1 - x_t)) \leq \frac{B}{G} \Leftrightarrow x_t \leq \frac{B - \alpha G}{\alpha(B-1)G} + (1 + \frac{1}{B-1})x_{t-1}$$

Pick $x_t = \frac{B - \alpha G}{\alpha (B - 1)G} + (1 + \frac{1}{B - 1})x_{t-1} = \frac{\alpha G - B}{\alpha G}(1 - (1 + \frac{1}{B - 1})^t)$, and by $x_G = 1$ we have

$$\alpha = \frac{B(1 - \frac{1}{(1 + \frac{1}{B-1})^G})}{G}$$

which is essentially a function α of G, where $G \ge B$. Note that it's decreasing, so if we want to maximize α , we need G = B, and this yields the algorithm above.

The "potential" of buying skis is increasing

Algorithms with OPD: Randomized

W.r.t. the primal problem (un-relaxed),

- $\alpha p_T \leq d_T$ not satisfied (but $\alpha p_{r_T} \leq d_T$ satisfied)
- Dual feasibility satisfied
- Primal feasibility not satisfied

Can we extend this result to the integral problem?

- ullet Buy $x_t \in [0,1]$ amount of skis, rent $z_t \in [0,1]$ amount of skis, $x_t + z_t = 1$
- Fractions ⇔ Expectations ⇔ Probabilities
- $x_t = \mathbb{E}[X_t] = \mathbb{P}^B_t$, $z_t = \mathbb{E}[Z_t] = \mathbb{P}^R_t$, where X_t , Z_t are standard Bernoulli RVs
- Update \mathbb{P}_t^B , \mathbb{P}_t^R instead

Algorithms with OPD: Randomized

Algorithm

```
\begin{array}{l} \mathbb{P}^B_0=0 \\ \text{for each day } t \colon \\ \text{if } t < B \colon \\ \mathbb{P}^B_t=(1+\frac{1}{B-1})\mathbb{P}^B_{t-1}+\frac{1-\alpha}{\alpha(B-1)} \text{ with } \alpha=1-\frac{1}{(1+\frac{1}{B-1})^B} \\ \mathbb{P}^R_t=1-\mathbb{P}^B_t \\ \text{Decide to buy or to rent based on the distribution } \{\mathbb{P}^B_t,\mathbb{P}^R_t\} \\ \text{else:} \\ \mathbb{P}^B_t=1,\,\mathbb{P}^R_t=0,\,\text{i.e., buy} \end{array}
```

Algorithms with OPD: Randomized

Now the primal feasibility is satisfied, what about $\alpha \mathbb{E}[p_T] \leq d_T$? Actually, we have

$$\mathbb{E}[p_T] = p_{r_T}$$
, and hence $\alpha \mathbb{E}[p_T] \leq d_T$,

where the equality can be proved as below:

$$\mathbb{E}[p_t] = \mathbb{E}[X_t + \sum_{i=1}^t Z_i] = \mathbb{E}[X_t] + \sum_{i=1}^t \mathbb{E}[Z_i] = \mathbb{P}_t^B + \sum_{i=1}^t \mathbb{P}_t^R = x_t + \sum_{i=1}^t z_i = p_{r_T}.$$

Therefore, $1 - \frac{1}{(1 + \frac{1}{n})^B}$ can be extended to the integral problem.

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

Summary

For the ski rental problem,

- Optimal C.R. for the deterministic algorithm: $2 \frac{1}{B}$
- Optimal C.R. for the randomized algorithm: $\frac{1}{1-(1-\frac{1}{R})^B}$
- We use the OPD framework to derive a $\frac{1}{1-(1-\frac{1}{B})^B}$ -competitive deterministic algorithm for the fractional ski rental problem
- Then we extend the $\frac{1}{1-(1-\frac{1}{B})^B}$ -competitiveness to the integral problem using randomization

Outline

- 1. Problem Setup
- 2. Performance Metric
- 3. Algorithms
- 4. OPD Framework
- 5. Algorithms with OPD
- 6. Summary
- 7. References

References

Thank You!