Ripasso di Matematica attuariale vita

L.B.

May 4, 2018

Premessa importante: la seguente sintesi (parziale) è stata tratta **interamente** dalle dispense del prof. Ermanno Pitacco. Essa non ricopre l'intero programma, ma vuole essere un aiuto per un ripasso degli argomenti.

Contents

1	Caricamento di sicurezza	3
2	Tavole di mortalità	3
3	Premio	4
	3.1 Andamento del premio unico	4
	3.2 Confronto con capitale certo	
	3.3 Tassi "equivalenti"	
4	Riserva	6
	4.1 Andamento riserva	6
5	Anticipata	7
	5.1 Riserva rendita	7
6	Posticipata	7
	6.1 Andamento riserva generica	7
7	Premio	8
	7.1 Andamento del premio	9
8	Riserva	9
	8.1 Andamento riserva	10

9	Capitale costante	10
	9.1 Andamento del premio t.c.m. capitale costante	11
10	Capitale variabile 10.1 Premi	12 12 12
11	Riserva 11.1 Andamento riserva temporanea caso morte	12 12 14
12	Mista ordinaria 12.1 Premi	15 15
13	Altre forme di assicurazione mista	15
14	Riserva mista ordinaria 14.1 Andamento riserva mista ordinaria	16
15	Composizione del premio e voci di spesa	16
16	Riserva prospettiva	19
17	Riserva retrospettiva	19
18	Profilo temporale della riserva	19
19	Rischio e risparmio 19.1 Equazioni ricorrenti della riserva	19 20
20	Premi di rischio e premi di risparmio	20

1 Caricamento di sicurezza

Caricamento di sicurezza incluso nel premio, al fine di:

- 1) fornire all'assicuratore un risultato atteso positivo
- 2) far fronte ad andamenti sfavorevoli di
 - (a) rendimento degli investimenti
 - (b) mortalità degli assicurati

Caricamento direttamente incluso nel calcolo del premio:caricamento di sicurezza implicito.

Flussi di cassa attualizzati adottando

- un appropriato tasso di interesse i'
- un'appropriata tavola di mortalità (probabilità di decesso q' , o sopravvivenza p')che costituiscono la base tecnica di primo ordine(o base prudenziale)

Caricamento direttamente incluso nel calcolo del premio:caricamento di sicurezza implicito

2 Tavole di mortalità

- LT1: tavola di popolazione (costruita come tavola di periodo); scelta prudenziale per assicurazioni con beneficio caso morte; utilizzabile anche per rappresentare una debole autoselezione
- LT2 e LT3: tavole di mercato (costruite come tavole di periodo), relative alla mortalità di assicurati processo di selezione sottostante la LT3 verosimilmente più severo di quello (eventuale) sottostante la LT2
- LT4 e LT5: tavole di generazione, estratte da tavole proiettate, rappresentanti due ipotesi di miglioramento della mortalità, più debole e più forte rispettivamente; da adottare per rendite vitalizie

Scelta della base di primo ordine:

• tasso i' minore del tasso stimato di rendimento degli investimenti

• tavola di mortalità dipendente dal tipo di benefici (caso morte, caso vita, combinazioni)

Ass. capitale differito $_m E_x = (1+i)^{-m}$

3 Premio

- premio unico: $\Pi = S_m E_x'$ premio unico per 1 unità monetaria, spesso chiamato "tasso di premio"
- premi costanti P(s) = ^{II}/_{a'x:s|} con C=1, m durata del contratto ed s ≤ m durata pagamento premi.
 Oss. Per due diverse durate di pagamento premi s₁e s₂: s₁ < s₂ → P(s₁) > P(s₂)
- $\bullet\,$ premi naturali: tutti 0 tranne ultimo $P_{m-1}^{[N]} \to$ no regime ragionevole di premi
- premi ricorrenti $\Pi_h = \Delta S_h \ _{m-h} E'_{x+h} \forall \ h = 0, 1, ..., m-1$ generico premio. Somma S_m finanziata progressivamente da m assicurazioni di capitale differito sovrapposte. Ogni premio unico Π_h di sequenza finanzia beneficio ΔS_h differito m-h anni. $S_h = S_{h-1} + \Delta S_{h-1}$

Oss. Prodotto comune: assicurazione di capitale differito combinato con beneficio di controassicurazione, cioè rimborso del premio in caso di decesso prima della scadenza. Il premio è aumentato per finanziare anche questo beneficio "complementare".

3.1 Andamento del premio unico

Vediamo effetto di età e durata sul premio unico dell'assic. di capitale differito (TB1)

x	m = 5	m = 10	m = 15
40	898.97	804.08	713.10
45	894.44	793.24	693.49
50	886.86	775.33	661.73
55	874.25	746.15	611.70
60	853.48	699.69	536.39

Premio unico di un'assic. di capitale differito; $S=1\,000,\,\mathrm{TB1}=(0.02,\mathrm{LT1})$

Tavola	i' = 0	i' = 0.01	i' = 0.02	i' = 0.03
LT1	966.96	875.37	793.24	719.51
LT2	970.19	878.30	795.90	721.91
LT3	973.44	881.24	798.56	724.33
LT4	990.76	896.93	812.77	737.22
LT5	993.34	899.26	814.88	739.14

Premio unico di un'assic. di capitale differito; $S=1\,000,\,x=45,\,m=10$

3.2 Confronto con capitale certo

Confrontiamo il premio unico di un'assicurazione di capitale differito ed il valore attuale di un capitale differito certo a scadenza

i	$1000(1+i)^{-10}$
0	1 000.00
0.01	905.29
0.02	820.35
0.02343	793.24
0.03	744.09
0.04	675.56
0.05	613.91

Valore attuale di un capitale certo al tempo $\ m; \ S=1\,000, \ m=10$

3.3 Tassi "equivalenti"

\overline{x}	m = 5	m = 10	m = 15
40	0.02153	0.02205	0.02280
45	0.02256	0.02343	0.02470
50	0.02430	0.02577	0.02791
55	0.02724	0.02972	0.03331
60	0.03219	0.03636	0.04240

Tassi "equivalenti" $g_{x,m}$; TB1 = (0.02, LT1)

4 Riserva

Esprimiamo la formula delle riserve matematiche con benefici unitari:

- a premio unico $V_t = {}_{m-t}E'_{x+t}$
- a premi annui costanti pagabili per tutta la durata contrattuale, se non diversamente specificato e con beneficio unitario $V_t = {}_{m-t}E'_{x+t} + P \ddot{a}_{x+t:m-t}$
- Con riferimento ad un premio unico ricorrente $V_t = S_{t\ m-t} E'_{x+t}$

Qui $(C-V_t) < 0 \rightarrow P_t^{[R]} < 0 \rightarrow P_t^{[S]} > P_t \forall t$. Quindi P_t non basta per formare tuta la riserva, occorre l'apporto della mortalità altrui, cioè di $P_t^{[R]}$. Qui iP_t ì[R] sono tutti < 0

4.1 Andamento riserva

Se ciascuna riserva individuale è annualmente accreditata con una quota delle riserve rilasciate dagli assicurati deceduti nell'anno.

- riserva crescente su tutta la durata contrattuale, sia in caso di premio unico che in caso di premio annuo
- cause di incremento annuo della riserva: premi, interessi e mutualità
- in particolare, ciascuna riserva individuale è annualmente accreditata con una quota delle riserve rilasciate dagli assicurati deceduti nell'anno

Rendita vitalizia
$$\ddot{a}_x = \sum_{h=0}^{\omega - x} {}_h E_x$$

$$a_x = \sum_{h=1}^{\omega - x} {}_h E_x$$

1000 | 900 - 800 - 700 - 600 - 700 - 600 - 700 -

Assic. di capitale differito; premio unico $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Assic. di capitale diff.; premi annui cost. $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

5 Anticipata

Premio unico $\Pi = b \ddot{a}'_x$

5.1 Riserva rendita

Riferendoci ad un prodotto assicurativo con benefici unitari, a premi annui costanti pagabili per tutta la durata contrattuale $V_t = \ddot{a}'_{x+t}$

6 Posticipata

Premio unico: $\Pi = ba'_x$

6.1 Andamento riserva generica

La rata è alimentata da una parte dalla variazione di riserva e dall'altra dalla mutualità. Ad un certo t il valore della riserva è ¡ di quello della mutualità

- riserva decrescente lungo tutta la durata
- cause di decremento annuo della riserva: pagamenti annui, +interessi e mutualità
- mutualità come nell'assicurazione di capitale differito

Rendita vitalizia immediata a premio unico b = 100, x = 65, TB1 = (0.02, LT4)

Salti nel profilo della riserva in corrispondenza al pagamento del beneficio annuo. Si ponga $V_{0^+}=\Pi$

Profilo della riserva della rendita vitalizia per interpolazione (a) rendita posticipata (b) rendita anticipata

Ass. Vita intera caso morte

Ass. Vita intera caso morte
$$A_x = \sum_{h=0}^{\omega - x} {}_{h|1}A_x \text{ con } {}_{h|1}A_x = (1+i)^{-(h+1)}{}_{h|1}q_x$$

7 Premio

 $\bullet\,$ premio unico: $\Pi=CA'_x$

 \bullet premi annui costanti: può in teoria $P(\omega-x)=\frac{A_x'}{\ddot{a}_x'},$ ma in pratica è

ristretto ad s anni $P(s) = \frac{A_x'}{\ddot{a}_{x:s \, |}'}$

- premi ricorrenti Premio unico generico Π_h , pagato al tempo h, finanzia l'importo ΔC_h che, dal tempo h in poi, costituisce una parte della somma assicurata.
- premi ricorrenti Premio unico generico $\Pi_h = \Delta C_h \ A'_{x+h}$. L'importo C_{h+1} è somma assicurata al tempo h pagabile in caso di decesso fra h ed h+1. $C_{h+1} = C_h + \Delta C_h$

7.1 Andamento del premio

Esprimiamo il premio unico per varie basi tecniche TB1al variare del tasso di interesse e dell'età

Life table	i'=0	i' = 0.01	i' = 0.02	i' = 0.03
LT1	1 000.00	682.24	473.72	334.94
LT2	1000.00	675.76	464.90	325.80
LT3	1000.00	668.57	455.20	315.82
LT4	1000.00	632.24	406.23	265.44
LT5	1000.00	623.78	395.14	254.36

Premio unico di un'assicurazione a vita intera caso morte; $C=1\,000,\,x=40$

x	A_x'
40	473.72
45	519.16
50	567.35
55	617.66
60	669.17

Premio unico di un'assicurazione a vita intera caso morte; $C=1\,000$, ${
m TB1}=(0.02,{
m LT1})$

8 Riserva

Riferendoci ad un prodotto assicurativo con benefici unitari, a premi annui costanti pagabili per tutta la durata contrattuale, se non specificato

- premi vitalizi $V_t = A'_{x+t} P \ddot{a}'_{x+t}$
- premi temporanei s anni $V_t = \begin{cases} A'_{x+t} P(s) \ \ddot{a}'_{x+t:s-t}, & \text{se } t < s \\ A'_{x+t}, & \text{se } t \geq s \end{cases}$
- premi unici ricorrenti $V_t = C_t A'_{x+t}$

8.1 Andamento riserva

- profilo temporale crescente, sia in caso di premio unico che in caso di premi annui costanti
- tende alla somma assicurata C
- in caso di premi annui, dopo completato il pagamento premi il profilo della riserva coincide con quello del caso di premio unico

Assic. a vita intera caso morte; premio unico $C=1\,000,\,x=50,\,\mathrm{TB1}=(0.02,\mathrm{LT1})$

Assic. a vita intera caso morte; premi annui cost. temporanei $C=1\,000,\,x=50,\,s=20,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Ass. Temporanea caso morte
$${}_mA_x=\sum\limits_{h=0}^{m-1}{}_{1|h}A_x$$
 con ${}_{h|1}A_x=(1+i)^{-(h+1)}{}_{h|1}q_x$

9 Capitale costante

- Premio unico $\Pi = C_m A_x'$ Beneficio: somma assicurata C pagata alla fine dell'anno di decesso, se l'assicurato decede prima della scadenza m
- premi costanti?

- Qui premi di rischio sono molto prossimi ai $P^{[N]}$ poiché V_t è minuscola e quindi il capitale sottorischio coincide col capitale assicurato
- premi naturali $P^{[N]}_h = {}_1A'_{x+h}$ per h=0,1..,m-1 e con C=1 \to premi naturali decrescenti durante periodo contrattuale, ragionevole regime di premi
 - I premi naturali rimangono invariati rispetto ai primi (dipendono solo dal complesso dei benefici). Tutti i premi di risparmio sono negativi a parte il primo.
- premi ricorrenti

9.1 Andamento del premio t.c.m. capitale costante

Esprimiamo il premio unico in funzione della base tecnica TB1 al variare del tasso e poi al variare della durata

Tavola	i' = 0	i' = 0.01	i' = 0.02	i' = 0.03
LT1	19.83	18.63	17.53	16.51
LT2	17.89	16.80	15.81	14.89
LT3	15.93	14.97	14.08	13.26

Premio unico di un'assicurazione temporanea caso morte;

$$C = 1\,000$$
, $x = 40$, $m = 10$

x	m = 5	m = 10	m = 15
40	7.01	17.53	33.26
45	11.70	29.20	55.10
50	19.57	48.52	90.53
55	32.64	80.01	146.52
60	54.19	130.26	231.30

Premio unico di un'assicurazione temporanea caso morte;

$$C = 1000$$
, TB1 = $(0.02, LT1)$

10 Capitale variabile

Beneficio: $C_h + 1$ pagato al tempo h+1 se l'assicurato decede tra h e h+1, $h=1, 2, \ldots, m$

10.1 Premi

- Premio unico: $\Pi = \sum_{h=0}^{m-1} C_{h+1} {}_{h|1}A'_x$
- premi costanti?
- premi naturali: $P^{[N]}_{h+1} = C_{h+11} A'_{x+h}$ se C_{h+1} decresce al crescere di h i premi naturali possono essere decrescenti. Sono un regime ragionevole di premi. NB:
- premi unici ricorrenti

10.2 Assicurazione temporanea decrescente

Premio unico: $\Pi = \frac{C}{m} \sum_{h=0}^{m-1} {}_{m-1}A'_x$ Beneficio decrescente in progressione aritmetica $C_1 = C$, $C_2 = \frac{m-1}{m}C$, ..., $C_m = \frac{1}{m}C$

11 Riserva

Uso della riserva: in mutualità (sono quelli del $P_t^{[R]}$ girati di segno) Ecco la formula della riserva di una assicurazione temporanea caso morte con benefici unitari, a premi annui costanti pagabili per tutta la durata contrattuale, se non diversamente specificato $V_t = {}_{m-t}A'_{x+t} - P \ddot{a}'_{x+t:m-t}$

11.1 Andamento riserva temporanea caso morte

- riserva molto piccola in relazione al capitale assicurato
- caso di premio unico: premio progressivamente impiegato in mutualità
 →riserva decrescente lungo tutta la durata
- caso di premi annui costanti: inizialmente crescente, perché i premi costanti poi decrescente

• profilo di riserva tanto più alto quanto maggiore è l'età all'ingresso (vedi escursione dei premi naturali lungo la durata del contratto) eccedono i corrispondenti premi naturali

Assic. temporanea; premio unico $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Assic. temporanea; premi annui cost. $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Assicurazioni temporanee, con varie età all'ingresso; premi annui costanti

C = 1000, m = 10, TB1 = (0.02, LT1)

Assicurazioni temporanee, con varie durate; premi annui costanti $C=1\,000,\,x=40,\,\mathrm{TB1}=(0.02,\mathrm{LT1})$

11.2 Andamento riserva temporanea caso morte capitale decrescente

- \bullet premi annui costanti pagabili per tutta la durata contrattuale \to violazione della condizione di finanziamento
- ullet abbreviazione periodo pagamento premi, s=7 soddisfa la condizione di finanziamento

Assic. temporanea decrescente; premio unico

$$C_h = \frac{m-h+1}{m} 1\,000, \quad x = 40, \, m = 10,$$
 TB1 = $(0.02, \text{LT1})$

Assic. temporanea decrescente; premi annui costanti

$$C_h = \frac{m-h+1}{m} 1 000, \quad x = 40, \, m = 10,$$
 $s = 10, \, \text{TB1} = (0.02, \text{LT1})$

Assic. temporanea decrescente; premi annui cost. abbreviati

$$C_h = \frac{m-h+1}{m} 1000, \quad x = 40, m = 10,$$

 $s = 8, \text{TB1} = (0.02, \text{LT1})$

Assic. temporanea decrescente; premi annui cost. abbreviati

$$C_h = \frac{m-h+1}{m} 1\,000, \quad x = 40, \, m = 10,$$

 $s = 7, \, \text{TB1} = (0.02, \, \text{LT1})$

Ass. Mista
$$A_{x,m} = \sum_{h=0}^{m-1} {}_{h|1}A_x \text{ con } {}_{h|1}A_x = (1+i)^{-(h+1)}{}_{h|1}q_x$$

12 Mista ordinaria

12.1 Premi

- premio unico $\Pi = C({}_{m}E'_{x} + {}_{m}A'_{x})$ scritta anche $\Pi = CA'_{x,m}$
- \bullet premi costanti $P(s) = \frac{A'_{x,m}}{\ddot{a}'_{x:s}}$ con m
 durata del contratto e C=1
- premi naturali: no regime ragionevole di premi causa componente capitale differito
- premi ricorrenti

Solo in questa forma assicurativa il premio è dato dalla somma dei corrispondenti elementi della temporanea e capitale differito $\to P_t^{[R]} > 0$ e $P_t^{[RS]} > 0$. Ciò è utile per capire il duplice ruolo dell'assicuratore vita come intermediario finanziario e intermediario in mutualità

Tavola	i'=0	i' = 0.01	i' = 0.02	i' = 0.03
LT1	1 000.00	866.51	752.26	654.32
LT2	1000.00	866.01	751.37	653.11
LT3	1000.00	865.51	750.47	651.90

Premio unico di un'assicurazione mista ordinaria; $C=1\,000,\,x=50,\,m=15$

13 Altre forme di assicurazione mista

 $\Pi = S_m E_x' + C_m A_x'$ Beneficio in caso vita, S, diverso dal beneficio in caso morte, C.

Se S ; C \to assicurazione mista combinata. Ponendo $S=(1+\alpha)C$ si ottiene $\Pi=\alpha C_m E'_x+CA'_{x,m\rceil}$

Se si combina un'assic. di capitale differito con una assicurazione a vita intera caso morte \rightarrow assicurazione mista a capitale raddoppiato $\Pi = C(_mE'_x + A'_x)$

			p. differito + p. caso morte	capitale certo +	beneficio di "accelerazione"
x	$1000A'_{x,15\rceil}$	$1000_{15}E_x'$	$1000_{15}A_x'$	$1000(1+i')^{-15}$	$1000\left(A'_{x,15}\right] - (1+i')^{-15}\right)$
40	746.36	713.10	33.26	743.01	3.35
45	748.59	693.49	55.10	743.01	5.57
50	752.26	661.73	90.53	743.01	9.25
55	758.23	611.70	146.52	743.01	15.21
60	767.69	536.39	231.30	743.01	24.67

Componenti del premio unico di una assicurazione mista ordinaria

$$C = 1\,000, m = 15, TB1 = (0.02, LT1)$$

14 Riserva mista ordinaria

Rif. a prodotti assicurativi con benefici unitari a premi annui costanti pagabili per tutta la durata contrattuale, se non diversamente specificato

- premio unico
- premi annui costanti $V_t = A'_{x+t,m-t} P \ddot{a}'_{x+t:m-t}$
- premi unici ricorrenti

14.1 Andamento riserva mista ordinaria

- profilo temporale quasi coincidente con quello relativo ad assic. di capitale differito (differenza tra le due riserve= riserva di una temporanea caso morte, assumendo la stessa base tecnicaTB1nei tre prodotti assicurativi)
- effetto della mutualità diverso: "positivo" nell'assicurazione di capitale differito, "negativo" nell'assicurazione mista

Voci di spesa

15 Composizione del premio e voci di spesa

Appendice sulle riserve

1000 | 900 | 800 | 700 | 600 |

Assic. mista ordinaria; premio unico $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Assic. mista ordinaria; premi annui costanti $C=1\,000,\,x=40,\,m=10,$ $\mathrm{TB1}=(0.02,\mathrm{LT1})$

Componenti del premio

PREMI CARICATI PER SPESE

Siano:

 $\Pi^{[\mathrm{T}]}$ premio unico caricato per spese

 $P^{[\mathrm{T}]}$ premio annuo costante caricato per spese

 $\Theta^{[.]}$ generico addendo di caricamento del premio unico

 $\varLambda^{\left[.\right]}\,$ generico addendo di caricamento del premio costante Si indichino con:

- [A] riferimento a spese di acquisizione
- [C] riferimento a spese di incasso premi
- [G] riferimento a spese generali di amministrazione

Premio unico:

$$\Pi^{[T]} = \Pi + \Theta^{[A]} + \Theta^{[G]}$$

Premio annuo costante:

$$P^{[T]} = P + \Lambda^{[A]} + \Lambda^{[C]} + \Lambda^{[G]}$$

Principio di calcolo: per ogni componente di spesa e di caricamento

valore attuariale in 0 dei caricamenti = valore attuariale in 0 delle spese

16 Riserva prospettiva

 $V_t = Ben'(t,m) - Prem'(t,m)$ è riserva matematica prospettiva, perché si rif a t in avanti, e pura, non si considerano spese e relativi caricamenti. Poiché usata TB1 \rightarrow caricamento implicito di sicurezza

17 Riserva retrospettiva

Sia B_t l'importo tale che $Prem'(0,t) = B_t + Ben'(0,t)$ Interpretazione:B t = valore attuariale (al tempo 0) del beneficio che l'assicuratore dovrebbe pagare in t se l'assicurato decidesse (in t) di abbandonare il contratto, interrompendo il pagamento dei premi e rinunciando ai benefici seguenti t. $B_t = W_t \,_t E'_x$. W_t è la riserva retrospettiva. Lo interpreto come l'ammontare da pagare all'assicurato in caso di abbandono richiede aggiustamenti, relativi a recupero spese dell'assicuratore e penalizzazione per abbandono del contratto (vedi Riscatto)

Coincidenza di riserva prospettiva e retrospettiva basata sull'uso della stessa base tecnica nel calcolo delle due riserve.

Possibile uso di base tecnica diversa nel calcolo della riserva prospettiva, in seguito a variazione di scenario \rightarrow non coincidenza delle riserve.

Non coincidenza delle riserve in assicurazioni in cui i futuri benefici dipendono dalla composizione in t del gruppo assicurato, cioè da quali assicurati sono in vita in t.

Riserva prospettiva: dipendente dalla composizione del gruppo in t Riserva retrospettiva: richiede valutazione in0, quindi basata sulla composizione iniziale del gruppo.

18 Profilo temporale della riserva

$$V_0 = 0$$
, in $V_{0^+} = \Pi$ e $V_m = \begin{cases} 0 & \text{se temporanea caso morte} \\ 1 & \text{se capitale differito o mista ordinaria, entrambe con C=1} \end{cases}$

19 Rischio e risparmio

61/124 arrivato qui Consideriamo un prodotto assicurativo con durata contrattuale m, età di ingresso x, capitale assicurato caso morteC, capitale assicurato caso vita a scadenza S con premi annui costanti P pagabili per l'intera durata contrattuale: $P = \frac{C_m A'x + S_m E'_x}{\ddot{a}'_{x:m}}$

19.1 Equazioni ricorrenti della riserva

La riserva matematica al tempo t:

$$V_t = Ben'(t,m) - Prem'(t,m) = C_{m-t}A'_{x+t} + S_{m-t}E'_{x+t} - P \ddot{a}'_{x+t:m-t}$$
da cui staccando beneficio e premio dell'anno $t+1$ ottengo

$$V_t = C_1 A'_{x+t} - P + C_{1|m-t-1} A'_{x+t} + S_{m-t} E'_{x+t} - {}_{1|}\ddot{a}'_{x+t:m-t-1|}$$
che dopo qualche passaggio diventa

$$V_t + P = C_1 A'_{x+t} + V_{t+1} {}_1 E'_{x+t}$$

in termini più espliciti diventa l'equazione di Fouret, 1981

$$V_t + P = C (1+i')^{-1} q'_{x+t} + V_{t+1} (1+i')^{-1} p'_{x+t}$$

Espressioni alternative equivalenti:

$$(V_t + P) (1 + i') = C q'_{x+t} + V_{t+1} p'_{x+t}$$
 (1) eq.di Kanner, 1869

 $V_t + P = (C - V_{t+1}) (1 + i')^{-1} q'_{x+t} + V_{t+1} (1 + i')^{-1}$ (2) eq. di Kanner, 1869

ed infine

$$(V_t + P) (1 + i') = \underbrace{(C - V_{t+1})}_{cap. \ sottorischio} q'_{x+t} + \underbrace{V_{t+1}}_{altra \ parte \ ben. \ caso \ morte}$$

Il capitale sotto rischio è non disponibile ma finanziato (anno per anno) tramite la mutualità.

Importo $V_t + 1$, non "a rischio", in quanto da impiegare comunque (prima o poi).

Premi di rischio e premi di risparmio 20

Dalla equazione precedente quella di Fouret ricavo che
$$P = \underbrace{\frac{[(C - V_{t+1})(1 + i')^{-1} \ q'_{x+t}]}{P_t^{[R]} \ premi \ di \ rischio}}_{P_t^{[R]} \ premi \ di \ rischio} + \underbrace{\frac{[V_{t+1} \ (1 + i')^{-1}] - V_t]}{P_t^{[S]} \ premi \ di \ risparmio}}_{P_t^{[S]} \ premi \ di \ risparmio}$$

Premio di risparmio \rightarrow formazione della riserva, perciò è accumulazione puramente finanziaria dei premi di risparmio

Premio di rischio = premio di un'assicurazione monoannuale caso morte con capitale uguale al capitale sotto rischio

Oss. se capitale sotto rischio negativo \rightarrow premio di rischio negativo