Lecture 5

- attention history behind
- dot-product attention
- transformer architecture
- positional embeddings
- bert and gpt

Seq2seq

Откуда все пошло?

Sequence-to-sequence, or «Seq2Seq" (2014 for English-French translation)

At a high level, a sequence-to-sequence model is an **end-to-end model** made up of two recurrent neural networks:

- an encoder, which takes the model's input sequence as input and encodes it into a fixed-size "context vector", and
- a decoder, which uses the context vector from above as a "seed" from which to generate an output sequence

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf

Откуда все пошло?

Sequence-to-sequence, or «Seq2Seq" (2014 for English-French translation)

At a high level, a sequence-to-sequence model is an **end-to-end model** made up of two recurrent neural networks:

- an encoder, which takes the model's input sequence as input and encodes it into a fixed-size "context vector", and
- a decoder, which uses the context vector from above as a "seed" from which to generate an output sequence

Какие тут могут быть две проблемы?

Какие тут могут быть две проблемы?

for the encoder, it is hard to compress the sentence

for the decoder, different information may be relevant at different steps.

Simple idea behind

At different steps, let a model "focus" on different parts of the input.

Simple idea behind

At different steps, let a model "focus" on different parts of the input.

Attention before 2017

Bahdanau

Luong

Attention In transformer step-by-step

https://jalammar.github.io/illustrated-transformer/

- 1. Создаем три вектора queries, key, values.
- 2. Взвешиваем каждое слово относительно всех остальных. (Dot-product, query and key)
- 3. Softmax теперь все значения будут positive и суммироваться в 1
- 4. Умножаем value на softmax score

The main idea behind self-attention is that instead of using a fixed embedding for each token, we can use the whole sequence to compute a weighted average of each embedding.

Given a sequence of token embeddings $x_1, ..., x_n$, self-attention produces a sequence of **new embeddings** $x_1, ..., x_n$ where each x_i is a linear combination of all the x_i :

The coefficients wj i are called attention weights and are normalized so that $\sum_i w_i = 1$.

$$x'_{i} = \sum_{j=1}^{N} w_{ji} x_{j}$$

$$\sum_{j=1}^{N} w_{ji} = 1.$$

Query, keys, values

you compare the query with the keys to get scores/weights for the values (Сравниваем query с keys, чтобы получить веса для обновления values)

- key относительно кого считаем, исходный текст на языке оригинала
 - query для кого считаем, переведенный текст на таргет языке
 - value на чем мы считаем, снова исходный текст

Супермаркет. Каждый ингредиент для окрошки - это **query** - то, что нужно купить. На полках много товаров. Они могут не также называться, для нас это **key**. Сравниваем, как сильно похоже описание в списке ингредиентов с товарами.

Для self-attention значения будут немного более smooth.

Let's write from scratch

https://colab.research.google.com/drive/10h66zyXkEyQCLc-DCyhdhrOf3qOzRtZ7?usp=sharing

Multi-head attention

- 1. Give multiple representation subspaces
- 2. Focus on different positions

1) This is our 3) Split into 8 heads. 2) We embed 4) Calculate attention 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to input sentence* each word* We multiply X or using the resulting produce the output of the layer R with weight matrices Q/K/V matrices W_0^Q Thinking Machines Wo * In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Even though she did **not** win the award, she was satisfied. Even though she did win the award, she was **not** satisfied.

$$\frac{1}{N-1} = \frac{1}{3}$$

Sentence 1

Sentence 2

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000}\right)$$

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000}\right)$$

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000}\right)$$

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

Residual connection

directly passing "raw" embeddings to the next layer can actually be very helpful!

Layer Norm and add

Normalize each input in the batch to have zero mean and unity variance.

Scale and bias = trainable parameters and used after normalization to rescale output.

Local vs global

Local VS global attention

global VS local - в глобал мы берем все стейты от encoder, в local предсказываем позициии токенов, на которые будем смотреть.

Figure 2: Global attentional model – at each time step t, the model infers a variable-length alignment weight vector a_t based on the current target state h_t and all source states \bar{h}_s . A global context vector c_t is then computed as the weighted average, according to a_t , over all the source states.

Figure 3: Local attention model – the model first predicts a single aligned position p_t for the current target word. A window centered around the source position p_t is then used to compute a context vector c_t , a weighted average of the source hidden states in the window. The weights a_t are inferred from the current target state h_t and those source states \bar{h}_s in the window.

Transformers

