Round5 with ring lifting CWG, September 14, 2018

Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Mike Hamburg, Thijs Laarhoven, Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, Zhenfei Zhang

Outline

Introducing Round5

- NIST Post-Quantum Cryptography Standardization project
- NIST asked to merge proposals
- We looked for merge combinations with low bandwidth/communication requirements
- Round5 combines Round2 and HILA5

Round2: (R)LWR-based KEM and PKE with sparse ternary secrets

Round2: KEM and PKE based on (Ring) Learning with Rounding

- No explicit noise generation required, less calls to random
- Smaller alphabet sizes for public key and ciphertext
- Prime cyclotomic polynomial $\phi_{n+1}(x) = 1 + x + \ldots + x^n$ with n prime, and $\phi_{n+1}(x)$ irreducible modulo two
- Sparse ternary secrets

Round2 description

Alice Bob
$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/\phi(x), \ s \stackrel{\$}{\leftarrow} \mathcal{S}$$

$$\xrightarrow{a,b = \langle \lfloor \frac{p}{q} \langle as \rangle_{\phi} \rceil \rangle_p} \qquad \qquad r \stackrel{\$}{\leftarrow} \mathcal{S};$$

$$\psi = \langle \frac{1}{q} v - \frac{q}{p} S_{\mu} (\langle us \rangle_{\phi}) \rangle_q$$

$$\hat{m} = \langle \lfloor \frac{2}{q} w + \frac{1}{2} \rfloor \rangle_2$$

 \mathcal{S} is a subset of all balanced ternary polynomials of Hamming weight h; $\phi(x) = 1 + x + \ldots + x^n$ $S_{\mu}(f)$: μ highest order coefficients of f.

HILA5: RLWE- based KEM with error correction

HILA5: KEM based on Ring Learning with Errors

- Failure probability reduction by error correcting code Xe5, resulting in smaller public keys and ciphertexts
- Decoding Xe5 avoids table-lookups and conditions altogether and therefore is resistant to timing attacks.
- Five error correction by majority voting. For each information bit m_i , there are disjoint sets S_1^i, \ldots, S_{10}^i of parity bit indices such that

$$m_i = \sum_{j \in S_k^i} p_j \text{ for } 1 \leq k \leq 10.$$

Information bit i is flipped iff six or more sums equal one.

Round5 = Round2 + HILA5

Alice Bob
$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/\phi(x), s \stackrel{\$}{\leftarrow} \mathcal{S}$$

$$\xrightarrow{a,b = \langle \lfloor \frac{p}{q} \langle as \rangle_{\phi} \rceil \rangle_{p}}$$

$$r \stackrel{\$}{\leftarrow} \mathcal{S};$$

$$\psi = \langle \lfloor \frac{p}{q} \langle ar \rangle_{\phi} \rangle_{p}$$

$$\psi = \langle \frac{1}{q} \langle ar \rangle_{\phi} \rangle_{\phi} \rangle_{\phi}$$

$$\psi = \langle \frac{1}{q} \langle ar \rangle_{\phi} \rangle_{\phi} \rangle_{\phi}$$

$$\psi =$$

 \mathcal{S} is a subset of all balanced ternary polynomials of Hamming weight h; $\phi(x) = 1 + x + \ldots + x^n$ $S_{\mu}(f)$: μ highest order coefficients of f.

Benefit of error-correction

Round5 combines the LWR-based approach of Round2 and the error correcting code of HILA5.

Smaller public keys and ciphertext.

However, this assumes independence of errors...

From: Leo Ducas <leo.ducas1@gmail.com>
Sent: Tuesday, August 07, 2018 2:07 AM

To: pqc-forum

Subject: [pqc-forum] Re: OFFICIAL COMMENT: Round5 = Round2 + Hila5

Dear authors,

I note that the failure analysis assumes that "bit failures occur independently", but I'm unconvinced it would be the case, especially in the ring setting. I have searched for solution to this issue for a long time, and still don't know how to properly address this issue theoretically.

May I suggest to resort to experimental analysis to test how close or not to independent these failure events are, at least in a regime where failures are statistically measurable?

Best regards
-- Leo Ducas

Simulation results: error values for prime cyclotomic ring

 $\log_2(\mathsf{Prob}(\mathsf{error}\;\mathsf{value}\geq x)).$

Issue with prime cyclotomic ring: correlated errors

One of the terms in the error in reconstruction is $\langle\langle se\rangle_{\phi}\rangle_{q}$.

$$\langle se \rangle_{\phi} = \sum_{k=0}^{n-1} [c_k(s,e) - c_n(s,e)] x^k,$$

where

$$c_j(s,e) = \sum_i s_i e_{\langle j-i\rangle_{n+1}}.$$

Hence, if $c_n(s,e)$ is large, then many coefficients of $\langle se \rangle_\phi$ may be large.

Round5 with ring lifting

Alice Bob
$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/\phi(x), \ s \stackrel{\$}{\leftarrow} \mathcal{S}$$

$$\xrightarrow{a,b = \langle \lfloor \frac{p}{q} \langle as \rangle_{\phi} \rceil \rangle_p} \qquad r \stackrel{\$}{\leftarrow} \mathcal{S};$$

$$v = \langle \lfloor \frac{p}{q} \langle ar \rangle_{\phi} \rceil \rangle_t \qquad c = \text{Encode}(m)$$

$$w = \langle \frac{q}{t}v - \frac{q}{p}S_{\mu}(\langle us \rangle_{N})_q \qquad c = \langle \lfloor \frac{2}{q}w + \frac{1}{2} \rfloor \rangle_2 \qquad m = \text{Decode}(\hat{c})$$

 $\mathcal S$ is a subset of all balanced ternary polynomials of Hamming weight h; $\phi(x)=1+x+\ldots+x^n$ $S_\mu(f)$: μ highest order coefficients of f. $N(x)=(x-1)\phi(x)=x^{n+1}-1$

Why this works (1)

$$rac{q}{p}b = \langle as
angle_{\phi} + e + q\lambda ext{ with } |e| \leq rac{q}{2p}.$$
 $rac{q}{p}br = \langle as
angle_{\phi}r + er = (as + \lambda_1\phi)r + er + q\lambda_2.$ As $r(x) = (x-1)\rho(x) + r(1)$ for some $\rho \in \mathbb{Z}[x]$: $\langle \langle r \rangle_{\mathcal{N}} \rangle_{\mathcal{Q}} = 0.$ $rac{q}{p}br \equiv asr + er \pmod{\mathcal{N}.q}$ $rac{q}{p}us \equiv asr + e's \pmod{\mathcal{N},q}.$ $rac{q}{p}(br - us) \equiv er - e's \pmod{\mathcal{N},q}.$

Why this works (2)

$$egin{aligned} rac{p}{t} \lfloor rac{t}{
ho} \langle br
angle_N
ceil &= \langle br
angle_N + e'' \pmod{N, p} \end{aligned} \ &= rac{q}{t} v = rac{q}{2} m + S_\mu (rac{q}{
ho} \langle br
angle_N + rac{q}{
ho} e'') \pmod{N, q} \ &= rac{q}{2} m + S_\mu (er - e's + rac{q}{
ho} e'') \pmod{N, q}. \end{aligned}$$

So if $\langle er-e's\rangle_N+\frac{q}{p}e''$ is small (modulo q), then $w\approx\frac{q}{2}m$. We got rid of the correlation between coefficients of $\langle er-e's\rangle_\phi$ caused by a large common term.

Simulation results: errors values in cyclic ring

 $\log_2(\mathsf{Prob}(\mathsf{error}\;\mathsf{value}\geq x)).$

Simulation results: errors values for both rings

 $\log_2(\mathsf{Prob}(\mathsf{error}\;\mathsf{value}\geq x)).$

Benefits of ring lifting

Parameters (CCA NIST3)	No FEC, cyclotomic	No FEC, ring lifting	Xef FEC, ring lifting
d, n, h	852, 852, 212	820, 820, 254	756, 756, 242
q, p, t	$2^{12}, 2^9, 2^5$	$2^{12}, 2^9, 2^3$	$2^{12}, 2^8, 2^3$
B, \bar{n}, \bar{m}, f	1, 1, 1, 0	1, 1, 1, 0	1, 1, 1, 5
μ	192	192	192 + 231
Bandwidth	2087 B	1967 B	1720 B
Public key	984 B	948 B	781 B
Ciphertext	1103 B	1019 B	939 B
PQ Security	2 ¹⁸¹	2 ¹⁷⁶	2 ¹⁸¹
Classical	2^{193}	2^{192}	2^{193}
Failure rate	2^{-146}	2^{-162}	2^{-255}

\mathcal{S}_{μ} stops the "evaluate at x=1" attack

- "Evaluate at x = 1 attack" is a distinguishing attack
- Consider RLWE sample $(b, v = \langle br \rangle)_N + e^n + \frac{q}{2}m)_q$ with $\langle r(1) \rangle_q = 0$. As (x-1)|N(x)

$$v(1) \equiv e(1) + \frac{q}{2}m(1) \pmod{q}$$

so $\langle v(1)\rangle_q$ is not uniformly distributed. If $\mu < n$, not all coefficients of $\langle br\rangle_N$ are available, so the evaluate at x=1 attack does not apply.

CPA-Security proof for Round2 (1)

CPA: Chosen plaintext attack.

Adversary chooses two plaintexts, m_0 and m_1 , after having seen a and b:

$$(m_0,m_1)=\mathcal{A}_1(a,b).$$

Adversary randomly chooses $k \in \{0,1\}$ and encrypts m_k Algorithm \mathcal{A}_2 runs on input (a,b,m_0,m_1,u,v) with output 0 or 1. Output of game equals 1 if $\mathcal{A}_2(a,b,m_0,m_1,u,v)=k$ and zero otherwise. The advantage of $(\mathcal{A}_1,\mathcal{A}_2)$ equals

| Prob[game output = 1]
$$-\frac{1}{2}$$
 |

where the probability over in the randomness in (a, b, u, v).

CPA-Security proof for Round2 (2)

- Sequence of CPA games. Gradual replacement of variables, ending with all variables being uniform.
- Two consecutive games can be used to construct a distinguisher between samples of the random variables in which these games differ.
 - Advantage of the constructed distinguisher equals the absolute value of the difference of the probabilities that the respective games output a 1.
- The advantage of the original CPA game is at most the sum of the advantages of the distinguishers for the replaced variables.
 - If the original CPA game has a large advantage, at least one of the distinghuishers has a large advantage.

Adapting the reduction for Round5 with ring lifting

The reduction proof from Round2 does not work for Round5 with ring lifting in the step where the distribution of

$$\begin{bmatrix} u \\ v' \end{bmatrix} = \begin{bmatrix} \lfloor \frac{z}{q} \langle ar \rangle_{\phi} \rceil \\ S_{\mu} (\lfloor \frac{z}{q} \langle br \rangle_{N} \rceil) \end{bmatrix}$$

is replaced by a uniform distribution.

With Round2, v' also involves rounding modulo ϕ , so $\begin{bmatrix} u \\ v' \end{bmatrix}$ has two R-LWR samples from the same ring.

With Round5 with ring lifting, $\begin{bmatrix} u \\ v' \end{bmatrix}$ has two R-LWR samples involving r from different rings.

Related result for lifted RLWE [1, Lemma 11]

Let n+1 be prime, and let q be relatively prime to n+1.

Assume that it is hard to distinguish samples

$$(a_i,b_i=a_is+e_i)\in (\mathbb{Z}_q[x]/\Phi_{n+1}(x))^2$$
 from uniform,

Then the samples $(L_q(a_i), L_q((1-x)b_i)) \in S^2_{n+1,q}$ are also hard to distinguish from uniform.

Here
$$S_{n+1,q} = \{\sum_{i=0}^n a_i x^i \mid \sum_{i=0}^n a_i x^i \equiv 0 \pmod{q} \}$$
, and $L_q(a(x)) = a(x) - (n+1)^{-1} \cdot a(1) \Phi_{n+1}(x)$.

[1] G. Bonnoron, L. Ducas and M. Fillinger, "Large FHE gates from Tensored Homomorphic Accumulator", iacr preprint Report 2017-996.

Applicability to Round5

In the proof in [1], the error polynomial e_i is lifted to $L_q((x-1)e_i(x)) = (x-1)e_i(x)$. Hence, if coefficients of each e_i are drawn independently, this is not true anymore for the coefficients after lifting.

Different even coefficients of (x-1)f(x) do not contain a common coefficient from f. Hence, if $\mu < n/2$, we can let S_μ select μ even coefficients of a polynomial, and the dependence has been removed.

Can we generalize this RLWE result to RLWR?

Direction to make the proof work for R-LWR

From a discussion with Léo Ducas, we gathered the following possible way forward.

- Compute $b = \lfloor \frac{p}{q} \langle as \rangle_N \rfloor$.
- ullet Transmit $\langle \tilde{b} \rangle_p$, where \tilde{b} is the closest vector to b in the root lattice

$$\{(x_0,\ldots,x_n)\in\mathbb{Z}^{n+1}\mid \sum_{i=0}^n x_i=0\}.$$

If a(1)=0 or s(1)=0, the noise introduced by transforming b to \tilde{b} has a root at zero.

 \tilde{b} can be found in time $\mathcal{O}(n \log n)$, see MCKilliam, Clarkson, Quinn, "An algorithm to compute the nearest point in the lattice A_n^* , arxiv.org, Report 0801.1364, 2008.

Conclusions

- Applying error correction together with RLWR leads to solutions with small failure probability and small public keys and cipher texts, provided the error correlation is low.
- In Round5 with ring lifting, error correlation and failure probability are as small as with the cyclic ring.
- S_{μ} destroys ring structure, making the "evaluate at x=1" attack infeasible.
- How to adapt the CPA-security proof of Round2 for ciphertext components computed in different rings?