Cálculo de Geodésicas en el Disco de Poincaré

Ángel Peñaflor

30 de agosto de 2022

El Problema

El Problema

Calcular las geodésicas en el disco de Poincaré.

• ¿Dónde estamos midiendo?

El Problema

- ¿Dónde estamos midiendo?
- ¿Cómo medimos?

El Problema

- ¿Dónde estamos midiendo?
- ¿Cómo medimos?
- ¿Qué estamos midiendo?

El Problema

- ¿Dónde estamos midiendo?
- ¿Cómo medimos?
- ¿ Qué estamos midiendo?
- Los cálculos.

El Problema

- ¿Dónde estamos midiendo?
- ¿Cómo medimos?
- ¿ Qué estamos midiendo?
- Los cálculos

Variedades Topológicas

Definición (Variedad Topológica)

Sea M un espacio topológico, diremos que M es una variedad topológica de dimensión n si:

- M es un espacio de Hausdorff.
- M es segundo numerable.
- M es localmente euclidiano de dimensión n, esto quiere decir que, para cada punto $x \in M$ existe una vecindad abierta U que contiene a x y un homeomorfismo $\varphi: U \to \varphi(U) \subseteq \mathbb{R}^n$.

Figura: Ejemplo de un homeomorfismo de una variedad a \mathbb{R}^2 .

Ejemplo de Variedades Topológicas

Figura: Los Espacios Euclidianos, \mathbb{R}^n .

Figura: La n—esferas, \mathbb{S}^n .

Figura: El n-Toro, \mathbb{T}^n .

Figura: Los subconjuntos abiertos de las variedades.

Ejemplo: El Espacio Proyectivo

Figura: Representación del Espacio Proyectivo \mathbb{RP}^2 .

.

Cartas

Definición (Carta)

Una carta en M es un par ordenado (U, φ) donde U es un subconjunto abierto de M y φ es un homeomorfismo de U a \mathbb{R}^n .

Cartas

Definición (Carta)

Una carta en M es un par ordenado (U, φ) donde U es un subconjunto abierto de M y φ es un homeomorfismo de U a \mathbb{R}^n .

Definición (Cartas Suavemente Compatibles)

Si (U,φ) y (V,ψ) son dos cartas en M tales que $U\cap V\neq\varnothing$, llamaremos **mapa de transición** a la composición de funciones:

$$\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$$

Y además diremos que las cartas (U, φ) y (V, ψ) son suavemente compatibles si $U \cap V = \emptyset$ o si el mapa de transición $\psi \circ \varphi^{-1}$ es un difeomorfismo.

Figura: Mapa de Transición

Atlas y la Estructura Suave

Definición (Atlas, Atlas Suave y Atlas Maximal)

- Una colección de cartas $(U, \varphi)_{\alpha}$ es un **atlas** \mathcal{A} , en M si dichas cartas forman una cubierta para M.
- Diremos que el atlas A es **suave** si cualesquiera dos cartas son suavemente compatibles, a las cartas de un atlas suaves les llamaremos *cartas suaves*.
- Un atlas suave es llamado maximal si no está propiamente contenido en ningún atlas más grande.

Atlas y la Estructura Suave

Definición (Atlas, Atlas Suave y Atlas Maximal)

- Una colección de cartas $(U, \varphi)_{\alpha}$ es un **atlas** A, en M si dichas cartas forman una cubierta para M.
- Diremos que el atlas A es **suave** si cualesquiera dos cartas son suavemente compatibles, a las cartas de un atlas suaves les llamaremos *cartas suaves*.
- Un atlas suave es llamado maximal si no está propiamente contenido en ningún atlas más grande.

Definición (Variedad Suave)

Si M es una variedad topológica y \mathcal{A} es un atlas maximal en M, diremos que el par (M, \mathcal{A}) es una variedad suave, a dicho atlas maximal le llamaremos la estructura suave en M.

Ejemplo de Variedades Suaves

Figura: Los Espacios Euclidianos, \mathbb{R}^n .

Figura: La n—esferas, \mathbb{S}^n .

Figura: El n-Toro, \mathbb{T}^n .

Figura: Subconjuntos abiertos de variedades suaves.

Definición (Función Suave Incorrecta)

Sea M una variedad topológica n-dimensional, k un entero positivo y $f:M\to\mathbb{R}^k$ una función cualquiera, diremos que la función f es suave si para cada carta (U,φ) se tiene que la composición $f\circ\varphi^{-1}:\varphi(U)\subseteq\mathbb{R}^n\to\mathbb{R}^k$ es diferenciable

Definición (Función Suave Incorrecta)

Sea M una variedad topológica n-dimensional, k un entero positivo y $f:M\to\mathbb{R}^k$ una función cualquiera, diremos que la función f es suave si para cada carta (U,φ) se tiene que la composición $f\circ\varphi^{-1}:\varphi(U)\subseteq\mathbb{R}^n\to\mathbb{R}^k$ es diferenciable

Consideremos los siguientes atlas suaves en \mathbb{R} :

$$(\mathbb{R}, \operatorname{Id}_\mathbb{R})$$

$$(x) = x^3$$

Definición (Función Suave Incorrecta)

Sea M una variedad topológica n-dimensional, k un entero positivo y $f:M\to\mathbb{R}^k$ una función cualquiera, diremos que la función f es suave si para cada carta (U,φ) se tiene que la composición $f\circ\varphi^{-1}:\varphi(U)\subseteq\mathbb{R}^n\to\mathbb{R}^k$ es diferenciable

Consideremos los siguientes atlas suaves en \mathbb{R} :

$$(\mathbb{R}, \operatorname{Id}_{\mathbb{R}})$$

$$\psi(x) = x^3$$

$$\mathrm{Id}_{\mathbb{R}}\circ\psi^{-1}(y)=y^{\frac{1}{3}}$$

Funciones Suaves

Definición (Función Suave)

Sean M una variedad suave n-dimensional, k un entero no negativo y $f: M \to \mathbb{R}^k$ una función cualquiera. Diremos que f es una **función suave** si para cada punto $p \in M$ existe una carta suave (U, φ) , cuyo dominio contiene a p y tal que la composición de funciones $f \circ \varphi^{-1}$ es suave en el conjunto abierto $\varphi(U) \subseteq \mathbb{R}^n$.

Funciones Suaves

Definición (Función Suave)

Sean M una variedad suave n-dimensional, k un entero no negativo y $f: M \to \mathbb{R}^k$ una función cualquiera. Diremos que f es una **función suave** si para cada punto $p \in M$ existe una carta suave (U, φ) , cuyo dominio contiene a p y tal que la composición de funciones $f \circ \varphi^{-1}$ es suave en el conjunto abierto $\varphi(U) \subseteq \mathbb{R}^n$.

Notemos que esta definición coincide con la definición usual de diferenciabilidad cuando $M=\mathbb{R}^n$.

Figura: Representación de una función suave.

Mapas Suaves

De modo similar, podemos definir los mapas suaves explotando el hecho de que sabemos cuando una función que va de \mathbb{R}^m a \mathbb{R}^n es suave.

Mapas Suaves

De modo similar, podemos definir los mapas suaves explotando el hecho de que sabemos cuando una función que va de \mathbb{R}^m a \mathbb{R}^n es suave.

Definición (Mapa Suave)

Sean M y N variedades suaves, $F:M\to N$ un mapa cualquiera. Diremos que F es un mapa suave si para cada $p\in M$ existen cartas (U,φ) que contiene a p y (V,ψ) que contiene a F(p) tal que $F(U)\subset V$ y la composición $\psi\circ F\circ \varphi^{-1}$ es suave de $\varphi(U)$ a $\psi(V)$.

Figura: Representación de un mapa suave.

Ejemplo de Funciones y Mapas Suaves

- Las mapas constantes.
- El mapa identidad.
- El mapeo de inclusión
- Composición de funciones suaves.
- Las proyecciones.
- Toda función $f: \mathbb{R}^m \to \mathbb{R}^n$ que sea suave en el sentido de usual del cálculo será también un mapa suave en el sentido de variedades.

Espacios Tangentes en \mathbb{R}^n

Definición (Vectores y Espacios Tangentes en \mathbb{R}^n)

Sea a un punto en \mathbb{R}^n , definiremos el **espacio tangente** a \mathbb{R}^n en el punto a, denotado por $T_a(\mathbb{R}^n)$, como el conjunto:

$$\{a\} \times \mathbb{R}^n = \{(a, v) : v \in \mathbb{R}^n\}$$

Un **vector tangente** a \mathbb{R}^n es un elemento de $T_a(\mathbb{R}^n)$ para algún $a \in \mathbb{R}^n$. Denotaremos a un vector tangente (a, v) particular como v_a o simplemente v para abreviar.

Espacios Tangentes en \mathbb{R}^n

Definición (Vectores y Espacios Tangentes en \mathbb{R}^n)

Sea a un punto en \mathbb{R}^n , definiremos el **espacio tangente** a \mathbb{R}^n en el punto a, denotado por $T_a(\mathbb{R}^n)$, como el conjunto:

$$\{a\} \times \mathbb{R}^n = \{(a, v) : v \in \mathbb{R}^n\}$$

Un **vector tangente** a \mathbb{R}^n es un elemento de $T_a(\mathbb{R}^n)$ para algún $a \in \mathbb{R}^n$. Denotaremos a un vector tangente (a, v) particular como v_a o simplemente v para abreviar.

Una de las propiedades más importantes del conjunto $T_a(\mathbb{R}^n)$ es que tiene estructura de espacio vectorial bajo las operaciones

$$v_a + w_a = (v + w)_a, \quad c(v_a) = (cv)_a$$

Además, este espacio vectorial es isomorfo a \mathbb{R}^n .

Figura: Representación del espacio tangente $T_a(\mathbb{R}^n)$.

Figura: Representación del espacio tangente a una esfera.

Si tenemos un punto $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ y un vector $[v_1\ldots v_n]$ podemos parametrizar la recta que pasa por a con dirección v de la siguiente manera:

$$\gamma(t) = a_1 + tv_1, \dots, a_n + tv_n$$

Si tenemos un punto $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ y un vector $[v_1\ldots v_n]$ podemos parametrizar la recta que pasa por a con dirección v de la siguiente manera:

$$\gamma(t) = a_1 + tv_1, \dots, a_n + tv_n$$

Teniendo esto en cuenta, y, por nuestros cursos de cálculo sabemos que si $f: \mathbb{R}^n \to \mathbb{R}$ es una función suave definida en un punto a y $v \in T_a(\mathbb{R}^n)$ podemos obtener la derivada direccional de f en a en la dirección de v como:

$$D_{v}f = \frac{d}{dt}\bigg|_{t=0} f(\gamma(t)) = \sum_{i=1}^{n} v_{i} \left. \frac{\partial f}{\partial x_{i}} \right|_{a}$$

Hay dos propiedades que nos interesan particularmente de la derivada direccional. La derivada direccional es lineal y cumple la regla de Leibniz. Esto quiere decir que si f y g son funciones suaves definida en una vecindad de $a \in \mathbb{R}^n$, c es una constante y $v \in T_a(\mathbb{R}^n)$, entonces:

- $D_{\nu}(f+g) = D_{\nu}(f) + D_{\nu}(g)$
- $D_v(cf) = cD_v(f)$
- $D_{\nu}(fg) = f(a)D_{\nu}(g) + g(a)D_{\nu}(f)$

Basándonos en las propiedades anteriores de las derivaciones es que se darán las siguientes definiciones.

Definición (Derivación en un punto)

Si a es un punto en \mathbb{R}^n y $\omega: C^\infty(\mathbb{R}^n) \to \mathbb{R}$ es un funcional lineal, diremos que ω es una **derivación** en a si cumple la regla de Leibniz. Esto es, si f y g son funciones suaves definidas en una vecindad de a y c es una constante, entonces:

- $\omega(cf) = c\omega(f)$
- $\omega(f+g) = \omega(f) + \omega(g)$
- $\omega(fg) = f(a)\omega(g) + g(a)\omega(f)$

El conjunto de todas las derivaciones en a, el cual denotamos por $\mathcal{D}_a(\mathbb{R}^n)$ es, curiosamente, un espacio vectorial bajo las operaciones:

$$(\omega_1 + \omega_2)(f) = \omega_1(f) + \omega_2(f)$$
$$(c\omega)(f) = c(\omega(f))$$

El conjunto de todas las derivaciones en a, el cual denotamos por $\mathcal{D}_a(\mathbb{R}^n)$ es, curiosamente, un espacio vectorial bajo las operaciones:

$$(\omega_1 + \omega_2)(f) = \omega_1(f) + \omega_2(f)$$
$$(c\omega)(f) = c(\omega(f))$$

Y quizá todavía más curioso es el siguiente teorema:

Teorema

Los espacios $T_a(\mathbb{R}^n) \to \mathcal{D}_a(\mathbb{R}^n)$ son isomorfos y el isomorfismo de espacios vectoriales está dado por:

$$\varphi: T_{a}(\mathbb{R}^{n}) \to \mathcal{D}_{a}(\mathbb{R}^{n})$$

$$v \mapsto D_{v} = \sum_{i=1}^{n} v_{i} \left. \frac{\partial}{\partial x_{i}} \right|_{a}$$

Teorema

Los espacios $T_a(\mathbb{R}^n) \to \mathcal{D}_a(\mathbb{R}^n)$ son isomorfos y el isomorfismo de espacios vectoriales está dado por:

$$\varphi: T_{a}(\mathbb{R}^{n}) \to \mathcal{D}_{a}(\mathbb{R}^{n})$$

$$v \mapsto D_{v} = \sum_{i=1}^{n} v_{i} \left. \frac{\partial}{\partial x_{i}} \right|_{a}$$

Dos consecuencias de este teorema es que el espacio de derivaciones en un punto a, $\mathcal{D}_a(\mathbb{R}^n)$ es isomorfo a \mathbb{R}^n y que para cada $a \in \mathbb{R}^n$, las n derivadas parciales:

$$\frac{\partial}{\partial x_1}\Big|_{a},\ldots,\frac{\partial}{\partial x_n}\Big|_{a}$$

forman una base para el espacio tangente $T_a(\mathbb{R}^n)$

Definición (Derivación en un punto de una variedad)

Sea M una variedad suave y sea $p \in M$ un punto. Diremos que en mapa $\omega : C^{\infty}(M) \to \mathbb{R}$ es una **derivación** en p si es lineal y además cumple la regla de Leibniz. Llamaremos al conjunto de todas las derivaciones en un punto de una variedad el **espacio**

Llamaremos al conjunto de todas las derivaciones en un punto de una variedad el **espacio** tangente a la variedad en ese punto, y denotaremos al conjunto por $T_p(M)$.

Definición (Derivación en un punto de una variedad)

Sea M una variedad suave y sea $p \in M$ un punto. Diremos que en mapa $\omega : C^{\infty}(M) \to \mathbb{R}$ es una **derivación** en p si es lineal y además cumple la regla de Leibniz.

Llamaremos al conjunto de todas las derivaciones en un punto de una variedad el **espacio** tangente a la variedad en ese punto, y denotaremos al conjunto por $T_p(M)$.

El espacio tangente $T_p(M)$ también es un espacio vectorial bajo operaciones idénticas a las vistas anteriormente.

Ahora quisiéramos estudiar como es que los mapas suaves entre variedades afectan a los vectores del espacio tangente.

Definición (Diferencial de un mapa)

Si M y N son variedades suaves y $F: M \to N$ es un mapa suave, entonces para cada punto $p \in M$ el mapa F induce un mapeo lineal entre $T_p(M)$ y $T_{F(p)}(N)$, denotado

 $dF_p: T_p(M) \to T_{F(p)}(N)$, a este mapa le llamamos el **diferencial de F en p**.

El mapa dF_p está dado por: Dada un vector tangente $\omega \in T_p(M)$, dF_p será la derivación en el punto $F(p) \in N$ que actúa sobre funciones suaves $f : N \to \mathbb{R}$ del siguiente modo:

$$dF_p(\omega)(f) = \omega(f \circ F)$$

Figura: Representación del diferencial de un mapa

Los espacios tangentes son muy útiles, sin embargo, para nuestros fines será necesario ser capaces de considerar más de un espacio tangente a la vez, esto se puede hacer considerando el fibrado tangente.

Definición (Fibrado Tangente)

Dada una variedad suave M, definimos el **fibrado tangente de** M, el cual denotaremos por TM, como la unión disjunta de todos los espacios tangentes a M:

$$TM = \bigsqcup_{p \in M} T_p(M) = \bigcup_{p \in M} \{p\} \times T_p(M)$$

Figura: Espacios Tangentes y Fibrado Tangente de \mathbb{S}^1 .

Teorema

Sea Mⁿ una variedad suave, el fibrado tangente TM tiene una topología natural y una

provección $\pi: TM \to M$ es suave con respecto a dicha estructura suave.

estructura suave que vuelven a TM una variedad suave 2n-dimensional de tal modo que la

Definición (Campo Vectorial)

Un **campo vectorial** X en una variedad M es una sección del fibrado tangente $\pi: TM \to M$, esto es, $X: M \to TM$ es un mapa tal que $X(p) \in T_p(M)$ para cada $p \in M$. Además diremos que que es un **campo vectorial suave** si X es un mapa suave. Denotaremos al conjunto

formado por todas los campos vectoriales suaves en M como $\mathfrak{X}(M)$

Eiguro: Doprocontación do un compo voctorial

Habiendo visto todo esto, ahora podemos hablar de como es que vamos a medir.	

Habiendo visto todo esto, ahora podemos hablar de como es que vamos a medir.

Definición (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

Habiendo visto todo esto, ahora podemos hablar de como es que vamos a medir.

Definición (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

¿Qué quiere decir esto?

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.
- Que sea un tensor de rango 2 covariante y simétrico quiere decir que toma como entradas dos elementos de los espacios tangentes y depende linealmente de cada uno de ellos y permanece invariante al cambiar su orden.

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.
- Que sea un tensor de rango 2 covariante y simétrico quiere decir que toma como entradas dos elementos de los espacios tangentes y depende linealmente de cada uno de ellos y permanece invariante al cambiar su orden.
- Por ultimo, que sea positiva definida quiere decir que si la función toma en sus dos argumentos al mismo elemento, entonces el resultado es mayor o igual a cero.

Definición (Variedad Riemanniana)

Una **Variedad Riemanniana** es un par (M, g), donde M es una variedad suave y g es una métrica en M.

Si g es una métrica Riemanniana en M, entonces para cada punto $p \in M$, el 2-tensor g_p es un producto interno en T_pM , por lo que es usual escribir $\langle v,w\rangle_g$ para denotar al número real $g_p(v,w)$

Ejemplo (Métrica Euclidiana)

El ejemplo más simple de una métrica de Riemann es es la **Métrica Euclidiana** \bar{g} en \mathbb{R}^n , dada en la coordenadas estándar por

$$\bar{g} = \delta_{ii} dx^i dx^j$$

donde δ_{ij} es la delta de Kronecker. Es común abreviar el producto simétrico de un tensor α consigo mismo como α^2 , por lo que la métrica Euclidiana puede ser escrita como:

$$\bar{g} = (dx^1)^2 + \ldots + (dx^n)^2$$

Aplicado a vectores $v, w \in T_p \mathbb{R}^n$, esto nos da:

$$\bar{g}_p(v,w) = \delta_{ij}v^iw^j = \sum_{i=1}^n v^iw^i = v\cdot w$$

Teorema (Existencia de Métricas Riemannianas)

Cada variedad suave admite una métrica Riemanniana.

Teorema (Existencia de Métricas Riemannianas)

Cada variedad suave admite una métrica Riemanniana.

Es importante notar que hay muchas maneras de construir una métrica g para una variedad dada, y que, si tenemos métricas diferentes en la misma variedad, estás pueden tener propiedades geométricas completamente diferentes.

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

• El Ángulo entre dos vectores tangentes no nulos $v, w \in T_pM$ está dado como el $\vartheta \in [0, \pi]$ único que satisface:

$$\cos\varphi = \frac{\langle v, w \rangle_g}{|v|_g |w|_g}$$

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

• El Ángulo entre dos vectores tangentes no nulos $v, w \in T_pM$ está dado como el $\vartheta \in [0, \pi]$ único que satisface:

$$\cos\varphi = \frac{\langle v, w \rangle_g}{|v|_g |w|_g}$$

• Dados dos vectores tangentes $v, w \in T_pM$, decimos que estos son **Ortogonales** si $\langle v, w \rangle_g = 0$.