SGN-41007 Pattern Recognition and Machine Learning

Exercise Set 3: January 21-January 25, 2019

Exercises consist of both pen&paper and computer assignments. Pen&paper questions are solved at home before exercises, while computer assignments are solved during exercise hours. The computer assignments are marked by text python and Pen&paper questions by text pen&paper

1. **pen&paper** Design an optimal detector for step signal.

The lecture slides describe an optimal detector for a known waveform s[n]. Apply it to design the optimal detector for a step edge:

$$s[n] = \begin{cases} -1, & \text{for } 0 \le n < 10 \\ 1, & \text{for } 10 \le n < 20 \end{cases}$$

Simplify the expression as far as you can.

2. pen&paper ROC and AUC.

A probabilistic classifier is used for classifying four test samples into two classes. As a result, we get the following prediction scores:

	Probability of class 1	True label
Sample 1	0.8	1
Sample 2	0.3	1
Sample 3	0.4	0
Sample 4	0.2	0

Draw the receiver operating characteristic curve. What is the Area Under Curve (AUC) score?

3. **python** *Implement a sinusoid detector.*

In this exercise we generate a noisy sinusoid with known frequency and see how the sinusoid detector of the lecture slides performs.

a) Create a vector of zero and sinusoidal components that looks like the plot below. Commands: np.zeros, np.concatenate. Sinusoid is generated by np.cos(2 * np.pi * 0.1 * n).

- b) Create a noisy version of the signal by adding Gaussian noise with variance 0.5: $y_n = y + np.sqrt(0.5) * np.random.randn(y.size)$.
- c) Implement the two detectors and reproduce the below plot.

4. **python** *Same as previous but different frequency and detector.*

Change the code of the previous exercise such that the frequency is 0.03 and the detector is the random signal version.

5. **python** Train your first sklearn classifiers.

In this exercise we will train a two classifiers and compare their performance. Before you start, load the following dataset (or find it from your disk—we used the same data in week 1):

http://www.cs.tut.fi/courses/SGN-41007/Ex1_data.zip

- a) Load the file ${\tt twoClassData.mat}$ to your python workspace.
- b) Split the data into training and testing sets: samples X[:200] are for training and X[200:] for testing.
- c) Train a KNN classifier. Use default parameters and compute the accuracy using sklearn.metrics.accuracy_score on the test set.
- d) Train an LDA classifier. Use default parameters and compute the accuracy using sklearn.metrics.accuracy_score on the test set.