▼ 第十次作业

- ▼ 定义
 - P94 条件数
 - **2.5**
- ▼ 定理
 - **2.9**
 - **2.10**
- ▼ 例题
 - **2.10**

第十次作业

2022211363 谢牧航

定义

P94 条件数

设 $A\in C^{n\times n}$ 可逆, $B\in C^{n\times n}$,在某矩阵范数 $\|\cdot\|$ 下,若 $\|A^{-1}B\|<1$,则有以下结论:

(1) A + B 可逆;

(2) 设
$$F = I - ((I + A^{-1}B)^{-1}$$
,则 $\|F\| \le \frac{\|A^{-1}B\|}{1 - \|A^{-1}B\|}$;

$$(3) \frac{\left\|A^{-1} - (A+B)^{-1}\right\|}{||A^{-1}||} \le \frac{\|A^{-1}B\|}{1 - \|A^{-1}B\|}.$$

若令 $\operatorname{cond}(A)=\|A\|\|A^{-1}\|,\ d_A=\|\delta A\|\|A^{-1}\|,\$ 则当 $\|A^{-1}\|\|\delta A\|<1$ 时,由结论 (2) 与 (3) 可得

$$\left\|I-((I+A^{-1}\delta A)^{-1}
ight\|\leq rac{d_A\mathrm{cond}(A)}{1-d_A\mathrm{cond}(A)}$$

$$rac{\left\|A^{-1} - (A + \delta A)^{-1}
ight\|}{||A^{-1}||} \leq rac{d_A \mathrm{cond}(A)}{1 - d_A \mathrm{cond}(A)}$$

称 $\operatorname{cond}(A)$ 为矩阵 A 的条件数,它是衡量矩阵的相对误差扩大的一个重要量指标。一般说来,条件数 越大, $(A+\delta A)^{-1}$ 与 A^{-1} 的相对误差就越大。

2.5

设矩阵 $A \in C^{n \times n}$ 的 n 个特征值是 $\lambda_1, \lambda_2, \ldots, \lambda_n$,称

$$\rho(A) = \max_i |\lambda_i|$$

为A的谱半径。

定理

2.9

设 $A \in C^{n \times n}$, 则对 $C^{n \times n}$ 上任何一种矩阵范数 $\|\cdot\|$,都有

$$\rho(A) \leq ||A||$$

2.10

设 $A \in C^{n \times n}$,对任意的正数 ε ,存在某种矩阵范数 $\|\cdot\|_M$,使得

$$||A||_M \le \rho(A) + \varepsilon$$

例题

2.10

试用矩阵

$$A = egin{bmatrix} 1-j & 3 \ 2 & 1+j \end{bmatrix}$$
 $(j=\sqrt{-1})$

验证式 $\rho(A) \leq ||A||$ 对于三种常用矩阵范数的正确性。

因为 $\det(\lambda I-A)=(\lambda-1)^2-5$,所以 $\lambda_1(A)=1+\sqrt{5}$, $\lambda_2(A)=1-\sqrt{5}$,从而 $\rho(A)=1+\sqrt{5}$

又 $||A||_1 = ||A||_\infty = 3 + \sqrt{2}$,而

$$A^HA = egin{bmatrix} 6 & 5+5j \ 5-5j & 11 \end{bmatrix}, \det(\lambda I - A^HA) = \lambda^2 - 17\lambda + 16$$

由此得 $\lambda_1(A^HA)=16$, $\lambda_2(A^HA)=1$ 。则有

$$\|A\|_2=\sqrt{\lambda_1(A^HA)}=4$$

因此

$$ho(A) < \|A\|_1,
ho(A) < \|A\|_2,
ho(A) < \|A\|_\infty$$