CE343: SOFTWARE ENGINEERING

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	3	2	-	5	4
Marks	100	50	-	150	_

Outline of the Course:

Sr.	Title of the unit	Minimum number
No.		of hours
1.	Introduction to Software and Software Engineering	04
2.	Agile Development	04
3.	Managing Software Project	05
4.	Requirement Analysis and Specification	04
5.	Software Design	05
6.	Software Coding &Testing	06
7.	Quality Assurance and Management	05
8.	Software Maintenance and Configuration Management	05
9.	Introduction to SaaS	03
10.	Advanced Topics in Software Engineering	04
	Total hours (Theory):	45
	Total hours (Lab):	30
	Total hours:	75

Detailed Syllabus:

1.	Introduction to Software and Software Engineering	04 Hours	09%
	The Evolving Role of Software, Software: A Crisis on the		
	Horizon and Software Myths, Software Engineering: A		
	Layered Technology, Software Process Models, The Linear		
	Sequential Model, The Prototyping Model, The RAD Model,		
	Evolutionary Process Models, Agile Process Model,		

	Component-Based Development, Process, Product and		
	Process		
2.	Agile Development	04 Hours	09%
	Agility and Agile Process model, Extreme Programming,		
	Other process models of Agile Development and Tools		
3.	Managing Software Project	05 Hours	11%
	Software Metrics (Process, Product and Project Metrics),		
	Software Project Estimations, Software Project Planning (MS		
	Project Tool), Project Scheduling & Tracking, Risk Analysis		
	& Management(Risk Identification, Risk Projection, Risk		
	Refinement ,Risk Mitigation)		
4.	Requirement Analysis and Specification	04 Hours	09%
	Understanding the Requirement, Requirement Modeling,		
	Requirement Specification (SRS), Requirement Analysis and		
	Requirement Elicitation, Requirement Engineering		
5.	Software Design	10 Hours	20%
	Design Concepts and Design Principal, Architectural Design,		
	Component Level Design (Function Oriented Design, Object		
	Oriented Design) (MS Visio Tool), User Interface Design,		
	Web Application Design		
6.	Software Coding & Testing	06 Hours	13%
	Coding Standard and coding Guidelines, Code Review,		
	Software Documentation, Testing Strategies, Testing		
	Techniques and Test Case, Test Suites Design, Testing		
	Conventional Applications, Testing Object Oriented		
	Applications, Testing Web and Mobile Applications, Testing		
	Tools (Win runner, Load runner)		
7.	Quality Assurance and Management	05 Hours	11%
	Quality Concepts and Software Quality Assurance, Software		
	Reviews (Formal Technical Reviews), Software Reliability,		
	The Quality Standards: ISO 9000, CMM, Six Sigma for SE,		
	SQA Plan		

8.	Software Maintenance and Configuration Management	05 Hours	11%
	Types of Software Maintenance, Re-Engineering, Reverse		
	Engineering, Forward Engineering, The SCM Process,		
	Identification of Objects in the Software Configuration,		
	Version Control and Change Control		
9.	Introduction to SaaS	03 Hours	07%
	Product Lifetime : Independent Product Vs. Continues		
	Improvement, Service Oriented Architecture, Cloud		
	Computing, SaaS Architecture		
10.	Advanced Topics in Software Engineering	04 Hours	09%
	Component-Based Software Engineering, Client/Server		
	Software Engineering, Web Engineering, Reengineering,		
	Computer-Aided Software Engineering, Software Process		
	Improvement, Emerging Trends in software Engineering		

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Understand basics about software engineering principles, methods and practices
	and to analyze software requirement specification Prepare, SRS (Software
	Requirement Specification) document and SPMP (Software Project Management
	Plan) document.
CO2	Apply the concept of Functional Oriented and Object Oriented Approach for
	Software Design, To explain the software design strategies and to apply software
	measurement and metrics using Function point, Cyclomatic complexity and
	Healstead software science measures.
CO3	Recognize how to ensure the quality of software product, different quality
	standards and software review techniques.
CO4	Formulate problem by following Software Testing Life Cycle. Apply various
	testing techniques and test plan in. Design Manual Test cases for Software Project.
	Use automation testing tool students will be able test the software.
CO5	Able to understand modern Agile Development and Service Oriented Architecture
	Concept of Industry.

CO6 Analyze software risk with estimation parameters such as cost, effort, schedule/duration and understand the concepts of software maintenance, reengineering, reverse engineering, software configuration management.

Sr. No	Course Outcomes (Cos)	Employability/
		Entrepreneurship/
		Skill development
1.	Understand basics about software engineering	Employability
	principles, methods and practices and to analyze software requirement specification Prepare, SRS	
	(Software Requirement Specification) document	
	and SPMP (Software Project Management Plan)	
	document.	
2.	Apply the concept of Functional Oriented and Object	Employability
	Oriented Approach for Software Design, To explain the	
	software design strategies and to apply software	
	measurement and metrics using Function point,	
	Cyclomatic complexity and Healstead software science	
	measures.	
3.	Recognize how to ensure the quality of software product,	Employability,
	different quality standards and software review	skill development
	techniques.	
4.	Formulate problem by following Software Testing Life	Employability
	Cycle. Apply various testing techniques and test plan in.	
	Design Manual Test cases for Software Project. Use	
	automation testing tool students will be able test the	
	software.	
5.	Able to understand modern Agile Development and	Employability
	Service Oriented Architecture Concept of Industry.	
6.	Analyze software risk with estimation parameters such as	Employability,
	cost, effort, schedule/duration and understand the concepts	skill development
	of software maintenance, reengineering, reverse	
	engineering, software configuration management	

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	2	1	-	-	3	-	-	-	-	2	-
CO2	2	2	2	1	2	1	-	-	2	-	1	-	2	-
CO3	1	2	3	2	1	1	1	-	2	1	1	1	-	-
CO4	1	3	2	-	1	-	-	-	1	-	-	1	2	-
CO5	-	-	-	-	-	1	-	2	1	1	1	1	1	1
CO6	-	2	-	1	-	-	1	-	2	2	1	2	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

***** Text book:

1. Roger S. Pressman, Software engineering- A practitioner's Approach, McGraw-Hill International Editions

***** Reference book:

- Engineering Software as a Service An Agile Software Approach, Armando Fox and David Patterson
- 2. Ian Sommerville, Software engineering, Pearson education Asia
- 3. Pankaj Jalote, An Integrated Approach to Software Engineering by, Springer
- 4. Rajib Mall, Fundamentals of software Engineering, Prentice Hall of India.
- John M Nicolas, Project Management for Business, Engineering and Technology, Elsevier

***** Web material:

- 1. www.en.wikipedia.org/wiki/Software_engineering
- 2. www.win.tue.nl
- 3. www.rspa.com/spi

4.	www.onesmartclick.com/engsineering/software-engineering.html
5.	www.sei.cmu.edus
6.	https://www.edx.org/school/uc-berkeleyx