

Automatic Descriptive Transcription

of Carnatic Music

Presented at his Ph.D. Defense by

Venkata Subramanian Viraraghavan (EE16D024 at IITM, ERP from TCS) Guides:

Prof. R Aravind (EE, IITM),
Prof. Hema Murthy (CSE, IITM),
Dr. Arpan Pal (TCS)

14-Dec-2022

Contents

- Introduction
 - Pitch, Tonic, Octave, Notes
 - Challenges in Carnatic Music Transcription
- Contributions
 - Definitions and Systematic Study of:
 - Constant-pitch notes (CPNs), Transients, & Stationary points (STAs)
 - Definitions, and Detecting Targets for:
 - Upward and Downward anchors, and Max-STAs and Min-STAs
 - Measuring Precision of CPNs and STAs
 - State-based Transcription (SBT)
 - Using Anchor-wise STA-targets and State model
- Conclusions and Future Work

Pitch, Tonic, and Octave

- We use 'pitch' to signify 'measured fundamental frequency'
- All melodies in Indian music are aligned to a tonic note
- If f_t is the pitch of the tonic note in Hz, range of pitch values $[f_t, 2f_t)$ is an **octave**

Twelve notes per octave

- Twelve notes per octave are used in several music systems
 - Pitch f in Hz is converted to semitones $s=12\log_2\frac{f}{f_t}$, for a tonic note of pitch f_t Hz

Carnatic Music (CM) Pitch curve example

- CM uses gamakas, which are continuous movements of pitch between notes
- Pitch is tracked as a function of time (every $T_0 \approx 4.44 \text{ ms}$), $s[n] = 1200 \log_2 \frac{f[n]}{f_t}$ cents

Challenges in Transcription of gamakas

- Gamakas are mandatory in CM
- ... but are not captured in extant notation

T K Govinda Rao

P.1.	,,*\$.Ř cin	SND, ta ya	DP-	MG kan	PM da	RG,,R	RS la		S, ,, ,, dam
2.	S,,Ř		DP-	MG o				GR,N kan	S, ,, ,, dam

- Synthesizing¹ by following the notation faithfully is clearly insufficient
- Challenge: Detailed transcription of gamakas is complex

1. Kaustuv Kanti Ganguli and Preeti Rao, "Discrimination of melodic patterns in Indian classical music," NCC 2015

Components of a CM pitch curve

- Our observation is that pitch curves in CM can be thought of as being made up of
 - Constant-Pitch Notes (or CPNs) and Transients.
- Since the extent of gamaka/continuous pitch movements is important, we focus on
 - Stationary Points (STAs), which are the maxima and minima of transients

Definitions: CPN, transient, STA

• Constant-Pitch Note (CPN): Segment whose pitch does not vary from its mean pitch by more than $\Delta=35$ cents and lasts for at least $C_{\rm m}=80$ ms

- **Transient**: Any pitch curve outside CPNs.
- Stationary point (STA): Local maximum or minimum of transients

Extracted CPNs and STAs: Example

Extraction of CPNs, transients and STAs

Visualization by analogy to projectile motion

CPNs and STAs are mapped to ledges and reflectors¹

1. Visualization was done with the assistance of Rahul Gavas, TCS; presented at SMM19, Vienna

CompMusic: Dunya Corpus, Carnatic subset ("database")

Database has 480 concert renditions in 40 $r\bar{a}gas$ by 64 professional musicians

- More than 200 minutes for each of 7 major ragas
- Nearly 100,000 CPNs and millions of STAs
- Salamon and Gomez, IEEE TASLP 2015
- 2. Salamon, Gulati and Serra, ISMIR 2012 Inventing for impact © IIT Madras through ERP. Shared with participants of CompMusic 2022 Workshop

Histograms of pitch-values

- Histogram counts the number of occurrences of pitch-values
- Wrapped around(or folded) to one octave; 120 bins of size 10 cents each

Rāga: Śankarābharaṇam (entire pitch curve in 12 renditions)

Detecting Raga-specific CPN Targets

• For CPNs, detect peaks from the histogram of their mean pitch values $\{\mu_k\}$

Rāga: Śankarābharaṇam

Histograms of STAs

- Some peaks are visible, but are wider than in the CPN histogram
- Inconclusive about possible 'hidden peaks' between the visible peaks

Anchors, Max-STAs, and Min-STAs

- Anchor: A CPN adjacent to a STA.
- An anchor can be an upward anchor, or a downward anchor, or both
- Each STA is either a Max-STA (local maximum) or a Min-STA (local minimum)

Histograms of Upward and Downward Anchors

- Peaks are as sharp as in the histogram of CPNs (reproduced on the right)
- Data-driven approach, does not use any specification in textbooks

Rāga: Śankarābharaṇam

Detecting targets from histograms of Min-STAs and Max-STAs

- Peaks are sharper than in the histogram of all STAs, but not as sharp as for anchors
- Data-driven approach, does not use any specification in textbooks

Rāga: Śankarābharaṇam

Detecting targets for Max-STAs and Min-STAs

- Peaks are found one at a time in decreasing order of height
 - Locations of tall peaks (0.3 × max value) are always considered as targets.
 - Other peaks (0.15 \times max value) farther than 110 cents from already detected targets are considered as targets
- Histogram is updated by removing detected peaks to detect smaller overlapping peaks
- Iterations halt the updated histogram has less than 10% of the original data.

Thresholds are chosen empirically, but outputs are relatively insensitive to them.

Detected Targets: Examples

Śankarābharaṇam

- $\mathcal{A}_u = \{0, 210, 390, 700, 890\}$ cents, which map to $\{S, R_2, G_3, P, D_2\}$;
- $\mathcal{A}_d = \{0, 390, 480, 700\}$ cents, mapped to $\{S, G_3, M_1, P\}$.
- $S_{\text{max}} = \{20, 250, 370, 490, 730, 1020\}$ cents, mapped to $\{S, G_2, G_3, M_1, P, N_2\}$;
- $S_{\min} = \{1160, 190, 360, 670, 870, 1060\}$ cents, mapped to $\{S, R_2, G_3, P, D_2, N_3\}$

Tōḍī

- $\mathcal{A}_u = \{0, 100, 180, 500, 700, 790, 880\}$ cents, which map to $\{S, R_1, R_2, M_1, P, D_1, D_2\}$;
- $\mathcal{A}_d = \{0, 90, 500, 700, 790\}$ cents, mapped $\{S, R_1, M_1, P, D_1\}$.
- $S_{\text{max}} = \{20, 130, \mathbf{300}, 520, 700, 820, 940\}$ cents, mapped to $\{S, R_1, \mathbf{G_2}, M_1, P, D_1, D_2\}$;
- $S_{\min} = \{1180, 170, 460, 690, 890\}$ cents, mapped to $\{S, R_2, M_1, P, D_2\}$

Precision Measurement

- Detected targets are quantized to integer semitones
- Precision is the standard deviation (SD) of errors with respect to the nearest target
- Measured precision guides transcription
- Precision is measured separately for CPNs, Min-STAs, and Max-STAs
- Errors with respect to targets are computed for each *rāga* separately

Precision Measurement Block Diagram

Measured Precision

Precision of professional musicians is in a range of:

~8 to ~15 cents for long CPNs ~50 to ~65 cents for STAs

Descriptive Transcription using CPNs and STAs

- Measured precision suggests that
 - CPNs may be quantized uniformly
 - Quantizing STAs is non-trivial
- CPNs and STAs constitute a descriptive transcription
 - Quantized pitch, location and duration of each CPN
 - Quantized pitch and location of each STA
 - Other points in a transient need not be quantized or even characterized

Anchor-specific Targets

• For each anchor $a \in \widetilde{\mathbf{A}}_u$ or $\widetilde{\mathbf{A}}_d$, obtain set of STA targets $(\widetilde{\mathbf{S}}_{a,\max},\widetilde{\mathbf{S}}_{a,\min})$ from histograms

of STAs adjacent to all instances of a

E.g., $a = G_3$ in Śankarābharaṇam

$\widetilde{\mathbf{A}}_{u}$	$\widetilde{\mathbf{S}}_{a,\max}$		$\widetilde{\mathbf{A}}_d$	$\widetilde{\mathbf{S}}_{a}$	min
S	G_2	M_1	Š	N_3	D_2
R_2	G_2	M_1	-		
G_3	M_1	P	G_3	R_2	
_			M_1	G_3	R_2
P	N_2	Š	P	G_3	R_2
D_2	N_2	Ġ	_		

Introducing states based on properties of CPNs and STAs

Mathematical Formulation

 \mathcal{R}

 $t_{i,S_{i}}$

- Two basic transitions
 - Anchor \mathcal{A}_t to STA $_a\mathcal{T}$: $w_{j-1}=a\in \widetilde{\mathbf{A}}_u$ and $w_j\in \widetilde{\mathbf{S}}_{a,\max}$
 - STA \mathcal{T}_a to anchor $_t\mathcal{A}$: $w_j=a\in \widetilde{\mathbf{A}}_d$ and $w_{j-1}\in \widetilde{\mathbf{S}}_{a,\min}$
- Maximize probability of state transition $Q \to \mathcal{R}$ given s_{i-1}, s_i

$$P(Q \to \mathcal{R} | s_{j-1}, s_j) = \frac{f(s_{j-1}, s_j | Q \to \mathcal{R}) P(Q \to \mathcal{R})}{f(s_{j-1}, s_j)}$$

- Naïve Bayes formulation: Consider only the likelihood $f(s_{j-1}, s_i | Q \to \mathcal{R})$
- Model s_{j-1} and s_j as independently, normally distributed around targets w_{j-1}, w_j : $f(s_{j-1}, s_j | Q \to \mathcal{R}) = \mathcal{N}(s_{j-1}, w_{j-1}, \sigma_{j-1}^2) \mathcal{N}(s_j, w_j, \sigma_j^2)$

Example Transcription Output

Example used in the previous slide

Element type	Start time*	Duration*	Quantized pitch	Notation	State
STA	0		7	Р	$_{t}\mathcal{A}$
STA	14		7	P	$_t\mathcal{A}$
CPN	87	225	12	Ś	$ \mathcal{A}_t $
STA	327		11	N_3	$\boldsymbol{\mathcal{T}}_a$
STA	347		12	Ś	$_{t}\mathcal{A}$
STA	383		11	N_3	$\boldsymbol{\mathcal{T}}_a$
CPN	417	19	12	Ś	\mathcal{A}_t
STA	464		9	D_2	a T
STA	484		12	Ś	$\boldsymbol{\mathcal{T}}_a$
STA	529		9	D_2	$_t \mathcal{A}$
STA	556		12	Ś	a T
STA	570		11	N_3	T_a
CPN	585	19	12	Ś	\mathcal{A}_t
STA	623		11	N_3	a T
STA	640		12	Ś	T_a
CPN	686	70	7	P	\mathcal{A}_t

Cosine Interpolation of transcription output

- Interpolate the transcription output to a complete pitch curve (s[n] cents at nT_0)
 - Quantized CPN pitch values are used for the duration of the CPN (τ_k, d_k)
 - Quantized STA pitch values are placed at their respective locations (t_j)
- Quantized pitch-values v_1 and v_2 in semitones at time instants t_1 and t_2 are interpolated

$$\widehat{s}[n] = 100v_1 + 100 \frac{v_2 - v_1}{2} \left(1 - \cos(\pi (\frac{n - t_1}{t_2 - t_1})) \right), t_1 < n < t_2$$

Convert to frequency in Hz as

$$\hat{f}[n] = f_0 2^{\hat{s}[n]/1200}$$

Example of interpolated pitch curves

- Interpolated pitch curve in Hz is synthesized¹
 - 1. Kaustuv Kanti Ganguli and Preeti Rao, "Discrimination of melodic patterns in Indian classical music," NCC 2015

Results: Perceptual Evaluation of Synthesis

- Experiment: 27 listeners
 - Listened to original clip reference (~1 min long)
 - Rated synthesized outputs relative to the reference (0 to 100%)

Mean ratings in %						
<i>Rāga</i> ↓ Technique→	Critical points ¹	SBT				
	(Previous work)	(Proposed)				
Dhanyāsi	52	67				
Kalyāṇī	48	70				
Śankarābhāraṇam	47	76				
Bhairavī	65	74				

1. Ranjani H G et al., "A compact pitch and time representation for melodic contours in Indian art music", JASA 2019

Transcription and synthesis of unseen renditions

- Śankarābharaṇam, Tōḍī, Bhairavī, Rītigaula
- Yaman tān¹ (Genre is not Carnatic)

L. Visualization was done with the assistance of Jom Kuriakose, CSE, IITM

Visualization for Correction

- Transcription output still needs correction
- A website for correction¹
- SBT offers granular correction

Conclusions

- CPN-STAs help understand CM pitch curves
- Detected targets
 - Explain properties of rāgas and gamakas
 - Allow precision measurement in CM; CPNs are more precise than STAs
 - Constitute a descriptive transcription scheme
- Anchor-specific targets
 - Enable State-based Transcription
- Output needs correction by musicians to be used as ground truth
 - Granularity of anchor-specific targets helps correct systematic "errors"

Future Work

- First-level ground-truth for deep learning approaches (e.g., end to end)
- Syllables of the lyrics/svaras in CM must occur at specific points in the tāļa.
 - Locations of syllables of lyrics/svaras should scale uniformly across rendition-speeds
 - The pitch curve between these points scales non-uniformly

Prescriptive transcription scales uniformly, descriptive transcription scales non-uniformly

A joint study of syllables, rhythm, and melody is needed

Thank you