

Rozwiązania Kontestu 4 – II etap

Zadanie 1. Niech a, b, c będą dodatnimi liczbami rzeczywistymi. Udowodnij, że:

$$\frac{2a^2}{b+c} + \frac{2b^2}{c+a} + \frac{2c^2}{a+b} \geqslant a+b+c.$$

Źródło: Zadanie 05.2 z link

Rozwiązanie 1. Po wymnożeniu, uporządkowaniu i przeniesieniu na jedną stronę otrzymujemy

$$0 \le 2a^4 + 2b^4 + 2c^4 + a^3b + ab^3 + b^3c + bc^3 + c^3a + ac^3 + a^2b^2 - 2a^2b^2 - 2a^2bc^2 - 2ab^2c^2 - 2ab^2 - 2abc - 2a^2bc - 2ab^2c^2 - 2ab^2c^2$$

$$= a^{4} + b^{4} + c^{4} - 2a^{2}b^{2} + a^{2}b^{2} + b^{4} + c^{4} + a^{4} - 2a^{2}c^{2}$$

$$+ab(a^{2} + b^{2} - 2c^{2}) + bc(b^{2} + c^{2} - 2a^{2}) + ca(c^{2} + a^{2} - 2b^{2})$$

$$= (a^{2} - b^{2})^{2} + (b^{2} - c^{2})^{2} + (c^{2} - a^{2})^{2}$$

$$+ab(a - b)^{2} + bc(b - c)^{2} + ca(c - a)^{2}$$

$$+ab(2ab - 2c^{2}) + bc(2bc - 2a^{2}) + ca(2ca - 2b^{2}).$$

Pierwsze 6 wyrazów od lewej z powyższego wyrażenia to kwadraty, więc na pewno są nieujemne, z kolei pozostałe możemy zapisać jako

$$2a^{2}b^{2} - 2abc^{2} + 2b^{2}c^{2} - 2a^{2}bc + 2c^{2}a^{2} - 2ab^{2}c$$

$$= a^{2}(b^{2} + c^{2} - 2bc) + b^{2}(a^{2} + c^{2} - 2ac) + c^{2}(a^{2} + b^{2} - 2ab)$$

$$= a^{2}(b - c)^{2} + b^{2}(c - a)^{2} + c^{2}(a - b)^{2} \geqslant 0.$$

Zatem nierówność jest spełniona.

Źródło: Rozwiązanie 05.2 z link

Zadanie 2. Niech p > 2 będzie liczbą pierwszą, a a_1, a_2, \ldots, a_p oraz b_1, b_2, \ldots, b_p permutacjami liczb $1, 2, \ldots, p$. Udowodnij, że pewne dwie spośród liczb $a_1b_1, a_2b_2, \ldots, a_pb_p$ dają tą samą resztę z dzielenia przez p

Źródło: Żółty Neugebayer

Rozwiązanie 2. Jeśli dla pewnych $i \neq j$ zachodzi $a_i = b_j = p$, to dla dowolnych wartości a_j, b_i mamy $a_ib_i = 0 \mod p$ oraz $a_jb_j = 0 \mod p$, zatem teza jest spełniona. Załóżmy w takim razie b.s.o, że $a_1 = b_1 = p$. Wtedy, jeśli dla każdego i oprócz 1 a_ib_i tworzy układ wszystkich pozostałych reszt, to ich iloczyn byłby równy $-1 \mod p$, z twierdzenia Wilsona. Z tego samego twierdzenia wiemy też, że iloczyn $a_2 \cdot \ldots \cdot a_p = -1 \mod p$ oraz $b_2 \cdot \ldots \cdot b_p = -1 \mod p$, ponieważ są to wszystkie możliwe liczby mod p oprócz 0. Zatem $a_2 \cdot \ldots \cdot a_p \cdot b_2 \cdot \ldots \cdot b_p = -1 \cdot -1 = 1$, co jest sprzecznością.

Źródło: Żółty Neugebayer

Zadanie 3. Dany jest wiekokąt wypukły o obwodzie 4. Wykazać, że wielokąt ten można pokryć kołem o promieniu 1.

Źródło: zestaw zadań prof. Pompe z przedmiotu Geometria I – MIM UW

Rozwiązanie 3. Wybierzmy pewne dwa punkty P,Q na obwodzie wielokąta, tak aby dzieliły ten obwód na dwie równe części. Środek odcinka PQ nazwijmy M. Udowodnijmy, że odległość między dowolnym wierzchołkiem a M jest mniejsza od 1, a zatem cały wielokąt mieści się w kole o promieniu 1 i środku w M.

Zauważmy, że PQ < 2, zatem PM, MQ < 1. Rozważmy teraz dowolny wierzchołek X, i odbijmy go symetrycznie względem M, otrzymamy równoległobok XPX'Q. Z nierówności trójkąta PX + PX' > XX' = 2XM. Skoro XPX'Q jest rónoległobokiem, ta nierówność jest równoważna z PX + XQ > 2XM. Ale wiemy że X należy do łamanej PQ długości 2 (utworzonej przez podzielenie obwodu wielokata na pół), zatem mamy

$$2 \geqslant PX + XQ > 2XM \iff 1 > XM$$

co kończy zadanie.

Źródło: rozwiązanie z ćwiczeń

Zadanie 4. Dominika i Stefan grają w grę. Na początku Dominika pisze na tablicy dodatnią liczbę całkowitą, następnie Dominika i Stefan na zmianę wykonują ruchy. Stefan zaczyna. W każdym swoim ruchu Stefan zamienia liczbę n znajdującą się na tablicy na liczbę postaci $n-a^2$ dla pewnego całkowitego a. W każdym swoim ruchy Dominika zmiania liczbę n znajdującą się na tablicy na pewną jej całkowitą potęgę n^k . Stefan wygrywa jeśli w pewnym momencie na tablicy pojawi się liczba 0. Czy Stefan ma strategię wygrywającą?

Źródło: The 11th Romanian Master of Mathematics Competition: link

Rozwiązanie 4. Odpowiedzią jest tak. Dla dodatniego n zdefiniujmy jej bezkwadratową część S(n) jako najmniejsze dodatnie a, takie że n/a jest kwadratem jakiejś liczby całkowitej. Czyli S(n) jest iloczynem wszystkich liczb pierwszych, których potęga w rokładzie n jest nieparzysta. Przyjmujemy, że S(0) = 0.

Pokażmy teraz, że (*) w każdym swoim ruchu Dominika nie zwiększa bezkwadratowej części liczby na tablicy, oraz że (**) Stefan zawsze może zastąpić dodatnią liczbę na tablicy taką nieujemną liczbą k, że S(k) < S(n). Zatem dla gry rozpoczętej od dodatniej liczby Stefan może wygrać w maksymalnie S(n) ruchach.

Udowodnijmy teraz (*): Z definicji S(n), jeśli Dominika zmieni n na $n^k = n'$, to S(n') = S(n) jeśli k jest nieparzyste lub $S(n') = 1 \leq S(n)$ jeśli k jest parzyste.

Z kolei aby udowodnic (**) rozważmy stan tablicy przed ruchem Stefana - znajduje się tam jakaś liczba $n=S(n)\cdot b^2$. Zatem w swoim ruchu Stefan może zastąpić ją $n'=n-b^2=(S(n)-1)b^2$, zatem $S(n')\leqslant S(n)-1$.

 $\'Zr\'odlo:\ The\ 11th\ Romanian\ Master\ of\ Mathematics\ Competition:\ link$

