אינפי 2 ⁻ סמסטר א' תשע"ט תרגיל בית 9

להגשה עד יום חמישי, 27 בדצמבר, בשעה 23:45, דרך תיבת ההגשה במודל

בשאלות בהן אתם מתבקשים "לקרב את B בדיוק של α ", עליכם למצוא מספר C אשר מקיים B. עליכם לבטא את C על־ידי מספר סופי של מספר סופי של מספר סופי של מספר סופי של מספרים ממשיים. מותר להשתמש בסימון C עבור סכום של מספר סופי של מחוברים. גם חזקות עם מעריד שלם מותרות.

- a=1 ב a=0 מסדר a=0 מסדר
 - a = 0 ב ה $f\left(x\right)$ = $e^{\sin\left(x\right)}$ של 3 של טיילור טיילור טיילור (ב)
 - $.10^{-20}$ אל בדיוק בדיוק $\sin\left(rac{1}{2}
 ight)$ את חשבו (א). .2
 - $.10^{-1000}$ של בדיוק את בדיוק (ב)
 - 10^{-4} בדיוק של $\int_0^{1/2} \sin\left(x^2\right) dx$ אז קרבו את .3
 - 10^{-5} בדיוק של $\int_0^{1/2} \sqrt{1-x^4} dx$ בדיוק (ב)
- . שלם. $a \in I$ יהי a = a שלם. $a \in I$ שלם טיילור מסדר n שלם טיילור מסדר $n \ge 0$ יהי שלם ויהי $n \ge 1$ שלם. 4
 - $(T_nf)(x^m)$ אוא a ב g של g:I o m של מסדר מסדר $g:I o \mathbb{R}$ על־ידי $g:I o \mathbb{R}$ על־ידי $g:I o \mathbb{R}$ על־ידי
- a ב g של mn של סטיילור מסדר g (a) ב g (a) ב g (a) ב g (a) ב g כללי. נגדיר פונקציה g : G על־ידי G על־ידי g (a) ב G הוכיחו שפולינום טיילור מסדר g (a) ב G הוא G
- - a=0 ב $h\left(x\right)=\ln\left(1+x^{1000}\right)$ של 3456 ב מסדר סטיילור מסדר את פולינום טיילור מסדר
- 5. (א) היעזרו בצורה האינטגרלית של השארית של פולינום טיילור ובסעיף ב' כדי להוכיח את המשפט הבא: $f^{(n+1)}$ (הנגזרת קושי עבור השארית): יהי c < d שלם. יהיו c < d ממשיים, $f^{(n+1)}$, ותהי $f^{(n+1)}$ פונקציה עבורה $f^{(n+1)}$ (הנגזרת קושי עבור השארית): יהי $f^{(n+1)}$ שלם. יהיו $f^{(n+1)}$ ממשיים, $f^{(n+1)}$ ותהי $f^{(n+1)}$ פונקציה עבורה השארית): יהי $f^{(n+1)}$ שלם. יהיו $f^{(n+1)}$ ממשיים, $f^{(n+1)}$ פונקציה עבורה השארית): יהי $f^{(n+1)}$ שלם. יהיו $f^{(n+1)}$ פונקציה עבורה השארית): יהי $f^{(n+1)}$ פונקציה עבורה השארית שלם.

$$f(x) - (T_n f)(x) = \frac{f^{(n+1)}(\xi)}{n!} \cdot (x - \xi)^n \cdot (x - a)$$

a ב f של n בסדר מסדר פולינום טיילור בי $T_n f$ בי

- $\int_a^b h = h\left(\xi\right)\cdot\left(b-a\right)$ עבורו $\xi\in\left(a,b\right)$ שקיים שקיים $h:\left[a,b
 ight] o\mathbb{R}$ ממשיים ותהי a< b יהיו
 - .6 (א) הראו שלמשוואה ($x^2 = \cos(x)$ יש בדיוק פתרון חיובי אחד (מותר להשתמש בעובדה $x^2 = \cos(x)$.6
 - $.\sqrt{\frac{2}{3}} \le A \le \frac{5}{6}$ (ב)
 - $\alpha > 0$. יהי
 - (א) אאלה 1ב' בתרגיל 8. בתרגיל 8. $\sum_{n=1}^{\infty} \log\left(1+\frac{(-1)^{n+1}}{n^{\alpha}}\right)$ או האם הטור $\sum_{n=1}^{\infty} \log\left(1+\frac{(-1)^{n+1}}{n^{\alpha}}\right)$
- בונוס (2 נק'): לאלו ערכי α הטור לעיל הוא טור לייבניץ (למי שלא פותר: הנקודה היא שלפעמים הטור מתכנס למרות שהוא לא טור לייבניץ).