1. Show that the next conditional statement is a tautology without using truth tables: $(\neg q \rightarrow \neg p) \rightarrow ((\neg q \rightarrow p) \rightarrow q)$. *Solution:*

$$(\neg q \to \neg p) \to ((\neg q \to p) \to q) = \overline{\overline{q} \lor \overline{p}} \lor (\overline{\overline{q} \lor p} \lor q) = \overline{q \lor \overline{p}} \lor (\overline{q \lor p} \lor q)$$

$$= (\overline{q} \land p) \lor ((\overline{q} \land \overline{p}) \lor q) = (\overline{q} \land p) \lor (\overline{q} \land \overline{p}) \lor q$$

$$= (\overline{q} \land (p \lor \overline{p})) \lor q = (\overline{q} \land T) \lor q = \overline{q} \lor q = T$$

2. Find the sum-of-products expansion (i.e. DNF) of the Boolean function G(x, y, z) that has the value 0 if and only if $x \oplus y = \bar{y} \downarrow z$. *Solution:*

x	у	Z	$x \oplus y$	$\overline{y} \downarrow z$	G(x, y, z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	0	0

$$F(w, x, y, z) = \bar{x}yz + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z}$$

3. Use Quine-McCluskey method to find a minimal expansion as a Boolean sum of Boolean products of the next function: $(x + \bar{y})\bar{z} + \bar{x}(y|z) + x \downarrow \bar{y}$. *Solution:*

$$(x + \bar{y})\bar{z} + \bar{x}(y|z) + x \downarrow \bar{y} = x\bar{z} + \bar{y}\bar{z} + \bar{x}(\bar{y} + \bar{z}) + \bar{x}y$$

$$= x\bar{z} + \bar{y}\bar{z} + \bar{x}\bar{y} + \bar{x}\bar{z} + \bar{x}y$$

$$= xy\bar{z} + x\bar{y}\bar{z} + x\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}y\bar{z} + \bar{x}y\bar{z} + \bar{x}yz$$

$$+ \bar{x}y\bar{z} = xy\bar{z} + x\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}yz$$

	yz	ӯ	$\bar{y}\bar{z}$	$\bar{y}z$
x		1	1	
\bar{x}	1	1	1	1

$$(x + \bar{y})\bar{z} + \bar{x}(y|z) + x \downarrow \bar{y} = \bar{x} + \bar{z}$$

4. Find a recurrence relation for the number of quaternary strings of length *n* that do not contain the substring 22. *Solution:*

$$a_n = 3a_{n-1} + 3a_{n-2}.$$

1. Suppose that the domain of the propositional function A(x, y, z) consists of the integers 0 and 1. Write out the next propositions using disjunctions, conjunctions, and negations: a) $\exists x \forall y \exists z A(x, y, z)$; b) $\forall x \neg \exists y \forall z \neg A(x, y, z)$. *Solution:*

a)
$$\exists x \forall y \exists z A(x, y, z) = ((A(0,0,0) \lor A(0,0,1)) \land (A(0,1,0) \lor A(0,1,1))) \lor ((A(1,0,0) \lor A(1,0,1)) \land (A(1,1,0) \lor A(1,1,1))).$$

b)
$$\forall x \neg \exists y \forall z \neg A(x, y, z) = \forall x \forall y \exists z A(x, y, z) = (A(0,0,0) \lor A(0,0,1)) \land (A(0,1,0) \lor A(0,1,1)) \land (A(1,0,0) \lor A(1,0,1)) \land (A(1,1,0) \lor A(1,1,1)).$$

2. Find the product-of-sums expansion (i.e. CNF) of the Boolean function: $((xy) \downarrow \bar{y}) + (\bar{x} \oplus z)$.

Solution:

x	у	Z	xy	$(xy)\downarrow \overline{y}$	$\overline{x} \oplus z$	$((xy)\downarrow \overline{y})+(\overline{x}\oplus z)$
0	0	0	0	0	1	1
0	0	1	0	0	0	0
0	1	0	0	1	1	1
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	1	1
1	1	0	1	0	0	0
1	1	1	1	0	1	1

$$((xy)\downarrow \bar{y}) + (\bar{x} \oplus z) = (x+y+\bar{z})(\bar{x}+y+z)(\bar{x}+\bar{y}+z)$$

3. Use *K*-map method to simplify the next sum-of-products expansion: $xy\bar{z} + (\overline{x}|\overline{y})z + w\overline{xy}$.

Solution:

$$xy\bar{z} + (\overline{x}|\overline{y})z + w\overline{x}\overline{y} = xy\bar{z} + x\bar{y}z + w(\bar{x} + \bar{y})$$

$$= wxy\bar{z} + \overline{w}xy\bar{z} + wx\bar{y}z + \overline{w}x\bar{y}z + w\bar{x}yz + w\bar{x}y\bar{z} + w\bar{x}\bar{y}\bar{z} + w\bar{x}\bar$$

	yz	$y\bar{z}$	$ar{y}ar{z}$	$\bar{y}z$
wx		1	1	1
$w\bar{x}$	1	1	1	1
$\overline{w}\overline{x}$				
$\overline{w}x$		1		1

$$xy\bar{z} + (\overline{x}|\overline{y})z + w\overline{x}\overline{y} = w\bar{x} + w\bar{y} + xy\bar{z} + x\bar{y}z$$

4. What is the solution of the recurrence relation $a_n = 5a_{n-2} - 7a_{n-1}$ with $a_0 = 1$ and $a_1 = 2$?

Solution:

The characteristic equation of the recurrence relation is $r^2 + 7r - 5 = 0$. Its roots are $r = \frac{-7 - \sqrt{69}}{2}$ and $r = \frac{-7 + \sqrt{69}}{2}$. Hence $a_n = \alpha_1 \left(\frac{-7 - \sqrt{69}}{2}\right)^n + \alpha_2 \left(\frac{-7 + \sqrt{69}}{2}\right)^n$. From the initial conditions, it follow that

$$\begin{cases} a_0 = 1 = \alpha_1 + \alpha_2, \\ a_1 = 2 = \alpha_1 \left(\frac{-7 - \sqrt{69}}{2} \right) + \alpha_2 \left(\frac{-7 + \sqrt{69}}{2} \right). \end{cases}$$

Then $\alpha_1 = \frac{\sqrt{69}-11}{2\sqrt{69}}$ and $\alpha_2 = \frac{\sqrt{69}+11}{2\sqrt{69}}$. Consequently,

$$a_n = \left(\frac{\sqrt{69} - 11}{2\sqrt{69}}\right) \cdot \left(\frac{-7 - \sqrt{69}}{2}\right)^n + \left(\frac{\sqrt{69} + 11}{2\sqrt{69}}\right) \cdot \left(\frac{-7 + \sqrt{69}}{2}\right)^n.$$

1. Show that the next conditional statement is a tautology without using truth tables: $(p \to q) \to ((q \to r) \to (p \to r))$. *Solution:*

$$(p \to q) \to ((q \to r) \to (p \to r)) = \overline{p} \lor \overline{q} \lor (\overline{q} \lor \overline{r} \lor (\overline{p} \lor r))$$

$$= (p \land \overline{q}) \lor ((q \land \overline{r}) \lor \overline{p} \lor r) = (p \land \overline{q}) \lor \overline{p} \lor (q \land \overline{r}) \lor r$$

$$= (\overline{q} \lor \overline{p}) \lor (q \lor r) = (\overline{q} \lor q) \lor \overline{p} \lor r = T \lor \overline{p} \lor r = T$$

2. Find the sum-of-products expansion (i.e. DNF) of the Boolean function G(x, y, z) that has the value 0 if and only if $x \oplus y = x\bar{z}$. *Solution:*

x	y	Z	$\chi \overline{z}$	$x \oplus y$	G(x, y, z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	0	0	0

$$F(x, y, z) = \bar{x}y\bar{z} + \bar{x}yz + x\bar{y}z + xy\bar{z}$$

3. Use Quine-McCluskey method to find a minimal expansion as a Boolean sum of Boolean products of the next function: $x|(\bar{y}z) + (x \downarrow y)\bar{z} + \bar{x}\bar{y}$. *Solution:*

$$x|(\bar{y}z) + (x \downarrow y)\bar{z} + \bar{x}\bar{y} = \bar{x} + \bar{y}\bar{z} + (\bar{x}\bar{y})\bar{z} + (\bar{x} + \bar{y})$$

$$= \bar{x} + y + \bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x} + \bar{y} = \bar{x} + y + \bar{z} + \bar{y} + \bar{x}\bar{y}\bar{z}$$

$$= \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + xyz + xy\bar{z} + \bar{x}yz + \bar{x}y\bar{z} + xy\bar{z}$$

$$+ x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + x\bar{y}z + x\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}\bar{z}$$

$$= \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + xyz + xy\bar{z} + x\bar{y}z + x\bar{y}\bar{z}$$

	yz	$y\bar{z}$	$\bar{y}\bar{z}$	$\bar{y}z$
x	1	1	1	1
\bar{x}	1	1	1	1

$$x|(\bar{y}z) + (x\downarrow y)\bar{z} + \overline{xy} = 1$$

4. Find a recurrence relation for the number of bit strings of length *n* that do not contain the substring 0000. *Solution:*

$$a_n = a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4}$$

1. Suppose that the domain of the propositional function B(x,y,z) consists of the integers 3 and 4. Write out the next propositions using disjunctions, conjunctions, and negations: a) $\forall x \forall y \exists z B(x,y,z)$; b) $\neg \forall x \exists y \neg \exists z B(x,y,z)$. *Solution:*

a)
$$\forall x \forall y \exists z B(x, y, z) = (B(3,3,3) \lor B(3,3,4)) \land (B(3,4,3) \lor B(3,4,4)) \land (B(4,3,3) \lor B(4,3,4)) \land (B(4,4,3) \lor B(4,4,4))$$

b)
$$\neg \forall x \exists y \neg \exists z B(x, y, z) = \exists x \forall y \exists z B(x, y, z) = (B(3,3,3) \lor B(3,3,4)) \land (B(3,4,3) \lor B(3,4,4)) \lor (B(4,3,3) \lor B(4,3,4)) \land (B(4,4,3) \lor B(4,4,4))$$

2. Find the product-of-sums expansion (i.e. CNF) of the Boolean function: $(x \oplus y) + (x|\bar{y})z$.

α	•
Not	ution.
DUU	uuuon.

x	y	Z	$x \overline{y}$	$(x \overline{y})z$	$x \oplus y$	$(x \oplus y) + (x \overline{y})z$
0	0	0	1	0	0	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	1	0	0	0
1	1	1	1	1	0	1

$$(x \oplus y) + (x|\bar{y})z = (x+y+z)(\bar{x}+\bar{y}+z)$$

3. Use *K*-map method to simplify the next sum-of-products expansion: $\overline{xy}z + (x \downarrow y)\overline{z} + w\overline{x}(\overline{y} + \overline{z})$.

$$\overline{xy}z + (x \downarrow y)\bar{z} + w\bar{x}(\overline{y} + z) = (\bar{x} + \bar{y})z + (\bar{x}\bar{y})\bar{z} + w\bar{x}(y\bar{z})$$

$$= \bar{x}z + \bar{y}z + \bar{x}\bar{y}\bar{z} + w\bar{x}y\bar{z}$$

$$= w\bar{x}yz + w\bar{x}\bar{y}z + \bar{w}\bar{x}yz + \bar{w}\bar{x}\bar{y}z + wx\bar{y}z + w\bar{x}\bar{y}z + \bar{w}\bar{x}\bar{y}z$$

$$+ \bar{w}x\bar{y}z + w\bar{x}\bar{y}\bar{z} + \bar{w}\bar{x}\bar{y}\bar{z} + w\bar{x}y\bar{z}$$

$$= w\bar{x}yz + w\bar{x}\bar{y}z + \bar{w}\bar{x}yz + \bar{w}\bar{x}\bar{y}z + wx\bar{y}z + \bar{w}\bar{x}\bar{y}z + w\bar{x}\bar{y}z$$

$$+ \bar{w}\bar{x}\bar{y}\bar{z} + w\bar{x}\bar{y}\bar{z}$$

	yz	$yar{z}$	$ar{y}ar{z}$	$ar{y}z$
wx				1
$w\bar{x}$	1	1	1	1
$\overline{w}\overline{x}$	1		1	1
$\overline{w}x$				1

$$\overline{xy}z + (x \downarrow y)\overline{z} + w\overline{x}(\overline{y} + \overline{z}) = w\overline{x} + \overline{y}z + \overline{x}\overline{y} + \overline{x}z$$

4. What is the solution of the recurrence relation $a_n = -5a_{n-1} + 3a_{n-2}$ with $a_0 = 4$ and $a_1 = 7$?

Solution:

The characteristic equation of the recurrence relation is $r^2 + 5r - 3 = 0$. Its roots are $r = \frac{-5 - \sqrt{37}}{2}$ and $r = \frac{-5 + \sqrt{37}}{2}$. Hence $a_n = \alpha_1 \left(\frac{-5 - \sqrt{37}}{2}\right)^n + \alpha_2 \left(\frac{-5 + \sqrt{37}}{2}\right)^n$.

From the initial conditions, it follow that

$$\begin{cases} a_0 = 4 = \alpha_1 + \alpha_2, \\ a_1 = 7 = \alpha_1 \left(\frac{-5 - \sqrt{37}}{2} \right) + \alpha_2 \left(\frac{-5 + \sqrt{37}}{2} \right). \end{cases}$$

Then $\alpha_1 = \frac{2\sqrt{37}-17}{\sqrt{37}}$ and $\alpha_2 = \frac{2\sqrt{37}+17}{\sqrt{37}}$. Consequently,

$$a_n = \left(\frac{2\sqrt{37} - 17}{\sqrt{37}}\right) \cdot \left(\frac{-5 - \sqrt{37}}{2}\right)^n + \left(\frac{2\sqrt{37} + 17}{\sqrt{37}}\right) \cdot \left(\frac{-5 + \sqrt{37}}{2}\right)^n.$$