Klassische Theoretische Physik II Blatt 2

WS 2013/14

Abgabe: Dienstag, den 29.10.2013 vor 10 Uhr gegenüber dem Prüfungsamt

Besprechung: Donnerstag, den 31.10.2013 in den Übungsstunden

Website: http://www.thp.uni-koeln.de/trebst/Lectures/2013-KTP2.html

5. Vektoridentitäten

(4 Punkte)

Zeigen Sie für zwei Vektorfelder $\mathbf{A}(\mathbf{r})$ und $\mathbf{B}(\mathbf{r})$ gelten:

a)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}).$$

b)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}).$$

6. Elliptisch polarisiertes Licht

(4 Punkte)

Betrachten Sie das folgende elektrische Feld einer elektromagnetischen ebenen Welle

$$\mathbf{E}(t, \mathbf{r}) = (\mathbf{E}_{0,1} + \mathbf{E}_{0,2}) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

mit

$$\mathbf{E}_{0,1} = (0, a, 0), \quad \mathbf{E}_{0,2} = (0, 0, be^{i\pi/2}), \quad a \text{ und } b \text{ reell}, \quad \mathbf{k} = (k, 0, 0).$$

Bestimmen Sie die Zeitabhängigkeit der Polarisationsrichtungen des elektrischen und magnetischen Felds bei $\mathbf{r}=0$. Hinweis: Verwenden Sie die Beziehung zwischen den Amplituden des elektrischen und magnetischen Feldes.

7. Stehende elektromagnetische Welle

(4 Punkte)

Bei x=0 und bei $x=x_0$ befinden sich Reflektoren. Mit Hilfe eines Lasers werde nun eine stehende Welle erzeugt. Man beschreibt eine stehende Welle als Superposition einer einlaufenden und einer auslaufenden Welle. E_0 sei die Amplitude des elektrischen Feldes, k der Wellenvektor und ω die Oszillationsfrequenz.

$$\mathbf{E}(x,t) = \begin{cases} \operatorname{Re}(E_0 e^{i(kx-\omega t)} \mathbf{e}_z - E_0 e^{-i(kx+\omega t)} \mathbf{e}_z), & x \in [0, x_0] \\ 0, & \text{sonst} \end{cases}$$

- a) Wie sieht das magnetische Feld aus?
- b) Berechnen Sie die Energiedichte, gibt es bemerkenswerte Stellen? Berechnen Sie den Poynting Vektor S (siehe Aufgabe 6) und verifizieren Sie, dass der Satz von Poynting im Fall der stehenden Welle erfüllt ist.

8. Satz von Poynting

(4 Punkte)

In dieser Aufgabe sollen Sie den Energiesatz der Elektrodynamik herleiten.

a) Die Ladungs- und Stromverteilungen seien so, dass diese zu einer Zeit t die Felder E und B erzeugen. Machen Sie sich klar, dass die in einem Zeitschritt dt an einer Punktladung q verrichtete Arbeit gegeben ist als:

$$\mathbf{F} \cdot \mathbf{dl} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \mathbf{v} \, dt.$$

Integrieren Sie nun über den ganzen Raum, um die Änderung der Gesamtarbeit W zu erhalten. (Mit der Ladungsdichte ρ und $q = \rho dV$, sowie der Stromdichte $\mathbf{j} = \rho \mathbf{v}$)

b) Verwenden Sie nun eine geeignete Maxwellgleichung, um die Stromdichte zu entfernen. Durch geeignete Umformung erhalten Sie dann den Satz von Poynting:

$$\frac{dW}{dt} = \int_{V} \mathbf{E} \cdot \mathbf{j} \, dV = -\frac{d}{dt} \int_{V} \frac{1}{8\pi} \left(E^{2} + B^{2} \right) \, dV - \frac{c}{4\pi} \int_{F} \mathbf{E} \times \mathbf{B} \cdot d\mathbf{f},$$

wobei F die Oberfläche des Volumens V beschreibt und $d\mathbf{f}$ den Normalenvektor der Oberfläche. Hinweis: Benutzen Sie eine der Vektoridentitäten aus Aufgabe 5 sowie den Satz von Gauß.

c) Sie sehen, dass $U_{em} = \frac{1}{8\pi} \left(E^2 + B^2 \right)$ die Energiedichte des elektromagnetischen Feldes ist. Wenn Sie nun den *Poynting Vektor* S (die Energiestromdichte) definieren als

$$\mathbf{S} = \frac{c}{4\pi} (\mathbf{E} \times \mathbf{B}),$$

können Sie die differentielle Form des Satzes von Poynting gewinnen, tun Sie dies.

$$\dot{U}_{em} + \operatorname{div} \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$$

In welchem Sinne ist dies eine Kontinuitätsgleichung?