Homework 29, Section 5.3: 5, 21, 22, 25

Alex Gordon

April 14, 2014

Homework

5.

By the Diagonalization Theorem, eigenvectors form the columns of the left factor and they correspond respectively to the eigenvalues on the diagonal of the middle factor. $\lambda = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$; $\lambda = 1$

$$5 \begin{bmatrix} -2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

21. A)

False. The symbol D does not automatically denote a diagonal matrix.

21. B)

True. A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^n . WE call such a basis an eigenvector basis of \mathbb{R}^n

21. C)

False. The 3x3 matrix in Example 4 has 3 eigenvalues but is not diagonalizable

21. D)

False. Invertibility depends on - not being an eigenvalue. A Diagonalizable matrix may or may not have 0 as an eigenvalue.

22. A)

False. The n eigenvectors must be linearly independent by the Diagonalization theorem.

22. B)

False. The matrix in example 3 is Diagonalizable but it only has 2 different eigenvalues.

22. C)

True. This follows from AP = PD and the first two formulas given in the section 5.3

22. D)

False. In example 4 the matrix is invertible because 0 is not an eigenvalue, but the matrix is not Diagonalizable.

25.

Let $\{v_1\}$ be a basis for the one-dimensional eigenspace. Let v_2 and v_3 form a basis for the two dimensional eigenspace and let v_4 be any eigenvector in the eigenspace. By theorem 7, $v_1, ..., v_4$ has to be linearly independent. It then follows that since A is 4x4, the Diagonalization theorem shows that A is diagonalizable.