9. Limit Theorems for Sequences

• A sequence (s_n) is said to be **bounded** if there exists $M \in \mathbb{R}$ such that $|s_n| \leq M$ for all n.

Theorem 9.1. Convergent sequences are bounded.

Theorem 9.2. Let $(s_n)_{n=m}^{\infty}$ be a sequence of real numbers such that $s_n \neq 0$ for all n. If $(s_n)_{n=m}^{\infty}$ converges to a real number $\alpha \neq 0$, then

$$\inf\{|s_n|:n\geq m\}>0.$$

9.1. Basic limit laws

Theorem 9.3. Consider sequences (s_n) and (t_n) and real numbers α and β . Suppose (s_n) converges to α and (t_n) converges to β . Then the followings hold:

(a) For any $k \in \mathbb{R}$, (ks_n) converges to $k\alpha$. That is,

$$\lim_{n \to \infty} k s_n = k \Big(\lim_{n \to \infty} s_n \Big).$$

(b) $(s_n + t_n)$ converges to $\alpha + \beta$. That is,

$$\lim_{n \to \infty} (s_n + t_n) = \left(\lim_{n \to \infty} s_n\right) + \left(\lim_{n \to \infty} t_n\right).$$

(c) $(s_n t_n)$ converges to $\alpha \beta$. That is,

$$\lim_{n \to \infty} s_n t_n = \left(\lim_{n \to \infty} s_n\right) \left(\lim_{n \to \infty} t_n\right).$$

(d) If $s_n \neq 0$ for all n, and if $\alpha \neq 0$, then (s_n^{-1}) converges to α^{-1} . That is,

$$\lim_{n \to \infty} s_n^{-1} = \left(\lim_{n \to \infty} s_n\right)^{-1}.$$

(e) If $s_n \neq 0$ for all n, and if $\alpha \neq 0$, then (t_n/s_n) converges to β/α . That is,

$$\lim_{n \to \infty} \frac{t_n}{s_n} = \frac{\lim_{n \to \infty} t_n}{\lim_{n \to \infty} s_n}.$$

(f) If $s_n \leq t_n$ eventually holds in n, then $\alpha \leq \beta$.

Proof of (a).

Proof of (b).		
D ((())		
Proof of (c).		

Proof of (d).

Example 9.1. Prove $\lim s_n = \frac{1}{5}$, whree

$$s_n = \frac{n^3 + 3n^2 - 7}{5n^3 - 9n + 11}.$$

Solution.

9.2. Basic examples of limits

• Recall the **Binomial Theorem**: For any numbers x, y and for any non-negative integer $n \ge 0$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k},$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient and the convention $x^0=y^0=1$ is adopted. (See Exercise 1.12 of the textbook.)

Theorem 9.4.

- (a) $\lim_{n \to \infty} \frac{1}{n^p}$ for p > 0.^[1]
- **(b)** $\lim_{n \to \infty} a^n = 0$ for |a| < 1.
- (c) $\lim_{n \to \infty} n^{1/n} = 1$.
- (d) $\lim_{n\to\infty} a^{1/n} = 1$ for a > 0.

Proof of (a).

Proof of (b).

^[1] Here, we assume familiarity with exponentiation to a real power.

Proof of (c).		
Proof of (d).		

9.3. Infinite limits

Definition 9.5. Consider a sequence (s_n) of real numbers.

(a) We say that (s_n) diverges to $+\infty$ provided

for each $M \in \mathbb{R}$, there exists a number N such that, n > N implies $s_n > M$.

In this case, we write $\lim_{n\to\infty} s_n = +\infty$.

(b) Similarly, we say that (s_n) diverges to $-\infty$ provided

for each $M \in \mathbb{R}$, there exists a number N such that, n > N implies $s_n < M$.

In this case, we write $\lim_{n\to\infty} s_n = -\infty$.

Example 9.2. Give a formal proof that

$$\lim_{n\to\infty}\frac{n^2+3}{n+1}=+\infty.$$

Solution.

- Fair Warning: Sequences with infinite limits are special cases of divergent sequences. For this reason, you should not attempt to apply the limit laws (Theorem 9.3) to infinite limits.
- Instead, a version of limit laws for infinite limits hold:

Theorem 9.6. Consider sequences (s_n) and (t_n) and real numbers. Then the followings hold:

- (a) If $\lim s_n = +\infty$ and $\lim t_n \in (-\infty, +\infty]$, then $\lim (s_n + t_n) = +\infty$.
- (b) If $\lim s_n = -\infty$ and $\lim t_n \in [-\infty, +\infty)$, then $\lim (s_n + t_n) = -\infty$.
- (c) If $\lim s_n = +\infty$ and $\lim t_n \in (0, +\infty]$, then $\lim s_n t_n = +\infty$.
- (d) If $\lim s_n = +\infty$ and $\lim t_n \in [-\infty, 0)$, then $\lim s_n t_n = -\infty$.
- (e) If $\lim s_n = -\infty$ and $\lim t_n \in (0, +\infty]$, then $\lim s_n t_n = -\infty$.
- (f) If $\lim s_n = -\infty$ and $\lim t_n \in [-\infty, 0)$, then $\lim s_n t_n = +\infty$.
- (g) If $\lim s_n = +\infty$ or $-\infty$, then $\lim s_n^{-1} = 0$.
- (h) If $\lim s_n = 0$ and $s_n > 0$ for all n, then $\lim s_n^{-1} = +\infty$.
- (i) If $\lim s_n = 0$ and $s_n < 0$ for all n, then $\lim s_n^{-1} = -\infty$.

Proof of (c).

Proof of (h).

• The infinite limit laws (Theorem 9.6) motivates us to add new algebraic laws to $\overline{\mathbb{R}}$ given by:

$$\begin{array}{ll} a+(+\infty)=(+\infty)+a=+\infty & \text{ for } a\in(-\infty,+\infty]; \\ a+(-\infty)=(-\infty)+a=-\infty & \text{ for } a\in[-\infty,+\infty); \\ a\cdot(\pm\infty)=(\pm\infty)\cdot a=\pm\infty & \text{ for } a\in(0,+\infty]; \\ a\cdot(\pm\infty)=(\pm\infty)\cdot a=\mp\infty & \text{ for } a\in[-\infty,0); \\ 1/(\pm\infty)=0. \end{array}$$

Example 9.3. Find $\lim s_n$, where

$$s_n = \frac{n^2 + 3n + 5}{n + 1}.$$

Solution.