ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF ME MARCO IKURO HISATOMI

Conteúdo Programático

Unidade 2 - Componentes básicos de um computador

- ▶ Unidade central de processamento (CPU)
 - Processadores: conceitos, evolução, tipos e funcionamento
- Memória principal e memória cache
- Memória secundária
- Dispositivos de entrada e saída

Situação Geradora de Aprendizagem

FÁBRICA DE COMPONENTES – CIDADE INTELIGENTE

Contextualizando

- ► Vamos analisar a situação em que se encontra uma fábrica de componentes de computadores de altíssima tecnologia.
- Você será um dos integrantes do time de pesquisa e desenvolvimento dessa empresa e poderá aprimorar esse desenvolvimento e melhorar esses componentes.
- ▶ Uma das tendências identificadas pela empresa de fabricação de microprocessadores é a integração de operações básicas de controle, serviços e oferta de segurança para se ampliar a qualidade de vida da população que se pretende inserir com as "cidades inteligentes".

Contextualizando

- Dando continuidade às questões vistas pela empresa de fabricação de microprocessadores, considerando o conceito de "cidades inteligentes", pretende-se em uma cidade implantar um sistema de informação com os dados médicos de cada habitante.
- Esse sistema será interligado com o de atendimento de urgência e poderá ser acessado pela equipe médica dentro da ambulância, no momento do atendimento.
- Para isso, é necessário que o setor de pesquisa e desenvolvimento consiga identificar dispositivos com grande

Contextualizando

- capacidade de armazenamento de dados e que possam ser acessados de forma rápida, por meio de sistemas que se interconectem entre si pela internet.
- ➤ O cruzamento de dados e informações disponibilizadas nesse sistema poderá salvar vidas e representa um grande avanço para a saúde da população. E
- Estes dispositivos de armazenamento têm que oferecer capacidade aumentada de armazenamento e velocidade de acesso, além de eficiência no consumo de energia.

MEMÓRIAS SECUNDÁRIAS

Sua Missão

Veja como elas podem atender aos requisitos dos sistemas propostos na situação-problema, como o acesso rápido às informações médicas de um paciente pela equipe médica da ambulância no momento do atendimento.

Memórias - Hierarquia

Fonte: Santos, 2020,p.78

Memórias Secundárias

- São responsáveis por armazenar dados para uso posterior, pois elas não se apagam quando o computador é desligado, são do tipo não voláteis. Além disso, podem ser alteradas e regravadas quantas vezes for necessário (OLIVEIRA, 2007).
- ► Elas não são endereçadas diretamente pelo processador e, por este motivo, os dados armazenados nessas memórias precisam ser carregados na memória principal para serem processados.
- Em geral, elas são memórias não voláteis e permitem gravar os dados permanentemente.

Memórias Secundárias

► Estão nessa categoria de memórias os solid state disk (SSD), discos rígidos (HD), CDs, DVDs, pen drives e outros (VELLOSO, 2014).

> A memória secundária também é chamada de memória de

massa, por apresentar uma capacidade de armazenamento muito superior à das outras memórias (FÁVERO, 2011).

► Imagem do HD e o SSD:

- São dispositivos que utilizam o meio magnético para realizar o armazenamento dos dados. Eles são considerados a base de memória externa para um sistema de computação e são os mais utilizados atualmente.
- É composto de múltiplas superfícies circulares empilhadas também chamada de pratos.
- Essas superfícies têm camadas de material magnetizável, e são divididas basicamente em trilhas, setores e cilindros.
- Existem, ainda, as cabeças de leitura e escrita (gravação), disposta em um suporte chamado de braço.

- Para calcular o tamanho de um disco, multiplicamos os números de cilindros, cabeças, setores e trilhas por 512 bytes (cilindros × número de cabeças × números de setores por trilhas × 512 bytes).
- As gravações em disco são realizadas via sinais elétricos que as cabeças de leitura e escrita emitem, convertendo esses sinais em bits (0s ou 1s).
- ► Ele se comunica com o computador por uma interface, que é composta por conectores. Estes conectores podem ser de diferentes tipos e padrões, cada qual com sua característica específica. Ex: SCSI, IDE/ATA (PATA), SATA.

- ► Um outro conceito relevante relacionado aos discos é o RAID (redundant array of independent disk) ou conjunto redundante de discos independentes.
- ▶ O RAID consiste em um método muito utilizado principalmente em servidores, mas não somente neles. Esse método aumenta o desempenho e a confiabilidade dos HDs, combinando múltiplos discos rígidos e formando um virtual. Isso ocorre por meio de divisões e replicações (cópia) de dados em vários discos.

Solid-State Drive (SSD)

- ▶ É um tipo de dispositivo para armazenamento de dados.
- ► Atualmente, muitos usuários já realizaram a atualização de seus HDs para esses dispositivos, devido ao grande ganho desempenho que ele proporciona, pois apresenta alta velocidade de acesso e consumo de energia reduzido.
- lsso acontece pela ausência de peças móveis, como bobinas e cabeças de leitura e gravação, encontrados nos HDs.
- Não há necessidade de rotacionar o disco em busca de arquivos, pois o SSD possibilita a busca de arquivos de forma mais rápida.

Solid-State Drive (SSD)

Nesses dispositivos são usados chips de memória Flash para o armazenamento de dados, o que os torna mais econômicos no consumo de energia.

► Algumas desvantagens de SSDs são o custo maior por bit em

relação aos HDs.

A tecnologia SSD começou a ser empregada de forma ampla em dispositivos portáteis, tais como notebooks ultrafinos (ultrabooks) e tablets.

- ► Além disso, dependendo do tipo de RAID utilizado, é possível aumentar o desempenho do disco rígido, bem como dificultar a perda de dados (MONTEIRO, 2007). Alguns dos níveis de RAIDs são os seguintes:
- RAID 0 (stripping ou distribuição);
- ► RAID1 (mirroring ou espelhamento);
- ► RAID 5 (parity ou paridade);
- ► RAID 6 (divisão dos dados com duplo pareamento);
- ► RAID 10 (divisão dos dados e espelhamento RAID 1 + 0).

Mídias ópticas

- Existem outros dispositivos de armazenamento de dados, tais como as mídias ópticas, os CDs, DVDs e Blue-ray.
- Outro dispositivo é o pen drive, um dispositivo portátil de armazenamento com memória flash do mesmo tipo das usadas em dispositivos SSD, acessados quando conectados a uma porta USB.
- Existem diversos modelos desses dispositivos, com diversos tamanhos de capacidade de armazenamento. Os mais atuais dispõem de terabytes (TB) de memória (KINGSTON, 2017).

SSD portáteis

- ▶ Já existem os SSD portáteis, como o SSD portátil SanDisk (WESTERN DIGITAL TECHNOLOGIES INC., [s.d.]), com capacidade de armazenamento de 2TB.
- Essas mídias são consideradas mídias de alta velocidade na gravação e leitura dos dados.
- Em relação ao armazenamento de dados, há alguns anos vem aumentado significativamente essa prática pela nuvem.

MEMÓRIAS SECUNDÁRIAS

- Você deve realizar um levantamento dos principais fabricantes de SSDs e verificar as velocidades dos SSDs e os tipos de interfaces utilizadas. Além disso, deve realizar uma análise das velocidades das interfaces, bem como das velocidades de leitura e gravação dos SSDs.
- Para uma análise comparativa sobre memórias SSD você poderá acessar o site da Kingston (2017, [s.p.]).

	Modelo	Capacidade	Velocidade leitura/gravação	Interface
SSD	Kingston - 480G DC500R	480 GB	555MBs/520MBs	SATA Rev. 3.0 (6Gb/s)
SSD	SanDisk SSD PLUS	480 GB	535 MBs / 445 MBs	SATA Rev. 3.0 (6Gb/s)
SSD	WDS100T2G0A	1TB	545MB/s / 430 MB/s	SATA III 6 Gb/s
SSD	SSD Intel 660P Series	1 TB	1800 MB / 1800 MB / s	PCIe NVMe 3.0 x4 (4GB/s)

Fonte: Santos, 2020, p.104

Arranjos RAID

- ► RAID 0 (Stripping Array) A lógica consiste em distribuir os dados a serem armazenados no sistema de armazenamento, gravando a informação particionada em diversos hard disks de forma simultânea
- ► RAID 1 (disk mirror) Escreve as informações de forma simultânea nos discos, esse sistema faz uma cópia dos aplicativos e dados em tempo real, sem a intervenção do usuário
- ▶ RAID 5 (Strip Set com paridade) O método é muito utilizado em servidores ou storages com pelo menos três discos rígidos instalados e cria uma camada de redundância; bits de paridade são criados e acrescentados aos dados, escritos de forma alternada em todos os discos
- ▶ RAID 6 mesmo que o RAID 5, com dupla paridade
- ► RAID 10 é feita a combinação de dois ou mais subgrupos de espelhamentos agrupados em uma única matriz.

DISPOSITIVOS DE ENTRADA E SAÍDA

Sua Missão

- Consiste em apresentar as características de um computador servidor que permita o processamento com alta performance e baixo consumo de energia, e que seja capaz de atender à demanda de acessos às informações e retorno das solicitações com rapidez.
- Para isso, acesse as especificações sobre o tipo de processador do fabricante e verifique quantos núcleos apresenta, quais os tipos de memórias RAM, SSDs aplicados e aceitos, e taxas de transferência de entrada e de saída de dados..

Dispositivos

- Dispositivos de Entrada onde podemos inserir/entrar com dados no computador. Exemplo: teclado, mouse, telas sensíveis ao toque.
- ▶ Dispositivos de Saída − onde os dados podem ser visualizados. − Exemplo: telas e impressoras.
- ▶ Dispositivos de Entrada/Saída são dispositivos que podem enviar e receber dados, como o disco rígido, pen drives, as conexões de internet via cabo e wi-fi, monitores e telas touch screen, entre outros.

Interligação do processador com o mundo externo

- Segundo Velloso (2014), os elementos de um computador que garantem interligação do processador com o mundo externo constituem um sistema de entrada e saída, no qual temos:
- ► Barramentos.
- ► Interfaces.
- ▶ Periféricos dispositivos de entrada e saída (VELLOSO, 2014).

Barramentos

- ► Um barramento é o caminho por onde trafegam todas as informações de um computador.
- Existem três tipos principais de barramentos: Barramento de dados; Barramento de endereços; Barramento de controle.

Fonte: adaptada de Souza Filho e Alexandre (2014, p. 54).

Barramentos de Dados

- ✓ Este barramento interliga a CPU à memória, e vice-versa, para a transferência das informações que serão processadas.
- ✓ Ele determina diretamente o desempenho do sistema, pois quanto maior o número de vias de comunicação, maior o número de bits transferidos e, consequentemente, maior a rapidez.
- ✓ Os primeiros PCs possuíam barramento de 8 vias. Atualmente, dependendo do processador, este número de vias pode ser de 32, 64 e até de 128 vias (FÁVERO, 2011).

Barramentos de Endereços

- ✓ Interliga a CPU à memória fazendo seu endereçamento.
- ✓ Tem o número de vias correspondente à tecnologia de bits do processador, ou seja, nos computadores mais modernos, 32 bits ou 64 bits, permitindo endereçar até quatro GB (Gigabytes) de memória em processadores 32 bits e cerca de 16 PB (Petabytes) no caso de processadores 64 bits (SOUZA FILHO, 2014).

Barramentos de Controle

- ✓ Interliga na CPU a Unidade de Controle aos componentes e dispositivos de um computador, componentes de entrada e saída, memórias auxiliares e de armazenamento, entre outros.
- ✓ O barramento de controle faz a comunicação entre os periféricos de entrada e saída com a CPU do computador.
- ✓ Durante o processamento de um programa, cada instrução é levada à CPU a partir da memória, junto aos dados necessários para executá-la.

Barramentos de Controle

- ✓ A saída do processamento é retornada à memória e enviada a um dispositivo, como um monitor de vídeo.
- ✓ Existem muitas diferenças de características entre os diversos periféricos de E/S, por exemplo, a velocidade de transferência de um teclado ou de um mouse é muito menor do que a velocidade de um HD.
- ✓ Por este motivo, foram criados novos tipos de barramentos, com taxas de transferência de bits diferentes.

Barramento Local

- Existem, atualmente, diferentes tipos de barramentos adotados pelos fabricantes destes dispositivos, onde podemos citar:
- ✓ Barramento Local: funciona na mesma velocidade do clock (relógio) do processador.
- ✓ Em geral, interliga o processador aos dispositivos com maior velocidade, memória cache e memória principal.

Barramento de Sistema

- ✓ Barramento de Sistema: adotado por alguns fabricantes, faz com que o barramento local faça a ligação entre o processador e a memória cache, e esta memória cache se interliga com a memória principal (RAM).
- ✓ Dessa forma não acontece acesso direto do processador à memória principal.
- ✓ Um circuito integrado auxiliar é usado para sincronizar o acesso entre a memória cache e a RAM, chamado de ponte e mais conhecido como "Chipset".

Barramentos de Expansão

- ✓ Barramento de expansão: também chamado de barramento de entrada e de saída (E/S), é responsável por interligar os diversos dispositivos de E/S aos demais componentes do computador, tais como: monitor de vídeo, impressoras, CD/DVD.
- ✓ Neste caso, também, é usado um chipset para cada dispositivo poder se conectar ao barramento do sistema, estes chipsets (pontes) sincronizam as diferentes velocidades dos barramentos. (FÁVERO, 2011).

Barramentos

Fonte: adaptada de Monteiro (2007).

Barramentos de Conectores

- Os tipos mais conhecidos de padrões de são:
- ► ISA (*Industry Standard Adapter*): um dos primeiros padrões, desenvolvido pela IBM, apresentava uma taxa de transferência muito baixa e não é mais utilizado.
- ▶ PCI (Peripheral Component Interconnect): desenvolvido pela Intel, tornando-se quase um padrão como barramento de alta velocidade. Permite transferência de dados em 32 ou 64 bits a velocidades de 33 MHz e de 66 MHz. Cada controlador permite cerca de quatro dispositivos.

Barramentos de Conectores

- ► AGP (Accelerated Graphics Port): barramento desenvolvido por vários fabricantes liderados pela Intel, com o objetivo de acelerar as transferências de dados do vídeo para a memória principal, especialmente dados em 3D, muito utilizados em aplicativos gráficos, como programas CAD e jogos.
- ▶ PCI Express (Peripheral Component Interconnect Express):foi construído por um grupo de empresas denominado PCI-SIG composto por empresas como a Intel, AMD, IBM, HP e Microsoft. Veio para atender às demandas por mais

Barramentos de Conectores

- velocidade gerada por novos chips gráficos e tecnologias de rede apresentando altas taxas de transferência. Assim, o PCI e o AGP foram substituídos pelo PCI Express.
- ► USB (Universal Serial Bus): tem a característica particular de permitir a conexão de muitos periféricos simultaneamente ao barramento e por uma única porta (conector), conecta-se à placa-mãe. Grande parte dos dispositivos USB é desenvolvida com a característica de eles serem conectados ao computador e utilizados logo em seguida, o que é chamado de plug-and-play (FÁVERO, 2011).

Comunicação entre CPU e Memória

► Três métodos para gerenciar a entrada e saída:

Entrada e saída programada

A CPU precisa verificar continuamente se cada um dos dispositivos necessita de atendimento. Este método não é mais utilizado.

Entrada e saída controladas por interrupção

Este método possibilita que a CPU não fique presa em espera ocupada até que um dispositivo esteja pronto para realizar a transferência de dados propriamente dita. Não é mais utilizado.

Comunicação entre CPU e Memória

- Acesso direto à memória (DMA Direct Memory Access)
- ► A função do controlador (ou interface) é controlar seu dispositivo de E/S e manipular para ele o acesso ao barramento.
- Quando um programa quer dados do disco, por ex., ele envia um comando ao controlador de disco, e este irá emitir comandos de busca e outras operações para que ocorra a transferência. Dessa forma, a CPU solicita a transferência para um dispositivo denominado controlador de acesso direto à memória principal (DMA Controller), o qual se responsabiliza totalmente pela transferência. A CPU é avisada apenas no início e no final da operação de tx entre dispositivo e memória principal. Este é o tipo de acesso utilizado atualmente pelas interfaces de E/S.

MEMÓRIAS SECUNDÁRIAS

Descrição do Servidor	PowerEdge T140		
Fabricante	DELL		
Processador	Intel [®] Xeon [®] E-2224 3.4GHz, 8M cache, 4C/4T, turbo (71W)		
Chipset	Intel C246		
Memória RAM	16GB UDIMM DDR4 de 2666 MT/s		
HD	1TB SATA cabeado, 6 Gbps, 7200 RPM		
Slots	PCIe 1 slot de 3ª geração (x16) 2 slots de 3ª geração (x8) 1 slot de 3ª geração (x1) Placa de vídeo 1 VGA		
Portas de E/S e legadas	Portas frontais 1 micro-USB dedicada para iDRAC 1 USB 3.0 Portas traseiras 1 serial 2 USB 3.0 4 USB 2.0 1 VGA Portas internas 1 USB 3.0		
Comunicações (Placas possíveis de redes contidas neste servidor)	Placa de rede integrada Broadcom 5720 com duas portas de 1Gb Placa de rede Broadcom 5719 com quatro portas de 1Gb		

RECAPITULANDO

- Memórias Secundárias
- Dispositivos de Entrada e Saída.