Universidad Nacional de Ingeniería Facultad de Ciencias

Arquitectura de computadores

Timers/Contadores

Prof.: Lic. César Martín Cruz S.

ccruz@uni.edu.pe

2012 - II

Timer/Contador

El 8051 tiene 2 timer/contadores de 16 bits cada uno, llamados **Timer 0** y el **Timer 1** respectivamente. Ambos pueden ser configurados para operar como temporizadores (*timers*) o como contadores (*counters*). El 8052 y el AT89S52 tienen cada uno un tercer timer, el **Timer 2**.

Cuando se trabaja como "contador", el registro interno del contador, es incrementado cada vez que existe una transición negativa (de 1 a 0) por la línea de entrada correspondiente a **T0** (P3.4) ó **T1** (P3.5). En cambio, cuando funciona como temporizador "**Timer**", el registro es incrementado cada 12 periodos de oscilación es decir su frecuencia de conteo es 1/12 de la frecuencia del oscilador (reloj del sistema).

Cuando los bits del registro (se refiere a los registros pares según el timer que se esté usando TH0, TL0, TH1, TL1, TH2 y TL2 respectivamente) del contador pasan de todos 1's a todos 0's, se activa la línea de interrupción interna correspondiente a **TF0** o **TF1**, generándose, (si ha sido permitida) una interrupción.

Registro de control del timer/contador (TCON)

El registro de control del Timer/Contador (su dirección interna en la RAM es 88h) es direccionable por Bit, para activar o desactivar cada una de sus banderas.

Para el **Timer 0** y el **Timer 1** es:

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
-----	-----	-----	-----	-----	-----	-----	-----

Para el **Timer 2** es:

Registro de Control timer.....

SÍMBOLO	BIT	FUNCIÓN		
TF1	TCON.7	Bandera de sobreflujo (overflow) del registro del		
		Timer 1 . Activada por hardware (TF1=1) cuando el		
		registro que guarda la cuenta del timer/contador 1,		
		incrementa su contenido pasando todos sus bits de 1's a		
		0's. Es limpiado por hardware cuando es atendida la		
		interrupción causada por ésta bandera.		
TR1	TCON.6	Bit de control de activación del Timer 1 .		
		Habilitado/Deshabilitado (TR1=1/TR1=0) por software		
		para colocar el Timer/Contador en encendido/apagado.		
TF0	TCON.5	Bandera de sobreflujo (overflow) del registro del		
		Timer 0 . Activada por hardware cuando el registro que		
		guarda la cuenta del timer/contador 0, incrementa su		
		contenido pasando todos sus bits de 1's a 0's. Esta		
		opera exactamente igual que la bandera TF1.		

Registro de Control timer.....

SÍMBOLO	BIT	FUNCIÓN
TRO	TCON.4	Bit de control de activación del Timer 0 . Habilitado/Deshabilitado (TR0=1/TR0=0) por software para colocar el Timer/Contador en Encendido/Apagado.
IE1	TCON.3	1 5
IT1	TCON.2	BIT de control de interrupción 1. Activado y limpiado por software. Este BIT programa el tipo de transición que activará la <i>interrupción externa 1</i> . IT1=0 la interrupción se activará al detectar un nivel bajo en el pin correspondiente; IT1=1 la interrupción se activará al detectar un flanco de bajada.

Lic. Martín Cruz

Registro de Control timer.....

SÍMBOLO	BIT	FUNCIÓN
IE0	TCON.1	Bandera de transición de la <i>interrupción externa 0</i> .
		Opera exactamente igual que IE1, siendo activo si
		ET0=1. (Entiéndase por IE: registro de habilitación
		de interrupciones).
IT0	TCON.0	BIT de control de interrupción 0. Aplica lo descrito
		para IT1.

Registro de Modo de control del timer/contador (TMOD)

Este registro permite especificar si se van a trabajar como temporizadores (timers) o como contadores (counters), los denominados **Timer 0** y **Timer 1**.

Existen 4 modos de trabajo, los cuales son definidos por la escritura en los bits **M1** y **M0** de TMOD, el registro **TMOD** se muestra a continuación.

SÍMBOLO	BIT	FUNCIÓN
Gate	TMOD.7	Cuando GATE=1, no es suficiente activar TR1 (en TCON) para que el Timer/Counter 1 funcione, si no que es necesario que la línea de interrupción externa INT1 (P3.3) esté en posición alta (control por hardware). Cuando GATE=0, el funcionamiento del Timer/Counter 1 solamente dependerá de la activación de TR1 (control por software).
C/T	TMOD.6	Selector de función: Temporizador o Contador. C/T=0 activa la función de Temporizador (contabiliza pulsos del reloj del sistema interno).C/T=1 activa la función de Contador (contabiliza pulsos en la entrada externa T1).
M 1	TMOD.5	BIT selector del modo del Timer 1.
M 0	TMOD.4	BIT selector del modo del Timer 1.
Gate	TMOD.3	Aplica lo descrito para el GATE del TIMER 1 sólo que ahora al hablar de TR1 e INT1, entiéndase que se trata de TR0 e INT0 respectivamente.
C/T	TMOD.2	Selector de función: Temporizador o Contador. Igual que para C/T en TIMER 1 sólo cambiar T1 por T0.
M1	TMOD.1	BIT selector del modo del Timer 0.
M 0	TMOD.0	BIT selector del modo del Timer 0.

Lic. Martín Cruz

Tabla que muestra las diferentes combinaciones de los bits selectores de modo.

M1	M0	MODO	DESCRIPCION
0	0	0	Timer/Contador de 13 bits.
0	1	1	Timer/Contador de 16 bits.
1	0	2	Timer/Contador de 8 bits recargables.
1	1	3	Timer 0, TL0 Timer/Contador de 8 bits, controlado por los
			bits de control del Timer 0, TH0 Timer de 8 bits
			controlado por los bits de control del timer1. El Timer 1 no
			se utiliza.

Modo 0. En este modo cualquiera de los 2 timers, 0 y 1, se configuran como registros de 13 bits, que consisten en los 8 bits del registro de TH (TH1 o TH0) y los 5 bits menos significativos del registro TL (TL1 o TL0). Los 3 bits más significativos de TL no son utilizados en este modo.

Modo 1. Este modo es utilizado por cualquiera de los dos timers, y los configura como Timer/Contador de 16 bits.

Modo 2. Este modo también puede llegar a ser utilizado por los dos timers, y los configura para un conteo de 8 bits (Tlx) con recarga automática. Al ser sobrepasada la capacidad de TL, éste es recargado automáticamente, con el contenido de TH y a su vez es activada (TF=1) la bandera de sobreflujo.

Modo 3. El Timer 1, en el modo 3 mantiene su cuenta, es decir, tiene el mismo efecto que cuando se establece la bandera TR1=0.

El Timer 0, en éste modo, establece TL0 y TH0 como de contadores separados. TL0 utiliza los bits de control (C/T, GATE, TR0, INT0) del Timer 0. TH0 es bloqueado como temporizador "Timer", el cual emplea las señales de control del Timer 1, TR1 y TF1.

Ejemplo 1:

Desarrolle una programa que genere una señal de 4khz en el pin P1.4 utilizando el timer 0.

Sol.

Se utilizará el timer 0 en modo 2. Entonces en el registro TMOD se tiene:

	Bit	Valor	Nota
	7	0	
Timer Uno	6	0	Como no usamos el timer 1 ponemos
Timer Ono	5	0	estos bits a 0
	4	0	
	3	0	Gate puede ser puesto a 1 cuando usas
			interrupciones, de otro modo se pone a 0
Timer Cero	2	0	C/T, es 0 porque timer 0 va ser un timer
	1	1	Se pone "1 0" porque se selecciona el
	0	0	modo 2 (8 bits con auto-recarga)

 $TMOD = 0000\ 0010b = 2$

Para calcular una frecuencia de 4kilohertz, considerando un reloj del sistema de 12Mhz (incremento del registro cada f/12, es decir cada 1 microsegundo): Periodo= 1 / 4000 hertz = 0.00025 segundos = 250 microsegundos El pin P1.4 se encuentra en estado 1 o 0 : 250/2 = 125 microsegundos. Necesito un desbordamiento después de 125 microsegundos. El valor de auto-recarga será: 256 – 125 = 131.

Lic. Martín Cruz

El programa será:

```
;Generación de una señal de 4khz en el pin P1.4
;utilizando el timer 0
```

```
org 0000h
                        ;configura el timer 0 en modo 2
   mov TMOD,#02h
                        ; como un temporizador de 8 bits con auto recarga
   mov TH0,#131
                        ;valor de recarga
   setb TR0
                        ;inicia el timer 0
espera_desborde:
   jnb TF0,$
                        ;esto se repite mientras TF0 es cero y no hay
                        ;desbordamiento
   cpl P1.4
                             ;complementa el pin 5 en el Puerto 1
                        este flag de desbordamiento se pone a 1 por hardware,
   clr TF0
                        ;este flag debe ser puesto a 0 por software
   sjmp espera_desborde
   end
```

Ejemplo 2:

Desarrolle una programa que genere una señal de 1khz en el pin P1.4 utilizando el timer 0.

Sol.

Para calcular una frecuencia de 1kilohertz: Periodo= 1/1000 hertz = 0.001 segundos = 1000 microsegundos El pin P1.4 se encuentra en estado 1 o 0 un tiempo de: 1000/2 = 500microsegundos. Necesito dos desbordamientos de 250 microsegundos cada uno. El valor de auto-recarga será: 256 - 250 = 6.

El programa será:

;Generación de una señal de 1khz en el pin P1.4 ;utilizando el timer 0 org 0000h

mov TMOD,#02h ;configura el timer 0 en modo 2

; como un temporizador de 8 bits con auto recarga

mov TH0,#6 ;valor de recarga setb TR0 ;inicia el timer 0

mov R7,#0 ;R7 usado para contador

espera_desborde:

jnb TF0,\$;esto se repite mientras TF0 es cero y no hay

;desbordamiento

inc R7 ;incrementa el contador

clr TF0 ; este flag de desbordamiento se pone a 1 por hardware,

;este flag debe ser puesto a 0 por software

cjne R7,#2,espera_desborde ;si R7 no es 2 va a espera_desborde, de otro

; modo continua a la siguiente instrucción

mov R7,#0 ;R7 es reiniciado a 0

cpl P1.4 ;complementa el pin 5 del Puerto 1

sjmp espera_desborde

end

Ejercicio 1:

Desarrolle una programa que genere una señal de 4khz en el pin P1.4 utilizando el timer 0, considerando una frecuencia de reloj del sistema de 11.0592Mhz.