

Lasertag Mazzaro Roberto

Adecco

Obbiettivo

Riprodurre il gioco del lasertag

Cos'è il lasertag?

- Gioco di squadra
- Basato sulla simulazione militare
- Usato nell'addestramento militare

Come funziona?

- •Si è muniti di un kit che può sparare e ricevere i colpi
- •Bisogna colpire l'avversario fino ad eliminarlo

Fasi di progetto

- Capire come far comunicare due Arduino tramite la funzione PulseIn()
- Capire come inserire la comunicazione infrarosso
- Montare un prototipo su breadboard
- Scrivere le singole funzioni utilizzate nel software
- Disegrare, sviluppare e montare il PCB
- Mettere a punto il programma generale
- Disegnare la struttura per stampa in 3D
- Realizzare la struttura


```
District State Sta
```

Schema a blocchi di un kit

Hardware ricezione

Sensore IR

Modello: TL1838

• Frequenza di lavoro: 38kHz

 Durata minima impulso 600µS

Hardware trasmissione

Il led IR va pilotato con una frequenza di 38kHz

Siccome i timer di Arduino erano già occupati ho utilizzato un 555 in configurazione astabile

Misure con oscilloscopio

Segnale in uscita da Arduino che pilota il reset del 555

Uscita del 555, che viene trasmessa dal led IR

Misure con oscilloscopio

Segnale trasmesso dal led IR

Segnale in uscita dal sensore IR

Acquisizione codice arma

- Eseguita nel void setup
- Lettura di 5 piedini analogici (per non occupare quelli digitali)
- Conversione dei valori analogici in valori digitali
- Estrazione codice squadra e arma
- Impostazione caratteristiche del kit a seconda del codice dell'arma

Funzione di sparo

- Gestita con timer1, la frequenza dipende dall'arma
- Bit di start, si spedisce la frequenza di 38kHz per 1000µS
- Bit a 1, si spedisce la frequenza di 38kHz per 800µS
- Bit a 0, si spedisce la frequenza di 38kHz per 600µS
- Per separare un bit dall'altro non si spedisce niente per 600µS

Funzione di ricezione

Si basa sulla funzione pulseIn()

- •Restituisce la durata dello stato alto/basso a partire dal fronte stabilito
- •Utilizzata con timeout, se entro il tempo prestabilito non arriva il fronte desiderato la funzione restituisce come risultato 0; è necessario usare i timeout per non bloccare il resto del programma

- Per individuare il bit di start c'è un ciclo while che cicla finchè non arriva un impulso di almeno 950µS
- Rilevato il bit di start si va a rilevare la durata degli altri 5 impulsi, quelli di codice
- Si convertono i tempi in 0 e 1
- Si ricava il codice della squadra e dell'arma del kit avversario

Funzione aggiornamento vita

- Avviene una volta ricevuto il codice avversario
- Si controlla che la squadra dei due kit non sia la stessa
- Se la squadra è diversa si decrementa la variabile vita in base al codice arma avversario
- Si accendono il led ed il buzzer di segnalazione

La ricezione del colpo non può essere obbiettata perchè viene sancita dall'elettronica

Funzione di ricarica

- •Gestita con timer2 impostato ad una frequenza di 2kHz
- •Il tempo che si impiega a ricaricare dipende dall'arma e per variare il tempo si fa compiere un numero variabile di cicli al timer2 dato che quest'ultimo è a 8 bit e non si possono ottenere periodi elevati

Struttura esterna

Disegnata con un cad 3D adatto alla creazione di file STL che sono i file richiesti dalle stampanti 3D

Ringraziamenti

Ringrazio inoltre tutti i professori che mi hanno seguito nella realizzazione di questo progetto in particolare i professori Franco Duso e Piergiuseppe Dal Santo

Grazie per l'attenzione