WebGL: Sombreamento e Iluminação

Prof. Gilzamir Gomes

Objetivo

- Aprender sobre fontes de luz, normais e materiais
- Aprender a diferença entre sombreamento e iluminação
- Uso de métodos de sombreamento de Goraud e de Phong
- Uso dos modelos de iluminação lambertianos e de Phong
- Definir o uso de uniforms, atributes e varyings

Iluminação de Cena

- Objetos são vistos porque refletem luz dependendo de:
 - Posição da fonte de luz e distância relativa para a fonte de luz,
 - Orientação de sua superfície (vetor normal)
 - Material

$$\vec{L} \cdot \vec{V} = 0$$

$$0 < \vec{L} \cdot \vec{V} < 1$$

$$\vec{L} \cdot \vec{V} = 1$$

$$0 < \vec{L} \cdot \vec{V} < 1$$

$$\vec{L} \cdot \vec{V} = 0$$

$$\sim -1 < \vec{L} \cdot \vec{V} < 0$$

$$\vec{L} \cdot \vec{V} = -1$$

$$-1 < \vec{L} \cdot \vec{V} < 0$$

Normais

- São vetores perpendiculares à superfície que queremos iluminar
- Representam a orientação da superfície
 - Necessários para modelar a interação entre a fonte de luz e o objeto
- Cada vértice de um objeto tem um vetor normal associado
- Utilizamos produto vetorial para calcularmos o vetor normal

Calculando o vetor normal

Calculando o vetor normal (vértices compartilhados)

Updating normals for shared vertices

Normalizando vetores

•
$$\vec{v} = \frac{\vec{v}}{||\vec{v}||}$$

Exemplo de cálculo da normal de um objeto

Exemplo de cálculo da normal de um objeto

$$\vec{v}_1 = B - A$$

= $[x_1, y_1, z_1]$

$$\vec{v}_2 = C - A$$

= $[x_2, y_2, z_2]$

$$\vec{v}_1 \times \vec{v}_2 = \vec{v}_3$$
$$\vec{N} = \frac{\vec{v}_3}{||\vec{v}_3||}$$

Exemplo de cálculo da normal de um objeto

$$\vec{v}_1 = B - A$$

= $[x_1, y_1, z_1]$

$$\vec{v}_2 = C - A$$

= $[x_2, y_2, z_2]$

$$\vec{V}_1 \times \vec{V}_2 = \vec{V}_3$$
$$\vec{N} = \frac{\vec{V}_3}{||\vec{V}_3||}$$

 $\vec{v}_1 \times \vec{v}_2 = (0, 0, 1)$

Fonte de Luz

- Posicional
 - Modelada por um ponto no espaço
- Direcional
 - Modelada por um vetor (normalizado) que indica sua orientação

Fonte de luz ambiente

- Geralmente, as cenas possuem uma quantidade de luz dissipada, constante, sem origem definida. Em computação gráfica criamos um componente de luz constante desse tipo chamada de luz ambiente.
- Assim, se um vértice reflete a cor vermelha (representada por [1.0, 0.0, 0.0]) e há apenas luz ambiente em um cena sendo que a cor da luz ambiente é [0.2, 0.2, 0.2]. Qual a cor refletida do vértice?
 - 20% do vermelho, ou seja, [0.2, 0.0, 0.0]

Outras fontes de luz

- Em uma cena, podemos ter uma fonte de luz pontual, cuja luz se espalha no ambiente em todas as direções. Nesse caso, a luz refletida pelos vértices depende apenas da posição da fonte de luz e da normal calculada no vértice. A intensidade da luz no vértice pode ser inversamente proporcional à distância à fonte de luz.
- Também podemos ter uma fonte de luz direcional, tal que a luz segue em uma direção definida e, portanto, esse tipo de fonte de luz é definida apenas por uma direção. Matematicamente, por um vetor.

Materiais

- Definem como a superfície dos objetos interagem com a luz que chega até a superfície.
- Diferentes tipos de materiais podem ser modelados: superfícies rugosas, lisas, foscas, etc.

Materiais

- Vários parâmetros
 - Cor
 - Textura
 - Seja I_a a intensidade da fonte de luz ambiente e $\mathcal C$ a cor do objeto.
 - A cor refletida pelo objeto, levando-se em conta apenas a cor ambiente, pode ser obtida por:
 - $R(i) = C(i) * I_a(i)$, onde $i \in \{r, g, b\}$

Passando as informações necessárias para WebGL

 Para cada vértice, temos que passar a normal desse vértice, portanto, é preciso criarmos um ARRAY BUFFER para passarmos dados de normais.

WebGL Rendering Pipeline Revisited

Parallel procesing in the Vertex Shader

The number of threads depends on the local GPU capabilities

Método de Sombreamento e Modelo de Reflexão da Luz

- Sombreamento: tipo de interpolação que é realizada para se obter a cor final para cada fragmento (pixel) na cena.
- O tipo de sombreamento define aonde a cor final será calculada: no vertex shader ou no fragement shader.
 - Sombreamento de Goraud: aplica-se o modelo de iluminação em cada vértice, obtendo a cor em cada vértice. A cor do pixel dentro de um triângulo é a interpolação das cores encontradas nos vértices.

Método de Sombreamento e Modelo de Reflexão da Luz

- Sombreamento: tipo de interpolação que é realizada para se obter a cor final para cada fragmento (pixel) na cena.
- O tipo de sombreamento define aonde a cor final será calculada: no vertex shader ou no fragement shader.

• Sombreamento de Phong: o modelo de iluminação é aplicado em cada fragmento a partir das normais interpoladas pelas normais calculadas nos

vértices.

Método de Sombreamento e Modelo de Reflexão da Luz

- Modelo de iluminação: determina como normais, materiais e luzes são combinadas para produzirem as cores finais.
- A equação para modelos de iluminação se baseia em princípios físicos de reflexão da luz.
- Modelos de iluminação = modelos de reflexão.

Interpolação de Goraud

- Calcula a cor final por vértices, portando, em WebGL, deve ser feita no vertex shader.
- A cor de cada ponto (fragmento) dentro de um triângulo é interpolada pelas cores obtidas nos vértices.
- Em WebGL, a interpolação é feita de forma automática por meio de *varyings*. Os valores calculados no *vertex shader* são interpolados e o resultado é passado, via *varying* para o *fragmente shader*.
- Uma variável do tipo varying deve ser declarada com o mesmo nome nos shaders de vértice e de fragmento.

Interpolação de Phong

- A método de Phong calcula a cor final no *fragement shader*. Ou seja, o cálculo da cor é feita por ponto (ou fragmento) no interior do triângulo.
- Cada fragmento tem sua própria normal, que é resultado da interpolação da normal nos vértices de um triângulo.

Shading/Interpolation Methods

The interpolation of varyings is a feature of the pipeline. No programming is required.

Modelos de Reflexão da Luz

 Mas como calcular a cor final, independente de ser no vértice ou no fragmento?

Modelos de Reflexão da Luz

- Modelo de Reflexão Lambertiano: usado como modelo de reflexão difusa.
- Um raio de luz incidente é refletido em muitos ângulos diferentes, em vez de apenas em um único ângulo, como a reflexão especular.
- Baseado na lei de emissão do coseno ou lei de emissão de Lambert.
- Nomeada após Johann Heinrich Lambert, de seu livro *Photometria*, publicado em 1760.

Lambertian Reflectance

Final diffuse color calculation for fragment F

$$-L \cdot N = |-L||N|\cos \alpha$$

If L and N are normalized then:

$$-L \cdot N = \cos \alpha$$

$$F = C_l C_m \cos \alpha$$

A Lambertian surface reflects light in many directions

- O modelo de reflexão de Phong descreve a forma como uma superfície reflete a luz como a soma de três tipos de componentes: ambiente, difusa e especular.
- Foi desenvolvida por Phong (Bui Tuong Phong), publicado em sua tese de doutoramento em 1973.

Specular Reflection

Final specular color calculation for fragment F

$$R \cdot E = |R||E|\cos\beta$$

If R and E are normalized then:

$$R \cdot E = \cos \beta$$

$$F = C_l C_m \cos^n \beta$$

The specular reflection reaches its maximum when R and E have the same direction.

• Calculando o raio de reflexão

R = ?

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$L \cdot R = 2 \cdot (L \cdot N) - 1$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$L \cdot R = 2 \cdot (L \cdot N) - 1$$

$$L \cdot L = 1$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$L \cdot R = 2 \cdot (L \cdot N) - 1$$

$$L \cdot L = 1$$

$$L \cdot R = 2 \cdot (L \cdot N) - L \cdot L$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$L \cdot R = 2 \cdot (L \cdot N) - 1$$

$$L \cdot L = 1$$

$$L \cdot R = 2 \cdot (L \cdot N) - L \cdot L$$

$$L \cdot R = 2 \cdot (L \cdot N) \cdot (L \cdot N) - L \cdot L$$

$$R = ?$$

$$\theta_1 = \theta_2 = \theta$$

$$\cos(2\theta) = \frac{L \cdot R}{\|R\| \cdot \|L\|}$$

$$||R|| = ||L|| = 1$$

$$\cos(2\theta) = L \cdot R$$

$$\cos(2\theta) = 2 \cdot \cos(\theta)^2 - 1$$

$$L \cdot N = \cos(\theta)$$

$$L \cdot R = 2 \cdot (L \cdot N) - 1$$

$$L \cdot L = 1$$

$$L \cdot R = 2 \cdot (L \cdot N) - L \cdot L$$

$$L \cdot R = 2 \cdot (L \cdot N) \cdot (L \cdot N) - L \cdot L$$

$$R=2\cdot(L\cdot N)\cdot N-L$$

Specular Reflection

Final specular color calculation for fragment F

$$R \cdot E = |R||E|\cos\beta$$

If R and E are normalized then:

$$R \cdot E = \cos \beta$$

$$F = C_l C_m \cos^n \beta$$

The specular reflection reaches its maximum when R and E have the same direction.

• Quando um objeto sofre transformação, a normal também não se altera?

- Sabemos que depois da transformação, a normal deve continuar perpendicular à superfície no ponto dado
- A matriz de transformação da normal é a inversa da matriz modelview:
 - N . S = 0
 - $\bullet S' = M . S$
 - $N' \cdot S' = 0$
 - N' = K . N
 - $(K N) \cdot (M S) = 0$
 - (K N)^t (MS) = 0 (multiplicação matricial)
 - $N^t K^t M S = 0$
 - $N^{t}(K^{t}M) S = 0$
 - Como N^t S = 0, K^t M = I => K = $(M^{-1})^T$

Phong Reflection Model

Reflected color is the result of combining three types of light-object interactions:

Amount of light present everywhere in the scene. Independent from any light source

The incident light is reflected in many directions. It can be modelled by a Lambertian surface.

Mirror-like reflection. The direction of the incoming light and the direction of the reflected outgoing light make the same angle with respect to the surface normal.

Cor final

- Cor ambiente, difusa e especular são somadas para obtenção do resultado final
- Cor = R + F + Fs

Atividade

• Utilizando interpolação de Goraud, implemente, a partir do exemplo 5 da aula 4, o modelo de iluminação lambertiano (1 ponto)