Multivariate Analysis

PRINCIPAL COMPONENT

ANALYSIS

By Suckwon Hong

1. Open the wiscsem.csv file. Use the following labels. These variables relate to intelligence for children. Use principal component analysis. Use varimax rotation.

LABEL

info='Information'; comp='Comprehension'; arith='Arithmetic'; simil='Similarities'; vocab='Vocabulary' digit='Digit Span'; pictcomp='Picture Completion'; parang= 'Paragraph Arrangement'; block='Block Design' object='Object Assembly'; coding= 'Coding';

2. How many "real" or "useful" factors emerged from the analysis? In this case you should use the scree plot for this decision, rather than retaining all factors with eigenvalues greater than 1. Attach all factor analysis output here.

Answer:

From the scree plot, I decided to retain 8 factors among 11 factors.


```
Principal Components Analysis
Call: psych::principal(r = data, nfactors = 11, rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
          RC7 RC5
                    RC2 RC4
                              RC6
                                   RC3 RC8
                                            RC10 RC11 RC9
                                                            RC1 h2
                                                                        u2 com
info
         0.23 0.16 0.07 0.07
                             0.07 -0.02 0.06
                                            0.20 0.27 0.16
                                                           0.87
                                                                1 -1.8e-15 1.7
comp
         0.16 0.09
                  0.14 0.05
                             0.18
                                  0.03 0.14
                                            0.20 0.20 0.89
                                                           0.16
                                                                   0.0e+00 1.6
                                                                1
                                  0.04 0.11
arith
         0.94 0.11 -0.02 0.09
                             0.04
                                            0.12 0.12 0.14
                                                           0.19
                                                                1 -4.4e-16 1.3
                                                           0.19
         0.14 0.11
                  0.11 0.13
                             0.15 -0.04 0.07
                                            0.89 0.21 0.19
                                                                1 -1.3e-15 1.6
simil
         0.15 0.12
                   0.05 0.02
                             0.11 0.05 0.11
                                            0.22 0.88 0.21
                                                           0.27
vocab
                             0.02
                                                           0.12
                                  0.09 0.01
                                            0.09 0.10 0.07
digit
         0.10 0.97
                   0.00 0.06
                                                                1
                                                                   2.2e-16 1.1
                             0.94 -0.05 0.16
                                                           0.06
pictcomp
         0.04 0.02
                   0.16 0.10
                                            0.13 0.09 0.15
                                                                1
                                                                   3.3e-16 1.3
parang
         0.09 0.06
                   0.10 0.97
                             0.09
                                  0.01 0.14
                                            0.11 0.02 0.04
                                                           0.06
                                                                1 -4.4e-16 1.1
block
         0.11 0.01
                   0.18 0.16
                             0.16
                                  0.06 0.93 0.07 0.10 0.13
                                                          0.06
                                                                1 -6.7e-16 1.3
object
        -0.02 0.00
                   0.95 0.10
                             0.15
                                  0.03 0.17 0.09 0.05 0.11 0.05
                                                                1 -6.7e-16 1.2
         0.04 0.08
coding
                  0.02 0.01 -0.04
                                  0.99 0.05 -0.03 0.04 0.02 -0.01
                                                                1 -6.7e-16 1.0
                     RC7
                         RC5 RC2
                                 RC4
                                      RC6 RC3 RC8 RC10 RC11 RC9
SS loadings
                    1.03 1.03 1.02 1.02 1.02 1.01 1.00 0.98 0.97 0.97 0.96
                    Proportion Var
Cumulative Var
                    0.09 0.19 0.28 0.37 0.46 0.56 0.65 0.74 0.82 0.91 1.00
Cumulative Proportion 0.09 0.19 0.28 0.37 0.46 0.56 0.65 0.74 0.82 0.91 1.00
```

3. Name the factors. Use your own judgment to name them.

Answer: For each component, I first omit variables that contribute a little (below 0.15). As a result, I get following table.

	RC7	RC5	RC2	RC4	RC6	RC3	RC8	RC10
info	0.2309631	0.1617039	NA	NA	NA	NA	NA	0.1970254
comp	0.1632906	NA	NA	NA	0.1768948	NA	NA	0.1955091
arith	0.9368349	NA						
simil	NA	NA	NA	NA	0.1529387	NA	NA	0.8887096
vocab	NA	0.2197830						
digit	NA	0.9703405	NA	NA	NA	NA	NA	NA
pictcomp	NA	NA	0.1578140	NA	0.9415354	NA	0.1560053	NA
parang	NA	NA	NA	0.9659248	NA	NA	NA	NA
block	NA	NA	0.1819430	0.1613427	0.1608888	NA	0.9311696	NA
object	NA	NA	0.9544194	NA	0.1514552	NA	0.1688858	NA
coding	NA	NA	NA	NA	NA	0.9922682	NA	NA

After, I named them as follows:

	Titot, Thames them as lone ws.					
RC7	Basic knowledge about math and society					
RC5	Short term memory					
RC2	Space perception					
RC4	Logical power					
RC6	Ability to find pattern					
RC3	Processing speed					
RC8	Space perception (similar to RC5)					
RC10	Language power					

4. What is the highest loading variable? Which factor does it load onto?

Answer: The biggest loading is found in variable *coding*. It is load onto the component *RC3* that I named as processing speed.

5. What is the cumulative percentage of the total variance that is accounted for by your retained factors?

Answer: Eight factors that I retained explain about 74% of the total variance.

6. Use oblique rotation instead of varimax rotation. Do you notice any difference in the results?

Answer: When I use oblique rotation, the result says that it is a Heywood case.

<pre>Principal Components Analysis Call: psych::principal(r = data, nfactors = 11, rotate = "oblimin")</pre>)				
Warning: A Heywood case was detected.														
Standardized loadings (pattern matrix) based upon correlation matrix									ĹX					
	TC5	TC2	TC4	TC6	TC7	TC3	TC10	TC1	TC9	TC8	TC11	h2	u2	com
info	0	0	0	0	0	0	0	1	0	0	0	1	-1.8e-15	1
comp	0	0	0	0	0	0	0	0	1	0	0	1	0.0e+00	1
arith	0	0	0	0	1	0	0	0	0	0	0	1	-4.4e-16	1
simil	0	0	0	0	0	0	1	0	0	0	0	1	-1.3e-15	1
vocab	0	0	0	0	0	0	0	0	0	0	1	1	-4.4e-16	1
digit	1	0	0	0	0	0	0	0	0	0	0	1	2.2e-16	1
pictcomp	0	0	0	1	0	0	0	0	0	0	0	1	3.3e-16	1
parang	0	0	1	0	0	0	0	0	0	0	0	1	-4.4e-16	1
block	0	0	0	0	0	0	0	0	0	1	0	1	-6.7e-16	1
object	0	1	0	0	0	0	0	0	0	0	0	1	-6.7e-16	1
coding	0	0	0	0	0	1	0	0	0	0	0	1	-6.7e-16	1

7. Calculate the coefficient alphas for each factor.

Answer:

	Cronbach's alpha
RC7	0.701
RC5	0.512
RC2	0.648
RC4	0.510
RC6	0.741
RC3	0.820
RC8	0.648
RC10	0.818

```
R code
library(lattice)
library(psych)
library(GPArotation)
library(psy)
library(dplyr)
##Multivaraite stats hw6 by suckwon hong
rm(list = ls())
getwd()
setwd("/Users/suckwonhong/Desktop/multivariate stats")
data <- read.csv("wiscsem.csv",header = TRUE)
data$X...client<-NULL
data$agemate<-NULL
#pca varimax
pca.vari<-psych::principal(data, nfactors = 11, rotate = "varimax")
pca.vari.res<-as.data.frame(pca.vari$Vaccounted)</pre>
png(filename = "scree plot.png")
plot(c(1:11),pca.vari.res[2,], main = "Scree plot", ylab = "Proportion of variance explained",
  xlab = "Principal component")
dev.off()
#loadings
pca.vari.load<-(unclass(pca.vari$loadings))</pre>
pca.vari.load[pca.vari.load<0.15]<-NA
#pca oblique
pca.oblique<-psych::principal(data, nfactors = 11, rotate = "oblimin")</pre>
pca.oblique.res<-as.data.frame(pca.oblique$Vaccounted)
```

pc7<-cronbach(select(data, info,comp,simil,vocab))