Problem

Let EQ_REX = { $\langle R,S \rangle$ | R and S are equivalent regular expressions}. Show that EQ_REX ? PSPACE.

Step-by-step solution

Step 1 of 2

Language is $EQ_{REX} = \{(R, S) | R \text{ and S are equivalent regular expression}\}$

To show: $EQ_{REX} \in PSPACE$

PSPACE: PSPACE is deterministic Turing machine that contains the class of languages that are decidable in polynomial space on a deterministic Turing machine that is:

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$

For any language A, it is known that:

 $\overline{A} \in NPSPACE$

 $\Rightarrow \overline{A} \in PSPACE$

 $\Rightarrow A \in PSPACE$

Thus, if it is shown that $\overline{EQ_{REX}} \in PSPACE$ then that implies that $EQ_{REX} \in PSPACE$

It is known that NPSPACE is non-deterministic Turing machine that contains the class of languages which are decidable in polynomial space.

Comment

Step 2 of 2

Let M be the non-deterministic Turing machine that decides $\overline{EQ_{REX}}$ in a polynomial space as follows:

M= "On input (R, S) where R, S are equivalent regular expressions." the following points are followed:

- $\text{-} \ \, \text{Construct non-deterministic finite automata} \quad N_x = (Q_x, \Sigma, \delta_x, q_x, A_x) \\ \text{such that} \quad L(N_x) = L(X) \\ \text{for} \quad X \in \{R, S\}$
- Let $m_X = \{q_X\}$
- Repeat $2^{\max} X \in \{R, S\}^{|Q_s|}$ times.
- If $m_k \cap A_s = \phi \Leftrightarrow m_s \cap A_s \neq \phi$, accept
- Pick any $a \in \Sigma$ and change m_{x} to $\bigcup_{q \in m_x} \delta_x(q, a)$ for $X \in \{R, S\}$.
- Reject

Hence, non-deterministic Turing machine M decides $\overline{\it EQ_{\it REX}}$ in polynomial space

Therefore, $\overline{EQ_{\textit{REX}}} \in \textit{NPSPACE}$ and hence $\overline{EQ_{\textit{REX}}} \in \textit{PSPACE}$

Comment