МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

Навчально-науковий інститут прикладного системного аналізу Кафедра штучного інтелекту

Звіт про виконання лабораторної роботи №5 з дисципліни «Обчислювальна математика»

Виконав: студент II курсу, групи КІ-32 Присяжнюк Владислав Прийняв: доцент Квітка О. О.

Індивідуальне завдання:

Вар. №	38
x	у
-0,8	334,335
-0,4	83,733
0	104,43
0,4	149,147
0,6	31,7881
1	43,7761
1,4	157,037

Частина 1:

На основі даних таблиці 5.1 згідно індивідуального завдання за варіантами побудувати інтерполяційний поліном за методом Лагранжа.

Інтерполяційний поліном Лагранжа будується за формулою:

$$P(x) = \sum_{i=0}^{n} l_i(x) \cdot y_i$$

де $l_i(x)$ – базисні поліноми Лагранжа які мають вигляд:

$$l_j(x) = \prod_{\substack{i=0\\i\neq j}}^8 \frac{x - x_i}{x_j - x_i}$$

 $P(x) = 850.3868x^5 - 255.2215x^4 - 1528.4424x^3 + 115.8980x^2 + 304.5484x + 104.43$

Побудуємо систему поліномів кубічний – сплайн:

$$S_{i(x)} = a_i + b_i(x - x_i) + c_i^2(x - x_i) + d_i^3(x - x_i)$$

Для обчислення коефіцієнтів a_i , b_i , c_i , d_i застосуємо наступні формули:

$$a_i = y_i$$
$$h_i = x_{i+1} - x_i$$

Для пошуку коефіцієнта c_i потрібні скінченно-різницеві співвідношення:

$$k_i = 3\left(\frac{y_i - y_{i-1}}{h_i} - \frac{y_{i-1} - y_{i-2}}{h_{i-1}}\right)$$

Коефіцієнти m_i які враховують довжини інтервалів. Вони забезпечують коректну неперервність другої похідної:

$$m_i = 2(h_{i-1} + h_i)$$

Коефіцієнти α_i , β_i використовуються для зведення системи лінійних рівнянь до вигляду, який можна легко розв'язати методом «прогонки».

$$\alpha_{i} = \frac{k_{i} - h_{i-1}\alpha_{i-1}}{m_{i} - h_{i-1}\beta_{i-1}}$$

$$\beta_i = \frac{1}{m_i - h_{i-1}\beta_{i-1}}$$

Коефіцієнт c_i є значеннями другої похідної в точках x_i :

$$c_i = \alpha_i - \beta_i c_{i+1}$$

Коефіцієнт b_i визначає першу похідну на інтервалі:

$$b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3} (2c_i + c_{i+1})$$

Коефіцієнт d_i відповідає за «кубічну» частину сплайну та визначає, як швидко змінюється друга похідна:

$$d_i = \frac{c_{i+1} - c_i}{3h_i}$$

Інтервал	a	b	С	d
[-0.8, -0.4]	334.335	-783.940	0.000	983.973
[-0.4, 0.0]	83.733	-311.633	1180.767	-680.818
[0.0, 0.4]	104.430	306.187	363.785	-2124.433
[0.4, 0.6]	149.147	-422.511	-2185.534	6820.608
[0.6, 1.0]	31.788	-478.252	1906.830	-1590.684
[1.0, 1.4]	43.7761	283.683	-1.990	1.659

Таблиця 1.1 – Значення коефіцієнтів для кубічного сплайну

Составимо систему кубічних сплайнів для окремих інтервалів:

$$P_3(x) = \begin{cases} 334.3350 + -783.9407(x+0.8) + 0.0000(x+0.8)^2 + 983.9731(x+0.8)^3 \\ 83.7330 - 311.6336(x+0.4) + 1180.7677(x+0.4)^2 - 680.8186(x+0.4)^3 \\ 104.4300 + 306.1876(x-0.0) + 363.7854(x-0.0)^2 - 2124.4332(x-0.0)^3 \\ 149.1470 - 422.5120(x-0.4) - 2185.5344(x-0.4)^2 + 6820.6084(x-0.4)^3 \\ 31.7881 - 478.2527(x-0.6) + 1906.8306(x-0.6)^2 - 1590.6846(x-0.6)^3 \\ 43.7761 + 283.6832(x-1.0) - 1.9909(x-1.0)^2 + 1.6591(x-1.0)^3 \end{cases}$$

Составимо зручну таблицю для порівння полінома Лагранжа і кубічного сплайна, також обрахуємо розбіжність.

Bap	іант №38				
i x_i	2		Розрахунок	Розбіжність	
	y_i	Поліномом Лагранжа $P_n(x)$	Кубічним сплайном		
0	-0.8	334.335	334.335	334.335	0
	-0.6		302.026	185.418	116.607
	-0.5		182.396	125.720	56.676
1	-0.4	83.733	83.733	83.733	0
	-0.3		30.603	63.696	33.093
	-0.1		56.021	78.129	22.108
2	0	104.43	104.43	104.43	0
	0.2		179.144	163.223	15.920
	0.3		179.204	171.667	7.537
3	0.4	149.147	149.147	149.147	0
	0.5		95.405	91.861	3.544
	0.55		63.735	59.615	4.120
4	0.6	31.7881	31.788	31.788	0
	0.75		-40.459	-2.414	38.045
	0.95		1.426	29.785	28.359
5	1	43.7761	43.776	43.776	0
	1.20		271.471	100.446	171.024
	1.35		269.917	142.892	127.025
6	1.4	157.037	157.037	157.037	0

Рис 1.1 – Графік кубічного сплайна та полінома Лагранжа.

Рис 1.2 – Графік розбіжності полінома Лагранжа з кубічним сплайном.

Поліном Лагранжа демонструє значні зміни між вузлами, особливо в крайових зонах. Це пов'язано з тим, що Лагранжевий поліном високого степеня намагається точно пройти через усі задані точки, але при цьому може "перегинатися" між ними. Така поведінка є типовою для поліномів високого степеня (ефект Рунге).

Частина 2: Індивідуальне завдання:

X	-10	-10.6	-10	-9.4	-8.6	-8	-7.2	-6.7	-6.2
у	-1314	-1246	-863.8	-809.7	-673	-667.2	-453.5	-268.7	-226.2
X	-5.6	-5.1	-5	-4.4	-3.8	-3.7	-3.5	-3	-2.2
У	-144.7	-165.9	-111.6	-84.82	-65.82	-44.61	-49.57	-31.88	-8.569
X	-1.9	-1.5	-0.6	0.3	0.9	1.7	2.4		
y	-5.669	-0.628	3.5423	3.1549	3.1641	7.5498	15.325		

Завдання:

а) лінійний апроксимуючий поліном;

За допомогою методу найменших квадратів для лінійної апроксимації щоб отримати форму:

$$y = a_0 + a_1 x$$

Використаємо формулу:

$$S = \sum_{i=1}^{n} (y_i - (a_0 + a_1 x_i))^2$$

Спочатку обрахуємо:

$$\sum x = -98.6$$

$$\sum y = -7974.3196$$

$$\sum x^{2} = 742.18$$

$$\sum xy = -43086.7913$$

$$n = 25$$

За допомогою Python обрахуємо ці формули:

$$a_1 = \frac{(n\sum xy) - \sum x \cdot \sum y}{(n \cdot \sum x^2) - \sum x^2}$$

$$a_0 = \frac{\sum y - a_1 \sum x}{n}$$

$$a_1 = 90.4716$$

$$a_0 = 118.9972$$

$$P_1(x) = 118.9972 + 90.4716(x)$$

б) Параболічний апроксимуючий поліном

Система рівнянь для коєфіцієнтів a_0 , a_1 та a_2 ,

$$\begin{cases} na_0 + \sum x_i a_1 + \sum x_i^2 a_2 = \sum y_i \\ \sum x_i a_0 + \sum x_i^2 a_1 + \sum x_i^3 a_2 = \sum x_i y_i \\ \sum x_i^2 a_0 + \sum x_i^3 a_1 + \sum x_i^4 a_2 = \sum x_i^2 y_i \end{cases}$$

Обчислимо систему та знайдемо коєфіцієнти:

$$a_0 = 48.7220$$

 $a_1 = -23.5189$
 $a_2 = -12.831$
 $P_2(x) = 48.7220 - 23.5189x - 12.831x^2$

в) Апроксимуючий поліном третього степеня

$$\begin{cases} na_0 + \sum x_i a_1 + \sum x_i^2 a_2 + \sum x_i^3 a_3 = \sum y_i \\ \sum x_i a_0 + \sum x_i^2 a_1 + \sum x_i^3 a_2 + \sum x_i^4 a_3 = \sum x_i y_i \\ \sum x_i^2 a_0 + \sum x_i^3 a_1 + \sum x_i^4 a_2 + \sum x_i^5 a_3 = \sum x_i^2 y_i \\ \sum x_i^3 a_0 + \sum x_i^4 a_1 + \sum x_i^5 a_2 + \sum x_i^6 a_3 = \sum x_i^3 y_i \end{cases}$$

$$P_3(x) = 9.9935 - 1.3967x - 2.0259x^2 + 0.8320x^3$$

г) Апроксимуючий поліном п'ятого степеня

$$\begin{cases} Na_0 + \sum x_i a_1 + \sum x_i^2 a_2 + \sum x_i^3 a_3 + \sum x_i^4 a_4 + \sum x_i^6 a_4 &= \sum y_i \\ \sum x_i a_0 + \sum x_i^2 a_1 + \sum x_i^3 a_2 + \sum x_i^4 a_3 + \sum x_i^5 a_4 + \sum x_i^6 a_4 &= \sum x_i y_i \\ \sum x_i^2 a_0 + \sum x_i^3 a_1 + \sum x_i^4 a_2 + \sum x_i^5 a_3 + \sum x_i^6 a_4 + \sum x_i^7 a_5 &= \sum x_i^2 y_i \\ \sum x_i^3 a_0 + \sum x_i^4 a_1 + \sum x_i^5 a_2 + \sum x_i^6 a_3 + \sum x_i^7 a_4 + \sum x_i^8 a_5 &= \sum x_i^3 y_i \\ \sum x_i^4 a_0 + \sum x_i^5 a_1 + \sum x_i^6 a_2 + \sum x_i^7 a_3 + \sum x_i^8 a_4 + \sum x_i^9 a_5 &= \sum x_i^4 y_i \\ \sum x_i^5 a_0 + \sum x_i^6 a_1 + \sum x_i^7 a_2 + \sum x_i^8 a_3 + \sum x_i^9 a_4 + \sum x_i^{10} a_4 &= \sum x_i^5 y_i \end{cases}$$

$$P_5(x) = -2.0730 - 8.7718x + 0.9727x^2 + 2.5262x^3 + 0.2265x^4 + 0.0093x^5$$

Побудуємо таблиці для порівняння знайдених поліномів.

X	Y	$P_1(x_i)$	$P_1(x_i) - y_i$	$P_2(x_i)$	$P_2(x_i) - y_i$
-10	-1314	-785.7188	528.2812	-999.209	314.791
-10.6	-1246	-840.00176	405.99824	-1143.691292	102.308708
-10	-863.8	-785.7188	78.0812	-999.209	135.409
-9.4	-809.7	-731.43584	78.26416	-863.965172	54.265172
-8.6	-673	-659.05856	13.94144	-698.011012	25.011012
-8	-667.2	-604.7756	62.4244	-584.3236	82.8764
-7.2	-453.5	-532.39832	78.89832	-447.111328	6.388672
-6.7	-268.7	-487.16252	218.46252	-369.693938	100.993938
-6.2	-226.2	-441.92672	215.72672	-298.692148	72.492148
-5.6	-144.7	-387.64376	242.94376	-221.958592	77.258592
-5.1	-165.9	-342.40796	176.50796	-165.071122	0.828878
-5	-111.6	-333.3608	221.7608	-154.4635	42.8635
-4.4	-84.82	-279.07784	194.25784	-96.206872	11.386872
-3.8	-65.82	-224.79488	158.97488	-47.188708	18.631292
-3.7	-44.61	-215.74772	171.13772	-39.917198	4.692802
-3.5	-49.57	-197.6534	148.0834	-26.14405	23.42595
-3	-31.88	-152.4176	120.5376	3.7979	35.6779
-2.2	-8.569	-80.04032	71.47132	38.360572	46.929572
-1.9	-5.669	-52.89884	47.22984	47.087278	52.756278
-1.5	-0.628	-16.7102	16.0822	55.13015	55.75815
-0.6	3.5423	64.71424	61.17194	58.214108	54.671808
0.3	3.1549	146.13868	142.98378	40.511522	37.356622
0.9	3.1641	200.42164	197.25754	17.161718	13.997618
1.7	7.5498	272.79892	265.24912	-28.342298	35.892098
2.4	15.325	336.12904	320.80404	-81.631072	96.956072

X	Y	$P_3(x_i)$	$P_3(x_i) - y_i$	$P_5(x_i)$	$P_5(x_i) - y_i$
-10	-1314	-1010.6295	303.3705	-1008.285	305.715
-10.6	-1246	-1193.756916	52.243084	-1193.58344	52.41656003
-10	-863.8	-1010.6295	146.8295	-1008.285	144.485
-9.4	-809.7	-846.931932	37.231932	-846.0259552	36.32595523
-8.6	-673	-657.029036	15.970964	-660.0229392	12.97706083
-8	-667.2	-534.4745	132.7255	-540.0586	127.1414
-7.2	-453.5	-395.515252	57.984748	-402.644871	50.85512902
-6.7	-268.7	-321.826077	53.126077	-328.5636719	59.8636719
-6.2	-226.2	-257.511452	31.311452	-262.8777886	36.67778858
-5.6	-144.7	-191.829716	47.129716	-194.554908	49.85490797
-5.1	-165.9	-145.942621	19.957379	-145.9953949	19.90460511
-5	-111.6	-137.6705	26.0705	-137.1715	25.5715
-4.4	-84.82	-93.955532	9.135532	-90.28026323	5.460263232
-3.8	-65.82	-59.60654	6.21346	-53.45255862	12.36744138
-3.7	-44.61	-54.716577	10.106577	-48.25992695	3.649926951
-3.5	-49.57	-45.607325	3.962675	-38.66232813	10.90767188
-3	-31.88	-26.5135	5.3665	-19.1241	12.7559
-2.2	-8.569	-5.598252	2.970748	-0.139538976	8.429461024
-1.9	-5.669	-0.372957	5.296043	3.499154643	9.168154643
-1.5	-0.628	4.722275	5.350275	5.823384375	6.451384375
-0.6	3.5423	9.922484	6.380184	3.023224032	0.519075968
0.3	3.1549	9.414623	6.259723	-4.546932351	7.701832351
0.9	3.1641	7.702019	4.537919	-7.184034993	10.34813499
1.7	7.5498	5.851875	1.697925	0.261060951	7.288739049

Рис 1.3 – Графік знайдених поліномів.

Рис 1.4 – Різниця між знайденими поліномами.

У результаті апроксимації даних поліномами різних степенів (лінійний, параболічний, кубічний і п'ятого степеня) було встановлено, що точність опису залежить від ступеня полінома. Лінійний поліном забезпечує найпростішу модель, яка демонструє загальну тенденцію, але значно відхиляється віл фактичних значень, особливо V крайових зонах. Параболічний поліном більш точно описує дані, краще адаптуючись до їхньої кривини, але залишається недостатньо точним для складних змін у поведінці функції. Кубічний і поліном п'ятого степеня забезпечують значно менші відхилення, із поліномом п'ятого степеня, який показує найбільш точну відповідність фактичним даним, мінімізуючи відхилення на всіх інтервалах.

Проте варто зазначити, що використання високого ступеня полінома може призводити до перенавчання, особливо якщо дані мають випадковий шум. Поліном п'ятого степеня найкраще підходить для цих даних через їхню складність, але для практичного застосування слід враховувати баланс між складністю моделі і точністю. Загалом, метод найменших квадратів є ефективним інструментом для апроксимації, який дозволяє адекватно описати залежності у заданих даних та оцінити їхню поведінку.

Висновки:

У результаті виконання лабораторної роботи було побудовано інтерполяційний поліном Лагранжа та кубічний сплайн для заданих даних. Обчислення показали, що поліном Лагранжа демонструє точну відповідність у вузлових точках, але має суттєві осциляції між ними, що є типовою проблемою інтерполяції високого степеня. Натомість кубічний сплайн забезпечив гладку та стабільну апроксимацію, враховуючи локальні особливості кожного інтервалу. Це робить його більш надійним для практичних задач, де важлива плавність похідних.