# A Methodology to Define QoS and SLA Requirements in Service Choreographies

#### **Authors**

Victoriano Alfonso Phocco Diaz Daniel Macedo Batista

Institute of Mathematics and Statistics
Departament of Computer Science
University of Sao Paulo
alfonso7@ime.usp.br, batista@ime.usp.br

September 17, 2012

# Agenda

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- **5** Conclusions and Future Works

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

#### Key elements:

• Services (mainly Web services).

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
  - Service Orchestration .

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
  - Service Orchestration .
  - Service Choreography .

## SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
  - ► Service Orchestration
  - Service Choreography
- ...





Figure: SOA triangle (based on [W3C, 2002])



Figure: SOA triangle (based on [W3C, 2002])

## Service Orchestration



Figure: Service Orchestration

#### Service Orchestration

#### **Service Orchestration**



Figure: Service Orchestration

#### Service Orchestration

#### **Service Orchestration**



Figure: Service Orchestration

# Service Choreography

- Allows service composition in a collaborative manner.
- Describes the P2P interactions of the externally observable behavior of its participants.
- Don't have a single point of control or coordination.

#### **Service Choreography**



# Service Choreography



Figure: Service Choreography

# Service Choreography



Figure: Service Choreography

- A Choreography is a type of process.
  - ▶ Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
  - Formalizes the way business Participants coordinate their interactions.

- A Choreography is a type of process.
  - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
  - Formalizes the way business Participants coordinate their interactions
- Focus on the exchange of information (Messages) between these Participants.

- A Choreography is a type of process.
  - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
  - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:

- A Choreography is a type of process.
  - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
  - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:
  - ► Interconnection Model : With collaborations diagrams.

- A Choreography is a type of process.
  - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
  - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:
  - ► Interconnection Model: With collaborations diagrams.
  - ► Interaction Model: BPMN Choreographies. using special activities (*Choreography Activity*).

#### Interconnection Model

- Interconnected public views.
- Use of standard activities.
- "Collaboration" in BPMN 2.0.



#### Interaction Model

- Interactions globally captured.
- Basic building block: atomic interaction between two parties.
- "Choreography" in BPMN 2.0.



# **BPMN** Choreography



Figure: BPMN elements for modeling choreographies (BPMN 2.0).

# Generalized Stochastic Petri Net (GSPN) (I)

# Generalized Stochastic Petri Net (GSPN) (II)

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

#### Problem to Solve

• Planning of resources before/during development of choreography.

#### Problem to Solve

- Planning of resources before/during development of choreography.
- Little approaches don't evaluate choreographies:
  - focusing on QoS or
  - ▶ in earlier stages of development.

#### Problem to Solve

- Planning of resources before/during development of choreography.
- Little approaches don't evaluate choreographies:
  - focusing on QoS or
  - ▶ in earlier stages of development.
- To guarantee QoS about communications (network) is important.

#### **Objectives**

- To assess the impact of QoS attributes in a choreography interaction model.
- To propose a novel methodology to establish requirements for QoS and SLA in early stages of development.
- To plan the capacity of the network elements in choreographies.
- To convert a interaction model to a GSPN (Generalized Stochastic Petri Net) with QoS.

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

#### Description

- Mapping of a choreography to a GSPN.
  - ▶ The choreography is specified according "interaction model".
  - ▶ The choreography is specified in BPMN 2.0.
  - ► The resulting GSPN include a QoS model.

#### Description

- Mapping of a choreography to a GSPN.
  - ▶ The choreography is specified according "interaction model".
  - ► The choreography is specified in BPMN 2.0.
  - ► The resulting GSPN include a QoS model.
- 2 Configurations of resulting GSPN.

#### Description

- Mapping of a choreography to a GSPN.
  - ► The choreography is specified according "interaction model".
  - ► The choreography is specified in BPMN 2.0.
  - ► The resulting GSPN include a QoS model.
- 2 Configurations of resulting GSPN.
- Simulations of scenarios.

## Choreography Formalization

#### Definition: Process Choreography

A process choreography is a tuple:

$$\begin{split} PC &= (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \, \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) \\ \text{where:} \end{split}$$

- $\mathcal{O}$  is a set of objects and it's partitioned in **activities**  $\mathcal{A}$ , **events**  $\mathcal{E}$  and **gateways**  $\mathcal{G}$ .
- A, is the set of **choreography tasks** T.
- $\mathcal{E}$  is the set of **events** and it's is partitioned in **Start event**  $e^{\mathcal{S}}$ , **Intermediate events**  $\mathcal{E}^{\mathcal{I}}$  and **End event**  $e^{\mathcal{E}}$ .
- $\mathcal{G}$  é the set of gateways and is partitioned in parallel fork gateways  $\mathcal{G}^F$ , parallel join gateways  $\mathcal{G}^J$ , data-based XOR gateways  $\mathcal{G}^X$ , XOR merge gateways  $\mathcal{G}^V$  and event-based XOR gateways  $\mathcal{G}^M$ .
- $\mathcal{F} \subseteq \mathcal{O} \times \mathcal{O}$  is the control flow relation, i.e. a **set of sequence flows** connecting objects.

## QoS Model

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
  - In service operation: time to complete the service.
  - ▶ In network: delay and communication errors.
  - ▶ In message: format of message.

# Mapping BPMN to Petri Net (I)



Figure: Mapping of two different choreography tasks with the QoS model

# Mapping BPMN to Petri Net (II)



Figure: Mapping of events and gateways elements to modules of Petri nets

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

**Algorithm 2** Mapping of choreography specified in BPMN 2.0 to a GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Generalized Stochastic Petri Net GSPN<sub>QoS</sub> .

Consider  $CT_i \in \mathcal{T}$ ,  $G_j \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ .  $i, j, k \in \mathbb{N}$ .

**Algorithm 3** Mapping of choreography specified in BPMN 2.0 to a GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

Consider  $CT_i \in \mathcal{T}$ ,  $G_j \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ .  $i, j, k \in \mathbb{N}$ .

Consider  $PNQoS(CT_i)$  the respective GSPN including QoS as a function of the type of  $CT_i$  according to mapping rules.

**Algorithm 4** Mapping of choreography specified in BPMN 2.0 to a GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

Consider  $CT_i \in \mathcal{T}$ ,  $G_j \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ .  $i, j, k \in \mathbb{N}$ .

Consider  $PNQoS(CT_i)$  the respective GSPN including QoS as a function of the type of  $CT_i$  according to mapping rules.

Consider  $PNQoS(G_j)$  the respective GSPN including QoS as a function of the type of  $G_j$  according to mapping rules.

**Algorithm 5** Mapping of choreography specified in BPMN 2.0 to a GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

Output: Generalized Stochastic Petri Net  $GSPN_{QoS}$ .

Consider  $CT_i \in \mathcal{T}$ ,  $G_j \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ .  $i, j, k \in \mathbb{N}$ .

Consider  $PNQoS(CT_i)$  the respective GSPN including QoS as a function of the type of  $CT_i$  according to mapping rules.

Consider  $PNQoS(G_j)$  the respective GSPN including QoS as a function of the type of  $G_j$  according to mapping rules.

Consider  $PNQoS(E_k)$  the respective GSPN including QoS as a function of the type of  $E_k$  according to mapping rules.

**Algorithm 6** Mapping of choreography specified in BPMN 2.0 to a GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ \textit{PC} = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^{S}\}, \mathcal{E}^{I}, \{e^{E}\}, \mathcal{E}^{I_{M}}, \mathcal{E}^{I_{T}}, \mathcal{G}^{F}, \mathcal{G}^{J}, \\ \mathcal{G}^{X}, \mathcal{G}^{M}, \mathcal{G}^{V}, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$ 

**Output:** Generalized Stochastic Petri Net *GSPN*<sub>QoS</sub> .

Consider  $CT_i \in \mathcal{T}$ ,  $G_j \in \mathcal{G}$  and  $E_k \in \mathcal{E}$ .  $i, j, k \in \mathbb{N}$ .

Consider  $PNQoS(CT_i)$  the respective GSPN including QoS as a function of the type of  $CT_i$  according to mapping rules.

Consider  $PNQoS(G_i)$  the respective GSPN including QoS as a function of the type of  $G_i$  according to mapping rules.

Consider  $PNQoS(E_k)$  the respective GSPN including QoS as a function of the type of  $E_k$  according to mapping rules.

Consider  $\oplus$  the binary operator of composition of two GSPNs that returns other GSPN.

 $GSPN_{QoS} \leftarrow Empty \ Petri \ Net$ 

 $GSPN_{QoS} \leftarrow Empty \ Petri \ Net$ For  $CT_i \in \mathcal{T}$  Do

End

```
\begin{aligned} \textit{GSPN}_{QoS} \leftarrow \textit{Empty Petri Net} \\ \textbf{For } \textit{CT}_i \in \mathcal{T} \quad \textbf{Do} \\ \textit{GSPN}_{QoS} \leftarrow \textit{GSPN}_{QoS} \oplus \textit{PNQoS}(\textit{CT}_i) \end{aligned}
```

End

```
\begin{array}{l} \textit{GSPN}_{QoS} \leftarrow \textit{Empty Petri Net} \\ \textbf{For } \textit{CT}_i \in \mathcal{T} \quad \textbf{Do} \\ \textit{GSPN}_{QoS} \leftarrow \textit{GSPN}_{QoS} \oplus \textit{PNQoS}(\textit{CT}_i) \\ \textit{Add a arrival timed Transition} \text{ at beginning of the } \textit{GSPN}_{QoS}. \\ \textbf{End} \end{array}
```

```
GSPN_{QoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
Add a arrival timed Transition at beginning of the GSPN_{QoS}.
End
For G_j \in \mathcal{G} Do
End
```

```
GSPN_{QoS} \leftarrow Empty \ Petri \ Net
For \ CT_i \in \mathcal{T} \quad \textbf{Do}
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
Add a arrival timed Transition at beginning of the GSPN_{QoS}.
End
For \ G_j \in \mathcal{G} \quad \textbf{Do}
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(G_j)
End
```

```
GSPN_{OoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
   GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
   Add a arrival timed Transition at beginning of the GSPN<sub>QoS</sub>.
End
For G_i \in \mathcal{G} Do
   GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(G_i)
End
For E_{\nu} \in \mathcal{E} Do
End
```

```
GSPN_{QoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
   GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
   Add a arrival timed Transition at beginning of the GSPN<sub>QoS</sub>.
End
For G_i \in \mathcal{G} Do
   GSPN_{OoS} \leftarrow GSPN_{OoS} \oplus PN(G_i)
End
For E_k \in \mathcal{E} Do
   GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(E_k)
End
```

```
GSPN_{OoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
   GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
   Add a arrival timed Transition at beginning of the GSPN<sub>QoS</sub>.
End
For G_i \in \mathcal{G} Do
   GSPN_{OoS} \leftarrow GSPN_{OoS} \oplus PN(G_i)
End
For E_{\nu} \in \mathcal{E} Do
   GSPN_{OoS} \leftarrow GSPN_{OoS} \oplus PN(E_k)
End
```

Add a starting Place and immediate Transition at the beginning of the GSPNQoS.

```
GSPN_{QoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
Add a arrival timed Transition at beginning of the GSPN_{QoS}.

End

For G_j \in \mathcal{G} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(G_j)
End

For E_k \in \mathcal{E} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(E_k)
End
```

Add a starting Place and **immediate Transition** at the beginning of the  $GSPN_{QoS}$ . Add a ending Place and **immediate Transition** at the end of the  $GSPN_{QoS}$ .

```
GSPN_{QoS} \leftarrow Empty \ Petri \ Net
For CT_i \in \mathcal{T} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i)
Add a arrival timed Transition at beginning of the GSPN_{QoS}.

End

For G_j \in \mathcal{G} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(G_j)
End

For E_k \in \mathcal{E} Do
GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(E_k)
End
```

Add a starting Place and **immediate Transition** at the beginning of the  $GSPN_{QoS}$ . Add a ending Place and **immediate Transition** at the end of the  $GSPN_{QoS}$ .

Return GSPN<sub>QoS</sub>

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- 5 Conclusions and Future Works

## Scenario

# Mapping

# Configuration

## Simulation

#### Results

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- **5** Conclusions and Future Works

#### **Conclusions**

 We have prosposed a Nobel methodology to aid define QoS and SLA requirements in service Choreography.

#### **Conclusions**

 We have prosposed a Nobel methodology to aid define QoS and SLA requirements in service Choreography.

#### **Future Works**

#### **Future Works**

•

Thanks so much!