Math 3B: Lecture 17

Noah White

November 8, 2017

Question

Why are differential equations important?

Question

Why are differential equations important?

Answer

They describe nature!

Question

Why are differential equations important?

Answer

They describe nature!

Question

Why are differential equations important?

Answer

They describe nature!

Today we will see an number of real world situations

• The goal is to write down a function y(t) that describes something we are interested in (e.g. population/mass/etc)

Question

Why are differential equations important?

Answer

They describe nature!

Today we will see an number of real world situations

- The goal is to write down a function y(t) that describes something we are interested in (e.g. population/mass/etc)
- as some other variable changes (usually time)

Question

Why are differential equations important?

Answer

They describe nature!

Today we will see an number of real world situations

- The goal is to write down a function y(t) that describes something we are interested in (e.g. population/mass/etc)
- as some other variable changes (usually time)
- We can't do this directly, but we can write down an ODE that y satisfies instead.

The senario

Want to find a function N(t), describing the sie of a population at time t (in years). Assume

The senario

Want to find a function N(t), descibing the sie of a population at time t (in years). Assume

• The population is 100 people when t=0

The senario

Want to find a function N(t), descibing the sie of a population at time t (in years). Assume

- The population is 100 people when t=0
- No immigration or emmigration

The senario

Want to find a function N(t), descibing the sie of a population at time t (in years). Assume

- The population is 100 people when t = 0
- No immigration or emmigration
- Number of births is proportional to the total number of people. So

bN(t) births per year, for some b

The senario

Want to find a function N(t), describing the sie of a population at time t (in years). Assume

- The population is 100 people when t = 0
- No immigration or emmigration
- Number of births is proportional to the total number of people. So

bN(t) births per year, for some b

 Number of deaths is proportional to the total number of people. So

dN(t) deaths per year, for some d

The total change in population at time t is

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \text{ births at } t - \text{ deaths at } t$$
$$= bN(t) - dN(t)$$
$$= (b - d)N(t).$$

The total change in population at time t is

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \text{ births at } t - \text{ deaths at } t$$
$$= bN(t) - dN(t)$$
$$= (b - d)N(t).$$

In real life we would determine b and d experimentally.

The total change in population at time t is

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \text{ births at } t - \text{ deaths at } t$$
$$= bN(t) - dN(t)$$
$$= (b - d)N(t).$$

In real life we would determine b and d experimentally. Let r=b-d. the instinsic growth rate. So our model is

$$\frac{\mathrm{d}N}{\mathrm{d}t}=rN.$$

and we know N(0) = 100.

Behaviour of solutions

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN.$$

Case 1: r = 0

The population never grows or shrinks, it always stays the same (so N(t) = 100 for all t).

Behaviour of solutions

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN.$$

Case 1: r = 0

The population never grows or shrinks, it always stays the same (so N(t) = 100 for all t).

Case 2: r > 0

The population is increasing indefinitely.

Behaviour of solutions

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN.$$

Case 1: r = 0

The population never grows or shrinks, it always stays the same (so N(t) = 100 for all t).

Case 2: r > 0

The population is increasing indefinitely.

Case 3: r < 0

The population is decreasing indefinitely.

Solution to a simple ODE

Theorem

For any constant a, if y is a solution to the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ay$$

then y is given by

$$y = Ce^{ax}$$

for some constant C.

Solution to a simple ODE

Theorem

For any constant a, if y is a solution to the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ay$$

then y is given by

$$y = Ce^{ax}$$

for some constant C.

Next time

We will see why, but for now we can verify it is actually a solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}Ce^{ax} = C\frac{\mathrm{d}}{\mathrm{d}x}e^{a}x = Cae^{ax} = ay.$$

We know our population model was governed by

$$\frac{\mathrm{d}N}{\mathrm{d}t}=(b-d)N.$$

We know our population model was governed by

$$\frac{\mathrm{d}N}{\mathrm{d}t}=(b-d)N.$$

So the general solution is

$$N(t) = Ce^{(b-d)t}$$

for some constant C.

We know our population model was governed by

$$\frac{\mathrm{d}N}{\mathrm{d}t}=(b-d)N.$$

So the general solution is

$$N(t) = Ce^{(b-d)t}$$

for some constant C. To detirmine C, we need one extra piece of information, N(0)=100.

We know our population model was governed by

$$\frac{\mathrm{d}N}{\mathrm{d}t}=(b-d)N.$$

So the general solution is

$$N(t) = Ce^{(b-d)t}$$

for some constant C. To detirmine C, we need one extra piece of information, N(0)=100.

$$100 = Ce^{(b-d)}$$
 so $C = 100e^{(d-b)}$.

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

 When the popluation becomes large, the death rate should increase!

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

$$(d+kN(t))N(t).$$

This means

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

$$(d+kN(t))N(t).$$

This means

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

$$(d+kN(t))N(t).$$

This means

$$\frac{\mathrm{d}N}{\mathrm{d}t} = bN - (d + kN)N$$

Where K = r/k.

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

$$(d+kN(t))N(t).$$

This means

$$\frac{\mathrm{d}N}{\mathrm{d}t} = bN - (d + kN)N$$
$$= (b - d - kN)N = (r - kN)N$$

Where K = r/k.

The previous example is a good first approximation but it is not very realistic in the long term. Usually there are constrains, e.g amount of space, food, etc.

- When the popluation becomes large, the death rate should increase!
- Lets assume this is linear, i.e. number of deaths at time t

$$(d+kN(t))N(t).$$

This means

$$\frac{\mathrm{d}N}{\mathrm{d}t} = bN - (d + kN)N$$

$$= (b - d - kN)N = (r - kN)N$$

$$= r\left(1 - \frac{kN}{r}\right)N = r\left(1 - \frac{N}{K}\right)N$$

Where K = r/k.

The equation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

is called the Logistic equation and K is the carrying capacity.

Behaviour of logistic growth

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1.
$$N(0) = 0$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Behaviour of logistic growth

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1. N(0) = 0

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Case 2.
$$N(0) = K$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains K.

Behaviour of logistic growth

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1. N(0) = 0

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Case 2.
$$N(0) = K$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains K.

Key takeaway

Both N(t) = 0 and N(t) = K are solutions to the ODE. They are called equalibrium solutions.

Behaviour of logistic growth

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 3.
$$0 \le N(0) \le K$$

In this case, N is initially increasing and so becomes more positive, slowing down as it gets close to K.

Behaviour of logistic growth

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 3. $0 \le N(0) \le K$

In this case, N is initially increasing and so becomes more positive, slowing down as it gets close to K.

Case 4.
$$N(0) \ge K$$

In this case N is initially decreasing but decreases slower and slower as it gets close to K.

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y=e^{\sin x}$ is a solution of $\frac{\mathrm{d}y}{\mathrm{d}x}=y\cos x$. To check note that

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y=e^{\sin x}$ is a solution of $\frac{\mathrm{d}y}{\mathrm{d}x}=y\cos x$. To check note that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\sin x} \cos x$$

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y = e^{\sin x}$ is a solution of $\frac{dy}{dx} = y \cos x$. To check note that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\sin x} \cos x$$
$$y \cos x = e^{\sin x} \cos x$$

Separation of variables is a very powerful technique for solving ODEs. It works, whenever we can write out an ODE in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)g(x)$$

Separation of variables is a very powerful technique for solving ODEs. It works, whenever we can write out an ODE in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)g(x)$$

It works by

1. moving all the y's over to the left:

$$\frac{1}{f(y)}\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)$$

Separation of variables is a very powerful technique for solving ODEs. It works, whenever we can write out an ODE in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)g(x)$$

It works by

1. moving all the y's over to the left:

$$\frac{1}{f(y)}\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)$$

2. integrating both sides (with respect to x):

$$\int \frac{1}{f(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int g(x) \, \mathrm{d}x.$$

Separation of variables is a very powerful technique for solving ODEs. It works, whenever we can write out an ODE in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)g(x)$$

It works by

1. moving all the y's over to the left:

$$\frac{1}{f(y)}\frac{\mathrm{d}y}{\mathrm{d}x}=g(x)$$

2. integrating both sides (with respect to x):

$$\int \frac{1}{f(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int g(x) \, \mathrm{d}x.$$

3. we can use the integration by substitution formula to rewrite the left hand side:

$$\int \frac{1}{f(y)} \, \mathrm{d}y = \int g(x) \, \mathrm{d}x.$$

Separation of variables is a very powerful technique for solving ODEs. It works, whenever we can write out an ODE in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)g(x)$$

It works by

1. moving all the y's over to the left:

$$\frac{1}{f(y)}\frac{\mathrm{d}y}{\mathrm{d}x} = g(x)$$

2. integrating both sides (with respect to x):

$$\int \frac{1}{f(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int g(x) \, \mathrm{d}x.$$

3. we can use the integration by substitution formula to rewrite the left hand side:

$$\int \frac{1}{f(y)} \, \mathrm{d}y = \int g(x) \, \mathrm{d}x.$$

4. solve for y!

On the board...

Definition

A first order ODE is linear if it is of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a + by$$

for constants a and b.

Definition

A first order ODE is linear if it is of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a + by$$

for constants a and b.

Definition

A first order ODE is linear if it is of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a + by$$

for constants a and b. In other words, the right hand side is a linear function of y.

Definition

A first order ODE is linear if it is of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a + by$$

for constants a and b. In other words, the right hand side is a linear function of y.

Examples

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ay, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -\lambda y.$$

A mixing model describes the concentration of something over time, if

• rate in is constant

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \text{rate in } - \text{ rate out}$$
$$= a - by$$

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

so

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \text{rate in } - \text{ rate out}$$
$$= a - by$$

Note Something could mean (for example)

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

SO

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \text{rate in } - \text{ rate out}$$
$$= a - by$$

Note

Something could mean (for example)

concentration of a drug in bloodstream

A mixing model describes the concentration of something over time, if

- rate in is constant
- rate out is proportional to concentration

so

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathsf{rate} \; \mathsf{in} \; - \; \mathsf{rate} \; \mathsf{out}$$
$$= \mathsf{a} - \mathsf{b}\mathsf{y}$$

Note

Something could mean (for example)

- concentration of a drug in bloodstream
- pollutant in water supply

General solution

Using separation of variables, we can show that the general solution to

$$\frac{\mathrm{d}y}{\mathrm{d}t} = a - by$$

is

$$y(t) = \frac{a}{b} - Ce^{-bt}$$

where C is an arbitrary constant.

A drug with a half-life of 2 hours is injected into the bloodstream with an infusion rate of 10 mg/h. Determine the concentration y(t) at time t.

Solution

A drug with a half-life of 2 hours is injected into the bloodstream with an infusion rate of 10 mg/h. Determine the concentration y(t) at time t.

Solution

Ignoring infusion, every 2 hours the amount of drug halves.

A drug with a half-life of 2 hours is injected into the bloodstream with an infusion rate of 10 mg/h. Determine the concentration y(t) at time t.

Solution

- Ignoring infusion, every 2 hours the amount of drug halves.
- Starting with M mg, after t hours there will be

$$M\left(\frac{1}{2}\right)^{t/2} = Me^{-0.5t \ln(2)} \text{ mg left}$$

A drug with a half-life of 2 hours is injected into the bloodstream with an infusion rate of 10 mg/h. Determine the concentration y(t) at time t.

Solution

- Ignoring infusion, every 2 hours the amount of drug halves.
- Starting with M mg, after t hours there will be

$$M\left(\frac{1}{2}\right)^{t/2} = Me^{-0.5t\ln(2)}$$
 mg left

 Thus the rate at which the drug is leaving (at time t) is given by

$$0.5 \ln(2) Me^{-0.5t \ln(2)} = 0.5 \ln(2)$$
 (current concentration) mg/h.

• If we infuse the drug at a rate of 10 mg/h we have

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 0.5\ln(2)y$$

ullet If we infuse the drug at a rate of 10 mg/h we have

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 0.5\ln(2)y$$

• The general solution to this is

$$y(t) = \frac{10}{0.5 \ln(2)} - Ce^{-0.5 \ln(2)t}.$$

If we infuse the drug at a rate of 10 mg/h we have

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 0.5\ln(2)y$$

• The general solution to this is

$$y(t) = \frac{10}{0.5 \ln(2)} - Ce^{-0.5 \ln(2)t}.$$

• Since there was initially no drug in the bloodstream, y(0) = 0,

$$0 = \frac{20}{\ln(2)} - C \approx 28.9 - C$$

If we infuse the drug at a rate of 10 mg/h we have

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 0.5\ln(2)y$$

• The general solution to this is

$$y(t) = \frac{10}{0.5 \ln(2)} - Ce^{-0.5 \ln(2)t}.$$

• Since there was initially no drug in the bloodstream, y(0) = 0,

$$0 = \frac{20}{\ln(2)} - C \approx 28.9 - C$$

Thus at time t the concentration is

$$y(t) = 28.9 - 28.9e^{-0.3t} = 28.9(1 - e^{-0.3t})$$

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

$$\frac{\mathrm{d}T}{\mathrm{d}t} = k(A - T)$$

General solution

$$T(t) = A - Ce^{-kt}$$
.

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

• We know T(0) = 90 and T(20) = 86.

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

- We know T(0) = 90 and T(20) = 86.
- Thus

$$90 = 70 - C$$
 so $C = -20$.

•
$$T(t) = 70 + 20e^{-kt}$$

- $T(t) = 70 + 20e^{-kt}$
- To find k we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

- $T(t) = 70 + 20e^{-kt}$
- To find *k* we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

- $T(t) = 70 + 20e^{-kt}$
- To find *k* we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

• The model is thus $T(t) = 70 + 20e^{-0.01t}$. We want to solve

$$75 = 70 + 20e^{-0.01t}.$$

- $T(t) = 70 + 20e^{-kt}$
- To find k we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

• The model is thus $T(t) = 70 + 20e^{-0.01t}$. We want to solve

$$75 = 70 + 20e^{-0.01t}.$$

• Rearranging we get $20e^{-0.01t} = 5$ i.e.

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

• Applying a logarithm

$$-0.01t = \ln\left(\frac{1}{4}\right)$$

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

Applying a logarithm

$$-0.01t = \ln\left(\frac{1}{4}\right)$$

So we get

$$t = -100 \ln \left(\frac{1}{4}\right) \approx 138 = 2 \text{ hours } 18 \text{ minutes.}$$