

Smart Multi-Energy System – SMES

Roch Drozdowski-Strehl Dr Sanjay C Kuttan - Program Director

Energy Smart & Research Innovation

http://erian.ntu.edu.sg

d-erian@ntu.edu.sg

Energy Research Institute @ NTU (ERI@N)

1 CleanTech Loop, #06-04 CleanTech One, Singapore 637151 Phone: (65) 6592 1786 / 2468 Fax: (65) 6694 6217 Multi-use-multi-energy estates present opportunities for

further optimisation

Under Optimized Mixed Use Multi Energy Estates

Problem Statement and Opportunity

- Conventional gas and electricity systems are decoupled resulting low optimisation, under utilisation of assets, energy losses and over design
- District cooling/heating systems can provide greater efficiency within the district but are also decoupled from other energy systems
 - Increased distributed renewable energy systems coupled with energy storage whilst addressing intermittency challenges have limited controllability and can result in network instability
 - Opportunity to deliver energy efficiency, cost savings, better utilisation of assets with greater system level optimisation and resilience enabled by smart grid functionalities in an intelligent system

Estate and facility management system have limited capability to generate insights for effective operational decision making

Key challenges

- Big data not smart data coupled with operational insights
- Monitoring of assets performance with limited optimisation
- Asset level optimisation not estate or facility level optimisation
- Reactive to failures not pro-active to limit impact of failures
- Act as a consumer and not partner in system level resilience

SMES provides operational insights through algorithms to drive energy efficiency, cost reduction and system resiliency

SMES software platform serves as a central command center enabling smart grid functionalities across two key management systems

SMES's in house developed software solution key features to help operators of facility and estate management

Supply side management

- Turbine power generation + WHR
- Solar PV generation
- Wind power generation
- Thermal storage
- Electrical storage
- Other distributed energy resources

Data driven Insights

- System load forecasting
- System supply forecasting
- Asset failure prediction
- Benchmarking (top/flop)
- System economic dispatch
- Curtailable load availability

Demand side management

- Industrial load
- Building load
 - Air conditioning
 - Heating
 - Lighting
 - Occupancy
- Storage systems
 - Thermal
 - Electrical
- Building grid (AC/DC)

Grid resilience and market monetisation

- Demand response program
- Interruptible load program

System of system level optimization using a bottoms up strategy moving from the equipment to the building to the estate

SMES's project will demonstrate the benefits of an integrated

Total energy savings: -30 to -50%

http://erian.ntu.edu.sg

