A:
$$a_{ij} = P(X_{t+1} = j \mid X_t = i)$$

$X_{t} \mid X_{t+1}$	A	В	Н	S
A	0.6	0.1	0.1	0.2
В	0.0	0.3	0.2	0.5
Н	0.8	0.1	0.0	0.1
S	0.2	0.0	0.1	0.7

B:
$$b_{ik} = P(O_t = k | X_t = i)$$

X _t O _t	р	е	b	1
A	0.6	0.2	0.1	0.1
В	0.1	0.4	0.1	0.4
Н	0.0	0.0	0.7	0.3
S	0.0	0.0	0.1	0.9

 $P(X_t = i)$:

A	В	Н	S	
0.4	0.2	0.1	0.3	

Find:

$$P(O_t | A, B, P(X_t)) = ?$$

Compute:

9=

$$P(O_t = p) = 0.4 \times 0.6 + 0.2 \times 0.1 + 0.1 \times 0.0 + 0.3 \times 0.0 = 0.24 + 0.02 = 0.26$$

$$P(O_t = e) = 0.4 \times 0.2 + 0.2 \times 0.4 + 0.1 \times 0.0 + 0.3 \times 0.0 = 0.08 + 0.08 = 0.16$$

$$P(O_t = b) = 0.4 \times 0.1 + 0.2 \times 0.1 + 0.1 \times 0.7 + 0.3 \times 0.1 = 0.04 + 0.02 + 0.03 = 0.16$$

$$P(O_t = 1) = 0.4 \times 0.1 + 0.2 \times 0.4 + 0.1 \times 0.3 + 0.3 \times 0.9 = 0.04 + 0.08 + 0.03 + 0.27$$

$$= 0.42$$

$$P(O_t) = \boxed{0.26}$$

most likely $O_t = 1$

0,42

$$\pi = P(X_i = i)$$
:

A	В	Н	s	
0.5	0.0	0.0	0.5	

observations / emissions: $o_{1:4} = \{ 1, p, p, b \}$

$$P(o_{1:4} | A, B, \pi) = ?$$

Element-wise product:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \circ \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} ad \\ be \\ cf \end{bmatrix}$$

Compute:

$$\begin{array}{c|cccc}
O_{1} & = & 0.05 \\
0.4 & & 0 \\
O_{1} & & 0 \\
O_{2} & & & 0
\end{array}$$

$$O_2 = P$$
 alla bolumnor i $A \cdot X_{t-1}(i)$

$$O_2 = P$$
alla bolumnor i $A \cdot X_{t-1}(i)$
i B

$$0.05 \times 0.6 + 0.0 \times 0.0 + 0.0 \times 0.0 + 0.45 \times 0.2$$

$$\alpha_{2}(i) = 0.05 \times 0.1 + 0.0 \times 0.3 + 0.0 \times 0.1 + 0.45 \times 0.0$$

$$0.05 \times 0.1 + 0.0 \times 0.2 + 0.0 \times 0.0 + 0.0 \times 0.1$$

$$0.05 \times 0.2 + 0.0 \times 0.5 + 0.0 \times 0.1 + 0.95 \times 0.7$$

$$\alpha_{3}(i) = \begin{array}{c} 0.072 \times 0.6 + 0.005 \times 0.0 + 0.0 \times 0.8 + 0.0 \times 0.2 \\ 0.072 \times 0.1 + 0.005 \times 0.3 + 0.0 \times 0.1 + 0.0 \times 0.0 \\ 0.072 \times 0.1 + 0.005 \times 0.2 + 0.0 \times 0.1 + 0.0 \times 0.1 \\ 0.072 \times 0.2 + 0.005 \times 0.5 + 0.0 \times 0.1 + 0.0 \times 0.7 \end{array}$$

$$\begin{array}{c|c}
0.6 & = & \bigcirc \\
0.1 & \bigcirc \\
0.0 & & 0.0 \\
0.0 & & 0.0
\end{array}$$

$$\alpha_{4}(i) = \frac{0.02592 \times 0.6 + 0.00035 \times 0.0 + 0.0 \times 0.8 + 0.0 \times 0.2}{0.02592 \times 0.1 + 0.00035 \times 0.3 + 0.0 \times 0.1 + 0.0 \times 0.0}$$

$$\frac{0.02592 \times 0.1 + 0.00335 \times 0.2 + 0.0 \times 0.1 + 0.0 \times 0.0}{0.0259 \times 0.2 + 0.0035 \times 0.2 + 0.0 \times 0.1 + 0.0 \times 0.1}$$

$$0.0259 \times 0.2 + 0.0035 \times 0.5 + 0.0 \times 0.1 + 0.0 \times 0.7$$

$$\begin{array}{c|c} O_{1}1 & = & O_{2}00156 \\ O_{1}1 & O_{2}000281 \\ O_{2}1 & O_{3}000 \\ O_{4}1 & O_{5}000 \\ O_{5}1 &$$

$$\alpha_4(i) = 0.000 \frac{281}{0.0019173}$$

0.00055515

$$P(o_{1:4} | A, B, \pi) = \frac{\sum \alpha_{4}(i)}{-0.00431}$$

-
-
44
- 11
30
2.4
-
e rema
11
"
- 2
×
100
0
Mile
- 11
Ot
-
22
A.
-

				_
S	0.2	0.5	0.1	0.7
Η	0.1	0.2	0.0	0.1
8	0.1	0.3	0.1	0.0
A	9.0	0.0	8.0	0.2
4 X +1	A	00	I	S

=
11
×
×
11
0
۵
11
- 25

0.1	0.4	0.3	6.0
0.1	0.1	0.7	0.1
0.2	0.4	0.0	0.0
			10000
A	В	н	S
	0.6 0.2 0.1	0.6 0.2 0.1 0.1 0.4 0.1	A 0.6 0.2 0.1 0.1 B 0.1 0.4 0.1 0.4 H 0.0 0.0 0.7 0.3

11
0

150	0.1
	1 13

	1	ı		
į	ì	•		
*	S	Ę		
	u	ô	Γ	

0.1

0

0.0

-	
-	
11	
"	
J	
~	
144	
11	
200	

S	0.5
I	0.0
В	0.0
A	0.5

Observations: O_{1:4} = {b,p,l,e}

Find: Most likely hidden state sequence:

0, = R 52(1) =

most like 17
grevious

G-018

0.0005

max \$205 x \$0.1 x \$0.0 , \$0 x \$0.0 , \$0.0 , \$0.00 , \$0.05 x \$0.1 x \$0.0) max (0.05 x 0.6 , 0 x 0.0 x 0.6 , 0 x 0.8 x 0.6 , 0.05 x 0.6 x 0.6) max (0.05 x 0.1 x 0.1, 0 x 0.3 x 0.1, 0 x 0.1 x 0.1 , 0.05 x 0.0 x 0.1) max (005 x 0200, 0 x0.5x00, 0 x0.1 x0.0, 0.05x 0.7 x00) Probability (91 State Heing

O₃ = \(\times_{3}(!) = \)

max (0.018 x 0 6 x 0.1, 0 coo 7 x 0 x 0.1, 0 coo x 0.1, 0 coo x 0.1, 0 coo x 0.2x 0.1) max (00/6 × 0.1 × 0.4 , 0.0005 × 0-3 × 0.4 , 0 ασφχ 0.1 × 0.1, 0 × 0 × 0.4) max (0.01/6 x 0.2, 0.00, x 0.5 x 0.4, 0.000 x 0.1 x 0.9, 0 x 0.7 x 0.9) max (0,016 x0-1 x 0-3, 0,0005 x 0.2 x 0.3, 0,000 x 0.5, 0 x 0.1 x 0.3)

max (0-0068 x 0.1 x 0.4, 0.000 2 x 0.4, 0.0005 x 0.1 x 0.4, 0.00 32 x 0 x 0.4) max (00068 x0-1 x0, 0.000 2x0.2x0, 0.0005/x0x0, 0.00, 0.00340.1x0) max (0.06/01 × 0.2 × 0 , 0.0007/20.5x 0 , 0.00054 × 0.1 × 0 , 0.00324 × 0.7x 6) max (0.00108 x 0.6 x 0 2,0.000 f2 x 0 x 0.2,0.00054 x 0.8 0.2, 0.0072 0.502)

state (4.5)	N X	Ø 8
(296.167	0	0
	11	

States and deltas over time:

state

52 (0 0 0
state	
Sts	, 1, 1, 1, 1
(i) '9	0.09

state	444
53(1)	0.0019 0.00072 0.00974

state	41 M 11/1
δ ₄ (i)	1.296.10°7 8.64.10°3

Backtracking gives two answers: $x^*_{i,i} = \{\underline{A}, \underline{A}, \underline{A}, \underline{A}, \underline{A}\}$ and $x^*_{i,i} = \{\underline{A}, \underline{A}, \underline{B}, \underline{B}\}$