MA1508E: LINEAR ALGEBRA FOR ENGINEERING

Lecture 7 Notes

References

- 1. Elementary Linear Algebra: Application Version, Section 4.3-4.4
- 2. Linear Algebra with Application, Section 5.2, 6.3

3.8 Linear Independence

Consider
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{u}_4 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. Then

$$span\{u_1, u_2, u_3, u_4\} = span\{u_1, u_2, u_3\} = span\{u_1, u_2\} = V$$

where V is the xy-plane in \mathbb{R}^3 . But span $\{\mathbf{u}_1\}$ is the x-axis, which is not V. So it seems like we are allowed to remove some vectors and still span the same subspace. It is then natural to ask if given a set S such that span(S) = V, can we find a smallest subset of S that can still do the job of spanning V. In the above example, one can say that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a smallest set. But note that the choice of smallest set is not unique, we can also choose $\{\mathbf{u}_3, \mathbf{u}_4\}$; in fact, in this case, any choice of two vectors will give us a smallest set to span the xy-plane.

A vector \mathbf{u} is linearly dependent on $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ if it is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$,

$$\mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$$

for some $c_1, c_2, ..., c_k \in \mathbb{R}$.

Example.

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} + \begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \begin{pmatrix} 2\\3\\0 \end{pmatrix}$$

So $\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$ is linearly dependent on $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. But observe that

$$\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}.$$

So we may also say that $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ is linearly dependent on $\begin{pmatrix} 2\\3\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$, and $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ is

linearly dependent on $\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

So it is more accurate to describe the linearly dependency of a set rather than individual vectors. So we might say that a set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent if one of the \mathbf{u}_i is a linear combination of the others. This is easy to understand, but very tedious to check, since by this definition, we have to check for consistency of

$$(\mathbf{u}_1 \cdots \mathbf{u}_{i-1} \mathbf{u}_{i+1} \cdots \mathbf{u}_k \mid \mathbf{u}_i)$$

for every single i = 1, ..., n. However, observe that if say, without lost of generality,

$$\mathbf{u}_k = c_1 \mathbf{u}_1 + \mathbf{u}_2 + \dots + c_{k-1} \mathbf{u}_{k-1}, \tag{3}$$

then

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_{k-1}\mathbf{u}_{k-1} - \mathbf{u}_k = \mathbf{0},$$

that is, we are able to find a nontrivial (because the coefficient of \mathbf{u}_k is $-1 \neq 0$) linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ to give $\mathbf{0}$. We may replace \mathbf{u}_k in (3) with any of the \mathbf{u}_i and still have the same conclusion that there is a nontrivial combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ to give us $\mathbf{0}$. Hence, we now have a useful definition of linear dependency.

A set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is <u>linearly dependent</u> if there exists $c_1, c_2, ..., c_k \in \mathbb{R}$, not all zero such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}.$$

A set is <u>linearly independent</u> otherwise. Explicitly, a set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly independent if whenever $c_1, c_2, ..., c_k \in \mathbb{R}$ is such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0},$$

necessarily $c_1 = c_2 = \cdots = c_k = 0$. In words, the only linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ to give $\mathbf{0}$ is the trivial one.

Theorem. A set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent if and only if there is a i = 1, ..., k such that

$$\mathbf{u}_{i} = c_{1}\mathbf{u}_{1} + \dots + c_{i-1}\mathbf{u}_{i-1} + c_{i+1}\mathbf{u}_{i+1} + \dots + c_{k}\mathbf{u}_{k},$$

that is, \mathbf{u}_i is a linear combination of the rest of the vectors in the set S.

Thus to check if a set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent, we are asking if the (homogeneous) system associated to

$$(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \mid \mathbf{0})$$

has nontrivial solution. We will state it as a theorem.

Theorem. A set $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly independent if and only if the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution, where $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ is the matrix whose column is formed by the vectors in S.

But recall that the system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has nontrivial solutions if and only if the reduced row-echelon form of \mathbf{A} has non-pivot columns (since the number of non-pivot column is equal to the number of parameters required in a general solution).

Theorem. A set $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly dependent if and only if any rowechelon form of \mathbf{A} has non-pivot columns, where $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ is the matrix whose column is formed by the vectors in S. We will learn later that the theorem above is equivalent to $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly independent if and only if $\operatorname{rank}(\mathbf{A}) = k$, where $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$.

Corollary. Any subset of \mathbb{R}^n containing more than n vectors must be linearly dependent.

Proof. If k > n and $S \subseteq \mathbb{R}^n$ has k vectors, the matrix whose columns are vectors in S has size $n \times k$, and must have at least k - n non-pivot columns.

Example. 1.
$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}.$$

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is already in reduced row-echelon form, and has 2 non-pivot columns. Hence S is linearly dependent. Alternatively, since S contains 4 vectors in \mathbb{R}^3 , it must be linearly dependent.

2.
$$S = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 2\\3\\0 \end{pmatrix} \right\}$$
 is linearly dependent since

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

3.
$$S = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \right\}$$
 is linearly independent since

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

A set $S = \{\mathbf{u}\} \subseteq \mathbb{R}^n$ containing one nonzero vector, $\mathbf{u} \neq \mathbf{0}$, is linearly independent. For the only linear combination of \mathbf{u} is taking scalar multiple, and since $\mathbf{u} \neq \mathbf{0}$, $c\mathbf{u} = \mathbf{0}$ if and only if c = 0. However, the set containing the origin $S = \{\mathbf{0}\} \subseteq \mathbb{R}^n$ is linearly dependent, since we can take c = 1 and

$$c\mathbf{0} = \mathbf{0}$$

is a nontrivial linear combination (scalar multiple) of **0** to get **0**.

Lemma. A set $S = \{\mathbf{u}, \mathbf{v}\}$ containing two vectors is linearly independent if and only if the vectors are not a multiple of each other.

Proof. S is linearly dependent if and only if $\alpha \mathbf{u} + \beta \mathbf{v} = 0$ for some $\alpha, \beta \in \mathbb{R}$ not both zero. If $\alpha \neq 0$, then $\mathbf{u} = (-\beta/\alpha)\mathbf{v}$, and if $\beta \neq 0$, $\mathbf{v} = (-\alpha/\beta)\mathbf{u}$, that is the vectors are multiple of each other.

Theorem. Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly dependent. Then for any $\mathbf{u} \in \mathbb{R}^n$, the set

$$\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$$

is linearly dependent.

That is, adding vectors to a linearly dependent set will not make it linearly independent.

This means that any set containing the origin **0** must be linearly independent. We can also see this from the fact that a matrix containing a zero column must have non-pivot column in its reduced row-echelon form; the zero column is a non-pivot column.

Converse to the previous theorem, we are allowed to add vectors to linearly independent set and still have a linearly independent set if the added vector is not linearly dependent of the vectors in the original set. We will state it precisely as a theorem.

Theorem. Suppose $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly independent and \mathbf{u} is not a linearly combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$, $\mathbf{u} \notin span\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$. Then the set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is linearly independent.

Example. 1. Let
$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
. Then
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

which shows that S is linearly dependent. So for any $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, the set

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} x\\y\\z \end{pmatrix} \right\}$$

will be linearly dependent,

$$\begin{pmatrix} 1 & 1 & 0 & x \\ 2 & 3 & 0 & y \\ 1 & 1 & 0 & z \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 3x - y \\ 0 & 1 & 0 & -2x + y \\ 0 & 0 & 0 & -x + z \end{pmatrix}.$$

2. Let
$$S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
. Then S is linearly independent,
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

For any
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
,
$$\begin{pmatrix} 1 & 1 & 0 & x_1 \\ 2 & 0 & 1 & x_2 \\ 1 & 0 & 1 & x_3 \\ -1 & 1 & 0 & x_4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{x_1 - x_4}{2} \\ 0 & 1 & 0 & \frac{x_1 + x_4}{2} \\ 0 & 0 & 1 & 2x_3 - x_2 \\ 0 & 0 & 0 & \frac{-x_1 + 2x_2 - 2x_3 + x_4}{2} \end{pmatrix}.$$
Hence, $\left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \right\}$ is linearly independent if and only if $-x_1 + 2x_2 - 2x_3 + x_4 \neq 0$, if and only if $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \not\in \operatorname{span}(S)$.

3.9 Basis

Recall that a subset $V \subseteq \mathbb{R}^n$ is a subspace if and only if $V = \operatorname{span}(S)$ for some finite subset $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$. This would mean that every vector $\mathbf{v} \in V$ can be expressed as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$. Suppose further that the set S is also linearly independent. Then we claim that the coefficient of the linear combination is unique. Indeed, suppose $\mathbf{v} \in V$ is such that

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k$$
 and $\mathbf{v} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \cdots + d_k \mathbf{u}_k$

for some $c_1, ..., c_k, d_1, ..., d_k \in \mathbb{R}$. Then

$$(c_1 - d_1)\mathbf{u}_1 + (c_2 - d_2)\mathbf{u}_2 + \dots + (c_k - d_k)\mathbf{u}_k = \mathbf{v} - \mathbf{v} = \mathbf{0}.$$

Since S is linearly independent, necessary the coefficients are zero, $c_1 - d_1 = c_2 - d_2 = \cdots = c_k - d_k = 0$, that is

$$c_1 = d_1, c_2 = d_2, ..., c_k = d_k.$$

This means that the coefficients of \mathbf{v} as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ are unique. So a set S that both spans V and is linearly independent is special in the sense that every vectors $\mathbf{v} \in V$ can be written as a linear combination of the vectors in S uniquely. We call such a special sets a basis.

Let $V \subseteq \mathbb{R}^n$ be a subspace. A set $S \subseteq V$ is a <u>basis</u> for V if

- (i) $\operatorname{span}(S) = V$, and
- (ii) S is linearly independent.

Note that basis is not unique. We have already seen that both $S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ and

$$T = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$
 are bases for the *xy*-plane.

show that $S \subseteq V$. Indeed,

Recall that the solution set to a homogeneous system Ax = 0 is a subspace. Suppose

$$s_1\mathbf{u}_1 + s_2\mathbf{u}_2 + \dots + s_k\mathbf{u}_k, \ s_1, s_2, \dots, s_k \in \mathbb{R}$$

is a general solution to the homogeneous system such that the parameters correspond to the non-pivot columns in the reduced row-echelon form of \mathbf{A} . Then observe that in each \mathbf{u}_i , there must be a entry where only \mathbf{u}_i has 1 in the entry and \mathbf{u}_j has 0 in this entry for all $j \neq i$. Thus the set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly independent. Clearly the set spans the solution space. We thus arrive at the following theorem.

Theorem. If $V = \{ s_1 \mathbf{u}_1 + s_2 \mathbf{u}_2 + \cdots + s_k \mathbf{u}_k \mid s_1, s_2, ..., s_k \in \mathbb{R} \}$ is a solution space to a homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ such that the parameters correspond to the non-pivot columns in the reduce row-echelon form of \mathbf{A} , then $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is a basis for V.

Example. 1. Let
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x + y - z = 0 \right\}$$
. It is the solution space to a homoge-

neous system, so it is a subspace of \mathbb{R}^3 . Explicitly, $V = \left\{ s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\} =$

 $\operatorname{span}\left\{\begin{pmatrix} -1\\1\\0\end{pmatrix},\begin{pmatrix} 1\\0\\1\end{pmatrix}\right\}. \text{ Let } T = \left\{\begin{pmatrix} -1\\1\\0\end{pmatrix},\begin{pmatrix} 1\\0\\1\end{pmatrix}\right\}. \text{ To show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice to show that } T \text{ is a basis, suffice } T \text{ is a basis, su$

$$\begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Since the reduced row-echelon form has no non-pivot columns, T is linearly independent. Alternatively, one can just observe that the vectors in T cannot be a multiple of each other. Hence, T is a basis.

2. Let V and T as defined in 1. Let $S = \left\{ \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\2 \end{pmatrix} \right\}$. We will show that S is a basis for V. First we show that $\operatorname{span}(S) = V$. To show that $\operatorname{span}(S) \subseteq V$, suffice to

$$(-1) + (2) - (1) = 0$$
 and $(1) + (1) - 2 = 0$.

To show that $V \subseteq \operatorname{span}(S)$, we show that $\operatorname{span}(T) \subseteq \operatorname{span}(S)$, that is, suffice to show that $T \subseteq \operatorname{span}(S)$. Indeed,

$$\left(\begin{array}{cc|c|c} -1 & 1 & -1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array}\right) \longrightarrow \left(\begin{array}{cc|c|c} 1 & 0 & 2/3 & 1/3 \\ 0 & 1 & -1/3 & 2/3 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

is consistent. This shows that $\operatorname{span}(S) = V$. Next, we need to show that S is linearly independent. Indeed, it is clear $\begin{pmatrix} -1\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ cannot be a multiple of each other.

Question: We have seen that the zero space $\{0\} \subseteq \mathbb{R}^n$ is a subspace of \mathbb{R}^n . What is a basis for the zero space?

We will now discuss when is a subset $S \subseteq \mathbb{R}^n$ a basis for the whole \mathbb{R}^n . Recall that if the set S contains less than n vectors, it cannot span \mathbb{R}^n and if it has more than n vectors, it must be linearly dependent. So for S to span \mathbb{R}^n and be linearly independent, it must have exactly n vectors, $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$. Let $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n)$ be the square matrix of order n whose column is formed by the vectors in S. Then for S to span n, the reduced row-echelon form of \mathbf{A} cannot have zero rows, and for S to be linearly independent, the reduced row-echelon form of \mathbf{A} cannot have non-pivot column. But since \mathbf{A} is a square matrix, either of the condition is equivalent to the reduced row-echelon form of \mathbf{A} being the identity matrix. That is, S is a basis for \mathbb{R}^n if and only if \mathbf{A} is invertible. We thus have another equivalent criteria for invertibility.

Theorem. A subset $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is a basis for \mathbb{R}^n if and only if k = n and $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n)$ is an invertible matrix.

Another way of phrasing the theorem.

Theorem. A square matrix **A** of order n is invertible if and only if the columns of **A** form a basis for \mathbb{R}^n .

Taking the transpose and recalling that A is invertible if and only if its transpose is, we get the following statement.

Theorem. A square matrix **A** of order n is invertible if and only if the rows of **A** form a basis for \mathbb{R}^n .

We will add these statements into the list of equivalence of invertibility.

Theorem. Let **A** be a square matrix of order n. The following statements are equivalent.

- (i) A is invertible.
- (ii) A has a left inverse.
- (iii) A has a right inverse.
- (iv) The reduced row-echelon form of A is the identity matrix I_n .
- (v) A is a product of elementary matrices.
- (vi) The homogeneous linear system Ax = 0 has only the trivial solution.
- (vii) The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} .
- (viii) The determinant of **A** is nonzero, $det(\mathbf{A}) \neq 0$.
 - (ix) The columns of **A** form a basis for \mathbb{R}^n .

(x) The rows of **A** form a basis for \mathbb{R}^n .

Recall that we said that subspaces of \mathbb{R}^n are like copies of \mathbb{R}^k inside \mathbb{R}^n for some $k \leq n$. Here we can make this statement precise. We have shown the following statement.

Theorem. Suppose S is a basis for V. then every vectors $\mathbf{v} \in V$ can be written as a linear combination of vectors in S uniquely.

So now let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a basis for a subspace $V \subseteq \mathbb{R}^n$. Then given any $\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_r \end{pmatrix} \in \mathbb{R}^k$, we get a unique vector

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k \in V.$$

Conversely, for any $\mathbf{v} \in V$, we can find a unique $\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} \in \mathbb{R}^k$ such that

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k \in V.$$

This means that a basis S for V corresponds to an embedding (a copy of) \mathbb{R}^k into \mathbb{R}^n . That is,

$$\mathbb{R}^k \stackrel{\text{via } S}{\longleftrightarrow} V \subseteq \mathbb{R}^n, \quad \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} \leftrightarrow c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k.$$

We call the unique vector in \mathbb{R}^k corresponding to $\mathbf{v} \in V$ via S the <u>coordinates of \mathbf{v} relative to basis S</u>, and denote it as

$$(\mathbf{v})_S = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}.$$

Example. 1. Let $E = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ be the standard basis. For any vector $\mathbf{v} = (v_i) \in \mathbb{R}^n$, the relative coordinate of \mathbf{v} relative to E is itself, $(\mathbf{v})_E = \mathbf{v}$. That is, the coordinates of a vector is its coordinates relative to the standard basis E.

2. $S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ is a basis for V, the xy-plane in \mathbb{R}^3 . Then given any $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$,

$$\begin{pmatrix} x \\ y \end{pmatrix} \leftrightarrow x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

Hence, for any
$$\mathbf{v} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \in V,$$

$$(\mathbf{v})_S = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Remark. 1. Even though $\mathbf{v} \in V \subseteq \mathbb{R}^n$ has n coordinates, $(\mathbf{v})_S$ has k coordinates if the basis S has k vectors.

- 2. Note that the correspondence is unique only if S is a basis. If S is not linearly independent, a few vectors in \mathbb{R}^k can map to the same $\mathbf{v} \in V$.
- 3. The relative coordinates depend to the ordering of the basis, if $S = \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ and $T = \left\{ \mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$, then for $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $(\mathbf{v})_S = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \neq \begin{pmatrix} 2 \\ 1 \end{pmatrix} = (\mathbf{v})_T.$
- 4. The relative coordinates are different for different bases. If $S = \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ and $T = \left\{ \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$, then for $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $(\mathbf{v})_S = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (\mathbf{v})_T.$

We will now give an algorithm to find coordinates relative to a basis. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a basis for a subspace $V \subseteq \mathbb{R}^n$. For any $\mathbf{v} \in V$, we are solving for $c_1, c_2, ..., c_k \in \mathbb{R}$ such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{v}_k = \mathbf{v}.$$

That is, we are solving for

$$(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \mid \mathbf{v}).$$

Theorem (Algorithm to finding coordinates relative to a basis). Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a basis for a subspace $V \subseteq \mathbb{R}^n$. For any $\mathbf{v} \in V$, $(\mathbf{v})_S$ is the unique solution to $\mathbf{A}\mathbf{x} = \mathbf{v}$, where $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$.

Example. 1. We have seen that $S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$ is a basis for the *xy*-plane *V*.

For any
$$\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \in V$$
,

$$\begin{pmatrix} 1 & 1 & | & x \\ 1 & -1 & | & y \\ 0 & 0 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & (x+y)/2 \\ 0 & 1 & | & (x-y)/2 \\ 0 & 0 & | & 0 \end{pmatrix}.$$

So
$$(\mathbf{v})_S = \begin{pmatrix} (x+y)/2 \\ (x-y)/2 \end{pmatrix}$$
.

2.
$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \middle| x_1 - 2x_2 + x_3 = 0, x_2 + x_3 - 2x_4 = 0 \right\}$$
. We will leave it to the read-

ers to check that
$$S = \left\{ \begin{pmatrix} -3 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 is a basis for V . For $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \in V$,

$$\begin{pmatrix} -3 & 4 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So
$$(\mathbf{v})_S = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

Exercise: Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^n$ is a subspace. Let $\mathbf{v} \in V$.

(i) Suppose there is a non-pivot column in the left side of the reduced row-echelon form of

$$(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \mid \mathbf{v}).$$

What can you conclude?

(ii) Suppose

$$(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \mid \mathbf{v})$$

is inconsistent. What can you conclude?

Appendix to Lecture 7

Theorem. Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly dependent. Then for any $\mathbf{u} \in \mathbb{R}^n$, the set

$$\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_k,\mathbf{u}\}$$

is linearly dependent.

That is, adding vectors to a linearly dependent set will not make it linearly independent.

Proof. Since S is linearly dependent, we can find $c_1, c_2, ..., c_k \in \mathbb{R}$ not all zero such that

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=\mathbf{0}.$$

To show that $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is linearly dependent, we let c = 0 and add $c\mathbf{u}$ to the above equation and obtain

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k + c\mathbf{u} = \mathbf{0}.$$

This is a nontrivial linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}$ to give us $\mathbf{0}$, since one of the c_i , i = 1, ..., k is not zero.. Hence, $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is also linearly dependent.

Alternatively, since the RREF of $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ has non-pivot columns, the RREF of $(\mathbf{A} \ \mathbf{u}) = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \ \mathbf{u})$ must also have non-pivot columns (not obvious, details are left to readers).

Theorem. Suppose $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq \mathbb{R}^n$ is linearly independent and \mathbf{u} is not a linearly combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$, $\mathbf{u} \notin span\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$. Then the set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is linearly independent.

Proof. Suppose to the contrary that $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ is linearly dependent, that is we can find $c_1, c_2, ..., c_k, c \in \mathbb{R}$ not all zero such that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k + c\mathbf{u} = \mathbf{0}.$$

Case 1: $c \neq 0$. Then

$$\mathbf{u} = -\frac{1}{c}(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k)$$

which contradict the hypothesis that \mathbf{u} is not a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$. So this case cannot be true. Case 2: c = 0, and thus one of the $c_i \neq 0$. Then we have

$$\mathbf{0} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k + c \mathbf{u} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k.$$

But this would mean that $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent, a contradiction. So this cannot happen too.

Hence, $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}\}$ must be linearly independent.

We are now ready to prove that every subspace $V \subseteq \mathbb{R}^n$ can be written a as span of some vectors, $V = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$. Since V is a subspace, it is not empty. If $V = \{\mathbf{0}\}$, then $V = \text{span}\{\mathbf{0}\}$ and we are done. Suppose not. Then pick a nonzero vector $\mathbf{u}_1 \in V$. Suppose $\text{span}\{\mathbf{u}_1\} = V$, we are done. Otherwise, we can pick a vector in V

but not in span $\{\mathbf{u}_1\}$, $\mathbf{u}_2 \in V \setminus \mathrm{span}\{\mathbf{u}_1\}$. Then since \mathbf{u}_2 is not a linear combination of \mathbf{u}_1 , $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly independent set and $\mathrm{span}\{\mathbf{u}_1\} \subsetneq \mathrm{span}\{\mathbf{u}_1, \mathbf{u}_2\}$, $\mathrm{span}\{\mathbf{u}_1, \mathbf{u}_2\}$ is a strictly bigger set.

Proceeding inductively, suppose now we have constructed a linearly independent set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} \subseteq V$. If $V = \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$, we are done. Otherwise, by the same argument as above, we can find a $\mathbf{u}_{k+1} \in V \setminus \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$. Then $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k, \mathbf{u}_{k+1}\}$ is a linearly independent subset of V and its span is strictly bigger than $\operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$.

But the process have to stop, since we can at most have n linearly independent vectors in \mathbb{R}^n . Hence, there must be a $m \leq n$ such that the constructed set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ spans V. Hence, $V = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ is a linear span of some vectors. In fact, by the construction, $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ will be a basis for V.