CSD1241 Tutorial 8 Solutions

Problem 1. Let T be the orthogonal projection onto the plane $\alpha: x-3y+2z=0$.

- (a) Find the matrix representation of T.
- (b) Find the images of the points

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$$

- (c) Find all the points \vec{x} that are fixed under this transformation, that is, $T(\vec{x}) = \vec{x}$.
- (d) Find the image of the plane β under T with

$$\beta : \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -8 \\ 0 \\ 1 \end{pmatrix}$$

- (e) Find the image of $\gamma: x+y+z=1$ under T.
- (f) Find the image of the line $l: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -20 \\ 9 \end{pmatrix} + t \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$ under T.

Solution. (a) The plane α has normal $\vec{n} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$. The matrix of T is

$$M = I_3 - \frac{1}{||\vec{n}||^2} \vec{n} \vec{n}^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{14} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \begin{bmatrix} 1 & -3 & 2 \end{bmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{14} \begin{pmatrix} 1 & -3 & 2 \\ -3 & 9 & -6 \\ 2 & -6 & 4 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix}$$

(b) The images of the given 4 points are the 4 columns of the following matrix

$$\frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 & 3 \\ 1 & 1 & 1 & -3 \\ 1 & 1 & 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 20/7 & 0 & 2 \\ 1 & 10/7 & 4 & 0 \\ 1 & 5/7 & 6 & -1 \end{pmatrix}$$

(c) Since T is an orthogonal projection onto α , all points that are fixed under T are all points on $\alpha: x-3y+2z=0$.

(d) The image of β is

$$\beta' : \vec{x} = \frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -8 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \frac{s}{7} \begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix} + \frac{t}{7} \begin{pmatrix} -53 \\ -9 \\ 13 \end{pmatrix}$$

- (e) The plane γ has normal vector $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. So it has 2 direction vectors $\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and
- $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. A vector equation of γ is

$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

The image of γ is

$$\gamma' : \vec{x} = \frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 13/14 \\ 3/14 \\ -2/14 \end{pmatrix} + \frac{s}{7} \begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix} + \frac{t}{14} \begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} 13/14 \\ 3/14 \\ -2/14 \end{pmatrix} + \begin{pmatrix} \frac{s}{7} + \frac{t}{14} \end{pmatrix} \begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix} = \begin{pmatrix} 13/14 \\ 3/14 \\ -2/14 \end{pmatrix} + r \begin{pmatrix} 5 \\ -1 \\ -4 \end{pmatrix},$$

where $r = \frac{s}{7} + \frac{t}{14}$. Note that γ' is a line which is the intersection of α and γ . This happens because α and γ are perpendicular.

(f) The image of l is

$$l': \vec{x} = \frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ 3 & 5 & 6 \\ -2 & 6 & 10 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 6 \\ -20 \\ 9 \end{pmatrix} + t \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ -2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

Problem 2. Let T be the skew projection onto the plane $\alpha: x - 3y + 2z = 0$ along the vector $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Redo (a,c,e,f) of Problem 1.

Solution. (a) Note that $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 8 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$. The matrix of T is

$$M = I_3 - \frac{1}{\vec{v} \cdot \vec{n}} \vec{v} \vec{n}^T = I_3 - \frac{1}{14} \begin{pmatrix} 1 \\ 1 \\ 8 \end{pmatrix} \begin{pmatrix} 1 & -3 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{14} \begin{pmatrix} 1 & -3 & 2 \\ 1 & -3 & 2 \\ 8 & -24 & 16 \end{pmatrix}$$
$$= \frac{1}{14} \begin{pmatrix} 13 & 3 & -2 \\ -1 & 17 & -2 \\ -8 & 24 & -2 \end{pmatrix}$$

- (c) All fixed points are the points on $\alpha: x 3y + 2z = 0$.
- (e,f) can be done the same way as Problem 1.

Problem 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal reflection through the line

$$l: \vec{x} = t \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

3

- (a) Find the matrix of T.
- (b) Find the image of the line $k: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ under T.

Solution. (a) The line l has direction $\vec{d} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. The matrix of T is

$$M = \frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T - I_3 = \frac{2}{6} \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \end{pmatrix} - I_3$$
$$= \frac{1}{3} \begin{pmatrix} 1 & 2 & -1\\2 & 4 & -2\\-1 & -2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} -2 & 2 & -1\\2 & 1 & -2\\-1 & -2 & -2 \end{pmatrix}$$

(b) The image of k is the line

$$k': \vec{x} = \frac{1}{3} \begin{pmatrix} -2 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1/3 \\ -2/3 \\ -11/3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Problem 4. Let T be the orthogonal projection onto the plane $\alpha: x-2y+z=0$.

- (a) Find the matrix M of T.
- (b) Find the images of the points $\begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$.
- (c) Find the image of $\beta: x-z=6$ under T.
- (d) Find the image of $l: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ under T.
- (e) Let Q be the intersection of β and l. Find the image of Q under T.

Solution. (a) The plane α has normal $\vec{n} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. The matrix of T is

$$M = I_3 - rac{1}{||ec{n}||^2} ec{n} ec{n}^T = rac{1}{6} \left(egin{matrix} 5 & 2 & -1 \ 2 & 2 & 2 \ -1 & 2 & 5 \end{matrix}
ight)$$

(b) The images of the given points are the last 3 columns of the following matrix

$$\frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 5 & -5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 3 & -1 & 1 \\ 4 & -4 & 2 \end{pmatrix}$$

(c) The plane β has normal $\vec{n}_{\beta} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. So its direction vectors are $\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and

 $\vec{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Hence β has vector equation

$$\beta : \vec{x} = \begin{pmatrix} 1 \\ 1 \\ -5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

The image of β is β' which has equation

$$\vec{x} = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix} + \frac{s}{6} \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} + \frac{t}{6} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix} + \begin{pmatrix} \frac{2s}{3} + \frac{t}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix} + r \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

which is a line through the point $\begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix}$ and having direction vector $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

(d) The image of l is the line l' which has equation

$$\vec{x} = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

(e) First, we find the point $Q = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Since Q is on both l and β , we have

$$\begin{cases} x = 3 + t \\ y = 1 - t \quad \text{and} \quad x - z = 6 \\ z = 5 + 3t \end{cases}$$

We have

$$(3+t) - (5+3t) = 6 \Rightarrow -2 - 2t = 6 \Rightarrow t = -4$$

Thus
$$Q = \begin{pmatrix} 3+t\\1-t\\5+3t \end{pmatrix} = \begin{pmatrix} -1\\5\\-7 \end{pmatrix}$$
. The image of Q is

$$Q' = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \\ -7 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix}.$$

Problem 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection in the xz-plane, and let $S: \mathbb{R}^3 \to \mathbb{R}^3$ the reflection in the plane x - y = 0.

The composition $T \circ S : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T \circ S(\vec{x}) = T(S(\vec{x}))$.

(a) Find the matrix K of the composition $T \circ S$.

Hint: $M, N = \text{matrices of } T, S \Rightarrow \text{matrix of } T \circ S \text{ is } K = MN.$

- (b) Find the matrix L of the composition $S \circ T$. (Hint: L = NM).
- (c) Check that K and L are inverses of each other, that is,

$$KL = LK = I_3$$
.

Solution. The xz-plane has equation y = 0, so a normal vector is $\vec{n}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. The matrix of T is

$$M_T = I_3 - rac{2}{||ec{n}_1||^2} ec{n}_1 ec{n}_1^T = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} - 2 egin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

The plane x - y = 0 has normal vector $\vec{n}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. The matrix of S is

$$M_S = I_3 - \frac{2}{||\vec{n}_1||^2} \vec{n}_1 \vec{n}_1^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(a) The matrix of $T \circ S$ is

$$K = M_{T \circ S} = M_T M_S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) The matrix of $S \circ T$ is

$$L = M_{S \circ T} = M_S M_T = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) It is straightforward to verify that $KL = LK = I_3$

$$KL = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

$$LK = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$