LENy

Zdalnie sterowany robot przy użyciu połączenia bleutooth

Marcin Kaciuba i Andrzej Kokoszka WFMII, II Informatyka

Systemy Wbudowane

Marcin Kaciuba i Andrzej Kokoszka

Spis treści

Założenia projektu	3
Budowa LENego - rozwiązania sprzętowe	3
<u>Części</u>	3
<u>Schemat</u>	5
Współpraca Atmegii z mostkiem	6
<u>Zasilanie</u>	8
Pulse-width modulation	8
Programowanie LENego - rozwiązania software'owe	9
Aplikacja sterująca LENym	10
Uwagi końcowe	11
Film pokazyowy	11

1. Założenia projektu

Celem, jaki sobie założyliśmy w ramach projektu z przedmiotu System Wbudowane było stworzenie robota-pojazdu poruszającego się na gąsienicach.

Robot miałby być sterowany za pomocą podłączonego panelu, bądź zdalnie za pomocą urządzenia na bazie systemu Android porozumiewając się poprzez moduł bleutooth.

2. Budowa LENego - rozwiązania sprzętowe.

2.1 Części

Do budowy LENgo wykorzystaliśmy następujące części:

Elementy elektroniczne:

- ATmega16A-PU DIP
- Dioda LED 5mm zielona
- Stabilizator 5V 7805
- Kondensator elektrolityczny 470uF/25V 105C
- Kondensator ceramiczny DIP 50V (5 szt.) Wartość: 22pF
- Kondensator ceramiczny DIP 50V (5 szt.) Wartość: 100nF
- Rezystor 330 Om 1/4 W)
- Dławik przeciwzakłóceniowy 22uH
- Mostek H L293d

Elementy mechaniczne

- Zestaw kół gąsienicowych Tamiya 70100
- Przekładnia podwójna Tamiya 70097 -
- Kawałek sklejki

Systemy Wbudowane

Marcin Kaciuba i Andrzej Kokoszka

2.2 Schemat:

Systemy Wbudowane

Marcin Kaciuba i Andrzej Kokoszka

2.3 Współpraca Atmegii z mostkiem

EN1,2 – PWM dla silnika z wyjścia out1,2

Do tego pinu mostka podłączone jest OC1A(wyjście komperatora) atmegii

PD7 - IN4 OUT4 silnik P

PCO - IN3 OUT3 silnik P

PD2 - IN2 OUT1 silnik L

PD3 - IN1 OUT2 silnik L

Z atmegii OC1B(wyjście komperatora) jest podłączone do EN 3,4. Analogicznie do EN1,2. Schemat jest pod atmege8, ale jeśli się pod odpowiadające piny może on działać dla każdej wyższej.

Działanie Mostka

EN1,2 IN1 IN2 Silnik

1 1 1 jedz

100 stop

1 1 0 Zmiana kierunku

101 jedz

0 X x Zabroniony, stop

X- bez znaczenia

Analogicznie dla drugiego silnika.

Więcej informacji można znaleźć w dokumentacji mostka L293d.

Mostek H

Jest to układ pozwalający zmienianie kierunku obrotów silników. Złożony jest on z tranzystorów

połączony na kształt litery H. Dla tego nazywa się mostek H. Posiada on też możliwość płynnej regulacji napięcia na wyjściu dzięki PWM.

Systemy Wbudowane

Marcin Kaciuba i Andrzej Kokoszka

2.4 Zasilanie

Układ jest zasilany 6 akumulatorkami 1.3 V 2400mAh co daje w sumie napięcie zasilania wynoszące 7.8V. Napięcie to jest stabilizowane na 5 V i dla atmegii i dla mostka H. Przed stabilizatorem został dodana LED, której zadaniem jest informowanie o podłączenie zasilania, a jej intensywność świecenia sygnalizuje naładowanie lub rozładowanie akumulatorków.

2.5 Pulse-width modulation

Pulse-width modulation - jest to modulacja wyjścia urządzenia. W tym przypadku napięcia na wyjściu mikrokontrolera. Istnieje kilka trybów modulacje na przykład dla atmegi16 jest ich 15. Do naszego projektu użyliśmy trybu 14 wraz z przerwaniami czyli fast pwm z top w rejestrze ICR1. Aby silnik nie dostawały zbyt wysokiego napięcia. Silniki dostają dzięki temu 1.5-2V.

3. Programowanie LENego - rozwiązania software'owe

Sterowanie robotem polega na ustawieniu odpowiednich bitów w portach wyjścia, czyli porty C i D.

Komunikacja Atmegii z modułem bleutooth odbywa się za pomocą portu UART. Inicjalizując ustawiamy odpowiednie flagi w rejestrach. Aby ustanowić połączenie z urządzeniem zewnętrznym ów urządzenie musi wywołać Len'ego który pełni rolę serwera i oczekiwać na połączenie. Urządzenie wysyła wiadomości a moduł je odczytuje, a Atmega ustawia porty D i C, podłączone do mostka.

Cały kod w załączniku "main2.c". Poniżej fragment funkcji main.

```
int main()
{
        // . . .
    /* enable interrupt */
    sei();
    // Initialize communication
    if (KAmodBT_Initialize()!=BT_OK)
        zapal1();
       // while(1);
          // Set_Name("Len");
    while (1) {
        for (i=0;i<10;i++)
       {
            if (UCSRA&(1<<RXC)) {</pre>
                 byte = USART_vReceiveByte();
                 switch (byte) {
                 case '0':
                     leds clr();
                     break;
                 case '1':
                     leds_set();
                 break;
case '2':
                     kierunek(2);
                     break;
                  case '8':
                     kierunek(8);
                     break;
                    case '4':
                     kierunek(4);
                     break;
                    case '6':
                     kierunek(6);
                     break;
                  case '5':
                     kierunek(5);
                     break;
                 default:
                 break;
        _delay_ms(250);
        cli();
}
```

4. Aplikacja sterująca LENym

Aplikacja została napisana w języku Java pod system Android. Podstawowym i najważniejszym elementem programu jest ustanowienie poprawnego połączenia rfcomm z modułem bleutooth zamontowanym na LENym. Dokonaliśmy tego dzięki szeroko rozwiniętej i dobrze udokumentowanej obsłudze bleutooth w SDK. Urządzenie wybieramy z listy wcześniej sparowanych urządzeń, dzięki temu połączenie jest bezpieczne.

Po ustanowieniu połączenia nasz program przetwarza polecenia od użytkownika do LENego, który wykonuje rozkaz jazdy. W zależności od wydawanych komend – wciśniętych przycisków – interfejs graficzny przedstawiamy poniżej, do modułu wysyłane są odpowiednio instrukcje sterujące.

Kod w załączniku "LenBTActivty".

Systemy Wbudowane

Marcin Kaciuba i Andrzej Kokoszka

5. Uwagi końcowe

Jedną z przeszkód, jako napotkaliśmy w trakcie realizacji projektu jest zawieszanie się modułu bleutooth, co powoduje niechciane zachowanie LENego. Pojazd wykonuje dwa razy tę samą instrukcję. Jest to spowodowane jednym źródłem energii zasilającym silniki i pozostałą elektronikę, co powoduje zakłócenia. Przewidywanym przez nas rozwiązaniem było by oddzielenie elementów, które mogą indukować prąd i powodować ów zakłócenia.

Mostek sterujący nagrzewa się do wysokich temperatur, co jest spowodowane wysokim poborem prądu przez silniki. W celu obniżenia temperatury do stabilizatora dołączony został radiator.

Sterowanie może się zmienić przy innym podłączeniu silników. Robot będzie wykonywał rozkazy odwrotnie, w związku z odwróconą polaryzacją.

6. Film pokazowy

Przedstawiamy film ilustrujący działanie naszego robota:

LEN BT