Problem set 3

Linear algebra 6

September 25, 2025

1. Suppose the we have square matrices B and C are invertible, find inverse of the matrix in block form.

$$\begin{bmatrix} A & B \\ C & 0 \end{bmatrix}.$$

2. Use block multiplication rules for matrices to find the inverses of following matrices:

(a)
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 5 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 1 & 0 & \cdots & 0 & a_n \\ a_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & 0 \end{bmatrix}$$
, if all a_i 's are non-zero.

- 3. Show that any non-singular $n \times n$ matrix A that admits a LDU factorization can be written as a product of a lower triangular matrix with a symmetric matrix. (Hints: start with the LU factorization A = LDU)
- 4. Let u,v be vectors in \mathbb{R}^n , assume that $I-uv^T$ is invertible with inverse $I+\lambda uv^T$:
 - (a) find λ in terms of u and v;
 - (b) Suppose A are $A uv^T$ are invertible, express the inverse of $A uv^T$ in terms of A^{-1} , u and v;

- (c) use the above to find the inverse of $\begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$
- 5. Let $P_{\leq 2}$ to be the vector space consisting of polynomials $f(x) = a_2 x^2 + a_1 x + a_0$ with degree less than or equal to 2.
 - (a) Show that $W=\{f(x)\in P_{\leq 2}\mid f(1)=0,\ f'(1)=0\}$ is a subspace of $P_{\leq 2}$ (Here f'(x) is the derivative of f(x)).
 - (b) Find all possible solutions f(x) of the system of equations:

$$f(1) = 1$$

$$f'(1) = 1.$$