Aula 1: Informação

- Docente: João Breda gabinete: 27.3.10 (3º piso).
- Avaliação: discreta.
- Teste 1: dia 17 de novembro de 2023 (6^a feira).
- Teste 2: no Exame Final.
- OT: 2a feira das 17:30h–18:30h, sala: 11.2.25
- Toda a informação relevante (pograma, textos de apoio, avaliação, etc.) está no Moodle.

Aula 1: Lógica em matemática

- Proposições: p, q, r afirmações (condições) verdadeiras ou falsas, mas não ambas. Símbolos lógicos: (1) Relações: =, \in (igualdade e pertença).
 - (2) Connectivos \land , \lor , \Rightarrow , \Leftrightarrow , \sim (conjunção, disjunção, implicação, equivalência e negação).
 - (3) Quantificadores: \forall , \exists (universal e existencial)
- Leis de De Demorgan:

$$1^{as}: \sim (p \land q) = \sim p \lor \sim q \quad , \quad \sim (p \lor q) = \sim p \land \sim q$$
$$2^{as}: \quad \sim [\forall x \in A, p(x)] \Leftrightarrow \exists x \in A, \sim p(x) \quad , \quad \sim [\exists x \in A, p(x)] \Leftrightarrow \forall x \in A, \sim p(x)$$

- Implicação $p \Rightarrow q \text{ (se } p, \text{ então } q)$ $[p \Rightarrow q] \Leftrightarrow [\sim q \Rightarrow \sim p]$ $p \Rightarrow q \Leftrightarrow \sim p \lor q , \sim [p \Rightarrow q] \Leftrightarrow p \lor \sim q$
- $\sim (\sim p) = p$ $p \wedge q = q \wedge p$, $p \vee q = q \vee p$ (comutatividade) $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$, $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$ (distributividade)

Aula 1: Tabelas da verdade

p	q	$p \wedge q$	$p \vee q$	$\sim p$	$p \Rightarrow q$
V	V	V	V	F	V
V	F	F	V	F	F
F	V	F	V	V	V
F	F	F	F	V	V

Aula 1: Teoremas, proposições, lemas

- Teorema: é uma implicação $P \Rightarrow Q$ (ou uma equivalência $P \Leftrightarrow Q$). P é a condição suficiente e Q é a condição necessária.
- Lema: é um teorema de menor importância, mas necessário para argumentação.
- Argumento: sequência de afirmações ligados por implicações.
- Argumento é válido quando todas as afirmações na sequência forem verdadeiras.
- Prova direta: Argumento válido que começa com P e acaba com Q.
- Prova por contraposição: Argumento válido que começa em $\sim Q$ e acaba em $\sim P$.
- Prova por contradição (ou redução ao absurdo): Argumento válido que começa assumindo $P \land \sim Q$ e termina com uma afirmação que é a negação de uma das afirmações anteriores da sequência, isto é, termina com $p_i \land \sim p_i$, para algum i.
- Prova por indução: Neste caso $P = "n \in \mathbb{N}"$ e Q = Q(n) proposição em n. A prova consiste em dois passos: (1) provar que Q(1) é verdadeiro. (2) Assumindo que Q(n) é verdadeiro, provar que Q(n+1) também é verdadeiro.

Aula 1: Topologia da reta \mathbb{R} (Complementar e interior)

Nesta secção vamos referir algumas noções que no $2^{\underline{0}}$ semestre serão definidas em \mathbb{R}^n .

Complementar - O complementar de um conjunto $A \subseteq \mathbb{R}$, denotado por $\mathbb{R} \backslash A$, é o conjunto de todos os elementos que estão em \mathbb{R} e não estão em A.

Interior - $a \in A$ diz-se ponto interior do conjunto $A \subseteq \mathbb{R}$, se <u>existe</u> uma vizinhança $\mathcal{V}(a)$ de a, contida em A, $\mathcal{V}(a) \subseteq A$, isto é, $a \in A$ é ponto interior a A se e só se

$$\exists \delta > 0: \ \underbrace{]a - \delta, a + \delta[}_{\mathcal{V}_{\delta}(a)} \subseteq A.$$

O interior de A é o conjunto de todos os pontos interiores de A e denota-se por Int(A).

İnt(A)

Exemplo 1.12. Seja $A = [-1, 0] \cup [0, 1] \cup [\pi, 5]$.

- $\mathbb{R}\backslash A =$
- Int(A) =

Aula 1: Topologia da reta \mathbb{R} (exterior, fronteira e fecho)

Exterior - $a \in \mathbb{R} \setminus A$ diz-se ponto exterior a $A \subseteq \mathbb{R}$ se existe uma vizinhança $\mathcal{V}(a)$ de a contida no complementar de A, $\mathcal{V}(a) \subseteq \mathbb{R} \setminus A$, isto é,

$$\exists \delta > 0 :]a - \delta, a + \delta [\subseteq \mathbb{R} \setminus A.$$

 $a \in \mathbb{R}$ é ponto exterior de A se e só se é ponto interior de $\mathbb{R} \backslash A$. (Porquê?)

O exterior de A é o conjunto de todos os pontos exteriores de A e denota-se por Ext(A).

Fronteira - Um ponto $a \in \mathbb{R}$ diz-se ponto fronteira de $A \subseteq \mathbb{R}$ se <u>toda</u> a vizinhança de a interseta A e interseta o complementar de A ($\mathbb{R}\backslash A$), isto é,

$$\forall \delta > 0,]a - \delta, a + \delta[\cap A \neq \emptyset \land] a - \delta, a + \delta[\cap \mathbb{R} \setminus A \neq \emptyset.$$

 $a \in \mathbb{R}$ é ponto fronteira de A se e só se é ponto fronteira de $\mathbb{R}\backslash A$. (Porquê?)

A fronteira de A é o conjunto de todos os pontos fronteira de A e denota-se por Frt(A).

Fecho (ou aderência) - O conjunto formado pelos pontos fronteira e pelos pontos interiores de $A \subseteq \mathbb{R}$ designa-se por fecho ou aderência de A e denota-se por \overline{A} , $\overline{A} = \text{Int}(A) \cup \text{Frt}(A)$. Os pontos de \overline{A} designam-se por pontos aderentes ou pontos de aderência.

Exemplo 1.12. Seja
$$A = [-1, 0] \cup [0, 1] \cup [\pi, 5]$$
.

$$\bullet \operatorname{Ext}(A) =$$

 \bullet Frt(A) =

Frt(A)

Aula 1: Exercício 1

Exercício 1.7 Seja $A =]-\infty, 1] \cup \{3\} \cup [10, 35]$. Determine:

- O interior de A;
- O complementar de A;
- O exterior de A;
- A fronteira de A;
- \bullet O fecho de A.

Qual é a fronteira de $[0,1] \cap \mathbb{Q}$?

Aula 1: Conjuntos abertos e conjuntos fechados

Aberto - Um conjunto $A \subseteq \mathbb{R}$ diz-se aberto em \mathbb{R} se A = Int(A).

Fechado - Um conjunto $A \subseteq \mathbb{R}$ diz-se fechado em \mathbb{R} se o seu complementar é aberto, isto é, se $\mathbb{R} \setminus A = \operatorname{Ext}(A)$.

Exemplo 1.13. São conjuntos abertos os conjuntos $]-1,4[\,;\,]2,3[\,\cup\,]3,5[\,;\,]2,+\infty[\,;\,\mathbb{R}\,;\,\emptyset.$

São conjuntos fechados os conjuntos [-1,4]; $]-\infty,3]$; $[2,3]\cup[4,+\infty[$; \mathbb{R} ; \emptyset .

Os conjuntos [-1,3[e]4,7] não são abertos nem fechados.

Observação 1.8. \mathbb{R} e \emptyset são conjuntos abertos e fechados.

Proposição 1.1. Um conjunto $A \subseteq \mathbb{R}$ é fechado em \mathbb{R} se e só se coincide com o seu fecho, i.e., $A = \overline{A}$. Equivalentemente, um conjunto $A \subseteq \mathbb{R}$ é fechado se e só se contém a sua fronteira, i.e., $A \supseteq \operatorname{Frt}(A)$.

Exemplo 1.14. Seja $A = [2, 8] \cup \{0, 1, 9\}$. Averigue se A é um conjunto fechado.

Aula 1: Ponto de acumulação e ponto isolado

Seja $A \subseteq \mathbb{R}$. Um ponto $a \in \mathbb{R}$ diz-se **ponto de acumulação** de A se toda a vizinhança de a, $\mathcal{V}(a)$, interseta $A \setminus \{a\}$:

$$\forall \mathcal{V}(a), \mathcal{V}(a) \cap A \setminus \{a\} \neq \emptyset$$

Usando as vizinhanças centradas no ponto, podemos escrever a definição de ponto de acumulação na forma:

$$a \in \mathbb{R} \text{ \'e ponto de acumulação de } A \text{ se e s\'o se } \forall \delta > 0, \]a - \delta, a + \delta[\cap A \setminus \{a\} \neq \emptyset.$$

Ao conjunto dos pontos de acumulação de A chama-se derivado de A e denota-se por A'.

Um ponto $a \in A$ diz-se **ponto isolado de** A se existe uma vizinhança de a, $\mathcal{V}(a)$, que interseta A apenas no ponto a:

$$\exists \mathcal{V}(a) : \mathcal{V}(a) \cap A = \{a\}.$$

Usando de novo as vizinhanças centradas no ponto, podemos dizer que

$$a \in A$$
 é um ponto isolado de A se e só se $\exists \delta > 0 :]a - \delta, a + \delta[\cap A = \{a\}.$

Nota:
$$A' \cap \{\text{pontos isolados de } A\} = \emptyset$$
 $A' \cup \{\text{pontos isolados de } A\} = \overline{A}$.

Pontos isolados são pontos de A na fronteira de A que não são pontos de acumulação.

Aula 1: Exemplo e exercício 2

Exemplo 1.15. Seja $A =]-\sqrt{7},3] \cup \{\pi\}.$

Calcule o derivado A' de A. Tem A pontos isolados?

Observação 1.9. Em \mathbb{R} , o ponto $+\infty$ (resp. $-\infty$) pode ser considerado ponto de acumulação e de aderência de todo o subconjunto de \mathbb{R} superiormente (resp. inferiormente) ilimitado.

Seja $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Quais são os pontos de acumulação de A e quais são os pontos isolados de A?

Aula 1: Função

Sejam A e B conjuntos não vazios. Uma função $f:A\to B$ é uma correspondência que $\underline{a\ cada}$ elemento $x \in A$ associa <u>um único</u> elemento $f(x) \in B$. Isto escreve-se

$$f: A \to B \\ x \mapsto f(x)$$
e, em notação lógica,
$$\forall x \in A, \exists^1 y \in B: y = f(x)$$

O quantificador \exists^1 significa "existe um e um só" ou "existe um único".

Chama-se domínio de f ao conjunto A, conjunto de chegada ao conjunto B e contradomínio (ou conjunto das imagens) de f ao conjunto dado por

$$f(A) = \{f(x) : x \in A\} \subseteq B$$

 $f(A) = \{f(x) : x \in A\} \subseteq B$ $D_f = \mathbb{R}$ $D_g = \mathbb{R}_0^+$

O domínio de f denota-se por D_f e o seu contradomínio por $CD_f = f(D_f)$.

Aula 1: Função Composta

Dadas duas funções $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ e $g: D_g \subseteq \mathbb{R} \to \mathbb{R}$, se o contradomínio de f for um subconjunto do domínio de g ($CD_f \subseteq D_g$) pode definir-se a **função composta** $g \circ f$:

$$g \circ f: D_f \to \mathbb{R}$$

 $x \mapsto g(f(x))$

Exemplo 2.4. Considere-se a função definida pela expressão analítica

$$f(x) = \sqrt{\frac{4-x}{x^2 - 2x}}.$$

Aula 1: Função injetiva e função sobrejetiva

Definição 2.1. Uma função $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$ diz-se injetiva se

$$\forall x, x' \in D_f, x \neq x' \Rightarrow f(x) \neq f(x').$$

Pode provar-se a injetividade de uma função usando o facto de que a função f é injetiva se e só se

$$\forall x, x' \in D_f, f(x) = f(x') \Rightarrow x = x'.$$

Definição 2.2. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se sobrejetiva se

$$\forall y \in \mathbb{R}, \ \exists x \in D_f : f(x) = y.$$

Pode mostrar-se que uma função real f é sobrejetiva mostrando que o seu contradomínio é $CD_f = \mathbb{R}$.

Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se **bijetiva** se é injetiva e sobrejetiva, ou seja,

$$\forall y \in \mathbb{R}, \ \exists^1 x \in D_f : y = f(x).$$

Exercício 2.3 Considere a família de funções $f_a : \mathbb{R} \to \mathbb{R}$ definidas por $f_a(x) = a^x$ com $a \in \mathbb{R}^+$. Existe alguma função desta família que não seja injetiva?

Aula 1: Função inversa

Seja $f: D_f \to \mathbb{R}$ uma função **injetiva**. Então, a **cada** $y \in CD_f$ está associado um **único** $x \in D_f$ tal que y = f(x). Por isso, conclui-se que existe uma função $g: CD_f \to \mathbb{R}$ tal que $y = f(x) \Rightarrow g(y) = x$.

Denota-se por f^{-1} a função (dita **inversa** de f) que satisfaz esta propriedade. Se existe, a inversa é **única**.

Uma função diz-se invertível se admite inversa.

f é invertível (com inversa g) se e só se existe $g:CD_f\to\mathbb{R}:\forall x\in D_f,\ (g\circ f)(x)=x.$

Observação 2.1. O gráfico de f^{-1} é obtido do gráfico de f por simetria em relação à reta y = x.

Figura 2.2: Função inversa

Exercício 2.7 Determine as inversas (com domínios!) de $f(x) = \frac{1}{1+x}$, de $g(x) = \sqrt{x}$ e de $f \circ g$.