How Do Agents Form Macroeconomic Expectations? Evidence from Inflation Uncertainty

Tao Wang Bank of Canada BBL 2023

October 18, 2023

Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

Inflation expectation formation

- Many competing models deviating from FIRE
 - Sticky expectations (SE)
 - Noisy information (NI)
 - Diagnostic expectations (DE)
 - ...

Inflation expectation formation

- Many competing models deviating from FIRE
 - Sticky expectations (SE)
 - Noisy information (NI)
 - Diagnostic expectations (DE)
 - ...
- Testing these models using survey expectations
 - e.g. (Coibion and Gorodnichenko, 2012)
 - Forecast errors (FE)
 - Disagreement (Disg)
 - This paper: +Uncertainty (Var)

Why (inflation) uncertainty?

Uncertainty (or higher moments) matters for both

- individual economic decisions
 - through precautionary saving motives
 - through portfolio investments
- and aggregate outcomes
 - inflation dynamics
 - asset prices

Preview of the findings

Competing theories have distinctive predictions about uncertainty

Preview of the findings

- Competing theories have distinctive predictions about uncertainty
- Sticky expectation (SE) best jointly explains FE, Disg and Var,
- ... and more robust to
 - 1. type of agents: households or professionals
 - 2. moments used: FE, Disg, Var, etc.
 - 3. separate or joint estimation of inflation + expectation formation
 - 4. various inflation processes: AR or stochastic volatility (SV)

Preview of the findings

- Competing theories have distinctive predictions about uncertainty
- Sticky expectation (SE) best jointly explains FE, Disg and Var,
- and more robust to
 - 1. type of agents: households or professionals
 - 2. moments used: FE, Disg, Var, etc.
 - 3. separate or joint estimation of inflation + expectation formation
 - 4. various inflation processes: AR or stochastic volatility (SV)
- Additional evidence rejecting FIRE
 - 1. Uncertainty is widely dispersed
 - 2. Revision is inefficient

Data

Density forecast of inflation

	SCE	SPF	
Time period	2013-2021M7	2007-2022Q2	
Frequency	Monthly	Quarterly	
Sample Size	1,300	30-50	
Density Variables	1-yr-ahead inflation	1-yr-ahead Core CPI	
		and Core PCE	
Panel Structure	stay up to 12 months	average stay for 5	
		years	
Individual Info	Education, Income,	Industry	
	Age, Location		

Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

FIRE predictions

Inflation process (AR1)

$$y_t = \rho y_{t-1} + \omega_t, \quad \omega_t \sim N(0, \sigma_\omega^2)$$

FIRE

$$\overline{FE}_{t+1|t}^* = -\omega_{t+1} \to \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_{\omega}^2$$

$$\overline{\text{Var}}_{\bullet+1|\bullet}^* = \sigma_{\omega}^2$$

$$\overline{Disg}_{\bullet+1|\bullet}^* = 0$$

FIRE predictions v.s. data

	SPF	SCE
InfAV	0	0
InfVar	0.219	1.282
InfATV	0.194	1.206
FE	0.125	1.812
FEVar	0.136	0.935
Disg	0.161	2.805
Var	0.213	1.749

- Demeaned realized inflation and inflation expectations.
- Household fixed effects controlled.

FIRE predictions v.s. data

Expected inflation and uncertainty

FIRE predictions v.s. data, continued

Forecast error and uncertainty

FIRE predictions v.s. data, continued

Disagreement and uncertainty

Other evidence rejecting FIRE

Other evidence rejecting FIRE

Dispersion in uncertainty

Inefficient revisions in uncertainty

Efficiency tests of uncertainty revision

$$\mathsf{Var}_{i,t|t} - \mathsf{Var}_{i,t|t-1} = \alpha^{\mathsf{var}} + {\color{red}\beta^{\mathsf{Var}}}(\mathsf{Var}_{i,t-1|t-1} - \mathsf{Var}_{i,t-1|t-2}) + \psi^{var}_t + \zeta^{var}_{i,t}$$

- $\beta^{var} = 0$ under FIRE
- $\alpha^{var} < 0$ time-invariant uncertainty reduction
- ψ_t^{var} : time-varying innovations

Efficiency tests: professionals

	Mean revision	4q before	4q before	5q before
L4.InfExp_Var_rv		0.448***	0.456***	
		(0.056)	(0.058)	
L5.InfExp_Var_rv				0.440***
				(0.053)
Constant	-0.091***	-0.049***	-0.048***	-0.049***
	(0.000)	(800.0)	(0.005)	(0.005)
R2	0.047	0.196	0.248	0.249
Ν	1529	1157	1157	1021
Time FE	Yes	No	Yes	Yes

Efficiency tests: households

	Mean revision	24m before	25m before	26m before
L24.InfExp_Var_rv	1110011101011	-0.666***	20111 001010	2011 501010
LZ4.IIIILXP_Val_IV		(0.151)		
L25.InfExp_Var_rv		(0.101)	-0.501*	
ļ.			(0.208)	
L26.InfExp_Var_rv			, ,	-0.376
				(0.219)
L12.InfExp_FE2		0.357***	0.328***	0.306***
		(0.039)	(0.058)	(0.056)
Constant	0.778***	-0.623*	-0.426	-0.275
	(0.225)	(0.272)	(0.337)	(0.345)
R2	0.000	0.527	0.498	0.478
N	88	64	63	62
Time FE	No	No	No	No

Taking stock

- Evidence rejecting FIRE
 - Heterogeneous Var
 - Inefficient revisions in Var
 - $\quad \blacksquare \ \operatorname{Disg} > 0$
 - \blacksquare FE 2 < Var

Taking stock

- Evidence rejecting FIRE
 - Heterogeneous Var
 - Inefficient revisions in Var
 - \blacksquare Disg > 0
 - \blacksquare FE 2 < Var
- Also, these patterns help identify competing theories
 - SE> NI, DE, DENI:
 - \blacksquare FE 2 < Var
 - Sticky updating implies inefficient revisions

Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

Sticky expectations (SE)

[Mankiw and Reis, 2002, Carroll, 2003, etc]

With an updating rate of λ (FIRE when $\lambda = 1$)

$$\begin{split} \overline{FE}_{t+1|t}^{se} &= (1-\lambda)\rho \overline{FE}_{t|t-1}^{se} - \lambda \omega_{t+1} \\ &\to \overline{FE}_{\bullet+1|\bullet}^{se2} = \frac{\lambda^2}{1-(1-\lambda)^2\rho^2} \sigma_\omega^2 \leq \overline{FE}_{\bullet+t|\bullet}^{*2} = \sigma_\omega^2 \\ \overline{\operatorname{Var}}_{\bullet+1|\bullet}^{se} &= \sum_{\tau=0}^{+\infty} \lambda (1-\lambda)^\tau \overline{\operatorname{Var}}_{t+1|t-\tau}^* = \frac{1}{1-(1-\lambda)\rho^2} \sigma_\omega^2 \geq \overline{\operatorname{Var}}_{\bullet+1|\bullet}^* = \sigma_\omega^2 \\ \overline{Disg}_{\bullet+1|\bullet}^{se} &\geq 0 \end{split}$$

Noisy information (NI)

[Lucas, 1972, Woodford, 2001, Sims, 2003 and Mackowiak and Wiederholt, 2009, etc]

With noisiness of public and private signals σ_{pb}^2 and σ_{pr}^2

$$\begin{split} \overline{FE}_{t+1|t}^{ni} &= (1-PH)\rho\overline{FE}_{t|t-1}^{ni} + \rho P_{\epsilon}\epsilon_{t} + \overline{FE}_{t+1|t}^{*} \\ &\rightarrow \overline{FE}_{\bullet+1|\bullet}^{ni2} = \frac{\rho^{2}P_{\epsilon}^{2}\sigma_{pb}^{2} + \sigma_{\omega}^{2}}{(PH)^{2}} \geq \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_{\omega}^{2} \\ \operatorname{Var}_{\bullet+1|\bullet}^{ni} &= \rho^{2}\operatorname{Var}_{\bullet|\bullet}^{ni} + \sigma_{\omega}^{2} \geq \operatorname{Var}_{\bullet+1|\bullet}^{*} = \sigma_{\omega}^{2} \\ \overline{Disg}_{\bullet+1|\bullet}^{ni} &= \frac{\rho^{2}P_{\xi}^{2}}{1 - (1 - PH)^{2}\rho^{2}}\sigma_{pr}^{2} \geq 0 \end{split}$$

Kalman gain:
$$P = [P_{\epsilon}, P_{\xi}] = \overline{\mathrm{Var}}_{\bullet|\bullet-1}^{ni} H(H' \overline{\mathrm{Var}}_{\bullet|\bullet-1}^{ni} H + \Sigma^{v})^{-1}$$

Diagnostic expectations (DE)

[Bordalo, Gennaioli, and Shleifer, 2018, Bordalo, Gennaioli, Ma, et al., 2020, etc]

With overreaction parameter $\hat{\theta}(>0)$ and dispersion σ_{θ}^2

$$\begin{split} \overline{FE}_{t+1|t}^{de} &= \overline{FE}_{t+1|t}^* - \hat{\pmb{\theta}} \rho \mathrm{FE}_{t|t-1}^{de} \\ &\rightarrow \overline{FE}_{\bullet+1|\bullet}^{de2} = \frac{1}{1 + \hat{\pmb{\theta}}^2 \rho^2} \sigma_\omega^2 \leq \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_\omega^2 \\ \overline{\mathrm{Var}}_{\bullet+1|\bullet}^{de} &= \overline{Var}_{\bullet+1|\bullet}^* = \sigma_\omega^2 \\ \overline{Disg}_{\bullet+1|\bullet}^{de} &\geq 0 \end{split}$$

Table: Model-implied ranking of moments

Model	Predictions
FIRE	$\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$

Table: Model-implied ranking of moments

Model	Predictions
FIRE	$\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$
SE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_{\omega}^2 < \overline{Var}; \overline{Disg} > 0$

Table: Model-implied ranking of moments

Model	Predictions
FIRE	$\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$
SE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$
NI	$\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$

Table: Model-implied ranking of moments

Model	Predictions
FIRE	$\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$
SE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$
NI	$\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$
DE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \overline{Var}; \overline{Disg} > 0$

Table: Model-implied ranking of moments

Model	Predictions
FIRE	$\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$
SE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$
NI	$\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$
DE	$\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \overline{Var}; \overline{Disg} > 0$
DENI	$\overline{FE}^2 > < \overline{FE}^{*2}, \overline{Var} > \overline{Var}^*, \overline{Disg} > 0$

Structural Estimation: SMM

$$\widehat{\Omega}^o = \underset{\{\Omega^o \in \Gamma^o\}}{argmin} (M_{\text{data}} - F^o(\Omega^o, H)) W(M_{\text{data}} - F^o(\Omega^o, H))'$$

- $o \in \{se, ni, de, deni\} \times \{ar, sv\}$
- Γ^o : parameter space
- *H*: real-time historical realizations
- W: weighting matrix

Structural Estimation: Professionals

SE								
Moments Used	2-Ste	p Estim	nate	Joint	Estima	ite		
	$\hat{\lambda}$	ρ	σ_{ω}	$\hat{\lambda}$	ρ	σ_{ω}		
FE	0.36	0.99	0.23	0.18	0.97	0.11		
FE+Disg	0.28	0.99	0.23	0.22	0.95	0.14		
FE+Disg+Var	0.26	0.99	0.23	0.32	0.9	0.22		
NI								
Moments Used	2-Ste	p Estim	nate		Joint	Estima	ite	
	$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}	$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}
FE	0	0.87	0.99	0.23	0	0.15	0.97	0.11
FE+Disg	1.5	2.26	0.99	0.23	1.48	2.33	0.97	0.11
FE+Disg+Var	2.64	3	0.99	0.23	3	3	0.94	0.16
DE								
Moments Used	2-Ste	p Estim	nate		Joint	Estima	ite	
	$\hat{ heta}$	σ_{θ}	ρ	σ_{ω}	$\hat{ heta}$	σ_{θ}	ρ	σ_{ω}
FE	0.64	0.58	0.99	0.23	0.81	1.68	0.97	0.11
FE+Disg	0.27	2.2	0.99	0.23	0.38	2.1	0.9	0.2
FE+Disg+Var	0.42	2.1	0.99	0.23	0.33	2.1	0.9	0.23
DENI								
Moments Used	2-Ste	p Estim	nate		Joint	Estima	ite	
	$\hat{ heta}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}	$\hat{ heta}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}
FE	0.76	0	0.99	0.23	0.82	0	0.97	0.11
FE+Disg	0.85	0.14	0.99	0.23	N/A	N/A	N/A	N/A
FE+Disg+Var	0.85	0.16	0.99	0.23	N/A	N/A	N/A	N/A

Structural Estimation: Households

2-Step Estimate			
$\hat{\lambda}$	ρ	σ_{ω}	
0.36	0.98	0.45	
0.36	0.98	0.45	
0.36	0.98	0.45	
2-Step Estimate			
$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}
0	1	0.98	0.45
3	1.18	0.98	0.45
2.06	3	0.98	0.45
2-Step Estimate			
$\hat{ heta}$	σ_{θ}	ρ	σ_{ω}
0.49	0.5	0.98	0.45
1.91	5	0.98	0.45
1.03	5	0.98	0.45
2-Step Estimate			
$\hat{ heta}$	$\hat{\sigma}_{\xi}$	ρ	σ_{ω}
N/A	N/A	0.98	0.45
-0.54	3	0.98	0.45
-0.35	2.43	0.98	0.45
	$\hat{\lambda}$ 0.36 0.36 0.36 0.36 0.36 0.39 2-Step Estimate $\hat{\sigma}_{\epsilon}$ 0 0 0.49 0.91 0.03 0.49 0.91 0.03 0.49 0.91 0.03 0.49 0.91 0.03 0.49 0.91 0.03 0.49 0.91 0.03 0.49 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.03 0.91 0.91 0.03 0.91 0.91 0.03 0.91 0.91 0.03 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	$ λ $ $ ρ $ 0.36 0.98 0.36 0.98 0.36 0.98 0.36 0.98 2-Step Estimate $ δ_ε $ 0 1 3 1.18 2.06 3 2-Step Estimate $ θ $ $ σ_θ $ 0.49 0.5 1.91 5 1.03 5 2-Step Estimate $ θ $ $ δ_ε $ 0.49 0.5 1.91 5 1.03 5	λ $ρ$ $σω$ 0.36 0.98 0.45 0.36 0.98 0.45 0.36 0.98 0.45 $σω$ 2-Step Estimate $σω$ $σω$ 0.98 2.06 3 0.98 2-Step Estimate $δω$ $σω$ $σω$ $σω$ 0.5 1.91 5 0.98 1.03 5 0.98 2-Step Estimate $δω$ $σω$ $σω$ $σω$ $σω$ $σω$ $σω$ $σω$ $σ$

Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

Stochastic volatility (SV)

[Stock and Watson, 2007]

Process of inflation

Permanent component Transitory
$$y_t = \overbrace{\zeta_t} + \overbrace{\eta_t}$$

$$\zeta_t = \zeta_{t-1} + z_t$$

$$z_t = \sigma_{z,t} \xi_{z,t}, \quad \eta_t = \sigma_{\eta,t} \xi_{\eta,t}, \quad \xi_t = [\xi_{\eta,t}, \xi_{\epsilon,t}] \sim N(0,I)$$

$$\log \sigma_{\eta,t}^2 = \log \sigma_{\eta,t-1}^2 + \mu_{\eta,t}, \qquad \log \sigma_{z,t}^2 = \log \sigma_{z,t-1}^2 + \mu_{z,t}$$

$$\mu_t = [\mu_{\eta,t}, \mu_{z,t}]' \sim N(0,\gamma I)$$

Estimated SV

Structural Estimation with SV: Professionals

Before March 20	20		Till March 2023	
SE				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\lambda}$		$\hat{\lambda}$	
FE	0.2		0.3	
FE+Disg	0.25		0.36	
FE+Disg+Var	0.36		0.36	
NI				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\sigma}_{pb}$	$\hat{\sigma}_{pr}$	$\hat{\sigma}_{pb}$	$\hat{\sigma}_{pr}$
FE	0.68	0.24	2.3	3
FE+Disg	0.67	0.24	2.3	3
FE+Disg+Var	0.64	0.21	2.3	3
DE				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\theta}$	σ_{θ}	$\hat{\theta}$	σ_{θ}
FE	-0.03	0.54	0.31	0.41
FE+Disg	-0.03	0.16	0.28	0.19
FE+Disg+Var	-0.04	0.16	0.31	0.19
DENI				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\theta}$	$\hat{\sigma}_{pr}$	$\hat{\theta}$	$\hat{\sigma}_{pr}$
FE	0.64	0.47	-0.25	0.93
FE+Disg	0.82	0.26	-0.26	0.93
FE+Disg+Var	0.82	0.24	-0.26	0.93

Structural Estimation with SV: Households

Before March 2020			Till March 2023	
SE				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\lambda}$		$\hat{\lambda}$	
FE	0.27		0.36	
FE+Disg	0.2		0.27	
FE+Disg+Var	0.26		0.26	
NI				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_{\xi}$	$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_{\xi}$
FE	N/A	N/A	N/A	N/A
FE+Disg	N/A	N/A	N/A	N/A
FE+Disg+Var	N/A	N/A	N/A	N/A
DE				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\theta}$	σ_{θ}	$\hat{\theta}$	σ_{θ}
FE	-0.09	0.58	-0.07	0.57
FE+Disg	0.29	0.57	0.47	1.07
FE+Disg+Var	0.29	0.57	0.28	1.07
DENI				
Moments Used	2-Step Estimate		2-Step Estimate	
	$\hat{\theta}$	$\hat{\sigma}_{\xi}$	$\hat{\theta}$	$\hat{\sigma}_{\xi}$
FE	-0.48	0.64	0.43	0.26
FE+Disg	-0.48	0.64	0.43	0.26
FE+Disg+Var	-0.48	0.64	0.43	0.26

Scoring card

Table: Scoring card of different theories

Criteria		NI	DE	DENI
Sensitive to moments used for estimation?	No	Yes	Yes	No
Sensitive to the assumed inflation process?		Yes	Yes	No
Sensitive to two-step or joint estimate?	No	No	No	Yes
Sensitive to the type of agents?		Yes	Yes	Yes

References I

- Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, et al. (2020). "Overreaction in Macroeconomic Expectations". *American Economic Review*.
- Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer (2018). "Diagnostic expectations and credit cycles". *The Journal of Finance* 73.1, pp. 199–227.
- Carroll, Christopher D (2003). "Macroeconomic expectations of households and professional forecasters". *the Quarterly Journal of economics* 118.1, pp. 269–298.
- Coibion, Olivier and Yuriy Gorodnichenko (2012). "What can survey forecasts tell us about information rigidities?" *Journal of Political Economy* 120.1, pp. 116–159.
- Lucas, Robert E (1972). "Expectations and the Neutrality of Money". *Journal of economic theory* 4.2, pp. 103–124.

References II

- Maćkowiak, Bartosz and Mirko Wiederholt (2009). "Optimal sticky prices under rational inattention". *American Economic Review* 99.3, pp. 769–803.
- Mankiw, N Gregory and Ricardo Reis (2002). "Sticky information versus sticky prices: a proposal to replace the New Keynesian Phillips curve". *The Quarterly Journal of Economics* 117.4, pp. 1295–1328.
- Sims, Christopher A (2003). "Implications of rational inattention". *Journal of monetary Economics* 50.3, pp. 665–690.
- Stock, James H and Mark W Watson (2007). "Why has US inflation become harder to forecast?" *Journal of Money, Credit and banking* 39, pp. 3–33.
- Woodford, Michael (2001). *Imperfect common knowledge and the effects of monetary policy*. Tech. rep. National Bureau of Economic Research.