Show and Tell: A Neural Image Caption Generator

Vinyals et al. (Google)

The IEEE Conference on Computer Vision and Pattern Recognition, 2015

The Problem

- ► Image Caption Generation
- Automatically describe content of an image
- ightharpoonup Image ightarrow Natural Language
- Computer Vision + NLP
- ► Much more difficult than image classification/recognition

Background

- Success in image classification/recognition
- Close to human level performance
- Deep CNN's, Big Datasets
- Image to fixed length vector

Background

- Machine Translation
- ► Language generating RNN's
- Decoder-Encoder framework
- Maximize likelihood of target sentence

Idea

- Combine Vision CNN with Language RNN
- Deep CNN as encoder
- Language Generating RNN as decoder
- ▶ End to end model $I \rightarrow S$
- ► Maximize p(S|I)

The Model

Neural Image Caption (NIC)

- ► CNN: 22 layer GoogleNet
- LSTM for modeling $\log p(S|I) = \sum_{t=0}^{N} \log p(S_t|I, S_0, \dots, S_{t-1})$
- ▶ Word embedding W_e

Language LSTM

word prediction

- Predicts next word in sentence
- Memory cell for longer memory
- $ightharpoonup S_t$ one-hot vectors + START/END token
- ► $x_{-1} = \text{CNN}(I)$, $x_t = W_e S_t$, $p_{t+1} = \text{LSTM}(x_t)$

Training

- ▶ Loss function $L(I, S) = -\sum_{t=1}^{N} \log p_t(S_t)$
- CNN pre-trained on ImageNet
- \blacktriangleright Minimize w.r.t. LSTM parameters, W_e and CNN top layer
- SGD on mini-batches
- Dropout and ensembling
- 512 dimensional embedding

Generation

- Give $x_{-1} = CNN(I)$
- $ightharpoonup x_0 = W_e S_0$, S_0 START token
- ► Sample word S₁
- ► Feed W_eS₁ to LSTM
- ▶ BeamSearch, beam size 20

- MSCOCO dataset: 80k train, 40k eval and test
- ▶ 5 human made captions per image
- M1-M5 human judgements

∀	M1 🔻	M2 —	М3 —	M4 =	M5 ₩
Human ^[5]	0.638	0.675	4.836	3.428	0.352
Google ^[4]	0.273	0.317	4.107	2.742	0.233
MSR ^[11]	0.268	0.322	4.137	2.662	0.234

Metric	BLEU-4	METEOR	CIDER
NIC	27.7	23.7	85.5
Random	4.6	9.0	5.1
Nearest Neighbor	9.9	15.7	36.5
Human	21.7	25.2	85.4

Table 1. Scores on the MSCOCO development set.

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Describes with minor errors

A skateboarder does a trick

side of the road.

Somewhat related to the image

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

- Improved Flickr8k, Flickr30k, PASCAL BLEU scores
- Need better evaluation metrics
- ▶ 80% of top-1 in training set
- ▶ 50% of top-15 in training set
- Similiar diversity as human captions

A man throwing a frisbee in a park.

A man holding a frisbee in his hand.

A man standing in the grass with a frisbee.

A close up of a sandwich on a plate.

A close up of a plate of food with french fries.

A white plate topped with a cut in half sandwich.

A display case filled with lots of donuts.

A display case filled with lots of cakes.

A bakery display case filled with lots of donuts.

Trained word embeddings W_e

Word	Neighbors
car	van, cab, suv, vehicule, jeep
boy	toddler, gentleman, daughter, son
street	road, streets, highway, freeway
horse	pony, donkey, pig, goat, mule
computer	computers, pc, crt, chip, compute

- ► Captures semantics from the language data
- ▶ Independent of vocubulary size

Summary

- End-to-end model (Encoder-Decoder)
- Vision CNN + Language generating RNN
- Maximize likelihood of S given I
- State of the art results on major datasets
- Datasets are limiting: Unsupervised approaches?