L. Vandenberghe EE133A (Spring 2017)

3. Matrices

- notation and terminology
- matrix operations
- linear and affine functions
- complexity

Matrix

a rectangular array of numbers, for example

$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- numbers in array are the elements (entries, coefficients, components)
- A_{ij} is the i, j element of A; i is its row index, j the column index
- size (dimensions) of the matrix is specified as (#rows) \times (#columns) for example, A is a 3×4 matrix
- set of $m \times n$ matrices with real elements is written $\mathbf{R}^{m \times n}$
- set of $m \times n$ matrices with complex elements is written ${\bf C}^{m \times n}$

Other conventions

many authors use parentheses as delimiters:

$$A = \begin{pmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{pmatrix}$$

• often a_{ij} is used to denote the i, j element of A

Matrix shapes

Scalar: we don't distinguish between a 1×1 matrix and a scalar

Vector: we don't distinguish between an $n \times 1$ matrix and an n-vector

Row and column vectors

- a $1 \times n$ matrix is called a *row vector*
- an $n \times 1$ matrix is called a *column vector* (or just *vector*)

Tall, wide, square matrices: an $m \times n$ matrix is

- tall if m > n
- wide if m < n
- square if m=n

Block matrix

- a block matrix is a rectangular array of matrices
- elements in the array are the blocks or submatrices of the block matrix

Example

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

is a 2×2 block matrix; if the blocks are

$$B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 2 & 3 \\ 5 & 4 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} 1 \end{bmatrix}, \quad E = \begin{bmatrix} -1 & 6 & 0 \end{bmatrix}$$

then

$$A = \left[\begin{array}{cccc} 2 & 0 & 2 & 3 \\ 1 & 5 & 4 & 7 \\ 1 & -1 & 6 & 0 \end{array} \right]$$

Note: dimensions of the blocks must be compatible!

Rows and columns

a matrix can be viewed as a block matrix with row/column vector blocks

• $m \times n$ matrix A as $1 \times n$ block matrix

$$A = \left[\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right]$$

each a_j is an m-vector (the jth column of A)

• $m \times n$ matrix A as $m \times 1$ block matrix

$$A = \left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

each b_i is a $1 \times n$ row vector (the *i*th *row* of A)

Special matrices

Zero matrix

- matrix with $A_{ij} = 0$ for all i, j
- notation: 0 (usually) or $0_{m \times n}$ (if dimension is not clear from context)

Identity matrix

- square matrix with $A_{ij}=1$ if i=j and $A_{ij}=0$ if $i\neq j$
- notation: I (usually) or I_n (if dimension is not clear from context)
- columns of I_n are unit vectors e_1, e_2, \ldots, e_n ; for example,

$$I_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{ccc} e_1 & e_2 & e_3 \end{array} \right]$$

Symmetric and Hermitian matrices

Symmetric matrix: square with $A_{ij}=A_{ji}$

$$\begin{bmatrix} 4 & 3 & -2 \\ 3 & -1 & 5 \\ -2 & 5 & 0 \end{bmatrix}, \begin{bmatrix} 4+3j & 3-2j & 0 \\ 3-2j & -j & -2j \\ 0 & -2j & 3 \end{bmatrix}$$

Hermitian matrix: square with $A_{ij} = \bar{A}_{ji}$ (complex conjugate of A_{ij})

$$\begin{bmatrix} 4 & 3-2j & -1+j \\ 3+2j & -1 & 2j \\ -1-j & -2j & 3 \end{bmatrix}$$

note: diagonal elements are real (since $A_{ii} = \bar{A}_{ii}$)

Structured matrices

matrices with special patterns or structure arise in many applications

• diagonal matrix: square with $A_{ij} = 0$ for $i \neq j$

$$\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -5 \end{array}\right], \qquad \left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{array}\right]$$

• lower triangular matrix: square with $A_{ij} = 0$ for i < j

$$\begin{bmatrix} 4 & 0 & 0 \\ 3 & -1 & 0 \\ -1 & 5 & -2 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 0 & -2 \end{bmatrix}$$

• upper triangular matrix: square with $A_{ij} = 0$ for i > j

Sparse matrices

a matrix is sparse if most (almost all) of its elements are zero

- sparse matrix storage formats and algorithms exploit sparsity
- efficiency depends on number of nonzeros and their positions
- positions of nonzeros are visualized in a 'spy plot'

Example

- 2,987,012 rows and columns
- 26,621,983 nonzeros

(Freescale/FullChip matrix from Univ. of Florida Sparse Matrix Collection)

Matrices 3-10

Outline

- notation and terminology
- matrix operations
- linear and affine functions
- complexity

Scalar-matrix multiplication and addition

Scalar-matrix multiplication:

scalar-matrix product of $m \times n$ matrix A with scalar β

$$\beta A = \begin{bmatrix} \beta A_{11} & \beta A_{12} & \cdots & \beta A_{1n} \\ \beta A_{21} & \beta A_{22} & \cdots & \beta A_{2n} \\ \vdots & \vdots & & \vdots \\ \beta A_{m1} & \beta A_{m2} & \cdots & \beta A_{mn} \end{bmatrix}$$

A and β can be real or complex

Addition: sum of two $m \times n$ matrices A and B (real or complex)

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\ \vdots & \vdots & & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + B_{mn} \end{bmatrix}$$

Transpose

the *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix

$$A^{T} = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{bmatrix}$$

- $\bullet \ (A^T)^T = A$
- ullet a symmetric matrix satisfies ${\cal A}={\cal A}^T$
- A may be complex, but transpose of complex matrices is rarely needed
- transpose of matrix-scalar product and matrix sum

$$(\beta A)^T = \beta A^T, \qquad (A+B)^T = A^T + B^T$$

Conjugate transpose

the *conjugate transpose* of an $m \times n$ matrix A is the $n \times m$ matrix

$$A^{H} = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{21} & \cdots & \bar{A}_{m1} \\ \bar{A}_{12} & \bar{A}_{22} & \cdots & \bar{A}_{m2} \\ \vdots & \vdots & & \vdots \\ \bar{A}_{1n} & \bar{A}_{2n} & \cdots & \bar{A}_{mn} \end{bmatrix}$$

 (\bar{A}_{ij}) is complex conjugate of A_{ij}

- ullet $A^H=A^T$ if A is a real matrix
- a Hermitian matrix satisfies $A = A^H$
- conjugate transpose of matrix-scalar product and matrix sum

$$(\beta A)^H = \bar{\beta}A^H, \qquad (A+B)^H = A^H + B^H$$

Matrix-matrix product

product of $m \times n$ matrix A and $n \times p$ matrix B (A, B are real or complex)

$$C = AB$$

is the $m \times p$ matrix with i, j element

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj}$$

dimensions must be compatible:

#columns in A=#rows in B

Exercise: paths in directed graph

directed graph with n=5 vertices

matrix representation

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

 $A_{ij}=1$ indicates an edge $j \to i$

Question: give a graph interpretation of $A^2 = AA$, $A^3 = AAA$,...

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}, \qquad A^{3} = \begin{bmatrix} 1 & 1 & 0 & 1 & 2 \\ 2 & 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad \dots$$

Properties of matrix-matrix product

- associative: (AB)C = A(BC) so we write ABC
- ullet associative with scalar-matrix multiplication: $(\gamma A)B = \gamma (AB) = \gamma AB$
- distributes with sum:

$$A(B+C) = AB + AC, \qquad (A+B)C = AC + BC$$

transpose and conjugate transpose of product:

$$(AB)^T = B^T A^T, \qquad (AB)^H = B^H A^H$$

• **not** *commutative*: $AB \neq BA$ in general; for example,

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$$

there are exceptions, e.g., AI = IA for square A

Notation for vector inner product

• inner product of $a, b \in \mathbf{R}^n$ (see page 1-17):

$$b^{T}a = b_{1}a_{1} + b_{2}a_{2} + \dots + b_{n}a_{n} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}^{T} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$$

product of the transpose of the column vector b and the column vector a

• inner product of $a, b \in \mathbb{C}^n$ (see page 1-24):

$$b^{H}a = \bar{b}_{1}a_{1} + \bar{b}_{2}a_{2} + \dots + \bar{b}_{n}a_{n} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}^{n} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$$

product of conjugate transpose of the column vector b and the column vector a

Matrix-matrix product and block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2×2 block matrices

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} W & Y \\ X & Z \end{bmatrix} = \begin{bmatrix} AW + BX & AY + BZ \\ CW + DX & CY + DZ \end{bmatrix}$$

if the dimensions of the blocks are compatible

Outline

- notation and terminology
- matrix operations
- linear and affine functions
- complexity

Matrix-vector product

product of $m \times n$ matrix A with n-vector (or $n \times 1$ matrix) x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix}$$

- ullet dimensions must be compatible: number of columns of A equals the size of x
- Ax is a linear combination of the columns of A:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

each a_i is an m-vector (ith column of A)

Linear function

a function $f: \mathbf{R}^n \to \mathbf{R}^m$ is **linear** if superposition holds:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all n-vectors x, y and all scalars α , β

Extension: if f is linear, superposition holds for any linear combination:

$$f(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_p u_p) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \dots + \alpha_p f(u_p)$$

for all scalars, $\alpha_1, \ldots, \alpha_p$ and all n-vectors u_1, \ldots, u_p

Matrix-vector product function

for fixed $A \in \mathbf{R}^{m \times n}$, define a function $f: \mathbf{R}^n \to \mathbf{R}^m$ as

$$f(x) = Ax$$

- any function of this type is linear: $A(\alpha x + \beta y) = \alpha(Ax) + \beta(Ay)$
- every linear function can be written as a matrix-vector product function:

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

$$= x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$$

$$= \left[f(e_1) \dots f(e_n) \right] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

hence, f(x) = Ax with $A = \begin{bmatrix} f(e_1) & f(e_2) & \cdots & f(e_n) \end{bmatrix}$

Input-output (operator) interpretation

think of a function $f: \mathbf{R}^n \to \mathbf{R}^m$ in terms of its effect on x

- ullet signal processing/control interpretation: n inputs x_i , m outputs y_i
- ullet f is linear if we can represent its action on x as a product f(x) = Ax

Examples ($f: \mathbf{R}^3 \to \mathbf{R}^3$)

• f reverses the order of the components of x a linear function: f(x) = Ax with

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

- ullet f sorts the components of x in decreasing order: not linear
- f scales x_1 by a given number d_1 , x_2 by d_2 , x_3 by d_3 a linear function: f(x) = Ax with

$$A = \left[\begin{array}{ccc} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{array} \right]$$

• f replaces each x_i by its absolute value $|x_i|$: not linear

Operator interpretation of matrix-matrix product

explains why in general $AB \neq BA$

Example

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- f(x) = ABx reverses order of elements; then changes sign of first element
- f(x) = BAx changes sign of 1st element; then reverses order

Reverser and circular shift

Reverser matrix

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}, \qquad Ax = \begin{bmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_2 \\ x_1 \end{bmatrix}$$

Circular shift matrix

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \qquad Ax = \begin{bmatrix} x_n \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

Permutation

Permutation matrix

- a square 0-1 matrix with one element 1 per row and one element 1 per column
- equivalently, an identity matrix with columns reordered
- equivalently, an identity matrix with rows reordered

Ax is a permutation of the elements of x

Example

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad Ax = \begin{bmatrix} x_2 \\ x_4 \\ x_1 \\ x_3 \end{bmatrix}$$

Rotation in a plane

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Ax is x rotated counterclockwise over an angle θ

Projection on line and reflection

projection on line through a (see page 2-12):

$$y = \frac{a^T x}{\|a\|^2} a = Ax$$
 with $A = \frac{1}{\|a\|^2} a a^T$

reflection with respect to line through a

$$z = x + 2(y - x) = Bx$$
, with $B = \frac{2}{\|a\|^2}aa^T - I$

Node-arc incidence matrix

- directed graph (network) with m vertices, n arcs (directed edges)
- incidence matrix is $m \times n$ matrix A with

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ enters node } i \\ -1 & \text{if arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Kirchhoff's current law

n-vector $x=(x_1,x_2,\ldots,x_n)$ with x_j the current through arc j

$$(Ax)_i = \sum_{\substack{\mathrm{arc}\, j \; \mathrm{enters} \\ \mathrm{node}\, i}} x_j - \sum_{\substack{\mathrm{arc}\, j \; \mathrm{leaves} \\ \mathrm{node}\, i}} x_j$$

= total current arriving at node i

$$Ax = \begin{bmatrix} -x_1 - x_2 + x_4 \\ x_1 - x_3 \\ x_3 - x_4 - x_5 \\ x_2 + x_5 \end{bmatrix}$$

Kirchhoff's voltage law

m-vector $y = (y_1, y_2, \dots, y_m)$ with y_i the potential at node i

$$(A^Ty)_j = y_k - y_l$$
 if edge j goes from node l to k = negative of voltage across arc j

$$A^{T}y = \begin{bmatrix} y_2 - y_1 \\ y_4 - y_1 \\ y_3 - y_2 \\ y_1 - y_3 \\ y_4 - y_3 \end{bmatrix}$$

Convolution

the *convolution* of an n-vector a and an m-vector b is the (n+m-1)-vector c

$$c_k = \sum_{\substack{\text{all } i \text{ and } j \text{ with } \\ i+j=k+1}} a_i b_j$$

notation: c = a * b

Example: n = 4, m = 3

$$c_{1} = a_{1}b_{1}$$

$$c_{2} = a_{1}b_{2} + a_{2}b_{1}$$

$$c_{3} = a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1}$$

$$c_{4} = a_{2}b_{3} + a_{3}b_{2} + a_{4}b_{1}$$

$$c_{5} = a_{3}b_{3} + a_{4}b_{2}$$

$$c_{6} = a_{4}b_{3}$$

Properties

Interpretation: if a and b are the coefficients of polynomials

$$p(x) = a_1 + a_2x + \dots + a_nx^{n-1}, \qquad q(x) = b_1 + b_2x + \dots + b_mx^{m-1}$$

then c = a * b gives the coefficients of the product polynomial

$$p(x)q(x) = c_1 + c_2x + c_3x^2 + \dots + c_{n+m-1}x^{n+m-2}$$

Properties

• symmetric: a * b = b * a

• associative: (a*b)*c = a*(b*c)

• if a*b=0 then a=0 or b=0

these properties follow directly from the polynomial product interpretation

Example: moving average of a time series

- *n*-vector *x* represents a time series
- the 3-period *moving average* of the time series is the time series

$$y_k = \frac{1}{3}(x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \dots, n+2$$

(with x_k interpreted as zero for k < 1 and k > n)

• this can be expressed as a convolution y = a * x with a = (1/3, 1/3, 1/3)

Convolution and Toeplitz matrices

- c = a * b is a linear function of b if we fix a
- c = a * b is a linear function of a if we fix b

Example: convolution c = a * b of a 4-vector a and a 3-vector b

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{bmatrix} = \begin{bmatrix} a_1 & 0 & 0 \\ a_2 & a_1 & 0 \\ a_3 & a_2 & a_1 \\ a_4 & a_3 & a_2 \\ 0 & 0 & a_4 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ b_3 & b_2 & b_1 & 0 \\ 0 & b_3 & b_2 & b_1 \\ 0 & 0 & b_3 & b_2 \\ 0 & 0 & 0 & b_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

the matrices in these matrix-vector products are called Toeplitz matrices

Vandermonde matrix

• polynomial of degree n-1 or less with coefficients x_1, x_2, \ldots, x_n :

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

• values of p(t) at m points t_1, \ldots, t_m :

$$\begin{bmatrix} p(t_1) \\ p(t_2) \\ \vdots \\ p(t_m) \end{bmatrix} = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= Ax$$

the matrix A is called a *Vandermonde* matrix

• f(x) = Ax maps coefficients of polynomial to function values

Discrete Fourier transform

the DFT maps a complex n-vector (x_1, x_2, \ldots, x_n) to the complex n-vector

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

$$= Wx$$

where $\omega = e^{2\pi \mathrm{j}/n}$ (and $\mathrm{j} = \sqrt{-1}$)

- DFT matrix $W \in \mathbf{C}^{n \times n}$ has k, l element $W_{kl} = \omega^{-(k-1)(l-1)}$
- ullet a Vandermonde matrix with m=n and

$$t_1 = 1,$$
 $t_2 = \omega^{-1},$ $t_3 = \omega^{-2},$..., $t_n = \omega^{-(n-1)}$

Affine function

a function $f: \mathbf{R}^n \to \mathbf{R}^m$ is **affine** if it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all *n*-vectors x, y and all scalars α , β with $\alpha + \beta = 1$

Extension: if f is affine, then

$$f(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \dots + \alpha_m f(u_m)$$

for all n-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$ with

$$\alpha_1 + \alpha_2 + \dots + \alpha_m = 1$$

Affine functions and matrix-vector product

for fixed $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, define a function $f: \mathbf{R}^n \to \mathbf{R}^m$ by

$$f(x) = Ax + b$$

i.e., a matrix-vector product plus a constant

• any function of this type is affine: if $\alpha + \beta = 1$ then

$$A(\alpha x + \beta y) + b = \alpha(Ax + b) + \beta(Ax + b)$$

• every affine function can be written as f(x) = Ax + b with:

$$A = [f(e_1) - f(0) \quad f(e_2) - f(0) \quad \cdots \quad f(e_n) - f(0)]$$

and b = f(0)

Affine approximation

first-order Taylor approximation of differentiable $f: \mathbf{R}^n \to \mathbf{R}^m$ around z:

$$\widehat{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f_i}{\partial x_n}(z)(x_n - z_n), \quad i = 1, \dots, m$$

in matrix-vector notation: $\widehat{f}(x) = f(z) + Df(z)(x-z)$ where

$$Df(z) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\ \frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z) \end{bmatrix} = \begin{bmatrix} \nabla f_1(z)^T \\ \nabla f_2(z)^T \\ \vdots \\ \nabla f_m(z)^T \end{bmatrix}$$

- ullet Df(z) is called the *derivative matrix* or *Jacobian matrix* of f at z
- $\bullet \ \ \widehat{f}$ is a local affine approximation of f around z

Example

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} e^{2x_1 + x_2} - x_1 \\ x_1^2 - x_2 \end{bmatrix}$$

derivative matrix

$$Df(x) = \begin{bmatrix} 2e^{2x_1 + x_2} - 1 & e^{2x_1 + x_2} \\ 2x_1 & -1 \end{bmatrix}$$

• first order approximation of f around z=0:

$$\widehat{f}(x) = \begin{bmatrix} \widehat{f}_1(x) \\ \widehat{f}_2(x) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Outline

- notation and terminology
- matrix operations
- linear and affine functions
- complexity

Matrix-vector product

matrix-vector multiplication of $m \times n$ matrix A and n-vector x:

$$y = Ax$$

requires (2n-1)m flops

- m elements in y; each element requires an inner product of length n
- approximately 2mn for large n

Special cases: flop count is lower for structured matrices

- ullet A diagonal: n flops
- A lower triangular: n^2 flops
- A sparse: #flops $\ll 2mn$

Matrix-matrix product

product of $m \times n$ matrix A and $n \times p$ matrix B:

$$C = AB$$

requires mp(2n-1) flops

- mp elements in C; each element requires an inner product of length n
- approximately 2mnp for large n

Exercises

1. evaluate y = ABx two ways (A and B are $n \times n$, x is a vector)

- y = (AB)x (first make product C = AB, then multiply C with x)
- y = A(Bx) (first make product y = Bx, then multiply A with y)

both methods give the same answer, but which method is faster?

- 2. evaluate $y = (I + uv^T)x$ where u, v, x are n-vectors
- $A = I + uv^T$ followed by y = Ax in MATLAB: y = (eye(n) + u*v') * x
- $w = (v^T x)u$ followed by y = x + w in MATLAB: y = x + (v'*x) * u