Binary representations of integers

- dimensions of the memory location: n= 8, 16, 32,64 bits
- the structure of the memory location: bit 0 (the rightmost bit) is the least significant bit, bit n-1 (the leftmost) is the most significant one;

bit n-1	bit n-2	t t	oit I	bit 0
		•••		

Rules for binary operations with integers:

- R1) Addition and subtraction on n bits: both terms and the result are represented on n bits.
- R2) Multiplication on n bits: both factors represented on n bits and the product represented on 2·n bits.
- R3) Division on n bits: dividend represented on 2·n bits, the divisor on n bits. This operation provides a quotient and a remainder represented both on n bits.
- R4) In case of overflow the most significant bits are lost.

There are two classes of representations:

- unsigned representation: only for natural numbers;
- signed representations: for integers with sign.

Unsigned representation

- the number is converted into binary and then the bits are filled with the corresponding binary digits (aligned to the right), eventually the leftmost bits are filled with insignificant zeros.
- min: $0...0_{(2)}=0$
- max: $1...1_{(2)}=2^n-1$
- intervals of values:

$$n = 8$$
 [0, 255]
 $n = 16$ [0, 65535]

Examples of representations and operations on 8 bits:

1)	18+	12(16)+	$00010010_{(2)} +$
	18	12 ₍₁₆₎	$00010010_{(2)}$
	36	24 ₍₁₆₎	$00100100_{(2)}$
2)	243-	F3 ₍₁₆₎ -	11110011 ₍₂₎ -
	18	12(16)	00010010 ₍₂₎
	225	E1 ₍₁₆₎	11100001 ₍₂₎
3)	243+	F3 ₍₁₆₎ +	11110011 ₍₂₎ +
	18	12(16)	00010010 ₍₂₎
	261	05 ₍₁₆₎	$100000101_{(2)}$! overflow at addition!
4)	18-	12(16)-	00010010 ₍₂₎ -
	243	F3 ₍₁₆₎	11110011 ₍₂₎
	-225	$1F_{(16)}$	00011111 ₍₂₎ ! overflow at subtraction

<u>Signed representations – codes</u>

- dimensions of the memory location $n \in \{8,16,32,64\}$ bits
- the most significant bit (bit n-1) is used for the sign (S=0 for positive numbers, S=1 for negative numbers), and for the magnitude of the number n-1 bits are used.

bit n-1	bit n-2		bit 1	bit 0
S		•••		

Direct code

Let x be an integer, $|x| \le 2^{n-1}$. The direct code of x is defined as follows:

$$[x]_{dir} = \begin{cases} x(2) & \text{,if } x \ge 0 \\ 2^{n-1} + |x| & \text{,if } x \le 0 \end{cases}$$

- for a positive number the bits from the memory location are filled with the digits from the binary representation, aligned to the right, the sign bit is 0;
- for negative number: its absolute value is represented and then the sign bit is set to 1 (equivalent with the operation: $10...0_{(2)}+|x|$)
- disadvantage: there are 2 different direct codes for 0:

 $[+0]_{dir}$: |0|0....0| and $[-0]_{dir}$: |1|0....0|

Inverse code (complement to 1)

Let x be an integer, $|x| < 2^{n-1}$. The *inverse code* of x is defined as follows:

$$[x]_{inv} = \begin{cases} x_{(2)}, & \text{if } x \ge 0 \\ 2^n - 1 - |x|, & \text{if } x \le 0 \end{cases}$$

- the inverse code of a positive number is the same as the direct code
- for a negative number: its absolute value is represented and then the values of all bits are inversed (complemented to 1): equivalent with the operation: $11...1_{(2)}$ - $|\mathbf{x}_{(2)}|$;
- disadvantage: there are 2 different inverse codes for 0:

 $[+0]_{inv}$: |0|0....0| and $[-0]_{inv}$: |1|1...1|

Complementary code (complement to 2)

Let x be an integer, $|x| < 2^{n-1}$. the *complementary code* of x is defined as follows:

$$[x]_{compl} = \begin{cases} x_{(2)}, & \text{if } x \ge 0 \\ 2^n - |x_{(2)}|, & \text{if } x < 0 \end{cases}$$

- for a positive number x, $[x]_{compl} = [x]_{inv} = [x]_{dir}$
- for a negative number: its absolute value is represented, then from right to left, beginning with bit 0, all the bits with value 0 and the first bit 1 remain unchanged and all the other bits to the left are inversed.
- if x < 0, then $[x]_{compl} = [x]_{inv} + 1$
- advantage: there is a unique code for 0: $[0]_{compl}$: [0]0....0
- there is a configuration of bits which does not correspond to a number: |1|0...0|

Intervals of values for integers:

Examples: the codes on 8 bits:

$$\begin{split} 100 &= 1100100_{(2)} \\ &[100]_{dir} = [100]_{inv} = [100]_{compl} = |0|1100100| \\ &[-100]_{dir} = |1|1100100| \\ &[-100]_{inv} = |1|0011011| \\ &[-100]_{compl} = |1|0011100| \\ 40 &= 101000_{(2)} \\ &[40]_{dir} = [40]_{inv} = [40]_{compl} = |0|0101000| \\ &[-40]_{dir} = |1|0101011| \\ &[-40]_{compl} = |1|1010111| \\ &[-40]_{compl} = |1|1011000| \end{split}$$

Addition and subtraction in complementary code

 $[x]_{compl}$ is considered an array of n bits, representing a positive number in base 2.

The complementary codes of the sum and difference of the integers $x, y \ge 0$:

$$[x+y]_{compl} = [x]_{compl} \oplus [y]_{compl}$$
$$[x-y]_{compl} = [x]_{compl} \oplus [-y]_{compl}$$

The algebraic sum: ①, is defined as follows:

$$\forall x, y \in [0, 2^n), x \oplus y = \begin{cases} x + y, & \text{if } x + y < 2^n \\ x + y - 2^n, & \text{if } x + y \ge 2^n \end{cases}$$

Rules

<u>r1</u>: if x, y have the same sign, but $x \oplus y$ has the opposite sign=>overflow.

<u>r2</u>: if in the result of $x \oplus y$, there is a carry digit outside the representation space this will be eliminated (the second branch of the above definition).

Example:

Subunitary convention:

bit n-1,	bit n-2	bit 1	bit 0	
S		•••		

Let $x \in \mathbb{R}$, |x| < 1, with at most <u>n-1</u> binary digits after the decimal point. The *direct code* of x is:

$$[x]_{dir} = \begin{cases} x_{(2)}, & \text{if } x \ge 0 \\ 1 + |x_{(2)}|, & \text{if } x \le 0 \end{cases}$$

The *inverse code* (complement to 1) of x is:

$$[x]_{inv} = \begin{cases} x_{(2)}, & \text{if } x \ge 0 \\ 2 - 2^{-n+1} - |x_{(2)}|, & \text{if } x \le 0 \end{cases}$$

The *complementary code* (complement to 2) of x is:

$$[x]_{compl} = \begin{cases} x_{(2)}, & \text{if } x \ge 0 \\ 2 - |x|, & \text{if } x < 0 \end{cases}$$

The complementary codes for the sum and difference of two subunitary positive numbers x, y:

$$[x+y]_{compl} = [x]_{compl} \oplus [y]_{compl}$$
$$[x-y]_{compl} = [x]_{compl} \oplus [-y]_{compl}$$

The algebraic sum \oplus on n bits, is defined as follows:

$$\forall x, y \in [0,1), x \oplus y = \begin{cases} x+y, & \text{if } x+y < 2 \\ x+y-2, & \text{if } x+y \ge 2 \end{cases}$$

Remarks:

- for a positive number: the number is converted into binary, the sign bit is 0, beginning with the bit n-2, from left to the right, the bits are filled with the corresponding binary digits.
- the same practical rules for obtaining the codes for negative numbers and for the addition and subtraction in complementary code as for integers are applied.
- if $x \ge 0$, then $[x]_{compl} = [x]_{inv} = [x]_{dir}$
- if x < 0, then $[x]_{compl} = [x]_{inv} + 2^{-n+1}$

Examples:

$$0,25 = 0,01_{(2)} \qquad 13/16 = 0,1101_{(2)}$$

$$[13/16]_{dir} = [13/16]_{inv} = [13/16]_{compl} = |0|1101000|$$

$$[-13/16]_{dir} = |1|1101000|$$

$$[-13/16]_{inv} = |1|0011011|$$

$$[-13/16]_{compl} = |1|00110000|$$

$$[0,25]_{compl} = |0|0100000|$$

$$[-0,25]_{compl} = |1|1100000|$$

Binary representations for real numbers

***** fixed point representation and floating point representation

Fixed point representation

- dimension of memory location: n bits (n=16,32,64)
- 3 zones of the memory location with predefined dimensions (1,I,F):
 - the most significant bit (S), position n-1, is the sign bit with the values: 0 for positive numbers and 1 for negative numbers;
 - the decimal point has a fixed position, a virtual one, separating the integer part from the fractional one;
 - 1+I+F=n bits (n=16,32,64)
 - the integer part (I bits)
 - memorizes (aligned to the right relative to the virtual position of the decimal point) the digits of the absolute value of the number converted in binary;

- if I > the number of digits of the binary representation of the absolute value of the number, the remaining bits to the left are filled with 0.
- if I < the number of digits of the binary representation of the absolute value of the number, then the most significant digits of the integer part are lost (!! disadvantage).

- the fractional part (F bits)

- memorizes (aligned to the left relative to the virtual position of the decimal point) the digits of the fractional part
- if F > the number of binary digits of the fractional part then the remaining digits to the right are filled with 0.
- if F < the number of binary digits of the fractional part then the least significant digits of the fractional part are lost.

virtual position of the decimal point

A nonzero real number x is represented in fixed point convention on n=1+I+F bits if: $2^{-F} \le |x| \le 2^I - 2^{-F}$

The representation of the minimum absolute value 2-F is:

S	S I bits			F bits				
0	0	•••	0	0	•••	0	1	

The representation of the maximum absolute value 2^I -2^{-F} is:

Remark: =
$$10...0,0...00_{(2)}$$
 - (2^I)
0,0...01₍₂₎ (2^{-F})

Example 1:

Represent in fixed point convention on 16 bits, I=6 bits, F=9 bits the number: -29.21.

Conversion into binary:

- integer part: the number is written as a sum of powers of 2:

$$29 = 16 + 8 + 4 + 1 = 2^4 + 2^3 + 2^2 + 2^0 = 11101_{(2)}$$

- fractional part: successive multiplications by the destination base 2:

9 multiplications by 2 (F=9 bits)

$$0,21*2=\underline{0},42$$
 $0,42*2=\underline{0},84$ $0,84*2=\underline{1},68$ $0,68*2=\underline{1},36$

$$0,36*2=\underline{0},72$$
 $0,72*2=\underline{1},44$

$$0.72*2=1.44$$
 $0.44*2=0.88$ $0.88*2=1.76$

$$0,21=0,001101011_{(2)}$$

$$-29,21 = -11101,001101011_{(2)}$$

Representation:

location's content in hexa

Example 2.

Represent in fixed point convention on 16 bits, I=6 bits, F=9 bits, the number: + 70.21.

$$70 = 64 + 4 + 2 = 2^6 + 2^2 + 2^1 = 1000110_{(2)}$$

$$70,21 = 1000110,001101011_{(2)}$$

Remark:

The integer part does not fit in 6 bits, the most significant bit is lost: 1.

location's content in hexa

Floating point representation

- used to represent very large and very small numbers with a high precision
- if there is an overflow the least significant digits are lost

Any real number x can be written as: $x = \pm 0, m \cdot b^e$ where:

m - mantissa;

b - numeration base;

e - exponent

Example:

<u>Def 1:</u> A real number x is written with a subunitary mantissa and an exponent of base b if $x = \pm 0, m \cdot b^e$

<u>Def 2</u>: A real number $x, x \ne 0$, is written with a subunitary normalized mantissa, if x is written with a subunitary mantissa and an exponent of base b

and
$$\frac{1}{b} \le m < 1$$

Ex: 0,12345678 *10⁴ - subunitary normalized mantissa 0,004371 *10⁻⁴ - mantissa is not normalized

<u>Def 3</u>: A real number x, $x \ne 0$, is written with a 1<mantissa <2, if $x = \pm 1, m \cdot 2^{e}$

<u>Def 4:</u> A real number x is represented in floating point notation if it is used the binary representation with exponent and subunitary mantissa or 1<mantissa<2.

Remarks:

- 1. If 1<mantissa<2 the digit 1 from the integer part is not represented (is hidden) but will be used in the operations with the representations.
- 2. Computers use now 1< mantissa <2.

where:

S – sign bit

c - e (exponent) + q(bias)

q – bias (a constant of the computer)

e - the exponent from the binary representation with mantissa and exponent

m - mantissa from the binary representation with mantissa and exponent

The precision of representation is provided by the min and max values of the exponent:

$$0 \le c = (e + q) \le 2^E - 1 \implies -q \le e \le 2^E - 1 - q$$

Standards IEEE 1<mantissa< 2.

Standard IEEE 754 Single precision

Standard IEEE 754 Double precision

$$S c = e + 1023$$
 m

$$q=1023=2^{10}-1=2^{E-1}-1, -1023 \le e \le 1024$$

Special values

Value	Rep	on	
	S	c	m
0+	0	00	00
0-	1	00	00
-inf	1	11	00
+inf	0	0 11 00	
NaN (not a number)	1 sau 0	11	Nonzero value

Remarks

- 1. $c=11..1_{(2)}$ is used only for the special values: +inf, -inf, NaN
- 2. The smallest positive number which can be represented in single precision has the representation:

$$c=1 \implies e + 127(q)=1 \implies e = -126$$

Using the hidden bit the value of the mantissa is 1.0 and:

$$\min = 1.0 * 2^{-126} = 2^{-126}$$

2. The largest positive number which can be represented in single precision has the representation:

c=11111110₍₂₎=28-2=(the biggest value of c for a valid number)

$$\Rightarrow$$
 e +127(q)= 254 => e= 127

Using the hidden bit, the value of the mantissa is:

Precision	Binary absolute value	Decimal absolute value
Single	$min = 2^{-126}$ $max = (2-2^{-23}) * 2^{127}$	$min \approx 10^{-38}$ $max \approx 10^{38}$
Double	$ \begin{aligned} min &= 2^{-1022} \\ max &= (2-2^{-52}) * 2^{1023} \end{aligned} $	

Example 1:

Represent in floating point notation, single precision the number 2530,41.

8 is used as an intermediate base:

Conversion of the integer part: successive divisions by 8

316: 8 = 39 remainder
$$4$$

39: 8 = 4 remainder
$$\frac{7}{2}$$

4:
$$8 = 0$$
 remainder $\underline{4}$

$$2530 = 4742_{(8)} = 100 \ 111 \ 100 \ 010_{(2)} = 1,00111100010_{(2)} *2^{11}$$

The number is written with exponent and a mantissa >1

$$=> e=11$$
 §i $c=127+11=138=128+8+2=2^7+2^3+2^1=10001010_{(2)}$

- Conversion of the fractional part: successive multiplications by 8
 - there are 11 digits in mantissa from the integer part
 - we need 12 more binary digits obtained from the fractional part:
 12 binary digits are covered by 4 octal digits: 4 multiplications by 8

$$0,41*8 = 3,28$$

$$0,28*8 = 2,24$$

$$0,24*8 = 1,92$$

$$0.92*8 = 7.36$$

$\mathbf{2530,} \mathbf{41} \mathbf{=1,} \mathbf{00111100010011010001111_{(2)}} \mathbf{^{211}}$

Representation on 32 bits:

S	c,	m	memory content in hexa		
0	10001010	00111100010011010001111	=	451E268F	