Anno Kake

Machine Learning Course - CS-433

Text Representation Learning

Nov 23, 2017

©Martin Jaggi 2016 minor changes by Martin Jaggi 2017 Last updated: November 23, 2017

Motivation

Finding numerical representations for words is fundamental for all machine learning methods dealing with text data.

Goal: For each word, find mapping (embedding)

$$w_i \mapsto \mathbf{w}_i \in \mathbb{R}^K$$

Representation should capture semantics of the word.

Constructing good feature representations (= representation learning) benefits all ML applications.

The Co-Occurence Matrix

A big corpus of un-labeled text can be represented as the co-occurrence counts

 $n_{ij} := \# \text{contexts where word } w_i \text{ oc-}$

curs together with word w_j .

0	1	1	0	0
a	0	3	0	0
	1			
	2		1	
1				1
		1		
	1		1	1

(context words)

Needs definition of

- Context e.g. document, paragraph, sentence, window
- Vocabulary $\mathcal{V} := \{w_1, \dots, w_D\}$

For words $w_d = 1, 2, ..., D$ and context words $w_n = 1, 2, ..., N$, the co-occurrence counts n_{ij} form a very sparse $D \times N$ matrix.

$$\mu = D = |U|$$

Learning Word-Representations (Using Matrix Factorization)

Find a factorization of the <u>co-</u>occurence matrix!

Typically uses \log of the actual counts, i.e. $x_{dn} := \log(n_{dn})$.

We will aim to find \mathbf{W}, \mathbf{Z} s.t.

$$\mathbf{X} pprox \mathbf{W} \mathbf{Z}^{ op}$$
 .

So for each pair of words (w_d, w_n) , we try to 'explain' their co-occurrence count by a numerical representation of the two words

- in fact by the inner product of the two feature vectors \mathbf{W}_d , \mathbf{Z}_n : log(count = $\#(\mathbf{w}_d, \mathbf{w}_n)$)

$$\min_{\mathbf{W}, \mathbf{Z}} \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \frac{1}{2} \sum_{\substack{(d, n) \in \Omega \\ \text{non-zero}}} f_{dn} \left[x_{dn} - (\mathbf{W} \mathbf{Z}^{\top})_{dn} \right]^{2}$$
where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}^{N \times K}$

where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and $\mathbf{Z} \in \mathbb{R}^{N \times K}$ are tall matrices, having only $K \ll D, N$ columns.

The set $\Omega \subseteq [D] \times [N]$ collects the indices of non-zeros of the count matrix \mathbf{X} .

Each row of those matrices forms a representation of a word (\mathbf{W}) or a context word (\mathbf{Z}) respectively.

GloVe

This model is called GloVe, and is a variant of word2vec.

Weights f_{dn} : Give "importance" of each entry. Choosing $f_{dn} := 1$ is ok. GloVe weight function:

$$f_{dn} := \min \left\{ 1, \left(n_{dn}/n_{\max} \right)^{lpha}
ight\},$$

Choosing K

K e.g. 50, 100, 200

Word Analogies

Newspapers						
New York	New York Times	Baltimore	Baltimore Sun			
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer			
NHL Teams						
Boston	Boston Bruins	Montreal	Montreal Canadiens			
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators			
NBA Teams						
Detroit	Detroit Pistons	Toronto	Toronto Raptors			
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies			
Airlines						
Austria	Austrian Airlines	Spain	Spainair			
Belgium	Brussels Airlines	Greece	Aegean Airlines			
Company executives						
Steve Ballmer	Microsoft	Larry Page	Google			
Samuel J. Palmisano	IBM	Werner Vogels	Amazon			

Training

- Stochastic Gradient Descent (SGD)
- Alternating Least-Squares (ALS)

Open questions:

- Parallel and distributed training
- Does regularization help?

Alternative: Skip-Gram Model

(Original word2vec)

Uses binary classification (logistic regression objective), to separate real word pairs (w_d, w_n) from fake word pairs. Same inner product score = matrix factorization.

Given w_d , a context word w_n is

- real = appearing together in a context window of size 5
- fake = any word $w_{n'}$ sampled randomly: Negative sampling (also: Noise Contrastive Estimation)

Learning Representations of Documents

Supervised: For a supervised task (e.g. predicting the emotion of a tweet), we can use matrix-factorization (below) or convolutional neural networks (see next weeks).

 \rightarrow SemEval competition for tweet classification.

Unsupervised:

- Adding (fixed, given) word vectors
- Training word vectors such that adding works well
- Direct unsupervised training for sentences (appearing together with context sentences) instead of words

FastText

Matrix factorization to learn document/sentence representations (supervised).

Given a sentence $s_n = (w_1, w_2, \dots, w_m)$, let $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ be the bag-of-words representation of the sentence.

$$\min_{\mathbf{W}, \mathbf{Z}} \ \mathcal{L}(\mathbf{W}, \mathbf{Z}) := \sum_{s_n \text{ a sentence}} f(y_n \mathbf{W} \mathbf{Z}^{\top} \mathbf{x}_n)$$

where $\mathbf{W} \in \mathbb{R}^{1 \times K}$, $\mathbf{Z} \in \mathbb{R}^{|\mathcal{V}| \times K}$ are the variables, and the vector $\mathbf{x}_n \in \mathbb{R}^{|\mathcal{V}|}$ represents our n-th training sentence.

Here f is a linear classifier loss function, and $y_n \in \{\pm 1\}$ is the classification label for sentence \mathbf{x}_n .

Further Pointers

1. word2vec:

code: code.google.com/p/word2vec/
paper:

"Distributed representations of words and phrases and their compositionality" - T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean. NIPS 2013

2. GloVe:

code and vectors: nlp.stanford.edu/projects/glove/paper:

"GloVe: Global Vectors for Word Representation" - Pennington, J., Socher, R., Manning, C. D.. EMNLP 2014

3. FastText

code: github.com/facebookresearch/fastText papers:

"Bag of Tricks for Efficient Text Classification" - Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. - EC-ACL, 2017.

"Enriching Word Vectors with Subword Information" - Bojanowski, P., Grave, E., Joulin, A., Mikolov, T. - TACL, 2017.

"Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features" - Pagliardini, M., Gupta, P., Jaggi, M. arXiv 2017.