Chapter 2 Quiz (A)

th to	
姓名 1. 理想气体在室温条件下,如果一个振	学号 动模式满足能量均分原理,那(a)是
	奶烧八俩足能重均力凉垤,那(d)定
正确的。	
(a) 该模式对系统摩尔热能的贡献为 RT	
(b) 该模式振动频率明显大于 1000 cm ⁻¹	
(c) 该模式对系统摩尔热能的贡献为(1/2	P)RT
(d) 该模式的摩尔基态能非常接近 RT	
2. 处于平衡的液态相比于气态(纯态,气态为理想气体),按照一般规律,(c)	
是不正确的。	
	(b) 液态的等压摩尔热容高于气态
(c) 液态的摩尔内能高于气态	(d) 液态的摩尔体积小于气态
3. 由于标准熔点决定于熔融焓变和熔融熵变两个竞争因素,多数时候标准熔点并不直接与分子结构对应。例如,对于四氯化碳和 1,1,2,2-四氯乙烷两种晶体,实验测得两个熔融熵变相差 4 倍左右、两个熔融焓变也相差 4 倍左右。请估算以	
绝对温标为单位的标准熔点,你的结论是	e(b).
(a) $T_{mp, \text{四氯化碳}} \approx (1/4) T_{mp, \text{四氯乙烷}}$	(b) $T_{mp, \text{四氯化碳}} \approx T_{mp, \text{四氯乙烷}}$
(c) $T_{mp, \text{Шакий}} \approx 4 T_{mp, \text{Шакий}}$	(d) $T_{mp,mgk}$ \approx 16 $T_{mp,mgk}$ 乙烷
4. 根据我们总结的规律,分子量相近的萘与正十烷的标准沸腾和熔融熵变满足 (b)。	
(a) $\Delta_{\mathbb{R}} S \underset{\mathbb{R}}{\overset{\cdot}{\approx}} \Delta_{\mathbb{R}} S + f_{\mathbb{R}}, \Delta_{\mathbb{R}} S \underset{\mathbb{R}}{\overset{\cdot}{\approx}} \Delta_{\mathbb{R}} S + f_{\mathbb{R}}$	(b) $\Delta_{\mathbb{R}} S \underset{\mathbb{R}}{\otimes} \approx \Delta_{\mathbb{R}} S_{+\mathbb{M}}, \Delta_{\mathbb{R}} S \underset{\mathbb{R}}{\otimes} << \Delta_{\mathbb{R}} S_{+\mathbb{M}}$
(c) $\Delta_{\mathbb{R}} S \stackrel{*}{\underset{*}{<<}} \Delta_{\mathbb{R}} S + \mathbb{R}$, $\Delta_{\mathbb{R}} S \stackrel{*}{\underset{*}{<<}} \Delta_{\mathbb{R}} S + \mathbb{R}$,,
5. 常见环烷烃和正烷烃都满足春藤规则,这意味着在标准状态下(a)。	
(a) 分子内转动自由度对蒸发熵变贡献不	下大
(b) 分子内转动自由度决定熔融熵变	
(c) 分子内转动自由度对熔融熵变贡献不	下大
(d) 分子内转动自由度决定蒸发熵变	
6. 标准沸点时苯从气态(理想气体)冷凝为	习液态。其平动自由度演化贡献相变过
程(b)。	
(a) 热能变化的主要部分	(b) 熵变的主要部分
(c) 热能变化的极小部分	(d) 熵变的极小部分
()	() /172 4117 107 4 111 /4