Attention & Transformer

CS XXX: Introduction to Large Language Models

 Intuition: a representation of meaning of a word should be different in different contexts!

• "it" has a different meaning in different contexts

- Intuition: a representation of meaning of a word should be different in different contexts!
- Contextual Embedding: each word has a different vector that expresses different meanings depending on the surrounding words
- How to compute contextual embeddings?
 - Attention

Attention is comparison of input to other input elements.

columns corresponding to input tokens

• A mechanism for helping compute the embedding for a token by selectively attending to and integrating information from surrounding tokens (at the previous layer).

- Self Attention (Simplified)
 - Given a sequence of token embeddings:

$$\mathbf{X}_1$$
 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_5 \mathbf{X}_6 \mathbf{X}_7 \mathbf{X}_i

• Produce: $a_i = a$ weighted sum of x_1 through x_7 (and x_i) Weighted by their similarity to x_i

$$Score_{ij} = \mathbf{x}_i \cdot \mathbf{x}_j, \quad \forall j \leq i$$

$$\alpha_{ij} = \text{Softmax}(\text{Score}_{ij}), \quad \forall j \leq i$$

$$\mathbf{a}_i = \sum_{j \le i} \alpha_{ij} \mathbf{x}_j$$

Self Attention (Simplified)

columns corresponding to input tokens

- An Actual Attention Head: slightly more complicated
- High-level idea: instead of using vectors (like x_4) directly, we'll represent x_i in 3 separate roles (projection vectors of x_i):
 - query: as the current element being compared to the preceding inputs.
 - **key:** as a preceding input that is being compared to the current element to determine a similarity
 - · value: a value of a preceding element that gets weighted and summed

• We'll use matrices to project each vector \mathbf{x}_i into a representation of its role as query, key, value:

• query: $\mathbf{W}^{\mathrm{Q}} \in \mathbb{R}^{d \times d_k}$

• **key**: $\mathbf{W}^{\mathrm{K}} \in \mathbb{R}^{d \times d_k}$

• value: $\mathbf{W}^{V} \in \mathbb{R}^{d \times d_{v}}$

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{Q}$$

$$\mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{K}$$

$$\mathbf{v}_{\mathrm{i}} = \mathbf{x}_{\mathrm{i}} \mathbf{W}^{\mathrm{v}}$$

• Given these 3 representation of \mathbf{x}_i

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q$$
 $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}^k$ $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$

- To compute similarity of current element \mathbf{x}_i with some prior element \mathbf{x}_j
 - We'll use dot product between \mathbf{q}_i and \mathbf{k}_j .
 - And instead of summing up \mathbf{x}_j , we'll sum up \mathbf{v}_j

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q$$
 $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}^k$ $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$

$$score_{ij} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}, \quad \forall j \le i$$

$$\alpha_{ij} = \text{Softmax}(\text{Score}_{ij}), \quad \forall j \leq i$$

$$\mathbf{a}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j$$

Visual look of calculating a₃

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q$$
 $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}^k$
 $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$

$$score_{ij} = \frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{d_k}}, \quad \forall j \le i$$

$$\alpha_{ij} = \text{Softmax}(\text{Score}_{ij}), \ \forall j \leq i$$

$$\mathbf{a}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j$$

Parallelizing Computation using Input Matrix X

- We can pack the N tokens of the input sequence into a single matrix \mathbf{X} of size $[N \times d]$.
- Each row of X is the embedding of one token of the input.
- ${\bf X}$ can have 1K 32K rows, each of the dimensionality of the embedding d (the **model dimension**)

Parallelizing Computation using Input Matrix X

Parallelizing Computation using Input Matrix X

• Attention score
$$(\alpha) = \operatorname{softmax}\left(\frac{\operatorname{QK}^{\mathrm{T}}}{\sqrt{d_k}}\right)$$

Parallelizing Computation using Input Matrix X

An attention vector for each input token

Masking the future: Masked Self-Attention

Self-Attention (A) =
$$\left(\text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \right) \mathbf{V}$$

- Add $-\infty$ to cells in upper triangle
- The softmax will turn it to 0

Multi-head Self Attention

$$\mathbf{Q}^i = \mathbf{X}\mathbf{W}^{\mathbf{Q}i} \qquad \mathbf{K}^i = \mathbf{X}\mathbf{W}^{\mathbf{K}i} \qquad \mathbf{V}^i = \mathbf{X}\mathbf{W}^{\mathbf{V}i}$$

$$\text{head}_i = \text{Self-Attention} (\mathbf{A}) = \left(\text{softmax} \left(\frac{\mathbf{Q}^i \mathbf{K}^T}{\sqrt{d_k}} \right) \right) \mathbf{V}$$

MultiHead Attention (\mathbf{M}) = (head₁ \oplus head₂ ... \oplus head_h) \mathbf{W} ⁰

The true power of attention was first explored in the well known "Attention is all you need" paper released in 2017. authors proposed a network The architecture called the *Transformer* which was solely based on the attention mechanism. This architecture is now the basis for Large Language Models (LLMs)

- Residual Connection
 - In deep networks, residual connections are connections that pass information from a lower layer to a higher layer without going through the intermediate layer.
 - Residual connections in transformers are implemented by adding a layer's input vector to its output vector before passing it forward.

X + output of MultiHead self attention

- Residual Connection
 - Residual connections in transformers are implemented by adding a layer's input vector to its output vector before passing it forward.

Input Embeddings

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Output of Attention

$$\mathbf{M} = \begin{bmatrix} 0.5 & 1.0 & 1.5 \\ 2.0 & 2.5 & 3.0 \\ 3.5 & 4.0 & 4.5 \end{bmatrix}$$

$$\mathbf{X} + \mathbf{M} = \mathbf{H} = \begin{bmatrix} 1.5 & 3.0 & 4.5 \\ 6.0 & 7.5 & 9.0 \\ 10.5 & 12.0 & 13.5 \end{bmatrix}$$

- Layer Normlalization
 - Layer normalization (LayerNorm) is a normalization technique applied across the **features** of a vector. It standardizes the input by normalizing its mean and variance for each input vector independently.
 - The input to layer norm is a single vector of dimensionality d and the output is that vector normalized, again of dimensionality d

- Layer Normlalization
 - Layer normalization (LayerNorm) is a normalization technique applied across the **features** of a vector. It standardizes the input by normalizing its mean and variance for each input vector independently.
 - The input to layer norm is a single vector \mathbf{x} of dimensionality d and the output is that vector normalized, again of dimensionality d

$$\mu = \frac{1}{d} \sum_{i=1}^{d} x_i$$

$$\sigma = \sqrt{\frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2}$$

$$\widehat{\mathbf{X}} = \frac{(\mathbf{x} - \mu)}{\sigma}$$

$$LayerNorm(\mathbf{x}) = \gamma \hat{\mathbf{X}} + \boldsymbol{\beta}$$

Layer Normalization

Assume the sum of input embeddings and the output of the multihead attention layer is

$$\mathbf{X} + \mathbf{M} = \mathbf{H} = \begin{bmatrix} 1.5 & 3.0 & 4.5 \\ 6.0 & 7.5 & 9.0 \\ 10.5 & 12.0 & 13.5 \end{bmatrix}$$

$$\mathbf{h_1} = \begin{pmatrix} 1.5 \\ 3.0 \\ 4.5 \end{pmatrix}, \qquad \mathbf{h_2} = \begin{pmatrix} 6.0 \\ 7.5 \\ 9.0 \end{pmatrix}, \qquad \mathbf{h_3} = \begin{pmatrix} 10.5 \\ 12.0 \\ 13.5 \end{pmatrix}$$

$$\mu_1 = \frac{1.5 + 3.0 + 4.5}{3} = 3, \qquad \mu_2 = \frac{6.0 + 7.5 + 9.0}{3} = 7.5, \qquad \mu_3 = \frac{10.5 + 12.0 + 13.5}{3} = 12$$

$$\sigma_1 = \sqrt{\frac{(1.5 - 3)^2 + (3 - 3)^2 + (4.5 - 3)^2}{3}} = 1.22, \qquad \sigma_2 = \sqrt{\frac{(6 - 7.5)^2 + (7.5 - 7.5)^2 + (9 - 7.5)^2}{3}} = 1.22$$

$$\sigma_3 = \sqrt{\frac{(10.5 - 12)^2 + (12 - 12)^2 + (13.5 - 12)^2}{3}} = 1.22$$

Layer Normalization

Assume the sum of input embeddings and the output of the multihead attention layer is

$$\mathbf{h_1} = \begin{pmatrix} 1.5 \\ 3.0 \\ 4.5 \end{pmatrix}, \quad \mathbf{h_2} = \begin{pmatrix} 6.0 \\ 7.5 \\ 9.0 \end{pmatrix}, \quad \mathbf{h_3} = \begin{pmatrix} 10.5 \\ 12.0 \\ 13.5 \end{pmatrix}$$

$$\widehat{\mathbf{h_1}} = \begin{pmatrix} (1.5-3)/1.22 \\ (3-3)/1.22 \\ (4.5-3)/1.22 \end{pmatrix}, \quad \widehat{\mathbf{h_1}} = \begin{pmatrix} (6-7.5)/1.22 \\ (7.5-7.5)/1.22 \\ (9-7.5)/1.22 \end{pmatrix}, \quad \widehat{\mathbf{h_1}} = \begin{pmatrix} (10.5-12)/1.22 \\ (12-12)/1.22 \\ (13.5-12)/1.22 \end{pmatrix}$$

$$\widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}, \quad \widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}, \quad \widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}$$

layerNorm
$$(\mathbf{h}_1) = \gamma \widehat{h_1} + \beta$$
, layerNorm $(\mathbf{h}_2) = \gamma \widehat{h_2} + \beta$, layerNorm $(\mathbf{h}_3) = \gamma \widehat{h_3} + \beta$

Layer Normalization

Assume the sum of input embeddings and the output of the multihead attention layer is

$$\widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}, \qquad \widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}, \qquad \widehat{\mathbf{h_1}} = \begin{pmatrix} -1.23 \\ 0 \\ 1.23 \end{pmatrix}$$

For simplicity: $\gamma = 1$ and $\beta = 0$

layerNorm
$$(\mathbf{h_1}) = \widehat{h_1}$$
, layerNorm $(\mathbf{h_2}) = \widehat{h_2}$, layerNorm $(\mathbf{h_3}) = \widehat{h_3}$

Positional Embeddings

• The matrix X (of shape $[N \times d]$) has an embedding for each word in the context.

This embedding is created by adding two distinct embedding for each input

token embedding

positional embedding

Language Modeling using Transformer

