Geodezja wyższa

Ćwiczenie 5 Transformacje

Szymon Turzański 305412

Cel ćwiczenia

Celem ćwiczenia jest przeliczenie współrzędnych geodezyjnych (ϕ , λ , H) na współrzędne x, y, z na elipsoidzie GRS80. Następnie za pomocą parametrów transformacji przetransformować współrzędne prostokątne przestrzenne(x, y, z) z elipsoidy GRS80 na elipsoidę Krasowskiego. Końcowo przy pomocy algorytmu Hirvonena obliczyć współrzędne geodezyjne (ϕ , λ , H) na elipsoidzie Krasowskiego.

Dane

Współrzędne używane w zadaniu pochodzą z poprzedniego ćwiczenia i wynoszą:

- A: $\varphi = 50^{\circ}15'$, $\lambda = 20^{\circ}45'$
- B: $\phi = 50^{\circ}00'$, $\lambda = 20^{\circ}45'$
- C $\phi = 50^{\circ}15'$, $\lambda = 21^{\circ}15'$
- D ϕ = 50°00', λ = 21°15'
- S $\phi = 50^{\circ}07'30.0''$, $\lambda = 21^{\circ}00'00.0''$
- SS φ = 50°07'30.97362", λ = 21°00'02.34392"

Przebieg pracy

Transformacje współrzędnych wykonano za pomocą trzech algorytmów:

- Zamiany współrzędnych geodezyjnych (φ, λ, H) na elipsoidzie GRS80 na współrzędne XYZ
- Algorytmu transformacji współrzędnych przestrzennych z elipsoidy GRS80 na elipsoidę Krasowskiego
- Algorytmu Hirvonena, który służy do przeliczenia współrzędnych przestrzennych XYZ na geodezyjne na elipsoidzie Krasowskiego. Polega na iteracyjnym obliczaniu szerokości geodezyjnej i wysokości elipsoidalnej.

Wyniki

Puni	kty	Phi GRS80	+ Lambda GRS80 +	H GRS80	X GRS80	Y GRS80	Z GRS80	X Krasowski	Y Krasowski	Z Krasowski
			20°45'						1447942.188	
В		50°00'	20°45'		3841408.348	1455379.433	4862789.038	3841385.346	1455503.065	4862870.959
I C		50°15'	21°15'		3808671.687	1481111.416	4880617.060	3808648.767	1481235.173	4880699.050
D			21°15'		3828561.659	1488846.203	4862789.038	3828538.783	1488969.916	4862871.021
l s		50°07'30.97362''	21°00'02.34392''		33825030.691	1468341.587	4871733.878	3825045.969	1468430.089	4871796.548
S		50°07'30.0''	21°00'00.0''		3825068.930	1468306.394	4871714.592	3825007.730	1468465.281	4871815.834

Współrzędne Geodezyjne Krasowski Phi					
50° 15' 1.05526''		20° 45' 6.24968''	-	-32.498	
50°00'01.06167''		20°45'06.21437''		-32.630	
50°15'01.02250''		21°15'06.24111''		-31.664	
50°00'01.03265''		21°15'06.20584''		-31.792	
50°07'32.01568''		21°00'08.57170''		-32.145	
50°07'31.04211		21°00'06.22775''		-32.146	

Wnioski

- ullet Algorytm Hirvonena uzyskuje współrzędne geodezyjne (ϕ , λ , H) z dokładnością do 1 mm
- Różnice współrzędnych geodezyjnych (ϕ , λ) pomiędzy elipsoidą GRS80 a elipsoidą Krasowskiego wynoszą pomiędzy 1 a 6 sekund. Natomiast wartość współrzędnej H znacznie różni się między tymi dwoma elipsoidami.