最优化实验报告

左一泓 PB22000116

日期: June 11, 2024

1 问题背景

本文考虑用近似点梯度法和 FISTA 算法 (Fast Iterative Shrinkage Thresholding Algorithm) 求解如下稀疏二分类逻辑回归问题:

$$\min_{x} \quad \ell(x) \stackrel{def}{=} \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp\left(-b_{i} a_{i}^{T} x\right)\right) + \lambda \|x\|_{2}^{2} + \mu \|x\|_{1}$$

$$\stackrel{def}{=} f(x) + \mu \|x\|_{1}$$
(1)

并比较它们的收敛速率以及参数选择对于收敛性和解的影响。

1.1 定义与记号

表示集合元素个数,||.|| 在没有角标时都表示二范数,||.|| $_p$ 表示 $_p$ 范数。近似点映射:

$$\operatorname{Prox}_{\mu \|x\|_{1}}(x) = \underset{t}{\operatorname{argmin}} \left(\frac{1}{2} \|t - x\|^{2} + \mu \|t\|_{1}\right)$$
$$= \operatorname{sign}(x) \max\{|x| - \mu, 0\}$$

f 的微分具体表达式如下:

$$\nabla f(x) = -\frac{1}{m} \sum_{i=1}^{m} (1 - p_i(x)) b_i a_i + 2\lambda x$$
$$p_i(x) = \frac{1}{1 + \exp\left(-b_i a_i^{\mathrm{T}} x\right)}$$

1.2 算法

近似点梯度法是常用的解决带有非光滑部分优化问题的方法,其基本思想为对于光滑部分进行显式梯度下降,对于非光滑部分利用近似点映射进行隐式梯度下降。针对问题(1),下给出近似点梯度法的伪代码。

Algorithm 1 近似点梯度法

Require: 最大迭代次数 n,精确度 ε

Ensure: k = 1, 随机初始化 x_0

1: **while** $k \le n$ and $||x^{k-1} - x^{k-2}||^2/t^{k-1} > 10^{-\varepsilon}$ **do**

2: 调用 3 选取合适的 t^k

3: $x^k \leftarrow \text{Prox}_{t^k \mu ||x||_1} (x^{k-1} - t^k \nabla f(x^{k-1}))$

4: $k \leftarrow k + 1$

5: end while

FISTA 算法为近似点梯度法的一个加速算法,其基本思想为对于光滑部分在进行梯度下降时使用 Nesterov 加速算法。使得在光滑部分 L 光滑的假设下有更好的理论收敛速度。针对问题(1),下给出近似点梯度法的伪代码。

Algorithm 2 FISTA 算法

Require: 最大迭代次数 n,精确度 ε

Ensure: k = 1, 随机初始化 x_0

1: **while** $k \le n$ and $||x^{k-1} - x^{k-2}||^2/t^{k-1} > 10^{-\varepsilon}$ **do**

2: $y^k \leftarrow x^{k-1} + \frac{k-2}{k-1}(x^{k-1} - x^{k-2})$

3: 调用 3 选取合适的 t^k

4: $x^k \leftarrow \operatorname{Prox}_{t^k \mu ||x||_1} (y^k - t^k \nabla f(y^k))$

5: $k \leftarrow k + 1$

6: end while

对于迭代系数 t_k 的选取,由于 $\frac{1}{t^k} \le L$ 时收敛速度有理论保证,其中 L 为 ∇f 的 Lipschitz 常数。我们采用线搜索,搜索的条件为:

$$f(x^k) \le f(y^k) + \langle \nabla f(y^k), x^k - y^k \rangle + \frac{1}{2t_k} ||x^k - y^k||_2^2$$
 (2)

Algorithm 3 线搜索

Require: $t^k = t^{k-1}$, 参照点 y^k 以及其梯度 $\nabla f(y^k)$, 步长收缩的系数 γ

1: $x^k \leftarrow \operatorname{prox}_{\mu \parallel . \parallel_1} (y^k - t^k \nabla f(y^k))$

2: while x^k 与 y^k 不满足 2 式 do

3: $t^k \leftarrow \gamma t^k$

4: $x^k \leftarrow \operatorname{prox}_{\mu \parallel, \parallel_1} (y^k - t^k \nabla f(y^k))$

5: end while

2 实验结果

2.1 参数设置

本实验的数据集数据个数为 m=32561 个,每个数据为 p=123 维向量,均带有标签。

两个算法的最多迭代次数 n=10000, 精确度 $\varepsilon=6$, 其含义为当 $\|x_k-x_{k-1}/t_k\|\leq 1e^{-\varepsilon}$ 时停止迭代, 随机化种子为 Seed = 3, 线搜索步长收缩系数为 $\gamma=0.1$,(1) 中的 $\lambda=1/(2*m)$, $\mu=0.001$ 。

2.2 两算法的收敛速率

收敛条件 $\log(||x_k - x_{k-1}||^2/t_k)$ 与迭代次数关系图为:

图 1: 近似点梯度法

图 2: FISTA 算法

收敛条件 $\log(L(x^k) - L(x^*))$ 与迭代次数关系图为:

图 3: 近似点梯度法

图 4: FISTA 算法

其中 x* 用提前解出的一个高精度解来近似。

可以看到近似点梯度法用了 7434 次迭代停止,而 FISTA 算法只用了 1243 次迭代,且最后解的精度更高。

2.3 参数 μ 的选取对结果的影响

使用 FISTA 算法,其余参数设置不变,改变一范数正则项的系数 μ 为 0, $1e^{-5}$, 0.0001, 0.001, 0.01, 0.05 稀疏性计算公式为 sparsity = $\frac{\#\{i:x_i=0\}}{\dim(x)}$ 。得到如下实验结果:

μ	稀疏性	迭代次数
0.0	0.0	1635
1e-05	0.10569105691056911	1414
0.0001	0.37398373983739835	976
0.001	0.6829268292682927	492
0.01	0.8861788617886179	222
0.05	0.967479674796748	134

表 1: μ 的选取对解稀疏性的影响

可以看到随着 μ 的增大,对于非稀疏解的惩罚变大,因此最优解的稀疏度不断增大,达到最优解的迭代次数减少。

上图为 x_k 的支撑大小(即非零元素个数)与迭代次数的关系。随着迭代次数增加 x 的非零个数先快速下降,然后经过一段时间的缓慢下降,最后趋于稳定。这表明 1 范数的正则项实现了对于解的稀疏性的限制,越大的 μ 倾向于选择更稀疏的解。

3 总结

通过对稀疏逻辑回归问题 (2) 分别使用近似点梯度法和 FISTA 算法进行优化,结果表明 FISTA 算法确实在该问题中具有更好的收敛速度,且并未增加空间复杂度。通过对取不同的 μ 正则项稀疏进行实验,结果表明一范数正则项实现了对于解的稀疏性的限制,越大的 μ 倾向于选择更稀疏的解。