DETECTING CANCER METASTASES ON GIGAPIXEL PATHOLOGY IMAGE

XINLEI CAO UNI: xc2420

- Each year, the treatment decisions for more than 230,000 breast cancer patients in the U.S. hinge on whether the cancer has metastasized away from the breast. Metastasis detection is currently performed by pathologists reviewing large expanses of biological tissues. This process is labor intensive and errorprone. (copied from Paper: Detecting Cancer Metastases on Gigapixel Pathology Images)
- So we want to build a model to automatically detect and localize tumors.

INTRODUCTION TO MY METHOD

DATA **PROCESSING**

I. USING SLIDE WINSOW TO GENERATE IMAGE PATCH

- Slide Level = 3
- Patch Size = 150, stride = 80, Center Size = 100

DATA **PROCESSING**

2. DATA AUGMENTATION

- Flip and Rotation
- Only applied on the tumor patch
- 209 tumor images \rightarrow 1672 tumor images

3. IGNORE NON-TISSUE AREAS

 Ignore the patches whose tissue proportion is less than 0.2

4. HANDEL UNBALANCED DATA

- Resample the non-tumor patches to get a balanced data
- 1672 tumor images
- 1672 non-tumor images

DATA PROCESSING

LOOK AT THE FINAL DATA

MODEL

BASE MODEL: VGG16

Add three dense layers

Not A Transfer Learning!

Because the data size is enough to train the network size of VGG.

The categories of ImageNet and cell pictures are totally different.

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0
flatten_1 (Flatten)	(None, 8192)	0
dense_1 (Dense)	(None, 1024)	8389632
dense_2 (Dense)	(None, 512)	524800
dense_3 (Dense)	(None, 1)	513

Total params: 23,629,633 Trainable params: 23,629,633 Non-trainable params: 0

Ground truth

EVALUATION

Heatmap Compare on the Train Image **AUC = 0.9983034004612835**

prediction

Ground truth

EVALUATION TUMOR 110

Confusion Matrix	Ground truth NO	Ground truth YES
Prediction NO	85251678	3812081
Prediction YES	901282	15547919

Precision = 0.989538583468287

Precision = 0.9571982920684944

FI_score = 0.9730998101842097

Test AUC = 0.97901706259915

ABOUT InceptionV3

 Because the model is so large, it's hard to train from scratch, then we must import the weights of ImageNet and freeze the model or fine tuning, but it doesn't work well.

- About Optimizer and Learning Rate in my model
- Found the Adam didn't work well
- GradientDescent cannot converge well
- Used Momentum and tried many learning rate

Early Stop to prevent overfitting

Pay attention to the training accuracy and validation accuracy

KeyboardInterruptTraceback (most recent call last)
<ipython-input-32-78d7195c5599> in <module>()

- About Out of Memory
- I did lots of optimization in the code and release the large variable after use.

THANK YOU!