Muti-cycle Processor

Creating a Single Datapath from the Parts

• Assemble the datapath segments and add control lines and multiplexors as needed

What's Wrong

- critical path:
 - o lw
 - o other leads to a waste

Multi-cycle Processor Implementation Overview

- Each instruction step takes 1 clock cycle
 - an inst. takes **more than 1** clock cycles to complete
- Allowance
 - faster clock rates
 - different inst. take a different number of clock cycles

- functional units to be used more once per inst. as long as they are used on different clock cycles
 - only 1 memory
 - only 1 ALU/adder

High Level View

- Register needed after every major functional unit to hold the output value until it's used next
- only 1 instruction in datapath

Approach

- Break up the instructions into many steps where each step takes a clock cycle while trying to
 - balance each step's work amount
 - use 1 functional unit per clock
- At the end of clock cycle
 - store values needed for next
 - IR
 - MDR
 - A and B
 - ALUout
 - no need for write control signal (except IR)
 - internal register is not visible
 - subsequent instruction data is visible

Steps

- Instruction Fetch
 - IR = Memory[PC]

- \circ PC = PC + 4
- Instruction Decode and Register Fetch
 - \circ A = Reg[IR[25-21]]
 - \circ B = Reg[IR[20-16]]
 - ALUOut = PC + (SignExt(IR[15-0])<<2)
- Execution for
 - R-type Instruction Computation
 - ALUOut = A op B
 - Memory Read/Write Address Computation
 - ALUOut = A + SignExt(IR[15-0])
 - Branch Completion (3)
 - if (A == B) PC = ALUOut
 - Jump Completion (3)
 - PC = PC[31-28] || (IR[25-0] << 2)
- Execution for
 - Memory Read/Write Access Completion (4)
 - MDR = Mem[ALUOut] lw
 - Mem[ALUOut] = B sw
 - R-type Instruction Completion (4)
 - Reg[IR[15-11]] = ALUOut
- Memory Read (Load) Completion (5)
 - Reg[IR[20-16]] = MDR

Control Signal Overview

- input:
 - opcode
 - funct
 - state(4-bit due to 10 states shown above overall)
- output:
 - control signals in datapath
 - next state

CPI of Multi-cycle Processor

assume each state in the CPU requires 1 clock cycle

Load	25%	5
Store	10%	4

Branch	11%	3
Jump	2%	3
ALU (R)	52%	4

- $\circ \quad CPI = 0.25 \times 5 + 0.1 \times 4 + 0.52 \times 4 + 0.11 \times 3 + 0.02 \times 3 = 4.12$ (multi-cycle)
- \circ CPI = 1 (single-cycle)
- $\circ \ \ Performance = IC \times CPI \times Cycle \ time$
 - Multi-cycle Processor's cycle time decreases
 - $\blacksquare \ Performace_{multi-cycle} < Performace_{single-cycle}$