Subjectul 1

Se dă un graf neorientat conex G cu n>3 vârfuri, m muchii, m>n. Să se determine doi arbori parțiali T și T' ai lui G cu proprietățile:

- T este arbore de distante față de vârful 1: $d_T(1,v) = d_G(1,v)$ pentru orice vârf v din G
- În T' există cel puțin un vârf v cu $d_{T'}(1, v) \neq d_G(1, v)$.

Se vor afișa muchiile celor doi arbori parțiali determinați și, în plus, se vor afișa toate vârfurile v pentru care $d_{T}(1,v) \neq d_G(1,v)$. Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	lesire pe ecran (solutia nu este unica)
5 7	T:
12	12
13	13
2 3	2 4
2 4	35
3 4	T':
35	12
45	2 4
	45
	3 4
	v: 3 5

Subjectul 2

Se citesc informații despre un graf **orientat fără circuite** G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, m>=n
- Pe următoarele m linii sunt câte 3 numere întregi reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf (costul unui arc poate fi și **negativ**).
- Pe ultima linie sunt două noduri sursa s₁ și s₂
 - a) Să se determine dacă există un vârf din graf v egal depărtat de s_1 și s_2 : $d(s_1,v)=d(s_2,v)$. Dacă există mai multe astfel de vârfuri se va afișa cel mai apropiat de cele două surse (cel cu $d(s_1,v)$ cea mai mică). **Complexitate O(m)**
 - b) Pentru vârful v determinat la a) (dacă există) să se determine dacă există mai multe drumuri minime de la s_1 la v. Daca exista doar unul, se va afișa acest drum, dacă nu se vor afișa două dintre drumurile minime de la s la v_1 Complexitate O(m)

graf.in	lesire pe ecran
8 11	a)
1 2 10	v=4
2 3 -3	b)
137	1234
382	134
3 4 1	
481	Explicații:
511	d(1,4) = d(5,4) = 8
5 3 9	
563	
671	
744	
15	

Subjectul 3

Se dau n depozite de frigidere numerotate 1...n și m magazine numerotate n+1,...,n+m. Pentru fiecare depozit i se cunoaște c(i) = câte frigidere există în depozit, iar pentru fiecare magazin j se cunoaște c(j) = numărul de frigidere de care are nevoie la momentul actual. Fiecare magazin are contracte cu anumite depozite. In contractul dintre magazinul j și depozitul i este trecută cantitatea maximă de frigidere care poate fi livrată de la depozitul i la magazinul j la un anumit moment, notată w(i,j). Datele se vor citi din fișierul magdep.in cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe a doua linie este un şir de n numere naturale reprezentând cantitatea de frigidere existente în fiecare dintre cele n depozite
- pe a treia linie este un șir de m numere naturale reprezentând numărul de frigidere de care are nevoie fiecare dintre cele m magazine
- pe a patra linie este un număr natural k reprezentând numărul de contracte dintre magazine și depozite
- pe următoarele k linii sunt triplete de numere naturale i j w (separate prin spatiu) cu semnificatia: de la depozitul i la magazinul j se pot transporta maxim w frigidere.

Să se determine, dacă există, o modalitate de a livra frigidere de la depozite la magazine respectând condițiile din contracte, astfel încât toate magazinele să primească cantitatea de frigidere de care are nevoie. Complexitate $O((n+m)k^2)$

Rezultatul se va afișa sub forma prezentată în exemplul de mai jos.

Observație: Putem modela problema cu un graf bipartit depozite-magazine (cu vârfuri corespunzătoare depozitelor și magazinelor și muchii reprezentând existența unui contract între magazin și depozit). Dacă c(i) = 1 pentru fiecare depozit, c(j)=1 pentru fiecare magazin și w(i, j)=1 pentru orice contract, atunci problema se reduce la a determina un cuplaj de cardinal maxim în graful bipartit depozite-magazine și a verifica dacă orice vârf magazin este saturat.

Se acorda 1p dacă se rezolvă doar problema pentru c(i) = 1 pentru fiecare depozit, c(j)=1 pentru fiecare magazin și w(i, j)=1 pentru orice contract

magdep.in	lesire pe ecran (solutia nu este unica)
3 3	156
656	2 4 2
781	252
7	261
146	3 4 5
156	
2 4 3	
252	
263	
3 4 8	
362	

