# 임베디드 시스템

ADC 및 가변저항 제어

In-Hyeok Kang

M23522@hallym.ac.kr

연구실: 공학관 1321호

#### Contents

- 1. ADC (Analog to Digital Converter)
- 2. Raspberry Pi SPI 인터페이스 활성화
- 3. ADC 및 가변저항 연결
- 4. ADC 및 가변저항 제어

# ADC (Analog to Digital Converter)

- ADC (Analog to Digital Converter)
  - 연속적인 아날로그 신호를 디지털 신호로 변환하는 장치로, 집적 회로(Integrated Circuit, I/C)로 구현됨
  - 아날로그 신호를 디지털 신호로 변환하는 과정
    - ✓ 표본화(Sampling): 시간을 기준으로 연속적인 아날로그 신호를 이산값으로 변환하는 과정
    - ✓ 양자화(Quantization): 진폭을 기준으로 연속적인 아날로그 신호를 이산값으로 변환하는 과정
    - ✓ 부호화(Encoding): 표본화 및 양자화를 통해 얻어진 값을 2진수로 바꾸는 과정





# ADC (Analog to Digital Converter)

- MCP3204 Datasheet 참고
  - **아날로그 신호를 12-bit의 디지털 신호로 변환**하는 ADC 칩 11
  - 4-channel 12-bit ADC 2

ex) 0~3.3V의 센서 출력값을 0~4095(12-bit)의 디지털 값으로 변환

- SPI 시리얼 통신 지원 **3**
- 2.7V ~ 5.5V 동작 4



MCP3204

#### **FEATURES**

- 12-bit resolution 1
- ± 1 LSB max DNL
- ± 1 LSB max INL (MCP3204/3208-B)
- ± 2 LSB max INL (MCP3204/3208-C)
- 4 (MCP3204) or 8 (MCP3208) input channels
- Analog inputs programmable as single-ended or pseudo differential pairs
- On-chip sample and hold
- SPI® serial interface (modes 0,0 and 1,1) 3
- Single supply operation: 2.7V 5.5V
- 100ksps max. sampling rate at V<sub>DD</sub> = 5V
- 50ksps max. sampling rate at V<sub>DD</sub> = 2.7V
- Low power CMOS technology
  - 500 nA typical standby current, 2µA max.
  - 400 μA max. active current at 5V
- Industrial temp range: -40°C to +85°C
- · Available in PDIP, SOIC and TSSOP packages

# ADC (Analog to Digital Converter)

• MCP3204 Pin Layout/Block Diagram/Function Table- Datasheet 참고



| NAME             | FUNCTION                   |
|------------------|----------------------------|
| $V_{DD}$         | +2.7V to 5.5V Power Supply |
| DGND             | Digital Ground             |
| AGND             | Analog Ground              |
| CH0-CH7          | Analog Inputs              |
| CLK              | Serial Clock               |
| D <sub>IN</sub>  | Serial Data In             |
| D <sub>OUT</sub> | Serial Data Out            |
| CS/SHDN          | Chip Select/Shutdown Input |
| $V_{REF}$        | Reference Voltage Input    |

\*Note: Channels 5-7 available on MCP3208 Only

Pin Layout

Block Diagram

**Function Table** 

# SPI (Serial Peripheral Interface)

- SPI(Serial Peripheral Interface)
  - 주변장치 간의 시리얼 통신을 위한 규약으로, Motorola에서 개발한 통신 방식
  - Master Slave 구조로 동작
    - ✓ 1 Master 1 Slave (일 대 일)
    - ✓ 1 Master N Slave (일 대 다)
  - 전이중 통신(Full Duplex)
    - ✓ 송신과 수신을 동시에 진행
  - 전송되는 비트에 대한 프로토콜 유연성
    - ✓ 최대 16-bit까지 길이 조정 가능함
  - 매우 단순한 하드웨어 인터페이스 처리
  - 4개의 핀 사용(CS, SCLK, MOSI, MISO)
  - I2C보다 낮은 소비 전력

| Signal Name | Alternative Names     | Description           |  |  |  |
|-------------|-----------------------|-----------------------|--|--|--|
| CS          | nCs, SS, nSS, STE, CE | 마스터가 특정 슬레이브를 선택      |  |  |  |
| SCLK        | SCK, CLK              | 클럭 신호 생성              |  |  |  |
| MOSI        | SDI, DI, SI           | 마스터의 출력 포트(슬레이브로 송신)  |  |  |  |
| MISO        | SDO, DO, SO           | 슬레이브의 출력 포트(마스터에서 수신) |  |  |  |

SPI 통신을 위한 4개의 Pin



#### MCP3204 Serial Communications

- MCP3204 시리얼 통신
  - MCP3204와의 통신은 SPI 호환 시리얼 인터페이스를 사용해 수행됨
  - 두 장치 간의 통신은 CS line을 Low로 설정함으로써 시작됨
  - CS가 Low, D<sub>IN</sub>이 High일 때 수신된 1번째 Clock은 Start Bit를 구성함

| CONTROL BIT<br>SELECTIONS |         |        |      | INPUT         | CHANNEL                |  |
|---------------------------|---------|--------|------|---------------|------------------------|--|
| SINGLE/<br>DIFF           | D2*     | D1     | D0   | CONFIGURATION | SELECTION              |  |
| 1                         | Х       | 0      | 0    | single ended  | CH0                    |  |
| 1                         | Х       | 0      | 1    | single ended  | CH1                    |  |
| 1                         | Х       | 1      | 0    | single ended  | CH2                    |  |
| 1                         | Х       | 1      | 1    | single ended  | CH3                    |  |
| 0                         | X       | 0      | 0    | differential  | CH0 = IN+<br>CH1 = IN- |  |
| 0                         | Х       | 0      | 1    | differential  | CH0 = IN-<br>CH1 = IN+ |  |
| 0                         | X       | 1      | 0    | differential  | CH2 = IN+<br>CH3 = IN- |  |
| 0                         | Х       | 1      | 1    | differential  | CH2 = IN-<br>CH3 = IN+ |  |
| *D2 is do                 | on't ca | are fo | r MC | P3204         | •                      |  |

MCP3204 비트 구성

- SGL/DIFF Bit는 Start Bit 다음에 위치하며, 변환 모드를 Single Ended or Differential Input으로 결정
- Start Bit 다음의 3bits(D0, D1, D2)는 Input 채널 설정을 위해 사용됨
- Slave는 Start Bit 수신 이후 Clock의 4번째 상승 Edge에서 아날로그 Input을 샘플링하기 시작함
- 샘플링 기간은 Start Bit 다음의 5번째 Clock의 하강 Edge에서 끝남



<sup>\*</sup> After completing the data transfer, if further clocks are applied with  $\overline{\text{CS}}$  low, the A/D Converter will output LSB first data, then followed with zeros indefinitely. See Figure 5-2 below.

<sup>\*\*</sup> t<sub>DATA</sub>: during this time, the bias current and the comparator power down while the reference input becomes a high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.

#### MCP3204 Serial Communications

- MCP3204 시리얼 통신
  - 한 번에 주고받는 데이터 양: 19bits
  - 한 번에 Raspberry Pi에 수신되는 데이터 크기: 19bits
  - Start Bit에서 Null Bit까지의 7bits를 제외한 12bits 사용



# Raspberry Pi SPI 인터페이스 활성화

- SPI 인터페이스 활성화
  - XSHELL을 통해 Raspberry Pi에 원격 접속 후, 아래 명령어 입력
    - √ sudo raspi-config
  - [3 Interface Options] 선택
  - [I4 SPI Enable/disable automatic loading of SPI kernel module] 선택
  - [Yes] 선택
  - [Finish] 선택



### 가변저항

- 가변저항(Potentiometer)
  - 가변저항은 저항 값을 임의로 바꿀 수 있으며, 저항 값에 따라 전류의 크기가 바뀜
  - 가변저항 내 와이퍼를 탄소로 구성된 저항띠를 따라 회전시킴으로써 저항값이 조절되도록 하는 구조



#### • 1. 구성품 준비

| 번호 | 구성요소                   | 사진                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Raspberry Pi 본체        | <raspberry 3="" b+="" model="" pi=""> <raspberry 4="" b="" model="" pi=""></raspberry></raspberry>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2  | 점프 와이어(M/F 6개, M/M 7개) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3  | ADC(MCP 3204)          | THE THE PARTY OF T |
| 4  | 가변저항                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- ADC 연결 (MCP3204 라즈베리 파이)
  - CH0 MCP3204 Pin 2
  - DGND -GND
  - VDD 3.3V
  - VREF 3.3V
  - AGND GND
  - CLK GPIO 14
  - DOUT GPIO 13
  - DIN GPIO 12
  - CS/SHDN GPIO 10



Raspberry Pi: Master ADC: Slave

- 가변저항 연결 (가변저항 라즈베리 파이)
  - Pin 1 VCC or GND
  - Pin 2 MCP3204 CH0
  - Pin 3 VCC or GND



MCP3204 CH0

Raspberry Pi: Master ADC: Slave

• ADC 및 가변저항 연결 (MCP3204 및 가변저항 – 라즈베리 파이)

| GPIO# | NAME                    |    |     |   | _  | NAME                    | GPIO |
|-------|-------------------------|----|-----|---|----|-------------------------|------|
|       | 3.3 VDC<br>Power        | 1  | 0   | 0 | 2  | 5.0 VDC<br>Power        |      |
| 8     | GPIO 8<br>SDA1 (I2C)    | ю  | 0   | 0 | 4  | 5.0 VDC<br>Power        |      |
| 9     | GPIO 9<br>SCL1 (I2C)    | 2  | 0   | 0 | 6  | Ground                  |      |
| 7     | GPIO 7<br>GPCLK0        | 7  | 0   | 0 | 00 | GPIO 15<br>TxD (UART)   | 15   |
|       | Ground                  | 6  | 0   | 0 | 10 | GPIO 16<br>RxD (UART)   | 16   |
| 0     | GPIO 0                  | 11 | 0   | 0 | 12 | GPIO 1<br>PCM_CLK/PWM0  | 1    |
| 2     | GPIO 2                  | 13 | 0   | 0 | 14 | Ground                  |      |
| 3     | GPIO 3                  | 15 | 0   | 0 | 16 | GPIO 4                  | 4    |
|       | 3.3 VDC<br>Power        | 17 | 0 ( | 0 | 18 | GPIO 5                  | 5    |
| 12    | GPIO 12<br>MOSI (SPI)   | 19 | 0   | 0 | 20 | Ground                  |      |
| 13    | GPIO 13<br>MISO (SPI)   | 21 | 0   | 0 | 22 | GPIO 6                  | 6    |
| 14    | GPIO 14<br>SCLK (SPI)   | 23 | 0   | 0 | 24 | GPIO 10<br>CE0 (SPI)    | 10   |
|       | Ground                  | 25 | 0   | 0 | 26 | GPIO 11<br>CE1 (SPI)    | 11   |
| 30    | SDA0<br>(I2C ID EEPROM) | 27 | 0   | 0 | 28 | SCL0<br>(I2C ID EEPROM) | 31   |
| 21    | GPIO 21<br>GPCLK1       | 29 | 0   | 0 | 30 | Ground                  |      |
| 22    | GPIO 22<br>GPCLK2       | 31 | 0   | 0 | 32 | GPIO 26<br>PWM0         | 26   |
| 23    | GPIO 23<br>PWM1         | 33 | 0   | 0 | 34 | Ground                  |      |
| 24    | GPIO 24<br>PCM_FS/PWM1  | 35 | 0   | 0 | 36 | GPIO 27                 | 27   |
| 25    | GPIO 25                 | 37 | 0   | 0 | 38 | GPIO 28<br>PCM_DIN      | 28   |
|       | Ground                  | 39 | 0   | 0 | 40 | GPIO 29<br>PCM_DOUT     | 29   |



• 2. 구성품 연결



★ 화재 위험이 있으니 반드시 ADC 방향(홈이 파인 부분이 위로 가도록) 맞춰서 결합할 것



• 1. MCP3204.java 소스 코드

```
package week9;
import java.io.IOException;
import com.pi4j.io.spi.*;
public class MCP3204 {
    public static SpiDevice spi = null;
    public MCP3204() {
        try {
            //SPI 객체 선언
            spi = SpiFactory.getInstance(SpiChannel.CS0, SpiDevice.DEFAULT_SPI_SPEED, SpiDevice.DEFAULT_SPI_MODE);
        }catch (Exception e) {
            System.out.println("Fail to create a SPI instance");
    public static String byteToBinaryString(byte n) {
        // Byte의 binary 값을 String으로 반환
        StringBuilder sb = new StringBuilder("00000000");
        for (int bit = 0; bit < 8; bit++) {</pre>
            if (((n >> bit) & 1) > 0) {
                sb.setCharAt(7 - bit, '1');
        return sb.toString();
```

- 1. MCP3204.java 소스 코드(이어서 작성)
  - readMCP3204(): ADC 칩의 특정 채널에서 아날로그 신호를 읽어 디지털 값으로 변환하는 메서드
    - ✓ MCP3204에 전송할 데이터 준비
      - 데이터를 담을 배열을 생성함
      - 첫 번째 바이트에 Start Bit, SGL/DIFF 비트, D2 비트를 설정함
      - adcChannel이 2 이상이면 D1 비트를 설정함
      - adcChannel이 홀수이면 D0 비트를 설정함
    - ✓ 데이터 전송 및 수신
      - SPI 통신을 통해 데이터를 송수신함
      - Full-duplex이므로 데이터를 전송하면서 동시에 데이터를 수신함
    - ✓ 수신 데이터 처리
      - 수신된 세 바이트 데이터를 이진 문자열로 변환함
      - 변환된 문자열에서 앞 7비트를 제외한 12비트를 읽어 정수 값으로 변환함
      - 해당 값이 MCP3204에서 읽어온 아날로그 값이 됨
    - ✓ 결과 반환
      - 읽어온 아날로그 값을 반환함

public int readMCP3204(int adcChannel) throws IOException { readMCP3204()

• 1. MCP3204.java 소스 코드(이어서 작성)

```
public static void main(String[] args) {
    MCP3204 obj = new MCP3204();
    while(true) {
        try {
            int value = obj.readMCP3204(0); // CH0
            System.out.println(value); // 가변저항 값 출력
            Thread.sleep(1000);
        } catch (Exception e) {
            System.out.println(e);
        }
    }
}
```

- 2. JAR 파일 생성 후 XFTP를 통해 Raspberry Pi로 전송
- 3. Raspberry Pi에서 JAR 파일 실행
  - sudo java -jar mcp3204.jar
- 4. 결과
  - 가변저항을 조절(회전)함에 따라 저항 값의 변화를 확인할 수 있음

```
pi@raspberrypi:~/ES_proj $ sudo java -jar mcp3204.jar
83025
83057
80300
81411
81547
83751
25306
396
112
80
```

# 감사합니다

Thank You