Tutoría 12: Transformada de Laplace y sistemas LTI

Ejercicio 1. La función de transferencia de un sistema estable es:

$$H(s) = \frac{2s}{s^2 - 4}$$

¿Cuál es la respuesta al impulso del sistema?

Ejercicio 2. Se conocen los siguientes datos de una señal x(t) con transformada de Laplace X(s):

- a. x(t) es real y par.
- b. X(s) tiene 4 polos y ningún cero en el plano finito s.
- c. X(s) tiene un polo en $s = \sqrt{2}e^{j\frac{\pi}{4}}$.
- d. X(0) = 1.

Encuentre una expresión para X(s) y su respectiva ROC.

Ejercicio 3. Sea x(t) y y(t) funciones definidas en la figura 1.

Figura 1: Funciones x(t) y y(t) para el ejercicio 3.

Encuentre la transformada de Laplace de la función y(t) mostrada en la figura 1, a partir de la transformada de Laplace de x(t), siguiendo los siguientes pasos:

- a. Exprese la función y(t) como una suma de dos términos $\alpha x(kt+\tau)$, donde $\alpha, k, \tau \in \mathbb{R}$.
- b. Demuestre que la transformada de Laplace de x(t) es:

$$\mathcal{L}\{x(t)\} = X(s) = \frac{e^s + e^{-s} - 2}{s^2} = \frac{2\cosh(s) - 2}{s^2}$$

c. Utilice las propiedades de la transformada de Laplace para encontrar $Y(s) = \mathscr{L}\{y(t)\}$

Ejercicio 4. Un sistema LTI causal en reposo, se rige por la siguiente ecuación diferencial:

$$\frac{d^2}{dt^2}y(t) - 2\alpha \frac{d}{dt}y(t) + (\alpha^2 + 1)y(t) = \frac{d}{dt}x(t)$$

Con $\alpha \in \mathbb{R}$.

- a. Ecuentre la función de transferencia del sistema H(s).
- b. Grafique el diagrama de polos y ceros del sistema. Indique en el diagrama la región de convergencia correspondiente.
- c. Indique el rango de valores de α para los cuales el sistema es estable.
- d. Encuentre la respuesta al impulso h(t) del sistema.
- e. Si al sistema se le introduce una señal $x(t) = \delta(t) + [(\alpha^2 + 1)t 2\alpha]u(t)$, encuentre la respuesta y(t) del sistema a dicha entrada.

Ejercicio 5. La siguiente ecuación diferencial

$$y(t) = \frac{d^2}{dt^2}y(t) - 2\frac{d}{dt}x(t)$$

caracteriza a un sistema LTI en tiempo continuo con respuesta al impulso h(t), función de transferencia H(s), entrada x(t) y salida y(t).

- a. Encuentre la función de transferencia H(s) del sistema, indique su región de convergencia si se sabe que el sistema es causal.
- b. Grafique el diagrama de polos y ceros de H(s) en el plano s.
- c. ¿El sistema caracterizado por H(s) es estable? Justifique.
- d. A la salida del sistema se coloca, en cascada, otro sistema caracterizado por la función de transferencia:

$$G(s) = \frac{s-1}{2s}$$
, ROC: $\sigma > 0$

¿Cuál es la función de transferencia del sistema total Q(s) compuesta por los subsistemas en cascada H(s) y G(s)? Grafique el diagrama de polos y ceros del sistema Q(s) con su correspondiente región de convergencia.

e. Encuentre la respuesta al impulso q(t) del sistem Q(s).

Ejercicio 6. Considere el sistema LTI mostrado en la figura 2, para el cual se conoce la siguiente información:

$$X(s) = \frac{s+2}{s-2}, \quad \text{con } x(t) = 0 \text{ para } t > 0$$

$$y(t) = -\frac{2}{3}e^{2t}u(-t) + \frac{1}{3}e^{-t}u(t)$$

a. Determine H(s) y su región de convergencia.

Figura 2: Sistema LTI del ejercicio 6.

b. Determine h(t).

Ejercicio 7. La señal $y(t) = e^{-2t}u(t)$ es la salida de un sistema lineal, invariante en el tiempo y causal, que tiene función de transferencia:

$$H(s) = \frac{s-1}{s+1}$$

- a. Encuentre al menos dos posibles entradas x(t) que pueden producir la salida y(t) descrita. Dibuje el diagrama de polos y ceros de X(s) y explique sus decisiones.
- b. Manteniendo las condiciones anteriores, ¿cuál sería la entrada del sistema? Si se sabe que:

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- c. Encuentre la respuesta al impulso si ahora el sistema es estable y tiene como entrada a la señal y(t) y de salida alguna de las x(t) anteriores.
- d. ¿Cuál es ahora la salida x(t) si se cumple la condición anterior?

Ejercicio 8. Sea la función f(t) dada por:

$$f(t) = \begin{cases} 1 & -\alpha \le t \le \alpha \\ 0 & |t| \ge \alpha \end{cases}$$

a. Demuestre que la expresión algebraica de la transformada de Laplace de f(t) está dada por:

$$F(s) = \frac{e^{\alpha s} - e^{-\alpha s}}{s}$$

Indique la región de convergencia de F(s).

- b. Exprese la función g(t) mostrada en la figura 3, en términos de combinaciones lineales de f(t) y/o traslaciones y escalamientos en el tiempo.
- c. Utilice las propiedades de la transformada de Laplace y los resultados del punto anterior para encontrar G(s).

Ejercicio 9. Consisdere un sistema caracterizado por la siguiente ecuación diferencial:

$$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 6y(t) = x(t)$$

a. Determine la respuesta de estado cero de este sistema para la entrada $x(t) = e^{-4t}u(t)$. Considere que el sistema tiene un polo de orden 1 en s = -3.

Figura 3: Función a utilizar en el ejercicio 8.

b. Determine la respuesta de entrada cero de este sistema para $t>0^-$ considerando que:

$$y(0^{-}) = 1$$
 $\frac{dy(t)}{dt}\Big|_{t=0^{-}} = -1$ $\frac{d^{2}y(t)}{dt^{2}}\Big|_{t=0^{-}} = 1$

c. Determine la salida del sistema considerando la señal de entrada y las condiciones iniciales planteadas anteriormente.

Ejercicio 10. Determine la transformada unilateral de Laplace de

$$x(t) = \delta(t) + \delta(t+1) + e^{-2(t+3)}u(t+1)$$

Si X(s) es la transformada obtenida para x(t), encuentre a partir de X(s) la transformada de la función g(t) = x(t-1).