Logik und Komplexität ÜBUNG 7

Denis Erfurt, 532437 HU Berlin

Aufgabe 1)

a)

zeige Conn ist nicht $L^2_{\infty\omega}$ -definierbar in UGraph

nach Theorem 4.24 genügt e zu zeigen, dass es ein $\mathfrak{A} \in Conn$ und ein $\mathfrak{B} \in UGraph \setminus Conn$ gibt, so dass $\mathfrak{A} \approx_{\infty}^{2} \mathfrak{B}$

Sei $\mathfrak{A}:=K_8$ ein Kreis mit 8 Steinen, $\mathfrak{B}:=K_4\cup K_4$ 2 Kreise mit jeweils 4 Steinen

zeige $\mathfrak{A} \approx_{\infty}^{2} \mathfrak{B}$

IA: Für alle Steine gilt: $a_i, b_i = *$. Insbesondere sind die Gewinnbedingungen für Duplicator erfüllt. **IS:** $i \to i+1$

O.b.d.A bewegt Spoiler den Stein α_k von $a_k \in A$ nach $a_{k'} \in A$, die Fälle für B sind analog.

Sei $k, l \in \{1, 2\}$ sowie $k \neq l$.

Fall 1. In Runde i+1 gilt: $\alpha_k = \alpha_l$

So setzt Duplicator β_k auf β_l und Gewinnt in Runde i+1

Fall 2. In Runde i+1 gilt: $(\alpha_k, \alpha_l) \in E^{\mathfrak{A}}$

$$\phi := \forall x_1 \exists x_2 \exists x_3 (\neg x_2 = x_3) \land E(x_1, x_2) \land E(x_1, x_3)$$

Beobachhtung 1: $\mathfrak{B} \models \phi$

Fall 2.1. In Runde i war $(\alpha_k, \alpha_l) \in E^{\mathfrak{A}}$

Nach Beobachhtung 1. gibt es ein $b_{k'} \in B$ mit $b_k \neq b_{k'}$ und $(b_{k'}, \beta_l) \in E^{\mathfrak{B}}$. Duplicator wählt $\beta = b_{k'}$ und gewinnt die Runde i+1. **Fall 2.2.** In Runde i war $(\alpha_k, \alpha_l) \notin E^{\mathfrak{A}}$

Nach Beobachhtung 1. gibt es ein $b_{k'} \in B$ mit $(b_{k'}, \beta_l) \in E^{\mathfrak{B}}$.

Duplicator wählt $\beta = b_{k'}$ und gewinnt die Runde i+1.

Fall 3. In runde i+1 gilt: $(\alpha_k, \alpha_l) \notin E^{\mathfrak{A}}$

Fall 3.1. Spoiler wählt $\alpha_k = *$

Duplicator wählt $\beta_k = *$ und gewinnt die Runde i+1.

Fall 3.2. Spoiler wählt ein beliebiges $a_{k'}$

Duplicator wählt ein beliebiges $\beta_k = b_{k'}$ so dass $(b_{k'}, b_l) \notin E^{\mathfrak{B}}$ und gewinnt die Runde i+1.

Damit ist gezeigt, dass Duplicator die Runde i+1 übersteht. Somit hat Duplicator eine Gewinnstrategie im 2-Pebble-Spiel.

@

b)

Behauptung: Conn ist $L^3_{\infty\omega}$ -definierbar in UGraph.

Sei $\mathfrak{A} \in Conn$ sowie $\mathfrak{B} \in UGraphs \setminus Conn$.

Sei $\mathfrak{B} := \mathfrak{B}_1 \cup \mathfrak{B}_2$.

nach Theorem 4.24. genügt es zu zeigen, dass Spoiler eine Gewinnstrategie für beliebige \mathfrak{A} und \mathfrak{B} besitzt: Spoiler wählt $\beta_1, \beta_2 \in B_1$ und $\beta_3 \in B_2$ um zu gewinnen muss Duplicator $\alpha_1, \alpha_2, \alpha_3 \in A$ wählen. Nun wählt in Runde i+1 Spoiler das α_i mit $i \in \{1,2\}$ aus, welches die größte Entfernung zum α_3 besitzt und plaziert es auf das $a \in A$, welches die geringste Entfernung zum α_3 besitzt und noch eine Verbindung zum α_j mit $j \in \{1,2\} \setminus \{i\}$ besitzt. Die Distanz zwischen den α_1, α_2 Steinen und dem α_3 Stein verringert sich bei jeder Runde um 1. Um zu gewinnen muss Duplicator einen Stein in B_1 bewegen. Nach endlich vielen Runden ist besitzt ein α_i eine Verbindung mit α_j sowie α_3 . Da jedoch β_1 sowie β_2 sich auf Steinen in B_1 befinden kann Duplicator keine Verbindung zwischen den 3 Steinen herstellen. Somit ist es kein partialler Isomorphismus und Duplicator hat nach endlich vielen Zügen verlohren.

Aufgabe 2)

a)

$$\varphi_1(x) := \forall y E(x, y)$$

- 1. Zeige: φ_1 ist keine um x lokale Formel.
- 2. Sei: $\sigma := \{E\}$
- 3. Sei: $\mathfrak{A} := (\{1,2\}, \{\})$
- 4. $\mathfrak{A} \nvDash \varphi_1[1]$
- 5. Für alle $r \in \mathbb{N}$ gilt: $\mathcal{N}_r^{\mathfrak{A}}(1) = (\{1\}, \{\})$
- 6. $\mathcal{N}_r^{\mathfrak{A}}[1] \models \varphi_1[1]$
- 7. Q.E.D.

BEWEIS:Def. 5.3. b), 4, 6

GNF:

$$\varphi_1^{Nr(x)}(x) := (\forall y \ dist(x,y) \le 2 \to E(x,y)) \land (\neg \exists z_1 \exists z_2 \ dist(z_1,z_2) > 2)$$

b)

$$\varphi_2(x_1, x_2) := \neg x_1 = x_2 \land \forall y E(x_1, y) \lor E(x_2, y)$$

- 1. Zeige: φ_2 ist keine um x_1, x_2 lokale Formel.
- 2. Sei: $\sigma := \{E\}$
- 3. Sei: $\mathfrak{A} := (\{1,2,3\},\{(1,2),(2,1)\})$
- 4. $\mathfrak{A} \nvDash \varphi_2[1,2]$
- 5. Für alle $r \in \mathbb{N}$ gilt: $\mathcal{N}_r^{\mathfrak{A}}(1,2) = (\{1,2\},\{(1,2),(2,1)\})$
- 6. $\mathcal{N}_r^{\mathfrak{A}}(1,2) \models \varphi_2[1,2]$
- 7. Q.E.D.

Beweis:Def. 5.3. b), 4, 6

GNF:

$$\varphi_2(x_1, x_2) := \neg x_1 = x_2 \tag{1}$$

$$\wedge(\forall y \ dist(y, \{x_1, x_2\}) \le 2 \to E(x_1, y) \lor E(x_2, y)) \quad (2)$$

$$\land \neg \exists z_1 \exists z_2 \exists z_3 (\bigwedge_{z_i \neq z_j} dist(z_i, z_j) > 2)$$
 (3)

Aufgabe 3)

Abbildung 1:

- (1) Sei M
 eine Menge von r-lokalen Formeln. Dann ist $\phi \in BC(M)$ ebenfalls r-lokal.
- (2) Sei M eine Menge von Formeln und sei $\psi \in M$ nicht r-lokal. Dann ist $\phi \in BC(M)$ und $\phi beinhaltet \psi$ nicht r-lokal.

geg.
$$\phi(x_1, ..., x_k)$$

ges.: Ist ϕ r-lokal?

- 1. Forme ϕ zu ϕ' um.
- 2. (a) Forme ψ' in die pränexte normalform um.
 - (b) Forme $\forall x$ um in $\neg \exists x \neg$ und entferne $\neg \neg$
 - (c) Forme $\exists x_1...\exists x_l \psi$ mit um zu $\exists x_1...\exists x_l \psi'$ mit ψ' ist in KNF
 - (d) Vereinfache: Steht ψ und $\neg \psi$ in einer verundung. Lösche die Verundung.

Steht: ψ in einer beliebigen Verundung und $\neg \psi$ in einer anderen beliebigen Verundung. Lösche alle vorkommen von ψ und $\neg \psi$

 ϕ' hat die Form $[\neg]\exists x_1...[\neg]\exists x_l\bigvee_{i\in I}\bigwedge_{j\in J_i}\psi_{i,j}$ mit $\psi_{i,j}$ ist aomar.

Für alle J_i betrachte die Menge $M_i := \{\psi_{i,j} | j \in J\}$ sowie $M_i^+ := \{\psi_{i,j} | j \in J \text{ und } \psi \text{ ist nicht negient.} \}$

 $\mathcal{G}(M_i^+)$ ist ein Geifmann-Graph. mit $G:=frei(M_i)$

Für jedes $\psi \in M_i \setminus M_i^+$ und $x, y \in frei(\psi)$ teste ob dist(x, y) > r in $\mathcal{G}(M_i^+)$. Falls ja, so ist ϕ nach (2) nicht r-lokal.

Aufgabe 4)

Abbildung 2: