1 Dependable Computing:

(softcopy will be given)

A multilevel Approach

- By Behrooz Parhami (Professor, DECE, UCSB)

(2) Design and analysis of fault tolerant digital systems

- Johnson

class tests: 02 in-class

2 2 from project - coding Link for the course of https://sites.google.com/site/cse423ftsfeb2013/home ' www. ees. umass. edu/ece/koren/faultTolerant & link for project systems / simulator

Dependable computing in recent years

- Ambitious projects in space and alsowhere

- Subject to harsh environments (vibration, temperature, pressure), external

- More complex (system-on-chip) and critical applications (medicine, transportation)

Few examples of some memorable system failures

- @ April 2000 . Computer failure halt the trading for nearly 8 hours at the London Stock Exchange on its busiest day (end of financial year)
- (2) February 2012: Programming error doomed Russian Mars Probe, that failed to escape earth orbit due to simultaneous reboot of two subsystems.

we benefit from failures

u when a complex system succeeds, that success masks its proximity to failure... - Henry & Petroski, "Success through Faiture. The Paradox of Design"

why the course should not be needed?

- In an ideal world, methods of dealing with faults, errors, and other imprisoments in how and sow would be covered within every computer engineering course that has a design component.

parallel computing reliable comm?

bounds checking

Fault - Polerant Computing

the course is needed?

- The world in not ideal

Why the world in not ideal in the realm of computer engineering? - Due to the curre of complexity (more than a billion transistors in a quad cope,) =) computer engineering is the art and science of · translating uper requirements that we do not fully understand · into how and sho that commot precisely analyse · to operate in environments that we common actually predict · all in such a wars that the society at large is given no reason to suspect the extent of our ignorance.

=) complex systems almost certainly contain domittiple design flaws: "To Engineer is Human"

- Repult : Deat Failures - Fati Failure is an unacceptable difference between expected and observed performance of a system -Ex: A car need not completely stop moving to show a failure Difference between failure and fault - Fault: A problem within design or development that may cause to behave incorrectly. Failure: A system performing unexpectedly due to having any design fault oxland any steer reason, within or bayond control. - Fault followert system. Continues to perform correctly in presence of howords - Achieved through fault avoidance and fault tolerance System Requirements System Evalua? Bystem Design System modeling -Fault analysis Fault tolerance Fault avoidance Tolerance analysis - H/W redundency design methodology Testing SIW -> BY Ihr good, next yo his bad -> Br smor amordisharbe V -Info ~ Buality control - web browser-- Fault detect Documenta? -> Air crarf => same option, (Hirst dras) fault containment (central)

Some terminologies (Needed in modeling and analysis)

& Reliability, R(t) . Conditional probability that a system partform executrectly throughout the interval [to, t]

-> conditional of depends on system being operational at legenning of interval,

- (Unveliability, &(t): Conditional probability that a system perform incorrectly througout the interval [to, t], given it was correct at to
 - momentary periods of incorrect performance are uncceptable - impossible to repair
- =) fault tolerance is a technique of improving reliability
- =) A fault tolerant system does not necessarily have high reliability [as R depends on to and t-to]

- Availability, A (t) : Probability that as a system is operating correctly 3 at a particular instant of time + [available at +]
 - =) Reliability -> over on interval Availability -> at an instant
 - System can be highly reliable available yet frequently un reliable. [if there are numerous shortly-lived failures]
 - Availability is related to the extent that how quickly a system can be repaired
 - -> measure of availability: fraction of time a system operates correctly
 - @ Maintai nability, M(+): Probability that a failed system will be restored to operation within time t.
 - ease with which a system can be repaired (important s/w goal)
- & Safety . Probability that a system <u>either</u> performs correctly of discontinues without disruption to other systems of safety
 - Fail safe capability: fail in a safe manner (e.g., robust s/w)
- Tastability: Ability to test or verify
 - Testing means determines existence and quality of attributes, and thus distinguishes between faulty and fault-free systems.

motivating case studies:

- @ How reliability gets impacted?
 - -> Reliability of n-transister system, each having failure rate a is:

R(+) = e-na+

Aparant -> 3 ways of making the system more reliable: (1) Reduce A

(2) Leduce n

- (B) How availability gets impacted? [worst case availability]
 - Consider a distributed DB system having 5 sites
 - Full connectivity with dedicated links
 - only direct commis are allowed
 - Sites and links may malfunction
 - Redundency improves availability
 - =) 5: Prob of a site being available

L'. Prob of a link be active

1) Single copy link availability (Single copy is stored in the = system and accepted through a link) Sample values; 5 = 0.99, L= 0.95

A=5*L=094

(2) Data duplica? . A data file F has a home or primary site H(F) and a mirror site M(F)

A= 5*L + (1-5*L)*(5*L)
Home site Home site Mirror site
available unavailable available

₩ 0.9965

Data triplication: Home and two backups B(F)

A = 5*L + (1-5*L) * (5*L) + (1-5*L) * (5*L)

Homesite Homesite Backup! Home and Backup! available cinavailable available Backup1

≈ 0.9998

Data dispersion: Each file f is a bit 3 tring of length to l, which is can be encoded into 543 bits. Encoded bits are divided equally into five pieces each of elg bits. Any three of the elg-bit pieces are sufficient to

A = (5*L) 4 + 4C1 (1-5*L) (5*L) 3 + 4C2 (1-5*L) 2 (5*L) P4(F)

all 4 pieces
can be reached Exactly 3 pieces can only 2 piacs can be
be reached ≈ 0-9992

Comparison 1

A system having Moderate unavailability with smaller redundancy

Scheme	No redemdency	Duplican	Triplican	Dispersion	- Lucino
Availability	0.95 (5%)	0 -9965 (0.35%	0.9998 1000	0.9992 (0.08)	Eunavailability in
Redundancy	OY.	· . 1007.	200%		brackets]
				67%	

Some terminologies (needed for fault tolerant system)

* Fault: Problem in design of development

* Error: Condition (or state) of a system containing a fault tailure: Unexpected performance of a system Example.

Aspect	Impair ment
Structure	fault
state	Error
Behavior	failure

Fault -D A hole in spare time (Break fluid starts leaking)

fault offect -D flat spane tire

Error - > Having a car with a flat sparretire (Break fluid pressure gets (aw)

failure to when a running tire becomes flat

* fault Avoidance: Technique of preventing fault. (Quelity control nucleods)

* Fault Masking . Technique of preventing faults from introducing errors (error correcting codes)

* Fault Tolerance: Ability to continue performing teaks correctly even in the presence of a number of errors.

Fault Classes:

- Based on origin of the fault; (1) SIW, (2) HIW, (3) Exteronal, (4) Human error, (5) Unknown
- Based on temporal persistences
 - O'Permanent: Faculty whose presence is conti and stable
 - (2) Transient: Faulty whose presence is temporary (may resulted from environmental conditions)
 - (3) Intermittent: faults whose presence is occassional and may have recourring presences over time (due to anstable HIW or SIW (overheating of Captop))

Fault Models:

- (1) Stuck At & (s.a.)
 - Most commonly used fault models
 - The effect of the fault is modeled by having a line sogment stuck at Oot 1
 - May consider single or multiple stuck-at faults

F-0 correct output func?

F*-0 output in presence of faults)

 $F = x_1 x_2 + x_2 x_3$ Line 1 s. a. $0 \Rightarrow F^* = x_2 x_3$ line 2 s. a. $9 \Rightarrow F^* = x_1 + x_3$

Bridging Fault Model :

- Occurs when 2 of more lines are shorted together
- operational effect is of a wired AND or OR
 - =) for an AND bridging fault occurring beth lines 6 and 7, $F^* = x_1 x_2 x_3$

Fault tolerance cycle ".

Passive redundency using majority voting)

2 out of 3 system outputs are correct iff 2 out of 3 replicated voter pairs function correctly.

Advantages of ATMR

- Immediate foult masking
- Covers both permanent and transient faulty in a module
- No separate fault detection needed before masking
- Conversion from simple system to TMR is easy

challange of implementing TMR : * Synchronization between modules

- Results of 3 modules may not agree even when correct
- Margin of errors occurs when inputs come from somsors (ADC)
- It amy modules do amy computate at all, round off error gets compounded.

Voting techniques :

- How far back one puches the voting determines the amount of fault containment in the Eystem
 - =) The sooner and the more often, the voting is applied the less fault propage is likely

Trade off bet HWA S/W fault tolerance

Technique	111 W	5160
speed	1	1
Dverhead	1	1
Additional complexity	Must check for races (timing fault tolerance)	must have a fault delerant interface for each module

Lother redundancies => later in this course]