Outline

- Introduction
- Verilog for RTL
- Module Description and Declaration
- Data Type and Operators
- Combinational Behavior
- Sequential Behavior
- Finite State Machine
- Advanced Topics
- Design Example
- RTL Simulation Tool

Synthesis Tool

Part 3

Verilog-Supported Levels of Abstraction

Behavior Level

- Modeling the circuit's behavior in high-level.

Register Transfer Level (RTL)

 Describes the flow of data between registers and how a design process the data.

Describes the logic gates and the interconnections.

Transistor Level

- Describes the transistors and the interconnections.

Setup Environment

Source file provided by lab 231

% source synthesis.cshrc (助教提供)

Launch "design vision" for synthesis

```
% dv &

% dc_shell
```

Remember execute the DV in the folder that has .synopsys_dc.setup

Setup Environment

- •Please check the .synopsys_dc.setup file. It contains the path of cell library and related library.
- ■This file is hidden. Be careful that there is a "." in front of the name.

Design vision (Step by Step)

- 1. Read Design
- 2. Set Constraints
- 3. Check and Compile Design
- 4. Write reports
- 5. Write Essential Simulation Files

1. Read Design

Read the input Verilog file

- File->Read
- Choose the design
- Open

1. Read Design

- You should have a good coding style to avoid latch.
- •Fully Assignment!!

2. Set Constraints

Execute the script (sythesis.tcl) written by TA

- Method 1

- Method 2

2. Set Constraints

```
#Setting Constraints
set cycle 10 ;#clock period defined by designer
create clock -period $cycle
                               [get ports clk]
set dont touch network
                               [get clocks clk]
set fix hold
                               [get clocks clk]
set_clock_uncertainty 0.1 [get_clocks clk]
set clock latency -source 0 [get clocks clk]
set clock latency 1 [get clocks clk]
set input transition 0.5 [all inputs]
set clock transition 0.5
                               [all clocks]
set operating conditions -min fast -max slow
set input delay -max 1 -clock clk [all inputs]
set input delay -min 0.2 -clock clk [all inputs]
set output delay -max 1 -clock clk [all outputs]
set output delay -min 0.1 -clock clk [all outputs]
set wire load model -name tsmc13 wl10 -library slow
```

3. Check and Compile Design

Check Design

3. Check and Compile Design

Compile Design

You can change the Map/Area/Power effort according to the spec.

■ Report Area: Design/Report Area...

- Combinational area
- Noncombinational area
- Net Interconnect area
 - depends on the wireload model you used and
 - The Net Interconnect area doesn't contribute wires are mostly lie on the standard cells.

```
Report : area
Design : autoseller
Version: G-2012.06
       : Mon May 12 02:29:52 2014
Library(s) Used:
    typical (File:
Number of ports:
Number of nets:
                                            132
Number of cells:
Number of combinational cells:
Number of sequential cells:
                                             20
Number of macros:
Number of buf/inv:
Number of references:
Combinational area:
                            831.726007
Noncombinational area:
                            641.617180
Net Interconnect area:
                           13113.398590
Total cell area:
                           1473.343187
                           14586.741777
Total area:
```

Report Timing: Timing/Report Timing path...

■Timing Report

- Positive timing slack means the critical
- Positive timing slack doesn't guarantee

Point	Incr	Path	
clock clk (rise edge)	0.00	0.00	
clock network delay (ideal)	1.00	1.00	
money reg[2]/CK (DFFRX1)	0.00	1.00	r
money reg[2]/Q (DFFRX1)	0.71	1.71	r
U125/Y (NAND3X1)	0.24	1.95	f
U121/Y (OAI211X1)	0.43	2.38	r
U64/Y (CLKINVX1)	0.32	2.70	f
sub 109 aco/U2 1/CO (ADDFXL)	0.53	3.23	f
sub 109 aco/U2 2/CO (ADDFXL)	0.31	3.54	f
sub 109 aco/U2 3/CO (ADDFXL)	0.37	3.92	f
U73/Y (OR2X1)	0.22	4.14	f
U70/Y (XNOR2X1)	0.13	4.27	f
U96/Y (A0I221XL)	0.36	4.63	r
U95/Y (OAI22XL)	0.17	4.80	f
change o reg[5]/D (DFFRXL)	0.00	4.80	f
data arrival time		4.80	
clock clk (rise edge)	10.00	10.00	
clock network delay (ideal)	1.00	11.00	
clock uncertainty	-0.10	10.90	
change o reg[5]/CK (DFFRXL)	0.00	10.90	r
library setup time	-0.15	10.75	
data required time		10.75	
data required time		10.75	
data arrival time		-4.80	
slack (MET)		5.95	

Positive Timing Slack!

Report Power: Design/Report Power...

 The power report in Design Vision is a rough estimation, the real power consumption depends on the input and output patterns.

5. Write Essential Simulation Files

Write Gate Level Netlist

5. Write Essential Simulation Files

Write .ddc file.

The .ddc file is for Design Vision Usage, you can restore the status of Design Vision

5. Write Essential Simulation Files

Write Standard Delay Format (SDF)

- The SDF file contains the delay information of standard cells.
- For gate-level simulation, we can not simulate without the delay information of the standard cells.

Gate Level Simulation

•Step 1

Use \$sdf annotate in testbench.

Step 2

- Change the clock cycle in testbench if you need
 - Should be the same as the constraint set in DV

```
'define CYCLE 10
// modify if need
```

Run VCS with Gate-level netlist and tsmc13.v

```
% vcs <test bench> <gate-level netlist> <cell library> -full64 -R
+neg tchk -debug access+all +v2k
```

You may need to copy tsmc13.v to your own directory first.

+define+FSDB

+define+FSDB+SDF