Lecture 04 Representations - I $T_0^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Target $T_{Gripper}^{O} = T_{Jar}^{O}$

$$T_{Robot}^{O} = \begin{bmatrix} R_{3x3} & D_{3x1} \\ 0_{1x3} & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Course Logistics

- Everyone should be on Ed discussion board now.
- Everyone should be on Gradescope now.
- Quiz 2 will be posted tomorrow (Tuesday) 6pm and will be due on 01/31 (Wednesday) noon.
- Project 1 is due on 01/31 (Wednesday) 11:59 pm CT.
- Project 2 will be released on 01/31.
- Autograder is available. Please check to see if you have access to it.
 - 10 submissions per day. This is a good coding practice and we will not increase it.
 - You don't need a valid solution to test autograder. So if you haven't submitted anything just try it first.

Why JavaScript?

ThreeJS

Why JavaScript?

Why JavaScript?

You can load a URDF of a famous robot!

Why JavaScript? More robot models!!

You can try to load URDFs of our lab robots too! Ask the course staff for the URDFs.

Previously

Magnitude and Unit Vector

The magnitude of a vector is the square root of the sum of squares of its components

$$||a|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

A unit vector has a magnitude of one. Normalization scales a vector to unit length.

$$\hat{a} = \frac{a}{||a||}$$

A vector can be multiplied by a scalar

$$sa = egin{bmatrix} sa_x \ sa_y \ sa_z \end{bmatrix}$$

Cross Product

$$c_x = a_y b_z - a_z b_y$$

 $c_y = a_z b_x - a_x b_z$
 $c_z = a_x b_y - a_y b_x$

Results in new vector c orthogonal to both original vectors a and b

Length of vector c is equal to area of parallelogram formed by a and b

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

Matrix-vector multiplication (two interpretations)

1) Row story: dot product of each matrix row

$$\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} \mathbf{j} \\ \mathbf{k} \\ \mathbf{l} \end{bmatrix} = \begin{bmatrix} \mathbf{a}\mathbf{j} + \mathbf{b}\mathbf{k} + \mathbf{c}\mathbf{l} \\ d\mathbf{j} + e\mathbf{k} + f\mathbf{l} \\ g\mathbf{j} + h\mathbf{k} + i\mathbf{l} \end{bmatrix}$$

2) Column story: linear combination of matrix columns

$$\begin{bmatrix} \mathbf{a} & b & c \\ \mathbf{d} & e & f \\ \mathbf{g} & h & i \end{bmatrix} \begin{bmatrix} \mathbf{j} \\ k \\ l \end{bmatrix} = \begin{bmatrix} \mathbf{a}\mathbf{j} + bk + cl \\ \mathbf{d}\mathbf{j} + ek + fl \\ \mathbf{g}\mathbf{j} + hk + il \end{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$

$$\left[\begin{array}{c} a \\ d \\ g \end{array}\right] j + \left[\begin{array}{c} b \\ e \\ h \end{array}\right] k + \left[\begin{array}{c} c \\ f \\ i \end{array}\right] l$$

Solving linear systems

What would be the direct way to solve for \mathbf{x} ? $A\mathbf{x} = \mathbf{b}$

Invert **A** and multiply by **b**

 $\mathbf{x} = A^{-1}\mathbf{b}$

Can this always be done?

No. But, we can approximate. How?

Pseudoinverse least-squares approximation $\mathbf{x} = A_{\mathrm{left}}^+ \mathbf{b}$

How to define a Link Geometry

Link Geometry

http://csc.lsu.edu/~kooima/courses/csc4356/

Link Geometry

vertex index vertex location

i	x	y	Z
0	0.0	1.0	0.5
1	-0.5	0.5	0.5
2	-0.5	0.0	0.5
3	0.5	0.0	0.5
4	0.5	0.5	0.5
5	0.0	1.0	-0.5
6	-0.5	0.5	-0.5
7	-0.5		-0.5
8	0.5	0.0	-0.5
9	0.5	0.5	-0.5

Each robot link has a geometry specified as 3D vertices. Vertices are connected into faces of the object's surface. Vertices are defined wrt. the frame of the robots' link.

http://csc.lsu.edu/~kooima/courses/csc4356/

As the link frame moves, the geometry moves with it.

http://csc.lsu.edu/~kooima/courses/csc4356/notes/04-transformation/transformation-composition-2.html

 Consider a link for a 2D robot with a box geometry of 4 vertices

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)

$$\mathbf{p_i} = [X_i, Y_i]$$

 Consider a link for a 2D robot with a box geometry of 4 vertices

 Vectors express position of vertices with respect to joint (at origin)

 How to rotate link geometry based on movement of the joint?

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to rotate link geometry based on movement of the joint?

$$x' = x \cdot \cos(\theta) - y \cdot \sin(\theta)$$
$$y' = x \cdot \sin(\theta) + y \cdot \cos(\theta)$$

2D Rotation Matrix

(counterclockwise)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Matrix multiply vector by 2D rotation matrix R
- Matrix parameterized by rotation angle θ
- Remember: this rotation is counterclockwise

Right-hand Rule

rotation occurs about axis from forward towards lateral, or the "curl" of the fingers

Coordinate conventions

threejs and KinEval (used in the browser)

ROS and most of robotics (used in URDF and rosbridge)

Checkpoint

What is the 2D matrix for a rotation by 0 degrees?

What is the 2D matrix for a rotation by 90 degrees?

Example

Note: one matrix multiply can transform all vertices

$$\begin{bmatrix} p'_{1x} & p'_{2x} & p'_{3x} & p'_{4x} \\ p'_{1y} & p'_{2y} & p'_{3y} & p'_{4y} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} p_{1x} & p_{2x} & p_{3x} & p_{4x} \\ p_{1y} & p_{2y} & p_{3y} & p_{4y} \end{bmatrix}$$

We can rotate. Can we also translate?

2D Translation

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to translate link geometry to new location?

$$x' = x + d_x$$
$$y' = y + d_y$$

2D Translation Matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x+d_x \\ y+d_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Requires homogeneous coordinates
 - 3D vector of 2D position concatenated with a I
 - A plane at z=1 in a three dimensional space
- Matrix parameterized by horizontal and vertical displacement (d_x, d_y)

Checkpoint

What is the 2D matrix for a translation by [-1,2]?

Example

Rigid motions and Affine transforms

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to both <u>rotate and translate</u> link geometry?
 - Rigid motion: rotate then translate
 - Affine transform: allows for rotation, translation, scaling, shearing, and reflection

Composition of Rotation and Translation

homogeneous rotation matrix

Example

Example

Homogeneous Transform: Composition of Rotation and Translation

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2 \times 2} & \mathbf{d}_{2 \times 1} \\ \mathbf{0}_{1 \times 2} & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2\times2} & \mathbf{d}_{2\times1} \\ \mathbf{0}_{1\times2} & 1 \end{bmatrix}$$

$$H \in SE(2)$$

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2 \times 2} & \mathbf{d}_{2 \times 1} \\ \mathbf{0}_{1 \times 2} & 1 \end{bmatrix}$$

$$H \in SE(2) \quad \mathbf{R}_{2 \times 2} \in SO(2)$$

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2\times 2} & \mathbf{d}_{2\times 1} \\ \mathbf{0}_{1\times 2} & 1 \end{bmatrix}$$

$$H \in SE(2) \quad \mathbf{R}_{2\times 2} \in SO(2) \quad \mathbf{d}_{2\times 1} \in \Re^2$$

Example: Let's put an arm link on Boxy

Transform the link frame and its vertices into the robot frame

$$p_{\rm robot} = T_{\rm link}^{\rm robot} p_{\rm link}$$

robot frame

Transform the link frame and its vertices into the robot frame

$$p_{\rm robot} = T_{\rm link}^{\rm robot} p_{\rm link}$$

$$T_{
m link}^{
m robot} = egin{bmatrix} R_{00} & R_{01} & d_x \ R_{10} & R_{11} & d_y \ 0 & 0 & 1 \end{bmatrix}$$

Can we think about this frame relation in steps?

link frame

robot frame

$$T_{
m link}^{
m robot} = egin{bmatrix} R_{00} & R_{01} & d_x \ R_{10} & R_{11} & d_y \ 0 & 0 & 1 \end{bmatrix}$$

link frame

$$T_{ ext{link}}^{ ext{robot}} = egin{bmatrix} R_{00} & R_{01} & d_x \ R_{10} & R_{11} & d_y \ 0 & 0 & 1 \end{bmatrix}$$

Transformed frame for link wrt. robot

$$T_{
m link}^{
m robot} = egin{bmatrix} R_{00} & R_{01} & d_x \ R_{10} & R_{11} & d_y \ 0 & 0 & 1 \end{bmatrix}$$

Transformed frame for link wrt. robot

Why not translate then rotate?

$$\mathbf{M} = \mathbf{R} \cdot \mathbf{T}$$

$$\mathbf{M} = \mathbf{T} \cdot \mathbf{R}$$

Note the difference in behavior.

Translation along x = 1.1

Rotation about $y = 140^{\circ}$

Can we compose multiple frame transforms?

Can we compose multiple frame transforms?

Consider the 3 frames of a planar 2-link robot

A point in frame 1 relates to a point in frame 0 by

$$p^0 = R_1^0 p^1 + d_1^0$$

and point in frame 2 relates to point in frame 1 by

$$p^1 = R_2^1 p^2 + d_2^1$$

By substitution of p^1 into the expression for p^0 , a point in frame 2 relates to a point in frame 0 by

$$p^{0} = R_{1}^{0}R_{2}^{1}p^{2} + R_{1}^{0}d_{2}^{1} + d_{1}^{0}$$

$$R_{2}^{0} \qquad d_{2}^{0}$$

$$\begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1^0 R_2^1 & R_1^0 d_2^1 + d_1^0 \\ 0 & 1 \end{bmatrix}$$

Alternatively, relation expressed by composed transform from frame 2 to frame 0 as:

$$p^0 = R_2^0 p^2 + d_2^0$$

where

$$R2^{0} = R1^{0}R2^{1}$$

$$d2^{0} = R1^{0}d2^{1} + d1^{0}$$

which can be observed by block multiplying transforms

$$\begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1^0 R_2^1 & R_1^0 d_2^1 + d_1^0 \\ 0 & 1 \end{bmatrix}$$

Alternatively, relat transform from fra

$$p^0 = R_2^0 p^2 + a$$

where

$$R2^{0} = R1^{0}R2^{1}$$
$$d2^{0} = R1^{0}d2^{1}$$

Rtarget Current

Rotation Matrix that will take a point in current to the target frame

which can be observed by block multiplying transforms

Frame 0: *o*0*x*0*y*0

How do we extend this to 3D?

3D Translation and Rotation

$$egin{aligned} { t D(d_x,d_y,d_z)} & egin{bmatrix} 1 & 0 & 0 & d_x \ 0 & 1 & 0 & d_y \ 0 & 0 & 1 & d_z \ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

2D rotation in 3D is rotation about Z axis

3D Translation and Rotation

$$\text{Rz}(\theta) \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{Ry}(\theta) \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Homogeneous Transform

Rotate about each axis in order $R = R_x(\Theta_x) R_y(\Theta_y) R_z(\Theta_z)$

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D(d_x, d_y, d_z) \qquad R_x(\theta) \qquad R_y(\theta) \qquad R_z(\theta)$$

$$D(d_x, d_y, d_z)$$

$$< < (\theta)$$

$$(\theta)$$

$$\langle z(\theta) \rangle$$

3D Homogeneous Transform

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= H_3 = \begin{bmatrix} R_{00} & R_{01} & R_{02} & d_x \\ R_{10} & R_{11} & R_{12} & d_y \\ R_{20} & R_{21} & R_{22} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{3 \times 3} & \mathbf{d}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1 \end{bmatrix} \qquad \mathbf{R}_{3 \times 3} \in SO(3)$$

3D Homogeneous Transform

$$H_{3} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & d_{x} \\ R_{10} & R_{11} & R_{12} & d_{y} \\ R_{20} & R_{21} & R_{22} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{d}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \in SE(3)$$

if
$$T_1^0 \in SE(3)$$
 and $T_2^1 \in SE(3)$ then composition holds:

$$\begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1^0 R_2^1 & R_1^0 d_2^1 + d_1^0 \\ 0 & 1 \end{bmatrix}$$

such that points in Frame 2 can be expressed in Frame 0 by:

$$p^0 = T_1^0 T_2^1 p^2$$

Next lecture: Representations II: Rotations & Quaternions

PR2 Fetches Sandwich from Subway 11 years ago!

Autonomous Subway sandwich delivery by a PR2 robot, from the University of Tokyo and TUM