

《统计分析与R语言》

基本统计分析

- ☞ 图形的创建和保存
- ★ 自定义符号、线条、颜色和坐标轴
- ❖ 标注文本和标题
- ☆ 控制图形维度
- ∞ 组合多个图

- ◆ 条形图、箱线图和点图
- ★ 饼图和扇形图
- ★ 直方图与和密度图

- ➡ 描述性统计分析
- ፟ 频数表和列联表
- ★ 相关系数和协方差

➡ 通过summary()计算描述性统计量

```
> summary(mtcars[vars])
                                   wt
     mpg
Min. :10.4
              Min.
                    : 52.0
                             Min.
                                   :1.51
1st Qu.:15.4
             1st Qu.: 96.5
                            1st Qu.:2.58
Median :19.2 Median :123.0
                           Median :3.33
Mean
     :20.1
                    :146.7
                                  :3.22
             Mean
                             Mean
3rd Qu.: 22.8
             3rd Qu.:180.0
                            3rd Qu.:3.61
Max. :33.9
                    :335.0
                             Max. :5.42
              Max.
```



```
mystats <- function(x, na.omit=FALSE){
                    if (na.omit)
                         x \leftarrow x[!is.na(x)]
                     m \leftarrow mean(x)
                    n \leftarrow length(x)
                    s <- sd(x)
                    skew <- sum((x-m)^3/s^3)/n
                    kurt <- sum((x-m)^4/s^4)/n - 3
                    return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
10
11
12
   > sapply(mtcars[vars], mystats)
14
15
             32.000 32.000 32.0000
             20.091 146.688 3.2172
              6.027 68.563 0.9785
    stdev
                      0.726 0.4231
              0.611
   kurtosis -0.373 -0.136 -0.0227
```


☞ 扩展

通过Hmisc包中的describe()逐 计量

```
1 > library(Hmisc)
   > describe(mtcars[vars])
    3 Variables
                     32 Observations
   n missing unique
                     Mean
                     20.09 12.00 14.34 15.43 19.20 22.80 30.09
   lowest: 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
   n missing unique
                 22 146.7 63.65 66.00 96.50 123.00 180.00 243.50 253.55
14
   lowest: 52 62 65 66 91, highest: 215 230 245 264 335
18
   n missing unique
                       Mean
                                            .25
                     3.217 1.736 1.956 2.581 3.325 3.610 4.048 5.293
20
21
   lowest: 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345
23
   5.424
```


通过pastecs包中的stat.desc()函数记统计量

1	> library(pa	stecs)			_
2	> stat.desc(mtcars[v	ars])		
3		mpg	hp	wt	
4	nbr.val	32.00	32.000	32.000	
5	nbr.null	0.00	0.000	0.000	
6	nbr.na	0.00	0.000	0.000	
7	min	10.40	52.000	1.513	
8	max	33.90	335.000	5.424	
9	range	23.50	283.000	3.911	
10	sum	642.90	4694.000	102.952	
11	median	19.20	123.000	3.325	
12	mean	20.09	146.688	3.217	
13	SE.mean	1.07	12.120	0.173	
14	CI.mean.0.95	2.17	24.720	0.353	
15	var	36.32	4700.867	0.957	
16	std.dev	6.03	68.563	0.978	
17	coef.var	0.30	0.467	0.304	
	2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	2 > stat.desc() 3 4 nbr.val 5 nbr.null 6 nbr.na 7 min 8 max 9 range 10 sum 11 median 12 mean 13 SE.mean 14 CI.mean.0.95 15 var 16 std.dev	2 > stat.desc(mtcars[v] mpg nbr.val 32.00 nbr.null 0.00 nbr.na 0.00 min 10.40 max 33.90 prange 23.50 sum 642.90 median 19.20 mean 20.09 sean 1.07 CI.mean.0.95 2.17 var 36.32 std.dev 6.03	2 > stat.desc(mtcars[vars]) 3	2 > stat.desc(mtcars[vars]) 3


```
Attaching package: 'psych'
           The following object(s) are masked from package:Hmisc:
            describe
   > describe(mtcars[vars])
                       sd median trimmed
               mean
                                          mad
                                                min
                                                       max
         1 32 20.09 6.03 19.20
                                  19.70
                                         5.41 10.40
                                                     33.90
   mpg
         2 32 146.69 68.56 123.00
                                 141.19 77.10 52.00 335.00
      3 32 3.22 0.98 3.33
                                    3.15 0.77 1.51
                                                      5.42
12
        range skew kurtosis
                              se
        23.50 0.61
                     -0.37 1.07
   mpg
       283.00 0.73
                     -0.14 12.12
         3.91 0.42
                     -0.02 0.17
```

★ 扩展

通过psych包中的describe()计算描述性统计量

- → 分组计算描述性统计量
- ❖ 使用aggregate()分组获取描述性统计量


```
1 > aggregate(mtcars[vars], by=list(am=mtcars$am), mean)
2    am    mpg    hp    wt
3    1    0 17.1 160 3.77
4    2    1 24.4 127 2.41
5 > aggregate(mtcars[vars], by=list(am=mtcars$am), sd)
6    am    mpg    hp    wt
7    1    0 3.83 53.9 0.777
8    2    1 6.17 84.1 0.617
```


- ➡ 分组计算描述性统计量
- ◆ 使用by()分组计算描述性统计量

dstats <- function(x){sapply(x, mystats)} myvars <- c("mpg", "hp", "wt") by(mtcars[myvars], mtcars\$am, dstats)

- ➡ 分组计算描述性统计量
- ◆ 使用describeBy()分组计算描述性统计量

#扩展使用psych包中的describeBy()分组计算描述统计量 library(psych)

myvars <- c("mpg", "hp", "wt")
describeBy(mtcars[myvars], list(am=mtcars\$am))

> library(vcd) 载入需要的程辑包: grid > head(Arthritis) Treatment Sex Age Improved 1 57 Treated Male 27 Some 46 Treated Male 29 None Treated Male 3 77 30 None 17 Treated Male 32 Marked 36 Treated Male 46 Marked 23 Treated Male 58 Marked

❖ 生成频数表

用于创建和处理列联表的函数
描述
使用 N 个类别型变量(因子)创建一个 N 维列联表
根据一个公式和一个矩阵或数据框创建一个 N 维列联表
依margina定义的边际列表将表中条目表示为分数形式
依margina定义的边际列表计算表中条目的和
将概述边margins(默认是求和结果)放人表中
创建一个紧凑的"平铺"式列联表

使用table()函数生成简单的频数统计表

- > mytable <- with(Arthritis, table(Improved))
- > mytable

Improved

None Some Marked

42 14 28

使用prop.table()将频数转化为比例值

> prop.table(mytable)

Improved

None Some Marked 0.500 0.167 0.333 > prop.table(mytable)*100 Improved None Some Marked

16.7

50.0

37

33.3

➡ 二维列联表 使用xtabs()函数

mytable <- xtabs(- A + B, data=mydata)

- > mytable <- xtabs(~ Treatment+Improved, data=Arthritis)
- > mytable

Improved

Treatment None Some Marked Placebo 29 7 7 Treated 13 7 21

#使用prop.table()生成各单元所占比例 prop.table(mytable)

◆ 使用margin.table()和prop.table()函数分别生成边际频数和比例

#使用margin.table()生成边际频数 margin.table(mytable, 1) margin.table(mytable, 2) #使用prop.table()生成边际比例 prop.table(mytable, 1) prop.table(mytable, 2)

◆ 使用addmargins()函数为这些表格添加边际和

addmargins(mytable)
addmargins(prop.table(mytable))
addmargins(prop.table(mytable), 2)
addmargins(prop.table(mytable), 1)

library(vcd)

mytable <- xtabs(~Treatment+Improved, data=Arthritis)

chisq.test(mytable)

mytable <- xtabs(~Improved+Sex, data=Arthritis)

chisq.test(mytable)

- ❖ 独立性检验
- ◆ 使用chisq.test()函数对二维表的行变量和列变量进行卡方独立性检验
 - > library(vcd)
 - > mytable <- xtabs(-Treatment+Improved, data=Arthritis)
 - > chisq.test(mytable)

Pearson's Chi-squared test

data: mytable

X-squared = 13.1, df = 2, p-value = 0.001463

- > mytable <- xtabs(~Improved+Sex, data=Arthritis)
- > chisq.test(mytable)

Pearson's Chi-squared test

data: mytable

X-squared = 4.84, df = 2, p-value = 0.0889

Warning message:

In chisq.test(mytable) : Chi-squared approximation may be incorrect

❖ cor()函数可计算相关系数, cov()函数可用来计

算协方差

cor(x, use= , method=)

states<- state.x77[,1:6]

cov(states)

cor(states)

cor(states, method="spearman")

参数	描述
ж	矩阵或数据框
use	指定缺失数据的处理方式。可选的方式为all.obs(假设不存在缺失数据——遇到缺失数据时将扩错)、everything(遇到缺失数据时,相关系数的计算结果将被设为missing)、complete.ob (行删除)以及 pairwise.complete.obs(成对删除,pairwise deletion)
method	指定相关系数的类型。可选类型为pearson、spearman或kendall

x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")]
y <- states[,c("Life Exp", "Murder")]
cor(x,y)

	Life Exp	Murder
Population	-0.068	0.344
Income	0.340	-0.230
Illiteracy	-0.588	0.703
HS Grad	0.582	-0.488

- ★ 偏相关 指在控制一个或多个定量变量时,另外两个定量变量之间的相互关系
- ❖ 使用pcor()函数计算偏相关系数

install.packages("igraph")
install.packages("ggm")
library(igraph)
library(ggm)
pcor(c(1,5,2,3,6), cov(states))

pcor(u, S)

- > library(ggm)
- > # 在控制了收入、文盲率和高中毕业率时
- > # 人口和谋杀率的偏相关系数
- > pcor{c{1,5,2,3,6}, cov(states)}
 [1] 0.346

★ 相关性显著性检验 使用cor.test()函数对单个的 Pearson、Spearman和Kendall相关系数进行 检

cor.test(states[,3], states[,5])

▲ 通过corr.test计算相关矩阵并进行显著性检验

library(psych) corr.test(states, use="complete")

★ 使用MASS包中的UScrime数据集

>	UScr	ime												- 111		
	М	So	Ed	Po1	Po2	LF	M.F	Pop	NW	U1	U2	GDP	Ineq	Prob	Time	У
1	151	1	91	58	56	510	950	33	301	108	41	394	261	0.084602	26.2011	791
2	143	0	113	103	95	583	1012	13	102	96	36	557	194	0.029599	25.2999	1635
3	142	1	89	45	44	533	969	18	219	94	33	318	250	0.083401	24.3006	578
4	136	0	121	149	141	577	994	157	80	102	39	673	167	0.015801	29.9012	1969
5	141	0	121	109	101	591	985	18	30	91	20	578	174	0.041399	21.2998	1234
6	121	0	110	118	115	547	964	25	44	84	29	689	126	0.034201	20.9995	682

library(MASS) t.test(Prob ~ So, data=UScrime)

 $t.test(y \sim x, data)$

→ 非独立样本的t检验

sapply(UScrime[c("U1","U2")], function(x){c(mean=mean(x),sd=sd(x))})
with(UScrime, t.test(U1, U2, paired=TRUE))

t.test(y1, y2, paired=TRUE)

➡ 两组数据独立 秩和检验

with(UScrime, by(Prob, So, median)) wilcox.test(Prob ~ So, data=UScrime)

wilcox.test(y - x, data)

sapply(UScrime[c("U1", "U2")], median)
with(UScrime, wilcox.test(U1, U2, paired=TRUE))

※ 多于两组的比较

states <- data.frame(cbind(state.region, state.x77)) kruskal.test(Illiteracy ~ state.region, data=states)

 $kruskal.test(y \sim A, data)$

- ☞ 描述性统计分析
- ፟ 频数表和列联表
- ★ 相关系数和协方差
- ❖ t检验
- ∾ 非参数统计

Thankyou!

