Last lecture, we calculated the reliability of the following system (recall that reliability of a system is the same as asking for the probability that the entire system works).

$$Reliability of system = P(system works)$$

$$= P(A \cup B)$$

$$= P(A) + P(B) - P(A \cap B)$$

$$= 0.1 + 0.2 - (0.1 \times 0.2) \quad [since A and B are independent]$$

$$= 0.28$$

Another method

$$\begin{split} P(system\,works) &= 1 - P(system\,does\,not\,work) \\ &= 1 - P(A^C \cap B^C) \\ &= 1 - (0.9 \times 0.8) \qquad [since\,A^C\,and\,B^C\,are\,independent] \\ &= 0.28 \end{split}$$

Yet another method

	Component A	Component B	System works?	Probability	ans=0.02+0.08+0.18=0.28
	1	1	1/	$0.1 \times 0.2 = 0.02$	
1=works	1	0	v √	$0.1 \times 0.8 = 0.08$	
0=does not work	0	1	√ ·	$0.9 \times 0.2 = 0.18$	
	0	0	×	$0.9 \times 0.8 = 0.72$	
				1	
				\sim a	dd up to 1

Another simple example

$$P(A\,works) = 0.1$$
 connected in series
$$P(B\,works) = 0.2$$

Note that A and B must both work for system to work.

$$P(system\,works) = P(A \cap B)$$

$$= 0.1 \times 0.2 \quad [since\,A\,and\,B\,are\,independent]$$

$$= 0.02$$

Another example

Given components 1, 2, 3 operate independently.

 $C = \{component 1 works\}, D = \{component 2 works\}.$

Easier to break down problem into parts.

$$P(subsystem\ A\ works) = P(C \cup D)$$

$$= P(C) + P(D) - P(C \cap D)$$

$$= 0.1 + 0.1 - 0.1^{2} \quad (since\ C\ and\ D\ are\ independent)$$

$$= 0.19$$

$$P(entire\ system\ works) = P(subsystem\ A\ works \cup component\ 3\ works)$$

$$= 0.19 + 0.2 - (0.19 \times 0.2)\ [since\ events\ subsystem\ A\ works\ and$$

$$= 0.352 \qquad component\ 3\ works\ are\ independent]$$

Q: Given that the entire system works, what is the probability component 1 works? This is a conditional probability problem.

Harder question on reliability

Find the reliability of the system above. Assume the probability of each component failing is 0.1. Also assume the components operate independently.

Hint: This is easier to solve if component 3 is out of the way.

So,

$$P(system\ works) = P(system\ works \cap component\ 3\ works) \\ + P(system\ works \cap comp\ 3\ does\ not\ work) \\ = \underline{P(A|B)} \cdot \underline{P(B)} + \underline{P(A|B^C)} \cdot \underline{P(B^C)} \\ \text{given}, =0.9 \qquad \qquad \text{given}, =0.1$$

draw a new circuit when component 3 is guaranteed to work and find P(A|B)

draw another new circuit when component 3 is guaranteed not to work and find $P(A|B^C)$

When you break it down this way, the question becomes quite manageable.

Here is the complete solution:

1. We condition on component 3 to simplify the problem.

Let A=system works, B=component 3 works

$$\Rightarrow P(B) = 0.9, \ P(B^C) = 0.1$$

$$P(system \, works) = P(A \cap B) + P(A \cap B^C)$$

$$= P(A|B) \cdot \underline{P(B)} + P(A|B^C) \cdot \underline{P(B^C)} \dots (1)$$

$$0.1$$

To calculate $P(A \mid B^C)$, we note that given event B^C , the diagram reduces to:

which is the same as

Let C = subsystem X works, D = subsystem Y works

$$P(C)=0.9\times0.9$$
 (since components 1 & 4 are independent)

 $P(D)=0.9\times0.9$ (since components 2 & 5 are independent)

$$P(A|B^C) = P(C \cup D)$$

$$= P(C) + P(D) - P(C \cap D)$$

$$= 0.9^2 + 0.9^2 - (0.9^2)(0.9^2)$$

$$= 0.9639$$

To calculate P(A|B), we note that given event B, the diagram reduces to

which is the same as

which is the same as

Let E=subsystem J works, F=subsystem K works

$$\begin{split} P(E) &= P(component \ 1 \ works \cup component \ 2 \ works) \\ &= P(comp \ 1 \ works) + P(comp \ 2 \ works) - P(comp \ 1 \cap comp \ 2) \\ &= 0.9 + 0.9 - 0.9^2 \quad (since \ comp \ 1 \ and \ 2 \ independent) \\ &= 0.99 \end{split}$$

By symmetry, P(F)=P(E)=0.99

$$P(A|B) = P(E) \times P(F)$$
 (connected in series)
= 0.99×0.99
= 0.9801

substitute $P(A|B^C) = 0.9639$ and P(A|B) = 0.9801 into (1), we have

$$P(system\ works) = (0.9801 \times 0.9) + (0.9639 \times 0.1)$$
$$= 0.97848$$

[Note: other ways to arrive at 0.97848 possible]

circuit will flow from left to rights

combination	comp 1	comp 2	comp 3	comp 4	comp 5	probability	will the circuit flow?
1	1	1	1	1	1	$(0.9)^5$	√ ↓
2	1	1	1	1	0	$(0.9)^4(0.1)$	
3	1	1	1	0	1	$(0.9)^4(0.1)$	
4	1	1	1	0	0	$(0.9)^3(0.1)^2$	×
5	1	1	0	1	1	$(0.9)^4(0.1)$	
6	1	1	0	1	0	$(0.9)^3(0.1)^2$	
7	1	1	0	0	1	$(0.9)^3(0.1)^2$	
8	1	1	0	0	0	$(0.9)^2(0.1)^3$	×
9	1	0	1	1	1	$(0.9)^4().1)$	
10	1	0	1	1	0	$(0.9)^3(0.1)^2$	
11	1	0	1	0	1	$(0.9)^3(0.1)^2$	
12	1	0	1	0	0	$(0.9)^2(0.1)^3$	×
13	1	0	0	1	1	$(0.9)^3(0.1)^2$	
14	1	0	0	1	0	$(0.9)^2(0.1)^3$	
15	1	0	0	0	1	$(0.9)^2(0.1)^3$	×
16	1	0	0	0	0	$(0.9)(0.1)^4$	×
17	0	1	1	1	1	$(0.9)^4(0.1)$	
18	0	1	1	1	0	$(0.9)^3(0.1)^2$	\checkmark
19	0	1	1	0	1	$(0.9)^3(0.1)^2$	
20	0	1	1	0	0	$(0.9)^2(0.1)^3$	×
21	0	1	0	1	1	$(0.9)^3(0.1)^2$	
22	0	1	0	1	0	$(0.9)^2(0.1)^3$	×
23	0	1	0	0	1	$(0.9)^2(0.1)^3$	
24	0	1	0	0	0	$(0.9)(0.1)^4$	×
25	0	0	1	1	1	$(0.9)^3(0.1)^2$	×
26	0	0	1	1	0	$(0.9)^2(0.1)^3$	×
27	0	0	1	0	1	$(0.9)^2(0.1)^3$	×
28	0	0	1	0	0	$(0.9)(0.1)^4$	×
29	0	0	0	1	1	$(0.9)^2(0.1)^3$	×
30	0	0	0	1	0	$(0.9)(0.1)^4$	×
31	0	0	0	0	1	$(0.9)(0.1)^4$	×
32	0	0	0	0	0	$(0.1)^5$	×

total of all add up to 1 as expected

add up all probabilities with $\sqrt{\ }$, and the answer is 0.97848