In [1]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn import preprocessing,svm
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	pop	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	pop	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	pop	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

```
In [5]: df=df[['age_in_days','km']]
    df.columns=['age','km']
    df.head(10)
```

Out[5]:

	age	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
5	3623	70225
6	731	11600
7	1521	49076
8	4049	76000
9	3653	89000

```
In [6]: #step 3:exploring
sns.lmplot(x="age",y="km",data=df,order=2,ci=None)
```

Out[6]: <seaborn.axisgrid.FacetGrid at 0x22a07ca1f90>

In [7]: df.describe()

Out[7]:

	age	km
count	1538.000000	1538.000000
mean	1650.980494	53396.011704
std	1289.522278	40046.830723
min	366.000000	1232.000000
25%	670.000000	20006.250000
50%	1035.000000	39031.000000
75%	2616.000000	79667.750000
max	4658.000000	235000.000000

```
In [8]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
          0
                      1538 non-null
                                      int64
              age
          1
              km
                      1538 non-null
                                      int64
         dtypes: int64(2)
         memory usage: 24.2 KB
In [10]: #step 4:
         df.fillna(method='ffill',inplace=True)
         C:\Users\ubin1\AppData\Local\Temp\ipykernel_35812\3632936489.py:2: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [11]: #step 5:training model
         x=np.array(df['age']).reshape(-1,1)
         y=np.array(df['km']).reshape(-1,1)
         #seperating
         #column
         df.dropna(inplace=True)
         #droping values
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         #spliting data
         regr=LinearRegression()
         regr.fit(x train,y train)
         print(regr.score(x_test,y_test))
         0.7037357369026189
         C:\Users\ubinl\AppData\Local\Temp\ipykernel_35812\3196656996.py:6: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace=True)
```

```
In [12]: #step 6:exploring results
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
#scatter
```



```
In [13]: #step7:working with a smaller data set
         df500=df[:][:500]
         #selecting
         sns.lmplot(x="age",y="km",data=df500,order=1,ci=None)
         df500.fillna(method='ffill',inplace=True)
         x=np.array(df500['age']).reshape(-1,1)
         y=np.array(df500['km']).reshape(-1,1)
         df500.dropna(inplace=True)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print("Regression:",regr.score(x_test,y_test))
         y_pred=regr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
```

Regression: 0.7872639373865098


```
In [14]: #step 8:
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    #train
    model=LinearRegression()
    model.fit(x_train,y_train)
    #evaluate
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2_score:",r2)
```

r2_score: 0.7872639373865098

In []: