7.
$$f'(t) = 6t^2 - 6t - 4$$
.

29.
$$f'(v) = -\frac{2}{3}v^{-5/3} - 2e^v$$
.

35. tangent line:
$$y = \frac{1}{2}(x-2) + 3 = \frac{1}{2}x + 2$$
.

38. tangent line:
$$y = \frac{3}{2}(x-1) + 1 = \frac{3}{2}x - \frac{1}{2}$$
, normal line: $y = -\frac{2}{3}(x-1) + 1 = -\frac{2}{3}x + \frac{5}{3}$.

50. (a)
$$v(t) = 4t^3 - 6t^2 + 2t - 1$$
, $a(t) = 12t^2 - 12t + 2$.

(b)
$$a(1) = 2 \text{ m/s}^2$$
.

56.
$$f'(x) = e^x - 2 = 0$$
 when $x = \ln 2$. (tangent line: $y = 2 - 2 \ln 2$.)

61.
$$y' = \frac{1}{2\sqrt{x}} = \frac{1}{2}$$
 when $x = 1$, normal line: $y = -2(x-1) + 1$, $2x + y = 3$.

68.
$$A = B = -\frac{1}{2}$$
, $C = -\frac{3}{4}$.
[Hint: $y' = 2Ax + B$, $y'' = 2A$, $(2A) + (2Ax + B) - 2(Ax^2 + Bx + C) = (-2A)x^2 + (2A - 2B)x + (2A + B - 2C) = x^2$, $-2A = 1$, $2A - 2B = 0$, $2A + B - 2C = 0$.]

72. $x \neq 2$, $g'(x) = \begin{cases} 2 & \text{if } x \leq 0 \\ 2 - 2x & \text{if } 0 < x < 2 \\ -1 & \text{if } x > 2 \end{cases}$ [Hint: $\lim_{x \to 0^{-}} g'(x) = 2 = \lim_{x \to 0^{+}} g'(x)$, $\lim_{x \to 2^{-}} g'(x) = -2 \neq -1 = \lim_{x \to 2^{+}} g'(x)$.]

81. m = 4, b = -4.

[Hint: Solve $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \& \lim_{x \to 2^{-}} f'(x) = \lim_{x \to 2^{+}} f'(x)$.]

83. $\lim_{x \to 1} \frac{x^{1000} - 1}{x - 1} = 1000$. [Hint: $f(x) = x^{1000}$, find f'(1).]

2.
$$f'(x) = \left\langle \begin{array}{c} \frac{(x^4 - 5x^3 + \sqrt{x})'(x^2) - (x^4 - 5x^3 + \sqrt{x})(x^2)'}{(x^2)^2} & \text{(Quotient Rule)} \\ (x^2 - 5x + x^{-3/2})' & \text{(Power Rule)} \end{array} \right\rangle$$

$$= 2x - 5 - \frac{3}{2}x^{-5/2}.$$

10.
$$J'(v) = 1 + v^{-2} + 6v^{-4}$$
.

19.
$$y' = -s^{-2} + \frac{3}{2}s^{-5/2}$$
.

28.
$$f'(x) = \frac{e^x}{2\sqrt{x}} + \sqrt{x}e^x$$
, $f''(x) = -\frac{e^x}{4x\sqrt{x}} + \frac{e^x}{\sqrt{x}} + \sqrt{x}e^x$.

35. (a)
$$y = \frac{1}{2}(x+1) + \frac{1}{2} = \frac{1}{2}x + 1$$
.

36. (a)
$$y = -0.08(x - 3) + 0.3 = -0.08x + 0.54$$
.

44. (a)
$$h'(4)[=3f'(4)+8g'(4)]=-6$$
.

(b)
$$h'(4)[=f'(4)g(4)+f(4)g'(4)]=24$$

(c)
$$h'(4) \left[= \frac{f'(4)g(4) - f(4)g'(4)}{[g(4)]^2} \right] = \frac{36}{25}.$$

(a)
$$h'(4)[=f'(4)g(4) + f(4)g'(4)] = 24$$
.
(b) $h'(4)[=f'(4)g(4) + f(4)g'(4)] = 24$.
(c) $h'(4)[=\frac{f'(4)g(4) - f(4)g'(4)}{[g(4)]^2}] = \frac{36}{25}$.
(d) $h'(4)[=\frac{g'(4)[f(4) + g(4)] - g(4)[f'(4) + g'(4)]}{[f(4) + g(4)]^2}] = -\frac{36}{49}$.

- **45.** $f'(0)[=e^0g(0)+e^0g'(0)]=7.$
- **50.** (a) $P'(2)[=F'(2)G(2)+F(2)G'(2)=0\cdot 2+3\cdot \frac{1}{2}]=\frac{3}{2}$.

(b)
$$Q'(7) \left[= \frac{F'(7)G(7) - F(7)G'(7)}{[G(7)]^2} = \frac{\frac{1}{4} \cdot 1 - 5 \cdot \frac{2}{3}}{1^2} \right] = \frac{43}{12}.$$

$$F(2) = 3, F'(2) = 0, G(2) = 2, G'(1) = \frac{1}{2}.$$

$$F(7) = 5, f'(7) = -\frac{1}{3}, G(7) = 1, G'(7) = -\frac{1}{4}.$$

56.
$$Q'(0) = 4$$
. [Hint: $Q = \frac{F}{G}$, $Q' = \frac{F'G - FG'}{G^2}$.]

1.
$$f'(x) = 2x \sin x + x^2 \cos x$$
.

9.
$$y' = \frac{2 - \tan x + x \sec^2 x}{(2 - \tan x)^2}$$
.

16.
$$f'(t) = e^t \cot t + te^t \cot t - te^t \csc t$$
.

22. tangent line:
$$y = x + 1$$
.

35. (a)
$$v(t) = 8\cos t$$
, $a(t) = -8\sin t$.
(b) $x(\frac{2\pi}{3}) = 4\sqrt{3}$, $v(\frac{2\pi}{3}) = -4$, $a(\frac{2\pi}{3}) = -4\sqrt{3}$, left $(v(\frac{2\pi}{3}) < 0)$.

37.
$$\frac{dx}{d\theta}\Big|_{\theta=\pi/3} = 3 \text{ m/rad. [Hint: } x(\theta) = 6 \sin \theta.]$$

39.
$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \frac{5}{3}.$$

47.
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{2\theta^2} = -\frac{1}{4}$$
. [Hint: $\cos \theta = 1 - 2\sin^2 \frac{\theta}{2}$ or $\times \frac{\cos \theta + 1}{\cos \theta + 1}$.]

51.
$$\frac{d^{99}}{dx^{99}}(\sin x) = -\cos x.$$

57.
$$\lim_{\theta \to 0^+} \frac{d}{s} = 1$$
. [Hint: $s = r\theta$, $d = 2r \sin \frac{\theta}{2}$.]

$$5. \ \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}.$$

9.
$$f'(x) = \frac{5}{2\sqrt{5x+1}}$$
.

16.
$$g'(x) = (2x - 1)e^{x^2 - x}$$
.

19.
$$h'(t) = \frac{2}{3}(t+1)^{-1/3}(2t^2-1)^3 + (t+1)^{2/3}12t(2t^2-1)^2$$
.

22.
$$y' = 5\left(x + \frac{1}{x}\right)^4 \left(1 - \frac{1}{x^2}\right)$$
.

31.
$$F'(t) = e^{t \sin 2t} (\sin 2t + 2t \cos 2t).$$

41.
$$f'(t) = e^t \sec^2(e^t) + e^{\tan t} \sec^2 t$$
.

45.
$$y' = \frac{-\pi \cos(\tan \pi x) \sec^2(\pi x) \sin \sqrt{\sin(\tan \pi x)}}{2\sqrt{\sin(\tan \pi x)}}$$

55. (a) tangent line:
$$y = \frac{1}{2}x + 1$$
.

59.
$$\left(\frac{(2n+\frac{1}{2})\pi}{3}, 3\right), \left(\frac{(2n+\frac{3}{2})\pi}{3}, -1\right), n \in \mathbb{Z}.$$
 [Hint: Solve $f'(x) = 2\cos x + 2\sin x \cos x = 2\cos x (1+\sin x) = 0.$]

63. (a)
$$h'(1) = f'(g(1))g'(1) = 5 \cdot 6 = 30.$$

(b) $H'(1) = g'(f(1))f'(1) = 9 \cdot 4 = 36.$

x	f(x)	g(x)	f'(x)	g'(x)	
1	3	2	4	6	
2	1	8	5	7	
3	7	2	7	9	

- **69.** (a) $F'(x) = f'(e^x)e^x$. (b) $G'(x) = e^{f(x)}f'(x)$.
- **73.** F'(0) = f'(3f(4f(0)))3f'(4f(0))4f'(0) = 96.
- 77. $y^{(50)} = -2^{50}\cos 2x$.
- **98.** (a) $\frac{d}{dx}|x| = \frac{d}{dx}\sqrt{x^2} = \frac{2x}{2\sqrt{x^2}} = \frac{x}{|x|}, x \neq 0.$
 - (b) $f'(x) = \frac{\sin x \cos x}{|\sin x|}$, f(x) is not differentiable when $x = n\pi$, $n \in \mathbb{Z}$.

(c) $g'(x) = \frac{x}{|x|} \cos |x|$, g(x) is not differentiable when x = 0 (at 0).

3. (a)
$$y' = -\frac{\sqrt{y}}{\sqrt{x}}$$
.
(b) $y' = 1 - \frac{1}{\sqrt{x}}$. [Hint: $y = (1 - \sqrt{x})^2$.]
(c) $-\frac{\sqrt{y}}{\sqrt{x}} = -\frac{1 - \sqrt{x}}{\sqrt{x}} = 1 - \frac{1}{\sqrt{x}}$.

11.
$$\frac{dy}{dx} = -\frac{2xy^2 + \sin y}{2x^2y + x\cos y}$$
.

15.
$$\frac{dy}{dx} = \frac{y^2 - ye^{x/y}}{y^2 - xe^{x/y}}.$$

22.
$$g'(0) = 0$$
.
[Hint: $g(0) + 0 \sin g(0) = 0^2$, $g(0) = 0$, $g'(x) + \sin g(x) + xg'(x) \cos g(x) = 2x$, $g'(0) + \sin 0 + (0)g'(0) \cos 0 = 2(0)$.]

30. tangent line:
$$y = \frac{1}{\sqrt{3}}(x + 3\sqrt{3}) + 1 = \frac{1}{\sqrt{3}}x + 4$$
.
[Hint: $\frac{2}{3}\frac{1}{\sqrt[3]{x}} + \frac{2}{3}\frac{y'}{\sqrt[3]{y}} = 0$, $\frac{2}{3}\frac{1}{\sqrt[3]{-3\sqrt{3}}} + \frac{2}{3}\frac{y'}{\sqrt[3]{1}} = 0$, $y' = \frac{1}{\sqrt{3}}$.]

39.
$$y''(0) = \frac{1}{e^2}$$
.
[Hint: $xy + e^y = e$, $0y + e^y = e \implies y = 1$,
 $y + xy' + e^yy' = 0$, $1 + 0y' + e^1y' = 0 \implies y'(0) = -e^{-1} = \frac{-1}{e}$,
 $2y' + xy'' + e^yy'^2 + e^yy'' = 0$, $2(-e^{-1}) + 0y'' + e^1(-e^{-1})^2 + e^1y'' = 0$.]

44.
$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y = 1$$
. [Hint: $\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$, $\frac{2x_0}{a^2} + \frac{2y_0y'}{b^2} = 0$.]

49.
$$y' = \frac{1}{2(1+x)\sqrt{x}}$$
.

57.
$$y' = \sin^{-1} x$$
.

67.

 $y = cx^2 \implies y' = 2cx, \ x^2 + 2y^2 = k \implies y' = -\frac{x}{2y} = -\frac{x}{2cx^2} = \frac{-1}{2cx}.$ When $c \neq 0$ curves are orthogonal; when c = 0 horizontal line y = 0.

When $c \neq 0$, curves are orthogonal; when c = 0, horizontal line $y = cx^2 = 0$ intersects $x^2 + 2y^2 = k$ orthogonally at $(\pm \sqrt{k}, 0)$ since ellipse has vertical tangent at them.

77. (a)
$$f(f^{-1}(x)) = x$$
, $f'(f^{-1}(x))(f^{-1})'(x) = 1$, $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.
(b) $(f^{-1})'(5) = \frac{1}{f'(f^{-1}(5))} = \frac{1}{f'(4)} = \frac{1}{2/3} = \frac{3}{2}$.

5.
$$f'(x) = \frac{1}{5} (\ln x)^{-4/5} \frac{1}{x}$$
.

11.
$$F'(t) = 2\frac{\ln t}{t}\sin t + (\ln t)^2\cos t$$
.

15.
$$F'(s) = \frac{1}{s \ln s}$$
.

22.
$$y' = \frac{1 + \ln x}{x \ln x \ln 2}$$
.

25.
$$y' = \tan x$$
, $y'' = \sec^2 x$,

30.
$$f'(x) = \frac{1}{x \ln x \ln \ln x}$$
, $\{x \colon x > e\} = (e, \infty)$.

34. tangent line:
$$y = x - 1$$
.

$$\mathbf{45.} \ \ y' = x^{\sin x} \Big(\frac{\sin x}{x} + \ln x \cos x \Big).$$

49.
$$y' = (\tan x)^{1/x} \left(\frac{\sec^2 x}{x \tan x} - \frac{\ln \tan x}{x^2} \right).$$

52.
$$y' = \frac{\ln y - y/x}{\ln x - x/y} = \frac{\ln y^{xy} - y^2}{\ln x^{xy} - x^2}.$$

55.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - 0}{x - 0} = \frac{d}{dx} \ln(1+x) \Big|_{x=0} = \frac{1}{1+0} = 1.$$

56.
$$\because x > 0, n \to \infty \iff x/n \to 0^+, \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \lim_{n \to \infty} e^{\ln(1+x/n)^n}$$

$$= e^{\lim_{n \to \infty} n \ln(1+x/n)} = (e^x)^{x/n \to 0^+} \stackrel{\frac{\ln(1+x/n)}{x/n}}{\stackrel{5}{=}} \frac{5}{e^{x \cdot 1}} = e^x.$$
[Another sol] $\because x > 0, n \to \infty \iff n/x \to \infty, \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$

$$= \lim_{n/x \to \infty} \left[\left(1 + \frac{1}{n/x}\right)^{n/x}\right]^x = \left[\lim_{n/x \to \infty} \left(1 + \frac{1}{n/x}\right)^{n/x}\right]^x = e^x.$$

1.
$$\frac{dV}{dt} = 3x^2 \frac{dx}{dt}$$
. [Hint: $V = x^3$.]

7.
$$\frac{dS}{dt} = 128\pi \text{ cm}^2/\text{min.}$$
 [Hint: $S = 4\pi r^2$.]

11.
$$\frac{dz}{dt} = -18$$
.

- **15.** (a) A 2 m man walk away a light on 6 m pole, t for time (in seconds), x for the distance from the pole to the man, $\frac{dx}{dt} = 1.5$ m/s. (b) distance y m from the pole to the tip of man's shadow, when x = 10
 - $m, \frac{dy}{dt} = ?$ (c)

(d)
$$\frac{y-x}{y} = \frac{2}{6}$$
, $y = \frac{3}{2}x$.

(e)
$$\frac{dy}{dt} = \frac{d}{dt} \frac{3}{2}x = \frac{3}{2} \frac{dx}{dt} = \frac{9}{4}$$
 m/s.

17.
$$\frac{dz}{dt} = 78 \text{ km/h}.$$

Hint:
$$z^2 = x^2 + y^2$$
, $\frac{dx}{dt} = 30$, $\frac{dy}{dt} = 72$, $x = 2\frac{dx}{dt} = 60$, $y = 2\frac{dy}{dt} = 144$, $\frac{dz}{dt} = ?$

21.
$$\frac{db}{dt} = -1.6 \text{ cm/min.}$$

[Hint:
$$A = \frac{1}{2}bh$$
, $\frac{dh}{dt} = 1$, $\frac{dA}{dt} = 2$, $h = 10$, $A = 100$, $\frac{db}{dt} = ?$]

23.
$$\frac{720}{13} \approx 55.3846 \text{ km/h}.$$

[Hint: A move south x km in $\frac{dx}{dt} = 35$ km/h,

B move north y km in $\frac{dy}{dt} = 25$ km/h, of distance z km, $(x+y)^2 + 100^2 = z^2$, $x = 4\frac{dx}{dt}$, $y = 4\frac{dy}{dt}$, $\frac{dz}{dt} = ?$]

29.
$$\frac{dh}{dt} = \frac{4}{3\pi}$$
 m/min. [Hint: $V = \frac{1}{3}\pi r^2 h = \frac{1}{12}\pi h^3$, $\frac{dV}{dt} = 3$, $h = 3$, $\frac{dh}{dt} = ?$]

31.
$$\frac{dA}{dt} = 150\sqrt{3} \text{ cm}^2/\text{min.}$$
 [Hint: $A = \frac{\sqrt{3}}{4}a^2$, $\frac{da}{dt} = 10$, $a = 30$, $\frac{dA}{dt} = ?$]

39.
$$\frac{dR}{dt} = \frac{107}{810} \approx 0.1321 \ \Omega/s.$$

47.
$$\frac{1650}{\sqrt{31}} \approx 296.3487 \text{ km/s}.$$

[Hint: flight distance x km, distance z km, $z^2 = (x\cos 30^\circ)^2 + (x\sin 30^\circ + 1)^2$ or apply the Cosine Law: $z^2 = 1^2 + x^2 - 2x\cos 120^\circ = x^2 + x + 1$, $\frac{dx}{dt} = 300$, $x = \frac{1}{60}\frac{dx}{dt}$, $\frac{dz}{dt} = ?$]

- **4.** $L(x) = \ln 2 \cdot x + 1 = (\ln 2)x + 1 = x \ln 2 + 1.$ (Attention: $\ln 2x = \ln(2x) \neq \ln 2^x = x \ln 2.$)
- **11.** (a) $dy = (1 4x)e^{-4x} dx$. (b) $dy = \frac{-2t^3}{\sqrt{1 t^4}} dt$.
- **17.** (a) $dy = \frac{x}{\sqrt{3+x^2}} dx$. (b) $dy = \frac{1}{\sqrt{3+1^2}} (-0.1) = -0.05$.
- **19.** dy = 1, $\Delta y = 1.25$.

[Hint: dy = (2x - 4) dx.]

- **25.** $\sqrt[3]{1001} \approx 10 + \frac{1}{300} = 10.00\overline{3} \approx 10.0033.$ [Hint: $f(x) = \sqrt[3]{x}$ at x = 10 and dx = 1.]
- **28.** $\cos 29^{\circ} \approx \frac{\sqrt{3}}{2} + \frac{\pi}{360} \approx 0.8748.$ [Hint: $f(x) = \cos x$ at $x = \frac{\pi}{6}$ and $dx = -1^{\circ} = -\frac{\pi}{180}$.]
- **35.** (a) $\frac{42}{\pi} \approx 27 \text{ cm}^2$, $\frac{1}{84} \approx 0.0119$. [Hint: $C = 2\pi r = 64$, $A = 4\pi r^2 = \frac{1}{\pi}C^2$, $dA = \frac{2}{\pi}C$ dC, $\frac{dA}{A} = 2\frac{dC}{C}$.] (b) $\frac{1764}{\pi^2} \approx 179 \text{ cm}^3$, $\frac{1}{56} \approx 0.0179$ [Hint: $V = \frac{4}{3}\pi r^3 = \frac{1}{6\pi^2}C^3$, $dV = \frac{1}{2\pi^2}C^2$ dC, $\frac{dV}{V} = 3\frac{dC}{C}$.]
- **39.** $I=\frac{V}{R},\,dI=-\frac{V}{R^2}\,dR,\,\frac{dI}{I}=\frac{-V\,dR/R^2}{V/R}=-\frac{dR}{R}.$ [Hint: the same in magnitude(大小相同).]