Mobile Price Classification -By Nithin Reddy

import pandas as pd

data=pd.read_csv("https://www.dropbox.com/s/iy0w25eunwx2qlq/MobilePriceClassification.csv?dl=1")

data

₽		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	• • •	px_height	рх
	0	842	0	2.2	0	1	0	7	0.6	188	2		20	
	1	1021	1	0.5	1	0	1	53	0.7	136	3		905	
	2	563	1	0.5	1	2	1	41	0.9	145	5		1263	
	3	615	1	2.5	0	0	0	10	8.0	131	6		1216	
	4	1821	1	1.2	0	13	1	44	0.6	141	2		1208	
	1995	794	1	0.5	1	0	1	2	0.8	106	6		1222	
	1996	1965	1	2.6	1	0	0	39	0.2	187	4		915	
	1997	1911	0	0.9	1	1	1	36	0.7	108	8		868	
	1998	1512	0	0.9	0	4	1	46	0.1	145	5		336	
	1999	510	1	2.0	1	5	1	45	0.9	168	6		483	

2000 rows × 21 columns

data.columns

```
Index(['battery power', 'blue', 'clock speed', 'dual sim', 'fc', 'four g',
            'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height',
            'px width', 'ram', 'sc h', 'sc w', 'talk time', 'three g',
            'touch screen', 'wifi', 'price range'],
           dtvpe='object')
X=data.drop("price range",axis=1)
y=data["price range"]
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, shuffle=True)
((X train.shape,y train.shape),(X test.shape,y test.shape))
     (((1400, 20), (1400,)), ((600, 20), (600,)))
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
model.fit(X train,y train)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: ConvergenceWarning: lbfgs failed to conve
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
     LogisticRegression()
```

from sklearn.metrics import accuracy_score
predictions=model.predict(X_test)
accuracy_score(y_test,predictions)
0.626666666666666667

THANK YOU

