Solutions of HW#1: Basic Logic

Q.1 Make truth tables for the following statement:

$$\bullet \ (p \to q) \to (q \to p)$$

Answer

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \to (q \to p)$
\overline{T}	T	T	T	T
\overline{T}	F	F	T	T
\overline{F}	T	T	F	F
F	F	T	T	T

•
$$(p \to q) \land (\neg p \to q)$$

Answer

p	q	$p \rightarrow q$	$\neg p \to q$	$(p \to q) \land (\neg p \to q)$
T	T	T	T	T
T	F	F	T	F
F	T	T	T	T
\overline{F}	F	T	F	F

Q.2 Using logical equivalences discussed in class prove that

$$(p \land q) \to (p \lor q)$$

is a tautology, that is, prove that

$$(p \land q) \rightarrow (p \lor q) \equiv T.$$

Answer

$$\begin{array}{rcl} (p \wedge q) \rightarrow (p \vee q) & \equiv & \neg (p \wedge q) \vee (p \vee q) \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) \\ & \equiv & (\neg p \vee p) \vee (\neg q \vee q) \\ & \equiv & T \vee T \\ & \equiv & T \end{array}$$

Note: Another way to solve this question is by constructing the truth table for the given logical expression and showing that it always yields T for all values of p and q.

Q.3 Let Determine the truth value of the following statements when x and y are real numbers:

1.
$$\exists_x \forall_y \ (x = y^2),$$

$$2. \ \exists_x \forall_y \ (xy = 0),$$

$$3. \ \forall_{x\neq 0} \exists_y \ xy = 1,$$

4.
$$\exists_x \exists_y (x + y \neq y + x)$$
.

Answer

- 1. $\exists_x \forall_y \ (x=y^2)$: (False) Suppose x=a satisfies the above statement. This means that $a=y^2$ for all real values of y. This is impossible since y would then be equal at most 2 real values $(\pm \sqrt{a})$.
- 2. $\exists_x \forall_y \ (xy = 0)$: (True) At x = 0, xy = 0 for all real values of y.
- 3. $\forall_{x\neq 0} \exists_y \ xy = 1$: (True) If we pick an arbitrary value for $x \neq 0$, say a, then there exists a value for y that satisfies the given statement, $y = \frac{1}{a}$.
- 4. $\exists_x \exists_y \ (x+y \neq y+x)$: (False) The addition of real numbers is always commutative operation.