ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_3^{(1)}\times C_5^{(1)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

$$\begin{cases} (1;1) &\longrightarrow (2;1), (1;2), (1;5), \\ (2;1) &\longrightarrow (1;1), (3;1), (2;2), \\ (3;1) &\longrightarrow (2;1), (3;2), (3;5), \\ (1;2) &\longrightarrow (1;1), (2;2), (1;3), \\ (2;2) &\longrightarrow (2;1), (1;2), (3;2), (2;3), \\ (3;2) &\longrightarrow (3;1), (2;2), (3;3), \\ (1;3) &\longrightarrow (1;2), (2;3), (1;4), \\ (2;3) &\longrightarrow (2;2), (1;3), (3;3), (2;4), \\ (3;3) &\longrightarrow (3;2), (2;3), (3;4), \\ (1;4) &\longrightarrow (1;3), (2;4), (1;5), \\ (2;4) &\longrightarrow (2;3), (1;4), (3;4), (2;5), \\ (3;4) &\longrightarrow (3;3), (2;4), (3;5), \\ (1;5) &\longrightarrow (1;1), (1;4), (2;5), \\ (2;5) &\longrightarrow (2;4), (1;5), (3;5), \\ (3;5) &\longrightarrow (3;1), (3;4), (2;5), \end{cases}$$

Date: January 18, 2016.

Key words and phrases. sample.tex.

Con le famiglie di grafi C vogliamo indicare dei circuiti $veri\ e\ propri$ in cui, oltre all'arco che collega il primo nodo con l'ultimo, abbiamo anche archi delle potenze dei cammini orizzontali che possono collegarsi ai nodi precedenti rispetto ai nodi dai quali partono.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_3^{(1)}\times C_5^{(1)}$. Ecco alcuni valori

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5
AD_n	1	1	4	8	18	37
RS_n	1	5	17	47	190	662
$\overline{K_n}$	0	2	3	4	6	7

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.

Calcolo automatico sistema lineare e automa per circuiti:

$$\begin{cases} e \longrightarrow e + u + v + d + k \\ d \longrightarrow e + u + v \\ v_i \longrightarrow e_y \\ e_c \longrightarrow e_c + d_1 \\ k \longrightarrow e + v \\ u \longrightarrow e + v + d \\ u_i \longrightarrow e_n \\ v \longrightarrow e + u + d + k \\ s \longrightarrow e + u_i + v_i + d_i + k_i \\ e_n \longrightarrow e_n + u_1 \\ k_i \longrightarrow e_x \\ d_i \longrightarrow e_c \\ e_y \longrightarrow e_y + v_1 \\ e_x \longrightarrow e_x + k_1 \end{cases}$$

$$\begin{cases} E(x) = xE(x) + xU(x) + xV(x) + xD(x) + xK(x) + 1 \\ D(x) = xE(x) + xU(x) + xV(x) + 1 \\ V_i(x) = xE_y(x) + 1 \\ E_c(x) = xE_c(x) + xD_1(x) + 1 \\ K(x) = xE(x) + xV(x) + 1 \\ U(x) = xE(x) + xV(x) + xD(x) + 1 \\ U_i(x) = xE_n(x) + 1 \\ V(x) = xE(x) + xU(x) + xD(x) + xK(x) + 1 \\ S(x) = xE(x) + xU_i(x) + xV_i(x) + xD_i(x) + xK_i(x) + 1 \\ E_n(x) = xE_n(x) + xU_1(x) + 1 \\ K_i(x) = xE_x(x) + 1 \\ D_i(x) = xE_c(x) + 1 \\ E_y(x) = xE_y(x) + xV_1(x) + 1 \\ E_x(x) = xE_x(x) + xK_1(x) + 1 \end{cases}$$

$$\begin{cases} E \rightarrow eE \mid uU \mid vV \mid dD \mid kK \mid \lambda \\ D \rightarrow eE \mid uU \mid vV \mid \lambda \\ V_i \rightarrow eE_y \mid \lambda \\ E_c \rightarrow eE_c \mid dD_1 \mid \lambda \\ K \rightarrow eE \mid vV \mid \lambda \\ U \rightarrow eE \mid vV \mid dD \mid \lambda \\ V \rightarrow eE \mid uU \mid dD \mid kK \mid \lambda \\ S \rightarrow eE \mid uU_i \mid vV_i \mid dD_i \mid kK_i \mid \lambda \\ E_n \rightarrow eE_n \mid uU_1 \mid \lambda \\ K_i \rightarrow eE_x \mid \lambda \\ D_i \rightarrow eE_c \mid \lambda \\ E_y \rightarrow eE_y \mid vV_1 \mid \lambda \\ E_x \rightarrow eE_x \mid kK_1 \mid \lambda \end{cases}$$

