FACULTY OF ENGINEERING, UNIVERSITY OF LUCKNOW Mid-Term Examination - 1 **SEMESTER - III, 2023-24** CSE, AI

Stu	dent's Roll No	·
	THE O MOIL HOLD HILLING	***************************************

Subject Code: CS-302

Subject Title: Numerical & Statistical

Techniques in CS

Time: 1 Hrs.

Full Marks: 20

Instructions: Attempt all sections.

SECTION A

1. Attempt all of the following parts.

(1X5 = 5)

- a) Write the formula for Muller's Method.
- b) Write the formula for Newton's Raphson method.
- Write the formula for Regula False Position method.
 - \cancel{d} The convergence in the Bisection method is Linear. (True or False).
- e) False position method has linear rate of convergence which isthan that of the bisection method. (fill in the blank)

SECTION B

Answer any THREE parts from the following.

(5X3 = 15)

- Find the positive root of $x^4 x = 10$ correct to three decimal places, using Newton-Raphson Method.
- Evaluate the following (correct to four decimal places) by Newton's iteration method. (i) $1/\sqrt{14}$ (ii) $(30)^{-1/5}$
- Find the root of the equation $\cos x = xe^x$ using the bisection method correct to four decimal places.
- Find the real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.

FACULTY OF ENGINEERING AND TECHNOLOGY, UNIVERSITY OF LUCKNOW

Second Midterm B.TECH. SEMESTER -III, 2023-24 Branches: CSE, CSE AI

Student's Roll No.....

Subject Code: CS-302

Subject Title: Numerical and Statistical

Techniques in CS

Time: 1 Hrs.

Full Marks: 20

Note: Attempt questions from each section as per instructions. The symbols

have their usual meaning.

SECTION A

1. Attempt all parts of this question. Each part carries 1 mark. (1 x5=5)

State the Euler's formula for differential equation.

b) The value of n which is used to Waddle's Rule in Numerical Integration.

Formula for $\frac{d^2y}{dx^2}$ by Newton Forward Interpolation Formula.

Write down the Simpson's $1/3^{rd}$ rule for solving $\int_0^2 y \ dx$ for h=0.05

e) Write down the Picard's Method of successive approximation for O.D.E.

SECTION B

Attempt any THREE questions of the following. Each question carries 5 marks. $(5 \times 3=15)$

2. Find by Taylor's series method, the values of y at x = 0.1, x = 0.2 to five places of decimals from $\frac{dy}{dx} = x^2y - 1$, y(0) = 1

Apply Runge - Kutta method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 and 0.4.(taking h=0.2)

4. Solve $\int_4^{5.2} \log_e x \, dx$ by Trapezoidal Rule

5. From the following table given below, find $\frac{dy}{dx} & \frac{d^2y}{dx^2}$ at 1.1

X	1.0	1.2	1.4	1.6	1.8	2.0
у	0	0.1280	0.5440	1.2960	2.4320	4

2210013135011

8321

B.Tech. (CS & AI) IIIrd Semester Examination, 2023

NUMERICAL AND STATISTICAL TECHNIQUES IN COMPUTER SCIENCE

Paper: CS-302

Time: 3 Hours] [M.M.: 70

Note: Answer any *five* questions. All questions carry equal marks.

1. (a) Find the relative error in the function:

$$y = ax_1^{m_1}x_2^{m_2}\dots x_n^{m_n}$$

(b) Find a real root of the equation $x \log x = 1.2$ by Regula-Falsi method, correct to four decimal places.

- 2. (a) Finding a root of the equation $x \cos x = 0$, using the Bisection method to three decimal places.
- Find by Newton's method, the real root of $\sqrt{12}$.

Find the missing values in the following table:		
<u>x</u>	y	
45	3.0	
50		
55	2.0	
60		
65	-2.4	

Show that :
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

$$\mu \delta = \frac{1}{2} (\Delta + \nabla)$$

(2)

$$\iint \mu \delta = \frac{1}{2} (\Delta + \nabla$$

K P - 2079

Use Stirling's formula to evaluate f(1.22), given:

x	f(x)
1.0	8.403
1.1	8.781
1.2	9.129
1.3	9.451

The values of a function f(x) are given below for certain values of x:

x	f(x)
0	5
1	6
3	50
4	105

Find the value of f(2) using Lagrange's interpolation formula.

8321 / 7

(3) **KP-2079** Turn Over

8321/7

5. Find first, second derivatives of the following

lated function at the point x = 1.5:

taleted function at L	abulated function at the second	
tabulated 15	f(x)	
x		
	3.375	
1.5		
	7.0	
2		
_	13.625	
2.5		
	24	
3		
2.5	38.875	
3.5		
4	59.0	
4		

Evaluate:

$$\int_{2}^{1.4} (\sin x - \log_e x + e^x) \, dx$$

(4)

<u>K P - 2079</u>

by:

(i) Trapezoidal rule

(iii) Simplson's $\frac{3}{8}$ rule

(iii) Weddle's rule

Using Taylor's series method obtain the

solution of $\frac{dy}{dx} = x + y^2$ and y = 1, when x = 0. Find the value of y for 0.1, correct to four places of decimals.

Using Picard's method, find a solution of

 $\frac{dy}{dx} = 1 + xy$ upto the third approximation, when $x_0 = 0$, $y_0 = 0$.

8321/7

(5) **KP-2079** Turn Over

Use the Runge-Kutta fourth
$$y(0.2)$$
 with $h = 0.1$ for the initial value problem :

$$\frac{dy}{dx} = \sqrt{x+y}, y(0) = 1$$

9. Find the values of u(x, t) satisfying the parabolic equation:

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$$

and the boundary conditions u(0, t) = 0 = u(8, t)

and
$$u(x, 0) = 4x - \frac{1}{2}x^2$$
 at the points $x = i$; $i = 0$,

10. Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with $\dot{u} = 0$ on the boundary and mesh length = 1.

