Predicting Trip Duration for London Rental Bikes

Team Members: Arnav Sachdeva, Atishay Jain, Nilay Jaini, Shrinidhi Bhide

Colab link

Why It Matters:

It optimizes travel for tourists and visitors in London, enhances resource allocation and maintenance, informs infrastructure improvements, and enables location-based marketing and promotions.

Stakeholders

C

City planners

Enhance urban infrastructure planning.

Bike-sharing companies

Improve resource allocation and maintenance scheduling.

Businesses

Target riders with location-based marketing.

Sustainable Transportation

Roles in public transit, biking infrastructure, and urban planning.

Riders

Ensure safer, more efficient commutes.

Data Description

Data Source & Scope:

- Includes records from 2015 to 2022.
- Excludes incomplete data from 2023.
- Total records analyzed: 83 million.

Sampling Method:

- Calculated average trip durations for routes with the same year, month, day of the week, and start hour.
- Data filtered for the top ten start and end station names based on usage.

Dataset Division for Analysis:

- Training Data: Years 2015 and 2019.
- Testing Data: Year 2022.

⊞	cycle_	_hire	QUERY 🕶	+2 SHARE	© COPY 🛨
S	СНЕМА	DETAILS	PREVIEW	TABLE EX	PLORER PREVIEW
_		_			
	Ш	rental_id		INTEGER	REQUIRED
		duration		INTEGER	NULLABLE
		duration_ms		INTEGER	NULLABLE
		bike_id		INTEGER	NULLABLE
		bike_model		STRING	NULLABLE
		end_date		TIMESTAMP	NULLABLE
		end_station_id		INTEGER	NULLABLE
		end_station_name		STRING	NULLABLE
		start_date		TIMESTAMP	NULLABLE
		start_station_id		INTEGER	NULLABLE
		start_station_name	е	STRING	NULLABLE
		end_station_logica	l_terminal	INTEGER	NULLABLE
		start_station_logic	al_terminal	INTEGER	NULLABLE
		end_station_priorit	y_id	INTEGER	NULLABLE

Row	year //	month	day_of_week	start_hour	start_station_name	end_station_name	avg_duration
1	2015	1	1	0	Waterloo Station 3, Waterloo	Waterloo Station 3, Waterloo	0.0
2	2015	1	1	0	Craven Street, Strand	Craven Street, Strand	1500.0
3	2015	1	1	1	Duke Street Hill, London Bridge	Duke Street Hill, London Bridge	0.0
4	2015	1	1	2	Bethnal Green Road, Shoreditch	Brushfield Street, Liverpool Stre	180.0
5	2015	1	1	2	Bethnal Green Road, Shoreditch	Bethnal Green Road, Shoreditch	1720.0

Exploratory Data Analysis (EDA)

- Weekday Dominance: Higher number of rides, reflecting commuting trends.
- Weekend Patterns: Longer ride durations, likely due to leisure activities.
- Wednesday Thursday: above average number of trips, likely due to errand running

- Morning and Evening Peaks: Ride demand peaks align with typical office commute times.
- Early Morning Trends: Around 4 AM, ride durations are higher, averaging around 20 minutes.
- Morning Rush Hour: During the morning commute, ride durations decrease.
- Evening Trends: Durations increase again around 5 PM, coinciding with the end of the workday.
- Late Night Surge: There is an unusual rise in ride durations at around 11 PM.

OUR APPROACH

01

Data Preprocessing

- Converted duration from seconds to minutes.
- One-hot encoding for categorical variables.
- Standard Scaling for numeric variables

02

Train/Test Split

- To ensure robust model evaluation we took training data from the years 2015 and 2019.
- The test predictions were evaluated based on data from 2022.

03

Machine Learning Models Explored

- XG Boost (Fastest Best Performer)
- Random Forest (Slow Best Performer)
- SVR, KNN, Linear, Polynomial, Ridge (Underperforming)

Hyperparameter Tuning

Techniques Used: -

- Grid Search: Explores all parameter combinations in a grid
- Random Search: Samples random combinations of parameters.
- Halving Search: Iteratively reduces parameter combinations for efficiency.

Evaluation Metrics:-

- Lowest Root Mean Squared Error (RMSE) on Test dataset
- Negative Root Mean Squared Error inside the Searching CVs

ML Results and performance comparison

y_test

dtype: float64

y_pred

	avg_duration		0
count	10006.000000	count	10006.000000
mean	12.663612	mean	12.974766
std	3.347391	std	2.511582
min	7.200000	min	8.704916
25%	10.000000	25%	10.935959
50%	12.500000	50%	12.792801
75%	15.300000	75%	15.326238
max	19.000000	max	18.513562

Lowest Test RMSE: 2.47 mins

Achieved by:

Random Forest (Random Search CV)

{'regressor_max_depth': 13, 'regressor_min_samples_leaf': 12,

'regressor_n_estimators': 249}

Random Forest (Halving Search CV)

{'regressor_max_depth': 12, 'regressor_min_samples_leaf': 20,

'regressor_n_estimators': 200}

XGBoost (Random Search CV)

Same result as above but 5 times faster

Challenges & Opportunities

A.

CHALLENGES

- 1. Dataset complexity (e.g., too many rows).
- 2. Hyperparameter tuning efficiency.

B.

SOLUTIONS

- 1. Feature important analysis with Random Forest.
- 2. Halving Search was used to reduce computation time

FUTURE STEPS

RECOMMENDATIONS

- Computing resource allocation optimization.
- Improved urban planning.
- Personalized customer experiences.

- Incorporate weather data and bike type data (regular or e-bike) for more robust predictions
- Partnership with local businesses for better optimization

CONCLUSION

- Random Forest with Random Search CV achieved best Test RMSE of 2.4694 minutes, marginally better than XGBoost's 2.4780 minutes
- Three models compared:
 - 1. Random Forest with Random Search (7 minutes runtime)
 - 2. XGBoost (1 minute runtime)
 - 3. Random Forest with Halving Search (3 minutes runtime)
- All three models achieved similar RMSE of approximately 2.47 minutes
- Practical interpretation: For a predicted 12-minute trip, actual duration could range between 9.5 to 14.5 minutes
- XGBoost is recommended due to:
 - 1. Fastest computation time
 - 2. Similar performance to other models
 - 3. Better scalability for larger datasets

