

Special and the second of the

Course: Algorithms

Faculty: Dr. Rajendra Prasath

Minimum Spanning Trees – Prim and Kruskal

This lecture covers the two interesting Minimum Spanning Tree (MST) algorithms: Prim and Kruskal. We provide illustrations and the complexity analysis of these two MST algorithms

Recap: Graph Algorithms

Different Networks

• Ex: Recognize a person on social networks?

Friend of a Friend is also a Friend (Mutual Friend)

Recap: Graph Representations

Examples

Recap: Graph Algorithms

- Problems could be better represented and solved using Graph Algorithms
 - We focus on a traversal problem:
 - Given G=(V, E) and a vertex v
 - Find all w in V such that w connects v
- Two Graph Traversals:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
 - Getting the connected components
 - Next: Minimum Spanning Trees → → →₅

Breadth First Search

- Look at the Graph
- Breadth ward Search
- Visit all nodes in the next level and then move to another level to start the search for.

Depth First Search

- Look at this example
- Depth ward Search
- Visit all nodes in that chosen path until addition of nodes does not create a cycle.

What is a tree?

Abstract Data Type
Is this a tree??

Tree??
A
5
11
4

- A collection of nodes (starting at a root node), where each node is a data structure consisting of a value, together with a list of references to nodes (the "children")
- A tree is a data structure made up of nodes or vertices and edges without having any cycle

Trees – A Few Examples

Look at the following trees

b) More than one root

Graph (Tree) Traversal

Types of Traversals

Pre-order

In-order

Post order

Level Ordering

Tree Traversal - Examples

A few examples

Pre-order

Post-order

Tree Traversal - Illustration

Look at the tree

Pre-order 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

In-order 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

Post-order 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

Level-order 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

Spanning Trees

- A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible number of edges
- A spanning tree does not have cycles and it cannot be disconnected
- Every connected and undirected Graph G has at least one spanning tree

Minimum Spanning Trees

 A minimum spanning tree is a subset of the edges of a connected, edge-weighted directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight

Kruskal Algorithm

The basic Idea:

- Sort all the edges in non-decreasing order of their weight.
- Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- Repeat the above steps until there are (V-1) edges in the spanning tree.

Sort Edges by weights

Sorted Weights

Weight		Src	Dest
1	7	6	
2	8	2 5	
2 4 4 6 7 7 8 8 9	6	5	
4	0	1	
4	2	5	
6	8	5 6	
7	2 7	3 8	
7	7	8	
8	0	7	
8	1	2	
9	3	4	
10	5	4	
11	1	7	
14	3	5	

Kruskal Algo- Illustration

Look at the following graph:

Kruskal Algo- Steps

2

• Steps:

 \rightarrow

Kruskal Algo- Steps

Kruskal Algo- Steps

• Minimum cost:

$$4+8+1+2+4+2+7+9$$

= 37 (Correct ?!)

Kruskal Algo - Complexity

- Time Complexity:
 - O(ElogE) or O(ElogV)
 - Sorting of edges takes O(ELogE) time
 - After sorting, we iterate through all edges and apply find-union algorithm
 - The find and union operations can take atmost O(LogV) time
 - So overall complexity is O(ELogE + ELogV) time
 - The value of E can be atmost O(V²), so O(LogV) are O(LogE) same
 - Therefore, overall time complexity is O(ElogE) or O(ElogV)

Prim's Algorithm for MST

- 1) Create a set *mstSet* that keeps track of vertices already included in MST.
- 2) Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE. Assign key value as 0 for the first vertex so that it is picked first.
- 3) While mstSet doesn't include all vertices
 - a) Pick a vertex *u* which is not there in *mstSet* and has minimum key value.
 - b) Include *u* to mstSet.
 - c) Update key value of all adjacent vertices of u. To update the key values, iterate through all adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

Prim Algo- Illustration

Look at the following graph:

Prim Algo- Illustration

• Steps:

Prim Algo - Simpified

- Remove all loops and parallel edges
- Choose any arbitrary node as root node
- Check outgoing edges and select the one with less cost

Can you apply the above steps in an example

Prim Algo - Exercise

• Try Prims algorithm

Prim Algo - Complexity

- Time Complexity of the above program is $O(V^2)$
- If the input graph is represented using adjacency list, then the time complexity of Prim's algorithm can be reduced to O(E log V) with the help of binary heap

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

Thanks ...

