L

Measurement checks

Ad hoc measures preclude validation

- 43% of measures used just 1 time
- 80% used ≤ 10 times

60,000 measures created since 1896 (Elson, Hussey, Alsalti, & Arslan, 2023)

Common measurement fallacies

A measure's name tells you what it measures

Nominal Fallacy

Common measurement fallacies

A measure's name tells you what it measures

Measures with the same name measure the same thing

Nominal Fallacy

Jingle Fallacy

Common measurement fallacies

A measure's name tells you what it measures

Measures with the same name measure the same thing

Measures with different names measure different things

Correlations between different Theory of Mind tasks are near zero Warnell & Redcay (2019)

Table 6Relations among theory of mind tasks in adulthood.

	Spontaneous ToM	Belief Reasoning Speed	Pragmatics	Adult Eyes	Higher-Order ToM
Spontaneous ToM Belief Reasoning Speed Pragmatics Adult Eyes High-Order ToM	-	-0.023 -	0.015 0.056 -	-0.115 0.115 0.068	0.125 0.048 - 0.051 - 0.069

Note. Correlation values are Pearson's *r* controlling for age and gender.

Measures of Implicit Attitudes / Bias (vs. explicit attitudes / self-report)

- Different implicit measures correlate poorly with one another (r = .30)
- Implicit and explicit measures correlate well with one-another (r = .60)

Social Media is a Major Cause of the Mental Illness Epidemic in Teen Girls. Here's the Evidence.

Journalists should stop saying that the evidence is just correlational

JON HAIDT

Self-reported smartphone usage is weakly correlated with actual usage Ellis et al. 2019

The Dot-Probe Task is used as a measure of attentional bias in anxiety

- Core foundation of experimental psychopathology

There is no one 'Dot-Probe' task, but many variants

- Stimuli domains
- Stimulus orientations
- Scoring comparisons
- Stimulus onset asynchrony

Comparing 36 versions in 9000 participants, reliability was consistently near zero. Xu et al. 2022

In the field of Sex Research, many researchers wish to understand the context, causes, consequences, etc. of pornography use.

What could go wrong here, in terms of measurement validity?

[hint: think stupider]

"57 of the 100 studies sampled relied on idiosyncratic measures of pornography use that were not found in other published research."

Kohut et al. 2020

Issues with measuring pornography use

- What is "pornography"?
- What is "use"?
- What timeframe? (day, week, month, year, lifetime)
- What dimension? (frequency, first usage, specific content)

"We controlled for socio-economic status"

"We controlled for socio-economic status"

There is no agreement how to measure SES Antonoplis (2022)

Operationalizations	Percentage	Number (n=495)	Example
Indicators			
None given	0.20	1	-
Assets/Housing	8.10	40	Home value, Own home/car, Neighborhood wealth/cohesion
Composite	5.25	26	Hollingshead Index, Brazilian ABEP
Demographic	0.40	2	Race, Gender
Education	27.47	136	Personal education (highest degree attained)
Family structure	4.24	21	Teen mom, Father present, Number of children
Income/Poverty	22.83	113	Family income, Neighborhood poverty rate
Mannerisms	2.83	14	Extracurricular activities, Verb use, Name, Clothing
Occupation	16.36	81	Parental Duncan's SEI
Subjective	10.30	51	MacArthur ladder
Uncategorized	2.02	10	Health insurance, Welfare/aid Food insecurity

Exercise: Check your assigned articles

- Are the measures *ad hoc* or established?

- What validity evidence do they present against jingle/jangle?

Magnitude checks

"Chocolates are more desirable than poop"

Balcetis & Dunning (2010) Study 3b pretest

"Chocolates are more desirable than poop" Cohen's d = 4.5, 95% CI [3.3, 5.7]

Balcetis & Dunning (2010) Study 3b pretest

"Chocolates are more desirable than poop" Cohen's d = 4.5, 95% CI [3.3, 5.7]

Balcetis & Dunning (2010) Study 3b pretest

Asking children "Boys tend to wear skirts" vs. "Girls tend to wear skirts"

Streck & Kessels (2024)

"Chocolates are more desirable than poop" Cohen's d = 4.5,95% CI [3.3, 5.7]

Balcetis & Dunning (2010) Study 3b pretest

Asking children "Boys tend to wear skirts" vs. "Girls tend to wear skirts" Cohen's d = 5.5,95% CI [4.9, 6.1]

Streck & Kessels (2024)

Cohen's d > 2 raise serious doubts Cohen's d > 5 are silly*

*in normal circumstances

Mertens et al. (2021) The effectiveness of nudging

- *A Geier, B Wansink, P Rozin, Red potato chips: Segmentation cues can substantially decrease food intake. Heal. Psychol. 31, 398-401 (2012).
- 191. *M Shimizu, CR Payne, B Wansink, When snacks become meals: How hunger and environmental cues bias food intake. Int. J. Behav. Nutr. Phys. Activity 7, 1-6 (2010).
- 217. *E van Kleef, M Shimizu, B Wansink, Serving bowl selection biases the amount of food served. J. Nutr. Educ. Behav. 44, 66–70 (2012).
- 220. *B Wansink, AS Hanks, Slim by design: Serving healthy foods first in buffet lines improves overall meal selection. PLoS ONE 8, 1–5 (2013).
- *B Wansink, J Kim, Bad popcorn in big buckets: Portion size can influence intake as much as taste. J. Nutr. Educ. Behav. 37, 242-245 (2005).
- 222. *B Wansink, K van Ittersum, Bottoms up! the influence of elongation on pouring and consumption volume. J. Consumer Res. 30, 455–463 (2003).
- 223. *B Wansink, A Cardello, J North, Fluid consumption and the potential role of canteen shape in minimizing dehydration. Mil. Medicine 170, 871–873 (2005).
- 224. *B Wansink, JE Painter, J North, Bottomless bowls: Why visual cues of portion size may influence intake. Obes. Res. 13, 93-100 (2005).
- 225. *B Wansink, D Soman, KC Herbst, Larger partitions lead to larger sales: Divided grocery carts alter purchase norms and increase sales. J. Bus. Res. 75, 202–209 (2017).
- 226. *B Wansink, K van Ittersum, JE Painter, Ice cream illusions: Bowls, spoons, and self-served portion sizes. Am. J. Prev. Medicine 31, 240–243 (2006).
- 227. *B Wansink, K van Ittersum, CR Payne, Larger bowl size increases the amount of cereal children request, consume, and waste. The J. Pediatr. 164, 323–326 (2014).

Model	Study name		S	tatistics fo	Std diff in means and 95%CI							
		Std diff in means	Standard error	Variance	Lower limit		Z-Value	p-Value				
	Barnhofer et al. (2009)	0.829	0.374	0.140	0.095	1.563	2.213	0.027	- 1	1 1	\rightarrow	
	Clarke et al. (2014)	0.368	0.323	0.104	-0.265	1.001	1.140	0.254		\perp		
	Eisendrath et al. (2016)	0.486	0.154	0.024	0.184	0.789	3.151	0.002		1 1		—
	Fonagy et al. (2015)	0.467	0.179	0.032	0.117	0.817	2.612	0.009		1 1		_
	Gloster et al. (2015)	0.777	0.361	0.130	0.069	1.484	2.152	0.031		1 1	\rightarrow	-
	Harley et al. (2008)	0.881	0.481	0.232	-0.062	1.824	1.831	0.067		1 +	\rightarrow	
	Hartmann Souza et al. (2016)	0.480	0.324	0.105	-0.155	1.116	1.481	0.139		1 +	_	
	Hinton et al. (2005)	2.226	0.402	0.162	1.438	3.015	5.532	0.000		1 1		
	Isasi et al. (2010)	5.233	0.665	0.442	3.929	6.536	7.868	0.000		1 1		
	Kocsis et al. (2009)	0.259	0.126	0.016	0.012	0.506	2.055	0.040		1 1		
	Ludman et al. (2007)	0.458	0.281	0.079	-0.093	1.008	1.629	0.103		1 +	_	
	Mantani et al. (2017)	0.572	0.159	0.025	0.260	0.885	3.592	0.000		1 1		
	Moore & Blackburn (1997)	1.653	0.776	0.602	0.132	3.173	2.130	0.033		1 1	\rightarrow	
	Nakagawa et al. (2017)	0.243	0.224	0.050	-0.197	0.683	1.084	0.278		\perp		_
	Otto et al. (2003)	0.679	0.650	0.423	-0.596	1.954	1.044	0.297	- 1 -	+	$\overline{}$	-
	Town et al. (2017)	0.748	0.239	0.057	0.280	1.216	3.131	0.002		1 1	\rightarrow	
	Watanabe et al. (2011)	1.811	0.391	0.153	1.044	2.578	4.627	0.000		1 1		
	Wiles et al. (2013)	0.450	0.094	0.009	0.266	0.633	4.807	0.000		1 1	-	-
Fixed	I	0.540	0.050	0.003	0.442	0.638	10.765	0.000		1 1	→	
Random	ı	0.818	0.134	0.018	0.556	1.081	6.106	0.000		1 1	T I	
									-1.00 -	0.50 0.0	0 0.5	i0 1

Effectiveness at post-treatment on symptom reduction

Gloster et al. (2020) Treating treatment non-responders

Model	Study name		s	tatistics fo	r each	study			Std diff in means and 95%CI
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	
	Barnhofer et al. (2009)	0.829	0.374	0.140	0.095	1.563	2.213	0.027	
	Clarke et al. (2014)	0.368	0.323	0.104	-0.265	1.001	1.140	0.254	
	Eisendrath et al. (2016)	0.486	0.154	0.024	0.184	0.789	3.151	0.002	-
	Fonagy et al. (2015)	0.467	0.179	0.032	0.117	0.817	2.612	0.009	-
	Gloster et al. (2015)	0.777	0.361	0.130	0.069	1.484	2.152	0.031	
	Harley et al. (2008)	0.881	0.481	0.232	-0.062	1.824	1.831	0.067	
	Hartmann Souza et al. (2016)	0.480	0.324	0.105	-0.155	1.116	1.481	0.139	
	Hinton et al. (2005)	2.226	0.402	0.162	1.438	3.015	5.532	0.000	
	Isasi et al. (2010)	5.233	0.665	0.442	3.929	6.536	7.868	0.000	
	Kocsis et al. (2009)	0.259	0.126	0.016	0.012	0.506	2.055	0.040	
	Ludman et al. (2007)	0.458	0.281	0.079	-0.093	1.008	1.629	0.103	
	Mantani et al. (2017)	0.572	0.159	0.025	0.260	0.885	3.592	0.000	
	Moore & Blackburn (1997)	1.653	0.776	0.602	0.132	3.173	2.130	0.033	
	Nakagawa et al. (2017)	0.243	0.224	0.050	-0.197	0.683	1.084	0.278	
	Otto et al. (2003)	0.679	0.650	0.423	-0.596	1.954	1.044	0.297	
	Town et al. (2017)	0.748	0.239	0.057	0.280	1.216	3.131	0.002	
	Watanabe et al. (2011)	1.811	0.391	0.153	1.044	2.578	4.627	0.000	
	Wiles et al. (2013)	0.450	0.094	0.009	0.266	0.633	4.807	0.000	-
Fixed	1	0.540	0.050	0.003	0.442	0.638	10.765	0.000	
Random	ı	0.818	0.134	0.018	0.556	1.081	6.106	0.000	
									-1.00 -0.50 0.00 0.50 1.00 Fav ours comparison Pav ours treatment targeting non-response

Effectiveness at post-treatment on symptom reduction

	Exp	eriment	al	C	ontrol		Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Wendy T.M.Pots 2016	14.68	8.05	71	19.34	8.55	78	11.7%	-0.56 [-0.89, -0.23]	
Situ Yuyi 2022	12.51	3.26	30	15.52	2.35	30	10.3%	-1.05 [-1.59, -0.50]	
Shima Tamannaei Far 2017	28.2	16.28	10	18.54	7.65	9	7.4%	0.71 [-0.22, 1.65]	+
Ren Zhihong 2012	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	-
Mehdi Zemestani 2020	20.7	3.4	26	32.57	5.15	30	8.8%	-2.64 [-3.37, -1.91]	
Louise Hayes 2011	66.05	3.24	19	70.68	4.2	11	8.2%	-1.25 [-2.06, -0.43]	
Lappalainen 2015	13.34	6.75	18	17.85	7.34	20	9.4%	-0.62 [-1.28, 0.03]	
Ernst T.Bohlmeijer 2011	15.94	10.37	39	22.07	9.99	42	11.0%	-0.60 [-1.04, -0.15]	
Chunxiao Zhao 2022	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	-
Chen Juan 2021	49.36	2.18	30	54.36	3.29	30	9.8%	-1.77 [-2.37, -1.17]	
A-Tjak 2018	11.08	1.36	33	7.91	1.51	25	0.0%	2.19 [1.53, 2.86]	
Total (95% CI)			427			402	100.0%	-1.05 [-1.44, -0.66]	◆
Heterogeneity: Tau2 = 0.31; Ch	ni² = 55.1	8, df = 9) (P < 0	.00001)	; I ^z = 84	%			-4 -2 0 2 4
Test for overall effect: $Z = 5.27$									-4 -2 U 2 4 Favours [experimental] Favours [control]

Zhao et al. (2023) Effect of acceptance and commitment therapy for depressive disorders

	Exp	eriment	al	C	ontrol	Std. Mean Difference		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Wendy T.M.Pots 2016	14.68	8.05	71	19.34	8.55	78	11.7%	-0.56 [-0.89, -0.23]	
Situ Yuyi 2022	12.51	3.26	30	15.52	2.35	30	10.3%	-1.05 [-1.59, -0.50]	
Shima Tamannaei Far 2017	28.2	16.28	10	18.54	7.65	9	7.4%	0.71 [-0.22, 1.65]	
Ren Zhihong 2012	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	-
Mehdi Zemestani 2020	20.7	3.4	26	32.57	5.15	30	8.8%	-2.64 [-3.37, -1.91]	
Louise Hayes 2011	66.05	3.24	19	70.68	4.2	11	8.2%	-1.25 [-2.06, -0.43]	
Lappalainen 2015	13.34	6.75	18	17.85	7.34	20	9.4%	-0.62 [-1.28, 0.03]	-
Ernst T.Bohlmeijer 2011	15.94	10.37	39	22.07	9.99	42	11.0%	-0.60 [-1.04, -0.15]	
Chunxiao Zhao 2022	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	-
Chen Juan 2021	49.36	2.18	30	54.36	3.29	30	9.8%	-1.77 [-2.37, -1.17]	
A-Tjak 2018	11.08	1.36	33	7.91	1.51	25	0.0%	2.19 [1.53, 2.86]	
Total (95% CI)			427			402	100.0%	-1.05 [-1.44, -0.66]	•
Heterogeneity: Tau2 = 0.31; Ch	ni² = 55.1	8, df = 9)(P<0	.00001)	z = 84	%			
Test for overall effect: $Z = 5.27$									-4 -2 U 2 4 Favours [experimental] Favours [control]

Zhao et al. (2023) Effect of acceptance and commitment therapy for depressive disorders

Zhao et al. (2023) Effect of acceptance and commitment therapy for depressive disorders

Exercise: Check your assigned articles

- Recalculate effect sizes from summary statistics
- Check no-one confuses SE and SD
 - The "Standard Error error"
 - ~30% of meta-analyses do this
 - Maassen et al. (2023)