Exploratory data analysis (3)

Task

Understand structure

Summary statistics

Univariate distributions

Categorical analysis

Bivariate relationships

Correlation analysis

Group-wise summaries/Multivariate Visualization

Dimensionality reduction

Clustering and segmentation

Clustering visualization

Hypothesis generation

Tools & Techniques

.info(), .shape, .columns, .dtypes, .head()

.describe(), mean, median, std, IQR, min/max

Histograms, boxplots, density plots

Value counts, bar plots, pie charts

Scatter plots, grouped boxplots, violin plots, faceting

.corr(), heatmaps, pairplots

groupby, aggregation by category

PCA, t-SNE, UMAP (for visualization and structure discovery)

KMeans, DBSCAN, hierarchical clustering, Gaussian Mixture Models (GMM)

PCA/t-SNE scatter plots, cluster heatmaps, dendrograms, parallel coordinates

Observations and questions based on patterns or subgroup differences

Task 9: Clustering and Segmentation

- Clustering is the task of grouping data points such that those in the same group (cluster) are more similar to each other than to those in other groups.
- **Segmentation** often refers to applying clustering to real-world use cases like customer segmentation, image segmentation, or genetic subtype discovery.

Algorithm	Туре	Notes
K-Means	Centroid-based	Assumes spherical clusters, fast, widely used
Agglomerative Clustering	Hierarchical	Builds a tree of clusters, no need to pre-specify k
DBSCAN	Density-based	Finds arbitrarily shaped clusters, detects noise
Spectral Clustering	Graph-based	Good for non-convex clusters using graph Laplacian
Gaussian Mixture Models (GMM)	Probabilistic	Allows soft assignments (probabilities instead of labels)

- K-means: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
- Agglomerative Clustering: https://online.stat.psu.edu/stat555/node/86/
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

- Spectral clustering: Dimension reduction+K-means
- GMM:

Example: Real data and simulated data

- Real data: Iris dataset
- Simulated mixture of Gaussian

Segmentation

Segmentation typically includes 3 steps:

- 1.Clustering: Find groups using unsupervised learning
- **2.Profiling**: Describe each segment using summary stats (e.g., mean income, age)
- **3.Application**: Use segments to tailor decisions (e.g., personalized marketing)

Image segmentation

Image segmentation means dividing an image into **regions (segments)** based on similarity in pixel values, texture, or other features.

Each pixel is assigned to a **segment or object**, producing a simplified, structured version of the image.

- Load an image
- Convert it into a 2D array of RGB values
- Apply K-Means clustering to group pixels by color
- Reconstruct a segmented version using cluster labels

Task 10: Clustering Visualization

• Clustering algorithms assign data points to groups — but to understand, trust, and refine these results, visualization is essential.

Technique	Purpose	
2D/3D scatter plots	Visualize clusters in reduced space (e.g., PCA, t-SNE)	
Cluster heatmaps	Show patterns within clusters across features	
Elbow/Gap methods	Help determine the optimal number of clusters	
Dendrograms	Visualize hierarchical clustering	

Task 11: Hypothesis generation

Hypothesis generation is the process of:

- Formulating questions or testable ideas based on patterns, trends, or anomalies observed during EDA.
- These hypotheses can then guide further statistical testing, model development, or experimental design.

It's the bridge between **exploration** and **explanation**.

Dataset	Observation	Generated Hypothesis
Iris	Petal length varies by species	"Petal length differs significantly across species"
Titanic	Higher survival among women/children	"Gender and age affect survival rate"
Customer data	One cluster has high spending	"This customer segment responds better to promos"