Projections

I C A

CA

Advanced Statistical Inference Projection

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

Introduction

Features

Projections

Part 1: Feature selection and PCA

Aim: To build a classifier that can diagnose leukaemia using Gene expression data.

Introduction

Projections

PCA

ICA

Data: 27 healthy samples,11 leukaemia samples (N = 38).
 Each sample is the expression (activity) level for 3751 genes.
 (Also have an independent test set)

- In general, the number of parameters will increase with the number of features – D = 3751.
 - ▶ e.g. Logistic regression w would have length 3751!
- ► Fitting lots of parameters is hard imagine Metropolis-Hastings in 3751 dimensions rather than 2!

- For visualisation, most examples we've seen have had only 2 features $\mathbf{x} = [x_1, x_2]^T$.
- We sometimes **created** more: $\mathbf{x} = [1, x_1 x_1^2, x_1^3, \dots]^\mathsf{T}$.
- ▶ Now, we've been given lots (3751) to start with.
- We need to reduce this number.

- For visualisation, most examples we've seen have had only 2 features $\mathbf{x} = [x_1, x_2]^T$.
- We sometimes **created** more: $\mathbf{x} = [1, x_1 x_1^2, x_1^3, \dots]^\mathsf{T}$.
- ▶ Now, we've been given lots (3751) to start with.
- We need to reduce this number.
- 2 general schemes:
 - Use a subset of the originals.
 - Make new ones by combining the originals.

CA

► Take one feature – N values.

- ▶ Some values from objects in class 1, some from class 0.
- ▶ Split them based on class and compute μ and σ^2 for each class.
- ► Compute *s* for each feature:

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

Keep features with high s.

Examples

Features get better (higher s) from left to right...

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

Projections

LA

Features get better (higher s) from left to right...

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

Projections

. . . .

ICA

Features get better (higher s) from left to right...

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

ICA

Features get better (higher s) from left to right...

$$s = \frac{|\mu_1 - \mu_0|}{\sigma_0^2 + \sigma_1^2}$$

- ▶ Each feature has an *s*-score. The higher the better.
- ▶ Use the *S* features with the highest scores.
- ▶ How to choose *S*?

Projections

ICA

- ► For each candidate *S* value:
- Split the data into C folds (just as in CV)
- ► For each fold...
 - 1. Find the feature scores on the **training** data.
 - 2. Train the classifier (whichever we choose).
 - 3. Record the performance.

Projections

ICA

- For each candidate S value:
- Split the data into C folds (just as in CV)
- ► For each fold...
 - 1. Find the feature scores on the **training** data.
 - 2. Train the classifier (whichever we choose).
 - 3. Record the performance.
- Important: Must only compute scores on training data.
 Otherwise we are implicitly using the test labels for training biased.

Example

Best two features in our leukaemia data (points labeled by class).

Introduction

M. Filippone

Introduction

Features

Projections

. .

Example

Performance as S increases.

Introduction

M. Filippone

Introduction

Features

Projections

FCF

▶ An alternative to choosing features is making new ones.

- ▶ An alternative to choosing features is making new ones.
- Cluster:
 - Cluster the features (turn our clustering problem around)
 - If we use say K-means, our new features will be the K mean vectors.

- An alternative to choosing features is making new ones.
- Cluster:
 - Cluster the features (turn our clustering problem) around)
 - ▶ If we use say K-means, our new features will be the K mean vectors.
- Projection/combination
 - Reduce the number of features by projecting into a lower dimensional space.
 - Do this by making new features that are combinations (linear) of the old ones.

Projection

Introduction

M. Filippone

Introductio

Features

Projections

CA

- We can project data (D dimensions) into a lower number of dimensions (M).
- ► Z = XW
 - **▶ X** is *N* × *D*
 - **▶ W** is *D* × *M*
- ▶ Z is N × M − an M-dimensional representation of our N objects.
- W defines the projection
 - Changing W is like changing where the light is coming from for the shadow (or rotating the hand).
 - (X is the hand, Z is the shadow)
- ▶ Once we've chosen W we can project test data into this new space too: Z_{new} = X_{new}W

LA

Different W will give us different projections (imagine moving the light).

Which should we use?

ICA

- Different W will give us different projections (imagine moving the light).
- Which should we use?
- ▶ Not all will represent our data well...

ICA

Principal Components Analysis (PCA) is a method for choosing W.

- ▶ It finds the columns of **W** one at a time (define the mth column as \mathbf{w}_m).
 - ▶ Each $D \times 1$ column defines one new dimension.

- Principal Components Analysis (PCA) is a method for choosing W.
- ▶ It finds the columns of **W** one at a time (define the mth column as \mathbf{w}_m).
 - ▶ Each $D \times 1$ column defines one new dimension.
- Consider one of the new dimensions (columns of Z):

$$z_m = Xw_m$$

- Principal Components Analysis (PCA) is a method for choosing W.
- ▶ It finds the columns of **W** one at a time (define the mth column as \mathbf{w}_m).
 - **Each** $D \times 1$ column defines one new dimension.
- Consider one of the new dimensions (columns of Z):

$$z_m = Xw_m$$

ightharpoonup PCA chooses \mathbf{w}_m to maximise the variance of \mathbf{z}_m

$$\frac{1}{N} \sum_{n=1}^{N} (z_{mn} - \mu_m)^2, \quad \mu_m = \frac{1}{N} \sum_{n=1}^{N} z_{mn}$$

M. Filippone

Introduction

Features

Projection

PCA

- Principal Components Analysis (PCA) is a method for choosing W.
- It finds the columns of **W** one at a time (define the mth column as \mathbf{w}_m).
 - ▶ Each $D \times 1$ column defines one new dimension.
- ► Consider one of the new dimensions (columns of **Z**):

$$z_m = Xw_m$$

ightharpoonup PCA chooses \mathbf{w}_m to maximise the variance of \mathbf{z}_m

$$\frac{1}{N}\sum_{n=1}^{N}(z_{mn}-\mu_{m})^{2}, \quad \mu_{m}=\frac{1}{N}\sum_{n=1}^{N}z_{mn}$$

Once the first one has been found, the w₂ is found that maximises the variance and is **orthogonal** to the first one etc etc. ntroduction

Features

Projections

PCA

Indiana di Santa

Features

Projections

PCA

- ▶ Original data in 2-dimensions.
- ▶ We'd like a 1-dimensional projection.

M. Filippone

-eatures

Projection

PCA

- ▶ Pick some arbitrary w.
- Project the data onto it.
- Compute the variance (on the line).
- ▶ The position on the line is our 1 dimensional representation.

M. Filippone

....

-eatures

riojectio

PCA

_A

- ▶ Pick some arbitrary w.
- Project the data onto it.
- Compute the variance (on the line).
- ► The position on the line is our 1 dimensional representation.

M. Filippone

eatures

Projection

PCA

- ▶ Pick some arbitrary w.
- Project the data onto it.
- Compute the variance (on the line).
- ► The position on the line is our 1 dimensional representation.

Projection

PCA

- ▶ Could search for $\mathbf{w}_1, \dots, \mathbf{w}_M$
- But, analytic solution is available.
- **w** are the **eignvectors** of the covariance matrix of **X**.
 - You don't need to know this!
- Matlab: princomp(x)

PCA – analytic solution

Introduction

M. Filippone

Introduction

eatures

Projections

PCA

Projections

PCA

CA

▶ What would be the second component?

PCA – leukaemia data

PCA

First two principal components in our leukaemia data (points labeled by class).

PCA – leukaemia data

Introduction

Introductio

Features

PCA

CA

Test error as more and more components are used.

Projections

PCA

- Sometimes we have too much data (too many dimensions).
- Need to select features.
- Features can be dimensions that already exist.
- Or we can make new ones.
- ▶ We've seen one example of each.

- Sometimes we have too much data (too many dimensions).
- Need to select features.
- Features can be dimensions that already exist.
- Or we can make new ones.
- We've seen one example of each.
- ► To think about during the break: Why might PCA do worse than the scoring method?

M. Filippone

Introduction

eatures

Projections

PCA

ICA

Part 2: ICA (the cocktail party problem)

ICA

- Each microphone will record a combination of all speakers.
- ► Can we separate them back out again?

CA

ICA

- Online:
- http://www.cis.hut.fi/projects/ica/cocktail/ cocktail_en.cgi
- Matlab:
 - Available on course webpage
 - ► To run:
 - ▶ load ica_demo.mat
 - ica_image

ICA

Corrupted data (images/sounds) is a vector of D numbers. i.e. nth image:

 \mathbf{x}_n

We have **N** images – stack them up into an $N \times D$ matrix:

X

Assume that this is the result of the following corrupting process:

$$X = AS + E$$

▶ **A** is mixing matrix. **E** is noise. (**S** is $N \times D$).

$$e_{nd} \sim \mathcal{N}(0, \sigma^2)$$

ICA

► From Bayes' (look back...)

$$p(\mathbf{S}|\mathbf{X},\mathbf{A},\sigma^2) \propto p(\mathbf{X}|\mathbf{S},\mathbf{A},\sigma^2)p(\mathbf{S})$$

Projections

ICA

► From Bayes' (look back...)

$$p(\mathbf{S}|\mathbf{X},\mathbf{A},\sigma^2) \propto p(\mathbf{X}|\mathbf{S},\mathbf{A},\sigma^2)p(\mathbf{S})$$

- In our demo, we found values of **S**, **A** and σ^2 that maximised the log posterior.
- MAP solution...

Projections

ICA

► From Bayes' (look back...)

$$p(\mathbf{S}|\mathbf{X},\mathbf{A},\sigma^2) \propto p(\mathbf{X}|\mathbf{S},\mathbf{A},\sigma^2)p(\mathbf{S})$$

- In our demo, we found values of **S**, **A** and σ^2 that maximised the log posterior.
- ► MAP solution...
- ► There is some further reading on the webpage if you want to know more...

Central limit theorem (paraphrased):

▶ If we keep adding the outcomes of independent random variables together, we eventually get something that looks Gaussian.

Central limit theorem (paraphrased):

If we keep adding the outcomes of independent random variables together, we eventually get something that looks Gaussian.

► Example: Roll a die *m* times and take the average. (Repeat this lots of times to get histogram)

From left to right: m = 1, m = 2, m = 5. Looking more Gaussian as m increases.

Sometimes ICA is performed by reversing this theorem:

$$X = AS + E$$

- **X** is some random variables added together.
- It will be more 'Gaussian' than S
- Find **S** that is as non-Gaussian as possible.
- More resource:
 - http://www.cis.hut.fi/projects/ica/icademo/
 - http://www.cis.hut.fi/projects/ica/

ICA

- PCA and ICA are both examples of projection techniques.
- Both assume a linear transformation
 - ► ICA: X = AS + E
 - ▶ PCA: **Z** = **XW**
- PCA can be used for Data pre-processing or visualisation.
- ► ICA can be used to separate sources that have been mixed together.
- Also looked at PCA as a feature selection method.