Circuitos Elétricos I - 2021.2e Lista de exercícios

3 de agosto de 2022

Data de entrega: 19/08/2022

Problemas

Nos problemas a seguir, assuma os valores de R_1 , R_2 e R_3 em Ω como sendo os três últimos dígitos da sua matrícula somados a 1, respectivamente (por exemplo, se matrícula = 9999**150**, então $R_1 = 1 + 1 = 2 \Omega$, $R_2 = 5 + 1 = 6 \Omega$ e $R_3 = 0 + 1 = 1 \Omega$).

1. No circuito indicado na figura 1, imediatamente antes do chaveamento que ocorre no instante t=0 s, tem-se que $v_C(0^-)=10$ V, $i_{L_1}(0^-)=0$ A e $i_{L_2}(0^-)=1$ A.

Figura 1:

- a. Analisando o comportamento do circuito em regime permanente, determine os valores finais da tensão no capacitor e das correntes nos indutores.
- b. Determine o diagrama do circuito no domínio de Laplace.
- c. Determine $V_C(s)$, $I_{L_1}(s)$ e $I_{L_2}(s)$ pelo método das tensões de nó.
- d. Determine $V_C(s)$, $I_{L_1}(s)$ e $I_{L_2}(s)$ pelo método das correntes de malha e verifique a consistência com os resultados do item (b).
- e. Determine $v_C(t)$, $i_{L_1}(t)$ e $i_{L_2}(t)$, para $t \geq 0^+$ s.
- f. Gere of gráficos das curvas das funções obtidas no item d. (sugestão, ver exemplos de gráficos em https://bit.ly/3zsaxef/)
- g. Simule o circuito da figura 1 no Falstad (https://tinyurl.com/2a8uc7gb/
- >) e compare as curvas observadas com os resultados obtidos no item d. Os

resultados da simulação estão de acordo? Compare em termos de valores finais e valores de pico das grandezas.

Obs.: para facilitar o trabalho com a resolução dos sistemas lineares, sugiro assistir à resolução de exercício em https://www.youtube.com/watch?v=6-eSK-F7aEY/

2. No circuito indicado na figura 2, não há energia armazenada antes dos chaveamentos que ocorrem no instante $t=0\,s$.

Figura 2: <https://tinyurl.com/29t8tkn8>

- a. Determine o diagrama do circuito no domínio de Laplace.
- b. Determine $I_L(s)$ e $V_C(s)$ aplicando o princípio da superposição.
- c. Determine $i_L(t) v_C(t)$.
- d. Determine o circuito equivalente de Thévenin no domínio de Laplace como visto pelos terminais da fonte de corrente.