Improving Neural Networks, Overfitting and Regularization techniques

Michael Nielsen's Deep Learning book

Winter School on Quantitative Biology Learning and Artificial Intelligence

Alessio Ansuini ICTP - November 2018

Where we are: Feed-forward NN

◆ロ > ◆回 > ◆ 豆 > ◆ 豆 > ~ 豆 * り < ○ **</p>

Where we are: Backpropagation Algorithm

Quadratic loss $C = \frac{(y-a)^2}{2}$

Backpropagation : $\nabla_w C \quad \nabla_w C$ Learning rules : $w \leftarrow w - \eta \nabla_w C$

More appropriate loss function C' (faster convergence) and techniques to reduce overfitting:

- Regularization
- Data augmentation
- Dropout

A toy model

$$z = wx + b$$
 $a = \sigma(z) = \sigma(wx + b)$

A toy model

$$C = \frac{1}{2}(y - a)^2$$

 $\frac{\partial C}{\partial w} \sim \sigma'$
 $\frac{\partial C}{\partial b} \sim \sigma'$

Cross-entropy loss

$$C = -[y \ln a + (1 - y) \ln(1 - a)]$$

$$y = 0$$
 $a = 0.1 \rightarrow C = 0.1054$
 $y = 0$ $a = 0.9 \rightarrow C = 2.3026$
 $y = 1$ $a = 0.9 \rightarrow C = 0.1054$
 $y = 1$ $a = 0.001 \rightarrow C = 6.9078$

Measures the *suprise* to observe the true value once we make our prediction

General cross-entropy formula

$$C = -\frac{1}{n} \sum_{x} \sum_{i} \left[y_{j} \ln a_{j}^{L} + (1 - y_{j}) \ln(1 - a_{j}^{L}) \right] \quad j = 0, 1, \dots 9$$

Softmax Layer

Output interpretable as a probability distribution on categories (conditioned to the data) : $a_j^L = p(y = j|x)$

$$z_{j}^{L} = \sum_{k} w_{jk}^{L} a_{k}^{L-1} + b_{j}^{L} \quad \rightarrow \quad a_{j}^{L} = \frac{e^{z_{j}^{L}}}{\sum_{k} e^{z_{k}^{L}}}$$

$$a_j^L \ge 0$$
 $\sum_j a_j^L = 1$

- Look at the interactive sliders in Nielsen's book
- It can be shown that softmax output in combination with log-likelihood loss $C = -\ln a_y^L$ is \sim to sigmoidal output in combination with cross-entropy loss.

Overfitting

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

John von Neumann

The Elephant

"Jens Morten Hansen (JMH) and co-authors have recently published a study where they use sine-regression to fit 5 oscillations plus a linear trend to a 160-year sea level [...] This result is clearly not significant in any meaningful sense of the word."

The animation

Number of trainable parameters in Neural Networks

- Fully connected [784, 30, 10] : ~ 24K
- Fully connected [784, 100, 10] : ~ 80K
- LeNet (1998, convolutions, 8 layers) : ~ 60K
- AlexNet (2012) : ~ 60M
- VGG-16 (2014) : ~ 138M
-

The overfitting problem in neural networks is (potentially) very serious. But before addressing networks ...

How to split the data

General approach in machine learning (clustering, regression, networks . . .)

Polynomial approximation as a regression problem: what is the best degree (hyperparameter) of the interpolating polinomial?

Example : $y = cos(x) + \varepsilon$

Models: polynomials of growing degree

Number of parameters is degree + 1

$$y = \theta_0 + \theta_1 x$$

$$y = \theta_0 + \theta_1 x + \cdots + \theta_{15} x^{15}$$

Look for the best model (the one with lowest MSE) We will use (10-fold) cross-validation

Which one is the best?

Bias-Variance tradeoff

Hyper-parameters search

The best degree is 3

Find out more here : scikit-learn

Regularization

The general approach with Neural Networks

- Choose a model complex enough to ensure overfitting
- Regularize to reduce its generalization error

Regularization techniques

- Early stopping → optimal number of epochs
- Weight decay
- Data augmentation (rotations, translations, etc.)
- Dropout
-

Early stopping

Regularization by weight decay

Reduce effective model complexity¹

$$C = C_0 + \frac{\lambda}{2n} ||w||_2^2$$
 $||w||_2^2 = \sum_w w^2$

New learning rule

$$w \rightarrow w - \eta \frac{\partial C_0}{\partial w} - \frac{\eta \lambda}{n} w$$
$$= \left(1 - \frac{\eta \lambda}{n}\right) w - \eta \frac{\partial C_0}{\partial w}.$$

Exercise I

¹Not applied on the biases

Why regularization should help?

L1 regularization

$$C = C_0 + \frac{\lambda}{n} ||w||_1$$
 $||w||_1 = \sum_{w} |w|$

New learning rule

$$\mathbf{w} \rightarrow \mathbf{w} - \eta \frac{\partial C_0}{\partial \mathbf{w}} - \dots$$

Exercise!

Calcium imaging visual cortex (V1) of the mouse (Mriganka Sur Lab, MIT)

Dropout

Does not modify C but the network's way to operate

(a) Standard Neural Net

(b) After applying dropout.

Dropout

In each mini-batch we randomly deactivate a fraction p of units

$$p = 0.5$$
 $w \rightarrow pw = \frac{1}{2}w$

"[...] imagine that we are training different neural networks [...] the different networks will overfit in different ways"

"[...] reduces complex co-adaptations of neurons [...]"

Data augmentation

Data augmentation on MNIST

- small rotations
- small translations
- elastic distortions (emulate the random oscillations found in hand muscles)
- other ...

More data means more chance for the network to *make experience* of the natural variability in the data. The data augmentation strategy should reflect this variability (simple example - with implementation - in the Lecture on convnets).

Exercise! We will give progressively more training data to the network and plot its performance after 10 epochs.

Weights initialization

$$\mathcal{N}(0,1)$$
 (large weights) $\rightarrow \mathcal{N}(0,\frac{1}{\sqrt{\text{n.of inputs}}})$ (improved weights)

Bibliography

- "Pattern Recognition and Machine Learning", C. Bishop, 2006
- "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Hastie, Tibshirani, Friedman, (2nd ed. 2009) download link
- "Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis", Simard, Steinkraus and Platt. (2003)
- "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Srivastava et al., (2014)
- "Improving neural networks by preventing co-adaptation of feature detectors", Hinton et al. (2012).

Sitography

- http://neuralnetworksanddeeplearning.com/
- https://www.deeplearningbook.org/
- http://cs231n.stanford.edu/
- https://scikit-learn.org/stable/