Công thức Tích vô hướng của hai vectơ chi tiết nhất

I. Lí thuyết tổng hợp.

- Định nghĩa: Cho hai vectơ \vec{a} và \vec{b} đều khác vectơ $\vec{0}$. Tích vô hướng của \vec{a} và \vec{b} là một số, kí hiệu là $\vec{a}.\vec{b}$, được xác định bởi công thức: $\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|.\cos(\vec{a},\vec{b})$.
- Chú ý:
- +) Khi ít nhất một trong hai vecto \vec{a} và \vec{b} bằng vecto $\vec{0}$ ta quy ước: $\vec{a}.\vec{b} = 0$.
- +) Với hai vector \vec{a} và \vec{b} ($\vec{a}, \vec{b} \neq \vec{0}$), ta có: $\vec{a}.\vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.
- +) Tích vô hướng \vec{a} . \vec{a} được kí hiệu là \vec{a}^2 và số này được gọi là bình phương vô hướng của \vec{a} , ta có: $\vec{a}^2 = \left| \vec{a} \right|^2$
- Biểu thức tọa độ của tích vô hướng: Trong mặt phẳng Oxy, cho hai vecto $\vec{a} = (a_1; a_2)$ và $\vec{b} = (b_1; b_2)$ đều khác $\vec{0}$. Khi đó, ta có: $\vec{a}.\vec{b} = a_1.b_1 + a_2.b_2$.
- Điều kiện để hai vectơ vuông góc: Cho hai vectơ $\vec{a} = (a_1; a_2)$ và $\vec{b} = (b_1; b_2)$ đều khác $\vec{0}$, khi đó:

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a}.\vec{b} = 0 \Leftrightarrow a_1.b_1 + a_2.b_2 = 0$$
.

II. Các công thức.

Cho hai vecto $\vec{a} = (a_1; a_2)$ và $\vec{b} = (b_1; b_2)$ đều khác $\vec{0}$, ta có:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b})$$

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

$$\vec{a}^2 = |\vec{a}|^2$$

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a}.\vec{b} = 0 \Leftrightarrow a_1.b_1 + a_2.b_2 = 0$$

III. Ví dụ minh họa.

Bài 1: Cho hình vuông ABCD cạnh a, tâm O. Tính bình phương vô hướng của vecto \overrightarrow{OA} , tích vô hướng $\overrightarrow{AB}.\overrightarrow{AD}$ và tích vô hướng $\overrightarrow{AC}.\overrightarrow{AB}$.

Lời giải:

Xét tam giác ABC vuông cân tại B (do ABCD là hình vuông):

$$BAC = BCA = 45^{\circ}$$

Áp dụng định lí Py-ta-go ta có:

$$AC^2 = AB^2 + BC^2 = a^2 + a^2 = 2a^2$$

$$\Rightarrow$$
 AC = $\sqrt{2a^2}$ = $a\sqrt{2}$

Ta có hình vuông ABCD tâm $O \Rightarrow O$ là trung điểm của đường chéo AC, BD.

$$\Rightarrow$$
 OA = OC = $\frac{1}{2}$ AC = $\frac{a\sqrt{2}}{2}$

$$\Rightarrow \overrightarrow{OA}^2 = \left| \overrightarrow{OA} \right|^2 = OA^2 = \left(\frac{a\sqrt{2}}{2} \right)^2 = \frac{a^2}{2}$$

Do ABCD là hình vuông nên AB \perp AD tại A $\Rightarrow \overrightarrow{AB} \perp \overrightarrow{AD} \Rightarrow \overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{0}$

Ta có:
$$(\overrightarrow{AC}, \overrightarrow{AB}) = BAC = 45^{\circ}$$

$$\overrightarrow{AC}.\overrightarrow{AB} = |\overrightarrow{AC}|.|\overrightarrow{AB}|.\cos(\overrightarrow{AC},\overrightarrow{AB})$$

= AC.AB.
$$\cos 45^{\circ} = a\sqrt{2}.a.\frac{\sqrt{2}}{2} = a^{2}.$$

Bài 2: Cho hai vecto $\vec{a} = (4,5)$ và $\vec{b} = (3,7)$. Tính tích vô hướng $\vec{a}.\vec{b}$.

Lời giải:

Ta có:

$$\vec{a}.\vec{b} = 4.3 + 5.7 = 47$$
.

Bài 3: Cho hai vecto $\vec{u} = (5;4)$ và $\vec{v} = (3m;5)$. Tìm m để $\vec{u} \perp \vec{v}$.

Lời giải:

Ta có:

$$\vec{\text{D}} \hat{\hat{e}} \ \vec{u} \perp \vec{v} \implies \vec{u}.\vec{v} = 0$$

$$\Leftrightarrow$$
 5.3m + 4.5 = 0

$$\Leftrightarrow$$
 15m + 20 = 0

$$\Leftrightarrow$$
 15m = -20

$$\Leftrightarrow m = \frac{-20}{15} = \frac{-4}{3}$$

Vậy khi
$$m = \frac{-4}{3}$$
 thì $\vec{u} \perp \vec{v}$.