天池渔隐

昵称:天池渔隐 园龄:7年1个

月 粉**丝: 0**

关注: 5 +加关注

搜索

找找看

谷歌搜索

常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

我的标签

GPIO(1) STM32(1) 笔记(1) 随笔(1)

随笔档案

2016年2月 (2) 2016年1月 (7) 2015年12 月(11) 2013年1月

文章分类

data structure 高等数学

阅读排行榜

1. usb描述 符详细讲解 (7902)2. STM32f 407 DCMI 方式驱动 O V2640(11 77) 3. 1.树莓 派初始化配 置(860) 4. 树莓派 原理图 摄 像头接口定 义(398) 5. Linux下 使用codebl ocks交叉编

Powered by 博客 园

译ARM-LI NUX-GCC 程序(396) 博客园 | 首页 | 新随笔 | 联系 | 订阅 XML | 管理

USB描述符详细讲解

在USB中USB HOST 是通过各种描述符来识别设备的,有 **设备描述符,接口描述符,端点描述符,字符描述符,报告描述符**等

USB HID 设备是通过报告来传送数据的,报告有:输入报告 和输出报告

输入报告:是设备发送给主机的,例如 usb鼠标将鼠标移动和鼠标点击的信息返回给电脑,键盘将按键数据返回给电脑。

输出报告:是主机发送给USB设备的,例如键盘上的数字键盘锁定灯和大写字母锁定灯等。报告是一个数据包,里面包含的是所要传送的数据。 输入报告是通过中断输入端点输入的。

报告描述符:是描述一个报告以及报告里面的数据是用来干什么的。通过它,USB HOST 可以 分析出报告里面的数据所要表达的意思。

USB电气特性

标准USB使用4根线:5V电源线(VBus),差分数据线负(D-),差分数据线正(D+),地(GND)

USB线缆及插头插座

USB设备的插入检测机制

USB主机如何检测到设备插入的那?首先在USB集线器的每个下游端口的D+和D-上,分别接上一个15K的下拉电阻,而在USB设备端,在D+或者D-上接上1.5K的上拉电阻,高速设备接在D+上,低俗设备上拉接在D-上。这样当有设备插入到集线器时,就将差分数据线上的一条拉高了,集线器检测到这个状态后,它就报告给USB主控制器,这样就检测到设备插入了。

USB设备的枚举过程

usb主机检测到USB设备插入后,就要对设备进行枚举了。枚举的作用就是从设备是那个读取一些信息,知道设备是什么样的设备,如果通信,这样主机就可以根据这些信息假造合适的驱动程序。调试USB设备,很重要的一点就是USB枚举过程,只要枚举成功了,那就成功一大半了。 USB的一种传输模式----控制传输

这种传输在USB中是非常重要的,它保证数据的正确性,在设备的枚举过程中都是控制传输。

控制传输分为三个过程: 1.建立过程; 2可选的数据过程; 3状态过程。

建立过程都是由USB主机发起,它开始于一个Setup令牌包,后面紧跟着一个DATAO包,如果是控制输入传输,那么数据过程就是输入数据;如果控制输出传输,那么数据过程就是输出数据。数据过程之后是状态过程。状态过程刚好与数据过程的数据传输放喜爱那个相反。

首先:主机检测到USB设备插入后,就会先对设备进行复位,复位后,USB主机就会对地址为0的设备发送获取设备描述符的标准请求。所有的USB设备在总线复位后其地址都为0,这样主机就可以跟那些刚刚插入的设备通过地址0通信,

获取玩**设备描述符**后,主机就会获取**配置描述符9个字节,**主机获取到配置描述符后,根据里面的配置集合总长度,在获取配置结合。配置集合包括配置描述符,接口描述符,端点描述符等。

USB的描述以及各种描述符之间的依赖关系

每种描述符都有自己独立的编号,如下:

#define DEVICE_DESCRIPTOR

#define CONFIGURATION_DESCRIPTOR

#define STRING_DESCRIPTOR

#define INTERFACE_DESCRIPTOR

#define ENDPOINT_DESCRIPTOR

0x02 //配置描述符 0x03 //字符串描述符 0x04 //接口描述符

0x05 //端点描述符

0x01 //设备描述符

1.设备描述符

```
//定义标准的设备描述符结构
```

```
typedef struct _DEVICE_DCESCRIPTOR_STRUCT
                             //设备描述符的字节数大小
BYTE blength;
BYTE bDescriptorType;
                              //设备描述符类型编号
WORD bcdUSB:
                               //USB 版本号
BYTE bDeviceClass;
                              //USB 分配的设备类代码
BYTE bDeviceSubClass:
                               //USB 分配的子类代码
BYTE bDeviceProtocol;
                              //USB 分配的设备协议代码
BYTE bMaxPacketSize0;
                               //端点 0 的最大包大小
WORD idVendor:
                              //厂商编号
                              //产品编号
WORD idProduct;
WORD bcdDevice:
                               //设备出厂编号
BYTE iManufacturer:
                              //设备厂商字符串的索引
BYTE iProduct;
                            //描述产品字符串的索引
BYTE iSerialNumber:
                              //描述设备序列号字符串的索引
BYTE bNumConfigurations;
                               //可能的配置数量
DEVICE_DESCRIPTOR_STRUCT, * pDEVICE_DESCRIPTOR_STRUCT;
2.配置描述符
//定义标准的配置描述符结构
typedef struct _CONFIGURATION_DESCRIPTOR_STRUCT
BYTE bLength;
                            //配置描述符的字节数大小
BYTE bDescriptorType;
                              //配置描述符类型编号
                              //此配置返回的所有数据大小
WORD wTotalLength;
BYTE bNumInterfaces;
                             //此配置所支持的接口数量
BYTE bConfigurationValue;
                              //Set_Configuration 命令所需要的参数值
BYTE iConfiguration:
                            //描述该配置的字符串的索引值
                             //供电模式的选择
BYTE bmAttributes;
BYTE MaxPower:
                              //设备从总线提取的最大电流
CONFIGURATION_DESCRIPTOR_STRUCT, * pCONFIGURATION_DESCRIPTOR_STRUCT;
```

2.接口描述符

```
//定义标准的接口描述符结构
```

```
typedef struct _INTERFACE_DESCRIPTOR_STRUCT
   BYTE bLength;
                                     //接口描述符的字节数大小
                                     //接口描述符的类型编号
   BYTE bDescriptorType;
   BYTE bInterfaceNumber:
                                     //该接口的编号
                                     //备用的接口描述符编号
   BYTE bAlternateSetting;
                                       //该接口使用的端点数,不包括端点0
   BYTE bNumEndpoints;
   BYTE bInterfaceClass:
                                     //接口类型
   BYTE bInterfaceSubClass:
                                     //接口子类型
   BYTE bInterfaceProtocol:
                                     //接口遵循的协议
   BYTE iInterface:
                                   //描述该接口的字符串索引值
   INTERFACE_DESCRIPTOR_STRUCT, * pINTERFACE_DESCRIPTOR_STRUCT;
一个USB设备只有一个设备描述符--N1配置描述符 -----N个接口描述符------N个端点描述符: 定义了端点的大小和类型
                       N2配置描述符
                       N3配置描述符
主机获取描述符时,1获取设备描述符->2获取配置描述符
设备描述符记录的信息有:设备所使用的USB协议版本号,设备类型,端点0的最大包大小,厂商ID(VID)和产品ID(PID),设备版本号,厂商字符
串索引,产品字符串索引,设备序列号索引,可能的配置数。
配置的描述符主要记录的信息有:配置所包含的接口数,配置的编号,供电方式马事发支持远程唤醒,电流需求量
接口描述符: 只要记录接口编号,接口的端点数,接口所使用的类子类协议。
端点描述符:端点号,方向,端点的传输类型,最大包长度,查询时间间隔。
字符串描述符:提供一些方便人们查阅的信息不是必须的。
USB总线上传输数据以包为基本单位。一个包被分成不同的域。根据不同类型的包,所包含的域是不一样的,但是不通的包有共同的特点,就是同步域开
始紧跟着一个包标识符PID,最终以包结束符EOP来结束这个包。
包标识符PID是用来标识一个包的类型。它总共有8位,其中USB协议使用的只有4位,PID0~PID3 另外4位PID4~PID7是PID0~PID3的取反用来检验
PID。USB协议规定了4类包,
令牌包PID1~0 为01,
数据包PID1~0为11
握手包PID1~0为10
特殊包PID1~0为00不同类的包又分成几种具体的包。
令牌包:用来启动一次USB传输。输出,输入,建立和帧起始。
设备描述符:一个设备只有一个设备描述符
typedef struct _USB_DEVICE_DESCRIPTOR_
 BYTE
        bLength,
 BYTE
        bDescriptorType,
 WORD bcdUSB.
 BYTE
       bDeviceClass,
 BTYE
        bDeviceSubClass.
 BYTE
       bDeviceProtol,
 BYTF
       bMaxPacketSize0.
 WORD idVenderI,
 WORD
       idProduct,
 WORD
       bcdDevice,
 BYTE
       iManufacturer.
 BYTE
       iProduct,
 BYTE
        iSerialNumber.
 BYTE
        iNumConfiguations
}USB_DEVICE_DESCRIPTOR;
bLength:描述符大小.固定为0x12.
bDescriptorType:设备描述符类型.固定为0x01.
bcdUSB: USB 规范发布号.表示了本设备能适用于那种协议,如2.0=0200,1.1=0110等.
bDeviceClass:类型代码(由USB指定)。当它的值是0时,表示所有接口在配置描述符里,并且所有接口是独立的。当它的值是1到FEH时,表示不同
的接口关联的。当它的值是FFH时,它是厂商自己定义的.
```

bDeviceSubClass:子类型代码(由USB分配).如果bDeviceClass值是0,一定要设置为0.其它情况就跟据USB-IF组织定义的编码.

usb描述符详细讲解 - 天池渔隐 - 博客园

```
bDeviceProtocol:协议代码(由USB分配). 如果使用USB-IF组织定义的协议,就需要设置这里的值,否则直接设置为0。如果厂商自己定义的可以设
bMaxPacketSize0:端点0最大分组大小(只有8,16,32,64有效).
idVendor:供应商ID(由USB分配).
idProduct:产品ID(由厂商分配).由供应商ID和产品ID,就可以让操作系统加载不同的驱动程序.
bcdDevice:设备出产编码.由厂家自行设置.
iManufacturer: 厂商描述符字符串索引. 索引到对应的字符串描述符. 为 0 则表示没有.
iProduct::产品描述符字符串索引. 同上.
iSerialNumber:设备序列号字符串索引.同上.
bNumConfigurations:可能的配置数.指配置字符串的个数
配置描述符: 配置描述符定义了设备的配置信息,一个设备可以有多个配置描述符
typedef struct _USB_CONFIGURATION_DESCRIPTOR_
  BYTE
        bLength,
        bDescriptorType,
  BYTE
  WORD wTotalLength,
  BYTE
        bNumInterfaces
  BYTE
        bConfigurationValue,
  BYTE
        iConfiguration,
  BYTE
        bmAttributes,
  BYTE
       MaxPower
}USB_CONFIGURATION_DESCRIPTOR;
bLength:描述符大小.固定为0x09.
bDescriptorType:配置描述符类型.固定为0x02.
wTotalLength:返回整个数据的长度.指此配置返回的配置描述符,接口描述符以及端点描述符的全部大小.
bNumInterfaces:配置所支持的接口数.指该配置配备的接口数量,也表示该配置下接口描述符数量.
bConfigurationValue:作为Set Configuration的一个参数选择配置值.
iConfiguration:用于描述该配置字符串描述符的索引.
bmAttributes:供电模式选择.Bit4-0保留,D7:总线供电,D6:自供电,D5:远程唤醒.
MaxPower:总线供电的USB设备的最大消耗电流.以2mA为单位.
接口描述符:接口描述符说明了接口所提供的配置,一个配置所拥有的接口数量通过配置描述符的bNumInterfaces决定
typedef struct _USB_INTERFACE_DESCRIPTOR_
  BYTF
        bLength,
  BYTE
       bDescriptorType,
  BYTE
        bInterfaceNumber,
  BYTE
        bAlternateSetting,
  BYTE
        bNumEndpoint,
  BYTE
        bInterfaceClass
  BYTE
        bInterfaceSubClass,
  BYTF
        bInterfaceProtocol,
  BYTF
        iInterface
}USB_INTERFACE_DESCRIPTOR;
bLength:描述符大小. 固定为0x09.
bDescriptorType:接口描述符类型.固定为0x04.
bInterfaceNumber: 该接口的编号.
bAlternateSetting:用于为上一个字段选择可供替换的位置.即备用的接口描述符标号.
bNumEndpoint:使用的端点数目.端点0除外.
bInterfaceClass: 类型代码(由USB分配)
bInterfaceSubClass:子类型代码(由USB分配).
bInterfaceProtocol:协议代码(由USB分配).
iInterface:字符串描述符的索引
端点描述符: USB设备中的每个端点都有自己的端点描述符,由接口描述符中的bNumEndpoint决定其数量
typedef struct _USB_ENDPOINT_DESCRIPTOR_
  BYTE
         bLength,
  BYTE
         bDescriptorType,
  BYTE
         bEndpointAddress,
  RYTF
         hmAttributes
  WORD
         wMaxPacketSize,
  RYTF
         bInterval
}USB_ENDPOINT_DESCRIPTOR;
bLength:描述符大小.固定为0x07.
bDescriptorType:接口描述符类型.固定为0x05.
bEndpointType: USB设备的端点地址. Bit7,方向,对于控制端点可以忽略,1/0:IN/OUT. Bit6-4,保留. BIt3-0:端点号.
bmAttributes:端点属性.Bit7-2,保留.BIt1-0:00控制,01同步,02批量,03中断.
wMaxPacketSize:本端点接收或发送的最大信息包大小.
```

usb描述符详细讲解 - 天池渔隐 - 博客园

bInterval:轮训数据传送端点的时间间隔.对于批量传送和控制传送的端点忽略.对于同步传送的端点,必须为1,对于中断传送的端点,范围为1-2 55.

字符串描述符: 其中字符串描述符是可选的. 如果不支持字符串描述符,其设备,配置,接口描述符内的所有字符串描述符索引都必须为 0 typedef struct _USB_STRING_DESCRIPTION_ {

BYTE bLength, BYTE bDescriptionType, BYTE bString[1]; }USB_STRING_DESCRIPTION;

bLength:描述符大小. 由整个字符串的长度加上bLength和bDescriptorType的长度决定.

bDescriptorType:接口描述符类型.固定为0x03.

bString[1]: Unicode编码字符串.

美注 - 5 粉丝 - 0

+加关注

« 上一篇: 常用的算法思想

» 下一篇: 树莓派 原理图 摄像头接口定义

发表于 2016-01-18 17:29 天池渔隐 阅读(7902) 评论(0) 编辑 收藏

0

刷新评论 刷新页面 返回顶部

0

注册用户登录后才能发表评论,请 <u>登录</u> 或 <u>注册</u>,<u>访问</u>网站首页。

【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码