

Done By: Joey Kang
DSI23
Capstone Project

TABLE OF CONTENTS

O1BACKGROUND

O3
DATA MODELLING

Including Problem Statement

Including Model Evaluation, Topic Modelling

O2 DATA PROCESSING

Including Data Cleaning, Exploratory Data Analysis

04CONCLUSION/
RECOMMENDATIONS

O1 BACKGROUND

BACKGROUND

- COVID-19 has caused unemployment rate to increase due to the economic slowdown
- Rate of employment fraud has risen by 30% during the ongoing pandemic period
- More than 80% of job seekers report being on guard or very concerned about job scams
- Easy to publish job ads on job portals or on messaging apps

BACKGROUND

PROBLEM STATEMENT

Given the increasing number of job scams, we aim to train a classifier to predict whether jobs are real or fake to prevent job-seekers from falling prey to job scams. The classifier will be incorporated to job portals such that if a job listing is predicted to be fraudulent or fake, the listing will not be published on the portal. A successful model would be one with a high ROC AUC score (>0.9) and high recall score.

O2 DATA PROCESSING

Exploratory Data Analysis,

Text Pre-processing

DATA SET

- 17,880 rows and 18 columns
 - Include both structured and unstructured data
- Data compiled by the
 University of the Aegean,
 Laboratory of Information &
 Communication Systems
 Security
- Target Variable:Fraudulent (1 or 0)

DATA PROCESSING

Data Imputation

Backfill categorical columns (i.e. required_experience, required_education, employment_type)

Grouping Categories

Create more generic groups for industry to reduce the number of features

Text Processing

Combined title, description and requirements into a single text column

TEXT PROCESSING

Remove non-english text

Remove links, non-alphabetic characters Tokenize and remove stopwords

Lemmatization

Imbalanced Classification Problem

Majority of the jobs were real (i.e. fraudulent = 0) and only very few were fake (i.e. fraudulent = 1)

May be difficult for the model to predict fake job ads

Required Experience

Interview Questions

 Proportion of fake jobs which did not require interview is much higher than those which required interview → simpler hiring process for fake jobs

Company Logo

- Most real jobs have a company logo while most fake jobs do not
- Having a company logo increases the credibility of the job

Common Words

O3 DATA MODELLING

Model Evaluation

Topic Modelling

MODELLING

Vectorize Text Variables

Dummify Categorical Variables Include Numerical Variables

Column Transformer

SMOTE

Fit to Model

LOGISTIC REGRESSION

Count Vectorizer

Train Acc: 1.000

Test Acc: 0.966

ROC AUC: **0.925**

Recall: 0.664

TFIDF Vectorizer

Train Acc: 0.961

Test Acc: 0.948

ROC AUC: **0.946**

Recall: **0.801**

[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes

EXTREME GRADIENT BOOSTING

Count Vectorizer

Train Acc: 1.000

Test Acc: 0.974

ROC AUC: 0.917

Recall: 0.582

TFIDF Vectorizer

Train Acc: 1.000

Test Acc: 0.978

ROC AUC: **0.945**

Recall: 0.610

[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes

RANDOM FOREST

Count Vectorizer

Train Acc: 1.000

Test Acc: 0.975

ROC AUC: 0.951

Recall: 0.459

TFIDF Vectorizer

Train Acc: 1.000

Test Acc: 0.977

ROC AUC: **0.950**

Recall: 0.466

[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes

MULTINOMIAL NAIVE BAYES

Count Vectorizer

Train Acc: 0.962

Test Acc: 0.953

ROC AUC: 0.923

Recall: 0.664

TFIDF Vectorizer

Train Acc: 0.922

Test Acc: 0.922

ROC AUC: **0.919**

Recall: 0.712

[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes

K-NEAREST NEIGHBORS

Count Vectorizer

Train Acc: 0.927

Test Acc: 0.892

ROC AUC: 0.877

Recall: **0.760**

TFIDF Vectorizer

Train Acc: 0.928

Test Acc: 0.896

ROC AUC: **0.862**

Recall: **0.760**

[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes

MODEL RESULTS

Model	ROC AUC Score	Recall Score	
Logistic Regression (tvec)	0.946	0.801	
Extreme Gradient Boost (tvec)	0.945	0.610	
Random Forest (cvec)	0.951	0.459	
Random Forest (tvec)	0.950	0.466	
Multinomial Naive Bayes (cvec)	0.923	0.664	
K-Nearest Neighbors (cvec)	0.877	0.760	

^[1] The closer the ROC AUC is to 1, the better the model is at distinguishing between the two classes [2] Recall measures the true positive rate: TP/TP + FN

FEATURE IMPORTANCE

Fake Jobs commonly involve:

- Engineering
- Data entry
- Administrative assistant

TOPIC MODELLING

Fake Job ads are clustered around 4 topics, with majority in Topic 0 which is centred around engineering/business management

	Topic	Count	Name
0	0	403	0_system_management_engineering_business
1	1	35	1_position_job_suppliescomputer_distractionsmust
2	2	35	2_care_nursing_patient_rn
3	3	13	3_glass_optical_optician_lens

TOPIC MODELLING

Top 3 topics of real job ads:

- Design
- Quality Assurance
- Java

	Topic	Count	Name
0	-1	3641	-1_digital_want_startup_industry
1	0	221	0_designer_visual_creative_photoshop
2	1	215	1_testing_qa_assurance_automation
3	2	206	2_java_xml_oracle_framework
4	3	195	3_hr_recruitment_recruiting_recruiter
5	4	183	4_manufacturing_maintenance_electrical_repair
6	5	179	5_admin_funding_apprenticeship_na
7	6	168	6_accounting_financial_accountant_finance
8	7	166	7_sql_database_oracle_server
9	8	163	8_ui_designer_visual_designing
10	9	156	9_office_assistant_executive_calendar
11	10	138	10_campaign_communication_advertising_brand

04 CONCLUSION

Conclusion

Recommendations

MODEL IMPROVEMENTS

Model correctly predicts
the fraudulent jobs 80% of
the time and prevents
them from being published
on job portals → less
job-seekers falling prey to
job scams

Additional/updated data on fraudulent jobs or additional features such as platform the ad was posted on

Further fine-tune
hyperparameters,
understand context before
removing words or try
other oversampling
techniques

RECOMMENDATIONS

Conduct background checks on the company

If the job posting does not come with a company logo/profile, do some research on the company (ask around/check online for reviews)

Be wary of 'too good to be true' jobs

If the job is high paying and technical but has low requirements, be wary

Look for jobs with more specialised skills

Fraudulent jobs generally require basic skills, to attract job-seekers who can easily fulfil this criteria

Happy Graduation!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution