Math 971 Algebraic Topology

Homework # 2 Solutions

A continuous surjection from a compact space to a Hausdorff space is (a closed map hence) a quotient map. (Which makes building induced maps a whole lot more straightforward.)

If $\gamma: I \to X$ is a path in X beginning at x_0 and ending at x_1 , then the induced change of basepoint isomorphism $\widehat{\gamma}: \pi_1(X, x_0) \to \pi_1(X, x_1)$ is $\widehat{\gamma}([\eta]) = [\overline{\gamma} * \eta * \gamma]$ (to get the basepoints to work out right).

(p.38, # 5): Every map $\gamma: S^1 \to X$ is homotopic to a constant \Leftrightarrow every map $\gamma: S^1 \to X$ extends to a map $\Gamma: \mathbb{D}^2 \to X \Leftrightarrow \pi_1(X, x_0) = \{1\}$ for every $x_0 \in X$.

We will prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. We will think of S^1 as the unit circle in $\mathbb{R}^2 = \mathbb{C}$, and \mathbb{D}^2 as the unit disk in \mathbb{R}^2 .

- $(1) \Rightarrow (2)$: Given $\gamma: S^1 \to X$, by (1), there is a homotopy $H: S^1 \times I \to X$ with $H(z,0) = \gamma(z)$ and $H(z,1) = x_0$ for some $x_0 \in X$. If we define a map $h: S^1 \times I \to \mathbb{D}^2$ by h(z,t) = h((x,y),t) = (1-t)z = ((1-t)x,(1-t)y). As a function of 3 variables, it is continuous, so restricting domain and range it is cts. The map h factors through the quotient space $Z = (S^1 \times I)/(S^1 \times \{1\})$, since on the 1 end h is 0. The resulting map $\overline{h}: Z \to \mathbb{D}^2$ is a cts bijection from (quotient of compact, hence) compact to Hausdorff, so it is a homeomorphism. H also factors through Z, since on the 1 end H is constant; call the resulting map \overline{H} . Then $\Gamma = \overline{H} \circ \overline{h}^{-1}: \mathbb{D}^2 \to X$ is the required map extending γ .
- $(2)\Rightarrow (3)$: Given an element $[\gamma]\in \pi_1(X,x_0), \ \gamma:(I,\partial I)\to (X,x_0)$ factors through the (quotient) map $f:I\to S^1$ given by $f(t)=e^{2\pi it}$, to give a map $g:S^1\to X$. By hypothesis, this map extends to a map $G:\mathbb{D}^2\to X$. If we define a map $K:I\times I\to \mathbb{D}^2$ by $K(t,s)=(s,0)+(1-s)e^{2\pi it}=(s+(1-s)\cos(2\pi t),(1-s)\sin(2\pi t))$, then K(t,0)=f(t) and K(t,1)=(1,0). Then $H=G\circ K:I\times I\to X$ has $H(t,0)=\gamma(t)$ and $H(t,1)=G(1,0)=x_0$, and $H(0,s)=H(1,s)=K(1,0)=x_0$. So H represents a homotopy, rel basepoint, from γ to the constant map. So $\pi_1(X,x_0)=\{1\}$.
- $(3) \Rightarrow (1)$: Given $\gamma: S^1 \to X$, composing with the (quotient) map f above gives a based loop $g = \gamma \circ f: (I, \partial I) \to (X, x_0)$, where $x_0 = \gamma(1, 0)$. By hypothesis, this map is null-homotopic, so there is a map $H: I \times I \to X$ with H(t, 0) = g(t), and $H(t, 1) = H(0, s) = H(1, s) = x_0$ for all $t, s \in I$. This map factors through the (quotient) map $f \times Id: I \times I \to S^1 \times I$ to give an induced map $\overline{H}: S^1 \times I \to X$ with $\overline{H}(z, 0) = \gamma(z)$ and $\overline{H}(z, 1) = x_0$. So γ is homotopic to a constant map.

X is simply-connected \Leftrightarrow all maps $S^1 \to X$ are homotopic to one another:

(\Rightarrow): Given two maps $g, h: S^1 \to X$, composing them with the map $p: I \to S^1$, $p(t) = (\cos(2\pi t), \sin(2\pi t))$ gives us a pair of based loops γ, η , based at $g(1,0) = x_0$ and $h(1,0) = x_1$ respectively. By hypothesis, each one represents the trivial element in $\pi_1(X, x_{\epsilon})$, so there are homotopies $G, H: I \times I \to X$ between these loops and their respective constant maps. Because these maps are constant on $I \times \partial I$, they factor through the map f above to induce maps $G', H': S^1 \times I \to X$ with restriction to $S^1 \times \{1\}$ the (appropriate) constant map. Since X is 0-connected, there is a path $\delta: I \to X$ with $\delta(0) = x_0$ and $\delta(1) = x_1$.

Then defining $K: S^1 \times I \to X$ by $K(x,t) = \delta(t)$ we have a continuous map (since

$$K^{-1}(\mathcal{U}) = S^1 \times \delta^{-1}(\mathcal{U}). \text{ And finally, defining } R: S^1 \times I \to X \text{ by}$$

$$R(x,t) = \begin{cases} G'(x,3t) &, \text{ if } t \leq 1/3 \\ K(x,3t-1) &, \text{ if } 1/3 \leq t \leq 2/3 \\ H'(x,3-3t) &, \text{ if } t \geq 2/3 \end{cases} \text{ defines a homotopy from } g \text{ to } h \text{ .}$$

 (\Leftarrow) : We wish to show both that X is path-connected and $\pi_1(X) = \{1\}$. For path connected, given $x_0, x_1 \in X$ for the constant maps $g, h: S^1 \to X$ constant at these points, the hypothesis implies that there is a homotopy $H: S^! \times I \to X$ between them. Then the path $\gamma: I \to X$ given by $\gamma(t) = H((1,0),t)$ has $\gamma(0) = H((1,0),0) = g(1,0) = x_0$ and $\gamma(1) = H((1,0),1) = h(1,0) = x_1$. So X is path connected. And since every map $g: S^1 \to X$ is homotopic to any constant map, by $(1) \Rightarrow (2) \Rightarrow (3)$ above, $\pi_1(X, x_0) = \{1\}$ for every x_0 , so X is 1-connected. So X is simply-connected.

(p.39, # 20): If $H: X \times I \to X$ is a cts homotopy from H(x,0) = x to H(x,1) = x, then the loop defined by $\gamma(t) = H(x_0, t)$ represents an element in the center of $\pi_1(X, x_0)$. By Lemma 1.19 of the text, the change of basepoint isomorphism $\widehat{\gamma}: \pi_1(X, x_0) \to \pi_1(X, x_0)$ given by $\widehat{\gamma}[\eta] = [\overline{\gamma} * \eta * \gamma]$ satisfies $H_{0*} = \widehat{\gamma} \circ H_{1*}$. But since $H_0 = H_1 = Id$, so their induced homomorphisms are Id, we have $Id = \widehat{\gamma} \circ Id$, so $\widehat{\gamma} = Id$. But this means that for all η , $[\overline{\gamma} * \eta * \gamma] = [\eta]$, so $[\gamma][\eta] = [\eta][\gamma]$ for every $[\eta] \in \pi_1(X, x_0)$. So $[\gamma]$ commutes with every element of $\pi_1(X, x_0)$, so it is central.

(p.53, #8): Compute $\pi_1(X)$ where X is obtained from two copies of the torus $S^1 \times S^1$ by identifying the circle $S^1 \times \{x_0\}$ on one with the corresponding circle on the other.

A cheap way to do this is to identify X as a product space itself. X is the quotient space of $S^1 \times S^1 \times \{1,2\}$ where we identify $(x,x_0,1)$ with $(x,x_0,2)$. But this is the same as taking the product of S^1 with the quotient Z of $S^1 \times \{1,2\}$ where we identify $(x_0,1)$ with $(x_0,2)$. But Z is a bouquet of two circles; giving each copy of S^1 a cell structure with vertex x_0 and one 1-cell, Z then has one vertex and two 1-cells, which is what a bouquet of two circles is. Then we have that $\pi_1(Z) = \langle a, b \mid \rangle = F(a, b)$ is free on two generators, so $\pi_1(X) = \pi_1(S^1 \times Z) \cong \pi_1(S^1) \times \pi_1(Z) = \mathbb{Z} \times F(a,b)$.

Or if you prefer a cell structure approach, each torus can be given a cell structure with one 0-cell, two 1-cells (one of which, with the vertex, is the circle $S^1 \times \{x_0\}$), and one 2-cell whose boundary spells out the commutator of the two 1-cells. X therefore has one 0-cell, three 1-cells (since one from each torus have been identified), and two 2-cells. Thinking of this as gluing two 2-cells to a bouquet of 3 circles, whose boundaries map to [a, b] and [b, c], we have $\pi_1(X) \cong \langle a, b, c \mid aba^{-1}b^{-1}, bcb^{-1}c^{-1} \rangle$.

The motivated student can verify that these two groups are in fact isomorphic!

