21/10/13.	Maths Example: Find the Surface area of the purabolos z=xz+y below the place z=1.	
The Co	Solution: PREVIOUS SHEET -	
Hausel	S= $\int \int J_1 + u x^2 + u y^2 dA$ It easier if we use polar coordinates $\Rightarrow p \cos \theta = y \sin \theta$	
	$\frac{1}{2} = \mathbf{p}^{2} \qquad (\mathbf{p}\cos\theta)^{2} = \mathbf{p}^{2} \qquad \mathbf{p}\cos\theta^{2} = \mathbf{p}^{2}$ $S = \int_{0}^{2\pi} \left[\int_{0}^{\pi} \sqrt{1+4\mathbf{p}^{2}} \mathbf{p} d\mathbf{p} \right] d\theta$ $= 2\pi \int_{0}^{\pi} \int_{0}^{\pi} \sqrt{1+4\mathbf{p}^{2}} \mathbf{p} d\theta$ $G = \int_{0}^{\pi} \mathbf{p} d\theta = 2\mathbf{p} d\theta$	
	$S = 2\pi \int_{0}^{\pi} \sqrt{124t} \frac{dt}{2t}$ $= 2\pi \left(\frac{1}{2}\right) \left(\frac{1}{4} + t\right)^{\frac{3}{2}} \left(\frac{1}{4}\right) \left(\frac{1}{4} - 0\right)$ $= 2\pi \int_{0}^{\pi} \left(5^{\frac{3}{2}} - 1\right) = \frac{\pi}{4} \left(5\sqrt{5} - 1\right) \approx 5.33$	
	Only works with $z = t x_i y $ Lamina A lamina is a region of spulp with mass in and a variable density $\delta(x_i y)$ the mass is given by $M = \int_S \delta(x_i y) dh$	
6	The centre of most centre of growty of the lamina is (\bar{x},\bar{y}) where $\bar{x} = \frac{1}{m} \int_{R} x \delta(xy) dA$	

