Идентификация и диагностика. Лабораторная работа №2. Активный эксперимент идентификации нелинейной системы

Сформировать оптимальный D-план экспериментов для получения модели исследуемой системы с заданной точностью при различных условиях.

Модель задана формулой y = f(X)

Программа работы:

В работе рассматриваются следующие виды моделей:

linear – линейная, interaction – линейная + попарные произведения, purequadratic – квадратичная, quadratic – квадратичная + попарные произведения.

- 1. Исследовать точность каждой модели, предполагая, что входные величины не имеют погрешности:
 - 1.1. Определить диапазон изменения переменных;
- 1.2. Сформировать D-план (функция **cordexch**), используя минимально возможные значения параметра **NRUNS** (количество экспериментов);
 - 1.3. Определить коэффициенты аппроксимирующего полинома (функция **rstool**);
- 1.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.
- 2. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 1.2-1.4 для различных значений количества экспериментов в плане **NRUNS**).
- 3. Провести моделирование на стохастической системе, то есть исследовать точность каждой модели, предполагая, что обучение происходит при снятии значений входных данных с заданной инструментальной погрешностью:
 - 3.1. Определить диапазон изменения переменных;
- 3.2. Сформировать D-план (функция **cordexch**), используя минимально возможные значения параметра **NRUNS** (количество экспериментов);
 - 3.3. Определить коэффициенты аппроксимирующего полинома (функция **rstool**);
- 3.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.
- 4. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 3.2 3.4 для различных значений количества экспериментов в плане **NRUNS**).
 - 4. Сформулировать выводы о проделанной работе, оформить отчет.

Вариант	Функция модели	Инструментальная погрешность
1	$y = 2x_1 + x_3^{x_1} + x_2 x_4 x_5$	3%
2	$y = 3x_1x_2 + x_2x_4x_5 + x_1x_3x_5$	5%
3	$y = x_1^2 x_2 + x_2 x_3^2 x_5 + x_4^3$	8%
4	$y = x_1^3 x_5 + x_2 + x_4^{x_3}$	10%
5	$y = x_4^3 x_5 + x_1^2 x_2^2 x_3$	4%
6	$y = 4x_2 + x_1^{x_3} + x_1 x_4 x_5$	6%
7	$y = x_2 x_5 - x_1 x_4 x_5 + 3x_2 x_3 x_5$	10%
8	$y = x_1 x_2^2 + x_3 x_4^2 x_5 + x_1^3$	3%
9	$y = x_2^3 x_3 + x_1 + x_4^{x_5}$	5%
10	$y = x_1^3 x_4 + x_2^2 x_3^2 x_5$	8%
11	$y = x_3^2 x_2 + x_1 x_2 x_5 + x_4^2$	4%
12	$y = -x_3 + x_1^{x_2} + 2x_3 x_4 x_5$	6%
13	$y = x_4^3 x_5 + x_1^2 x_2 x_3 - x_3$	7%
14	$y = 2x_2 + x_1^{x_3} + x_1 x_4 x_5$	4%
15	$y = 3x_1x_3 + x_3x_4x_5 + x_2x_3x_5$	6%
16	$y = x_1^2 x_2 + x_3 x_4^2 x_5 + x_4^3$	9%
17	$y = x_1^3 x_5 + x_2 + x_3^{x_4}$	11%
18	$y = x_4^3 x_5 + x_2^2 x_3^2 x_1$	5%
19	$y = 4x_2 + x_3^{x_1} + x_1 x_4 x_5$	5%
20	$y = x_2 x_5 - x_1 x_3 x_5 + 3x_3 x_4 x_5$	9%
21	$y = x_1 x_3^2 + x_3 x_5^2 + x_1^3$	2%
22	$y = x_2^3 x_3 + x_1 + x_5^{x_4}$	4%
23	$y = x_1 x_2^3 x_3 + x_3^2 x_4^2 x_5$	7%
24	$y = x_2^2 x_3 + x_1 x_2 x_5 + x_4^2$	5%
25	$y = -x_3 + x_2^{x_1} + 2x_3 x_4 x_5$	6%