Advanced Sorting Algorithms Linear Data Structures Amortization

Algorithms and Data Structures
COMP3506/7505

Week 3 – Sorting & Linear DS

- 1. Bucket-sort and radix-sort
- 2. Arrays
- 3. Linked Lists
- 4. Extensible Lists and Amortization

Comparison Sorts

 Sorted order determined by comparing keys _{if A[k] < A[k+1]:}

r A[K] < A[K+1]: # Do some swapping

- Examples
 - Bubble, insertion, selection, merge and quick sorts
 - Everything we've seen so far!

"Hang on, last week you said"

- I told you that it doesn't get any better
 than mergesort
 - At least, in terms of the *number of* comparisons that must be done to sort the
 input
 - That is, any comparison-based sorting algorithm must have $\Omega(n \log_2 n)$ comparisons in the worst case

Determining Performance

Derive a worst-case lower bound on running time of any algorithm that uses comparisons to sort n elements, x₁, x₂,

 \dots , x_n

Counting Comparisons

 Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Think Permutations...

Decision Tree Height

- Height of decision tree is a lower bound on running time
- Every unique input permutation must lead to a separate leaf output
 - if not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong
- □ There are $n!=1\cdot 2\cdot ...\cdot n$ leaves height is at least $\log (n!)$

Proof.

$$2^{h} \ge n! \Rightarrow h \ge \log(n!)$$

$$= \log(n(n-1)(n-2)\cdots(2))$$

$$= \log n + \log(n-1) + \log(n-2) + \cdots + \log 2$$

$$= \sum_{i=2}^{n} \log i$$

$$= \sum_{i=2}^{n/2-1} \log i + \sum_{i=n/2}^{n} \log i$$

$$\ge 0 + \sum_{i=n/2}^{n} \log \frac{n}{2}$$

$$= \frac{n}{2} \cdot \log \frac{n}{2}$$

$$= \Omega(n \log n)$$

Lower Bound

- Comparison-based sorting algorithms takes at least log(n!) time
- □ ∴ any such algorithm takes at least

■
$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{n/2} = (n/2)\log(n/2)$$

- □ Any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time
 - merge and heap sorts are asymptotically optimal
 - no other comparison sorts are faster by more than a constant factor

Can We Do Better?

- Do we have to compare every key to sort data?
- □ Do we have to compare anything???
- □ Idea: Use a data structure to help us...

Bucket-Sort

- □ Let S be a list of n (key, element) items with keys in the range [0, N-1]
- Bucket-sort uses the keys as indices into an auxiliary array B of lists (buckets)
 - Phase 1: Empty list S by moving each entry
 (k, o) into its bucket B[k]
 - Phase 2: For i = 0, ..., N-1, move the entries of bucket B[i] to the end of list S

□ Key range [0, 9]

[7, d] [1, c] [3, a] [7, g] [3, b] [7, e]

■ Key range [0, 9]

□ Key range [0, 9]

Bucket-Sort

Algorithm *bucketSort(S)*:

Input: sequence S of n entries with integer keys in the range [0, N-1]

Output: sequence *S* sorted in nondecreasing order of the keys

 $B \leftarrow$ array of N empty sequences for each entry e in S do $k \leftarrow$ key of eremove e from Sinsert e at the end of bucket B[k]for $i \leftarrow 0$ to N-1 do for each entry e in B[i] do remove e from B[i]insert e at the end of S

Bucket-Sort

Algorithm *bucketSort(S)*:

Input: sequence S of n entries with integer keys in the range [0, N-1]
Output: sequence S sorted in nondecreasing order of the keys

 $B \leftarrow$ array of N empty sequences for each entry e in S do $k \leftarrow$ key of eremove e from Sinsert e at the end of bucket B[k]for $i \leftarrow 0$ to N-1 do for each entry e in B[i] do remove e from B[i]insert e at the end of S

Analysis

- Initialising the bucket array takes O(N) time
- Phase 1 takes *O*(*n*) time
- Phase 2 takes O(n + N) time
- □ Bucket-Sort takes O(n + N) time

Properties and Extensions

- Stable Sort Property
 - Relative order of any two items with the same key is preserved after the execution of the algorithm

Lexicographic Order

- ullet d-tuple is a sequence of d keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the i-th dimension of the tuple
 - e.g. Cartesian coordinates of a point in space are a 3-tuple
 - e.g. ant < apple</p>

Lexicographic Order

 Lexicographic order of two *d*-tuples is recursively defined as follows

$$(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d)$$
 \Leftrightarrow
 $x_1 < y_1 \lor x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d)$

 i.e. tuples are compared by the first dimension, then by the second dimension, etc.

$$\bullet$$
 (2, 1, 4) < (3, 2, 5) since 2 < 3

$$\bullet$$
 (2, 1, 4) < (2, 2, 5) since 2 = 2 and 1 < 2

$$\bullet$$
 (2, 1, 4) < (2, 1, 5) since 2 = 2, 1 = 1 and 4 < 5

Lexicographic-Sort (aka Tuple Sort)

- C_i comparator that compares two tuples by their *i*-th dimension
- stableSort(S, C) stable sorting algorithm that uses comparator C
- lexicographicSort sorts a sequence of d-tuples in lexicographic order by executing stableSort, d times
 - once per dimension
- Runs in $O(d \cdot T(n))$ time
 - where T(n) is the running time of *stableSort*

${\bf Algorithm}~ \textit{lexicographicSort}(S)$

Input sequence *S* of *d*-tuples **Output** sequence *S* sorted in

lexicographic order

for $i \leftarrow d$ downto 1 $stableSort(S, C_i)$

Example

Radix-Sort

- Specialisation of lexicographic-sort
 - uses bucket-sort as the stable sorting algorithm in each dimension
- Applicable to tuples
 where the keys in each
 dimension *i* are integers
 in the range [0, N-1]
- □ Runs in time $O(d \cdot (n+N))$

Algorithm radixSort(S, N)

Input sequence *S* of *d*-tuples such that $(0, ..., 0) \le (x_1, ..., x_d)$ and $(x_1, ..., x_d) \le (N-1, ..., N-1)$ for each tuple $(x_1, ..., x_d)$ in *S*

Output sequence *S* sorted in lexicographic order

for $i \leftarrow d$ downto 1 bucketSort(S, N)

Radix-Sort for Binary Numbers

- Consider a sequence of nb-bit integers
- Represent each element as a b-tuple of integers in the range [0, 1] and apply radix-sort with N = 2
- □ Runs in $b \cdot (n+2)$ or $O(b \cdot n)$ time

Algorithm binaryRadixSort(S)

Input sequence *S* of *b*-bit integers

Output sequence *S* sorted

replace each element x of S with item (0, x)

for $i \leftarrow 0$ to b - 1

replace key k of item (k, x) with bit x_i of x

bucketSort(S, 2)

Sorting a sequence of 4-bit integers

Memory Usage

- Original sequence and bucket array
 - O(n+N)
- □ Sort: 10, 999, 3, 100 000 000, 20
- - $\bullet O(5 + 100\ 000\ 000)$ $\bullet O(5 + 2)$
- Bucket Sort
 (Binary) Radix Sort

- (Bytewise) Radix Sort
 - O(5 + 256)

Week 3 – Sorting & Linear DS

- 1. Bucket-sort and radix-sort
- 2. Arrays
- 3. Linked Lists
- 4. Extensible Lists and Amortization

General Linear Structures

A linear structure is one whose elements can be seen as being in a sequence. That is, one element follows the next.

- Lists
- Stacks
- Queues
- Vectors
- □ Recall the static sequence from Lec 1

Static Sequence ADT

 \Box Given a list of items X in some order: $x_1, x_2, ..., x_n$

build(X): Make new data structure for items in X

len(X): Return n

get(i): Return the element at position i

set(i, x): Set x_i to x

 Note that the way we store the data and compute those functions depend on the data structure we use

Dynamic Sequence ADT

 \Box Given a list of items X in some order: $x_1, x_2, ..., x_n$

build(X): Make new data structure for items in X

len(X): Return n

get(i): Return the element at position i

 $set(i, x) : Set x_i to x$

add(x): Add x to X

Implementing Linear Structures

- Arrays: Sequence of consecutive memory cells
- □ Size must be specified at creation (static!)
- What does it get us?
 - Constant time random access nice!
 - But what if we want to insert something?
 - What if we need more space?

Insert the value 'Canberra', so that the array maintains sorted order

 0	0x	'Brisbane'
 1	0x	'Darwin'
 2	0x	'Hobart'
3	0x	'Melbourne'
 4	0x	'Perth'
 5	0x	'Sydney'
 6	null	
 7	null	
 8	null	'Canberra'
 9	null	
 		-

	0	0x	-	'Brisbane'
	1	0x	-	'Darwin'
	2	0x		'Hobart'
	3	0x		'Melbourne'
	4	0x		'Perth'
	5	null		
	6	0x		'Sydney'
	7	null		
	8	null		'Canberra'
	9	null		

Arrays (insert)

Arrays (insert)

0	0x	'Brisbane'
1	0x	'Canberra'
2	0x	'Darwin'
3	0x	'Hobart'
4	0x	'Melbourne'
5	0x	'Perth'
6	0x	'Sydney'
7	null	
8	null	
9	null	

Array Implementation Efficiency

- Accessing an element (by index)
 - **O**(1)
- Iterating over elements
 - O(n)
- □ Insert / Delete element
 - O(n)
- Memory usage
 - O(n)

Week 3 – Sorting & Linear DS

- 1. Bucket-sort and radix-sort
- 2. Arrays
- 3. Linked Lists
- 4. Extensible Lists and Amortization

Singly Linked List

- Concrete data structure
 - sequence of nodes
 - head pointer
- Nodes store
 - element
 - link to next node

Singly Linked List

Doubly Linked List

Circularly Linked List

Linked List Sketch

A python linked list

```
class Node:
 def __init__(self, data):
  self.__data = data
  self. next = None
 def set_data(self, data):
  self.__data = data
  def get_next(self):
   return self.__next
```

```
class LinkedList:
 def __init__(self):
  self.__head = None
  self. size = 0
 def insert_to_front(self, node):
  if self. head != None:
    node.set_next(self.get_head())
  self.__head = Node
  self.size += 1
```

Linked List Implementation Efficiency

- Accessing head
 - **O**(1)
- Iterating over elements
 - O(n)
- Memory usage
 - O(n)

Data Structure Augmentation

- Accessing tail
 - O(n) ⊗
 - How can we do better? Easy!

```
class LinkedList:
    def __init__(self):
        self.__head = None
        self.__tail = None
        self.__size = 0
```

Common Bugs

Week 3 – Sorting & Linear DS

- 1. Bucket-sort and radix-sort
- 2. Arrays
- 3. Linked Lists
- 4. Extensible Lists and Amortization
- 5. Comparing Linear Structures

Example: Sequence of List operations

Method	Return Value	List Contents
add(0, A)	_	(A)
add(0, B)	_	(B, A)
get(1)	A	(B, A)
set(2, C)	error	(B, A)
add(2, C)	_	(B, A, C)
add(4, D)	error	(B, A, C)
remove(1)	Α	(B, C)
add(1, D)	_	(B, D, C)
add(1, E)	_	(B, E, D, C)
get(4)	error	(B, E, D, C)
add(4, F)	_	(B, E, D, C, F)
set(2, G)	D	(B, E, G, C, F)
get(2)	G	(B, E, G, C, F)

Array Lists = Extensible Lists = Growable Arrays = Python Lists = ...

- An obvious choice for implementing the list
 ADT is to use an array, A
- get(i) and set(i,e)

Insertion

- \square add(i, o) make room for the new element
- □ Worst case (i = 0), takes O(n) time

Removal

- \neg remove(i) fill the hole left by the removed element
- □ Worst case (i = 0), takes O(n) time

Performance

- Array-based implementation of a dynamic list
 - space used by the data structure is O(n)
 - accessing the element at i takes O(1) time
 - add and remove run in O(n) time
- □ *add* when array is full
 - instead of throwing an exception
 - replace the array with a larger one ...

Extensible List

- push(o)/add(o)/append(o): adds element o at the end of the list
- How large should the new array be if we run out of capacity?
 - Incremental strategy
 - \blacksquare increase size by a constant c
 - Doubling strategy
 - double the size

Extensible List

push(o)/add(o)/append(o): adds element o at the end of the list

```
Algorithm push(o)

if capacity = S.length - 1 then

A \leftarrow new \ array \ of \ size \ [something \ larger]

capacity = [new \ larger \ value]

for i \leftarrow 0 to n-1 do

A[i] \leftarrow S[i] // copy stuff!

S \leftarrow A // update reference to new list

S[n] \leftarrow o
```

Comparison of Strategies

- Compare incremental and doubling strategies
 - Analysing total time T(n) needed to perform a series of n push operations
- Amortised time of a push operation is the average time taken by a push operation over the series of operations
 - i.e. $T(n) \div n$
 - Amortization Intuition: Chocolate...

Incremental Strategy Analysis

- Over n push operations, array is replaced k = n/c times, where c is a constant
 - EG: If we extend by c=4 elements each time:
 - After 4 pushes, we extend (n = 4, k = 4/4 = 1)
 - After 4 more pushes, we extend again (n = 8, k = 8/4 = 2)
 - **•** ...
 - After n pushes, we have extended k=n/c times.

Incremental Strategy Analysis

- □ Over n push operations, array is replaced k = n/c times, where c is a constant
- \Box Total time T(n) of a series of n push operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + c(k(k + 1)/2)$

- \Box Since c is a constant, T(n) is $O(n + k^2)$, i.e. $O(n^2)$
- □ Thus, the amortised time of push is $T(n) / n = n^2/n = O(n)$

Doubling Strategy Analysis

- \Box Array is replaced $k = \log_2 n$ times
 - \Box Total time T(n) of a series of n push operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k}$$
= $n + 2^{k+1} - 1$ [geometric series]
= $n + 2(2^{k}) - 1$
= $n + 2(2^{\log n}) - 1$
= $3n - 1$

- \Box T(n) is O(n)
- \square Amortised time of push is $T(n) \div n = O(1)$

Further Reading and Up Next

- Data Structures and Algorithms in Python
 - Chapter 5
 - Chapter 7.1 to 7.3
 - Chapter 12.4
- Introduction to Algorithms
 - Chapter 8
 - Chapter 10.1, 10.2