Monte Carlo Algorithms

Shusen Wang

Application 1: Calculating Pi

- We already know $\pi \approx 3.141592653589 \dots$
- Pretend we do not know the value of π .
- Can we find it out (approximately) using a random number generator?

• Assume (x, y) is a point sampled from the square uniformly at random.

- Assume (x, y) is a point sampled from the square uniformly at random.
- What is the probability that (x, y) is in the circle?

- Assume (x, y) is a point sampled from the square uniformly at random.
- What is the probability that (x, y) is in the circle?
- Area of the square is $A_1 = 2^2 = 4$.
- Area of the circle is $A_2=\pi r^2=\pi$.
- Probability: $P = \frac{A_2}{A_1} = \frac{\pi}{4}$.

- Suppose n points are uniformly sampled from $[-1, 1] \times [-1, 1]$.
- Then, in expectation, $P_n = \frac{\pi n}{4}$ points are in the circle.

- Assume (x, y) is a point sampled from the square uniformly at random.
- What is the probability that (x, y) is in the circle?
- Area of the square is $A_1 = 2^2 = 4$.
- Area of the circle is $A_2=\pi r^2=\pi$.
- Probability: $P = \frac{A_2}{A_1} = \frac{\pi}{4}$.

- Suppose n points are uniformly sampled from $[-1, 1] \times [-1, 1]$.
- Then, in expectation, $Pn = \frac{\pi n}{4}$ points are in the circle.

- Given a point (x, y), how do you know whether (x, y) is in the circle?
- If $x^2 + y^2 \le 1$, then it is in the circle.

- Suppose n points are uniformly sampled from $[-1, 1] \times [-1, 1]$.
- Then, in expectation, $P_n = \frac{\pi n}{4}$ points are in the circle.

- We found m points in the circle.
- If n is big, then $m \approx \frac{\pi n}{4}$.
- Thus, $\pi \approx \frac{4m}{n}$.

- Suppose n points are uniformly sampled from $[-1, 1] \times [-1, 1]$.
- Then, in expectation, $P_n = \frac{\pi n}{4}$ points are in the circle.

• Law of large numbers:

$$\frac{4m}{n} \to \pi$$
, as $n \to \infty$.

- Suppose n points are uniformly sampled from $[-1, 1] \times [-1, 1]$.
- Then, in expectation, $Pn = \frac{\pi n}{4}$ points are in the circle.

• Law of large numbers:

$$\frac{4m}{n} \to \pi$$
, as $n \to \infty$.

• Concentration bound:

$$\left|\frac{\frac{4m}{n}-\pi\right|=O\left(\frac{1}{\sqrt{n}}\right).$$

n points are sampled from the square; m are in the circle. Then $\pi \approx \frac{4m}{n}$.

n points are sampled from the square; *m* are in the circle. Then $\pi \approx \frac{4m}{n}$.

Algorithm

1. User specifies a big n; reset counter m = 0.

n points are sampled from the square; *m* are in the circle. Then $\pi \approx \frac{4m}{n}$.

Algorithm

- 1. User specifies a big n; reset counter m = 0.
- 2. For i = 1 to n:
 - a) Randomly generate $x \in [-1, 1]$.
 - b) Randomly generate $y \in [-1, 1]$.
 - c) If $x^2 + y^2 \le 1$, then $m \leftarrow m + 1$.
- 3. Return $\pi \approx \frac{4m}{n}$.

Application 2: Buffon's Needle Problem

Buffon, 1707 – 1788 French scientist

Buffon's Needle Problem

- The parallel lines have distance d.
- Needles have length *l*.

- The parallel lines have distance d.
- Needles have length *l*.
- Randomly throw a needle; the needle may or may not lie across a line.

- The parallel lines have distance d.
- Needles have length *l*.
- Randomly throw a needle; the needle may or may not lie across a line.

- The parallel lines have distance d.
- Needles have length *l*.
- Randomly throw a needle; the needle may or may not lie across a line.

With probability
$$P = \frac{2l}{\pi d}$$
 they are across.

It can be proved using integral.

- Randomly throw a total of n needles.
- In expectation, $Pn = \frac{2ln}{\pi d}$ needles lie across the lines.

- Randomly throw a total of n needles.
- In expectation, $Pn = \frac{2ln}{\pi d}$ needles lie across the lines.
- Actually observe m needles across the lines.
- If n is big, $m \approx \frac{2 l n}{\pi d}$.

- Randomly throw a total of n needles.
- In expectation, $Pn = \frac{2ln}{\pi d}$ needles lie across the lines.
- Actually observe m needles across the lines.
- If n is big, $m \approx \frac{2 l n}{\pi d}$.
- Thus, $\pi \approx \frac{2 l n}{d m}$.

Researcher	Year	n =	m =	Estimate of π
Wolf	1850	5000	2532	3.1596
Smith	1855	3204	1218	3.1554
De Morgan	1860	600	382	3.137
Fox	1884	1030	489	3.1595
Lazzerini	1901	3408	1808	3.1415929
Reina	1925	2520	859	3.1795

Application 3: Area of A Region

 If a point (x, y) is in the circle, it must satisfy

$$(x-1)^2 + (y-1)^2 \le 1.$$

 If a point (x, y) is in the circle, it must satisfy

$$(x-1)^2 + (y-1)^2 \le 1.$$

 If a point (x, y) is in the quarter circle, it must satisfy

$$x^2 + y^2 \le 2^2$$

• A point (x, y) in the grey region satisfies both of

1.
$$(x-1)^2 + (y-1)^2 \le 1$$
,

2.
$$x^2 + y^2 > 2^2$$
.

• A point (x, y) in the grey region satisfies both of

1.
$$(x-1)^2 + (y-1)^2 \le 1$$
,

2.
$$x^2 + y^2 > 2^2$$
.

• Area of the square: $A_1 = 2^2 = 4$.

- Area of the square: $A_1 = 2^2 = 4$.
- Area of the grey region: A_2
- A point uniformly sampled from the square falls in the grey region w.p.

$$P = \frac{A_2}{A_1} = \frac{A_2}{4}.$$

- Uniformly sample n points from the square $[0,2]\times[0,2]$.
- In expectation, $nP = \frac{n A_2}{4}$ points fall in the grey region.

- Uniformly sample n points from the square $[0, 2] \times [0, 2]$.
- In expectation, $nP = \frac{n A_2}{4}$ points fall in the grey region.
- We actually observe m points in the grey region.
- If n is big, then $m \approx \frac{n A_2}{4}$
- Thus, $A_2 \approx \frac{4m}{n}$

Algorithm

1. User specify a big n; reset counter: m = 0.

Algorithm

- 1. User specify a big n; reset counter: m = 0.
- 2. For i = 1 to n:
 - a) Randomly generate $x \in [0, 2]$.
 - b) Randomly generate $y \in [0, 2]$.
 - c) If both of the following conditions are satisfied, then $m \leftarrow m + 1$:

i.
$$(x-1)^2 + (y-1)^2 \le 1$$
.

ii.
$$x^2 + y^2 > 2^2$$
.

Algorithm

- 1. User specify a big n; reset counter: m = 0.
- 2. For i = 1 to n:
 - a) Randomly generate $x \in [0, 2]$.
 - b) Randomly generate $y \in [0, 2]$.
 - c) If both of the following conditions are satisfied, then $m \leftarrow m + 1$:

i.
$$(x-1)^2 + (y-1)^2 \le 1$$
.
ii. $x^2 + y^2 > 2^2$.

3. Return area $\approx \frac{4m}{n}$.

Application 4: Integration

Integration

- We are given a function, e.g. $f(x) = \frac{1}{1 + \sin(x) \cdot (\log_e x)^2}$
- Calculate the integral: $I = \int_{0.8}^{3} f(x) dx$.

Integration

- We are given a function, e.g., $f(x) = \frac{1}{1 + \sin(x) \cdot (\log_e x)^2}$.
- Calculate the integral: $I = \int_{0.8}^{3} f(x) dx$.
- If f(x) is very involved, there is no way to analytically calculate the integral.
- Using Monte Carlo to approximate the integral.

Task: Given a univariate function f(x), calculate $I = \int_a^b f(x) dx$

Task: Given a univariate function f(x), calculate $I = \int_a^b f(x) dx$.

1. Draw n samples from [a, b] uniformly at random; denote them by $\underline{x_1, \dots, x_n}$.

Task: Given a univariate function f(x), calculate $I = \int_a^b f(x) dx$.

- 1. Draw n samples from [a, b] uniformly at random; denote them by x_1, \dots, x_n .
- 2. Calculate $Q_n = (b-a) \cdot \frac{1}{n} \sum_{i=1}^n f(x_i)$

Task: Given a univariate function f(x), calculate $I = \int_a^b f(x) dx$.

- 1. Draw n samples from [a, b] uniformly at random; denote them by x_1, \dots, x_n .
- 2. Calculate $Q_n = (b-a) \cdot \frac{1}{n} \sum_{i=1}^n f(x_i)$.
- 3. Return Q_n as an approximation to the integral $I = \int_a^b f(x) \ dx$

Task: Given a univariate function f(x), calculate $I = \int_a^b f(x) dx$.

- Draw n samples from [a,b] uniformly at random; denote them by x_1, \cdots, x_n .
- 2. Calculate $Q_n = (b-a) \cdot \frac{1}{n} \sum_{i=1}^n f(x_i)$.
- 3. Return Q_n as an approximation to the integral $I = \int_a^b f(x) dx$.

Theory: Law of large numbers guarantees $Q_n \to I$ as $n \to \infty$

$$Q_n o I$$
 as $n o \infty$

Task: Given function $f(x) = \frac{1}{1 + \sin(x) \cdot (\log_e x)^2}$ calculate $I = \int_{0.8}^3 f(x) \ dx$

Task: Given function
$$f(x) = \frac{1}{1+\sin(x)\cdot(\log_e x)^2}$$
, calculate $I = \int_{0.8}^3 f(x) \ dx$.

1. Draw n samples from [0.8, 3] uniformly at random; denote them by x_1, \dots, x_n .

Task: Given function
$$f(x) = \frac{1}{1+\sin(x)\cdot(\log_e x)^2}$$
, calculate $I = \int_{0.8}^3 f(x) \ dx$.

- 1. Draw n samples from [0.8, 3] uniformly at random; denote them by x_1, \dots, x_n .
- 2. Calculate $Q_n = 2.2$ $\frac{1}{n} \sum_{i=1}^n f(x_i)$

Task: Given function
$$f(x) = \frac{1}{1+\sin(x)\cdot(\log_e x)^2}$$
, calculate $I = \int_{0.8}^3 f(x) \ dx$.

- 1. Draw n samples from [0.8, 3] uniformly at random; denote them by x_1, \dots, x_n .
- 2. Calculate $Q_n = 2.2 \cdot \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.
- 3. Return Q_n as an approximation to the integral $I = \int_{0.8}^3 f(x) \ dx$.

Task: Given a multivariate function $f(\mathbf{x})$, calculate $I = \int_{\Omega} f(\mathbf{x}) \ d\mathbf{x}$. $\mathbf{x} \in \mathbb{R}^d$ is a vector Ω is a subset of \mathbb{R}^d

Task: Given a multivariate function $f(\mathbf{x})$, calculate $I = \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$.

- 1. Draw n samples from set Ω uniformly at random; denote them by $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- 2. Calculate $V = \int_{\Omega} d\mathbf{x}$.

Task: Given a multivariate function $f(\mathbf{x})$, calculate $I = \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$.

- 1. Draw n samples from set Ω uniformly at random; denote them by $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- 2. Calculate $V = \int_{\Omega} d\mathbf{x}$.
- 3. Calculate $Q_n = V \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i)$
- 4. Return Q_n as an approximation to the integral $I = \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$.

• Let
$$f(x,y) = \begin{cases} 1. & \text{if } x^2 + y^2 \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

- Let $f(x,y) = \begin{cases} 1, & \text{if } x^2 + y^2 \le 1; \\ 0, & \text{otherwise.} \end{cases}$
- Let $\Omega = [-1, 1] \times [-1, 1]$.
- What is $I = \int_{\Omega} f(x, y) dx dy$?

• Let
$$f(x,y) = \begin{cases} 1, & \text{if } x^2 + y^2 \le 1; \\ 0, & \text{otherwise.} \end{cases}$$

- Let $\Omega = [-1, 1] \times [-1, 1]$.
- What is $I = \int_{\Omega} f(x, y) dx dy$?
 - *I* is the area of the circle:

$$I=\pi r^2=\pi.$$

1. Draw n samples from set Ω uniformly at random; denote them by

$$(x_1, y_1), \cdots, (x_n, y_n).$$

1. Draw n samples from set Ω uniformly at random; denote them by

$$(x_1, y_1), \dots, (x_n, y_n).$$

2. Calculate $V = \int_{\Omega} dx \, dy = 4$ (It is the area of set Ω .)

1. Draw n samples from set Ω uniformly at random; denote them by

$$(x_1, y_1), \dots, (x_n, y_n).$$

- 2. Calculate $V = \int_{\Omega} dx \ dy = 4$. (It is the area of set Ω .)
- 3. Calculate $Q_n = V \cdot \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i, \mathbf{y}_i)$

1. Draw n samples from set Ω uniformly at random; denote them by

$$(x_1, y_1), \dots, (x_n, y_n).$$

- 2. Calculate $V = \int_{\Omega} dx \ dy = 4$. (It is the area of set Ω .)
- 3. Calculate $Q_n = V \cdot \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i, \mathbf{y}_i)$.
- 4. Return Q_n as an approximation to the integral $\pi = \int_{\Omega} f(x,y) \ dx \ dy$

Application 5: Estimate of Expectation

- Let X be a d-dimensional random vector.
- Let p(x) be a probability density function (PDF).

- Let X be a d-dimensional random vector.
- Let p(x) be a probability density function (PDF).
 - Property: $\int_{\mathbb{R}^d} p(\mathbf{x}) \ d\mathbf{x} = 1$

- Let X be a d-dimensional random vector.
- Let p(x) be a probability density function (PDF).
 - Property: $\int_{\mathbb{R}^d} p(\mathbf{x}) d\mathbf{x} = 1$.
 - E.g., PDF of uniform distribution is $p(x) = \frac{1}{t}$ for $x \in [0, t]$

- Let X be a d-dimensional random vector.
- Let p(x) be a probability density function (PDF).
 - Property: $\int_{\mathbb{R}^d} p(\mathbf{x}) d\mathbf{x} = 1$.
 - E.g., PDF of uniform distribution is $p(x) = \frac{1}{t}$, for $x \in [0, t]$.
 - E.g., PDF of univariate Gaussian is $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$

- Let X be a d-dimensional random vector.
- Let p(x) be a probability density function (PDF).
- Let $f(\mathbf{x})$ be any function of vector variable.
- Expectation: $\mathbb{E}_{X \sim p}[f(X)] = \int_{\mathbb{R}^d} f(\mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$.

Task: Estimate the expectation $\mathbb{E}_{X \sim p}[f(X)] = \int_{\mathbb{R}^d} f(\mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$.

Task: Estimate the expectation $\mathbb{E}_{X \sim p}[f(X)] = \int_{\mathbb{R}^d} f(\mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$.

1. Draw n random samples from the probability distribution $p(\mathbf{x})$; denote them by $\mathbf{x}_1, \dots, \mathbf{x}_n$.

Task: Estimate the expectation $\mathbb{E}_{X \sim p}[f(X)] = \int_{\mathbb{R}^d} f(\mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$.

- 1. Draw n random samples from the probability distribution $p(\mathbf{x})$; denote them by $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- 2. Calculate $Q_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i)$

Task: Estimate the expectation $\mathbb{E}_{X \sim p}[f(X)] = \int_{\mathbb{R}^d} f(\mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$.

- 1. Draw n random samples from the probability distribution $p(\mathbf{x})$; denote them by $\mathbf{x}_1, \dots, \mathbf{x}_n$.
- 2. Calculate $Q_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i)$.
- 3. Return Q_n as an approximation to $\mathbb{E}_{X \sim p}[f(X)]$.

Monte Carlo and Beyond

Monte Carlo

Casino de Monte-Carlo, Monaco

 The term "Monte Carlo method" was firstly introduced in 1947 by Nicholas Metropolis.

Reference

 Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, 125–130, 1987.

Monte Carlo Algorithms

- Monte Carlo refers to algorithms that rely on repeated random sampling to obtain numerical results.
- The output of Monte Carlo algorithms can be incorrect.
 - In all of our examples, the algorithms' outputs are incorrect.
 - But they are close to the correct solution.

Monte Carlo Algorithms

- Monte Carlo refers to algorithms that rely on repeated random sampling to obtain numerical results.
- The output of Monte Carlo algorithms can be incorrect.
- Las Vegas algorithms are those always produce the correct answers.
 - E.g., random quicksort.
- Atlantic City algorithms are polynomial-time randomized algorithms that answer correctly w.p. greater than 75%.

Question

What are the areas of the red and blue regions?

Thank you!