Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = 2016 + 2 \cdot 2 =$	3p
	= 2020	2p
2.	$f(1) = 2 \Rightarrow 1 + m = 2$	3 p
	m=1	2 p
3.	$2^{4x-6} = (2^2)^{3x-4} \Leftrightarrow 4x-6 = 6x-8$	3p
	x=1	2p
4.	Mulțimea A are 40 de elemente, deci sunt 40 de cazuri posibile	1p
	Numerele din mulțimea A care conțin cifra 4 sunt 4, 14, 24, 34 și 40, deci sunt 5 cazuri	2 p
	favorabile	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{40} = \frac{1}{8}$	2 p
	nr. cazuri posibile 40 8	- P
5.	$y-2 = \frac{5-2}{4-1}(x-1)$	3 p
	y = x + 1	2 p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\cos x = \sqrt{1 - \sin^2 x} = \frac{3}{5}$	3p
	$\sin 2x = 2\sin x \cos x = 2 \cdot \frac{4}{5} \cdot \frac{3}{5} = \frac{24}{25}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{vmatrix} =$	2p
	=-2+0+0-1-(-1)-0=-2	3 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & a & 1 \\ a & 1 & -1 \\ 1 & 1 & -2 \end{vmatrix} = 2(a-1)(a+1)$	3p
	Pentru orice număr real a , $a \ne -1$ și $a \ne 1$, obținem $\det(A(a)) \ne 0$, deci matricea $A(a)$ este inversabilă	2 p
c)	Sistemul are soluție unică, deci $a \neq -1$ și $a \neq 1$; pentru fiecare număr a , $a \neq -1$ și $a \neq 1$, soluția sistemului este de forma $\left(-\frac{1}{a-1}, \frac{1}{a-1}, 0\right)$	3p
	Cum a este număr întreg, $\frac{1}{a-1} \in \mathbb{Z} \Leftrightarrow a-1$ este divizor al lui 1, deci $a=0$ sau $a=2$	2p

Probă scrisă la matematică $M_mate-info$

Barem de evaluare și de notare

2.a)	$x \circ y = 3xy + 3x + 3y + 3 - 1 =$	3p
	=3x(y+1)+3(y+1)-1=3(x+1)(y+1)-1, pentru orice numere reale x şi y	2p
b)	$f(x \circ y) = 3(x \circ y) + 3 = 3(3(x+1)(y+1)-1) + 3 = 9(x+1)(y+1) =$	3p
	=(3x+3)(3y+3)=f(x)f(y), pentru orice numere reale x și y	2p
l l	$f\left(\underbrace{a \circ a \circ \circ a}_{\text{de } 2016 \text{ ori } a}\right) = f\left(3^{2015} - 1\right) \Leftrightarrow \left(f\left(a\right)\right)^{2016} = 3 \cdot \left(3^{2015} - 1\right) + 3 \Leftrightarrow \left(f\left(a\right)\right)^{2016} = 3^{2016} \Leftrightarrow f\left(a\right) = -3$ sau $f\left(a\right) = 3$	3р
	a = -2 sau $a = 0$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	Cum $x \in (1, +\infty)$, $f(x) = \ln(x+1) - \ln(x-1) \Rightarrow f'(x) = (\ln(x+1) - \ln(x-1))' =$	2 p
	$= (\ln(x+1))' - (\ln(x-1))' = \frac{1}{x+1} - \frac{1}{x-1}$	3 p
b)	$f''(x) = \frac{4x}{(x-1)^2(x+1)^2}$	2p
	Pentru orice $x \in (1,+\infty)$, $f''(x) > 0$, deci funcția f este convexă pe $(1,+\infty)$	3 p
c)	$\lim_{n \to +\infty} \left(f'(2) + f'(3) + \dots + f'(n) \right) = \lim_{n \to +\infty} \left(\left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} + \dots + \frac{1}{3} +$	3 p
	$= \lim_{n \to +\infty} \left(-\frac{1}{1} - \frac{1}{2} + \frac{1}{n} + \frac{1}{n+1} \right) = -\frac{3}{2}$	2p
2.a)	$\int_{1}^{2} \sqrt{x} f(x) dx = \int_{1}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{1}^{2} =$	3 p
	$=4-\frac{3}{2}=\frac{5}{2}$	2p
b)	$\int_{1}^{e^{2}} \left(f(x) - \sqrt{x} \right) \ln x dx = \int_{1}^{e^{2}} \frac{1}{\sqrt{x}} \cdot \ln x dx = 2\sqrt{x} \cdot \ln x \left \begin{array}{c} e^{2} \\ 1 \end{array} \right - 2 \int_{1}^{e^{2}} \frac{1}{\sqrt{x}} dx = 1 $	3p
	$= \left(2\sqrt{x} \cdot \ln x - 4\sqrt{x}\right) \Big _{1}^{e^{2}} = 4e - 4e + 4 = 4$	2 p
c)	$V = \pi \int_{1}^{a} g^{2}(x) dx = \pi \int_{1}^{a} \left(x + 2 + \frac{1}{x} \right) dx = \pi \left(\frac{x^{2}}{2} + 2x + \ln x \right) \Big _{1}^{a} = \pi \left(\frac{a^{2}}{2} + 2a + \ln a - \frac{5}{2} \right)$	3 p
	$\pi\left(\frac{a^2}{2} + 2a + \ln a - \frac{5}{2}\right) = \pi\left(\ln a + \frac{7}{2}\right) \Leftrightarrow a^2 + 4a - 12 = 0 \text{ si, cum } a > 1 \text{, obținem } a = 2$	2 p