RC = {
$$x_0^2 \mid x_0^2 < \chi_{\frac{\alpha}{2}, n-1}^2$$
 ou $x_0^2 > \chi_{1-\frac{\alpha}{2}, n-1}^2$ }

Proposition

RC = { $x_0^2 \mid x_0^2 < \chi_{\frac{\alpha}{2}, n-1}^2$ ou $x_0^2 > \chi_{1-\frac{\alpha}{2}, n-1}^2$ }

 $\frac{\alpha}{2}$
 $\chi_{1-\frac{\alpha}{2}, n-1}^2$

Rejeitamos $H_0: \sigma = \sigma_0$ se $x_0^2 < \chi_{\frac{\alpha}{2}, n-1}^2$ ou $x_0^2 > \chi_{1-\frac{\alpha}{2}, n-1}^2$