$egin{array}{l} ext{ALGO} \ ext{QCM} \end{array}$

- 1. La fonction d'essais successifs n'est pas utilisée par?
 - (a) les méthodes indirectes de gestion des collisions
 - (6) le hachage avec Chaînage séparé
 - (c) le hachage coalescent
- 2. La méthode de hachage qui tronçonne la séquence de bits en sous-mots est?
 - (a) la complétion
 - la compression
 - (c) l'extraction
 - (d) la multiplication
- 3. Une fonction de hachage doit être déterministe?
 - (a) Non
 - Oui
 - (c) Cela dépend
- 4. Le handicap majeur de l'extraction est?
 - (a) de hacher les anagrammes d'une clé de la même façon
 - (b) de nécessiter un m premier majorant le nombre de clés
 - (c) de n'utiliser q'une partie de représentation de la clé
 - (d) de n'être efficace que sur une petite collection de données
- 5. Parmi les méthodes suivantes, lesquelles sont des méthodes de hachage de base?
 - (a) division
 - (b) extraction
 - Compression
 - (d) multiplication
- 6. l'efficacité de la multiplication dépend?
 - (a) principalement de m
 - (b) principalement de θ
 - (c) autant de m que de θ
 - (d) ni de m
 ni de θ

1

7. Quelles méthodes sont des méthodes indirectes de gestion des collisions?

- (a) le hachage linéaire
- (b) le double hachage
- cele hachage coalescent
- d le hachage avec chaînage séparé

8. Une collision secondaire représente une collision?

- (a) avec coincidence de valeur de hachage entre un x égal à un y
- (b) sans coincïdence de valeur de hachage entre un x égal à un y
- sans coincidence de valeur de hachage entre un x différent d'un y
- (d) avec coincïdence de valeur de hachage entre un x différent d'un y
- 9. Le double hachage peut générer des collisions secondaires?
 - (a) Oui
- <u>(b)</u> Non
 - (c) quelquefois
- 10. Quelles méthodes de hachage utilisent tous les bits de la représentation de la clé?
 - (a) la complétion
 - (b) la compression
- (c) l'extraction
- (d) la division

QCM N°3

lundi 10 octobre 2016

Question 11

Soit (u_n) une suite réelle convergente que lconque. Alors

a.
$$\sum u_n$$
 converge

b.
$$\sum (u_n - u_{n-1})$$
 converge

c.
$$\sum (u_n - u_{n-1})$$
 diverge

d.
$$\sum u_n$$
 converge absolument

Question 12

Soit (u_n) une suite réelle positive, décroissante et convergeant vers 0. Alors

$$\sum (-1)^n u_n$$
 converge

b.
$$\sum (-1)^n u_n$$
 diverge

c. on ne peut rien dire sur la nature de
$$\sum (-1)^n u_n$$

Question 13

a.
$$\sum \frac{(-1)^n}{n}$$
 converge

$$\{\frac{(-1)^{n}}{n}\}=\{\frac{1}{n}, \frac{1}{n}, \frac{1}{n}\}$$

b.
$$\sum \frac{(-1)^n}{n}$$
 converge absolument

$$\xi \left(\frac{-1}{n}\right)^n$$
 semi-CV

c.
$$\sum \frac{1}{n}$$
 converge

Question 14

Soit (u_n) une suite réelle telle que $\sum u_n$ converge absolument. Alors $\sum u_n$ converge.

b. faux

Question 15

Soit (u_n) une suite réelle telle que $u_n \underset{+\infty}{\sim} \frac{(-1)^n}{n}$. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- \overline{c} on ne peut rien dire sur la nature de $\sum u_n$

Question 16

Soit (u_n) une suite réelle que lconque telle que $\sum (u_n - u_{n-1})$ diverge. Alors

- $(a) \sum u_n$ diverge
- \bigcirc (u_n) diverge
- c. (u_n) converge
- d. rien de ce qui précède

Question 17

Soient (u_n) et (v_n) deux suites réelles positives quelconques telles que $u_n = o(v_n)$ et $\sum v_n$ diverge. Alors

- a. $\sum u_n$ converge
- b. $v_n \longrightarrow +\infty$
- c. $\sum u_n$ diverge

On ne peut rien dire de la nature de $\sum u_n$

Question 18

Soit (u_n) une suite réelle strictement positive telle que

$$\frac{u_{n+1}}{u_n} \longrightarrow \frac{1}{4}$$

Alors

- $(a) \sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire de la nature de $\sum u_n$

Question 19

Soit $\sum u_n$ une série à termes positifs et $(S_n) = \left(\sum_{k=1}^n u_k\right)$. Alors

- (S_n) est croissante
 - b. (S_n) est décroissante
 - c. (S_n) n'est pas nécessairement monotone
- $\sum u_n$ converge ssi (S_n) est majorée
 - e. rien de ce qui précède

Question 20

Soit $\alpha \in \mathbb{R}$. Alors $\sum n^{\alpha}$

- a. converge ssi $\alpha > 1$
- b. converge ssi $\alpha < 1$
- \bigcirc converge ssi $\alpha < -1$
- d. converge ssi $\alpha > -1$
- e. diverge pour tout α

Q.C.M n°3 de Physique

- 41- La force électrique qui décrit l'interaction entre deux charges ponctuelles q_1 et q_2 , séparées par une distance r est
 - a) proportionnelle au produit des masses m₁ et m₂ des deux charges.
 - b) prépondérante à l'échelle atomique
 - c) inversement proportionnelle au produit des charges
 - d) inversement proportionnelle à r¹
- 42- Un champ électrostatique \vec{E} est dit convergent lorsqu'il est créé par :
 - a) Un proton
 - b) Un neutron
 - O Un électron
- 43- Le champ électrostatique \vec{E} créé au point M par une charge placée au même point M est :
 - a) convergent
 - b) Nul
 - c) divergent
 - d) Non défini
- 44- Le champ électrostatique \vec{E} créé à l'infini par une charge placée au point O est :
 - a) convergent
 - b) Nul
 - Non défini
- 45- L'intensité du champ électrostatique créé au point M, par une charge q_A placée au point A est donné par :

(a)
$$E_A(M) = k \frac{|q_A|}{(AM)^2}$$
 b) $E_A(M) = k \frac{|q_A||q_M|}{(AM)^2}$ c) $E_A(M) = k \frac{|q_A|}{AM}$

46- Un doublet électrique (-Q, +Q) de charges placées respectivement aux points A et B crée un champ électrique au milieu O du segment AB de norme :

47- On considère la distribution de charges suivante :

Le champ électrique créé au point O : centre du rectangle est

- a) orienté vers le point B
- b) infini c) nul
- d) orienté vers le point D

48- Dans le schéma ci-dessus, la force électrique exercée sur une charge (+q) que l'on place au centre O du rectangle est

- a) nulle
- b) orientée vers le point B
- c) orientée vers le point D

49- On considère la distribution de charges suivante :

Le champ électrique créé au point O est

- a) nul
- b) orienté vers le point B c) orienté vers le point A

50- Le champ électrique créé au point M, par la distribution de charges représentée cidessus (question 49) est

- a) parallèle à l'axe (Ox)
- b) nul c) porté par l'axe (Oy)

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Révisions: Lois et Théorèmes de l'électronique

Q51. Soit le circuit ci-contre:

Quelle est la valeur de la tension U lorsque l'intérrupteur K est ouvert?

a-
$$U = 0$$

b-
$$U = \frac{E}{2}$$

$$C U = E$$

$$d = U = -E$$

Les semi-conducteurs et les diodes

Q52. Le dopage permet d'augmenter la conductivité du semi-conducteur

a-) VRAI

b- FAUX

Q53. Un semiconducteur intrinsèque est

Un cristal pur.

b- Un cristal dopé avec des atomes pentavalents

- c- Un cristal dopé avec des atomes trivalents
- d- Un cristal désordonné.

Q54.

Ce circuit est:

Passant

b- Bloqué

Q55. L'équation de la caractéristique de la diode s'écrit : $I_D = I_S(e^{\overline{mV_T}}-1)$ où I_D représente le courant qui traverse la diode et V_D , la tension à ses bornes, courant et tension étant fléchés selon la convention récepteur. I_S correspond au courant inverse. C'est un courant :

- a- Très grand (plusieurs dizaine⁵ ¿'ampères)
- b- Très faible (quelques nano ampères)

Q56. Quel modèle permet la représentation la moins précise de la diode :

🗻 Le modèle idéal

c- Le modèle réel

Le modèle à seuil

d- Les trois modèles sont équivalents

Q57. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle réel de la diode :

Q58. Par quoi remplace-t-on la diode passante si on utilise le modèle réel?

 E_1

Q59. Par quoi remplace-t-on la diode bloquée si on utilise le modèle à seuil?

Q60. Soit le circuit ci-contre, dans lequel on considère la diode est telle que $V_0=0.6V$:

Choisir l'affirmation correcte si $E_1=10V$, $R_1=50\Omega$, et $R_2=1k\Omega$:

- a- La diode est bloquée et la tension à ses bornes est de l'ordre de 0,5V.
- b- La diode est passante et le courant qui la traverse est de l'ordre de 10 mA
- c- La diode est passante et le courant qui la traverse vaut -5A.
- d- La diode est passante et le courant qui la traverse est de l'ordre de 9,4 mA.

QCM 3 Architecture des ordinateurs

Lundi 10 octobre 2016

- 61. Quel mnémonique est une directive d'assemblage?
 - ORG
 - B. MOVE
 - C. ILLEGAL
 - D. ADD
- 62. Soit l'instruction suivante : MOVE.W (A0)+,D0
 - A. A0 ne change pas.
 - B. A0 est incrémenté de 1.
 - 6. A0 est incrémenté de 2.
 - D. A0 est incrémenté de 4.
- 63. Soit l'instruction suivante : MOVE.W 2(A0),D0
 - A. A0 est incrémenté de 1.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 4.
 - A0 ne change pas.
- 64. Le registre CCR est : (deux réponses)
 - A Sur 8 bits.
 - B. Sur 16 bits.
 - C. Les 8 bits de poids fort du registre SR.
 - Les 8 bits de poids faible du registre SR.
- 65. Quels modes d'adressage ne spécifient pas d'emplacement mémoire ? (deux réponses)
 - A. Mode d'adressage indirect.
 - B. Mode d'adressage direct.
 - Mode d'adressage immédiat.
 - D. Mode d'adressage absolu.
- 66. L'instruction BMI effectue un branchement si :
 - A. N=0
 - B. Z = 1
 - \bigcirc N = 1
 - D. Z = 0

- 67. L'instruction BNE effectue un branchement si :
 - A. N = 0
 - B. Z = 1
 - C. N=1
 - D Z=0
- 68. Soient les deux instructions suivantes :
 - TST.B D0
- Net 2 -1
- BMI NEXT
- L'instruction BMI effectue le branchement si :
- A. D0 = \$00
- B. D0 = FF
- C. D0 = \$50
- D. D0 = \$7F
- 69. Soient les deux instructions suivantes:
 - CMP.L D1,D2
 - BGT NEXT
 - L'instruction BGT effectue le branchement si :
 - A. D1 > D2 (comparaison signée)
 - B. D2 > D1 (comparaison non signée)
 - C. D1 > D2 (comparaison non signée)
 - D. D2 > D1 (comparaison signée)
- 70. Soient les deux instructions suivantes :
 - CMP.L D1,D2
 - BLO NEXT
 - L'instruction BLO effectue le branchement si :
 - A. D2 > D1 (comparaison signée)
 - B. D1 > D2 (comparaison non signée)
 - C. D1 > D2 (comparaison signée)
 - D. D2 > D1 (comparaison non signée)