Electronic supplementary information

NEW PYRIDINE-CONTAINING AZACROWN CHELATORS PATPy AND PAPPy FOR Pb²⁺ IONS

O. V. Tarasenko,**a,b A. A. Shchukina, A. D. Zubenko, and Yu. V. Fedorova

 ^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, str. 1, Moscow, 119334 Russia
^b Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047 Russia

Table of contents

1. Experimental section	S2
2. NMR spectra of compounds	S5
3. NMR spectra of complexes	S 13
4. References	S 14

Experimental section

General remarks

All commercially available reagents and solvents were used without further purification. Compounds **1**, **2** and 2-(chloromethyl)pyridine hydrochloride were prepared as described earlier [1, 2]. Reaction progress was followed by TLC using aluminum oxide (Merck, 60 F₂₅₄, neutral). 1 H NMR spectra were recorded at 25°C on Varian Inova 400, Bruker Avance 400 spectrometers. Chemical shifts are reported in parts per million (δ) relative to the deuterated solvent used as the internal reference (CDCl₃ δ = 7.27, CD₃CN δ = 1.94). The coupling constant J is given in Hertz. Spectral assignments were based in part on two-dimensional NMR experiments COSY, HSQC and HMBC. Electrospray ionization mass spectrometry (ESI/MS) analyses were performed using a Shimadzu LCMS-2020 High Performance Liquid Chromatograph Mass Spectrometer with a single quadrupole detector, desolvation line/heat block temperature 250/400°C and an ionization voltage at 4.5 kV. Electrospray full scan spectra was obtained by infusion at 0.4 ml/min of MeCN solutions of the compounds and complexes. Elemental analysis was conducted on a Carlo Erba 1108 elemental analyzer at the Laboratory of Microanalysis of A. N. Nesmeyanov Institute of Organoelement Compounds of RAS, Moscow, Russia.

Syntheses

3,6,9,12-tetraaza-1(2,6)-pyridinacyclotridecaphane (3). Compound **3** was prepared according to a modified procedure [3]. 1M BH₃·THF (14.5 ml, 14.5 mmol) was added to the compound **1** (200 mg, 0.72 mmol) in an argon atmosphere at 0°C. The mixture was stirred at 0°C for 45 hours. Then MeOH (5 ml) was added and the mixture stirred for 5 minutes. Then the solvent was evaporated in vacuum and MeOH (10 ml) was added and the mixture refluxed for 20 hours. The methanol was evaporated in vacuum and 0.5M HCl (4 ml) was added and the mixture refluxed for 10 hours. After cooling, the reaction mixture was washed with CHCl₃, adjusted to pH 10 by adding KOH and the product was extracted with CHCl₃. After evaporation CHCl₃ the product was obtained as a yellow oil (145 mg, 81%). 1 H NMR (CDCl₃, 400 MHz): 2.52 (s, 4H, H(7)), 2.56 (t, 4H, H(6), J=3.5), 2.63 (t, 4H, H(5), J=3.2), 3.69 (s, 4H, H(4)), 6.82 (d, 2H, H(2), J=7.6), 7.33 (t, 1H, H(1), J=7.6). 13 C NMR (CDCl₃, 400 MHz): 48.24 (C-5), 48.40 (C-7), 48.48 (C-6), 53.71 (C-4), 120.56 (C-2), 136.61 (C-1), 158.59 (C-3). MS (ESI), m/z: calcd for C₁₃H₂₃N₅+H⁺: 250.20 [M+H]⁺; found: 249.98. Anal. Calcd for C₁₃H₂₃N₅·H₂O: C, 58.40; H, 9.42; N, 26.19. Found: C, 58.46; H, 9.40; N, 26.18.

3,6,9,12,15-pentaaza-1(2,6)-pyridinacyclohexadecaphane (4). 1M BH₃·THF (34 ml, 34 mmol) was added to the compound **2** (180 mg, 0.56 mmol) in an argon atmosphere at 0°C. The mixture was stirred at 0°C for 72 hours. Then MeOH (10 ml) was added and the mixture stirred for 5 minutes. Then the solvent was evaporated in vacuum and MeOH (15 ml) was added and the mixture refluxed for 20 hours. The methanol was evaporated in vacuum and 0.5M HCl (5 ml) was added and the mixture refluxed for 10 hours. After cooling, the reaction mixture was washed with CHCl₃, adjusted to pH 10 by adding KOH and the product was extracted with CHCl₃. After evaporation CHCl₃ the product was obtained as a yellow oil (118 mg, 72%). ¹H NMR (CDCl₃, 400 MHz): 2.66 (m, 4H, H(8)), 2.71 (m, 8H, H(5), H(7)), 2.75 (m, 4H, H(6)), 3.79 (s, 4H, H(4)), 7.00 (d, 2H, H(2), *J*=7.6), 7.48 (t, 1H, H(1), *J*=7.6). ¹³C NMR (CDCl₃, 400 MHz): 49.00-49.11 (C-8, C-7, C-6, C-5), 54.79 (C-4), 120.69 (C-2), 136.49 (C-1), 158.68 (C-3). MS (ESI), m/z: calcd for C₁₅H₃₀N₆+H⁺: 293.25 [M+H]⁺; found: 293.07. Anal. Calcd for C₁₅H₃₀N₆·2H₂O: C, 54.85; H, 9.82; N, 25.59. Found: C, 54.80; H, 9.80; N, 25.56.

3,6,9,12-tetrakis(pyridin-2-ylmethyl)-3,6,9,12-tetraaza-1(2,6)-pyridinacyclotridecaphane (PATPy). A solution of 2-(chloromethyl)pyridine (105 mg, 0.64 mmol) in MeCN (3 ml) was added to a mixture of 3 (40 mg, 0.16 mmol) and K₂CO₃ (177 mg, 1.28 mmol) dissolved in MeCN (3 ml). The reaction mixture was refluxed for 24 h, then solvent was evaporated under vacuum and the product was extracted with CHCl₃. The solvent was evaporated under vacuum to yield brown oil which was purified by column chromatography on Al₂O_{3basic} using CHCl₃/MeOH as eluent. The product was obtained as a brown oil; yield: 65 mg (67%). ¹H NMR (CDCl₃, 400 MHz): 2.43 (s, 4H, H(7)), 2.54 (t, 4H, H(6), J=6.6, J=8.2), 2.71 (t, 4H, H(5), J=6.6, J=8.2), 3.59 (s, 4H, H(14)), 3.71 (s, 4H, H(8)), 3.80 (s, 4H, H(4)), 7.03 (t, 2H, H(17), J=6.2, J=5.8), 7.11 (t, 2H, H(12), J=6.2, J=5.0), 7.20 (d, 2H, H(10), J=7.8), 7.27 (d, 2H, H(15), J=8.2), 7.47 (t, 2H, H(16), J=7.4, J=5.8), 7.52 (d, 2H, H(2), J=7.8), 7.60 (m, 3H, H(1), H(11)), 8.40 (d, 2H, H(18), J=5.1), 8.48 (d, 2H, H(13), J=3.9). ¹³C NMR (CDCl₃, 400 MHz): 50.61 (C-5), 51.64 (C-6), 51.86 (C-7), 60.05 (C-8), 61.74 (C-4), 61.88 (C-14), 121.57 (C-17), 121.83 (C-12), 122.47 (C-2, C-15), 122.90 (C-10), 136.08 (C-16), 136.25 (C-11), 136.37 (C-1), 148.66 (C-18), 148.87 (C-13), 158.17 (C-9), 159.72 (C-3), 160.02 (C-19). MS (ESI), m/z: calcd for C₃₇H₄₃N₉+H⁺: 614.37 [M+H]⁺; found: 614.48. Anal. Calcd for C₃₇H₄₃N₉·0.3CHCl₃: C, 68.61; H, 6.68; N, 19.29. Found: C, 68.58; H, 6.61; N, 19.21.

3,6,9,12,15-pentakis(pyridin-2-ylmethyl)-3,6,9,12,15-pentaaza-1(2,6)-

pyridinacyclohexadecaphane (PAPPy). A solution of 2-(chloromethyl)pyridine (132 mg, 0.80 mmol) in MeCN (5 ml) was added to a mixture of 4 (47 mg, 0.16 mmol) and K₂CO₃ (222 mg, 1.60 mmol) dissolved in MeCN (6 ml). The reaction mixture was refluxed for 24 h, then solvent was evaporated under vacuum and the product was extracted with CHCl3. The solvent was evaporated under vacuum to yield brown oil which was purified by column chromatography on Al₂O_{3basic} using CHCl₃/MeOH as eluent. The product was obtained as a brown oil; yield: 75 mg (63%). ¹H NMR (CDCl₃, 400 MHz): 2.41 (s. br, 8H, H(7), H(8)), 2.58 (t, 4H, H(6), *J*=7.4, J=6.9), 2.65 (t, 4H, H(5), J=7.5, J=5.8), 3.54 (s, 2H, H(21)), 3.59 (s, 4H, H(15)), 3.79 (s, 8H, H(4), H(9)), 7.04-7.11 (m, 4H, H(12), H(18)), 7.22 (d, 2H, H(2), J=7.7), 7.30 (d, 2H, H(11), J=7.7), 7.35 (d, 2H, H(17), J=7.7), 7.46-7.53 (m, 5H, H(19), H(24), H(25), H(26)), 7.56-7.62 (m, 4H, H(1), H(13), H(23)), 8.40 (d, 2H, H(20), J=5.3), 8.46 (d, 2H, H(14), J=4.3). ¹³C NMR (CDCl₃, 400 MHz): 51.54 (C-5), 52.28 (C-6), 52.47 (C-7, C-8), 60.43 (C-4), 60.66 (C-15), 61.04 (C-21), 61.31 (C-9), 121.35 (C-2), 121.56 (C-18, C-24), 121.75 (C-12), 122.52 (C-17, C-23), 122.69 (C-11), 136.08 (C-1, C-13), 136.20 (C-19, C-25, C-26), 136.37 (C-1), 148.53 (C-20), 148.73 (C-14), 158.72 (C-3, C-10), 159.38 (C-22), 159.68 (C-16). MS (ESI), m/z: calcd for $C_{45}H_{53}N_{11}+H^{+}$: 748.46 [M+H]⁺; found: 748.75; calcd for $C_{45}H_{53}N_{11}+Na^{+}$: 770.44 [M+Na]⁺; found: 770.75. Anal. Calcd for C₄₅H₅₃N₁₁·1.6CHCl₃: C, 59.19; H, 5.82; N, 16.27. Found: C, 59.16; H, 5.78; N, 16.20.

ESI/MS-experiments

The samples of the Pb^{2+} complexes for ESI/MS-experiment were prepared by mixing the solution of corresponding ligand (0.05 $\mu mol)$ in 50 μl MeCN with the solution of $Pb(ClO_4)_2$ (0.05 $\mu mol)$ in 50 μl MeCN and diluted to 1000 μl . The resulting solution was studied using ESI mass spectrometry.

Table S1. Pb²⁺ complex species detected by ESI MS and simulated m/z.

ligand	m/z experimental	m/z simulated
PATPy	410.50	410.67
PAPPy	477.80	477.71

NMR study

The samples of the Pb²⁺ complexes for the NMR measurements were prepared by dissolving the corresponding ligand ($c_L = 0.02 \text{ M}$) and 1 eq. Pb(ClO₄)₂ in CD₃CN.

NMR spectra of compounds

Figure S1: ¹H NMR spectrum of 3 in CDCl₃.

Figure S2: ¹³C NMR spectrum of 3 in CDCl₃.

Figure S3: ¹H NMR spectrum of 4 in CDCl₃.

Figure S4: ¹³C NMR spectrum of 4 in CDCl₃.

There are three signals in the ¹³C NMR spectrum of compound **4** with chemical shifts of 49.00, 49.08, 49.11. The two-dimensional HSQC and HMBC NMR spectra are poorly resolved (fig. S5), making it difficult to relate signals to each other.

Figure S5: HSQC-NMR (left) and HMBC-NMR (right) spectrum of 4 in CDCl₃ (aliphatic area).

Figure S6: ¹H NMR spectrum of PATPy in CDCl₃.

Figure S7: ¹³C NMR spectrum of PATPy in CDCl₃.

Figure S8: COSY-NMR spectrum of PATPy in CDCl₃.

Figure S9: HSQC-NMR spectrum of PATPy in CDCl₃.

Figure S10: HMBC-NMR spectrum of PATPy in CDCl₃.

Figure S11: ¹H NMR spectrum of PAPPy in CDCl₃.

Figure S12: 13 C NMR spectrum of PAPPy in CDCl₃.

Figure S13: COSY-NMR spectrum of PAPPy in CDCl₃.

Figure S14: COSY-NMR spectrum of PAPPy in CDCl₃ (aromatic area).

Figure S15: HSQC-NMR spectrum of PAPPy in CDCl₃.

Figure S16: HMBC-NMR spectrum of PAPPy in CDCl₃.

NMR spectra of complexes

Figure S17: ¹H NMR spectra of free ligand PATPy and its Pb²⁺ complex in CD₃CN.

Figure S18: ¹H NMR spectra of free ligand PAPPy and its Pb²⁺ complex in CD₃CN.

References

- 1. Y. Fedorov, O. Fedorova, A. Peregudov, S. Kalmykov, B. Egorova, D. Arkhipov, A. Zubenko, M. Oshchepkov, *J. Phys. Org. Chem.*, **2016**, 29, 244–250. DOI: 10.1002/poc.3526
- 2. M. Moelands, D. Schamhart, E. Folkertsma, M. Lutz, A. Spek, R. Gebbink, *Dalton Trans.*, **2014**, *43*, 6769–6785. DOI: 10.1039/c3dt53266f
- 3. L. Dierck, G. Herman, A. Goeminne, G. van der Kelen, P, *Bulletin des Sociétés Chimiques Belges*. **1993**, 63–66. DOI: 10.1002/j.0037-9646.1993.tb00008.x