પ્રકરણ 12

ધ્વનિ (Sound)

આપણે રોજિંદા જીવનમાં જુદા-જુદા સ્રોતો, જેવા કે માનવો, પક્ષીઓ, ઘંટડીઓ, મશીનો, વાહનો, ટેલિવિઝન, રેડિયો વગેરેનો ધ્વિન સાંભળીએ છીએ. ધ્વિન ઊર્જાનું એક સ્વરૂપ છે જે આપણા કાનમાં શ્રવણની સંવેદના ઉત્પન્ન કરે છે. ઊર્જાનાં અન્ય સ્વરૂપો પણ છે, જેમકે યાંત્રિકઊર્જા, ઉષ્માઊર્જા, પ્રકાશઊર્જા વગેરે. આગળનાં પ્રકરણોમાં આપણે યાંત્રિકઊર્જાનો અભ્યાસ કરી ચૂક્યા છીએ. તમે ઊર્જા-સંરક્ષણનો નિયમ પણ ભણ્યાં છો જે દર્શાવે છે કે આપણે ઊર્જા નથી ઉત્પન્ન કરી શકતા કે નથી તેનો નાશ કરી શકતા. આપણે તેને ફક્ત એક સ્વરૂપમાંથી બીજા સ્વરૂપમાં રૂપાંતરિત કરી શકીએ છીએ. જયારે તમે તાળી પાડો છો ત્યારે ધ્વિન ઉત્પન્ન થાય છે. શું તમે તમારી ઊર્જાનો ઉપયોગ કર્યા વિના ધ્વિન ઉત્પન્ન કરી શકશો ? ધ્વિન ઉત્પન્ન કરવા માટે તમે ઊર્જાના કયા સ્વરૂપનો ઉપયોગ કર્યો ? આ પ્રકરણમાં આપણે શીખીશું કે ધ્વિને કેવી રીતે ઉત્પન્ન થાય છે તથા કેવી રીતે કોઈ માધ્યમમાં તે પ્રસરણ પામી આપણા કાન દ્વારા ગ્રહણ કરાય છે.

12.1 ધ્વનિનું ઉત્પાદન (Production of Sound)

પ્રવૃત્તિ ______ 12.1

- એક ધ્વનિચીપિયો લઈ તેને રબરના પૅડ પર અથડાવી કંપન કરાવો. તેને તમારા કાનની નજીક લાવો.
- શું તમે કોઈ ધ્વનિ સાંભળી શકો છો ?
- કંપિત ધ્વિન ચીપિયાની એક ભુજાને તમારી આંગળી
 વડે સ્પર્શ કરો અને તમને થતો અનુભવ તમારા મિત્રો સાથે ચર્ચો.
- હવે એક આધાર પરથી ટેબલ ટેનિસ બૉલ કે નાના પ્લાસ્ટિકના બૉલને દોરી વડે લટકાવો. (એક મોટી સોય અને દોરી લો. દોરાના એક છેડે ગાંઠ મારો અને સોયની મદદથી બૉલને દોરીમાં પરોવો.) કંપિત ધ્વનિ-ચીપિયાને હળવેથી બૉલના સંપર્કમાં લાવો. (આકૃતિ 12.1)
- અવલોકન કરો કે શું થાય છે અને તેની ચર્ચા તમારા મિત્રો સાથે કરો.

આકૃતિ 12.1 : કંપિત ધ્વનિ-ચીપિયો લટકાવેલ ટેનિસ બૉલને સહેજ અડકાવેલ છે

પ્રવૃત્તિ ______ 12.2

- એક બીકર અથવા ગ્લાસમાં ઉપરની કિનારી સુધી પાણી ભરો. કંપિત ધ્વનિ–ચીપિયાની એક ભુજાને આકૃતિ 12.2માં દર્શાવ્યા અનુસાર પાણીની સપાટી સાથે સ્પર્શ કરાવો.
- હવે આકૃતિ 12.3માં દર્શાવ્યા અનુસાર કંપિત ધ્વનિ-ચીપિયાની બંને ભુજાઓને પાણીમાં ડુબાડો.
- બંને અવસ્થાઓમાં શું થાય છે તેનું અવલોકન કરો.
- તમારા મિત્રો સાથે વિચાર-વિમર્શ કરો કે આવું કેમ થાય છે ?

આકૃતિ 12.2 : કંપિત ધ્વનિ-ચીપિયાની એક ભુજાને પાણીની સપાટી સાથે સ્પર્શ કરાવેલ છે.

આકૃતિ 12.3 : કંપિત ધ્વનિ-ચીપિયાની બંને ભુજાને પાણીમાં ડુબાડેલ છે

ઉપરની પ્રવૃત્તિઓ દ્વારા તમે શું નિષ્કર્ષ તારવો છો ? શું તમે કંપિત વસ્તુ સિવાય ધ્વનિ ઉત્પન્ન કરી શકો છો ?

અત્યાર સુધી વર્શવેલ પ્રવૃત્તિઓમાં આપશે કંપિત ધ્વનિ-ચીપિયામાં આઘાત દ્વારા ધ્વનિ ઉત્પન્ન કર્યો. આપશે જુદી-જુદી વસ્તુઓમાં ઘર્ષણ દ્વારા, ખોતરવાથી (Scratch), ઘસવાથી, હવા ફૂંકીને અથવા તેને હલાવીને ધ્વનિ ઉત્પન્ન કરી શકીએ છીએ. આ પ્રવૃત્તિઓમાં આપશે શું કરીએ છીએ ? આપશે વસ્તુઓને કંપિત કરીએ છીએ અને ધ્વનિ ઉત્પન્ન કરીએ છીએ. કંપનનો અર્થ એ થાય છે કે વસ્તુની ઝડપથી વારંવાર આમ તેમ કે આગળ પાછળ ગતિ. મનુષ્યમાં ધ્વનિ તેના વાક્-તંતુઓના કંપનના કારણે ઉત્પન્ન થાય છે. જ્યારે કોઈ પક્ષી પોતાની પાંખો ફફડાવે ત્યારે શું તમે કોઈ ધ્યનિ સાંભળો છો ? શું તમે જાણો છો કે માખી ગણગણાટનો ધ્વનિ કેવી રીતે ઉત્પન્ન કરે છે ? એક ખેંચેલ રબર બૅન્ડને વચ્ચેથી ખેંચીને છોડી દેતા તે કંપન કરે છે અને ધ્વનિ ઉત્પન્ન કરે છે. જો તમે ક્ચારેય એવું કર્યું ન હોય તો હવે આ પ્રવૃત્તિ કરો અને ખેંચાયેલ રબર બૅન્ડમાં કંપનો જુઓ.

પ્રવૃત્તિ ______ 12.3

 જુદાં-જુદાં વાજિંત્રોની યાદી તૈયાર કરો તથા તમારા મિત્રો સાથે વિચાર-વિમર્શ કરો કે ધ્વનિ ઉત્પન્ન કરવા માટે આ વાજિંત્રોનો કયો ભાગ કંપન કરે છે.

12.2 ધ્વનિનું પ્રસરણ (Propagation of Sound)

કંપિત વસ્તુઓ દ્વારા ધ્વિન ઉત્પન્ન થાય છે. જે દ્રવ્ય અથવા પદાર્થમાંથી ધ્વિનનું પ્રસરણ થાય છે, તેને માધ્યમ કહે છે. તે ઘન, પ્રવાહી કે વાયુ હોઈ શકે. કોઈ સ્રોતમાંથી ઉત્પન્ન થતો ધ્વિન સાંભળનાર વ્યક્તિ સુધી કોઈ માધ્યમમાં પસાર થઈને જ પહોંચે છે. જયારે કોઈ વસ્તુ કંપન કરતી હોય ત્યારે તે પોતાની આસપાસ રહેલા માધ્યમના કણોને કંપિત કરે છે. આ કણ કંપિત વસ્તુથી આપણા કાન સુધી જાતે ગતિ કરીને પહોંચતો નથી. સૌપ્રથમ કંપિત વસ્તુના સંપર્કમાં રહેલ માધ્યમનો કણ પોતાની સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત થાય છે. તે પોતાની બાજુમાં અડીને રહેલા ક્યો પર એક બળ લગાવે છે જેનાં પરિણામ સ્વરૂપ સંલગ્ન ક્યો પોતાની સંતુલિત અવસ્થામાંથી સ્થાનાંતરિત થાય છે. નજીકના કણનું સ્થાનાંતર થયા બાદ પ્રથમ ક્યા પોતાની મૂળ સ્થિતિમાં પાછો આવે છે. માધ્યમમાં આ પ્રક્રિયા ત્યાં સુધી

શું ધ્વનિ પ્રકાશના એક ટપકાને નૃત્ય કરાવી શકે છે ?

એક ટિનનો ડબો લો. તેના બંને છેડાઓને કાપીને પોલો નળાકાર બનાવો. એક ફુગ્ગો લો અને તેને ડબા પર ખેંચીને લગાવી દો. ફુગ્ગાની આ સપાટીની ચારેબાજુ એક રબરબૅન્ડ લગાવી દો. સમતલ દર્પણનો એક નાનો ટુકડો લો. દર્પણના આ ટુકડાને ગુંદરની મદદથી ફુગ્ગા પર એવી રીતે ચોંટાડો કે જેથી તેની ચકચકિત સપાટી ઉપર તરફ રહે. એક સ્લિટમાંથી આવતા પ્રકાશને દર્પણ પર પડવા દો. પરાવર્તન બાદ પ્રકાશનું એક બિંદુ દીવાલ પર પહોંચે છે જે આકૃતિ 12.4માં દર્શાવેલ છે. ડબાના ખુલ્લા ભાગ આગળ તમારા મુખમાંથી જોરથી અવાજ કરો. દીવાલ પર પ્રકાશનું બિંદુ નૃત્ય કરતું દેખાશે. તમારા મિત્રો સાથે પ્રકાશનાં ટપકાના નૃત્યનું કારણ ચર્ચો.

આકૃતિ 12.4 : પ્રકાશ સ્રોતમાંથી આવતું પ્રકાશનું કિરણ પરાવર્તક પર આપાત થાય છે. પરાવર્તિત પ્રકાશ દીવાલ પર પડે છે

ચાલતી રહે છે જ્યાં સુધી ધ્વનિ આપણા કાન સુધી ન પહોંચે. માધ્યમમાં ધ્વનિ દ્વારા ઉત્પન્ન થયેલો વિક્ષોભ આગળ પ્રસરણ પામે છે, નહિ કે માધ્યમનો કણ.

તરંગ એક વિક્ષોભ છે જે કોઈ માધ્યમમાં ગતિ કરે છે તથા માધ્યમના નિકટવર્તી ક્શોમાં ગતિ ઉત્પન્ન કરે છે. માધ્યમના ક્શો પોતે આગળની દિશામાં ગતિ કરવા લાગતાં નથી પરંતુ વિક્ષોભને આગળ વધારે છે. કોઈ માધ્યમમાં ધ્વનિના પ્રસરણ વખતે આ મુજબની પ્રક્રિયા થાય છે તેથી ધ્વનિને તરંગ સ્વરૂપે જ ઓળખી શકાય છે. ધ્વનિ-તરંગોની લાક્ષણિકતા માધ્યમના ક્શોની ગતિ દ્વારા દર્શાવવામાં આવે છે તથા તેને યાંત્રિક તરંગો કહે છે.

ધ્વનિના પ્રસરણ માટે હવા સૌથી સામાન્ય માધ્યમ છે. જ્યારે કોઈ કંપિત વસ્તુ આગળની તરફ કંપન કરે છે ત્યારે પોતાની સામેની હવાને ધક્કો મારી સંકોચન ઉત્પન્ન કરે છે અને આ રીતે એક ઉચ્ચ દબાશનું ક્ષેત્ર ઉત્પન્ન થાય છે. આ ક્ષેત્રને સંઘનન (C), કહે છે. આકૃતિ (12.5). આ સંઘનન કંપિત વસ્તુથી દૂર તરફ ગતિ શરૂ કરે છે. જ્યારે કંપિત વસ્તુ પાછળની તરફ કંપન કરે ત્યારે નીચા દબાણનું ક્ષેત્ર ઉત્પન્ન થાય છે જેને વિઘનન (R) કહે છે. આકૃતિ (12.5). જ્યારે વસ્તુ કંપન કરતી હોય એટલે કે આગળ અને પાછળ ખૂબ જ ઝડપથી ગતિ કરતી હોય ત્યારે હવામાં સંઘનન અને વિઘનનની એક શ્રેણી રચાય છે. આ સંઘનન અને વિઘનન ધ્વનિ-તરંગનું નિર્માણ કરે છે જે માધ્યમમાં પ્રસરણ પામે છે. સંઘનન ઉચ્ચ દબાણનું ક્ષેત્ર છે જ્યારે વિઘનન નિમ્ન દબાણનં ક્ષેત્ર છે. દબાણ માધ્યમના આપેલ કદમાં રહેલા ક્ણોની સંખ્યા પર આધારિત હોય છે. કોઈ માધ્યમમાં, ક્શોની વધારે ઘનતા વધારે દબાણ અને ઓછી ઘનતા ઓછું દબાણ દર્શાવે છે. આમ, ધ્વનિનું પ્રસરણ માધ્યમમાં ઘનતા-સ્પંદન અથવા દબાણ-સ્પંદન સ્વરૂપે પણ જોઈ શકાય.

આકૃતિ 12.5 : કંપિત વસ્તુ કોઈ માધ્યમમાં સંઘનન (C) તથા વિઘનન (R)ની શ્રેણી રચે છે

Yen:

 કોઈ માધ્યમમાં કંપિત વસ્તુ દ્વારા ઉત્પન્ન થયેલ ધ્વનિ તમારા કાન સુધી કેવી રીતે પહોંચે છે ?

12.2.1 ધ્વનિ-પ્રસરણ માટે માધ્યમની આવશ્યકતા હોય છે (Sound Needs a Medium to Travel)

ધ્વનિ એક યાંત્રિક તરંગ છે અને પ્રસરણ માટે કોઈ માધ્યમ જેમ કે હવા, પાણી, સ્ટીલ વગેરેની જરૂરિયાત હોય છે. ધ્વનિના તરંગો શૂન્યાવકાશમાંથી પસાર થઈ શકતાં નથી, તે નીચેના પ્રયોગ દ્વારા દર્શાવી શકાય છે:

પ્રયોગ : એક વિદ્યુતઘંટડી અને એક કાચની હવાચુસ્ત બૅલજાર લો. વિદ્યુતઘંટડીને બેલજારમાં લટકાવો. બૅલજારને આકૃતિ 12.6માં દર્શાવ્યા પ્રમાણે એક હવાશોષક પંપ સાથે જોડો. જો તમે સ્વિચ દબાવશો તો તમે ઘંટડીનો અવાજ સાંભળી શકશો. હવે હવાશોષક (Vacuum) પંપને ચાલુ કરો જ્યારે બૅલજારમાંથી વાયુ ધીરે-ધીરે બહાર નીકળે છે ત્યારે ઘંટડીમાંથી વહેતો વિદ્યુતપ્રવાહ પહેલાં જેટલો હોવા છતાં તેનો અવાજ ધીમો થતો જાય છે. થોડા સમય બાદ જ્યારે બેલજારમાં બહુ જ ઓછી હવા રહે ત્યારે ખૂબ જ ધીમો અવાજ સંભળાય છે. જો બૅલજારમાંથી બધી જ હવા કાઢી લેવામાં આવે તો શું થશે ? શું આ સ્થિતિમાં પણ તમે ઘંટડીનો અવાજ સાંભળી શકશો ?

આકૃતિ 12.6 : શૂન્યાવકાશમાં ધ્વનિનું પ્રસરણ થતું નથી તે દર્શાવતો બેલજારનો પ્રયોગ

प्रश्नो :

प्रवृत्ति _

- તમારી શાળાનો ઘંટ, ધ્વનિ કેવી રીતે ઉત્પન્ન કરે છે તે સમજાવો.
- 2. ધ્વનિ-તરંગોને યાંત્રિક તરંગો કેમ કહે છે ?
- 3. માની લો કે તમે તમારા મિત્ર સાથે ચંદ્ર પર ગયા છો, શું તમે તમારા મિત્ર દ્વારા ઉત્પન્ન કરવામાં આવેલ ધ્વિન સાંભળી શકશો ?

12.2.2 ધ્વનિ-તરંગો સંગત તરંગો છે (Sound Waves are Longitudinal Waves)

 એક સ્લિંકી (લાંબી સ્પ્રિંગ-Slinky) લો. તેનો એક છેડો તમારા મિત્રને પકડવાનું કહો અને બીજો છેડો તમે પકડો. હવે આ લાંબી સ્પ્રિંગને આકૃતિ 12.6 (a)માં દર્શાવ્યા પ્રમાણે ખેંચો. હવે તેને તમારા મિત્ર તરફ અચાનક ધક્કો આપો.

12.4

- તમે શું જુઓ છો ? જો તમે તમારા હાથથી સ્લિંકીને સતત આગળ-પાછળ એક પછી એક ધક્કો મારતા તથા ખેંચતા રહેશો તો તમે શું જોશો ?
- જો તમે સ્લિંકી પર એક ચિહ્ન લગાવી દો તો તમે જોશો
 કે સ્લિંકી પર લગાડેલ ચિહ્ન વિક્ષોભના પ્રસરણની
 દિશાને સમાંતર આગળ-પાછળ ગતિ કરે છે.

આકૃતિ 12.7 : સ્લિકીમાં સંગત તરંગો

એવા વિસ્તારો કે જ્યાં સ્લિંકીના આંટાઓ પાસપાસે આવી જાય છે તેને સંઘનન (C) તથા જે વિસ્તારોમાં સ્લિંકીના આંટાઓ દૂર-દૂર ગોઠવાય છે તેને વિઘનન (R) કહે છે. આપણે જાણીએ છીએ કે કોઈ માધ્યમમાં ધ્વનિ સંઘનન અને વિઘનન સ્વરૂપે પ્રસરણ પામે છે. હવે આપણે સ્લિંકીમાં વિક્ષોભના પ્રસરણની કોઈ માધ્યમમાં વિક્ષોભના સંચરણ સાથે તુલના કરી શકીએ.

આ તરંગોને સંગત તરંગો કહે છે. આ તરંગોમાં માધ્યમના કણોનું સ્થાનાંતર સંચરણની દિશાને સમાંતર થાય છે. કણ એક સ્થાનથી બીજા સ્થાન સુધી ગતિ નથી કરતા; પરંતુ પોતાના સમતોલન સ્થાનની આસપાસ આગળ-પાછળ દોલન કરે છે. ધ્વનિ-તરંગો પણ આ જ રીતે સંચરણ પામે છે તેથી ધ્વનિતરંગોને સંગત તરંગો કહે છે.

તરંગનો એક બીજો પણ પ્રકાર છે જેને લંબગત તરંગ કહે છે. લંબગત તરંગમાં કણો તરંગના પ્રસરણની દિશામાં દોલનો કરતાં નથી પરંતુ જેમ તરંગનું પ્રસરણ થાય છે તેમ તેઓ પોતાના મધ્યમાન સ્થાનની આસપાસ ઉપર અને નીચે તરફ ગતિ કરે છે. આ પ્રકારના તરંગોને લંબગત તરંગ કહે છે. આમ, લંબગત તરંગો એવા તરંગો છે કે જેમાં માધ્યમના કણ સ્વતંત્ર રીતે પોતાના મધ્યમાન સ્થાન પર તરંગના પ્રસરણની દિશાને લંબરૂપે ગતિ કરતા હોય. પ્રકાશ લંબગત તરંગ છે; પરંતુ પ્રકાશનાં દોલનો માધ્યમના કણો અથવા તેના દબાણ કે તેની ઘનતાને લીધે થતા નથી. પ્રકાશના તરંગો યાંત્રિક તરંગો નથી. તમે લંબગત તરંગો વિશે વધારે માહિતી આગળનાં ધોરણોમાં મેળવશો.

12.2.3 ધ્વનિ-તરંગોના ગુણધર્મો (Characteristics of a Sound Wave)

આપણે કોઈ ધ્વનિ તરંગને તેની

- આવૃત્તિ
- કંપવિસ્તાર અને
- ઝડપ વડે વર્ણવી શકીએ છીએ.

ધ્વનિ-તરંગોને આલેખ સ્વરૂપે આકૃતિ 12.8 (c)માં દર્શાવેલ છે, જે દર્શાવે છે કે જ્યારે ધ્વનિ-તરંગ કોઈ માધ્યમમાં ગતિ કરે છે ત્યારે સમય સાથે ઘનતા અને દબાણમાં કેવાં પરિવર્તનો થાય છે. કોઈ નિશ્ચિત સમય પર માધ્યમની ઘનતા તથા દબાણ તેમના સરેરાશ મૂલ્યથી ઉપર તથા નીચે અંતરની સાથે બદલાય છે. આકૃતિ 12.8 (a) તથા 12.8 (b) દર્શાવે છે કે જ્યારે ધ્વનિ તરંગ માધ્યમમાં પ્રસરણ પામે ત્યારે ઘનતા તથા દબાણમાં કેવા ફેરફારો થાય છે.

સંઘનન એવું ક્ષેત્ર છે કે જ્યાં ક્ષ્ણ પાસે-પાસે આવી જાય છે, જેને વક્કના ઉપરના ભાગ તરીકે દર્શાવેલ છે (આકૃતિ 12.8 (c)). ટોચ મહત્તમ સંઘનનના ક્ષેત્રને દર્શાવે છે. આમ, સંઘનન એવું ક્ષેત્ર છે કે જ્યાં ઘનતા અને દબાણ બંને વધારે હોય છે.

આકૃતિ 12.8 : આકૃતિ 12.8 (a) તથા 12.8 (b)માં દર્શાવેલ છે કે ધ્વનિ ઘનતા કે દબાણના ઉતાર-ચઢાવના રૂપમાં પ્રસરણ પામે છે. આકૃતિ 12.8 (c)માં ઘનતા તથા દબાણમાં ઉતાર-ચઢાવને આલેખીય રીતે દર્શાવેલ છે.

વિઘનન નિમ્ન દબાણનું ક્ષેત્ર છે જ્યાં ક્ય એકબીજાથી દૂર ફેલાઈ જાય છે, જેને ખાડા વડે દર્શાવેલ છે, જેને વક્રમાં નીચેના ભાગ વડે દર્શાવેલ છે (આકૃતિ 12.8 (c)).

ટોચને તરંગનું શૃંગ તથા ખાડાને ગર્ત કહે છે. બે ક્રમિક સંઘનનો (C) અથવા બે ક્રમિક વિઘનનો (R) વચ્ચેના અંતરને તરંગલંબાઈ કહે છે. તરંગલંબાઈને સામાન્ય રીતે λ (ગ્રીક અક્ષર લૅમ્ડા) વડે દર્શાવાય છે. જેનો SI એકમ મીટર (m) છે.

હેનરિચ રુડોલ્ફ હર્ટ્ઝ (Heinrich Rudolph Hertz)નો જન્મ 22 ફેબ્રુઆરી, 1857માં હેમબર્ગ, જર્મનીમાં થયો હતો અને તેમનો અભ્યાસ બર્લિન વિશ્વવિદ્યાલયમાં થયો હતો. તેમણે

જે. સી. મેક્સવેલ (J. C. Maxwell's)ના વિદ્યુત ચુંબકીય સિદ્ધાંતની પ્રાયોગિક સાબિતી આપી. તેમણે રેડિયો, ટેલિફોન, ટેલિગ્રાફ તથા ટેવિવિઝનના ભવિષ્યમાં વિકાસ માટેનો પાયો નાખ્યો. તેમણે પ્રકાશ-વિદ્યુત પ્રભાવની પણ શોધ કરી. જેને બાદમાં આલ્બર્ટ આઇન્સ્ટાઇને વ્યાખ્યાઇત કર્યું. આવૃત્તિના SI એકમનું નામ તેમના સન્માનમાં હર્ટ્ઝ રાખવામાં આવ્યું છે.

આવૃત્તિથી આપણને ખ્યાલ આવે છે કે કોઈ ઘટના એકમ સમયમાં કેટલી–વાર પુનરાવર્તિત થાય છે. માની લો કે તમે કોઈ ઢોલને ટીપીટીપીને વગાડો છો. તમે ઢોલને એક સેકન્ડમાં જેટલી–વાર ટીપશો તે તમારા દ્વારા ઢોલને વગાડવાની આવૃત્તિ છે. આપણે જાણીએ છીએ કે, જ્યારે ધ્વિન કોઈ માધ્યમમાં પ્રસરણ પામે છે ત્યારે માધ્યમની ઘનતા કોઈ મહત્તમ તથા લઘુતમ મૂલ્યોની વચ્ચે બદલાય છે. ઘનતા અધિકતમ મૂલ્યથી લઘુતમ મૂલ્ય સુધી જઈ ફરી અધિકતમ મૂલ્ય સુધી પહોંચે ત્યારે એક દોલન પૂરું થાય છે. એકમ સમયમાં થતાં દોલનોની કુલ સંખ્યાને ધ્વિન–તરંગની આવૃત્તિ કહે છે. જો આપણે એકમ સમયમાં આપણી પાસેથી પસાર થતાં સંઘનનો અથવા વિઘનનોની સંખ્યા ગણીએ તો આપણને ધ્વિન–તરંગની આવૃત્તિ મળે છે. જેને સામાન્ય રીતે v (ગ્રીક અક્ષર, ન્યૂ)થી દર્શાવાય છે. તેનો SI એકમ એકમ હર્ટ્ઝ (Hertz) (સંજ્ઞા, Hz) છે.

બે ક્રમિક સંઘનનો કે બે ક્રમિક વિઘનનોને કોઈ નિશ્ચિત બિંદુ પાસેથી પસાર થવા માટે લાગતા સમયને તરંગનો આવર્તકાળ કહે છે. તમે કહી શકો કે માધ્યમની ઘનતાનાં એક સંપૂર્ણ દોલન માટે લીધેલ સમયને ધ્વનિ-તરંગનો આવર્તકાળ કહે છે. તેને T સંજ્ઞાથી દર્શાવાય છે. તેનો SI એકમ સેકન્ડ (s) છે. આવૃત્તિ તથા આવર્તકાળ વચ્ચેનો સંબંધ નીચે પ્રમાણે દર્શાવાય છે :

$$v = \frac{1}{T}$$

કોઈ ઑરકેસ્ટ્રામાં વાયૉલિન તથા વાંસળી એક સાથે વગાડવામાં આવે છે. બંને ધ્વનિ એક જ માધ્યમમાં ગતિ કરી આપણા કાન સુધી સમાન સમયમાં પહોંચે છે. સ્રોતને ધ્યાનમાં લીધા સિવાય ઉત્પન્ન થતો ધ્વનિ સમાન વેગથી ગતિ કરે છે; પરંતુ, જે ધ્વનિઓ આપણે સાંભળીએ છીએ તે જુદા-જુદા છે. આનું કારણ ધ્વનિ સાથે સંકળાયેલા જુદા-જુદા ગુણધર્મો છે. પિચ (Pitch) આ પૈકીનો એક ગુણધર્મ છે.

કોઈ ઉત્સર્જિત ધ્વનિની આવૃત્તિનું આપશું મસ્તિષ્ક કેવું અર્થઘટન કરે છે તેને પિચ કહે છે. કોઈ સ્રોતમાં કંપન જેટલી ઝડપથી થાય છે તેની આવૃત્તિ તેટલી જ વધારે હોય છે તથા તેની પિચ પણ વધારે હોય છે. તેવી જ રીતે, જે ધ્વનિની પિચ ઓછી હોય તેની આવૃત્તિ પણ ઓછી હોય છે, જે આકૃતિ 12.9માં દર્શાવેલ છે. આમ, ઊંચી પિચવાળો ધ્વનિ માધ્યમના કોઈ સ્થિર બિંદુ પાસેથી એકમ સમયમાં પસાર થતાં વધુ સંખ્યાના સંઘનન તથા વિઘનન સાથે સંબંધિત છે.

વિવિધ આકાર તથા અવસ્થાઓ ધરાવતી વસ્તુઓ જુદી-જુદી આવૃત્તિઓ સાથે કંપન કરે છે તથા જુદી-જુદી પિચ ધરાવતો ધ્વનિ ઉત્પન્ન કરે છે.

આકૃતિ 12.9 : નીચા પિચના ધ્વનિની આવૃત્તિ ઓછી તથા ઊંચા પિચના ધ્વનિની આવૃત્તિ વધારે હોય છે

કોઈ માધ્યમમાં પ્રારંભિક અવસ્થાની કોઈએક બાજુ રહેલા મહત્તમ વિક્ષોભના સરેરાશ મૂલ્યને તરંગનો કંપવિસ્તાર કહે છે. તેને સામાન્ય રીતે A સંજ્ઞા વડે દર્શાવાય છે, જે આકૃતિ 12.8 (c)માં દર્શાવેલ છે. ધ્વનિ માટે તેનો એકમ દબાણ અથવા ઘનતાનો એકમ હોય છે.

ધ્વનિની પ્રબળતા અથવા મૃદુતા તેના કંપવિસ્તારથી જાણી શકાય છે. જો કોઈ ટેબલ પર ધીરેથી મુક્કો મારો તો તમને એક મૃદુ ધ્વનિ સંભળાશે કારણ કે આપણે ઓછી ઊર્જાનો ધ્વનિતરંગ ઉત્પન્ન કરેલ છે; પરંતુ જો ટેબલ પર જોરથી મુક્કો મારવામાં આવે, તો આપણને પ્રબળ ધ્વનિ સંભળાય છે. શું તમે તેનું કારણ કહી શકશો ? પ્રબળ ધ્વનિ લાંબા અંતર સુધી જઈ શકે છે કારણ કે તેની સાથે સંકળાયેલી ઊર્જા વધારે હોય છે. ધ્વનિ ઉત્પાદક સ્રોતમાંથી નીકળ્યા બાદ ધ્વનિ-તરંગો ફેલાઈ જાય છે. સ્રોતથી દૂર જતાં તેમનો કંપવિસ્તાર અને પ્રબળતા બંને ઘટતી જાય છે. આકૃતિ 12.10માં સમાન આવૃત્તિ પ્રબળ તથા મૃદુ ધ્વનિ તરંગોના આકારો દર્શાવેલા છે.

આકૃતિ 12.10 : મૃદુ-ધ્વનિનો કંપવિસ્તાર ઓછો તથા પ્રબળ ધ્વનિનો વધારે હોય છે

ધ્વનિની ગુણવત્તા અથવા (timbre-ધ્વનિ ગુણતા) એવી લાક્ષણિકતા છે જે આપણને સમાન પિચ અને તીવ્રતા ધરાવતા ધ્વનિઓને એકબીજાથી જુદા પાડવાની ક્ષમતા આપે છે. જે ધ્વનિ સુખદ અનુભવ આપે છે તેની ગુણવત્તા વધુ સારી ગણાય છે. એક જ આવૃત્તિ ધરાવતા ધ્વનિને ટોન (tone) કહે છે. અનેક આવૃત્તિઓનાં મિશ્રણથી ઉત્પન્ન થતા ધ્વનિને સ્વર (note) કહે

છે અને તે સાંભળવામાં કર્ણપ્રિય હોય છે. ઘોંઘાટ (noise) કર્ણપ્રિય હોતો નથી. 'મ્યુઝિક' સાંભળવામાં સુખદ અને ઉચ્ચ ગુણવત્તા ધરાવે છે.

પ્રશ્નો :

- તરંગનો કયો ગુણધર્મ નીચે દર્શાવેલ બાબતો નક્કી કરે છે?
 - (a) પ્રબળતા (b) પિચ
- 2. અનુમાન લગાવો કે નીચેનામાંથી કયા ધ્વનિની પિચ વધારે છે ?
 - (a) ગિટાર (b) કારનું હૉર્ન

તરંગના કોઈ એક બિંદુ જેમ કે સંઘનન કે વિઘનન દ્વારા એકમ સમયમાં કાપેલ અંતરને તરંગનો વેગ કહે છે. આપણે જાણીએ છીએ કે.

વેગ =
$$\frac{$$
અંતર}{સમય

$$v = \frac{\lambda}{T}$$

અહીં ત્રેને ધ્વનિ-તરંગની તરંગ-લંબાઈ કહે છે. તે ધ્વનિ-તરંગ દ્વારા આવર્તકાળ (T) જેટલા સમયમાં કપાયેલ અંતર દર્શાવે છે.

$$\therefore \quad v = \lambda v \left(\because v = \frac{1}{T}\right)$$

∴ વેગ = તરંગલંબાઈ × આવૃત્તિ

આપેલ માધ્યમમાં સમાન ભૌતિક પરિસ્થિતિમાં ધ્વનિનો વેગ બધી આવૃત્તિઓ માટે લગભગ સમાન હોય છે.

ઉદાહરણ 12.1 : કોઈ ધ્વનિતરંગની આવૃત્તિ 2 kHz તથા તરંગલંબાઈ 35 cm છે. તો 1.5 km અંતર કાપવા માટે કેટલો સમય લેશે ?

ઉકેલ :

આપેલ છે,

આવૃત્તિ v = 2 kHz = 2000 Hz

તરંગલંબાઈ $\lambda = 35 \text{ cm} = 0.35 \text{ m}$

આપણે જાણીએ છીએ કે, તરંગનો વેગ u

= તરંગલંબાઈ × આવૃત્તિ

 $= 0.35 \text{ m} \times 2000 \text{ Hz}$

$$= 700 \frac{m}{s}$$

તરંગે 1.5 km અંતર કાપવા માટે લીધેલ સમય

$$t = \frac{d}{v} = \frac{1.5 \text{ km}}{700 \frac{\text{m}}{\text{s}}}$$

$$= \frac{1500 \text{ m}}{700 \frac{\text{m}}{\text{s}}}$$

= 2.1 s

આમ, ધ્વિન 1.5 km અંતર કાપવા માટે 2.1 s જેટલો સમય લેશે.

પ્રશ્નો :

- કોઈ ધ્વનિ-તરંગ માટે તરંગલંબાઈ, આવૃત્તિ, આવર્તકાળ અને કંપવિસ્તાર એટલે શું ?
- કોઈ ધ્વનિ-તરંગની તરંગલંબાઈ તથા આવૃત્તિ તેના વેગ સાથે કેવો સંબંધ ધરાવે છે?
- આપેલ માધ્યમમાં એક ધ્વનિ-તરંગની આવૃત્તિ
 220 Hz અને ઝડપ 440 m/s છે. આ તરંગની તરંગલંબાઈ ગણો.
- 4. કોઈ ધ્વિન સ્રોતથી 450 m દૂર બેઠેલ કોઈ વ્યક્તિ 500 Hzનો ટોન સાંભળે છે. સ્રોતથી વ્યક્તિ સુધી પહોંચવાવાળા બે ક્રમિક સંઘનન વચ્ચેનો સમયગાળો કેટલો હશે ?

ધ્વનિ પ્રસરણની દિશાને લંબરૂપે રહેલા એકમ ક્ષેત્રફળમાંથી એક સેકન્ડમાં પસાર થતી ધ્વનિ ઊર્જાને ધ્વનિની તીવ્રતા કહે છે. ઘણી વાર આપણે 'પ્રબળતા' તથા 'તીવ્રતા' શબ્દનો એકબીજાના પર્યાયરૂપે ઉપયોગ કરીએ છીએ; પરંતુ તેનો અર્થ એક જ નથી. પ્રબળતા ધ્વનિ માટે કાનની સંવેદનશીલતાનું માપ છે. બે ધ્વનિ સમાન તીવ્રતાના હોઈ શકે તે છતાં પણ આપણે એકને બીજાની સાપેક્ષમાં વધારે પ્રબળ ધ્વનિ તરીકે સાંભળી શકીએ છીએ. કારણ કે આપણા કાન તેના માટે વધારે સંવેદનશીલ છે.

Yen:

1. ધ્વનિની પ્રબળતા તથા તીવ્રતા વચ્ચેનો તફાવત જણાવો.

12.2.4 જુદાં-જુદાં માધ્યમોમાં ધ્વનિની ઝડપ (Speed of Sound in Different Media)

માધ્યમમાં ધ્વનિ એક ચોક્કસ ઝડપથી ગતિ કરે છે. ચોમાસામાં વાદળોની ગર્જનાનો અવાજ વીજળીના ઝબકારા કરતા થોડો મોડો સંભળાય છે તેથી, આપણે એ નિષ્કર્ષ તારવી શકીએ કે ધ્વનિનો વેગ પ્રકાશના વેગની સાપેક્ષમાં બહુ જ ઓછો છે. ધ્વનિનો વેગ તે જે માધ્યમમાં પ્રસરણ પામે છે તેના ગુણધર્મો પર આધાર રાખે છે. તમે આ હકીકત આગળનાં ધોરણોમાં શીખશો. કોઈ માધ્યમમાં ધ્વનિનો વેગ માધ્યમના તાપમાન પર આધાર રાખે છે. ધ્વનિની ઝડપ ઘનથી વાયુ અવસ્થા તરફ જતાં ઘટતી જાય છે. કોઈ માધ્યમમાં તાપમાન વધારતાં ધ્વનિની ઝડપ વધે છે. ઉદાહરણ તરીકે, ધ્વનિની હવામાં ઝડપ 331 m s⁻¹ જેટલી 0 °C તાપમાને હોય છે જ્યારે 22 °C તાપમાને 344 m s⁻¹ હોય છે. કોષ્ટક 2.1માં જુદાં-જુદાં માધ્યમોમાં એક નિશ્ચિત તાપમાને ધ્વનિની ઝડપ દર્શાવેલ છે. જે તમારે યાદ રાખવાની જરૂર નથી.

કોષ્ટક 12.1 : જુદાં-જુદાં માધ્યમોમાં 25° C પર ધ્વનિનો વેગ

અવસ્થા	પદાર્થ	વેગ m/s
ઘન	ઍલ્યુમિનિયમ	6420
	નિકલ	6040
	સ્ટીલ	5960
	લોખંડ	5950
	પિત્તળ	4700
	કાચ (ફિલન્ટ)	3980
પ્રવાહી	પાણી (સમુદ્ર)	1531
	પાણી (શુદ્ધ)	1498
	ઈથેનોલ	1207
	મિથેનોલ	1103
વાયુ	હાઇડ્રોજન	1284
	હિલીયમ	965
	હવા	346
	ઑક્સિજન	316
	સલ્ફર ડાયૉક્સાઇડ	213

Yen:

 ચોક્કસ તાપમાને, હવા, પાણી અથવા લોખંડ પૈકી કયા માધ્યમમાં ધ્વિન સૌથી વધારે ઝડપથી ગતિ કરશે ? ધ્વિનિ બૂમ (Sonic Boom): જયારે કોઈ પદાર્થ ધ્વિનિની ઝડપ કરતાં વધારે ઝડપથી ગિત કરે છે ત્યારે તેને સુપર સોનિક ઝડપથી ગિત કરતો કહે છે. ગોળીઓ (Bullets) જેટ વિમાન વગેરે મોટે ભાગે સુપરસોનિક ઝડપથી ગિત કરે છે. જયારે ધ્વિનિ ઉત્પાદક કેન્દ્ર ધ્વિનિની ઝડપ કરતાં વધારે ઝડપથી ગિત કરે છે. જયારે ધ્વિનિ ઉત્પાદક કેન્દ્ર ધ્વિનિની ઝડપ કરતાં વધારે ઝડપથી ગિત કરતું હોય ત્યારે તે વાયુમાં શૉક વેવ (Shock Wave) ઉત્પન્ન કરે છે. આ Shock Wave માં ખૂબ જ વધારે ઊર્જા હોય છે. આ પ્રકારના શૉક વેવથી વાયુના દબાણમાં થતાં કેરફારના કારણે એક ખૂબ જ તીક્ષ્ણ અને પ્રબળ ધ્વિનિ ઉત્પન્ન થાય છે, જેને 'ધ્વિનિ બૂમ' કહે છે. સુપર સોનિક વાયુયાનમાં ઉત્પન્ન થતા ધ્વિન બૂમમાં એટલી માત્રામાં ઊર્જા હોય છે કે તે બારીઓના કાચ તોડી શકે છે અને ક્યારેક ઇમારતોને પણ નુકસાન પહોંચાડી શકે છે.

12.3 ધ્વનિનું પરાવર્તન (Reflection of Sound)

કોઈ ઘન અથવા પ્રવાંહી સપાટી પરથી ધ્વિન અથડાઈને એવી રીતે પાછો વળે છે જેવી રીતે કોઈ રબરનો દડો દીવાલને અથડાઈને પાછો કરે. પ્રકાશની જેમ ધ્વિન પણ કોઈ ઘન કે પ્રવાહીની સપાટી પરથી પરાવર્તિત થાય છે તથા તે પરાવર્તનના બધા જ નિયમોનું પાલન કરે છે જેનો અભ્યાસ તમે આગળનાં ધોરણમાં કરી ચૂક્યા છો. સપાટી પરથી પરાવર્તન પામતા તથા સપાટી પર આપાત થયેલ ધ્વિનના તરંગો એ સપાટી સાથે આપાત બિંદુ પાસે દોરેલ લંબ સાથે સમાન ખૂણો બનાવે છે અને આ ત્રણેય એક જ સમતલમાં હોય છે. ધ્વિનિ-તરંગોના પરાવર્તન માટે મોટા આકારના અવરોધકની જરૂરિયાત પડે છે પછી તે ચક્ચિકત હોય કે ખરબચડા.

પ્રવૃત્તિ ______ 12.5

- આકૃતિ 12.11માં દર્શાવ્યા પ્રમાશે બે સમાન પાઇપ લો.
 તમે ચાર્ટપેપરની મદદથી આવા પાઇપ બનાવી શકો છો.
- પાઇપોની લંબાઈ પૂરતી હોવી જોઈએ (ચાર્ટપેપરની લંબાઈ જેટલી).
- તેમને દીવાલની નજીક ટેબલ પર વ્યવસ્થિત ગોઠવો. એક પાઇપના ખુલ્લા છેડા પાસે ઘડિયાળ મૂકો જ્યારે બીજા પાઇપ પાસે આ ઘડિયાળનો ધ્વનિ સાંભળવાનો પ્રયત્ન કરો.
- બંને પાઇપોની સ્થિતિ એવી રીતે ગોઠવો કે જેથી તમને ઘડિયાળનો અવાજ સ્પષ્ટ સંભળાય.
- હવે આપાતકોણ અને પરાવર્તનકોણ માપો તથા તેમની વચ્ચેનો સંબંધ ચકાસો.
- જમણી બાજુની પાઇપને ઊર્ધ્વદિશામાં થોડે ઊંચે સુધી લઈ જાવ અને જુઓ શું થાય છે? (ઘડિયાળના સ્થાને કંપિત અવસ્થામાં રાખેલો મોબાઇલ ફોનનો પણ ઉપયોગ કરી શકાય છે.)

આકૃતિ 12.11 : ध्वनिनुं परावर्तन

12.3.1 પડઘો (Echo)

જો આપણે યોગ્ય પરાવર્તક વસ્તુ જેવી કે ઊંચી ઇમારત અથવા પહાડની નજીક જોરથી બુમ પાડીએ કે તાળી પાડીએ તો થોડા સમય પછી તે જ ધ્વનિ આપણને ફરી સંભળાય છે. તમને સંભળાતા આ ધ્વનિને પડઘો કહે છે. આપણા મગજમાં ધ્વનિની સંવેદના લગભગ 0.1 sec સુધી રહે છે. પડઘો સ્પષ્ટ રીતે સંભળાય તે માટે મૂળ ધ્વનિ અને પરાવર્તિત ધ્વનિ વચ્ચે ઓછામાં ઓછો 0.1 secનો સમયગાળો ચોક્કસ હોવો જોઈએ. જો આપણે આપેલ તાપમાન જેમકે 22° C પર ધ્વનિનો વેગ 344 m/s લઈએ, તો ધ્વનિને અવરોધક સુધી જવા તથા પરાવર્તન પછી શ્રોતા સુધી પહોંચવા વચ્ચેનો સમયગાળો 0.1 sec કે તેથી થોડો વધુ હોવો જોઈએ. આમ, શ્રોતાથી પરાવર્તક સપાટી સુધી જવા તથા પાછા આવવા માટે ધ્વનિ દ્વારા કપાયેલ કુલ અંતર ઓછામાં ઓછું (344 m/s) × 0.1s = 34.4 m હોવું જોઈએ. આમ, પડઘાઓ સ્પષ્ટ સાંભળવા માટે અવરોધકનું ધ્વનિ-સ્રોતથી લઘુતમ અંતર ધ્વનિએ કાપેલા કુલ અંતરથી અડધું એટલે કે 17.2 m હોવું જોઈએ. આ અંતર હવાના તાપમાન સાથે બદલાય છે કારણ કે, તાપમાન સાથે ધ્વનિનો વેગ પણ બદલાય છે. ध्वनिना वारंवार थतां परावर्तनना अरुशे आपशने એક्थी वधारे વખત પડઘો સંભળાઈ શકે છે. વાદળોના ગડગડાટનો ધ્વનિ પણ ઘણી પરાવર્તક સપાટીઓ જેમકે વાદળો તથા જમીન પરથી વારંવાર પરાવર્તનના ફળસ્વરૂપે ઉત્પન્ન થયો હોય છે.

12.3.2 अनुरशन (Reverberation)

કોઈ મોટા ઓરડામાં ઉત્પન્ન થતો ધ્વિન દીવાલો પરથી વારંવાર પરાવર્તન પામવાનાં કારણે લાંબા સમય સુધી જળવાઈ રહે છે, જયાં સુધી તેની તીવ્રતા ખૂબ જ ઓછી ન થાય. આ વારંવાર પરાવર્તનનાં કારણે જે પ્રબળ ધ્વનિ મળે છે તેને અનુરણન (Reverberation) કહે છે. કોઈ સભામંડપ કે મોટા હૉલમાં વધારે પડતું અનુરણન અનિચ્છનીય છે. અનુરણન ઓછું કરવા માટે હૉલની છત તથા દીવાલો પર ધ્વનિશોષક પદાર્થો જેવા કે દબાવેલા ફાઇબર બૉર્ડ, રફ પ્લાસ્ટર અથવા પડદા લગાડવામાં આવે છે. સીટોના પદાર્થની પસંદગી પણ તેના ધ્વનિ-શોષકતાના ગુણોને આધારે કરવામાં આવે છે.

ઉદાહરણ 12.2 : એક વ્યક્તિ એક ભેખડ પાસે તાળી પાડે છે. તેની 2 sec બાદ તેનો પડઘો સંભળાય છે. જો ધ્વનિનો વેગ 346 m/s લઈએ, તો ભેખડ અને વ્યક્તિ વચ્ચેનું અંતર કેટલું હશે ?

ઉકેલ:

ધ્વનિનો વેગ $v=346~\mathrm{m~s^{-1}}$ પડઘો સાંભળવા માટે લીધેલ સમય,

$$t = 2 \text{ s}$$

ધ્વનિ દ્વારા કપાયેલ અંતર

$$= v \times t$$

 $= 346 \text{ m s}^{-1} \times 2 \text{ s}$

$$= 1730 \text{ m}$$

2 sમાં ધ્વનિ ભેખડ તથા વ્યક્તિની વચ્ચે બમણું અંતર કાપશે તેથી ભેખડ અને વ્યક્તિ વચ્ચેનું અંતર

$$=\frac{1730 \text{ m}}{2} = 865 \text{ m}$$

X291:

 કોઈ પડઘો 3 sec પછી સંભળાય છે. જો ધ્વિનનો વેગ 342 m s⁻¹ હોય, તો સ્રોત અને પરાવર્તક સપાટી વચ્ચેનું અંતર કેટલું હશે ?

12.3.3 ધ્વનિના ગુણક પરાવર્તનના ઉપયોગો (Uses of Multiple Reflection of Sound)

 મેગાફોન કે લાઉડસ્પીકર, હૉર્ન, તૂરી તથા શહેનાઈ જેવાં વાઘો, બધાં એવી રીતે બનાવવામાં આવે છે જેથી ધ્વિન બધી દિશામાં ફેલાવાના બદલે ફક્ત એક ચોક્કસ દિશામાં ગતિ કરે જે આકૃતિ 12.12માં દર્શાવેલ છે.

આકૃતિ 12.12 : મેગાફોન અને હોર્ન

આ યંત્રોમાં એક નળીનો આગળનો ખુલ્લો ભાગ શંકુ આકારનો હોય છે જે સ્રોતથી ઉત્પન્ન થતા ધ્વનિને વારંવાર પરાવર્તિત કરી શ્રોતાઓની દિશામાં આગળ તરફ મોકલે છે.

 સ્ટેથોસ્કોપ એક મેડિકલ ઉપકરણ છે જે શરીરની અંદર ખાસ કરીને હૃદય તથા ફેફસાંઓમાં ઉત્પન્ન થતા ધ્વનિને સાંભળવાના કામમાં આવે છે. સ્ટેથોસ્કોપમાં દર્દીના હૃદયના ધબકારાનો ધ્વનિ વારંવાર પરાવર્તન પામી ડૉક્ટરના કાન સુધી પહોંચે છે. (આકૃતિ 12.13)

આકૃતિ 12.13 : સ્ટેથોસ્કોપ

 કોનસર્ટ હૉલ, સંમેલન ઓરડાઓ તથા સિનેમા હૉલની છત વક્કાકાર બનાવવામાં આવે છે જેથી પરાવર્તન બાદ ધ્વિન હૉલના બધા જ ભાગો સુધી પહોંચી જાય. જે આકૃતિ 12.14માં દર્શાવેલ છે. ક્યારેક-ક્યારેક વક્રાકાર ધ્વનિબૉર્ડ મંચની પાછળ રાખવામાં આવે છે જેથી ધ્વનિ આ ધ્વનિબૉર્ડથી પરાવર્તન પામી સંપૂર્ણ હૉલમાં ફેલાઈ જાય છે. (આકૃતિ 12.15)

આકૃતિ 12.14 : સંમેલન કક્ષમાં વક્રાકાર છત

આકૃતિ 12.15 : મોટા ઓરડામાં ઉપયોગમાં લેવાતાં ધ્વનિબૉર્ડ

Yen:

1. કોન્સર્ટ હૉલની છતો વકાકાર કેમ હોય છે ?

12.4 સાંભળવાનો વિસ્તાર (Range of Hearing)

આપણે બધી આવૃત્તિના ધ્વિન સાંભળી શકતા નથી. મનુષ્યમાં ધ્વિનની સાંભળવાનો વિસ્તાર લગભગ 20 Hzથી 20,000Hz (1Hz = 1 Cycle/s) સુધીની હોય છે. 5 વર્ષથી ઓછી વયનાં

બાળક તથા કેટલાંક પ્રાણીઓ જેમકે કૂતરો 25 kHz સુધીના ધ્વનિ સાંભળી શકે છે (1kHz = 1000 Hz). જેમ-જેમ વ્યક્તિની ઉંમર વધતી જાય છે તેમ-તેમ તેના કાન ઉચ્ચ આવૃત્તિઓ ઓછી સાંભળી શકે છે. 20 Hzથી ઓછી આવૃત્તિ ધરાવતા ધ્વનિને અવશ્રાવ્ય (infrasonic) ધ્વનિ કહે છે. જો આપણે અવશ્રાવ્ય ધ્વનિ સાંભળી શકતા હોત તો કોઈ લોલકનાં કંપનો એવી જ રીતે સાંભળી શકત જેવી રીતે માખીની પાંખોના કંપન સાંભળી શકીએ છીએ. ગેંડો 5 Hz આવૃત્તિ ધરાવતા અવશ્રાવ્ય ધ્વનિનો ઉપયોગ કરીને સંપર્ક સ્થાપિત કરે છે. વહેલ તથા હાથી અવશ્રવ્ય ધ્વનિ રેન્જના ધ્વનિ ઉત્પન્ન કરે છે. એવું જોવામાં આવ્યું છે કે કેટલાંક પ્રાણીઓ ભુકંપ પહેલાં પરેશાન થઈ જાય છે. ભૂકંપમા મુખ્ય શૉક તરંગ પહેલાં ઓછી આવૃત્તિવાળા અવશ્રાવ્ય ધ્વનિ ઉત્પન્ન થતાં હોય છે જે કદાચ આ પ્રાણીઓને સાવધાન કરતા હશે. 20 kHzથી વધારે આવૃત્તિ ધરાવતા ધ્વનિને પરાશ્રાવ્ય ધ્વનિ અથવા પરાધ્વનિ (Ultrasonic) કહે છે. ડોલ્ફીન, ચામાચીડિયું અને પોરપોઇઝ (વ્હેલ જેવું જ સસ્તન પ્રાણી) પરાધ્વનિ ઉત્પન્ન કરે છે. કેટલીક પ્રજાતિના (moths) ફૂદાંઓની શ્રવણશક્તિ ખૂબ જ ઊંચી હોય છે. આ ફૂદાં ચામાચીડિયા દ્વારા ઉત્પન્ન થતી ઉચ્ચ આવૃત્તિના ચીંચીં જેવા ધ્વનિને સાંભળી શકે છે. તેમને પોતાની આસપાસ ઊડતાં ચામાચીડિયાની જાણકારી મળી જાય છે અને પોતાને પકડાઈ જતા બચાવે છે. ઉંદર પણ પરાધ્વનિ ઉત્પન્ન કરી કેટલીક રમતો રમે છે.

શ્રવણ સહાયક યંત્ર (Hearing Aid): જે લોકોને ઓછું સંભળાતું હોય તેમને આ યંત્રની જરૂર પડે છે. આ બૅટરીથી ચાલતું એક ઇલેક્ટ્રૉનિક ઉપકરણ છે જેમાં એક નાનો માઇક્રોફોન, એક ઍમ્પ્લિફાયર તથા સ્પીકર હોય છે. જ્યારે ધ્વિન માઇક્રોફોન પર પડે છે ત્યારે તે ધ્વિનિ-તરંગોને વિદ્યુત સિગ્નલમાં રૂપાંતરિત કરે છે. વિદ્યુત સિગ્નલો એમ્પિફાયર દ્વાર વિવર્ધિત (એમ્લિફાય) થાય છે. જે કાનના ડાયફ્રામ (પડદા) પર આપાત થાય છે અને વ્યક્તિને સ્પષ્ટ ધ્વિન સંભળાય છે.

प्रश्त :

- સામાન્ય મનુષ્ય માટે ધ્વનિ-શ્રાવ્યતાનો વિસ્તાર કેટલો હોય છે ?
- નીચેનાની ધ્વનિ આવૃત્તિનો વિસ્તાર કેટલો હોય છે?
 - (a) અવશ્રાવ્ય ધ્વનિ
 - (b) પરાશ્રાવ્ય ધ્વનિ

12.5 પરાધ્વનિની ઉપયોગિતા (અનુપ્રયોગ) (Applications of Ultrasound)

પરાધ્વનિ ઉચ્ચ આવૃત્તિના તરંગો છે. પરાધ્વનિ અવરોધોની હાજરીમાં પણ એક નિશ્ચિત પથ પર ગતિ કરે છે. ઉદ્યોગો તથા ચિકિત્સાક્ષેત્રમાં બહોળો ઉપયોગ થાય છે.

- પરાધ્વિન મોટે ભાગે તે ભાગોને સાફ કરવા માટે ઉપયોગમાં લેવામાં આવે છે જ્યાં સુધી પહોંચવું કઠિન હોય જેમકે સર્પિલાકાર નળી, વિષમ આકારના ભાગો, ઇલેક્ટ્રૉનિક ઘટકો વગેરે જે વસ્તુઓને સાફ કરવાની હોય તેને સફાઈ દ્રાવણમાં રાખી તેની પર પરાધ્વિન આપાત કરવામાં આવે છે. ઉચ્ચ આવૃત્તિને કારણે ધૂળ, ચીકાશ તથા ગંદકીના ક્યો જુદા થઈને નીચે પડી જાય છે અને આ રીતે વસ્તુ સંપૂર્ણ સાફ થાય છે.
- પરાધ્વિનિનો ઉપયોગ ધાતુના બ્લૉકમાં રહેલી તિરાડો તથા અન્ય ખામીઓ શોધવામાં કરી શકાય છે. ધાતુના બ્લૉકને મોટા ભાગે મોટાં-મોટાં ભવનો, પુલો, મશીનો તથા વૈજ્ઞાનિક સાધનો બનાવવાના ઉપયોગમાં લેવામાં આવે છે. ધાતુના બ્લૉકમાં રહેલી તિરાડ કે છિદ્ર બહારથી દેખાતા નથી. તે ભવન કે પુલની મજબૂતી ઓછી કરે છે. પરાધ્વિન તરંગો ધાતુના બ્લૉક પર આપાત કરી પરાવર્તિત થતા તરંગો ડિટેક્ટર દ્વારા નોંધવામાં આવે છે. જો બ્લૉકમાં થોડી પણ ખામી હોય, તો પરાધ્વિન તરંગો તરત પરાવર્તિત થાય છે જે ખામીની હાજરી સૂચવે છે. (આકૃતિ 12.16)

આકૃતિ 12.16 : પરાધ્વનિ ધાતુના બ્લૉકમાં ક્ષતિયુક્ત સ્થાનેથી પરાવર્તિત થાય છે

સામાન્ય ધ્વનિ જેની તરંગલંબાઈ વધારે હોય તે ખામીયુક્ત સ્થાનના ખૂણાઓ પાસેથી વાંકા વળી ડિટેક્ટર સુધી પહોંચી જાય છે. તેથી આવા ધ્વનિનો ઉપયોગ આ પ્રકારનાં કાર્યોમાં કરી શકાતો નથી.

- પરાધ્વિન તરંગોને હૃદયના જુદા-જુદા ભાગો દ્વારા પરાવર્તિત કરાવી હૃદયનું પ્રતિબિંબ બનાવાય છે. આ ટેક્નિકને 'ઇકો કાર્ડિયોગ્રાફી' (ECG) કહે છે.
- પરાધ્વનિ સમસૂચક (સ્કેનર) એક એવું યંત્ર છે કે જે પરાધ્વનિ તરંગોનો ઉપયોગ કરી માનવશરીરનાં આંતરિક અંગોનું પ્રતિબિંબ પ્રાપ્ત કરવામાં કામ લાગે છે. આ યંત્ર દ્વારા દર્દીનાં અંગો જેવાં કે યકૃત, પિત્તાશય, ગર્ભાશય. કિડની વગેરેનાં પ્રતિબિંબ બનાવી શકાય છે. આ યંત્ર શરીરની અસામાન્યતાઓ જેમકે પિત્તાશય અથવા મુત્રપિંડમાં પથરી તથા જુદાં-જુદાં અંગોમાં ગાંઠ (ટ્યુમર)ની શોધ કરવામાં ઉપયોગી છે. આ ટેક્નિકમાં પરાધ્વનિ તરંગો શરીરના કોષોમાંથી પસાર થાય છે તથા જ્યાં કોષોની ઘનતામાં કેરકાર થાય ત્યાંથી પરાવર્તિત થાય છે, ત્યાર બાદ આ તરંગોને વિદ્યુત સંકેતોમાં રૂપાંતરિત કરવામાં આવે છે જેનાથી તે અંગનું પ્રતિબિંબ બનાવાય છે. આ પ્રતિબિંબને મૉનિટર પર દર્શાવાય છે અથવા ફોટોગ્રાફિક ફિલ્મ પર મદ્રિત કરી શકાય છે. આ ટેક્નિકને અલ્ટ્રાસોનોગ્રાફ્રી કહે છે. અલ્ટ્રાસોનિક સોનોગ્રાફ્રીનો ઉપયોગ ગર્ભાવસ્થામાં ભ્રુણની ચકાસણી તથા જન્મજાત દોષ કે તેના વિકાસમાં રહેલી અનિયમિતતાઓની જાણકારી મેળવી શકાય છે.
- પરાધ્વિનિને મૂત્રપિંડમાં રહેલી પથરીને બારીક કણોમાં તોડવા માટે પણ ઉપયોગમાં લેવામાં આવે છે.
 આ કણો ત્યાર બાદ મૂત્ર સાથે બહાર નીકળી જાય છે.

12.5.1 સોનાર (SONAR)

સોનાર શબ્દ Sound Navigation And Ranging પરથી બન્યો છે. સોનાર એક એવું સાધન છે કે જેની મદદથી પાણીમાં ઊંડે રહેલી વસ્તુઓનું અંતર, દિશા તથા વેગ માપવા માટે પરાધ્વનિ તરંગનો ઉપયોગ કરે છે. સોનાર કેવી રીતે કાર્ય કરે છે? સોનારમાં એક દ્રાન્સમિટર અને એક ડિટેક્ટર હોય છે જેને કોઈ નાવ અથવા જહાજમાં આકૃતિ 12.17માં દર્શાવ્યા પ્રમાણે લગાડવામાં આવે છે.

આકૃતિ 12.17 : દ્રાન્સમિટર દ્વારા દ્રાન્સમીટ થયેલ તથા ડિટેક્ટર દ્વારા ઝિલાયેલ પરાધ્વનિ

ટ્રાન્સિમિટર પરાધ્વિન તરંગ ઉત્પન્ન કરી પ્રસારણ (ટ્રાન્સિમીટ) કરે છે. આ તરંગો પાણીમાંથી પસાર થઈ સમુદ્રના તિળયે રહેલી વસ્તુઓ સાથે અથડાઈને પરાવર્તન પામી ડિટેક્ટર દ્વારા નોંધાય છે. ડિટેક્ટર પરાધ્વિન તરંગોને વિદ્યુત સંકેતોમાં બદલે છે જેની યોગ્ય રીતે ચકાસણી કરી શકાય છે. પાણીમાં ધ્વિનનો વેગ તથા પરાધ્વિનના ટ્રાન્સિમિશન અને રિસીવિંગ વચ્ચેના સમયગાળાની મદદથી વસ્તુના અંતરની ગણતરી કરી શકાય છે. ધારો કે, પરાધ્વિન સંકેતના ટ્રાન્સિમિશન અને રિસીવિંગ વચ્ચેનો સમયગાળો t છે તથા સમુદ્રના પાણીમાં ધ્વિનનો વેગ v છે. આ સ્થિતિમાં તિળયે રહેલી વસ્તુનું કુલ અંતર 2d થશે.

 $2d = v \times t$

આ વિધિને ઇકોરેજિંગ (Eco-Ranging - પડઘો અવધિ) કહે છે. સોનાર ટેક્નિકનો ઉપયોગ સમુદ્રની ઊંડાઈ જાણવા તથા પાણીની અંદર રહેલા પહાડો, ખીણો, સબમરીનો, હિમશિલાઓ, ડૂબેલાં જહાજો વગેરેની જાણકારી પ્રાપ્ત કરવા માટે કરી શકાય છે.

ઉદાહરણ 12.3 : એક જહાજ પરાધ્વિન ઉત્સર્જિત કરે છે જે સમુદ્રના તળિયેથી પરાવર્તન પામી 3.42 સેકન્ડ બાદ નોંધાય છે. જો સમુદ્રના પાણીમાં પરાધ્વિનિનો વેગ 1531 m/s હોય, તો સમુદ્રના તળિયાથી જહાજ કેટલે દૂર હશે ?

ઉકેલ:

ટ્રાન્સિમિશન અને પરખ થવા વચ્ચેનો સમયગાળો t = 3.42 s આપેલ છે.

સમુદ્રના પાણીમાં પરાધ્વિનિની ઝડપ v=1531 m/s પરાધ્વિનિએ કાપેલ અંતર =2d જ્યાં d= સમુદ્રની ઊંડાઈ 2d= ધ્વિનિનો વેગ \times સમય $=1531 \text{ m/s} \times 3.42 \text{ s}=5236 \text{ m}$ d=5236 m/2=2618 m

આમ, જહાજ સમુદ્રના તળિયેથી 2618 m અથવા 2.62 km છે.

પ્રશ્ન :

એક સબમરીન સોનાર સ્પંદ ઉત્પન્ન કરે છે.
 જો પાણીની અંદર રહેલ ખડક સાથે અથડાઈને
 1.02 s બાદ પરાવર્તિત થતી હોય તથા ખારા પાણીમાં ધ્વનિની ઝડપ 1531 m/s હોય, તો ખડકનું અંતર શોધો.

આગળ વર્શન કરેલ છે તે મુજબ ચામાચીડિયા ઘોર અંધકારમાં પોતાનું ભોજન શોધવા માટે ઊડતા હોય ત્યારે પરાધ્વિન તરંગો ઉત્સર્જિત કરે છે અને પરાવર્તન બાદ તેનું સંસૂચન (Detection) કરે છે. ચામાચીડિયા દ્વારા ઉત્પન્ન થતાં ઉચ્ચ આવૃત્તિવાળા પરાધ્વિન સ્પંદ અવરોધો કે કીટકોથી પરાવર્તન પામી તેના કાનમાં પ્રવેશે છે (આકૃતિ 12.18). આ પરિવર્તિત સ્પંદનોની પ્રકૃતિથી ચામાચીડિયાને ખબર પડે છે કે અવરોધ કે કીટક ક્યાં આગળ છે અને તે કેવા પ્રકારનું છે. પોરપોઇઝ સસ્તન માછલીઓ પણ અંધારામાં સંચાલન અને ભોજનની શોધમાં પરાધ્વિનનો ઉપયોગ કરે છે.

આકૃતિ 12.18 : ચામાચીડિયા દ્વારા પરાધ્વનિ ઉત્પન્ન થાય છે તથા અવરોધો કે કીટકો દ્વારા પરાવર્તિત થાય છે

12.6 માનવ-કાનની સંરચના (Structure of Human Ear)

આપણે કેવી રીતે સાંભળીએ છીએ ? આપણે એક અતિ સંવેદી સાધન કે જેને કાન (કર્ણ-Ear) કહે છે તેની મદદથી સાંભળી શકીએ છીએ. જે શ્રવણીય આવૃત્તિઓ દ્વારા વાયુમાં થતા દબાણના પરિવર્તનને વિદ્યુત સંકેતમાં રૂપાંતરિત કરે છે. જે શ્રવણ તંત્ર દ્વારા મસ્તિષ્ક સુધી પહોંચે છે. માનવની કાન દ્વારા સાંભળવાની પ્રક્રિયા વિશે આપણે અહીં ચર્ચા કરીશું.

આકૃતિ 12.19 : માનવ-કાનનો શ્રવણ ભાગ

કાનના બહારના ભાગને કર્શપલ્લવ કહે છે. તે આજુબાજુમાંથી આવતા ધ્વિનને એકત્રિત કરે છે. એકત્રિત ધ્વિન શ્રવણ (કર્શ)નલિકામાંથી પસાર થાય છે. શ્રવણ (કર્શ) નલિકાના એક છેડે એક પાતળો પડદો હોય છે, જેને કર્શપટલ પણ કહે છે. જ્યારે માધ્યમનું સંઘનન કર્શપટલ સુધી પહોંચે ત્યારે પડદા પર બહારની તરફથી લાગતું દબાણ વધી જાય છે, જે કર્શપટલને અંદરની તરફ દબાવે છે. તે જ રીતે વિઘનન વખતે કર્શપટલ બહારની તરફ ગતિ કરે છે. આ રીતે કર્શપટલ કંપન કરે છે. મધ્યકર્શમાં રહેલ ત્રણ હાડકાં (હથોડી, એરણ, પેગડું) આ કંપનોને કેટલાય ગણો વધારી દે છે. મધ્યકર્શ ધ્વિનતરંગોથી થતા દબાણ પરિવર્તન આંતરિક કર્શ સુધી પ્રસરણ કરે છે. આંતરિક કર્શમાં કર્શાવર્ત (શંખિકા) (Cochlea) દ્વારા દબાણના ફેરફારને વિદ્યુત-સંકેતમાં રૂપાંતરિત કરવામાં આવે છે. આ વિદ્યુત-સંકેત શ્રવણતંત્રિકા (ઉદરિકા) દ્વારા મસ્તિકમાં મોકલાય છે અને મસ્તિક તે ધ્વિનને ઓળખે છે.

તમે શું શીખ્યાં

What You Have Learnt

- ધ્વનિ જુદી-જુદી વસ્તુઓના કંપનને કારણે ઉત્પન્ન થાય છે.
- ધ્વિન કોઈ દ્રવ્ય માધ્યમમાં સંગત તરંગોરૂપે ગતિ કરે છે.
- ધ્વનિ માધ્યમમાં ક્રમિક સંઘનનો તથા વિઘનનોનાં સ્વરૂપે ગતિ કરે છે.
- ધ્વનિ-પ્રસરણમાં માધ્યમના કણ ગતિ કરતા નથી, માત્ર વિક્ષોભ (ઊર્જા) જ સંચરણ પામે છે.
- ધ્વનિ શૂન્યાવકાશમાં પ્રસરણ પામી શકતો નથી.
- ઘનતાના અધિકતમ મૂલ્યથી ન્યૂનતમ મૂલ્ય અને ફરી પાછા અધિકતમ મૂલ્યમાં
 પરિવર્તનથી એક દોલન પૂર્વ થાય છે.
- બે ક્રમિક સંઘનન કે બે ક્રમિક વિઘનન વચ્ચેના અંતરને તરંગલંબાઈ λ કહે છે.
- તરંગ દ્વારા માધ્યમની ઘનતા અથવા દબાણના એક સંપૂર્ણ દોલન માટે લીધેલ સમયને આવર્તકાળ (T) કહે છે.
- એકમ સમયમાં થતાં દોલનોની કુલ સંખ્યાને આવૃત્તિ (ν) કહે છે. $\nu=rac{1}{T}$.
- ધ્વનિનો વેગ (v), આવૃત્તિ (v) તથા તરંગલંબાઈ (λ) વચ્ચેનો સંબંધ $v=\lambda v$
- ધ્વનિનો વેગ, મુખ્યત્વે જેમાં તે પ્રસરણ પામે છે તે માધ્યમની પ્રકૃતિ તથા તાપમાન પર આધાર રાખે છે.
- ધ્વિનિના પરાવર્તનના નિયમ અનુસાર સપાટીને દોરેલ લંબ સાથે આપાત તરંગે બનાવેલ આપાતકોણ અને પરાવર્તિત તરંગે બનાવેલ પરાવર્તનકોણ સમાન હોય છે તથા ત્રણેય એક જ સમતલમાં હોય છે.
- પડઘો સ્પષ્ટ રીતે સાંભળવા માટે મૂળ ધ્વિન તથા પરાવર્તિત ધ્વિન વચ્ચે ઓછામાં ઓછો
 0.1 કનો સમયગાળો અવશ્ય હોવો જોઈએ.
- કોઈ સભાગૃહમાં ધ્વનિ-પડઘાનું વારંવાર પરાવર્તન થવાને કારણે જે પ્રબળ ધ્વનિ મળે
 છે તેને અનુરણન કહે છે.
- ધ્વિનના ગુષ્ધર્મો જેવા કે પિચ, પ્રબળતા, ગુષ્યવત્તા, તેની સાથે સંકળાયેલ તરંગોના ગુષ્યર્ધ દ્વારા નક્કી કરવામાં આવે છે.
- પ્રબળતા–ધ્વનિની તીવ્રતા માટે કાનની શારીરિક પ્રતિક્રિયા છે.
- કોઈ લંબરૂપ એકમ ક્ષેત્રફળમાંથી એક સેકન્ડમાં પસાર થતી ધ્વનિઊર્જાને ધ્વનિની તીવ્રતા કહે છે.
- માનવ દ્વારા સાંભળી શકાતા ધ્વનિની સરેરાશ આવૃત્તિ નો વિસ્તાર 20 Hzથી 20 kHz સુધી છે.

- જે ધ્વનિ-તરંગોની આવૃત્તિ શ્રાવ્યવિસ્તાર (ઑડિયો રેન્જ)ની આવૃત્તિ કરતાં ઓછી હોય,
 તો તે તરંગોને અવશ્રાવ્ય (ઇન્ફ્રાસોનિક (infrasonic)) અને જેની આવૃત્તિ શ્રાવ્યવિસ્તાર
 (ઑડિયો રેન્જ)ની આવૃત્તિ કરતાં વધારે હોય તેને પરાધ્વનિ (ultrasonic) કહે છે.
- પરાધ્વનિનો ચિકિત્સા તેમજ ઔદ્યોગિક ક્ષેત્રે બહોળો ઉપયોગ થાય છે.
- સોનાર ટેક્નિકનો ઉપયોગ સમુદ્રની ઊંડાઈ જાણવા, પાણીની અંદર છુપાયેલા પહાડો,
 ખીણો, સબમરીનો, હિમશિલાઓ, ડૂબેલાં જહાજો વગેરે શોધવામાં થાય છે.

- 3. કયો પ્રયોગ દર્શાવે છે કે ધ્વનિના પ્રસરણ માટે દ્રવ્ય માધ્યમ આવશ્યક છે.
- 4. ધ્વનિ-તરંગો શા માટે સંગત તરંગો તરીકે ઓળખાય છે ?
- 5. ધ્વિનની કઈ લાક્ષણિકતા તમને અંધારા ઓરડામાં બેઠેલા ઘણાબધા લોકો પૈકી તમારા મિત્રનો અવાજ ઓળખવામાં મદદ કરે છે ?
- 6. વાદળ ગર્જના અને વીજળી બંને એક સાથે ઉત્પન્ન થાય છે; પરંતુ વીજળી દેખાય તે પછી કેટલીક સેકન્ડ બાદ વાદળ ગર્જના સંભળાય છે. આમ કેમ થાય છે ?
- 7. કોઈ વ્યક્તિની સરેરાશ શ્રાવ્ય-આવૃત્તિ 20 Hzથી 20 kHz છે. આ બે આવૃત્તિઓ માટે ધ્વનિ-તરંગોની તરંગ-લંબાઈ શોધો. ધ્વનિનો વેગ 344 m s⁻¹ લો.
- 8. બે બાળકો કોઈ ઍલ્યુમિનિયમ પાઇપના બંને છેડા પાસે એક-એક એમ ઉભેલા છે. એક બાળક પાઇપના એક છેડા પર પથ્થર મારે છે. બીજા છેડા પાસે ઊભેલ બાળક પાસે હવા તથા ઍલ્યુમિનિયમમાંથી પસાર થઈ પહોંચતા ધ્વનિ-તરંગોએ લીધેલ સમયનો ગુણોત્તર શોધો.
- 9. કોઈ ધ્વનિ સ્રોતની આવૃત્તિ 100 Hz છે. 1 મિનિટમાં તે કેટલી વાર કંપન કરશે ?
- શું ધ્વિન પરાવર્તન તે જ નિયમોનું પાલન કરે છે જે પ્રકાશના તરંગો કરે છે ? સમજાવો.
- 11. ધ્વિનિના એક સ્રોતને પરાવર્તક સપાટીની સામે રાખવાથી તેનો પડઘો સંભળાય છે. જો સ્રોત અને પરાવર્તક સપાટી વચ્ચેનું અંતર અચળ રહે તો કયા દિવસે પડઘો ઝડપથી સંભળાશે ? (i) જે દિવસે તાપમાન વધુ હોય કે (ii) જે દિવસે તાપમાન ઓછું હોય.
- 12. ધ્વનિ-તરંગોના પરાવર્તનના બે વ્યાવહારિક ઉપયોગો લખો.
- 13. 500 m ઊંચા કોઈ ટાવરની ટોચ પરથી એક પથ્થરને નીચે તળાવના પાણીમાં પડવા દેવામાં આવે છે. પાણીમાં તેના પડવાનો ધ્વનિ ટોચ પર કેટલા સમય પછી સંભળાશે ? $g=10\ m\ s^2\ ધ્વનિનો વેગ=340\ m\ s^{-1}$
- 14. એક ધ્વનિ-તરંગ 339 m s⁻¹ના વેગથી ગતિ કરે છે. જો તેની તરંગલંબાઈ 1.5 cm હોય, તો આ તરંગની આવૃત્તિ કેટલી હશે ? શું તે શ્રાવ્ય હશે ?

- 15. અનુરણન શું છે ? તેને કેવી રીતે ઘટાડી શકાય છે ?
- 16. ધ્વનિની પ્રબળતા એટલે શું ? તે કઈ બાબતો પર આધાર રાખે છે ?
- 17. ચામાચીડિયું પોતાનો શિકાર પકડવા માટે પરાધ્વનિનો ઉપયોગ કેવી રીતે કરે છે તેનું વર્શન કરો.
- 18. વસ્તુઓને સાફ કરવા માટે પરાધ્વિનનો ઉપયોગ કેવી રીતે કરવામાં આવે છે ?
- 19. સોનારની કાર્યવિધિ તથા ઉપયોગોનું વર્ણન કરો.
- 20. એક સબમરીનમાં લગાડવામાં આવેલ સોનાર સાધન સંકેત મોકલે છે તેનો પ્રતિધ્વિનિ 5 sec પછી પ્રાપ્ત થાય છે. જો સબમરીનથી વસ્તુનું અંતર 3625 m હોય, તો ધ્વિનિના વેગની ગણતરી કરો.
- 21. કોઈ ધાતુના બ્લૉકમાં રહેલ ખામી શોધવા માટે પરાધ્વનિનો ઉપયોગ કેવી રીતે થાય છે તેનું વર્શન કરો.
- 22. માનવ-કાન કેવી રીતે કાર્ય કરે છે તે સમજાવો.

ધ્વનિ 175