This supplement accompanies

Statistically-Consistent k-mer Methods for Phylogenetic Tree Reconstruction

by E.S. Allman, J.A. Rhodes, and S. Sullivant.

November 2015

Elizabeth S. Allman Department of Mathematics and Statistics University of Alaska Fairbanks e.allman@alaska.edu

John A. Rhodes
Department of Mathematics and Statistics
University of Alaska Fairbanks
j.rhodes@alaska.edu

Seth Sullivant Department of Mathematics North Carolina State University, Raleigh, NC, 27695 smsulli2@ncsu.edu

Contents

Т	Sim	idiation results using a_{JC} + ineignoof joining, 1000 bp	ง
	1.1	JC with no indel process	3
	1.2	JC with mutation rate $\mu = 0.01$ for the indel process	3
	1.3	JC with mutation rate $\mu = 0.05$ for the indel process	4
	1.4	JC with mutation rate $\mu = 0.10$ for the indel process	4
2	Sim	nulation results using $d_{JC}^{k,B}$ + Neighbor Joining, 1000 bp	5
	2.1	JC with no indel process	5
	2.2	JC with indel rate $\mu = 0.01$. Lavalette parameters $a = 1.1, M = 100$	7
	2.3	JC with indel rate $\mu = 0.01$. Lavalette parameters $a = 1.5, M = 100$	8
	2.4	JC with indel rate $\mu = 0.01$. Lavalette parameters $a = 1.8, M = 100$	S
	2.5	JC with indel rate $\mu = 0.05$. Lavalette parameters $a = 1.5, M = 100$	10
	2.6	JC with indel rate $\mu = 0.05$. Lavalette parameters $a = 1.8, M = 100$	11
	2.7	JC with indel rate $\mu = 0.10$. Lavalette parameters $a = 1.5, M = 100$	12
	2.8	JC with indel rate $\mu = 0.10$. Lavalette parameters $a = 1.8, M = 100$	13
3	Simulation results using other k -mer distances + Neighbor Joining/UPGMA, 1000		
J	~	idiation results daing other willer distances reagnoting of diving root	
•	bp	induction regards uping other which distances Ivergineer coming, or civil, 1000	14
Ū		JC with no indel process.	
Ū	\mathbf{bp}		14
•	bp 3.1	JC with no indel process	14
•	bp 3.1 3.2	JC with no indel process	14 14 16
•	bp 3.1 3.2 3.3	JC with no indel process	14 14 16 18
•	bp 3.1 3.2 3.3 3.4	JC with no indel process	14 14 16 18 20
J	bp 3.1 3.2 3.3 3.4 3.5	JC with no indel process	14 14 16 18 20 22
	bp 3.1 3.2 3.3 3.4 3.5 3.6	JC with no indel process	14 14 16 18 20 22 24
4	bp 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	JC with no indel process	14 14 16 18 20 22 24 26
	bp 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	JC with no indel process	14 16 18 20 22 24 26 28
	bp 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	JC with no indel process	144 146 188 200 222 244 266 288

November 2015

1 Simulation results using d_{JC} + Neighbor Joining, 1000 bp

Each pair of rows corresponds to 100 datasets simulated with a fixed rate of insertions/deletions. Columns correspond to varying Lavalette parameters. In each pair of rows, the top row shows alignment+NJ, and the bottom row shows true alignment+NJ. Sequences have length 1000 bp.

1.1 JC with no indel process.

100 80 60 40 20

1.2 JC with mutation rate $\mu = 0.01$ for the indel process.

1.3 JC with mutation rate $\mu = 0.05$ for the indel process.

1.4 JC with mutation rate $\mu = 0.10$ for the indel process.

2 Simulation results using $d_{JC}^{k,B}$ + Neighbor Joining, 1000 bp

Each subgroup of figures corresponds to a fixed setting for the model parameters used to generate sequences. Titles indicate the value of k and the number of blocks used for computing $d_{JC}^{k,B}$. Sequences have length 1000 bp.

40

2.1 JC with no indel process.

2.2 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.1,\,M=100$.

2.3 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.5,\,M=100$.

2.4 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.8,\,M=100$.

2.5 JC with indel rate $\mu=0.05$. Lavalette parameters $a=1.5,\,M=100$.

2.6 JC with indel rate $\mu=0.05$. Lavalette parameters $a=1.8,\,M=100$.

2.7 JC with indel rate $\mu=0.10$. Lavalette parameters $a=1.5,\,M=100$.

2.8 JC with indel rate $\mu=0.10$. Lavalette parameters $a=1.8,\,M=100$.

3 Simulation results using other k-mer distances + Neighbor Joining/UPGMA, 1000 bp

Each subgroup of figures corresponds to a fixed setting for the model parameters used to generate sequences. Titles indicate the value of k, the distance used, and whether tree construction was performed using NJ or UPGMA. Sequences have length 1000 bp.

3.1 JC with no indel process.

3.2 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.1,\,M=100$.

3.3 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.5,\,M=100$.

3.4 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.8,\,M=100$.

3.5 JC with indel rate $\mu=0.05$. Lavalette parameters $a=1.5,\,M=100$.

3.6 JC with indel rate $\mu=0.05$. Lavalette parameters $a=1.8,\,M=100$.

3.7 JC with indel rate $\mu=0.10$. Lavalette parameters $a=1.5,\,M=100$.

3.8 JC with indel rate $\mu=0.10$. Lavalette parameters $a=1.8,\,M=100$.

4 Simulation results using $d_{JC}^{k,B}$ + Neighbor Joining, 10,000 bp

Each subgroup of figures corresponds to a fixed setting for the model parameters used to generate sequences. Titles indicate the value of k and the number of blocks used for computing $d_{JC}^{k,B}$. Sequences have length 10,000 bp.

4.1 JC with no indel process.

4.2 JC with indel rate $\mu=0.01$. Lavalette parameters $a=1.5,\,M=100$.

4.3 JC with indel rate $\mu=0.05$. Lavalette parameters $a=1.8,\,M=100$.

