3.5.1

Suppose A, B, and C are sets.

Theorem. $A \cap (B \cup C) \subseteq (A \cap B) \cup C$

Proof. Let x be arbitrary and suppose $x \in A \cap (B \cup C)$. Thus $x \in A$ and $x \in B$ or $x \in C$. If $x \in C$ then $x \in (A \cap B) \cup C$. In the case where $x \in B$ it follows that $x \in A \cap B$ and therefore $x \in (A \cap B) \cup C$. Since x was arbitrary we can conclude that $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.2

Suppose A, B, and C are sets.

Theorem. $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$

Proof. Let x be arbitrary and suppose $x \in (A \cup B) \setminus C$. Thus $x \notin C$ and $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cup (B \setminus C)$. If $x \in B$ then if follows that $x \in B \setminus C$ and therefore $x \in A \cup (B \setminus C)$. Since x was arbitrary we can conclude $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.3

Suppose A and B are sets.

Theorem. $A \setminus (A \setminus B) = A \cap B$

Proof. Let x be arbitrary and suppose $x \in A \setminus (A \setminus B)$. Then

$$x \in A \setminus (A \setminus B) \text{ iff } x \in A \land x \notin A \setminus B$$

$$\text{iff } x \in A \land \neg (x \in A \land x \notin B)$$

$$\text{iff } x \in A \land (x \notin A \lor x \in B)$$

$$\text{iff } (x \in A \land x \notin A) \lor (x \in A \land x \in B)$$

$$\text{iff } x \in A \land x \in B$$

$$\text{iff } x \in (A \cap B)$$

3.5.4

Theorem. If $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$ then $A \subseteq B$.

Proof. Suppose $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$. Let x be arbitrary and suppose $x \in A$. Thus $x \in A \cup C$ and it follows that $x \in B \cup C$. Now if $x \in B \cup C$ then either $x \in B$ or $x \in C$. If $x \in B$ then since x was arbitrary we can conclude $A \subseteq B$. In the case that $x \in C$, then $x \in A \cap C$ and it follows that $x \in B \cap C$. Therefore $x \in C$ and $x \in B$. Thus, if $x \in A$ then $x \in B$ and since x was arbitrary we can conclude $A \subseteq B$.

3.5.5

Suppose A and B are sets.

Theorem. If $A \triangle B \subseteq A$ then $B \subseteq A$.

Proof. Suppose $A \triangle B \subseteq A$. We will prove by contradiction. Let x be arbitrary and suppose $x \in B$ and $x \notin A$. Since $x \in B$ and $x \notin A$ then $x \in A \triangle B$. Since $A \triangle B \subseteq A$, then $x \in A$. But this contradicts $x \notin A$. Therefore, if $x \in B$ then $x \in A$ and since x was arbitrary we can conclude that $B \subseteq A$.

3.5.6

Suppose A, B, and C are sets.

Theorem. $A \cup C \subseteq B \cup C \iff A \setminus C \subseteq B \setminus C$.

Proof. (\rightarrow) Suppose A, B, and C are sets. Suppose $(A \cup C) \subseteq (B \cup C)$. Let x be arbitrary and suppose $c \in A \setminus C$, which means $x \in A$ and $x \notin C$. Since $x \in A$, then $x \in A \cup C$ and therefore $x \in B \cup C$. This means $x \in B$ or $x \in C$ and since $x \notin C$, it must be that $x \in B$. Now since $x \in B$ and $x \notin C$ then $x \in B \setminus C$. Therefore, if $x \in A \setminus C$ then $x \in B \setminus C$ and since x was arbitrary we can conclude if $A \cup C \subseteq B \cup C$ then $A \setminus C \subseteq B \setminus C$.

 (\leftarrow) Now suppose $A \setminus C \subseteq B \setminus C$. Let x be arbitrary and suppose $x \in A \cup C$, which means $x \in A$ or $x \in C$. If $x \in C$ then $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$. In the case that $x \in A$, since $A \setminus C \subseteq B \setminus C$ then $x \in B$. Therefore, $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$.

3.5.7

Theorem. For any sets A and B, $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$

Proof. Let A and B be arbitrary sets. Let M be arbitrary and suppose $M \in \mathscr{P}(A) \cup \mathscr{P}(B)$. Thus $M \in \mathscr{P}(A)$ or $M \in \mathscr{P}(B)$, which means $M \subseteq A$ or $M \subseteq B$. In the case where $M \subseteq A$, let x be an arbitrary member of M and it follows that $x \in A$. Since $x \in A$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$. In the case where $M \subseteq B$, let x be an arbitrary member of M and it follows that $x \in B$. Since $x \in B$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$.

3.5.8

Theorem. For any sets A and B, if $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.

Proof. We will prove the contrapositive. Since we proved that $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$ in exercise 3.5.7, we must show that $\mathscr{P}(A \cup B) \not\subseteq \mathscr{P}(A) \cup \mathscr{P}(B)$ to prove our goal that $\mathscr{P}(A) \cup \mathscr{P}(B) \neq \mathscr{P}(A \cup B)$. Suppose $A \not\subseteq B$ and $B \not\subseteq A$. This means there is an element $x \in A \setminus B$ and an element $y \in B \setminus A$. Since $x \in A$ and $y \in B$ then both x and y are in $A \cup B$ and therefore the set $\{x,y\}$ is in $\mathscr{P}(A \cup B)$ but not in $\mathscr{P}(A)$ or $\mathscr{P}(B)$. Thus $\mathscr{P}(A \cup B) \not\subseteq \mathscr{P}(A) \cup \mathscr{P}(B)$.