# San Francisco Crime Category Prediction \_ combined

July 11, 2018

```
In [35]: from sklearn.metrics import log_loss, accuracy_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import pandas as pd import numpy as np from collections import Counter import operator
```

# 1 Introducao

Nesse notebook iremos analisar os dados relativos aos crimes ocorridos em San Francisco e criaremos modelos para prever a categoria dos crimes ocorridos. Os dados foram disponilizados no Kaggle **aqui** .

- 1. Section 2
- 2. Section 3
- 3. Section 4

# 2 Analise de dados

Nessa etapa, carregamos o dataset de treino baixado do kaggle utilizando pandas e analisamos o formato dos dados, numero de instancias e o numero de classes. Criamos tambem visualizacoes para entender melhor o comportamento temporal dos dados e a distribuicao de classes.

Pelo tamanho do numero de instancias, fica dificil utilizar um classificador como SVM, pois o dataset en muito grande e o treinamento demoraria muito. Uma boa escolha pode ser o modelo random forest.

```
In [3]: data_original.head()
Out [3]:
                         Dates
                                                                     Descript
                                      Category
           2015-05-13 23:53:00
                                      WARRANTS
                                                               WARRANT ARREST
        1
           2015-05-13 23:53:00
                                OTHER OFFENSES
                                                     TRAFFIC VIOLATION ARREST
          2015-05-13 23:33:00
                                                     TRAFFIC VIOLATION ARREST
                                OTHER OFFENSES
          2015-05-13 23:30:00
                                 LARCENY/THEFT
                                                 GRAND THEFT FROM LOCKED AUTO
        4 2015-05-13 23:30:00
                                 LARCENY/THEFT
                                                 GRAND THEFT FROM LOCKED AUTO
           DayOfWeek PdDistrict
                                     Resolution
                                                                    Address
                                 ARREST, BOOKED
                                                         OAK ST / LAGUNA ST
          Wednesday
                       NORTHERN
        0
                                 ARREST, BOOKED
                                                         OAK ST / LAGUNA ST
           Wednesday
                       NORTHERN
        1
         Wednesday
                       NORTHERN
                                 ARREST, BOOKED VANNESS AV / GREENWICH ST
          Wednesday
                       NORTHERN
                                                   1500 Block of LOMBARD ST
                                            NONE
           Wednesday
                                            NONE
                                                100 Block of BRODERICK ST
                           PARK
                    Х
                               Y
        0 -122.425892
                       37.774599
        1 -122.425892 37.774599
        2 -122.424363
                       37.800414
        3 -122.426995 37.800873
        4 -122.438738 37.771541
```

Podemos quebrar a data em atributos como dia, mes e ano e utilizar como features no classificador.

```
In [4]: data = pd.read_csv("train.csv", sep=",")
In [5]: data.shape
Out[5]: (878049, 8)
```

### 2.0.1 Dataset modificado com a data transformada em atributos

```
In [6]: data.head()
```

| Out[6]: |   | Year | Month | Day | Hour | Category       | DayOfWeek | X           | Y         |
|---------|---|------|-------|-----|------|----------------|-----------|-------------|-----------|
|         | 0 | 2015 | 5     | 13  | 23   | WARRANTS       | Wednesday | -122.425892 | 37.774599 |
|         | 1 | 2015 | 5     | 13  | 23   | OTHER OFFENSES | Wednesday | -122.425892 | 37.774599 |
|         | 2 | 2015 | 5     | 13  | 23   | OTHER OFFENSES | Wednesday | -122.424363 | 37.800414 |
| ,       | 3 | 2015 | 5     | 13  | 23   | LARCENY/THEFT  | Wednesday | -122.426995 | 37.800873 |
|         | 4 | 2015 | 5     | 13  | 23   | LARCENY/THEFT  | Wednesday | -122.438738 | 37.771541 |

## 2.1 Analise do numero de classes

O objetivo para esses dados en prever a categoria do crime. Analisando o numero de classes dos dados, podemos perceber outro desafio em relacao aos dados. Sao 39 o numero de classes, e bastante desbalanceadas, o que torna ambos undersampling e oversampling desafiadores.

```
In [7]: np.unique(data["Category"])
```

### 2.1.1 Categoria de crime por numero de instancias

In [9]: data.groupby('Category')['Category'].count().sort\_values(ascending=True)

| Out[9]: | Category                    |       |  |
|---------|-----------------------------|-------|--|
|         | TREA                        | 6     |  |
|         | PORNOGRAPHY/OBSCENE MAT     | 22    |  |
|         | GAMBLING                    | 146   |  |
|         | SEX OFFENSES NON FORCIBLE   | 148   |  |
|         | EXTORTION                   | 256   |  |
|         | BRIBERY                     | 289   |  |
|         | BAD CHECKS                  | 406   |  |
|         | FAMILY OFFENSES             | 491   |  |
|         | SUICIDE                     | 508   |  |
|         | EMBEZZLEMENT                | 1166  |  |
|         | LOITERING                   | 1225  |  |
|         | ARSON                       | 1513  |  |
|         | LIQUOR LAWS                 | 1903  |  |
|         | RUNAWAY                     | 1946  |  |
|         | DRIVING UNDER THE INFLUENCE | 2268  |  |
|         | KIDNAPPING                  | 2341  |  |
|         | RECOVERED VEHICLE           | 3138  |  |
|         | DRUNKENNESS                 | 4280  |  |
|         | DISORDERLY CONDUCT          | 4320  |  |
|         | SEX OFFENSES FORCIBLE       | 4388  |  |
|         | STOLEN PROPERTY             | 4540  |  |
|         | TRESPASS                    | 7326  |  |
|         | PROSTITUTION                | 7484  |  |
|         | WEAPON LAWS                 | 8555  |  |
|         | SECONDARY CODES             | 9985  |  |
|         | FORGERY/COUNTERFEITING      | 10609 |  |
|         | FRAUD                       | 16679 |  |
|         | ROBBERY                     | 23000 |  |

| MISSING PERSON |        |       | 25989  |
|----------------|--------|-------|--------|
| SUSPICIOUS OCC |        |       | 31414  |
| BURGLARY       |        |       | 36755  |
| WARRANTS       |        |       | 42214  |
| VANDALISM      |        |       | 44725  |
| VEHICLE THEFT  |        |       | 53781  |
| DRUG/NARCOTIC  |        |       | 53971  |
| ASSAULT        |        |       | 76876  |
| NON-CRIMINAL   |        |       | 92304  |
| OTHER OFFENSES |        |       | 126182 |
| LARCENY/THEFT  |        |       | 174900 |
| Name: Category | dtune. | in+64 |        |

Name: Category, dtype: int64

## 2.1.2 Pie chart de categorias de crime

Para visualizar a distribuicao de tipos de crime, podemos fazer um pie chart. Esse gráfico ilustra a frequência histórica de cada crime. Foram escolhidos os 9 crimes mais frequentes e o restante é representado pela categoria "EVERYTHING ELSE".

```
In [36]: count = Counter(data.Category)
    key = sorted(count, key=count.__getitem__, reverse=True)
    value = sorted(count.values(), reverse=True)

labels = key[:9]
    labels.append("EVERYTHING ELSE")
    frequency = value[:9]
    frequency.append(sum(value[9:]))

plt.pie(frequency, labels=labels, startangle=90, autopct='%.1f%%')
    plt.show()
```



# 2.2 Analise temporal

Pode-se analisar a distribuicao temporal dos dados criando graficos de barra empilhados por categoria de crime para ano, mes, dia da semana e hora.

### 2.2.1 Analise de categoria de crimes por ano

Verifica-se que a quantidade de crimes cometidos oscilou pouco, ocorrendo uma leve redução entre os anos 2003 e 2011. Em 2013, porém, registrou-se o maior número de crimes comparados aos últimos anos. Em 2015, os crimes foram registrados até o mês de maio, o que tornou a análise incompleta para o mesmo ano.

```
In [38]: list_years = np.sort(data.Year.unique())
                          larceny = []
                          other = []
                          narcotic = []
                          assault = []
                          eelse = []
                          for i in list_years:
                                      count = Counter(data.Category.loc[data.Year == i])
                                      value = sorted(count.values(), reverse=True)
                                      larceny.append(count.get("LARCENY/THEFT"))
                                      other.append(count.get("OTHER OFFENSES"))
                                      narcotic.append(count.get("DRUG/NARCOTIC"))
                                      assault.append(count.get("ASSAULT"))
                                      eelse.append(sum(value) - larceny[-1] - other[-1] - narcotic[-1] - assault[-1])
                          N = len(list_years)
                          ind = np.arange(N) # the x locations for the groups
                          width = 0.35
                                                                             # the width of the bars: can also be len(x) sequence
                          plt.figure(figsize = (10,5))
                          p1 = plt.bar(ind, eelse, width)
                          p2 = plt.bar(ind, assault, width, bottom = eelse)
                          p3 = plt.bar(ind, narcotic, width, bottom = list(np.array(eelse) + np.array(assault))
                          p4 = plt.bar(ind, other, width, bottom = list(np.array(eelse) + np.array(assault) + np
                          p5 = plt.bar(ind, larceny, width, bottom = list(np.array(eelse) + np.array(assault) +
                          plt.xlabel('Year')
                          plt.ylabel('Frequency')
```

plt.title('Crime Categories - Distribution of Year')

```
plt.xticks(ind, list_years)
plt.legend((p1[0], p2[0], p3[0], p4[0], p5[0]), ('Everything else', 'Assault', 'Drug/'
plt.show()
```



### 2.2.2 Analise de categoria de crimes por hora do dia

Verifica-se que o tipo de crime cometido varia bastante ao longo do dia em comparacao a variacao anual. Em determinadas horas do dia, "outras ofensas" torna-se mais frequente do que "furtos/roubos". O horário "pico" de crimes são às 18 h.

```
In [44]: list_hour = np.sort(data.Hour.unique())

larceny = []
  other = []
  narcotic = []
  assault = []
  eelse = []

for h in list_hour:
      count = Counter(data.Category.loc[data.Hour == h])
      value = sorted(count.values(), reverse=True)
      larceny.append(count.get("LARCENY/THEFT"))
      other.append(count.get("OTHER OFFENSES"))
      narcotic.append(count.get("DRUG/NARCOTIC"))
      assault.append(count.get("ASSAULT"))
      eelse.append(sum(value) - larceny[-1] - other[-1] - narcotic[-1] - assault[-1])
```

```
N = len(list_hour)
                      # the x locations for the groups
ind = np.arange(N)
width = 0.4
                  # the width of the bars: can also be len(x) sequence
plt.figure(figsize = (15,7))
p1 = plt.bar(ind, eelse, width)
p2 = plt.bar(ind, assault, width, bottom = eelse)
p3 = plt.bar(ind, narcotic, width, bottom = list(np.array(eelse) + np.array(assault))
p4 = plt.bar(ind, other, width, bottom = list(np.array(eelse) + np.array(assault) + n
p5 = plt.bar(ind, larceny, width, bottom = list(np.array(eelse) + np.array(assault) +
plt.xlabel('Hour of Day')
plt.ylabel('Frequency')
plt.title('Crime Categories - Distribution of Hour')
plt.xticks(ind, list_hour)
plt.legend((p1[0], p2[0], p3[0], p4[0], p5[0]), ('Everything else', 'Assault', 'Drug/
plt.show()
```



# 3 Predicao categoria de crime

#### 3.1 Utilizando coordenadas X e Y

Primeiramente, treinamos random forest apenas nos dados de localizacao (atributos X e Y) por um esquema 80% treino 20% teste, feitos estratificadamente para manter a distribuicao das classes.

### **3.1.1 Log Loss**

Como a metrica de desempenho pedido pelo Kaggle eh o log loss, temos que pegar como saida do classificador as probabilidades previstas.

```
In [13]: pred = clf.predict_proba(X_test)
In [14]: pred.shape
Out[14]: (175610, 39)
In [15]: log_loss(y_test, pred)
Out[15]: 2.5838000471708034
```

### 3.1.2 Ajustando parametros

Como nao sabemos os melhores parametros para o modelos, iremos ajusta-lo no esquema 3-fold cross validation utilizando busca em grid. Primeiramente utilizaremos tambem apenas os dados das coordenadas X e Y. O pipeline que implementamos na classe ClassifierPipeline, aplica scaling de 0 a 1 nos dados das coordenadas e uma busca em grid do classificador desejado. Atentar que o output da funcao eh o log loss negado porque a busca em grid sempre maximiza o valor do score por default, portanto valores que devem ser minimizados possuem seus valores negados.

```
In [16]: from model_tuning import ClassifierPipeline
```

Nos eh retornado a melhor combinacao de parametros do grid colocado. O resultado foi um pouco melhor do que o parametro que colocamos na divisao 80/20.

Eh possivel tambem visualizar os resultados para cada combinacao desejada.

In [18]: pipeline.get\_cv\_results()

```
Out[18]:
            mean_fit_time
                            std_fit_time
                                          mean_score_time
                                                            std_score_time
               107.001906
                                0.843753
         0
                                                 14.374518
                                                                  0.039568
         1
               140.700231
                                1.172925
                                                 18.863728
                                                                  0.183730
         2
               175.722402
                                1.478251
                                                 23.556669
                                                                  0.428332
         3
               121.343305
                                1.389591
                                                 17.369820
                                                                  0.502810
         4
               160.164636
                                0.602939
                                                 22.831981
                                                                  0.435058
         5
               204.226629
                                3.761786
                                                 30.541275
                                                                  1.958017
         6
               128.117592
                                3.876016
                                                 19.788930
                                                                  0.124079
         7
               169.841316
                                2.587281
                                                 25.984079
                                                                  0.217235
         8
               209.408009
                                                 32.485311
                                                                  2.662955
                                2.666703
           param_clf__max_depth param_clf__n_estimators
         0
                              10
                                                      150
         1
                              10
                                                      200
         2
                              10
                                                      250
         3
                              15
                                                      150
         4
                                                      200
                              15
         5
                              15
                                                      250
         6
                              20
                                                      150
         7
                              20
                                                      200
         8
                              20
                                                      250
                                                                split0_test_score
                                                        params
           {'clf_max_depth': 10, 'clf_n_estimators': 150}
                                                                         -2.506033
           {'clf_max_depth': 10, 'clf_n_estimators': 200}
                                                                         -2.506696
         2 {'clf_max_depth': 10, 'clf_n_estimators': 250}
                                                                         -2.505753
           {'clf_max_depth': 15, 'clf_n_estimators': 150}
                                                                         -2.515952
         4 {'clf_max_depth': 15, 'clf_n_estimators': 200}
                                                                         -2.515615
         5 {'clf_max_depth': 15, 'clf_n_estimators': 250}
                                                                         -2.511040
           {'clf_max_depth': 20, 'clf_n_estimators': 150}
                                                                         -2.835732
         7 {'clf_max_depth': 20, 'clf_n_estimators': 200}
                                                                         -2.803182
         8 {'clf_max_depth': 20, 'clf_n_estimators': 250}
                                                                         -2.788637
            split1_test_score
                                split2_test_score
                                                   mean_test_score
                                                                     std_test_score
         0
                    -2.448943
                                        -2.483142
                                                          -2.479373
                                                                            0.023459
                    -2.447674
                                                          -2.479775
                                                                            0.024372
         1
                                        -2.484952
         2
                    -2.448543
                                        -2.480879
                                                          -2.478392
                                                                            0.023422
                                        -2.505791
                                                          -2.485001
         3
                    -2.433258
                                                                            0.036822
         4
                    -2.429887
                                        -2.498634
                                                          -2.481379
                                                                            0.037064
         5
                    -2.429340
                                        -2.496182
                                                          -2.478854
                                                                            0.035534
         6
                    -2.670048
                                        -2.788839
                                                          -2.764874
                                                                            0.069731
         7
                    -2.654783
                                        -2.760485
                                                          -2.739484
                                                                            0.062377
         8
                    -2.638065
                                        -2.739939
                                                          -2.722215
                                                                            0.062736
```

|   | rank_test_score | 9 |
|---|-----------------|---|
| 0 | 3               | 3 |
| 1 | 4               | 1 |
| 2 | 1               | 1 |
| 3 | 6               | 3 |
| 4 |                 | 5 |
| 5 | 2               | 2 |
| 6 | 9               | 9 |
| 7 | 8               | 3 |
| 8 | 7               | 7 |

0

1

2

0

0

0

# 3.2 Utilizando Dia da Semana, Mes e Coordenadas

Agora, utilizaremos tambem os dados temporais. Para isso, temos que transformar as colunas categoricas para numericas, no caso utilizaremos inicialmente dia da semana e mes.

```
In [47]: tempdf = data[['Category', 'DayOfWeek', 'Month', 'X', 'Y']]
         tempdf.head()
Out [47]:
                  Category
                            DayOfWeek Month
                                                        Х
                                                                   Y
                            Wednesday
                                            5 -122.425892
         0
                  WARRANTS
                                                           37.774599
         1
           OTHER OFFENSES
                            Wednesday
                                            5 -122.425892
                                                           37.774599
                                                           37.800414
         2 OTHER OFFENSES
                            Wednesday
                                            5 -122.424363
         3
             LARCENY/THEFT
                            Wednesday
                                            5 -122.426995
                                                           37.800873
             LARCENY/THEFT
                            Wednesday
                                            5 -122.438738 37.771541
```

Binarizando as features categoricas utilizando uma funcao de pandas.

```
In [48]: df = pd.get_dummies(tempdf, columns=['Month', 'DayOfWeek'])
         df.head()
Out [48]:
                                                                Month_2
                   Category
                                        X
                                                    Y
                                                       Month 1
                                                                          Month 3
                                                                                    Month 4
         0
                   WARRANTS -122.425892
                                           37.774599
                                                             0
                                                                       0
                                                                                 0
                                                                                           0
            OTHER OFFENSES -122.425892
                                           37.774599
                                                             0
                                                                       0
                                                                                 0
                                                                                           0
         2 OTHER OFFENSES -122.424363
                                           37.800414
                                                             0
                                                                       0
                                                                                 0
                                                                                           0
             LARCENY/THEFT -122.426995
                                                             0
                                                                                 0
                                                                                           0
         3
                                           37.800873
                                                                       0
             LARCENY/THEFT -122.438738
         4
                                           37.771541
                                                                       0
                                                                                 0
                                                                                           0
             Month_5
                      Month_6
                               Month_7
                                                                 Month_10
                                                                           Month_11
                             0
                                                                        0
         0
                   1
                                       0
                                                                                   0
                   1
                             0
                                       0
                                                                        0
                                                                                   0
         1
         2
                   1
                             0
                                       0
                                                                        0
                                                                                   0
                                                                                   0
         3
                   1
                             0
                                       0
                                                                        0
                                                  . . .
         4
                   1
                             0
                                       0
                                                                        0
                                                                                   0
            Month_12 DayOfWeek_Friday
                                           DayOfWeek_Monday DayOfWeek_Saturday
```

0

0

0

0

0

0

0

```
3
           0
                                0
                                                    0
                                                                           0
           0
                                0
                                                    0
   DayOfWeek_Sunday DayOfWeek_Thursday
                                              DayOfWeek_Tuesday
0
                                                                 0
1
                    0
                                           0
                                                                 0
2
                    0
                                           0
                                                                 0
3
                    0
                                           0
                                                                 0
4
                    0
                                           0
                                                                 0
   DayOfWeek_Wednesday
0
                        1
                        1
1
2
                        1
3
                        1
4
                        1
[5 rows x 22 columns]
```

# 3.2.1 Ajustando parametros

Fazendo busca em grid para os melhores parametros.

# 3.3 Utilizando dia da semana e coordenadas

O resultado nao melhorou adicionando mes e dia da semana. Vamos tentar utilizar apenas dia da semana.

```
In [28]: tempdf = data[['Category', 'DayOfWeek', 'X', 'Y']]
        tempdf.head()
Out [28]:
                           DayOfWeek
                  Category
                           Wednesday -122.425892
        0
                 WARRANTS
                                                  37.774599
         1 OTHER OFFENSES
                           Wednesday -122.425892
                                                 37.774599
        2 OTHER OFFENSES
                           Wednesday -122.424363
                                                 37.800414
        3
            LARCENY/THEFT
                           Wednesday -122.426995 37.800873
            LARCENY/THEFT
                           Wednesday -122.438738 37.771541
```

#### 3.4 Utilizando hora e coordenadas

E por ultimo, utilizando apenas hora e coordenadas.

```
In [31]: tempdf = data[['Category', 'Hour', 'X', 'Y']]
        tempdf.head()
Out [31]:
                 Category Hour
                                          X
                 WARRANTS
                             23 -122.425892 37.774599
        1 OTHER OFFENSES
                             23 -122.425892 37.774599
        2 OTHER OFFENSES
                             23 -122.424363 37.800414
            LARCENY/THEFT
                             23 -122.426995 37.800873
        3
            LARCENY/THEFT
                             23 -122.438738 37.771541
In [32]: df = pd.get_dummies(tempdf, columns=['Hour'])
        rf_parameters = {
                "n_estimators": [250, 300],
                 "max_depth": [5,10]
        pipeline = ClassifierPipeline(RandomForestClassifier(), rf_parameters, n_jobs=2)
        pipeline.fit(df.drop(columns=["Category"]), df['Category'])
Best score: -2.547
Best parameters set:
        clf__max_depth: 10
        clf_n_estimators: 300
```

### 4 Conclusoes

Observamos que o melhor resultado foi obtido sem considerar os dados temporais. Isso indica a necessidade de investigar modelos que considerem a ordem temporal dos dados para que os padroes de variacoes temporais sejam detectados. Apesar do banco ser bastante grande, foi possivel treinar o modelo random forest e obter uma melhora de performance quando os parametros do modelo foram ajustados.