Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg (p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having **true** as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting
$$p \wedge q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Contrapositive $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
Leibniz $e = f \Rightarrow E[z = e] = E[z := f]$

$$\begin{array}{cccc} \textbf{Modus Ponens} & & & p \wedge (p \Rightarrow q) & \equiv & p \wedge q \\ & & p \wedge (q \Rightarrow p) & \equiv & p \\ & & p \wedge (p \Rightarrow q) & \Rightarrow & q \end{array}$$

It is a linear order relation generated by 'false \Rightarrow true'; whence "from false, follows anything": false \Rightarrow p. Moreover it has the useful properties "(3.62) Contextualisation": $p \Rightarrow (q \equiv r) \equiv p \wedge q \equiv p \wedge r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \wedge q \Rightarrow p \wedge r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \vee has identity false and zero true whereas \wedge has identity true and zero false, \vee distributes over $\vee, \equiv, \wedge, \Rightarrow, \Leftarrow$ whereas \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Excluded MiddleContradictionAbsorptionDe Morgan
$$p \vee \neg p$$
 $p \wedge \neg p \equiv$ false $p \wedge (q \vee \neg p) \equiv p \wedge q$ $\neg (p \wedge q) \equiv \neg p \vee \neg q$ $p \vee (q \vee \neg p) \equiv p \vee q$ $\neg (p \vee q) \equiv \neg p \wedge \neg q$

Most importantly, they satisfy the "Golden Rule": $p \wedge q \equiv p \equiv q \equiv p \vee q$.

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice properties* —since the Booleans are a lattice.

Orders

An *order* is a relation $_ \sqsubseteq _ : \tau \to \tau \to \mathbb{B}$ satisfying the following three properties: **Reflexivity** Transitivity Mutual Inclusion $a \sqsubseteq a$ $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$ $a \sqsubseteq b \land b \sqsubseteq a \equiv a = b$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)
$$x = y \equiv (\forall z \bullet x \sqsubseteq z \equiv y \sqsubseteq z)$$
 Indirect Inclusion (from above) $x \sqsubseteq y \equiv (\forall z \bullet x \sqsubseteq z \equiv z \sqsubseteq z)$ Indirect Equality (from below) $x = y \equiv (\forall z \bullet z \sqsubseteq x \equiv z \sqsubseteq y)$ Indirect Inclusion (from below) $x \sqsubseteq y \equiv (\forall z \bullet z \sqsubseteq x \Rightarrow z \sqsubseteq y)$

An order is bounded if there are elements \top , \bot : τ being the lower and upper bounds of all other elements:

Lattices

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \square be one of \sqcap or \sqcup , then:

Symmetry of		ciativity	of \square	Idempote	ency	ot 🗆
$a\Box b = b\Box a$	$a \qquad (a\square b)\square$	$\exists c =$	$a\Box(b\Box c)$	$a\Box a =$	a	
Zero of \Box Ic	\exists	Absorp	otion	Self-Distribut	ivity	of \square
$a \sqcup \top = \top \qquad a$	$\sqcup \bot = a$	$a \sqcap (b \sqcup$	a) = a	$a\Box(b\Box c) = (a\Box$	$\exists b) \Box$	$(a\Box c)$
$a \sqcap \bot = \bot \qquad a$	$\sqcap \top = a$	$a \sqcup (b \sqcap$	a) = a			
Weakening Induced Defs. of Inclusion Golden Rule						
/ Strengthening				$a \sqcap b = a$		
$a \sqsubseteq a \sqcup b$	$a \sqsubseteq b \equiv a \sqcap$	b =	a	$a \sqcap b = a \sqcup b$		
$a \sqcap b \sqsubseteq a$				$a \sqcup b \sqsubseteq a \sqcap b$	\equiv	a = b
$a \sqcap b \sqsubseteq a \sqcup b$	Monotonicity of \square					
	$a \sqsubseteq b \land c \sqsubseteq d \Rightarrow a \Box c \sqsubseteq b \Box d$					

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$

Conditionals

"If to \\" may be taken as axiom from which we may prove the remaining 'alternative definitions' "if to \cdots ".

```
P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \Rightarrow P[z = x]) \land (\neg b \Rightarrow P[z := x])
if to \wedge
                   P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \land P[z = x]) \lor (\neg b \land P[z := x])
if to \vee
                   P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv b \land P[z = x] \not\equiv \neg b \land P[z := x]
if to ≢
                   P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv b \Rightarrow P[z = x] \equiv \neg b \Rightarrow P[z := x]
if to \equiv
```

Note that the "≡" and "≢" rules can be parsed in multiple ways since $\stackrel{\cdot}{\equiv}$ is associative, and $\stackrel{\cdot}{\equiv}$ mutually associates with $\stackrel{\cdot}{\not\equiv}$.

> if true if true then x else y fi = xif false if false then x else y fi = yif R then true else P fi $= R \vee P$ then true then false if R then false else P fi = $\neg R \land P$ if R then P else true fi $= R \Rightarrow P$ else true else false if R then P else false fi $= R \wedge P$

if b then x else y fi = if $\neg b$ then y else x fi if swap

if idempotency if b then x else x fi = x

if guard strengthening if b then x else y fi = if $b \wedge x \neq y$ then x else y fi

if Context if b then E else F fi = if b then E[b = true] else F[b = false] fi

if Distributivity P[z = if b then x else y fi] = if b then P[z = x] else P[z = y] fi Shunting laws:

if junctivity (if b then x else y fi) \oplus (if b then x' else y' fi)

= if b then $(x \oplus x')$ else $(y \oplus y')$ fi

Converse

Co-distributivity (x; y) = y ; x~~, Involutive $x \smile = x$ Monotonicity $x \sqsubseteq y \Rightarrow x \smile \sqsubseteq y \smile$ Connection $a \smile \Box b \equiv a \Box b \smile$ Elimination $x = y \equiv x = y$

Named Properties

```
f \sim ; f \sqsubset \mathsf{Id}
univalent
                            \equiv
                                   \mathsf{Id} \sqsubseteq f \lor : f
surjective
                                    \mathsf{Id} \sqsubseteq f; f \sim
total
                           \equiv
                           \equiv f; f \subseteq \mathsf{Id}
injective
mapping
                    f \equiv
                                   total f \wedge \text{univalent } f
bijective
                                   surjective f \wedge \text{injective } f
                     f \equiv \mathsf{mapping} f \land \mathsf{bijective} f
iso
```

Duality theorems

univalent $(f \sim) \equiv \text{injective } f$ total $(f \lor) \equiv \text{surjective } f$ $\mathsf{mapping}\,(f{\scriptscriptstyle \,\smile\,})\equiv\mathsf{bijective}\,f$ $iso (f \lor) \equiv iso f$

Invertiblility theorems

total $f \wedge \text{injective } f \Rightarrow f : f = \text{Id}$ iso $f \equiv f$; $f = Id \land f = Id$ iso $f \Rightarrow (\exists q \bullet f; q = \mathsf{Id} = q; f)$

Division

Characterisation of /: $a; b \sqsubseteq c \equiv a \sqsubseteq c/b$ Characterisation of $\ : a; b \sqsubseteq c \equiv b \sqsubseteq a \backslash c$

Exact division:

$$(\exists z \bullet y = x; z) \equiv x; (x \backslash y) = y$$
$$(\exists z \bullet y = x \backslash z) \equiv x \backslash (x; y) = y$$

$$\begin{array}{lll} \text{univalent } f & \Rightarrow & (x; f \sqsubseteq y \Leftarrow x \sqsubseteq y; f \smallsmile) \\ \text{total } f & \Rightarrow & (x; f \sqsubseteq y \Rightarrow x \sqsubseteq y; f \smallsmile) \\ \text{mapping } f & \Rightarrow & (x; f \sqsubseteq y \equiv x \sqsubseteq y; f \smallsmile) \end{array}$$