

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Canalusia

On the Sosemanuk Related Key-IV Sets

Aleksandar Kircanski and Amr Youssef Concordia University Montréal, Québec, Canada

LATINCRYPT 2012, Santiago de Chile, Chile October 7-10, 2012

Talk outline

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

- Specification of Sosemanuk
- A probabilistic argument for the existence of related key-IV pairs
- Inner-state recovery alg. for a set of key-IV pairs
- A distinguisher for another key-IV pair set
- Conclusions

The Sosemanuk stream cipher

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

- eStream software portfolio member
- Sosemanuk: a strengthened SNOW construction
- Components: LFSR and FSM (10 + 2 32-bit words)

$$(s_t, \ldots s_{t+9}, R1_t, R2_t), 384$$
 bits altogether

The Sosemanuk stream cipher

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

- LFSR taps: s_0 (× α), s_3 (× α^{-1}) and s_9
- $GF(2^{32})$ constructed so that \times and / by α is:
 - $\ll 8$, then \oplus with a 32-bit mask depending on the MSB
 - $\gg 8$, then \oplus with a 32-bit mask depending on the LSB

The SOSEMANUK stream cipher

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

• FSM (after expanding mux):

$$R1_{t+1} = \begin{cases} R2_t \boxplus s_{t+1} & if \, lsb(R1_t) = 0\\ R2_t \boxplus (s_{t+1} \oplus s_{t+8}) & if \, lsb(R1_t) = 1 \end{cases}$$

$$R2_{t+1} = Trans(R1_t)$$
, with $Trans(x) = (M \times x) \ll 7$

The SOSEMANUK stream cipher

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

- SOSEMANUK iteration: update FSM, then LFSR
- Unlike SNOW 2.0/SNOW 3G/ZUC, SOSEMANUK has a delay mechanism (bitslice, defend against GD attacks)
- Every 4 steps, a 128-bit word is produced

The Sosemanuk stream cipher

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

Delay mechanism:

- Each FSM/LFSR step, one 32-bit f_t word is generated
- Instead of outputting the word, save it

The Sosemanuk stream cipher

Sosemanuk

specification

Existence of

Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

- Every 4 steps, apply Serpent S-box in bitslice mode to $(f_t, f_{t+1}, f_{t+2}, f_{t+3})$
- Add to $(s_t, s_{t+1}, s_{t+2}, s_{t+3})$ and send to output
- Makes GD attacks more difficult (at least 4 LFSR words have to be guessed at the start)

Sosemanuk initialization procedure

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Probabilistic argument for related-key existence

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

Conclusion

A particularity of Sosemanuk

- Small inner state/key-IV size ratio
- 384 bits vs. 256 bits
- Design goal, fit registers in the processor's cache

It follows as a simple fact that if we..

- Pick a relation between starting Sosemanuk states
- Birthday paradox: corresponding key-IV pairs
- Even key-IV pairs that produce identical inner states are expected to exist
 - # of key-IV pairs: $\binom{2^{256}}{2} \times 2^{-384} \approx 2^{127}$
- Birthday-type argument similar for any other state relation

Probabilistic argument for related-key existence

Introduction

Sosemanuk specificatior

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

Canalusian

In this work:

 Are there exist inner state relations that allow inner state recovery or distinguishing?

Relation	#	Dist.	Recovery
Slid pairs $d=1$			2^{32} time, $2^{23.8}$ space
Slid pairs $d=2$			$2^{47.7}$ time, $2^{23.8}$ space
Zero-diff LFSR	2^{192}	2^{52} words	-

- Particular examples appear difficult to find
 - Related to attacking 12-round Serpent in hash mode
- The existence of such pairs is shown probabilistically (birthday paradox, assuming randomness of 6-round Serpent cascades) and their expected sizes are calculated

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

Conclusion

How to recover the inner state for the set of *slid states*? Recall that every Sosemanuk iteration contains 4 *steps*.

Definition: Slid states are SOSEMANUK inner states on d steps away, where d is *not* a multiple of 4.

Suppose that the keystream output generated by slid states, e.g, at times

$$t, t + 4, t + 8, \dots$$

 $t + 1, t + 5, t + 9, \dots$

is available. How to use such outputs for inner state recovery in practical complexity?

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

Consider a 128-bit SOSEMANUK keystream word.

- ullet Pick out the 4 bits corresponding to one S-box application
- \bullet This will correspond to $f_3^i,\,f_2^i,\,f_1^i,\,f_0^i$ and s_3^i,s_2^i,s_1^i,s_0^i
- Write down the equation in inner state words:

$$S(f_3^i f_2^i f_1^i f_0^i) \oplus s_3^i s_2^i s_1^i s_0^i = w_{0,i}$$

Do this for the first 4 kst. words (0, 4, 8 and 12):

$$\begin{split} &S(f_3^if_2^if_1^if_0^i) \oplus s_3^is_2^is_1^is_0^i = w_{0,i} \\ &S(f_7^if_6^if_5^if_4^i) \oplus s_7^is_6^is_5^is_4^i = w_{4,i} \\ &S(f_{11}^if_{10}^if_9^if_8^i) \oplus s_{11}^is_{10}^is_9^is_8^i = w_{8,i} \\ &S(f_{15}^if_{14}^if_{13}^if_{12}^i) \oplus s_{15}^is_{14}^is_{13}^is_{12}^i = w_{12,i} \end{split}$$

"Normal feature", no eq's include the same bit-variable

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

for another key-IV class

Conclusion

Consider a 128-bit SOSEMANUK keystream word.

- \bullet Pick out the 4 bits corresponding to one S-box application
- \bullet This will correspond to $f_3^i,\,f_2^i,\,f_1^i,\,f_0^i$ and s_3^i,s_2^i,s_1^i,s_0^i
- Write down the equation in inner state words:

$$S(f_3^i f_2^i f_1^i f_0^i) \oplus s_3^i s_2^i s_1^i s_0^i = w_{0,i}$$

Do this for the first 4 kst. words (0, 4, 8 and 12):

$$\begin{split} S(f_3^if_2^if_1^if_0^i) &\oplus s_3^is_2^is_1^is_0^i = w_{0,i}, & S(f_4^if_3^if_2^if_1^i) \oplus s_4^is_3^is_2^is_1^i = w_{1,i} \\ S(f_7^if_6^if_5^if_4^i) &\oplus s_7^is_6^is_5^is_4^i = w_{4,i}, & S(f_8^if_7^if_6^if_5^i) \oplus s_8^is_7^is_6^is_5^i = w_{5,i} \\ S(f_{11}^if_{10}^if_9^if_8^i) &\oplus s_{11}^is_{10}^is_9^is_8^i = w_{8,i}, & S(f_{12}^if_{11}^if_{10}^if_9^i) \oplus s_{12}^is_{11}^is_{10}^is_9^i = w_{9,i} \\ S(f_{15}^if_{14}^if_{13}^if_1^i) &\oplus s_{15}^is_{14}^is_{13}^is_{12}^i = w_{12,i}, S(f_{16}^if_{15}^if_{14}^if_{13}^i) \oplus s_{16}^is_{15}^is_{14}^is_{13}^i = w_{13,i} \end{split}$$

• Introduce the eq's due to slid state: dependencies

Introductioi

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

What do we get from these equations?

- The LFSR specified "bitwise", i.e. candidates for (s_{16}^i,\ldots,s_0^i) for $0\leq i\leq 31$
- Denote by S_i the respective sets. Then $E(|S_i|)$ is $2^{3.34}$

It should be mentioned that

- Equations involve $(s_{16}, \ldots s_0)$ rather than $(s_9, \ldots s_0)$
- We have the extended LFSR specified "bit-wise"
- Goal: use this redudancy to prune the incorrect LFSRs

. . .

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

- Fixing an element from some S_i adds linear equations to the system.
- After fixing elements from some number of sets S_i , $0 \le i \le 31$, the system becomes contradictory
- ullet Goal: minimize the number of S_i sets to be chosen from
- Q: which S_i to choose so that a contradiction will occur as early as possible?
- A: Use the specifics of multiplication by α and α^{-1}

Introduction

Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

Conclusion

Represent:

$$\alpha x = (x \ll 8) \oplus T_{\alpha}(x \gg 24),$$

$$\alpha^{-1} x = (x \gg 8) \oplus T_{\alpha^{-1}}(x \& 0xFF)$$

Then, when the LFSR update

$$s_{t+10} = s_{t+9} \oplus \alpha^{-1} s_{t+3} \oplus \alpha s_t$$

is presented bitwise:

$$s_{t+10}^{i} = s_{t+9}^{i} \oplus s_{t+3}^{i+8} \oplus T_{\alpha^{-1}}^{i}(s_{t+3,0}) \oplus s_{t}^{i-8} \oplus T_{\alpha}^{i}(s_{t,3})$$

For bit i, we have bits $\{i, i-8, i+8\}$ participating.

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

For example, if i = 0 (choosing the candidate from S_0)

$$s_{t+10}^0 = s_{t+9}^0 \oplus s_{t+3}^8 \oplus T^0(s_{t+3,0}s_{t,3})$$

(here s_{t+10}^0 and s_{t+9}^0 are known). For the goal of causing a contradiction, we choose now a candidate from S_8

$$s^8_{t+10} \ = s^8_{t+9} \oplus s^{16}_{t+3} \oplus s^0_{t} \oplus T^8(s_{t+3,0}s_{t,3})$$

and then similarly, candidates from S_{16} and S_{24} .

$$s_{t+10}^{16} = s_{t+9}^{16} \oplus s_{t+3}^{24} \oplus s_{t}^{8} \oplus T^{16}(s_{t+3,0}s_{t,3})$$

$$s_{t+10}^{24} = s_{t+9}^{24} \oplus s_{t}^{16} \oplus T^{24}(s_{t+3,0}s_{t,3})$$

Industrial

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

We obtained the system

$$\begin{array}{ll} s_{t+10}^{0} & = s_{t+9}^{0} \oplus s_{t+3}^{8} \oplus T^{0}(s_{t+3,0}s_{t,3}) \\ s_{t+10}^{8} & = s_{t+9}^{8} \oplus s_{t+3}^{16} \oplus s_{t}^{0} \oplus T^{8}(s_{t+3,0}s_{t,3}) \\ s_{t+10}^{16} & = s_{t+9}^{16} \oplus s_{t+3}^{24} \oplus s_{t}^{8} \oplus T^{16}(s_{t+3,0}s_{t,3}) \\ s_{t+10}^{24} & = s_{t+9}^{24} \oplus s_{t}^{16} \oplus T^{24}(s_{t+3,0}s_{t,3}) \end{array}$$

which constraints the input-output values for the T table for $t=0,\ldots 6$ since all the bits outside the T table are known.

- \bullet After specifying 3 such systems, the constrains overdefine the T table
- If any of the systems is contradictory, discard the guess
- Thus, contradictions will be spotted after going through candidates from around $3\times 4=12$ (instead of all 32) S_i sets

Introduction

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

What is the cost of going through candidates of $3 \times 4 = 12~S_i$ sets? The attacker can *choose* which sets to pick candidates from, so he chooses the smallest ones.

Inner state recovery:

- Testing whether $2^{9.517+10.602+11.372}=2^{31.491}\ T$ table constraints are contradictory
- Storage space: $2^{23.8}$ bits (yes/no information on the T table constraints)
- 4×2 keysteram words

The attack was implemented on a PC (2.4 GHz AMD) and recovered the inner state in less than a day.

Distinguisher: $< 2^8$ keystream words (main idea: slid pairs reuse the inner state bits which introuces correlation).

Distinguisher for zero-LFSR-difference instances

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

- Expected size: 2^{192} key-IV pairs
- Zero-difference preserved during iterations
- ullet We get a distinguisher requiring 2^{52} keystream outputs

Distinguisher for zero-LFSR-difference instances

Introduction

Sosemanuk

Existence of Sosemanuk key-IV pairs

Inner state recovery (slid pairs)

Distinguisher for another key-IV class

Conclusion

Reasonable to try:

- Wait for zero-difference on some bits in $R1_t$, $R2_t$
- Trans() preserves some zero-diff.
- Expect consecutive zero-diff. in the output

Introductio

Existence of Sosemanuk

key-IV pairs

recovery (slipairs)

Distinguisher for another key-IV class

Conclusion

Problem: rotation of zero differences due to Trans() f.

 Due to bit-slicing, the S-boxes pick up bits with non-zero differences

Denote by (0,0) the event that R1 and R2 have zero-diff. on bits 0..l-1 at some step t.

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slic pairs)

Distinguisher for another key-IV class

Conclusion

Let $P[(0,0) \rightarrow (0,0)]$ probability that the event will be preserved in the next step.

• How does $P[(0,0) \rightarrow (0,0)]$ depend on l?

The probability does not decrease regularly as l grows

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slic pairs)

Distinguisher for another key-IV class

Conclusion

What is the $P[(0,0) \to (0,0)]$? The property is preserved in R1 (since lsb(R1) = lsb(R1')). As for R2, we have **Observation**:

$$P[(0,0) \to (0,0)] = \begin{cases} 2^{-l} & \text{if } l \le 7\\ 2^{-7} & \text{if } l > 7 \end{cases}$$

Introduction

specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slic pairs)

Distinguisher for another key-IV class

Conclusion

What is the $P[(0,0) \to (0,0)]$? The property is preserved in R1 (since lsb(R1) = lsb(R1')). As for R2, we have **Observation**:

$$P[(0,0) \to (0,0)] = \begin{cases} 2^{-l} & \text{if } l \le 7\\ 2^{-7} & \text{if } l > 7 \end{cases}$$

Introduction

Sosemanuk specification

Existence of Sosemanuk key-IV pairs

Inner state recovery (slic pairs)

Distinguisher for another key-IV class

Conclusion

What is the $P[(0,0) \to (0,0)]$? The property is preserved in R1 (since lsb(R1) = lsb(R1')). As for R2, we have **Observation**:

$$P[(0,0) \to (0,0)] = \begin{cases} 2^{-l} & \text{if } l \le 7\\ 2^{-7} & \text{if } l > 7 \end{cases}$$

Introduction

Putting l=14 turns out to work well for the distinguisher:

- Sosemanuk
- Step t + 1: $p = 2^{-7}$
- Sosemanuk Ste
 - Step t + 2: $p = 2^{-7}$

• Step t: $p = 2^{-14 \times 2 = -28}$

- Inner state recovery (slid
- Step t + 3: $p = 2^{-7}$

Distinguisher for another key-IV class

Then,

- All four conditions $2^{-28-3\times7}=2^{-49}$
- 56-bit zero-diff. occurs more often than it should
- Random: $2^{-14 \times 4 = -56}$. SOSEMANUK: 2^{-49}
- Distinguisher requiring 2^{52} words

Conclusions and future work

Introduction

Existence of Sosemanuk

Inner state recovery (slid pairs)

Distinguishe for another key-IV class

Conclusion

Conclusions:

- \bullet We provided a "roadmap" for $\operatorname{SOSEMANUK}$ related keys
- Classes of key-IV pairs that allow inner state recovery and distinguishing identified
- No practical impact on the security of Sosemanuk

Future work:

- Find particular (K, IV) (K', IV') pairs that yield correlated SOSEMANUK keystreams
- The problem related to finding collisions and near-collisions of 12-round cascades of Serpent in hashing mode