

SEQUENCE LISTING

<110> Messier, Walter Sikela, James M # 4

<120> Methods to Identify Polynucleotide and Polypeptide Sequences Which May Be Associated with Physiological and Medical Conditions

<130> GENO 200.2/CIP

<140>

<141>

<150> 09/591,435

<151> 2000-06-09

<150> 09/240,915

<151> 1999-01-29

<150> 60/073,263

<151> 1998-01-30

<150> 60/098,987

<151> 1998-09-02

<160> 30

<170> PatentIn Ver. 2.0

<210> 1

<211> 1518

<212> DNA

<213> Homo sapiens

<400> 1

cagacatety tytececete aaaagteate etgeeeeggg gaggeteegt getggtgaca 60
tgeageacet eetgtgacea geeeaagtty ttgggeatag agaceeegtt geetaaaaaag 120
gagttgetee tgeetgggaa caaceggaag gtgtatgaae tgagcaatgt geaagaagat 180
ageeaaceaa tgtgetatte aaactgeeet gatgggeagt caacagetaa aacetteete 240
acegtgtact ggaeteeaga acgggtggaa etggeaceee teeeetetty geageeagtg 300
ggeaagaace ttaceetacg etgeeaggtg gagggtgggg caceeeggge caaceteace 360
gtggtgetge teegtgggaa gaaggaetg aaacgggage cagetgtggg ggageeeget 420
gaggteacga ceacggtget ggtgaggaa gateaceatg gageeaattt etegtgeege 480
actgaactgg acetgeggee ceaagggetg gagetgttt agaacacete ggeeeectae 540
cageteeaga cetttgteet geeagegaet eeeceaaac ttgteageee cegggteeta 600
gagggtggaca egeaggggae egtggtetgt teeetggaeg ggetgtteee agteteggag 660

gcccaggtcc acctggcact gggggaccag aggttgaacc ccacagtcac ctatggcaac 720 gactccttct cggccaaggc ctcagtcagt gtgaccgcag aggacgaggg cacccagcgg 780 ctgacgtgtg cagtaatact ggggaaccag agccaggaga cactgcagac agtgaccatc 840 tacagettte eggegeecaa egtgattetg aegaageeag aggteteaga agggaeegag 900 gtgacagtga agtgtgaggc ccaccctaga gccaaggtga cgctgaatgg ggttccagcc 960 cagccactgg gcccgagggc ccagctcctg ctgaaggcca ccccagagga caacgggcgc 1020 agetteteet getetgeaac eetggaggtg geeggeeage ttatacacaa gaaccagace 1080 cgggagcttc gtgtcctgta tggcccccga ctggacgaga gggattgtcc gggaaactgg 1140 acgtggccag aaaattccca gcagactcca atgtgccagg cttgggggaa cccattgccc 1200 gagctcaagt gtctaaagga tggcactttc ccactgccca tcggggaatc agtgactgtc 1260 actcgagatc ttgagggcac ctacctctgt cgggccagga gcactcaagg ggaggtcacc 1320 cgcgaggtga ccgtgaatgt gctctccccc cggtatgaga ttgtcatcat cactgtggta 1380 gcagccgcag tcataatggg cactgcaggc ctcagcacgt acctctataa ccgccagcgg 1440 aagatcaaga aatacagact acaacaggcc caaaaaggga cccccatgaa accgaacaca 1500 caagccacgc ctccctga 1518

<210> 2 <211> 1518 <212> DNA <213> Pan troglodytes <220> <221> CDS

<222> (1)..(1518) <400> 2

cag aca tct gtg tcc ccc cca aaa gtc atc ctg ccc cgg gga ggc tcc 48
Gln Thr Ser Val Ser Pro Pro Lys Val Ile Leu Pro Arg Gly Gly Ser
1 5 10 15

gtg cag gtg aca tgc agc acc tcc tgt gac cag ccc gac ttg ttg ggc 96 Val Gln Val Thr Cys Ser Thr Ser Cys Asp Gln Pro Asp Leu Leu Gly 20 25 30

ata gag acc ccg ttg cct aaa aag gag ttg ctt ctg ggt ggg aac aac 144
Ile Glu Thr Pro Leu Pro Lys Lys Glu Leu Leu Gly Gly Asn Asn
35 40 45

tgg aag gtg tat gaa ctg agc aat gtg caa gaa gat agc caa cca atg 192
Trp Lys Val Tyr Glu Leu Ser Asn Val Gln Glu Asp Ser Gln Pro Met
50 55 60

•				_		_	 _			-		acc Thr			240
												ctc Leu			288
	_				_	_			_	_	_	gtg Val 110	-	-	336
												ggg Gly			384
												gtc Val	_		432
~	-	_	-	~ ~	-	_			_			tcg Ser	-	_	480
												gag Glu			528
_	_			-				-	_			act Thr 190			576
												Gly ggg			624
												cag Gln			672
												tat Tyr			720
												gag Glu			768
												cag Gln 270			816
												ccc Pro			864

					gag Glu											912
					aga Arg 310											960
_				_	agg Arg	-	_		_	_	_	-			-	1008
					ttc Phe											1056
					aac Asn											1104
	-	_	-		agg Arg	_	_	_				_			-	1152
		_	_		cca Pro 390	_	_	_	-	_				_		1200
					aag Lys						-		_		_	1248
					cga Arg											1296
	_				gag Glu	_		-	_							1344
					att Ile	-					_	_	_	_	_	1392
					ggc Gly 470											1440
					aga Arg										_	1488
	_				gcc Ala	_			tga							1518

<210> 3

<211> 505

<212> PRT

<213> Pan troglodytes

<400> 3

Gln Thr Ser Val Ser Pro Pro Lys Val Ile Leu Pro Arg Gly Gly Ser 1 5 10 15

Val Gln Val Thr Cys Ser Thr Ser Cys Asp Gln Pro Asp Leu Leu Gly
20 25 30

Ile Glu Thr Pro Leu Pro Lys Lys Glu Leu Leu Gly Gly Asn Asn 35 40 45

Trp Lys Val Tyr Glu Leu Ser Asn Val Gln Glu Asp Ser Gln Pro Met 50 55 60

Cys Tyr Ser Asn Cys Pro Asp Gly Gln Ser Thr Ala Lys Thr Phe Leu 65 70 75 80

Thr Val Tyr Trp Thr Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Ser 85 90 95

Trp Gln Pro Val Gly Lys Asp Leu Thr Leu Arg Cys Gln Val Glu Gly
100 105 110

Gly Ala Pro Arg Ala Asn Leu Thr Val Val Leu Leu Arg Gly Glu Lys 115 120 125

Glu Leu Lys Arg Glu Pro Ala Val Gly Glu Pro Ala Glu Val Thr Thr 130 135 140

Thr Val Leu Val Glu Arg Asp His His Gly Ala Asn Phe Ser Cys Arg 145 150 155 160

Thr Glu Leu Asp Leu Arg Pro Gln Gly Leu Gln Leu Phe Glu Asn Thr 165 170 175

Gln Leu Val Ser Pro Arg Val Leu Glu Val Asp Thr Gln Gly Thr Val 195 200 205

Val Cys Ser Leu Asp Gly Leu Phe Pro Val Ser Glu Ala Gln Val His 210 215 220

Leu Ala Leu Gly Asp Gln Arg Leu Asn Pro Thr Val Thr Tyr Gly Asn 225 230 235 240

Asp Ser Phe Ser Ala Lys Ala Ser Val Ser Val Thr Ala Glu Asp Glu 245 250 255

Gly Thr Gln Arg Leu Thr Cys Ala Val Ile Leu Gly Asn Gln Ser Arg
260 265 270

Glu Thr Leu Gln Thr Val Thr Ile Tyr Ser Phe Pro Ala Pro Asn Val
275
280
285

Ile Leu Thr Lys Pro Glu Val Ser Glu Gly Thr Glu Val Thr Val Lys 290 295 300

Cys Glu Ala His Pro Arg Ala Lys Val Thr Leu Asn Gly Val Pro Ala 305 310 315 320

Gln Pro Val Gly Pro Arg Val Gln Leu Leu Leu Lys Ala Thr Pro Glu 325 330 335

Asp Asn Gly Arg Ser Phe Ser Cys Ser Ala Thr Leu Glu Val Ala Gly 340 345 350

Gln Leu Ile His Lys Asn Gln Thr Arg Glu Leu Arg Val Leu Tyr Gly 355 360 365

Pro Arg Leu Asp Glu Arg Asp Cys Pro Gly Asn Trp Thr Trp Pro Glu 370 375 380

Asn Ser Gln Gln Thr Pro Met Cys Gln Ala Ser Gly Asn Pro Leu Pro 385 390 395 400

Glu Leu Lys Cys Leu Lys Asp Gly Thr Phe Pro Leu Pro Val Gly Glu 405 410 415

Ser Val Thr Val Thr Arg Asp Leu Glu Gly Thr Tyr Leu Cys Arg Ala 420 425 430

Arg Ser Thr Gln Gly Glu Val Thr Arg Lys Val Thr Val Asn Val Leu 435 440 445

Ser Pro Arg Tyr Glu Ile Val Ile Ile Thr Val Val Ala Ala Val 450 455 460

Ile Met Gly Thr Ala Gly Leu Ser Thr Tyr Leu Tyr Asn Arg Gln Arg 465 470 475 480

Lys Ile Arg Lys Tyr Arg Leu Gln Gln Ala Gln Lys Gly Thr Pro Met 485 490 495

Lys Pro Asn Thr Gln Ala Thr Pro Pro 500 505

<210> 4

<211> 1515

<212> DNA

<213> Gorilla gorilla

<400> 4

cagacatetg tgtcccccc aaaagtcate etgccceggg gaggeteegt getggtgaca 60 tgcagcacct cetgtgacca gcccaccttg ttgggcatag agacccegtt gcctaaaaag 120 gagttgetee tgettgggaa caaccagaag gtgtatgaac tgagcaatgt gcaagaagat 180

agccaaccaa tgtgttattc aaactgccct gatgggcagt caacagctaa aaccttcctc 240 acceptgtact ggactecaga acgggtggaa ctggcacccc tcccctcttg gcagccagtg 300 ggcaaggacc ttaccctacg ctgccaggtg gagggtgggg caccccgggc caacctcatc 360 gtggtgctgc tccgtgggga ggaggagctg aaacgggagc cagctgtggg ggagcccgcc 420 gaggtcacga ccacggtgcc ggtggagaaa gatcaccatg gagccaattt cttgtgccgc 480 actgaactgg acctgcggcc ccaagggctg aagctgtttg agaacacctc ggccccctac 540 cagetecaaa eetttgteet geeagegaet eeeceacaae ttgteageee tegggteeta 600 gaggtggaca cgcaggggac tgtggtctgt tccctggacg ggctgttccc agtctcggag 660 gcccaggtcc acctggcact gggggaccag aggttgaacc ccacagtcac ctatggcaac 720 gacteettet cagecaagge eteagteagt gtgaeegeag aggaegaggg caeecagtgg 780 ctgacgtgtg cagtaatact ggggacccag agccaggaga cactgcagac agtgaccatc 840 tacagettte eggeacecaa egtgattetg acgaagecag aggteteaga agggacegag 900 gtgacagtga agtgtgaggc ccaccctaga gccaaggtga cactgaatgg ggttccagcc 960 cagccaccgg gcccgaggac ccagttcctg ctgaaggcca ccccagagga caacgggcgc 1020 agetteteet getetgeaac eetggaggtg geeggeeage ttatacacaa gaaccagace 1080 cgggagcttc gtgtcctgta tggcccccga ctggatgaga gggattgtcc gggaaactgg 1140 acgtggccag aaaattccca gcagactcca atgtgccagg cttgggggaa cccattgccc 1200 gageteaagt gtetaaagga tggeaettte ceaetgeeeg teggggaate agtgaetgte 1260 actogagato ttgagggcac ctacctotgt cgggccagga gcactoaagg ggaggtcaco 1320 cgcgaggtga ccgtgaatgt gctctcccc cggtatgagt ttgtcatcat cgctgtggta 1380 gcagccgcag tcataatggg cactgcaggc ctcagcacgt acctctataa ccgccagcgg 1440 aagatcagga aatacagact acaacaggct caaaaaggga cccccatgaa accgaacaca 1500 1515 caagccacgc ctccc

<210> 5 <211> 1515

<212> DNA

<213> Pongo pygmaeus

<400> 5

cacacatetg tgteeteege caacgtette etgeeceggg gaggeteegt getagtgaat 60
tgcagcacet cetgtgacca geceacettg ttgggcatag agacecegtt geetaaaaag 120

qaqttqctcc cgggtgggaa caactggaag atgtatgaac tgagcaatgt gcaagaagat 180 agccaaccaa tgtgctattc aaactgccct gatgggcagt cagcagctaa aaccttcctc 240 acceptgtact ggactccaga acgggtggaa ctggcacccc tcccctcttg gcagccagtg 300 ggcaagaacc ttaccctacg ctgccaggtg gagggtgggg caccccgggc caacctcacc 360 gtggtattgc tccgtgggga ggaggagctg agccggcagc cagcggtggg ggagcccgcc 420 gaggtcacgg ccacggtgct ggcgaggaaa gatgaccacg gagccaattt ctcgtgccgc 480 actgaactgg acctgcggcc ccaagggctg gagctgtttg agaacacctc ggcccccac 540 cagetecaaa cettigieet gecagegaet eccecacaae tigicageee eegggieeta 600 gaggtggaca cgcaggggac cgtggtctgt tccctggacg ggctgttccc agtctcggag 660 gcccaggtcc acttggcact gggggaccag aggttgaacc ccacagtcac ctatggcgtc 720 gactccctct cggccaaggc ctcagtcagt gtgaccgcag aggaggaggg cacccagtgg 780 ctgtggtgtg cagtgatact gaggaaccag agccaggaga cacggcagac agtgaccatc 840 tacagettte etgeacecaa egtgaetetg atgaagecag aggteteaga agggaeegag 900 gtgatagtga agtgtgaggc ccaccctgca gccaacgtga cgctgaatgg ggttccagcc 960 cagccgccgg gcccgagggc ccagttcctg ctgaaggcca ccccagagga caacgggcgc 1020 agcttctcct gctctgcaac cctggaggtg gccggccagc ttatacacaa gaaccagacc 1080 cgggagette gagteetgta tggeeceega etggaegaga gggattgtee gggaaaetgg 1140 acqtggccag aaaactccca gcagactcca atgtgccagg cttgggggaa ccccttgccc 1200 gageteaagt gtetaaagga tggeaettte ceaetgeeca teggggaate agtgaetgte 1260 actegagate ttgagggeae etacetetgt egggeeagga geaeteaagg ggaggteaec 1320 cgcgaggtga ccgtgaatgt gctctccccc cggtatgaga ttgtcatcat cactgtggta 1380 gcagccgcag ccatactggg cactgcaggc ctcagcacgt acctctataa ccgccagcgg 1440 aagatcagga tatacagact acaacaggct caaaaaggga cccccatgaa accaaacaca 1500 1515 caaaccacgc ctccc

<213> Homo sapiens

<400> 6 Gln Thr Ser Val Ser Pro Ser Lys Val Ile Leu Pro Arg Gly Gly Ser

<210> 6 <211> 505 <212> PRT <213> Homo sapiens

1				5					10					15	
Val	Leu	Val	Thr 20	Cys	Ser	Thr	Ser	Cys 25	Asp	Gln	Pro	Lys	Leu 30	Leu	Gly
Ile	Glu	Thr 35	Pro	Leu	Pro	Lys	Lys 40	Glu	Leu	Leu	Leu	Pro 45	Gly	Asn	Asn
Arg	Lys 50	Val	Tyr	Glu	Leu	Ser 55	Asn	Val	Gln	Glu	Asp 60	Ser	Gln	Pro	Met
Cys 65	Tyr	Ser	Asn	Cys	Pro 70	Asp	Gly	Gln	Ser	Thr 75	Ala	Lys	Thr	Phe	Leu 80
Thr	Val	Tyr	Trp	Thr 85	Pro	Glu	Arg	Val	Glu 90	Leu	Ala	Pro	Leu	Pro 95	Ser
Trp	Gln	Pro	Val 100	Gly	Lys	Asn	Leu	Thr 105	Leu	Arg	Cys	Gln	Val 110	Glu	Gly
Gly	Ala	Pro 115	Arg	Ala	Asn	Leu	Thr 120	Val	Val	Leu	Leu	Arg 125	Gly	Glu	Lys
Glu	Leu 130	Lys	Arg	Glu	Pro	Ala 135	Val	Gly	Glu	Pro	Ala 140	Glu	Val	Thr	Thr
Thr 145	Val	Leu	Val	Arg	Arg 150	Asp	His	His	Gly	Ala 155	Asn	Phe	Ser	Cys	Arg 160
Thr	Glu	Leu	Asp	Leu 165	Arg	Pro	Gln	Gly	Leu 170	Glu	Leu	Phe	Glu	Asn 175	Thr
Ser	Ala	Pro	Tyr 180	Gln	Leu	Gln	Thr	Phe 185	Val	Leu	Pro	Ala	Thr 190	Pro	Pro
Gln	Leu	Val 195	Ser	Pro	Arg	Val	Leu 200	Glu	Val	Asp	Thr	Gln 205	Gly	Thr	Val
Val	Cys 210	Ser	Leu	Asp	Gly	Leu 215	Phe	Pro	Val	Ser	Glu 220	Ala	Gln	Val	His
Leu 225	Ala	Leu	Gly	Asp	Gln 230	Arg	Leu	Asn	Pro	Thr 235	Val	Thr	Tyr	Gly	Asn 240
Asp	Ser	Phe	Ser	Ala 245	Lys	Ala	Ser	Val	Ser 250	Val	Thr	Ala	Glu	Asp 255	Glu
Gly	Thr	Gln	Arg 260	Leu	Thr	Cys	Ala	Val 265	Ile	Leu	Gly	Asn	Gln 270	Ser	Gln
Glu	Thr	Leu 275	Gln	Thr	Val	Thr	Ile 280	Tyr	Ser	Phe	Pro	Ala 285	Pro	Asn	Val
Ile	Leu 290	Thr	Lys	Pro	Glu	Val 295	Ser	Glu	Gly	Thr	Glu 300	Val	Thr	Val	Lys
Cys	Glu	Ala	His	Pro	Arg	Ala	Lys	Val	Thr	Leu	Asn	Gly	Val	Pro	Ala

305	310	315	320
Gln Pro Leu Gly Pro 325	Arg Ala Gln Leu Leu 330	Leu Lys Ala Thr Pro 6	Glu
Asp Asn Gly Arg Ser 340	Phe Ser Cys Ser Ala 345	Thr Leu Glu Val Ala G 350	3ly
Gln Leu Ile His Lys 355	Asn Gln Thr Arg Glu 360	Leu Arg Val Leu Tyr 0 365	3ly
Pro Arg Leu Asp Glu 370	Arg Asp Cys Pro Gly 375	Asn Trp Thr Trp Pro G	3lu
Asn Ser Gln Gln Thr 385	Pro Met Cys Gln Ala 390	Trp Gly Asn Pro Leu E 395 4	Pro 400
Glu Leu Lys Cys Leu 405	Lys Asp Gly Thr Phe 410	Pro Leu Pro Ile Gly 6 415	3lu
Ser Val Thr Val Thr 420	Arg Asp Leu Glu Gly 425	Thr Tyr Leu Cys Arg A	Ala
Arg Ser Thr Gln Gly 435	Glu Val Thr Arg Glu 440	Val Thr Val Asn Val I 445	Leu
Ser Pro Arg Tyr Glu 450	Ile Val Ile Ile Thr 455	Val Val Ala Ala Ala V 460	/al
Ile Met Gly Thr Ala 465	Gly Leu Ser Thr Tyr 470	Leu Tyr Asn Arg Gln A	Arg 480
Lys Ile Lys Lys Tyr 485	Arg Leu Gln Gln Ala 490	Gln Lys Gly Thr Pro M 495	Met
Lys Pro Asn Thr Gln 500	Ala Thr Pro Pro 505		
<210> 7 <211> 254 <212> PRT <213> Homo sapiens			
<400> 7 Ser Asp Glu Lys Val	Phe Glu Val His Val	Arg Pro Lys Lys Leu A	Δla
1 5	10	15	114
Val Glu Pro Lys Gly 20	Ser Leu Glu Val Asn 25	Cys Ser Thr Thr Cys A	∤sn
Gln Pro Glu Val Gly 35	Gly Leu Glu Thr Ser 40	Leu Asp Lys Ile Leu I 45	Leu
Asp Glu Gln Ala Gln 50	Trp Lys His Tyr Leu 55	Val Ser Asn Ile Ser H	His

Asp Thr Val Leu Gln Cys His Phe Thr Cys Ser Gly Lys Gln Glu Ser 65 70 75 80

Met Asn Ser Asn Val Ser Val Tyr Gln Pro Pro Arg Gln Val Ile Leu 85 90 95

Thr Leu Gln Pro Thr Leu Val Ala Val Gly Lys Ser Phe Thr Ile Glu
100 105 110

Cys Arg Val Pro Thr Val Glu Pro Leu Asp Ser Leu Thr Leu Phe Leu 115 120 125

Phe Arg Gly Asn Glu Thr Leu His Tyr Glu Thr Phe Gly Lys Ala Ala 130 135 140

Pro Ala Pro Gln Glu Ala Thr Ala Thr Phe Asn Ser Thr Ala Asp Arg
145 150 155 160

Glu Asp Gly His Arg Asn Phe Ser Cys Leu Ala Val Leu Asp Leu Met 165 170 175

Ser Arg Gly Gly Asn Ile Phe His Lys His Ser Ala Pro Lys Met Leu 180 185 190

Glu Ile Tyr Glu Pro Val Ser Asp Ser Gln Met Val Ile Ile Val Thr 195 200 205

Val Val Ser Val Leu Leu Ser Leu Phe Val Thr Ser Val Leu Leu Cys 210 215 220

Phe Ile Phe Gly Gln His Leu Arg Gln Gln Arg Met Gly Thr Tyr Gly 225 230 235 240

Val Arg Ala Ala Trp Arg Leu Pro Gln Ala Phe Arg Pro 245 250

<210> 8

<211> 518

<212> PRT

<213> Homo sapiens

<400> 8

Gln Glu Phe Leu Leu Arg Val Glu Pro Gln Asn Pro Val Leu Ser Ala 1 5 10 15

Gly Gly Ser Leu Phe Val Asn Cys Ser Thr Asp Cys Pro Ser Ser Glu 20 25 30

Lys Ile Ala Leu Glu Thr Ser Leu Ser Lys Glu Leu Val Ala Ser Gly 35 40 45

Met Gly Trp Ala Ala Phe Asn Leu Ser Asn Val Thr Gly Asn Ser Arg 50 55 60

Ile Leu Cys Ser Val Tyr Cys Asn Gly Ser Gln Ile Thr Gly Ser Ser 65 70 75 80

Asn Ile Thr Val Tyr Gly Leu Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Pro Trp Gln Pro Val Gly Gln Asn Phe Thr Leu Arg Cys Gln Val Glu Gly Gly Ser Pro Arg Thr Ser Leu Thr Val Val Leu Leu Arg Trp Glu Glu Glu Leu Ser Arg Gln Pro Ala Val Glu Glu Pro Ala Glu Val Thr Ala Thr Val Leu Ala Ser Arg Asp Asp His Gly Ala Pro Phe Ser Cys Arg Thr Glu Leu Asp Met Gln Pro Gln Gly Leu Gly Leu Phe Val Asn Thr Ser Ala Pro Arg Gln Leu Arg Thr Phe Val Leu Pro Val Thr Pro Pro Arg Leu Val Ala Pro Arg Phe Leu Glu Val Glu Thr Ser Trp Pro Val Asp Cys Thr Leu Asp Gly Leu Phe Pro Ala Ser Glu Ala Gln Val Tyr Leu Ala Leu Gly Asp Gln Met Leu Asn Ala Thr Val Met Asn His Gly Asp Thr Leu Thr Ala Thr Ala Thr Ala Thr Ala Arg Ala Asp Gln Glu Gly Ala Arg Glu Ile Val Cys Asn Val Thr Leu Gly Gly Glu Arg Arg Glu Ala Arg Glu Asn Leu Thr Val Phe Ser Phe Leu Gly Pro Ile Val Asn Leu Ser Glu Pro Thr Ala His Glu Gly Ser Thr Val Thr Val Ser Cys Met Ala Gly Ala Arg Val Gln Val Thr Leu Asp Gly Val Pro Ala Ala Ala Pro Gly Gln Pro Ala Gln Leu Gln Leu Asn Ala Thr Glu Ser Asp Asp Gly Arg Ser Phe Phe Cys Ser Ala Thr Leu Glu Val Asp Gly Glu Phe Leu His Arg Asn Ser Ser Val Gln Leu Arg Val Leu Tyr Gly Pro Lys Ile Asp Arg Ala Thr Cys Pro Gln His Leu Lys Trp

Lys Asp Lys Thr Arg His Val Leu Gln Cys Gln Ala Arg Gly Asn Pro 385 390 395 400

Tyr Pro Glu Leu Arg Cys Leu Lys Glu Gly Ser Ser Arg Glu Val Pro 405 410 415

Val Gly Ile Pro Phe Phe Val Asn Val Thr His Asn Gly Thr Tyr Gln
420 425 430

Cys Gln Ala Ser Ser Ser Arg Gly Lys Tyr Thr Leu Val Val Met
435 440 445

Asp Ile Glu Ala Gly Ser Ser His Phe Val Pro Val Phe Val Ala Val 450 455 460

Leu Leu Thr Leu Gly Val Val Thr Ile Val Leu Ala Leu Met Tyr Val 465 470 475 480

Phe Arg Glu His Gln Arg Ser Gly Ser Tyr His Val Arg Glu Glu Ser 485 490 495

Thr Tyr Leu Pro Leu Thr Ser Met Gln Pro Thr Glu Ala Met Gly Glu 500 510

Glu Pro Ser Arg Ala Glu 515

<210> 9

<211> 1212

<212> DNA

<213> Homo sapiens

<400> 9

atgagtgact ccaaggaacc aagactgcag cagctgggcc tcctggagga ggaacagctg 60 agaggccttg gattccgaca gactcgagga tacaagagct tagcagggtg tcttggccat 120 ggtcccctgg tgctgcaact cctctccttc acgctcttgg ctgggctcct tgtccaagtg 180 tccaaggtcc ccagctccat aagtcaggaa caatccaggc aagacgcgat ctaccaggaac 240 ctgacccagc ttaaagctgc agtgggtgag ctctcagaga aatccaagct gcaggagatc 300 taccaggagc tgacccagct gaaggctgca gtgggtgagc ttccagagaa atctaagctg 360 caggagatct accaggagct gacccggctg aaggctgcag tgggtgagct tccagagaaa 420 tctaagctgc aggagatcta ccaggagctg acctggctga aggctgcagt gggtgagctt 480 ccagagaaat ctaagatgca ggagatctac caggagctga ctcggctgaa ggctgcagtg 540 ggtgagcttc cagagaaatc taagcagcag gagatctacc aggagctgac ccggctgaag 600 gctgcagtgg gtgagcttcc agagaaatct aagcagcag agatctacca ggagctgacc 660

cggctgaagg ctgcagtgg tgagcttcca gagaaatcta agcagcagga gatctaccag 720 gagctgaccc agctgaaggc tgcagtggaa cgcctgtgcc acccctgtcc ctgggaatgg 780 acattcttcc aaggaaactg ttacttcatg tctaactccc agcggaactg gcacgactcc 840 atcaccgcct gcaaagaagt gggggcccag ctcgtcgtaa tcaaaagtgc tgagggacga 900 aacttcctac agctgcagtc ttccagaagt aaccgcttca cctggatggg actttcagat 960 ctaaatcagg aaggcacgtg gcaatgggtg gacggctcac ctctgttgcc cagcttcaag 1020 cagtattgga acagaggag gcccaacaac gttggggagg aagactgcg ggaattagt 1080 ggcaatggct ggaacgacga tgaagaacag tttctttctc cagccctgc cacccaaac 1200 ccccctctg cg

<210> 10

<211> 1212

<212> DNA

<213> Pan troglodytes

<400> 10

atgagtgact ccaaggaacc aagactgcag cagctgggcc tcctggagga ggaacagctg 60 agagggccttg gattccgaca gactcgaggc tacaagagct tagcagggtg tcttggccat 120 ggtcccctgg tgctgcaact cctctcttc acgctcttgg ctgggctcct tgtccaagtg 180 tccaaggtcc ccagctccat aagtcaggaa gaatccaggc aagacgtgat ctaccagaac 240 ctgacccagc ttaaagctgc agtgggtgag ctctcagaga aatccaagct gcaggagatc 300 taccaggagc tgacccagct gaaggctgca gtgggtgagc ttccagagaa atctaagcag 360 caggagatct accaggagct gacccggctg aaggctgcag tgggtgagct tccagagaaa 420 tctaagatgc aggagatcta ccaggagctg actcggctga aggctgcagt gggtgagct 480 ccagagaaat ctaagatgca ggagatctac caggagctga ctcggctgaa ggctgcagt ggtgagctt 480 ggtgagcttc cagagaaatc taagcagcag gagatctacc aggagctgac ccagctgaag 600 gctgcagtgg gtgagcttcc agagaaatct aagcagcagg agatctacc aggagctgac ccagctgaag 600 cagctgaagg ctgcagtggg tgagcttcca gagaaatcta agcagcagga gatctacca ggagctgacc 660 cagctgaagg ctgcagtgg tgagcttcca gagaaatcta agcagcagga gactaccag 720 gagctgaccc ggctgaaggc ttccatcatg tctaactccc agcggaactg gcacgactcc 840 atcactgcct gcaagaagt gggggcccag ctcgtgtaa tcaaaagtgc tgaggacag 900

aacttcctac agctgcagtc ttccagaagt aaccgcttca cctggatgg actttcagat 960 ctaaatgagg aaggcatgtg gcaatgggtg gacggctcac ctctgttgcc cagcttcaac 1020 cagtaytgga acagaggaga gcccaacaac gttggggagg aagactgcgc ggaatttagt 1080 ggcaatggct ggaatgacga caaatgtaat cttgccaaat tctggatctg caaaaagtcc 1140 gcagcctcct gctccaggga tgaagaacag tttctttctc cagcccctgc caccccaaac 1200 ccccctcctg cg

<210> 11

<211> 1212

<212> DNA

<213> Gorilla gorilla

<400> 11

atgagtgact ccaaggaacc aagactgcag cagctgggcc tcctggagga ggaacagctg 60 agaggeettg gatteegaca gactegagge tacaagaget tageagggtg tettggeeat 120 ggtcccctgg tgctgcaact cctctccttc acgctcttgg ctgcgctcct tgtccaagtg 180 tccaaggtcc ccagctccat aagtcaggaa caatccaggc aagacgcgat ctaccagaac 240 ctgacccagt ttaaagctgc agtgggtgag ctctcagaga aatccaagct gcaggagatc 300 tatcaggagc tgacccagct gaaggctgca gtgggtgagc ttccagagaa atctaagcag 360 caggagatct accaggagct gagccagctg aaggctgcag tgggtgagct tccagagaaa 420 tctaagcagc aggagatcta ccaggagctg acccggctga aggctgcagt gggtgagctt 480 ccagagaaat ctaagcagca ggagatctac caggagctga cccggctgaa ggctgcagtg 540 ggtgagette cagagaaate taageageag gagatetace aggagetgag ceagetgaag 600 gctgcagtgg gtgagcttcc agagaaatct aagcagcagg agatctacca ggagctgagc 660 cagctgaagg ctgcagtggg tgagcttcca gagaaatcta agcagcagga gatctaccag 720 gagetgaece agetgaagge tgeagtggaa egeetgtgee geegetgeee etgggaatgg 780 acattettee aaggaaactg ttaetteatg tetaacteee ageggaactg geacgaetee 840 atcaccgcct gccaagaagt gggggcccag ctcgtcgtaa tcaaaagtgc tgaggagcag 900 aacttectac agetgeagte ttecagaagt aacegettea cetggatggg acttteagat 960 ctaaatcatg aaggcacgtg gcaatgggtg gacggctcac ctctgttgcc cagcttcgag 1020 cagtattgga acagaggaga gcccaacaac gttggggagg aagactgcgc ggaatttagt 1080 ggcaatggct ggaacgatga caaatgtaat cttgccaaat tctggatctg caaaaagtct 1140 gcagcetect getecaggga tgaagaacag tttettete cagcetetge caccecaaac 1200 ceceteetg eg 1212

<210> 12

....

<211> 105

<212> PRT

<213> Pan troglodytes

<400> 12

Ser Leu Gln Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr 1 5 10 15

Ala Val Asn Cys Ser Ser Asp Phe Asp Ala Cys Leu Ile Thr Lys Ala
20 25 30

Gly Leu Gln Val Tyr Asn Lys Cys Trp Lys Phe Glu His Cys Asn Phe 35 40 45

Asn Asp Val Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr Tyr Tyr Cys
50 55 60

Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gln Leu Glu Asn Gly Gly 65 70 75 80

Thr Ser Leu Ser Glu Lys Thr Val Leu Leu Leu Val Thr Pro Phe Leu 85 90 95

Ala Ala Ala Trp Ser Leu His Pro 100 105

<210> 13

<211> 121

<212> PRT

<213> Pan troglodytes

<400> 13

Ser Leu Gln Cys Tyr Asn Cys Pro Asn Pro Thr Ala Asp Cys Lys Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Val Asn Cys Ser Ser Asp Phe Asp Ala Cys Leu Ile Thr Lys Ala 20 25 30

Gly Leu Gln Val Tyr Asn Lys Cys Trp Lys Leu Glu His Cys Asn Phe 35 40 45

Lys Asp Leu Thr Thr Arg Leu Arg Glu Asn Glu Leu Thr Tyr Tyr Cys 50 60

Cys Lys Lys Asp Leu Cys Asn Phe Asn Glu Gln Leu Glu Asn Gly Gly 65 70 75 80

Asn Glu Gln Leu Glu Asn Gly Gly Asn Glu Gln Leu Glu Asn Gly Gly
85 90 95

Thr Ser Leu Ser Glu Lys Thr Val Leu Leu Arg Val Thr Pro Phe Leu 100 105 110

Ala Ala Ala Trp Ser Leu His Pro 115 120

<210> 14

<211> 5140

<212> DNA

<213> Homo sapiens

<400> 14

ctccagacct acccagaaag atgcccggat ggatcctgca gctccgtggc ttttctggga 60 agcageggee cetgetetea agagaceetg geteetgatg gtggeeecaa ggttgeeage 120 tggtgctagg gactcaggac agtttcccag aaaaggccaa gcgggcagcc cctccagggg 180 ccgggtgagg aagctggggg gtgcggaggc cacactgggt ccctgaaccc cctgcttggt 240 tacagtgcag ctcctcaagt ccacagacgt gggccggcac agcctcctgt acctgaagga 300 aatcggccgt ggctggttcg ggaaggtgtt cctgggggag gtgaactctg gcatcagcag 360 tgcccaggtg gtggtgaagg agctgcaggc tagtgccagc gtgcaggagc agatgcagtt 420 cctggaggag gtgcagccct acagggccct gaagcacagc aacctgctcc agtgcctggc 480 ccagtgcgcc gaggtgacgc cctacctgct ggtgatggag ttctgcccac tgggggacct 540 caagggctac ctgcggagct gccgggtggc ggagtccatg gctcccgacc cccggaccct 600 gcagcgcatg gcctgtgagg tggcctgtgg cgtcctgcac cttcatcgca acaatttcgt 660 gcacagegae etggeeetge ggaactgeet geteaegget gaeetgaegg tgaagattgg 720 tgactatggc ctggctcact gcaagtacag agaggactac ttcgtgactg ccgaccagct 780 gtgggtgcct ctgcgctgga tcgcgccaga gctggtggac gaggtgcata gcaacctgct 840 cgtcgtggac cagaccaaga gcgggaatgt gtggtccctg ggcgtgacca tctgggagct 900 ctttgagetg ggcacgcage cctatececa gcacteggae cageaggtge tggcgtacae 960 ggtccgggag cagcagctca agctgcccaa gccccagctg cagctgaccc tgtcggaccg 1020 ctggtacgag gtgatgcagt tctgctggct gcagcccgag cagcggccca cagccgagga 1080 ggtgcacctg ctgctgtcct acctgtgtgc caagggcgcc accgaagcag aggaggagtt 1140 tgaacggcgc tggcgctctc tgcggcccgg cgggggcggc gtggggcccg ggcccggtgc 1200 ggcggggccc atgctgggcg gcgtggtgga gctcgccgct gcctcgtcct tcccgctgct 1260 ggagcagttc gegggegacg gettecaege ggaeggegae gaegtgetga eggtgaeega 1320 gaccagccga ggcctcaatt ttgagtacaa gtgggaggcg ggccgcggcg cggaggcctt 1380 cccggccacg ctgagccctg gccgcaccgc acgcctgcag gagctgtgcg cccccgacgg 1440 cgcgcccccg ggcgtggttc cggtgctcag cgcgcacagc ccgtcgctgg gcagcgagta 1500 cttcatccgc ctagaggagg ccgcacccgc cgccggccac gaccctgact gcgccggctg 1560 cgcccccagt ccacctgcca ccgcggacca ggacgacgac tctgacggca gcaccgccgc 1620 ctcgctggcc atggagccgc tgctgggcca cgggccaccc gtcgacgtcc cctggggccg 1680 cggcgaccac taccetcgca gaagettggc gegggacccg etetgeeect caegetetec 1740 ctcgccctcg gcggggcccc tgagtctggc ggagggagga gcggaggatg cagactgggg 1800 cgtggccgcc ttctgtcctg ccttcttcga ggacccactg ggcacgtccc ctttggggag 1860 ctcaggggcg cccccgctgc cgctgactgg cgaggatgag ctagaggagg tgggagcgcg 1920 gagggccgcc cagcgcgggc actggcgctc caacgtgtca gccaacaaca acagcggcag 1980 cegetgteca gagteetggg acceegtete tgegggetge caegetgagg getgeeceag 2040 tccaaagcag accccacggg cctcccccga gccggggtac cctggagagc ctctgcttgg 2100 gctccaggca gcctctgccc aggagccagg ctgctgccc ggcctccctc atctatgctc 2160 tgcccagggc ctggcacctg ctccctgcct ggttacaccc tcctggacag agacagccag 2220 tagtgggggt gaccacccgc aggcagagcc caagcttgcc acggaggctg agggcactac 2280 cggaccccgc ctgccccttc cttccgtccc ctccccatcc caggagggag ccccacttcc 2340 ctcggaggag gccagtgccc ccgacgcccc tgatgccctg cctgactctc ccacgcctgc 2400 tactggtggc gaggtgtctg ccatcaagct ggcttctgcc ctgaatggca gcagcagctc 2460 tcccgaggtg gaggcaccca gcagtgagga tgaggacacg gctgaggcca cctcaggcat 2520 cttcaccgac acgtccagcg acggcctgca ggccaggagg ccggatgtgg tgccagcctt 2580 ccgctctctg cagaagcagg tggggacccc cgactccctg gactccctgg acatcccgtc 2640 ctcagccagt gatggtggct atgaggtctt cagcccgtcg gccactggcc cctctggagg 2700 gcagccgcga gcgctggaca gtggctatga caccgagaac tatgagtccc ctgagtttgt 2760 gctcaaggag gcgcaggaag ggtgtgagcc ccaggccttt gcggagctgg cctcagaggg 2820 tgagggcccc gggcccgaga cacggctctc cacctccctc agtggcctca acgagaagaa 2880 tecetacega gaetetgeet aetteteaga eetegagget gaggeegagg ceaceteagg 2940 cccagagaag aagtgcggcg gggaccgagc ccccgggcca gagctgggcc tgccgagcac 3000 tgggcagccg tctgagcagg tctgtctcag gcctggggtt tccggggagg cacaaggctc 3060

tggccccggg gaggtgctgc ccccactgct gcagcttgaa gggtcctccc cagagcccag 3120 cacctgcccc tcgggcctgg tcccagagcc tccggagccc caaggcccag ccaaggtgcg 3180 gcctgggccc agccccagct gctcccagtt tttcctgctg accccggttc cgctgagatc 3240 agaaggcaac agctctgagt tccaggggcc cccaggactg ttgtcagggc cggccccaca 3300 aaagcggatg gggggcccag gcacccccag agccccactc cgcctggctc tgcccggcct 3360 ccctgcggcc ttggagggcc ggccggagga ggaggaggag gacagtgagg acagcgacga 3420 gtctgacgag gagctccgct gctacagcgt ccaggagcct agcgaggaca gcgaagagga 3480 ggcgccggcg gtgcccgtgg tggtggctga gagccagagc gcgcgcaacc tgcgcagcct 3540 gctcaagatg cccagcctgc tgtccgagac cttctgcgag gacctggaac gcaagaagaa 3600 ggccgtgtcc ttcttcgacg acgtcaccgt ctacctcttt gaccaggaaa gccccacccg 3660 ggagctcggg gagcccttcc cgggcgccaa ggaatcgccc cctacgttcc ttagggggag 3720 ccccggctct cccagcgccc ccaaccggcc gcagcaggct gatggctccc caaatggctc 3780 cacageggaa gagggtggtg ggttegegtg ggaegaegae tteeegetga tgaeggeeaa 3840 ggcagccttc gccatggccc tagacccggc cgcacccgcc ccggctgcgc ccacgcccac 3900 geoegeteee ttetegeget teaeggtgte geoegegeee aegteeeget tetecateae 3960 gcacgtgtct gactcggacg ccgagtccaa gagaggacct gaagctggtg ccgggggtga 4020 gagtaaagag gettgagaee tgggeagete etgeeeetea aggetggegt caeeggagee 4080 cctgccaggc agcagcgagg atggtgaccg agaaggtggg gaccacgtcc tggtggctgt 4140 tggcagcaga ttcaggtgcc tctgccccac gcggtgtcct ggagaagccc gtgggatgag 4200 aggccctgga tggtagatcg gccatgctcc gccccagagg cagaattcgt ctgggctttt 4260 aggettgetg etageceetg ggggegeetg gagecacagt gggtgtetgt acacacatae 4320 acactcaaaa ggggccagtg cccctgggca cggcggcccc caccctctgc cctgcctgcc 4380 tggcctcgga ggacccgcat gccccatccg gcagctcctc cggtgtgctc acaggacact 4440 taaaccagga cgaggcatgg ccccgagaca ctggcaggtt tgtgagcctc ttcccacccc 4500 ctgtgcccc accettgcct ggttcctggt ggctcagggc aaggagtggc cctgggcgcc 4560 egtgteggte etgttteege tgeeettate teaaagteeg tggetgttte eeetteactg 4620 actcagctag acccgtaagc ccacccttcc cacagggaac aggctgctcc cacctgggtc 4680 ccgctgtggc cacggtgggc agcccaaaag atcaggggtg gaggggcttc caggctgtac 4740 tcctgccccg tgggccccgt tctagaggtg cccttggcag gaccgtgcag gcagctcccc 4800
tctgtggggc agtatctggt cctgtgcccc agctgccaaa ggagagtggg ggccatgccc 4860
cgcagtcagt gttggggggc tcctgcctac agggagaggg atggtggga aggggtggag 4920
ctgggggcag ggcagcacag ggaatattt tgtaactaac taactgctgt ggttggagcg 4980
aatggaagtt gggtgattt aagttattgt tgccaaagag atgtaaagtt tattgttgct 5040
tcgcaggggg atttgtttg tgttttgttt gaggcttaga acgctggtgc aatgtttct 5100
tgttccttgt tttttaagag aaatgaagct aagaaaaaag 5140

<210> 15

<211> 5140

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (413)..(4036)

<400> 15

ctccagacct acccagaaag atgcccggat ggatcctgca gctccgtggc ttttctggga 60
agcagcggcc cctgctctca agagaccctg gctcctgatg gtggccccaa ggttgccagc 120
tggtgctagg gactcaggac agtttcccag aaaaggccaa gcgggcagcc cctccagggg 180
ccgggtgagg aagctggggg gtgcggaggc cacactgggt ccctgaaccc cctgcttggt 240
tacagtgcag ctcctcaagt ccacagacgt gggccggcac agcctcctgt acctgaagga 300
aatcggccgt ggctggttcg ggaaggtgtt cctgggggag gtgaactctg gcatcagcag 360
tgcccaggtg gtggtgaagg agctgcaggc tagtgccagc gtgcaggagc ag atg cag 418
Met Gln

1

ttc ctg gag gag gtg cag ccc tac agg gcc ctg aag cac agc aac ctg $\,$ 466 Phe Leu Glu Glu Val Gln Pro Tyr Arg Ala Leu Lys His Ser Asn Leu $\,$ 5 $\,$ 10 $\,$ 15

ctc cag tgc ctg gcc cag tgc gcc gag gtg acg ccc tac ctg ctg gtg 514 Leu Gln Cys Leu Ala Gln Cys Ala Glu Val Thr Pro Tyr Leu Leu Val 20 25 30

atg gag ttc tgc cca ctg ggg gac ctc aag ggc tac ctg cgg agc tgc 562

Met Glu Phe Cys Pro Leu Gly Asp Leu Lys Gly Tyr Leu Arg Ser Cys
35 40 45 50

cgg gtg gcg gag tcc atg gct ccc gac ccc cgg acc ctg cag cgc atg 610 Arg Val Ala Glu Ser Met Ala Pro Asp Pro Arg Thr Leu Gln Arg Met 55 60 65

														aat Asn		658
														gac Asp		706
		_												aga Arg		754
_														tgg Trp		802
														gtg Val 145		850
														tgg Trp		898
			_		_	_				_		_	_	cag Gln	_	946
	_			_	_			-	-		_	_		aag Lys		994
														cag Gln		1042
														cac His 225		1090
														gag Glu		1138
	_		_		_		_							gtg Val		1186
														gag Glu		1234
	_	_												gac Asp		1282
ttc	cac	gcg	gac	ggc	gac	gac	gtg	ctg	acg	gtg	acc	gag	acc	agc	cga	1330

Phe	His	Ala	Asp	Gly 295	Asp	Asp	Val	Leu	Thr 300	Val	Thr	Glu	Thr	Ser 305	Arg	
					tac Tyr											1378
		_	-	_	agc Ser			_		_	_	_			_	1426
					gcg Ala											1474
	-		_	_	ggc Gly 360	-					-				_	1522
_		_	•	-	cac His	•		_	-	_	~ ~	~	_		•	1570
					gac Asp											1618
_	-		-	_	gag Glu	-	-	_						_	_	1666
					ggc Gly											1714
-	_		-		tca Ser 440	_			_		_				-	1762
					gga Gly											1810
					ttc Phe											1858
					ccg Pro											1906
					agg Arg											1954
					aac Asn											2002

515	520	525	530
-		c tgc ccc agt cca aag v Cys Pro Ser Pro Lys) 545	
		c cct gga gag cct ctg r Pro Gly Glu Pro Leu 560	
		a ggc tgc tgc ccc ggc o Gly Cys Cys Pro Gly 575	
		a cct gct ccc tgc ctg a Pro Ala Pro Cys Leu 590	
		ggg ggt gac cac ccg Gly Gly Asp His Pro 605	-
		g ggc act acc gga ccc 1 Gly Thr Thr Gly Pro 625	
-	-	c cag gag gga gcc cca c Gln Glu Gly Ala Pro 640	
		c cct gat gcc ctg cct a Pro Asp Ala Leu Pro 655	
		g tct gcc atc aag ctg Ser Ala Ile Lys Leu 670	
		gag gtg gag gca ccc Glu Val Glu Ala Pro 685	_
		tca ggc atc ttc acc Ser Gly Ile Phe Thr 705	
		g ccg gat gtg gtg cca g Pro Asp Val Val Pro 720	_
		c ccc gac tcc ctg gac Pro Asp Ser Leu Asp 735	
		ggc tat gag gtc ttc Gly Tyr Glu Val Phe 750	

ccg to Pro Se 755								_	_			_	_	_	2722
ggc ta Gly Ty															2770
gcg ca Ala Gl															2818
ggt ga Gly Gl													_	~ ~	2866
ctc aa Leu As 82	n Glu														2914
gag go Glu Al 835		_		_						_	_	_	-	000	2962
gac co	_					_		_	_	_			_	-	3010
tct ga Ser Gl															3058
tct gg Ser Gl															3106
tcc cc Ser Pr 90	o Glu		-		-		_		_	_				_	3154
gag co Glu Pr 915				_	_						_		_	_	3202
tcc ca Ser Gl															3250
agc to Ser Se															3298
caa aa Gln Ly									-	_			-	_	3346

gct ctg ccc ggc ctc cct gcg gcc ttg gag ggc cgg ccg gag gag gag Ala Leu Pro Gly Leu Pro Ala Ala Leu Glu Gly Arg Pro Glu Glu Glu 980 985 990	3394
gag gag gac agt gag gac agc gac gag tct gac gag gag ctc cgc tgc Glu Glu Asp Ser Glu Asp Glu Ser Asp Glu Glu Leu Arg Cys 995 1000 1005 1010	3442
tac agc gtc cag gag cct agc gag gac agc gaa gag gag gcg ccg gcg Tyr Ser Val Gln Glu Pro Ser Glu Asp Ser Glu Glu Glu Ala Pro Ala 1015 1020 1025	3490
gtg ccc gtg gtg gtg gct gag agc cag agc gcg cgc aac ctg cgc agc Val Pro Val Val Val Ala Glu Ser Gln Ser Ala Arg Asn Leu Arg Ser 1030 1035 1040	3538
ctg ctc aag atg ccc agc ctg ctg tcc gag acc ttc tgc gag gac ctg Leu Leu Lys Met Pro Ser Leu Leu Ser Glu Thr Phe Cys Glu Asp Leu 1045 1050 1055	3586
gaa cgc aag aag aag gcc gtg tcc ttc ttc gac gac gtc acc gtc tac Glu Arg Lys Lys Ala Val Ser Phe Phe Asp Asp Val Thr Val Tyr 1060 1065 1070	3634
ctc ttt gac cag gaa agc ccc acc cgg gag ctc ggg gag ccc ttc ccg Leu Phe Asp Gln Glu Ser Pro Thr Arg Glu Leu Gly Glu Pro Phe Pro 1075 1080 1085 1090	3682
ggc gcc aag gaa tcg ccc cct acg ttc ctt agg ggg agc ccc ggc tct Gly Ala Lys Glu Ser Pro Pro Thr Phe Leu Arg Gly Ser Pro Gly Ser 1095 1100 1105	3730
ccc agc gcc ccc aac cgg ccg cag cag gct gat ggc tcc cca aat ggc Pro Ser Ala Pro Asn Arg Pro Gln Gln Ala Asp Gly Ser Pro Asn Gly 1110 1115 1120	3778
tcc aca gcg gaa gag ggt ggt ggg ttc gcg tgg gac gac gac ttc ccg Ser Thr Ala Glu Glu Gly Gly Gly Phe Ala Trp Asp Asp Asp Phe Pro 1125 1130 1135	3826
ctg atg acg gcc aag gca gcc ttc gcc atg gcc cta gac ccg gcc gca Leu Met Thr Ala Lys Ala Ala Phe Ala Met Ala Leu Asp Pro Ala Ala 1140 , 1145 1150	3874
ccc gcc ccg gct gcg ccc acg ccc acg ccc gct ccc ttc tcg cgc ttcPro Ala Pro Ala Ala Pro Thr Pro Thr Pro Ala Pro Phe Ser Arg Phe1155116011651170	3922
acg gtg tcg ccc gcg ccc acg tcc cgc ttc tcc atc acg cac gtg tct Thr Val Ser Pro Ala Pro Thr Ser Arg Phe Ser Ile Thr His Val Ser 1175 1180 1185	3970
gac tcg gac gcc gag tcc aag aga gga cct gaa gct ggt gcc ggg ggt Asp Ser Asp Ala Glu Ser Lys Arg Gly Pro Glu Ala Gly Ala Gly Gly 1190 1195 1200	4018
gag agt aaa gag gct tga gacctgggca gctcctgccc ctcaaggctg	4066

Glu Ser Lys Glu Ala 1205

gcgtcaccgg agcccctgcc aggcagcagc gaggatggtg accgagaagg tgggqaccac 4126 gtcctggtgg ctgttggcag cagattcagg tgcctctgcc ccacgcggtg tcctggagaa 4186 gcccgtggga tgagaggccc tggatggtag atcggccatg ctccgcccca gaggcagaat 4246 tegtetggge tittaggett getgetagee eetgggggeg eetggageea eagtgggtgt 4306 ctgtacacac atacacactc aaaaggggcc agtgcccctg ggcacggcgg cccccaccct 4366 etgeeetgee tgeetggeet eggaggaeee geatgeeeea teeggeaget eeteeggtgt 4426 gctcacagga cacttaaacc aggacgaggc atggccccga gacactggca ggtttqtgag 4486 cctcttccca cccctgtgc ccccacctt gcctggttcc tggtggctca gggcaaqqaq 4546 tggccctggg cgcccgtgtc ggtcctgttt ccgctgccct tatctcaaag tccgtggctg 4606 tttccccttc actgactcag ctagacccgt aagcccaccc ttcccacagg gaacaggctg 4666 ctcccacctg ggtcccgctg tggccacggt gggcagccca aaagatcagg ggtggagggg 4726 cttccaggct gtactcctgc cccgtgggcc ccgttctaga ggtgcccttg qcaggaccqt 4786 geaggeaget eccetetgtg gggeagtate tggteetgtg ecceagetge caaaggagag 4846 tgggggccat gccccgcagt cagtgttggg gggctcctgc ctacagggag agggatggtg 4906 gggaaggggt ggagctgggg gcagggcagc acagggaata tttttgtaac taactaactg 4966 ctgtggttgg agcgaatgga agttgggtga ttttaagtta ttgttgccaa agagatgtaa 5026 agtttattgt tgcttcgcag ggggatttgt tttgtgtttt gtttgaggct tagaacqctq 5086 gtgcaatgtt ttcttgttcc ttgtttttta agagaaatga agctaagaaa aaag 5140

<400> 16

Met Gln Phe Leu Glu Glu Val Gln Pro Tyr Arg Ala Leu Lys His Ser 1 5 10 15

Asn Leu Leu Gln Cys Leu Ala Gln Cys Ala Glu Val Thr Pro Tyr Leu 20 25 30

Leu Val Met Glu Phe Cys Pro Leu Gly Asp Leu Lys Gly Tyr Leu Arg 35 40 45

Ser Cys Arg Val Ala Glu Ser Met Ala Pro Asp Pro Arg Thr Leu Gln 50 55 60

<210> 16

<211> 1207

<212> PRT

<213> Homo sapiens

Arg 65	Met	Ala	Cys	Glu	Val 70	Ala	Cys	Gly	Val	Leu 75	His	Leu	His	Arg	Asn 80
Asn	Phe	Val	His	Ser 85	Asp	Leu	Ala	Leu	Arg 90	Asn	Cys	Leu	Leu	Thr 95	Ala
Asp	Leu	Thr	Val 100	Lys	Ile	Gly	Asp	Туr 105	Gly	Leu	Ala	His	Cys 110	Lys	Tyr
Arg	Glu	Asp 115	Tyr	Phe	Val	Thr	Ala 120	Asp	Gln	Leu	Trp	Val 125	Pro	Leu	Arg
Trp	Ile 130	Ala	Pro	Glu	Leu	Val 135	Asp	Glu	Val	His	Ser 140	Asn	Leu	Leu	Val
Val 145	Asp	Gln	Thr	Lys	Ser 150	Gly	Asn	Val	Trp	Ser 155	Leu	Gly	Val	Thr	Ile 160
Trp	Glu	Leu	Phe	Glu 165	Leu	Gly	Thr	Gln	Pro 170	Tyr	Pro	Gln	His	Ser 175	Asp
Gln	Gln	Val	Leu 180	Ala	Tyr	Thr	Val	Arg 185	Glu	Gln	Gln	Leu	Lys 190	Leu	Pro
Lys	Pro	Gln 195	Leu	Gln	Leu	Thr	Leu 200	Ser	Asp	Arg	Trp	Tyr 205	Glu	Val	Met
Gln'	Phe 210	Cys	Trp	Leu	Gln	Pro 215	Glu	Gln	Arg	Pro	Thr 220	Ala	Glu	Glu	Val
His 225	Leu	Leu	Leu	Ser	Tyr 230	Leu	Cys	Ala	Lys	Gly 235	Ala	Thr	Glu	Ala	Glu 240
Glu	Glu	Phe	Glu	Arg 245	Arg	Trp	Arg	Ser	Leu 250	Arg	Pro	Gly	Gly	Gly 255	Gly
Val	Gly	Pro	Gly 260	Pro	Gly	Ala	Ala	Gly 265	Pro	Met	Leu	Gly	Gly 270	Val	Val
Glu	Leu	Ala 275	Ala	Ala	Ser	Ser	Phe 280	Pro	Leu	Leu	Glu	Gln 285	Phe	Ala	Gly
Asp	Gly 290	Phe	His	Ala	Asp	Gly 295	Asp	Asp	Val	Leu	Thr 300	Val	Thr	Glu	Thr
Ser 305	Arg	Gly	Leu	Asn	Phe 310	Glu	Tyr	Lys	Trp	Glu 315	Ala	Gly	Arg	Gly	Ala 320
Glu	Ala	Phe	Pro	Ala 325	Thr	Leu	Ser	Pro	Gly 330	Arg	Thr	Ala	Arg	Leu 335	Gln
Glu	Leu	Cys	Ala 340	Pro	Asp	Gly	Ala	Pro 345	Pro	Gly	Val	Val	Pro 350	Val	Leu
Ser	Ala	His 355	Ser	Pro	Ser	Leu	Gly 360	Ser	Glu	Tyr	Phe	Ile 365	Arg	Leu	Glu

Glu Ala Ala 370	Pro Ala	Ala Gly		Asp	Pro	Asp	Cys 380	Ala	Gly	Cys	Ala
Pro Ser Pro 385	Pro Ala	Thr Ala	Asp	Gln	Asp	Asp 395	Asp	Ser	Asp	Gly	Ser 400
Thr Ala Ala	Ser Leu 405	Ala Met	Glu	Pro	Leu 410	Leu	Gly	His	Gly	Pro 415	Pro
Val Asp Val	Pro Trp 420	Gly Arg	, Gly	Asp 425	His	Tyr	Pro	Arg	Arg 430	Ser	Leu
Ala Arg Asp 435	Pro Leu	Cys Pro	Ser 440	Arg	Ser	Pro	Ser	Pro 445	Ser	Ala	Gly
Pro Leu Ser 450	Leu Ala	Glu Gly 455		Ala	Glu	Asp	Ala 460	Asp	Trp	Gly	Val
Ala Ala Phe 465	Cys Pro	Ala Phe 470	Phe	Glu	Asp	Pro 475	Leu	Gly	Thr	Ser	Pro 480
Leu Gly Ser	Ser Gly 485	Ala Pro	Pro	Leu	Pro 490	Leu	Thr	Gly	Glu	Asp 495	Glu
Leu Glu Glu	Val Gly 500	Ala Arg	Arg	Ala 505	Ala	Gln	Arg	Gly	His 510	Trp	Arg
Ser Asn Val 515	Ser Ala	Asn Asr	Asn 520	Ser	Gly	Ser	Arg	Cys 525	Pro	Glu	Ser
Trp Asp Pro 530	Val Ser	Ala Gly 535		His	Ala	Glu	Gly 540	Cys	Pro	Ser	Pro
Lys Gln Thr 545	Pro Arg	Ala Ser 550	Pro	Glu	Pro	Gly 555	Tyr	Pro	Gly	Glu	Pro 560
Leu Leu Gly	Leu Gln 565	Ala Ala	Ser	Ala	Gln 570	Glu	Pro	Gly	Cys	Cys 575	Pro
Gly Leu Pro	His Leu 580	Cys Ser	Ala	Gln 585	Gly	Leu	Ala	Pro	Ala 590	Pro	Cys
Leu Val Thr 595	Pro Ser	Trp Thr	Glu 600	Thr	Ala	Ser	Ser	Gly 605	Gly	Asp	His
Pro Gln Ala 610	Glu Pro	Lys Let 615		Thr	Glu	Ala	Glu 620	Gly	Thr	Thr	Gly
Pro Arg Leu 625	Pro Leu	Pro Ser 630	Val	Pro	Ser	Pro 635	Ser	Gln	Glu	Gly	Ala 640
Pro Leu Pro	Ser Glu 645	Glu Ala	Ser	Ala	Pro 650	Asp	Ala	Pro	Asp	Ala 655	Leu
Pro Asp Ser	Pro Thr 660	Pro Ala	Thr	Gly 665	Gly	Glu	Val	Ser	Ala 670	Ile	Lys

Leu	Ala	Ser 675	Ala	Leu	Asn	Gly	Ser 680	Ser	Ser	Ser	Pro	Glu 685	Val	Glu	Ala
Pro	Ser 690	Ser	Glu	Asp	Glu	Asp 695	Thr	Ala	Glu	Ala	Thr 700	Ser	Gly	Ile	Phe
Thr 705	Asp	Thr	Ser	Ser	Asp 710	Gly	Leu	Gln	Ala	Arg 715	Arg	Pro	Asp	Val	Val 720
Pro	Ala	Phe	Arg	Ser 725	Leu	Gln	Lys	Gln	Val 730	Gly	Thr	Pro	Asp	Ser 735	Leu
Asp	Ser	Leu	Asp 740	Ile	Pro	Ser	Ser	Ala 745	Ser	Asp	Gly	Gly	Tyr 750	Glu	Val
Phe	Ser	Pro 755	Ser	Ala	Thr	Gly	Pro 760	Ser	Gly	Gly	Gln	Pro 765	Arg	Ala	Leu
qaA	Ser 770	Gly	Tyr	Asp	Thr	Glu 775	Asn	Tyr	Glu	Ser	Pro 780	Glu	Phe	Val	Leu
Lys 785	Glu	Ala	Gln	Glu	Gly 790	Cys	Glu	Pro	Gln	Ala 795	Phe	Ala	Glu	Leu	Ala 800
Ser	Glu	Gly	Glu	Gly 805	Pro	Gly	Pro	Glu	Thr 810	Arg	Leu	Ser	Thr	Ser 815	Leu
Ser	Gly	Leu	Asn 820	Glu	Lys	Asn	Pro	Tyr 825	Arg	Asp	Ser	Ala	Tyr 830	Phe	Ser
Asp	Leu	Glu 835	Ala	Glu	Ala	Glu	Ala 840	Thr	Ser	Gly	Pro	Glu 845	Lys	Lys	Cys
Gly	Gly 850	Asp	Arg	Ala	Pro	Gly 855	Pro	Glu	Leu	Gly	Leu 860	Pro	Ser	Thr	Gly
Gln 865	Pro	Ser	Glu	Gln	Val 870	Cys	Leu	Arg	Pro	Gly 875	Val	Ser	Gly	Glu	Ala 880
Gln	Gly	Ser	Gly	Pro 885	Gly	Glu	Val	Leu	Pro 890	Pro	Leu	Leu	Gln	Leu 895	Glu
Gly	Ser	Ser	Pro 900	Glu	Pro	Ser	Thr	Cys 905	Pro	Ser	Gly	Leu	Val 910	Pro	Glu
Pro	Pro	Glu 915	Pro	Gln	Gly	Pro	Ala 920	Lys	Val	Arg	Pro	Gly 925	Pro	Ser	Pro
Ser	Cys 930	Ser	Gln	Phe	Phe	Leu 935	Leu	Thr	Pro	Val	Pro 940	Leu	Arg	Ser	Glu
Gly 945	Asn	Ser	Ser	Glu	Phe 950	Gln	Gly	Pro	Pro	Gly 955	Leu	Leu	Ser	Gly	Pro 960
Ala	Pro	Gln	Lys	Arg 965	Met	Gly	Gly	Pro	Gly 970	Thr	Pro	Arg	Ala	Pro 975	Leu

Arg Leu Ala Leu Pro Gly Leu Pro Ala Ala Leu Glu Gly Arg Pro Glu 980 985 990

Glu Glu Glu Glu Asp Ser Glu Asp Ser Asp Glu Ser Asp Glu Glu Leu
995 1000 1005

Arg Cys Tyr Ser Val Glu Glu Pro Ser Glu Asp Ser Glu Glu Glu Ala 1010 1015 1020

Pro Ala Val Pro Val Val Val Ala Glu Ser Gln Ser Ala Arg Asn Leu 1025 1030 1035 1040

Arg Ser Leu Leu Lys Met Pro Ser Leu Leu Ser Glu Thr Phe Cys Glu 1045 1050 1055

Asp Leu Glu Arg Lys Lys Lys Ala Val Ser Phe Phe Asp Asp Val Thr 1060 1065 1070

Val Tyr Leu Phe Asp Gln Glu Ser Pro Thr Arg Glu Leu Gly Glu Pro 1075 1080 1085

Phe Pro Gly Ala Lys Glu Ser Pro Pro Thr Phe Leu Arg Gly Ser Pro 1090 1095 1100

Gly Ser Pro Ser Ala Pro Asn Arg Pro Gln Gln Ala Asp Gly Ser Pro 1105 1110 1115 1120

Asn Gly Ser Thr Ala Glu Glu Gly Gly Phe Ala Trp Asp Asp Asp 1125 1130 1135

Phe Pro Leu Met Thr Ala Lys Ala Ala Phe Ala Met Ala Leu Asp Pro 1140 1145 1150

Ala Ala Pro Ala Pro Ala Ala Pro Thr Pro Thr Pro Ala Pro Phe Ser 1155 1160 1165

Arg Phe Thr Val Ser Pro Ala Pro Thr Ser Arg Phe Ser Ile Thr His 1170 1175 1180

Val Ser Asp Ser Asp Ala Glu Ser Lys Arg Gly Pro Glu Ala Gly Ala 1185 1190 1195 1200

Gly Gly Glu Ser Lys Glu Ala 1205

<210> 17

<211> 1803

<212> DNA

<213> Pan troglodytes

<400> 17

gctccctgcc tggttacacc ctcctggaca gagacagccg gtagtggggg tgaccacccg 60

caggcagage ccaagettge caeggagget gagggcaetg eeggaceetg tetgeeeett 120

cetteegtee cetececate ceaggaggga geceaette ceteggagga ggeeagtgee 180 cctgacgccc ctgatgccct gcctgactct cccatgcctg ctactggtgg cgaggtgtct 240 gccatcaagc tggcttctgt cctgaatggc agcagcagct ctcccgaggt ggaggcaccc 300 agcagcgagg atgaggacac ggctgaggcc acctcaggca tcttcaccga cacgtccagc 360 gacggcctgc aggccgagag gctggatgtg gtgccagcct tccgctctct gcagaagcag 420 gtggggaccc ccgactccct ggactccctg gacatcccat cctcagccag tgatggtggc 480 tatgaggtct tcagcccgtc ggccactggc ccctctggag ggcagccccg agcgctggac 540 agtggctatg acaccgagaa ctatgagtcc cctgagtttg tgctcaagga ggcgcaggaa 600 gggtgtgagc cccaggcctt tgaggagctg gcctcagagg gtgagggccc cggccccggg 660 cccgagacgc ggctctccac ctccctcagt ggcctcaacg agaagaatcc ctaccgagac 720 tetgeetact teteagacet ggaggetgag geegaggeeg aggeeacete aggeecagag 780 aagaagtgcg gcggggacca agccccggg ccagagctgg acctgccgag cactgggcag 840 ccgtctgagc aggtctccct caggcctggg gtttccgggg aggcacaagg ctctggcccc 900 ggggaggtgc tgcccccact gctgcggctt gaaggatcct ccccagagcc cagcacctgc 960 ccctcgggcc tggtcccaga gcctccggag ccccaaggcc cagccgaggt gcggcctggg 1020 cccagcccca gctgctccca gtttttcctg ctgaccccgg ttccgctgag atcagaaggc 1080 aacagetetg agtteeaggg geeceeagga etgttgteag ggeeggeece acaaaagegg 1140 atggggggcc taggcacccc cagagcccca ctccgcctgg ctctgcccgg cctccctgcg 1200 gccttggagg gccggccgga ggaggaggag gaggacagtg aggacagcgg cgagtctgac 1260 gaggagetee getgetacag egteeaggag eetagegagg acagegaaga ggaggegeeg 1320 gcggtgcccg tggtggtggc tgagagccag agcgcgcga acctgcgcag cctgctcaag 1380 atgcccagcc tgctgtccga ggccttctgc gaggacctgg aacgcaagaa gaaggccgtg 1440 teettetteg acgaegteae egtetaeete tttgaeeagg aaageeeeae etgggagete 1500 ggggagccct tcccgggcgc caaggaatcg cccccacgt tccttagggg gagccccggc 1560 teteccageg ecceeaaceg geegeageag getgatgget eeccaaatgg etecaeageg 1620 gaagagggtg gtgggttcgc gtgggacgac gacttcccgc tgatgccggc caaggcagcc 1680 ttcgccatgg ccctagaccc ggccgcaccc gccccggctg cgcccacgcc cgctcccttc 1740 tegegettea eggtgtegee egegeeeaeg tecaegteee getteteeat caegeaegtg 1800 1803 tct

<210> 18

<211> 1785

<212> DNA

<213> Gorilla gorilla

<400> 18

gctccctgcc tggttacacc ctcctggaca gagacagacg gtagtggggg tgaccacccg 60 caggcagagc ccaagcttgc cacggaggct gagggcactg ccggaccccg cctgccctt 120 cetteegtee cetececate ecaggagga geceaette ecteggagga ggecagtgee 180 cccgacgccc ctgatgccct gcctgactcg cccacgcctg ctactggtgg cgaggtgtct 240 gccaccaagc tggcttccgc cctgaatggc agcagcagct ctcccgaggt ggaggcaccc 300 agcagtgagg atgaggacac ggctgaggca acctcaggca tcttcaccga cacgtccagc 360 gacggcctgc aggccgagag gcaggatgtg gtgccagcct tccactctct gcagaagcag 420 gtggggaccc ccgactccct ggactccctg gacatcccgt cctcagccag tgatggtggc 480 tatgaggtct tcagcccgtc ggccacgggc ccctctggag ggcagccccg agcgctggac 540 agtggctatg acaccgagaa ctatgagtcc cctgagtttg tgctcaagga ggcgcaggaa 600 gggtgtgagc cccaggcctt tgcggagctg gcctcagagg gcgagggccc cggggcccgag 660 acgcggctct ccacctccct cagtggcctc aacgagaaga atccctaccg agattctgcc 720 tactteteag acetggagge tgaggeegag getaceteag geceagagaa gaagtgeggt 780 ggggaccaag cccccgggcc agagctgggc ctgccgagca ctgggcagcc gtctgagcag 840 gtctccctca gtcctggggt ttccgtggag gcacaaggct ctggccccgg ggaggtgctg 900 eccecactge tgeggettga agggteetee ceagageeea geacetgeee etegggeetg 960 gtcccagagc ctccggagcc ccaaggccca gccgaggtgc ggcctgggcc cagccccagc 1020 tgctcccagt ttttcctgct gaccccggtt ccgctgagat cagaaggcaa cagctctgag 1080 ttccaggggc ccccaggact gttgtcaggg ccggcccac aaaagcggat ggggggccca 1140 ggcaccccca gagccccaca ccgcctggct ctgcccggcc tccctgcggc cttggagggc 1200 cggccggagg aggaggagga ggacagtgag gacagcgacg agtctgacga ggagctccgc 1260 tgctacagcg tccaggagcc tagcgaggac agcgaagagg aggcgccggc ggtgcccgtg 1320 gtggtggctg agagccagag cgcgcgcaac ctgcgcagcc tgctcaagat gcccagcctg 1380 ctgtccgagg ccttctgcga ggacctggaa cgcaagaaga aggccgtgtc cttcttcgac 1440 gacgtcaccg tctacctctt tgaccaggaa agccccaccc gggagctcgg ggagcccttc 1500

ccgggcgcca	aggaatcgcc	ccccacgttc	cttaggggga	gccccggctc	ttccagcgcc	1560
cccaaccggc	cgcagcaggc	tgatggctcc	ccaaatggct	ccacagcgga	agagggtggt	1620
gggttcgcgt	gggacgacga	cttcccgctg	atgccggcca	aggcagcctt	cgccatggcc	1680
ctagacccgg	ccgcacccgc	cccggctgcg	cccacgcccg	ctcccttctc	gcgcttcacg	1740
gtgtcgcccg	cgcccacgtc	ccgcttctcc	atcacgcacg	tgtct		1785
<210> 19 <211> 24 <212> DNA <213> Pan t <400> 19 ggtgagggcc	croglodytes	gece				24
<210> 20 <211> 18 <212> DNA <213> Homo	sapiens					
<400> 20 ggtgagggcc	ccgggccc					18
<210> 21 <211> 18 <212> DNA <213> Goril	lla gorilla					
<400> 21 ggcgagggcc	ccgggccc					18
<210> 22 <211> 24 <212> DNA <213> Pan t	croglodytes					
<400> 22 ctggaggctg	aggccgaggc	cgag				24
<210> 23 <211> 18 <212> DNA <213> Homo	sapiens					
<400> 23 ctcgaggctg	aggccgag					18

<210> 24 <211> 18 <212> DNA <213> Gorilla gorilla	
<400> 24 ctggaggctg aggccgag	18
<210> 25 <211> 18 <212> DNA <213> Pan troglodytes	
<400> 25 cccacgcccg ctcccttc	18
<210> 26 <211> 24 <212> DNA <213> Homo sapiens	
<400> 26 cccacgccca cgcccgctcc cttc	24
<210> 27 <211> 18 <212> DNA <213> Gorilla gorilla	
<400> 27 cccacgcccg ctcccttc	18
<210> 28 <211> 24 <212> DNA <213> Pan troglodytes	
<400> 28 cccacgtcca cgtcccgctt ctcc	24
<210> 29 <211> 18 <212> DNA <213> Homo sapiens	
<400> 29 cccacgtccc gcttctcc	18
<210> 30 <211> 18 <212> DNA	

<213> Gorilla gorilla

<400> 30 cccacgtccc gcttctcc

18