Econometrics

Lecture 2: Understanding stock's price race

Consider the Capital Asset Pricing Model(CAPM) model

$$y_t = \alpha + \beta x_t + u_t \tag{1}$$

where y_t is the excess return on a company's stock at time t, x_t is the excess return of the market portfolio (in our case we will use a stock index - NASDAQ) and u_t is the error term of the regression.

 β is an indicator of risk and return associated with the stock. When $\beta=1$, the expected net return is equal to the return of the market. When $\beta<1$, the expected net return is lower than the return of the market, correspondingly the security is less risky. Finally, when $\beta>1$, the expected net return of the asset is greater than the return of the market and, therefore, the security is more risky. Recall that, if the CAPM is verified, $\alpha=0$.

- 1. Consider time interval 23/05/2019 22/07/2019. Using yahoo finance, get the following daily time series:
 - Ferrari:
 - NASDAQ Composite Index;
 - 3-month Treasury Bill.
- 2. Compute the daily excess return of the above series and call them er_ferr (Ferrari) and er_nsdq (Nasdaq Composite Index).
- 3. Estimate equation (1).
- 4. Compute the 95% confidence interval for the above parameters.
- 5. Test the following hypotheses:
 - i. $H_0: \alpha = 0 \text{ vs } H_1: \alpha \neq 0;$
 - ii. $H_0: \beta = 0 \text{ vs } H_1: \beta > 0.$
- 6. The standard deviation of the OLS residuals measures the individual risk of the stock and the \mathbb{R}^2 of the regression measures the proportion of the risk attributable to the market (as opposed to individual factors). Comment on the values you observe.

Remark: see the end of the script file to see how to download data.