CS101 Introduction to computing

Problem Solving (Computing)

A. Sahu and S. V. Rao

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Problem Solving: Process involves
 - Definition, Analysis, Solution Approaches,
 Correctness, Programming, Testing
- Loop invariant and loop termination
- Many Problem Solving Examples
 - -7 Problems (Solution Method not given)
 - -3 problems (Solution Method given)

Reference: R G Dromey, "How to solve it by Computer", Pearson Education India, 2009

Analysis of Solution Approaches

- Correctness and Efficiency (C & E)
 - Algorithm/Approaches are analyzed for C & E
 - C & E are precise and detailed enough

Correctness analysis

- To ensure the algorithm solves the given problem
- Involves a mathematical proof that algorithm satisfies the specification; termination proofs
- Efficiency analysis: To determine
 - amount of time or number of operations
 - amount of memory required for executing the algorithm

<u>Algorithm</u>

 The algorithm is part of the blueprint or plan for the computer program, an algorithm is:

"An effective procedure for solving a class of problems in a finite number of steps."

- Every algorithm should have the following 5 characteristic features:
 - Definiteness: Each step must be define precisely
 - Effectiveness: its operations must be basic enough to be able to be done exactly and in finite length of time
 - Termination: must terminate after a finite number of steps
 - Input and Output

Problem Solving Strategies

- New problems may require newer strategies
- Problem solving skills can be developed only with experience
- Main emphasis of the course
 - To expose you to various problem solving strategies by way of examples
- The programming languages is for concreteness and execution of your ideas

Problem Solving Strategies

- Given a Problem P
- You may come up many Approaches/ strategies: App1, App2, App3, App4, Appm
- If we are not able prove the correctness by loop termination and loop invariant of some approaches
 - We cannot call that Approaches as Algorithm
- Suppose App2 and App3: We are not able prove the correctness for them, then App2 and App3 are not algorithms by definition
 - Algorithms for P: App1, App2, App3, App4,
 Appm

Mathematical Argument

- Prove the correctness using mathematical arguments
- Proof of Correctness involves two-Step argument
 - Loop Invariants
 - Loop Termination

Loop invariants

- A condition (logical expression) involving program variables
 - It holds initially
 - If it holds before start of iteration, it holds at the end;
 - The condition remains invariant under iteration

Please don't get confuse : Loop invariants

Please do not get confuse with loop invariant

in coding

```
for(i=0;i<10;i++){
         K=20; //K is loop invariant
         printf("%d\n",i*K);
}</pre>
```

- Variable don't get change over iterations
- Used for code optimization
- Loop invariant used for proving correctness
 - Properties don't get change over iterations
- Both are different things

Loop Termination

- Non termination is an important source of incorrectness.
- Correctness proof includes termination proof
- Bound on iteration
 - An integer valued expression called bound function that reduces in each iteration
 - When the bound function reaches 0, loop terminates
- For our example, the bound function is:
 length of the input list yet to be processed

Efficiency Analysis

- How many number of operations?
 - In each iteration of the loop, constant number of comparisons
- Can we improve this?
 - If the number is less than 50, there is no need for comparing it with 80.
- Rewrite the algorithm

Problem Solving Example

- Set A (Solution Method not given)
 - 1. Nth Power of X
 - 2. Square root of a number
 - 3. Factorial of N
 - 4. Reverse a number
 - 5. Finding value of unknown by question answers
 - 6. Value of Nth Fibonacci Number
 - 7. GCD to two numbers

Problem Solving Example

- Set B (Solution Method given)
 - 1. Finding values Sin(x) using series sum
 - 2. Value of PI
 - 3. Finding root of a function Bisection Methods

Problem 1

The nth power of X

The nth power of X

- **Problem:** Given some integer x. write a program that computes the nth power x, where n is positive integer considerably greater than 1.
- Evaluating expression p=xⁿ

```
Prod=1;
for (i=1; i<=n; i++){
    Prod= Prod * x;
}</pre>
```

Naïve or straight-forward approach

How many multiplication: n

Require n steps

Assumption: all basic operations on integers take constant time

The nth power of X

- Is there any better approach?
- From basic algebra
 - if n is even == $> X^n = X^{n/2}.X^{n/2}$
 - If n is odd and $n=2m+1 ==> X^n = X^{2m+1} = x^m \cdot x^m \cdot x$
- From this above fact, can we calculate Xⁿ in fewer steps
- Approach
 - Binary representation of n,
 - X^{23} Example 23=(10111)2=1 x^{24} +0 x^{23} +1 x^{22} +1 x^{21} +1 x^{20} = 16+0+4+2+1
 - Start from right to left
 - \bullet 1x2⁴+0x2³+1x2²+1x2¹+1x2⁰

Approach/Algorithm

1. Initialize the power sequence and product variable (let initial value of n is n0=n)

Product=1; ProdSequence=x;

- 2. Do while n > 0 repeat
 - 2.1 if the next most binary digit of n is one then **Product = Product * ProdSecuence**;
 - 2.2 n = n/2;
 - 2.3 ProdSecuence *= ProdSecuence;

//Invariant Product*ProdSecuenceⁿ=x^n0, n>=0

Assumption: all basic operations on integers take constant time

- Binary representation of n,
- X^{23} Example $23=(10111)2=1x2^4+0x2^3+1x2^2+1x2^1+1x2^0=16+0+4+2+1$
- Start from right to left

$$1x_2^4 + 0x_2^3 + 1x_2^2 + 1x_2^1 + 1x_2^0$$

- Approach
 - Successive generation of x, x^2 , x^4 , x^8 , x^{16} , ...
 - Inclusion of the current power member into accumulated product when the corresponding binary digit is 1

Odd number or Right Most Bit					Before Loop
1	0	1	1	1	
P=X ⁷ .X 16=X ²³	P=X ⁷	P=X ³ .X 4 =X ⁷	P=X.X ² =X ³	P=P.PS =X	P=1
X ³²	X ¹⁶	X_8	X^4	X^2	PS=X
N=0	N=1	N=2	N=5	N=11	N=23
$X^{23}.(X^{32})^0$ = X^{23}	$X^7.(X^{16})^1$ = X^{23}	$X^7.(X^8)^2$ = X^{23}	$X^3.(X^4)^5$ = X^{23}	$X.(X^2)^{11}$ = X^{23}	P*PS ⁿ =1.X ²³

Loop Invariant

C -Code for Xⁿ

```
int n, x, Prod, ProdSeq;
// Put code for Input n, x
Prod=1; ProdSeq=x;
\mathbf{while}(n > 0)
 if ((n%2)==1){
    Prod=Prod*ProdSeq;
 n=n/2;
 ProdSeq = ProdSeq* ProdSeq;
//Put code to Display Prod as X<sup>n</sup>
```

20

Problem 2

The square root problem: sqrt(X)

One Strategy

- Given a guess a for square root of m
 - -m/a falls on the opposite side
 - -(a + m/a)/2, can be the next guess
 - Why this guess? Make next guess closer to sqrt(m) based on current guess.
- This gives rise to the following solution
 - start with an arbitrary guess, r_0
 - generate new guesses r_1, r_2, etc by using the averaging formula.
- When to terminate?
 - when the successive guesses differ by a given small number

The Approach

Input float m, e, assume: m>0, 0< e > 1 Output float r_1 , r_2

Loop Invariant:

1.
$$r_1 = m/2$$
, $r_2 = r_1$

2. **Do**

2.1
$$r_1 = r_2$$

2.2 $r2 = (r_1+m/r_1)/2$
while $(|r_1 - r_2| > e)$

C Code: Square root of m

```
float m, e, r1, r2;
// Put code for Input m, e
r1=m/2; r2=r1;
do
    r1=r2;
   r2=(r1+m/r1)/2;
\} while (abs(r1-r2) > e)
//Put code to Display root as r2
```

Analysis of the Approach

- Is it correct? Find the loop invariant and bound function
- Can the algorithm be improved?
- More general techniques available
 - Numerical analysis
- NA: Newton Raphson's for square root

$$F(x) = x^{2}-m=0$$

$$x_{k+1}=x_{k}-F(x_{k})/F'(x_{k}) = x_{k}-(x_{k}^{2}-m)/2x_{k}$$

$$x_{k+1}=(x_{k}+m)/2$$

Factorial Computation

- Given a number n, compute the factorial of n
- Assume n >= 0
- What is factorial?

$$-0! = 1, 1! = 1, 2! = 1*2 = 2$$

$$-3!=1*2*3=6$$

$$-4! = 1*2*3*4* = 24$$

• n! = 1*2*...*(n-1)*n, for n>=1

Assumption: all basic operations on integers take constant time

The algorithm/Approach

- Observation: For n>=1, n! is (n-1)! multiplied by
- **Strategy:** Given n, compute n! by successively computing 1!, 2!, etc. till n!

Input n, Output Fact

- 1. **initialize** fact to 1 and index to 1
- 2. do while (index <= n) steps 2.1 and 2.2
 - 2.1 fact = fact * index
 - 2.2 index = index + 1

Analysis of Factorial Algorithm

- Is the solution **correct**?
- Loop invariant: At the beginning of each iteration,
 - fact holds the partial product 1 * . . . * (index-1)
- When the loop terminates, index = (n+1)
 - fact then holds (1 * ... * n)
- Does the loop terminate?
 - There is a **bound function**: (n + 1 index)
 - The bound function always >= 0
 - It decreases in each iteration

Reversing Digit of a Number

Problem: Reversing the Digits of an integer

Examples:

Input: 58902

Output: 20985

Input: 4300

Output: 34

Reversing Digit of a Number

Problem: Reversing the Digits of an integer

Examples:

Input: 58902 Output: 20985

 $R(58902) = 2x10^4 + R(5890)$

// you need to know how many digit before hand

$$= 2x10^4 + 0x10^3 + R(589)$$

$$= 2x10^4 + 0x10^3 + 9x10^2 + R(58)$$

$$= 2x10^4 + 0x10^3 + 9x10^2 + 8x10^1 + R(5)$$

 $= 2x10^4 + 0x10^3 + 9x10^2 + 8x10^1 + 5$

Decreasing power of 10

= 20000+**0**000+**9**00+**8**0+5

We can think as a polynomial $(2.x^4+0.x^3+9.x^2+8.x+5)$ evaluated at 10..

Reversing Digit of a Number

Problem: Reversing the Digits of an integer

Examples:

Input: 58902 Output: 20985

Try to use the concept of polynomial evaluation using hornor's rule

$$R(58902) = 2+R(5890)$$

$$= 2x10+0+R(589)$$

$$= (2x10+0)x10+9+R(58)$$

$$= ((2x10+0)x10+9)x10+8+R(5)$$

$$= (((2x10+0)x10+9)x10+8)x10+5$$

Increasing power of 10

Approach: Digit Reversal

Input: N is k digit number to be reversed

Output: RevNum the reversed number

- 1. q = N
- **2. RevNum** = 0
- **3. Do while** (q > 0) steps 3.1,3.2,3.3
 - 3.1 rem = q mod 10
 - 3.2 *RevNum* = *RevNum* *10 + rem
 - 3.3 q = q / 10

Invariant: After jth iteration $q=\{d_1\}\{d_2\}..\{d_{k-j}\}$ and RevNum= $\{d_k\}\{d_{k-1}\}...\{d_{k-j-1}\}$

C Code to reverse a number

```
int n, RevNum, Rem, q;
// Put code for Input n
q=n;
RevNum=0;
while(n != 0)
   Rem = n%10;
   RevNum=RevNum*10+ Rem;
   n=n/10;
//Put code to Display RevNum
```

Problem 5

Finding value of Unknown integer X

<u>Unknown Number Problem:</u> <u>Version 1</u>

- Problem: Given an unknown integer X in the range R_{min} and R_{max} (R_{min} ≤ X < R_{max}), We need to find the value of X by asking Boolean queries of type a==x, a>x, a<x, a>=x and a<=x
- Goal: is to minimize the number of question to find the value of X
- Is the problem definition clear?

- **Problem:** Given an unknown integer X in the range R_{min} and R_{max} ($R_{min} \le X < R_{max}$), We need to find the value of X by asking Boolean queries of type a==x, a>x, a<x, a>=x and a<=x
- Start from R_{min} and go upto R_{max}, one by one

```
for(a=Rmin, a<Rmax; a++){
   if(x==a) break;
}
//Print value of X is a
//Number of step required is X-Rmin</pre>
```

- Is there any better approaches
- Why to test one by one?
- Test at middle and set new range
 - $Mid = (R_{min} + R_{max})/2$
 - If (x==Mid) found
 - If (X>Mid) $R_{min}=Mid+1$ else $R_{max}=Mid$
- Binary Search....

- Test at middle and set new range
 - Mid = $(R_{min} + R_{max})/2$; If (x==Mid) found
 - If (X>Mid) R_{min} =Mid+1 else R_{max} =Mid

Rmax=255, Rmin=0, X=155

Mid1=127, Rmin=128

Mid2=191, Rmax=191

Mid3=159, Rmax=159

Mid4=143, Rmin=144

Mid5=151, Rmin=152

Mid6=155Done

- Is there any better approaches
- Why to test one by one?
- Test at middle and set new range

```
- Mid = (R_{min} + R_{max})/2
```

- If (x==Mid) found
- If (X>Mid) $R_{min}=Mid+1$ else $R_{max}=Mid$

```
while (Rmin<Rmax) {
    mid=(Rmin+Rmax)/2;
    if(x==mid)return found;//print mid
    if (x>mid) Rmin=mid+1;
    else Rmax=mid;
}
```

Analysis: Approach-2

- Test at middle and set new range
 - Mid = (Rmin + Rmax)/2
 - If (x==Mid) found
 - If (X>Mid) Rmin=Mid+1 else Rmax=Mid
- Number of test:
 - 2 per iterations
 - Number of iteration : $Log_2(R_{max}-R_{min})$

Unknown Number Problem: Version 2

- Problem: Given an unknown integer X, We need to find the value of X by asking Boolean queries of type a==x, a>x, a<x, a>=x and a<=x
- Goal: is to minimize the number of question to find the value of X
- Is the problem definition clear?

- Problem: Given an unknown integer X, We need to find the value of X by asking Boolean queries of type a==x, a>x, a<x, a>=x and a<=x
- Start from 1 and go upto X, one by one

```
a=1;
while(a<X){{
    if(x==a) break;
    a=a+1;
}
//Print value of x is a
//Number of step required is a-Rmin</pre>
```

- Problem: Given an unknown integer X, We need to find the value of X by asking Boolean queries of type a==x, a>x, a<x
- Is there any better approaches?
- Start from 1 but go at faster pace and find a range
 - Instead of a = a+1, use a = a+100

```
a=1; while (a<X) {a=a+100;} // x will be between [a-100]<= X < a Find Using previous method: Binary search for X between R_{min} and R_{max}
```

 Start from 0 but go at faster pace and find a range: Instead of a = a+1 use a = a+M

```
a=1;
while(a<X){
    a = a + M;
}
// x will be between [a-M]<= X < a
Find Using previous method: Binary
search for X between R<sub>min</sub> and R<sub>max</sub>
```

- How good it is ?
- Number of steps: X/M + Log₂ M
- Can it be done better?

• Start from 0 but go at faster pace and find a range : Instead of a = a+1, use a = a*2

```
a=1;
while(a<X){
    a = a * 2;
}
// x will be between [a/2]<= X < a
Find Using previous method: Binary
search for X between R<sub>min</sub> and R<sub>max</sub>
```

- How good it is ?
- Number of steps ceil(Log₂ X) + ceil(Log₂ X)
 ≈ log₂X