Let

$PAL_{\mathsf{DFA}} = \{\langle M \rangle | M \text{ is a DFA that accepts some palindrome} \}.$

Show that $\textit{PAL}_{\text{DFA}}$ is decidable. (Hint: Theorems about CFLs are helpful here.)

Step-by-step solution

Step 1 of 4
Assume that $PAL_{DFA} = \{\langle M \rangle M \text{ is a } DFA \text{ that accepts some palindrome} \}$. If a Turing machine can be presented for the given DFA that runs finitely and halts, then the PAL_{DFA} is decidable.
Comment
Step 2 of 4
Construct a decider D for PAL_{DFM} and a Turing machine K that can decides E_{CFG} : D = "On input $\langle M \rangle$, 1. A PDA P is constructed as: $L(P) = \{w w \text{ is a palindrome}\}$ 2. A PDA P' is constructed so that $L(P') = L(P) \cap L(M)$ 3. Now P' is converted into an equivalent CFG G . 4. Check if $L(G)$ is empty using Theorem 4.8 over Turing Machine K. 5. If $L(G)$ is empty then reject, otherwise, accept.
Comment
Step 3 of 4
For Turing machine K: • Both steps 1 and 2 can be done in finite steps. • Step 3 also takes finite steps to convert P' into its equivalent CFG. • In step 4, the decider K checks whether the language $L(G)$ is empty or not. It can also be done in a finite step. Comment
Step 4 of 4
Since D takes finite steps for any input, it means that it is a decider. Hence, PAL_{DEA} is decidable.
Comment