

Détectez des faux billets avec R ou Python

Jérémie Quéret | Data Analyst

PROJET 12 – JANVIER 2025 POJET 12

CONTEXTE

L'ONCFM cherche à créer un algorithme capable d'identifier automatiquement les faux billets en euros pour lutter contre la contrefaçon.

01

Algorithmes

- Kmeans
- Régression Logistique
- Knn
- Random Forest

Livrable

Notebook Python ou R.

Les variables

La variable cible

Is_genuine

1000 vrais billets

500 faux billets

Le vrai du faux, ça se voit!

Modèle linéaire (sel. backward)

OLS Regression Results

==========	=======	========			=======	======	
Dep. Variable:		margin_low	R-square	ed:		0.469	
Model: OLS		Adj. R-s	Adj. R-squared:		0.468		
Method:	L	Least Squares		F-statistic:		429.7	
Date: Wed,		22 Jan 2025	Prob (F-statistic):		5.37e-200		
Time:		11:31:56	Log-Likelihood:		-1012.8		
No. Observations:		1463	AIC:		2034.		
Df Residuals:		1459	BIC:			2055.	
Df Model:		3					
Covariance Type	e:	nonrobust					
=========	=======	========			========	=======	
	coef	std err	t	P> t	[0.025	0.975]	
const	23.1826	5.443	4.259	0.000	12.506	33.859	
height_right	0.2745	0.043	6.378	0.000	0.190	0.359	
margin_up	0.2805	0.065	4.343	0.000	0.154	0.407	
length	-0.4269	0.018	-23.962	0.000	-0.462	-0.392	
=======================================					=======	======	
Omnibus:		81.653	Durbin-Watson:			1.888	
Prob(Omnibus):		0.000) Jarque-Bera (JB):			108.015	
Skew:		0.514	Prob(JB)):	,	3.51e-24	
Kurtosis:		3.847	Cond. No	o.	(6.59e+04	
==========	=======	========	========	========	=======	======	

Variables sélectionnées :

['height_right', 'margin_up', 'length']

R2 0.4691

MAE

0.3748

MSE

.2338

RMSE

0.4835

Régression Lasso

Variables sélectionnées : ['diagonal', 'height_left', 'height_right', 'margin_up', 'length']

R2 0.4773

MAE

0.3722

MSE

0.2302

RMSE

0.4797

Ajustement du modèle

Transformation inverse de la variable cible (margin_low)

Validité du modèle

Normalité des résidus

homoscédasticité

Multicolinéarité

Les résidus ne suivent pas une loi normale. Homoscédasticité confirmé (variance des résidus constante)

1<VIF<5:

Niveau modéré de corrélation, acceptable.

Diviser le jeu de données

Workflow & Pipeline

Kmeans

Knn

Régression Logistique

Random Forest

Synthèse

Modèle	Accuracy	F1-Score	Precision	Recall	Auc
Kmeans	0.984444	0.988353	0.986711	0.990000	0.981667
Knn	0.984444	0.988353	0.986711	0.990000	0.981667
Régression Logistique	0.993333	0.995008	0.993355	0.996667	0.991667
Random Forest	0.986667	0.990000	0.990000	0.990000	0.985000

Performances & scalabilité

Logit sélectionné

Seuil: 0,50

FNR: 0.0033

FPR: 0.0133