Sicurezza: altre nozioni

Paolo D'Arco pdarco@unisa.it

Universitá di Salerno

Elementi di Crittografia

Contenuti

Altre nozioni di sicurezza

Oracoli

3 Funzioni e permutazioni pseudocasuali

Nozioni di sicurezza

Fino ad ora: Adv ascolta passivamente la trasmissione. Ha accesso ad *un* cifrato che due parti oneste si scambiano.

Sarebbe utile avere una nozione di sicurezza che permetta alle parti di inviare messaggi *multipli*.

$PrivK_{A,\Pi}^{eav-mult}(n)$

- **3** $A(1^n)$ dá in output due liste della stessa lunghezza $M_0=(m_{0,1},\ldots,m_{0,t})$ ed $M_1=(m_{1,1},\ldots,m_{1,t})$ tali che $|m_{0,i}|=|m_{1,i}|$, per ogni i.
- ② il Challenger sceglie $b \leftarrow \{0,1\}$ e $k \leftarrow Gen(1^n)$ e calcola $c_i \leftarrow Enc_k(m_{b,i})$, per ogni i
- 3 $A(1^n)$ riceve $c=(c_1,\ldots,c_t)$ e dá in output $b'\in\{0,1\}$
- Se b = b', l'output dell'esperimento é 1 ($A(1^n)$ vince); altrimenti, 0.

Definizione 3.19. Uno schema di cifratura a chiave privata $\Pi = (Gen, Enc, Dec)$ ha cifrature multiple indistinguibili in presenza di un eavesdropper se, per ogni Adv A PPT, esiste una funzione trascurabile negl tale che:

$$Pr[PrivK_{A,\Pi}^{eav-mult}(n) = 1] \le \frac{1}{2} + negl(n),$$

dove la probabilitá é calcolata su

- randomness usata da A
- randomness usata nell'esperimento
 - scelta della chiave
 - scelta del bit b
 - random bit usati da $Enc_k(\cdot)$

Perché ci convince?

Rispetto al caso del messaggio singolo, i messaggi potrebbero essere legati tra di loro e le stesse cifrature potrebbero essere legate tra di loro e con i messaggi. E questi legami potrebbero essere efficientemente calcolabili e sfruttabili da un avversario.

Ma se l'avversario non riesce a capire se (c_1,\ldots,c_t) corrisponda a $(m_{0,1},\ldots,m_{0,t})$ o a $(m_{1,1},\ldots,m_{1,t})$, ricordando l'equivalenza indistinguibilitá - semantica, allora lo schema di cifratura maschera molto bene i contenuti dei cifrati.

Osservazione immediata:

 Π sicuro rispetto a $PrivK_{A,\Pi}^{eav-mult}(n) \Rightarrow \Pi$ sicuro rispetto a $PrivK_{A,\Pi}^{eav}(n)$ (caso speciale, un messaggio)

Possiamo far vedere che *non* é vero l'inverso con un controesempio.

Proposizione 3.20. Esiste uno schema di cifratura a chiave privata che ha cifrature indistinguibili in presenza di un eavesdropper ma *non ha* cifrature multiple indistinguibili.

Dim. Consideriamo lo schema one-time pad (in breve otp).

Segretezza perfetta \Rightarrow cifrature indistinguibili.

Sia A l'Adv che segue, che attacca lo schema otp nell'esperimento $PrivK_{A,otp}^{eav-mult}(n)$

Adv A

- Sceglie $M_0=(0^\ell,0^\ell)$ ed $M_1=(0^\ell,1^\ell)$ e li passa al Challenger
- 2 Riceve dal Challenger la lista di cifrati $c = (c_1, c_2)$
- **3** Se $c_1 = c_2$, dá in output b' = 0; altrimenti, b' = 1.

Analizziamo la probabilitá che b'=b. Lo schema **otp** é deterministico.

se
$$b=0$$
, allora $c_1=c_2 \Rightarrow A \text{ dá } 0$
se $b=1$, allora $c_1 \neq c_2 \Rightarrow A \text{ dá } 1$

Pertanto *A* vince con prob. 1 e **otp** *non* é sicuro rispetto alla Definizione 3.19.

Osservazione:

se uno schema di cifratura é deterministico, la cifratura dello stesso messaggio dá lo *stesso* cifrato \Rightarrow la Definizione 3.19 richiede che la cifratura sia *probabilistica*.

Teorema 3.20. Se Π é uno schema di cifratura con Enc() deterministica, allora Π non puó avere cifrature multiple indistinguibili in presenza di un eavesdropper.

Al momento sembra un requisito che confligge con l'operazione di decifratura Dec()

stesso messaggio cifrato piú volte ⇒ cifrati diversi

... ma si puó fare!

Attacchi di tipo Chosen-Plaintext

Adv: ha l'abilità di esercitare *controllo parziale* su ció che una parte onesta cifra

- puó scegliere m_1, m_2, \ldots, m_t e forzare Alice a cifrarli ed inviarli
- 2 puó osservare i cifrati corrispondenti c_1, c_2, \ldots, c_t inviati da Alice sul canale
- osserva un nuovo cifrato c, prodotto autonomamente da Alice, che diventa il target dell'attacco

Anche in questo caso, definiremo la sicurezza di uno schema in accordo alla nozione di indistinguibilitá

• al passo 3. il cifrato c corrisponde alla cifratura di uno tra $\{m_0, m_1\}$, noti ad Adv, e richiederemo l'incapacitá di Adv di capire a quale dei due effettivamente corrisponde

Attacchi di tipo Chosen-Plaintext

Nota: gli attacchi di tipo known-plaintext sono un caso particolare. Adv conosce ma non sceglie m_1, \ldots, m_t .

Sono una preoccupazione realistica? Sí!

Nel libro di testo vengono riportati due esempi storici:

- Tedeschi: seconda guerra mondiale (mine in posizioni note da parte degli Inglesi, cifrate dai tedeschi)
- Us Navy, battaglia di Midway, 1942 (ipotesi AF cifratura di Midway, confermata inducendo la cifratura di un messaggio ad hoc)

Leggeteli!

Esempio moderno: utente che digita dati ad un terminale, il terminale cifra (con chiave segreta) prima di inviarli. Un Adv puó usare il terminale prima dell'utente per acquisire coppie (msg, cifrato).

Attacchi di tipo Chosen-Plaintext

Come facciamo a modellare la capacitá di Adv di disporre di cifrati corrispondenti a messaggi di propria scelta?

Esperimenti

Abbiamo giá usato esperimenti per definire le nozioni di indistinguibilitá perfetta e computazionale

Molte definizioni in Crittografia vengono fornite utilizzando degli esperimenti, in cui un Challenger sfida un Adv che cerca di aver successo in un determinato task

Gli esperimenti permettono di *astrarre* e *modellare* scenari reali in modo semplice

Per modellare lo scenario di un attacco chosen-plaintext abbiamo bisogno di uno stratagemma per fornire ad Adv i cifrati corrispondenti ai messaggi che sceglie.

Esperimenti

Useremo un **oracolo** O: scatola nera che cifra messaggi usando una chiave k

- Adv non conosce k
- Adv invia richieste di cifratura, dette *query*, ad O specificando m ed ottenendo in risposta $Enc_k(m)$.
- se $Enc_k()$ é randomizzato, O usa random bit nuovi ogni volta che riceve una query
- Adv puó inviare, adattivamente, quante query vuole

Esperimenti

Siano $\Pi = (Gen, Enc, Dec)$, Adv A, n parametro di sicurezza. Indichiamo con $A^{O(\cdot)}$ un Adv (algoritmo) che ha accesso all'oracolo $O(\cdot)$.

$PrivK_{A,\Pi}^{cpa}(n)$ (Gestito da un Challenger)

- **①** Genera $k \leftarrow Gen(1^n)$ e setta l'oracolo $O(\cdot)$
- ② $A^{O(\cdot)}(1^n)$ dá in output m_0 ed m_1 tali che $|m_0|=|m_1|$
- **3** Sceglie $b \leftarrow \{0,1\}$ e calcola $c \leftarrow Enc_k(m_b)$
- **4** $A^{O(\cdot)}(1^n)$ riceve c e dá in output $b' \in \{0,1\}$
- **5** Se b = b', l'output dell'esperimento é 1 $(A^{O(\cdot)}(1^n)$ vince); altrimenti, 0.

Sicurezza rispetto ad attacchi chosen-plaintext

Definizione 3.22. Uno schema di cifratura a chiave privata $\Pi = (Gen, Enc, Dec)$ ha *cifrature indistinguibili* rispetto ad attacchi di tipo chosen plaintext (CPA-sicuro) se, per ogni Adv A PPT, esiste una funzione trascurabile negl tale che:

$$Pr[PrivK_{A,\Pi}^{cpa}(n)=1] \leq \frac{1}{2} + negl(n),$$

dove la probabilitá é calcolata su

- randomness usata da A
- randomness usata nell'esperimento

Sicurezza CPA per cifrature multiple

Per la formalizzazione, usiamo un approccio diverso dal precedente.

Un Adv ha accesso ad un oracolo *left-or-right*, denotato con $LR_{k,b}$, che, su input m_0 ed m_1 , restituisce $c \leftarrow Enc_k(m_b)$

 $PrivK_{A,\Pi}^{LR-cpa}(n)$ (Gestito da un Challenger)

- **1** Genera $k \leftarrow Gen(1^n)$
- **2** Sceglie $b \leftarrow \{0,1\}$
- $A^{LR_{k,b}(\cdot)}(1^n)$ dá in output $b' \in \{0,1\}$
- 4 Se b = b', l'output dell'esperimento é 1 $(A^{LR_{k,b}(\cdot)}(1^n)$ vince); altrimenti, 0.

Sicurezza CPA per cifrature multiple

Differenze con l'approccio precedente:

- Adv ottiene le cifrature di m inviando la coppia (m, m)
- le coppie $(m_{0,i}, m_{1,i})$ sono scelte *adattivamente* invece che in un sol colpo.

Sicurezza cpa per messaggi multipli

Definizione 3.23. Uno schema di cifratura a chiave privata $\Pi = (Gen, Enc, Dec)$ ha *cifrature multiple indistinguibili* rispetto ad attacchi di tipo chosen plaintext se, per ogni Adv A PPT, esiste una funzione trascurabile *negl* tale che:

$$Pr[PrivK_{A,\Pi}^{LR-cpa}(n)=1] \leq \frac{1}{2} + negl(n),$$

dove la probabilitá é calcolata su

- randomness usata da A
 - randomness usata nell'esperimento

Ovviamente,

 Π CPA-sicuro per cifrature multiple $\Rightarrow \Pi$ CPA-sicuro

Vale anche l'inverso!

Conseguenze

Teorema 3.4. Ogni schema di cifratura a chiave privata CPA-sicuro risulta *anche* CPA-sicuro per cifrature multiple.

Discende che:

- é sufficiente provare che uno schema é CPA-sicuro (per una sola cifratura) per ottenere gratuitamente che é CPA-sicuro per cifrature multiple
- permette di concentrarci su schemi di cifratura per messaggi di lunghezza fissata

$$\Pi = (\textit{Gen}, \textit{Enc}, \textit{Dec})$$
 CPA-sicuro per messaggi di 1 bit

 $\Pi' = (\textit{Gen'}, \textit{Enc'}, \textit{Dec'})$ CPA-sicuro per messaggi di lunghezza arbitraria

Conseguenze

Struttura dello schema per messaggi di lunghezza arbitraria

- Gen' = Gen
- $Enc'_k(m) = Enc_k(m_1) \dots Enc_k(m_\ell)$, dove $m = m_1 \dots m_\ell$, ed $m_i \in \{0,1\}$
- $Dec_k'(c) = Dec_k(c_1) \dots Dec_k(c_\ell)$, dove $c = c_1 \dots c_\ell$, e $c_i \in C$ per ogni i

Osservazione:

La cifratura puó essere vista come la cifratura di messaggi multipli. Pertanto, la sicurezza CPA di Π' discende dalla sicurezza CPA di Π per messaggi multipli.

Costruzione di schemi CPA-sicuri

Abbiamo bisogno di uno strumento nuovo

• le funzioni pseudocasuali (pseudorandom function, o PRF in breve)

Generalizzano la nozione di generatore pseudocasuale

- i PRG producono stringhe che sembrano casuali
- le PRF sono funzioni che sembrano casuali

Non ha senso parlare di una funzione fissata

Dobbiamo considerare una distribuzione di funzioni.

Funzioni *parametrizzate da una chiave* (keyed function) inducono naturalmente una distribuzione di funzioni

Una funzione parametrizzata da una chiave

$$F:\{0,1\}^*\times\{0,1\}^*\to\{0,1\}^*$$

é una funzione con due input, in cui il primo é chiamato chiave e viene denotato con k.

F é efficiente se \exists un algoritmo di tempo polinomiale per calcolare F(k,x), dati k e x

In usi tipici, k viene scelto e fissato. Per cui

$$F_k(x) = F(k, x)$$
 ovvero $F_k : \{0, 1\}^* \to \{0, 1\}^*$

Nella nostra trattazione, il parametro di sicurezza *n* parametrizza tre funzioni:

- $\ell_{key}(n)$ lunghezza della chiave
- $\ell_{in}(n)$ lunghezza dell'input
- \bullet $\ell_{out}(n)$ lunghezza dell'output

Per ogni $k \in \{0,1\}^{\ell_{key}(n)}$, F_k é definita solo per $x \in \{0,1\}^{\ell_{in}(n)}$ ed ha output $y \in \{0,1\}^{\ell_{out}(n)}$.

Siano $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n$ (F preserva la lunghezza).

Una funzione $F(\cdot, \cdot)$ parametrizzata da una chiave induce una distribuzione di funzioni

- scegliendo una chiave uniforme $k \in \{0,1\}^n$
- ullet considerando la funzione di una singola variabile F_k risultante

F é pseudocasuale se F_k , per k scelta uniformemente a caso, é *indistinguibile* da una funzione scelta uniformemente a caso dall'insieme di tutte le funzioni aventi lo stesso dominio e lo stesso codominio

Per formalizzare la nozione, abbiamo bisogno di chiarire alcuni aspetti.

Per esempio, cosa significa scegliere una funzione a caso?

Sia
$$Func_n = \{ \text{ tutte le funzioni } f: \{0,1\}^n \rightarrow \{0,1\}^n \}$$

Una funzione puó essere rappresentata con una tabella con 2^n righe, ciascuna di n bit.

$$f \in Func_n \rightarrow \begin{bmatrix} 1 & f(1) \\ 2 & f(2) \\ \vdots & \vdots \\ i & f(i) \\ \vdots & \vdots \\ 2^n & f(2^n) \end{bmatrix}$$

 \leftarrow valore della funzione sull'*i*-esima stringa

Se concatenassimo tutte le righe della tabella, potremmo vedere f come una stringa di $2^n \cdot n$ bit, cioé:

$$f(1)$$
 ... $f(i)$... $f(2^n)$

Pertanto,

$$|Func_n| = 2^{2^n \cdot n} \leftarrow \text{numero di funzioni di } n\text{-bit in } n\text{-bit}$$

Si noti che lo stesso insieme di funzioni $Func_n$ puó essere visto come una tabella.

scegliere una funzione a caso pprox scegliere una riga della tabella a caso

-	$f_1(\cdot)$
i	$f_i(\cdot)$
$2^{2^{n}\cdot n}$	$f_{2^{2^{n}\cdot n}}(\cdot)$

D'altra parte, quest'ultima operazione é equivalente a vedere la riga della tabella come *una riga di elementi scelti al volo*, ogni volta che *f* viene valutata su un nuovo input.

Essenzialmente la riga viene riempita volta per volta.

Viceversa, F_k , per k uniforme, viene scelta su un insieme \mathcal{F} di al piú 2^n funzioni.

$$F_{EN}$$
 F_{M} ocalta

scegliands $K \in \{0, 1\}^{4n}$

in smeds suriforms

Dire che F é pseudocasuale significa che, nonostante la notevole differenza evidenziata, il comportamento di f e di F_k sembra lo stesso a qualsiasi algoritmo PPT che cerca di distinguere tra i due casi.

Come formalizzare *distinguere*?

Prima idea: dare all'algoritmo D che distingue (PPT) le descrizioni di F_k ed f.

D dovrebbe dare in output 1 all'incirca con la stessa probabilitá nei due casi.

Ma ... f ha lunghezza esponenziale $(2^n \cdot n \text{ bit})$ e D, che é PPT, non puó neanche leggere la sua descrizione!

Seconda idea: dare a D accesso ad un *oracolo* $O(\cdot)$ che o implementa F_k , per k uniforme, o implementa f, per f uniforme.

- D puó chiedere il valore della funzione su un numero polinomiale di input x
- non chiede mai due volte il valore per lo stesso x
- al termine deve decidere se ha interagito con F_k o f

Definizione

Definizione 3.25. Sia $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ una funzione con chiave efficiente che preserva la lunghezza. F é una funzione pseudocasuale se, per ogni distinguisher D PPT, esiste una funzione trascurabile negl tale che:

$$|Pr[D^{F_k(\cdot)}(1^n) = 1] - Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n),$$

dove la prima probabilitá é calcolata su

- scelta uniforme di k
- random bit di D

- e la seconda su
 - ullet scelta uniforme di f
 - random bit di *D*

Pseudocasualitá

Nota: Ovviamente D non riceve la chiave k!

Altrimenti risulterebbe banale per D distinguere.

Infatti, chiedendo all'oracolo $O(\cdot)$ una valutazione su x e ricevendo O(x), potrebbe calcolare $F_k(x)$ e controllare che $F_k(x) = O(x)$. Se l'uguaglianza sussiste, D con altissima probabilitá sta interagendo con F_k . Piú valutazioni corroborerebbero l'ipotesi.

Se k diventa noto, la pseudocasualitá non c'é piú!

Esempio di funzione non pseudocasuale

Esempio 3.6. Sia F una funzione con chiave che preserva la lunghezza, definita da

$$F(k,x)=k\oplus x.$$

Per ogni input x, il valore $F_k(x)$ é uniformemente distribuito quando k viene scelto in modo uniforme.

F non é pseudocasuale poiché i suoi valori su ogni coppia di punti sono correlati

Infatti, D:

- chiede all'oracolo valutazioni su x_1 e x_2
- ottiene $y_1 = O(x_1)$ e $y_2 = O(x_2)$
- se $y_1 \oplus y_2 = x_1 \oplus x_2$, dá in output 1; altrimenti, dá 0.

Esempio di funzione non pseudocasuale

É facile vedere che:

• se $O \equiv F_k$, per ogni k, D dá in output 1 con probabilitá 1, poiché

$$y_1 \oplus y_2 = (x_1 \oplus k) \oplus (x_2 \oplus k) = x_1 \oplus x_2$$

• se $O \equiv f$, D dá in output 1 con probabilitá

$$Pr[y_1 \oplus y_2 = x_1 \oplus x_2] = Pr[y_2 = x_1 \oplus x_2 \oplus y_1] = 2^{-n}$$

La differenza $|1-1/2^n|$ ovviamente non é trascurabile

F non é pseudocasuale!

Permutazioni pseudocasuali

Sia $Perm_n$ l'insieme di tutte le permutazioni su $\{0,1\}^n$.

Nota che

- $f \in Perm_n$ puó essere vista ancora come una tabella
- le entrate di ogni due righe della tabella sono differenti
- $|Perm_n| = 2^n!$

F é una permutazione con chiave se $\ell_{in}(n)=\ell_{out}(n)$ e per ogni $k\in\{0,1\}^{\ell_{key}(n)}$ la funzione

$$F_k: \{0,1\}^{\ell_{in}(n)} \to \{0,1\}^{\ell_{out}(n)}$$

é uno a uno.

Il valore $\ell_{in}(n)$ si dice anche *lunghezza del blocco* di F.

Considereremo il caso in cui $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n$.

Permutazioni pseudocasuali

F é efficiente se esiste un algoritmo di tempo polinomiale per calcolare F(k,x), dati k ed x, cosí come un algoritmo di tempo polinomiale per calcolare $F_k^{-1}(y)$, dati k e y.

F efficientemente calcolabile ed invertibile, data k.

La pseudocasualitá é definita esattamente come per le funzioni.

Nota: quando la lunghezza del blocco é sufficientemente lunga, una permutazione casuale é indistinguibile da una funzione casuale.

Permutazioni pseudocasuali

Funzione uniforme $\overset{\text{"appare identica"}}{\approx} \text{ Permutazione uniforme}$

... a meno che il distinguisher D non trovi x ed y tali che f(x) = f(y).

La probabilitá di un tale evento é trascurabile utilizzando un numero polinomiale di query.

Alcune costruzioni crittografiche richiedono alle parti oneste di usare anche F_k^{-1} . Pertanto, Adv puó conoscere anche questi valori

Abbiamo bisogno di una nozione forte, che tenga di conto anche questa possibilità dell'Adv, che possiamo modellare con un accesso ad un oracolo per F_k^{-1} .

Permutazioni pseudocasuali forti

Definizione 3.28. Sia $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ una permutazione con chiave efficiente che preserva la lunghezza. F é una permutazione pseudocasuale forte se, per ogni distinguisher D PPT, esiste una funzione trascurabile negl tale che:

$$|Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1] - Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1]| \le negl(n),$$

dove la prima probabilitá é calcolata su

- scelta uniforme di k
- random bit di D

- e la seconda su
 - scelta uniforme di f
 - random bit di *D*

Permutazioni pseudocasuali forti

Nota: una permutazione pseudocasuale forte é *anche* una permutazione pseudocasuale.

Vedremo che nella pratica i *cifrari a blocchi* vengono progettati per essere istanziazioni sicure di permutazioni pseudocasuali forti, con una lunghezza della chiave e del blocco fissate.

Funzioni pseudocasuali e generatori pseudocasuali

Un generatore pseudocasuale G da una funzione pseudocasuale F si costruisce facilmente:

$$G(s) = F_s(1)||F_s(2)||\dots||F_s(\ell)|$$

per ogni valore di ℓ desiderato.

Idea della prova: se sostituiamo F_s con $f \in Func_n$

$$G'(s) = f(1)||f(2)||\dots||f(\ell)$$
 (uniforme)

$$G(s) = F_s(1)||F_s(2)||\dots||F_s(\ell)$$
 (pseudocasuale),

perché, se non lo fosse, esisterebbe un D PPT che distingue F_s da f.

Generatori pseudocasuali e funzioni pseudocasuali

Un generatore pseudocasuale G dá immediatamente una funzione pseudocasuale F con lunghezza di blocco piccola. Sia

$$G: \{0,1\}^n \to \{0,1\}^{2^{t(n)} \cdot n}$$

un generatore con fattore di espansione $2^{t(n)} \cdot n$.

Per calcolare $F_k(i)$:

- calcoliamo G(k)
- rappresentiamo l'output con una tabella
- prendiamo la *i*-esima riga tra le $2^{t(n)}$ di *n* bit

 r_1 r_i $r_{2t(n)}$

Generatori pseudocasuali e funzioni pseudocasuali

Questa costruzione é efficiente solo se $t(n) = O(\log n)$.

Infatti

$$2^{t(n)} \cdot n = 2^{c \log n} \cdot n = n^c \cdot n = poly(n)$$

Nota che

$$F: \{0,1\}^n \times \{0,1\}^{c \log n} \to \{0,1\}^n$$

associa stringhe di n bit a stringhe di input di $c \log n$ bit.

Una costruzione generale esiste ma é piú complicata. Ci torneremo nel seguito.