2021219113 2021213595 沈尉林

问题描述

市场上有n种资产 S_i (i=1,2,...,n) 可以选择作为投资项目,现用数额为M的相当大的资金作一个时期的投资。这n种资产在这一时期内购买的 S_i 平均收益率为 r_i ,风险损失率为 q_i 。投资越分散,总的风险越小,总体风险可用投资的 S_i 中最大的一个风险来度量。 购买 S_i 要付交易费(费率 p_i),当购买额不超过给定值 u_i 时,交易费按购买 u_i 计算。另外,假定同期银行存款利率是 r_0 (r_0 =5%),既无交易费又无风险费。

已知n = 4时相关数据如下:

S_i	收益 r_i (%)	风险 q_i (%)	费率 p_i (%)	u_i (元)
$oxed{S_1}$	28	2.5	1	103
$oxed{S_2}$	21	1.5	2	198
$oxed{S_3}$	23	5.5	4.5	52
$oxed{S_4}$	25	2.6	6.5	40

请给该公司设计一种投资组合方案,即用给定的资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,且总体风险尽可能小。

模型建立

1、建模假设

- 投资数额M相当大,为了便于计算,假设M=1。
- 投资越分散,总的风险越小。
- 总体风险用投资风险中 S_i 最大的一个风险来度量。
- N种资产 S_i 之间是相互独立的。
- 在投资的这一时期内, r_i , q_i , p_i , r_0 为定值, 不受意外因素的影响。
- 净收益和总体风险只受 r_i , q_i , p_i 影响, 不受其他因素干扰。

2、模型符号

- S_i 第i种投资项目,如股票,债券等
- r_i 第i种投资项目的平均收益率
- q_i 第i种投资项目的风险损失率
- p_i 第i种投资项目的交易费率
- u_i 第i种投资项目的交易定额
- x_i 第i种投资项目的投资金额
- r_0 同期银行利率

- a 投资风险度
- Q 总体收益
- △Q 总体收益的增量

3、模型构建

要使净收益尽可能大,总体风险尽可能小,这是一个多目标的规划模型:

$$max\sum_{i=0}^{n}(r_i-p_i)x_i$$

s.t.

$$egin{cases} min\{max\{q_ix_i: i=0,1,\ldots,n\}\} \ \sum_{i=0}^n (1+p_i)x_i = M \ x_i \geq 0, i=0,1,\ldots,n \end{cases}$$

4、模型简化

投资者希望总盈利至少达到水平k以上,在风险最小的情况下可找到相应的投资方案。这样就把多目标变成一个目标的线性规划。

$$minR = max\{q_ix_i, i = 0, 1, \ldots, n\}$$

s.t.

$$egin{cases} \sum_{i=0}^n (r_i-p_i)xi \geq k \ \sum_{i=0}^n (1+p_i)x_i = M \ x_i \geq 0, i=0,1,\ldots,n \end{cases}$$

模型求解

设 $x_5 = max\{q_ix_i\}$,则

$$minR = x_5$$

s.t.

 $k \in [0, 0.27]$, $\ \Delta k = 0.001$

模型代码

```
k=0
while k<0.271
    c=[0 0 0 0 0 1];
   Aeq=[1 1.01 1.02 1.045 1.065 0];
   beq=[1];
   A=[-0.05 -0.27 -0.19 -0.185 -0.185 0;
       0 0.025 0 0 0 -1;
       0 0 0.015 0 0 -1;
       0 0 0 0.055 0 -1;
       0 0 0 0 0.026 -1];
    b=[-k;0;0;0;0];
   lb=[0,0,0,0,0,0];
   ub=[];
   [x,val]=linprog(c,A,b,Aeq,beq,lb,ub);
   x=x'
   R=val
   plot(k,R,'r.')
   axis([0 0.28 0 0.03])
   hold on
    k=k+0.001;
end
xlabel('k'),ylabel('R');
```

部分结果

收益	风险度	x_0	x_1	x_2	x_3	x_4
0.0560	0.0002	0.9604	0.0094	0.0157	0.0043	0.0090
0.1000	0.0020	0.6702	0.0783	0.1306	0.0356	0.0753
0.1950	0.0057	0.0437	0.2272	0.3787	0.1033	0.2185
0.2020	0.0060	0	0.2408	0.4013	0.1094	0.2189
0.2220	0.0109	0	0.4364	0.5483	0	0
0.2510	0.0198	0	0.7907	0.1975	0	0
0.2670	0.0247	0	0.9861	0.0040	0	0

结果图形

结果分析

由实验结果和图可得:

- 1. 收益越大, 风险越大。
- 2. 当投资越分散时,投资者承担的风险越小,这与题意一致。即:冒险的投资者会出现集中投资的情况,而保守的投资者则尽量分散投资。
- 3. 上图曲线上的任一点都表示该投资下的最小风险, 选择该投资下的最优组合。
- 4. 在k = 0.202附近有一个转折点,在这一点左边时, 投资增加很大时,风险增长的很慢; 在这一点右边时,投资增加很小时,风险增长的很快。所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约为k = 0.202, R = 0.0060。所对应的投资方案为:

收益	风险度	x_0	x_1	x_2	x_3	x_4
0.2020	0.0060	0	0.2408	0.4013	0.1094	0.2189