Neural Tangent Kernel

Convergence and Generalization of DNNs

Arthur Jacot, Franck Gabriel, Berfin Şimşek, Francesco Spadaro, Clément Hongler

Ecole Polytechnique Fédérale de Lausanne

July 15, 2020

Neural Networks

■ L+1 layers of n_ℓ neurons with activations $\alpha^{(\ell)}(x) \in \mathbb{R}^{n_\ell}$

$$\alpha^{(0)}(x) = x$$

$$\tilde{\alpha}^{(\ell+1)}(x) = \frac{1}{\sqrt{n_{\ell}}} W^{(\ell)} \alpha^{(\ell)}(x) + \beta b^{(\ell)}$$

$$\alpha^{(\ell+1)}(x) = \sigma \left(\tilde{\alpha}^{(\ell+1)}(x) \right)$$

- Parameters $\theta = (W^{(0)}, b^{(0)}, \dots, W^{(L-1)}, b^{(L-1)})$:
 - lacksquare connections weights $W^{(\ell)} \in \mathbb{R}^{n_\ell \times n_{\ell+1}}$ and bias $b^{(\ell)} \in \mathbb{R}^{n_{\ell+1}}$.
- Weights / bias balance: β .
- Non-linearity: $\sigma : \mathbb{R} \to \mathbb{R}$.
- Network function $f_{\theta}(x) = \tilde{\alpha}^{(L)}(x)$.

Initialization: DNNs as Gaussian processes

- In the infinite width limit $n_1, ..., n_{L-1} \to \infty$.
- Initialize the parameters $\theta \sim \mathcal{N}(0, Id_P)$.
- The preactivations $\tilde{\alpha}_i^{(\ell)}(\cdot;\theta):\mathbb{R}^{n_0}\to\mathbb{R}$ converge to iid Gaussian processes of covariance $\Sigma^{(\ell)}$ (Lee et al., 2018; Neal, 1996):

$$\Sigma^{(1)}(x,y) = \frac{1}{n_0} x^T y + \beta^2$$

$$\Sigma^{(\ell+1)}(x,y) = \mathbb{E}_{\alpha \sim \mathcal{N}(0,\Sigma^{(\ell)})} [\sigma(\alpha(x))\sigma(\alpha(y))] + \beta^2$$

■ The network function $f_{\theta} = \tilde{\alpha}^{(L)}$ is also asymptotically Gaussian.

Training: Neural Tangent Kernel

- Training set $X = (x_1, ..., x_N)$ and outputs $Y_\theta = (f_\theta(x_1), ..., f_\theta(x_N))$.
- Convex cost C(Y) defined on labels $Y \in \mathbb{R}^N$.
- Gradient descent on (non-convex) $\theta \mapsto C(Y_{\theta})$

$$\partial_t \theta = -\nabla C(Y_\theta) = \frac{1}{N} \sum_{i=1}^N \nabla f_\theta(x_i) \partial_{Y_i} C(Y_\theta).$$

Training: Neural Tangent Kernel

- Training set $X = (x_1, ..., x_N)$ and outputs $Y_\theta = (f_\theta(x_1), ..., f_\theta(x_N))$.
- Convex cost C(Y) defined on labels $Y \in \mathbb{R}^N$.
- Gradient descent on (non-convex) $\theta \mapsto C(Y_{\theta})$

$$\partial_t \theta = -\nabla C(Y_\theta) = \frac{1}{N} \sum_{i=1}^N \nabla f_\theta(x_i) \partial_{Y_i} C(Y_\theta).$$

Evolution of f_{θ} :

$$\partial_t f_{\theta}(x) = (\nabla f_{\theta}(x))^T \partial_t \theta = \frac{1}{N} \sum_{i=1}^N \underbrace{(\nabla f_{\theta}(x))^T \nabla f_{\theta}(x_i)}_{\Theta^{(L)}(x,x_i)} \partial_{Y_i} C(Y_{\theta}).$$

■ Neural Tangent Kernel (NTK):

$$\Theta^{(L)}(x,y) := (\nabla f_{\theta}(x))^T \nabla f_{\theta}(y).$$

Asymptotics of the NTK

Theorem

As $n_1, \ldots, n_{L-1} \to \infty$, there exist a fixed deterministic limiting kernel $\Theta_{\infty}^{(L)}$ s.t.

$$\Theta^{(L)}(t) \to \Theta^{(L)}_{\infty}.$$

Asymptotic dynamics:

$$egin{aligned} f_{ heta(0)} &\sim \mathcal{N}(0, \Sigma^{(L)}) \ \partial_t f_{ heta(t)}(x) &= rac{1}{N} \sum_{i=1}^N \Theta_{\infty}^{(L)}(x, x_i) \partial_{Y_i} C(f_{ heta}(X)) \end{aligned}$$

Asymptotics of the NTK

Theorem

As $n_1, \ldots, n_{L-1} \to \infty$, there exist a fixed deterministic limiting kernel $\Theta_{\infty}^{(L)}$ s.t.

$$\Theta^{(L)}(t) \to \Theta^{(L)}_{\infty}.$$

Asymptotic dynamics:

$$egin{aligned} f_{ heta(0)} &\sim \mathcal{N}(0, \Sigma^{(L)}) \ \partial_t f_{ heta(t)}(x) &= rac{1}{N} \sum_{i=1}^N \Theta_{\infty}^{(L)}(x, x_i) \partial_{Y_i} C(f_{ heta}(X)) \end{aligned}$$

Guarantee of convergence: NTK Gram matrix $\Theta_{\infty}^{(L)}(X,X)$

$$\partial_t C(f_{\theta}(X)) = -(\nabla C)^T \Theta_{\infty}^{(L)}(X, X) \nabla C \leq -\lambda_0 \|\nabla C\|^2.$$

Asymptotics of the NTK

- 1 First proof Jacot et al., 2018: sequential limit $n_1 \to \infty, ..., n_{L-1} \to \infty$.
- Simultaneous limit ($n_1 = n_{L-1} = w \to \infty$), finite width bounds Arora et al., 2019; Lee et al., 2019

$$\left|\Theta^{(L)}(0) - \Theta_{\infty}^{(L)}\right| = O(w^{-\frac{1}{2}})$$
$$\left|\Theta^{(L)}(0) - \Theta^{(L)}(t)\right| = O(w^{-\frac{1}{2}}).$$

3 Tight rates Huang and Yau, 2019

$$\left|\Theta^{(L)}(0)-\Theta^{(L)}(t)\right|=O(w^{-1}).$$

MSE Loss

MSE loss $C(Y) = \frac{1}{N} ||Y - Y^*||^2$ for some true labels Y^* .

Linear ODE on the training set

$$\partial_t Y_{\theta(t)} = \frac{2}{N} \Theta_{\infty}^{(L)}(X, X) \left(Y^* - Y_{\theta(t)} \right).$$

2 Solution: $f_{\theta(t)}$ is Gaussian for all t with mean

$$\mathbb{E}\left[f_{\theta}(x)\right] = \Theta_{\infty}^{(L)}(x, X) \left(\Theta_{\infty}^{(L)}(X, X)\right)^{-1} \left(I_{N} - e^{-\frac{2t}{N}\Theta_{\infty}^{(L)}(X, X)}\right) Y^{*}.$$

MSE Loss

MSE loss $C(Y) = \frac{1}{N} ||Y - Y^*||^2$ for some true labels Y^* .

1 Linear ODE on the training set

$$\partial_t Y_{\theta(t)} = \frac{2}{N} \Theta_{\infty}^{(L)}(X, X) \left(Y^* - Y_{\theta(t)} \right).$$

2 Solution: $f_{\theta(t)}$ is Gaussian for all t with mean

$$\mathbb{E}\left[f_{\theta}(x)\right] = \Theta_{\infty}^{(L)}(x,X) \left(\Theta_{\infty}^{(L)}(X,X)\right)^{-1} \left(I_{N} - e^{-\frac{2t}{N}\Theta_{\infty}^{(L)}(X,X)}\right) Y^{*}.$$

11 As $t \to \infty$ the mean converges to the ridgless kernel predictor w.r.t. the NTK

$$\Theta_{\infty}^{(L)}(x,X)\left(\Theta_{\infty}^{(L)}(X,X)\right)^{-1}Y^{*}.$$

"Wide DNNs perform NTK Kernel Ridge Regression"

Kernel Ridge Regression

- Random inputs $x \sim \mathcal{D}$ in a compact domain Ω .
- Labels $Y_i^* = f^*(x_i) + \epsilon e_i$ for $e_i \sim \mathcal{N}(0, 1)$.
- For a kernel K and ridge $\lambda > 0$, the KRR predictor is

$$\hat{f}_{\lambda}(x) = K(x, X) \left(K(X, X) + \lambda I_{N} \right)^{-1} Y^{*}$$

Kernel Ridge Regression

- Random inputs $x \sim \mathcal{D}$ in a compact domain Ω .
- Labels $Y_i^* = f^*(x_i) + \epsilon e_i$ for $e_i \sim \mathcal{N}(0, 1)$.
- For a kernel K and ridge $\lambda > 0$, the KRR predictor is

$$\hat{f}_{\lambda}(x) = K(x,X) \left(K(X,X) + \lambda I_N\right)^{-1} Y^*$$

- Risk $R(\hat{f}_{\lambda}) = \mathbb{E}_{x \sim \mathcal{D}}\left[\left(\hat{f}_{\lambda}(x) f^*(x)\right)^2\right] + \epsilon^2 = \left\|\hat{f}_{\lambda} f^*\right\|_{\mathcal{D}}^2 + \epsilon^2.$
- Empirical Risk $\hat{R}(\hat{t}_{\lambda}) = \frac{1}{N} \|\hat{Y}_{\lambda} Y^*\|^2$.

Objects of interest

- Random Sampling operator $\mathcal{O}(f) = (f(x_1), ..., f(x_N))^T$ from \mathcal{F} to \mathbb{R}^N .
- Noiseless predictor $\epsilon = 0$ (for $K : \mathcal{F}^* \to \mathcal{F}$ and $\mathcal{O}^T : \mathbb{R}^N \to \mathcal{F}^*$):

$$\hat{f}_{\lambda} = \frac{1}{N} K \mathcal{O}^{T} \left(\frac{1}{N} \mathcal{O} K \mathcal{O}^{T} + \lambda I_{N} \right)^{-1} \mathcal{O} f^{*}$$

Objects of interest

- Random Sampling operator $\mathcal{O}(f) = (f(x_1), ..., f(x_N))^T$ from \mathcal{F} to \mathbb{R}^N .
- Noiseless predictor $\epsilon = 0$ (for $K : \mathcal{F}^* \to \mathcal{F}$ and $\mathcal{O}^T : \mathbb{R}^N \to \mathcal{F}^*$):

$$\hat{f}_{\lambda} = \frac{1}{N} K \mathcal{O}^{T} \left(\frac{1}{N} \mathcal{O} K \mathcal{O}^{T} + \lambda I_{N} \right)^{-1} \mathcal{O} f^{*}$$

$$= \frac{1}{N} K \mathcal{O}^{T} \mathcal{O} \left(\frac{1}{N} K \mathcal{O}^{T} \mathcal{O} + \lambda I_{F} \right)^{-1} f^{*}$$

Objects of interest

- Random Sampling operator $\mathcal{O}(f) = (f(x_1), ..., f(x_N))^T$ from \mathcal{F} to \mathbb{R}^N .
- Noiseless predictor $\epsilon = 0$ (for $K : \mathcal{F}^* \to \mathcal{F}$ and $\mathcal{O}^T : \mathbb{R}^N \to \mathcal{F}^*$):

$$\hat{f}_{\lambda} = \frac{1}{N} K \mathcal{O}^{T} \left(\frac{1}{N} \mathcal{O} K \mathcal{O}^{T} + \lambda I_{N} \right)^{-1} \mathcal{O} f^{*}$$

$$= \frac{1}{N} K \mathcal{O}^{T} \mathcal{O} \left(\frac{1}{N} K \mathcal{O}^{T} \mathcal{O} + \lambda I_{\mathcal{F}} \right)^{-1} f^{*}$$

$$\xrightarrow{N \to \infty} \underbrace{T_{K} \left(T_{K} + \lambda I_{\mathcal{F}} \right)^{-1}}_{\tilde{A}_{\lambda}} f^{*}$$

for the *integral operator* $(T_K f)(x) = \mathbb{E}_{w \sim \mathcal{D}} [K(x, w) f(w)].$

- Mercer's Theorem:
 - \blacksquare T_K has eigenvalues d_k and eigenfunctions $f^{(k)}$.
 - T_K is trace class $\sum_{k=1}^{\infty} d_k < \infty$.

Expected Predictor

Theorem (Jacot et al., 2020)

For $\lambda > 0$ we have

$$\mathbb{E}\left[\hat{f}_{\lambda}(x)\right] \approx \tilde{A}_{\vartheta}f^* = T_{K}\left(T_{K} + \vartheta I_{\mathcal{F}}\right)^{-1}f^*$$

where the Signal Capture Threshold $\vartheta(\lambda, N, T_K)$ is the unique positive solution of

$$\vartheta = \lambda + \frac{\vartheta}{N} \operatorname{Tr} \left[T_{\mathcal{K}} (T_{\mathcal{K}} + \vartheta I_{\mathcal{F}})^{-1} \right].$$

Expected Predictor

Theorem (Jacot et al., 2020)

For $\lambda > 0$ we have

$$\mathbb{E}\left[\hat{f}_{\lambda}(x)\right] \approx \tilde{A}_{\vartheta}f^* = T_K \left(T_K + \vartheta I_{\mathcal{F}}\right)^{-1} f^*$$

where the Signal Capture Threshold $\vartheta(\lambda, N, T_K)$ is the unique positive solution of

$$\vartheta = \lambda + \frac{\vartheta}{N} \operatorname{Tr} \left[T_{\mathcal{K}} (T_{\mathcal{K}} + \vartheta I_{\mathcal{F}})^{-1} \right].$$

For $f^* = \sum_k b_k f^{(k)}$ we have $\mathbb{E}\left[\hat{f}_{\lambda}(x)\right] \approx \sum_k \frac{d_k}{d_k + \vartheta} b_k f^{(k)}$:

- When $d_k \gg \vartheta$, $\frac{d_k}{d_k + \vartheta} \simeq 1 \Longrightarrow$ signal is captured.
- When $d_k \ll \vartheta$, $\frac{d_k}{d_{k+1}\vartheta} \simeq 0 \Longrightarrow$ signal is lost.

Expected Risks

Theorem

$$egin{aligned} R\left(\mathbb{E}\left[\hat{f}_{\lambda}
ight]
ight) &pprox \left\|(I_{\mathcal{F}}- ilde{\mathcal{A}}_{artheta})f^{*}
ight\|_{\mathcal{D}}^{2}+\epsilon^{2} \ &\mathbb{E}\left[R\left(\hat{f}_{\lambda}
ight)
ight] &pprox \partial_{\lambda}artheta\left(\left\|(I_{\mathcal{F}}- ilde{\mathcal{A}}_{artheta})f^{*}
ight\|_{\mathcal{D}}^{2}+\epsilon^{2}
ight). \end{aligned}$$

For
$$f^* = \sum_k b_k f^{(k)}$$
, $\left\| (I_{\mathcal{F}} - \tilde{A}_{\vartheta}) f^* \right\|_{\mathcal{D}}^2 = \sum_k \frac{\vartheta^2}{(d_k + \vartheta)^2} b_k^2$.

Expected Risks

Theorem

$$egin{aligned} R\left(\mathbb{E}\left[\hat{f}_{\lambda}
ight]
ight) &pprox \left\|(I_{\mathcal{F}}- ilde{\mathcal{A}}_{artheta})f^{*}
ight\|_{\mathcal{D}}^{2}+\epsilon^{2} \ &\mathbb{E}\left[R\left(\hat{f}_{\lambda}
ight)
ight] &pprox \partial_{\lambda}artheta\left(\left\|(I_{\mathcal{F}}- ilde{\mathcal{A}}_{artheta})f^{*}
ight\|_{\mathcal{D}}^{2}+\epsilon^{2}
ight). \end{aligned}$$

For
$$f^* = \sum_k b_k f^{(k)}$$
, $\left\| (I_{\mathcal{F}} - \tilde{A}_{\vartheta}) f^* \right\|_{\mathcal{D}}^2 = \sum_k \frac{\vartheta^2}{(d_k + \vartheta)^2} b_k^2$.

Theorem

$$\mathbb{E}\left[\hat{R}\left(\hat{f}_{\lambda}
ight)
ight]pprox\partial_{\lambda}arthetarac{\lambda^{2}}{artheta^{2}}\left(\left\|\left(I_{\mathcal{F}}- ilde{A}_{artheta}
ight)f^{st}
ight\|_{\mathcal{D}}^{2}+\epsilon^{2}
ight).$$

$$\Longrightarrow$$
 relation $R\left(\hat{f}_{\lambda}\right) \approx \frac{\vartheta^{2}}{\lambda^{2}}\hat{R}\left(\hat{f}_{\lambda}\right)$.

Proposition

$$\vartheta \approx \frac{1}{\frac{1}{N} \mathrm{Tr} \left[\left(\frac{1}{N} K(X, X) + \lambda I_N \right)^{-1} \right]}.$$

Proposition

$$\vartheta pprox rac{1}{rac{1}{N} \mathrm{Tr} \left[\left(rac{1}{N} K(X,X) + \lambda I_N
ight)^{-1}
ight]}.$$

Kernel Alignement Risk Estimator (KARE)

$$R\left(\hat{f}_{\lambda}\right) \approx \frac{\frac{1}{N}\left(Y^{*}\right)^{T}\left(\frac{1}{N}K(X,X) + \lambda I_{N}\right)^{-2}Y^{*}}{\left(\frac{1}{N}\mathrm{Tr}\left[\left(\frac{1}{N}K(X,X) + \lambda I_{N}\right)^{-1}\right]\right)^{2}}.$$

Bias term is approximated by $\frac{\frac{1}{N}(Y^*)^T \left(\frac{1}{N}K(X,X) + \lambda I_N\right)^{-2} Y^*}{\frac{1}{N} \mathrm{Tr} \left[\left(\frac{1}{N}K(X,X) + \lambda I_N\right)^{-2}\right]}.$

Conclusion

- 1 Wide networks perform Kernel Ridge Regression w.r.t. the NTK.
- 2 Convergence is guaranteed whenever the NTK is positive definite.
- Generalization for a general Kernel:
 - 1 The SCT describes which components are learned.
 - 2 The test loss can be predicted from the training data using the KARE.

Bibliography I

- Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang, R. (2019). On exact computation with an infinitely wide neural net. *arXiv* preprint *arXiv*:1904.11955.
- Huang, J. and Yau, H.-T. (2019). Dynamics of deep neural networks and neural tangent hierarchy. *arXiv preprint arXiv:1909.08156*.
- Jacot, A., Şimşek, B., Spadaro, F., Hongler, C., and Gabriel, F. (2020). Kernel alignment risk estimator: Risk prediction from training data.
- Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural Tangent Kernel:
 Convergence and Generalization in Neural Networks. In *Advances in Neural Information Processing Systems 31*, pages 8580–8589. Curran Associates, Inc.

Bibliography II

- Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J. (2019). Wide neural networks of any depth evolve as linear models under gradient descent. In *Advances in neural information processing systems*, pages 8572–8583.
- Lee, J. H., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. (2018). Deep Neural Networks as Gaussian Processes. *ICLR*.
- Neal, R. M. (1996). *Bayesian Learning for Neural Networks*. Springer-Verlag New York, Inc., Secaucus, NJ, USA.