# BEng Course B38CN: Introduction to Communications and Networks Chapter 4. The Medium Access Control Sublayer

#### **Sheng Tong**

Xidian University

School of Telecommunications Engineering

Room: I-304, Main Building, North Campus

E-mail: ts\_xd@163.com

Acknowledgement: these slides are adapted from those from Prof. Cheng-Xiang Wang.



## Contents (1/2)

#### 4. The Medium Access Control Sublayer

- 4.1 The Channel Allocation Problem
  - 4.1.1 Static Channel Allocation in LANs and MANs
  - 4.1.2 Dynamic Channel Allocation in LANs and MANs
- 4.2 Multiple Access Protocols
  - 4.2.1 ALOHA
  - 4.2.2 Carrier Sense Multiple Access Protocols
  - 4.2.3 Collision-Free Protocols
  - 4.2.4 Limited-Contention Protocols
- 4.3 Ethernet
  - 4.3.1 Ethernet Cabling
  - 4.3.2 Manchester Encoding



## Contents (2/2)

- 4.3.3 The Ethernet MAC Sublayer Protocol
- 4.3.4 The Binary Exponential Backoff Algorithm
- 4.3.5 Ethernet Performance
- 4.3.6 Switched Ethernet
- 4.3.7 IEEE 802.2: Logical Link Control

#### 4.4 Wireless LANs

- 4.4.1 The 802.11 Protocol Stack
- 4.4.2 The 802.11 Physical Layer
- 4.4.3 The 802.11 MAC Sublayer Protocol
- 4.4.4 The 802.11 Frame Structure
- 4.4.5 Services

#### 4.5 Broadband Wireless



## 4 The Medium Access Control Sublayer

- This chapter deals with broadcast networks and their protocols.
- **Key issue** in Broadcast network: How to determine who gets to use the **broadcast channel (multiaccess channel or random access channel)** when there is competition for it?
- MAC (medium access control) sublayer: bottom part of the data link layer, especially important in LANs.



Fig. 4.1: Multiple access communications.



#### 4.1 The Channel Allocation Problem

- How to **allocate** a single broadcast channel among multiple competing users?
  - Static and dynamic

#### 4.1.1 Static Channel Allocation in LANs and MANs

- Example of traditional ways:
  - **Frequency Division Multiplexing (FDM)**: Divide the bandwidth into *N* equal sized portions, each user being assigned one portion.
  - Time Division Multiplexing (TDM): Each user is statically allocated every Nth time slot.
- Collision free; Suitable when users generate a steady stream of data.
- **Problems** occur for bursty traffic: waste resource.



## 4.1.2 Dynamic Channel Allocation in LANs and MANs

- **Primary function**: Minimize or eliminate the incidence of **collisions** to achieve a **reasonable utilization** of the medium.
- Five **key assumptions** for dynamic channel allocation:
  - Station model: The model consists of N independent stations (terminals),
     each with a program or user that generates frames for transmission.
    - Once a frame is generated, the station is blocked until the frame has been successfully transmitted.
  - Single channel assumption: no external ways to communicate.



## Key Assumptions for Dynamic Channel Allocation (Cont.)

- Collision assumption: Collision occurs if two frames are transmitted simultaneously.
  - All stations can detect collisions.
  - A collided frame must be transmitted again later.

#### • **Time**:

- Continuous time: Frame transmission can begin at any instant.
- Slotted time: Time is devided into discrete intervals (slots). Frame transmissions always begin at the start of a slot.

#### • (No) Carrier Sense:

- Carrier sense: Stations can tell if the channel is in use before trying to use it.
- No carrier sense: Stations cannot sense the channel and they just transmit frames.



# 4.2 Multiple Access Protocols

- 4.2.1 ALOHA
- 4.2.2 Carrier Sense Multiple Access Protocols
- 4.2.3 Collision-Free Protocols
- 4.2.4 Limited-Contention Protocols



#### 4.2.1 ALOHA

- **Two versions**: pure and slotted (requires global time **synchronization**), depending on whether time is divided into discrete slots.
- **Pure ALOHA**: Let users transmit whenever they have data to be sent. If a collision occurs, the sender just waits a random time and retries.



Fig. 4.2: In pure ALOHA, frames are transmitted at completely arbitrary times.



#### Vulnerable Period for a Frame with Pure ALOHA

- Under what conditions will the shaded frame arrive successfully?
- A frame will not suffer a **collision** if no other frames are sent within the **vulnerable period**  $t_0$  to  $t_0+2t$ .



Fig. 4.3: Vulnerable period for the shaded frame.



# Efficiency of Pure ALOHA

- **Frame time**: the time needed to transmit a standard, fixed-length frame, i.e., (frame length)/(bit rate).
- Throughput S: the average number of successfully transmitted frames per frame time.
- N: the average number of **new frames generated** by users per frame time. Poisson distributed!
- G: the average number of **transmission attempts**, old (retransmission) and new frames combined, per frame time.  $G \ge N$  and  $G \ge S$ . Also Poisson distributed!
- $P_0$ : the probability of a **transmission success**, i.e., the probability that a frame does not suffer a collision.

$$\Rightarrow$$
  $S=GP_0=Ge^{-2G}$ .



### Slotted ALOHA

- Divide time into **discrete** intervals, each interval corresponding to one frame.
- Requires the users to agree on **slot boundaries** (**synchronization**).
- A computer is not permitted to send until the start of the next slot.
  - $\Rightarrow$  The **continuous** pure ALOHA  $\rightarrow$ **discrete** slotted ALOHA!
- The vulnerable period is halved!
  - $\Rightarrow$  The probability of a **transmission success**:  $P_0 = e^{-G}$ .

$$\Rightarrow$$
  $S=GP_0=Ge^{-G}$ .



## Throughput of Pure ALOHA and Slotted ALOHA

- **Pure ALOHA**: maximum throughput  $S_{\text{max}} = 0.5/e \approx 0.184$  at G = 0.5.
- **Slotted ALOHA**: maximum throughput  $S_{\text{max}} = 1/e \approx 0.368$  at G = 1.



Fig. 4.4: Throughput versus offered traffic for ALOHA systems.



# 4.2.2 Carrier Sense Multiple Access Protocols

- **CSMA protocols**: better than ALOHA; **monitor** the channel before and/or during transmission.
- 1-persistent CSMA: Listen whether the channel is free before transmitting. If busy, wait until it becomes free and then immediately start your transmission. The **name** is taken because the station transmits with a probability of 1 when it finds the channel idle.
- Nonpersistent CSMA: Less greedy when the channel is busy, wait a random period of time (not continuously sensing the channel) before trying again. Better channel utilization but longer delay than 1-persistent CSMA.
- p-persistent CSMA: Used with slotted systems. If you find the channel idle during the current slot, you transmit with probability p, and defer until next slot with probability 1-p.



## Throughput Comparison of Random Access Protocols

• **Question**: Is 0-persistent CSMA really good?



Fig. 4.5: Comparison of the channel utilization versus load for various random access protocols..



### **CSMA** with Collision Detection

- **Improvement**: Sense the channel, but immediately stop transmission when you detect a collision. **Ethernet** works like this.
  - 1. **Listen** to see whether the channel is free. Transmission is delayed until the channel is no longer used.
  - 2. During transmission, keep listening in order to detect a collision. If a collision occurs, transmission **immediately stops**.
  - 3. If a collision occurs, wait a **random period** of time, and proceed with step 1.



Fig. 4.6: CSMA/CD can be in one of three states: contention, transmission, or idle.



#### 4.2.3 Collision-Free Protocols

- With CSMA/CD, collisions can still occur during the contension period.
  - ⇒ Are there any protocols in which **collisions do not occur at all**?
- A **bit-map** protocol: The contention period contains *N* slots.
  - Starting from station 0, if station j (j=0, ..., N-1) wants to transmit a frame, it transmits a 1 bit into slot j. No other station is allowed to transmit during this slot.
  - After all N slots have passed by, each station has complete knowledge of which stations wish to transmit. Then, they begin transmitting in numerical order. $\Rightarrow$ **No** collisions at all!



Fig. 4.7: The basic bit-map protocol.



## **Binary Countdown Protocols**

- The binary countdown protocol used in **Datakit**:
  - All stations use same-length binary addresses. A station wanting to use the channel now braoadcasts its address as a binary bit string, starting with the highorder bit.
  - The bits in each address position from different stations are **OR**ed together.
  - As soon as a station sees that a high-order bit position that is 0 in its address has been overwritten with a 1, it gives up.
  - The **winner** station will transmit a frame, after which another bidding cycle starts.
- Mok and Ward's variation of binary countdown:
  - Use virtual station numbers, with the virtual station numbers from 0 up to and including the successful station being circularly permuted after each transmission, in order to give higher priority to stations that have been silent unusually long.
  - Example: Stations C, H, D, A, G, B, E, F have priorities 7, 6, 5, 4, 3, 2, 1, and 0, respectively. A successful transmission by D will give a priority order of C, H, A, G, B, E, F, D.



## The binary countdown protocol used in Datakit



Fig. 4.8: The binary countdown protocol used in Datakit. A dash indicates silence.



#### 4.2.4 Limited-Contention Protocols

- Two basic strategies for channel acquisition:
  - Contention: preferable under conditions of light load due to its low delay. As the load increases, the channel efficiency gets worse.
  - Collision-free: preferable under conditions of high load due to its high channel efficiency. At low load, it has high delay.
- ⇒ Limited-contention protocols: use contention at low load to provide low delay, but use a collision-free technique at high load to provide good channel efficiency.



# The Adaptive Tree Walk Protocol

- Dynamically regulate the number of competing stations during a **contention period**.
- If there's a **collision** during the *k*th slot, divide the contenders into **two groups**.
- The **first group** gets to try it again during the next slot k+1. If no collisions occur then, the second group gets a try during the slot after that, i.e., slot k+2. Otherwise, the first group is split up again.



## An Example of the Adaptive Tree Walk Protocol



Fig. 4.9: The tree for eight stations.



### 4.3 Ethernet

- **IEEE 802.3**, CSMA/CD based.
- 4.3.1 Ethernet Cabling
- 4.3.2 Manchester Encoding
- 4.3.3 The Ethernet MAC Sublayer Protocol
- 4.3.4 The Binary Exponential Backoff Algorithm
- 4.3.5 Ethernet Performance
- 4.3.6 Switched Ethernet
- 4.3.7 IEEE 802.2: Logical Link Control



## 4.3.1 Ethernet Cabling

- 10Base5: thick Ethernet; 10 Mbps, Baseband signalling, up to 500 meters per segment.
- 10Base2: thin Ethernet; 10 Mbps, Baseband signalling, up to 185 meters per segment.
- 10 Base-T: 10 Mbps, Baseband signalling, Twisted pair.
- 10Base-F: 10 Mbps, Baseband signalling, Fiber optics.

| Name     | Cable        | Max. seg. | Nodes/seg. | Advantages                   |
|----------|--------------|-----------|------------|------------------------------|
| 10Base5  | Thick coax   | 500 m     | 100        | Original cable; now obsolete |
| 10Base2  | Thin coax    | 185 m     | 30         | No hub needed                |
| 10Base-T | Twisted pair | 100 m     | 1024       | Cheapest system              |
| 10Base-F | Fiber optics | 2000 m    | 1024       | Best between buildings       |

Fig. 4.10: The most common kinds of Ethernet cabling.



## **Ethernet Cabling**



Fig. 4.11 Three kinds of Ethernet cabling. (a) 10Base5, (b) 10Base2, (c) 10Base-T.



## Cable Topologies in Ethernet

• In 10Base-F we can apply different schemes (linear, backbone, tree). Segmented networks with repeaters are used to build large networks.



Fig. 4.12: Cable topologies. (a) Linear, (b) Spine, (c) Tree, (d) Segmented.



## 4.3.2 Manchester Encoding

- **Problem**: We cannot just send straight binary codes across the Ethernet, because stations can't distinguish a 0 bit (0 volts) from an idle sender (0 volts).
- Manchester encoding: 1 bit (high→low voltage); 0 bit (low→high); in all Ethernet.
- **Differential Manchester encoding**: 1 bit (absence of a transition at the start); 0 bit (presence of a transition at the start); in other LANs (e.g., **802.5 token ring**).



Fig. 4.13: (a) Binary encoding. (b) Manchester encoding. (c) Differential Manchester encoding.



## 4.3.3 Ethernet MAC Sublayer Protocol

- **Preamble:** 8/7 bytes of 10101010; synchronize the receiver's clock with the sender's.
- **SOF** (**start of frame**): Just a delimiter to tell that the real info is now coming.
- Address: Generally 48-bit fields. The leftmost bit indicates ordinary (0) or group (1) addresses. Second bit indicates global or local address.
- Type: Tells the receiver what to do with the frame. Minimum frame size: 64 bytes.
- Length: Ranges from 0-1500. A header is necessary to be added to the data portion.
- **Pad:** If necessary, fill out the frame to the minimum size.
- Checksum: CRC-based.



Fig. 4.14: Frame formats. (a) DIX Ethernet. (b) IEEE 802.3.



# 4.3.4 The Binary Exponential Backoff Algorithm

- Ethernet is **CSMA/CD** based (sense the channel, wait until idle, and backoff after a random time when you detect a collision).
- How randomization is done when a collision occurs?

#### **⇒** Binary exponential backoff algorithm:

- After a collision, time is divided into discrete slots.
- After the first collision, each station waits either 0 or 1 slot times before trying again.
- After the second collision, each one picks either 0, 1, 2, or 3 at random and waits that number of slot times.
- In general, after i collisions, a random number between 0 and  $2^{i}$ -1 is chosen, and that number of slots is skipped.
- After 10 collisions have been reached, the randomization interval is frozen at a maximum of 1023 slots.



### 4.3.5 Ethernet Performance

- Channel Efficiency=1/(1+2BLe/cF).
  - B: the network bandwidth; L: the cable length; e: the number of contention slots per frame; c: light speed; F: the frame length.



Fig. 4.15: Efficiency of Ethernet at 10 Mbps with 512-bit slot times.



### 4.3.6 Switched Ethernet

- **Problem**: As more stations are added to an Ethernet, the traffic will go up, and so will the possibility of collisions.⇒Eventually, the LAN will saturate.
- **Solution**: Divide the network into separate sub-LANs and connect them through a high-speed **switch**.



Fig. 4.16: A simple example of switched Ethernet.



## 4.3.7 IEEE 802.2: Logical Link Control

- The upper half of the data link layer.
- LLC header: a destination access point, a source access point, and a control field.
- Three service options: unreliable datagram service, acknowledged datagram servce, and reliable connection-oriented service.



Fig. 4.17: (a) Position of LLC. (b) Protocol formats.



#### 4.4 Wireless LANs

- 4.4.1 The 802.11 Protocol Stack
- 4.4.2 The 802.11 Physical Layer
- 4.4.3 The 802.11 MAC Sublayer Protocol
- 4.4.4 The 802.11 Frame Structure
- 4.4.5 Services



#### 4.4.1 The 802.11 Protocol Stack

- **Physical layer**: 5 transmission techniques.
- MAC sublayer: determines how the channel is allocated.
- **LLC syblayer**: hides the differences between the different 802 variants and make them indistinguishable as far as the network layer is concerned.



Fig. 4.18: Part of the 802.11 protocol stack.



## 4.4.2 The 802.11 Physical Layer

- **Infrared**: Two permitted speeds, 1 Mbps and 2 Mbps. Not very popular due to the low bandwidth and the fact that sunlight degrades performance.
- FHSS (Frequency Hopping Spread Spectrum): Use 79 channels, each 1 MHz wide, starting at the low end of the unlicensed 2.4-GHz ISM band. Support data rates of 1 or 2 Mbps. In effect, frames are sent at different frequencies each time. Low bandwidth, but good resistance against security attacks, multipath fading, and interference from other devices. Popular for building-to-building links.
- **DSSS** (**Direct Sequence Spread Spectrum**): Similar to CDMA, restricted to 1-2 Mbps.
- **OFDM** (**Orthogonal Frequency Division Multiplexing**): High speed wireless LANs. Can reach 54 Mbps in the wider 5-GHz ISM band. Split a wide band into many narrow bands (52 frequencies, 48 for data and 4 for synchronization). Good spectrum efficiency and good immunity to multipath fading.
- **HR-DSSS** (**High Rate DSSS**): Support data rates of 1, 2, 5.5, and 11 Mbps in the 2.4-GHz band.



## 4.4.3 The 802.11 MAC Sublayer Protocol

- Two problems: hidden station problem and exposed station problem; due to the fact that not all stations are within radio range of each other.
- **Solutions**: **DCF** (Distributed Coordination Function) and **PCF** (Point Coordination Function).



Fig. 4.19: (a) The hidden station problem. (b) The exposed station problem.



## **DCF**

- **DCF**: **no central control**; supported by **all implementations**; use a protocol called **CSMA/CA** (CSMA with Collision Avoidance).
- Two operation methods:
  - Sense the channel and send only if it's free. Don't sense the channel during transmission. If a collision occurred, wait a random time and try again later.
  - MACAW (Multiple Access with Collision Avoidance for Wireless): Sender transmits RequestToSend (RTS) frame. Receiver replies with ClearToSend (CTS) frame. RTS and CTS announce the duration of the transfer. Nodes overhearing RTS/CTS keep quiet for that duration.





#### **MACAW**

- Receiver sends **ACK** when has frame. Neighbors keep silent until see ACK.
- NAV (Network Allocation Vector): virtual channel; signals not transmitted, just for internal reminder to keep silent for a certain period.



Fig. 4.21: The use of virtual channel sensing using CSMA/CA.



## **PCF**

- **Optional** choice for 802.11.
- Essence: Let a single base station control all activities in its cell.

  No collisions at all!
- **Basic mechanism:** The base station broadcasts a **beacon frame** periodically (10 to 100 times per second). This frame contains system parameters, such as hopping frequencies and clock synchronization, and invites new stations to sign up for transmission.



## 4.4.4 The 802.11 Frame Structure

- **Duration:** Tells how long the transmission of this frame will take, allowing other stations to set their NAV accordingly.
- Addresses: Source/destination in a cell; and source/destination base stations outside the cell when dealing with intercell traffic.
- **Sequence:** allows fragments to be numbered. Uses 12 bits to identify the frame and 4 bits to identify the fragment.



Fig. 4.22: The 802.11 data frame.



#### The 802.11 Frame Structure

- Frame control field: 11 subfields.
  - Version: which one of the two protocol versions.
  - **Type:** Data, control, or management frame.
  - Subtype: RTS, CTS, or ACK.
  - **DS** (**D**istribution **S**ystem): Is the frame entering/leaving the current cell?
  - MF: Frames are allowed to be fragmented to increase reliability. This bit tells whether More Fragments will follow.
  - Retry: Is this a retransmission?
  - Power management: Used by a base station to activate/passivate a station (important in view of power saving).
  - More: indicates that the sender has additional frames for the receiver.
  - W: The frame is encrypted using the Wired Equivalence Privacy algorithm.
  - O: Stick to ordered delivery of frames if this bit is on.



### 4.4.5 Services

- Each wireless LAN must provide nine services:
  - Five distribution services: provided by the base stations; deal with station mobility as they enter and leave cells; manage cell membership and interact with stations outside the cell.
    - Association: used by mobile stations to connect them to base stations.
    - **Disassociation**: used by mobile/base stations before breaking the relationship.
    - **Reassociation**: used by mobile stations to change its preferred base station.
    - **Distribution**: determines how to route frames sent to the base station.
    - **Integration**: handles the translation from the 802.11 frame format to a non-802.11 network frame format.
  - Four station services: intracell; related to actions within a single cell; used after association has taken place.
    - Authentication, deauthentication, privacy, and data delivery.



#### 4.5 Broadband Wireless

- Interchangeable terms: 802.16, wireless MAN, or wireless local loop.
- **Goal:** Use wireless connection **between** buildings (e.g., avoiding the use of the local loop).
- Comparison of 802.11 with 802.16 (Why devise a new standard?)
  - Buildings do not move, so much of the mobility stuff from 802.11 is not needed.
  - Each cell has many more users than will a typical 802.11 cell; Need more bandwidth; 10-66 GHz frequency range.
  - Broadband connections can be supported by **powerful radios** (money is less of a problem), making **power management** less of an issue.
  - We may need to cross longer distances, up to several kilometers.
  - ⇒ 802.11 was designed to be mobile Ethernet, whereas 802.16 was designed to be wireless cable television.



## The 802.16 Protocol Stack

- **Physical medium dependent sublayer**: 3 modulation schemes.
- Transmission convergence sublayer: hide the different technologies from the data link layer.
- Security sublayer: more crucial for public outdoor networks.
- Service specific convergence sublayer: similar to LLC sublayer.



Fig. 4.23: The 802.16 protocol stack.



## The 802.16 Physical Layer

- Short range: QAM-64, 6 bits/baud, 150 Mbps.
- Medium range: QAM-16, 4 bits/baud, 100 Mbps.
- Long range: QPSK, 2 bits/baud, 50 Mbps.
- The farther the subscriber is from the base station, the lower the date rate.



Fig. 4.24: The 802.16 transmission environment.



## **Summary**

| Method             | Description                                            |  |  |
|--------------------|--------------------------------------------------------|--|--|
| FDM                | Dedicate a frequency band to each station              |  |  |
| WDM                | A dynamic FDM scheme for fiber                         |  |  |
| TDM                | Dedicate a time slot to each station                   |  |  |
| Pure ALOHA         | Unsynchronized transmission at any instant             |  |  |
| Slotted ALOHA      | Random transmission in well-defined time slots         |  |  |
| 1-persistent CSMA  | Standard carrier sense multiple access                 |  |  |
| Nonpersistent CSMA | Random delay when channel is sensed busy               |  |  |
| P-persistent CSMA  | CSMA, but with a probability of p of persisting        |  |  |
| CSMA/CD            | CSMA, but abort on detecting a collision               |  |  |
| Bit map            | Round robin scheduling using a bit map                 |  |  |
| Binary countdown   | Highest numbered ready station goes next               |  |  |
| Tree walk          | Reduced contention by selective enabling               |  |  |
| MACA, MACAW        | Wireless LAN protocols                                 |  |  |
| Ethernet           | CSMA/CD with binary exponential backoff                |  |  |
| FHSS               | Frequency hopping spread spectrum                      |  |  |
| DSSS               | Direct sequence spread spectrum                        |  |  |
| CSMA/CA            | Carrier sense multiple access with collision avoidance |  |  |

Fig. 4.25: Channel allocation methods and systems for a common channel.

