# Summarizing Event Sequences with Generalized Sequential Patterns



Joscha Cüppers

Jilles Vreeken



#### Problem

Given only a set of event sequences, D.

Goal, report a set of generalized events and a set P of generalized patterns, that succinctly summarize D.

#### Generalized Pattern?



#### Generalized Patterns

```
Existing Method - Surface Level Patterns:

a b c a d c

b a b c e e c e d a d d f c f f a d c e a a a e f a e c b f f c
```

Our Method - Generalized Patterns:

```
a\,\alpha\,c \qquad \alpha = \{b,\,d\} b\,a\,b\,c\,e\,e\,c\,e\,d\,a\,d\,d\,f\,c\,f\,f\,a\,d\,c\,e\,a\,a\,a\,e\,f\,a\,e\,c\,b\,f\,f\,c
```

- Set of Observed Events  $\Omega_o$  e.g.  $\Omega_o = \{a, b, c, ...\}$
- Set of Generalized Events  $\Omega_g$  e.g.  $\Omega_g = \{ \alpha \}$
- Alphabet  $\Omega = \Omega_o \cup \Omega_g$

#### How do we do that?

The Minimum Description Length (MDL) principle:

given a model class  $\mathcal{M}$ , the best model  $M \in \mathcal{M}$  is that M that minimizes

$$L(D, M) = L(M) + L(D|M)$$

where:

L(M) is the length of the model, in bits

 $L(D \mid M)$  is the length of the data, in bits, when encoded using M

### Length of Model

$$L(M) = L(CT) + L(\Omega_g)$$

Code Table – Pattern set and usage of each pattern

$$L(\mathrm{CT}) = L_{\mathbb{N}}(|P'|) + L_{\mathbb{N}}(usage(P)) + \log\left(\frac{usage(P) - 1}{|P| - 1}\right) + \sum_{p \in P'} L(p)$$

how many patterns

usage sum over all patterns

usage of each pattern

encoding of patterns

Set of Generalized Events  $\Omega_g$ 

$$L(\Omega_g) = \sum_{e \in \Omega_g} L(e)$$

#### Model *M*:

- **a** : a
- **b** : b
- **c** : c
- **d** : d
- **e** : e
- **f** : f
- $\alpha$ : {ef}
- $p : d \alpha b c$
- $q : \alpha e a$

### Length of Data

#### Cover 1: (Singletons):



#### Model *M*:

- **a** : a
- **b** : b
- **c** : c
- **d** : d
- **e** : e
- **f** : f
- $\alpha$ : {ef}
- $p : d \alpha b c$
- $q : \alpha e a$

$$L(D|M) = L(C_p) + L(C_m) + L(C_s)$$

### Mining Models

#### Problem 1:

Given a model M find a good description (i.e. a cover C) of the Data. Objective is to minimize –  $L(D \mid M)$ 

#### Problem 2:

Given a cover C find a good model M

### FLOCK Algorithm — Basic Idea



### Discovering Generalized Events

#### Merge

- 1. mine "surface level" patterns
- 2. merge patterns



#### Candidate Generation

Suppose **a** is often followed by **b** and **d**, with similar number of gaps.

Generate Candidates:

- 1. **a b**
- 2. **a** d
- 3. a α b d

### Experiments / Related Work



Data with known ground truth.





- 5 patterns
- 5 generalizations in total
- 2 generalizations per pattern



### Real World Pattern Example

Data: Production Log of Steel Rolling Mill





line for wide steel

line for thin steel

#### Something Else

### Patterns with Predictable Inter-Event Delays



- Explicit modeling of delays between events
- Ability to model and discover patterns with long inter-event delays

#### Conclusion

We consider the problem of finding a succinct set of generalized patterns that describes the data

- Generalized pattern describe general "behavior" not instances
- Capture infrequent instances of general patterns

Formalized the problem with the Minimum Description Length (MDL) principle

- Define model class and encoding of model
- Encoding of Data given a Model

Present greedy algorithm to mine patterns and generalized events

Evaluation shows that we can discover generalized patterns

Recover ground truth well on synthetic data

## Thank you!

We consider the problem of finding a succinct set of generalized patterns that describes the data

- Generalized pattern describe general "behavior" not instances
- Capture infrequent instances of general patterns

Formalized the problem with the Minimum Description Length (MDL) principle

- Define model class and encoding of model
- Encoding of Data given a Model

Present greedy algorithm to mine patterns and generalized events

Evaluation shows that we can discover generalized patterns

Recover ground truth well on synthetic data

### Transition probabilities / frequencies



Data with known ground truth.

0 Generalized Patterns ⇒ 1 Generalized Patterns ⇒ ... a b c b d t 1. 3. q h k 2. 5. 26  $x \mid d$ q h k 6.  $\alpha = \{j, t, p, w, i\}$ 30  $x \mid d$ 



