SynthSing: A Singing voice Synthesizer

Bunning, James Mou, Shiyu Murali, Sharada Yang, Mu Yang, Yixin

Introduction

- Most current singing voice synthesizers use concatenative methods
- Recent advances in TTS models achieve very realistic synthesis of the human voice, especially with models such as Wavenet^[4]
- Use of machine learning methods with these advancements can result in quality far superior to concatenative methods^[1]

"WaveNet: A Generative Model for Raw Audio", Aäron van den Oord, et al.

- Baseline model
- Idea is from TTS (Text-to-Speech).
- Like TTS, condition on linguistic features from input text (e.g. start and end timing of phonemes).
- Like Multi-speaker speech synthesis, also condition on singer identities.
- Additionally, condition on musical notes sequence.

Baseline Model: WaveNet.

- Basic structure
 - Dilated causal convolution
 - Gated activation units
 - Residual and skip connections
 - Conditional input variables
 - Global and local conditioning

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} \right)$$

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right)$$

$$\mathbf{y} = f(\mathbf{h})$$

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y} \right)$$

Baseline Model: Wavenet.

Overview of entire network

Blaauw, Merlijn, and Jordi Bonada, "A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs," Applied Sciences, 2017.

- Uses a modified wavenet architecture
- Models features of parametric vocoder instead of raw waveform
 - Separates influence of pitch and timbre
 - Fewer layers and model parameters
 - Allows training on smaller datasets (~30 minutes)
 - Reduces training and generation times (~8 hours of training)
- Generation is autoregressive, so errors may compound during synthesis
- Uses a constrained Gaussian Mixture output:
 - Mixture of 4 Gaussians with diagonal covariance
 - Using 4 free parameters mean, variance, skewness, shape
 - Constrains possible output distributions

More details...

Multi-stream network

- Predicts harmonic spectral envelope, aperiodicity envelope, voiced/unvoiced
- Modeled as independent networks, but takes one stream's output as additional input of another stream
- Acoustic features (from WORLD Vocoder^[2])
 - 60-dimensional MFCCs
 - 4-dimensional band aperiodicity coefficients

Control features

- Previous, current and next phoneme identity (one-hot encoded)
- Normalized position of frame within phoneme

Blaauw/Bonada model

Blaauw/Bonada model overview

Analysis part of vocoder

Used to extract acoustic features.

Phonetic timing model

- Used to predict begin and end times of each phoneme.
 - During generation, have note begin and end times and phoneme sequence corresponding to each note (syllable), but don't have access to begin and end times of each phoneme.

Pitch model

Used to predict F0 from timed musical and phonetic information.

Timbre model

 Used to generate remaining acoustic features such as the harmonic spectral envelope, aperiodicity envelope, and voice/unvoiced (U/V) decision (from the predict phonetic timings and F0).

Synthesis part of vocoder

Used to generate waveform signal from acoustic features.

Proposed improvements

- Learning to decorrelate speaker information from singing information
- This can be used to synthesize singing for new speakers with very little singer-specific data
- Changes to model architecture
 - Train an Auto-Encoder to learn embeddings for singers and/or styles, which are conditioned on during training of WaveNet framework.
 - This Auto-Encoder can be integrated with WaveNet and trained end-to-end.
- Generate short song in style of singer given new lyrics.

Data to be used

- Multiple datasets with clean singing and lyrics available:
 - o MUSDB18
 - Studio-quality isolated drums, bass, vocals and other instruments
 - 150 full-length music tracks
 - Singing voice dataset
 - Singing musical scale recordings
 - Song recordings
 - Multiple recordings from 2 singers, 1 male and 1 female
- Use GENTLE for phoneme-level alignment of lyrics with the audio

Potential Performance Metrics

Quantitative Metrics:

- Mel-Cepstral Distortion (MCD)
- Band Aperiodcity Distortion (BAPD)
- Modulation Spectrum (MS) for Mel-Generalized Coefficients (MGC)
- Voiced/unvoiced decision metrics
- Timing metrics
- F0 metrics
- Modulation Spectrum (MS) for log F0

Listening Tests:

- Mean Opinion Score (MOS)
- Preference Test

Task Breakdown and assignments

 Collect and clean dataset Fire the second of the	st 1-2 weeks
--	--------------

- 2. Linguistic feature extraction First 1-2 weeks
- 3. Construct the baseline model
- 4. Train and test the baseline model Within 4 weeks
- 5. Transfer learning for new singers^[5] Within 8 weeks

References

- 1. Blaauw, Merlijn, and Jordi Bonada, "A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs," Applied Sciences, 2017.
- 2. WORLD Vocoder: https://github.com/mmorise/World
- 3. Gómez, Emilia, Blaauw, Merlijn, Bonada, Jordi, Chandna, Pritish, and Cuesta, Helena. "Deep Learning for Singing Processing: Achievements, Challenges and Impact on Singers and Listeners" (n.d.).
- 4. https://deepmind.com/blog/wavenet-generative-model-raw-audio/
- 5. Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis: https://google.github.io/tacotron/publications/speaker_adaptation/