从语言直觉到计算模型

汉语自动分词

-从直觉到计算模型

杨沐昀

哈工大教育部-微软语言语音重点实验室 MOE-MS Joint Key Lab of NLP and Speech (HIT)

上一讲回顾

* 分词问题的空间: 全切分有向图

* 难点: 歧义

* 问题本质: 最优路径的计算

内容提要

- * 基于N元文法的分词(MM)
- * 基于HMM的分词/词性标注一体化(模型)
- * 由字构词的汉语分词方法
- * 汉语分词方法的后处理方法

课下阅读:

- * 未登录词的识别
- *数据平滑

统计方法** 机器学习 规则方法*

基于N元文法的分词

* Seg简写为S, 含有n个词: {w₁, w₂,w_n}

$$p(S) = p(w_1^n) = p(w_1) \cdot \prod_{i=2}^n p(w_i \mid w_1^{i-1})$$

- * MM(马尔可夫模型/过程): 有限历史假设, 仅依赖前n-1个词
 - * 一种最简化的情况: 一元文法/uni-gram

$$P(S) = p(w_1) \cdot p(w_2) \cdot p(w_3) \dots p(w_n)$$

- * 采用一元语法(uni-gram)
 - * 等价于最大频率分词
 - * 即把切分路径上每一个词的概率相乘得到该切 分路径的概率
 - * 把词概率的负对数理解成路径"代价",输出结果就是整体代价最"小"分词序列
 - * 正确率可达到92%
 - * 简便易行,效果一般好于基于词表的方法

❖采用二元语法(bi-gram): 性能进一步提高

$$p(S) = p(w_1) \cdot p(w_2 | w_1) \cdot p(w_3 | w_2) L p(w_n | w_{n-1})$$

- * 更大的n:对下一个词出现的约束性信息更多,更大的辨别力。
- * 更小的n: 出现的次数更多, 更可靠的统计结果, 更高的可靠性。
- ❖参数空间 词表=20,000

n	n-gram的个数
2 (bigrams)	400,000,000
3 (trigrams)	8,000,000,000,000
4 (4-grams)	1.6 x 10 ¹⁷

#解决参数爆炸的策略?得失?

- * 等价类映射:降低语言模型参数空间
 - * 绝大多数历史不会出现在训练数据中。
 - * 将历史 $\omega_1\omega_2 ... \omega_{i-1}$ 映射到等价类 $E(\omega_1\omega_2 ... \omega_{i-1})$,其中等价类的数目远小于全部历史的数目。
 - * 假设: $p(\omega_i|\omega_1 ... \omega_{i-1}) = p(\omega_i|E(\omega_1 \omega_2 ... \omega_{i-1}))$,则自由参数的数目会大大减少
 - * 思考题: 等价类的依据: 必须符合语言学的分类吗?
- * 数据平滑(smoothing): 保持模型的辨别能力
 - * 调整最大似然估计结果,更准确的估计未见事件
 - * 提高低概率事件,降低高概率事件,概率分布更均匀。
 - * 课下专题阅读:统计自然语言处理, 宗成庆, 5.3节

内容提要

- *基于N元文法的分词(MM)
- * 基于HMM的分词/词性标注一体化(模型)
- * 由字构词的汉语分词方法
- * 汉语分词方法的后处理方法

课下阅读:

- * 未登录词的识别
- *数据平滑

- * 词的句法类别
 - * 词性集合:
 - * 名词、动词、形容词、副词、介词、助动词
 - * 开放词类(Open Class)和封闭词类(Closed Class)
 - * 可称为: 语法类、句法类、POS标记、词类等
- * 词的兼类现象
 - * 例如
 - * <u>打</u>人 = 动词
 - * 一打衬衫 = 量词
- * 词性标注
 - * 确定每个词在特定的句子中词性

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger -	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Medal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM .	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	24	Left quote	(" or ")
POS	Possessive ending	's	***	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([,(,\{,\prec)$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	•
RBR	Adverb, comparative	faster		Sentence-final punc	(. 1 ?)
RBS	Adverb, superlative	fastest	1	Mid-sentence punc	(:;)
RP	Particle	up, off			

• POS歧义(在Brown语料库中)

无歧义的词(1 tag): 35,340个 有歧义的词(2-7 tags): 4,100个

2 tags	3,760
3 tags	264
4 tags	61
5 tags	12
6 tags	2
7 tags	1

- 输入: 待处理句子S 公式推导
- 输出: S的
 - 词序列 $W = w_1, w_2 ... w_n$
 - 词性序列 $T = t_1, t_2 ... t_n$
- 提示
 - W可以代表S
 - 分词结果即观测序列
 - 词性序列是状态序列

$$\propto P(S|T) * P(T)$$

$$=>P(W|T)*P(T)$$

$$P(T) = P(t_1, t_2...t_n)$$
 --n元文法

$$\propto P(t_1 | s_{\text{begin}}) * P(t_2 | t_1) * \dots$$

*
$$P(t_n | t_{n-1})$$
* $P(s_{end} | t_n)$

• 公式推导(续)

$$P(W|T)=P(w_1, w_2...w_n | t_1, t_2...t_n)$$

=P(w_1|t_1) *P(w_2|t_2)*...* P(w_n|t_n)

注意: 每个节点的内部词和词性有关系, 而节点间词彼此独立

• 最终公式:

$$T_{Best} = \arg \max_{T} \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})$$

思考题: 给定P(W, T|S)能够推导出上面的结果?

- * 考虑模型的初步应用
 - * 给定大规模标记语料库
 - * 完成HMM的参数估计: MLE
 - * 一个具体的分词+词性标注是如何实现的?

Viterbi搜索——例子

分词"词图"中的某段局部路径(图中代价为概率的负对数)

记录"和>生活"的最佳路径是"c-n"

提取所有的"最优路径"记录,确定最优标记状态

内容提要

- *基于N元文法的分词(MM)
- * 基于HMM的分词/词性标注一体化(模型)
- * 由字构词的汉语分词方法
- * 汉语分词方法的后处理方法

课下阅读:

- * 未登录词的识别
- * 数据平滑

- * 基本思路
 - * 分词过程: 一个字的分类问题;
 - * 每个字在词语中属于一个确定位置
- *每个字一定处于下面4个状态(词位)之一
 - * 词首(B)
 - * 词中(M)
 - * 词尾(E)
 - * 单独成词(S)

这里的"字"不仅限于汉字,也可以指标点符号、外文字母、注音符号和阿拉伯数字等任何可能出现在汉语文本中的文字符号。

* 示例分析: 分词结果(1)->字标注形式(2)

- * (1) 上海 / 计划 / 到 / 本 / 世纪 / 末 / 实现 / 人 均 / 国内 / 生产 / 总值 / 五千美元 / 。/
- * (2) 上 / B 海 / E 计 / B 划 / E 到 / S 本 / S 世 / B 纪 / E 末 / S 实 / B 现 / E 人 / B 均 / E 国 / B 内 / E 生 / B 产 / E 总 / B 值 / E 五 / B 千 / M 美 / M 元 / E 。/S

- * 字的的标注过程中,对所有的字根据预定义的特征进行词位特征学习,获得一个概率模型
- * 常用的两类特征
 - * 字本身
 - * 词位(状态)的转移概率

这里说的至少是HMM

* 在待切分字串上,根据字与字之间的结合紧密程度,得到一个词位的分类结果

如何估计?

生成方法与判别方法

- * 生成方法
 - * 以词为单位,基于bayes公式,Language Model/HMM等, 最后决定生成的句子序列

$$W_{Seq} *= argmax_{W_{Seq}} P \left(W_{Seq} | c_1^n\right) * P(c_1^n)$$

 c_1^n : 组成输入句子的n个字的状态标记(词位);

- * 判别方法
 - * 注意条件概率的不同

$$P(t_1^n | c_1^n) = \prod_{i=1}^n P(t_k | t_1^{k-1}, c_1^n) \longrightarrow \prod_{i=1}^n P(t_k | t_1^{k-1}, c_{k-2}^{k+2})$$

tk表示第k个字的词位,即tk∈{B,M,E,S},Ci代表第i个字

- * 关于 c_{k-2}^{k+2}
 - *通常情况下,使用基于字的判别式模型时需要在当前字的上下文中开一个w个字的窗口(一般取w = 5,前后各两个字),在这个窗口抽取分词相关的特征
- * 其他常见特征模板: 北京奥运会
 - * (a) $c_k(k=-2,-1,0,1,2)$ $c_{-2}=$ 北, $c_{-1}=$ 京, $c_0=$ 奥, $c_1=$ 运, $c_2=$ 会
 - * (b) Ck Ck+1(k=-2,-1,0,1)

 $c_{-2}c_{-1}$ =北京, $c_{-1}c_0$ =京奥, c_0c_1 =奥运, c_1c_2 =运会

* (c) c₋₁ c₁

c₋₁c₁=京运

- * 得到对应的特征之后,利用常见的机器学习模型建模求解
 - * 感知机、最大熵、条件随机场、支持向量机
- * 训练数据格式基本都符合如下形式:

A	В	C	D	E	F	G	H	I	J	K	L
	-2	-1	0	1	2	(-2,-1)	(-1, 0)	(0,1)	(1, 2)	[-1, 1]	Tk-1
字1(奥)-Instance1	"	.00	.00			"	<i>II</i>	"	"	.07	"
	.00	"	.//	.00	.00	"	.01	"	"	.07	"
字1(奥)-Instance#1	"	"		.//	.//	"	.01	#	"	.01	"
字2-Instance1	"	.00	.00	.00	.00	"	//	"	"	.07	"
	"	"	.//	.//	.00	"	//	"	"	.//	"
字2-Instance#2	.00	.00		.00	.//	"	.01	#	"	.07	"
	"	.00		"	"	#	.01	#	#	.01	.//
字表 *祥本总数	.11	.11	"	"	"	<i>N</i>	"	#	.//	.//	<i>N</i>

- * 由字构词的分词技术的优势
 - * 简化了分词系统的设计
 - * 文本中的词表词和未登录词都是用统一的字标注过程来实现的,分词过程成为字重组的简单过程。
 - * 既可以不必专门强调词表词信息,也不用专门设计特定的未登录词识别模块

内容提要

- *基于N元文法的分词(MM)
- * 基于HMM的分词/词性标注一体化(模型)
- * 由字构词的汉语分词方法
- * 汉语分词方法的后处理方法

课下阅读:

- * 未登录词的识别
- * 数据平滑

- * 马尔可夫模型遇到的问题:
 - * 马尔可夫假设对于自然语言语法结构的很多属性来说太粗糙
 - * 为什么不采用更精巧的模型? 四元或更高阶...
 - * 不可行,需要大量的参数
 - * 不得不做一些平滑或差值
 - * 难度随模型复杂度而加剧
- 基于转换错误驱动的标注学习
 - 可以利用更大的词汇和语法结构规则
 - 标注可以建立在词语或更多的上下文上
 - 编码了词语和标记之间复杂的依存关系
 - 决策量比估计大量的马尔可夫模型的参数要少一个级别

*两个重要组成部分:

- * 允许的错误校正转换的详细说明
- * 学习算法
- *输入数据:一个已经标注好的语料库,*一个词典(_{不是必须的})
 - * 用最常见的标记来标注训练语料库中的每个词
 - * 需要词典的原因,不是一般的,可以理解为一个初始标注器
 - * 构建一个转换的排序表,把初始的标注转化为接近正确的标注
 - * 通过再次初始化来选择每个词最常用的标记,并应用转换
 - * 得到一个可以用来标注新的文本的排序表

* 基于转换错误驱动的规则学习方法

Brill E. Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging[J]. CL, 1995, 21(4): 543-565.

- * 转换的两个组成部分:
 - * 一条重写规则
 - * 形式: $t^1 \rightarrow t^2$, 表示: "用标记 t^2 来替换 t^1 "。
 - * 一个触发环境
 - * Brill(1995a)制定如下表所示的触发环境。
 - * '*'表示潜在重写的位置,方框表示寻找触发的位置

方案	t_{i} , γ t_{i-2} t_{i-1}	$t_i = t_{i+1} - t_{i+1} - t_{i+3}$
1		*
2		*
3		ale.
4		: *
5		*
6		*
7		*
8		*
9		*

在基于转换的标注中学习到的一些转换的例子

目的标记	触发环境	
VB	前面的标记是 TO	
VB	前面的三个标记之一是 MD	
RBR	下一个标记是 JJ	
VB	前面的两个词语之一是 n't	
	VB VB RBR	

• 由标记触发的转换:

• 第一个转换:

指定名词在TO后面, 应该被重新标记为动词

- * go to school中的school:后面带有一些更专门的转换规则重新标记回NN
- 第二个转换:

具有相同原形和过去式形式的动词(如cut、put),前面有一个情态动词使得动词不可能被用做过去式

• 第三个转换: eg: 重新标注more valuable player中的more

在基于转换的标注中学习到的一些转换的例子

源标记	目的标记	触发环境
NN	VB	前面的标记是 TO
VBP	VB	前面的三个标记之一是 MD
JJR	RBR	下一个标记是 JJ
VBP	VB	前面的两个词语之一是 n'i

- 由词触发的转换:
 - 第四个转换:

前面出现,如don't、shouldn't的词,(类似第二个转换),使得后面更可能是一个原形而不是过去式

- 词语触发环境可以建立在当前词或词语和词性标记的联合
 - 当前词是 w^i ,而下一个标记是 t^j 上

* 基于转换的标注<mark>学习算法</mark>选择了最佳的转换,并且确定了它们的应用次序,其工作方式如下所示:

```
1 C_0 := corpus with each word tagged with its most frequent tag

3 for k := 0 step 1 do

4 v := the transformation u_i that minimizes E(u_i(C_k))

6 if (E(C_k) - E(v(C_k))) < \epsilon then break fi

7 C_{k+1} := v(C_k)

8 \tau_{k+1} := v

9 end

10 Output sequence: \tau_1, \dots, \tau_k
```

基于转换的标注学习算法。 C_i 指语料库标注的第i 次迭代,E 指错误率

- * 第一行:用最常见的标记标注每个词
- * 第四行:每次迭代中,我们选择最可能减少错误率的转换
- * 通过标注过的语料库 C_k 中被错误标注的词语的数目来衡量错误率 $E(C_k)$
- * 当没有能够降低超过预先指定阈值ε大小的错误率的转换时将停止
- * 这是一个转换最优序列的贪心搜索过程

- * 基于转换错误驱动的规则方法
 - * 学习和标注在该方法种都是简单和直观的
 - * 成功用于词性标注、句法分析、介词附着以及语义消歧
 - * 经验上,没有出现过拟合现象
 - * 可以被用来解决大部分后处理问题
 - *效率的提升优化,考验工程能力

Q & A!

中文未登录词识别

未登录词的类型

- * 命名实体(Named Entity)
 - * 汉语人名: 李素丽 老张 李四 王二麻子
 - * 汉语地名:定福庄 白沟 三义庙 韩村 河马甸
 - * 翻译人名: 乔治布什 叶利钦 包法利夫人
 - * 翻译地名: 阿尔卑斯山 新奥尔良 约克郡
 - * 机构名: 方正公司 联想集团 国际卫生组织外贸部
- * 数字、日期词、货币等
- * 商标字号: 非常可乐 乐凯 波导 杉杉 同仁堂
- * 专业术语: 万维网 主机板 模态逻辑 贝叶斯算法
- * 缩略语: 三个代表 五讲四美 打假扫黄 打非计生办
- * 新词语:卡拉OK 波波族 美刀 港刀

未登录词识别的依据

- * 内部构成规律(用字规律)
- * 外部环境(上下文)
- * 重复出现规律

中国人名的内部构成规律

- * 在汉语的未定义词中,中国人名是规律性最强,也是最容易识别的一类;
- *中国人名一般由以下部分组合而成:
 - *姓:张、王、李、刘、诸葛、西门、范徐丽泰
 - * 名: 李素丽, 张华平, 王杰、诸葛亮
 - *前缀:老王,小李
 - * 后缀: 王老, 赵总
- * 中国人名各组成部分用字比较有规律

中国人名的内部构成规律

- *台湾出版的《中国姓氏集》收集姓氏5544个,其中,单姓3410个,复姓1990个,3字姓144个。
- *中国目前仍使用的姓氏共737个,其中,单姓729个,复姓8个。
- * 根据我们收集的300万个人名统计:姓氏:974个, 其中,单姓952个,复姓23个,300万人名中出 现汉字4064个。

中国人名的内部构成规律

- * 中国人名各组成部分的组合规律
 - * 姓十名
 - * 姓
 - * 名
 - * 前缀十姓
 - * 姓十后缀
 - * 姓十姓十名(海外已婚妇女)

中国人名的上下文构成规律

* 身份词:

- * 前: 工人、教师、影星、犯人
- * 后: 先生、同志
- * 前后: 女士、教授、经理、小姐、总理
- * 地名或机构名:
 - * 前: 静海县大丘庄禹作敏
- * 的字结构
 - * 前: 年过七旬的王贵芝
- * 动作词
 - * 前: 批评,逮捕,选举
 - * 后:说,表示,吃,结婚

中国人名识别的难点

- * 一些高频姓名用字在非姓名中也是高频字
 - * 姓氏: 于,马,黄,张,向,常,高
 - * 名字: 周鹏和同学, 周鹏和同学
- * 人名内部相互成词,指姓与名、名与名之间本身就 是一个已经被收录的词
 - * [王国]维、[高峰]、[汪洋]、张[朝阳]
- * 人名与其上下文组合成词
 - * 这里[有关]天培的壮烈;
 - * 费孝通向人大常委会提交书面报告
- * 人名地名冲突: 河北省刘庄

中文姓名识别方法

- * 中文姓名识别方法
 - * 姓名库匹配,以姓作为触发信息,寻找潜在的名字
 - * 计算潜在姓名的概率估值及相应姓氏的姓名阈值,根据姓名概率评价函数和修饰规则对潜在的姓名进行筛选。

中国地名的识别

* 困难

- *地名数量大,缺乏明确、规范的定义。《中华人民共和国地名录》(1994)收集88026个,不包括相当一部分街道、胡同、村庄等小地方名称。
- * 真实语料中地名出现情况复杂。如地名简称、地名用词与其它普通词冲突、地名是其它专用名词的一部分, 地名长度不一等。

未登录词识别的一般方法

- * 在统计方法中,未登录词识别的一种最通 常的做法就是将识别问题转化成标注问题
- * 对于输入句子中的每个汉字,定义四个标记:
 - * 不属于未登录词O
 - * 未登录词首字B
 - * 未登录词尾字E
 - * 未登录词中间字I

将识别问题转化成标注问题

- * 如果能够把输入句子中的每个汉字都正确 地按上述标记进行标注,那么未登录词的 识别自然就解决了
- * 标注可以采用
 - * 隐马尔科夫模型(HMM)
 - * 最大熵(ME)
 - *最大熵马尔科夫模型(MEMM)
 - *条件随机场(CRF)等

将识别问题转化成标注问题

- * 以人名识别为例,输入文本:
 - * 这是周恩来、邓颖超生前居住的地方
 - *标注为:
 - * 这是周恩来、邓颖超生前居住的地方
 - * 00B | E0B | E0000000
 - * 两处标注为BIE的字串"周恩来"、"邓颖超"被识别为人名
- * 训练语料库为已经标注人名的语料库

