Cardinalidad

Clase 18

IIC 1253

Prof. Cristian Riveros

Juego de niños

Juanita y Pedrito juegan a "quién dice el número más grande":

Juanita: 1

Pedrito: 2

Juanita: 3

Pedrito: 5

Juanita: 10

Pedrito: 100

Juanita: 200

Pedrito: ∞

 (Ξ)

¿cómo medimos el tamaño de un conjunto?

¿por qué el conjunto tiene tamaño 5?

Cardinalidad

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

¿qué propiedad cumple la relación |A| = |B|?

Cardinalidad

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Cardinalidad (ejemplos)

Ejemplos

¿qué conjuntos están en las siguientes clases de equivalencia para $|\cdot| = |\cdot|$?

- $\blacksquare \mid \{\heartsuit, \spadesuit, \diamondsuit, \spadesuit\} \mid$
- Ø |
- | N |

Cardinalidad de conjuntos finitos

Sea A un conjunto cualquiera.

Definición

■ Diremos que A es finito si existe un n tal que:

$$|A| = |\{0, 1, 2, \ldots, n-1\}|$$

■ Si $|A| = |\{0, 1, 2, ..., n-1\}|$ diremos que la cardinalidad de A es n.

$$|A| = n$$

¿sirve la relación $|\cdot| = |\cdot|$ para medir la cardinalidad de conjuntos **infinitos**?

Cardinalidad de conjuntos infinitos

Definición

Sea \mathbb{P} el conjunto de todos los números pares.

¿tiene ℙ la misma cardinalidad que №?

Con la biyección $f : \mathbb{N} \to \mathbb{P}$ tal que $f(n) = 2 \cdot n$, se tiene que $|\mathbb{N}| = |\mathbb{P}|$.

Demuestre que $f : \mathbb{N} \to \mathbb{P}$ es una biyección.

 \mathbb{Z} la misma cardinalidad que \mathbb{N} ?

\mathbb{Z} la misma cardinalidad que \mathbb{N} ?

Teorema

Los conjuntos $\mathbb N$ y $\mathbb Z$ son equinumerosos.

¿cómo demostramos que $|\mathbb{N}| = |\mathbb{Z}|$?

¿tiene \mathbb{Z} la misma cardinalidad que \mathbb{N} ?

Teorema

Los conjuntos \mathbb{N} y \mathbb{Z} son equinumerosos.

¿como demostramos que $|\mathbb{N}| = |\mathbb{Z}|$?

Definimos la biyección $f : \mathbb{N} \to \mathbb{Z}$ como:

$$f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n+1}{2} & \text{si } n \text{ es impar} \end{cases}$$

Por lo tanto, $|\mathbb{N}| = |\mathbb{Z}| !!$

Conjuntos numerables

Definición

A es numerable si tiene la misma cardinalidad que un subconjunto de \mathbb{N} .

$$\exists S \subseteq \mathbb{N}. |A| = |S|.$$

Proposición

A es numerable si, y solo si, existe una secuencia (finita o infinita) en A:

$$a_0, a_1, a_2, a_3, \dots$$

- 1. $a_i \neq a_j$ para todo $i \neq j$, y
- 2. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una **lista**.

¿son los racionales $\mathbb Q$ numerables? ¿es $\mathbb N \times \mathbb N$ numerable?

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿funciona?

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿cuál es la secuencia que estamos siguiendo?

Teorema

 $\mathbb Q$ y $\mathbb N\times \mathbb N$ son conjuntos numerables.

```
(0,0),
(1,0),(0,1),
(2,0),(1,1),(0,2),
...
(n,0),(n-1,1),(n-2,2),...,(2,n-2),(1,n-1),(0,n),...
```

Teorema

 $\mathbb Q$ y $\mathbb N\times \mathbb N$ son conjuntos numerables.

$$S_0 := (0,0),$$
 $S_1 := (1,0), (0,1),$
 $S_2 := (2,0), (1,1), (0,2),$
...
 $S_n := (n,0), (n-1,1), (n-2,2), ..., (2,n-2), (1,n-1), (0,n), ...$
1. $j a_i \neq a_i$ para todo $i \neq j$?

2. ¿para todo $(n_1, n_2) \in \mathbb{N} \times \mathbb{N}$, existe un $i \in \mathbb{N}$ tal que $(n_1, n_2) = a_i$?

Por lo tanto, $\mathbb{N} \times \mathbb{N}$ es un conjunto numerable.

Teorema

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables.

¿cómo podemos enumerar Q?

(ejercicio)

¿por qué nos falla la intuición?

David Hilbert (1862 - 1943)

Paradoja del gran hotel de Hilbert

¿es ℝ numerable?

Teorema

 \mathbb{R} **NO** es numerable.

Demostración que R NO es numerable

- Demostraremos que el intervalo (0,1) de \mathbb{R} NO es numerable.
- Por contradicción, supongamos que (0,1) es numerable.
- Entonces existe una lista infinita del los reales en (0,1):

$$r_0, r_1, r_2, r_3, \ldots$$

donde cada real en (0,1) aparece una vez, y solo una vez.

Demos	stración	que	R N	O es	nume	rable					
	Reales	Representación decimal									
•	<i>r</i> ₀	0.	d ₀₀		d ₀₂		d ₀₄	d ₀₅			
	r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
	<i>r</i> ₂	0.	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}			
	<i>r</i> ₃	0.	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}	d_{35}			
	<i>r</i> ₄	0.	d_{40}	d_{41}	<i>d</i> ₄₂	d ₄₃	d ₄₄	d_{45}	•••		
	<i>r</i> ₅	0.	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d_{55}	•••		
	;					;			٠.		

Demostración que $\mathbb R$ NO es numerable

Reales	Representación decimal									
<i>r</i> ₀	0.	d ₀₀	d ₀₁	d ₀₂	d ₀₃	d ₀₄	d_{05}	•••		
r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
<i>r</i> ₂	0.	d_{20}	d_{21}	d ₂₂	d_{23}	d_{24}	d_{25}			
<i>r</i> ₃	0.	d_{30}	d_{31}	d ₃₂	d ₃₃	d_{34}	d_{35}			
<i>r</i> ₄	0.	d_{40}	d_{41}	d 42	d ₄₃	d ₄₄	d_{45}	•••		
r 5	0.	d_{50}	d_{51}	d_{52}	d_{53}	d ₅₄	d ₅₅	•••		
÷					:			٠.		

- Para cada $i \ge 0$, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$
- Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

¿aparece r en la lista?

Demostración que \mathbb{R} NO es numerable

- Para cada $i \ge 0$, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$
- Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

¿aparece r en la lista?

Veamos:

$$r = r_0?$$

$$r = r_1?$$
 X

-
- $r = r_n$? NO, porque el *n*-esimo digito de *r* es distinto al de r_n :

$$d_n \neq d_{nn}$$