Test de Sistema Inteligentes - MUIINF

ETSINF, Universitat Politècnica de València, 14 de Junio de 2016

Apellido: Nombre:

Cuestiones(60 minutos, sin apuntes)

Marca cada recuadro con una única opción entre las dadas.

B En el marco de la máxima entropía, la función

$$p(y|x) = \frac{1}{Z(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$

donde
$$Z(x) = \sum_{y} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$
 es:

- A) la función obtenida para clasificar una vez se deriva la función a optimizar respecto a los multiplicadores de Lagrange.
- B) la función obtenida para clasificar una vez se deriva la función a optimizar respecto a las probabilidades *a posteriori* del modelo.
- C) la función a optimizar.
- D) la función obtenida para clasificar una vez se deriva la función a optimizar respecto a las restriciones.
- lacksquare En el marco de la máxima entropía, la expresión $\delta_i = \frac{1}{M}\log\frac{\widetilde{p}(f_i)}{p_{\lambda}(f_i)}$
 - A) se utiliza en para clasificar una muestra según la expresión p(y|x)
 - B) se utiliza en para clasificar una muestra según la expresión p(y,x)
 - C) se utiliza en el algoritmo de aprendizaje IIS para optimizar las características $f_i(y, x)$.
 - D) se utiliza en el algoritmo de aprendizaje IIS para optimizar los valores λ asociados a las características
- C En el marco de la máxima entropía, la expresión $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x,y) f_i(x,y)$ representa:
 - A) el valor esperado de la distribución empírica $\widetilde{p}(x,y)$ de acuerdo con la característica $f_i(x,y)$.
 - B) el producto esperado de $f_i(x, y)$ y $\widetilde{p}(x, y)$.
 - C) el valor esperado de la característica $f_i(x,y)$ de acuerdo con la distribución empírica $\widetilde{p}(x,y)$
 - D) el valor normalizado de la característica $f_i(x, y)$.
- lacktriangle En el algoritmo IIS el incremento δ_i a aplicar a cada λ_i en cada iteración es función de los valores:
 - A) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x|y) f_i(x,y)$ y $p_{\lambda}(f_i) = \sum_{x,y} p_{\lambda}(y|x) f_i(x,y)$.
 - B) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x|y) f_i(x,y)$ y $p_{\lambda}(f_i) = \sum_{x,y} \widetilde{p}(x) p_{\lambda}(y|x) f_i(x,y)$.
 - C) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x)\widetilde{p}(y|x)f_i(x,y)$ y $p_{\lambda}(f_i) = \sum_{x,y} \widetilde{p}(x)p_{\lambda}(y|x)f_i(x,y)$.
 - D) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x,y) f_i(x,y)$ y $p_{\lambda}(f_i) = \sum_{x,y} \widetilde{p}(x) p_{\lambda}(x,y) f_i(x,y)$.
- Sea un problema de clasificación en cuatro clases A, B, C y D tal que la clasificación se realiza a partir de 3 características c_0 , c_1 y c_2 . Se dispone de un modelo entrenado por Máxima Entropía cuyas características son del tipo:

$$f(x,y) = \begin{cases} 1 & \text{si } y = S \text{ la caracter\'(stica } c_j \text{ est\'a presente en } x \\ 0 & \text{en otro caso} \end{cases}$$

donde $S \in \{A, B, C, D\}$.

Suponiendo que $\lambda_{A,c_0} = \lambda_{C,c_1} = 1, \lambda_{B,c_1} = \lambda_{D,c_2} = -1$ y el resto de valores λ son 0, indica cuál sería la clase en la que se clasificaría una muestra que tuviese las características c_1 y c_2 .

- A) En A.
- B) En B.
- C) En C.
- D) En D.
- A En el marco de la máxima entropía, los valores $f_i(x, y)$:
 - A) Son siempre enteros.
 - B) Son siempre reales.
 - C) Son siempre vectores de valores reales.
 - D) Nunca toman valores nulos.

- A En la aproximación inversa a traducción estadística mediante la expresión $\hat{e} = \arg \max_{e} P(e)P(f|e)$
 - A) P(e) representa la probabilidad a priori de la traducción e de la cadena f y se denomina modelo de lenguaje.
 - B) P(f|e) representa la probabilidad a posteriori de la traducción e de la cadena f y se denomina modelo de lenguaje.
 - C) P(e) representa la probabilidad *a priori* del modelo de traducción.
 - D) Ninguna de las anteriores
- A Con un modelo de lenguaje de n-gramas la probabilidad de una cadena y se aproxima como:
 - A) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i|y_{i-n+1}..y_{i-1}).$
 - B) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i, y_{i-n+1}..y_{i-1}).$
 - C) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_i|y_1..y_{i-1}).$
 - D) $P(y) = P(y_1) \prod_{i=2}^{|y|} P(y_{i-n+1}).$
- C En traducción estadística, el modelo de lenguaje
 - A) Se aprende a partir de pares de entrada (e, f), donde e es una frase en la lengua origen y f es su traducción en la lengua destino.
 - B) Se aprende a partir de cadenas en la lengua origen.
 - C) Se aprende a partir de cadenas en la lengua destino.
 - D) Se define manualmente.
- D En traducción estadística, el problema de la búsqueda con un modelo log-lineal utiliza la siguiente expresión:
 - A) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \lambda_k h_k(x|y)$.
 - B) $\hat{y} = \arg \max_{y} \sum_{k=1}^{K} \lambda_k \log h_k(x|y)$.
 - C) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \log h_k(x, y)$.
 - D) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \lambda_k h_k(x, y)$.
- Dada la frase de referencia "éramos dos antiguos amigos" y la frase "éramos dos amigos antiguos" producida por un sistema de traducción estadística, y suponiendo que BP = 1, y w_n es equiprobable, el BLEU = BP exp $\left(\sum_{n=1}^N w_n \log P_n\right)$ con precisión de n-gramas hasta n=2 es:
 - A) 0.50.
 - B) 0,42.
 - C) 0,61.
 - D) 0,70.
- B El paquete de traducción estadística GIZA
 - A) Permite aprender el modelo de lenguaje utilizado para traducción.
 - B) Permite aprender los modelos de alineamiento de los modelos de IBM.
 - C) Permite aprender los pesos del modelo log-lineal de traducción.
 - D) Permite aprender los modelos de alineamiento de los modelos de IBM y los pesos del modelo log-lineal de traducción.