Assignment #1

Gustavo Estrela de Matos CSCE 433: Formal Languages and Automata

January 25, 2016

Question 1. Prove by induction that for $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{2^i} = 1 - \frac{1}{2^n}$

- Base case: For the base case we know that n=1, then: $\sum_{i=1}^{1} \frac{1}{2^i} = \frac{1}{2}$; and also $1 \frac{1}{2} = \frac{1}{2}$. Therefore the equation holds for the base case.
- Inductive hypothesis: Assume that the equation holds for $2 \le n \le k$ for some integer k
- Inductive step: For the case where n = k + 1, we have that:

$$\sum_{i=1}^{k+1} \frac{1}{2^i} = \sum_{i=1}^k \frac{1}{2^i} + \frac{1}{2^{k+1}}$$

$$= 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}} \text{ (by inductive hypothesis)}$$

$$= 1 - (\frac{1}{2^k})(1 - \frac{1}{2})$$

$$= 1 - \frac{1}{2^{k+1}}$$

Then, if the equations holds for k it also holds for k+1. Now by induction, using the base case, inductive hypothesis and inductive step, we have that for all $n \ge 1$ the equation holds, as we wanted to proof.

Question 2. Show that any integer postage greater than 7 cents can be formed by using only 3-cent and 5-cent stamps

Basically, what we want to demonstrate is that, for any n > 7, n can be written as

$$n = 3a + 5b \tag{1}$$

where a and b non negative numbers. Let k be an integer such that k > 7 and take $k \mod 3$:

- if $k \equiv 0 \mod 3$: Then, for some integer $q \ge 0$, k = 3q, so equation 1 holds.
- if $k \equiv 1 \mod 3$: We have that

$$k - 10 \equiv 1 - 10 \mod 3$$
$$k - 10 \equiv 0 \mod 3$$

and, since k>7 and $k\equiv 1 \mod 3$ we have that $k\geq 10$, hence $k-10\geq 0$ and there is $q\geq$ integer such that

$$k - 10 = 3q$$
$$k = 3(q) + 5(2)$$

Therefore, equation 1 also holds for this case.

• if $k \equiv 2 \mod 3$: We have that

$$k - 5 \equiv 2 - 5 \mod 3$$
$$k - 5 \equiv 0 \mod 3$$

and, since k > 7, there is $q \ge 0$ integer such that

$$k - 5 = 3q$$
$$k = 3(q) + 5(1)$$

Therefore, equation 1 holds again.

Since the equation 1 holds for all cases it holds for any case.

Question 3. Give a DFA for each of the following languages

- (a) Binary strings that contais at least five 1s.
- (b) Binary strings that beggins with 010 or ends with 101.
- (c) Binary strings having the substring 010 but not having the substring 101.

(a)

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\},\$
- $\Sigma = \{0, 1\},$
- $\bullet \ q=q_0,$

- $F = \{q_5\}$, and
- δ is defined as follows.

	0	1
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_2	q_3
q_3	q_3	q_4
q_4	q_4	q_5
q_5	q_5	q_5

(b)

- $Q = \{q_0, q_1, q_2, q_4, q_5, q_6, q_7, q_8\},$
- $\bullet \ \Sigma = \{0,1\},$
- $\bullet \ q=q_0,$
- $F = \{q_4, q_8\}$, and
- δ is defined as follows.

	0	1
$ q_0 $	q_1	q_5
q_1	q_7	q_2
q_2	q_4	q_5
q_4	q_4	q_4
q_5	q_6	q_5
q_6	q_7	q_8
q_7	q_7	q_5
q_8	q_6	q_5

(c)

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\},$
- $\Sigma = \{0, 1\},\$
- $\bullet \ q = q_0,$
- $F = \{q_4, q_5\}$, and
- δ is defined as follows.

	0	1
q_0	q_1	q_2
q_1	q_1	q_3
q_2	q_6	q_2
q_3	q_4	q_2
q_4	q_5	q_7
q_5	q_5	q_2
q_6	q_1	q_7
q_7	q_7	q_7