Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Курсовой проект

«Управление перевернутым маятником на тележке» по дисциплине «Теория автоматического управления»

Подготовил: Дюжев Владислав Дмитриевич

Группа: R33353

Преподаватель: Пашенко А. В.

Содержание

Содержание

1	Построение математической модели объекта		
	1.1	Вывод уравнений	
		Точки равновесия	
		Линеаризация	
2	Анализ математической модели		
	2.1	Анализ матриц	
		Передаточные функции	
	2.3	Линейное моделирование	
	2.4	Нелинейное моделирование	
3	Модальное управление		1
4	 Регуляторы с заданной степенью устойчивости 		1

1 Построение математической модели объекта

1.1 Вывод уравнений

Рис. 1: Перевернутый маятник на тележке.

Рассмотрим систему перевернутого маятника на тележке (рис. 1). Введем следущие обозначения физических величин:

- а линейная координата тележки;
- ullet \dot{a} линейная скорость тележки;
- φ угол отклонения маятника от вертикали;
- $\dot{\varphi}$ угловая скорость маятника;
- f вращающий внешний момент, действующий на маятник;
- u сила действующая на тележку;
- M, m массы тележки и маятника соответственно;
- l длина маятника.

В качестве вектора состояния $x=\begin{bmatrix}x_1 & x_2 & x_3 & x_4\end{bmatrix}^T$ выберем набор $a,\dot{a},\varphi,\dot{\varphi}$. В роли управляющего воздействия примем u, в роли внешнего возмущения – f. Измеряемыми сигналами $y=\begin{bmatrix}y_1 & y_2\end{bmatrix}^T$ будем считать a и φ .

$$\begin{cases} x_1 = a \\ x_2 = \dot{a} \\ x_3 = \varphi \\ x_4 = \dot{\varphi} \\ y_1 = a \\ y_2 = \varphi \end{cases}$$

$$(1)$$

Для вывода математической модели данной физической системы воспользуемся уравнениями Лагранжа:

$$\begin{cases} \frac{d}{dt} \frac{\partial T}{\partial \dot{a}} - \frac{\partial T}{\partial a} = u \\ \frac{d}{dt} \frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial T}{\partial \varphi} = f + mgl \sin(\varphi) \end{cases} , \tag{2}$$

где T – кинетическая энергия системы

$$T(t) = M\frac{\dot{a}^2}{2} + m\frac{(\frac{d}{dt}(l\cos(\varphi)))^2 + (-\frac{d}{dt}(l\sin(\varphi)) + \dot{a})^2}{2} = (M+m)\frac{\dot{a}^2}{2} + \frac{ml^2\dot{\varphi}^2}{2} - ml\cos(\varphi)\dot{a}\dot{\varphi}$$
(3)

Подставив выражение для T в уравнения 2, получим уравнения математической модели системы:

$$\begin{cases} (M+m)\ddot{a} + ml(\sin(\varphi)\dot{\varphi}^2 - \cos(\varphi)\ddot{\varphi}) = u\\ ml^2\ddot{\varphi} - ml\ddot{a}\cos\varphi = f + mgl\sin(\varphi) \end{cases}$$
(4)

Тогда, выразив \ddot{a} и $\ddot{\varphi}$:

$$\begin{cases} \ddot{a} = -\frac{ml}{M+m}\sin(\varphi)\dot{\varphi}^2 + \frac{ml}{M+m}\cos(\varphi)\ddot{\varphi} + \frac{1}{M+m}u\\ \ddot{\varphi} = \frac{1}{l}\ddot{a}\cos(\varphi) + \frac{g}{l}\sin(\varphi) + \frac{1}{ml^2}f \end{cases}$$
(5)

Решив данную систему уравнений ${f 5}$ относительно \ddot{a} и \ddot{arphi}

$$\begin{cases} \ddot{a} = \frac{1}{M + m\sin(\varphi)^2} (-ml\sin(\varphi)\dot{\varphi}^2 + mg\cos(\varphi)\sin(\varphi) + \frac{\cos(\varphi)}{l}f + u) \\ \ddot{\varphi} = \frac{1}{M + m\sin(\varphi)^2} (-m\sin(\varphi)\cos(\varphi)\dot{\varphi}^2 + \frac{(M + m)g}{l}\sin(\varphi) + \frac{M + m}{ml^2}f + \frac{\cos(\varphi)}{l}u) \end{cases}$$
(6)

Представим математическую модель в терминах вектора состояния:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = \frac{1}{M+m\sin(x_{3})^{2}} (-ml\sin(x_{3})x_{4}^{2} + mg\cos(x_{3})\sin(x_{3}) + \frac{\cos(x_{3})}{l}f + u) \\ \dot{x}_{3} = x_{4} \\ \dot{x}_{4} = \frac{1}{M+m\sin(x_{3})^{2}} (-m\sin(x_{3})\cos(x_{3})x_{4}^{2} + \frac{(M+m)g}{l}\sin(x_{3}) + \frac{M+m}{ml^{2}}f + \frac{\cos(x_{3})}{l}u) \\ y_{1} = x_{1} \\ y_{2} = x_{3} \end{cases}$$

$$(7)$$

1.2 Точки равновесия

В точках равновесия все компоненты производной вектора состояния по времени равны 0. Следовательно, полагая $u, f \equiv 0$ необходимо:

$$\begin{cases} x_2 = 0\\ \frac{1}{M + m\sin(x_3)^2} (-ml\sin(x_3)x_4^2 + mg\cos(x_3)\sin(x_3)) = 0\\ x_4 = 0\\ \frac{1}{M + m\sin(x_3)^2} (-m\sin(x_3)\cos(x_3)x_4^2 + \frac{(M+m)g}{l}\sin(x_3)) = 0 \end{cases}$$
(8)

Учитывая $x_4 = 0$ и $M + m\sin(x_3)^2 > 0$:

$$\begin{cases} x_1 \in \mathbb{R} \\ x_2 = 0 \\ x_3 = \pi n, n \in \mathbb{Z} \\ x_4 = 0 \end{cases}$$

$$(9)$$

Заметим, однако, что с физической точки зрения условие $x_3 = \pi n$ эквивалентно $x_3 = 0$ (верхнее положение маятника) или $x_3 = \pi$ (нижнее положение маятника). В дальнейшем нас будет интересовать стабилизация системы около верхенего положения равновесия.

1.3 Линеаризация

Для линеаризации системы около векхней точки равновесия $(x = \begin{bmatrix} a_0 & 0 & 0 & 0 \end{bmatrix}^T)$ представим некоторые функции от компонент вектора состояния в виде ряда Тейлора в данной точке:

$$\sin(x_3) = x_3 + \sum_{n=1}^{\infty} (-1)^n \frac{x_3^{2n+1}}{(2n+1)!}$$

$$\cos(x_3) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x_3^{2n}}{(2n)!}$$

Приняв величины вектора состояния достаточно малыми $(x_3^2 \ll x_3, x_4^2 \ll x_4)$, можем записать линеаризованные уравненя динамики системы:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = \frac{mg}{M}x_{3} + \frac{1}{Ml}f + \frac{1}{M}u \\ \dot{x}_{3} = x_{4} \\ \dot{x}_{4} = \frac{(m+m)g}{Ml}x_{3} + \frac{M+m}{Mml^{2}}f + \frac{1}{Ml}u \end{cases}$$
(10)

Можем представить линеаризованную систему в матричном виде:

$$\begin{cases} \dot{x} = Ax + Bu + Df \\ y = Cx \end{cases} , \tag{11}$$

где матрицы A, B, C, D имеют следующий вид:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{(M+m)g}{Ml} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{1}{Ml} \end{bmatrix}, D = \begin{bmatrix} 0 \\ \frac{1}{Ml} \\ 0 \\ \frac{M+m}{Mml^2} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Выберем значения параметров системы:

$$M = 10, m = 1, l = 1, q = 9.8$$

Тогда, матрицы системы примут следующий вид:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0.98 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 10.78 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0.1 \\ 0 \\ 0.1 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 0.1 \\ 0 \\ 1.1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2 Анализ математической модели

2.1 Анализ матриц

Найдем собственные числа и собственные вектора матрицы A:

$$\sigma(A) = \{0, 0, 3.28, -3.28\}; \nu(A) = \{\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0.026\\0.087\\0.29\\0.953\end{bmatrix}, \begin{bmatrix} -0.026\\0.087\\-0.29\\0.953\end{bmatrix}\}$$

Заметим, что первые два собственных вектора линейно зависимы и соответствуют нулевым собственным числам. Можем сделать вывод, что первая компонента вектора состояния не влияет на динамику системы (от координаты тележки не зависят другие параметры и их производные).

Имея кратные нулевые корни, а также положительное собственное число, система является неустойчивой. Проведем анализ на управляемость, стабилизируемость, наблюдаемость и обнаруживаемость приведя систему в Жорданов базис:

$$A = PJP^{-1} = \begin{bmatrix} 1 & 0 & -0.03 & 0.03 \\ 0 & 1 & 0.09 & 0.09 \\ 0 & 0 & -0.31 & 0.31 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3.28 & 0 \\ 0 & 0 & 0 & 3.28 \end{bmatrix} \begin{bmatrix} 1 & 0 & -0.03 & 0.03 \\ 0 & 1 & 0.09 & 0.09 \\ 0 & 0 & -0.31 & 0.31 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1}$$

$$P^{-1}B = \begin{bmatrix} 0\\0.09\\0.05\\0.05\\0.05 \end{bmatrix}, CP = \begin{bmatrix} 1 & 0 & -0.03 & 0.03\\0 & 0 & -0.31 & 0.31 \end{bmatrix}$$

Можем сделать вывод, что система является полностью управляемой и наблюдаемой (соответственно стабилизируемой и обнаруживаемой).

2.2 Передаточные функции

Найдем передаточные матрицы системы от входа к выходу и от внешнего возмущения к выходу:

$$\underset{u \to y}{W}(s) = \begin{bmatrix} \frac{0.1s^2 - 0.98}{s^4 - 10.78s^2} \\ \frac{0.1}{s^2 - 10.78} \end{bmatrix}, \underset{f \to y}{W}(s) = \begin{bmatrix} \frac{0.1}{s^2 - 10.78} \\ \frac{1.1}{s^2 - 10.78} \end{bmatrix}$$

Динамический порядок функции $\frac{0.1s^2-0.98}{s^4-10.78s^2}$ равен 4, для остальных – 2. Относительный динамический порядок всех функций равен 2. Нули присутствуют только у функции $\frac{0.1s^2-0.98}{s^4-10.78s^2}$ и равны ± 3.13 . Полюса передаточных функций соответствуют собственным числам матрицы динамики системы.

Все функции описывают расходящийся переходный процесс при нулевом входном (внешнем) воздействии, т.к. имеют кратные нулевые или положительный полюса.

2.3 Линейное моделирование

Выполним моделирование линеаризованной системы, заданной уравнениями 11. Ниже приведены графики, демонстрирующие динамику вектора состояния при различных начальных условиях.

Рис. 2: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

Рис. 3: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Рис. 4: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Pис. 5: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

2.4 Нелинейное моделирование

Выполним моделирование исходной системы, заданной уравнениями 7. Ниже приведены графики, демонстрирующие динамику вектора состояния при различных начальных условиях.

Рис. 6: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

Рис. 7: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Рис. 8: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Рис. 9: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

Заметим, что при малом времени моделирования динамика систем очень схожая. Построим сравнительные графики при большем времени переходного процесса.

Puc. 10: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

Pис. 11: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Pис. 12: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Рис. 13: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

При увеличении времени моделирования расхождения становятся явно заметными.

3 Модальное управление

4 Регуляторы с заданной степенью устойчивости