DATA MINING

Pertemuan 5: Classification (lanjutan)

= 10

= 0

= 0

= 10

Review Kuliah Sebelumnya

- Prosedur umum untuk membangun sebuah model classifier:
 - Mempartisi data menjadi Training dan Testing
 - Melatih classifier

= 3

= 0

= 0

S 0

- Mengetes classifier sebelum digunakan:
 - Ukur kinerjanya dengan Precision, Recall, F-Measure
- Mengkombinasikan beberapa classifier
 - Majority Vote
 - Linear Weight Combination
- Binary-class vs Multi-class

Algoritma Klasifikasi

- Induksi pohon keputusan (*decision tree*)
- **Bayesian Classification**
 - **Neural Network Classification**
 - Support Vector Machine Classification

Klasifikasi Pohon Keputusan

3 13

= 12

= 3

= 0

= 3

= 0

 $\leq a$

S 0

5 0

Apa Itu Pohon Keputusan?

- Struktur tree seperti flowchart
- Node internal: test/cek pada sebuah atribut
 - Contoh: usia > 30?
 - Node eksternal/daun: label class
 - Membeli komputer: YA atau TIDAK

Contoh

Menentukan apakah seorang pelanggan akan membeli komputer atau tidak

20

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Pohon Keputusan untuk Pembelian Komputer

S m

Induksi Pohon Keputusan

- Algoritma:
 - Hunt's Algorithm
 - CART

= 0

- ID3 (Iterative Dichotomizer 3), C4.5, C5
- SLIQ, SPRINT
- Struktur umum:
 - Pemilihan atribut dengan Entropi Informasi
 - Induksi pohon keputusan
 - Pembuatan aturan (rule)

Pembuatan Aturan

- Aturan didasarkan hanya pada sampel input
- Aturan seharusnya dapat digunakan untuk memprediksi hasil pada kasus lain (yang bukan sampel input)
 - Jika prediksi tidak dapat dilakukan, maka aturan perlu diubah, baik secara otomatis atau manual

Rumusan Permasalahan

Diberikan sejumlah data yang dideskripsikan oleh sejumlah atribut dan sebuah class hasil, permasalahannya adalah mencari pohon keputusan minimum yang dapat mengklasifikasikan nilai class berdasarkan nilai atributnya

Pembuatan Pohon Keputusan

- Kumpulkan sampel untuk membuat training set
- Tentukan *class* dari tiap sampel
- Pilih salah satu atribut untuk menjadi titik awal atau node *root* dari *tree*
- Bagi training set menjadi sejumlah tabel, masingmasing tabel memiliki sampel dengan nilai atribut = 0 terpilih yang sama
- = 0 = 0 Jika nilai class dapat terbagi/terpartisi, maka proses selesai. Jika tidak, pilih atribut baru dan bagi kembali training set berdasarkan nilai atribut baru tersebut

Algoritma untuk Induksi Pohon Keputusan

Algoritma dasar:

811

20

2 20

50

= 3

= 3

= 0

= 3

= 0

5 0

5 1

W 19

- Tree dibangun dengan pendekatan divide-and-conquer top-down rekursif
- Di awal, semua sampel training ada di root
- Atribut bertipe kategori (jika ada nilai kontinyu, maka perlu didiskritkan terlebih dahulu)
- Sampel dipartisi secara rekursif berdasarkan pada atribut-atribut yang terpilih
- Pemilihan atribut dilakukan berdasarkan nilai heuristik atau perhitungan statistik (contoh: entropi informasi)
- Kondisi yang menghentikan proses partisi rekursif:
 - Semua sampel pada sebuah node berada pada class yang sama
 - Tidak ada lagi atribut yang dapat digunakan untuk melakukan partisi → majority voting dilakukan untuk mengklasifikasi node daun
 - Tidak ada lagi sampel yang dapat digunakan

Contoh

Atribut

Tentukan cara untuk memprediksi profil perusahaan kang akan menyebabkan kenaikan atau penurunan profit berdasarkan data berikut:

E11

Class

	Profit	Age	Competition	Туре
	Down	Old	No	Software
	Down	Midlife	Yes	Software
A	Up	Midlife	No	Hardware
	Down	Old	No	Hardware
1	Up	New	No	Hardware
	Up	New	No	Software
	Up	Midlife	No	Software
	Up	New	Yes	Software
	Down	Midlife	Yes	Hardware
	Down	Old	Yes	Software

Langkah Penyelesaian

Kita lakukan pemisahan berdasarkan atribut Age:

= 0

= 3

50

50

S m

		Profit	Age	Competition	Туре
	\rightarrow old \rightarrow	→ down	old	no	software
		→ down	old	no	hardware
		→ down	old	yes	software
	_	→ up	new	no	hardware
Age	→ new -	→ up	new	no	software
		→ up	new	yes	software
		→ down	midlife	yes	software
	→ midlife →	→ up	midlife	no	hardware
	-	→ up	midlife	no	software
	L	→ down	midlife	yes	hardware

Ukuran Training Set menjadi lebih kecil

Setelah pemisahan ke-2 berdasarkan atribut Competition:

Aturan yang didapat dari tree

20

3 3

S 3

S

	IF	THEN
Rule1	age is old	profit is down
Rule2	age is new	profit is up
Rule3	age is midlife AND competition is no	profit is up
Rule4	age is midlife AND competition is yes	profit is down

Dapatkah aturan ini diterapkan pada semua sampel training set?

Dapatkah aturan ini digunakan untuk memprediksi semua kasus pada permasalahan (memprediksi nilai class PROFIT)?

Output: Pohon Keputusan untuk Profil Perusahaan

5 13

= 12

3 3

≥ 3 ≥ 3

Dimana harus memulai?

- Atribut mana dari AGE, TYPE, dan COMPETITION yang paling kuat berasosiasi dengan class PROFIT?
- Perhatikan bahwa:
 - PROFIT punya 2 state: UP atau DOWN
 - COMPETITION punya 2 state: NO atau YES
 - TYPE punya 2 state: SOFTWARE atau HARDWARE
 - AGE punya 3 state: OLD, NEW, atau MIDLIFE

Kita perlu membedakan tingkat prediksi dari tiap atribut terhadap nilai class

8		
8	dari	tiap atı
8	dan	tiap ati
2		
23		
20	Competition	Profit
20		
S	no	down
20	no	up
23	no	down
20	no	up
= 12	no	up
= 3		
20	no	up
= 0		
= 3	yes	down
=3	yes	up
= 0		
20	yes	down
S 0	yes	down
50		

Adakah indikasi hubungan antara nilai Competition dengan nilai Profit? → TIDAK

```
P(Profit = up | Comp = No) = 4/6 = .67

P(Profit = down | Comp = No) = 2/6 = .33

P(Profit = up | Comp = Yes) = 1/4 = .25

P(Profit = down | Comp = Yes) = 3/4 = .75
```

Harus dibandingkan dengan atribut lainnya!

Menggunakan Probabilitas Kondisional untuk menunjukkan relasi antara atribut dan class

TYPE:

```
P( Profit= up | Type = Software ) = 0.5
```

AGE:

```
P( Profit= up | Age = Old ) = 0.0
```

Jika Age=OLD, peluang Profit=UP adalah 0

Permasalahan: Bagaimana cara memilih atribut?

- Kita memerlukan rumus untuk menentukan atribut yang paling penting/signifikan dalam perhitungan probabilitas atribut
 - Diperlukan statistik prediktif berdasarkan = 0 = 0 probabilitas kondisional untuk memilih atribut "terbaik" pada setiap level

Di antara 3 atribut: AGE, COMPETITION, dan TYPE, mana yang membawa informasi "lebih banyak" dari yang lain?

= 0

= 3

= 3

50 = 0

Pengukuran Informasi

- Mengapa informasi harus dapat diukur?
 - Teori Informasi

= 3

- Information retrieval, proses coding (kompresi dan dekompresi)
- Apa kegunaan pengukuran informasi?
 - Penerapan pada data mining
 - Mengkuantifikasi faktor-faktor yang mempengaruhi pengambilan keputusan (untuk menentukan derajat kepentingan pesan yang kita terima)

Teori Informasi

- Berapa banyak informasi yang dikandung oleh sebuah pesan bergantung pada seberapa tinggi tingkat ketidakpastiannya
- Semakin pasti sebuah pesan, semakin sedikit informasi yang dimiliki (dengan kata lain, jumlah informasi meningkat ketika probabilitas pesan menurun → berelasi secara terbalik)
- Semakin besar jumlah pesan yang mungkin, semakin besar jumlah informasi yang terkandung (sifat penambahan)

Pengukuran Informasi

Informasi yang terkandung:

$$I(M) = \log(\frac{1}{p(M)}) = -\log(p(M))$$

2 0

= 0

3 a

$$\log(\frac{x}{y}) = \log(x) - \log(y)$$
$$\log 1 = 0$$

- Jika log2 digunakan, maka satuannya adalah bit
- Hukum keterbalikan antara Informasi dan Ketidakpastian
 - Pesan yang jarang muncul mengandung informasi lebih banyak daripada pesan yang sering muncul
 - Sebuah pesan yang pasti (memiliki probabilitas 1), memiliki 0 informasi

Berapa jumlah informasi dari serangkaian pesan yang masing2nya memiliki probabilitas yang berbeda?

Rata-rata informasi yang terkandung dihitung dengan jumlah dari probabilitas dikalikan dengan bit informasi dari tiap pesan

-

= 0 = 0 = 0 Contoh: Dalam sebuah pesan yang berisi 2 huruf A dan B dengan probabilitas 2/3 dan 1/3, rata-rata informasi yang terkandung:

$$\frac{2}{3} * log_2\left(\frac{1}{2/3}\right) + \frac{1}{3} * log_2\left(\frac{1}{1/3}\right) = 0.918$$

Rumus Shannon

20 20 20 Entropi Informasi

8

20

20

20

= 0

= 3

= 0 **S** 0

- Pengukuran derajat ketidakpastian. Didefinisikan sebagai ratarata informasi terkandung dari sebuah pesan *m* dari keseluruhan pesan
- Pengukuran ketidakpastian klasifikasi dari sebuah objek terhadap keseluruhan objek yang diklasifikasikan
- Diberikan sekumpulan objek C dan partisi c₁, ..., c_n, entropi dari klasifikasi ini:

$$H(C) = -\sum_{i=1}^{n} p(c_i) * log_2(p(c_i))$$

dimana P(C_i) adalah probabilitas dari partisi c_i.

Contoh: Informasi terkandung untuk class PROFIT

```
H(C) = -[(p(Profit = up) * log_2(p(Profit = up)) 
 + p(Profit = down) * log_2(p(Profit = down))] 
 H(C) = -[0,5 * (-1) + 0,5 * (-1)] 
 H(C) = 1
```

= 0

Ini menunjukkan bahwa 1 bit informasi dibutuhkan untuk mewakili 2 state berbeda dari PROFIT: up dan down. Belum ada informasi bagaimana nilai up dan down diklasifikasikan berdasarkan nilai dari atribut-atribut yang lain

Penggunaan Rumus Shannon untuk menentukan atribut yang paling signifikan

 Untuk probabilitas sebuah nilai atribut (mis. AGE=old), berapa entropi informasi dari class C?

$$H(C \mid a_j) = -\sum_{i=1}^{n} p(c_i \mid a_j) \times \log_2(p(c_i \mid a_j))$$
 (Formula 1)

= 0

Dimana i=1..n (sebanyak nilai class).
 Fungsi p(c_i|a_j) adalah probabilitas nilai class adalah c_i ketika atribut memiliki nilai j

AGE=old

$$H(C \mid a_j) = -\sum_{i=1}^{n} p(c_i \mid a_j) \times \log_2(p(c_i \mid a_j))$$
 (Formula 1)

```
H(PROFIT|Age=old)
= -p(PROFIT=up|Age=old)*log_{2}(p(PROFIT=up|Age=old))
-p(PROFIT=down|Age=old)*log_{2}(p(PROFIT=down|Age=old))
= -0*log_{2} 0 - 1*log_{2} 1
= 0
```

Quiz

Bagaimana nilai untuk H(Profit|Age=new) dan H(Profit|Age=Middlelife)?

$$H(C | a_j) = -\sum_{i=1}^{n} p(c_i | a_j) \times \log_2(p(c_i | a_j))$$

= 0

5 B

5 0

(Formula 1)

Age=new/middlelife

$$H(C \mid a_j) = -\sum_{i=1}^{n} p(c_i \mid a_j) \times \log_2(p(c_i \mid a_j))$$

= 0

= B

= 0

= 0

= 0

= 0

S 8

50

= 3

S 100

```
H(PROFIT | Age = new)
=-p(PROFIT = up \mid Age = new) \times log_2(p(PROFIT = up \mid Age = new))
  -p(PROFIT = down | Age = new) \times log_2(p(PROFIT = down | Age = new))
=-1\times\log_2 1-0\times\log_2 0
=0
H(PROFIT | Age = midlife)
= -p(PROFIT = up \mid Age = midlife) \times log_2(p(PROFIT = up \mid Age = midlife))
  -p(PROFIT = down | Age = midlife) \times log_2(p(PROFIT = down | Age = midlife))
=-0.5 \times \log_2 0.5 - 0.5 \times \log_2 0.5
=1
```

Bagaimana setiap atribut berkontribusi terhadap pengklasifikasian *class*?

$$H(C | A) = \sum_{j=1}^{m} [p(a_j) \times H(C | a_j)]$$
 (Formula 2)

S 0

Dimana j=1..m. m adalah total jumlah nilai dari atribut A

$$H(PROFIT | Age)$$

= $p(Age = new) \times H(PROFIT | Age = new) + p(Age = old) \times H(PROFIT | Age = old)$
+ $p(Age = midlife) \times H(PROFIT | Age = midlife)$
= $\frac{3}{10} \times 0 + \frac{3}{10} \times 0 + \frac{4}{10} \times 1$
= 0.4

Quiz

- Bagaimana nilai untuk
 H(Profit|Competition) dan H(Profit|Type)?
 - Ingat:

= 0

= a

- Competition punya 2 nilai: YES dan NO
 - ➤ H(Profit|Competition=Yes)
 - ➤ H(Profit|Competition=No)
- Type punya 2 nilai: SOFTWARE dan HARDWARE
 - > H(Profit|Type=Software)
 - ➤ H(Profit|Type=Hardware)

H(Profit|Competition) dan H(Profit|Type)

$$H(C \mid A) = \sum_{j=1}^{m} [p(a_j) \times H(C \mid a_j)]$$

$$\begin{split} &H(\text{PROFIT}|\,\text{Comp})\\ &= p(\text{Comp} = \text{yes}) \times H(\text{PROFIT}|\,\text{Comp} = \text{yes}) + p(\text{Comp} = \text{no}) \times H(\text{PROFIT}|\,\text{Comp} = \text{no})\\ &= p(\text{Comp} = \text{yes}) \times (H(\text{PROFIT} = \text{up}\,|\,\text{Comp} = \text{yes}) + H(\text{PROFIT} = \text{down}\,|\,\text{Comp} = \text{yes}))\\ &+ p(\text{Comp} = \text{no}) \times (H(\text{PROFIT} = \text{up}\,|\,\text{Comp} = \text{no}) + H(\text{PROFIT} = \text{down}\,|\,\text{Comp} = \text{no}))\\ &= \frac{4}{10} \times (-\frac{1}{4} \times \log_2(\frac{1}{4}) - \frac{3}{4} \times \log_2(\frac{3}{4})) + \frac{6}{10} \times (-\frac{4}{6} \times \log_2(\frac{4}{6}) - \frac{2}{6} \times \log_2(\frac{2}{6}))\\ &= \frac{4}{10} \times 0.81 + \frac{6}{10} \times 0.92 = 0.88 \end{split}$$

H(PROFIT|Type)

 $= p(\texttt{Type=software}) \times H(\texttt{PROFIT} | \texttt{Type=software}) + p(\texttt{Type=software}) \times H(\texttt{PROFIT} | \texttt{Type=hardware})$

$$= \frac{6}{10} \times \left(-\frac{1}{2} \times \log_2(\frac{1}{2}) - \frac{1}{2} \times \log_2(\frac{1}{2})\right) + \frac{4}{10} \times \left(-\frac{1}{2} \times \log_2(\frac{1}{2}) - \frac{1}{2} \times \log_2(\frac{1}{2})\right)$$

Bagaimana menentukan atribut yang signifikan?

- Pilih atribut yang memiliki entropi terkecil
 - H(Profit|Age)=0,4
 - H(Profit|Competition)=0,8

Age adalah atribut terbaik

H(Profit|Type)=1

= 0

= 0

= 0

$$\min_{t=1}^n \{H(C|A_t)\}$$

(Formula 3)

Dimana t=1..n. n adalah total jumlah atribut untuk class C

Proses Induksi Menggunakan ID3

- Menentukan atribut utama dan output
- Membuat training set

20

= 0

S B

- Mengkonversi data numerik ke nilai diskrit dengan menggunakan range
- Terapkan ID3 secara rekursif:
 - Gunakan ketiga formula untuk memilih atribut untuk memisahkan training set (urut berdasarkan atribut dan pisahkan baris yang nilai class-nya cocok dengan nilai atribut)
 - Ulangi proses di atas dengan menggunakan ketiga formula untuk memilih atribut lain untuk memisahkan lebih jauh lagi training set
- Lakukan proses pemangkasan (pruning) pada tree

Pseudocode pembentukan tree pada ID3

20

20

S B

2 10

2 11

= 2

= 3

= 0

= 0

= 0

= 3

= 0

3 3

= 0

5 0

= 9

S 00

```
Input : D, attribute_list;
   Output: A decision tree.
1 create a node N:
2 if samples in D are all of the same class, C then
      return N as a leaf node labeled with C;
4 end
 5 if attribute_list is empty then
      return N as a leaf node leaf node labeled with the majority
      class in D:
7 end
 8 apply Attribute_selection_method (D,attribute_list) to find
   the "best" attribute A*:
9 label node N with A*:
10 attribute_list ← attribute_list − A*;
11 foreach value j of attribute A* do
      let D_i be the set of samples in D satisfying value j;
12
      if D_i is empty then
13
          label N with the majority class in D:
14
15
      end
      else
16
          label N with the node returned by
17
          Generate_decision_tree (Di, attribute_list);
18
      end
19 end
20 return N;
```

Permasalahan pada ID3

- Noisy data: pengukuran yang salah, error saat memasukkan data
- Nilai atribut yang kosong
- Percabangan yang terlalu banyak
- ID3 disempurnakan lagi dengan algoritma C4.5
- C4.5 disempurnakan kembali dalam C5

Tugas

Lakukan algoritma ID3 untuk menghasilkan pohon keputusan dan aturan yang digunakan untuk pembelian komputer seperti data berikut:

= 0

Age	Student	Credit_Rating	Buys_Computer
Middle_Aged	ged No Excellent		Yes
Youth	No	Fair	No
Senior	No	Fair	No
Youth	Yes	Excellent	Yes
Middle_Aged	No	Fair	No
Senior	Yes	Fair	Yes
Youth	No	Excellent	No
Senior	Yes	Excellent	Yes

Tips Pengerjaan

Hitung dulu probabilitas kondisional dari setiap atribut

	Age=Middle_Aged	Age=Youth	Age=Senior
Buys_Computer=Yes			
Buys_Computer=No			

..... Lakukan untuk kedua atribut yang lain

Hitung entropi dari seluruh atribut

20

50 = 0 = 3 **S**

	Entropy	Buys_Computer = Yes	Buys_Computer = No
H(C Age=Middle_Aged) H(C Age=Youth)			
H(C Age=Senior) H(C Age)			
H(C Student=Yes) H(C Student=No)			
H(C Student)			
H(C Credit_Rating=Excellent) H(C Credit_Rating=Fair)			
H(C Credit_Rating)			

Tips Pengerjaan

- Ambil atribut dengan entropi terkecil dan bagi data tabel sesuai dengan nilai atribut tersebut
- Buang data tabel yang sudah memiliki nilai class yang sama dengan pembagian atribut
- Ulangi proses pada sisa data tabel yang belum memiliki class yang sama untuk tiap atributnya = 0 = 0
- === Buat pohon ID3-nya
 - Buat tabel aturannya