

PÓRTFÓLIO MÓDULO 2

Nome: Gutemberg Oliveira da Silva

Matrícula: 180113534

Curso: Cálculo 2 (CC)

Matrícula	Aluno	Turma	Professora
180113534	Gutemberg Oliveira da	CC	Tatiane
	Silva		

	Segunda-feira	Terça-feira	Quinta-feira
Data	13/05	15/05	17/05
Objetivos	Não teve aula.	Não teve aula.	Aula de Exercícios.
Informação	Não teve aula.	Não teve aula.	Aula de Exercícios.
Resumo	Não teve aula.	Não teve aula.	Aula de Exercícios.
Observação	Não teve aula.	Não teve aula.	Aula de Exercícios.
Dúvidas	Não teve aula.	Não teve aula.	Não.
Monitoria	Não.	Não.	Não.

MAPAS CONCEITUAIS

SALA DE AULA INVERTIDA

Atividade 3: Um cursor com 5 kg repousa sobre uma mola, não estando ligado a ela. Observa-se que, se o cursor for empurrado para baixo 0,18m ou mais, perde o contato com a mola depois de libertado. Determine:

- (a) a constante de rigidez da mola.
- (b) a posição, a velocidade e a aceleração do cursor, 0.16 s após ter sido empurrado para baixo 0,18m e, depois, libertado.

Considere g=9,81m/s².

$$y = 0,18 \cos(7,362+)$$
 $t = 0.365$
 $y = 0.38 \cos(7,362+)$ $y = \Delta 3$
 $y' = \Delta 3$
 $y' = -0.18 \sin(7,362+)$ 7.362
 $y' = -0.38.7,362 \sin(7,362.0.36)$
 $y' = -0,027$
 $\Delta v = -0,027 m/3$
 $y'' = 0.18.(7.362)^{2} \cos(7.362+)$
 $y'' = -0,18.(7.362)^{2} \cos(7.362+)$
 $y'' = -9,75$
 $y'' = a(4)$
 $a(2) = -9.75 m/32$

APLICAÇÃO

Crescimento Populacional: Malthus

Problemas populacionais nos levam fatalmente às perguntas:

- 1. Qual será a população de um certo local ou meio ambiente em alguns anos?
- 2. Como poderemos proteger os recursos deste local ou deste meio ambiente para que não ocorra a extinção de uma ou de várias espécies?

Para apresentar uma aplicação de equações diferenciais relacionado com este problema, consideraremos o modelo matemático mais simples para tratar sobre o crescimento populacional de algumas espécies. Ele é chamado o Modelo de Crescimento Exponencial, isto é, a taxa de variação da população em relação ao tempo, aqui denotada por dP/dt, é proporcional à população presente. Em outras palavras, se P=P(t) mede a população, nós temos

$$dP/dt = kP$$

onde a taxa k é uma constante. É simples verificar que se k>0, nós teremos crescimento e se k<0, nós teremos decaimento. Esta é uma EDO linear que quando resolvida nos dá:

$$P(t) = P_0 e^{k.t}$$

onde P_0 é a população inicial, isto é $P(0)=P_0$. Portanto, concluimos o seguinte:

- 1. Se k>0, a população cresce e contínua a expandir para +infinito.
- 2. Se k<0, a população se reduzirá e tenderá a 0. Em outras palavras, a população será extinta.

O primeiro caso, k>0, não é adequado e o modelo pode não funcionar bem a longo prazo. O argumento principal para isto vem das limitações do ambiente. A complicação é que o crescimento populacional é eventualmente limitado por algum fator, usualmente dentre aqueles recursos essenciais. Quando uma população está muito distante de seu limite de crescimento ela pode crescer de forma exponencial, mas quando está próxima de seu limite o tamanho da população pode variar.

EXERCÍCIOS SEMANA 8

Matrícula	Aluno	Turma	Professora
180113534	Gutemberg Oliveira da	CC	Tatiane
	Silva		

	Segunda-feira	Terça-feira	Quinta-feira
Data	06/05	07/05	09/05
Objetivos	Aplicativo de EDO (aprEnDO)	Aplicativo de EDO (aprEnDO)	Aplicativo de EDO (aprEnDO)
Informação	Testar o aplicativo de um estudante em processo de TCC. O aplicativo consta exercícios e classificações de EDO'S.	Testar o aplicativo de um estudante em processo de TCC. O aplicativo consta exercícios e classificações de EDO'S.	Testar o aplicativo de um estudante em processo de TCC. O aplicativo consta exercícios e classificações de EDO'S.
Resumo	Testar aplicativo (aprEnDO)	Testar aplicativo (aprEnDO)	Testar aplicativo (aprEnDO)
Observação	Nenhuma	Nenhuma	Nenhuma

Dúvidas	Nenhuma	Nenhuma	Nenhuma
Monitoria	Não	Não	Não

2 exemplos do uso do Método dos Coeficientes Indeterminados:

• 2 exemplos do uso do Método da variação dos parâmetros:

EXERCÍCIOS SEMANA 7

Matrícula	Aluno	Turma	Professora
180113534	Gutemberg Oliveira	CC	Tatiane
	da Silva		

	Segunda-feira	Terça-feira	Quinta -feira
Data	29/04	30/04	02/05
Objetivos	EDO 2º Linear Homogêneo.	EDO 2º Ordem com Delta < 0. EDO 2º ordem linear não homogêneo com coeficiente constante.	Não teve aula.
Informaçã o	Quando temos Delta > 0 temos raízes reais distintas. É preciso jogar na fórmula de báskara para encontrar a solução dessas equações. Logo depois, jogamos na solução geral, que C1.raiz1+C2.raiz 2. Quando o Delta=0, temos	Quando o Delta < 0 , logo é possui raízes complexas. Aplicamos a fórmula de Euler: e^iBx=cos(Bx)+isen(Bx), logo encontramos o conjunto fundamental da solução (real) da seguinte forma: y1=e^(alphax)cos(Bx) e y2=e^(alphax)sen(Bx). Já na EDO 2º ordem linear não homogêneo com coef.	Não teve aula.

	raízes reais iguais. Nesse caso necessita trocar na fórmula padrão e logodepois aplicar a derivada.	Constante tem forma padrão: ay"+by'+cy-g(x), com g(x)!=0 e a!=0. Temos dois métodos de encontrar a solução particular: Yp(x). Pelo MCI e MVP. No MCI, é mais simples com manipulações algébricas. Normalmente é usado na forma polinomial, exponencial, seno e cosseno.	
Resumo	Os métodos de quando o Delta > 0 e Delta = 0 são diferentes. Logo o primeiro passo é jogar na fórmula de báskara.	Tanto na EDO homogênea ou não homogênea, é interessante deixarna forma padrão. No caso da homogênea de Delta < 0, precisa ser colocado na Fórmula de Euler e depois achar o conjunto fundamental. Na não homogênea, precisa descobrir entre 2 métodos seguir: MCI ou MVP.	Não teve aula.
Observaçã o	Nenhuma	No MCI é recomendado para funções g(x): Polinomial,	Não teve aula.

		exponencial, seno e cosseno.	
Dúvidas	Na de Delta > 0.	Sim, na MVP e MCI.	Não teve aula.
Monitoria	Não	Não	Não

1 exemplo de solução EDO 2ª ordem linear com coeficiente constante em que Δ= 0, cuja solução seja geral:

1 exemplo de PVI EDO 2ª ordem linear com coeficiente constante em que

 1 exemplo de solução EDO 2^a ordem linear com coeficiente constante em que Δ > 0, cuja solução seja geral:

1
$$y'' + 5y' + 6y = 0$$

 $A = b^2 - 4ac$
 $A = (5)^2 - 4.1.6 = 1>0$
 $A = -5 \pm 1$ $A = -3$
 $A = -3x$
 $A = -3$

1 exemplo de PVI EDO 2º ordem linear com coeficiente constante em que
 Δ > 0:

1
$$(4y'' - 8y' + 3y = 0)$$
 $(y'' = 2)$
 $(y'' = 2)$
 $(x'' - 8y' + 3y = 0)$
 $(x'' - 8y + 3y =$

constante em que Δ < 0, cuja solução seja geral:

1 exemplo de PVI EDO 2º ordem linear com coeficiente constante em que Δ < 0, cuja solução seja geral:

$$\int y'' + y' + 9 = 25y = 0$$

$$\Delta = (1)^{2} - 4 \cdot 1 \cdot (9 = 25) = -36 < 0$$

$$\Delta = -\frac{1 + 16}{2} = -\frac{1}{2} + 13$$

$$\begin{cases} y_{1}(x) = e^{-\frac{1}{2}x} \cos(3x) \\ y_{2}(x) = e^{-\frac{1}{2}x} \cos(3x) \end{cases}$$

$$y_{3}(x) = e^{-\frac{1}{2}x} \cos(3x) + c_{2}e^{-\frac{1}{2}x} \sin(3x)$$

$$y_{4}(x) = e^{-\frac{1}{2}x} \cos(3x) + c_{2}e^{-\frac{1}{2}x} \sin(3x)$$

$$y_{4}(x) = c_{3}e^{-\frac{1}{2}x} \cos(3x) + c_{3}e^{-\frac{1}{2}x} \sin(3x)$$

$$y_{4}(x) = c_{3}e^{-\frac{1}{2}x} \cos(3x) + c_{3}e^{-\frac{1}{2}x} \cos(3x)$$

$$y_{4}(x) = c_{3}e^{-\frac{1}{2}x} \cos(3x)$$

$$y_{5}(x) = c_{3}e^{-\frac{1}{2}x} \cos(3x)$$

$$y_{5}(x) = c_{3}e^{-\frac{1}$$

Matrícula	Aluno	Turma	Professora
180113534	Gutemberg Oliveira	CC	Tatiane
	da Silva		

	Segunda-feira	Terça-feira	Quinta-feira
Data	22/04	23/04	25/04
Objetivos	Equação de Bernoulli e Equações Exatas.	Resolução de Equações não Exatas	EDO 2º Ordem linear e homogêneo.
Informação	A equação de Bernoulli tem a seguinte forma padrão: y'+p(x)y=g(x)y^n. Se for n=0 e n=1, logo a EDO é de 1ª ordem, linear e não homogênea. Se for n!=0 e n!=1, logo é uma EDO de 1º ordem não linear. Para resolver, primeiro deve multiplicar a EDO por y^-n, depois	Na não exata, o candidato a ser o fator integrante é: u(x,y). Depois que encontrar o fator integrante, deve-se multiplicar toda a EDO por esse fator e logo depois encontrar o g'(x) da	Temos a forma padrão: 1y"+p(x)y'+q(x).y =0. Temos o princípio da superposição, que se y1 e y2 são soluções da forma padrão, então a solução geral é: Yh=C1Y1+C2Y2. OBS: y1,y2 são conjunto fundamental da solução e o princípio da superposição

	temos que chamar o v=y^1-n e depois substituir na equação padrão. Para resolvermos a equação exata, temos a definição: M(x,y)dx+N(x,y)d y=0 M(x,y)+N(x,y)y'=0 Se dM/dy=dN/dx, logo temos uma equação exata.	equação. Na forma exata, ela é pois, dM/dy=dN/dx, na forma não exata, elas são diferentes.	somente é válido para EDO 2ºLH.
Resumo	Na Bernoulli, primeiro colocamos na forma padrão, dpois multiplicamos a EDO por y^-n e dps trocamos na equação padrão. Na forma exata, se dM/dy=dN/dx, logo temos uma equação exata.	Acha o fator integrante e multiplica toda a equação. Se a derivada de M for igual a derivada de N, logo essa é não exata.	Acha a forma padrão e olha se y1 e y2 são soluções de forma padrão.
Observaç ão	Na Bernoulli, n=0 e n=1, temos uma EDO 1ºLNH, com n!=0 e n!=1, EDO1ºNL.	O fator integrante é tirado da parte mais fácil da equação.	O princípio da superposição só é válido para EDO 2ºLH

		Precisa ser verificado.	
Dúvidas	Resolução de Forma Exata.	Resolução do Fator Integrante.	Não
Monitoria	Não	Não	Não

5 Soluções de Equações na Forma Exata:

5 Soluções de Equações na Forma não Exata:

2 Soluções de Equações de Bernoulli:

5 Aplicações de EDO:

EXERCÍCIOS SEMANA 5

Matrícula	Aluno	Turma	Professora
180113534	Gutemberg Oliveira	CC	Tatiane
	da Silva		

	Segunda-feira	Terça-feira	Quinta-feira
Data	15/04	16/04	18/04
Objetivos	Classificações de Equações Diferenciais	Soluções de EDO de 1ª Ordem homogênea e não homogênea.	Soluções de EDO 1ª Ordem não linear e não linear na forma homogênea.
Informação	Podemos classicar uma equação diferencial em 4: EDO, a ordem (qual a maior derivada), linearidade (se possui funções trigonométricas, quadráticas e afins) e homogeneidade (se ela é igual a 0)	A EDO linear homogênea deve ser colocada na forma padrão: 1.y'+p(x)y=0, depois disso integramos ambos os lados e encontramos a solução geral. A EDO linear não homogênea deve ser	O primeiro passo da não linear na forma homogênea: v=y/x. Segundo passo: y=v.x e y'=v'.x+v.1. Terceiro passo: F(v)=dv/dx.x+v e o quarto passo fazendo a integral. E a partir disso temos a equação separável.

		colocada na forma padrão: y'+p(x)y=q(x) e averiguar se p(x) e q(x) são ou não funções constantes.	
Resumo	Podemos classificar uma equação como EDO ou não, linear ou não, homogênea ou não e a sua ordem.	É bom seguir uma receita para se fazer, normalmente começa colocando a equação na forma padrão e integrando ambos os lados.	Encontrar a equação separável e normalmente a solução é dada na forma implícita.
Observação	EDO só é não linear se a variável que não é a principal tiver em alguma função.	Nenhuma	Nenhuma
Dúvidas	Não	As resoluções.	Resoluções
Monitoria	Não	Não	Não

5 Exemplos distintos de classificação de ED:

1) y + sent y = 0 EDO, 1º ordem, linear e homogènes 2) y2y"+ ty'+5y=0 EDO, 2° ordem, mois linear e homogénes 3) y" + t sony = et EDO, 3° ordem, nois linear e mais homogènes. 4) (1+y/2,y"+ty = cost EDO, 4° ordem, nois linear e mas homogênes 5 y" + t2y' + 3y = 0 EDO, 2° ordem, linear e homognes.

3 Soluções de EDO 1º Ordem linear e homogêneo:

1)
$$y'' + bent y = 0$$
 $y'' = -bent y$
 $y'' = -bent y$
 $y'' = -bent dt$
 $y'' = -$

3 Soluções de EDO Linear e não homogêneo:

1
$$y' + 2y = -3$$
 $y' = -2y - 3$
 $y' = -2(y + \frac{3}{2})$
 $dy = -2(y + \frac{3}{2})$
 $dy = -2(y + \frac{3}{2})$
 $dy = -3(y + \frac{3}{2$

3 Soluções de EDO Não linear na forma separável:

1 y'+y'benx=0

$$y'=-y'benx$$
 $dy = -y'benx$
 $dy = -y'benx$