Relation: Part 5 - Closures of Relation

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

Reference: Rosen, Discrete Mathematics and Its Applications, 8ed, 2019, Sec. 9.4

Closures of Relation

- Sometimes we are given a relation R that, unfortunately, does not satisfy some desired property.
- Example: not every pair of cities in Indonesia are connected by a direct flight (even when both possess an airport).
 - If there is no direct flight from two given cities, can the two cities be still be connected by a flight route, possibly with a layover?
 - The answer can be obtained by computing the transitive closure of the flight relation.

General definition

Definition

Let R be a binary relation on A and P be a property of a relation. A **P-closure** of R, if it exists, is a binary relation S on A such that

- $oldsymbol{0}$ S satisfies the property $oldsymbol{P}$;
- 2 $R \subseteq S$, i.e., S contains R.
- 3 S is the smallest relation satisfying both (1) and (2) above. That is, if there is a binary relation R' on A such that R' satisfies P and $R \subseteq R'$, then it must be the case that $S \subseteq R'$.
- P is a property of relation, e.g., reflexive, symmetric, transitive, etc.
- If P-closure of R exists, then it must be unique.

How to obtain P-closure of a relation

Let $R \subseteq A \times A$ be a binary relation on A. The **P**-closure of R can be obtained in principle by the following steps:

- **1** Check if R already satisfies the property P. If so, then R is the P-closure to itself, and we're done.
- **2** Otherwise, start with $R' \coloneqq R$, and keep adding some pairs $(x,y) \in A \times A$ to R' until R' satisfies the property $\mathbf P$
 - ullet The added pairs must bring R' closer to satisfying ${f P}$, hence they depend on the property ${f P}$.

Reflexive closure

Definition

Let $R \subseteq A \times A$. The **reflexive closure** of R is the **smallest reflexive** binary relation $R' \subseteq A \times A$ such that $R \subseteq R'$.

Give the reflexive closure of $R \subseteq A \times A$ on $A = \{1, 2, 3, 4\}$ if $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$.

Give the reflexive closure of $R_1 = \{(a,b) \in \mathbb{Z}^2 \mid a < b\}$ and $R_2 = \{(a,b) \in \mathbb{Z}^2 \mid a \leqslant b\}$.

Symmetric closure

Definition

Let $R \subseteq A \times A$. The symmetric closure of R adalah is the smallest symmetric binary relation $R' \subseteq A \times A$ such that $R \subseteq R'$.

Give the symmetric closure of $R \subseteq A \times A$ on $A = \{1,2,3,4\}$ if $R = \{(1,1),(1,2),(2,1),(3,2),(3,4)\}.$

Give the symmetric closure of $R = \{(a,b) \in \mathbb{Z}^2 \mid a > b\}.$

Transitive closure

Definition

Let $R \subseteq A \times A$. The **transitive closure** of R is the **smallest transitive** binary relation $R' \subseteq A \times A$ such that $R \subseteq R'$.

Let R be a binary relation on $A = \{1, 2, 3, 4\}$ with $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. Find the transitive closure of R.

Find the transitive closure of $R=\{(a,b)\in\mathbb{N}^2\mid b=a+1\}$