Open sets and Closed sets

Reference: Johnsonbaugh & Pfaffenberger section 38,39; Tao II section 1.2

Let (M, d) be a metric space.

Open set

- Definition: (Open) ball of radius r centered at $x_0 \in M$ is
 - $B_r(x_0) = \{ y \in M : d(y, x_0) < r \}.$
- Definition: a subset $U \subset M$ is open if for any x in U, there exists some r > 0 such that $B_r(x) \subset U$.
 - \circ Example: in \mathbb{R} , (a,b) is open; \mathbb{R} is open; [a,b) is not open.
 - Example: in \mathbb{R}^3 , $\{x^2+y^2+z^2<3\}$ is open. (More generally, open balls in metric spaces are open.)
 - \circ Example: empty set and M are open.
- (Arbitrary) union and (finite) intersection of open sets:
 - "Arbitrary union of open sets is still open."

Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be a family of open sets. (Each U_{α} is open; the index set I can even be uncountably infinite.) Then their union $\bigcup_{{\alpha}\in I}U_{\alpha}$ is open.

Proof: For any $x \in \bigcup_{\alpha \in I} U_{\alpha}$, $x \in U_{\alpha}$ for some α . Then, because U_{α} is open, there exists some r > 0 such that $B_r(x) \subset U_{\alpha} \subset \bigcup_{\alpha \in I} U_{\alpha}$. [Therefore the union is an open set.]

o If U_1, U_2 are both open sets, then $U_1 \cap U_2$ is also open:

Proof: Let $x \in U_1 \cap U_2$. Then, choose $r_1, r_2 > 0$ such that $B_{r_1}(x) \subset U_1$, and $B_{r_2}(x) \subset U_2$. Now, let $r = \min{(r_1, r_2)}$. Then $B_r(x)$ is contained in both U_1 and U_2 , i.e. $B_r(x) \subset U_1 \cap U_2$. [Therefore $U_1 \cap U_2$ is open.]

- o If U_1, U_2, \dots, U_n are finitely many open sets, then their intersection $\bigcap_{i=1}^n U_i$ is open.
 - Proof 1: Use the result above, and use induction on n. [This is a common trick of going from 2 things to finitely many things.]
 - Proof 2: Similar to the proof above, choose radius r_1, r_2, \ldots, r_n such that $B_{r_i}(x) \subset U_i$; then take $r = \min(r_1, r_2, \ldots, r_n) > 0$.

• WARNING: it is not true that infinitely many open set's intersection is still open! Example: in \mathbb{R} , $U_n = (-1/n, 1/n)$ is open, but $\bigcap_{n=1}^{\infty} U_n = \{0\}$ is not open.

Question: what goes wrong in "Proof 2"?

Closed set

- Definition: a set $C \subset M$ is closed if $(x_k \in C, \lim_{k \to \infty} x_k = x \in M)$ implies $x \in C$.
- [Equivalently, a closed set contains all of its "limits": if x is the limit of some sequence x_k in C, then x is also in C.]
 - Example in \mathbb{R} : [2,3] is closed: if $[2,3]\ni (a_n)\to a$, then $2\leqslant a_n\leqslant 3\Longrightarrow 2\leqslant \lim a_n=a\leqslant 3\Longrightarrow a\in [2,3]$.
 - [2,3) is NOT closed, because $a_n = 3 1/n \rightarrow 3 \notin [2,3)$.
- $\{1/n: n=1,2,\dots\}$
- (Arbitrary) intersection and (finite) union of closed sets
 - "Arbitrary intersection of closed sets is still closed."

Let $\{C_{\alpha}\}_{{\alpha}\in I}$ be a family of closed sets. (Each C_{α} is closed; the index set I can even be uncountably infinite.) Then the intersection $\cap_{{\alpha}\in I}C_{\alpha}$ is closed.

Proof: Let x_k be a sequence in $\bigcap_{\alpha \in I} C_\alpha$ with $\lim_{k \to \infty} x_k = x$. For any $\alpha \in I$, since x is the limit of sequence x_k in the closed set C_α , $x \in C_\alpha$ also. [Since this is true for all α] So $x \in \bigcap_{\alpha \in I} C_\alpha$. [Therefore $\bigcap_{\alpha \in I} C_\alpha$ is closed.]

 \circ Let C_1, C_2 be closed in (M, d). Then $C_1 \cup C_2$ is closed.

Proof: Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in $C_1 \cup C_2$ converging to x. Then either C_1 or C_2 contains infinitely many terms of $\{x_n\}$; for example, assume $\{x_{n_k}\}_{k=1}^{\infty}$ is a subsequence with terms in C_i , i is 1 or 2; (Fact: for any convergent sequence, any subsequence also converges to the same limit.) $\lim_{n\to\infty} x_n = \lim_{k\to\infty} x_{n_k} \in C_i \subset C_1 \cup C_2$. [Therefore, $C_1 \cup C_2$ is closed.]

- \circ By induction, if C_1, C_2, \ldots, C_n are closed, then so is $\bigcup_{i=1}^n C_i$.
 - Alternative Proof (modifying the proof above): any convergent sequence in $\bigcup_{i=1}^n C_n$ must contains a subsequence in one of C_i ; because C_i is closed, the limit of the subsequence (which is the limit of the original sequence) is in C_i , which is contained in $\bigcup_{i=1}^n C_i$. [Therefore $\bigcup_{i=1}^n C_i$ is closed.]

• NOT true for infinitely many closed sets: $C_n = [1/n, 3-1/n]$ is closed for each n, but their union $\bigcup_{n=1}^{\infty} C_n = (0,3)$ is not closed.

WARNING: if a set is NOT open, then (not true that) it is closed... Set can be neither open nor closed.

Proposition: a set U is open if and only if its complement $U^c\!=\!M-U$ is closed.

- a set U is NOT open if and only if its complement $U^c = M U$ is NOT closed.
- 1. Suppose U is NOT open, $[U^c$ is not closed...]

$$U$$
 is open $\iff \forall x \in U, \exists r > 0, B_r(x) \subset U$.

U is NOT open $\iff \exists x \in U, \forall r > 0, B_r(x) \not\subset U \iff \exists x \in U, \forall r > 0, \exists y \in U^c, d(y,x) < r.$ (Interpretation: if U is not open, then its boundary is nonempty.)

[IDEA: let r=1/k to construct a sequence.] Fix this $x=x_0$. Let r=1,1/2, $1/3,\ldots,1/k,\ldots$; let $y=y_k$. This is a sequence of points in U^c converges to $x_0 \in U$ because: $d(y_k,x) < 1/k \longrightarrow 0$. [by the definition of convergence.]

Therefore U^c is NOT closed.

• 2. Suppose $U^c = M - U$ is NOT closed [want to show: U is not open]. So there's a sequence y_k in U^c , such that $\lim_{k \to \infty} y_k = x \in U$.

[Idea: draw a picture. x cannot be an "interior point" in U because any radius contains some point y_k not in U.]

[Recall definition of sequence convergence: $\forall \varepsilon > 0, \exists N, \forall n \geqslant N, d(y_k, x) < \varepsilon.$]

However, because $y_k \to x$, $x \in U$ is a point such that for any radius $\varepsilon > 0$, the ball $B_{\varepsilon}(x)$ also contains some $y_k \in U^c$ [and therefore $B_{\varepsilon}(x) \not\subset U$ for any $\varepsilon > 0$]. Therefore U is not open.