Statistique Descriptive Chapitre II : Représentations graphiques

Anas KNEFATI

Université Rennes 2

Plan

- Représentation des fréquences
 - Diagramme en barres(Tuyaux d'orgue)
 - Diagramme en secteurs
 - Diagramme en bâtons
 - Histogramme
- Représentation des fréquences cumulées
 - Courbe en escalier
 - Courbe d'une fonction affine par morceaux

Plan

- Représentation des fréquences
 - Diagramme en barres(Tuyaux d'orgue)
 - Diagramme en secteurs
 - Diagramme en bâtons
 - Histogramme
- Représentation des fréquences cumulées
 - Courbe en escalier
 - Courbe d'une fonction affine par morceaux

Diagramme en barres(Tuyaux d'orgue)

- On trace une bande pour chaque modalité.
- la hauteur de chaque bande est proportionnelle à la fréquence f_i correspondante.
- Les largeurs des bandes sont toutes égales.
- On ordonne souvent les modalités selon leurs effectifs.

Diagramme en barres(Tuyaux d'orgue)

- On trace une bande pour chaque modalité.
- la hauteur de chaque bande est proportionnelle à la fréquence f_i correspondante.
- Les largeurs des bandes sont toutes égales.
- On ordonne souvent les modalités selon leurs effectifs.

Exemple: État matrimonial en France - 2014

État matrimonial	f_i
Célibataires	0.394
Mariés	0.451
Veufs	0.074
Divorcés	0.081
Total	1

Diagramme en barres(Tuyaux d'orgue)

- On trace une bande pour chaque modalité.
- la hauteur de chaque bande est proportionnelle à la fréquence f_i correspondante.
- Les largeurs des bandes sont toutes égales.
- On ordonne souvent les modalités selon leurs effectifs.

Exemple: État matrimonial en France - 2014

État matrimonial	f_i
Célibataires	0.394
Mariés	0.451
Veufs	0.074
Divorcés	0.081
Total	1
	- 3

Diagramme en secteur

- Chaque modalité est représentée par un secteur angulaire de mesure proportionnelle à sa fréquence
- Mesure d'angle du $i^{\text{ème}}$ secteur = $f_i * 360$

Diagramme en secteur

- Chaque modalité est représentée par un secteur angulaire de mesure proportionnelle à sa fréquence
- Mesure d'angle du $i^{\text{ème}}$ secteur = $f_i * 360$

Exemple: État matrimonial en France - 2014

État matrimonial	f_i en %	Angle
Célibataires	39.4	141,8
Mariés	45.1	162,4
Veufs	7.4	26,6
Divorcés	8.1	29.2
Total	1	360

Diagramme en secteur

- Chaque modalité est représentée par un secteur angulaire de mesure proportionnelle à sa fréquence
- Mesure d'angle du $i^{\text{ème}}$ secteur = $f_i * 360$

Exemple: État matrimonial en France - 2014

État matrimonial	<i>f</i> _i en %	Angle
Célibataires	39.4	141,8
Mariés	45.1	162,4
Veufs	7.4	26,6
Divorcés	8.1	29.2
Total	1	360

Comparaison de la répatition d'une variable entre deux situations

Répartition des PIB dans pays riches en 1990 et 2001

Pays Riches	PIB 1990	PIB 2001	f; 1990 en %	f; 2001 en %
Amérique du nord	6325	10760	43.32	51.92
Union européenne	6871	7872	47.06	37.98
Autre pays riches	1403.00	2094.00	9.61	10.10
Total	14599	20726	100	100

Comparaison de la répatition d'une variable entre deux situations

Répartition des PIB dans pays riches en 1990 et 2001

Pays Riches	PIB 1990	PIB 2001	f; 1990 en %	f; 2001 en %
Amérique du nord	6325	10760	43.32	51.92
Union européenne	6871	7872	47.06	37.98
Autre pays riches	1403.00	2094.00	9.61	10.10
Total	14599	20726	100	100

Variable quantitative discrète

Diagramme en bâtons

• Pour chaque modalité, on trace un bâton dont la hauteur est proportionnelle à la fréquence correspondante.

Variable quantitative discrète

Diagramme en bâtons

 Pour chaque modalité, on trace un bâton dont la hauteur est proportionnelle à la fréquence correspondante.

Exemple : Nb de pièces du logement d'un bâtiment

nb	Effectifs	Frequences
1	10	0.22
2	7	0.16
3	12	0.27
4	16	0.35
Total	45	1

Variable quantitative discrète

Diagramme en bâtons

 Pour chaque modalité, on trace un bâton dont la hauteur est proportionnelle à la fréquence correspondante.

Exemple : Nb de pièces du logement d'un bâtiment

nb	Effectifs	Frequences	
1	10	0.22	
2	7	0.16	
3	12	0.27	
4	16	0.35	
Total	45	1	

Variable quantitative continue

Histogramme

- Modalités : K classes $[e_i; e_{i+1}[, i = 1, ..., K 1]$
- Sur l'axe des abscisses et au dessus de chaque classe, on trace un rectangle dont l'aire est proportionnelle à la fréquence associée (f_i) .
- Amplitude de la $i^{\text{ème}}$ classe = sa largeur : $a_i = e_{i-1} e_i$
 - Si les classes sont de même amplitude, la hauteur de chaque rectangle est proportionnelle à f_i.
 - Lorsque les amplitudes sont différentes, la hauteur de chaque rectangle égale à la densité : $d_i = \frac{f_i}{a_i}$

Variable quantitative continue

Histogramme

- Modalités : K classes $[e_i; e_{i+1}[, i = 1, ..., K 1.$
- Sur l'axe des abscisses et au dessus de chaque classe, on trace un rectangle dont l'aire est proportionnelle à la fréquence associée (f_i) .
- Amplitude de la $i^{\text{ème}}$ classe = sa largeur : $a_i = e_{i-1} e_i$
 - ► Si les classes sont de même amplitude, la hauteur de chaque rectangle est proportionnelle à f_i.
 - Lorsque les amplitudes sont différentes, la hauteur de chaque rectangle égale à la densité : $d_i = \frac{f_i}{a_i}$

Exemple : Notes des étudiants

	Effectifs	Amplitudes	Fréquences	Densités
[0; 5[6	5	0.1	0.02
[5; 8[21	3	0.36	0.12
[8; 12[8	4	0.14	0.035
[12; 15[10	3	0.17	0.06
[15; 20[14	5	0.23	0.048
Total	59	20	1	

Variable quantitative continue

Plan

- Représentation des fréquences
 - Diagramme en barres(Tuyaux d'orgue)
 - Diagramme en secteurs
 - Diagramme en bâtons
 - Histogramme
- Représentation des fréquences cumulées
 - Courbe en escalier
 - Courbe d'une fonction affine par morceaux

Variable discrète

Courbe en escalier

- (I) On positionne chaque point dont l'abscisse est la valeur de la variable et l'ordonnée, la fréquence cumulée qui lui correspond;
- (II) On complète ensuite la représentation graphique par des paliers afin de lui donner l'allure d'une courbe en escalier.

Variable discrète

Courbe en escalier

- (I) On positionne chaque point dont l'abscisse est la valeur de la variable et l'ordonnée, la fréquence cumulée qui lui correspond;
- (II) On complète ensuite la représentation graphique par des paliers afin de lui donner l'allure d'une courbe en escalier.

Exemple : Nb de pièces du logement d'un bâtiment

nb	Effectifs	Fréquences	Fréquences cumulées
1	10	0.22	0.22
2	7	0.16	0.38
3	12	0.27	0.65
4	16	0.35	1.00

Exemple

Étape I :

Exemple

Étape II :

Variable continue

Courbe d'une fonction affine par morceaux

- (I) Positionner les points :
 - On positionne le premier point dont l'abscisse est la première valeur possible et l'ordonnée est zéro;
 - puis, on positionne chaque point dont l'abscisse est la valeur supérieure de la classe et l'ordonnée, la fréquence cumulée qui lui correspond;
- (II) Sous l'hypothèse que les données sont uniformément distribuées dans chaque classe, on peut relier les points par des segments.

Variable continue

Courbe d'une fonction affine par morceaux

- (I) Positionner les points :
 - On positionne le premier point dont l'abscisse est la première valeur possible et l'ordonnée est zéro;
 - puis, on positionne chaque point dont l'abscisse est la valeur supérieure de la classe et l'ordonnée, la fréquence cumulée qui lui correspond;
- (II) Sous l'hypothèse que les données sont uniformément distribuées dans chaque classe, on peut relier les points par des segments.

Exemple : Notes des étudiants

	Effectifs	Amplitudes	Fréquences	Densités	Fréquences cumulées
[0; 5[6	5	0.1	0.02	0.1
[5; 8[21	3	0.36	0.12	0.46
[8; 12[8	4	0.14	0.035	0.6
[12; 15[10	3	0.17	0.06	0.77
[15; 20[14	5	0.23	0.048	1
Total	59	20	1		

Exemple

Étape I :

Exemple

Étape II :

Fonction de répartition

- La courbe cumulative des fréquences représente la fonction de répartition (F) de la variable statistique
- $F: \mathbb{R} \to [0; 1]$, $F(x) = \text{la proportion des individus dont la valeur de la variable est inférieure ou égale à <math>x$.
- F est une fonction croissante.
- Si la variable est discrète, on a $F(x_i) = F_i$.