

but Eb: Eg, where M: 2k.

Computing PE (Coherent MPSK) Assume Siles was transmitted het) = soles + nglts. E[21/8]= JE E[22/82]= Q. Joint donn'ty of 21,27 is: $\phi(21,22) = \frac{1}{2\pi 6^2} \exp\left(-\left((21-5E)^2+22^2\right)\right)$ Let M== (212+22) 2 & Ø= fan (32) => Z1 = MCOSB Z2 = MCINB Chang of variables (21,22) -> (m,0) p(m, ø)= p(2,22) |J| J - Jacobson for change of variables $\left(- \left(z_1^2 + \varepsilon - 2 z_1 \sqrt{\varepsilon} + z_2^2 \right) \right)$ M ρ 4 17 - M $p(m, p) = \frac{m}{2\pi\sigma_0^2} e^{\left(-\left(\frac{m^2-2m\sqrt{\epsilon}\cos^2(p+\epsilon)}{2\sigma_0^2}\right)\right)}$ Z1 + 27 = M2, Z1 = MCOSS

- 1. If Repsk is the rate at which the BPSk operates
 then Rapsk.2 = ? Repsk
 2
- 2. Signal Power used in RPSK is $S = A^2$.

 Signal Power used in RPSK-2 is $(A_{52})^2 = A^2 = S_2$.
- 3. 00 (Eb) = S.T = S. (N) = S/2. W No 6 P8k-2 N/W

00 PB VI EbMo for BPSK and BPSK are same.

* How about Pt for RPSK and BPSK?

-> For BPSK, PB=PE

-> For GPSK, PE = (1-PB)2

Figure 4.28 Bit error probability for conerently detected M-ary orthogonal signaling. (Reprinted from W. C. Lindsey and M-K. Simon, Telecommunication Systems Engineering, Prentice Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy of W. C. Lindsey and Marvin K. Simon).

-End of Chapter-4--End of CT303-