

Meteorological Data Filtering for Tropical Cyclones using Deep Learning

Daniel Galea, Bryan Lawrence

Introduction and Aims

- The effects of a changing climate on multiple meteorological phenomena are being investigated by long General Circulation Model (GCM) simulations
- Each simulation produces large amounts of data which can be inefficient to store and analyse
- We created a method that scans GCM analysis data for the presence of Tropical Cyclones (TCs) and only outputs it to disk if a TC is detected

Data

- ERA-Interim reanalyses dataset; each timestep split into 8 regions
- Fields used: 10m wind speed; MSLP; Vorticity at 850hPa, 700hPa, 600hPa at a resolution of 2.8°
- Labels obtained from the IBTrACS database
- Training Set: January 1979 June 2017 (450912 cases)
- Testing Set: July 2017 August 2019 (24352 cases)

Results

- An accuracy of 90.65% was obtained when testing on data from July 2017 until August 2019
- 1231 out of 1342 (91.73%) positive cases were correctly classified

		<u>Identified</u>		
		TC Present	TC Not Present	
Ground Truth	TC Present	1231	111	
	TC Not Present	2166	20844	

Results: TC Category

Category	Global Model		
1	88.02%		
2	91.53%		
3	94.19%		
4	94.64%		
5	100.00%		

 This upward trend of recall with category shows that TCs of higher categories are being identified better as they have features which are more easily identifiable

Results: Standard Models

 The model developed was compared with some standard models. It did not obtain the best accuracy, but did get the best loss

Results: Feature Importance

- Breiman Method:
 - Each field is permuted across all testing cases
 - If performance decreases from original, the field is important for the model
 - The larger the decrease, the more important the field
- Lakshamanan Method:
 - Each field is permuted across all testing cases
 - Most important is kept permuted, while the next important is found
 - Keep on going until all fields are permuted

Verification: TC Centres

Compare outputs from DL model to T-TRACK, observations

TCDetect

Verification: TC Matches

Compare outputs from DL model to T-TRACK, observations

Implementation

Implementation: Data Volume

		ERA-Interim		UM	N96	UMI	N512
	IBTrACS	T-TRACK	TCDetect	T-TRACK	TCDetect	T-TRACK	TCDetect
NI	72 (2%)	277 (9%)	239 (8%)	74 (2%)	105 (2%)	157 (11%)	197 (14%)
NWP	400 (13%)	1222 (40%)	933 (31%)	1674 (39%)	2617 (61%)	956 (67%)	920 (64%)
NEP	267 (9%)	712 (23%)	875 (29%)	442 (11%)	689 (16%)	524 (37%)	714 (50%)
NA	250 (8%)	703 (23%)	497 (16%)	559 (13%)	999 (23%)	431 (30%)	683 (48%)
SI	214 (7%)	646 (21%)	406 (13%)	913 (31%)	1596 (37%)	234 (16%)	552 (38%)
SWP	113 (4%)	740 (24%)	399 (13%)	874 (20%)	1436 (33%)	154 (11%)	374 (26%)
SEP	26 (1%)	322 (11%)	35 (1%)	1096 (25%)	1945 (45%)	149 (10%)	370 (26%)
SA	0 (0%)	119 (4%)	119 (4%)	167 (4%)	362 (8%)	28 (2%)	97 (7%)

Implementation: Computational Performance

Function	Times Applied	N96 Timings / sec	N512 Timings / sec
Collect data	1	4.64 x10 ⁻⁴	2.99x10 ⁻³
Interpolate MSLP	1	3.15 x10 ⁻⁴	0.35
Resize field	5	9.1x10 ⁻³	3.67x10 ⁻²
Calculate Vorticity	3	1.16 x10 ⁻³	2.28x10 ⁻³
Spherical filtering	5	0.68	1.36
Standardisation	5	4.13 x10 ⁻⁵	6.64x10 ⁻⁵
Data formatting	8	1.63x10 ⁻⁵	3.66 x10 ⁻⁵
DL inference	8	0.19	0.37
Full Method		4.96	10.22
Full Timestep		6.15	15.64
Full Simulation		23%	5%

Possible Future Work

- Better DL model
- Change filtering techniques to be done inside DL model; hopefully producing computationally less expensive method
- Replicate method for other phenomena

Acknowledgements

- This work was supported by NVIDIA and Oracle
- It was funded by Natural Environment Research Council (NERC) as part of the UK Government Department for Business, Energy and Industrial Strategy (BEIS) National Productivity Investment Fund (NPIF), grant number NE/R008868/1
- UM work was aided by member of the NCAS-CMS team