MODI Projekt II Adam Misiak 310204 Dane nr. 45

Zadanie 1 – identyfikacja modeli statycznych:

a) Narysować dane statyczne. Podzielić dane statyczne na zbiór uczący i weryfikujący, narysować te zbiory na oddzielnych rysunkach.

Dane statystyczne znajdują się w pliku danestat45.txt – pierwsza kolumna to **sygnały wejściowe u**, druga kolumna to **sygnały wyjściowe y**.

Dane statyczne:

Rys. 1 – Przebiegi wejścia oraz wyjścia dla danych statycznych

Charakterystyka y(u) dla całej dziedziny:

Rys. 2 – Charakterystyka y(u) dla danych statycznych

Podział danych na zbiór uczący oraz weryfikujący:

Zdecydowałem się na podział danych w proporcji 1:1, w sposób losowy, tzn. w losowo wybrane zostało 100 próbek, które zostaną przypisane do zbioru uczącego, reszta natomiast będzie stanowić zbiór weryfikujący.

Wierzę, że taki podział doprowadzi do optymalnego rozwiązania, które zapewni model odpowiednio dokładny, aczkolwiek uniwersalny, możliwy do zastosowania dla podobnej klasy danych.

W losowy sposób wybrano 100 indeksów za pomocą matlabowej funkcji randperm(n, k), zapisano je w pliku "indeksy_uczace_dane_stat.txt"

Skrypt realizujący losowanie znajduje się w pliku: "wybieranie_losowych_indeksow_dane_stat.m"

Wylosowane indeksy:

			•						
2	19	34	57	76	101	123	142	165	179
5	20	37	61	78	102	126	143	168	181
6	24	42	62	82	104	127	144	169	184
9	25	44	63	84	107	129	146	170	187
11	26	45	64	87	109	131	147	171	189
12	28	50	65	88	111	132	148	173	193
13	30	52	67	92	117	133	150	174	195
16	31	53	69	93	120	134	152	175	196
17	32	55	73	99	121	135	153	177	197
18	33	56	75	100	122	137	164	178	198

Dane uczące:

Rys. 3a – Przebiegi wejścia oraz wyjścia dla danych uczących

Charakterystyka y(u):

Rys. 3b – Charakterystyka y(u) dla danych uczących

Dane weryfikujące:

Rys. 4a – Przebiegi wejścia oraz wyjścia dla danych weryfikujących

Charakterystyka y(u):

Rys. 4b – Charakterystyka y(u) dla danych weryfikujących

Wnioski:

Analizując charakterystyki y(u) dla obu rodzajów danych, stwierdzam, że losowy podział spełnił założenia, zbiór danych uczących z pewną dokładnością odwzorowuje zbiór danych weryfikujących.

Nie ma miejsce sytuacja gdzie pewna klasa danych nie jest reprezentowana (jak np. miałoby miejsce gdyby dane uczące były reprezentowane danymi o indeksach 1-100 a dane weryfikujące 101-200)

b) Metodą najmniejszych kwadratów wyznaczyć statyczny model liniowy postaci.

W tym punkcie należy wyznaczyć statyczny model liniowy w postaci:

$$y(u) = a_0 + a_1 u$$

Linię regresji wyznaczono Metodą Najmniejszych Kwadratów, co znaczy, że dobrano taką krzywą, dla której błąd kwadratowy jest najmniejszy.

Wzór na obliczenie błędu:

$$E = \sum_{p=1}^{s} (y^{mod}(p) - y(p))^{2} = ||Y^{mod} - Y||^{2}$$

Korzystając z równania macierzowego:

$$Y^{\text{mod}} = M \cdot W$$

$$\begin{bmatrix} y(1) \\ \vdots \\ y(p) \end{bmatrix} = \begin{bmatrix} 1 & u(1) \\ \vdots & \vdots \\ 1 & u(p) \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

Gdzie p to numer próbki zbioru uczącego

Wzór na obliczanie błędu można zapisać jako następujący:

$$E = ||M \cdot W - Y||^2$$

Gdzie macierz M -> macierz sygnałów wejściowych (w tym wypadku 1 oraz u)

Macierz W -> macierz współczynników (w tym wypadku a₀ oraz a₁)

W celu uzyskania parametrów modelu zapewniających najmniejszy błąd kwadratowy, parametry obliczamy ze wzoru:

$$W = (M^T \cdot M)^{-1} \cdot M^T \cdot Y = M \setminus Y$$
 (lewe dzielenie) Wygenerowane w ten sposób dane: (plik zad1.m)

$$a_0 = 0.1708$$

 $a_1 = 1.037$

Tak przedstawia się charakterystyka liniowa na tle danych:

Charakterystyka liniowa na tle danych uczących:

Rys. 5a – Charakterystyka liniowa na tle danych uczących

Błąd kwadratowy: 3.8588

Charakterystyka liniowa na tle danych weryfikujących:

Rys. 5b – Charakterystyka liniowa na tle danych weryfikujących

Błąd kwadratowy: 4.0757

Wnioski:

Jak widać na rysunkach 5a oraz 5b funkcja liniowa nie nadaje się do poprawnej identyfikacji danych. Przyjęty model charakteryzuje się dużym błędem zarówno w dziedzinie danych weryfikujących jak i uczących.

Aby poprawnie aproksymować funkcję należy przyjąć model o wyższym stopniu. Nie należy jednak wybierać modelu o za dużym stopniu, ponieważ może on powodować zbyt dużą korelację wyłącznie z danymi uczącymi, a zależy nam głównie na dobrej aproksymacji dla danych weryfikujących.

c) Metodą najmniejszych kwadratów wyznaczyć statyczne modele nieliniowe

Modele ta mają postać:

$$y(u) = a_0 + \sum_{i=1}^N a_i u^i$$

Gdzie N to stopień wielomianu, zacząłem od stopnia 2, stopniowo zwiększając stopień modelu.

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Przykładowe charakterystyki obrazujące zachowanie dla wyższych stopni:

Model stopnia: 12

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Charakterystyka na tle danych uczących:

Wnioski:

Błędy dla różnych stopni zgromadzono w tabeli poniżej:

Stopień	Błąd dane uczące	Błąd dane weryfikujące
1	3,8588	4,0757
2	0,32029	0,31888
3	0,16601	0,18921
4	0,010993	0,010766
5	0,010316	0,010403
6	0,010316	0,010409
7	0,010276	0,010527
12	0,0095805	0,011338
50	0,0071606	0,026001
100	0,0067081	41357,922

Z tabeli wynika, że najlepszy wynik względem danych weryfikacyjnych uzyskano dla modelu stopnia 5.

Potwierdza to, że aby dobrze zamodelować dane stopień modelu nie powinien być za duży, aby nie dochodziło do sytuacji, gdzie model jest skorelowany w dużym stopniu z poszczególnymi punktami (jak miało to miejsce dla modelu stopnia 100)

Dla modeli wyższych stopni dopasowanie dla danych uczących poprawia się, jednakże odbywa się to kosztem gorszego dopasowania do danych weryfikujących.

Z tego właśnie powodu, uznaję, że najlepszym modelem statycznym jest model stopnia 5.

Model 5 stopnia:

$$y(u) = -0.0028 + 0.2440 \cdot u + 0.1731 \cdot u^2 - 0.2232 \cdot u^3 + 0.5412 \cdot u^4 - 0.0644 \cdot u^5$$

2) Identyfikacja modeli dynamicznych

a) Narysować dane dynamiczne: zbiór uczący i weryfikujący.

(Wykresy generowane w pliku zad2_a.m)

Zbiór danych uczących:

Rys. 6a – Przebiegi sygnałów wejściowych oraz wyjściowych dla danych uczących

Zbiór danych weryfikujących:

Rys. 6b – Przebiegi sygnałów wejściowych oraz wyjściowych dla danych weryfikujących

b) Metodą najmniejszych kwadratów wyznaczyć dynamiczne modele liniowe.

Postać modelu:

$$y(k) = \sum_{i=1}^{n_b} b_i u(k-i) + \sum_{i=1}^{n_a} a_i y(k-i)$$

Gdzie odpowiednio n_b oraz n_a definiują rząd modelu:

 $n_a = n_b = 1$ -> model pierwszego rzędu $n_a = n_b = 2$ -> model drugiego rzędu $n_a = n_b = 3$ -> model trzeciego rzędu

Równanie macierzowe dla liniowych modeli dynamicznych ma postać:

$$Y = M \cdot W$$

$$\begin{bmatrix} y(kmin) \\ \vdots \\ y(kmax) \end{bmatrix} = \begin{bmatrix} u(kmin-1) & ... & u(kmin-n) & y(kmin-1) & ... & y(kmin-n) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u(kmax-1) & ... & u(kmin-n) & y(kmax-1) & ... & y(kmax-n) \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix}$$

Gdzie:

b – wektor współczynników sygnału wejściowego
 a – wektor współczynników poprzednich sygnału wyjściowego
 n = n_a = n_b – rząd dynamiki
 kmax – liczba próbek

Podstawą do wygenerowania modeli dynamicznych było prawidłowe wyznaczenie macierzy współczynników **W**, tak jak w poprzednim zadaniu macierz **W** wyznaczono na podstawie metody najmniejszych kwadratów:

$$W = M \setminus Y$$

Model bez rekurencji

ARX – Autoregressive model with exogenous input model:

$$y_{mod}(k) = \sum_{i=1}^{n_b} b_i u(k-i) + \sum_{i=1}^{n_a} a_i y(k-i)$$

Modele z rekurencją OE – Output error model:

$$y_{mod}(k) = \sum_{i=1}^{n_b} b_i u(k-i) + \sum_{i=1}^{n_a} a_i y_{mod}(k-i)$$

Błędy modeli wyznaczono przy użyciu Metody Najmniejszych Kwadratów:

$$E = \sum_{i=1}^{kmax} (y_{mod}(i) - y(i))^2$$

Wyjścia Modeli na tle danych:

Modele pierwszego rzędu:

Rys. 8a – Przebieg wyjścia dla modeli pierwszego rzędu dla danych uczących

Rys. 8b – Przebieg wyjścia dla modeli pierwszego rzędu dla danych weryfikujących

Modele drugiego rzędu:

Rys. 9a – Przebieg wyjścia dla modeli drugiego rzędu dla danych uczących

Rys. 9b – Przebieg wyjścia dla modeli drugiego rzędu dla danych weryfikujących

Modele trzeciego rzędu:

Rys. 10a – Przebieg wyjścia dla modeli trzeciego rzędu dla danych uczących

Rys. 10b – Przebieg wyjścia dla modeli trzeciego rzędu dla danych weryfikujących

Tabela błędu:

Rząd dyn. mod	Dane we	ryfikujące	Dane uczące		
n	Błąd modelu z rekurencją	Błąd modelu bez rekurencji	Błąd modelu z rekurencją	Błąd modelu bez rekurencji	
1	107,866	0,10722	137,203	0,12592	
2	91,8432	0,081803	158,7621	0,081554	
3	81,4018	0,055314	166,0236	0,0567	

Jak widać z tabeli najlepszy model rekurencyjny to model rzędu trzeciego, ponieważ interesuje nas jak najmniejszy błąd dla danych weryfikujących.

Błędy dla modeli bez rekurencji są o niższe niż dla modeli z rekurencją, ponieważ bazują one na rzeczywistych wartościach wyjścia, gdy modele z rekurencją polegają na poprzednich wyjściach modelu.

Bardzo słabe dopasowanie modelu rekurencyjnego może być uzasadnione bardzo mocną korelacją wyjścia od wartości poprzednich, a słabą korelacją z wartościami wejściowymi.

Rząd 1:

 $W^T = [0.0006 \ 0.9997]$

Rząd 2:

 $W^{T} = [-0.0002 \ 0.0005 \ 1.5930 \ -0.5936]$

Rząd 3:

 $W^{T} = [-0.0006 -0.0000 0.0008 1.2655 0.2853 -0.5518]$

c) Metodą najmniejszych kwadratów wyznaczyć szeregi wielomianów dynamicznych modeli nieliniowych.

W przypadku modeli nieliniowych macierz M przyjmuje postać:

$$M = [U Y]$$

Gdzie:

$$\mathbf{U} = \begin{bmatrix} u(\text{kmin} - 1) & \dots & u(\text{kmin} - 1)^s & \dots & u(\text{kmin} - n) & \dots & u(\text{kmin} - n)^s) \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ u(\text{kmax} - 1) & \dots & u(\text{max} - 1)^s & \dots & u(\text{kmax} - n) & \dots & u(\text{kmax} - n)^s) \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y(\text{kmin} - 1) & \dots & y(\text{kmin} - 1)^s & \dots & y(\text{kmin} - n) & \dots & y(\text{kmin} - n)^s) \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ y(\text{kmax} - 1) & \dots & y(\text{kmax} - 1)^s & \dots & y(\text{kmax} - n) & \dots & y(\text{kmax} - n)^s) \end{bmatrix}$$

Oraz:

n – rząd dynamiki s – rząd wielomianu k_{max} – liczba próbek

Wektor W ponownie został wyznaczony z równania:

$$W = M \setminus Y$$

Następnie wyznaczyłem model:

Dla każdego rzędu wielomianu z zakresu 2-4: Wyznaczyłem model z rzędami dynamiki od 1 do 3.

Prezentacja wyników:

Stopień wielomianu 2:

N == 1:

Rys. 11a – Przebieg wyjścia dla modeli 1 rz. 2 st. dla danych uczących

Rys. 11b – Przebieg wyjścia dla modeli 1 rz. 2 st. dla danych weryfikujących

N == 2:

Rys. 12a – Przebieg wyjścia dla modeli 2 rz. 2 st. dla danych uczących

Rys. 12b – Przebieg wyjścia dla modeli 2 rz. 2 st. dla danych weryfikujących

N == 3:

Rys. 13a – Przebieg wyjścia dla modeli 3 rz. 2 st. dla danych uczących

Rys. 13b – Przebieg wyjścia dla modeli 3 rz. 2 st. dla danych weryfikujących

Stopień wielomianu 3:

N == 1:

Rys. 14a – Przebieg wyjścia dla modeli 1 rz. 3 st. dla danych uczących

Rys. 14b – Przebieg wyjścia dla modeli 1 rz. 3 st. dla danych weryfikujących

N == 2:

Rys. 15a – Przebieg wyjścia dla modeli 2 rz. 3 st. dla danych uczących

Rys. 15b – Przebieg wyjścia dla modeli 2 rz. 3 st. dla danych weryfikujących

N == 3:

Rys. 16a – Przebieg wyjścia dla modeli 3 rz. 3 st. dla danych uczących

Rys. 16b – Przebieg wyjścia dla modeli 3 rz. 3 st. dla danych weryfikujących

Stopień wielomianu 4:

N == 1:

Rys. 17a – Przebieg wyjścia dla modeli 1 rz. 4 st. dla danych uczących

Rys. 17b – Przebieg wyjścia dla modeli 1 rz. 4 st. dla danych weryfikujących

N == 2:

Rys. 18a – Przebieg wyjścia dla modeli 2 rz. 4 st. dla danych uczących

Rys. 18b – Przebieg wyjścia dla modeli 2 rz. 4 st. dla danych weryfikujących

N == 3:

Rys. 19a – Przebieg wyjścia dla modeli 3 rz. 4 st. dla danych uczących

Rys. 19b – Przebieg wyjścia dla modeli 3 rz. 4 st. dla danych weryfikujących

Wnioski:

Na początku sporządziłem tabele opisującą błąd w zależności od stopnia wielomianu oraz rzędu dynamiki.

Stopień wielomianu	Rząd dynamiki modelu	Dane we	ryfikujące	Dane uczące		
S	n	Błąd modelu z rekurencją	Błąd modelu bez rekurencji	Błąd modelu z rekurencją	Błąd modelu bez rekurencji	
	1	8,6349	0,074831	11,3416	0,075446	
2	2	8,6948	0,061877	14,2664	0,061283	
	3	8,1849	0,048069	12,5307	0,047376	
3	1	2,713	0,058769	3,1375	0,058312	
	2	1,9393	0,045206	2,1579	0,044493	
	3	1,5414	0,037706	1,8385	0,037437	
4	1	0,60666	0,048499	0,67112	0,051053	
	2	0,30098	0,036628	0,26904	0,037544	
	3	0,15505	0,029199	0,13178	0,029742	

Z tabeli można odczytać, że najmniejszy błąd dla zbioru danych weryfikujących oraz modelu rekurencyjnego otrzymujemy dla:

- stopnia wielomianu równego 4
- rzędu dynamiki równego 3

Kolejnymi wartościami modelu dla którego otrzymano zadowalające rezultaty są ponownie wielomiany stopnia 4 oraz rzędu dynamiki 1 oraz 2.

Model który wykonywał predykcje na jeden krok ponownie uzyskał lepsze rezultaty, lecz różnica nie była tak drastyczna jak w przypadku identyfikacji przy użyciu modeli liniowych.

Potwierdza to nieliniowość danych które identyfikowano.

Nie podejmowałem się identyfikowania przy użyciu modeli mieszanych, ponieważ uzyskałem zadowalające efekty przy użyciu modeli bez tychże wyrazów.

Można wywnioskować, że im wyższy stopień wielomianu tym lepiej, jednakże również w tym wypadku może okazać się, że przy zbyt wysokim stopniu model staje się w za dużym stopniu dopasowany do danych uczących, co można zauważyć poprzez wzrost błędu dla danych weryfikujących (jak miało to miejsce w zadaniu 1.c)

Aby sprawdzić poprawność tego stwierdzenia zdecydowałem się również na sprawdzenie modelu stopnia 5 dla rzędu dynamiki 2 oraz 3.

Tak prezentują się wyniki:

Rys. 20a – Przebieg wyjścia dla modeli 2 rz. 5 st. dla danych uczących

Rys. 20b – Przebieg wyjścia dla modeli 2 rz. 5 st. dla danych weryfikujących

Rys. 20c – Przebieg wyjścia dla modeli 3 rz. 5 st. dla danych uczących

Rys. 20d – Przebieg wyjścia dla modeli 3 rz. 5 st. dla danych weryfikujących

Na podstawie rezultatów można stwierdzić, że im wyższy stopień wielomianu i rząd dynamiki tym lepszy model, jednakże dla danych weryfikujących występuje krytyczny moment, kiedy to wraz ze wzrostem stopnia wielomianu.

Moment taki następuje dla rzędu dynamiki 3 oraz stopnia wielomianu 7 oraz 8.

W tym przypadku mimo wzrostu stopnia wielomianu błąd dla modelu rekurencyjnego wzrasta, co potwierdza istnienie pewnej optymalnej wartości, która zapewnia zarówno krótszy czas obliczeń jak i lepsze wyniki.

Wartości wyjścia modeli dla stopnia 7 oraz 8 zarejestrowano na rysunkach 21a oraz 21b.

Rys. 21a – Przebieg wyjścia dla modeli 3 rz. 7 st. dla danych weryfikujących

Rys. 21a – Przebieg wyjścia dla modeli 3 rz. 7 st. dla danych weryfikujących

Za najlepszy model uważam model 4 stopnia wielomianu oraz 3 rzędu dynamiki, ma on bardzo mały błąd, oraz ma niską złożoność np. w stosunku do modelu 7 stopnia.

Parametry modelu to:

0.0005	0.0017	-0.0020	-0.0045	0.0076	-0.0012	-0.0074
0.0230	0.0134	0.0145	-0.0159	0.0193	0.5433	0.8115
-0.8594	0.0004	0.3514	0.3420	-0.8874	0.7457	0.0206
-1 1406	1 8051	-0 8316				

d) Na podstawie uznanego za najlepszy dynamicznego modelu nieliniowego otrzymanego w zadaniu 2c wyznaczyć statyczny model nieliniowy.

Obliczenia w pliku zad2_d.m

Rys. 22 – Charakterystyka statycznego modelu nieliniowego

Tak prezentuje się statyczny model nieliniowy.

Model ten za parametry statyczne przyjmuje wejście u w danej chwili oraz wyjście y z danej chwili.

Rys. 23a – Charakterystyka statycznego modelu nieliniowego dla danych weryfikujących

Rys. 23b – Charakterystyka statycznego modelu nieliniowego dla danych uczących

W porównaniu do realnych zależności y(u) dla danych weryfikacyjnych oraz uczących można stwierdzić, że charakterystyka ta została poprawnie wyznaczona.