UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COPPE

PROGRAMA DE ENGENHARIA QUÍMICA

— Otimização de Processos —

Prof. Argimiro R. Secchi

Terceira Lista de Exercícios – 2020 –

7) Considerando uma planta projetada para a produção de uma variedade de produtos, conforme ilustrado na figura abaixo:

A engenheira Leia ficou encarregada de maximizar o lucro da unidade, limitado à capacidade operacional e sem deixar de atender à demanda do mercado. Os dados de processo econômicos por ela obtidos estão dispostos na tabela abaixo:

Matéria Prima	Oferta (kg/dia)	Custo (R\$/kg)	Processo	Produto	Demanda (kg/dia)	Relação Estequiométrica (kg/kg)	Custo de Processa- mento (R\$/kg)	Preço de Venda (R\$/kg)
A	40.000	1,50	1	Е	20.000	2/3A, 1/3B	1,50	4,00
В	30.000	2,00	2	F	15.000	2/3A, 1/3B	0,50	3,30
С	25.000	2,50	3	G	25.000	1/2A, 1/6B, 1/3C	1,00	3,80

(a) Qual foi a formulação do problema de otimização elaborado pela Eng. Leia? (b) Qual foi a solução obtida? (c) Qual seria a solução se não houvesse demanda mínima?

8) Determine o trabalho mínimo do sistema de compressão abaixo, considerando compressão adiabática de gás ideal: $W = \frac{kRT_1}{k-1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{(k-1)}{k}} + \left(\frac{p_3}{p_2} \right)^{\frac{(k-1)}{k}} + \left(\frac{p_4}{p_3} \right)^{\frac{(k-1)}{k}} - 3 \right]$

Dados k = 1,4, $p_1 = 100$ kPa, $p_4 = 1000$ kPa e $T_1 = 300$ K. (a) Esboce a função objetivo e suas curvas de níveis em função de p_2 e p_3 . (b) Utilize os métodos de Rosembrock, Powell, *steepest descent*, gradiente conjugado, BFGS e DFP para obter a solução ótima e compare os resultados obtidos.

9) Resolva novamente os exercícios (4b) e (4d) utilizando o método SQP e levando-se em conta as restrições do problema e $L(x) \ge 0$.