Exchangeability and more hierarchical models

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information February 24, 2021

Outline

Last time:

- Bike lane example
- Hierarchical models
- Hyperprior selection

Now:

- Concept: exchangeability
- Hierarchical normal model

Recap

Bicycle traffic on neighborhood streets

Example from last time:

- Exercise 3.8 (and 5.13) in the textbook
- Data: observations of numbers of bicycles and other vehicles on neighborhood streets in Berkeley, CA
- Includes three classes of streets, with and without bike lanes
- We focus on one category: small streets with bike lanes

Goal: estimate the proportion of bicycle traffic

Fully pooled model

$$y_j \sim \text{Binomial}(\theta, n_j)$$

 $\theta \sim \text{Beta}(\alpha_0, \beta_0)$

for fixed α_0, β_0 .

- Choosing $\alpha_0=1, \beta_0=1$ gives a completely noninformative (flat) prior
- Weakly informative prior also reasonable, e.g. $\alpha_0=1, \beta_0=3$ for prior mean of 25% bicycle traffic

Fully separated model

As an alternative, we could treat each street as an independent entity:

Fully separated model

As an alternative, we could treat each street as an independent entity:

$$y_j \sim \text{Binomial}(\theta_j, n_j)$$

 $\theta_j \sim \text{Beta}(\alpha_0, \beta_0)$

for fixed α_0, β_0 .

- Exactly like the previous model, except we now have 10 independent θ_i s for the 10 streets
- Same considerations for choice of prior

Call this the separate-effects model.

Setting up the model

A compromise: hierarchical model

$$\mu$$
 - estimate of $p_j \sim \operatorname{Binomial}(\theta_j, n_j)$ $h_j \sim \operatorname{Beta}(\alpha, \beta)$ $h_j \sim \operatorname{Beta}(\alpha, \beta)$

Note: the book uses:

 $p(\alpha,\beta) \propto (\alpha+\beta)^{-5/2}$ § 5.3 in BDA?

Examining this graphically

Pooled model:

Separate model:

Examining this graphically

Hierarchical model combines the features of these two:

Dice: distribution of #of 15

 $\frac{1}{\sqrt{2}} = \rho(1)$

y = % of 1s

Conditions:

f'(x) # of sides, $G = (Hofsidy)^{-1}$ $y \sim N(G, 5e_G)$

Marjid: average over
Possible values for#of.
sides.

What is the difference in the results?

Let's compare point estimates:

Shrinkage and regularization

The shrinkage effect we see is a form of regularization:

- Most extreme observations "shrunk" toward a central value
- Amount of shrinkage tuned to relative sample size

Difference: we learned the strength of regularization from the data

Underfitting and overfitting

Another way to think about this, in terms of underfitting and overfitting:

- The pooled model: strong underfitting
- The separate-effects model: strong overfitting
- Hierarchical model: adaptive regularization

With enough observations the seperate effects model will estimate each street similarly to the hierarchical model.

Independence and exchangeability

Independence of the θ_j s

It's worth taking a moment to consider the independence properties of the parameters θ_j :

- In the hierarchical model, θ_j s are not independent (they're independent in the separated model)
- However, they satisfy two weaker properties:
 - conditional independence
 - exchangeability

Conditional independence

The θ_j s are not independent, but given fixed α, β , they are:

Exchangeability

A closely related concept is *exchangeability*, which justifies the use of the hierarchical model:

- Observations are exchangeable if the joint probability distribution is invariant to permutations of the index
- Roughly: we would have the same model if we relabeled the y_1, y_2, \dots
- Exchangeability is also evident in the directed graph model

Levels of exchangeability

The full data set contains observations from a total of 58 streets:

- small residential streets, medium streets, and busy arterial streets
- streets with or without bike lanes

Evidently, if we label the streets y_1, \ldots, y_{58} , they are not exchangeable.

But within the traffic/lane groups, the streets can be treated as exchangeable:

• Hierarchical model with several "levels"

Ignorance implies exchangeability

These exemplify a broad practical idea: ignorance implies exchangeability.

- The less we know about a problem, the stronger a claim of exchangeability
- Example: a die with 6 sides
 - Initially all sides are exchangeable
 - Careful examination of the die might reveal imperfections, leading us to distinguish sides from one another
- If we don't know whether the streets have bike lanes, then they're exchangeable
- If we know that 10, the 10th sampled street, is University Blvd., then it shouldn't be treated as exchangeable with the others (we know geographic factors affecting bicycle traffic)

 (α_1/β_2) streets connectify to university campus entreres

Hierarchical normal model

Example: 8 schools

Example: SAT coaching effectiveness

(Rubin, 1981)

- SAT design intent: short term coaching should not improve outcomes significantly
- nonetheless, schools implement coaching programs
- examine effectiveness of coaching programs

Experiment:

closely related test • All students pre-tested with PSAT

- Some students coached
- Coaching effects y_i estimated with linear regression
- Data is at the school level, not individual

Example: 8 schools

Data:

School	Effect	SE		
Α	28	15		
В	8	10		
C	-3	16		
D	7	11		
Е	-1	9		
F	1	11		
G	18	10		
Н	12	18		
'	\bigwedge	7	estimute	SĒ
estint.d				
to the toffeet				

18

The model

Normals at all levels:

$$y_j \sim \operatorname{Normal}(\theta_j, SE_j) \leftarrow \text{observed distribute}$$
 $\theta_j \sim \operatorname{Normal}(\mu, \tau) \leftarrow \text{per-school average effects}$
 $\mu \sim \operatorname{Normal}(\mu_0, \sigma_0)$
 $\tau \sim \operatorname{HalfCauchy}(5)$
 $\tau \sim \operatorname{HalfCauchy}(5)$

Notice: take SE to be known, only interested in estimating θ_j .

Draw the model

Computation and computational difficulties

This model is easy to conceptualize, and structurally similar to the bike lane model.

But:

- The hierarchical normal model has some computational challenges
- Difficult for MCMC samplers to explore without re-parameterization

Let's take a look in PyMC3...

Results

(graphics courtesy Aki Vehtari)

Hierarchical model as a compromise

Remember the (hyper)parameter au

If we condition on τ :

Hierarchical model is "partial pooling" – compromise between total pooling and separate effects

Amount of pooling controlled by τ ; hierarchical model learns this from the data.

Summary

Next week:

- MCMC what is it?
- How do modern MCMC methods work?
- Diagnosing sampling problems