Pràctica 10: Equació de la calor

Objectius: Resolució de EDP, equacions parabòliques, equació de Poisson 1D, equació de la calor, Crank-Nicolson

- Nom del programa **P10-18P.f**. Considera el problema de determinar l'evolució temporal de la funció T(x,t).
 - 1) Inicialment, el sistema es troba en equilibri,

$$\frac{\partial^2 T_0(x)}{\partial x^2} + \rho(x) = 0, \quad \text{amb } \rho(x) = 2e^{-|x-15|^2/0.8^2}$$

amb les condicions de contorn $T_0(0) = 10$ i $T_0(L_x) = 45$, amb $L_x = 30$.

Obté el perfil estacionari, fent servir h=0.2, i fes una figura representant $T_0(x)$, **P10-18P-fig.png**. (utilizta els mètodes de Gauss-Seidel, Jacobi o sobre-relaxació adaptats per 1D).

2) Estudia l'evolució temporal de T(x,t) un cop posem a zero les fonts. Implementa el mètode de Crank-Nicolson per a obtenir T(x,t), començant per l'estat inicial obtingut a 1). L'equació diferencial és:

$$\frac{\partial T(x,t)}{\partial t} = \kappa \frac{\partial^2 T(x,t)}{\partial x^2} \tag{0.17}$$

amb $T(x,0)=T_0(x)$, T(0,t)=10 i $T(L_x,t)=45$.

Considera 12000 passos de temps amb $\Delta t = 0.004$. Per resoldre el problema tridiagonal utilitza la subroutina $\mathbf{tridiagreal.f}$ (al campus virtual).

- 2a) Compara l'evolució de les temperatures dels punts $x_p = 6, 10, 28, 32$. Genera una funció mostrant $T(x_p, t)$, **P10-18P-fig.png**, fes servir $\kappa = 7.4$.
- 2b) Genera una figura mostrant l'evolució temporal de la mitjana de T, $\bar{T}(t) = (1/L_x) \int T(x,t) dx$, comparant tres valors de $\kappa = 3, 7.4, 10$, **P10-18P-fig2.png**.
- 2c) Genera una animació (o figura apropiada) que mostri l'evolució del perfil de T amb el temps t, $\mathbf{P10-18P-fig3.gif}$. Fes servir $\kappa=10$.

Entregable: P10-18P.f, P10-18P-fig1.png, P10-18P-fig2.png, P10-18P-fig3.gif