

Universidade de São Paulo

SEL0611- Fundamentos de Controle

Lista de Exercícios No.4

Pedro Morello Abbud

Número USP 8058718

Disciplina minsitrada por Professor Doutor B.J.Mass

20 de Março de 2016

Exercícios

1. Considere um sistema com uma única entrada u(t) e uma única saída y(t), cujo comportamento dinâmico é descrito por uma equação diferencial ordinária (EDO) da forma:

$$\frac{d^n y}{dt^n} + b_{n-1} \frac{d^{n-1} y}{dt^{n-l}} + \dots + b_1 \frac{dy}{dt} + b_0 y = u(t)$$
 (1)

- (a) Convença-se de que para um sistema assim o modelo dinâmico mais natural é a própria EDO (1).
- (b) Em complexidade o nível de modelagem seguinte e a função de transferência (FT) correspondente. Verifique que para este caso o modelo corresponde à:

$$\frac{Y(S)}{U(S)} = \frac{1}{s^n + b_{n-1}s^{n-1} + \dots + b_1s + b_0}$$
 (2)

- (a) Sabemos que
- (b) Da equação diferencial ordinária (1) podemos induzir:

$$\frac{1}{\frac{d^n}{dt^n} + b_{n-1}\frac{d^{n-1}}{dt^{n-l}} + \dots + b_1\frac{d}{dt} + b_0} = \frac{y}{u(t)}$$

Aplicando a transformada de Laplace em ambos os lados da igualdade:

$$\mathbb{L}\left\{\frac{1}{\frac{d^n}{dt^n} + \frac{d^{n-1}}{dt^{n-l}} + \dots + b_1 \frac{d}{dt} + b_0}\right\} = \frac{Y(S)}{U(S)}$$

Como sabemos que $\mathbb{L}\left\{\frac{d^n}{dt^n}\right\} = s^n$, conseguimos então deduzir a equação diferencial ordinária de número (2).

2. Obtenha o modelo EDO de um sistema cujo modelo TF e simplesmente:

$$H(S) = \frac{1}{s^2 + 0.2s + 1} \tag{3}$$

Podemos obter o modelo da EDO trocando o domínio da função de transferência da frequência para o tempo:

3. Para um circuito eletrico descrito por:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y(t) = 10x(t) \tag{4}$$

onde a entrada é x(t) e a saída é y(t), o modelo EDO é uma única equação de 2^a ordem. Por outro lado, o modelo EDO de um motor CC por exemplo, é normalmente um par de equações de 1^a ordem:

$$\begin{cases} v = Ri + L\frac{di}{dt} + K_E \omega \\ J\frac{d\omega}{dt} = K_T i - K_B \omega \end{cases}$$
 (5)

No caso geral e sempre possível transformar uma EDO de ordem n, em n EDOs de ordem "um" cada uma. Verifique se e possível reescrever o modelo da EDO representado em (5), na forma de duas EDOs de primeira ordem.