Probabilités avancées

Martingales à temps

discret

Question 1/17

Processus arrêté pour le jeu aléatoire (X_n) adapté à la filtration (\mathcal{F}_n) et le temps d'arrêt T

Réponse 1/17

$$X_n^T = X_{n \wedge T}$$

Question 2/17

Convergence presque-sûre de martingales

Réponse 2/17

Si (X_n) est une sous/sur-martingale et $\sup \left(\mathbb{E}\left(X_n^{-/+}\right)\right) < +\infty$ alors il existe une variable aléatoire X_{∞} intégrable telle que $X_n \to X_\infty$ presque-sûrement Si (X_n) est une sous/sur/ \emptyset -martingale et $\sup(|X_n|) < +\infty$ alors il existe une variable aléatoire X_{∞} intégrable telle que $X_n \to X_{\infty}$ presque-sûrement

Question 3/17

Filtration

Réponse 3/17

 (\mathcal{F}_n) une suite croissante de sous-tribus de \mathcal{F}

Question 4/17

Théorème d'arrêt de Doobs

Réponse 4/17

Si $S \leq T$ sont deux temps d'arrêt bornés et (X_n) est une sous/sur/ \emptyset -martingale alors

$$\mathbb{E}(X_T \mid \mathcal{F}_S) = X_S ext{ et en particulier}, \ \mathbb{E}(X_T) = \mathbb{E}(X_S) = \mathbb{E}(X_0) ext{ (resp. } \geqslant/\leqslant)$$

$$\mathbb{E}(X_T) = \mathbb{E}(X_S) = \mathbb{E}(X_0) \text{ (resp. } \geqslant / \leqslant)$$

Si T est borné, ou T est intégrable et
$$|X_{n+1} - X_n| \leqslant M \text{ p.s. ou } T \text{ est p.s. fini et}$$

$$|X_{n \land T}| \leqslant M \text{ alors } X_T \text{ est intégrable et}$$

$$\mathbb{E}(X_T) = \mathbb{E}(X_0) \text{ (resp. } \geqslant / \leqslant)$$

Question 5/17

Théorème de la martingale arrêtée

Réponse 5/17

Si (X_n) est une sous/sur/ \emptyset -martingale alors $(X_{n \wedge T})$ aussi

Question 6/17

Tribu engendrée par un temps d'arrêt

Réponse 6/17

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty}, \forall n \in \mathbb{N}, A \cap \{T = n\} \in \mathcal{F}_n \}$$

Question 7/17

Combinaisons possibles sur les temps d'arrêt

Réponse 7/17

Si S et T sont deux temps d'arrêt, $T \wedge S$, $T \vee S$, T + S sont des temps d'arrêt

Question 8/17

Intégrale stochastique (discrète)

Réponse 8/17

Soit (X_n) un processus adapté à \mathcal{F}_n et (H_n) un processus prévisible, l'intégrale stochastique de (H_n) par rapport à (X_n) est

$$(H \cdot X)_n = \sum_{k=1}^{n} H_k(X_k - X_{k-1})$$

Question 9/17

Sur-martingale

Réponse 9/17

$$(X_n)$$
 est une sur-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \leqslant X_n$

Question 10/17

Processus adapté à une filtration (\mathcal{F}_n)

Réponse 10/17

 (X_n) une suite de variables aléatoires avec X_n qui est \mathcal{F}_n -mesurable

Question 11/17

Stabilités des sous/sur/Ø-martingales

Réponse 11/17

Si (X_n) et (Y_n) sont deux sous/sur/ \emptyset -martingales alors $(X_n + Y_n)$ aussi Si (X_n) et (Y_n) sont des sous-martingales (resp. sur-martingale) alors $(\max(X_n, Y_n))$ (resp. $(\min(X_n, Y_n))$ aussi Si (X_n) est une martingale et φ est convexe telle que $\mathbb{E}(|\varphi(X_n)|) < +\infty$ alors $(\varphi(X_n))$ est une sous-martingale

Question 12/17

Martingale

Réponse 12/17

$$(X_n)$$
 est une martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = X_n$

Question 13/17

Lien entre tribus de temps d'arrêt

Réponse 13/17

Si
$$S \leqslant T$$
 alors $\mathcal{F}_S \subseteq \mathcal{F}_T$

Question 14/17

Processus prévisible

Réponse 14/17

 $(H_n)_{n\in\mathbb{N}^*}$ est un processus prévisible par rapport à $(X_n)_{n\in\mathbb{N}}$ adapté à \mathcal{F}_n si H_n est \mathcal{F}_{n-1} -mesurable

Question 15/17

Temps d'arrêt pour le jeu aléatoire (X_n) adapté à la filtration (\mathcal{F}_n)

Réponse 15/17

Variable aléatoire $T: \Omega \to \mathbb{N} \cup \{+\infty\}$ telle que $\{T = n\}$ (ou de manière équivalente $\{T \leqslant n\}$) est \mathcal{F}_n -mesurable

Question 16/17

Intégrales stochastiques de sous/sur/Ø-martingales

Réponse 16/17

Si (X_n) est une martingale et (H_n) est un processus prévisible de L^{∞} alors $((H \cdot X)_n)$ est une martingale Si (X_n) est une sous/sur-martingale et (H_n) est un processus prévisible positif de L^{∞} alors $((H \cdot X)_n)$ est une sous/sur-martingale

Si (X_n) est dans L^2 alors on peut avoir (H_n) dans L^2

Question 17/17

Sous-martingale

Réponse 17/17

$$(X_n)$$
 est une sous-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \geqslant X_n$