Square equation solver

Generated by Doxygen 1.8.20

1 File Index	2
1.1 File List	2
2 File Documentation	3
2.1 main.cpp File Reference	3
2.1.1 Detailed Description	3
2.1.2 Function Documentation	4
2.1.2.1 isZero()	4
2.1.2.2 SolveLinear()	4
2.1.2.3 SolveSquare()	5
Index	6

Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:	

naın.cpp																	
The main file of project			. ,					 									3

Chapter 2

File Documentation

2.1 main.cpp File Reference

The main file of project.

```
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
```

Functions

• bool isZero (const double t, const double accuracy)

Compares value with 0 in current accuracy.

• int SolveLinear (const double a, const double b, double *x, double accuracy=1e-7)

Solves a linear equation ax + b = 0.

• int SolveSquare (const double a, const double b, const double c, double *x_1, double *x_2, double accuracy=1e-7)

Solves a square equation $ax^2 + bx + c = 0$.

• int main ()

Variables

• const int SE_INFTY = -1

Constant which returns when equation has infinite many roots.

2.1.1 Detailed Description

The main file of project.

This file consists main functions which demands for solving square equation.

4 File Documentation

2.1.2 Function Documentation

2.1.2.1 isZero()

```
bool isZero (  \mbox{const double } t, \\ \mbox{const double } accuracy \; ) \quad \mbox{[inline]}
```

Compares value with 0 in current accuracy.

Parameters

in	t	Rounding variable
in	accuracy	Accuracy of rounding to zero

Returns

Next to a variable with zero or not.

Note

Accuracy should be gain than DBL_MIN constant.

2.1.2.2 SolveLinear()

Solves a linear equation ax + b = 0.

Parameters

in	а	a-coefficient
in	b	b-coefficient
out	X	Pointer to the root
in	accuracy	Accuracy of rounding to zero, by default equals to 1e-7

Returns

Number of roots.

Note

Function demands allocated memory for pointer x. In case of infinite number of roots, returns SE_INFTY. Accuracy should be gain than DBL_MIN constant.

Example of usage:

```
int main()
    printf("Enter the coefficients of linear equation ax+b = 0\n"); double a = 0, b = 0;
    scanf("%lg %lg", &a, &b);
    double x = 0;
    int nRoots = SolveLinear(a, b, &x, 1e-6);
    switch (nRoots)
        case 0:
           printf("There aren't any roots\n");
            break;
        case 1:
            printf("There is a root: x = %.4f\n", x1);
        break;
case SE_INFTY:
            printf("Any number is a root of current equation.\n");
            break;
        default:
            printf("Strange number of roots... \n");
    return 0;
```

2.1.2.3 SolveSquare()

Solves a square equation $ax^2 + bx + c = 0$.

Parameters

in	а	a-coefficient a-coefficient
in	b	b-coefficient
in	С	c-coefficient
out	x_1	Pointer to the 1st root
out	x_2	Pointer to the 2nd root
in	accuracy	Accuracy of rounding to zero, by default equals to 1e-7

Returns

Number of roots

Note

Function demands allocated memory for both pointers x_1,x_2 . In case of infinite number of roots, returns SE_INFTY. Accuracy should be gain than DBL_MIN constant.

6 File Documentation

Example of usage:

```
int main()
    printf("Enter the coefficients of square equation ax^2+bx+c = 0\n"); double a = 0, b = 0, c = 0; scanf("%lg %lg %lg", &a, &b, &c); double x1 = 0, x2 = 0; int nRoots = SolveSquare(a, b, c, &x1, &x2, 1e-6);
     switch (nRoots)
     {
          case 0:
               printf("There aren't any roots\n");
               break;
          case 1:
              printf("There is a root: x_1 = %.4f\n", x1);
          break; case 2:
               printf("There is two roots: x_1 = %.4f, x_2 = %.4f \n", x_1, x_2);
          break;
case SE_INFTY:
               printf("Any number is a root of current equation.\n");
                break;
          default:
               printf("Strange number of roots... \n");
               break;
     return 0;
```

Index

```
isZero
main.cpp, 4

main.cpp, 3
isZero, 4
SolveLinear, 4
SolveSquare, 5

SolveLinear
main.cpp, 4
SolveSquare
main.cpp, 5
```