LECCION 2 - EFICIENCIA. NOTACION 0-6RANDE

> · EFICIENCIA: Qué recursos gasta un algoritmo L) Podemos catalogar un algentmo

. RECURSOS: MEMORIA Y TIEMPO de EJECUCIÓN

EJEMPLO: Asignacion de .50 trabajos -d Mejor angnacian?

Búsqueda Hasiva - Mira todas las posibilidades

.50 × 1064

. Ordenador:

_Evalúa Ibillon de posibilidad/s

- Empero 15000 millous de años

- Aun estana procesando

. No basta cur la mejora de hardware

. ALGORITMO: Conjunto de pasos o senturcias bien ordenadas que resuelen un problema.

· IMPLEMENTACIÓN - Traducción de las sentencias a un determinades linguaje de programación

PRINCIPIO DE JNVARIANZA - dos implementaciones de un mismo algortmo solo se diferencia en una constante multiplicativa.

.davé algontmo escojemos?

_ El mais epiciente en reacros.

. EJEHPLO: Para un problema . Dos algontmos A1 y AZ

. Eficiencia de A1: T1(n)= 10-42ns

. Eficiencia de Az: Tz(n)= 10-3×n3s

.n es el nº de datus de entrada al algoritmo.

n 10 20 30 T(n) 0.15 2m 71dia

T(n) 0.45 Tz(n) 105 80s=1,8m 2705 5495

. ANÁLISIS ASINTOTICO

Análisis de la eficiencia de un algortmo cuando el nº de datos de entrada tiende a valores muy grandes (n->&)

. En la eficiencia de un algortmo la estructiva de dates que eswjamos también es relevante.

FUNCION DE ÉFICIENCIA.

Se défine sobre el n= de datus de entrada del algoritmo f(n) (n:nº de datos de entrada o tulla) y devuelve un valor real mayor o ignal que o midiendo la eficiencia (tiempo o memmia)

tiempo de (s) 4: N - Rot $n \longrightarrow f(n)$ respacio (bytes

n:tamaño del problema o talka

LECCION Z: continuaciai

-d'Como calcular la épiciencia?

· Teórica - Estudio Asintótico

. Empínica - Experimentalmente

<u>"EHPÎRICA</u>

. Ejecutamos el algontmo una vez implementado y obtenemos el trempo:

_Para un mismo n (n: de datus de entrada) lo ejecutamos varias

_ Lo ejecutamos para diferentes n (distintas tallas)

. En C++: camo obtener el tiempo

Hindude (ctime)

time t tantes, tdespues;

time (& tantes)

1 sentucias

time (Atdespues) cout 22 difftime (tdespues, tantes)

PROBLEMAS de la E, EMPÍRICA

- 1) Los datus que hayamos escogido no son representativos de las características del problema
- z) Depende del hardware y liberia usada
- 3) Para poder compaisor des algontmus debenus ejecutarlos en las mismas andiciones.

.E. TEORICA - Análisis a sintótico

CARACTERÍSTICAS

.Independiente del hardware y software

. Representa a todas las entradas

. Usa una descripción a alto nivel del programa.

Orden de éficiencia, T(n)

Un algoritmo tiene un orden de eficience T(n), si I una implementación del algoritmo y su tiempo de éjecucion f(n) está acotado superiormente por c.T(n) siendo cuna constante c>1 y n el tamaño del problema.

f(n) = CT(n)

-Ordenes de Eficiencia mas comunes

. Order lineal _T(n)=n

.Orden cte - T(n) = a a es una cte

. Orden logaritmico - t(n)=log(n)

· Orden cuadrático _ T(n)=n2

.Orden exponencial - T(n) = c. cesuna ct

LECCION 2-continuación

E. TEORICA de UN ALBORITMO

1) Descubrir la funciai de eficiencia flu) del alguntmo

2) Dada fin) deducir wal es su orden de eficiencia Tin)

COMPARACIÓN DE EFICIENCIA ENTRE DUS ALGORITMUS

_ CARACTERISTICAS

Debe Findependencia de lo que ourra en un nº finito de valores para n (tamaño del problema)

- Independiente de la funcion que representa al orden de eficiencia.

· COMPARAR = los ordenes de eficiencia = comparar los perfiles de mainiento

EJEMPLO2: Orden parcial $f(n) = \begin{cases} n^2 & \text{si } n \text{ es } par \\ n^4 & \text{si } n \text{ es } impar \end{cases}$

g(n)=n3 ¿Quieñ es mayor f(n) o g(n)?

NOTACION ASINDOTICA

 $.5n^2 + 3n + 10 \le n^2$

DEFINICION: O-grande (tiempo de DEFINICION: O-grande (tiempo de general sentencial.

Diremos que un algoritmo con tiempo de general g(n) E C(f(n))

Si = celRot y no EIN tq 4 n>, no g(n) \le c.f(n)

f.f(n) = g(n)

Ejemplos $n^2 + 5n \in O(n^2)$ $c = 2 n_0 = 3$ $.3n^2 + 2n^2 \in O(n^3)$ $c = 4 n_0 = 3$ $.3n \notin O(2^n)$

$$dg(n) \le f(n)?$$
 $\Rightarrow g(n) \le c \cdot f(n)$
 $de cnce$
 $100n = n^2 \Rightarrow n^2 - 100n = 0$
 $n = 100$

LECCION 2 continuación

Ejemplos:

10 n2 log2 n + 5n2 + 36 O(n2 log2 n)

 $, 5.2^{n} + 3n \in O(2^{n})$

CLASES ESPECIALES de Ordeno de EFICIENCIA

. Constante 0(1)

. Logantmiso O(log2(n)) . Cuadrático O(n2)

. Polinamial O(uK) K>1

. Expanencial O(an) n>1 a>1

. O(1) CO(log2(n) EO(n2) EO(nK) EO(an)

MAS CLASES

0(1) CO(logz (n) CO(Vn) €O(n) C O(nlogin) CO(n2) CO(nK) CO(2n) co(ni) co(nn)

KEGLAS de O-GRANDE

4f(n) €O(g(n)) y g(n) €O(h(n)) entonas $f(n) \in O(h(n))$

2 adnot ad-1 nd-1 +... + ann tao E (nd)

3. La base de los logantmos no importa $loga(n) \in O(logb(n))$

4. El exponente en los logavitmos no importa 'loga(n) (O (loga(n))

5.- La ban y exponente en los exponenciales si importu 3º, £0(2º) 3n \$0(2n) an2 \$0(an)

PECULIARIDADES de O-grande

Ejemplo

. E1(n) = 100 u ← A1

 $.t_2(n) = \frac{n^2}{5} \leftarrow A_2$

¿ Cual es cogeriamos?

-Donde se conzau

1000 = C. MZ

 $n\left(n\frac{c}{5}-100\right)=0=)n=\frac{100.5}{c}$ - cm c=1
- no= 500

Luego el algontmo As se comporta peur hasta un tamaño de 500 (tiene per trempo).

. Si tus muestras no superau et tamaño de 500 puede intereserte ejeutar Az.

. Debennos tambien estudiar el espacio (municia) que requiere cada algontino.

. Coste de la implementacion y mantenimiento.

5) LECCION 2.

Ordenar las signientes funciones de acuerdo a su velocadad de crecimiento.

orecimiento.

or, Jn, logn, loglogn, log²n, nlogn, Jn log²n, (1/3)ⁿ,

(3)ⁿ, 11, n²

SOLUCION $O(17) \subset O(17) \subset O(\log \log \log n) \subset O(\log n) \subset O(\log n)$ $O((\frac{1}{3})^n) \subset O(17) \subset O(\log \log \log n) \subset O(\log n) \subset O(1)$ $CO(\sqrt{n}) \subset O((\sqrt{3}/2)^n)$ $CO(n^2) \subset O((\sqrt{3}/2)^n)$

Jerarquía de costes computacionales: consecuencias prácticas (II)

Tiempos de ejecución en una **máquina que e**jecuta 10^9 pasos por segundo $(\sim 1~\mathrm{GHz})$, en función del coste del algoritmo y del tamaño del problema

	2n		SM T	L ms	V	10.2		13 días	40 1012 E	TATA GILES					
9	n^3	1 11.8	ort = 0	Sm o	27 us	64 118	0m +0	$125 \mu s$	1 me	2011 7	ST	16.7 min	11 6 díac	200	31.7 años
G	72	100 ms	WOU WE	<i>∞31</i> 00±	= 900 ms	2 1/8		3 4.8	2// 01Ec		C 1160	100~ms	10 s		10.7 min
	10.E2.T	33 718	86 70		Su /bT	213 ns		207 TIS	664 ns	10 // e		155 µs	2 ms		70 ms
8	1.6	10 ns	20 n.s) CC	su ns	40 ns	CL	on ms	100~ns	1118		10 \ms	$100~\mu s$		\circ 1 ms
100, 11	105210	3.322 ns	4.322 ns	7 00 1	4.301 768	5.322 ns	E 641 m2	20.7 440.0	6.644 ms	10 ns	12 %	S91. CT	17 ns	OU WG	20 160
Talla eller		01	20	30	3	40	25	3	001	1000	1000	222	100000	100000	2222

Jerarquía de costes computacionales: consecuencias prácticas (II)

Tiempos de ejecución en una **máquina que** ejecuta $10^9\,$ pasos por segundo $(\sim 1~GHz)$, en función del coste del algoritmo y del tamaño del problema

	u.G		SM T	1 ms	, V	18 2 M	III C.OT	13 d'as	40 TO 12 18	TO TO AIRCS	-			
	n^3	1/18	Cord =	sm o	27 µs	64 110	ort to	125 us	1 me	2011 7	ST	16.7 min	11 6 días	31.7 años
	n^2	100 ns	Ann me	Sal Dut	900 ns	2.1.5		37 168	S// 013		271.7	100~ms	10 s	16.7 min
	$n\log_2 n$	33 ns	86 %		14/ 78	213 ns		20.7 NS	664 ns	10 18		133 µs	2 ms	20 ms
	u	10~ns	20 ns	20. 25	Sul Tus	40 ns	203	on ns	100~ns	1118		10 468	$100~\mu s$	31ms
p -	$\log_2 n$	3.322 ns	4.322 ns	A 007	291 106.1	5.322 ns	5 611 mg	2.07 440.0	6.644 ms	$10 \ ns$	0	SU CT	17 ns	(20 ns
15.	alla a	10	20	SE		40	2	3	001	1000	1000	70007	100000	1000000

 $\Delta 2 < \Delta 1 < \Delta 1$

En general, tendríamos un comportamiento relativo de A1, A2, A3 tal como: Cálculo de nº: costes relativos de A1, A2, A3

Coste asintótico

Coste temporal A3 < A2 < A1 A2 < A1 < A3 급 A1 < A2 < A3 R A

Una buena caracterización computacional de un programa:

Dependencia funcional del coste con la talla – ¡para tallas grandes!

Notación asintótica: jerarquía de costes computacionales

Algunas relaciones entre órdenes usuales:

Extremos del coste: casos mejor, peor y promedio

Número de PASOS requeridos por 'busca'

LECCION 3- CALCULO de la EfiCIENCIA de un códico

_ RECURSOS MATEMÁTICOS NECESARIOS

$$-\log_b x \cdot y = \log_b x + \log_b y$$

$$-\log_b x / y = \log_b x - \log_b y$$

$$-\log_b x^y = y \cdot \log_b x$$

$$-\log_a \times = \frac{\log_b \times}{\log_b a}$$

L×J: representa al mayor entero menor o igual que ×

TXT: representa el menor entero mayor o igual que x

SUMATORIAS

MATORIAS

$$\frac{\sum_{i=s}^{s} f(i) = f(s) + f(s+1) + \dots + f(t)}{\sum_{i=s}^{s} f(i) = f(s) + f(s+1) + \dots + f(t)}$$

-PROGRESION ARITHÉTICA
$$f(i)=i$$

 $\sum_{i=0}^{N} i=0+1+2+\cdots+n=n\cdot\frac{(n+1)}{2}$

PROGRESION GEOMÉTRICA
$$f(i) = a^i$$

$$= \sum_{i=0}^{n} a^i = a^0 + a^1 + \dots + a^n = \frac{a^{n+1} - a^0}{a^{-1}}$$

- SUMA de CUADRADOS
$$\overset{\sim}{=} i^2 = \frac{n \cdot (n+1) (2n+1)}{6}$$

- Normas para obtener la eficiencia de un codiqo

. Operación Elemental -> 0(1)

. Declaraciones
$$(1)$$
 inta, (1)

Asignaciones
$$a=b \rightarrow O(1)$$

REGLA de la SUHA (a, (2) Sean dos trozos de codiçó independien can epiciencia Tran) y Tz(n). Entonas la epiciencia del codeso

union es: $T_2(n) \in O(f(n))$ $T_1(n) + T_2(n) \in T_2(n) \in O(g(n))$ O(max(f(n), g(n)))

Ej int
$$a=5$$
, $b=100$;

if $(a < b)$

if $(a < b)$

cout b ;

 $(a < b)$

else

for $(a + b)$
 $(a < b)$
 $(a$