6.1.06 For any integer $n \geq 1$, establish the inequality $\tau(n) \leq 2\sqrt{n}$

Proof. Assume d|n. Then, d or $n/d \leq 2\sqrt{n}$. Note, there can be at most \sqrt{n} divisor pairs (d, n/d).

Thus, $\sqrt{2} \le 2\sqrt{2}$.

Therefore,
$$\tau(n) \leq 2\sqrt{n}$$

6.1.08 Show that $\sum_{d|n} 1/d = \sigma(n)/n$ for every positive integer n

Proof. Note, d is a divisor of $n \Rightarrow n/d$ is a divisor of n, as $d \cdot \frac{n}{d} = n$. Let the set of divisors of $n = \{d_1, d_2, \dots, d_k\} \Rightarrow \{n/d_1, n/d_2, \dots, n/d_k\}$ Then,

$$\tau(n) = d_1 + d_2 + \dots + d_k = \frac{n}{d_1} + \frac{n}{d_2} + \dots + \frac{n}{d_k} = n(\frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_k})$$

Thus,
$$\frac{\tau(n)}{n} = \frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_k} = \sum_{d|n} 1/d$$

Therefore, $\sum_{d|n} 1/d = \sigma(n)/n$ for every positive integer n

6.1.14a For $k \geq 2$, $n = 2^{k-1}$ satisfies the equation $\sigma(n) = 2n - 1$

Proof. Notice,

$$\sigma(n) = \sigma(2^{k-1}) = \frac{2^{k-1+1} - 1}{2-1} = 2^k - 1 = 2 \cdot 2^{k-1} - 1 = 2n - 1$$

6.1.14b For $k \geq 2$, if $2^k - 1$ is prime, then $n = 2^{k-1}(2^k - 1)$ satisfies the equation $\sigma(n) = 2n$

Proof. Assume $2^k - 1$ is prime. Notice,

$$\sigma(n) = \frac{2^{k-1+1} - 1}{2 - 1} \cdot \frac{(2^k - 1)^2 - 1}{2^k - 1 - 1}$$

$$= (2^k - 1)(2^k - 1 + 1) = (2^k - 1)(2^k)$$

$$= 2(2^{k-1})(2^{k-1})$$

$$= 2n$$

Therefore, $n = 2^{k-1}(2^k - 1)$ satisfies the equation $\sigma(n) = 2n$

6.1.14c For
$$k \geq 2$$
, if $2^k - 3$ is prime, then $n = 2^{k-1}(2^k - 3)$ satisfies $\sigma(n) = 2n + 2$

Proof. Assume $2^k - 3$ is prime. Notice,

$$\sigma(n) = \frac{2^{k-1+1} - 1}{2-1} \cdot \frac{(2^k - 3)^2 - 1}{2^k - 3 - 1}$$

$$= (2^k - 1)(2^k - 3 + 1) = (2^k - 1)(2^k - 3 + 1)$$

$$= (2^k - 1)(2^k - 2)$$

$$= 2^{2k} - 3 \cdot 2^k + 2$$

$$= 2^k(2^k - 3) + 2$$

$$= 2(2^{k-1})(2^k - 3) + 2$$

$$= 2n + 2$$

Therefore, $n = 2^{k-1}(2^k - 3)$ satisfies $\sigma(n) = 2n + 2$