Intoduction to Galois Theory

Nan An

November 16, 2022

Contents

1	Preliminaries	2
2	Algebraic Extensions	3
3	Splitting Fields	4
4	Normal Extensions and Separable Extensions	5
5	Galois Groups	6
6	Galois Groups of Polynomials	8
7	Solvability: Algebraic Equations	9

1 Preliminaries

Remark 1.1. This section will befiefly list the preliminary definitions in fields and groups. Subgroups are often denoted by " \leq ": $H \leq G$ means H is a subgroup of G.

Definition 1.2. Suppose G a group and $g_1, g_2 \in G$. Then $[g_1, g_2] := g_1^{-1} g_2^{-1} g_1 g_2$.

Definition 1.3 (Commutator Subgroups). Suppose $H, K \leq G$. Then $[H, K] := \{[h, k] : h \in H, k \in K\}$ are called the commutator subgroup.

Definition 1.4 (Normal Series and Subnormal Series). Suppose a sequence of subgroups of G:

$$G = G_1 \ge G_2 \ge \cdots \ge G_t \ge G_{t+1} = \{1\}$$

it is called a subnormal series if $G_i \triangleleft G_{i-1}$ for each i, and normal if $G_i \triangleleft G$ for each i.

Definition 1.5. Define $G^{(k)}$ via induction:

$$G^{(0)} = G, \quad G^{(k)} = [G^{(k-1)}, G^{(k-1)}]$$

Definition 1.6 (Solvability of Groups). If $\exists k$ such that $G^{(k)} = \{1\}$, then G is called solvable.

Proposition 1.7. Suppose an exact sequence of groups $0 \to A \to G \to B \to 0$, then G is solvable iff A and B are solvable.

Proof. Assume $A \triangleleft G$, B = G/A, let $\pi : G \rightarrow B$ the canonical projection. If G is solvable, since $A^{(k)} \subset G^{(k)}$, A is solvable. Obviously $\pi(G^{(k)}) = B^{(k)}$, therefore B is also solvable. Conversely, if $\exists k_1, k_2$ such that $A^{(k_1)} = B^{(k_2)} = \{1\}$, then $\pi(G^{(k_2)}) = 1$, therefore $G^{(k_2)} \subset A$, $G^{(k_1+k_2)} = \{1\}$.

Proposition 1.8. Suppose G is finite. Then G is a solvable group iff there exists a subnormal series of G:

$$G = G_1 \ge G_2 \ge \cdots G_s = \{1\}$$

such that G_i/G_{i+1} is an abelian group for each i.

Proof. One direction is trivial since $G^{(i)}/G^{(i+1)}$ is abelian. Conversely, G_{s-1} is abelian therefore solvable. By the exact sequence

$$0 \to G_{s-1} \to G_{s-2} \to G_{s-2}/G_{s-1} \to 0$$

 G_{s-2} is solvable. By induction all G_i are solvable, therefore G is solvable.

Remark 1.9. G_i/G_{i+1} can also be assumed cyclic. Since $|G| < \infty$, $|G'_i/G'_{i+1}| \le \infty$. Obviously $\mathbb{Z}_{p_n^{k_n-1}} \le \mathbb{Z}_{p_n^{k_n}}$, therefore

$$G_i'/G_{i+1}'\cong\bigoplus_{i=1}^n\mathbb{Z}_{p_i^{k_i}}\geq\left(\bigoplus_{i=1}^{n-1}\mathbb{Z}_{p_i^{k_i}}\right)\oplus\mathbb{Z}_{p_n^{k_n-1}}=H$$

where $H \triangleleft G_i'/G_{i+1}'$, and $[G_i'/G_{i+1}':H] = p_k$. Let $\pi: G_i' \to G_i'/G_{i+1}'$ the canonical projection and $H' = \pi^{-1}(H)$, then

$$G'_i \triangleright H' \triangleright G'_{i+1}$$

with $|G'_i/H'| = p_k$ and H'/G'_{i+1} an abelian group with smaller order. Therefore by keep adding H', such desired series can be found.

Proposition 1.10. S_n is solvable iff $n \leq 4$.

Proof. Obviously S_1 , S_2 are solvable. S_3 is solvable because

$$S_3 \triangleright A_3 \triangleright \{1\}$$

 S_4 is solvable because

$$S_4 \triangleright A_4 \triangleright K_4 \triangleright \{1\}$$

when $n \geq 5$, A_n is a non-abelian simple group, therefore unsolvable. Therefore S_n is unsolvable.

Remark 1.11. Suppose F is a field. The following theorem is listed without proof since it is well-known.

Proposition 1.12. If F is a finite field, then $F \setminus \{0\}$ is a cyclic group.

Theorem 1.13. F[x] is an Euclid ring, therefore F[x] is a PID.

Proposition 1.14. Give $f(x) \in F[x]$ and $a \in F$, (x-a)|f(x) iff f(a) = 0.

Remark 1.15. Such a in the above proposition is called a root of $f(x) \in F$.

2 Algebraic Extensions

Definition 2.1 (Field Extensions). Give a set S,

$$F[S] = \{ \sum_{i_1, \dots, i_n > 0}^{<\infty} a_{i_1 \dots i_n} a_1^{i_1} \dots a_n^{i_n}, i_1 \dots i_n \in \mathbb{N}, a_1 \dots a_n \in S, a_{i_1 \dots i_n} \in F \}$$

the fraction field of F[S] is denoted by F(S). F(S) is the smallest field containing $F \cup S$.

Remark 2.2. Give an element $\alpha \in F(S)\backslash F$, if α is a root of a polynomial $f(x) \in F[x]$, then α is called an algebraic element.

Proposition 2.3. If $S = S_1 \cup S_2$, then $F(S) = F(S_1)(S_2)$

Proof. Obviously $F(S) \subset F(S_1)(S_2)$. Conversely, since $F(S_1) \subset F(S)$ and $S_2 \subset F(S)$, $F(S_1)(S_2) \subset F(S)$. \square

Definition 2.4 (Algebraic Extensions). F(S) is a algebraic extension when S is a finite collection of algebraic elements over F.

Remark 2.5. Give α an algebraic element.

Proposition 2.6. $F(\alpha) = F[\alpha] \cong F[x]/\langle p(x) \rangle$

Proof. Let $I = \{f(x) \in F[x] : f(\alpha) = 0\} = \langle p(x) \rangle$. Obviously $F[\alpha]$ is a integral domain, therefore p(x) is prime, I is maximal, $F[\alpha]$ is a field.

Remark 2.7. The irreducible polynomial p(x) above is unique by some unit in F. Let the coefficient of the highest degree term be 1, denote this polynomial $Irr(\alpha, F)$.

Definition 2.8 (Degree). $deg(\alpha, F) = deg(Irr(\alpha, F))$.

Proposition 2.9. Suppose $deg(\alpha, F) = n$, then $F(\alpha) = \operatorname{span}_F \{1, \alpha, \dots, \alpha^{n-1}\}$.

Proof. $\forall f(x) \in F[x], \exists q(x), r(x) \text{ such that}$

$$f(x) = q(x)\operatorname{Irr}(\alpha, F) + r(x), \quad \deg r(x) < n$$

therefore $f(\alpha) = r(\alpha)$. Also, $1, \alpha, \dots, \alpha^{n-1}$ are linearly independent.

Definition 2.10. Suppose field $K, F \subset K$. Then K is a vector space over F, denote the dimension of this vector space [K : F].

Proposition 2.11. $[F(\beta):F]<\infty$ iff β is an algebraic element.

Proof. This follows immediately after writing down the basis of $F(\beta)$ as a vector space over F.

Proposition 2.12. Suppose field K, E with $F \subset E \subset K$. Then

$$[K : F] = [K : E][E : F]$$

Proof. This could be easily seen by directly writing down the basis of K as a vector space over F.

Proposition 2.13. Suppose K a field with $[K:F]<\infty$. Then $\exists \alpha_1, \dots \alpha_n$ algebraic elements in K, and $K=F(\alpha_1, \dots, \alpha_n)$.

Proof. Pick any element $\alpha_1 \in K \setminus F$. Then $[K : F(\alpha_1)] \leq [K : F]$. If the equality is taken, the proof is done. Otherwise repeat this process, which obviously must be done in finite steps.

3 Splitting Fields

Definition 3.1 (Splitting Fields). Given $f(x) \in F[x]$, deg f(x) = n. The splitting field K satisfies:

- (1) $f(x) = c(x \alpha_1) \cdots (x \alpha_n)$, where $c, \alpha_1, \cdots, \alpha_n \in K$
- (2) $K = F(\alpha_1, \dots, \alpha_n)$

Proposition 3.2. Give $f(x) \in F[x]$, the splitting field of f(x) exists if deg f(x) > 0

Proof. The proof will be done by induction on $\deg f(x)$. When $\deg f(x) = 1$, the splitting field of f(x) is just F. Assume $\deg f(x) = n + 1$, suppose p(x) is an irreducible factor of f(x). Then denote $F(\alpha_1) \cong F[x]/\langle p(x)\rangle$, $p(\alpha_1) = 0$ therefore $f(\alpha_1) = 0$. Then $f(x) = (x - \alpha_1)f'(x)$, $\deg f'(x) = n$. Since the splitting field of f'(x) exists, the splitting field of f(x) can be found by just adding α_1 .

Proposition 3.3. Denote the splitting field of $f(x) \in F[x]$ with K. Then $[K:F] \leq (\deg f(x))!$

Proof. This is obvious by the proof of Proposition 3.2. $([F(\alpha_1):F] \leq n)$

Proposition 3.4. Suppose fields $F \subset E \subset K$ and K is the splitting field of $f(x) \in F[x]$. Then K is also the splitting field of $f(x) \in E[x]$.

Proof. This is obvious since $K = F(\alpha_1, \dots, \alpha_n) \subset E(\alpha_1, \dots, \alpha_n) \subset K$.

Proposition 3.5. Suppose $\sigma: F \to \overline{F}$ a field homomorphism. Then:

- (1) σ can extend to an isomorphism $\sigma: F[x] \to \overline{F}[x]$, and $\sigma(p(x))$ is irreducible iff p(x) is irreducible.
- (2) Suppose K, \overline{K} are the extensions of F, \overline{F} respectively, $p(x) \in F[x]$ irreducible, and $\alpha \in K$, $\overline{\alpha} \in \overline{K}$ roots of p(x) and $\sigma(p(x))$. Then σ can extend to an isomorphism $\overline{\sigma} : F(\alpha) \to \overline{F}(\overline{\alpha})$ with $\overline{\sigma}(\alpha) = \overline{\alpha}$.

Proof. For (1), just let $\sigma|_F = \sigma$, $\sigma(x) = x$. The rest is obvious. For (2), suppose $\pi : F[x] \to F[x]/\langle p(x) \rangle$, $\overline{\pi} : \overline{F}[x] \to \overline{F}[x]/\langle \sigma(p(x)) \rangle$, and ν, ν' the canonical projection and isomorphism, this gives the isomorphism $\overline{\sigma}' : x + \langle p(x) \rangle \mapsto x + \langle \sigma(p(x)) \rangle$. Then the $\overline{\sigma}$ can be easily found by traversing the following commutative diagram.

$$F[x] \xrightarrow{\pi} F[x]/\langle p(x)\rangle \xrightarrow{\nu} F(\alpha)$$

$$\downarrow^{\sigma} \qquad \qquad \downarrow^{\overline{\sigma}'} \qquad \qquad \downarrow^{\overline{\sigma}}$$

$$\overline{F}[x] \xrightarrow{\overline{\pi}} \overline{F}[x]/\langle \sigma(p(x))\rangle \xrightarrow{\overline{\nu}} \overline{F}(\overline{\alpha})$$

Remark 3.6. The extension in (1) is unique.

Proposition 3.7. Give $\sigma: F \to \overline{F}$ an field isomorphism. Extend it to $\sigma: F[x] \to \overline{F}[x]$. Denote the splitting field of $f(x) \in F[x]$ and $\sigma(f(x)) \in \overline{F}[x]$ with E and \overline{E} respectively. Then σ can be extend to an isomorphism $\overline{\sigma}: E \to \overline{E}$, and the number of different extensions $n_{\sigma} \leq [E:F]$, where the equality is taken iff every irreducible factor of f(x) in E has no repeated roots.

Proof. Show the first part by induction on deg f(x). When deg f(x)=1, σ is just itself. Assume deg f(x)=n+1, suppose p(x) is a irreducible factor of f(x). Then $\exists \alpha_1 \in E$ and $\overline{\alpha}_1 \in \overline{E}$, $p(\alpha_1)=\sigma(p(\overline{\alpha}_1))=0$. Therefore σ can be extend to $\sigma_1: F(\alpha_1) \to \overline{F}(\overline{\alpha}_1)$ with $\sigma_1(\alpha_1) = \overline{\alpha}_1$. Then σ can be extend to $\sigma_1: F(\alpha_1)[x] \to \overline{F}(\overline{\alpha}_1)[x]$. Then write $f(x)=(x-\alpha_1)f'(x)$, $\sigma_1(f(x))=(x-\overline{\alpha}_1)\sigma'(f'(x))$. By previous proposition E and E are the splitting field of $f(x) \in F(\alpha_1)[x]$ and $f'(x) \in \overline{F}(\overline{\alpha}_1)[x]$ respectively. Therefore σ_1 can be extend to $\sigma_1: E \to \overline{E}$.

For the second part, denote $\overline{\sigma}: E \to \overline{E}$ the extension of $\sigma: F \to \overline{F}$. Suppose p(x) is an irreducible factor of f(x) and $p(\alpha_1) = 0$ ($\alpha_1 \in E$). Then $\overline{\sigma}(\alpha_1)$ must be a root of $\sigma(p(x))$ since $\sigma(p(\overline{\sigma}(\alpha_1))) = \sigma\overline{\sigma}(p(\alpha_1)) = 0$. Denote k_1 the number of different choices of $\overline{\sigma}(\alpha_1)$, $k_1 \leq \deg p(x) = [F(\alpha_1): F]$, where the equality is taken iff p(x) has no repeated roots. Therefore there are only k_1 extensions on $F(\alpha_1)$. Since $E = F(\alpha_1, \dots, \alpha_n)$, the number of different extensions are

$$n_{\sigma} = k_1 \cdots k_n \leq [F(\alpha_n) : F(\alpha_1, \cdots, \alpha_{n-1})] \cdots [F(\alpha_1) : F] = [E : F]$$

where the condition of equality can be easily verified.

Remark 3.8. This proposition implies that the splitting field is unique under isomorphism.

Proposition 3.9. Suppose fields $F \subset E \subset K$ with E the splitting field of $f(x) \in F[x]$, then for any isomorphism $\sigma: K \to K$ such that $\sigma|_F = \mathrm{id}, \ \sigma(E) = E$.

Proof. This is obvious by observing the image of σ on the roots of f(x).

4 Normal Extensions and Separable Extensions

Definition 4.1 (Normal Extensions). An algebraic extension K is called a normal extension of F iff $\forall p(x) \in F[x]$ such that p(x) is irreducible, if p(x) has one root in K, then p(x) splits over K.

Proposition 4.2. Give $F \subset K$ fields, K is a normal extension of F iff K is a splitting field of some polynomial in F[x].

Proof. Let $K = F(\alpha_1, \dots, \alpha_n)$ and $f(x) = \operatorname{Irr}(\alpha_1, F) \cdots \operatorname{Irr}(\alpha_n, F)$, since K is a normal extension $f(x) = (x - \beta_1) \cdots (x - \beta_t) \in K$. Therefore K is the splitting field of f(x). Conversely, let K be the splitting field of f(x). Then let $p(x) \in F[x]$ and $\exists \alpha \in K$, $p(\alpha) = 0$. Let E be the splitting field of $p(x) \in K[x]$, and p(x) = f(x)p(x), then E is the splitting field of f(x), $g(x) \in F[x]$. Let $g \in E$ a root of p(x), Then g(x) = f(x), and g(x) = f(x), can be extend to an isomorphism of E with g(x) = f(x). Then g(x) = f(x) therefore g(x) = f(x) the proof is done by selecting g(x) = f(x).

Remark 4.3. The normal extension of a normal extension of F is not necessarily normal over F.

Definition 4.4 (Separable Polynomials). $f(x) \in F[x]$ is separable iff every its irreducible factor has no repeated roots in its splitting field.

Proposition 4.5. If ch F = 0, then $\forall f(x) \in F[x]$, f(x) is separable.

Proof. For each of its irreducible factor p(x), consider its derivative p'(x). It is easy to see (p'(x), p(x)) = 1 when p(x) has no repeated roots. If F is of characteristic 0, then obviously (p'(x), p(x)) = 1.

Definition 4.6 (Separable Elements). α is called separable over F iff $Irr(\alpha, F)$ is separable.

Proposition 4.7. Every finite separable extension of F is a simple algebraic extension of F.

Proof. If F is a finite field, then its algebraic extension K is also a finite field. Since $K \setminus \{0\}$ is a cyclic group, $K = F(\alpha)$ where α is the generater of the cyclic group.

If F is an infinite field, suppose $F(\alpha_1, \dots, \alpha_n)$. The proposition is obviously true when n = 1. Assume it is true for n - 1 elements, then $F(\alpha_1, \dots, \alpha_{n-1}) = F(\beta)$. Therefore $F(\alpha_1, \dots, \alpha_n) = F(\alpha_n, \beta)$. Let E be the splitting field of $Irr(\beta, F)Irr(\alpha, F)$. Then in E[x],

$$\operatorname{Irr}(\beta, F) = (x - \beta)(x - \beta_2) \cdots (x - \beta_s)$$

$$\operatorname{Irr}(\alpha_n, F) = (x - \alpha_n)(x - \alpha_n^1) \cdots (x - \alpha_n^t)$$

since α_n is separable, $(\alpha_n, \alpha_n^1, \dots, \alpha_n^t)$ is pairwise different. Then

$$T = \left\{ \frac{\beta - \beta_k}{\alpha_n - \alpha_n^j} \right\}, \text{ where } \beta = \beta_1$$

obviously β is a finite set. Therefore take $c \in F$ such that $c \notin T$, and let $\theta = \beta - c\alpha_n$ and

$$f(x) = ((\theta - cx) - \beta) \cdots ((\theta - cx) - \beta_n)$$

Then $f(\alpha_n) = 0$ and $f(\alpha_n^j) \neq 0$. Therefore

$$(f(x), \operatorname{Irr}(\alpha_n, F)) = x - \alpha_n$$

since f(x), $Irr(\alpha_n, F) \in F(\theta)[x]$, $\alpha_n \in F(\theta)$. Then $\beta \in F(\theta)$, therefore $F(\theta) = F(\alpha_n, \beta)$.

Remark 4.8. $f(x) \in F(\theta)$ since $f(x) = g(\theta - cx)$, where $g(x) = Irr(\beta, F)$. And $gcd_E(f, Irr(\alpha_n, F))$ is equal to $gcd_{F(\theta)}(f, Irr(\alpha_n, F))$ since it can be computed with the Euclidean algorithm.

Remark 4.9. It is obvious that the separable extension of a separable extension of \mathbb{Q} (ch $\mathbb{Q} = 0$) is still separable. However, it is true for all fields. The proof is omitted since the equations of our interest are mostly over \mathbb{Q} ,

5 Galois Groups

Definition 5.1 (Galois Group). Suppose K is a finite extension over F. Then the set of all automorphism of K that is identity on F is a group, denoted by Gal(K/F).

Definition 5.2 (Invariant Subfield). Suppose $G \leq \operatorname{Aut}(K)$. Then $\operatorname{Inv} G = \{a \in K : g(a) = a, \forall g \in G\}$.

Lemma 5.3. Suppose $\sigma_1, \dots, \sigma_n$ distinct automorphisms of K, denote their invariant subfield $F := \{x \in K : \sigma_i(x) = x, \forall i \in \{1, \dots, n\}\}$, then $\sigma_1, \dots, \sigma_n$ are linearly independent as automorphism of K as vector space over F.

Proof. Assume they are linearly dependent. Then $\sigma_{s+1} = \sum_{i=1}^s a_i \sigma_i$ with $\sigma_1, \dots, \sigma_s$ linearly independent, therefore the representation is unique. Suppose $a \in K$ such that $\sigma_{s+1}(a) \neq \sigma_1(a)$, then

$$\sigma_{s+1}(ax) = \sum_{i=1}^{s} a_i \sigma_i(ax), \quad \sigma_{s+1}(x) = \sum_{i=1}^{s} \frac{\sigma_i(a)}{\sigma_{s+1}(a)} a_i \sigma_i(x)$$

contradiction.

Proposition 5.4. [K : Inv(G)] = |G|.

Proof. Let $G = \{\sigma_1 = \mathrm{id}, \cdots, \sigma_n\}$. First take m elements from K denoted by u_1, \cdots, u_m . If m > n, Suppose a matrix A with $A_{ij} = \sigma_i(u_j)$. The linear equation AX = 0 must have nontrivial solutions since m > n. Let $(1, \cdots, b_m)$ be such solution that has most zeros. If $b_i \in \mathrm{Inv}G$ for each i, then u_1, \cdots, u_m is linearly dependent since $\sum_{1}^{m} \sigma_k(b_j u_j) = \sigma_k(\sum_{1}^{m} b_j u_j) = 0$ and σ_k are isomorphisms. On the other hand, if there exists $b_i \notin G$, assume i = 2. Then $\exists \sigma \in G$ such that $\sigma(b_2) \neq b_2$. Thus

$$\sum_{1}^{m} \sigma_k(u_j)\sigma(b_j) = \sigma\left(\sum_{1}^{m} \sigma^{-1}\sigma_k(b_j u_j)\right) = 0$$

 $(1, \sigma(b_2), \dots, \sigma(b_m))$ is also a nontrivial solution. Then $(0, b_2 - \sigma(b_2), \dots, b_m - \sigma(b_m))$ has more zero elements, contradiction. Hence every m(m > n) elements in K are linearly dependent, $[K : InvG] \leq |G|$.

On the other hand, if m < n, let $(A)_{ij} = \sigma_j(u_i)$, then AX = 0 still has nontrivial solutions, denoted by (b_1, \dots, b_m) . Let a_1, \dots, a_m be m arbitrary elements of F, then

$$BX = 0$$
, $(B)_{ij} = \sigma_j(a_i u_i)$

therefore

$$\sum_{i=1}^{n} \sigma_i \left(\sum_{j=1}^{m} a_i u_i\right) = 0$$

hence $\sigma_1, \dots, \sigma_n$ linearly dependent, which contradicts lemma 5.3.

Definition 5.5 (Galois Extension). Suppose K/F with Inv(Gal(K/F)) = F, then K is called a Galois extension of F.

Proposition 5.6. Suppose K is a finite extension of F. Then the following statements are equivalent:

- (1) K is the splitting field of a separable polynomial $f(x) \in F[x]$.
- (2) K is a Galois extension of F and [K : F] = |Gal(K/F)|.
- (3) K is a separable normal extension of F.

Proof. (1) \Rightarrow (2). Since f(x) is a separable polynomial of F[x], any irreducible factor p(x) of f(x) has deg p(x) different roots in K. Therefore $|\operatorname{Gal}(K/F)| \leq [K:F]$ by proposition 3.7. Let $E = \operatorname{Inv}(\operatorname{Gal}(K/F))$, then obviously $\operatorname{Gal}(K/E) = \operatorname{Gal}(K/F)$. Since K is also the splitting field of $f(x) \in E[x]$, $[K:E] = |\operatorname{Gal}(K/E)|$. Therefore [K:E] = [K:F], E = F.

 $(2)\Rightarrow(3).\ \forall \alpha\in K$, denote $G=\mathrm{Gal}(K/F)$. Let

$$\operatorname{Irr}(\alpha, F) = x^r + b_1 x^{r-1} + \dots + b_r, \quad b_i \in F$$

then $\forall \sigma \in G$, $\sigma(\alpha)$ is also a root of $\operatorname{Irr}(\alpha, F)$. Therefore G must be a finite group. Suppose $\{\sigma_1(\alpha), \cdots, \sigma_s(\alpha)\} = \{\sigma(\alpha) : \sigma \in G\}$ where σ_1 is the identity. Let

$$h(x) = \prod_{i=1}^{s} (x - \sigma_i(\alpha)) = x^s + p_1 x^{s-1} + \dots + p_s$$

it is easy to verify that $\sigma(p_i) = p_i$ for any $\sigma \in G$. Therefore $p_i \in F$, $h(x) \in F[x]$. Since $s \leq r$, $h(x) = \operatorname{Irr}(\alpha, F)$. Therefore $\operatorname{Irr}(\alpha, F)$ is separable, K is a separable extension. K is also a normal extension of F by the above construction, since any irreducible polynomial in F[x] that has one root in K can be seen as $\operatorname{Irr}(\alpha, F)$ for some $\alpha \in K$.

$$(3)\Rightarrow(1)$$
 is trivial.

Theorem 5.7 (The Fundamental Theorem). Suppose K is a separable normal extension of F. Denote Γ the set of all subgroups of $G = \operatorname{Gal}(K/F)$, and Σ the set of all fields between K and F, then the map

$$\operatorname{Inv}: \Gamma \to \Sigma, H \mapsto \operatorname{Inv} H$$

is a bijection, and

- (1) $\operatorname{Inv}^{-1} = \operatorname{Gal} : E \mapsto \operatorname{Gal}(K/E),$
- (2) If $H \in \Gamma$, then |H| = [K : InvH], [G : H] = [InvH : F].
- (3) InvH is a normal extension of F with $Gal((InvH)/F) \cong G/H$ iff $H \triangleleft G$.

Proof. Suppose $H \in \Gamma$, InvH = E, then $F \subset E \subset K$. Thus $H \subset \operatorname{Gal}(K/E) \subset \operatorname{Gal}(K/F)$. Since K is a separable normal extension of F, by the last proposition, K is the splitting field of $f(x) \in F[x]$. Therefore K is the splitting field of $f(x) \in E[x]$, hence K is also a separable normal extension of F. Thus $|H| \leq |\operatorname{Gal}(K/E)| = [K : E]$, and proposition 5.4 gives |H| = [K : E]. Therefore $H = \operatorname{Gal}(K/E)$, $\operatorname{Gal} \circ \operatorname{Inv} = \operatorname{id}_{\Gamma}$.

Conversely, suppose $E \in \Sigma$, then $F \subset E \subset K$. By the same argument K is a separable normal extension on E. Thus $\operatorname{Gal}(K/E) \in \Gamma$ and $E = \operatorname{Inv}(\operatorname{Gal}(K/E))$. Therefore $\operatorname{Inv} \circ \operatorname{Gal} = \operatorname{id}_{\Sigma}$.

For (2), in (1) it is proved that for any $H \in \Gamma$, |H| = [K : InvH]. Then

$$[G:H] = |G|/|H| = [K:F]/[K:InvH] = [InvH:F]$$

For (3), suppose $H \in \Gamma$ and $a \in G$. Then $aHa^{-1} \in \Gamma$. Since $Inv(aHa^{-1}) = \{k \in K : aha^{-1}(k) = k\} = \{k \in K : h(a^{-1}(k)) = a^{-1}(k)\} = a(InvH)$, when $H \triangleleft G$, a(InvH) = InvH. Let \overline{a} be the restriction of a to InvH, then $\overline{a} \in Gal(InvH/F)$. Therefore $\pi : a \mapsto \overline{a}$ gives a homomorphism between G and Gal(InvH/F). Thus

$$F \subset \operatorname{Inv}(\operatorname{Gal}(\operatorname{Inv} H/F)) \subset \operatorname{Inv} \pi(G) = F \quad (*)$$

Therefore InvH is a Galois extension of F, thus K/F is normal. Since $\ker \pi = H$, by (2),

$$|\pi(G)| = [G:H] = [\operatorname{Inv} H:F] = |\operatorname{Gal}(\operatorname{Inv} H/F)|$$

hence $\pi(G) = \operatorname{Gal}(\operatorname{Inv} H/F) \cong G/H$. Conversely, suppose $F \subset E \subset K$ with E a normal extension, then $\forall g \in G$, g(E) = E. Thus

$$g(E) = g(\operatorname{Inv}(\operatorname{Gal}(G/E))) = \operatorname{Inv}(g(\operatorname{Gal}(G/E))g^{-1}) = \operatorname{Inv}(\operatorname{Gal}(K/E)) = E$$

since Inv is injective, $Gal(K/E) \triangleleft G$.

Remark 5.8. Comments on (*): (1) it is not obvious that $\pi(G) = \text{Gal}(\text{Inv}H/F)$; (2) $\text{Inv}\pi(G) = F$ because π is the restriction map. If $\text{Inv}\pi(G)$ is larger than F, then InvG will be larger than F as well.

6 Galois Groups of Polynomials

Proposition 6.1. Suppose $f(x) \in F[x]$ is a monic polynomial with no repeated roots, K is the splitting field of F[x], $f(x) = \prod_{i=1}^{m} (x - \alpha_i)$. Then

- (1) Gal(K/F) is isomorphic to a subgroup G of $S_{\alpha_1,\dots,\alpha_m}$.
- (2) $f(x) \in F[x]$ is irreducible iff G is transitive.

Proof. (1) Let $X = \{\alpha_1, \dots, \alpha_m\}$. Suppose $\sigma \in \operatorname{Gal}(K/F)$, then $f(\sigma(\alpha_i)) = 0$, therefore $\sigma(X) \subset X$. Obviously $\sigma(\alpha_i) \neq \sigma(\alpha_j)$ when $i \neq j$. Thus $\sigma|_X \in S_X$. Since $K = F(\alpha_1, \dots, \alpha_m)$, $\sigma = \tau \in G$ iff $\sigma(\alpha_i) = \tau(\alpha_i)$ for each i. Thus G is a subgroup of S_X .

(2) Suppose G is transitive on X, then $\forall \alpha_i, \alpha_j \in X, \exists \sigma \in G$, such that $\sigma(\alpha_i) = \alpha_j$. Therefore $\operatorname{Irr}(\alpha_i, F) = \operatorname{Irr}(\alpha_j, F)$. Therefore in K[x], $f(x) = \prod_{i=1}^{m} (x - \alpha_i) |\operatorname{Irr}(\alpha_i, F)$. Therefore $f(x) = \operatorname{Irr}(\alpha_i, F)$ is irreducible.

Conversely, if f(x) is irreducible, then $\operatorname{Irr}(\alpha_i, F) = \operatorname{Irr}(\alpha_j, F)$ for each i, j. Then by proposition 3.7, there is an extension σ' such that $\sigma'(\alpha_i) = \alpha_j$.

Definition 6.2 (Galois Groups of Polynomials). Given $f(x) \in F[x]$, denote its splitting field K. The galois group of this polynomial G(f, F) := Gal(K/F).

Proposition 6.3. Suppose x_1, \dots, x_n transcendental elements, p_1, \dots, p_n elementary symmetric polynomials of $x_1, \dots, x_n, g(x) = \prod_{i=1}^n (x - x_i) \in F(p_1, \dots, p_n)[x]$. Then $G(g, F(p_1, \dots, p_n)) \cong S_n$.

Proof. Let $G = \operatorname{Gal}(F(x_1, \dots, x_n)/F)$. Then $\forall \sigma \in S_n$, σ gives an automorphism on $F[x_1, \dots, x_n]$ with $\sigma|_F = \operatorname{id}$. Extend it to $F(x_1, \dots, x_n)$ with

$$\sigma(p/q) = \sigma(p)/\sigma(q), \quad p, q \in F[x_1, \dots, x_n]$$

therefore $\sigma \in G$, $S_n \leq G$. Since $\sigma(p_i) = p_i$, $F(p_1, \dots, p_n) \subset \text{Inv} S_n$. By proposition 5.4, proposition 3.7 and the fact that $F(x_1, \dots, x_n)$ is the splitting field of $g(x) = \prod_i (x - x_i) \in F(p_1, \dots, p_n)$,

$$[F(x_1, \dots, x_n) : InvS_n] = |S_n| = n! \le [F(x_1, \dots, x_n), F(p_1, \dots, p_n)] \le n!$$

therefore $\operatorname{Inv} S_n = F(p_1, \cdots, p_n)$.

Remark 6.4. From now on, assume F is of characteristic 0.

Definition 6.5 (Roots of Unity). The roots of $x^n = 1$ are called n-th root of unity. If a n-th root of unity θ satisfies

$$\theta^n = 1, \quad \theta^m \neq 1, \quad \forall m, 0 < m < n$$

then it is called a n-th primitive root of unity.

Proposition 6.6. Suppose θ a n-th primitive root of unity. Then θ^k is primitive iff (k, n) = 1.

Proof. Suppose K the splitting field of $x^n-1 \in F[x]$. Since $(nx^{n-1}, x^n-1) = 1, x^n-1$ is separable, therefore has no repeated roots. Therefore the set of roots is $\{1, \theta, \cdots, \theta^{n-1}\} = \langle \theta \rangle$. The rest is clear since it is a cyclic group.

Definition 6.7 (Euler Function). $\varphi(n)$ denotes the number of coprimes that are less than n.

Remark 6.8. It is easy to see that $\varphi(n)$ also denotes the number of n-th primitive roots of unity.

Definition 6.9 (Cyclotomic Polynomial). n-th cyclotomic polynomial is defined as

$$\phi_n(x) = \prod_{i=1}^{\varphi(n)} (x - \theta_i)$$

Remark 6.10. The following proof is omitted since lack of time.

Proposition 6.11. $\forall n \in \mathbb{N}$,

- (1) $x^n 1 = \prod_{d|n} \phi_d(x)$
- (2) $\phi_n(x)$ is irreducible on $\mathbb{Q}[x]$.

Proposition 6.12. $G(\phi_n, \mathbb{Q})$ is abelian.

Proposition 6.13. Suppose $a \in \mathbb{Q}$, $G(x^n - a, \mathbb{Q})$ is abelian.

Proposition 6.14. If F contains n-th roots of unity, and K a Galois extension such that Gal(K/F) is a cyclic group of degree n, then $\exists \epsilon \in K$ such that $K = F(\epsilon)$ and $\epsilon^n = a \in F$.

7 Solvability: Algebraic Equations

Definition 7.1 (Radical Extensions). Suppose K/F has a sequence of intermediate fields

$$F \subset F_1 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots F_m = K$$

where F_{i+1} is the splitting field of $x^{n_i+1} - a_{i+1} \in F_i[x]$, then K is called a radical extension of F. K is a simple radical extension of F when m = 1.

Definition 7.2 (Solvablility by Radicals). Suppose $f(x) \in F[x]$. f(x) = 0 is solvable by radicals in F if there exists a radical extension K of F such that the splitting field of $f(x) \in F[x]$ is contained in F.

Remark 7.3. The definition of solvablility by radicals is consistent with its literal meaning: f(x) is solvable by radicals on F if and only if the roots of f(x) = 0 can be expressed by finite operations of addition, subtraction, multiplication, division, and taking radicals over elements in F.

Proposition 7.4. If K is a radical extension of F, then there is a normal radical extension \overline{K} of F such that $K \subset \overline{K}$.

Proof. Since K is a radical extension of F, there is a sequence of simple radical extensions from F to K, index it by m. Attempt proof by induction on m. When m=1, since it is a splitting field of some polynomial, it is normal. Assume the proposition is true for m-1, then $\exists \overline{E}$ such that $E=F_{m-1}\subset \overline{E}$, and \overline{E} is a normal radical extension. Since $K=F_m$ is the splitting field of $x^n-\beta\in E[x],\ K=E(\epsilon,\theta)$, where $\theta^n-\beta=0$ and ϵ n-th primitive roots of unity. Suppose $\mathrm{Irr}(\beta,F)=\prod_{i=1}^r(x-\beta_i)$ with $\beta=\beta_1$, since \overline{E} is a normal extension, $\beta_i\in\overline{E}$. Let α_i be the roots of $x^n-\beta_i,\ 1\leq i\leq r$. Let $\alpha_1=\theta$, then

$$K = E(\epsilon, \theta) \subset \overline{E}(\epsilon, \alpha_1, \cdots, \alpha_r) = \overline{K}$$

it is easy to observe that \overline{K} is a radical extension of \overline{E} , therefore a radical extension of \overline{F} . Since $\prod_{i=1}^{r} (x - \beta_i) = \operatorname{Irr}(\beta, F) \in F[x]$,

$$g(x) = \prod_{1}^{r} (x^{n} - \beta_{i}) \in F[x]$$

suppose \overline{E} is the splitting field of $f(x) \in F[x]$. Then \overline{K} is the splitting field of f(x)g(x) therefore a normal extension.

Theorem 7.5. If $f(x) \in F[x]$, then f(x) is solvable by radicals if G(f, F) is solvable.

Proof. Suppose E the splitting field of $f(x) \in F[x]$. Since f(x) = 0 solvable by radicals, there exists a radical extension K such that $E \subset K$. By proposition 7.4, K can be assumed normal. Suppose the number of intermediate fields between K and F is m.

When m=1, K is the splitting field of $x^{n_1}-a_1 \in F[x]$. Suppose n_1 -th primitive root of unity ϵ_1 and θ_1 such that $\theta_1^{n-1}=\beta$. Then

$$F \subset F(\epsilon_1) \subset F(\epsilon_1, \theta_1) = K$$

by proposition 6.12 and proposition 6.13, $\operatorname{Gal}(F(\epsilon_1)/F)$ and $\operatorname{Gal}(F(\epsilon_1,\theta_1)/F(\epsilon_1))$ are abelian. By the fundemental theorem,

$$\operatorname{Gal}(K/F)/\operatorname{Gal}(K/F(\epsilon_1)) \cong \operatorname{Gal}(F(\epsilon_1)/F)$$

therefore

$$0 \to \operatorname{Gal}(K/F(\epsilon_1)) \to \operatorname{Gal}(K/F) \to \operatorname{Gal}(F(\epsilon_1)/F) \to 0$$

 $\operatorname{Gal}(K/F)$ is solvable. If m=k-1, since K is a normal extension of F, K is a normal extension of F_1 . Assume $\operatorname{Gal}(K/F_1)$ is solvable. Then $\operatorname{Gal}(K/F)/\operatorname{Gal}(K/F_1) \cong \operatorname{Gal}(F_1/F)$, $\operatorname{Gal}(K/F)$ is solvable by induction on m. Since $F \subset E \subset K$, and K, E are normal extensions of F, by the fundamental theorem,

$$Gal(K/F)/Gal(K/E) \cong Gal(E/F)$$

therefore Gal(E/F) is solvable.

Remark 7.6. $g(x) = \sum_{i=1}^{n} (x - x_i) = \sum_{i=1}^{n} p_i x^i \ (n \ge 4)$ is unsolvable on $F(p_1, \dots, p_n)$ since $G(g, F(p_1, \dots, p_n))$ is isomorphic to S_n . Therefore for $g(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$, the roots cannot be expressed with a, b, c, d, e.

Theorem 7.7. If G(f,F) is solvable, then f(x) can be solvable by radicals.

Proof. Suppose $G_0 = G(f, F)$, E is the splitting field of $f(x) \in F[x]$. Need to show that there exists a radical extension K that contains E. Since G_0 is solvable, there is a subnormal sequence

$$G_0 \triangleright G_1 \cdots \triangleright G_s = \{1\}$$

such that G_i/G_{i+1} is cyclic. Therefore by the fundamental theorem,

$$F_0 = F \subset F_1 \subset \cdots \subset F_s = E, \quad F_i = \text{Inv}G_i$$

attempt proof by induction on s. When s=1, G(f,F) is cyclic. Suppose its degree n, ϵ a n-th primitive root, then $F \subset E \subset E(\epsilon) = K$. Obviously K is a normal extension of K. Since $F \subset F(\epsilon) \subset K$, $\operatorname{Gal}(K/F(\epsilon))$ is a subgroup of G_0 , therefore still cyclic. By proposition 6.14, K is a simple radical extension of $F(\epsilon)$. Therefore K is a radical extension of F and F and

Assume it is true for s-1. Since $G_1 \triangleleft G_0$, F_1 is normal over F and $Gal(F_1/F)$ is cyclic. Thus F_1 is contained in a normal radical extension $\overline{F_1}$. Suppose it is the splitting field of $g(x) \in F[x]$, \overline{E} the splitting field of g(x)f(x). Then $Gal(\overline{E}/\overline{F_1}) = H$ is a subgroup of $Gal(E/F_1)$. Therefore there is a subnormal series

$$H = H_0 \ge \cdots H_{s-1} = \{1\}, \quad H_i = G_{i+1} \cap H$$

where H_i/H_{i+1} is cyclic. Then there is a normal radical extension K of $\overline{F_1}$. Obviously K is also a normal radical extension of F.

Remark 7.8. This showed that for $f(x) \in F[x]$, if $\deg f(x) \le 4$, then f(x) = 0 is solvable by radicals.