

Computing Science Assignment 2 on:

Flowchart: Converting Hexadecimal to Decimal

Department of Computer Science Section RCD/2017/D

Group 1 Members

Name	ID
1. Nehimya Mesfin	RCD/0620/2017
2. Abigiya Yoseph	RCD/0590/2017
3. Dagmawit Hagos	RCD/0596/2017
4. Elshaday Abebayew	RCD/0597/2017
5. Samrawit Dawit	RCD/0625/2017
6. Saron Abenet	RCD/0626/2017
7. Sofanit Ashebir	RCD/1461/2017
8. Mohamed Zekaria	RCD/0615/2017

Submission Date: 23rd Feb, 2025

Submitted To: Mr. Dagmawi Y.

Flowchart of Hexadecimal to Decimal Conversion

Explanation of the Flowchart Step by Step:

1. Define the values of A, B, C, D, E, F:

 Since the user inputs hexadecimal number the alphabetical values must be defined to maintain its flow while working on it.

2. Enter a value:

o A value is input, which is assumed to represent a hexadecimal number in base 16.

3. Initialize variables:

- o counter = 0: This variable keeps track of the position of the digit in the hexadecimal number (starting from the least significant digit).
- o decimal_num = 0: This will store the final decimal (base 10) equivalent of the hexadecimal number.

4. Check if value != 0:

o A while loop is used to process the digits of the number until the value becomes 0 (i.e., all digits are processed).

5. Extract the last digit (remainder):

o remainder = value % 10: The last digit of the current value is extracted using the modulus operator (%).

6. Update the decimal number:

 The decimal equivalent of the current hexadecimal digit is calculated and added to decimal_num:

```
decimal num += remainder * (16 ** counter)
```

Here, remainder is multiplied by 16 raised to the power of counter, which corresponds to the positional weight of the digit in hexadecimal format.

7. Increment the counter:

o counter is incremented by 1 to move to the next higher positional digit in the hexadecimal number.

8. Remove the last digit:

 \circ value = value // 10: The last digit of the value is removed using integer division (//).

9. Repeat:

• Steps 4–8 are repeated until value becomes 0.

10. Output the result:

 The final value of decimal_num (decimal equivalent of the hexadecimal number) is printed.

Example

Input:

Let's take value = 25 (hexadecimal equivalent of $2 * 16^1 + 5 * 16^0$).

Step-by-Step Execution:

1. Initial Values:

- \circ value = 25
- \circ counter = 0
- o decimal num = 0

2. First Iteration:

- o remainder = value % 10 = 25 % 10 = 5
- o decimal num += remainder * (16 ** counter) = 0 + 5 * (16 ** 0) = 5
- o counter = 0 + 1 = 1
- \circ value = value // 10 = 25 // 10 = 2

3. **Second Iteration:**

- o remainder = value % 10 = 2 % 10 = 2
- o decimal num += remainder * (16 ** counter) = 5 + 2 * (16 ** 1) = 5 + 32 = 37
- \circ counter = 1 + 1 = 2
- \circ value = value // 10 = 2 // 10 = 0

4. End Condition:

- \circ Since value = 0, the loop ends.
- o Final decimal_num = 37.

Output::

The decimal equivalent of hexadecimal 25 (in numeric representation) is 37.