Q1) Identify the Data type for the Following:

Activity	Data Type
Number of beatings from Wife	Discrete
Results of rolling a dice	Discrete
Weight of a person	Continues
Weight of Gold	Continues
Distance between two places	Continues
Length of a leaf	Continues
Dog's weight	Continues
Blue Color	Discrete
Number of kids	Discrete
Number of tickets in Indian railways	Discrete
Number of times married	Discrete
Gender (Male or Female)	Discrete

Q2) Identify the Data types, which were among the following Nominal, Ordinal, Interval, Ratio.

Data	Data Type
Gender	Nominal
High School Class Ranking	Ordinal
Celsius Temperature	Interval
Weight	Ratio
Hair Color	Nominal
Socioeconomic Status	Ratio
Fahrenheit Temperature	Interval
Height	Ratio
Type of living accommodation	Ordinal
Level of Agreement	Ordinal
IQ(Intelligence Scale)	Ratio
Sales Figures	Ratio
Blood Group	Ordinal
Time Of Day	Interval
Time on a Clock with Hands	Ordinal
Number of Children	Nominal
Religious Preference	Ratio

Barometer Pressure	Interval
SAT Scores	Ordinal
Years of Education	Ratio

Q3) Three Coins are tossed, find the probability that two heads and one tail are obtained?

Sol:

(HHH, HHT, HTH, THH, THT, HTT, HTT – 8 outcomes) – & (Two head and one tail are HHT, HTH, TTH so 3 Probability) so there are 3/8 - 0.375

- Q4) Two Dice are rolled, find the probability that sum is
 - a) Equal to 1 0
 - **b)** Less than or equal to 4 : 6/36 = 1/6
 - c) Sum is divisible by 2 and 3 6/36 = 1/6
- Q5) A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?

Sol:

Total Number of balls = 2+3+2=7

Number of ways of drawing 2 balls out of $7 = {}^{7}C_2 = (7 \times 6) / (2 \times 1) = 42/2 = 21$

Number of balls other than blue = 5

Number of ways of drawing 2 balls out of $5 = {}^{5}C_{2} = (5 \times 4) / (2 \times 1)$

=20/2=10

∴ Required Probability = 10/21

Q6) Calculate the Expected number of candies for a randomly selected child

Below are the probabilities of count of candies for children (ignoring the nature of the child-Generalized view)

CHILD	Candies count	Probability
A	1	0.015
В	4	0.20
С	3	0.65
D	5	0.005
E	6	0.01
F	2	0.120

Child A – probability of having 1 candy = 0.015.

Child B – probability of having 4 candies = 0.20

Sol:

Expected number of candies for a randomly selected child $= \sum x^*P(x)$

= 1*0.015 + 4*0.20 + 3*0.65 + 5*0.005 + 6*0.01 + 2*0.120 = 3.090

Q7) Calculate Mean, Median, Mode, Variance, Standard Deviation, Range & comment about the values / draw inferences, for the given dataset

For Points, Score, Weigh>
 Find Mean, Median, Mode, Variance, Standard Deviation, and Range and also Comment about the values/ Draw some inferences.

Use Q7.csv file

Q8) Calculate Expected Value for the problem below

a) The weights (X) of patients at a clinic (in pounds), are 108, 110, 123, 134, 135, 145, 167, 187, 199

Assume one of the patients is chosen at random. What is the Expected Value of the Weight of that patient?


```
In [4]: import numpy as np import pandas as pd

In [5]: weight = [108, 110, 123, 134, 135, 145, 167, 187, 199] df = pd.DataFrame(weight)

In [6]: weight_of_paitenet = df.mean() print("The Expected Value of the Weight of that patient is ",weight_of_paitenet)

The Expected Value of the Weight of that patient is 0 145.3333333 dtype: float64
```

Q9) Calculate Skewness, Kurtosis & draw inferences on the following dat Cars speed and distance Use Q9_a.csv , SP and Weight(WT) Use Q9_b.csv

inference : The distribution is right skew('+ve'), Mean > Median

Inference: The distribution has lots of outliers towards upper extreme

Q11) Suppose we want to estimate the average weight of an adult male in Mexico. We draw a random sample of 2,000 men from a population of 3,000,000 men and weigh them. We find that the average person in our sample weighs 200 pounds, and the standard deviation of the sample is 30 pounds. Calculate 94%,98%,96% confidence interval?


```
In [1]: import os import numpy as np from scipy import stats

In [2]: stats.norm.interval(0.94, loc=200 , scale=30/np.sqrt(2000)) # Lower to uper Limit

Out[2]: (198.738325292158, 201.261674707842)

In [3]: stats.norm.interval(0.98, loc=200 , scale=30/np.sqrt(2000)) # Lower to uper Limit

Out[3]: (198.4394384042978, 201.56056159570022)

In [4]: stats.norm.interval(0.96, loc=200 , scale=30/np.sqrt(2000)) # Lower to uper Limit

Out[4]: (198.62230334813333, 201.37769665186667)
```

Q12) Below are the scores obtained by a student in tests

34,36,36,38,38,39,39,40,40,41,41,41,41,42,42,45,49,56

- 1) Find mean, median, variance, standard deviation.
- 2) What can we say about the student marks?

Q13) What is the nature of skewness when mean, median of data are equal?

Sol: skewness=0, Symmetric

Q14) What is the nature of skewness when mean > median?

Sol: Right skewed(tail on the right side)

Q15) What is the nature of skewness when median > mean?

Sol: Left skewed(tail on the left side)

Q16) What does positive kurtosis value indicates for a data?

Sol: Sharp Peak, Thick Tails

Q17) What does negative kurtosis value indicates for a data?

Sol: Broad Peak, Wide Tails

Q18) Answer the below questions using the below boxplot visualization.

What can we say about the distribution of the data?

Sol: It is Not a Normal Distribution

What is nature of skewness of the data?

Sol: Left Skewed

What will be the IQR of the data (approximately)?

Sol: Inter Quartile Range=Upper Quartile-Lower Quartile=18-10=8

Q19) Comment on the below Boxplot visualizations?

Draw an Inference from the distribution of data for Boxplot 1 with respect Boxplot 2.

- 1) The median of the two boxplots are same
- 2) Both are Normally Distributed

Q 20) Calculate probability from the given dataset for the below cases Data _set: Cars.csv

Calculate the probability of MPG of Cars for the below cases.

MPG <- Cars\$MPG

- a. P(MPG>38)
- b. P(MPG<40)
- c. P (20<MPG<50)

Q 21) Check whether the data follows normal distribution

a) Check whether the MPG of Cars follows Normal Distribution Dataset: Cars.csv

Cars.csv Q2

b) Check Whether the Adipose Tissue (AT) and Waist Circumference(Waist) from wc-at data set follows Normal Distribution Dataset: wc-at.csv

Q 22) Calculate the Z scores of 90% confidence interval, 94% confidence interval, 60% confidence interval

Sol:

Q 23) Calculate the t scores of 95% confidence interval, 96% confidence interval, 99% confidence interval for sample size of 25

Q 24) A Government company claims that an average light bulb lasts 270 days. A researcher randomly selects 18 bulbs for testing. The sampled bulbs last an average of 260 days, with a standard deviation of 90 days. If the CEO's claim were true, what is the probability that 18 randomly selected bulbs would have an average life of no more than 260 days

Hint:

rcode \rightarrow pt(tscore,df)

df → degrees of freedom

