

Software Systems Architecture

Xiaobin Xu

doublexb@163.com

Module 1: Software Systems Architecture basics

Content:

- History of Software Development
- Definition of Software Architecture
- ■Some Related Concepts of Software Systems Architecture
- Where do architectures come from?
- Values of Software Architecture
- ■Current Research & Practicing in Software Systems Architecture

History of Software Development

- · Assemble Language
- · Small size of program

1970'

- Advanced Language
- Structure-Oriented Theory
- Dataflow/Control flow Design Methods

1980'

- Application Development Library: Class/Functions Library
- Object-Oriented Theory
- Object Modeling & Design Technology

1995 ▶

- Application Development Framework: J2EE, .NET
- Component Technology: COM/DCOM, CORBA ...
- Object Modeling & Design Standardization: UML

Future

- · Model-Driven Development: MDA
-

- Review of the history of the software:
 - The size and the complexity of software is becoming larger and more complex.
 - The application areas of software: science computing, manufacturing, commerce, education and amusement.
 - The abstraction level of software is becoming more high.
 - Machine Language—>Assemble Language—>Advanced Language—> Application Framework
 - Structure-Oriented Programming —> Object-Oriented Programming —> Aspect-Oriented Programming

History of Software Development

- Results of the development of software:
 - Good architecture design has always been a major factor in determining the success of a software system.
 - The architecture and designing is more important than the data structure and the program algorithm.

The Definition of SA

Architecting a house

Architecting a high rise

- Scale
- Process
- Cost
- Schedule
- Skills and development teams
- Materials and technologies
- Stakeholders
- Risks

Definition of SA

 The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible properties of those elements, and the relationships among them.

---- 《Software Architecture in Practice》, Addison-Wesley 1997

Architecture is the organizational structure of a system.
 An architecture can be recursively decomposed into parts that interact through interfaces, relationships that connect parts, and constraints for assembling parts. Parts that interact through interfaces include classes, components and subsystems.

----UML 1.3

Definition of SA

 Software architecture is the fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution

---- IEEE 1471-2000

- Software Architecture
 - **Software Elements**: functions, Interfaces, programs, class modules, layers, subsystem, clients/servers etc.
 - Visible Properties: provided services, performance characteristics, fault handling, shared resource usage, and so on
 - Relations: composition mechanism and style of these elements
- An architecture is the result of a set of business and technical decisions.

Definition of SSA

A Software Architecture Include:

- the constituent elements Component
- the interaction rules/mechanism Connector

So, it can be defined briefly as:

- the components comprised in the system, and the relationships or interaction mechanisms of those components.
- Software Architecture Design = Decomposition + Composition

Definition of SA

Decomposition/Composition

- reducing the complexity of software design and construction.
- controlling the risks of software development
- improving the efficiency of organization and management

But, we must consider

- How do we break the system down into pieces?
- Do we have all the necessary pieces?
- Do the pieces fit together?

Definition of SA

 Hundreds of definitions on CMU web page: http://www.sei.cmu.edu/architecture/definitions.h tml

Component

A logical and functional unit of the system.

Note:

- A component may be divided into more little unit of components.
- A component serves certain responsibilities.
- The component is an abstract and conceptual word, it'll be different specific objects (for example, modules, subsystems, layers, packages, classes etc.) in different scenarios.

Connector

The interaction rules or mechanisms among components.

SA1:
SA2:

• Functional Property of the SA

the characters of the SA that meets the functional requirements.

Non-functional Property of the SA

the characters of the SA that meets the nonfunctional requirements. For example,

- performance
- portability
- flexibility/extensibility
- reliability/security
- ...

Related Concepts of SA

Framework

- A framework is a reusable application infrastructure for a specified problems.
- some necessary basic components for the specified problems
- interaction mechanism and constraints among components
- a context or environment for the applications developed based on the framework
- Commonly, a framework mainly presents a class library. For example: .NET Framework, JavaEE Framework etc.

Architecture of Struts 2

- Architecture is at a high-enough level of abstraction that the system can be viewed as a whole.
- At the architectural level, all implementation details are hidden.
- The architecture must support the functionality required of the system.
- The architecture must conform to the system qualities (also known as non-functional requirements): performance, security and reliability, flexibility or extensibility.

Where Do Architectures Come From?

- Architectures are influenced by system stakeholders.
- Architectures are influenced by the developing organization.
- Architectures are influenced by the background and experience of the architects.
- Architectures are influenced by the technical environment.

Architecture Business Cycle

- Activities of architecture business cycle:
 - Creating the business case for the system
 - Understanding the requirements
 - Creating or selecting the architecture
 - Documenting and communicating the architecture
 - Analyzing or evaluating the architecture
 - Implementing the system based on the architecture
 - Ensuring that the implementation conforms to the architecture

Why Is Software Architecture Important?

- Architecture is the vehicle for stakeholder communication.
- Architecture manifests the earliest set of design decisions.
 - The Architecture Defines Constraints on Implementation
 - The Architecture Dictates Organizational Structure
 - The Architecture Inhibits or Enables a System's Quality Attributes
 - Predicting System Qualities by Studying the Architecture
 - The Architecture Makes It Easier to Reason about and Manage Change

- The Architecture Helps in Evolutionary Prototyping
- The Architecture Enables More Accurate Cost and Schedule Estimates
- Architecture as a transferable, re-usable model.
 - Software Product Lines Share a Common Architecture
 - Systems Can Be Built Using Large, Externally Developed Elements

Values of Architecture

- Architecture serves both technical and organizational purposes:
- Organization side:
 - Communicating inside organization, and between customers and vendors
 - Providing the high-level information of systems costs and risks evaluating
 - Work allocation and project schedule

- Technical side:
 - meet system requirements and objectives
 - Specify the constraints of detailed design, construction and testing phrase
 - enable flexible distribution/partitioning of the system
 - reduce cost of maintenance and evolution
 - increase reuse and integrate with legacy and third party software

Who focus on Software Architecture?

 An architectural view is a simplified description (an abstraction) of a system from a particular perspective or vantage point, covering particular concerns, and omitting entities that are not relevant to this perspective

About Kruchten and this paper

- Philippe Kruchten
 - Over 16 years of experience as the leader of RUP development team in Rational corp. (now owned by IBM)
 - Valuable experiences in industry (Telecom, Air traffic control system) which he used them for confirmation of his model
- The "4+1 view model" paper:
 - 60 citations according to ACM portal site

Problem

- Arch. documents over-emphasize an aspect of development (i.e. team organization) or do not address the concerns of all stakeholders
- Various stakeholders of software system: end-user, developers, system engineers, project managers
- Software engineers struggled to represent more on one blueprint, and so arch. documents contain complex diagrams

Solution

- Using several concurrent views or perspectives, with different notations each one addressing one specific set for concerns
- "4+1" view model presented to address large and challenging architectures

4+1 View Model of Architecture

Characteristics of a Good Architecture

- Resilient
- Simple
- Approachable
- Clear separation of concerns
- Balanced distribution of responsibilities
- Balances economic and technology constraints

Formalization Research

refers to how to describe the SA in specific rules how to view and present the SA

ADL--- Architecture Description Language

Verification & Evaluation Research

refers to how to verify and evaluate the SA whether it meets the constraints of functional and non-functional requirement.

ATAM---Architecture Tradeoff Analysis Method

- Select a research hotspot related with Software Architecture.
- Tasks: Do extensive reading & Write a paper or report.