DEVICE ENGINEERING INCORPORATED

385 E. Alamo Dr. Chandler, AZ 85225 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

DEI1166 OCTAL GND/OPEN INPUT, PARALLEL OUTPUT INTERFACE IC

FEATURES

- Eight GND/OPEN discrete inputs
 - \circ Meet electrical requirements for ABD0100 GND/OPEN discrete input.
 - Hysteresis provides noise immunity.
 - o Internal pull up resistor with 1mA source current to prevent dry relay contacts.
 - o Internal isolation diode
 - o Inputs protected from Lightning Induced Transients per DO160D, Section 22, Cat A3 and B3.
- 3.3V or 5V TTL/CMOS compatible digital IO
 - 8 tri-state outputs
- /CS & /OE control inputs
 Logic Supply: 3.3V or 5V
 Analog Supply: 5V to 18V
- 24L TSSOP package

PIN ASSIGNMENTS

Figure 1 DEI1166 Pin Assignment (24 Lead TSSOP)

Table 1 Pin Descriptions

Pins	Name	Description		
8-1	DIN[8:1]	Discrete Inputs. Eight Ground/Open format discrete signals. These have an		
		internal pull-up to VDD. The threshold and hysteresis characteristics are		
		determined by the applied VDD voltage.		
9-10	NC	Not Connected.		
11	/CS	Chip Select Logic Input. Low input selects the device.		
12	/OE	Output Enable Logic Input. Low input when /CS is low will enable the tri-		
		state outputs.		
13	VDD	Analog Supply. +5 to +18V		
14	GND	Analog Ground.		
19	VCC	Logic Supply. +3.3V or +5V		
22	GND	Logic Ground.		
15,16,17,18,20,21,23,24	DO[8:1]	Logic Outputs. Eight tri-state data outputs.		

FUNCTIONAL DESCRIPTION

The DEI1166 is an eight-channel parallel-output discrete-to-digital interface BICMOS device. It senses eight Ground/Open discrete signals of the type commonly found in avionic systems. The data is read from the device via a parallel 3-state output.

Figure 2 DEI1166 Function Diagram

Table 2 Truth Table

/CE	/OE	DIN[8:1]	DO[8:1]
L	L	Open	L
L	L	Ground	Н
Н	X	X	High Z
X	Н	X	High Z

DIN[8:1] INPUT STRUCTURE

Each DINn signal is conditioned by the resistor / diode network and presented to the comparator IN+ as shown in Figure 2. The reference and hysteresis voltage is developed at the comparator IN-. Some notable features are:

- When Vdd is +15V, the circuit shall source >1mA to a grounded input. This current will prevent a "dry" relay contact.
- The input threshold voltage and hysteresis varies with the Vdd supply.
 - \circ For Vdd of +5V, VILmax = 3.5V, VIHmin = 4.8V
 - o For Vdd of +14V, VILmax = 11.5V, VIHmin = 13.5V
 - Hysteresis is approximately as shown in Figure 3.
- The inputs can withstand continuous input voltages of 40V maximum. The isolation diode breakdown voltage is greater than 50V. The 12K Ohm input resistor is designed to limit diode breakdown current to safe levels during transient events.

The input thresholds vary with the Vdd supply voltage as shown below.

Figure 3 DIN Threshold vs. Vdd

Figure 4 depicts the resistance value that when applied between the input and ground, causes the comparator to switch. Lower effective R_Din values can be achieved by adding an external diode isolated pull-up resistor to Vdd (or higher) supply.

Figure 4 Applied Resistance to Ground at Switching Threshold

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.

LIGHTNING PROTECTION

DINn inputs are designed to survive lightning induced transients as defined by RTCA DO160D, Section 22, Cat A3 and B3, Waveforms 3, 4, and 5A, Level 3. See waveforms below.

Figure 5 Voltage / Current Waveform 3

Figure 6 Voltage Waveform 4

Waveform Source Impedance characteristics:

- Waveform 3 Voc/Isc = $600V / 24A \Rightarrow 25 Ohms$
- Waveform 4 Voc/Isc = $300 \text{ V} / 60 \text{ A} \Rightarrow 5 \text{ Ohms}$
- Waveform 5A Voc / Isc = 300V / 300A = > 1 Ohm

Figure 7 Current/Voltage Waveform 5A

NOTE

It is possible to achieve higher level lightning immunity by adding a 1K Ohm series resistor and a Transient Voltage Suppressor (TVS) to clamp the inputs below 600V. The 1K Ohm resistance reduces the input threshold. For example, with Vdd = 15V, the thresholds become:

Max LH threshold = 15.3V Min HL threshold = 11.3V

ELECTRICAL DESCRIPTION

Table 3 Absolute Maximum Ratings

PARAMETER	MIN	MAX	UNITS
Vcc Supply Voltage	-0.3	+7.0	V
Vdd Supply Voltage	-0.3	20	V
Operating Temperature			
Plastic Package	-55	+125	°C
Storage Temperature			
Plastic Package	-65	+150	°C
Input Voltage			
DIN[8:1] Continuous	-5	+40	V
DO160D, Waveform 3, Level 3	-600	+600	V
DO160D, Waveform 4 and 5, Level 3	-300	+300	V
Logic Inputs	-1.5	VCC + 1.5	V
DO[8:1]	-0.5	VCC + 0.5	V
Power Dissipation @ 85 °C: (> 10 Sec)			
24L TSSOP		0.8	W
Junction Temperature:			
Tjmax, Plastic Packages		145	°C
ESD per JEDEC A114-A Human Body Model			
Logic and Supply pins		2000	V
DIN pins		1000	
Peak Body Temperature			
-G Package		260	°C
Notos			

Notes:

- 1. Voltages referenced to Ground
- 2. Stresses above absolute maximum ratings may cause permanent damage to the device.

Table 4 Recommended Operating Conditions

PARAMETER	SYMBOL	CONDITIONS
Supply Voltage	VCC	5.0V±10%, 3.3V±10%
	VDD	5.0 to 18V
Logic Inputs	/CS, /OE	0 to VCC
Discrete Inputs	DIN[8:1]	0 to 40V
Operating Temperature		
-TES		-55 to +85 °C
-TMS		-55 to +125 °C

Table 5 DC Electrical Characteristics

Symbol	Parameter	Test Conditions	VCC (V)) LIMITS		Unit
				-55 to +85°C	-55 to +125°C	
		LOGIC INPUTS AND OUTPUT VDD = +5.0V to 18V	ΓS			
V_{IHmin}	Min High level input voltage	VDD = 13.0V to 18V	3.0	2.0	2.0	
▼ IHmin	with fright level input voltage		5.5	2.0	2.0	V
V _{ILmax}	Max Low level input voltage		3.0	0.8	0.8	
			5.5	0.8	0.8	V
$ m V_{OHmin}$	Min High level output voltage	$ I_{OUT} < 20uA$	3.0 5.5	VCC - 0.1	VCC - 0.1	V
		$ I_{OUT} < 4.5 \text{mA}$	4.5	3.2	3.0	V
			5.5	4.5	4.3	
V _{OLmax}	Max Low level output voltage	$ I_{OUT} < 20uA$	3.0	0.1	0.1	
O Dinasi		1 33.1	5.5	0.1	0.1	V
		$ I_{OUT} < 4.5 \text{mA}$	4.5	0.33	0.40	V
			5.5	0.33	0.40	
I _{OZmax}	Max 3-state leakage current	Output in Hi Impedance state. Vout = 0V and 5V	5.5	±5.0	±10.0	uA
I _{IILmax}	Max I input current	VIN = 0V	5.5	-280	-300	uA
		DISCRETE INPUTS VDD = +14V				
V_{IHmin}	Min High level input voltage		3.0 to 5.5	13.3	13.5	V
V _{ILmax}	Max Low level input voltage		3.0 to 5.5	11.5	11.5	V
V _{Ihst-min}	Min input hysteresis voltage		3.0 to 5.5	1.0	1.0	V
I_{IHmax}	Max High level input current	Vin = 18V Vin = 40V	3.0 to 5.5	10 40	10 40	uA
$I_{\rm ILmax}$	Max I Low level input current	Vin = 0V	3.0 to 5.5	-1.3	-1.3	mA
I_{ILmin}	Min I Low level input current	Vin = 0V	3.0 to 5.5	-0.7	-0.7	mA
		DISCRETE INPUTS VDD = +5.0V				
V _{IHmin}	Min High level input voltage		3.0 to 5.5	4.7	4.8	V
V_{ILmax}	Max Low level input voltage		3.0 to 5.5	3.5	3.5	V
V _{Ihst-min}	Min input hysteresis voltage		3.0 to 5.5	0.36	0.36	V
I_{IHmax}	Max High level input current	Vin = 18V Vin = 40V	3.0 to 5.5	10 40	10 40	uA
I _{ILmax}	Max I Low level input current	Vin = 0V	3.0 to 5.5	-0.43	-0.43	mA
I_{ILmin}	Min I Low level input current	Vin = 0V	3.0 to 5.5	-0.21	-0.21	mA
		SUPPLY VOLTAGES VDD = +14V	ı	1	ı	
ICCmax	Max quiescent logic supply current	Vin(logic) = Vcc or GND VIN[8:1] = open	5.5	400	400	uA
IDDmax	Max quiescent analog supply current	Vin(logic) = Vcc or GND DIN[8:1] = Open DIN[8:1] = GND	5.5 5.5	11 23	11 24	mA

Table 6 AC Electrical Characteristics

			Limits		
Symbol	Parameter (VDD=+5.0V)	VCC (V)	−55 to +85°C	-55 to +125°C	Unit
t_{ZLmax}	Maximum propagation delay, /CS↓ and /OE↓ to DO low. (1) (3)	3.0	100	113	ns
		4.5	53	59	
		5.5	42	46	
t _{ZHmax}	Maximum propagation delay, /CS↓ and /OE↓ to DO high (1) (3)	3.0	100	113	ns
		4.5	53	59	
		5.5	42	46	
t_{HZmax}	Maximum propagation delay, /CS↑ or / OE↑ to DO HI-Z. from	3.0	100	110	ns
	D0 Low or high. (1) (2) (3)	4.5	71	78	
		5.5	65	72	
$t_{ m HLmin} \ t_{ m LHmin}$	Minimum data propagation delay, Din to DO (4) (5)	5.0	3.5	3.5	us
t _{Hlmax}	Maximum data propagation delay, Din to DO (4) (5)	5.0	420	630	us
t_{LHmax}					
C _{in-max}	Maximum logic input Capacitance. (6)	-	10	10	pF
C _{out-max}	Maximum DO pin capacitance, output in HI-Z state. (6)		15	15	pF

Notes:

- 1. DO is loaded with 30pF to GND.
- 2. DO is loaded with 10K Ohms to GND for High output, 10K Ohms to VCC for Low output.
- 3. Timing measured from $V_{\text{IN}}\!\!=\!\!1.5V$ to $\Delta V_{\text{OUT}}\!\!=\!\!200\text{mV}.$ See Figure 8
- 4. See Figure 9. The delay is due to both the on chip filter circuits and VDD.
- 5. Guaranteed by design.
- 6. Current flowing into device is positive. Current flowing out of device is negative. Voltages are referenced to GND.

Figure 8 Chip Select or Output Enable to Output Delay

Figure 9 Input to Output Delay

ORDERING INFORMATION

Part Number	Marking	Package	Temperature
DEI1166-TES - G	DEI1166-TES	24 TSSOP	-55 / +85 °C
	E4		
DEI1166-TMS - G	DEI1166-TMS	24 TSSOP	-55 / +125 °C
	E4		

PACKAGE DESCRIPTION

24L TSSOP - G Package

Moisture Sensitivity: Level 1 / 260°C per JEDEC J-STD-020A Θja: ~83°C/W (Mounted on 4 layer PCB)

 Θ jc: $\sim 16^{\circ}\text{C/W}$ Lead Finish:NiPdAu (e4)

Figure 10 Outline Drawing