HCMC UNIVERSITY OF TECHNOLOGY

Faculty of Transportation Engineering
------00o------

SOCIALIST REPUBLIC OF VIETNAM

Independence – Freedom – Happiness ------

MIDTERM REPORT OF THESIS/CAPSTONE PROJECT SEMESTER __222__

1. T	T hesis title: Analyse t	he changes of steering feel	in various speed in Toyota VIOS.
2. A	Advisor's fullname:	PhD. Ngô Đắc Việt	
		PhD. Trần Đăng Long	
3. S	student's fullname:	content: :	
4. T	Thesis content:		
4.1.	Type:	☐ A product design	☐ A technical evaluation
		⋈ A scientific research	n □ Other:
4.2.	Objectives & Tech	nical requirements:	
_ A	nalysis of the comple	ete system dynamics of E	PS, and implementation of the EPS simulation
mod	del on Matlab/Simuli	nk, with simulation resul	ts analysis using Simscape Multibody.
_Bı	_	_	
4.4.	Works to be done	& Required results:	
No.	Works	to be done	-
1	Dynamic formula for E	PS system	Equation

No.	Works to be done	Required results (Ex: data, equations, models diagrams, parameters, charts, findings)					
1	Dynamic formula for EPS system	Equation					
2	Solidwork model for simscape simulation	Model					

4.5. Requested products.										
□ Technical report	⊠ Poster	□ Scientific paper								
□ Software	□ Firmware									

 \square General layout drawings \square Detailed drawing \boxtimes Assembly drawings

□ Others:

4.6. Scope of Thesis:

4.5 Requested products:

_Components that are not related to the EPS system are ignored.

4.7. Tasks of each team member:

No.	Member's full name	Works assigned
1	Trịnh Tiến Long	Summary the dynamic equation, simulate using simscape multibody

5. Achievements by midterm:

No.	Works done	Required results	Actual results	Degree of completion (0-100%)
1	Dynamic equation for EPS	Equation	Equation	100%
2	Solidwork model	Full model	Part of model	50%

6. Current technical errors (if any) & Proposed solutions:

No.	Works done	Current errors	Causes	Solutions to overcome
1	Solidwork model	Wrong kinematic movement	Wrong parameter for model	Re-draw with VIOS parameter

7. Threats and causes lead to completion delay (if any) & Proposed solutions:

No.	Works & Corresponding threats	Causes	Degree of risk of completion delay (Low/Medium/High)	Solutions to overcome		
1						

No.	Works & Corresponding threats	Causes	Degree of risk of completion delay (Low/Medium/High)	Solutions to overcome			

8. Updated working plan for 15+1 weeks: (including the degree of completion of each task, and additional works to finish the Thesis/Project on time (if any))

No.	Works	Week															
110.		1	2	3	4	5	6	7	8	9	X	11	12	13	14	15	16
1	Introduction of project	x															
2	Summarize theory		x	X													
3	Choose plan and prepare technical paper for reference				X	X	X										
4	Summarize dynamic equation, get VIOS steering system parameter							X	X				X				
5	Draw solidwork model								X	X		X	X				
6	Build EPS model on MATLAB													X	X	X	
7	Make poster												X				X
8	Make presentation slides																X
9	Write full report																X

Student: Trịnh Tiến Long -ID:1852047 - Signature: Long

Date (dd/mm/yyyy):

ADVISOR