Теория по геометрии за курс 7-8 класса.

ПРЯМЫЕ И УГЛЫ НА ПЛОСКОСТИ

ПАРАЛЛЕЛЬНОСТЬ

Прямые a и b пересечены секущей c

∠1 и ∠2; ∠3 и ∠4 – накрест лежащие углы

∠1 и ∠8; ∠3 и ∠5 - соответственные углы

∠2 и ∠7; ∠4 и ∠6 - соответственные углы

 $\angle 1$ и $\angle 3$; $\angle 2$ и $\angle 4$ - односторонние углы

Признаки параллельности прямых

$$\angle 1 = \angle 2 \Rightarrow a \mid b$$

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

$$\angle 1 = \angle 8 \Rightarrow a \parallel b$$

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

$$\angle 1 + \angle 3 = 180^\circ \Rightarrow a \parallel b$$

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

$$a \parallel b, a \parallel c \Rightarrow c \parallel b$$
 $a \perp b, a \perp c \Rightarrow c \parallel b$

Свойства углов при параллельных прямых

$$a \parallel b \Rightarrow \angle 1 = \angle 2$$

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

$$a \mid b \Rightarrow \angle 1 = \angle 8$$

Если две параллельные прямые пересечены секущей, то соответственные углы равны.

$$a \parallel b \Rightarrow \angle 1 + \angle 3 = 180^{\circ}$$

Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.

НЕКОТОРЫЕ АКСИОМЫ ПЛАНИМЕТРИИ

Через любые две различные точки проходит прямая, и притом только одна.

 $A \in a \quad B \in a$

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

УГЛЫ

Острый угол меньше прямого угла С ДСDA< 90°	Тупой угол больше прямого угла в 90° < ∠аb < 180°	Прямой угол h	Развернутый угол A O M ∠AOM = 180°
Смежные углы С А В D		∠ABC и∠ CBD — смежные углы ∠ABC + ∠ CBD = 180° Сумма смежных углов равна 180°.	
Вертикальные углы		∠AOB и ∠COD — вертикальные ∠AOB = ∠COD Вертикальные углы равны.	

БИССЕКТРИСА УГЛА

a c b	c — биссектриса $\angle ab$ $\angle ac = \angle cb$ Луч c делит угол $\angle ab$ пополам	
	Свойство биссектрисы	
A a c	AM = BM Каждая точка биссектрисы неразвернутого угла равноудалена от сторон угла.	

ВИДЫ ТРЕУГОЛЬНИКОВ

Треугольник	Разносторонний	Равнобедренный	Равносторонний
Остроугольный (все углы острые)		A	B C C
	все стороны разной длины	две стороны равны	все стороны равны
Прямоугольный (один из углов — прямой)			∠ A= ∠B=∠C=60° P = 3a. rne
Тупоугольный (один из углов – тупой)			<i>а</i> - сторона, <i>P</i> - периметр

СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

СВОЙСТВА РАВНОБЕДРЕНННОГО ТРЕУГОЛЬНИКА

РАВНЫЕ И ПОДОБНЫЕ ТРЕУГОЛЬНИКИ (определение)

$$\begin{split} &\Delta ABC = \Delta \ \mathbf{A}_1 \mathbf{B}_1 \mathbf{C}_1, \ \text{значит}, \\ &AB = \mathbf{A}_1 \mathbf{B}_1 \qquad CB = C_1 \mathbf{B}_1 \qquad CA = C_1 A_1 \\ & \angle \ A = \angle \ A_1 \qquad \angle \ B = \angle \mathbf{B}_1 \qquad \angle \ C = \angle \ C_1. \end{split}$$

 \triangle ABC подобен \triangle $A_1B_1C_1$, значит,

$$\angle A = \angle A_1$$
 $\angle B = \angle B_1$ $\angle C = \angle C_1$

Равные углы лежат напротив равных сторон

Равные углы лежат напротив сходственных сторон

ПРИЗНАКИ РАВЕНСТВА ТРЕУГОЛЬНИКОВ

По двум сторонам и углу между ними

$$AB = A_1B_1 \quad CB = C_1B_1 \quad \angle B = \angle B_1$$
$$\triangle ABC = \triangle A_1B_1C_1$$

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

По стороне и двум прилежащим углам

$$AC=A_1C_1 \angle A = \angle A_1 \angle C = \angle C_1$$

 $\triangle ABC = \triangle A_1B_1C_1$

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

По трем сторонам

$$AB = A_1B_1$$
 $CB = C_1B_1$ $AC=A_1C_1$
 $\triangle ABC = \triangle A_1B_1C_1$

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ

По двум углам

 $\angle A = \angle A_1 \quad \angle B = \angle B_1$ $\triangle ABC$ подобен $\triangle A_1 B_1 C_1$

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

По двум сходственным сторонам и углу между ними

$$\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1}$$
 $\angle A = \angle A_1$
 $\triangle ABC$ подобен $\triangle A_1B_1C_1$

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

По трем сходственным сторонам

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники полобны.

ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ ТРЕУГОЛЬНИКА

Медиана – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Биссектриса — отрезок, который соединяет вершину треугольника с точкой на противолежащей стороне и делит внутренний угол пополам.

Высота – перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.

Взаимное расположение медианы, биссектрисы и высоты

Биссектриса лежит внутри угла, образованного высотой и медианой, проведенными из той же вершины.

В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.

Серединный перпендикуляр – прямая, перпендикулярная стороне треугольника и делящая ее пополам.

Средняя линия – отрезок, соединяющий середины двух сторон треугольника.

Свойства биссектрисы угла

- **1.** Если OC биссектриса угла O, то AC = BC
- **2.** Если AC = BC, то OC биссектриса угла O

Свойства серединного перпендикуляра к отрезку

- **1.** Если MC серединный перпендикуляр к отрезку AB, то MA = MB
- 2. Если MA = MB, то M лежит на серединном перпендикуляре к отрезку AB

СВОЙСТВА МЕДИАН

Три медианы пересекаются в одной точке, которая всегда находится внутри треугольника (центр масс треугольника).

Каждая медиана точкой пересечения медиан делится в отношении 2: 1, считая от вершины.

Каждая медиана делит треугольник на 2 равновеликих треугольника (одинаковой площади).

Три медианы делят треугольник на 6 равновеликих треугольников.

Длина медианы

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}.$$

СВОЙСТВА БИССЕКТРИС

Три биссектрисы пересекаются в одной точке, которая всегда лежит внутри треугольника. Эта точка является центром вписанной окружности.

Биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам:

$$\frac{a_1}{a_2} = \frac{b}{c}$$

Биссектрисы внутреннего и внешнего углов перпендикулярны.

Если биссектриса внешнего угла треугольника пересекает продолже-

ние противолежащей стороны, то
$$\frac{BD}{AD} = \frac{BC}{AC}$$
.

Длина биссектрисы

$$l_a = \frac{2bc\cos\frac{\alpha}{2}}{b+c}$$

$$l_a^2 = bc - b_1c_1$$

СВОЙСТВА ВЫСОТ

Прямые, содержащие высоты треугольника, пересекаются в одной точке. Эта точка называется ортоцентром.

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Ортоцентр тупоугольного треугольника лежит вне треугольника (на рисунке треугольник выделен серым цветом, а продолжения высот и сторон, образующих тупой угол, проведены пунктиром).

Высоты треугольника обратно пропорциональны его сторонам:

$$h_a: h_b: h_c = \frac{1}{a}: \frac{1}{b}: \frac{1}{c}$$
.

Длина высоты

$$h_a = b \sin \gamma = c \sin \beta$$
;

$$h_a=rac{2S}{a}=rac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}\,,$$
 где $p=rac{a+b+c}{2}\,.$

СВОЙСТВА СЕРЕДИННЫХ ПЕРПЕНДИКУЛЯРОВ

Три серединных перпендикуляра пересекаются в одной точке. Эта точка является центром описанной окружности.

В случае *остроугольного* треугольника точка пересечения серединных перпендикуляров (центр описанной окружности) лежит *внутри* треугольника.

В случае прямоугольного треугольника точка пересечения серединных перпендикуляров (центр описанной окружности) совпадает с серединой гипотенузы.

В случае *тупоугольного* треугольника точка пересечения серединных перпендикуляров (центр описанной окружности) лежит вне треугольника.

СВОЙСТВО СЕРЕДИННОГО ПЕРПЕНДИКУЛЯРА И БИССЕКТРИСЫ

Продолжение биссектрисы пересекается с серединным перпендикуляром в точке, лежащей на окружности, описанной около треугольника.

СВОЙСТВА СРЕДНЕЙ ЛИНИИ

Средняя линия параллельна одной из сторон треугольника и равна ее половине:

$$MN \mid\mid AC; \quad MN = \frac{1}{2}AC.$$

Она отсекает треугольник, подобный данному, с коэффициентом подобия 1/2.

Три средние линии треугольника делят его на 4 равных треугольника, подобных данному, с коэффициентом подобия 1/2.

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ

В любой треугольник можно вписать окружность. Центр вписанной окружности — точка пересечения биссектрис. Радиус вписанной окружности r = S/p, где S — площадь треугольника, $p = \frac{a+b+c}{2}$.

Около любого треугольника можно *описать окружность*. Центр описанной окружности — точка пересечения серединных перпендикуляров. Радиус описанной окружности

$$R=\frac{abc}{4S},$$

где S — площадь треугольника.

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

Через сторону и высоту, проведенную к ней:

$$S=\frac{1}{2}ah_a.$$

Через две стороны и угол между ними:

$$S=\frac{1}{2}ab\sin\gamma.$$

Формула Герона

Через три стороны:

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
, где $p = \frac{a+b+c}{2}$.

Через полупериметр и радиус вписанной окружности:

$$S = pr$$
,
где $p = \frac{a+b+c}{2}$.

Через произведение сторон и радиус описанной окружности:

$$S = \frac{abc}{4R}$$

Площадь треугольника. Отношение площадей.

Подобные треугольники

$$\frac{P_{ABC}}{P_{A,B,C_1}} = \frac{AB}{A_1B_1} = k \; ; \quad \frac{S_{ABC}}{S_{A,B,C_1}} = \frac{AB^2}{A_1B_1^2} = k^2$$

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Так называется треугольник, у которого один угол прямой. Стороны, прилежащие к прямому углу, называются катетами,

а сторона, противолежащая прямому углу — гипотенузой.

ПРИЗНАКИ РАВЕНСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ		
	По двум катетам.	
	По одному катету и гипотенузе.	
	По катету и прилежащему острому углу.	
	По катету и противолежащему острому углу.	
	По гипотенузе и острому углу.	

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Основные соотношения в прямоугольном треугольнике			
$\begin{array}{c} C \\ b \\ b \\ c \end{array}$	Теорема Пифагора $c^2 \!\!=\! a^2 + b^2$ Квадрат гипотенузы равен сумме квадратов катетов.	Пропорциональные отрезки $ h^2 = a_c h_c \\ a^2 = a_c c \\ b^2 = b_c c \\ h = \frac{ab}{c} $	
B c	СИНУС Отношение противолежащего катета к гипотенузе	$\sin \alpha = \frac{a}{c}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	КОСИНУС Отношение прилежащего катета к гипотенузе	$\cos \alpha = \frac{b}{c}$	
c = AB – гипотенуза а = BC – катет, противолежащий к α	ТАНГЕНС Отношение противолежащего катета к прилежащему	$tg \alpha = \frac{a}{b}$	
b = AC – катет, прилежащий к углу α	КОТАНГЕНС Отношение прилежащего катета к противолежащему	$\operatorname{ctg} \alpha = \frac{b}{a}$	

ТЕОРЕМА ПИФАГОРА

Сумма квадратов катетов равна квадрату гипотенузы: $a^2 + b^2 = c^2$.

$$a^2 + b^2 = c^2$$

Справедливо и обратное утверждение: если для сторон а, b, c треугольника выполняется соотношение

$$a^2 + b^2 = c^2$$

то треугольник является прямоугольным, причем стороны a и b его катеты, а сторона c — гипотенуза.

СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ

$$\frac{a}{c} = \sin \alpha = \cos(9^{\circ} \circ -\alpha)$$

$$\frac{b}{c} = \cos \alpha = \sin(9^{\circ} \circ -\alpha)$$

$$\frac{a}{b} = \operatorname{tg}\alpha = \operatorname{ctg}(9^{\circ} \circ -\alpha)$$

$$\frac{b}{a} = \operatorname{ctg}\alpha = \operatorname{tg}(9^{\circ} \circ -\alpha)$$

Свойства прямоугольного треугольника

$$\angle A + \angle B = 90^{\circ}$$

$$a = \frac{1}{2}c \implies \angle A = 30^{\circ}$$

 $m=\frac{1}{2}c=R$

Сумма острых углов в прямоугольном треугольнике равна 90°

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы

Если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°

Медиана, проведенная к гипотенузе, равна её половине и является радиусом описанной окружности

Признаки равенства прямоугольных треугольников

По гипотенузе и катету

$$a = a_1 \quad c = c_1$$

По катету и

прилежащему

острому углу

острому углу
$$A \longrightarrow A_1$$

По катету и

противолежащему

$$\angle A = \angle A_1 \quad a = a_1$$

По гипотенузе и острому углу

$$\angle A = \angle A_1$$
 $c = c_1$

СООТНОШЕНИЯ МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ

ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА НЕКОТОРЫХ УГЛОВ

α	30°	45°	60°
$\sin \alpha$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg α	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Многоугольники

Правильные многоугольники

Внутренний угол
$$\alpha = \frac{180^{\circ}(n-2)}{n}$$
; Внешний угол $\beta = \frac{360^{\circ}}{n}$

Теорема Фалеса

Если
$$OA_1 = A_1A_2 = A_2A_3 = A_3A_4$$

и $A_1B_1 \parallel A_2B_2 \parallel A_3B_3 \parallel A_4B_4$,
то $OB_1 = B_1B_2 = B_2B_3 = B_3B_4$

Параллельные прямые, пересекающие стороны угла, отсекают на сторонах угла пропорциональные отрезки:

$$\frac{a}{c} = \frac{b}{d}$$

ЧЕТЫРЕХУГОЛЬНИКИ

 $S = \frac{AC \cdot BD \cdot \sin \gamma}{2}$ AC, BD - диагонали

ПАРАЛЛЕЛОГРАММ (определение)

ABCD- параллелограмм

AB || CD BC || AD

Параллелограммом называется четырехугольник, у которого стороны попарно параллельны.

СВОЙСТВА И ПРИЗНАКИ ПАРАЛЛЕЛОГРАММА

1) AB=CD; BC=AD ∠A=∠C; ∠B=∠D

Свойства параллелограмма

В параллелограмме противоположные стороны и противоположные углы равны

 AC ∩ BD = O, AO = OC, BO = OD Диагонали параллелограмма делятся точкой пересечения пополам.

3)
$$\angle A + \angle B = 180^{\circ}$$

В параллелограмме сумма углов, прилежащих к одной стороне, равна 180^{0}

 $d_1^2 + d_2^2 = a^2 + b^2 + c^2 + d^2$ где $d_1 = AC$; $d_2 = BD -$ диагонали; a = AD; b = AB; c = BC; d = CD - стороны

 P = 2(a + b) – периметр параллелограмма,
 где a = AD; b = AB Признаки параллелограмма

 (AB||CD; AB = CD) ⇒ (ABCDпараллелограмм)

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм.

2) (AB = CD; BC = AD) ⇒ (ABCDпараллелограмм)

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм

3) (AO = OC; BO = OD, где O = AC ∩ BD) ⇒ (ABCD-параллелограмм)
Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм

В параллелограмме биссектриса угла отсекает равнобедренный треугольник!!!

СВОЙСТВО ПРОИЗВОЛЬНОГО ЧЕТЫРЕХУГОЛЬНИКА, СВЯЗАННОЕ С ПАРАЛЛЕЛОГРАММОМ

Если соединить отрезками середины соседних сторон любого четырехугольника, получится параллелограмм.

Определение	Свойства	Признаки	
Параллелограмм			
B C AB CD, BC AD	B O O O A O O A O O A O O A O O	$ABCD$ — параллелограмм, если: 1) $AB = CD$, $AB \parallel CD$ или $BC = AD$, $BC \parallel AD$ 2) $AB = CD$ и $BC = AD$; 3) $AC \cap BD = O$, $AO = CO$, $BO = DO$.	
Ромб			
В ABCD – парал- лелограмм, AB = BC = = CD = DA.	1) $AC \perp BD$ 2) AC — биссектриса $\angle A$ и $\angle C$ BD — биссектриса $\angle B$ и $\angle D$. Ромб обладает всеми свойствами параллелограмма.	ABCD – ромб, если: 1) $ABCD$ – параллелограмм и $AC \perp BD$; 2) $ABCD$ – параллелограмм и AC и BD – биссектрисы $\angle A$, $\angle B$, $\angle C$ и $\angle D$; 3) $AB = BC = CD = DA$.	
Прямоугольник			
В С $ABCD$ — параллелограмм, $\angle A = \angle B = 2C = \angle D$.	1) $AC = BD$ Прямоугольник обладает всеми свойствами параллелограмма.	$ABCD$ — прямоугольник, если: 1) $ABCD$ — параллелограмм и $AC = BD$; 2) $ABCD$ — параллелограмм и $\angle A = 90^{\circ}$ ($\angle B$, $\angle C$, $\angle D$) 3) $\angle A = \angle B = \angle C = 90^{\circ}$	

СВОЙСТВА ТРАПЕЦИИ

Средняя линия параллельна основаниям, равна их полусумме и делит любой отрезок с концами, лежащими на прямых, содержащих основания, (например, высоту трапеции) пополам:

$$MN || a, MN || b, MN = \frac{a+b}{2}.$$

Сумма углов, прилежащих к любой боковой стороне, равна 180°:

$$\alpha + \beta = 180^{\circ}$$
,
 $\gamma + \delta = 180^{\circ}$.

Треугольники *AOB* и *DOC*, образованные боковыми сторонами и отрезками диагоналей, равновелики (имеют равные площади).

Треугольники *AOD* и *COB*, образованные основаниями и отрезками диагоналей, подобны. **К**оэффициент подобия *k* равен отношению оснований:

$$k=\frac{AD}{BC}.$$

Отношение площадей этих треугольников равно k^2 .

Биссектрисы углов, прилежащих к боковой стороне, перпендикулярны

ПЛОЩАДЬ ПАРАЛЛЕЛОГРАММА

Через сторону и опущенную на нее высоту: $S = ah_a = bh_b$.

Через две прилежащие стороны и угол между ними:

$$S = ab \sin \alpha$$
.

Через диагонали и угол между ними:

$$S = \frac{d_1 d_2 \sin \varphi}{2}$$

ПЛОЩАДЬ РОМБА

Через сторону и высоту: S = ah.

Через сторону

и радиус вписанной окружности:

$$S = 2ar$$
.

Через сторону и угол ромба:

$$S=a^2\sin\alpha.$$

Через диагонали: $S = \frac{d_1 d_2}{2}$

ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА

Через стороны:

$$S = ab$$
.

Через диагональ и угол между диагоналями:

$$S=\frac{d^2\sin\gamma}{2}$$

ПЛОЩАДЬ КВАДРАТА

Через сторону: $S = a^2$.

$$S=a^2$$
.

Через диагональ:

$$S=\frac{d^2}{2}$$

ПЛОЩАДЬ ТРАПЕЦИИ

Через полусумму оснований и высоту:

$$S=\frac{a+b}{2}h.$$

Через среднюю линию и высоту:

$$S = MN \cdot h$$
.

Через диагонали и угол между ними:

$$S = \frac{d_1 d_2 \sin \varphi}{2}$$

окружность

СВОЙСТВА ВПИСАННЫХ УГЛОВ

Вписанный угол равен половине центрального, опирающегося на ту же дугу:

$$\beta = \frac{\alpha}{2}$$
.

Все вписанные углы, опирающиеся на одну и ту же дугу, равны.

Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°:

$$\alpha + \beta = 180^{\circ}$$
.

Все вписанные углы, опирающиеся на диаметр, прямые.

УГЛЫ МЕЖДУ ХОРДАМИ, КАСАТЕЛЬНЫМИ И СЕКУЩИМИ

Угол между пересекающимися хордами:

$$\gamma = \frac{\alpha + \beta}{2}.$$

Угол между секущими, пересекающимися вне окружности:

$$\gamma = \frac{\beta - \alpha}{2}.$$

Угол между касательной и секущей:

$$\gamma = \frac{\beta - \alpha}{2}$$

Угол между касательными:

$$\gamma = \frac{\beta - \alpha}{2} = \pi - \alpha.$$

Угол между касательной и хордой:

$$\gamma = \frac{\alpha}{2}$$

СВОЙСТВА ХОРД

Если хорды равноудалены от центра окружности, то они равны.

Если хорды равны, то они равноудалены от центра окружности.

Большая из двух хорд находится ближе к центру окружности.

Наибольшая хорда является диаметром.

Если диаметр делит хорду пополам, то он перпендикулярен ей.

Если диаметр перпендикулярен хорде, то он делит ее пополам.

СВОЙСТВА ДУГ И ХОРД

Равные дуги стягиваются равными хордами.

Дуги, заключенные между параллельными хордами, равны.

СООТНОШЕНИЯ МЕЖДУ ДЛИНАМИ ХОРД, ОТРЕЗКОВ КАСАТЕЛЬНЫХ И СЕКУЩИХ

Отрезки пересекающихся хорд связаны соотношением:

ab = cd.

Отрезки касательных, проведенных из одной точки, равны:

AB = AC.

Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки:

 $AB^2 = AC \cdot AD$.

Произведения отрезков секущих, проведенных из одной точки, равны:

 $AB \cdot AC = AD \cdot AE$.