EXERCÍCIOS

Calcule a transformada de Laplace e abscissa de convergência de cada uma das seguintes funções.

1. t

2. eat

3. $f(t) = \begin{cases} 1, & 0 < t \le 1 \\ 0, & t > 1 \end{cases}$

4. 1

5. sen at

 $6. f(t) = \begin{cases} 0, & 0 < t \le 1 \\ t, & t > 1 \end{cases}$

Mostre que cada uma das seguintes funções é de ordem exponencial.

, , , , ,

7. t^n , sendo n inteiro positivo. 8. e^{at}

9. sen bt.

10. cos bt.

11. $\ln(1+t)$.

12. \sqrt{t} .

*13. Mostre que a transformada de Laplace de uma função f pode existir, mesmo que f "cresça demasiado rápido" para ser de ordem exponencial.

^{*} Relembremos que b é uma cota inferior de um conjunto não-vazio S de números reais se, e sòmente se, $b \le s$ para todo s de S, e que S é um infimo de S se, e sòmente se, S é uma cota inferior de S e S para tôda cota inferior S de S. Uma das mais importantes propriedades do sistema de números reais é que todo conjunto não-vazio S de números reais tem um único ínfimo S (desde que suponhamos que S assume o valor S não tiver cota inferior finita).

14. Seja f contínua por partes em $[0, \infty)$, e suponhamos que existam constantes C e α , tais que $|f(t)| \leq Ce^{\alpha t}$ quando $t > t_0 > 0$. Prove que f é de ordem exponencial.

- 15. Prove que o produto de duas funções de ordem exponencial é de ordem exponencial.
 - 16. Seja f contínua por partes em $[0, \infty)$.
- (a) Prove que f é de ordem exponencial quando existe uma constante α tal que

$$\lim_{t\to\infty}\frac{f(t)}{e^{\alpha t}}=0.$$

(b) Prove que f não é de ordem exponencial se

$$\lim_{t\to\infty}\frac{f(t)}{e^{\alpha t}}=\infty$$

para todos os números reais a.

- 17. Utilize os resultados do exercício precedente para provar que é de ordem exponencial, se $\alpha \le 1$, e não se $\alpha > 1$.
- 18. A função t^t é de ordem exponencial em $[0, \infty)$? [Sugestão: Recorra ao Exercício 16 e à identidade $t^t = e^{t \ln t}$.]
- 19. Outra versão do teorema de comparação da integral, enunciado na demonstração do Teorema 5-1, é a seguinte: se f e g são integráveis em [a, 1], 0 < a < 1, e se $|f(t)| \le g(t)$ quando $0 < t \le 1$, então $\int_0^1 f(t) dt$ existe quando $\int_0^1 g(t) dt$ existe. Aplique êste resultado para mostrar que $1 \sqrt{t}$ tem uma transformada de Laplace. [Sugestão:

$$\int_0^\infty \frac{e^{-st}}{\sqrt{t}} dt = \int_0^1 \frac{e^{-st}}{\sqrt{t}} dt + \int_1^\infty \frac{e^{-st}}{\sqrt{t}} dt.$$

20. Seja f uma função de ordem exponencial, e seja α_0 o menor número real tal que, para alguma constante C,

$$|f(t)| \leq Ce^{\alpha t}$$

para todo $\alpha > \alpha_0$.

- (a) Mostre que $\alpha_0 \geq s_0$, a abscissa de convergência de f.
- (b) Mostre que existem funções para as quais $\alpha_0 > s_0$. [Sugestão Considere a função

$$f(t) = \begin{cases} e^t, & \text{se } t \text{ \'e um inteiro,} \\ 0 & \text{para outros valores de } t. \end{cases}$$