6. It is not hard to show that every 2×2 rotation matrix $R \in SO(2)$ can be written as

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \text{ with } 0 \le \theta < 2\pi.$$

Then SO(2) can be considered as a subgroup of SO(3) by viewing the matrix

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

as the matrix

$$Q = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

7. The set of 2×2 upper-triangular matrices of the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad a, b, c \in \mathbb{R}, \ a, c \neq 0$$

is a subgroup of the group $GL(2,\mathbb{R})$.

8. The set V consisting of the four matrices

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$$

is a subgroup of the group $GL(2,\mathbb{R})$ called the *Klein four-group*.

Definition 2.5. If H is a subgroup of G and $g \in G$ is any element, the sets of the form gH are called *left cosets of* H *in* G and the sets of the form Hg are called *right cosets of* H *in* G. The left cosets (resp. right cosets) of H induce an equivalence relation \sim defined as follows: For all $g_1, g_2 \in G$,

$$g_1 \sim g_2$$
 iff $g_1 H = g_2 H$

(resp. $g_1 \sim g_2$ iff $Hg_1 = Hg_2$). Obviously, \sim is an equivalence relation.

Now, we claim the following fact:

Proposition 2.7. Given a group G and any subgroup H of G, we have $g_1H = g_2H$ iff $g_2^{-1}g_1H = H$ iff $g_2^{-1}g_1 \in H$, for all $g_1, g_2 \in G$.

Proof. If we apply the bijection $L_{g_2^{-1}}$ to both g_1H and g_2H we get $L_{g_2^{-1}}(g_1H) = g_2^{-1}g_1H$ and $L_{g_2^{-1}}(g_2H) = H$, so $g_1H = g_2H$ iff $g_2^{-1}g_1H = H$. If $g_2^{-1}g_1H = H$, since $1 \in H$, we get $g_2^{-1}g_1 \in H$. Conversely, if $g_2^{-1}g_1 \in H$, since H is a group, the left translation $L_{g_2^{-1}g_1}$ is a bijection of H, so $g_2^{-1}g_1H = H$. Thus, $g_2^{-1}g_1H = H$ iff $g_2^{-1}g_1 \in H$. □