Your grade: 100%

Correct.

1.	For the embedding layer in your model, you'd have to learn a matrix of weights of what size?	1/1 point
	Equal to your vocabulary times the dimension of the number of classes	
	Equal to your vocabulary times the dimension of the embedding	
	Equal to the dimension of the embedding times the first dimension of the matrix in the first layer.	
	Equal to your vocabulary times the dimension of the number of layers	
	⊘ Correct Correct.	
2.	What would be the probability of a five word sequence using a penta-gram?	1/1 point
	$igcirc P\left(w_5 \mid w_4, w_3, w_2, w_1 ight) = rac{ ext{count}(w_5, w_4, w_3, w_2, w_1)}{ ext{count}(w_4, w_3, w_2, w_1)}$	
	$ \begin{array}{c} $	
	$igcirclespin P\left(w_{5},w_{4},w_{3},w_{2},w_{1} ight)=P\left(w_{1} ight) imes P\left(w_{2} ight) imes P\left(w_{3} ight) imes P\left(w_{4} ight) imes P\left(w_{5} ight)$	
	$igcirc$ $P\left(w_{5},w_{4},w_{3},w_{2},w_{1} ight)=P\left(w_{5}\mid w_{4},w_{3},w_{2},w_{1} ight)$	
3.	The number of parameters in an RNN is the same regardless of the input's length.	1/1 point
	○ False	
	True.	
	Correct.	
4.	Select all the examples that correspond to a "many to one" architecture.	1/1 point
	An RNN which inputs a sentiment and generates a sentence.	
	An RNN which inputs a sentence and determines the sentiment.	
	An RNN which inputs a topic and generates a conversation about that topic.	
	An RNN which inputs a conversation and determines the topic.	
	(A) Sowworth	

5.	What should be the size of matrix W_h , if $h^{< t>}$ had size 4x1 and $x^{< t>}$ 10x1? $h^{< t>}=g\left(W_h\left[h^{< t-1>},x^{< t>}\right]+b_h\right)$ ① 4x14 ① 14x4	1/1 point
	○ 14x14○ Correct	
	Correct.	
6.	classification categories?	1/1 point
	$J=-rac{1}{T}\sum_{t=1}^T\sum_{j=1}^K y_j^{< t>}\log \hat{y}_j^{< t>}$ Because there is just one value in every vector $y^{< t>}$ different from zero.	
	O Because the equation is wrong.	
	O Because this equation is given for a single example.	
	Because for most classification tasks there are only two categories.	
7.	What problem, related to vanilla RNNs, do GRUs tackle?	1/1 point
	 Loss of relevant information for long sequences of words. Overfitting 	
	O High computational time for training and prediction.	
	Restricted flow of information from the past to the present.	

8.	Bidirectional RNNs are acyclic graphs, which means that the computations in one direction are independent from the ones in the other direction.	1/1 point
	● True	
	○ False	
	⊘ Correct Correct.	
•		. /
9.	Compared to Traditional Language models which of the following problems does an RNN help us with? Helps us solve RAM issues.	1/1 point
	☐ They are much simpler to understand.	
	☐ They require almost no knowledge to use when compared to the traditional n-gram model.	
	Helps us solve memory issues.	
10.	What type of RNN structure would you use when implementing machine translation?	1/1 point
	Many to one	
	One to many	
	One to one	
	Many to Many	
	Confecti	