

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

COURSE PLAN

Target	50% (marks)s
Level-1	40% (population)
Level-2	50% (population)
Level-3	60% (population)

1. Method of Evaluation

UG	PG
Quizzes/Tests, Assignments (30%)	Quizzes/Tests, Assignments, seminar (50%)
Mid Examination (20%)	End semester (50%)
End examination (50%)	

2. Passing Criteria

Scale	PG	UG
Out of 10 point scale	SGPA – "6.00" in each semester CGPA – "6.00" Min. Individual Course Grade – "C" Course Grade Point – "4.0"	SGPA – "5.0" in each semester CGPA – "5.0" Min. Individual Course Grade – "C" Course Grade Point – "4.0"

^{*}for PG, passing marks are 40/100 in a paper

3. Pedagogy

- Blackboard
- Presentation
- Class Test
- Quizzes
- Voiceover Presentation & Video lectures
- Assignments
- NPTEL videos
- YouTube videos
- Concept diary (needs to be maintained by students-short and concise notes that include course concepts that he/she has understood)

^{*}for UG, passing marks are 35/100 in a paper

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

4. References:

Text Books	Web resources	Journals	Reference books
1) Computer Graphics- C version, Second Edition, Pearson, Donald D. Hearn and M. Pauline Baker	https://youtube.com/results?search_query=Computer+ Graphics+IIT+Madras		1) Mathematical Elements for Computer Graphics, Second Edition, McGraw Hill, David F. Rogers and J. Alan Adams 2) Procedural
2) Computer Graphics with OpenGL, Fourth Edition, Pearson, Donald D. Hearn, M. Pauline Baker and Warren Carithers			Elements for Computer Graphics, Second Edition, McGraw Hill, David F. Rogers

GUIDELINES TO STUDY THE SUBJECT

Instructions to Students:

- 1. Go through the 'Syllabus' in the Black Board section of the website (https://learn.upes.ac.in) in order to find out the Reading List.
- 2. Get your schedule and try to pace your studies as close to the timeline as possible.
- 3. Get your on-line lecture notes (Content, videos) at <u>Lecture Notes</u> section. These are our lecture notes. Make sure you use them during this course.
- 4. Check your blackboard regularly
- 5. Go through study material
- 6. Check mails and announcements on blackboard
- 7. Keep updated with the posts, assignments and examinations which shall be conducted on the blackboard

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

8. Be regular, so that you do not suffer in any way

- 9. Cell Phones and other Electronic Communication Devices: Cell phones and other electronic communication devices (such as Blackberries/Laptops) are not permitted in classes during Tests or the Mid/Final Examination. Such devices MUST be turned off in the class room.
- 10. **E-Mail and online learning tool:** Each student in the class should have an e-mail id and a pass word to access the LMS system regularly. Regularly, important information Date of conducting class tests, guest lectures, via online learning tool. The best way to arrange meetings with us or ask specific questions is by email and prior appointment. All the assignments preferably should be uploaded on online learning tool. Various research papers/reference material will be mailed/uploaded on online learning platform time to time.
- 11. **Attendance:** Students are required to have minimum attendance of 75% in each subject. Students with less than said percentage shall NOT be allowed to appear in the end semester examination.
- 12. **Online Content:** Over 30% of your syllabus will be covered in fully online mode, Details of which is mentioned in the Syllabus details section.

This much should be enough to get you organized and on your way to having a great semester! If you need us for anything, send your feedback through e-mail to your concerned faculty. Please use an appropriate subject line to indicate your message details.

There will no doubt be many more activities in the coming weeks. So, to keep up to date with all the latest developments, please keep visiting this website regularly.

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

RELATED OUTCOMES

1. The expected outcomes of the Program are:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modeling to complex engineering
	activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
200	norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader
DO10	in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give
DO11	and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
DO12	and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage
	in independent and life-long learning in the broadest context of technological change.

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

2. The expected outcomes of the Specific Program are: (upto3)

PSO1	Perform system and application programming using computer system concepts, concepts of Data Structures, algorithm development, problem solving and optimizing techniques,
PSO2	Apply software development and project management methodologies using concepts of front-end and back-end development and emerging technologies and platforms.
PSO3	Able to design, develop and deploy Mobile Applications (Apps) and protocols for Ubiquitous computing.

3. The expected outcomes of the Course are: (minimum 3 and maximum 6)

CO 1	Explore various graphics display devices and use graphical tool OpenGL.
CO 2	Apply scan converting algorithms to create various geometrical shapes.
CO 3	Carry out complex 2D and 3D geometric transformations.
CO 4	Design and develop curves and surfaces of higher order.

4. Co-Relationship Matrix

Indicate the relationships by 1- Slight (low) 2- Moderate (Medium) 3-Substantial (high)

Program Qutcomes Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	2	2	2	-	-	-	-	-	-	-	-	-	-	-
CO 2	1	1	2	-	-	-	-	-	-	-	-	-	2	-	-
CO 3	1	2	2	-	-	-	-	-	-	-	-	-	1	-	-
CO 4	1	2	2	_	2	-	-	_	-	-	-	-	1	1	-
Average	1	1.8	2	0.4	0.8								1.2	0.2	

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

5. Course outcomes assessment plan:

components Course Outcomes	Assignment	Test/Quiz	Mid Semester	End Semester	Any other
CO 1	V	V	V	V	
CO 2	٧	٧	٧	٧	
CO 3	٧	٧	٧	٧	
CO 4	٧	٧	٧	٧	

BROAD PLAN OF COURSE COVERAGE

Course Activities:

			Planned		
S. No.	Description	From	То	No. of Sessions	Remarks
1.	Introduction to computer graphics: Overview of computer graphics, Raster /Random scan display, Calligraphic refresh graphics, Display Input and output Device(CRT) Introduction to OpenGL GL,GLU,GLUT 3D Viewing Pipeline, Demo of OpenGL code.			4	ONLINE CONTENT (Voice over PPT and Lecture Notes) 1 Synchronous and 3 Asynchronous Quiz 1
2.	UNIT 2: Scan conversion-Lines, Circles and Ellipses. Polygon Filling Algorithms and			8	6 Synchronous and 2 Asynchronous Lecture (Online Lectures over Blackboard Collaborate and Offline Content via

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

	Clipping Algorithms			Voice Over PPT and
				Lecture Notes)
	Points & lines:			,
	Line drawing algorithms			
	DDA algorithm			
	Bresenham's line algorithm			
	Problems of Aliasing ,end point			
	and clipping lines			T 1 1
	Circle generation algorithms			Test 1
	Ellipse generating algorithm			
	Scan line polygon			
	Flood fill algorithm			
	Boundary fill algorithm			
	Point clipping			
	Line clipping			
	Liang-Barsky line clipping			
	algorithm			
	Cohen Sutherland line clipping			
	algorithm			
	Polygon clipping			
	Sutherland –Hodgman			
	algorithm			
	Weiler-Atherton Polygon			
	clipping			
	Text clipping			
	UNIT-3:			4 Synchronous sessions
				for Lecture and
	2D Transformations			
	Homogenous coordinate system			
	(HCS).			
	Translation			1 session for doubt
	Rotation			clearance
	Scaling		_	<u>cieai ance</u>
3.	Shearing		5	
	Composite transformation Window to viewport			
	transformations			
	Rotation about point			
	Reflection about a line			
	Kenection about a file			

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

	UNIT-4:			3 Lectures on
4.	3D Transformations Translation Rotation scaling Instance Rotation about an arbitrary axis in space reflection through an arbitrary plane polygon meshes		4	Blackboard Collaborate and 1 OFFLINE Session via Voice over PPt and Lecture Notes Quiz 2
5.	UNIT-5: Curves Curve Representation, Non Parametric curves Cubic Splines Bezier Curves B-spline curves Rational B-spline curves Curved surfaces Quadric Surfaces Bezier Surfaces fractal – geometry		6	4 Synchronous and 2 Asynchronous Lecture (Online Lectures over Blackboard Collaborate and Offline Content via Voice Over PPT and Lecture Notes)
6.	UNIT-6: Hidden Surfaces Techniques for Efficient VSD, Depth comparison, Z-buffer algorithm, Back face detection, *BSP tree method, *The Printer's algorithm, Scan-line algorithm, Hidden line elimination, Area sub division methods		5	3 Synchronous and 2 Asynchronous Lecture (Online Lectures over Blackboard Collaborate and Offline Content via Voice Over PPT and Lecture Notes) Test 2
7.	UNIT-7: Color & Shading Transparency, Shadows, Constant – Intensity shading,		4	3 Synchronous and 1 Asynchronous Lecture (Online Lectures over Blackboard Collaborate and Offline Content via

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

Gouraud Shading,	V	<mark>/oice Over PPT and</mark>
Phong shading,		Lecture Notes)
Wireframe –visibility methods,		
Recursive ray, tracing		
algorithm,		
Radiosity model		

Synchronous Sessions: Lectures done through Blackboard Collaborate

Asynchronous Sessions: Lectures Content will be uploaded on Blackboard via Voice over PPt and

Handwritten Lecture Notes

Sessions: Total No. of Instructional periods available for the course

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-I</u>

Lecture No.	Topics to be Covered	CO Mapped
1	Detailed Overview of the Course plan: Discussion on mode of delivery i.e. classroom /blackboard. Computer Graphics overview and its various applications	CO1
2	Pixels, Raster and Random scan display, Frame buffers.	CO1
3	CRT, Rasterization, Horizontal retrace and Vertical Retrace. Introduction to various 3D APIs and Introduction to OpenGL.	CO1, CO2
4	Discussion on various Libraries and its Programming syntax. OpenGL Rendering Pipeline and Demo of OpenGL code.	CO1

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-II</u>

		_
Lecture No.	Topics to be Covered	CO Mapped
	Overview of point and lines, their equations:	
	Points & lines	
	Line drawing algorithms	
4	DDA algorithm	602
1	Dancant and a line of a side of	CO2
	Bresenham's line algorithm Problems of Aliasing ,end point and clipping lines	
2	1 Toblems of 7 masing , end point and enpping mics	CO2
	Circle generation algorithms	
2	Ellipse generating algorithm	602
3	Introduction to various polygon filling Techniques	CO2
	Introduction to various polygon filling Techniques: Scan Line	
4	Sean Ellie	CO2
	Flood fill algorithm	
	Boundary fill algorithm	
	Introduction to Window and Viewport, Point clipping	
5	Line clipping.	CO2, CO3
3	Cohen Sutherland line clipping algorithm, with numerical	CO2, CO3
	Concil Butilettand line empping argorithm, with numerical	
6		CO2
Ū	Liang-Barsky line clipping algorithm with numerical and other doubts related to clipping	002
	During Burshy line empping angorium with numerical and suiter doubts related to empping	
7		602
7	Delveen elimines	CO2
	Polygon clipping: Sutherland –Hodgman algorithm	
	Weiler-Atherton Polygon clipping	
	Text clipping	
8		CO2

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-III</u>

F		
Lecture No.	Topics to be Covered	CO Mapped
1	Homogenous coordinate system (HCS). Translation Rotation Scaling	CO3
2	Shearing Composite transformation Window to viewport transformations	CO3 , CO4
3	Rotation about point. Reflection about a line.	CO3
4	Doubt clearing session on Composite transformations and Numerical.	CO3 , CO4
5	Doubt Clearance Session/Pending Topics. Quiz 1 (Online)	CO3

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-IV</u>

Lastura Na	Towics to be Covered	CO Mannad
Lecture No.	Topics to be Covered	CO Mapped
	3D transformations: Translation	
	Rotation	
	Scaling	
	Instance	
1	instance	
_	MID SEM	CO3 , CO4
	Rotation about an arbitrary axis in space, with numerical	
2		
		CO3
	Reflection through an arbitrary plane with numerical	
3		000 004
		CO3, CO4
	Polygon Meshes	
4		
4		CO3
		CO3

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-V</u>

Lecture No.	Topics to be Covered	CO Mapped
	Curve Representation(Introduction):	
1	Non Parametric curves, Conic sections, Cubic Splines	CO4
	Cubic Splines continued from Previous Lecture.	
2	Conic Sections(2D-Curves)	CO4 , CO3
	B-Spline Curve	
3		CO4, CO2
	Bezier Curves and its Properties.	
4		CO4
	Bezier surfaces and Fractals	
5		CO4
	Pending topics and Numerical on the Curves.	
6		CO4 , CO3

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-VI</u>

Lecture No.	Topics to be Covered	CO Mapped
1	Techniques for Efficient VSD, Depth comparison, Z-buffer algorithm	CO1
2	Back face detection, BSP tree method,	CO2
3	The Painter's algorithm, Scan-line algorithm,	CO3 , CO4
4	Hidden line elimination, Area sub division methods	CO4
5	Pending topics in VSD: Numerical on VSD Quiz 2 (Online)	CO3

1. Name of the Faculty: Dr. Anil Kumar Course Code: CSEG 3003

2. Course : Computer Graphics
3. Program : B. Tech CSE T: NA
4. Target : Level-1 P: NA
C: 3

SESSION PLAN

<u>UNIT-VII</u>

Lecture No.	Topics to be Covered	CO Mapped
1	Transparency, Shadows, Constant – Intensity shading,	CO3, CO4
2	Gouraud Shading, Phong shading,	CO2 , CO4
3	Wireframe –visibility methods Recursive ray tracing algorithm Radiosity model	CO4
4	Class Test	
	END SEM	