Lezione del 6 maggio

Esempio 0.1. Siano A, B, C, D in $\mathbb{P}^2(\mathbb{K})$ in posizione generale, consideriamo i punti

$$P = L(A, B) \cap L(C, D)$$
 $Q = L(A, C) \cap L(B, D)$ $R = L(A, D) \cap L(B, C)$

I punti P, Q, R sono allineati?

Da un lemma sappiamo che A, B, C, D determinano un riferimento proiettivo in cui

$$A = [e_0] B = [e_1] C = [e_2] D = [e_0 + e_1 + e_2]$$

determiniamo le equazioni parametriche delle rette definite sopra

$$L(A,B) : \det \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & x_1 \\ 0 & 0 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(A,B) : x_2 = 0$$

$$L(A,D) : \det \begin{pmatrix} 1 & 1 & x_0 \\ 0 & 1 & x_1 \\ 0 & 1 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(A,D) : x_1 - x_2 = 0$$

$$L(A,C) : \det \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 0 & x_1 \\ 0 & 1 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(A,C) : x_1 = 0$$

$$L(C,D) : \det \begin{pmatrix} 0 & 1 & x_0 \\ 0 & 1 & x_1 \\ 1 & 1 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(C,D) : x_0 - x_1 = 0$$

$$L(B,D) : \det \begin{pmatrix} 0 & 1 & x_0 \\ 1 & 1 & x_1 \\ 0 & 1 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(B,D) : x_0 - x_2 = 0$$

$$L(B,C) : \det \begin{pmatrix} 0 & 0 & x_0 \\ 1 & 0 & x_1 \\ 0 & 1 & x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad L(B,C) : x_0 = 0$$

dunque risolvendo dei sistemi lineari otteniamo

$$P = [a, a, 0] = [1, 1, 0] \ Q = [1, 0, 1] \ R = [0, 1, 1]$$

dunque tali punti risultano allineati se il determinate della sequente matrice è nullo, essendo

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 2$$

si mostra che i punti non sono allineati

Esempio 0.2. Siano $r_1, r_2 \in \mathbb{P}^3(\mathbb{K})$ due rette sghembe, sia $P \in \mathbb{P}^3(\mathbb{K}) \setminus (r_1, \cap r_2)$. Provare che esiste un'unica retta l tale che $P \in l$ e $r_i \cap l \neq \emptyset$ per i = 1, 2 Siano $P_i = L(P, r_i)$ che sono piani in quanto

$$\dim P_i = \dim\{P\} + \dim r_i - \dim(r_i \cap \{P\}) = 0 + 1 - (-1) = 2$$

Osserviamo che $P_1 \cap P_2 = l$ che è una retta (se i piani non fossero distinti allora $r_1, r_2 \in P_1$ da cui si intersecano, contro l'ipotesi di essere sghembe)

Osserviamo che $P \in l$ inoltre l, r_i sono due rette che giacciono sullo stesso piano, dunque si intersecano in un punto.

Esercizio 0.3. Dimostrare l'unicità

Esercizio 0.4. Determinare il sistema di equazioni cartesiane per l (come sopra) nel caso in cui $\mathbb{K} = \mathbb{R}$ e

$$r_1: \begin{cases} x_0 - x_2 + 2x_3 = 0\\ 2x_0 + x_1 = 0 \end{cases}$$
$$r_2: \begin{cases} 2x_1 - 3x_2 + x_3 = 0\\ x_0 + x_3 = 0 \end{cases}$$
$$P = [0, 1, 0, 1]$$

Esempio 0.5. Siano W_1, W_2, W_3 piani di $\mathbb{P}^4(\mathbb{K})$ tali che $W_i \cap W_j$ è un punto per $i \neq j$ e $W_1 \cap W_2 \cap W_3 = \emptyset$.

Mostrare che esiste un unico piano W_0 tale che $W_i \cap W_0$ sia una retta per i = 1, 2, 3

Siano $P_{ij} = W_i \cap W_j$, osserviamo che P_{12}, P_{13} e P_{23} sono in posizione generale.

Se questi punti fossero allineati, allora $L(P_{13}, P_{23}) \subseteq W_3$ ma anche $P_{12} \in W_3$ da cui $P_{12} \in W_1 \cap W_2 \cap W_3$ contro l'ipotesi sui piani.

Definiamo $W_0 = L(P_{12}, P_{13}, P_{23})$ ed essendo i punti in posizione generale W_0 ha dimensione 2 dunque è una retta.

Mostriamo che $W_0 \cap W_1$ è una retta (similmente si farà con gli altri 2 piani).

 $\dim(W_0 \cap W_1) < 2$ in quanto i 2 piani sono distinti (se così non fosse si avrebbe che $P_{23} \in W_1$ dunque i 3 piani non sono disgiunti) ed inoltre $L(P_{12}, P_{13}) \subseteq W_0 \cap W_1$ da cui si conclude che $L(P_{12}, P_{13}) = W_0 \cap W_1$.

Andiamo a mostrare l'unicità, sia W'_0 un altro piano che soddisfa le condizioni della tesi, sia $l_i = W'_0 \cap W_i$ per i = 1, 2, 3

Osserviamo ora che

$$l_i \cap l_j = W_0' \cap W_i \cap W_0' \cap W_j = \{P_{ij}\}$$

quindi $P_{12}, P_{13}, P_{23} \in W'_0$, ora per minimalità di W_0 otteniamo $L(P_{12}, P_{13}, P_{23}) = W_0 \subseteq W'_0$ ma entrambi sono piani

Esempio 0.6. Siano r_1, r_2, r_3 rette di $\mathbb{P}^4(\mathbb{K})$ a due a due sghembe e non tutte contenute in un iperpiano.

Allora esiste unica retta l che interseca tutte e tre le rette date.

Osserviamo che $r_i \cap r_j$ ha dimensione 1+1-(-1)=3 dunque $H_{ij}=r_i \cap r_j$ è un iperpiano per $i \neq j$.

Ora essendo le 3 rette non contenute in un iperpiano si ha $H_{12} \neq H_{23}$ da cui dim $(H_{12} \cap H_{13}) < 3$ da cui $H_{12} \cap H_{23}$ è un piano (segue dalla stima data dalla formula di Grassman).

Poniamo $l = H_{12} \cap H_{13} \cap H_{23}$ e osserviamo che

$$\dim l = \dim((H_{12} \cap H_{23}) \cap H_{13}) \ge 2 + 3 - 4 = 1$$

Se mostriamo che l non è un piano abbiamo concluso.

Supponiamo per assurdo che l sia un piano, dunque $r_1 \cap r_2$ sono contenute in un piano dunque si intersecano

Esercizio 0.7. Provare l'unicità della retta

Definizione 0.1. Siano T_1, T_2 triangoli di vertici rispettivamente A_1, A_2, A_3 e B_1, B_2, B_3 allora i due triangoli sono in prospettiva se e solo se

 $\exists O$ centro della prospettiva, distinto dagli A_i, B_i tale che $L(A_i, B_i)$ per i = 1, 2, 3 passano per O

Teorema 0.8 (di Desagues). Sia $\mathbb{P}(V)$ un piano proiettivo e siano $A_1, A_2, A_3, B_1, B_2, B_3$ punti distinti di $\mathbb{P}(V)$ a 3 a 3 non allineati.

Consideriamo i triangoli T_1 e T_2 di vertici rispettivamente A_1, A_2, A_3 e B_1, B_2, B_3 . Allora T_1, T_2 sono in prospettiva se e solo se i punti

$$P = L(A_2, A_3) \cap L(B_2, B_3) \ P_2 = L(A_3, A_1) \cap L(B_3, B_1) \ P_3 = L(A_1, A_2) \cap L(B_1, B_2)$$

sono allineati

Dimostrazione. Essendo i vertici dei 2 triangoli a 3 a 3 non allineati, P_1, P_2, P_3 sono distinti tra di loro e distinti dai vertici.

I vertici A_1, B_1, P_3, P_2 sono in posizione generale dunque essi danno luogo ad un riferimento proiettivo di $\mathbb{P}(V)$ dove

$$A_1 = [e_0] B_1 = [e_1] P_3 = [e_2] P_2 = [e_0 + e_1 + e_2]$$

Ora con un conto analogo all'esercizio 0.1 si mostra che $A_2=[b,0,c]$ con $b,c\neq 0$ essendo $A_2\neq A_1\neq P_3$ dunque otteniamo

$$A_2 = [1, 0, a_2]$$

 $con a_2 \neq 0$

Ragionando in modo analogo otteniamo

$$A_3 = [a_3, 1, 1] \operatorname{con} a_3 \neq 0$$

$$B_2 = [0, 1, b_2] \text{ con } b_2 \neq 0$$

$$B_3 = [1, b_3, 1] \text{ con } b_3 \neq 0$$

Consideriamo i punti

$$P_1' = L(A_2, A_3) \cap L(P_2, P_3)$$

$$P_1'' = L(B_2, B_3) \cap L(P_2, P_3)$$

Allora P_1, P_2, P_3 sono allineati se e solo se $P_1 = P_1' = P_1''$ infatti

• Se P_1, P_2, P_3 sono allineati, $P_1 \in L(P_2, P_3)$ da cui si ha $P_1 = P_1' = P_1''$

• Se $P_1 = P_1' = P_1''$ allora $P_1 \in L(P_2, P_3)$

Osserviamo che le coordinate omogenee di questi nuovi punti sono

$$P_1' = [1, 1, 1 - a_2 a_3 + a_2]$$

$$P_1'' = [1, 1, 1 - b_2b_3 + b_2]$$

Dunque si ha P_1,P_2,P_3 allineati se e solo se $P_1'=P_1''$ dunque se e solo se

$$a_2(1 - a_3) = b_2(1 - b_3) \tag{1}$$

Esaminiamo le condizioni che fanno si che T_1, T_2 sono in prospettiva, ovvero sotto quali ipotesi

$$\exists O = L(A_1, B_1) \cap L(A_2, B_2) \cap L(A_3, B_3)$$

ovvero

$$\begin{cases} x_2 = 0 \\ a_2 x_2 + b_2 x_1 - x_2 = 0 \\ (1 - b_3) x_0 + (1 - a_3) x_1 + (a_3 b_3 - 1) x_2 = 0 \end{cases}$$

Tale soluzione ammette una soluzione non nulla se e solo se

$$\det \begin{pmatrix} 0 & 0 & 1 \\ a_2 & b_2 & -1 \\ 1 - b_3 & 1 - a_3 & a_3 b_3 - 1 \end{pmatrix} = 0$$

ovvero se e solo se

$$b_2(1 - b_3) = a_2(1 - a_3)$$

che è la condizione 1