The Chrial Phase Transition in QCD

← Mean-Field ← Funtional Renormalisation Group

Jonas R. Glesaaen - Goethe Universität Frankfurt am Main

. February 2014

Motivation

Heavy Ion Collisions (RHIC, LHC, FAIR)

Picture taken from cern.ch

- Heavy Ion Collisions (RHIC, LHC, FAIR)
- Dense-massive stars

Motivation

- Heavy Ion Collisions (RHIC, LHC, FAIR)
- Dense-massive stars
- The T- μ phase diagram of QCD

The Linear Sigma Model

$$\begin{split} \mathcal{L}_{\mathrm{LSM}} &= \frac{1}{2} \mathrm{tr} \Big[\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \Big] + U(\Phi) \\ U(\Phi) &= \frac{1}{2} m^{2} \mathrm{tr} \Big[\Phi^{\dagger} \Phi \Big] + \frac{\lambda_{1}}{4!} \Big(\mathrm{tr} \Big[\Phi^{\dagger} \Phi \Big] \Big)^{2} + \mathrm{tr} \Big[h(\Phi^{\dagger} + \Phi) \Big] + \dots \end{split}$$

- lacksquare The linear h term explicitly breaks the $\mathcal{O}(N)$ symmetry of the Φ field
- lacktriangledown Φ is composite of the mesons, scalar (σ) and pseudoscalar (π) , $\Phi = \sigma + i\pi$

The Linear Sigma Model

$$\begin{split} \mathcal{L}_{\mathrm{LSM}} &= \frac{1}{2} \mathrm{tr} \Big[\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \Big] + U(\Phi) \\ U(\Phi) &= \frac{1}{2} m^{2} \mathrm{tr} \Big[\Phi^{\dagger} \Phi \Big] + \frac{\lambda_{1}}{4!} \left(\mathrm{tr} \Big[\Phi^{\dagger} \Phi \Big] \right)^{2} + \mathrm{tr} \Big[h(\Phi^{\dagger} + \Phi) \Big] + \dots \end{split}$$

- The linear h term explicitly breaks the $\mathcal{O}(N)$ symmetry of the Φ field
- $lacktriangleq\Phi$ is composite of the mesons, scalar (σ) and pseudoscalar (π) , $\Phi=\sigma+i\pi$

$$N_F = 2$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix} + i \frac{1}{\sqrt{2}} \begin{pmatrix} \pi_0 & \pi_- \\ \pi_+ & -\pi_0 \end{pmatrix}$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sigma_{ud} + \frac{1}{\sqrt{2}} a_0 & a_0^- & K_0^{*-} \\ a_0^+ & \frac{1}{\sqrt{2}} \sigma_{ud} - \frac{1}{\sqrt{2}} a_0 & \bar{K}_0^* \\ K_0^{*+} & K_0^* & \sigma_s \end{pmatrix} + \text{pseudo scalar mesons}$$

... with quarks

$$\mathcal{L}_{\mathsf{LSMq}} = \bar{\psi} \Big(i \partial \!\!\!/ - g(\sigma + i \gamma^5 \pi) \Big) \psi + \mathcal{L}_{\mathsf{LSM}}$$

- We have chiral symmetry of the quark Lagrangian when the fermionic fields are massless
- \blacksquare \Rightarrow The degree of Chiral symmetry determined by $\langle \Phi \rangle$
- Which itself is determined by the thermodynamic potential

$$\Omega = -\frac{1}{V\beta}\log\mathcal{Z}$$

Perturbative methods → Mean Field Approximation

Simplest first approximation is at one-loop, where all mesonic quantum fluctuations are suppressed.

$$\Omega[\Phi] = U(\Phi) + \Omega_{q\bar{q}}[\Phi]$$

■ The physical free energy Ω is given at its minimum, Φ_0 ,

$$\left.\frac{\partial\Omega}{\partial\Phi}\right|_{\Phi_0}=0$$

 \blacksquare where $\Omega_{q\bar{q}}$ is the free energy of N_F massive free fermionic fields, with masses given by $\Phi_0.$

Functional Renormalisation Group

Goal

Find the evolution of Gibb's free energy with respect to the renormalisation scale.

Functional Renormalisation Group → Effective Average Action

First regularise the action by using Pauli-Villars regularisation:

$$S[\phi] \longrightarrow S[\phi] + \Delta_k[\phi] = S[\phi] + \frac{1}{2} \int d^d p \, R_{k,i,j}(p) \phi_{p,i} \phi_{-p,j}$$

- Which in turns adds a renormalisation scale dependence to Gibb's free energy¹
- Can in turn find a PDE for Gibb's free energy

The Wetterich equation

$$\partial_k \Gamma_k = \frac{1}{2} \mathrm{tr} \int_q \partial_k R_{k,i,j}(q) \left(\frac{\delta^2 \Gamma_k}{\delta \phi_i(p) \delta \phi_j(p')} + \delta(p+p') R_{k,i,j}(p) \right)_{q,-q}^{-1}$$

■ With an identical procedure for fermionic fields

¹ being the Legendre transform of Helmholtz' free energy

Functional Renormalisation Group → Local Area Approximation

lacktriangle Expand Gibb's free energy in powers of the ∂ operator, and truncate it

$$\mathcal{O}(\partial^2)$$

$$\Gamma_k[\phi] = \int d^d x \left(\frac{1}{2} Z_k(\phi) (\nabla_4 \phi)^2 + U_k(\phi) \right)$$

■ Without the field renormalisation term $Z_k(\phi)$, the expansion is $\mathcal{O}(\partial^0)$, also known as the Local Area Approximation. In this expansion, the Wetterich eq. is:

$$\partial_k U_k = \frac{1}{2} \int_q \, \partial_k R_k(q) \left[q^2 + \frac{\partial^2 U_k}{\partial \phi^2} + R_k(q) \right]^{-1}$$

Results → MF - Chiral phase transition

Results ← MF - Chiral phase diagram

Results → RGE - Chiral phase transition

Results ← RGE - Chiral phase diagram

Summary

Got a short introduction to:

- The Linear Sigma Model with Quarks
- Symmetry considerations
- The perturbative Mean Field Approximation
- The nonpertbative Local Area Approximation