北京理工大学 2014-2015 学年第二学期

大学物理 I 期末试题 A 卷

			2015年7)	月2日14:00	- 16:00		
班级		_任课教师_		学号_		姓名_	
填空题	选择题	计算 1	计算 2	计算 3	计算4	计算 5	总 分
	atm = 1.013	3×10 ⁵ Pa,	·K ⁻¹ ,			6.67×10^{-11} $.38 \times 10^{-23}$ J	_
一、填空	题(共 40	分,请将答	答案写在卷	面指定的	黄线上) :		
1. (3分))一物体做	始	, 初速度で	5。与水平方	向夹角为	heta。物体运 z	动轨道最高点处
的曲率半	径 $ ho$ 为			_°			
收紧双臂	,其身体转	专动的快慢	会发生明	显改变。如	果开始平	均每分钟转	实验。他伸开或 动 30 圈,后来 【量变为原来的
		0				,	
可绕光滑 端悬挂质 体,使绳	水平固定转量为 <i>m</i> 的刚好绷紧。	径为 <i>R</i> ,质油自由旋转物体,绳 ^上 松手后,	。滑轮边约 5滑轮间不 物体下落	缘环绕的细 下打滑。开	绳不可伸- 始时用手护	长,下 任住物	ω $2m$ R ω h h h
		字景的条		珊相写体	公 公 法 络	地压缩 体	和本为原本的— "
						然还相,他	积变为原来的一
半。气体	分子的平均	匀速率变为	原来的		倍。		
5. (3分)	一个卡诺	热机的高温	显热源和低	&温热源的	温度分別さ	与127℃ 和:	2 7° C。如果它以

0.10 MW.的功率对外做功,那么它向环境放热的功率是

6. (3分) 三个同方向、同频率简谐运动分别为

合振动由初始位置运动到x = +A(A)为合振动的振幅)处所需要的最短时间为____。

7. (3分) 在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光 ($\lambda_1 \approx 589 \text{ nm}$) 中央明纹宽度为 4.0 mm,则 $\lambda_2 = 442 \text{ nm}$ (1 nm = 10^{-9} m) 的蓝紫色光的中央明

纹宽度为_____。

8. (3分) 衍射光栅主极大公式 $(a+b)\sin\varphi=\pm k\lambda$, k=0,1,2······。在 k=2 的方向上

第一条缝与第五条缝对应点发出的两条衍射光的光程差 δ =______

9. (4分)有一字宙飞船,欲考察某一质量为 *M*,半径为 *R* 的星球,当飞船距这一星球中心 *d* 处时与星球相对静止,如图。飞船发射出一质量为 *m* (*m* << *M*)的仪器舱,其相对于星球的速度为 *v*₀,要使这一仪器舱恰好掠过星球表面 (与表面相切),发射倾角

应为 θ 。为了确定 θ 角,需设定仪器舱掠过星球表面时的速度v,并列出两个守恒方程。

10. (4分) 56g 氮气(可看作理想气体,摩尔质量 28 g/mol) 温度由0℃升至100℃。如

果发生的是等体过程,那么气体从外界吸收热量______J;如果发生的

是等压过程,那么气体对外做功______J。

11. (4分) 音乐会现场有两个发出同频率声波的扬声器,该频率介于 100 Hz 到 160 Hz 之间,两扬声器的振动同相。某些位置的声音与相邻点相比强度最小,其中一个位置到一个扬声器的距离为 25 m,到另一个扬声器的距离为 35 m。扬声器发出声波的可能频

率是_____。(空气中的声速为 340 m/s)

12. (4分) 如图所示,在双缝干涉实验中 $SS_1 = SS_2$,用波长为 λ 的光照射双缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹。已知 P 点处为第三级明条纹,则 S_1 和 S_2 到 P 点的光程差为。若将整个装置放于某种透明液体中,P 点为第

四级明条纹,则该液体的折射率 $n = _____$ 。

=,	选择	题(单进	t, 每题 3 5	分,共 15 分	·, i	青将答	案写在	卷面指	定的方	活号内):	
1. ∌	きき	度的意义	义,有下列。	几种说法:							
(1) 气	体的温度	度是分子平均	均平动动能	的量	度。			•		
((2) 气	体的温度	度是大量气	体分子热运	动的	り集体	表现。				
(3) 从	微观上看	香,气体的	温度表示每	个与	【体分	子的冷却	热程度。			
((4) 温	度的高值	氐反映物质	内部分子运	动居	烈程	度的不同	i ,			
这些	说法	中正确的									
	(A)	(1)、(2))、(4)	(B)	(1)、	(2).	(3)			•	
	(C)	(2) (3)	(4)	(D)	(1)、	(3),	(4)			[]
2. 君	昔 N∶	表示分子	⁻ 总数, <i>T 表</i>	長示气体温 质	度,	m 表	示气体分	子的质	量,那	么当分-	子速率 v
确定	后,	决定麦克	克斯韦速率组	分布函数 $f($	(v)	的数值	的因素	是			
	(A) n	n, T	(B) N	(C) N, n	n	(I	O) N, T	(E) N,	m, T	
			·							[]
3. 🗦	关于可	「逆过程 和	和不可逆过	程的判断:							
. ((1) 可	逆热力等	学过程一定	是准静态过	程。						
. ((2) 准	静态过和	呈一定是可:	逆过程。							:
	(3) 不	可逆过和	程就是不能	向相反方向	进行	了的过	程。			٠.	
((4) 凡	有摩擦的	的过程,一	定是不可逆	过和	呈。					
以上	二四种	判断中,	正确的是								
	(A)	(1), (2))、(3)	(E	3)	(1), ((2)、(4)	· · · · · ·			
	(C)	(2), (4))	(1	D)	(1),	(4)]
4. Î	丙偏 抗	長片堆叠	在一起,一	束自然光垂	直入	射其	上时没有	月光线 通	过。当	其中一個	扁振片慢
慢车	专动 1	80°时透	全射光强度 发	文生的变化 オ	勺:						
	(A)	光强单调	周增加。					•			
	(B)	光强先增	曾加,后又》	或小至零。							
	(C)	光强先增	曾加,后减少	小,再增加 。	•						
	(D)	光强先均	曾加,然后	咸小,再增	bn,	再减	小至零。			[]
5. Ī	两个质	质点质量:	均为 1 kg,	距离为1m	。若	每个	质点只受	圣 到对方	的万有	引力作用	用,无其
它力	り的作	用,那么	么让两者同时	付由静止释?	放,	它们将	各互相靠	近,最	后碰撞	。两质点	释放后,
大约	勺经过	多长时间	间才能相互	碰撞?							
	(A):	2.7 分钟	(B)	27 分钟		(C) 2	.7 小时	0	D) 27 小	、时	

Γ

三、计算题 (共45分):

1. (10 分) 一长度为 1 m 的匀质棒,放在水平桌面上,可绕通过其一端的竖直固定轴转动,棒与桌面的滑动摩擦系数为 0.33。开始时棒的角速度为 10 rad /s,随后由于摩擦转动逐渐减慢。问棒转动的角加速度的大小是多少? 多长时间后棒停止转动? 停止转动时一共转动了多少弧度? (g 取 10 m/s²)

2. $(10 \, f)$ 如图, $0.1 \, mol \, f$ 即原子分子理想气体在 p-V 图中经过准静态直线过程由状态 a 到 b。求在此过程中,(1)气体温度最高时的体积;(2)气体净吸收的热量;(3)气体的熵变。

3. $(10 \, \text{分})$ 一振幅为 $10 \, \text{cm}$,波长为 $200 \, \text{cm}$ 的简谐横波,沿着一条很长的水平绷紧弦从左向右行进,波速为 $100 \, \text{cm/s}$ 。取弦上一点为坐标原点,x 轴指向右方。在t=0 时,原点处质元从平衡位置开始向负位移方向运动。求:(1)该横波的波函数;(2) 弦上任一处质元振动速度的最大值。

4. (10 分) 如图所示, G_1 和 G_2 是两个块规(块规是两个端面经过磨平抛光,达到相互平行的钢质长方体), G_1 的长度是标准的, G_2 是同规格待校准的复制品(两者长度在图中是夸大的)。 G_1 和 G_2 放置在平台上,用一块样板玻璃 T 压住。(1) 设垂直入射光的

波长 λ = 589.3nm, G_1 与 G_2 相隔 d = 5cm,T与 G_1 以及 T 与 G_2 间的干涉条纹的间距都是 0.5mm。求 G_1 与 G_2 的长度差。(2)如何判断 G_1 与 G_2 哪一个块规比较长一些?(3)如果 T 与 G_1 间的干涉条纹的间距是 0.5mm,而 T 与 G_2 间的干涉条纹的间距是 0.3mm,则说明了什么问题?

5. (5 分) 牙买加短跑运动员鲍威尔 2007 年创造了 9 秒 74 的百米世界纪录,他以起跑后超常的加速能力而闻名。下图是鲍威尔起跑后某次脚着地时蹬地的力随时间的变化关系曲线,正力表示加速时的蹬力,负力表示短暂减速时的蹬力。作为比较,一个普通大

学生选手(百米成绩 11 秒级别)的相应曲线也画在图中。同样是牙买加运动员,博尔特又在 2009 年把百米纪录刷新为 9 秒 58,他有两条又硬又长的跟腱(人体最长的腱,连接小腿肌肉与脚后跟骨),就像弹簧一样。试根据上述材料,用力学原理分析他们取得卓越短跑成绩的原因。

答案

一、填空题 (共40分):

$$1. \quad (3 \%) \quad \frac{v_0^2 \cos^2 \theta}{g}$$

3.
$$(3分)$$
 $\frac{\sqrt{gh}}{R}$

- 4. (3分) 2^{1/3}或 1.26
- 5. (3分) 0.30 MW
- 6. (3分) 1.5 s
- 7. (3分)3mm
- 8. (3分)82

9.
$$(4 \%) mv_0 d \sin \theta = mvR$$
, $\frac{1}{2} mv_0^2 - \frac{GMm}{d} = \frac{1}{2} mv^2 - \frac{GMm}{R}$

- 10. (4分) 4.16×10^3 , 1.66×10^3
- 11. (4分) 119Hz和 153Hz
- 12. (4分) 31, 1.33 或 4/3

二、选择题(每题3分,共15分):

A A D B D

三、计算题

- 1. β =4.95rad/s²; t=2.02s; θ =10.10rad
- 2. (1) V=3.5L (2) Q=1100J (3) $\Delta S=1.97(J/K)$
- 3. (1) $y=0.1\cos(\pi t \pi x + \pi/2)$ (SI) (2) $v_{\text{max}}=0.314$ (m/s)
- $4.(1) h=2.95\times10^{-5} m$ (2) 在反色光干涉中,空气劈尖的棱边是暗纹。所以,当暗纹出现在 A、C 两处时, G_2 长一些;当暗纹出现在 B、D 两处时, G_1 长一些;(3) G_2 的 CD 端面与底面不平行。