FIFO Lab with Basys 3(Arty7)

FIFO: first in first out, it is a register file with control circuitry.

- Write point will write to FIFO first.
- Read pointer will read from FIFO.
- This will keep going until FIFO is empty again.
- Will not be able to write when FIFO is full.

UART: Universal asynchronous receiver/transmitter

- Defines a protocol or set of rules for exchanging serial data between two devices.
- Only uses 2 wires between TX and RX.

- FIFO block is after RX block.

_

- Switches 2 1 0 for the 3 bits of data.
- LED0 will be for fifo empty
- LED15 will be for FIFO full
- LED7:5 will be for Data to read

Modules in this Labs:

- Fifo_test.v(top)
- 2. Debounce_explicit.v
- 3. Fifo.v

Fifo_test.v(TOP)

- The purpose of this module is to instantiate and wire the other two modules
- Debouce module will split into two instantiations.
 - o One for read pointer
 - One for write pointer
- Fifo module will be instantiate as well with the following wires:
 - clk(clk_100MHz),
 - .reset(reset),
 - .write_to_fifo(write),
 - .read_from_fifo(read),
 - .write_data_in(sw),
 - .read_data_out(data_out),

- o .full(full),
- empty(empty)

Debounce_explicit.v

- Purpose:
 - This module is to set a counter for the button so that read and write does not switch multiple times because the signal bounces.
- By setting a counter period of ~40ms, the bounce is prevented.

Fifo.v

- Purpose:
 - o This module is to declare register signals for read and write
 - Memory address array is also declared with 3 bits
- Operation:
 - Write enable operation with always block.
 - Read data only from the current read address.
 - Write enable only if ~fifo_full
 - o Next state always block.
 - Register and FIFO control logic
 - Write address = write buffer
 - Ready address = read buffer
 - Next state always block logic.
 - Write address pointer will increment.
 - Read address pointer will increment.
 - o Case
 - 4 cases:
 - No button is pressed
 - Write button is pressed
 - Read button is pressed
 - Both buttons are pressed
 - Outputs
 - Assign full and empty signals

Constraints file:

- Purpose:
 - o This file is to define the port requirements needed for this lab.
- Data in:
 - Switches will be used for size 3 bits data
 - o 001: V17
 - o 010: V16
 - o 100: W16

- Data out:

0:U15 LED1: U14 LED2: V14 LED

- signal indicator:

o Full: L1

o Empty: U16 LED

- Button function:

Reset: U18Write: T18Read: U17