A Marriage-Market Perspective of Career Choices

Hanzhe Zhang

Michigan State University

Wednesday, May 10, 2017

UM-MSU-UWO Labo(u)r Day Conference

http://www.hanzhezhang.net/

1. Introduction

► The choices of *a career* and of *a marriage partner* are two of the most important lifelong decisions.

- ▶ The choices of *a career* and of *a marriage partner* are two of the most important lifelong decisions.
- ► Many papers have studied them separately and some have studied them jointly for individual decision makers.

- ▶ The choices of *a career* and of *a marriage partner* are two of the most important lifelong decisions.
- Many papers have studied them separately and some have studied them jointly for individual decision makers.
- ► However, no paper has studied two decisions jointly in a *general* equilibrium setting.

- ► The choices of *a career* and of *a marriage partner* are two of the most important lifelong decisions.
- Many papers have studied them separately and some have studied them jointly for individual decision makers.
- ► However, no paper has studied two decisions jointly in a *general* equilibrium setting.
- ► The main contribution of the paper is to *study career choices in a general equilibrium marriage-market framework*.

1. Introduction

Model Sketch

Model Sketch

▶ Men and women choose a *safe career* with low income variance or a *risky career* with high income variance.

Model Sketch

- ▶ Men and women choose a *safe career* with low income variance or a *risky career* with high income variance.
- ► They subsequently enter the marriage market based on their realized incomes.

Model Sketch

- ▶ Men and women choose a *safe career* with low income variance or a *risky career* with high income variance.
- ► They subsequently enter the marriage market based on their realized incomes.
- ▶ A set of variables is endogenously determined in equilibrium: careers choices, marriage timing, income distributions, marriage matching, and the division of marriage surplus.

1. Introduction

1. *Risk-averse* people may choose a *risky* career with *lower expected income* and *higher income variance*, because of marriage-market incentives.

- 1. *Risk-averse* people may choose a *risky* career with *lower expected income* and *higher income variance*, because of marriage-market incentives.
- 2. Men are more likely than women to choose a risky career because of differential fecundity.

- 1. *Risk-averse* people may choose a *risky* career with *lower expected income* and *higher income variance*, because of marriage-market incentives.
- 2. Men are more likely than women to choose a risky career because of differential fecundity.
- 3. Men's income inequality is larger than women's.

- 1. *Risk-averse* people may choose a *risky* career with *lower expected income* and *higher income variance*, because of marriage-market incentives.
- 2. Men are more likely than women to choose a risky career because of differential fecundity.
- 3. Men's income inequality is larger than women's.
- 4. Men tend to choose a risky career and marry late, and women tend to choose a safe career and marry early.

- 1. *Risk-averse* people may choose a *risky* career with *lower expected income* and *higher income variance*, because of marriage-market incentives.
- 2. Men are more likely than women to choose a risky career because of differential fecundity.
- 3. Men's income inequality is larger than women's.
- 4. Men tend to choose a risky career and marry late, and women tend to choose a safe career and marry early.
- 5. Unmarried men are more likely than married men to choose a risky career, whereas unmarried women are less likely than married women to choose a risky career.

1. Introduction

1. Introduction

Main Contributions

1. Incorporates career choices into an equilibrium marriage framework.

- 1. Incorporates career choices into an equilibrium marriage framework.
 - ▶ Previous papers considered interactions between labor and marriage markets, but didn't explicitly consider risky versus safe careers: Becker (1973, JPE), Bergstrom and Bagnoli (1993, JPE), Siow (1998, JPE), Low (2016), Zhang (2016), Zhang (2017).

- 1. Incorporates career choices into an equilibrium marriage framework.
 - Previous papers considered interactions between labor and marriage markets, but didn't explicitly consider risky versus safe careers: Becker (1973, JPE), Bergstrom and Bagnoli (1993, JPE), Siow (1998, JPE), Low (2016), Zhang (2016), Zhang (2017).
- 2. Result 1 provides a new marriage-market reason for risky career choice.

- 1. Incorporates career choices into an equilibrium marriage framework.
 - Previous papers considered interactions between labor and marriage markets, but didn't explicitly consider risky versus safe careers: Becker (1973, JPE), Bergstrom and Bagnoli (1993, JPE), Siow (1998, JPE), Low (2016), Zhang (2016), Zhang (2017).
- 2. Result 1 provides a new marriage-market reason for risky career choice.
 - Previous reasons include overconfidence, subsistence, status competition, and polygamous marriages: Smith (1776), Friedman and Savage (1948, JPE), Friedman (1953, JPE), Rubin and Paul (1979, EI), Robson (1992, Ecta), Robson (1996, GEB), Rosen (1997, JoLE), Becker et al. (2005, JPE).

- 1. Incorporates career choices into an equilibrium marriage framework.
 - Previous papers considered interactions between labor and marriage markets, but didn't explicitly consider risky versus safe careers: Becker (1973, JPE), Bergstrom and Bagnoli (1993, JPE), Siow (1998, JPE), Low (2016), Zhang (2016), Zhang (2017).
- 2. Result 1 provides a new marriage-market reason for risky career choice.
 - Previous reasons include overconfidence, subsistence, status competition, and polygamous marriages: Smith (1776), Friedman and Savage (1948, JPE), Friedman (1953, JPE), Rubin and Paul (1979, EI), Robson (1992, Ecta), Robson (1996, GEB), Rosen (1997, JoLE), Becker et al. (2005, JPE).
- 3. Results 2, 3, 4, and 5 simultaneously explain gender differences in career choices, income inequality, marriage timing, and effects of marriage on career choices without gender differences in risk or competitiveness.

- 1. Incorporates career choices into an equilibrium marriage framework.
 - Previous papers considered interactions between labor and marriage markets, but didn't explicitly consider risky versus safe careers: Becker (1973, JPE), Bergstrom and Bagnoli (1993, JPE), Siow (1998, JPE), Low (2016), Zhang (2016), Zhang (2017).
- 2. Result 1 provides a new marriage-market reason for risky career choice.
 - Previous reasons include overconfidence, subsistence, status competition, and polygamous marriages: Smith (1776), Friedman and Savage (1948, JPE), Friedman (1953, JPE), Rubin and Paul (1979, EI), Robson (1992, Ecta), Robson (1996, GEB), Rosen (1997, JoLE), Becker et al. (2005, JPE).
- 3. Results 2, 3, 4, and 5 simultaneously explain gender differences in career choices, income inequality, marriage timing, and effects of marriage on career choices without gender differences in risk or competitiveness.
 - ► Previous papers rely on gender differences in risk preferences or competitiveness: Niederle and Vesterlund (2007, QJE), Kleinjans (2008), Gill and Prowse (2014, QE), Wozniak et al. (2014, JoLE).

2. Model

Model

2. Model

Model

Time is discrete and infinite, t = 1, 2, ...

Each period, mass 1 of men and mass 1 of women become adults.

Their abilities x_m and x_w are distributed according to F_m and F_w .

They make career and marriage decisions in two periods.

Each chooses either a safe career,

Each chooses either a safe career, or a risky career.

A person who chooses a safe career is assumed, for now, to marry early.

He/she gets an income reflecting his/her ability, plus a marriage payoff.

A person who chooses a risky career is assumed, for now, to marry late.

The income from the risky career noisily reflects one's ability.

The risky career's income is a mean-preserving spread of true ability.

A risky-career person also gets a lifetime income plus marriage payoff.

The only gender difference: women who marry late incur a cost *c*.

A person who chooses a safe career could marry late.

A person who chooses a risky career could marry early.

Let's ignore those possibilities, for now.

This decision tree illustrates a person's career and marriage decisions.

2. Model

• $\sigma_m(x_m)$: an ability x_m man's probability of choosing the risky career.

- ▶ $\sigma_m(x_m)$: an ability x_m man's probability of choosing the risky career.
- ▶ $1 \sigma_m(x_m)$: an ability x_m man's probability of choosing the safe career.

- ▶ $\sigma_m(x_m)$: an ability x_m man's probability of choosing the risky career.
- ▶ $1 \sigma_m(x_m)$: an ability x_m man's probability of choosing the safe career.
- $ightharpoonup \sigma_w(x_w)$: an ability x_w woman's probability of choosing the risky career.

- $ightharpoonup \sigma_m(x_m)$: an ability x_m man's probability of choosing the risky career.
- ▶ $1 \sigma_m(x_m)$: an ability x_m man's probability of choosing the safe career.
- $ightharpoonup \sigma_w(x_w)$: an ability x_w woman's probability of choosing the risky career.
- ▶ $1 \sigma_w(x_w)$: an ability x_w woman's probability choosing the safe career.

2. Model

Induced Income Distributions G_m and G_w

Induced Income Distributions G_m and G_w

▶ Career choices σ_m induce men's income distribution G_m

$$G_m(y_m) = \int_{\underline{x}_m}^{\overline{x}_m} \left[\underbrace{\sigma_m(x_m)\Phi_m(y_m - x_m|x_m)}_{x_m \text{ chooses a risky career and gets income less than } y_m + \underbrace{1_{x_m \leq y_m}(1 - \sigma_m(x_m))}_{x_m \leq y_m \text{ chooses a safe career}} \right] dF_m(x_m).$$

Induced Income Distributions G_m and G_w

• Career choices σ_m induce men's income distribution G_m

$$G_m(y_m) = \int_{\underline{x}_m}^{\overline{x}_m} \left[\underbrace{\sigma_m(x_m)\Phi_m(y_m - x_m|x_m)}_{x_m \text{ chooses a risky career and gets income less than } y_m + \underbrace{1_{x_m \leq y_m}(1 - \sigma_m(x_m))}_{x_m \leq y_m \text{ chooses a safe career}} \right] dF_m(x_m).$$

• Career choices σ_w induce women's income distribution G_w

$$G_w(y_w) = \int_{\underline{x}_w}^{\overline{x}_w} \left[\underbrace{\sigma_w(x_w)\Phi_w(y_w-x_w|x_w)}_{x_w ext{ chooses a risky career and gets income less than } y_w + \underbrace{1_{x_w \leq y_w}(1-\sigma_w(x_w))}_{x_w \leq y_w ext{ chooses a safe career}}
ight] dF_w(x_w).$$

► A single person gets zero marriage surplus.

- ► A single person gets zero marriage surplus.
- ► An income y_m man and an income y_w woman generate a marriage surplus $s(y_m, y_w) = y_m y_w$.

- ► A single person gets zero marriage surplus.
- ► An income y_m man and an income y_w woman generate a marriage surplus $s(y_m, y_w) = y_m y_w$.
 - 1. s is linear in y_m and y_w .

- ► A single person gets zero marriage surplus.
- ► An income y_m man and an income y_w woman generate a marriage surplus $s(y_m, y_w) = y_m y_w$.
 - 1. s is linear in y_m and y_w .
 - 2. s is strictly supermodular in incomes: $\partial^2 s/\partial y_m \partial y_w > 0$.

- ► A single person gets zero marriage surplus.
- ► An income y_m man and an income y_w woman generate a marriage surplus $s(y_m, y_w) = y_m y_w$.
 - 1. s is linear in y_m and y_w .
 - 2. s is strictly supermodular in incomes: $\partial^2 s/\partial y_m \partial y_w > 0$.
 - 3. s is continuously differentiable in y_m and y_w .

- ► A single person gets zero marriage surplus.
- ► An income y_m man and an income y_w woman generate a marriage surplus $s(y_m, y_w) = y_m y_w$.
 - 1. s is linear in y_m and y_w .
 - 2. *s* is strictly supermodular in incomes: $\partial^2 s/\partial y_m \partial y_w > 0$.
 - 3. s is continuously differentiable in y_m and y_w .
- ▶ Public good provision justifies $s(y_m, y_w)$

$$\begin{split} &= \max_{q_m + q_w + Q \le y_m + y_w} (q_m Q + q_w Q) - \max_{q_m + Q \le y_m} q_m Q - \max_{q_w + Q \le y_w} q_w Q \\ &= \frac{(y_m + y_w)^2}{4} - \frac{y_m^2}{4} - \frac{y_w^2}{4} = \frac{1}{2} y_m y_w. \end{split}$$

2. Model

▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - Stable matching $G(y_m, y_w)$ such that
 - $G(y_m, \infty) = G_m(y_m)$

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that
 - $ightharpoonup G(y_m, \infty) = G_m(y_m)$
 - $G(\infty, y_w) = G_w(y_w)$

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that
 - $ightharpoonup G(y_m, \infty) = G_m(y_m)$
 - $G(\infty, y_w) = G_w(y_w)$
 - ▶ Stable marriage payoff functions v_m and v_w such that

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that
 - $ightharpoonup G(y_m, \infty) = G_m(y_m)$
 - $G(\infty, y_w) = G_w(y_w)$
 - ▶ Stable marriage payoff functions v_m and v_w such that
 - 1. $v_m(y_m) \ge 0$ and $v_w(y_w) \ge 0 \ \forall y_m, y_w$

- ► A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that
 - $ightharpoonup G(y_m, \infty) = G_m(y_m)$
 - $G(\infty, y_w) = G_w(y_w)$
 - ▶ Stable marriage payoff functions v_m and v_w such that
 - 1. $v_m(y_m) \ge 0$ and $v_w(y_w) \ge 0 \ \forall y_m, y_w$
 - 2. $v_m(y_m) + v_w(y_w) = s(y_m, y_w) \forall (y_m, y_w) \in \text{support}(g)$

- ▶ A stable outcome (G, v_m, v_w) of (G_m, G_w) consists of
 - ► *Stable matching* $G(y_m, y_w)$ such that
 - $ightharpoonup G(y_m, \infty) = G_m(y_m)$
 - $G(\infty, y_w) = G_w(y_w)$
 - ▶ Stable marriage payoff functions v_m and v_w such that
 - 1. $v_m(y_m) \ge 0$ and $v_w(y_w) \ge 0 \ \forall y_m, y_w$
 - 2. $v_m(y_m) + v_w(y_w) = s(y_m, y_w) \forall (y_m, y_w) \in \text{support}(g)$
 - 3. $v_m(y_m) + v_w(y_w) \ge s(y_m, y_w) \forall y_m, y_w$

2. Model

▶ Primitives of the model: $(F_m, F_w, \Phi_m, \Phi_w, c, s)$.

- ▶ Primitives of the model: $(F_m, F_w, \Phi_m, \Phi_w, c, s)$.
- \bullet $(\sigma_m^*, \sigma_w^*, G_m^*, G_w^*, G^*, \sigma_m^*, \sigma_w^*)$ is an equilibrium of $(F_m, F_w, \Phi_m, \Phi_w, c, s)$ if

- ▶ Primitives of the model: $(F_m, F_w, \Phi_m, \Phi_w, c, s)$.
- $\blacktriangleright \ (\sigma_m^*,\sigma_w^*,G_m^*,G_w^*,G^*,v_m^*,v_w^*) \text{ is an } equilibrium \text{ of } (F_m,F_w,\Phi_m,\Phi_w,c,s) \text{ if }$
 - σ_m^* and σ_w^* maximize the agents' expected payoffs given (v_m^*, v_w^*) ,

- ▶ Primitives of the model: $(F_m, F_w, \Phi_m, \Phi_w, c, s)$.
- $\blacktriangleright \ (\sigma_m^*,\sigma_w^*,G_m^*,G_w^*,G^*,v_m^*,v_w^*) \text{ is an } equilibrium \text{ of } (F_m,F_w,\Phi_m,\Phi_w,c,s) \text{ if }$
 - ▶ σ_m^* and σ_w^* maximize the agents' expected payoffs given (v_m^*, v_w^*) ,
 - σ_m^* and σ_w^* induce income distributions G_m^* and G_w^* , and

- ▶ Primitives of the model: $(F_m, F_w, \Phi_m, \Phi_w, c, s)$.
- $\blacktriangleright \ (\sigma_m^*,\sigma_w^*,G_m^*,G_w^*,G^*,v_m^*,v_w^*) \text{ is an } equilibrium \text{ of } (F_m,F_w,\Phi_m,\Phi_w,c,s) \text{ if }$
 - ▶ σ_m^* and σ_w^* maximize the agents' expected payoffs given (v_m^*, v_w^*) ,
 - σ_m^* and σ_w^* induce income distributions G_m^* and G_w^* , and
 - ▶ Marriage market outcome (G^*, v_m^*, v_w^*) is a stable outcome of equilibrium matching market (G_m^*, G_w^*) .

Equilibrium Matching G

Equilibrium Matching *G*

► Stable matching is *positive assortative*: a man and woman of the same income rank marry each other

$$G_m(y_m) = G_w(y_w).$$

Equilibrium Matching G

► Stable matching is *positive assortative*: a man and woman of the same income rank marry each other

$$G_m(y_m) = G_w(y_w).$$

► An income y_m man's wife's income $y_w(y_m) = G_w^{-1}(G_m(y_m))$.

Equilibrium Matching G

► Stable matching is *positive assortative*: a man and woman of the same income rank marry each other

$$G_m(y_m) = G_w(y_w).$$

- ► An income y_m man's wife's income $y_w(y_m) = G_w^{-1}(G_m(y_m))$.
- ► An income y_w woman's husband's income $y_m(y_w) = G_w^{-1}(G_w(y_w))$.

Men's Equilibrium Career Choice σ_m^*

Men's Equilibrium Career Choice σ_m^*

Lemma 1

Every man chooses the risky career in equilibrium: $\sigma_m^*(x_m) = 1$ for all x_m .

3. Equilibrium

Proof of Lemma 1

Safe versus Risky Career

Safe versus Risky Career

This decision tree illustrates an ability x_m man's career choice.

Safe versus Risky Career

Each man makes career choices based on expected lifetime payoffs.

Safe versus Risky Career

It suffices to show $\mathbb{E}[v_m(x_m + \epsilon_m)|x_m] > v_m(x_m)$, i.e., v_m is strictly convex.

3. Equilibrium

Proof of Lemma 1

Link between Stability and Competition

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) + v_w(y_w(y_m)) = y_m \cdot y_w(y_m).$$

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) = y_m \cdot y_w(y_m) - v_w(y_w(y_m)).$$

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) = y_m \cdot y_w(y_m) - v_w(y_w(y_m)).$$

▶ y_m does not want to marry any woman other than $y_w(y_m)$,

$$v_m(y_m) + v_w(y_w) \ge y_m y_w \quad \forall y_w \ne y_w(y_m).$$

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) = y_m \cdot y_w(y_m) - v_w(y_w(y_m)).$$

▶ y_m does not want to marry any woman other than $y_w(y_m)$,

$$v_m(y_m) \geq y_m y_w - v_w(y_w) \quad \forall y_w \neq y_w(y_m).$$

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) = y_m \cdot y_w(y_m) - v_w(y_w(y_m)).$$

▶ y_m does not want to marry any woman other than $y_w(y_m)$,

$$v_m(y_m) \geq y_m y_w - v_w(y_w) \quad \forall y_w \neq y_w(y_m).$$

▶ y_m marries woman $y_w(y_m)$ that gives him the highest possible payoff

$$y_w(y_m) = \operatorname{argmax}_{y_w}[y_m y_w - v_w(y_w)],$$

Link between Stability and Competition

► Married y_m and $y_w(y_m)$ share the entire surplus,

$$v_m(y_m) = y_m \cdot y_w(y_m) - v_w(y_w(y_m)).$$

▶ y_m does not want to marry any woman other than $y_w(y_m)$,

$$v_m(y_m) \geq y_m y_w - v_w(y_w) \quad \forall y_w \neq y_w(y_m).$$

▶ y_m marries woman $y_w(y_m)$ that gives him the highest possible payoff

$$\mathbf{y}_w(\mathbf{y}_m) = \operatorname{argmax}_{\mathbf{y}_w}[\mathbf{y}_m \mathbf{y}_w - \mathbf{v}_w(\mathbf{y}_w)],$$

and gets the highest possible payoff

$$v_m(y_m) = \max_{y_w} [y_m y_w - v_w(y_w)].$$

3. Equilibrium

Proof of Lemma 1

Justification of Risky Career Choices

Justification of Risky Career Choices

Proposition 1

A risk-averse person may choose a risky career that yields a lower expected income with higher income variance, because the marriage market matches the person to the payoff-maximizing partner based on his realized income.

Justification of Risky Career Choices

Proposition 1

A risk-averse person may choose a risky career that yields a lower expected income with higher income variance, because the marriage market matches the person to the payoff-maximizing partner based on his realized income.

Remark 1

► A concrete example: A business major may choose to be a trader that has a low expected income and volatile returns, because the marriage market matches the person to the optimal partner based on his realization.

Justification of Risky Career Choices

Proposition 1

A risk-averse person may choose a risky career that yields a lower expected income with higher income variance, because the marriage market matches the person to the payoff-maximizing partner based on his realized income.

Remark 1

- ► A concrete example: A business major may choose to be a trader that has a low expected income and volatile returns, because the marriage market matches the person to the optimal partner based on his realization.
- ► Generalizable to other matching markets: A financial portfolio manager may choose a portfolio that has a lower expected financial return and higher volatility, because the market matches the manager to the optimal investors based on his realized returns

3. Equilibrium

Proof of Proposition 1

Women's Equilibrium Career Choice σ_w^*

Women's Equilibrium Career Choice σ_w^*

Lemma 2

(For a range of c,) Some women choose the risky career and some choose the safe career in equilibrium.

Gender Differences in Career Choices

Gender Differences in Career Choices

Proposition 2

More men than women choose the risky career:

$$\int \sigma_m^*(x_m)dF_m(x_m) > \int \sigma_w^*(x_w)dF_w(x_w).$$

Percent of Female Entrepreneurs in the United States

Equilibrium Income Distributions G_m^* and G_w^*

Equilibrium Income Distributions G_m^* and G_w^*

• σ_m^* induce men's income distribution $G_m^*(y_m) =$

$$\int_{\underline{x}_m}^{\overline{x}_m} \Phi_m(y_m - x_m | x_m) dF_m(x_m).$$

Equilibrium Income Distributions G_m^* and G_w^*

• σ_m^* induce men's income distribution $G_m^*(y_m) =$

$$\int_{\underline{x}_m}^{\overline{x}_m} \Phi_m(y_m - x_m | x_m) dF_m(x_m).$$

• σ_w^* induce women's income distribution $G_w^*(y_w) =$

$$\int_{\underline{x}_w}^{\overline{x}_w} \left[\sigma_w^*(x_w) \Phi_w(y_w - x_w | x_w) + 1_{x_w \leq y_w} (1 - \sigma_w^*(x_w)) \right] dF_w(x_w).$$

Gender Difference in Income Inequalities

Gender Difference in Income Inequalities

Proposition 3

Suppose that ability distributions and career opportunities are gender-symmetric. Men's income inequality is larger than women's income inequality: if $F_m = F_w$ and $\Phi_m = \Phi_w$, then G_m^* is a mean-preserving spread of G_w^* .

Gender Difference in Income Distributions

Ability Inequality versus Income Inequality

Ability Inequality versus Income Inequality

Remark 2

Inequality in incomes is larger than inequality in abilities, because of voluntary risk-taking by both men and women: G_m^* is a mean-preserving spread of F_m , and G_w^* is a mean-preserving spread of F_w .

1. <u>Justification of risky career choices</u>: even risk-averse people may choose a career with low expected income and high income variance.

- 1. <u>Justification of risky career choices</u>: even risk-averse people may choose a career with low expected income and high income variance.
- 2. Gender difference in career choices: men are more likely than women to choose a risky career.

- 1. <u>Justification of risky career choices</u>: even risk-averse people may choose a career with low expected income and high income variance.
- 2. Gender difference in career choices: men are more likely than women to choose a risky career.

3. Gender difference in income inequalities: men's income inequality is bigger than women's income inequality.

Marriage Timing

Lemma 3

Those who choose the risky career marry late and those who choose the safe career marry early.

Marriage Timing

Lemma 3

Those who choose the risky career marry late and those who choose the safe career marry early.

Proposition 4

Men tend to choose the risky career and marry late, whereas women tend to choose the safe career and marry early.

Average Marriage Age in the United States

Birth Cohorts 1900s-1970s

▶ Pre-Marital: An unmarried man

▶ Pre-Marital: An unmarried man

► Safe: $x_m + v_m(x_m)$.

- ▶ Pre-Marital: An unmarried man
 - ► Safe: $x_m + v_m(x_m)$.
 - ▶ Risky: $x_m + \mathbb{E}[v_m(x_m + \epsilon_m)|x_m] \succ \text{Safe}$.

- ▶ Pre-Marital: An unmarried man
 - ► Safe: $x_m + v_m(x_m)$.
 - ▶ Risky: $x_m + \mathbb{E}[v_m(x_m + \epsilon_m)|x_m] > \text{Safe}$.
- ▶ Post-Marital: A married man (who can divorce with a cost *k* or cannot divorce)

- ▶ Pre-Marital: An unmarried man
 - ► Safe: $x_m + v_m(x_m)$.
 - ▶ Risky: $x_m + \mathbb{E}[v_m(x_m + \epsilon_m)|x_m] \succ \text{Safe}$.
- ▶ Post-Marital: A married man (who can divorce with a cost *k* or cannot divorce)
 - ► Safe: $x_m + v_m(x_m) = x_m + x_m y_w(x_m) v_w(y_w(x_m))$.

- ▶ Pre-Marital: An unmarried man
 - ► Safe: $x_m + v_m(x_m)$.
 - ▶ Risky: $x_m + \mathbb{E}[v_m(x_m + \epsilon_m)|x_m] \succ \text{Safe}$.
- ▶ Post-Marital: A married man (who can divorce with a cost *k* or cannot divorce)
 - ► Safe: $x_m + v_m(x_m) = x_m + x_m y_w(x_m) v_w(y_w(x_m))$.
 - ► Risky: $x_m + \mathbb{E}[(x_m + \epsilon_m)y_w(x_m)|x_m] v_w(y_w(x_m)) = x_m + x_m y_w(x_m) v_w(y_w(x_m)) \sim \text{Safe}.$

▶ Pre-Marital: An unmarried woman

▶ Pre-Marital: An unmarried woman

► Safe: $x_w + v_w(x_w)$.

- ▶ Pre-Marital: An unmarried woman
 - ► Safe: $x_w + v_w(x_w)$.
 - ► Risky: $x_w + \mathbb{E}[v_w(x_w + \epsilon_w)|x_w] c$?? Safe.

- ▶ Pre-Marital: An unmarried woman
 - ► Safe: $x_w + v_w(x_w)$.
 - ► Risky: $x_w + \mathbb{E}[v_w(x_w + \epsilon_w)|x_w] c$?? Safe.
- ▶ Post-Marital: A married woman (who can divorce with a cost *k*)

- ▶ Pre-Marital: An unmarried woman
 - ► Safe: $x_w + v_w(x_w)$.
 - ► Risky: $x_w + \mathbb{E}[v_w(x_w + \epsilon_w)|x_w] c$?? Safe.
- ▶ Post-Marital: A married woman (who can divorce with a cost *k*)
 - Safe: $x_w + v_w(x_w) = x_w + x_w y_m(x_w) v_m(y_m(x_w))$.

- ▶ Pre-Marital: An unmarried woman
 - ► Safe: $x_w + v_w(x_w)$.
 - ► Risky: $x_w + \mathbb{E}[v_w(x_w + \epsilon_w)|x_w] c$?? Safe.
- Post-Marital: A married woman (who can divorce with a cost k)
 - ► Safe: $x_w + v_w(x_w) = x_w + x_w y_m(x_w) v_m(y_m(x_w))$.
 - $\text{Risky: } x_w + \mathbb{E}[\max\{x_w y_m(x_w) v_m(y_m(x_w)), \\ \max_{y_m} y_m(x_w + \epsilon_w) v_m(y_m) k\} | x_w] \succeq \text{Safe.}$

Proposition 5

Unmarried men are more likely than married men to choose the risky career, whereas married women are more likely than unmarried women to choose the risky career.

Summary of Results

- 1. Risk-averse people may choose jobs with low mean income and high income variance due to marriage-market incentives.
- 2. Unmarried men are more likely than unmarried women to choose risky careers due to differential fecundity.
- 3. Inequality in incomes is larger for men than for women.
- 4. Men choose risky careers and marry late, and women tend to choose safe careers and marry early.
- 5. Unmarried men are more likely than married men to choose risky careers, whereas unmarried women are less likely than married women to choose risky careers.

References I

- **Becker, Gary S.**, "A Theory of Marriage: Part I," *Journal of Political Economy*, July-August 1973, 81 (4), 813–846.
- _ , **Kevin M. Murphy, and Ivan Werning**, "The Equilibrium Distribution of Income and the Market for Status," *Journal of Political Economy*, April 2005, 113 (2), 282–310.
- **Bergstrom, Theodore C. and Mark Bagnoli**, "Courtship as a Waiting Game," *Journal of Political Economy*, February 1993, 101 (1), 185–202.
- Friedman, Milton, "Choice, Chance, and the Personal Distribution of Income," *Journal of Political Economy*, August 1953, 61 (4), 277 290.
- _ and Leonard J. Savage, "Utility Analysis of Choices Involving Risk," Journal of Political Economy, August 1948, 56 (4), 279–304.
- **Gill, David and Victoria Prowse**, "Gender differences and dynamics in competition: The role of luck," *Quantitative Economics*, 2014, 5, 351–376.
- **Kleinjans, Kristin**, "Do Gender Differences in Preferences for Competition Matter for Occupational Expectations?," 2008. Mimeo.

References II

- **Low, Corinne**, "Pricing the Biological Clock: Reproductive Capital on the US Marriage Market," March 2016. Mimeo.
- Niederle, Muriel and Lise Vesterlund, "Do Women Shy Away From Competition? Do Men Compete Too Much?," *The Quarterly Journal of Economics*, 2007, 122 (3), 1067–1101.
- **Robson, Arthur J.**, "Status, the Distribution of Wealth, Private and Social Attitudes to Risk," *Econometrica*, July 1992, *60* (4), 837–857.
- _ , "The Evolution of Attitudes to Risk: Lottery Tickets and Relative Wealth," *Games and Economic Behavior*, 1996, 14, 190–207.
- **Rosen, Sherwin**, "Manufactured Inequality," *Journal of Labor Economics*, April 1997, *15* (2), 189–196.
- **Rubin, Paul H. and Chris W. Paul**, "An Evolutionary Model of Taste for Risk," *Economic Inquiry*, October 1979, 17 (4), 585–596.
- **Siow, Aloysius**, "Differential Fecundity, Markets, and Gender Roles," *Journal of Political Economy*, April 1998, 106 (2), 334–354.

References III

- **Smith, Adam**, *An Inquiry into the Nature and Causes of the Wealth of Nations*, London: W. Strahan and T. Cadell, 1776.
- Wozniak, David, William T. Harbaugh, and Ulrich Mayr, "The Menstrual Cycle and Performance Feedback Alter Gender Differences in Competitive Choices," *Journal of Labor Economics*, 2014, 32 (1), 161–198.
- **Zhang, Hanzhe**, "Labor-Market and Marriage-Market Outcomes by Age at Marriage: Theory and Evidence," August 2016. Mimeo.
- _ , "A Marriage-Market Perspective of the College Gender Gap and the Gender Pay Gap," April 2017. Mimeo.