שאלות להגשה

הגדרה, על ההסתמך הבאות הבאות הכל אלגברה בוליאנית, לכל שני איברים a,b יש הסתמך הקפות בכל אלגברה בוליאנית, לכל שני איברים שהוכחנו.

$$a=b$$
 אז $a \wedge b=a \vee b$ אז (א)

$$a \wedge (a \vee b) = a$$
 (2)

$$\neg (a \lor b) = \neg a \land \neg b$$
 (1)

 $a \wedge b = a$ אם a < b-ש ש $a, b \in \mathcal{B}$ שיברים לכל שני איברה בוליאנית, ונגדיר לכל שני איברים 2.

- .0 ומינימום ומינימום אל, עם מקסימום וחלקי חלקי חלקי שזהו סדר חלקי של הוכיחו
- התחתון החסם העליון שלכל שני ל- \leq קיים היום העליון החסם העליון החסם (ב) החסם איברים (ב) $a \wedge b$ שני שלכל ושווה ל- $a \wedge b$
 - (ג) מקיימת P- שניח שלקית עם מקסימום P- שניח המקיימת (ג)
 - $a \wedge b$ יש חסם תחתון שנסמן , $a \vee b$ שנסמן עליון, שנסמן יש $a,b \in P$ היברים. 1
 - $a \lor b = 1$ ו $a \land b = 0$ כך ש $b \in P$ קיים $a \in P$.2
 - :מתקיים $a,b,c\in P$ מתקיים 3

$$(a \lor b) \land (a \lor c) \le a \lor (b \land c)$$

 \neg הוכיחו שבור פעולה אלגברה בוליאנית עבור ($P, \land, \lor, \neg, 0, 1$)- הוכיחו

 $v(a) \leq v(b)$ מתקיים $v: \mathcal{B} \rightarrow 2$ השמה לכל אם ורק אם אם $a \leq b$ ש הוכיחו (ד)

תזכורת: אם P קבוצה סדורה ו- $A\subseteq P$, חסם של A הוא איבר של P שגדול או שווה לכל איברי A, וחסם עליון של A הוא המינימום של כל החסמים של A (בהנחה שהוא קיים)

- אלגברה ש- \mathcal{B} אלגברה של איבר $a \neq 0$ כך שאין איבר מקיים של אלגברה הוא איבר מיבר מוליאנית מופית. 3 אטום של אלגברה בוליאנית הוא איבר מופית.
 - $a \le b$ יש אטום שלכל איבר שלכל איבר (א)
 - הוכיחו ש- \mathcal{B} איזומורפית לאלגברת חזקה (ב)
 - (ג) הוכיחו שאלגברה בוליאנית אינסופית אינה בהכרח איזומורפית לאלגברת חזקה