Reposta para o desafio IEL-CNPq

Raul de Sá Durlo 16/07/2019

Contents

1	Introdução	1
2	Uma breve introdução aos modelos estatísticos 2.1 Predição	
3	Regressão linear	4
4	Regressão Logística	4
5	Indicadores de performance e aderência do modelo	4

1 Introdução

No desenvolvimento de modelos de predição, qual a diferença entre as técnicas de regressão linear e regressão logística? Quais são os indicadores para avaliar a performance de aderência do modelo?

O desafio foi respondido e é apresentado neste relatório dividido nas partes que seguem:

- Definição de modelos de predição, diferenciando o da inferência estatística.
- Apresentação dos modelos de regressão linear e logísticos definidos.
- Por fim, é discutido os indicadores de performance de aderencia para modelos preditivos.

2 Uma breve introdução aos modelos estatísticos

Em um modelo estatístico estamos interessados em obter uma função f que relacione um conjunto de preditores (X) a alguma variável de resposta (Y). Os preditores $X = (X_1, X_2, ..., X_p)$ também são chamados de variáveis explicativas, variáveis independentes ou entrada (inputs).

Podemos descrever relação entre X e Y na forma geral:

$$Y = f(X) + \epsilon$$

Onde f(X) representa uma relação sistemática entre o conjunto de preditores X e a variável de resposta Y e ϵ é um termo de erro aleatório independente, com média igual a zero.

O gráfico abaixo mostra uma relação bi-variada entre a renda (Y) de 30 indivíduos com os seus respectivos anos de estudos (X). Cada indivíduo pode ser identificado por um ponto no gráfico e a reta cinza é a representação de um modelo linear simples. A principal característica desse modelo é que a de que minimiza a distância entre os seus valores preditos (\hat{Y}) e os valores observados (Y) (em vermelho).

Existem basicamente dois motivos para estimar f: a inferência e a predição.

2.1 Predição

Muitas vezes não podemos obter, de antemão, os valores de Y. Por isso, os valores preditos são importantes e estão representados pela reta cinza no gráfico acima. Os valores preditos são estimados por alguma forma funcional assumida para o modelo com as variáveis explicativas (seus erros possuem média zero):

$$\hat{Y} = \hat{f}(X)$$

O foco na predição serve para analisar a precisão de um modelo, ou seja, se os seus valores preditos $\hat{y_0}$ acertariam os valores reais y_0 . Entretanto, no geral, \hat{f} não é um estimador perfeito de f e sua diferença (erro) é explicada por fatores redutíveis e irredutíveis. Podemos decompor esses fatores por meio do quadrado das diferenças entre o valor estimado e a variável de resposta:

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2 = [f(X) - \hat{f}(X)]^2 + Var(\epsilon)$$

O termo de erro redutível corresponde ao termo $[f(X) - \hat{f}(X)]^2$ da equação acima e é aquele decorrente da escolha da forma funcional estimada. Assim, o modelo mais preciso é aquele que minimiza essa diferença.

Como Y é função de ϵ e, por definição, ϵ não pode ser previsto por X. Algum erro sempre será introduzido ao modelo, daí o termo irredutível, denotado por $Var(\epsilon)$.

2.2 Inferência

A inferência serve para análise da maneira de como os preditores $X_1, X_2, ..., X_p$ afetam a variável de resposta Y. Fazemos inferência quando queremos entender a relação entre X e Y ou como Y muda em função de $X_1, X_2, ..., X_p$.

O modelo estatístico utilizado no gráfico acima é um exemplo de um modelo paramétrico linear simples. Paramétrico, pois assume uma forma funcional definida (linear, no caso) e simples, pois possui apenas um preditor.

Um modelo paramétrico normalmente apresenta a desvantagem de ser mais simplificador e inflexível. Aumentar sua complexidade e flexíbilidade implica em aumento no número de parâmetros a serem estimados e,

consequentemente, os modelos se tornam mais sensíveis aos erros (*overfitting*). Por outro lado, a simplificação pode ser interessante por questões de interpretabilidade.

Renda e anos de estudos

Existem também modelos não paramétricos, onde é feita suposições sobre a forma funcional de f e, portanto, possui a capacidade de se ajustar melhor ao conjunto de dados, com a desvantagem de apresentar mais variabilidade e, consequentemente, ser mais sensível ao termo de erro (overfitting).

Novamente, a flexibilidade do modelo deve ser confrontada com a sua interpretabilidade. A figura abaixo representa o tradeoff entre interpretabilidade e flexibilidade de diferentes modelos estatísticos. Em geral, um modelo mais fácil de se interpretar é preferido quando o objetivo é a inferência e um modelo mais flexível é mais recomendado para análises mais preditivas.

Os modelos citados acima podem compor procesos de aprendizagem estatística (statistical learning)

- 3 Regressão linear
- 4 Regressão Logística
- 5 Indicadores de performance e aderência do modelo