Numbers

CISC 221 – Assignment 2 Due: February 3, 2022, 11:59pm

Part A

Two's complement encoding (3 marks)

- Implement a C function with the following prototype
 - o int subtract2sc_issafe(int x, int y) which returns 1 when computing two's complement subtraction does not cause overflow, and returns 0 otherwise.
- Do not assume width of type int; you should use sizeof(int) to find out instead.
- You will need to write your own main() function to test your code, but do not submit main().
- Submit the single file twoscomplement aux.c.
 - o Ensure that your source code is well-documented and readable.
 - Make sure it is tested on the CASLab machines.

Part B

Meditate

(Not submitted)

- 1. (Page 88, 3ed) Principle: detecting overflow of unsigned addition
- 2. (Page 92, 3ed) Principle: detecting overflow in two's complement addition

Short answer questions

(Submitted as a single PDF file, a2 b.pdf.)

- 1. (1 mark) Encode the following decimal numbers with 8-bit two's complement binary, or indicate that number would overflow the range:
 - a. 49₁₀
 - b. -31₁₀
 - c. 120₁₀
 - d. -128_{10}
 - e. 128₁₀

- 2. (2 marks, page 140 of CSAPP 3ed) Homework problem 2.91 Around 250 B.C., the Greek mathematician Archimedes proved that $\frac{223}{71} < \pi < \frac{22}{7}$. Had he had access to a computer and the standard library <math.h>, he would have been able to determine that the single-precision floating-point approximation of π has the hexadecimal representation 0x40490FDB. Of course, all of these are just approximations, since π is not rational.
 - A. What is the fractional binary number denoted by this floating-point value?
 - B. What is the fractional binary representation of $\frac{22}{7}$? **Hint:** See Problem 2.82.
 - C. At what bit position (relative to the binary point) do these two approximations to π diverge?

Deliverables

To OnQ:

- 1. twoscomplement aux.c, and
- 2. a2 b.pdf