Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 9, 2017

Today:

- Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference

Readings:

• Bishop chapter 8, through 8.2

Warning! Your HW6 code might take hours to run.

If it's not perfect, you might need multiple runs.

Do not wait until the last minute to begin!

Graphical Models

- Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plus associated parameters define joint probability distribution over set of variables

Two types of graphical models:

our focus

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Unify statistics, probability, machine learning
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference, Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...
- Increasingly, deep networks are probabilistic models

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Represent Joint Probability Distribution over Variables

Describe network of dependencies

Eric Xing

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- Algorithms for inference and learning

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines P(X_i / Pa(X_i))
- The joint distribution over all variables is defined to be

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Some helpful terminology

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

Bayesian Networks

• CPD for each node X_i describes $P(X_i \mid Pa(X_i))$

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
W		

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, L)P(T|S, L, R)P(W|S, L, R, T)$$

But in a Bayes net:
$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

To define joint distribution in general?

To define joint distribution for this Bayes Net?

Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

$$P(S=1, L=0, R=1, T=0, W=1) =$$

Learning a Bayes Net

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } What is the MLE solution? MAP?

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., X₁, X₂, ... X_n
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 ... X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,\ldots,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
= $\prod_i P(X_i | Pa(X_i))$ (by construction)

Example

- Bird flu and Allegies both cause Nasal problems
- Nasal problems cause Sneezes and Headaches

What is the Bayes Network for X1,...X4 with NO assumed conditional independencies?

What is the Bayes Network for Naïve Bayes?

What do we do if variables are mix of discrete and real valued?

Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

$$P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) =$$

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - 'Explaining away'

Extra slides

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

 Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

Prob. of marginals: not so easy

How do we calculate P(N=n)?

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

Generating a sample from joint distribution: easy

Note we can estimate marginals

like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

Prob. of marginals: not so easy

But sometimes the structure of the network allows us to be clever \rightarrow avoid exponential work

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Variable elimination
 - Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions