Final Exam

Signal and System, Fall 2021 School of BioMedical Convergence Engineering, PNU Dec. 15. 15:00 - 23:59

I. REMARK

- This is an open book exam. You can use any materials if you want.
- There are a total of 100 points in the exam. Each problem specifies its point total.
- You must SHOW YOUR WORK to get full credit.
- If you just copy your classmate's answers or chat with anyone through any messenger, your total point would be 0.
- [MATLAB] implies that you need to use MATLAB. When you need to plot continuous-time signal x(t), please find the sampling rate f_s in the problem and plot the sampled signal $x[n] = x(t)|_{t/f_s}$. You need to display "time" on x-axis (not just discrete index). Also, when you need to plot |(X(f))| (CTFT spectrum), use 'fft' and 'fftshift' functions and eq. 6.19 in the textbook to draw approximated one. You need to display 'frequency' on x-axis (not just discrete index).

II. PROBLEM SET

 [5 points] In the figure below, match functions to their DFT magnitudes. Describe the reason of your answer in detail.

- 2) [10 points] [MATLAB] The signal x(t) is given as $x(t) = 3\cos(20\pi t) 2\sin(30\pi t)$ over a time range of 0 < t < 0.4s. Graph the signal formed by sampling the function at the following sampling frequencies:
 - a) $f_s = 120 Hz$,

b)
$$f_s = 60Hz$$
,

c)
$$f_s = 30Hz$$
, and

d)
$$f_s = 15Hz$$
.

Based on what you observe, what can you say about how fast this signal should be sampled so that it could be reconstructed from the samples?

1

- 3) [10 points] Answer the following questions. You can use tables in the textbook.
 - a) What is the CTFT of the function $h(t) = 2f_1 \operatorname{sinc}(2f_1t) 2f_0 \operatorname{sinc}(2f_0t)$ where $f_1 > f_0$?
 - b) If the impulse response function of one system is h(t), what is the role of the system?
 - c) [MATLAB] Plot h(t) over -5s < t < 5s. $f_1 = 30Hz$ and $f_0 = 20Hz$. Use 100Hz for the sampling frequency f_s .
 - d) [MATLAB] Plot |H(f)| over -50Hz < f < 50Hz.
- 4) [10 points] The graphical definition of a function is given in the figure below.

- a) Graph y[n] = g[n] * h[n] where $h[n] = (\delta[n] + \delta[n-1] + \delta[n-2]$.
- b) [MATLAB] Graph g[n] and h[n] using 'stem'. You can select any proper range of n when you plot the functions. Index n on x-axis must match the functions.
- c) [MATLAB] Compute y[n] using 'conv' function. Graph y[n] using 'stem'. You can select any proper range of n but you need to display all

nonzero points. Index n on x-axis must match the function y[n].

- 5) [10 points] Answer the following questions.
 - a) Prove that Y(f) = H(f)X(f) if y(t) = h(t) * x(t). Here, Y(f), H(f) and X(f) are the CTFT of y(t), h(t) and x(t), respectively. Use the definitions of CTFT and convolution.
 - b) Prove that $Y[k]=X[k]e^{-j2\pi kn_0/N}$ if $y[n]=x[n-n_0].$ Here, Y[k] and X[k] are the DFT of y[n] and x[n]
- 6) [15 points] The purpose of the task is making a song. Find the music (score) of the song below. For every scale, use a cosine or sine function. Use the table below describing the sinusoidal frequency of every scale. Assume that the time period for a quarter note is 0.5 sec. The sampling frequency $f_s = 1/T_s$ should be 44100 Hz.

옥타브 및 음계별 표준 주파수

옥타브 음계	1	2	3	4
C(도)	32.7032	65.4064	130.8128	261.6256
C#	34.6478	69.2957	138.5913	277.1826
D(레)	36.7081	73.4162	146.8324	293.6648
D#	38.8909	77.7817	155.5635	311.1270
E(n])	41.2034	82.4069	164.8138	329.6276
F(과)	43.6535	87.3071	174.6141	349.2282
F#	46.2493	92.4986	184.9972	369.9944
G(含)	48.9994	97.9989	195.9977	391.9954
G#	51.9130	103.8262	207.6523	415.3047
A(라)	55.0000	110.0000	220.0000	440.0000
A#	58.2705	116.5409	233.0819	466.1638
B(시)	61.7354	123.4708	246.9417	493.8833

- a) [MATLAB] Use octave 4 for making the signal $x[n] = x(t)|_{t=nT_s}$ of the song. Plot x(t) over time t. Also, plot |X(f)| over frequency f. Use 'xlim([-1000 1000])' to see only the narrow range -1kHz < f < 1kHz. Listen the song x[n] using 'sound()'.
- b) [MATLAB] Make the song y[n] = x[2n] through down-sampling. Plot |Y(f)| over f. Also, use 'xlim([-1000 1000])' to see the range -1kHz < f < 1kHz. Listen the signal $y[n] = y(t)|_{t=nT_s}$ using same sampling frequency f_s . Describe any change of the sound in terms of song time and pitch. Explain reasons of the change in detail.

- c) [MATLAB] Using up-sampling and filtering, reconstruct the song $z[n] = z(t)|_{t=nT_s}$ from $y[n] = y(t)|_{t=nT_s}$ so that z[n] is as close to x[n] as possible. Use a sinc function for a filter $h[n] = h(t)|_{t=nT_s}$. Plot |H(f)| and |Z(f)| over f. Also, use 'xlim([-1000 1000])' to see the range -1kHz < f < 1kHz. Listen z[n] using 'sound()'.
- 7) [10 points] X(f) is the CTFT of x(t). Suppose A=1 and $f_m=10Hz$. $x[n]=x(t)|_{t=n/f_s}$. The graph of |X(f)| is given as

- a) Can x(t) be time-limited signal? Demonstrate your answer in detail.
- b) Plot DTFT of x[n] if the sampling frequency f_s is 30Hz
- c) Suppose y[n+10k] = x[n] when $0 \le n < 10$ for any integer k. Plot the approximate graph of Y[k] where Y[k] is DFT of y[n]. Use N=10 for DFT.
- d) Suppose y[n+20k] = x[n] when $0 \le n < 10$ and y[n+20k] = 0 when $10 \le n < 20$ for any k. Plot the approximate graph of Y[k] where Y[k] is DFT of y[n]. Use N=20 for DFT.
- e) Repeat the questions b), c) and d) if $f_s = 16Hz$.
- 8) [15 points] Do as directed.
 - a) [MATLAB] Download the file $'handel_corrupted.mat'$ from Plato. Load the file though MATLAB. Then, you can see 'data' and 'Fs' where 'data' records the corrupted song and 'Fs' denotes the sampling frequency. Let $x[n] = x(t)|_{t=nT_s}$ be the corrupted data. Plot x(t) over t. Also, plot spectrum |X(f)| over f. Listen x[n] using 'sound()'. Check that a beep sound disturbs one classical music. You can see strong peaks at f = 120Hz and f = -120Hz in the spectrum due to the beep.
 - b) [MATLAB] Make a band-stop filter $h[n] = h(t)|_{t=nT_s}$ using a linear combination of one delta function and two sinc functions. Use 110Hz and 130Hz for cutoff frequencies of the filter so that the filter eliminates the strong beep. Plot spectrum |H(f)| over f.
 - c) [MATLAB] Conduct the filtering through z(t) = h(t) * x(t). Plot spectrum |Z(f)| over f. Listen z(t) using 'sound'. You might clearly listen 'Hallelujah Chorus' from Handel's Messiah'.

9) [10 points] System 1 is shown in Fig.(a). In every channel, the filters are same. The impulse response of every filter is $h[n] = \alpha_0 \delta[n] + \alpha_1 \delta[n+1] + \alpha_2 \delta[n+2]$. Every filter output is sampled at n=0.

- a) what is $y_k[0]$ in terms of x[n] and h[n]
- b) System II is shown in Fig. (b). If $P[k] = y_k[0]$, determine r[n].