Filtrage et assimilation de données

G. Perrin

guillaume.perrin@univ-eiffel.fr

Année scolaire 2022-2023

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- 4 Méthodes de propagation d'ensembles
- Filtre de Kalman étendu
- **6** Conclusions

Introduction

Qu'est-ce que l'assimilation de données (DA)?

- → une famille spécifique de **problèmes inverses**,
- → pour des systèmes dynamiques,
- → représentés par des modèles discrétisés (en temps et espace),
- → en présence de données distribuées en temps,
- → présentes souvent en grande quantité.
- ⇒ un domaine très proche de la quantification d'incertitudes.

Domaines d'application principaux

- Navigation et suivi d'objets,
- Economie/finance,
- Mécanique des fluides,
- Météorologie et océanographie,
- Géophysique, risques naturels, ingénierie pétrolière,
- Contrôle non destructif des structures,
- Médecine, biologie, chimie,
- Sciences sociales,
- ...

Notations

On note:

- $t \ge 0$ le temps, $t_1 < t_2 < \ldots < t_\ell$ les temps d'observations du système,
- x(t) le vecteur d'état à t, discrétisé en espace (de dimension potentiellement grande), modélisé par un vecteur aléatoire pour quantifier son caractère inconnu,
- $\mathbf{x}_k := \mathbf{x}(t_k)$ le vecteur d'état à t_k ,
- y_k le vecteur (connu) des observations à t_k, modélisé par un vecteur aléatoire en raison de la présence de bruit.

Problématique

Comment caractériser la distribution de $x(t) \mid y_1, \dots, y_\ell$?

Définition de deux (méta)modèles

La résolution de ce problème d'inférence repose sur l'introduction de deux types de modèle (pré-existants ou appris à partir de données) :

ightarrow un modèle d'évolution temporel de l'état du système :

$$\mathbf{x}(t+dt)=\mathbf{f}_{t,dt}(\mathbf{x}(t),\mathbf{s}(t))+\boldsymbol{\xi}(t),\ t\geq 0,$$

 \rightarrow un modèle d'observation du système :

$$\mathbf{y}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{\eta}_k, \ 1 \le k \le \ell.$$

- s est un forçage, une source ou un contrôle potentiel,
- ξ désigne l'erreur de modèle,
- η_k désigne l'erreur d'observation.

Différents types de problème pour la DA

A partir de ces informations, on peut alors chercher à produire :

- → une meilleure estimation de l'état actuel du système (filtering problem),
- → une prédiction de ses états futurs (forecast problem),
- \rightarrow une meilleure estimation de ses états passés (smoothing problem).

Plan de la présentation

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- 4) Méthodes de propagation d'ensembles
- 5 Filtre de Kalman étendu
- 6 Conclusions

Hypothèses

Supposons que les deux modèles d'évolution sont linéaires :

$$egin{aligned} oldsymbol{x}_0 &= oldsymbol{m}_0 + oldsymbol{\xi}_0, \ oldsymbol{x}_k &= oldsymbol{F}_k oldsymbol{x}_{k-1} + oldsymbol{s}_k + oldsymbol{\xi}_k, \ k \geq 1, \ oldsymbol{y}_k &= oldsymbol{H}_k oldsymbol{x}_k + oldsymbol{\eta}_k, \ \ell \geq k \geq 0, \end{aligned}$$

avec m_0 choisi, et $\boldsymbol{\xi}_k, \boldsymbol{\eta}_k$ des vecteurs aléatoires tels que $\mathbb{E}\left[\boldsymbol{\xi}_k\right] = \mathbf{0}$, $\operatorname{Var}\left(\boldsymbol{\xi}_k\right) = \boldsymbol{Q}_k$, $\mathbb{E}\left[\boldsymbol{\eta}_k\right] = \mathbf{0}$ et $\operatorname{Var}\left(\boldsymbol{\eta}_k\right) = \boldsymbol{R}_k$.

- \rightarrow \mathbf{F}_k et \mathbf{H}_k sont généralement appelés modèle d'évolution et opérateur d'observation.
- → On ne considère pas ici les état intermédiaires entre deux mesures pour simplifier les notations...

Reformulation matricielle

Notons X_k le vecteur des états (à estimer), $Y_{k|\ell}$ le vecteur des observations (connu) et $Z_{k|\ell}$ le vecteur de bruit (connu), tels que :

$$m{X}_k := \left(egin{array}{c} m{x}_0 \ m{x}_1 \ dots \ m{x}_k \end{array}
ight), \quad m{Y}_{k|\ell} := \left(egin{array}{c} m{m}_0 \ m{s}_1 \ m{y}_1 \ dots \ m{s}_\ell \ m{y}_\ell \ m{s}_{\ell+1} \ dots \ m{s}_k \end{array}
ight), \quad m{Z}_{k|\ell} := \left(egin{array}{c} -m{\xi}_0 \ -m{\xi}_1 \ m{\eta}_1 \ dots \ -m{\xi}_\ell \ m{\eta}_\ell \ -m{\xi}_{\ell+1} \ dots \ m{s}_k \end{array}
ight).$$

On note aussi $\Gamma_{k|\ell} := \operatorname{diag}(\boldsymbol{Q}_0, \boldsymbol{Q}_1, \boldsymbol{R}_1, \dots, \boldsymbol{Q}_\ell, \boldsymbol{R}_\ell, \boldsymbol{Q}_{\ell+1}, \dots, \boldsymbol{Q}_k)$ la matrice de covariance de $\boldsymbol{Z}_{k|\ell}$ (diagonale par bloc).

Reformulation matricielle

On déduit :
$$Y_{k|\ell} = A_{k|\ell} X_k + Z_{k|\ell},$$

$$\begin{bmatrix}
I & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
-F_1 & I & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\
0 & H_1 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\
0 & -F_2 & I & 0 & \cdots & \cdots & \cdots & \vdots \\
0 & 0 & H_2 & 0 & 0 & \cdots & \cdots & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -F_{\ell} & I & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 & H_{\ell} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 & -F_{\ell+1} & I & \ddots & \vdots \\
\vdots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -F_{\ell} & I
\end{bmatrix}$$

Best Linear Unbiased Estimator (BLUE)

Le BLUE de X_k , \hat{X}_k , est alors défini par le (ou l'un des) minimiseur(s) de

$$oldsymbol{J}_{k|\ell}(oldsymbol{X}_k) := rac{1}{2} \left\| oldsymbol{Y}_{k|\ell} - oldsymbol{A}_{k|\ell} oldsymbol{X}_k
ight\|_{oldsymbol{\Gamma}_{k|\ell}}^2,$$

avec la notation $\|\mathbf{w}\|_{\mathbf{W}}^2 = \mathbf{w}^T \mathbf{W}^{-1} \mathbf{w}$. En supposant toutes les matrices de covariance inversibles, on déduit :

$$\widehat{\boldsymbol{X}}_k = \left(\boldsymbol{A}_{k|\ell}^{\mathsf{T}} \boldsymbol{\Gamma}_{k|\ell}^{-1} \boldsymbol{A}_{k|\ell} \right)^{-1} \boldsymbol{A}_{k|\ell}^{\mathsf{T}} \boldsymbol{\Gamma}_{k|\ell}^{-1} \boldsymbol{Y}_{k|\ell}.$$

 $\Rightarrow \hat{\pmb{X}}_k$ est le BLUE de \pmb{X}_k , au sens où il a la **variance minimale** parmi les estimateurs **linéaires** $(\hat{\pmb{X}}_k \propto \pmb{Y}_{k|\ell})$ **non-biaisés** $(\mathbb{E}\left[\hat{\pmb{X}}_k\right] = \pmb{X}_k)$, avec :

$$\mathsf{Cov}\left(\widehat{\pmb{X}}_k\right) = \left(\pmb{A}_{k|\ell}^{\mathsf{T}} \pmb{\Gamma}_{k|\ell}^{-1} \pmb{A}_{k|\ell}\right)^{-1}.$$

Cadre gaussien

Si on suppose également que le vecteur aléatoire $Z_{k|\ell}$ est gaussien, alors on peut montrer que :

$$m{X}_k | m{Y}_{k|\ell} \sim \mathcal{N}\left(\widehat{m{X}}_k, \left(m{A}_{k|\ell}^T m{\Gamma}_{k|\ell}^{-1} m{A}_{k|\ell}\right)^{-1}\right).$$

- \to la distribution de $x_k|y_1,\ldots,y_\ell$ est alors connue pour tout $k\geq 0$ (on a résolu le problème initial),
- → toute l'information disponible est utilisée (le passé, le présent, le futur) pour caractériser cette distribution.
- → pour résoudre ce problème, il est nécessaire de manipuler (et d'inverser...) des matrices potentiellement gigantesques,ce qui est souvent impossible à faire en pratique (mémoire, stockage)...

FIGURE: Système pendule - plaque

- θ est l'angle de rotation du pendule, et y est le déplacement horizontal de la plaque.
- $\mathbf{x} = (y, \theta, \dot{y}, \dot{\theta})$ est le vecteur d'état.

On observe régulièrement la position du pendule et on cherche à prédire la position du pendule et de la plaque.

Les évolutions de y et θ satisfont le système d'équations suivant :

$$\begin{cases} (M+m)\ddot{y}+ky+m\ell\left(\ddot{\theta}\cos(\theta)-\dot{\theta}^2\sin(\theta)\right)=0,\\ \\ \ddot{y}\cos(\theta)+\ell\ddot{\theta}+g\sin(\theta)=0,\\ \\ (y,\theta,\dot{y},\dot{\theta})(t=0)=(y_0,\theta_0,\dot{y}_0,\dot{\theta}_0)=\mathbf{x}_0. \end{cases}$$

(a) Evolution de θ

(b) Evolution de y

FIGURE: $\mathbf{x}_0 = (0, 0, 0.5, 1), m = 1, \ell = 2, M = 2, k = 1.$

• La linéarisation et la discrétisation de ces équations conduisent à :

$$\boldsymbol{x}_k = \boldsymbol{F}_k \boldsymbol{x}_{k-1} + \boldsymbol{\xi}_k,$$

$$\boldsymbol{F}_{k} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{I}dt \\ \boldsymbol{A}dt & \boldsymbol{I} \end{pmatrix}^{(t_{k}-t_{k-1})/dt}, \quad \boldsymbol{A} = \begin{pmatrix} \boldsymbol{M}+\boldsymbol{m} & \boldsymbol{m}\ell \\ 1 & \ell \end{pmatrix}^{-1} \begin{pmatrix} -k & 0 \\ 0 & g \end{pmatrix}$$

L'observation de la position du pendule se traduit par :

$$y_k = \mathbf{H}_k \mathbf{x}_k + \eta_k, \quad \mathbf{H}_k = [0 \ 1 \ 0 \ 0].$$

 \Rightarrow ξ_k caractérise l'erreur de linéarisation et de discrétisation, tandis que η_k correspond à l'erreur de mesure.

Rouge \leftrightarrow mesures / Vert \leftrightarrow modèle direct

Plan de la présentation

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- Méthodes de propagation d'ensembles
- 5 Filtre de Kalman étendu
- 6 Conclusions

Hypothèses

- La méthode directe précédemment introduite présente un coût numérique qui croît avec le cube du nombre d'itérations considérées.
- L'idée du filtre de Kalman est de casser cette complexité, en décomposant le problème précédent en une série de problèmes beaucoup plus simples.
- \rightarrow L'objectif est de construire pour tout k le couple (BLUE + covariance) $(\widehat{\boldsymbol{x}}_{k|k}, \boldsymbol{C}_{k|k})$ de \boldsymbol{x}_k à partir du couple $(\widehat{\boldsymbol{x}}_{k-1|k-1}, \boldsymbol{C}_{k-1|k-1})$, de \boldsymbol{y}_k et de \boldsymbol{s}_k uniquement!
- \rightarrow Une méhode en deux étapes :
 - **Prédiction**: on calcule à partir du (méta)modèle (sans utiliser \boldsymbol{y}_k) $(\widehat{\boldsymbol{x}}_{k|k-1}, \boldsymbol{C}_{k|k-1})$ à l'instant t_k à partir de $(\widehat{\boldsymbol{x}}_{k-1|k-1}, \boldsymbol{C}_{k-1|k-1})$.
 - **Mise-à-jour**: on utilise y_k (sans utiliser le (méta)modèle) pour passer de $(\widehat{x}_{k|k-1}, C_{k|k-1})$ à $(\widehat{x}_{k|k}, C_{k|k})$.

Mise en équations - cas gaussien

- ightarrow On suppose que tous les vecteurs aléatoires sont gaussiens.
- lacktriangle Initialisation : on pose $\widehat{m{x}}_{0|0} = m{m}_0$, $m{C}_{0|0} = m{Q}_0$.
- **2** Prédiction : Si $x_{k-1} \mid y_1, \dots, y_{k-1} \sim \mathcal{N}(\widehat{x}_{k-1|k-1}, C_{k-1|k-1})$, alors :

$$\boldsymbol{x}_k \mid \boldsymbol{y}_1, \dots, \boldsymbol{y}_{k-1} \sim \mathcal{N}(\widehat{\boldsymbol{x}}_{k|k-1}, \boldsymbol{C}_{k|k-1}),$$

$$\widehat{\mathbf{x}}_{k|k-1} := \mathbf{F}_k \widehat{\mathbf{x}}_{k-1|k-1} + \mathbf{s}_k, \quad \mathbf{C}_{k|k-1} := \mathbf{F}_k \mathbf{C}_{k-1|k-1} \mathbf{F}_k^T + \mathbf{Q}_k.$$

Mise-à-jour : par conditionnement gaussien, on déduit :

$$egin{aligned} oldsymbol{x}_k \mid oldsymbol{y}_1, \dots, oldsymbol{y}_k, &\sim \mathcal{N}(\widehat{oldsymbol{x}}_{k|k}, oldsymbol{C}_{k|k}), \ \widehat{oldsymbol{x}}_{k|k} := \widehat{oldsymbol{x}}_{k|k-1} + oldsymbol{C}_{k|k-1} oldsymbol{H}_k^T oldsymbol{S}_{k}^{-1} (oldsymbol{y}_k - oldsymbol{H}_k \widehat{oldsymbol{x}}_{k|k-1}), \ oldsymbol{C}_{k|k} := oldsymbol{C}_{k|k-1} - oldsymbol{C}_{k|k-1} oldsymbol{H}_k^T oldsymbol{S}_k^{-1} oldsymbol{H}_k oldsymbol{C}_{k|k-1}, \ oldsymbol{S}_k := oldsymbol{H}_k oldsymbol{C}_{k|k-1} oldsymbol{H}_k^T + oldsymbol{R}_k. \end{aligned}$$

Mise en équations - cas gaussien

En notant $K_k := C_{k|k-1}H_k^T S_k^{-1} = C_{k|k-1}H_k^T (H_k C_{k|k-1}H_k^T + R_k)^{-1}$ le **gain de Kalman**, on peut récrire moyenne et covariance de prédiction sous la forme :

$$\widehat{\boldsymbol{x}}_{k|k} = \widehat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k(\boldsymbol{y}_k - \boldsymbol{H}_k \widehat{\boldsymbol{x}}_{k|k-1}),$$

$$C_{k|k} = (I - K_k H_k) C_{k|k-1}.$$

 \Rightarrow le gain de Kalman quantifie l'apport de la mesure \mathbf{y}_k par rapport à la prédiction avec (méta)modèle seul.

Mise en équations - cas NON gaussien

- Dans le cadre non-gaussien, on parle de méthodes variationnelles.
- On peut alors montrer (via une série de minimisations un peu plus techniques de potentiels quadratiques) que le BLUE de x_k sachant (y_1, \ldots, y_k) se calcule **exactement selon la récurrence précédente**, et que sa covariance est aussi donnée par les formules trouvées dans le cas gaussien.
- ⇒ ce résultat est très important, car il montre la robustesse de la méthode, et permet d'envisager le traitement de cas non linéaires où l'hypothèse gaussienne n'a plus vraiment de sens!

 $\mathsf{Rouge} \, \leftrightarrow \, \mathsf{mesures} \, \, / \, \, \mathsf{Vert} \, \leftrightarrow \, \mathsf{mod\`{e}le} \, \, \mathsf{direct} \, \, / \, \, \mathsf{Bleu} \, \leftrightarrow \, \mathsf{Kalman} \, \, \mathsf{lin\'{e}aire}.$

Plan de la présentation

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- 4 Méthodes de propagation d'ensembles
- 5 Filtre de Kalman étendu
- 6 Conclusions

Contexte

- Pour certaines applications, la dimension d_x du vecteur d'état x est tellement grande (on peut penser à des discrétisations 3D fines de l'espace par exemple) qu'il est **impossible de stocker ou manipuler** la matrice de covariance $C_{k|k}$ (de dimension $d_x \times d_x$).
- Le principe des **méthodes de propagation d'ensemble** (on parle aussi de filtre de Kalman d'ensemble) est alors de faire évoluer une population de $d_x \gg M \gg 1$ vecteurs d'état, notés $\mathbf{x}^{(m)}, \ 1 \leq m \leq M$, dont les moyenne et covariance empiriques se rapprochent le plus possible (au sens Monte Carlo) des quantités recherchées.

Mise en équations

- Initalisation : on note $\widetilde{\pmb{x}}_{0|0}^{(m)}$ des réalisations iid selon $\mathcal{N}(\pmb{m}_0, \pmb{Q}_0)$.
- **Prédiction** : en notant $\widetilde{\boldsymbol{\xi}}_k^{(m)}$ des réalisations iid selon $\mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}_k)$, on construit :

$$\widetilde{\mathbf{x}}_{k|k-1}^{(m)} = \mathbf{F}_k \widetilde{\mathbf{x}}_{k-1|k-1}^{(m)} + \mathbf{s}_k + \widetilde{\boldsymbol{\xi}}_k^{(m)}, \quad 1 \leq m \leq M.$$

• Mise-à-jour : on duplique les observations en notant $\widetilde{\boldsymbol{y}}_k^{(m)}$ des réalisations iid selon $\mathcal{N}(\boldsymbol{y}_k,\boldsymbol{R}_k)$. On déduit :

$$\widetilde{\boldsymbol{x}}_{k|k}^{(m)} = \widetilde{\boldsymbol{x}}_{k|k-1}^{(m)} + \widehat{\boldsymbol{K}}_k (\widetilde{\boldsymbol{y}}_k^{(m)} - \boldsymbol{H}_k \widetilde{\boldsymbol{x}}_{k|k-1}^{(m)}), \quad 1 \leq m \leq M.$$

 \Rightarrow l'ensemble des $\widetilde{\mathbf{x}}_{k|k}^{(m)}$ peut ensuite être post-traité pour en déduire un vecteur d'état moyen et des incertitudes associées.

Mise en équations

- On ne peut néanmoins pas calculer le gain de Kalman \hat{K}_k comme précédemment car $C_{k|k}$ est inconnu.
- En notant $\overline{\mathbf{x}}_{k|k-1} := \frac{1}{M} \sum_{m=1}^{M} \widetilde{\mathbf{x}}_{k|k-1}^{(m)}$, remarquons d'abord que :

$$\frac{1}{M-1}\sum_{m=1}^{M}(\widetilde{\boldsymbol{x}}_{k|k-1}^{(m)}-\overline{\boldsymbol{x}}_{k|k-1})(\widetilde{\boldsymbol{x}}_{k|k-1}^{(m)}-\overline{\boldsymbol{x}}_{k|k-1})^{T}=\frac{\boldsymbol{Z}_{k}\boldsymbol{Z}_{k}^{T}}{M-1}$$

est l'approximation empirique de $C_{k|k-1}$.

• On peut alors proposer une approximation empirique de K_k sans jamais agréger de matrices de tailles $d_x \times d_x$:

$$\widehat{\mathbf{K}}_k := \frac{\mathbf{Z}_k (\mathbf{H}_k \mathbf{Z}_k)^T}{M-1} \left(\frac{(\mathbf{H}_k \mathbf{Z}_k) (\mathbf{H}_k \mathbf{Z}_k)^T}{M-1} + \mathbf{R}_k \right)^{-1}.$$

 $\mathsf{R} \leftrightarrow \mathsf{mes.} \ / \ \mathsf{V} \leftrightarrow \mathsf{mod.} \ \mathsf{dir.} \ / \ \mathsf{B} \leftrightarrow \mathsf{K.} \ \mathsf{lin\'eaire} \ / \ \mathsf{C} \leftrightarrow \mathsf{K.} \ \mathsf{ensemble.}$

Plan de la présentation

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- 4 Méthodes de propagation d'ensembles
- 5 Filtre de Kalman étendu
- 6 Conclusions

Contexte

$$\mathbf{x}_k = \mathbf{f}_k(\mathbf{x}_{k-1}, \mathbf{s}_k) + \mathbf{\xi}_k, \ k \ge 0,$$

 $\mathbf{y}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{\eta}_k, \ 1 \le k \le \ell.$

- Le filtre de Kalman étendu ne suppose plus que les modèles d'évolution et d'observation f_k et h_k sont linéaires, mais différentiables en x.
- L'objectif du filtre de Kalman étendu est alors de calculer le BLUE du système linéarisé.

Mise en équations

La linéarisation doit être faite avec attention, en linéarisant autour des "bonnes" valeurs de x.

ightarrow on linéarise $m{f}_k$ autour de $\widehat{m{x}}_{k-1|k-1}$ pour la prédiction :

$$\mathbf{x}_{k} = \mathbf{f}_{k}(\widehat{\mathbf{x}}_{k-1|k-1}, \mathbf{s}_{k}) + \nabla_{\mathbf{x}}\mathbf{f}_{k}(\widehat{\mathbf{x}}_{k-1|k-1}, \mathbf{s}_{k})(\mathbf{x}_{k-1} - \widehat{\mathbf{x}}_{k-1|k-1}) + \boldsymbol{\xi}_{k},$$

= $\mathbf{F}_{k}\mathbf{x}_{k-1} + \widetilde{\mathbf{s}}_{k} + \boldsymbol{\xi}_{k}.$

 \rightarrow on linéarise h_k autour de $\hat{x}_{k|k-1}$ pour la mise à jour.

$$\mathbf{y}_{k} = \mathbf{h}_{k}(\widehat{\mathbf{x}}_{k|k-1}) + \nabla_{\mathbf{x}}\mathbf{h}_{k}(\widehat{\mathbf{x}}_{k|k-1})(\mathbf{x}_{k} - \widehat{\mathbf{x}}_{k|k-1}) + \eta_{k},$$
$$\widetilde{\mathbf{y}}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \eta_{k}.$$

Mise en équations

En appliquant les équations trouvées pour le filtre de Kalman linéaire, on déduit (**prédiction**) :

$$\widehat{oldsymbol{x}}_{k|k-1} = oldsymbol{F}_k \widehat{oldsymbol{x}}_{k-1|k-1} + \widetilde{oldsymbol{s}}_k = oldsymbol{f}_k (\widehat{oldsymbol{x}}_{k-1|k-1}, oldsymbol{s}_k),$$
 $oldsymbol{C}_{k|k-1} = oldsymbol{F}_k oldsymbol{C}_{k-1|k-1} oldsymbol{F}_k^T + oldsymbol{Q}_k,$

puis (mise-à-jour) :

$$\begin{aligned} \boldsymbol{C}_{k|k} &= \boldsymbol{C}_{k|k-1} - \boldsymbol{C}_{k|k-1} \boldsymbol{H}_k^T \boldsymbol{S}_k^{-1} \boldsymbol{H}_k \boldsymbol{C}_{k|k-1}, \\ &= (\boldsymbol{C}_{k|k-1}^{-1} + \boldsymbol{H}_k^T \boldsymbol{R}_k^{-1} \boldsymbol{H}_k)^{-1} \text{ (formule de Woodbury)}, \\ \widehat{\boldsymbol{x}}_{k|k} &= \widehat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{C}_{k|k} \boldsymbol{H}_k^T \boldsymbol{R}_k^{-1} (\boldsymbol{y}_k - \boldsymbol{h}_k (\widehat{\boldsymbol{x}}_{k|k-1})). \end{aligned}$$

 $\mathsf{R} \leftrightarrow \mathsf{mes.} \ / \ \mathsf{V} \leftrightarrow \mathsf{dir.} \ / \ \mathsf{B} \leftrightarrow \mathsf{K.} \ \mathsf{lin.} \ / \ \mathsf{C} \leftrightarrow \mathsf{K.} \ \mathsf{ens.} \ / \ \mathsf{O} \leftrightarrow \mathsf{K.} \ \mathsf{\acute{e}tendu}.$

Conclusions

- L'assimilation de données est une thématique très à la mode pour la simulation de systèmes complexes.
- La DA cherche à prédire le comportement de tels systèmes en couplant "data", "probabilités" et "modèles physiques" (des termes comme "data-driven models" sont parfois utilisés).
- D'autres approches existent (ex : méthodes de filtres particulaires pour gérer des modèles non-linéaires non gaussiens...).
- De nombreux défis existent :
 - ightarrow concernant la complexité et la taille croissantes des modèles physiques et des données disponibles (données dépendantes...),
 - $\rightarrow\,$ pour des méthodes moins gourmandes "écologiquement" (cout, temps de calcul),
 - ightarrow pour un couplage efficace aux techniques émergentes de machine learning.

Plan de la présentation

- Introduction
- 2 Cadre linéaire
- 3 Le filtre de Kalman
- 4 Méthodes de propagation d'ensembles
- 5 Filtre de Kalman étendu
- 6 Conclusions

Quizz

•	L'assimilation de données sert à
	\Box corriger les modèles physiques \Box remplacer les modèles physiques
	□ enrichir les modèles physiques.
•	Pour améliorer les prédictions de l'assimilation de données, il
	faut
	\square collecter davantage de données \square proposer un modèle plus
	représentatif $\ \square$ mieux sélectionner les données $\ \square$ discrétiser
	davantage temps et espace.
•	Supposer un modèle gaussien pour le vecteur d'état vous
	semble
	\square raisonnable \square farfelu \square utile si validé \square dangereux