

中加、中日核天体物理 国际合作实验(CIAE)

郭 冰中国原子能科学研究院

2010/09/16 1/17

研究目标—若干氢燃烧反应 恒星演化中的氢燃烧(恒星能源,元素合成)

- pp反应链,中小质量恒星能源,如太阳,1967年 诺贝尔物理奖
- CNO循环,大质量、超大质量恒星能源
- 快速αp过程,从pp反应链核(4He)合成CNO核, 高温高密环境中3α过程的替代反应链
- NeNa-MgAI循环
- rp过程,继续合成更重核素

质子辐射俘获(p,γ)反应是氢燃烧的一个重要途径

2010/09/16 2/17

质子辐射俘获反应实验研究方法

- ■直接测量(TRIUMF)
- 间接测量
- ① ANC方法(Texas, MSU, 原子能院)
- ② 库仑离解(RIKEN, GANIL)
- ③ 弹性/非弹共振散射(RIKEN/CNS, Oak Ridge, TRIUMF, Notre Dame, 近物所, 原子能院)

我们的合作将采用直接测量和间接测量的方法

2010/09/16 3/17

中加合作(TRIUMF)

- ■合作研究基础
- ■未来三年目标一直接测量

中日合作(RIKEN/CNS)

- ●合作研究基础
- 未来三年目标—间接测量

2010/09/16 4/17

六个关键科学问题

- 恒星平稳演化阶段最重要的热核反应在天体物理能区的直接测量
- 高能区带电粒子反应截面向天体物理能区的合理外推
- □ 若干关键的平稳核燃烧阶段和爆发性rp及r过程核反应截 — 面的间接测量
- rp和r过程涉及核素衰变性质、质量、反应和共振态性质的测量
- 核天体物理反应和衰变性质的理论研究、数据库和网络方程的建立
- 通过元素丰度的观测研究天体核合成的场所

2010/09/16 5/17

中加合作—合作研究基础

- 原子能院与TRIUMF(加拿大唯一核物理国家实验室)合作领域涉及核天体物理实验、回旋加速器研发和放射性同位素生产;
- 2000年,TRIUMF召开电磁分离器国际会议,柳卫平研究员在大会上作了邀请报告,并启动了中加核天体物理国际合作实验;
- 2002年,原子能院与TRIUMF正式签订了谅解合作备忘录, 并于2006年续签第二期谅解合作备忘录;
- 核天体物理合作: 多次访问、¹²C(α,γ)¹⁶O-PRL、¹¹C束流 产生新方法-CJP。

2010/09/16 6/17

中加合作—未来三年目标

两个直接测量目标

- **■** ¹¹C(p,γ)¹²N,高温pp链、快速αp过程,我 方任发言人
- 33S(p,γ)³⁴CI,新星爆发、³³S过丰现象, 我方共享数据

2010/09/16 7/17

研究现状——理论和间接测量

天体物理感兴趣的低能区,¹¹C(p,γ)¹²N反应截面取决于**直接俘获**和第一激发态及第二激发态的两个共振俘获。

直接俘获

S(0)	Method	Reference
$157 \pm 50 \text{ eV b}$	ANC	CIAE [10]
$93 \pm 13 \text{ eV b}$	ANC	TAMU [9]
$47~{ m eV}~{ m b}$	Coulomb dissociation	GANIL [5]
$149~{ m eV}~{ m b}$	Microscopic calculation	Timofeyuk [4]
$88 \pm 19 \text{ eV b}$	Charge symmetry	CIAE [11]

[4] N.K. Timofeyuk et al., Nucl. Phys. A 713, 217 (2003).
[5] A. Lefebvre et al., Nucl. Phys. A 592, 69 (1995).
[9] X. Tang et al., Phys. Rev. C 67, 015804 (2003).
[10] W. Liu et al., Nucl. Phys. A 728, 275 (2003).
[11] B. Guo et al., J. Phys. G 34, 103 (2007).

2010/09/16 8/17

研究现状——共振俘获

E _r	Jπ	Γ_{p}		Γ_{γ} (The.)		Γ _γ (Exp.)			
		(keV)			(meV)		(meV)		
0.36	2	< 20 ^a	5.5 ^b	0.86(15) ^c	2	.59 (M1	() ^d		?
0.59	2-	118(14) ^a	109e	102(13) ^c	2 ^d	140 ^f	68 ^g	6+7-3.5 ^b	13.0(5)h

- a Ajzenberg-Selove et al., NPA 506, 1 (1990)
- **b** Lefebvre et al., NPA 592, 69 (1995)
- **c** Guo et al., JPG 34, 103 (2007)
- d Wiescher et al, APJ 343, 352 (1989)
- e Perajarvi et al., PRC 74, 024306 (2006)
- f Descouvement et al, NPA 514, 66 (1990)
- g Descouvement, NPA 646, 261 (1999)
- h Minemura et al., RIKEN Accel. Prog. Rep., A35 (2002)

第一步实验测量目标

群体启动汇报会

2010/09/16 10/17

中日合作—合作研究基础

- 原子能院与东京大学CNS、RIKEN有多年的合作基础
- 柳卫平研究员多次任RIKEN核物理实验评审委员 会委员,任中日核物理合作协调委员会成员
- 研究人员多次访问,包括学生多次参加CNS暑期 学校
- 多次合作核天体物理实验: ¹³N+p(PLB),
 ¹⁴O+α

中日合作—未来三年目标

两个间接测量目标

- 12N(p,γ)¹³O,高温pp链、快速αp过程, 我方任发言人
- ²²Mg(p,γ)²³AI, ²²Na丰度问题, 我方任发言人, 正准备申请

2010/09/16 12/17

12N(p,γ)13O研究现状

- ¹²N(p,γ)¹³O反应Q值低(1.5MeV),远小于第一激发态激发能(2.7MeV),其反应截面取决于末态为基态的直接俘获;
- 圣母大学Wiescher等基于壳模型研究了¹²N(p,γ)¹³O反应,
 S(0)=40keV b;
 - Wiescher et al., APJ 343, 352 (1989).
- 原子能院李志宏研究员利用破裂反应给出的谱因子和辐射俘获模型研究 $\Gamma^{12}N(p,\gamma)^{13}O$ 反应, $\Gamma^{12}N(p,\gamma)^{13}O$ 反应, $\Gamma^{12}N^{12}O$ 反应, $\Gamma^{12}N^{12}O$ 反应, $\Gamma^{12}N^{12}O$ 反应 反应, $\Gamma^{12}N^{12}O$ 反应, $\Gamma^{12}N^{12}O$ 反应, $\Gamma^{12}N^{12}O$ 反应, $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反应 $\Gamma^{12}N^{12}O$ 反
 - Z.H. Li, CPL 23, 3219 (2006).
- 目前结果相差两个量级;
- 德克萨斯大学Tribble组测量了¹⁴N(¹²N,¹³O)¹³C,该工作在我们的实验 完成后正式发表,证实了本群体成员李志宏研究员的结论。

2010/09/16 13/17

研究现状 (续)

- 直接测量非常困难(截面小~nb,流强低<10⁶pps),因此,需使用间接实验方法;
- 渐进归一化系数(ANC)方法是一种间接的实验方法 [PRL 73, 2027 (1994)],适合于周边辐射俘获反应的研究,近年来,该方法已经成功应用于许多(p,γ)反应的研究,例如

 7 Be(p, γ) 8 B [W.P. Liu et al., PRL 77(96)611],

¹¹C(p,γ)¹²N [W.P. Liu et al., NPA 728(03)275],

 $^{8}B(p,\gamma)^{9}C$ [B. Guo et al., NPA 761(05)162],

 $^{13}N(p,\gamma)^{14}O$ [Z.H. Li et al., PRC 74(06)035801].

2010/09/16 14/17

CRIB次级束流线

2010/09/16 15/17

总结

- 在基金委创新研究群体项目的资助下,计划3 年内完成4项核天体物理国际合作实验(氢燃 烧阶段)
- 直接测量: ¹¹C(p,γ)¹²N和³³S(p,γ)³⁴CI
- 间接测量: ¹²N(p,γ)¹³O和²²Mg(p,γ)²³Al
- 3项我方任发言人,1项共享数据

2010/09/16 16/17

谢谢各位领导专家!

2010/09/16 17/17

研究意义 (续)

 $^{3}He(\alpha,\gamma)^{7}Be(p,\gamma)^{8}B(p,\gamma)^{9}C(\alpha,p)$ $^{12}N(p,\gamma)^{13}O(\beta^{+}\upsilon)^{13}N(p,\gamma)^{14}O, \ rap\ I$

³He(α , γ)⁷Be(α , γ)¹¹C(\mathbf{p} , γ)¹²N(\mathbf{p} , γ)¹³O (β ⁺υ)¹³N(\mathbf{p} , γ)¹⁴O, rap II

³He(α,γ)⁷Be(α,γ)¹¹C(p,γ)¹²N($\beta+\upsilon$)¹²C(p,γ)¹³N(p,γ)¹⁴O, rap III

M. Wiescher, APJ 343, 352 (1989).

群体启动汇报会

2+共振产额估算

B. Guo et al., JPG 34, 103 (2007).

- 1×10^8 ions/s 11 C beam intensity.
- 6 Torr Hydrogen gas taget.
- 20% overall efficiency.

计数率及束流时间估算

$E_{\rm p}~({\rm keV})$	$E_{\rm cm}~({\rm keV})$	$_{ m Yield}$	Rate (hr^{-1})
381.8	350	1.94×10^{-12}	0.1
387.3	355	2.87×10^{-12}	0.2
391.6	359	3.50×10^{-11}	2.5
392.7	360	6.03×10^{-11}	4.3
396.0	363	6.95×10^{-11}	5.0
401.5	368	6.89×10^{-11}	5.0
404.7	371	7.06×10^{-11}	5.1
409.1	375	2.31×10^{-11}	1.7
414.5	380	3.38×10^{-12}	0.2
420.0	385	2.81×10^{-12}	0.2

如每个能量测量10小时,需100小时束流时间,产额最大处将测得大约50个事件,由此导出的共振强度统计误差约为14%。

2010/09/16 20/17

研究方案-采用逆运动学

2H(12N,13O)n反应角分布

虚衰变 ¹³O → ¹²N + p 的谱因子和ANC

$$\sigma = \frac{16\pi}{3} \left(\frac{E_{\gamma}}{\hbar c} \right)^{3} \frac{1}{\hbar v} \frac{e^{2}}{k^{2}} \frac{(2J_{f} + 1)}{(2J_{1} + 1)(2J_{2} + 1)} \left(\frac{Z_{1}M_{2} - Z_{2}M_{1}}{M_{1} + M_{2}} \right)^{2} \frac{\max(l_{1}, l_{2})}{2l_{2} + 1}$$

$$\times \left(\frac{\mathbb{B}}{l_{f}j_{f}} \right)^{2} \int_{\mathbb{R}_{N}}^{\infty} r dr F_{lj}(kr) W_{-\eta, l+1/2}(2k_{B}r) \bigg|^{2}, \qquad (3.19)$$

辐射俘获理论

¹²N(p,γ)¹³O天体物理S因子和反应率

F3靶室探测系统

2010/09/16 22/17