Машинное обучение (Machine Learning) Функции потерь и показатели качества моделей

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

Определение функции потерь

• Цель задачи МО - научить функцию f, которая преобразует вход, определяемый входным пространством Φ , в желаемый результат, определяемый выходным пространством \mathcal{Y} :

$$f:\Phi\to\mathcal{Y}$$

- f может быть аппроксимирована моделью f_{Θ} с параметрами Θ .
- Дано множество векторов $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\} \in \Phi$ множество меток $\mathbf{Y} = \{\mathbf{y}_1, ..., \mathbf{y}_n\} \in \mathcal{Y}$. Функция потерь L определяет близость $f(\mathbf{x}_i)$ и \mathbf{y}_i .
- ullet Суммируя по всем i=1,...,n, получаем

$$\mathcal{L}(f|\mathbf{X},\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i),\mathbf{y}_i)$$

Определение функции потерь

ullet Суммируя по всем i=1,...,n, получаем

$$\mathcal{L}(f|\mathbf{X},\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i), \mathbf{y}_i)$$

• С регуляризацией

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i), \mathbf{y}_i) + R(f)$$

• С параметрами

$$\min_{\Theta} \frac{1}{n} \sum_{i=1}^{n} L(f_{\Theta}(\mathbf{x}_i), \mathbf{y}_i) + R(\Theta)$$

Algorithm. Gradient Descent

Input: initial parameters $\Theta^{(0)}$, number of iterations T, learning rate α **Output:** final learning $\Theta^{(T)}$

- 1. **for** t = 0 **to** T 1
- 2. estimate $\nabla \mathcal{L}(\Theta^{(t)})$
- 3. compute $\Delta \Theta^{(t)} = -\nabla \mathcal{L}(\Theta^{(t)})$
- 4. $\Theta^{(t+1)} := \Theta^{(t)} + \alpha \Delta \Theta^{(t)}$
 - 5. return $\Theta^{(T)}$

Виды функций потерь

Функции потерь для регрессии $\left(1\right)$

Функции потерь для регрессии (2)

• Mean Absolute Error Loss:

$$\mathcal{L}_{MAE} = \frac{1}{n} \sum_{i=1}^{n} |f(\mathbf{x}_i) - y_i|$$

Mean Squared Error Loss:

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mathbf{x}_i) - y_i \right)^2$$

Root Mean Squared Error Loss:

$$\mathcal{L}_{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2}$$

Функции потерь для регрессии (3)

• Huber loss - равна MSE, когда ошибка мала $|f(\mathbf{x}_i) - y_i| < \delta$, иначе получаем MAE:

$$L_{Huber} = \begin{cases} \frac{1}{2} \left(f(\mathbf{x}_i) - y_i \right)^2, & |f(\mathbf{x}_i) - y_i| \leq \delta, \\ \delta \left(|f(\mathbf{x}_i) - y_i| - \frac{1}{2} \delta \right), & . \end{cases}$$

Log-cosh loss:

$$\mathcal{L}_{Logcosh} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\cosh \left(f(\mathbf{x}_i) - y_i \right) \right)$$

- все преимущества потерь Хьюбера без гиперпараметра, но высокие выч. затраты.
- везде дифференцируема дважды, это плюс, когда, требуется вторая производная.
- $\log(\cosh(\mathbf{x})) \approx \mathbf{x}^2/2$ при малых \mathbf{x} (MSE), $\log\left(\cosh(\mathbf{x})\right)pprox |\mathbf{x}|-\log(2)$ при больших \mathbf{x} (MAE).

Функции потерь для регрессии (4)

Root Mean Squared Logarithmic Error Loss:

$$\mathcal{L}_{\mathit{RMSLE}} = \sqrt{rac{1}{n} \sum_{i=1}^{n} \left(\log(y_i + 1) - \log\left(f(\mathbf{x}_i) + 1
ight)
ight)^2}$$

- единственное отличие от RMSE логарифм применяется как к предсказаниям, так и к меткам
- ullet плюс 1 внутри логарифма позволяет $f(\mathbf{x}_i)$ быть равными 0
- из-за свойств логарифма ошибка между $f(\mathbf{x}_i)$ и y_i является относительной, что делает RMSLE более устойчивым к выбросам, т.к. величина RMLSE не масштабируется соответственно величине ошибки, и данные с большими остатками меньше штрафуются, когда $f(\mathbf{x}_i)$ и y_i имеют большие значения.

Функции потерь для классификации

Функции потерь Margin Based (1)

Zero-One loss:

$$L_{ZeroOne}(f(\mathbf{x}), y) = \begin{cases} 1, & f(\mathbf{x}) \cdot y < 0, \\ 0, & . \end{cases}$$

не используется так как невыпуклая и недифференцируема

• Hinge loss:

$$L_{Hinge}(f(\mathbf{x}), y) = \max(0, 1 - (f(\mathbf{x}) \cdot y))$$

линейно штрафует каждое предсказание, где результирующее соответствие <=1

Perceptron loss:

$$L_{Perceptron}(f(\mathbf{x}), y) = \max(0, -(f(\mathbf{x}) \cdot y))$$

не штрафует примеры внутри полосы (margin) разделяющей гиперплоскости.

Функции потерь Margin Based (2)

• Smoothed Hinge loss:

$$L_{Smooth}(f(\mathbf{x}), y) = \left\{ egin{array}{ll} rac{1}{2} - f(\mathbf{x}) \cdot t, & f(\mathbf{x}) \cdot y \leq 0 \ rac{1}{2} \left(1 - \left(f(\mathbf{x}) \cdot t
ight)\right)^2, & 0 < f(\mathbf{x}) \cdot y < 1 \ 0, & f(\mathbf{x}) \cdot y \geq 0 \end{array}
ight.$$

сглаженная дифференцируемая версия Hinge loss

Quadratically Smoothed Hinge loss:

$$L_{QSm}(f(\mathbf{x}), y) = \begin{cases} \frac{1}{2\gamma} \max(0, -f(\mathbf{x}) \cdot y)^2, & f(\mathbf{x}) \cdot y \ge 1 - \gamma \\ 1 - \frac{\gamma}{2} - (f(\mathbf{x}) \cdot y), & \end{cases}$$

параметр γ определяет степень сглаженности, при $\gamma \to 0$ функция равна Hinge loss.

Функции потерь Margin Based (3)

Ramp loss или Truncated Hinge:

$$L_{Ramp}(f(\mathbf{x}), y) = \begin{cases} L_{Hinge}(f(\mathbf{x}), y), & f(\mathbf{x}) \cdot y \geq -1 \\ 1, & \end{cases}$$

робастная для многоклассовой классификации

Cosine Similarity loss:

$$L_{Cos-Sim}(f(\mathbf{x}), y) = 1 - \frac{\mathbf{y} \cdot f(\mathbf{x})}{\|\mathbf{y}\| \|f(\mathbf{x})\|}$$

- ullet когда ${f y}$ и $f({f x})$ векторы
- $L_{Cos-Sim}(f(\mathbf{x}), y) \in [0, 1]$

Вероятностные функции потерь (Cross Entropy)

Cross Entropy loss:

- Оценка максимального правдоподобия (MLE).
- ullet Для датасета ${\mathcal D}$ максимизируем MLE:

$$P(\mathcal{D}|\Theta) = \prod_{i=1}^{n} f_{\Theta}(\mathbf{x}_{i})^{y_{i}} (1 - f_{\Theta}(\mathbf{x}_{i}))^{1-y_{i}}$$

• переход к логарифму

$$\log P(\mathcal{D}|\Theta) = \sum_{i=1}^{n} \left(y_i \log f_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - f_{\Theta}(\mathbf{x}_i)) \right)$$

• Функция потерь (Cross Entropy loss)

$$\mathcal{L}_{NLL} = -\sum_{i=1}^{n} \left(y_i \log f_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - f_{\Theta}(\mathbf{x}_i)) \right)$$

Вероятностные функции потерь (Cross Entropy)

ullet Минимизация \mathcal{L}_{NLL} по Θ :

$$\min_{\Theta} \mathcal{L}_{NLL} = \min_{\Theta} \frac{1}{N} \prod_{i=1}^{n} f_{\Theta}(\mathbf{x}_{i})^{ny_{i}}$$

$$= \sum_{i=1}^{n} q(\mathbf{x}_{i}) \log f_{\Theta}(\mathbf{x}_{i})$$

$$= -H(q, f_{\Theta})$$

• q - распределение вероятностей данных.

Вероятностные функции потерь (Cross Entropy)

• Классический подход - добавление в качестве окончательной активации модели функции softmax, определенной в соответствии с количеством рассматриваемых K классов. Учитывая оценку для каждого класса $f_k(\mathbf{x}) = s$:

$$\widehat{f}_k(\mathbf{x}_i) = f_S(f_k(\mathbf{x})),$$

где

$$f_S(s_i) = \frac{\exp(s_i)}{\sum_{j=1}^K \exp(s_j)}.$$

• Отсюда

$$\mathcal{L}_{CCE} = -\frac{1}{K} \sum_{i=1}^{n} \log \widehat{f}_{k}(\mathbf{x}_{i})$$

Вероятностные функции потерь (KL)

Kullback-Leibler divergence

$$egin{aligned} \mathit{KL}(g||f_{\Theta}) &= \int q(\mathbf{x}) \log rac{q(\mathbf{x})}{f_{\Theta}(\mathbf{x})} \mathrm{d}\mathbf{x} \ &= -\int q(\mathbf{x}) \log f_{\Theta}(\mathbf{x}) \mathrm{d}\mathbf{x} + \int q(\mathbf{x}) \log q(\mathbf{x}) \mathrm{d}\mathbf{x} \end{aligned}$$

Второй интеграл не зависит от Ө:

$$\min_{\Theta} KL(g||f_{\Theta}) = \min_{\Theta} \left(-\int q(\mathbf{x}) \log f_{\Theta}(\mathbf{x}) d\mathbf{x} \right)
= \min_{\Theta} \left(-H(q, f_{\Theta}) \right)$$

Функции потерь ранжирования (ranking loss)

- Цель функции потерь формировать относительные расстояния между данными, а не учиться предсказывать метку. Это метрическое обучение (metric learning).
- Pairwise Ranking loss:
 - используются полож. и негатив. пары обучающих данных
 - положительные пары состоят из якорного примера ${\bf x}_a$ и положит. примера ${\bf x}_p$, который аналогичен ${\bf x}_a$
 - негативные пары состоят из якорного примера \mathbf{x}_a и негативного примера \mathbf{x}_n , который не похож на \mathbf{x}_a
 - цель обучить представления с небольшим расстоянием d между ними для положит. пар и большим расстоянием для негативн. пар.

Pairwise Ranking loss

• Даны эмбединги ${\bf r}_a, {\bf r}_p, {\bf r}_n$ примеров ${\bf x}_a, {\bf x}_p, {\bf x}_n$ и d - расстояние

$$L_{\it pairwise} = \left\{ egin{array}{ll} d({f r}_a,{f r}_p), & {
m пара \ nonownt,} \ {
m max}(0,m-d({f r}_a,{f r}_n)), & {
m napa \ otpuцат.} \end{array}
ight.$$

• Другое представление:

$$egin{aligned} L_{\textit{pairwise}}(\mathbf{r}_0,\mathbf{r}_1,y) &= y \, \|\mathbf{r}_0 - \mathbf{r}_1\| \ &+ (1-y) \max(0,m-\|\mathbf{r}_0 - \mathbf{r}_1\|) \end{aligned}$$

y=0 для отрицат. пары, y=1 для положит. пары

Triplet Ranking loss

- Тройки примеров из датасета вместо пар могут повысить точность.
- Тройка состоим из якоря \mathbf{x}_a , положительного примера \mathbf{x}_p и отрицательного примера \mathbf{x}_n
- ullet Цель $d(\mathbf{r}_a,\mathbf{r}_n)>d(\mathbf{r}_a,\mathbf{r}_p)$:

$$L_{triplet}(\mathbf{r}_{a},\mathbf{r}_{p},\mathbf{r}_{n}) = \max(0,m+d(\mathbf{r}_{a},\mathbf{r}_{p})-d(\mathbf{r}_{a},\mathbf{r}_{n}))$$

Три варианта Triplet Ranking

- ullet Простая тройка (Easy Triplet): $d(\mathbf{r}_a,\mathbf{r}_n)>d(\mathbf{r}_a,\mathbf{r}_p)+m$: $L_{triplet}=0$
- ullet Сложная тройка (Hard Triplet): $d({f r}_a,{f r}_n) < d({f r}_a,{f r}_p)$: $L_{triplet} > m$
- ullet Полусложная тройка (Semi-Hard Triplet): $d(\mathbf{r}_a,\mathbf{r}_p) < d(\mathbf{r}_a,\mathbf{r}_n) < d(\mathbf{r}_a,\mathbf{r}_p) + m$: $0 < L_{triplet} < m$

Confusion matrix (матрица ошибок)

Для каждого объекта в выборке возможны 4 ситуации:

- предсказали положительную метку и угадали: true positive (TP) (true - потому что предсказали мы правильно, а positive – потому что предсказали положительную метку);
- предсказали положительную метку, но ошиблись: false positive (FP) (false - потому что предсказание было неправильным);
- предсказали отрицательную метку и угадали: true negative (TN);
- предсказали отрицательную метку, но ошиблись: false negative (FN).

Confusion matrix (матрица ошибок)

Accuracy (точность)

• Точность:

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

• Ошибка (error rate):

$$ER = 1 - Acc = \frac{FP + FN}{TP + TN + FP + FN}$$

- 1. Ситуация: пусть FP доля доброкачественных опухолей, которым ошибочно присваивается метка злокачественной, а FN доля злокачественных опухолей, которые классификатор пропускает. FN важнее, так как связана с неправильным диагнозом и жизнью
- 2. Ситуация: рассмотрим задачу: по данным о погоде предсказать, будет ли успешным запуск спутника. FN это ошибочное предсказание неуспеха, то есть не более, чем упущенный шанс. С FP все серьезней: если предсказать удачный запуск, а он потерпит крушение из-за погоды, то потери в разы существеннее.

3. Ситуация: положительный класс - редкое событие. Пример поисковой системы - в хранилище хранятся миллиарды документов, а релевантных к конкретному поисковому запросу на несколько порядков меньше. Это задача бинарной классификации: "документ d релевантен по запросу q". Благодаря большому дисбалансу, объявляющего все документы нерелевантными, Ассигасу близка к 1, что обеспечено TN, в то время для пользователей более важен высокий TP.

• Точность (precision) - доля объектов, названных классификатором положительными, и при этом действительно являющимися положительными:

$$Precision = \frac{TP}{TP + FP}$$

 Чем меньше ложноположительных срабатываний будет допускать модель, тем больше будет ее Precision.

 Полнота (recall) - доля объектов положительного класса из всех объектов положительного класса, которые нашел алгоритм:

$$\mathsf{Recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

- Чем меньше ложно отрицательных срабатываний, тем выше Recall модели.
- В задаче предсказания злокачественности опухоли Precision показывает, сколько из определенных нами как злокачественные опухолей действительно являются злокачественными, а Recall - какую долю злокачественных опухолей нам удалось выявить.

F1-мера

- Идея: napy precision и recall скомпоновать, чтобы было одно число, например, взять их среднее гармоническое.
- **F1**-measure (F1-мера):

$$F1 = 2 \frac{\mathsf{Recall} \cdot \mathsf{Precision}}{\mathsf{Recall} + \mathsf{Precision}} = \frac{\mathit{TP}}{\mathit{TP} + \frac{\mathit{FP} + \mathit{FN}}{2}}$$

F1-мера - обобщение

- F1-мера предполагает одинаковую важность Precision и Recall.
- ullet Если одна из этих метрик приоритетнее, то можно использовать меру F_eta :

$$F_{eta} = (eta^2 + 1) rac{\mathsf{Recall} \cdot \mathsf{Precision}}{\mathsf{Recall} + eta^2 \mathsf{Precision}}$$

Чувствительность и специфичность $\overline{(1)}$

- Чувствительность доля положительных результатов, которые правильно идентифицированы как таковые. Вероятность того, что больной будет классифицирован именно как больной.
- Специфичность отражает долю отрицательных результатов, которые правильно идентифицированы как таковые. Вероятность того, что не больные субъекты будут классифицированы именно как не больные.

Чувствительность и специфичность (2)

• Чувствительность (true positive rate, recall)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

• Специфичность (true negative rate)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP}$$

Чувствительность и специфичность (3)

https://en.wikipedia.org/wiki/Sensitivity and specificity

Precision и Recall, Sensitivity и Specificity

- Precision и Recall: рассматривают True Positives (TP)
 - Precision: TP / Predicted positive
 - Recall: TP / Real positive
- Sensitivity и Specificity: рассматривают Correct Predictions.
 - SNIP (SeNsitivity Is Positive): TP / (TP + FN)
 - ullet SPIN (SPecificity Is Negative): TN / (TN + FP)

AUC

- Пусть бинарная классификация с вероятностями классов. Как оценить качество предсказываемых вероятностей (калибровка)?
- При уменьшении порога отсечения находим (правильно предсказываем) все большее число положительных объектов, но также и неправильно предсказываем положительную метку на все большем числе отрицательных объектов.
- Естественным кажется ввести две метрики
- TPR (true positive rate) и FPR (false positive rate)

TPR u FPR

 TPR (true positive rate) – это полнота, доля положительных объектов, правильно предсказанных положительными:

$$TPR = Recall = \frac{TP}{P} = \frac{TP}{TP + FN}$$

• FPR (false positive rate) – это доля отрицательных объектов, неправильно предсказанных положительными:

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

• Уменьшая порог, увеличиваем TPR и FPR

ROC curve

- Уменьшая порог, увеличиваем TPR и FPR
- Кривая в осях TPR/FPR, которая получается при варьировании порога, называется **ROC**-кривой (receiver operating characteristics curve, ROC curve)

ROC curve

- Если классификатор идеальный, то получаем ROC-кривую (0,0)->(0,1)->(1,1), площадь под которой равна 1.
- Если классификатор случайный (предсказывает одинаковые метки положительным и отрицательным объектам), то получаем ROC-кривую (0,0)->(1,1), площадь под которой равна 0.5.
- Чем лучше классификатор разделяет два класса, тем больше площадь (area under curve) под ROC-кривой.
 Эта площадь используется в качестве метрики.

AUC

 AUC равен доле пар объектов вида (объект класса 1, объект класса 0), которые алгоритм верно упорядочил, т.е. предсказание классификатора на первом объекте больше

$$AUC = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{1}[y_i < y_j] I^*[f(\mathbf{x}_i) < f(\mathbf{x}_j)]}{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{1}[y_i < y_j]}$$

$$I^*[f(\mathbf{x}_i) < f(\mathbf{x}_j)] = \begin{cases} 0, & f(\mathbf{x}_i) > f(\mathbf{x}_j) \\ 0.5, & f(\mathbf{x}_i) = f(\mathbf{x}_j) \\ 1, & f(\mathbf{x}_i) < f(\mathbf{x}_j) \end{cases}$$

AUC - когда лучше использовать

 В любой задаче, где важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC.

Average Precision

- Будем постепенно уменьшать порог бинаризации.
- Полнота будет расти от 0 до 1, так как будет увеличиваться количество объектов, которым мы приписываем положительный класс (а количество объектов, на самом деле относящихся к положительному классу, очевидно, меняться не будет).
- Про точность нельзя сказать ничего определенного, но скорее всего она будет выше при более высоком пороге отсечения (мы оставим только объекты, в которых модель "уверена" больше всего).
- Варьируя порог и пересчитывая значения Precision и Recall на каждом пороге, мы получим некоторую кривую примерно следующего вида:

Average Precision

Среднее значение точности АР равно площади под кривой точность-полнота.

Многоклассовая классификация

- K классов: ставится как K задач об отделении класса i от остальных (i=1,...,K), для каждой из них можно посчитать свою матрицу ошибок.
- 2 варианта вычисления итоговой метрики:
 - Усредняем элементы матрицы ошибок (TP, FP, TN, FN) между бинарными классификаторами, например $TP = K^{-1} \sum_{i=1}^{K} TP_i$. Затем по одной усредненной матрице ошибок считаем Precision, Recall, F-меру. Это микроусреднение.
 - Считаем Precision, Recall для каждого классификатора отдельно, а потом усредняем. Это макроусреднение.
- Порядок усреднения влияет на результат в случае дисбаланса классов

Многоклассовая классификация - пример

 Датасет из объектов трех цветов: желтого, зеленого и синего. Желтого и зеленого цветов почти поровну - 21 и 20 объектов соответственно, а синих объектов 4.

Многоклассовая классификация - пример

Модель по очереди для каждого цвета пытается отделить объекты этого цвета от объектов других двух цветов.
 Результаты в матрице ошибок. Модель "покрасила" в желтый 25 объектов, 20 из которых были действ-но желтыми (левый столбец). В синий - только 1 объект, который на самом деле желтый (средний столбец). В зеленый - 19, все на самом деле зеленые (правый столбец).

Многоклассовая классификация - пример

- Precision классификации:
 - микроусреднение

Precision =
$$\frac{(20+0+19)/3}{(20+0+19)/3+(5+1+0)/3} = 0.87$$

• макроусреднение

Precision =
$$\frac{1}{3} \left(\frac{20}{20+5} + \frac{0}{0+1} + \frac{19}{19+0} \right) = 0.6$$

 макроусреднение лучше отражает тот факт, что синий цвет, которого в датасете совсем мало, модель практически игнорирует.

Peгрессия - MSE, RMSE, MAE, MAPE

• MSE (Mean Squared Error):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

- RMSE (Root Mean Squared Error): $RMSE = \sqrt{MSE}$
- MAE (Mean Absolute Error):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} |f(\mathbf{x}_i) - y_i|$$

• MAPE (Mean Absolute Percentage Error):

$$MAPE = 100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|f(\mathbf{x}_{i}) - y_{i}|}{|y_{i}|}$$

Регрессия - коэффициент детерминации

• Коэффициент детерминации R²:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (f(\mathbf{x}_{i}) - y_{i})^{2}}{\sum_{i=1}^{n} (\overline{y}_{i} - y_{i})^{2}}$$

- \bullet \overline{y}_i среднее арифметическое меток
- У идеального регрессора $R^2 = 0$.
- R² измеряет долю дисперсии, объясненную моделью, в общей дисперсии целевой переменной. Это нормированная среднеквадратичная ошибка.

Внутренние меры оценки качества (1)

- Оценивают качество структуры кластеров опираясь только непосредственно на нее, не используя внешней информации, например о классах.
- Компактность кластеров (Cluster Cohesion) *М* кластеров, чем ближе друг к другу объекты внутри кластеров, тем лучше разделение:

$$WSS = \sum_{j=1}^{M} \sum_{i=1}^{|C_j|} (x_{ij} - \overline{x}_j)^2 \rightarrow \min$$

• Отделимость кластеров (Cluster Separation) - чем дальше друг от друга объекты разных кластеров, тем лучше:

$$BSS = n\sum_{j=1}^{M} (\overline{x} - \overline{x}_j)^2 \to \max$$

Внутренние меры оценки качества (2)

- ullet Пусть $\delta(C_i,C_j)$ метрика межкластерного расстояния между кластерами C_i и C_j
- Δ_k среднее расстояние между парами точек в кластере C_k
- Индекс Данна (Dunn Index):

$$DI_m = \frac{\min_{1 \le i < j \le M} \delta(C_i, C_j)}{\min_{1 \le k \le M} \Delta_k}$$

 Высокий индекс Данна указывает на лучшую кластеризацию

Вопросы

?