Trigger Hunting with a Topological Prior for Trojan Detection

Xiaoling Hu

Stony Brook University

Joint work with Xiao Lin, Michael Cogswell, Yi Yao, Susmit Jha & Chao Chen

Background – Problem Setting and Challenges

- Trojan Detection Problem:
- given a set of well trained clean DNN models
- given a set of successfully Trojaned DNN models
- given limited or none training examples for each of these models
- Goal : Find a classifier to distinguish clean models and Trojaned models
- Challenges:
- Limited-data setting: only a few clean samples per class Clean and Trojaned models perform the same on them
- If Trojaned, trigger (location, shape, color) is unknown

(a). Trojaned Examples

Perform the same on clean images

Trigger Reconstruction

- Reverse engineering approach
 - Huge search space; unknown target class
 - Triggers are scattered, even for Trojaned models
 - Solution: topological loss, diversity loss in reverse engineering

Clean sample. True Trigger Reconstructed

Reverse-engineering pipeline

Diversity loss

Trigger candidates different from each other

Topological loss

- Topological constraint: the trigger is a single component
 - Localized trigger
 - No strong assumption on shape/size
 - Can be written as a topological loss

Final loss

$$L(\mathbf{m}, \boldsymbol{\theta}; \mathbf{x}, f, c^*) = L_{flip}(\ldots) + \lambda_1 L_{div}(\ldots) + \lambda_2 L_{topo}(\ldots) + R(\mathbf{m})$$

$$L_{flip}(\mathbf{m}, \boldsymbol{\theta}; \mathbf{x}, f, c^*) = f_{c^*}(\phi(\mathbf{x}, \mathbf{m}, \boldsymbol{\theta}))$$

$$L_{div}(\mathbf{m},oldsymbol{ heta}) = -\sum_{j=1}^{i-1} ||\mathbf{m}\odotoldsymbol{ heta} - \mathbf{m}_j\odotoldsymbol{ heta}_j||_2$$

$$L_{topo}(\mathbf{m}) = \sum_{p \in Dgm(m) \setminus \{p^*\}} [birth(p) - death(p)]^2$$

Qualitative results

Quantitative results

Table 2: Performance comparison on the TrojAI dataset.

			1	J	
Method	Metric	TrojAI-Round1	TrojAI-Round2	TrojAI-Round3	TrojAI-Round4
NC	AUC	0.50 ± 0.03	0.63 ± 0.04	0.61 ± 0.06	0.58 ± 0.05
ABS	AUC	0.68 ± 0.05	0.61 ± 0.06	0.57 ± 0.04	0.53 ± 0.06
TABOR	AUC	0.71 ± 0.04	0.66 ± 0.07	0.50 ± 0.07	0.52 ± 0.04
ULP	AUC	0.55 ± 0.06	0.48 ± 0.02	0.53 ± 0.06	0.54 ± 0.02
DLTND	AUC	0.61 ± 0.07	0.58 ± 0.04	0.62 ± 0.07	0.56 ± 0.05
Ours	AUC	$\textbf{0.90} \pm \textbf{0.02}$	$\textbf{0.87} \pm \textbf{0.05}$	$\textbf{0.89} \pm \textbf{0.04}$	$\textbf{0.92} \pm \textbf{0.06}$
NC	ACC	0.53 ± 0.04	0.49 ± 0.02	0.59 ± 0.07	0.60 ± 0.04
ABS	ACC	0.70 ± 0.04	0.59 ± 0.05	0.56 ± 0.03	0.51 ± 0.05
TABOR	ACC	0.70 ± 0.03	0.68 ± 0.08	0.51 ± 0.05	0.55 ± 0.06
ULP	ACC	0.58 ± 0.07	0.51 ± 0.03	0.56 ± 0.04	0.57 ± 0.04
DLTND	ACC	0.59 ± 0.04	0.61 ± 0.05	0.65 ± 0.04	0.59 ± 0.06
Ours	ACC	$\textbf{0.91} \pm \textbf{0.03}$	$\textbf{0.89} \pm \textbf{0.04}$	$\textbf{0.90} \pm \textbf{0.03}$	$\textbf{0.91} \pm \textbf{0.04}$

Performances VS # of training samples

Table 3: Ablation study for # of training samples.

# of complex	0,1,40	rula tana	vyla divamity
# of samples	Ours	_	w/o diversity
25	$\textbf{0.77} \pm \textbf{0.04}$	0.73 ± 0.03	0.68 ± 0.04
50	$\textbf{0.81} \pm \textbf{0.03}$	0.76 ± 0.05	0.73 ± 0.02
100	$\textbf{0.84} \pm \textbf{0.05}$	0.78 ± 0.06	0.76 ± 0.03
200	$\textbf{0.86} \pm \textbf{0.04}$	0.82 ± 0.04	0.79 ± 0.05
400	$\textbf{0.90} \pm \textbf{0.05}$	0.85 ± 0.03	0.82 ± 0.04
800	$\textbf{0.92} \pm \textbf{0.06}$	0.89 ± 0.04	0.85 ± 0.02

Thank you for your attention! Q&A