

**APPLICATION
NOTE**

AP-15

**8255 Programmable
Peripheral Interface
Applications**

Alan Ebright
Microcomputer Applications

8255 Programmable Peripheral Interface Applications

Contents

INTRODUCTION	1
OVERVIEW	1
8080 CPU MODULE INTERFACE	1
PERIPHERAL INTERFACE SECTION	3
INTERNAL LOGIC SECTION	4
Mode Definition	4
Bit Set/Reset	5
INTERRUPT CONTROL LOGIC STATUS WORDS	6
SOFTWARE CONSIDERATIONS	8
MODE 0 – STATUS DRIVEN PERIPHERAL INTERFACE	10
8255 To Peripheral Hardware Interface	10
8080 CPU Module To 8255 Interface	10
Mode 0 Interface Software	12
Summary/Conclusions	13
MODE 1 – INTERRUPT DRIVEN PRINTER INTERFACE	15
CPU Module To 8255 Interface	15
8255 To Peripheral Interface	15
Mode 1 Software Driver	16
Summary/Conclusions	17
MODE 2 – 8080 TO 8080 INTERFACE	20
Hardware Discussion	20
Software Discussion	20
Summary/Conclusions	20
APPENDIX A – 8255 QUICK REFERENCE	27

Related Intel Publications

- “Intel 8080 Microcomputer Systems User’s Manual”
- “Memory Design Handbook”
- “Using the 8251 Universal Synchronous/Asynchronous Receiver/Transmitter”

INTRODUCTION

Microprocessor-based system designs are a cost-effective solution to a wide variety of problems. When a system designer is presented with the task of selecting a microprocessor for a design, the capabilities of the microprocessor should not be the only consideration. The microprocessor should be an element of a compatible family of devices. The MCS-80 component family is a group of compatible devices which have been designed to directly address and solve the problems of microprocessor-based system design. One member of the MCS-80 component family is Intel's 8255 programmable peripheral interface chip. This device replaces a significant percentage of the logic required to support a variety of byte oriented Input/Output interfaces. Through the use of the 8255, the I/O interface design task is significantly simplified, the design flexibility is increased, and the number of components required is reduced.

This application note presents detailed design examples from both the hardware and software points of view. Since the 8255 is an extremely flexible device, it is impossible to list all of the applications and configurations of the device. A number of designs are presented which may be modified to fulfill specific user interface requirements.

Detailed design examples are discussed within the context of the 8080 system shown in Figure 1. The basic 8080 system is composed of the CPU module, memory module, and the I/O module. CPU module and memory module design are discussed

within other Intel publications. This application note deals exclusively with I/O module design. It is assumed that the reader is familiar with the "8080 Microcomputer Systems User's Manual", particularly the 8255 device description.

OVERVIEW OF THE 8255

The 8255 block diagram shown in Figure 2 has been divided into three sections: 8080 CPU Module Interface, Peripheral Interface, and the Internal Logic.

Figure 2. 8255 Block Diagram

Figure 1. Typical 8080 System

8080 CPU MODULE INTERFACE

The 8255 is a compatible member of the MCS-80 component family and, therefore, may be directly interfaced to the 8080. Figure 3 displays one method of interconnecting the 8255 and an 8080 CPU module. The 8080 CPU module consists of the 8080A CPU, the 8224 Clock Generator, and the 8228 System Controller. The system shown in Figure 3 utilizes a linear select scheme which dedicates an address line as an exclusive enable (chip select) for each specific I/O device. The chip select signal is used to enable communication between the selected 8255 and the 8080 CPU. I/O Ports A, B, C or the Control Word Register are selected by the two port select signals (A_1 , A_0). These signals (A_1 and A_0) are driven by the least significant bits of the address bus. The I/O port select characters required by this configuration are shown in Figure 4.

When a system utilizing the linear select scheme is implemented, a maximum of six I/O devices may be selected. If more than six I/O devices must be addressed, the six device select bits must be encoded to generate a maximum of 64 device select lines. Note that when large systems are implemented, bus loading considerations may require that bus drivers be included in the CPU module. The MCS-80 component family contains parts which are designed to perform this function (8216, 8226).

The 8255 I/O read (\overline{RD}) and I/O write (\overline{WR}) signals may be directly driven by the 8228. This results in an isolated I/O architecture where 8080 Input/Output instructions are used to reference an independent I/O address space. An alternate approach is memory mapped I/O. This architecture treats an area of memory as the I/O address space. The memory mapped I/O architecture utilizes 8080 memory reference instructions to access the I/O address space. Interfacing with the 8080 is outlined in Chapter 3 of the "8080 Microcomputer User's Manual".

The most important feature of the 8255 to 8080 CPU Module Interface is that for small system designs the 8255 may be interfaced directly to the

standard MCS-80 component family with no external logic. Minimum external logic is required in large system designs.

Port Selected	Hexadecimal Port Select Character (Used with IN or OUT Instructions)
Port A 8255 = 1	F8
Port B 8255 = 1	F9
Port C 8255 = 1	FA
Control Word Register 8255 = 1	F8
Port A 8255 = 2	F4
Port B 8255 = 2	F5
Port C 8255 = 2	F6
Control Word Register 8255 = 2	F7

Figure 4. I/O Port Select Characters

Figure 3. Linear Select 8255 Interconnect

PERIPHERAL INTERFACE SECTION

The peripheral interface section contains 24 peripheral interface lines, buffers, and control logic. The characteristics and functions of the interface lines are determined by the operating mode selected under program control. The flexibility of the 8255 is due to the fact that the device is programmable. Three modes of operation may be selected under program control: Mode 0 – Basic Input/Output, Mode 1 – Strobed Input/Output with interrupt support, and Mode 2 – Bidirectional bus with interrupt support. Through selecting the correct operating mode, the interface lines may be configured to fulfill specific interface requirements. The characteristics of the interface lines within each mode must be understood so that the designer may utilize the 8255 to achieve the most efficient design. Table I lists the basic features of the peripheral interface lines within each mode group. Figure 5 shows the grouping of the peripheral interface lines within each mode.

Table I. Features of Peripheral Interface Lines

Mode 0 – Basic Input/Output	
Two 8-bit ports	
Two 4-bit ports with bit set/reset capability	
Outputs are latched	
Inputs are not latched	
Mode 1 – Strobed Input/Output	
One or two strobed ports	
Each Mode 1 port contains:	
8-bit data port	
3 control lines	
Interrupt support logic	
Any port may be input or output	
If one Mode 1 port is used, the remaining 13 lines may be configured in Mode 0.	
If two Mode 1 ports are used, the remaining 2 bits may be input or output with bit set/reset capability.	
Mode 2 – Strobed Bidirectional Bus	
One bidirectional bus which contains:	
8-bit bidirectional bus supported by Port A	
5 control lines	
Interrupt support logic	
Inputs and outputs are latched	
The remaining 11 lines may be configured in either Mode 0 or Mode 1.	

One feature of Port C is important to note. Each Port C bit may be individually set and reset. Through the use of this feature, device strobes may be easily generated by software without utilizing external logic. The Mode 1 and Mode 2 configurations use a number of the Port C lines for interrupt control lines. Thus, the 8255 contains a large portion of the logic required to implement an interrupt driven I/O interface. This feature simplifies interrupt driven hardware design and saves a significant amount of the external logic that is normally required when less powerful I/O chips are used. In fact, the design examples contained in this application note describe how interrupt driven interfaces may be designed such that the only interrupt control logic required is that contained in the 8255.

Figure 5. Grouping of Peripheral Interface Lines

INTERNAL LOGIC SECTION

The internal logic section manages the transfer of data and control information on the internal data bus (refer to Figure 2). If the port select lines (A_1 and A_2) specify Ports A, B, or C, the operation is an I/O port data transfer. The internal logic will select the specified I/O port and perform the data transfer between the I/O port and the CPU interface. As was previously mentioned, both the functional configuration of each port and bit set/reset on Port C are controlled by the system's software. When the control word register is selected, the internal logic performs the operation described by the control word. The control word contains an opcode field which defines which of the two functions are to be performed (mode definition or bit set/reset).

Mode Definition

When the opcode field (Bit 7) of the control word is equal to a one, the control word is interpreted by the 8255 as a mode definition control word. The mode definition control word (shown in Figure 6) is used to specify the configuration of the

24 8255 peripheral interface lines. The system's software may specify the modes of Port A and Port B independently. Port C may be treated independently or divided into two portions as required by the Port A and Port B mode definitions.

Example #1: This example demonstrates how a mode control word is constructed and issued to an 8255. The mode control word is passed to the device through the use of an output instruction that references an 8080 I/O port address. The value of the I/O port address is determined by the 8080 CPU interface implemented. This example references the I/O port addresses realized by the simple 8080 to 8255 interface shown in Figure 3.

If an 8255 is to be configured through the use of the mode control word interface as:

Port A	Mode 0 Input
Port B	Mode 1 Output
Port C	Bits PC ₇ -PC ₄ Output
Port C	Bit 3 Input

The following mode control word is used:

The assembly language program is:

```
CWR      EQU    0FBH      ; 8255 #1 CONTROL WORD REGISTER
;*****
; ISSUE MODE CONTROL WORD
;*****
MVI    A,10010101B   ; GET MODE CONTROL WORD
OUT    CWR           ; OUTPUT TO 8255 #1 CONTROL WORD
; REGISTER
```

Figure 6. Mode Definition Control Word

Bit Set/Reset

When the opcode field (Bit 7) of the control word is equal to a zero, the control word is interpreted by the 8255 as a Port C bit set/reset command word (see Figure 7). Through the use of the bit set/reset command, any of the 8 bits on Port C may be independently set or reset. Note that control word bits 6–4 are not used. Bits 6–4 should be set to zero.

Control word (see Figure 7).

The control word for set Port C bit 3 is 00000111 binary.
The control word for reset Port C bit 3 is 00000110 binary.

Figure 7. Bit Set/Reset Control Word

Example #2: This example demonstrates how a Port C bit set/reset control word is constructed and issued to an 8255. The bit set/reset control word is passed to the device through the use of an output instruction that references an 8080 I/O port address. The value of the I/O port address is determined by the 8080 CPU interface implemented. This example references the I/O port addresses realized by the simple 8080 to 8255 interface shown in Figure 3.

The assembly language program is:

```
CWR    EOU    0FBH      ; 8255 #1 CONTROL WORD REGISTER
;.....
SET BIT 3
;.....
MVI   A, 0000011B    ; GET SET BIT 3 CONTROL WORD
OUT   CWR             ; OUTPUT TO 8255 #1 CONTROL WORD REGISTER
;.....
RESET BIT 3
;.....
MVI   A, 00000110    ; GET RESET BIT 3 CONTROL WORD
OUT   CWR             ; OUTPUT TO 8255 #1 CONTROL WORD REGISTER
```

NOTE: An MVI instruction is used to load the reset bit 3 control word into the A register. Since it is known that the set bit control word is already in the A register, a "DCR A" Instruction could be used to generate the correct control word and save one byte of code.

00000111 - 1 = 00000110 (RESET BIT 3 CONTROL WORD)

Example #3: This example demonstrates one simple method of performing a bit set/reset operation on Ports A and B. The state of any output port may be determined by reading the port. The assembly language program which may be used to set/reset Port A or B bits is:

```
PORTA EOU    0F8H      ; 8255 #1 PORT A
;.....
SET BIT 0
;.....
IN    PORTA    01H      ; GET STATE OF PORT
ORI   01H      ; SET BIT 0
OUT   PORTA    ; OUTPUT TO PORT
;.....
RESET BIT 0
;.....
IN    PORTA    0EH      ; GET STATE OF PORT
ANI   0EH      ; RESET BIT 0
OUT   PORTA    ; OUTPUT TO PORT
```

INTERRUPT CONTROL LOGIC STATUS WORDS

As previously mentioned, the 8255 Mode 1 and Mode 2 configurations support interrupt control logic. If a read of Port C is issued when the 8255 is configured in Mode 1, the software will receive the Mode 1 status word shown in Figure 8. The bits in the status word correspond to the state of the associated Port C lines (buffer full, interrupt request, etc.). The INTE bit shown in the status word corresponds to the interrupt enable flip-flop contained in the 8255. This signal is not available externally. The structure of the Mode 1 status word varies as a function of the mode of the 8255. Example #4 shows the status word which results from reading Port C from an 8255 which is configured with Port A Mode 1 input and Port B Mode 1 output.

After the 8255 mode control word has been issued, a READ of Port C will obtain the following Mode 1 status word:

NOTE: The Port C I/O bits D₇ and D₆ should be modified through the use of the Port C bit set/reset command word. If a write to Port C is issued, the INTE_A and INTE_B bits may be inadvertently modified by the user. The IFBA, INTRA, OBF_B, and INTRB bits will not be modified by either a write to Port C or a bit set/reset command. These four bits always reflect the state of the interrupt control logic.

Figure 8. Mode 1 Status Word

Example #4 – MODE 1 STATUS WORD

If an 8255 is to be configured through the use of the mode control word interface as:

Port A	Mode 1 Input
Port B	Mode 1 Output
Port C	Bits 6 & 7 Output

The following mode control word is used:

Note that the Mode 2 status word (shown in Figure 9) differs from the Mode 1 status word. The format of the status word data bits D₂-D₀ are defined by the specification of the Port B configuration. Example #5 shows the structure of the Mode 2 status word when the 8255 is configured with Port A Mode 2 (bidirectional bus) and Port B Mode 1 input.

The Mode 1 and Mode 2 status words reflect the state of the interrupt logic supported by the 8255.

Example #6 demonstrates how the interrupt enable bits are controlled through the use of the Port C bit set/reset feature. The application examples provide a more detailed explanation of the use of the Port C status word in the Mode 1 and Mode 2 configurations.

Figure 9. Mode 2 Status Word

Example #5 – MODE 2 STATUS WORD

If the 8255 is to be configured as follows:

Port A Mode 2 Bidirectional Bus
Port B Mode 1 Input

The following mode control word is used:

Mode Control Word = 11000110 Binary.

After the 8255 mode control word has been issued, a read of Port C will obtain the following Mode 2 status word:

Example #6 – MODE 2 INTERRUPT ENABLE/DISABLE

The Mode 2 status word shown in Figure 9 contains two interrupt enable bits:

INTE₁ – Bit 6 – Enable output interrupts
INTE₂ – Bit 4 – Enable input interrupts

Bit set/reset control words may be constructed which may be used to control the INTE bits.

Set Bit 6 (Enable Output Interrupts) = 00001101 Binary

Reset Bit 6 (Disable Output Interrupts) = 00001100 Binary

Set Bit 4 (Enable Input Interrupts) =
00001001 Binary

Resct Bit 4 (Disable Input Interrupts) = 00001000 Binary

The control words shown were constructed from the standard bit set/reset format shown in Figure 7.

The value of CWR used in the following program example corresponds to the 8080 configuration shown in Figure 3.

```

CWR EQU OFBH ; 8255 #1 CONTROL WORD REGISTER
*****
ENABLE INTERRUPTS FOR MODE 2 OUTPUT (SET PORT C BIT 6)
*****
MVI A 00001101B ; GET SET BIT 6 CONTROL WORD
OUT CWR ; OUTPUT TO 8255 #1 CONTROL WORD REGISTER
*****
DISABLE INTERRUPTS FOR MODE 2 OUTPUT (RESET PORT C BIT 6)
*****
MVI A,00001100B ; GET RESET BIT 6 CONTROL WORD
OUT CWR ; OUTPUT TO 8255 #1 CONTROL WORD REGISTER

```

SOFTWARE CONSIDERATIONS

Regardless of the mode selected, the software must always issue the correct mode control word after a reset of the device. Generally, an initialization routine is constructed which issues the correct mode control word, sets up the initial state of the control lines, and initializes any program internal data.

Many of the software requirements of the 8255 vary as a function of the mode selected. The simplest mode supported by the device is Mode 0 (Basic Input/Output). Generally, Mode 0 is used for simple status driven device interfaces (no interrupts). Figure 10 illustrates sample software that could be used to support such interfaces. Most devices support a BUSY or READY signal which is used to determine when the device is ready to input or output data and a DATA STROBE which is used to request data transfer (DATA STROBE may easily be generated with the Port C bit set/reset feature). In the Mode 0 configuration, Ports A and B are used to input/output byte oriented data. Port C is used to input 8255 status, peripheral status and to drive peripheral control lines.

When the Mode 1 and Mode 2 configurations are used the software is generally required to support interrupts. Software routines written for an interrupt driven environment tend to be more complex than status driven routines. The added complexity is due to the fact that interrupt driven systems are constructed such that other software tasks are run while the I/O transaction is in progress. A software routine that controls a peripheral device is generally referred to as a device driver. One method of implementing an interrupt driven device driver is to partition the device driver into a "Command Processor" and an "Interrupt Service Routine". The command processor is the module that validates

Figure 10. Sample Status Driven Software Flowchart

and initiates user program requests to the device driver. A common method of passing information between the various software programs is to have the requesting routine provide a device control block in memory. A sample device control block is shown in Table II.

Table II. Sample Device Control Block

NAME	DESCRIPTION
Status	This 1-byte field is used to transmit the status of the I/O transaction (busy, complete, etc.).
Opcode	This 1-byte field defines the type of I/O (READ, WRITE, etc.).
Buffer Address	This 2-byte field specifies the source/destination of the data block.
Character Count	This 1-byte field is a count of the number of characters involved in the transaction.
Character Transferred Count	This 1-byte count of the number of characters which were actually transferred.
Completion Address	This 2-byte field is the address of the user supplied completion routine which will be called after the I/O has been performed.

The command processor validates the transaction and initiates the operation described by the control block. Control is then returned to the requestor so that other processing may proceed. The interrupt service routine processes the remainder of the transaction.

The interrupt service routine supports the following functions:

1. The state of the machine (registers, status, etc.) must be saved so that it may be restored after the interrupt is processed.
2. The source of the interrupt must be determined. The hardware may support a register which indicates the interrupting device, or the software may poll the devices through interrogating the Port C status word of each 8255.
3. Data must be passed to or from the device.
4. Control must be passed to the requesting routine at the completion of the I/O.
5. The state of the machine must be restored before returning to the interrupted program.

Figure 11. Command Processor

Figures 11 and 12 are simplified flowcharts of one of the many methods of implementing command processor and interrupt service routine modules.

The rest of this application note presents specific application examples. All of the 8080 assembly language programs supplied with the application examples use the standard Intel 8080 assembly language mnemonics. The programs discussed use the program equate statement to specify all hardware related data. Equate statements are used so that all references to an I/O port may be changed through a simple reassignment of the port address in the equate statement.

Figure 12. Interrupt Service Routine

MODE 0 – STATUS DRIVEN PERIPHERAL INTERFACE

This design example shows how a single 8255 in Mode 0 may be used to develop a status driven interface (no interrupts) for the Centronics 306 character printer, the Remex paper tape punch, and the Remex paper tape reader.

8255 To Peripheral Hardware Interface

The first step in the design is to examine the specification for the peripheral devices and identify the control and data signals which must be supported by the interface. Table III lists the signals which were chosen to be supported by the 8255 interface. All three of the devices support the standard

Table III. Peripheral Interface Signals

CHARACTER PRINTER	
Name:	DATA 0–DATA 7
Definition:	Input data levels. A high signal represents a binary 1 and a low signal represents a binary 0. These eight lines are the data lines to the printer.
Name:	DATA STROBE
Definition:	A 0.5 μ sec pulse (minimum) used to transfer data from the 8255 to the printer.
Name:	BUSY
Definition:	The level indicating that the printer cannot receive data.
PAPER TAPE PUNCH	
Name:	TRACKS 1–8 DATA INPUT
Definition:	Input data levels. A high signal causes a hole to be punched on the associated track. These eight lines are the data lines to the printer.
Name:	PUNCH COMMAND INPUT
Definition:	A true condition moves the tape and initiates punching the tape. This signal is actually a data strobe.
Name:	PUNCH READY OUTPUT
Definition:	True signal indicates that the punch is ready to accept a punch command. This is the punch busy line.
PAPER TAPE READER	
Name:	DATA TRACK OUTPUTS
Definition:	True signal indicates data track hole. These eight lines are the data lines from the punch.
Name:	DRIVE RIGHT
Definition:	True signal drives the tape to the right and reads a character. This signal is actually the data strobe (initiate read signal).
Name:	DATA READY OUTPUT
Definition:	True signal indicates data track outputs are in "On character" condition. This signal is the reader busy line.

BUSY/DATA STROBE interface discussed previously (see Figure 10). Figure 13 is a block diagram of the interface design. The 8255 Port A is configured as a Mode 0 output port which is used to support the printer and the paper tape punch data bus. Port B is configured as a Mode 0 input port and is used to input the paper tape reader data. Three of the Port C lower bits (PC₂–PC₀) configured in input mode are used to input the device busy indications. Three of the Port C upper bits (PC₆–PC₄) configured in output mode are used to support the device strobe signals required by each device.

The drive requirements of the interface lines are a function of the peripheral interface circuitry, the length of the interface cable, and the environment in which the unit is running. In this particular design example, all output lines from the 8255 to the peripherals were buffered through a 7407 buffer/driver. The input lines from the peripherals were fed directly into the Port C and Port B inputs.

8080 CPU Module To 8255 Interface

The schematic of the completed hardware design is shown in Figure 14. The CPU module design shown is the design which was implemented for Intel's SDK 80 kit board. The 8255 is addressed through the use of an isolated I/O architecture utilizing a linear select scheme. Address bits A₁ and A₀ are used to select the 8255 port. Address bit A₃ is the exclusive enable for 8225 #1. Examination of the schematic shows that all of the 8255 interface lines are directly driven by the CPU module.

Figure 13. Interface Block Diagram

Figure 14. SDK 80 Schematic

Mode 0 Interface Software

An initialization routine and three device drivers (one for each peripheral device) are required to support the peripheral interface. The I/O port addresses implemented by the hardware are shown in Figure 15. The unused chip select bits are set to one so that chip select conflicts will not result if the unused bits are required by an expanded system.

Figure 15. I/O Port Addresses

Note that the initialization routine issues the mode control word (shown in Figure 16). It also sets the low true DATA STROBE signals to an inactive (high) state.

Mode Control Word = 100000011 Binary = 83 HEX.

Figure 16. Mode Control Word

```

ISIS 8080 MACRO ASSEMBLER, V1.0          PAGE 1
MODE ZERO EXAMPLE

***** TITLE 'MODE ZERO EXAMPLE'
***** CHARACTER PRINTER, PAPER TAPE PUNCH, PAPER TAPE READER
***** MODE ZERO EXAMPLE
***** PROGRAM EQUATES
***** 00F4 EQU OF4H ; 8255 PORT A
***** 00F5 EQU OF5H ; 8255 PORT B
***** 00F6 EQU OF6H ; 8255 PORT C
***** 00F7 EQU OF7H ; 8255 CONTROL WORD REGISTER
***** 0083 EQU 10000011B ; INITIALIZATION CONTROL WORD
***** 0001 EQU 00001101B ; SET/RESET CONTROL WORDS FOR GENERATION OF DATA STROBES
***** ON PORT C.
***** 0003 EQU 00001100B ; PRINTER DATA STROBE ON
***** 000C EQU 00001100B ; PRINTER DATA STROBE OFF
***** 00016 EQU 00001011B ; PUNCH DATA STROBE ON
***** 000A EQU 00001010B ; PUNCH DATA STROBE OFF
***** 0009 EQU 00001001B ; READER DATA STROBE ON
***** 0008 EQU 00001000B ; READER DATA STROBE OFF
***** 0064 EQU 04H ; LINE PRINTER BUSY
***** 0002 EQU 02H ; PUNCH BUSY
***** 0001 EQU 01H ; READER BUSY
***** BIT MASK FOR DEVICE BUSY CHECK
***** 0004 EQU 00000001B ; SET ALL LOW TRUE DATA STROBES ON
***** 3000 3EB3 MVI A,ICW ; GET INITIALIZATION CONTROL WORD
***** 3002 13F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** INIT: MVI A,ICW ; GET INITIALIZATION CONTROL WORD
***** OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 3000 3E00 MVI A,IPSON ; GET CONTROL WORD TO TURN ON PRINTER DATA STROBE
***** 3006 03F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 3008 3B09 MVI A,RDSN ; GET CONTROL WORD TO TURN ON READER DATA STROBE
***** 300A 03F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 300C C9 RET ; RETURN TO CALLER

```

```

ISIS 8080 MACRO ASSEMBLER, V1.0          PAGE 2
MODE ZERO EXAMPLE - INITIALIZATION ROUTINE

***** PROGRAM ORIGIN
***** 3000 ORG 03000H
***** 3000 3EB3 MVI A,ICW ; GET INITIALIZATION CONTROL WORD
***** 3002 13F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** INIT: MVI A,ICW ; GET INITIALIZATION CONTROL WORD
***** OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 3000 3E00 MVI A,IPSON ; GET CONTROL WORD TO TURN ON PRINTER DATA STROBE
***** 3006 03F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 3008 3B09 MVI A,RDSN ; GET CONTROL WORD TO TURN ON READER DATA STROBE
***** 300A 03F7 OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
***** 300C C9 RET ; RETURN TO CALLER

```

The three peripheral drivers which follow all have the basic structure discussed previously. Consider the printer routine. Here the user routine places an ASCII data character in the C-register and passes control to the LPST location through a subroutine call. The printer driver interrogates the status of the printer by reading Port C. If the printer is busy, the routine will loop until the printer is idle. When the printer is ready to accept a data character, the character is placed on the Port A lines and a DATA STROBE is generated. After generating the DATA STROBE, the driver executes a subroutine return to the caller.

The DATA STROBE signals to the devices are generated through the use of the Port C bit set/reset feature. The bit set/reset control words used are shown in Figure 17.

Summary/Conclusions

This design example discussed the basic hardware and software required to handle a simple device interface. The 8255 will easily accommodate a more complex interface design which utilizes additional interface lines supported by the peripheral.

The control word for set Printer DATA STROBE (PC 6) = 00001101 binary.
The control word for reset Printer DATA STROBE (PC 6) = 00001100 binary.
The control word for set Punch DATA STROBE (PC 5) = 00001011 binary.
The control word for reset Punch DATA STROBE (PC 5) = 00001010 binary.
The control word for set Reader DATA STROBE (PC 4) = 00001001 binary.
The control word for reset Reader DATA STROBE (PC 4) = 00001000 binary.

Figure 17. Bit Set/Reset Control Words

For instance, one of the spare Port C output lines may be used to control the punch direction. Support of this additional feature would require a minor modification of the device driver so that the punch direction line could be specified by the user routine.

Through consideration of this example, the use of the 8255 in Mode 0 should become evident.

ISIS BOBO MACRO ASSEMBLER, V1.0
PAGE 3
MODE ZERO EXAMPLE - CHARACTER PRINTER DRIVER

```

;*****;
;      CHARACTER PRINTER DRIVER
;      INPUTS : CHARACTER TO PRINT IN C-REG
;      OUTPUTS: CHARACTER TO PRINTER
;      A REGISTER MODIFIED
;*****;
LPST:   IN     PORTC ; GET STATUS OF PRINTER
        ANI    LPSTY ; SEE IF BUSY
        JNZ    LPST ; IF BUSY - JUMP TO LPST (WAIT LOOP)
;*****;
;      PRINTER IS IDLE - OUTPUT A CHARACTER
;*****;
        MOV    A,C ; GET DATA BYTE SUPPLIED BY CALLER
        OUT    PORTA ; OUTPUT DATA TO LINE LINES
        MVI    A,LPSCF ; GET DATA STROBE CONTROL WORD
        OUT    CWR ; RESET DATA STROBE (LOW TRUE SIGNAL)
        INR    A ; GENERATE SET DATA STROBE CONTROL WORD
        OUT    CWR ; SET DATA STROBE
        RET
;*****;
  
```


ISIS P808 MACRO ASSEMBLER, V1.0 PAGE 4
MODE ZERO EXAMPLE - PAPER TAPE PUNCH DRIVER

```

*****  

; PAPER TAPE PUNCH DRIVER  

; INPUTS : DATA TO PUNCH IN C-REGISTER  

; OUTPUTS: DATA TO PUNCH  

;  

; A REGISTER MODIFIED  

;  

PNST:   IN    PORTC ; GET STATUS OF PUNCH  

        ANI   PNBSY ; SEE IF BUSY  

        JNZ   PNST  ; IF BUSY - JUMP TO PNST (WAIT LOOP)  

;  

; PUNCH IS IDLE - OUTPUT A CHARACTER  

;  

301F DBF6  

3021 E602  

3023 C21F30  

;  

3026 79  

        MOV   A,C ; GET DATA BYTE SUPPLIED BY CALLER  

        OUT   PORTA ; OUTPUT DATA TO DATA LINES  

        MWI   A,PNON ; SET DATA STROBE CONTROL WORD  

        OUT   CWR  ; SET DATA STROBE  

        DCR   A ; GENERATE RESET DATA STROBE CONTROL WORD  

        OUT   CWR  ; RESET DATA STROBE  

        RET   ; RETURN TO CALLER
    
```


ISIS P808 MACRO ASSEMBLER, V1.0 PAGE 5
MODE ZERO EXAMPLE - PAPER TAPE READER DRIVER

```

*****  

; PAPER TAPE READER DRIVER  

; INPUTS : DATA FROM HEADER  

; OUTPUTS: CHARACTER TO USER IN C-REGISTER  

;  

; A AND C REGISTER MODIFIED  

;  

ROST:   MVI   A,RDSOF ; GET STROBE CONTROL WORD (LOW TRUE SIGNAL)  

        OUT   CWR  ; SET DATA STROBE  

RDLR:   IN    PORTC ; GET STATUS OF DEVICE  

        ANI   RDSSY ; SEE IF BUSY  

        JNZ   RDLR  ; IF BUSY - LOOP UNTIL IDLE  

;  

; READER NOT BUSY - GET CHAR AND CLEAR STROBE  

;  

3031 3E08  

3033 D3F7  

;  

3035 DBF6  

3037 E601  

3039 C23530  

;  

303C DBF5  

303E C007  

3040 3E09  

3042 D3F7  

3044 C9  

;  

303C DBF5  

MVI   C,A ; SAVE CHARACTER  

MVI   A,RDSOF ; GET STROBE SET CONTROL WORD (LOW TRUE SIGNAL)  

OUT   CWR  ; TURN OFF STROBE  

RET   ; RETURN TO CALLER  

;  

; END OF MODE ZERO EXAMPLE  

;  

0000   END
    
```

MODE 1 INTERRUPT DRIVEN PRINTER INTERFACE

The status driven interface described in the previous example required the software driver to poll the device status for completion. An alternate approach is to construct the device interface such that an interrupt is used to signal the completion of the operation. When an interrupt driven interface is utilized, the time that was dedicated to polling can be used to perform other functions and the effective processor through-put is increased. This example demonstrates how an 8255 configured in Mode 1 may be used to develop an interrupt driven interface for the Centronics 306 character printer.

CPU Module To 8255 Interface

The 8080 bus interface implemented for this example is the same as the Mode 0 example with the addition of interrupt support. Interrupt support is implemented through the use of a special feature of the 8228 System Controller. If only one interrupt vector is required (such as in small systems), the 8228 can automatically assert an RST 7 instruction onto the data bus at the proper time. This option is selected by connecting the INTA output of the 8228 to the +12-volt supply through a 1K ohm series resistor.

The Mode 1 interrupt support logic of the 8255 provides an interrupt request line for each port. The 8255 interrupt request line (INTRA) must be connected to the INT line of the 8080. A 10K ohm pullup resistor is used to insure that the V_{IH} requirements of the 8080 are met.

8255 To Peripheral Interface

The interrupt driven configuration control signal interface to the printer is different than the status driven interface. Instead of a BUSY/DATA STROBE interface, a DATA STROBE/ACK interface is supported. The ACK signal notifies the 8255 that a character transferred to the printer by a DATA STROBE has been accepted. After an ACK is issued the printer is considered idle. The block diagram shown in Figure 18 displays the interface signals used.

The Mode 1 interrupt driven peripheral support signals used are:

PA₇-PA₀ – Output Data

Used to support the printer data port.

OB_F – Output Buffer Full

This line goes low when data is placed in the output buffer. The OB_F signal may be used as a data

strobe signal when interfacing to peripherals which do not require a pulsed input. The Centronics 306 requires a pulsed DATA STROBE signal. This signal is supported by Port C bit 0.

ACK

– ACKnowledge

This line is used to signal the 8255 that the device has accepted the data. This line is supported by the printer ACKNLG signal.

Figure 18. Interface Block Diagram

Mode 1 Software Driver

The software driver implemented for this example utilizes the typical interrupt driven software structure outlined previously. The initialization routine issues the mode control word (shown in Figure 19) to the 8255 after reset of the device. The initialization routine also places a jump to the interrupt service routine in the interrupt location for RST 7. The command processor is started by the user routine through a subroutine call to PSTRT, with the address of the control block in the D and E registers (the control block format is shown in Table IV). The command processor insures that an I/O operation is not already in progress, starts the I/O, enables interrupts, and returns to the caller so that other processing may proceed.

After a character is placed in the output buffer, the DATA STROBE signal is generated through the use of the Port C bit set/reset feature. When the ACK is generated by the printer, the buffer full indication is cleared and the 8255 generates an interrupt. If interrupts are enabled, the interrupt request is serviced by the 8080 CPU through disabling processor interrupts and then executing the instruction at location 38 hexadecimal in program memory. The interrupt service routine saves the processor state and polls the 8255 to determine the source of the interrupt. Once the interrupting device is located, the control block is used to locate the next data character for transfer to the 8255 output buffer. After the entire buffer has been printed, the interrupt service routine passes control to the user-supplied completion routine. Before returning from the interrupt, the state of the processor is restored.

Figure 19. Mode Control Word

Table IV. Printer Software Control Block

NAME	POSITION	DEFINITION
Status	Byte 0	A 1-byte field which defines the completion status of an I/O. 00 = Good completion 01 = Error – command already in progress
Buffer Address	Byte 1, 2	Pointer to the start of the data to print.
Character Count	Byte 3	Count of the number of characters to print.
Character Transferred Count	Byte 4	The number of characters transferred.
Completion Address	Byte 5, 6	Address of a user supplied routine which will be called after the I/O has been performed.

NOTES:

- An opcode field is not required because WRITE is the only operation performed.
- The control block must reside above location FF Hex.

There are a number of error conditions which may occur, such as an interrupt from a device which does not have a control block in progress, or an interrupt when polling establishes that no device requires service. Neither of these errors should occur, but if they do, the driver should perform in a consistent fashion. The recovery routines implemented to handle error conditions are determined by the particular applications environment.

Summary/Conclusions

When utilized in a small system design, the 8255 interrupt support logic provides all of the capabilities required to implement an interrupt driven hardware interface without the use of external logic. In larger system designs, the designer may choose to use additional hardware to determine the source of interrupt requests without software polling. The software design required by an interrupt driven system is inherently more complex than the status driven interface. If an interrupt driven system is required the added complexity is a small price to pay for a significant increase in system through-put.

```

***** TITLE 'MODE ONE EXAMPLE'
;
; CHARACTER PRINTER - INTERRUPT DRIVEN
; MODE ONE EXAMPLE
;
*****  

*****  

***** PROGRAM EQUATES  

*****  

00F4 PORTA EQU 0F4H ; 8255 PORT A
PORTB EQU 0F5H ; 8255 PORT B
PORTC EQU 0F6H ; 8255 PORT C
00F7 CWTR EQU 0F7H ; 8255 CONTROL WORD REGISTER
0038 REST7 EQU 038H ; RESTART 7 ADDRESS
;
*****  

;
INITIALIZATION CONTROL WORD
;
USED TO CONFIGURE THE 8255 AS FOLLOWS:
;
;
PORT A - OUTPUT MODE 1
PORT B - INPUT MODE 0 (NOT USED)
PORT C LOWER - OUTPUT
;
*****  

00AA ICM EQU 10101010B ; INITIALIZATION CONTROL WORD
*****  

;
SET/RESET CONTROL WORDS
*****  

0001 STROBON EQU 0000001B ; SET STROBE
0000 STROBOFF EQU 0000000B ; RESET STROBE
*****  

;
8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS
*****  

000D LEN EQU 00011101B ; ENABLE INTERRUPTS
000C IDN EQU 0001100B ; DISABLE INTERRUPTS
*****  

;
DEVICE STATUS EQUATES
*****  

0000 LPBSY EQU 000H ; BUFFER FULL (LINE PRINTER BUSY)
0008 INTRX EQU 008H ; INTERRUPT REQUEST
;
```


ISIS 8080 MACRO ASSEMBLER, V1.0
COMMAND PROCESSOR

PAGE 3

```

;*****  

;  

; COMMAND PROCESSOR  

;  

; INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS  

; OUTPUTS: START I/O OR ERROR STATUS IN CONTROL BLOCK  

; A,H,L REGISTERS MODIFIED  

;  

;*****  

PSTRT:  

    LDA    PIPRG+1 ; GET PRINT IN PROGRESS BLOCK ADDRESS  

    ANA    A          ; SEE IF ZERO (PRINT IN PROGRESS)  

    ; IF BLOCK ADDRESS NOT EQUAL TO ZERO THEN  

    ; PRINT IN PROGRESS  

    JNZ    PSTE       ; IF YES - BRANCH TO ERROR  

    XCHG   EB          ; SAVE CONTROL BLOCK ADDRESS  

    SHLD   PIPRG      ;  

    XCNG  

    3014 3AA230  

    3017 A7  

    3018 C22B30  

    301B EB  

    301C 22A130  

    301F EB  

    3020 210400  

    3023 19  

    3024 3600  

    3026 CD5B30  

    3029 FB  

    302A C9  

    *****  

    LXI   H,CBCT ; GET INDEX TO CT  

    DAD   D          ; COMPUTE ADDRESS OF CT  

    MVI   M,00H ; CLEAR CT  

    CALL  PDATA      ; START I/O  

    EI    RET         ; ENABLE PROCESSOR INTERRUPTS  

    ; RETURN TO CALLER  

    *****  

    ERROR - TRANSACTION ALREADY IN PROGRESS  

    *****  

PSTE:  

    MVI   A,STEI      ; GET ERROR STATUS CODE  

    JMP   POST        ; PASS CONTROL TO COMPLETION ROUTINE

```


ISIS 8080 MACRO ASSEMBLER, V1.0
PRINTER INTERRUPT SERVICE ROUTINE

PAGE 4

```

;*****  

;  

; PRINTER INTERRUPT SERVICE ROUTINE  

; ALL REGISTERS SAVED AND RESTORED  

;  

;*****  

PINT:  

    PUSH  PSW      ; SAVE PSW  

    PUSH  B          ; SAVE REGISTER PAIR B AND C  

    PUSH  D          ; SAVE REGISTER PAIR D AND E  

    PUSH  H          ; SAVE REGISTER PAIR H AND L  

    *****  

    POLL INTERRUPT SOURCE - SEE IF 8255  

    *****  

    IN    PORTC     ; GET STATUS OF DEVICE  

    ANI   INTRA      ; SEE IF INT  

    JZ    PPOLL      ; NO - BRANCH TO POLL OTHER DEVICES IF ANY  

    MVI   A,10H      ; GET 8255 INT DISABLE CONTROL WORD  

    OUT   CWR        ; DISABLE DEVICE INTERRUPTS  

    EI    EI          ; ENABLE PROCESSOR INTERRUPTS  

    LHLD  PIPR0      ; GET CONTROL BLOCK ADDRESS  

    XRA   A          ; CLEAR A REG  

    CMP   H          ; SEE IF PRINT IN PROGRESS  

    JZ    PIERT1     ; NO - BRANCH TO ERROR ROUTINE  

    XCHG   EB          ;  

    CALL  PDATA      ; PRINT DATA  

    *****  

    ; RESIURE REGISTERS AND RETURN FROM INTERRUPT  

    *****  

PRIN:  

    POP   H          ; RESTORE REGISTER PAIR H AND L  

    POP   D          ; RESTORE REGISTER PAIR D AND E  

    POP   B          ; RESTORE REGISTER PAIR B AND C  

    POP   PSW      ; RESTORE PSW  

    EI    EI          ; ENABLE PROCESSOR INTERRUPTS  

    RET   RET         ; RETURN TO INTERRUPTED PROCESS  

    *****  

    ; POLL OTHER DEVICES IF ANY  

    ; IF NO OTHER DEVICES TO POLL - USER SUPPLIED ERROR  

    ; RECOVERY ROUTINE.  

    ;*****  

PPOLL:  

    JMP   PRTN      ; RETURN  

    ;*****  

    ; ERROR - INTERRUPT FROM IDLE DEVICE  

    ; USER SUPPLIED ERROR RECOVERY ROUTINE  

    ;*****  

PIERT1:  

    JMP   PRTN      ; RETURN

```



```

;*****;
; PRINTER OUTPUT DATA ROUTINE
; CONTROL BLOCK ADDRESS IN D AND E REG
;*****;
PDATA:      IN    PORTC ; GET STATUS OF DEVICE
            ANI   LPBSY ; SEE IF BUSY (BUFFER FULL)
            JZ    PD10 ; IF BUSY - BANCH
            LXI   H,CBCT ; GET INDEX TO CT
            DAD   D,M ; COMPUTE ADDRESS OF CT
            MOV   A,M ; GET CT
            INR   M ; INC CT
            DCX   H ; DEC TO CC
            CMP   M ; SEE IF EQUAL
            JZ    PCOMP ; IF EQUAL - DONE GO TELL USER
            LXI   H,CBUF ; GET INDEX TO BUFFER ADDRESS
            DAD   D ; COMPUTE ADDRESS OF BUFFER ADDRESS
            PUSH  D ; SAVE D AND E REGISTERS
            MOV   E,M ; GET LSB OF BUFFER ADDRESS
            INX   H ; INC TO NEXT BYTE
            MOV   D,M ; GET BUFFER MSB
            MVI   H,00H ; CLEAR H REG
            MOV   L,A ; GET CT
            DAD   D ; COMPUTE CHARACTER ADDRESS
            MOV   A,M ; GET CHARACTER
            OUT   PORTA ; OUTPUT CHARACTER TO PRINTER
            MVI   A,STBOP ; RESET DATA STROBE (LOW TRUE SIGNAL)
            OUT   CWR
            TMR   A ; GENERATE SET CONTROL WORD
            OUT   CWR ; SET DATA STROBE
            POP   D ; RESTORE CONTROL BLOCK ADDRESS
            JMP   PDATA ; LOOP UNTIL BUSY

;*****;
; PRINTER BUSY - RETURN
;*****;
PD10:      DI    A,IEN ; DISABLE INTERRUPTS
            MVI   A,IEN ; ENABLE DEVICE INTERRUPTS
            OUT   CWR ; SET INTERRUPT ENABLE
            RET   ; RETURN TO CALLER

;*****;
; POST GOOD COMPLETION TO USER
;*****;
PCOMP:     MVI   A,STGD ; GET GOOD STATUS CODE
            CALL  POST ; POST TO USER
            YRA   A ; CLEAR A REG
            STA   PIPRG+1 ; CLEAR COMMAND IN PROGRESS ADDRESS
            RET   ; RETURN TO CALLER

;*****;
; POST TO USER COMPLETION ROUTINE
; INPUTS : STATUS CODE IN A REG
;          CONTROL BLOCK ADDRESS IN D AND E REG
; OUTPUTS: PASSES CONTROL TO USER COMPLETION ADDRESS
;          SPECIFIED IN CONTROL BLOCK
;          WITH CONTROL BLOCK ADDRESS IN D AND E
;          A,H,L,B,C REG MODIFIED
;*****;
POST:      XCHG  M,A ; UPDATE STATUS
            MOV   M,A ; GET INDEX TO COMPLETION ADDRESS
            XCHG  H,CBCTP ; GET INDEX TO COMPLETION ADDRESS
            LXI   H,CBCTP ; COMPUTE ADDRESS
            DAD   D,M ; GET LSB OF COMPLETION ADDRESS
            MOV   C,M ; GET MSB OF COMPLETION ADDRESS
            INX   H ; INC TO NEXT BYTE
            MOV   B,M ; PUSH ADDRESS INTO STACK
            PUSH  B ; PUSH ADDRESS INTO STACK
            RET   ; PASS CONTROL TO USER ROUTINE
            RET   ; RETURN TO CALLER

;*****;
; DATA AND TABLES
;*****;
PIPGR:    DW    0 ; IN PROGRESS CONTROL BLOCK ADDRESS
            ; IF DATA = 0 NO CONTROL BLOCK IN PROGRESS
            ; IF DATA NOT EQUAL TO ZERO CONTROL BLOCK IN PROGRESS

;*****;
; END OF MODE ONE EXAMPLE
;*****;
0000      END
  
```

MODE 2 – 8080 TO 8080 INTERFACE

Due to the drastic reduction of hardware costs, system designs which utilize multiple CPU Modules are becoming more common. An 8080 may be configured as a master CPU and used to control multiple 8080 slave modules which act as intelligent I/O controllers. When multiple CPUs are utilized, a method of processor intercommunication must be supported. Figure 20 is a block diagram of one method of implementing a master/slave interface through the use of the 8255 Mode 2 bidirectional bus.

Hardware Discussion

Two complete 8080 systems are required for this example. Intel's SBC 80/10 OEM board is used as the master CPU module and Intel's SDK 80 board is used as the slave CPU. The SBC 80/10 supports an 8255 which is configured in Mode 2. The 8255 is selected through the use of a decoded select scheme. Through the use of the 8228 RST 7 interrupt feature, a simple interrupt structure is supported. The SDK 80 is configured without interrupts for this example. The external logic required for this example is associated with the slave CPU. Simple logic is implemented which allows the slave CPU to generate the ACK and STB signals required to READ from and WRITE to the 8255 bidirectional bus with a single I/O instruction.

The system shown in Figure 20 utilizes SSI logic to read the 8255 IBF and \overline{OBF} signals. If two spare 8255 input lines are available they could be used to input the IBF and \overline{OBF} signals and eliminate the SSI logic.

Software Discussion

Two sets of software are required to support the processor to processor interface. The master resident software which follows conforms to the simple interrupt driven software structure outlined previously. The initialization routine issues the Mode 2 control word to the 8255 after device reset. The command processor accepts READ/WRITE control blocks which provide a simple user interface for transferring data to/from the slave CPU. The master software is capable of processing both a read and a write control block simultaneously. The slave resident software shown at the end of this example utilizes the status driven approach.

Summary/Conclusions

It is important to note that this design may be expanded to include more slave CPUs by simply adding another 8255 to the master module for each slave. The software drivers discussed address only the passing of data between the two processors. Specific applications generally dictate a software protocol be implemented for information transfer.

Figure 20. Interface Block Diagram

ISIS 8080 MACRO ASSEMBLER, V1.0
PAGE 1
MODE TWO EXAMPLE - SLAVE SOFTWARE

```

TITLE 'MODE TWO EXAMPLE - SLAVE SOFTWARE'
;
; 8080 MASTER TO 8080 SLAVE INTERFACE
; - SLAVE SOFTWARE -
; MODE TWO EXAMPLE
;
;
;***** PROGRAM EQUATES
;*****
;00BF PDATA EQU 0BFH ; INTERPROCESSOR DATA PORT
;007F PSTS EQU 07FH ; STATUS
;*****
;0001 0BF  EQU 01H ; OUTPUT BUFFER FULL
;0002 IBF  EQU 02H ; INPUT BUFFER FULL
;*****
;3000 3000H ORG 03000H
;*****
;***** SLAVE READ ROUTINE
;***** INPUTS: NONE
;***** OUTPUTS: CHARACTER READ IN C-REGISTER
;***** A,C REG MODIFIED
;*****
;SLRD:
3000 DB7F IN    PSTS  ; GET STATUS
3002 E601 ANI   OBF  ; SEE IF BUFFER FULL
3004 C20B30 JNZ   SLRD ; NO - LOOP UNTIL FULL
3007 DBBF IN    PDATA ; GET CHARACTER
3009 4F MOV   C,A  ; PLACE IN C-REG
300A C9 RET
;***** RETURN TO CALLER
;
```


ISIS 8080 MACRO ASSEMBLER, V1.0
PAGE 2
MODE TWO EXAMPLE - SLAVE SOFTWARE

```

;
;***** SLAVE WRITE ROUTINE
;***** INPUTS: CHARACTER TO WRITE IN C-REGISTER
;***** OUTPUTS: NONE
;***** A,C REG MODIFIED
;*****
;SLWT:
3008 DB7F IN    PSTS  ; GET STATUS
300D E602 ANI   IBF  ; SEE IF BUFFER FULL
300F C20B30 JNZ   SLWT ; YES - LOOP UNTIL EMPTY
3012 79 MOV   A,C  ; GET DATA CHARACTER
3013 D3BF OUT   PDATA ; OUTPUT DATA
3015 C9 RET
;***** RETURN TO CALLER
;***** END OF SLAVE SOFTWARE DRIVER
;*****
0000 END
;
```

```

TITLE 'MODE TWO EXAMPLE - MASTER SOFTWARE'
*****  

;     BOBO MASTER TO 8080 SLAVE INTERFACE  

;           - MASTER SOFTWARE -  

;           MODE TWO EXAMPLE  

*****  

*****  

***** PROGRAM EQUATES  

*****  

00E4  PORTA  EQU  0E4H  ; 8255 PORT A  

00E5  PORTB  EQU  0E5H  ; 8255 PORT B  

00E6  PORTC  EQU  0E6H  ; 8255 PORT C  

00E7  CWR    EQU  0E7H  ; 8255 CONTROL WORD REGISTER  

00E8  RST7   EQU  038H  ; RESTART 7 ADDRESS  

;  

*****  

;     INITIALIZATION CONTROL WORD  

;  

;     USED TO CONFIGURE THE 8255 AS FOLLOWS:  

;  

;         PORT A - MODE 2 BIDIRECTIONAL BUS  

;         PORT B - INPUT MODE 0 (NOT USED)  

;         REMAINING PORT C LINES - INPUT MODE (NOT USED)  

*****  

00CB  ICW    EQU  11001011B ; INITIALIZATION CONTROL WORD  

*****  

;     8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS  

*****  

00D0  IENI   EQU  00001101B ; ENABLE INPUT INTERRUPTS  

00D9  IENO   EQU  00001001B ; ENABLE OUTPUT INTERRUPTS  

00DC  IDNI   EQU  00001100B ; DISABLE INPUT INTERRUPTS  

00D8  IDNO   EQU  00001000B ; DISABLE OUTPUT INTERRUPTS  

*****  

;     STATUS EQUATES  

*****  

00E6  INTRA  EQU  08H  ; INTERRUPT REQUEST  

00E9  OBFA  EQU  80H  ; OUTPUT BUFFER FULL  

0020  TBPA   EQU  20H  ; INPUT BUFFER FULL

```

```

*****  

***** CONTROL BLOCK EQUATES  

*****  

0000  CBST  EQU  00H  ; STATUS BYTE  

      CBGP  EQU  01H  ; OPCODE = READ  

              ;           = 1 WRITE  

0002  CRNF  EQU  02H  ; BUFFER ADDRESS  

0004  CRCC  EQU  04H  ; CHARACTER COUNT  

0005  CRCT  EQU  05H  ; CHARACTER TRANSFERRED COUNT  

0006  CRCPMP EQU  06H  ; COMPLETION SERVICE ADDRESS  

*****  

;     OPCODE EQUATES  

*****  

0000  OPRD  EQU  00H  ; REAL OPCODE  

0001  OPWT  EQU  01H  ; WRITE OPCODE  

*****  

;     COMPLETION STATUS EQUATES  

*****  

0000  STGE  EQU  00H  ; GOOD COMPLETION  

0001  SIE1  EQU  01H  ; ERROR - COMMAND ALREADY IN PROGRESS  

0002  STS2  EQU  02H  ; ERROR - INVALID OPCODE  

*****  

;     SET UP INTERRUPT VECTOR  

*****  

0038  ORG    RST7  

0038  C34630  JMP    PINT  ; JUMP TO INTERRUPT SERVICE ROUTINE  

*****  

;     PROGRAM ORIGIN  

*****  

3000  ORG    03000H  

*****  

;     INITIALIZATION ROUTINE  

;  

;     A REGISTER MODIFIED  

*****  

INIT:  

3000  3RCB  MVI    A,ICW  ; GET MODE CONTROL WORD  

3002  D3E7  OUT    CWR  ; OUTPUT TO CONTROL WORD REGISTER  

3004  C9    RET    ; RETURN TO CALLER

```


ISIS 8080 MACRO ASSEMBLER, V1.0
COMMAND PROCESSOR

PAGE 3

```

***** COMMAND PROCESSOR *****

INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS PS
OUTPUTS: START I/O OR ERROR STATUS IN CONTROL BLOCK
A,H,L MODIFIED

***** PSTART: *****
3005 210500 LXI H,CBCT ; GET INDEX TO CT
3008 19 DAD D ; COMPUTE ADDRESS OF CT
3009 3600 MVI M,OPRD ; CLEAR CT
300B 210100 LXI H,CBOP ; GET INDEX TO OPCODE
300E 19 DAD D ; COMPUTE ADDRESS
MOV A,M ; GET OPCODE
3010 FE00 CPI OOH ; SEE IF READ
3012 CA2430 JZ PSRD ; YES - GO PROCESS READ
3015 FE01 CPI OPWT ; SEE IF WRITE
3017 CA3530 JZ PSWT ; YES - GO PROCESS WRITE

***** ERROR - INVALID OPCODE *****
301A 3E02 MVI A,STE2 ; GET ERROR STATUS CODE
JMP POST ; CALL COMPLETION ROUTINE

***** ERROR - TRANSACTION ALREADY IN PROGRESS *****
PSTE: MVI A,STE1 ; GET ERROR STATUS CODE
JMP POST ; CALL COMPLETION ROUTINE

***** PROCESS READ COMMAND *****
PSRD: LDA PRGRD+1 ; GET READ IN PROGRESS ADDRESS
ANA A ; SEE IF READ IN PROGRESS (TEST FOR ZERO)
JNZ PSTE ; IF YES - BRANCH
3028 EB XCHG
302C 22E930 SHLD PRGRD ; SAVE CONTROL BLOCK ADDRESS
302F EB XCHG
3030 CD7C30 CALL PIN ; START I/O
3033 FB EI ; ENABLE INTERRUPTS
3034 C9 RET ; RETURN TO CALLER

***** PROCESS WRITE COMMAND *****
PSWT: LDA PRGWT+1 ; GET WRITE IN PROGRESS ADDRESS
ANA A ; SEE IF WRITE IN PROGRESS (TEST FOR ZERO)
JNZ PSTE ; IF YES - BRANCH
3039 C21F30 XCHG
303C EB SHLD PRGWT ; SAVE CONTROL BLOCK ADDRESS
303D 22EB30 XCHG
3040 EB CALL POUT ; START I/O
3044 FB EI ; ENABLE INTERRUPTS
3045 C9 RET ; RETURN TO CALLER

```

ISIS 8080 MACRO ASSEMBLER, V1.0
COMMAND PROCESSOR

PAGE 4

```

***** PROCESS WRITE COMMAND *****
PSWT: LDA PRGWT+1 ; GET WRITE IN PROGRESS ADDRESS
ANA A ; SEE IF WRITE IN PROGRESS (TEST FOR ZERO)
JNZ PSTE ; IF YES - BRANCH
3039 C21F30 XCHG
303C EB SHLD PRGWT ; SAVE CONTROL BLOCK ADDRESS
303D 22EB30 XCHG
3040 EB CALL POUT ; START I/O
3044 FB EI ; ENABLE INTERRUPTS
3045 C9 RET ; RETURN TO CALLER

```


ISIS 8080 MACRO ASSEMBLER, V1.0
INTERRUPT SERVICE ROUTINE

PAGE 6

```

;*****
; : INTERRUPT SERVICE ROUTINE
; : ALL REGISTERS SAVED AND RESTORED
; : *****
;PINT:
    PUSH PSW      ; SAVE PSW
    PUSH B        ; SAVE REGISTER PAIR B AND C
    PUSH D        ; SAVE REGISTER PAIR D AND E
    PUSH H        ; SAVE REGISTER PAIR H AND L
;*****
;*** INTERRUPT SOURCE - SEE IF 8255
    PUSH F        ; GET STATUS OF DEVICE
    ANI INTRA    ; SEE IF INT
    JZ PFOLL     ; NO - BRANCH TO POLL OTHER DEVICES IF ANY
    PVI ALIONI   ; GET INPUT INT DISABLE CONTROL WORD
    CLT WH       ; DISABLE DEVICE INTERRUPTS
    MVI A,LDNO   ; GET OUTPUT INT DISABLE CONTROL WORD
    CLT CWF      ; DISAPE DEVICE INTERRUPT
    EI           ; ENABLE PROCESSOR INTERRUPTS
    LHLC PRGRD   ; GET PRGR CONTROL BLOCK
    XRA A        ; CLEAR A REG
    CMP H        ; SEE IF READ IN PROGESS
    JZ PINT1     ; NO - BRANCH
    MVI D,LDNO   ; ALL PIN : DO INPUT
;*****
;PINT1:
    LHLD PRGWT   ; GET WRIT CONTROL BLOCK
    XPA A        ; CLEAR A REG
    CMP H        ; SEE IF WRITE IN PROGESS
    JZ PRTN      ; NO - BRANCH
    CALL POUT    ; DO OUTPUT
;*****
; RESTORE REGISTERS AND RETURN FROM INTERRUPT
;*****
;PRTN:
    POF H        ; RESTORE REGISTER PAIR H AND L
    POF D        ; RESTORE REGISTER PAIR D AND E
    POF B        ; RESTORE REGISTER PAIR B AND C
    POP PSW      ; RESTORE PSW
    EI           ; ENABLE PROCESSOR INTERRUPTS
    RET          ; RETURN TO INTERRUPTED PROCESS

```

ISIS 8080 MACRO ASSEMBLER, V1.0
INTERRUPT SERVICE ROUTINE

PAGE 6

```

;*****
; : POLL OTHER DEVICES IF ANY
; : IF NO OTHER DEVICES TO POLL - USER SUPPLIED ERROR
; : RECOVERY ROUTINE.
; : *****
;PFOLL:
    JMP PRTN    ; PFTURN
;*****
; : ERROR - INTERRUPT FROM IDLE DEVICE
; : USER SUPPLIED ERROR RECOVERY ROUTINE
; : *****
;PIEPT:
    JMP PRTN    ; RETURN

```


ISIS 8080 MACRO ASSEMBLER, V1.0
INPUT DATA ROUTINE

PAGE 7

```

;***** INPUT DATA ROUTINE
;***** PIN:
PIN:   IN    PORTC ; GET STATUS OF DEVICE
       ANI   IBSA ; SEE IF INPUT BUFFER FULL
       JZ    PRTI ; NO - BRANCH
       CALL  CBIA ; GET ADDRESS IN BUFFER
       JC    PIDON ; IF DONE - BRANCH
       IN    PORTA ; GET DATA
       MOV   M,A ; PLACE IN BUFFER
       JMP   PIN ; LOOP

;***** END OF INPUT TRANSACTION
;***** PIDON:
PIDON: XRA   A ; CLEAR A
        STA   PRGRD+1 ; CLEAR READ IN PROGRESS
        JMP   PRTI ; RETURN

;***** RETURN FROM INPUT
;***** PRTI:
PRTI:  DI    A ; DISABLE PROCESSOR INTERRUPTS
        MVI   A,IEIN ; GET ENABLE INPUT INTERRUPTS CONTROL WORD
        OUT   CWR ; OUTPUT TO CONTROL WORD REGISTER
        RET   ; RETURN TO CALLER
  
```


ISIS 8080 MACRO ASSEMBLER, V1.0
OUTPUT DATA ROUTINE

PAGE 8

```

;***** OUTPUT DATA ROUTINE
;***** POUT:
POUT:  IN    PORTC ; GET PORTC STATUS
       ANI   IBSA ; SEE IF OUTPUT BUFFER FULL
       JNZ   PRTO ; YES - BRANCH
       CALL  CBIA ; SET UP ADDRESS OF DATA
       JC    PODON ; IF DONE - BRANCH
       MOV   A,M ; GET DATA FROM BUFFER
       OUT   PORTA ; OUTPUT DATA
       JMP   POUT ; LOOP

;***** END OF OUTPUT TRANSACTION
;***** PODON:
PODON: XRA   A ; CLEAR A REG
        SIA   PRWRT+1 ; CLEAR WRITE IN PROGRESS
        JMP   PRTO ; RETURN

;***** RETURN FROM OUTPUT
;***** PRTO:
PRTO:  DI    A ; DISABLE PROCESSOR INTERRUPTS
        MVI   A,IEENO ; GET ENABLE OUTPUT INTERRUPTS CONTROL WORD
        OUT   CWR ; OUTPUT TO CONTROL WORD REGISTER
        RET   ; RETURN TO CALLER
  
```


Setup Buffer Address Subroutine

ISIS 8080 MACRO ASSEMBLER, V1.0
COMPUTE BUFFER ADDRESS ROUTINE

PAGE 9

```

***** COMPUTE BUFFER ADDRESS ROUTINE
*****
CBFA:
30BC 210500 LXI H,CBCT ; GET INDEX TO CT
30BF 19 DAD D ; COMPUTE ADDRESS OF CT
30C0 7E MOV A,M ; GET CT
30C1 34 INR M ; INC CT
30C2 28 DCX H ; DEC TO CC
30C3 BE CMP M ; SEE IF EQUAL
30C4 CAD530 JZ PCOMP ; IF EQUAL - DONE GO TELL USER
30C7 210200 LXI H,CBUF ; GET INDEX TO BUFFER ADDRESS
30CB D5 PUSH D ; SAVE D AND E REGISTERS
30CC 58 MOV E,M ; GET LSB OF BUFFER ADDRESS
30CD 23 INX H ; INC TO NEXT BYTE
30CF 56 MOV D,M ; GET BUFFER MSB
30CF AC XRA H ; CLEAR H REG
30D0 6F MOV L,A ; GET CT
30D1 19 DAD D ; COMPUTE CHARACTER ADDRESS
30D2 D1 POP D ; RESTORE CONTROL BLOCK ADDRESS
30D3 AF XRA A ; CLEAR CARRY
30D4 C9 RET ; RETURN TO CALLER
    
```

ISIS 8080 MACRO ASSEMBLER, V1.0
POST TO USER COMPLETION ROUTINE

PAGE 10

```

***** POST GOOD COMPLETION TO USER
*****
PQOMP:
30D5 3E00 MVI A,SIGD ; GET GOOD STATUS CODE
30D7 CDC30 CALL POST ; CALL USER ROUTINE
30DA 37 STC ; SET CARRY
30DB C9 RET ; RETURN TO CALLER
***** POST TO USER COMPLETION ROUTINE
;
; INPUTS : STATUS CODE IN A REG
;          CONTROL BLOCK ADDRESS IN D AND E REG
; OUTPUTS: PASSES CONTROL TO USER COMPLETION ADDRESS
;          SPECIFIED IN CONTROL BLOCK
*****
POST:
30DC EB XCHG
30DD 77 MOV M,A ; UPDATE STATUS
30DE E5 XCHG
30DF 210600 LXI H,CBMP ; GET INDEX TO COMPLETION ADDRESS
30E2 19 DAD D ; COMPUTE ADDRESS
30E3 4E MOV C,M ; GET LSB OF COMPLETION ADDRESS
30E4 23 INX H ; INC TO NEXT BYTE
30E5 46 MOV B,M ; GET MSB BYTE OF COMPLETION ADDRESS
30E6 C5 PUSH B ; PUSH ADDRESS INTO STACK
30E7 C9 RET ; PASS CONTROL TO USER ROUTINE
30E8 C9 RET ; RETURN TO CALLER
*****
;
; DATA AND TABLES
;
; IF DATA NON ZERO CONTROL BLOCK IN PROGRESS
;
***** PRGRD: DW 0 ; IN PROGRESS READ CONTROL BLOCK
PRWNT: DW 0 ; IN PROGRESS WRITE CONTROL BLOCK
***** END OF MASTER SOFTWARE DRIVER
***** END
0000
    
```

APPENDIX A – 8255 QUICK REFERENCE

MODE CONTROL WORD

MODE 1 STATUS WORD

BIT SET/RESET CONTROL WORD

MODE 2 STATUS WORD

MODE 1 CONFIGURATIONS

MODE 2 CONFIGURATIONS

U.S. AND CANADIAN SALES OFFICES

ALABAMA Barnhill and Associates 7844 Horseshoe Trail Huntsville 35802 Tel: (205) 883-9394	FLORIDA (cont.) Intel Corp. 5151 Adanson Street, Suite 200-3 Orlando 32804 Tel: (305) 628-2393 TWX: 810-853-9219	MICHIGAN Intel Corp. 725 South Adams Road Suite 288 Birmingham 48011 Tel: (313) 642-7018 TWX: 910-420-1212 TELEX: 2 31143	NEW YORK (cont.) T-Squared 640 Craig Road P.O. Box W Pittsford 14534 Tel: (716) 381-2551 TELEX: 97-8289	TENNESSEE Barnhill and Associates 206 Chickasaw Drive Johnson City 37601 Tel: (615) 928-0184
ARIZONA Sales Engineering, Inc. 7155 E. Thomas Road, No. 6 Scottsdale 85252 Tel: (602) 945-5781 TWX: 910-950-1288	ILLINOIS Intel Corp.* 900 Jorie Boulevard Suite 138 Oakbrook 60521 Tel: (312) 325-9510 TWX: 910-651-5881	MINNESOTA Intel Corp. 675 Southgate Office Plaza 5001 West 80th Street Bloomington 55437 Tel: (612) 835-6722 TWX: 910-576-2867	TEXAS Intel Corp. 55 Market Street Poughkeepsie, New York 12601 Tel: (914) 473-2303 TWX: 510-248-0060	TEXAS Evans & McDowell Associates 13777 N. Central Expressway Suite 405 Dallas 75231 Tel: (214) 238-7157 TWX: 910-867-4763
CALIFORNIA Intel Corp.* 990 E. Arques Ave. Suite 112 Sunnyvale 94086 Tel: (408) 738-3870 TWX: 910-339-9279 Mac-I P.O. Box 1420 Cupertino 95014 Tel: (408) 257-9880 Earle Associates, Inc. 4433 Convoy Street Suite A San Diego 92111 Tel: (714) 278-5441 TWX: 910-335-1585 Intel Corp.* 1651 East 4th Street Suite 228 Santa Ana 92701 Tel: (714) 835-9642 TWX: 910-595-1114	IOWA Technical Representatives, Inc. 1703 Hillsdale Drive Cedar Rapids Tel: (319) 396-5662	MISSOURI Technical Representatives, Inc. Trade Center Bldg. 300 Brookes Drive, Suite 108 Hazelwood 63042 Tel: (314) 731-5200 TWX: 910-762-0618	NORTH CAROLINA Barnhill and Associates 913 Plateau Lane Raleigh 27609 Tel: (919) 876-5617	EVANS & McDOWELL ASSOCIATES 6610 Harwin Avenue, Suite 125 Houston 77036 Tel: (713) 783-2900
KANSAS Technical Representatives, Inc. 801 Clairborne Olathe 66061 Tel: (913) 782-1177 TWX: 910-749-6412	MARYLAND Barnhill and Associates 57 West Timonium Road Timonium 21093 Tel: (301) 252-7742	NEW JERSEY Intel Corp. 2 Kilmer Road Edison 08817 Tel: (201) 985-9100 TWX: 710-480-6238	OHIO Intel Corp.* 8312 North Main Street Dayton 45415 Tel: (513) 890-5350 TELEX: 288-004	EVANS & McDOWELL ASSOCIATES 6610 Harwin Avenue, Suite 125 Houston 77036 Tel: (713) 783-2900
COLORADO Intel Corp. 12075 East 45th Avenue Suite 310 Denver 80239 Tel: (303) 373-4920 TWX: 910-932-0322	MASSACHUSETTS Datcom 55 Moody Street Waltham 02154 Tel: (617) 891-4600 TELEX: 92-3462	NEW YORK Intel Corp.* 57 West Timonium Road Suite 307 Timonium 21093 Tel: (301) 252-7742 TWX: 710-232-1807	PENNSYLVANIA Vantage Sales Company 21 Kilmer Road Bala Cynwyd 19004 Tel: (215) 667-0900 TWX: 510-662-5846	VIRGINIA Barnhill and Associates P.O. Box 1104 Lynchburg 24505 Tel: (804) 846-4624
FLORIDA Intel Corp. 1090 NE 27th Terrace Pompano Beach 33062 Tel: (305) 781-7450 TWX: 510-956-9407	FRANCE Intel Corporation, S.A.R.L.* 74, Rue D'Arcueil Silic 223 94528 Rungis Cedex Tel: (01) 687 22 21 TELEX: 270475	MASSACHUSETTS Intel Corp.* 187 Billerica Road, Suite 14A Chelmsford 01824 Tel: (617) 861-1136 TWX: 710-343-6333	NEW YORK Intel Corp.* 6901 Jericho Turnpike Syosset 11791 Tel: (516) 364-9860 TWX: 510-221-2198	WASHINGTON E.S./Chase Co. P.O. Box 80903 Seattle 98108 Tel: (206) 762-4824 TWX: 910-444-2298
EUROPEAN MARKETING OFFICES	FRANCE Intel Corporation, S.A.R.L.* 74, Rue D'Arcueil Silic 223 94528 Rungis Cedex Tel: (01) 687 22 21 TELEX: 270475	SCANDINAVIA Intel Scandinavia A/S* Lyngbyvej 32 2nd Floor DK-2100 Copenhagen East Denmark Tel: (01) 18 20 00 TELEX: 19567	ENGLAND Intel Corporation (U.K.) Ltd.* Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203	CANADA Multilek, Inc. 4 Barren Street Ottawa, Ontario K2J 1G2 Tel: (613) 825-4695 TELEX: 053-4585
BELGIUM Intel International* Rue du Moulin à Papier 51-Boite 1 B-1160 Brussels Tel: (02) 660 30 10 TELEX: 24814	FRANCE Oy Fintronic AB Karjalantie 2C, SF 00520 Helsinki 52 Tel: (09) 664 451 TELEX: 12426	SCANDINAVIA Intel Scandinavia A/S* Lyngbyvej 32 2nd Floor DK-2100 Copenhagen East Denmark Tel: (01) 18 20 00 TELEX: 19567	ENGLAND Intel Corporation (U.K.) Ltd.* Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203	GERMANY Intel Semiconductor GmbH* Wolfratshauserstrasse 159 D8 Munich 71 Tel: (089) 79 89 23 TELEX: 5-212870
JAPAN Intel Japan Corporation* Flower Hill-Shinmachi East Bldg. 1-23-9, Shinmachi, Setagaya-ku Tokyo 154 Tel: (03) 426-9261 TELEX: 781-28426	HONG KONG Q1 (Far East) Ltd. Tak Yan Commercial Bldg, 6th floor 30-32 D'Aguilar Street, Central Hong Kong Tel: 5-260311 TELEX: 83138 JADE HX	TAIWAN Taiwan Automation Co.* 8th Floor, 140, Section 1 Chung Hsiao E. Road Taipei Tel: 393-1115 TELEX: 11942 TAI AUTO	ENGLAND Intel Corporation (U.K.) Ltd.* Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203	GERMANY Intel Semiconductor GmbH* Wolfratshauserstrasse 159 D8 Munich 71 Tel: (089) 79 89 23 TELEX: 5-212870
INTERNATIONAL DISTRIBUTORS	FINLAND Oy Fintronic AB Karjalantie 2C, SF 00520 Helsinki 52 Tel: (09) 664 451 TELEX: 12426	HONG KONG ASTEC International Keystone House, 2nd Floor Hankow Road, Kowloon Tel: 3-687760 TELEX: 74899 ASCOM	ENGLAND Intel Corporation (U.K.) Ltd.* Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203	GERMANY Intel Semiconductor GmbH* Wolfratshauserstrasse 159 D8 Munich 71 Tel: (089) 79 89 23 TELEX: 5-212870
AUSTRALIA A. J. Ferguson (Adelaide) PTY, Ltd. 44 Prospect Rd. Prospect 5082 South Australia Tel: 229-1244 TELEX: 82635	FRANCE Tekelo Airtronics Cite des Bruyeres Rue Carle Vernet 92310 Sevres Tel: (1) 027 75 35 TELEX: 250997	HONG KONG ASTEC International Keystone House, 2nd Floor Hankow Road, Kowloon Tel: 3-687760 TELEX: 74899 ASCOM	ENGLAND Intel Corporation (U.K.) Ltd.* Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203	GERMANY Intel Semiconductor GmbH* Wolfratshauserstrasse 159 D8 Munich 71 Tel: (089) 79 89 23 TELEX: 5-212870
AUSTRIA Bacher Elektronische Geräte GmbH Meidlinger Hauptstrasse 78 A 1120 Vienna Tel: (0222) 83 63 96 TELEX: (01) 1532	FRANCE Tekelo Airtronics Cite des Bruyeres Rue Carle Vernet 92310 Sevres Tel: (1) 027 75 35 TELEX: 250997	ISRAEL Telsys Ltd. 54, Jabotinsky Road IL-Ramat - Gan 52 464 Tel: (3) 73 98 65 TELEX: 32392	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	SWEDEN Nordisk Electronik AB Fack S-10380 Stockholm 7 Tel: (08) 248340 TELEX: 10547
BELGIUM Inelco Belgium S.A. Avenue Val Duchesse, 3 B-1160 Brussels Tel: (02) 660 00 12 TELEX: 25441	GERMANY Alfred Neye Enatachnik GmbH Schillerstrasse 14 D-2085 Quickborn-Hamburg Tel: (04106) 6121 TELEX: 02-13590	HONG KONG ASTEC International Keystone House, 2nd Floor Hankow Road, Kowloon Tel: 3-687760 TELEX: 74899 ASCOM	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	SWITZERLAND Industrade AG Gemeinstrasse 2 Postcheck 80-21190 CH-8021 Zurich Tel: (01) 60 22 30 TELEX: 56788
DENMARK Scandinavian Semiconductor Supply A/S Nannasgade 18 DK-2200 Copenhagen N Tel: (01) 93 50 90 TELEX: 19037	GERMANY Electronic 2000 Vertriebs GmbH Neumarketer Strasse 75 D-8000 Muenchen 80 Tel: (089) 434061 TELEX: 484426	ISRAEL Telsys Ltd. 54, Jabotinsky Road IL-Ramat - Gan 52 464 Tel: (3) 73 98 65 TELEX: 32392	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	UNITED KINGDOM Rapid Recall, Ltd. 11-15 Betterton Street Drury Lane London WC2H 9BS Tel: (01) 379-6741 TELEX: 28752
FRANCE Jermyn GmbH Postfach 1146 D-6277 Kamberg Tel: (06434) 6005 TELEX: 484426	ITALY Eledra 3S S.P.A. Viale Elvezia, 18 20154 Milan Tel: (02) 3493041 TELEX: 39332	ISRAEL Telsys Ltd. 54, Jabotinsky Road IL-Ramat - Gan 52 464 Tel: (3) 73 98 65 TELEX: 32392	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	UNITED KINGDOM Rapid Recall, Ltd. 11-15 Betterton Street Drury Lane London WC2H 9BS Tel: (01) 379-6741 TELEX: 28752
SPAIN Interface Ronda General Mitre #7 E-Barcelona 17 Tel: (93) 203-53-30 TELEX: 52838	SOUTH AFRICA Electronic Building Elements P.O. Box 4609 Pretoria Tel: (011) 78 92 21 TELEX: 30181	ITALY Eledra 3S S.P.A. Via Giuseppe Valmarana, 63 00139 Rome, Italy Tel: (06) 81 27 290 - 81 27 324	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	UNITED KINGDOM G.E.C. Semiconductors Ltd. East Lane Wembley HA9 7PP Middlesex Tel: (01) 904-9303 TELEX: 923429
SWEDEN Nordisk Electronik AB Fack S-10380 Stockholm 7 Tel: (08) 248340 TELEX: 10547	NORWAY Nordisk Elektronik (Norge) A/S Mustad Vei 1 N-Oslo 2 Tel: (02) 55 38 93 TELEX: 16963	ITALY Eledra 3S S.P.A. Via Giuseppe Valmarana, 63 00139 Rome, Italy Tel: (06) 81 27 290 - 81 27 324	ENGLAND Pan Electron No. 1 Higashikita-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4773	UNITED KINGDOM G.E.C. Semiconductors Ltd. East Lane Wembley HA9 7PP Middlesex Tel: (01) 904-9303 TELEX: 923429
SWITZERLAND Industrade AG Gemeinstrasse 2 Postcheck 80-21190 CH-8021 Zurich Tel: (01) 60 22 30 TELEX: 56788	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	UNITED KINGDOM Rapid Recall, Ltd. 11-15 Betterton Street Drury Lane London WC2H 9BS Tel: (01) 379-6741 TELEX: 28752
UNITED KINGDOM Jermyn Industries Bestry, Sevenoaks Road Sevenoaks, Kent. Tel: (0732) 51174 TELEX: 95143	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	NETHERLANDS Inelco Nederland AFD Elektronics Joan Musynweg 22 NL-1006 Amsterdam Tel: (020) 934824 TELEX: 14622	UNITED KINGDOM Rapid Recall, Ltd. 11-15 Betterton Street Drury Lane London WC2H 9BS Tel: (01) 379-6741 TELEX: 28752
*Field Application Location				

U.S. AND CANADIAN DISTRIBUTORS

ALABAMA

†Hamilton/Avnet Electronics
805 Oser Drive NW
Huntsville 35805
Tel: (205) 533-1170

ARIZONA

Cramer/Arizona
2643 East University Drive
Phoenix 85034
Tel: (602) 263-1112
Hamilton/Avnet Electronics
2615 South 21st Street
Phoenix 85034
Tel: (602) 275-7851
Liberty/Arizona
3130 N. 27th Avenue
Phoenix 85107
Tel: (602) 257-1272
TELEX: 910-951-4282

CALIFORNIA

†Hamilton/Avnet Electronics
575 E. Middlefield Road
Mountain View 94040
Tel: (415) 961-7000
†Hamilton/Avnet Electronics
8917 Complex Drive
San Diego 92123
Tel: (714) 279-2421
†Hamilton Electro Sales
10912 W. Washington Boulevard
Culver City 90230
Tel: (213) 558-2121
†Cramer/San Francisco
720 Palomar Avenue
Sunnyvale 94086
Tel: (408) 739-3011
†Cramer/Los Angeles
1720 Daimler Street
Irvine 92705
Tel: (714) 979-3000
Cramer/San Diego
8975 Complex Drive
San Diego 92123
Tel: (714) 565-1881
†Liberty Electronics
124 Maryland Street
El Segundo 90245
Tel: (213) 322-8100
Tel: (714) 638-7601
TWX: 910-348-7140
Liberty/San Diego
8248 Mercury Court
San Diego 92111
Tel: (714) 565-8171
TELEX: 910-335-1590
Elmar Electronics
2288 Charleston Road
Mountain View 94040
Tel: (415) 961-3611
TELEX: 910-379-6437

COLORADO

Cramer/Denver
5465 E. Evans Pl. at Hudson
Denver 80222
Tel: (303) 758-2100
Elmar/Denver
6777 E. 50th Avenue
Commerce City 80022
Tel: (303) 287-9611
TWX: 910-936-0770
†Hamilton/Avnet Electronics
5921 No. Broadway
Denver 80216
Tel: (303) 534-1212

CONNECTICUT

Cramer/Connecticut
35 Dodge Avenue
North Haven 06473
Tel: (203) 239-5641
Components Plus
361 W. State
Westport 06880
Tel: (203) 226-4731
Hamilton/Avnet Electronics
643 Danbury Road
Georgetown 06829
Tel: (203) 762-0361

FLORIDA

Cramer/E.W. Hollywood
4035 No. 29th Avenue
Hollywood 33020
Tel: (305) 923-8181
†Hamilton/Avnet Electronics
4020 No. 29th Ave.
Hollywood 33021
Tel: (305) 925-5401
†Cramer/EW Orlando
345 N. Graham Ave.
Orlando 32814
Tel: (305) 894-1511

GEORGIA

Cramer/EW Atlanta
3923 Oakcliff Industrial Center
Atlanta 30340
Tel: (404) 448-9050
Hamilton/Avnet Electronics
6700 I-85, Access Road, Suite 2B
Norcross 30071
Tel: (404) 448-0800

ILLINOIS

†Cramer/Chicago
1911 So. Busse Rd.
Mt. Prospect 60056
Tel: (312) 593-8230
†Hamilton/Avnet Electronics
3901 No. 25th Ave.
Schiller Park 60176
Tel: (312) 678-6310

INDIANA

Pioneer/Indiana
6408 Castleplace Drive
Indianapolis 46250
Tel: (317) 547-7777
Sheridan Sales Co.
8790 Purdue Road
Indianapolis 46268
Tel: (317) 297-3146

KANSAS

Hamilton/Avnet Electronics
37 Lenexa Industrial Center
9900 Pfleum Road
Lenexa 66215
Tel: (913) 888-8900

MARYLAND

Cramer/EW Baltimore
7235 Standard Drive
Hanover 21076
Tel: (301) 796-5790
†Cramer/EW Washington
16021 Industrial Drive
Gaithersburg 20760
Tel: (301) 948-0110
†Hamilton/Avnet Electronics
7235 Standard Drive
Hanover 21076
Tel: (301) 796-5000

MASSACHUSETTS

†Cramer Electronics Inc.
85 Wells Avenue
Newton 02159
Tel: (617) 969-7700
†Hamilton/Avnet Electronics
100 E. Commerce Way
Woburn 01801
Tel: (617) 273-2120

MICHIGAN

Sheridan Sales Co.
24543 Indoplex Drive
Farmington Hills 48024
Tel: (313) 477-3800
†Pioneer/Michigan
13485 Stamford
Livonia 48150
Tel: (313) 729-8500
†Hamilton/Avnet Electronics
12870 Farmington Road
Livonia 48150
Tel: (313) 522-4700
TWX: 810-242-8775

MINNESOTA

†Industrial Components
5280 West 74th Street
Minneapolis 55435
Tel: (612) 831-2666
Cramer/Bonn
7275 Bush Lake Road
Edina 55435
Tel: (612) 835-7811
†Hamilton/Avnet Electronics
7683 Washington Avenue So.
Edina 55435
Tel: (612) 941-3801

MISSOURI

†Hamilton/Avnet Electronics
364 Brookes Lane
Hazelwood 63042
Tel: (314) 731-1144

NEW JERSEY

Cramer/Pennsylvania, Inc.
12 Springdale Road
Cherry Hill Industrial Center
Cherry Hill 08003
Tel: (609) 424-5993
TWX: 710-896-0908
Components Plus
310 Railroad Avenue
Hackensack 07601
Tel: (201) 487-0565

NEW JERSEY (cont.)

†Hamilton/Avnet Electronics
218 Little Falls Road
Cedar Grove 07009
Tel: (201) 239-0800
TWX: 710-994-5787
Cramer/New Jersey
No. 1 Barrett Avenue
Moonachie 07074
Tel: (201) 935-5600
†Hamilton/Avnet Electronics
113 Gaither Drive
East Gate Industrial Park
Mt. Laurel 08057
Tel: (609) 234-2133
TWX: 710-897-1405

NEW MEXICO

Hamilton/Avnet Electronics
2450 Baylor Drive, S.E.
Albuquerque 87119
Tel: (505) 765-1500
Cramer/New Mexico
137 Vermont, N.E.
Albuquerque 87108
Tel: (505) 265-5767

NEW YORK

Cramer/Rochester
3000 Winton Road South
Rochester 14623
Tel: (716) 275-0300
Components Plus
40 Oser Avenue
Hauppauge 11787
Tel: (516) 231-9200

†Hamilton/Avnet Electronics
167 Clay Road
Rochester 14623
Tel: (716) 442-7820
†Cramer/Syracuse
6716 Joy Road
East Syracuse 13057
Tel: (315) 437-6671
†Hamilton/Avnet Electronics
6500 Joy Road
E. Syracuse 13057
Tel: (315) 437-2642
†Cramer/Long Island
29 Oser Avenue
Hauppauge, L.I. 11787
Tel: (516) 231-5600
TWX: 510-227-9863

†Hamilton/Avnet Electronics
70 State Street
Westbury, L.I. 11590
Tel: (516) 333-5800
TWX: 510-222-8237

NORTH CAROLINA

Cramer Electronics
938 Burke Street
Winston-Salem 27102
Tel: (919) 725-8711

OHIO

†Hamilton/Avnet Electronics
118 Westpark Road
Dayton 45459
Tel: (513) 433-0610
TWX: 810-450-2531
†Pioneer/Dayton
1900 Troy Street
Dayton 45404
Tel: (513) 236-9900

†Sheridan Sales Co.
10 Knollcrest Drive
Cincinnati 45222
Tel: (513) 761-5432
TWX: 810-461-2670
†Pioneer/Cleveland
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
†Hamilton/Avnet Electronics
761 Beta Drive
Cleveland 44143
Tel: (216) 461-1400
Sheridan Sales Co.
23224 Commerce Park Road
Beachwood 44122
Tel: (216) 831-0130

Sheridan Sales Co.
Shiloh Building, Suite 250
5045 North Main Street
Dayton 45405
Tel: (513) 277-8911

OKLAHOMA

Components Specialties, Inc.
7920 E. 40th Street
Tulsa 74145
Tel: (918) 664-2820

OREGON

Almac/Strom Electronics
4475 S.W. Scholls Ferry Rd.
Portland 97225
Tel: (503) 292-3534

PENNSYLVANIA

Sheridan Sales Co.
1717 Penn Avenue, Suite 5009
Pittsburgh 15221
Tel: (412) 244-1640
Pioneer/Pittsburgh
560 Alpha Drive
Pittsburgh 15238
Tel: (412) 782-2300

TEXAS

Cramer Electronics
13740 Midway Road
Dallas 75240
Tel: (214) 661-9300
†Hamilton/Avnet Electronics
4445 Sigma Road
Dallas 75240
Tel: (214) 661-8661
†Hamilton/Avnet Electronics
1216 W. Clay
Houston 77019
Tel: (713) 526-4661
Component Specialties, Inc.
10907 Shady Trail, Suite 101
Dallas 75220
Tel: (214) 357-4576
†Component Specialties, Inc.
7313 Ashcroft Street
Houston 77036
Tel: (713) 771-7237

UTAH

Cramer/Utah
391 W. 2500 South
Salt Lake City 84115
Tel: (801) 487-4131
Hamilton/Avnet Electronics
647 W. Bilingual Road
Salt Lake City 84119
Tel: (801) 262-8451

WASHINGTON

†Hamilton/Avnet Electronics
13407 Northrup Way
Bellevue 98005
Tel: (206) 746-8750
†Almac/Strom Electronics
5811 Sixth Ave. South
Seattle 98108
Tel: (206) 763-2300
Cramer/Seattle
1059 Andover Park East
Tukwila 98188
Tel: (206) 575-0907

CANADA

ALBERTA
L.A. Varah Ltd.
4742 14th Street N.E.
Calgary T2E 6LT
Tel: (403) 276-8818
Telex: 13 825 89 77

BRITISH COLUMBIA
†L.A. Varah Ltd.
2077 Alberta Street
Vancouver V5Y 1C4
Tel: (604) 873-3211
TWX: 610-929-1068
Telex: 04 53167

ONTARIO

Cramer/Canada
920 Alness Avenue, Unit No. 9
Downsvive
Toronto 392 M3J 2H7
Tel: (416) 661-9222
TWX: 610-492-6210
Hamilton/Avnet Electronics
6291-16 Dorman Road
Mississauga L4V 1H2
Tel: (416) 677-7432
TWX: 610-492-8867
Hamilton/Avnet Electronics
1735 Courtwood Cresc.
Ottawa K2C 2B4
Tel: (613) 226-1700
TWX: 610 562-1906

QUEBEC

†Hamilton/Avnet Electronics
2670 Paulus
St. Laurent H4S 1G2
Tel: (514) 331-6443
TWX: 610-421-3731

MANITOBA

L.A. Varah Ltd.
153 Corbett Drive
Winnipeg R2Y 1V4
Tel: (204) 889-9607

†MDS Centers