Data Analysis

Juste Simanauskaite & Patricia Rivera

Contents

```
Survival Analysis
                                                  5
Patricia's "Something New"
                                                  11
    11
    2. How it is relevant? How it relates to survival analysis/analysis at hand? . . . . . . . . . . . .
                                                  11
    11
    11
Juste's "Something New"
                                                  11
    1. What is goign on? What is the topic? 2. How it is relevant? How it relates to survival
       11
    knitr::opts_chunk$set(message=FALSE, warning=FALSE, fig.height=3, fig.width=5, fig.align="center")
library(tidyverse)
library(broom)
library(plyr)
library(survival)
library(survminer)
aids <- read.csv( "http://pages.pomona.edu/~jsh04747/courses/math150/AIDSdata.csv")
dim(aids)
```

[1] 851 16

summary(aids)

```
##
          id
                            time
                                            censor
                                                               time_d
##
    Min.
           :
                1.0
                      Min.
                              : 1.0
                                       Min.
                                               :0.00000
                                                           Min.
                                                                  : 1.0
    1st Qu.: 287.5
                      1st Qu.:179.5
                                       1st Qu.:0.00000
                                                           1st Qu.:199.5
    Median : 581.0
                      Median :257.0
                                       Median :0.00000
                                                           Median :266.0
##
##
    Mean
           : 579.5
                              :231.8
                                               :0.08108
                                                                   :243.4
                      Mean
                                       Mean
                                                           Mean
##
    3rd Qu.: 873.0
                      3rd Qu.:300.0
                                       3rd Qu.:0.00000
                                                           3rd Qu.:306.0
                              :362.0
                                               :1.00000
##
    Max.
            :1156.0
                      Max.
                                       Max.
                                                           Max.
                                                                   :362.0
##
       censor d
                             tx
                                             txgrp
                                                              strat2
##
           :0.0000
                              :0.0000
                                                                 :0.0000
    Min.
                      Min.
                                        Min.
                                                :1.000
                                                          Min.
    1st Qu.:0.0000
                      1st Qu.:0.0000
                                         1st Qu.:1.000
                                                          1st Qu.:0.0000
    Median :0.0000
                      Median :1.0000
                                        Median :2.000
                                                          Median :1.0000
##
           :0.0235
                              :0.5041
                                                :1.504
                                                                 :0.6157
##
    Mean
                      Mean
                                        Mean
                                                          Mean
    3rd Qu.:0.0000
                      3rd Qu.:1.0000
##
                                         3rd Qu.:2.000
                                                          3rd Qu.:1.0000
##
    Max.
            :1.0000
                      Max.
                              :1.0000
                                         Max.
                                                :2.000
                                                          Max.
                                                                 :1.0000
##
                         raceth
                                                           hemophil
         sex
                                           ivdrug
                                                        {\tt Min.}
##
    Min.
           :1.000
                             :1.000
                                      Min.
                                              :1.000
                                                               :0.00000
                     Min.
    1st Qu.:1.000
                     1st Qu.:1.000
                                       1st Qu.:1.000
##
                                                        1st Qu.:0.00000
##
    Median :1.000
                     Median :1.000
                                      Median :1.000
                                                        Median :0.00000
##
    Mean
           :1.157
                     Mean
                             :1.706
                                      Mean
                                              :1.317
                                                        Mean
                                                               :0.03408
##
    3rd Qu.:1.000
                     3rd Qu.:2.000
                                      3rd Qu.:1.000
                                                        3rd Qu.:0.00000
           :2.000
                             :5.000
                                              :3.000
##
   Max.
                     Max.
                                      Max.
                                                        Max.
                                                               :1.00000
```

```
##
        karnof
                            cd4
                                            priorzdv
                                                                age
    Min.
##
           : 70.00
                              : 0.00
                                        Min.
                                                : 3.00
                                                                  :15.00
                      Min.
                                                           Min.
##
    1st Qu.: 90.00
                      1st Qu.: 22.25
                                        1st Qu.: 11.00
                                                           1st Qu.:33.00
    Median : 90.00
                      Median: 75.00
                                        Median : 21.00
                                                           Median :38.00
##
##
    Mean
            : 91.34
                      Mean
                              : 86.45
                                        Mean
                                                : 30.63
                                                           Mean
                                                                   :38.81
##
    3rd Qu.:100.00
                      3rd Qu.:135.75
                                         3rd Qu.: 44.00
                                                           3rd Qu.:44.00
    Max.
            :100.00
                      Max.
                              :348.00
                                        Max.
                                                :288.00
                                                           Max.
                                                                  :73.00
```

The data set contains a sample size equal to 851 participants and 16 different variables.

Gender Distribution

The Pie Chart represents the gender distribution in the sample, with 84% male and 16% female. This shows the potential for the data to not be able to correctly represent the difference of the data variance by gender, if there were to be one. Therefore, gender is something to look into in future data analysis.

```
wnh<-sum(aids$raceth==1)
bnh<-sum(aids$raceth==2)
h<-sum(aids$raceth==3)
api<-sum(aids$raceth==4)
aian<-sum(aids$raceth==5)
oth<-sum(aids$raceth==6)
slices <- c(wnh,bnh,h,api,aian,oth)
lbls <- c("White Non-Hispanic", "Black Non-Hispanic", "Hispanic", "Asian, Pacific Islander", pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct)
lbls <- paste(lbls, "%",sep="")
pie(slices,lbls,col = rainbow(length(lbls)), cex=0.5 )</pre>
```


The distribution of race/ethnicity shows that the greatest number of participants consists of white non-hispanic identifying indiciduals, with black non-hispanic following and hispanic as the 3rd largest represented

group.

IV Drug Use History

From this chart we see that most of the participants (84%) have never used IV drugs, whereas 16% of participants have some type of history of usage and none of the participants reported to be currently using the drugs.

```
hist(aids$time)
###Data Plots
fit <- survfit(Surv(time,censor)~tx, data = aids)
ggsurvplot(fit,data = aids,conf.int = FALSE)</pre>
```

Histogram of aids\$time

Survival Analysis

```
aids <- read.csv( "http://pages.pomona.edu/~jsh04747/courses/math150/AIDSdata.csv")</pre>
aids <- aids %>%
  mutate(age = ifelse(age <= 20, "under20",</pre>
                              ifelse(age <=30, "20-30",
                                      ifelse(age <= 40, "30-40",
                                             ifelse(age <=50, "40-50",
                                                   ifelse(age <=60, "50-60",
                                                           ifelse(age <=70, "60-70", "over70"))))))) %>%
  mutate(age = factor(age,
                        levels = c("under20", "20-30", "30-40", "40-50", "50-60", "60-70", "over70")),
library(survival)
library (survminer)
library(ggplot2)
library(broom)
coxph(Surv(time_d,censor_d) ~ sex , data=aids) %>% tidy()
## # A tibble: 1 x 7
##
             estimate std.error statistic p.value conf.low conf.high
     term
     <chr>>
                                              <dbl>
                                                                  <dbl>
                 <dbl>
                           <dbl>
                                      <dbl>
                                                       <dbl>
                                      0.697
                                                      -0.706
                                                                   1.49
## 1 sexmale
                0.390
                           0.559
                                              0.486
coxph(Surv(time,censor) ~ sex, data=aids) %>% tidy()
## # A tibble: 1 x 7
     term
             estimate std.error statistic p.value conf.low conf.high
##
     <chr>
                 <dbl>
                           <dbl>
                                      <dbl>
                                              <dbl>
                                                       <dbl>
                                                                  <dbl>
                 0.199
                           0.318
                                      0.625
                                              0.532
                                                      -0.424
                                                                  0.821
## 1 sexmale
coxph(Surv(time,censor) ~ age+ txgrp+ karnof, data=aids) %>% tidy()
## # A tibble: 8 x 7
```

```
##
               estimate std.error statistic
                                                    p.value conf.low conf.high
     term
     <chr>
##
                             <dbl>
                                        <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                           <dbl>
                   <db1>
                                                               -2.53
## 1 age20-30
                -0.438
                            1.07
                                    -0.409
                                              0.682
                                                                          1.66
## 2 age30-40
                -0.442
                            1.02
                                    -0.434
                                              0.665
                                                               -2.44
                                                                          1.55
## 3 age40-50
                -0.361
                            1.03
                                    -0.352
                                              0.725
                                                               -2.37
                                                                          1.65
## 4 age50-60
                 0.460
                            1.04
                                                               -1.58
                                                                          2.50
                                     0.442
                                              0.659
## 5 age60-70
                -0.780
                                              0.582
                                                               -3.55
                                                                          2.00
                            1.42
                                     -0.551
## 6 ageover70 -14.1
                         2688.
                                     -0.00525 0.996
                                                             -Tnf
                                                                        Tnf
## 7 txgrp
                 -0.844
                            0.257
                                     -3.28
                                              0.00103
                                                               -1.35
                                                                         -0.340
## 8 karnof
                -0.0814
                                              0.0000000385
                            0.0138
                                    -5.89
                                                               -0.109
                                                                         -0.0543
```

cox.zph(coxph(Surv(time,censor) ~ age + txgrp+karnof, data=aids))

```
##
                  rho
                         chisq
## age20-30
              0.09054 5.70e-01 0.450
## age30-40
              0.19294 2.53e+00 0.112
## age40-50
              0.14871 1.50e+00 0.220
## age50-60
              0.19861 2.69e+00 0.101
## age60-70
              0.16251 1.81e+00 0.179
## ageover70 0.16355 2.57e-07 1.000
## txgrp
             -0.10779 8.34e-01 0.361
              0.00121 1.03e-04 0.992
## karnof
## GLOBAL
                   NA 7.98e+00 0.435
```

coxph(Surv(time,censor) ~ age *txgrp*karnof, data=aids) %>% tidy()

```
## # A tibble: 27 x 7
##
      term
                     estimate std.error statistic p.value conf.low conf.high
##
      <chr>
                        <dbl>
                                   <dbl>
                                              <dbl>
                                                      <dbl>
                                                                <dbl>
                                                                          <dbl>
##
   1 age20-30
                       307.
                                138277. 0.00222
                                                      0.998
                                                                -Inf
                                                                            Inf
                                138277. 0.00231
                                                      0.998
                                                                -Inf
                                                                            Inf
   2 age30-40
                       319.
##
  3 age40-50
                       327.
                                138277. 0.00237
                                                      0.998
                                                                -Inf
                                                                            Tnf
## 4 age50-60
                       343.
                                138277. 0.00248
                                                      0.998
                                                                -Inf
                                                                            Inf
## 5 age60-70
                       287.
                                176491. 0.00163
                                                      0.999
                                                                -Inf
                                                                            Inf
                                 29414. -0.0000565
## 6 ageover70
                        -1.66
                                                      1.000
                                                                -Inf
                                                                            Inf
## 7 txgrp
                       150.
                                 92392. 0.00163
                                                      0.999
                                                                -Inf
                                                                            Inf
                                                                -Inf
## 8 karnof
                         3.36
                                  1424. 0.00236
                                                      0.998
                                                                            Inf
## 9 age20-30:txgrp -144.
                                                      0.999
                                                                            Inf
                                  92392. -0.00156
                                                                -Inf
## 10 age30-40:txgrp -146.
                                  92392. -0.00158
                                                      0.999
                                                                -Inf
                                                                            Inf
## # ... with 17 more rows
```

cox.zph(coxph(Surv(time,censor) ~ age *txgrp*karnof, data=aids))

```
##
                               rho
                                      chisq
## age20-30
                          -0.1008 4.31e-08 1.000
## age30-40
                          -0.1583 3.15e-08 1.000
## age40-50
                          -0.0965 1.25e-08 1.000
## age50-60
                          -0.2071 6.53e-08 1.000
## age60-70
                          -0.2062 3.04e-08 1.000
## ageover70
                          -0.2493 7.81e-11 1.000
## txgrp
                          -0.2032 2.68e-08 1.000
## karnof
                          -0.1974 5.24e-08 1.000
## age20-30:txgrp
                           0.0921 2.14e-08 1.000
## age30-40:txgrp
                           0.1142 1.08e-08 1.000
## age40-50:txgrp
                           0.0826 5.64e-09 1.000
## age50-60:txgrp
                           0.1851 3.47e-08 1.000
```

```
## age60-70:txgrp
                           0.2102 2.15e-08 1.000
## ageover70:txgrp
                           0.1967 3.96e-11 1.000
## age20-30:karnof
                           0.0984 4.53e-08 1.000
## age30-40:karnof
                           0.1524 3.44e-08 1.000
## age40-50:karnof
                           0.0938 1.40e-08 1.000
## age50-60:karnof
                           0.2053 7.78e-08 1.000
## age60-70:karnof
                           0.1978 3.00e-08 1.000
## ageover70:karnof
                                        NaN
                               NA
                                              NaN
## txgrp:karnof
                           0.1996 2.81e-08 1.000
## age20-30:txgrp:karnof
                          -0.0910 2.15e-08 1.000
## age30-40:txgrp:karnof
                          -0.1020 9.71e-09 1.000
## age40-50:txgrp:karnof
                          -0.0823 6.23e-09 1.000
## age50-60:txgrp:karnof
                          -0.1796 3.72e-08 1.000
## age60-70:txgrp:karnof
                          -0.1981 1.98e-08 1.000
## ageover70:txgrp:karnof
                               NA
                                        NaN
                                              NaN
## GLOBAL
                               NA 1.84e+01 0.891
```

Estimated Hazard rates

Estimated Hazard rates based on sex

Estimated Hazard rates based on treatment

Estimated Hazard rates based on klarnfsky

Estimated Hazard rates based on age

coxph(Surv(time,censor) ~ ivdrug, data=aids) %>% tidy()

```
## # A tibble: 1 x 7
##
            estimate std.error statistic p.value conf.low conf.high
     term
                <dbl>
                          <dbl>
                                     <dbl>
                                              <dbl>
                                                       <dbl>
                                                                  <dbl>
     <chr>>
## 1 ivdrug
              -0.130
                          0.179
                                    -0.723
                                              0.470
                                                      -0.481
                                                                  0.222
```

coxph(Surv(time,censor) ~ ivdrug*karnof, data=aids) %>% tidy()

```
## # A tibble: 3 x 7
##
     term
                   estimate std.error statistic p.value conf.low conf.high
##
     <chr>
                                 <dbl>
                                           <dbl>
                                                    <dbl>
                                                             <dbl>
                                                                       <dbl>
                       <dbl>
## 1 ivdrug
                   -0.711
                                1.71
                                          -0.416 0.678
                                                           -4.07
                                                                       2.64
## 2 karnof
                   -0.0903
                                0.0294
                                          -3.07 0.00214 -0.148
                                                                     -0.0326
## 3 ivdrug:karnof 0.00573
                                0.0201
                                           0.285 0.775
                                                           -0.0336
                                                                       0.0451
```

#how tow modify so that sex is labeled as male and female

coxph(Surv(time,censor)~sex+tx+age+txgrp, data = aids) %>% tidy()

```
## # A tibble: 9 x 7
##
               estimate std.error statistic p.value conf.low conf.high
     term
##
     <chr>>
                  <dbl>
                             <dbl>
                                        <dbl>
                                                 <dbl>
                                                          <dbl>
                                                                     <dbl>
                                                         -0.333
## 1 sexmale
                 0.302
                             0.324
                                     0.931
                                               0.352
                                                                     0.937
## 2 tx
                -0.790
                             0.256 -3.08
                                               0.00205
                                                         -1.29
                                                                    -0.288
## 3 age20-30
                -0.424
                             1.07
                                    -0.396
                                               0.692
                                                         -2.52
                                                                     1.67
## 4 age30-40
                -0.214
                                                          -2.21
                             1.02
                                    -0.209
                                               0.834
                                                                     1.79
## 5 age40-50
                -0.0490
                             1.03
                                    -0.0475
                                               0.962
                                                         -2.07
                                                                     1.97
## 6 age50-60
                 0.639
                             1.05
                                     0.611
                                               0.541
                                                         -1.41
                                                                     2.69
## 7 age60-70
                -0.328
                                    -0.231
                                                                     2.46
                             1.42
                                               0.817
                                                         -3.11
## 8 ageover70 -14.1
                          2672.
                                    -0.00528 0.996
                                                       -Inf
                                                                   Inf
## 9 txgrp
                             0
                                                         NA
                                                                    NA
                NA
                                    NA
                                              NA
```

Patricia's "Something New"

I will be doing a power analysis by simulating survival analysis curves

1. What is the topic?

The topic is using sim.survdata in R to simulate survival data. Using that simulated data, we will make that the alternative and control for the coefficient beta by setting it equal to some value. Then using power analysis, we will see how many times we reject H_0 .

2. How it is relevant? How it relates to survival analysis/analysis at hand?

Power analysis relates to survival analysis because if power is large after comparing our data to the simulated survival data, this tells us that there is a high chance that we would reject the null in favor of the alternative (control versus treatment?)

3. Resources to learn about the topic.

Below are some of the resources I have begun to use to learn about creating simulations of survival curves and performing power analysis:

a). https://cran.r-project.org/web/packages/coxed/vignettes/simulating_survival_data.html b). http://www.icssc.org/documents/advbiosgoa/tab%2026.00_survss.pdf

4. What will be challenging about learning something new?

Learning something new will be challenging because in this case, the concept of power analysis is something I just recently learned in Intro to Statistics. So learning to apply this concept in the context of survival analysis curves will be a challenge for me to learn. Learning how to simulate survival curves will also be challenging because I will have to learn how to use and interpret new functions in R.

Juste's "Something New"

I will be analyzing the Shoenfeld residuals for the Cox PH model.

1. What is goign on? What is the topic? 2. How it is relevant? How it relates to survival analysis/analysis at hand?

Cox proportional hazards (PH) model is considered a great way to identify combined effects of several covariates on the relative risk (hazard). This model assumes that the hazards of the different strata formed by the levels of the covariates are proportional. This proportional hazards assumption is particularly important and can be tested via three different clases of tests. The first class is focused on the piecewise estimation of models for subsets of data defined by stratification of time. The second one considers the interactions between covariates and some function of time. Final, third one is based on examinations of regression residuals. The Schoenfeld Residuals are a part of the third class of proportional hazard assumption testing and I will be exploring it in order to be able to eradicate a method for testing for the PH assumption in the current and future data set analyses. This topic is particularly important in relation to survival analysis since it provides an idea of whether the model is appropriate for the data set at hand and whether some covariates should be considered as variants of time in order to supply the best model for prediction of proportional hazards.

3. Resources to learn about the topic.

I have been researching articles and scientific journals that provide insights into this model and comparisons between the Cox PH and teh parametric model. Sources include: a) https://krex.k-state.edu/dspace/bitstream/handle/2097/8787/AngelaCrumer2011.pdf b) http://nematilab.info/bmijc/assets/weibull_cox.pdf c) https://www.jstatsoft.org/article/view/v070i08

4. What will be challenging about learning something new?

Taking a completely new model of analyzing survival data is particularly difficult since the mathematical derivations and notations are also very varied from what we have seen in class. Although, I do remember some of the ideas behind parametric functions, their applications to statistical models are much more challenging than I have expected. Therefore, it will require me a lot of time and extensive research to be able to understand and learn how to apply this model to our data and other instances of survival analysis.

SHoenfeld:

```
veteran.ph <- coxph(Surv(time,status) ~ trt, data=veteran)
cox.veteran <- cox.zph(veteran.ph)
cox.veteran

## rho chisq p
## trt -0.16 3.3 0.0691</pre>
```

ggcoxzph(cox.veteran)

ggcoxdiagnostics(veteran.ph, type="schoenfeld")

