Part 1: Yelp Dataset Profiling and Understanding

1. Profile the data by finding the total number of records for each of the tables below:

```
i. Attribute table = 10000
ii. Business table = 10000
iii. Category table = 10000
iv. Checkin table = 10000
v. elite_years table = 10000
vi. friend table = 10000
vii. hours table = 10000
viii. photo table = 10000
ix. review table = 10000
x. tip table = 10000
xi. user table = 10000
```

2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.

```
i. Business = 10000
ii. Hours = 1562
iii. Category = 2643
iv. Attribute = 1115
v. Review = 10000
vi. Checkin = 493
vii. Photo = 10000
viii. Tip = 537; foreign key= user_id
ix. User = 10000
x. Friend = 11
xi. Elite_years = 2780
```

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

3. Are there any columns with null values in the Users table? Indicate "yes," or "no."

Answer: No

SQL code used to arrive at answer:

select * --selecting all columns from user ---table name where id is null or ----condition for null, checking on all columns name is null or review count is null or yelping since is null or useful is null or funny is null or cool is null or fans is null or average stars is null or compliment hot is null or compliment more is null or compliment profile is null or compliment cute is null or compliment list is null or compliment note is null or compliment plain is null or compliment cool is null or compliment funny is null or compliment writer is null or compliment photos is null;

- 4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:
 - i. Table: Review, Column: Stars

min: 1 max: 5 avg: 3.7082
ii. Table: Business, Column: Stars
min: 1.0 max: 5.0 avg: 3.6549
iii. Table: Tip, Column: Likes
min: 0 max: 2 avg: 0.0144
iv. Table: Checkin, Column: Count
min: 1 max: 53 avg: 1.9414
v. Table: User, Column: Review_count
min: 0 max: 2000 avg: 24.2995
5. List the cities with the most reviews in descending order:
SQL code used to arrive at answer:
<pre>select city, sum(review_count) as total_reviews from business group by city order by total_reviews desc</pre>
Copy and Paste the Result Below:
++ city

+-		++
	Las Vegas	82854
	Phoenix	34503
	Toronto	24113
	Scottsdale	20614
	Charlotte	12523
	Henderson	10871
	Tempe	10504
	Pittsburgh	9798
	Montréal	9448
	Chandler	8112
	Mesa	6875
	Gilbert	6380
	Cleveland	5593
	Madison	5265
	Glendale	4406
	Mississauga	3814
	Edinburgh	2792
	Peoria	2624
	North Las Vegas	2438
	Markham	2352
	Champaign	2029
	Stuttgart	1849
	Surprise	1520
	Lakewood	1465
	Goodyear	1155

+----+

(Output limit exceeded, 25 of 362 total rows shown)

- 6. Find the distribution of star ratings to the business in the following cities:
- i. Avon

SQL code used to arrive at answer:

select stars as star_rating,count(stars) as Count

```
from business
where city='Avon'
group by star_rating;
```

Copy and Paste the Resulting Table Below (2 columns - star rating and count):

+-		-+-		+	
	star_rating		Count		
+-		-+-		+	
	1.5		1		
	2.5		2		

3.5 | 3 | 4.0 | 2 | 4.5 | 1 |

5.0 | 1 |

ii. Beachwood

SQL code used to arrive at answer:

select stars as star_rating,count(stars) as Count
from business
where city='Beachwood'
group by star_rating;

Copy and Paste the Resulting Table Below (2 columns - star rating and count):

+	++
star_rating	Count
2.0	- '
3.0 3.5 4.0	2 2 1
4.5 5.0	2 5

7. Find the top 3 users based on their total number of reviews:

SQL code used to arrive at answer:

select id as user_id,name, review_count
from user
order by review_count desc
descending order
limit 3;

-- highest review_count users will be listed first as it is a

-- Limit to 3 rows in output

Copy and Paste the Result Below:

+	+	+	+
user_id	name	review_count	
-G7Zkl1wIWBBmD0KRy_sCw -3s52C4zL_DHRK0ULG6qtg -8lbUN1XVSoXqaRRiHiSNg	Sara	2000 1629 1339	T +

8. Does posing more reviews correlate with more fans?

Please explain your findings and interpretation of the results:

No. Because higher review count doesn't lead to more fans.

SQL Code:

select id as user_id, review_count,fans
from user
order by fans desc;

Output:

Worksheet-Data Analysis using SQL

+-		+	++
	-9I98YbNQnLdAmcYfb324Q	609	503
	-8EnCioUmDygAbsYZmTeRQ	968	497
	2vR0DIsmQ6WfcSzKWigw	1153	311
	-G7Zkl1wIWBBmD0KRy_sCw	2000	253
	-0IiMAZI2SsQ7VmyzJjokQ	930	173
	-g3XIcCb2b-BD0QBCcq2Sw	813	159
	-9bbDysuiWeo2VShFJJtcw	377	133
	-FZBTkAZEXoP7CYvRV2ZwQ	1215	126
	-9da1xk7zgnnf01uTVYGkA	862	124
	-lh59ko3dxChBSZ9U7LfUw	834	120
	-B-QEUESGWHPE_889WJaeg	861	115
	-DmqnhW4Omr3YhmnigaqHg	408	111
	-cv9PPT7IHux7XUc9d0pkg	255	105
	-DFCC64NXgqrx108aLU5rg	1039	104
	-IgKkE8JvYNWeGu8ze4P8Q	694	101
	-K2Tcgh2EKX6e6HqqIrBIQ	1246	101
	-4viTt9UC441WCFJwleMNQ	307	96
	-3i9bhfvrM3F1wsC9XIB8g	584	89
	-kLVfaJytOJY2-QdQoCcNQ	842	85
	-ePh4Prox7ZXnEBNGKyUEA	220	84
	-4BEUkLvHQntN6qPfKJP2w	408	81
	-C-18EHSLXtZZVfUAUhsPA	178	80
	-dw8f7FLaUmWR7bfJ_Yf0w	754	78
	-8lbUNlXVSoXqaRRiHiSNg	1339	76
	-0zEEaDFIjABtPQni0XlHA	161	73
+-		+	++

(Output limit exceeded, 25 of 10000 total rows shown)

AS we can see from the result (here fans is arranged in descending order) fans and review_count are not positively correlated. There are a quite a few cases wherein less reviews by users have more fans.

9. Are there more reviews with the word "love" or with the word "hate" in them?

Answer: "love"

```
SOL code used to arrive at answer:
                                                       --count the number of reviews in which the word
select count(id) as Love count
love is used
from review
where text like '%love%' or text like 'Love%' or text like '%Love%'; --assuming no upper case form of the
word "love" is not used
Output:
+----+
| Love count |
+----+
     1780 I
+----+
Sql Code for Hate:
select count(id) as Hate count
                                                            --count the number of reviews in which
the word hate is used
from review
where text like '%hate%' or text like 'Hate%' or text like '%Hate%'; --assuming no upper case form of the
word "hate" is not used
+----+
| Hate count |
+----+
 232 |
+----+
10. Find the top 10 users with the most fans:
     SQL code used to arrive at answer:
select id as user id, name, fans
from user
order by fans desc -- arrange user_id in descending order of number of fans
                              -- limit to first 10 rows
limit 10;
     Copy and Paste the Result Below:
+----+
```

	user_id		name		fans	
+-		-+-		+-	+	-
	-9I98YbNQnLdAmcYfb324Q		Amy		503	
	-8EnCioUmDygAbsYZmTeRQ		Mimi		497	
	2vR0DIsmQ6WfcSzKWigw		Harald		311	
	-G7Zkl1wIWBBmD0KRy_sCw		Gerald		253	
	-0IiMAZI2SsQ7VmyzJjokQ		Christine		173	
	-g3XIcCb2b-BD0QBCcq2Sw		Lisa		159	
	-9bbDysuiWeo2VShFJJtcw		Cat		133	
	-FZBTkAZEXoP7CYvRV2ZwQ		William		126	
	-9da1xk7zgnnf01uTVYGkA		Fran		124	
	-lh59ko3dxChBSZ9U7LfUw		Lissa		120	
+-		+-		+-	+	-

11. Is there a strong relationship (or correlation) between having a high number of fans and being listed as "useful" or "funny?" Out of the top 10 users with the highest number of fans, what percent are also listed as "useful" or "funny"?

Key:

0% - 25% - Low relationship 26% - 75% - Medium relationship 76% - 100% - Strong relationship

SQL code used to arrive at answer:

select id, name, fans, useful, funny, (useful+funny) as total
from user
order by fans desc
limit 10;

Copy and Paste the Result Below:

+		L 	L 1		
id	name	 fans	useful	funny	total
-9I98YbNQnLdAmcYfb324Q	Amy	503 -	 3226	2554	5780
-8EnCioUmDygAbsYZmTeRQ	Mimi	497	257	138	395
2vR0DIsmO6WfcSzKWigw	Harald	311	122921	122419	245340 I

	-G7Zkl1wIWBBmD0KRy_sCw Gerald		253		17524	232	4		19848	
	-0IiMAZI2SsQ7VmyzJjokQ Christine		173		4834	664	6		11480	
	-g3XIcCb2b-BD0QBCcq2Sw Lisa		159		48	1	.3		61	
	-9bbDysuiWeo2VShFJJtcw Cat		133		1062	67	2		1734	
	-FZBTkAZEXoP7CYvRV2ZwQ William		126		9363	936	1		18724	
	-9da1xk7zgnnfO1uTVYGkA Fran		124		9851	760	6		17457	
	-lh59ko3dxChBSZ9U7LfUw Lissa		120		455	15	0		605	
+		_+_	+	<u>+</u>	+			+ -		+

Please explain your findings and interpretation of the results:

Based on the results, Harald has the highest number of useful and/or funny and he has the 3rd highest number of fans.

After going through the result table, I think there is a medium relationship between having high number of fans and being listed as useful or funny.

Medium because as we go down in the table with the monotonic decrease in number of fans, the useful and/or funny count is not decreasing monotonically.

Part 2: Inferences and Analysis

- 1. Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions. Include your code.
- i. Do the two groups you chose to analyze have a different distribution of hours?

Yes.

```
City = Toronto
Group 1= star rating between 2 and 3
Group 2= star rating between 4 and 5
```

Group 1 have majority of the business which are open all day.

Т.	 	 	
T	 	 	
	-	number_of_busin	

```
2.0 | Toronto | 11:00-23:00 |
2.5 | Toronto | |10:00-2:00 |
2.5 | Toronto | |11:00-2:00 |
2.5 | Toronto | |8:00-22:00 |
3.0 | Toronto | 10:00-23:00 |
                                          1 |
3.0 | Toronto | 10:30-21:00 |
3.0 | Toronto | 11:00-19:00 |
                                          1 |
3.0 | Toronto | y|9:00-4:00 |
                                           1 |
3.0 | Toronto | |10:00-4:00 |
                                          1 |
3.0 | Toronto | |6:00-21:00 |
                                          1 |
3.0 | Toronto | |6:00-22:00 |
3.0 | Toronto | |8:00-18:00 |
                                           1 |
3.0 | Toronto | |8:00-20:00 |
                                          1 |
3.0 | Toronto | |9:00-23:00 |
```

Group 2 have majority of the business which are open either only during first half of the day or only during second half of the day.

stars	 city 	+ hours +	number_of_business
4.0	Toronto	11:00-21:00	2
4.0	Toronto	12:00-16:00	1
4.0	Toronto	15:00-21:00	4
4.0	Toronto	18:00-23:00	4
4.5	Toronto	10:00-14:00	2
4.5	Toronto	10:00-17:00	1
4.5	Toronto	11:00-17:00	1
4.5	Toronto	11:00-19:00	4
4.5	Toronto	11:00-23:00	6
4.5	Toronto	11:30-18:00	2
4.5	Toronto	12:00-16:00	1
4.5	Toronto	14:00-19:00	2
4.5	Toronto	14:00-23:00	1
4.5	Toronto	16:00-2:00	3
4.5	Toronto	18:00-2:00	4
4.5	Toronto	9:00-19:00	3
5.0	Toronto	17:00-22:00	3

```
| 5.0 | Toronto | 18:00-22:00 | 2 | +----+
```

ii. Do the two groups you chose to analyze have a different number of reviews?

City = Toronto

Group 1= star rating between 2 and 3

Group 2= star rating between 4 and 5

Group 1 output:

stars	city	l number of more
1 20022	2	number_of_reviews
2.5	Toronto Toronto Toronto	'

Group 2 output:

+-		+	+	+
	stars	city	number_of_reviews	
+-		+	+	-+
	4.0	Toronto	6775	
	4.5	Toronto	2425	
	5.0	Toronto	751	
+-		+	+	+

As it can be seen from the above tables, the number of reviews in group 1=5993 and number of reviews in group 2=9951 are different.

iii. Are you able to infer anything from the location data provided between these two groups? Explain.

Yes.

City=Toronto

Neighborhood=Downtown Core

Group 1= star rating between 2 and 3

Group 2= star rating between 4 and 5

```
+----+
| stars | neighborhood | city | number_of_business |
```

+----+

	+	+	+		†			
	2.0	Downtown Core	Toronto	8				
	2.5	Downtown Core	Toronto	6				
	3.0	Downtown Core	Toronto	12				
	3.5	Downtown Core	Toronto	19				
	4.0	Downtown Core	Toronto	23				
	4.5	Downtown Core	Toronto	5				
	·	Downtown Core						
	•	•	•	·	!	-		
			mber of bu	siness in group 2= 3/	are more than that in g	roup I=		
26 in Downtown Co		-	na husinos	s in Donwtown Core ar	0.3			
	50, there are i	more migner raci	ing busines	s in Donwcown Core ar	ea.			
SQL code used for	analysis:							
i.								
Group 1:								
		-) as hours,count(b.id) as number_of_business			
substring to remo	-		mn					
	from business as b							
	inner join hou:					inner		
join to fetch date			е					
	on b.id=h.busin	_	/h h	11)				
	having city='To	rs,b.city,substr	(II. Hours, -					
		een 2.0 and 3.0						
	order by stars							
	order by stars	,						
Group 2:								
_	select b.stars	,b.city,substr(h	.hours,-11) as hours,count(b.id) as number_of_business			
substring to remove the day from the hours column								
	from business	as b						
	inner join hou:	rs as h				inner		
join to fetch data from business and hours table								
on b.id=h.business_id								
group by b.stars,b.city,substr(h.hours,-11)								
having city='Toronto'								
	and stars betwo	een 4.0 and 5.0						

```
order by stars ;
ii.
     Group 1:
                 select stars, city, sum (review count) as number of reviews
                 from business
                 group by stars, city
                 having city='Toronto' and stars between 2.0 and 3.0;
     Group 2:
                 select stars, city, sum (review count) as number of reviews
                 from business
                 group by stars, city
                 having city='Toronto' and stars between 4.0 and 5.0;
iii.
                 select stars, neighborhood, city, count (id) as number of business
                 from business
                 group by stars, neighborhood, city
                 having city='Toronto'and neighborhood='Downtown Core'
                 and stars between 2.0 and 5.0
                 order by stars;
2. Group business based on the ones that are open and the ones that are closed. What differences can you find
between the ones that are still open and the ones that are closed? List at least two differences and the SQL
code you used to arrive at your answer.
i. Difference 1:
         The dataset contains information 10000 business in total out of whihc 1520 business are closed and
8480 are open.
ii. Difference 2:
         For city=Concord percentage of closed business's = (3/49)*100=6.12 whereas
            for city = Charlotte it is = (70/468)*100= 14.96%
SQL code used for analysis:
--For difference 1
```

select is open, count(name) as Number of business from business group by is open -- grouping by whether open or closed --For difference 2 select is open, city, count (name) as Number of business from business group by is open, city -- grouping by whether open or closed and also city where the business is located having city='Concord' select is open, city, count (name) as Number of business from business group by is open, city -- grouping by whether open or closed and also city where the business is located having city='Charlotte'

3. For this last part of your analysis, you are going to choose the type of analysis you want to conduct on the Yelp dataset and are going to prepare the data for analysis.

Ideas for analysis include: Parsing out keywords and business attributes for sentiment analysis, clustering businesses to find commonalities or anomalies between them, predicting the overall star rating for a business, predicting the number of fans a user will have, and so on. These are just a few examples to get you started, so feel free to be creative and come up with your own problem you want to solve. Provide answers, in-line, to all of the following:

i. Indicate the type of analysis you chose to do:

Determine whether an elite user would have more number of fans than a non elite user or vice versa.

ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis and why you chose that data:

Classify the users in user table into elite user and non elite user. Then determine the number of elite users, sum of fans of elite users, sum of fans of non elite users, number of non elite users.

Using these values calculate the average number of fans per elite user

and non elite user.

	Resul	ts are-				
		Sum of	Fans	No: of users	Average no: of fans	
	Total	14896	100	00		
	Elite	447		21	21.28571429	average
no: of fans per elite user						_
-	Non-Elite	14449	99	79	1.447940675	average

no: of fans per non elite user

 $\hbox{As we can see from the results table, the average number of fans for an eliter user is <math>>$ than that for a non elite user

This was done to test human psychology on a historical dataset. Generally, people prefer to follow users which have elite status so chances of elite users greater number of fans is higher.

iii. Output of your finished dataset:

+		+		++
id	name	review count	fans	Elite user
+	- 	- +		
BumyUHiO 7YsHurb9Hkw	Sapna	38	1	Yes
Qh8yKWAvIP4V4K8ZPfHA	Dixie	503	41	Yes
-OHhZbPBlB1YZx3BhAfaEA	Tasha	250	8	Yes
-50XWnmQGqBgEI-9ANvLlg	Lalena	224	25	Yes
-5e4VTnu_pR4Gpv3VSncaw	Justin	177	13	Yes
-9RU4LuI_TfYgv9rBijJoQ	Keith	61	3	Yes
-9SoHrhiiUVmx6-MkyR4RA	Brad	182	1	Yes
-a0LRFr94D9ohyBJCKVvXQ	Elaine	332	18	Yes
-aAgfEUH4UoFDRXZCfJSUA	Matt	476	14	Yes
-C-18EHSLXtZZVfUAUhsPA	Nieves	178	80	Yes

```
| -cvrhCPCKHUkEsDak fY4g |
                       Jamie I
                                       95 I
                                                4 | Yes
| -d2daWmftYumOaYpbD5D8Q | Jia |
                                        228 |
                                                8 | Yes
| -dbWm5L Ol2hZeLRoQOK7w | Mel |
                                       156 | 9 | Yes
| -EWQZjRHAKMddHW dZTvdw | Chris |
                                       70 | 2 | Yes
| -fUARDNuXAfrOn4WLSZLqA | Ed |
                                        904 | 38 | Yes
| -qa7pQvnJcMB1 pIapHQRQ | Tracy |
                                       71 | 5 | Yes
-GD0XVUKRj96vf6TP68Evw | Maung |
                                       54 | 0 | Yes
| -HLE-x7Lpkfprd6er-JFGq |
                       Danial |
                                        136 | 5 | Yes
| -hYYjAXSAa657rY0ANtTGQ | Kristen |
                                        428 | 15 | Yes
| -k06984fXByyZm3 6z2JYg | Dominic |
                                       836 | 37 | Yes
| -lh59ko3dxChBSZ9U7LfUw | Lissa |
                                       834 | 120 | Yes
| ---11KK3aKOuomHnwAkAow | Monera |
                                        245 | 15 | No
| ---94vtJ 5o nikEs6hUjg | Joe |
                                        2 |
                                                0 | No
| ---cu1hq55BP9DWVXXKHZq | Jeb
                                         57 I
                                                0 | No
 ---fhiwiwBYrvqhpXqcWDQ | Jed
                                          8 |
                                                0 | No
```

(Output limit exceeded, 25 of 10000 total rows shown)

iv. Provide the SQL code you used to create your final dataset:

```
--To classify users in user table into elite user and non elite user
```

```
select id,name,review_count,fans,
  (case when id in (select user_id from elite_years)
then 'Yes'
else 'No'
end) as Elite_user
from user
order by Elite_user desc

--sum of fans 14896 amongst 10000 users
select count(distinct id) -- number of users
from user

select sum(fans) ---sum of fans
from user
```

```
--sum of fans of elite_users = 447 amongst 21 elite_users

select count(id) --number of elite users in user table
from user
where id in (select user_id from elite_years)

select sum(fans) ---sum of fans of elite users
from user
where id in (select user_id from elite_years)
```