Todas las respuestas han de justificarse

Ejercicios

Ejercicio 1

Dada la palabra x = 0011, calcular

- (a) Pref(x)
- (b) Suf(x)
- (c) Seg(x)

Ejercicio 2

Dado $L = \{x \in \{a, b\}^* : |x|_a \le 2\}$

- (a) Enumerar, en orden canónico, las diez primeras palabras de L
- (b) Describir el lenguaje $(aba)^{-1}L$

Ejercicio 3

Dado $L = \{x \in \{a, b\}^* : |x|_a \mod 2 = 0\}$

- (a) Enumerar, en orden canónico, las diez primeras palabras de L
- (b) Describir los lenguajes $(abb)^{-1}L$ y $(bbaba)^{-1}L$
- (c) Describir los lenguajes Pref(L) y Suf(L)

Ejercicio 4

Dados los lenguajes $L_1 = \{0^n 1^n : n \ge 0\}$ y $L_2 = \{0^n 1^m : n, m \ge 0\}$

- (a) Enumerar, en orden canónico, las diez primeras palabras de \mathcal{L}_1
- (b) Enumerar, en orden canónico, las diez primeras palabras de L_2
- (c) Describir el lenguaje $L_1 \cup L_2$

Ejercicio 5

Dados $L_1 = \{xaa : x \in \{a,b\}^*\}$ y $L_2 = \{xaay : x,y \in \{a,b\}^*\}$, describir los lenguajes:

- (a) $L_1 \cap L_2$
- (b) $L_1 \cup L_2$
- (c) $(aba)^1 L_1$

Ejercicio 6

Dados $L_1=\{xaby: x,y\in\{a,b\}^*\}$ y $L_2=\{xbay: x,y\in\{a,b\}^*\}$, describir el lenguaje $L_1\cap\overline{L_2}$

Ejercicio 7

Describir el lenguaje de palabras sobre $\{a,b\}$ cuyas palabras empiezan por a y no contienen el segmento ba.

Ejercicio 8

Dado el lenguaje $L = \{a, abb\}^* \{b, baa\}^*$, enumerar, en orden canónico, las diez primeras palabras del lenguaje.

Ejercicio 9

Dado el lenguaje $L = \{x \in \{a, b\}^* : x = x^r\}$, describir el lenguaje L^r .

Ejercicio 10

Dados los lenguajes

$$L_1 = \{axb : x \in \{a, b\}^*\}$$

 $L_2 = \{x \in \{a, b\}^* : (|x|_a = 1) \lor (|x|_b = 1)\}$

y el homomorfismo:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

describir los siguientes lenguajes:

- (a) L_1^2
- (b) L_1^*
- (c) $(aab)^{-1}L_1$
- (d) $(aba)^{-1}L_1$
- (e) $\overline{L_1}$
- (f) $h^{-1}(L_1)$
- (g) $L_1 \cap L_2$
- (h) $h^{-1}(L_2)$

Ejercicio 11

Pronunciarse acerca de la veracidad de la afirmación:

$$Suf(L) = (Pref(L^r))^r$$

Ejercicio 12

Pronunciarse acerca del siguiente enunciado:

Sea un lenguaje $L \subset \Sigma^*$ que cumple que existe un número n tal que para cualquier $x \in \Sigma^*$, si |x| > n, se cumple que $x \in L$. Entonces \overline{L} es finito.

Ejercicio 13

Dado un lenguaje tal que $L=L^2$, describir el lenguaje L^* .

Ejercicio 14

Sean L_1 y L_2 tales que $L_1^* = L_2^*$. ¿Es cierto que $L_1 = L_2$?

Ejercicio 15

Sean u, v dos palabras en Σ^* y sean los lenguajes $L_1 = \{ux : x \in \Sigma^*\}$ y $L_2 = \{uvx : x \in \Sigma^*\}$. ¿Que relación existe entre los lenguajes L_1 y L_2 ?

Ejercicio 16

Dado el lenguaje $L = \{a\}^+ \{b\}^+$

- (a) Obtener un AFD que acepte L
- (b) Describir el lenguaje \overline{L}
- (c) Obtener un AFD para \overline{L}

Ejercicio 17

Dado el lenguaje $L = \{xab : x \in \{a,b\}^*\}$ y el siguiente autómata:

Pronúnciese acerca de las siguientes afirmaciones:

- (a) $L \subseteq L(A)$
- (b) $L(A) \subset L$

Ejercicio 18

Dado el lenguaje $L=\{x\in\{a,b\}^*\ :\ |x|_b\equiv 1\pmod 2\}$ y el siguiente autómata:

Pronúnciese acerca de las siguientes afirmaciones:

- (a) $L \subseteq L(A)$
- (b) $L(A) \subseteq L$

Ejercicio 19

Pronunciarse acerca de la siguiente afirmación:

Dado un autómata finito $A=(Q,\Sigma,\delta,q_0,F),\ \lambda\in L(A)$ si y sólo si $q_0\in F$

Ejercicio 20

Pronunciarse acerca de la siguiente afirmación:

Dados A_1 y A_2 dos AFDs completos y accesibles. Si $L(A_1) \subseteq L(A_2)$, entonces el número de estados de A_1 es menor o igual que el número de estados de A_2

Ejercicio 21

Obtener un AFD para los lenguajes:

- (a) $L = \{xaa : x \in \{a,b\}^*\}$ (palabras que tienen aa como sufijo).
- (b) $L = \{xabay : x, y \in \{a, b\}^*\}$ (palabras que contienen el segmento aba).
- (c) $L = \{a, abb\}^* \{b, baa\}^*$
- (d) Lenguaje de palabras sobre $\Sigma = \{a, b\}$ que empiezan por a y acaban en b.
- (e) $L = \{(ab)^n : n > 0\}$
- $\text{(f)} \ \ L=\{x\in\{a,b\}^* \ : \ aa\in Seg(x) \land a\in Suf(x)\}$
- (g) $L = \{x \in \{a, b\}^* : |x|_a > 0 \land |x|_b > 0\}$
- (h) $L = \{x \in \{a, b\}^* : |x|_a = 2\}$
- (i) $L = \{x \in \{a, b\}^* : aa \not\in Seg(x) \land bb \not\in Seg(x)\}$

Ejercicio 22

Dado el lenguaje $L = \{xa : x \in \{a, b\}^*\}$

- (a) Obtener un AFD que acepte L
- (b) Describir el lenguaje L^2
- (c) Obtener un AFD para L^2

Ejercicio 23

Dado $L = \{x \in \{a,b\}^* : x = a^n, \ n > 0\}$, obtener un AFD para \overline{L}

Ejercicio 24

Pronunciarse acerca del siguiente enunciado:

Sea A un AFD accesible con n estados. Si existe $x \in L$ tal que |x| > n, se cumple que el lenguaje L es infinito.

Ejercicio 25

Obtener un AFD equivalente a los siguientes autómatas:

(a)

(b)

(c)

(d)

(e)

(f)

Ejercicios Evaluación

Ejercicio 26

Sea un lenguaje L para el que existen $u_1, u_2, \ldots, u_{1001} \in \Sigma^*$ tales que, para cualquier par u_i, u_j , si $i \neq j$ entonces existe $z \in \Sigma^*$ que cumple que $u_i z \in L \Leftrightarrow u_j z \notin L$.

- (a) ¿Es L regular?
- (b) ξ Es L no regular?