Assignment 13 - Anharmonic Oscillator

SGTB Khalsa College, University of Delhi Ankur Kumar(2020PHY1113)(20068567010)

Unique Paper Code: 32221501

Paper Title: Quantum Mechanics

Submitted on: October 21, 2022

B.Sc(H) Physics Sem V

Submitted to: Dr. Mamta

	Page No
	$\frac{2mh Eo}{(mu)^{1/2}}$
	2m 1/2 Eo t
	$\frac{E_0 = \frac{t_1 k^{1/2}}{2m^{1/2}} = \frac{t_1}{2} \sqrt{\frac{k}{m}}$
	$E_0 = hw$
-7	2bm Cos (third term)
	2bm tr². r. mu. 3tz
	$\frac{2 b c}{3 k}$
	$\frac{d^2U}{dq^2} = \left[\frac{\xi - \frac{q^2 - 2br_0}{3u}}{\frac{q^2}{u}} \right] U = 0$
	$ \frac{d^2 \upsilon}{dq^2} + \left[\frac{\varepsilon}{2} - \left(\frac{q^2 + \upsilon}{3} + \frac{2 \upsilon}{3} \right) \right] \upsilon = 0 $
	dimensionless potential \rightarrow $\{2^2 + 2 \times 2^3\}$ $\rightarrow V(\{2\})$

	Page No Date
	$\frac{\mathcal{E} = \mathcal{E}}{\mathcal{E}_0} = \frac{(n + \frac{1}{2}) thv}{tv}$
^	$= \left(\frac{n+1}{2}\right)^2$
	$\mathcal{E} = 2n+1$ $h = 0, 1, 2 - \cdots$
(p)	Done in Programming and Discussion

Scanned with CamScanner

Programming

```
1 from scipy.linalg import eigh
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.integrate import simps
5 import pandas as pd
7 def pot(x, alpha):
      return x**2 + (2/3)*alpha*x**3
def matrix_formation(a, b, N, f, alpha):
11
      x_range = np.linspace(a, b, N+1)
12
13
      h = x_range[1] - x_range[0]
14
      X = x_n = [1: -1]
15
16
      1 = np.zeros(len(X))
17
18
      d = np.zeros(len(X))
      u = np.zeros(len(X))
19
      potential = np.zeros(len(X))
21
22
      for i in range(0, len(X)):
23
           d[i] = -(-2/h**2)
           l[i] = -(1/h**2)
24
           u[i] = -(1/h**2)
25
           potential = f(X, alpha)
26
27
       diagonal = np.diag(d, k = 0)
28
      off_diag_l = np.diag(l[:-1], k = -1)
off_diag_u = np.diag(u[:-1], k = 1)
29
30
31
      V = np.diag(potential, k = 0)
32
33
      matrix = diagonal + off_diag_l + off_diag_u + V
34
35
      return matrix, X
36
37
def perturbation(n, alpha):
39
       return 2*n + 1 - (1/8)*(alpha**2)*(15*(2*n+1)**2+7)
40
41 def normalize(x_vals, y_vals):
42
      norm = simps(abs(y_vals**2), x_vals)
      norm_result = y_vals/np.sqrt(norm)
43
45
      return x_vals, norm_result
46
47
x_values = np.linspace(-5, 5, 500)
so alpha_vals = [0, 1e0, 1e-1, 1e-2, 1e-3, 1e-4]
52 for i in alpha_vals:
     plt.plot(x_values, pot(x_values, i), label = f'Alpha={i}')
53
54 plt.legend()
55 plt.grid()
56 plt.title(r'Potential Energy as a function of $\xi$')
57 plt.xlabel(r'\xi')
58 plt.ylabel(r'V(\xi)')
59 plt.show()
n_vals = np.array([0,1,2,3,4,5,6,7,8,9])
65 for i in alpha_vals:
```

```
66
       matrix, X = matrix_formation(-5, 5, 500, pot, i)
67
68
69
       e , vec = eigh(matrix)
70
71
       perturbation_temp = perturbation(n_vals, i)
72
       data = {
73
74
     'n': n_vals,
75
     'Calculated eigen value': e[:10],
76
     'Perturbation eigen value': perturbation_temp,
77
78
79
       }
80
       df = pd.DataFrame(data)
81
       print(f'Alpha={i}')
82
       print('-----
83
       print('Ground State Energy = ', 197.3/2*np.sqrt(100/940)*e[0], 'MeV')
84
       print(df)
85
       plt.plot(n_vals , e[:10], label = f'alpha={i}')
87
88
89 plt.legend()
90 plt.grid()
91 plt.title(r'E(n) as a function of n')
92 plt.xlabel(r'E(n)')
93 plt.ylabel(r'n')
94 plt.show()
95
97 for i in alpha_vals:
98
       for j in range(0,5):
99
100
           matrix, X = matrix_formation(-5, 5, 500, pot, i)
101
            e , vec = eigh(matrix)
103
104
           plt.plot(X, normalize(X, vec.T[j])[1], label = f'n = {j}')
105
       plt.legend()
106
       plt.grid()
107
108
       plt.title(f'Wave Function Alpha={i}')
       plt.xlabel(r'\xi')
       plt.ylabel(r'U(\xi)')
110
       plt.show()
for i in alpha_vals:
114
       for j in range(0,5):
115
117
           matrix, X = matrix_formation(-5, 5, 500, pot, i)
118
           e , vec = eigh(matrix)
119
120
           plt.plot(X, (normalize(X, vec.T[j])[1])**2, label = f'n = \{j\}')
       plt.legend()
122
       plt.grid()
       plt.title(f'Probability Density Alpha={i}')
125
       plt.xlabel(r'\xi')
       plt.ylabel(r'U(\xi)')
126
127
       plt.show()
128
129
130 for i in range(0,2):
131
for j in alpha_vals:
```

```
matrix, X = matrix_formation(-5, 5, 500, pot, j)
134
135
136
            e , vec = eigh(matrix)
137
            plt.plot(X, normalize(X, vec.T[i])[1], label = f'alpha = {j}')
138
       plt.legend()
139
       plt.grid()
140
       plt.title(f'Wave Function n={i}')
141
       plt.xlabel(r'\xi')
142
       plt.ylabel(r'U(\xi)')
143
       plt.show()
144
145
   for i in range(0,2):
146
147
       for j in alpha_vals:
148
149
            matrix, X = matrix_formation(-5, 5, 500, pot, j)
151
            e , vec = eigh(matrix)
153
            plt.plot(X, (normalize(X, vec.T[i])[1])**2, label = f'alpha = {j}')
154
       plt.legend()
155
       plt.grid()
156
       plt.title(f'Probability Density n={i}')
158
       plt.xlabel(r'\xi')
       plt.ylabel(r'U(\xi)')
       plt.show()
```

Result and Discussion

I chose the Finite difference Method as it is the most efficient and accurate.

Figure 1: Potential as a function of ξ

Graph of the potential as a function of ξ for different values of alpha.

Alpha=0			
Gr	oun	d State Energy = 32.175	27778616816 MeV
	n	Calculated eigen value	Perturbation eigen value
0	0	0.999975	1.0
1	1	2.999875	3.0
2	2	4.999675	5.0
3	3	6.999377	7.0
4	4	8.999000	9.0
5	5	10.998672	11.0
6	6	12.999078	13.0
7	7	15.003019	15.0
8	8	17.019260	17.0
9	9	19.068417	19.0

Figure 2: Alpha=0

Al	Alpha=1.0				
Gr	oun	d State Energy = -1072.	5444847161077 MeV		
	n	Calculated eigen value	Perturbation eigen value		
0	0	-33.333595	-1.75		
1	1	-17.954430	-14.75		
2	2	-7.870886	-42.75		
3	3	-1.399264	-85.75		
4	4	0.864462	-143.75		
5	5	2.454161	-216.75		
6	6	4.582061	-304.75		
7	7	7.061949	-407.75		
8	8	9.798874	-525.75		
9	9	12.758779	-658.75		

Figure 3: Alpha=1

Alpha=0.1					
Gr	oun	d State Energy = 32.075	78690408526 MeV		
	n	Calculated eigen value	Perturbation eigen value		
0	0	0.996883	0.9725		
1	1	2.979703	2.8225		
_	2	4.944703	4.5225		
3	3	6.891146	6.0725		
4	4	8.818697	7.4725		
5	5	10.730017	8.7225		
6	6	12.639217	9.8225		
7	7	14.582078	10.7725		
8	8	16.606189	11.5725		
9	9	18.743220	12.2225		

Figure 4: Alpha=0.1

Al	Alpha=0.01				
Gr	oun	d State Energy = 32.174	29458883316 MeV		
	n	Calculated eigen value	Perturbation eigen value		
0	0	0.999944	0.999725		
1	1	2.999678	2.998225		
2	2	4.999145	4.995225		
3	3	6.998347	6.990725		
4	4	8.997304	8.984725		
5	5	10.996156	10.977225		
6	6	12.995638	12.968225		
7	7	14.998739	14.957725		
8	8	17.014655	16.945725		
9	9	19.064520	18.932225		

Figure 5: Alpha=0.01

Al	Alpha=0.001				
Gr	oun	d State Energy = 32.175	267955338555 MeV		
	n	Calculated eigen value	Perturbation eigen value		
0	0	0.999975	0.999997		
1	1	2.999873	2.999982		
2	2	4.999670	4.999952		
3	3	6.999367	6.999907		
4	4	8.998983	8.999847		
5	5	10.998647	10.999772		
6	6	12.999043	12.999682		
7	7	15.002976	14.999577		
8	8	17.019214	16.999457		
9	9	19.068378	18.999322		

Figure 6: Alpha=0.001

Al	Alpha=0.0001				
Gr	ound	d State Energy = 32.175	27768786347 MeV		
	n	Calculated eigen value	Perturbation eigen value		
0	0	0.999975	1.000000		
1	1	2.999875	3.000000		
2	2	4.999675	5.000000		
3	3	6.999377	6.999999		
4	4	8.999000	8.99998		
5	5	10.998672	10.999998		
6	6	12.999077	12.999997		
7	7	15.003018	14.999996		
8	8	17.019260	16.999995		
9	9	19.068417	18.999993		

Figure 7: Alpha=0.0001

The comparison of calculated values with the perturbation eigne values.

Figure 8: Energy eigen values as a function of n

Graph for E(n) as a function of n.

Figure 9: First Five Wave Functions

Figure 10: First Five Wave Functions

Figure 11: First Five Wave Functions

Figure 12: First Five Wave Functions

Figure 13: First Five Wave Functions

Figure 14: First Five Wave Functions

First Five Wave Functions for each value of alpha.

Figure 15: First Five Probability Densities

Figure 16: First Five Probability Densities

Figure 17: First Five Probability Densities

Figure 18: First Five Probability Densities

Figure 19: First Five Probability Densities

Figure 20: First Five Probability Densities

First Five Probability Densities for each value of alpha.

Figure 21: Ground State

Figure 22: First Excited State

Ground State and Excited State variation with alpha.

Figure 23: Ground State Probability

Figure 24: First Excited State Probability

Ground State probability and First Excited State probability variation with alpha.

Some notable observations from all the figures are:

- As the value of alpha decreases and approaches 0 the solution approaches the harmonic oscillator.
- The values and graphs for alpha=1 are very different from the rest, this is due to the fact that when alpha=1 or is large then the x^3 term dominates the potential function and hence the results are different.