TÓM TẮT PHƯƠNG PHÁP CHỨNG MINH VÀ MỘT SỐ VÍ DỤ MÔN GIẢI TÍCH 2A HỌC KỲ 1 NĂM HỌC 2024 - 2025

1. Chứng minh $\|\cdot\|$ là một chuẩn trên $\mathbb R$

Cho E là một không gian vectơ trên \mathbb{R} . Một ánh xạ

$$\|\cdot\|: E \to [0, +\infty)$$
$$x \mapsto \|x\|$$

được gọi là một $chu \hat{a}n$ trên E nếu thỏa 3 tính chất sau:

i) Phân biệt dương:

$$||x|| \ge 0, \forall x \in E,$$

 $||x|| = 0 \Leftrightarrow x = 0.$

- ii) Chuẩn vecto bội: $\|\lambda x\| = |\lambda| \|x\|, \forall x \in E, \lambda \in \mathbb{R}$.
- iii) Bất đẳng thức tam giác: $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$.

Một không gian vectơ được trang bị một chuẩn được gọi là một không gian định chuẩn và được kí hiệu là $(E, \|\cdot\|)$.

Bài 1. Cho C([0,1]) là không gian các hàm $f:[0,1]\to\mathbb{R}$ liên tục và $f\in C([0,1])$. Đặt

$$||f||_1 = \int_0^1 x \cdot |f(x)| dx,$$
$$||f||_2 = \sup_{x \in [0,1]} x \cdot |f(x)|.$$

Chứng minh $\|\cdot\|_1$ và $\|\cdot\|_2$ là các chuẩn trên C([0,1]).

2. Chứng minh (E,d) là không gian metric

Cho E là một tập hợp khác trống. Một metric trên E là một ánh xạ

$$d: E \times E \to \mathbb{R}$$

thỏa các tính chất:

i) Phân biệt dương:

$$d(x,y) \ge 0, \quad \forall x, y \in E$$

 $d(x,y) = 0 \Leftrightarrow x = y.$

ii) Đối xứng:

$$d(x, y) = d(y, x), \quad \forall x, y \in E$$

iii) Bất đẳng thức tam giác:

$$d(x,y) \le d(x,z) + d(z,y), \quad \forall x, y, z \in E.$$

Bài 2. Cho $E = \mathbb{R}^2$, $x = (x_1, x_2)$ và $y = (y_1, y_2)$. Đặt

$$d: E \times E \to \mathbb{R}$$

 $(x,y) \mapsto d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$

Chứng minh (\mathbb{R}^2, d) là không gian metric.

Bài 3. Cho ánh xạ $d: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|, \ x,y > 0.$$

Chứng minh (\mathbb{R}, d) là không gian metric.

Bài 4. Cho ánh xạ $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \sqrt{x^2 + 1}e^{2x} - \sqrt{y^2 + 1}e^{2y} \right|.$$

Chứng minh (\mathbb{R}, d) là không gian metric.

Bài 5. Cho (\mathbb{R}, d) là không gian metric. Xét $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ xác định bởi

$$d_1(x,y) = |x - y| + d(x,y).$$

Chứng minh (\mathbb{R}, d_1) là không gian metric.

3. Chứng minh a là điểm dính của A trong d

Cách 1 (dùng định nghĩa): Cho (E,d) là không gian mêtríc và $\emptyset \neq A \subset E$. Khi đó, a là diểm dính của A nếu: $\forall r > 0, B(a,r) \cap A \neq \emptyset$.

Cách 2 (dùng mệnh đề): Cho (E,d) là không gian mêtríc, $\emptyset \neq A \subset E$ và $a \in E$. Muốn chứng minh a là điểm dính của A, ta tìm một dãy (x_n) thỏa

$$\begin{cases} (x_n) \subset A, \\ d(x_n, a) \xrightarrow{n \to \infty} 0. \end{cases}$$

Bài 6. Cho metric $d(x,y) = |x-y| - \sqrt{|x-y|}$, $x,y \in \mathbb{R}^+$ và A = (0,1). Chứng minh a = 0 là điểm dính của A trong d.

4. Chứng minh A là tập đóng trong (E, d)

Cách 1 (dùng định nghĩa): Cho (E,d) là không gian mêtríc và $\emptyset \neq A \subset E$. Khi đó,

- a là điểm dính của A nếu: $\forall r > 0, B(a, r) \cap A \neq \emptyset$.
- A là $t\hat{q}p$ đóng trong (E,d) nếu mọi điểm dính của A đều thuộc A.

Cách 2 (dùng định lý): Lấy a là điểm dính bất kỳ của A. Khi đó, tồn tại dãy $(x_n) \subset A$ sao cho $x_n \xrightarrow[n \to \infty]{d} a$. Ta chứng minh $a \in A$.

Bài 7. Cho $X=C\left([0,1]\right)=\left\{f:[0,1]\to\mathbb{R}\ \text{liên tục}\right\}$ và $f,g\in X$. Đặt metric

$$d_{\infty}(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|.$$

Chứng minh $A = \{ f \in X : f(0) = 1 \}$ và $B = \{ f \in X : f(0) = f(1) \}$ là hai tập đóng trong (X, d_{∞}) .

Bài 8. Cho $A = \{(x, y) \in \mathbb{R}^2 : xy = 2024\}$. Chứng minh A là tập đóng trong metric thông thường.

4. Chứng minh A là tập mở trong (E, d)

Cho (E, d) là không gian metric, $a \in E$ và r > 0 (r là số thực)

Cách 1 (dùng định nghĩa): Với mọi điểm bất kỳ $a \in E$, ta tìm r > 0 sao cho $B(a,r) \subset E$, trong đó $B(a,r) = \{x \in E, \ d(x,a) < r\}$.

Cách 2 (dùng định lý liên hệ giữa tập mở và tập đóng): Chứng minh $E \setminus A$ là tập đóng.

Bài 9. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|.$$

Chứng minh $A = \{(x, y) \in \mathbb{R}^2 : x + y > 1\}$ mở trong \mathbb{R}^2 .

Bài 10. Trong \mathbb{R}^2 , cho metric Euclide. Chứng minh $A = \{(x,y) \in \mathbb{R}^2 : |xy| < 1\}$ mở trong \mathbb{R}^2 .

5. Dãy hôi tu trong không gian metric

Cách 1 (dùng định nghĩa): Cho $a \in E$ và dãy $(x_n) \in (E, d)$. Ta nói (x_n) hội tụ về a trong (E, d) khi và chỉ khi

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N} : d(x_n, a) < \varepsilon, \quad \forall n \ge N(\varepsilon).$$

Cách 2 (dùng mệnh đề): Cho $a \in E$ và dãy $(x_n) \in (E, d)$. Ta tính $\lim_{n \to \infty} d(x_n, a)$.

- Nếu $\lim_{n\to\infty} d(x_n, a) = 0$ thì (x_n) hội tụ về a trong (E, d).
- Nếu $\lim_{n\to\infty} d(x_n, a) \neq 0$ thì (x_n) không hội tụ về a trong (E, d).

Bài 11. Cho E = C([0,1]) là không gian các hàm liên tục trên [0,1] và các metric

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx,$$
$$d_2(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Cho $f_n(x) = \sqrt{n}x^n$ và f = 0. Chứng minh

- a) f_n hội tụ về f trong (E, d_1) .
- b) f_n không hội tụ về f trong (E, d_2) .

Bài 12. Cho X là tập hợp các hàm liên tục trên [0,1]. Với $x,y \in X$, đặt

$$d_1(x,y) = \int_0^1 |x(t) - y(t)| dt,$$

$$d_2(x,y) = \max\{|x(t) - y(t)| : t \in [0,1]\}.$$

- a) Chứng minh rằng, nếu $\lim_{n\to\infty} x_n = x$ trong (X, d_2) thì $\lim_{n\to\infty} x_n = x$ trong (X, d_1) .
- b) Cho $x_n(t) = t^n t^{2n}$ và x = 0. Chứng minh x_n hội tụ về x trong (X, d_1) nhưng x_n không hội tụ về x trong (X, d_2) .

Bài 13. Cho X = C([0,1]). Với $f, g \in X$, đặt

$$D_{\infty}(f,g) = \sup_{t \in [0,1]} t |f(t) - g(t)|.$$

- a) Chứng minh D_{∞} là metric trên X.
- b) Cho $E = \{ f \in X : f(1) = 1 \}$. Chứng minh E là tập đóng trong (X, D_{∞}) .
- c) Cho $f_n(t) = 1 e^{-nt}$ và f = 1. Hỏi (f_n) có hội tụ về f trong (X, D_∞) không? Giải thích?
- 6. Dãy bị chặn Dãy Cauchy

Cho (E,d) là không gian metric. Khi đó

• Chứng minh dãy (x_n) là dãy bị chặn trong (E, d):

Tìm $a \in E$ và tìm r > 0 sao cho $x_n \in B(a, r), \ \forall n \in \mathbb{N}.$

• Chứng minh dãy (x_n) là $d\tilde{a}y$ Cauchy trong (E, d):

Cách 1 (dùng định nghĩa): Lấy bất kỳ $\varepsilon > 0$, tìm $N(\varepsilon) \in \mathbb{N}$ sao cho $d(x_m, x_n) < \varepsilon$, $\forall m, n \geq N(\varepsilon)$.

Cách 2 (dùng mệnh đề): Chứng minh $\lim_{n,m\to\infty} d(x_m,x_n) = 0$.

Bài 14. Cho X = C([0,1]). Với $f, g \in X$, đặt

$$d(f,g) = \int_{0}^{1} |f(t) - g(t)| dt.$$

Cho $f_n(t) = t^n$. Chúng minh (f_n) là dãy Cauchy trong (x, d).

7. Không gian metric đầy đủ/không đầy đủ

• Lưu ý:

Với (E, d) là không gian metric bất kì,

$$H$$
ội tụ \Rightarrow Cauchy
Cauchy \Rightarrow H ội tụ

Với (E, d) là không gian metric đầy đủ, hội tụ \Leftrightarrow Cauchy.

ullet Chứng minh (E,d) là không gian metric đầy đủ:

Bước 1: Chứng minh (E, d) là không gian metric.

Bước 2: Cho (x_n) là dãy Cauchy, chứng minh (x_n) là dãy hội tụ trong (E, d).

ullet Chứng minh (E,d) là không gian metric không đầy đủ:

Bước 1: Kiểm tra (E,d) có phải là không gian metric không?

- Nếu (E,d) không là không gian metric thì ta kết luận (E,d) không đầy đủ.
- Nếu (E,d) là không gian metric thì sang bước 2.

Bước 2: Tìm (x_n) là dãy Cauchy nhưng không hội tụ trong (E, d).

Bài 15. Cho ánh xạ $d: \mathbb{R}^2 \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|.$$

Hỏi (\mathbb{R},d) có là không gian metric đầy đủ không?

Bài 16. Cho ánh xạ $d:\mathbb{R}^+\times\mathbb{R}^+\to\mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|.$$

- a) Chứng minh (\mathbb{R}, d) là không gian metric.
- b) Cho $x_n = \sqrt{n}$. Chúng minh (x_n) là dãy Cauchy trong (\mathbb{R}, d) .
- c) Chứng minh (\mathbb{R}, d) là không gian metric không đầy đủ.

Bài 17. Cho $d_1, d_2, d_3 : \mathbb{R}^2 \to \mathbb{R}$ được xác định như sau

$$d_1(x, y) = |\arctan x - \arctan y|,$$

$$d_2(x, y) = \left| \frac{e^x}{1 + e^x} - \frac{e^y}{1 + e^y} \right|,$$

$$d_3(x, y) = \left| (x^2 + 1) e^x - (y^2 + 1) e^y \right|$$

Chứng minh $(\mathbb{R}, d_1), (\mathbb{R}, d_2)$ và (\mathbb{R}, d_3) là các không gian metric không đầy đủ.

8. Chứng minh D là tập compact trong (E,d)

Cho d là metric sinh bởi chuẩn.

Bước 1: Kiểm tra E có là tập con của \mathbb{R}^n không? Tức là, kiểm E có là không gian hữu hạn chiều không? Nếu có, làm bước 2-3. Nếu không, làm bước 4.

Bước 2: Chúng minh D là tập đóng.

Bước 3: Chứng minh D là tập bị chặn, tức là, tìm $a = (a_1, \ldots, a_n) \in E$, tìm r > 0sao cho $D \subset B(a,r)$.

Bước 4: Cho dãy $(u_n)_{n\in\mathbb{N}}\subset E$. Chứng minh tồn tại dãy con $(u_{n_k})_{k\in\mathbb{N}}\to u\in E$.

Bài 18. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = \max\{|x_1 - y_1| \ ; \ |x_2 - y_2|\},\,$$

với mọi $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$. Cho $D = \{(x, y) \in \mathbb{R}^2 : 2x^2 + 3y^2 \le 1\}$. Chứng minh D là tập compact trong (\mathbb{R}^2, d) .

Bài 19. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2},$$

với mọi $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. Cho $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2y\}$. Chứng minh D là tập compact trong (\mathbb{R}^2, d) .

9. Chứng minh D không là tập compact trong (E,d)

Cách 1: Chứng minh D không đóng hoặc không bị chặn.

Cách 2: Giả sử D là tập compact, chỉ ra tồn tại dãy $(u_n) \subset D$ sao cho $u_n \nrightarrow u \in D$.

Bài 20. Cho $X = C([0,1]) = \{f : [0,1] \to \mathbb{R} \text{ liên tục}\} \text{ và } f, g \in X.$ Đặt metric

$$d(f,g) = \int_{0}^{1} |f(t) - g(t)| dt.$$

Cho $a = \{f \in X : f(0) = 0\}$. Chúng minh A không compact trong (X, d).

BÀI TẬP BỔ SUNG

Định nghĩa. Cho (E, δ) là một không gian metric, $\emptyset \neq D \subset E$ và $u \in E$. Ta nói

a) u là một $\emph{diểm}~\emph{dinh}$ của D nếu mọi quả cầu tâm u đều chứa ít nhất một phần tử của D, nghĩa là

$$\forall r > 0, B(u; r) \cap D \neq \emptyset$$

b) u là $di \hat{e} m$ trong của D nếu tồn tại quả cầu tâm u chứa trong D, nghĩa là $\exists r>0, B(u,r)\subset D.$

Tập tất cả các điểm dính của D được gọi là bao đóng của D, ký hiệu \overline{D} .

Tập tất cả các điểm trong được gọi là $phần\ trong$ của D, ký hiệu $\overset{o}{D}$.

Tính chất. $D \subset \overline{D}, \overset{o}{D} \subset D$.

Định nghĩa (Phân loại điểm dính). Có ba loại điểm dính

a) u là $m\hat{\rho}t$ $di\mathring{e}m$ tu của D nếu mọi quả cầu tâm u đều chứa ít nhất một phần tử của D khác u, nghĩa là

$$\forall r > 0, (B(u; r) \setminus \{u\}) \cap D \neq \emptyset$$

Tập tất cả các điểm tụ của D được ký hiệu D'.

- b) u là $m \hat{\rho} t$ $di \hat{e} m$ $c \hat{o}$ $l \hat{q} p$ của D nếu $u \in D \setminus D'$, nghĩa là $\exists r > 0, B(u, r) \cap D = \{u\}$.
- c) u được gọi là $m\hat{\rho}t$ diễm biên của D khi nó vừa là điểm dính của D, vừa là điểm dính của $E\backslash D$. Tập các điểm biên của D ký hiệu là ∂D .

Tính chất. a) $\partial D = \overline{D} \cap \overline{E \backslash D}$,

b) $\bar{D} = D \cup D' = D \cup \partial D = \stackrel{o}{D} \cup \partial D$.

Định nghĩa. Cho D là một tập co
n của không gian metric (E,δ) . Ta nói

- a) D là $m\hat{\rho}t$ $t\hat{q}p$ $m\hat{\sigma}$ trong E nếu mọi điểm của D đều là điểm trong, nghĩa là $D = \stackrel{o}{D}$,
- b) D là $m\hat{\rho}t$ $t\hat{q}p$ đóng trong E nếu mọi điểm dính của nó thuộc D, nghĩa là $D=\overline{D}$.

Bài 21. Nếu A là một tập không mở (không đóng) trong \mathbb{R} thì A có là tập đóng (tập mở) trong \mathbb{R} không? Cho ví dụ giải thích?

Bài 22. Cho (E,d) là một không gian metric. Chứng minh tập $D \subset E$ là tập đóng khi và chỉ khi tập $E \setminus D$ mở (phần bù của tập đóng là tập mở và ngược lại).

Bài 23. Cho (E, d) là một không gian metric. Chứng minh

- a) Giao của một họ hữu hạn các tập mở trong E là một tập mở,
- b) Hội của một họ hữu hạn các tập đóng trong E là một tập đóng,
- c) Giao của một họ bất kỳ các tập đóng trong E là một tập đóng,
- d) Hội của một họ bất kỳ các tập mở trong E là một tập mở.

Bài 24. Cho (E,d) là một không gian metric. Chứng minh tập hợp gồm một phần tử của E là tập đóng trong E và do đó, tập hợp gồm hữu hạn các phần tử của E là tập đóng trong E.

Bài 25. Cho a_1, a_2, \ldots, a_n là n số thực. Chứng minh

$$A = \{a_1, a_2, \dots, a_n\}$$

là tập đóng trong \mathbb{R} và không có tập mở nào chứa trong A.

Hướng dẫn. Dùng kết quả bài 24 và tính chất mọi khoảng mở chứa vô hạn không đếm được phần tử.

Bài 26. Cho (E,d) là một không gian metric và $A \subset E$. Chứng minh rằng

- a) $\overline{A} = A \cup A'$, với A' là tập hợp các điểm tụ của A,
- b) \overline{A} là tập đóng trong E và là tập đóng nhỏ nhất trong E chứa A,
- c) $\overset{o}{A}$ là tập mở trong E và là tập mở lớn nhất trong E chứa trong A,
- d) $\partial A = \partial (E \setminus A), \ \partial A = \overline{A} \cap \overline{E \setminus A} \text{ và } E = \stackrel{o}{A} \cup \partial A \cup (E \setminus A)^{\circ};$
- e) ∂A là tập đóng trong E và A đóng nếu và chỉ nếu $\partial A\subset A.$

Hướng dẫn. a) Dùng định nghĩa,

b) Lấy dãy $\{x_n\} \subset \overline{A}$ sao cho $x_n \to x$. Do $x_n \in \overline{A}$ nên có $y_n \in A$ sao cho $d(x_n, x_m) < \frac{1}{n}$. Suy ra $y_n \to x$ và do đó $x \in \overline{A}$.

Giả sử $A \subset B$ với B đóng. Ta chứng minh $\overline{A} \subset B$. Lấy $x \in \overline{A}$ thì có dãy $\{x_n\} \subset A$ hội tụ về x. Thì $\{x_n\} \subset B$ và vì B đóng nên ta có $x \in B$.

c) Lấy $x\in \stackrel{o}{A}$ thì theo định nghĩa, có r>0 sao cho $B(x,r)\subset A$. Vì B(x,r) là tập mở nên suy ra $B(x,r)\subset \stackrel{o}{A}$.

Giả sử $B \subset A$ với B là tập mở. Ta chứng minh $B \subset A$. Lấy $x \in B$ thì do B mở nên có r > 0 sao cho $B(x,r) \subset B$. Suy ra $B(x,r) \subset A$ và do B(x,r) là tập mở nên $B(x,r) \subset A$,

- d) Dùng định nghĩa,
- e) Dùng d) và dùng tính chất A đóng nếu và chỉ nếu $A' \subset A$.

Bài 27. Cho E là tập hợp khác trống và $\delta: E \times E \to \mathbb{R}$ thỏa các tính chất

- a) $\delta(x, y) \ge 0 \quad \forall x, y \in E$ $\delta(x, y) = 0 \Leftrightarrow x = y$
- b) $\delta(x,y) \le \delta(x,z) + \delta(y,z) \quad \forall x,y,z \in E$

Chứng minh rằng δ là một mêtríc trân E.

- **Bài 28.** a) Cho (X, δ) là một không gian metric. Chứng minh rằng $\overline{B(a,r)} \subset B'(a,r)$ với $\overline{B(a,r)}$ là bao đóng của B(a,r).
- b) Cho X là một tập hợp có ít nhất hai phần tử. Xét mêtríc $\delta: X \times X \to \mathbb{R}$ với

$$\delta(x,y) = \begin{cases} 1 & \text{n\'eu } x \neq y \\ 0 & \text{n\'eu } x = y \end{cases}$$

Chứng minh $\overline{B(a,1)} \neq B'(a,1) \quad \forall a \in X$.

c) Lấy $X = \mathbb{R}^n$ với mêtríc

$$\delta(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

trong đó $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)$. Chứng minh rằng $\overline{B(a,r)}=B'(a,r) \ \forall a\in\mathbb{R}^n$.

Hướng dẫn. c) Chỉ cần chứng minh $B'(a,r) \subset \overline{B(a,r)}$. Lấy $x \in B'(a,r)$. Nếu $\delta(x,a) < r$ thì $x \in B(a,r) \subset \overline{B(a,r)}$, còn nếu $\delta(x,a) = r$ thì dãy $\{x_n\} \subset B(a,r)$ với

$$x_n = a + \left(1 - \frac{1}{n}\right)(x - a)$$

hội tụ về x. Do đó $x \in \overline{B(a,r)}$.

Bài 29. Cho $f_n(x) = n^2 x (1 - x^2)^n$, $0 \le x \le 1$.

- a) Chứng minh (f_n) hội tụ điểm về hàm f = 0.
- b) Hỏi (f_n) có hội tụ đều về f = 0 hay không?

Bài 30. Trong \mathbb{R}^2 , cho $x=(x_1;x_2)$ và $y=(y_1;y_2)$. Ta định nghĩa:

$$d(x;y) = \max\{|x_1 - y_1|; |x_2 - y_2|\}$$

- a) Chúng minh $(\mathbb{R}^2; d)$ là không gian metric.
- b) Cho $(z_n) \in \mathbb{R}^2$ là dãy Cauchy trong $(\mathbb{R}^2; d)$. Chứng minh dãy (z_n) hội tụ trong $(\mathbb{R}^2; d)$.
- c) Cho $X = \{(x; y) \in \mathbb{R}^2 \mid x + y = 1\}$. Chứng minh X là tập đóng trong $(\mathbb{R}^2; d)$.

Bài 31. Cho C([0;1]) là không gian các hàm liên tục trên [0;1]. Cho $f,g\in C([0;1])$. Ta đặt:

$$d(f;g) = \sup_{x \in [0;1]} |f(x) - g(x)|$$

- a) Chứng minh d là một metric trên C([0;1]).
- b) Chứng minh $D = \{ f \in C([0;1]) \mid d(f;0) \le 1 \}$ là một tập đóng, bị chặn. Chứng minh D không là tập compact.
- c) Cho $f \in C([0;1])$ và dãy hàm (f_n) thỏa:

$$f_n(x) = \begin{cases} f(x), & x \ge \frac{1}{n} \\ f\left(\frac{1}{n}\right), & x \in \left[0; \frac{1}{n}\right] \end{cases}$$

Chứng minh $\lim_{n\to\infty} d(f_n; f) = 0$

d) Cho dãy hàm (f_n) thỏa:

$$f_n(t) = \begin{cases} 1 - nt, & t \in \left[0; \frac{1}{n}\right] \\ 0, & t \in \left[\frac{1}{n}; 1\right] \end{cases}$$

Chứng minh (f_n) hội tụ điểm về f trên [0;1]. Chứng minh (f_n) không hội tụ đều về f trên [0;1].

e) Cho dãy hàm $(f_n) \in C([0;1])$ thỏa:

$$|f_n(x)| \le \frac{1}{n^2}, \quad \forall x \in [0; 1], \quad \forall n \in \mathbb{Z}^*.$$

Đặt:

$$s_n = f_1(x) + f_2(x) + \dots + f_n(x)$$

Chứng minh dãy hàm (s_n) hội tụ đều trên [0;1] khi $n \to +\infty$.

Bài 32. Cho $X = C[0;1] = \{f: [0;1] \to \mathbb{R} \text{ liên tục } \}$. Cho $f,g \in X$, ta định nghĩa

$$d_{\infty} = \sup_{t \in [0;1]} |f(t) - g(t)|$$

- a) Chúng minh d_{∞} là một metric trên X.
- b) Cho $E = \{ f \in X : f(1) = 1 \}$. Chứng minh E là tập đóng trong (X, d_{∞}) .
- c) Hỏi E có là tập bị chặn trong (X, d_{∞}) không?
- d) Cho $f_n \in X$ thỏa $f_n(x) = x^n(1-x)$ với $x \in [0;1]$. Hỏi $\{f_n\}$ có là dãy Cauchy trong $(X; d_\infty)$ không?

Bài 33. Trong \mathbb{R}^2 , cho

$$d(x;y) = |x_1 - y_1| + |x_2 - y_2|$$

với $x = (x_1; x_2)$ và $y = (y_1; y_2)$.

- a) Chứng minh rằng $(\mathbb{R}^2; d)$ là không gian metric đầy đủ.
- b) Cho $D = \{(x;y) \in \mathbb{R}^2 : x^2 + y^2 \le 2x\}$. Chứng minh D là tập compact trong $(\mathbb{R}^2;d)$.

Bài 34. Chứng minh rằng mọi dãy Cauchy trong không gian metric (X; d) thì luôn bị chặn.

Bài 35. Cho D là tập mở không gian metric (X;d). Chứng minh rằng tập $D_1 = \{x \in X : x \notin D\}$ là tập đóng.

Bài 36. Cho dãy hàm $f_n(x) = n^2 x (1 - x^2)^n$; $x \in [0, 1]$.

- a) Chứng tỏ rằng $f_n(x)$ hội tụ từng điểm về hàm 0 khi n tiến đến vô cùng.
- b) Tính $\lim_{n\to\infty}\int_0^1 f_n(x)dx$.
- c) Hỏi dãy hàm (f_n) có hội tụ đều về hàm 0 hay không? Giải thích tại sao?

Bài 37. Cho dãy hàm $\{f_n\}$ thỏa

$$f_n(x) = \frac{1 + 3nx}{4 + 2nx}$$

- a) Chứng minh $\{f_n\}$ hội tụ điểm và hội tụ đều trên $[1; \infty)$.
- b) Chứng minh $\{f_n\}$ không hội tụ đều trên [0;1].

Bài 38. Cho dãy hàm xác định bởi

$$f_n(x) = \frac{nx}{2020 + n^2 x^2}, \quad x \in [0; 1], \quad n \in \mathbb{N}.$$

- a) Chứng minh rằng dãy hàm $\{f_n\}_{n\in\mathbb{N}}$ hội tụ từng điểm.
- b) Chứng minh rằng dãy hàm $\{f_n\}_{n\in\mathbb{N}}$ không hội tụ đều.

Bài 39. Ký hiệu C[0;1] là tập hợp tất cả các hàm số thực liên tục trên [0;1]. Cho ánh xạ $f:C[0;1]\to\mathbb{R}$ xác định bởi

$$f(x) = x(1), \quad x \in C[0; 1]$$

Chứng minh rằng f không liên tục trên không gian metric (C[0;1];d) với d được cho bởi

$$d(x;y) = \int_0^1 |x(t) - y(t)| dt, \quad x; y \in C[0;1].$$