Test 1 Revision

Edward Zhang

SOFTENG 370 T4

Question

Very early computers did not provide interrupt handling capabilities. What advantage does an interrupt handling system provide?

Question

Very early computers did not provide interrupt handling capabilities. What advantage does an interrupt handling system provide?

SPOOLing: Interrupt driven I/O, removing the need to wait for our computers to wait for I/O. Now we can do other stuff while waiting for our punch card input or printer output.

Question

The first personal computer operating systems (including the Mac) were effectively resident monitors. Describe one way in which early PC operating systems were like resident monitors.

Question

The first personal computer operating systems (including the Mac) were effectively resident monitors. Describe one way in which early PC operating systems were like resident monitors.

- MS-DOS and Apple-DOS ran one program at a time
- Lack of Virtual Memory
- Maintained a JCL-like user interface

Derived from 2018 SE370 Test

Question

What is an issue with using "trap and emulate" virtualization on x86 (prior to virtualization extensions such as Intel VT and AMD-V)?

Derived from 2018 SE370 Test

Question

What is an issue with using "trap and emulate" virtualization on x86 (prior to virtualization extensions such as Intel VT and AMD-V)?

- ► Instructions exist that can run in both user and kernel mode, give different output (such as POPF).
- Instructions also exist to allow a program to determine whether it was in privileged.
- ► These instructions don't throw an exception (trap), and thus cannot be emulated by the VMM.

Question

... and how do hardware virtualization extensions help resolve this?

Question

...and how do hardware virtualization extensions help resolve this? Additional instructions allow the VMM to enter a special privledged mode (some call this "ring -1", although it's not a real protection ring), which allows it to host different guest kernels, all of which believe they have ring 0 (kernel mode) access to the system.

Question

The Windows subsystem for Linux is NOT a virtual machine.

Explain how it is different from a virtual machine.

Question

The Windows subsystem for Linux is NOT a virtual machine. Explain how it is different from a virtual machine.

- No seperate kernel instead, Unix syscalls are mapped into NT ones through a kernel module (LXCore)
- Somewhat similar to Application virtualization

Trivia

WSL2 uses a real Linux kernel running under Hyper-V, due to performance and feasibility issues implementing all syscalls in LXCore/on top of NT.

Question

Give reasons why a language such as Java is seldom used to implement operating systems?

Question

Give reasons why a language such as Java is seldom used to implement operating systems?

- ► No direct access to memory*
- Insufficient control over memory allocation*
- Not easily mapped to machine code
- more...

Trivia

*One can technically manually allocate off-heap memory or access memory-mapped devices using sun.misc.unsafe

2011, 2018 Test

Question

Explain the difference between a thread and a process?

2011, 2018 Test

Question

Explain the difference between a thread and a process?

Processes have their own memory space and connections to files/devices (file descriptors), whereas threads typically share memory space within a given process (but have their own stack so they can be executing different code).

Question

What is the most important difference between system level and user level threads, and what is a consequence of the difference?

Processes and Threads

2018 SE370 Test

Question

What is the most important difference between system level and user level threads, and what is a consequence of the difference?

- With user-level threads, the OS only sees one thread per process, whereas with system-level threads the OS is aware of multiple threads per process.
- On a multiprocessor, different system-level threads can be scheduled on different processors, since the OS can schedule them on different processors.

Question

In general a small time-slice makes computers responsive. Explain why this is so and what penalty is paid as the time-slice gets smaller.

Question

In general a small time-slice makes computers responsive. Explain why this is so and what penalty is paid as the time-slice gets smaller.

- A context switch between two tasks takes a certain amount of time, as registers, stack pointers, etc. need to be switched out.
- As a result, smaller time slices means more context switches and thus lower throughput (but lower latency!).

