TD 7 Sous-variétés

Exercice 1 Soit G un sous-ensemble de \mathbb{R}^k . On suppose que G est muni d'une structure de groupe dont on note e l'élément neutre et \times la loi. On dira que G est un **groupe de Lie** lorsque G est en plus une sous-variété de \mathbb{R}^k et que les applications :

$$G \times G \rightarrow G$$
 $G \rightarrow G$ $G \rightarrow G$ $g \mapsto g^{-1}$

sont de classe C^1 au sens où ce sont les restrictions à $G \times G$ (resp G) d'applications de classe C^1 définies sur $\mathbb{R}^k \times \mathbb{R}^k$ (resp \mathbb{R}^k). On appelle alors algèbre de Lie l'espace T_eG . Montrer que les ensembles suivants sont des sous-variétés de $M_n(\mathbb{R})$ puis des groupes de Lie en prenant pour loi la multiplication matricielle. Préciser les algèbres de Lie.

- a) $GL_n(\mathbb{R})$.
- **b)** $SL_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) / det(M) = 1 \}.$
- c) $O_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) / M^T M = I_n \}.$

Exercice 2 Montrer que l'ensemble $N = \{M \in M_2(\mathbb{R}), M \neq 0, M^2 = 0\}$ est une sous-variété. Donner sa dimension. Remarque: On pourra commencer par chercher une caractérisation de N à l'aide de la trace et du déterminant

Exercice 3 Soient $0 \le r \le n$ des entier (avec $n \ge 2$).

a) Montrer qu'il existe un voisinage U de 0 dans $M_n(\mathbb{R})$ tel que si

$$\left(\begin{array}{cc} A & C \\ B & D \end{array}\right) \in U$$

alors la matrice

$$\begin{pmatrix} I_r + A & C \\ B & D \end{pmatrix}$$

est de rang r ssi $D = B(I_r + A)^{-1}C$.

- **b)** Soit $V_r \subset M_n(\mathbb{R})$ l'ensemble des matrices de rang r. Montrer que c'est une sous-variété et donner sa dimension.
- c) Montrer que l'ensemble des matrices symétriques de rang r forment une sous-variété de l'espace des matrices symétriques. Donner sa dimension.

Exercice 4 Soit $\gamma: I \to \mathbb{R}^2$ de classe C^1 avec I intervalle ouvert de \mathbb{R} et $\gamma'(t) \neq 0$ pour tout $t \in I$. $C = \{\gamma(t)/|t| \in I\}$ définit une courbe paramétrée du plan. C est-elle nécessairement une sous-variété de \mathbb{R}^2 ? Et si l'on suppose de plus que γ est injective?