Complex Numbers

Derek, Vignesh

2020

COMPLEX NUMBERS [90 Marks]

- 1 Solve the following:
 - (a) Given that z = a + ib and w = c + id, where $a, b, c, d \in \mathbb{R}$,

(i) Show that
$$(zw)^* = z^*w^*$$
. [2]

(ii) Hence, show that
$$(vzw)^* = v^*z^*w^*$$
 where $v \in \mathbb{C}$. [1]

- (b) The locus of a parabola is given by $z = at^2 + i(2at)$ for $a, t \in \mathbb{R}$. Show that |z - a| = |Re(z) + a|.
- (c) It is given that $\operatorname{Im}(\frac{a+bi}{a-bi}) = 0$ for some $a, b \in \mathbb{R}$. Find the possible values of $\frac{a+bi}{a-bi}$.
- (d) For some $a, b \in \mathbb{R}$, $z^2 + az b = 0$ has no real roots and $aw^2 + bw + a = 0$ has two real distinct roots. Given that a > 1, find an inequality satisfied by b. [3]
- (e) It is given that $k = \frac{a-z^*}{z} + \frac{a-z}{z^*}$, where z = a+ib for some $a,b \in \mathbb{R}$. Show that $k = \frac{2b^2}{a^2+b^2}$.
- (f) Given that z = a + bi and w = b ai, express v in terms of a and b if $v^* = \frac{z + w}{zw}$.

 [3]
- (g) Find $w \in \mathbb{C}$ in the equation $z^2 + wz + 2 = 0$ if one of the roots is i. [3]
- (h) For $a, b \in \mathbb{R}$ and $z \in \mathbb{C}$,
 - (i) Express $|(a-bi)^n|$ in terms of a, b and n. [2]
 - (ii) Hence, if $(\sqrt{3} \sqrt{2}i)^n = z$ where |z| = 625, find the value of n. [2]

2 Solve the following:

(a) Prove that
$$\operatorname{Re}(\frac{1}{e^{i\theta} + e^{-3i\theta}}) \equiv \frac{\cos \theta}{2\cos 2\theta}$$
. [4]

(b) Show that
$$\frac{\csc\theta(\cot\theta+i)}{2\cos\theta(\cot\theta-i)} = \cot 2\theta + i.$$
 [4]

3 Solve the simultaneous equations
$$zw = \frac{5}{2}(1+i)$$
 and $(1-i)w = \frac{iz+3}{2}$. [5]

- **4** It is given that $\arg(z^6(w^*)^5) = \frac{3\pi}{4}$. Given also that $|z^6(w^*)^5| = |z|$ and $z = \sqrt{3} + 3i$, find w.
- **5** Given $k \in \mathbb{R}$ such that $\sqrt{11 + ki} = a + bi$, where a and b are positive real numbers,

(a) Express
$$k$$
 in terms of a . [2]

(b) Find the values of
$$a$$
 and b if $k = 60$.

6 It is given that $z = 1 + e^{-i\frac{\pi}{4}}$.

(a) Show that
$$e^{-i\frac{3\pi}{4}} = -e^{i\frac{\pi}{4}}$$
. [1]

(b) Hence, find
$$(z-1)^3 + (z-1)^2 + z + i$$
. [3]

7 Given that 1 + i is a root of the equation

$$4z^4 - 8z^3 + 17z^2 - 18z + 18 = 0.$$

[4]

find all the other roots in the form a + bi.

8 The equation $3z^3 + az^2 + bz - 5 = 0$ has a root $z = \frac{1}{3}$, where a and b are real, non-zero constants.

Given that the sum of roots is $\frac{7}{3}$,

- (a) Find the values of a and b. [3]
- (b) Find the remaining roots without using a calculator. [2]
- **9** On an Argand diagram, referred from the origin O, points Z and W represent the complex numbers z = 1 + i and $w = -1 + \sqrt{3}i$ respectively. Points A and B represent Re(z) and Re(w) respectively.

- (a) Express z and w in the form $re^{i\theta}$. [1]
- (b) Find the area of trapezium BAZW. Hence or otherwise, find the area of ΔOZW . [2]

(c) Hence, prove that
$$\sin \frac{5\pi}{12} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$
. [3]

10 Given that $e^{i\theta} = \cos \theta + i \sin \theta$,

(a) Show that
$$e^{i(3\theta)} = \cos 3\theta + i \sin 3\theta$$
. [1]

(b) Find
$$\operatorname{Im}((\cos \theta + i \sin \theta)^3)$$
. [2]

- (c) Using your answers in (a) and (b), express $\sin 3\theta$ in terms of $\sin \theta$. [2]
- 11 It is given that z = 1 + ki, where k > 0.
 - (a) Express z in the form $re^{i\theta}$. [2]
 - (b) Given that z^5 is a positive real number, find the value of k. [2]
- 12 The complex numbers z and w are given by $z = e^{i\frac{\pi}{6}}$ and $w = -1 \sqrt{3}i$. If $\frac{z^2p^*}{w^3}$ is a positive real number and $\left|\frac{p^2w^2}{z^3}\right| = \frac{4}{9}$, find p in the form a + bi. [4]
- 13 In an Argand diagram, ABCDEF is a regular hexagon centred at the origin O where point A represents complex number a, B represents b, and so on. Given that a and d are purely real, and |a| = |d| = 4, find the area of:

(a) Rectangle
$$BCDF$$
; [2]

- (b) Regular Hexagon ABCDEF. [2]
- **14** The complex number z has modulus 2 and argument $-\frac{2\pi}{3}$.
 - (a) Sketch an Argand diagram showing the points P, Q and R representing z, z^2 and z^3 .
 - (b) Using your diagram, find the area of ΔPQR . [3]
- 15 In an Argand diagram, the points A, B, C and D represent complex numbers a = 5 + 3i, b, c = 1 i and d respectively such that ABCD is a circle described in a clockwise sense with AC as its diameter.

- (a) Calculate the area of the circle ABCD. [2]
- (b) Given that AB = 2BC and AB = CD, find b and d. [5]