Costech 4010 Elemental Analyzer Sample Size Determination v0.2

Robin B. Trayler Robin B. Trayler Please contact the Stable Isotope Ecology Laboratory Technical Director with any questions or clarifications. StableIsotopes@ucmerced.edu

Introduction

2

- Determining the correct sample size for δ^{13} C and δ^{15} N analyses is important because the mass spectrometer signal intensity, sensitivity, and reproducibility is related to sample mass. These notes make three assumptions. 1. The the carbon and nitrogen content of a material is known prior to analysis. 2. Analysis is taking place in the University of California, Merced Stable Isotope Ecology laboratory using a *Costech 4010 Elemental Analyzer*.

 * Other laboratories have similar instrumentation setups, however instrument sensitivity will vary between configurations.
- 3. The *Delta V+ IRMS* CO₂ sample dilution is set to 89%. * This is the default configuration for routine analyses. Other configurations are possible but you should contact the Technical Director prior to sample preparation.

Background

- 20 The signal intensity of a sample gas measured by a Delta V+ isotope ratio mass spec-
- 21 trometer is directly related to the about of gas. In the case of the Costech 4010 Elemental
- 22 Analyzer the signal intensity is linearly related to sample mass (Figure 1).

Figure 1: Sample carbon and nitrogen content versus signal intensity.

²³ The Delta V+ isotope ratio mass spectrometer has a measurement range from 0 to 50

volts. However the sensitivity is best below about 30 volts. Furthermore, both δ^{13} C and δ^{15} N have have a non-linear relationship to signal intensity. This means that a sample with a small signal intensity will have a different measured δ value than a sample of the same material at a large signal intensity.

Figure 2: Mass dependence of $\delta^{13} C$ and $\delta^{15} N$ values.

The δ-value-mass-dependence is linear and lowest between about 5 to 15 volts for δ^{13} C and 5 to 25 for δ^{15} N (Figure 2). Since the relationship between signal intensity (volts) is

- linearly related to carbon and nitrogen content (Figure 1), this equates to the mass range
- 31 shown in Table 1.

Table 1: minimum and maximum carbon and nitrogen contents for $\delta^{13}C$ and $\delta^{15}N$ analysis

isotope	minimum (mg)	maximum (mg)
δ ¹³ C	0.2	0.8
δ ¹⁵ N	0.05	0.2

Calculating Sample Size

- If the carbon and nitrogen content of a material is known prior to analysis you can calculate
- the optimal sample size using the following equations to calculate the range of sample
- weights for carbon and nitrogen.

₃₆ δ¹³C Range

$$Sample\ size_{min} = 0.2 \div (sample\ carbon\% \div 100)$$

$$Sample\ size_{max} = 0.8 \div (sample\ carbon\% \div 100)$$

₃₇ δ¹⁵N Range

$$Sample\ size_{min} = 0.05 \div (sample\ nitrogen\% \div 100)$$

$$Sample\ size_{max} = 0.2 \div (sample\ nitrogen\% \div 100)$$

³⁸ Measuring both δ¹³C and δ¹⁵N

- It is difficult to concurrently measure δ^{13} C and δ^{15} N in samples with high C:N ratios.
- ⁴⁰ Based on the sample ranges given in Table 1 the maximum C:N ratio is about 16
- $_{41}$ ($carbon\ maximum \div nitrogen\ minimum\ or\ 0.8 \div 0.05$) and the minimum C:N
- ratio is 1 ($carbon\ minimum \div nitrogen\ maximum\$ or $0.2 \div 0.2$). For analyses
- of materials with C:N ratios outside this range please consult the Technical Director prior
- to sample preparation.
- If your samples have a C:N ratio between about 1 to 16 then δ^{13} C and δ^{15} N can be mea-
- ⁴⁶ sured concurrently. Calculate the range of acceptable sample sizes using the equations
- 47 for carbon and nitrogen shown above and then choose a final sample size that overlaps
- both results. If your samples have a C:N ratio significantly outside this range then δ^{13} C
- and δ^{15} N may need to be measured separately. Please consult the Technical Director for
- 50 guidance.

51 Commonly Analyzed Materials

Table 2: Carbon and nitrogen contents of commonly analyzed materials.

material	carbon %	nitrogen %
acetanilide	71.09	10.36
biochar	> 80	< 1.5
collagen	40 - 45	10 - 15
glutamic acid	40.3	9.52
keratin	40 - 45	10 - 15
plants	40 - 50	< 1 - 5

material	carbon %	nitrogen %
proteins	40 - 45	10 - 15
soil	highly variable	highly variable

Worked Example

Acetanilide is common reference material that is 71.09% carbon and 10.36% nitrogen (Table 2).

₅₅ δ¹³C

56

58

$$sample \; size_{min} = 0.28 \; mg = 0.2 \div (71.09\% \div 100)$$

$$sample \ size_{max} = 1.13 \ mg = 0.8 \div (71.09\% \div 100)$$

$\delta^{15}N$

Sample
$$size_{min} = 0.48 \ mg = 0.05 \div (10.36\% \div 100)$$

Sample
$$size_{max} = 1.93 \ mg = 0.2 \div (10.36\% \div 100)$$

- In this case the minimum sample size for $\delta^{13}C$ measurements is lower than the minimum
- for measuring $\delta^{15}N$. the minimum sample size for $\delta^{15}N$ analysis is in the middle of the
- $_{\scriptscriptstyle 61}$ range for $\delta^{13}C$ so a sample size of **0.5 mg** would be appropriate.