Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 113.9 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 5.74, tilsynelatende blå størrelseklass $m_B=6.80$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 14.10, tilsynelatende blå størrelseklass $m_B = 16.16$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=5.74,$ tilsynelatende

blå størrelseklass m_B = 7.80

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 14.10, tilsynelatende blå størrelseklass $m_B = 15.16$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.51 og store halvakse a=46.34 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.51 og store halvakse a=63.43 AU.

Filen 1F.txt

Ved bølgelengden 597.12 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 34.90 solmasser, temperatur på 11.00 Kelvin og tetthet 1.33e-20 kg per kubikkmeter

Gass-sky B har masse på 10.60 solmasser, temperatur på 90.00 Kelvin og tetthet 4.11e-21 kg per kubikkmeter

Gass-sky C har masse på 5.40 solmasser, temperatur på 84.40 Kelvin og

tetthet 6.93e-21 kg per kubikkmeter

Gass-sky D har masse på 6.60 solmasser, temperatur på 31.90 Kelvin og tetthet 7.01e-21 kg per kubikkmeter

Gass-sky E har masse på 9.40 solmasser, temperatur på 61.30 Kelvin og tetthet 7.11e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas overflate består hovedsaklig av helium

STJERNE B) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) kjernen består av karbon og oksygen og er degenerert

Filen 1L.txt

Stjerne A har spektralklasse G6 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 7.74

Stjerne B har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 3.42

Stjerne C har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 6.54

Stjerne D har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 2.41

Stjerne E har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 6.96

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

3

2 ·

1 -

i

ź

3

10 9 8 y-posisjon (buesekunder) 7 6 5

5

x-posisjon (buesekunder)

9

10

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.996999999999999733546 AU.

Tangensiell hastighet er 37833.473827978625195101 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.700 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.125 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.440.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9688 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00016 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=110.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9933 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 662.10 nm.

Filen 4A.txt

Stjernas masse er 2.75 solmasser.

Stjernas radius er 0.56 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 500 -1000 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 14.75 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.05 solmasser.

r-koordinaten til det innerste romskipet er r $=9.19~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=15.71~\mathrm{km}.$