

PMAS Arid Agriculture University Rawalpindi

University Institute of Information Technology

CS- 687Parallel and Distributed Computing			
Credit Hours:	3(2-3)	Prerequisites:	None
Teacher:	Asad-Ul-Haq Hashmi	Date	October 2021 Onwards

Course Description:

Asynchronous/synchronous computation/communication, concurrency control, GPU tolerance. architecture and programming, heterogeneity, fault interconnection topologies, load balancing, memory consistency model, memory hierarchies, Message passing interface (MPI), MIMD/SIMD, multithreaded programming, parallel algorithms & architectures, parallel I/O, performance analysis and tuning, power, programming models (data parallel, task parallel, process-centric, shared/distributed memory), scalability and performance studies. scheduling, systems, synchronization, storage and tools(Cuda, Swift, Globus, Condor, Amazon AWS, Open Stack, Cilk, gdb, threads, MPICH, OpenMP, Hadoop, FUSE).

Course Objective:

- Learn about parallel and distributed computers.
- Write portable programs for parallel or distributed architectures using
 Message-Passing Interface (MPI) library
- Analytical modeling and performance of parallel programs.
- Analyze complex problems with shared memory programming with OpenMPI

Teaching Methodology:

Lectures, Assignments, Presentations, etc. Major component of the course should be covered using conventional lectures.

Courses Assessment:

Exams, Assignments, Quizzes. Course will be assessed using a combination of written examinations.

Reference Materials:

• Distributed Computing Principles and Applications By M. L. Liu, 1st Edition,

- Pearson Education, 2009.
- Distributed Systems: Principles and Paradigms, A. S. Tanenbaum and M. V. Steen, Prentice Hall, 2nd Edition,2007
- Distributed and Cloud Computing: Clusters, Grids, Clouds, and the Future Internet, K Hwang, J Dongarra and GC. C. Fox, Elsevier, 1stEd.

Course Learning Outcomes (CLOs):		
At the end of the course the students will be able to:	Domain	BT Level*
Learn about parallel and distributed computers	С	2
Write portable programs for parallel or distributed architectures using Message-Passing Interface (MPI)library	С	3
 Analytical modeling and performance of parallel programs 	С	3
 Analyze complex problems with shared memory programming with openMP. 	С	4

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective doma

Week	Lecture #	Theory
		Introduction to Course
		Course Objective and Course Material
		Serial Computing & Disadvantages of Serial Computing
		Scope of Parallel Computing
		Parallel Computing- Basic Definitions
		Motivations of Parallel Computing
Week 4	4.9.0	Moore's Law
Week 1	1 & 2	Parallel Computing- Flynn's Taxonomy
		1. SISD
		2. SIMD
		3. MISD
		4. MIMD
		Need of Parallel Computing
		Limitations of Parallel Computing

		Introductory Session on Exploring Java Using
	3 & 4	NetBeans
		Variables, Decision Making and Looping
		Parallel Computers
		Parallel Computing Advantages
		Parallel Computing Types
		Bit-Level Parallelism
		Instruction-Level Parallelism
Week 2	5 & 6	3. Task Parallelism
VVEEK Z		Parallel Programming Platforms
		Physical Organization of Parallel Platforms-Architecture
		of an Ideal Parallel Computer (PRAMEREW, CREW,
		ERCW, CRCW)
		PRAM Semantics
	7 & 8	Multithreading in Java Sample Demo Code-1
		Interconnection Networks for Parallel Computers
		Static Vs Dynamin
		Network Topologies
		Bus-Based Networks
		Crossbar Networks
		Multistage Networks
		Completely Connected Networks
Week 3	9 & 10	Star-Connected Networks
VVCCKO	9 & 10	Tree-based Networks
		Evaluating Static and Dynamic Interconnection
		Networks
		- Diameter
		- Connectivity
		- Bisection Width and Bisection Bandwidth
		- Channel Width,
		- Channel Rate,

		Channel Bandwidth
	11 & 12	Multithreading in Java Sample Demo Code-2
		- Creating Threads Using Thread Class
		- Creating Threads Using runnable Interface
		- Synchronization of Threads Program
		Communication Cost in Parallel Machines
		Message Passing Costs in Parallel Computers
		- Startup time
		- Per-hop time
		- Per-word transfer time
	13 & 14	Store-and-Forward Routing
Week 4		Packet Routing
		Cut Through Routing
		Routing Mechanism
		Minimal & non-Minimal
		Deterministic & Adaptive
	15 & 16	Programming Using the Message-Passing Paradigm
	13 & 10	Demo of MPI: the Message Passing Interface
		Principles of Parallel Algorithm Design
		Decomposition, Tasks, and Dependency Graphs
		Granularity, Concurrency, and Task-Interaction
		 Processes and Mapping
		 Processes versus Processors
Week 5	17 & 18	Decomposition Techniques
	17 & 10	Recursive Decomposition
		Data Decomposition
		- Partitioning Input Data
		- Partitioning Output Data
		- Partitioning Input & output Data
		- Partitioning Intermediate Data

		- The Owner-computes Rule
		Exploratory Decomposition
		Hybrid Decomposition
		MPI: the Message Passing Interface
	19 & 20	- Hello world
		- Odd-Even Sort
		Characteristics of Tasks
		Task Generation Static Vs Dynamic
		Task Size Uniform vs non-Uniform
		Knowledge of Task Size
	21 & 22	Size of Data Associated with the Task
	21 & 22	Characteristics of Inter-Tasks
		Static Vs Dynamic
		Regular Vs Dynamic
		Read-only Vs Read-Write
Week 6		One-Way Vs Two-Way
	23 & 24	Search Algorithms for Discrete Optimization Problems
		Sequential Search Algorithms
		Depth-First Search Algorithms
		Depth-First Branch-and-Bound
		Depth-first branch-and-bound
		Iterative Deepening A*
		Iterative deepening A*
		Best-First Search Algorithms
		Parallel Depth-First Search
Week 7	25 & 26	Mapping Technique for Load Balancing
		Static Mapping
		Mappings Based on Data Partitioning
		Mappings Based on Task Partitioning
		Hierarchical Mappings

		Dynamic Mapping
		Centralized Schemes
		Distributed Schemes
		The OpenMP Programming Model
	27 & 28	Code for Computing PI using OpenMP directives
		Specifying Concurrent Tasks in OpenMP
		Parallel Algorithm Models
		The Data-Parallel Model
		The Task Graph Model
	29 & 30	The Work Pool Model
		The Master-Slave Model
Week 8		The Pipeline or Producer-Consumer Model
		Hybrid Models
		Synchronization Constructs in OpenMP
		Data Handling in OpenMP
	31 & 32	OpenMP Library Functions
		Environment Variables in OpenMP
		Graph Algorithms
		Definitions and Representations
		Minimum Spanning Trees: Prims Algorithm &
	33 & 34	Parallel Formulation
Week 9		Single Source Shortest Paths: Dijkstra's
		Algorithm Serial Vs Parallel Formulation
		Writing and Running Code for Prims Algorithm
	35 & 36	Writing and Running Code for Dijkstra's Algorithm
		Graph Algorithms
Week 10		4. All Paris Shortest Path: Dijkstra's Algorithm with
	37 & 38	Parallel Formulation
		Floydd's Algorithm Parallel Formulation
		5. They are 57 agont in the arange to officiation

	39 & 40	Writing and Running Code for Floydd's Algorithm
		Distributed Computing
		Definitions
	41 & 42	History of Distributed Computing
	41 & 42	Strengths and Weaknesses of Distributed
		Computing
Week 11		Architecture of Distributed Applications
		Internet Applications
		- Applets
	43 & 44	- Servlets
		- Web Services
		- SOAP
		Paradigm of Distributed Applications
		- Message Passing
		- The Client-Server Paradigm
	45 & 46	- The Distributed Object Model
Week 12		- The Mobile Agent Paradigm
VVCCK 12		- The Collaborative Application (Groupware)
		Paradigm
		COBRA Object Interface
	47 & 48	Inter-ORB Protocols
		Java IDL Package
		The Client-Server Paradigm
	49 & 50	Connection-Oriented and Connectionless Servers
Week 13		Iterative Server and Concurrent Server
	51 & 52	Sending Message to Multicast Group
	31 & 32	Receiving Message Sent to a Multicast Group
Week 14	53 & 54	Distributed Objects
		- Message Passing Vs Distributed Objects
		- Distributed Object System
		- Remote Procedure Calls

		- Remote Method Invocation
		API for Java RMI
		- The Remote Interface
	55 & 56	- The Server-side Software
		- The Client Side Software
		- Simple RMI Application
		Internet Applications
		- HTML
	57 & 58	- XML
	37 & 36	- HTTP
Week 15		- Dynamically Generated Web Contents
Week 15		- Common Gateway Interface
		Web Forms
	59 & 60	Creating Web Session
		Exploring Session data
		Cookies
		Final Project Presentations/Demonstration-1 (Half
Week 16	61 & 62	Class)
	63 & 64	Final Project Presentations/Demonstration-2 (Half
03 & 04		Class)
Final Term Exam		