Serial Communication On Firebird V Robot

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

> IIT Bombay June 20, 2014

Registers used in serial communication
Interrupts in Serial communication

C Code

Agenda for Discussion

- Introduction to Serial Communication
 - What is Serial Communication
 - Needs and Ways of Serial Communication
 - Inbuilt UART pins of ATmega 2560
- 2 Registers used in serial communication
 - Types of registers
 - UCSRnA
 - UCSRnB
 - UCSRnC
 - UBRRnL & UBRRnH
 - UDRn
- 3 Interrupts in Serial communication
 - Receive Complete ISR
 - Data Register empty ISR
 - Transmit Complete ISR
- C Code
 - UART initialization

What is Serial Communication

Serial communication is the process of sending data one bit at a time, sequentially, over a communication channel. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

Needs of Serial Communication.

 To establish a communication between devices like PCs, Tablets and other external devices.

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - 2 Robots and external devices

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - 2 Robots and external devices

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - Robots and external devices

- Wired communication
 - USB
- Wireless communication

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - Robots and external devices

- Wired communication
 - USB
 - 2 RS232
- Wireless communication

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - Robots and external devices

- Wired communication
 - USB
 - RS232
 - etc.
- Wireless communication

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - Robots and external devices

- Wired communication
 - USB
 - RS232
 - 6 etc.
- Wireless communication
 - Zigbee

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - 2 Robots and external devices

- Wired communication
 - USB
 - RS232
 - 6 etc.
- Wireless communication
 - Zigbee
 - 2 Bluetooth

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - 2 Robots and external devices

- Wired communication
 - USB
 - RS232
 - etc.
- Wireless communication
 - Zigbee
 - ② Bluetooth
 - WiFi

Needs of Serial Communication.

- To establish a communication between devices like PCs, Tablets and other external devices.
- To establish communication between
 - Two/multiple robots
 - 2 Robots and external devices

- Wired communication
 - USB
 - RS232
 - etc.
- Wireless communication
 - Zigbee
 - ② Bluetooth
 - WiFi
 - 4 etc.

ATmega 2560 supports 4 UARTs(UART 0-3). In Firebird V these are configured to following devices by default.

UART0 to Zigbee Wireless module

- UART0 to Zigbee Wireless module
- UART1 to RS232 Serial port

- UART0 to Zigbee Wireless module
- UART1 to RS232 Serial port
- UART2 to FT232 USB serial converter

- UART0 to Zigbee Wireless module
- UART1 to RS232 Serial port
- UART2 to FT232 USB serial converter
- UART3 to expansion port

- UART0 to Zigbee Wireless module
- UART1 to RS232 Serial port
- UART2 to FT232 USB serial converter
- UART3 to expansion port

- UART0 to Zigbee Wireless module
- UART1 to RS232 Serial port
- UART2 to FT232 USB serial converter
- UART3 to expansion port

UARTx	Rx	Тx	module
UART0	PORTE0	PORTE1	Zigbee
UART1	PORTD2	PORTD3	RS232
UART2	PORTH0	PORTH1	USB
UART3	PORTJ0	PORTJ1	expansion slot

Types of Registers

These are the various registers involved in serial communication:

UCSRnA = USART control and status register nA.

Types of Registers

These are the various registers involved in serial communication :

- UCSRnA = USART control and status register nA.
- UCSRnB = USART control and status register nB.

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRnH
UDRn

Types of Registers

These are the various registers involved in serial communication :

- UCSRnA = USART control and status register nA.
- UCSRnB = USART control and status register nB.
- UCSRnC = USART control and status register nC.

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRnH
UDRn

Types of Registers

These are the various registers involved in serial communication :

- UCSRnA = USART control and status register nA.
- UCSRnB = USART control and status register nB.
- UCSRnC = USART control and status register nC.
- UBRRnL & UBRRnH = USART baud rate registers.

Types of Registers

These are the various registers involved in serial communication :

- UCSRnA = USART control and status register nA.
- UCSRnB = USART control and status register nB.
- UCSRnC = USART control and status register nC.
- UBRRnL & UBRRnH = USART baud rate registers.
- UDRn = USART input/output register n.

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRn

Bit Symbol	Description	Bit Value

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRn

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRn

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0
3	DORn	Data Over-Run	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0
3	DORn	Data Over-Run	0
2	UPEn	Parity Error	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0
3	DORn	Data Over-Run	0
2	UPEn	Parity Error	0
1	U2Xn	Double transmission speed	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0
3	DORn	Data Over-Run	0
2	UPEn	Parity Error	0
1	U2Xn	Double transmission speed	0
0	MPCMn	MultiProcessor Communication Mode	0

Bit	Symbol	Description	Bit Value
7	RxCn	Receive Complete	0
6	TxCn	Transmit Complete	0
5	UDREn	Data Register Empty	0
4	FEn	Frame Error	0
3	DORn	Data Over-Run	0
2	UPEn	Parity Error	0
1	U2Xn	Double transmission speed	0
0	MPCMn	MultiProcessor Communication Mode	0

UCSRnA=0x00

Types of registers UCSRnA UCSRnB UCSRnC UBRRnL & UBRRnI

Bit Symbol	Description	Bit Value

Types of registers UCSRnA UCSRnB UCSRnC UBRRnL & UBRRn

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
	'		

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1
3	TXENn	Transmiter Enable	1

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1
3	TXENn	Transmiter Enable	1
2	UCSZn2	char size n	0

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1
3	TXENn	Transmiter Enable	1
2	UCSZn2	char size n	0
1	RXB8n	Receive data bit 8	0

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1
3	TXENn	Transmiter Enable	1
2	UCSZn2	char size n	0
1	RXB8n	Receive data bit 8	0
0	TXB8n	Transmit data bit 8	0

Bit	Symbol	Description	Bit Value
7	RxCIEn	Receive Complete Interrupt Enable	1
6	TxCIEn	Transmit Complete Interrupt Enable	0
5	UDRIEn	Data Register Empty	0
4	RXENn	Receiver Enable	1
3	TXENn	Transmiter Enable	1
2	UCSZn2	char size n	0
1	RXB8n	Receive data bit 8	0
0	TXB8n	Transmit data bit 8	0

UCSRnB=0x98

Types of registers UCSRnA UCSRnB UCSRnC UBRRnL & UBRRn

Bit	Symbol	Description	Bit Value

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0
5	UPMn1	Parity Mode	0
4	UPMn0	Parity Mode	0

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0
5	UPMn1	Parity Mode	0
4	UPMn0	Parity Mode	0
3	USBSn	Stop Bit Select	0

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0
5	UPMn1	Parity Mode	0
4	UPMn0	Parity Mode	0
3	USBSn	Stop Bit Select	0
2	UCSZn1	Character Size	1
1	UCSZn0	Character Size	1

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0
5	UPMn1	Parity Mode	0
4	UPMn0	Parity Mode	0
3	USBSn	Stop Bit Select	0
2	UCSZn1	Character Size	1
1	UCSZn0	Character Size	1
0	UCP0Ln	Clock polarity	0

Bit	Symbol	Description	Bit Value
7	UMSELn1	USART Mode Select	0
6	UMSELn0	USART Mode Select	0
5	UPMn1	Parity Mode	0
4	UPMn0	Parity Mode	0
3	USBSn	Stop Bit Select	0
2	UCSZn1	Character Size	1
1	UCSZn0	Character Size	1
0	UCP0Ln	Clock polarity	0

UCSRnC=0x06

UCSRnC

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM)(1)

UCSRnC

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM)(1)

UPMn1	UPMn0	Parity mode
0	0	Disabled
0	1	Reserved
1	0	Enabled, Even Parity
1	1	Enabled, Odd Parity

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM)(1)

UPMn1	UPMn0	Parity mode
0	0	Disabled
0	1	Reserved
1	0	Enabled, Even Parity
1	1	Enabled, Odd Parity

USBSn	Stop Bit(s)
0	1-bit
1	2-bit

UMSELn1	UMSELn0	Mode
0	0	Asynchronous USART
0	1	Synchronous USART
1	0	(Reserved)
1	1	Master SPI (MSPIM)(1)

UPMn1	UPMn0	Parity mode	
0	0	Disabled	
0	1	Reserved	
1	0	Enabled, Even Parity	
1	1	Enabled, Odd Parity	

USBSn	Stop Bit(s)	
0	1-bit	
1	2-bit	

UCSZn2	UCSZn1	UCSZn0	Character size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRnH
UDRn

UBRRnL & UBRRnH-Baud Rate Registers

These two registers are used to set baud rates. Crystal frequency is 14.7456MHz.

UBRRnL & UBRRnH-Baud Rate Registers

These two registers are used to set baud rates. Crystal frequency is 14.7456MHz.

example:

Let us consider for a baud rate of 9600

$$UBRR = \left\{ \frac{Systemclock}{16*BaudRate} \right\} - 1$$
 $UBRR = \left\{ \frac{14.7456Mhz}{16*9600} \right\} - 1$
 $UBRR = 95$
 $UBRR = 0x5FH$
 $UBRRH = 0x00H$
 $UBRRI = 0x5FH$

Note: While loading values in UBRR register load values in the UBRRH register first.

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRnI
UDRn

UDRn-USART I/O Data Register n

 The USART Transmit Data Buffer Register and USART receive data buffer register share the same I/O address referred to as USART data Registers or UDR.

Types of registers
UCSRnA
UCSRnB
UCSRnC
UBRRnL & UBRRnH
UDRn

UDRn-USART I/O Data Register n

- The USART Transmit Data Buffer Register and USART receive data buffer register share the same I/O address referred to as USART data Registers or UDR.
- The transmit Data Buffer register(TxB) will be the destination for data written to the UDRn register location.

Types of registers UCSRnA UCSRnB UCSRnC UBRRnL & UBRRnH UDRn

UDRn-USART I/O Data Register n

- The USART Transmit Data Buffer Register and USART receive data buffer register share the same I/O address referred to as USART data Registers or UDR.
- The transmit Data Buffer register(TxB) will be the destination for data written to the UDRn register location.
- Reading the UDRn Register location will return the contents of the received data buffer register(RxB).

Receive Complete ISR

```
Receive Complete ISR
```

```
SIGNAL(SIG_USARTn_RECV)// ISR for receive complete interrupt.

{
    data = UDRn; //Making a copy of data from UDRn in 'data' variable.
}
```

If RXCIE interrupt is enabled then receive complete interrupt triggers ISR.

Data Register empty ISR

If UDRIE interrupt is enabled then UDRn data register empty interrupt triggers ISR. This ISR then loads next data byte to be transmitted into UDRn.

Transmit Complete ISR

```
Transmit Complete ISR
SIGNAL(SIG_USARTn_TRANS)// ISR for Transmit complete interrupt.
{
//Insert your code
}
```

If TXCIE interrupt is enabled then transmit complete interrupt triggers ISR.

Outline
Introduction to Serial Communication
Registers used in serial communication
Interrupts in Serial communication
C Code

UART initialization

UART initialization

```
//Function To Initialize UART1
// desired baud rate=9600
// actual baud rate=9600 (error 0.0
// char size=8 bit
// parity=Disabled
// stop bit=1
void uart0_init(void)
 UCSRB = 0x00; //disable while setting band rate
 UCSRA = 0x00:
 UCSRC = 0x86:
 UBRRL = 0x2F;//set baud rate lo
 UBRRH = 0x00;//set baud rate hi
 UCSRB = 0x98:
```


www.e-yantra.org

Demonstration

UART initialization

Thank You!

Post your queries on: helpdesk@e-yantra.org

