Shuai He

Programming HW1

Question 1

Feature	1	2	3	4
Max	2.4920192	3.09077525	1.78583195	1.71309869
Min	-1.87002413	-2.43394714	-1.56757623	-1.44954504

Question 2

1) Boxplot (avg_website_1)

2) Histogram (avg_website_3)

3) Bar Chart (avg_website_1)

5)

6) bins = [[1, 5), [5, 6), [6, 7)]

KL_divergence(AVGRATING WEBSITE 1, AVGRATING WEBSITE 3) = 0.715706937172 KL_divergence(AVGRATING WEBSITE 3, AVGRATING WEBSITE 1) = 0.740031356772

Question 3

1) $\rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 2''}) = -0.11756978$ $\rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 3''}) = 0.87175378$ $\rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 4''}) = 0.81794217$ $\rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 3''}) = -0.4284401$ $\rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079$ $\rho(\text{``AVGRATING WEBSITE 3''}, \text{``AVGRAT-ING WEBSITE 4''}) = 0.96274602$

2) $\rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 2''}) = -0.11756978 \\ \rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 3''}) = 0.87175378 \\ \rho(\text{``AVGRATING WEBSITE 1''}, \text{``AVGRAT-ING WEBSITE 4''}) = 0.81794217 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 3''}) = -0.4284401 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRATING WEBSITE 2''}, \text{``AVGRAT-ING WEBSITE 4''}) = -0.36543079 \\ \rho(\text{``AVGRAT-ING WEBSITE 2''}) = -0.36543079 \\ \rho(\text{``AVGRAT-ING WEBSITE 2'$

 ρ ("AVGRATING WEBSITE 3", "AVGRAT- ING WEBSITE 4") = 0.96274602 3) Same.

Because Corrcoef (Z-score) = Covariance(Z-score) = Corrcoef (Original)

Question 4

1) PCA:

2) SVD:

3)
Top-3 eigenvalues: [2.93779398 0.92025136 0.14793596]
Top-3 singular values: [20.92202913 11.70971619 4.69493963]

4) It's the first singular vector, same as SVD.

Because the propagation-based method approximates the SVD singular vectors. Based on the experiment result, as t gets bigger, u and v converge to the same as singular vectors.