Contents

1	DIS 0B						
	1.1	Intro .		3			
		1.1.1	Some CS70 advice	3			
	1.2	Propos	sitional Logic	3			
	1.3	Proofs		3			
		1.3.1	Direct proof	2			
		1.3.2	Contraposition	2			
		1.3.3	Contradiction	2			
		1.3.4	Cases	2			
2	DIS	1A		5			
	2.1	Induct	ion	-			
		2.1.1	(Weak) Induction	-			
		2.1.2	Strengthening the Hypothesis	-			
		2.1.3	Strong Induction	4			
		2.1.4	Weak vs Strong	-			
3	DIS	1B		(
	3.1 Stable Matching						
		3.1.1	The Propose and Reject Algorithm	6			
		3.1.2	Stability	6			
		3.1.3	Optimality	6			
		3.1.4	Potpourri	7			
4	DIS 2A						
-	4.1						
		4.1.1	Notation	8			
		4.1.2	Vocabulary	8			
		4.1.3	The holy grail for graph proofs	(
		4.1.4	Relevant Potpourri	ç			
			•				
5	DIS			11			
	5.1			11			
	5.2	•		11			
	5.3	3 Coloring					
	5.4	Hypero	cubes	12			
6	DIS	DIS 3A					
	6.1			13			

7 DIS 3B						
	7.1	Modular inverse	14			
	7.2	Chinese Remainder Theorem (CRT)	14			

1 DIS 0B

1.1 Intro

- My OH is Monday 1-2 and Tuesday 3-4 in Cory 212.
- Email is first.last@
- 3rd year cs + math major
- hobbies?

1.1.1 Some CS70 advice

- Goal: enhance problem solving techniques/approach
- Don't fall behind on content, catching up will not be fun
- problems, problems, more problems
- Ask lots of questions (imperative for strong foundation)
- Don't stress, we're in this ride together

1.2 Propositional Logic

Relevant notation:

- \wedge = and
- \vee = or
- ¬ = not
- \implies = implies
- \exists = there exists
- \forall = forall
- \mathbb{N} = natural numbers $\{0, 1, \ldots\}$
- a|b = a divides b

 $P \Longrightarrow Q$ is an example of an implication. We can read this as "If P, then Q." An implication is false only when P is true and Q is false. If P is false, the implication is vacuously true.

Definition 1.1 (Contrapositive)

If $P \implies Q$ is an implication, then the implication $\neg Q \implies \neg P$ is known as the **contrapositve**.

An important identity is that $P \implies Q \equiv \neg Q \implies \neg P$.

1.3 Proofs

Induction will be in its own section.

Different methods.

1.3.1 Direct proof

Want to show $P \implies Q$ by assuming P and logically concluding Q.

1.3.2 Contraposition

Want to show $P \implies Q$ by equivalently proving $\neg Q \implies \neg P$.

1.3.3 Contradiction

Want to show *P*. We do this by assuming $\neg P$ and concluding $R \wedge \neg R$.

Why? Idea is that if we can show the implication $\neg P \implies (R \land \neg R)$ is True, this is the same as showing $\neg P \implies F$ is True. The contraposition gives $T \implies P$.

1.3.4 Cases

Break up a problem into multiple cases i.e. odd vs even.

2 DIS 1A

2.1 Induction

Goal of induction is to show $\forall nP(n)$.

2.1.1 (Weak) Induction

- Prove P(0) is true (or relevant base cases), then $\forall n \in \mathbb{N} (P(n) \implies P(n+1))$.
- Induction dominoes analogy!
- Sometimes you might have multiple base cases (Problem about 4x + 5y in Notes 3)

2.1.2 Strengthening the Hypothesis

Sometimes proving $P(n) \implies P(n+1)$ is not straightforward with induction. In such a scenario, we can try to introduce a (stronger) statement Q(n). We want to construct Q such that $Q(n) \implies P(n)$. Inducting on Q proves P.

2.1.3 Strong Induction

- Prove P(0) is true (or relevant base cases), then $\forall n ((P(0) \land P(1) \land \cdots \land P(n)) \implies P(n+1))$.
- Dominoes analogy, but emphasis on the difference between weak and strong induction (assuming middle domino works vs everything from start to middle).

2.1.4 Weak vs Strong

A common point of confusion is when one should use strong induction in lieu of weak induction. Strong induction **always** works whenever weak induction works. However, there may be scenarios in which the induction hypothesis to prove n = k + 1 requires more information than just n = k. A scenario like this requires strong induction.

3 DIS 1B

3.1 Stable Matching

Cool application of induction.

3.1.1 The Propose and Reject Algorithm

Suppose jobs proposes to candidates.

- both jobs and candidates have a list of preferences
- every day a job that doesn't have a deal with a candidate will propose to the next best candidate on its preference list
- every candidate will tentatively "waitlist" the offer from the job (put it on a string)
- if a candidate has multiple offers, they will choose the one they prefer the most
- the algorithm ends when every candidate has a job on their "waitlist" (all these WLs becomes acceptances)

(walk through q1 of dis as a class to visualize this)

3.1.2 Stability

Definition 3.1 (Rogue Couple)

A job-candidate pair (J,C) is denoted as a **rogue couple** if they prefer each other over their final assignment in a stable matching instance.

Definition 3.2 (Unstable)

A matching that has at least one rogue couple is considered **unstable**.

Conversely, a stable matching is one that has no rogue couples.

Some tricky vocab stuff like stable matching instance.

Lemma 1 (Improvement) *If a candidate has a job offer, then they will always have an offer from a job at least as good as the one they have right now.*

Matchings produced by the algorithm are always stable.

3.1.3 Optimality

The propose and reject algorithm is proposer *optimal* and receiver *pessimal*.

Definition 3.3 (optimal)

A pairing is optimal for a group if each entity is paired with who it most prefers while maintaining stability.

Can be thought of a (well that's the best I could do) analogy.

Definition 3.4 (pessimal)

A pairing is pessimal for a group if each entity is paired with who it least prefers while maintaining stability.

Can be thought of a (well it can't get worse than this) analogy.

3.1.4 Potpourri

It is possible that there exists a stable matching instance that is neither job optimal nor candidate pessimal. Consider the following preferences

	Jobs	Preferences			
	\boldsymbol{A}	1 > 2 > 3			
	В	2 > 3 > 1			
	С	3 > 1 > 2			

Candidates	Preferences		
1	B > C > A		
2	C > A > B		
3	A > B > C		

The matching above can generate (at least) 3 stable matching instances

$$S = \{(A,1), (B,2), (C,3)\}$$

$$T = \{(A,3), (B,1), (C,2)\}$$

$$U = \{(A,2), (B,3), (C,1)\}.$$

We see

- S is job-optimal/candidate-pessimal (result of running propose and reject with jobs proposing to candidates)
- T is candidate-optimal/job-pessimal (result of running propose and reject with candidates proposing to jobs)
- U is neither optimal nor pessimal for both candidates and jobs (S and T) corroborate that.

Also some other important facts that can be seen (from discussion worksheet questions):

- There is at least one candidate that will receive only one proposal (that too on the last day)
- We can upper bound the number of days needed by P&R algorithm to $(n-1)^2 + 1 = n^2 2n + 2$ (think about why)
- As a consequence of above, we can upper bound the number of rejections needed by P&R algorithm to $(n-1)^2 = n^2 2n + 1$ rejections.

4 DIS 2A

4.1 Graphs

4.1.1 Notation

- V denotes set of vertices (points)
- E denotes set of edges (lines)
- |V| denotes size of set of vertices i.e number of vertices; |E| similarly
- Graph G with vertices V and edges E is denoted G = (V, E).

4.1.2 Vocabulary

Definition 4.1 (Path)

A path is a sequence of edges. In CS70, we assume a path is *simple* which means no repeated vertices.

Definition 4.2 (Cycle)

A **cycle** is a simple path that starts and ends at the same vertex.

Definition 4.3 (Walk)

A walk is any arbitrary connected sequence of edges.

Definition 4.4 (Tour)

A tour is a walk that starts and end at the same vertex.

Definition 4.5 (Connected)

A graph is **connected** if there exists a path between any two distinct vertices.

Definition 4.6 (Eulerian Walk)

An Eulerian walk is a walk covering all edges without repeating any.

Definition 4.7 (Eulerian Tour)

An Eulerian tour is an Eulerian walk that starts and ends at the same vertex.

To summarize,

	no repeated vertices	no repeated edges	start = end	all edges	all vertices
Walk					
Path	✓	✓			
Tour			✓		
Cycle	\ *	✓	✓		
Eulerian Walk		✓		✓	
Eulerian Tour		✓	✓	✓	
Hamiltonian Tour	✓	✓	✓		✓

(*except for start and end vertices)

Theorem 4.1 (Euler's Theorem)

An undirected graph G has an Eulerian tour iff G is connected and all its vertices have even degree.

The requires condition for an Eulerian walk is that we have exactly 2 vertices of odd degree. (Of course, the case of 0 odd vertices trivially works since we claim from Euler's Theorem that we can find an Eulerian tour which is a stronger statement than an Eulerian walk)

Definition 4.8 (Bipartite)

A graph is considered bipartite if V can be partitioned into two sets L and R where $V = L \cup R$ such that there are no edges between vertices in L and no edges between vertices in R.

4.1.3 The holy grail for graph proofs

Induct, induct, induct, and induct.

- Think about what you want to induct on (edges or vertices???)
- Base case (read the problem carefully!)
- Prove for *n* by going from $n \to n-1 \to I.H. \to n$.
 - **DO NOT** go from n 1 → n directly.
 - Why? Build-up error!
 - Good example of build-up error when trying to prove "if every vertex of a graph has degree at least 2, then there exists a cycle of length 3." Any attempt at induction will give us a false proof but we cannot make square from triangle!
 - It's also a logistical nightmare lol (in the times it might accidentally work). Try generating all 5-vertex trees from all 4-vertex trees yikes.

4.1.4 Relevant Potpourri

Some other relevant information.

Definition 4.9 (Degree)

The **degree** of a vertex v denoted deg(v) is defined to be the number of incident edges to v.

Lemma 2 (Handshake)

$$\sum_{v \in V} \deg(v) = 2|E|.$$

The idea of a degree (with no adjective) is only well-defined for undirected graphs. We see for directed graphs it's a little funky; we need to introduce the concept of indegree and outdegree.

In a directed graph, the number of outgoing edges equals the number of ingoing edges.

We will discuss trees, planarity, coloring, and hypercubes in the next discussion.

5 DIS 2B

5.1 Trees

A graph G = (V, E) is a Tree if any of the statements below is true. TFAE (The following are equivalent):

- G is connected and has no cycles
- G is connected and |E| = |V| 1
- G is connected and removing a single edge disconnects G
- G has no cycles and adding a single edge creates a cycle

Definition 5.1

A leaf is a node of degree 1.

A consequence of above is that every tree has at least 2 leaves.

5.2 Planarity

Definition 5.2 (planar)

A graph is **planar** if it can be drawn without any edge crossings.

Theorem 5.1 (Euler)

For every connected planar graph, f + v = e + 2.

Corollary 1 *If a graph is planar, then* $e \le 3v - 6$.

Theorem 5.2 (Kuratowski)

A graph is non-planar iff it contains K_5 or $K_{3,3}$.

(draw the two above graphs on the board)

The notation K_x denotes a complete graph with x vertices.

Definition 5.3 (complete graph)

A **complete graph** is a graph where all possible edges exist. Formally, in graph G = (V,E), for any distinct $u,v \in V$, then $\{u,v\} \in E$.

5.3 Coloring

Two types: edge and vertex

- edge: color edges so that no two adjacent edges have the same color
- vertices: color vertices so that no two adjacent vertices have the same color

Theorem 5.3 (4 color theorem)

If a graph is planar, then it can be colored with 4 (or less) colors.

5.4 Hypercubes

A hypercube of dimension n is a graph whose vertices are bitstrings of length n. An edge between two vertices exists iff the two vertices differ at exactly 1 bit.

(draw n = 1, 2, 3 on the board)

We can see that $|V| = 2^n$ and $|E| = n2^{n-1}$.

Give some motivation on induction on hypercubes.

6 DIS 3A

Definition 6.1 (Greatest Common Divisor)

The **greatest common divisor** (gcd) of two integers a, b is the greatest $d \in \mathbb{Z}$ such that d|a and d|b.

How does one efficiently calculate the GCD?

```
Algorithm 6.1 (Euclidean Algorithm)
function GCD(a,b)
if b = 0 then
return a
return GCD(b, a \mod b)
```

6.1 Modular Arithmetic

The relevant notation we'll be using for this section is expressions of the form

$$a \equiv b \pmod{x}$$

reads "a is equivalent to $b \mod x$ ". It means that the remainder of a when divided by x equals the remainder of b when divided by x.

An important identity is that

$$a \equiv b \pmod{x} \iff (\exists k \in \mathbb{Z})(a = b + kx).$$

Talk about the "clock analogy".

Example 6.1

We can see a display of some of the properties:

- Addition: $7 + 4 \equiv 1 \pmod{5}$
- Subtraction: $7 4 \equiv 1 \pmod{2}$
- Multiplication: $2 \cdot 3 \equiv 0 \pmod{6}$.
- Division??

In modular arithmetic, division is not well-defined. The opposite of multiplication is multiplying by the modular inverse.

Definition 6.2 (modular inverse)

The value a is the **modular inverse** of x with respect to mod m if

```
ax \equiv 1 \pmod{m}.
```

Does an inverse always exist? No.

Theorem 6.1

Let x and m be positive integers. Then $x^{-1} \pmod{m}$ exists and is unique only if gcd(x,m) = 1.

7 DIS 3B

More mods.

7.1 Modular inverse

Lemma 3 (Bézout) For integers x, y such that gcd(x,y) = d, there exist integers a and b that obey

$$ax + by = d$$
.

We care about the case when gcd(x,y) = d = 1.

Why? This is how we can find the modular inverse.

If ax + by = 1, taking mod x gives us

$$by \equiv 1 \pmod{x} \implies b \equiv y^{-1} \pmod{x}$$
.

Similarly, taking mod y gives us

$$ax \equiv 1 \pmod{y} \implies a \equiv x^{-1} \pmod{y}.$$

Takeaway: the values of a and b we will solve for (Q1 on discussion) give us the inverse of x with respect to y and vice versa.

7.2 Chinese Remainder Theorem (CRT)

Theorem 7.1 (CRT)

For pairwise relatively prime integers m_1, m_2, \dots, m_n , the modular system

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution $x \pmod{m_1 m_2 \cdots m_n}$.

How do we solve the system above? Discussion Q2...

...or we can solve them a faster way (not taught in the course lol)

Example 7.1

Suppose we take the first two systems from Q2 on discussion.

$$x \equiv 1 \pmod{3}$$

 $x \equiv 3 \pmod{7}$.

Since gcd(3,7) = 1, CRT tells us x has a unique solution mod 21. The first equation tells us there exists some integer k such that x = 1 + 3k. Plugging this into the second equation we have

$$1 + 3k \equiv 3 \pmod{7} \implies k \equiv 3 \pmod{7}$$
.

```
Plugging in k = 3 gives x \equiv 10 \pmod{21}.
```

If we wanted to solve entirety of Q2 this way, we then apply the same trick above to the systems

$$x \equiv 10 \pmod{21}$$

 $x \equiv 4 \pmod{11}$.