17.3 Intensity of periodic sound waves

The Intensity I of a sound wave is defined to be the average rate per unit area at which energy is transmitted by the wave. The intensity I is related to the displacement amplitude s_{max} by

$$I = P/A = \frac{1}{2} (\rho v \omega^2 s_{max}^2)$$
 [W/m²]

• Derivation of intensity *I* :

Total energy:
$$E_{\lambda} = K_{\lambda} + U_{\lambda}$$

= $\frac{1}{2} \rho A \lambda (\omega s_{max})^2$

Power:
$$P = E_{\chi}/T$$
$$= \frac{1}{2} \rho A v (\omega s_{max})^{2}$$

Intensity:
$$I = P/A$$

= $\frac{1}{2} \rho v (\omega s_{max})^2$

The Intensity *I* of a sound wave :

$$I = \frac{1}{2} (\rho \ v \ \omega^2 \ s_{max}^2) \quad [\ W/m^2]$$

• Sound level β in Decibels (dB)

$$\beta = (10 \text{ dB}) \log (I/I_0)$$

where the constant I_0 is the reference intensity $(I_0 = 10^{-12} \text{ W/m}^2)$.

Sound Levels	
Source of Sound	β (dB)
Nearby jet airplane	150
Jackhammer; machine gun	130
Siren; rock concert	120
Subway; power mower	100
Busy traffic	80
Vacuum cleaner	70
Normal conversation	50
Mosquito buzzing	40
Whisper	30
Rustling leaves	10
Threshold of hearing	0

Spherical and plane waves

(i) Spherical wave: Wave intensity I at a distance r from the source is

$$I = P_{av}/A$$
$$= P_{av}/(4\pi r^2)$$

where P_{av} = average power emitted by the source, and $4\pi r^2$ = area of spherical surface.

$$\therefore I \propto 1/r^2$$

i.e., the wave intensity decreases in proportion to the square of the distance from the source.

(ii) Plane wave:

A small portion of a spherical wave far from its source can be considered a plane wave.

17.4 The Doppler Effect

The frequency change of the sound wave caused by the motion of the receiver (or by motion of the source).

• Calculate the change in frequency in three different cases:

(1) Source moving & Observer stationary.

$$f' = f/(1 - v_{s}/v)$$

[source moving toward stationary observer]

(2) Observer moving & Source stationary.

$$f' = f(1 + v_0/v)$$

[observer moving toward source]

(3) Observer and source both moving.

$$f' = f[(v + v_0) / (v - v_s)]$$

[observer moving toward moving source]

• General equation :

$$f_o' = f_s \frac{v + v_o}{v - v_s}$$

 $f_o' = f_s \frac{v + v_o}{v - v_s}$ v_o and $v_s \begin{cases} + : \text{ approaching.} \\ - : \text{ receding.} \end{cases}$

v = 343 m/s