

Analog IC Design

Lecture 17 Slew Rate, PSRR, and Mismatch

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

17: SR, PSRR, and Mismatch

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \Box Bulk effect: $g_m \to g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D V _{out} V _{out} V _{out,sc} V _x R _s i _{out,sc}	R _D , V _{out} , sc v _{in}	V _{in} V _x V _{out} V _{out} Sout,sc
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} $ $\gg 1$

What is an OTA / Op-Amp?

- ☐ An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers

17: SR, PSRR, and Mismatch

Op-Amp vs OTA

- ☐ An OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	LOW	HIGH
Model	$V_{in} \longrightarrow I_{in}$ $A_{v}V_{in} \longrightarrow A_{v}V_{in}$	$V_{in} \bigcirc I_{in} \bigcirc V_{out}$ $R_{in} \longrightarrow R_{out} \bigcirc V_{out}$
Diff input, SE output		
Fully diff 17: SR, PSRR, and Mismatch		12

Negative Feedback

- \Box A_{OL} = Open loop (OL) gain $\gg 1$
- \square Error signal = $X X_F$

$$Y = A_{OL}(X - X_F) = A_{OL}(X - \beta Y)$$
$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} \approx \frac{1}{\beta}$$

Stability: Phase Margin

- \Box If $\omega_{p2}=\omega_u$: PM = 45° \Rightarrow typically inadequate (peaking/ringing)
- $f \square$ The ultimate ω_u cannot exceed $\omega_{p2} o \omega_{p1} < \omega_u < \omega_{p2}$
 - For $\omega < \omega_u$ the Bode plot is similar to a 1st order system

Linear System

- One important property of linear systems: doubling the input doubles the output (and doubles the slope)
 - More generally: scaling the input scales the output

Linear System

- One important property of linear systems: doubling the input doubles the output (and doubles the slope)
 - More generally: scaling the input scales the output
- Linear settling: step response is exponential (slope

 input)

$$V_{out} = V_0[1 - \exp(-t/\tau)]$$

$$\frac{dV_{out}}{dt} = \frac{V_0}{\tau} \exp(-t/\tau)$$

Slewing

- Nonlinear settling: at large input step, the output is a linear ramp (finite constant slope)
- Slew Rate (SR $[V/\mu s]$): the maximum possible slope of the op-amp output
 - Independent of the input level → nonlinear behavior
- Linear ramp → constant current (current source) charging a capacitor

Small Input Step: Linear Settling

- \square Assume R_1 and R_2 are very large
- ☐ Linear settling: charging current (and consequently slope) is proportional to input signal

Large Input Step: Slewing

- \square Assume R_1 and R_2 are very large
- \square M2 OFF, I_{SS} is fully steered to M1 \rightarrow M3 \rightarrow M4 then to C_L
- Non-linear settling: charging current (and consequently slope) is constant (I_{SS}) independent of input signal
- \square As V_X approaches V_{in} the circuit resumes linear settling (exp)

17: SR, PSRR, and Mismatch

SR of Telescopic Cascode

- \square V_{out1} and V_{out2} : $SR = \frac{I_{SS}}{2}/C_L$

SR of Folded Cascode

- $\square SR = I_{SS}/C_L$
- \square Select I_P slightly larger than I_{SS}
- $oldsymbol{\square}$ SR is independent of I_P

SR of Two-Stage Miller OTA

- \square Step UP: M2 OFF \rightarrow M4 OFF \rightarrow M3 OFF, I_{SS} steered to M1 then C_C
- \square Step Down: M1 OFF, I_{SS} steered to M2 \rightarrow M4 \rightarrow M3 then C_C
- $\square SR = I_{SS}/C_C$
- \square I_1 much larger than $I_{SS} \rightarrow SR$ is independent of I_1

17: SR, PSRR, al.

Power Supply Rejection (PSR)

- ☐ The OTA should reject noise on the supply line
 - The diode-connected device "clamps" node X to VDD
 - Vx and Vout experience approximately the same change as VDD

$$PSRR = \frac{V_o/V_{in}}{V_o/V_{DD}} \approx g_{m1,2}(r_{o2}//r_{o4})$$

Quiz: PSRR of 5T OTA

- ☐ Derive the PSRR for a 5T OTA with PMOS input pair
 - Assume the tail current source is generated by a simple current mirror.
- What is the relation between the PSRR you derived and the CMRR?

Quiz: PSRR of Complementary CS

Find the PSRR of the complementary CS amplifier (inverter-based amplifier)

$$PSRR = \frac{V_{out}/V_{in}}{V_{out}/V_{DD}}$$

It is worth noting that it has a very poor PSRR!

Quiz: PSRR of CS with Active Load

Quiz: PSRR of Miller OTA

- \square Assume all transistors have the same λ (not the same ro)
- \Box Note that $v_{gs6} = v_{gs7} = 0$ (why?) \rightarrow M6 and M7 are source OFF
- ☐ First stage: VDD → VY → Vout: $\left(\frac{V_{out}}{V_{DD}}\right)' = \frac{V_Y}{V_{DD}} \cdot \frac{V_{out}}{V_Y}$
- \square Second stage: $\left(\frac{V_{out}}{V_{DD}}\right)'' = \frac{V_{out}}{V_{DD}}$

PSRR: SE Output vs Fully Differential

- \square In both cases ΔV_{DD} gets transferred to the output
 - But for the fully diff amp, the differential output is not affected

17: SR, PSRR, and Mismatch

Mismatch

- ☐ We mostly assumed the two sides of differential amplifiers are perfectly symmetric
- In reality, however, nominally-identical devices suffer from a finite mismatch due to variations in the manufacturing process
- One of the most important mismatch effects in MOS devices is the threshold voltage mismatch
 - VTH is a function of the doping levels in the channel, and these levels vary randomly from one device to another

Mismatch Effects: DC Offset

- ☐ With Vin = 0 and perfect symmetry: Vout = 0
- \Box But in the presence of mismatches Vout $\neq 0$
- The input-referred offset voltage: the input level that forces the output voltage to go to zero

Effect of Offset Voltage

☐ For high gain amplifier, dc offset may drive the amplifier into nonlinear operation

☐ Finite error when comparing a signal to a reference

Bonus Question

If the PMOS load has threshold voltage mismatch equal to ΔV_{THP} , calculate the input referred offset voltage

17: SR, PSRR, and Mismatch

Miller OTA: Systematic Mismatch/Offset

- To avoid systematic mismatch, X and Y must have the same voltage
 - Design the 2nd stage such that $V_{GS5} = V_{GS3}$

Pelgrom's Model

- □ The standard deviation of random within die (WID) variations is inversely proportional to the square root of the transistor area (WL)
- ☐ This makes sense intuitively because variations tend to average out over a larger area

$$\Delta V_{TH} = \frac{A_{VTH}}{\sqrt{WL}}$$

$$\Delta \left(\mu C_{OX} \frac{W}{L} \right) = \frac{A_K}{\sqrt{WL}}$$

 \square A_{VTH} and A_K are constants (Pelgrom's coefficients) obtained from measurements

Quiz

- \Box $\sigma_{V_t} = A_{V_t}/\sqrt{WL}$, $A_{V_t} = 2 \ mV \cdot \mu m$ for 45nm process
- ☐ Calculate the standard deviation in threshold voltage for the following devices

$$1. \quad \frac{W}{L} = \frac{2\mu m}{0.5\mu m}$$

2.
$$\frac{W}{L} = \frac{200nm}{50nm}$$

☐ If the subthreshold slope is 100mV/decade, what is the percent increase in subthreshold current for three sigma variation?

$$I_{\text{off}} \propto \frac{W}{L} 10^{-\frac{V_t}{S}} = \frac{W}{L} e^{-\frac{V_t}{nv_T}}$$

Quiz

 \Box $\sigma_{V_t} = A_{V_t}/\sqrt{WL}$, $A_{V_t} = 2 \ mV \cdot \mu m$ for 45nm process

1.
$$\frac{W}{L} = \frac{2\mu m}{0.5\mu m}$$
$$10^{(3*2/100)} - 1 = 15\%$$

2.
$$\frac{W}{L} = \frac{200nm}{50nm}$$
$$10^{(3*20/100)} - 1 = 300\%$$

Thank you!