拾荒人

学而不思则罔, 思而不学则殆

博客园 首页 新随笔 联系 管理 订阅 🚟

随笔-37 文章-0 评论-15

openssl AES加密算法API的使用示例

openssl为用户提供了丰富的指令,同时也提供了供编程调用的API,本文以使用128位aes算法的ecb模式进行加密和解密验证,如下所示

第一种方法,直接使用aes算法提供的api进行调用,代码如下

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <openssl/aes.h>
int main (void)
   char userkey[AES_BLOCK_SIZE];
   unsigned char *date = malloc(AES BLOCK SIZE*3);
   unsigned char *encrypt = malloc(AES_BLOCK_SIZE*3 + 4);
   unsigned char *plain = malloc(AES_BLOCK_SIZE*3);
   AES_KEY key;
   memset((void*)userkey, 'k', AES_BLOCK_SIZE);
   memset((void*)date, 'p', AES_BLOCK_SIZE*3);
   memset((void*)encrypt, 0, AES_BLOCK_SIZE*6);
   memset((void*)plain, 0, AES_BLOCK_SIZE*3);
   /*设置加密kev及密钥长度*/
   AES set encrypt key(userkey, AES BLOCK SIZE*8, &key);
   int len = 0;
   /*循环加密,每次只能加密AES_BLOCK_SIZE长度的数据*/
while(len < AES BLOCK SIZE*3) {</pre>
       AES_encrypt(date+len, encrypt+len, &key);
       len += AES BLOCK SIZE;
   /*设置解密key及密钥长度*/
   AES_set_decrypt_key(userkey, AES_BLOCK_SIZE*8, &key);
   len = 0;
   /*循环解密*/
while(len < AES BLOCK SIZE*3) {
       AES_decrypt(encrypt+len, plain+len, &key);
       len += AES_BLOCK_SIZE;
   /*解密后与原数据是否一致*/
   if(!memcmp(plain, date, AES_BLOCK_SIZE*3)){
       printf("test success\n");
    }else{
       printf("test failed\n");
   printf("encrypt: ");
   int i = 0;
   for(i = 0; i < AES_BLOCK_SIZE*3 + 4; i++){</pre>
       printf("%.2x ", encrypt[i]);
       if((i+1) % 32 == 0){
           printf("\n");
   printf("\n");
   return 0;
```

<	2020年4月					>	
日	_	=	Ξ	四	五	$\dot{\sim}$	
29	30	31	1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30	1	2	
3	4	5	6	7	8	9	

搜索

找找看
谷歌搜索

常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

我的标签

逆向(4) Hook(2) ida(2) genrsa(2) RSA(2) smali(2) so(1) sphinx(1) substrate(1) 更多

android(6)

随笔分类

android(6) android安全(11) C/C++(2) git(1) Linux(3) openssl(8) Scracpy(2) Windows(1) 渗透测试 协议(2)

编译执行结果如下

```
xlzh@cmos:~/cmos/openssl-code/aes$ gcc aes.c -o aes.out -lssl -lcrypto
xlzh@cmos:~/cmos/openssl-code/aes$ ./aes.out
test success
encrypt: 08 a9 74 4d b0 66 57 1b 57 fe 60 3d 91 e4 ed 53 08 a9 74 4d b0 66 57 1b 57 fe 60
3d 91 e4 ed 53
08 a9 74 4d b0 66 57 1b 57 fe 60 3d 91 e4 ed 53 00 00 00 00
xlzh@cmos:~/cmos/openssl-code/aes$
```

第二种方法,使用EVP框架,示例如下

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
int main (void)
   char userkey[EVP MAX KEY LENGTH];
   char iv[EVP_MAX_IV_LENGTH];
   unsigned char *date = malloc(AES BLOCK SIZE*3);
   unsigned char *encrypt = malloc(AES_BLOCK_SIZE*6);
   unsigned char *plain = malloc(AES BLOCK SIZE*6);
   EVP_CIPHER_CTX ctx;
   int ret;
   int tlen = 0;
   int mlen = 0:
   int flen = 0;
   memset((void*)userkey, 'k', EVP MAX KEY LENGTH);
   memset((void*)iv, 'i', EVP_MAX_IV_LENGTH);
   memset((void*)date, 'p', AES_BLOCK_SIZE*3);
   memset((void*)encrypt, 0, AES_BLOCK_SIZE*6);
   memset((void*)plain, 0, AES BLOCK SIZE*6);
   /*初始化ctx*/
   EVP_CIPHER_CTX_init(&ctx);
   /*指定加密算法及key和iv(此处IV没有用)*/
   ret = EVP EncryptInit ex(&ctx, EVP aes 128 ecb(), NULL, userkey, iv);
   if(ret != 1) {
       printf("EVP_EncryptInit_ex failed\n");
       exit(-1);
   /*禁用padding功能*/
   EVP CIPHER_CTX_set_padding(&ctx, 0);
   /*讲行加密操作*/
   ret = EVP EncryptUpdate(&ctx, encrypt, &mlen, date, AES BLOCK SIZE*3);
   if(ret != 1) {
       printf("EVP EncryptUpdate failed\n");
       exit(-1);
   /*结束加密操作*/
   ret = EVP_EncryptFinal_ex(&ctx, encrypt+mlen, &flen);
   if(ret != 1) {
       printf("EVP EncryptFinal ex failed\n");
       exit(-1);
   tlen = mlen + flen;
   tlen = 0;
   mlen = 0;
   flen = 0:
   EVP_CIPHER_CTX_cleanup(&ctx);
   EVP CIPHER CTX init(&ctx);
   ret = EVP DecryptInit ex(&ctx, EVP aes 128 ecb(), NULL, userkey, iv);
   if(ret != 1) {
       printf("EVP DecryptInit ex failed\n");
       exit(-1);
```

随笔档案

2017年12月(1) 2017年4月(6) 2017年3月(4) 2016年6月(4) 2016年5月(1) 2016年4月(5) 2016年3月(6) 2016年1月(5) 2015年7月(1) 2015年1月(3) 2014年7月(1)

最新评论

1. Re:openssl 对称加密算法enc命令详解

fedora 29 x86 workstation OpenSSL

1.1.1d FIPS 10 Sep 2019 没有 aes-25 6-gcm. openssl enc -ciphers 何解...

--NickD

2. Re:openssl 对称加密算法enc命令详解 -pass env:passwd 的passwd的前面不需要加\$?

--creazyloser

3. Re:Android AccessibilityService(辅助服务) 使用示例

他是返回的整个activity 的view ,所以会包含三个Fragment 的

--伍歌歌

4. Re:PPTP协议握手流程分析

大佬 自己能用软件模拟vpn 并建立通道 进行数据传输吗

--54辉哥

5. Re:Https协议简析及中间人攻击原理 写的不错

--agu415

阅读排行榜

1. openssl 对称加密算法enc命令详解(25 875)

2. openssl 证书请求和自签名命令req详解 (23152)

3. 如何把java代码转换成smali代码(2090 7)

4. openssl 非对称加密算法RSA命令详解 (18579)

5. openssl 摘要和签名验证指令dgst使用 详解(18023)

评论排行榜

1. 如何把java代码转换成smali代码(4)

2. android调试系列--使用ida pro调试原 生程序(3)

3. openssl 对称加密算法enc命令详解(2)

4. openssl 非对称加密算法RSA命令详解 (1)

5. openssl 非对称加密算法DSA命令详解 (1)

推荐排行榜

1. openssl 证书请求和自签名命令req详解 (5)

2. Android调试系列—使用android studi o调试smali代码(3)

3. openssl 非对称加密算法RSA命令详解(2)

4. openssl CA服务器模拟指令CA详解(1)

5. Https协议简析及中间人攻击原理(1)

```
EVP CIPHER CTX set padding(&ctx, 0);
   ret = EVP_DecryptUpdate(&ctx, plain, &mlen, encrypt, AES_BLOCK_SIZE*3);
   if(ret != 1) {
       printf("EVP DecryptUpdate failed\n");
       exit(-1);
   ret = EVP_DecryptFinal_ex(&ctx, plain+mlen, &flen);
   if(ret != 1) {
       printf("EVP_DecryptFinal_ex failed\n");
       exit(-1);
   /*对比解密后与原数据是否一致*/
   if(!memcmp(plain, date, AES BLOCK SIZE*3)) {
       printf("test success\n");
       printf("test failed\n");
   printf("encrypt: ");
   for(i = 0; i < AES BLOCK SIZE*3+4; i ++) {</pre>
       printf("%.2x ", encrypt[i]);
       if((i+1)%32 == 0){
           printf("\n");
   printf("\n");
   return 0;
```

编译执行结果如下:

```
xlzh@cmos:~/cmos/openssl-code/aes$ gcc evp.c -o evp.out -lssl -lcrypto
xlzh@cmos:~/cmos/openssl-code/aes$ ./evp.out
test success
encrypt: 08 a9 74 4d b0 66 57 lb 57 fe 60 3d 91 e4 ed 53 08 a9 74 4d b0 66 57 lb 57 fe 60
3d 91 e4 ed 53
08 a9 74 4d b0 66 57 lb 57 fe 60 3d 91 e4 ed 53 00 00 00
xlzh@cmos:~/cmos/openssl-code/aes$
```

EVP框架是对openssl提供的所有算法进行了封装,在使用工程中只需要修改少量的代码就可以选择不同的加密算法,在工作中通常采用这种方式。

在上述两个示例中,直接使用API提供的接口,没有使用padding,在EVP中同样需要声明不可以使用padding方式,否则即使要加密的数据长度是AES_BLOCK_SIZE的整数倍,EVP默认也会对原始数据进行追加,导致结果不同,所以在试验中通过EVP_CIPHER_CTX_set_padding(&ctx, 0)函数关闭的EVP的padding功能,同样在解密的时候也需要进行关闭。

分类: <u>openssl</u>

标签: openssl 加密 aes cbc EVP API

粉丝 - 21

+加关注

«上一篇: <u>Linux能力(capability)机制的继承</u> »下一篇: <u>openssl 非对称加密算法RSA命令详解</u>

posted @ 2016-03-29 14:26 Gordon0918 阅读(14975) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

0

0

注册用户登录后才能发表评论,请 登录 或 注册, 访问 网站首页。

【推荐】超50万行VC++源码:大型组态工控、电力仿真CAD与GIS源码库

【推荐】开发者必看:MVP时间线上峰会,技术进阶行业实战,让你快速成长!

【推荐】腾讯云产品限时秒杀,爆款1核2G云服务器99元/年!

相关博文:

- · openssl evp 对称加密(AES_ecb,ccb)
- · AES加密算法C++实现
- ·OpenSSL中AES加密的用法
- Openssl aes加解密例程 更进一步
- · 使用openssl库实现RSA、AES数据加密
- » 更多推荐...

最新 IT 新闻:

- · 新MacBook Air评测:性价比提升,同价位最值得买的苹果笔记本
- ·新冠疫情影响美科技产业 初创企业3月累计裁员近4000人
- ·受新冠病毒疫情影响 施乐宣布放弃对惠普"蛇吞象"式敌意收购
- ·文件显示特斯拉拖着不愿关厂 卫生官员称是"公共健康风险"
- · 传iPhone 9或4月22日开卖 代码曝光具备车钥匙功能
- » 更多新闻...

Copyright © 2020 Gordon0918 Powered by .NET Core on Kubernetes