https://www.kaggle.com/datasets/adammaus/predicting-churn-for-bank-customers the derivative of data set

```
#Part0 SETUP GOOGLE DRIVE ENVIRONMENT/DATA COLLECTION
```

```
!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default
drive = GoogleDrive(gauth)

import numpy as np
import pandas as pd
churn_df = pd.read_csv('/content/Churn_Modelling.csv')
churn_df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8
2	3	15619304	Onio	502	France	Female	42	8	15!
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12

#Part1:Data Exploration

churn_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
, ,	es: float64(2), i	nt64(9), object(3)
memo	ry usage: 1.1+ MB		

churn_df.nunique()

RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3
Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2

IsActiveMember 2 EstimatedSalary 9999 Exited 2 dtype: int64

y = churn_df['Exited']

churn_df.isnull().sum()

RowNumber 0 ${\tt CustomerId}$ 0 Surname 0 ${\tt CreditScore}$ 0 Geography 0 Gender 0 0 Age Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

churn_df[['CreditScore','Age','Tenure','NumOfProducts','Balance','EstimatedSalary']]

	CreditScore	Age	Tenure	NumOfProducts	Balance	EstimatedSalary	
0	619	42	2	1	0.00	101348.88	ılı
1	608	41	1	1	83807.86	112542.58	
2	502	42	8	3	159660.80	113931.57	
3	699	39	1	2	0.00	93826.63	
4	850	43	2	1	125510.82	79084.10	
•••							
9995	771	39	5	2	0.00	96270.64	
9996	516	35	10	1	57369.61	101699.77	
9997	709	36	7	1	0.00	42085.58	
9998	772	42	3	2	75075.31	92888.52	
9999	792	28	4	1	130142.79	38190.78	

10000 rows \times 6 columns

```
import matplotlib.pyplot as plt
import seaborn as sns

_,axss = plt.subplots(2,3, figsize=[20,10])
sns.boxplot(x='Exited', y ='CreditScore', data=churn_df, ax=axss[0][0])
sns.boxplot(x='Exited', y ='Age', data=churn_df, ax=axss[0][1])
sns.boxplot(x='Exited', y ='Tenure', data=churn_df, ax=axss[0][2])
sns.boxplot(x='Exited', y ='NumOfProducts', data=churn_df, ax=axss[1][0])
sns.boxplot(x='Exited', y ='Balance', data=churn_df, ax=axss[1][1])
sns.boxplot(x='Exited', y ='EstimatedSalary', data=churn_df, ax=axss[1][2])
```



```
__,axss = plt.subplots(2,2, figsize=[20,10])
sns.countplot(x='Exited', hue='Geography', data=churn_df, ax=axss[0][0])
sns.countplot(x='Exited', hue='Gender', data=churn_df, ax=axss[0][1])
sns.countplot(x='Exited', hue='HasCrCard', data=churn_df, ax=axss[1][0])
sns.countplot(x='Exited', hue='IsActiveMember', data=churn_df, ax=axss[1][1])

<Axes: xlabel='Exited', ylabel='count'>
```


#part2:Feature preprocessing

```
to_drop = ['RowNumber','CustomerId','Surname','Exited']
X = churn_df.drop(to_drop,axis = 1)
```

X.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCarc
0	619	France	Female	42	2	0.00	1	
1	608	Spain	Female	41	1	83807.86	1	(
2	502	France	Female	42	8	159660.80	3	
3	699	France	Female	39	1	0.00	2	(

X.dtypes

```
CreditScore
                      int64
Geography
                     object
Gender
                     object
Age
                      int64
Tenure
                      int64
Balance
                     float64
NumOfProducts
                       int64
HasCrCard
                       int64
{\tt IsActive Member}
                       int64
EstimatedSalary
                    float64
dtype: object
```

cat_cols = X.columns[X.dtypes == 'object']
num_cols = X.columns[(X.dtypes == 'float64')|(X.dtypes == 'int64')]

num_cols

cat_cols

Index(['Geography', 'Gender'], dtype='object')

from sklearn import model_selection#try again

```
# stratify example:
# 100 -> y: 80 '0', 20 '1' -> 4:1
# 80% training 64: '0', 16:'1' -> 4:1
# 20% testing 16:'0', 4: '1' -> 4:1
X train, X test, y train, y test = mon
```

Reserve 25% for testing

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.25, stratify = y, random_state = 1) #st

training data has 7500 observation with 10 features test data has 2500 observation with 10 features

X_train.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
7971	633	Spain	Male	42	10	0.00	1	
9152	708	Germany	Female	23	4	71433.08	1	
6732	548	France	Female	37	9	0.00	2	
902	645	France	Female	48	7	90612.34	1	
							-	

Next steps:

View recommended plots

```
from sklearn.preprocessing import OneHotEncoder
def OneHotEncoding(df,enc,categories):
    transformed = pd.DataFrame(enc.transform(df[categories]).toarray(), columns = enc.get_feature_names_out(categories))
    return pd.concat([df.reset_index(drop=True), transformed], axis=1).drop(categories, axis=1)

categories = ['Geography']
enc_ohe = OneHotEncoder()
enc_ohe.fit(X_train[categories])

X_train = OneHotEncoding(X_train, enc_ohe, categories)
X_test = OneHotEncoding(X_test, enc_ohe, categories)
```

X_train.head()

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM€
0	633	Male	42	10	0.00	1	0	
1	708	Female	23	4	71433.08	1	1	
2	548	Female	37	9	0.00	2	0	
3	645	Female	48	7	90612.34	1	1	
4	729	Female	45	7	91091.06	2	1	

Next steps: View recommended plots

from sklearn.preprocessing import OrdinalEncoder

categories = ['Gender']
enc_oe = OrdinalEncoder()
enc_oe.fit(X_train[categories])

X_train[categories] = enc_oe.transform(X_train[categories])
X_test[categories] = enc_oe.transform(X_test[categories])

X_train.head()

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMe
0	633	Male	42	10	0.00	1	0	
1	708	Female	23	4	71433.08	1	1	
2	548	Female	37	9	0.00	2	0	
3	645	Female	48	7	90612.34	1	1	
4	729	Female	45	7	91091.06	2	1	

#standardize the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train[num_cols])

X_train[num_cols] = scaler.transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])

X_train.head()

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	-0.172985	1.0	0.289202	1.731199	-1.218916	-0.912769	-1.542199	
1	0.602407	0.0	-1.509319	-0.341156	-0.076977	-0.912769	0.648425	
2	-1.051762	0.0	-0.184093	1.385806	-1.218916	0.796109	-1.542199	
3	-0.048922	0.0	0.857156	0.695022	0.229625	-0.912769	0.648425	
4	0.819517	0.0	0.573179	0.695022	0.237278	0.796109	0.648425	

#Part3:Model Training and Result Evaluation from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier classifier_logistic = LogisticRegression() classifier_KNN = KNeighborsClassifier() classifier_RF = RandomForestClassifier() classifier_logistic.fit(X_train,y_train) ▼ LogisticRegression LogisticRegression() classifier_logistic.predict(X_test) array([0, 0, 0, ..., 0, 0, 0]) classifier_logistic.score(X_test,y_test) 0.8088 #use gridsearch to find optimal hyperparameters from sklearn.model_selection import GridSearchCV def print_gird_search_metrics(gs): print('Best score:'+ str(gs.best_score_)) print('Best parameters set:') best_parameters = gs.best_params_ for param_name in sorted(best_parameters.keys()): print(param_name +':'+str(best_parameters[param_name])) parameters = { 'penalty':('l2','l1'), 'C':(0.01, 0.05, 0.1, 0.2, 1) } Grid_LR = GridSearchCV(LogisticRegression(solver='liblinear'),parameters, cv = 5) Grid_LR.fit(X_train, y_train) **GridSearchCV** ▶ estimator: LogisticRegression ▶ LogisticRegression print(Grid_LR) GridSearchCV(cv=5, estimator=LogisticRegression(solver='liblinear'), param_grid={'C': (0.01, 0.05, 0.1, 0.2, 1), 'penalty': ('l2', 'l1')})

best_LR_model = Grid_LR.best_estimator_

best_LR_model.predict(X_test)

```
array([0, 0, 0, ..., 0, 0, 0])
best_LR_model.score(X_test,y_test)
    0.81
LR_models = pd.DataFrame(Grid_LR.cv_results_)
res = (LR_models.pivot(index='param_penalty', columns='param_C', values='mean_test_score'))
_ = sns.heatmap(res, cmap='viridis')
    <ipython-input-52-324dd6f2eb90>:2: FutureWarning: In a future version, the Index
      res = (LR_models.pivot(index='param_penalty', columns='param_C', values='mean_
                                                                0.812
```



```
#find the optimal hyper parameters: KNN
```

```
parameters ={'n_neighbors':[1,3,5,7,9]}
Grid_KNN = GridSearchCV(KNeighborsClassifier(),parameters,cv=5)
Grid_KNN.fit(X_train,y_train)
```

```
GridSearchCV
▶ estimator: KNeighborsClassifier
     ▶ KNeighborsClassifier
```

```
best_KNN_model = Grid_KNN.best_estimator_
```

```
best_KNN_model.predict(X_test)
```

best_KNN_model.score(X_test,y_test)

0.8428

#find the optimal hyperparameters:Random Forest

```
parameters = {'n_estimators':[60,80,100],
              'max_depth':[1,5,10]}
Grid_RF = GridSearchCV(RandomForestClassifier(),parameters,cv=5)
Grid_RF.fit(X_train,y_train)
```

```
GridSearchCV
      ▶ estimator: RandomForestClassifier
           ▶ RandomForestClassifier
best_RF_model = Grid_RF.best_estimator_
best_RF_model
                     RandomForestClassifier
     RandomForestClassifier(max_depth=10, n_estimators=80)
best_RF_model.score(X_test,y_test)
    0.8592
#model evaluation
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
# calculate accuracy, precision and recall, [[tn, fp],[]]
def cal_evaluation(classifier, cm):
    tn = cm[0][0]
    fp = cm[0][1]
    fn = cm[1][0]
    tp = cm[1][1]
    accuracy = (tp + tn) / (tp + fp + fn + tn + 0.0)
    precision = tp / (tp + fp + 0.0)
    recall = tp / (tp + fn + 0.0)
    print (classifier)
    print ("Accuracy is: " + str(accuracy))
    print ("precision is: " + str(precision))
    print ("recall is: " + str(recall))
    print ()
# print out confusion matrices
def draw_confusion_matrices(confusion_matricies):
    class_names = ['Not','Churn']
    for cm in confusion matrices:
        classifier, cm = cm[0], cm[1]
        cal_evaluation(classifier, cm)
confusion matrices = [
    ("Random Forest", confusion_matrix(y_test,best_RF_model.predict(X_test))),
    ("Logistic Regression", confusion_matrix(y_test,best_LR_model.predict(X_test))),
    ("K nearest neighbor", confusion_matrix(y_test, best_KNN_model.predict(X_test)))
print(confusion_matrices)
draw_confusion_matrices(confusion_matrices)
     [('Random Forest', array([[1941,
                                        50],
            [ 302, 207]])), ('Logistic Regression', array([[1927,
            [ 411,
                    98]])), ('K nearest neighbor', array([[1922,
            [ 324,
                   185]]))]
    Random Forest
    Accuracy is: 0.8592
    precision is: 0.8054474708171206
    recall is: 0.4066797642436149
    Logistic Regression
    Accuracy is: 0.81
    precision is: 0.6049382716049383
    recall is: 0.1925343811394892
    K nearest neighbor
    Accuracy is: 0.8428
    precision is: 0.7283464566929134
```

```
#model evaluation ROC/AUC
from sklearn.metrics import roc_curve
from sklearn import metrics
# Use predict_proba to get the probability results of Random Forest
y_pred_rf = best_RF_model.predict_proba(X_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)
best_RF_model.predict_proba(X_test)
    array([[0.71332423, 0.28667577],
            [0.92374843, 0.07625157],
            [0.69229321, 0.30770679],
            [0.86358856, 0.13641144],
            [0.92736437, 0.07263563],
[0.87915577, 0.12084423]])
import matplotlib.pyplot as plt
plt.figure(1)
plt.plot([0,1],[0,1],'k--')
plt.plot(fpr_rf,tpr_rf,label = 'RF')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc = 'best')
plt.show()
```


[0.71584485, 0.28415515],

```
[0.89060187, 0.10939813], [0.85476114, 0.14523886]])
```

```
plt.figure(1)
plt.plot([0,1],[0,1],'k--')
plt.plot(fpr_lr,tpr_lr,label ='LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve - LR Model')
plt.legend(loc='best')
plt.show()
```


metrics.auc(fpr_lr,tpr_lr)

0.7720784788917515

#model extra functionality

```
X_with_corr = X.copy()
```

X_with_corr = OneHotEncoding(X_with_corr,enc_ohe,['Geography'])
X_with_corr['Gender'] = enc_oe.transform(X_with_corr[['Gender']])
X_with_corr['SalaryInRMB'] = X_with_corr['EstimatedSalary']*6.4
X_with_corr.head()

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive
0	619	0.0	42	2	0.00	1	1	
1	608	0.0	41	1	83807.86	1	0	
2	502	0.0	42	8	159660.80	3	1	
3	699	0.0	39	1	0.00	2	0	
4	850	0.0	43	2	125510.82	1	1	

```
scaler = StandardScaler()
X_l1 = scaler.fit_transform(X_with_corr)
LRmodel_l1 = LogisticRegression(penalty = 'l1',C=0.04,solver = 'liblinear')
LRmodel_l1.fit(X_l1,y)
```

```
LogisticRegression
LogisticRegression(C=0.04, penalty='l1', solver='liblinear')
```

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Geography_France
0	619	0.0	42	2	0.00	1	1	1	101348.88	1.0
1	608	0.0	41	1	83807.86	1	0	1	112542.58	0.0
2	502	0.0	42	8	159660.80	3	1	0	113931.57	1.0
3	699	0.0	39	1	0.00	2	0	0	93826.63	1.0
4	850	0.0	43	2	125510.82	1	1	1	79084.10	0.0

```
Next steps: View recommended plots
```