MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo II - Tratamento de Dados

Tratamento de desbalanceamento: SMOTE e data augmentation

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Conteúdo:

- 1. Detecção de outliers: métodos estatísticos e de aprendizado de máquina
- 2. Limpeza de dados: tratamento de informações faltantes, redundantes e errôneas
- 3. Tratamento de desbalanceamento: SMOTE e data augmentation

Referências:

- Katti Faceli; Ana Carolina Lorena; João Gama; André C.P.L.F. Carvalho. Inteligência Artificial: uma abordagem de aprendizado de máquina, 2011.
- Salvador García, Julián Luengo, Francisco Herrera. Data Processing in Data Mining, 2015.
- Hadley Wickham, Tidy Data. Journal of Statistical Software, v.59, n.10, 2014.

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from collections import Counter

from sklearn.svm import SVC
from sklearn import metrics
from sklearn.metrics import plot_confusion_matrix
from imblearn import over_sampling
from imblearn import under_sampling
from imblearn import combine
```

```
In [3]:
        # https://www.kaggle.com/rubenssjr/brasilian-houses-to-rent
        data = pd.read_csv("./dados/houses_to_rent_mba_nomissing2.csv")
        data nred = data.drop duplicates(keep='first')
        data_nred.loc[data_nred['floor']=='-','floor'] = '0'
        data_nred.loc[:,'floor'] = pd.to_numeric(data_nred['floor'], downcast='integ
        er', errors='coerce')
        def remove nans outliers(df, attributes):
            dfn = df.copy()
            for var in attributes:
                 # verifica se variável é numerica
                if np.issubdtype(df[var].dtype, np.number):
                    Q1 = df[var].quantile(0.25)
                    Q2 = df[var].quantile(0.25)
                    Q3 = df[var].quantile(0.75)
                    IQR = Q3 - Q1
                # apenas inliers segundo IQR
                dfn = df.loc[(df[var] >= Q1-(IQR*1.5)) & (df[var] <= Q3+(IQR*1.5)),
        :]
                dfn = dfn.loc[dfn[var].notnull(),:]
            return dfn
        attributes = ['tax', 'insurance', 'hoa', 'rent']
        data out = remove nans outliers(data nred, attributes)
        print("Antes: %d, Depois remocao outliers: %d" % (data nred.shape[0], data o
        ut.shape[0]))
```

Antes: 10695, Depois remocao outliers: 9980

Vamos separar essa base de dados em conjuntos de treinamento (X) e teste (Z)

Agora vamos treinar:

 classificador para predizer a cidade com base no imposto, valor do condomínio e valor do seguro, e valor do condomínio

```
In [5]: # Treinando classificador
   X = dtrain[['tax','insurance', 'hoa']]
   Y = dtrain['city']

ZX = dtest[['tax','insurance', 'hoa']]
   ZY = dtest['city']

clf = SVC(gamma='auto')
   clf.fit(X,Y)
   ZY_ = clf.predict(ZX)
```

In [12]: dtrain

Out[12]:

	city	area	rooms	bathroom	parking spaces	floor	hoa	rent	tax	insurance	total	interactions
0	São Paulo	70	2	1	1	7	3098	3300	400	42	5618	108
1	São Paulo	320	4	4	0	20	1800	4960	2625	63	7973	240
2	Porto Alegre	80	1	1	1	6	800	2800	0	29	3841	128
3	Porto Alegre	51	2	1	0	2	216	1112	22	12	1421	92
4	São Paulo	25	1	1	0	1	0	800	38	11	836	516
10685	São Paulo	83	3	2	2	11	1332	7521	332	96	8726	372
10689	Rio de Janeiro	70	3	3	0	8	980	6000	398	78	7390	488
11220	São Paulo	50	1	1	1	0	0	1600	0	25	1625	72
11228	São Paulo	65	2	1	2	3	885	2748	0	25	3479	504
11237	São Paulo	700	5	7	9	0	0	6000	2700	91	7891	420

7988 rows × 14 columns

```
In []:
```

```
In [6]: acc_base = metrics.accuracy_score(ZY, ZY_)
    accb_base = metrics.balanced_accuracy_score(ZY, ZY_)
    print("Acurácia: %0.3f" % (acc_base))
    print("Acurácia balanceada base: %0.3f" % (accb_base))
```

Acurácia: 0.565

Acurácia balanceada base: 0.275

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7ffa83303670>

In [9]: oversamp = over_sampling.SMOTE() # sampling_strategy pode ser usado para cas
 os binários
 Xo, Yo = oversamp.fit_resample(X, Y)
 h = plt.hist(Yo)


```
In [13]:
         undersamp = under sampling.RandomUnderSampler()
          Xu, Yu = undersamp.fit_resample(X, Y)
         h = plt.hist(Yu)
          700
           600
          500
          400
          300
          200
          100
                               Porto Alegre Rio de Janeiro
           Belo Horizonte
                      Campinas
In [14]:
         overunder = combine.SMOTEENN(sampling_strategy='all')
         Xc, Yc = overunder.fit_resample(X, Y)
         h = plt.hist(Yc)
          2500
          2000
          1500
          1000
           500
            Belo Horizonte
                       Campinas
                                Porto Alegre Rio de Janeiro
In [15]: clf_ov = SVC(gamma='auto')
          clf_ov.fit(Xo,Yo)
          ZYov_ = clf_ov.predict(ZX)
          clf_un = SVC(gamma='auto')
          clf un.fit(Xu,Yu)
          ZYun_ = clf_un.predict(ZX)
          clf co = SVC(gamma='auto')
          clf co.fit(Xc,Yc)
         ZYco_ = clf_co.predict(ZX)
In [16]: | accb_ov = metrics.balanced_accuracy_score(ZY, ZYov_)
         accb_un = metrics.balanced_accuracy_score(ZY, ZYun_)
         accb_co = metrics.balanced_accuracy_score(ZY, ZYco_)
         print("Acurácia balanceada base: %0.3f" % (accb_base))
          print("Acurácia balanceada oversampling: %0.3f" % (accb_ov))
         print("Acurácia balanceada undersampling: %0.3f" % (accb_un))
         print("Acurácia balanceada combinado: %0.3f" % (accb_co))
         Acurácia balanceada base: 0.275
         Acurácia balanceada oversampling: 0.336
         Acurácia balanceada undersampling: 0.304
```

5 of 7 4/15/20, 12:23 PM

Acurácia balanceada combinado: 0.324

Resumo

- desbalanceamento também pode ser um problema relevante em bases de dados reais
- ganhos significativos podem ser obtidos por meio de métodos de amostragem