Homework 1

CMPS130 Computational Models, Spring 2015

0.1

- a. The set of odd natural numbers greater than zero.
- **b.** The set of even integers.
- c. The set of even natural numbers great than one.
- **d.** The set of natural numbers divisible by six great than one.
- **e.** The set of palindromes over the alphabet $\{0,1\}$.
- f. The empty set.

0.2

- a. $\{1, 10, 100\}$
- **b.** $\{n \mid n \in \mathcal{Z} \land n > 5\}$
- **c.** $\{n \mid n \in \mathcal{N} \land n < 5\}$
- **d.** {aba}
- e. $\{\epsilon\}$
- **f.** {}

0.3

- a. No
- **b.** Yes
- c. $\{x, y, z\}$
- **d.** $\{x, y\}$
- e. $\{(x, x), (x, y), (y, x), (y, y), (z, x), (z,y)\}$

f.
$$\{\{\}, \{x\}, \{y\}, \{x, y\}\}$$

0.4

$$|A \times B| = |\{(a,b) \mid a \in A, b \in B\}| = \sum_{a \in A} \sum_{b \in B} 1 = |A| * |B|$$

0.5

$$|\mathcal{P}(C)| = |\{D \cup \{c \cup d \mid d \in D\} \mid c \in C \land D = \mathcal{P}(C \setminus c)\}| = 2 * |\mathcal{P}(C \setminus c)| = 2^{|C|}$$

0.6

a.
$$f(2) = 7$$

b.
$$dom(f) = \{1, 2, 3, 4, 5\}$$
 $range(f) = \{6, 7\}$

c.
$$g(2,10) = 6$$

$$\mathbf{d.} \; \mathit{dom}(g) = \begin{cases} (1,6), & (1,7), & (1,8), & (1,9), & (1,10), \\ (2,6), & (2,7), & (2,8), & (2,9), & (2,10), \\ (3,6), & (3,7), & (3,8), & (3,9), & (3,10), \\ (4,6), & (4,7), & (4,8), & (4,9), & (4,10), \\ (5,6), & (5,7), & (5,8), & (5,9), & (5,10) \end{cases} \quad \mathit{range}(g) = \{6,7,8,9,10\}$$

e.
$$g(4, f(4)) = g(4,7) = 8$$

0.7

Using a finite set *S* and a relation $R \subseteq S \times S$.

a.
$$S = \{a,b,c\}$$

 $R = \{(a,a),(a,b),(b,a),(b,b),(b,c),(c,b),(c,c)\}$

b.
$$S = \{a, b\}$$

 $R = \{(a, a), (a, b), (b, b)\}$

c.
$$S = \{a,b,c,d\}$$

 $R = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}$

0.8

$$deg(1) = 3$$
 $deg(3) = 2$

0.9

$$G = (V, E) = (\{1, 2, 3, 4, 5, 6\}, \{(x, y) \mid x \in \{1, 2, 3\} \land y \in \{4, 5, 6\}\})$$

0.10

You cannot divide by (a - b) unless you know that $a \neq b$. However, this contradicts with the assumption that a = b.

0.11

In the induction step, the proof assumes that H_1 and H_2 must have the same color if because all the horses in the set H_1 and H_2 have the same color and there is only one horse difference between H_1 and H_2 . However, this does not work for the base case k = 2 in which H_1 and H_2 will both only include a single horse. These sets are therefore trivially one-colored but might have different colors, therefore the set H might have more than one color.

0.12

Here, we only consider graphs that do *not* have self-loops: $\forall v \in V : (v, v) \notin E$. Otherwise, there is a simple counter-example with two nodes and exactly one edge: $G = (\{a, b\}, \{(a, a)\})$.

Let G = (V, E) be a graph with $|V| \ge 2$ nodes, such that v_{min} has the minimum degree of all nodes and v_{max} has the maximum degree of all nodes.

Case 1: If $v_{min} = 0$, then the node v_{max} can at most be connected to all nodes other than v_{min} in the graph, so $v_{max} \le |V| - 2$ and $v_{max} - v_{min} \le |V| - 2$.

Case 2: If $v_{min} \ge 1$, then the node v_{max} can at most be connected to all nodes in the graph, so $v_{max} \le |V| - 1$ and $v_{max} - v_{min} \le |V| - 1 - 1$.

In both cases, there are |V| nodes but only $v_{max} - v_{min} + 1 = |V| - 1$ possible degrees, so by the pigeonhole principle, at least two nodes have the same degree.

Set intersection distribution $\overline{(A \cap B)} = (\overline{A} \cup \overline{B})$

If an element a is in $a \in \overline{(A \cap B)}$ then it is not in both A and B, so either it is not in A ($a \in \overline{A}$) or it is not in B ($a \in \overline{B}$) – in any case, it is in the union of both complements ($\overline{A} \cup \overline{B}$).

If an element a is in $\overline{A} \cup \overline{B}$ then it is either not in A ($a \in \overline{A}$) or not in B ($a \in \overline{B}$) – in any case, it is not in the intersection of both $(\overline{(A \cap B)})$.

Countable Sets

According to the definition, a set is countable if it either finite or has the same size as \mathcal{N} .

Taking the set \mathcal{N} , the resulting set of multiplying all elements by two ($\{2n \mid n \in \mathcal{N}\}$) has the same size as \mathcal{N} and it therefore countable. Subtracting 1 from each element of this set does not change its size, so the resulting set $\{2n-1 \mid n \in \mathcal{N}\}$ includes all odd numbers but is countable.

Induction Example

Basis: For
$$n = 1$$
,
$$\sum_{i=1}^{n} i^2 = \sum_{i=1}^{1} i^2 = 1^2 = \frac{6}{6} = \frac{1 \cdot 2 \cdot 3}{6} = \frac{1 \cdot (1+1)(2*1+1)}{6} = \frac{n(n+1)(2n+1)}{6}$$

Induction Step: For n = k + 1, assuming that $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$.

$$\sum_{i=1}^{n} i^{2} = \sum_{i=1}^{k+1} i^{2} = (k+1)^{2} + \sum_{i=1}^{k} i^{2}$$

$$= (k+1)^{2} + \frac{k(k+1)(2k+1)}{6}$$

$$= \frac{6(k^{2} + 2k + 1) + (k^{2} + k)(2k + 1)}{6}$$

$$= \frac{6k^{2} + 12k + 6 + 2k^{3} + k^{2} + 2k^{2} + k}{6}$$

$$= \frac{2k^{3} + 9k^{2} + 13k + 6}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}$$

$$= \frac{n(n+1)(2n+1)}{6}$$