

Leonid Mill, Tobias Würfl, Katharina Breininger, Nishant Ravikumar, Sebastian Gündel, Mathis Hoffmann, Florian Thamm, Felix Denzinger
Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg
October 25, 2018

Flexibility vs. abstraction

Low level

- Linear Algebra operations
- Bare metal

- Compiles graphs of Tensor operations
- High flexibility

- Stacks together elementary layers
- Reduced flexibility

Artifical Neural Networks

Terminology

- We will call $\frac{\partial L}{\partial \hat{\mathbf{y}}}$ the **error E** in the exercises
- "Layer" it is now a technical term. Layers must not be present in graphical depictions. E.g. activation functions become "layers"

- is responsible for holding a graph of layers
 - we allow only extremely simple graphs
 - · with a list of layers
 - and only one data source
 - and one loss function

- is responsible for holding a graph of layers
 - we allow only extremely simple graphs
 - with a list of layers
 - and only one data source
 - and one loss function
- is responsible to hold access to data

- is responsible for holding a graph of layers
 - we allow only extremely simple graphs
 - with a list of layers
 - and only one data source
 - and one loss function
- is responsible to hold access to data
- has no explicit knowledge about the graph of layers it contains

- is responsible for holding a graph of layers
 - we allow only extremely simple graphs
 - with a list of layers
 - and only one data source
 - · and one loss function
- is responsible to hold access to data
- has no explicit knowledge about the graph of layers it contains
- recursively calls forward on its layers passing the input-data
- recursively calls backward on its layers passing the error

- is responsible for holding a graph of layers
 - we allow only extremely simple graphs
 - with a list of layers
 - and only one data source
 - and one loss function
- is responsible to hold access to data
- has no explicit knowledge about the graph of layers it contains
- recursively calls forward on its layers passing the input-data
- recursively calls backward on its layers passing the error
- in our case it stores the loss over iterations, while in other frameworks this is commonly separated into an optimizer class

Fully Connected Layer

$$\begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + w_{n+1} = \hat{y}$$

$$\mathbf{w}^T\mathbf{x} = \hat{y}$$

Input Hidden layer layer

$$\begin{pmatrix} w_1 \\ \vdots \\ w_n \\ w_{n+1} \end{pmatrix}^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix} = 5$$

$$\mathbf{w}^T\mathbf{x} = \hat{y}$$

Input Hidden layer layer

$$\begin{pmatrix} w_{1,1} & \dots & w_{1,m} \\ \vdots & \ddots & \vdots \\ w_{n,1} & \dots & w_{n,m} \\ w_{n+1,1} & \dots & w_{n+1,m} \end{pmatrix}^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix} = \begin{pmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_m \end{pmatrix}$$

$$\mathbf{W}\mathbf{x} = \hat{\mathbf{y}}$$

Input Hidden layer layer

$$\begin{pmatrix} w_{1,1} & \dots & w_{1,m} \\ \vdots & \ddots & \vdots \\ w_{n,1} & \dots & w_{n,m} \\ w_{n+1,1} & \dots & w_{n+1,m} \end{pmatrix}^T \begin{pmatrix} x_{1,1} & \dots & x_{1,b} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,b} \\ 1 & \dots & 1 \end{pmatrix}$$

$$\mathbf{WX} = \hat{\mathbf{Y}} \tag{1}$$

• Return gradient with respect to X:

• Return gradient with respect to X:

$$\mathbf{E}_{n-1} = \mathbf{W}^{\mathsf{T}} \mathbf{E}_n \tag{2}$$

• E_n: error_tensor passed downward

• Return gradient with respect to X:

$$\mathbf{E}_{n-1} = \mathbf{W}^{\mathsf{T}} \mathbf{E}_n \tag{2}$$

Update W using gradient with respect to W:

• En: error_tensor passed downward

• Return gradient with respect to X:

$$\mathbf{E}_{n-1} = \mathbf{W}^{\mathsf{T}} \mathbf{E}_n \tag{2}$$

Update W using gradient with respect to W:

$$\mathbf{W}^{t+1} = \mathbf{W}^t - \delta \cdot \mathbf{E_n} \mathbf{X}^T \tag{3}$$

Note: Dynamic programming part of Backpropagation

- E_n: error_tensor passed downward
- δ : learning rate **delta** individual to this layer

Memory Layout

- Numpy uses C ordering by default
- Wrong ordering will cause strided data access
- We want the batch size to be the outermost loop
 - \rightarrow We have to adjust our formulas for the implementation

Forward - Our Memory Layout

Input Hidden layer

$$\begin{pmatrix} x_{1,1} & \dots & x_{1,b} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,b} \\ 1 & \dots & 1 \end{pmatrix}^T \begin{pmatrix} w_{1,1} & \dots & w_{1,m} \\ \vdots & \ddots & \vdots \\ w_{n,1} & \dots & w_{n,m} \\ w_{n+1,1} & \dots & w_{n+1,m} \end{pmatrix}$$

$$\mathbf{X}'\mathbf{W}' = \hat{\mathbf{Y}}' \tag{4}$$

with

$$\mathbf{X}' = \mathbf{X}^{\mathsf{T}}, \ \mathbf{W}' = \mathbf{W}^{\mathsf{T}}, \ \hat{\mathbf{Y}}' = \hat{\mathbf{Y}}^{\mathsf{T}}$$
 (5)

$$\hat{\mathbf{Y}}^{\mathsf{T}} = (\mathbf{W}\mathbf{X})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}}\mathbf{W}^{\mathsf{T}} \tag{6}$$

Backward - Our Memory Layout

• Return gradient with respect to X:

$$\mathbf{E}_{\mathsf{n}-\mathsf{1}}' = \mathbf{E}_{\mathsf{n}}' \mathbf{W'}^{\mathsf{T}} \tag{7}$$

Update W' using gradient with respect to W':

$$\mathbf{W'}^{t+1} = \mathbf{W'}^{t} - \delta \cdot \mathbf{X'}^{\mathsf{T}} \mathbf{E'_n}$$
 (8)

Note: Dynamic programming part of Backpropagation

- E'_n : error_tensor passed downward
- δ : learning rate **delta** individual to this layer

ReLU Activation Function

ReLU is not continuously differentiable!

ReLU is not continuously differentiable!

$$e_{n-1} = \begin{cases} 0 & \text{if } x \le 0 \\ e_n & \text{else} \end{cases} \tag{9}$$

Note: DP part of Backpropagation yet again

ReLU is not continuously differentiable!

$$e_{n-1} = \begin{cases} 0 & \text{if } x \le 0 \\ e_n & \text{else} \end{cases} \tag{9}$$

Note: DP part of Backpropagation yet again

The scalar e is because activation functions operate elementwise on E

ReLU is not continuously differentiable!

$$e_{n-1} = \begin{cases} 0 & \text{if } x \le 0 \\ e_n & \text{else} \end{cases} \tag{9}$$

Note: DP part of Backpropagation yet again

- The scalar e is because activation functions operate elementwise on E
- If you wonder about e_n instead of 1 consider that this is $\underbrace{\frac{\partial L}{\partial \hat{\mathbf{y}}}}_{\text{Poll}} \cdot \underbrace{\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{x}}}_{\text{Poll}}$

"SoftMax Loss" Function

Labels as *N*-dimensional **one hot** vector **y**: $\begin{pmatrix} \vdots \\ 1 \\ \vdots \end{pmatrix}$

• Activation(Prediction) $\hat{\mathbf{y}}$ for every element of the batch of size B:

$$\hat{y}_k = \frac{\exp(x_k)}{\sum_{j=1}^N \exp(x_j)}$$
 (10)

• Activation(Prediction) $\hat{\mathbf{y}}$ for every element of the batch of size B:

$$\hat{y}_k = \frac{\exp(x_k)}{\sum_{j=1}^N \exp(x_j)}$$
 (10)

Loss:

$$loss = \sum_{k=1}^{B} -\log \hat{y}_k \text{ where } y_k = 1$$
 (11)

Numeric

- If $x_k > 0 \rightarrow e^{x_k}$ might become very large
- To increase numerical stability x_k can be shifted
- $\tilde{x}_k = x_k \max(\mathbf{x})$
- This leaves the scores unchanged!

For every element of the batch:

$$e_k = \begin{cases} \hat{y}_k - 1 & \text{where } y_k = 1\\ \hat{y}_k & \text{else} \end{cases}$$
 (12)

For every element of the batch:

$$e_k = \begin{cases} \hat{y}_k - 1 & \text{where } y_k = 1\\ \hat{y}_k & \text{else} \end{cases}$$
 (12)

- · We simply decrease the activation of the correct class
- And increase all others

For every element of the batch:

$$e_k = \begin{cases} \hat{y}_k - 1 & \text{where } y_k = 1\\ \hat{y}_k & \text{else} \end{cases}$$
 (12)

- · We simply decrease the activation of the correct class
- And increase all others
- Notice that this does not depend on an error E
- Because it's the starting point of the recursive computation of gradients

Thanks for listening.

Any questions?