ECES-352 Winter 2019 Homework #7

Reading: Chapter 6 on FIR Filter Frequency Response

PROBLEM 7.1:

Suppose that a discrete-time system is described by the input-output relation

$$y[n] = (x[n])^3$$

(a) Determine the output when the input is the complex exponential signal

$$x[n] = Ae^{j\phi}e^{j\hat{\omega}n}$$

(b) Is the output of the form

$$y[n] = \mathcal{H}(\hat{\omega})Ae^{j\phi}e^{j\hat{\omega}n}$$

If not, why not?

PROBLEM 7.2*:

A discrete-time system is defined by the input/output relation

$$y[n] = x[n+1] - 2x[n] + x[n-1]. (1)$$

- (a) Determine whether or not the system defined by Equation (1) is (i) linear; (ii) time-invariant; (iii) causal. Explain your answers.
- (b) Obtain an expression for the frequency response of this system.
- (c) Make a sketch of the frequency response (magnitude and phase) as a function of frequency. Hint: Use symmetry to simplify your expression before determining the magnitude and phase.
- (d) For the system of Equation (1), determine the output y₁[n] when the input is

$$x_1[n] = 2\cos(0.25\pi n) = e^{j0.25\pi n} + e^{-j0.25\pi n}.$$

Express your answer in terms of cosine functions.

(e) For the system of Equation (1), determine the output y₂[n] when the input is

$$x_2[n] = 1 + \cos(0.25\pi(n-1)).$$

Hint: use the linearity and time-invariance properties.

PROBLEM 7.3:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.

(a) Suppose that the two LTI systems are described by the impulse responses

$$h_1[n] = \delta[n] - \delta[n-1]$$
 and $h_2[n] = u[n] - u[n-10]$.

- (b) Determine H₁(û), the frequency response of the first system.
- (c) Determine H₂(û), the frequency response of the second system.
- (d) By using numerical convolution, show that $h[n] = h_1[n] * h_2[n] = \delta[n] \delta[n-10]$.
- (e) From h[n] determine H(û) the frequency response of the overall system (from x[n] to y[n]).
- (f) Show that your result in part (d) is the product of the results in parts (a) and (b); i.e., H₁(û)H₂(û) = H(û).

PROBLEM 7.4*:

Suppose that three systems are hooked together in "cascade." In other words, the output of S_1 is the input to S_2 , and the output of S_2 is the input to S_3 . The three systems are specified as follows:

$$S_1:$$
 $\mathcal{H}_1(\hat{\omega}) = e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$
 $S_2:$ $y_2[n] = x_2[n] + x_2[n-2]$

$$S_3$$
: $y_3[n] = 2x_3[n-1] + 2x_3[n-2]$

NOTE: the output of S_i is $y_i[n]$ and the input is $x_i[n]$.

The objective in this problem is to determine the equivalent system that is a single operation from the input x[n] (into S_1) to the output y[n] which is the output of S_3 . Thus x[n] is $x_1[n]$ and y[n] is $y_3[n]$.

- (a) Determine the difference equation for S₁, i.e., express y₁[n] in terms of x₁[n], x₁[n − 1], x₁[n − 2], etc.
- (b) Determine the frequency response of the other two systems: H_i(û) for i = 2,3.
- (c) Determine the frequency response of the overall cascaded system.
- (d) Write one difference equation that defines the overall system in terms of x[n] and y[n] only.

Problem 7.5

The frequency response of a linear time-invariant filter is given by the formula

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - e^{-j\pi/3}e^{-j\hat{\omega}})(1 - e^{j\pi/3}e^{-j\hat{\omega}}).$$
 (2)

- (a) Write the difference equation that gives the relation between the input x[n] and the output y[n]. Hint: Multiply out the factors to obtain a sum of powers of $e^{-j\hat{\omega}}$.
- (b) What is the impulse response of this system?
- (c) If the input is of the form $x[n] = Ae^{j\phi}e^{j\hat{\omega}n}$, for what values of $-\pi \le \hat{\omega} \le \pi$ will y[n] = 0 for all n?
- (d) Use superposition to determine the output of this system when the input is

$$x[n] = 2 - 3\delta[n - 4] + 7\cos(\pi/3n) \qquad \text{for } -\infty < n < \infty$$

Hint: Divide the input into three parts and find the outputs separately each by the easiest method and then add the results.