SIEMENS

IR-Empfänger/Demodulator-Baustein IR-Receiver/Demodulator Device

SFH 506

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- Fotodiode mit integriertem Verstärker
- Angepaßt an verschiedene Trägerfreguenzen
- Gehäuse schwarz eingefärbt: Verguß optimiert für eine Wellenlänge von 950 nm
- Hohe Störsicherheit
- Geringe Stromaufnahme
- 5 V Betriebsspannung
- Hohe Empfindlichkeit
- TTL und CMOS kompatibel
- Verwendbar bis zu einem Tastverhältnis ≤ 40 %

Anwendungen

• Empfänger für IR-Fernsteuerungen

Features

- Photodiode with hybride integrated circuit
- Available for several carrier frequencies
- Black epoxy resin, daylight filter optimized for 950 nm
- High immunity against ambient light
- Low power consumption
- 5 V supply voltage
- High sensitivity (internal shield case)
- TTL and CMOS compatibility
- Continuous transmission possible $(t_{oi}/T \le 0.4)$

Applications

IR-remote control preamplifier modules

Тур	Trägerfrequ.	Bestellnr.	Тур	Trägerfrequ.	Bestellnr.
Туре	Carrier Frequency kHz	Ordering Code	Туре	Carrier Frequency kHz	Ordering Code
SFH 506-30	30	Q62702-P1196	SFH 506-38	38	Q62702-P1199
SFH 506-33	33	Q62702-P1197	SFH 506-40	40	Q62702-P1200
SFH 506-36	36	Q62702-P1198	SFH 506-56	56	Q62702-P1201

Blockschaltbild Block Diagram

Grenzwerte Maximum Ratings

Bezeichnung Description		Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operation and storage temperature range		T_{A},T_{stg}	- 25 + 85	°C
Sperrschichttemperatur Junction temperature range		$T_{\rm j}$	100	°C
Löttemperatur Lötstelle 2 mm vom Gehäuse; Lötze Soldering temperature soldering joint ≥ 2 mm distance from package, soldering time $t \leq 5$ s		$T_{\mathtt{S}}$	260	°C
Betriebsspannung Supply voltage	Pin 2	V_{S}	- 0.3 + 6.0	V
Betriebsstrom Supply current	Pin 2	$I_{\rm CC}$	5	mA
Ausgangsspannung Output voltage	Pin 3	V_{OUT}	- 0.3 + 6.0	V
Ausgangsstrom Output current	Pin 3	I_{OUT}	5	mA
Verlustleistung Total power dissipation $T_{\rm A} \le 85~{\rm ^{\circ}C}$		P _{tot}	50	mW

Kennwerte (T_A = 25 °C) Characteristics

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Betriebsspannung Supply voltage	$V_{\mathtt{S}}$	typ. 5.0 (4.5 5.5)	V
Bestrahlungsstärke (Testsignal, s. Figure 2) Threshold irradiance (test signal, see Fig. 2)	$\begin{array}{c} E_{\rm e \; min(30\text{-}40\; kHz)} \\ E_{\rm e \; min(56\; kHZ)} \\ E_{\rm e \; max} \\ 1) \end{array}$	typ. 0.35 (< 0.5) typ. 0.4 (< 0.6) 30	mW/m ² W/m ²
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{s max}$	950	nm
Spektraler Bereich der Fotoempfindlichkeit Range of spectral sensitivity $S = 10 \%$ of S_{max}	Δλ	830 1100	nm
Halbwinkel Half angle	φ	± 45	deg.
Stromaufnahme Pin 2 Current consumption $V_s = 5 \text{ V}, E_v = 0$ $V_s = 5 \text{ V}, E_v = 40 000 \text{ lx}, \text{ sunlight}$	$I_{\rm cc}$ $I_{\rm cc}$	0.6 (< 0.8) 1.0	mA mA
Ausgangsspannung Pin 3 Output voltage $I_{\rm OUT}$ = 0.5 mA, $E_{\rm e}$ = 0.7 mW/m², f = $f_{\rm o}$, $T_{\rm p}/T$ = 0.4	V_{OUTlow}	< 250	mV

¹⁾ In Verbindung mit einer typ. SFH 415 bei Betrieb mit $I_F = 0.5$ A wird eine Reichweite von ca. 35 m erreicht.

¹⁾ Together with an IRED SFH 415 under operation conditions of $I_{\rm F}$ = 0.5 A a distance of 35 m is possible.

Figure 1 Externe Beschaltung External circuit

Figure 2 Testsignal Test signal

SIEMENS

Relative sensitivity

 $E_{\rm e \, min}/E_{\rm e} = f \, (f/f_{\, 0})$ 1.0 $E_{\rm e \, min}/E_{\rm e}$ 0.8

0.6

0.4

0.2

0.0

0.7

0.8

0.9

1.0

1.1

1.2

1.3 $\longrightarrow f/f_0$

Sensitivity vs. dark ambient $T_{\text{p out}} = f(E_{\text{e}})$ $\lambda = 950$ nm, optical test signal

Sensitivity vs. supply voltage disturbances, $E_{\rm e \; min}$ = f ($\Delta V_{\rm S \; RMS}$)

Sensitivity vs. electric field disturbance

 $E_{\rm e\;min}$ = f (E), field strength of disturbance, f = f_0

Sensitivity vs. duty cycle

 $E_{e} = f (t_{p} / T)$

Vertical directivity ϕ_V

Relative luminous intensity

 $S_{\text{rel}} = f(\lambda), T_{\text{A}} = 25 \, {}^{\text{o}}\text{C}$

Sensitivity vs. bright ambient

 $E_{\text{e min}} = f$ (E), $\lambda = 950$ nm, ambient

Horizontal directivity ϕ_χ

Output pulse

