Universidade Estadual Vale do Acaraú – UVA Curso de Ciências da Computação Disciplina: Estruturas de Dados

Professor: Cláudio Carvalho

Lista de Exercícios V - TAD Fila

As questões de 01 a 05 devem ser resolvidas utilizando apenas o **TAD Fila** dado em sala de aula; sem fazer qualquer modificação nas suas funções. O aluno poderá, entretanto, criar funções no seu programa principal.

- 01. Gerar uma fila com n elementos inteiros e distintos, com valores aleatórios de 1 a 2n.
- 02. Gerar uma fila com **n** elementos inteiros, com valores aleatórios de **1** a **10**, de forma que os elementos sejam retirados da fila em ordem crescente de valor.
- 03. Desenvolva uma solução para o chamado problema de Josephus. Este problema pode ser visto como um processo de eleição de um líder. N pessoas (identificadas por números de 1 a N, em ordem) elegem um líder colocando-se em círculo e contando sempre até um número M. A pessoa que estiver na posição M é eliminada do círculo e a contagem recomeça no indivíduo seguinte. O processo termina quando restar apenas uma única pessoa, que será o líder.
- 04. Solicitar que o usuário digite os **N** elementos de duas filas de inteiros. Em seguida, dizer se elas possuem ou não os mesmos elementos.
- 05. Proponha um programa em C para fazer a tradução de uma cadeia de DNA e apresentar a sequência de aminoácidos produzida. As cadeias devem ser representadas em filas.

Primeiro deve ser fornecida uma cadeia de DNA (molde) para que seja verificada se esta é ou não válida (se possui apenas as bases a, t, g, c). Caso seja uma cadeia de DNA válida, esta deve ser traduzida para uma cadeia de RNAM (mensageiro). A partir desta cadeia de RNAm, deve ser selecionada a parte que será utilizada na síntese protéica. Esta cadeia deve começar na primeira ocorrência da tríade **aug** (metionina) e terminar antes da ocorrência de uma das tríades de parada (**uac, uaa, uga**), ou quando não houver mais tríades. Selecionada a cadeira, verificar a sequência de aminoácidos que se ligará a ela, conforme a tabela a seguir:

TRIADES				AMINOÁCIDOS	ORIENTAÇÕES
UUU	UUC			Fenilanina	 Guardar as bases (caracteres) em uma fila (DNA).
UUA	UUG			Leucina	 Gerar a fila de RNA com base na do DNA.
UGG				Triptofano	 Selecionar a cadeia a ser traduzida (após o códon
UGU	UGC			Cisteína	inicial AUG, selecionar as bases em grupos de 3 até
UCU	UCC	UCA	UCG	Serina	que se encontre um dos códons de parada (UAA,
UAU	UAC			Tirosina	UAG, UGA) ou quando houver menos de 3 bases
UAA	UAG	UGA		PARADA	após a última tríade selecionada. As tríades devem
CUU	CUG	CUA	CUC	Leucina	ser armazenadas em uma outra fila.
CCU	CCC	CCA	CCG	Prolina	 Apresentar a sequência de aminoácidos que será
CAU	CAC			Histidina	sintetizada. (Fazer uma função que receba três bases
CAA	CAG			Glutamina	como parâmetro de entrada, e retorne o nome do
CGU	CGC	CGA	CGG	Arginina	aminoácido correspondente).
AUU	AUC	AUA		Isoleucina	Exemplo:
AUG				Metionina	Exemplo.
ACU	ACC	ACA	ACG	Trionina	DNA: ATACTCGTAATTCACTC
AAU	AAC			Aspargina	DNA. ATACTCGTAATTCACTC
AAA	AAG			Lisina	RNA: U A U G A G C A U U A A G U G A G
AGU	AGC			Serina	MIA. O ROG RGC ROO RAG OGA G
AGA	AGG			Arginina	
GUU	GUC	GUA	GUG	Valina	Parada
GCU	GCC	GCA	GCG	Alanina	
GAU	GAC			Ácido Aspártico	Aminoácidos: Metionina Serina, Isoleucina e Lisina
GAA	GAG			Ácido Glutâmico	
GGU	GGC	GGA	GGG	Glicina	

06. Implementar uma DEQUE (Double Ended Queue) com alocação dinâmica. O aluno deve pesquisar sobre a estrutura e comportamento (funções) deste tipo de estrutura de dados.