Semantics Worksheet 3

NOTE:	ignoro	minor	differer	coc in	notation	from	tha	textbook (0.0	use of	[] vc	/11	
NOIE.	ignore	11111101	umeren	ices iii	HOLALIOH	110111	uie	textbook (e.g.	use or	VS.	())	

- 1. From p. 382 of the textbook: (Re-)Read the section on Quantifier Scope Ambiguity on pp. 381-2. Devise a new model based on m2 so that (27a) comes out false in your model.

 Devise a new model such that (27b) comes out true.
- 2. What sets are denoted by:
- (i) λy [(like(y))(jo) & \sim ((like(y))(ethel))].
- (ii) λz [give(z)(the-cake))(z)].
- (iii) $\lambda x [x = jo]$
- (iv) λz [student(z) & like(jo))(z)].
- 3. Lambda convert (β -reduce):
- (i) λy [(like(y))(jo) & \sim ((like(y))(ethel))] (the-dog)
- (ii) λz [(give(z)(the-cat))(z)] (bertie)
- (iii) $\lambda x [\sim (x = jo)]$ (bertie)
- (iv) $\lambda y [(like(the-cat))(y) \lor \sim (like(the-dog))(y)]$ (bertie)
- (iv) $\lambda x [\lambda y [crazy(x) \& (like(x))(y)](jo) \lor \sim (crazy(x))]$ (bertie)
- 4. Why are the following wrong? And what should they be?:
- (i) λx [(kick(x))(x)] (jo)
- >> (kick(x))(jo)
- (ii) λx [λx [howl(x)] (the-cat)] (the-dog)
- >> λx [howl(the-dog)] (the-cat)
- (iii) λy [(like(jo))(x)] (bertie)
- >> (like(jo))(bertie)
- (iv) λz [crazy(z)] (ethel) v drunk(z)
- >> crazy(ethel) v drunk(ethel)

5. Given the variables below, what are the types of the lambda expressions that follow? (Where a is a type, the set of variables of type a can be symbolized as Var_a).

 $P,Q \in Var_{\langle e,t \rangle}$ $p,q \in Var_t$ $R \in Var_{\scriptscriptstyle \mathsf{<}e,\mathsf{<}e,\mathsf{t>>}}$ $x,y,z \in Var_e$ $A \in Var_{\langle\langle e,t\rangle,\langle e,t\rangle\rangle}$ i. $\lambda R [(R(jo'))(bertie')].$ $\lambda P [\lambda A [A(P)]].$ ii. iii. λQ [Q(ethel')]. $\lambda x [\lambda y [\lambda z [(give'(x)(y))(z)]]].$ iv. ٧. $\lambda p [p \leftrightarrow rain'].$ vi. $\lambda p [\lambda q [p \leftrightarrow q]].$

- 6. It has been suggested that we should see the semantics of questions (interrogative sentences) as defined in terms of the set of possible answers the question determines in context. For example, a 'yes-no question' such as 'Does Cyril like Bertie' determines the set of possible answers, {True, False}, while a 'wh-question' like 'Who likes Cyril?' might in context determine a set of possible answers which is a set of propositions such as {Olive likes Cyril, Angus likes Cyril}. Re-read section 10.1 and discuss this suggestion with respect to that section of the chapter. Are we closer to allowing the interrogation of databases using natural language questions?
- 7. For further work: try exercises 5 and 6 on p 405 of the textbook.