

①

Dc machines

I. Theoretical questions

Q1 : Draw the construction of a Dc machine showing its components.

Q2 : What is the role of Commutator & brushes in Dc machines.

Q3 : Derive the emf equation (E_a) in Dc machines

Q4 : Show the relation between Θ_e & Θ_p , then, Derive an expression relating the frequency (f_e) to the mechanical speed(n)

Q5 : Show flux distribution in Dc machines.

Q6 : Describe the operation of Dc machine as a generator & as a motor

Q7 : Draw the circuit diagram of (2)
Dc generators, then show why
the external c/c's of shunt Dc
generator is more drooping than
separately excited.

Q8 : Draw the circuit diagram of
various types of Dc motors.

Q9 : What is the significance (role) of
back emf in Dc machines.

Q10 : Why is the starting current
is high in Dc machines, How
to limit this current.

Dc Machines

2-pole
DC Machine

Construction

① Stator

- Carries the Field Winding (exciter)
- Field Winding is Connected to Dc Voltage Source
- Field Winding produces the magnetic Flux.

(2) Rotor

- Carries armature Winding
- Rotor has a cylindrical shape with slots
- The conductors are placed in these slots.
- e.m.f is induced on the terminals of armature winding.

(3) Commutator

- * It's a Copper cylinder divided into isolated segments
- * It's connected to armature winding terminals
- * It's a rotating part.

(5)

(4) Carbon brushes

- They are fixed contacts
- They are in direct contact with the Commutator

(5) Air gap:

- It's the clearance between Stator and Rotor

Answer of Q2

Notes

(a) Commutator is used to

- Convert AC Voltage to DC Voltage in case of DC generator
- produce unidirectional torque in DC motor

(b) The horizontal axis is called pole axis,
The Vertical axis is called interpole axis.

Answer of Q3

(6)

The Flux linkage of armature conductor:

$$\lambda = N\phi \cos \omega t$$

$$\text{but } e_i = -\frac{d\lambda}{dt} = +N\phi \omega \sin \omega t$$

* The Commutator produces DC Voltage

$$\therefore E_a = \frac{2 N \phi \omega}{\pi}$$

average
armature
Voltage

$$\therefore E_a = K n \phi$$

$$E_a \propto n \phi$$

$$\text{But } \phi \propto I_f$$

$$\therefore E_a \propto n I_f$$

$$\text{IF } I_f = 0 \Rightarrow E_a = 0$$

$$\text{IF } n = 0 \Rightarrow E_a = 0$$

Answer of Q4

7

Relation between Θ_e , Θ_m

$\Theta_e = \omega t$; ω is electrical angular frequency

$\Theta_m = \omega_m t$; ω_m is mechanical angular frequency

For 2 poles ($P=1$) no. of pole pair

$$\underline{1 \rightarrow 2} \quad \Theta_m = 90^\circ \quad \Theta_e = 90^\circ$$

$$\underline{2 \rightarrow 3} \quad \Theta_m = 90^\circ \quad \Theta_e = 90^\circ$$

$\therefore \Theta_m = \Theta_e$

For 2 poles

(8)

For 4 poles ($P = 2$)

$$① \rightarrow ② \quad \Theta_m = 4S \quad \text{but} \quad \Theta_e = 90^\circ$$

$$② \rightarrow ③ \quad \Theta_m = 4S \quad \text{but} \quad \Theta_e = 90^\circ$$

$$\therefore \Theta_e = 2\Theta_m$$

\therefore For (P) poles

$$\Theta_e = -P \times \Theta_m$$

↔ bias

$$\therefore \omega_e = -P \omega_m$$

↔

- When $P=1 \Rightarrow \Theta_e = \Theta_m, \omega_e = \omega_m$
- When $P=2 \Rightarrow \Theta_e = 2\Theta_m, \omega_e = 2\omega_m$

Relation between F_e & n_m

(9)

$$\therefore \Theta_e = p\Theta_m$$

$$\therefore \frac{d\Theta_e}{dt} = p \frac{d\Theta_m}{dt}$$

$$\omega_e = p\omega_m$$

$$\therefore 2\pi F_e = p * 2\pi f_m$$

$$\therefore F_e = p f_m$$

$$\text{But } f_m = \frac{n}{60}$$

Where n: Number of revolutions per minute (rpm)

$$\therefore F_e = \frac{pn}{60}$$

F_e : electrical frequency (Hz)

p: Number of pole pairs

n: Mechanical speed of rotor in rpm

(5')

Answer of Q5

10

Flux density distribution in DC machine
[Flux of stator]

$$\therefore B = B_{max} \cos(\omega_e t)$$

This means that the Flux varies sinusoidal

DC machine can operate as

- ① DC generator
- ② DC motor

Theory of operation

- a) The field current produces flux
- b) If the rotor (armature coil) is externally rotated

- c) A Voltage will be induced on both conductors (1,2)

$$e_1 = BLV \quad e_2 = BLV$$

$$e_{\text{coil}} = 2BLV$$

- d) The Commutator Converts Ac Voltage into Dc.

Why do we use Commutator & brushes

In First half cycle
of the coil rotation

In Second half cycle
of the coil rotation

The Voltage across the coil changes its polarity, So we use Commutator and brushes as a mechanical rectification to get DC Voltage from the coil

- * brush ① is +Ve in both half cycles
- brush ② is -Ve " "

② DC motor

Theory of operation

- (a) The field current produces Flux
- (b) If the armature winding terminals are connected to an external DC source, then a current will flow in armature winding.

- (c) Now both conductors (1,2) has a current i and placed in a magnetic field (B), so a force will be produced on both conductors but in opposite direction. ($F = BIL$)

- (d) So, the coil starts to rotate with a torque $T = BILW$.
- (e) As the coil rotates in a magnetic field, so a back emf will be induced on the coil (as in generator).
- (f) The commutator converts the torque into unidirectional torque.

Answer of Q7

Types of DC generators

I Separately excited

$$E_a = V_t + I_a R_q$$

$$V_f = I_f R_f$$

II Shunt excited

$$E_a = V_t + I_a R_q$$

$$I_f = \frac{V_t}{R_f}$$

III Series

$$E_a = V_t + I_a (R_a + R_f)$$

$$I_a = I_L = I_f$$

I Separately excited DC generator

\Rightarrow Field Circuit

$$V_F = I_F R_F$$

* $I_F \rightarrow$ Field Current

* $R_F \rightarrow$ Field resistance

\Rightarrow Armature Circuit

$$E_a = V_t + I_a R_a + (\text{Armature reaction drop})$$

* $R_a \rightarrow$ Armature resistance

* $I_a \rightarrow$ Armature Current

* $V_t \rightarrow$ Terminal Voltage

If (AR) is neglected $\Rightarrow E_a = V_t + I_a R_a$

\Rightarrow External characteristic of Separately excited DC generator

II

Shunt DC generator

$$I_F = \frac{V_t}{R_F}$$

$$E_a = V_t + I_a R_a$$

The Voltage drop is due to

- ① R_a drop.
- ② Armature reaction drop
- ③ Decrease in field current

as $I_F = \frac{V_t}{R_F}$ (V_t decrease as I_L increases)

$$\therefore I_F \downarrow \rightarrow \Phi \downarrow \rightarrow (E_a = K_n \Phi) \downarrow \rightarrow V_t \downarrow$$

That's why Shunt DC generator has external C/C's which is more drooping than that of separately excited

External
C/C's

III

Series DC generator

$$I_a = I_f = I_L$$

$$E_a = V_t + I_a(R_a + R_f)$$

The Voltage drop is due to

$$\textcircled{1} (I_a R_a + I_a R_f) \text{ drop}$$

$$\textcircled{2} \text{ AR drop}$$

External C/C's

Types of DC motors

[I] Separately excited

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = K_n \phi \Rightarrow E_a \propto n I_F$$

$$T = K T_a \phi \Rightarrow T \propto T_a I_F$$

$$T = K T_a \phi \Rightarrow T \propto T_a I_F$$

$$T = K T_a \phi \Rightarrow T \propto T_a I_F$$

[II] Shunt

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[III] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[IV] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[V] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[VI] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[VII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[VIII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[IX] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[X] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XI] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XIII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XIV] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XV] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XVI] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XVII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XVIII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XIX] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XX] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXI] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXIII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXIV] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXV] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXVI] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXVII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXVIII] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

[XXIX] Series

$$V_F = T_q \frac{1}{T}$$

$$E_a = V - T_q R_a$$

$$V_F = T_q R_a$$

$$E_a = V - T_q R_a$$

Role of back emf (E_a) in motors

E_a produces a current opposite to the supply current, so the armature current is limited within acceptable range

Starting of DC motors

⇒ Answer of Q10

$$\because V = E_a + I_a R_a$$

$$\therefore I_a = \frac{V - E_a}{R_a} \quad \text{but } E_a = K n \Phi$$

But at starting ($n=0$) $\Rightarrow E_a=0$

$$\therefore I_a|_{\text{St.}} = \frac{V-0}{R_a} \uparrow\uparrow \text{ (Very high)}$$

\therefore The armature current is very high at starting, so we must use starters (starting resistors to reduce $I_a|_{\text{St.}}$)

II. problems

(21)

Laws

$$\textcircled{1} \quad \omega = \frac{2\pi n}{60} \xrightarrow{\text{rad/s}} \text{rpm}$$

$$\textcircled{2} \quad E = K \varphi \omega \rightarrow \textcircled{a}$$

But $\varphi \propto I_F$, $\omega \propto n$

$$E = K_1 \varphi \cdot n \rightarrow \textcircled{b}$$

$$E = K_2 I_F n \rightarrow \textcircled{c}$$

$$\textcircled{3} \quad T = K \varphi I_a \rightarrow \textcircled{a}$$

$$T = K' I_F I_a \rightarrow \textcircled{b}$$

$$T_d = \frac{P_d}{\omega} \rightarrow \textcircled{c} \quad (T_d: \text{developed torque})$$

$$\textcircled{4} \quad T_o = \frac{P_o}{\omega} \quad (T_o: \text{output or shaft torque})$$

$$P_o = P_d - P_{\text{friction}}$$

$\textcircled{5}$ IF $E > V_t \rightarrow$ generator

IF $E < V_t \rightarrow$ motor

POWER FLOW IN DC motor

- * $P_{\text{inp.}} \equiv \text{input power} = V_s I \xrightarrow{\text{input current}}$
- * $P_{\text{Cu loss}} = I^2 R$ (depends on connection)
- * $P_d \equiv \text{developed power} = E_a I_a = T_d w_m$
- * $P_r \equiv \text{rotational loss}$
- * $P_o \equiv \text{output power} = T_{\text{sh}} \downarrow w_m$
shaft torque
- $$\eta = \frac{P_o}{P_{\text{inp.}}} = \frac{P_{\text{inp.}} - \sum \text{losses}}{P_{\text{in}}}$$
- * $P_o = P_d - P_{\text{rotational}}$ * $P_d = P_{\text{in}} - P_{\text{Cu loss}}$

(14) Series motor

sheet

$$R_a = 0.5 \Omega, R_f = 1.5 \Omega$$

$$I_a = 20 \text{ A} \quad \text{When } n = 1200 \text{ rpm}$$

$$V = 220 \text{ V}, P_{\text{rotational}} = 150 \text{ W}$$

Find P_o, η

Solution

$$E_a = V - I_a(R_a + R_f)$$

$$E_a = 220 - 20(0.5 + 1.5)$$

$$\therefore E_a = 180 \text{ V}$$

$$\Rightarrow P_o = P_d - P_{\text{rot.}} ; P_d = E_a I_a = 3600 \text{ W}$$

$$\therefore P_o = 3600 - 150$$

$$P_o = 3450 \text{ W}$$

$$\Rightarrow P_i = V * I_a = 4400$$

$$\Rightarrow \eta = \frac{P_o}{P_i} = \frac{3450}{4400} = 78.4\%$$

$$\eta = 78.4\%$$

(IS) • DC motor (Assume separately excited) (24)
 Sheet

- at No load: $V = 100V$, $n = 1200 \text{ rpm}$
- $R_a = 2\Omega$
- Find T, I_a if $V = 220V$, $n = 1500 \text{ rpm}$
- If is Constant

Solution

Case ① $V = 100V$

$n_1 = 1200 \text{ rpm}$

No load ($I_a \approx 0$)

$$E_1 = 100V$$

case ② $V = 220V$

$n_2 = 1500 \text{ rpm}$

$$* \frac{E_2}{E_1} = \frac{n_2}{n_1}$$

$$\frac{E_2}{100} = \frac{1500}{1200} \Rightarrow \boxed{E_2 = 125}$$

$$* E_2 = 220 - 2I_2 \Rightarrow \boxed{I_2 = 47.5}$$

$$* P_d = E_2 I_2 = 5937.5W$$

$$* T_d = \frac{P_d}{\omega} = \frac{5937.5}{2\pi \left(\frac{1500}{60} \right)}$$

$$\boxed{T_d = 37.8 \text{ N.m}}$$

16. DC Shunt motor

sheet

- Constant Field ($I_F = \text{Const.}$)

- $T \propto n$

- $I_a = 30 \text{ A}$ when $n_1 = 750 \text{ rpm}$

- $R_{\text{series}} = 10 \Omega \Rightarrow n_2 = ??$

- R_a is neglected

Solution

Case ①

$$n_1 = 750 \text{ rpm}$$

$$I_{a_1} = 30 \text{ A}$$

$$E_{a_1} = 230 \text{ V}$$

Case ②

$$R_{\text{series}} = 10 \Omega$$

$$E_{a_2} = 230 - 10 I_{a_2}$$

\Rightarrow But $E \propto n \phi^{\text{constant}} \Rightarrow E \propto n$

$$\therefore \frac{E_2}{E_1} = \frac{n_2}{n_1}$$

$$\frac{230 - 10 I_2}{230} = \frac{n_2}{750}$$

$$0.306 N_2 + 10 I_2 = 230 \rightarrow ①$$

\Rightarrow But $T \propto n$ (given)

$$T \propto \Phi I_a \Rightarrow T \propto I_a$$

const.

$$\therefore \frac{T_2}{T_1} = \frac{n_2}{n_1} = \frac{I_2}{I_1}$$

$$\therefore \frac{n_2}{750} = \frac{I_2}{30}$$

$$\therefore n_2 = 25 I_2 \rightarrow ②$$

Solving ①, ② we get

$$I_{a_2} = 13 A$$

$$n_2 = 325.7 \text{ rpm}$$