Moment Generating Functions 7

Moment Generating Functions

Slide 1

Moment Generating Functions We introduce a useful tool for later arguments.

Moment Generating Function (mgf): The mgf for a r.v. X is

$$M_X(t) = E[e^{tX}].$$

The mgf encaptures all moments of *X*:

Theorem 4.1: Let X be a r.v. with mgf $M_X(t)$. If exchanging expectation and differentiation is valid, then

$$E(X^n) = M_X^{(n)}(0)$$

where M(n)(0) is the nth derivative of MX (t) evaluated at t = 0.

Proof: under the assumption, we get

$$M_X^{(n)}(t) = E[X^n e^{tX}] \Longrightarrow M_X^{(n)}(0) = E(X^n).$$

Slide 2

Moment Generating Function (ctd.) $Pr(X = n) = (1 - p)^{n-1}p$

Example: $X \sim \text{Geom}(p)$. Then, letting q = 1 - p, for $qe^t < 1$, or

$$M_X(t) = Ee^{tX} = \sum_{k=1}^{\infty} q^{k-1} p e^{tk} = \frac{p}{q} \sum_{k=1}^{\infty} (qe^t)^k = \frac{p}{q} \sum_{k=1}^{\infty} (qe^t)^k$$

$$a/(1-r) = a + ar + ar^2 + ar^3 + \dots$$
 In this case, $a = 1, r = q^*e^t = \frac{p}{q} \left(\frac{1}{1 - qe^t} - 1\right)$.

Theorem 4.2: If $M_X(t) = M_Y(t)$ for $-\delta < t < \delta$ for some $\delta > 0$, then *X* and *Y* have the same distribution.

(without proof)

Theorem 4.3: If $X \perp Y$ then $M_{X+Y}(t) = M_X(t)M_Y(t)$

Solution: exercise.

Chernoff Bounds 7.2

Slide 3

Chernoff Bounds

Use Markov's inequality for e^{tX} , substituting $E(e^{tX}) = M_X(t)$

$$\Pr(X \ge a) = \Pr(e^{tX} \ge e^{ta}) \le \frac{E(e^{tX})}{e^{ta}}.$$

Right tail: This is true for all t > 0 – use the one with the sharpest bound:

$$\Pr(X \ge a) \le \min_{t>0} \frac{M_X(t)}{e^{ta}}.$$

Left tail: For $Pr(X \le a)$ use t < 0 and then again Markov's inequ:

$$\Pr(X \le a) = \Pr(e^{tX} \ge e^{ta}) \le \min_{t < 0} \frac{M_X(t)}{e^{ta}}$$

Clever use of these allows many useful bounds that are better than Chebyshev bounds.

7.3 **Examples**

Slide 4

Examples

1. Find $M_X(t)$ for $X \sim \text{Bern}(p)$, i.e., $p_X(1) = p$.

Solution:
$$M_X(t) = (1 - p) \cdot 1 + p \cdot e^t = 1 + p(e^t - 1)$$
.

Using $1 + x \le e^x$ we get

$$M_X(t) \le e^{p(e^t - 1)},$$

which is sometimes a useful bound.

Writing q = 1 - p we get alternatively $M_X(t) = q + pe^t$.

2. Find $M_Y(t)$ for $Y \sim \text{Bin}(n, p)$.

Solution: Use $Y = \sum_{i=1}^{n} X_i$, with $X_i \sim \text{Bern}(p)$, and therefore, letting q = 1 - p, we get $M_Y(t) = (q + pe^t)^n$.

Slide 5

3. If $X \sim \text{Poi}(\lambda)$, show that for $i < \lambda$,

$$\Pr(X \le i) \le \frac{e^{-\lambda}(e\lambda)^i}{i^i}.$$

Hint: If $X \sim \text{Poi}(\lambda)$, then $M_X(t) = e^{\lambda(e^t - 1)}$.

Solution: First,

$$\Pr(X \le a) \le M(t)/e^{ta} = e^{\lambda(e^t - 1) - ta}$$

for t < 0.

To find the lowest bound we minimize $\lambda(e^t - 1) - ta$, to find $e^t = a/\lambda \implies t = \log(a/\lambda) < 0 \text{ (for } a < \lambda).$

Substituting in the Chernoff bound we get

$$\Pr(X \le a) \le e^{\lambda(a/\lambda - 1)} \left(\frac{\lambda}{a}\right)^a = \frac{e^{-\lambda}(e\lambda)^a}{a^a}$$

as claimed.

Slide 6

For those following along in the book: We will

• skip the rest bof §4, including §4.2.1 and beyond,

¹the constraint on t was missing in the lecture

- skip §5-7, and
- continue with §8 in the next unit.

Some material ($\S4.3$, $\S6.1$ and &7.1) will be briefly introduced in homeworks.