

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/56993 A2

(51) International Patent Classification⁷: C07D 231/00

(21) International Application Number: PCT/US01/03910

(22) International Filing Date: 5 February 2001 (05.02.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/180,506	5 February 2000 (05.02.2000)	US
60/191,956	24 March 2000 (24.03.2000)	US
60/255,309	13 December 2000 (13.12.2000)	US

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; Patent Department, 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(74) Agents: ROBIDOUX, Andrea; Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, MA 02139 et al. (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HALE, Michael [US/US]; 42 Sunset Road, Bedford, MA 01730 (US). JANETKA, James [US/US]; 32 Washington Street, Beverly, MA 01915 (US). MALTAIS, François [FR/US]; 289 Highland Avenue #301, Somerville, MA 02144 (US). CAO, Jingrong [CN/US]; 45 Madison Avenue, Newton, MA 02560 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: PYRAZOLE COMPOSITIONS USEFUL AS INHIBITORS OF ERK

(57) Abstract: Described herein are compounds that are useful as protein kinase inhibitors having formula (I) where R¹, R², T and Ht are described in the specification. The compounds are useful for treating disease states in mammals that are alleviated by a protein kinase inhibitor, particularly diseases such as cancer, inflammatory disorders, restenosis, and cardiovascular disease.

WO 01/56993

PYRAZOLE COMPOSITIONS USEFUL AS INHIBITORS OF ERK

This application claims the benefit of US Provisional Application serial number 60/180,506 filed February 5, 2000; US Provisional Application serial number 60/191,956 filed March 24, 2000; and US Provisional Application serial number 60/255,309 filed December 13, 2000.

FIELD OF THE INVENTION

The present invention is in the field of medicinal chemistry and relates to pyrazole compounds that 10 are protein kinase inhibitors, especially inhibitors of ERK, compositions containing such compounds, and methods of use. The compounds are useful for treating cancer and other disease states that are alleviated by protein kinase inhibitors.

15

BACKGROUND OF THE INVENTION

Mammalian mitogen-activated protein (MAP)1 kinases are serine/threonine kinases that mediate 20 intracellular signal transduction pathways (Cobb and Goldsmith, 1995, *J Biol. Chem.*, 270, 14843; Davis, 1995, *Mol. Reprod. Dev.* 42, 459). Members of the MAP kinase family share sequence similarity and conserved structural domains, and include the ERK (extracellular signal 25 regulated kinase), JNK (Jun N-terminal kinase), and p38 kinases. JNKs and p38 kinases are activated in response to

the pro-inflammatory cytokines TNF-alpha and interleukin-1, and by cellular stress such as heat shock, hyperosmolarity, ultraviolet radiation, lipopolysaccharides and inhibitors of protein synthesis (Derijard et al., 1994, *Cell* 76, 1025; 5 Han et al., 1994, *Science* 265, 808; Raingeaud et al., 1995, *J Biol. Chem.* 270, 7420; Shapiro and Dinarello, 1995, *Proc. Natl. Acad. Sci. USA* 92, 12230). In contrast, ERKs are activated by mitogens and growth factors (Bokemeyer et al.. 1996, *Kidney Int.* 49, 1187).

10 ERK2 is a widely distributed protein kinase that achieves maximum activity when both Thr183 and Tyr185 are phosphorylated by the upstream MAP kinase kinase, MEK1 (Anderson et al., 1990, *Nature* 343, 651; Crews et al., 1992, *Science* 258, 478). Upon activation, ERK2 15 phosphorylates many regulatory proteins, including the protein kinases Rsk90 (Bjorbaek et al., 1995, *J. Biol. Chem.* 270, 18848) and MAPKAP2 (Rouse et al., 1994, *Cell* 78, 1027), and transcription factors such as ATF2 (Raingeaud et al., 1996, *Mol. Cell Biol.* 16, 1247), Elk-1 (Raingeaud et 20 al. 1996), c-Fos (Chen et al., 1993 *Proc. Natl. Acad. Sci. USA* 90, 10952), and c-Myc (Oliver et al., 1995, *Proc. Soc. Exp. Biol. Med.* 210, 162). ERK2 is also a downstream target of the Ras/Raf dependent pathways (Moodie et al., 1993, *Science* 260, 1658) and may help relay the signals 25 from these potentially oncogenic proteins. ERK2 has been shown to play a role in the negative growth control of breast cancer cells (Frey and Mulder, 1997, *Cancer Res.* 57, 628) and hyperexpression of ERK2 in human breast cancer has been reported (Sivaraman et al., 1997, *J Clin. Invest.* 99, 30 1478). Activated ERK2 has also been implicated in the proliferation of endothelin-stimulated airway smooth muscle cells, suggesting a role for this kinase in asthma

(Whelchel et al., 1997, *Am. J. Respir. Cell Mol. Biol.* 16, 589).

The JNK family of (MAP)1 kinases have been implicated in having a role in mediating cellular response 5 to a variety of disorders including cancer [Oncogene 13:135-42 (1996)], hepatic disorders [Hepatology 28:1022-30 (1998)], cardiovascular disease [Circ. Res. 83:167-78 (1998); Circulation 97:1731-7 (1998); J. Biol. Chem. 272:28050-6 (1997); Circ. Res. 79:162-73 (1996); Circ. Res. 10 78:947-53 (1996); J. Clin. Invest. 97:508-14 (1996)], and immunological disorders [J. Immunol. 162:3176-87 (1999); Eur. J. Immunol. 28:3867-77 (1998); J. Exp. Med. 186:941-53 (1997); Eur. J. Immunol. 26:989-94 (1996)], among others.

Aurora2 is a serine/threonine protein kinase that 15 has been implicated in human cancer, such as colon, breast and other solid tumors. This kinase is believed to be involved in protein phosphorylation events that regulate the cell cycle. Specifically, aurora2 may play a role in controlling the accurate segregation of chromosomes during 20 mitosis. Misregulation of the cell cycle can lead to cellular proliferation and other abnormalities. In human colon cancer tissue, the aurora2 protein has been found to be overexpressed. See Bischoff et al., *EMBO J.*, 1998, 17, 3052-3065; Schumacher et al., *J. Cell Biol.*, 1998, 143, 25 1635-1646; Kimura et al., *J. Biol. Chem.*, 1997, 272, 13766-13771.

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase comprised of α and β isoforms that are each encoded by distinct genes [Coghlan 30 et al., *Chemistry & Biology*, 7, 793-803 (2000); Kim and Kimmel, *Curr. Opinion Genetics Dev.*, 10, 508-514 (2000)].

GSK-3 has been implicated in various diseases including diabetes, Alzheimer's disease, CNS disorders such as manic depressive disorder and neurodegenerative diseases, and cardiomyocyte hypertrophy [WO 99/65897; WO 00/38675; and 5 Haq et al., *J. Cell Biol.* (2000) 151, 117]. These diseases may be caused by, or result in, the abnormal operation of certain cell signaling pathways in which GSK-3 plays a role.

KDR is a tyrosine kinase receptor that also binds 10 VEGF (vascular endothelial growth factor) (Neufeld et al., 1999, *FASEB J.*, 13, 9). The binding of VEGF to the KDR receptor leads to angiogenesis, which is the sprouting of capillaries from preexisting blood vessels. High levels of VEGF are found in various cancers causing tumor 15 angiogenesis and permitting the rapid growth of cancerous cells. Therefore, suppressing VEGF activity is a way to inhibit tumor growth, and it has been shown that this can be achieved by inhibiting KDR receptor tyrosine kinase.

AKT, also known as protein kinase B, is a 20 serine/threonine kinase that plays a central role in promoting the survival of a wide range of cell types [Khwaja, A., *Nature*, pp. 33-34 (1990)]. It has been shown by Zang, et al, that human ovarian cancer cells display elevated levels of AKT-1 and AKT-2. Inhibition of AKT 25 induces apoptosis of these human ovarian cancer cells which demonstrates that AKT may be an important target for ovarian cancer treatment [Zang, Q. Y., et al, *Oncogene*, 19 (2000)] and other proliferative disorders. The AKT pathway has also been implicated in motoneuronal survival and nerve 30 regeneration [Kazuhiko, N., et al, *The Journal of Neuroscience*, 20 (2000)].

There is a high unmet medical need to develop protein kinase inhibitors, especially ERK inhibitors, that are useful in treating the various conditions associated with ERK activation, especially considering the currently 5 available, relatively inadequate treatment options for the majority of these conditions.

Accordingly, there is still a great need to develop potent inhibitors of protein kinase, including ERK inhibitors, that are useful in treating various conditions 10 associated with protein kinase activation.

DESCRIPTION OF THE INVENTION

It has now been found that compounds of this 15 invention and pharmaceutical compositions thereof are effective as protein kinase inhibitors, especially as inhibitors of ERK. These compounds have the general formula I:

20

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

Ht is a heterocyclic ring selected from pyrazol-3-yl, [1,2,4]triazol-3-yl, [1,2,3]triazol-4-yl, or tetrazol-5-yl, said pyrazol-3-yl having R³ and QR⁴ substituents, and said [1,2,4]triazol-3-yl or [1,2,3]triazol-4-yl substituted by either R³ or QR⁴;

R¹ is selected from R, F, Cl, N(R⁸)₂, OR, NRCOR,

NRCON(R⁸)₂, CON(R⁸)₂, SO₂R, NRSO₂R, or SO₂N(R⁸)₂;
T is selected from a valence bond or a linker group;
each R is independently selected from hydrogen or an
optionally substituted aliphatic group having one to six
5 carbons;

R² is selected from hydrogen, CN, halogen, or an optionally
substituted group selected from aryl, aralkyl,
heteroaryl, heterocyclyl, acyclic aliphatic chain group
having one to six carbons, or a cyclic aliphatic group
10 having three to ten carbons;

R³ is selected from R, OH, OR, N(R⁸)₂, F, Cl, or CN;
Q is a valence bond, J, or an optionally substituted C₁₋₆
alkylidene chain wherein up to two nonadjacent carbons of
the alkylidene chain are each optionally and
15 independently replaced by J;

J is selected from -C(=O)-, -CO₂-, -C(O)C(O)-, -NRCONR⁸-,
-N(R)N(R⁸)-, -C(=O)NR⁸-, -NRC(=O)-, -O-, -S-, -SO-,
-SO₂-, -N(R)O-, -ON(R⁸)-, -OC(=O)N(R⁸)-, -N(R)COO-,
-SO₂N(R⁸)-, -N(R)SO₂-, or -N(R⁸)-;

20 R⁴ is selected from -R⁸, -R⁵, -NH₂, -NHR⁵, -N(R⁵)₂, or
-NR⁵(CH₂)_yN(R⁵)₂;
each R⁵ is independently selected from R⁶, R⁷,
-(CH₂)_yCH(R⁶)(R⁷), -(CH₂)_yR⁶, -(CH₂)_yCH(R⁶)₂,
-(CH₂)_yCH(R⁷)₂, or -(CH₂)_yR⁷;

25 y is 0-6;
each R⁶ is an optionally substituted group independently
selected from an aliphatic, aryl, aralkyl, aralkoxy,
heteroaryl, heteroarylalkyl, heteroarylalkoxy,
heterocyclyl, heterocyclylalkyl, or heterocyclylalkoxy,
30 group;

each R⁷ is independently selected from an optionally substituted hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, or alkoxycarbonyl;

each R⁸ is independently selected from R or two R⁸ on the

5 same nitrogen taken together with the nitrogen optionally form a four to eight membered, saturated or unsaturated heterocyclic ring having one to three heteroatoms; and each substitutable ring nitrogen is independently substituted by R, NR₂, COR, CO₂(C₁-C₆ optionally
10 substituted alkyl), SO₂(C₁-C₆ optionally substituted alkyl), CONR₂, or SO₂NR₂.

As used herein, the following definitions shall apply unless otherwise indicated. Also, combinations of substituents or variables are permissible only if such
15 combinations result in stable compounds.

The term "aliphatic" as used herein means straight chained, branched or cyclic C₁-C₁₂ hydrocarbons which are completely saturated or which contain one or more units of unsaturation. For example, suitable aliphatic
20 groups include substituted or unsubstituted linear, branched or cyclic alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl. The term "alkyl" and "alkoxy" used alone or as part of a larger
25 moiety refers to both straight and branched chains containing one to twelve carbon atoms. The terms "alkenyl" and "alkynyl" used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms. The terms "haloalkyl",
30 "haloalkenyl" and "haloalkoxy" means alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term "halogen" means F, Cl, Br, or I.

The term "heteroatom" means N, O, or S and shall include any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.

The term "aryl", used alone or as part of a
5 larger moiety as in "aralkyl", refers to aromatic ring groups having five to fourteen members, such as phenyl, benzyl, 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthracyl, and heterocyclic aromatic groups or heteroaryl groups such as 2-furanyl, 3-furanyl, N-imidazolyl, 2-
10 imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-pyrimidyl, 3-pyridazinyl, 2-thiazolyl, 4-thiazolyl, 5-
15 thiazolyl, 5-tetrazolyl, 2-triazolyl, 5-triazolyl, 2-thienyl, or 3-thienyl. The term "aryl ring" also refers to rings that are optionally substituted.

Aryl groups also include fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring
20 or heteroaryl ring is fused to one or more other rings. Examples include tetrahydronaphthyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzothiazolyl, benzooxazolyl, benzimidazolyl, isoquinolinyl, isoindolyl, acridinyl, benzoisoxazolyl, and
25 the like. Also included within the scope of the term "aryl", as it is used herein, is a group in which one or more carbocyclic aromatic rings and/or heteroaryl rings are fused to a cycloalkyl or non-aromatic heterocyclic ring, for example, indanyl or tetrahydrobenzopyranyl.
30 Non-aromatic heterocyclic rings are non-aromatic carbocyclic rings in which one or more ring carbons are replaced by a heteroatom such as nitrogen, oxygen or sulfur

in the ring. The ring can be five, six, seven or eight-membered and/or fused to another ring, such as a cycloalkyl or aromatic ring. Examples include 3-1H-benzimidazol-2-one, 3-(1-alkyl)-benzimidazol-2-one, 2-tetrahydrofuranyl, 5 3-tetrahydrofuryl, 2-tetrahydrothiophenyl, 3-tetrahydrothiophenyl, 2-morpholino, 3-morpholino, 4-morpholino, 2-thiomorpholino, 3-thiomorpholino, 4-thiomorpholino, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 10 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 4-thiazolidinyl, diazolonyl, N-substituted diazolonyl, 1-phthalimidinyl, benzoxane, benzotriazol-1-yl, benzopyrrolidine, benzopiperidine, benzoxolane, benzothiolane, and benzothiane. The term "heterocyclic 15 ring", whether saturated or unsaturated, also refers to rings that are optionally substituted.

An aryl group (carbocyclic and heterocyclic) or an aralkyl group, such as benzyl or phenethyl, may contain one or more substituents. Examples of suitable substituents 20 on the unsaturated carbon atom of an aryl group include a halogen, -R, -OR, -SR, protected OH (such as acyloxy), phenyl (Ph), substituted Ph, -OPh, substituted -OPh, -NO₂, -CN, -N(R)₂, -NRN(R)₂, -NRCON(R)₂, -NRCOR, -NRCO₂(aliphatic), -CO₂R, -COR, -C(O)C(O)R, -CON(R)₂, -CONRN(R)₂, -S(O)₂R, 25 -SON(R)₂, -S(O)(aliphatic), -SO₂N(R)₂, or -NRS(O)₂R, where each R is independently selected from hydrogen, an aliphatic group or a substituted aliphatic group.

An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents. Examples of 30 suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring

include those listed above for the unsaturated carbon as well as the following: =O, =S, =NNHR, =NNR₂, =N-, OR, =NNHCOR, =NNHCO₂(aliphatic), =NNHSO₂(aliphatic), or =NR, where each R is independently selected from hydrogen, 5 an aliphatic group or a substituted aliphatic group.

The term "alkylidene chain" refers to an optionally substituted, straight or branched, carbon chain that may be fully saturated or have one or more units of unsaturation. Optional substituents of the C₁₋₆ alkylidene 10 chain of Q include those described above for an aliphatic group.

A substitutable nitrogen on an aromatic or non-aromatic heterocyclic ring may be optionally substituted. Suitable substituents on the nitrogen include R, COR, N(R)₂, 15 CON(R)₂, CONRN(R)₂, S(O)₂R, and CO₂R, where R is independently selected from hydrogen, an optionally substituted aryl or aliphatic group.

The term "linker group" or "linker" means an organic moiety that connects two parts of a compound. 20 Linkers are typically comprised of an atom such as oxygen or sulfur, a unit such as -NH- or -CH₂- , or a chain of atoms, such as an alkylidene chain. The molecular mass of a linker is typically in the range of about 14 to 200. Examples of linkers include saturated or unsaturated C₁₋₆ 25 alkylidene chains that are optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(=O)-, -CONH-, CONHNH-, -CO₂- , -NHCO₂- , -O- , -NHCONH- , -OC(=O)- , -OC(=O)NH- , -NHNH- , -NHCO- , -O- , -S- , -SO- , -SO₂- , -NH- , -SO₂NH- , or NHSO₂- . It will be apparent to one skilled in the art 30 that certain compounds of this invention may exist in

tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.

Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a ¹³C- or ¹⁴C-enriched carbon are within the scope of this invention.

Embodiments of this invention are shown below for the Ht ring being pyrazol-3-yl (II-A), [1,2,4]triazol-3-yl (II-B), [1,2,3]triazol-4-yl (II-C and II-D), and tetrazol-5-yl (II-E):

wherein R¹⁻⁴, T, and Q are as described above.

Preferred compounds of formulae II-A, II-B, II-C, II-D, and II-E include those having one or more, and most preferably all, of the following features: (a) Q is -CO-, -CO₂-, or -CONH-; (b) T is a valence bond; (c) R¹ is hydrogen or NHR; (d) R² is an optionally substituted aryl ring, more preferably an optionally substituted phenyl ring; (e) R³ is hydrogen; (f) R⁴ is selected from R⁵, -NHR⁵, -N(R⁵)₂, -NR⁵R⁶, -NHCHR⁵R⁶, or -NHCH₂R⁵; and/or (g) R⁵ is an optionally substituted group selected from aryl, aralkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl group, (CH₂)_yR⁶, (CH₂)_yR⁷, or (CH₂)_yCH(R⁶)(R⁷).

Examples of substitutions of the R² phenyl group include halo, nitro, alkoxy, and amino.

When R⁴ is R⁵, examples of preferred R⁵ groups include pyrrolidin-1-yl, morpholin-1-yl, piperidin-1-yl, and piperazin-1-yl wherein each group is optionally substituted. When R⁴ is -NHR⁵ or -N(R⁵)₂, preferred R⁵ groups further include (CH₂)_yR⁶, (CH₂)_yR⁷, and (CH₂)_yCH(R⁶)(R⁷). Examples of preferred R⁶ and R⁷ include pyridin-3-yl, pyridin-4-yl, imidazolyl, furan-2-yl, tetrahydrofuran-2-yl, cyclohexyl, phenyl, -CH₂OH, -(CH₂)₂OH, and isopropyl, wherein each group is optionally substituted.

Preferred embodiments of this invention are represented by formulae III-A, III-B, III-C, III-D, and III-E:

III-A

III-B

III-C

wherein R², R⁴, and T are as described above.

Exemplary compounds of formula II-A, II-B, II-C,
5 and II-E are set forth in Table 1 below.

Table 1. Compounds II-A, II-B, II-C, and II-E

No.	Structure
II-A 1	
II-A 2	
II-A 3	
II-A 4	

No.	Structure
II-A 5	
II-A 6	
II-A 7	
II-A 8	
II-B 1	
II-B 2	

No.	Structure
III-B 3	
III-C 1	
III-C 2	
III-C 3	
III-C 4	
III-E 1	

No.	Structure
II-E 2	
II-E 3	

Other embodiments of this invention relate to compounds of formulae IV-A to IV-E:

wherein T, R, R², and R⁴ are as described above.

Preferred compounds of formulae IV-A, IV-B, IV-C,

10 IV-D, and IV-E include those having one or more, and most preferably all, of the following features: (a) T is a valence bond; (b) R³ is hydrogen; and/or (c) R₂ is an optionally substituted aryl ring, more preferably an optionally substituted phenyl ring.

Exemplary compounds of formula IV-A, IV-B, IV-C, and IV-E are set forth in Table 2 below.

Table 2. Compounds IV-A

No.	Structure
IV-A 1	
IV-A 2	
IV-A 3	
IV-A 4	
IV-A 5	

No.	Structure
IV-B 1	
IV-B 2	
IV-B 3	
IV-C 1	
IV-C 2	
IV-C 3	

No.	Structure
IV-E 1	
IV-E 2	
IV-E 3	

The present compounds may be prepared in general by methods known to those skilled in the art for analogous compounds. Compounds of formula II-A may be prepared according to a modified method of Finar, I. L., J. Chem. Soc., (1955), pp. 1205, as shown in Scheme 1 below for the preparation of compound II-A6.

Scheme 1

Compounds of formula II-B may be prepared according to the methods of Clitherow, J.W., et al, Bioorg. Med. Chem. Lett., (1996) pp. 833-838, as shown in Scheme 2 below for the preparation of compound II-B3.

5

Scheme 2

Compounds of formula II-C may be prepared
10 according to the methods of Beck, G., et al, Chem. Ber.,
(1973) pp. 106, as shown in Scheme 3 below for the
preparation of compound II-C4.

Scheme 3

15

Compounds of formula II-E may be prepared
according to the methods of Kaltenbronn, J.S., et al, Eur.
J. med. Chem., (1997) pp. 425-431, and Norman, M.H., et al,
(1995) pp. 4670-4678, as shown in Scheme 4 below for the
20 preparation of compound II-E3.

Scheme 4

According to another embodiment, the invention
 5 provides a method of inhibiting kinase activity in a
 biological sample. This method comprises the step of
 contacting said biological sample with a compound of this
 invention.

The term "biological sample", as used herein
 10 includes cell cultures or extracts thereof; biopsied
 material obtained from a mammal or extracts thereof; and
 blood, saliva, urine, feces, semen, tears, or other body
 fluids or extracts thereof. The term "biological sample"
 also includes living organisms, in which case "contacting a
 15 compound of this invention with a biological sample" is
 synonymous with the term "administering said compound (or
 composition comprising said compound) to an animal."

One aspect of this invention relates to a method
 for treating a disease state in mammals that is alleviated
 20 by treatment with a protein kinase inhibitor, which method
 comprises administering to a mammal in need of such a
 treatment a therapeutically effective amount of a compound
 of formula I:

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

Ht is a heterocyclic ring selected from pyrazol-3-yl,

[1,2,4]triazol-3-yl, [1,2,3]triazol-4-yl, or tetrazol-5-
5 yl, said pyrazol-3-yl having R³ and QR⁴ substituents, and
said [1,2,4]triazol-3-yl or [1,2,3]triazol-4-yl
substituted by either R³ or QR⁴;

R¹ is selected from R, F, Cl, N(R⁸)₂, OR, NRCOR,
NRCON(R⁸)₂, -CON(R⁸)₂, SO₂R, NRSO₂R, or SO₂N(R⁸)₂;

10 T is selected from a valence bond or a linker group;
each R is independently selected from hydrogen or an
optionally substituted aliphatic group having one to six
carbons;

R² is selected from hydrogen, CN, halogen, or an optionally
15 substituted group selected from aryl, aralkyl,
heteroaryl, heterocyclyl, acyclic aliphatic chain group
having one to six carbons, or a cyclic aliphatic group
having three to ten carbons;

R³ is selected from R, OH, OR, N(R⁸)₂, F, Cl, or CN;

20 Q is a valence bond, J, or an optionally substituted C₁₋₆
alkylidene chain wherein up to two nonadjacent carbons of
the alkylidene chain are each optionally and
independently replaced by J;

J is selected from -C(=O)-, -CO₂-, -C(O)C(O)-, -NRCONR⁸-,
25 -N(R)N(R⁸)-, -C(=O)NR⁸-, -NRC(=O)-, -O-, -S-, -SO-,
-SO₂-, -N(R)O-, -ON(R⁸)-, -OC(=O)N(R⁸)-, -N(R)COO-,
-SO₂N(R⁸)-, -N(R)SO₂-, or -N(R⁸)-;

R⁴ is selected from -R⁸, -R⁵, -NH₂, -NHR⁵, -N(R⁵)₂, or
-NR⁵(CH₂)_yN(R⁵)₂;

30 each R⁵ is independently selected from R⁶, R⁷,
-(CH₂)_yCH(R⁶)(R⁷), -(CH₂)_yR⁶, -(CH₂)_yCH(R⁶)₂,
-(CH₂)_yCH(R⁷)₂, or -(CH₂)_yR⁷;

y is 0-6;

each R⁶ is an optionally substituted group independently selected from an aliphatic, aryl, aralkyl, aralkoxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, heterocyclyl, heterocyclylalkyl, or heterocyclylalkoxy, group;

each R⁷ is independently selected from an optionally substituted aliphatic, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, or alkoxy carbonyl;

each R⁸ is independently selected from R or two R⁸ on the same nitrogen taken together with the nitrogen optionally form a four to eight membered, saturated or unsaturated heterocyclic ring having one to three heteroatoms; and each substitutable ring nitrogen is independently substituted by R, NR₂, COR, CO₂(C₁-C₆ optionally substituted alkyl), SO₂(C₁-C₆ optionally substituted alkyl), CONR₂, or SO₂NR₂.

One embodiment comprises administering a compound of formula II-A, II-B, II-C, II-D, or II-E. A preferred embodiment comprises administering a compound of formula II-A or II-B, more preferably a compound of formula II-A and most preferably a compound listed in Table 1. Another preferred embodiment comprises administering a compound of formula III-A or III-B, and most preferably a compound of formula III-A or a compound listed in Table 2.

Pharmaceutical compositions useful for such methods are described below.

The present method is especially useful for treating a disease state that is alleviated by the use of an inhibitor of ERK, JAK, JNK, Aurora, GSK, KDR, or AKT. As used herein, unless otherwise indicated, the terms "ERK", "JAK", "JNK", "Aurora", "KDR", and "GSK" refer to all known

isoforms of the respective enzymes including, but not limited to, ERK1, ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, JAK1, JAK2, JAK3, JAK4, JNK1, JNK2, JNK3, Aurora1, Aurora2, KDR, GSK3-alpha, and GSK3-beta.

5 The activity of the compounds as protein kinase inhibitors, for example as ERK inhibitors, may be assayed *in vitro*, *in vivo* or in a cell line. Using ERK as an example, *in vitro* assays include assays that determine inhibition of either the kinase activity or ATPase activity
10 of activated ERK. Alternate *in vitro* assays quantitate the ability of the inhibitor to bind to ERK and may be measured either by radiolabelling the inhibitor prior to binding, isolating the inhibitor/ERK complex and determining the amount of radiolabel bound, or by running a competition
15 experiment where new inhibitors are incubated with ERK bound to known radioligands. One may use any type or isoform of ERK, depending upon which ERK type or isoform is to be inhibited.

The protein kinase inhibitors of this invention, or pharmaceutical salts thereof, may be formulated into pharmaceutical compositions for administration to animals or humans. These pharmaceutical compositions effective to treat or prevent a protein kinase-mediated condition which comprise the protein kinase inhibitor in an amount sufficient to detectably inhibit protein kinase activity and a pharmaceutically acceptable carrier, are another embodiment of the present invention. The term "detectably inhibit", as used herein means a measurable change in activity between a sample containing said inhibitor and a sample containing only a protein kinase.

The term "ERK-mediated condition", as used herein
20 means any disease or other deleterious condition in which

ERK is known to play a role. Such conditions include, without limitation, cancer, stroke, diabetes, hepatomegaly, cardiovascular disease including cardiomegaly, Alzheimer's disease, cystic fibrosis, viral disease, autoimmune diseases, atherosclerosis, restenosis, psoriasis, allergic disorders including asthma, inflammation, neurological disorders and hormone-related diseases. The term "cancer" includes, but is not limited to, the following cancers: breast, ovary, cervix, prostate, testis, genitourinary tract, esophagus, larynx, glioblastoma, neuroblastoma, stomach, skin, keratoacanthoma, lung, epidermoid carcinoma, large cell carcinoma, small cell carcinoma, lung adenocarcinoma, bone, colon, adenoma, pancreas, adenocarcinoma, thyroid, follicular carcinoma, undifferentiated carcinoma, papillary carcinoma, seminoma, melanoma, sarcoma, bladder carcinoma, liver carcinoma and biliary passages, kidney carcinoma, myeloid disorders, lymphoid disorders, Hodgkin's, hairy cells, buccal cavity and pharynx (oral), lip, tongue, mouth, pharynx, small intestine, colon-rectum, large intestine, rectum, brain and central nervous system, and leukemia.

Compounds of the present invention are also useful as inhibitors of related kinases. The term "related kinases" refer to protein kinases having residues which are similar to those residues which line the ERK binding site. Without wishing to be bound by theory, applicants speculate that this inhibitory activity is due to the close structural similarity between the active sites of ERK and related kinases. The alignment of the ERK sequence with other kinases can be derived from common software programs such as the "bestfit" program available from Genetics Computer Group. This program uses the local homology

algorithm described by Smith and Waterman in *Advances in Applied Mathematics* 2; 482 (1981).

Related kinases inhibited by the compounds of this invention would contain residues, identified by the above standard protein sequence alignment software, corresponding to the ERK residues: I31, E33, G34, A35, Y36, G37, M38, V39, A52, K54, R67, T68, E71, L75, I84, I86, I103, Q105, D106, L107, M108, E109, D111, K114, D149, K151, S153, N154, L156, C166, and D167, with a similarity score of 80% or greater. The similarity score may be determined using standard amino acid substitution tables such as those described by Dayhoff (Dayhoff, M.O., et al, *Atlas of Protein Sequence and Structure*, 1979) and Blosum-Henikoff (Blosum-Henikoff, S and Henikoff, J.G., *PNAS*, 1992, 89:10915-10919). The term "related kinases" also includes those containing residues with a similarity score of 80% or greater to the following ERK residues: I31, G37, A52, I103, E109, and N154.

Compounds of the present invention are also useful as inhibitors of JAK-family kinases. Without wishing to be bound by theory, applicants speculate that this inhibitory activity is due to the close structural similarity between the active sites of ERK and JAK as determined by the standard methods described above.

It has been found, from in-house x-ray crystal structure experiments with ERK-bound inhibitors, that three amino-acid residues in the ERK active site form key hydrogen bonding interactions with these types of inhibitors. These three amino-acid residues are M108, D106, and Q105. This amino acid numbering corresponds to the Swiss-Prot database entry for accession #P28482. The Swiss-Prot database is an international protein sequence

database distributed by the European Bioinformatics Institute (EBI) in Geneva, Switzerland. The database can be found at www.ebi.ac.uk/swissprot.

The backbone atoms of M108 and D106, and the
5 associated interactions, are common to all kinases. M108 provides both a hydrogen bond donor and acceptor and D106 provides a hydrogen bond acceptor through its backbone CO. An inhibitor that could form a hydrogen-bond to one or more of these hydrogen-bonding groups within the active site are
10 expected to bind to the enzyme and, therefore, show inhibition.

The Q105 glutamine residue is implicated in a subset of kinases that includes ERK and JAK as determined by examination of the alignment data obtained from the
15 above mentioned software programs. Q105 provides a key hydrogen-bond accepting side-chain CO. Modeling experiments reveal that for both ERK and JAK, the hydrogen bond donor of the Ht-ring is within hydrogen-bonding distance to the Q105 residue. Because of these active-site
20 interactions, the ERK inhibitors of the present invention will inhibit JAK as well. Accordingly, these compounds are expected to be useful for treating JAK-mediated conditions.

The term "JAK-mediated condition", as used herein, means any disease or other deleterious condition in
25 which JAK is known to play a role. Such conditions include, without limitation, allergic disorders such as asthma and atopic dermatitis, autoimmune diseases such as SLE lupus and psoriasis, and conditions associated with organ transplantations.

30 The compounds of this invention will also inhibit JNK-family kinases, useful for treating JNK-mediated conditions. The term "JNK-mediated condition", as used

herein, means any disease or other deleterious condition in which JNK is known to play a role. Such conditions include, without limitation, apoptosis-driven neurodegenerative diseases such as Alzheimer's Disease,

5 Parkinson's Disease, ALS (Amyotrophic Lateral Sclerosis), epilepsy and seizures, Huntington's Disease, traumatic brain injuries, as well as ischemic and hemorrhaging stroke, heart disease, immunodeficiency disorders, inflammatory diseases, allergic disorders, autoimmune diseases, destructive bone disorders such as osteoporosis, proliferative disorders, infectious diseases, viral diseases, disorders relating to cell death and hyperplasia including reperfusion/ischemia in stroke, heart attacks, and organ hypoxia, thrombin-induced platelet aggregation,

10 chronic myelogenous leukemia (CML), rheumatoid arthritis, asthma, osteoarthritis, ischemia, cancer, liver disease including hepatic ischemia, heart disease such as myocardial infarction and congestive heart failure, pathologic immune conditions involving T cell activation

15 and neurodegenerative disorders.

20

The compounds of this invention will also inhibit Aurora, useful for treating Aurora-mediated conditions. The term "Aurora-mediated condition", as used herein, means any disease or other deleterious condition in which Aurora is known to play a role. Such conditions include, without limitation, various types of cancer such as colon and ovarian cancers.

The compounds of this invention will also inhibit KDR family kinases, useful for treating KDR-mediated conditions. The term "KDR-mediated condition", as used herein, means any disease or other deleterious condition in which KDR is known to play a role. Such conditions

include, without limitation, cancer such as brain cancer, genitourinary tract cancer, lymphatic system cancer, stomach cancer, cancer of the larynx, lung cancer, pancreatic cancer, breast cancer, Kaposi's sarcoma, and

5 leukemia; endometriosis, benign prostatic hyperplasia; vascular diseases such as restenosis and atherosclerosis; autoimmune diseases such as rheumatoid arthritis and psoriasis; ocular conditions such as proliferative or angiogenic retinopathy and macular degeneration; and

10 inflammatory diseases such as contact dermatitis, asthma and delayed hypersensitivity reactions.

The compounds of this invention will also inhibit GSK family kinases, useful for treating GSK-mediated conditions. The term "GSK-mediated condition", as used

15 herein, means any disease or other deleterious condition in which GSK is known to play a role. Such conditions include, without limitation, bipolar disorder, mania, Alzheimers disease, diabetes, and leukopenia.

In addition to the compounds of this invention,

20 pharmaceutically acceptable derivatives or prodrugs of the compounds of this invention may also be employed in compositions to treat or prevent the above-identified disorders.

A "pharmaceutically acceptable derivative or

25 prodrug" means any pharmaceutically acceptable salt, ester, salt of an ester or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active

30 metabolite or residue thereof. Particularly favored derivatives or prodrugs are those that increase the bioavailability of the compounds of this invention when

such compounds are administered to a mammal (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the
5 brain or lymphatic system) relative to the parent species.

Pharmaceutically acceptable prodrugs of the compounds of this invention include, without limitation, esters, amino acid esters, phosphate esters, metal salts and sulfonate esters.

10 Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-
15 hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate,
20 tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.
25

30 Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and $N^+(C_{1-4} \text{ alkyl})_4$ salts.

This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.

5 Pharmaceutically acceptable carriers that may be used in these pharmaceutical compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, 10 potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, 15 waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.

The compositions of the present invention may be 20 administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, 25 intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously.

Sterile injectable forms of the compositions of this invention may be aqueous or an oleaginous suspension. 30 These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable

preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be 5 employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, 10 such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long- 15 chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other 20 emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.

The pharmaceutical compositions of this invention 25 may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium 30 stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are

required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.

5 Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at
10 rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.

15 The pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.

20 Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.

25 For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white
30 petrolatum, propylene glycol, polyoxyethylene, polyoxypolypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be

formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.

For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.

The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.

The amount of ERK inhibitor that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between about 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions.

It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the

activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular 5 disease being treated. The amount of inhibitor will also depend upon the particular compound in the composition.

The kinase inhibitors of this invention or pharmaceutical compositions thereof may also be incorporated into compositions for coating an implantable 10 medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Vascular stents, for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury). However, patients using stents or other implantable devices risk 15 clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a composition comprising a kinase inhibitor. Compositions comprising a kinase inhibitor of this invention and a suitable carrier or coating are another 20 embodiment of the present invention.

Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a 25 hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or 30 combinations thereof to impart controlled release characteristics in the composition. Implantable devices

coated with a kinase inhibitor of this invention are another embodiment of the present invention.

According to another embodiment, the invention provides methods for treating or preventing an ERK-, 5 JAK-, JNK-, Aurora-, KDR-, or GSK-mediated condition, or disease state, comprising the step of administering to a patient one of the above-described pharmaceutical compositions. The term "patient", as used herein, means an animal, preferably a mammal, and most preferably a human.

10 Preferably, that method is used to treat or prevent a condition selected from cancers such as cancers of the breast, colon, prostate, skin, pancreas, brain, genitourinary tract, lymphatic system, stomach, larynx and lung, including lung adenocarcinoma and small cell lung 15 cancer, stroke, diabetes, hepatomegaly, cardiomegaly, Alzheimer's disease, cystic fibrosis, and viral disease, or any specific disease or disorder described above.

Depending upon the particular condition, or disease state, to be treated or prevented, additional 20 therapeutic agents, which are normally administered to treat or prevent that condition, may be administered together with the inhibitors of this invention. For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the inhibitors of 25 this invention to treat proliferative diseases and cancer. Examples of known chemotherapeutic agents include, but are not limited to, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil, topotecan, taxol, interferons, and platinum derivatives.

30 Other examples of agents the inhibitors of this invention may also be combined with include, without limitation, anti-inflammatory agents such as

corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons,

5 corticosteroids, cyclophosphamide, azathioprine, and sulfasalazine; neurotrophic factors such as acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating

10 cardiovascular disease such as beta-blockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and anti-viral agents; agents for treating blood disorders such as

15 corticosteroids, anti-leukemic agents, and growth factors; agents for treating diabetes such as insulin, insulin analogues, alpha glucosidase inhibitors, biguanides, and insulin sensitizers; and agents for treating immunodeficiency disorders such as gamma globulin.

These additional agents may be administered separately, as part of a multiple dosage regimen, from the inhibitor-containing composition. Alternatively, these agents may be part of a single dosage form, mixed together with the inhibitor in a single composition.

20 In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.

25

EXAMPLES

Example 1ERK Inhibition Assay:

Compounds may be assayed for the inhibition of ERK2 by a spectrophotometric coupled-enzyme assay (Fox et al (1998) *Protein Sci* 7, 2249). In this assay, a fixed concentration of activated ERK2 (10 nM) is incubated with various concentrations of the compound in DMSO (2.5 %) for 10 min. at 30°C in 0.1 M HEPES buffer, pH 7.5, containing 10 mM MgCl₂, 2.5 mM phosphoenolpyruvate, 200 μM NADH, 150 μg/mL pyruvate kinase, 50 μg/mL lactate dehydrogenase, and 200 μM erktide peptide. The reaction is initiated by the addition of 65 μM ATP. The rate of decrease of absorbance at 340 nm is monitored. The IC₅₀ is evaluated from the rate data as a function of inhibitor concentration.

15

Example 2ERK Inhibition Cell Proliferation Assay:

Compounds may be assayed for the inhibition of ERK2 by a cell proliferation assay. In this assay, a complete media is prepared by adding 10% fetal bovine serum and penicillin/streptomycin solution to RPMI 1640 medium (JRH Biosciences). Colon cancer cells (HT-29 cell line) are added to each of 84 wells of a 96 well plate at a seeding density of 10,000 cells/well/150 μL. The cells are allowed to attach to the plate by incubating at 37°C for 2 hours. A solution of test compound is prepared in complete media by serial dilution to obtain the following concentrations: 20 μM, 6.7 μM, 2.2 μM, 0.74 μM, 0.25 μM, and 0.08 μM. The test compound solution (50 μL) is added to each of 72 cell-containing wells. To the 12 remaining cell-containing wells, only complete media (200 μL) is added

to form a control group in order to measure maximal proliferation. To the remaining 12 empty wells, complete media is added to form a vehicle control group in order to measure background. The plates are incubated at 37°C for 3 days. A stock solution of ^3H -thymidine (1 mCi/mL, New England Nuclear, Boston, MA) is diluted to 20 $\mu\text{Ci}/\text{mL}$ in RPMI medium then 20 μL of this solution is added to each well. The plates are further incubated at 37°C for 8 hours then harvested and analyzed for ^3H -thymidine uptake using a liquid scintillation counter.

Example 3

JAK Inhibition Assay:

Compound inhibition of JAK may be assayed by the method described by G. R. Brown, et al, *Bioorg. Med. Chem. Lett.* 2000, vol. 10, pp 575-579 in the following manner. Into Maxisorb plates, previously coated at 4°C with Poly (Glu, Ala, Tyr) 6:3:1 then washed with phosphate buffered saline 0.05% and Tween (PBST), is added 2 μM ATP, 5 mM MgCl₂, and a solution of compound in DMSO. The reaction is started with JAK enzyme and the plates incubated for 60 minutes at 30°C. The plates are then washed with PBST, 100 μL HRP-Conjugated 4G10 antibody is added, and the plate incubated for 90 minutes at 30°C. The plate is again washed with PBST, 100 μL TMB solution is added, then the plates are incubated for another 30 minutes at 30°C. Sulfuric acid (100 μL of 1M) is added to stop the reaction and the plate is read at 450 nM to obtain the optical densities for analysis to determine IC₅₀ values.

JNK Inhibition Assay:

Compounds may be screened in the following manner for their ability to inhibit JNK using a spectrophotometric coupled-enzyme assay. To an assay stock buffer solution containing 0.1 M HEPES buffer (pH 7.5), 10 mM MgCl₂, 2.5 mM phosphoenolpyruvate, 200 μM NADH, 150 μg/mL pyruvate kinase, 50 μg/mL lactate dehydrogenase, and 200 μM EGF receptor peptide (with sequence KRELVEPLTPSGEAPNQALLR), are added various concentrations of the compound in DMSO and a fixed concentration (10 nM) of activated JNK. The resulting mixture is incubated at 30°C for 10 minutes then the reaction is initiated by the addition of 10 μM ATP. The decrease of absorbance at 340 nM at 30°C is monitored as a function of time and the resulting data is fitted to a competitive inhibition kinetic model to determine the K_i.

Example 5Aurora Inhibition Assay:

Compounds may be screened in the following manner for their ability to inhibit Aurora using a standard coupled enzyme assay. To an assay stock buffer solution containing 0.1M HEPES 7.5, 10 mM MgCl₂, 25 mM NaCl, 2.5 mM phosphoenolpyruvate, 300 μM NADH, 30 μg/mL pyruvate kinase, 10 μg/mL lactate dehydrogenase, 40 μM ATP, and 800 μM peptide (LRRASLG, American Peptide, Sunnyvale, CA) is added a 30 μM solution of the compound in DMSO and the resulting mixture incubated at 30°C for 10 min. The reaction is initiated by the addition of 10 μL of 70 nM Aurora and 1 mM DTT. The rates of reaction are obtained by monitoring absorbance at 340 nM over a 5 minute read time at 30°C using a BioRad Ultramark plate reader (Hercules, CA). The

IC_{50} is determined from the rate data as a function of inhibitor concentration.

Example 6

5 GSK-3 Inhibition Assay:

Compounds may be screened in the following manner for their ability to inhibit Glycogen Synthase Kinase 3 (GSK-3) using a standard coupled enzyme assay (Fox et al (1998) *Protein Sci* 7, 2249). To an assay stock buffer 10 solution containing 0.1M HEPES 7.5, 10 mM MgCl₂, 25 mM NaCl, 2.5 mM phosphoenolpyruvate, 300 μM NADH, 1mM DTT, 30 μg/mL pyruvate kinase, 10 μg/mL lactate dehydrogenase, 300 μM peptide (HSSPHQp-SEDEEE, American Peptide, Sunnyvale, CA), and 60 nM GSK-3, is added a 30 μM solution of the compound 15 in DMSO and the resulting mixture incubated at 30°C for 5 min. The reaction is initiated by the addition of 10 μM ATP. The rates of reaction are obtained by monitoring absorbance at 340 nm over a 5 minute read time at 30°C using a Molecular Devices plate reader (Sunnyvale, CA). 20 The IC_{50} is determined from the rate data as a function of inhibitor concentration.

Example 7

KDR Inhibition Assay:

25 Compounds were screened for their ability to inhibit KDR using a standard coupled enzyme assay (Fox et al., *Protein Sci.*, (1998) 7, 2249). Assays were carried out in a mixture of 200 mM HEPES 7.5, 10 mM MgCl₂, 25 mM NaCl , 1 mM DTT and 1.5% DMSO. Final substrate 30 concentrations in the assay were 300μM ATP (Sigma Chemicals) and 10 μM poly E4Y (Sigma). Assays were carried

out at 37 °C and 30 nM KDR. Final concentrations of the components of the coupled enzyme system were 2.5 mM phosphoenolpyruvate, 200 µM NADH, 30 µg/ML pyruvate kinase and 10 µg/ml lactate dehydrogenase.

5 An assay stock buffer solution was prepared containing all of the reagents listed above, with the exception of ATP and the test compound of interest. 177 µl of the stock solution was placed in a 96 well plate followed by addition of 3 µl of 2 mM DMSO stock containing
10 the test compound (final compound concentration 30 µM). The plate was preincubated for about 10 minutes at 37 °C and the reaction initiated by addition of 20 µl of ATP (final concentration 300 µM). Rates of reaction were obtained using a Molecular Devices plate reader (Sunnyvale, CA) over a 5 minute read time at 37°C. Compounds showing greater than 50% inhibition versus standard wells containing the assay mixture and DMSO without test compound were titrated to determine IC₅₀ values determined.
15

While we have described a number of embodiments
20 of this invention, it is apparent that our basic examples may be altered to provide other embodiments which utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the
25 specific embodiments which have been represented by way of example.

We Claim:

1. A compound of formula I:

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

Ht is a heterocyclic ring selected from pyrazol-3-yl,

[1,2,4]triazol-3-yl, [1,2,3]triazol-4-yl, or tetrazol-5-yl, said pyrazol-3-yl having R³ and QR⁴ substituents, and said [1,2,4]triazol-3-yl or [1,2,3]triazol-4-yl substituted by either R³ or QR⁴;

R¹ is selected from R, F, Cl, N(R⁸)₂, OR, NRCOR,
NRCON(R⁸)₂, CON(R⁸)₂, SO₂R, NRSO₂R, or SO₂N(R⁸)₂;

T is selected from a valence bond or a linker group; each R is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons;

R² is selected from hydrogen, CN, halogen, or an optionally substituted group selected from aryl, aralkyl, heteroaryl, heterocyclyl, acyclic aliphatic chain group having one to six carbons, or a cyclic aliphatic group having three to ten carbons;

R³ is selected from R, OH, OR, N(R⁸)₂, F, Cl, or CN;

Q is a valence bond, J, or an optionally substituted C₁₋₆ alkylidene chain wherein up to two nonadjacent carbons of the alkylidene chain are each optionally and independently replaced by J;

J is selected from -C(=O)-, -CO₂-, -C(O)C(O)-, -NRCONR⁸-,
-N(R)N(R⁸)-, -C(=O)NR⁸-, -NRC(=O)-, -O-, -S-, -SO-,
-SO₂-, -N(R)O-, -ON(R⁸)-, -OC(=O)N(R⁸)-, -N(R)COO-,
-SO₂N(R⁸)-, -N(R)SO₂-, or -N(R⁸)-;

R⁴ is selected from -R⁸, -R⁵, -NH₂, -NHR⁵, -N(R⁵)₂, or
-NR⁵(CH₂)_yN(R⁵)₂;

each R⁵ is independently selected from R⁶, R⁷,
-(CH₂)_yCH(R⁶)(R⁷), -(CH₂)_yR⁶, -(CH₂)_yCH(R⁶)₂, -(CH₂)_yCH(R⁷)₂,
or -(CH₂)_yR⁷;

y is 0-6;

each R⁶ is an optionally substituted group independently
selected from an aliphatic, aryl, aralkyl, aralkoxy,
heteroaryl, heteroarylalkyl, heteroarylalkoxy,
heterocyclyl, heterocyclylalkyl, or heterocyclylalkoxy,
group;

each R⁷ is independently selected from an optionally
substituted aliphatic, hydroxyalkyl, alkoxyalkyl,
aryloxyalkyl, or alkoxycarbonyl;

each R⁸ is independently selected from R or two R⁸ on the
same nitrogen taken together with the nitrogen optionally
form a four to eight membered, saturated or unsaturated
heterocyclic ring having one to three heteroatoms;
and each substitutable ring nitrogen is independently
substituted by R, NR₂, COR, CO₂(C₁-C₆ optionally
substituted alkyl), SO₂(C₁-C₆ optionally substituted
alkyl), CONR₂, or SO₂NR₂;

provided that: (a) TR² and QR⁴ are not the same; (b) TR² and
R³ are not the same; (c) when Ht is tetrazol-5-yl and R¹
is methyl, then TR² is other than hydrogen; (d) when Ht
is [1,2,3]triazole-4-yl and R¹ and R³ are both methyl,
then TR² is other than hydrogen; and (e) when Ht is

pyrazol-3-yl and R¹ and R³ are both hydrogen, then TR² is other than methyl when QR⁴ is phenyl in the 4-position;.

2. The compound according to claim 1, said compound is selected from the following:

or a pharmaceutically acceptable derivative or prodrug thereof.

3. The compound according to claim 2 having the formula

or a pharmaceutically acceptable derivative or prodrug thereof.

4. The compound according to any one of claims 1, 2, or 3 having one or more of the following features: (a) Q is -CO-, -CO₂-, or -CONH-; (b) T is a valence bond; (c) R¹ is

hydrogen or NHR; (d) R² is an optionally substituted aryl ring; (e) R³ is hydrogen; (f) R⁴ is selected from R⁵, -NHR⁵, -N(R⁵)₂, -NR⁵R⁶, -NHCHR⁵R⁶, or -NHCH₂R⁵; or (g) R⁵ is an optionally substituted group selected from aryl, aralkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl group, (CH₂)_yR⁶, (CH₂)_yR⁷, or (CH₂)_yCH(R⁶)(R⁷).

5. The compound according to claim 4 having the formula

III-A

or a pharmaceutically acceptable derivative or prodrug thereof.

6. The compound according to claim 5 having the following features: (a) T is a valence bond; (b) R² is an optionally substituted aryl ring; (c) R⁴ is selected from R⁵, -NHR⁵, -N(R⁵)₂, -NR⁵R⁶, -NHCHR⁵R⁶, or -NHCH₂R⁵; and (d) R⁵ is an optionally substituted group selected from aryl, aralkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl group, -(CH₂)_yR⁶, -(CH₂)_yR⁷, or -(CH₂)_yCH(R⁶)(R⁷).

7. The compound according to claim 1 wherein said compound is selected from those listed in Table 1.

8. The compound according to claim 1, said compound selected from the following:

or a pharmaceutically acceptable derivative or prodrug thereof.

9. The compound according to claim 8 having one or more of the following features: (a) Q is -CO-, -CO₂-, or -CONH-; (b) T is a valence bond; (c) R² is an optionally substituted aryl ring; (d) R³ is hydrogen; (e) R⁴ is selected from R⁵, -NHR⁵, -N(R⁵)₂, -NR⁵R⁶, -NHCHR⁵R⁶, or -NHCH₂R⁵; or (f) R⁵ is an optionally substituted group selected from aryl, aralkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl group, (CH₂)_yR⁶, (CH₂)_yR⁷, or (CH₂)_yCH(R⁶)(R⁷).

10. The compound according to claim 9 having the formula

IV-A

or a pharmaceutically acceptable derivative or prodrug thereof.

11. The compound according to claim 10 having the following features: (a) T is a valence bond; (b) R² is an optionally substituted aryl ring; (c) R⁴ is selected from R⁵, -NHR⁵, -N(R⁵)₂, -NR⁵R⁶, -NHCHR⁵R⁶, or -NHCH₂R⁵; and (d) R⁵ is an optionally substituted group selected from aryl, aralkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl group, -(CH₂)_yR⁶, -(CH₂)_yR⁷, or -(CH₂)_yCH(R⁶)(R⁷).

12. The compound according to claim 1 wherein said compound is selected from those listed in Table 2.

13. A composition comprising a compound according to any one of claims 1 to 12 in an amount sufficient to detectably inhibit protein kinase activity, said protein kinase selected from one or more of ERK, JAK, JNK, Aurora, GSK, KDR, AKT, or a protein kinase related thereto; and a pharmaceutically acceptable carrier.

14. The composition according to claim 13 wherein said compound is formulated in a pharmaceutically acceptable manner for administration to a patient.
15. A composition according to claim 13 further comprising a therapeutic agent, either as part of a multiple dosage form together with said compound or as a separate dosage form.
16. A method of inhibiting protein kinase activity in a biological sample, wherein said protein kinase is selected from ERK, JAK, JNK, Aurora, GSK, KDR, AKT, or a protein kinase related thereto, comprising the step of contacting said sample with a compound according to any one of claims 1 to 12.
17. A method for treating a protein kinase-mediated disease state in a patient, wherein said protein kinase is selected from one or more of ERK, JAK, JNK, Aurora, KDR, AKT, or a protein kinase related thereto, comprising the step of administering to said patient a composition according to claim 13.
18. The method according to claim 17, comprising the additional step of administering to said patient a therapeutic agent either as part of a multiple dosage form together with said compound or as a separate dosage form.
19. A method of treating a disease state in a patient, wherein said disease state is selected from cancer, stroke, diabetes, hepatomegaly, cardiovascular disease, Alzheimer's disease, cystic fibrosis, viral disease, autoimmune

diseases, atherosclerosis, restenosis, psoriasis, allergic disorders, inflammation, neurological disorders, a hormone-related disease, conditions associated with organ transplantation, immunodeficiency disorders, destructive bone disorders, proliferative disorders, infectious diseases, conditions associated with cell death, thrombin-induced platelet aggregation, chronic myelogenous leukemia (CML), liver disease, pathologic immune conditions involving T cell activation, or CNS disorders, comprising the step of administering to said patient a composition according to claim 13.

20. The method according to claim 19 wherein the disease state is cancer.

21. The method according to claim 20 wherein the disease state is a cancer selected from breast; ovary; cervix; prostate; testis, genitourinary tract; esophagus; larynx, glioblastoma; neuroblastoma; stomach; skin, keratoacanthoma; lung, epidermoid carcinoma, large cell carcinoma, small cell carcinoma, lung adenocarcinoma; bone; colon, adenoma; pancreas, adenocarcinoma; thyroid, follicular carcinoma, undifferentiated carcinoma, papillary carcinoma; seminoma; melanoma; sarcoma; bladder carcinoma; liver carcinoma and biliary passages; kidney carcinoma; myeloid disorders; lymphoid disorders, Hodgkin's, hairy cells; buccal cavity and pharynx (oral), lip, tongue, mouth, pharynx; small intestine; colon-rectum, large intestine, rectum; brain and central nervous system; or leukemia.

22. The method according to claim 20 comprising the additional step of administering to said patient a chemotherapeutic agent either as part of a multiple dosage form together with said compound or as a separate dosage form.

23. The method according to claim 19 wherein the disease state is cardiovascular disease.

24. The method according to claim 23 wherein the disease state is a cardiovascular disease selected from restenosis, cardiomegaly, atherosclerosis, myocardial infarction, or congestive heart failure.

25. The method according to claim 23 comprising the additional step of administering to said patient a therapeutic agent for treating cardiovascular disease either as part of a multiple dosage form together with said compound or as a separate dosage form.

26. A composition for coating an implantable device comprising a compound according to claim 1 and a carrier suitable for coating said implantable device.

5

27. An implantable device coated with a composition according to claim 26.