Find the limits of the following using appropriate method:

1.
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$

2.
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$

3.
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 2x - 3}$$

4.
$$\lim_{x \to 7} \frac{x^2 + 2x - 63}{x^2 - 10x + 21}$$

5.
$$\lim_{x \to 0} \frac{x^3 + 5x^2 + 11x}{7x^2 + 2x}$$

6.
$$\lim_{x \to 3} \left[\frac{1}{x-3} - \frac{3}{x^2 - 3x} \right]$$

7.
$$\lim_{x \to 0} \frac{x^2 + 2x + 5}{x^2 + 3x + 1}$$

8.
$$\lim_{x \to 1} \frac{\sqrt{x} - 2}{x - 4}$$

9.
$$\lim_{x \to 1} \frac{x+3}{\sqrt{x+4}-1}$$

10.
$$\lim_{x \to 1} \frac{\sqrt{3+x} - \sqrt{5-x}}{x^2 - 1}$$

Examine the continuity of following functions:

1.
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$$
 At x=2 and x=3

2.
$$f(x) = x$$
 when $0 \le x < \frac{1}{2}$
= 1 when $x = \frac{1}{2}$
= 1-x when $\frac{1}{2} < x < 1$

At
$$x = \frac{1}{2}$$
 $f(x) = \frac{x^2 - 16}{1}$

3.
$$f(x) = \frac{x^2 - 16}{x - 4}$$
, $x \neq 4$
= 8, $x = 4$

At x=4

4.
$$f(x) = 2x$$
 when $0 \le x < 1$
= 3 when $x=1$
= 4-2x when $1 < x \le 2$

At x=1