Problem grupowania z minimalizacją drzewa rozpinającego

Mikołaj Rozwadowski 127205

18 marca 2019

1 Opis problemu

Rozważany problem polega na podziale danego zbioru X, zawierającego n punktów, na k grup tak, aby suma długości minimalnych drzew rozpinających dla każdej grupy była minimalna. Choć w instancji testowej punkty znajdowały się na płaszczyźnie \mathbb{R}^2 , a odległości między nimi wyznaczała metryka euklidesowa, to dla zapewnienia ogólności rozwiązania, koszty połączeń przechowywane były w kwadratowej macierzy odległości D.

- Wejście: macierz $D = [d_{i,j} \in \mathbb{R}], i, j = 0, 1, ..., n 1.$
- Wyjście: rodzina $G = \{G_1, G_2, \ldots, G_k\}$, spełniająca warunki podziału zbioru $\{0, 1, \ldots, n-1\}$ i minimalizująca funkcję celu (1), gdzie $MST(G_i)$ to zbiór krawędzi należących do minimalnego drzewa rozpinającego wierzchołków G_i .

$$f(G) = \sum_{G_i \in G} \sum_{\{a,b\} \in MST(G_i)} D_{a,b}$$

$$\tag{1}$$

2 Pseudokody

```
1: function GreedyHeuristic(X, D, k)
       G \leftarrow \text{InitializeClusters}(X)
2:
       for all x \in X od k-tego elementu w losowej kolejności do
3:
           INSERTTONEAREST(x)
4:
       return G
5:
6: function REGRETHEURISTIC(X, D, k)
7:
       G \leftarrow \text{InitializeClusters}(X)
       for all x \in X od k-tego do n-1-go elementu w losowej kolejności do
8:
           if wstawienie punktu x+1 przed x jest korzystniejsze then
9:
               zamień punkty x i x + 1 miejscami
10:
11:
           INSERTTONEAREST(x)
       INSERTTONEAREST(n)
12:
       return G
13:
14: function InitializeClusters(X)
15:
       for all x \in k pierwszych punktów z X w losowej kolejności do
16:
17:
           G_i \leftarrow \{x\}
           i \leftarrow i + 1
18:
19:
       return G
20: function InsertToNearest(x)
       i^* \leftarrow \arg\min_{i=1,2,\dots,k} \min_{j \in G_i} D_{x,j}
21:
       G_{i^*} \leftarrow G_{i^*} \cup \{x\}
22:
```

Heurystyka na początku tworzy grupy zawierające po jednym, losowo wybranym punkcie. Następnie kolejne punkty są dodawane do najbliższych im grup. Heurystyka z żalem sprawdza punkty w parach i dołącza je do grup w takiej kolejności, aby było to najmniej kosztowne. Z założenia pozwala to uniknąć sytuacji, w której dołączenie bliskiego punktu (preferowanego przez strategię zachłanną) zwiększa koszt dodania innego punktu i oddala od optimum globalnego.

3 Wyniki eksperymentu

Oba algorytmy uruchomione zostały na instancji testowej 100 razy. Otrzymane wyniki są następujące:

	czas [s]			funkcja celu		
	\min	średnio	max	min	średnio	max
greedy heuristic	0,0206	0,0212	0,0275	2077,9	2130,9	2258,2
regret heuristic	0,0977	0,1029	$0,\!1374$	2061,2	2130,4	2199,9

Średnie uzyskane wartości funkcji celu są praktycznie identyczne, choć heurystyka z żalem uzyskała odrobinę lepsze wyniki zarówno w przypadku najlepszym, jak i najgorszym. Heurystyka zachłanna okazała się za to prawie 5 razy szybsza.

4 Wizualizacje rozwiązań

Rysunki 1 i 2 przedstawiają najlepsze rozwiązania znalezione odpowiednio heurystyką zachłanną i z żalem. Ponadto, na rysunku 3 pokazany jest wynik uzyskany poprzez wyznaczenie minimalnego drzewa rozpinającego wszystkich punktów, a następnie usunięcie z niego k-1 najdłuższych krawędzi.

Rysunek 1: Najlepsze rozwiązanie uzyskane heurystyką zachłanną.

Rysunek 2: Najlepsze rozwiązanie uzyskane heurystyką z żalem.

Rysunek 3: Najlepsze rozwiązanie uzyskane przez usunięcie krawędzi z MST.