5MC10: Combinatorial Algorithms NP-complete problems

AmirHossein Ghamarian

December 9, 2008

1. Show that **VERTEX-COVER** remains NP-Complete even if all vertices in the input graph are restricted to have even degrees. Hint: The sum of the degrees of the vertices in an undirected graph is always an even number.

hint: you can use the vertex cover problem for the reduction.

VERTEX COVER

INSTANCE: A graph G = (V, E) and a positive integer $K \leq |V|$.

QUESTION: Is there a *vertex cover* of size K or less for G, that is, a subset $V' \subseteq V$ such that $|V'| \leq K$ and, for each edge $\{u, v\} \in E$, at least one of u and v belongs to V.

Solution: The reduction is from the vertex cover problem. Let < G, K > be an input instance of VERTEX-COVER, where G = (V, E). Because each edge in E contributes a count of 1 to the degree of each of the vertices with which it is incident, the sum of the degrees of the vertices is exactly 2.|E|, an even number. Hence, there is an even number of vertices in G that have odd degrees.

Let U be a the subset of vertices with odd degrees in G; |U| is even. Construct a new instance < G', k+2 > of VERTEX-COVER, where G' = (V', E') with $V' = V \cup \{x, y, z\}$ (three new vertices), and

$$E' = E \cup \{\{x, y\}, \{x, z\}, \{y, z\}\} \cup \{\{x, v\} | v \in U\}.$$

In words, we make a triangle with the three new vertices, and then connect one of them (say x) to all the vertices in U. The degree of every vertex in V' is even. Because a vertex cover for a triangle is of (minimum) size 2, it is clear that G' has a vertex cover of size k+2 iff G has a vertex cover of size k.

2. TRAVELING SALESMAN PROBLEM

INSTANCE: A finite set $C = \{c_1, c_2, \dots, c_m\}$ of "cities," a "distance" $d(c_i, c_j) \in \mathbb{N}$ for each pair of cities $c_i, c_j \in C$, and a bound $B \in Z^+$ (where \mathbb{N} denotes the positive integers).

QUESTION: Is there a "tour" of all the cities in C having total length no more than B, that is, an ordering $< c_{\pi(1)}, c_{\pi(2)}, \dots c_{\pi(m)} >$ of C such that

$$\left(\sum_{i=1}^{m-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(m)}, c_{\pi(1)}) \le B?$$

hint: you can use the hamiltonian circuit problem for the reduction.

HAMILTONIAN CIRCUIT

INSTANCE: A graph G = (V, E).

QUESTION: Does G contain a HAMILTONIAN CIRCUIT, that is, an ordering $\langle v_1, v_2, \dots, v_n \rangle$ of vertices of G, where n = |V|, such that $\{v_n, v_1\} \in E$ and $\{v_i, v_{i+1}\} \in E$ for all $i, 1 \le i \le n$? edge E?

Solution: The proof that Traveling Salesman Problem (TSP) belongs to NP is trivial. We use HAMILTONIAN CIRCUIT (HC) problem, for the reduction. Let G = (V, E) be an input instance of HC problem. Construct a new complete graph G' = (V, E') as a new instance of TSP. We also assign weight 1 to every edge $e \in E$ and 2 to every edge $e \notin E$. We also set B to |V|. It is clear that G has a HC if and only if |V| > 1 has a TSP with size |V|.

3. COMMUNICATION SCHEDULING PROBLEM

INSTANCE: A finite set T of tuples $t_i = (s_i, e_i, d_i)$ where $s_i, e_i \in \mathbb{N}$ are the earliest start time and the latest end time of transactions and $d_i \in \mathbb{R}$ represents the amount of data that is to be transferred. There is also a bound $B \in \mathbb{R}$ which represents the maximum amount of data which can be transferred at each time instance.

QUESTION: Is there a tuple $(\alpha_i, \beta_i, \gamma_i)$ for each t_i such that:

- $\alpha_i \geq s_i$,
- $\beta_i < e_i$,
- $\sum_{\{i \mid \alpha_i \le t \le \beta_i\}} \gamma_i \le B$, for any given time t,
- $(\beta_i \alpha_i) \cdot \gamma_i \ge d_i$.

hint: you can use the partition problem for the reduction:

PARTITION

INSTANCE: A finite set A and a "size" $s(a) \in \mathbb{N}$ for each $a \in A$.

QUESTION: Is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} S(a) = \sum_{a \in A - A'} s(a)?$$

Solution: Checking that COMMUNICATION SCHEDULING PROBLEM (CSP) belongs to NP is trivial. Now we need to prove that CSP is NP-complete by using a reduction from the PARTITION problem. Suppose A is an input instance of the PARTITION problem. Let $S = \sum_{a \in A} s(a)$. Now we construct a new instance of the CSP problem by creating $t_a = (1, S+1, a)$ for every $a \in A$. We also add an extra transaction $t = (\lfloor S/2 \rfloor, \lfloor S/2 \rfloor + 1, 1)$. The bandwith bound is also set to B = 1. It is clear that CSP has an schedule if and only if there is a partition for set A. This is because of the extra transaction which is forced to placed in the middle of the bandwidth.