Análise de Desempenho de um Sistema de Filas com Servidores de Taxa de Atendimento Dinâmica

AUTORES: Alexandre de Araújo; Daniel Malenga Moisés; João Paulo Silva Dias

DISCIPLINA - Principios de Simulação de Sistemas de Comunicação

Sumário

- 1 ESTUDO DE CASO
- 2 METODOLOGIA
- 3 RESULTADOS
- 4 BIBLIOGRAFIA

Teoria de Filas

É um campo de conhecimento matemático aplicado ao fenômeno das filas. A teoria das filas é essencial para compreender sistemas em que clientes chegam para receber serviços de servidores em um sistema de atendimento. As filas surgem quando a demanda pelo serviço excede a capacidade de atendimento do sistema.

Teoria de Filas

Para avaliar o comportamento dos sistemas de filas, são utilizadas medidas de desempenho como tempo médio de espera na fila, tempo médio de chegada dos clientes e probabilidade de encontrar o sistema lotado. Os sistemas de filas são caracterizados por cinco componentes principais: modelo de chegada dos usuários, modelo de serviço, capacidade do sistema, disciplina de atendimento e tamanho da população.

A abordagem analítica da teoria das filas permite antecipar o comportamento de sistemas com demanda variável, auxiliando no dimensionamento adequado para atender os clientes de forma eficiente e economicamente viável.

ESTUDO DE CASO

Seja um sistema com 2 servidores enumerados S1 e S2 com uma fila única de buffer finito de tamanho J. Os clientes chegam ao sistema segundo uma distribuição de Poisson com taxa média de chegada de pacotes/segundo. Os servidores do sistema possuem duas taxas de atendimento, uma mais lenta, 1, e outra mais rápida, 2. A comutação da taxa mais lenta para a taxa mais rápida ocorre quando há ao menos m elementos no sistema.

Definição dos Parâmetros: Nesta etapa, são determinados os valores para λ (taxa média de chegada de clientes), μ_1 e μ_2 (taxas de atendimento dos servidores), J (tamanho do buffer da fila) e m. Esses valores são ajustados para simular diferentes cenários e avaliar o desempenho do sistema sob diversas condições.

Simulação do Sistema: Utilizando simulações estocásticas, o comportamento do sistema é modelado. Cada simulação registra métricas como tempo médio de espera na fila, utilização dos servidores e taxa de perda de pacotes devido à capacidade finita da fila.

Análise Comparativa: Nesta etapa, é realizada uma comparação do sistema dinâmico (com comutação de taxas) com outros sistemas, incluindo:

- Taxas de atendimento: Ambos os servidores operando sempre na mesma taxa μ_1 e μ_2 .
- 2 Variação de Tamanho de Fila: Estimar o impacto de diferentes valores de J na performance do sistema.
- 3 Distribuições de Tempo de Serviço: Análise com diferentes distribuições de tempo de serviço afetam o desempenho do sistema.

CHEGADA

O fluxograma de chegada de clientes começa com a chegada de um cliente ao sistema, seguindo uma distribuição de Poisson com taxa λ . Em seguida, o sistema verifica se o *buffer* está cheio. Se o *buffer* estiver cheio, o cliente é rejeitado e o fluxo termina. Caso contrário, o cliente entra na fila, aguardando atendimento, e o fluxo termina.

PARTIDA

O fluxograma de partida de clientes inicia quando um cliente sai do sistema após ser atendido. O sistema então verifica se o número de clientes presentes é maior ou igual a m. Se o número de clientes for maior ou igual a m, os servidores atendem os clientes a uma taxa mais rápida, μ_2 . Se o número de clientes for menor que m, os servidores atendem os clientes a uma taxa mais lenta, μ_1 . O fluxo termina após o atendimento dos clientes.

RESULTADOS

Os parâmetros iniciais de simulação são: $\lambda = 8$, $\mu_1 = 5$, $\mu_2 = 1$, J = 16 e m = 8. Foi importante definir um valor de λ superior aos valores de μ devido à característica do problema, e que μ_1 fosse significativamente maior que μ_2 .

O objetivo da simulação é obter os valores do tempo médio no sistema (t_s) , tempo médio de pacotes na fila (t_p) , número médio de pacotes no sistema (N_{ps}) e número médio de pacotes na fila (N_{pf}) .

μ_1	μ_2	J	m	t_s	t_p	N_{ps}	N_{pf}
5	1	16	8	0.23362	0.03362	1.86899	0.53799

Esses valores servem como referência para a avaliação das simulações subsequentes.

RESULTADOS

Alterando-se os valores de μ_2 de 2 a 5, observou-se que o aumento da taxa de serviço μ_2 resultou em uma diminuição do tempo médio de pacotes na fila (t_p) e no número médio de pacotes no sistema (N_{ps}) . No entanto, o número médio de pacotes na fila (N_{pf}) apresentou um aumento significativo quando μ_2 foi igual a 5, logo igual μ_1 , a indicando que o aumento na taxa de serviço pode impactar a fila de maneira não linear.

μ_1	μ_2	J	m	t_s	t_p	N_{ps}	N_{pf}
5	5	16	8	0.23122	0.03122	1.84978	0.74936
5	4	16	8	0.24085	0.04085	1.92687	0.32687
5	3	16	8	0.23977	0.03977	1.91816	0.31816
5	2	16	8	0.23768	0.03768	1.90149	0.30149

RESULTADOS

Variando-se os valores de J (8, 10, 12, 14) e mantendo-se as taxas de serviço iniciais, notou-se que o número médio de pacotes na fila (N_{pf}) foi a métrica mais sensível às mudanças em J. Com valores menores de J, o sistema apresentou um número maior de pacotes na fila, sugerindo que a capacidade do sistema é um fator crucial para o desempenho do sistema de filas.

μ_1	μ_2	J	m	t_s	t_p	N_{ps}	N_{pf}
5	1	8	8	0.23414	0.03414	1.87319	1.09279
5	1	10	8	0.24269	0.04269	1.94156	1.02469
5	1	12	8	0.23242	0.03242	1.85942	3.11307
5	1	14	8	0.23791	0.03791	1.90334	0.30334

Bibliografia

- OLIVEIRA, G. B. Simulação Computacional: Análise de um Sistema de Manufatura em Fase de Desenvolvimento.
 Dissertação de Mestrado. Universidade Federal de Engenharia de Itajubá: UNIFEI, 2007, 154p.
- MOREIRA, D. A. Pesquisa Operacional Curso Introdutório. 2. ed. São Paulo: Thomson Learning, 2007.
- PRADO, D. S., Usando o ARENA em Simulação, Belo Horizonte, Editora de Desenvolvimento Gerencial, 2009.
- MORAES, F.G., SILVA, G.F., REZENDE, T.A. Introdução a Teoria das Filas. Universidade Federal do Mato Grosso, 2011.
- BARBOSA, R. A. Modelagem e análise do sistema de filas de caixas de pagamento em uma drogaria: uma aplicação da teoria das filas. In: XXIX Encontro Nacional De Engenharia De Produção: A Engenharia De Produção E O Desenvolvimento