1 Quine-McCluskey (10 Pkt.)

Die Funktion $f: \mathbb{B}^4 \to \mathbb{B}$ sei durch ihre OFF-Menge gegeben:

$$OFF(f) := \{0010, 0110, 1011, 1111\}$$

Berechnen sie alle Primimplikanten von f nach dem Verfahren von Quine-McCluskey. Geben sie alle Zwischenschritte (d.h. die Menge L_i^M und $Prim_i$) und das resultierende Minimalpolynom an. Achten Sie darauf, zu welchem Zeitpunkt der Algorithmus die Primimplikanten erkennt.

Hinweis: Sie dürfen in dieser Aufgabe die abkürzende Schreibweise für Monome verwenden (z.B. statt $\overline{x_1}$ $\overline{x_2}$ $\overline{x_4}$: 01-1).

2 Kodierung (2+3+5 Pkt.)

- a) Geben Sie die Interpretationsfunktion $[.]_2$ für Zweierkomplementzahlen mit n+1 Vor- und k Nachkommastellen (also $d_n d_{n-1} \dots d_1 d_0 d_{-1} \dots d_{-k}$) an.
- b) Geben Sie die Werte folgender Zweierkomplementzahlen im Dezimalsystem an:

0101.10

1001.01

c) Beweisen sie folgendes Lemma:

Lemma: Sei $[a]_2 = [a_{n-1}a_{n-2}...a_0]_2$ eine ganze Zahl in Zweier-Komplement-Darstellung mit n Vorkommastellen und keinen Nachkommastellen. Dann gilt:

$$[\bar{a}]_2 = -[a]_2 - 1$$

Hierbei sei $[\bar{a}]_2$ die Zahl im Zweier-Komplement, die aus $[a]_2$ durch Invertieren aller Bits hervorgeht. Abgesehen von der geometrischen Summenformel sollen keine Sätze aus der Vorlesung ohne Beweis benutzt werden.

 $\mathit{Hinweis}$: bei Zahlen ohne Nachkommastellen gilt k=0,allerdings gehört k immer noch zu den obigen Defintionen