PLANT DISEASE DETECTION USING DEEP LEARNING

Introduction

Objective:

The goal of this project is to develop a deep learning-based model for plant disease detection using images of plant leaves. The trained model will be deployed in a Streamlit-based web application, where users can upload leaf images to receive predictions about potential diseases.

This study leverages CNNs (Convolutional Neural Networks) and transfer learning with pre-trained models such as EfficientNetB0, ResNet50, and DenseNet121, optimizing performance using data augmentation, mixed precision training, and learning rate adjustments.

Dataset Description

Dataset Source:

The dataset used is the New Plant Diseases Dataset (Augmented) from Kaggle, containing labeled images of plant leaves affected by different diseases.

Preprocessing Steps:

- **Resizing:** All images resized to 128×128 pixels for compatibility with the models.
- **Augmentation:** Random transformations applied to enhance generalization, including:
 - o Rotation
 - Width & Height Shift
 - Zoom & Shear
 - Horizontal Flip
 - o Brightness

Model Architecture and Training

Pre-trained Models Used (Transfer Learning)

Three deep learning models were fine-tuned for plant disease classification:

- 1. EfficientNetB0
- 2. ResNet50
- 3. DenseNet121

Each model was initialized with ImageNet weights and modified to:

- Include Global Average Pooling, Dense, and Dropout layers.
- Replace the classifier with a fully connected layer matching the number of plant disease classes.

Training Configuration

Hyperparameters:

Parameter	Value	
Batch Size	32	
Epochs	25	
Optimizer	Adam (learning rate = 0.001)	
Loss Function	categorical_crossentropy	

Training Strategy:

• Early Stopping: Prevents overfitting by monitoring validation loss.

Performance Evaluation

Each model was evaluated using the validation dataset based on accuracy, precision, recall, and F1-score.

Results Summary

Model	Accuracy	Loss
EfficientNetB0	0.9301	0.1999
ResNet50	0.9292	0.2005
DenseNet121	0.9011	0.2881

Best Model: ResNet50(Considering the model architecture and above mention performances)

Deployment & Application Features

A Streamlit-based web app was developed to allow users to upload images and receive real-time predictions.

Features:

- Image Upload: Accepts JPEG, PNG, and BMP files.
- Model Selection: Users can choose between EfficientNetB0, ResNet50, and DenseNet121.
- Real-Time Prediction: Model inference runs instantly on uploaded images.
- Disease Interpretation: Displays predicted class and a confidence score.

Conclusion & Future Work

Key Findings:

- EfficientNetB0 achieved the highest accuracy (93.01%).
- ResNet50 (92.92%) outperformed other models with simpler architectures benefit from transfer learning in plant disease detection and demonstrated superior generalization.

• Transfer learning improved performance significantly, reducing the training time while maintaining high accuracy.

Future Enhancements:

- Train models on higher resolution images (e.g., 224×224) for better feature extraction.
- Experiment with self-supervised learning techniques for label-efficient training.
- Optimize the web application UI/UX for better user experience.
- Expand the dataset to include more plant species and diseases for broader applicability.

Deliverables

- **Trained Models:** EfficientNetB0_.h5, ResNet50_.h5, DenseNet121_.h5.
- Streamlit Application: Plant Disease Detection Web App.
- Codebase: Python scripts for model training, preprocessing, and deployment.
- **Project Report:** This document summarizing results, methodology, and future scope.