

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>1127.32</u>	<u>3983.64</u>	k
Compressive Load =	<u>4691.21</u>	<u>4868.46</u>	k
Lateral Load =	<u>10.52</u>	<u>1454.67</u>	k
Moment (Weak Axis) =	0.02	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check 99562.1 in-lbs $M_O =$ 1508.52 lbs Resisting Force Required = A minimum 132in long x 23in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2514.19 lbs to resist overturning. Minimum Width = <u>23 in</u> in Weight Provided = 4585.63 lbs Sliding 349.48 lbs Force = Friction = Use a 132in long x 23in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 873.71 lbs Friction is OK. Resisting Weight = 4585.63 lbs Additional Weight Required = 0 lbs Cohesion Sliding Force = 349.48 lbs Cohesion = 130 psf Use a 132in long x 23in wide x 18in tall 21.08 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2292.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$ Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{23 \text{ in}} = \frac{24 \text{ in}}{25 \text{ in}} = \frac{26 \text{ in}}{25 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.92 \text{ ft}) = \frac{4586 \text{ lbs}}{25 \text{ lbs}} = \frac{4984 \text{ lbs}}{25 \text{ lbs}} = \frac{5184 \text{ lbs}}{25 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	· 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	- 1.0W	
Width	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in
FA	1767 lbs	1767 lbs	1767 lbs	1767 lbs	1372 lbs	1372 lbs	1372 lbs	1372 lbs	2223 lbs	2223 lbs	2223 lbs	2223 lbs	-536 lbs	-536 lbs	-536 lbs	-536 lbs
F _B	1831 lbs	1831 lbs	1831 lbs	1831 lbs	1423 lbs	1423 lbs	1423 lbs	1423 lbs	2305 lbs	2305 lbs	2305 lbs	2305 lbs	-1909 lbs	-1909 lbs	-1909 lbs	-1909 lbs
F_V	157 lbs	157 lbs	157 lbs	157 lbs	626 lbs	626 lbs	626 lbs	626 lbs	577 lbs	577 lbs	577 lbs	577 lbs	-699 lbs	-699 lbs	-699 lbs	-699 lbs
P _{total}	8184 lbs	8384 lbs	8583 lbs	8782 lbs	7380 lbs	7580 lbs	7779 lbs	7979 lbs	9114 lbs	9313 lbs	9513 lbs	9712 lbs	307 lbs	426 lbs	546 lbs	666 lbs
M	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4084 lbs-ft	4084 lbs-ft	4084 lbs-ft	4084 lbs-ft	5964 lbs-ft	5964 lbs-ft	5964 lbs-ft	5964 lbs-ft	1051 lbs-ft	1051 lbs-ft	1051 lbs-ft	1051 lbs-ft
е	0.52 ft	0.51 ft	0.50 ft	0.49 ft	0.55 ft	0.54 ft	0.53 ft	0.51 ft	0.65 ft	0.64 ft	0.63 ft	0.61 ft	3.43 ft	2.47 ft	1.93 ft	1.58 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	277.2 psf	274.7 psf	272.4 psf	270.3 psf	244.4 psf	243.3 psf	242.2 psf	241.3 psf	278.0 psf	275.5 psf	273.1 psf	271.0 psf	0.0 psf	0.0 psf	0.0 psf	3.9 psf
f _{max}	499.2 psf	487.5 psf	476.7 psf	466.7 psf	455.7 psf	445.8 psf	436.7 psf	428.2 psf	586.6 psf	571.2 psf	557.1 psf	544.0 psf	51.5 psf	46.8 psf	48.9 psf	52.0 psf

Maximum Bearing Pressure = 587 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

A minimum 132in long x 23in wide x 18in tall

Overturning Check

 $M_O = 908.1 \text{ ft-lbs}$

Resisting Force Required = 947.55 lbs

S.F. = 1.67

Weight Required = 1579.26 lbs Minimum Width = $\frac{23 \text{ in}}{}$ in ballast foundation is required to resist overturning.

Weight Provided = 4585.63 lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		23 in		23 in			23 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	242 lbs	661 lbs	242 lbs	960 lbs	2928 lbs	960 lbs	71 lbs	193 lbs	71 lbs	
F_V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	5919 lbs	4586 lbs	5919 lbs	6364 lbs	4586 lbs	6364 lbs	1731 lbs	4586 lbs	1731 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	
f _{min}	280.3 psf	217.5 psf	280.3 psf	300.1 psf	217.5 psf	300.1 psf	82.0 psf	217.5 psf	82.0 psf	
f _{max}	281.2 psf	217.5 psf	281.2 psf	303.6 psf	217.5 psf	303.6 psf	82.1 psf	217.5 psf	82.1 psf	

Maximum Bearing Pressure = 304 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 23in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.609 k 12.808 k 7.421 k <u>49%</u>	Rear Strut Maximum Axial Load = 3.572 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 48%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.059 k 12.808 k 7.421 k <u>14%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	A 4	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{c} \text{Mean Height, h}_{\text{sx}} = & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} \\ \text{Other Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.038 \text{ in} \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 123 \text{ in}$$

$$J = 0.432$$

$$340.276$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2})}]$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 123 \\ J &= 0.432 \\ 216.395 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.3 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$

1.88 in² 41.32 kips

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

 $P_{max} =$

Strong Axis:

3.4.14 $L_b =$ 88.9 in J = 1.08 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

$$\phi F_L =$$

b/t =

3.4.16

$$\phi F_L =$$

Weak Axis:

 $L_b =$

J =

88.9

1.08

29.2

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

161.829

S1 = 0.51461

 $S2 = \left(\frac{C_c}{1.6}\right)^2$

3.4.14

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

16.2

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2
$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 24.8 in $L_b =$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

b/t =

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

24.5

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = mDbr$$

$$S2 = 77$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k= 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x = 27.5 mm

$$Sy = 0.621 \text{ in}^3$$

$$M_{\text{max}}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{\text{max}}St = 0.021 \text{ m/s}$ $M_{\text{max}}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

28.2 ksi

3.4.16

 $\phi F_L =$

Weak Axis:

48.3

0.942 75.3767

30.6

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$

S1 = 0.51461

 $S2 = \left(\frac{C_c}{1.6}\right)^2$

3.4.14

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$

 $\phi F_L =$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268 \text{ ksi}$

$$\phi F_L = 18.9268 \text{ ksi}$$

$$3.4.9$$

$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-35.466	-35.466	0	0
2	M14	V	-35.466	-35.466	0	0
3	M15	V	-56.746	-56.746	0	0
4	M16	V	-56.746	-56.746	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	81.572	81.572	0	0
2	M14	V	63.13	63.13	0	0
3	M15	V	35.466	35.466	0	0
4	M16	V	35 466	35 466	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	252.457	2	1113.758	1	1.115	1	.005	1	Ö	1	Ó	1
2		min	-355.612	3	-930.437	3	.041	15	0	15	0	1	0	1
3	N7	max	.048	1	1232.573	1	274	15	0	15	0	1	0	1
4		min	055	2	-248.22	3	-8.091	1	017	1	0	1	0	1
5	N15	max	.024	9	3608.624	1	0	11	0	11	0	1	0	1
6		min	825	2	-867.169	3	0	12	0	12	0	1	0	1
7	N16	max	1061.645	2	3744.972	1	0	3	0	3	0	1	0	1
8		min	-1118.974	3	-3064.338	3	0	2	0	1	0	1	0	1
9	N23	max	.048	1	1232.573	1	8.091	1	.017	1	0	1	0	1
10		min	055	2	-248.22	3	.274	15	0	15	0	1	0	1
11	N24	max	252.457	2	1113.758	1	041	15	0	15	0	1	0	1
12		min	-355.612	3	-930.437	3	-1.115	1	005	1	0	1	0	1
13	Totals:	max	1565.624	2	12046.259	1	0	11	·				·	
14		min	-1830.574	3	-6288.823	3	0	9						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	88.776	1	510.677	1	-4.565	15	0	3	.211	1	0	1
2			min	2.907	15	-481.648	3	-139.852	1	013	1	.007	15	0	3
3		2	max	88.776	1	357.801	1	-3.512	15	0	3	.07	1	.467	3
4			min	2.907	15	-338.9	3	-107.548	1	013	1	.002	15	495	1
5		3	max	88.776	1	204.926	1	-2.459	15	0	3	0	12	.772	3
6			min	2.907	15	-196.153	3	-75.243	1	013	1	034	1	815	1
7		4	max	88.776	1	52.05	1	-1.405	15	0	3	003	12	.914	3
8			min	2.907	15	-53.406	3	-42.939	1	013	1	101	1	961	1
9		5	max	88.776	1	89.341	3	352	15	0	3	004	12	.894	3
10			min	2.907	15	-100.826	1	-10.634	1	013	1	132	1	934	1
11		6	max	88.776	1	232.089	3	21.67	1	0	3	004	15	.711	3
12			min	2.907	15	-253.701	1	.404	12	013	1	125	1	732	1
13		7	max	88.776	1	374.836	3	53.975	1	0	3	003	15	.365	3
14			min	2.907	15	-406.577	1	1.457	12	013	1	082	1	356	1
15		8	max	88.776	1	517.583	3	86.28	1	0	3	0	10	.194	1
16			min	2.907	15	-559.452	1	2.51	12	013	1	003	1	143	3
17		9	max	88.776	1	660.33	3	118.584	1	0	3	.114	1	.919	1
18			min	2.907	15	-712.328	1	3.563	12	013	1	.002	12	814	3
19		10	max	88.776	1	865.204	1	-4.616	12	0	3	.268	1	1.817	1
20			min	2.907	15	-803.078	3	-150.889	1	013	1	.007	12	-1.647	3
21		11	max	88.776	1	712.328	1	-3.563	12	.013	1	.114	1	.919	1
22			min	2.907	15	-660.33	3	-118.584	1	0	3	.002	12	814	3
23		12	max	88.776	1	559.452	1	-2.51	12	.013	1	0	10	.194	1
24			min	2.907	15	-517.583	3	-86.28	1	0	3	003	1	143	3
25		13	max	88.776	1	406.577	1	-1.457	12	.013	1	003	15	.365	3
26			min	2.907	15	-374.836	3	-53.975	1	0	3	082	1	356	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]									
27		14	max	88.776	1_	253.701	_1_	404	12	.013	_1_	004	15	.711	3
28			min	2.907	15	-232.089	3	-21.67	1	0	3	125	1	732	1
29		15	max	88.776	1_	100.826	<u> 1</u>	10.634	1	.013	_1_	004	12	.894	3
30			min	2.907	15	-89.341	3	.352	15	0	3	132	1	934	1
31		16	max	88.776	1	53.406	3	42.939	1	.013	1	003	12	.914	3
32			min	2.907	15	-52.05	1	1.405	15	0	3	101	1	961	1
33		17	max	88.776	1	196.153	3	75.243	1	.013	1	0	12	.772	3
34			min	2.907	15	-204.926	1	2.459	15	0	3	034	1	815	1
35		18	max	88.776	1	338.9	3	107.548	1	.013	1	.07	1	.467	3
36			min	2.907	15	-357.801	1	3.512	15	0	3	.002	15	495	1
37		19	max	88.776	1	481.648	3	139.852	1	.013	1	.211	1	0	1
38			min	2.907	15	-510.677	1	4.565	15	0	3	.007	15	0	3
39	M14	1	max	40.777	1	538.389	1	-4.703	15	.006	3	.24	1	0	1
40			min	1.338	15	-378.414	3	-144.09	1	011	1	.008	15	0	3
41		2	max	40.777	1	385.514	1	-3.65	15	.006	3	.094	1	.369	3
42			min	1.338	15	-269.272	3	-111.786	1	011	1	.003	15	526	1
43		3	max	40.777	1	232.638	1	-2.597	15	.006	3	0	3	.613	3
44		-		1.338	15	-160.13	3	-79.481	1	011	1	015	1	878	1
		4	min				<u> </u>	-1.543	15		3		12		3
45		4	max	40.777	1	79.762				.006		002		.734	
46		-	min	1.338	15	-50.989	3	-47.177	1	011	1_	087	1	<u>-1.056</u>	1
47		5	max	40.777	1	58.153	3	49	15	.006	3	004	12	.729	3
48			min	1.338	15	-73.113	1_	-14.872	1	011	1_	122	1	<u>-1.06</u>	1
49		6	max	40.777	1_	167.295	3	17.432	1	.006	3	004	15	<u>.601</u>	3
50		_	min	1.338	15	-225.989	1_	.27	12	011	1_	121	1	889	1
51		7	max	40.777	1	276.437	3	49.737	1	.006	3	003	15	.348	3
52			min	1.338	15	-378.864	1_	1.323	12	011	1_	082	1	545	1
53		8	max	40.777	1_	385.579	3	82.041	1	.006	3	0	10	0	15
54			min	1.338	15	-531.74	1_	2.376	12	011	1_	007	1	032	2
55		9	max	40.777	1_	494.721	3	114.346	1	.006	3	.104	1	.666	1
56			min	1.338	15	-684.616	1_	3.429	12	011	1_	.002	12	53	3
57		10	max	40.777	1_	837.491	_1_	-4.482	12	.006	3_	.253	1	1.533	1
58			min	1.338	15	-603.862	3	-146.65	1	011	1_	.007	12	-1.155	3
59		11	max	40.777	1	684.616	_1_	-3.429	12	.011	1_	.104	1	.666	1
60			min	1.338	15	-494.721	3	-114.346	1	006	3	.002	12	53	3
61		12	max	40.777	1	531.74	1	-2.376	12	.011	1	0	10	0	15
62			min	1.338	15	-385.579	3	-82.041	1	006	3	007	1	032	2
63		13	max	40.777	1	378.864	1	-1.323	12	.011	1	003	15	.348	3
64			min	1.338	15	-276.437	3	-49.737	1	006	3	082	1	545	1
65		14	max	40.777	1	225.989	1	27	12	.011	1	004	15	.601	3
66			min	1.338	15	-167.295	3	-17.432	1	006	3	121	1	889	1
67		15	max		1	73.113	1	14.872	1	.011	1	004	12	.729	3
68			min	1.338	15	-58.153	3	.49	15	006	3	122	1	-1.06	1
69		16	max	40.777	1	50.989	3	47.177	1	.011	1	002	12	.734	3
70			min	1.338	15	-79.762	1	1.543	15	006	3	087	1	-1.056	1
71		17	max	40.777	1	160.13	3	79.481	1	.011	1	0	3	.613	3
72			min	1.338	15	-232.638	1	2.597	15	006	3	015	1	878	1
73		18	max	40.777	1	269.272	3	111.786	1	.011	1	.094	1	.369	3
74		'	min	1.338	15	-385.514	1	3.65	15	006	3	.003	15	526	1
75		19	max	40.777	1	378.414	3	144.09	1	.011	1	.24	1	0	1
76		13	min	1.338	15	-538.389	1	4.703	15	006	3	.008	15	0	3
77	M15	1		-1.407	15	603.816	1	-4.702	15	.011	<u>3</u> 1	.24	1	0	2
78	CLIM		max					-144.07		005	3	.008	15	0	3
		2	min	<u>-42.856</u>	1_	-208.447	3		1_						
79		2	max	-1.407	15	431.552	1	-3.649	15	.011	1	.094	1	.204	3
80		_	min	-42.856	1_	-149.715	3	-111.766		005	3	.003	15	59	1
81		3	max	-1.407	15	259.288	1	-2.596	15	.011	1	0	3	.341	3
82			min	-42.856	1_	-90.983	3	-79.461	1_	005	3	015	1	983	1
83		4	max	-1.407	15	87.024	_1_	-1.543	15	.011	<u>1</u>	002	12	.411	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-42.856	1	-32.251	3	-47.157	1	005	3	087	1	-1.18	1
85		5	max	-1.407	15	26.481	3	489	15	.011	1	004	12	.414	3
86			min	-42.856	1	-85.24	1	-14.852	1	005	3	122	1	-1.181	1
87		6	max	-1.407	15	85.213	3	17.453	1	.011	1	004	15	.351	3
88			min	-42.856	1	-257.504	1	.293	12	005	3	121	1	986	1
89		7	max	-1.407	15	143.945	3	49.757	1	.011	1	003	15	.22	3
90			min	-42.856	1	-429.768	1	1.346	12	005	3	082	1	595	1
91		8	max	-1.407	15	202.677	3	82.062	1	.011	1	0	10	.023	3
92			min	-42.856	1	-602.032	1	2.399	12	005	3	007	1	009	9
93		9	max	-1.407	15	261.409	3	114.366	1	.011	1	.104	1	.777	1
94			min	-42.856	1	-774.296	1	3.452	12	005	3	.002	12	241	3
95		10	max	-1.407	15	946.56	1	-4.505	12	.011	1	.253	1	1.757	1
96			min	-42.856	1	-320.14	3	-146.671	1	005	3	.007	12	572	3
97		11	max	-1.407	15	774.296	1	-3.452	12	.005	3	.104	1	.777	1
98			min	-42.856	1	-261.409	3	-114.366	1	011	1	.002	12	241	3
99		12	max	-1.407	15	602.032	1	-2.399	12	.005	3	0	10	.023	3
100			min	-42.856	1	-202.677	3	-82.062	1	011	1	007	1	009	9
101		13	max	-1.407	15	429.768	1	-1.346	12	.005	3	003	15	.22	3
102			min	-42.856	1	-143.945	3	-49.757	1	011	1	082	1	595	1
103		14	max	-1.407	15	257.504	1	293	12	.005	3	004	15	.351	3
104			min	-42.856	1	-85.213	3	-17.453	1	011	1	121	1	986	1
105		15	max	-1.407	15	85.24	1	14.852	1	.005	3	004	12	.414	3
106			min	-42.856	1	-26.481	3	.489	15	011	1	122	1	-1.181	1
107		16	max	-1.407	15	32.251	3	47.157	1	.005	3	002	12	.411	3
108			min	-42.856	1	-87.024	1	1.543	15	011	1	087	1	-1.18	1
109		17	max	-1.407	15	90.983	3	79.461	1	.005	3	0	3	.341	3
110			min	-42.856	1	-259.288	1	2.596	15	011	1	015	1	983	1
111		18	max	-1.407	15	149.715	3	111.766	1	.005	3	.094	1	.204	3
112		1	min	-42.856	1	-431.552	1	3.649	15	011	1	.003	15	59	1
113		19	max	-1.407	15	208.447	3	144.07	1	.005	3	.24	1	0	2
114		'	min	-42.856	1	-603.816	1	4.702	15	011	1	.008	15	0	3
115	M16	1	max	-3.072	15	576.355	1	-4.569	15	.012	1	.212	1	0	1
116			min	-93.673	1	-195.379	3	-140.023	1	007	3	.007	15	0	3
117		2	max	-3.072	15	404.091	1	-3.516	15	.012	1	.071	1	.189	3
118			min	-93.673	1	-136.647	3	-107.719	1	007	3	.002	15	558	1
119		3	max	-3.072	15	231.827	1	-2.463	15	.012	1	0	12	.311	3
120			min	-93.673	1	-77.916	3	-75.414	1	007	3	033	1	92	1
121		4	max	-3.072	15	59.563	1	-1.41	15	.012	1	003	12	.367	3
122			min	-93.673	1	-19.184	3	-43.11	1	007	3	101	1	-1.086	1
123		5	max	-3.072	15	39.548	3	357	15	.012	1	004	12	.355	3
124			min	00.0=0	1	-112.701		-10.805	1	007	3	131	1	-1.056	1
125		6	max		15	98.28	3	21.499	1	.012	1	004	15	.276	3
126			min	-93.673	1	-284.965		.479	12	007	3	125	1	83	1
127		7	max		15	157.012	3	53.804	1	.012	1	003	15	.131	3
128			min	-93.673	1	-457.229	1	1.532	12	007	3	083	1	407	1
129		8	max		15	215.744	3	86.108	1	.012	1	0	10	.212	1
130			min	-93.673	1	-629.493	1	2.585	12	007	3	003	1	081	3
131		9	max	-3.072	15	274.476	3	118.413	1	.012	1	.114	1	1.027	1
132			min	-93.673	1	-801.757	1	3.638	12	007	3	.003	12	36	3
133		10	max		15	974.021	1	-4.691	12	.012	1	.267	1	2.038	1
134		10	min		1	-333.208		-150.717		007	3	.008	12	706	3
135		11			15	801.757	1	-3.638	12	.007	3	.114	1	1.027	1
136			max	-3.072 -93.673	1	-274.476		-118.413		012	1	.003	12	36	3
137		12	min			629.493		-2.585	12	.007	3	0	10	.212	1
		12	max		15		1				1		1		
138 139		12	min	<u>-93.673</u>	15	<u>-215.744</u> 457.229	3	-86.108	12	012 .007	3	003 003	15	081 .131	3
		13	max		15		1	-1.532							
140			min	-93.673	1	-157.012	3	-53.804	1	012	1	083	_1_	407	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-3.072	15	284.965	1	479	12	.007	3	004	<u>15</u>	.276	3
142			min	-93.673	1	-98.28	3	-21.499	1	012	1	125	1	83	1
143		15	max	-3.072	15	112.701	1	10.805	1	.007	3	004	12	.355	3
144			min	-93.673	1	-39.548	3	.357	15	012	1	131	1	-1.056	1
145		16	max	-3.072	15	19.184	3	43.11	1	.007	3	003	12	.367	3
146			min	-93.673	1	-59.563	1	1.41	15	012	1	101	1	-1.086	1
147		17	max	-3.072	15	77.916	3	75.414	1	.007	3	0	12	.311	3
148			min	-93.673	1	-231.827	1	2.463	15	012	1	033	1	92	1
149		18	max	-3.072	15	136.647	3	107.719	1	.007	3	.071	1	.189	3
150			min	-93.673	1	-404.091	1	3.516	15	012	1	.002	15	558	1
151		19	max	-3.072	15	195.379	3	140.023	1	.007	3	.212	1	0	1
152			min	-93.673	1	-576.355	1	4.569	15	012	1	.007	15	0	3
153	M2	1		1105.913	1	2.28	4	1.261	1	0	3	0	3	0	1
154	· · · -		min	-847.91	3	.537	15	.041	15	0	1	0	1	0	1
155		2		1106.241	1	2.264	4	1.261	1	0	3	0	1	0	15
156			min	-847.664	3	.534	15	.041	15	0	1	0	15	0	4
157		3	max	1106.57	1	2.249	4	1.261	1	0	3	0	1	0	15
158			min	-847.418	3	.53	15	.041	15	0	1	0	15	001	4
159		4		1106.898	1	2.234	4	1.261	1	0	3	0	1	0	15
160			min	-847.171	3	.526	15	.041	15	0	1	0	15	001	4
161		5			1	2.219	4	1.261	1	0	3	.001	1	0	15
162			min	-846.925	3	.523	15	.041	15	0	1	0	15	002	4
163		6		1107.555	1	2.203	4	1.261	1	0	3	.001	1	0	15
164		0	min	-846.679	3	.519	15	.041	15	0	1	0	15	002	4
165		7		1107.883	<u> </u>	2.188	4	1.261	1	0	3	.002	1	0	15
166			min	-846.433	3	.516	15	.041	15	0	1	0	15	003	4
167		8	_		1	2.173	4	1.261	1	0	3	.002	1	0	15
168		0	max min	-846.186	3	.512	15	.041	15	0	1	.002	15	003	4
169		9			_	2.157	4	1.261	1		3	.002	1 1		15
		9	max		1		15			0	1		15	0	
170 171		10	min	-845.94 1108.869	<u>3</u> 1	.508	4	.041 1.261	1 <u>5</u>	0	3	.002	<u>15</u> 1	004 001	15
172		10				2.142	15		15	0	1	.002	15		
		11	min	-845.694	3	.505	4	.041	1	0	3			004	15
173 174				1109.197 -845.447	1	2.127	15	1.261	15	0	1	.003	<u>1</u> 15	001 005	
		40	min		3	.501		.041				_			4
175		12		1109.526	1	2.112	4	1.261	1	0	3	.003	1_	001	15
176		40	min	-845.201	3	.498	15	.041	15	0		0	<u>15</u>	005	4
177		13	_	1109.854	1	2.096	4	1.261	1	0	3	.003	1_	001	15
178		4.4	min	-844.955	3	.494	15	.041	15	0	1	0	15	006	4
179		14		1110.182	1	2.081	4	1.261	1	0	3	.004	1_	001	15
180		4.5	min	-844.708	3	.491	15	.041	15	0	1	0	15	006	4
181		15		1110.511	1	2.066	4	1.261	1	0	3	.004	1_	002	15
182		40		-844.462	3	.487	15	.041	15	0	1	0	<u>15</u>	007	4
183		16		1110.839	1	2.051	4	1.261	1	0	3	.004	1_	002	15
184		47		-844.216		.483	15	.041	15	0	1	0	15	007	4
185		17		1111.168	1	2.035	4	1.261	1	0	3	.004	1_	002	15
186		40		-843.969	3	.48	15	.041	15	0	1	0	<u>15</u>	008	4
187		18		1111.496	1	2.02	4	1.261	1	0	3	.005	1_	002	15
188		40	min		3	.476	15	.041	15	0	1	0	<u>15</u>	008	4
189		19		1111.825	1	2.005	4	1.261	1	0	3	.005	1_	002	15
190	B 40	4	min		3	.473	15	.041	15	0	1	0	15	009	4
191	<u>M3</u>	1		230.979	2	8.077	4	.012	1_45	0	3	0	1_	.009	4
192		_	min		3	1.899	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.305	4	.012	1	0	3	0	1_	.005	4
194		_		-337.541	3	1.718	15	0	15	0	1	0	15	.001	15
195		3	_	230.638	2	6.532	4	.012	1	0	3	0	1_	.003	2
196			min		3	1.536	15	0	15	0	1	0	15	0	12
197		4	max	230.468	2	5.76	4	.012	_ 1	0	3	0	<u>1</u>	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-337.796	3	1.355	15	0	15	0	1	0	15	001	3
199		5	max	230.297	2	4.988	4	.012	1	0	3	0	1	0	15
200			min	-337.924	3	1.173	15	0	15	0	1	0	15	002	4
201		6	max	230.127	2	4.215	4	.012	1	0	3	0	1	001	15
202			min	-338.052	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	229.957	2	3.443	4	.012	1	0	3	0	1	001	15
204			min	-338.18	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	229.786	2	2.67	4	.012	1	0	3	0	1	002	15
206			min	-338.307	3	.628	15	0	15	0	1	0	15	007	4
207		9	max	229.616	2	1.898	4	.012	1	0	3	0	1	002	15
208			min	-338.435	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	229.446	2	1.126	4	.012	1	0	3	0	1	002	15
210			min	-338.563	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	229.275	2	.381	2	.012	1	0	3	0	1	002	15
212			min	-338.691	3	.046	12	0	15	0	1	0	15	009	4
213		12	max	229.105	2	098	15	.012	1	0	3	0	1	002	15
214			min	-338.819	3	419	4	0	15	0	1	0	15	009	4
215		13	max	228.934	2	279	15	.012	1	0	3	0	1	002	15
216			min	-338.946	3	-1.192	4	0	15	0	1	0	15	009	4
217		14	max	228.764	2	461	15	.012	1	0	3	0	1	002	15
218			min	-339.074	3	-1.964	4	0	15	0	1	0	15	008	4
219		15	max	228.594	2	643	15	.012	1	0	3	0	1	002	15
220			min	-339.202	3	-2.737	4	0	15	0	1	0	15	007	4
221		16	max	228.423	2	824	15	.012	1	0	3	0	1	001	15
222			min	-339.33	3	-3.509	4	0	15	0	1	0	15	006	4
223		17	max	228.253	2	-1.006	15	.012	1	0	3	0	1	001	15
224			min	-339.457	3	-4.281	4	0	15	0	1	0	15	004	4
225		18	max	228.083	2	-1.187	15	.012	1	0	3	0	1	0	15
226			min	-339.585	3	-5.054	4	0	15	0	1	0	15	002	4
227		19	max	227.912	2	-1.369	15	.012	1	0	3	0	1	0	1
228			min	-339.713	3	-5.826	4	0	15	0	1	0	15	0	1
229	M4	1	max	1229.507	1	0	1	275	15	0	1	0	1	0	1
230			min	-250.52	3	0	1	-8.414	1	0	1	0	10	0	1
231		2	max	1229.677	1	0	1	275	15	0	1	0	12	0	1
232			min	-250.392	3	0	1	-8.414	1	0	1	0	1	0	1
233		3	max	1229.848	1	0	1	275	15	0	1	0	15	0	1
234			min	-250.265	3	0	1	-8.414	1	0	1	002	1	0	1
235		4	max	1230.018	1	0	1	275	15	0	1	0	15	0	1
236			min	-250.137	3	0	1	-8.414	1	0	1	003	1	0	1
237		5	max	1230.188	1	0	1	275	15	0	1	0	15	0	1
238			min	-250.009	3	0	1	-8.414	1	0	1	004	1	0	1
239		6	max	1230.359	1	0	1	275	15	0	1	0	15	0	1
240			min	-249.881	3	0	1	-8.414	1	0	1	005	1	0	1
241		7	max	1230.529	1	0	1	275	15	0	1	0	15	0	1
242			min	-249.754	3	0	1	-8.414	1	0	1	006	1	0	1
243		8	max	1230.699	1	0	1	275	15	0	1	0	15	0	1
244			min	-249.626	3	0	1	-8.414	1	0	1	007	1	0	1
245		9	max	1230.87	1	0	1	275	15	0	1	0	15	0	1
246				-249.498	3	0	1	-8.414	1	0	1	008	1	0	1
247		10		1231.04	1	0	1	275	15	0	1	0	15	0	1
248				-249.37	3	0	1	-8.414	1	0	1	009	1	0	1
249		11		1231.21	1	0	1	275	15	0	1	0	15	0	1
250			min	-249.242	3	0	1	-8.414	1	0	1	01	1	0	1
251		12	max	1231.381	1	0	1	275	15	0	1	0	15	0	1
252			min	-249.115	3	0	1	-8.414	1	0	1	01	1	0	1
253		13		1231.551	1	0	1	275	15	0	1	0	15	0	1
254			min		3	0	1	-8.414	1	0	1	011	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]						Torque[k-ft]		I' ' -			
255		14		1231.721	1	0	1	275	15	0	1	0	15	0	1
256		4.5	min	-248.859	3	0	1_	-8.414	1_	0	<u>1</u> 1	012	1	0	1
257		15		1231.892 -248.731	<u>1</u> 3	0	1	275 -8.414	15	0	1	013	15	0	1
258 259		16	_	1232.062	<u>ა</u> 1	0	1	275	1 15	0	1	013 0	1 15	0	1
260		10		-248.604	3	0	1	-8.414	1	0	1	014	1	0	1
261		17		1232.232	<u> </u>	0	1	275	15	0	1	0	15	0	1
262		17		-248.476	3	0	1	-8.414	1	0	1	015	1	0	1
263		18		1232.403	1	0	1	275	15	0	1	0	15	0	1
264		10	min	-248.348	3	0	1	-8.414	1	0	1	016	1	0	1
265		19		1232.573	1	0	1	275	15	0	1	0	15	0	1
266			min	-248.22	3	0	1	-8.414	1	0	1	017	1	0	1
267	M6	1		3566.039	1	2.569	2	0	1	0	1	0	1	0	1
268				-2786.996	3	.326	12	0	1	0	1	0	1	0	1
269		2	_	3566.368	1	2.557	2	0	1	0	1	0	1	0	12
270		_		-2786.75	3	.32	12	0	1	0	1	0	1	0	2
271		3		3566.696	1	2.545	2	0	1	0	1	0	1	0	12
272				-2786.504	3	.314	12	0	1	0	1	0	1	001	2
273		4		3567.024	1	2.534	2	0	1	0	1	0	1	0	12
274			min	-2786.258	3	.308	12	0	1	0	1	0	1	002	2
275		5		3567.353	1	2.522	2	0	1	0	1	0	1	0	12
276			min	-2786.011	3	.302	12	0	1	0	1	0	1	002	2
277		6	max	3567.681	1	2.51	2	0	1	0	1	0	1	0	12
278			min	-2785.765	3	.297	12	0	1	0	1	0	1	003	2
279		7	max	3568.01	1	2.498	2	0	1	0	1	0	1	0	12
280			min	-2785.519	3	.291	12	0	1	0	1	0	1	003	2
281		8		3568.338	1	2.486	2	0	1	0	1	0	1	0	12
282			min		3	.285	12	0	1	0	1	0	1	004	2
283		9	max	3568.667	1	2.474	2	0	1	0	1	0	1	0	12
284			min	-2785.026	3	.279	12	0	1	0	1	0	1	004	2
285		10		3568.995	1	2.462	2	0	1	0	1	0	1	0	12
286			min	-2784.78	3	.273	12	0	1	0	1	0	1	005	2
287		11	max	3569.323	1	2.45	2	0	1	0	1	0	1	0	12
288			min	-2784.533	3	.267	12	0	1	0	1	0	1	006	2
289		12	max	3569.652	1	2.438	2	0	1	0	1	0	1	0	12
290			min		3	.261	12	0	1	0	1	0	1	006	2
291		13	max	3569.98	1	2.427	2	0	1	0	1	0	1	0	12
292			min	-2784.041	3	.255	12	0	1	0	1	0	1	007	2
293		14	max	3570.309	1	2.415	2	0	1	0	1	0	1	0	12
294			min	-2783.794	3	.249	12	0	1	0	1	0	1	007	2
295		15	max	3570.637	1	2.403	2	0	1	0	1	0	1	0	12
296			min	-2783.548	3	.243	12	0	1	0	1	0	1	008	2
297		16		3570.966	1	2.391	2	0	1	0	1	0	1	0	12
298			min	-2783.302	3	.237	12	0	1	0	1	0	1	008	2
299		17		3571.294	1	2.379	2	0	1	0	1	0	1	0	12
300				-2783.055	3	.231	12	0	1	0	1	0	1	009	2
301		18		3571.623	_1_	2.367	2	0	1	0	1	0	1	001	12
302				-2782.809	3	.225	12	0	1	0	1	0	1	009	2
303		19		3571.951	_1_	2.355	2	0	1	0	1	0	1	001	12
304				-2782.563	3	.219	12	0	1	0	1	0	1	01	2
305	M7	1	max	1002.926	2	8.119	4	0	1	0	1	0	1	.01	2
306			min	-1056.506	3	1.905	15	0	1	0	1	0	1	.001	12
307		2		1002.756	2	7.346	4	0	1	0	1	0	1	.007	2
308			min	-1056.634	3	1.723	15	0	1	0	1	0	1	0	3
309		3		1002.585	2	6.574	4	0	1	0	1	0	1	.005	2
310				-1056.761	3	1.542	15	0	1	0	1	0	1	002	3
311		4	max	1002.415	2	5.801	4	0	1	0	1	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1056.889	3	1.36	15	0	1	0	1	0	1	003	3
313		5	max	1002.244	2	5.029	4	0	1	0	_1_	0	_1_	0	2
314			min	-1057.017	3	1.178	15	0	1	0	1	0	1	004	3
315		6	max	1002.074	2	4.257	4	0	1	0	1	0	1	001	15
316			min	-1057.145	3	.997	15	0	1	0	1	0	1	005	3
317		7	max	1001.904	2	3.484	4	0	1	0	_1_	0	1_	001	15
318			min	-1057.273	3	.815	15	0	1	0	1	0	1	006	3
319		8	max	1001.733	2	2.712	4	0	1	0	_1_	0	_1_	002	15
320			min	-1057.4	3	.634	15	0	1	0	1	0	1	007	4
321		9	max	1001.563	2	1.939	4	0	1	0	_1_	0	1	002	15
322			min	-1057.528	3	.444	12	0	1	0	1	0	1	008	4
323		10	max	1001.393	2	1.294	2	0	1	0	_1_	0	_1_	002	15
324			min	-1057.656	3	.143	12	0	1	0	1	0	1	009	4
325		11	max	1001.222	2	.692	2	0	1	0	1	0	1	002	15
326			min	-1057.784	3	267	3	0	1	0	1	0	1	009	4
327		12	max	1001.052	2	.09	2	0	1	0	_1_	0	1_	002	15
328			min	-1057.911	3	718	3	0	1	0	1	0	1	009	4
329		13	max	1000.882	2	274	15	0	1	0	1	0	1	002	15
330			min	-1058.039	3	-1.169	3	0	1	0	1	0	1	009	4
331		14	max	1000.711	2	456	15	0	1	0	1	0	1	002	15
332			min	-1058.167	3	-1.923	4	0	1	0	1	0	1	008	4
333		15	max	1000.541	2	637	15	0	1	0	1	0	1	002	15
334			min	-1058.295	3	-2.695	4	0	1	0	1	0	1	007	4
335		16	max	1000.371	2	819	15	0	1	0	1	0	1	001	15
336			min	-1058.422	3	-3.468	4	0	1	0	1	0	1	006	4
337		17	max	1000.2	2	-1	15	0	1	0	1	0	1	0	15
338			min	-1058.55	3	-4.24	4	0	1	0	1	0	1	004	4
339		18	max	1000.03	2	-1.182	15	0	1	0	1	0	1	0	15
340			min	-1058.678	3	-5.012	4	0	1	0	1	0	1	002	4
341		19	max	999.86	2	-1.363	15	0	1	0	1	0	1	0	1
342			min	-1058.806	3	-5.785	4	0	1	0	1	0	1	0	1
343	M8	1	max	3605.558	1	0	1	0	1	0	1	0	1	0	1
344			min	-869.469	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3605.729	1	0	1	0	1	0	1	0	1	0	1
346			min	-869.341	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3605.899	1	0	1	0	1	0	1	0	1	0	1
348			min	-869.214	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3606.069	1	0	1	0	1	0	1	0	1	0	1
350			min	-869.086	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3606.24	1	0	1	0	1	0	1	0	1	0	1
352			min	-868.958	3	0	1	0	1	0	1	0	1	0	1
353		6	max	3606.41	1	0	1	0	1	0	1	0	1	0	1
354			min	-868.83	3	0	1	0	1	0	1	0	1	0	1
355		7		3606.58	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8	max	3606.751	1	0	1	0	1	0	1	0	1	0	1
358			min	-868.575	3	0	1	0	1	0	1	0	1	0	1
359		9	max	3606.921	1	0	1	0	1	0	1	0	1	0	1
360				-868.447	3	0	1	0	1	0	1	0	1	0	1
361		10		3607.091	1	0	1	0	1	0	1	0	1	0	1
362			min	-868.319	3	0	1	0	1	0	1	0	1	0	1
363		11		3607.262	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	max	3607.432	1	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	0	1	0	1	0	1	0	1
367		13		3607.602	1	0	1	0	1	0	1	0	1	0	1
368			min	-867.936	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3607.773	1_	0	1	0	1	0	1	0	1	0	1
370			min	-867.808	3	0	1	0	1	0	1	0	1	0	1
371		15		3607.943	_1_	0	1	0	1	0	1	0	1	0	1
372			min	-867.68	3	0	1	0	1	0	1_	0	1	0	1
373		16		3608.113	1_	0	1	0	1	0	1	0	1	0	1
374		47	min	-867.553	3	0	1	0	1	0	1	0	1	0	1
375		17		3608.284	1	0	1	0	1	0	1_	0	1	0	1
376		40		-867.425	3	0	1	0	1_4	0	<u>1</u> 1	0	1	0	1
377		18		3608.454 -867.297	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
378 379		19		3608.624	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
380		13		-867.169	3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1105.913	1	2.28	4	041	15	0	1	0	1	0	1
382	IVIIO		min	-847.91	3	.537	15	-1.261	1	0	3	0	3	0	1
383		2		1106.241	1	2.264	4	041	15	0	1	0	15	0	15
384		_	min	-847.664	3	.534	15	-1.261	1	Ö	3	0	1	0	4
385		3	max		1	2.249	4	041	15	0	1	0	15	0	15
386			min	-847.418	3	.53	15	-1.261	1	0	3	0	1	001	4
387		4	max	1106.898	1	2.234	4	041	15	0	1	0	15	0	15
388				-847.171	3	.526	15	-1.261	1	0	3	0	1	001	4
389		5	max	1107.226	1	2.219	4	041	15	0	1	0	15	0	15
390			min	-846.925	3	.523	15	-1.261	1	0	3	001	1	002	4
391		6		1107.555	_1_	2.203	4	041	15	0	1	0	15	0	15
392			min	-846.679	3	.519	15	-1.261	1	0	3	001	1	002	4
393		7		1107.883	1_	2.188	4	041	15	0	1_	0	15	0	15
394			min	-846.433	3	.516	15	-1.261	1_	0	3	002	1_	003	4
395		8		1108.212	1_	2.173	4	041	15	0	1	0	15	0	15
396			min	-846.186	3	.512	15	-1.261	1_	0	3	002	1_	003	4
397		9	max		1	2.157	4	041	15	0	1	0	15	0	15
398		10	min	-845.94	<u>3</u>	.508 2.142	15	-1.261	1 15	0	<u>3</u>	002 0	15	004	15
399 400		10		1108.869 -845.694	3	.505	4 15	041 -1.261	1	0	3	002	1	001 004	4
401		11		1109.197	<u>ა</u> 1	2.127	4	041	15	0	<u> </u>	002	15	004 001	15
402		11	min	-845.447	3	.501	15	-1.261	1	0	3	003	1	005	4
403		12		1109.526	1	2.112	4	041	15	0	1	0	15	001	15
404		12		-845.201	3	.498	15	-1.261	1	0	3	003	1	005	4
405		13		1109.854	1	2.096	4	041	15	Ö	1	0	15	001	15
406				-844.955	3	.494	15	-1.261	1	0	3	003	1	006	4
407		14		1110.182	1	2.081	4	041	15	0	1	0	15	001	15
408				-844.708	3	.491	15	-1.261	1	0	3	004	1	006	4
409		15	max	1110.511	1	2.066	4	041	15	0	1	0	15	002	15
410				-844.462	3	.487	15	-1.261	1	0	3	004	1	007	4
411		16		1110.839	_1_	2.051	4	041	15	0	1	0	15	002	15
412				-844.216	3	.483	15	-1.261	1	0	3	004	1	007	4
413		17		1111.168	_1_	2.035	4	041	15	0	1_	0	15	002	15
414		4.0		-843.969	3	.48	15	-1.261	1_	0	3	004	1_	008	4
415		18		1111.496	_1_	2.02	4	041	15	0	1	0	15	002	15
416		40		-843.723	3_	.476	15	-1.261	1_	0	3	005	1_	008	4
417		19		1111.825	1	2.005	4	041	15	0	1	0	15	002	15
418	M11	1		-843.477	3	.473	15	-1.261	15	0	3	005	15	009	4
419 420	IVI I I			230.979 -337.413	2	8.077 1.899	4 15	012	<u>15</u>	0	<u>1</u>	0	1 <u>5</u>	.009	15
421		2		230.808	2	7.305	4	012 0	15	0	<u> </u>	0	15	.002	4
422				-337.541	3	1.718	15	012	1	0	3	0	1	.005	15
423		3		230.638	2	6.532	4	0	15	0	<u>3</u> 1	0	15	.003	2
424		J		-337.669	3	1.536	15	012	1	0	3	0	1	0	12
425		4		230.468	2	5.76	4	0	15	0	1	0	15	0	2
		<u> </u>			_		•				_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
426			min	-337.796	3	1.355	15	012	1	0	3	0	1	001	3
427		5	max	230.297	2	4.988	4	0	15	0	1	0	15	0	15
428			min	-337.924	3	1.173	15	012	1	0	3	0	1	002	4
429		6	max	230.127	2	4.215	4	0	15	0	1	0	15	001	15
430			min	-338.052	3	.992	15	012	1	0	3	0	1	004	4
431		7	max	229.957	2	3.443	4	0	15	0	1	0	15	001	15
432			min	-338.18	3	.81	15	012	1	0	3	0	1	006	4
433		8	max	229.786	2	2.67	4	0	15	0	1	0	15	002	15
434			min	-338.307	3	.628	15	012	1	0	3	0	1	007	4
435		9	max	229.616	2	1.898	4	0	15	0	1	0	15	002	15
436			min	-338.435	3	.447	15	012	1	0	3	0	1	008	4
437		10	max	229.446	2	1.126	4	0	15	0	1	0	15	002	15
438			min	-338.563	3	.265	15	012	1	0	3	0	1	009	4
439		11	max	229.275	2	.381	2	0	15	0	1	0	15	002	15
440			min	-338.691	3	.046	12	012	1	0	3	0	1	009	4
441		12	max	229.105	2	098	15	0	15	0	1	0	15	002	15
442			min	-338.819	3	419	4	012	1	0	3	0	1	009	4
443		13	max	228.934	2	279	15	0	15	0	1	0	15	002	15
444			min	-338.946	3	-1.192	4	012	1	0	3	0	1	009	4
445		14	max	228.764	2	461	15	0	15	0	1	0	15	002	15
446			min	-339.074	3	-1.964	4	012	1	0	3	0	1	008	4
447		15	max	228.594	2	643	15	0	15	0	1	0	15	002	15
448			min	-339.202	3	-2.737	4	012	1	0	3	0	1	007	4
449		16	max	228.423	2	824	15	0	15	0	1	0	15	001	15
450			min	-339.33	3	-3.509	4	012	1	0	3	0	1	006	4
451		17	max	228.253	2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-339.457	3	-4.281	4	012	1	0	3	0	1	004	4
453		18	max		2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-339.585	3	-5.054	4	012	1	0	3	0	1	002	4
455		19	max	227.912	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-339.713	3	-5.826	4	012	1	0	3	0	1	0	1
457	M12	1	max	1229.507	1	0	1	8.414	1	0	1	0	10	0	1
458			min	-250.52	3	0	1	.275	15	0	1	0	1	0	1
459		2	max	1229.677	1	0	1	8.414	1	0	1	0	1	0	1
460			min	-250.392	3	0	1	.275	15	0	1	0	12	0	1
461		3	max	1229.848	1	0	1	8.414	1	0	1	.002	1	0	1
462			min	-250.265	3	0	1	.275	15	0	1	0	15	0	1
463		4	max	1230.018	1	0	1	8.414	1	0	1	.003	1	0	1
464			min	-250.137	3	0	1	.275	15	0	1	0	15	0	1
465		5	max	1230.188	1	0	1	8.414	1	0	1	.004	1	0	1
466			min	-250.009	3	0	1	.275	15	0	1	0	15	0	1
467		6		1230.359	1	0	1	8.414	1	0	1	.005	1	0	1
468			min	-249.881	3	0	1	.275	15	0	1	0	15	0	1
469		7		1230.529	1	0	1	8.414	1	0	1	.006	1	0	1
470			min	-249.754	3	0	1	.275	15	0	1	0	15	0	1
471		8	max	1230.699	1	0	1	8.414	1	0	1	.007	1	0	1
472			min	-249.626	3	0	1	.275	15	0	1	0	15	0	1
473		9	max	1230.87	1	0	1	8.414	1	0	1	.008	1	0	1
474			min		3	0	1	.275	15	0	1	0	15	0	1
475		10	max	1231.04	1	0	1	8.414	1	0	1	.009	1	0	1
476			min	-249.37	3	0	1	.275	15	0	1	0	15	0	1
477		11		1231.21	1	0	1	8.414	1	0	1	.01	1	0	1
478			min	-249.242	3	0	1	.275	15	0	1	0	15	0	1
479		12		1231.381	1	0	1	8.414	1	0	1	.01	1	0	1
480				-249.115		0	1	.275	15	0	1	0	15	0	1
481		13		1231.551	1	0	1	8.414	1	0	1	.011	1	0	1
482				-248.987	3	0	1	.275	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483			max	1231.721	1	0	1	8.414	1	0	1	.012	1	0	1
484			min	-248.859	3	0	1	.275	15	0	1	0	15	0	1
485		15		1231.892	1	0	1	8.414	1	0	1	.013	1	0	1
486			min	-248.731	3	0	1	.275	15	0	1	0	15	0	1
487		16			1	0	1	8.414	1	0	1	.014	1	0	1
488			min	-248.604	3	Ö	1	.275	15	Ö	1	0	15	Ö	1
489		17		1232.232	1	0	1	8.414	1	0	1	.015	1	0	1
490			min	-248.476	3	0	1	.275	15	0	1	0	15	0	1
491		18		1232.403	1	0	1	8.414	1	0	1	.016	1	0	1
492		10	min	-248.348	3	0	1	.275	15	0	1	0	15	0	1
493		19		1232.573	1	0	1	8.414	1	0	1	.017	1	0	1
494		13	min	-248.22	3	0	1	.275	15	0	1	0	15	0	1
495	M1	1	max	139.855	1	481.636	3	-2.907	15	0	1	.211	1	0	3
496	IVII		min	4.565	15	-509.49	1	-88.69	1	0	3	.007	15	013	1
497		2	max	140.225	1	480.599	3	-2.907	15	0	1	.164	1	.256	1
498			min	4.677	15	-510.874	1	-88.69	1	0	3	.005	15	253	3
499		3		198.505	3	563.671		-2.866	15	0	3	.117	1	.513	1
500		3	max				1			_	1		15		
		4	min	-129.094	2	-347.455	3	-87.65	1_	0		.004		497	3
501		4	max	198.783	3_	562.287	1	-2.866	15	0	3	.071	1	.216	1
502		_	min	-128.723	2	-348.493	3	-87.65	1_	0	1	.002	15	313	3
503		5	max	199.061	3_	560.904	1	-2.866	15	0	3	.025	1	004	15
504		_	min	-128.353	2	-349.53	3	-87.65	1_	0	1	0	15	129	3
505		6	max		3_	559.52	1	-2.866	15	0	3	0	15	.056	3
506		_	min	-127.982	2	-350.568	3	-87.65	1_	0	1	021	1_	376	1
507		7	max	199.617	_3_	558.136	1	-2.866	15	0	3	002	15	.241	3
508		_	min	-127.611	2_	-351.606	3	-87.65	1	0	1	068	1	671	1
509		8	max	199.895	<u>3</u>	556.753	1_	-2.866	15	0	3	004	15	.427	3
510			min	-127.24	2	-352.643	3	-87.65	1	0	1	114	1	965	1
511		9	max	207.695	3	33.4	2	-4.205	15	0	9	.067	1	.499	3
512			min	-71.404	2	.42	15		1	0	3	.002	15	-1.1	1
513		10	max	207.974	3_	32.016	2	-4.205	15	0	9	0	15	.486	3
514			min	-71.033	2	.002	15	-128.447	1	0	3	0	1	-1.109	1
515		11	max	208.252	3	30.632	2	-4.205	15	0	9	002	15	.473	3
516			min	-70.662	2	-1.712	4	-128.447	1	0	3	069	1	-1.117	1
517		12	max	216.015	3	231.829	3	-2.798	15	0	1	.112	1	.412	3
518			min	-44.799	10	-591.87	1	-85.631	1	0	3	.004	15	986	1
519		13	max	216.293	3	230.791	3	-2.798	15	0	1	.067	1	.29	3
520			min	-44.49	10	-593.253	1	-85.631	1	0	3	.002	15	673	1
521		14	max	216.571	3	229.753	3	-2.798	15	0	1	.022	1	.168	3
522			min	-44.181	10	-594.637	1	-85.631	1	0	3	0	15	36	1
523		15	max	216.849	3	228.716	3	-2.798	15	0	1	0	15	.047	3
524			min	-43.872	10	-596.02	1	-85.631	1	0	3	023	1	046	1
525		16		217.127	3	227.678	3	-2.798	15	0	1	002	15	.269	1
526			min	-43.563	10	-597.404		-85.631	1	0	3	068	1	073	3
527		17		217.405	3	226.64	3	-2.798	15	0	1	004	15	.585	1
528		.,	min	-43.254	10	-598.788	1	-85.631	1	0	3	114	1	193	3
529		18	max		15	578.863	1	-3.072	15	0	3	005	15	.293	1
530				-140.392	1	-194.368	3	-93.756	1	0	1	163	1	096	3
531		19	max		15	577.48	1	-3.072	15	0	3	007	15	.007	3
532		13		-140.022	1	-195.406		-93.756	1	0	1	212	1	012	1
533	M5	1	max		1	1606.112	3	0	1	0	1	0	1	.027	1
534	IVIO	I	min	9.232	12	-1723.345	1	0	1	0	1	0	1	0	3
535		2		302.143	1	1605.075	3	0	1	0	1		1	.937	1
					12	-1724.728	1		1		1	0	1		3
536		2	min	9.417				0		0		0		848	
537		3		637.407	3_1	1729.138	1	0	1	0	1	0	1	1.805	1
538		A	min	-493.3	1	-1120.083	3	0		0	1	0	1	-1.662	3
539		4	max	637.685	3_	1727.755	_1_	0	1	0	1	0	1	.893	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-492.929	1	-1121.121	3	0	1	0	1	0	1	-1.071	3
541		5	max	637.963	3	1726.371	1	0	1	0	1	0	1	.013	9
542			min	-492.559	1	-1122.158	3	0	1	0	1	0	1	479	3
543		6	max	638.241	3	1724.988	1	0	1	0	1	0	1	.113	3
544			min	-492.188	1	-1123.196	3	0	1	0	1	0	1	929	1
545		7	max	638.519	3	1723.604	1	0	1	0	1	0	1	.706	3
546			min	-491.817	1	-1124.234	3	0	1	0	1	0	1	-1.838	1
547		8	max	638.798	3	1722.22	1	0	1	0	1	0	1	1.3	3
548			min	-491.446	1	-1125.271	3	0	1	0	1	0	1	-2.747	1
549		9	max	652.464	3	110.481	2	0	1	0	1	0	1	1.497	3
550			min	-360.033	2	.418	15	0	1	0	1	0	1	-3.106	1
551		10	max	652.742	3	109.097	2	0	1	0	1	0	1	1.45	3
552			min	-359.662	2	0	15	0	1	0	1	0	1	-3.138	1
553		11	max	653.02	3	107.714	2	0	1	0	1	0	1	1.404	3
554			min	-359.291	2	-1.587	4	0	1	0	1	0	1	-3.168	1
555		12	max	666.759	3	734.753	3	0	1	0	1	0	1	1.232	3
556			min	-244.948	2	-1840.175	1	0	1	0	1	0	1	-2.821	1
557		13	max	667.037	3	733.716	3	0	1	0	1	0	1	.845	3
558			min	-244.577	2	-1841.559	1	0	1	0	1	0	1	-1.85	1
559		14	max	667.315	3	732.678	3	0	1	0	1	0	1	.458	3
560			min	-244.206	2	-1842.942	1	0	1	0	1	0	1	878	1
561		15	max		3	731.64	3	0	1	0	1	0	1	.141	2
562		1.0	min	-243.835	2	-1844.326	1	0	1	0	1	0	1	004	13
563		16	max	667.871	3	730.603	3	0	1	0	1	0	1	1.069	1
564		10	min	-243.465	2	-1845.71	1	0	1	0	1	0	1	314	3
565		17	max	668.149	3	729.565	3	0	1	0	1	0	1	2.043	1
566		1 ''	min	-243.094	2	-1847.093	1	0	1	0	1	0	1	7	3
567		18	max	-9.568	12	1956.054	1	0	1	0	1	0	1	1.056	1
568		10	min	-301.809	1	-665.541	3	0	1	0	1	0	1	366	3
569		19	max	-9.382	12	1954.67	1	0	1	0	1	0	1	.024	1
570		15	min	-301.439	1	-666.579	3	0	1	0	1	0	1	014	3
571	M9	1	max	139.855	1	481.636	3	88.69	1	0	3	007	15	0	3
572	IVIO		min	4.565	15	-509.49	1	2.907	15	0	1	211	1	013	1
573		2	max	140.225	1	480.599	3	88.69	1	0	3	005	15	.256	1
574			min	4.677	15	-510.874	1	2.907	15	0	1	164	1	253	3
575		3	max	198.505	3	563.671	1	87.65	1	0	1	004	15	.513	1
576		-	min	-129.094	2	-347.455	3	2.866	15	0	3	117	1	497	3
577		4	max	198.783	3	562.287	1	87.65	1	0	<u> </u>	002	15	.216	1
578		1	min	-128.723	2	-348.493	3	2.866	15	0	3	071	1	313	3
579		5	max		3	560.904	1	87.65	1	0	<u> </u>	0	15	004	15
580		1 5			2	-349.53	3	2.866	15	0	3	025	1	129	3
581		6	min		3	559.52		87.65			1	.021	1	.056	3
582		6	max min		2	-350.568	3	2.866	15	0	3	0	15	376	1
583		7			3	558.136	<u> </u>	87.65	1		<u>ာ</u> 1	.068	1	.241	3
584			max min	-127.611	2	-351.606	3	2.866	15	0	3	.002	15	671	1
585		8		199.895		556.753		87.65	1	0	<u> </u>	.114	1	.427	3
		-			3		1								
586		0	min		2	-352.643	3	2.866	15	0	3	.004	15	965	1
587		9	max		3	33.4	2	128.447	1	0	3	002	15	.499	3
588		40	min	-71.404	2	.42	15	4.205	15	0	9	067	1	-1.1	1
589		10	max	207.974	3	32.016	2	128.447	1	0	3	0	1	.486	3
590		4.4	min	-71.033	2	.002	15	4.205	15	0	9	0	15	-1.109	1
591		11	max		3	30.632	2	128.447	1_	0	3	.069	1	.473	3
592		4.0	min	-70.662	2	-1.712	4	4.205	15	0	9	.002	15	-1.117	1
593		12	max		3	231.829	3	85.631	1	0	3	004	15	.412	3
594		40	min	-44.799	10	-591.87	1	2.798	15	0	1	112	1_	986	1
595		13	max		3	230.791	3	85.631	11	0	3	002	15	.29	3
596			min	-44.49	10	-593.253	1	2.798	15	0	1	067	1	673	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	216.571	3	229.753	3	85.631	1	0	3	0	15	.168	3
598			min	-44.181	10	-594.637	1	2.798	15	0	1	022	1	36	1
599		15	max	216.849	3	228.716	3	85.631	1	0	3	.023	1	.047	3
600			min	-43.872	10	-596.02	1	2.798	15	0	1	0	15	046	1
601		16	max	217.127	3	227.678	3	85.631	1	0	3	.068	1	.269	1
602			min	-43.563	10	-597.404	1	2.798	15	0	1	.002	15	073	3
603		17	max	217.405	3	226.64	3	85.631	1	0	3	.114	1	.585	1
604			min	-43.254	10	-598.788	1	2.798	15	0	1	.004	15	193	3
605		18	max	-4.681	15	578.863	1	93.756	1	0	1	.163	1	.293	1
606			min	-140.392	1	-194.368	3	3.072	15	0	3	.005	15	096	3
607		19	max	-4.569	15	577.48	1	93.756	1	0	1	.212	1	.007	3
608			min	-140.022	1	-195.406	3	3.072	15	0	3	.007	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.111	1	.004	3 8.819e-3	1_	NC	1_	NC	1
2			min	0	15	014	3	001	10 -1.079e-3	3	NC	1	NC	1
3		2	max	0	1	.23	3	.035	1 1.016e-2	1	NC	5	NC	2
4			min	0	15	126	1	.001	15 -1.126e-3	3	1006.698	3	7360.682	1
5		3	max	0	1	.428	3	.084	1 1.151e-2	1	NC	5	NC	3
6			min	0	15	314	1	.003	15 -1.173e-3	3	556.526	3	3000.503	1
7		4	max	0	1	.547	3	.126	1 1.285e-2	1	NC	5	NC	3
8			min	0	15	42	1	.004	15 -1.221e-3	3	438.008	3	1981.172	1
9		5	max	0	1	.574	3	.148	1 1.42e-2	1	NC	5	NC	3
10			min	0	15	428	1	.005	15 -1.268e-3	3	417.975	3	1684.348	1
11		6	max	0	1	.511	3	.143	1 1.554e-2	1_	NC	5	NC	3
12			min	0	15	341	1	.005	15 -1.315e-3	3	468.668	3	1740.707	1
13		7	max	0	1	.375	3	.113	1 1.689e-2	1	NC	5	NC	3
14			min	0	15	181	1	.004	15 -1.362e-3	3	631.594	3	2210.589	1
15		8	max	0	1	.204	3	.067	1 1.823e-2	1	NC	4	NC	2
16			min	0	15	003	9	.002	10 -1.409e-3	3	1128.844	3	3793.866	1
17		9	max	0	1	.188	1	.02	1 1.958e-2	1	NC	4	NC	1
18			min	0	15	.005	15	002	10 -1.456e-3	3	3189.08	1	NC	1
19		10	max	0	1	.266	1	.011	3 2.092e-2	1	NC	3	NC	1
20			min	0	1	022	3	007	2 -1.504e-3	3	1587.09	1	NC	1
21		11	max	0	15	.188	1	.02	1 1.958e-2	1	NC	4	NC	1
22			min	0	1	.005	15	002	10 -1.456e-3	3	3189.08	1	NC	1
23		12	max	0	15	.204	3	.067	1 1.823e-2	1	NC	4	NC	2
24			min	0	1	003	9	.002	10 -1.409e-3	3	1128.844	3	3793.866	1
25		13	max	0	15	.375	3	.113	1 1.689e-2	1	NC	5	NC	3
26			min	0	1	181	1	.004	15 -1.362e-3	3	631.594	3	2210.589	1
27		14	max	0	15	.511	3	.143	1 1.554e-2	1	NC	5	NC	3
28			min	0	1	341	1	.005	15 -1.315e-3	3	468.668	3	1740.707	1
29		15	max	0	15	.574	3	.148	1 1.42e-2	1	NC	5	NC	3
30			min	0	1	428	1	.005	15 -1.268e-3	3	417.975	3	1684.348	1
31		16	max	0	15	.547	3	.126	1 1.285e-2	1	NC	5	NC	3
32			min	0	1	42	1	.004	15 -1.221e-3	3	438.008	3	1981.172	1
33		17	max	0	15	.428	3	.084	1 1.151e-2	1	NC	5	NC	3
34			min	0	1	314	1	.003	15 -1.173e-3	3	556.526	3	3000.503	1
35		18	max	0	15	.23	3	.035	1 1.016e-2	1	NC	5	NC	2
36			min	0	1	126	1	.001	15 -1.126e-3	3	1006.698	3	7360.682	1
37		19	max	0	15	.111	1	.004	3 8.819e-3	1	NC	1	NC	1
38			min	0	1	014	3	001	10 -1.079e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.147	3	.003	3 5.552e-3	1	NC	1	NC	1
40			min	0	15	36	1	001	10 -2.663e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.381	3	.025	1	6.679e-3	1	NC	5	NC	1
42			min	0	15	728	1	0	15	-3.249e-3	3	667.623	1	NC	1
43		3	max	0	1	.579	3	.068	1	7.805e-3	1	NC	15	NC	3
44			min	0	15	-1.044	1	.002	15	-3.836e-3	3	359.499	1	3733.123	1
45		4	max	0	1	.715	3	.109	1	8.932e-3	1	NC	15	NC	3
46			min	0	15	-1.271	1	.004	15	-4.422e-3	3	269.971	1	2309.742	1
47		5	max	0	1	.777	3	.132	1	1.006e-2	1	9468.661	15	NC	3
48			min	0	15	-1.391	1	.004	15	-5.009e-3	3	238.619	1	1895.28	1
49		6	max	0	1	.764	3	.131	1	1.119e-2	1	9393.964	15	NC	3
50			min	0	15	-1.403	1	.004	15	-5.595e-3	3	235.843	1	1914.977	1
51		7	max	0	1	.691	3	.105	1	1.231e-2	1	NC	15	NC	3
52			min	0	15	-1.325	1	.004	15	-6.182e-3	3	254.884	1	2392.954	1
53		8	max	0	1	.583	3	.063	1	1.344e-2	1	NC	15	NC	2
54			min	0	15	-1.192	1	.002	10		3	295.454	1	4050.796	
55		9	max	0	1	.479	3	.02	1	1.457e-2	1	NC	15	NC	1
56			min	0	15	-1.058	1	002	10	-7.355e-3	3	352.006	1	NC	1
57		10	max	0	1	.43	3	.01	3	1.569e-2	1	NC	5	NC	1
58			min	0	1	995	1	006	2	-7.941e-3	3	387.312	1	NC	1
59		11	max	0	15	.479	3	.02	1	1.457e-2	1	NC	15	NC	1
60			min	0	1	-1.058	1	002	_	-7.355e-3	3	352.006	1	NC	1
61		12	max	0	15	.583	3	.063	1	1.344e-2	1	NC	15	NC	2
62			min	0	1	-1.192	1	.002	10	-6.768e-3	3	295.454	1	4050.796	
63		13	max	0	15	.691	3	.105	1	1.231e-2	1	NC	15	NC	3
64		10	min	0	1	-1.325	1	.004	15	-6.182e-3	3	254.884	1	2392.954	
65		14	max	0	15	.764	3	.131	1	1.119e-2	1	9393.964	15	NC	3
66		17	min	0	1	-1.403	1	.004	15	-5.595e-3	3	235.843	1	1914.977	1
67		15	max	0	15	<u>-1.403 </u>	3	.132	1	1.006e-2	1	9468.661	15	NC	3
68		13	min	0	1	-1.391	1	.004		-5.009e-3	3	238.619	1	1895.28	1
69		16	max	0	15	.715	3	.109	1	8.932e-3	<u> </u>	NC	15	NC	3
70		10	min	0	1	-1.271	1	.004		-4.422e-3	3	269.971	1	2309.742	1
71		17	max	0	15	.579	3	.068	1	7.805e-3	<u> </u>	NC	15	NC	3
72		17	min	0	1	-1.044	1	.002	15	-3.836e-3	3	359.499	1	3733.123	
73		18		0	15	.381	3	.002	1			NC	5	NC	1
74		10	max		1			<u>.025</u>	15	6.679e-3	<u>1</u> 3	667.623	<u>ວ</u> 1	NC NC	1
		10	min	0		728	1			-3.249e-3					-
75		19	max	0	15	.147	3	.003	3	5.552e-3	1	NC NC	<u>1</u> 1	NC NC	1
76	NAA E	1	min	0		36	•	001	10	-2.663e-3	3	NC NC	_	NC NC	•
77	M15	1	max	0	15	.15	3	.003	3	2.244e-3	3	NC NC	1_	NC NC	1
78			min	0	1	359	1	0	10	-5.645e-3	1_	NC NC	1_	NC NC	1
79		2	max	0	15	.299	3	.025	1	2.74e-3	3	NC C40,000	5_	NC NC	1
80			min	0	1	761	1	0	15	-6.795e-3	1_	612.399	1_	NC NC	1
81		3	max		15	.428	3	.068	1	3.236e-3		NC	15		3
82		4	min	0	1	<u>-1.104</u>	1	.002		-7.945e-3	1	330.469	1_	3722.999	_
83		4	max	0	15	.522	3	.109	1	3.732e-3	3	NC 040,000	<u>15</u>	NC 0004 005	3
84		-	min	0	1	<u>-1.347</u>	1	.004		-9.095e-3	1_	249.089	1_	2304.805	
85		5	max	0	15	<u>575</u>	3	.132	1	4.229e-3	3	9476.827	<u>15</u>	NC	3
86			min	0	1	<u>-1.47</u>	1	.004		-1.024e-2	1_	221.42	1_	1891.544	
87		6	max	0	15	.585	3	.131	1	4.725e-3	3	9403.615	<u>15</u>	NC 4040.00	3
88			min	0	1	<u>-1.474</u>	1	.004		-1.139e-2	1_	220.721	1_	1910.98	1
89		7	max	0	15	.56	3	.105	1	5.221e-3	3_	NC .	15	NC	3
90			min	0	1	<u>-1.377</u>	1	.004		-1.254e-2	1_	241.594	_1_	2386.688	
91		8	max	0	15	.513	3	.063	1	5.717e-3	3_	NC	<u>15</u>	NC	2
92			min	0	1	-1.222	1	.002	10	-1.37e-2	_1_	285.243	_1_	4033.209	
93		9	max	0	15	.464	3	.02	1_	6.214e-3	3	NC	<u>15</u>	NC	1
94			min	0	1	-1.067	1	002	10	-1.485e-2	1	347.674	1	NC	1
95		10	max	0	1	.44	3	.009	3	6.71e-3	3	NC	5_	NC	1
96			min	0	1	994	1	006	2	-1.6e-2	1	387.819	1_	NC	1
97		11	max	0	1	.464	3	.02	1	6.214e-3	3	NC	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.067	1	002	10 -1.485e-2	1_	347.674	1_	NC	1
99		12	max	0	1	.513	3	.063	1 5.717e-3	3	NC	15	NC	2
100		ļ.,,	min	0	15	-1.222	1	.002	10 -1.37e-2	_1_	285.243	_1_	4033.209	
101		13	max	0	1	.56	3	.105	1 5.221e-3	3	NC	<u>15</u>	NC	3
102		4.4	min	0	15	<u>-1.377</u>	1	.004	15 -1.254e-2	1_	241.594	1_	2386.688	1
103		14	max	0	1	.585	3	.131	1 4.725e-3	3	9403.615	<u>15</u>	NC 1010.00	3
104		4.5	min	0	15	<u>-1.474</u>	1	.004	15 -1.139e-2	1_	220.721	1_	1910.98	1
105		15	max	0	1	.575	3	.132	1 4.229e-3	3	9476.827	<u>15</u>	NC	3
106		40	min	0	15	<u>-1.47</u>	1	.004	15 -1.024e-2	1_	221.42	1_	1891.544	
107		16	max	0	1	.522	3	.109	1 3.732e-3	3	NC	<u>15</u>	NC	3
108		47	min	0	15	-1.347	1	.004	15 -9.095e-3	1_	249.089	1_	2304.805	
109		17	max	0	1	.428	3	.068	1 3.236e-3	3	NC 000 400	<u>15</u>	NC 0700 000	3
110		40	min	0	15	-1.104	1	.002	15 -7.945e-3	1_	330.469	_1_	3722.999	
111		18	max	0	1	.299	3	.025	1 2.74e-3	3_	NC	_5_	NC NC	1
112		40	min	0	15	7 <u>61</u>	1	0	15 -6.795e-3	1_	612.399	1_	NC NC	1
113		19	max	0	1	.15	3	.003	3 2.244e-3	3	NC	1	NC NC	1
114	1440		min	0	15	359	1	0	10 -5.645e-3	1_	NC	1_	NC NC	1
115	M16	1_	max	0	15	.108	1	.003	3 3.896e-3	3	NC	1	NC NC	1
116			min	0	1	049	3	0	10 -8.307e-3	1_	NC	1_	NC NC	1
117		2	max	0	15	.038	3	.035	1 4.6e-3	3	NC 005 4 40	5_	NC 7404	2
118			min	0	1	<u>164</u>	1	.001	15 -9.527e-3	1_	905.148	1_	7404.104	
119		3	max	0	15	.106	3	.084	1 5.304e-3	3	NC 504.00	5_	NC	3
120			min	0	1	38	1	.003	15 -1.075e-2	1_	504.33	_1_	3008.497	1
121		4	max	0	15	.143	3	.126	1 6.008e-3	3	NC	5	NC	3
122		-	min	0	1	503	1	.004	15 -1.197e-2	1_	402.805	1_	1982.863	1
123		5	max	0	15	.143	3	.148	1 6.712e-3	3	NC	_5_	NC 1000 001	3
124			min	0	1	<u>516</u>	1	.005	15 -1.319e-2	1_	394.53	_1_	1683.201	1
125		6	max	0	15	.107	3	.143	1 7.417e-3	3	NC	5	NC	3
126		<u> </u>	min	0	1	422	1	.005	15 -1.441e-2	1_	464.751	_1_	1736.307	1
127		7_	max	0	15	.043	3	.114	1 8.121e-3	3	NC	5_	NC 2400 450	3
128			min	0	1	244	1	.004	15 -1.563e-2	1	700.068	1_	2198.153	
129		8	max	0	15	.004	4	.067	1 8.825e-3	3	NC	3	NC 0740 405	2
130			min	0	1	051	2	.002	15 -1.685e-2	1_	1835.44	2	3743.435	
131		9	max	0	15	.169	1	.021	1 9.529e-3	3	NC	_4_	NC NC	1
132		4.0	min	0	1	102	3	<u>001</u>	10 -1.807e-2	1_	4007.657	<u>1</u>	NC	1
133		10	max	0	1	.256	1	.008	3 1.023e-2	3	NC	5	NC	1
134			min	0	1	132	3	005	2 -1.929e-2	1_	1654.85	_1_	NC	1
135		11	max	0	1	.169	1	.021	1 9.529e-3	3	NC	4	NC	1
136			min	0	15	102	3	<u>001</u>	10 -1.807e-2	1_	4007.657	1_	NC	1
137		12	max	0	1	.004	4	.067	1 8.825e-3	3	NC	3	NC	2
138		10	min	0	15	051	2	.002	15 -1.685e-2				3743.435	
139		13	max	0	1	.043	3	.114	1 8.121e-3	3	NC	5	NC NC	3
140			min	0	15	244	1	.004	15 -1.563e-2	1_	700.068	_1_	2198.153	
141		14	max	0	1	.107	3	.143	1 7.417e-3	3	NC	5	NC	3
142			min	0	15	422	1	.005	15 -1.441e-2	1_	464.751	<u>1</u>	1736.307	1
143		15	max	0	1	.143	3	.148	1 6.712e-3	3	NC	5	NC	3
144		1.0	min	0	15	516	1	.005	15 -1.319e-2	1_	394.53	_1_	1683.201	1
145		16	max	0	1	.143	3	.126	1 6.008e-3	3_	NC	5	NC	3
146		4-	min	0	15	503	1	.004	15 -1.197e-2	1	402.805	_1_	1982.863	
147		17	max	0	1	.106	3	.084	1 5.304e-3	3	NC 504.00	5_	NC	3
148			min	0	15	38	1	.003	15 -1.075e-2	1_	504.33	1_	3008.497	1
149		18	max	0	1	.038	3	.035	1 4.6e-3	3	NC 005.440	5	NC 7404	2
150		1	min	0	15	164	1	.001	15 -9.527e-3	1_	905.148	_1_	7404.104	
151		19	max	0	1	.108	1	.003	3 3.896e-3	3	NC	_1_	NC	1
152			min	0	15	049	3	0	10 -8.307e-3	1_	NC	1_	NC	1
153	M2	1	max	.005	1	.002	2	.007	1 -5.735e-6	<u>15</u>	NC	1_	NC_	2
154			min	004	3	005	3	0	15 -1.756e-4	1	NC	1_	7040.51	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.005	1	.002	2	.006	1	-5.315e-6	<u>15</u>	NC	_1_	NC	2
156			min	004	3	005	3	0		-1.627e-4	<u>1</u>	NC	1_	7677.919	1
157		3	max	.005	1	.001	2	.006	1	-4.894e-6		NC	_1_	NC	2
158			min	003	3	004	3	0	15	-1.498e-4	1_	NC	1_	8437.351	1
159		4	max	.004	1	00	2	.005	1	-4.473e-6	<u>15</u>	NC	_1_	NC	2
160			min	003	3	004	3	0	15	-1.369e-4	1_	NC	1	9351.094	1
161		5	max	.004	1	0	2	.005	1	-4.052e-6	15	NC	_1_	NC	1
162			min	003	3	004	3	0	15	-1.24e-4	1_	NC	1_	NC	1
163		6	max	.004	1	0	2	.004	1	-3.632e-6	15	NC	_1_	NC	1
164			min	003	3	004	3	0	15	-1.112e-4	1_	NC	1	NC	1
165		7	max	.003	1	0	2	.004	1	-3.211e-6	<u>15</u>	NC	_1_	NC	1
166			min	003	3	004	3	0	15	-9.826e-5	1	NC	1	NC	1
167		8	max	.003	1	0	10	.003	1	-2.79e-6	15	NC	_1_	NC	1
168			min	002	3	004	3	0	15		1	NC	1	NC	1
169		9	max	.003	1	0	15	.003	1	-2.369e-6	15	NC	1_	NC	1
170			min	002	3	004	3	0	15	-7.248e-5	1	NC	1	NC	1
171		10	max	.003	1	0	15	.002	1	-1.949e-6	15	NC	1	NC	1
172			min	002	3	003	3	0	15	-5.959e-5	1	NC	1_	NC	1
173		11	max	.002	1	0	15	.002	1	-1.528e-6	15	NC	1	NC	1
174			min	002	3	003	3	0	15	-4.67e-5	1	NC	1	NC	1
175		12	max	.002	1	0	15	.001	1	-1.107e-6	15	NC	1	NC	1
176			min	002	3	003	3	0	15	-3.38e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	.001	1	-6.864e-7	15	NC	1	NC	1
178			min	001	3	003	3	0	15	-2.091e-5	1	NC	1	NC	1
179		14	max	.001	1	0	15	0	1	-2.656e-7	15	NC	1	NC	1
180			min	001	3	002	3	0	15	-8.022e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	4.869e-6	1	NC	1	NC	1
182			min	0	3	002	4	0	15	0	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.776e-5	1	NC	1	NC	1
184			min	0	3	002	4	0	15	5.06e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	3.065e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15	9.966e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	4.354e-5	1	NC	1	NC	1
188		1	min	0	3	0	4	0	15	1.417e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	5.643e-5	1	NC	1	NC	1
190		1.0	min	0	1	0	1	0	1	1.838e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.7e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.749e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	4.24e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.39e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.597e-5		NC	1	NC	1
196			min	0	2	003	4	0	15		15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	4.77e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	_	1.557e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	6.944e-5	1	NC	1	NC	1
200		—	min	0	2	007	4	0	15	2.266e-6	15	NC	1	NC	1
201		6	max	0	3	002	15	.001	1	9.117e-5	1	NC	1	NC	1
202			min	0	2	002	4	0	15		15	NC	1	NC	1
203		7		0	3	009	15	.002	1	1.129e-4	1	NC	1	NC	1
204			max min	0	2	002 01	4	<u></u> 0	15	3.684e-6		9283.464	4	NC NC	1
205		8		.001	3	003	15	.002	1	1.346e-4	<u>15</u> 1	9263.464 NC	_ 4 _	NC NC	1
		0	max		2							8275.435	_	NC NC	1
206		0	min	0		011	4	0	15				4		
207		9	max	.001	3	003	15	.002	1	1.564e-4	1_	NC 7672 007	1_4	NC NC	1
208		40	min	0	2	012	4	0	15			7673.087	4_	NC NC	1
209		10	max	.001	3	003	15	.003	1	1.781e-4	1_	NC 205	2	NC NC	1
210		4.4	min	001	2	013	4	0	15	5.81e-6		7369.385	4	NC NC	1
211		11	max	.002	3	003	15	.003	1	1.998e-4	1_	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
212			min	001	2	013	4	0	15	6.519e-6		7318.797	4	NC	1
213		12	max	.002	3	003	15	.004	1	2.216e-4	_1_	NC	2	NC	1
214			min	001	2	013	4	0	15	7.228e-6	15	7519.698	4	NC	1
215		13	max	.002	3	003	15	.004	1_	2.433e-4	_1_	NC	_1_	NC	1
216			min	001	2	012	4	0	15	7.937e-6	15	8015.888	4	NC	1
217		14	max	.002	3	002	15	.004	1_	2.65e-4	_1_	NC	_1_	NC	1
218			min	001	2	011	4	0	15	8.646e-6	15	8919.94	4_	NC	1
219		15	max	.002	3	002	15	.005	1_	2.868e-4	_1_	NC	_1_	NC	1
220			min	002	2	009	4	0	15	9.355e-6	15	NC	1_	NC	1
221		16	max	.002	3	002	15	.005	1_	3.085e-4	_1_	NC	_1_	NC	1_
222			min	002	2	008	1	0	15	1.006e-5	15	NC	1_	NC	1
223		17	max	.003	3	001	15	.006	1	3.302e-4	_1_	NC	_1_	NC	1
224			min	002	2	006	1	0	15	1.077e-5	15	NC	<u>1</u>	NC	1
225		18	max	.003	3	0	15	.006	1	3.52e-4	_1_	NC	_1_	NC	1
226			min	002	2	005	1	0	15	1.148e-5	15	NC	1_	NC	1
227		19	max	.003	3	0	15	.006	1_	3.737e-4	_1_	NC	_1_	NC	1
228			min	002	2	003	1	0	15	1.219e-5	15	NC	1_	NC	1
229	M4	1_	max	.003	1	.001	2	0	15		12	NC	_1_	NC	3
230			min	0	3	003	3	006	1	-1.369e-5	1_	NC	1_	3816.674	1
231		2	max	.003	1	.001	2	0	15	-3.986e-7	12	NC	1_	NC	2
232			min	0	3	003	3	006	1	-1.369e-5	_1_	NC	1_	4157.297	1
233		3	max	.003	1	.001	2	0	15	-3.986e-7	12	NC	1_	NC	2
234			min	0	3	003	3	005	1	-1.369e-5	_1_	NC	<u>1</u>	4562.31	1
235		4	max	.002	1	.001	2	0	15	-3.986e-7	12	NC	_1_	NC	2
236			min	0	3	002	3	005	1	-1.369e-5	1_	NC	1_	5048.51	1
237		5	max	.002	1	.001	2	00	15	-3.986e-7	12	NC	_1_	NC	2
238			min	0	3	002	3	004	1	-1.369e-5	<u>1</u>	NC	<u>1</u>	5638.719	1
239		6	max	.002	1	.001	2	0	15	-3.986e-7	12	NC	_1_	NC	2
240			min	0	3	002	3	004	1	-1.369e-5	_1_	NC	1_	6364.591	1
241		7	max	.002	1	0	2	0	15	-3.986e-7	12	NC	_1_	NC	2
242			min	0	3	002	3	003	1	-1.369e-5	_1_	NC	1_	7271.058	
243		8	max	.002	1	0	2	0	15	-3.986e-7	12	NC	1_	NC	2
244			min	0	3	002	3	003	1	-1.369e-5	_1_	NC	_1_	8423.662	1
245		9	max	.002	1	0	2	0	15	-3.986e-7	12	NC	1_	NC	2
246			min	0	3	002	3	003	1	-1.369e-5	1_	NC	1_	9921.088	1
247		10	max	.001	1	0	2	0	15	-3.986e-7	12	NC	_1_	NC	1
248			min	0	3	001	3	002	1	-1.369e-5	1_	NC	1_	NC	1
249		11	max	.001	1	0	2	0	15		12	NC	1_	NC	1
250			min	0	3	001	3	002	1	-1.369e-5	_1_	NC	1_	NC	1
251		12	max	.001	1	0	2	0	15	-3.986e-7	12	NC	_1_	NC	1
252			min	0	3	001	3	001		-1.369e-5		NC	1_	NC	1
253		13	max	0	1	0	2	0		-3.986e-7	12	NC	1_	NC NC	1
254			min	0	3	0	3	001	1_	-1.369e-5	1_	NC	1_	NC NC	1
255		14	max	0	1	0	2	0		-3.986e-7		NC	_1_	NC	1
256			min	0	3	0	3	0	1	-1.369e-5	1_	NC	1_	NC	1
257		15	max	0	1	0	2	0	15		12	NC	1_	NC	1
258			min	0	3	0	3	0	1	-1.369e-5	1_	NC	1_	NC	1
259		16	max	0	1	0	2	0	15		12	NC	_1_	NC	1
260		4-	min	0	3	0	3	0	1	-1.369e-5	1	NC	1_	NC NC	1
261		17	max	0	1	0	2	0	15	-3.986e-7	12	NC NC	1_	NC NC	1
262		10	min	0	3	0	3	0	1_	-1.369e-5	1_	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	-3.986e-7	12	NC	1_	NC NC	1
264		4.0	min	0	3	0	3	0	1	-1.369e-5	1_	NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	-3.986e-7		NC	_1_	NC NC	1
266	140		min	0	1	0	1	0	1	-1.369e-5	1_	NC NC	1_	NC NC	1
267	<u>M6</u>	1	max	.016	1	.01	2	0	1	0	1_	NC	3	NC NC	1
268			min	013	3	014	3	0	1	0	1	4842.218	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
269		2	max	.016	1	.009	2	0	1	0	1	NC	3	NC	1
270			min	012	3	014	3	0	1	0	1	5342.275	2	NC	1
271		3	max	.015	1	.008	2	0	1	0	_1_	NC	1_	NC	1
272			min	011	3	013	3	0	1	0	1	5952.237	2	NC	1
273		4	max	.014	1	.007	2	0	1	0	_1_	NC	1_	NC	1
274			min	011	3	012	3	0	1	0	1_	6706.069	2	NC	1
275		5	max	.013	1	.006	2	0	1	0	_1_	NC	1_	NC	1
276			min	01	3	011	3	0	1	0	1_	7652.437	2	NC	1
277		6	max	.012	1	.005	2	0	1	0	1_	NC	1_	NC	1
278			min	009	3	011	3	0	1	0	1	8863.148	2	NC	1
279		7	max	.011	1	.005	2	0	1	0	_1_	NC	_1_	NC	1
280			min	009	3	01	3	0	1	0	1	NC	1_	NC	1
281		8	max	.01	1	.004	2	0	1	0	_1_	NC	1_	NC	1
282			min	008	3	009	3	0	1	0	1	NC	1	NC	1
283		9	max	.009	1	.003	2	0	1	0	_1_	NC	1_	NC	1
284			min	007	3	008	3	0	1	0	1	NC	1	NC	1
285		10	max	.008	1	.002	2	0	1	0	_1_	NC	_1_	NC	1
286			min	006	3	008	3	0	1	0	1_	NC	1_	NC	1
287		11	max	.007	1	.002	2	0	1	0	1_	NC	1	NC	1
288			min	006	3	007	3	0	1	0	1	NC	1	NC	1
289		12	max	.006	1	.001	2	0	1	0	_1_	NC	1_	NC	1
290			min	005	3	006	3	0	1	0	1	NC	1_	NC	1
291		13	max	.005	1	0	2	0	1	0	_1_	NC	1_	NC	1
292			min	004	3	005	3	0	1	0	1	NC	1	NC	1
293		14	max	.005	1	0	2	0	1	0	1_	NC	1_	NC	1
294			min	004	3	004	3	0	1	0	1	NC	1	NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
296			min	003	3	004	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC	1	NC	1
298			min	002	3	003	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	1	0	2	0	1	0	1_	NC	1_	NC	1
300			min	001	3	002	3	0	1	0	1	NC	1	NC	1
301		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
302			min	0	3	0	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.001	3	0	15	0	1	0	1	NC	1	NC	1
310			min	0	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	0	1	0	_1_	NC	1_	NC	1
312			min	001	2	005	3	0	1	0	1	NC	1	NC	1
313		5	max	.002	3	002	15	0	1	0	1_	NC	1	NC	1
314			min	002	2	007	4	0	1	0	1	NC	1	NC	1
315		6	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
316			min	002	2	009	4	0	1	0	1	NC	1	NC	1
317		7	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
318			min	003	2	01	4	0	1	0	1	9561.603	4	NC	1
319		8	max	.004	3	003	15	0	1	0	1	NC	1	NC	1
320			min	003	2	011	4	0	1	0	1	8503.386	4	NC	1
321		9	max	.004	3	003	15	0	1	0	1_	NC	1_	NC	1
322			min	004	2	012	4	0	1	0	1	7869.298	4	NC	1
323		10	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
324			min	004	2	013	4	0	1	0	1	7545.808	4	NC	1
325		11	max	.005	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328				min					0	1		1		4		1
329			12	max					0		0	1		1_		1
330												•				
331			13													_
333												_				•
333			14													
334			45									•				
336			15													-
336			10					-						•		
338			16													_
338			17									_		•		•
339			17													-
3440			10									•				
341			10													
342			10								_	_		_		•
343 M8			13													
344		M8	1			_								•		
345		IVIO														1
346			2											1		1
347			_			-										_
348			3							1		1		1		1
349										1		1		1		1
S50			4						0	1	0	1		1		1
SS1						3			0	1	0	1		1		1
352			5			1			0	1	0	1	NC	1	NC	1
354	352			min	002	3	007	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.006	1	.005	2	0	1	0	1	NC	1	NC	1
356	354			min	001	3	007	3	0	1	0	1	NC	1	NC	1
357			7	max	.006	-			0	1		1_		1_		1
358				min								1		1_		•
359			8	max					0	1	0	1		1_		1
360				min					0	•		•		1_		1
361			9													
362											_	_		_		•
363 11 max .004 1 .003 2 0 1 0 1 NC 1 NC 1 364 min 0 3 004 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 366 min 0 3 004 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .002 2 0 1 0 1 NC 1 NC 1 368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>_</td> <td></td>			10			_										
364						_										
365 12 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 1 366 1 NC 1 NC 1 NC 1			11											1_		1
366			40		_									1_		1
367 13 max .003 1 .002 2 0 1 0 1 NC 1 NC 1 368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	365		12	max				2								-
368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1			10													
369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 1 NC 1 <td< td=""><td></td><td></td><td>13</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			13	_												-
370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1			1.1									•		•		
371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 3 0 1 0 <t< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			14													_
372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 1 0 1 0 1 NC <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>•</td>			15									_		_		•
373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC			10													_
374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 0 2 0 1 0 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC<			10													
376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			17							•		•				•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			17			-										_
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			18		_							_		•		•
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			10	_	_											-
380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			19									•				-
381 M10 1 max .005 1 .002 2 0 15 1.756e-4 1 NC 1 NC 2			1.5			_					_					_
		M10	1		•	1				15		1		1		
	382			min	004		005	3	007		5.735e-6	15	NC	1	7040.51	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.002	2	0	15	1.627e-4	_1_	NC	_1_	NC	2
384		_	min	004	3	005	3	006	1	5.315e-6	15	NC	_1_	7677.919	1
385		3	max	.005	1	.001	2	0	15	1.498e-4	_1_	NC	_1_	NC	2
386			min	003	3	004	3	006	1	4.894e-6	15	NC	1_	8437.351	1
387		4	max	.004	1	0	2	0	15	1.369e-4	1_	NC	1	NC	2
388			min	003	3	004	3	005	1	4.473e-6	15	NC	1_	9351.094	
389		5	max	.004	1	0	2	0	15	1.24e-4	1_	NC	1	NC	1
390			min	003	3	004	3	005	1	4.052e-6	15	NC	1_	NC	1
391		6	max	.004	1	0	2	0	15	1.112e-4	_1_	NC	1_	NC	1
392		_	min	003	3	004	3	004	1	3.632e-6	<u>15</u>	NC	_1_	NC	1
393		7	max	.003	1	0	2	0	15	9.826e-5	1_	NC	1	NC NC	1
394			min	003	3	004	3	004	1	3.211e-6	15	NC	1_	NC NC	1
395		8	max	.003	1	0	10	0	15	8.537e-5	1_	NC	1	NC NC	1
396			min	002	3	004	3	003	1	2.79e-6	15	NC	1	NC	1
397		9	max	.003	1	0	15	0	15	7.248e-5	1_	NC	1	NC	1
398		40	min	002	3	004	3	003	1	2.369e-6	15	NC	1_	NC	1
399		10	max	.003	1	0	15	0	15	5.959e-5	1_	NC NC	1_	NC NC	1
400		4.4	min	002	3	003	3	002	1	1.949e-6	<u>15</u>	NC NC	1_	NC NC	1
401		11	max	.002	1	0	15	0	15	4.67e-5	1_	NC	1_	NC NC	1
402		40	min	002	3	003	3	002	1	1.528e-6	<u>15</u>	NC NC	1_	NC NC	1
403		12	max	.002	1	0	15	0	15	3.38e-5	1_	NC	1	NC NC	1
404		40	min	002	3	003	3	001	1	1.107e-6	<u>15</u>	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	2.091e-5	1_	NC NC	1	NC NC	1
406		4.4	min	001	3	003	3	001	1	6.864e-7	15	NC NC	_	NC NC	1
407		14	max	.001	1	0	15	0	15	8.022e-6	1_	NC NC	1	NC NC	1
408		4.5	min	001	3	002	3	0	1	2.656e-7	<u>15</u>	NC NC		NC NC	1
409		15	max	.001	1	0	15	0	15	0	3	NC NC	1_	NC NC	1
410		4.0	min	0	3	002	4	0	1	-4.869e-6	1_	NC NC	1_	NC NC	1
411		16	max	0	1	0	15	0	15	-5.06e-7	12	NC NC	1	NC NC	1
412		17	min	0	3	002	15	0	1	-1.776e-5	1_	NC NC	<u>1</u> 1	NC NC	1
413		17	max	0	3	0 001		0	15	-9.966e-7	<u>15</u>	NC NC	1	NC NC	1
414		18	min	0	1		15	0	15	-3.065e-5	1_	NC NC	1	NC NC	1
416		10	max	<u> </u>	3	<u> </u>		0	1	-1.417e-6 -4.354e-5	<u>15</u> 1	NC NC	1	NC NC	1
417		19	min	0	1	0	1	<u>U</u>	1	-4.354e-5 -1.838e-6	15	NC NC	1	NC NC	1
417		19	max	0	1	0	1	0	1	-5.643e-5	15 1	NC NC	1	NC NC	1
419	M11	1	min	0	1	0	1	0	1	1.749e-5	1	NC NC	1	NC NC	1
420	IVI I I		max	0	1	0	1	0	1	5.7e-7	15	NC NC	1	NC NC	1
421		2	max	0	3	<u> </u>	15	0	15	-1.39e-7	15	NC NC	1	NC NC	1
422			min	0	2	001	4	0	1	-4.24e-6	1	NC NC	1	NC	1
423		3	max	0	3	<u>001</u> 0	15	0		-8.479e-7		NC NC	1	NC NC	1
424			min	0	2	003	4	0	1	-8.479e-7	1	NC	1	NC	1
425		4	max	0	3	003 001	15	0	15			NC	1	NC	1
426		_	min	0	2	005	4	0	1	-4.77e-5	1	NC NC	1	NC	1
427		5	max	0	3	003	15	0	15		•	NC	1	NC	1
428		J	min	0	2	002	4	001	1	-6.944e-5	1	NC NC	1	NC	1
429		6	max	0	3	007	15	0	15		15	NC	1	NC	1
430			min	0	2	002	4	001	1	-9.117e-5	1	NC	1	NC	1
431		7	max	0	3	002	15	0		-3.684e-6		NC	1	NC	1
432			min	0	2	002	4	002	1	-1.129e-4	1	9283.464	4	NC	1
433		8	max	.001	3	003	15	0	15			NC	1	NC	1
434			min	0	2	011	4	002	1	-1.346e-4	1	8275.435	4	NC	1
435		9	max	.001	3	003	15	0	15		15	NC	1	NC	1
436			min	0	2	012	4	002	1	-1.564e-4	1	7673.087	4	NC	1
437		10	max	.001	3	003	15	0	15	-5.81e-6	15	NC	2	NC	1
438		10	min	001	2	013	4	003	1	-1.781e-4	1	7369.385	4	NC	1
439		11	max	.002	3	003	15	0		-6.519e-6		NC	2	NC	1
			ITTIGA	.002		.000			- 10	0.01000	. 0				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	001	2	013	4	003	1	-1.998e-4	1	7318.797	4	NC	1
441		12	max	.002	3	003	15	0	15		15	NC	2	NC	1
442			min	001	2	013	4	004	1	-2.216e-4	1_	7519.698	4	NC	1
443		13	max	.002	3	003	15	0	15		15	NC	_1_	NC	1
444			min	001	2	012	4	004	1_	-2.433e-4	1_	8015.888	4_	NC	1
445		14	max	.002	3	002	15	0	15		<u>15</u>	NC 2010.01	1	NC NC	1
446		45	min	001	2	011	4	004	1	-2.65e-4	1_	8919.94	4	NC NC	1
447		15	max	.002	3	002	15	0	15		<u>15</u>	NC NC	1_	NC NC	1
448		4.0	min	002	2	009	4	005	1	-2.868e-4	1_	NC NC	1_	NC NC	1
449		16	max	.002	3	002 008	15	0 005	15	-1.006e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	002 .003	3		15	005 0	15	-3.085e-4 -1.077e-5	1_	NC NC	1	NC NC	1
451		17	max	002	2	001 006	1	006	1	-3.302e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	max	.002	3	<u>006</u> 0	15	<u>006</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	002	2	005	1	006	1	-3.52e-4	1	NC NC	1	NC	1
455		19	max	.002	3	<u>005</u> 0	15	<u>000</u> 0	15		15	NC	1	NC	1
456		13	min	002	2	003	1	006	1	-3.737e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.003	2	.006	1	1.369e-5	1	NC	1	NC	3
458	10112	•	min	0	3	003	3	0	15		12	NC	1	3816.674	1
459		2	max	.003	1	.001	2	.006	1	1.369e-5	1	NC	1	NC	2
460			min	0	3	003	3	0	15	3.986e-7	12	NC	1	4157.297	1
461		3	max	.003	1	.001	2	.005	1	1.369e-5	1	NC	1	NC	2
462			min	0	3	003	3	0	15	3.986e-7	12	NC	1	4562.31	1
463		4	max	.002	1	.001	2	.005	1	1.369e-5	1	NC	1	NC	2
464			min	0	3	002	3	0	15	3.986e-7	12	NC	1	5048.51	1
465		5	max	.002	1	.001	2	.004	1	1.369e-5	1	NC	1	NC	2
466			min	0	3	002	3	0	15	3.986e-7	12	NC	1	5638.719	1
467		6	max	.002	1	.001	2	.004	1	1.369e-5	1	NC	1	NC	2
468			min	0	3	002	3	0	15	3.986e-7	12	NC	1	6364.591	1
469		7	max	.002	1	0	2	.003	1	1.369e-5	1_	NC	1_	NC	2
470			min	0	3	002	3	0	15	3.986e-7	12	NC	1	7271.058	
471		8	max	.002	1	0	2	.003	1	1.369e-5	1_	NC	_1_	NC	2
472			min	0	3	002	3	0	15	3.986e-7	12	NC	1_	8423.662	1
473		9	max	.002	1	0	2	.003	1	1.369e-5	_1_	NC	_1_	NC	2
474			min	0	3	002	3	0	15	3.986e-7	12	NC	_1_	9921.088	1
475		10	max	.001	1	0	2	.002	1	1.369e-5	_1_	NC	_1_	NC	1
476			min	0	3	001	3	0	15	3.986e-7	12	NC	1_	NC	1
477		11	max	.001	1	0	2	.002	1	1.369e-5	1_	NC	1_	NC NC	1
478		40	min	0	3	001	3	0	15		12	NC	_1_	NC NC	1
479		12	max	.001	1	0	2	.001	1	1.369e-5	1	NC NC	1_	NC NC	1
480		40	min	0	3	001	3	0		3.986e-7			1	NC NC	1
481		13	max	0	3	0	2	.001	1	1.369e-5	1	NC NC	1	NC NC	1
482		1.1	min	0	1	0	2	0	15		12	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	0 0	3	<u> </u>	1	1.369e-5	12	NC NC	1	NC NC	1
484 485		15	min max	0	1	0	2	0	1 <u>5</u>	3.986e-7 1.369e-5	<u>12</u> 1	NC NC	1	NC NC	1
486		15	min	0	3	0	3	0	15		12	NC	1	NC	1
487		16	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
488		10	min	0	3	0	3	0	15		12	NC	1	NC	1
489		17	max	0	1	0	2	0	1	1.369e-5	1	NC NC	1	NC NC	1
490		17	min	0	3	0	3	0	15	3.986e-7	12	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
492		10	min	0	3	0	3	0	15		12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.369e-5	1	NC	1	NC	1
494		13	min	0	1	0	1	0	1	3.986e-7	12	NC	1	NC	1
495	M1	1	max	.004	3	.111	1	0	1	1.808e-2	1	NC	1	NC	1
496			min	001	10	014	3	0		-1.855e-2	3	NC	1	NC	1
											_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
497		2	max	.004	3	.055	1	0	15	8.812e-3	1		3	NC	1
498			min	001	10	007	3	005	1	-9.177e-3	3		1	NC	1
499		3	max	.004	3	.005	3	0	15	2.005e-5	10	NC	5	NC	1
500			min	001	10	006	1	007	1	-1.285e-4	1	973.648	1	NC	1
501		4	max	.004	3	.027	3	0	15	5.027e-3	1_	NC	5	NC	1
502			min	001	10	077	1	006	1	-3.354e-3	3	607.679	1	NC	1
503		5	max	.004	3	.055	3	0	15	1.018e-2	1	NC	15	NC	1
504			min	001	10	152	1	004	1	-6.618e-3	3	434.407	1	NC	1
505		6	max	.003	3	.085	3	0	15	1.534e-2	1		15	NC	1
506			min	001	10	225	1	002	1	-9.882e-3	3	339.645	1	NC	1
507		7	max	.003	3	.114	3	0	1	2.05e-2	1	9551.488	15	NC	1
508			min	001	10	291	1	0	12	-1.315e-2	3	284.044	1	NC	1
509		8	max	.003	3	.139	3	0	1	2.565e-2	1	8484.832	15	NC	1
510			min	001	10	344	1	0	15		3	251.3	1	NC	1
511		9	max	.003	3	.155	3	0	15	2.818e-2	1	7928.851	15	NC	1
512			min	001	10	377	1	0	1	-1.649e-2	3		1	NC	1
513		10	max	.003	3	.161	3	0	1	2.897e-2	1	7759.571	15	NC	1
514			min	001	10	388	1	0	12	-1.446e-2	3	229.215	1	NC	1
515		11	max	.003	3	.157	3	0	1	2.976e-2	1	7928.701	15	NC	1
516			min	0	10	377	1	0	15	-1.243e-2	3	234.564	1	NC	1
517		12	max	.003	3	.144	3	0	15	2.803e-2	1	8484.519	15	NC	1
518			min	0	10	343	1	0	1	-1.038e-2	3	252.096	1	NC	1
519		13	max	.003	3	.122	3	0	15	2.252e-2	1	9550.935	15	NC	1
520			min	0	10	29	1	0	1	-8.307e-3	3	286.012	1	NC	1
521		14	max	.003	3	.095	3	.002	1	1.702e-2	1		15	NC	1
522			min	0	10	223	1	0	15	-6.237e-3	3	343.886	1	NC	1
523		15	max	.003	3	.064	3	.004	1	1.151e-2	1	NC	15	NC	1
524			min	0	10	149	1	0	15	-4.167e-3	3	443.179	1	NC	1
525		16	max	.003	3	.032	3	.006	1	6.001e-3	1	NC	5	NC	1
526			min	0	10	074	1	0	15	-2.097e-3	3	626.226	1	NC	1
527		17	max	.003	3	.002	3	.007	1	4.934e-4	1	NC	5	NC	1
528			min	0	10	004	1	0	15	-2.651e-5	3	1015.758	1	NC	1
529		18	max	.003	3	.055	1	.005	1	1.041e-2	1	NC	5	NC	1
530			min	0	10	025	3	0	15	-3.283e-3	3	2143.851	1	NC	1
531		19	max	.003	3	.108	1	0	15	2.069e-2	1	NC	1	NC	1
532			min	0	10	049	3	0	1	-6.664e-3	3	NC	1	NC	1
533	M5	1	max	.011	3	.266	1	0	1	0	1	NC	1	NC	1
534			min	007	2	022	3	0	1	0	1	NC	1	NC	1
535		2	max	.011	3	.132	1	0	1	0	1	NC	5	NC	1
536			min	007	2	011	3	0	1	0	1	852.394	1	NC	1
537		3	max	.011	3	.017	3	0	1	0	1		15	NC	1
538			min	007	2	021	1	0	1	0	1		1	NC	1
539		4	max	.011	3	.076	3	0	1	0	1		15	NC	1
540			min	007	2	208	1	0	1	0	1	241.433	1	NC	1
541		5	max	.011	3	.156	3	0	1	0	1		15	NC	1
542			min	007	2	412	1	0	1	0	1		1	NC	1
543		6	max	.011	3	.246	3	0	1	0	1		15	NC	1
544			min	006	2	616	1	0	1	0	1	129.64	1	NC	1
545		7	max	.01	3	.334	3	0	1	0	1		15	NC	1
546			min	006	2	801	1	0	1	0	1	107.121	1	NC	1
547		8	max	.01	3	.407	3	0	1	0	1		15	NC	1
548			min	006	2	95	1	0	1	0	1		1	NC	1
549		9	max	.01	3	.455	3	0	1	0	-		15	NC	1
550			min	006	2	-1.043	1	0	1	0	1		1	NC	1
551		10	max	.01	3	.472	3	0	1	0	1		15	NC NC	1
552		10	min	006	2	-1.074	1	0	1	0	1		1	NC	1
553		11	max	.01	3	.46	3	0	1	0	1		15	NC	1
UUU		111	πιαλ	.01	⊥ J	.40	⊥ ט	U		U		0010.407	IJ	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	006	2	-1.043	1	0	1	0	1	87.429	1	NC	1
555		12	max	.009	3	.421	3	0	1	0	1	3571.145	15	NC	1
556			min	006	2	948	1	0	1	0	1	94.371	1	NC	1
557		13	max	.009	3	.356	3	0	1	0	1		15	NC	1
558			min	006	2	796	1	0	1	0	1	107.999	1	NC	1
559		14	max	.009	3	.275	3	0	1	0	1		. 15	NC	1
560			min	005	2	607	1	0	1	0	1		1	NC	1
561		15	max	.009	3	.184	3	0	1	0	1		15	NC	1
562		13	min	005	2	401	1	0	1	0	1	172.933	1	NC	1
563		16		.008	3	.092	3	0	1	-	1		15	NC	1
		10	max		2		1	0	1	0	1		1	NC	1
564		47	min	005		196			•	-	•		•		-
565		17	max	.008	3	.006	3	0	1	0	1		<u>15</u>	NC NC	1
566		10	min	005	2	013	1	0	1	0	1_		1_	NC NC	1
567		18	max	.008	3	.132	1	0	1	0	1_	NC	5	NC	1
568			min	005	2	067	3	0	1	0	1_	914.571	1_	NC	1
569		19	max	.008	3	.256	1	0	1	0	1_	NC	1	NC	1
570			min	005	2	132	3	0	1	0	1	NC	1_	NC	1
571	M9	1_	max	.004	3	.111	1	0	15	1.855e-2	3	NC	1_	NC	1
572			min	001	10	014	3	0	1	-1.808e-2	1	NC	1	NC	1
573		2	max	.004	3	.055	1	.005	1	9.177e-3	3	NC	3	NC	1
574			min	001	10	007	3	0	15	-8.812e-3	1	2036.645	1	NC	1
575		3	max	.004	3	.005	3	.007	1	1.285e-4	1	NC	5	NC	1
576			min	001	10	006	1	0	15	-2.005e-5	10	973.648	1	NC	1
577		4	max	.004	3	.027	3	.006	1	3.354e-3	3	NC	5	NC	1
578			min	001	10	077	1	0	15	-5.027e-3	1	607.679	1	NC	1
579		5	max	.004	3	.055	3	.004	1	6.618e-3	3		15	NC	1
580			min	001	10	152	1	0	15	-1.018e-2	1		1	NC	1
581		6	max	.003	3	.085	3	.002	1	9.882e-3	3		15	NC	1
582			min	001	10	225	1	0	15	-1.534e-2	1	339.645	1	NC	1
583		7	max	.003	3	.114	3	0	12	1.315e-2	3		<u>-</u> 15	NC	1
584			min	001	10	291	1	0	1	-2.05e-2	1	284.044	1	NC	1
585		8	max	.003	3	.139	3	0	15	1.641e-2	3		15	NC	1
586		0	min	001	10	344	1	0	1	-2.565e-2	1		1	NC	1
		9			3				1		3		•	NC	1
587		9	max	.003		.155	3	0	_	1.649e-2			<u>15</u>		_
588		40	min	001	10	377	1	0		-2.818e-2	1_	234.308	1_	NC NC	1
589		10	max	.003	3	.161	3	0	12	1.446e-2	3		<u>15</u>	NC NC	1
590			min	001	10	388	1	0	1_	-2.897e-2	1		1_	NC	1
591		11	max	.003	3	.157	3	0	15	1.243e-2	3		<u>15</u>	NC	1
592			min	0	10	377	1	0	1	-2.976e-2	1_	234.564	1_	NC	1
593		12	max	.003	3	.144	3	0	1	1.038e-2	3		<u>15</u>	NC NC	1
594			min	0	10	343	1	0		-2.803e-2	1	252.096	1	NC	1
595		13		.003	3	.122	3	0	1_	8.307e-3	3_		<u> 15</u>	NC	1
596			min	0	10	29	1	0		-2.252e-2	1_		1	NC	1
597		14	max	.003	3	.095	3	0	15	6.237e-3	3		15	NC	1
598			min	0	10	223	1	002	1	-1.702e-2	1	0.0000	1	NC	1
599		15	max	.003	3	.064	3	0	15	4.167e-3	3		15	NC	1
600			min	0	10	149	1	004	1	-1.151e-2	1		1	NC	1
601		16	max	.003	3	.032	3	0	15	2.097e-3	3	NC	5	NC	1
602			min	0	10	074	1	006	1	-6.001e-3	1	626.226	1	NC	1
603		17	max	.003	3	.002	3	0	15	2.651e-5	3		5	NC	1
604			min	0	10	004	1	007	1	-4.934e-4	1	1015.758	1	NC	1
605		18	max	.003	3	.055	1	0	15	3.283e-3	3	NC	5	NC	1
606		1.0	min	0	10	025	3	005	1	-1.041e-2	1		1	NC	1
607		19	max	.003	3	.108	1	0	1	6.664e-3	3	NC	1	NC	1
608		13	min	0	10	049	3	0	_	-2.069e-2	1	NC	1	NC	1
000			THIIII	U	IU	049	J	U	l 10	-2.0096-2		INC		INC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.