Tutoría 4: Derivación y series de potencias

Ejercicio 1. Verifique que la función exponencial $f(z) = e^{az}$, donde a es una constante, satisface las ecuaciones de Cauchy-Riemann y demuestre que $f'(z) = ae^{az}$.

Ejercicio 2. Determine los valores de a y b para que la función de variable compleja f(z) sea analítica.

$$f(z) = x^2 + ay^2 - 2xy + j(bx^2 - y^2 + 2xy)$$

Ejercicio 3. Analice dónde la función $f(z) = zz^*$ es analítica. De ser posible, determine la derivada de dicha función.

Ejercicio 4. Demuestre que $u(x,y) = e^x(x\cos(y) - y\sin(y))$ es una función armónica y encuentre una función conjugada armónica v(x,y). Escriba f(z=x+jy) = u(x,y) + jv(x,y) en términos de z.

Ejercicio 5. Obtenga una función holomorfa f(z) = u(x,y) + jv(x,y) si se tiene que $u(x,y) = y^3 - 3x^2y$ y además se cumple que f(0) = j.

Ejercicio 6. Determine en que puntos del plano z el mapeo $w=z^3+2z^2$ no es conforme.

Ejercicio 7. Encuentre la representación en series de potencias de la función:

$$f(z) = \frac{1}{z - j}$$

En las regiones:

a.
$$|z| < 1$$

b.
$$|z| > 1$$

c.
$$1 < |z - 1 - j| < \sqrt{2}$$

Ejercicio 8. Utilizando división polinomial desarrolle una serie de potencias para la función $f(z) = \frac{1}{z^2 + 1}$ en la región |z| > 1 y utilizando ese desarrollo obtenga la serie para $f_1(z) = \frac{z}{z^2 + 1}$ en la misma región de convergencia: