Modellierung und Optimierung mit OPL

5 Probleme mit mehreren Zielfunktionen

Andreas Popp

Dieser Foliensatz ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. 5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingunger

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Minimax-Probleme

Explizite Modellierung von
Maxima und Minima

Inhalt

- 5.1 Weiche Nebenbedingungen
- 5.2 Maximierung vs. Minimierung
- 5.3 Mehrere Zielfunktionen und Pareto-Optimalität
- 5.4 Multikriterielle Optimierung
- 5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probleme

Explizite Modellierung von Maxima und Minima

5 Probleme mit mehreren Zielfunktionen

CC-BY-SA A. Popp

5.1 Weiche Nebenbedingunger

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Maximin- und Minimax-Probleme

xplizite Modellierung vor axima und Minima

5.1 Weiche Nebenbedingungen

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Zielfunktionen

Explizite Modellierung von Maxima und Minima

Beispiel: Produktionsproblem

$$\max \sum_{i \in I} p_i \cdot x_i$$

$$s.t. \sum_{i \in I} v_{ri} \cdot x_i \le c_i \qquad \forall r \in R \quad (I)$$

$$x_i \ge 0 \qquad \forall i \in I$$

Nebenbedingung (I) ist eine "harte" Nebenbedingung, sie muss exakt eingehalten werden.

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Maximin- und

explizite Modellierung von Maxima und Minima

Weiche Ungleichungsbedingung

$$\max \sum_{i \in I} p_i \cdot x_i$$

$$s.t. \sum_{i \in I} v_{ri} \cdot x_i \le c_r + o_r \qquad \forall r \in R$$

$$x_i, o_r \ge 0 \qquad \forall i \in I, r \in R$$
(I)

Problem: keine Optimallösung, da Lösungsraum in Optimierungsrichtung unbeschränkt

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

Optimierung

5.5 Bottleneck-Zielfunktionen

Minimax-Probleme

Explizite Modellierung von Maxima und Minima

Weiche Ungleichungsbedingung mit Strafkosten und Beschränkung

$$\max \sum_{i \in I} p_{i} \cdot x_{i} - \sum_{r \in R} k_{r} \cdot o_{r}$$

$$s.t. \sum_{i \in I} v_{ri} \cdot x_{i} \leq c_{r} + o_{r} \qquad \forall r \in R \qquad (I)$$

$$o_{r} \leq m_{r} \qquad \forall r \in R \qquad (II)$$

$$x_{i}, o_{r} \geq 0 \qquad \forall i \in I, r \in R$$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Maximin- und

Explizite Modellierung von Maxima und Minima

Beispiel: Produktionsproblem mit Vollauslastung

$$\max \sum_{i \in I} p_i \cdot x_i$$
s.t.
$$\sum_{i \in I} v_{ri} \cdot x_i = c_i \qquad \forall r \in R \quad (I)$$

$$x_i \ge 0 \qquad \forall i \in I$$

Nebenbedingung (I) ist eine "harte" Nebenbedingung, sie muss exakt eingehalten werden.

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

- vs. Minimierung
- 5.3 Mehrere Zielfunktionen und Pareto-Optimalität
- 5.4 Multikriterielle Optimierung
- 5.5 Bottleneck-

Maximin- und

Explizite Modellierung von Maxima und Minima

Weiche Gleichhungsbedingung

$$\max \sum_{i \in I} p_i \cdot x_i - \sum_{r \in R} k_r \cdot |o_r|$$

$$s.t. \sum_{i \in I} v_{ri} \cdot x_i = c_i + o_r \qquad \forall r \in R$$

$$x_i \ge 0, o_r \le 0 \qquad \forall i \in I, r \in R$$
(I)

Problem: Absolutbetrag ist keine lineare Funktion.

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

Optimierung

5.5 Bottleneck-

Zielfunktionen
Maximin- und

xplizite Modellierung von Maxima und Minima Lösung: Substituiere $o_r = o_r^+ - o_r^-$

$$\max \sum_{i \in I} p_i \cdot x_i - \sum_{r \in R} k_r \cdot (o_r^+ + o_r^-)$$

$$s.t. \sum_{i \in I} v_{ri} \cdot x_i = c_i + o_r^+ - o_r^- \qquad \forall r \in R$$

$$x_i, o_r^+, o_r^- \ge 0 \qquad \forall i \in I, r \in R$$

Vorsicht bei Auflösung von Absolutbeträgen

Die Zerlegung einer Variable in zwei Summanden ist nicht eindeutig. Es muss sichergestellt sein, dass ein Summand null ist.

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Minimax-Probleme

Explizite Modellierung von Maxima und Minima

5.2 Maximierung vs. Minimierung

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probleme Explizite Modellierung von

Maximierung vs. Minimierung

Minimierung und Maximierung sind identische Vorgänge. Es gilt:

$$\max_{x \in X} f(x) = -\min_{x \in X} -f(x)$$

Es ändert sich lediglich das Vorzeichen des Optimalwerts.

5 Probleme mit mehreren **7**ielfunktionen

> CC-BY-SA A. Popp

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Maximin- und Minimax-Probleme

explizite Modellierung von Maxima und Minima

Beispiel: Lewbrandt GmbH

Gesamtkapazität: 120 h

Auftrag	1	2	3	4	5
Deckungsbeitrag	150 k€	100 k€	150 k€	50 k€	70 k€
Umsatz	340 k€	190 k€	220 k€	85 k€	215 k€
Abwasser	6,2t	3,5t	5,8 t	2,4t	4.8 t
Kapazitätsverbrauch	65 h	35 h	65 h	15 h	25 h

Welche Aufträge sollen gefertigt werden?

 $\rightarrow \, \mathsf{Rucksackproblem}$

Problem

Es gibt drei Zielfunktionen, damit gibt es keine eindeutige Optimallösung.

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Zielfunktionen

Minimax-Probleme

Explizite Modellierung von

Pareto-Optimalität

Definition: Pareto-Optimalität

Eine Lösung heißt paretoooptimal, wenn es keine andere Lösung gibt, die in einer Zielgröße besser ist und in den anderen mindestens gleich gut.

Ausgewählte Lösungen des Beispiels "Lewbrandt GmbH"

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Gewinn	Umsatz	Abwasser	po.
0	1	0	1	0	150	275	5,9	ja
0	1	0	1	1	220	490	10,7	nein
1	1	0	0	0	250	530	9,7	ja
1	1	0	1	0	300	615	12,1	ja

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Zielfunktionen Maximin- und

> Ainimax-Probleme Explizite Modellierung von Aaxima und Minima

5.4 Multikriterielle Optimierung

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingunger

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und

xplizite Modellierung von

Zielfunktionen aus Beispiel "Lewbrandt Gmbh":

► Gewinn:

$$\max f_G(\overline{\mathbf{x}}) = 150 \cdot x_1 + 100 \cdot x_2 + 150 \cdot x_3 + 50 \cdot x_4 + 70 \cdot x_5$$

► Umsatz:

$$\max f_U(\overline{\mathbf{x}}) = 340 \cdot x_1 + 190 \cdot x_2 + 220 \cdot x_3 + 85 \cdot x_4 + 215 \cdot x_5$$

► Abwasser:

$$\max f_A(\overline{\mathbf{x}}) = -6.2 \cdot x_1 - 3.5 \cdot x_2 - 5.8 \cdot x_3 - 2.4 \cdot x_4 - 4.8 \cdot x_5$$

Zielgewichtung

Erstelle eine gemeinsame Zielfunktion, indem die Ziele mit Gewichtungsfaktoren versehen und addiert werden.

Zielgewichtung im Beispiel "Lewbrandt GmbH"

Gewichtungsfaktoren:
$$a_g = 5$$
, $a_U = 1$, $a_A = 50$

neue Zielfunktion:

$$\max f(\overline{\mathbf{x}}) = a_g \cdot f_G(\overline{\mathbf{x}}) + a_U \cdot f_U(\overline{\mathbf{x}}) + a_A \cdot f_A(\overline{\mathbf{x}})$$
$$= 5 \cdot f_G(\overline{\mathbf{x}}) + 1 \cdot f_U(\overline{\mathbf{x}}) + 50 \cdot f_A(\overline{\mathbf{x}})$$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probl

xplizite Modellierung von Maxima und Minima

Modell: Multikriterielles Rucksackproblem (Zielgewichtung)

Indexmengen:

I Menge der Gegenstände

O Menge der Ziele

Parameter:

 w_i Gewicht von Gegenstand $i \in I$

 u_{oi} Nutzen von Gegenstand $i \in I$ bzgl. Ziel $o \in O$

c Kapazität des Rucksacks

Gewicht des Ziels $o \in O$

Entscheidungsvariablen:

 x_i Binäre Entscheidungsvariable; zeigt an ob Gegenstand $i \in I$ eingepackt wird

Modellbeschreibung:

$$\max \sum_{o \in O} a_o \sum_{i \in I} u_{oi} \cdot x_i$$

$$s.t. \sum_{i \in I} w_i \cdot x_i \le c$$

$$x_i \in \{0,1\} \qquad \forall i \in I$$
(I)

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingungen

s. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalitä

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probleme

xplizite Modellierung von laxima und Minima

Hauptziel & Anspruchsniveaus

Wähle ein Hauptziel. Definiere für die restlichen Ziele Anspruchsniveaus, die durch Nebenbedingungen sichergestellt werden.

Hauptziel & Anspruchsniveaus im Beispiel "Lewbrandt GmbH"

Sei das Hauptziel die Abwasseremission. Dabei sollen mindestens 225 k€ Gewinn und 480 k€ Umsatz gemacht werden:

max
$$f_A(\overline{\mathbf{x}})$$

s.t. $f_A(\overline{\mathbf{x}}) \ge 225$
 $f_{U}(\overline{\mathbf{x}}) > 480$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingunger

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probleme Explizite Modellierung von

Modell: Multikriterielles Rucksackproblem (Hauptziel)

Indexmengen:

I Menge der Gegenstände

Menge der Ziele

Parameter:

 w_i Gewicht von Gegenstand $i \in I$

 u_{oi} Nutzen von Gegenstand $i \in I$ bzgl. Ziel $o \in O$

c Kapazität des Rucksacks

h Hauptziel $h \in O$

 a_o Anspruchsniveau des Ziels $o \in O \setminus \{h\}$

Entscheidungsvariablen:

 x_i Binäre Entscheidungsvariable; zeigt an ob Gegenstand $i \in I$ eingepackt wird

Modellbeschreibung:

$$\max \sum_{i \in I} u_{hi} \cdot x_{i}$$

$$s.t. \sum_{i \in I} w_{i} \cdot x_{i} \leq c \qquad (I)$$

$$\sum_{i \in I} u_{oi} \cdot x_{i} \geq a_{o} \qquad \forall o \in O \setminus \{h\} \quad (II)$$

$$x_{i} \in \{0,1\} \qquad \forall i \in I$$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probler

xplizite Modellierung von Maxima und Minima

Goal Programming (klassisch)

Wähle Zielwerte für alle Zielfunktionen und bestrafe Abweichungen von den Zielwerten.

Goal Programming im Beispiel "Lewbrandt GmbH"

Zielwerte:
$$a_G = 220$$
, $a_U = 480$, $a_A = -11$

min
$$|z_G| + |z_U| + |z_A|$$

s.t. $f_G(\overline{\mathbf{x}}) = 220 + z_G$
 $f_U(\overline{\mathbf{x}}) = 480 + z_U$
 $f_A(\overline{\mathbf{x}}) = -11 + z_A$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

- Nebenbedingungen
- vs. Minimierung
- 5.3 Mehrere Zielfunktionen und Pareto-Optimalität
- 5.4 Multikriterielle Optimierung
- Zielfunktionen

Maximin- und Minimax-Probleme

Explizite Modellierung von Maxima und Minima

Modell: Multikriterielles Rucksackproblem (GP1)

Indexmengen:

I Menge der Gegenstände

O Menge der Ziele

Parameter:

 w_i Gewicht von Gegenstand $i \in I$

 u_{oi} Nutzen von Gegenstand $i \in I$ bzgl. Ziel $o \in O$

c Kapazität des Rucksacks

 a_o Anspruchsniveau des Ziels $o \in O$

Entscheidungsvariablen:

 x_i Binäre Entscheidungsvariable; zeigt an ob Gegenstand $i \in I$ eingepackt wird

 z_o Abweichung vom Zielwert des Ziels $o \in O$

Modellbeschreibung:

min
$$\sum_{o \in O} |z_o|$$

$$s.t. \quad \sum_{i \in I} w_i \cdot x_i \le c \tag{I}$$

$$\sum_{i \in I} u_{oi} \cdot x_i = a_o + z_o \qquad \forall o \in O$$

$$X_i \in \{0,1\}, z_o \leq 0 \qquad \forall i \in I, o \in O$$

$$(II)$$

5 Probleme mit mehreren Zielfunktionen

CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Ontimalitä:

5.4 Multikriterielle Optimierung

5.5 Bottleneck-

Maximin- und Minimax-Problem

explizite Modellierung von

Goal Programming (erweiterte Variante)

Bestrafe nur ungewollte Abweichungen und verwende Gewichtungsfaktoren für Abweichungen.

Goal Programming im Beispiel "Lewbrandt GmbH"

min
$$w_G \cdot z_G + w_U \cdot z_U + w_A \cdot z_A$$

s.t. $f_G(\overline{\mathbf{x}}) \ge 220 - z_G$
 $f_U(\overline{\mathbf{x}}) \ge 480 - z_U$
 $f_A(\overline{\mathbf{x}}) \ge -11 - z_A$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

- 5.1 Weiche Nebenbedingungen
- vs. Minimierung
- 5.3 Mehrere Zielfunktionen und Pareto-Optimalität
- 5.4 Multikriterielle Optimierung
- 5.5 Bottleneck-Zielfunktionen

Maximin- und Minimax-Probleme

plizite Modellierung vor axima und Minima

Modell: Multikriterielles Rucksackproblem (GP2)

Indexmengen:

I Menge der Gegenstände

Menge der Ziele

Parameter:

 w_i Gewicht von Gegenstand $i \in I$

 u_{oi} Nutzen von Gegenstand $i \in I$ bzgl. Ziel $o \in O$

c Kapazität des Rucksacks

 a_o Zielwert des Ziels $o \in O$

 o_o Abweichungskosten für Ziel $o \in O$

Entscheidungsvariablen:

 x_i Binäre Entscheidungsvariable; zeigt an ob Gegenstand $i \in I$ eingepackt wird

 z_o Abweichung vom Zielwert des Ziels $o \in O$

Modellbeschreibung:

min
$$\sum_{o \in O} b_o \cdot z_o$$
s.t.
$$\sum_{i \in I} w_i \cdot x_i \le c$$

$$\sum_{i \in I} u_{oi} \cdot x_i \ge a_o - z_o \qquad \forall o \in O$$

$$x_i \in \{0,1\}, z_o \ge 0 \qquad \forall i \in I, o \in O$$
(II)

 $\forall i \in I, o \in O$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingunger

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalitä:

5.4 Multikriterielle Optimierung

Zielfunktionen

Maximin- und Minimax-Probler

xplizite Modellierung von Maxima und Minima

Lexikographische Ordnung der Ziele

Mithilfe eindeutiger Zielhierarchien ist es möglich die Lösungen lexikographisch zu ordnen.

Ausgewählte lexikograpisch geordnete Lösungen des Beispiels "Lewbrandt GmbH"

Die Zielhierarchie sei: Gewinn > Umsatz > Abwasser

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	Gewinn	Umsatz	Abwasser
1	1	0	1	0	300	615	12,1
0	1	1	1	0	300	495	11,7
1	0	0	1	1	270	640	13,4
1	1	0	0	0	250	530	9,7
0	1	1	0	0	250	410	9,3

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingunger

vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

Zielfunktionen

Maximin- und Minimax-Probleme Explizite Modellierung von Maxima und Minima

Algorithmus: Preemptive Goal Programming

- 1. Setze i=1
- 2. Löse das Problem mit der Zielfunktion f_i des Ziels i. Man erhält die Optimallösung x* und den Optimalwert f_i^* .
- 3. Falls i = n: \mathbf{x}^* ist die lexikographische Optimallösung. Ende.
- 4. Füge dem Modell die folgende Nebenbedingung hinzu:

$$f_i(\mathbf{x}) = f_i^*$$

5. Setze i = i + 1 und gehe zu Schritt 2.

5.5 Bottleneck-Zielfunktionen

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

Nebenbedingunger

5.2 Maximierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalität

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Maximin- und
Minimax-Probleme

Explizite Modellierung von
Maxima und Minima

Beispiel: Arabasta County

Stadt	Konzerthalle	Erlebnisbad	Museum
Alubarna	1,45 M\$	1,25 M\$	1,10 M\$
Nanohana	1,00 M\$	0,95 M\$	0,90 M\$
Erumalu	0,32 M\$	0,28 M\$	0,24 M\$

Jede Einrichtung kann nur einmal gebaut werden. Welche Einrichtung soll in welcher Stadt gebaut werden?

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

5.1 Weiche Nebenbedingungen

5.2 Maximierung vs. Minimierung

5.3 Mehrere Zielfunktionen und Pareto-Optimalitä

5.4 Multikriterielle Optimierung

5.5 Bottleneck-Zielfunktionen

Minimax-Probleme
Explizite Modellierung von

Mehrere gleich skalierte Einzel-Zielfunktionen f_1, \ldots, f_N . Die Haupt-Zielfunktion lautet:

$$\max \min_{n \in \{1, \dots, N\}} f_n(\overline{\mathbf{x}})$$

Linearisierung von Maximin-Problemen

Sei $z_{\min} \leq 0$ eine Hilfsvariable.

max
$$z_{\min}$$

 $s.t.$ $f_n(\overline{\mathbf{x}}) \ge z_{\min}$ $\forall n \in \{1, ..., N\}$

5 Probleme mit mehreren **7**ielfunktionen

> CC-BY-SA A. Popp

Maximin- und Minimax-Probleme

Mehrere gleich skalierte Einzel-Zielfunktionen f_1, \ldots, f_N . Die Haupt-Zielfunktion lautet:

$$\min \max_{n \in \{1,...,N\}} f_n(\overline{\mathbf{x}})$$

Linearisierung von Maximin-Problemen

Sei $z_{\text{max}} \leq 0$ eine Hilfsvariable.

$$\min z_{\max}$$

s.t.
$$f_n(\overline{\mathbf{x}}) \leq z_{\text{max}} \quad \forall n \in \{1, \dots, N\}$$

5 Probleme mit mehreren **7**ielfunktionen

> CC-BY-SA A. Popp

Maximin- und Minimax-Probleme

Modell: Maximin-Zuordnungsproblem (Variante 1)

Indexmengen:

R Menge der Ressourcen

Menge der Aufgaben

Parameter:

Profit bei Erfüllung von Aufgabe $t \in T$ durch Ressource $r \in R$ Ptr

Entscheidungsvariablen: Binärvariable, die angibt ob Aufgabe $t \in T$ durch Ressource $r \in R$ X_{tr}

erfüllt wird

Hilfsvariable für minimalen Profit p_{\min}

Modellbeschreibung:

max p_{\min}

s.t. $\sum x_{tr} = 1$ $\forall t \in T$ (I)

 $\forall r \in R$ (II)

 $p_{\min} \le \sum_{r \in R} x_{tr} \cdot p_{tr}$ $x_{rt} \in \{0, 1\}, p_{\min} \le 0$ $\forall t \in T$ (III)

 $\forall r \in R, t \in T$

5 Probleme mit mehreren **7**ielfunktionen

> CC-RY-SA A. Popp

Maximin- und Minimax-Probleme

Explizite Modellierung von Maxima und Minima

Explizite Modellierung von Maxima

$$f_n(\overline{\mathbf{x}}) \le z_{\text{max}}$$
 $\forall n \in \{1, ..., N\}$
 $z_{\text{max}} - f_n(\overline{\mathbf{x}}) \le M \cdot (1 - y_n)$ $\forall n \in \{1, ..., N\}$
 $\sum_{n=1}^{N} y_n = 1$

Explizite Modellierung von Minima

$$f_n(\overline{\mathbf{x}}) \ge z_{\min}$$
 $\forall n \in \{1, ..., N\}$
 $f_n(\overline{\mathbf{x}}) - z_{\min} \le M \cdot (1 - y_n)$ $\forall n \in \{1, ..., N\}$
 $\sum_{n=1}^{N} y_n = 1$

5 Probleme mit mehreren Zielfunktionen

> CC-BY-SA A. Popp

- Nebenbedingungen
- 5.2 Maximierung vs. Minimierung
- 5.3 Mehrere Zielfunktionen und Pareto-Optimalität
- 5.4 Multikriterielle Optimierung
- 5.5 Bottleneck-

Maximin- und Minimax-Probleme

Explizite Modellierung von Maxima und Minima

Modell: Maximin-Zuordnungsproblem (Variante 2)

Indexmengen:

R Menge der Ressourcen

Menge der Aufgaben

Parameter:

 p_{tr}

Profit bei Erfüllung von Aufgabe $t \in T$ durch Ressource $r \in R$

M Eine ausreichend große Zahl

Entscheidungsvariablen:

Binärvariable, die angibt ob Aufgabe $t \in T$ durch Ressource $r \in R$ Xtr

erfiillt wird

Hilfsvariable für minimalen Profit p_{\min}

Binäre Auswahlvariable für Minimum Уt

Modellbeschreibung:

max

s.t.
$$\sum_{r \in R} x_{tr} = 1$$
 $\forall t \in T$ $\sum_{r \in R} x_{tr} \le 1$ $\forall r \in R$

$$\sum_{r \in R} x_{rr} < 1 \qquad \forall r \in R \qquad (II)$$

$$\sum_{t \in T} x_{tr} \le 1 \qquad \forall r \in R \tag{II}$$

$$p_{\min} \le \sum_{r \in R} x_{tr} \cdot p_{tr} \qquad \forall t \in T$$

$$\sum (x_{tr} \cdot p_{tr}) - p_{\min} \le M \cdot (1 - y_t) \qquad \forall t \in T$$
(III)

$$\sum_{r,p} (x_{tr} \cdot p_{tr}) - p_{\min} \le M \cdot (1 - y_t) \qquad \forall t \in T$$
 (IV)

$$\sum_{t=T}^{r\in T} y_t = 1 \tag{V}$$

$$x_{rt} \in \{0, 1\}, p_{\min} \leq 0$$

$$\forall r \in R, t \in T$$

(I)

5 Probleme mit mehreren **Zielfunktionen**

CC-BY-SA A. Popp

Explizite Modellierung von Maxima und Minima