Jeudi et vendredi Td-TP

James of Johnston Lot II

Venir avec son ordinateur. Python 23.8

Sympy

Numpy

Matplotlib

Tupyter (ou Jupyterlab).

Exercia: (E=) EIOF = ExOF alon Erest (somorphe à Ez

1 En dimension Binie

dun (EIOF) = dem EI + dem F

dim (ELOF)= din Ezt dim T

donc dun(Ei) = dum(Ez).

donc Ever Ez Sont somorpher

(2) En dumannon infinie

Une seule solution: donner une application lineaure et montrer pue c'est un isomorphime 1) Chercher une apphahó- lineaire « noturelle ». 2) Verifier pui l'est un l'amoignaime. E1 --- > E2

 $\int_{E_1 \oplus F} \int_{E_2 / F} |E_2|$

EIOF = EZOF

$$P_{EZ/|F}$$

Rappel: Si $u \in \mathcal{A}(E, E')$ si F sour-espace de E' ,

 $guiverifie$ $Im(u) C F'$

alors $u|F'$: $E \rightarrow F'$

 $\chi \longmapsto u(\chi)$

$$\phi = \left| \begin{array}{c} E_1 \longrightarrow E_2 \\ R_1 \longmapsto P_{EMF} \right|^{E_2} (\chi_1) \\
\times \phi \text{ Que aire, can c'est la corestriction d'une application liniaire} \\
\times \chi_{E} \text{ Ker}(\phi) \subset E_1, \quad P_{EMF} (\chi_1) = 0 \\
\text{ donc } \chi_{E} \in F \\
\text{ donc } \chi_{E} \in F \\
\text{ donc } \chi_{E} \in F_{E} \cap F = \{0_E\}.$$

$$\text{Ker}(\phi) = \{0_E\}, \text{ donc}$$

$$\phi \in F \text{ myetrive}$$

(Eyen)

* Sour ZEEZLEZOF = EIOF l existe (n, x) EExF, &=(xi) xF Victor: et on a unicité, car la somme est directe or $\phi(x_1) = P_{5L/F}(x_2 - x_F) = x_2$ donc po est sujective Conclusion: Ø est un comorphisme de El sur Ez. (Perex) Une monuraire idea (en dualité): utiliser les boser (partier librer et génératriar)

Si $(e_i)_{i \in I}$ est une base de E, en peut définir la famille duale associée $(e_i^{\star})_{i \in I} \in (E^{\star})^I$ par

$$\forall j \in I, \ e_i^{\star}(e_j) = \delta_{i,j}$$
 \leftarrow symbole de Kronecker.

Remarque importante 1.1 – Notation impropre

Cette notation est très dangereuse! En effet, si l'on change un des vecteurs e_i , alors on change tous les vecteurs e_i^{\star} .

Propriété 1.3

Soit E un \mathbb{K} -espace vectoriel et soit $(e_i)_{i\in I}$ une base de E. La famille duale associée est une partie libre de E^* .

Démonstration

Soit (i_1,\ldots,i_p) une sous-famille quelconque finie de I d'éléments distincts deux-à-deux et soit $(\lambda_1,\ldots,\lambda_p)\in\mathbb{K}^p$ tel que

$$\sum_{k=1}^{p} \lambda_k . e_{i_k}^{\star} = 0_{E^{\star}}$$

Soit $j \in [\![1,p]\!].$ Par définition de la famille duale, on a

$$\underbrace{\sum_{k=1}^{p} \lambda_k . e_{i_k}^{\star}(e_{i_j})}_{=\lambda_j} = 0_{E^{\star}}(e_j) = 0$$

donc $\lambda_1 = \cdots = \lambda_p = 0$, ce qui montre que la famille duale $(e_i^{\star})_{i \in I}$ est libre.

La famille (eit) cèt est bien définie car on connaît ser valeurs sur tour les vecteurs de la base (ei) i6I (E un espace rechoriel de base (li)ies L(E,F) et isomorpha F (effe notation est TRES manvouse!! Si on donge (el) LEI en (el) LEI où (LOEI) ¥i≠ω, ei=ei, e, ≠ei, alors tite et feit (en sinèrel).

Proposition: (ett) LET est une famille libre de Ett (Soit n EIN, (io ... in) EIn+1 différents là l (do-dn) EKNH,

sout p E Top 1. on va l'appliquer à lip

on obtain
$$\sum_{k=0}^{\infty} d_k e_{ik}^{*}(e_{ip}) = O_{ik} = d_p$$

$$\delta_{ik}, i_p = 0 \text{ in } K \neq p$$

C'est beaucoup plus faile de nombrer l'indépendance de former liniairer, que l'indépendance de recteurs.

Propriété 1.4 – Base duale

Soit E un \mathbb{K} -espace vectoriel. Si E est de dimension finie et si (e_1, \ldots, e_n) est une base de E, alors la famille duale associée est une base de E^* (dite base duale).

简称为E*的对偶基底。

dum(E) = dum (E*) (ex)(EI en de cardunal cordI= dim(E)

Démonstration

D'après la propriété précédente, c'est une famille libre à n éléments. Or dim $E^* = \dim E = n$ (propriété 1.2, page 5) donc c'est bien une base de E^* .

c'est hen une base

Propriété 1.5

Soit E un \mathbb{K} -espace vectoriel et soit $(e_i)_{i\in I}$ une base de E. Si E est de dimension infinie, alors la famille duale associée n'est jamais génératrice.

Démonstration

Considérons la forme linéaire $f \in E^*$ définie par $f(e_i) = 1$ pour tout $i \in I$. Si la famille duale associée à $(e_i)_{i \in I}$ était génératrice, il existerait une sous-famille (i_1, \ldots, i_p) finie de I tel que $f \in \mathrm{Vect}(\{f_{i_1}, \ldots, f_{i_p}\})$. En considérant $j \in I$ tel que $j \notin \{i_1, \ldots, i_p\}$ (possible car E est de dimension infinie donc I est infini), on a $f(e_j) = 1$ mais $f_{i_1}(e_j) = \ldots = f_{i_p}(e_j) = 0$, contradiction.

Uteleté de la Proprieté 1.4 Polynômes d'interpolation de d'agrange. 1) Soit I un intervelle non vide de

Sock I un intervalle non vide de \mathbb{R} .

Soch $(y_1-y_n) \in \mathbb{R}^n$, $(x_1-a_n) \in \mathbb{I}^n$, $a_1 < \cdots < a_n$ alors il existe une fonction polynomiale P, de degre' $\leq n-1$ telle que $Y \in [I,n]$, P(ai) = yi

Scif (tin),
$$4k(e_8) = \delta_1 k$$
 $= e_1(a_R)$ donc $(e_1 = 4)$

alors on cherche. $P = \sum_{d=1}^{\infty} d_d \cdot 4$:

 $P(a_R) = y_R = \sum_{d=1}^{\infty} d_1 \cdot 4_2(a_R) = d_R$.

Remarque: pour browner e_1 if four resondre

YKE [[In], ex (8) = JK/4

Pr (6)

ey (ax)

-> construit noturellement le 4: donné.

Proposition 1.1 – Base ante-duale

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, $(\varphi_1, \ldots, \varphi_n)$ une base de E^* , alors il existe une unique base (e_1, \ldots, e_n) de E, telle que

$$\forall i \in [1, n], \ e_i^{\star} = \varphi_i$$

Cette base est appelée base ante-duale de la base $(\varphi_1, \ldots, \varphi_n)$.

Démonstration

Soit l'application définie par

$$\phi : \begin{cases} E \to \mathbb{K}^n \\ x \mapsto (\varphi_1(x), \dots, \varphi_n(x)) \end{cases}$$

Cette application a les propriétés suivantes

- ϕ est linéaire.
- ϕ est injective. Donc, comme E et \mathbb{K}^n ont même dimension n, ϕ est un isomorphisme.
- Considérons (b_1, \ldots, b_n) la base canonique de \mathbb{K}^n . Comme un isomorphisme envoie une base sur une base, si l'on pose

$$\forall i \in [1, n], \ e_i = \phi^{-1}(b_i)$$

la famille obtenue convient, et c'est clairement la seule.

Remarque 1.2

Comment démontrer qu'une famille de formes linéaires est une base? En utilisant la base ante-duale (si l'on est capable de la trouver). On veut étudier $(\varphi_1, \dots, \varphi_n)$ une famille de formes linéaires de E^* . Si on considère la base ante-duale (e_1, \dots, e_n) ,

(ou la famille que l'on imagine être la base ante-duale), c'est alors facile. Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ des scalaires tels que

$$\sum_{k=1}^{n} \lambda_k . \varphi_k = 0_{E^*}$$

alors

$$\forall j \in [1, n], \sum_{k=1}^{n} \lambda_k. \underbrace{\varphi_k(e_j)}_{\delta_{k,j}} = \lambda_j = 0$$

注释 1.2

设 (e_1,\ldots,e_n) 是 E 的基底, $(e_1^\star,\ldots,e_n^\star)$ 是 E^\star 的对偶基底, 我们有如下性质:

1.
$$\exists f = k_1.e_1^* + \dots + k_n.e_n^* \in E^*, x = l_1.e_1 + \dots + l_n.e_n \in E \; \exists f$$

$$f(x) = k_1 l_1 + \dots + k_n l_n$$

2.
$$x \in E$$
 可以表示成,
$$x = e_1^{\star}(x).e_1 + \dots + e_n^{\star}(x).e_n$$

3.
$$f \in E^*$$
 可以表示成,
$$f = f(e_1).e_1^* + \dots + f(e_n).e_n^*$$

en dinension infinie, (eit), (ET n'est Jamans
Senerotrice (Sout (li) (LI la bose de E où I est infini Sout $Y \in E^A$, $Y \in I$, Y(ei) = 1. (buen definie) Alors | P & Vect (det, iEI) (car si & Event (let, (EI)), Ju= { JEI, Y(e) + 0} est fini car clexiste n EM, (4-in) EIM, (21-2n) EIT

tel pue $\psi = \sum_{K=1}^{n} \lambda_{K} \cdot e_{iK}^{*}$

Une continaison lineaire est une somme fenie

donc si $i \notin \frac{1}{2}i_1 - i_n$, $f(e_i) = 0$. (er $I \setminus \frac{1}{2}i_1 - i_n$) est unfini) $Iy C \neq i_1 - i_n$)
est fini

