

PLATAFORMA DE INTERNET DAS COISAS PARA MONITORAMENTO DE SERVIDOR MANTIDO COM ENERGIA FOTOVOLTAICA

Trabalho de Conclusão de Curso II

Acadêmico: Victor Eduardo Requia Professora Orientadora: Janine Kniess

26/06/2024

Agenda da Apresentação

- Introdução e Objetivos;
- Trabalhos Relacionados;
- Sistema de Monitoramento Desenvolvido;
- Experimentos e Resultados;
- Conclusões e Trabalhos Futuros.

Introdução

- A energia solar, emergiu como uma solução para atender à crescente demanda por energia elétrica de maneira renovável e limpa.
- A energia solar pode ser essencial para atender localidades remotas onde não é possível a produção por outros meios ou também pode ser utilizada como fonte alternativa de energia.
- Carência de informações e a dificuldade de encontrar ferramentas que integrem os diversos componentes do sistema fotovoltaico e a Internet, torna mais difícil a adesão desse tipo de energia.
- A Internet das Coisas surge como uma ferramenta que pode melhorar na eficiência dos objetos interconectados, podendo funcionar até mesmo em áreas remotas.
- Por meio de sensores e dispositivos é possível monitorar a eficiência, detectar falhas e otimizar diferentes sistemas, como os fotovoltaicos.

Objetivos

- Realizada uma pesquisa exploratória para aprofundar os conceitos em relação ao tema da pesquisa, bem como entender melhor as demandas do mercado.
- Desenvolver um sistema de monitoramento loT para servidores web alimentados com energia solar. A motivação pela escolha de monitoramento de servidores, deve-se a constatação do aumento do consumo energético com o uso de servidores para provimento de serviços em nuvem (GAO; WANG; SHEN, 2020).
- No trabalho, será monitorado as condições climáticas na região de instalação de painéis fotovoltaicos, localizados na parte externa do laboratório CMEAR (Célula de Pesquisa em Microrredes de Energias Alternativas e Renováveis) da Udesc/Joinville.
- Também será monitorado um servidor e-commerce, que estará na parte interna do laboratório CMEAR.

Formulação do Problema

- A integração e comunicação dos elementos enfrenta vários desafios ao desenvolvimento de um sistema IoT, que, além de integrar os diferentes componentes, deve monitorá-los e disponibilizar as informações na Internet em tempo real.
- A escolha incorreta da tecnologia de comunicação que possibilite o envio dos dados dos sensores que monitoram os painéis fotovoltaicos pode inviabilizar a transmissão dos dados

Trabalhos Relacionados

Principais trabalhos pesquisados

Autor	Tecnologia de Comunicação	Variáveis Monitoradas	Cenário de Aplicação	Sensores e Dispositivos
HAMIED et al. (2023)	802.11	Corrente, tensão, radiação solar e temperatura do ambiente	Deserto do Saara	Sensor ACS712, Módulo Wi-Fi, ESP8266, Arduino, Mega e Módulo, SIM8001
PARRA et al. (2019)	LoRa	Corrente, tensão, radiação solar e temperatura do ambiente	Campus Universitário	Arduino Nano, Raspberry PI, DHT22, DS18S20, RFM95W e HOPE RFM95W
RADIA; NIMR; ATLAM. (2023)	802.11	Corrente e tensão elétrica, radiação solar, temperatura do ambiente, temperatura da placa solar e umidade do ar.	Laboratório	Raspberry Pi, NodeMCU ESP8266, INA219, TSL2561, DHT22, DS18B20 e servo motor

Tabela 1: Comparação dos Trabalhos Relacionados. Próprio autor.

Sistema de Monitoramento IoT

Modelagem do sistema: Cenário de aplicação

Figura 1: Cenário de Aplicação. Próprio autor.

Sistema de Monitoramento IoT

Modelagem Conceitual

Figura 1: Diagrama da Organização do Banco de Dados. Próprio autor.

Figura 1: Diagrama de Componentes. Próprio autor.

Sistema de Monitoramento Desenvolvido

Comunicação com o inversor

- RS-485 para RS-232 utilizando um conversor desenvolvido no Trabalho de Conclusão de Curso do ex-aluno Guilherme Eichstadt (EICHSTADT, 2018).
- RS-232 para USB foi utilizado um conversor comercial.

Figura 3: Conexões Físicas entre Inversor e Servidor de Gerenciamento. Próprio autor. Próprio autor.

Figura 3: Conexões Físicas entre Inversor e Servidor de Gerenciamento. Próprio autor.

Sistema de Monitoramento Desenvolvido

Comunicação com o inversor

Figura 4: Diagrama do Registro do Servidor no Inversor. Próprio autor.

Figura 5: Requisição dos Dados de Monitoramento do Inversor. Próprio autor.

Sistema de Monitoramento Desenvolvido

Comunicação com o inversor

Parâmetro	Descrição		
Vpv1	Tensão no PV1		
Vpv2	Tensão no PV2		
Ipv1 Corrente no PV1			
Ipv2	Corrente no PV2		
Vac1	Tensão na Fase L1		
Iac1	Corrente na Fase L1		
Fac1	Frequência na Fase L1		
Pac	Potência de alimentação		
Work Mode	Modo de operação		
Temp	Temperatura interna do inversor		
E-Total	Energia total alimentada na rede		
H-Total	Total de horas de alimentação		
Temp Fault	Valor de falha de temperatura		
PV1FaultValue	Valor de falha de tensão no PV1		
PV2FaultValue	Valor de falha de tensão no PV2		
Line1FaultValue	Valor de falha de tensão na linha 1		
Line2FaultValue	Valor de falha de tensão na linha 2		
GFCIFaultValue	Valor de falha do GFCI		
	(Interruptor de Corrente de Fuga à Terra)		
E-Day	Energia alimentada na rede no dia		

Figura 6: Descrição dos Valores do Campo "Descrição"na Resposta do Inversor. Próprio autor.

Experimentos

Monitoramento das condições climáticas

- Um recipiente revestido com papel alumínio foi utilizado para diminuir a temperatura interna do recipiente.
- Foram conectados os sensores de radiação ultravioleta, umidade e temperatura com o ESP LoRa 32 através de uma protoboard.

Figura 7: Recipiente Suporte para os Componentes Externos. Próprio autor.

Experimentos

Monitoramento do servidor de e-commerce

- Utilizado o software Open Hardware Monitor para obtenção dos dados dos sensores da placa mãe.
 - Potência da CPU; e
 - Potência da memória principal.
- Para as informações coletadas do sistema operacional, foi desenvolvido um software em Python, utilizando a biblioteca psutil.
 - Uso de CPU;
 - Uso de memória principal; e
 - Uso de memória secundária.

Figura 8: Tela dos Parâmetros de Monitoramento com o Open Hardware Monitor. Próprio autor.

Interface Web

Telas do Sistema

Ferramentas utilizadas

- React
- MongoDB
- Biblioteca MUI
- Amazon AWS
- API do portal Clima Tempo

Figura 9: Interface Web no Computador. Próprio autor.

Interface Web

Telas do Sistema

Figura 11: Tela de Gerenciamento de Alertas. Próprio autor.

Figura 10: – Interface *Web* em um Smartfone. Próprio autor.

Figura 12: Visualização de Alertas. Próprio autor.

Resultados

Horário de produção de energia durante experimentos

Data	Início	Fim	Total	Falha
	da Produção	da Produção	de Produção	
01/05/2024	07:08:51 horas	13:09:11 horas	06:20:00 horas	sim
02/05/2024	13:54:01 horas	17:52:57 horas	03:58:56 horas	sim
03/05/2024	07:11:48 horas	17:46:13 horas	10:34:25 horas	não
04/05/2024	07:00:01 horas	17:57:09 horas	10:57:08 horas	não
05/05/2024	07:00:51 horas	17:55:04 horas	10:54:13 horas	não
06/05/2024	07:08:52 horas	17:56:30 horas	10:47:38 horas	não
07/05/2024	07:05:15 horas	17:57:58 horas	10:52:43 horas	não
08/05/2024	07:06:43 horas	17:58:33 horas	10:51:50 horas	não
09/05/2024	07:22:27 horas	17:43:38 horas	10:21:11 horas	não
10/05/2024	07:07:32 horas	17:45:32 horas	10:38:00 horas	não
11/05/2024	07:19:32 horas	17:55:08 horas	10:35:36 horas	não
12/05/2024	07:08:55 horas	17:53:14 horas	10:44:19 horas	não
13/05/2024	06:56:55 horas	17:30:24 horas	10:33:29 horas	não
14/05/2024	07:24:36 horas	17:48:11 horas	10:23:35 horas	não
19/05/2024	08:00:15 horas	17:43:53 horas	09:43:38 horas	não
20/05/2024	07:07:47 horas	17:50:37 horas	10:42:50 horas	não
21/05/2024	07:14:31 horas	17:44:26 horas	10:29:55 horas	não
22/05/2024	07:21:47 horas	17:49:28 horas	10:27:41 horas	não
23/05/2024	07:23:29 horas	17:47:41 horas	10:24:12 horas	não
24/05/2024	09:17:53 horas	17:51:43 horas	08:33:50 horas	não
25/05/2024	07:10:35 horas	17:37:48 horas	10:27:13 horas	não
26/05/2024	07:37:04 horas	17:36:01 horas	09:58:57 horas	não
27/05/2024	07:30:14 horas	16:51:00 horas	09:20:46 horas	não
28/05/2024	07:10:28 horas	17:47:36 horas	10:37:08 horas	não
29/05/2024	07:11:31 horas	17:51:03 horas	10:39:32 horas	não
Média	07:27 horas	17:16 horas	10:31 horas	

Tabela 2: Operação Diária do Inversor. Próprio autor.

Produção de energia X Condições climáticas

Figura 13: Produção de Energia e Condições Climáticas. Próprio autor.

Consumo de energia do servidor de e-commerce

Etapa	Cor	Número de Usuários	Período
1		5	15:55 - 16:10
2		8	16:14 - 16:29
3		11	16:33 - 16:48
4		14	16:52 - 17:07
5		17	17:11 - 17:26

Tabela 2: — Parâmetros da Etapas de Teste com o Servidor de e-commerce. Próprio autor.

Figura 14: Potência da CPU e Memória Principal × Número de Usuários. Próprio autor.

Etapa	Usuários	CPU/IC	Memória Principal/IC	Total
1	. 5	49,50 W [48,42 W, 50,59 W]	3,04 W [2,97 W, 3,11 W]	52,54 W
2	8	55,32 W [53,42 W, 57,22 W]	3,51 W [3,41 W, 3,60 W]	58,83 W
3	11	56,91 W [56,69 W, 57,13 W]	3,67 W [3,62 W, 3,71 W]	60,58 W
4	14	57,03 W [56,90 W, 57,15 W]	3,72 W [3,68 W, 3,76 W]	60,75 W
5	17	57,18 W [57,07 W, 57,29 W]	3,67 W [3,63 W, 3,71 W]	60,85 W

Tabela 3: Potência da CPU e Memória Principal × Número de Usuários - IC de 95%. Próprio autor.

Etapa	Usuários	Potência média	Consumo diário (kWh)
1	5	52,54 W	52,54 W × 24 horas = 1,26 kWh
2	8	58,83 W	58,83 W × 24 horas = 1,41 kWh
3	11	60,58 W	60,58 W × 24 horas = 1,45 kWh
4	14	60,75 W	60,75 W × 24 horas = 1,46 kWh
5	17	60,85 W	60,85 W × 24 horas = 1,46 kWh

Tabela 4: Consumo Diário de Energia × Usuários Conectados. Próprio autor.

Energia total produzida e energia total consumida

Data	Produção (kWh)	5 usuários 0.79 kWh	8 usuários 1.41 kWh	11 usuários 1.45 kWh	14 usuários 1.46 kWh	17 usuários 1.46 kWh
03/05/2024	2.4	Sim	Sim	Sim	Sim	Sim
04/05/2024	5.4	Sim	Sim	Sim	Sim	Sim
05/05/2024	4.3	Sim	Sim	Sim	Sim	Sim
06/05/2024	5.9	Sim	Sim	Sim	Sim	Sim
07/05/2024	7.6	Sim	Sim	Sim	Sim	Sim
08/05/2024	6.2	Sim	Sim	Sim	Sim	Sim
09/05/2024	1.1	Sim	Não	Não	Não	Não
10/05/2024	2.9	Sim	Sim	Sim	Sim	Sim
11/05/2024	4.3	Sim	Sim	Sim	Sim	Sim
12/05/2024	4.4	Sim	Sim	Sim	Sim	Sim
13/05/2024	3.0	Sim	Sim	Sim	Sim	Sim
14/05/2024	1.2	Sim	Não	Não	Não	Não
19/05/2024	1.1	Sim	Não	Não	Não	Não
20/05/2024	6.8	Sim	Sim	Sim	Sim	Sim
21/05/2024	3.0	Sim	Sim	Sim	Sim	Sim
22/05/2024	3.7	Sim	Sim	Sim	Sim	Sim
23/05/2024	4.0	Sim	Sim	Sim	Sim	Sim
24/05/2024	1.4	Sim	Não	Não	Não	Não
25/05/2024	3.8	Sim	Sim	Sim	Sim	Sim
26/05/2024	1.2	Sim	Não	Não	Não	Não
27/05/2024	1.4	Sim	Não	Não	Não	Não
28/05/2024	4.8	Sim	Sim	Sim	Sim	Sim
29/05/2024	4.5	Sim	Sim	Sim	Sim	Sim

Tabela 5: Análise da Alimentação do Servidor com a Energia Fotovoltaica. Próprio autor.

Período de alimentação com 17 Usuários

Data	Período			
03/05/2024	07:19 - 17:06			
04/05/2024	07:10 - 16:54			
05/05/2024	07:30 - 16:47, 16:49 - 16:53			
06/05/2024	07:44 - 16:52			
07/05/2024	07:19 - 16:50			
08/05/2024	07:28 - 16:30, 16:32 - 16:39, 16:40 - 16:40			
09/05/2024	08:06 - 08:52, 08:52 - 09:07, 09:09 - 09:15, 09:26 - 09:27, 09:31 - 09:41 09:42 - 09:43, 09:47 - 09:47, 09:48 - 15:50, 15:54 - 16:01			
10/05/2024	07:56 - 16:17, 16:23 - 16:25			
11/05/2024	07:38 - 07:51, 07:52 - 07:52, 07:59 - 16:58			
12/05/2024	07:30 - 07:54, 07:57 - 16:54			
13/05/2024	07:15 - 15:35, 15:41 - 15:48			
14/05/2024	08:31 - 08:46, 08:49 - 09:03, 09:05 - 14:23, 14:25 - 15:30 15:40 - 15:48			
19/05/2024	08:38 - 08:41, 08:48 - 08:53, 09:01 - 09:01, 09:17 - 16:07, 16:10 - 16:16			
20/05/2024	07:32 - 16:32, 16:33 - 16:33			
21/05/2024	07:32 - 16:19			
22/05/2024	07:48 - 07:48, 07:49 - 16:58			
23/05/2024	07:49 - 16:40			
24/05/2024	10:40 - 11:48, 11:56 - 16:51			
25/05/2024	07:31 - 10:53, 10:53 - 15:39, 15:40 - 15:40, 16:11 - 16:12			
26/05/2024	08:00 - 08:06, 08:51 - 08:51, 08:52 - 15:15, 15:40 - 15:47 16:01 - 16:09			
27/05/2024	08:38 - 09:12, 09:14 - 09:16, 09:49 - 09:50, 09:59 - 13:11			
	13:14 - 13:48, 14:08 - 14:12, 14:16 - 14:20, 14:23 - 14:28, 15:13 - 15:19 15:29 - 15:34			
28/05/2024	07:33 - 07:33, 07:33 - 07:33, 07:34 - 07:34, 07:34 - 10:52 10:55 - 16:24			
29/05/2024	07:35 - 10:45 - 10:50 - 10:56 - 16:24			

Tabela 7: Alimentação Fotovoltaica: CPU e Memória do Servidor -17 usuários.. Próprio autor.

Figura 16: Simulação do Consumo de Energia de CPU e Memória Principal do Servidor de e-commerce × Produção de Energia Painéis Fotovoltaicos - 27/05/2024. Próprio autor.

Conclusões

- Lacuna em plataformas para gerenciamento de energia solar, servidores de e-commerce e condições climáticas em um único ambiente de monitoramento.
- Capaz de monitorar todos os componentes citados nos objetivos do trabalho tanto de forma remota quanto local.
- Condições climáticas são fatores importantes para a produção de energia fotovoltaica.
- Períodos no qual a energia fotovoltaica seria capaz de manter ativo a média de energia consumida pelo CPU e memória principal do servidor de e-commerce.
- Scripts para automatizar o processo de monitoramento

Conclusões

- Falhas do inversor e estudar o comportamento na injeção de energia.
- Utilização de serviços em nuvem para hospedar os servidores.
- Sistema de alerta para alertar usuários sobre condições climáticas desfavoráveis ou acima de um limite estabelecido.

Trabalhos Futuros

- Para trabalhos futuros, sugere-se a adição de outras condições climáticas e quais os impactos na produção de energia.
- Resgatar historico de dados coletados diretamente da plataforma de monitoramento.
- Desenvolvimento de novos alertas com base nos parâmetros monitorados

Referências

RADIA, MA Abu; NIMR, MK EI; ATLAM, AS. lot-based wireless data acquisition and control system for photovoltaic module performance analysis. e-Prime-Advances in Electrical Engineering, Electronics and Energy, Elsevier, p. 100348, 2023.

HAMIED, Amor et al. lot-based low-cost photovoltaic monitoring for a greenhouse farm in an arid region. Energies, MDPI, v. 16, n. 9, p. 3860, 2023.

PARRA, José Miguel Paredes et al. An alternative internet-of-things solution based on lora for pv power plants: Data monitoring and management. Energies, v. 12, n. 5, 2019. ISSN 1996-1073.

GAO, Jiechao; WANG, Haoyu; SHEN, Haiying. Smartly handling renewable energy instability in supporting a cloud datacenter. In: IEEE. 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

Obrigado

Victor Eduardo Requia

victorrequia@gmail.com

Universidade do Estado de Santa Catarina Joinville - SC

26/06/2024

Professora Orientadora: Janine Kniess