ACT-11302 Calculo Actuarial III

Sesion 08 - Modificacion de distribuciones para la frecuencia de siniestros 1/

Juan Carlos Martinez-Ovando

Departamento Academico de Actuaria y Seguros

Objetivos

- Estudiaremos la nocion de modificacion de distribuciones
- Revisaremos aspectos inferenciales asociados con esta modificaciones

Frecuencia de Siniestros

Recordemos que N_t denota el numero de siniestros de un periodo de operacion t. Usualmente concebimos el soporte de N_t de dos formas:

1. **Riesgo individual.**- Suponiendo que cada poliza puede siniestrarse a lo mas una vez en t, tenemos un **soporte finito**

$$\mathcal{N} = \{0, 1, 2, \dots, J_t\}.$$

2. **Riesgo colectivo.**- Suponiendo que cada poliza puede siniestrarse mas de una vez en *t*, tenemos un **soporte numerable**

$$\mathcal{N} = \{0, 1, 2, \ldots\}.$$

Masas de probabilidades

En ambos enfoques para ${\mathcal N}$ tenemos un conjunto de $\emph{masas de probabilidades},$

$$(p_n)_{n\in\mathcal{N}}$$
,

donde

$$p_n := \mathbb{P}(N_t = n),$$

para todo $n \in \mathcal{N}$.

• El modelo libre de supuestos estructurales considera la coleccion de $(p_n)_{n\in\mathcal{N}}$ como pamametros del modelo.

Comentarios

- Si las $(p_n)_{n \in \mathcal{N}}$ (a.k.a. el **modelo de probabilidad**) pertenece a la clase (a, b, 0), hemos visto que las p_n s siguen un patron específico en n.
- En el caso anterior, se dice que **el modelo es parametrico**, en cuyo caso se remplaza el numero de parametros libres $\#\{\mathcal{N}\}$ por **tres parametros (a lo mas)**, (p_0, a, b) .

Lo anterior resulta en una simplificacion estructural considerable.

En ocasiones, necesitaremos definir cambios/alteraciones en las masas de probabilidad asignadas por las p_n s. Estas alteraciones se conocen como modificacion de distribuciones de probabilidad

Definicion

La **modificacion de distribuciones** para la *frecuencia de siniestros* consiste en definir un mapeo,

$$(p_n)_{n\in\mathcal{N}} o (q_n)_{n\in\mathcal{M}}$$

donde $(q_n)_{n\in\mathcal{M}}$ define una nueva coleccion de masas de probabiliad.

Observaciones

- La modificar las masas de probabilidad, reasignamos probabilidades a eventos semejantes.
- La modificacion puede implicar un cambio en el soporte (particularmente inducido cuando algunas p_n s se colapsas a cero).
- La modificacion puede romper/alterar los patrones recursivos de las p_n s originales.

Distribuciones 0 modificadas 1/

Un tipo de modificacioes ampliamente usada en ciencias actuariales es la modificacion en 0, i.e. se modifican las p_n s para garantizar que

$$\mathbb{P}(N_t=0)=q_0,$$

con $0 < q_0 < 1$ un valor o parametro arbitrario.

 Esto es util para modelar la frecuencia de siniestros de datos tipo 'AllState', por ejemplo.

Los nuevos $(q_n)_{n\in\mathcal{M}}$ deben ser masas de probabilidad, por lo que es necesario que tomen valores en el **simplejo** $\#\mathcal{M}$ -dimensional, i.e.

- 1. $q_n > 0$ para todo $n \in \mathcal{M}$
- 2. $\sum_{n\in\mathcal{M}}q_n=1$.

Distribuciones 0 modificadas 2/

Siguiendo con la mododificacion en 0, teniendo el primer elemento mapeado

$$p_0 \rightarrow q_0$$
,

procede ahora definir el mapeo para $n \ge 1$.

En este caso, necesitamos distribuir el peso restante $(1-q_0)$ en la estructura de masas de probabilidad de las p_n s originales.

¿Como hacer eso?

Condicionando y reescalando...

Distribuciones 0 modificadas 3/

1. Condicionamos respecto a la parte del soporte que no es modificada, i.e.

$$\frac{\mathbb{P}(N_t=n)}{1-\mathbb{P}(N_t=0)}=\frac{p_n}{1-p_0},$$

para $n \geq 1$, i.e. $\sum_{n \geq 1} \frac{p_n}{1-p_0} = 1$.

2. Reescalamos respecto a la probabilidad modificada restante, i.e. definimos

$$\mathbb{Q}(N_t=n)=(1-q_0)\frac{p_n}{1-p_0},$$

para $n \ge 1$.

Distribuciones 0 modificadas 4/

De esta forma, las masas de probabilidades originales,

$$\mathbb{P}(N_t=n)=p_n,$$

para $n \in \mathcal{N}$, se modifican para las **nuevas** masas de probabilidades,

$$\mathbb{Q}(N_t=n)=q_n,$$

para $n \in \mathcal{M}$.

• Si $q_0
eq 0$, la modificacion anterior implica que $\mathcal{N} = \mathcal{M}.$

Clase (a, b, 1)

La clase de distribuciones (a, b, 0) puede **modificarse** para la clase (a, b, 1), en cuyo caso

$$\mathbb{Q}(N_t=0)=0,$$

con

$$0 < q_1 < 1$$
,

valor inicial de la recursion, y

$$q_n=q_{n-1}\left(a+rac{b}{n}
ight),$$

para todo $n \ge 2$.

• En este caso, el soporte ${\mathcal N}$ queda modificado a ${\mathcal M}={\mathcal N}\setminus\{0\}.$

Verosimilitud

En todos los casos estudiados para la frecuencia de siniestros, la identificacion del **modelo especifico** (o **modelos diferenciados**) compatibles con un conjunto de datos, desacansara en la *funcion de verosimilitud*.

Si $n_1, n_2, \ldots, n_{t-1}$ representan un conjunto de frecuencias de siniestros para (t-1) periodos pasados del modelo, la funcion de verosimilitud para $(p_n)_{n\in\mathcal{N}}$ (caso del modelo sin restricciones), es de la forma

lik
$$((p_n)_{n\in\mathcal{N}}|n_1,n_2,\ldots,n_{t-1})=p_{n_1}p_{n_2}\cdots p_{n_{t-1}},$$

en cuso caso es posible derivar que el modelo mas compatible con los datos consistiria en el **modelo estimado**,

$$\hat{p}_{n_j} = \frac{n_j}{\sum_{i=1}^{t-1} n_i},$$

para todo $n_j \in \{n_1, n_2, \dots, n_{t-1}\}$, y

$$\hat{p}_n=0$$
,

para todo $n \notin \{n_1, n_2, ..., n_{t-1}\}.$

Comentarios

• La razon por la cual se adoptan modelos parametricos en la practica, es para prevenir tener estimadores de probabilidades colapsados a 0 como en el caso anterior.

Inferencia en modificaciones

Cuando se desee hacer inferencia en **modificacion de distribuciones**, $(q_n)_{nM}$, inducidas por una alteracion de las $(p_n)_{n\in\mathcal{N}}$, podemos

1. Definir la funcion de verosimilitud para las $(p_n)_{n \in \mathcal{N}}$ originales, derivando los estimadores correspondientes \hat{p}_n s; y, entonces, definir

$$\hat{q}_n = q(\hat{p}_n),$$

para $n\mathcal{M}$, con base en el mapeo de la modificacion.

2. Definir la funcion de verosimilitud para las $(q_n)_{n\mathcal{M}}$ directamente, y proceder inferencialmente.

Lecturas complementarias

- Klugman et al (2004) Loss Model: From Data to Decisions, Seccion 4.7.
- Panjer (2006) Operational Risk Modeling Analytics, Capitulo 5.

Table of Contents

Objetivos

Preambulo

Modificacion de distribuciones

Aspectos inferenciales

Lecturas