

[HW-III]: Longitudinal MI Training and Plasticity

[ECE-379N/385J]: NEURAL ENGINEERING

The University of Texas at Austin

Notes:

- HW-III is due on April 12th
- Please start early to make use of the QA session on Wednesday
- Read literature on EEG analysis especially the paper on the Cybathlon race [1]
- Discuss with others but submit your own work!
- Analyze your results concisely and comprehensively!
- We want to know your thoughts and suggestions!

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Experiment: Visual-feedback MI-based BCI training on several sessions

OFFLINE: Class-1 Trial

OFFLINE: Class-2 Trial

ONLINE: Class-2 Trial – delivered right command

ONLINE: Class-2 Trial – failed to deliver right command

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Experiment: Visual-feedback MI-based BCI training on several sessions

	Inter-trial Rest	Fixation	Task Cue	Task Execution	End	
	2-2.5 s	2 s	2 s	5-7 s	1.5 s	
1000 768		68 769 (770 (· /	(RH) 7693 (LH: 7702 (RH:	7692 (LH: timeout/miss) 7693 (LH: Hit) 7702 (RH: timeout/miss) 7703 (RH: Hit)	

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Experiment: Visual-feedback MI-based BCI training on several sessions

Data: subj1.mat file contains data of 7 sessions (1 offline, and 6 online)

subj1.offline.run(r).eeg: (#samples x #sensors) contains eeg data of *run-r* in the offline session

subj1.offline.run(r).header: contains the header info of the *run-r* in the offline session

.fs: sampling rate
.chLabel: labels of the 32 EEG electrodes

.EVENT.TYP: event triggers during the task
.EVENT.POS: position in samples of each trigger

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Experiment: Visual-feedback MI-based BCI training on several sessions

Data: subj1.mat file contains data of 7 sessions (1 offline, and 6 online)

subj1.online(s).run(r).eeg: (#samples x #sensors) contains eeg data of run-r in online session-s

subj1.online(s).run(r).header: contains the header info of *run-r* in online session-s

.fs: sampling rate.chLabel: labels of the 32 EEG electrodes

.EVENT.TYP: event triggers during the task

.EVENT.POS: position in samples of each trigger

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 1) track the BCI-command delivery performance over sessions

	Class-1 Threshold	Class-2 Threshold	Timeout
Class-1	Hit	Miss	Timeout
Class-2	Miss	Hit	Timeout

command delivery accuracy =
$$\frac{\#Hits}{\#Hits + \#Misses}$$

$$\%timeout = \frac{\#Timeout}{\#trials}$$

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 1) track the BCI-command delivery performance over sessions

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 1) track the BCI-command delivery performance over sessions

Statistical Testing (runs of each session are treated as separate data points):

- Pre-post comparison at the group level (n=6 runs/session)
- Trend significance for each subject and at the group level

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 2) track the Discriminability of the PSD features

- 32 channels
- 14 bands [4-30]Hz with a 2Hz resolution
- => 448 features in total

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 2) track the Discriminability of the features

Compute the fisher score as a measure of discriminability for each feature:

$$fisher\ score(i) = \frac{|\mu_{class-1} - \mu_{class-2}|}{\sqrt{\sigma_{class-1}^2 + \sigma_{class-2}^2}}$$

Check the stability of the top 10 features across sessions

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 2) track the Discriminability of the features

- Show fisher score topoplots for features in:
 - For each of the 32 channels
 - Summed over all band features in [4-30]Hz

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 2) track the Discriminability of the features

- Find the channel/band feature with highest fisher score for each subject:
 - Track the changes of the fisher score of that feature
 - Perform statistical analysis for trends (per subject) and pre/post difference (group-level)

Aim: - Track BCI performance metrics and the evidence of plastic changes over multiple MI sessions

Tasks: 2) track the Discriminability of the features

 Correlate the trends of discriminability of the top 10 features in the last session to the trends of BCI performance for each subject

