Reálné funkce jedné reálné proměnné

			D(f)	H(f)	pozn.	graf funkce f	D(f')	derivace f^\prime
mocninná funkce s celým exponentem	$f: y = x^0$		$\mathbf{R} \setminus \{0\}$	{1}	sudá	x^2 y x^3 x^2 x x^0	$\mathbf{R} \setminus \{0\}$	f'(x) = 0
	$f \colon y = x^n \qquad n \in \mathbf{N}$	n sudé	R	$\langle 0, +\infty \rangle$	sudá	$\frac{1}{x}$	R	$f'(x) = nx^{n-1}$
		n liché	R	R	lichá	x^0	R	
	$f \colon y = x^{-n} \qquad n \in \mathbf{N}$	n sudé	$\mathbf{R} \setminus \{0\}$	$(0,+\infty)$	sudá	$\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$	$\mathbf{R} \setminus \{0\}$	$f'(x) = -nx^{-n-1}$
		n liché	$\mathbf{R} \setminus \{0\}$	$\mathbf{R} \setminus \{0\}$	lichá	$\frac{1}{x^3}$	$\mathbf{R} \setminus \{0\}$	
n-tá odmocnina	$f \colon y = \sqrt[n]{x}$ $n \in \mathbb{N}$	n sudé	$\langle 0, +\infty \rangle$	$\langle 0, +\infty \rangle$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(0,+\infty)$	$f'(x) = \frac{1}{n}x^{\frac{1}{n}-1}$
		n liché	R	R	lichá		$\mathbf{R} \setminus \{0\}$	
	$f \colon y = x^{\frac{m}{n}} \qquad m, n \in \mathbf{N}$	$m_{ m sud\acute{e}}$	R	$\langle 0, +\infty \rangle$	sudá	$x^{\frac{2}{3}}$ y $x^{\frac{7}{3}}$ $x^{\frac{2}{3}}$	$\mathbf{R}\setminus\{0\}$	$f'(x) = \frac{m}{n} x^{\frac{m}{n} - 1}$
		$\frac{m}{n}$ liché $\frac{n}{r}$	R	R	lichá	$x^{\frac{3}{10}}$	$(\mathbf{R} \text{ pro } m \ge n)$ $\mathbf{R} \setminus \{0\}$ $(\mathbf{R} \text{ pro } m \ge n)$	
onentem		m liché n sudé	$\langle 0, +\infty \rangle$	$\langle 0, +\infty \rangle$			$(0,+\infty)$	
cným exp	$f: y = x^{-\frac{m}{n}} \qquad m, n \in \mathbf{N}$	$m_{ m sud\acute{e}}$	$\mathbf{R} \setminus \{0\}$	$(0,+\infty)$	sudá	$x^{\frac{7}{3}}$	$\mathbf{R}\setminus\{0\}$	$f'(x) = -\frac{m}{n}x^{-\frac{m}{n}-1}$
mocninná funkce s obecným exponentem		$\frac{m}{n}$ liché $\frac{n}{r}$	$\mathbf{R}\setminus\{0\}$	$\mathbf{R} \setminus \{0\}$	lichá	$x^{-\frac{2}{3}}$ $-\frac{x^{-\frac{3}{10}}}{1}$ 0 1 x	$\mathbf{R} \setminus \{0\}$	
		m liché n sudé	$(0,+\infty)$	$(0,+\infty)$		$\begin{bmatrix} y \\ x^{\pi} \end{bmatrix}$	$(0,+\infty)$	
	$f \colon y = x^a$ $a \in \mathbf{R} \setminus \mathbf{G}$)	$\langle 0, +\infty \rangle$	$\langle 0, +\infty \rangle$		1 $ x$ $-\frac{\pi}{4}$	$(0,+\infty)$	$f'(x) = ax^{a-1}$
		a < 0	$(0,+\infty)$	$(0, +\infty)$			$(0,+\infty)$	
	f: y = q	k > 0 $k = 0$ $k < 0$	R	$\{q\}$		y / / (R	f'(x) = 0
	${0}$	$\kappa < 0$ $k \neq 0$	R	R		$\begin{vmatrix} ax^2 + bx + c \\ y \\ a > 0 \end{vmatrix} = \begin{vmatrix} ad - bc > 0 \\ \frac{a}{c} \end{vmatrix}$ $ad - bc < 0 \qquad \begin{vmatrix} \frac{1}{c} \\ \frac{1}{c} \end{vmatrix}$	R	f'(x) = k
	$f \colon y = ax^2 + bx + c$	R				R	f'(x) = 2ax + b	
	$f: y = \frac{ax+b}{cx+d} \qquad c \neq 0 \\ bc-ad \neq 0 \qquad \mathbf{R} \setminus \{-\frac{d}{c}\}$			$\mathbf{R}\setminus\{rac{a}{c}\}$		$\begin{vmatrix} a & b & ax + b \\ a & cx + d \end{vmatrix}$	$\left \mathbf{R} \setminus \{-\frac{d}{c}\} \right $	$f'(x) = \frac{ad - bc}{(cx+d)^2}$
						$y \operatorname{sgn} x$ $y x $		
	$f \colon y = \operatorname{sgn} x = \begin{cases} 1, & 1 \\ 0, & 1 \\ -1, & 1 \end{cases}$	x = 0, $x < 0.$	R	$\left\{-1,0,1\right\}$	lichá	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & -1 \\ \hline \end{array}$		
	$f: y = x \qquad = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases} \qquad \mathbf{R}$		\mathbf{R}	$\langle 0, +\infty \rangle$	sudá	$\begin{bmatrix} x \end{bmatrix} \qquad 1 \qquad - \qquad \qquad \downarrow \qquad \downarrow$		
	f: y = [x]		R	\mathbf{z}	lichá	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$f \cdot g = [w]$ $g(x) = g(x) \ln f(x)$				neira	-1		přehled verze 002

Reálné funkce jedné reálné proměnné

	transcendentní funkce	D(f)	H(f)	pozn.	graf funkce f	D(f')	derivace f^\prime
exponenciální funkce	$f: y = a^x, a > 0$ $a \neq 1$ $f: y = e^x$ $e \doteq 2,718281828$	R	$(0,+\infty)$		$\begin{array}{c c} a > 1 & 0 < a < 1 \\ \hline 0 & x \end{array}$	R	$f'(x) = a^x \ln a$ $f'(x) = e^x$
logaritmická funkce	$f: y = \log_a x, \underset{a \neq 1}{a > 0}$ $f: y = \log_e x = \ln x$ $f: y = \log_{10} x = \log x$	$(0,+\infty)$	R		$0 \qquad \qquad x \qquad \qquad x \qquad \qquad 0 < a < 1$	$(0,+\infty)$	$f'(x) = \frac{1}{x \ln a}$ $f'(x) = \frac{1}{x}$ $f'(x) = \frac{1}{x \ln 10}$
goniometrické funkce	$f: y = \sin x$	R	$\langle -1, 1 \rangle$	period. $T=2\pi$ lichá	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	$f'(x) = \cos x$
	$f: y = \cos x$	R	$\langle -1, 1 \rangle$	period. $T=2\pi$ sudá		R	$f'(x) = -\sin x$
	$f: y = \operatorname{tg} x = \frac{\sin x}{\cos x}$	$\mathbf{R} \setminus \{(2k+1)\frac{\pi}{2}, \\ k \in \mathbf{Z}\}$	R	period. $T=\pi$ lichá		$\mathbf{R} \setminus \{(2k+1)\frac{\pi}{2}, \\ k \in \mathbf{Z}\}$	$f'(x) = \frac{1}{\cos^2 x}$
	$f: y = \cot g x = \frac{\cos x}{\sin x}$	$\mathbf{R}\setminus\{k\pi,k\in\mathbf{Z}\}$	R	period. $T=\pi$ lichá		$\mathbf{R}\setminus\{k\pi,k\in\mathbf{Z}\}$	$f'(x) = \frac{-1}{\sin^2 x}$
cyklometrické funkce	$f: y = \arcsin x$	$\langle -1,1 angle$	$\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	lichá	$\arccos x$ π	(-1,1)	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
	$f: y = \arccos x$	$\langle -1,1 angle$	$\langle 0,\pi \rangle$		$ \begin{array}{c c} & \arcsin x \\ & -1 \\ \hline & 0 & 1 & x \end{array} $	(-1, 1)	$f'(x) = \frac{-1}{\sqrt{1-x^2}}$
	$f: y = \operatorname{arctg} x$	R	$\left(-rac{\pi}{2},rac{\pi}{2} ight)$	lichá	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R	$f'(x) = \frac{1}{1+x^2}$
	$f: y = \operatorname{arccotg} x$	R	$(0,\pi)$		$ \begin{array}{c c} \frac{\pi}{2} \\ 0 \\ -\frac{\pi}{2} \end{array} $	R	$f'(x) = \frac{-1}{1+x^2}$
hyperbolické funkce	$f: y = \sinh x = \frac{e^x - e^{-x}}{2}$	R	R	lichá	$\cosh x$ y	R	$f'(x) = \cosh x$
	$f: y = \cosh x = \frac{e^x + e^{-x}}{2}$	R	$\langle 1, +\infty \rangle$	sudá	y $sinh x$	R	$f'(x) = \sinh x$
	$f: y = \operatorname{tgh} x = \frac{\sinh x}{\cosh x}$	R	(-1,1)	lichá	$ \begin{array}{c c} \hline 0 & x \end{array} $	R	$f'(x) = \frac{1}{\cosh^2 x}$
	$f: y = \cosh x = \frac{\cosh x}{\sinh x}$	$\mathbf{R} \setminus \{0\}$	$ \mathbf{R} \setminus \langle -1, 1 \rangle $	lichá	$ \begin{array}{c} -1 \\ \operatorname{cotgh} x \end{array} $	$\mathbf{R}\setminus\{0\}$	$f'(x) = \frac{-1}{\sinh^2 x}$
hyperbolometrické funkce	$f: y = \operatorname{argsinh} x$	R	R	lichá	y argsinh x	R	$f'(x) = \frac{1}{\sqrt{1+x^2}}$
	$f: y = \operatorname{argcosh} x$	$(1, +\infty)$	$\langle 0, +\infty \rangle$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(1,+\infty)$	$f'(x) = \frac{1}{\sqrt{x^2 - 1}}$
	$f: y = \operatorname{argtgh} x$	(-1,1)	R	lichá	$\frac{\operatorname{argtgh} x}{-1} 0 1 x$	(-1,1)	$f'(x) = \frac{1}{1 - x^2}$
	$f: y = \operatorname{argcotgh} x$	$\mathbf{R}\setminus\langle -1,1\rangle$	$\mathbf{R} \setminus \{0\}$	lichá	$\operatorname{argcotgh} x$	$\mathbf{R} \setminus \langle -1, 1 \rangle$	$f'(x) = \frac{1}{1 - x^2}$ přehled verze 002 ETIFX & Inkscape