DTM Deterministische Turing-Maschine	NTM Nichtdeterministische Turing-Maschine	Entscheidungsproblem
1	2	3
(Un-)Entscheidbarkeit	Semi-Entscheidbarkeit	Co-Semi-Entscheidbarkeit
4	5	6
Aufzählbarkeit	Abzählbarkeit	Überabzählbarkeit
7	8	9
Halteproblem	Cantor-Funktion	Cantor-Diagonalisierung
10	11	12
Cantors erstes Diagonalargument	Cantors zweites Diagonalargument	Cantorsche Paarungsfunktion
13	14	15
Ackermannfunktion	Topologie	Gödelsche Unvollständigkeitssätze
16	17	18
LOOP-Programm: Definition	LOOP-Programm: ADD-Funktion	LOOP-Programm: SUB-Funktion
19	20	21
LOOP-Programm: MUL-Funktion	LOOP-Programm: POT-Funktion	LOOP-Programm: DIV-Funktion
22	23	24

Frage nach Entscheidbarkeit	$M{=}(Q,\Sigma,\Gamma,\delta,q_0,F)$ Q Zustandsmenge Σ Eingabealphabet Γ Bandalphabet mit $\Gamma{\subseteq}\Sigma{\cup}\{{\llcorner}\}$ δ Übergangsfkt. $Q{\times}\Gamma{\to}2^{Q{\times}\Gamma{\times}\{L,R,N\}}$ q_0 Startzustand $q_0{\in}Q$ F akzeptierende Endzustände $F{\subseteq}Q$	$M{=}(Q,\Sigma,\Gamma,\delta,q_0,F)$ Q Zustandsmenge Σ Eingabealphabet Γ Bandalphabet mit $\Gamma{\subseteq}\Sigma{\cup}\{{\llcorner}\}$ δ Übergangsfkt. $Q{\times}\Gamma{\to}Q{\times}\Gamma{\times}\{L,R,N\}$ q_0 Startzustand $q_0{\in}Q$ F akzeptierende Endzustände $F{\subseteq}Q$
Ob den Elementen einer Menge, die die Eigenschaft nicht haben, das Gegenteil der Eigenschaft eindeutig nachgewiesen werden kann.	Ob den Elementen einer Menge, die die Eigenschaft haben, die Eigenschaft eindeutig nachgewiesen werden kann.	Ob allen Elementen einer Menge eine Eigenschaft eindeutig nachgewiesen (bzw das Gegenteil nachgewiesen) werden kann.
6	5	4
Eigenschaft einer Menge, nicht abzählbar zu sein (keine Bijektion auf \mathbb{N})	Menge, die die gleiche Mächtigkeit wie N hat (eindimensional unendlich bzw abzählbar unendlich)	Eigenschaft einer Menge, dass es eine "Generatorfunktion" gibt, die alle Elemente aufzählt
9	8	7
Bezeichung der von Cantor entwickelten Diagonalverfahren	Die Verteilungsfunktion der Cantorverteilung	Frage, ob eine Maschine (zB eine TM) auf einer bestimmten Eingabe hält (oder in eine Endlosschleife geht). Ist unentscheidbar (semi-, nicht co-semi-), NP-hart
12	11	10
Basiert auf dem Diagonalargument von Cantor $(\mathbb{N} \times \mathbb{N} \to \mathbb{N})$	sei r_i : $r_1 = 0, b_{11}b_{12}b_{13}$ $r_1 = 0, b_{21}b_{22}b_{23}$ $r_1 = 0, b_{31}b_{32}b_{33}$ $\bar{r} = 0, \bar{r}_{11}\bar{r}_{22}\bar{r}_{33}$ \bar{r} ist dann nicht in der Menge von r_i	Die Mächtigkeit zweier Mengen A und B ist genau gleich, wenn eine Bijektion zwischen A und B gibt
15	14	13
Die Gödelschen Unvollständigkeitssätze weisen nach das es in hinreichend starken Systemen, Aussagen geben muss die man weder formal beweisen noch widerlegen kann. Es gibt den ersten und den 2. Unvollständigkeitssatz	tbd	Funktion der Form: $\varphi(a,b,0)=a+b$ $\varphi(a,0,n+1)=\alpha(a,n)$ $\varphi(a,b+1,n+1)=\varphi(a,\varphi(a,b,n+1),n)$ oder ähnlich mit extrem schnellem Wachstum
ADD x_1 x_2 : $x_0 := x_1 + 0$; LOOP x_2 DO $x_0 = x_0 + 1$ END .		P ist LOOP Programm, wenn von der Form: $x_i := x_j + n,$ $x_i := x_j - n,$ $LOOP x_i DOP_j END,$ $p_i : p_j$ 19
POT $x_1 \ x_2$: $x_0 := x_1 + 0$;	$\begin{array}{ll} \text{MUL} \ x_1 \ x_2 \colon \\ x_0 \ := \ x_1 \ + \ 0 ; \\ \text{LOOP} \ x_2 \ \text{DO} \ \text{ADD} \ x_0 \ x_1 \ \text{END} \end{array}$	
2234	. 22	
2401		

LOOP-Programm: MAX-Funktion	LOOP-Programm: MIN-Funktion	LOOP-Programm: MOD-Funktion
25	26	27
LOOP-Programm: GGT-Funktion	LOOP-Programm: Fallunterscheidung	WHILE-Programm
Kolmogorov-Komplexität 31	Many-One-Reduktion 32	Schubfachprinzip 33
Satz von Rice	PKP oder PCP Postsches Korrespondenzproblem	Äquivalenzproblem 36
P, NP, coNP, PSPACE	P,NP,PSPACE-hart	P,NP,PSPACE-vollständig
Wortproblem Deterministischer Endlicher Automaten	SAT Erfüllbarkeitsproblem	Kleene-Stern 42
Liste von P-vollständigen Problemen	Liste von NP-vollständigen Problemen	Formalisieren (Ablauf)
3SAT 46	QBF	LBA Linear Bounded Automaton

MIN x_1 x_2 :	MAY	
$x_0 = x_1 + 0;$	MAX x_1 x_2 :	
$MAX x_1 x_2;$	$x_0 := x_1 + 0;$	
ADD x_0 x_2 ;	SUB x_0 x_2 ;	
	ADD x_0 x_2	
SUB x_0 x_1		
	·	
26	25	
•	0.00	
	GGT x_1 x_2 :	
IF $x_0 != 0$ THEN P END:	$x_4 = x_1 + 0;$	
LOOP x_0 DO $x_1 := 1$ END;	LOOP x_4 DO:	
LOOP x_1 DO P END	LOOP x_2 DO:	
	$x_5 = x_2 + 0;$	
•	$ \begin{array}{c} x_5 - x_2 + 0, \\ MOD x_5 x_1; \end{array} $	
29		
29	$x_1 = x_2 + 0$	
D.11	END;	
Falls man n Objekte auf m Mengen	$x_2 = x_5 + 0$	Maß für die Strukturiertheit einer
(n,m>0) verteilt und $n>m$ gilt, gibt es	END; Problem A ist auf B	
mindestens eine Menge, die mehr als 1	x_{many} wone-reduzier bar $(A \leq_m B)$, falls es	Zeichenkette, gegeben durch die Län
Objekt enthält. Auch:	eine berechenbare Funktion $f:A \rightarrow B$ gibt.	des kürzesten Programms, das dies
Taubenschlagprinzip, Dirichlet-Prinzip.	·	Zeichenkette erzeugt.
raubenschiagpinizip, Diffemet-r finzip.	28	
33	32	
		Es ist unmöglich, eine beliebige,
	D : 100	nicht-triviale Eigenschaft der erzeugt
	Beispiel für ein unentscheidbares	Funktion einer Turing-Maschine
tbd	Problem.	algorithmisch zu entscheiden. Trivia
		wäre immer akzeptierenöder imme
		verwerfen".
36	35	
tbd	tbd	tbd
• • • • • • • • • • • • • • • • • • •		
39	38	
	Entscheidungsproblem, ob eine	
tbd	aussagenlogische Formel erfüllbar ist	tbd
42	41	
		tbd
tbd	tbd	toa
tbd	tbd	tou
tbd	tbd	toa
tbd 45	tbd 44	toa
		tot
		tot
45	44	
		tbd
45	44	

Pränexform 49	Skolemform 50	Klauselform 51
=	Resolutionsverfahren	Unifikator 54
Allgemeinster Unifikator	Herbrand-Universum 56	Herbrand-Modell
Herbrand-Expansion 58		

tbd	tbd	tbd
51	50	49
tbd	tbd	tbd
54	53	52
tbd	tbd	tbd
57	56	55
31	30	50
		tbd
		58