Rio de Janeiro, 13 de Setembro de 2007.

PROVA 1 DE ANÁLISE DE ALGORITMOS PROFESSOR: EDUARDO SANY LABER

DURAÇÃO: 2 HORAS

- 1. (2.0pt) Seja G = (V, E) um grafo direcionado.
- a) Explique como seria um algoritmo para encontrar um par de vértices $u, v \in V$ tal que não existe caminho de u a v em G e nem caminho de v a u em G. Caso tal par não exista, o caminho deve indicar "NÃO EXISTE".
 - b) Análise a complexidade do algoritmo proposto.
- 2. (2.0pt) Explique o que é uma árvore AVL indicando suas possíveis vantagens e desvantagens em relação a uma árvore binária de busca tradicional.
- 3 (2.0pt). Considere o seguinte algoritmo que recebe um número inteiro N como entrada e determina se N é primo ou composto.

- a) Faça uma análise assintótica da complexidade de tempo deste algoritmo?
- b) Qual o tamanho da entrada em função de N?
- c) Este algoritmo é polinomial no tamanho da entrada? Por que?
- 4.(2.0pt) Análise em função de n a complexidade de tempo do procedimento abaixo?

Para i variando de 1 a n faça $t \leftarrow n$ $q \leftarrow 1$ Enquanto $q \le t$ $q \leftarrow 2q$

Fim Enquanto

Fim Para

- 5. (2.0pt) Considere o pseudo-código da busca em largura abaixo.
- (a) Modifique o pseudo-código para que este passe a calcular, para cada nó $v \in V$, a distância de v ap nó de origem da busca s
- (b) Modifique o pseudo-código para que este determine se o grafo de entrada é bipartido ou não. Assuma neste item que já esta disponível um vetor Dist, onde Dist(v) indica a distância do vértice v até a origem da busca s.

BFS	
Procedure BFS(G,s)	
1.	Marque s como visitado
5.	ENQUEUE(Q,s)
9.	$\mathbf{while}\ Q \neq \emptyset$
10.	$u \leftarrow DEQUEUE(Q)$
11.	For each $v \in Adj[u]$
12.	if v não visitado then
14.	Marque v como visitado
16.	$\mathrm{ENQUEUE}(\mathrm{Q,v})$
20.	End For
30.	End While

Figura 1: Pseudo-Código de uma BFS