Custom Template

python 101

Author: Evelyn J. Boettcher

Date: 2024-09-08

No one, I have no authority: Classified on 2024-09-08:

Table of contents

Week	k 3 Lesson 1: Linear Regression
	Problem 1
Disco	over Computer Science: Teachable Machine Workshop
	Targeted Grades
	Slide Deck
	Duration
	Outcomes / Learning Objectives
	Prep
Lesse	on
	Opening (15 min)
	ML Explained (2.5 min)
	Train Model (10 min)
	Run Models (10min)
	Closing

Fun June 16, 2024

Week 3 Lesson 1: Linear Regression

Problem 1

• Explain what np.polynomial does in this script. ** And what are my options besides Polynomial

Discover Computer Science: Teachable Machine Workshop

A No / Low Code workshop where students will learn about machine learning (ML) and **build** their own ML application.

- Training the AI/ML model is a NO code exercise.
- Creating a working web application is a *low* code exercise.
 - Students will modify a working application for their needs.

Targeted Grades

4th through 12th

This mainly targets to middle school to elementary. But there is no age limit on this workshop.

Fun 2

Slide Deck.

Slide Deck

Duration

60-90 minutes

Outcomes / Learning Objectives

- Students will learn about classification
- How classifications is used in Machine learning (ML)
- How to create their own ml algorithm
- Create their own application
- Be introduced to computer science.

Students will:

- Explain that machine learning is when computers detect patterns
- Make their own rules (a model) for describing those patterns
- Train a machine learning model using Teachable Machine
- Use conditional statements

Prep

Item	Qty	
Monkey Carts Printed	1 set per group	
laptop with web camera	1 per group	
Internet		
Pen and Paper	1 per student	

Lesson

Outline:

- Classes and Models (No computers, Need monkey cards)
- Finished Application Demo
- Walk through Teachable Machines
- Student build their own application (two class AI model)
- (stretch) Students build three class application
- (stretch) Students build a nicer application

Opening (15 min)

HOOK

Show finished Application Demo

Ask: How does that work?

Walk through what a class is.

Give students a set of the **green** monkey cards (from AI Unplugged). Have teams divide their chart paper into 2 classes: Biting and Non Biting.

Training data (blue paper):

- biting: 1, 2, 3, 4
- non- biting: 5-20 Have them decide which characteristics are for biting monkeys. This is done as a group.

Then show them the test data (green paper) and see how well their model did.

Test data (green paper)

Biting: 22, 23, 24Non-biting: 21, 25 - 40

AI Unplugged has more example in this paper

ML Explained (2.5 min)

Overview Video on Machine Learning (~ 2 minutes)

YouTube (very simple explanation)

Train Model (10 min)

Train Model with Teachable Machines.

- Demo how to train a model on Teachable Machine
- Give students 6-7 minutes to train their own.
 - Have students go to Teachable Machine
 - Click Get Started and start an image classification
 - Let students create two class classification for any school acceptable hand jester.
 - * Keep the images simple
 - * name your classes something descriptive: Cat / Dog
 - * Ask how you could account for differences: skin color, jewelry, nail color.

Run Models (10min)

- Download model.
 - Show students how to copy their model to a folder (static) in student application start,
 - Update the URL in the my_model.js (line 5)
- (stretch) Show students how to add an image to the first "if" condition. (on line 64) (hint: look at the application_demo folder)
 - Use Wikipedia images search for emojis
- (stretch) Ask how the Javascript syntax is different than the Python Syntax

Closing

- Have each group Demo their application
- Student Reflection:
 - How could you use ML application in your school, home, car?
 - What would you have to consider when training a model?
- Celebrate: You created a working ML models!
- Follow-up Resources:
 - AI Unplugged
 - AI for ALl summer programs
 - The Code Train
 - Google Tutorial