3rd Semester							
ISCED Code	Course Code	Course Title					
0714 CSE-2323 Digital Logic Design							
Credit Hours: 3	Contact Hours: 3	Type: Major					
Prerequisite: EEE-1221 (Electronics)							
Co-requisite: CSE-232	Co-requisite: CSE-2324 (Digital Logic Design Lab)						

Course	CIE:	Attendance	10 Marks
Assessments	Continuous Internal	Class test/ Assignment/	10 Marks
	Evaluation	Quizzes	
		Mid-term	30 Marks
	SEE: Semester End	Examination	50 Marks
	Total	100 Marks	

Course Rationale:

This course aims to teach students the fundamentals of digital logic design. It serves as a building block in many disciplines that utilize data of digital nature like digital control, data communication, digital computers etc. To take this course, students should have familiarity with Electrical Drives and Instrumentation Lab. Concept of the number system should be needed to learn this course.

Objectives:

This course is concerned with the logic design of digital electronic circuits. Digital circuits are employed in the design of digital systems such as digital computers, control systems, data communications, and many other applications that require electronic digital hardware. The course covers the basic tools for designing digital circuits and teaches methods and procedures suitable for a variety of digital applications.

Course Learning Outcomes (CLOs):

Upon successful completion of this course, students will be able to:

#	CLO Description	Weightage (%)
1.	Understand the knowledge of Number system, Boolean algebra and	20 %
	different types of Combinational and Sequential logic circuits.	
2.	Interpret different digital electronics circuits in terms of different	40 %
	systems of Boolean expression and their simplification, truth table,	
	state table etc.	
3.	Analyze various problems related to digital electronics and implement	40 %
	digital circuits like adder, comparator, converter, decoder, encoder,	
	ROM, PLA, counter, register etc.	

Mapping of CLO-PLO-DL-KP-EP-EA:

#	CLOs	PLOs	DL	KP	EP	EA	Teaching Learning Strategy (TLS)	Assessment Strategy (AS)
CLO1	Understand the	PLO1	C1	K1	-	-	Lecture,	Lecture,
	knowledge of			K5			Class	Class
	Number system,						discussion,	discussion,
	Boolean algebra						Assignment,	Assignment,
	and different						Note Exam,	Note Exam,
	types of						Quiz,	Quiz,
	Combinational						Assignment	Assignment
	and Sequential							
	logic circuits.							
CLO2	Interpret	PLO2	C2	K3	-	-	Lecture,	Lecture,
	different digital						Class	Class
	electronics						discussion,	discussion,
	circuits in terms						Assignment,	Assignment,

of different systems of Boolean expression and their simplification, truth table, state table etc.						Lab work, Note Exam, Quiz, Assignment	Lab work, Note Exam, Quiz, Assignment
CLO3 Analyze various problems related to digital electronics and implement digital circuits like adder, comparator, converter, decoder, encoder, ROM, PLA, counter, register etc.	PLO3	C3	K6	-	-	Lecture, Class discussion, Assignment, Lab work, Note Exam, Quiz, Assignment	Lecture, Class discussion, Assignment, Lab work, Note Exam, Quiz, Assignment

Note: DL: Domain/level of learning taxonomy, KP: Knowledge Profile, EP: Attribute of Complex Engineering Problems, EA: Attribute of Complex Engineering Activities, Learning Domains (C: Cognitive, A: Affective, P: Psychomotor)

Course Content:

#	Content	Duration	CLOs				
	Mid-Term (30 Marks)						
1	Binary Systems, Boollean Algebra and Logic Gates: Number system, binary codes, binary logics, logic gates, Boolean algebra, canonical and standard forms.	2 weeks	CLO1				
2	Simplification of Boolean Functions: The Map Method. Two-, Three-, Four-, Five and Six- variable Maps, Product of Sum Simplification, NAND And NOR Implementation, Don't Care Conditions, Multilevel NAND Circuits, Multilevel NOR Circuits, Exclusive-or and Equivalence Functions.	2 weeks	CLO2				
3	Combinational Logic: Design Procedure, Adders, Subtractors, Code Conversion, Analysis Procedure, designing various types of combinational circuit using logic gates.	2 weeks	CLO2				
	Final Exam: 50 Marks Group-A (20 Marks)						

4	Combinational logic with MSI and LSI: MSI and LSI, Binary Parallel Adder, look ahead carry, decimal Adder, Magnitude Comparator, decoder, encoder, multiplexer & demultiplexer.	2 weeks	CLO2			
5	Sequential Logic: Flip-flops, triggering of flip-flops, analysis of clocked Sequential circuits, state reduction and Assignment, design procedure, design with state equations, designing various types of sequential circuits.	3 weeks	CLO2			
	Group-B (30 Marks)					
6	Registrars, Counters, and the Memory: Registers, shift registers, ripple counters, asynchronous counter, and synchronous counter, memory, read only memory, programmable logic array, random access memory, and memory unit.	2 weeks	CLO3			
7	Register Transfer and Processor Logic Design: Inter register transfer, arithmetic-logic and shift-operations, design a simple computer, processor organization, arithmetic logic unit, design of arithmetic logic unit, design of accumulator.	2 weeks	CLO3			

Marks Distribution:

Course Assessment Pattern (Theory courses):

		C	CIE (50 marks) Attendance Assignment/ Mid-					
Cognitive	Affective	Attendance	Written					
learning	learning	Marks (10)	Class Test	term	Exam (50)			
			(10)	(30)				
Remember				5	5			
Understand			5	5	5			
Apply			5	15	30			
Analyze				5	10			
Evaluation								
Create								
	Responding	10						
Total allocat	ed marks	10	10	30	50			

Grading Policy: As per IIUC grading policy

Learning Materials:

Text Books:

1. M. Morris Mano Digital Logic and Computer Design 4th edition Pearson education ISBN-13: 978- 0-13-277421-5

Reference Books:

- 1. Md. Mozammel Huq Azad Khan Digital logic design 1st Edition University Grants Commission of Bangladesh 2006 ISBN-13: 978-9848090244
- 2. Thomas L. Floyd Digital Fundamentals 11th Edition Pearson 2014 ISBN-13: 978-0132737968
- 3. Tocci-widmer Digital Systems 12th Edition Pearson Prentice Hall 2016 ISBN-13: 978-0134220130

3rd Semester								
ISCED Code	Course Code	Course Title						
0714	CSE-2324	Digital Logic Design Lab						
Credit Hours: 1.5	Contact Hours: 3	Type: Core, Engineering						
Prerequisite: EEE-1222 (Electronics Lab)								
Co-requisite: CSE-232	Co-requisite: CSE-2323(Digital Logic Design)							

Course	CIE:	Attendance	10 Marks
Assessments	Continuous Internal	Class test/ Assignment/	10 Marks
	Evaluation	Quizzes	
		Mid-term	30 Marks
	SEE: Semester End	Examination	50 Marks
	Total		100 Marks

Course Rationale:

In this lab course students will develop practical design skills and become familiar with basic digital hardware by constructing different combinational circuits, and programmable logic devices. Finally, they apply their knowledge to the design of practical circuits such as alarm systems, stopwatch etc. Students also deal with different matters such as the course objectives, laboratory rules and procedures, safety issues, preparation of pre-lab and lab reports.

Objectives:

This course is concerned with the practical aspects of designs based on the course CSE-2323, Digital logic design theory.

Course Learning Outcomes (CLOs):

Upon successful completion of this course, students will be able to:

#	CLO Description	Weightage (%)
1.	Understand the usage of the tools for implementing simple, combinational and sequential logic circuits.	20 %
2.	Implement different efficient combinational and sequential logic circuits for different logical problems.	60 %
3.	Design a small project as a team member to measure and record the experimental data, analyze the results, and prepare a formal laboratory report.	20 %

Mapping of CLO-PLO-DL-KP-EP-EA:

#	CLOs	PLOs	DL	KP	EP	EA	Teaching Learning Strategy (TLS)	Assessment Strategy (AS)
CLO1	Understand the usage of the tools for implementing simple, combinational and sequential logic circuit.	PLO1	C2	-	-	-	Lecture, Class discussion, Note	Exam, Quiz, Assignment

CLO2	Implement different efficient combinational and sequential logic circuits for	PLO4	СЗ	-	-	-	Discussion, Assignment	Assignment, Quiz, Exam
	different logical problems.							
CLO3	Design a small project as a team member to measure and record the experimental data, analyze the results, and prepare a formal laboratory report.	PLO3	C4	-	-	-	Lecture, Assignment, Quiz	CT, Assignment

Note: DL: Domain/level of learning taxonomy, **KP:** Knowledge Profile, **EP:** Attribute of Complex Engineering Problems, **EA:** Attribute of Complex Engineering Activities, **Learning Domains** (C: Cognitive, A: Affective, P: Psychomotor)

Course Content:

#	Content	Duration	CLOs
1	Binary Systems, Boollean Algebra and Logic Gates: Number system, binary codes, binary logics, logic gates, Boolean algebra, cannonical and standard forms.	2 weeks	CLO1
2	Simplification of Boolean Functions: The Map Method. Two-, Three-, Four-, Five and Six- variable Maps, Product of Sum Simplification, NAND And NOR Implementation, Don't Care Conditions, Multilevel NAND Circuits, Multilevel NOR Circuits, Exclusive-or and Equivalence Functions.	2 weeks	CLO2
3	Combinational Logic: Design Procedure, Adders, Subtractors, Code Conversion, Analysis Procedure, designing various types of combinational circuit using logic gates.	2 weeks	CLO2
4	Combinational logic with MSI and LSI: MSI and LSI, Binary Parallel Adder, look ahead carry, decimal Adder, Magnitude Comparator, decoder, encoder, multiplexer & demultiplexer.		CLO2
5	Sequential Logic: Flip-flops, triggering of flip-flops, analysis of clocked Sequential circuits, state reduction and Assignment, design procedure, design with state equations, designing various types of sequential circuits.		CLO2

6	Registrars, Counters, and the Memory: Registers, shift registers, ripple counters, asynchronous counter, and synchronous counter, memory, read only memory, programmable logic array, random access memory, and memory unit.	2 weeks	CLO3
7	Register Transfer and Processor Logic Design: Inter register transfer, arithmetic-logic and shift-operations, design a simple computer, processor organization, arithmetic logic unit, design of arithmetic logic unit, design of accumulator.	2 weeks	CLO3

Marks Distribution:

Course Assessment Pattern (Lab courses):

		CIE	SEE (50 marks)	
Cognitive learning	Affective	Attendance	Continuous	Final Exam /
	learning	Marks (10)	Evaluation (40)	Project (50)
Remember				
Understand				
Apply				
Analyze				
Evaluation				
Create				
	Responding	10		
Total allocated	marks	10	40	50

Grading Policy: As per IIUC grading policy

Learning Materials:

Text Books:

1. M. Morris Mano Digital Logic and Computer Design 4th edition Pearson education ISBN-13: 978- 0-13-277421-5

Reference Books:

- 1. Md. Mozammel Huq Azad Khan Digital logic design 1st Edition University Grants Commission of Bangladesh 2006 ISBN-13: 978-9848090244
- 2. Thomas L. Floyd Digital Fundamentals 11th Edition Pearson 2014 ISBN-13: 978-0132737968