J.C.S. Perkin I

The Synthesis and Spectra of Polycyclic 1,2,3-Trithiolans

By John Emsley * and David W. Griffiths, Department of Chemistry, King's College, Strand, London WC2 R2LS Gerry J. J. Jayne, Research Laboratories, Edwin Cooper & Co. Ltd., London Road, Bracknell, Berks, RG12 2UW.

Polycyclic 1,2,3-trithiolans have been made by reacting the olefins, exo- and endo-cyclopentadiene dimer, cyclopentadiene trimer, and norbornene with elemental sulphur. The reaction with norbornadiene produced an episulphide. The vibrational (i.r. and Raman) and magnetic (¹H and ¹³C n.m.r.) spectra of the trithiolans are consistent with a five-membered ring structure with three adjacent sulphur atoms in an exo-configuration. The trithiolans are chemically fairly stable but polymerise rapidly on heating above 180°C.

Although polycyclic 1,2,3-trithiolans † are reported in several recent patents 1-3 they are only briefly dealt with in the chemical literature.4,5 Larger rings with three adjacent sulphur atoms such as 1,2,3-trithians and 1,2,3trithiepins have been recorded.6-8 The lack of information about trithiolans at present is evident by their complete neglect in the latest comprehensive organosulphur text.9

Kurtz and Shields were the first to react norbornene and sulphur and obtain a trithiolan.⁴ Polycyclic 1,2,3trithiolans can better be made from other norbonenes and elemental sulphur activated by amines and 1,3,4thiadiazoles. Assuming a free radical addition, then the expected products should be exo, cis-trithiolans. 10 The four trithiolans discussed in this paper are shown to have properties consistent with this structure, and conclusive proof in the form of an X-ray diffraction picture has been published.

EXPERIMENTAL

Instruments.—N.m.r. spectra were run on samples in CDCl₃ with Perkin-Elmer R12B (60 MHz) and Bruker HFX90 (90 MHz, ¹H; 22.628 2 MHz, ¹³C broad-band decoupled) spectrometers. I.r. spectra were measured with a Perkin-Elmer 457 spectrometer (CsBr optics) for Nujol and hexachloro-butadiene mulls. Raman spectra were run at Royal Holloway College on a Coderg PHo Raman spectrometer (double monochromator) with a coherent radiation laser operating on the red line (λ 647.1 nm).

Materials.—The olefins were either commercial samples {norbornene (1), norbornadiene (3), endo-cyclopentadiene $\operatorname{dimer}(tricyclo[5,2.1.0^{2,6}]dec-3-ene)(5))$ or were synthesised according to published methods (exo-cyclopentadiene dimer,11 cyclopentadiene trimer 12). The sulphur was reagent grade precipitated sulphur, S₈, from B. D. H.

Reaction of Sulphur and Norbornene.4—Sulphur (5.1 g, 0.16 g-atom) was mixed with dimethylformamide (3 cm³) and pyridine (57 cm³) and 'activated' by bubbling NH_a through the mixture. Norbornene (7.5 g, 0.08 mol) was added and the mixture heated at 110 °C with stirring for 2 h. The mixture was cooled, extracted with ether, and the extract vacuum distilled to yield (2) (3.5 g, 0.018 mol, 34.6%), b.p. 175—180 °C/13 mmHg (Found: C, 44.6; H, 5.3. Calc. for $C_7H_{10}S_3$: C, 44.2; H, 5.30%); i.r., Raman and n.m.r. spectral data are given in Tables 1—3.

Reaction of Sulphur and Norbornadiene.—Sulphur (5.1 g,

0.16 mol) was mixed with dimethylformamide (3 cm³) and pyridine (57 cm³) and 'activated' by bubbling NH₃ through the mixture. Norbornadiene (7.3 g, 0.08 mol) was added and the mixture heated at 110 °C with stirring for 2 h. The mixture was cooled, extracted with ether, and the extract vacuum distilled to yield a yellow oil, C_7H_8S , (4) (1.9 g, 0.015 mol, 19.3%), b.p. 105—110 °C/13 mmHg (Found: C, 67.5; H, 6.24; S, 24.9. Calc. for C_7H_8S : C, 67.7; H, 6.49; S, 25.8%); $\delta(SiMe_4)$ 1.27 (d, 1 H, CH bridge, J 9.1 Hz), 1.83 (d, 1 H, CH bridge), 2.95 (tr, 2H, CH bridgehead), 3.02 (s, 2 H, CHS), and 6.37 (tr, 2 H, CH olefinic, J 1.7 Hz). I.r. bands centred at 400m. 521w, 640s, 710sh, 720vs, 785m, 801m, 878m, 895sh, 900m, 954m, 967vw, 992m, 1 058s, 1 095w, 1 196m, 1 234m, 1 260m, 1 310s, 1 318s, 1 445s, 1 554w, 1 580w, 1 630w, 2 870w, 2 960m, 3 000s, 3 060m, and 3 120w cm⁻¹. The use of the above method 4 with cyclopentadiene dimer and trimer gave only small yields of trithiolans. It was found necessary to use a stronger sulphur activator and 2,5-bis(octyldithio)-1,3,4-thiadiazole was used.

Reaction of Sulphur and endo-Cyclopentadiene Dimer.— Sulphur (10.5 g, 0.33 mol) was added during 20 min to endo-cyclopentadiene dimer (44.2 g, 0.34 mol) at 100 °C containing triethylamine (0.5 g) and 2,5-bis(octyldithio)-1,3,4-thiadiazole (0.5 g), as sulphur 'activators'. After the mixture had been heated at 120 °C for 30 min and cooled, the product was extracted with light petroleum (b.p. 40— 60 °C) and recrystallised from methanol. This was endo-(6) (14.9 g, 0.065 mol, 20%), m.p. 69 °C (Found: C, 52.6; H, 5.35; S, 41.8. Calc. for $C_{10}H_{12}S_3$: C, 52.6; H, 5.26; S, 42.1%); i.r. and n.m.r. spectral data are given in Tables 1—3.

Reaction of Sulphur and exo-Cyclopentadiene Dimer.—In an identical reaction the corresponding exo-derivative, exo-(6) was prepared, m.p. 101-102 °C (Found: 52.2; H, 5.35; S, 41.8); i.r., Raman and n.m.r. spectral data are given in Tables 1—3.

Reaction of Sulphur and Cyclopentadiene Trimer.—Sulphur (1.8 g, 0.056 mol) was slowly added to cyclopentadiene trimer (11.4 g, 0.06 mol) at 100 °C containing triethylamine (0.15 g) and 2,5-bis(octyldithio)-1,3,4-thiadiadiazole (0.15 g)and the whole kept at 120 °C for 30 min. The mixture was cooled and the product extracted with light petroleum (b.p. 40—60 °C) to give (8) (4.7 g, 0.016 mol, 85%), m.p. 188—190 °C, recrystallized from CHCl₃ (Found: C, 61.0; H, 6.15; S, 32.2. Calc. for $C_{15}H_{18}S_3$: C, 61.2; H, 6.12; S, 32.7%); i.r., Raman, and n.m.r. spectral data are given in Tables 1-3.

Reaction of endo-(6) and Na2SO3.-A solution of endo-(6) (0.80 g, 3.5 mmol) in acetone (25 cm³) was added to a solution of Na₂SO₃ (0.45 g, 3.5 mmol) in water (25 cm³).

[†] Also called 3,4,5-trithiolans. ‡ J. Emsley, D. W. Griffiths, and R. Osborn, J.C.S. Chem. Comm., 1978, 658.

1979 229

A dense white precipitate formed and this was filtered off and thoroughly dried. This amorphous solid (0.72 g) had an analysis consistent with its formulation as the disulphide, $C_{10}H_{12}S_2$ (Found: C, 62.5; H, 6.26; S, 33.0. Calc. for

The solvent was stripped off to yield a yellow oil which was extracted with hot ethanol to remove triphenylphosphine sulphide (2.2 g, 7.4 mmol) which was identified by its m.p. 155 °C (lit., 156 °C) and i.r. spectrum. Further extraction

Table 1 The vibrational spectra (cm $^{-1}$) of the 1,2,3-trithiolans (below 2 000 cm $^{-1}$)

T.r. Raman	C ₇ I	I ₁₀ S ₃		$C_{10}H_{12}S_3$		₁₀ H ₁₂ S ₃	C ₁₅	H ₁₈ S ₃	
140w	I.r.	Raman	I.r.	Raman	I.r.	Raman	I.r		Assignments
100		140w		128s				120s 155w	
100								200m	
354ms		226m				210m		215m	
354ms		248w	278s	273s					δ (S ₃)
420w	310vw	310m		309s	315m		315wbr	330m	
420w		354 ms	$352 \mathrm{vw}$						δ (S ₃)
475m					415w	410w			
470m	420w	420 m	404 w	413m	465s	459m	425mbr	4 22w	
490m		475m	420m	460m			470w	464w	
S18ms	49 0m		485vs		495s	490m		482s	ν_{as} (S ₃)
\$45m		518ms	200.0	514vs	515w	511vs			ν_a (S _a)
678m 675ms 680vs 678m 670m 668m 680m 674s 718w 695m 692m 705vsbr 705w 715s 713w 718w 695m 692m 705vsbr 705w 715s 713w 718w 718w 710vs 705m 730m 750w 725w 775w 775w 775w 775w 775w 775w 775				- L.			530m	544m	
678m		J _ J	596m	590w					
678m			000111	00011	00011			653w	
T18w	678m	675ms	680vs	678m	670m	668m			
738ms	070111								v- (C-S)
770s						10011		110"	P8 (C C)
S06m	770c	7001115				750w		776w	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70825		791w	705c		790m		
865 wr 850 wr 850 wr 878 wr 835 sr 835 mw 850 mr 850 mr 82 wr 870 wr 882 wr 870 wr 882 wr 875 wr 870 wr 882 wr 870 wr 882 wr 875 wr 870 wr 882 wr 870 wr 882 wr 870 wr 870 wr 882 wr 870 wr 870 wr 882 wr 870 wr 870 wr 915 wr 915 wr 915 wr 915 wr 915 wr 915 wr 939 wr 920 wr 935 wr 935 wr 939 wr 945 wr 955 wr 950 mr 950 mr 965 sr 963 wr 960 wr 950 mr 960 wr 950 mr 965 sr 963 wr 960 wr 965 sr 963 wr 960 wr 965 sr 963 wr 960 wr 970 wr 970 wr 970 wr 970 wr 995 sr 996 wr 996 wr 995 wr 996 wr 970 wr 970 wr 995 sr 996 wr 995 wr 996 wr 970 wr 970 wr 995 sr 996 wr 910 wr				101W	1003	100W	810s		
865wbr 890w 890m 890m 890m 890m 890m 915m 911s 911s 885wbr 915m 911s 911s 91s 91	ODOW				835c	835mw		Olow	
875wbr 890w 890m 890m 910m 920m 925s 925w 920s 918w 9290m 935vw 935vw 939w 945sbr 955w 945vs 945vs 945w 945w 945vw 940m 945w 990m 990m 990m 990m 990w 965s 965m 995s 996w 1002s 100w 1005m 1002w 1010w 1010w 1010w 1008w 1036w 1035m 1035m 1031w 1035w 1035w 1030w 1030w 1050w 1050w 1060m 1060m 1065m 1060m 1060m 1065m 1068w 1105m 1125m	865whr	OOOW			0003	OJUIIW		889xr	
885wbr 925s 925w 920s 918w 920m 920m 935y 945vs 945vs 945vs 945w 945w 945w 945w 945w 990m 990m 990m 990m 990m 990m 990m 990		8000							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		090W			010		910111	3115	
945sbr 955w 945vs 945vs 945w 945w 945vw 940m 945w 945w 945w 945w 945w 945w 945w 945w	005-	005		010		090			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9205	925W	9208	JIOW	025m			020	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	045chr	055	045***	0.45110			040m		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	940301	900W		24343	955s	955m	950m		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				000	970m	970W			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100 -			1.010	1.010			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100W							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 030W				1 039W	1 039W	1 030W		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.060	1.065	1.000		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 195w			1 102111	I IOOM	1 110111	1 100W		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 U W		1 120W				1 195m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 149c		1 145m		1 1400				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 2 5					1 155w	1 140111	1 152W	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 100W	1 170m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 180chr						1 170111		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100301			1 905,07			1 2100	1 990m	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 210WD1		1 210W	1 220111	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 210W	1.9500		1 92507	1.940m	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 260e							1 440111	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1 278w	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1 21011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 300ve		1 300m				1 200W	1 30000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 50013				1 000W		1 315m	1 900 V W	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 315vs				1.325m				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 01013							1.360w	
1 610w 1 609m 1 620wbr 1 620w 1 610w 1 610m $\nu_{\rm s}$ (C=C)			1 000111	1 450 137	1 000111	1 450w	1 000111		
			1.610w		1.620wbr		1.610w		$v_{-}(C=C)$
			1 010	* 000111		2 02011	2 01011	~ 0.000	Ps (C C)

 C_5H_6S : C, 61.2; H, 6.12; S, 32.7%); $\delta(SiMe_4)$ 1.5—3.2 (complex region, 10 H) and 5.7 (d, 2 H, CH olefinic).

Reaction of endo-(6) and Triphenylphosphine.—A solution of endo-(6) (2.28 g, 0.01 mol) in benzene (30 cm³) was mixed with a solution of triphenylphosphine (2.62 g, 0.01 mol) in benzene (30 cm³), and heated to reflux point for 15 min.

of the oil with CHCl₃ gave an amorphous solid identical to that obtained above, by desulphurization with $\rm Na_2SO_3$, and with an analysis consistent with its formation as the disulphide, *i.e.* $\rm C_{10}H_{12}S_2$ (Found C, 62.0; H, 6.21; S, 32.7%).

Heating of endo-(6).—A sample of endo-(6) (0.094 g, 0.4

J.C.S. Perkin I

mmol) was heated at 180 °C for 1 h. It slowly darkened from yellow through orange to brown with increasing temperature above its m.p. of 69 °C. At 180 °C the liquid became viscous. On cooling it gave a brittle solid soluble in CHCl₃ from which it could be precipitated by methanol (the unpolymerized endo-C₁₀H₁₂S₃ remains in solution) as an off-white solid, (C₁₀H₁₂S₃)_n (0.031 1 g, 0.14 mmol, 33.1%

addition of D_2O to the sample, 3.25 (m, 2 H, CHSH); and 5.6 (m, 2 H, CH olefinic) with a complex region of signals at 1—2.5. The dithiol was converted into the lead dithiolate salt for a more thorough characterization. $endo-C_{10}H_{12}-(SH)_2$ (0.31 g, 1.35 mmol) in ethanol (10 cm³) was mixed with a solution of $Pb(CH_3CO_2)_2\cdot 3H_2O$ (23.6 g, 0.62 mol) in water and ethanol (50:50). An immediate yellow pre-

TABLE 2

¹H N.m.r. chemical shifts (p.p.m. SiMe₄), description of spectra, and selected coupling constants (Hz) [see (9)]

							Су	clopentene	ring
Compound	H_a	H_b	$\mathbf{H_{e}}$	$\mathbf{H_d}$	H_{e}	$\mathbf{H_{f}}$	$CH_{\mathbf{f}}$	CH	=CH
$C_7H_{10}S_3$	1.05 dm	$1.94 \mathrm{dm}$	3.64d	2.45m	1.21-	1.73cr *			٨
$endo$ - $C_{10}H_{12}S_3$	1.30 dm	2.10 dm	3.70d	2.61dtr	3.26m		2.31dd	5.63dd	5.71dd`
exo - $C_{10}H_{12}S_3$	1.26dm	1.79 dm	3.72d	2.23d		2.05-2.54cr	2.70m	5.50m	5.72m
$C_{15}H_{18}S_3$	∫1.05dm	1.94dm	4.14d	2.74m		2.10-2.60cr	3.05m	5.51m	5.62m
-1518-3	1.28d †	1.80d †		2.22m †					
	$J_{ m ab}$	$J_{ m ad}$	$J_{ m ac}$						
$C_7H_{10}S_3$	8.0	1.5	2.1						
$endo$ - $C_{10}H_{12}S_3$	10.3	1.5	2.1						
exo - $C_{10}H_{12}S_3$	10.7	1.5	0.9						
$C_{15}H_{18}S_3$	10.0	< 1.0	1.5						

* cr = complex region. † Middle norbornane ring system.

conversion) (Found: C, 52.5; H, 5.3; S, 42.0. Calc. for $C_{10}H_{12}S_3$: C, 52.6; H, 5.26; S, 42.1%). The i.r. and ¹H n.m.r. spectra of the polymer in CDCl₃ were identical with those of the unpolymerized material. Another sample of *endo*-(6) heated for 1 h at 200 °C gave 97.2% conversion into the polymer.

Reaction of Norbornadiene and endo-(6).—Norbornadiene

Table 3

13C n.m.r. chemical shifts/(p.p.m. from SiMe₄) of 1,2,3-trithiolans

$C_7H_{10}S_3$	$\mathit{exo}\text{-}\mathrm{C}_{10}\mathrm{H}_{12}\mathrm{S}_{3}$	$endo\text{-}\mathrm{C_{10}H_{12}S_3}$	$C_{15}H_{18}S_2$	Assignment
	$133.1 \\ 130.4$	131.9	131.7	olefinic C's
00 F		130.6	000	J
69.7	69.9	66.0	66.0	trithiolan C's
	69.4	62.5	65.2	f tritimolari e s
	54.8	51.9	55.0	
	47.0			
	44.9	45.0	45.4	
			45.1	
44.0			44.0	
	42.9	43.6	43.6	
40.7		40.4	40.6	
			40.1	
	38.7		39.2	
		35.6	36.2	
32.3		31.6	31.7) bridge C ad-
	26.2			bridge C adjacent to tri- thiolan ring
28.7				norbornane
27.6				CH ₂ 's

(1.1 g, 12 mmol) and endo-(6) (0.4 g, 1.75 mmol) were dissolved in CHCl₃ (10 cm³) and left for 5 days. Removal of the volatile components left behind only unchanged endo-(6).

Reduction of endo-(6).—endo- (6) (3.0 g, 0.013 mol) in diethyl ether (20 cm³) was slowly added to a solution of sodium metal (2.3 g, 0.1 g atom) in liquid NH₃ (100 cm³) at -78 °C. The mixture was allowed to warm to ambient temperature and an excess of NH₄Cl was added to neutralize the solution. The product was extracted from the filtered ether solution, dried (MgSO₄) by evaporation of the solvent to yield the dithiol, C₁₀H₁₂(SH)₂ identified by its i.r. which showed ν (SH) at 2 525br cm⁻¹ and ¹H n.m.r. spectra: δ (SiMe₄) 1.75 (dd, 2 H, SH) these signals disappeared on

cipitate of lead endo-cyclopentadiene dimer dithiolate, endo- $C_{10}H_{12}S_2Pb,$ formed (0.14 g, 0.35 mmol, 23%), m.p. 180 °C (decomp.) (Found: C, 30.3; H, 3.2; S, 14.1%. Calc. for $C_{10}H_{12}PbS_2$: C, 29.8; H, 3.00; S, 15.9%). The i.r. spectrum showed no $\nu(SH)$ but new peaks at 285s, 350m, 400m, 410m, and 465w cm $^{-1}$. The salt was insoluble in all solvents.

DISCUSSION

The reactions of elemental sulphur and the following olefins have been studied, norbornene (1), 4 norbornadiene (3), exo- and endo-cyclo-pentadiene dimer exo- and endo-(5), and cyclopentadiene trimer (7). In every case, with the exception of (3), the product contained a 1,2,3-trithiolan ring; the spectral data show that the trithiolan ring is exo in all four cases.

The product from (3) was the episulphide 7-thiatricyclo $[4,3,0,1^{2,5}]$ oct-3-ene (exo-2,3-epithionorborn-5-ene),

1979

 C_7H_8S in 10% yield. The details of this compound are given at the end of the paper.

An attempt was made to prepare the trithiolan derivative of norbornadiene by sulphur exchange (1) in a manner analogous to that used to synthesize adducts of C_7H_8 and S_4N_4 .¹³ However the method was not successful and no exchange occurred.

$$C_7H_8 + endo-C_{10}H_{12}S_3 \longrightarrow C_7H_8S_3 + endo-C_{10}H_{12}$$
 (1)

I.r. and Raman Spectra of the Trithiolans.—Table 1 lists the i.r. and Raman data for the four trithiolan derivatives. In cyclopentadiene dimer and trimer the stretching vibration of the norbornene double bond is at 1570 cm⁻¹ and this is absent in the trithiolans, whereas the band at ca. 1610 cm⁻¹ corresponding to the double bond of the cyclopentene remains.

The vibrational characteristics of C-S and S-S bonds are generally thought to be of little help in studying organic polysulphides. However the vibrational spectra of the trithiolans are an exception to this truism and it has been possible to classify bands in the spectra clearly due to these bonds.

The stretching modes of the C-S bonds are generally weak in the i.r. region but they were readily identified in the range 675—720 cm⁻¹ and, particularly, as a strong band at ca. 675 cm⁻¹ in both the i.r. and Raman spectra.

The strongest band in all the Raman spectra is at 511—519 cm⁻¹, the corresponding band in the i.r. spectra being weak or absent. (It is this feature which makes S-S bonds difficult to identify on i.r. evidence alone. The band is thought to be a symmetric ring-stretching motion in which the S₃ atoms are chiefly involved. The stretching modes of H₂S₃ were assigned to Raman bands at 488 and 470 cm⁻¹ (symmetrical and asymmetrical ν respectively), with the latter having a strong i.r. counterpart at 471 cm⁻¹. The trithiolans have the corresponding asymmetrical stretching mode at 480—495 cm⁻¹, both i.r. and Raman active.

On the basis of its being common to the spectra of all the trithiolans a band at $309-312~\rm cm^{-1}$ is assigned to a bending mode of the S₃ ring, as is strong Raman-active absorption at $273-280~\rm cm^{-1}$. The strong Raman line at $336-354~\rm cm^{-1}$ may also be a ring deformation mode. These assignments are higher than those made for H₂S₃ but the nature of the cyclic trithiolan means that the bending modes will be most affected, and their energies increased.

To summarise the trithiolan spectra, it seems that m or s bands in the Raman picture at *ca.* 280, 310, 340, 480, and 515 cm⁻¹ indicate the presence of such a ring system. The i.r. picture is of little help in confirming the structure.

¹H and ¹³C N.m.r. Spectra of the Trithiolans.—Table 2 records the ¹H n.m.r. chemical-shift data for the trithiolans together with some relevant coupling constants for the bridge anti-proton. The characteristic features of the spectra produced by these trithiolans are those normally observed for norbornane compounds: ¹⁷ the AB quartet patterns of signals due to the bridge protons

 H_a and H_b [see (9)] and the olefinic protons of the cyclopentene ring in endo- and exo- $C_{10}H_{12}S_3$ and in $C_{15}H_{18}S_3$.

View Article Online

Most striking of all is the appearance of a sharp doublet (J~0.9-2.1~Hz) at $\delta~3.64-4.14~(SiMe_4)$. This arises from the protons attached to the carbon atoms of the trithiolan ring itself, *i.e.* H_c . The configuration of this ring system is thus confirmed as being exo in all cases. The endo protons H_c are coupled to the bridge anti-proton H_a . This was proved by the decoupling of the signal of H_c . In all the compounds the only change that resulted from this decoupling was a simplification of the signal of the H_a protons from a doublet of multiplets to a doublet $(J_{ab}~ca.~10~Hz)$ of triplets $(J_{ad}~ca.~1.5~Hz)$.

The $^{13}\mathrm{C}$ n.m.r. spectra of the trithiolans are recorded in Table 3. The single signal for the carbon atoms in the trithiolan ring in $\mathrm{C_7H_{10}S_3}$ is resolved into a pair by the asymmetry which comes with the introduction of the cyclopentene ring into the molecule. The effect of its presence on the carbon atoms of the trithiolan ring is at a maximum in $endo\text{-}\mathrm{C_{10}H_{12}S_3}$, as is expected for a through-space effect, when $\Delta\delta$ is 3.5 p.p.m. (SiMe₄). For $\mathrm{C_{15}H_{18}S_3}$ $\Delta\delta$ is 0.8 and for $exo\text{-}\mathrm{C_{10}H_{12}S_3}$ is 0.5 p.p.m. (SiMe₄). Consequently the cyclopentene ring has the most effect on the bridge carbon in this last compound shifting the signal upfield by 5.4 p.p.m. compared to the signal of $endo\text{-}\mathrm{C_{10}H_{12}S_3}$.

There are two anomalies in Table 3. The spectrum of $\rm C_7H_{10}S_3$ should show only four signals of the four sets of non-equivalent carbon atoms. Six signals are observed—two at 27.6 and 28.7 p.p.m. for the CH₂ groups of the norbornane ring and two at 40.7 and 44.0 p.p.m. for the bridgehead groups. The secondly anomaly is the single signal for the non-equivalent olefinic carbon atoms in $\rm C_{15}H_{18}S_3$.

endo-C₁₀H₁₂S₃.—This trithiolan is easy to prepare from readily available starting materials. It is a pale yellow crystalline solid with an indefinitely long shelf life. It is unaffected by boiling water, dilute acids, and dilute alkali. This stability is characteristic also of linear tertiary alkyl trisulphides such as Bu^t₂S₃.¹⁸

When heated, endo- $C_{10}H_{12}S_3$ melts at 69 °C to give a mobile yellow liquid, which darkens as the temperature increases, and polymerises above 170 °C—rapidly at 200 °C. This behaviour is reminiscent of elemental sulphur itself, except that the resultant polymer is a brittle solid at room temperature (compare plastic sulphur) which appears to be stable (compare the slow reversion of plastic sulphur to S_8).

 $\it endo\mbox{-}C_{10}H_{12}S_3$ can be partly desulphurized by Na $_2{\rm SO}_3$ and triphenylphosphine. 19 In each reaction an amor-

232 J.C.S. Perkin I

phous white solid was obtained that was soluble in CHCl₃, and analysed as $C_{10}H_{12}S_2$. It is thought to be a

 $\mathit{endo}\text{-}\mathsf{C}_{10}\mathsf{H}_{12}\mathsf{S}_3$ was reduced by Na–NH $_3{}^4$ to give a smelly liquid thought to be the dithiol, endo-C₁₀H₁₂-(SH)_o, which was not fully characterized as such, but was converted into the stable, yellow lead salt, endo- $C_{10}H_{12}S_2Pb$. Reduction with $NaBH_4$ produced the expected H₂S ²⁰ and a little of the dithiol but this reducing agent is not recommended.

C₂H₈S. No trithiolan formed in the reaction of norbornadiene and sulphur. Instead a yellow oil was obtained the analysis for which was consistent with its formulation as C7H8S and which we believe is the exoepisulphide (4). The i.r. spectrum (see Experimental section) shows the molecule to have a double bond still intact and also has the strong episulphide vibrational modes at 640 and 1 058 cm⁻¹.

The ¹H n.m.r. spectrum confirms the norbornene structure with the olefinic protons coupling with the bridgehead protons. The protons of the episulphide ring give a single signal at 8 3.92 (SiMe₄), no anti,endo coupling as with the trithiolan protons. The bridge protons show a clear AB quartet.

Reported in the literature 21 is a compound, C₇H₈S₈ identified as endo-2,3-epithionorborn-5-ene which has signals at 85.73 (olefinic H), 3.25 (CHS), 3.02 (bridgehead H), and 2.08 (centre of 12 line pattern). The protons in this compound were labelled exo and the sulphide ring therefore endo. Consequently we feel confident in identifying our C₇H₈S compound as the exo-isomer, reported here for the first time.

We acknowledge the help of D. Woods, H. Askew, and J. S. Elliott of Edwin Cooper & Co. Ltd; also P. N. Gates of Royal Holloway College the S.R.C. and Edwin Cooper & Co. Ltd for a CASE award.

[8/140 Received, 27th January, 1978]

REFERENCES

- ¹ U.S.P. 3 586 700/1971.
- ² B.P. 1 470 649/1973.
- 3 U.S.P. 4 012 331/1977
- ⁴ A. N. Kurtz and T. C. Shields, J. Amer. Chem. Soc., 1969, 91,
- ⁵ C. G. Krespan, in 'The Chemistry of Sulphides,' ed. A. V. Tobolsky, Interscience, New York, 1968, p. 212

- S. Kabuss, A. Lüttringhaus, H. Friebolin, H. G. Schmid, and R. Mecke, Tetrahedron Letters, 1966, 719.
 S. Kabuss, A. Lüttringhaus, H. Friebolin, and R. Mecke, Z. Naturforsch., 1966, 21b, 320.
 B. Milligan and J. M. Swan, J. Chem. Soc. (C), 1965, 2901. 9 'Organic Chemistry of Sulphur,' ed. S. Oae, Plenum, New
- York, 1977. 10 D. I. Davies, 'Essays on Free-radical Chemistry' eds. W. A.
- Waters and D. H. Hey, Special Publication no. 24, The Chemical Society, London, 1970.
- ¹¹ P. D. Bartlett and I. S. Goldstein, J. Amer. Chem. Soc., 1947, 69, 2553.
- K. Alder and G. Stein, Angew. Chem., 1934, 47, 837.
 M. R. Brinkman and C. W. Allen, J. Amer. Chem. Soc., 1972, **94**, 1550.
- 14 L. Field, in 'Organic Chemistry of Sulphur', ed. S. Oae, Plenum, New York, 1977.
- ¹⁵ N. B. Colthup, L. H. Daly, and S. E. Wiberley, 'Introduction to Infrared and Raman Spectroscopy,' Academic Press, New
- York, 1964, p. 306. ¹⁶ H. Wieser, P. J. Krueger, E. Muller, and J. B. Hyne, *Canad. J. Chem.*, 1969, **47**, 1633.
- ¹⁷ P. Laszlo and P. von R. Schlever, J. Amer. Chem. Soc., 1964,
- 86, 1171.

 18 S. F. Birch, T. V. Cullum, and R. A. Dean, J. Inst. Petroleum, 1953, 39, 206.
- 19 C. G. Moore and B. R. Trego, Tetrahedron, 1962, 18, 205; 1963, 19, 1251.
- ²⁰ D. L. Klayman, T. S. Griffin, and T. S. Woods, Internat. J. Sulphur Chem., 1973, 8, 53.
- ²¹ L. Lautenschlaeger, J. Org. Chem., 1969, 34, 3998.