Revise notes and read this

1. OSI Protocol Layers:

The Open Systems Interconnection (OSI) protocol stack is divided into seven layers, each of which serves a specific purpose:

- Physical Layer (Layer 1): It is responsible for the transmission of raw bit streams over a communication channel.
- Data Link Layer (Layer 2): It is responsible for the reliable transfer of data between two nodes on a network.
- Network Layer (Layer 3): It is responsible for the routing of data packets between different networks.
- Transport Layer (Layer 4): It is responsible for the reliable transfer of data between end-to-end applications.
- Session Layer (Layer 5): It is responsible for establishing, managing, and terminating communication sessions between applications.
- Presentation Layer (Layer 6): It is responsible for the translation, compression, and encryption of data into a format that can be understood by the application layer.
- Application Layer (Layer 7): It is responsible for providing network services to applications.

2. Functional Block Diagram of WANs, LANs, and WLANs:

Wide Area Networks (WANs), Local Area Networks (LANs), and Wireless LANs (WLANs) all have similar functional block diagrams:

- Physical Media: This includes wired or wireless media used for transmitting data.
- Network Interface: This includes network interface cards (NICs) used for connecting devices to the network.
- Switching: This includes switches and routers that direct data to their destination.
- Network Services: This includes services such as DNS, DHCP, and NTP used for managing and configuring the network.
- Application Services: This includes services such as file sharing, email, and web browsing that are provided to users.

3. Designing LANs, WANs, and WLANs:

When designing LANs, WANs, and WLANs, it is important to consider the following components:

- Network Topology: This includes the physical and logical layout of the network.
- Network Hardware: This includes the network devices such as switches, routers, and access points.
- Network Software: This includes the network operating systems and applications used to manage and configure the network.
- Network Security: This includes the use of firewalls, VPNs, and other security measures to protect the network.

4. Network Programming with TCP/IP:

To develop network programming with TCP/IP, the following steps can be taken:

- Choose a programming language that supports TCP/IP socket programming.
- Use the socket API to create and manage network connections.
- Implement the appropriate network protocols such as HTTP, FTP, or SMTP to transfer data over the network.

5. Configuring DNS, DDNS, Telnet, Email, FTP:

To configure DNS, DDNS, Telnet, Email, and FTP, the following steps can be taken:

- Install and configure the appropriate server software on the network.
- Configure the network devices to use the appropriate protocols and settings.
- Test the configuration to ensure that it is working properly.

1. Configure WWW:

To configure WWW (World Wide Web), the following open-source software and tools can be used:

- Apache HTTP Server: It is a popular web server that can be used to serve web pages and applications.
- NGINX: It is a high-performance web server that can be used to serve web pages and applications.
- PHP: It is a popular scripting language that can be used to build dynamic web applications.
- MySQL/MariaDB: It is a popular open-source database management system that can be used to store and retrieve data for web applications.

2. Configure HTTP:

To configure HTTP (Hypertext Transfer Protocol), the following open-source software and tools can be used:

- Apache HTTP Server: It is a popular web server that supports the HTTP protocol and can be used to serve web pages and applications.
- NGINX: It is a high-performance web server that supports the HTTP protocol and can be used to serve web pages and applications.
- cURL: It is a command-line tool that can be used to transfer data over HTTP.

3. Configure SNMP:

To configure SNMP (Simple Network Management Protocol), the following open-source software and tools can be used:

- Net-SNMP: It is a suite of applications used to implement SNMP on Linux systems.
- SNMPd: It is a daemon that runs on Linux systems and provides SNMP support.
- SNMPTrapd: It is a daemon that runs on Linux systems and receives SNMP traps.

4. Configure Bluetooth:

To configure Bluetooth, the following open-source software and tools can be used:

- Bluez: It is the official Linux Bluetooth protocol stack and provides support for a wide range of Bluetooth profiles.
- Bluedevil: It is a Bluetooth management utility for KDE desktop environments.
- Blueman: It is a Bluetooth management utility for GNOME desktop environments.

5. Configure Firewalls:

To configure Firewalls, the following open-source software and tools can be used:

- iptables: It is a command-line utility used to configure firewall rules on Linux systems.
- UFW (Uncomplicated Firewall): It is a user-friendly command-line utility used to configure firewall rules on Linux systems.
- Firewalld: It is a dynamic firewall management utility used to configure firewall rules on Linux systems.

1. Data communication Components:

- Sender: the device that initiates the transmission of data.
- Receiver: the device that receives the data.
- Medium: the physical channel that carries the data.
- Protocol: the set of rules that governs the transmission of data.
- Transmitter: the device that encodes the data and transmits it over the medium.

2. Representation of data and its flow:

- Data: raw facts and figures.
- Information: meaningful data.
- Source: the entity that creates the data.
- Channel: the medium through which the data is transmitted.
- Receiver: the entity that receives and interprets the data.

3. Networks:

- Local Area Network (LAN): a network that covers a small area, such as a single building or campus.
- Wide Area Network (WAN): a network that covers a large geographic area, such as a city, country, or even the world.
- Metropolitan Area Network (MAN): a network that covers a city or a large campus.
- Personal Area Network (PAN): a network that covers a short distance, such as within a single room or building.

4. Various Connection Topologies:

- Bus topology: a topology where all devices are connected to a single cable or wire.
- Star topology: a topology where all devices are connected to a central hub or switch.
- Ring topology: a topology where all devices are connected in a circular ring.
- Mesh topology: a topology where all devices are connected to each other in a network of interconnected nodes.

5. Protocols and Standards:

- TCP/IP: a protocol suite used for data transmission over the internet.
- HTTP: a protocol used for transferring data over the World Wide Web.
- FTP: a protocol used for file transfer between computers.
- SMTP: a protocol used for email communication.
- IEEE 802: a set of standards for local area networks.

6. OSI model:

- Application layer: the layer that interfaces with user applications.
- Presentation layer: the layer that handles data formatting and encryption.
- Session layer: the layer that manages communication sessions between applications.
- Transport layer: the layer that handles data segmentation, flow control, and error recovery.
- Network layer: the layer that handles data routing and logical addressing.
- Data link layer: the layer that handles data framing, error detection, and flow control.
- Physical layer: the layer that handles physical transmission of data over the medium.

7. Transmission Media:

- Wired media: media that use physical cables or wires to transmit data, such as coaxial cable, twisted pair cable, and fiber optic cable.
- Wireless media: media that use wireless signals to transmit data, such as radio waves, microwaves, and infrared.

1. Wired LAN:

- A local area network (LAN) that uses physical cables or wires to transmit data between devices.
- Examples of wired LAN technologies include Ethernet, Token Ring, and FDDI.

2. Wireless LAN:

- A local area network (LAN) that uses wireless signals to transmit data between devices.
- Examples of wireless LAN technologies include Wi-Fi, Bluetooth, and Zigbee.

3. Connecting LAN and Virtual LAN:

- LANs can be connected using routers, switches, or bridges.
- Virtual LANs (VLANs) are created by grouping devices on different physical LANs into logical groups.

4. Techniques for Bandwidth utilization:

- Multiplexing: combining multiple signals into a single signal for transmission over a single medium.
- Frequency division multiplexing (FDM): dividing the frequency spectrum of a single medium into multiple channels.
- Time division multiplexing (TDM): dividing the time slots of a single medium into multiple channels.
- Wave division multiplexing (WDM): dividing the optical spectrum of a single fiber optic cable into multiple channels.

5. Concepts on spread spectrum:

- A technique used in wireless communication that spreads the signal across a wider frequency band.
- Examples of spread spectrum technologies include Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).
- Spread spectrum provides benefits such as improved security and reduced interference.

1. Data Link Layer:

- The second layer of the OSI model that provides a reliable communication link between two devices.
- The Data Link Layer is responsible for error detection and correction, and for the flow of data between devices.

2. Medium Access Sublayer (MAC):

- The sublayer of the Data Link Layer that controls access to the transmission medium.
- The MAC sublayer is responsible for managing the transmission of data between multiple devices connected to a single shared medium.

3. Error Detection and Error Correction:

- Error detection is the process of identifying errors in data transmission.
- Error correction is the process of correcting the errors detected during data transmission.

4. Fundamentals of Block Coding:

- Block coding is a method of error correction that involves dividing the data into fixed-sized blocks.
- Each block is then encoded with additional bits (redundancy bits) that enable the detection and correction of errors in the transmitted data.

5. Hamming Distance:

- Hamming distance is a measure of the difference between two binary strings.
- The Hamming distance between two strings is equal to the number of bits that differ between them.

6. Cyclic Redundancy Check (CRC):

- A method of error detection that involves appending a checksum to the end of the data block.
- The checksum is generated by performing a mathematical calculation on the data block, and can be used to detect errors in the transmitted data.

1. Flow Control:

- Flow control is the process of regulating the flow of data between two devices.
- Flow control protocols ensure that the transmitting device does not overwhelm the receiving device with too much data at once.

2. Error Control:

- Error control is the process of detecting and correcting errors in the transmitted data.
- Error control protocols ensure that the transmitted data is accurate and complete.

3. Stop and Wait:

- A flow control protocol that requires the receiver to acknowledge each packet received before the sender can transmit the next packet.

4. Go Back - N ARQ:

- A flow control and error control protocol that retransmits all the packets after the one in error.

Selective Repeat ARQ:

- A flow control and error control protocol that retransmits only the packets in error.

6. Sliding Window:

- A flow control protocol that allows the sender to transmit multiple packets without waiting for an acknowledgement from the receiver.

7. Piggybacking:

- A flow control protocol that allows data to be transmitted with an acknowledgement message, reducing the number of transmissions required.

8. Random Access:

- A multiple access protocol that allows multiple devices to transmit data without coordination.

9. Pure ALOHA:

- A random access protocol that allows devices to transmit data at any time, resulting in collisions.

10. Slotted ALOHA:

- A random access protocol that divides time into slots and requires devices to transmit data at the beginning of a slot, reducing the likelihood of collisions.

11. CSMA/CD:

- A multiple access protocol that uses carrier sense to detect the presence of other transmissions and collision detection to handle collisions.

12. CSMA/CA:

- A multiple access protocol that uses carrier sense to detect the presence of other transmissions and collision avoidance to reduce the likelihood of collisions.

1. Network Layer:

- The third layer of the OSI model that provides logical addressing and routing functions to ensure data is delivered to the correct destination.
- The Network Layer is responsible for forwarding data packets across multiple networks.

2. Switching:

- Switching is the process of directing data packets between different networks.
- There are two types of switching: circuit switching and packet switching.

3. Logical Addressing:

- Logical addressing is the use of an address to identify a device on a network.
- Logical addresses are used by the Network Layer to route data packets.

4. IPv4:

- Internet Protocol version 4 (IPv4) is a 32-bit address scheme that is used to identify devices on a network.
- IPv4 addresses are divided into network and host portions.

5. IPv6:

- Internet Protocol version 6 (IPv6) is a 128-bit address scheme that is used to identify devices on a network.
- IPv6 addresses are divided into network, subnet, and interface portions.

6. Address Mapping:

- Address mapping is the process of mapping a logical address to a physical address.
- Address mapping protocols include Address Resolution Protocol (ARP), Reverse Address Resolution Protocol (RARP), Bootstrap Protocol (BOOTP), and Dynamic Host Configuration Protocol (DHCP).

7. Delivery Protocols:

- Delivery protocols determine how data packets are delivered to their final destination.
- Unicast, multicast, and broadcast are examples of delivery protocols.

8. Forwarding Protocols:

- Forwarding protocols determine how data packets are forwarded across multiple networks.
- Examples of forwarding protocols include Open Shortest Path First (OSPF) and Routing Information Protocol (RIP).

9. Unicast Routing Protocols:

- Unicast routing protocols are used to send data packets to a single destination.
- Examples of unicast routing protocols include Border Gateway Protocol (BGP) and Intermediate System to Intermediate System (IS-IS).

1. Transport Layer:

- The fourth layer of the OSI model that is responsible for process-to-process communication and end-to-end delivery of data.
- The Transport Layer provides reliability, flow control, and error control for data transmission.

2. Process-to-Process Communication:

- Process-to-process communication refers to the communication between two application processes running on different devices.
- The Transport Layer ensures that data is transmitted from one process to another in a reliable and efficient manner.

3. User Datagram Protocol (UDP):

- User Datagram Protocol (UDP) is a connectionless protocol that provides fast, unreliable transport of data.
- UDP does not guarantee delivery or order of data packets.
- 4. Transmission Control Protocol (TCP):
- Transmission Control Protocol (TCP) is a connection-oriented protocol that provides reliable, ordered transport of data.
- TCP uses a three-way handshake to establish a connection between two devices before data transmission.

5. SCTP Congestion Control:

- Stream Control Transmission Protocol (SCTP) is a reliable, message-oriented transport protocol.
- SCTP provides congestion control mechanisms to prevent network congestion and ensure efficient data transmission.

6. Quality of Service (QoS):

- Quality of Service (QoS) is the ability to provide different levels of network service to different types of traffic.
- QoS mechanisms can prioritize traffic based on parameters such as bandwidth, delay, jitter, and packet loss.

7. Leaky Bucket Algorithm:

- The Leaky Bucket Algorithm is a QoS technique used to regulate the flow of traffic into a network.
- The algorithm ensures that the amount of incoming traffic does not exceed a predetermined limit.

8. Token Bucket Algorithm:

- The Token Bucket Algorithm is a QoS technique used to regulate the flow of traffic out of a network.
- The algorithm ensures that the amount of outgoing traffic does not exceed a predetermined limit.

9. Congestion Control:

- Congestion control is the process of managing network traffic to prevent congestion and ensure efficient data transmission.
- Congestion control mechanisms include traffic shaping, traffic policing, and quality of service (QoS) mechanisms.

1. Application Layer:

- The Application Layer is the topmost layer of the OSI model and is responsible for providing user interfaces and application services.

2. Domain Name System (DNS):

- The Domain Name System (DNS) is a distributed system that maps domain names to IP addresses.
- DNS provides a hierarchical naming system that enables easy access to websites and other network resources.

3. Dynamic DNS (DDNS):

- Dynamic DNS (DDNS) is a service that allows a domain name to be updated automatically when the IP address of a network resource changes.
- DDNS is useful for hosting websites or other services on a network with a dynamic IP address.

4. TELNET:

- TELNET is a protocol that provides remote access to network devices.
- TELNET allows a user to log in to a remote device and execute commands as if they were physically present at the device.

5. Email:

- Email is a method of exchanging messages between users over a network.
- Email uses the Simple Mail Transfer Protocol (SMTP) to send messages and the Post Office Protocol (POP) or Internet Message Access Protocol (IMAP) to retrieve messages.

6. File Transfer Protocol (FTP):

- File Transfer Protocol (FTP) is a protocol used to transfer files over a network.
- FTP provides a standard method for accessing, uploading, and downloading files between devices.

7. World Wide Web (WWW):

- The World Wide Web (WWW) is a system of interconnected documents and resources accessed via the internet.
- The WWW is based on the HTTP protocol and is accessed through a web browser.
- 8. Hypertext Transfer Protocol (HTTP):
- Hypertext Transfer Protocol (HTTP) is the protocol used to transfer data over the World Wide Web (WWW).
- HTTP provides a standard method for requesting and receiving web pages and other resources.
- 9. Simple Network Management Protocol (SNMP):
- Simple Network Management Protocol (SNMP) is a protocol used to manage network devices and monitor network performance.
- SNMP provides a standardized method for collecting and organizing information about network devices.

10. Bluetooth:

- Bluetooth is a wireless communication protocol used to connect devices over short distances.
- Bluetooth is used in a variety of applications, including wireless headsets, speakers, and keyboards.

11. Firewalls:

- Firewalls are network security devices that monitor and control incoming and outgoing network traffic.
- Firewalls can be used to protect a network from unauthorized access, viruses, and other security threats.

12. Cryptography:

- Cryptography is the practice of secure communication in the presence of third parties.
- Cryptography involves techniques for encrypting and decrypting messages to ensure confidentiality and integrity of data.