CHAPTER REVIEW

The Nucleus

SECTION 1 REVIEW

- **1.** a. How does mass defect relate to nuclear binding energy?
 - b. How does binding energy per nucleon vary with mass number?
 - c. How does binding energy per nucleon affect the stability of a nucleus?
- **2.** Describe three ways in which the number of protons and the number of neutrons in a nucleus affect the stability of the nucleus.

PRACTICE PROBLEMS

- **3.** The mass of a $^{20}_{10}$ Ne atom is 19.992 44 amu. Calculate the atom's mass defect.
- **4.** The mass of a ${}_{3}^{7}$ Li atom is 7.016 00 amu. Calculate the atom's mass defect.
- **5.** Calculate the nuclear binding energy of one lithium-6 atom. The measured atomic mass of lithium-6 is 6.015 amu.
- **6.** Calculate the binding energies of the following two nuclei, and indicate which nucleus releases more energy when formed. You will need information from the periodic table and the text.
 - a. atomic mass 34.988011 amu, ³⁵₁₉K
 - b. atomic mass 22.989767 amu, ²³₁₁Na
- **7.** a. What is the binding energy per nucleon for each nucleus in the previous problem?
 - b. Which nucleus is more stable?
- **8.** The mass of ${}_{3}^{7}\text{Li}$ is 7.016 00 amu. Calculate the binding energy per nucleon for ${}_{3}^{7}\text{Li}$.
- **9.** Calculate the neutron-proton ratios for the following nuclides:
 - a. ${}^{12}_{6}C$
- c. $^{206}_{82}$ Pb
- b. ${}^{3}_{1}H$
- d. ¹³⁴₅₀Sn
- **10.** a. Locate the nuclides in problem 9 on the graph in **Figure 2.** Which ones lie within the band of stability?
 - b. For the stable nuclides, determine whether their neutron-proton ratio tends toward 1:1 or 1.5:1.

- **11.** Balance the following nuclear equations. (Hint: See Sample Problem A.)
 - a. ${}^{43}_{19}K \longrightarrow {}^{43}_{20}Ca + \underline{?}$
 - b. $^{233}_{92}U \longrightarrow ^{229}_{90}Th + \underline{?}$
 - c. ${}^{11}_{6}C + \underline{?} \longrightarrow {}^{11}_{5}B$
 - d. $^{13}_{7}N \longrightarrow ^{0}_{+1}\beta +$?
- **12.** Write the nuclear equation for the release of an alpha particle by ${}^{210}_{84}$ Po.
- **13.** Write the nuclear equation for the release of a beta particle by ²¹⁰₈₇Pb.

Radioactive Decay

SECTION 2 REVIEW

- **14.** Where on the periodic table are most of the natural radioactive nuclides located?
- **15.** What changes in atomic number and mass number occur in each of the following types of radioactive decay?
 - a. alpha emission
 - b. beta emission
 - c. positron emission
 - d. electron capture
- **16.** Which types of radioactive decay cause the transmutation of a nuclide? (Hint: Review the definition of *transmutation*.)
- **17.** Explain how beta emission, positron emission, and electron capture affect the neutron-proton ratio.
- **18.** Write the nuclear reactions that show particle conversion for the following types of radioactive decay:
 - a. beta emission
 - b. positron emission
 - c. electron capture
- **19.** Compare electrons, beta particles, and positrons.
- **20.** a. What are gamma rays?
 - b. How do scientists think gamma rays are produced?
- **21.** How does the half-life of a nuclide relate to the stability of the nuclide?
- **22.** List the three parent nuclides of the natural decay series.