Language Understanding

05 - Transformers

Hossein Zeinali

Introduction

 Assume we have a fixed size sequence, so sequence modeling is a problem of:

$$f: \mathbb{R}^d \to \mathbb{R}$$

where the input is a fixed size vector.

- But, documents have variable lengths. We should somehow encode a document in a fixed size vector.
- Typical ways to do this:

Introduction

- \circ One dimension per word in vocabulary ($d \approx 100,000$)
- Almost all values are zero
 - Can use sparse data and only store non-zero data
- o Cannot preserve word order while order matters in our tasks.
 - E.g. "work to live" vs. "live to work"
- O N-grams as a solution:
 - lacktriangle The dimensionality is d^N

• RNN:

- We saw how we can use RNN for sequence modeling
- o Main problem: Vanishing & Exploding Gradients
- o It is practical for only very short segments

Introduction

• LSTM:

- o Again, we saw how LSTM can be used for sequence modeling
- o Difficult to train
 - Forward pass is not parallelizable like RNN
- Very long gradients paths for long sequences
 - Vanishing gradient, even with a forget gate
- o Transfer learning never really worked
 - Finetuning a pre-trained network with small labeled training data
 - □ It needs lots of labeled data to train the network from scratch
- Seq2seq models with attentions:
 - Has better performance because it uses a combination of encoder hidden states.
 - Allows modeling of dependencies without regard to their distance in the input or output sequences
 - o But, in all but a few cases, encoder and decoder are still RNN/LSTM.

Transformer

Transformer Topology

Transformer Topology

• The encoders (decoders) are all identical in structure, but they do not share weights.

Encoder Topology

Self-Attention Layer

 Input: "The animal didn't cross the street because it was too tired"

Self-Attention Layer

Scaled Dot-Product Attention

• Multi-head attention expands the model's ability to focus on different positions simultaneously.

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Multi-Head Attention: All-in-One!

Position-wise Feed-Forward Networks

- There is a fully connected feed-forward network (FFN) in each layer of encoder and decoder, which is applied to each position separately and identically.
- This FFN consists of two linear transformations with a ReLU activation in between:

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

• The dimensionality of input and output is $d_{model}=512$, and the inner-layer has dimensionality $d_{FF}=2048$.

Positional Encoding

• To preserve the order of the words in the input sequence, the transformer adds a vector to each input embedding.

o Determine the position of each word, or the distance between different

words

Positional Encoding

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

AUT, Language Understanding Course, Fall 2022, Hossein Zeinali

The Residuals and Layer-norm

The Decoder Side

Decoding time step: 1 2 3 4 5 6

OUTPUT

The Decoder Side

The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT

The Final Linear and Softmax Layer

The Loss Function and Training

- One-hot encoding is used to encode the output vocabulary
- Cross-entropy loss is used for training the network

The Decoder and Encoder Blocks

The Whole Transformer Model

New Related Papers

- Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).
- Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." *arXiv preprint arXiv:2001.04451* (2020).
- Making Transformer networks simpler and more efficient
 - https://ai.facebook.com/blog/making-transformer-networks-simplerand-more-efficient/

Thanks for your attention

References and IP Notice

- [1] Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.
- Most of the figures are selected from https://jalammar.github.io
 web site.

