Static Games of Complete Information-Chapter 1

Nash Equilibrium

Outline of Static Games of Complete Information

- Introduction to games
- Normal-form (or strategic-form) representation
- Iterated elimination of strictly dominated strategies
- Nash equilibrium
- Review of concave functions, optimization
- Applications of Nash equilibrium
- Mixed strategy Nash equilibrium

What is game theory?

■教材的词云图

What is game theory?

- 我们聚焦于博弈:
 - > 有至少两个理性的参与人
 - > 每个参与人的选择超过一种
 - > 策略外部性: 存在策略互动
 - > 结果取决于所有参与人所选择的策略;
- 实例:四个人去饭馆.
 - >每个人为自己的饭付费—一个简单的决策问题
 - ➤ 吃饭前,每个人都同意他们之间平分账单— a game

What is game theory?

- 博弈论是分析一群理性的参与人(或代理人) 之间的策略互动的标准方法
- ■博弈论的应用
 - > 经济学
 - > 政治学
 - > 社会学
 - 〉法学
 - > 生物学

Classic Example: Prisoners' Dilemma

- 两名犯罪嫌疑人被捕并受到指控,他们被关入不同的牢室。但是 警方并无充足证据.
- 两名犯罪嫌疑人被告知以下政策:
 - > 如果两人都不坦白,将均被判为轻度犯罪,入狱一个月.
 - > 如果双方都坦白,都将被判入狱六个月.
 - 》 如果一人招认而另一人拒不坦白,招认的一方将马上获释, 而另一人将判入狱九个月.

Example: The battle of the sexes

- 在分开的工作场所,Chris 和Pat 必须决定晚上是看歌剧还是去看拳击.
- Chris 和 Pat 都知道以下信息:
 - > 两个人都愿意在一起度过这个夜晚.
 - > 但是Chris更喜欢歌剧.
 - ▶ Pat则更喜欢拳击.

		Pat				
		Ope	ra	Prize	e Fi	ght
Chris	Opera	2 ,	1	0	,	0
0.1110	Prize Fight	0 ,	0	1	,	2

Example: Matching pennies

- 两个参与人都有一枚硬币.
- 两个参与人必须同时选择是Head朝上还是Tail朝上.
- 两个参与人都知道以下规则:
 - > 如果两枚硬币配对 (both heads or both tails),那么参与人2将赢得参与人1的硬币.
 - > 否则,参与人1会赢得参与人2的硬币.

Static (or simultaneous-move) games of complete information

- 一个静态(或同时行动)博弈包括的要素:
 - 一个参与人集合(至少 两个参与人)
 - 每个参与人都有一个策略集/行动集
 - 每个参与人针对策略组合,或者说对他所偏好的策略组合所获得的收益

- Player 1, Player 2, ...
 Player n}
- $\succ S_1 S_2 \dots S_n$
- $\succ u_i(s_1, s_2, ...s_n)$, for all $s_1 \in S_1, s_2 \in S_2, ... s_n \in S_n$.

Static (or simultaneous-move) games of complete information

- 同时行动(Simultaneous-move)
 - ▶ 每个参与人在选择他/她的策略时不知道其他参与人的选择.
- 完全信息(Complete information)
 - ➤ 每个参与人的策略和收益函数都是所有参与人的共同知识(common knowledge).
- ■对参与人的假设
 - ▶ 理性(Rationality)
 - · 参与人的目的是使他的收益最大化
 - 参与人是完美的计算者
 - > 每个参与人都知道其他参与人是理性的

Static (or simultaneous-move) games of complete information

- 参与人是否合作?
 - ➤ 不.我们仅仅考虑非合作博弈 (non-cooperative games)
- ■时间顺序
 - \Rightarrow 每个参与人i 在不知道其他人的选择的情况下选择他/她的策略 s_i .
 - 》然后每个参与人 i 得到他/她的收益 $u_i(s_1, s_2, ..., s_n)$.
 - > 博弈结束.

Definition: normal-form or strategicform representation

- 一个博弈G的标准式(或策略式)包括:
 - \rightarrow 一个有限的参与人集合 $\{1, 2, ..., n\}$,
 - 》参与人的策略空间 S_1 S_2 ... S_n 和
 - 一他们的收益函数 u_1 u_2 ... u_n 其中, $u_i: S_1 \times S_2 \times ... \times S_n \rightarrow R$.
 - > 我们把这个博弈表示为

$$G = \{S_1, \dots, S_n; u_1, \dots u_n\}$$

Normal-form representation: 2-player game

- ■双变量矩阵表述
 - 2个参与人: Player 1 和 Player 2
 - 每个参与人有有限数量的策略
- 例如:

$$S_1 = \{ s_{11}, s_{12}, s_{13} \}$$
 $S_2 = \{ s_{21}, s_{22} \}$

Player 2

 $s_{21} \qquad s_{22} \\ s_{11} \qquad u_1(s_{11},s_{21}) \;,\; u_2(s_{11},s_{21}) \qquad u_1(s_{11},s_{22}) \;,\; u_2(s_{11},s_{22}) \\ \text{Player 1} \quad s_{12} \qquad u_1(s_{12},s_{21}) \;,\; u_2(s_{12},s_{21}) \qquad u_1(s_{12},s_{22}) \;,\; u_2(s_{12},s_{22}) \\ s_{13} \qquad u_1(s_{13},s_{21}) \;,\; u_2(s_{13},s_{21}) \qquad u_1(s_{13},s_{22}) \;,\; u_2(s_{13},s_{22}) \\ \end{cases}$

Classic example: Prisoners' Dilemma: normal-form representation

- 参与人集合: {Prisoner 1, Prisoner 2}
- 策略集: $S_1 = S_2 = \{\underline{M}um, \underline{C}onfess\}$
- 收益函数:

$$u_1(M, M)=-1$$
, $u_1(M, C)=-9$, $u_1(C, M)=0$, $u_1(C, C)=-6$; $u_2(M, M)=-1$, $u_2(M, C)=0$, $u_2(C, M)=-9$, $u_2(C, C)=-6$

Example: The battle of the sexes

 Pat

 Opera
 Opera
 Prize Fight

 Chris
 Prize Fight
 0 , 0 1 , 2

- 标准式(或策略式)表述:
 - > 参与人集合: { Chris, Pat } (={Player 1, Player 2})
 - \triangleright 策略集: $S_1 = S_2 = \{ Opera, Prize Fight \}$
 - > 收益函数:

$$u_1(O, O)=2$$
, $u_1(O, F)=0$, $u_1(F, O)=0$, $u_1(F, F)=1$; $u_2(O, O)=1$, $u_2(O, F)=0$, $u_2(F, O)=0$, $u_2(F, F)=2$

Example: Matching pennies

Player 2 Head Tail Player 1 Tail Player 2 Head Tail 1 , -1 | | 1 , -1 | | 1 , -1 | 1 , -1 | | | | | | | | | | | | |

- 标准式(或策略式)表述:
 - > 参与人集合: {Player 1, Player 2}
 - \rightarrow 策略集: $S_1 = S_2 = \{ \underline{\text{Head}}, \underline{\text{Tail}} \}$
 - > 收益函数:

$$u_1(H, H)=-1$$
, $u_1(H, T)=1$, $u_1(T, H)=1$, $u_1(T, T)=-1$; $u_2(H, H)=1$, $u_2(H, T)=-1$, $u_2(T, H)=-1$, $u_2(T, T)=1$

Example: Tourists & Natives

- 城市里仅有两家酒吧 (bar 1, bar 2)
- 可以索取的价格为\$2, \$4, or \$5
- 6000名游客随机挑选酒吧
- 4000个当地人挑选价格最低的酒吧
- 例1:两家酒吧都索取\$2
 - > 每家酒吧得到5,000名顾客和 \$10,000
- 例2: Bar 1 索取 \$4, Bar 2 索取 \$5
 - ▶ Bar 1 得到3000+4000=7,000名顾客和 \$28,000
 - ▶ Bar 2 得到3000名顾客和 \$15,000

Example: Cournot model of duopoly

- 一种同质的(homogeneous)产品仅仅由两家企业进行生产: firm 1 和 firm 2. 产量分别用 q_1 和 q_2 表示. 每家企业选择产量时并不知道其他企业的选择.
- 市场价格是 P(Q)=a-Q, 其中 $Q=q_1+q_2$.
- firm i 生产产量 q_i 的成本是 $C_i(q_i)=cq_i$.

标准式表述:

- > 参与人集合: { Firm 1, Firm 2}
- 策略集: $S_1 = [0, +\infty), S_2 = [0, +\infty)$
- 》收益函数: $u_1(q_1, q_2) = q_1(a (q_1 + q_2) c), \ u_2(q_1, q_2) = q_2(a (q_1 + q_2) c)$

One More Example

- n 个参与人同时选择0到100 之间的一个数字. x_i 表示player i 选择的数字.
- ■y表示这些数字的平均值
- Player i的收益 = x_i 3y/5
- ■标准式表述:
 - > 参与人: {player 1, player 2, ..., player n}
 - \triangleright 策略: $S_i = [0, 100]$, for i = 1, 2, ..., n.
 - > 收益函数:

$$u_i(x_1, x_2, ..., x_n) = x_i - 3y/5$$

Solving Prisoners' Dilemma

- 无论其他参与人怎样选择,坦白都是更好的策略
- 劣势策略 (Dominated strategy)
 - 无论其他参与人怎样选择,都存在比这个策略更好的其他策略
- 例如,在囚徒困境的例子中,无论囚徒2怎样选择, 对囚徒1来说,招认(Confess)都是比不招认(Mum) 更好的策略。不招认是囚徒1的劣势策略。

Definition: strictly dominated strategy

In the normal-form game $\{S_1, S_2, ..., S_n, u_1, u_2, ..., u_n\}$, let $s_i', s_i'' \in S_i$ be feasible strategies for player i. Strategy s_i' is **strictly dominated** by strategy s_i'' if

$$u_i(s_1, s_2, ... s_{i-1}, s_i', s_{i+1}, ..., s_n)$$

 $< u_i(s_1, s_2, ... s_{i-1}, s_i'', s_{i+1}, ..., s_n)$

 s_i " is strictly better than s_i '

for all
$$s_1 \in S_1$$
, $s_2 \in S_2$, ..., $s_{i-1} \in S_{i-1}$, $s_{i+1} \in S_{i+1}$, ..., $s_n \in S_n$.

regardless of other players' choices

Prisoner 1

Mum Confess Prisoner 2

Mum Confess

-1	,	-1	-9	,	0
0	,	-9	-6	,	-6

Example

- 两家企业, Reynolds和Philip, 分享市场
- 如果两家企业都不做广告,则每个企业会从各 自顾客那里获得\$60百万
- 每个企业的广告成本是\$20 百万
- 如果做广告则会从竞争对手那里获得\$30 百万

Philip

Reynolds Ad

No A	d	Ad	
60 ,	60	30 ,	70
70 ,	30	40 ,	40

2-player game with finite strategies

lacksquare s_{21} is strictly dominated by s_{22} if $u_2 (s_{1i}, s_{21}) < u_2 (s_{1i}, s_{22})$, for i = 1, 2, 3

Player 2

	s	s ₂₂	
s_{11}	$u_1(s_{11}, s_{21}), u_2(s_{11}, s_{21})$	$u_1(s_{11}, s_{22}), u_2(s_{11}, s_{22})$	
Player 1 s_{12}	$u_1(s_{12}, s_{21}), u_2(s_{12}, s_{21})$	$u_1(s_{12}, s_{22}), u_2(s_{12}, s_{22})$	
s ₁₃	$u_1(s_{13}, s_{21}), u_2(s_{13}, s_{21})$	$u_1(s_{13}, s_{22}), u_2(s_{13}, s_{22})$	

Definition: weakly dominated strategy

In the normal-form game $\{S_1, S_2, ..., S_n, u_1, u_2, ..., u_n\}$, let $s_i', s_i'' \in S_i$ be feasible strategies for player i. Strategy s_i' is **weakly dominated** by strategy s_i'' if

$$u_i(S_1, S_2, ..., S_{i-1}, S_i', S_{i+1}, ..., S_n)$$

 \leq (but not always =) $u_i(s_1, s_2, ... s_{i-1}, s_i'', s_{i+1}, ..., s_n)$

for all $s_1 \in S_1$, $s_2 \in S_2$, ..., $s_{i-1} \in S_{i-1}$, $s_{i+1} \in S_{i+1}$, ..., $s_n \in S_n$.

regardless of other players' choices

Player 1

U

Player 2

L R

1 , 1 2 , 0

0 , 2 2 , 2

 s_i " is at

least as

good

as s_i

Strictly and weakly dominated strategy

- 一个理性的参与人肯定不会选择严格劣势策略.所以, 任何严格劣势策略都可以被剔除.
- 一个理性的参与人有可能选择一个弱劣势策略.
- 剔除的顺序对严格优势策略来说无关紧要,但是对弱优势策略来说就很重要了. Player 2

T Player 1 M B

L		С		R	
2 ,	12	1 ,	10	1 ,	12
0 ,	12	1 ,	10	0 ,	11
0 ,	12	0 ,	10	0 ,	13

■ 剔除掉顺序可以是(B,R,C,M)和(C,M,L,B),结果分别是(T,L)和(T,R)

Iterated elimination of strictly dominated strategies

- 如果一个策略是严格劣势的,那么剔除它
- ■博弈的规模和复杂程度减少(reduced)了
- ■在这个简化后的博弈中剔除任何严格劣势策略
- ■继续不断的这样做
- 得到理性化的均衡(Rationalizable equilibrium)

Iterated elimination of strictly dominated strategies: an example

Example: Tourists & Natives

- 城市里仅有两家酒吧 (bar 1, bar 2)
- 可以索取的价格为\$2, \$4, or \$5
- 6000名游客随机挑选酒吧
- 4000个当地人挑选价格最低的酒吧
- 例1:两家酒吧都索取\$2
 - ▶ 每家酒吧得到5,000名顾客和 \$10,000
- 例2: Bar 1 索取 \$4, Bar 2 索取 \$5
 - ▶ Bar 1 得到3000+4000=7,000名顾客和 \$28,000
 - ▶ Bar 2 得到3000名顾客和 \$15,000

Example: Tourists & Natives

One More Example

- n 个参与人同时选择0到100 之间的一个数字. x_i 表示player i 选择的数字.
- ■y表示这些数字的平均值
- Player i的收益 = x_i 3y/5
- 存在劣势策略吗?
- 应该选哪些数字?
- 如果 $u_i(x_1, x_2, ..., x_n) = x_i 16y/5$, 会怎么样?

New solution concept: Nash equilibrium

		Player 2					
		L		С		R	
	Т	0 ,	4	4 ,	0	5 ,	3
Player 1	M	4 ,	0	0 ,	4	5 ,	3
	В	3 ,	5	3 ,	5	6 ,	6

策略组合(B, R) 有以下性质:

- ➤如果player 2选R , 那么除B以外, Player 1不可能有更好的策略选择.
- ➤如果player 1选B,那么除 R以外, Player 2不可能有更好的 策略选择.

New solution concept: Nash equilibrium

Player 2 L' C' R' T' 0 , 4 4 , 0 3 , 3 Player 1 M' 4 , 0 0 , 4 3 , 3 B' 3 , 3 3 , 3 3.5 , 3.6

策略组合 (B', R') 有以下性质:

- ➤如果player 2选R',那么除B'以外,Player 1不可能有更好的策略选择.
- ➤如果player 1选B',那么除 R'以外, Player 2不可能有更好的策略 选择.

Nash Equilibrium: idea

- ■纳什均衡
 - 》是一个策略组合。其中,每个参与人选择的策 略都是针对其他参与人选择策略的最优反应

Definition: Nash Equilibrium

In the normal-form game $\{S_1, S_2, ..., S_n, u_1, u_2, ..., u_n\}$, a combination of strategies $(s_1^*, ..., s_n^*)$ is a *Nash*

equilibrium if, for every player i,

$$u_{i}(s_{1}^{*},...,s_{i-1}^{*},s_{i}^{*},s_{i+1}^{*},...,s_{n}^{*})$$

$$\geq u_{i}(s_{1}^{*},...,s_{i-1}^{*},s_{i}^{*},s_{i+1}^{*},...,s_{n}^{*})$$

for all $s_i \in S_i$. That is, s_i^* solves

Maximize $u_i(s_1^*,...,s_{i-1}^*,s_i,s_{i+1}^*,...,s_n^*)$

Subject to $s_i \in S_i$

Given others' choices, player i cannot be better-off if she deviates from s_i^*

(cf: dominated strategy)

Prisoner 2

Prisoner1

Mum

Confess

WIUIII	Colless
-1 , -1	-9 , O
0 , -9	-6 , -6

Game Theory--Chapter 1

2-player game with finite strategies

```
\blacksquare S_1 = \{s_{11}, s_{12}, s_{13}\} S_2 = \{s_{21}, s_{22}\}
```

 \blacksquare (s_{11} , s_{21}) is a Nash equilibrium if

```
u_1(s_{11}, s_{21}) \ge u_1(s_{12}, s_{21}),

u_1(s_{11}, s_{21}) \ge u_1(s_{13}, s_{21}) and

u_2(s_{11}, s_{21}) \ge u_2(s_{11}, s_{22}).
```

Player 2

		$oldsymbol{s}_{21}$	s ₂₂	
		$u_1(s_{11}, s_{21}), u_2(s_{11}, s_{21})$		
Player 1	s_{12}	$u_1(s_{12}, s_{21}), u_2(s_{12}, s_{21})$	$u_1(s_{12}, s_{22}), u_2(s_{12}, s_{22})$	
	s ₁₃	$u_1(s_{13}, s_{21}), u_2(s_{13}, s_{21})$	$u_1(s_{13}, s_{22}), u_2(s_{13}, s_{22})$	

Finding a Nash equilibrium: cell-by-cell inspection

Example: Tourists & Natives

Payoffs are in thousands of dollars

One More Example

- ■标准式表述:
 - > 参与人: {player 1, player 2, ..., player n}
 - \triangleright 策略: S_i =[0, 100], for i = 1, 2, ..., n.
 - > 收益函数:

$$u_i(x_1, x_2, ..., x_n) = x_i - 3y/5$$

■哪个策略集是纳什均衡?

Best response function: example

		Player 2							
		L'		C'		R'			
	T'	0 ,	4	4 ,	0	3 , 3	3		
Player 1	M'	4 ,	0	0 ,	4	3 , 3	3		
	B'	3 ,	3	3 ,	3	3.5 , <u>3</u> .	6		

- 如果Player 2 选L', 那么Player 1的最优策略是M'
- 如果Player 2 选C', 那么Player 1的最优策略是T'
- 如果Player 2 选R', 那么Player 1的最优策略是 B'
- 如果Player 1 选B',那么Player 2的最优策略是 R'
- 最优反应: 给定其他所有参与人的策略,一个参与人能够选择的 最优策略

Example: Tourists & Natives

Payoffs are in thousands of dollars

- 针对Bar 2选择的\$2, \$4 或\$5的策略, Bar 1的 最优反应分别是什么?
- 针对Bar 1选择的\$2, \$4 或\$5的策略, Bar 2的最优反应分别是什么?

2-player game with finite strategies

- ■如果

```
u_1(s_{11}, s_{21}) \ge u_1(s_{12}, s_{21}) 且 u_1(s_{11}, s_{21}) \ge u_1(s_{13}, s_{21}). 那么Player 1的策略 s_{11} 是她对Player 2策略s_{21}的最优反应,
```

Player 2

 $s_{21} \qquad s_{22} \\ s_{11} \qquad u_1(s_{11},s_{21}) \;,\; u_2(s_{11},s_{21}) \qquad u_1(s_{11},s_{22}) \;,\; u_2(s_{11},s_{22}) \\ \text{Player 1} \quad s_{12} \qquad u_1(s_{12},s_{21}) \;,\; u_2(s_{12},s_{21}) \qquad u_1(s_{12},s_{22}) \;,\; u_2(s_{12},s_{22}) \\ s_{13} \qquad u_1(s_{13},s_{21}) \;,\; u_2(s_{13},s_{21}) \qquad u_1(s_{13},s_{22}) \;,\; u_2(s_{13},s_{22}) \\ \end{cases}$

Using best response function to find Nash equilibrium

■ 在2名参与人的博弈中,当且仅当(i)player 1 的策略 s_1 是对player 2的策略 s_2 的最优反应,(ii)player 2的策略 s_2 是对player 1的策略 s_1 的最优反应时,(s_1 , s_2)是一个纳什均衡.

Using best response function to find Nash equilibrium: example

		Player 2							
		Ľ'		C'		R'			
	T'	0 ,	<u>4</u>	<u>4</u> ,	0	3 ,	3		
Player 1	M'	<u>4</u> ,	0	0 ,	<u>4</u>	3 ,	3		
	B'	3 ,	3	3 ,	3	3.5 ,	3.6		

- M' 是 Player 1对Player 2的策略 L' 的最优反应
- T'是 Player 1对Player 2的策略 C' 的最优反应
- <u>B'是 Player 1对Player 2的策略 R' 的最优反应</u>
- L' 是Player 2对Player 1的策略T'的最优反应
- C'是Player 2对Player 1的策略M'的最优反应
- R'是Player 2对Player 1的策略B' 的最优反应

Example: Tourists & Natives

Payoffs are in thousands of dollars

使用最优反应函数找到纳什均衡.

Example: The battle of the sexes

- Opera是Player 1对Player 2的策略Opera的最优反应
- Opera是Player 2对Player 1的策略Opera的最优反应
 - > 所以, (Opera, Opera) 是一个纳什均衡
- Fight是Player 1对Player 2的策略Fight的最优反应
- Fight是Player 2对Player 1的策略Fight的最优反应
 - > 所以, (Fight, Fight)是一个纳什均衡

Example: Matching pennies

Player 2
Head Tail

Head -1, 1, 1, -1Tail

Tail

Tail

- Head是Player 1对Player 2的策略Tail的最优反应
- Head是Player 2对Player 1的策略Head 的最优反应

- Tail是Player 1对Player 2的策略Head 的最优反应
- Tail是Player 2对Player 1的策略Tail的最优反应
 - » 所以, *没有*纯策略纳什均衡

Definition: best response function

In the normal-form game

$${S_1, S_2, ..., S_n, u_1, u_2, ..., u_n},$$

if player 1, 2, ..., i-1, i+1, ..., n choose strategies $s_1,...,s_{i-1},s_{i+1},...,s_n$, respectively,

Given the strategies chosen by other players

then player i's best response function is defined by

$$B_i([s_1,...,s_{i-1},s_{i+1},...,s_n]) =$$

$$\{s_i \in S_i : u_i(s_1,...,s_{i-1},s_i,s_{i+1},...,s_n)$$

$$\geq u_i(s_1,...,s_{i-1},s_i',s_{i+1},...,s_n), \text{ for all } s_i' \in S_i \}$$

Player *i*'s best response

Definition: best response function

An alternative definition:

Player *i*'s strategy $s_i \in B_i(s_1,...,s_{i-1},s_{i+1},...s_n)$ if and only if it solves (or it is an optimal solution to)

Maximize
$$u_i(s_1,...,s_{i-1},s'_i,s_{i+1},...,s_n)$$

Subject to
$$s_i' \in S_i$$

where
$$s_1, ..., s_{i-1}, s_{i+1}, ..., s_n$$
 are given.

Player *i*'s best response to other players' strategies is an optimal solution to

Using best response function to define Nash equilibrium

In the normal-form game $\{S_1, ..., S_n, u_1, ..., u_n\}$, a combination of strategies $(s_1^*, ..., s_n^*)$ is a *Nash* equilibrium if for every player i,

$$s_i^* \in B_i(s_1^*, ..., s_{i-1}^*, s_{i+1}^*, ..., s_n^*)$$

- A set of strategies, one for each player, such that each player's strategy is best for her, given that all other players are playing their strategies, or
- A stable situation that no player would like to deviate if others stick to it

Strictly dominated strategies vs. Nash Equilibrium

- ■纳什均衡和重复剔除严格劣势策略之间的关系
 - 纳什均衡是一个比重复剔除严格劣势策略更强的解的概念.
 - 可预测性(Predictability)
 - 存在性 (Existence)
 - ■惟一性(uniqueness).
 - 如果博弈存在惟一解,它一定是一个纳什均衡

Summary(Appendix 1.1.C)

- *命题A* 在n个参与人的标准式博弈 $G=\{S_1,...,S_n;u_1,...u_n\}$ 中,如果重复剔除严格劣势策略剔除掉除策略组合($s_1*,s_2*,...,s_n*$)外的所有策略,那么这一策略组合为该博弈惟一的纳什均衡.
- *命题B* 在n个参与人的标准式博弈 $G=\{S_1,...,S_n;u_1,...u_n\}$ 中,如果策略 $(s_1*,s_2*,...,s_n*)$ 是一个纳什均衡,那么它不会被重复剔除严格劣势策略所剔除.
- 但是未被重复剔除严格劣势策略所剔除的策略 不一定是纳什均衡策略.