PCの内部構造

- 1 CPU
- ② マザーボード
- ③ GPU(グラフィックボード)
- ④ メモリ
- 5 電源
- ⑥ 記憶ドライブ
- ⑦ 光学ドライブ等

(近頃はusbで外付けできるから省略)

1 CPU

Central Processing Unit (CPU)

PCを動かす中心的な半導体機器。 いわばPCの脳みそ的存在。 PCの性能のほとんどはこのCPUの機能 によって決まる。

コア数とプロセスルール

演算ユニットの数。多ければ多いほど計算が早い。

CPU回路の配線幅をプロセスルールと呼ぶ。

7 nm

同じ演算能力

プロセスルールが細かいほど、多くの演算能力をCPU に積むことが出来る

Intel corporation

Advanced Micro Devices (AMD)

1 CPU

	Intel Core	AMD Ryzen	
Mein series	Core i9, i7, i5, i3	i7, i5, i3 Ryzen 9, 7, 5, 3	
Merit	CPUの老舗だけあって、様々なデバイスとの親和性が高いシングルコア性能は高い内部GPUが共存してる	・ マルチ性能が高い・ 安い・ 演算に要する電力が少ない	
Demerit	コア数がRyzenより少ない値段が高い演算に必要な電力が高い未だに14 nm processから進まない	シングル性能が弱い(2020年にintelの性能と並びました。)GPUを買わなければならない場合が多い	

AMD Ryzen CPUを選ばない理由がない!

① CPU (AMD CPU)

BenchMark matrix of AMD CPUs

Score/price (性能あたりの値段)が 最も良いのはRyzen5 2600 (2nd gene)であるが、さらに性能がよ くScore/price が同じくらい高い Ryzen5 3600 (3rd gene)がマー ケットのシェア第一位である。

ちなにみ現在使用しているLet's note CF-LX6に搭載されている<u>intel core i7-</u> 7500U@2.70 GHzはScore: 3679であり、 出来のいいゴミである。 https://www.cpubenchmark.net/share30.html

2000 - 3000 ・・・動画やブラウザでの引っかかりがあり、若干イライラさせられる、遅い

11500 - 19000 ・・・複数アプリでのハードな PC 作業も余裕でこなせ速い。高度な 3D ゲームを快適できる。

・・・日常的な PC 使いでは余裕のパフォーマンス、動画編集やゲームも快適にこなせる。

・・・日常的な PC 使いで遅いとは思わないレベル。テレワークではこれぐらいは欲しい。

・・・体感的な引っかかりが稀に気になるレベル。裏でウイルススキャンとか走ると辛い

~2000 ・・・敢えて言おう、カスであると

Performance

② マザーボード

全ての電子機器をつないだり制御したりする電子回路基板。この上にパーツを設置することでPCが組み立てられる。

ロポート

PCIe 4.0 slot (for GPU)

PCle 4.0 M.2 SSD slot

M.2 wifi slot

CPUソケット

メモリスロット

電源コネクタ

- USB 3.2

PCIe 3.0 M.2 SSD slot

② マザーボード

マザーボードの大きさが一つの選択肢

	ATX	Micro-ATX	Mini-ITX
メモリスロット	4-8	2-4	1-2
拡張スロット	7	4	1

② マザーボード

次の選ぶ基準はCPUの種類と欲しいスロットの種類である

<u>CPUソケット</u> (AMD Ryzen series)

	1st	2nd	3rd	4th
X570				
B550				
X470				
B450				
X370				
B350				
A320				

▲: Bios update で一部対応

<u>あってればOK</u> (intel core seriesは知らん) スロットの種類

メモリスロット (重要)

2本から8本のスロットがあります。最近のモデルはほとんど4本です。また、対応メモリ規格の違いもあり、DDR4, DDR3, DDR2 のどれに対応しているかもチェックが必要です。

PCIe 4.0 M.2 SSD slot (重要)

M.2 SSDを差し込むポート。ポート数やM.2の規格(reading/writing rate)が確認事項。また、放熱用ヒートシンクの有無も確認。

PCIe 4.0 slot (for GPU)

<u>グラフィックボードを投入する拡張ポート。大体あるから大丈夫。</u>

<u>その他</u>

WiFi用 M.2 portやLEDヘッダー、IOポートの内容や内部USB等

Graphics Processing Unit (GPU)

3D graphicsや画像描写の計算を行う 半導体プロセッサの総称である。

	CPU	GPU		
主な役割	PC全体の計算処理をメインとし、連続的な計算プロセスを行う	Graphics処理を行う計 算処理を中心的に行う が、製品によってはそ れ以外の計算も行う。		
コア数	数個から十数個	数千個		
計算プロ セス	連続的(sequential)	並列的(Parallel)		
計算速度	1としたら	10-100		

NVIDIA (GeForce)

AMD (Radeon)

	NVIDIA GeForce	AMD Radeon
Mein series	GTX 1000 series, RTX 2000 & 3000 series,	RX6900XT, RX6800, RX5700, RX5600,
Merit	 GPUの老舗だけあって、様々なデバイスとの親和性が高い RTX seriesはAI機能を搭載し、より高度な計算を短時間で行う 様々なソフトウェアとの親和性が高い 	コア数が多く、並列計算等には強いそれぞれのGPUが汎用的に使用できる出力画像の映像美が高い(らしい)二枚刺しが簡単
Demerit	 二枚刺しに必要な過程が多い ゲームはGeForceだが計算はQuadroとなる 動画鑑賞は少し苦手	 セッティングによってはエラーが出る ソフトウェアとの親和性が普及していない 若干、安定性に不安がある まだGeForceに追いついていない

まだGeForceが機能的に勝っている

BenchMark matrix of GeForce

最新のRTX 3000 seriesは能力的には極めて高いが、実はCPUの能力次第では使い切れない場合がある。仮にRyzen5 3600を使用するのであればRTX 2000シリーズが限界である。CPUとGPUの対応は確認しよう。

④ メモリ

メモリモジュール

Crucial Ballistix RGB 16 GB

PC上で行っている作業の内容を一時的 に保存する記憶モジュール。

製品名

DDR4 - 4400

PC4 - 35200

メモリ規格 クロック 周波数 メモリ規格 モジュール 規格 (クロックx8)

選択基準

- <u>メモリチップ規格とマザーボード等の対応</u> 最近ではDDR3とDDR4が市場の大半を占める。 DDR4の方が最新型で高性能であるが、稀にDDR4非 対応のマザーボードやCPUが存在している。
- メモリ容量 (2GB, 4GB, 8GB, 16GB, 32GB)

メモリ容量は一般的に多いほうが有利である。近年のwindowsのOSはバックグラウンドアプリで4 GB 近くメモリ容量を消費している。最低8 GB、スムーズに作業をするなら16 GB, chromeを動かしながらillustrator等をする場合は32 GB必要である。

● データ転送速度(メモリクロック)

メモリ内に一時保存したデータをCPUやGPUなどに 転送する速度。2666MHz以上あれば大丈夫だろう。

5 電源

コンセントの交流電流を直 流電力に変換して、システ ム全体に電力供給するのが 電源ユニット。

Corsair CP-9020179-JP (750W)

ワット数(W)は想定しているシステムの最大消費電力の2倍の電源を選択する。 (省エネ、電源の低負荷、将来の拡張性)

	Certification						
PSU Load	Unrated	80 PLUS	80 PLUS' BRONZE	80 PLUS' SILVER	80 PLUS' COLD	80 PLUS PLATINUM	80 PLUS ¹ TITANIUM
20%	Efficiency: 70%	Efficiency: 80%	Efficiency: 82%	Efficiency: 85%	Efficiency: 87%	Efficiency: 90%	Efficiency: 92%
50%	Efficiency: 70%	Efficiency: 80%	Efficiency: 85%	Efficiency: 88%	Efficiency: 90%	Efficiency: 92%	Efficiency: 94%
100%	Efficiency: 70%	Efficiency: 80%	Efficiency: 82%	Efficiency: 85%	Efficiency: 87%	Efficiency: 89%	Efficiency: 90%

交流電流から直流電流に変換した際に、変換効率が80%を超えるものには80PLUS認証が付き、高性能であることが保証される。

直付けは安価ではあるが、ケーブルマネジメントが出来ないので、廃熱効率が落ちてしまう。フルプラグインがベスト。

⑥ 記憶ドライブ

データを保存するためのデバイス。OSももちろんここに保存されているため、 転送速度が早ければPCの起動や操作がスムーズになる。

	3.5インチHDD	2.5インチSerial ATA SSD snasung snasung	NVMe SSD
	Hard disc drive	SATA solid state drive	NVMe solid state drive
データ転送速度	<180 MB/s	~500 MB/s	1500~3000 MB/s
データ保存方法	磁気ディスク	半導体素子メモリ	
接続形式	Serial ATA		PCIe
1TB当たりの値段	~2000 円	~10000 円	~15000 円

基本的にはSSDとHDDの併用がGoodで、OSやソフトウェアはNVMe SSDに、画像や動画等のデータファイルはHDDに保存する。近年のwindowsは~50 GB程度のOSデータがあるので、少なくとも250 GBは準備するのが良い。ちなみに使用しているPCはSSDとHDDの併用であるが、SSDが128GB NVMe、HDDが1TBという、なんとも残念な仕様である。