

TO :

Date: 2002. 10. 01

SAMSUNG TFT-LCD

MODEL NO.: LTM170E5-L03

Ap	Approved by:											
				C C								

Any Modification of Spec is not allowed without SEC's permission.

Senior Manager:

PREPARED BY: AMLCD Technical Customer Service Team

real.

Samsung Electronics Co., LTD.

Contents

Revision History	(3)
General Description	(4)
 Absolute Maximum Ratings 1.1 Absolute Ratings Of Environment 1.2 Electrical Absolute Ratings 	(5)
2. Optical Characteristics	(7)
3. Electrical Characteristics3.1 TFT LCD Module3.2 Back-light Unit	(11)
4. Block Diagram4.1 TFT LCD Module4.2 Back-light Unit	(14)
5. Input Terminal Pin Assignment5.1 Input Signal & Power5.2 LVDS Interface5.3 Back-light Unit	(15)
C .	Scale of Each Color
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Power ON/OFF Sequence 	(22)
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 	(22)
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Power ON/OFF Sequence 	(22) mode)
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Power ON/OFF Sequence 7. Outline Dimension 	(22) mode) (25)
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Power ON/OFF Sequence 7. Outline Dimension 8. Reliability Test 	(22) mode) (25) (26)
 5.4 Input Signals, Basic Display Colors and Gray 6. Interface Timing 6.1 Timing Parameters (DE only mode) 6.2 Timing Diagrams of interface Signal (DE only 6.3 Power ON/OFF Sequence 7. Outline Dimension 8. Reliability Test 9. Packing 	(22) mode) (25) (26) (27)

* Revision History

Date	Rev. No	Page	Summary
Oct.01, 2002	000		Approval spec of LTM170E5-L03 model was issued for the first time.

General Description

* Description

LTM170E5-L03 is a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFTs as a switching devices. This model is composed of a TFT LCD panel, a driver circuit and a back-light system. The resolution of a 17.0" contains 1280 x 1024 pixels and can display up to 16.7 million colors with wide viewing angle of 85° or higher in all directions. (Vertical viewing angle : 170°, Horizontal viewing angle : 170°)

* Features

- High contrast ratio, high aperture structure
- PVA (Patterned Vertical Alignment) mode
- Wide viewing angle($\pm 170^{\circ}$)
- High speed response
- SXGA(1280 x 1024 pixels) resolution
- Low Power consumption
- Replaceable 2 dual CCFT(Cold Cathode Fluorescent Tube)
- DE only mode
- LVDS (Low-Voltage Differential Signaling) interface (2pixel/clock)

* Applications

- Workstation & desktop monitors
- Display terminals for AV application products
- Monitors for industrial machine and medical appliances

* General information

Items	Specification	Unit	Note
Display area	337.92(H) x 270.336(V)	mm	17.0" Diagonal
Driver element	a-Si TFT active matrix		
Display colors	16.7M(true)	colors	
Number of pixels	1280 x 1024	pixel	
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.264(H) x 0.264(W)	mm	
Display mode	Normally Black		
Surface treatment	Haze 44%, Hard-coating (3H)		conduction pol.

* Mechanical information

It	em	Min.	Тур.	Max.	Note
Madula	Horizontal(H)	383.0	383.5	384.0	mm
Module	Vertical(V)	305.5	306.0	306.5	mm
Size	Depth(D)	-	-	22.8	mm
We	eight	-	-	2,250	g

1. Absolute Maximum Ratings

1.1 Absolute ratings of environment

Item	Symbol	Min.	Max.	Unit	Note
Storage temperature	Tstg	-20	65	°C	(1)
Operating temperature (Surface of glass temperature)	Topr	0	50	°C	(1)
Shock (non - operating)	Snop	-	50	G	(2),(4)
Vibration (Non - operating)	Vnop	_	1.5	G	(3),(4)

Note (1) Temperature and relative humidity range are shown in the figure below.

90 % RH Max. ($40 \, ^{\circ}\text{C} \geq \text{Ta}$)

Maximum wet-bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

- (2) 11ms, sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ axis
- (3) 10-300 Hz, Sweep rate 10min, 30min for X,Y,Z axis
- (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD Module

(Vss	= GND $=$	= 0 V
------	-----------	-------

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VDD	Vss-0.5	6.5	V	(1)

NOTE (1) Within Ta (25 ± 2 °C)

(2) BACK-LIGHT UNIT

$$(Ta = 25 \pm 2^{\circ}C)$$

Item	Symbol	Min.	Max.	Unit.	Note
Lamp Current	$I_{\scriptscriptstyle L}$	3.0	7.0	mArms	(1),(2)
Lamp Frequency	F_{L}	40	80	kHz	(1)

- NOTE (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under Normal Operating Conditions.
 - (2) Specified values are for a single lamp.

 (Refer to the Note (1) in the page 13 for further information)

2. Optical Characteristics

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (1).

◆ Measuring equipment : TOPCON BM-5A , BM-7, PHOTO RESEARCH PR650 Eldim EZ-Contrast

(Inverter Freq. : 50kHz) * Ta = $25 \pm 2^{\circ}C$, VDD=5V, fv= 60Hz, fDCLK=54 MHz, IL = $6.5mA_{rms}$

Item		Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast (Center of		C/R		400	500	-		(3) BM-5A
Response	Rising	Tr		-	15	20		(4)
Time	Falling	Tf		-	10	15	msec	BM-7
Luminance of (Center of		YL	Normal $\phi = 0$	220	250	-	cd/m2	(5) BM-5A
	D - 1	Rx	$\theta = 0$		0.634			
	Red	Ry			0.354			
C 1	Green	Gx	Viewing		0.304			
Color		Gy	Angle	TYP.	0.581	TYP.		(6)
Chromaticity	D1	Bx		-0.03	0.143	+0.03		PR650
(CIE 1931)	Blue	Ву			0.102			
	3371-14-	Wx			0.310			
	White	Wy			0.330			
	TT a.u.	θГ		80	85	-		
Viewing	Hor.	θК	C/D> 10	80	85	-	Daamaaa	(7)
Angle	Man	φН	C/R≥10	80	85	Degrees -		BM-5A
	Ver.	φL		80	85	-		
Brightness Uniformity (9 points)		Buni		-	-	25	%	(8) BM-5A

Note 1) Test Equipment Setup

After stabilizing and leaving the panel alone at a given temperature for 30 min ,the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. 30 min after lighting the back-light. This should be measured in the center of screen.

A single lamp current: 6.5mA (Refer to the note(1) in the page 15 for more information.)

Environment condition : Ta = 25 ± 2 °C

Optical Measuring Equipment Setup

Note 2) Definition of test point

Note 3) Definition of Contrast Ratio (C/R): Ratio of gray max (Gmax) & gray min (Gmin) at the center point(5) of the panel

$$CR = \frac{G \max}{G \min}$$

Gmax: Luminance with all pixels white Gmin: Luminance with all pixels black

Note 4) Definition of Response time: Sum of Tr, Tf

Note 5) Definition of Luminance of White: Luminance of white at center point(5).

Note 6) Definition of Color Chromaticity (CIE 1931)

Color coordinate of Red, Green, Blue & White at center point(5).

Note 7) Definition of Viewing Angle: Viewing angle range (CR≥ 10)

Note 8) Definition of 9 points brightness uniformity

$$Buni = 100*\frac{(B \max - B \min)}{B \max}$$

Bmax : Maximum brightness
Bmin : Minimum brightness

3. Electrical Characteristics

3.1 TFT LCD MODULE

 $Ta = 25^{\circ}C$

	Symbol	Min.	Typ.	Max.	Unit	Note	
Voltage o	f Power Supply	$V_{ ext{DD}}$	4.5	5.0	5.5	V	(1)
Inter	rface type	LVDS	DS90C	383/385/3	87 DS9	0C386 Pair	
Current of	(a)Black		-	600	800	mA	
Power	(b)White	I_{DD}	-	700	1000	mA	(2),(3)
Supply	(c)2 Line Stripe		-	730	1000	mA	
Vsync	Frequency	f_{V}	-	60	60	Hz	
Hsync	Hsync Frequency		62	_	64	kHz	
Main Frequency		$f_{ m DCLK}$	42	-	54	MHz	
Rus	I_{RUSH}	-	-	4.0	A	(4)	

Note (1) Main pixel clock frequency is the value which is measured at the input of LVDS transmitter.

- (2) $f_V=60$ Hz, $f_{DCLK}=54$ MHz, $V_{DD}=5.0$ V, DC Current.
- (3) Power dissipation check pattern(LCD Module only)

(4) Measurement Conditions

Note: Control Signal: High(+5V) -->Low(Ground)

All Signal lines to panel except for power 5V: Ground

The rising time of supplied voltage is controlled to 470us by R3 and C2 value.

3.2 BACK-LIGHT UNIT

The back-light system is an edge - lighting type with 2 dual CCFTs (Cold Cathode Fluorescent Tube) The characteristics of two dual lamps are shown in the following tables.

T	a=2	5 ±	20	C

Item	Symbol	Min.	Typ.	Max.	Unit	Note
Lamp Current	I_L	3.0	6.5	7.0	mArms	(1)
Lamp Voltage	V_{L}	-	700	-	Vrms	(1)
Lamp Frequency	f_{L}	40	60	70	kHz	(2)
Operating Life Time	Hr	25,000	-	-	Hour	(3)
Start up Voltage	Vs	-	-	0°C:1,650 25°C:1,182	Vrms	(4)

Note) The waveform of the inverter output voltage must be area symmetric and the design of the inverter must have specifications for the modularized lamp.

The performance of the back-light, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.

When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the back-light and the inverter(miss lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

Note (1) Dual lamp current is measured with current meter for high frequency as shown below.

Refer to the block diagram of the back-light unit in the next page for more information.

Specified values are for a dual lamp.

- (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- (3) Life time (Hr) of a lamp is defined as the time in which it continues to operate under the condition of $Ta = 25\pm2^{\circ}C$ and IL = 6.5mArms for a lamp until the brightness becomes 50% or lower than it's original value.
- (4) If an inverter has shutdown function it should keep its output for more than 1 second even if the lamp connector open. Otherwise the lamps may not to be turned on.
- (5) Inverter use high voltage. It should be disconnected power, before Inverter is assembled or disassembled.

Doc . No	LTM170E5-L03	Rev.No	05-000-G-021002	Page	13 / 32
----------	--------------	--------	-----------------	------	---------

14 / 32

Page

4. Block Diagram

4.1 TFT LCD MODULE

4.2 BACK-LIGHT UNIT

LTM170E5-L03

Doc . No

05-000-G-021002

Rev.No

5. Input Terminal Pin Assignment

5.1. Input Signal & Power (Connector: JAE FI-X30S-HF)

PIN NO	SYMBOL	FUNCTION
1	RXO0-	Negative Transmission Data of Pixel 0 (ODD data)
2	RXO0+	Positive Transmission Data of Pixel 0 (ODD data)
3	RXO1-	Negative Transmission Data of Pixel 1 (ODD data)
4	RXO1+	Positive Transmission Data of Pixel 1 (ODD data)
5	RXO2-	Negative Transmission Data of Pixel 2 (ODD data)
6	RXO2+	Positive Transmission Data of Pixel 2 (ODD data)
7	GND	Power Ground
8	RXOC-	Negative Sampling Clock (ODD data)
9	RXOC+	Positive Sampling Clock (ODD data)
10	RXO3-	Negative Transmission Data of Pixel 3 (ODD data)
11	RXO3+	Positive Transmission Data of Pixel 3 (ODD data)
12	RXE0-	Negative Transmission Data of Pixel 0 (EVEN data)
13	RXE0+	Positive Transmission Data of Pixel 0 (EVEN data)
14	GND	Power Ground
15	RXE1-	Negative Transmission Data of Pixel 1 (EVEN data)
16	RXE1+	Positive Transmission Data of Pixel 1 (EVEN data)
17	GND	Power Ground
18	RXE2-	Negative Transmission Data of Pixel 2 (EVEN data)
19	RXE2+	Positive Transmission Data of Pixel 2 (EVEN data)
20	RXEC-	Negative Sampling Clock (EVEN data)
21	RXEC+	Positive Sampling Clock (EVEN data)
22	RXE3-	Negative Transmission Data of Pixel 3 (EVEN data)
23	RXE3+	Positive Transmission Data of Pixel 3 (EVEN data)
24	GND	Power Ground
25	NC	No Connection
26	DE	DE Out(Reserved)
27	NC	No Connection
28	$V_{\scriptscriptstyle DD}$	
29	$V_{\scriptscriptstyle DD}$	Power Supply : +5V
30	V_{DD}	

5.2 LVDS Interface(1)

5.2.1 Odd pixel data (1st pixel data)

	1	lst LVDS Tr	ansmitter (DS90C383, DS90C38	5) Signal In	terface	
Devi	ce Input Pin		Device Input Signal	Output Signal		M170E5 (CN101)
No	Symbol	Symbol	Function	Olgilai	Terminal	Symbol
51	TXIN0	RO0	Red Odd Pixel Data (LSB)			
52	TXIN1	RO1	Red Odd Pixel Data	TVOLITO	NI 4	DVO
54	TXIN2	RO2	Red Odd Pixel Data	TXOUT0-	No. 1 No. 2	RXO0- RXO0+
55	TXIN3	RO3	Red Odd Pixel Data	1200101	110. 2	TXXX
56	TXIN4	RO4	Red Odd Pixel Data			
2	TXIN5	RO7	Red Odd Pixel Data (MSB)	TXOUT3-	No. 10	RXO3-
_	17(1140	1107	Trou out Fixer Butta (MOB)	TXOUT3+	No. 11	RXO3+
3	TXIN6	RO5	Red Odd Pixel Data	TXOUT0-	No. 1	RXO0-
4	TXIN7	GO0	Green Odd Pixel Data (LSB)	TXOUT0+	No. 2	RXO0+
6	TXIN8	GO1	Green Odd Pixel Data	TXOUT1-	No. 3	RXO1-
7	TXIN9	GO2	Green Odd Pixel Data	TXOUT1+	No. 4	RXO1+
8	TXIN10	GO6	Green Odd Pixel Data	TXOUT3-	No. 10	RXO3-
10	TXIN11	GO7	Green Odd Pixel Data (MSB)	TXOUT3+	No. 11	RXO3+
11	TXIN12	GO3	Green Odd Pixel Data			
12	TXIN13	GO4	Green Odd Pixel Data	TXOUT1-	No. 3	RXO1-
14	TXIN14	GO5	Green Odd Pixel Data	TXOUT1+	No. 4	RXO1+
15	TXIN15	BO0	Blue Odd Pixel Data (LSB)			
16	TXIN16	BO6	Blue Odd Pixel Data	TXOUT3-	No. 10	RXO3-
18	TXIN17	ВО7	Blue Odd Pixel Data (MSB)	TXOUT3+	No. 11	RXO3+
19	TXIN18	BO1	Blue Odd Pixel Data	TXOUT1-	No. 3	RXO1-
13	17/11/10		Blue Odd i ixel Bala	TXOUT1+	No. 4	RXO1+
20	TXIN19	BO2	Blue Odd Pixel Data			
22	TXIN20	ВО3	Blue Odd Pixel Data	TXOUT2-	No. 5	RXO2-
23	TXIN21	BO4	Blue Odd Pixel Data	TXOUT2+	No. 6	RXO2+
24	TXIN22	BO5	Blue Odd Pixel Data			
50 TXIN27 RO6		RO6	Red Odd Pixel Data	TXOUT3-	No. 10	RXO3-
				TXOUT3+	No. 11	RXO3+

5.2.2 Even pixel data (2nd pixel data)

	2nd LVDS Transmitter (DS90C383, DS90C385) Signal Interface												
Devi	ce Input Pin		Device Input Signal	Output Signal		M170E5 (CN101)							
No	Symbol	Symbol	Function	Joighai	Terminal	Symbol							
51	TXIN0	RE0	Red Even Pixel Data (LSB)										
52	TXIN1	RE1	Red Even Pixel Data			D)/50							
54	TXIN2	RE2	Red Even Pixel Data	TXOUT0-	No. 12 No. 13	RXE0- RXE0+							
55	TXIN3	RE3	Red Even Pixel Data	170010+	NO. 13	NAEU+							
56	TXIN4	RE4	Red Even Pixel Data										
2	TXIN5	RE7	Red Even Pixel Data (MSB)	TXOUT3-	No. 22	RXE3-							
			, ,	TXOUT3+	No. 23	RXE3+							
3	TXIN6	RE5	Red Even Pixel Data	TXOUT0-	No. 12	RXE0-							
4	TXIN7	GE0	Green Even Pixel Data (LSB)	TXOUT0+	No. 13	RXE0+							
6	TXIN8	GE1	Green Even Pixel Data	TXOUT1-	No. 15	RXE1-							
7	TXIN9	GE2	Green Even Pixel Data	TXOUT1+	No. 16	RXE1+							
8	TXIN10	GE6	Green Even Pixel Data	TXOUT3-	No. 22	RXE3-							
10	TXIN11	GE7	Green Even Pixel Data (MSB)	TXOUT3+	No. 23	RXE3+							
11	TXIN12	GE3	Green Even Pixel Data										
12	TXIN13	GE4	Green Even Pixel Data	TXOUT1-	No. 15	RXE1-							
14	TXIN14	GE5	Green Even Pixel Data	TXOUT1+	No. 16	RXE1+							
15	TXIN15	BE0	Blue Even Pixel Data (LSB)										
16	TXIN16	BE6	Blue Even Pixel Data	TXOUT3-	No. 22	RXE3-							
18	TXIN17	BE7	Blue Even Pixel Data (MSB)	TXOUT3+	No. 23	RXE3+							
19	TXIN18	BE1	Blue Even Pixel Data	TXOUT1-	No. 15	RXE1-							
10		DET		TXOUT1+	No. 16	RXE1+							
20	TXIN19	BE2	Blue Even Pixel Data	_									
22	TXIN20	BE3	Blue Even Pixel Data	TXOUT2-	No. 18	RXE2-							
23	TXIN21	BE4	Blue Even Pixel Data	TXOUT2+	No. 19	RXE2+							
24	TXIN22	BE5	Blue Even Pixel Data										
50	0 TXIN27 RE6		Red Even Pixel Data	TXOUT3-	No. 22	RXE3-							
				TXOUT3+	No. 23	RXE3+							

5.3 LVDS Interface (2)

5.3.1 Odd pixel data (1st pixel data)

	LVDS Transmitter (DS90C387) Signal Interface											
Device Input Pin			Device Input Signal	Output Signal		M170E5 (CN101)						
No	Symbol	Symbol	Function	Olgridi	Terminal	Symbol						
10	R10	RO0	Red Odd Pixel Data (LSB)									
9	R11	RO1	Red Odd Pixel Data			D)(00						
8	R12	RO2	Red Odd Pixel Data	A0M A0P	No. 1 No. 2	RXO0- RXO0+						
7	R13	RO3	Red Odd Pixel Data	AUP	NO. Z	KXOU+						
6	R14	RO4	Red Odd Pixel Data									
3	R17	RO7	Red Odd Pixel Data (MSB)	A3M A3P	No. 10 No. 11	RXO3- RXO3+						
5	R15	RO5	Red Odd Pixel Data	A0M	No. 1	RXO0-						
2	G10	GO0	Green Odd Pixel Data (LSB)	A0P	No. 2	RXO0+						
1	G11	GO1	Green Odd Pixel Data	A1M	No. 3	RXO1-						
100	G12	GO2	Green Odd Pixel Data	A1P	No. 4	RXO1+						
94	G16	GO6	Green Odd Pixel Data	A3M	No. 10	RXO3-						
93	G17	G07	Green Odd Pixel Data (MSB)	A3P	No. 11	RXO3+						
99	G13	GO3	Green Odd Pixel Data									
96	G14	GO4	Green Odd Pixel Data	A1M	No. 3	RXO1-						
95	G15	GO5	Green Odd Pixel Data	A1P	No. 4	RXO1+						
92	B10	BO0	Blue Odd Pixel Data (LSB)									
86	B16	BO6	Blue Odd Pixel Data	АЗМ	No. 10	RXO3-						
85	B17	ВО7	Blue Odd Pixel Data (MSB)	A3P	No. 11	RXO3+						
91	B11	BO1	Blue Odd Pixel Data	A1M	No. 3	RXO1-						
	511		Blue Gud I ixel Bata	A1P	No. 4	RXO1+						
90	B12	BO2	Blue Odd Pixel Data	_								
89	B13	ВО3	Blue Odd Pixel Data	A2M	No. 5	RXO2-						
88	B14	BO4	Blue Odd Pixel Data	A2P	No. 6	RXO2+						
87	B15	BO5	Blue Odd Pixel Data									
4	R16	RO6	Red Odd Pixel Data	A3M	No. 10	RXO3-						
				A3P	No. 11	RXO3+						

5.3.2 Even pixel data (2nd pixel data)

	LVDS Transmitter(DS90C387)Signal Interface												
Devi	ce Input Pin		Device Input Signal	Output Signal	To LTM170E5 Interface (CN101								
No	Symbol	Symbol	Function	Oigilai	Terminal	Symbol							
84	R20	RE0	Red Even Pixel Data (LSB)										
81	R21	RE1	Red Even Pixel Data	0.484	N. 40	DVEO							
80	R22	RE2	Red Even Pixel Data	A4M A4P	No. 12 No. 13	RXE0- RXE0+							
79	R23	RE3	Red Even Pixel Data	741	10. 15	TOTEO							
78	R24	RE4	Red Even Pixel Data										
75	R27	RE7	Red Even Pixel Data (MSB)	A7M	No. 22	RXE3-							
	Dos	DE-	D 15 D' 15 (A7P	No. 23	RXE3+							
77	R25	RE5	Red Even Pixel Data	A4M	No. 12	RXE0-							
74	G20	GE0	Green Even Pixel Data (LSB)	A4P	No. 13	RXE0+							
73	G21	GE1	Green Even Pixel Data	A5M	No. 15	RXE1-							
72	G22	GE2	Green Even Pixel Data	A5P	No. 16	RXE1+							
66	G26	GE6	Green Even Pixel Data	A7M	No. 22	RXE3-							
65	G27	GE7	Green Even Pixel Data (MSB)	A7P	No. 23	RXE3+							
71	G23	GE3	Green Even Pixel Data										
70	G24	GE4	Green Even Pixel Data	A5M	No. 15	RXE1-							
69	G25	GE5	Green Even Pixel Data	A5P	No. 16	RXE1+							
64	B20	BE0	Blue Even Pixel Data (LSB)										
58	B26	BE6	Blue Even Pixel Data	A7M	No. 22	RXE3-							
57	B27	BE7	Blue Even Pixel Data (MSB)	A7P	No. 23	RXE3+							
63	B21	BE1	Blue Even Pixel Data	A5M	No. 15	RXE1-							
		<u> </u>		A5P	No. 16	RXE1+							
62	B22	BE2	Blue Even Pixel Data										
61	B23	BE3	Blue Even Pixel Data	A6M	No. 18	RXE2-							
60	B24	BE4	Blue Even Pixel Data	A6P	No. 19	RXE2+							
59	B25	BE5	Blue Even Pixel Data										
76	76 R26 RE6 Red Eve		Red Even Pixel Data	A7M	No. 22	RXE3-							
	-			A7P	No. 23	RXE3+							

NOTE)

Must be connected 24th BAL pin with low and 23th DUAL pin with high in DS90C387 LVDS Transmitter

Doc . No	LTM170E5-L03	Rev.No	05-000-G-021002	Page	19 / 32
1000 . 110		110 1.1 10	05 000 0 021002	1 420	10 / 32

5.4 BACK-LIGHT UNIT

Pin No.	Input [ch1],[ch2]	Color	Fuenction
1	Hot1	Pink	High Voltage
2	Cold1	White	Ground
3	Hot2	Blue	High Voltage
4	Cold2	Black	Ground
Connector		JST BHSR-02VS-1	
Part No.		JS1 DHSK-02VS-1	

5.5 Input Signal, Basic Display Colors and Gray Scale of Each Color

												DA	TA S	SIGN	NAL									_		GRAY
C0L0R	DISPLAY				RE	ED							GRE	EEN							BL	UE				SCALE
		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	В1	В2	вз	В4	В5	В6	В7	LEVEL
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	_
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	_
BASIC	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_
COLOR	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	_
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	_
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	DARK	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
GRAY	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
SCALE		:	:	:	:	••	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	R3~R252
0F		:	:	:	:	••		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1031232
RED	↓ ↓	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R253
	LIGHT	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GO
	DARK	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1
GRAY	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G2
SCALE		:	:	:	:	• •		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	G3~G252
0F		:	:	:	:	••		:	:	:	:	:	:-	:	:	:	:	:	:	:	:	:	:	:	:	43-4232
GREEN	↓ ↓	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G253
	LIGHT	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
	DARK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
GRAY	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
SCALE		Ŀ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B252
0F		:	:	:	:	••	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	00 0202
BLUE	↓ ↓	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
	LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B255

Note) Definition of Gray:

Rn: Red Gray, Gn: Green Gray, Bn: Blue Gray (n = Gray level)

Input Signal: 0 = Low level voltage, 1 = High level voltage

Doc . No	LTM170E5-L03	Rev.No	05-000-G-021002	Page	21 / 32
----------	--------------	--------	-----------------	------	---------

6. Interface Timing

6.1 Timing Parameters (DE only mode)

2pxl/clk

SIGNAL	ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
	Frequency	1/Tc	42	-	54	MHz	
Clock	Hgh Time	Тсн	4	-	-	nsec	
	Low Time	TcL	4	-	-	nsec	(2)
Doto	Setup Time	TDS	4	-	-	nsec	(2)
Data	Hold Time	TDH	4	-	-	nsec	
Data Enable	Setup Time	TES	4	-	-	nsec	
		-	-	16.7	16.7	msec	
Frame Frequency	Cycle	Tv	1032	1066	1066	lines	
Vertical Active	Display Period	Tvd	1024	1024	1024	lines	
Disply Term	Verticle Blank Period	TvB	8	-	-	lines	
One Line Scanning Time	Cycle	Тн	672	•	844	clocks	
Horizontal Active Display Term	Display Period	THD	640	640	640	clocks	

Note 1) Test Point: TTL control signal and CLK at LVDS Tx input terminal in system

2) Internal Vcc = 3.0V

6.2 Timing diagrams of interface signal (DE only mode)

6.3 Power ON/OFF Sequence

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

NOTE.

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become abnormal screen.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

				Apj	proval
	ne Dimension				
(Refei	r to next page)				
T				T	
Ooc . No	LTM170E5-L03	Rev.No	05-000-G-021002	Page	25 / 32

8. Reliability Test

Test Items	Conditions	Time/Cycle	Sample
HTOL*	50°C , Bias	500 hrs	12
LTOL*	0°C , Bias	500 hrs	5
THB**	40°C / 95% , Bias	500 hrs	5
HTS***	70°C , No Bias	250 hrs	5
LTS***	-30°C , No Bias	250 hrs	5
Thermal Cycle	-20°C/30min ~ +60°C/30min , No bias	200 cycle	5
Box Drop	1 angle, 3 edge, 6 side, 66 cm		5
Shock (Non-operatine)	50G , $11msecSine wave , \pm x/y/z axis$	1 time/axis	3
Vibration (Non-operating)	1.5G, 10~300 Hz x/y/z axis, sweep rate: 10 min	30min/axis	3
ESD	contact: 150pF, 330 ohm, 9point	± 10kV	3
	Air: 150pF, 330 ohm, 9point	± 20kV	3
(Non-Operating)	CDM: 150pF, 330 ohm, 9point	± 10kV	3

[Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

* HTOL/ LTOL : High/Low Temperature Operating Life,

** THB : Temperature Humidity Bias

*** HTS/LTS : High/Low Temperature Storage

9. Packing

9.1 CARTON(Internal Packing)

(1) Packing Form

Corrugated fiberboard box and corrugated cardboard as shock absorber.

(2) Packing Method

Note 1) Total: Approx. 14.0 Kg

2) Acceptance number of piling: 5 sets

3) Carton size: 401(W) x 365(D) x 477(H)

4) Max accumulation quantity: 5 cartons

(3) Packing Material

No	Part Name	Quantity
1	Static electric protective sack	5pcs
2	Packing case(inner box) including shock absorber	1set
3	Pictorial marking	2pics
4	Carton	1set

10. Marking & Others

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1)Parts number: LTM170E5-L03-xxx

(2)Revision : Two letter(3)Customer Code : One letter

X X X

Revision Code

Customer Code

(4)Lot number : 3 R 1 I 485 06 B

— Cell Number

— Glass Number

— Lot Number

— Month

— Year

— Device

— Line

(5) Nameplate Indication

(6) Packing box attach

(7) Others

1.After service part

Part Name	Description
ASS'Y-LAMP(U)	LTM170E5,D2.4,L355,4PIN
ASS'Y-LAMP(L)	LTM170E5,D2.4,L355,4PIN

11. Inspection Criteria

When products are shipped, incoming inspection shall be carry out with a sampling inspection based on MIL-STD-105E level II by AQL 1.0%.

CHANGE CONTROL

Design changes may be made for this product relating to the specifications, appearance, parts used, circuits, etc., for the purpose of product improvement. If a design change is judged to affect the specifications of this product, supplier shall inform customer of the change in advance.

QUALITY CONTROL

In the event of a product failure under normal operating conditions, and in the event of product trouble or a functional disorder that can be deemed to be the responsibility of supplier, supplier shall repair the fault or replace the product free of charge within one year of the product delivery date.

However, supplier shall not bear responsibility for the quality of a product in the case of modifications other than those specified by supplier.

MAINTENANCE

The specifications of the functions of maintenance parts may be partially changed with in a range which provides for equivalent or better quality. Maintenance parts shall in principle be product units.

If manufacture of this product is stopped, supplier shall notify customer in advance.

HANDLING OF DOUBTFUL POINTS

If any doubt arises concerning a matter not stipulated in this specification, the matter is to be resolved by mutual agreement between customer and supplier, and supplier shall make efforts for improvement in good faith.

12. General Precautions

12.1 Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT back-light.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA(Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static, it may cause damage to the CMOS Gate Array IC.
- (i) Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (i) Do not disassemble the module.
- (k) Do not pull or fold the lamp wire.
- (1) Do not adjust the variable resistor which is located on the module.
- (m) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (n) Pins of I/F connector shall not be touched directly with bare hands.

12.2 Storage

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module in direct sunlight.
- (c) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

12.3 Operation

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off by the item 6.3 "Power on/off sequence"
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the back-light connector and its inverter power supply shall be a minimized length and be connected directly. The longer cable between the back-light and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage(Vs).

12.4 Others

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on)
 - Otherwise the module may be damaged.
- (d) If the module displays the same pattern continuously for a long period of time,it can be the situation when the image "Sticks" to the screen.
- (e) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

Cosmetic Outgoing Inspection Specification

(170E5-L03 SXGA Monitor TFT LCD)

Visual Display Division

Samsung

J. S. Shim Senior Manager, LCD Q&R Group

LCD TCS Group AMLCD DIVISION SAMSUNG Semiconductor Co., LTD

Address: San 24 Nongseo-Lee, Kihung-Eup, Yongin Si, Kyungki-Do, Korea

Tel. 82-2-760-7843 Fax. 82-2-760-7369

1. Outgoing Inspection

1.1 Outgoing Inspection Plan

1.1.1 Sampling Plan

+ Sample size

1.1.2 Flow Chart

Failure

*i > (

Yes

+ <u>Material Review Board or Line Stop</u>+

- 1> Same failure found over two from 1 box.(10 pcs)
- 2> Different failure found over three from 1 box.
- 3> Same failure which was found before 40% inspection over two during full inspection.

Full Inspection

* i : Quantity of Good LCDs

No

j: Quantity of failed LCDs

: 40 %

1.2 Outgoing Inspection Criteria

1.2.1 Inspection Introduction

1.2.1.1 Conditions

viewing distance $35 \sim 50 \text{ cm}$

ambient illumination 300 ~ 700 Lux (nominal 500 Lux)

ambient temperature 25 + - 5 'C

viewing angle The surface of the module and the inspector's

line of view shall be at 90 degrees.

display pattern Pure R, G, B, Black and White

inspection area active area

1.2.1.2 Defect Modes

dark / bright spots

points on the display which appear dark / bright and remain unchanged in size

dark / bright lines

lines on the display which appear dark / bright and remain unchanged in size

polarizer scratch

when the unit is lit a light, line is seen across a darker background; line does not vary in size

polarizer dent

when the unit is lit a light, light(white) spots appear against a darker background, and do not vary in size

bright/dark dot

a sub-pixel (R, G, B dot) stuck off / on

1.2.2 Mechanical Inspection

Chassis Gap max. 0.7mm

(Glue)

Silicone Gasket silicone material shall not be exposed beyond the metal

frame edge into the view area

Light Leakage there shall be no visible light around the edges of the

screen.

1.2.3. Visual Inspection

Defect Type	Count (mm)	Reject (mm)
Dark / bright spot (foreign material, Stain, Dust) The property of the content o	$0.1 < D \le 0.8$ $N \le 4$	D > 0.8
Bright line (light lint), or dark line (dark lint / hair) W L	0.01 < W <= 0.08 0.3 < L <= 2.0 N <=4	W > 0.08 L > 2.0
Polarizer scratch W L	0.01 < W <= 0.1 0.3 < L <= 5.0 N <= 3	W > 0.1 L > 5.0
Polarizer dent/bubble D	D <= 0.8 N <= 6	D > 0.8
Maximum allowable number of defects	N <= 10	N > 10

[D : diameter, W : width, L : length, N : count]

^{*} If there is none identified criteria in this specification, Samsung will refer production specification that Customer and Samsung agreed.

^{*} If there is mechanical dimension issue which has no designated tolerance, Samsung will apply natural tolerance.

1.2.4 Electrical Inspection

Defect Type	Accept	Reject
Bright dot (Fig. 1)		
random	N <= 2	N > 2
two adjacent	N <= 1	N > 1
three adjacent	N <= 0	N > 0
Dark dot, (Fig. 2)		
random	N <= 7	N > 7
two adjacent	N <= 2	N > 2
three adjacent	N <= 1	N > 1
Maximum allowable number of dot defect	N <= 7	N > 7
Minimum distance between defects, (Fig. 3)		
bright dot - to - bright dot	$L \Rightarrow 15$ mm	L < 15mm
dark dot - to - dark dot	L => 5mm	L < 5mm

[L:length, N:count]

Definitions/ Notes;

- A bright dot any Red, Green, or Blue pixel suck in the "On" mode.
- A dark dot any Red, Green, or Blue pixel suck in the "Off" mode.

Fig. 1. Bright dot defect description

[two adjacent]

Fig. 2. Dark dot defect description

[two adjacent]

Fig. 2. Dark dot defect description

[three adjacent]

Fig. 3. Minimum distance between dot defects

[bright dot - to - bright dot]

[dark dot - to - dark dot]

