Outline

- Surgical Unit
 - Exploratory data analysis
 - Model selection via best subsets
 - Forward selection
 - Subset selection
 - Diagnostics
- Body fat
 - Extra Sums of Squares
 - Identifying Outlier Observations
 - Identifying Influential Observations

Example: Surgical Unit

- A hospital surgical unit was interested in predicting survival in patients undergoing a particular type of liver operation. A random selection of 54 patients was available for analysis.
- From each patient record, the following information was extracted from the preoperation evaluation:
 - X₁: blood clotting score
 - X₂ : prognostic index
 - X₃ : enzyme function test score
 - X₄: liver function test score
 - X₅: age, in years
 - X_6 : indicator variable for gender (0 = male, 1 = female)
 - X₇: indicator variable for history of alcohol use: (0 = None, 1 = Moderate)
 - $Y_2 \cdot \text{indicator } V$
 - X₈: indicator variable for history of alcohol use: (0 = None, 1 = Severe)

These constitute the pool of potential predictor variables for a predictive regression model.

 The response variable is survival time, which was ascertained in a follow-up study.

- Task 1: we consider model selection among the first 4 predictors.
- Consider log Y as response.

```
X1 X2 X3 X4 1nY
X1 1.0000000 0.09011973 -0.14963411 0.5024157 0.2461879
X2 0.09011973 1.00000000 -0.02360544 0.3690256 0.4699432
X3 -0.14963411 -0.02360544 1.00000000 0.4164245 0.6538855
X4 0.50241567 0.36902563 0.41642451 1.0000000 0.6492627
1nY 0.24618787 0.46994325 0.65388548 0.6492627 1.0000000
```


$$ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$$
 (1)

Surgical unit example: Model selection via best subsets

```
> source("myregsub.R")
> round(my.reqsub(mydata[,1:4], lnY, nbest=6, method="exhaustive",nvmax=4),3)
  (Intercept) X1 X2 X3 X4
                         rsq
                                 rss adjr2
                                                       bic
                       0 0.427
                               7.334 0.416
                                            66.518 -22.117
                               7.408 0.410 67.696 -21.574
                      1 0.421
                     0 0.221
                                9.974 0.206 108.469 -5.511
                   0 0 0.061 12.028 0.043 141.093
                                                   4.598
                       0 0.663 4.313 0.650 20.523 -46.796
                     1 0.599
                               5.132 0.583 33.536 -37.406
                       0 0.548
                               5.783 0.531
                                            43.873 -30.961
                      1 0.483
                               6.620 0.463
                                            57.175 -23.659
                   0 1 0.430
                               7.299 0.408
                                            67.961 -18.387
                       0 0.263
                               9.437 0.234 101.937
                                                   -4.511
                       0 0.757
                               3.109 0.743
                                            3.388 -60.489
                1 1 1 0.718
                               3.615 0.701
                                            11.434 -52.339
                 0 1 1 0.612
                               4.970 0.589
                                            32.960 -35.151
                      1 0.487
                               6.568 0.456
                                            58.358 -20.091
                       1 0.759
                               3.084 0.739
                                            5.000 -56.926
```

Surgical unit example: Model selection via best subsets

Little increase in \mathbb{R}^2 after three X variables are included in the model.

	(Intercept)	Х1	Х2	ХЗ	Х4	rsq	rss	adjr2	ср	bic
3	1	1	1	1	0	0.757	3.109	0.743	3.388	-60.489
3	1	0	1	1	1	0.718	3.615	0.701	11.434	-52.339
3	1	1	0	1	1	0.612	4.970	0.589	32.960	-35.151
3	1	1	1	0	1	0.487	6.568	0.456	58.358	-20.091

The R_4^2 criterion suggests the subset (X_1, X_2, X_3) to be reasonable.

• Task 2: perform model selection among all 8 predictors.

_	round (my.re	acul	- - (m:	rd a t	ا د -	1.0	2 1	l n'	, ,	host-	5 moth	od="ovi	aauetivo"	· ' nimav-01 3	
	(Intercept)	_								rsq		adir2	cp	bic bic	,
1	1	0	0	1	0	0	0	0	0	0.428			117.409		
1	1	0	0	0	1	0	0	0	-	0.422			119.171		
1	1	0	1	0	0	0	0	0		0.221			177.865	-5.498	
1	1	0	0	0	0	0	0	0					201.811	-0.102	
1	1	1	0	0	0	0	0	0					224.727	4.602	
2	1	0	1	1	0	0	0	0		0.663		0.650		-46.814	
2	1	0	0	1	1	0	0	0		0.599		0.584		-37.443	
2	1	1	0	1	0	0	0	0		0.549		0.531		-30.989	
2	1	0	0	1	0	0	0	0		0.516		0.497		-27.262	
2	1	0	0	0	1	0	0	0		0.508		0.489		-26.314	
3	1	0	1	1	0	0	0	0		0.778		0.765		-65.326	
3	1	1	1	1	0	0	0	ō		0.757		0.743		-60.502	
3	1	0	1	1	1	0	0	0	0	0.718	3.614	0.701	36.525	-52.365	
3	1	0	1	1	0	0	0	1	0	0.681	4.086	0.662	47.304	-45.736	
3	1	0	1	1	0	1	0	0	0	0.676	4.148	0.657	48.713	-44.926	
4	1	1	1	1	0	0	0	0	1	0.830	2.179	0.816	5.751	-75.704	
4	1	0	1	1	1	0	0	0	1	0.814	2.377	0.799	10.267	-71.012	
4	1	0	1	1	0	0	1	0	1	0.789	2.705	0.772	17.777	-64.013	
4	1	0	1	1	0	1	0	0	1	0.784	2.772	0.766	19.298	-62.700	
4	1	0	1	1	0	0	0	1	1	0.780	2.818	0.762	20.352	-61.808	
5	1	1	1	1	0	0	1	0	1	0.837	2.082	0.821	5.541	-74.169	
5	1	1	1	1	0	1	0	0	1	0.836	2.103	0.819	6.018	-73.629	
5	1	1	1	1	1	0	0	0	1	0.833	2.137	0.816	6.799	-72.758	
5	1	1	1	1	0	0	0	1	1	0.832	2.156	0.814	7.227	-72.287	
5	1	0	1	1	1	0	1	0	1	0.818	2.333	0.799	11.261	-68.034	
6	1	1	1	1	0	1	1	0	1	0.843	2.005	0.823	5.787	-72.209	
6	1	1	1	1	0	0	1	1	1	0.839	2.060	0.819	7.029	-70.764	
6	1	1	1	1	1	0	1	0	1			0.818		-70.607	
6	1	1	1	1	0	1	0	1	1	0.838	2.069	0.818	7.246	-70.515	

- BIC_p : Model 1 = (X_1, X_2, X_3, X_8)
- C_p : Model 2 = $(X_1, X_2, X_3, X_6, X_8)$
- $R_{a,p}^2$: Model 3 = $(X_1, X_2, X_3, X_5, X_6, X_8)$ and Model 4 = $(X_1, X_2, X_3, X_5, X_6, X_7, X_8)$

```
> step(fit0, \sim X1+X2+X3+X4+X5+X6+X7+X8,
                                   Step: AIC=-103.83
direction="forward")
                                       lnY ~ X3
Start: AIC=-75.7
lnY ~ 1
                                       Df Sum of Sq RSS
                                                             AIC
                                       + X2
                                             1 3.01908 4.3125 -130.48
Df Sum of Sq
               RSS
                       AIC
                                       + X4
                                               1 2.20187 5.1297 -121.11
    1 5.4762 7.3316 -103.827
                                       + X1
                                               1 1.55061 5.7810 -114.66
+ X3
         5.3990 7.4087 -103.262
+ X4 1
                                       + X8
                                              1 1.13756 6.1940 -110.93
+ X2 1
         2.8285 9.9792 -87.178
                                       <none>
                                                         7.3316 -103.83
+ X8 1
        1.7798 11.0279 -81.782
                                       + X6 1 0.25854 7.0730 -103.77
+ X1 1
         0.7763 12.0315 -77.079
                                       + X5 1 0.23877 7.0928 -103.61
+ X6
          0.6897 12.1180 -76.692
                                       + X7 1 0.06498 7.2666 -102.31
                  12.8077 -75.703
<none>
          0.2691 12.5386 -74.849
+ X5
+ X7
          0.2052 12.6025 -74.575
```

Step 1 X_3 enters the model. Step 2

Step 2 X_2 enters the model.

```
Step: AIC=-130.48
                                      Step: AIC=-150.98
lnY \sim X3 + X2
                                      lnY \sim X3 + X2 + X8
Df Sum of Sq RSS
                 AIC
                                     Df Sum of Sq RSS AIC
    1 1.46961 2.8429 -150.99
                                      + X1 1 0.66408 2.1788 -163.35
+ X8
+ X1 1
        1.20395 3.1085 -146.16
                                     + X4 1 0.46630 2.3766 -158.66
+ X4 1 0.69836 3.6141 -138.02
                                     + X6 1 0.13741 2.7055 -151.66
+ X7 1 0.22632 4.0862 -131.39
                                    <none>
                                                        2.8429 -150.99
+ X5 1 0.16461 4.1479 -130.59
                                      + X5 1 0.07081 2.7721 -150.35
                 4.3125 -130.48
                                      + X7 1 0.02464 2.8182 -149.46
<none>
+ X6
       1 0.08245 4.2300 -129.53
```

Step 3 X_8 enters the model. Step 4 X_1 enters the model.

```
Step: AIC=-163.35
                                        Step: AIC=-163.81
lnY \sim X3 + X2 + X8 + X1
                                        lnY ~ X3 + X2 + X8 + X1 + X6
Df Sum of Sq RSS AIC
                                      Df Sum of Sq RSS AIC
+ X5 1 0.076782 2.0052 -163.83
+ X6 1 0.096791 2.0820 -163.81
<none>
                  2.1788 -163.35
                                       <none>
                                                           2.0820 -163.81
                                      + X7 1 0.022387 2.0596 -162.39
+ X5 1 0.075876 2.1029 -163.26
+ X4 1 0.041701 2.1371 -162.40
                                      + X4 1 0.016399 2.0656 -162.23
+ X7 1 0.022944 2.1559 -161.92
```

Step 5 X_6 enters the model. Step 6 X_5 enters the model.

 Finally, (X₁, X₂, X₃, X₅, X₆, X₈) is identified as the "best" subset of the predictor variables.

Surgical unit example: validation

- BIC_p : Model 1 = (X_1, X_2, X_3, X_8)
- C_p : Model 2 = $(X_1, X_2, X_3, X_6, X_8)$
- $R_{a,p}^2$: Model 3 = $(X_1, X_2, X_3, X_5, X_6, X_8)$ and Model 4 = $(X_1, X_2, X_3, X_5, X_6, X_7, X_8)$
- Forward regression selection: Model 3 = $(X_1, X_2, X_3, X_5, X_6, X_8)$

Based on 5-fold cross validation, all above models have similar MSPE

MSPE =
$$\frac{1}{n^*} \sum_{i=1}^{n^*} (Y_i - \hat{Y}_i)^2$$

- n* is the sample size of the validation data set.
- Ŷ_i is the ith predicted response in the validation data set. Note that the regression coefficients in Ŷ_i are obtained from the training data set.
- Y_i is the ith observed response in the validation data set.

Model 1 has fewer parameters. Based on the principle of parsimony, we choose model 1 as the final model.

Surgical unit example: outerliers

Consider the model containing variables X_1 , X_2 , X_3 , and X_8 .

Surgical unit example: influential observations

To determine the influence of cases 17, 23, 28, 32, 38, 42, and 52, we consider their Cook's distance and DFFITS values.

Threshold: 1 or $2\sqrt{p/n} = 2\sqrt{4/54} \approx 0.54$.

The influence of the case 17 is not large enough to warrant remedial measures, and consequently the other outliers also do not appear to be overly influential.

Outline

- Surgical Uni
 - Exploratory data analysis
 - Model selection via best subsets
 - Forward selection
 - Subset selection
 - Diagnostics
- Body fat
 - Extra Sums of Squares
 - Identifying Outlier Observations
 - Identifying Influential Observations

Example: Body fat

- We consider the amount of body fat (Y) to several possible predictor variables, based on a sample of 20 healthy females.
- The possible predictor variables are
 - triceps skinfold thickness (X₁)
 - thigh circumference (X_2)
 - midarm circumference (X₃)

Body fat example: sequential SS

Source of	cc.	đf	140
Variation	22	ai	MS
Regression	396.98	3	132.33
X_1	352.27	1	352.27
$X_2 X_1$	33.17	1	33.17
$X_3 X_1, X_2$	11.54	1	11.54
Error	98.41	16	6.15
Total	495.39	19	

```
> anova(lm(Y~X1+X2+X3)). # edited output
```


Body fat example

Q: can both X_2 and X_3 be dropped?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon \tag{2}$$

- $H_0: \beta_2 = \beta_3 = 0$
- H_a : not both β_2 and β_3 equal 0.
- The test statistic is

$$F^* = \frac{\text{SSR}(X_2, X_3|X_1)/2}{\text{SSE}(X_1, X_2, X_3)/(n-4)}$$

- Under the H_0 , $F^* \sim F_{2,n-4}$.
- The decision rule is to reject H_0 at significance level α if $f^* > f_{2,n-4,\alpha}$.

Body fat example

- $H_0: \beta_2 = \beta_3 = 0$
- $SSR(X_2, X_3|X_1) = 44.71.$
- $f^* = \frac{\text{SSR}(X_2, X_3 | X_1)/2}{\text{SSE}(X_1, X_2, X_3)/(n-4)} = \frac{44.71/2}{6.15} = 3.634959.$
- P-value $\mathbb{P}(F_{2,16} > f^*) = 0.06$; at the boundary of the decision rule.
- Further analysis is required.

Body fat example

Q: Can X_3 be dropped?

•
$$R_{Y3|12}^2 = \frac{\text{SSR}(X_3|X_1, X_2)}{\text{SSE}(X_1, X_2)} = \frac{11.55}{109.95} = 10.5\%$$
. [Why?]

- F-test for H_0 : $\beta_3 = 0$ gives the p-value = 0.189.
- How does the anova output differ from the lm output?

```
> summary(lm(Y~X1+X2+X3))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.085 99.782 1.173 0.258

X1 4.334 3.016 1.437 0.170

X2 -2.857 2.582 -1.106 0.285

X3 -2.186 1.595 -1.370 0.190
```

• Therefore we choose the two predictors (X_1, X_2) in the final model.

Body fat example: Outlier *Y* Observations

For the body fat example with two predictors (X_1, X_2) , we examine whether there are outlier Y observations.

- For the Bonferroni simultaneous test procedure with a family significance level of $\alpha = 10\%$, $t_{n-p-1,1-\frac{\alpha}{2n}} = 3.252$.
- $t_3 = -1.656$, $t_8 = 1.760$, and $t_{13} = -1.825$.
- None of them are outliers.

Body fat example: Outlier in *X*.

We examine whether there are outliers in X.

- 2p/n = 0.3.
- $h_{3,3} = .372, h_{15,15} = .333.$

Body fat example: DFFITS

We continue with the body fat example with the predictor variables X_1 and X_2 .

• DFFITS₃ =
$$t_3 \sqrt{\frac{h_{33}}{1 - h_{33}}} = -1.27$$
,

Though this value is larger than 1, it is close enough to 1 that the case may not be influential enough to require remedial action.

Body fat example: Cook's Distance

• Note that
$$e_3 = -3.176$$
, $h_{33} = .372 \Rightarrow D_3 = \frac{e_3^2}{p\hat{\sigma}^2} \frac{h_{33}}{(1 - h_{33})^2} = 0.49 < 1$.

The extent of the influence for case 3 may not be large enough to call for consideration of remedial measures.

Body fat example: DFBETAS

- DFBETAS₁₍₃₎ = -1.183; DFBETAS₂₍₃₎ = 1.067
 Inclusion of case 3 leads to an increase in β̂₂ but a decrease in β̂₁.
- Case 3 is potentially influential; however, the DFBETAS values don't exceed 1 by very much so that case 3 may not be so influential as to require remedial action.