

COLLEGE OF ENGINEERING PUNE

(An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Programme: B.Tech

Course Code: CT-22001

Branch: Computer Engineering

Duration: 03 Hrs

Student PRN No.

Semester: VII

Course Name: Compiler Construction

Academic Year: 2024-25

Max Marks: 60

	ALID OF A CHIEF	A PROPERTY OF THE PARTY OF	Witness Service				_
SHIPSONET GARAGES	ENVESTION.	DANGE OF S	STORY OF STREET	THE STATE OF	SERVICE STATE	AND VERSE	
	PARTY.	WHAT YES			200	STATE OF STREET	
	(SEE SEE SE	0750 565	950000000000000000000000000000000000000	THE REAL PROPERTY.	(S)	The Park	
ENGINEER STORY	DESERTED TO	校理的发现的			OF THE PARTY OF	8-3-5-11	

Instructions:

1. Figures to the right indicate the full marks.

- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of stationery, calculator etc. not allowed.

5. Write your PRN Number on Ouestion Paper.

			Marks	СО	PO
Q 1	a	 i) Give a Regular Expression and DFA for: The language { w ∈ Σ * w has an odd number of a's }. ii) Give a RE and a DFA/NFA for the language of all strings over {0, 1} * that do not end in 01. 	04	1,3,5	2,8
	ь	Answer the following i. Is the following grammar ambiguous, give justification with example. S → aSbS bSaS € ii. Eliminate left recursion from: S → (L) a L → L, S S	04	1,3,5	2,8
	С	Discuss the front-end and back-end model of compiler.	03	1,3,5	2,8
Q 2	а	Construct an SLR parsing table for the following grammar: $R \rightarrow R \mid R$ $R \rightarrow RR$ $R \rightarrow RR$ $R \rightarrow R^*$ $R \rightarrow (R)$ $R \rightarrow a$ $R \rightarrow b$ Resolve the parsing action conflicts in such a way that regular expression will be parsed normally.	06	2,3	1,2
	b	Construct the predictive parser & show the parsing table for the given grammar $S \rightarrow S + S SS (S) S^* $ a and parse the string $(a + a) * a$	04	2,3	1,2
	c	Explain the different operations/ function for Symbol Table (ST)	02	2	6
Q 3	a	Write the 3-address code for the expression $\mathbf{c} + \mathbf{a}[\mathbf{i}][\mathbf{j}]$ where a is a 2 X3 array of integers.	03	3	1

COLLEGE OF ENGINEERING PUNE (An Autonomous Institute of Government of Maharashtra.)

		1] Give the 3-address code in triple format for the following code segment: while (A < C && B > D) do if (A == 3) then C = C+1 else while (A <= D) do A = A+3 2] Consider the following syntax-directed definition (SDD).		03		
	b	SDD (in the attrib		03	3,4	2
	c	Write Syntax Direct back patching with	red Translation scheme for Boolean expression. Explain use of	04	3,4	1
Q4	a	Consider the follo i. loop invaria ii. common su iii. strength rec for (i=0; i <n; %="" *="" +="" 2)="" 4="" for(j="0;" i++)="" if(i="" j="" j++="" j<n;="" td="" x="" y="" {="" }="" }<=""><td>wing code and perform the following code optimization:- ant code motion b expression elimination duction</td><td>6</td><td>1,3, 5</td><td>2,8</td></n;>	wing code and perform the following code optimization:- ant code motion b expression elimination duction	6	1,3, 5	2,8
	b	Consider the follows z = x + 3 + y * f + g for (i = 0; i < 200; { if(z > i) { p = p + x + 3; q = q + y * f; } else	g * h	6		

COLLEGE OF ENGINEERING PUNE (An Autonomous Institute of Government of Maharashtra.)

			1	
	<pre>{ p = p + g * h; q = q \$\frac{x}{x} + 3; } If common sub expression elimination optimization is applied on the code, number of addition & multiplication in the optimized code are? Also give the optimized code.</pre>			
5	a What are different issues in code generation ,Expalin?	04	1,5	2
	Consider the following code and answer the given question. 1. t1 = -1 II. t2 = 0 III. t3 = 0 IV. t4 = 4 * t3 V. t5 = 4 * t2 VI. t6 = t5 * M VII. t7 = t4 + t6 VIII. t8 = a[t7] IX. if t8 <= max goto XI IX. t1 = t8 IX. XI. t3 = t3+1 XII. if t3 < M goto IV XIV. if t2 < N goto III XIV. if t2 < N goto III XV. max = t1 Number of Basic Blocks =and number of instructions in the largest Basic Block =? Justify your your answer.	04	4	2
	c Write short notes on:- i. Activation records ii. Cross compilers	4	4	2

END.