Chapter 1

Model definition

1.1 Notations

We consider the prediction task of a set of observations $(y^1, \dots y^T)$ given a set of input $(u^1, \dots u^T)$.

1.2 Model

We define a L layer RNN followed by a fully connected layer. At time step t,

$$\begin{cases} y_{t+1} = \tanh(W_y x_{t+1}^L + b_y) \\ x_{t+1}^l = \tanh(W_{xx}^l x_t^l + W_{xu}^l x_{t+1}^{l-1} + b_x^l) & \forall 1 \le l \le L \end{cases}$$

with $x_t^0 \equiv u_t \ \forall t \ \text{and} \ x_0^l \equiv 0 \ \forall 1 \leq l \leq L$.

Let's consider the weights of the last RNN and fully connected layers as $\theta \equiv (W^L_{xx}, W^L_{xu}, b^L_x, W_y, b_y)$. We can define a new matrix x_t at each time step corresponding to the concatenation of all RNN layers: $x_t \equiv (x_t^1 \cdots x_t^L)$. We also introduce two sequences of random noises as i.i.d real valued random variables ϵ and η , with covariance matrices Σ_y and Σ_x . We can now write our model in terms of two functions f and g as:

$$\begin{cases} y_{t+1} = f_{\theta}(x_{t+1}) + \epsilon_{t+1} & \text{observation model} \\ x_{t+1} = g_{\theta}(x_t, u_{t+1}) + \eta_{t+1} & \text{state model} \end{cases}$$
 (1.1)

In the following section, we will focus on minimizing the log likelihood

$$\log p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T}) \tag{1.2}$$

1.3 Minimization

In order to minimize 1.2, we apply an EM strategy. Let $\mu_p = (\theta_p, \Sigma_{x,p}, \Sigma_{y,p})$, we will compute at each EM step:

$$Q(\hat{\mu}_p, \mu) = \mathbb{E}_{\hat{\mu}_p} \left[\log \ p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T}) | y_{1:T} \right]$$
(1.3)

We can start by developing the log likelihood:

$$\begin{split} \log p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T}) &= \frac{1}{T} \log \left(\prod_{k=1}^{T} p_{\mu}(x_{k} | x_{k-1}, u_{k}) p_{\mu}(y_{k} | x_{k}) \right) \\ &= \frac{1}{T} \sum_{k=1}^{T} \log p_{\mu}(x_{k} | x_{k-1}, u_{k}) + \log p_{\mu}(y_{k} | x_{k}) \\ &= \frac{1}{T} \sum_{k=1}^{T} \log \left(\det(2\pi \Sigma_{x})^{-1/2} \exp(-\frac{1}{2}(x_{k} - g_{\theta}(x_{k-1}, u_{k}))^{T} \Sigma_{x}^{-1}(x_{k} - g_{\theta}(x_{k-1}, u_{k})) \right) \\ &+ \log \left(\det(2\pi \Sigma_{y})^{-1/2} \exp(-\frac{1}{2}(y_{k} - f_{\theta}(x_{k}))^{T} \Sigma_{y}^{-1}(y_{k} - f_{\theta}(x_{k})) \right) \\ &= -\frac{1}{2} \log |\Sigma_{x}| - \frac{1}{2} \log |\Sigma_{y}| \\ &- \frac{1}{2T} \sum_{k=1}^{T} (x_{k} - g_{\theta}(x_{k-1}, u_{k}))^{T} \Sigma_{x}^{-1}(x_{k} - g_{\theta}(x_{k-1}, u_{k})) \\ &- \frac{1}{2T} \sum_{k=1}^{T} (y_{k} - f_{\theta}(x_{k}))^{T} \Sigma_{y}^{-1}(y_{k} - f_{\theta}(x_{k})) \end{split}$$

We will jointly update Σ_x , Σ_y and θ iteratively. We can start by computing the explicit form of the minimum of both covariance matrices.

For Σ_y , we search the zeros of the derivate of the convex function $\Sigma_y \mapsto p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T})$.

$$\frac{\partial p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T})}{\partial \Sigma_{y}^{-1}} = \frac{1}{2} \Sigma_{y} - \frac{1}{2T} \sum_{k=1}^{T} (x_{k} - f_{\theta}(x_{k})) \cdot (x_{k} - f_{\theta}(x_{k}))'$$

$$\frac{\partial p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T})}{\partial \Sigma_{y}^{-1}} = 0 \implies \Sigma_{y} = \frac{1}{T} \sum_{k=1}^{T} (y_{k} - f_{\theta}(x_{k}))(y_{k} - f_{\theta}(x_{k}))'$$

$$\frac{\partial p_{\mu}(X_{1:T}, y_{1:T}, u_{1:T})}{\partial \Sigma_{x}^{-1}} = 0 \implies \Sigma_{x} = \frac{1}{T} \sum_{k=1}^{T} (x_{k} - g_{\theta}(x_{k-1}, u_{k}))(x_{k} - g_{\theta}(x_{k-1}, u_{k}))'$$

We now have an expression for minimizing both Σ matrices given a value of θ , but we can't compute an explicit form for minimizing θ . We can identify two approaches to jointly minimizing μ :

1. At each step of the EM algorithm, we can compute the maximum expectation for both covariant matrices given the previous value of θ , then approximate the new θ by minimizing an argmin, through gradient descent for example.

$$\begin{split} \Sigma_{y,p+1} &= \frac{1}{T} \sum_{k=1}^{T} \mathbb{E}_{\hat{\mu}_{p}} \left[(y_{k} - f_{\theta_{p}}(x_{k}))(y_{k} - f_{\theta_{p}}(x_{k}))' | y_{1:T} \right] \\ \Sigma_{x,p+1} &= \frac{1}{T} \sum_{k=1}^{T} \mathbb{E}_{\hat{\mu}_{p}} \left[(x_{k} - g_{\theta_{p}}(x_{k-1}, u_{k}))(x_{k} - g_{\theta_{p}}(x_{k-1}, u_{k}))' | y_{1:T} \right] \\ \theta_{p+1} &= \underset{\theta}{\operatorname{argmin}} \frac{1}{T} \sum_{k=1}^{T} \mathbb{E}_{\hat{\mu}_{p}} \left[(y_{k} - f_{\theta_{p}}(x_{k}))' \Sigma_{y,p+1}^{-1} (y_{k} - f_{\theta_{p}}(x_{k})) + (x_{k} - g_{\theta_{p}}(x_{k-1}, u_{k})' \Sigma_{x,p+1}^{-1} (x_{k} - g_{\theta_{p}}(x_{k-1}, u_{k})) | y_{1:T} \right] \end{split}$$

2. We can also ignore the explicit expression for the covariant matrices, and approximate both θ and Σ by gradient descent at each time step. Although we're putting aside a valuable result about Σ , this method could prove more efficient from an implementation perspective.

1.4 Sequential Monte Carlo Approach

In order to compute the conditional expectations in the previous expressions, we will sample trajectories $\xi_{1:T}^m$ associated with the weights ω_T^m with respect to the density $p_{\theta}(x|y)$, using a sequential Monte Carlo particle filter.

We sample particles iteratively. At time step k = 0, $(\xi_0^l)_{l=1}^N$ are sampled independently from the instrumental density ρ_0 and each particle is associated with the standard importance sampling weight:

$$\omega_0^l = \chi(\xi_0^l) g_0(\xi_0^l) / \rho_0(\xi_0^l)$$

At time k, we choose to propagate the previous particle (ξ_{k-1}^l) with density:

$$\pi_k(l,x) \propto \omega_{k-1}^l \nu(\xi_{k-1}^l) p_k(\xi_{k-1}^l,x)$$

Particles are associated with weights:

$$\omega_k^l = \frac{q(\xi_{k-1}^{I_k^l}, \xi_k^l)}{p_k(\xi_{k-1}^{I_k^l}, \xi_k^l)} \frac{g_k(\xi_k^l)}{\nu_k(\xi_{k-1}^{I_k^l})}$$

Using the poor man filter, we get N trajectories:

$$\xi_{0:k+1}^l = (\xi_{0:k}^{I_{k+1}^l}, \xi_{k+1}^l)$$

We can now approximate this conditional expectation for any measurable bounded function h:

$$\Phi_k^M[h] = \mathbb{E}_{\hat{\mu}_p} \left[h(x_k) | y_{1:T} \right]$$
$$= \sum_{l=1}^N \omega_T^l h(\xi_{0:T}^l)$$

1.5 Gradient descent

At each iteration of the EM algorithm, we start by generating a set of particles under the law p(x|y), that allows us to compute a explicit value for the expectation. We can then minimize this expectation, in order to approximate the new θ candidate, using a gradient descent.

$$\theta_{p+1} = \underset{\theta}{\operatorname{argmin}} \frac{1}{T} \sum_{k=1}^{T} \sum_{m=1}^{M} \omega_{T}^{m} (y_{k} - f_{\theta_{p}}(\xi_{k}^{m}))' \Sigma_{y,p+1}^{-1} (y_{k} - f_{\theta_{p}}(\xi_{k}^{m}))$$

$$+ \omega_{T}^{m} (\xi_{k}^{m} - g_{\theta_{p}}(\xi_{k-1}^{m}, u_{k})' \Sigma_{x,p+1}^{-1} (\xi_{k}^{m} - g_{\theta_{p}}(\xi_{k-1}^{m}, u_{k}))$$