MODULE 5

SPECIAL ABSOLUTELY CONTINUOUS DISTRIBUTIONS AND THEIR PROPERTIES

PROBLEMS

- 1. Let $X \sim U(0, \theta)$, where θ is a positive integer and let Y = X [X], where [x] is the largest integer $\leq x$. Show that $Y \sim U(0, 1)$.
- 2. Let $F(\cdot)$ be the d.f. of a r.v. X, where P(X=1)=p=1-P(X=0). Find the distribution of Y=F(X). Does $Y\sim U(0,1)$? Interpret your findings on light of Theorem 1.3 (i).
- 3. Let the r. v. *X* have the p.d.f

$$f(x) = \begin{cases} 6x(1-x), & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}.$$

Show that $Y = X^2(3 - 2X) \sim U(0, 1)$.

- 4. Let $X \sim U(0,1)$ and let $U = \min(X, 1 X)$. Find the p.d.f. of Y = (1 U)/U. Does Y has finite expectation?
- 5. (i) If $X \sim U(0, 1)$, find the distribution of $Y = -\lambda \ln X$, where $\lambda > 0$;
 - (ii) Let the r.v. X have the Cauchy p.d.f. $f(x) = \pi^{-1}(1+x^2)^{-1}$, $-\infty < x < \infty$. Find the p.d.f. of $Y = X^{-1}$.
- 6. If $X \sim U(0, \theta)$, where $\theta > 0$, find the distribution of $Y = \min(X, \theta/2)$. Calculate $P\left(\left\{\frac{\theta}{4} < Y < \frac{\theta}{2}\right\}\right)$.
- 7. Let $X \sim N(0, 1)$ and let

$$Y = \begin{cases} X, & \text{if } |X| \le 1 \\ -X, & \text{if } |X| > 1 \end{cases}.$$

Find the distribution of *Y*.

8. Let $X \sim N(\mu, \sigma^2)$. Find the distribution function and probability density function of $Y = X^2$.

- 9. (i) If $X \sim N(12, 16)$, find $P(X \ge 20)$, (use $\Phi(2) = 0.9772$);
 - (ii) If $X \sim N(\mu, \sigma^2)$, $P(9.6 \le X \le 13.8) = 0.7008$ and $P(X \ge 9.6) = 0.8159$, find μ, σ^2 and $P(\{X \ge 13.8 | X \ge 9.6\})$ (use $\Phi(0.9) = 0.8159$ and $\Phi(1.2) = 0.8849$).
- 10. For x > 0, show that

$$(x^{-1}-x^{-3})\phi(x) < 1 - \Phi(x) < x^{-1}\phi(x).$$
 (Hint: Use integration by parts in $(2\pi)^{\frac{1}{2}}\left(1 - \Phi(x)\right) = \int_x^{\infty} t^{-1}(te^{-\frac{t^2}{2}})dt$).

11. Let $Z \sim N(0,1)$. Find $E(Z\Phi(Z))$ and $E((Z^2\Phi(Z)))$. (Hint: Use the fact that $\phi'(z) = -z\phi(z)$ and integrate by parts.)