1.	If the sum of the squares of the reciprocals of the roots α and β of the equation $3x^2 + \lambda x - 1 = 0$ is 15, then $6(\alpha^3 + \beta^3)^2$ is
	equal to

- (1) 46 ongo // mathongo // mathongo // (2) 36 ngo // mathongo // mathongo // mathongo //

2. The sum of all integral values of $k(k \neq 0)$ for which the equation $\frac{2}{x-1} - \frac{1}{x-2} = \frac{2}{k}$ in x has no real roots, is <u>none</u>. We mather

- 3. If $\alpha, \beta \in R$ are such that 1-2i (here $i^2=-1$) is a root of $z^2+\alpha z+\beta=0$, then $(\alpha-\beta)$ is equal to:

(2):17:ongo ///. mathongo ///. mathongo ///. matho

4. The value of $3 + \frac{1}{4 + \frac{1}{3 +$

- /// mathongo /// mathongo /// (2) $2+\sqrt{3}$ /// mathongo /// mathongo /// mathongo
- (3) $3 + 2\sqrt{3}$

5. Let $p,\ q\in\ Q$. If $2-\sqrt{3}$ is a root of the quadratic equation $x^2+px+q=0$, then athongo we mathongo we have

(1) $p^2 - 4q + 12 = 0$

(2) $q^2 + 4p + 14 = 0$

- (3) $p^2 4q 12 = 0$
- $(4) q^2 4p 16 = 0$

6. Let α be a root of the equation $1+x^2+x^4=0$. Then the value of $\alpha^{1011}+\alpha^{2022}-\alpha^{3033}$ is equal to:

(1) 1

(3) $1 + \alpha$

(4) $1 + 2\alpha$

7. Let α , β be the roots of the quadratic equation $x^2 + \sqrt{6}x + 3 = 0$. Then $\frac{\alpha^{23} + \beta^{23} + \alpha^{14} + \beta^{14}}{\alpha^{15} + \beta^{15} + \alpha^{10} + \beta^{10}}$ is equal to

(1) 81

(3) 72

(4) 729

8. If α and β are the roots of the equation $375 \ x^2 - 25x - 2 = 0$, then $\lim_{n \to \infty} \sum_{r=1}^{n} \alpha^r + \lim_{n \to \infty} \sum_{r=1}^{n} \beta^r$ is equal to:

(1) $\frac{1}{12}$ (2) $\frac{21}{346}$ (4) $\frac{29}{358}$

9. Let $\alpha, \beta(\alpha > \beta)$ be the roots of the quadratic equation $x^2 - x - 4 = 0$. If $P_n = \alpha^n - \beta^n, n \in \mathbb{N}$, then $\frac{P_{15}P_{16} - P_{14}P_{16} - P_{15}^2 + P_{14}P_{15}}{P_{12}P_{14}}$ is equal to _

10. If α, β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0, \alpha > \beta$ and $P_n = \alpha^n - \beta^n$ for each positive integer n, then the value of $\left(\frac{P_{17}P_{20}+5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19}+5\sqrt{2}P_{18}^2}\right)$ is equal to

11. The sum of all the roots of the equation $|x^2 - 8x + 15| -2x + 7 = 0$ is

(1) $9 - \sqrt{3}$

- (3) $11 \sqrt{3}$
- /// mathongo ///

12. The number of the real roots of the equation $(x+1)^2+\left|x-5\right|=\frac{27}{4}$ is ____

13. Let α, β be the roots of the equation $x^2 - \sqrt{2}x + \sqrt{6} = 0$ and $\frac{1}{\alpha^2} + 1$, $\frac{1}{\beta^2} + 1$ be the roots of the equation $x^2 + ax + b = 0$. Then the roots of the equation $x^2 - (a+b-2)x + (a+b+2) = 0$ are:

(1) non-real complex numbers

(2) real are

(1) non-real complex numbers

(2) real and both negative mathons mathons

(3) real and both positive

(4) real and exactly one of them is positive

14. Let α, β be the roots of the equation $x^2 - 4\lambda x + 5 = 0$ and α, γ be the roots of the equation

$$x^2 - \left(3\sqrt{2} + 2\sqrt{3}\right)x + 7 + 3\lambda\sqrt{3} = 0$$
. If $\beta + \gamma = 3\sqrt{2}$, then $(\alpha + 2\beta + \gamma)^2$ is equal to mathongo ma

- 15. Let m and n be the numbers of real roots of the quadratic equations $x^2 12x + [x] + 31 = 0$ and $x^2 5|x + 2| 4 = 0$ respectively, where [x] denotes the greatest integer $\leq x$. Then $m^2 + mn + n^2$ is equal to
- 16. If $x^2 + 9y^2 4x + 3 = 0$, $x, y \in R$, then x and y respectively lie in the intervals mathong when mathon mathon
 - (1) $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$

(2) [1, 3] and $\left[-\frac{1}{3}, \frac{1}{3}\right]$

- (3) $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[1, 3\right]$ athongo $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[1, 3\right]$ and $\left[1, 3\right]$ mothongo $\left[-\frac{1}{3}, \frac{1}{3}\right]$
- 17. The minimum value of the sum of the squares of the roots of $x^2 + (3-a)x = 2a 1$ is (1) 6 hongo // mathongo // ma

(3) 5

- (4) 8
- **18.** The probability of selecting integers $a \in [-5, 30]$ such that $x^2 + 2(a+4)x 5a + 64 > 0$, for all $x \in R$, is:

- (3) $\frac{1}{6}$ hongo /// mathongo /// mathongo /// (4) $\frac{1}{4}$ ongo /// mathongo /// mathongo /// mathongo /// mathongo
- 19. If for some $p, q, r \in R$, not all have same sign, one of the roots of the equation $(p^2 + q^2)x^2 2q(p+r)x + q^2 + r^2 = 0$ is also a root of the equation $x^2-2x-8=0$, then $\frac{q^2+r^2}{r^2}$ is equal to-rathongo /// mathongo /// mathongo ///
- **20.** Let $a,b\in R$ be such that the equation $ax^2-2bx+15=0$ has repeated root α and if α and β are the roots of the equation $x^2-2bx+21=0$, then $\alpha^2+\beta^2$ is equal to: hongo // mathongo // mathongo // mathongo //
 - (1) 37

- (3) 68 ongo /// mathongo /// mathongo /// (4) 192 ongo /// mathongo /// mathongo /// mathongo ///
- 21. Let f(x) be a quadratic polynomial with leading coefficient 1 such that $f(0) = p, p \neq 0$, and $f(1) = \frac{1}{3}$. If the equations f(x) = 0and fofofof(x) = 0 have a common real root, then f(-3) is equal to ______. mathongo _____ mathongo ______
- 22. The set of all real values of λ for which the quadratic equation $(\lambda^2 + 1)x^2 4\lambda x + 2 = 0$ always have exactly one root in the interval (0, 1) is: / mathongo /// mathongo /// mathongo /// matho
 - (1) (-3, -1)

(3) (1, 3]

- (4) (2, 4]
- (3) (1, 3] (4) (2, 4] 23. The sum of 162^{th} power of the roots of the equation $x^3 2x^2 + 2x 1 = 0$ is ___
- **24.** Let $S = \left\{x: x \in \mathbb{R} \text{ and } \left(\sqrt{3}+\sqrt{2}\right)^{x^2-4} + \left(\sqrt{3}-\sqrt{2}\right)^{x^2-4} = 10\right\}$. Then n(S) is equal to
 - (1) 2 hongo ///. mathongo ///. mathongo ///. (2) 4 hongo ///. mathongo ///. mathongo ///. mathongo ///.

(3) 6

- (4) 0
- 25. Letathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo $S = \left\{\alpha : \log_2(9^{2\alpha - 4} + 13) - \log_2\left(\frac{5}{2} \cdot 3^{2\alpha - 4} + 1\right) = 2\right\}.$ Then the maximum value of β for which the equation $\mathbf{x}^2 - 2\left(\sum_{\alpha \in s} \alpha\right)^2 \mathbf{x} + \sum_{a \in s} (\alpha + 1)^2 \beta = 0$ has real roots, is _______ mothongo _____ mathongo
- **26.** If a+b+c=1, ab+bc+ca=2 and abc=3, then the value of $a^4+b^4+c^4$ is equal to:
- 27. The number of points, where the curve $f(x) = e^{8x} e^{6x} 3e^{4x} e^{2x} + 1$, $x \in \mathbb{R}$ cuts x-axis, is equal to...........
- 28. The equation $e^{4x} + 8e^{3x} + 13e^{2x} 8e^x + 1 = 0$, $x \in R$ has : mathong /// mathong /// mathong /// mathong

(1) four solutions two of which are negative

(2) two solutions and both are negative

- (3) no solution
- mathongo (4) two solutions and only one of them is negative
- **29.** Let $\alpha_1, \alpha_2, \ldots, \alpha_7 \alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7 + 3x^5 13x^3 15x = 0$ and $|\alpha_1| \ge |\alpha_2| \ge \ldots \ge |\alpha_7|$. Then, $\alpha_1\alpha_2-\alpha_3\alpha_4+\alpha_5\alpha_6$ is equal to ______athongo ____ mathongo ____ mathongo ____ mathongo ____ mathongo ____

30. The number of pairs (a, b) of real numbers, such that whenever α is a root of the equation $x^2 + ax + b = 0$, $\alpha^2 - 2$ is also a root of this equation, is:					
(1) 6 hongo /// mathongo /// (3) 4	(2) 18 ion (4) 2				