FONCTIONS POLYNÔMES DU SECOND DEGRÉ E01

EXERCICE N°1 J'ai compris les jeux et je maîtrise les notations

On note f la fonction carré, c'est à dire $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ et on note

 C_f sa courbe représentative dans un repère orthonormé (O, I, J) . On donne le point A(1,5; 2,25) .

- 1) Vérifiez que $A \in C_f$. 2) On pose $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) 3 \end{cases}$ et C_g sa courbe \overline{A} représentative.
- Calculez g(0) et en déduire les coordonnées du sommet de C_g . 2.a)
- Déterminez g(1,5) en vous aidant du point A. 2.b)
- 3) On pose $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x+2) \end{cases}$ et C_h sa courbe représentative.
- Calculez h(0) et en déduire les coordonnées du sommet de C_h . 3.a)
- Déterminez h(-0.5) en vous aidant du point A. 3.b)

EXERCICE N°2 Autour de la forme développée réduite

Parmi les fonctions suivantes, précisez, en justifiant, lesquelles sont des fonctions polynomiales du second degré.

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$

$$f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$

$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$
 2)
$$f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$
 3)
$$h_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (4x-3)(2x+7) \end{cases}$$

- 4) La fonction g définie pour tout réel x par $g(x) = 2(x-7)^2+1$.
- 5) La fonction h_2 définie pour tout $x \in \mathbb{R}$ par : $h_2(x) = (2x^2 + 5)(1 3x)$
- $h_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ (2x+1)(7-15x)+(1+6x)(5x-1) \end{cases}$ 6)

EXERCICE N°3 Autour de la forme développée réduite, je me prépare pour la suite

Deux définitions :

Soient f et g définies toutes les deux pour tout $x \in \mathbb{R}$.

- On appelle somme de f et g et on note f+g la fonction définie pour tout $x \in \mathbb{R}$ par : (f+g)(x) = f(x)+g(x)
- On appelle produit de f et g et on note fg la fonction définie pour tout $x \in \mathbb{R}$ par : (fg)(x) = f(x)g(x)
- 1) Montrer que la somme de deux fonctions affines ne pas être une fonction polynomiale du second degré.
- 2) Déterminer une condition nécessaire et suffisante pour que le produit de deux fonctions affines soit une fonction polynôme du second degré.

EXERCICE N°4 La méthode de complétion du carré

Le principe

- 1) Soit a un nombre réel. Démontrez que, pour tout $x \in \mathbb{R}$, $x^2 + 2ax = (x+a)^2 a^2$ **Application**
- À l'aide de l'égalité que vous venez de démontrer, déterminer la forme canonique des trinômes suivants:
- **2.b)** $x^2 + 7x 8$ **2.c)** $x^2 3x + 6$ $x^2 + 4x + 7$ **2.d)** $x^2 - ax + 5$ 2.a)
- 3) Adaptez la méthode pour déterminer la forme canonique des trinômes suivants
- $3x^2 5x + 8$ 3.a)
- 3.b) $6x^2 + 7x 2$
- $-4x^2+3x-7$ 3.c)

FONCTIONS POLYNÔMES DU SECOND DEGRÉ E01

J'ai compris les jeux et je maîtrise les notations EXERCICE N°1

On note f la fonction carré, c'est à dire $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ et on note

 C_f sa courbe représentative dans un repère orthonormé (O, I, J) . On donne le point A(1,5; 2,25) .

- 1) Vérifiez que $A \in C_f$. 2) On pose $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) 3 \end{cases}$ et C_g sa courbe \overline{A} représentative.
- Calculez g(0) et en déduire les coordonnées du sommet de C_g . 2.a)
- Déterminez g(1,5) en vous aidant du point A. 2.b)
- 3) On pose $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x+2) \end{cases}$ et C_h sa courbe représentative.
- Calculez h(0) et en déduire les coordonnées du sommet de C_h . 3.a)
- Déterminez h(-0.5) en vous aidant du point A. 3.b)

EXERCICE N°2 Autour de la forme développée réduite

Parmi les fonctions suivantes, précisez, en justifiant, lesquelles sont des fonctions polynomiales du second degré.

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$

$$f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$

$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$
 2)
$$f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$
 3)
$$h_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (4x-3)(2x+7) \end{cases}$$

- 4) La fonction g définie pour tout réel x par $g(x) = 2(x-7)^2+1$.
- 5) La fonction h_2 définie pour tout $x \in \mathbb{R}$ par : $h_2(x) = (2x^2 + 5)(1 3x)$
- $h_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ (2x+1)(7-15x)+(1+6x)(5x-1) \end{cases}$ 6)

EXERCICE N°3 Autour de la forme développée réduite, je me prépare pour la suite

Deux définitions :

Soient f et g définies toutes les deux pour tout $x \in \mathbb{R}$.

- On appelle somme de f et g et on note f+g la fonction définie pour tout $x \in \mathbb{R}$ par : (f+g)(x) = f(x)+g(x)
- On appelle produit de f et g et on note fg la fonction définie pour tout $x \in \mathbb{R}$ par : (fg)(x) = f(x)g(x)
- 1) Montrer que la somme de deux fonctions affines ne pas être une fonction polynomiale du second degré.
- 2) Déterminer une condition nécessaire et suffisante pour que le produit de deux fonctions affines soit une fonction polynôme du second degré.

EXERCICE N°4 La méthode de complétion du carré

Le principe

- 1) Soit a un nombre réel. Démontrez que, pour tout $x \in \mathbb{R}$, $x^2 + 2ax = (x+a)^2 a^2$ **Application**
- À l'aide de l'égalité que vous venez de démontrer, déterminer la forme canonique des trinômes suivants:
- **2.b)** $x^2 + 7x 8$ **2.c)** $x^2 3x + 6$ $x^2 + 4x + 7$ **2.d)** $x^2 - ax + 5$ 2.a)
- 3) Adaptez la méthode pour déterminer la forme canonique des trinômes suivants
- $3x^2 5x + 8$ 3.a)
- 3.b) $6x^2 + 7x 2$
- $-4x^2+3x-7$ 3.c)