Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

Symmetric Setting

Lecture 1 22 September 2022

Crypto Requirements: Data Secrecy

- Protect against unauthorized disclosure of the msg
 - If **A** sends a msg to **B**, no one else should understand its content

Achieving Data Secrecy: Encryption

Notation

- M: msg or plaintext
- **C**: encrypted msg or ciphertext
- **E**: encryption algorithm
- D: decryption algorithm
- Ke: encryption key
- K_d: decryption key

Symmetric Encryption

- A and B share the same secret information
 - $K = K_e = K_d$: secret

Symmetric Encryption

• Defined by three algorithm:

- $Gen(\lambda) \rightarrow (SK)$ outputs secret key SK

- $Enc(SK, m) \rightarrow c$ encrypt m using secret key SK

- $Dec(SK, c) \rightarrow m$ decrypt c using SK

Towards Encryption: Block Ciphers

 Most practical symmetric encryption schemes based on a building block called block cipher

Block Ciphers

- Ideal Cipher: for each key, get independent, random permutation
 - This is impossible!
- A good block cipher yields a (pseudo)-random permutation starting with a random key

acture 1 (22 September 2022)

Prof Antonio P Nicolos

Permutations

• A function $f:\{0,1\}^\ell \to \{0,1\}^\ell$ is a permutation if there is an inverse function $f^{-1}:\{0,1\}^\ell \to \{0,1\}^\ell$ satisfying

$$\forall x \in \{0, 1\}^{\ell} : f^{-1}(f(x)) = x$$

- This means f must be one-to-one and onto
 - For every $y \in \{0, 1\}^{\ell}$ there is a unique $x \in \{0, 1\}^{\ell}$ such that f(x) = y.

Permutations: Example

•
$$Z_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

• $QR_{11} \subset Z_{11} := \{1, 3, 4, 5, 9\}$
• $f: QR_{11} \to QR_{11}$
• $f(x) = x^2 \mod 11, \quad x \in QR_{11}$
• $1^2 \mod 11 = 1$
• $1^3 \mod 11 = 1$

Permutations: Example

- $Z_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $QR_{11} \subset Z_{11} := \{1, 3, 4, 5, 9\}$
- $f: QR_{11} \rightarrow QR_{11}$
- $f(x) = x^2 \mod 11$, $x \in QR_{11}$
 - $-1^2 \mod 11 = 1$
 - $-3^2 \mod 11 = 9$
 - $-4^2 \mod 11 = 5$
 - $-5^2 \mod 11 = 3$
 - $-9^2 \mod 11 = 4$
- $f^{-1}(x) = x^3 \mod 11$, $x \in QR_{11}$
 - $-1^3 \mod 11 = 1$
 - $-3^3 \mod 11 = 5$
 - $-4^3 \mod 11 = 9$
 - $-5^3 \mod 11 = 4$
 - $-9^3 \mod 11 = 3$

Block Ciphers

- Operate on blocks of plaintext of a certain size
- Produces outputs of the same length
- Output block should look like the result of a random permutation
- Not impossible to break—just very expensive
 - Can be broken using brute-force attacks

Block Ciphers

- $B: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$
- For a key K and input block x, output block is B(K, x)
- For each key K, denote $B_K: \{0,1\}^\ell \to \{0,1\}^\ell$ the function $B_K(x) = B(K,x)$.
- Syntactic Properties
 - 1. $B_K:\{0,1\}^\ell \to \{0,1\}^\ell$ is a permutation for every K , meaning B_k has an inverse B_K^{-1}
 - 2. B, B^{-1} are efficiently computable, where

$$B^{-1}(K, x) = B_{\kappa}^{-1}(x)$$

- Security Property
 - 1. If key is random, then $B_K(x_0)$ and $B_K(x_1)$ look independent, for any $x_0 \neq x_1$

Block Ciphers: A Broken Example

• Let $\ell = k$ and define $B : \{0,1\}^k \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell$ by

$$B_K(x)=B(K,x)=K\oplus x$$

• Then B_k has inverse B_k^{-1} where

$$B_K^{-1}(y) = K \oplus y$$

- · Does not satisfy the security property
 - $v_0 = B_k(x_0) = K \oplus x_0$
 - $y_1 = B_k(x_1) = K \oplus x_1$
 - $v_0 \oplus v_1 = x_0 \oplus x_1$
 - $y_0 = y_1 \oplus (x_0 \oplus x_1)$

Structure of a Typical Block Ciphers

- Block ciphers are usually comprised of a network of substitutions and permutations
- The network is then iterated through many rounds

A Substitution-Permutation Network

Data Encryption Standard (DES)

- 1972 NBS (now NIST) asked for a block cipher for standardization
- 1974 IBM designs Lucifer
 - Lucifer eventually evolved into DES
- Widely adopted as a standard including by ANSI and American Bankers association
 - Used in ATM machines
- Based on Feistel Structure
 - 56-bit key; 64-bit input/output block + 8 bits for parity checks
 - After 3 rounds, output block indistinguishable from a random permutation (Luby-Rackoff)

Feistel Round

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus f_{k_i}(R_{i-1})$$

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus f_{k_i}(L_i)$$

Feistel Round

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus f_{k_i}(R_{i-1})$$

Therefore:

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus f_{k_i}(L_i)$$

Feistel Structure

Concerns about DES

- Short key length
 - Can be broken in days
 - Computation can be distributed to make it faster
- Short block length
 - Repeated blocks happen too frequently
- Some theoretical attacks have been found
- Non-public design process

Triple DES (3DES)

- Expand the key length
 - $K = (K_1, K_2), |K| = 112$ bits
- $E_{K_1,K_2}(x) = DES_{K_1}(DES_{K_2}^{-1}(DES_{K_1}(x)))$
- Fairly slow, but widely used in practice

Advanced Encryption Standard (AES)

- 1998: NIST announces competition for a new block cipher
- 2001: NIST selects the Rijndael
 - 128-bit key
 - 128-bit input/output block
 - Faster than DES in software

Block Ciphers and Modes of Operations

- To encrypt m, split m in blocks m_1, \ldots, m_n , where each block m_i has length ℓ , and process each block with a block cipher.
- How should the processing proceed?
 - Different Modes of Operations!

Electronic Code Book (ECB) Mode—(Broken!)

- *Enc_K*(*m_i*):
 - $c_i = B_K(m_i), \forall i = 1, \ldots, n$
 - output c_1, \ldots, c_n

Electronic Codebook (ECB) mode encryption

Pictures from Wikipedia entry on "Modes of Operation"

anti-un 1 /22 Combourhou 202

Doof Antonio D Minol

Electronic Code Book (ECB) Mode—(Broken!) (cont'd)

Deck(c):

-
$$m_i = B_K^{-1}(c_i), \forall i = 1, ..., n$$

Electronic Codebook (ECB) mode decryption

Pictures from Wikipedia entry on "Modes of Operation"

acture 1 /22 Contamber 202

Done Ambania D. Minala

Electronic Code Book (ECB) Mode—(Broken!) (cont'd)

- Deterministic: therefore not CPA-secure
- Not even indistinguishable against eavesdroppers
 - A given input block maps always to same output block
- No Integrity
 - Can mix blocks
- Completely broken: Should never be used!

Electronic Code Book (ECB) Mode—(Broken!) (cont'd)

• Completely broken: Should never be used!

Pictures from Wikipedia entry on "Modes of Operation"

Cipher Block Chaining (CBC) Mode

- Select random IV; Set $c_0 = IV$
- Enc_K(m_i):
 - $c_i = B_K(c_{i-1} \oplus m_i), \forall i = 1, \ldots, n$
 - Output $(c_0, c_1, ..., c_n)$

Cipher Block Chaining (CBC) mode encryption

Pictures from Wikipedia entry on "Modes of Operation"

antiina 1 (22 Cantanahan 2022

Doof Antonio D Minol

Cipher Block Chaining (CBC) Mode (cont'd)

Dec_K(c):

-
$$m_i = B_K^{-1}(c_i) \oplus c_{i-1}, \forall i = 1, ..., n$$

Cipher Block Chaining (CBC) mode decryption

Pictures from Wikipedia entry on "Modes of Operation"

acture 1 /22 Contember 2022

Doof Astronia D. Nilasia

Cipher Block Chaining (CBC) Mode (cont'd)

- Randomized (IV)
- If B_K is a good block cipher, then CPA-secure
- Encryption cannot be parallelized
- No Integrity
 - Can append extra block at the end

Output Feedback (OFB) Mode

- Select random IV; Set $c_0 = r_0 = IV$
- Enck(mi):
 - $-r_{i} = B_{K}(r_{i-1})$
 - $c_i = r_i \oplus m_i, \forall i = 1, \ldots, n$
 - Output (c_0, c_1, \ldots, c_n)

Output Feedback (OFB) mode encryption

Pictures from Wikipedia entry on "Modes of Operation"

astrica 1 (22 Contambor 202

Doof Antonio D Minol

Output Feedback (OFB) Mode (cont'd)

- Dec_K(c):
 - $-r_0 = IV$
 - $-r_i = B_K(r_{i-1})$
 - $m_i = r_i \oplus c_i, \forall i = 1, \ldots, n$

Output Feedback (OFB) mode decryption

Pictures from Wikipedia entry on "Modes of Operation"

acture 1 /22 Contamber 202

Doof Automic D Mice

Output Feedback (OFB) Mode (cont'd)

- Randomized
- If B_K is a good block cipher, then CPA-secure
- Neither encryption nor decryption can be parallelized

Random Counter (R-CTR) Mode

- Select random r. Set $c_0 = r$
- Enc_K(m_i):
 - $-c_i = B_K(r+i) \oplus m_i, \forall i = 1, ..., n$
 - output $(c_0, c_1, ..., c_n)$

Random Counter (R-CTR) Encryption

Pictures from Wikipedia entry on "Modes of Operation"

Doof Astronia D. Nilsal

Random Counter (R-CTR) Mode (cont'd)

Dec_K(c):

-
$$m_i = B_K(r+i) \oplus c_i, \forall i = 1, \ldots, n$$

Random Counter (R-CTR) Decryption

Pictures from Wikipedia entry on "Modes of Operation"

acture 1 (22 Contember 202

Doof Astronia D. Nilsal

Random Counter (R-CTR) Mode (cont'd)

- Randomized
- If B_K is a good block cipher, then CPA-secure
- Both encryption and decryption can be parallelized

Random IV (R-IV) Cipher

Random Counter (R-CTR) Mode for 1 block

The sender selects a random value IV for each encryption

- $(IV, c) = (IV, B_k(IV \oplus m))$
- $m = B_{\nu}^{-1}(c) \oplus IV$