$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_n < \dots, \lambda_n \to \infty$$
 as $n \to \infty$

such that BVP (4.5.11) has a nontrivial solution if and only if $\lambda = \lambda_n, n = 1, 2, \cdots$. The solution y_{λ_n} is unique except for an arbitrary constant factor, and y_{λ_n} has exactly n-1 zeros in the open interval (a,b).

Remark. $\lambda_n, y_{\lambda_n}, n = 1, 2, 3 \cdots$, are the eigenvalues and eigenfunctions of BVP (??), respectively.

4.6 General Sturm-Lioville problems

Let us return briefly to the general Sturm-Lioville BVPs of the form

(4.6.1)
$$\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] + \left[\lambda q(x) + r(x) \right] y = 0$$

$$(4.6.2) c_1 y(a) + c_2 y'(a) = 0, d_1 y(b) + d_2 y'(b) = 0$$

where p(x), q(x) and r(x) are continuous on $[a, b], p(x) > 0, q(x) > 0, \forall x \in [a, b], c_1^2 + c_2^2 \neq 0$ and $d_1^2 + d_2^2 \neq 0$. Note that a special case of BVP (4.6.1) - (4.6.2) was discussed in Section 4.5. In the general case, the following result can be proved.

Theorem 4.6.1. There exist real numbers

$$(4.6.3) \lambda_1 < \lambda_2 < \dots < \lambda_n < \dots, \lambda_n \to \infty \text{ as } n \to \infty$$

such that BVP (4.6.1) - (4.6.2) has a nonzero solution iff $\lambda = \lambda_n$, $n = 1, 2, \dots$, and eigenfunctions

$$(4.6.4) y_1(x), y_2(x), \cdots, y_n(x), \cdots$$

are orthogonal on [a, b] with respect to the weight function q(x), i.e.

(4.6.5)
$$\int_{a}^{b} q(x)y_{m}(x)y_{n}(x) dx = \begin{cases} 0 \text{ if } m \neq n, \\ \alpha_{n} \neq 0 \text{ if } m = n. \end{cases}$$

Proof. We shall only prove (4.6.5).

Let

$$m(x) = y_m(x)y'_n(x) - y_n(x)y'_m(x) = det \begin{bmatrix} y_m(x) & y'_m(x) \\ y_n(x) & y'_n(x) \end{bmatrix}.$$

Then from (4.6.2) we have

(4.6.6)
$$\left\{ \begin{array}{l} c_1 y_m(a) + c_2 y_m'(a) = 0, \\ c_2 y_n(a) + c_2 y_n'(a) = 0, \end{array} \right\}$$

and

$$\begin{cases}
 d_1 y_m(b) + d_2 y'_m(b) = 0, \\
 d_a y_n(b) + d_2 y'_n(b) = 0.
\end{cases}$$

Since $c_1^2+c_2^2\neq 0$ and $d_1^2+d_2^2\neq 0$, it follows from (4.6.6) and (4.6.7) that

$$(4.6.8) m(a) = 0 \text{ and } m(b) = 0.$$

Now consider

$$y_n \left\{ \frac{d}{dx} \left[p \frac{dy_m}{dx} \right] + \left[\lambda_m q + r \right] y_m \right\} = 0$$

$$- y_m \left\{ \frac{d}{dx} \left[p \frac{dy_n}{dx} \right] + \left[\lambda_n q + r \right] y_n \right\} = 0$$

$$y_n \frac{d}{dx} \left[p \frac{dy_m}{dx} \right] - y_m \frac{d}{dx} \left[p \frac{dy_n}{dx} \right] + (\lambda_m - \lambda_n) q y_m y_n = 0$$

which implies

$$d(\lambda_m - \lambda_n)qy_m y_n = y_m(py_n')' - y_n(py_m')'.$$

Integrating the above equation from a to b and using integration by parts, we obtain

$$(\lambda_{m} - \lambda_{n}) \int_{a}^{b} qy_{m}y_{n} dx = \int_{a}^{b} y_{m}(py'_{n})' dx - \int_{a}^{b} y_{n}(py'_{m})' dx$$

$$= \left[y_{m}(py'_{n}) \right]_{a}^{b} - \int_{a}^{b} y'_{m}(py_{-n}) dx - \left[y_{n}(py'_{m}) \right]_{a}^{b} + \int y'_{n}(py'_{m}) dx$$

$$= y_{m}(b)p(b)y'_{n}(b) - y_{m}(a)p(a)y'_{n}(a) - y_{n}(b)p(b)y'_{m}(b) + y_{n}(a)p(a)y'_{m}(a)$$

$$= p(b)[y_{m}(b) - y_{n}(b)y'_{m}(b)] - p(a)[y_{m}(b)y'_{n}(a) - y_{m}(a)y'_{m}(a)]$$

$$= p(b)m(b) - p(a)m(a).$$

Thus from (4.6.8)

$$(\lambda_m - \lambda_n \int_a^b q y_m y_n \, dx = 0$$

which implies (4.6.5).

The significance of property (4.6.5) of the eigenfunctions is that we can obtain expansions of the functions f(x) in terms of the eigenfunctions given by (4.6.4). if we assume

(4.6.9)
$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x),$$

then multiplying both sides of (4.6.9) by $q(x)y_m(x)$ and integrating term by term from a to b yields

$$\int_a^b f(x)q(x)y_m(x) dx = a_m \int_a^b q(x)y_m^2(x) dx$$

which implies

(4.6.1)

(4.6.10)
$$a_m = \frac{1}{\alpha_m} \int_a^b f(x) q(x) y_m(x) dx, \quad m = 1, 2, \dots$$

Formula (4.6.9) with a_m given in (4.6.10) is called an eigenfunction expansion of f(x). Remarks:

- 1. We didn't address the convergence of the series (4.6.9) whose study is beyond the scope of this course.
- 2. We call the BVP (4.6.1)-(4.6.2) a regular Sturm-Liouville problem because the interval [a, b] is finite and the functions p(x) and q(x) are positive and continuous on [a, b]. Otherwise, it is called singular, which is considerably more difficult, and therefore not covered by our discussion here.