8.8 Fisher Information: Part 2

Assuming $X \sim \mathit{N}(\mu, \sigma^2)$ where σ^2 is known, $\mathit{I}(\theta) = \frac{1}{\sigma^2}$

 $Var_{\mu} = \sigma^2$ so as Var(X) increases, $I(\theta)$ decreases.

 $I(\theta)$ measures the information about a parameter that a random variable contains.

Theorem 8.8.2

$$I_n(\theta) = nI(\theta)$$

 $I_n(\theta)$ is the information in the entire sample, where $I(\theta)$ is the information in a single observation.

Question

How can we use $I_n(\theta)$ to evaluate estimates like \bar{X}_n ?

Cramer-Rao Lower Bound (CRLB)

For any arbitrary estimator of θ , T = r(x) the **Cramer-Rao** (information) Inequality States:

$$Var_{\theta}(T) \geq \frac{m'(\theta)^2}{nI(\theta)}$$

where $m(\theta) = E_{\theta}(T)$

So for an unbiased estimator $m(\theta) = \theta$ and $Var_{\theta}(T) \geq \frac{1}{nI(\theta)}$

No unbiased estimator of θ can have lower variance than the CRLB. If equality is achieved in the inequality T is said to be an efficient esitmator.

Minimum Variance Unbiased Estimators (MVUE)

#Example
Assume $X_1, ..., X_n \sim N(\mu, \sigma^2)$ where σ^2 is known, and $\alpha_1 X_1 + \alpha_2 X_2 + ... + \alpha_n X_n$ is unbiased for μ if $\sum \alpha_i = 1$

$$\lambda(x|\mu)' = \frac{(x-\mu)}{}$$

Theorem 8.8.3 (continued)

T will be an efficient estimator if and only if there exist functios $u(\theta)$ and $v(\theta)$ that may depends on θ but not $X_1,...,X_n$ and that satisfy the relation

$$T = u(\theta)\lambda'_n(x|\theta) + v(\theta)$$

Example

$$T=\bar{X}_n$$

$$\bar{X}_n = u(\mu) \sum \left(\frac{x_i - \mu}{\sigma}\right) + v(\mu)$$

where
$$u(\mu) = \frac{\sigma}{n}$$
 and $v(\mu) = \mu$