Given that $y = x^4 + x^{\frac{1}{3}} + 3$, find $\frac{dy}{dx}$.	(3)

$y = 2x + 3 + \frac{8}{x^2}, x > 0$		
		(6)

Given that $y = x^4 + 6x^{\frac{1}{2}}$, find in their simplest form	
(a) $\frac{dy}{dx}$ (b) Find $\frac{d^2y}{dx^2}$	(3)
	(3)

Given that $y = 2x^5 + 7 + \frac{1}{x^3}$, $x \ne 0$, find, in their simplest find $y = 2x^5 + 7 + \frac{1}{x^3}$.	plest form,
(a) $\frac{dy}{dx}$,	(3)
(b) Find $\frac{d^2y}{dx^2}$	(4)

5.	$y = 5x^3 - 6x^{\frac{4}{3}} + 2x - 3$	
(2	a) Find $\frac{dy}{dx}$ giving each term in its simplest form.	(4)
(t	$\text{p) Find } \frac{d^2y}{dx^2}$	(2)
		(2)

6. The curve <i>C</i> has equation	
$y = 3x^4 - 8x^3 - 3$	
(a) Find (i) $\frac{dy}{dx}$	
(ii) $\frac{d^2y}{dx^2}$	(3)
(b) Verify that C has a stationary point when $x = 2$	(2)
(c) Determine the nature of this stationary point, giving a reason for your answer.	
	(2)

7.	The curve C has equation $y = 6 - 3x - \frac{4}{x^3}$, $x \ne 0$	
	(a) Use calculus to show that the curve has a turning point <i>P</i> when $x = \sqrt{2}$	(4)
	(b) Find the x -coordinate of the other turning point Q on the curve.	(1)
	(c) Find $\frac{d^2y}{dx^2}$.	(1)
	(d) Hence or otherwise, state with justification, the nature of each of these turning P and Q .	
		(3)

8.	The curve with equation	
	$y = x^2 - 32\sqrt{(x)} + 20, x > 0$	
	has a stationary point P .	
	Use calculus	
	(a) to find the coordinates of <i>P</i> ,	
		(6)
	(b) to determine the nature of the stationary point P .	(3)

9.	A curve has equation	
	$y = 2x^3 - 4x + 5$	
	Find the equation of the tangent to the curve at the point $P(2, 13)$.	
	Write your answer in the form $y = mx + c$, where m and c are integers to be found.	
	Solutions relying on calculator technology are not acceptable.	(-)
		(5)

$y = 8x^3$ $4x/x + 3x^2 + 2$ $x > 0$			
d.,	$y = 8x^3 - 4\sqrt{x} + \frac{3x^2 + 2}{x}, x > 0$		
find $\frac{\mathrm{d}y}{\mathrm{d}x}$.		(6)	

(a) Find $\frac{dy}{dx}$ in its simplest form. (4) (b) Find an equation of the tangent to C at the point where $x = 2$ (4)	$y = \frac{(x+3)(x-8)}{x}$, $x > 0$	
(b) Find an equation of the tangent to C at the point where $x = 2$		
(b) Find an equation of the tangent to C at the point where $x = 2$	a) Find $\frac{dy}{dx}$ in its simplest form.	(4)
		(4)
	b) Find an equation of the tangent to C at the point where $x = 2$	
		(4)

	$y = 3x^2 + \frac{24}{x} + 2$	x > 0	
(a) Find, in simplest form, $\frac{dy}{dx}$			(3)
(b) Hence find the exact range	of values of x for which	ch the curve is increasing	(2)

13. The curve C_1 has equation	
$y = x^2(x+2)$	
(a) Find $\frac{dy}{dx}$	(2)
(b) Sketch C_1 , showing the coordinates of the points where C_1 meets the x-axis.	(3)
(c) Find the gradient of C_1 at each point where C_1 meets the x-axis.	(2)
The curve C_2 has equation	
$y = (x-k)^2(x-k+2)$	
where k is a constant and $k > 2$	
(d) Sketch C_2 , showing the coordinates of the points where C_2 meets the x and y	axes.

(a)	Factorise completely $x^3 - 4x$	(3)
(b)	Sketch the curve C with equation	
	$y=x^3-4x,$	
	showing the coordinates of the points at which the curve meets the <i>x</i> -axis.	(3)
The	point A with x -coordinate -1 and the point B with x -coordinate 3 lie on the curve	<i>C</i> .
(c)	Find an equation of the line which passes through A and B , giving your answer in form $y = mx + c$, where m and c are constants.	the (5)
(d)	Show that the length of AB is $k\sqrt{10}$, where k is a constant to be found.	(2)

15. The curve <i>C</i> has equation $y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \qquad x > 0$	
(a) Find $\frac{dy}{dx}$.	(4)
(b) Show that the point $P(4,-8)$ lies on C .	(2)
(c) Find an equation of the normal to C at the point P , giving your a $ax + by + c = 0$, where a , b and c are integers.	answer in the form (6)

16. The curve C has equation

$$y = (x+1)(x+3)^2$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.

(4)

(b) Show that $\frac{dy}{dx} = 3x^2 + 14x + 15$.

(3)

The point A, with x-coordinate -5, lies on C.

(c) Find the equation of the tangent to C at A, giving your answer in the form y = mx + c, where m and c are constants.

(4)

Another point B also lies on C. The tangents to C at A and B are parallel.

(d) Find the *x*-coordinate of *B*.

(3)

17.	
The curve C has equation	
$y = 5x^4 - 24x^3 + 42x^2 - 32x + 11 \qquad x \in \mathbb{R}$	
(a) Find	
(i) $\frac{dy}{dx}$	
(ii) $\frac{d^2y}{dx^2}$	
dx^2	(3)
(b) (i) Verify that C has a stationary point at $x = 1$	
(ii) Show that this stationary point is a point of inflection, giving reasons for	
your answer.	
	(4)

18.	
$f(x) = x^3 + 2x^2 - 8x + 5$	
(a) Find $f''(x)$	(2)
(b) (i) Solve $f''(x) = 0$	(2)
(ii) Hence find the range of values of x for which $f(x)$ is concave.	
	(2)

19.

Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) and a straight line l.

The curve C meets l at the points (-2,13) and (0,25) as shown.

The shaded region R is bounded by C and l as shown in Figure 1.

Given that

- f(x) is a quadratic function in x
- (-2, 13) is the minimum turning point of y = f(x)

use inequalities to define R .	(5)

20. The curve C has equation $y = f(x)$ where	
$f(x) = ax^3 + 15x^2 - 39x + b$	
and a and b are constants.	
Given	
• the point (2, 10) lies on <i>C</i>	
• the gradient of the curve at $(2, 10)$ is -3	
(a) (i) show that the value of a is -2	
(ii) find the value of b.	(4)
(b) Hanga shave that C has no stationary points	(4)
(b) Hence show that C has no stationary points.	(3)
(c) Write $f(x)$ in the form $(x - 4)Q(x)$ where $Q(x)$ is a quadratic expression to be found.	(2)
(d) Hence deduce the coordinates of the points of intersection of the curve with equation	
y = f(0.2x)	
and the coordinate axes.	
	(2)

21.

Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) where f(x) is a cubic expression in x.

The curve

- passes through the origin
- has a maximum turning point at (2, 8)
- has a minimum turning point at (6, 0)
- (a) Write down the set of values of x for which

$$f'(x) < 0 \tag{1}$$

The line with equation y = k, where k is a constant, intersects C at only one point.

(b) Find the set of values of k, giving your answer in set notation.

(2)

(c) Find the equation of C. You may leave your answer in factorised form.

(3)

22.			
A curve has equation $y = g(x)$.			
Given that			
• $g(x)$ is a cubic expression in which the coefficient of x^3 is equal to the coeff	ficient of x		
 g(x) is a cubic expression in which the coefficient of x is equal to the coefficient of x the curve with equation y = g(x) passes through the origin 			
• the curve with equation $y = g(x)$ has a stationary point at $(2, 9)$			
(a) find $g(x)$,	(7)		
	(1)		
(b) prove that the stationary point at (2, 9) is a maximum.	(2)		
	(2)		