Audio Chain in a Hearing Instrument

- Oticon
- WSAudiology
- GN Hearing

• <u>hjohansen@gnhearing.com</u>

Audio Requirements

- Audio related requirements to a Hearing Instrument:
 - Bandwidth: > 10kHz => Sample Rate > 20kHz (according to Nyquist)
 - Dynamic Range: > 120dB => Resolution > 20bit (6dB per bit)
 - S/N Ratio: > 90dB
 - Power Supply: 1-2Volts (HiFi: 50-100V)
- Other Requirements:
 - Low power consumption (HiFi: No concern), Rechargeable
 - Simple/compact (minimal area)
 - Programmable sound processing, Individual fitting

Hearing Instrument Historical Development

Mechanical -> Analog -> Digital

Digital Hearing Aid

- Low Noise Analog to Digital Front-End
- Programmable sound processing (DSP)
- Wireless radios: Bluetooth (2.4GHz), MI, Telecoil
- Class-D Amplifier
- Multiple input channels (Directionality/Beam-forming, Occlusion)

Front-End

- Sigma-Delta modulation with oversampling:
 - Relaxes Anti-Aliasing filter demands
 - Reduced output resolution (e.g. 5bit) => Quantization noise, but...
 - Clever filtering moves quantization noise outside band of interest
- Decimation filter using sequence of Half-Band filters (CIC + Polyphase AllPass), power efficient
- High Dynamic range requires AGC (Click issues)

Why Sigma-Delta Modulation?

 Simple A-to-D conversion: Q-noise spread uniformly over bandwidth

A NYQUIST OPERATION NOISE = $q \sqrt{12}$ q = 1LSB f_S f_S

 Sample rate increased by a factor K (OSR). Qnoise outside band is removed by digital filter.
For each doubling of K, SNR is reduced by 3dB

■ Basic Σ - Δ architecture, quantization noise is shaped

Decimation Filter

Total

↓32

Sound Processing

- Filtering
- Compression/Expansion
- Anti-Howl
- Frequency lowering
- Occlusion
- Tinitus
- Aritificial Intelligence

Class-D Amplifier

- Up-Sampling/Interpolation (similar to decimation)
- Sigma-Delta modulation with Dither addition and Noise Shaping
- PCM->PWM
- H-Bridge (Uses receiver as LowPass filter)

H(z)

Vbat Regulator

- Audio output level scales with H-Bridge supply
- Solution: Modulate digital gain with 1/V_{Bat} (LUT)
- System gain = K*Vbat * LUT output

Future Working Areas

- Analog
 - Low noise amplifiers
 - Sigma-Delta converters
 - MEMS microphones
 - Radios (Bluetooth, MI,...)
 - Power Management
 - H-Bridge

- **System Integration**

 - Hybrid design

- Digital
 - Matlab/Simulink
 - Multiple DSP cores
 - **Signal Processing**
 - Multiple receivers
 - Power Amp (Class G/H)
 - Feedback
 - **Audio Measurements**

- SW
 - **Algorithms**
 - Adaptive filters
 - Occlusion
 - Directionality
 - 0 ΑI

- - Layout
 - **Packing**

 - Rechargeability

Thank You!

Questions?

