R Homework

Heva, Prita, Supria

March 29, 2018

Data Visualization in R: Long-term monitoring of a rodent community

Our homework is analyzing database of a long term monitoring for rodent community in Chihuahuan Desert ecosystem near Portal, Arizona, from 1977 to 2000. At this site, 24 experimental plots were established in 1977 and divided among controls and experimental manipulations. The long-term data for the rodent community at the Portal Project has been used to address a variety of questions including

- Monitoring the population-level dynamics of desert rodents & competitive interactions among rodent species.
- Responses of rodents to climatic variability.
- The long-term stability and dynamics of a desert rodent community.

This is our R-homework documentation. The process of data visualisation using R can be divided into four steps :

- Load the library
- Read the data file
- Clean the data
- Time series data of sex and number of sample per plot type
- Correlation between length of hindfoot and weight of animal
- Changes of weight over the year based on each plot type
- Changes of length of hindfoot over the year based on each plot type
- Correlation between hindfoot length and genus
- Correlation between hindfoot length and genus

Load the library

```
library(tidyverse)
library(lubridate)
library(gridExtra)
library(ggplot2)
library(dbplyr)
library(ggpubr)
```

Read the data file

Our team decide to read the combined.csv file because it has the most comprehensive, consise, and compact data.

```
surveys_combined <- read.csv("data/combined.csv")</pre>
```

Below is the information about the data structure:

Clean the data

Our team read the raw data and transform it into consistent data that can be analyzed. It is aimed at improving the content of statistical statements based on the data as well as their reliability. This proces is Data Cleaning. In this homework, we ignore the missing data (", NULL, is.Na).

The result of data cleaning:

Data Cleaning	
Before	After
34,786	30,676

For the simple distribution tables below the 1st and 3rd Qu. refer to the first and third quartiles, indicating that 25% of the observations have values of that variable which are less than or greater than (respectively) the value listed.

```
year
                                                              species id
   month
                                                plot id
                                                                          sex
                                                                                   hindfoot length
                    day
                                                                                                      weight
                      : 1.00
                                    :1977
                                            Min.
     : 1.000
               Min.
                                                            DM
                                                                          F:10231
Min.
                              Min.
                                                   : 1.00
                                                                  :6784
                                                                                   Min.
                                                                                         : 6.00
                                                                                                 Min.
                                                                                                        : 4.00
lst Ou.: 4.000
               1st Ou.: 9.00
                              1st Ou.:1985
                                             1st Ou.: 5.00
                                                                                   1st Qu.:21.00
                                                                                                  1st Ou.: 20.00
                                                            PP
                                                                  :2104
                                                                          M:11242
Median : 7.000
               Median :16.00
                              Median :1991
                                            Median :11.00
                                                            PB
                                                                  :1977
                                                                                   Median:31.00
                                                                                                  Median : 36.00
Mean : 6.551
               Mean :16.04
                              Mean :1991
                                            Mean
                                                  :11.21
                                                            DO
                                                                  :1943
                                                                                   Mean :29.19
                                                                                                  Mean : 41.76
3rd Ou.:10.000
               3rd Qu.:23.00
                              3rd Qu.:1997
                                             3rd Qu.:17.00
                                                            RM
                                                                                   3rd Qu.:36.00
                                                                                                  3rd Ou.: 47.00
                                                                  :1677
Max.
     :12.000
               Max.
                     :31.00
                              Max. :2002
                                            Max. :24.00
                                                            OT
                                                                  :1468
                                                                                   Max. :58.00 Max. :270.00
                                                            (Other):5520
                              species
           genus
                                                            plot type
Dipodomys
              :10130
                     merriami
                                 :6784
                                        Control
Chaetodipus
              : 4088 penicillatus:2104
                                         Long-term Krat Exclosure :3188
Onychomys
              : 2115
                      baileyi
                                :1977
                                         Rodent Exclosure
Reithrodontomys: 1732
                     ordii
                                  :1943
                                         Short-term Krat Exclosure: 3572
             : 1469
                      megalotis
                                 :1677
Peromyscus
                                         Spectab exclosure
             : 1028
                      torridus
                                  :1468
Perognathus
(Other)
              : 911
                      (Other)
                                  :5520
```

Time series data of sex and number of sample per plot type

```
#create line chart plot type per year
year_plot_type <- surveys_combined_clear %>% group_by(year, plot_type) %>% ta
lly()
line_chart <- ggplot(year_plot_type, aes(x=year, y=n, color=plot_type)) +
    geom_line() + xlab("Year") + ylab("Plot Type")

#create bar chart sex per year
year_sex <- surveys_combined_clear %>% group_by(year, sex) %>% tally()
bar_chart <- ggplot(year_sex, aes(x=year, y=n, color=sex)) +
    geom_bar(stat="identity") + xlab("Year") + ylab("Sex")

#put chart to grid
timeseries_plot <- grid.arrange(line_chart, bar_chart, ncol=2, widths=c(9,6))
#save plot into image
ggsave("image/plot1.jpg", timeseries_plot, width=15, dpi=300)</pre>
```


The line graph illustrates the number of rodent sample among controls and other experimental manipulations. Each sample indicates data for every desert rodent caught on the 20 ha. And the bar graph shows the number of rodent differentiate by sex. Overall, there is a trend of decreasing number of sample but it increase in 2000.

```
#create boxplot chart weight per plot_type
boxplot_chart_weight <- ggplot(surveys_combined_clear, aes(x=weight, y=plot_t
ype))+
    geom_boxplot()+xlab("Weight (gr)")+ylab("Plot Type") + geom_jitter()

#create boxplot chart hindfoot length per plot_type
boxplot_chart_length <- ggplot(surveys_combined_clear, aes(x=hindfoot_length,
y=plot_type))+
geom_boxplot()+xlab("Hindfoot Length (mm)")+ylab("Plot Type") + geom_jitter()

#put chart to grid
frequency_plot <- grid.arrange(boxplot_chart_length, boxplot_chart_weight, nc
ol=2, widths=c(8,7))

#save plot into image
ggsave("image/plot2.jpg", frequency_plot, width=15, dpi=300)</pre>
```


This boxplot graph explain the distribution of hindfoot length and weight per plot type. Detail correlation will be explain below.

Correlation between length of hindfoot and weight of animal

Relationship between weight and length of hindfor


```
#save plot into image
ggsave("image/plot3.jpg", final.plot, width=10, dpi=300)
```

This plot means that what is the relationship between weight of animal and length of hindfoot length. Using statistic analysis we found that there is linear correlation. And the value of R-squared is greater than .5. It has shown there is 68% linearly correlated.

Changes of weight over the year based on each plot type

Weight changes over the year based on each plot


```
ggsave("image/plot4.jpg", final.wg, width=10, dpi=300)
```

This plot explains about what is the change of weight over the year for each plot_type. It has shown that there is no relationship of weight over the year. R-squared value explains that -.27 which is very low.

Changes of length of hindfoot over the year based on each plot type

Hindfoot length changes over the year based on ϵ

ntrol A Long-term Krat Exclosure Rodent Exclosure + Short-term Krat Excl

ggsave("image/plot5.jpg", final.wg, width=10, dpi=300)

This plot explains about what is the change of length of hindfoot over the year for each plot_type. It has shown that there is no relationship of weight over the year. R-squared value explains that -.28 which is very low.

Heva: Correlation between hindfoot length and genus

#heva

Heva: Correlation between hindfoot length and genus

#heva