Phân tích cú pháp xác suất

Lê Thanh Hương Bộ môn Hệ thống Thông tin Viện CNTT &TT – Trường ĐHBKHN Email: huongit-fit@mail.hut.edu.vn

Làm cách nào chọn cây đúng?

Ví du:

I saw a man with a telescope.

- Khi số luật tăng, khả năng nhập nhằng tăng
- Tập luật NYU: bộ PTCP Apple pie : 20,000-30,000 luật cho tiếng Anh
- Lựa chọn luật AD: V DT NN PP

(1) $VP \rightarrow V NP PP$

 $NP \rightarrow DT NN$

(2) $VP \rightarrow V NP$

 $\mathsf{NP} \to \mathsf{DT} \; \mathsf{NN} \; \mathsf{PP}$

Kết hợp từ (bigrams pr)

Ví du:

Eat ice-cream (high freq)
Eat John (low, except on Survivor)

Nhược điểm:

- P(John decided to bake a) có xác suất cao
- Xét:

 $P(w_3) = P(w_3|w_2w_1) = P(w_3|w_2)P(w_2|w_1)P(w_1)$ Giả thiết này quá mạnh: chủ ngữ có thể quyết định bổ ngữ trong

Clinton admires honesty

- > sử dụng cấu trúc ngữ pháp để dừng việc lan truyền
- Xét Fred watered his mother's small garden. Từ garden có ảnh hưởng như thế nào?
 - Pr(garden|mother's small) thấp ⇒ mô hình trigram không tốt
 - Pr(garden | X là thành phần chính của bồ ngữ cho động từ to water) cao hơn
- > sử dụng bigram + quan hệ ngữ pháp

Kết hợp từ (bigrams pr)

- V có một số loại bổ ngữ nhất định
 Verb-with-obj, verb-without-obj
- Sự tương thích giữa chủ ngữ và bổ ngữ:

John admires honesty

Honesty admires John ???

Nhược điểm:

- Kích thước tập ngữ pháp tăng
- Các bài báo của tạp chí Wall Street Journal trong 1 năm: 47,219 câu, độ dài trung bình 23 từ, gán nhãn bằng tay: chỉ có 4.7% hay 2,232 câu có cùng cấu trúc ngữ pháp
- Không thể dựa trên việc tìm các cấu trúc cú pháp đúng cho cả câu. Phải xây dựng tập các mẫu ngữ pháp nhỏ

Ví dụ

Luật 3

VP

VP

ADJ

VP

Luật 2

NP

DT NN NN VBX JJ CC VBX DT JJ NN

This apple pie looks good and is a real treat

Luật

1. NP→DT NN NN 2. NP→DT JJ NN

- Nhóm (NNS, NN) thành NX; (NNP, NNPs)=NPX; (VBP, VBZ, VBD)=VBX;
- Chọn các luật theo tần suất của nó

Văn phạm phi ngữ cảnh xác suất

- 1 văn phạm phi ngữ cảnh xác suất (Probabilistic Context Free Grammar) gồm các phần thông thường của CFG
- Tập ký hiệu kết thúc {w^k}, k = 1, . . . ,V
- Tập ký hiệu không kết thúc {Nⁱ}, i = 1, ...,n
- Ký hiểu khởi đầu N¹
- Tập luật {Nⁱ → ζ^j}, ζ^j là chuỗi các ký hiệu kết thúc và không kết thúc
- Tập các xác suất của 1 luật là:

 $\forall i \sum_{i} P(N^{i} \rightarrow \zeta^{j}) = 1$

Xác suất của 1 cây cú pháp:

 $P(T) = \prod_{i=1..n} p(r(i))$

Các giả thiết

 $\forall k, P(N_{ik}(k+c) \rightarrow \zeta)$ là giống nhau

 Độc lập ngữ cảnh: Xác suất 1 cây con không phụ thuộc vào các từ ngoài cây con đó

 $P(N_{ikl} \rightarrow \zeta | \text{các từ ngoài khoảng k đến l}) = P(N_{ikl} \rightarrow \zeta)$

 <u>Độc lập tổ tiên:</u> Xác suất 1 cây con không phụ thuộc vào các nút ngoài cay con đó

 $P(N_{ikl} \rightarrow \zeta | \text{các nút ngoài cây con } N_{ikl}) = P(N_{ikl} \rightarrow \zeta)$

Các thuật toán

- CKY
- Beam search
- · Agenda/chart-based search
- ...

CKY kết hợp xác suất

- Cấu trúc dữ liệu:
 - Mảng lập trình động π[i,j,a] lưu xác suất lớn nhất của ký hiệu không kết thúc a triển khai thành chuỗi i...j.
 - Backptrs lưu liên kết đến các thành phần trên cây
- Ra: Xác suất lớn nhất của cây

12

Tính Pr dựa trên suy diễn

- Trường hợp cơ bản: chỉ có 1 từ đầu vào
 Pr(tree) = pr(A→ w_i)
- Trường hợp đệ qui: Đầu vào là xâu các từ
 A⇒w_{ij} if ∃k: A→BC, B ⇒w_{ik}, C ⇒w_{kj}, i≤k ≤j.
 p[i,j] = max(p(A→BC) x p[i,k] x p[k,j]).


```
function CYK(words,grammar) returns best_parse
 Create and clear p[num_words,num_words,num_nonterminals]
 # base case
 for i = 1 to num\_words
   for A = 1 to num\_nonterminals
      if A \rightarrow w_i is in grammar then
         \pi[i, i, A] = P(A \rightarrow w_i)
 # recursive case
 for j = 2 to num\_words
   for i = 1 to num\_words-j+1
      for k = 1 to j-1
         for A = 1 to num_nonterminals
         for B = 1 to num\_nonterminals
         for C = 1 to num\_nonterminals
            prob = \pi[i, k, B] \times p[i+k, j-k, C] \times P(A \rightarrow BC)
            if (prob > \pi[i, j, A]) then
               \pi[i,j,A] = \text{prob}
              B[i,j,A] = \{k,A,B\}
```

TÍnh xác suất Viterbi (thuật toán CKY) S - NP VP 1.0 NP → NP PP 0.4 PP -- P NP 1.0 $NP \rightarrow astronomers$ 0.1 $VP \rightarrow V NP$ 0.7 NP → ears 0.18 $\mathsf{VP} \,\to\, \mathsf{VP} \; \mathsf{PP}$ 0.3 NP → saw 0.04 $P \rightarrow with$ NP → stars 0.18 NP → telescopes 0.1 $\delta_{NP} = 0.1$ 0.0126 0.0009072 0.009072 2 0.126 $\delta_{NP} = 0.01296$ $0.0 \delta_{PP} = 0.18$ $\delta_{NP} = 0.18$ 0.18 astronomers saw

Làm giàu PCFG

- PCFG đơn giản hoạt động không tốt do các giả thiết độc lập
- Giải quyết: Đưa thêm thông tin
 - Phụ thuộc cấu trúc
 - Việc triển khai 1 nút phụ thuộc vào vị trí của nó trên cây (độc lập với nội dung về từ vựng của nó)
 - Ví dụ: bổ sung thông tin cho 1 nút bằng cách lưu giữ thông tin về cha của nó: ^SNP khác với ^{VP}NP

25

Làm giàu PCFG

- PCFG từ vựng hóa: PLCFG (Probabilistic Lexicalized CFG, Collins 1997; Charniak 1997)
- Gán từ vựng với các nút của luật
- Cấu trúc Head
 - Mỗi phần tử của parsed tree được gắn liền với một lexical head
 - Để xác định head của một nút trong ta phải xác định trong các nút con, nút nào là head (xác định head trong vế phải của một luật).

26

Làm giàu PLCFG

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) 3*10⁻¹⁰$ $<math>VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) 8*10⁻¹¹$

Tại sao dùng PLCFG

- Tính ngoại lệ (exception) của ngôn ngữ
- Sự phân loại theo cú pháp hiện tại chưa thể hiện hết đặc tính hoạt động của từng từ vưng.
- Từ vựng hóa luật CFG giúp bộ phân tích cú pháp thực hiện chính xác hơn

Hạn chế của PLCFG

VP -> VBD NP PP

VP(dumped) -> VBD(dumped) NP(sacks)
PP(into)

- Không có một corpus đủ lớn!
 - Thể hiện hết các trường hợp cú pháp, hết các trường hợp đối với từng từ.

Penn Treebank

- Penn Treebank: tập ngữ liệu có chú giải ngữ pháp, có 1 triệu từ, là nguồn ngữ liệu quan trọng
- Tính thưa:
 - có 965,000 mẫu, nhưng chỉ có 66 mẫu WHADJP, trong đó chỉ có 6 mẫu không là how much hoặc how many
- Phần lớn các phép xử lý thông minh phụ thuộc vào các thống kê mối quan hệ từ vựng giữa 2 từ liền nhau:

30

Đánh giá độ chính xác của PTCP

- Độ chính xác của parser được đo qua việc tính xem có bao nhiêu thành phần ngữ pháp trong cây giống với cây chuẩn, gọi là gold-standard reference parses.
- Độ chính xác (Precision) =

% trường hợp hệ gán đúng tổng số trường hợp hệ gán

(%THợp hệ tính đúng).

Độ phủ (Recall) =

% số trường hợp hệ gán đúng tổng số trường hợp đúng (%THợp hệ tính đúng so với con người).

32

