3° de Secundaria Unidad 2 2023-2024

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Deduce información acerca de la estructura atómica a partir de datos experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.

		~+		\sim	-		۰
	u		uc	и.	11		
•	•			~~		٠.	۰

Pregunta	Puntos	Obtenidos	Pregunt a	F
1	5		10	
2	5		11	
3	5		12	
4	5		13	
5	5		14	
6	5		15	
7	5		16	
8	5			
9	10		Tot al	

${\bf Pregunta}$	Puntos	Obtenidos
10	10	
11	5	
12	5	
13	5	
14	10	
15	10	
16	5	
Tot al	100	

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- $3 O_2 + energía \uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- $b \quad \mathrm{Ba(NO_3)_2} + \mathrm{K_2SO_4} \longrightarrow \mathrm{BaSO_4} + \mathrm{KNO_3}$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- $\mathbf{c} \quad \text{CaCO}_3(\mathbf{s}) \longrightarrow \text{CaO}(\mathbf{s}) + \text{CO}_2$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- - A Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 2 de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O \longrightarrow H_2 + O_2$$

Solución:

Si representamos la ecuación química con átomos de Ahora, hay 4 H en los reactivos y 2 H en los productos, distintos colores para cada elemento, tenemos:

> $H_2O + \longrightarrow$ H_2 \odot

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H₂O.

por lo que hay que multiplicar por 2 al H₂.

 $2 \,\mathrm{H}_2\mathrm{O} \quad + \quad \longrightarrow$ \odot **₯** \odot

Por lo tanto, la ecuación química balanceada es:

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$

Solución:

distintos colores para cada elemento, tenemos:

 H_2O

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

> CO_2 $2 H_2 O$

Si representamos la ecuación química con átomos de Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Ejercicio 3	de 5 puntos
Balancea la siguiente ecuación química:	
$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$	
E A	
Ejercicio 4	de 5 puntos
Balancea la siguiente ecuación química:	
$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$	
Ejercicio 5	de 5 puntos
Balancea la siguiente ecuación química:	
$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$	

Ejercicio 6	de 5 puntos							
Balancea la siguiente ecuación química:								
$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$								
Ejercicio 7 de 5 puntos								
Ejercicio 7	de 5 puntos							
Ejercicio 7 Balancea la siguiente ecuación química:	de 5 puntos							
	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							
Balancea la siguiente ecuación química:	de 5 puntos							

Ejercicio 8 _____ de 5 puntos Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (1) y electrones (2). Especie Símbolo (+) (1) (2)

Especie	Símbolo	\oplus	1	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 9	de 10 puntos									
Relaciona cada elemento con las características que le corresponden.										
a Titanio	A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.									
b Oro	lacktriangle Elemento metálico con Z $= 31.$									
C Helio	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.									
d Boro	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.									
eRadón	E Elemento con 22 protones y 22 electrones.									
fYodo	F Elemento de la familia de los Halógenos con 74 neutrones.									
9 Bismuto	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.									
h Radio	$\stackrel{\textstyle f (H)}{\textstyle f (H)}$ Elemento no metálico con Z $=83$.									
i Galio	(I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.									
j Silicio	① Metal brillante utilizado en joyería.									

Ejercicio 10 de 10 puntos Relaciona la especie química con la cantidad de protones y electrones de valencia. 20 protones y 2 electrones de valencia. (A) Ión oxígeno (O^-) **b** _____ 9 protones y 8 electrones de valencia. (B) Nitrógeno (N) c _____ 15 protones y 5 electrones de valencia. C Silicio (Si) **d** ______ 8 protones y 7 electrones de valencia. **e** _____ 34 protones y 6 electrones de valencia. (D) Calcio (Ca) f _____ 14 protones y 4 electrones de valencia. (E) Ión Fluor (F−) 9 _____ 7 protones y 5 electrones de valencia. (F) Oxígeno (O) h _____ 3 protones y 2 electrones de valencia. (G) Neón (Ne) i _____ 8 protones y 6 electrones de valencia. (H) Ión Litio (Li⁺) j _____ 10 protones y 8 electrones de valencia. (I) Fósforo (P) (J) Selenio (Se)

Ejercicio 11 de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Aluminio (Al³⁺)

(B) Ión de Nitrógeno (N³⁻)

(C) Ión de Flúor (F⁻)

(D) Litio (Li)

(E) Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

(I) Ión de Hierro (Fe³⁺)

(I) Fósforo (P)

- 2 _____ 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- 9 _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 12 ____ de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - E Ninguna de las anteriores
- **b** ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a derecha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - (D) Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13 de 5 puntos

Unidad 2

Relaciona cada concepto con su definición.

- A Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- o ____ Diagrama de esferas.
- **b** ____ Fórmula estructural.
- c ____ Fórmula condensada.
- **d** <u>—</u> Diagrama de esferas y barras.

Ejercicio 14 ____ de 10 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

• Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

Ejercicio 15 ____ de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

Elemento	Grupo	Subgrupo	Período	Tipo													
Oro						<u> </u>	 		_	_	_		_				
Potasio																	
Paladio								\Box	\Box	\perp	\Box	\Box					
Yodo																	
1000																	
Samario								\Box	\Box	\perp	\Box	\Box					

Ejercicio 16	de 5 puntos										
Señala en cada uno de los enunciados si la sentencia es falsa o verdadera.											
• La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.										
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso										
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.										
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso										
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	M Una fórmula química sólo expresa la composición cualitativa de una sustancia.										
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso										
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de										
☐ Verdadero ☐ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.										
e Los metales se ubican a la derecha y al centro de la tabla periódica.	☐ Verdadero ☐ Falso										
☐ Verdadero ☐ Falso	Él neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.										
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso										
☐ Verdadero ☐ Falso	O La masa de un neutrón es similar a la del protón.										
9 La fórmula H ₂ O expresa que la molécula de agua está	☐ Verdadero ☐ Falso										
constituida por dos átomos de oxígeno y uno de hidrógeno. Urdadero Falso	ρ Las únicas partículas elementales en el núcleo, son los protones y neutrones.										
h En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica	☐ Verdadero ☐ Falso										
que hay 4 átomos de carbono. □ Verdadero □ Falso	Page de la compact de masa representa la suma de protones y neutrones.										
i Al número entero positivo, negativo o cero que se asigna	☐ Verdadero ☐ Falso										
a cada elemento en un compuesto, se denomina número de oxidación.	r El número total de electrones en un átomo lo determina el										
☐ Verdadero ☐ Falso	grupo al que pertenece. ☐ Verdadero ☐ Falso										
j En la construcción de una fórmula química se escribe primero											
la parte positiva y enseguida la negativa.	S Los protones y neutrones son partículas constituidas por quarks.										
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso										

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{e}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}{\overset{\text{Neon}}}}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\Lambda_{ m r}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$ Kriptón	$\sum_{\text{Xenón}}^{54}$	$\mathop{Rad \circ n}\limits^{86}$	118 294 Oganesón	$\sum_{\text{Luterio}}^{71} \frac{174.97}{\text{Luterio}}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio	
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17-35.453}$	$\Pr_{\text{Bromo}}^{35 \ 79.904}$	53 126.9 T	$\mathop{\rm At}_{\mathop{\sf Astato}}^{210}$	$\frac{117}{T} \frac{292}{S}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{T73.04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tulio	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{c}}$	
	15 VA	$\sum_{ ext{Nitr\'ogeno}}^{ ext{7}}$	$\sum_{F\'osforo}^{15\ 30.974}$	${\overset{33}{\mathrm{AS}}}_{74.922}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\mathbf{Bismuto}}$	$\sum_{\text{Moscovio}}^{288}$	$\frac{68 167.26}{\text{Erbio}}$	Fermio 257	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{\text{Silicio}}$	$\overset{32}{\text{CG}}$	$\mathop{Sn}_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}_{\text{D}}^{207.2}$	114 289 Flerovio	$\displaystyle \frac{67 164.93}{H0}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\prod_{\text{Aluminio}}^{13 26.982}$	$\overset{31}{\mathbf{Galo}}$	\prod_{Indo}^{49}	81 204.38	$\overset{\text{113}}{N}\overset{284}{h}$	$\bigcup_{\text{Disprosio}}^{\textbf{66}}$	$\overset{98}{Cf}$	
			12 IIB	$\overset{30}{\mathrm{Zn}}\overset{65.39}{\mathrm{c}}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{\text{Mercurio}}$	$\bigcup_{\text{Copernicio}}^{112} \bigcup_{\text{Spernicio}}^{285}$	$\prod_{Terbio}^{65-158.93}$	97 247 BK	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{U}}}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}$	$\underset{\text{Roentgenio}}{\text{Ra}}$	$\overset{64}{\text{Cadolinio}}$	$\overset{96}{Cm}^{247}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{i=1}^{58.693}$	$\Pr^{46 106.42}$	$\Pr^{78-195.08}_{\textbf{P}}$	$\bigcup_{\text{Darmstadtio}}^{281}$	$\overset{\textbf{63}}{E}\overset{151.96}{\textbf{u}}$	$\underset{\text{Americio}}{Am}$	
			9 VIIIB	$\overset{27}{\overset{58.933}{\bigcirc}}$	$\mathop{Rh}\limits^{45 \ 102.91}_{\text{Rodio}}$	$\prod_{ ext{Iridio}}^{ ext{77}}$	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Putonio}^{244}$	
		m	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}_{\text{Puthenio}}^{44 \ 101.07}$	$\overset{76}{\text{OS}}\overset{190.23}{\text{OSmio}}$	$\overset{108}{H_{\text{assio}}}^{277}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{M}}\overset{54.938}{\mathbf{n}}$ Manganeso	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{\mathrm{Renio}}_{Renio}^{75}$	$\underset{\text{Bohrio}}{\underline{107}}$	60 144.24 Neodimio	92 238.03 Uranio	
	Simbología:	Negro: I Gris: Si	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$	\overline{W}	106 266 SS Seaborgio	$\sum_{\mathbf{Praseodymio}}^{59} 140.91$	$\overset{91}{\text{Pa}}\overset{231.04}{\text{Protactinio}}$	
	Sim	$\mathbf{S}_{ ext{Simbolo}}^{ ext{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\prod_{ ext{Tantalo}}^{73} 180.95$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\bigcirc} \overset{140.12}{\bigcirc}$	90 232.04 Th	
			4 IVB	22 47.867 Titanio	$\sum_{ ext{Circonio}}^{40\ 91.224}$	$\mathop{\rm Hafthic}^{72}$	$\Pr^{104}_{\text{Rutherfordio}}$	$\overset{57}{La}_{\text{Lantánido}}$	$\overset{89}{Ac}_{\text{Actinio}}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71 * K	.: 89-103 .: * .: Actínido	s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}\overset{87.62}{ ext{rondio}}$	$\mathop{Bario}\limits_{\text{Bario}}$	$\mathop{Radio}^{88}_{\text{Padio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	de al o	Lantánidos/Actínidos
1 IA	$\prod_{Hidr\acute{ogeno}}^{1}$	3 6.941 Litio	$\overset{\text{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	$\mathbf{\hat{c}}_{\mathbf{S}}$	$\overset{87}{\text{Francio}}$	Metales Metales Metal	Metaloide No metal Halógeno Gases Nobles	Lantánic
		2	R	4	Ŋ	9	7			