

SOC SIF 应用说明

1. 说明概述

本文档仅应用于 SIF 通讯,目的是方便使用者应用 SIF,为了便于理解,本文档配套了相关的源代码,下面描述可能会侧重代码的说明,SFR 的具体应用可查阅 SOC 相关规格(比如 SC91F73 规格书),在此不多赘述。

2. 资源描述

2.1 SIF(serial interface)

2.1.1 SIF 简述

SIF 即串口通讯接口,由数据线 SDA 和时钟线 SCL 构成串行总线,电气特性类似 IIC 总线,使用者可通过对相关 SFR 的简单设置,即可完成接收和发送数据。此 SIF 包括主从两种模式,主模式完全兼容 IIC 总线,通讯速度为 400K@16M、200K@8M。

2.1.2 SIF 与 IIC 的差异

- ① SIF 选择主模式时,相当 IIC 总线上的主机; SIF 选择从模式时,类似 IIC 总线上的从机,但是该从机没有内置器件地址。
- ② SIF 的数据帧格式为 Byte(数据信号)传输(发送/接收), 而 IIC 为地址信号(发送/接收)+数据信号。
- ③ SIF 在通讯时,主模式只有在发送 STOP 之后才能重新 START,而 IIC 主机在通讯中则不需要这样的条件。
- ④ SIF 的数据传输可选择是否带响应位,但 IIC 数据传输必须带响应位。

2.2 通讯时序

- ① 通讯空闲时(IDLE 模式),SDA 和 SCL 均为高电平,仅在此状态下, 主模式才能发送 START 信号。
- ② 通讯时(BUSY 模式),默认 SDA 高电平表示 1,低电平表示 0,但 SIF 可做内部反向设置。未加特殊说明,均以默认规则为准。
- ③ 通讯时,主从模式均在 SCL 下降沿准备数据,在 SCL 上升沿读取数据,SDA 线上的数据在 SCL 的高电平周期保持稳定,而只在 SCL 的低电平周期内发生改变,在一个 SCL 周期传输 1bit 数据。
- ④ SCL 高电平时, SDA 发生跳变,由高电平向低电平的跳变产生 START 信号,由低电平向高电平的跳变产生 STOP 信号。(见图 1)

图 1. SIF 通讯启动和停止信号

⑤ 发送 Data 线上的每个字节为 8 位,每次传输的字节数量不受限制,每个字节后可选择是否带响应位,数据传输从最高位 MSB 开始。图 2 为带响应位的 SIF 数据传输。

图 2. 带响应位的 SIF 通讯传输

⑥ 当数据传输带响应应答位时,响应时钟脉冲由 SIF 的主模式产生,在响应的时钟脉冲期间,发送端会释放 SDA 线,接收端若将 SDA 线拉低,使它在这个时钟脉冲的高电平期间保持稳定的低电平,则表明应答(ACK),若保持高电平,则表明不应答(NACK)。图 3 为 SIF 通讯应答时序。

图 3. SIF 通讯应答时序

⑦ 每一字节正常传送成功后,接收端均会以 ACK 向发送端响应,告知

数据接收完成。但当主模式读取数据时,主模式可在最后一个字节接收完成后发送一个 NACK 响应,告知从模式数据帧结束,从模式需释放数据线,接收主模式产生一个 STOP 信号。

3. 通讯模块

3.1 主通讯模块

SIF Master 可采用查询和中断方式,例程中采用查询方式。该模块由两部分组成: SIF Master 基础通讯模块和 SIF Master 应用通讯模块。

3.1.1 SIF Master 基础通讯模块

该模块选择 SIF Master 8+1 通讯,即带响应的 SIF 通讯模式。模块中提供了 SIF Master 应用通讯模块可调用的函数,包括: SIF 初始化设置、发送 START、发送 STOP、发送 1 byte 数据、接收 1 byte 数据、读取应答、发送应答、发送无应答。这些函数可以根据具体的应用有选择性的调用,相关寄存器的设置,可参考 SC91F73 规格书中 SIF 部分。

3.1.2 SIF Master 应用通讯模块

该应用通讯模块仅做参考,可在根据实际应用进行更改。模块提供了四种 SIF 主模式应用

① SIF Master (单) 多字节写

功能为: SIF Master 发送单个或者多个字节,发送成功或者从模式没有响应,均会发送 STOP。

② SIF Master (单) 多字节读

功能为: SIF Master 接收单个或者多个字节,最后一个字节读完, 发送 NOACK,之后发送 STOP。

③ SIF Master 写读单字节

功能为: SFI Master 发送 1byte 数据, Slave 接收该数据, 又发送给 Master, Master 成功接收该数据, 发送 NOACK, 之后发送 STOP。

④ SIF Master 读写单字节

功能为: SIF Master 接收 Slave 发来的 1byte 数据,回复应答,并将该数据发送给 Slave,完成发送,进入 STOP。

注:字节传输完毕之后,总线需要空闲一段时间,用于数据资料的准备,建议 延迟 50us 以上。

3.2 从通讯模块

3.2.1 SIF Slave 通讯说明

SIF Slave 可采用查询和中断方式,考虑到应用,建议采用中断方式。需要注意: Slave 的 4 种动作(接收 START、接收 STOP、发送 Date、接收 Date)共用一个中断向量,当某个动作完成时,硬件会置起其对应的中断标志,这些标志需要用户软件及时清除,同时

设置 Slave 的状态(下个动作是接收或者发送,其中 START 动作是硬件自动设置为接收状态)。本模块采用中断方式与 Master 进行通讯。

3.2.2 SIF Slave 应用通讯模块

该模块与 SIF Master 应用通讯模块——对应,完成相应的 SIF Slave 的功能。包括: SIF Slave (单) 多字节读、SIF Slave (单) 多字节写、SIF Slave 读写单字节、SIF Slave 写读单字节。

① SIF Slave (单) 多字节读 功能为: SIF Slave 接收 Master 发送的(单)多个字节。该过程 Slave 均保持接收状态。

② SIF Slave (单) 多字节写

功能为: SIF Slave 向 Master 发送(单)多个字节。该过程简单描述为: Slave (硬件自动切换为接收)接收 START—>用户切换状态为发送,发送数据—>切换状态为接收,完成对 STOP 的接收。

③ SIF Slave 读写单字节

功能为: SIF Slave 接收 Master 发送的单字节数据,又将该数据发送给 Master,Master 收到数据,发送 NOACK,并发送 STOP。该过程简单描述为: Slave(硬件自动切换为接收)接收 START—>用户切换状态为接收,接收数据—>整理数据,准备发送,切换状态为发送—>发送完成数据,判断 Master 发送 NOACK,如果发送 NOACK,则切换状态为接收,完成对 STOP 的接收。

④ SIF Slave 写读单字节

功能为: SIF Slave 向 Master 发送单字节数据, Master 收到该数据, 并发送给 Slave。该过程简单描述为: Slave(硬件自动切换为接收)接收 START—>用户切换状态为发送—>发送完成数据, 切换状态为接收—>接收完成数据, 同时完成 STOP 的接收。

4. 源代码