Learning-Accelerated ADMM for Stochastic Power System Scheduling with Numerous Scenarios

Ali Rajaei, Olayiwola Arowolo, Jochen L. Cremer

IEEE Transactions on Sustainable Energy, 2025

Ali Rajaei

PhD student at Delft Al Energy Lab,

Delft University of Technology.

Research focus: Machine learning for power system optimization.

M.Sc. & B.Sc. at Electrical Engineering, Sharif University of Technology, Iran (2019, 2017).

RES integration and uncertainty

- RES integration and uncertainty
- Two-stage stochastic scheduling
 - Stochastic multi-period optimal power flow (St-MP-OPF)

- RES integration and uncertainty
- Two-stage stochastic scheduling
 - Stochastic multi-period optimal power flow (St-MP-OPF)

- RES integration and uncertainty
- Two-stage stochastic scheduling
 - Stochastic multi-period optimal power flow (St-MP-OPF)

- RES integration and uncertainty
- Two-stage stochastic scheduling
 - Stochastic multi-period optimal power flow (St-MP-OPF)

- RES integration and uncertainty
- Two-stage stochastic scheduling
 - Stochastic multi-period optimal power flow (St-MP-OPF)
- Computational complexity in large-scale systems with numerous scenarios

Stochastic scheduling

$$\min \sum_{s \in \Omega^s} \sum_{t \in \mathcal{T}} f(z_{t,s})$$

s.t.
$$h(z_{t,s}) \le 0$$
 $t \in \mathcal{T}, s \in \Omega^s$

ADMM-based Stochastic scheduling

$$\min \sum_{s \in \Omega^s} \sum_{t \in \mathcal{T}} f(z_{t,s})$$

s.t.
$$h(z_{t,s}) \le 0$$
 $t \in \mathcal{T}, s \in \Omega^s$

$$x = z_{t0,s} : \lambda_s \quad t \in \mathcal{T}$$

Consensus constraint

ADMM-based Stochastic scheduling

$$\min \mathcal{L}_{\rho} = \sum_{s \in \Omega^{s}} \left(\sum_{t \in \mathcal{T}} f(z_{t,s}) + \lambda_{s} (x - z_{t0,s}) + \frac{\rho}{2} (x - z_{t0,s})^{2} \right)$$
s.t. $h(z_{t,s}) \leq 0$ $t \in \mathcal{T}, s \in \Omega^{s}$

$$x = z_{t0,s} : \lambda_s \quad t \in \mathcal{T}$$

Consensus constraint

ADMM-based Stochastic scheduling

$$\min \mathcal{L}_{\rho} = \sum_{s \in \Omega^{s}} \left(\sum_{t \in \mathcal{T}} f(z_{t,s}) + \lambda_{s} (x - z_{t0,s}) + \frac{\rho}{2} (x - z_{t0,s})^{2} \right)$$

 $t \in \mathcal{T}, s \in \Omega^{s}$

1.
$$x^{k+1} = \operatorname{argmin}_{x} \mathcal{L}_{\rho}(x, z^{k}, \lambda^{k})$$

2.
$$z^{k+1} = \operatorname{argmin}_{x} \mathcal{L}_{\rho}(x^{k}, z, \lambda^{k}) \quad s \in \Omega^{s}$$

3.
$$\lambda^{k+1} = \lambda^k + \rho(x - z_s)$$
 $s \in \Omega^s$

s. t. $h(z_{t,s}) \le 0$

Each Z-update is MP-OPF.
While computationally expensive, needs less accuracy.

Z-Update

(W&S)

 $s \in \Omega^s$

ADMM-ML

- H&N decisions by X-update optimization.
- Future W&S decisions by Z-update ML proxy.
 - Recurrent Neural Networks (RNN)

$$h_t = \sigma(Ax_t + Bh_{t-1})$$
$$z_t = \sigma(Ch_t)$$

Physical Feasibility

X-update optimization ensures feasibility for H&N decisions.

Feasibility restoration layer for RNN.

- Physical Feasibility
 - X-update optimization ensures feasibility for H&N decisions.
 - Feasibility restoration layer for RNN.
- Fast & Parallelizable Inference
 - RNN enables fast z-updates.
 - Scalable to long time horizons.
 - GPU parallelization.

- Physical Feasibility
 - X-update optimization ensures feasibility for H&N decisions.
 - Feasibility restoration layer for RNN.
- Fast & Parallelizable Inference
 - RNN enables fast z-updates.
 - Scalable to long time horizons.
 - GPU parallelization.

- Physical Feasibility
 - X-update optimization ensures feasibility for H&N decisions.
 - Feasibility restoration layer for RNN.
- Fast & Parallelizable Inference
 - RNN enables fast z-updates.
 - Scalable to long time horizons.
 - GPU parallelization.
- Generalization Across Scenario Sizes
 - Same RNN used across all uncertainty scenarios.
 - Trained on few scenarios (small $|\Omega_s|$), but applicable to many (large $|\Omega_s|$).

- Physical Feasibility
 - X-update optimization ensures feasibility for H&N decisions.
 - Feasibility restoration layer for RNN.
- Fast & Parallelizable Inference
 - RNN enables fast z-updates.
 - Scalable to long time horizons.
 - GPU parallelization.
- Generalization Across Scenario Sizes
 - Same RNN used across all uncertainty scenarios.
 - Trained on few scenarios (small $|\Omega_s|$), but applicable to many (large $|\Omega_s|$).
- Warm Start for ADMM (Hybrid ADMM-ML).

Training data generation

Approaches:

1) Full exploration

2) Full exploitation

Case studies

- 14-bus, 118-bus, 1354-bus systems.
- 1-year NL load data.
- ARIMA scenario generation.
- For each training sample n, $|\Omega_n^s| = 10$ uncertainty scenarios.
- For each testing sample n', $|\Omega_{n'}^{s}| = 100 1000$ scenarios.

Training data generation

Accuracy and time

118-bus St-MP-DCOPF.

Test on samples with 500 scenarios.

CO

ADMM

ADMM-ML

ADMM-ML-H

Conclusion and future work

 Key message: Combination of distributed optimization and ML can overcome the challenges of operational feasibility and scalability to numerous scenarios.

- Remaining challenges:
 - Practical applications: topology and system generalization.
 - Distribution shifts during online implementation.

Check out our paper

A. Rajaei, O. Arowolo, and J. L. Cremer, "Learning-accelerated ADMM for stochastic power system scheduling with numerous scenarios," IEEE Transactions on Sustainable Energy, 2025. (Link)

Codes available on Delft-Al Lab GitHub. (<u>Link</u>)

Thank you for your attention!

