1

Assignment 1

Ayush Kumar Singh - AI20BTECH11028

Download all python codes from

https://github.com/ayush-2321/AI1103/blob/main/assignment1/problem(a).py

and latex-tikz codes from

https://github.com/ayush-2321/AI1103/blob/main/assignment1/asignment1.txt

PROBLEM(A)(PROB. MISC. 5.8)

On a multiple choice examination with 3 possible answers of each of the five questions, what is the probability that the candidate would get four or more correct answers just by guessing

1 Solution

Let $X_i \in (0, 1)$ be a random variable where $X_i = 1$ represents a successful guess and $X_i = 0$ represents unsuccessful guess on the i^{th} question.

$$p = \frac{1}{3}$$

$$X = \sum_{i=1}^{n} X_i \tag{1.0.1}$$

where n is the total number of questions. So, X has a binomial distribution.

$$\Pr(X \ge r) = \sum_{k=r}^{n} {n \choose r} p^k (1-p)^{n-k}$$
 (1.0.2)

Now, in this case n=5 and r=4

$$Pr(X = 4) = \frac{10}{243}$$
$$Pr(X = 5) = \frac{1}{243}$$

Hence, required probability= $\frac{11}{243}$

PROBLEM(B)

Five cards are drawn successively from a well shuffled deck of 52 cards. What is the probability that

- i. All the five cards are spades.
- ii. only 3 cards are spade.
- iii. no cards are spade.

2 solution

Let $X_i \in (0, 1)$ be a random variable which denotes whether spade is drawn at the i^{th} draw.

$$X = \sum_{i=1}^{i=5} X_i \tag{2.0.1}$$

where X denotes the number of spades obtained.

Since, $Pr(x) = \frac{\text{number of favourable outcome}}{\text{total number of outcomes}}$

$$\Pr(x) = \frac{\binom{13}{x} \binom{39}{(5-x)}}{\binom{52}{5}}$$

X	0	1	2	3	4	5
P(X)	$\frac{\binom{13}{0}\binom{39}{5}}{\binom{52}{5}}$	$\frac{\binom{13}{1}\binom{39}{4}}{\binom{52}{5}}$	$\frac{\binom{13}{2}\binom{39}{3}}{\binom{52}{5}}$	$\frac{\binom{13}{3}\binom{39}{4}}{\binom{52}{5}}$	$\frac{\binom{13}{4}\binom{39}{1}}{\binom{52}{5}}$	$\frac{\binom{13}{5}\binom{39}{0}}{\binom{52}{5}}$

i.
$$X = 5$$

$$\Pr(X = 5) = \frac{\binom{13}{5}}{\binom{52}{5}}$$

$$\implies \Pr(X = 5) = 0.0049$$

ii.
$$X = 3$$

$$P = \Pr(X = 3) = \frac{\binom{13}{3}\binom{39}{2}}{\binom{52}{5}}$$

$$\implies \Pr X = 3 = 0.081$$

iii. X = 0

$$\Pr(X = 0) = \frac{\binom{39}{5}}{\binom{52}{5}}$$

$$\implies \Pr(X = 0) = 0.221$$