MCU2 SLAVE

Application Layer

MCAL DIO/SPI

HAL LED_DRIVER

LIB STD_TYPES/BIT_MATH MCU1 MASTER

Application Layer

MCAL DIO/UART/SPI

LIB STD_TYPES/BIT_MATH

System Components and Operation

1.Virtual Terminal and HC05 module 1 (first Bluetooth device)

This can be replaced with any Bluetooth device for example: mobile and then we can use mobile App as a Bluetooth terminal for data transaction between different Bluetooth devices.

In this project user uses this terminal to send data from the first Bluetooth device to the Master microcontroller

2. HC05 module 2 (Second Bluetooth Device)

Here HC05 1 uses Serial COM1, HC05 Serial COM2 and both COM ports are paired together so each port can see the other.

HC05 2 receives data from HC05 1 through wireless serial communication and then resend it to MCU1 through UART.

3.MCU1 (Master) and MCU2 (Slave)

Atmega32 microcontroller works as a master that receives data from HC05 2 through UART and resend it to MCU2 through SPI protocol

4.On/Off device

It can be any device, here I have used LED connected to slave MCU2, so when user writes "on#" using virtual terminal or mobile APP and sends it, slave Enables the LED and if user sends "off#" slave Turns the device off.

Notice that:

'#' symbol is used to inform the receiver that it is the End of the string being sent and then compares the received string with a user predefined string to decide either to enable or disable the LED.

