NF01 - Automne 2007

Examen Final - 2 heures

ATTENTION!

Utilisez trois copies séparées, une par problème

Problème n°1 (6 points) : Récursivité

MYSTERE

1. (2 pts) Ecrire un programme Pascal qui réalise la fonction récursive suivante:

```
MYSTERE(X,Y) vaut X si Y=1 vaut X + MYSTERE(X,Y-1) sinon
```

2. (2 pts) Préciser ce que fait cette fonction (X et Y entiers naturels). Pour confirmer, une simulation effectuée sur un exemple simple sera la bienvenue.

AFFICHAGE

(2 pts) Ecrire une procédure récursive AfficheChiffres() qui affiche les chiffres d'un nombre entier séparés par une barre de division (barre oblique). Par exemple AfficheChiffres(123) affichera : 1/2

Problème n°2 (6 points) : fichiers

L'objet de ce travail est de calculer la moyenne d'une classe d'étudiants. Un étudiant sera représenté par son nom, prénom et le tableau des notes qu'il a obtenues :

- 1. (2 pts) Ecrire la procédure permettant de créer un fichier d'étudiants et de saisir les étudiants (nom et les 3 notes obtenues) d'une classe.
- 2. (2 pts) Ecrire une fonction *calcul* à un paramètre (un tableau de 3 réels) qui retourne la moyenne calculée à partir des notes du tableau, pour un étudiant donné.
- 3. (2 pts) A partir du fichier initial et de cette fonction calcul, écrire une procédure permettant d'afficher à l'écran les élèves pour lesquels la moyenne est supérieure ou égale à dix.

Problème n°3 (10 points): Procédures, fonctions, tableaux et enregistrements

partie I: décomposition d'un segment [A,E] en 4 segments [A,B], [B,C], [C,D], [D,E]

Nous allons dans un premier temps découvrir une décomposition d'un segment de droite initial [A, E]. Le point A est de coordonnées (x_A, y_A) et E de coordonnées (x_E, y_E). Ce segment de droite est coupé en 3 parties égales, [A, B], [B, D] et [D, E]. Nous retirons le segment [B, D]. Nous ajoutons les segments [B, C] et [C, D] tels qu'ils soient les côtés d'un triangle équilatéral. La figure ci-dessous donne le résultat.

Les coordonnées d'un point P quelconque de la droite passant par les points A et E sont données par l'équation paramétrique : P = (1-t).A + t.E où t est un réel.

C'est à dire : $x_P = (1-t) * x_A + t * x_E et y_P = (1-t) * y_A + t * y_E$.

- t=0 donne le point A
- t=1 donne le point E
- t=1/3 donne le point B
- t=2/3 donne le point D
- t=1/2 donne le point H, milieu du segment [A, E]

Nous pouvons donc calculer facilement les coordonnées des points B, D et H en connaissant uniquement les coordonnées de A et E.

La projection orthogonale du point C sur le segment [A, E] donne le point H. Soit N= $(y_E-y_A, x_A - x_E)$ un vecteur orthogonal au segment [A, E]. Le point C est obtenu par C = H + $(\sqrt{3}/6)$ N.

Question 1 (1 pt) : Définir le type **point** qui contient deux coordonnées réelles.

Question 2 (1 pt): Ecrire la procédure calcule point qui calcule un point P avec t et les points A et E.

Question 3 (1,5 pt): Ecrire une procédure **calcule_N** qui calcule le vecteur **N** (vu comme un point) à partir de deux points **A** et **E**.

Question 4 (1,5 pt) : Ecrire une procédure **calcule_C** qui détermine le point **C**. Vous utiliserez **obligatoirement** les deux procédures précédentes.

Partie II:

L'objectif est désormais de :

- 1) calculer les coordonnées géométriques d'un flocon de Koch qui est une fractale.
- 2) de les afficher à l'écran

La figure ci-dessous illustre notre explication. Le flocon de rang 0 est un triangle équilatéral (à gauche). Ce flocon initial est formé de trois points P1, P2, P3. Initialement nous avons P1 = (0,0), P2 = (1,0) et P3 = $(1/2, (\sqrt{3}/2))$. Nous appliquons la décomposition décrite en partie 1 à chacun des segments [P1, P2] [P2, P3] et [P3, P1]. Nous obtenons ainsi le flocon de rang 1 à droite du triangle. En réappliquant la décomposition aux segments obtenus, nous obtenons successivement les flocons de rang 2, 3 et 4 (de la gauche vers la droite du dessin de la page suivante).

Nous définissons le début du programme :

Deux points *consécutifs* d'indice **i** et **i+1** du tableau **t_point** définissent un segment. Un champ **nb_point** permet de gérer explicitement le nombre de points du contour (3 initialement). Le **rang** du flocon est un entier initialisé à 0. Nous recopions dans la case **nb_point+1** du tableau le point de la case d'indice **1** pour « fermer » le contour. Ainsi tous les segments sont consécutivement codés dans le tableau. La procédure suivante initialise le flocon de rang 0 :

```
procedure init_flocon(var un_floc : floc);
begin
      un_floc.rang := 0;
      un_floc.nb_point := 3;
      with un_floc do
            begin
                  t_point[1].x := 0.0;
                  t_point[1].y := 0.0;
                  t_point[2].x := 1.0;
                  t_point[2].y := 0.0;
                  t_point[3].x := 0.5;
                  t_{point[3].y} := 0.5*sqrt(3);
                  t_point[4]
                               := t_point[1];
            end;
end;
```

Question 5 (1,5 pt): Chaque segment décomposé génère **3 nouveaux points**. Si l'on décompose le segment entre les points indices **i** et **i+1** du tableau, il faut générer 3 places pour 3 nouveaux points **entre** ces deux indices. La fonction suivante "fait" de la place à partir d'un indice **i** et retourne le nouvel emplacement de l'ancien point de numéro i+1 qui est « décalé ».

Soit flocon de **rang** 0, avec **nb_point** = 3, et le tableau **t_point** initialisé et schématisé comme ci-dessous :

_1	2	3	4	5	6	7	8	9	10	11	12	13	
P1	P2	P3	P1										

Faire fonctionner « a mano » la fonction pour i = 1 en suivant l'indication en commentaire dans le code, donner la nouvelle valeur du champ **nb point** et la valeur retournée par la fonction.

Question 6 (1,5 pt): Concevoir une fonction **ajoute_points** qui crée et met à jour les nouveaux points dans une variable de type floc pour un segment défini par l'indice i de son premier point. Cette fonction retournera l'indice du premier point du prochain segment à partir duquel de nouveaux points devront être ajoutés. On utilisera **obligatoirement** les variables locales A, B, C, D et E de type point pour que le code soit clair (voir première figure avec le segment décomposé) ainsi que la fonction **faire place** ci-dessus.

Rappel de la figure:

Question 7 (2 pts) : Concevoir une procédure **floc_r_2_r_plus_1** qui calcule et met à jour les données quand un flocon passe d'un rang r au rang r+1. Vous utiliserez **obligatoirement** une boucle repeat until.