M	od	,,,	0	F	ΡĮ	1_	F	6	E.A	1
	Ou			LI		/-/		0-	$C_{*}A$	7 -

Electronique Analogique 1

Parcours E1-21

Nom Etudiant-e: Julian BARKOUDGH

Date :

 ${f A-Travail\ Pr\'eparatoire.}$ (activité(s) : étude préparatoire / rédaction - temps maximal = 35 min)

On souhaite filtrer un signal rectangulaire c(t) (représenté ci-dessous), de valeur crête (ou amplitude) E = 2,5V, de période T = 1ms, pour récupérer uniquement sa composante fondamentale.

Sa décomposition en série de Fourrier s'écrit :

$$c(t) = \frac{4E}{\pi} \sin(\omega t) + \frac{4E}{3\pi} \sin(3\omega t) + \frac{4E}{5\pi} \sin(5\omega t) + \dots$$

On réalisera, pour cela, un filtre passe-bas à réponse de Butterworth (construit à partir d'un circuit à capacités commutées « MF10 » (voir datasheet en ligne) alimenté en +/- 5 V).

A la sortie du filtre, on souhaite que l'amplitude de l'harmonique fondamentale filtrée soit :

- égale à 2,25 V (condition 1).
- au moins 100 fois plus grande que celle des harmoniques suivantes (condition 2).
- Q.1) Calculer l'atténuation A_{max} (en dB) et la fréquence correspondante f_p , que doit posséder le filtre, pour réaliser la condition 1. Calculer l'atténuation A_{min} (en dB) et la fréquence correspondante f_a , que doit posséder le filtre, pour réaliser la condition 2 (voir aussi le Chapitre 3 - page 1).

Ames = -20 Cog (215) = 3,013 213 à fp = 103 = 1KHZ

Appel n°1

Q.2) On indique qu'un filtre du 4 eme ordre, dont la fonction de transfert H(p) suivante, convient :

$$H(p) = \frac{H_0}{\left[1 + \frac{1,8478}{\omega_p} \cdot p + \left(\frac{p}{\omega_p}\right)^2\right] \left[1 + \frac{0,7653}{\omega_p} \cdot p + \left(\frac{p}{\omega_p}\right)^2\right]}$$

Calculer la valeur à donner à Ho pour respecter la condition 1. Vérifier (par le calcul) que la condition 2 est respectée. Montrer que ce filtre peut être réalisé avec 2 cellules (de filtrage) adaptées en impédances et mises en cascade, dont vous préciserez, pour chacune d'elles : fonction, ordre, et valeurs des paramètres caractéristiques (amplification statique, fréquence propre et coefficient d'amortissement - voir aussi le Chapitre 2 - page 7).

1. (j.w.p) = 140

1, 1,848 jwp (jwp) 4 1+0,4658 jwp + (des) 1 1,848 j j 0,4653

-0,1505

-0,1505

-0,1505

-1,8448 x 0,4653) = 3,013 => |Ha|= 10 x (1,8408 x 1,76)

= 0,9991

Module EPU-E6-EA1

TP n°2

Appel n°2 2/9

Q.4) Le signal d'horloge (qui commandera les commutateurs du circuit MF10) est généré par un circuit astable (oscillateur numérique), construit autour d'une porte NAND trigger (voir datasheet du circuit CD4093 alimenté en 0 /5 V - pages 4 et 5 notamment).

Donner la valeur du produit « R.C » permettant de générer le signal d'horloge : $f_{CLK} = 50 \cdot f_p$ (trouvée en Q1). On fixe C = 2.2 nF. Calculer la valeur théorique à donner à R.

. Scen = So Sp = So KHZ => Seen =

- → Câbler, sources éteintes, le circuit complet de l'horloge (voir cicontre et la datasheet du circuit CD4093 alimenté en 0/5 V - pages 4 et 5 notamment). Appel n°4
- → Observer le signal d'horloge créé, u_H(t), à l'oscilloscope.
- \rightarrow Mesurer la valeur de la fréquence f_{CLK} du signal d'horloge

Sun So17 KHZ anc R= 10,5 KS

- \rightarrow Ajuster la fréquence d'horloge, pour obtenir $f_{CLK} = 50 \cdot f_P$, à l'aide de condensateurs placés en parallèle sur C, ou bien à l'aide d'un potentiomètre en série avec R.
- Q.6) On utilise un circuit MF10 (circuit MF10 = 2 circuits MF5 (pour faire un filtre du 4ème ordre)) pour réaliser le filtre de la question Q.2), suivant <u>le mode 1</u> (voir datasheet du circuit MF10 - pages 6 à 9 notamment). Le rapport (f_{CLK}/f_{-3dB}) est fixé à 50. La résistance d'entrée R_1 est fixée à 15 k Ω .

(Rappel : 1/Q = 2.m - Analogie entre le modèle mathématique LowPass vu en cours et la doc. du MF10)

Calculer les valeurs des résistances R2 et R3 constitutifs de chaque filtre du 2nd ordre à réaliser (on pourra utiliser des résistances de valeurs normalisées afin de s'approcher de chacune des valeurs calculées).

-1= -R1 => R2= 15K2 Q = 133 on Q = 2m = 0,54 == R3 = 2 ... R3 = ... 8,1 K-R

→ Câbler, sources éteintes, le circuit complet du filtre (voir ci-contre et la datasheet du circuit MF10 +5V/-5V), à la suite du circuit de alimenté en l'horloge. Appel nº6

5/9

- Q.8) Etude en régime harmonique (le signal appliquée (en entrée E) $u_E(t)$ est sinusoïdal, d'amplitude E = 1 V)
 - → Relever le diagramme de Bode du filtre (sortie S2) en visualisant les signaux à l'oscilloscope (prendre une quinzaines de points judicieusement choisis), en effectuant les mesures :
 - des valeurs efficaces de u_E(t) et u_{S2}(t): U_{Eeff} et U_{S2eff},
 - de la phase de $u_{S2}(t)$ (on prendra $u_E(t)$ comme référence des phases) : $\theta_{us2/uE}$ (Tracé manuel : doc-réponses en fin de sujet Tracé automatique : s'aider d'un tableur (Tutoriel du logiciel « Synchronie » disponible en ligne)).
 - → Le filtre répond il au gabarit de départ ? Justifier les écarts éventuels.

En compensant and les simulations, an rever que que le gain est bien à -3 213 à la frequence de caupeure C 1 KHZ) a la cambie la fréquence leurs auns Veus la même Valer que dons les cimulationes. Des cients sur la combé de gain sant visibles.

- Q.9) Le signal d'entrée, à filtrer, est un signal rectangulaire (évolution +/- 2,5 V, de fréquence égale à1 kHz).
 - \rightarrow Observer et représenter simultanément $u_E(t)$ et $u_{S2}(t)$, en entrée / sortie du filtre.

→ Commenter le résultat obtenu et justifier la (les) cause(s) des écarts qui apparaissent entre les résultats expérimentaux et théoriques

- B.3) Expérience n°3 : Effets de la commutation.
 - O.10) Le signal d'entrée, à filtrer, est un signal sinusoïdal (évolution +/- 2,5 V, de fréquence égale à1 kHz).
 - → Observer et représenter (page 7) simultanément $\mathbf{u}_{E}(\mathbf{t})$ et $\mathbf{u}_{S2}(\mathbf{t})$, en entrée / sortie du filtre (vous réglerez les échelles horizontale (base de temps) et verticale (en V/div) de manière à <u>faire apparaître les discontinuités de tension autour du passage à 0 V</u>).

Le signal observé en sortie du filtre présente « des paliers » (ou discontinuités) dus à la commutation et au blocage du signal durant T_{CLK} (du signal d'horloge commandant les commutateurs des capacités commutées).

Appel n°8

Appel n°9

Q.11) Il est possible d'atténuer ces discontinuités en plaçant, à la sortie du filtre à commutation, <u>un filtre</u> <u>analogique de lissage</u>. Il s'agit d'un filtre passe-bas de type {Rs; Cs} dont la constante de temps est égale à la période d'échantillonnage T_{CLK}. Calculer la fréquence de coupure de ce filtre {Rs; Cs} et proposer des valeurs pour Rs et Cs.

.6	me	•		u	1	11	14	4	u	٠	• ••	4	٠.	••	10	٠٤	<	R			•••		=	>	4	7.	.÷			20	2 4	1	0				2	n	F	-	
フ ー)	rėq	ab On uen	lei icl	ur elle	e s s de	ur es s	sc sign	n n	efi (x).	fica	ige acit	et té (ob Or	se i pe	our	r l	es a	allu rpr	are étei	s (les es p	te: perj	nsi forn	ons nan	s av	≀ai à	nt e pai	et a	ipr d'	ès une	ce	fi bse	ltr erve	e. atio	n a	→ les	A rej	pp	sen	n°	10 ions
••		• • •		• • •	•••	• • •		••	•••				٠, .	••	•••						• • •			• • • • •		٠.	••			٠.		••		•••					•••		
•••	• • •			• • •	•••	••		• •	•••	•••	•••			••	•••	•••	•••		• ••	•	•••		•••	•••	• ••		••	•••	•••	••	٠.	••	•••			٠.	••				
••	• • •			• • •	•••	•••		• •	• • •	•••	•••			••	• • •	•••	•••	• • •			•••	•••	•••	•••	•••		••	•••	•••	•••		••	•••	•••	٠.			••		••	•
																																••	•••	•••	••	• •	٠.	••	•••		
• •	• •		• •	• • •	• • •	•••		• •	• • •	• • •	• • •			• •	• • •	• • •		• •																							

B.4) Expérience n°4: Conséquences du sous-échantillonnage.

Q.12) Le signal d'entrée, à filtrer, est un signal sinusoïdal (amplitude de 1V, de fréquence égale à 1 kHz).

Si la fréquence f du signal appliqué en entrée du filtre est supérieure à « $f_{CLK}/2$ », on observera en sortie du filtre, un signal non plus à la fréquence f mais à $|f_{CLK}-f|$, du fait du sous-échantillonnage : $\underline{c'est le}$ repliement spectral (ou aliasing).

Si $|f_{CLK} - f|$ est dans la Bande-Passante du filtre, alors c'est ce signal à $|f_{CLK} - f|$ qui est « vu » par le filtre à l'entrée et traité par celui-ci. Le signal observé en sortie, dès lors qu'il se trouve dans la Bande-Passante du filtre, sera atténué au maximum de A_{max} (voir page 1).

\rightarrow Rappeler les valeurs de f_{CLK} (signal d'Horloge) et de la Bande-Passante du filtre étudié :	