Group Members: Gassan Soukaev and Edgar Pino

CS498 Applied Machine Learning

CS498 AMO

Code for regression and resulting model

```
# Create the model
orig_model = Im(MEDV ~ ., data = housing_data)

summary(orig_model)
plot(rstandard(orig_model))

## Search for outliers manually
c_distance = cooks.distance(orig_model)
c_distance = data.frame(1:nrow(housing_data), c_distance)
colnames(c_distance) = c("idx", "value")

plot(c_distance$idx ~ c_distance$value)
text(c_distance$idx ~ c_distance$value, labels=idx, data=c_distance, cex=.75, font=2)
```

Diagnostic Plot

We decided to manually remove most of the values that were outside the range of the plots. The following values were removed: 365,366,369,373,370,413. This produced the best plot of fitted house price against true house price.

New diagnostic plot

Code for subproblem 2

 $bc = boxcox(MEDV \sim ., data=cleaned_data)$ lambda = bc\$x[which.max(bc\$y)]

Box-Cox transformation plot

Best Value: 0.2222222

Results after Box-Cox

Code for subproblems 3 and 4

q4_data = cleaned_data q4_data\$MEDV = q4_data\$MEDV ** lambda new_fit = lm(MEDV ~ ., data=q4_data) plot(rstandard(new_fit)) predicted = fitted(new_fit) ** (1/lambda) plot(predicted ~ cleaned_data\$MEDV)