Puissances d'une matrice

Soit n un entier naturel supérieur ou égal à 2. \mathbb{R}^n est rapporté à sa base canonique $\mathcal{B} = (e_1, e_2, ..., e_n)$.

Soit $M_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels.

Soit I la matrice carrée identité d'ordre n, I = diag(1,1,...,1).

Soit O la matrice carrée d'ordre n nulle.

Soit U la matrice carrée d'ordre n constituée uniquement de « 1 », $U = (a_{i,i})_{1 \le i,i \le n}$ avec $a_{i,i} = 1$.

Partie I

Soit E le sous-espace vectoriel de $M_n(\mathbb{R})$ engendré par I et U.

- 1. Montrer que E est un espace vectoriel de dimension deux sur R.
- 2. Pour p entier naturel non nul donné, calculer U^p .
- 3. Montrer que E est stable pour la multiplication.
- 4. Soit $A = \alpha . I + \beta . U$ un élément de E.
- 4.a Calculer A^p en fonction de α , β , p, I et U, p désignant un entier naturel non nul.
- 4.b Calculer $\det A$.
- 4.c A quelle(s) condition(s) portant sur α et β , A est-elle inversible? Calculer alors l'inverse A^{-1} en fonction de α , β , I et U.

Partie II

Soit u l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est U.

Soit
$$i$$
 l'identité de \mathbb{R}^n . Soit $p_0 = \frac{1}{n}u$ et $p_1 = i - \frac{1}{n}u$.

- 1.a Montrer que p_0 et p_1 sont des projecteurs.
- 1.b Comparer $\ker p_0$, $\operatorname{Im} p_0$ avec $\ker p_1$, $\operatorname{Im} p_1$. Donner la dimension de ces espaces
- 1.c Soit \mathcal{B}' une base adaptée à la décomposition $E=\operatorname{Im} p_0\oplus\ker p_0$. Former les matrices représentatives de p_0 et p_1 dans cette base \mathcal{B}' .
- 2. Soit A_0 la matrice de p_0 dans la base canonique \mathcal{B} de \mathbb{R}^n , A_1 la matrice de p_1 dans cette même base. Montrer que (A_0, A_1) est une base de E = Vect(I, U).
- 3. Soit $A = \alpha I + \beta U$ un élément de E, β étant non nul.
- 3.a Donner les composantes λ et μ de A dans la base (A_0, A_1) .
- 3.b Calculer A^p en fonction de λ , μ , p, A_0 et A_1 . Retrouver l'expression du I.4.a.