Cryptasgament Project Exam Help

https://eduassistpro.github.io/

Caesar cipher

- Replace each letter in the plaintext with a letter found at a fixed shift down the alphabet
- For example, swightneshift rofject Exam Help
 - $D \rightarrow A$
 - E → B

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Uryyb Jbeyq!

Vignère Cipher

- Use a different shift for each character position
- A key encodes the shift for each position
- Each characterhttps://eduassistpro.gftloub Aofor the matching position
 Key "BEER" means that the firs shifted by one, the
 - Key "BEER" means that the firs shifted by one, the second and third by 4 and the fourth by 17
- The key repeats to cover the whole message

Vignère Cipher - example

https://eduassistpro.github.io/

Scytale

Assignment Project Exam Help

https://eduassistpro.github.io/

Feissner Grille

Assignment Project Exam Help

https://eduassistpro.github.io/

How not to select a cipher?

- Kerckhoffs's principle
 - Don't use a secret scheme rely only on the secrecy of the key Assignment Project Exam Help
- Schneier's law https://eduassistpro.github.io/
 - "Anyone, from the most cluel to the best cryptographer, can create and entire at edu_assist he himself can't break."
- The Dunning-Kruger effect

Proving Cipher Security

- A "formal definition"
- A cipher defined over (K, M, C) is a pair of efficient functions (Assignment Project Exam Help

https://eduassistpro.github.io/
(We usuall For some definitio edu_assist_pro

- Theoreticians u mial in the security parameter.
- We will think of it as fast enough to calculate

"Formal" definitions

• A cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$ is a pair of efficient functions (E, D)

E: KXXII rment Project Exam Help

(We usuall

(k,m)) https://eduassistpro.github.io/

"Formal" definitions

• A cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$ is a pair of efficient functions (E, D)

```
E: Kasignment Project Exam Help (We usuall https://eduassistpro.github.io/
```

- Correctness:
 - $\forall m,k: D_k(E_k(m))=m$

Perfect Secrecy (Shannon 1945)

- An adversary that sees a ciphertext cannot learn anything about the plaintext.
 - All plaintexts Aaxei the racretp Potrapelity of xpandu tile lapsy given ciphertext
- Formally: https://eduassistpro.github.io/ $\forall m_1, m_2, c$: $\Pr[E_k(m_k) = c] = \Pr[E_k(m_k) = c]$ we that edu_assist_pro
- Questions:
 - Can we achieve perfect secrecy?
 - Does it guarantee security?

One Time Pad (Vernam 1919)

- Domain: $\mathcal{M}=\{0,1\}^n$, $\mathcal{C}=\{0,1\}^n$, $\mathcal{K}=\{0,1\}^n$
- For a plaintext m and a key k, $E_k(m)=k\oplus m$
- For a ciphertext c and a key k, D (c)=k+c
 - Are these efficiehttps://eduassistpro.github.io/

- Correctness:
 - $D_k(E_k(m)) = D_k(k \oplus m) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0 \oplus m = m$

Perfect secrecy of OTP

- Recall: $\forall m_1, m_2, c$: $\Pr[E_k(m_1) = c] = \Pr[E_k(m_2) = c]$
- For every ciphertext c and plaintext m, there is exactly one key $k=c\oplus m$ https://eduassistpro.github.io/
- Hence for all m and w Profest edu_assist_pro
- Because the probability of $E_k(m)=c$ does not depend on m, the cipher has perfect secrecy

Limitations

- Long key
 - Any perfectly secure cipher must have long keys
- Malleable Assignment Project Exam Help
- Key cannot be https://eduassistpro.github.io/
 Class exercise: How would you the key is used
 - Class exercise: How would you the key is used more than once Add WeChat edu_assist_pro

Perfect secrecy assumes a very weak attacker!!!

Ciphertext indistinguishability

A desired property of ciphers

• A cipher is considered secure if Food Wersary can distinguish ide https://eduassistpro.gan.based on their ciphertexts

Add WeChat edu_assist_pro

 Typically presented as a game between an adversary and a challenger.

Distinguishability Games

- Challenger chooses a random key
- Adversary gets get https://eduassistpro.git/withbtlog/t key
- Adversary sends two messages to a ger Add Wechat edu_assist_pro
- Challenger chooses one at rando it and sends back to adversary
- Adversary wins on a successful guess of the encrypted message

Adversarial models

- Known plaintext attack
 - The adversary learns some pairs of matching plaintexts and ciphertexts
 Assignment Project Exam Help
- Chosen plainte
 - The adversary https://eduassistpro.githufhie/choosing
- Chosen ciphertextattackhat edu_assist_pro
 - As CPA, but can also decrypt some ciphertexts
- Adaptive chosen ciphertext attack
 - AS CCA, but can base the choices on previous results

More attacks

- Side channel attacks
 - The adversary has information on the internal state of the implementation gnment Project Exam Help
- Fault injection
 - The adversary c https://eduassistpro.github.jo/implementation Add WeChat edu_assist_pro
- Protocol attacks, RNG attacks, ...

The adversary is not bounded!!!

How to select a cipher?

- Use an established, well-researched encryption
 - E.g. AES, Salsa20
- Do not write signmin plemjentation Help
 - Remember the
 - Use OpenSSL, li

https://eduassistpro.github.io/

Story time - CSS

- The DVD copy control association wanted to protect DVDs.
 - These are MGM, 20th Century Fox, Warner Bros etc.
 - They have a bit more resources than you, and likely more than your (future) employer gramment Project Exam Help
- 1996 release C
 Proprietary encry
 https://eduassistpro.github.io/
- Oct. 1999 DeCSSAntibetate Cheet edu_assistepengineering a DVD drive.
 - Uses a 40-bit key. Not entirely CCA's fault, but could be broken in 24 hours using 1999's tech. (A few seconds today.)
- Nov. 1999 Frank Stevenson releases three exploits
 - Reduce attack to 2²⁵. Can be broken in a few seconds.

Types of ciphers

- Stream ciphers
 - Produce a pseudo-random stream of bits
 - XOR stream of hits with plaintext message to produce ciphertext
- Block ciphers
 - Operate on fixed https://eduassistpro.github.io/
 - SWEET32 attack ciphers with 64-bit edu_assist_pro ecure. Use AES (128-bit blocks).

Block ciphers are better understood and are used more often

Substitution-Permutation Network

- An approach for designing block ciphers
- Consists of multiple rounds. Each round consists of two layers: Assignment Project Exam Help
 - Substitution bo https://eduassistpro.github.io/
 - Permutation boxAddfwwdohahedu_assist pitofrom the input to the output

SP-Network

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Diagram by Wikipedia

23

Modes of Operation - ECB

- The block cipher mode of operation specifies how to handle messages longer than a single block.
- Electronic & Ele
 - Divide message https://eduassistpro.github.io/
 - Encrypt each bl

ECB is bad

Identical plaintexts encrypted to identical ciphertexts

Assignment Project Exam Help

https://eduassistpro.github.io/

Modes of operation - CBC

- Cipher Block Chaining
 - Before encryption XOR each plaintext block with the previous ciphertext block
 - Use a random stignment etojavt fertaeti Holpck
 - IV does not need to

https://eduassistpro.github.io/

CBC Drawbacks

- Encryption (decryption) is sequential
- Limited ciphertext error propagation
 - Exploited in the Project Project Frant Help

https://eduassistpro.github.io/

Modes of operation - CTR

- Turns a block cipher into a stream cipher
 - Generate a sequence of "counter" blocks
 - Typically, a random nonce combined with a sequence number
 - Encrypt each soigntare hockroject Exam Help
 - XOR with the co hertext) block
- Supports parall https://eduassistpro.github.io/

CTR - Drawbacks

- Malleable a change in the ciphertext results causes a similar change in the plaintext
- Sensitive to repetited to repetite the repetite of the repet

Modes of operation - Summary

- ECB not secure. Do not use unless you know what you are doing.
 - Remember Ahrs Punniont KPun de effect am Help
- CBC most co https://eduassistpro.github.io/ ensitive
- CTR better pe ' ensitive Add WeChat edu_assist_pro
- No authentication
- No message integrity