

2023 级微积分 A 期中考试(回忆版)

回忆:Hdao,limbo

排版:一块肥皂

本试卷考试时间 90 分钟,共 14 题,共 30 分,共 2 页.

注意事项:

1	炒 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	考生先将日	与口的产	知之 加入	7 学早培	官害林
Ι.	台 赵 刖 ,	/ 写生: 元代日	コーロリラ	台元、姓名	ハ子 ケザ	もつ 仴 定・

- 2. 请按照题号在试卷各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上答题无效.
- 3. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.
- 4. 保持试卷清洁,不要弄破.
- 5. 考试结束后,将试卷交回.

一、埴空题	(本大题共4	小题.	每小题	1分.	. 共 4 分)
トゲエル	ヘイヤンへんごフィー	'J'/EZ. 9	47176	1 ノノ 🤈	りょく マノノノ

1. 极限 $\lim_{n\to\infty} \left(\frac{1}{n^2-n+1} + \frac{5}{n^2-n+2}\right)$	$+\cdots + \frac{4n-3}{n^2} = \underline{\hspace{1cm}}$	•
--	---	---

- 2. 曲线 $\tan(x+y+\frac{\pi}{4}) = e^y$ 在点 (0,0) 处的切线方程是 _____.
- 3. 设函数 $f(x) = e^{2x} \sin x$,则 $f^{(4)}(0) =$.
- 4. 设函数 f(x) 可导且其导数 $f'(x) \neq 0$, f(x) 的反函数 $f^{-1}(x)$ 存在,已知 f(2) = 3, f'(2) = 5,则 $d\{[f^{-1}(x)]^2\}\Big|_{x=3} = \underline{\hspace{1cm}}.$

二、选择题(本大题共4小题,每小题1分,共4分.在每小题给出的四个选项中,只有一项是符合题目要求的)

5. 当
$$x \to 0$$
时, $\frac{1}{x^2}\sin\frac{1}{x}$ 是
A. 无穷小 B. 无穷大 C. 有界的,非无穷小 D. 无界的,但非无穷大
6. 已知当 $x \to 0$ 时,函数 $f(x) = 3x - 4\sin x + \tan x$ 与 $g(x) = x^n$ 为同阶无穷小,则 $n =$ A. 3 B. 2 C. 5 D. 4

7. 已知一长方形的长l以 2 cm/s 的速率增加,宽w以 1 cm/s 的速率增加,则当l=12 cm, w=9 cm 时,它的对角线增加的速率为

A.
$$\frac{12}{7}$$
 cm/s B. $\frac{11}{5}$ cm/s C. 3 cm/s D. $\frac{4}{3}$ cm/s
8. 已知 $\lim_{x\to 0} \left(1+x+\frac{f(x)}{x}\right)^{\frac{1}{x}}=e^3$,则 $\lim_{x\to 0} \left(1+\frac{f(x)}{x}\right)^{\frac{1}{x}}=$
A. e^3 B. e^2 C. 3 D. e

三、解答题(本大题共6小题,共22分. 解答应写出文字说明、证明过程和演算步骤)

- 9. 指出函数 $f(x) = \frac{x^2 x}{|x|(x^2 1)} \sin \frac{1}{3x 1}$ 的间断点,并判断其类型.
- 10. 求极限 $\lim_{x\to 1} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$.
- 11. 已知参数方程 $\begin{cases} x = t^2 + 2t \\ t^2 y + \sin y = 1 \end{cases} (t \text{ 为参数}), 求 \frac{dy}{dx}.$
- 12. 已知函数 f(x) 满足 f(a) = 0,函数 $g(x) = \begin{cases} \frac{f(x)}{x-a}, & x \neq a \\ f'(a), & x = a \end{cases}$ 、求 g'(x) 并证明: g'(x) 在 x = a 处连续.
- 13. 已知函数 f(x),且 $0,b \in I$. 求证: $\exists \xi \in (0,b)$,使得 $f(b) e^b f(0) = [f(\xi) f'(\xi)](1 e^b)$ 成立.

- 14. 已知方程 $e^{-x} x^{2n+1} = 0$,其中 $n \in \mathbb{N}^*$. 回答下列问题:
 - (1)证明方程 $e^{-x} x^{2n+1} = 0$ 在 (0,1) 上有唯一实数解 x_n ;
 - (2)证明 $\lim_{n\to\infty} x_n$ 存在,并求其值.