Introdução à Ciência de Dados com Python









Juliany Raiol











### Ciência de Dados

"Estudo e Análise de Dados que visa a extração de conhecimento ou *insights* para possíveis tomadas de decisão"

# Transformar um conjunto de dados

Análise de Dados

com o objetivo de poder verificá-lo melhor.

### Fluxo de trabalho do Aprendizado de Máquina



# #1 Encontrar ou Coletar um Conjunto de Dados

#### **IMDb**









460,723 images

#### Wikipedia









62,328 images



# Limpeza

|   | dob    | photo_taken | full_path                                      | gender | name              | face location                                        | face score | second_face_score | celeb id |
|---|--------|-------------|------------------------------------------------|--------|-------------------|------------------------------------------------------|------------|-------------------|----------|
| 0 | 693726 | 1968        | [01/nm0000001_rm124825600_1899-5-10_1968.jpg]  | 1.0    | [Fred<br>Astaire] | [[1072.926, 161.838,<br>1214.783999999999,<br>303.6  | 1.459693   | 1.118973          | 6488     |
| 1 | 693726 | 1970        | [01/nm0000001_rm3343756032_1899-5-10_1970.jpg] | 1.0    | [Fred<br>Astaire] | [[477.184, 100.352,<br>622.592, 245.76]]             | 2.543198   | 1.852008          | 6488     |
| 2 | 693726 | 1968        | [01/nm0000001_rm577153792_1899-5-10_1968.jpg]  | 1.0    | [Fred<br>Astaire] | [[114.96964308962852,<br>114.96964308962852,<br>451  | 3.455579   | 2.985660          | 6488     |
| 3 | 693726 | 1968        | [01/nm0000001_rm946909184_1899-5-10_1968.jpg]  | 1.0    | [Fred<br>Astaire] | [[622.8855056426588,<br>424.21750383700805,<br>844.3 | 1.872117   | NaN               | 6488     |
| 4 | 693726 | 1968        | [01/nm0000001_rm980463616_1899-5-10_1968.jpg]  | 1.0    | [Fred<br>Astaire] | [[1013.8590023603723, 233.8820422075853, 1201        | 1.158766   | NaN               | 6488     |

#### Dados Originais

# #2

# Limpeza

|   | Image_name                                        | class_id |
|---|---------------------------------------------------|----------|
| 0 | imdb/45/nm0876645_rm1932442112_1959-3-14_1999.jpg | 40       |
| 1 | imdb/45/nm1295245_rm2855187968_1985-3-16_2011.jpg | 26       |
| 2 | imdb/56/nm0005256_rm858435072_1971-4-28_2012.jpg  | 41       |
| 3 | imdb/32/nm0852132_rm676826112_1971-7-30_2004.jpg  | 33       |
| 4 | imdb/27/nm0001427_rm3004406528_1963-6-17_2000.jpg | 37       |

# Dados a serem utilizados

# #3

### Treinar

|       |            |            | 18.50% [37/200 1:07:32< |          |       |  |
|-------|------------|------------|-------------------------|----------|-------|--|
| epoch | train_loss | valid_loss | accuracy                | f_beta   | time  |  |
| 0     | 0.587283   | 0.462057   | 0.832049                | 0.832049 | 01:49 |  |
| 1     | 0.430720   | 0.341835   | 0.864920                | 0.864920 | 01:51 |  |
| 2     | 0.374721   | 0.434729   | 0.845917                | 0.845917 | 01:50 |  |
| 3     | 0.337999   | 0.273992   | 0.891628                | 0.891628 | 01:50 |  |
| 4     | 0.314837   | 0.426782   | 0.848998                | 0.848998 | 01:50 |  |
| 5     | 0.300933   | 0.263492   | 0.888033                | 0.888033 | 01:51 |  |





### Testar

```
In [19]: fig = df_results.plot(x=df_results.index, y='Zero', color='black')
fig.axes.scatter(x=df_results.index, y=df_results['Ŷ Previsto - Y Real'],color='grey')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_legend().set_visible(False)
```





# #5

Repetir até conseguir bons resultados



# Tarefas de Aprendizado



### Escopo deste Minicurso



### Descrição dos Dados Utilizados

Conjunto de dados com informações sobre os apps disponíveis na Google Play Store Apps, retirado da plataforma kaggle



### **Pandas**

pandas 
$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$







Biblioteca open-source em Python que fornece ferramentas de análise de dados e estruturas de dados de alta performance e **fáceis** de usar.

### Ferramentas

- Para a conclusão do minicurso iremos utilizar o Jupyter Notebook;
- Permite a execução de código em células, permitindo um bom uso em tarefas de análise de dados.





## Próximos passos



Podcast: Pizza de Dados







Siraj Raval no YouTube





Obrigado! Dúvidas?







