ZADANIE 10.

Niech $(\Omega, \mathscr{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną taką, że Ω jest zbiorem dyskretnym (skończonym lub przeliczalnym). Pokaż, że nie istnieje rodzina niezależnych zdarzeń $\{A_i\}_{i\in\mathbb{N}}$ taka, że $\mathbb{P}\left[A_n\right]=\frac{1}{2}$ dla każdego n.

Najpierw rozpracuję tę wersję nieskończoną przeliczalną.

Załóżmy nie wprost, że mam ciąg $\{A_i\}_{i\in\mathbb{N}}$ taki, że

$$\mathbb{P}\left[\mathsf{A}_{\mathsf{i}}\right] = \frac{1}{2}.$$

Wiem, że zdarzeń z Ω jest przeliczalnie wiele, czyli jest jakiś, którego prawdopodobieństwo jest różne od zera, bo singletony są rozłączne i sumują się do całości. No to weźmy sobie $\omega \in \Omega$ takie, że $\mathbb{P}[\omega] = p \neq 0$. Teraz rysuneczek:

Czyli mamy cztery możliwości gdzie zawiera się ω : $(A_1 \cup A_2)^c$, $A_1 \cap A_2$, $A_1 \cap A_2^c$, $A_2 \cap A_1^c$. Jak wygląda prawdopodobieństwo każdej z nich?

$$\mathbb{P}[A_1 \cup A_2] = 1 - \mathbb{P}[A_1 \cap A_2] = 1 - \mathbb{P}[A_1^c] \mathbb{P}[A_2^c] =
= 1 - (1 - \mathbb{P}[A_1])(1 - \mathbb{P}[A_2]) = 1 - (1 - \frac{1}{2})(1 - \frac{1}{2}) = 1 - \frac{1}{4} = \frac{3}{4}
\mathbb{P}[A_1 \cap A_2] = \mathbb{P}[A_1] \mathbb{P}[A_2] = \frac{1}{4}
\mathbb{P}[A_1 \cap A_2^c] = \mathbb{P}[A_1] - \mathbb{P}[A_1 \cap A_2] = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}
\mathbb{P}[A_2 \cap A_1^c] = \mathbb{P}[A_2] - \mathbb{P}[A_1 \cap A_2] = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Co jeśli weźmiemy sobie trzy niezależne zbiory? Wtedy mamy A_1, A_2, A_3 i punkt należy albo do $\mathbb{P}[A_1 \cap A_2 \cap A_3] = \frac{1}{8}$, albo $\mathbb{P}[A_1 \cup A_2 \cup A_3] = \frac{7}{8}$, albo $\mathbb{P}[A_1 \cap A_2 \cap A_3^c] = \mathbb{P}[A_1 \cap A_2 \cap A_3] = \mathbb{P}[A_1 \cap A_2 \cap A_3] = \mathbb{P}[A_1 \cap A_2 \cap A_3] = \frac{3}{8}$ albo $\mathbb{P}[A_1 \cup A_2 \cup A_3] = \mathbb{P}[A_1 \cap A_2 \cap A_3^c] = \frac{1}{8}$ tudzież inne kombinacje indeksów, ale to pokryłam na dole.

