ETH zürich

Invariant Causal Prediction

Causality
Christina Heinze-Deml
Spring 2019

Announcements

- Exam
 - Multiple choice questions
 - No R syntax questions but need to be able to interpret output

One question hour in July or August

Last week

- Restricted SEMs
 - RESIT
 - LiNGAM

Today

- LiNGAM
- Invariant Causal Prediction

LiNGAM: Linear non-Gaussian acyclic models

Linear SEM

$$X \leftarrow BX + \epsilon$$
 with $B \in \mathbb{R}^{p \times p}$, $X \in \mathbb{R}^p$, $\epsilon \in \mathbb{R}^p$

- LiNGAM: Linear Non-Gaussian Acyclic Models
 - ullet is mean-zero non-Gaussian with positive variance
 - Noise components are mutually independent, i.e. no hidden variables (causal sufficiency)
 - No faithfulness assumption needed
 - Estimand: DAG

LiNGAM: Linear non-Gaussian acyclic models

Linear SEM

$$X \leftarrow BX + \epsilon$$
 with $B \in \mathbb{R}^{p \times p}$, $X \in \mathbb{R}^p$, $\epsilon \in \mathbb{R}^p$

- Due to acyclicity, the diagonal elements of B are zero
 - No self-loops, i.e. no edge from a node to itself
- Permuting the order of the variables using a causal ordering makes B strictly lower triangular
 - I.e. due to acyclicity, always possible to perform simultaneous, equal row and column permutations on B to make it strictly lower triangular

Independent component analysis

- Independent component analysis (ICA)
 - ICA model

$$X = AS$$

- $X \in \mathbb{R}^p$: observed variables
- $S \in \mathbb{R}^p$: mutually independent, continuous latent non-Gaussian variables "sources"
- $A \in \mathbb{R}^{p \times p}$: unobserved full-rank mixing matrix
- If S is non-Gaussian, then A is identifiable up to permutation, scaling and sign of the columns

LiNGAM: Linear non-Gaussian acyclic models

Can write:

$$X = BX + \epsilon$$
$$(I - B)X = \epsilon$$
$$X = (I - B)^{-1}\epsilon$$

- LiNGAM is an instance of the ICA model X = AS with $A = (I B)^{-1}$ and $S = \epsilon$
- Recall: A is identifiable up to permutation, scaling and sign of the columns
 - Can exploit further properties of *B*: "zeros on the diagonal" and "strictly lower triangular"

Example

LiNGAM: Linear non-Gaussian acyclic models

- ICA-LiNGAM algorithm:
 - 1. Given n i.i.d. observations of $X_{\mathbf{V}}$, use ICA to estimate $W = A^{-1} = (I B)$ up to permutation, scaling and sign of the columns
 - 2. Find unique permutation of the rows of W that yields \widetilde{W} without any zeros on the diagonal
 - Permutation is found by minimizing $\sum_{i} 1/|\widetilde{W}_{ii}|$ (classical linear assignment problem)
 - 3. Divide each row of \widetilde{W} by its diagonal element to yield \widetilde{W}' with only ones on the diagonal
 - 4. Compute $\hat{B} = I \widetilde{W}'$
 - 5. Find causal order by making $\tilde{B} = \tilde{P}\hat{B}\tilde{P}^T$ as close as possible to strictly lower triangular
 - Prune edge weights, e.g. using sparse regression or significance testing

- Knowing causal structure can help to improve predictions when the underlying distribution changes
 - Example:

$$X_{1} \leftarrow N_{X_{1}}$$

$$Y \leftarrow X_{1} + N_{Y}$$

$$X_{2} \leftarrow Y + N_{X_{2}}$$

$$X_{1} \longrightarrow Y$$

$$X_{2} \longrightarrow X_{2}$$

with N_{X_1} , $N_Y \sim \mathcal{N}(0,1)$ and $N_{X_2} \sim \mathcal{N}(0,0.1)$, jointly independent

- Interested in predicting Y from X_1 and X_2
- Model 1: linear model Y ~ X₁
- Model 2: linear model Y ~ X₂
- MSE of model 2 smaller than MSE of model 1
- If interventions occur on X₁ and X₂ after fitting the model, model 1 still works while model 2 fails

- Knowing causal structure can help to improve predictions when the underlying distribution changes
- Now: Observing a system in different "environments" can be used to learn causal relations
- Setting: Assume we observe data from different environments $e \in \mathcal{E}$:

$$X_{V}^{e} = (X_{1}^{e}, ..., X_{d}^{e}) \sim P^{e}$$

i.e., each variable X_i is measured in different environments $e \in \mathcal{E}$

- Consider target variable Y with a set of p predictor variables $(X_1, ..., X_p)$
- Goal: instead of learning the whole causal graph, find causal parents of Y
 - Denote the set of causal parents of Y by S^* , i.e. $S^* := pa(Y)$
- Both $(X_1, ..., X_p)$ and Y are observed in different environments $e \in \mathcal{E}$
 - These different environments could be intervention settings with unknown targets
 - Can also exploit time series data

Many SEMs generate the same observational distribution

Now, we observe the data under shift interventions on X

Interventional data Environment 2

• As long as we avoid interventions on the target Y itself, for all environments $e \in \mathcal{E}$:

$$\begin{cases} X^e \text{ has an arbitrary distribution} \\ Y^e = f_Y(X_{S^*}^e, N_Y) \end{cases}$$

• For all environments $e, f \in \mathcal{E}$

$$Y^{e}|X_{S^{*}}^{e} = x = Y^{f}|X_{S^{*}}^{f} = x$$

- Idea: find invariant conditional distributions to estimate $S^* := pa(Y)$
- No search over DAG space necessary
- No faithfulness assumption necessary
- Relies on data from multiple environments

Invariant causal prediction for linear models

• Let S^* be the indices of pa(Y).

 $H_{0,S^*}(\mathcal{E})$: There exists $\gamma^* \in \mathbb{R}^p$ with support S^* that satisfies for all $e \in \mathcal{E}$:

X^e has an arbitrary distribution and

$$Y^e = X^e \gamma^* + \epsilon^e$$
, $\epsilon^e \sim F_\epsilon$ and $\epsilon^e \perp X_{S^*}^e$

- Idea: To find S^* , test null hypothesis $H_{0,S}(\mathcal{E})$ for all subsets of the predictor
- Estimate: $\hat{S} \coloneqq \cap_{S:H_{0,S} \text{ not rej.}} S$

Guarantee

• Idea: To find S^* , test null hypothesis $H_{0,S}(\mathcal{E})$ for all subsets of the predictor

$$\hat{S} \coloneqq \bigcap_{S:H_{0,S} \text{ not rej.}} S$$

Theorem: "no mistakes":

$$P(\hat{S} \subseteq S^*) \ge P(H_{0,S^*} \text{ not rejected}) \ge 1 - \alpha$$

- Idea: To find S^* , test null hypothesis $H_{0,S}(\mathcal{E})$ for all subsets of the predictor
- How to formulate $H_{0,S}(\mathcal{E})$?
 - Different options
 - Approximate test on residuals:

```
For each S \subseteq \{1, ..., p\}:
```

- Fit linear regression using set S of variables and data from all environments. Let $R = Y \hat{f}(X_S)$.
- Test the null hypotheses that the means and the variances of R are identical across all
 environments. Combine the two p-values by taking twice the smaller of the two values.
- If the combined p-value is smaller than α , reject the set S.

Recap

- Concepts to know:
 - Invariant Causal Prediction

References and acknowledgments

- Peters, Janzing and Schölkopf (2017). Elements of Causal Inference.
 Chapters 7.1, 7.2
- Invariant Causal Prediction
 - Peters, Bühlmann, Meinshausen (2016). Causal inference using invariant prediction: identification and confidence intervals. JRSS B.