Solutions for DEs

Definition:

A function that <u>satisfies</u> a DE for <u>all input</u> of the function is called a **solution** for the DE.

Ext Is
$$y = e^{x^3}$$
 a solution for $y = 3 \times 2y$?

solution Note: $y' = 3 \times 2e^{x^3}$. Thus

 $y' = 3 \times 2y$

(=) $3 \times 2e^{x^3} = 3 \times 2e^{x^3}$.

 $y = e^{x^3}$ is

 $y = e^{x^3$

Ext Find a function y satisfying $\frac{dy}{dy} + y^2 = 0$. soly Consider $y = \frac{1}{x}$. Then $y' = -\frac{1}{x^2} \text{ and } y' + y^2 = 0$

 $y' = -\frac{1}{x^2}$ and y' + y' = 0 $(=>) -\frac{1}{x^2} + \frac{1}{x^2} = 0$. Q: Is y a solu to the DE?

A: We need to examine the domain of the solus.

Definition:

A function defined on an interval that satisfies a DE on the interval is a **solution** for the DE on the interval.

RECALL:
$$y = \frac{1}{x}$$
 satisfies $\frac{dy}{dx} + y^2 = 0$.
However, $y = \frac{1}{x}$ is defined on $(-\infty,0) \cup (0,\infty)$.
Thus, $y = \frac{1}{x}$ is a solution the DE
on $(-\infty,0)$ or $(0,\infty)$.

Definition:

The interval for which a function is a solution for the DE is called the **interval of existence** (or **validity**), or the **domain of the solution**.

Note also:
$$y=0$$
 satisfies $\frac{dy}{dx} + y^2 = 0$.
and the domain of the solution
Sur $y=0$ is $(-\infty, \infty)$.

If the function y=0 is a solution on an interval, we call this the **trivial solution**.

Implicit and Explicit Solutions

Ext Suppose
$$y^2 = x^2$$
. Find $\frac{dy}{dx}$.

Solut Implicit differentiation.

$$\frac{d}{dx}(y^2) = \frac{d}{dx}(x^2)$$

$$(=) 2y \cdot (\frac{dy}{dx}) = 2x$$

$$(=) 2y = \frac{2x}{2y} = \frac{x}{y}$$

Ext consider
$$\frac{dy}{dx} = \frac{x^2}{1-y^2}$$
. Verify that

 $y - \frac{y^3}{3} = \frac{x^3}{3} + C$ (ca constant) is

a solut for the DE.

Solut $\frac{d}{dx}(y - \frac{y^3}{3}) = \frac{d}{dx}(\frac{x^3}{3} + C)$

(=) $\frac{dy}{dx} - \frac{y^2}{dx} = x^2$

(=) $\frac{dy}{dx} = \frac{x^2}{1-y^2}$. is solut from the properties of the propertie

RECALL For the DE y'= 3x3y we had $y=e^{x^3}$, y=0, $y=7e^{x^3}$ are all solus, > In fact, y = Cexs is a soln for any constant C. -> So y= Cexis a "family" of solus. -) It is a 1-parameter family of solus. -> whereas, y = Tex is a particulusoly. Q: Are all solus for the DE of the form $y = Ce^{x^3}$ for some C?

Definition:

- 1. A soln for a DE that has no parameters is a **particular** soln.
- 2. A set of solutions obtained by ranging over n many constants is called an **n-parameter family** of solns.
- 3. An n-parameter family of solns which gives rise to all solns is called a **general** soln.

Ex consider y"-y=0. Verify that y = c, ex + cz ex is a 2 parameter Samily of solus.

(tere, cz are constants. $y' = c_1 e^{x} - c_2 e^{-x}$

 $y'' = c_1 e^{x} + c_2 e^{x}$

SD y - y = 0 / DONE.

on the interval or T = (-00, 0). **Graphing Solutions** Ex Note $y = \frac{1}{\sqrt{2}}$ is a solu for $y' = -\frac{2y}{x}$. Graph the soln: solul Note: the graph of the function $y = \frac{1}{\sqrt{2}}$ is For the solution, need interval (-op, a) or (o, oo).

EXI Graph the solus for y'= 4. solul y=ex is a solu. so is y=2ex, 3ex, ex. In fact, y=Cex is a 1-parameter Samily of solus. could graph all of them;

