Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

deeplearning.ai

Overview

Some basic applications of word embeddings

Semantic analogies and similarity

Sentiment analysis

Classification of customer feedback

Advanced applications of word embeddings

Machine translation

Information extraction

Question answering

Learning objectives

Prerequisite: neural networks

- Identify the key concepts of word representations
- Generate word embeddings
- Prepare text for machine learning
- Implement the continuous bag-of-words model

deeplearning.ai

Basic Word Representations

Outline

- Integers
- One-hot vectors
- Word embeddings

Integers

Word	Number	
a	1	
able	2	
about	3	
•••	•••	
hand	615	
•••	•••	
happy	621	
•••	•••	
zebra	1000	

Integers

+ Simple

- Ordering: little semantic sense

One-hot vectors

One-hot vectors

Word	Number	"happy"		
а	1		0	а
able	2		0	able
about	3	3	0	about
•••	•••		:	•••
hand	615	615	0	hand
•••	/	•••	:	•••
happy	621 ←	→ 621	1	happy
•••			:	•••
zebra	1000	1000	0	zebra

One-hot vectors

- + Simple
- No implied ordering
- Huge vectors
- No embedded meaning

deeplearning.ai

Word Embeddings

Meaning as vectors

Meaning as vectors

Word embedding vectors

- Low dimension
- + Embed meaning
 - o e.g. semantic distance

o e.g. analogies

Paris:France :: Rome:?

Terminology

word vectors

integers

one-hot vectors

word embedding vectors

"word vectors"

word embeddings

Summary

- Words as integers
- Words as vectors
 - One-hot vectors
 - Word embedding vectors
- Benefits of word embeddings for NLP

deeplearning.ai

How to Create Word Embeddings

Word embedding process

Hyperparameters

Word embedding size

Corpus

General- Specialized purpose e.g. contracts, law books

Words in context

Embedding method

Machine learning model

Learning task

Transformation

words

integers, vectors

Self-supervised

"I think [???] I am"

= unsupervised

+ supervised

Meaning

Word embeddings

deeplearning.ai

Word Embedding Methods

Basic word embedding methods

- word2vec (Google, 2013)
 - Continuous bag-of-words (CBOW)
 - Continuous skip-gram / Skip-gram with negative sampling (SGNS)
- Global Vectors (GloVe) (Stanford, 2014)
- fastText (Facebook, 2016)
 - Supports out-of-vocabulary (OOV) words

Advanced word embedding methods

Deep learning, contextual embeddings

- BERT (Google, 2018)
- ELMo (Allen Institute for AI, 2018)
- GPT-2 (OpenAI, 2018)

Tunable pre-trained models available

deeplearning.ai

Continuous Bag-of-Words Model

Continuous bag-of-words word embedding process

Center word prediction: rationale

The little is barking dog puppy hound terrier

Creating a training example

From corpus to training

Word embeddings

From corpus to training

From corpus to training

Corpus

I am happy because I am learning

Word embeddings

CBOW in a nutshell

Source: Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space

deeplearning.ai

Cleaning and Tokenization

Letter case

"The" == "the" == "THE" \rightarrow lowercase / upper case

Letter case

"The" == "the" == "THE" \rightarrow lowercase / upper case

Punctuation

```
, \; ! \; . \; ? \; \rightarrow . \qquad \qquad \text{`` `` } \quad \text{`` } \quad \text{`` } \quad \text{`` } \quad \Rightarrow \emptyset \qquad \qquad \dots \; !! \; ??? \; \rightarrow .
```

Letter case

"The" == "the" == "THE" \rightarrow lowercase / upper case

Punctuation

$$, \; ! \; . \; ? \; \rightarrow . \qquad \text{`` ` ` ` } ~ \otimes ~ \cdots \; !! \; ??? \; \rightarrow .$$

Numbers

```
1 2 3 5 8 \rightarrow \emptyset 3.14159 90210 \rightarrow as is/\langle NUMBER \rangle
```

Letter case

"The" == "the" == "THE"
$$\rightarrow$$
 lowercase / upper case

Punctuation

$$, \; ! \; . \; ? \; \rightarrow . \qquad \qquad \text{`` `` } \quad \text{`` } \quad \text$$

Numbers

1 2 3 5 8
$$\rightarrow \emptyset$$
 3.14159 90210 $\rightarrow as is/\langle NUMBER \rangle$

Special characters

 ∇ \$ € § ¶ ** → ∅

Cleaning and tokenization matters

Letter case

"The" == "the" == "THE" \rightarrow lowercase / upper case

Punctuation

 $, \; ! \; . \; ? \; \rightarrow . \qquad \qquad `` \; ` \; " \; \rightarrow \emptyset \qquad \qquad ... \; !! \; ??? \; \rightarrow .$

Numbers

- 1 2 3 5 8 $\rightarrow \emptyset$ 3.14159 90210 $\rightarrow as is/<NUMBER>$
- Special characters

 ∇ \$ € § ¶ ** → ∅

Special words

(3) #nlp \rightarrow :happy: #nlp

Example in Python: corpus

Example in Python: libraries

```
# pip install nltk
# pip install emoji

import nltk
from nltk.tokenize import word_tokenize
import emoji

nltk.download('punkt') # download pre-trained Punkt tokenizer for English
```

Example in Python: code

```
corpus = 'Who ♡ "word embeddings" in 2020? I do!!!'

data = re.sub(r'[,!?;-]+', '.', corpus)

→ Who ♡ "word embeddings" in 2020. I do.
```

Example in Python: code

```
corpus = 'Who ♡ "word embeddings" in 2020? I do!!!'

data = re.sub(r'[,!?;-]+', '.', corpus)
data = nltk.word_tokenize(data) # tokenize string to words

→ ['Who', '♡', '``', 'word', 'embeddings', "''", 'in', '2020', '.', 'I',
'do', '.']
```

Example in Python: code

```
corpus = 'Who ♥ "word embeddings" in 2020? I do!!!'
data = re.sub(r'[,!?;-]+', '.', corpus)
data = nltk.word tokenize(data) # tokenize string to words
data = [ ch.lower() for ch in data
         if ch.isalpha()
        or ch == '.'
        or emoji.get_emoji_regexp().search(ch)
```

```
\rightarrow ['who', '\heartsuit', 'word', 'embeddings', 'in', '.', 'i', 'do', '.']
```


Sliding Window of Words in Python

Sliding window of words in Python

```
def get_windows(words, C):
    i = C
    while i < len(words) - C:
        center_word = words[i]
        context_words = words[(i - C):i] + words[(i+1):(i+C+1)]
        yield context_words, center_word
        i += 1</pre>
```

I	am	happy	because	- 1	am	learning
0	1	2	3	4	5	6

Sliding window of words in Python

```
def get_windows(words, C):
     ...
     yield context_words, center_word
```

Sliding window of words in Python

```
→ ['I', 'am', 'because', 'I'] happy
['am', 'happy', 'I', 'am'] because
['happy', 'because', 'am', 'learning'] I
```


Transforming Words into Vectors

Transforming center words into vectors

Corpus I am happy because I am learning

Vocabulary am, because, happy, I, learning

One-hot vector

Transforming context words into vectors

Average of individual one-hot vectors

Final prepared training set

Context words	Context words vector	Center word	Center word vector
I am because I	[0.25; 0.25; 0; 0.5; 0]	happy	[0; 0; 1; 0; 0]

Architecture of the CBOW Model

Architecture of the CBOW model

Hyperparameters

N: Word embedding size

...

Architecture of the CBOW Model:

Dimensions

Dimensions (single input)

Dimensions (single input)

Column vectors

Row vectors

$$\mathbf{z_1} = \mathbf{x} \mathbf{W_1}^\mathsf{T} + \mathbf{b_1}$$
 $\mathbf{b_1} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$ $\mathbf{W_1} = \left(\begin{array}{c} \mathbf{N} \times \mathbf{V} \end{array}\right)$ $\mathbf{b_1} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$ $\mathbf{x} = \left(\begin{array}{c} \mathbf{1} \times \mathbf{N} \end{array}\right)$

Architecture of the CBOW Model:

Dimensions 2

Dimensions (batch input)

$$\begin{bmatrix} b_1 \end{bmatrix} \rightarrow B_1 = \begin{bmatrix} b_1 \\ m \end{bmatrix} \dots \begin{bmatrix} b_1 \\ m \end{bmatrix}$$
 N broadcasting

Dimensions (batch input)

Architecture of the CBOW Model

Activation Functions

Rectified Linear Unit (ReLU)

$$h = ReLU(z_1)$$

$$ReLU(x) = max(0, x)$$

Softmax

Hidden layer Output layer

$$z = W_2h + b_2$$

$$\hat{\mathbf{y}} = \text{softmax}(\mathbf{z})$$

Probabilities of being center word

Softmax: example

Training a CBOW Model

Cost Function

Loss

Cross-entropy loss

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

I am happy because I am learning

Cross-entropy loss

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

Cross-entropy loss

$$J = -\log \hat{y}_{actual}$$
word

У		ŷ	
0	am	0.96	
0	because	0.01	
1	happy	0.01	\rightarrow J = 4.61
0	I	0.01	
0	learning	0.01	

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

Training a CBOW Model

Forward Propagation

Training process

- Forward propagation
- Cost
- Backpropagation and gradient descent

Forward propagation

$$Z_1 = W_1X + B_1$$
 $Z_2 = W_2H + B_2$
 $H = ReLU(Z_1)$ $\hat{Y} = softmax(Z_2)$

Cost

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

Cost: mean of losses

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{V} y_j^{(i)} \log \hat{y}_j^{(i)}$$

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} J^{(i)}$$

Predicted center word matrix

$$\hat{\mathbf{Y}} = \left(\begin{bmatrix} \hat{\mathbf{y}}^{(1)} \end{bmatrix} \cdots \begin{bmatrix} \hat{\mathbf{y}}^{(m)} \end{bmatrix} \right) \qquad \qquad \mathbf{Y} = \left(\begin{bmatrix} \mathbf{y}^{(1)} \end{bmatrix} \cdots \begin{bmatrix} \mathbf{y}^{(m)} \end{bmatrix} \right)$$

Actual center word matrix

$$\mathbf{Y} = \left(\mathbf{y}^{(1)} \right) \cdots \left(\mathbf{y}^{(m)} \right)$$

Training a CBOW Model

Backpropagation and Gradient Descent

Minimizing the cost

$$J_{batch} = f(\mathbf{W_1}, \mathbf{W_2}, \mathbf{b_1}, \mathbf{b_2})$$

 Backpropagation: calculate partial derivatives of cost with respect to weights and biases

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}}, \frac{\partial J_{batch}}{\partial \mathbf{W_2}}, \frac{\partial J_{batch}}{\partial \mathbf{b_1}}, \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Minimizing the cost

 Backpropagation: calculate partial derivatives of cost with respect to weights and biases

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}}, \frac{\partial J_{batch}}{\partial \mathbf{W_2}}, \frac{\partial J_{batch}}{\partial \mathbf{b_1}}, \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Gradient descent: update weights and biases

Backpropagation

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}} = \frac{1}{m} (\mathbf{W_2}^{\mathsf{T}} (\hat{\mathbf{Y}} - \mathbf{Y}) \cdot \text{step}(\mathbf{Z_1})) \mathbf{X}^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{W_2}} = \frac{1}{m} (\mathbf{\hat{Y}} - \mathbf{Y}) \mathbf{H}^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_1}} = \frac{1}{m} (\mathbf{W_2}^{\mathsf{T}} (\mathbf{\hat{Y}} - \mathbf{Y}) \cdot \text{step}(\mathbf{Z_1})) \mathbf{1}_m^{\mathsf{T}}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_2}} = \frac{1}{m} (\hat{\mathbf{Y}} - \mathbf{Y}) \mathbf{1}_m^{\mathsf{T}}$$

Gradient descent

Hyperparameter: learning rate α

$$\mathbf{W_1} := \mathbf{W_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_1}}$$

$$\mathbf{W_2} := \mathbf{W_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_2}}$$

$$\mathbf{b_1} := \mathbf{b_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_1}}$$

$$\mathbf{b_2} := \mathbf{b_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Extracting Word Embedding Vectors

Extracting word embedding vectors: option 1

Extracting word embedding vectors: option 2

Extracting word embedding vectors: option 3

Evaluating Word Embeddings

Intrinsic Evaluation

Test relationships between words

Analogies

```
Semantic analogies
```

```
"France" is to "Paris" as "Italy" is to <?>
```

Syntactic analogies

```
"seen" is to "saw" as "been" is to <?>
```

```
Ambiguity
```

"wolf" is to "pack" as "bee" is to <?> → swarm? colony?

Test relationships between words

Analogies

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Test relationships between words

- Analogies
- Clustering

Source: Michael Zhai, Johnny Tan, and Jinho D. Choi. 2016. <u>Intrinsic and extrinsic</u> evaluations of word embeddings

Test relationships between words

- Analogies
- Clustering
- Visualization

```
village
city town
gas country
oil happy
petroleum sad joyful
```


Evaluating Word Embeddings

Extrinsic Evaluation

Extrinsic evaluation

Named entity

Andrew works at deeplearning.ai

person organization

Test word embeddings on external task e.g. named entity recognition, parts-of-speech tagging

Extrinsic evaluation

Test word embeddings on external task e.g. named entity recognition, parts-of-speech tagging

+ Evaluates actual usefulness of embeddings

- Time-consuming
- More difficult to troubleshoot

Conclusion

Recap and assignment

- Data preparation
- Word representations
- Continuous bag-of-words model
- Evaluation

Going further

- Advanced language modelling and word embeddings
- NLP and machine learning libraries

```
Keras # from keras.layers.embeddings import Embedding
embed_layer = Embedding(10000, 400)

PyTorch # import torch.nn as nn
embed_layer = nn.Embedding(10000, 400)
```