Introduction to Computer Networks

IP Prefix Aggregation and Subnets (§5.6.2)

Topic

- How to help scale routing by adjusting the size of IP prefixes
 - Split (subnets) and join (aggregation)

Recall

- IP addresses are allocated in blocks called IP prefixes, e.g., 18.31.0.0/16
 - Hosts on one network in same prefix
- A "/N" prefix has the first N bits fixed and contains 2^{32-N} addresses
 - E.g., a "/24" has 256 addresses
- Routers keep track of prefix lengths
 - Use it as part of longest prefix matching

Recall (2)

- IP addresses are allocated in blocks called IP prefixes, e.g., 18.31.0.0/16
 - Hosts on one network in same prefix
- A "/N" prefix has the first N bits fixed and contains 2^{32-N} addresses
 - E.g., a "/24" has 256 addresses
- Routers keep track of prefix lengths
 - Use it as part of longest prefix matching

Routers can change prefix lengths without affecting hosts

Prefixes and Hierarchy

- IP prefixes already help to scale routing, but we can go further
 - We can use a less specific (larger)
 IP prefix as a name for a region

Subnets and Aggregation

 Two use cases for adjusting the size of IP prefixes; both reduce routing table

Subnets

Internally split one large prefix into multiple smaller ones

2.—Aggregation

Externally join multiple smaller prefixes into one large prefix

Subnets

Internally split up one IP prefix

Aggregation

Externally join multiple separate IP prefixes

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey