Statistical Signal Processing (EE60102)

Mid-semester examination, Spring 2021-22

Time: 2 hours Total Marks: 30

- **Q1.** A time series u(n) obtained from a wide-sense stationary stochastic process of zero mean and correlation matrix R is applied to an FIR filter with impulse response defined by the coefficient vector \mathbf{w} .
 - (a) Show that the average power of the filter output is equal to $\mathbf{w}^H R \mathbf{w}$.
- (b) How is the result in part (a) modified if the stochastic process at the filter input is a white noise with variance σ^2 ?

(2+2=4)

- **Q2.** Use the Yule-Walker equations to determine the auto-correlation coefficients of the following AR models assuming that $w(n) \sim WN(0,1)$:
 - (i) x(n) = 0.5x(n-1) + w(n)
 - (ii) x(n) = 1.5x(n-1) 0.6x(n-2) + w(n) (2+3=5)
- Q3. Consider a Wiener filtering problem characterized as follows. The correlation matrix R of the tap-input vector $\mathbf{u}(n)$ is

$$R = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array} \right]$$

The cross-correlation vector between the tap-input vector $\mathbf{u}(n)$ and the desired response d(n) is $\mathbf{p} = \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$.

(a) Evaluate the optimum tap-weights of the Wiener filter.

(3)

(b) What is the minimum mean-square error produced by this Wiener filter?

(3)

(c) Express the optimum tap weights and minimum mean square error, J_{min} , of the Wiener filter in terms of the eigenvalues of the matrix R and associated eigenvectors and verify the solution of (a), (b).

(5)

Q4. A process y(n) with the autocorrelation $r_y(l) = a^{|l|}$, -1 < a < 1, is corrupted by additive, uncorrelated white noise $\nu(n)$ with variance σ_{ν}^2 . To reduce the noise in the observed process $x(n) = y(n) + \nu(n)$, we use a first-order Wiener filter.

Express the optimal tap weights and the MMSE J_{min} in terms of the parameters a and σ_{ν}^2 .

(5)

- Q5. (a) Draw the signal flow graph for the LMS algorithm.
 - (b) What is the difference between steepest descent algorithm and LMS?

(3+2=5)