5.71. Показать, что для произвольной квадратной матрицы C справедливы неравенства

$$|\det(C)| \leqslant \prod_{i=1}^n \left(\sum_{j=1}^n |c_{ij}|^2\right)^{1/2}, \quad |\det(C)| \leqslant \prod_{j=1}^n \left(\sum_{i=1}^n |c_{ij}|^2\right)^{1/2},$$

а равенства в них достигаются тогда и только тогда, когда строки (соответственно столбцы) матрицы C попарно ортогональны.

 \lhd Если матрица C вырождена, то доказывать нечего. В случае невырожденной матрицы C нужно применить неравенство из 5.70 к положительно определенной матрице $A = C\,C^T$ и извлечь квадратный корень из обеих частей неравенства. Правая часть доказываемого неравенства — квадратный корень из произведения диагональных элементов матрицы A, а левая часть — квадратный корень из определителя этой матрицы. Строки матрицы C попарно ортогональны тогда и только тогда, когда A — диагональная матрица, а это и есть случай равенства в 5.70. Второе искомое неравенство получается применением первого к матрице C^T .

5.3. Точные методы

К точным методам решения системы $A\mathbf{x}=\mathbf{b}$ линейных алгебраических уравнений относятся алгоритмы, которые при отсутствии ошибок округления, позволяют точно вычислить искомый вектор \mathbf{x} за конечное число логических и арифметических операций. Если число ненулевых элементов матрицы имеет порядок n^2 , то большинство алгоритмов такого рода позволяют найти решение за $O(n^3)$ арифметических действий. Данная оценка, а также необходимость хранения всех элементов матрицы в памяти компьютера накладывают существенное ограничение на область применимости точных методов. Однако для решения задач размерности n менее 10^4 разумно применять точные алгоритмы. При численном решении задач математической физики часто требуется обращать матрицы блочнодиагонального вида. В этом случае удается построить точные методы с меньшим по порядку числом арифметических действий. К таким алгоритмам относят методы прогонки, стрельбы, Фурье (базисных функций).

Наиболее известным из точных методов, применяемых для решения задач с матрицами общего вида, является метод исключения Гаусса. В предположении, что коэффициент $a_{11} \neq 0$, уравнения исходной системы заменяем следующими:

$$\begin{cases} x_1 + \sum_{j=2}^{n} \frac{a_{1j}}{a_{11}} x_j = \frac{b_1}{a_{11}}, \\ \sum_{j=2}^{n} \left(a_{ij} x_j - \frac{a_{1j}}{a_{11}} a_{i1} x_j \right) = b_i - \frac{b_1}{a_{11}} a_{i1}, \quad i = 2, \dots, n, \end{cases}$$

т. е. первое уравнение делим на a_{11} , затем, умноженное на соответствующий коэффициент a_{i1} , вычитаем из последующих уравнений. В полученной системе $A^{(1)}\mathbf{x} = \mathbf{b}^{(1)}$ неизвестное x_1 исключено из всех уравнений,

кроме первого. Далее при условии, что коэффициент $a_{22}^{(1)}$ матрицы $A^{(1)}$ отличен от нуля, исключаем x_2 из всех уравнений, кроме первого и второго, и т. д. В результате получаем систему $A^{(n)}\mathbf{x}=\mathbf{b}^{(n)}$ с верхней треугольной матрицей. Данную последовательность вычислений называют *прямым ходом метода Гаусса*. Из последнего уравнения приведенной системы определяем компоненту решения x_n . Далее подставляем x_n в (n-1)-е уравнение, находим x_{n-1} и т. д. Соответствующую последовательность вычислений называют *обратным ходом метода Гаусса*. Если на k-м шаге прямого хода коэффициент $a_{kk}^{(k-1)}$ равен нулю, то k-ю строку уравнения переставляют с произвольной l-й строкой, l>k-с ненулевым коэффициентом $a_{lk}^{(k-1)}$ при x_k . Такая строка всегда найдется, если $\det(A)\neq 0$.

Если на k-м шаге прямого хода диагональный элемент $a_{kk}^{(k-1)}$ отличен от нуля, но его абсолютное значение мало, то коэффициенты очередной матрицы $A^{(k)}$ будут вычислены с большой абсолютной погрешностью. Полученное в результате решение может значительно отличаться от точного. Поэтому при практической реализации метода Гаусса требуют на каждом шаге прямого хода переставлять на k-е место строку с максимальным по модулю элементом $a_{lk}^{(k-1)}$ среди всех $l\geqslant k$. Такую модификацию называют методом Гаусса с частичным выбором главного элемента. Данный алгоритм позволяет гарантированно найти приближенное решение $\tilde{\mathbf{x}}$ с малой нормой невязки $\|\mathbf{b} - A\tilde{\mathbf{x}}\|$ но, возможно, с большой относительной ошибкой $\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|}$.

5.72. Показать, что реализации прямого и обратного хода метода Гаусса требуют по порядку $\frac{2}{3}n^3$ и n^2 арифметических действий соответственно.

Указание. Число умножений прямого хода приближенно равно $n^2+(n-1)^2+\ldots+1 \approx \int\limits_0^n x^2 dx = \frac{n^3}{3},$ имеем столько же сложений.

5.73. Показать, что прямой ход метода Гаусса соответствует последовательному умножению исходной системы на некоторые диагональные матрицы C_k и нижние треугольные матрицы C_k' . Определить вид матриц C_k и C_k' .

У казание. Матрица C_k получается из матрицы I заменой диагонального элемента k-й строки на элемент $\left(a_{k,k}^{(k-1)}\right)^{-1}$. Матрица C_k' получается из матрицы I заменой k-го столбца на столбец $\left(0,\ldots,1,-a_{k+1,k}^{(k-1)},-a_{k+2,k}^{(k-1)},\ldots,-a_{n,k}^{(k-1)}\right)^T$.

Таким образом, метод Гаусса соответствует неявному разложению исходной матрицы A на произведение нижней треугольной матрицы L и верхней треугольной матрицы R с $r_{kk}=1$. Действительно, как следует из $5.73,\ CA=R,\$ где R- верхняя треугольная матрица с единичной

диагональю, а $C = C_n C'_{n-1} C_{n-1} \dots C'_1 C_1$ — нижняя треугольная матрица. Поэтому A = LR, где $L = C^{-1}$. Аналогично можно построить разложение A = LR с $l_{kk} = 1$.

5.74. Показать, что прямой ход метода Гаусса с частичным выбором главного элемента соответствует последовательному умножению исходной системы на некоторые диагональные матрицы C_k , нижние треугольные матрицы C'_k и матрицы перестановок P_k . Определить вид матриц C_k , C'_k и P_k .

Ответ: Матрицы C_k , C'_k совпадают с матрицами из 5.73, матрицы P_k получаются из единичной матрицы I некоторой перестановкой строк.

5.75. Пусть система A**x** = **b** с матрицей $A = \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix}$ решается методом LR-разложения: A = LR, L**y** = **b**, R**x** = **y**. Вычислить $\operatorname{cond}_{\infty}(L)$ и $\operatorname{cond}_{\infty}(R)$, если LR-разложение строится методом Гаусса: а) без выбора главного элемента; б) с выбором главного элемента.

< а) Применим схему без выбора главного элемента:

$$\begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix}.$$

Отсюда для определения элементов матриц L и R получаем систему линейных алгебраических уравнений $l_{11}r_{11}=\varepsilon,\ l_{11}r_{12}=1,\ l_{21}r_{11}=1,\ l_{21}r_{12}+l_{22}r_{22}=1.$ Для определенности положим $l_{11}=l_{22}=1.$ Тогда

$$L = \begin{pmatrix} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{pmatrix},$$
$$L^{-1} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{\varepsilon} & 1 \end{pmatrix}, \quad R^{-1} = \begin{pmatrix} \frac{1}{\varepsilon} & -\frac{1}{\varepsilon - 1} \\ 0 & \frac{\varepsilon}{\varepsilon - 1} \end{pmatrix}.$$

Отсюда

$$\operatorname{cond}_{\infty}(L) = \left(1 + \frac{1}{\varepsilon}\right)^2, \quad \operatorname{cond}_{\infty}(R) = \frac{1}{\varepsilon^2}.$$

б) Воспользуемся LR-разложением с выбором главного элемента:

$$\begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ l_{21} & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix},$$

$$L = \begin{pmatrix} 1 & 0 \\ \varepsilon & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 1 \\ 0 & 1 - \varepsilon \end{pmatrix},$$

$$L^{-1} = \begin{pmatrix} 1 & 0 \\ -\varepsilon & 1 \end{pmatrix}, \quad R^{-1} = \begin{pmatrix} 1 & -\frac{1}{1 - \varepsilon} \\ 0 & \frac{1}{1 - \varepsilon} \end{pmatrix}.$$

Отсюда

$$\operatorname{cond}_{\infty}(L) = (1 + \varepsilon)^2, \quad \operatorname{cond}_{\infty}(R) = 2\left(1 + \frac{1}{1 - \varepsilon}\right).$$

5.76. Доказать, что для невырожденной матрицы A существуют матрицы перестановок P_1 и P_2 , нижняя треугольная матрица L и верхняя треугольная матрица R такие, что $P_1AP_2 = LR$. Показать, что достаточно использовать одну из матриц P_i .

Указание. В матрице P_1A переставлены строки исходной матрицы A, а в матрице AP_2 — столбцы. Для того чтобы матрица имела LR-разложение, необходимо и достаточно, чтобы все ее ведущие подматрицы (в том числе и A) были невырожденные.

Если методом Гаусса получено некоторое приближенное решение $\tilde{\mathbf{x}}$, то можно выполнить следующий процесс уточнения. Найдем вектор невязки $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$ с удвоенным количеством значащих цифр и решим систему $A\mathbf{z} = \frac{\mathbf{r}}{\|\mathbf{r}\|}$. Положим $\tilde{\mathbf{x}} := \tilde{\mathbf{x}} + \|\mathbf{r}\|\mathbf{z}$. Процесс уточнения значительно экономичнее, чем решение исходного уравнения, так как LR-разложение матрицы A уже имеется. Уточнение можно повторять до тех пор, пока убывает норма вектора невязки.

5.77. Пусть вещественная матрица A симметрична и положительно определена. Записать формулы для решения системы $A\mathbf{x} = \mathbf{b}$, основанные на разложении $A = R^T R$ с верхней треугольной матрицей R.

 \triangleleft Определим элементы матрицы R. В силу формулы умножения матриц имеем $a_{ij} = r_{1i}r_{1j} + r_{2i}r_{2j} + \ldots + r_{ii}r_{ij}$ при i < j, $a_{ii} = r_{1i}^2 + r_{2i}^2 + \ldots + r_{ii}^2$ при i = j.

Отсюда получаем формулы для определения r_{ij} :

$$r_{11} = \sqrt{a_{11}}, \quad r_{1j} = \frac{a_{1j}}{r_{11}} \quad (j > 1),$$

$$r_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2} \quad (i > 1),$$

$$r_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} r_{ki}r_{kj}}{r_{ii}} \quad (j > i),$$

$$r_{ij} = 0 \quad (i > j).$$

Дальнейшее решение исходной системы сводится к последовательному решению двух систем с треугольными матрицами: R^T **y** = **b** и R**x** = **y**.

Элементы вектора у определяем по рекуррентным формулам аналогично r_{ij} :

$$y_1 = \frac{b_1}{r_{11}}, \quad y_i = \frac{b_i - \sum\limits_{k=1}^{i-1} r_{ki} y_k}{r_{ii}} \quad (i > 1).$$

Окончательное решение х находим по формулам

$$x_n = \frac{y_n}{r_{nn}}, \quad x_i = \frac{y_i - \sum_{k=i+1}^n r_{ik} y_k}{r_{ii}} \quad (i < n).$$

Описанный алгоритм часто называют методом Холецкого.

- **5.78.** Показать, что реализации прямого и обратного хода метода Холецкого требуют по порядку $\frac{1}{3}n^3$ и n^2 арифметических действий соответственно.
- **5.79.** Пусть A- вещественная симметричная матрица. Записать формулы для вычисления матричного разложения $A=R^TDR$ с верхней треугольной матрицей R и диагональной матрицей D с элементами $d_{ii}=\pm 1$. Ответ: последовательно для $i=1,\ldots,n$ вычислим

$$d_{ii} = \operatorname{sign}\left(a_{ii} - \sum_{k=1}^{i-1} |r_{ki}|^2 d_{kk}\right), \quad r_{ii} = \left|a_{ii} - \sum_{k=1}^{i-1} |r_{ki}|^2 d_{kk}\right|^{1/2},$$
 $r_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj} d_{kk}}{r_{ii} d_{ii}}$ для $i < j$.

В этих формулах, как обычно, если верхний индекс суммирования меньше нижнего, то сумму полагают равной нулю.

5.80. Для матрицы

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -5 & -6 \\ 3 & -6 & 18 \end{pmatrix}$$

вычислить элементы разложения $A=R^TDR$ с верхней треугольной матрицей R и диагональной матрицей D с элементами $d_{ii}=\pm 1$.

$$\text{O\,{\sc tb\,e\,t:}}\; D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 5 \end{pmatrix}.$$

Среди точных методов, требующих для реализации порядка $O(n^3)$ действий, одним из наиболее устойчивых к вычислительной погрешности является метод отражений.

Пусть имеем некоторый единичный вектор $\mathbf{w} \in \mathbf{R}^n$, $\|\mathbf{w}\|_2 = 1$. Построим по нему следующую матрицу: $U = I - 2\mathbf{w} \mathbf{w}^T$, называемую матрицей Хаусхолдера. Здесь I — единичная матрица, $\Omega = \mathbf{w} \mathbf{w}^T$ — матрица с элементами $\omega_{ij} = w_i w_j$, являющаяся результатом произведения вектор-столбца \mathbf{w} на вектор-строку \mathbf{w}^T .

5.81. Доказать, что матрица U является симметричной и ортогональной матрицей, т. е. $U=U^T$ и $U^TU=I$, и все ее собственные значения равны +1.

Указание. Симметричность U следует из явного вида U. Так как $(\mathbf{w},\mathbf{w})=1,$ то $\Omega\Omega|_{ij}=\sum\limits_{k=1}^n w_iw_kw_kw_j=\Omega|_{ij}$ и

$$UU = I - 4\Omega + 4\Omega\Omega = I$$
, T. e. $U^2 = U^T U = I$.

5.82. Показать, что $U\mathbf{w} = -\mathbf{w}$, а если вектор \mathbf{v} ортогонален \mathbf{w} , то $U\mathbf{v} = \mathbf{v}$.

5.83. Показать, что образ U**у** произвольного вектора **у** является зеркальным отражением относительно гиперплоскости, ортогональной вектору **w**.

$$\triangleleft$$
 Представим ${\bf y}$ в виде ${\bf y}=({\bf y},{\bf w}){\bf w}+{\bf v}.$ Тогда из 5.82 следует $U{\bf y}=-({\bf y},{\bf w}){\bf w}+{\bf v}.$ \rhd

5.84. Для векторов единичной длины ${\bf y}$ и ${\bf e}$ найти вектор ${\bf w}$ такой, что $U{\bf y}={\bf e}$, где $U=I-2{\bf w}\,{\bf w}^T$.

 \lhd Заметим, что $\mathbf{w}=\pm \frac{\mathbf{y}-\mathbf{e}}{\sqrt{(\mathbf{y}-\mathbf{e},\mathbf{y}-\mathbf{e})}}$. Действительно, $(I-2\mathbf{w}\,\mathbf{w}^T)\,\mathbf{y}=\mathbf{y}-\xi=\mathbf{e}$, так как

$$\xi_i = \frac{2\sum_{k=1}^{n} (y_i - e_i)(y_k - e_k)y_k}{(\mathbf{y} - \mathbf{e}, \mathbf{y} - \mathbf{e})} = \frac{2(y_i - e_i)(1 - (\mathbf{y}, \mathbf{e}))}{2 - 2(\mathbf{y}, \mathbf{e})} = y_i - e_i.$$

Так как преобразование U не меняет длины вектора, то для неединичного вектора \mathbf{y} имеем $U\mathbf{y} = \alpha \mathbf{e}, \ \alpha = \|\mathbf{y}\|_2$, и искомыми являются векторы $\mathbf{w} = \pm \frac{\mathbf{y} - \alpha \mathbf{e}}{\|\mathbf{v} - \alpha \mathbf{e}\|_2}$.

 ${f 5.85.}$ (Метод отражений). Показать, что произвольная квадратная матрица A может быть приведена к верхнему треугольному виду в результате последовательного умножения слева на ортогональные матрицы Хаусхолдера.

Указание. По векторам $\mathbf{y}_1 = (a_{1,1}, \dots, a_{n,1})^T$ и $\mathbf{e}_1 = (1,0,\dots,0)^T$ можно построить вектор \mathbf{w}_1 и соответствующую матрицу U_1 (см. 5.84) так, чтобы первый столбец матрицы $A^{(1)} = U_1 A$ был пропорционален вектору $\mathbf{e}_1 \in \mathbf{R}^n$, т. е. $U_1 \mathbf{y}_1 = \pm \alpha_1 \mathbf{e}_1$. Вычислим $\alpha_1 = (a_{1,1}^2 + a_{2,1}^2 + \dots + a_{n,1}^2)^{1/2}$ и определим $\tilde{\mathbf{w}}_1 = \left(\frac{a_{1,1}}{\alpha_1} + \mathrm{sign}(a_{1,1}), \frac{a_{2,1}}{\alpha_1}, \dots, \frac{a_{n,1}}{\alpha_1}\right)^T$, $\mathbf{w}_1 = \frac{\tilde{\mathbf{w}}_1}{\|\tilde{\mathbf{w}}_1\|_2}$. Такой выбор знака и предварительная нормировка на α_1 гарантируют малость

Далее в пространстве \mathbf{R}^{n-1} по вектору $\mathbf{y}_2 = (a_{2,2}^{(1)}, \dots, a_{2,n}^{(1)})^T$ построить матрицу U_2' , отображающую его в вектор, коллинеарный $\mathbf{e}_2 = (1,0,\dots,0)^T \in \mathbf{R}^{n-1}$. Затем определить $U_2 = \begin{pmatrix} 1 & 0 \\ 0 & U_2' \end{pmatrix}$ и рассмотреть

вычислительной погрешности и устойчивость алгоритма.

матрицу $A^{(2)} = U_2 U_1 A$. И так далее. На k-м шаге имеем $U_k = \begin{pmatrix} I_{k-1} & 0 \\ 0 & U_k' \end{pmatrix}$.

Таким образом, матрица отражений U_k строится по вектору $\mathbf{w}_k = \frac{\tilde{\mathbf{w}}_k}{\|\tilde{\mathbf{w}}_k\|_2}$,

$$\mathbf{w}_k \ \in \ \mathbf{R}^n, \ \text{где} \ \tilde{\mathbf{w}}_k \ = \ \left(0,\dots,0,\frac{a_{k,k}^{(k-1)}}{\alpha_k} + \text{sign}(a_{k,k}^{(k-1)}),\frac{a_{k+1,k}^{(k-1)}}{\alpha_k},\dots,\frac{a_{n,k}^{(k-1)}}{\alpha_k}\right)^T,$$

и $\alpha_k = ((a_{k,k}^{(k-1)})^2 + \ldots + (a_{n,k}^{(k-1)})^2)^{1/2}$. В результате преобразований получится верхняя треугольная матрица R = UA, где $U = U_{n-1} \ldots U_1$. При практической реализации явное вычисление U_k не требуется, так

как $U_kA^{(k-1)}=A^{(k-1)}-2\mathbf{w}_k\left(\mathbf{w}_k^TA^{(k-1)}\right)$. При этом изменяются только элементы $a_{i,j}^{(k-1)},\ k\leqslant i,j\leqslant n$, матрицы $A^{(k-1)}$. Из условия UU=I имеем A=UR. Таким образом, произвольная квадратная матрица A может быть представлена в виде произведения симметричной ортогональной матрицы U и верхней треугольной матрицы R.

Рассмотренный алгоритм позволяет привести систему линейных уравнений $A\mathbf{x} = \mathbf{b}$ к виду $R\mathbf{x} = U\mathbf{b}$, а затем найти ее решение обратным ходом метода Гаусса. Пусть решается задача с возмущенной правой частью $A\tilde{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$ и $\|\delta \mathbf{b}\| \ll \|\mathbf{b}\|$. Так как ортогональные преобразования не меняют евклидову норму векторов, то для приведенной системы $R\tilde{\mathbf{x}} = U\mathbf{b} + U\delta\mathbf{b}$ имеем $\|U\delta\mathbf{b}\| = \|\delta\mathbf{b}\| \ll \|\mathbf{b}\| = \|U\mathbf{b}\|$, и относительная погрешность правой части не увеличилась.

- **5.86.** Показать, что реализации прямого и обратного хода метода отражений в общем случае требуют по порядку $\frac{4}{3}n^3$ и n^2 арифметических действий соответственно.
- **5.87.** Записать формулы метода отражений для задачи $A\mathbf{x} = \mathbf{b}$, где

$$A = \begin{pmatrix} c_0 & -b_0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ -a_1 & c_1 & -b_1 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \\ 0 & -a_2 & c_2 & -b_2 & \dots & 0 & 0 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & -a_{N-2} & c_{N-2} & -b_{N-2} & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & -a_{N-1} & c_{N-1} & -b_{N-1} \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & -a_N & c_N \end{pmatrix}.$$

Оценить вычислительные затраты алгоритма.

Матрицу A можно привести к виду A = QR, где $Q^{-1} = Q^T -$ ортогональная матрица, методом вращений, более простым по сравнению с методом отражений.

Элементарной матрицей вращений второго порядка (матрицей Гивен-ca) называют матрицу

$$G(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix},$$

зависящую от некоторого параметра — угла φ .

5.88. Найти элементарную матрицу вращений $G(\varphi)$, переводящую произвольный ненулевой вектор $(a_1,a_2)^T$ в вектор со второй нулевой компонентой: $(-\sqrt{a_1^2+a_2^2},0)^T$.

Ответ:
$$\cos \varphi = -\frac{a_1}{\sqrt{a_1^2 + a_2^2}}, \quad \sin \varphi = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}.$$

5.89. Показать, что при умножении матрицы A слева на матрицу

$$G_{kl}(\varphi) = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & \cos \varphi & 0 & -\sin \varphi & 0 \\ \dots & 0 & 1 & 0 & \dots \\ 0 & \sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

 $(g_{kl} = \sin \varphi, \text{ т. е. синусы и косинусы находятся на пересечении строк и столбцов с номерами <math>k$ и l, остальные диагональные элементы равны единице) можно получить нуль на позиции элемента a_{kl} .

5.90. (Метод вращений). Показать, что произвольная квадратная матрица A может быть приведена к верхнему треугольному виду в результате последовательного умножения слева на ортогональные матрицы вращений.

Указание.
$$G_{n\,n-1}\dots G_{3\,2}G_{n\,1}\dots G_{3\,1}G_{2\,1}A=R$$
.

- **5.91.** Показать, что реализации прямого и обратного хода метода вращений в общем случае требуют по порядку $2\,n^3$ и n^2 арифметических действий соответственно.
- **5.92.** Записать формулы метода вращений для задачи $A\mathbf{x}=\mathbf{b}$, где A- матрица из 5.87. Оценить вычислительные затраты алгоритма.

Рассмотренные методы отражений и вращений применяют не только при построении QR-разложения матрицы A, но и для приведения A к специальному виду: (2p+1)-диагональному, блочному диагональному, Хессенбергову. На основании данных разложений удается построить эффективные численные методы решения систем линейных уравнений, а также методы вычисления инвариантных подпространств и решения задачи на собственные значения.

5.4. Линейные итерационные методы

Рассмотрим класс итерационных методов решения систем линейных алгебраических уравнений, основанный на сжимающем свойстве оператора перехода. Различные постановки задачи минимизации нормы оператора перехода приводят к различным алгоритмам расчета.

Метод простой итерации. Преобразуем систему линейных алгебраических уравнений $A\,{\bf x}={\bf b} \eqno(5.3)$

с невырожденной матрицей A к виду

$$\mathbf{x} = B\,\mathbf{x} + \mathbf{c}.\tag{5.4}$$

Если решение системы (5.4) находят как предел последовательности

$$\mathbf{x}^{k+1} = B\,\mathbf{x}^k + \mathbf{c},\tag{5.5}$$