ÁLGEBRAS DE LIE

EXERCÍCIOS :: AULA 11

- 11.1. (Humphreys 6.5(a) e (c)) Dada uma álgebra de Lie \mathfrak{g} de dimensão finita. Mostre que $Z(\mathfrak{g})$ é igual ao radical solúvel de \mathfrak{g} se, e somente se, \mathfrak{g} é um \mathfrak{g} -módulo (via adjunta) completemente redutível.
- 11.2. (Humphreys 6.5(a) e (d)) Dada uma álgebra de Lie \mathfrak{g} de dimensão finita. Mostre que, se $Z(\mathfrak{g})$ é igual ao seu radical solúvel de \mathfrak{g} , então $\mathfrak{g} = Z(\mathfrak{g}) \oplus_g \mathfrak{g}'$ e que \mathfrak{g}' é semissimples. Use essa decomposição para mostrar que todo \mathfrak{g} -módulo onde todo elemento de $Z(\mathfrak{g})$ age de maneira semissimples, é completamente redutível.
- 11.3. Sejam $\mathfrak g$ uma álgebra de Lie, V e W dois $\mathfrak g$ -módulos. O grupo de $\mathfrak g$ -extensões de V por W é definido como o grupo $\operatorname{Ext}^1_{\mathfrak g}(V,W)$ formado por todas as sequências exatas curtas de $\mathfrak g$ -módulos da forma $0 \to V \to E \to W \to 0$. A operação de grupo definida em $\operatorname{Ext}^1_{\mathfrak g}(V,W)$ é chamada de $\operatorname{soma} \operatorname{de} \operatorname{Baer}$ e o elemento neutro desta operação é $E = V \oplus W$.

Mostre que, se \mathfrak{g} é uma álgebra de Lie semissimples de dimensão finita, então $\operatorname{Ext}^1(V,W)$ é trivial (ou seja, o grupo $\{0\}$) para quaisquer \mathfrak{g} -módulos V,W de dimensão finita. (É por isso que a categoria de \mathfrak{g} -módulos de dimensão finita é chamada de semissimples.)

Entregar dia: 06 de maio de 2019.