Mathematics 555 Test 1, Take Home Portion: Answer Key.

1. Let $f:(a,b)\to \mathbf{R}$ be twice differentiable with f' and f'' both continuous. Show for $x\in(a,b)$ that

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x).$$

Solution: Let $h \neq 0$ be so that $x - h, x + h \in (a, b)$ and let $\varepsilon > 0$. By Taylor's Theorem there is ξ_1 between x and x + h such that

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\xi_1)}{2}h^2.$$

Likewise there is ξ_2 between x and x - h with

$$f(x - h) = f(x) - f'(x)h + \frac{f''(\xi_2)}{2}h^2$$

Adding these gives

$$f(x+h) + f(x-h) = 2f(x) + \frac{f''(\xi_1) + f''(\xi_2)}{2}h^2.$$

This can be rearranged to give

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = \frac{f''(\xi_1) + f''(\xi_2)}{2}.$$

Now subtract f''(x) from both sides of this and take absolute values to get

$$\left| \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - f''(x) \right| = \left| \frac{f''(\xi_1) + f''(\xi_2)}{2} - f''(x) \right|$$

$$= \left| \frac{f''(\xi_1) + f''(\xi_2) - 2f''(x)}{2} \right|$$

$$= \left| \frac{(f''(\xi_1) - f''(x)) + (f''(\xi_2) - f''(x))}{2} \right|$$

$$\leq \frac{|f''(\xi_1) - f''(x)| + |f''(\xi_2) - f''(x)|}{2}$$

As f'' is continuous at x there is a $\delta > 0$ such that

$$|\xi - x| < \delta$$
 implies $|f''(\xi) - f''(x)| < \varepsilon$.

Let $0 < |h| < \delta$. Then as ξ_1 is between x and x + h we have $|x - \xi_1| < \varepsilon$. Likewise ξ_2 is between x and x - h and thus $|x - \xi_2| < \varepsilon$. Therefore if

 $0 < |h| < \delta$ we have

$$\left| \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - f''(x) \right| \le \frac{|f''(\xi_1) - f''(x)| + |f''(\xi_2) - f''(x)|}{2}$$

$$< \frac{\varepsilon + \varepsilon}{2}$$

$$= \varepsilon$$

which completes the proof.

2. Let E be a compact metric space and $f, f_1, f_2, f_3, \ldots : E \to \mathbf{R}$ continuous functions. Assume for all $x \in E$ that

$$\lim_{n \to \infty} f_n(x) = f(x)$$

and that

$$f_1(x) \ge f_2(x) \ge f_3(x) \ge f_4(x) \ge \cdots$$

(that is the sequence $\langle f_n(x) \rangle_{n=1}^{\infty}$ is monotone decreasing). Show $\lim_{n \to \infty} f_n = f$ uniformly. Hint: Let $\varepsilon > 0$ and let

$$U_n = \{ x \in E : f_n(x) - f(x) < \varepsilon \}.$$

Quote a theorem from last semester that tells us that U_n is open. Then show

$$U_n \subseteq U_{n+1}$$

and that $\mathcal{U} = \{U_1, U_2, U_3, \ldots\}$ is an open cover of E.

Solution: As the sequence is monotone decreasing we have

$$f_n(x) - f(x) \ge 0$$

for all x. Let $x \in U_n$. Then

$$\varepsilon > f_n(x) - f(x) \ge f_{n+1}(x) - f(x)$$

and therefore $x \in U_{n+1}$. Thus $U_n \subseteq U_{n+1}$. Also the function $f - f_n$ is continuous and

$$U_n = \{x : (f_n - f)(x) \in (-\infty, \varepsilon)\} = (f_n - f)^{-1}[(-\infty, \varepsilon)].$$

Therefore U_n is the preimage of an open set by a continuous function and thus U_n is open.

Let $x \in E$. Then $\lim_{n\to\infty} f_n(x) = f(x)$ and therefore there is N such that $n \ge N$ implies $|f_n(x) - f(x)| < \varepsilon$. But then

$$f_n(x) - f(x) \le |f_n(x) - f(x)| < \varepsilon.$$

Therefore $x \in U_n$ for $n \geq N$. This shows that $\mathcal{U} = \{U_1, U_2, U_3, \ldots\}$ is an open cover of E. As E is compact there is there is a finite set

$$\{U_{n_1}, U_{n_2}, \dots, U_{n_k}\} \subseteq \mathcal{U}$$

that covers. Let

$$N = \max\{n_1, n_2, \dots, n_k\}.$$

Then, as $\{U_{n_1}, U_{n_2}, \dots, U_{n_k}\}$ is a cover of E,

$$E = U_{n_1} \cup U_{n_2} \cup \ldots \cup U_{n_k} = U_N.$$

If $n \geq N$, then $U_n \supseteq U_N = E$ and thus for all $x \in E$ if $n \geq N$ we have

$$0 \le f_n(x) - f(x) < \varepsilon$$

and therefore $|f_n(x) - f(x)| < \varepsilon$. This shows that $\lim_{n\to\infty} f_n = f$ uniformly.

3. Let $f: \mathbf{R} \to \mathbf{R}$ be differentiable at all points and let a < b. Assume f'(a) > 0 and f'(b) < 0. Prove there is c between a and b with f'(c) = 0. Remark: The derivative f' need not be continuous and therefore this does not follow from the intermediate value theorem.

Solution: The interval [a, b] is compact and f is continuous. Thus f achieves its maximum on [a, b]. We now show that this maximum on [a, b] is at an interior point of the interval. As f'(a) > 0 we have

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) > 0.$$

Thus there is a $\delta > 0$ so that if $0 < |x - a| < \delta$, then

$$\left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < f'(a).$$

This implies that if $0 < |x - a| < \delta$ then

$$\frac{f(x) - f(a)}{x - a} \ge f'(a) - \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| > 0.$$

Therefore if $a < x < a + \delta$ we have can multiply this by the positive number x - a) to get

$$f(x) > f(a).$$

Thus the maximum does not occur at x = a.

Likewise there is a δ_1 such that if $0 < |x - b| < \delta_1$, then (using that -f(b) > 0)

$$\left| \frac{f(x) - f(b)}{x - b} - f'(b) \right| < -f'(b).$$

Thus

$$-\frac{f(x) - f(b)}{x - b} \ge -f'(b) - \left| \frac{f(x) - f(b)}{x - b} - f'(b) \right| > 0.$$

Therefore if $b - \delta_1 < x < b$ we can multiply by the positive number -(x - b) to get

$$f(x) > f(b)$$
.

Thus the maximum of f on [a, b] does not occur at b.

Putting this together gives that the maximum of f occurs at an interior point, c, of [a, b]. Thus f has a local maximum at c and thus f'(c) = 0.

4. Let E and E' be a metric space and $f: E \to E'$ a function. Let $\alpha > 0$. Then f satisfies a **Hölder condition** of order α if and only if there is a constant $C \ge 0$ such that

$$d(f(p), f(q)) \le Cd(p, q)^{\alpha}$$

for all $p, q \in E$.

(a) Show that if f satisfies a Hölder condition, then f is uniformly continuous.

Solution: Let $\varepsilon > 0$ and let

$$\delta = \left(\frac{\varepsilon}{C}\right)^{1/\alpha}.$$

Then if $p, q \in E$ with $d(p, q) < \delta$ we have

$$d(f(p),f(p)) \leq C d(p,q)^{1/\alpha} < C \delta^{\alpha} = C \left(\left(\frac{\varepsilon}{C} \right)^{1/\alpha} \right)^{\alpha} = \varepsilon.$$

Thus f is uniformly continuous.

(b) Let $f: \mathbf{R} \to \mathbf{R}$ satisfy a Hölder condition of order $\alpha > 1$. Show f is constant. (If you want to be a bit more definite it is ok to assume that $\alpha = 2$ in this problem.)

Solution: Let $a \in \mathbf{R}$. Then by the Hölder condition we have for $x \in \mathbf{R}$,

$$|f(x) - f(a)| \le C|x - a|^{\alpha}.$$

We now use this to show that f'(a) = 0. This will show that f' = 0 at all points and thus f is constant.

$$\left| \frac{f(x) - f(a)}{x - a} \right| = \frac{|f(x) - f(a)|}{|x - a|}$$

$$\leq \frac{C|x - a|^{\alpha}}{|x - a|}$$

$$= C|x - a|^{\alpha - 1}.$$

Let $\varepsilon > 0$ and set

$$\delta = \left(\frac{\varepsilon}{C}\right)^{1/(\alpha - 1)}.$$

Then a calculation as in part (a) shows

$$0 < |x - a| < \delta$$
 implies $\left| \frac{f(x) - f(a)}{x - a} \right| < \varepsilon$

and therefore

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = 0$$

which completes the proof.

5. Let $f, f_1, f_2, f_3, \ldots E \to E'$ be maps between metric the metric spaces E and E'. Assume that $\lim_{n\to\infty} f_n = f$ uniformly and that each f_n is uniformly continuous. Show that f is also uniformly continuous.

Solution: Let $\varepsilon > 0$. As $f_n \to f$ uniformly, there is a N such that

$$n \ge N$$
 implies $d(f_n(p), f(p)) < \frac{\varepsilon}{3}$ for all $p \in E$.

Let choose n_0 with $n_0 > N$. The function f_{n_0} is uniformly continuous and thus there is a $\delta > 0$ so that for $p, q \in E$

$$d(p,q) < \delta$$
 implies $d(f_{n_0}(p), f_{n_0}(q)) < \frac{\varepsilon}{3}$.

Whence if $p, q \in E$ with $d(p, q) < \delta$ we have

$$d(f(p), f(q)) \leq d(f(p), f_{n_0}(p)) + d(f_{n_0}(p), f_{n_0}(q)) + d(f_{n_0}(q), f(q))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon,$$

which shows f is uniformly continuous.