

Systemarchitektur SS 2021

Aufgabenblatt 3

Sie können Ihre Lösungen bis **Mittwoch, dem 12.05.2021, um 10:00 Uhr** im CMS abgeben. Geben Sie auf Ihrer Lösung Ihr Tutorium sowie die Namen und Matrikelnummern aller Gruppenmitglieder an.

Aufgabe 3.1: Gatter

- 1. Konstruieren Sie ein NOR-Gatter in CMOS, d.h. unter Verwendung von p- und n-Kanal-Transistoren.
- 2. Unsere Zellbibliothek für Schaltkreise umfasst sechs verschiedene Gatter, nämlich

$$STD = \{NOT_1, AND_2, OR_2, EXOR_2, NAND_2, NOR_2\}.$$

Erläutern Sie, warum dies ausreichend ist, um beliebige Boolesche Funktionen zu implementieren.

3. Wir möchten unsere Zellbibliothek gerne auf die Menge $\{NAND_2\}$ verkleinern. Können wir damit immer noch alle Booleschen Funktionen implementieren? Versuchen Sie NOT_1 , AND_2 sowie OR_2 durch (mehrere) $NAND_2$ auszudrücken.

Aufgabe 3.2: Ein einfacher Schaltkreis

Die Mehrheitsfunktion $M_n(a_1,\ldots,a_n):\mathbb{B}^n\to\mathbb{B}$ ergibt 1 genau dann, wenn mehr als die Hälfte der Funktionsparameter den Wert 1 haben. Geben Sie für M_3 eine Wahrheitstabelle, einen Booleschen Ausdruck sowie einen aus dem Ausdruck abgeleiteten Schaltkreis an. Geben Sie Tiefe und Kosten an. Verwenden Sie unsere Standard-Zellbibliothek STD.

Aufgabe 3.3: Binärzahlen

Gegeben sei die 16-stellige Binärzahl

 $x = 1100 \ 1111 \ 1100 \ 0111.$

Interpretieren Sie x als

- 1. Zahl in Betrag-Vorzeichen-Darstellung
- 2. Zahl in Einer-Komplement-Darstellung
- 3. Zahl in Zweier-Komplement-Darstellung
- 4. Festkommazahl mit 4 Nachkommastellen
- 5. Festkommazahl in Zweier-Komplement-Darstellung mit 4 Nachkommastellen.

Aufgabe 3.4: Zweier-Komplement-Darstellung

Beweisen oder widerlegen Sie folgende Eigenschaften für ganze Zahlen in Zweier-Komplement-Darstellung mit n Stellen. Sei $a=a_{n-1}a_{n-2}\dots a_1a_0$ eine n-bit Sequenz. [a] bezeichnet die Zahl, die von a in Zweier-Komplement-Darstellung repräsentiert wird. $\langle a \rangle$ bezeichnet die natürliche Zahl, die von a repräsentiert wird, d.h. $\langle a \rangle = \sum_{i=0}^{n-1} \delta(a_i) \cdot 2^i$.

- (a) $[0a] = \langle a \rangle$, wobei 0a die Konkatenation von 0 und a ist
- (b) $[a0] = [a] \cdot 2$, wobei a0 die Konkatenation von a und 0 ist
- (c) $[a0] = \langle a \rangle \cdot 2$
- (d) $[a] = [aa_0]$, wobei aa_0 die Konkatenation von a und a_0 ist
- (e) $[a] = [a_{n-1}a]$, wobei $a_{n-1}a$ die Konkatenation von a_{n-1} und a ist
- (f) $-[a] = [\overline{a}] + 1$, wobei \overline{a} das bitweise Komplement von a ist
- (g) $a_{n-1} = 1 \Leftrightarrow [a] < 0$

System Architecture SS 2021

Assignment 3

You may submit your solutions via the CMS until **10:00 a.m. on Wednesday, May 12, 2021**. Please state on your solutions your tutorial, and the names and matriculation numbers of all team members.

Problem 3.1: Gates

- 1. Construct a NOR gate in CMOS, i.e., using p-type and n-type transistors.
- 2. Our cell library for circuits contains six different gates, namely

$$STD = \{NOT_1, AND_2, OR_2, EXOR_2, NAND_2, NOR_2\}.$$

Explain why this is sufficient to implement arbitrary Boolean functions.

3. We would like to reduce our cell library to the set $\{NAND_2\}$. Is this still sufficient to implement all Boolean functions? Try to express NOT_1 , AND_2 , and OR_2 using (multiple) $NAND_2$ gates.

Problem 3.2: A Simple Circuit

The majority function $M_n(a_1, \ldots, a_n) : \mathbb{B}^n \to \mathbb{B}$ yields 1 if and only if more than half of the function parameters have the value 1. For M_3 , construct a truth table, a Boolean expression, and a circuit derived from the expression. State the cost and the depth of the circuit. Use our standard cell library STD.

Problem 3.3: Binary Numbers

Consider the 16-digit binary number

 $x = 1100 \ 1111 \ 1100 \ 0111.$

Interpret x as

- 1. Number in signed magnitude representation
- 2. Number in one's complement representation
- 3. Number in two's complement representation
- 4. Fixed-point number with 4 decimal places
- 5. Fixed-point number in two's complement representation with 4 decimal places.

Problem 3.4: Two's Complement Representation

Prove or disprove the following properties for integers in two's complement representation with n digits. Let $a=a_{n-1}a_{n-2}\dots a_1a_0$ be an n-bit sequence. [a] denotes the number represented by a in two's complement representation. $\langle a \rangle$ denotes the natural number represented by a, i.e. $\langle a \rangle = \sum_{i=0}^{n-1} \delta(a_i) \cdot 2^i$.

- (a) $[0a] = \langle a \rangle$, where 0a is the concatenation of 0 and a
- (b) $[a0] = [a] \cdot 2$, where a0 is the concatenation of a and 0
- (c) $[a0] = \langle a \rangle \cdot 2$
- (d) $[a] = [aa_0]$, where aa_0 is the concatenation of a and a_0
- (e) $[a] = [a_{n-1}a]$, where $a_{n-1}a$ is the concatenation of a_{n-1} and a
- (f) $-[a] = [\overline{a}] + 1$, where \overline{a} is the bitwise complement of a
- (g) $a_{n-1} = 1 \Leftrightarrow [a] < 0$