Techniques et systèmes de communications numériques sans-fil (TS218)

Romain Tajan

- Contexte
- Synchronisation en phase / fréquence

Signal émis

Expression du signal émis en bande de base :

$$s(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s)$$

Expression du signal émis en bande étroite (ou bande transposée) :

$$\tilde{s}(t) = Re\left(s(t)e^{j2\pi f_c t}\right)$$

Notations

- a_m : symboles complexes,
- s(t): enveloppe complexe du signal émis,
- T_s: temps symbole,
- $R_s = T_s^{-1}$: débit symbole,
- h(t): filtre de mise en forme à l'émission, (filtre demi-Nyquist)
- fc: fréquence porteuse.

Signal reçu dans le cas mono-trajet BBAG 1 :

$$ilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t- au-mT_s)e^{j2\pi f_c(t- au)}
ight) + ilde{w}(t)$$

On considère une **"imperfection" au niveau du récepteur**, il récupère le signal r(t) tel que

$$\tilde{r}(t) = Re\left(r(t)e^{j2\pi(f_c+\delta_f)t}\right)$$

Bruit Blanc Additif Gaussien

Signal reçu dans le cas mono-trajet BBAG 1 :

$$\tilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s)e^{j2\pi f_c(t - \tau)}\right) + \tilde{w}(t)$$

On considère une "imperfection" au niveau du récepteur, il récupère le signal r(t) tel que

$$\tilde{r}(t) = Re\left(r(t)e^{j2\pi(f_c+\delta_f)t}\right)$$

$$= Re\left(r(t)e^{j2\pi\delta_f t}e^{j2\pi f_c t}\right)$$

1. Bruit Blanc Additif Gaussien

Signal reçu dans le cas mono-trajet BBAG 1 :

$$ilde{r}(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t- au-mT_s)e^{j2\pi f_c(t- au)}
ight) + ilde{w}(t)$$

On considère une "imperfection" au niveau du récepteur, il récupère le signal r(t) tel que

$$ilde{r}(t) = extit{Re}\left(r(t)e^{j2\pi(f_c+\delta_f)t}
ight) \ = extit{Re}\left(r(t)e^{j2\pi\delta_f t}e^{j2\pi f_c t}
ight)$$

r(t) s'exprime donc comme suit :

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi(\delta_f t - f_c \tau)} + w(t)$$
$$= \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

Bruit Blanc Additif Gaussien

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles a_n)

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But : Récupérer l'information transmise (détection des symboles a_n)

Problème: Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_t]$ sont inconnus ...

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But : Récupérer l'information transmise (détection des symboles a_n)

Problème: Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_t]$ sont inconnus ...

- lacktriangle ϕ : Déphasage entres oscillateurs aux émetteur/récepteur
 - ⇒ Synchronisation en phase

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles a_n)

Problème:

Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$ sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
 - ⇒ Synchronisation en phase
- lacktriangle au : Temps de propagation du signal
 - ⇒ Synchronisation en temps

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But:

Récupérer l'information transmise (détection des symboles a_n)

Problème:

Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$ sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
 - ⇒ Synchronisation en phase
- \bullet τ : Temps de propagation du signal
 - ⇒ Synchronisation en temps
- T_s: Rythme symbole
 - ⇒ Synchronisation du rythme

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$

But :

Récupérer l'information transmise (détection des symboles a_n)

Problème:

Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$ sont inconnus ...

- φ : Déphasage entres oscillateurs aux émetteur/récepteur
 - ⇒ Synchronisation en phase
- \bullet τ : Temps de propagation du signal
 - ⇒ Synchronisation en temps
- ▼ T_s: Rythme symbole
 - ⇒ Synchronisation du rythme
- δ_f : Décalage en fréquence (effet Doppler, différences f_c émetteur/récepteur)
 - ⇒ Synchronisation en fréquence

- Contexte
- 2 Synchronisation en phase / fréquence

- Contexte
- 2 Synchronisation en phase / fréquence
- ▶ Contexte
- Cas de la porteuse modulée

- 2 Synchronisation en phase / fréquence
 - Contexte

Approche retenue pour la synchronisation

- Estimations des paramètres $[\tau, T_s]$ et $[\phi, \delta_f]$ réalisées séparément
- Erreur sur $[\tau, T_s]$ négligée : paramètres connus

Autre approche possible

- Estimations conjointe des paramètres $[\tau, T_s, \phi, \delta_t]$
- plus complexe, non abordé en cours

Avant de commencer ...

Expression de r(t)

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\delta_f t + j\phi} + w(t)$$
$$= \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j\phi(t)} + w(t)$$

• En supposant que h(t) vérifie le critère de Nyquist, un décalage fréquentiel $\delta_t \ll T_s^{-1}$ et une transmission sans bruit.

Représenter la constellation $r_k = r(kT_s)$ pour des symboles 4-QAM dans les cas suivants:

- \rightarrow Déphasage constant $\phi(t) = \phi$
- \rightarrow Déphasage variant linéairement dans le temps $\phi(t) = 2\pi \delta_t t + \phi_0$

Déphasage constant

Déphasage variant linéairement dans le temps

- Contexte
- 2 Synchronisation en phase / fréquence
 - ▶ Contexte

 - Cas de la porteuse modulée

On se concentre ici sur le cas d'une porteuse non modulée (avec $s(t) = 1, \forall t \in \mathbb{R}$), le cas d'une porteuse modulée par un signal sera traité ensuite.

cas d'une porteuse modulée par un signal sera traité ensuite.

Expression de r(t)

$$r(t) = e^{j\phi(t)} + w(t)$$
 où $\phi(t) = 2\pi\delta_f t + \phi_0$.

 \rightarrow On veut estimer $\phi(t)$

On se concentre ici sur le cas d'une porteuse non modulée (avec $s(t) = 1, \forall t \in \mathbb{R}$), le cas d'une porteuse modulée par un signal sera traité ensuite.

Expression de r(t)

$$r(t) = e^{j\phi(t)} + w(t)$$
 où $\phi(t) = 2\pi\delta_f t + \phi_0$.

 \rightarrow On veut estimer $\phi(t)$

Expression de r_k (après échantillonnage de r(t) avec une période T_e)

Sous l'hypothèse
$$\delta_f \in \left[\frac{-1}{2T_e}, \frac{1}{2T_e}\right]$$
 (non-repliement)

$$r_k = e^{j\phi_k} + w_k$$
 où $\phi_k = 2\pi\delta_f kT_e + \phi_0$.

 \rightarrow On veut estimer ϕ_k

Hypothèse supplémentaire

• On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$, la variable ϕ est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations : $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$

Hypothèse supplémentaire

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$, la variable ϕ est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations : $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) =$$

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$, la variable ϕ est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations : $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$, la variable ϕ est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations : $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

Devoir Maison - Estimation de ϕ par maximum de vraisemblance

 $\hat{\phi}_k$ est la valeur de ϕ vérifiant $\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k | \phi)) = 0$.

Hypothèse supplémentaire

On fait l'hypothèse suivante :

$$\delta_f T_e \ll 1$$

 $\Rightarrow \phi_k \simeq \phi$, la variable ϕ est inconnue aussi

$$r_k = e^{j\phi} + w_k$$

Vecteur des observations : $\mathbf{r}_k = (r_0, r_1, \dots, r_k)$ Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_{k}|\phi) = \prod_{n=0}^{k} \frac{1}{\sigma^{2}\pi} \exp\left(-\frac{\left|r_{n} - \boldsymbol{e}^{j\phi}\right|^{2}}{\sigma^{2}}\right)$$

Devoir Maison - Estimation de ϕ par maximum de vraisemblance

$$\hat{\phi}_k$$
 est la valeur de ϕ vérifiant $\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k|\phi)) = 0$.

Montrer que
$$\hat{\phi}_k = \arg\left(\sum_{n=0}^k r_n\right) \mod \pi$$

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0$$

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(\mathit{ze}^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(ze^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$

 $\Rightarrow \hat{\phi}_k$ peut s'écrire récursivement :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu_k Im(r_k e^{-j\hat{\phi}_{k-1}})$$
 avec $\mu_k^{-1} = \sum_{n=0}^{K} Re(r_n e^{-j\hat{\phi}_{k-1}})$

But : calculer $\hat{\phi}_k$ à partir de $\hat{\phi}_{k-1}$

→ Analyse à convergence

Quelque soit k > 0 on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\hat{\phi}_k}) = 0 = \sum_{n=0}^{k} Im(r_n e^{j(\hat{\phi}_{k-1} - \hat{\phi}_k) - j\hat{\phi}_{k-1}})$$

À convergence $\left|\hat{\phi}_k - \hat{\phi}_{k-1}\right| = \epsilon \ll 1 \Rightarrow \mathit{Im}(ze^{j\epsilon}) \sim \mathit{Im}(z) + \epsilon \mathit{Re}(z)$

 $\Rightarrow \hat{\phi}_k$ peut s'écrire récursivement :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu_k Im(r_k e^{-j\hat{\phi}_{k-1}})$$
 avec $\mu_k^{-1} = \sum_{n=0}^K Re(r_n e^{-j\hat{\phi}_{k-1}})$

Cette relation est parfois appelée boucle à verrouillage de phase à temps discret.

- 2 Synchronisation en phase / fréquence

Dans notre cas, la porteuse est modulée

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\phi(t)} + w(t)$$

⇒ On ne peut pas utiliser directement la méthode précédente sur ce signal!

Dans notre cas, la porteuse est modulée

$$r(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s) e^{j2\pi\phi(t)} + w(t)$$

⇒ On ne peut pas utiliser directement la méthode précédente sur ce signal!

Les solutions proposées sont les suivantes :

- → Boucle à quadrature
- → Boucle avec séquence d'apprentissage
- → Boucle à remodulation