Yousef Alaa Awad

(717) 601-9976 | yousefalaaawad@gmail.com | linkedin.com/in/yousefalaaawad | github.com/Quil180

EDUCATION

University of Central Florida

Orlando, FL

Bachelor of Science in Computer Engineering with Honors | GPA: 3.73

May 2027

Relevant Courses: Verification & Validation of Digital Systems, Digital Systems, Embedded Systems

Affilliations: IEEE-HKN (Zeta Chi Chapter), IEEE, ACM

WORK EXPERIENCE

Embedded Systems Engineering Intern

Orlando, FL

Lockheed Martin Work Experience Program

Apr 2025 - Present

- Engineered the migration of a legacy C++/Qt tooling environment from Visual Studio to a modern CMake build system, slashing compilation times by 50% and establishing a modular architecture to improve future scalability and productivity.
- Developed custom C++ automation tools for Hardware-in-the-Loop (HIL) test environments, reducing manual data analysis efforts by 20% and further optimized CI/CD pipeline Bash scripts to decrease software integration time by 10%.

Leadership

IEEE-HKN Zeta Chi

Vice President & Treasurer

Apr 2025 - Present

- Leading the re-establishment of the dormant IEEE-HKN chapter, positioning the organization to achieve national 'Key Chapter' status by growing membership to 13 students and developing a new recruitment pipeline.
- Architecting the chapter's operational revival by engineering foundational processes for member induction and organizational scope, while simultaneously managing the financial and logistical strategies to double national conference delegation.

IEEE UCF

Treasurer Apr 2025 – Present

- Managing the IEEE UCF chapter's finances, developing and tracking over a \$10,000+ budget across multiple projects and events, ensuring accurate allocation of resources and financial accountability.
- Facilitating over \$6500 in sponsorship funding through effective communication with industry partners, directly supporting student project development and participation in competitions like the SouthEastCon Hardware Competition.

PROJECTS

Chikorita Filter - FPGA Vision Accelerator - Solo Project

Aug 2025 – Present

- Architecting a low-latency FPGA DSP pipeline in **Verilog** for the 2026 IEEE SoutheastCon Competition, implementing parallel modules for real-time vision preprocessing, motor control, and IR communication all on the Red Pitaya 125-14.
- Developing and verifying the **FPGA-to-CPU interface** (AXI/Memory-Mapped) to stream sensor data for Kalman filter processing, enabling successful hardware/software sensor fusion using **SystemVerilog** and the **UVM** library.

KnightCore - Full RISC-V SoC - 2025 AMD Hardware Competition - Group Project

Apr 2025 – Aug 2025

- Architected a modular, reusable verification environment from scratch in Python (CocotB) to validate a custom 32-bit RISC-V SoC against the RV32I instruction set architecture (ISA).
- Developed a comprehensive test suite with directed tests for all ISA-defined instructions and constrained-random stimulus generation to stress the ALU and branch prediction logic, leading to the discovery and resolution of 5 critical RTL bugs.

Anqa 32-bit RISC-V Processor - Solo Project

 $Feb\ 2025-Present$

- Designing a 32-bit RISC-V CPU core, implementing key components like a parameterized adder (half/full/multi-bit) and instruction decoding logic for the **RV32I** base instruction set (arithmetic, logical, load/store, branch).
- Developing a **Verilog** implementation plan using Vivado, detailing the ALU, register file, single-cycle datapath design, and instruction pipeline stages, with comprehensive documentation for future development.

2025 SouthEastCon Robotics Competition – Embedded Software Lead – Group Project

Sep 2024 – Apr 2025

- Led software pipeline for 10+ team using **ROS2**, enabling low-latency control between modular hardware and decision nodes. Used Gazebo and **OpenCV** for validation, contributing to 1st place in Design and 2nd in Performance at competition.
- Developed embedded firmware on Teensy 4.1 for sensor fusion and actuator control with modular, **real-time C++** code. Optimized for high-frequency loops and low resource use, improving system responsiveness and performance.

TECHNICAL SKILLS

Languages: Verilog, SystemVerilog, C++, Python, C, Rust, Bash, Assembly (x86, RISC-V, MIPS)

Hardware Verification: UVM Methodologies, Testbench Architecture, Functional Coverage, Constrained Randomization

Computer Architecture: RISC-V ISA, AXI/Memory-Mapped Interfaces, Pipelining, Caching, Memory Hierarchy

Hardware & EDA Tools: Xilinx Vivado, Synopsys VCS, Verilator

Systems & Scripting: Linux, Bash, Git, ROS/ROS2, Real-Time C++, CMake