Lec Mon

Monday, October 15, 2018 3:58 PM

K Nearest Neighbors

Motivation: How would we color the blank circles?

Question: How are the boundaries different in KNN and decision tree?

Motivation: (Computer Vision) How can we classify what type of flower it is from a photo?

• KNN was widely used in CV before deep learning was around

Example data:

Fisher's Iris Data				
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa

Which features make a good separator?

Since the clusters are physically more separated

Now onto the algorithm:

Nearest Neighbors: The basic version

- training examples are vectors x_i associated with label y_i
- Learning: just store training examples
- Prediction: for a new example x,
 - o find the training example x_i that is closest to x
 - o predict the label of x to be the label y_i associated with x_i

K-Nearest Neighbors

Same as above, but:

- find the k closest training examples to x
- construct the label of x using these k points

Issues in designing KNN modeling

- how to choose k?
- how to define distance?
- how to aggregate the information from the k neighbors and make the prediction?

What kind of problems can KNN solve?

- classification: every neighbor votes on the label, predict the most frequent label among the neighbors
- regression: predict the mean value

Distance - how to measure it?

• Euclidean distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_2 = \sqrt{\sum_{i=1}^n (\mathbf{x}_{1,i} - \mathbf{x}_{2,i})^2}$$

• Manhattan distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_1 = \sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|$$

- L_p-norm
 - Euclidean = L₂
 - Manhattan = L₁

$$||\mathbf{x}_1 - \mathbf{x}_2||_p = \left(\sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^p\right)^{\frac{1}{p}}$$

 $p \in Z^+$

- Most common distance is the Hamming Distance
 - o number of bits that are different
 - o rnumber of features that have different value
 - o Ex:
 - x₁: {shape=triangle, color=red, location=left, orientation=up}
 - x₂: {shape=triangle, *color=blue*, location=left, *orientation=down*}
 - Hamming Distance = 2
 - o we could apply weights to features if some are more important

How to find K?

Recap: Tuning parameters using a validation set

- Split data into:
 - Training Data
 - to train the model
 - Test Data
 - to evaluate the model
 - Development Data
 - to tune hyperparameters
- try a number of values for k. For each value,
 - train a model using training set
 - o evaluate performance on development set
 - choose the value with best performance on dev set

Tips/good practice

- In general, use an odd k to avoid ties
- Feature Normalization to prevent larger-valued features from dominating others in distance calculations
 - o normalize data to have zero mean and unit variance in each dimension
 - o how to deal with categorical features? usually we turn categorical into numerical features

decision boundary for KNN

• is KNN explicitly building a function? no It can be represented as a **Voronoi Diagram**:

Instance based learning

- a class of learning methods involving
 - o learning: storing examples
 - o classifying based on existing, similar examples
- most computation is performed only at prediction time
 - o like open vs closed book exams

Advantages

- training time ~ 0
- easy to update the "model", since we just add the new data points
- can learn complex decisions

Disadvantages

- hard to represent outliers
- stores all examples, model can be very big
- predicting new examples takes lots of time
- curse of dimensionality things can go wrong in high-dimensional spaces
 - o what's intuitive for 2-3 dimensions may not be for more dimensions
- because of the dimensionality curse, "neighborhood" becomes very large distances become large, and certain features will dominate over less relevant ones