■ Chapitre 10 ■

Espaces vectoriels normés de dimension finie

Notations.

- $\blacksquare \mathbb{K}$ désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare E$ désigne un K-espace vectoriel normé, généralement de dimension finie.

I. Normes & Distances

I.1 Normes

Définition 1 (Norme).

L'application $N: E \to \mathbb{R}_+$ est une norme sur E si

- (i). Séparabilité. $\forall x \in E, N(x) = 0 \Leftrightarrow x = 0_E$
- (ii). Homogénéité. $\forall x \in E, \forall \lambda \in \mathbb{K}, N(\lambda x) = |\lambda| N(x)$.
- (iii). Inégalité triangulaire. $\forall (x,y) \in E^2, N(x+y) \leq N(x) + N(y)$

Le couple (E, N) est un espace vectoriel normé.

Exercice 1. Soit I un segment de \mathbb{R} . Montrer que les applications suivantes sont des normes.

1. Sur \mathbb{R} , $x \mapsto |x|$.

2.
$$||x||_1 = \sum_{i=1}^n |x_i|$$

1. Sur
$$\mathbb{R}$$
, $x \mapsto |x|$.
Sur \mathbb{R}^n .
2. $||x||_1 = \sum_{i=1}^n |x_i|$.
3. $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$.
4. $||x||_{\infty} = \max_{i \in [\![1,n]\!]} |x_i|$.
Sur $\mathscr{C}(I,\mathbb{R})$.
5. $||f||_1 = \int_I |f|$.
6. $||f||_2 = \sqrt{\int_I |f|^2 \, dt}$.
7. $||f||_{\infty} = \sup_I |f|$.
1. Sur $\mathscr{M}_n(\mathbb{R})$.
8. $N_1(A) = \sum_{1 \leqslant i,j \leqslant n} |a_{i,j}|$.
9. $N_2(A) = \sqrt{\operatorname{Tr}(tAA)}$.
10. $N_{\infty}(A) = \max_{1 \leqslant i,j \leqslant n} |a_{i,j}|$.

4.
$$||x||_{\infty} = \max_{i \in [\![1,n]\!]} |x_i|$$

5.
$$\|f\|_1 = \int_I |f|$$

6.
$$||f||_2 = \sqrt{\int_I |f|^2 dt}$$
.

7.
$$||f||_{\infty} = \sup_{I} |f|$$

8.
$$N_1(A) = \sum_{1 \leqslant i,j \leqslant n} |a_{i,j}|$$

9.
$$N_2(A) = \sqrt{\text{Tr}({}^t\!AA)}$$
.

10.
$$N_{\infty}(A) = \max_{1 \le i,j \le n} |a_{i,j}|$$

A. Camanes

11. Soit $(E, \|\cdot\|)$ un e.v.n. et $f \in \mathcal{G}(E)$. Montrer que l'application $N: x \mapsto \|f(x)\|$ est une norme sur E.

Théorème 1 (Norme euclidienne).

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. L'application $\| \cdot \| : E \to \mathbb{R}_+, u \mapsto$ $\sqrt{\langle u,u\rangle}$ est une norme sur E. C'est la norme euclidienne issue du produit scalaire. Si $u \in E$ est tel que ||u|| = 1, le vecteur u est normé ou unitaire.

Exercice 2. Donner des exemples de normes euclidiennes sur \mathbb{R}^n , $\mathscr{C}([a,b],\mathbb{R})$ et $\mathscr{M}_n(\mathbb{R})$.

Propriété 1 (Inégalité triangulaire inverse).

Pour tout $(x, y) \in E^2$, $||x|| - ||y||| \le ||x - y||$.

Exercice 3. Soient x, y deux vecteurs non nuls. Montrer que

$$||x - y|| \ge \frac{1}{2} \max\{||x||, ||y||\} \left\| \frac{x}{||x||} - \frac{y}{||y||} \right\|.$$

I.2 Distances

Définition 2 (Distance).

Soit $(x, y) \in E^2$. La distance entre x et y est le réel d(x, y) = ||x - y||.

Propriété 2.

Soit $(x, y, z) \in E^3$ et d la distance associée à la norme $\|\cdot\|$.

- (i). Séparation. d(x,y) = 0 si et seulement si x = y.
- (ii). Symétrie. d(x, y) = d(y, x).
- (iii). Inégalité triangulaire. $d(x,y) \leq d(x,z) + d(z,y)$.

Définition 3 (Boule ouverte / fermée).

Soit $a \in E$ et $r \in \mathbb{R}_+^*$.

- (i). $\mathscr{B}(a,r) = \{x \in E ; d(a,x) < r\}$ est la boule ouverte de centre a et de rayon r.
- (ii). $\overline{\mathscr{B}}(a,r)=\{x\in E\;;\;d(a,x)\leqslant r\}$ est la boule fermée de centre a et de rayon r.
- (iii). $\mathbb{S}(a,r) = \{x \in E ; d(a,x) = r\}$ est la sphère de centre a et de rayon r.

Exercice 4.

- 1. Dans \mathbb{R}^2 , représenter graphiquement les boules centrées en 0 et de rayon 1 associées aux normes 1, 2 et infinie définies précédemment. Discuter les inclusions entre ces boules.
- **2.** Soient N_1 (resp. N_2) une norme sur E et \mathscr{B}_1 (resp. \mathscr{B}_2) sa boule unité. Montrer que, si $N_1 \leq N_2$, alors $\mathscr{B}_2 \subset \mathscr{B}_1$.

I.3 Parties Convexes & Bornées

Définition 4 (Partie convexe).

Soit $A \subset E$. La partie A est convexe si

$$\forall (x,y) \in A^2, \forall t \in [0,1], tx + (1-t)y \in A.$$

Exercice 5.

- 1. Déterminer les parties convexes de \mathbb{R} .
- 2. Représenter graphiquement une partie convexe de \mathbb{R}^2 qui ne soit pas un pavé.

- 3. Représenter graphiquement une partie non convexe de \mathbb{R}^2 .
- **4.** Soient A, B deux vecteurs de E. On note $[AB] = \{tA + (1-t)B, t \in [0,1]\}$. Montrer que [AB] est convexe.
- **5.** On note \mathscr{P} l'ensemble des matrices stochastiques, i.e. l'ensemble des matrices $P \in \mathscr{M}_n(\mathbb{R})$ à coefficients positifs et tels que pour tout i entier naturel non nul, $\sum_{j=1}^n p_{i,j} = 1$. Montrer que \mathscr{P} est convexe.

Propriété 3 (Convexité & Boules).

Toute boule est convexe.

Définition 5 (Partie bornée).

Soient $A \subset E$, $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E et f une fonction d'un ensemble I à valeurs dans E.

- (i). La partie A est un ensemble $born\acute{e}$ s'il existe une boule fermée contenant A.
- (ii). La suite (u_n) est bornée si son support est borné, i.e. il existe $K \in \mathbb{R}_+$ tel que pour tout $n \in \mathbb{N}$, $||u_n|| \leq K$.
- (iii). La fonction f est bornée si f(I) est une partie bornée de E.

Exercice 6.

- 1. Montrer que toute boule est une partie bornée.
- **2.** L'espace \mathbb{R}^2 est muni de la norme infinie. Montrer que la fonction définie sur $[0,1]^3$ par $f(x,y,z)=(x-y+2z,x^2+y^2+z^2)$ est bornée.
- 3. Montrer que l'ensemble des matrices stochastiques est borné.
- **4.** On considère l'espace vectoriel $\mathscr{C}([0,1],\mathbb{R})$. Soit (f_n) la suite de fonctions continues sur [0,1] définies pour tout entier naturel n par $f_n: x \mapsto \sqrt{n}x^n$.
 - a) Montrer que (f_n) n'est pas bornée pour la norme infinie.
 - **b)** Montrer que (f_n) est bornée pour la norme 2.

I.4 Équivalence des normes

Théorème 2 (Équivalence des normes, H.P.).

Soient E un espace vectoriel de dimension finie et N_1 , N_2 deux normes sur E. Alors, il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ tel que

$$\forall x \in E, \alpha N_1(x) \leqslant N_2(x) \leqslant \beta N_1(x).$$

Exercice 7.

- 1. Déterminer les valeurs de α et β lorsque $E=\mathbb{R}^p$ et les normes considérées sont
 - **a)** $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$.

- **b)** $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$.
- 2. Montrer que, en dimension finie, la notion de partie bornée ne dépend pas de la norme choisie.
- 3. Montrer que l'équivalence des normes est fausse, en général, en dimension infinie.

II. Suites d'un espace vectoriel normé de dimension finie

Définition 6 (Convergence).

Soit (u_n) une suite d'éléments de E et $\ell \in E$. La suite (u_n) converge vers ℓ si $||u_n - \ell||$ converge vers ℓ . S'il n'existe pas d'éléments ℓ vérifiant cette propriété, la suite (u_n) diverge.

Exercice 8.

- **1.** Montrer que si (u_n) possède une limite alors celle-ci est unique.
- **2.** Montrer que (u_n) converge vers 0 si et seulement si $(||u_n||)$ converge vers 0.
- **3.** Montrer que si (u_n) converge vers ℓ , alors $(\|u_n\|)$ converge vers $\|\ell\|$. Montrer que la réciproque est fausse.

Propriété 4 (Convergent & Borné).

Toute suite convergente est bornée.

Exercice 9. Montrer que la réciproque est fausse.

Propriété 5 (Convergence en dimension finie).

En dimension finie, la convergence d'une suite ne dépend pas de la norme choisie.

Théorème 3 (Convergence composante par composante).

Soient (u_n) une suite d'éléments d'un espace vectoriel normé E de dimension finie et (e_1, \ldots, e_p) une base de E. Pour tout $n \in \mathbb{N}$, on note $u_n = \sum_{i=1}^p u_{n,i} e_i$.

La suite (u_n) est convergente si et seulement si pour tout $i \in [1, p]$, la suite $(u_{n,i})_{n \in \mathbb{N}}$ converge.

Le cas échéant,
$$\lim_{n\to+\infty} u_n = \sum_{i=1}^p \left(\lim_{n\to+\infty} u_{n,i}\right) e_i$$
.

Exercice 10. Montrer que la suite définie, pour tout entier naturel n non nul, par $M_n = \begin{pmatrix} 1 - \frac{1}{n} & \frac{2}{n} & \left(1 + \frac{1}{n}\right)^n \\ \frac{\cos(n)}{e^n} & e^{1/n} & \frac{(-1)^n}{n} + \frac{1}{\sqrt{n}} \end{pmatrix}$ est convergente.

Propriété 6 (Sous-suites).

| Soit (u_n) une suite convergeant vers ℓ . Alors, toute suite extraite de (u_n) converge vers ℓ .

Exercice 11. Montrer que si (u_{2n}) et (u_{2n+1}) convergent vers ℓ , alors (u_n) converge vers ℓ .

III. Topologie

III.1 Intérieur

Définition 7 (Point intérieur).

Soient $A \subset E$ et $a \in A$.

- (i). Le vecteur a est un point intérieur à A s'il existe une boule ouverte non vide centrée en a incluse dans A.
- (ii). L'intérieur de A, noté $\overset{\circ}{A}$, est l'ensemble des points intérieurs à A.

Exercice 12.

- 1. Déterminer l'ensemble des points intérieurs à l'intervalle [0, 1].
- **2.** Montrer que si a est un point intérieur à A et si (u_n) est une suite d'éléments de E qui converge vers a, alors à partir d'un certain rang, $u_n \in A$.

Définition 8 (Partie ouverte).

Soit $A \subset E$. La partie A est une partie ouverte si chacun de ses points est un point intérieur à A.

Exercice 13.

- **1.** Montrer que A est un ouvert si et seulement si pour tout $a \in A$, il existe r > 0 tel que $\mathscr{B}(a,r) \subset A$.
- **2.** Montrer que E et \emptyset sont des ouverts.
- 3. Montrer que A est un ouvert si et seulement si $\overset{\circ}{A}=A$.

- **4.** Montrer qu'une intersection finie d'ouverts est un ouvert. Ce résultat persiste-t-il pour les intersections quelconques?
- 5. Montrer qu'une réunion quelconque d'ouverts est un ouvert.

Propriété 7 (Ouverts & Boules).

Toute boule ouverte est un ouvert.

Exercice 14. Montrer que tout intervalle ouvert de \mathbb{R} est un ouvert.

III.2 Adhérence

Définition 9 (Point adhérent).

Soient $A \subset E$ et $\ell \in E$.

- (i). Le vecteur ℓ est un point adhérent à A si toute boule ouverte non vide centrée en ℓ rencontre A.
- (ii). L'adhérence de A, notée \overline{A} , est l'ensemble des points adhérents à A.

Exercice 15.

- 1. Déterminer l'ensemble des points adhérents au segment [0, 1[.
- **2.** Montrer que tout point de A est adhérent à A.

Propriété 8 (Caractérisation séquentielle).

Soient $A \subset E$ et $\ell \in E$. Le point ℓ est adhérent à A si et seulement s'il existe une suite d'éléments de A qui converge vers ℓ .

Exercice 16. Montrer que la matrice nulle est dans l'adhérence de l'ensemble des matrices inversibles.

Définition 10 (Partie fermée).

Soit $A \subset E$. La partie A est une partie fermée si tous les points adhérents à A sont dans A.

Exercice 17.

- **1.** Montrer que E et \emptyset sont des fermés.
- **2.** Montrer que A est un fermé si et seulement si $\overline{A} = A$.
- **3.** Déterminer $\overline{\mathbb{Q}}$ et $\overline{\mathbb{R}\backslash\mathbb{Q}}$.

Propriété 9 (Caractérisation séquentielle).

Soit A une partie de E. La partie A est fermée si et seulement si, pour toute suite (u_n) d'éléments de A convergeant (vers un vecteur de E), la limite de (u_n) appartient à A.

Exercice 18.

- 1. Montrer que l'ensemble des matrices stochastiques est fermé.
- **2.** Les ensembles \mathbb{U} et $\mathscr{G}\ell_n(\mathbb{R})$ sont-ils des fermés?
- 3. Soit F est un espace vectoriel de dimension finie de E. Montrer que F est fermé.

Propriété 10 (Fermés & Boules).

- (i). Toute boule fermée est un fermé.
- (ii). Toute sphère est un fermé.

Exercice 19. Montrer que tout segment de \mathbb{R} est un fermé.

III.3 Frontière

Propriété 11 (Ouverts & Fermés).

Soit $A \subset E$. La partie A est fermée si et seulement si ${}^{c}A$ est ouverte.

Exercice 20.

- 1. Montrer qu'une intersection quelconque de fermés est un fermé.
- 2. Montrer qu'une réunion finie de fermés est un fermé.

3. Montrer qu'une réunion quelconque de fermés n'est pas toujours un fermé.

Définition 11 (Frontière).

Soit $A \subset E$. La frontière de A, notée ∂A , est l'ensemble des points de E adhérents mais non intérieurs à A, i.e. $\partial A = \overline{A} \backslash A$.

Exercice 21. Déterminer la frontière de $\mathcal{B}(a,r)$.

IV. Fonctions entre espaces vectoriels normés

Notation

■ f désigne une application d'une partie A d'un e.v.n. $(E, \|\cdot\|_E)$ dans un e.v.n. $(F, \|\cdot\|_E)$.

IV.1 Limite & Continuité

Définition 12 (Limite en un point).

Soit $a \in \overline{A}$ et $b \in F$. La fonction f a pour $limite\ b$ en a si

$$\forall \ \varepsilon > 0, \ \exists \ \eta > 0 \ ; \ \forall \ x \in A, \ (\|x - a\|_E \leqslant \eta \ \Rightarrow \ \|f(x) - b\|_F \leqslant \varepsilon) \ .$$

Exercice 22. Montrer que les fonctions constantes ainsi que la fonction identité admettent des limites en tout point.

Propriété 12 (Unicité de la limite).

Si f admet une limite en a, alors cette limite est unique.

Définition 13 (Limite en l'infini).

On suppose que $E \subset \mathbb{R}$ et $b \in F$.

(i). Si $+\infty \in \overline{A}$, alors f admet b pour limite en $+\infty$ si

$$\forall \varepsilon > 0, \exists M > 0 : \forall x \in A, (x > M \Rightarrow || f(x) - b ||_{\mathcal{E}} < \varepsilon).$$

(ii). Si $-\infty \in \overline{A}$, alors f admet b pour limite en $-\infty$ si

$$\forall \varepsilon > 0, \exists M < 0 ; \forall x \in A, (x < M \Rightarrow ||f(x) - b||_E < \varepsilon).$$

Propriété 13 (Caractérisation séquentielle).

Soit $a \in \overline{A}$. Les propriétés suivantes sont équivalentes :

- (i). La fonction f possède une limite en a.
- (ii). Pour toute suite (a_n) d'éléments de A qui converge vers a, la suite $(f(a_n))$ admet une limite.

Le cas échéant, $\lim_{x\to a} f(x) = \lim_{n\to +\infty} f(a_n)$.

Exercice 23. Montrer que la fonction $x \mapsto \cos \frac{1}{x}$ n'admet pas de limite en 0.

Définition 14 (Continuité).

Lorsque $a \in A$ et f admet une limite en a, alors $\lim_{x \to a} f(x) = f(a)$. La fonction f est continue en a.

La fonction f est continue sur A si f est continue en tout point de A.

IV.2 Opérations sur les limites

Propriété 14 (Composante à composante).

Soit $(\varepsilon_1, \ldots, \varepsilon_r)$ une base de F. Notons $f = \sum_{i=1}^r f_i \varepsilon_i$.

- (i). Soit $a \in \overline{A}$. La fonction f admet une limite en a si et seulement si, pour tout $i \in [1, r]$, f_i admet une limite en a. Alors, $\lim_{x \to a} f(x) = \sum_{i=1}^r \lim_{x \to a} f_i(x) \varepsilon_i$.
- (ii). Soit $a \in A$. La fonction f est continue en a si et seulement si pour tout $i \in [1, r]$, f_i est continue en a.
- (iii). La fonction f est continue sur A si et seulement si pour tout $i \in [1, r]$ la fonction f_i est continue sur A.

Propriété 15 (Opérations algébriques).

Soient f et g deux fonctions définies sur A à valeurs dans F et α une fonction définie sur A à valeurs dans \mathbb{K} . Soit $a \in \overline{A}$. On suppose que f, g et α admettent une limite en a. Alors,

- (i). f + g admet une limite en a et $\lim_{a} (f + g) = \lim_{a} f + \lim_{a} g$.
- (ii). αf admet une limite en a et $\lim_{a} (\alpha f) = \lim_{a} \alpha \cdot \lim_{a} f$.
- (iii). Si $\alpha(x) \neq 0$ sur une boule centrée en a, alors la fonction $\frac{f}{\alpha}$ admet une limite en a et $\lim_{a} \frac{f}{\alpha} = \frac{\lim_{a} f}{\lim_{a} \alpha}$.

Lorsque $a \in A$, ces propriétés sont étendues à la continuité.

Propriété 16 (Composition).

Soient E, F, G trois espaces vectoriels normés de dimension finie, A une partie de E et B une partie de F telles que $f(A) \subset B$, g soit définies sur B et $g(B) \subset G$. Soit $a \in \overline{A}$ tel que f admette une limite b en a. Alors,

- $* b \in \overline{B}$.
- * Si g admet une limite c en b, alors $g \circ f$ admet une limite en a et $\lim_{a} g \circ f = c$.

Lorsque $a \in A$, ces propriétés sont étendues à la continuité.

Corollaire 4 (Fonctions polynomiales).

Toute application polynomiale sur \mathbb{K}^p , i.e. toute fonction $f = \sum_{i=1}^r f_i \varepsilon_i$ telle que pour tout $(i,j) \in [1,p] \times [1,r], x \mapsto f_i(x_1,\ldots,x_{j-1},x,x_{j+1},\ldots,x_p)$ soit polynomiale, est continue.

Exercice 24. Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x,y,z) \mapsto (x^2+z^2+xyz,2x+3yz)$ est continue.

IV.3 Fonctions lipschitziennes

Définition 15 (Fonctions lipschitziennes).

Soit $k \in \mathbb{R}_+$. La fonction f est k-lipschitzienne si

$$\forall (x,y) \in A^2, \|f(x) - f(y)\|_F \leq k \|x - y\|_E.$$

Exercice 25.

1. Montrer que la fonction cos est une fonction lipschitzienne sur \mathbb{R} .

- 2. Montrer que la norme est une fonction 1-lipschitzienne.
- **3.** Montrer que l'ensemble des fonctions lipschitziennes est un espace vectoriel stable par composition.

Propriété 17 (Continuité).

Toute fonction lipschitzienne est continue.

Exercice 26.

- 1. Montrer que la réciproque est fausse.
- **2.** Montrer que la norme est une fonction continue.
- **3.** Soit B une partie de E. Pour tout $x \in E$, on définit $d(x, B) = \inf \{d(x, y), y \in B\}$.
 - a) Montrer que $d(\cdot, B)$ est bien définie et continue.
 - **b)** Montrer que d(x, B) = 0 si et seulement si $x \in \overline{B}$.

Théorème 5 (Applications linéaires).

Soient E et F deux espaces vectoriels de dimension finie. Toute application linéaire de E dans F est lipschitzienne (donc continue).

Exercice 27.

- 1. Donner des exemples d'applications linéaires.
- **2.** Soient $(P,Q) \in \mathscr{M}_p(\mathbb{R})^2$ et φ l'application définie pour tout $M \in \mathscr{M}_p(\mathbb{R})$ par $\varphi(M) = PMQ$. Montrer que φ est continue et en déduire $\overline{\mathscr{G}_p(\mathbb{K})}$.

Corollaire 6 (Applications multilinéaires).

Soient E et F deux espaces vectoriels de dimension finie. Toute fonction multilinéaire est continue.

Exercice 28.

- **1. a)** Montrer que l'application déterminant est continue.
- **b)** Si $M \in \mathcal{M}_n(\mathbb{K})$, $z \in \mathbb{K}$ et (M_k) converge vers M, en déduire que $(\det(zI_n M_k))_{k \in \mathbb{N}}$ converge vers $\det(zI_n M)$ lorsque k tend vers $+\infty$.
- 2. Montrer que l'application produit scalaire est continue.
- **3.** Montrer que le produit matriciel est une application continue. En déduire que si (A_n) est une suite de matrices inversibles convergeant vers une matrice A et si (A_n^{-1}) converge vers une matrice B, alors A est inversible.

IV.4 Fonctions à valeurs réelles

Définition 16 (Limites infinies).

Si
$$a \in \overline{A}$$
 et $F = \mathbb{R}$,

(i). f admet $+\infty$ pour limite en a si

$$\forall M > 0, \exists \eta > 0 ; \forall x \in A, (\|x - a\|_E < \eta \Rightarrow f(x) > M).$$

(ii). f admet $-\infty$ pour limite en a si

$$-\forall M < 0, \exists \eta > 0 ; \forall x \in A, (\|x - a\|_E < \eta \Rightarrow f(x) < M).$$

Stanislas 78 A. Camanes

Propriété 18 (Ensembles de niveau).

Soit f une application continue de E dans \mathbb{R} . Alors,

- (i). L'ensemble $\{x \in E ; f(x) > 0\}$ est une partie ouverte de E.
- (ii). L'ensemble $\{x\in E\ ;\ f(x)\geqslant 0\}$ est une partie fermée de E.
- (iii). L'ensemble $\{x \in E ; f(x) = 0\}$ est une partie fermée de E.

Exercice 29.

- 1. Montrer que le cercle unité est fermé.
- **2.** Montrer que $\mathcal{G}\ell_n(\mathbb{R})$ est ouvert.

Théorème 7 (Théorème des bornes atteintes, Admis).

Soit K une partie fermée, bornée non vide de E (e.v.n. de dimension finie) et $f: K \to \mathbb{R}$ une fonction continue. Alors, f est bornée et atteint ses bornes.

Exercice 30.

- **1.** Soient n un entier naturel non nul et $\mathscr{O}_n = \{M \in \mathscr{M}_n(\mathbb{R}) ; {}^t MM = I_n\}$.
 - **a)** Pour tout $\theta \in \mathbb{R}$, on note $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Montrer que $R_{\theta} \in \mathcal{O}_2$.
 - **b)** Montrer que si $M=(a_{i,j})\in \mathscr{O}_n$, alors $\sum_{1\leqslant i,j\leqslant n}a_{i,j}^2=n$.
 - **c)** En déduire que \mathcal{O}_n est un ensemble fermé borné.
- **2.** On suppose que E est non trivial. Pour tout $u \in \mathcal{L}(E)$, on note $N(u) = \sup_{x \in E \ ; \|x\| = 1} \|u(x)\|$. Montrer que N(u) est bien défini et qu'il existe $x_0 \in E$ tel que $N(u) = \|u(x_0)\|$.

Normes subordonnées

Exercice 31. Soit $\|\cdot\|$ une norme sur \mathbb{K}^n . Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on note $|||A||| = \sup\left\{\frac{\|Av\|}{\|v\|}, v \in \mathbb{K}^n \setminus \{0\}\right\}$ et $\mathbb{S} = \{v \in \mathbb{K}^n \; ; \; \|v\| = 1\}$. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- **1.** Montrer, sous réserve d'existence de la borne supérieure, que $|||A||| = \sup_{v \in \mathbb{S}} ||Av||$.
- **2.** Montrer qu'il existe $v_0 \in \mathbb{K}^n$ tel que $|||A||| = ||Av_0||$.
- **3.** Montrer que $|||\cdot|||$ est une norme sur $\mathcal{M}_n(\mathbb{K})$.
- **4.** Montrer que pour tous $A, B \in \mathcal{M}_n(\mathbb{K}), |||AB||| \leq |||A||| \cdot |||B|||$.
- 5. Pour chacune des normes suivantes, montrer les correspondances :

a)
$$||v||_1 = \sum_{i=1}^n |v_i| \text{ et } |||A|||_1 = \max_{j \in [\![1,n]\!]} \sum_{i=1}^n |a_{i,j}|.$$

b)
$$||v||_{\infty} = \max_{i \in [1,n]} |v_i| \text{ et } |||A|||_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^{n} |a_{i,j}|.$$

Programme officiel (PSI)

Espaces vectoriels normés de dimension finie (p. 11)