Quiz 1

Introduction to Quantum Information and Computation

30th January, 2024

Total Points: 20

Time: 45 mins

<u>Instructions:</u> Questions 1, 2, and 3 are compulsory. Out of questions 4 and 5 you can answer any one. Notation:

All log values are taken with the base 2

 \mathbb{I}_n stands for the *n* by *n* identity matrix.

Some frequently used states:

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix},$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle),$$

$$|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), |-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$
Pauli Matrices:

Pauli Matrices: $\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \, \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \, \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \, \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$

- 1. [2.5 + 2.5 points] Recall the discussion on how to distinguish between 2 quantum states.
 - a Given two states $\rho_0 = |+\rangle \langle +|$ and $\rho_1 = |-\rangle \langle -|$, can we distinguish between them? If so, how?
 - b What if we had the states $\rho_2 = |+\rangle \langle +|$ and $\rho_3 = |-i\rangle \langle -i|$. Can we distinguish between them? If so, how?
- 2. [2+2 points] Alice and Bob share a bipartite state $\rho_{AB} = \sum_{i,j} \rho_{i,j} |i\rangle \langle i| \otimes |j\rangle \langle j|$. The partial trace of ρ_{AB} with respect to Bob's basis is given by $\rho_A = tr_B[\rho_{AB}] = \sum_j (\mathbb{I} \otimes \langle j|) \rho_{AB} (\mathbb{I} \otimes |j\rangle)$, which is the state corresponding to Alice's subsystem (reduced density operator).
 - a Show that ρ_A is a valid density operator (by showing that it follows Hermiticity, Positivity, Normalization).
 - b Say $\rho_{AB} = |\phi\rangle \langle \phi|$ where $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$. Find the reduced density operator ρ_A .
- 3. [2+1+3 points] The von Neumann entropy characterizes the amount of 'uncertainty' of some quantum state ρ , and is given by

$$S(\rho) = -tr[\rho \, log_2(\rho)]$$

Note that by continuity arguments, we can define 0log0 = 0.

Say you had the states
$$\rho_1 = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$
 and $\rho_2 = \begin{bmatrix} \frac{3}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$.

a Intuitively, which of the two states above has more entropy? Verify this by calculating the von Neumann entropies of both ρ_1 and ρ_2 . You can use: $log_2(\frac{3}{4}) = -0.415$.

1

- b Prove that the von Neumann entropy of a pure state is 0.
- c Prove that the von Neumann entropy remains the invariant under any unitary transormation. That is, show that the von Neumann entropy of a state ρ is the same, even after some unitary U is applied to it $(S(\rho) = S(U\rho U^{\dagger}))$.

Hint: Recall how to find the function of an operator. If an operator A has the spectral decomposition $A = \Sigma_i \lambda_i |\psi_i\rangle \langle \psi_i|$, then $f(A) = \Sigma_i f(\lambda_i) |\psi_i\rangle \langle \psi_i|$.

4. [2 + 3 points] Answer any one question out of questions 4 and 5

Fidelity is one of the widely used metric to compare closeness of two quantum states. A higher fidelity value means the states are closer, and the fidelity between the same states is 1, while fidelity between orthogonal states is 0.

The fidelity between the two states ρ and σ is given by,

$$F(\rho,\sigma) = (tr[\sqrt{\rho^{1/2}\sigma\rho^{1/2}}])^2$$

Property of Fidelity: $F(\rho, \sigma) = F(\sigma, \rho)$,

Fidelity is symmetric, even though it seems asymmetric at the first glance. You are allowed to take this property for granted.

- a Find the fidelity between the states $|\psi_1\rangle=|+\rangle$ and $|\psi_2\rangle=|+i\rangle$ $F(\ket{\psi_1}\bra{\psi_1},\ket{\psi_2}\bra{\psi_2})$
- b Given that $\rho = |\psi_{\rho}\rangle \langle \psi_{\rho}|$ is a pure state, prove that $F(\sigma, \rho) = \langle \psi_{\rho} | \sigma | \psi_{\rho} \rangle$ for any arbitrary state σ
- 5. [1+1+3 pcints] Answer any one question out of questions 4 and 5

For any single qubit quantum state, its density operator ρ can be written as

$$\rho = \frac{1}{2}(\mathbb{I}_2 + \vec{r}.\vec{\sigma})$$

where $\vec{\sigma}$ is a vector of the Pauli matrices, $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ and $\vec{r} = (r_x, r_y, r_z) \in \mathbb{R}^3$ such that $|\vec{r}| \leq 1$. \vec{r} is the parameter that gives us the position of the state in the Bloch Sphere.

- a Find the values of \vec{r} for which we get the density operators $\rho_0 = |0\rangle \langle 0|$, $\rho_{+i} = |+i\rangle \langle +i|$.
- b Locate the above states on the Bloch Sphere.
- c Prove that states are pure states if and only if they lie on the surface of the sphere $(|\vec{r}| = 1)$.

Hint: You can use the following properties: $\sigma_i^2 = \mathbb{I}_2$ for any $i \in \{0, x, y, z\}$. $\sigma_x \sigma_y = i \sigma_z \ \sigma_y \sigma_z = i \sigma_s$ $\sigma_z \sigma_x = i \sigma_y$