6. Senzory elektrického proudu, měření výkonu v2021 remote

Úvod

Elektrický proud [A] je jedinou elektrickou veličinou v soustavě SI. Proud potřebujeme měřit při konstrukci, oživování a opravách elektronických zařízení. Měření proudu je jednou z klíčových informací při řízení a regulaci řady moderních zařízení – od elektrokola přes elektromobily, roboty až po elektrickou lokomotivu, od solární elektrárny po atomovou. Zásadní význam má měření proudu v oblasti výroby, přenosu a spotřeby elektrické energie.

Senzor proudu je vždy součástí i moderních zařízení pro měření výkonu (wattmetrů) a spotřeby (elektroměrů). I zde hraje volba správného snímače proudu důležitou úlohu. Je třeba navíc připomenout, že v těchto případech musí být kladen důraz i na minimalizaci chyby měření fáze proudu.

V úloze je prezentováno několik různých senzorů proudu, které najdete v laboratoři, průmyslu i domácnosti - kontaktních i bezkontaktních, měřících jen střídavý proud nebo stejnosměrný i střídavý.

Zleva: proudový transformátor, kompenzovaný senzor proudu s Hallovou sondou, odporový bočník, ruční wattmetr s bezkontaktním měřením proudu

Otázky k úloze (domácí příprava)

- Shlédněte video k úloze
- Jaký je rozdíl mezi napěťovým a proudovým transformátorem?
- Uveďte typy proudových senzorů, které umožňují měřit stejnosměrný proud popř. střídavý proud včetně stejnosměrné složky. Který z nich je galvanicky oddělený?
- Jaký senzor proudu (převodník proud-napětí) je použit v případě 1a) a 1b)?
- Jaký senzor proudu (převodník proud-napětí) je použit v případě 1c)?
- Vysvětlete pojem "Insertion impedance" používaný u senzorů pracujících na magnetickém principu.

Poznámka: Prostudujte funkci a vlastnosti předložených senzorů (přístrojů) pro měření proudu, podklady najdete v přílohách k této úloze.

Úkol měření

- 0. Shlédněte video. Naměřené hodnoty, včetně hodnot s regulací výkonu triakem (ten ve videu není) jsou přiloženy jako fotografie čtení přístrojů (všechny potřebné údaje jsou k přečtení).
- 1. Porovnejte proud tekoucí jednofázovou zátěží pro úhel sepnutí triakové regulace 0° a 90° následujícími přístroji/senzory:
 - a) (A₁) ručním multimetrem s interním bočníkem;
 - b) (A₂) pomocí externího bočníku Agilent 34330A a milivoltmetru Agilent;
 - c) (A₃) proudovým transformátorem;
 - d) (A₄) klešťovým ampérmetrem wattmetrem;
 - e) (A₆) pomocí proudových kleští (s Hallovou sondou) a osciloskopu

Ve všech případech **určete a zdůvodněte**, jakou hodnotu proudu přístroje měří v případě harmonického průběhu proudu, neharmonického průběhu proudu a za přítomnosti stejnosměrné složky.

Ve všech případech **určete odpor přístroje**/sestavy z pohledu vstupních svorek.

- 2. Pro úhel sepnutí 0° stanovte **nejistotu měření** proudu danou sestavou (a-d tj. mimo bodu e).
- 3. Pomocí analyzátoru výkonu Tektronix PA1000 změřte příkon 1 fázové zátěže pro všechny tři úhly sepnutí triakové regulace 0, 45 a 90°. V režimu "GRAPH" je zobrazen současně průběh napětí, proudu a výkonu, je možné **zobrazit i harmonické složky**.

Do jaké harmonické při úhlu sepnutí 90° je třeba měřit, aby chyba metody byla pod 5%?

Je možné vypočítat příkon zátěže ze simultánního čtení předložených multimetrů $(U, I + \cos \phi)$ pro všechna nastavení triakového regulátoru; pokud ne, proč?

4. Ověřte funkci třífázového elektronického elektroměru a porovnejte údaje elektroměru s údaji naměřenými ostatními měřicími přístroji. Jaká chyba metody se projeví při měření, kdy třífázový voltmetr měří napětí nikoliv na zátěži ale na straně transformátoru?

Schéma zapojení

Obr. 1. Zapojení pro měření proudu a výkonu 1 fázové zátěže v 3 fázové síti a ověření funkce 3 fázového elektronického elektroměru

Poznámky k měření

Základní informace o použitých senzorech proudu (ampérmetrech)

K bodu 1a): Ruční multimetr s vnitřním bočníkem (platí i pro levné stolní multimetry): Přístroje mívají "miliampérové" rozsahy jištěné tavnou pojistkou. Pro přepínání rozsahů je požit Ayrtonův bočník. Rozsah 10 A (někdy až 20 A) někdy nebývá jištěn pojistkou a má zpravidla speciální vstupní svorku, svorka je připojena přímo k bočníku, měřený proud není veden přes přepínač rozsahů.

Pozor: Kmitočtové rozsahy těchto přístrojů jsou zejména při měření proudů velmi omezené (max. stovky Hz) přičemž někteří výrobci ani kmitočtové rozsahy pro měření proudu neuvádějí.

<u>Příloha: Přehled parametrů použitého multimetru.</u>

K bodu 1b): Externí bočník a milivoltmetr. Externí bočníky se používají až do proudů stovek A. zpravidla se vyrábějí s odporem odpovídajícím úbytku napětí 50 mV (100 mV) pro maximální proud. Pro 100 A/100 mV je již výkonová ztráta 10 W, tomu musí odpovídat konstrukce a velikost bočníku. Velmi odlišné jsou konstrukce bočníku pro měření stejnosměrných a střídavých proudů. Pro stejnosměrné

proudy nejsou problémy s indukčností bočníku a rozptylovým magnetickým polem přívodů. Bočníky se zapojují zásadně **čtyřsvorkově**. Pro střídavé proudy musí být výše uvedené problémy řešeny speciální konstrukcí bočníku. Použitý bočník 34330A 1 mV/1 A firmy Agilent je určen pro multimetry Agilent a je zasunut přímo do zdířek pro měření napětí. V rozsahu DC – 1 kHz garantuje maximální chybu 0,3 %, v rozsahu 1 kHz – 5 kHz chybu 5 %. Pro vyšší kmitočty (od desitek kHz) se zpravidla používají tzv. koaxiální bočníky.

Mimořádnou pozornost je třeba věnovat bočníkům v případě jejich použití v proudových obvodech wattmetrů. Tady hraje roli i fázová chyba, pro vyšší kmitočty se používají proto převážně koaxiální bočníky.

Kromě vyšší výkonové ztráty je hlavní nevýhodou odporových bočníků galvanické spojení měřeného a vyhodnocovacího obvodu.

K bodu 1c): Měření proudu proudovým transformátorem: Měřicí transformátory proudu (MTP) se používají hlavně pro měření velkých proudů (až tisíce A). Proudy se transformují v převráceném poměru počtu závitů. Správná funkce je podmíněna režimem činnosti blízkým stavu nakrátko. Proud sekundárním vinutím kompenzuje v jádru transformátoru magnetické napětí primárního vinutí, magnetický tok jádrem je malý, jádro je minimálně syceno a ztráty v něm jsou zanedbatelné. Transformátor má minimální amplitudovou i fázovou chybu. Chyby jsou tím menší, čím vyšší je permeabilita jádra. Pokud se zvětšuje impedance zátěže (MTP se "odlehčuje"), musí transformátor indukovat na sekundárním vinutí vyšší napětí, to je spojeno s růstem magnetického toku v jádře, růstem ztrát v jádře a růstem chyb.

Pozor.: u MTP se nesmí rozpojit sekundární obvod, jádro by se přesytilo a indukovaly by se nebezpečné napěťové špičky.

Pozor.: MTP nelze použít pro proudy se stejnosměrnou (DC) složkou. Transformátor stejnosměrnou složku nepřenese, zejména vysokopermeabilitní jádro se stejnosměrnou složkou rychle přesytí a chyby dramaticky rostou.

Velkou výhodou MTP je **galvanické oddělení** měřeného proudu od dalších obvodů. Proto se MTP často používá i pro malé proudy. Významnou oblastí aplikace MTP jsou vstupní proudové obvody elektroměrů. Tady se přestaly používat přesné transformátory s vysokopermeabilitním jádrem, protože stejnosměrná (DC) složka v odebíraném proudu (např. při připojení topidla přes diodu) způsobuje velkou zápornou chybu transformátoru a tím nesprávné účtování odebrané energie. Dnes se v elektroměrech používají

výhradně tzv. DC-tolerantní MTP, které mají nižší permeabilitu jádra a snadno se nepřesytí. Vyšší fázová chyba se kompenzuje obvodově nebo softwarově.

Poznámka: Velmi zajímavá je skutečnost, že i když transformátor odstraní DC složku jednocestně usměrněného průběhu, výsledný činný výkon je měřen správně. Příslušné teorie přesahují náplň této úlohy.

V úloze použitý MTP je použit DC-tolerantní MTP T60404-E4624-X131 vyrobený firmou Vacuumschmelze, určený do elektroměrů. Je to 1-průvlekový transformátor s převodem 1:2500, maximální měřený proud 60 A, použitý zatěžovací odpor 10 Ω (tolerance 1 %) (předepsaná hodnota je 12,5 Ω , použití menšího odporu chybu spíše sníží). DC tolerance (chyba menší než 3 %) je zaručena do amplitudy jednocestně usměrněného proudu 60 A. Transformátor s dalšími obvody zajišťuje dostatečnou citlivost elektroměru již pro proud 10 mA (registrace spotřeby přístrojů v stand-by režimu).

Příloha: Katalogový list MTP

K bodu 1d): Klešťový ampérmetr – wattmetr PK 430.1

Pozor, účiník měří přístroj až od proudu 40 A, pro námi měřený proud účiník změřit nelze.

Příloha: Technické parametry PK 430.1 Metra Blansko

K bodu 1e): Měření proudu pomocí proudových kleští a osciloskopu

AC/DC kleště Agilent 1146A, citlivost 10mV/A nebo 100mV/A, DC – 100 kHz

Poznámka: V tomto případě se nejedná o běžně nabízenou proudovou sondu k osciloskopu. Ty většinou pracují na principu transformátoru proudu a neumožňují tedy měřit průběhy včetně stejnosměrné složky. Jejich šířka pásma obvykle neumožňuje ani měření na nízkých kmitočtech řádově desítky Hz.

K bodu 3: Po zapnutí zobrazuje analyzátor výkonu Tektronix PA1000 tabulku naměřených hodnot na displeji. Přiložený software umožní taktéž harmonickou analýzu (U,I nebo P).

Příloha: Manuál analyzátoru výkonu Tektronix PA1000

Princip měření výkonu u analyzátoru PA1000 bude jiný než výpočet ze dvou multimetrů. Navíc měření U_{ef} uvedených multimetrů (viz předchozí cvičení a přednáška) bude zatíženo určitou chybou. Dále je nutné si uvědomit definiční vztah pro měření výkonu a zda je možné tento vztah vždy zjednodušit pomocí znalosti účiníku (pokud je charakter zátěže konstantní).

K bodu 4 (elektroměr):

Podle obr. 1 je součástí měřicího obvodu třífázový elektronický (tzv. statický) elektroměr. Tento elektroměr dovoluje měření celé řady parametrů, pro běžné odběratele je zpravidla naprogramován tak, že po 10 s rotují údaje činné energie spotřebované v jednotlivých (celkem 4) tarifech. Elektroměry EMU 30 pro tuto úlohu zdarma poskytla firma ZPA Trutnov (www.zpa.cz). Přístroj je upraven pro síť 3x120/70V, 5A.

Poznámka: Elektroměry s proudovým rozsahem 5A se nazývají "nepřímé" a používají se ve spojení s měřícími transformátory proudu (MTP) X/5A, kde X je primární rozsah předřazeného MTP, často i několik set, nebo tisíc A.