Problema 1

El model lineal té una interpretació geomètrica que per a una variable resposta y i dues variables regressores es pot representar en el següent gràfic:

Representeu en aquest gràfic els següents elements del model: $\Omega = \langle \mathbf{X} \rangle$, \mathbf{Y} , $\mathbf{X}\boldsymbol{\beta}$, $\boldsymbol{\epsilon}$, $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ i e. A més, doneu les explicacions oportunes sobre el mètode MQ.

Problema 2

Amb el model lineal normal

$$-1.25 = \alpha + \beta + \epsilon_1$$

$$0.18 = \alpha + 2\beta + \gamma + \epsilon_2$$

$$-1.30 = 2\alpha + 3\beta + \gamma + \epsilon_3$$

$$1.12 = \beta + \gamma + \epsilon_4$$

contesteu les següents questions:

- (a) Quina condició ha de verificar una funció paramètrica per a que sigui estimable en aquest model?
- (b) Indiqueu si les funcions paramètriques següents són estimables i calculeu l'estimador MQ quan sigui possible:

(i)
$$3\alpha - \beta - 4\gamma$$
 (ii) $\alpha + 2(\beta + \gamma)$

- (c) Calculeu l'estimació de la covariància entre els estimadors lineals òptims de $\alpha \gamma$ i $\alpha + \beta$ i la variància de l'estimador lineal òptim de $\alpha + 2\beta + \gamma$.
- (d) Feu el contrast de la hipòtesi $H_0: \gamma = 2\alpha + \beta$.

Problema 3

Tenim una sèrie de dades (x_i, y_i) , $i = 1 \dots n$, i volem ajustar un model de regressió lineal simple. Per a verificar la hipòtesi que la recta de regressió passa per l'origen tenim dues alternatives:

- Ajustar el model $E(y_i) = \alpha + \beta x_i$ i verificar la hipòtesi $H_0: \alpha = 0$
- Ajustar el model $E(y_i) = \beta x_i$ i calcular la diferència de les sumes de quadrats residual respecte al model anterior, utilitzant una $F_{1,n-2}$.

Si considerem que $var(y_i) = \sigma^2$, són els dos procediments diferents? Raona la resposta.

Nota: Escolliu un problema entre l'1 i el 3.

Problema 4

Volem ajustar la durada, en hores, d'una sèrie de bombetes en funció de les variables $X_1 = llargada$ en mm de la resistència i $X_2 = contingut$ de coure de la mateixa. Disposem de 25 bombetes i la següent informació sobre el model (basat en dades no centrades):

$$\mathbf{X'Y} = \begin{pmatrix} 559.60 \\ 7375.44 \\ 337072.00 \end{pmatrix} \quad \mathbf{X'X} = \begin{pmatrix} 25 & 219 & 10232 \\ 219 & 3055 & 133899 \\ 10232 & 133899 & 6725688 \end{pmatrix}$$
$$(\mathbf{X'X})^{-1} = \begin{pmatrix} 1.132 \cdot 10^{-1} & -4.448543 \cdot 10^{-3} & -8.3672 \cdot 10^{-5} \\ -4.448543 \cdot 10^{-3} & 2.74378 \cdot 10^{-3} & -4.7857 \cdot 10^{-5} \\ -8.3672 \cdot 10^{-5} & -4.7857 \cdot 10^{-5} & 1.22874 \cdot 10^{-6} \end{pmatrix}$$
$$\mathbf{Y'Y} = 18310 629$$

Es demana:

- (a) Obteniu l'estimació del model.
- (b) Calculeu l'estimació de σ^2 .
- (c) És significatiu el model proposat? Utilitzeu un nivell de significació $\alpha = 0.05$.
- (d) Estimeu la durada d'una bombeta per a la qual $x_1 = 3$ i $x_2 = 275$. Doneu l'interval de confiança al 95%.

Problema 5

Un enginyer está dissenyant una bateria que ha de ser utilitzada en un aparell a variacions extremes de la temperatura. Com també está interessat en provar diferents tipus de material planeja un experiment amb tres materials M_1, M_2, M_3 i tres temperatures -9, 21 i 52 °C. Es realitzen 4 mostres de cada combinació, assignant els tractaments aleatòriament. Les dades són:

Material	Temperatura		
	-9	21	52
	130	34	20
M_1	155	40	70
	74	80	82
	180	75	58
	159	136	25
M_2	188	122	70
	159	106	58
	126	115	45
	138	174	96
M_3	110	120	104
	168	150	82
	160	139	60

Alhora d'analitzar aquestes dades un estadístic inexpert dubta entre diferents dissenys i calcula una sèrie de sumes de quadrats per a diferentes situacions.

Situació 1: Obté $SS_{mat} = 10738.722$, $SS_{temp} = 39830.722$, $SS_{error} = 27956.778$ i $SS_{total} = 78526.222$ Situació 2: Obté $SS_{mat} = 10738.722$, $SS_{temp} = 39830.722$, $SS_{int} = 9768.778$, $SS_{error} = 18188.0$ i $SS_{total} = 78526.222$

Es demana:

- (a) Indiqueu, per a cada situació, a quin model fan referència les sumes de quadrats, afegint els corresponents graus de llibertat.
- (b) Quin dels dos models et sembla més idoni per analitzar l'experiment? Quines conclusions es poden extreure?
- (c) Calculeu l'estimació de σ^2 .
- (d) Feu el gràfic d'interaccions.