

UE Interfaçage Numérique

IntNum / Semestre 6
Institut d'Optique

Interfaçage Numérique / S6-FISE

- Génération de photons
- Conception optique / « Fabrication d'images »
- Acquisition de données
- Traitement des informations

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xla, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

Interfaçage Numérique / S6-FISE

Comment **contrôler / piloter un système** pour :

- Le rendre autonome?
- Acquérir des données ?

Comment **acquérir une image** numérique exploitable ?

Comment **préparer une image** numérique pour un traitement ?

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

IntNum / Semestre 6
Institut d'Optique

Spécificités d'un système embarqué

- regroupement d'un système matériel et d'un logiciel
- architecture spécifique / exécution d'un ensemble de tâches particulières
- réactif, autonome et en contact permanent avec son environnement

Programmation d'un système embarqué

Programmation d'un système embarqué

Programmation d'un système embarqué

Systèmes embarqués / TP

Robot

Arduino / Nucleo

Robotique

Communication

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Caméras et images

IntNum / Semestre 6
Institut d'Optique

Structure d'une caméra - stockage de charges

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Quantification

Echantillonnage

Not so bad

sampling rate

e2v sensor EV76C560ACT

Bad sampling rate

IDS UI-1240SE-C-HQ

Echantillonnage

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Images

Images

Nb of pixels = $h \times v$

Each pixel is converted into **n bits**.

Images

Traitement d'images

Image from the camera

- Noise
- Bad contrast
- Inhomogeneous Lighting
- ...

Desired image with objects with **well-defined contours**

- Homogeneous zones
- Transition zones

Images

Traitement d'images

UE Interfaçage Numérique

Déroulement et sujets

IntNum / Semestre 6
Institut d'Optique

Interfaçage Numérique / S6-FISE

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Comment **contrôler / piloter un système** pour :

- Le rendre autonome?
- Acquérir des données ?

Comment **acquérir une image** numérique exploitable ?

Comment **préparer une image** numérique pour un traitement ?

8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte de Matlab

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

A choisir !!

Interfaçage Numérique / S6-FISE

Arduino / Nucleo

Robotique

Communication

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Camera et Images

Vision Industrielle

Traitement Images

Python

2 séances

2 séances

IHM sous Python

PyQt6

Images et OpenCV

OpenCV

A choisir !!