

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ – UTFPR CÂMPUS CORNÉLIO PROCÓPIO

EC45C - Sistemas Microcontrolados Turmas: C51A/C51B

Prática L3 – Interface com LCD alfanumérico.

Objetivos:

- Criar um *firmware* com foco em:
 - o leitura de teclado matricial através de varredura;
 - o apresentação da informação em LCD alfanumérico.
- Simular o *firmware* no Proteus.
- Testar o firmware no kit didático XM118.
- Agrupar os arquivos gerados para envio pelo Moodle.

LCD Alfanumérico

Display de cristal líquido (do inglês Liquid Crystal Display - LCD), é um dispositivo eletrônicoóptico usado para exibir informações por via eletrônica na forma de texto e imagens. No caso do LCD alfanumérico, sua forma de apresentação se restringe a letras, números e algumas poucas figuras denominadas caracteres especiais.

Por ser uma forma econômica de apresentar informações complexas ao operador, é comum encontrar LCD alfanuméricos em diversos dispositivos como: relógios, calculadoras, leitores de cartão magnético, balanças comerciais, painéis de instrumentos (interface homem-máquina) e em outros mais. Além disso, seu baixo consumo de energia elétrica lhe permite ser utilizado em equipamentos portáteis alimentados por bateria.

Um LCD consiste de um elemento polarizador de luz, eletricamente controlado, que se encontra comprimido dentro de células entre duas lâminas transparentes polarizadoras. Os eixos polarizadores das duas lâminas estão alinhados perpendicularmente entre si. Cada célula é provida de contatos eléctricos que permitem que um campo elétrico possa ser aplicado ao cristal líquido.

Figura 1: Formação física do LCD.

- 1- Polarizador vertical
- 2- Eletrodos frontais
- 3- Filme de cristal líquido
- 4- Eletrodos traseiros
- 5- Polarizador horizontal
- 6- Espelho

Este dispositivo eletrônico-óptico modulado é composto por um determinado número de pixels, preenchidos com cristais líquidos e dispostos em frente a uma fonte de luz, que, ao combinar quais pixels estão ligados e quais estão desligados é possível produzir letras, números e alguns caracteres especiais programados na memória do controlador do LCD.

Os modelos mais modernos de LCD alfanuméricos possuem um controlador interno, normalmente baseado no microcontrolador Hitachi HD44780 ou no Samsung KS0066U. O controlador é

montado no módulo de LCD, permitindo a comunicação com um o microcontrolador através de um barramento de dados (4 ou 8 bits) e das linhas de controle RS, R/W e EN.

EN é a linha de controle que habilita o funcionamento do LCD.

RS é a linha de controle que seleciona o tipo de informação disponível no barramento de dados.

 $RS = 0 \rightarrow Comandos: instruções de controle para o LCD;$

 $RS = 1 \rightarrow Dados$: caracteres a serem escritos.

R/W é a linha de controle que define se a informação disponível no barramento de dados é do tipo escrita (para ser interpretada pelo LCD) ou do tipo leitura (para ser interpretada pelo μC).

 $R/W=0 \rightarrow seleção de escrita no LCD;$

 $R/W=1 \rightarrow leitura do LCD.$

Opcionalmente R/W pode ser conectada ao GND quando não se deseja ler dados do LCD.

No Kit XM118 o LCD está conectado ao μC na seguinte configuração:

Pino	Símbolo	Função	Ligação com o PIC
1	Vss	GND	-
2	Vdd	+5V	-
3	Vo	Controle de contraste	-
4	RS	Seleção de modo	PORTE, 0
5	R/W	Leitura/Escrita	PORTE, 2
6	EN	Habilitação	PORTE, 1
7	D0		PORTD, 0
8	D1		PORTD, 1
9	D2		PORTD, 2
10	D3	Via de	PORTD, 3
11	D4	Dados	PORTD, 4
12	D5		PORTD, 5
13	D6		PORTD, 6
14	D7		PORTD, 7

O IDE MPLAB fornece uma biblioteca para acesso ao LCD chamada External LCD (ou apenas XLCD). Esta biblioteca foi modificada de forma a possui as seguintes funções:

Função	Protótipos	Descrição				
BusyXLCD	unsigned char BusyXLCD(void);	Retorna 1 se o LCD estiver realizando				
		alguma operação e 0 se estiver livre para				
		receber novos comandos				
OpenXLCD	<pre>void OpenXLCD(unsigned char lcdtype);</pre>	Inicializa o LCD				
putcXLCD	<pre>void OpenXLCD(unsigned char lcdtype);</pre>	Escreve um caractere no LCD				
putsXLCD	<pre>void putsXLCD(char *buffer);</pre>	Escreve uma string (da memória RAM) no LCD.				
putrsXLCD	<pre>void putrsXLCD(const rom char *buffer);</pre>	Escreve uma string (da memória FLASH) no LCD				
ReadAddrXLCD	unsigned char	Le o byte de endereço da memória do				
	ReadAddrXLCD(void);	controlador de LCD				
ReadDataXLCD	<pre>char ReadDataXLCD(void);</pre>	Le um byte do controlador de LCD				
SetCGRamAddr	Void SetCGRamAddr(unsigned char addr);	Aponta o endereço do gerador de caracteres				
SetDDRamAddr	<pre>void SetDDRamAddr(unsigned char addr);</pre>	Aponta para um endereço de dados do LCD				
WriteCmdXLCD	<pre>void WriteCmdXLCD(unsigned char cmd);</pre>	Escreve um comando no LCD				
WriteDataXLCD	<pre>void WriteDataXLCD(char data);</pre>	Escreve um byte no LCD				

Os comandos que o LCD interpreta através da função WriteCmdXLCD são os seguintes:

Descrição do Comando	Modo	RS	R/W	Código (Hexa)		
Controle do display	Ativo (sem cusor)	0	0	0C		
	Inativo	0	0	0A, 08		
Limpeza do Display com retorno do cursor	0	0	0	01		
Retorno do cursor à 1ª linha e da mensagem à sua posição inicial	0	0	0	02		
Controle do Cursor	Ativo (ligado, fixo)	0	0	0E		
	Inativo	0	0	0C		
	Alternado	0	0	0F		
	Desloc. à esquerda	0	0	10		
	Desloc. à direita	0	0	14		
	Retorno	0	0	02		
	Piscante	0	0	0D		
Sentido de deslocamento do cursor	Para esquerda	0	0	04		
na entrada de um novo caractere	Para direita	0	0	06		
Deslocamento da mensagem com a	Para esquerda	0	0	07		
entrada de um novo caractere	Para direita	0	0	05		
Deslocamento da mensagem sem	Para esquerda	0	0	18		
entrada de novos caracteres	Para direita	0	0	1C		
Endereço da primeira posição (à	1ª Linha	80				
esquerda)	2ª Linha	0	0	C0		

Utilização do LCD com a biblioteca mod_xlcd.c

Para inicializar o LCD utilize o seguinte código:

```
//Inicialização do LCD
OpenXLCD(FOUR_BIT & LINES_5X7); // Modo 4 bits de dados e caracteres 5x7
WriteCmdXLCD(0x01); // Limpa o LCD com retorno do cursor
Delay1KTCYx(10); // Atraso de ~2ms para aguardar a execução do comando
```

Para escrever no LCD, selecione a posição de memória do primeiro caractere que se deseja escrever e em seguida envie o caractere ou a *string* para o LCD. Ex:

```
char palavra[] = "Amigos";  // declara a string palavra

WriteCmdXLCD(0x80);  // Seleciona a posição Coluna 1 e Linha 1
putrsXLCD ("Adios");  // Escreve Adios
WriteCmdXLCD(0xC0);  // Seleciona a posição Coluna 1 e Linha 2
putsXLCD (palavra);  // Escreve Amigos
putcXLCD ('!');  // Escreve o caractere !
```

No LCD alfanumérico 16x2, as posições de memória para escrita dos caracteres obedecem a seguinte ordem em valores hexadecimal:

Coluna																→
Linha																
	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
↓	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF

ATIVIDADES

1- Circuito de simulação.

Acesse a plataforma Moodle e faça o download da biblioteca NXLCD.

Salve os arquivos no seguinte diretório de trabalho:

C:\{Disciplina}_{Turma}_{Bancada_{Número do roteiro}}

ex: C:\EC45C_C51A_B1_L3

Figura 3: Circuito da atividade L3.

2- Desenvolvimento do firmware.

Crie um novo projeto no MPLAB X denominado L3 e salve-o no diretório de trabalho criado na atividade anterior.

Faça o download da biblioteca nxlcd e salve os arquivos no diretório do projeto.

Desenvolva um *firmware* capaz de fazer a leitura dos botões SW10, SW11 e apresentar o valor de um contador no centro da segunda linha do LCD. Na primeira linha deve aparecer a palavra "CONTADOR", centralizada. Na segunda linha deve aparecer o valor do contador com 2 dígitos centralizados. O botão SW10 deve incrementar o contador e o botão SW11 deve decrementar o conrador.

Configure o display LCD para o modo 4 bits.

Observações sobre o kit didático XM118:

Possui um cristal de 20 MHz. Para o uso do teclado, após a gravação do código de máquina, posicione as chaves 1234 do *dipswitch* ICSP na posição OFF. Lembre-se de retornar chaves 1234 do *dipswitch* ICSP na posição ON para fazer nova gravação quando necessário.

Utilize o seguinte código para iniciar seu projeto:

OBS: Incluir o arquivo "nxlcd.c" na pasta Source Files do projeto.

3- Simulação do firmware gerado no Proteus.

Simule o *firware* no Proteus e apresente o funcionamento ao professor.

4- Gravação e execução do código de máquina no microcontrolador

Grave o código de máquina no microcontrolador e apresente o funcionamento para o professor.

5- Envio dos resultados para plataforma Moodle.

Compacte o diretório de trabalho com o projeto do firmware L3 em um arquivo .zip.

```
Nomeie o arquivo obedecendo o seguinte formato: {Disciplina}_{Turma}_{Bancada}_{Número do roteiro}.zip ex: EC45C_C51A_G1_L3.zip
```

Envie o arquivo compactado acessando a atividade "L3".