INTRODUCTION TO DIFFERENTIAL CALCULUS

EXERCISE 17A

1 **a** As
$$x \to 3$$
, $x + 4 \to 7$

$$\lim_{x \to 3} (x+4) = 7$$

b As
$$x \to -1$$
, $5 - 2x \to 7$

$$\lim_{x \to -1} (5 - 2x) = 7$$

c As
$$x \to 4$$
, $3x - 1 \to 11$

$$\lim_{x \to 4} (3x - 1) = 11$$

c As
$$x \to 4$$
, $3x - 1 \to 11$ **d** As $x \to 2$, $5x^2 - 3x + 2 \to 5(4) - 3(2) + 2 = 16$

$$\lim_{x \to 2} (5x^2 - 3x + 2) = 16$$

$$\textbf{e} \quad \text{As } h \to 0, \quad h^2 \to 0 \quad \text{and} \quad 1 - h \to 1$$

$$\lim_{h \to 0} h^2(1-h) = 0 \times 1 = 0$$

f As
$$x \to 0$$
, $x^2 + 5 \to 5$
 $\therefore \lim_{x \to 0} (x^2 + 5) = 5$

2 a
$$\lim_{x\to 0} 5 = 5$$

$$\lim_{x \to 0} 5 = 5$$
 b $\lim_{h \to 2} 7 = 7$

c
$$\lim_{c \to 0} c = c$$
 (when c is a constant)

3 a
$$\lim_{x \to 1} \frac{x^2 - 3x}{x} = \lim_{x \to 1} \frac{x(x - 3)}{x}$$

$$= \lim_{x \to 1} (x - 3) \text{ since } x \neq 0$$

$$= -2$$

b
$$\lim_{h \to 2} \frac{h^2 + 5h}{h} = \lim_{h \to 2} \frac{h(h+5)}{h}$$

= $\lim_{h \to 2} (h+5)$ since $h \neq 0$
= 7

 $\frac{x-1}{x+1}$ can be made as close as we like to -1 by making x sufficiently close to 0.

$$\therefore \lim_{x \to 0} \frac{x-1}{x+1} = -1$$

$$\lim_{x \to 0} \frac{x}{x} = \lim_{x \to 0} 1 \quad \text{since } x \neq 0$$

$$= 1$$

4 a
$$f(x) = \frac{1}{x}$$
 is not defined when $x = 0$

$$\therefore f(x) = \frac{1}{x} \text{ is not continuous at } x = 0.$$

b
$$f(x) = \frac{x^2 - x}{x}$$
 is not defined when $x = 0$

$$\therefore f(x) = \frac{x^2 - x}{x} \text{ is not continuous at } x = 0.$$

5 a
$$\lim_{x \to 0} \frac{x^2 - 3x}{x} = \lim_{x \to 0} \frac{x(x - 3)}{x}$$

= $\lim_{x \to 0} (x - 3)$ since $x \neq 0$
= -3

b
$$\lim_{x \to 0} \frac{x^2 + 5x}{x} = \lim_{x \to 0} \frac{x(x+5)}{x}$$
 $= \lim_{x \to 0} (x+5)$ since $x \neq 0$
 $= 5$

$$\lim_{x \to 0} \frac{2x^2 - x}{x}$$

$$= \lim_{x \to 0} \frac{x(2x - 1)}{x}$$

$$= \lim_{x \to 0} (2x - 1) \quad \text{since } x \neq 0$$

$$\lim_{h\to 0}\frac{3h^2-4h}{h}$$

= -1

$$= \lim_{h \to 0} \frac{h(3h-4)}{h}$$

$$= \lim_{h \to 0} (3h - 4) \quad \text{since } h \neq 0$$

$$= -4$$

$$\mathbf{f} \qquad \lim_{h \to 0} \frac{h^3 - 8h}{h}$$

$$= \lim_{h \to 0} \frac{h(h^2 - 8)}{h}$$

$$= \lim_{h \to 0} (h^2 - 8) \quad \text{since } h \neq 0$$

$$= -8$$

$$\lim_{x \to 1} \frac{x^2 - x}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} x \quad \text{since} \quad x \neq 1$$

$$= 1$$

$$\lim_{x \to 2} \frac{x^2 - 2x}{x - 2} = \lim_{x \to 2} \frac{x(x - 2)}{x - 2}$$

$$= \lim_{x \to 2} x \quad \text{since} \quad x \neq 2$$

$$= 2$$

i
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} \frac{(x + 2)(x - 3)}{x - 3}$$

$$= \lim_{x \to 3} (x + 2) \text{ since } x \neq 3$$

$$= 5$$

EXERCISE 17B.1

1 As x gets larger and positive, $\frac{1}{x^2}$ gets smaller and closer to 0.

$$\therefore \lim_{x \to \infty} \frac{1}{x^2} = 0$$

2 a
$$\lim_{x \to \infty} \frac{3x - 2}{x + 1}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{2}{x}}{1 + \frac{1}{x}}$$

$$= \frac{3}{1} = 3$$

$$\lim_{x\to\infty}\frac{1-2x}{3x+2}$$

$$=\lim_{x\to\infty}\frac{\frac{1}{x}-2}{3+\frac{2}{x}}$$

$$=-\frac{2}{3}$$

$$\lim_{x \to \infty} \frac{x}{1 - x}$$

$$= \lim_{x \to \infty} \frac{1}{\frac{1}{x} - 1}$$

$$= \frac{1}{-1} = -1$$

$$\lim_{x\to\infty}\frac{x^2+3}{x^2-1}$$

$$=\lim_{x\to\infty}\frac{1+\frac{3}{x^2}}{1-\frac{1}{x^2}}$$

$$=\frac{1}{1}$$

$$=1$$

$$\lim_{x \to \infty} \frac{x^2 - 2x + 4}{x^2 + x - 1}$$

$$= \lim_{x \to \infty} \frac{1 - \frac{2}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} - \frac{1}{x^2}}$$

$$= \frac{1}{1}$$

$$= 1$$

EXERCISE 17B.2

i As $x \to 0^-$, $f(x) \to -\infty$ 1 As $x \to 0^+$, $f(x) \to \infty$ As $x \to \infty$, $f(x) \to 0^+$ As $x \to -\infty$, $f(x) \to 0^-$ The vertical asymptote is x = 0. The horizontal asymptote is y = 0.

ii
$$\lim_{x \to -\infty} f(x) = 0$$
, $\lim_{x \to \infty} f(x) = 0$

i As $x \to -\frac{2}{3}^-$, $f(x) \to -\infty$ As $x \to -\frac{2}{3}^+$, $f(x) \to \infty$ As $x \to \infty$, $f(x) \to -\frac{2}{3}^+$ As $x \to -\infty$, $f(x) \to -\frac{2}{3}$ The vertical asymptote is $x = -\frac{2}{3}$. The horizontal asymptote is $y = -\frac{2}{3}$.

$$\lim_{x \to -\infty} f(x) = -\frac{2}{3},$$

$$\lim_{x \to \infty} f(x) = -\frac{2}{3}$$

i As $x \to -3^-$, $f(x) \to \infty$ As $x \to -3^+$, $f(x) \to -\infty$ As $x \to \infty$, $f(x) \to 3^-$ As $x \to -\infty$, $f(x) \to 3^+$ The vertical asymptote is x = -3. The horizontal asymptote is y = 3.

d i As
$$x \to 1^-$$
, $f(x) \to \infty$
As $x \to 1^+$, $f(x) \to -\infty$
As $x \to \infty$, $f(x) \to -1^-$
As $x \to -\infty$, $f(x) \to -1^+$
The vertical asymptote is $x = 1$.
The horizontal asymptote is $y = -1$.

ii
$$\lim_{x \to -\infty} f(x) = -1$$
, $\lim_{x \to \infty} f(x) = -1$

 $\lim_{x \to -\infty} f(x) = 3, \quad \lim_{x \to \infty} f(x) = 3$

Since there are no real values of x that make $x^2 + 1 = 0$, f(x) is defined for all $x \in \mathbb{R}$.

:. there are no vertical asymptotes.

As $x \to \infty$, $f(x) \to 1^-$

As $x \to -\infty$, $f(x) \to 1^-$

The horizontal asymptote is y = 1.

ii $\lim_{x \to -\infty} f(x) = 1$, $\lim_{x \to \infty} f(x) = 1$

Since there are no real values of x that make $x^2 + 1 = 0$, f(x) is defined for all $x \in \mathbb{R}$.

: there are no vertical asymptotes.

As $x \to \infty$, $f(x) \to 0^+$

As $x \to -\infty$, $f(x) \to 0^-$

The horizontal asymptote is y = 0.

ii $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to \infty} f(x) = 0$

2 a

b i As $x \to -\infty$, $e^x - 6 \to -6^+$ $\therefore \lim_{x \to -\infty} (e^x - 6) = -6$

:. the function has horizontal asymptote y = -6.

ii As $x \to \infty$, $e^x - 6 \to \infty$

 $\lim_{x\to\infty} (e^x - 6)$ does not exist.

3 We sketch the graph of $y = 2e^{-x} - 3$:

As $x \to -\infty$, $2e^{-x} - 3 \to \infty$

 $\therefore \lim_{x \to -\infty} (2e^{-x} - 3) \text{ does not exist.}$

As $x \to \infty$, $2e^{-x} - 3 \to -3^+$

 $\lim_{x \to \infty} (2e^{-x} - 3) = -3.$

4 a $f(x) = \ln x$

f(x) is undefined when $x \leq 0$

 \therefore x = 0 is a vertical asymptote.

As $x \to 0^+$, $y \to -\infty$

b $f(x) = e^{x - \frac{1}{x}}$

f(x) is undefined when x = 0

 \therefore x = 0 is a vertical asymptote.

As $x \to -\infty$, $f(x) \to 0$

y = 0 is a horizontal asymptote.

As $x \to 0^-$, $f(x) \to \infty$

As $x \to 0^+$, $f(x) \to 0^+$

As $x \to \infty$, $f(x) \to \infty$

As $x \to -\infty$, $f(x) \to 0^+$

5 **a** $f(x) = x + \ln x$

f(x) is undefined for $x \leq 0$

x = 0 is a vertical asymptote

As $x \to 0^+$, $f(x) \to -\infty$

b $f(x) = e^x - x$

f(x) is defined for all $x \in \mathbb{R}$

.. no vertical asymptotes exist.

As $x \to -\infty$, $f(x) \to -x$

y = -x is an oblique asymptote

As $x \to \infty$, $f(x) \to \infty$

As $x \to -\infty$, $f(x) \to (-x)^+$

c
$$f(x) = \frac{x^3 - 2}{x^2 + 1}$$

$$x^2 + 1 \overline{)x^3 + 0x^2 + 0x - 2}$$

$$x^3 + x$$

$$- x - 2$$

$$\therefore f(x) = x - \frac{x+2}{x^2+1}$$

x is defined for all $x \in \mathbb{R}$

... no vertical asymptotes exist.

As $|x| \to \infty$, $f(x) \to x$

y = x is an oblique asymptote

As $x \to \infty$, $f(x) \to x^-$

As $x \to -\infty$, $f(x) \to x^+$

d
$$f(x) = (x-2)e^{-x} = \frac{x-2}{e^x}$$

f(x) is defined for all $x \in \mathbb{R}$

.. no vertical asymptotes exist.

As $x \to \infty$, $f(x) \to 0^+$

y = 0 is a horizontal asymptote.

EXERCISE 17C

$$\begin{array}{ll} \mathbf{1} & \mathbf{a} & \lim\limits_{\theta \to 0} \frac{\sin 2\theta}{\theta} \\ & = \lim\limits_{\theta \to 0} \frac{\sin 2\theta}{2\theta} \times 2 \\ & = 2 \times \lim\limits_{2\theta \to 0} \frac{\sin 2\theta}{2\theta} \quad \{2\theta \to 0 \ \text{as} \ \theta \to 0\} \\ & = 2 \times 1 \\ & = 2 \end{array}$$

$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta}$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \times \frac{1}{\cos \theta}$$

$$= 1 \times \frac{1}{1}$$

$$= 1$$

$$\lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)\cos h}{h}$$

$$= \lim_{h \to 0} \cos h \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{h}$$

$$= 1 \times \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \frac{1}{2}$$

$$= \frac{1}{2} \times \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \quad \{\frac{h}{2} \to 0 \text{ as } h \to 0\}$$

$$= \frac{1}{2} \times 1$$

$$= \frac{1}{2}$$

$$\lim_{\theta \to 0} \frac{\frac{\theta}{\sin \theta}}{\frac{1}{\frac{\sin \theta}{\theta}}}$$

$$= \lim_{\theta \to 0} \frac{\frac{1}{\frac{\sin \theta}{\theta}}}{\frac{1}{\frac{\sin \theta}{\theta}}}$$

$$= \frac{1}{1}$$

$$= 1$$

$$\begin{aligned} \mathbf{d} & \lim_{\theta \to 0} \frac{\sin \theta \sin 4\theta}{\theta^2} \\ &= \lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \right) \lim_{\theta \to 0} \left(\frac{\sin 4\theta}{\theta} \right) \\ &= 1 \times \lim_{\theta \to 0} \left(\frac{\sin 4\theta}{4\theta} \right) \times 4 \\ &= 4 \times \lim_{\theta \to 0} \left(\frac{\sin 4\theta}{4\theta} \right) \quad \{4\theta \to 0 \text{ as } \theta \to 0\} \\ &= 4 \times 1 \\ &= 4 \end{aligned}$$

$$\lim_{n \to \infty} n \sin\left(\frac{2\pi}{n}\right)$$

$$= \lim_{\frac{1}{n} \to 0^{+}} \frac{\sin\left(\frac{2\pi}{n}\right)}{\frac{1}{n}} \quad \left\{\frac{1}{n} \to 0^{+} \text{ as } n \to \infty\right\}$$

$$= \lim_{\frac{1}{n} \to 0^{+}} \frac{\sin\left(\frac{2\pi}{n}\right)}{\frac{2\pi}{n}} \times 2\pi$$

$$= 2\pi \times \lim_{\frac{2\pi}{n} \to 0^{+}} \frac{\sin\left(\frac{2\pi}{n}\right)}{\frac{2\pi}{n}} \quad \left\{\frac{\frac{2\pi}{n} \to 0^{+}}{n}\right\}$$

$$= 2\pi \times 1$$

$$= 2\pi$$

2 a The angle at the apex of each triangle = $\frac{2\pi}{n}$

{angles at a point}

 \therefore area of each triangle $=\frac{1}{2}r^2\sin\left(\frac{2\pi}{n}\right)$

 \therefore area of the *n* triangles $S_n = \frac{1}{2}nr^2\sin\left(\frac{2\pi}{n}\right)$

b i As the number of triangles increases, the triangles cover more of the circle. As $n \to \infty$, the triangles get closer to covering the whole circle.

 $\lim_{n\to\infty} S_n = \text{area of the circle}$

- Area of circle $=\pi r^2$
- 3 a $\cos(A+B) \cos(A-B) = \cos A \cos B \sin A \sin B (\cos A \cos B + \sin A \sin B)$ = $\cos A \cos B - \sin A \sin B - \cos A \cos B - \sin A \sin B$ = $-2 \sin A \sin B$
 - $\begin{array}{ll} \mathbf{b} & \cos S \cos D = \cos(A+B) \cos(A-B) \\ & = -2\sin A\sin B & \{\mathrm{using } \mathbf{a}\} \end{array}$

Now S+D=A+B+A-B and S-D=A+B-(A-B) =2A =2B $\therefore A=\frac{S+D}{2}$ $\therefore B=\frac{S-D}{2}$

So, $\cos S - \cos D = -2\sin\left(\frac{S+D}{2}\right)\sin\left(\frac{S-D}{2}\right)$

 $\begin{array}{l} \mathbf{c} \quad \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{-2\sin\left[\frac{(x+h) + x}{2}\right] \sin\left[\frac{(x+h) - x}{2}\right]}{h} \quad \{x+h = S, \ x = D\} \\ \\ = \lim_{h \to 0} \frac{-2\sin\left(\frac{2x+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h} \\ \\ = -2\lim_{h \to 0} \frac{\sin\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{h} \\ \\ = -2\lim_{h \to 0} \sin\left(x + \frac{h}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \frac{1}{2} \\ \\ = -1\lim_{h \to 0} \sin\left(x + \frac{h}{2}\right) \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \quad \{\frac{h}{2} \to 0 \text{ as } h \to 0\} \\ \\ = -1\lim_{h \to 0} \sin\left(x + \frac{h}{2}\right) \\ = -\sin x \end{aligned}$

EXERCISE 17D

- 1 a 452 f(t) (3, 408.8) $f(t) = 452 4.8t^2$
- **b** The graph of f(t) is not a straight line, so the jumper is not travelling with constant speed.

If the *altitude* of the jumper is given by $f(t) = 452 - 4.8t^2$, then the *distance* covered by the jumper d(t) = 452 - f(t)

$$d(t) = 452 - (452 - 4.8t^2)$$

$$d(t) = 452 - 452 + 4.8t^2$$

$$d(t) = 4.8t^2$$

We choose a fixed point F on d(t) when t = 0 seconds. This is the point (0, 0).

We then choose another point M on the curve, for example the point (1, 4.8).

The average speed in the interval $0 \leqslant t \leqslant 1$

is
$$\frac{4.8-0}{1-0} = 4.8 \text{ m s}^{-1}$$
.

We repeat this process, moving M closer to F each time, and get the following results:

t	gradient of [FM]
1	4.8
0.5	2.4
0.1	0.48
0.01	0.048
0.001	0.0048

So, as M approaches F, the gradient of [FM] approaches 0.

- : the speed of the jumper at t = 0 seconds is 0 m s^{-1} .
- ii We now choose point F on d(t) when t = 1 second. This is the point (1, 4.8).

We then choose another point M on the curve, for example the point (2, 19.2).

The average speed in the interval $\ 1\leqslant t\leqslant 2$

is
$$\frac{19.2 - 4.8}{2 - 1} = 14.4 \text{ m s}^{-1}$$
.

We repeat this process, moving M closer to F each time, and get the following results:

t	gradient of [FM]
2	14.4
1.5	12
1.1	10.08
1.01	9.648
1.001	9.6048
1.0001	9.60048

t	gradient of [FM]
0	4.8
0.5	7.2
0.9	9.12
0.99	9.552
0.999	9.5952
0.9999	9.59952

So, as M approaches F (from either direction), the gradient of [FM] approaches 9.6.

- \therefore the speed of the jumper at t = 1 second is 9.6 m s⁻¹.
- iii We now choose point F on d(t) when t=2 seconds. This is the point (2, 19.2).

We then choose another point M on the curve, for example the point (3, 43.2).

The average speed in the interval $2 \leqslant t \leqslant 3$

is
$$\frac{43.2 - 19.2}{3 - 2} = 24 \text{ m s}^{-1}$$
.

We repeat this process, moving M closer to F each time, and get the following results:

t	gradient of [FM]
3	24
2.5	21.6
2.1	19.68
2.01	19.248
2.001	19.2048
2.0001	19.20048

t	gradient of [FM]
1	14.4
1.5	16.8
1.9	18.72
1.99	19.152
1.999	19.1952
1.9999	19.19952

So, as M approaches F (from either direction), the gradient of [FM] approaches 19.2.

- \therefore the speed of the jumper at t=2 seconds is $19.2~{\rm m\,s^{-1}}$.
- We choose a fixed point F on d(t) when t=3 seconds. This is the point (3, 43.2).

We then choose another point M on the curve, for example the point (2, 19.2).

The gradient of [MF] is

$$\frac{43.2 - 19.2}{3 - 2} = 24 \text{ m s}^{-1}.$$

We repeat this process, moving M closer to F each time, and get the following results:

So, as M approaches F, the gradient of [MF] approaches 28.8.

the speed of the jumper at t = 3 seconds is 28.8 m s^{-1} .

t	gradient of [MF]
2	24
2.5	26.4
2.9	28.32
2.99	28.752
2.999	28.7952
2.9999	28.79952

Suppose A is the point (2, 4) and B is a point on $y = x^2$ with coordinates (x, x^2) .

The chord [AB] has gradient

$$\frac{x^2-4}{x-2}$$
 (or $\frac{4-x^2}{2-x}$).

As B moves closer to A (from either side), we get the following results:

x	Point B	Gradient of [AB]
0	(0, 0)	2
1	(1, 1)	3
1.5	(1.5, 2.25)	3.5
1.9	(1.9, 3.61)	3.9
1.99	(1.99, 3.9601)	3.99
1.999	(1.999, 3.996001)	3.999

\boldsymbol{x}	Point B	Gradient of [AB]
5	(5, 25)	7
3	(3, 9)	5
2.5	(2.5, 6.25)	4.5
2.1	(2.1, 4.41)	4.1
2.01	(2.01, 4.0401)	4.01
2.001	(2.001, 4.004001)	4.001

So, as B approaches A, the gradient of [AB] approaches 4.

 \therefore the gradient of the tangent to $y = x^2$ at the point (2, 4) is 4.

b
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$$
$$= \lim_{x \to 2} (x + 2) \text{ since } x \neq 2$$
$$= 4$$

This is the gradient of the tangent to $y = x^2$ at the point where x = 2.

2

EXERCISE 17E

1 a
$$f(2) = 3$$

b f'(2) is the gradient of the tangent to f(x) at the point where x = 2.
Since f(x) is a straight line, this is the same as the gradient of f(x) itself.
f(x) is a horizontal line, and hence has gradient 0.
∴ f'(2) = 0

a f(0) = 4

b f'(0) is the gradient of the tangent to f(x) at the point where x=0. Since f(x) is a straight line, this is the same as the gradient of f(x) itself. f(x) passes through (0, 4) and (4, 0), so it has gradient $=\frac{0-4}{4-0}=-1$

$$f'(0) = -1$$

3 The graph shows the tangent to the curve y = f(x) at the point where x = 2.

The tangent passes through (0, 1) and (4, 5), so its gradient is $f'(2) = \frac{5-1}{4-0} = 1$.

The equation of the tangent is $\frac{y-1}{x-0} = 1$

$$\therefore y = x + 1$$

When x = 2, y = 3, so the point of contact is (2, 3).

$$f(2) = 3$$
 and $f'(2) = 1$.

EXERCISE 17F

1 a i f(x) = x $\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x+h) - x}{h}$ $= \lim_{h \to 0} \frac{h}{h}$ $= \lim_{h \to 0} 1 \quad \{\text{as } h \neq 0\}$

=1

ii
$$f(x) = 5$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{5 - 5}{h}$$

$$= \lim_{h \to 0} \frac{0}{h}$$

$$= \lim_{h \to 0} 0 \quad \{\text{as } h \neq 0\}$$

$$= 0$$

iii
$$f(x) = x^3$$

$$f'(x)$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{x^8 + 3x^2h + 3xh^2 + h^3 - x^8}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} 3x^2 + 3xh + h^2 \quad \{\text{as } h \neq 0\}$$

$$= 3x^2$$

iv
$$f(x) = x^4$$

$$\therefore f'(x)$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{x^4} + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - \cancel{x^4}}{h}$$

$$= \lim_{h \to 0} \frac{4x^3h + 6x^2h^2 + 4xh^3 + h^4}{h}$$

$$= \lim_{h \to 0} 4x^3 + 6x^2h + 4xh^2 + h^3 \quad \text{{as } } h \neq 0$$

$$= 4x^3$$

b From **a**, we predict that if $f(x) = x^n$, $f'(x) = nx^{n-1}$, $n \in \mathbb{N}$.

2 **a**
$$f(x) = 2x + 5$$

 $f'(x)$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(2(x+h) + 5) - (2x + 5)}{h}$$

$$= \lim_{h \to 0} \frac{2x + 2h + 8 - 2x - 8}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h}$$

$$= \lim_{h \to 0} 2 \quad \{as \ h \neq 0\}$$

$$= 2$$
b $f(x) = x^2 - 3x$

$$f'(x)$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - [x^2 - 3x]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - 3h}{h}$$

$$= \lim_{h \to 0} 2x + h - 3 \quad \{as \ h \neq 0\}$$

$$= 2x - 3$$

$$f(x) = -x^{2} + 5x - 3$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[-(x+h)^{2} + 5(x+h) - 3] - [-x^{2} + 5x - 3]}{h}$$

$$= \lim_{h \to 0} \frac{-x^{2} - 2xh - h^{2} + 5x + 5h - 3 + x^{2} - 5x + 3}{h}$$

$$= \lim_{h \to 0} \frac{-2xh - h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} -2x + 5 - h \quad \text{as } h \neq 0$$

$$= -2x + 5$$

3 a
$$y = f(x) = 4 - x$$
 b $y = f(x) = 2x^2 + x - 1$

$$\therefore \frac{dy}{dx}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[4 - (x+h)] - [4 - x]}{h}$$

$$= \lim_{h \to 0} \frac{A - x - h - A + x}{h}$$

$$= \lim_{h \to 0} \frac{-h}{h}$$

$$= \lim_{h \to 0} -1 \quad \{as \ h \neq 0\}$$

$$= -1$$
b $y = f(x) = 2x^2 + x - 1$

$$\therefore \frac{dy}{dx}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[2(x+h)^2 + (x+h) - 1] - [2x^2 + x - 1]}{h}$$

$$= \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 + x + h - x - 2x^2 - x + x}{h}$$

$$= \lim_{h \to 0} 4x + 1 + 2h \quad \{as \ h \neq 0\}$$

$$= 4x + 1$$

$$y = f(x) = x^3 - 2x^2 + 3$$

$$\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[(x+h)^3 - 2(x+h)^2 + 3] - [x^3 - 2x^2 + 3]}{h}$$

$$= \lim_{h \to 0} \frac{x^8 + 3x^2h + 3xh^2 + h^3 - 2x^2 - 4xh - 2h^2 + 3 - x^8 + 2x^2 - 3}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 4xh - 2h^2}{h}$$

$$= \lim_{h \to 0} 3x^2 + 3xh + h^2 - 4x - 2h \quad \text{{as } } h \neq 0\text{{}}$$

$$= 3x^2 - 4x$$

4 a
$$f(x) = x^3$$

 $\therefore f'(2)$

$$= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
where $f(2) = 2^3 = 8$

$$= \lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{8} + 12h + 6h^2 + h^3 - \cancel{8}}{h}$$

$$= \lim_{h \to 0} \frac{12h + 6h^2 + h^3}{h}$$

$$= \lim_{h \to 0} 12 + 6h + h^2 \quad \{\text{as } h \neq 0\}$$

$$= 12$$

We need to find
$$f'(-2)$$
.

$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}$$
where $f(-2) = 3(-2) + 5 = -1$

$$= \lim_{h \to 0} \frac{[3(-2+h) + 5] - [-1]}{h}$$

$$= \lim_{h \to 0} \frac{-\mathscr{B} + 3h + \mathscr{B} + \mathscr{X}}{h}$$

$$= \lim_{h \to 0} \frac{3h}{h}$$

$$= \lim_{h \to 0} 3 \quad \{\text{as } h \neq 0\}$$

$$= 3$$
∴ the gradient of the tangent to

$$f(x) = 3x + 5$$
 at $x = -2$ is 3.

 $f(x) = x^2 + 3x - 4$

b
$$f(x) = x^4$$

 $\therefore f'(3)$

$$= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
where $f(3) = 3^4 = 81$

$$= \lim_{h \to 0} \frac{(3+h)^4 - 81}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{81} + 108h + 54h^2 + 12h^3 + h^4 - \cancel{81}}{h}$$

$$= \lim_{h \to 0} \frac{108h + 54h^2 + 12h^3 + h^4}{h}$$

$$= \lim_{h \to 0} 108 + 54h + 12h^2 + h^3 \quad \{\text{as } h \neq 0\}$$

$$= 108$$

We need to find
$$f'(3)$$
.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$
where $f(3) = 5 - 2(3)^2 = -13$

$$= \lim_{h \to 0} \frac{[5 - 2(3+h)^2] - [-13]}{h}$$

$$= \lim_{h \to 0} \frac{5 - 2(9+6h+h^2) + 13}{h}$$

$$= \lim_{h \to 0} \frac{8 - 18 - 12h - 2h^2 + 18}{h}$$

$$= \lim_{h \to 0} \frac{-12h - 2h^2}{h}$$

$$= \lim_{h \to 0} \frac{-2h(6+h)}{h}$$

$$= \lim_{h \to 0} -2(6+h) \quad \text{{as } } h \neq 0$$
}
$$= -12$$

We need to find
$$f'(3)$$
.

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \quad \text{where} \quad f(3) = 3^2 + 3(3) - 4 = 14$$

$$= \lim_{h \to 0} \frac{[(3+h)^2 + 3(3+h) - 4] - 14}{h}$$

$$= \lim_{h \to 0} \frac{\mathscr{S} + 6h + h^2 + \mathscr{S} + 3h - \mathscr{K} - \mathscr{M}}{h}$$

$$= \lim_{h \to 0} \frac{9h + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(9+h)}{h}$$

$$= \lim_{h \to 0} (9+h) \quad \{\text{as } h \neq 0\}$$

$$= 9$$

d
$$f(x) = 5 - 2x - 3x^2$$

We need to find f'(-2).

$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h} \quad \text{where} \quad f(-2) = 5 - 2(-2) - 3(-2)^2 = -3$$

$$= \lim_{h \to 0} \frac{[5 - 2(-2+h) - 3(-2+h)^2] - [-3]}{h}$$

$$= \lim_{h \to 0} \frac{5 + 4 - 2h - 3(4 - 4h + h^2) + 3}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{8} + \cancel{4} - 2h - \cancel{12} + 12h - 3h^2 + \cancel{8}}{h}$$

$$= \lim_{h \to 0} \frac{10h - 3h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(10 - 3h)}{h}$$

$$= \lim_{h \to 0} (10 - 3h) \quad \text{{as } } h \neq 0$$

$$= 10$$

6 a
$$y = x^3 - 3x$$

$$\therefore \frac{dy}{dx}
= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
= \lim_{h \to 0} \frac{[(x+h)^3 - 3(x+h)] - [x^3 - 3x]}{h}
= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 3x - 3h - x^3 + 3x}{h}
= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 3h}{h}
= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2 - 3)}{h}
= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 3) \quad \text{as } h \neq 0$$

$$= 3x^2 - 3$$

$$f'(x) = 0$$

$$\therefore 3x^2 - 3 = 0$$

$$\therefore 3x^2 = 3$$

$$\therefore x^2 = 1$$

$$\therefore x = \pm 1$$

When
$$x = -1$$
,

$$y = (-1)^3 - 3(-1) = 2$$

When
$$x = 1$$
,

$$y = (1)^3 - 3(1) = -2$$

So, the points on the graph at which the tangent has zero gradient are (-1, 2) and (1, -2).

7 a
$$y = f(x) = \frac{4}{x}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{\frac{4}{x+h} - \frac{4}{x}}{h}\right)$$

$$= \lim_{h \to 0} \frac{\left(\frac{4x - 4(x+h)}{x(x+h)}\right)}{h}$$

$$= \lim_{h \to 0} \frac{4x - 4x - 4h}{xh(x+h)}$$

$$= \lim_{h \to 0} \frac{-4\mathcal{K}}{x\mathcal{K}(x+h)}$$

$$= \lim_{h \to 0} \frac{-4}{x(x+h)}$$

$$= \frac{-4}{x^2}$$

$$b y = f(x) = \frac{4x+1}{x-2}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{4(x+h)+1}{x+h-2} - \frac{4x+1}{x-2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{4x+4h+1}{x+h-2} - \frac{4x+1}{x-2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{(4x+4h+1)(x-2) - (4x+1)(x+h-2)}{(x+h-2)(x-2)}\right)}{h}$$

$$= \lim_{h \to 0} \frac{4x^2 - 8x + 4hx - 8h + x - 2 - (4x^2 + 4hx - 8x + x + h - 2)}{h(x+h-2)(x-2)}$$

$$= \lim_{h \to 0} \frac{4x^2 - 2x + 4hx - 8h - 2 - 4x^2 - 4hx + 2x - h + 2}{h(x+h-2)(x-2)}$$

$$= \lim_{h \to 0} \frac{-9h}{h(x+h-2)(x-2)}$$

$$= \lim_{h \to 0} \frac{-9}{(x+h-2)(x-2)}$$

$$= \frac{-9}{(x-2)^2}$$

8 a
$$f(x) = \frac{1}{x^2}$$
 b $f(x) = \frac{3x}{x^2 + 1}$

$$\therefore f(3) = \frac{1}{3^2} = \frac{1}{9}$$

$$\therefore f(-4) = -\frac{12}{17}$$

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$f'(-4) = \lim_{x \to -4} \frac{f(x) - f(-4)}{x - (-4)}$$

$$= \lim_{h \to 0} \frac{9 - (3+h)^2}{9h(3+h)^2}$$

$$= \lim_{h \to 0} \frac{9 - 9 - 6h - h^2}{9h(3+h)^2}$$

$$= \lim_{h \to 0} \frac{-\cancel{H}(6+h)}{9\cancel{H}(3+h)^2}$$

$$= \lim_{h \to 0} \frac{-(6+h)}{9(3+h)^2}$$
 {as $h \neq 0$ }
$$= \lim_{x \to -4} \frac{(\cancel{x} + 4)(12x + 3)}{17(x^2 + 1)(\cancel{x} + 4)}$$

$$= \lim_{x \to -4} \frac{(\cancel{x} + 4)(12x + 3)}{17(x^2 + 1)(\cancel{x} + 4)}$$

$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= \lim_{x \to -4} \frac{12x + 3}{17(x^2 + 1)}$$
 { $x \neq -4$ }
$$= -\frac{45}{17 \times 17}$$

$$= -\frac{45}{289}$$

$$f(x) = \sqrt{x} \text{ and } f(4) = \sqrt{4} = 2$$

$$f'(4) = \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4}$$

$$= \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

$$= \lim_{x \to 4} \frac{\sqrt{x} - 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)}$$

$$= \lim_{x \to 4} \frac{1}{(\sqrt{x} + 2)} \quad \{\text{as } x \neq 4\}$$

$$= \frac{1}{2 + 2}$$

$$= \frac{1}{4}$$

$$f(x) = \frac{1}{\sqrt{x}}$$

$$f(1) = \frac{1}{\sqrt{1}} = 1$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} - \frac{1}{1}}{h}$$

$$= \lim_{h \to 0} \frac{1 - \sqrt{1+h}}{h\sqrt{1+h}}$$

$$= \lim_{h \to 0} \frac{(1 - \sqrt{1+h})}{h\sqrt{1+h}} \left(\frac{1 + \sqrt{1+h}}{1 + \sqrt{1+h}}\right)$$

$$= \lim_{h \to 0} \frac{1 - (1+h)}{h(\sqrt{1+h})(1 + \sqrt{1+h})}$$

$$= \lim_{h \to 0} \frac{1 - (1+h)}{h(\sqrt{1+h})(1 + \sqrt{1+h})}$$

$$= \lim_{h \to 0} \frac{-1}{\sqrt{1+h}(1 + \sqrt{1+h})} \quad \{h \neq 0\}$$

$$= \frac{-1}{1(1+1)} = -\frac{1}{2}$$

REVIEW SET 17A

1 a We can make 6x - 7 as close as we like to -1 by making x sufficiently close to 1.

$$\lim_{x \to 1} (6x - 7) = -1$$

b
$$\lim_{h \to 0} \frac{2h^2 - h}{h} = \lim_{h \to 0} \frac{h(2h - 1)}{h}$$
$$= \lim_{h \to 0} (2h - 1) \quad \{\text{as } h \neq 0\}$$
$$= -1$$

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} \frac{(x + 4)(x - 4)}{x - 4}$$

$$= \lim_{x \to 4} (x + 4) \quad \{\text{as } x \neq 0\}$$

$$= 8$$

2 a
$$f(x) = x^2 + 2x$$

 $\therefore f'(x)$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[(x+h)^2 + 2(x+h)] - [x^2 + 2x]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2x + 2h - x^2 - 2x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + 2h}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h+2)}{h}$$

$$= \lim_{h \to 0} (2x+h+2) \quad \text{{as } } h \neq 0$$

$$= 2x + 2$$

b
$$y = f(x) = 4 - 3x^2$$

$$\therefore \frac{dy}{dx}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{[4 - 3(x+h)^2] - [4 - 3x^2]}{h}$$

$$= \lim_{h \to 0} \frac{4 - 3(x^2 + 2xh + h^2) - 4 + 3x^2}{h}$$

$$= \lim_{h \to 0} \frac{4 - 3x^2 - 6xh - 3h^2 - 4 + 3x^2}{h}$$

$$= \lim_{h \to 0} \frac{-3h(2x+h)}{h}$$

$$= \lim_{h \to 0} -3(2x+h) \quad \text{{as } } h \neq 0$$

$$= -6x$$

3 a
$$f(x) = e^{x-2} - 3$$

f(x) is defined for all $x \in \mathbb{R}$

.. no vertical asymptotes exist

As
$$x \to -\infty$$
, $f(x) \to -3$

y = -3 is a horizontal asymptote

As
$$x \to \infty$$
, $f(x) \to \infty$

As
$$x \to -\infty$$
, $f(x) \to -3^+$

b
$$f(x) = \ln(x^2 + 3)$$
 has no asymptotes

$$f(x) = \ln(-x) + 2$$

f(x) is undefined for $x \ge 0$

$$\therefore$$
 $x = 0$ is a vertical asymptote

As
$$x \to 0^-$$
, $f(x) \to -\infty$

4 a
$$\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta}$$

$$= \lim_{\theta \to 0} \frac{\sin 4\theta}{4\theta} \times 4$$

$$= 4 \lim_{4\theta \to 0} \frac{\sin 4\theta}{4\theta} \qquad \{4\theta \to 0 \text{ as } \theta \to 0\}$$

$$= 4 \times 1$$

$$= 4$$

$$\lim_{n \to \infty} n \sin\left(\frac{\pi}{n}\right)$$

$$= \lim_{\frac{1}{n} \to 0} \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{1}{n}} \qquad \{\frac{1}{n} \to 0 \text{ as } n \to \infty\}$$

$$= \lim_{\frac{1}{n} \to 0} \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}} \times \pi$$

$$= \pi \times \lim_{\frac{\pi}{n} \to 0} \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}} \qquad \{\frac{\pi}{n} \to 0 \text{ as } \frac{1}{n} \to 0\}$$

$$= \pi \times 1$$

$$= \pi$$

$$\lim_{\theta \to 0} \frac{2\theta}{\sin 3\theta}$$

$$= \lim_{\theta \to 0} \frac{3\theta}{\sin 3\theta} \times \frac{2}{3}$$

$$= \frac{2}{3} \lim_{\theta \to 0} \frac{1}{\frac{\sin 3\theta}{3\theta}}$$

$$= \frac{2}{3} \frac{1}{\lim_{3\theta \to 0} \frac{\sin 3\theta}{3\theta}} \quad \{3\theta \to 0 \text{ as } \theta \to 0\}$$

$$= \frac{2}{3} \times \frac{1}{1}$$

$$= \frac{2}{3}$$

5
$$f(x) = 5x - x^2$$

 $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ where $f(1) = 5(1) - (1)^2 = 4$
 $= \lim_{h \to 0} \frac{[5(1+h) - (1+h)^2] - 4}{h}$
 $= \lim_{h \to 0} \frac{5 + 5h - (1 + 2h + h^2) - 4}{h}$
 $= \lim_{h \to 0} \frac{8 + 5h - 1 - 2h - h^2 - 1}{h}$
 $= \lim_{h \to 0} \frac{3h - h^2}{h}$
 $= \lim_{h \to 0} \frac{h(3-h)}{h}$
 $= \lim_{h \to 0} (3-h)$ {as $h \neq 0$ }
 $= 3$

6 a
$$f(t) = 452 - 4.8t^2$$

$$f'(t)$$

$$= \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

$$= \lim_{h \to 0} \frac{[452 - 4.8(t+h)^2] - [452 - 4.8t^2]}{h}$$

$$= \lim_{h \to 0} \frac{452 - 4.8(t^2 + 2th + h^2) - 452 + 4.8t^2}{h}$$

$$= \lim_{h \to 0} \frac{-4.8t^2 - 9.6th - 4.8h^2 + 4.8t^2}{h}$$

$$= \lim_{h \to 0} \frac{h(-9.6t - 4.8h)}{h}$$

$$= \lim_{h \to 0} (-9.6t - 4.8h) \quad \text{{as } } h \neq 0$$

$$= -9.6t \text{ ms}^{-1}$$

b To find the speed of the jumper at t=2 seconds, we need to find f'(2). Now f'(t) = -9.6t {from **a**}

Now
$$f'(t) = -9.6t$$
 {from **a**}
 $f'(2) = -9.6 \times 2$
 $f'(2) = -19.2$

: the speed of the jumper at t=2 seconds is 19.2 m s⁻¹. (The - sign indicates the jumper is moving downwards.)

REVIEW SET 17B

a We sketch the graph of $y = \frac{x-7}{3x+9}$:

- As $x \to -\frac{2}{3}^-$, $y \to \infty$
- As $x \to -\frac{2}{3}^+$, $y \to -\infty$
- As $x \to \infty$, $y \to \frac{1}{3}^-$
- As $x \to -\infty$, $y \to \frac{1}{3}^+$

The vertical asymptote is $x = -\frac{2}{3}$.

The horizontal asymptote is $y = \frac{1}{3}$.

- **b** $\lim_{x \to -\infty} \left(\frac{x-7}{3x+2} \right) = \frac{1}{3}, \quad \lim_{x \to \infty} \left(\frac{x-7}{3x+2} \right) = \frac{1}{3}$
- 2

b $\lim_{x \to -\infty} (2 - e^{x+1}) = 2,$

 $\lim_{x\to\infty} (2-e^{x+1})$ does not exist

The horizontal asymptote is y = 2.

- **a** $f(x) = \ln(x^2)$ is not defined when x = 0 $f(x) = \ln(x^2)$ is not continuous at x = 0.
- **b** $f(x) = \frac{x^2 1}{1 x}$ is not defined when x = 1

 $\therefore f(x) = \frac{x^2 - 1}{1 - x}$ is not continuous at x=1.

 $\lim_{h\to 0}\frac{2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}=2\lim_{h\to 0}\,\cos\left(x+\frac{h}{2}\right)\lim_{h\to 0}\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\times\frac{1}{2}$ $= 1 \times \lim_{h \to 0} \cos \left(x + \frac{h}{2} \right) \lim_{h \to 0} \frac{\sin \left(\frac{h}{2} \right)}{\frac{h}{2}} \qquad \left\{ \frac{h}{2} \to 0 \text{ as } h \to 0 \right\}$ $=1 \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$ $=\cos x$

It is assumed that x and h are in radians.

5 a
$$\frac{f(x+h) - f(x)}{h} = \frac{2(x+h)^2 - 2x^2}{h}$$

$$= \frac{2(x^2 + 2xh + h^2) - 2x^2}{h}$$

$$= \frac{2x^2 + 4xh + 2h^2 - 2x^2}{h}$$

$$= \frac{h(4x+2h)}{h}$$

$$= 4x + 2h \text{ provided } h \neq 0$$

b If
$$x = 3$$
 then $\frac{f(3+h) - f(3)}{h} = 4(3) + 2h$ {using **a**} $= 12 + 2h$

When
$$h = 0.1$$
,
$$\frac{f(3+h) - f(3)}{h} = 12 + 2(0.1)$$
$$= 12 + 0.2$$
$$= 12.2$$

When
$$h = 0.01$$
,
$$\frac{f(3+h) - f(3)}{h} = 12 + 2(0.01)$$
$$= 12 + 0.02$$
$$= 12.02$$

$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} 12 + 2h$$

$$= 12$$

The gradient of the tangent to $y = 2x^2$ at the point (3, 18) is 12.

REVIEW SET 17C

1 a
$$\lim_{h\to 0} \frac{h^3 - 3h}{h} = \lim_{h\to 0} \frac{h(h^2 - 3)}{h}$$

= $\lim_{h\to 0} h^2 - 3$ {as $h \neq 0$ }
= -3

b
$$\lim_{x \to 1} \frac{3x^2 - 3x}{x - 1} = \lim_{x \to 1} \frac{3x(x - 1)}{x - 1}$$
$$= \lim_{x \to 1} 3x \quad \{\text{as } x \neq 1\}$$
$$= 3$$

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{2 - x} = \lim_{x \to 2} \frac{(x - 1)(x - 2)}{-(x - 2)}$$

$$= \lim_{x \to 2} -(x - 1) \quad \{\text{as } x \neq 2\}$$

$$= -1$$

b As
$$x \to 4^-$$
, $y \to -\infty$
As $x \to 4^+$, $y \to \infty$
As $x \to \infty$, $y \to 1^+$

As
$$x \to \infty$$
, $y \to 1^+$

As
$$x \to -\infty$$
, $y \to 1^-$

The vertical asymptote is x = 4.

The horizontal asymptote is y = 1.

c
$$\lim_{x \to -\infty} \frac{2+x}{x-4} = 1$$
, $\lim_{x \to \infty} \frac{2+x}{x-4} = 1$

3
$$f(x) = x^4 - 2x$$

 $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ where $f(1) = 1^4 - 2(1) = -1$
 $= \lim_{h \to 0} \frac{[(1+h)^4 - 2(1+h)] - [-1]}{h}$
 $= \lim_{h \to 0} \frac{\cancel{X} + 4h + 6h^2 + 4h^3 + h^4 - \cancel{Z} - 2h + \cancel{X}}{h}$
 $= \lim_{h \to 0} \frac{h^4 + 4h^3 + 6h^2 + 2h}{h}$
 $= \lim_{h \to 0} \frac{h(h^3 + 4h^2 + 6h + 2)}{h}$
 $= \lim_{h \to 0} (h^3 + 4h^2 + 6h + 2)$ {as $h \neq 0$ }
 $= 2$

4 a
$$\sin(A+B) - \sin(A-B) = \sin A \cos B + \cos A \sin B - (\sin A \cos B - \cos A \sin B)$$

 $= \sin A \cos B + \cos A \sin B - \sin A \cos B + \cos A \sin B$
 $= 2\cos A \sin B$

b
$$\sin S - \sin D = \sin(A+B) - \sin(A-B)$$

 $= 2\cos A \sin B$ {using a}
Now $S + D = A + B + (A - B)$ and $S - D = A + B - (A - B)$
 $= 2A$ $= 2B$
∴ $A = \frac{S+D}{2}$ ∴ $B = \frac{S-D}{2}$
∴ $\sin S - \sin D = 2\cos\left(\frac{S+D}{2}\right)\sin\left(\frac{S-D}{2}\right)$

$$\begin{array}{ll} \mathbf{c} & \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2\cos\left[\frac{(x+h) + x}{2}\right] \sin\left[\frac{(x+h) - x}{2}\right]}{h} & \{x+h = S, \quad x = D\} \\ & = \lim_{h \to 0} \frac{2\cos\left(\frac{2x+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h} \\ & = 2\lim_{h \to 0} \frac{\cos\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{h} \\ & = 2\lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \frac{1}{2} \\ & = 1\lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} & \{\frac{h}{2} \to 0 \text{ as } h \to 0\} \\ & = \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \\ & = \cos x \end{array}$$

d $\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$ which is the gradient function of $f(x) = \sin x$.

5 a
$$y = 2x^2 - 1$$

$$\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{[2(x+h)^2 - 1] - [2x^2 - 1]}{h}$$

$$= \lim_{h \to 0} \frac{2(x^2 + 2hx + h^2) - 1 - 2x^2 + 1}{h}$$

$$= \lim_{h \to 0} \frac{2x^2 + 4hx + 2h^2 - x - 2x^2 + x}{h}$$

$$= \lim_{h \to 0} \frac{4hx + 2h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(4x + 2h)}{h}$$

- **b** The gradient of the tangent to $y = 2x^2 1$ at the point where x = 4 is $4 \times 4 = 16$.
- If the gradient of the tangent is equal to -12, then 4x = -12 $\therefore x = -3$

558

=4x

 $= \lim_{h \to 0} 4x + 2h \qquad \{\text{as } h \neq 0\}$

Suppose $P(\cos \theta, \sin \theta)$ lies on the unit circle in the first quadrant.

[PQ] is drawn perpendicular to the x-axis, and arc QR with centre O is drawn. Now,

area of sector OQR \leq area \triangle OQP \leq area sector OTP

$$\therefore \frac{1}{2}(OQ)^2 \times \theta \leqslant \frac{1}{2}(OQ)(PQ) \leqslant \frac{1}{2}(OT)^2 \times \theta$$
$$\therefore \frac{1}{2}\theta \cos^2 \theta \leqslant \frac{1}{2}\cos \theta \sin \theta \leqslant \frac{1}{2}\theta$$

Dividing throughout by $\frac{1}{2}\theta\cos\theta$, which is >0, $\cos\theta\leqslant\frac{\sin\theta}{\theta}\leqslant\frac{1}{\cos\theta}$

Now as $\theta \to 0$, both $\cos \theta \to 1$ and $\frac{1}{\cos \theta} \to 1$

 $\therefore \text{ as } \theta \to 0^+, \quad \frac{\sin \theta}{\theta} \to 1. \qquad \text{So, if } \theta > 0 \text{ then } \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$

$$\text{ii} \quad \text{If} \quad f(\theta) = \frac{\sin \theta}{\theta}, \quad f(-\theta) = \frac{\sin(-\theta)}{-\theta} = \frac{-\sin \theta}{-\theta} = \frac{\sin \theta}{\theta} = f(\theta)$$

 $\therefore \frac{\sin \theta}{\theta} \text{ is an even function, so as } \theta \to 0^-, \frac{\sin \theta}{\theta} \to 1 \text{ also.}$

So, if
$$\theta < 0$$
, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

b

c As $\theta \to 0$, area of shaded segment $\to 0$

$$\therefore \frac{1}{2}r^2(\theta - \sin \theta) \to 0$$

$$\therefore \theta - \sin \theta \to 0$$

$$\therefore \theta \to \sin \theta$$

$$\therefore \frac{\sin \theta}{\theta} \to 1$$

$$\sin \theta$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Area of shaded segment

= (area of sector) - (area of triangle)

$$= \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$$

$$= \frac{1}{2}r^2(\theta - \sin\theta)$$