# Analysis of electrical power and energy systems

## Practical session 4

#### 12 October 2020

## 1 Transformers in power systems<sup>1</sup>

1. Assume the transformer in Figure 1 to be ideal. Winding 1 is applied a sinusoidal voltage in steady-state with  $\overline{V}_1 = 120 \text{ V} \angle 0^\circ$  at a frequency f = 60 Hz.  $N_1/N_2 = 3$ . The load on winding 2 is a series combination of R and L with  $Z_L = (5+j3) \Omega$ . Calculate the current drawn from the voltage source.



Figure 1: Transformer with load connected to the secondary winding.

- 2. A 2400/240-V, 60-Hz transformer has the following parameters in the equivalent circuit of Figure 2: the high-side leakage impedance is  $(1.2 + j2.0) \Omega$  and the low-side leakage impedance is  $(0.012 + j0.02) \Omega$ . Neglect  $R_{he}$ . Calculate the input voltage if the output voltage is 240 V (rms), supplying a load of 1.5  $\Omega$  at a power factor of 0.9 (lagging)
  - (a) if  $X_m$  at the high side is 1800  $\Omega$ ;
  - (b) if  $X_m$  at the high side is neglected.

Use the per-unit formalism, considering the (2400 V, 38400 VA) base on the primary side.

### 2 Solutions

- 1.  $\overline{I}_1 = 20.58 \text{ A} \angle 149.04^{\circ}$
- 2. (a)  $\overline{V}_1 = 2465.48 \text{V} \angle 0.91^\circ$ 
  - (b)  $\overline{V}_1 = 2462.80 \text{V} \angle 0.95^{\circ}$

<sup>&</sup>lt;sup>1</sup>Exercises 6.2, 6.4 of Ned Mohan's book "Electric power systems, a first course"



Figure 2: Transformer equivalent circuit.