Partiel - 23 octobre 2020

Durée: 2h – documents interdits

Exercice 1. On considère la formule $\varphi = ((p \to \neg r) \to \neg q) \land r$.

1) Représentez son arbre syntaxique et listez ses sous-formules.

Les sous-formules de φ correspondent aux sommets de l'arbre syntaxique. On les énumère ici dans l'ordre obtenu par le parcours en profondeur de cet arbre, en évitant de répéter des sous-formules qui apparaissent plusieurs fois.

$$\mathsf{SF}(\varphi) = \Big\{ p, \ r, \ \neg r, \ p \to \neg r, \ q, \ \neg q, \ (p \to \neg r) \to \neg q, \ r, \ \big((p \to \neg r) \to \neg q \big) \land r \, \Big\}.$$

2) Calculez tous les modèles de φ , par la méthode de votre choix.

Modèles de
$$\varphi: \begin{array}{c|cccc} p & q & r \\ \hline 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

3) A-t-on $\varphi \models p \vee \neg q$? (Justifiez votre réponse.)

N Rappelons que $\varphi \models p \lor \neg q$ signifie que tout modèle de φ est un modèle de $p \lor \neg q$. Or on vérifie facilement que chacune des trois valuations listées plus haut satisfait p ou contredit q, et donc, est un modèle de $p \lor \neg q$. Ainsi, $\varphi \models p \lor \neg q$.

Exercice 2.

1) Définissez précisément les notions suivantes :

(a) littéral; (b) clause; (c) forme normale conjonctive.

2) Ecrivez la formule suivante sous forme clausale :

$$\theta = (p \to ((q \lor r) \land s)) \land \neg ((r \land (p \lor s)) \to q)$$

$$\theta \equiv \left(\neg p \lor ((q \lor r) \land s)\right) \land \left((r \land (p \lor s)) \land \neg q\right)$$

$$\equiv \left((\neg p \lor q \lor r) \land (\neg p \lor s)\right) \land \left(r \land (p \lor s) \land \neg q\right)$$

$$\equiv \left(\neg p \lor q \lor r\right) \land (\neg p \lor q \lor s) \land r \land (p \lor s) \land \neg q$$

Exercice 3. Déterminez la satisfaisabilité de l'ensemble de clauses suivant à l'aide de l'algorithme DPLL.

$$\Sigma = \left\{ \begin{array}{ll} \neg a \lor b \lor d, & \neg b \lor c \lor d, & a \lor \neg c \lor d, \\ a \lor \neg b \lor \neg d, & b \lor \neg c \lor \neg d, & \neg a \lor c \lor \neg d, \\ a \lor b \lor c, & \neg a \lor \neg b \lor \neg c \end{array} \right\}.$$

 \triangle L'exécution de DPLL, représentée sur la Figure 3, permet de conclure que Σ n'est pas satisfaisable.

Figure 3 – DPLL sur Σ

Exercice 4. Prouvez le séquent : $\neg(p \rightarrow q) \vdash p \land \neg q$.

$$\frac{\frac{p \vdash q, p}{p \vdash q, p} Ax}{\frac{\vdash p \rightarrow q, p}{\neg (p \rightarrow q) \vdash p} G_{\neg}} \xrightarrow{\frac{p, q \vdash q}{p \vdash q, \neg q} D_{\neg}} D_{\neg}$$

$$\frac{\frac{p \vdash q, p}{p \vdash q, \neg q} D_{\neg}}{\frac{\vdash p \rightarrow q, \neg q}{\neg (p \rightarrow q) \vdash \neg q} D_{\wedge}} G_{\neg}$$

Exercice 5. Dans la perspective d'un repas de fête, on cherche à concevoir un plan de table, c'est-à-dire à prévoir la répartition des invités autour de la table. On dispose de la liste F des convives féminins et de la liste M des convives masculins.

Pour modéliser ce problème, on utilise les variables $p_{x,y}$, pour $x,y \in F \cup M$, exprimant le fait que les personnes x et y sont voisines. Puisque cette relation est symétrique, on suppose que la

formule suivante est satisfaite:

$$\bigwedge_{x,y\in F\cup M} \left(p_{x,y} \leftrightarrow p_{y,x}\right).$$

Vous n'avez donc pas à vous préoccuper des problèmes de symétrie dans les questions qui suivent.

Exprimez par des formules propositionnelles les contraintes suivantes.

1) Deux hommes ne sont jamais assis côte à côte.

$$\bigotimes \bigwedge_{x,y\in M} \neg p_{x,y}.$$

2) Chaque femme est assise à côté d'au moins un homme.

$$\bigotimes \bigwedge_{x \in F} \bigvee_{y \in M} p_{x,y}.$$

3) Personne n'est assis tout seul.

$$\bigotimes \bigwedge_{x \in F \cup M} \bigvee_{y \in F \cup M} p_{x,y}$$
.

4) On ne peut-être assis à côté de soi-même.

5) Il existe une femme assise à côté de deux hommes.

$$\bigvee_{x \in F} \bigvee_{\substack{y,z \in M \\ y \neq z}} (p_{x,y} \wedge p_{x,z}).$$

6) Il existe une femme assise à côté d'au plus un homme.

$$\bigvee_{x \in F, y \in H} \left(p_{x,y} \land \bigwedge_{\substack{z \in H \\ \tau \neq y}} \neg p_{x,z} \right).$$

7) Personne n'est assis auprès de plus de deux personnes.

$$\bigotimes \bigwedge_{x \in F \cup M} \bigwedge_{\substack{y,z \in F \cup M \\ y \neq z}} \left(\left(p_{x,y} \land p_{x,z} \right) \to \bigwedge_{\substack{t \in F \cup M \\ t \neq y,t \neq z}} \neg p_{x,t} \right).$$

Exercice 6. Soient $\Gamma \subseteq \mathcal{F}_0$ et $\varphi \in \mathcal{F}_0$. Montrez l'équivalence :

$$\Gamma \models \varphi \text{ ssi } \Gamma \cup \{\neg \varphi\} \models \bot$$
.

 $\mathbb{S}i \Sigma \models \varphi$, alors tout modèle de Σ est modèle de φ et donc n'est pas modèle de $\neg \varphi$. Par conséquent $\Sigma \cup \{\neg \varphi\}$ n'a pas de modèle, ce qui s'écrit bien : $\Sigma \cup \{\neg \varphi\} \models \bot$.

Réciproquement, $\Sigma \cup \{\neg \varphi\} \models \bot$ signifie que $\Sigma \cup \{\neg \varphi\}$ n'a pas de modèle et donc que toute valuation qui satisfait Σ invalide $\neg \varphi$. En d'autres termes : tout modèle de Σ est un modèle de φ , ce qui s'écrit $\Sigma \models \varphi$.

3