Tabăra de pregătire a Lotului Național de Informatică Cluj-Napoca, 13-17 iunie, 2009 Baraj 3, Juniori

Problema 2 – multiplu

Autor: Victor Manz

Soluție

Se descompune N în produs de factori primi (N=d₁^{p1}* d₂^{p2}*... *d_m^{pm}). Numărul de variante de alegere a K-șirurilor cu cel mai mic multiplu comun al componentelor egal cu N se obține prin înmulțirea numărului de variante de alegere pentru fiecare divizor d_i în parte, notat nr_i.

nr_i se obține făcând observația că puterea la care apare d_i în descompunerea în factori primi a fiecărei componente a K-șirului poate fi orice număr cuprins între 0 și p_i. O restricție suplimentară este aceea ca cel puțin unul dintre elementele K-șirului să se dividă cu d_i^{pi}. Dacă alegem ca prima componentă să se dividă cu d_i^{pi}, atunci pentru celelalte K-1 avem (p_i+1)^{K-1} opțiuni. Dacă alegem ca a doua componentă să se dividă cu d_i pi atunci pentru a nu număra de două ori variantele de alegere este necesar ca prima componentă să nu se dividă cu d_i^{pi} (deci există p_i variante de alegere a ei); pentru celelalte K-2 componente avem $(p_i+1)^{K-2}$ opțiuni. Se aplică același raționament pentru fiecare dintre cele K componente și se obține: $nr_i=(p_i+1)^{K-1}+p_i^*(p_i+1)^{K-2}+p_i^{2*}(p_i+1)^{K-3}+...+p_i^{K-1}=(p_i+1)^{K}-p_i^{k}$. Pentru a calcula eficient acest rezultat este necesară

exponențierea logaritmică.

Rezultatul cerut este : $nr_1 * nr_2 * ... * nr_m = ((p_1+1)^K - p_1^{\ k}) * ((p_2+1)^K - p_2^{\ k}) * ... * ((p_m+1)^K - p_m^{\ k})$. Pentru a-l obține a fost necesară descompunerea în produs de factori primi a lui N (O(sqrt(N)), calcularea fiecărui nr;= (O(log₂K)) și a produsului acestora $(O(log_2N))$. Deci complexitatea totală este $O(sqrt(N) + log_2K^* log_2N)$.