$L^{[m \times m]}$	=	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Strips bias terms from Θ
Linear $J(\theta)$		ression: $\frac{1}{2m}(X\theta - y)^T(X\theta - y) + \frac{\lambda}{2m}[(L\theta)^T(L\theta)]$	Cost Function
∇J	=	$\frac{1}{m}(X^T(X\theta - y) + \lambda L\theta)$	Cost Gradient
θ	:=	$(1 - \frac{\alpha \lambda}{m} L\theta) - \frac{\alpha}{m} X^T (X\theta - y)$	Paramater Update Rule
		gression: $\frac{1}{1+e^{-z}}$	Logistic/Sigmoid Function
h	=	$\sigma(X*\Theta')$	Hypothesis/Prediction Function
$J(\theta)$	=	$-\frac{1}{m}[y^T \log(h) + (1-y)^T \log(1-h)] + \frac{\lambda}{2m}[(L\theta)^T (L\theta)]$	Cost Function
∇J	=	$\frac{1}{m}(X^T(h-y) + \lambda L\theta)$	Cost Gradient
θ	:=	$(1 - \frac{\alpha \lambda}{m} L\theta) - \frac{\alpha}{m} X^{T} (h - y)$	Paramater Update Function
Neural Networks: $\sigma'(z) = \sigma(z) \cdot *(1 - \sigma(z))$ Sigmoid Derivative			
` ′			Sigmoid Derivative
		$\sigma(a^{l-1} * [\theta^{l-1}]^T)$ $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}, Y[k] = 1$	Activation/Output of layer l One-Hot Form of Classification Result
$J(\theta)$	=	$\begin{array}{l} -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{ L } [Y.*log(a^{(L)}) + (1-Y).*log(1-a^{(L)})] \\ +\frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (\theta_{i,j}^{(l)})^{2} \end{array}$	Cost function of NN used for Backpropogation, condensed down to a scalar
$\delta^{(L)}$	=	$a^{(L)} - Y$	Error of Neural Network Output
$\delta^{(l)}$	=	$\delta^{(l+1)}\widehat{\Theta}^{(l)}\odot\sigma'(a^{(l)}\Theta^{(l)})$	Error of layer l
$\widehat{\Theta}^{(l)}$	=	$\Theta^{(l)}[i,j]; i \in [1,2,3m], j \in [2,3,4,n]$	Reduced Paramater Matrix (No Bias Terms)
$\Delta^{(l)}$	=	$\delta^{(l+1)T}*a^{(l)}$	Cumulative Error of Layer l
$ abla rac{\partial J}{\partial \Theta^{(l)}}$	=	$\frac{1}{m}\Delta^{(l)} + \frac{\lambda}{m}\Theta^{(l)}L$	Gradient of the Cost Function for Layer l