Model Theory

Lectures by Gabriel Conant

Contents

1 Review of First Order Logic

3

1 Review of First Order Logic

A <u>language</u> is a set \mathcal{L} of function symbols, relation symbols, and constant symbols. Additionally, each function/relation symbol has an assigned *arity* $n \geq 1$.

By convention, we view constant symbols as 'function symbols of arity 0'.

An \mathcal{L} -structure \mathcal{M} consists of:

- a non-empty set M (the universe of \mathcal{M})
- for every function symbol f of arity n, a function $f^{\mathcal{M}}: M^n \to M$
- for every relation symbol R of arity n, a subset $R^{\mathcal{M}} \subseteq M^n$
- for every constant symbol c, an element $c^{\mathcal{M}} \in M$ (i.e. identified with the unique element in its image)

Syntax: we build formulas using symbols in \mathcal{L} along with

$$\wedge \neg \forall = (),$$

and countably many variable symbols.

L-term: these are our way of creating new functions by composing the ones we already have.

- constant symbols and variables are terms
- if t_1, \ldots, t_n are terms and f is an n-ary function symbol, then $f(t_1, \ldots, t_n)$ is a term

Given a structure \mathcal{M} and a term t, we are going to interpret the term in the structure in exactly the way you might expect. Inductively, define (for appropriate r) $t^{\mathcal{M}}: M^r \to M$ as:

- constant symbol c: $c^{\mathcal{M}}$ (case r=0)
- variable x: identify function (r=1)
- general term $f(t_1,\ldots,t_n): f^{\mathcal{M}}(t_1^{\mathcal{M}},\ldots,t_n^{\mathcal{M}})$

 \mathcal{L} -formulas: new relations. We have the following *atomic L*-formulas:

- If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula
- If R is an n-ary relation symbol and t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is a formula

We can then create more complicated formulas. Given formulae φ and ψ :

- ¬φ
- $(\varphi \wedge \psi)$
- $\forall x \varphi$ for any variable x

An occurrence of a variable x is <u>free</u> in φ if x does not occur in the scope of $\forall x$. Otherwise, the occurrence is <u>bound</u>.

For instance, if φ is the statement $\forall x \neg (f(x) = y)$, x is bound and y is free.

<u>Notation</u>: Given a formula φ , we write $\varphi(x_1, \ldots, x_n)$ to denote that x_1, \ldots, x_n are the free variables of φ .

Given a formula $\varphi(x_1, \ldots, x_n)$, a structure $\mathcal{M}, a_1, \ldots, a_n \in \mathcal{M}$, we define " \bar{a} satisfies φ in \mathcal{M} ", written $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$, as follows:

• If φ is $(t_1 = t_2)$ then $\mathcal{M} \models \varphi(\bar{a})$ iff $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$

- If φ is $R(t_1, \ldots, t_n)$ then $\mathcal{M} \models \varphi(\bar{a})$ iff $(t_1^{\mathcal{M}}(\bar{a}), \ldots, t_n^{\mathcal{M}}(\bar{a}) \in R^{\mathcal{M}}$
- $\mathcal{M} \models (\varphi \land \psi)(\bar{a})$ iff $\mathcal{M} \models \varphi(\bar{a})$ and $\mathcal{M} \models \psi(\bar{a})$
- $\mathcal{M} \models \neg \varphi(\bar{a}) \text{ iff } \mathcal{M} \not\models \varphi(\bar{a})$
- Suppose φ is $\forall w \psi(x_1, \dots, x_n, w)$. Then $M \models \varphi(\bar{a})$ iff for all $b \in M$, $\mathcal{M} \models \psi(\bar{a}, b)$

We emphasise that the focus of this course will not be on the precise definitions and semantics, so much as the meaning of what we are doing. All we seek is a first order logic that works for us, so that we can use it to do interesting things.

Abbreviations: We have *global* abbreviations such as

- $(\varphi \lor \psi)$ is $\neg(\neg \varphi \land \neg \psi)$
- $(\varphi \to \psi)$ is $(\neg \varphi \lor \psi)$
- $(\varphi \leftrightarrow \psi)$ is $(\varphi \to \psi) \land (\psi \to \varphi)$
- $\exists x \varphi$ is $\neg \forall x \neg \varphi$

We note that the last equivalence in a semantic sense hinges on the assumption that universes are non-empty. Since we will be almost exclusively be studying infinite structures, we will not worry about this.

We also have *local* abbreviations, often specific to the language we are studying. For instance, in $\mathcal{L} = \{+, \cdot, <, 0, 1\}$ (the language of ordered rings):

- x + y is +(x, y)
- x < y is < (x, y)
- x < y is $(x < y) \land (x = y)$
- x < y < z is $(x < y) \land (y < z)$
- x^2 is $x \cdot x$
- nx is $\underbrace{x + x + \dots + x}_{n \text{ times}}$

An $\underline{\mathcal{L}\text{-sentence}}$ is an $\mathcal{L}\text{-formula}$ with no free variables. For instance, $\forall x (f(x) \neq y)$ is not a sentence, but $\exists y \forall x (f(x) \neq y)$ is a sentence. Sentences can be thought of as actually saying something meaningful.

If φ is a sentence and \mathcal{M} is a structure, then we have the notion of $\mathcal{M} \models \varphi$, " \mathcal{M} satisfies φ " or " \mathcal{M} models φ ".

L-theory: An L-theory is a set of L-sentences.

Given a theory T, we write $\mathcal{M} \models T$ (" \mathcal{M} is a <u>model</u> of T) if $\mathcal{M} \models \varphi$ for all $\varphi \in T$.

T is **satisfiable** if it has a model.

Example: $T = {\neg \exists x(x = x)}$ - this sentence claims there are no elements in the universe. In our setting, this is unsatisfiable (though it is technically a matter of opinion).

Similarly, $\exists x(x=x)$ ("The Axiom of Non-Triviality") is always satisfied in any \mathcal{L} -structure.

Recall: T is **consistent** if it does not prove a contradiction $(e.g. (\varphi \land \neg \varphi))$

A consequence of <u>Gödel's Completeness Theorem</u> is that a theory is satisfiable iff it is consistent. This is a very important theorem, though we will mostly be focussing on the model theoretic aspect (satisfiability).