

Propensity score analysis of lung cancer risk in a population with high prevalence of non-smoking related lung cancer

Kuei-Feng Lin^{1†}, Hsiu-Fu Wu^{1,2†}, Wei-Chun Huang^{2,3}, Pei-Ling Tang³, Ming-Ting Wu^{1,2} and Fu-Zong Wu^{1,2,4*}

OSIA PRESENTATION

PQHS 500 April 15, 2020 Sofija Conic

Background

- Lung cancer has been the leading cause of cancer-related mortality worldwide among both men and women.
- The National Lung Screening Trial (NLST) found that annual screening with low dose computed tomography (LDCT) in heavy smokers yielded a reduction of lung cancer mortality by 20% compared to chest x-ray.
- There is an increase in the incidence of nonsmoking-related lung cancer in recent years, namely in China, Taiwan, Korea, and Japan.

Objective

■ To investigate multiple potential risk factors for non-smoking related lung cancer among Asian Ethnic groups.

Methods

- Study population: 1975 asymptomatic healthy subjects who voluntarily underwent self-paid LDCT at the health check-up center of Kaohsiun Veterans General Hospital (40 ~ 80 years old).
- Time period: August 2013 to October 2014.
- Exposure: Family history of lung cancer.
- Outcome: Non-smoking related lung cancer (lung adenocarcinoma spectrum).

Methods (cont.)

- Retrospectively reviewed clinical records
 - Recorded age, sex, BMI, nodule number, family history of lung cancer, and family history of other cancers.
 - Recorded nodular characteristics according to ACR Lung-RADS classification.
- Among 1975 subjects, 72.8% were never smokers, 16.5% were current smokers, and 10.7 were former smokers.
 - Only 7.5% of the study subjects would have been eligible for screening based on the NLST enrollment criteria.

Methods (cont.)

- Of the 1975 screened subjects, 27 were diagnosed with non-smoking related lung cancer.
 - Non-smoking related lung cancer was defined as the lung adenocarcinoma spectrum (adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma)
 - Atypical adenomatous hyperplasia diagnosed by biopsy was excluded from the study.
- Excluded 87 subjects with missing data for BMI
 - Two lung cancer subjects with smoking were excluded (?)

Propensity Score Matching

- 1:1 propensity score matching (using SAS and SPSS)
- The covariates entered into the propensity score were age, sex, and BMI
- 392 pairs of subjects with family history of lung cancer and subjects without history
 - Total 784 subjects
- No differences in age, sex, BMI, and family history of other cancer after matching
- 8 out of 27 subjects (29.62%) with non-smoking related lung cancer had a diagnosis of synchronous multiple primary lung cancers (MPLCs) before PSM.
- 7 out of 20 (35%) subjects with non-smoking related lung cancer had a diagnosis of MPLCs after PSM.

Propensity Score Matching

Table 2 Patient characteristics before and after propensity score matching

	Before PSM (N	= 1975)				After PSM (N =	= 784)			
Characterics	All		Family history (+)	Family history (–)	Р	All		Family history (+)	Family history (–)	Р
Age, years	56.56 ± 9.01		56.1 ± 9.39	58.39 ± 7.05	<0.0001 ^a	58.61 ± 7.15		58.57 ± 6.855	58.66 ± 7.556	0.865 ^a
Sex (%)					<0.0001 ^b					0.94 ^b
Male	1083	54.90%	136 (34.1%)	947 (60.05%)		517	65.90%	258 (65.8%)	259 (66.1%)	
Female	892	45.10%	262 (65.9%)	630 (39.95%)		267	34.10%	134 (34.2%)	133 (33.9%)	
BMI	24.32 ± 3.49		23.76 ± 3.36	24.46 ± 3.50	<0.0001 ^a			23.76 ± 3.36	23.88 ± 3.56	0.644 ^a
Nodule number	0.63 ± 1.16		1.09 ± 1.53	0.51 ± 1.027	<0.0001 ^a	0.84 ± 1.392		1.1 ± 1.53	0.59 ± 1.17	< 0.0001a
History of other cancers					0.023 ^b					0.601 ^b
Present	621	31.40%	144 (36.1%)	477 (30.2%)		275	35.10%	141 (36%)	131(34.2%)	
Absent	1354	68.50%	254 (63.9%)	1100 (69.8%)		509	64.90%	258 (64%)	251(65.8%)	
Category 4 lesion					<0.0001 ^b					0.186 ^b
Present	53	2.68%	21 (5.27%)	32 (2.02%)		36	4.59%	21 (5.3%)	15 (3.82%)	
Absent	1922	97.32%	377 (94.73%)	1545 (97.98%)		748	95.41%	371 (94.7%)	377 (96.18%)	
Lung cancer					<0.0001 ^b					0.019 ^c
Present	27	1.40%	15 (3.76%)	12 (0.76%)		20	2.60%	15 (3.8%)	5 (1.3%)	
Absent	1948	98.60%	383 (96.24%)	1565 (99.24%)		764	97.40%	377 (96.2)	387 (98.7)	

^aUsing independent t-test for continuous variables; ^b Using Chi-square test for categorical variables; ^c Using Fisher's exact test for categorical variables Abbreviations: *PSM* propensity score matching, *BMI* body mass index

Distribution of Propensity Scores

Fig. 2 a-b Histograms of propensity score distribution before and after propensity score matching. Distribution of the propensity scores before and after matching for group of family history of lung cancer (+) and group of family history of lung cancer (-). **a** presents histograms of unbalanced propensity score distribution in both groups before propensity matching. **b** presents histograms of balanced propensity score distribution in both groups after propensity matching

Logistic Regression Results

Table 3 Univariate and multivariate logistic regression analyses for predictors of lung cancer in 784 subjects after propensity score matching

	Univariate anal	ysis		Multivariate analysis			
Characterics	Odds ratio	95% CI	P value	Odds ratio	95% CI	P value	
Age, years	1.015	0.953-1.082	0.641	0.994	0.923-1.070	0.871	
Sex (female gender)	10.149	1.351–76.227	0.024	11.199	1.444-86.862	0.021	
BMI, kg/m ²	1.015	0.895-1.151	0.815	1.079	0.953-1.221	0.23	
Nodule number	1.353	1.114-1.642	0.02	1.309	1.066-1.607	0.01	
Family history of lung cancer	3.08	1.108-8.557	0.031	2.831	1.000136-8.015	0.05	
Family history of other cancer	1.241	0.501-3.073	0.641	1.078	0.425-2.732	0.875	

Abbreviations: BMI body mass index, CI confidence interval

Discussion

- Female gender and family history of lung cancer were identified as predictors of non-smoking related lung cancer
 - In line with findings from previous case-control and retrospective cohort studies
- There were more nodules in the group with a positive history of lung cancer compared to those with a negative history $(1.09 \pm 1.53 \text{ versus } 0.51 \pm 1.027)$.
- The group with a positive family history of lung cancer had several characteristics higher at baseline, including female sex (65.9% vs 39.95%), percentage of category 4 lesions (5.27% vs 2.02%), the percentage of family history of other cancers (36.1% vs 30.2%) and the percentage of lung cancer (3.76% vs 0.76%).
- Risk-based prediction model based on family history of lung cancer and female sex can potentially improve efficiency of lung cancer screening in Taiwan
 - Is this generalizable?

Limitations

- Propensity score matching can only adjust for observed covariates
- Study population voluntarily paid for LDCT
- Reduced sample size after propensity score matching
 - Only analyzed 784 out of 1888 eligible subjects

OSIA 2nd Reader – Propensity score analysis of lung cancer risk in a population with high prevalence of non-smoking related lung cancer

Lin et al. (2017)

Joseph Hnath 16 April 2020

Propensity Score Overview

- Their PS model: age, gender, BMI
 - Relationship with family history of lung cancer?
 - Unclear if gender or sex
 - Why not use the nodule and other cancer history variables too?
- Did not seem very knowledgeable about PS
 - Nearest neighbor, calipers?
 - Didn't check other PS models
 - 2:1 matching
 - Other variables
- Family history of lung cancer
 - Unclear if general or smoking / non-smoking specific
- Background:
 - No mention of other PS studies looking at lung cancer

What To Include in the Propensity Score Model

- All covariates that subject matter experts (and subjects) judge to be important when selecting treatments.
- **All** covariates that relate to treatment and outcome, certainly including any covariate that improves the prediction of treatment group.
- Sop up as much "signal" as possible.

Results

- Over 11x the odds of non-smoking lung cancer for female vs. male??
 - Huge confidence interval
- Some evidence in literature about genetic mutations more common in women leading to NS-lung cancer
 - Did not mention specifics about family history
- Why not stratified analysis, matching fixed on sex?

Table 3 Univariate and multivariate logistic regression analyses for predictors of lung cancer in 784 subjects after propensity score matching

	Univariate anal	ysis		Multivariate analysis			
Characterics	Odds ratio	95% CI	P value	Odds ratio	95% CI	P value	
Age, years	1.015	0.953-1.082	0.641	0.994	0.923-1.070	0.871	
Sex (female gender)	10.149	1.351-76.227	0.024	11.199	1.444-86.862	0.021	
BMI, kg/m ²	1.015	0.895-1.151	0.815	1.079	0.953-1.221	0.23	
Nodule number	1.353	1.114-1.642	0.02	1.309	1.066-1.607	0.01	
Family history of lung cancer	3.08	1.108-8.557	0.031	2.831	1.000136-8.015	0.05	
Family history of other cancer	1.241	0.501-3.073	0.641	1.078	0.425-2.732	0.875	

Abbreviations: BMI body mass index, CI confidence interval

Limitations

- "PS can only control for observed covariates (age, gender, BMI)"
 - Only guaranteed to balance observed, but can balance unobserved covariates correlated with observed
 - Reason to include as many as possible?
- "PS reduced power by throwing out a lot of subjects"
 - Okay, but could have tried 2:1 matching
- "Large number of subjects eliminated after PS matching because of limited numbers within exposure group despite the algorithm for full matching"
 - 2:1 matching
- Selection bias in sample, "voluntarily underwent self-paid LDCT exam at health check up"
 - Who is able / going to pay for LDCT exam?
- Other risk factors for non-smoking lung cancer not included
 - American Cancer Society: Radon, secondhand smoke, occupational carcinogen exposure, air pollution, diet
- What is the purpose of the study?
 - "Investigate multiple risk factors"
 - PS usually for a clearer treatment?

Research

JAMA | Original Investigation

Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents

Anne M. Grool, MD, PhD; Mary Aglipay, MSc; Franco Momoli, PhD; William P. Meehan III, MD; Stephen B. Freedman, MDCM, MSc; Keith Owen Yeates, PhD; Jocelyn Gravel, MD; Isabelle Gagnon, PhD; Kathy Boutis, MD; Willem Meeuwisse, MD, PhD; Nick Barrowman, PhD; Andrée-Anne Ledoux, PhD; Martin H. Osmond, MDCM; Roger Zemek, MD; for the Pediatric Emergency Research Canada (PERC) Concussion Team

OBSERVATIONAL STUDIES IN ACTION

Morgan McGrath April 16, 2020

BACKGROUND

- Traditional concussion management = cognitive and physical rest
- These guidelines are primarily based on expert consensus and caution, not research
- Concern that protracted rest can actually lead to secondary symptoms, especially in youth (e.g. depression, anxiety)
- Some evidence that early return to physical activity may improve outcomes

STUDY DESIGN

- **Objective:** Examine the association between participation in physical activity within 7 days post-injury and occurrence of persistent postconcussive symptoms (PPCS) in children and adolescents
- Secondary analysis of the Predicting Persistent Postconcussive Problems in Pediatrics (5Ps) study
 - Prospective, multicenter cohort study
 - Recruited participants from 9 pediatric EDs in Canada (2013-2015)
 - Participants age 5-18, presenting to ED for acute head injury within preceding 48 hrs
 - N = 2413 for this secondary analysis

STUDY PROCEDURES

- At enrollment in ED:
 - Demographics & medical history
 - Injury characteristics (Acute Concussion Evaluation inventory)
 - Pre-injury and current symptoms (Post-Concussion Symptom Inventory)
- Follow-up procedures:
 - Web-based or telephone survey
 - At 7 days post-enrollment and 28 days post-enrollment
 - Current level of physical activity
 - Current symptoms

OPERATIONAL DEFINITIONS

Exposure: level of physical activity reported at 7 days post-injury

- No activity (physical rest)
- Light aerobic exercise (walking, swimming)
- Sport-specific exercise (e.g. skating drills for ice hockey)
- Non-contact training drills (e.g. passing drills)
- Full-contact practice
- Return to competition

No activity

Light aerobic exercise

Moderate exercise

Full exercise

Outcome: presence of PPCS

 At least 3 new or worsening symptoms measured at post-injury day 28 as compared to pre-concussion symptom status as reported at ED

STATISTICAL METHODS

- 1. Unadjusted association between early physical activity and PPCS
 - Relative Risk (RR) and Absolute Risk Difference (ARD)
- 2. Propensity score matching:
 - Propensity score "reflects the probability of a participant having engaged in early physical activity based on baseline characteristics"
 - 1:1 greedy (nearest neighbor) match with max caliper = 0.1
 - Without replacement? (554 matches)
- 3. Inverse probability of treatment weighting
 - All participants weighted by inverse of probability of engaging in physical activity at post-injury day $7 \, (1/PS)$
 - Done properly?

Note: Used no covariates in outcome models other than PS

RESULTS - UNADJUSTED

24.6% of participants with early physical activity developed PPCS

43.5% of participants with no physical activity developed PPCS

Absolute Risk Difference = 18.9% (95% Cl 14.7 - 23.0%)

> Relative Risk = 0.75 (95% CI 0.70, 0.80)

RESULTS — PROPENSITY SCORE MATCHING & WEIGHTING

Table 1. Baseline Characteristics Total Sample, Unweighted Sample, Propensity Score-Matched Sample, and Inverse Probability of Treatment-Weighted Sample	Table 1. Baseline Characteristics Total Samp	le, Unweighted San	mple, Propensity Score-Matche	d Sample, and Inverse Probabili	ty of Treatment-Weighted Sample
--	--	--------------------	-------------------------------	---------------------------------	---------------------------------

	Physical Activity	at 7 Days, No. (%)								
		Unweighted San (n = 2413)	ıple		Propensity 1:1 M (n = 1108)	Matching		IPTW (n = 2099) ^{a,b}		
Characteristic	Total (N = 3063)	No (n = 736)	Yes (n = 1677)	Standardized Mean Difference	No (n = 554)	Yes (n = 554)	Standardized Mean Difference	No (n = 645)	Yes (n = 1454)	Standardized Mean Difference
Age, y ^c										
5-7	534 (17.4)	73 (9.9)	343 (20.5)		69 (12.5)	79 (14.3)		352.5 (16.9)	379.4 (18.0)	
8-12	1282 (41.9)	268 (36.4)	762 (45.4)	0.434	226 (40.8)	232 (41.9)	0.068	935.9 (44.8)	906.1 (43.1)	0.040
13-18	1247 (40.7)	395 (53.7)	572 (34.1)		259 (46.8)	243 (43.9)		798.5 (38.3)	818.5 (38.9)	
Female sex ^c	1205 (39.3)	350 (47.6)	605 (36.1)	0.234	237 (42.8)	243 (43.9)	0.022	822.4 (39.4)	822.5 (39.1)	0.007
Time between head injury and triage, median (SD), h ^c	8.7 (11.8)	10.3 (12.8)	8.0 (11.0)	0.197	9.5 (12.1)	9.6 (12.1)	0.004	9.0 (11.7)	8.8 (11.6)	0.011

RESULTS — PROPENSITY SCORE MATCHING & WEIGHTING

Figure 2. Distribution of Propensity Scores in the Physical Activity Group and the Rest Group

RESULTS — PROPENSITY SCORE MATCHING & WEIGHTING

Table 2. Summary of Results	of the Primary Ar	ıalysis		
	No. (Absolute Risk	۲, %)	Absolute Risk Difference,	Relative Risk
Type Analysis	Physical Activity	No Physical Activity	% (95% CI)	(95%CI)
Unweighted sample	1677 (24.6)	736 (43.5)	18.9 (14.7-23.0)	0.75 (0.70-0.80)
Light activity vs none (subgroup 1)	795 (31.4)	736 (43.5)	12.0 (7.2-16.8)	0.82 (0.76-0.89)
Moderate activity vs none (subgroup 2)	357 (24.4)	736 (43.5)	19.1 (13.2-24.6)	0.75 (0.69-0.81)
Full-contact activity vs none (subgroup 3)	525 (14.5)	736 (43.5)	29.0 (24.2-33.5)	0.66 (0.61-0.71)
Matched	554 (28.7)	554 (40.1)	11.4 (5.8-16.9)	0.84 (0.77-0.92)
Inverse probability of treatment weighting	1454	645	9.7 (5.7-13.5)	0.74 (0.65-0.84)

RESULTS — "SENSITIVITY ANALYSES"

- 1. Recalculated outcome: PPCS is now defined as having worse symptoms at 28 day F/U than at 7 day F/U
 - Calculated outcome using (post-injury day 28 symptom score post-injury day 7 symptom score) rather than (post-injury day 28 score pre-injury score)
- 2. Excluded participants who were completely recovered (symptom score < 3) at day 7
- 3. Examined interaction between age group and physical activity
 - For each additional year of age, RR increased by factor of 1.01

RESULTS — "SENSITIVITY ANALYSES"

	No. (Absolute Ris	k, %)	Absolute Risk Difference	Relative Risk
Type Analysis	Physical Activity	No Physical Activity	(95% CI)	(95% CI)
Sensitivity analysis 1				
Unweighted sample	1667 (30.4)	736 (69.6)	18.9 (14.7 to 23.0)	0.75 (0.70 to 0.80
Matched	519 (39.1)	519 (38.3)	-0.77 (-6.7 to 5.1)	1.01 (0.92 to 1.11
IPTW			-0.041 (-4.1 to 4.0)	1.00 (0.88 to 1.14
ensitivity analysis 2				
Unweighted sample	803 (43.0)	584 (52.9)	9.9 (4.6 to 15.2)	0.83 (0.74 to 0.92
Subgroup 1 (light activity vs none)	494 (46.4)	584 (52.9)	6.6 (0.6 to 12.5)	0.88 (0.78 to 0.99
Subgroup 2 (moderate activity vs none)	176 (38.6)	584 (52.9)	14.3 (5.9 to 22.2)	0.77 (0.66 to 0.89
Subgroup 3 (full exercise vs none)	133 (36.1)	584 (52.9)	16.8 (7.5 to 25.5)	0.74 (0.63 to 0.86
Matched	388 (47.2)	388 (51.5)	4.4 (-2.6 to 11.3)	0.92 (0.80 to 1.05
IPTW	687	507	4.0 (-1.7 to 9.7)	0.92 (0.82 to 1.04

OVERALL CONCLUSIONS

• Main takeaway, consistent across all analytic approaches and intensities of exercise:

Physical activity within 7 days post-concussion was associated with a lower risk of PPCS as compared with no physical activity.

- Results did not hold up in robustness checks
- MUCH more work is needed
- Results are important because:
 - Contrary to current guidelines for concussion management
 - Potential to impact a large pediatric population due to high incidence of concussion

DISCUSSION

- Analysis approach was reasonable, but seemed to have some flaws
 - Operational definition of outcome was ambiguous room for misinterpretation
 - RR calculation
 - Method of weighting by inverse probability of treatment
 - "Treated" individuals should be weighted by 1/PS
 - "Control" individuals should be weighted by 1/(1-PS)

To estimate average treatment effect

- After matching/weighting, only calculated RR and ARD, no modeling with covariates
- Conceptual and design limitations:
 - Asked to rate pre-injury symptom scores <u>after the injury</u>...will inherently be biased
 - Symptom and physical activity data are all self-report
 - Does not address the role of cognitive rest in concussion recovery
 - Says nothing about ideal timing, type, and duration of physical activity

OSIA Second Reader

Joshua Froess

JAMA | Original Investigation

Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents

Anne M. Grool, MD, PhD; Mary Aglipay, MSc; Franco Momoli, PhD; William P. Meehan III, MD; Stephen B. Freedman, MDCM, MSc; Keith Owen Yeates, PhD; Jocelyn Gravel, MD; Isabelle Gagnon, PhD; Kathy Boutis, MD; Willem Meeuwisse, MD, PhD; Nick Barrowman, PhD; Andrée-Anne Ledoux, PhD; Martin H. Osmond, MDCM; Roger Zemek, MD; for the Pediatric Emergency Research Canada (PERC) Concussion Team

Definition of Outcome

- 3 new or worsening individual symptoms
 - Individual symptoms are defined as a positive difference between current minus perceived pre-injury rating
 - Pre-injury rating was given after the concussion
- Vague measurement of outcome and could lead to misclassification

Primary Outcome Measure

Primary outcome was the presence of PPCS, defined as at least 3 new or worsening individual symptoms compared with the preconcussion status measured at day 28 according to the validated PCSI. 12,13,18 An individual symptom was defined as a positive difference between the current minus the perceived pre-injury symptom rating as completed 28 days postenrollment. 12,13

Physical Activity

- Self-reported
- Sports related subgroups being used for activity measurement
- Children 8 to 17 answered these questions themselves
- Don't measure cognitive rest like not doing school work

	No. (Absolute Risk	(, %)	Absolute Risk Difference,	Relative Risk	
Type Analysis	Physical Activity	No Physical Activity	% (95% CI)	(95%CI)	
Unweighted sample	1677 (24.6)	736 (43.5)	18.9 (14.7-23.0)	0.75 (0.70-0.80)	
Light activity vs none (subgroup 1)	795 (31.4)	736 (43.5)	12.0 (7.2-16.8)	0.82 (0.76-0.89)	
Moderate activity vs none (subgroup 2)	357 (24.4)	736 (43.5)	19.1 (13.2-24.6)	0.75 (0.69-0.81)	
Full-contact activity vs none (subgroup 3)	525 (14.5)	736 (43.5)	29.0 (24.2-33.5)	0.66 (0.61-0.71)	
Matched	554 (28.7)	554 (40.1)	11.4 (5.8-16.9)	0.84 (0.77-0.92)	
Inverse probability of treatment weighting	1454	645	9.7 (5.7-13.5)	0.74 (0.65-0.84)	