位错动力学

助教:罗士超

mm

2020.1.13

位错动力学程序基本计算流程

初始输入参数input

1.初始微结构的定义(以input_frank_read.m为例)

定义离散位错段上的节点:

节点坐标

定义离散位错段: 终点

位错段所在滑移面

初始输入参数input

2.材料参数,拓扑等参数定义

MU
NU
maxconnections
lmax
lmin
areamin
areamax
a
Ec
totalsteps
dt0
mobility
integrator

剪切模量泊松比

位错段的最大/最小长度

位错核半径 单位长度的位错核能量

> 总时间步 最大步长

位错运动法则

数值方法

rann	湮没距离
rntol	精度
doremesh	1
docollision	払 拓扑
	
doseparation	
plotfreq	」 輸出频率
plim	晶胞大小
appliedstress	小载
viewangle	
printfreq	 ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
printnode	輸出频率
rmax	

一个时间步内节点所能运动的最大距离

位错的离散和拓扑


```
% genererate the connectivity list from the list of links
               [connectivity, linksinconnect] = genconnectivity (rn, links, maxconnections);
dd3d m
               consistencycheck (rn, links, connectivity, linksinconnect);
                                                               需要节点rn,段links信息的输,
      for i=1:linkslength
           if links(i, 1)^{\sim}=0
                                  genconnectivity.m 记录离散节点和离散位错段的信息
              a=links(i, 1):
              b=links(i, 2):
              connectivity (a, 1) = connectivity (a, 1)+1:
              connectivity (b, 1) = connectivity (b, 1) +1;
              connectivity(a, 2*connectivity(a, 1):2*connectivity(a, 1)+1)=[i 1];
              connectivity (b, 2*connectivity (b, 1): 2*connectivity (b, 1)+1)=[i 2];
              linksinconnect(i, 1) = connectivity(a, 1);
              linksinconnect(i, 2) = connectivity(b, 1):
           end
       end
```

consistencycheck.m检查离散的位错段是否在物理和拓扑两方面上合理

计算节点速度vn,节点力fn,时间步dt, 位错段的受fseg

用向后的欧拉法计算 $\vec{v} = \frac{d\vec{r}}{dt}$,为满足精度不断调整dt

计算塑性变形

% plastic strain and plastic spin calculations
dd3d.m [ep_inc, wp_inc]=calcplasticstrainincrement(rnnew, rn, links, (2*plim)^3);

```
Function [ep_inc, wp_inc]=calcplasticstrainincrement (rnnew, rn, links, Volume) seg= rn(links(:,2),1:3) - rn(links(:,1),1:3); segnew=rnnew(links(:,2),1:3) - rnnew(links(:,1),1:3); dx1=rnnew(links(:,2),1:3)-rn(links(:,1),1:3); dA=cross(segnew+seg, dx1); fp_inc=0.5.*(links(:,3:5)'*dA)./Volume; ep_inc=0.5.*(fp_inc+fp_inc'); wp_inc=0.5.*(fp_inc-fp_inc');
```

位错几何拓扑处理

判断位错之前是否会反应

dd3d.m

if (doseparation)

%spliting of nodes with 4 or more connections

[rnnew, linksnew, connectivitynew, linksinconnectnew, fsegnew] = separation (rnnew, linksnew, connectivity

当一节点有大于3个分支位错段就会执行

end

if (docollision)

%collision detection and handling

[rnnew, linksnew, connectivitynew, linksinconnectnew, fsegnew] | collision (rnnew, linksnew, connectivityne

end

separation

两点之间距离过近时执行

位错的离散和拓扑更新

dd3d.m

拓扑更新:位错段过长(>lmax)时加入节点, 过短(<lmin)时去除节点

if (doremesh)

%remesh

[rnnew, linksnew, connectivitynew, linksinconnectnew, fsegnew] remesh (rnnew, linksnew, connectivitynew, links

end

循环以上计算过程到最大输出步

FR源位错动力学计算

运行程序很简单

dd程序下载: http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/

ddlab-2007-12-18.tar.gz 2

Inputs

input_binary_junction.m

🖺 input_binary_junction_2.m

🖺 input frank read.m

input_multi_junction.m

input_multi_junction_2.m

input_small_test.m

在input文件夹下运行input_frank_read

| careprastics training remembers

🔄 CalcWork.m

deanupnodes.m

🔄 collision.m

🗐 consistencycheck.m

Cu_of_input_frank_read.m

📄 dd3d.asv

🖺 dd3d0.m

🕍 dd3d1.m

dd3d3.m

在dd3d文件夹 下运行dd3d1

FR源位错动力学计算

totalsteps=5; 先跑五步,简单介绍在程序中如何计算位错运动

		1	2	3	4
エノ	个节点	1000	1000	1000	7
Π'	וידוא	-1000	-1000	-1000	7
<u></u> m	5x4 double	-3.0437e-11	240.6299	-240.6299	0
=	,	-531.4134	-343.4783	-724.3381	0
		531.4134	724.3381	343.4783	0

四条离散的位错段 Iinks				4x8 doub	ble				
		1	2	3	4	5	6	7	8
	1	1	5	0.5000	0.5000	0.5000	-1	1	0
	2	4	2	0.5000	0.5000	0.5000	-1	1	0
	3	3	4	0.5000	0.5000	0.5000	-1	1	0
	4	5	3	0.5000	0.5000	0.5000	-1	1	0

FR源位错动力学计算

dd3d.m

% genererate the connectivity list from the list of links
[connectivity, linksinconnect] = genconnectivity (rn, links, maxconnections);

是起点还是终点

节点1 节点2 节点3 节点4 节点5

节点1在1号段上,是起点(1)

节点2在2号段上,是终点(2)

节点3在3号段上,是起点(1)

节点3在4号段上,是终点(2)

位错反应的例子

在input文件夹下运行input_binary_junction

在dd3d_modified文件夹 下运行dd3d1

应力率加载的例子

在input文件夹下运行input_multi_junction

Inputs Copy_of_input_multi_junction input_binary_junction.m input_binary_junction_2.m input_frank_read.m input_multi_junction.m input_multi_junction_2.m input_multi_junction_0.m input_multi_junction_0.m input_small_test.m

在dd3d_modified文件夹 下运行dd3d0

应力应变关系

修改施加应力,应力率;

应力率加载的例子

在input文件夹下运行Cu_of_input_frank_read

在dd3d_modified文件夹 下运行dd3d3

