Homework 1

Elliott Pryor

 $31~\mathrm{Jan}~2021$

Problem 1 6.2.4 Problem 6

Prove that if f is Riemann integrable on [a, b] and g(x) = f(x) for every x except for a finite number, then g is Riemann integrable.

Hint: Mimic the proof of Theorem 6.2.3

Proof.

Let $a_1, a_2, ..., a_N$ denote the points where $g(a_i) \neq f(a_i)$. Given any 1/n surround each a_k by an interval I_k such that $|I_k| < 1/n$. Then, g equals f and is Riemann integrable on [a, b] with $\bigcup_{k=1}^N I_k$ removed.

Then, we estimate the contribution to the oscillation from the I_k intervals. First, f must be bounded since it is Riemann-integrable. Then since g differs from f at a finite number of locations, it must also be bounded. Then let $M = \sup_{x \in [a,b]} g(x)$ and $M = \inf_{x \in [a,b]} g(x)$. Then the contribution of any of the intervals: I_k is at most $1/n \cdot (M-m)$. There are N such intervals, so the total contribution to oscillation is $N/n \cdot (M-m)$.

Then for the remaining intervals: $[a,b] \setminus \bigcup_{k=1}^{N} I_k$, g = f. Since f is Riemann-integrable, the oscillation on these intervals can be made sufficiently small by choosing the partition size sufficiently small. In other words, the total oscillation on a partition P' of $[a,b] \setminus \bigcup_{k=1}^{N} I_k$, g = f can be, $\forall 1/n \ \exists 1/m \ st \ Osc(g,P') < 1/n \ for \ |P'| < 1/m \ (part b of Theorem 6.2.1)$

Then the total oscillation $Osc(g, P) < 1/n + N/n \cdot (M - m)$. Since N, M, m are constant, there exists a sequence of partitions such that $Osc(g, P_j) \to 0$ as $j \to \infty$ by selecting n large enough.

Problem 2 6.2.4 Problem 9, part b

If f is Riemann integrable on [a, b], prove $F(x) = \int_a^x f(t)dt$ satisfies a Lipschitz condition

PROOF. We need to show that $|F(x) - F(x_0)| \le M|x - x_0|$ for some M.

Without loss of generality assume $x > x_0$. Then by the definition of F. We have

$$|F(x) - F(x_0)| = \int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt$$

We say $M = \sup_{x \in [a,b]} f(x)$. Then since $f(t) \leq M \ \forall t \in [a,b]$

$$|F(x) - F(x_0)| = \int_{x_0}^x f(t)dt \le \int_{x_0}^x Mdt = M|x - x_0|$$

as required.

Problem 3 6.2.4 Problem 10

If f is Riemann integrable on [a, b] and continuous at x_0 , prove that $F(x) = \int_a^x f(t)dt$ is differentiable at x_0 and $F'(x_0) = f(x_0)$. Show that if f has a jump discontinuity at x_0 , then F is not differentiable at x_0 .

Hint: Refer to the proof of Theorem 6.1.2, note that f(x) being continuous at x_0 can be written as $\forall 1/m$, $\exists 1/n$ st. $\forall x \in [a,b]$, $|x-x_0| < 1/n$, we have $|f(x)-f(x_0)| < 1/m$ or $f(x_0) - 1/m < f(x) < f(x_0) + 1/m$

Proof.

We show this in two parts. We first show that if f(x) is continuous at x_0 then $F'(x_0)$ exists and equals $f(x_0)$. So we want to show $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{h} = f(x_0)$.

We have $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{h} = 1/h \int_{x_0}^{x_0+h} f(t)dt$. Let $M = \sup_{x\in [x_0,x_0+h]}$ and $m = \inf_{x\in [x_0,x_0+h]}$. Then certainly $m \le 1/h \int_{x_0}^{x_0+h} f(t)dt \le M$. Since f(x) is continuous at x_0 we have $\forall 1/q, \ \exists 1/n \ s.t. \ \forall x \in [a,b] \ |x-x_0| < 1/n$ we have $|f(x)-f(x_0)| < 1/q$, thus m,M must converge to $f(x_0)$. So we have by squeeze theorem $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{h} = 1/h \int_{x_0}^{x_0+h} f(t)dt = f(x_0)$

The second part we show that $F'(x_0)$ DNE if $f(x_0)$ is discontinuous. We say that $\lim_{x\to x_0^+} f(x) = q$ and $\lim_{x\to x_0^-} f(x) = r$ where $q \neq r$. We examine $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{h}$ as we approach from both sides. On the left side of zero $\lim_{h\to 0^-}$, $f(x)\to r$, and by the first part $F'(x)\to r$, but on the right side of zero: $\lim_{x\to x_0^+}$, $f(x)\to q$, and by the first part $F'(x)\to q$. Since the limit is not the same from both sides the limit DNE.