Package 'rgeomorphon'

September 16, 2025

```
Type Package
Title A Lightweight Implementation of the 'Geomorphon' Algorithm
Version 0.3.0
Maintainer Andrew Brown <br/> brown.andrewg@gmail.com>
Description A lightweight implementation of the geomorphon terrain
     form classification algorithm of Jasiewicz and Stepinski (2013)
     <doi:10.1016/j.geomorph.2012.11.005> based largely on the
     'GRASS GIS' 'r.geomorphon' module. This implementation employs
     a novel algorithm written in C++ and 'RcppParallel'.
License GPL (>= 3)
Depends R (>= 3.6.2)
Imports Rcpp, RcppParallel
LinkingTo Rcpp, RcppArmadillo, RcppParallel
Suggests terra, future.apply, litedown, tinytest
Enhances future, parallel
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
URL https://github.com/brownag/rgeomorphon/,
     https://humus.rocks/rgeomorphon/
BugReports https://github.com/brownag/rgeomorphon/issues
LazyData true
VignetteBuilder litedown
NeedsCompilation yes
Author Andrew Brown [aut, cre] (ORCID:
     <https://orcid.org/0000-0002-4565-533X>)
Repository CRAN
Date/Publication 2025-09-16 07:20:02 UTC
```

2 forms_matrix

Contents

forms_matrix
forms_matrix_apply
forms_matrix_get
geomorphons
geomorphon_categories
geomorphon_chunks_needed
print.forms_matrix
salton

14

forms_matrix

Create a forms_matrix object

Description

This constructor function wraps a 9x9 integer matrix and associates it with a set of levels, creating a 'forms_matrix' object.

Usage

Index

```
forms_matrix(x, levels = get_forms_grass_enum())
```

Arguments

x Integer. A 9x9 matrix.

levels Named integer vector. Map of integer values to their string names. Default: get_forms_grass_enum()

Details

This function is intended for custom classification matrix based on positive and negative overlooks. See forms_matrix_get() for a convenient accessor for the standard classification systems with 4, 5, 6 or 10 forms.

Value

```
An object of class c("forms_matrix", "matrix", "array").
```

```
library(terra)
library(rgeomorphon)

# default values
x <- forms_matrix_get(num_forms = 10, levels = get_forms_grass_enum())</pre>
```

forms_matrix 3

```
# inspect
# create a 9-class system where PEAK is combined with RIDGE
x[x == 2] <- 3
a <- get_forms_grass_enum()</pre>
a <- a[!names(a) == "G_PK"]
# create a forms matrix with custom levels
fm <- forms_matrix(x, a)</pre>
# run geomorphon algorithm
SEARCH = 7 # outer search radius (cells)
SKIP = 1
                 # inner skip radius (cells)
DIST = 0 # flatness distance (cells)
FLAT = 1 # flat angle threshold
MODE = "anglev1" # comparison mode
## classic volcano
data("volcano", package = "datasets")
dem <- terra::rast(volcano)</pre>
terra::crs(dem) <- terra::crs("EPSG:2193")</pre>
terra::ext(dem) <- c(1756968, 1757578, 5917000, 5917870)
names(dem) <- "elevation"</pre>
# include original forms, positive, and negative output
res <- geomorphons(</pre>
    dem,
    search = SEARCH,
    skip = SKIP,
    dist = DIST,
    flat = FLAT,
    comparison_mode = MODE,
    forms = TRUE,
    positive = TRUE,
    negative = TRUE
)
 # apply custom classification to positive and negative
 res2 <- geomorphon_theme(</pre>
   forms_matrix_apply(
       x = res[[c("positive", "negative")]],
       rcl = fm
   )
 )
 # compare with default
 terra::plot(terra::rast(c(`10 form`=res$forms, `9 form`=res2)))
```

forms_matrix_apply

forms_matrix_apply

Apply a forms_matrix to Positive and Negative Overlooks

Description

This function applies a forms_matrix to reclassify a SpatRaster object with 2 layers containing positive and negative overlooks.

Usage

```
forms_matrix_apply(
    x,
    rcl = forms_matrix_get(),
    positive = "positive",
    negative = "negative",
    ...
)
```

Arguments

```
x SpatRaster containing two layers with names specified in positive and negative.

rcl forms_matrix. Matrix to use for classification of x. Rows are "negative" and columns are "positive".

positive Character. Layer name of positive count. Default: "positive".

Character. Layer name of negative count. Default: "negative".

Additional arguments passed to terra::classify().
```

Value

A SpatRaster containing the classification result.

See Also

```
forms_matrix()
```

```
library(terra)
library(rgeomorphon)

SEARCH = 7  # outer search radius (cells)

SKIP = 1  # inner skip radius (cells)

DIST = 0  # flatness distance (cells)

FLAT = 1  # flat angle threshold

MODE = "anglev1" # comparison mode

## classic volcano
```

5 forms_matrix_get

```
data("volcano", package = "datasets")
dem <- terra::rast(volcano)</pre>
terra::crs(dem) <- terra::crs("EPSG:2193")</pre>
terra::ext(dem) <- c(1756968, 1757578, 5917000, 5917870)
names(dem) <- "elevation"</pre>
res <- geomorphons(</pre>
    dem,
    search = SEARCH,
    skip = SKIP,
    dist = DIST,
    flat = FLAT,
    comparison_mode = MODE,
    forms = TRUE,
    ternary = TRUE,
    positive = TRUE,
    negative = TRUE
)
res2 <- terra::rast(lapply(c(4, 5, 6), function(n) {</pre>
  geomorphon_theme(
    forms_matrix_apply(
        x = res[[c("positive", "negative")]],
        rcl = forms_matrix_get(n)
  )
}))
names(res2) <- c("forms4", "forms5", "forms6")</pre>
terra::plot(c(res, res2))
```

forms_matrix_get

Get a forms_matrix for Geomorphon Classification

Description

Gets one of the internally defined forms matrices. A form matrix is defined for the classic 10-form output (default; Jasiewicz & Stepinski, 2013) as well as three simplified classes: 4-form, 5-form, and 6-form (Masetti et al., 2018)

Usage

```
forms_matrix_get(num_forms = 10, levels = get_forms_grass_enum())
```

Arguments

num_forms Integer. The number of forms to classify, one of 4, 5, 6, or 10 (default). levels

Named integer with values between 0 and 10 corresponding to form class labels.

Default: get_forms_grass_enum()

Details

For creating custom classification systems see the forms_matrix() constructor.

Value

An object of class forms_matrix

References

Stepinski, T., Jasiewicz, J., 2011, Geomorphons - a new approach to classification of landform, in: Eds: Hengl, T., Evans, I.S., Wilson, J.P., and Gould, M., Proceedings of Geomorphometry 2011, Redlands, 109-112. Available online: https://www.geomorphometry.org/uploads/pdf/pdf2011/StepinskiJasiewicz2011geomorphometry.pdf

Jasiewicz, J., Stepinski, T., 2013, Geomorphons - a pattern recognition approach to classification and mapping of landforms, Geomorphology, vol. 182, 147-156. (doi:10.1016/j.geomorph.2012.11.005)

Masetti, G., Mayer, L. A., & Ward, L. G. 2018, A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation. Geosciences, 8(1), 14. (doi:10.3390/geosciences8010014)

See Also

```
forms_matrix()
```

Examples

```
forms_matrix_get()
```

geomorphons

Calculate Geomorphons

Description

'Rcpp' implementation of the 'geomorphon' terrain classification system based on 'r.geomorphon' algorithm of Jasiewicz and Stepinski (2013) from 'GRASS GIS'.

Usage

```
geomorphons(
  elevation,
  filename = NULL,
  search = 3,
  skip = 0,
  flat_angle_deg = 1,
  dist = 0,
  comparison_mode = "anglev1",
  tdist = 0,
  forms = TRUE,
```

```
ternary = FALSE,
positive = FALSE,
negative = FALSE,
use_meters = FALSE,
nodata_val = NA_integer_,
xres = NULL,
yres = xres,
simplify = FALSE,
LAPPLY.FUN = lapply,
nchunk = geomorphon_chunks_needed(elevation)
```

Arguments

elevation matrix or SpatRaster object. Digital Elevation Model values. It is **STRONGLY**

recommended to use a grid in a projected coordinate system.

filename character. Output filename. Default NULL creates a temporary file.

search numeric. User input for search radius (default: 3). Units depend on use_meters.

skip numeric. User input for skip radius (default: 0). Units depend on use_meters.

flat_angle_deg numeric. Flatness angle threshold in degrees. Default: 1.0.

dist numeric. Flatness distance (default: 0). Units depend on use_meters.

comparison_mode

Character. One of "anglev1", "anglev2", "anglev2_distance". Default:

"anglev1".

tdist numeric. Terrain distance factor. When greater than 0, overrides Z tolerance

from angular logic. Default: 0.0.

forms character. Number of geomorphon forms to identify. One of "forms10 (default),

"forms6", "forms5", or "forms4.

ternary logical. Include "ternary" output? Default: FALSE positive logical. Include "positive" output? Default: FALSE logical. Include "negative" output? Default: FALSE

use_meters Logical. Default: FALSE uses cell units. Set to TRUE to specify search, skip,

and dist in units of meters.

nodata_val numeric. NODATA value. Default: NA_integer_.

xres numeric. X grid resolution (used only when elevation is a matrix). Default:

NULL.

yres numeric. Y grid resolution (used only when elevation is a matrix). Default:

xres.

simplify logical. If result is length 1 list, the first element is returned. Default: FALSE

LAPPLY.FUN An lapply()-like function such as future.apply::future_lapply(). De-

fault: lapply().

nchunk Number of tile chunks to use. Default: geomorphon_chunks_needed(elevation).

Value

List of SpatRaster or matrix of geomorphon algorithm outputs. When more than one of forms, ternary, positive, negative are set the result is a list. For one result type, and default simplify argument, the result is the first (and only) element of the list.

Distance Calculation and Coordinate Reference Systems

The algorithm assumes planar distances and angles are calculated based on cell resolutions, so it is strongly recommended that elevation data be in a projected coordinate system.

Buffer Around Area of Interest

For reliable geomorphon classification, especially near study area boundaries, it is recommended to use a raster that includes a buffer of at least search + 1 cells around the area of interest. This implementation utilizes all available DEM data up to the specified search radius.

A buffer of search + skip + 1 cells is automatically applied when processing SpatRaster input, as this is necessary to avoid edge effects when processing large rasters in tiles. Matrix input is not altered.

Tiled Processing for Large Rasters

For Digital Elevation Models (DEMs) that are too large to fit into available memory, rgeomorphon employs an automatic tiled processing workflow. This method breaks the large raster into a grid of smaller, manageable chunks that are processed sequentially.

The premise of this approach is the use of buffered tiles. To ensure seamless results and avoid edge artifacts, a buffer of surrounding data is added to each chunk before the geomorphon calculation is performed. This provides the necessary neighborhood of cells for the algorithm to work correctly. After each tile is processed, the buffer region is removed from the result. Finally, the clean, processed tiles are mosaicked back together into a single, complete output raster that perfectly matches the extent of the original input DEM.

This entire workflow is handled internally by the main geomorphons() function, which can also leverage parallel processing to speed up the operation on multi-core systems. See the vignette on parallel processing with 'future' package.

The number of chunks needed can be controlled by setting several environment variables. These variables are read by the function at runtime.

Default Behavior:

By default, the function assumes a single worker, scales the estimated memory needed by a factor of 10, and applies the square root to the total number of chunks. This can be replicated with the following settings:

```
Sys.setenv(R_RGEOMORPHON_N_WORKERS = 1)
Sys.setenv(R_RGEOMORPHON_MEM_SCALE_NEED = 10)
Sys.setenv(R_RGEOMORPHON_MEM_SCALE_WORKERS = 1)
Sys.setenv(R_RGEOMORPHON_MEM_POWER = 0.5)
```

Customized Behavior:

You can customize the tiling behavior by setting the environment variables to different values. For example, to use four workers, scale memory needs by a factor of five, apply a worker scaling factor of two, and a power of 1.5 to the total, you would set the following:

```
Sys.setenv(R_RGEOMORPHON_N_WORKERS = 4)
Sys.setenv(R_RGEOMORPHON_MEM_SCALE_NEED = 5)
Sys.setenv(R_RGEOMORPHON_MEM_SCALE_WORKERS = 2)
Sys.setenv(R_RGEOMORPHON_MEM_POWER = 1.5)
```

Comparison with GRASS 'r.geomorphon'

This implementation achieves very high agreement with the classification logic of GRASS GIS 'r.geomorphon' when using equivalent parameters and data in a projected coordinate system.

'r.geomorphon' employs a row buffering strategy which can, for cells near the edges of a raster, result in a truncated line-of-sight compared to the full raster extent. This may lead GRASS to classify edge-region cells differently or as NODATA where this implementation may produce a more 'valid' geomorphon form given the available data.

More information about the 'r.geomorphon' module can be found in the GRASS GIS manual: https://grass.osgeo.org/grass-stable/manuals/r.geomorphon.html

References

Stepinski, T., Jasiewicz, J., 2011, Geomorphons - a new approach to classification of landform, in: Eds: Hengl, T., Evans, I.S., Wilson, J.P., and Gould, M., Proceedings of Geomorphometry 2011, Redlands, 109-112. Available online: https://www.geomorphometry.org/uploads/pdf/pdf2011/StepinskiJasiewicz2011geomorphometry.pdf

Jasiewicz, J., Stepinski, T., 2013, Geomorphons - a pattern recognition approach to classification and mapping of landforms, Geomorphology, vol. 182, 147-156. (doi:10.1016/j.geomorph.2012.11.005)

See Also

geomorphon_theme() geomorphon_chunks_needed()

```
library(terra)
library(rgeomorphon)
SEARCH = 7
              # outer search radius (cells)
SKIP = 1
              # inner skip radius (cells)
DIST = 0
              # flatness distance (cells)
FLAT = 1
               # flat angle threshold
MODE = "anglev1" # comparison mode
## classic volcano
data("volcano", package = "datasets")
dem <- terra::rast(volcano)</pre>
terra::crs(dem) <- terra::crs("EPSG:2193")</pre>
terra::ext(dem) <- c(1756968, 1757578, 5917000, 5917870)
names(dem) <- "elevation"</pre>
```

```
system.time({
    rg <- geomorphons(
        dem,
        search = SEARCH,
        skip = SKIP,
        dist = DIST,
        flat = FLAT,
        comparison_mode = MODE
    )
})
plot(c(dem, rg))</pre>
```

geomorphon_categories Apply Geomorphon Theme to Result Object

Description

Applies standard class names and colors to a SpatRaster, or creates a factor matrix. Input values should be integers between 1 and 10.

Usage

```
geomorphon_categories()
geomorphon_colors()
geomorphon_theme(x, forms = "forms10")
```

Arguments

forms

x A SpatRaster or matrix object.

character. One of: "forms10" (default), "forms6", "forms5", "forms4". These are themes corresponding to the built-in 10-form, 6-form, 5-form, and 4-form "forms" outputs from geomorphons().

Details

When x is a matrix the result is a factor using geomorphon_categories(). Values are integers 1 to 10 and labels are the geomorphon form names.

Value

A SpatRaster or matrix object with geomorphon class names (and colors for SpatRaster) applied.

Examples

```
geomorphon_theme(1:10)
```

geomorphon_chunks_needed

Estimate Tile Processing Needs

Description

geomorphon_chunks_needed() is a heuristic for number of tiles needed to calculate geomorphons on larger-than-memory rasters. Allows for scaling by number of parallel workers, a multiplicative factor for the memory needs, and a multiplicative factor for worker needs.

Usage

```
geomorphon_chunks_needed(
    x,
    workers = Sys.getenv("R_RGEOMORPHON_N_WORKERS", unset = 1),
    scl_need = Sys.getenv("R_RGEOMORPHON_MEM_SCALE_NEED", unset = 10),
    scl_workers = Sys.getenv("R_RGEOMORPHON_MEM_SCALE_WORKERS", unset = 1),
    pow_total = Sys.getenv("R_RGEOMORPHON_MEM_POWER", unset = 0.5)
)
```

Arguments

X	A SpatRaster object.
workers	$integer. \ Number of parallel workers. \ Default uses value of environment variable \\ R_RGEOMORPHON_N_WORKERS. \ If unset, 1$
scl_need	<i>numeric</i> . Scaling factor for memory needs. Default uses value of environment variable R_RGEOMORPHON_MEM_SCALE_NEED. If unset, 10.
scl_workers	<i>numeric</i> . Scaling factor for each worker. Default uses value of environment variable R_RGEOMORPHON_MEM_SCALE_WORKERS. If unset, 1.
pow_total	<i>numeric</i> . Exponent for scaling total number of chunks. Default uses value of environment variable R_RGEOMORPHON_MEM_POWER. If unset, 1.

Value

integer. Number of tile chunks to divide x into.

12 print.forms_matrix

Examples

```
data("salton", package = "rgeomorphon")

x <- terra::rast(salton)
terra::ext(x) <- attr(salton, "extent")
terra::crs(x) <- attr(salton, "crs")
geomorphon_chunks_needed(x)</pre>
```

print.forms_matrix

 $Print\ method\ for\ a\ forms_matrix\ object$

Description

Controls how the 'forms_matrix' object is displayed in the console.

Usage

```
## S3 method for class 'forms_matrix'
print(x, show_values = FALSE, ...)
```

Arguments

x The forms_matrix object to print.

show_values A logical value. If FALSE (default), prints enum names. If TRUE, prints the

underlying integer values.

. . . Additional arguments passed to print (not used here).

Value

Invisibly returns the original object x.

```
print(forms_matrix_get(num_forms = 4))
```

salton 13

salton

Bathymetric Information on California's Salton Sea

Description

Matrix derived from one foot contours of the Salton Sea floor. This data was created with the vertical datum NGVD29 and NAD83 California Teale Albers (EPSG:3110) projection. Each value in the matrix represents the elevation, in meters, of a 300 m x 300 m cell. Cell values are interpolated using a thin plate spline fit to an exhaustive sample of contour line vertices.

Usage

salton

Format

matrix, with cells representing X, Y grid locations, and attributes "crs" (containing WKT2019 string with coordinate reference system information) and "extent" (named numeric of length 4, containing xmin, xmax, ymin, ymax)

Source

California Division of Fish and Wildlife. 2007. Bathymetric Contours (1 foot) - Salton Sea (ds426). Available online: https://map.dfg.ca.gov/metadata/ds0426.html

```
str(salton)
# construct and georeference a SpatRaster object
dem <- terra::rast(salton)
terra::crs(dem) <- attr(salton, "crs")
terra::ext(dem) <- attr(salton, "extent")
names(dem) <- "Elevation (feet)"
dem</pre>
```

Index

```
* datasets
    salton, 13
forms\_matrix, 2
forms_matrix(), 4, 6
forms_matrix_apply, 4
forms_matrix_get, 5
{\tt geomorphon\_categories}, 10
geomorphon_chunks_needed, 11
geomorphon_chunks_needed(), 9
geomorphon_colors
        (geomorphon_categories), 10
geomorphon_theme
        (geomorphon_categories), 10
geomorphon_theme(), 9
geomorphons, 6
geomorphons(), 10
get_forms_grass_enum(forms_matrix), 2
lapply(), 7
print.forms_matrix, 12
salton, 13
terra::classify(), 4
```