4

5

1

2

1

2

1

2

1

2

1 2

1

2

3

1

2

3

4

1

2

1

2

What is Claimed:

1	1. A bonding tool for bonding a wire to a substrate, the bonding tool
2	having a body and a working tip coupled to one end of the body, and comprising:
3	an orifice extending along a longitudinal axis of the body and the

working tip; and

2. A capillary bonding tool according to claim 1, wherein the

a coating disposed over at least a portion of a surface of the orifice.

- coating extends along an entire length of the orifice.
- 3. A capillary bonding tool according to claim 2, wherein the coating is applied to at least a portion of an exterior surface of the working tip.
- 4. A capillary bonding tool according to claim 1, wherein the coating is disposed over at least a portion of an exterior surface of the working tip.
- 5. A capillary bonding tool according to claim 1, wherein the coating is disposed over an exterior surface of the working tip and the body.
- 6. A capillary bonding tool according to claim 1, wherein the coating is a polymer.
- 7. A capillary bonding tool according to claim 1, wherein the coating is at least one of i) a polymer, ii) an Alumina, iii) Si₃N₄ iv) silica v) a combination of 12% silica and 88% Alumina, and vi) Diamond like Silica (DLC).
- 8. A capillary bonding tool according to claim 1, wherein the coating is a polymer disposed along an interior surface of the orifice and one of i) an Alumina, ii) Si₃N₄, iii) silica, iv) a combination of 12% silica and 88% Alumina, and v) Diamond like Silica (DLC) disposed along an exterior portion of the orifice.
- 9. A capillary bonding tool according to claim 1, wherein the coating has a substantially uniform thickness.
- 10. A capillary bonding tool according to claim 1, wherein the coating has a substantially uniform thickness of up to about 2.0 microns.
- 1 11. A capillary bonding tool according to claim 1, wherein the coating has a substantially uniform thickness of about 0.1 microns.

21.

1

1 2	12. A capillary bonding tool according to claim 1, wherein the body of the bonding tool has a substantially cylindrical shape.
1 2	13. A capillary bonding tool according to claim 1, wherein the coating is one of polyolefine and parylene.
1 2	14. A capillary bonding tool according to claim 1, wherein the coating is formed by vapor phase deposition.
1 2	15. A capillary bonding tool according to claim 1, wherein the coating is formed by one of chemical vapor deposition and physical vapor deposition.
1 2	16. A capillary bonding tool according to claim 1, wherein the coating is formed by immersing the bonding tool in a coating material.
1 2	17. A method of manufacturing a capillary bonding tool for bonding a fine wire to a substrate, the method comprising the steps of:
3	forming a cylindrical body;
4	forming a taper at a first end of the body;
5	forming an orifice extending along a longitudinal axis of the body; and
6	coating at least a portion of the orifice with a polymer.
1 2 3	18. The method according to claim 17, wherein the coating step forms a substantially uniform continuous coating having a thickness of up to about 2.0 microns.
1 2 3	19. The method according to claim 17, wherein the coating step forms a substantially uniform continuous coating having a thickness of at least about 0.1 micron.
1 2	20. The method according to claim 17, wherein the coating step comprises the steps of:
3	forming a precursor monomer at a first temperature and a first pressure; and
5 6	forming the coating from the precursor monomer at a second temperature and pressure.

The method according to claim 20, wherein

2	the first temperature is about 690°C,
3	the first pressure is about 0.5 torr,
4	the second temperature is about 25°C, and
5	the second pressure is about 0.1 torr.
1 2 3	22. The method according to claim 20, wherein the precursor monomer is formed from a di-Para-Xylyene dimer vaporized at about 150°C and about 1.0 torr followed by a pyrolesis at about 690°C and about 0.5 torr.
1 2 3	23. The method according to claim 17, wherein the capillary is formed by i) one of direct ceramic dye pressing and ii) injection molding, and machined to a final shape by one of i) grinding and ii) Electro discharge machining.
1	24. A bonding tool for bonding a wire to a substrate, comprising:
2	a body portion;
3	a working tip coupled to one end of the body;
4 5	an orifice extending along a longitudinal axis of the body and the working tip;
6 7	a first coating disposed over at least a portion of a surface of the orifice; and
8 9	a second coating disposed over at least a portion of an exterior surface of the body.
1 2	25. A capillary bonding tool according to claim 24, wherein the first coating is a polymer and the second coating is other than a polymer.
1 2	26. A capillary bonding tool according to claim 25, wherein the second coating is one of an alumina and Si ₃ N ₄ .
1 2	27. A method of manufacturing a capillary bonding tool for bonding a fine wire to a substrate, the method comprising the steps of:
3 4	forming an orifice extending along a longitudinal axis of the bonding tool;
5	coating at least a portion of the orifice with a polymer; and

6 coating at least a portion of an exterior surface of the bonding tool with

7 a non-polymer coating.