

Max-Planck-Institut für Meteorologie Bundesstr. 53 D-20146 Hamburg

Deutscher Wetterdienst Frankfurter Str. 135 D-63067 Offenbach

ICON User's Guide

G. Zängl, D. Reinert, F. Prill, M. Giorgetta, L. Kornblueh, and L. Linardakis

assembled and edited by T. Schad, I. Kraut, D. Rieger, C. Walter, S. Gruber, K. Deetz, H. Vogel, and B. Vogel

Karlsruhe Institute of Technology

Institute for Meteorology and Climate Research (IMK-TRO) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen

June 4, 2014

Preface

This user guide was assembled and edited based on available documents on the ICON webpage by the persons mentioned at the front page. The content of the user guide follows the requirements of DWD.

Important hints:

In chapter 4 a list of the namelist parameters is given. New and inexperienced users should only modify the namelist parameters that are given in bold letters.

When results produced with ICON are published the following papers have to be cited in the list of references:

Zängl (2012)

Information for authors:

Please read the README for further instructions and tamplates.

ICON User's Guide – 1.6.00 Contents

Contents

Contents

1	Guide for New Users							
	1.1	Needed Software						
	1.2	The Source Code						
		1.2.1 Directory structure						
	1.3	Configuration and Compilation						
		1.3.1 Description of the Configuration Files						
		1.3.2 Configuring and Compiling the Code						
	1.4	Running the Model (Idealized Cases)						
		1.4.1 Jablonowski-Williamson test						
		1.4.2 Mountain Rossby wave						
	1.5	Running the Model (Real Case)						
		1.5.1 Input Data						
		1.5.2 Creating a Runscript						
		1.5.3 Restart						
		1.5.4 Make Runscript Environment						
	1.6	Pre-built Grids and ExtPar Data						
		1.6.1 Grid file nomenclature						
	1.7	Grid Generation						
		1.7.1 ICON atmosphere grids						
		1.7.2 Creating atmosphere grids						
		1.7.3 Atmosphere grid generation parameters						
		1.7.4 Information contained in grid files						
		1.7.5 Viewing/plotting grids						
2		utput 19						
	2.1	Extra output						
3	Visu	Visualization 24						
•	3.1	icon_plot.ncl						
		3.1.1 Requirements						
		3.1.2 Customization						
		3.1.3 Basic command line option						
		3.1.4 Plot Types						
		3.1.5 Regional plots						
		3.1.6 Masking						
		3.1.7 Data on other grids						
		3.1.8 All options						
	3.2	ncview/GrADS						
	3.3	Other Possibilities						
4	ICO	N Namelists Overview 32						
	4.1	Namelist Annotation						

Contents

4.2	ICON	Namelists
	4.2.1	Scripts, Namelist files and Programs
	4.2.2	Namelist parameters
4.3	Namel	ist parameters for grid generation
	4.3.1	Namelist parameters defining the atmosphere grid
4.4	Namel	ist parameters defining the atmospheric model
	4.4.1	coupling_nml
	4.4.2	diffusion_nml
	4.4.3	dynamics_nml
	4.4.4	echam_conv_nml
	4.4.5	echam_phy_nml
	4.4.6	gribout_nml
	4.4.7	grid_nml
	4.4.8	gridref_nml
	4.4.9	gw_hines_nml (Scope: lgw_hines = .TRUE. in echam_phy_nml) 51
		ha_dyn_nml
		initicon_nml
		interpol_nml
		io_nml
		les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5) 61
		limarea_nml (Scope: l_limited_area=1 in grid_nml)
		lnd_nml
	4.4.17	ls_forcing_nml (parameters for large-scale forcing; valid for torus ge-
	4 4 10	ometry)
		master_model_nml (repeated for each model)
		master_nml
		nh_pzlev_nml
		nonhydrostatic_nml (relevant if run_nml:iequations=3)
		nwp_phy_nml
		output_nml (relevant if run_nml/output='nml')
		parallel_nml
		radiation_nml
		run_nml
		sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)
		time_nml
		transport_nml (used if run_nml/ltransport=.TRUE.) 96
		turbdiff_nml
	4.4.32	<u>vdiff_nml</u>
4.5	Ocean	-specific namelist parameters
	4.5.1	ocean_physics_nml
	4.5.2	sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM)) 101
4.6	Namel	ist parameters for testcases (NAMELIST_ICON)
	4.6.1	ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in
		run_nml)
	4.6.2	nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml) 104
4.7	Extern	nal data
	4.7.1	extpar_nml (Scope: itopo=1 in run_nml)

Contents	5	iv
4.8	External packages	114
	4.8.1 art_nml	114
4.9	Information on vertical level distribution	114
Referer	ices	116

1 Guide for New Users

This tutorial is meant for people with some knowledge and/or experience in modelling and Linux, but which have no experience with the ICON model. In the following we will describe in short how to compile and run ICON on your machine.

1.1 Needed Software

For some components ICON uses external libraries. Therefore you will need some additional software which should be installed on your machine. The following software needed to be installed on your machine:

 NetCDF: NetCDFis a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.

(Source: http://www.unidata.ucar.edu/software/netcdf/)

• GRIB: GRIB (GRIdded Binary) is a format defined by the WMO (World Meteorological Organization). The use of GRIB in ICON is optional. The ECMWF GRIB API is an application program interface accessible from C, FORTRAN and Python programs developed for encoding and decoding WMO FM-92 GRIB edition 1 and edition 2 messages. A useful set of command line tools is also provided to give quick access to GRIB messages.

(Source: https://software.ecmwf.int/wiki/display/GRIB/Home)

- MPI: MPI is a library specification for message-passing, proposed as a standard by a broadly based committee of vendors, implementors, and users.
 (Source: http://www.mcs.anl.gov/research/projects/mpi/)
- OpenMP: Jointly defined by a group of major computer hardware and software vendors, the OpenMP API is a portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications on platforms ranging from embedded systems and accelerator devices to multicore systems and shared-memory systems.

(Source: http://openmp.org/wp/)

1.2 The Source Code

You can obtain the source code on the website of DKRZ:

https://www.dkrz.de/

You can use the following commands to untar the ICON source code:

```
tar xfvz icon.tar.gz
```

This will create a folder icon-1.0 inside your current directory. Within the ICON User Guide, this folder will further on be called \$ICONDIR.

1.2.1 Directory structure

Within \$ICONDIR, you will find a set of subdirectories. The important subdirectories are described in the following.

build

Within the \$ICONDIR/build directory, a subdirectory with the name of your computer architecture is created at compilation. Within this subdirectory, a bin subdirectory containing the binary control_model and several further subdirectories containing the compiled module files are created at compilation.

config

Inside the \$ICONDIR/config directory, different machine dependent configuration are stored within the configuration files. You can find a description of how to use and set up such configuration files in chapter 1.3.

data

Within the \$ICONDIR/data directory, you will find divers input datasets. For example, there are the datasets "rrtmg_lw.nc" and "ECHAM6_CldOptProps.nc", which are necessary for the radiation scheme (see sec. 1.5.1).

doc

Within the \$ICONDIR/doc directory, several documentations for ICON are stored. There are according subdirectories for scientific (\$ICONDIR/doc/science), technical (\$ICONDIR/doc/technical) and programming style guides (\$ICONDIR/doc/style).

externals

Within the \$ICONDIR/externals directory, external libraries for ICON are stored. Currently, it is the mtime library which is used to convert different date time formats.

include

Within the \$ICONDIR/include directory, interfaces to libraries needed by ICON are stored. Currently, the interface to the CDI library is stored inside this directory.

run

Within the \$ICONDIR/run directory, namelist descriptor files as well as the full namelist documentation are stored. The namelist descriptor files can be used to generate runscripts. Further information can be found in 1.5.

src

Within the \$ICONDIR/src directory, the source code of ICON including the main program and ICON modules can be found. The modules are ordered in several subdirectories which are described in the following.

The main program control_model.f90 can be found inside the subdirectory \$ICONDIR/src/drivers. Additionally, this directory contains the modules for a hydrostatic and a nonhydrostatic setup.

The configuration of an ICON run is performed within the modules inside \$ICONDIR/src/configure_model and \$ICONDIR/src/namelists. Modules regarding the configuration of idealized test cases can be found inside \$ICONDIR/src/testcases.

The dynamics of ICON are inside \$ICONDIR/src/atm_dyn_iconam and the physical parameterizations inside \$ICONDIR/src/atm_phy_nwp. Parameterizations for the interactions with the surface can be found inside \$ICONDIR/src/lnd_phy_nwp.

Shared infrastructure modules for 3-D and 4-D variables can be found within \$ICONDIR/src/shared. The according routines for 2-D fields (e.g. external parameters) are stored within \$ICONDIR/src/shr_horizontal.

Modules handling the parallelization can be found in \$ICONDIR/src/parallel_infrastructure.

Input and output modules are stored in \$ICONDIR/src/io.

The modules for the grid generator, as described in chapter 1.7 can be found inside \$ICONDIR/src/grid_generator.

vertical_coord_table

Inside the \$ICONDIR/vertical_coord_tables directory, information files describing the relation between model layer, pressure and height are stored.

1.3 Configuration and Compilation

To ease up the compilation a configure-file is provided which should take over the main work. This Autoconf configuration is used to analyze the computer architecture (hardware and software) and set user specified preferences, e.g. the compiler. This preferences are read from config/mh-<0S>, where <0S> is the identified operating system. Operating systems are listed in the configure-files in \$ICONDIR/config/ with the according files mh-<0S>. If your machine is not listed you can add a config-file with your own <0S> based on the given mh-<0S> files. If different compilers are available, the mh-<0S> file may contain a case construct to distinguish them. If your <0S> is not recognized but is one of the listed <0S> you can invoke the configure file with the according option --host=\$HOST. Examples for the DWD CRAY system are given in the boxes.

1.3.1 Description of the Configuration Files

To add a specific compiler or change your compiler flags, you have to enter the \$ICONDIR/config/mh-<OS> according to your operating system <OS>. For the DWD CRAY, the compiler flags in mh-linux look like the following:

```
cray)
    config_compiler=cray
                    = cc
    FC
                = ftn
   F77
                = "$FC"
                = -v -D__LOOP_EXCHANGE -D__MIXED_PRECISION -Df2cFortran
   FFLAGS
-e Z -em -hflex_mp=conservative -hfp1 -hadd_paren -r am -Ktrap=divz,ovf
    CFLAGS
                = -I${GRIB_API}/include -v -Df2cFortran
-DHAVE_CF_INTERFACE -DHAVE_LIBNETCDF -DHAVE_LIBGRIB
-DHAVE_LIBGRIB_API -O3 -D__SVN_VERSION="${SVNVERSION}"
                = "$FFLAGS"
    F77FLAGS
                = "-v"
    FCLIBS
    GEN_FLAGS
    FDEBUG
                = -g - R abc
    OMPFLAG
                = -mp
   DEFOPT
                = -D
                = -D
   DEFCOPT
   MODOPT
                = -T
   MODDIR
    ;;
```

The cray) in this example gives the name of this specific configuration. It can be addressed by a flag at configuration. For this example, the according command to choose this setting would be ./configure --with-fortran=cray (see section 1.3.2). Like this, you can create your own configuration by adding a new compiler.

CC, FC and F77 are the compiler directives for C-Compiler, FORTRAN2003-Compiler and FORTRAN77-Compiler. The according compiler flags are set via CFLAGS, FFLAGS and F77FLAGS. The variable to set an OpenMP flag is called OMPFLAG. Libraries are set via FCLIBS.

1.3.2 Configuring and Compiling the Code

To configure the source code go to \$ICONDIR and give:

```
./configure
./build_command
```

If you want to use another compiler than the default compiler you give:

```
./configure --with-fortran=<compiler>
./build_command
```

where <compiler> is {gcc,nag,intel,pgi,cray}.

```
CRAY EXAMPLE: Configure + Make
./configure --with-fortran=cray}
./build_command
```

Note, that CRAY compiler environment (cce) versions 8.2.x do not work with ICON. The CRAY configuration is expanded to the following:

```
CRAY EXAMPLE: Configuration

ftn -I../module -v -D__LOOP_EXCHANGE -D__MIXED_PRECISION -Df2cFortran -e

Z -em -hflex_mp=conservative -hfp1 -hadd_paren -r am -Ktrap=divz,ovf

-D__ICON__ <object files> -L/usr/local/pkg/grib_api/1.11.0/CRAY/lib

-L../lib -lsupport -lgrib_api_f90 -lgrib_api -lmtime $(LAPACK_LIB)

$(NETCDF_LIB) $(HDF5_LIB) $(SZIP_LIB) $(ZLIB_LIB) $(MPI_LIB)

$(METIS_LIB) $(PROFILE_LIB) $(SCT_LIB)
```

ICON is parallelized using MPI and OpenMP. You can control the parallelization to be used by giving:

```
./configure --with-mpi/--without-mpi --with-openmp/--without-openmp ./build_command
```

By default the options are set to --with-mpi --without-openmp. After a successful build, you will find the ICON executable named control_model inside \$ICONDIR/build/<0S>/bin/.

```
CRAY EXAMPLE: OpenMP
The CRAY Fortran compiler command includes automatically OpenMP.
Therefore, although using --without-openmp, OpenMP is used.
```

If you wish to re-configure ICON it is advisable first to clean the old setup by giving:

make distclean

Some more details on configure options can be found in the help of the configure command:

```
./configure --help
```

1.4 Running the Model (Idealized Cases)

To shed light on the functionality and the quality of the dynamical core, setups for two test cases are presented in the following. Additionally, results of these test cases are shown. These tests are classified in short deterministic test cases (typically a simulation period of about 10-30 days) and tests in a climate mode (typically a multi-year period). This section concentrates on the first class, which starts from prescribed initial conditions (ideally provided in analytic form). The simulation results are either compared to analytic solutions (if available) or high-resolution reference solutions. For testcase details the reader is referred to Zängl et al. (2013). Here only some special setups are described.

1.4.1 Jablonowski-Williamson test

The Jablonowski-Williamson Test (Jablonowski and Williamson, 2006) is a standard test for dynamical cores in global models and can be run for dry dynamics only - as it is intended for- but full physics can be also tested.

Setup

For full physics, two additional namelist parameters are introduced in the testcase_nml to control the initial moisture in the atmosphere:

- Here rh_at_1000hpa to be set between 0 and 1. The default is set to 0.7 which gives a quite smooth start. If you really want to see early onsets of convection and microphysics you have to tune this parameter.
- qv_max is usually set to 20.e 3kg/kg and refers to the maximum value in the tropics.

Input Data

GRID

Results

The Jablonowski-Williamson steady-state test is based on a zonally symmetric, strongly baroclinic atmosphere. Initially, it is in a hydrostatic and geostrophic balance and therefore

should remain stationary if no perturbation is imposed. Grid irregularities can disturb this stationary conditions and hence the test identifies the presence and magnitude of grid imprinting of a numerical model. For the **Jablonowski-Williamson baroclinic wave test**, a weak (and unbalanced) perturbation disturbs the initial wind. This test highlights the diffusivity (or effective resolution) of a dynamical core and the presence of phase speed errors in the advection of poorly resolved structures.

1.4.2 Mountain Rossby wave

In order to test the model dynamics in dry stage but with real or any complex topography one can choose the mountain rossby wave test and select different types of topography.

Setup

By setting this, you might want to have the turbulence scheme switched on while the rest of physics is switched OFF. Simulating dry physics means to set the tracer fields to zero. The transport is not necessary but should be switched off via the transport namelist, so the resulting namelist setting for this case is:

• testcase_nml

```
- nh_test_name = 'mrw_nh'
```

As an extreme case the user can examine the flow over very steep mountains, by using a flow of an isothermal atmosphere with $U=20\,\mathrm{m\,s^{-1}}$ over a circular Gaussian mountain

$$h(x,y) = h_m \exp\left(-\frac{x^2 + y^2}{a^2}\right) \tag{1.1}$$

with $a = 2000 \,\mathrm{m}$ and $h_m = 4000 \,\mathrm{m}$ and $7000 \,\mathrm{m}$, respectively. This configuration produces slope angles of 59° and 71°. However, Zängl et al. (2013) recommend to avoid slope angles close to or even above 70° in scientific applications.

Input Data

GRID

Results

1.5 Running the Model (Real Case)

The ICON code, as checkout from the SVN repository, does not include runscripts. Instead the run directory (\$ICONDIR/run/) includes several descriptor files for building grids, defining experiments and post-processings. There exist three different types of descriptor files with prefixes grid, exp, post:

• grid.<name>: to configure the grid generator, see chapter 1.7 for more details. It is recommended to use pre-built grids. For details, see section 1.6.

- exp.<name>: to define the namelist, which determinate the experiments.
- post.<name>: to define post-processing.

1.5.1 Input Data

Generally ICON requires the following input data: Grid files, external parameters, initialization (DWD analysis or IFS), input fields for radiation.

Grid Files

In order to run ICON, it is necessary to have the horizontal grid information as an input parameter. This information is stored within so-called grid files. For a ICON run, one global grid file is necessary. Additionally, if you want to nest, grid files of the nested domains are necessary, too. To improve the performance of ICON, a (optional) reduced radiation grid for each domain may be used.

The naming of the ICON-Grid is as follows: The initial icosahedron grid is refined by <n>secting the edges, and further refinement is obtained by iteratively bisecting the created edges. The grid produced at the <k>refining iteration is named "R<n>B<k>". For further details, see the ICON Technical Documentation.

It is recommended to use pre-built grids. Further information can be found in chapter 1.6. For building own grids, the reader is referred to chapter 1.7. The names of the grid files have to be specified within the grid_nml:

```
&grid_nml
dynamics_grid_filename = "<INSERTFILENAME>"
radiation_grid_filename = "<INSERTFILENAME>"
```

External Parameters

ICON requires geographical localized datasets like the topographic height of the earth surface, the plant cover, the distribution of land and sea and, dependent on the schemes used, a variety of other so called external parameters. The EXTPAR software system (EXTPAR - External Parameter for Numerical Weather Prediction and Climate Application) is able to generate external parameters for the different models GME, COSMO, HRM and ICON. The software can run on a UNIX or Linux systems where the raw data is stored. It allows operators (experienced users) running the scripts to create new external parameters controlled by user specifications like the model domain. For a more detailed overview of EXTPAR, the reader is referred to the User and Implementation Guide of EXTPAR.

The name of the EXTPAR file which has to be read by ICON can be specified as follows:

```
&extpar_nml
extpar_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file name:

```
"<path>extpar_<gridfile>".
```

<path> and <gridfile> are then replaced at runtime by ICON.

Initialization

For the initialization of ICON, input data from either DWD or IFS is needed.

In case of DWD (init_mode=1) a first guess and an analysis is required:

```
&initicon_nml
dwdfg_filename = "<INSERTFILENAME>"
dwdana_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file names:

```
"<path>dwdFG_R<n>B<k>_DOM<idom>.nc" and
```

<path>, <n>, <k> and <idom> are then replaced at runtime by ICON according to the chosen
gridfile (see 1.5.1). The variable <idom> is an index for the domain on which the calculations
are performed. <idom>=0000 is reserved for a reduced radiation grid, <idom>=0001 for the
global domain, higher numbers are used for nested domains. NETCDF as well as GRIB2
input can be used.

In case of IFS (init_mode=2) an analysis is required. It has to be in NetCDF:

```
&initicon_nml
ifs2icon_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file name:

```
"<path>ifs2icon_R<n>B<k>_DOM<idom>.nc".
```

<path>, <n>, <k> and <idom> are then replaced at runtime by ICON according to the chosen
gridfile (see 1.5.1). The variable <idom> is an index for the domain on which the calculations
are performed. <idom>=0000 is reserved for a reduced radiation grid, <idom>=0001 for the
global domain, higher numbers are used for nested domains.

Radiation

ICON requires input fields for the RRTM radiation scheme. The file names are specified as follows:

```
&nwp_phy_nml
lrtm_filename = "<INSERTFILENAME>"
cldopt_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file names:

```
"rrtmg_lw.nc" and
```

```
"ECHAM6_CldOptProps.nc".
```

The files can be found within \$ICONDIR/data.

[&]quot;<path>dwdana_R<n>B<k>_DOM<idom>.nc".

1.5.2 Creating a Runscript

To create a runscript, new users are advised to use the namelist descriptor file exp.nh-oper which contains recently recommended namelist settings. It might be necessary to account for the file names and paths of the input data. Additionally, machine dependent settings need to be added to this script to obtain a runscript. For some architectures, this step can be performed by using the make runscript environment as shown in 1.5.4. In the following, example settings for DWD CRAY are listed.

```
CRAY EXAMPLE: Namelists <<Place your namelists e.g. from exp.nh_oper here>>
```

1.5.3 Restart

A restart of the model requires a restart file that has to be created by a previous model run. In the following the procedures and the corresponding namelist settings are explained.

Creating the initial restart file:

The first job in a series of model runs creates the first restart file. To do so we have to use the following namelist switches.

```
&master_nml
lrestart = .FALSE.
```

In addition we have to prescribe at which time interval the job should produce a restart file:

```
&io_nml
dt_checkpoint = "<Insert time in seconds>"
```

The ICON run then creates restart files for each domain 1, ..., n_dom, and for each restart output time step.

The filenames are generic and look like:

```
"<gridfile>_restart_<modeltype>_<timestamp>.nc",
```

An example would be:

```
"iconR2B06_D0M01_restart_atm_20110101T001200Z.nc" (NetCDF format)
```

This filename can be customized using the namelist parameter:

```
&mo_run_nml
restart_filename = "<INSERTFILENAME>"
```

This file contains:

- data
- namelists
- several attributes

Note: - ICON reads the namelists only once and assumes that these are identical for all domains. - Since we do not know about the total number of domains at startup, we have to ask the current restart file for the attribute "n_dom".

For each domain 1, ..., n_dom, a symbolic link is generated with the generic name:

```
"restart_<modeltype>_DOMxx.nc"
```

Note: - The domain-dependent suffix "...DOMxx" is also required for non-nested setups.

Running the model in the restart mode:

ICON has to be informed that you want to carry out a restart run:

```
&master_nml
lrestart = .TRUE.
```

The generic link "restart_<modeltype>_DOMxx.nc" is used by the restart run to point to the last written restart file of the previous model run.

Chain of restart runs

If a chain of restart runs is foreseen it is recommended to use the namelist parameter dt_restart.

```
&time_nml
dt_restart = "<Insert time in seconds>"
```

In this case only one restart file is produced by each model run and after writing the restart file the job stops.

Note:- dt_restart and dt_checkpoint have to be selected carefully.

Asynchronous in- and output:

It is highly recommended that the asynchronous in- and output option of ICON is applied. In short this option reserves a number of processors for in- and output only. While reading and writing the remaining processors continuously carry out calculations. Otherwise they would have to wait until in- or output is finished. The corresponding namelist parameter is:

```
&parallel_nml
num_restart_procs = n
```

n is the number of processors used for in- and output.

Note: n=1 is the most efficient selection.

1.5.4 Make Runscript Environment

A full listing of descriptor files you will find in \$ICON/run/.

After configuration and compiling (chapter 1.3) these descriptor files can be transformed into runscripts, which should include the necessary system dependent parameters and the execution section exec.icon (\$ICONDIR/run/exec.iconrun), which starts the actual integration. This transformation is done in \$ICONDIR by:

```
./make_runscripts
```

This transforms every existing descriptor file in \$ICONDIR/run/<type>.<name> into a ready-to-use run script \$ICONDIR/run/<type>.<name>.run

For illustration there exists also

```
./make_my_runscripts
```

which transforms a single descriptor file into a run script. This file is an exemplary file and you can see how to define run parameters.

An exemplary descriptor file for a operational run is exp.nh_oper.

Note: if you change, or create a descriptor you will need to (re)create the run script in order for the changes to take effect.

To run a script <type>.<name>.run, either for creating grids or making an experiment or doing post-processing, go to the ./run folder

cd run

and use the job submission command, which depends on your machine:

```
[<submit>] <type>.<name>.run
```

[<submit>] is something like: {llsubmit,qsub}

Note: <u>Before</u> (!) running an experiment, the ICON grids must be available to the model. For this purpose, either pre-built grids and ExtPar Data can be used (see Sec. 1.6) or create own grids (1.7). For a new user, it is suggested to use pre-built grids first.

1.6 Pre-built Grids and ExtPar Data

A list of grid files has been pre-built for the ICON model together with the corresponding reduced radiation grids and the external parameters.

1. The **primary storage** location for ICON grids is

```
blizzard:/pool/data/ICON/grids/public
```

- 2. Every 24h the contents of the primary storage directory are mirrored to DWD's HPC.
- 3. Every 24h the contents of the primary storage directory are mirrored to a public web site: http://icon-downloads.zmaw.de.

Each grid file consists of a NetCDF file and a GPG signature file (http://de.wikipedia.org/wiki/GNU_Privacy_Guard).

The signature file makes sure that a grid file is complete and verifies the authorship.

1.6.1 Grid file nomenclature

The grids are identified by

• a **centre** number

- a **subcentre** number
- a numberOfGridUsed which is simply an integer number, increased by one with every new 'official' grid.

The grid files and the external parameter files are named accordingly, e.g.,

```
icon_grid_0001_RxxByy_G.nc
icon_extpar_0001_RxxByy_G.nc
```

where the name components are as follows:

The numberOfGridUsed parameter is part of the file name (0001, ...) and makes this file name unique.

In general, a lookup table is required to find the actual file name to which a set of these parameters corresponds. This 'table file' is located under

```
http://icon-downloads.zmaw.de/dwd_grids.xml
```

(the table file itself is under version control: https://svn.zmaw.de/svn/icon_grid_table).

1.7 Grid Generation

1.7.1 ICON atmosphere grids

The ICON horizontal spherical grid is based on the projection of the icosahedron on the sphere. This is a 2-dimensional grid, representing the earth's surface. For defining the vertical discretization see the Experiments section. The ICON grids need to be created, stored as NetCDF files, and consequently used by the ICON model. Alternatively, already stored grids maybe used.

The initial icosahedron grid is refined by <n>-secting the edges, and further refinement is obtained by iteratively bisecting the created edges. The grid produced at the <k>refining iteration is named "R<n>B<k>", and the corresponding NetCDF-file is "iconR<n>B<k>-grid.nc". The grid files, after their creation, are located in the ./grids folder.

Examples of grids are in Grids. More information can be found in \$ICONDIR/doc/technical/icon_grid.pdf

1.7.2 Creating atmosphere grids

The descriptor file for creating the atmosphere grids is ./run/grid.create_atmo_grids. It generates 5 levels of icon grids using spring dynamics and symmetry optimizations. In addition it creates an hierarchy of three nested grids for the exp.nat_jww_nwp_mpiomp experiment (source: \$ICONDIR/run/exp.nat_jww_nwp_mpiomp).

For creating the run script \$ICONDIR/run/grid.create_atmo_grids.run, give

```
./make_runscripts
```

To submit it, go to \$ICONDIR/run and give

```
[<submit>] grid.create_atmo_grids.run
```

See chapter 1.5 how to generate run scripts for more information on creating and running scripts.

After running the grid.create_atmo_grids.run, the NetCDF-grid-files will be located in the \$ICONDIR/grids folder.

Note that the grid generator is only OpenMP parallelized and not MPI parallelized.

1.7.3 Atmosphere grid generation parameters

In the beginning of the descriptor file \$ICONDIR/run/grid.create_atmo_grids the basic atmosphere grid generation parameters are defined:

The script variable no_of_levels defines the number of bisecting iterations (after the initial bisection), and determines the horizontal resolution. It is set to no_of_level=5, giving in the highest resolution the triangular grid R2B05 of 81920 triangles, with a mean distance of 70 km between triangle circumcenters, where scalars are defined. You may increase the resolution by increasing the no_of_levels.

1.7.4 Information contained in grid files

The ICON grids are treated as a general unstructured grid, so the grid NetCDF-files contain the full information of the location and the connectivity of all the grid entities (cells, edges and vertices). The grid nesting hierarchy information is also included.

Some basic variables that may be useful for plotting are:

```
double clon(cell)
                                 : longitude of cell centers [radian]
double clat(cell)
                                 : latitude of cell centers [radian]
                                 : longitudes of the vertices of the cell [radian]
double clon_vertices(cell, nv)
double clat_vertices(cell, nv)
                                 : latitudess of the vertices of the cell [radian]
double elon(edge)
                                 : longitude of edge midpoint [radian]
double elat(edge)
                                 : latitude of edge midpoint [radian]
double elon_vertices(edge, no)
                                 : longitudes of the vertices of the edges [radian]
                                 : latitudes of the vertices of the edges [radian]
double elat_vertices(edge, no)
double vlon(vertex)
                                 : longitude of vertices [radian]
double vlat(vertex)
                                 : latitude of vertices [radian]
double cell_area(cell)
                                 : area of grid cell [m2]
double cell_elevation(cell)
                                 : elevation at the cell centers [m]
int
       cell_sea_land_mask(cell): sea (-2 inner, -1 boundary)
                                   land (2 inner, 1 boundary) mask for the cell
double edge_length(edge)
                                 : lengths of edges of triangular cells [m]
double dual_edge_length(edge)
                                : lengths of dual edges (distances between
                                   triangular cell circumcenters) [m]
. . .
```

For a full listing of variables contained in a grid file, for instance in iconR2B04-grid.nc, use:

```
or
cdo sinfov iconR2B04-grid.nc
```

ncdump -h iconR2B04-grid.nc

More details on the grid fields can be found here.

1.7.5 Viewing/plotting grids

In order to plot an icon grid you should ensure that ncl-6.0 and cdo-1.5.4 is available on your machine. Then go to the \$ICONDIR/grids/ folder and give:

```
alias iplot="ncl $ICONDIR/scripts/postprocessing/tools/icon_plot.ncl
'altLibDir="$ICONDIR/scripts/postprocessing/tools/"'" iplot 'iFile="<grid file name>"'
'mapType="ortho"' 'varName="cell_sea_land_mask"' 'oType="png"' 'showGrid=True'
'lStrg="Cell sea land mask"' 'bStrg=""'
```

The above example will plot cell sea land mask. More details on plotting can be found at the Visualization chapter.

The \$ICONDIR/run/post.plot_icon_grids script can be used to plot nested grids. Go to \$ICONDIR/run/ folder and give:

```
./post.plot_icon_grids
```

A PDF-file with a plot of the iconR2B04_DOM01 and iconR2B05_DOM02 grids will appear on your screen. (Note that this process is time consuming.)

Discussion

Document last edited by S Gruber on 08-01-2014 Document last edited by B Vogel on 27-05-2014.

2 Output

In general the user has to specify six individual quantities to generate output of the model. These are:

- 1. The time interval between two model outputs.
- 2. The name of the output file.
- 3. The name of the variable.
- 4. The procedure (eg. single variable, or a variable group).
- 5. The type of the vertical output grid (e.g. pressure levels or model levels).
- 6. The type of the horizontal output grid (e.g. ICON grid or geographical coordinates).

ICON offers the possibility to write groups of variables. In the following we will present two examples to demonstrate the options the user has to prescribe these quantities. A detailed description of all namelist parameters available to organize the output is described in output_nml in the namelist section.

Variable groups

First we explain the meaning of variable groups. Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

group:all output of all variables (caution: do not combine with mixed vertical interp
group:atmo_ml_vars basic atmospheric variables on model levels
group:atmo_pl_vars same set as atmo_ml_vars, but except pres
group:atmo_zl_vars same set as atmo_ml_vars, but expect height
group:nh_prog_vars additional prognostic variables of the nonhydrostatic model

group:atmo_derived_vars derived atmospheric variables

group:rad_vars
group:precip_vars
group:cloud_diag
group:pbl_vars

group:phys_tendencies

group:land_vars

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group.

ICON User's Guide – 1.6.00 CHAPTER 2. OUTPUT

Typing "-¡varname¿" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Example 1

We will begin with an individual variable which is written in NETCDF format on pressure levels and is interpolated to a horizontally regular lat-long grid:

```
NAMELIST EXAMPLE
&output_nml
filetype
                                   ! output format: 2=GRIB2, 4=NETCDFv2
                                   ! write output for domain 1
dom
{\tt output\_bounds}
                              0., 1.E7, 3600. ! start, end, interval in s.
                              50 ! max. num. of time steps within one file
steps_per_file
mode
                                   ! 1: forecast mode (relative t-axis)
include_last
                           = .TRUE. ! include the last time step
                           = '<INSERTFILENAME>' ! file name base
output_filename
                           = 'geopot' ! name of pressure level field
pl_varlist
remap
                                  ! output is transferred to lat long grid
reg_lon_def
                           = 0.,0.5,359.5
                                             !start, incr., end, in deg.
reg_lat_def
                           = 90.,-0.5, -90. !start, incr., end, in deg.
```

Example 2

The flexibility of the options ICON offers is demonstrated in another example. Now we apply another possibility to define the runtime of ICON, write several variables, at the same time, in one data set, on pressure levels, and on the original horizontal grid of ICON. In addition the example below shows the options when several model domains run at the same time and we want to produce output for all model domains.

```
NAMELIST EXAMPLE
&output_nml
dom
                                 -1! write all domains
                                5 ! max. num. of time steps within
steps_per_file
 output_start
                   = "1978-01-01T00:00:00Z" ! ISO-format date+time
                   = "1979-01-02T00:00:00Z" ! ISO-format date+time
 output_end
 output_interval = "PTO1H"
                                            ! ISO-format interval
                   = "PT01D"
 file_interval
                                            ! ISO-format interval
 include_last
                   = .FALSE.
 output_filename
                               = '<INSERTFILENAME>'
                                                       ! file name base
 ml_varlist='u', 'group:precip_vars' ! Indiv. variable and variable group
 output_grid
                   = .TRUE. ! Output on the ICON horizontal grid
```

Data format

ICON offers the possibility to produce output either in NETCDF or GRIB2 format. This can be chosen by the namelist parameter filetype of the namelist &output_nml. New users are suggested to set filetype=4 in order to use NETCDF output.

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- stepType (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

A documentation of the official WMO GRIB2 code tables can be found on the website of WMO here.

In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2. The available output fields are listed in tabular form.

Asynchronous in- and output:

It is highly recommended that the asynchronous in- and output option of ICON is applied. In short this option reserves a number of processors for in- and output only. While reading and writing the remaining processors continuously carry out calculations. Otherwise they would have to wait until in- or output is finished. The corresponding namelist parameter is:

```
&parallel_nml
num_io_procs = n
```

n is the number of processors used for in- and output.

Time stamp format

The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications.

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- 2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0;=nmon;=12, 0;=nhr;=23,

2.1. EXTRA OUTPUT 22

 0_i =nmin $_i$ =59, 0_i =nsec $_i$ =59.999. For instance use "PO1D" instead of "PT24H", or "PT01M" instead of "PT60S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

2.1 Extra output

- 1. In the namelist run_ctl set the number of fields with inextra_2d or inextra_3d. The logical variable for output lwrite_extra then will be set automatically. Note, the number of extra fields is limited by 9 each for 2D and 3D.
- 2. USE these variables in the module needed.
- 3. Implement the storage of wished fields by using the nonhydrostatic diagnostic type with p_diag%extra_2d/3d.

Example for the use of p_diag%extra_2d:

```
USE mo_global_variables, ONLY: inextra_2d
...
   DO jc = i_startidx, i_endidx
p_diag\%extra_2d(jc,jb,1)= yxz(jc,jb)
   ENDDO
```

ICON User's Guide – 1.6.00 CHAPTER 2. OUTPUT

2.1. EXTRA OUTPUT 23

Discussion

Document last edited by I. Kraut on 29.11.2013 Document last edited by S Gruber on 08-01-2014 Document last edited by B Vogel on 27-05-2014 .

ICON User's Guide – 1.6.00 CHAPTER 2. OUTPUT

3 Visualization

Visualizing data on a non-regular grids is a task on its own, because the number of tools for solving such problem is very limited. NCL is one of them and we chose it as the main tool for ICON. On its website, you can find **several examples** of how to write simple plot scripts for ICON data sets. The coordinate information is essential for writing your own plot scripts. ICON output files currently have three different types of them: cells, edges and vertices, e.g. tracers like temperature and salinity and surface elevation are defined on each cell center while the normal velocity is defined on edges.

3.1 icon_plot.ncl

For getting around the different coordinates and in order not to rewrite things there is a general plot scripts: icon_plot.ncl. It supports contour and vector plots, a combination of both via overlaying and vertical sections. Both atmosphere and ocean vertical coordinate systems can be handled by it: While ocean uses a plain depth axes, atmosphere model uses hybrid sigma pressure levels (hydrostatic) and free 3D height variable (non-hydrostatic).

The script icon_plot.ncl is a single NCL program, which provides multiple plot types for data on ICON's grid. It is located in the ICON-repository under source:/trunk/icon-dev/scripts/postprocessing/tools/icon_plot.ncl. Most of the functionality is implemented in a library: icon_plot_lib.ncl located in source:/trunk/icon-dev/scripts/postprocessing/tools/icon_plot_lib.ncl. Both files are installed into the /pool/data/ICON/tools which is the default lookup location for the library. For different location like an icon checkout, use altLibDir, e.g. altLibDir='"/home/user/src/icon-dev/tools"'.

3.1.1 Requirements

- NCL 5.2.1 is the minimum version of NCAR's plotting language
- CD0

3.1.2 Customization

icon_plot.ncl optionally reads a configuration file named \$HOME/.icon_plot.rc where default options can be set. Actually it is handled like an ordinary ncl file. This can be used to customize the altLibDir setting, e.g.:

altLibDir="/home/ram/src/git/icon/scripts/postprocessing/tools"
oType="png"

3.1.3 Basic command line option

Required are options for

1. **Input/output files**: Use the variable iFile for defining the input and oFile for the output file. It's extension depends on the output type, which can be set with oType. If oFile is left out, the output file will inherit its name from the input file.

2. Variable selection: Depending on the plot mode you like to use, varName for scalar variables or vecVars for vector-variables must be uses.

Optional (default:0) parameter are

- 1. Level selection: Levels can only be selected by their index. That's why, the corresponding variables is called levIndex. Please note that it starts with 0, like any other NCL indices.
- 2. **Time selection**: Like levIndex, the variable **timeStep** can be used to select a certain time step, again starting from 0.

There are many more parameters (see 3.1.8) for mapping, transections, selecting regions and masking, but these are the most fundamental ones.

3.1.4 Plot Types

For flexibility the selection of a specific plot mode is implemented by combining certain options.

Contour plots

Contour plot are the default plot mode. If only the require parameters are set, e.g. iFile and varName, a simple contour plot is created with

```
ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"'
```

This is a basic temperature plot. Captions are set to basic information like variable name, time and level information and input filename.

Vector plots

Use vecVars instead of varName. To adjust the length of the reference vector, use the variable vecRefLength.

```
ncl icon_plot.ncl 'vecVars="U V"' 'iFile="iFILENAME"' vecRefLength=0.01
```


Prgr icon_plot.ncl: Wed Nov 30 14:28:49 CET 2011,ram

Figure 3.1: Example of contour plot

Prgr icon_plot.ncl: Wed Nov 30 14:39:10 CET 2011,ram

Figure 3.2: Example of vector plot

Overlay of scalar and vector variables

Contour and vector plots can be combined into a single plot by overlaying both. Following this approach, such an overlay plot will be created, if varName and vecVars are given:

ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"' 'vecVars="U V"'

Prgr icon_plot.ncl: Wed Nov 30 14:51:24 CET 2011,ram

Figure 3.3: Example of overlay plot

Vertical sections

Data for sections have to be interpolated first. This is done internally and you do not have to care about it. Section plot are created, if a start and and end point of a section is given. For this purpose, the variables secLC (section-left-corner) and secRC (section-right-corner) have to be used. Theses variable have to be (lon,lat) arrays like secLC=(/20.,30./).

Example call:

```
ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"' \
    'secLC=(/0,80/)' 'secRC=(/0,-80/)'
```

secPoints is an option to set the accuracy of the plot. The representing of the location of the section is suppressed by setting showSecMap=False. Its default value is True.

Prgr icon_plot.ncl: Wed Nov 30 15:05:50 CET 2011,ram

Figure 3.4: Example of vertical sections plot

Display the ICON grid

Set the parameter showGrid to True and for scalar variables, the ICON grid is represented instead of the contour plot. For large grids, this can take a long time.

3.1.5 Regional plots

Use the variables mapLLC (map-Lower-Left-Corner) and mapURC (map-Upper-Right-Corner) to select special regions of the earth. Here is a list of useful examples:

Table 3.1: Examples of useful regional plots

Trop. Atlantic	'mapLLC=(/-60, -25/)'	'mapURC=(/ 25,25/)'
North Polar	'mapLLC=(/-200, 20/)'	'mapURC=(/160,90/)'
North Atlantic	'mapLLC=(/-100,-15/)'	'mapURC=(/ 35,65/)'
Labrador/Panama	'mapLLC=(/-200, -5/)'	'mapURC=(/ 35,85/)'
North Atlantic/Eurasia	'mapLLC=(/ -80, -5/)'	'mapURC=(/ 75,85/)'
Asia	'mapLLC=(/ 20,-15/)'	'mapURC=(/160,85/)'

3.1.6 Masking

Masking can be done in two different ways:

1. Manually mask the data with CDO before running the plot scripts, i.e. use the ifthen operator or perform a division with the mask variable:

```
cdo div iconInput.nc -selname,mask_variable iconInput.nc maskedOutput.nc
```

2. Let the plot script perform the masking using the NCL's mask function. For this purpose, the commandline variables maskName and maskFile have to be used. If the mask variable is part of the regular input file, maskFile can be left out.

Both methods have their pros and cons. Whereas the second methods works fine for all types of horizontal representation, the first produces better results for vertical cross sections.

3.1.7 Data on other grids

Although icon_plot.ncl is implemented for ICON, it can be used for data an regular grids, too. In this case, internal interpolation is not performed.

3.1.8 All options

icon_plot.ncl has built-in documentation of all options. Use

```
ncl icon_plot.ncl help=True
```

3.2 ncview/GrADS

Ncview and GrADS can be used after converting icon data sets to a regular grid. This can easily be done with cdo:

```
cdo -P 8 -r remapnn,r180x90 icon.nc regular_icon.nc
```

This uses nearest neighbor interpolation and hereby keeps the model values. When using a higher regular resolution the triangular icon grid keeps visible.

3.3 Other Possibilities

- $\bullet\,$ GMT is useful, when the grid should be visualized.
- ParaView is an alternative to display data on an unstructured grid. As a caveat, the model output has first to be converted into the vtk format.

Discussion

Document last edited by $I.\ Kraut$ on 29.11.2013. Note: -

4 ICON Namelists Overview

4.1 Namelist Annotation

Every ICON run generates annotated lists of namelist parameters during the setup. These lists are written to text files nml.atmo.log, nml.cpl.log, nml.ocean.log and have the following form:

```
NAMELIST IO_NML
OUT_EXPNAME 'case4 [...]' (truncated)
>> DEFAULT: 'IIIEEETTTT [...]' (truncated)
OUT_FILETYPE 2
LKEEP_IN_SYNC F
DT_DATA 43200.00000000000000000
DT_DIAG 1728000.00000000000
>> DEFAULT: 21600.00000000000
>> DEFAULT: 86400.000000000000
```

and so on.

The DEFAULT annotation denotes all those parameters that have been modified by the user; in this case the default value of the namelist parameter is stated together with the modified value. All other namelist parameters are listed only with their default values.

4.2. ICON NAMELISTS 33

4.2 ICON Namelists

4.2.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the grid generation and the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Table 4.1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	create_global_grids.run	grid_command
$NAMELIST_GRID$	Generate grids	create_global_grids.run	grid_command
$NAMELIST_GRIDREF$	Gen. nested domains	create_global_grids.run	grid_command
NAMELISTICON	Run ICON models	exp.jnamej.run	control_model

4.2.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
 - Default is the preset value, if defined, that is assigned to this parameter within the programs.
- Unit shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

4.3 Namelist parameters for grid generation

4.3.1 Namelist parameters defining the atmosphere grid

graph_ini (NAMELIST_GRAPH)

Parameter	Type	Default	Unit	Default Unit Description	Scope
nroot	I	2		root subdivision of initial edges	
$\operatorname{grid_levels}$	I	4		number of edge bisections following the root	
				subdivision	
lplane	П	.FALSE.		switch for generating a double periodic planar	
				grid. The root level consists of 8 triangles.	

Defined and used in: src/grid_generator/mo_io_graph.f90

grid_ini (NAMELIST_GRID)

		٠			
Parameter	Type	Default	Unit	Default Unit Description	Scope
nroot	I	2		root subdivision of initial edges	
grid_levels	ı	4		number of edge bisections following the root	
				subdivision	
Iplane	ı	.FALSE.		switch for generating planar grid. The root	
				level consists of 8 triangles.	

Defined and used in: src/grid_generator/mo_grid_levels.f90

grid_options (NAMELIST_GRID)

Parameter	Type	Default	Unit	Description	Scope
${ m x_rot_angle}$	m R	0.0	deg	Rotation of the icosahedron about the x-axis	
				(connecting the origin and $[0^{\circ}E, 0^{\circ}N]$)	
y_rot_angle	R	0.0	deg	Rotation of the icosahedron about the y-axis	
				(connecting the origin and $[90^{\circ}\text{E}, 0^{\circ}\text{N})$, done	
				after the rotation about the x-axis.	
z_rot_angle	$_{ m R}$	0.0	deg	rotation of the icosahedron about the z-axis	
				(connecting the origin and $[0^{\circ}E, 90^{\circ}N)$, done	
				after the rotation about the y-axis.	
itype_optimize	I	4		Grid optimization type	
				0: no optimization	
				1: Heikes Randall	
				2: equal area	
				3: c-grid small circle	
				4: spring dynamics	
$_{ m l-c_grid}$	Г	FALSE.		C-grid constraint on last level	

Parameter	Type	Default	Unit	Description	Scope
maxlev_optim	Ι	100		Maximum grid level where the optimization is	$i_{\text{-type-optimize}} = 1 \text{ or}$
				applied	4
beta_spring	R	0.90		tuning factor for target grid length	$i_{type_optimize} = 4$

Defined and used in: src/grid_generator/mo_grid_levels.f90

plane_options (NAMELIST_GRID)

Type	Default	Unit	Description	Scope	
\mathbf{R}	10.0	km	length of triangle edge on plane	lplane=.TRUE.	

The number of grid points is generated by root level section and further bisections. The double periodic root level consists of 8 triangles. The spatial coordinates are $-1 \le x \le 1$, and $-\sqrt{3}/2 \le y \le \sqrt{3}/2$. Currently the planar option can only be used as an f-plane.

Defined and used in: src/grid_generator/mo_grid_levels.f90

gridref_ini (NAMELIST_GRIDREF)

Parameter	Type	Default	fault Unit	Description S	Scope
grid_root	I	2		root subdivision of initial edges	
start_lev	I	4		number of edge bisections following the root	
				subdivision	
mop-u	Ι	2		number of logical model domains, including the	
				global one	
n_phys_dom	I	n_dom		number of physical model domains, may be	
				larger than n-dom (in this case, domain	
				merging is applied)	

Parameter	Type	Default	Unit	Description	Scope
parent_id	I(n-phys-	1.		ID of parent domain (first entry refers to first	
	dom-1			nested domain; needs to be specified only in	
				case of more than one nested domain per grid	
				level)	
logical_id	I(n-phys-	<u>i+1</u>		logical grid ID of domain (first entry refers to	
	dom-1			first nested domain; needs to be specified only	
				in case of domain merging, i.e. n_dom <	
				n-phys-dom)	
l_plot	Г	.FALSE.		produces GMT plots showing the locations of	
				the nested domains	
l_circ	Г	.FALSE.		Create circular (.T.) or rectangular (.F.)	
				refined domains	
l_rotate	Г	.FALSE.		oint into the equator in case of	lcirc=.FALSE.
				$1_{\text{circ}} = .\text{FALSE}.$	
write_hierarchy	I	1		0: Output only computational grids	
				1: Output in addition parent grid of global	
				model domain (required for computing physics	
				on a reduced grid)	
				2: Output all grids back to level 0 (required for	
				hierarchical search algorithms)	
bdy_indexing_depth	I	12		Number of cell rows along the lateral boundary	
				of a model domain for which the refin_ctrl fields	
				contain the distance from the lateral boundary;	
				needs to be enlarged when lateral boundary	
				nudging is required for one-way nesting	
radius	$R(n_{-}dom-$	30.	deg	radius of nested domain (first entry refers to	lcirc=.TRUE.
	1)			first nested domain; needs to be specified for	
				each nested domain separately)	
hwidth_lon	R(n_dom-	20.	deg	zonal half-width of refined domain (first entry	lcirc=.FALSE.
	1)			refers to first nested domain; needs to be	
		_		specified for each flessed domain separately)	

Parameter	Type	Default	Unit	Default Unit Description	Scope
hwidth_lat	$R(n_{-}dom_{-})$	20.	deg	meridional half-width of refined domain (first	lcirc=.FALSE.
	1)			entry refers to first nested domain; needs to be	
				specified for each nested domain separately)	
$center_lon$	R(n_dom-	30.	deg	center longitude of refined domain (first entry	
	1)			refers to first nested domain; needs to be	
				specified for each nested domain separately)	
$center_lat$	R(n_dom-	90.	deg	center latitude of refined domain (first entry	
	1)			refers to first nested domain; needs to be	
				specified for each nested domain separately)	

Defined and used in: ${\tt src/grid_generator/mo_gridrefinement.f90}$

gridref_metadata (NAMELIST_GRIDREF)

Scope			е					0			
Description	sets the number of grid used in the netcdf	header; the number of entries must be	n-dom+1 since the first number refers to the	radiation grid	centre running the grid generator	78: EDZW (DWD)	252: MPIM	subcentre to be assigned by centre, usually 0	Output name style	1: Standard: iconRXBXX_DOMXX.nc	\mid 2: DWD: $icon_grid_XXXX_RXXBXX_X.nc$
Unit											
Default	0				0			0	1		
Type	+mop-u)I	1)			I			I	I		
Parameter	number_of_grid_used				centre			subcentre	$outname_style$		

Defined and used in: src/grid_generator/mo_gridrefinement.f90

4.4 Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

4.4.1 coupling_nml

Parameter	Type	Default	Unit	Description Scope	bpe
name	C	blank		short name of the coupling field	
dt_coupling	I	0	œ	coupling time step / coupling interval	
dt_model	I	0	œ	model time step	
lag	I	0		offset to coupling event in number of model	
				time steps	
1_time_average	П	.FALSE.		.TRUE.: time averaging between two coupling	
				events	
1_time_accumulation	П	.FALSE.		.TRUE.: accumulation of coupling fields in	
				time between two coupling events	
l_diagnostic	П	.FALSE.		.TRUE.: simple diagnostics (min, max, avg) for	
				coupling fields is switched on	
l_activated	Γ	FALSE.		.TRUE.: activate the coupling of the respective	
				coupling field	

Defined and used in: src/namelists/mo_coupling_nml.f90

4.4.2 diffusion_nml

Parameter	Type	Default	Unit	Description	Scope
lhdiff_temp	Г	.TRUE.		Diffusion on the temperature field	
lhdiff_vn	Г	TRUE.		Diffusion on the horizontal wind field	

Order of V operator for diffusion: 1. In odiffusion (not available for NH model on triangles!) 3. Smagorinsky ∇^2 diffusion (includes frictional heating for the hexagonal model if the diff_temp=.TRUE.) 4. ∇^4 diffusion 5. Smagorinsky ∇^2 diffusion combined with ∇^4 background diffusion as specified via hidiff_efdt_ratio 5. Smagorinsky ∇^2 diffusion from model top to a background diffusion from model top to a allowed only in the hidiff_efdt_ratio 24 or 42: ∇^2 diffusion from model top to a allowed only in the below); ∇^4 for the lower levels. Beconstruction method used for Smagorinsky diffusion: 1. u/v reconstruction at vertices only 2. u/v reconstruction at cells and vertices Discretization of temperature diffusion: 1. $K_h \nabla^2 T$ 2. $\nabla \cdot (K_h \nabla T)$ Bressure level above which ∇^2 diffusion is hdiff_order = 24 or 42,
$\lim_{\mathfrak{k}} \mathbf{k}$
max sky
max sky
sky
sky
sky
sky
diffusion: 1: u/v reconstruction at vertices only 2: u/v reconstruction at cells and vertices Discretization of temperature diffusion: 1: $K_h \nabla^2 T$ 2: $\nabla \cdot (K_h \nabla T)$ Pressure level above which ∇^2 diffusion is hdiff_order = 24 or this force.
and dynam-
ics_nml:iequations = 1

Parameter	Type	Default	Unit	Description	Scope
k2_klev_max	I	0		Index of the vertical level till which (from the	hdiff_order = 24 or 42 ,
				model top) ∇^2 diffusion is applied. If a positive	and dynam-
				value is specified for k2_pres_max, k2_klev_max	ics_nml:iequations = 1
				is reset accordingly during the initialization of	or 2.
				a model run.	
hdiff_efdt_ratio	R	1.0		ratio of e-folding time to time step (or 2* time	
		(hydro)		step when using a 3 time level time stepping	
		36.0		scheme) (for triangular NH model, values above	
		(NH)		30 are recommended when using hdiff_order=5)	
hdiff_w_efdt_ratio	R	15.0		ratio of e-folding time to time step for diffusion	iequations=3
				on vertical wind speed	
hdiff_min_efdt_ratio	R	1.0		minimum value of hdiff_efdt_ratio near model	iequations=3 .AND.
				top	hdiff_order=4
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for temperature	
				and normal wind: $T:v_n$	
hdiff_multfac	R	1.0		Multiplication factor of normalized diffusion	n_dom>1
				coefficient for nested domains	
${ m hdiff_smag_fac}$	R	0.15		Scaling factor for Smagorinsky diffusion	iequations=3
		(hydro)			
		0.015			
		(NH)			

Defined and used in: src/namelists/mo_diffusion_nml.f90

4.4.3 dynamics_nml

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	_	က		Equations and prognostic variables. Use	
				positive indices for the atmosphere and	
				negative indices for the ocean.	
				0: shallow water model	
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ -dp	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv_method	Н	1		Method for divergence computation:	
				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged normal	
				components	
				Non-hydrostatic atm. model: for averaged	
				normal components	
				2: bilinear averaging of divergence	
g-cntrwgt	R	0.5		Weight of central cell for divergence averaging	$idiv_method = 2$
lcoriolis	J	TRUE.		Coriolis force	
$\mathrm{sw_ref_height}$	R	*6.0	m	Reference height of shallow water model used	
		2.94e4/g		for linearization in the semi-implicit time	
				stepping scheme	

Defined and used in: src/namelists/mo_dynamics_nml.f90

4.4.4 echam_conv_nml

Scope	Choice of cumulus convection scheme. $ $ iforcing = 2 .AND.	le $ \text{conv} = .\text{TRUE}.$	ď	
Description	Choice of cumulus	1: Nordeng scheme	2: Tiedtke scheme	3: hybrid scheme
Unit				
Default	1			
Type	I			
Parameter	iconv			

Parameter	Type	Default	Unit	Description	Scope
ncvmicro	I	0		Choice of convective microphysics scheme.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfpen	Г	TRUE.		Switch on penetrative convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfmid	L	TRUE.		Switch on midlevel convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfdd	П	TRUE.		Switch on cumulus downdraft.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfdudv	Γ	TRUE.		Switch on cumulus friction.	iforcing $= 2$.AND.
					lconv = .TRUE.
cmftau	R	10800.		Characteristic convective adjustment time	iforcing $= 2$.AND.
				scale.	lconv = .TRUE.
cmfctop	R	0.3		Fractional convective mass flux (valid range	iforcing $= 2$.AND.
				[0,1]) across the top of cloud	lconv = .TRUE.
cprcon	R	1.0e-4		Coefficient for determining conversion from	iforcing $= 2$.AND.
				cloud water to rain.	lconv = .TRUE.
cminbuoy	R	0.025		Minimum excess buoyancy.	iforcing $= 2$.AND.
					lconv = .TRUE.
entrpen	R	1.0e-4		Entrainment rate for penetrative convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
dlev	R	3.e4	Pa	Critical thickness necessary for the onset of	iforcing $= 2$.AND.
				convective precipitation.	lconv = .TRUE.
				•	

Defined and used in: src/namelists/mo_echam_conv_nml.f90

4.4.5 echam_phy_nml

Parameter	Type	Default	Unit	Description	Scope
lrad	Г	.TRUE.		Switch on radiation.	iforcing $= 2$
lvdiff	J	.TRUE.		Switch on turbulent mixing (i.e. vertical	iforcing $= 2$
				diffusion).	
lconv	Г	TRUE.		Switch on cumulus convection.	iforcing $= 2$
lcond	Г	TRUE.		Switch on large scale condensation.	iforcing $= 2$
icover	I	1		1 = diagnostic Sunquist cloud cover scheme,	iforcing $= 2$
				2 = prognostic Tompkins cloud cover scheme.	Note: icover = .TRUE.
					runs, but has not been
					evaluated (yet) in
					ICON.
lgw_hines	Г	TRUE.		.TRUE. for atmospheric gravity wave drag by	iforcing $= 2$
				the Hines scheme	
Issodrag	Γ	TRUE.		.TRUE. for subgrid scale orographic drag	iforcing $= 2$
llandsurf	Γ	FALSE.		TRUE. for surface exchanges	iforcing $= 2$
					Not implemented yet
lice	Γ	FALSE.		.TRUE. for sea-ice temperature calculation	iforcing $= 2$
					Not implemented yet
Imeltpond	Г	FALSE.		TRUE. for calculation of meltponds	iforcing $= 2$
					Not implemeted yet
lhd	Г	FALSE.		.TRUE. for hydrologic discharge model	iforcing $= 2$
					Not implemeted yet
lmlo	Γ	FALSE.		TRUE. for mixed layer ocean	iforcing $= 2$
					Not implemented yet
ljsbach	Г	FALSE.		.TRUE. for calculating the JSBACH land	iforcing $= 2$
				surface	Not implemeted yet
lamip	ı	FALSE.		TRUE. for AMIP simulations	iforcing $= 2$
					Not implemented yet
dt_rad	R	3600.	w	time interval of full radiation computation	$run_nml/iforcing =$
					iecham

Defined and used in: src/namelists/mo_echam_phy_nml.f90

4.4.6 gribout_nml

Parameter	Type	Default	Unit	Description	Scope
preset	C	"none"		Setting this different to "none" enables a	filetype=2
				couple of defaults for the other gribout_nml	
				namelist parameters. If, additionally, the user	
				tries to set any of these other parameters to a	
				conflicting value, an error message is thrown.	
				Possible values are "none", "deterministic",	
				"ensemble".	
backgroundProcess	I	0		Background process	filetype=2
				- GRIB2 code table backgroundProcess.table	
generatingCenter	I	-1		Output generating center. If this key is not set,	filetype=2
				center information is taken from the grid file	
				DWD: 78	
				MPIMET: 98	
				ECMWF: 98	
generatingSubcenter	П	-1		Output generating Subcenter. If this key is not	filetype=2
				set, subcenter information is taken from the	
				grid file	
				DWD: 255	
				MPIMET: 232	
				ECMWF: 0	
generatingProcess	I(m-dom)	1		generating Process Identifier	filetype=2
Identifier				- GRIB2 code table	
				generatingProcessIdentifier.table	
numberOfForecastsIn-	I	-1		Local definition for ensemble products, (only set	filetype=2
Ensemble				if value changed from default)	

Parameter	Type	Default	Unit	Description	Scope
perturbationNumber	I	-1		Local definition for ensemble products, (only set	filetype=2
				if value changed from default)	
productionStatusOfPro-	I	1		Production status of data	filetype=2
				- GILLD COUG (GDIC 1.5	
significanceOfReference-	I	1		Significance of reference time	filetype=2
				- GRIB2 code table 1.2	
typeOfEnsembleForecast	Ι	7		Local definition for ensemble products (only set	${ m filetype=2}$
				if value changed from default)	
typeOfGeneratingPro-	Ι	-1		Type of generating process	filetype=2
				- GRIB2 code table 4.3	
typeOfProcessedData	I	-1		Type of data	filetype=2
				- GRIB2 code table 1.4	
localDefinitionNumber	I	-1		local Definition Number	filetype=2
				- GRIB2 code table	
				grib2LocalSectionNumber.78.table	
localNumberOfExperi-	Ι	1		local Number of Experiment	filetype=2
localTypeOfEnsemble-	Ι	-1		Local definition for ensemble products (only set	filetype=2
				if value changed from default)	
lspecialdate_invar	Γ	FALSE.		Special reference date for invariant and	filetype = 2
				climatological fields	
				.TRUE.: set special reference date 0001-01-01,	
				00:00	
				.FASLE.: no special reference date	
ldate_grib_act	L	TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout_24bit	Г	FALSE.		If TRUE, write thermodynamic fields ρ , θ_v , T ,	filetype=2
				p with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

is_plane_torus=.TRUE. lplane=.TRUE. and $n_dom>1$ $n_dom>1$ $n_dom>1$ Time when a nested domain starts to be active off feedback for all nested domains; to turn off Note: vertical nesting requires option 2 to run performed. Setting Ifeedback(1)=.false. turns The angular velocity will be divided by this f(1)=true and set ".false." for the numerically stable over longer time periods feedback for selected nested domains, set f-plane approximation on triangular grid namelist entry is ignored for the global The geometry and the timestep will be Center of the f-plane is located at this Specifies if feedback to parent grid is The angular velocity in rad per sec. 2: relaxation-based feedback multiplied by this factor. 1: incremental feedback desired model domains geographical latitude Cell type: not used planar option Description domain) factor. rad/sUnit \deg $\mathbf{\alpha}$ FALSE. FALSE. FALSE. Earth's Default TRUE. S 0 $L(n_{-dom})$ $R(n_{-dom})$ Type L R \mathbb{Z} L R grid_angular_velocity grid_rescale_factor |_limited_area ifeedback_type is_plane_torus **lfeedback** \overline{P} arameter start_time cell_type corio_lat lplane

4.4.7 grid_nml

Parameter	Type	Default	Unit	Description	Scope
end_time	R(n_dom)	1.E30	w	Time when a nested domain terminates	n_dom>1
				(namenst entry is ignored for the global domain)	
patch_weight	$R(n_{-dom}) 0.$	0.		If patch-weight is set to a value > 0 for any of	n_dom>1
				the first level child patches, processor splitting	
				will be performed, i.e. every of the first level	
				child patches gets a subset of the total number	
				or processors corresponding to its	
				patch_weight. A value of 0. corresponds to	
				exactly 1 processor for this patch, regardless of	
				the total number of processors. For the root	
				patch and higher level childs, patch_weight is	
				not used. However, patch-weight must be set to	
				0 for these patches to avoid confusion.	
lredgrid_phys	L	FALSE.		If set to .true. radiation is calculated on a	
				reduced grid (= one grid level higher)	
${\bf dynamics_grid_}$	C			Array of the grid filenames to be used by the	
filename				dycore. May contain the keyword <path></path>	
				which will be substituted by model_base_dir.	
${f dynamics_parent_}$	I(n-dom)	i-1		Array of the indexes of the parent grid	
grid_id				filenames, as described by the	
				dynamics-grid-filename array. Indexes start at	
				1, an index of 0 indicates no parent.	
${\rm radiation_grid_}$	C			Array of the grid filenames to be used for the	lredgrid_phys=.TRUE.
filename				radiation model. Filled only if the radiation	
				grid is different from the dycore grid. May	
				contain the keyword <path> which will be</path>	
				substituted by model_base_dir.	

Parameter	Type	Default	Unit	Description S	Scope
dynamics_radiation_g I(n_dom)	I(mob-n)I	1 for i=1		Array of the indexes linking the dycore grids,	
rid_link				as described by the dynamics_grid_filename	
				array, and the radiation_grid_filename array. It	
				provides the link index of the	
				radiation_grid_filename, for each entry of the	
				dynamics-grid filename array. Indexes start at	
				1, an index of 0 indicates that the radiation	
				grid is the same as the dycore grid. Only needs	
				to be filled when the radiation-grid-filename is	
				defined.	
create_vgrid	П	FALSE.		.TRUE.: Write vertical grid files containing	
				(vct_a, vct_b, z_ifc, and z_ifv.	
vertical_grid_filename	$C(n_{-dom})$			Array of filenames. These files contain the	
				vertical grid definition (vct_a, vct_b, z_ifc). If	
				empty, the vertical grid is created within ICON	
				during the setup phase.	
use_duplicated_	Г	TRUE.		if .TRUE., the zero connectivity is replaced by	
connectivity				the last non-zero value	
use_dummy_cell_closure	Г	FALSE.		if .TRUE. then create a dummy cell and	
				connect it to cells and edges with no neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

4.4.8 gridref_nml

arameter	Type	Default	Unit	-	Scope
:_nntmethod_c	1	N		Interpolation method for grid rennement (cell-based dynamical variables): 1: parent-to-child copying	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
grf_intmethod_ct	П	2		2: gradient-based interpolation Interpolation method for grid refinement	n_dom>1
				(cell-based tracer variables): 1: parent-to-child copying 2: gradient-based interpolation	
grf_intmethod_e	Н	9		Interpolation method for grid refinement (edge-based variables): 1: inverse-distance weighting (IDW) 2: RRF interpolation	n_dom>1
				3: combination gradient-based / IDW 4: combination gradient-based / RBF 5/6: comp. 26 3/4 reconcitively, but direct	
				of or same as of *, respectively, but uncer- interpolation of mass fluxes along nest interface edoes	
grf_velfbk	I	1		Method of velocity feedback:	n-dom>1
				1: average of child edges 1 and 2 2: 2nd-order method using RBF interpolation	
grf_scalfbk	П	2		Feedback method for dynamical scalar variables (T, p_{sfc}) :	n_dom>1
				1: area-weighted averaging 2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables: 1: area-weighted averaging 2: bilinear internolation	n-dom>1
grf_idw_exp_e12	R	1.2		exponent of generalized IDW function for child edges 1/2	n_dom>1
grf_idw_exp_e34	R	1.7		exponent of generalized IDW function for child edges 3/4	n_dom>1
rbf_vec_kern_grf_e	П			RBF kernel for grid refinement (edges): 1: Gaussian 2: $1/(1+r^2)$	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
				3: inverse multiquadric	
rbf_scale_grf_e	$ R(n_{-dom}) $ 0.	0.5		RBF scale factor for grid refinement (edges)	n_dom>1
denom_diffu_t	${ m R}$	135		Deniminator for lateral boundary diffusion of	$n_dom > 1$
				temperature	
denom_diffu_v	R	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	
l_mass_consvcorr	L	.FALSE.		.TRUE.: Apply mass conservation correction in	n_dom>1
				feedback routine	
1_density_nudging	L	.FALSE.		.TRUE.: Apply density nudging near lateral	n_dom>1 .AND.
				nest boundary if grf_intmethod_e ≤ 4	leedback = .TRUE.
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	n_dom;1 .AND.
					lfeedback = .TRUE.
					.AND. ifeedback_type
					=2

Defined and used in: src/namelists/mo_gridref_nml.f90

4.4.9 gw_hines_nml (Scope: lgw_hines = .TRUE. in echam_phy_nml)

Parameter	Type	Default	Unit	Default Unit Description	Scope
lheatcal	Г	FALSE.		.TRUE.: compute drag, heating rate and	
				diffusion coefficient from the dissipation of	
				gravity waves	
				.FALSE.: compute drag only	
emiss_lev	Ι	10		Index of model level, counted from the surface,	
				from which the gravity wave spectra are	
				emitted	
rmscon	R	1.0	s/m	Root mean square gravity wave wind at the	
				emission level	

Parameter	Type	Default Unit	Unit	Description	Scope
kstar	R	5.0e-5	1/m	Typical gravity wave horizontal wavenumber	
m-min	$_{ m R}$	0.0	$1/\mathrm{m}$	Minimum bound in vertical wavenumber	
lrmscon_lat	Γ	.FALSE.		.TRUE.: use latitude dependent rms wind	
				- —latitude— >= lat_rmscon: use rmscon	
				- —latitude— <= lat_rmscon_eq: use	
				rmscon_eq	
				- lat_rmscon_eq < —latitude— < lat_rmscon:	
				use linear interpolation between rmscon_eq and	
				rmscon	
				.FALSE.: use globally constant rms wind	
				rmscon	
lat_rmscon_eq	\mathbb{R}	5.0	deg N	rmscon_eq is used equatorward of this latitude	$lrmscon_lat = .TRUE.$
lat_rmscon	\mathbb{R}	10.0	deg N	rmscon is used polward of this latitude	$lrmscon_lat = .TRUE.$
rmscon_eq	R	1.2	m/s	is used equatorward of latitude lat_rmscon_eq	$lrmscon_lat = .TRUE.$

Defined and used in: src/namelists/mo_gw_hines_nml.f90

4.4.10 ha dvn nml

This namelist is relevant if run_nml:ldynamics=.TRUE and dynamics_nml:iequations=IHS_ATM_TEMP or IHS_ATM_THETA.

Parameter	Type	Default Unit	Unit	Description	Scope
itime_scheme	I	14		Time integration scheme:	
				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet	
				implemented)	
				13: 3 time level explicit	
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	

Parameter	Type	Default	Unit	Description	Scope
				16: SSPRK(5,4) scheme (5-stage)	
ileapfrog_startup	I	1		How to integrate the first time step when the	itime_scheme= $13 \text{ or } 14$
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; 2	
				= a series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	itime_scheme= $13 \text{ or } 14$
si_2tls	R	9.0		weight of time step $n+1$. Valid range: $[0,1]$	$itime_scheme=12$
si_expl_scheme	I	2		scheme for the explicit part used in the 2 time	itime_scheme=12
				level semi-implicit time stepping scheme. $1 =$	
				Euler forward; $2 = Adams$ -Bashforth 2nd order	
si_cmin	R	30.0	s/m	semi implicit correction is done for eigenmodes	itime_scheme=14 and
				with speeds larger than si_cmin	lsi_3d=.FALSE.
si_coeff	R	1.0		weight of the semi implicit correction	itime_scheme=14
si_offctr	R	0.7			itime_scheme=14
si_rtol	$_{ m R}$	1.0e-3		relative tolerance for GMRES solver	itime_scheme=14
lsi_3d	ı	.FALSE.		3D GMRES solver or decomposistion into 2D	lshallow_water=.FALSE.
				problems	and itime_scheme=14
$ldry_dycore$	Γ	TRUE.		Assume dry atmosphere	$iequations \in \{1,2\}$
$ m lref_temp$	T	.FALSE.		Set a background temperature profile as base	$iequations \in \{1,2\}$
				state when computing the pressure gradient	
				force	

4.4.11 initicon_nml

Parameter	Type	Default	Unit	efault Unit Description	Scope	
init_mode	I	2		1: start from DWD analysis		
				2: start from IFS analysis		
				3: combined mode: IFS atm + GME soil		
				4: start from COSMO-DE forecast		
dt_iau	R	10800	ß	Time interval during which an incremental	init_mode=5	
				analysis update (IAU) is performed		

Parameter	Type	Default	Unit	Description	Scope
rho_incr_filter_wgt	R	0	w	Vertical filtering weight on density increments	init_mode=5
type_iau_wgt	Н	-		Weighting function for performing IAU 1: Top-Hat	init_mode=5
nlevsoil in	H	4		z: MNZ number of soil levels of input data	init_mode=2
zpb11	$_{\rm R}$	500.0	m	bottom height (AGL) of layer used for gradient	
Ġ.	۲	0		computation	
ZbblZ	ж Ж	1000.0	m	top height (AGL) of layer used for gradient	
1.sst in	T	TRUE.		computation Logical switch. If true, the surface temperature	init_mode=2
				of the water sea points is initialized with the	
				SST provided in the ifs2icon file. If false, it is	
				initialized with the skin temperature. If the	
				SST is not provided in the ifs2icon file, l_sst_in	
				is reset to false.	
lread_ana	Γ	TRUE.		If .FALSE., ICON is started from first guess	init_mode=1,3
				only. Analysis field is not required, and skipped	
				if provided.	
l_coarse2fine_mode	$L(n_{-dom})$.FALSE.		If true, apply corrections for coarse-to-fine	
				mesh interpolation to wind and temperature	
ifs2icon_filename	C			Filename of IFS2ICON input file, default	init_mode=2
				" <path>ifs2icon_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<pre><idom>.nc". May contain the keywords <path></path></idom></pre>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	

Parameter	Type	Default	Unit	Description	Scope
dwdfg_filename	C			Filename of DWD first-guess input file, default	init_mode=1,3
				" <path>dwdFG_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords <path></path></idom>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	
dwdana_filename	C			Filename of DWD analysis input file, default	init_mode=1
				" <path>dwdana_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords <path></path></idom>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	
filetype	П	-1		One of CDI's FILETYPE_XXX constants.	
		(undef.)		Possible values: 2 (=FILETYPE_GRB2), 4	
		,		(=FILETYPE_NC2). If this parameter has not	
				been set, we try to determine the file type by	
				its extension "*.grb*" or ".nc".	
ana_varlist	C			List of mandatory analysis fields that must be	init_mode=1
				present in the analysis file. If these fields are	
				not found, the model aborts. For all other	
				analysis fields, the FG-fields will serve as	
				fallback position.	
ana_varnames_map_	C			Dictionary file which maps internal variable	
file				names onto GRIB2 shortnames or NetCDF var	
				names. This is a text file with two columns	
				separated by whitespace, where left column:	
				ICON variable name, right column: GRIB2	
				short name.	

Defined and used in: src/namelists/mo_initicon_nml.f90

4.4.12 interpol_nml

Parameter	Type	Default	Unit	Description Sc	Scope
l_intp_c2l	Τ	.TRUE.		If .TRUE. directly interpolate scalar variables	
				from cell centers to lon-lat points, otherwise do	
				gradient interpolation and reconstruction.	
l_mono_c2l	Γ	TRUE.		Monotonicity can be enforced by demanding	
				that the interpolated value is not higher or	
				lower than the stencil point values.	
llsq_high_consv	Γ	TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order	
				transport	
lsq-high_ord	I	3		polynomial order for high order reconstruction	
				1: linear libs	ihadv_tracer=4
				2: quadratic	
				30: cubic (no 3^{rd} order cross deriv.)	
				3: cubic	
llsq_lin_consv	Τ	.FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order	
				(linear) transport	
nudge_efold_width	R	2.0		e-folding width (in units of cell rows) for lateral	
				boundary nudging coefficient	
nudge_max_coeff	$_{ m R}$	0.02		Maximum relaxation coefficient for lateral	
				boundary nudging	
nudge_zone_width	I	∞		Total width (in units of cell rows) for lateral	
				boundary nudging zone. If i 0 the patch	
				boundary_depth_index is used.	
${ m rbf_dim_c2l}$	Ι	10		stencil size for direct lon-lat interpolation: $4 =$	
				nearest neighbor, $13 = \text{vertex stencil}$, $10 =$	
				edge stencil.	

Parameter	Type	Default	Unit	Description Sc	Scope
rbf_scale_mode_ll	I	2		Specifies, how the RBF shape parameter is determined for lon-lat interpolation.	
				1: lookup table based on grid level	
				2: determine automatically.	
				So far, this routine only estimates the smallest	
				value for the shape parameter for which the	
				Cholesky is likely to succeed in floating point	
				arithmetic.	
rbf_vec_kern_c	I	1		Kernel type for reconstruction at cell centres:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_e	I	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_ll	I	1		Kernel type for reconstruction at lon-lat-points:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_v	I			Kernel type for reconstruction at vertices:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_scale_c	R(ndom)	resolution-		Scale factor for RBF reconstruction at cell	
		dependent		centres	
rbf_vec_scale_e	R(ndom)	R(n-dom) resolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf_vec_scale_v	R(ndom)	R(n_dom) resolution-		Scale factor for RBF reconstruction at vertices	
		dependent			

Defined and used in: src/namelists/mo_interpol_nml.f90

4.4.13 io_nml

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	П	.FALSE.		Sync output stream with file on disk after each	
				timestep	
dt_diag	R	86400.	∞	diagnostic integral output interval	
${ m dt_checkpoint}$	$_{ m R}$	2592000	∞	Time interval for writing restart files. Note that	output /= "none"
				if the value of dt_checkpoint resulting from	(run_nml)
				model default or user's specification is longer	
				than time_nml:dt_restart, it will be reset (by	
				the model) to dt_restart so that at least one	
				restart file is generated during the restart cycle.	
inextra_2d	I	0		Number of extra 2D Fields for	dynamics_nml:iequations
				${\it diagnostic/debugging\ output.}$	= 3 (to be done for 1,
					2)
inextra_3d	Ι	0		Number of extra 3D Fields for	dynamics_nml:iequations
				diagnostic/debugging output.	= 3 (to be done for 1,
					2)
lflux_avg	Γ	.TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average values	
				from the beginning of the run, except of	
				TOT_PREC that would be accumulated	
itype_pres_msl	Ι	1		Specifies method for computation of mean sea	
				level pressure (and geopotential at pressure	
				levels below the surface).	
				1: GME-type extrapolation,	
				2: stepwise analytical integration,	
				3: current IFS method,	
				4: IFS method with consistency correction	

Parameter	Type	Default	Unit	Description	Scope
itype_rh	I	1		Specifies method for computation of relative	
				humidity	
				1: WMO-type: water only (e.s=e.s_water),	
				2: IFS-type: mixed phase (water and ice),	
				3: IFS-type with clipping $(rh \le 100)$	
output_nml_dict	D D			File containing the mapping of variable names	output_nml namelists
				to the internal ICON names. May contain the	
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
				The format of this file:	
				One mapping per line, first the name as given	
				in the ml_varlist, hl_varlist, pl_varlist or	
				il_varlist of the output_nml namelists, then	
				the internal ICON name, separated by an	
				arbitrary number of blanks. The line may also	
				start and end with an arbitrary number of	
				blanks. Empty lines or lines starting with #	
				are treated as comments.	
				Names not covered by the mapping are used as	
				they are.	

	Type	Default	Unit	Description	Scope
netcdf_dict	C	, ,		File containing the mapping from internal	output_nml namelists,
				names to names written to NetCDF. May	NetCDF output
				contain the keyword <pre><pre>contain the keyword <pre><pre>contain</pre></pre></pre></pre>	
				substituted by model_base_dir.	
				The format of this file:	
				One mapping per line, first the name written	
				to NetCDF, then the internal name, separated	
				by an arbitrary number of blanks (inverse to	
				the definition of output_nml_dict). The line	
				may also start and end with an arbitrary	
				number of blanks. Empty lines or lines starting	
				with $\#$ are treated as comments.	
				Names not covered by the mapping are output	
				as they are.	
				Note that the specification of output variables,	
				e.g. in ml_varlist, is independent from this	
				renaming, see the namelist parameter	
				output_nml_dict for this.	
lzaxis_reference	Г	TRUE.		FALSE: encode vertical axis as	GRIB2-output
				ZAXIS_HYBRID for 3D atmospheric fields	(ZAXIS_HYBRID will
				TRUE: encode vertical axis as	be removed after some
				ZAXIS_REFERENCE for 3D atmospheric	testing phase)
				fields	
restart_file_type	I	4		Type of restart file. One of CDI's	
				FILETYPE_XXX. So far, only 4	
				(=FILETYPE_NC2) is allowed	
use_set_event_to_simstep	L			Currently inactive	

Defined and used in: src/namelists/mo_io_nml.f90

4.4.14 les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5)

Parameter	Type	Default	Unit	Description	Scope
sst	R	300	K	sea surface temperature for idealized LES	nh test name=CBL.
)		simulations	RICO
					$isrfc_type=5,4$
shffx	R	-666	$\mathrm{Km/s}$	Kinematic sensible heat flux at surface	$isrfc_{-type} = 2$
lhffx	R	-999	s/m	Kinematic latent heat flux at surface	isrfctype = 2
isrfc_type	I	1		surface type	
				1 = TERRA land physics	
				2 = fixed surface fluxes	
				3 = fixed buoyancy fluxes	
				4 = RICO test case	
				5 = fixed SST	
ufric	R	-999	s/m	friction velocity for idealized LES simulations	
is_dry_cbl	L	.FALSE.		switch for dry convective boundary layer	
				simulations	
smag_constant	R	0.23		Smagorinsky constant	
turb_prandtl	R	0.333333		turbulent Prandtl number	
bflux	R	-666	$\mathrm{m}^2/\mathrm{s}^3$	buoyancy flux for idealized LES simulations	$isrfc_{type}=3$
				(Stevens 2007)	
tran_coeff	R	666-	m/s	transfer coefficient near surface for idealized	$isrfc_{type}=3$
				LES simulation (Stevens 2007)	
vert_scheme_type	Ι	2		type of time integration scheme in vertical	
				diffusion	
				1 = explicit	
				2 = fully implicit	
sampl_freq_sec	R	09	w	sampling frequency in seconds for statistical	
				(1D and 0D) output	
avg_interval_sec	R	006	SO.	(time) averaging interval in seconds for 1D	
			_	statistical output	

Parameter	Type	Default	Unit	Description	Scope
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	L	.FALSE.		Control for the statistical output in LES mode	

Defined and used in: src/namelists/mo_les_nml.f90

4.4.15 limarea_nml (Scope: I_limited_area=1 in grid_nml)

Parameter	Tvne	Default	Unit	Description	Scope
- 1 - 1 - 7 - 7	24.C+				odoo
itype_latbc	Ī	0		Type of lateral boundary nudging. Nudge from	
				0: the initial data,	
				1: IFS data analysis/forecast (if	
				initicon_nml:init_mode=4, we take	
				COSMO-DE data),	
				2: ICON output data (with the identical 3d	
				grid)	
dtime_latbc	R	10800.0	ß	Time difference between two consecutive	itype_latbc ≥ 1
				boundary data.	
nlev_latbc	I	0	w	Number of vertical levels in boundary data.	itype_latbc ≥ 1
latbc_filename	C			Filename of boundary data input file, default:	itype_latbc ≥ 1
				"prepiconR <nroot>B<jlev>_<y><m><d><h>ncon</h></d></m></y></jlev></nroot>	
				<y>, <m>, <d>, and <h> will be automatically</h></d></m></y>	
				replaced during the run-time. In case the time	
				span between two consecutive boundary data is	
				less than 1 hour, one can use <min> and <sec>.</sec></min>	
				These files must be located in the latbc_path	
				directory.	
latbc_path	C			Absolute path to boundary data.	$itype_latbc > 1$

Defined and used in: src/namelists/mo_limarea_nml.f90

lmulti_snow=.TRUE. lmulti_snow=.true. init_mode=1 ntiles>1 ntiles>1 ntiles>1 ntiles>1 ntiles>1 Scope fraction threshold for creating a land grid point TRUE. take rho_snow-values from analysis file fraction threshold for creating a lake grid point fraction threshold for creating a sea grid point .TRUE.: consider snow-covered and snow-free fraction threshold for retaining the respective 2-4 = more advanced experimental methods TRUE. freezing temperature dependent on TRUE. for use of multi-layer snow model maximum depth of uppermost snow layer TRUE. soil model with melting process Type of snow-fraction diagnosis: 1 = based on SWE onlynumber of snow layers tile for a grid point number of tiles tiles separately water content Description Unit Ξ FALSE. TRUE. TRUE. TRUE. TRUE. Default 0.050.050.05 0.25Type **22 22 22 22** 1 1 H L \Box max_toplaydepth frlndtile_thrhld idiag_snowfrac lana_rho_snow lmulti_snow frlake_thrhld frlnd_thrhld frsea_thrhld Parameter lsnowtile nlev_snow lmelt_var ntiles lmelt

4.4.16 Ind_nml

itype_Indtbl I	_			2
			Table values used for associating surface	
			parameters to land-cover classes:	
			1 = defaults from extpar (GLC2000 and	
			GLOBCOVER2009)	
			2 = Tuned version based on IFS values for	
			globcover classes (GLOBCOVER2009 only)	
			3 = even more tuned version	
			(EXPERIMENTAL!!, GLOBCOVER2009	
			only)	
itype_root I		2	root density distribution:	
			1 = constant	
			2 = exponential	
itype_evsl I		2	type of bare soil evaporation parameterization	
			2 = Dickinson (1984)	
			3 = Noilhan and Platon (1989)	
itype_heatcond I			type of soil heat conductivity	
			1 = constant soil heat conductivity	
			2 = moisture dependent soil heat conductivity	
itype_interception I		1	type of plant interception	
			1 = effectively switched off (secirity minimum	
			of $1E - 6$ m for surface area index)	
			2 = Rain and snow interception (under	
			development)	
itype_hydbound I		1	type of hydraulic lower boundary condition	
			1 = none	
			3 = ground water as lower boundary of soil	
			column	
lstomata L		TRUE.	If .TRUE., use map of minimum stomatal	
			resistance If .FALSE., use constant value of 150 s/m.	

Parameter	Type	Default	Unit	Description	Scope
l2tls	Г	TRUE.		If .TRUE., forecast with 2-Time-Level	
				integration scheme	
lseaice	Γ	TRUE.		TRUE. for use of sea-ice model	
llake	Γ	TRUE.		TRUE. for use of lake model	
sstice_mode	I	1		1: SST and sea ice fraction are read from the	iequations=3
				analysis and kept constant. The sea ice fraction	iforcing=3
				can be modified by the seaice model.	
				2: SST and sea ice fraction are updated daily,	
				based on climatological monthly means	
				3: SST and sea ice fraction are updated daily,	
				based on actual monthly means	
				4: SST and sea ice fraction are updated daily,	
				based on actual daily means, not yet	
				implemented	
sst_td_filename	C			Filename of SST input files for time dependent	$sstice_mode=2,3$
				SST. Default is	
				" <path>SST_<year>_imonth;_<gridfile>".</gridfile></year></path>	
				May contain the keyword <pre><pre></pre></pre>	
				be substituted by model_base_dir	
ci_td_filename	C			Filename of sea ice fraction input files for time	$sstice_mode=2,3$
				dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <pre><pre>path> which will</pre></pre>	
				be substituted by model_base_dir	

Defined and used in: src/namelists/mo_lnd_nwp_nml.f90

4.4.17 Is_forcing_nml (parameters for large-scale forcing; valid for torus geometry)

Parameter	Type	Default	Unit	Default Unit Description	Scope
is_subsidence_moment	Г	.FALSE.		switch for enabling LS vertical advection due	is_plane_torus=.TRUE.
				to subsidence for momentum equations	
is_subsidence_heat	J	.FALSE.		switch for enabling LS vertical advection due	is_plane_torus=.TRUE.
				to subsidence for thermal equations	
is_advection	L	.FALSE.		switch for enabling LS horizontal advection	is_plane_torus=.TRUE.
				(currently only for thermal equations)	
is_geowind	L	.FALSE.		switch for enabling geostrophic wind	is_plane_torus=.TRUE.
is_rad_forcing	IJ	.FALSE.		switch for enabling radiative forcing	is_plane_torus=.TRUE.
					inwp_rad=.FALSE.
is_theta	J	.FALSE.		switch to indicate that the prescribed radiative	is_plane_torus=.TRUE.
				forcing is for potential temperature	is_rad_forcing=.TRUE.

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

4.4.18 master_model_nml (repeated for each model)

Parameter	Type	Default Unit	Unit	Description	Scope
model_name	C			Character string for naming this component.	
model_namelist_	C			File name containing the model namelists.	
filename					
model_type	Ι	-		Identifies which component to run.	
				1=atmosphere	
				2=ocean	
				3=radiation	
				99=dummy_model	
model_min_rank	I	0		Start MPI rank for this model.	
model_max_rank	Ι	-1		End MPI rank for this model.	
model_inc_rank	Ι	П		Stride of MPI ranks.	

4.4.19 master_nml

Parameter	Type	Default	Unit	Default Unit Description	Scope
lrestart	Γ	.FALSE.		If .TRUE.: Current experiment is started from	
				a restart.	
model_base_dir	C	,		General path which may be used in file names	
				of other name lists: If a file name contains the	
				keyword " <path>", then this model_base_dir</path>	
				will be substituted.	

4.4.20 meteogram_output_nml

Parameter	Type	Default Unit	1	Description	Scope
lmeteogram_enabled	L(n-dom)	.FALSE.		Flag. True, if meteogram of output variables is	
				desired.	
zprefix	$C(n_{-dom})$	C(n_dom) "METEO		string with file name prefix for output file	
		GRAM ."			
Idistributed	$L(n_{-dom})$	TRUE.		Flag. Separate files for each PE.	
n0_mtgrm	I(mob_n)	1		initial time step for meteogram output	
ninc_mtgrm	I(mob_n)	1		output interval (in time steps)	
stationlist_tot		53.633,		list of meteogram stations (triples with lat, lon,	
		9.983,		name string)	
		'Ham-			
		burg'			

Defined and used in: ${\tt src/namelists/mo_mtgrm_nml.f90}$

4.4.21 nh_pzlev_nml

Parameter	Type	Default	Unit	Description	Scope
nzlev	I	10		number of height levels	iequations=3
nplev	I	10		number of pressure levels	iequations=3
nilev	I	3		number of isentropes	iequations=3
zlevels	R(100)	10000,	m	array of height levels	iequations=3
		9000,		level ordering from TOA to bottom	
		, 1000,			
		0			
plevels	R(100)	10000,	Pa	array of pressure levels	iequations=3
		20000, 30000,		level ordering from TOA to bottom	
		,			
ilevels	R(100)	340,	K	array of isentropic levels	iequations=3
		320,		level ordering from TOA to bottom	
		300			

Defined and used in: src/namelists/mo_nh_pzlev_nml.f90

4.4.22 nonhydrostatic_nml (relevant if run_nml:iequations=3)

Parameter	Type	Default	Unit	Description	Scope
$itime_scheme$	Ι	4		Options for predictor-corrector time-stepping	
				scheme:	

Parameter	Type	Default	Unit	Description	Scope
				4: Contravariant vertical velocity is computed in the predictor step only, velocity tendencies are computed in the corrector step only (most efficient option) 5: Contravariant vertical velocity is computed in both substeps (beneficial for numerical stability in very-high resolution setups with extremely steep slops, otherwise no significant impact) 6: As 5, but velocity tendencies are also computed in both substeps (no apparent	iequations=3
rayleigh_type	П	7		benefit, but more expensive) Type of Rayleigh damping 1: CLASSICAL (requires velocity reference state!)	
rayleigh_coeff	R(n_dom)	0.05 for i=1		Z: Kriemp (2008) type Rayleigh damping coefficient $1/\tau_0$ (Klemp, Dudhia, Hassiotis: MWR136, pp.3987-4004); higher values are recommended for R2B6 or finer resolution	
damp_height	R(n_dom)	45000 for i=1	m	Height at which Rayleigh damping of vertical wind starts (needs to be adjusted to model top height; the damping layer should have a depth of at least 20 km when the model top is above the stratopause)	
htop_moist_proc	Я	22500.0	m	Height above which moist physics and advection of cloud and precipitation variables are turned off	
hbot_qvsubstep	R	22500.0	ш	Height above which QV is advected with substepping scheme (must be at least as large as htop_moist_proc)	ihadv_tracer=22, 32, 42 or 52

Parameter	Type	Default	Unit	Description	Scope
vwind_offctr	R	0.15		Off-centering in vertical wind solver. Higher	
				values may be needed for R2B5 or coarser grids	
				when the model top is above 50 km.	
rhotheta_offctr	R	-0.1		Off-centering of density and potential	
				temperature at interface level (may be set to	
				0.0 for R2B6 or finer grids)	
veladv_offctr	R	0.25		Off-centering of velocity advection in corrector	
				step	
ivctype	I	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve_nml)	
iadv_rcf	I	5		reduced calling frequency (rcf) for	
				transport/diffusion/physics	
				1: no rcf (every dynamics-step)	
				n>1: transport every n-th step	
				Setting odd values (besides 1) requires	
				lnest_rcf = .TRUE.	
lhdiff_rcf	Г	TRUE.		.TRUE.: Compute diffusion only at advection	
				time steps (in this case, divergence damping is	
				applied in the dynamical core)	
lextra_diffu	L	TRUE.		.TRUE.: Apply additional momentum diffusion	
				at grid points close to the stability limit for	
				vertical advection (becomes effective extremely	
				rarely in practice; this is mostly an emergency	
				fix for pathological cases with very large	
				orographic gravity waves)	
divdamp_fac	R	0.0025		Scaling factor for divergence damping	$lhdiff_rcf = .TRUE.$

Parameter	Type	Default	Unit	Description	Scope
divdamp_order	I	4		Order of divergence damping:	lhdiff_rcf = .TRUE.
				2 = second-order divergence damping	
				4 = fourth-order divergence damping	
				24 = combined second-order and fourth-order	
				divergence damping and enhanced vertical	
				wind off-centering during the initial spinup	
				phase (does not allow checkpointing/restarting	
				earlier than 2.5 hours of integration)	
divdamp_type	I	က		Type of divergence damping:	$lhdiff_rcf = .TRUE.$
				2 = divergence damping acting on 2D	
				divergence	
				3 = divergence damping acting on 3D	
				divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div. damping	
				in the stratosphere (recommended for data	
				assimilation cycle only!)	
l_nest_rcf	L	TRUE.		Synchronize interpolation/feedback calls with	
				advection (transport) time steps. l_nest_rcf is	
				automatically reset to .FALSE. if iadv_rcf=1	
nest_substeps	I	2		Number of dynamics substeps for the child	
				patches.	
				DO NOT CHANGE!!! The code will not work	
				correctly with other values	
l_masscorr_nest	ı	.FALSE.		.TRUE.: Apply mass conservation correction	
				also in nested domain	
iadv_rhotheta	I	2		Advection method for rho and rhotheta:	
				1: simple second-order upwind-biased scheme	
				2: 2nd order Miura horizontal	
				3: 3rd order Miura horizontal (not	
				recommended)	

Parameter	Type	Default	Unit	Description	Scope
igradp_method	Ι	ro		Discretization of horizontal pressure gradient: 1: conventional discretization with metric correction term 2: Taylor-expansion-based reconstruction of pressure (advantageous at very high resolution) 3: Similar discretization as option 2, but uses hydrostatic approximation for downward extrapolation over steep slopes 4: Cubic/quadratic polynomial interpolation for pressure reconstruction 5: Same as 4, but hydrostatic approximation for downward extrapolation over steep slopes	
l_zdiffu_t	П	TRUE.		.TRUE.: Compute Smagorinsky temperature diffusion truly horizontally over steep slopes	hdiff_order=3/5 .AND. lhdiff_temp = .true.
thslp_zdiffu	R	0.025		Slope threshold above which truly horizontal temperature diffusion is activated	hdiff_order=3/5 .AND. lhdiff_temp=.true. .AND. Lzdiffu_t=.true.
thhgtd_zdiffu	R	200	ш	Threshold of height difference between neighboring grid points above which truly horizontal temperature diffusion is activated (alternative criterion to thslp_zdiffu)	hdiff_order=3/5 .AND. lhdiff_temp=.true. .AND. l_zdiffu_t=.true.
exner_expol	ద	1./3.		Temporal extrapolation (fraction of dt) of Exner function for computation of horizontal pressure gradient. This damps horizontally propagating sound waves. For R2B5 or coarser grids, values between 1/2 and 2/3 are recommended.	
l-open_ubc	T	.FALSE.		.TRUE.: Use open upper boundary condition (rather than w=0) to allow vertical motions related to diabatic heating to extend beyond the model top	

Defined and used in: src/namelists/mo_nonhydrostatic_nml.f90

4.4.23 nwp_phy_nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is the remaining model domains. If the time steps are not an integer multiple of the advective time step (dtime*iadv_rcf), then the time step of copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step.

Parameter	Type	Default	Unit	Description	Scope
inwp_gscp	I (max.	1		cloud microphysics and precipitation	run_nml:iforcing =
	dom)			0: none	inwp
				1: hydci (COSMO-EU microphysics, 2-cat ice:	
				cloud ice, snow)	
				2: hydci-gr (COSMO-DE microphysics, 3-cat	
				ice: cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation	
				scheme by C. Koehler	
				4: Two-moment microphysics by A. Seifert	
				9: Kessler scheme	
qi0	\mathbf{R}	0.0	kg/kg	cloud ice threshold for autoconversion	inwp_gscp=1
dc0	R	0.0	kg/kg	cloud water threshold for autoconversion	inwp_gscp=1
mu_rain	R	0.0		shape parameter in gamma distribution for rain	inwp_gscp>0
mu_snow	\mathbf{R}	0.0		shape parameter in gamma distribution for	inwp-gscp>0
				Snow	
inwp_convection	I (max_	1		convection	run_nml:iforcing =
	dom)			0: none	inwp
				1: Tiedtke/Bechtold convection	

Parameter	Type	Default	Unit	Description	Scope
inwp_cldcover	I (max_	1		cloud cover scheme for radiation	run_nml:iforcing =
	dom)			0: no clouds (only QV)	inwp
				1: diagnostic cloud cover (by Martin Koehler)	
				2: prognostic total water variance (not yet	
				started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	
inwp_radiation	I (max.	1		radiation	run_nml:iforcing =
	dom)			0: none	inwp
				1: RRTM radiation	
				2: Ritter-Geleyn radiation	
inwp_satad	Ι	1		saturation adjustment	run_nml:iforcing =
				0: none	inwp
				1: saturation adjustment at constant density	
$inwp_turb$	I (max_	П		vertical diffusion and transfer	run_nml:iforcing =
	dom)			0: none	inwp
				1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
inwp_sso	I (max.			subgrid scale orographic drag	run_nml:iforcing =
	dom)			0: none	inwp
				1: Lott and Miller scheme (COSMO)	
${ m inwp_gwd}$	I (max_	1		non-orographic gravity wave drag	run_nml:iforcing =
	dom)			0: none	inwp
				1: Orr-Ern-Bechtold-scheme (IFS)	
${ m inwp_surface}$	I (max_			surface scheme	run_nml:iforcing =
	dom)			0: none	inwp
				1: TERRA	

Parameter	Type	Default	Unit	Description	Scope
ustart_raylfric	R	160.0	s/m	wind speed at which extra Rayleigh friction	$inwp_gwd > 0$
				starts	
efdt_min_raylfric	$_{ m R}$	10800.	œ	minimum e-folding time of Rayleigh friction	$inwp_gwd > 0$
				(effective for $u > ustart_raylfric + 90 m/s$)	
latm_above_top	\mid L (max.	FALSE.		.TRUE.: take into account atmosphere above	$invp_radiation > 0$
	dom)			model top for radiation computation	
$itype_z0$	I	2		Type of roughness length data used for	$inwp_turb > 0$
				turbulence scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography	
				2 = land-cover-related roughness only	
$\mathrm{dt_conv}$	R (max_	.009	∞	time interval of convection call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
dt_rad	R (max_	1800.	∞	time interval of radiation call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
$\mathrm{d}t_{-}\mathrm{sso}$	R (max_	1200.	∞	time interval of sso call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
$\mathrm{d}t_{-}\mathrm{gwd}$	R (max_	1200.	∞	time interval of gwd call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
lrtm_filename	C(:)	m ``rrtmg-		NetCDF file containing longwave absorption	
		lw.nc"		coefficients and other data for RRTMG_LW	
				k-distribution model.	
cldopt_filename	C(:)	" $ECHAM$		NetCDF file with RRTM Cloud Optical	
		6-CldOpt		Properties for ECHAM6.	
		Props.nc"			

Defined and used in: src/namelists/mo_nwp_phy_nml.f90

4.4.24 output_nml (relevant if run_nml/output='nml')

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description S	Scope
dom	I(:)	-1		Array of domains for which this name-list is	
	<u> </u>			used. If not specified (or specified as -1 as the	
				first array member), this name-list will be used	
				for all domains.	
				Attention: Depending on the setting of the	
				parameter l_output_phys_patch these are either	
				logical or physical domain numbers!	
file_interval	C	\r \r		Defines the length of a file in terms of an	
				ISO-8601 duration string. An example for this	
				time stamp format is given below. This	
				namelist parameter can be set instead of	
				steps_per_file.	
filename_format	C	see		Output filename format. Includes keywords	
		descrip-		path, output filename, physdom, etc. (see	
		tion.		below). Default is	
				<pre><output_filename>_DOM<physdom>_<levtype>_</levtype></physdom></output_filename></pre>	
				<jfile></jfile>	
filetype	Ι	4		One of CDI's FILETYPE_XXX constants.	
				Possible values:	
				2=FILETYPE_GRB2,	
				4=FILETYPE_NC2,	
				5=FILETYPE_NC4	
h_levels	R(:)	None	m	height levels	
				Not yet implemented.	
				The height levels are currently taken from the	
				array zlevels in namelist nh_pzlev_nml.	

Parameter	Type	Default	Unit	Description	Scope
p_levels	R(:)	None	hPa	pressure levels	
				Not yet implemented.	
				The pressure levels are currently taken from	
				the array plevels in namelist nh-pzlev_nml.	
i_levels	$\mathbf{R}(:)$	None	K	isentropic levels	
				Not yet implemented.	
				The isentropic levels are currently taken from	
				array ilevels in namelist nh_pzlev_nml.	
ml_varlist	C(:)	None		Name of model level fields to be output.	
hl_varlist	C(:)	None		Name of height level fields to be output.	
pl_varlist	C(:)	None		Name of pressure level fields to be output.	
il_varlist	C(:)	None		Name of isentropic level fields to be output.	
include_last	Γ	TRUE.		Flag whether to include the last time step	
mode	I	2		1 = forecast mode, $2 = $ climate mode	
				In climate mode the time axis of the output file	
				is set to TAXIS_ABSOLUTE. In forecast mode	
				it is set to TAXIS_RELATIVE. Till now the	
				forecast mode only works if the output is at	
				multiples of 1 hour	
taxis_tunit	Ι	2		Time unit of the TAXIS_RELATIVE time axis.	mode=1
				$1 = \text{TUNIT_SECOND}$	
				$2 = \text{TUNIT_MINUTE}$	
				$3 = \text{TUNIT_HOUR}$	
				For a complete list of possible values see cdi.inc	
$output_bounds$	R(3)	None		Post-processing times: start, end, increment.	
				We choose the advection time step matching or	
				following the requested output time, therefore	
				we require output_bounds(3) <	
				dtime*iadv_rcf. See namelist parameters	
				output_start, output_end, output_interval for an alternative specification of output events.	
		_	_	T	_

Parameter	Type	Default	Unit	Description	Scope
output_time_unit	I	1		Units of output bounds specification.	
				1 = second	
				2 = minute	
				3 = hour	
				4 = day	
				5 = month	
				6 = year	
output_filename	C	None		Output filename prefix (which may include	
				path). Domain number, level type, file number	
				and extension will be added, according to the	
				format given in namelist parameter	
				"filename_format".	
$output_grid$	Г	.FALSE.		Flag whether grid information is added to	
				output.	
output_start	C	/c		ISO8601 time stamp for begin of output. An	
				example for this time stamp format is given	
				below. See namelist parameter output_bounds	
				for an alternative specification of output events.	
$output_end$	C	\r \r		ISO8601 time stamp for end of output. An	
				example for this time stamp format is given	
				below. See namelist parameter output_bounds	
				for an alternative specification of output events.	
output_interval	C	/r /r		ISO8601 time stamp for repeating output	
				intervals. We choose the advection time step	
				matching or following the requested output	
				time, therefore we require output_bounds(3)	
				< dtime*iadv_rcf. An example for this time	
				stamp format is given below. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	

Parameter	Type	Default	Unit	Description	Scope
pe_placement_il	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the isentropic level	
				output file. At most stream_partitions_il	
				different ranks can be specified. See namelist	
				parameter pe_placement_ml for further details.	
pe_placement_hl	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the height level output	
				file. At most stream partitions hl different	
				ranks can be specified. See namelist parameter	
				pe_placement_ml for further details.	
pe_placement_ml	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the model level output	
				file. At most stream_partitions_ml different	
				ranks can be specified, out of the following list:	
				0 (num_io_procs - 1). If this namelist	
				parameters is not provided, then the output	
				ranks are chosen in a Round-Robin fashion	
				among those ranks that are not occupied by	
				explicitly placed output files.	
pe-placement-pl	I(:)	-		Advanced output option: Explicit assignment	
				of output MPI ranks to the pressure level	
				output file. At most stream_partitions_pl	
				different ranks can be specified. See namelist	
				parameter pe_placement_ml for further details.	

Parameter	Type	Default	Unit	Description	Scope
ready_file	C	'default'		A ready file is a technique for handling	
				dependencies between the NWP processes. The	
				completion of the write process is signalled by	
				creating a small file with name ready_file.	
				Different output_nml's may be joined together	
				to form a single ready file event. The setting of	
				<pre>ready_file = "default" does not create a</pre>	
				ready file. The ready file name may contain	
				string tokens <pre><pre><pre>string tokens <pre><pre>path></pre></pre></pre></pre></pre>	
				which are substituted as described for the	
				namelist parameter filename_format.	
reg_def_mode	I	0		Specify if the "delta" value prescribes an	remap=1
				interval size or the total *number* of intervals:	
				0: switch automatically between increment and	
				no. of grid points, 1: reg_lon/lat_def(2)	
				specifies increment, 2: reg_lon/lat_def(2)	
				specifies no. of grid points.	
remap	I	0		interpolate horizontally	
				0: none	
				1: to regular lat-lon grid	
north_pole	$\mid \mathrm{R}(2) \mid$	0,00		definition of north pole for rotated lon-lat grids.	
reg_lat_def	$R(3)$	None		start, increment, end latitude in degrees.	remap=1
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	

Parameter	Type	Default	Unit	Description	Scope
reg_lon_def	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in degrees.	
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	
steps_per_file	Ι	-1		Max number of output steps in one output file.	
				If this number is reached, a new output file will	
				be opened.	
steps_per_file_inclfirst	Γ	see		Defines if first step is counted wrt.	
		descr.		steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE.	
				otherwise.	
stream_partitions_hl	I	1		Splits height level output of this namelist into	
				several concurrent alternating files. See	
				namelist parameter stream_partitions_ml for	
				details.	
stream_partitions_il	Ι	1		Splits isentropic level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml for	
				details.	
stream_partitions_ml	I	1		Splits model level output of this namelist into	
				several concurrent alternating files. The output	
				is split into N files, where the start date of	
				part i gets an offset of	
				$(i-1)*$ output_interval. The output interval	
				is then replaced by $N * \text{output_interval}$, the	
				include_last flag is set to .FALSE., the	
				steps_per_file_inclfirst flag is set to	
				.FALSE., and the steps_per_file counter is	
				set to 1.	

Scope			for	
Unit Description	Splits pressure level output of this namelist	into several concurrent alternating files. See	namelist parameter stream_partitions_ml for	details.
Unit				
Default	1			
Type	I			
Parameter	stream_partitions_pl			

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the Interpolation onto regular grids: mesh is defined by the parameters

- reg_lon_def: mesh latitudes in degrees,
- reg_lat_def: mesh longitudes in degrees,
- north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points $start + k * increment \le end$, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment
- 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

local grid with 0.5 degree increment:

global grid with 720x361 grid points:

The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications. Time stamp format:

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0|=nmon|=12, 0|=nhr|=23, 0|=nmin|=59, 0|=nsec|=59.999. For instance use "P01D" instead of "PT24H", or "PT01M" instead "S09Tq" fo

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

2013-10-27T13:41:00Z POODTOGHOOMOOS date and time representation (output_start, output_end) duration (output_interval) Variable Groups: Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

output of all variables (caution: do not combine with mixed vertical interpolation) basic atmospheric variables on model levels same set as atmo-ml-vars, but except pres group:atmo_pl_vars group:atmo_ml_vars group:all

additional prognostic variables of the nonhydrostatic model

as atmo_ml_vars, but expect height

same set

group:nh_prog_vars

group:atmo_zl_vars

snow variables group:phys_tendencies group:multisnow_vars group:precip_vars group:cloud_diag group:snow_vars group:land_vars group:rad_vars group:pbl_vars

DWD first guess fields (atmosphere) DWD first guess fields (surface/soil) multi-layer snow variables group:additional_precip_vars group:dwd_fg_sfc_vars group:dwd_fg_atm_vars

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group. Typing "-jvarname;" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ substituted by level type "ML", "PL", "HL", "IL" substituted by output file counter substituted by output_filename substituted by physical patch ID substituted by model_base_dir like levtype, but in lower case output_filename datetime2 datetime3 $\mathtt{levtype_l}$ datetime levtype physdom ifile path

substituted by relative hour-minute-second string
If namelist is split into concurrent files: number of stream partitions.
If namelist is split into concurrent files: stream partition index of this file.
If namelist is split into concurrent files: substituted by the file counter (like in jfile), which an "unsplit" namelist would have produced

hhhmmss npartitions ifile_partition total_index

4.4.25 parallel_nml

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	Ι	1		number of halo cell rows	
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
				2: use METIS	
division_file_name	C			Name of division file	$division_method = 0$
ldiv-phys-dom	IJ	TRUE.		.TRUE.: split into physical domains before	$division_method = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off this	
				option is not recommended except for very	
				small processor numbers)	
p_test_run	Γ	FALSE.		TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	
l_test_openmp	Γ	FALSE.		if .TRUE. is combined with	$p_{\text{-}}test_{\text{-}}run = .TRUE.$
				p_test_run=.TRUE. and OpenMP	
				parallelization, the test PE gets only 1 thread	
				in order to verify the OpenMP parallelization	
1_log_checks	Γ	FALSE.		if .TRUE. messages are generated during each	
				synchonization step (use for debugging only)	
l_fast_sum	Γ	FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global	
				summation	
use_dycore_barrier	ı	.FALSE.		if .TRUE., set an MPI barrier at the beginning	
				of the nonhydrostatic solver (do not use for	
				production runs!)	

Parameter	Type	Default	Unit	Description	Scope
itype_exch_barrier	I	0		1: set an MPI barrier at the beginning of each	
				MPI exchange call	
				2: set an MPI barrier after each MPI WAIT call	
				3: 1+2 (do not use for production runs!)	
iorder_sendrecv	Ι	1		Sequence of send/receive calls:	
				1 = irecv/send	
				2 = isend/recv	
				3 = isend/irecv	
itype_comm	Ι	1		1: use local memory for exchange buffers	
				3: asynchronous halo communication for	
				dynamical core (currently deactivated)	
$\rm num_io_procs$	Ι	0		Number of I/O processors (running exclusively	
				for doing I/O)	
$\mathbf{num_restart_procs}$	Ι	0		Number of restart processors (running	
				exclusively for doing restart)	
pio_type	Ι	1		Type of parallel I/O. Only used if number of	
				I/O processors greater than number of	
				domains. Experimental!	
use_icon_comm	Γ	FALSE.		Enable the use of MPI bulk communication	
				through the icon_comm_lib	
icon_comm_debug	Γ	FALSE.		Enable debug mode for the icon_comm_lib	
max_send_recv-	I	131072		Size of the send/receive buffers for the	
_buffer_size				icon_comm_lib.	
use_dp_mpi2io	П	FALSE.		Enable this flag if output fields shall be	
				gathered by the output processes in DOUBLE	
				PRECISION.	
restart_chunk_size	I	1		(Advanced namelist parameter:) Number of	
				levels to be buffered by the asynchronous	
				restart process. The (asynchronous) restart is	
				capable of writing and communicating more	
				than one 2D slice at once.	

Defined and used in: src/namelists/mo_parallel_nml.f90

Scope 1: Use insolation from external file containing 1-12: Earth orbit position fixed for specified 2: Use preindustrial insolation as in CMIP5 .TRUE.: Earth orbit of year yr_perp of the the spectrally resolved insolation (monthly 3: Use insolation for AMIP-type CMIP5 FALSE:: transient Earth orbit following .FALSE.:zonally averaged irradiation simulation (average from 1979–1988) year used for $lyr_-perp = .TRUE$. 0: Use original SRTM insolation. VSOP87 orbit is perpertuated switch for solar irradiation: (average from 1844-1856) 0: Earth circles on orbit TRUE::diurnal cycle, Insolation scheme Description VSOP87 means) month Unit FALSE. Default TRUE. -99999 0 Type ηп Parameter lyr_perp nmonth yr-perp isolrad ldiur

4.4.26 radiation_nml

Parameter	Type	Default	Unit	Description	Scope
izenith	Ι	4		Choice of zenith angle formula for the radiative	
				transfer computation.	
				0: Sun in zenith everywhere	
				1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative	
				transfer computation ($\sin(\text{time of day}) = 1/\text{pi}$	
				3: Zenith angle changing with latitude and	
				time of day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day	
				(iforcing=inwp only)	
albedo_type	I	1		Type of surface albedo	iforcing=inwp
				1: based on soil type specific tabulated values	
				(dry soil)	
				2: MODIS albedo	
irad_h2o	I	1		Switches for the concentration of radiative	Note: until further
irad_co2		2		agents	notice, please use
irad_ch4		3		0: 0.	$irad_h2o = 1$
irad_n2o		3		1: prognostic variable	$irad_{co2} = 2$
irad_o3		0		2: global constant	and 0 for all the other
irad_o2		2		3: externally specified	agents for
irad_cfc11		2		$irad_03 = 2$: ozone climatology from MPI	$run_nml/iforcing = 2$
irad_cfc12		2		$irad_03 = 4$: ozone clim for Aqua Planet Exp	(ECHAM).
				$irad_03 = 6$; ozone climatology with T5	
				geographical distribution and Fourier series for	
				seasonal cycle for run_nml/iforcing = 3 (NWP)	
				$irad_03 = 7$: GEMS ozone climatology (from	
				IFS) for run_nml/iforcing = 3 (NWP)	

Parameter	Type	Default	Unit	Description	Scope
vmr_co2	R	348.0e-6		Volume mixing ratio of the radiative agents	
vmr_ch4		1650.0e-9			
vmr_n2o		306.0e-9			
vmr_o2		0.20946			
vmr_cfc11		214.5e-12			
vmr_cfc12		371.1e-12			
irad_aero	Ι	2		Aerosols	
				1: prognostic variable	
				2: global constant	
				3: externally specified	
				5: Tanre aerosol climatology for	
				$run_nml/iforcing = 3 (NWP)$	
				6: Tegen aerosol climatology for	
				$run_nml/iforcing = 3 \text{ (NWP) .AND. itopo} = 1$	
lrad_aero_diag	Γ	.FALSE.		writes actual aerosol optical properties to	
				output	
ighg	Ι	0		Select dynamic greenhouse gases scenario (read	run_nml/iforcing=2
				from file)	(ECHAM)
				0 : select default gas volume mixing ratios -	
				1990 values (CMIP5)	
				1: transient CMIP5 scenario from file	

Defined and used in: src/namelists/mo_radiation_nml.f90

1.4.27 run nm

Parameter	Type	Default	Unit	Description	Scope
nsteps	I	0		number of time steps of this run.	
dtime	R	0.009	S	time step	

Parameter	Type	Default	Unit	Description	Scope
Itestcase	Г	TRUE.		Idealized testcase runs	
ldynamics	Г	TRUE.		Compute adiabatic dynamic tendencies	
iforcing	I	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices	
				for the atmosphere and negative indices for the	
				ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
				-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
				large-scale transport scheme	
$lvert_nest$	Г	FALSE.		If set to .true. vertical nesting is switched on	
				(i.e. variable number of vertical levels)	
num_lev	I(max_	31		Number of full levels (atm.) for each domain	lvert_nest=.TRUE.
	dom $ $				
nshift	$ I(max_{-}$	0		vertical half level of parent domain which	lvert_nest=.TRUE.
	dom)			coincides with upper boundary of the current	
				domain required for vertical refinement, which	
				is not yet implemented	
ltimer	Г	TRUE.		TRUE: Timer for monitoring the runtime of	
				specific routines is on $(FALSE = off)$	
timers_level	Ι	1			
activate_sync_timers	T	ĹΉ		TRUE: Timer for monitoring runtime of	
		_	_	communication routiles (FALSE $-$ on)	

TALSE. 0 "mml", "totint",	Parameter	Type	Default	Unit	Description	Scope
I 0 I C(:) "nml", "totint"	sg_level	I	10		controls how much printout is written during	
I 0 I C(:) "mml", "totint"					runtime.	
I 0 I C(:) "nml", "totint"					For values less than 5, only the time step is	
I 0 I C(:) "nml", "totint"					written.	
I 0 I C(:) "mml", "totint"	sg_timestamp	ı	.FALSE.		If .TRUE., precede output messages by time	
I 0 I C(:) "nml", "totint"					stamp.	
I 0 C(:) "nml", "totint"	st_mode	I	0		Setting a value larger than 0 activates a	iequations $= 3$
I 0 "mml", "totint"					dummy mode in which time stepping is	
I 0 C(:) "mml", "totint"					changed into just doing iterations, and MPI	
I 0 C(:) "nml", "totint"					communication is replaced by copying some	
I 0 C(:) "nml", "totint"					value from the send buffer into the receive	
I 0 C(:) "nml", "totint"					buffer (does not work with nesting and reduced	
I 0 C(:) "nml", "totint"					radiation grid because the send buffer may	
C(:) "nml", "totint"					then be empty on some PEs)	
C(:) "nml", "totint"	bug_check_level	I	0		Setting a value larger than 0 activates debug	
C(:) "nml", "totint"					checks.	
	ıtput	C(:)	"nml",		Main switch for enabling/disabling components	
be set (as an array of string cons Possible choices are: • "none": switch off all outpu • "nml": new output mode (output_nml); • "totint": computation of to If the output namelist paramete explicitly, the default setting "m			"totint"		of the model output. One or more choices can	
Possible choices are: • "none": switch off all output • "nml": new output mode (output.nml); • "totint": computation of to If the output namelist paramete explicitly, the default setting "m					be set (as an array of string constants).	
 "hone": switch off all output "hml": new output mode (output_nml); "totint": computation of to If the output namelist paramete explicitly, the default setting "m 					Possible choices are:	
 "nml": new output mode (output_nml); "totint": computation of to If the output namelist paramete explicitly, the default setting "n 					• "none": switch off all output;	
• "totint": computation of to If the output namelist paramete explicitly, the default setting "m					• "nml": new output mode (cf. output nml):	
If the output namelist paramete					• "totint": computation of total integrals.	
					If the output namelist parameter is not set	
assumed.					explicitly, the default setting "nmi", totint" is assumed.	

Scope	type>).	tten:
Default Unit Description	File name for restart/checkpoint files (containing keyword substitution patterns <gridfile>, <idom>, <rsttime>, <mtype>). default: "<gridfile>_restart_<mtype>_<rsttime>.nc"</rsttime></mtype></gridfile></mtype></rsttime></idom></gridfile>	controls how profiling printout is written: TIMER_MODE_AGGREGATED=1, TIMER_MODE_DETAILED=2, TIMER_MODE_WRITE_FILES=3.
Unit		
Default		1
Type	O	Н
Parameter	restart_filename	profiling_output

Defined and used in: src/namelists/mo_run_nml.f90

4.4.28 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	\mathbf{R}	50	m	Layer thickness of lowermost layer; specifying	
				zero or a negative value leads to constant layer	
				thicknesses determined by top-height and nlev	
top_height	$_{ m R}$	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness	
				near the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography	
				component	
decay_scale_2	${ m R}$	2500	m	Decay scale of small-scale topography	
				component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	$_{ m R}$	16000	m	Height above which the coordinate surfaces are	
				flat	

Defined and used in: src/namelists/mo_sleve_nml.f90

4.4.29 time_nml

	E		7.1.1		
Farameter	Туре	Derauit	Onit	Description	Scope
calendar	I	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				2=30day/month, 360day/year	
dt_restart	R	86400.*30	ß	Length of restart cycle in seconds. This	
				namelist parameter specifies how long the	
				model runs until it saves its state to a file and	
				stops. Later, the model run can be resumed,	
				s. t. a simulation over a long period of time can	
				be split into a chain of restarted model runs.	
				Note that the frequency of writing restart files	
				is controlled by io_nml:dt_checkpoint. Only	
				if the value of dt_checkpoint resulting from	
				model default or user's specification is longer	
				than dt_restart, it will be reset (by the	
				model) to dt_restart so that at least one	
				restart file is generated during the restart	
				cycle. If dt_restart is larger than but not a	
				multiple of dt_checkpoint, restart file will not	
				be generated at the end of the restart cycle.	

Parameter	Type	Default	Unit	efault Unit Description	Scope
ini_datetime_string	C	.2008-		Initial date and time of the simulation	
		09-01T			
		00:00:00Z			
end_datetime_string	C	,2008-		End date and time of the simulation	
		09-01T			
		01:40:00Z			
is_relative_time	Γ	.FALSE.		.TRUE., if time loop shall start with step 0	
				regardless whether we are in a standard run or	
				in a restarted run (which means re-initialized	
				run).	

Length of the run If "nsteps" in run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run.

Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

4.4.30 transport_nml (used if run_nml/ltransport=.TRUE.)

Parameter	Type	Default	Unit	Description	Scope
lvadv_tracer	Γ	TRUE.		TRUE: compute vertical tracer advection	
				FALSE: do not compute vertical tracer	
				advection	
ihadv_tracer	I(ntracer)	2		Tracer specific method to compute horizontal	
				advection:	
		55		0: no horiz, transport (note that the specific	
				tracer quantity q is kept constant and not	
				tracer mass ρq)	
				1: upwind (1st order)	
				2: Miura (2nd order, linear reconstr.)	
				3: Miura3 (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				4: FFSL (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				5: hybrid Miura3/FFSL (quadr. or cubic	$lsq-high-ord \in [2,3]$
				reconstr.)	
				20: miura (2nd order, lin. reconstr.) with	
				subcycling	
				22: combination of miura and miura with	
				subcycling	
				32: combination of miura and miura with	
				subcycling	
				42: combination of FFSL and miura with	
				subcycling	

Parameter	Type	Default	Unit	Description	Scope
ivadv_tracer	I(ntracer)	ಣ		52: combination of hybrid FFSL/Miura3 with subcycling Subcycling means that the integration from time step n to n+1 is splitted into substeps to meet the stability requirements. For NWP runs, substepping is generally applied above $z = 22 \mathrm{km}$ (see nonhydrostatic_nml/hbot_qvsubstep). Tracer specific method to compute vertical advection: 0: no vert. transport (note that tracer mass ρq instead of the specific tracer quantity q is kept constant. This differs from the behaviour in horizontal direction!) 1: upwind (1st order)	lvadv_tracer=TRUE
iadv_tke Istrang	I I	0 .FALSE.		3: ppm_cfl (3 rd order, handles CFL > 1) 30: ppm (3rd order, CFL<=1) Type of TKE advection 0: no TKE advection 1: vertical advection only 2: vertical and horizontal advection Time splitting method TRUE: second order Strang splitting	inwp_turb=1
ctracer_list itype_hlimit	C I(ntracer)	" & 4		Ist of tracer names Type of limiter for horizontal transport: 0. no limiter	$run_nml/ltestcase = .TRUE$.
itype_vlimit	I(ntracer)			3: monotonous flux limiter 4: positive definite flux limiter Type of limiter for vertical transport: 0: no limiter	ihadv_tracer \neq 'iup3[4]'

Parameter	Type	Default	Unit	Description	Scope
				1: semi-monotone slope limiter	
				2: monotonous slope limiter	
				4: positive definite flux limiter	
niter_fct	I	1		number of iterations of monotone flux	$itype_hlimit = 3$
				correction procedure (experimental!)	
beta_fct	R	1.005		factor of allowed over-/undershooting in	$itype_hlimit = 3$
				monotonous limiter	
iord_backtraj	I	1		order of backward trajectory calculation:	
				1: first order	
				2: second order (iterative; currently 1 iteration	ihadv_tracer='miura'
				hardcoded; experimental!)	
igrad_c_miura	I	1		Method for gradient reconstruction at cell	
				center for 2nd order miura scheme	
				1: Least-squares (linear, non-consv)	ihadv_tracer=2
				2: Green-Gauss	
ivefl_max	I	ಬ		determines stability range of vertical	ivadv_tracer=3
				PPM-scheme in terms of the maximum	
				allowable CFL-number	
llsq_svd	П	TRUE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares design	
				matrix A	
lclip_tracer	Г	.FALSE.		Clipping of negative values	

Defined and used in: src/namelists/mo_advection_nml.f90

1.4.31 turbdiff_nml

Parameter	Type	Default	Unit	Description	Scope
itype_tran	I	2		type of surface-atmosphere transfer	$inwp_turb = 1$
imode_tran	Ι	0		mode of surface-atmosphere transfer	$ \text{inwp_turb} = 1$

Parameter	Type	Default	Unit	Description	Scope
icldm_tran	I	2		mode of cloud representation in transfer	$inwp_turb = 1$
				parametr	
imode_turb	I	1		mode of turbulent diffusion parametrization	$inwp_turb = 1$
icldm_turb	I	2		mode of cloud representation in turbulence	$inwp_turb = 1$
				parametr	
itype_sher	I	1		type of shear production for TKE	$inwp_turb = 1$
ltkesso	Г	FALSE.		calculation SSO-wake turbulence production	$inwp_turb = 1$
				IOF TKE	
ltkecon	Г	.FALSE.		consider convective buoyancy production for	$inwp_turb = 1$
				TKE	
lexpcor	Г	.FALSE.		explicit corrections of the implicit calculated	$inwp_turb = 1$
				turbul. diff.	
ltmpcor	L	FALSE.		consideration of thermal TKE-sources in the	$inwp_turb = 1$
				enthalpy budget	
lprfcor	ı	FALSE.		using the profile values of the lowest main level	$inwp_turb = 1$
				instead of the mean value of the lowest layer	
				for surface flux calculations	
Inonloc	L	FALSE.		nonlocal calculation of vertical gradients used	$inwp_turb = 1$
				for turbul. diff.	
lcpfluc	L	FALSE.		consideration of fluctuations of the heat	$inwp_turb = 1$
				capacity of air	
limpltkediff	Г	TRUE.		use semi-implicit TKE diffusion	$inwp_turb = 1$
itype_wcld	I	2		type of water cloud diagnosis	$inwp_turb = 1$
itype_synd	I	2		type of diagnostics of synoptical near surface	$inwp_turb = 1$
				variables	
lconst_z0	L	FALSE.		TRUE: horizontally homogeneous roughness	$inwp_turb = 1$
				length z0	
const_z0	R	0.001	m	value for horizontally homogeneous roughness	$inwp_turb = 1$
				length z0	lconst_z0=.TRUE.

	Scaling factor for minimum vertical diffusion coefficient (proportional to $1/\sqrt{Ri}$) for heat and moisture Scaling factor for minimum vertical diffusion coefficient (proportional to $1/\sqrt{Ri}$) for	m^2/s Scaling factor for minimum vertical diffusion coefficient (proportional to $1/\sqrt{Ri}$) for heat and moisture m^2/s Scaling factor for minimum vertical diffusion coefficient (proportional to $1/\sqrt{Ri}$) for		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
nomentum	mom	пош	пош	пош

Defined and used in: src/namelists/mo_turbdiff_nml.f90

4.4.32 vdiff_nml

Type Default Unit Description Scope	$oxed{L}$ TRUE. Switch on surface momentum flux. Switch $oxed{S}$ Ivdiff = .TRUE.	L TRUE. Switch on surface sensible and latent heat flux. lvdiff = .TRUE.
Ľ		
Parameter	lsfc_mon_flux	lsfc_heat_flux

Defined and used in: src/namelists/mo_vdiff_nml.f90

4.5 Ocean-specific namelist parameters

4.5.1 ocean_physics_nml

Parameter	Type	Default	Unit	Pefault Unit Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson_factor_tracer	I	0.5e-5	s/m		
richardson_factor_veloc	I	0.5e-5	s/m		
l_constant_mixing	Γ	.FALSE.			

4.5.2 sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM))

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run
				1: Zero-layer model	i_sea_ice must be $i=1$.
				2: Two layer Winton (2000) model	In an atmospheric run
				3: Zero-layer model with analytical forcing (for	the ice surface type
				diagnostics)	must be defined.
				4: Zero-layer model for atmosphere-only runs	
				(for diagnostics)	
i_ice_dyn	I	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	
i_ice_albedo	I	1		Switch for albedo model. Only one is	
				implemented so far.	
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation	Defaults to 1 when
				method:	i_ice_dyn=0 and 2
				1: Proportional to ocean cell thickness (like	otherwise.
				MPI-OM)	
				2: Proportional to speed difference between ice	
				and ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach	
				correct strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

4.6 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

4.6.1 ha_testcase_nml (Scope: Itestcase=.TRUE. and iequations=[0,1,2] in run_nml)

Parameter	Type	Default	Unit	Description	Scope
stest_name	C	$^{\prime}\mathrm{JW_{W}}^{\prime}$		Name of test case:	
				'SW_GW': gravity wave	lshallow_water=.TRUE.
				'USBR': unsteady solid body rotation	lshallow_water=.TRUE.
				'Will_2': Williamson test 2	lshallow_water=.TRUE.
				'Will_3': Williamson test 3	lshallow_water=.TRUE.
				'Will_5': Williamson test 5	lshallow_water=.TRUE.
				'Will_6': Williamson test 6	lshallow_water=.TRUE.
				'GW': gravity wave (nlev=20 only!)	lshallow_water=.FALSE.
				'LDF': local diabatic forcing test without	lshallow_water=.FALSE.
				physics	and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	lshallow_water=.FALSE.
				'JWs': Jablonowski-Will. steady state	lshallow_water=.FALSE.
				'JWw': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				'JWw-Moist': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				including moisture	
				'APE': aqua planet experiment	lshallow_water=.FALSE.
				'MRW': mountain induced Rossby wave	lshallow_water=.FALSE.
				'MRW2': modified mountain induced Rossby	lshallow_water=.FALSE.
				wave	
				'PA': pure advection	$ $ lshallow_water=.FALSE. $ $

Parameter	Type	Default	Unit	Description	Scope
				'SV': stationary vortex	lshallow_water=.FALSE.,
					ntracer = 2
				'DF1': deformational flow test 1 'DF2': deformational flow test 2 'DF3': deformational flow test 3 'DF4': deformational flow test 4	
				'RH': Rossby-Haurwitz wave test	
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	ctest_name= 'Will_2',
)	•	'Will_3', 'JWs', 'JWw',
					'PA', 'DF1234'
gw_brunt_vais	R	0.01	1/s	Brunt Vaisala frequency	ctest_name= 'GW'
gw-u0	Я	0.0	$\rm m/s$	zonal wind parameter	ctest_name= 'GW'
gw_lon_deg	R	180.0	\deg	longitude of initial perturbation	ctest_name= 'GW'
gw_lat_deg	R	0.0	\deg	latitude of initial perturbation	ctest_name= 'GW'
jw-uptb	R	1.0	$\mathrm{s/m}$	amplitude of the wave pertubation	$ctest_name = 'JWw'$
			(3)		
mountctr_lon_deg	R	0.06	\deg	longitude of mountain peak	$ctest_name = 'MRW(2)'$
mountctr_lat_deg	Я	30.0	\deg	latitude of mountain peak	$ctest_name = 'MRW(2)'$
mountctr_height	R	2000.0	m	mountain height	ctest_name='MRW(2)'
mountctr_half_width	R	1500000.0	m	mountain half width	ctest_name='MRW(2)'
mount_u0	R	20.0	$\mathrm{s/m}$	wind speed for MRW cases	$ctest_name = 'MRW(2)'$
rh_wavenum	I	4		wave number	ctest_name= 'RH'
rh_init_shift_deg	R	0.0	\deg	pattern shift	ctest_name= 'RH'
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez	ctest_name= 'HS'
				test. 1: the zonal state defined in the JWs test	
				case; other integers: isothermal state	
				(T=300 K, ps=1000 hPa, u=v=0.)	
lhs_vn_ptb	П	TRUE.		Add random noise to the initial wind field in	ctest_name= 'HS'
				the Held-Suarez test.	
hs_vn_ptb_scale	В	1.	m/s	Magnitude of the random noise added to the initial wind field in the Held-Suarez test.	ctest_name= 'HS'

	Type	Default	Unit	Description	Scope
lrh_linear_pres	J	FALSE.		Initialize the relative humidity using a linear	ctest_name=
				function of pressure.	'JWw-Moist', 'APE',
					$^{\prime}_{ m LDF-Moist}$
$rh_at_1000hpa$	\mathbf{R}	0.75		relative humidity	ctest_name=
				0,1	'JWw-Moist', 'APE',
				at 1000 hPa	$^{\prime}_{ m LDF-Moist}$
linit_tracer_fv	Γ	TRUE.		Finite volume initialization for tracer fields	ctest_name='PA'
ape_sst_case	C	'sst1'		SST distribution selection	ctest_name='APE'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp	
				'sst_ice': Control SST distribution with -1.8 C	
				above 64 N/S .	
ildf_init_type	Ι	0		Choice of initial condition for the Local	$ctest_name = 'LDF'$
				diabatic forcing test. 1: the zonal state defined	
				in the JWs test case; other: isothermal state	
				(T=300 K, ps=1000 hPa, u=v=0.)	
ldf_symm	П	TRUE.		Shape of local diabatic forcing:	$ctest_name =$
				.TRUE.: local diabatic forcing symmetric	$^{\prime}$ LDF $^{\prime}$, $^{\prime}$ LDF-Moist $^{\prime}$
				about the equator (at 0 N)	
				.FALSE.: local diabatic forcing asym. about	
				the equator (at 30 N)	

Defined and used in: src/testcases/mo_ha_testcases.f90

4.6.2 nh_testcase_nml (Scope: Itestcase=.TRUE. and iequations=3 in run_nml)

	Type	Default	Unit	Description	Scope
nh_test_name	ت ت	'jabw'		testcase selection	
				' zero ': no orography	
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	
				'jabw': Initializes the full Jablonowski	
				Williamson test case.	
				'jabw_s': Initializes the Jablonowski	
				Williamson steady state test case.	
				'jabw_m': Initializes the Jablonowski	
				Williamson test case with a mountain instead	
				of the wind perturbation (specify	
				mount_height).	
				'mrw_nh': Initializes the full	
				Mountain-induced Rossby wave test case.	
				'mrw2_nh': Initializes the modified	
				mountain-induced Rossby wave test case.	
				'mwbr_const': Initializes the mountain wave	
				with two layers test case. The lower layer is	
				isothermal and the upper layer has constant	
				brunt vaisala frequency. The interface has	
				constant pressure.	
				' PA ': Initializes the pure advection test case.	
				' HS_nh ': Initializes the Held-Suarez test case.	
				At the moment with an isothermal atmosphere	
				at rest (T= $300K$, ps= $1000hPa$, u=v= 0 ,	
				topography=0.0).	
				' HS_jw ': Initializes the Held-Suarez test case	
				with Jablonowski Williamson initial conditions	
				and zero topography.	
				' APE_nh ': Initializes the APE experiments.	
				with the Japa test case, including moisture.	_

Parameter	Type	Default	Unit	Description	Scope
				'wk82': Initializes the Weisman Klemp test	l-limited_area =.TRUE.
				case	
				'g_lim_area': Initializes a series of general	
				limited area test cases: itype_atmos_ana	
				determines the atmospheric profile,	
				itype_anaprof_uv determines the wind profile	
				and itype_topo_ana determines the topography	
				'dcmip_pa_12': Initializes Hadley-like	
				meridional circulation pure advection test case.	
				'dcmip_rest_200': atmosphere at rest test	lcoriolis = $.FALSE.$
				(Schaer-type mountain)	
				'dcmip_mw_2x': nonhydrostatic mountain	lcoriolis = $.FALSE$.
				waves triggered by Schaer-type mountain	
				'dcmip_gw_31': nonhydrostatic gravity waves	
				triggered by a localized perturbation	
				(nonlinear)	
				'dcmip_gw_32': nonhydrostatic gravity waves	$l.limited_area = .TRUE.$
				triggered by a localized perturbation (linear)	and lcoriolis $=$.FALSE.
				'dcmip_tc_51': tropical cyclone test case with	lcoriolis = .TRUE.
				'simple physics' parameterizations (not yet	
				implemented)	
				'dcmip_tc_52': tropical cyclone test case with	lcoriolis = .TRUE.
				with full physics in Aqua-planet mode	
				'CBL': convective boundary layer simulations	is_plane_torus=
				for LES package on torus (doubly periodic) grid	TRUE.
du_wį	R	1.0	s/m	amplitude of the u-perturbation in jabw test	nh_test_name='jabw'
				case	
u0_mrw	R	20.0	s/m	wind speed for mrw(2) and mwbr_const cases	nh_test_name=
					$\operatorname{mrw}(2)$ _nh' and
					'mwbr_const'

Parameter	Type	Default	Unit	Description	Scope
mount_height_mrw	R	2000.0	m	maximum mount height in mrw(2) and	nh_test_name=
				mwbr_const	$\operatorname{mrw}(2)$ -nh' and
					'mwbr_const'
mount_half_width	\mathbf{R}	1500000.0	m	half width of mountain in $mrw(2)$, $mwbr_{-const}$	nh_test_name=
				and bell	$\operatorname{mrw}(2)$ -nh',
					'mwbr_const' and 'bell'
mount_lonctr_mrw_deg	\mathbf{R}	90.	deg	lon of mountain center in $mrw(2)$ and	nh_test_name=
				mwbr_const	$\operatorname{mrw}(2)_{-nh}$ and
					'mwbr_const'
mount_latctr_mrw_deg	$_{ m R}$	30.	deg	lat of mountain center in $mrw(2)$ and	nh_test_name=
				mwbr_const	$\operatorname{mrw}(2)$ _nh' and
					'mwbr_const'
temp_i_mwbr_const	\mathbf{R}	288.0	K	temp at isothermal lower layer for mwbr_const	nh_test_name=
				case	'mwbr_const'
p_int_mwbr_const	\mathbf{R}	70000.	Pa	pres at the interface of the two layers for	nh_test_name=
				mwbr_const case	'mwbr_const'
bruntvais_u_mwbr_const	$_{ m R}$	0.025	1/s	constant brunt vaissala frequency at upper	nh_test_name=
				layer for mwbr_const case	'mwbr_const'
mount_height	\mathbf{R}	100.0	m	peak height of mountain	nh_test_name= 'bell'
layer_thickness	\mathbf{R}	-999.0	m	thickness of vertical layers	If layer_thickness < 0 ,
					the vertical level
					distribution is read in
					from externally given
					HYB_PARAMS_XX.
n_flat_level	I	2		level number for which the layer is still flat and	layer_thickness > 0
				not terrain-tollowing	
nh_u0	R	0.0	s/m	initial constant zonal wind speed	nh_test_name = 'bell'
nh_t0	$_{ m R}$	300.0	K	initial temperature at lowest level	$nh_test_name = 'bell'$
nh_brunt_vais	$_{ m R}$	0.01	1/s	initial Brunt-Vaisala frequency	$nh_test_name = 'bell'$
torus_domain_length	R	100000.0	m	length of slice domain	nh.test.name = 'bell', $lplane=.TRUE.$
_	_	_	_		-

Parameter	Type	Default	Unit	Description	Scope
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	nh_test_name= 'PA'
lhs_nh_vn_ptb	Γ	TRUE.		Add random noise to the initial wind field in	nh_test_name= 'HS_nh'
				the Held-Suarez test.	
lhs_fric_heat	T	.FALSE.		add frictional heating from Rayleigh friction in	nh_test_name= 'HS_nh'
hs_nh_vn_ptb_scale	R	1.	s/m	Magnitude of the random noise added to the	nh_test_name= 'HS_nh'
				initial wind field in the Held-Suarez test.	
rh_at_1000hpa	R	0.7		relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
qv_max	R	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
ape_sst_case	ت ت	'sst1'		SST distribution selection	nh_test_name='APE_nh'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
linit_tracer_fv	Г	TRUE.		Finite volume initialization for tracer fields	pure advection tests,
					only
lcoupled_rho	Г	.FALSE.		Integrate density equation 'offline'	pure advection tests,
					only
qv_max_wk	R	0.014	$ { m Kg/kg} $	maximum specific humidity near	nh_test_name='wk82'
				the surface, range 0.012 - 0.016	
				used to vary the buoyancy	
u_infty_wk	R	20.	l w/s	zonal wind at infinity height	nh_test_name='wk82'
				range 0 45.	
				used to vary the wind shear	
bub_amp	Я	2.	K	maximum amplitud of the thermal	nh_test_name='wk82'
				perturbation	
bubctr_lat	R	0.	deg	latitude of the center of the thermal	nh_test_name='wk82'
				perturbation	

Parameter	Type	Default	Unit	Description	Scope
bubctr_lon	R	90.	deg	longitude of the center of the thermal	nh_test_name='wk82'
				perturbation	
bubctr_z	m R	1400.	m	height of the center of the thermal perturbation	nh_test_name='wk82'
bub_hor_width	R	10000.	m	horizontal radius of the thermal perturbation	nh_test_name='wk82'
bub_ver_width	R	1400.	m	vertical radius of the thermal perturbation	nh_test_name='wk82'
itype_atmo_ana	I	1		kind of atmospheric profile:	nh_test_name=
				1 piecewise N constant layers	'g_lim_area'
				2 piecewise polytropic layers	
itype_anaprof_uv	I	1		kind of wind profile:	nh_test_name=
				1 piecewise linear wind layers	'g_lim_area'
				2 constant zonal wind	
				3 constant meridional wind	
itype_topo_ana	ı			kind of orography:	nh_test_name=
				1 schaer test case mountain	'g_lim_area'
				2 gaussian_2d mountain	
				3 gaussian_3d mountain	
				any other no orography	
nlayers_nconst	I	1		Number of the desired layers with a constant	nh_test_name=
				Brunt-Vaisala-frequency	'g_lim_area' and
					itype_atmo_ana=1
p_base_nconst	$_{ m R}$	100000.	Pa	pressure at the base of the first N constant	nh_test_name=
				layer	'g_lim_area' and
					itype_atmo_ana=1
theta0_base_nconst	$_{ m R}$	288.	K	potential temperature at the base of the first N	nh_test_name=
				constant layer	'g_lim_area' and
					itype_atmo_ana=1
h_nconst	R(nlayers	0.,	m	height of the base of each of the N constant	nh_test_name=
	_nconst)	1500.,		layers	'g_lim_area' and
		12000.			itype_atmo_ana=1

Parameter	Type	Default	Unit	Description	Scope
N_nconst	R(nlayers	0.01	1/s	Brunt-Vaisala-frequency at each of the N	nh_test_name=
	_nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
rh_nconst	R(nlayers	0.5	%	relative humidity at the base of each N	nh_test_name=
	-nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
rhgr_nconst	R(nlayers	0.	%	relative humidity gradient at each of the N	nh_test_name=
	$_$ nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
nlayers-poly	Ι	2		Number of the desired layers with constant	nh_test_name=
				gradient temperature	'g_lim_area' and
					itype_atmo_ana=2
p-base-poly	Я	100000.	Pa	pressure at the base of the first polytropic layer	nh_test_name=
					'g_lim_area' and
					itype_atmo_ana=2
h_poly	R(nlayers	0.,	m	height of the base of each of the polytropic	nh_test_name=
	_poly)	12000.		layers	'g_lim_area' and
					itype_atmo_ana=2
t_{-} poly	R(nlayers	288.,	K	temperature at the base of each of the	nh_test_name=
	_poly)	213.		polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rh-poly	R(nlayers	0.8, 0.2	%	relative humidity at the base of each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rhgr_poly	R(nlayers	5.e-5, 0.	%	relative humidity gradient at each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	Ι	2		Number of the desired layers with constant U	nh_test_name=
				gradient	'g_lim_area' and
					itype_anaprof_uv=1

Parameter	Type	Default	Unit	Description	Scope
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind	nh_test_name=
	_linwind)			layers	'g_lim_area' and
					itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	$\mathrm{m/s}$	zonal wind at the base of each of the linear	nh_test_name=
	_linwind)			wind layers	'g_lim_area' and
					itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear wind	nh_test_name=
	_linwind)			layers	'g_lim_area' and
					itype_anaprof_uv=1
vel_const	R	20.	$\mathrm{s/m}$	constant zonal/meridional wind	nh_test_name=
				$(itype_anaprof_uv=2,3)$	'g_lim_area' and
					itype_anaprof_uv=2,3
mount_lonc_deg	R	90.	deg	longitud of the center of the mountain	nh_test_name=
					'g_lim_area'
${ m mount_latc_deg}$	$_{ m R}$	0.	\deg	latitud of the center of the mountain	nh_test_name=
					'g_lim_area'
schaer_h0	R	250.	m	h0 parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1
schaer_a	$_{ m R}$	5000.	m	-a- parameter for the schaer mountain,	nh_test_name=
				also half width in the north and south side of	'g_lim_area' and
				the finite ridge to round the sharp edges	itype_topo_ana=1,2
schaer_lambda	$_{ m R}$	4000.	m	lambda parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1
lshear_dcmip	Г	FALSE		run demip_mw_2x with/without vertical wind	nh_test_name=
				shear	'dcmip_mw_2x'
				FALSE: dcmip_mw_21: non-sheared	
				IKUE: dcmlp_mw_ZZ: sneared	

Parameter	Type	Default	Unit	Description	Scope
halfwidth_2d	R	10000.	m	half lenght of the finite ridge in the north-south	nh_test_name=
				direction	'g_lim_area' and
					itype_topo_ana=1,2
m_height	m R	1000.	m	height of the mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=2,3
m_width_x	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the	itype_topo_ana=2,3
				rounding of the finite ridge (gaussian_2d)	
m_width_y	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				north-south direction	'g_lim_area' and
					itype_topo_ana=2,3
gw-u0	R	0.	s/m	maximum amplitude of the zonal wind	nh_test_name=
					'dcmip_gw_3X'
gw-clat	$_{ m R}$	90.	\deg	Lat of perturbation center	nh_test_name=
					$'$ dcmip_gw_3X'
gw-delta_temp	m R	0.01	K	maximum temperature perturbation	nh_test_name=
					'dcmip_gw_32'
ucbl(2)	R	0:0	s/m	to prescribe initial zonal velocity profile for	nh_test_name=CBL
			and	convective boundary layer simulations where	
			1/s	$u_{cbl}(1)$ sets the constant and $u_{cbl}(2)$ sets the	
				vertical gradient	
vcbl(2)	m R	0:0	s/m	to prescribe initial meridional velocity profile	nh_test_name=CBL
			and	for convective boundary layer simulations	
			1/s	where $vcbl(1)$ sets the constant and $vcbl(2)$	
				sets the vertical gradient	
$ hinspace{th_cbl(2)}$	R	290:0:006	K	to prescribe initial potential temperature	nh_test_name=CBL
			and	profile for convective boundary layer	
			m K/m	simulations where th_cbl(1) sets the constant	
				and th_cbl(2) sets the gradient	

4.7. EXTERNAL DATA 113

Defined and used in: src/testcases/mo_nh_testcases.f90

4.7 External data

4.7.1 extpar_nml (Scope: itopo=1 in run_nml)

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				пе	
$n_iter_smooth_topo$	I(n-dom)			iterations of topography smoother	itopo = 1
	$_{ m R}$	0.015625		pre-factor of topography smoother	$n_{\text{-}}$ iter_smooth_topo > 0
heightdiff_threshold	$R(n_{-dom}) 3000.$	3000.	m	height difference between neighboring grid	
				points above which additional local nabla2	
				diffusion is applied	
l-emiss	Γ	TRUE.		read and use external surface emissivity map	itopo = 1
extpar_filename	C			Filename of external parameter input file,	
				default: " <path>extpar_<gridfile>". May</gridfile></path>	
				contain the keyword <path> which will be</path>	
				substituted by model_base_dir.	
extpar_varnames_map_	C			Filename of external parameter dictionary,	
file				This is a text file with two columns separated	
				by whitespace, where left column: NetCDF	
				name, right column: GRIB2 short name. It is	
				required, if external parameter are read from a	
				file in GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

4.8 External packages

4.8.1 art_nml

Parameter	Type	Default	Unit	Pefault Unit Description	Scope
lart	Г	.FALSE.		main switch for ART-package	
lemi_volc	I	FALSE.		Emission of volcanic ash	
lconv_tracer	Г	FALSE.		Convection of tracers	
lwash_tracer	Γ	FALSE.		Washout of tracers	
lrad_volc	L	FALSE.		Radiative impact of volcanic ash	
lcld_tracer	Γ	FALSE.		Impact on clouds	

Defined and used in: src/namelists/mo_art_nml.f90

4.9 Information on vertical level distribution

generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb_params/HYB_PARAMS_<nlev>. The If no vertical sleve coordinate is chosen (ivctype /=2), the hydrostatic and nonhydrostatic models need hybrid vertical level information to hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further information see <icon home>/hyb_params/README.

Discussion

Document last edited by addyourname on insertdate Document last edited by S Gruber on 08-01-2014.

References 116

References

Jablonowski, C. and D. L. Williamson, 2006. A baroclinic instability test case for atmospheric model dynamical cores. *Quart. J. Roy. Meteor. Soc.*, 132, 2943–2975.

- **Zängl, G., 2012**. Extending the Numerical Stability Limit of Terrain-Following Coordinate Models over Steep Slopes. *Monthly Weather Review* 140(11), 3722–3733.
- Zängl, G., D. Reinert, M.-P. Rípodas, and M. Baldauf, 2013. The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: Description of the nonhydrostatic dynamical core. *INSERT*, in press.