Mètode tabular o de Quine-McCluskey

- Una variable contínua es pot representar, geomètricament, com una distància al llarg d'una recta (eixos cartesians).
- Anàlogament, una variable de commutació (2 valors possibles) es pot representar com els punts extrems d'un segment.
- Els 4 valors de 2 variables de commutació es poden representar com els vèrtexs d'un quadrat (2D).
- En general, les diferents combinacions d'n variables es poden representar en un espai d'n dimensions i tots els 2n punts possibles formen els vèrtexs d'un n-cub o un hipercub de Boole.
- Per representar una funció en un n-cub s'estableix una correspondència entre minterm (si treballem com a suma de productes) i vèrtexs.

Dos cubs 0 (C-0 o minterms) formen un cub-1 C-1.

$$C_1^{-1}$$
 format per $000 i 010 \rightarrow 0X0$ 0-0
 C_2^{-1} " " $010 i 011 \rightarrow 01X$ 01-
 C_3^{-1} " " $011 i 111 \rightarrow X11$ -11

Dos C-1 poden formar un C-2.

100 101

formen un cub-2 1XX

El mètode de Karnaugh presenta el problema que és un mètode de prova i error i no sempre és possible "veure" quina és la simplificació correcte, ja que depèn de la vista del qui fa ús. Existeix el mètode de Quine-McCluskey, que permet fer una simplificació a dos nivells de forma més sistemàtica i que pot ser implementat amb ordinador.

Primer, ordenem els minterms (maxterms) segons els número d'1 que contenen: tindrem el primer grup amb el minterm que no té cap 1, un segon amb els minterms amb un 1, un tercer amb els minterms amb dos 1s, ...

A continuació tindrem present que només podrem eliminar variables entre grups adjacents (per exemple, un terme amb un 1 i un amb dos 1s, com podria ser el 8[1000] i el 9[1001]). ABCD i ABCD donen ABC- (o 100-)

Realitzem aquest procés entre els diferents minterms, per tal de formar els cubs-1, marcant quina és la variable que eliminem (sigui amb el seu pes o explícitament). Marquem quins minterms hem fet servir (direm que els hem cobert).

Repetim el procediment entre els diferents cubs-1 per formar cubs-2, marcant els que hem fet servir.

Repetim el procediment fins que no puguem continuar.

Exemple 1

$f(A, B, C, D) = \sum m(0, 2, 3, 6, 7, 8, 9, 10, 13)$

núm. d'1	Mintermes							
0	0	0000 -						
1	2 8	0010 - 1000 -						
2	3 6 9 10	0011 - 0110 - 1001 - 1010 -						
3	7 13	0111 - 1101 -						

cubs-1
0-2 (2) - 0-8 (8) -
2-3 (1) - 2-6 (4) - 2-10 (8) - 8-9 (1) * 8-10 (2) -
3-7 (4) - 6-7 (1) - 9-13 (4) *

Disseny Digital Bàsic

11

10

Ara procedim a seleccionar un conjunt òptim d'implicants primers (IP). És el procediment que permet de determinar quins són els cubs-n necessaris per tal de fer la simplificació máxima.

En una taula disposem tots els cubs-n (files) i els minterms (columnes). A continuació mirem quins són les Implicants primers: els cubs-n que són necessaris per cobrir tots els minterms.

Primer, però, mirem quins són els minterms que només són coberts per un dels cubs-n. Aquests cubs-n seran els anomenats Terme Primer Essencial (TPE) (els marquem amb una *). A continuació mirem quins termes addicionals són coberts per aquests TPE (amb una x). Finalment mirem si encara ens queden termes sense cobrir.

IP↓ m→	0	2	3	6	7	8	9	10	13
0-2-8-10 (2-8)	*	*				*		*	
2-3-6-7 (1-4)		*	*	*	*				
8-9 (1)						*	*		
9-13 (4)							*		*
	*	×	*	*	*	×	×	*	*

$$f = (0-2-8-10) + (2-3-6-7) + (9-13)$$

$$f = \overline{B} \cdot \overline{D} + \overline{A} \cdot C + A \cdot \overline{C} \cdot D$$

TPE

TPE

TPE

	1	2	3	5	9	10	11	18	19	20	21	23	25	26	27
C-3 (1-8-16)		*	*			*	*	*	*					*	*
1-3-9-11 (2-8)	*		*		*		*								
9-11-25-27 (2-16)					*		*						*		*
1-5 (4)	*			*											
5-21 (16)				*							*				
20-21 (1)										*	*				
19-23 (4)									*			*			
21-23 (2)											*	*			
		*	×		×	*	×	*	×	*	×		*	*	×

IP	1	5	23
1-3-9-11 (1-8)	*		
1-5 (4)	*	*	
5-21 (16)		*	
19-23 (4)			*
21-23 (2)		·	*

$$f = C-3 + (9-11-25-27) + (20-21) + (1-5) + (19-23)$$

 $o + (21-23)$

$$f = \overline{C} \cdot D + B \cdot \overline{C} \cdot E + A \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{D} \cdot E + A \cdot \overline{B} \cdot D \cdot E$$