TRANSFORMAÇÕES LINEARES

1. Coordenadas

Seja V um espaço vetorial de dimensão finita. Seja $B = \{b_1, \ldots, b_n\}$ uma base de V e seja $v \in V$. Então v pode ser escrito unicamente como

$$v = \alpha_1 b_1 + \dots + \alpha_n b_n.$$

O vetor $[v]_B = (\alpha_1, \dots, \alpha_n)$ chama se o vetor das coordenadas de v na base B.

Exemplo 1. Seja $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ e seja $B = \{b_1 = (1, 0, -1), b_2 = (1, -1, 0)\}$ (verifique que V é espaço vetorial com base B). Ponha v = (3, 2, -5). Então

$$v = 5b_1 - 2b_2$$

e assim $[v]_B = (5, -2)$.

Exercício 2. Verifique que a aplicação $V \to \mathbb{R}^n$ definida por $v \mapsto [v]_B$ é um isomorfismo linear (ou seja, uma aplicação linear injetiva e sobrejetiva)

2. A MATRIZ DE UMA TRANSFORMAÇÃO LINEAR

Seja $T: V \to W$ uma transformação linear entre dois espaços vetoriais de dimensão finita. Assuma que $B = \{b_1, \ldots, b_n\}$ é uma base de V, enquanto $C = \{c_1, \ldots, c_m\}$ é uma base de W. Como $T(b_i) \in W$, o vetor $T(b_i)$ pode ser escrito como

$$T(b_i) = \alpha_{i,1}c_1 + \ldots + \alpha_{i,m}c_m$$

com $\alpha_{i,j} \in \mathbb{R}$. Nós definimos a matriz de T relativa às bases B e C como

$$[T]_C^B = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{n,1} \\ \vdots & \ddots & \vdots \\ \alpha_{1,m} & \cdots & \alpha_{n,m} \end{pmatrix} = ([T(b_1)]_C, \dots, [T(b_n)]_C).$$

Ou seja, a matriz $[T]_C^B$ contém os vetores $[T(b_i)]_C$ nas suas colunas. A matriz $[T]_C^B$ é uma matriz $m \times n$.

Exemplo 3. Considere a transformação $T: \mathbb{R}^3 \to V$, T(x,y,z) = (x-y,y-z,z-x) onde V é o mesmo espaço que no exemplo anterior. Seja B a base canônica de \mathbb{R}^3 e $C = \{c_1 = (1,0,-1), c_2 = (0,1,-1)\}$. Então temos que

$$T(1,0,0) = (1,0,-1) = c_1$$

 $T(0,1,0) = (-1,1,0) = -c_1 + c_2$
 $T(0,0,1) = (0,-1,1) = -c_2$.

2

Logo

$$[T]_C^B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

lem:matr

Lema 4. Usando a notação no parágrafo anterior, temos que

$$[T(v)]_C = [T]_C^B \cdot [v]_B.$$

Note que no lado direito da equação no Lema $\frac{|\text{lem:matr}}{4$, o vetor $[v]_B$ é visto como vetor coluna para a multiplicação fazer sentido. Isso poderia ser denotado por $[v]_B^t$, mas nós escolhemos a notação mais simples.

Demonstração. Primeiro assuma que $v = b_i \in B$. Então $[T(b_i)]_C$ é justamente a i-ésima coluna de $[T]_C^B$ e $[b_i]_B$ é o *i*-ésimo vetor na base canônica de \mathbb{R}^m . Logo temos obviamente que $[T(b_i)]_C = [T]_C^B \cdot [b_i]_B$. Quando $v \in V$ é arbitrário, escreva que

$$v = \beta_1 b_1 + \dots + \beta_n b_n;$$

ou seja, $[v]_B = (\beta_1, \dots, \beta_n)$. Ora,

$$[T(v)]_C = [T(\beta_1 b_1 + \dots + \beta_n b_n)]_C$$

= $\beta_1 [T(b_1)]_C + \dots + \beta_n [T(b_n)]_C$
= $\beta_1 [T]_C^B \cdot e_1 + \dots + \beta_n [T]_C^B \cdot e_n$
= $[T]_C^B \cdot [v]_B$

onde e_1, \ldots, e_n são os vetores (colunas) da base canônica de \mathbb{R}^n .

3. Mudança de base

Seja V um espaço vetorial com duas bases $B = \{b_1, \ldots, b_n\}$ e $C = \{c_1, \ldots, c_n\}$. A transformação id : $V \to V$, id (v) = v é linear e podemos considerar a sua matriz [id] $_B^C$ Pelo que fizemos nas seções anteriores

$$[id]_B^C = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{n,1} \\ \vdots & \ddots & \vdots \\ \alpha_{1,m} & \cdots & \alpha_{n,m} \end{pmatrix} = ([c_1]_B, \dots, [c_n]_B)$$

onde os coeficientes estão determinados pelas equações

$$c_i = \alpha_{i,1}b_1 + \dots + \alpha_{i,n}b_n.$$

A matriz [id] $_{B}^{C}$ chama-se matriz mudança de base (de B para C).

Lema 5. Usando a notação no parágrafo anterior, temos que

$$[v]_B = [id]_B^C \cdot [v]_C$$

 $[v]_B = [id]_B^C \cdot [v]_C.$ Demonstração. Segue do Lema $\frac{1 \text{em}:\text{matr}}{4}$. Exercício 6. Demonstre que $[id]_C^B = ([id]_B^C)^{-1}$.

Exemplo 7. Seja $V = \mathbb{R}^2$, $B = \{e_1, e_2\}$ (a base canônica), e $C = \{c_1 = (1, 1), c_2 = (1, -1)\}$. Logo

$$[\operatorname{id}]_B^C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{e} \quad [\operatorname{id}]_C^B = \left([\operatorname{id}]_B^C \right)^{-1} = \frac{1}{2} [\operatorname{id}]_B^C.$$

Seja v = (-1, 2). Então $[v]_B = (-1, 2)$ e

$$[v]_C = [id]_C^B [v]_B = (1/2, -3/2).$$

De fato $v = (1/2)c_1 - (3/2)c_2$.

ex:comp

Exercício 8. Sejam $T_1: V \to U$ e $T_2: U \to W$ transformações lineares, e sejam B, C, e D bases de V, U, e W, respetivamente. Mostre que

$$[T_2 \circ T_1]_D^B = [T_2]_D^C \cdot [T_1]_C^B.$$

4. Transformações lineares e mudança de base

Seja $T:V\to W$ uma transformação linear entre os espaços V e W de dimensão finita. Sejam $B,\,B'$ bases de V e $C,\,C'$ bases de W.

Lema 9. Temos que

$$[T]_{C'}^{B'} = [id_W]_{C'}^C \cdot [T]_C^B \cdot [id_V]_B^{B'}.$$

Demonstração. Aplique o Exercício $\overset{\texttt{ex:comp}}{8}$.

Quando $T:V\to V$ é um endomorfismo, nós geralmente calculamos a matriz $[T]_B^B$. Se $B\in C$ são duas bases de T, então temos que

$$[T]_C^C = [\operatorname{id}]_C^B \cdot [T]_B^B \cdot [\operatorname{id}]_C^C = [\operatorname{id}]_C^B \cdot [T]_B^B \cdot ([\operatorname{id}]_C^B)^{-1}.$$

Note que se Y é uma matriz e X é uma matriz invertível $n \times n$, então diz-se que a matriz XYX^{-1} é um conjugada de Y.

Exercício 10. Sejam Y_1 e Y_2 matrizes conjugadas. Demonstre as seguintes afirmações.

- (1) $\det Y_1 = \det Y_2$.
- (2) Y_1 e Y_2 têm os mesmos autovalores.
- (3) Seja $Y_2 = XY_1X^{-1}$ e seja $v \in \mathbb{R}^n$. Então v é um autovetor de Y_1 se e somente se Xv é autovetor de Y_2 . Além disso v e Xv correspondem ao mesmo autovalor.

5. Um exemplo detalhado: As reflexões

Assuma que $t=(a,b)\in\mathbb{R}^2$ é um vetor com $||t||=\sqrt{a^2+b^2}=1$. Define

$$R_t: \mathbb{R}^2 \to \mathbb{R}^2, \quad R_t(v) = v - 2(v \cdot t)t$$

onde $v \cdot t$ denota o produto escalar entre v e t. É fácil verificar que R_t é linear. Seja t' = (b, -a) um vetor normal (ortoginal) ao vetor t. Então temos que $t \cdot t = 1$ e $t \cdot t' = 0$ e assim

$$R_t(t) = -t$$
 enquanto $R_t(t') = t'$.

Como vetores t e t' formam uma base C, faz sentido perguntar a matriz de R_t nesta base. De fato

$$[R_t]_C^C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Seja B a base canônica de \mathbb{R}^2 . Então temos que

$$[\mathrm{id}\,]_B^C = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}.$$

Além disso, $[id]_B^C$ é uma matriz ortogonal simêtrica, e assim $[id]_C^B = ([id]_B^C)^{-1} = [id]_B^C$.

$$[R_t]_B^B = [\operatorname{id}]_B^C \cdot [R_t]_C^C \cdot [\operatorname{id}]_C^B = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} = \begin{pmatrix} -a^2 + b^2 & -2ab \\ -2ab & a^2 - b^2 \end{pmatrix}.$$

Alternativamente, podemos verificar com conta direta que

$$R_t(1,0) = (1-2a^2, -2ab)$$
 e $R_t(0,1) = (-2ab, 1-2b^2)$

e que

$$[R_t]_B^B = \begin{pmatrix} 1 - 2a^2 & -2ab \\ -2ab & 1 - 2b^2 \end{pmatrix}.$$

Como $a^2 + b^2 = 1$ as duas matrizes que obtivemos para $[R_t]_B^B$ são de fato iguais. Usando que $a^2 + b^2 = 1$, podemos escrever $a = \cos \alpha$ e $b = \sin \alpha$ com algum ângulo $\alpha \in [0, 2\pi]$. Assim obtemos que

$$[R_t]_B^B = \begin{pmatrix} -\cos^2\alpha + \sin^2\alpha & -2\cos\alpha \cdot \sin\alpha \\ -2\cos\alpha \cdot \sin\alpha & \cos^2\alpha - \sin^2\alpha \end{pmatrix} = \begin{pmatrix} -\cos(2\alpha) & -\sin(2\alpha) \\ -\sin(2\alpha) & \cos(2\alpha) \end{pmatrix}.$$

Seja $\alpha = \alpha' + \pi/2$. Com α' podemos escrever $[R_t]_B^B$ na forma ainda mais simples como

$$[R_t]_B^B = \begin{pmatrix} \cos(2\alpha') & \sin(2\alpha') \\ \sin(2\alpha') & -\cos(2\alpha'). \end{pmatrix}$$