

#### POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione Corso di Laurea Magistrale in Ingegneria Informatica Dipartimento di Elettronica, Informazione e Bioingegneria

## **OrbTail**

Design e sviluppo di un videogioco multigiocatore con interoperabilità tra ecosistemi diversi

Relatore: Prof. Pier Luca LANZI

Tesi di laurea di: Raffaele Daniele Facendola

### Videogiochi

- Coinvolgimento
- Diverse piattaforme
- Condivisione
  - Cooperazione \ Competizione
  - Multigiocatore locale o online









#### **OrbTail**

- Gioco di corse ad arena a tema fantascientifico\cyberpunk
  - Competitivo, fino a quattro partecipanti
- Multigiocatore locale ed online
- Multipiattaforma
- Cross-platform play



#### Veicoli

- Sei veicoli ad anti-gravitá
  - Rendering physically-based
- Stili di guida diversi
  - Velocità, accelerazione, manovrabilità



#### Arene

- Diverse topologie
  - Grado di sfida piú elevato

- Dimensioni limitate
  - o Favoriscono gli scontri







#### **Architettura**



#### Architettura di rete

- Client-server
  - Host: autorità su IA, elementi e scontri
  - Client: autorità sui veicoli
- Sincronizzazione: RPC e replicazione
  - Dead-reckoning tramite interpolazione
- Gestione lobby tramite servizio di matchmaking di Unity





### Gestione della gravità

- Posizione determinata tramite raycasting
- Fluttuazione tramite moto armonico smorzato
- Rappresentazione analitica del campo gravitazionale
  - Evita ambiguità durante il raycasting
  - Topologie complicate modellate per aggregazione









#### Sistema di controllo

- Controllore PID per acceleratore e sterzo
  - Riferimento determinato dall'input utente
  - Parametri influenzati dal veicolo

- Scontri gestiti dal motore fisico
  - Veicoli modellati come sfere
  - Danni proporzionali a velocitá e direzione





### Intelligenza artificiale

- Genera gli input usati dal controllore del veicolo
- Campo visivo usato per individuare obiettivi
- Punti di controllo per aiutare la navigazione
- Strategie temporizzate per evitare l'accanimento





Multigiocatore locale

- Multigiocatore misto locale ed online
- Split-screen fino a quattro giocatori
  - Suddivisione del viewport in quadrar
- Separazione HUD 3D



#### Conclusioni

- Motori grafici indispensabili per lo sviluppo multipiattaforma
- Interoperabilità non adatta a tutti i tipi di designi
- Architettura unica evita l'esplosione combinatoria delle implementazioni

#### Sviluppi futuri

- Nuove arene, modalitá di gioco, potenziamenti, livree...
- Nuove strategie per l'intelligenza artificiale
- Distribuzione della simulazione sui client

## DOMANDE?

# **GRAZIE!**

### Sviluppo

- Motore di gioco: Unity
  - Supporto multipiattaforma
  - Servizio di matchmaking
- Logiche di gioco in C#, shader in CG
- Architettura basata sul pattern entity-component





### **Piattaforme**









### Titoli analizzati











### Modalitá di gioco

- Tre condizioni di vittoria
  - Punteggio più elevato
  - Coda più lunga
  - Ultimo giocatore in partita
- Potenziamenti ed armi
  - Rottura dell'equilibrio di gioco



### Sviluppi futuri

- Nuove arene, modalitá di gioco, potenziamenti, livree...
- Intelligenza artificiale
  - Strategie adattabili alla modalitá di gioco corrente
  - Uso dei potenziamenti in maniera vantaggiosa
- Esperienza online
  - Algoritmi più sofisticati per gestire il dead-reckoning
  - Distribuire la simulazione di gioco