在线授课签到方法

- 1. 在线授课每次都要记录出席情况。
- 2. 助教在课程进行过程中<mark>随机选择一个时刻</mark>确定当次课出勤 情况
- 3. 参会人员命名格式: 姓名十学号; 非此格式有可能导致无 出勤记录, 当次出勤分数为o。
- 4. 若网络存在严重故障,请提前联系TA, 否则由此导致无出勤记录的, 当次出勤分数为o。
- 5. 若网络存在临时故障导致掉线,记录下掉线的时间,当天中午12:30前提交给TA。TA与其选定的时刻对照,如相符则进行补充登记。掉线次数理论上不应超过3次,每次不超过3分钟。对于每次课出勤结果,TA择时公布。

其他注意事项

- 1. 上课期间注意保持安静,麦克风静音,不得人为制造噪音。
- 2. 助教负责记录, 违者当次课出勤分数为o; 多次违反, 整个学期出勤分数为o。
- 3. 关于课程内容的问题可在聊天区发表,助教全程记录留言内容,可随时回答问题。
- 4. 此区域不可发表与课程无关的内容,否则当次课出勤分数为o;多次发表与课程无关内容,整个学期出勤分数为o。

Discrete Mathematics Lecture 9

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 8

Order of a group *G*: the number of elements in *G*

Order of an element $a \in G$: the least l > 0 such that $a^l = 1$

- $a^{|G|} = 1$ for all $a \in G$
 - Euler's theorem, Fermat's little theorem

Subgroup: $H \subseteq G + (H, \star)$ is also a group $(H \leq G)$

- $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ is a subgroup of G for all $g \in G$
- Cyclic group: $G = \langle g \rangle$ for some $g \in G$

Discrete Logarithm: $G = \langle g \rangle = \{g^0, g^1, ..., g^{q-1}\}$

- $\forall h \in G, \exists x \in \{0,1,...,q-1\} \text{ such that } h = g^x$
- Denote $x = \log_a h$
- DLOG problem: $(q, G, g, h) \rightarrow x$
- CDH problem: $(q, G, g, g^a, g^b) \rightarrow g^{ab}$

Diffie-Hellman Key Exchange

The Scheme: $G = \langle g \rangle$ is a cyclic group of prime order q

- Alice: $a \leftarrow \mathbb{Z}_q$, $A = g^a$; send (q, G, g, A) to Bob
- Bob: $b \leftarrow \mathbb{Z}_q$, $B = g^b$; send B to Alice; output $k = A^b$
- Alice: output $k = B^a$

Whitfield Diffie, Martin E. Hellman: New directions in Cryptography, IEEE Trans. Info. Theory, 1976 **Turing Award 2015**

Correctness: $A^b = g^{ab} = B^a$

Wiretapper: view = (q, G, g, A, B)

Security: view $\Rightarrow g^{ab}$

Combinatorics

Enumerative combinatorics

permutations, combinations, partitions of integers, generating functions, combinatorial identities, inequalities

Designs and configurations

• block designs, triple systems, Latin squares, orthogonal arrays, configurations, packing, covering, tiling GiLV, E) To Take

Graph theory

graphs, trees, planarity, coloring, paths, cycles,

Extremal combinatorics

extremal set theory, probabilistic method......

Algebraic combinatorics

symmetric functions, group, algebra, representation, group actions.....

Sets and Functions

DEFINITION: A **set** is an unordered collection of **elements**

- $a \in A$; $a \notin A$); roster method, set builder; empty set \emptyset , universal set
- A = B; $A \subseteq B$; $A \subset B$; $A \cup B$; $A \cap B$; \bar{A}

DEFINITION: Let $A, B \neq \emptyset$ be two sets. A function (map)

 $f: A \to B$ assigns a unique element $b \in B$ for all $a \in A$.

- surjective_{m,h}: <math>f(A) = B</sub>
- **bijective**_{XM}: injective and surjective

Cardinality of Sets

- **DEFINITION:** Let *A* be a set. *A* is a **finite set** if it has finitely many elements; Otherwise, *A* is an **infinite set**.
 - The **cardinality** A of a finite set A is the number of elements in A.
- **EXAMPLE:** \emptyset , $\{1\}$, $\{x: x^2 2x 3 = 0\}$, $\{a, b, c, ..., z\}$ are all finite sets; \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all infinite sets
- **DEFINITION:** Let A, B be any sets. We say that A, B have the same cardinality (|A| = |B|) if there is a bijection $f: A \to B$
 - We say that $|A| \le |B|$ if there exists an injection $f: A \to B$.
 - If $|A| \le |B|$ and $|A| \ne |B|$, we say that |A| < |B|

THEOREM: Let *A*, *B*, *C* be any sets. Then

- $\bullet \quad |A| = |A|$
- $|A| = |B| \Rightarrow |B| = |A|$
- $|A| = |B| \land |B| = |C| \Rightarrow |A| = |C|$

Cardinality of Sets

EXAMPLE:
$$|\mathbb{Z}^+| = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}^+| = |\mathbb{Q}|$$

•
$$f: \mathbb{Z}^+ \to \mathbb{N} \quad x \mapsto x - 1$$

•
$$f: \mathbb{Z} \to \mathbb{N}$$
 $f(x) = \begin{cases} 2x & x \ge 0 \\ -(2x+1) & x < 0 \end{cases}$

EXAMPLE:
$$|\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]|$$

•
$$f: \mathbb{R} \to \mathbb{R}^+ \ x \mapsto 2^x$$

•
$$f:(0,1) \to \mathbb{R} \ x \mapsto \tan(\pi(x-1/2))$$

•
$$f:[0,1] \to (0,1)$$

•
$$f(1) = 2^{-1}$$
, $f(0) = 2^{-2}$, $f(2^{-n}) = 2^{-n-2}$, $n = 1, 2, 3, ...$

• f(x) = x for all other x

EXAMPLE: $|2^X| = |\mathcal{P}(X)|$

- $2^X = \{ \alpha \mid \alpha \colon X \to \{0,1\} \}$ the set of all functions from X to $\{0,1\}$
- $\mathcal{P}(X) = \{A | A \subseteq X\}$: the power set of $X \times \emptyset$
- $f: 2^X \to \mathcal{P}(X)$ $\alpha \mapsto A = \{x: \alpha(x) = 1\}$

$$f\colon \mathbb{Z}^+ \to \mathbb{Q}^+$$

Cardinality of Sets

THEOREM: $|(0,1)| \neq |\mathbb{Z}^+|$

• Suppose that $|(0,1)| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to (0,1)$

$$f(1) = 0.b_{11}b_{12}b_{13}b_{14}b_{15}b_{16}b_{17}b_{18}b_{19} \cdots$$

$$f(2) = 0.b_{21}b_{22}b_{23}b_{24}b_{25}b_{26}b_{27}b_{28}b_{29} \cdots$$

$$f(3) = 0.b_{31}b_{32}b_{33}b_{34}b_{35}b_{36}b_{37}b_{38}b_{39} \cdots$$

$$f(4) = 0.b_{41}b_{42}b_{43}b_{44}b_{45}b_{46}b_{47}b_{48}b_{49} \cdots$$

$$f(5) = 0.b_{51}b_{52}b_{53}b_{54}b_{55}b_{56}b_{57}b_{58}b_{59} \cdots$$

$$f(6) = 0.b_{61}b_{62}b_{63}b_{64}b_{65}b_{66}b_{67}b_{68}b_{69} \cdots$$

$$\cdots$$

$$f(n) = 0.b_{n1}b_{n2}b_{n3}b_{n4}b_{n5}b_{n6}b_{n7}b_{n8}b_{n9} \cdots$$

• Let
$$b_i = \begin{cases} 4, \ b_{ii} \neq 4 \\ 5, \ b_{ii} = 4 \end{cases}$$
 for $i = 1, 2, 3, ...$ $b_i \neq b_i$

- $b = 0.b_1b_2b_3b_4b_5b_6b_7b_8b_9 \cdots$ is in (0,1) but has no preimage
 - $b \neq f(i)$ for every i = 1, 2, ...
- *f* cannot be a bijection

Cantor's Diagonal Argument

Question: Show that $|A| \neq |\mathbb{Z}^+|$.

The Diagonal Argument:

- Suppose that $|A| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to A$
- 2) Represent the function *f* as a list:

```
f(1) a_1 \cdots a_2 \cdots \cdots a_2 \cdots \cdots \cdots

Every element of \mathbb{Z}^+ appears once in the left-hand side f(i) a_i \cdots \cdots a_i \cdots a_
```

- Construct an element *x* by considering the diagonal of the list
- Show that $x \neq a_i$ for all $i \in \mathbb{Z}^+$
- Show that $x \in A$
- 4) and 5) give a contradiction

Cantor's Theorem

THEOREM: (Cantor) Let A be any set. Then $|A| < |\mathcal{P}(A)|$.

- $|A| \leq |\mathcal{P}(A)|$
 - The function $f: A \to \mathcal{P}(A)$ defined by $f(a) = \{a\}$ is injective.
- $|A| \neq |\mathcal{P}(A)|$
 - Assume that there is a bijection $g: A \to \mathcal{P}(A)$
 - Define $X = \{a : a \in A \text{ and } a \notin g(a)\}$
 - *X* should appear in the list. It is clear that $X \subseteq A$ and hence $X \in \mathcal{P}(A)$
 - *X* will not appear in the list. Suppose that X = g(x) for some $x \in A$
 - If $x \in X$, then $x \notin g(x) = X$
 - This gives a contradiction
 - If $x \notin X$, then $x \in g(x) = X$
 - This gives a contradiction

The Halting Problem

$$\mathbf{HALT}(P,I) = \begin{cases} \text{"halts"} & \text{if } P(I) \text{ halts;} \\ \text{"loops forever"} & \text{if } P(I) \text{ loops forever.} \end{cases}$$

• *P*: a program; *I*: an input to the program *P*.

QUESTION: Is there a Turing machine **HALT**?

- Turing machine: can be represented as a an element of $\{0,1\}^*$
 - $\{0,1\}^* = \bigcup_{n\geq 0} \{0,1\}^n$: the set of all finite bit strings

THEOREM: There is no Turing machine **HALT**.

- Assume there is a Turing machine HALT
- Define a new Turing machine **Turing**(*P*) that runs on any Turing machine *P*
 - **If** HALT(P, P) = "halts", loops forever
 - **If** HALT(P, P) = "loops forever", halts
- Turing(Turing) loops forever⇒ HALT(Turing, Turing) =
 "halts"⇒Turing(Turing) halts
- Turing(Turing) halts ⇒ HALT(Turing, Turing) = "loops forever"⇒Turing(Turing) loops forever

Countable and Uncountable

DEFINITION: A set A is **countable** of $A = |\mathbb{Z}^+|$; otherwise, it is said to be **uncountable**不可數, 不可列.

• countably infinite: $|A| = |\mathbb{Z}^+|$ 可到大名集合

- 可到集的笛卡尔科《是可引集
- $\mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}^-, \mathbb{Q}^+, \mathbb{Q}, \mathbb{N}, \mathbb{N} \times \mathbb{N}$, are countable
- \mathbb{R}^- , \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1], (0,1], [0,1), (a, b), [a, b] are uncountable **THEOREM:** A set A is countably infinite iff its elements can be

arranged as a sequence $a_1, a_2, ...$

- If A is countably infinite, then there is a bijection $f: \mathbb{Z}^+ \to A$
- If $A = \{a_1, a_2, ...\}$, then the $f: \mathbb{Z}^+ \to A$ defined by $f(i) = a_i$ is a bijection
 - $a_i = f(i)$ for every i = 1,2,3...

Countable and Uncountable

THEOREM: Let *A* be countably infinite, then any infinite subset $X \subseteq A$ is countable.

- Let $A = \{a_1, a_2, ...\}$. Then $X = \{a_{i_1}, a_{i_2}, ...\}$ X is countable
- **THEOREM:** Let *A* be uncountable, then any set $X \supseteq A$ is uncountable.
 - If *X* is countable, then *A* is finite or countably infinite

THEOREM: If *A*, *B* are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, ...\}$ //no elements will be included twice
 - application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |(0,1)|$: hence, $|\mathbb{Z}^+| \neq |\mathbb{R}|$, and in fact $|\mathbb{Z}^+| < |\mathbb{R}|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathbb{R}|$? $|\mathcal{P}(\mathbb{Z}^+)|$: which set has more elements?

THEOREM: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f:(0,1) \to [0,1)$ $x \to \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g:[0,1) \to (0,1)$ $x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = (|\mathbb{R}|)$$

- $|\mathcal{P}(\mathbb{Z}^+)| \leq |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, \dots\} \mapsto 0 \dots 1_{a_1} \dots 1_{a_2} \dots \text{ is an injection.}$
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
 - $\forall x \in [0,1), x = 0, r_1 r_2 \cdots (r_1, r_2, \cdots \in \{0, \dots, 9\}, \text{no } \dot{9})$
 - $0 \leftrightarrow 0000, 1 \leftrightarrow 0001, \dots, 9 \leftrightarrow 1001$
 - x has a binary representation $x = 0.b_1b_2 \cdots$
 - $f:[0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\} \text{ is an injection }$

THEOREM:
$$|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$$

The continuum hypothesis There is no cardinal number between \aleph_0 and c, i.e., there is no set A such that $\aleph_0 < |A| < c$.

$$|Z^{\dagger}| < (|CZ^{\dagger}|) | < (PCP(2^{\dagger})) |$$

Parenthesization

力时给多

PROBLEM: Let $a_1, a_2, ..., a_n, a_{n+1}$ be n+1 numbers. Let * be any binary operator. Let C_n be the number of different ways of parenthesizing

$$a_1 * a_2 * \cdots * a_n * a_{n+1}$$

such that the calculation is not ambiguous. What is C_n ?

- n = 4: there are 5 different ways
 - $((a_1 * a_2) * a_3) * a_4$
 - $(a_1 * a_2) * (a_3 * a_4)$
 - $(a_1 * (a_2 * a_3)) * a_4$
 - $a_1 * ((a_2 * a_3) * a_4)$
 - $a_1 * (a_2 * (a_3 * a_4))$
- n = 100?

Combinatorial
Counting
Techniques
Required

Basic Rules of Counting

DEFINITION: Let *A* be a finite set. A **partition** A of set *A* is a family $A_1, A_2, ..., A_k$ of nonempty subsets of *A* such that

- $\bigcup_{i=1}^k A_i = A$ and
- $A_i \cap A_j = \emptyset$ for all $i, j \in [k]$ with $i \neq j$.
- The Sum Rule Let A be a finite set. Let $\{A_1, A_2, ..., A_k\}$ be a partition of A. Then $|A| = |A_1| + |A_2| + \cdots + |A_k|$.
 - Suppose that a task can be done in one of n_1 ways, in one of n_2 ways, . . . , or in one of n_k ways, where none of the set of n_i ways of doing the task is the same as any of the set of n_j ways, for all pairs i and j with $1 \le i < j \le k$. Then the number of ways to do the task is $n_1 + n_2 + \cdots + n_k$.

Basic Rules of Counting

The Product Rule $A_1, A_2, ..., A_k$ be finite sets. Then $|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|.$ (*)

• Suppose that a procedure is carried out by performing the tasks $T_1, T_2, ..., T_k$ in sequence. If each task T_i (i = 1, 2, ..., k) can be done in n_i ways, regardless of how the previous tasks were done, then there are $n_1 n_2 \cdots n_k$ ways to carry out the procedure.

EXAMPLE: # of composite divisors of $N = 2^{100} \times 3^{200} \times 5^{1000}$.

- $A = \{n \in \mathbb{Z}^+: n|N\}; |A| = 101 \times 201 \times 1001 //\text{product rule } n = 2^a 3^b 5^c$
- $A_1 = \{n \in A : n \text{ is prime}\}; A_2 = \{n \in A : n \text{ is composite}\}; A_3 = \{1\}$
 - $\{A_1, A_2, A_3\}$ is a partition of A.
 - $|A| = |A_1| + |A_2| + |A_3| \Rightarrow |A_2| = |A| |A_1| |A_3|$

The Bijection Rule— $_{\text{макри}}$, $_{\text{некри}}$: Let A and B be two finite sets. If there is a bijection $f: A \to B$, then |A| = |B|.

Permutations of Set

DEFINITION: Let A be a finite set of n elements. Let $r \in [n]$.

- **r-permutation** of A: a sequence a_1, a_2, \dots, a_r of r distinct elements of A.
 - An *n*-permutation of *A* is simply called a **permutation** of *A*
 - Example: $A = \{1,2,3\}$
 - 2-Permutations of *A*: 1,2; 1,3; 2,1; 2,3; 3,1; 3,2
 - P(n,r): the number of different r-permutations of an n-element set

THEOREM: P(n,r) = n!/(n-r)! for all $n \in \mathbb{Z}^+$ and $r \in [n]$.

DEFINITION: Let A be a finite set of n elements.

- r-permutation of A with repetition: a sequence a_1, a_2, \dots, a_r of r elements of A.
 - Example: $A = \{1,2,3\}$; 2-Permutations of \overline{A} with repetition:
 - 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3
- **THEOREM:** An n-element set has n^r different r-permutations with repetition.

Multiset

DEFINITION: A **multiset** is a collection of elements which are not necessarily different from each other.

- An element $x \in A$ has **multiplicity**_{\mathbb{Z}}m if it appears m times in A.
- A multiset *A* is called an n-multiset_{n- $\Re g$} if it has n elements.
- $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$: an $(n_1 + n_2 + \dots + n_k)$ -multiset where the elements a_1, a_2, \dots, a_k has multiplicities n_1, n_2, \dots, n_k , respectively.
- $T = \{t_1 \cdot a_1, t_2 \cdot a_2, \dots, t_k \cdot a_k\}$ is called an **r-subset** of A if
 - $0 \le t_i \le n_i$ for every $i \in [k]$, and
 - $t_1 + t_2 + \dots + t_k = r$

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c, 100 \cdot z\}, T = \{1 \cdot b, 98 \cdot z\}$

- A is a 106-multiset; the multiplicaties of a, b, c, z are 1,2,3,100, resp.
- *T* is a 99-subset of *A*

Permutations of Multiset

DEFINITION: Let $A = \{n_1 \cdot a_1, ..., n_k \cdot a_k\}$ be an *n*-multiset.

- **permutation of** A: a sequence x_1, x_2, \dots, x_n of n elements, where a_i appears exactly n_i times for every $i \in [k]$.
- r-permutation of A: a permutation of some r-subset of A

 - a, b, c, b, c, c is a permutation of *A*; bcb is a 3-permutation of *A*;
 - bcb is a permutation of the subset $\{2 \cdot b, 1 \cdot c\}$

REMARK: Let $A = \{a_1, a_2, ..., a_n\}$ be a set of n elements.

- For every $r \in [n]$, an r-permutation of A without repetition is an r-permutation of $\{1 \cdot a_1, 1 \cdot a_2, ..., 1 \cdot a_n\}$.
- For every $r \ge 1$, an r-permutation of A with repetition is an r-permutation of $\{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_n\}$.

THEOREM: Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$ be a multiset.

Then A has exactly $\frac{(n_1+n_2+\cdots+n_k)!}{n_1!n_2!\cdots n_k!}$ permutations.

Shortest Path

DEFINITION: A $p \times q$ -grid is a collection of pq squares of side length 1, organized as a rectangle of side length p and q.

THEOREM: # of shortest paths from (0,0) to (p,q) is $\frac{(p+q)!}{p!q!}$.

- Let $A = \{p \rightarrow, q \uparrow\}$ be a (p + q)-multiset.
- # of shortest paths=# of permutations of A.