Classwork 20 PA24	Name of the Studente
VAH CPE 381 Enstactore Rahul Bladam?	Total Marks: 10 points
So = at a	metaic progressin is written as
Now, Consider a Y[n]=	
@ 9s the System why or wh	given by y[n] causal? y not? (2.5 points)
The system is malue of y [n] or x.	of causal because the present depends on the fature value
	stable? (2.5 points)
Let Say	s that if the input is bounded. Le bounded. Input $(x[n]) \leq M - it$ is bounded. $(m+m+m) \leq M \leq \infty$

Qe: Sampled signal can woo'Hen al:

x(t) = 21 x(nTc) S(t-nTc)

Anowip the delayed version of a signal one with in a phase change (or a multiplication by complex exponential), woulk down when exposession X(s) where X(s) is the Laplace transferr of x(t)

Given L(S(t)) = 1 $L(x(t-A)) = \chi(s)e^{-As}$ (2.5 point)

 $\chi(s) = \frac{1}{2} \chi(n \cdot t_s) L \left[\frac{\delta (t_n \cdot t_s)}{s} \right]$ $= \frac{1}{2} \chi(s \cdot t_s) e^{-ns \cdot t_s}$

an the expression of XG) you obtain,

do variable substitution by assuming a

new variable $z = e^{sts}$, and write XGs)

as a function of z.

(2.5 points)

solutions X(s) = X(z) = = X(iTs) = n