Tema nr. 8

Fie $F: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ o funcție reală. Să se aproximeze un punct de minim (local sau global) al funcției F folosind metoda gradientului descendent. Să se testeze diversele metode de calcul a ratei de învățare. Să se calculeze gradientul funcției F folosind formula analitică și formula aproximativă. Să se compare soluțiile obținute folosind cele două moduri de calcul a gradientului funcției F, din punctul de vedere al numărului de iterații efectuate pentru obținerea soluțiilor (pentru aceeași precizie $\epsilon > 0$).

Minimizarea funcțiilor

Fie $F: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ o funcție reală de două ori derivabilă, $F \in C^2(\mathbb{R} \times \mathbb{R})$, pentru care vrem să aproximăm soluția x^* a problemei de minimizare:

$$\min\{F(x,y);(x,y)\in V\}\quad\longleftrightarrow\quad F(x^*,y^*)\leq F(x,y)\quad\forall (x,y)\in V\quad (1)$$

unde $V = \mathbb{R} \times \mathbb{R}$ $((x^*, y^*)$ este punct de minim global) sau $V = S((\bar{x}, \bar{y}), r)$, sfera de centru (\bar{x}, \bar{y}) și rază r (punct de minim local). Se numește punct critic pentru funcția F, un punct (\tilde{x}, \tilde{y}) care este rădăcină a sistemului de ecuații:

$$\nabla F(\tilde{x}, \tilde{y}) = 0 \quad , \quad \nabla F(x, y) = \begin{pmatrix} \frac{\partial F}{\partial x}(x, y) \\ \frac{\partial F}{\partial y}(x, y) \end{pmatrix}. \tag{2}$$

Se știe că pentru funcțiile de două ori derivabile, punctele de minim ale funcției F se găsesc printre punctele critice. Un punct critic este punct de minim dacă matricea hessiană este pozitiv semidefinită:

$$H(x,y) = \begin{pmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} \end{pmatrix} , \quad (H(\tilde{x}, \tilde{y})z, z)_{\mathbb{R}^2} \ge 0 \quad \forall z \in \mathbb{R}^2$$

Metoda gradientului descendent

Punctul de minim al funcției F se aproximează construind un şir $\{(x_k, y_k)\}$ care, în anumite condiții, converge la punctul de minim (x^*, y^*) căutat. Convergența şirului depinde de alegerea primului element ale şirului, (x_0, y_0) .

Elementul k+1 al şirului, (x_{k+1}, y_{k+1}) , se construieşte pornind de la elementul precedent, (x_k, y_k) , astfel:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} - \eta_k \nabla F(x_k, y_k) , \quad k = 0, 1, \dots ,$$

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} - \text{daţi random}$$
(3)

Elementul η_k poartă numele de rată de învățare sau pasul iterației.

Strategii de alegere a ratei de învățare

- 1. $\eta_k = \eta$, $\forall k$ ($\eta = 10^{-3}, 10^{-4}, ...$). O rată de învățare constantă prea mare poate face ca punctul de minim să nu poată fi găsit, iar o valoare prea mică pentru rata de învățare are dezavantajul unui cost de calcul mare.
- 2. Un mod de a rezolva problemele care apar în cazul ratei de învăţare constante este de a considera o valoare variabilă, în funcţie de contextul local. Metoda descrisă mai jos poartă denumirea de ajustare de tip backtracking a lungimii pasului/ratei de învăţare (backtracking line search). Această metodă funcţionează pentru funcţii convexe.

Se considera $\beta \in (0,1)$ fixat (de obicei se alege $\beta = 0.8$). La fiecare pas rata de învățare se calculează astfel:

$$\eta = 1;
p = 1;
\text{while } F((x_k, y_k) - \nabla F(x_k, y_k)) > F(x_k, y_k) - \frac{\eta}{2} ||\nabla F(x_k, y_k)||^2 \&\& p < 8
\eta = \eta \beta;
p + + ;$$

Observație importantă: Alegerea elementelor inițiale, (x_0, y_0) poate determina convergența sau divergența șirului (x_k, y_k) la (x^*, y^*) . De obicei, o alegere a datelor inițiale în vecinătatea lui (x^*, y^*) asigură convergența $(x_k, y_k) \longrightarrow (x^*, y^*)$ pentru $k \to \infty$.

Nu este necesară memorarea întregului şir $\{(x_k, y_k)\}$ ci avem nevoie doar de 'ultimul' element (x_{k_0}, y_{k_0}) calculat. Se consideră că un element (x_{k_0}, y_{k_0}) aproximează punctul de minim căutat, (x^*, y^*) , $(x_{k_0}, y_{k_0}) \approx (x^*, y^*)$ $((x_{k_0}, y_{k_0})$ este ultimul element al şirului care se calculează) atunci când diferența dintre două elemente succesive ale şirului devine suficient de mică, i.e.,

$$\left\| \begin{pmatrix} x_{k_0} \\ y_{k_0} \end{pmatrix} - \begin{pmatrix} x_{k_0-1} \\ y_{k_0-1} \end{pmatrix} \right\| \le \epsilon \tag{4}$$

unde ϵ este precizia cu care vrem să aproximăm soluția (x^*, y^*) .

Prin urmare, o schemă posibilă de aproximare a soluției (x^*, y^*) este următoarea:

Schema de calcul

```
se aleg random valorile iniţiale ale şirului, x, y; k=0; do  \left\{ \begin{array}{l} - \text{ calculează } \nabla F(x,y) \text{ ;} \\ - \text{ calculează rata de învăţare } \eta \text{ folosind una din cele 2 metode;} \\ - x = x - \eta \frac{\partial F}{\partial x}(x,y) \text{ ;} \\ - y = y - \eta \frac{\partial F}{\partial y}(x,y) \text{ ;} \\ - k = k+1; \\ \right\} \text{ while } (\eta \|\nabla F(x,y)\| \geq \epsilon \text{ și } k \leq k_{\text{max }} \text{ și } \\ \eta \|\nabla F(x,y)\| \leq 10^{10} \text{ )} \\ \text{if } (\eta \|\nabla F(x,y)\| \leq \epsilon \text{ ) } (x,y) \approx (x^*,y^*) \text{ ;} \\ \text{else "divergenţă" ; //(de încercat schimbarea datelor iniţiale)} \\ \end{array}
```

O valoare posibilă pentru $k_{\rm max}$ este 30000 și $\epsilon > 10^{-5}$.

Pentru a calcula valoarea gradientului funcției F într-un punct oarecare se va folosi formula analitică de calcul a gradientului (funcție declarată în program) și de asemenea se va folosi următoarea formulă aproximativă:

$$\nabla F(x,y) \approx \begin{pmatrix} G_1(x,y,h) \\ G_2(x,y,h) \end{pmatrix}$$

unde

$$\frac{\partial F}{\partial x}(x,y) \approx G_1(x,y,h) = \frac{3F(x,y) - 4F(x-h,y) + F(x-2h,y)}{2h}$$

$$\frac{\partial F}{\partial y}(x,y) \approx G_2(x,y,h) = \frac{3F(x,y) - 4F(x,y-h) + F(x,y-2h)}{2h}$$

cu $h = 10^{-5}$ sau 10^{-6} (poate fi considerat parametru de intrare).

Exemple

$$F(x,y) = x^2 + y^2 - 2x - 4y - 1 \; , \quad \nabla F(x,y) = \begin{pmatrix} 2x - 2 \\ 2y - 4 \end{pmatrix} \; , \quad x^* = 1 \; , \; y^* = 2$$

$$F(x,y) = 3x^2 - 12x + 2y^2 + 16y - 10 \; , \quad \nabla F(x,y) = \begin{pmatrix} 6x - 12 \\ 4y + 16 \end{pmatrix} \; , \quad x^* = 2 \; , \; y^* = -4$$

$$F(x,y) = x^2 - 4xy + 5y^2 - 4y + 3 \; , \quad \nabla F(x,y) = \begin{pmatrix} 2x - 4y \\ -4x + 10y - 4 \end{pmatrix} \; , \quad x^* = 4 \; , \; y^* = 2$$

$$F(x,y) = x^2y - 2xy^2 + 3xy + 4 \; , \quad \nabla F(x,y) = \begin{pmatrix} 2xy - 2y^2 + 3y \\ x^2 - 4xy + 3x \end{pmatrix} \; , \quad x^* = -1 \; , \; y^* = 0.5$$