

# **Register Programming Guide**

| For a comprehensive list of changes to this document, see the Revision History.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Broadcom, the pulse logo, Connecting everything, Avago, Avago Technologies, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.                                                                                                                                                                                                                                                                               |
| Copyright © 2017 by Broadcom. All Rights Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit <a href="www.broadcom.com">www.broadcom.com</a> .                                                                                                                                                                                                                                                                                                                                     |
| Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# **Table of Contents**

| Sec | ction 1: BCM53134 Register Sets           | 24 |
|-----|-------------------------------------------|----|
| Р   | Page 0x00: Control Register               | 26 |
|     | Port Traffic Control Register (ports 0–3) | 27 |
|     | IMP Port Traffic Control Register         | 28 |
|     | Switch Mode Register                      | 28 |
|     | IMP Port State Override Register          | 29 |
|     | LED Refresh Register                      | 30 |
|     | LED Function 0 Control Register           | 30 |
|     | LED Function 1 Control Register           | 31 |
|     | LED Function Map Register                 | 31 |
|     | LED Enable Port Map Register              | 32 |
|     | LED Mode Map 0 Register                   | 32 |
|     | LED Mode Map 1 Register                   | 33 |
|     | Post LED Control Register                 | 33 |
|     | Port Forward Control Register             | 33 |
|     | Switch Control Register                   | 35 |
|     | Protected Port Selection Register         | 35 |
|     | WAN Port Select Register                  | 35 |
|     | PAUSE Capability Register                 | 36 |
|     | Reserved Multicast Control Register       | 36 |
|     | ULF Packet Fwd Map Register               | 37 |
|     | MLF Packet Fwd Map Register               | 37 |
|     | MLF_IPMC_FWD_MAP                          | 38 |
|     | Rx Pause Pass Through Register            | 38 |
|     | Tx Pause Pass Through Register            | 38 |
|     | DIS_LEARN                                 | 39 |
|     | SFT_LRN_CTL Register                      | 39 |
|     | LOW_PWR_EXP_Register                      | 40 |
|     | SCAN_RSLT_GP                              | 41 |
|     | STS_OVERRIDE_P5                           | 41 |
|     | IMP_RGMII_CTL_REG                         | 42 |
|     | PORT5_RGMII_CTL_REG                       | 42 |
|     | MDIO_DIRECT_ACCESS                        | 42 |
|     | MDIO_P5_ADDR                              | 43 |
|     | MDIO_IMP_ADDR                             | 43 |
|     | WATCH_DOG_CTRL                            | 43 |
|     | PAUSE_FRM_CTRL                            | 44 |

| PAUSE_ST_ADDR                            | 44 |
|------------------------------------------|----|
| FAST_AGE_CTRL                            | 45 |
| FAST_AGE_PORT                            | 45 |
| FAST_AGE_VID                             | 46 |
| LED_FUNC0_EXTD_CTL                       | 46 |
| LED_FUNC1_EXTD_CTL                       | 46 |
| PLL_STS                                  | 47 |
| LOW_POWER_CTRL                           | 47 |
| TCAM_CTRL                                | 47 |
| TCAM_CHKSUM_STS                          | 48 |
| Page 0x01: Status Register               | 49 |
| LNKSTS                                   | 49 |
| LNKSTSCHG                                | 50 |
| SPDSTS                                   | 50 |
| DUPSTS                                   | 51 |
| PAUSESTS                                 | 51 |
| SRCADRCHG                                | 52 |
| LSA_PORT                                 | 52 |
| LSA_MII_PORT                             | 52 |
| BIST_STS0                                | 53 |
| BIST_STS1                                | 53 |
| STRAP_PIN_STATUS                         | 53 |
| DIRECT_INPUT_CTRL_VALUE                  | 54 |
| RESET_STATUS                             | 55 |
| Page 0x02: Management/Mirroring Register | 56 |
| GMNGCFG                                  | 57 |
| IMP0_PRT_ID                              | 58 |
| BRCM_HDR_CTRL                            | 58 |
| SPTAGT                                   | 58 |
| BRCM_HDR_CTRL2                           | 59 |
| IPG_SHRNK_CTRL                           | 60 |
| MIRCAPCTL                                | 60 |
| IGMIRCTL                                 | 61 |
| IGMIRDIV                                 | 61 |
| IGMIRMAC                                 | 62 |
| EGMIRCTL                                 | 62 |
| EGMIRDIV                                 | 63 |
| EGMIRMAC                                 | 63 |
| DEVICE ID                                | 64 |

| CHIP_REVID                            | 64 |
|---------------------------------------|----|
| HL_PRTC_CTRL                          | 65 |
| RST_MIB_CNT_EN                        | 66 |
| Page 0x03: Interrupt Control Register | 68 |
| INT_STS                               | 69 |
| INT_EN                                | 70 |
| IMP_SLEEP_TIMER                       | 71 |
| WAN_SLEEP_TIMER                       | 71 |
| PORT_SLEEP_STS                        | 71 |
| INT_TRIGGER                           | 72 |
| LINK_STS_INT_EN                       | 73 |
| ENG_DET_INT_EN                        | 73 |
| LPI_STS_CHG_INT_EN                    | 74 |
| CPU_RESOURCE_ARBITER                  | 74 |
| CPU_DATA_SHARE                        | 74 |
| CPU_DATA_SHARE_1                      | 75 |
| PPPOE_SESSION_PARSE_EN                | 75 |
| Page 0x04: ARL Control Register       | 76 |
| GARLCFG                               | 76 |
| BPDU_MCADDR                           | 77 |
| MULTI_PORT_CTL                        | 77 |
| MULTIPORT_ADDR0                       | 78 |
| MPORTVEC0                             | 79 |
| MULTIPORT_ADDR1                       | 79 |
| MPORTVEC1                             | 80 |
| MULTIPORT_ADDR2                       | 80 |
| MPORTVEC2                             | 81 |
| MULTIPORT_ADDR3                       |    |
| MPORTVEC3                             | 82 |
| MULTIPORT_ADDR4                       | 82 |
| MPORTVEC4                             | 83 |
| MULTIPORT_ADDR5                       | 83 |
| MPORTVEC5                             | 84 |
| ARL_BIN_FULL_CNTR                     | 84 |
| ARL_BIN_FULL_FWD                      | 85 |
| Page 0x05: ARL/VTABLE Access Register |    |
| ARLA_RWCTL                            |    |
| ARLA_MAC                              |    |
| ARLA VID                              | 88 |

| ARLA_MACVID_ENTRY0                         | 88  |
|--------------------------------------------|-----|
| ARLA_FWD_ENTRY0                            | 89  |
| ARLA_MACVID_ENTRY1                         | 90  |
| ARLA_FWD_ENTRY1                            | 91  |
| ARLA_MACVID_ENTRY2                         | 92  |
| ARLA_FWD_ENTRY2                            | 93  |
| ARLA_MACVID_ENTRY3                         | 94  |
| ARLA_FWD_ENTRY3                            | 95  |
| ARLA_SRCH_CTL                              | 96  |
| ARLA_SRCH_ADR                              | 97  |
| ARLA_SRCH_RSLT_0_MACVID                    | 97  |
| ARLA_SRCH_RSLT_0                           | 98  |
| ARLA_SRCH_RSLT_1_MACVID                    | 99  |
| ARLA_SRCH_RSLT_1                           | 100 |
| ARLA_VTBL_RWCTRL                           | 101 |
| ARLA_VTBL_ADDR                             | 101 |
| ARLA_VTBL_ENTRY                            | 102 |
| Page 0x06 Register (Reserved)              | 103 |
| Page 0x07 Register (Reserved)              | 103 |
| Page 0x10-0x13: Internal GPHY MII Register | 104 |
| G_MIICTL                                   | 105 |
| G_MIISTS                                   | 105 |
| G_PHYIDH                                   | 106 |
| G_PHYIDL                                   | 107 |
| G_ANADV                                    | 107 |
| G_ANLPA                                    | 108 |
| G_ANEXP                                    | 108 |
| G_ANNXP                                    | 109 |
| G_LPNXP                                    | 109 |
| G_B1000T_CTL                               | 110 |
| G_B1000T_STS                               | 111 |
| G_EXT_STS                                  | 111 |
| G_PHY_EXT_CTL                              | 112 |
| G_PHY_EXT_STS                              | 113 |
| G_REC_ERR_CNT                              | 113 |
| G_FALSE_CARR_CNT                           | 114 |
| G_REC_NOTOK_CNT                            |     |
| G_DSP_COEFFICIENT                          |     |
| G_DSP_COEFFICIENT_ADDR                     | 115 |

|     | G_AUX_CTL                                           | 116 |
|-----|-----------------------------------------------------|-----|
|     | G_AUX_STS                                           | 117 |
|     | G_INTERRUPT_STS                                     | 117 |
|     | G_INTERRUPT_MSK                                     | 117 |
|     | G_MISC_SHADOW                                       | 118 |
|     | LED Selector 2 Register (Page 10h-14h: Address 38h) | 118 |
|     | G_MASTER_SLAVE_SEED                                 | 119 |
|     | G_TEST1                                             | 120 |
|     | G_TEST2                                             | 120 |
| Pag | ge 0x20–0x23: Port MIB Counter Register             | 121 |
|     | TxOctets                                            | 122 |
|     | TxDropPkts                                          | 123 |
|     | TxQPKTQ0                                            | 123 |
|     | TxBroadcastPkts                                     | 123 |
|     | TxMulticastPkts                                     | 123 |
|     | TxUnicastPkts                                       | 124 |
|     | TxCollisions                                        | 124 |
|     | TxSingleCollision                                   | 124 |
|     | TxMultipleCollision                                 | 124 |
|     | TxDeferredTransmit                                  | 125 |
|     | TxLateCollision                                     | 125 |
|     | TxExcessiveCollision                                | 125 |
|     | TxFrameInDisc                                       | 126 |
|     | TxPausePkts                                         | 126 |
|     | TxQPKTQ1                                            | 126 |
|     | TxQPKTQ2                                            | 126 |
|     | TxQPKTQ3                                            | 127 |
|     | TxQPKTQ4                                            | 127 |
|     | TxQPKTQ5                                            | 127 |
|     | RxOctets                                            | 128 |
|     | RxUndersizePkts                                     | 128 |
|     | RxPausePkts                                         | 129 |
|     | RxPkts64Octets                                      | 129 |
|     | RxPkts65to127Octets                                 | 130 |
|     | RxPkts128to255Octets                                | 130 |
|     | RxPkts256to511Octets                                | 130 |
|     | RxPkts512to1023Octets                               | 131 |
|     | RxPkts1024toMaxPktOctets                            | 131 |
|     | RxOversizePkts                                      | 131 |
|     |                                                     |     |

|     | RxJabbers                              | 132 |
|-----|----------------------------------------|-----|
|     | RxAlignmentErrors                      | 132 |
|     | RxFCSErrors                            | 133 |
|     | RxGoodOctets                           | 133 |
|     | RxDropPkts                             | 133 |
|     | RxUnicastPkts                          | 133 |
|     | RxMulticastPkts                        | 134 |
|     | RxBroadcastPkts                        | 134 |
|     | RxSAChanges                            | 134 |
|     | RxFragments                            | 135 |
|     | RxJumboPkt                             | 135 |
|     | RxSymblErr                             | 135 |
|     | InRangeErrCount                        | 135 |
|     | OutRangeErrCount                       | 136 |
|     | EEE_LPI_EVENT                          | 136 |
|     | EEE_LPI_DURATION                       | 137 |
|     | RxDiscard                              | 137 |
|     | TxQPKTQ6                               | 137 |
|     | TxQPKTQ7                               | 137 |
|     | TxPkts64Octets                         | 138 |
|     | TxPkts65to127Octets                    | 138 |
|     | TxPkts128to255Octets                   | 138 |
|     | TxPkts256to511Octets                   | 138 |
|     | TxPkts512to1023Octets                  | 139 |
|     | TxPkts1024toMaxPktOctets               | 139 |
| Paç | ge 0x28: IMP port MIB counter Register | 140 |
|     | TxOctets_IMP                           | 141 |
|     | TxDropPkts_IMP                         | 142 |
|     | TxQPKTQ0_IMP                           | 142 |
|     | TxBroadcastPkts_IMP                    | 142 |
|     | TxMulticastPkts_IMP                    | 142 |
|     | TxUnicastPkts_IMP                      | 143 |
|     | TxCollisions_IMP                       | 143 |
|     | TxSingleCollision_IMP                  | 143 |
|     | TxMultipleCollision_IMP                | 143 |
|     | TxDeferredTransmit_IMP                 | 144 |
|     | TxLateCollision_IMP                    | 144 |
|     | TxExcessiveCollision_IMP               | 144 |
|     | TxFrameInDisc IMP                      | 145 |

| TxPausePkts_IMP              | 145 |
|------------------------------|-----|
| TxQPKTQ1_IMP                 | 145 |
| TxQPKTQ2_IMP                 | 145 |
| TxQPKTQ3_IMP                 | 146 |
| TxQPKTQ4_IMP                 | 146 |
| TxQPKTQ5_IMP                 | 146 |
| RxOctets_IMP                 | 147 |
| RxUndersizePkts_IMP          | 147 |
| RxPausePkts_IMP              | 148 |
| RxPkts64Octets_IMP           | 148 |
| RxPkts65to127Octets_IMP      | 149 |
| RxPkts128to255Octets_IMP     | 149 |
| RxPkts256to511Octets_IMP     | 149 |
| RxPkts512to1023Octets_IMP    | 150 |
| RxPkts1024toMaxPktOctets_IMP | 150 |
| RxOversizePkts_IMP           | 150 |
| RxJabbers_IMP                | 151 |
| RxAlignmentErrors_IMP        | 151 |
| RxFCSErrors_IMP              | 152 |
| RxGoodOctets_IMP             | 152 |
| RxDropPkts_IMP               | 152 |
| RxUnicastPkts_IMP            | 152 |
| RxMulticastPkts_IMP          | 153 |
| RxBroadcastPkts_IMP          | 153 |
| RxSAChanges_IMP              | 153 |
| RxFragments_IMP              | 154 |
| RxJumboPkt_IMP               | 154 |
| RxSymblErr_IMP               | 154 |
| InRangeErrCount_IMP          | 154 |
| OutRangeErrCount_IMP         | 155 |
| EEE_LPI_EVENT_IMP            | 155 |
| EEE_LPI_DURATION_IMP         | 156 |
| RxDiscard_IMP                | 156 |
| TxQPKTQ6_IMP                 | 156 |
| TxQPKTQ7_IMP                 | 156 |
| TxPkts64Octets_IMP           | 157 |
| TxPkts65to127Octets_IMP      | 157 |
| TxPkts128to255Octets_IMP     | 157 |
| TxPkts256to511Octets IMP     | 157 |

| TXPkts512to1023Octets_IMP            |     |
|--------------------------------------|-----|
| TxPkts1024toMaxPktOctets_IMP         | 158 |
| Page 0x30: QoS Register              | 159 |
| QOS_GLOBAL_CTRL                      | 159 |
| QoS IEEE 802.1p Enable Register      | 160 |
| QOS_EN_DIFFSERV                      | 160 |
| PN_PCP2TC_DEI0                       | 160 |
| IMP_PCP2TC_DEI0                      | 161 |
| QOS_DIFF_DSCP0                       | 162 |
| QOS_DIFF_DSCP1                       | 163 |
| QOS_DIFF_DSCP2                       | 164 |
| QOS_DIFF_DSCP3                       | 165 |
| PID2TC                               | 166 |
| TC_SEL_TABLE                         | 166 |
| IMP_TC_SEL_TABLE                     | 168 |
| CPU2COS_MAP                          | 169 |
| PN_TC2COS_MAP                        | 170 |
| IMP_TC2COS_MAP                       | 171 |
| PN_PCP2TC_DEI1                       | 172 |
| IMP_PCP2TC_DEI1                      | 173 |
| Page 0x31: Port Based VLAN Register  | 174 |
| PORT_VLAN_CTL                        | 174 |
| PORT_VLAN_CTL_IMP                    | 174 |
| Page 0x32: Trunking Register         | 175 |
| MAC_TRUNK_CTL                        | 175 |
| TRUNK_GRP_CTL                        | 175 |
| Page 0x34: IEEE 802.1Q VLAN Register | 176 |
| VLAN_CTRL0                           | 177 |
| VLAN_CTRL1                           | 178 |
| VLAN_CTRL2                           | 179 |
| VLAN_CTRL3                           | 180 |
| VLAN_CTRL4                           | 180 |
| VLAN_CTRL5                           | 181 |
| VLAN_CTRL6                           | 182 |
| VLAN_MULTI_PORT_ADDR_CTL             | 182 |
| DEFAULT_1Q_TAG                       | 183 |
| DEFAULT_1Q_TAG_IMP                   | 184 |
| DTAG_TPID                            | 184 |
| ISP_SEL_PORTMAP                      | 184 |

|     | EGRESS_VID_RMK_TBL_ACS                               | . 184 |
|-----|------------------------------------------------------|-------|
|     | EGRESS_VID_RMK_TBL_DATA                              | . 185 |
|     | JOIN_ALL_VLAN_EN                                     | . 186 |
|     | PORT_IVL_SVL_CTRL                                    | . 187 |
| Pag | ge 0x36: DOS Prevent Register                        | . 188 |
|     | DOS_CTRL                                             | . 188 |
|     | MINIMUM_TCP_HDR_SZ                                   | . 189 |
|     | MAX_ICMPV4_SIZE_REG                                  | . 190 |
|     | MAX_ICMPV6_SIZE_REG                                  | . 190 |
|     | DOS_DIS_LRN_REG                                      | . 190 |
| Pag | ge 0x40: Jumbo Frame Control Register                | . 191 |
|     | JUMBO_PORT_MASK                                      | . 191 |
|     | MIB_GD_FM_MAX_SIZE                                   | . 191 |
| Pag | ge 0x41: Common Ingress Rate control Register        | . 193 |
|     | COMM_IRC_CON                                         | . 193 |
|     | BC_SUP_RATECTRL_P                                    | . 193 |
|     | BC_SUP_RATECTRL_IMP                                  | . 196 |
|     | BC_SUP_RATECTRL_1_P                                  | . 200 |
|     | BC_SUP_RATECTRL_1_IMP                                | . 201 |
|     | BC_SUP_PKTDROP_CNT_P                                 | . 202 |
|     | BC_SUP_PKTDROP_CNT_IMP                               | . 202 |
| Pag | ge 0x42: EAP Control Register                        | . 203 |
|     | EAP_GLO_CON                                          | . 203 |
|     | EAP_MULTI_ADDR_CTRL                                  | . 203 |
|     | EAP_DIP                                              | . 204 |
|     | PORT_EAP_CON                                         | . 204 |
|     | PORT_EAP_CON_IMP                                     | . 205 |
| Pag | ge 0x43: MSPT (Multi Spanning Tree) Control Register | . 206 |
|     | MST_CON                                              | . 206 |
|     | MST_AGE                                              | . 206 |
|     | MST_TAB                                              | . 206 |
|     | SPT_MULTI_ADDR_BPS_CTRL                              | . 208 |
| Pag | ge 0x45: Source MAC Address Limit Control Register   | . 209 |
|     | SA_LIMIT_ENABLE                                      | . 209 |
|     | SA_LRN_CNTR_RST                                      | . 210 |
|     | SA_OVERLIMIT_CNTR_RST                                | . 210 |
|     | TOTAL_SA_LIMIT_CTL                                   | . 210 |
|     | PORT_N_SA_LIMIT_CTL                                  | . 211 |
|     | PORT 8 SA LIMIT CTL                                  | . 212 |

|     | TOTAL_SA_LRN_CNTR                             | 213 |
|-----|-----------------------------------------------|-----|
|     | PORT_N_SA_LRN_CNTR                            | 213 |
|     | PORT_8_SA_LRN_CNTR                            | 213 |
|     | PORT_N_SA_OVERLIMIT_CNTR                      | 214 |
|     | PORT_8_SA_OVERLIMIT_CNTR                      | 214 |
|     | SA_OVER_LIMIT_COPY_REDIRECT                   | 214 |
| Pag | ge 0x46: Port QoS Priority Control Register   | 215 |
|     | PN_QOS_PRI_CTL                                | 215 |
|     | IMP_QOS_PRI_CTL                               | 216 |
|     | IMP_QOS_WEIGHT                                | 217 |
| Pag | ge 0x47: Port Shaper Control Register         | 219 |
|     | PN_PORT_SHAPER_BYTE_BASED_MAX_REFRESH         | 219 |
|     | IMP_PORT_SHAPER_BYTE_BASED_MAX_REFRESH        | 220 |
|     | PN_PORT_SHAPER_BYTE_BASED_MAX_THD_SEL         | 220 |
|     | IMP_PORT_SHAPER_BYTE_BASED_MAX_THD_SEL        | 220 |
|     | PN_PORT_SHAPER_STS                            | 220 |
|     | IMP_PORT_SHAPER_STS                           | 221 |
|     | PN_PORT_SHAPER_PACKET_BASED_MAX_REFRESH       | 221 |
|     | IMP_PORT_SHAPER_PACKET_BASED_MAX_REFRESH      | 222 |
|     | PN_PORT_SHAPER_PACKET_BASED_MAX_THD_SEL       | 222 |
|     | IMP_PORT_SHAPER_PACKET_BASED_MAX_THD_SEL      | 222 |
|     | PORT_SHAPER_AVB_SHAPING_MODE                  | 222 |
|     | PORT_SHAPER_ENABLE                            | 223 |
|     | PORT_SHAPER_BUCKET_COUNT_SELECT               | 223 |
|     | PORT_SHAPER_BLOCKING                          | 224 |
|     | IFG_BYTES                                     | 224 |
| Pag | ge 0x48: Port Queue 0 Shaper Control Register | 225 |
|     | PN_QUEUE0_MAX_REFRESH                         | 225 |
|     | IMP_QUEUE0_MAX_REFRESH                        | 226 |
|     | PN_QUEUE0_MAX_THD_SEL                         | 226 |
|     | IMP_QUEUE0_MAX_THD_SEL                        | 226 |
|     | PN_QUEUE0_SHAPER_STS                          | 227 |
|     | IMP_QUEUE0_SHAPER_STS                         | 227 |
|     | PN_QUEUE0_MAX_PACKET_REFRESH                  | 227 |
|     | IMP_QUEUE0_MAX_PACKET_REFRESH                 | 228 |
|     | PN_QUEUE0_MAX_PACKET_THD_SEL                  | 228 |
|     | IMP_QUEUE0_MAX_PACKET_THD_SEL                 | 228 |
|     | QUEUE0_AVB_SHAPING_MODE                       | 228 |
|     | QUEUEO SHAPER ENABLE                          | 229 |

|     | QUEUEU_SHAPER_BUCKET_COUNT_SELECT             | 229 |
|-----|-----------------------------------------------|-----|
|     | QUEUE0_SHAPER_BLOCKING                        | 230 |
| Pag | ge 0x49: Port Queue 1 Shaper Control Register | 231 |
|     | PN_QUEUE1_MAX_REFRESH                         | 231 |
|     | IMP_QUEUE1_MAX_REFRESH                        | 231 |
|     | PN_QUEUE1_MAX_THD_SEL                         | 232 |
|     | IMP_QUEUE1_MAX_THD_SEL                        | 232 |
|     | PN_QUEUE1_SHAPER_STS                          | 233 |
|     | IMP_QUEUE1_SHAPER_STS                         | 233 |
|     | PN_QUEUE1_MAX_PACKET_REFRESH                  | 233 |
|     | IMP_QUEUE1_MAX_PACKET_REFRESH                 | 234 |
|     | PN_QUEUE1_MAX_PACKET_THD_SEL                  | 234 |
|     | IMP_QUEUE1_MAX_PACKET_THD_SEL                 | 234 |
|     | QUEUE1_AVB_SHAPING_MODE                       | 234 |
|     | QUEUE1_SHAPER_ENABLE                          | 235 |
|     | QUEUE1_SHAPER_BUCKET_COUNT_SELECT             | 235 |
|     | QUEUE1_SHAPER_BLOCKING                        | 236 |
| Pag | ge 0x4a: Port Queue 2 Shaper Control Register | 237 |
|     | PN_QUEUE2_MAX_REFRESH                         | 237 |
|     | IMP_QUEUE2_MAX_REFRESH                        | 237 |
|     | PN_QUEUE2_MAX_THD_SEL                         | 238 |
|     | IMP_QUEUE2_MAX_THD_SEL                        | 238 |
|     | PN_QUEUE2_SHAPER_STS                          | 239 |
|     | IMP_QUEUE2_SHAPER_STS                         | 239 |
|     | PN_QUEUE2_MAX_PACKET_REFRESH                  | 239 |
|     | IMP_QUEUE2_MAX_PACKET_REFRESH                 | 240 |
|     | PN_QUEUE2_MAX_PACKET_THD_SEL                  | 240 |
|     | IMP_QUEUE2_MAX_PACKET_THD_SEL                 | 240 |
|     | QUEUE2_AVB_SHAPING_MODE                       | 241 |
|     | QUEUE2_SHAPER_ENABLE                          | 241 |
|     | QUEUE2_SHAPER_BUCKET_COUNT_SELECT             | 241 |
|     | QUEUE2_SHAPER_BLOCKING                        | 242 |
| Pag | ge 0x4b: Port Queue 3 Shaper Control Register | 243 |
|     | PN_QUEUE3_MAX_REFRESH                         | 243 |
|     | IMP_QUEUE3_MAX_REFRESH                        | 244 |
|     | PN_QUEUE3_MAX_THD_SEL                         | 244 |
|     | IMP_QUEUE3_MAX_THD_SEL                        | 244 |
|     | PN_QUEUE3_SHAPER_STS                          | 245 |
|     | IMP_QUEUE3_SHAPER_STS                         | 245 |

|     | PN_QUEUE3_MAX_PACKET_REFRESH                   | 245 |
|-----|------------------------------------------------|-----|
|     | IMP_QUEUE3_MAX_PACKET_REFRESH                  | 246 |
|     | PN_QUEUE3_MAX_PACKET_THD_SEL                   | 246 |
|     | IMP_QUEUE3_MAX_PACKET_THD_SEL                  | 246 |
|     | QUEUE3_AVB_SHAPING_MODE                        | 247 |
|     | QUEUE3_SHAPER_ENABLE                           | 247 |
|     | QUEUE3_SHAPER_BUCKET_COUNT_SELECT              | 247 |
|     | QUEUE3_SHAPER_BLOCKING                         | 248 |
| Paç | ge 0x4c: Port Queue 4 Shaper Control Register  | 249 |
|     | PN_QUEUE4_MAX_REFRESH                          | 249 |
|     | IMP_QUEUE4_MAX_REFRESH                         | 249 |
|     | PN_QUEUE4_MAX_THD_SEL                          | 250 |
|     | IMP_QUEUE4_MAX_THD_SEL                         | 250 |
|     | PN_QUEUE4_SHAPER_STS                           | 251 |
|     | IMP_QUEUE4_SHAPER_STS                          | 251 |
|     | PN_QUEUE4_MAX_PACKET_REFRESH                   | 251 |
|     | IMP_QUEUE4_MAX_PACKET_REFRESH                  | 252 |
|     | PN_QUEUE4_MAX_PACKET_THD_SEL                   | 252 |
|     | IMP_QUEUE4_MAX_PACKET_THD_SEL                  | 252 |
|     | QUEUE4_AVB_SHAPING_MODE                        | 252 |
|     | QUEUE4_SHAPER_ENABLE                           | 253 |
|     | QUEUE4_SHAPER_BUCKET_COUNT_SELECT              | 253 |
|     | QUEUE4_SHAPER_BLOCKING                         | 254 |
| Pag | ge 0x4d: Port Queue 5 Shaper Control Register  |     |
|     | PN_QUEUE5_MAX_REFRESH                          | 255 |
|     | IMP_QUEUE5_MAX_REFRESH                         |     |
|     | PN_QUEUE5_MAX_THD_SEL                          | 256 |
|     | IMP_QUEUE5_MAX_THD_SEL                         |     |
|     | PN_QUEUE5_SHAPER_STS                           |     |
|     | IMP_QUEUE5_SHAPER_STS                          |     |
|     | PN_QUEUE5_MAX_PACKET_REFRESH                   | 257 |
|     | IMP_QUEUE5_MAX_PACKET_REFRESH                  |     |
|     | PN_QUEUE5_MAX_PACKET_THD_SEL                   | 258 |
|     | IMP_QUEUE5_MAX_PACKET_THD_SEL                  |     |
|     | QUEUE5_AVB_SHAPING_MODE                        |     |
|     | QUEUE5_SHAPER_ENABLE                           |     |
|     | QUEUE5_SHAPER_BUCKET_COUNT_SELECT              | 259 |
|     | QUEUE5_SHAPER_BLOCKING                         | 260 |
| Dag | ge Ny/le: Port Queue 6 Shaper Control Register | 261 |

|     | PN_QUEUE6_MAX_REFRESH                         | 261 |
|-----|-----------------------------------------------|-----|
|     | IMP_QUEUE6_MAX_REFRESH                        | 261 |
|     | PN_QUEUE6_MAX_THD_SEL                         | 262 |
|     | IMP_QUEUE6_MAX_THD_SEL                        | 262 |
|     | PN_QUEUE6_SHAPER_STS                          | 263 |
|     | IMP_QUEUE6_SHAPER_STS                         | 263 |
|     | PN_QUEUE6_MAX_PACKET_REFRESH                  | 263 |
|     | IMP_QUEUE6_MAX_PACKET_REFRESH                 | 264 |
|     | PN_QUEUE6_MAX_PACKET_THD_SEL                  | 264 |
|     | IMP_QUEUE6_MAX_PACKET_THD_SEL                 | 264 |
|     | QUEUE6_AVB_SHAPING_MODE                       | 264 |
|     | QUEUE6_SHAPER_ENABLE                          | 265 |
|     | QUEUE6_SHAPER_BUCKET_COUNT_SELECT             | 265 |
|     | QUEUE6_SHAPER_BLOCKING                        | 266 |
| Pag | ge 0x4f: Port Queue 7 Shaper Control Register | 267 |
|     | PN_QUEUE7_MAX_REFRESH                         | 267 |
|     | IMP_QUEUE7_MAX_REFRESH                        | 268 |
|     | PN_QUEUE7_MAX_THD_SEL                         | 268 |
|     | IMP_QUEUE7_MAX_THD_SEL                        | 268 |
|     | PN_QUEUE7_SHAPER_STS                          | 269 |
|     | IMP_QUEUE7_SHAPER_STS                         | 269 |
|     | PN_QUEUE7_MAX_PACKET_REFRESH                  | 269 |
|     | IMP_QUEUE7_MAX_PACKET_REFRESH                 | 270 |
|     | PN_QUEUE7_MAX_PACKET_THD_SEL                  | 270 |
|     | IMP_QUEUE7_MAX_PACKET_THD_SEL                 | 270 |
|     | QUEUE7_AVB_SHAPING_MODE                       |     |
|     | QUEUE7_SHAPER_ENABLE                          | 271 |
|     | QUEUE7_SHAPER_BUCKET_COUNT_SELECT             | 271 |
|     | QUEUE7_SHAPER_BLOCKING                        | 272 |
| Pag | ge 0x70: Port MIB Snapshot Control Register   | 273 |
|     | MIB_SNAPSHOT_CTL                              | 273 |
| Pag | ge 0x71: Port MIB Snapshot counter Register   | 274 |
|     | S_TxOctets                                    | 275 |
|     | S_TxDropPkts                                  | 276 |
|     | S_TxQPKTQ0                                    | 276 |
|     | S_TxBroadcastPkts                             | 276 |
|     | S_TxMulticastPkts                             | 276 |
|     | S_TxUnicastPkts                               | 277 |
|     | S. TxCollisions                               | 277 |

| S_TxSingleCollision        | 277 |
|----------------------------|-----|
| S_TxMultipleCollision      | 277 |
| S_TxDeferredTransmit       | 278 |
| S_TxLateCollision          | 278 |
| S_TxExcessiveCollision     | 278 |
| S_TxFrameInDisc            | 279 |
| S_TxPausePkts              | 279 |
| S_TxQPKTQ1                 | 279 |
| S_TxQPKTQ2                 | 279 |
| S_TxQPKTQ3                 | 280 |
| S_TxQPKTQ4                 | 280 |
| S_TxQPKTQ5                 | 280 |
| S_RxOctets                 | 281 |
| S_RxUndersizePkts          | 281 |
| S_RxPausePkts              | 282 |
| S_RxPkts64Octets           | 282 |
| S_RxPkts65to127Octets      | 283 |
| S_RxPkts128to255Octets     | 283 |
| S_RxPkts256to511Octets     | 283 |
| S_RxPkts512to1023Octets    | 284 |
| S_RxPkts1024toMaxPktOctets | 284 |
| S_RxOversizePkts           | 284 |
| S_RxJabbers                | 285 |
| S_RxAlignmentErrors        | 285 |
| S_RxFCSErrors              | 286 |
| S_RxGoodOctets             | 286 |
| S_RxDropPkts               | 286 |
| S_RxUnicastPkts            | 286 |
| S_RxMulticastPkts          | 287 |
| S_RxBroadcastPkts          | 287 |
| S_RxSAChanges              | 287 |
| S_RxFragments              | 288 |
| S_RxJumboPkt               | 288 |
| S_RxSymblErr               | 288 |
| S_InRangeErrCount          | 288 |
| S_OutRangeErrCount         |     |
| S_EEE_LPI_EVENT            | 289 |
| S_EEE_LPI_DURATION         |     |
| S RxDiscard                |     |

| S_TxQPKTQ6           |                         | 290 |
|----------------------|-------------------------|-----|
| S_TxQPKTQ7           |                         | 290 |
| S_TxPkts64Octet      | s                       | 291 |
| S_TxPkts65to127      | Octets                  | 291 |
| S_TxPkts128to25      | 5Octets                 | 291 |
| S_TxPkts256to51      | 1Octets                 | 291 |
| S_TxPkts512to10      | 23Octets                | 292 |
| S_TxPkts1024toN      | ЛахPktOctets            | 292 |
| Page 0x72: Loop Dis  | covery Register         | 293 |
| LPDET_CFG            |                         | 293 |
| DF_TIMER             |                         | 294 |
| LED_PORTMAP.         |                         | 294 |
| MODULE_ID0           |                         | 295 |
| MODULE_ID1           |                         | 295 |
| LPDET_SA             |                         | 295 |
| Page 0x85: Port 5 Ex | ternal PHY MII Register | 296 |
| G_MIICTL_EXT_        | P5                      | 297 |
| G_MIISTS_EXT_        | P5                      | 297 |
| G_PHYIDH_EXT         | _P5                     | 298 |
| G_PHYIDL_EXT_        | _P5                     | 299 |
| G_ANADV_EXT_         | P5                      | 299 |
| G_ANLPA_EXT_         | P5                      | 300 |
| G_ANEXP_EXT_         | P5                      | 300 |
| G_ANNXP_EXT_         | P5                      | 301 |
| G_LPNXP_EXT_         | P5                      | 301 |
| G_B1000T_CTL_        | EXT_P5                  | 302 |
| G_B1000T_STS_        | _EXT_P5                 | 302 |
| G_EXT_STS_EX         | T_P5                    | 303 |
| G_PHY_EXT_CT         | L_EXT_P5                | 303 |
| G_PHY_EXT_ST         | S_EXT_P5                | 304 |
| G_REC_ERR_CN         | NT_EXT_P5               | 305 |
| G_FALSE_CARR         | CNT_EXT_P5              | 306 |
| G_REC_NOTOK          | _CNT_EXT_P5             | 306 |
| G_DSP_COEFFI         | CIENT_EXT_P5            | 307 |
| G_DSP_COEFFI         | CIENT_ADDR_EXT_P5       | 307 |
| G_AUX_CTL_EX         | T_P5                    | 309 |
| G_AUX_STS_EX         | T_P5                    | 309 |
| G_INTERRUPT_         | STS_EXT_P5              | 309 |
| G_INTERRUPT_I        | MSK_EXT_P5              | 310 |

| G_MISC_SHADOW_EXT_P5                          | 310 |
|-----------------------------------------------|-----|
| G_MASTER_SLAVE_SEED_EXT_P5                    | 311 |
| G_TEST1_EXT_P5                                | 311 |
| G_TEST2_EXT_P5                                | 311 |
| Page 0x88: IMP port External PHY MII Register | 312 |
| G_MIICTL_EXT                                  | 313 |
| G_MIISTS_EXT                                  | 313 |
| G_PHYIDH_EXT                                  | 314 |
| G_PHYIDL_EXT                                  | 315 |
| G_ANADV_EXT                                   | 315 |
| G_ANLPA_EXT                                   | 316 |
| G_ANEXP_EXT                                   | 316 |
| G_ANNXP_EXT                                   | 317 |
| G_LPNXP_EXT                                   | 317 |
| G_B1000T_CTL_EXT                              | 318 |
| G_B1000T_STS_EXT                              | 318 |
| G_EXT_STS_EXT                                 | 319 |
| G_PHY_EXT_CTL_EXT                             | 319 |
| G_PHY_EXT_STS_EXT                             | 320 |
| G_REC_ERR_CNT_EXT                             | 321 |
| G_FALSE_CARR_CNT_EXT                          | 322 |
| G_REC_NOTOK_CNT_EXT                           | 322 |
| G_DSP_COEFFICIENT_EXT                         | 323 |
| G_DSP_COEFFICIENT_ADDR_EXT                    | 323 |
| G_AUX_CTL_EXT                                 | 325 |
| G_AUX_STS_EXT                                 | 325 |
| G_INTERRUPT_STS_EXT                           | 325 |
| G_INTERRUPT_MSK_EXT                           | 326 |
| G_MISC_SHADOW_EXT                             | 326 |
| G_MASTER_SLAVE_SEED_EXT                       | 327 |
| G_TEST1_EXT                                   | 327 |
| G_TEST2_EXT                                   | 327 |
| Page 0x91: Traffic Remarking Registers        | 328 |
| TRREG_CTRL0                                   | 328 |
| TRREG_CTRL1                                   | 329 |
| TRREG_CTRL2                                   | 330 |
| PN_EGRESS_PKT_TC2PCP_MAP                      | 331 |
| IMP_EGRESS_PKT_TC2PCP_MAP                     | 333 |
| PN EGRESS PKT TC2CPCP MAP                     | 335 |

| IMP_EGRESS_PKT_TC2CPCP_MAP       | 338 |
|----------------------------------|-----|
| Page 0x92: EEE Register          | 341 |
| EEE_EN_CTRL                      | 341 |
| EEE_LPI_ASSERT                   | 342 |
| EEE_LPI_INDICATE                 | 342 |
| EEE_RX_IDLE_SYMBOL               | 343 |
| EEE_PIPELINE_TIMER               | 343 |
| EEE_SLEEP_TIMER_G                | 343 |
| EEE_SLEEP_TIMER_H_IMP            | 344 |
| EEE_MIN_LP_TIMER_G               | 344 |
| EEE_MIN_LP_TIMER_G_IMP           | 344 |
| EEE_MIN_LP_TIMER_H               | 345 |
| EEE_MIN_LP_TIMER_H_IMP           | 345 |
| EEE_WAKE_TIMER_G                 | 345 |
| EEE_WAKE_TIMER_G_IMP             | 346 |
| EEE_WAKE_TIMER_H                 | 346 |
| EEE_WAKE_TIMER_H_IMP             | 346 |
| EEE_GLB_CONG_TH                  | 346 |
| EEE_TXQ_CONG_TH                  | 347 |
| EEE_TXQ_CONG_TH6                 | 348 |
| EEE_TXQ_CONG_TH7                 | 348 |
| Page 0x93: 1588 Control Register | 349 |
| PORT_ENABLE                      | 351 |
| TX_MODE_PORT                     | 351 |
| TX_MODE_PORT_IMP                 | 352 |
| RX_MODE_PORT                     | 353 |
| RX_MODE_PORT_IMP                 | 353 |
| TX_TS_CAP                        | 353 |
| RX_TS_CAP                        | 354 |
| RX_PORT_0_LINK_DELAY_LSB         | 354 |
| RX_PORT_0_LINK_DELAY_MSB         | 355 |
| RX_PORT_1_LINK_DELAY_LSB         | 355 |
| RX_PORT_1_LINK_DELAY_MSB         | 355 |
| RX_PORT_2_LINK_DELAY_LSB         | 356 |
| RX_PORT_2_LINK_DELAY_MSB         | 356 |
| RX_PORT_3_LINK_DELAY_LSB         | 356 |
| RX_PORT_3_LINK_DELAY_MSB         | 357 |
| RX_PORT_4_LINK_DELAY_LSB         | 357 |
| RX PORT 4 LINK DELAY MSB         | 357 |

| RX_PORT_5_LINK_DELAY_LSB | 358 |
|--------------------------|-----|
| RX_PORT_5_LINK_DELAY_MSB | 358 |
| RX_PORT_8_LINK_DELAY_LSB | 358 |
| RX_PORT_8_LINK_DELAY_MSB | 359 |
| RX_PORT_0_TS_OFFSET_LSB  | 359 |
| RX_PORT_0_TS_OFFSET_MSB  | 359 |
| RX_PORT_1_TS_OFFSET_LSB  | 360 |
| RX_PORT_1_TS_OFFSET_MSB  | 360 |
| RX_PORT_2_TS_OFFSET_LSB  | 361 |
| RX_PORT_2_TS_OFFSET_MSB  | 361 |
| RX_PORT_3_TS_OFFSET_LSB  | 362 |
| RX_PORT_3_TS_OFFSET_MSB  | 362 |
| RX_PORT_4_TS_OFFSET_LSB  | 363 |
| RX_PORT_4_TS_OFFSET_MSB  | 363 |
| RX_PORT_5_TS_OFFSET_LSB  | 364 |
| RX_PORT_5_TS_OFFSET_MSB  | 364 |
| RX_PORT_8_TS_OFFSET_LSB  | 365 |
| RX_PORT_8_TS_OFFSET_MSB  | 365 |
| TX_PORT_0_TS_OFFSET_LSB  | 366 |
| TX_PORT_0_TS_OFFSET_MSB  | 366 |
| TX_PORT_1_TS_OFFSET_LSB  | 367 |
| TX_PORT_1_TS_OFFSET_MSB  | 368 |
| TX_PORT_2_TS_OFFSET_LSB  | 369 |
| TX_PORT_2_TS_OFFSET_MSB  | 369 |
| TX_PORT_3_TS_OFFSET_LSB  | 370 |
| TX_PORT_3_TS_OFFSET_MSB  | 370 |
| TX_PORT_4_TS_OFFSET_LSB  | 371 |
| TX_PORT_4_TS_OFFSET_MSB  | 371 |
| TX_PORT_5_TS_OFFSET_LSB  | 372 |
| TX_PORT_5_TS_OFFSET_MSB  | 373 |
| TX_PORT_8_TS_OFFSET_LSB  | 374 |
| TX_PORT_8_TS_OFFSET_MSB  | 374 |
| TIME_CODE_N              | 375 |
| RX_CTL                   | 375 |
| RX_TX_CTL                | 376 |
| VLAN_ITPID               | 376 |
| NSE_DPLL_1               | 377 |
| NSE_DPLL_2_N             | 377 |
| NSE DPLL 3 N             | 377 |

|    | NSE_DPLL_4                                     | 378 |
|----|------------------------------------------------|-----|
|    | NSE_DPLL_5                                     | 378 |
|    | NSE_DPLL_6                                     | 378 |
|    | NSE_DPLL_7_N                                   | 379 |
|    | NSE_NCO_1_N                                    | 379 |
|    | NSE_NCO_2_N                                    | 379 |
|    | NSE_NCO_3_0                                    | 380 |
|    | NSE_NCO_3_1                                    | 380 |
|    | NSE_NCO_3_2                                    | 380 |
|    | NSE_NCO_4                                      | 381 |
|    | NSE_NCO_5_0                                    | 381 |
|    | NSE_NCO_5_1                                    | 381 |
|    | NSE_NCO_5_2                                    | 382 |
|    | NSE_NCO_6                                      | 382 |
|    | NSE_NCO_7_0                                    | 383 |
|    | NSE_NCO_7_1                                    | 384 |
|    | TX_COUNTER                                     | 384 |
|    | RX_COUNTER                                     | 384 |
| Pa | ge 0x94: Heartbeat Time Stamp Control Register | 385 |
|    | TS_READ_START_END                              | 385 |
|    | HEARTBEAT_N                                    | 385 |
|    | TIME_STAMP_N                                   | 386 |
|    | TIME_STAMP_INFO_N                              | 386 |
|    | CNTR_DBG                                       | 386 |
|    | RX_CF_SPEC                                     | 387 |
|    | TIMECODE_SEL                                   | 387 |
|    | TIME_STAMP_3                                   | 388 |
| Pa | ge 0x95: RED Control Register                  | 389 |
|    | RED_CONTROL                                    | 389 |
|    | TC2RED_PROFILE_TABLE                           | 390 |
|    | RED_EGRESS_BYPASS                              | 390 |
|    | RED_AQD_CONTROL                                | 390 |
|    | RED_EXPONENT                                   | 391 |
|    | RED_DROP_ADD_TO_MIB                            | 391 |
|    | RED_PROFILE_DEFAULT                            | 392 |
|    | RED_PROFILE_N                                  | 392 |
|    | RED_DROP_CNTR_RST                              | 393 |
|    | PN_PORT_RED_PKT_DROP_CNTR                      | 393 |
|    | IMP PORT RED PKT DROP CNTR                     | 393 |

| PN_PORT_RED_BYTE_DROP_CNTR            | 394 |
|---------------------------------------|-----|
| IMP_PORT_RED_BYTE_DROP_CNTR           | 394 |
| Page 0xa0: CFP TCAM Register          | 395 |
| CFP_ACC                               | 395 |
| RATE_METER_GLOBAL_CTL                 | 397 |
| CFP_DATA                              | 398 |
| CFP_MASK                              | 399 |
| ACT_POL_DATA0                         | 399 |
| ACT_POL_DATA1                         | 400 |
| ACT_POL_DATA2                         | 401 |
| RATE_METER0                           | 403 |
| RATE_METER1                           | 404 |
| RATE_METER2                           | 404 |
| RATE_METER3                           | 405 |
| RATE_METER4                           | 405 |
| RATE_METER5                           | 405 |
| RATE_METER6                           | 406 |
| TC2COLOR                              | 406 |
| STAT_GREEN_CNTR                       | 407 |
| STAT_YELLOW_CNTR                      | 407 |
| STAT_RED_CNTR                         | 407 |
| Page 0xa1: CFP Configuration Register | 408 |
| CFP_CTL_REG                           | 408 |
| UDF_0_A_0_8                           | 409 |
| UDF_1_A_0_8                           | 410 |
| UDF_2_A_0_8                           | 411 |
| UDF_0_B_0_8                           | 412 |
| UDF_1_B_0_8                           | 413 |
| UDF_2_B_0_8                           | 414 |
| UDF_0_C_0_8                           | 415 |
| UDF_1_C_0_8                           | 416 |
| UDF_2_C_0_8                           | 417 |
| UDF_0_D_0_11                          | 418 |
| Page 0xff: SPI Register               | 419 |
| SPIDIO0                               | 419 |
| SPIDIO1                               | 419 |
| SPIDIO2                               | 420 |
| SPIDIO3                               | 420 |
| SPIDIO4                               | 420 |

| Section 2: Revision History | 423 |
|-----------------------------|-----|
| PAGEREG                     | 422 |
| SPISTS                      | 422 |
| SPICTL                      | 421 |
| SPIDIO7                     | 421 |
| SPIDIO6                     | 420 |
| SPIDIO5                     | 420 |

# Section 1: BCM53134 Register Sets

This document provides the BCM53134 register sets that can be accessed through the programming interface.

Table 1: Global Page Register

| 0x01         Page 0x01: Status Register           0x02         Page 0x02: Management/Mirroring Register           0x03         Page 0x03: Interrupt Control Register           0x04         Page 0x04: ARL Control Register           0x05         Page 0x05: ARL/VTABLE Access Register           0x06         Page 0x06 Register (Reserved)           0x07         Page 0x07 Register (Reserved)           0x10-0x13         Page 0x10-0x13: Internal GPHY MII Register           0x20-0x23         Page 0x28: IMP port MIB Counter Register           0x28         Page 0x28: IMP port MIB Counter Register           0x30         Page 0x30: QoS Register           0x31         Page 0x31: Port Based VLAN Register           0x32         Page 0x32: Trunking Register           0x34         Page 0x34: IEEE 802.1Q VLAN Register           0x34         Page 0x34: IEEE 802.1Q VLAN Register           0x40         Page 0x40: Jumbo Frame Control Register           0x40         Page 0x40: Jumbo Frame Control Register           0x41         Page 0x41: Common Ingress Rate control Register           0x42         Page 0x42: EAP Control Register           0x43         Page 0x43: MSPT (Multi Spanning Tree) Control Register           0x45         Page 0x45: Source MAC Address Limit Control Register           0x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page      | Description                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------|
| Page 0x02: Management/Mirroring Register 0x03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x00      | Page 0x00: Control Register                            |
| 0x03 Page 0x03: Interrupt Control Register 0x04 Page 0x04: ARL Control Register 0x05 Page 0x05: ARL/VTABLE Access Register 0x06 Page 0x06 Register (Reserved) 0x07 Page 0x07 Register (Reserved) 0x07 Page 0x07 Register (Reserved) 0x10-0x13 Page 0x10-0x13: Internal GPHY MII Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x28 Page 0x28: IMP port MIB counter Register 0x30 Page 0x30: QoS Register 0x31 Page 0x31: Port Based VLAN Register 0x32 Page 0x32: Trunking Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x34 Page 0x36: DOS Prevent Register 0x40 Page 0x40: Jumbo Frame Control Register 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x42 Page 0x42: EAP Control Register 0x43 Page 0x45: Source MAC Address Limit Control Register 0x45 Page 0x46: Port Qos Priority Control Register 0x46 Page 0x47: Port Shaper Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x48: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register | 0x01      | Page 0x01: Status Register                             |
| 0x04 Page 0x04: ARL Control Register 0x05 Page 0x05: ARL/VTABLE Access Register 0x06 Page 0x06 Register (Reserved) 0x07 Page 0x07 Register (Reserved) 0x10-0x13 Page 0x10-0x13: Internal GPHY MII Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x28 Page 0x28: IMP port MIB counter Register 0x30 Page 0x30: QoS Register 0x31 Page 0x31: Port Based VLAN Register 0x32 Page 0x32: Trunking Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x36 Page 0x36: DOS Prevent Register 0x40 Page 0x40: Jumbo Frame Control Register 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x42 Page 0x43: MSPT (Multi Spanning Tree) Control Register 0x45 Page 0x45: Source MAC Address Limit Control Register 0x46 Page 0x47: Port Shaper Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x49: Port QoS Priority Control Register 0x49 Page 0x49: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x40 Page 0x44: Port Queue 2 Shaper Control Register 0x40 Page 0x44: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 6 Shaper Control Register 0x40 Page 0x40: Port Queue 7 Shaper Control Register 0x40 Page 0x40: Port Queue 7 Shaper Control Register 0x40 Page 0x41: Port Queue 7 Shaper Control Register                                                                                                             | 0x02      | Page 0x02: Management/Mirroring Register               |
| 0x05 Page 0x05: ARL/VTABLE Access Register 0x06 Page 0x06 Register (Reserved) 0x07 Page 0x07 Register (Reserved) 0x10-0x13 Page 0x10-0x13: Internal GPHY MII Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x28 Page 0x28: IMP port MIB counter Register 0x30 Page 0x30: QoS Register 0x31 Page 0x31: Port Based VLAN Register 0x32 Page 0x32: Trunking Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x36 Page 0x36: DOS Prevent Register 0x40 Page 0x40: Jumbo Frame Control Register 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x43 Page 0x45: Source MAC Address Limit Control Register 0x44 Page 0x45: Source MAC Address Limit Control Register 0x45 Page 0x45: Port QoS Priority Control Register 0x46 Page 0x47: Port Shaper Control Register 0x47 Page 0x48: Port Queue 0 Shaper Control Register 0x48 Page 0x48: Port Queue 1 Shaper Control Register 0x49 Page 0x49: Port Queue 2 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 6 Shaper Control Register 0x40 Page 0x40: Port Queue 7 Shaper Control Register                                                                                                                                                                                                                                                      | 0x03      | Page 0x03: Interrupt Control Register                  |
| 0x06 Page 0x06 Register (Reserved) 0x07 Page 0x07 Register (Reserved) 0x10-0x13 Page 0x10-0x13: Internal GPHY MII Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x30 Page 0x30: QoS Register 0x31 Page 0x31: Port Based VLAN Register 0x32 Page 0x32: Trunking Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x36 Page 0x36: DOS Prevent Register 0x40 Page 0x40: Jumbo Frame Control Register 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x43 Page 0x43: MSPT (Multi Spanning Tree) Control Register 0x44 Page 0x45: Source MAC Address Limit Control Register 0x45 Page 0x46: Port QoS Priority Control Register 0x46 Page 0x47: Port Shaper Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x49: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x49 Page 0x4a: Port Queue 2 Shaper Control Register 0x40 Page 0x4a: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x41 Page 0x42: Port Queue 7 Shaper Control Register 0x44 Page 0x46: Port Queue 7 Shaper Control Register 0x46 Page 0x47: Port MIB Snapshot Control Register                                                                                                                                                                                         | 0x04      | Page 0x04: ARL Control Register                        |
| 0x07 Page 0x07 Register (Reserved) 0x10-0x13 Page 0x10-0x13: Internal GPHY MII Register 0x20-0x23 Page 0x20-0x23: Port MIB Counter Register 0x28 Page 0x28: IMP port MIB counter Register 0x30 Page 0x30: QoS Register 0x31 Page 0x31: Port Based VLAN Register 0x32 Page 0x32: Trunking Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x34 Page 0x34: IEEE 802.1Q VLAN Register 0x36 Page 0x36: DOS Prevent Register 0x40 Page 0x40: Jumbo Frame Control Register 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x42 Page 0x42: EAP Control Register 0x43 Page 0x44: Source MAC Address Limit Control Register 0x45 Page 0x46: Port QoS Priority Control Register 0x46 Page 0x47: Port Shaper Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x48: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x40 Page 0x46: Port Queue 2 Shaper Control Register 0x40 Page 0x46: Port Queue 2 Shaper Control Register 0x40 Page 0x46: Port Queue 3 Shaper Control Register 0x40 Page 0x46: Port Queue 4 Shaper Control Register 0x40 Page 0x46: Port Queue 5 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 6 Shaper Control Register 0x40 Page 0x46: Port Queue 7 Shaper Control Register 0x40 Page 0x46: Port Queue 7 Shaper Control Register 0x41 Page 0x47: Port MIB Snapshot Control Register                                                                                                                                                          | 0x05      | Page 0x05: ARL/VTABLE Access Register                  |
| Ox10-Ox13 Page 0x10-Ox13: Internal GPHY MII Register Ox20-Ox23 Page 0x20-Ox23: Port MIB Counter Register Ox28 Page 0x28: IMP port MIB counter Register Ox30 Page 0x30: QoS Register Ox31 Page 0x31: Port Based VLAN Register Ox32 Page 0x32: Trunking Register Ox34 Page 0x34: IEEE 802.1Q VLAN Register Ox36 Page 0x36: DOS Prevent Register Ox40 Page 0x40: Jumbo Frame Control Register Ox41 Page 0x41: Common Ingress Rate control Register Ox42 Page 0x42: EAP Control Register Ox43 Page 0x43: MSPT (Multi Spanning Tree) Control Register Ox45 Page 0x45: Source MAC Address Limit Control Register Ox46 Page 0x46: Port QoS Priority Control Register Ox47 Page 0x47: Port Shaper Control Register Ox48 Page 0x48: Port Queue 0 Shaper Control Register Ox49 Page 0x49: Port Queue 1 Shaper Control Register Ox49 Page 0x49: Port Queue 3 Shaper Control Register Ox40 Page 0x4a: Port Queue 2 Shaper Control Register Ox40 Page 0x4b: Port Queue 3 Shaper Control Register Ox40 Page 0x4c: Port Queue 3 Shaper Control Register Ox40 Page 0x4c: Port Queue 4 Shaper Control Register Ox40 Page 0x4c: Port Queue 5 Shaper Control Register Ox40 Page 0x4c: Port Queue 5 Shaper Control Register Ox40 Page 0x4c: Port Queue 6 Shaper Control Register Ox40 Page 0x4c: Port Queue 6 Shaper Control Register Ox40 Page 0x4c: Port Queue 6 Shaper Control Register Ox40 Page 0x4c: Port Queue 6 Shaper Control Register Ox40 Page 0x4c: Port Queue 7 Shaper Control Register Ox40 Page 0x4f: Port Queue 7 Shaper Control Register Ox40 Page 0x4f: Port Queue 7 Shaper Control Register Ox40 Page 0x4f: Port Queue 7 Shaper Control Register                                                                                                                                                                                                                                                                                                                | 0x06      | Page 0x06 Register (Reserved)                          |
| 0x20-0x23       Page 0x20-0x23: Port MIB counter Register         0x28       Page 0x28: IMP port MIB counter Register         0x30       Page 0x30: QoS Register         0x31       Page 0x31: Port Based VLAN Register         0x32       Page 0x32: Trunking Register         0x34       Page 0x34: IEEE 802.1Q VLAN Register         0x36       Page 0x36: DOS Prevent Register         0x40       Page 0x40: Jumbo Frame Control Register         0x41       Page 0x41: Common Ingress Rate control Register         0x42       Page 0x41: Common Ingress Rate control Register         0x42       Page 0x42: EAP Control Register         0x43       Page 0x43: MSPT (Multi Spanning Tree) Control Register         0x45       Page 0x45: Source MAC Address Limit Control Register         0x46       Page 0x45: Source MAC Address Limit Control Register         0x47       Page 0x46: Port QoS Priority Control Register         0x48       Page 0x47: Port Shaper Control Register         0x49       Page 0x48: Port Queue 0 Shaper Control Register         0x40       Page 0x46: Port Queue 2 Shaper Control Register         0x40       Page 0x46: Port Queue 3 Shaper Control Register         0x40       Page 0x46: Port Queue 5 Shaper Control Register         0x40       Page 0x46: Port Queue 6 Shaper Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x07      | Page 0x07 Register (Reserved)                          |
| 0x28       Page 0x28: IMP port MIB counter Register         0x30       Page 0x30: QoS Register         0x31       Page 0x31: Port Based VLAN Register         0x32       Page 0x32: Trunking Register         0x34       Page 0x34: IEEE 802.1Q VLAN Register         0x36       Page 0x36: DOS Prevent Register         0x40       Page 0x40: Jumbo Frame Control Register         0x41       Page 0x41: Common Ingress Rate control Register         0x42       Page 0x42: EAP Control Register         0x43       Page 0x43: MSPT (Multi Spanning Tree) Control Register         0x45       Page 0x45: Source MAC Address Limit Control Register         0x46       Page 0x45: Source MAC Address Limit Control Register         0x47       Page 0x47: Port QoS Priority Control Register         0x48       Page 0x47: Port Shaper Control Register         0x49       Page 0x48: Port Queue 0 Shaper Control Register         0x40       Page 0x49: Port Queue 1 Shaper Control Register         0x40       Page 0x4a: Port Queue 3 Shaper Control Register         0x4b       Page 0x4b: Port Queue 4 Shaper Control Register         0x4c       Page 0x4c: Port Queue 5 Shaper Control Register         0x4d       Page 0x4d: Port Queue 6 Shaper Control Register         0x4e       Page 0x4f: Port Queue 7 Shaper Control Register <td>0x10-0x13</td> <td>Page 0x10–0x13: Internal GPHY MII Register</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x10-0x13 | Page 0x10–0x13: Internal GPHY MII Register             |
| DX30 Page 0X30: QoS Register  DX31 Page 0X31: Port Based VLAN Register  DX32 Page 0X32: Trunking Register  DX34 Page 0X34: IEEE 802.1Q VLAN Register  DX36 Page 0X36: DOS Prevent Register  DX40 Page 0X40: Jumbo Frame Control Register  DX41 Page 0X41: Common Ingress Rate control Register  DX42 Page 0X42: EAP Control Register  DX43 Page 0X43: MSPT (Multi Spanning Tree) Control Register  DX45 Page 0X45: Source MAC Address Limit Control Register  DX46 Page 0X46: Port QoS Priority Control Register  DX47 Page 0X47: Port Shaper Control Register  DX48 Page 0X48: Port Queue 0 Shaper Control Register  DX49 Page 0X49: Port Queue 1 Shaper Control Register  DX40 Page 0X49: Port Queue 2 Shaper Control Register  DX40 Page 0X40: Port Queue 3 Shaper Control Register  DX40 Page 0X40: Port Queue 4 Shaper Control Register  DX40 Page 0X40: Port Queue 4 Shaper Control Register  DX41 Page 0X42: Port Queue 4 Shaper Control Register  DX42 Page 0X46: Port Queue 5 Shaper Control Register  DX44 Page 0X46: Port Queue 6 Shaper Control Register  DX46 Page 0X46: Port Queue 6 Shaper Control Register  DX47 Page 0X47: Port Queue 6 Shaper Control Register  DX48 Page 0X46: Port Queue 7 Shaper Control Register  DX49 Page 0X47: Port Queue 7 Shaper Control Register  DX40 Page 0X47: Port Queue 7 Shaper Control Register  DX41 Page 0X47: Port Queue 7 Shaper Control Register  DX42 Page 0X47: Port MIB Snapshot Control Register  DX70 Page 0X71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x20-0x23 | Page 0x20–0x23: Port MIB Counter Register              |
| 0x31Page 0x31: Port Based VLAN Register0x32Page 0x32: Trunking Register0x34Page 0x34: IEEE 802.1Q VLAN Register0x36Page 0x36: DOS Prevent Register0x40Page 0x40: Jumbo Frame Control Register0x41Page 0x41: Common Ingress Rate control Register0x42Page 0x42: EAP Control Register0x43Page 0x43: MSPT (Multi Spanning Tree) Control Register0x45Page 0x45: Source MAC Address Limit Control Register0x46Page 0x46: Port QoS Priority Control Register0x47Page 0x47: Port Shaper Control Register0x48Page 0x48: Port Queue 0 Shaper Control Register0x49Page 0x49: Port Queue 1 Shaper Control Register0x4aPage 0x4a: Port Queue 2 Shaper Control Register0x4bPage 0x4a: Port Queue 3 Shaper Control Register0x4cPage 0x4c: Port Queue 4 Shaper Control Register0x4dPage 0x4c: Port Queue 5 Shaper Control Register0x4dPage 0x4d: Port Queue 6 Shaper Control Register0x4dPage 0x4e: Port Queue 7 Shaper Control Register0x4fPage 0x4f: Port Queue 7 Shaper Control Register0x70Page 0x71: Port MIB Snapshot Control Register0x71Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x28      | Page 0x28: IMP port MIB counter Register               |
| Page 0x32: Trunking Register  0x34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x30      | Page 0x30: QoS Register                                |
| Page 0x34: IEEE 802.1Q VLAN Register  0x36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x31      | Page 0x31: Port Based VLAN Register                    |
| Page 0x36: DOS Prevent Register  0x40 Page 0x40: Jumbo Frame Control Register  0x41 Page 0x41: Common Ingress Rate control Register  0x42 Page 0x42: EAP Control Register  0x43 Page 0x43: MSPT (Multi Spanning Tree) Control Register  0x45 Page 0x45: Source MAC Address Limit Control Register  0x46 Page 0x46: Port QoS Priority Control Register  0x47 Page 0x47: Port Shaper Control Register  0x48 Page 0x48: Port Queue 0 Shaper Control Register  0x49 Page 0x49: Port Queue 1 Shaper Control Register  0x4a Page 0x4a: Port Queue 2 Shaper Control Register  0x4b Page 0x4b: Port Queue 3 Shaper Control Register  0x4c Page 0x4c: Port Queue 4 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 6 Shaper Control Register  0x4f Page 0x4f: Port Queue 7 Shaper Control Register  0x70 Page 0x71: Port MIB Snapshot Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x32      | Page 0x32: Trunking Register                           |
| Page 0x40: Jumbo Frame Control Register  0x41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x34      | Page 0x34: IEEE 802.1Q VLAN Register                   |
| 0x41 Page 0x41: Common Ingress Rate control Register 0x42 Page 0x42: EAP Control Register 0x43 Page 0x43: MSPT (Multi Spanning Tree) Control Register 0x45 Page 0x45: Source MAC Address Limit Control Register 0x46 Page 0x46: Port QoS Priority Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x48: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x40 Page 0x40: Port Queue 2 Shaper Control Register 0x40 Page 0x41: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 3 Shaper Control Register 0x40 Page 0x40: Port Queue 4 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 5 Shaper Control Register 0x40 Page 0x40: Port Queue 6 Shaper Control Register 0x40 Page 0x40: Port Queue 7 Shaper Control Register 0x41 Page 0x41: Port Queue 7 Shaper Control Register 0x42 Page 0x47: Port MIB Snapshot Control Register 0x43 Page 0x41: Port MIB Snapshot Control Register 0x44 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x36      | Page 0x36: DOS Prevent Register                        |
| Page 0x42: EAP Control Register  0x43 Page 0x43: MSPT (Multi Spanning Tree) Control Register  0x45 Page 0x45: Source MAC Address Limit Control Register  0x46 Page 0x46: Port QoS Priority Control Register  0x47 Page 0x47: Port Shaper Control Register  0x48 Page 0x48: Port Queue 0 Shaper Control Register  0x49 Page 0x49: Port Queue 1 Shaper Control Register  0x4a Page 0x4a: Port Queue 2 Shaper Control Register  0x4b Page 0x4b: Port Queue 3 Shaper Control Register  0x4c Page 0x4c: Port Queue 4 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 6 Shaper Control Register  0x4e Page 0x4f: Port Queue 6 Shaper Control Register  0x4f Page 0x4f: Port Queue 7 Shaper Control Register  0x70 Page 0x70: Port MIB Snapshot Control Register  0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x40      | Page 0x40: Jumbo Frame Control Register                |
| Page 0x43: MSPT (Multi Spanning Tree) Control Register  0x45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x41      | Page 0x41: Common Ingress Rate control Register        |
| Page 0x45: Source MAC Address Limit Control Register  0x46 Page 0x46: Port QoS Priority Control Register  0x47 Page 0x47: Port Shaper Control Register  0x48 Page 0x48: Port Queue 0 Shaper Control Register  0x49 Page 0x49: Port Queue 1 Shaper Control Register  0x4a Page 0x4a: Port Queue 2 Shaper Control Register  0x4b Page 0x4b: Port Queue 3 Shaper Control Register  0x4c Page 0x4c: Port Queue 4 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4d Page 0x4d: Port Queue 6 Shaper Control Register  0x4e Page 0x4e: Port Queue 6 Shaper Control Register  0x4f Page 0x4f: Port Queue 7 Shaper Control Register  0x70 Page 0x70: Port MIB Snapshot Control Register  0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x42      | Page 0x42: EAP Control Register                        |
| 0x46 Page 0x46: Port QoS Priority Control Register 0x47 Page 0x47: Port Shaper Control Register 0x48 Page 0x48: Port Queue 0 Shaper Control Register 0x49 Page 0x49: Port Queue 1 Shaper Control Register 0x4a Page 0x4a: Port Queue 2 Shaper Control Register 0x4b Page 0x4b: Port Queue 3 Shaper Control Register 0x4c Page 0x4c: Port Queue 4 Shaper Control Register 0x4d Page 0x4d: Port Queue 5 Shaper Control Register 0x4d Page 0x4d: Port Queue 5 Shaper Control Register 0x4e Page 0x4e: Port Queue 6 Shaper Control Register 0x4f Page 0x4f: Port Queue 7 Shaper Control Register 0x70 Page 0x71: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x43      | Page 0x43: MSPT (Multi Spanning Tree) Control Register |
| Page 0x47: Port Shaper Control Register  0x48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x45      | Page 0x45: Source MAC Address Limit Control Register   |
| Page 0x48: Port Queue 0 Shaper Control Register  0x49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x46      | Page 0x46: Port QoS Priority Control Register          |
| Page 0x49: Port Queue 1 Shaper Control Register  0x4a Page 0x4a: Port Queue 2 Shaper Control Register  0x4b Page 0x4b: Port Queue 3 Shaper Control Register  0x4c Page 0x4c: Port Queue 4 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4e Page 0x4e: Port Queue 6 Shaper Control Register  0x4f Page 0x4f: Port Queue 7 Shaper Control Register  0x70 Page 0x70: Port MIB Snapshot Control Register  0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x47      | Page 0x47: Port Shaper Control Register                |
| Page 0x4a: Port Queue 2 Shaper Control Register  0x4b Page 0x4b: Port Queue 3 Shaper Control Register  0x4c Page 0x4c: Port Queue 4 Shaper Control Register  0x4d Page 0x4d: Port Queue 5 Shaper Control Register  0x4e Page 0x4e: Port Queue 6 Shaper Control Register  0x4f Page 0x4f: Port Queue 7 Shaper Control Register  0x70 Page 0x70: Port MIB Snapshot Control Register  0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x48      | Page 0x48: Port Queue 0 Shaper Control Register        |
| 0x4b Page 0x4b: Port Queue 3 Shaper Control Register 0x4c Page 0x4c: Port Queue 4 Shaper Control Register 0x4d Page 0x4d: Port Queue 5 Shaper Control Register 0x4e Page 0x4e: Port Queue 6 Shaper Control Register 0x4f Page 0x4f: Port Queue 7 Shaper Control Register 0x70 Page 0x70: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x49      | Page 0x49: Port Queue 1 Shaper Control Register        |
| 0x4c Page 0x4c: Port Queue 4 Shaper Control Register 0x4d Page 0x4d: Port Queue 5 Shaper Control Register 0x4e Page 0x4e: Port Queue 6 Shaper Control Register 0x4f Page 0x4f: Port Queue 7 Shaper Control Register 0x70 Page 0x70: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x4a      | Page 0x4a: Port Queue 2 Shaper Control Register        |
| 0x4d Page 0x4d: Port Queue 5 Shaper Control Register 0x4e Page 0x4e: Port Queue 6 Shaper Control Register 0x4f Page 0x4f: Port Queue 7 Shaper Control Register 0x70 Page 0x70: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x4b      | Page 0x4b: Port Queue 3 Shaper Control Register        |
| Ox4e Page 0x4e: Port Queue 6 Shaper Control Register Ox4f Page 0x4f: Port Queue 7 Shaper Control Register Ox70 Page 0x70: Port MIB Snapshot Control Register Ox71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x4c      | Page 0x4c: Port Queue 4 Shaper Control Register        |
| 0x4f Page 0x4f: Port Queue 7 Shaper Control Register 0x70 Page 0x70: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x4d      | Page 0x4d: Port Queue 5 Shaper Control Register        |
| 0x70 Page 0x70: Port MIB Snapshot Control Register 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x4e      | Page 0x4e: Port Queue 6 Shaper Control Register        |
| 0x71 Page 0x71: Port MIB Snapshot counter Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x4f      | Page 0x4f: Port Queue 7 Shaper Control Register        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x70      | Page 0x70: Port MIB Snapshot Control Register          |
| 0x72 Page 0x72: Loop Discovery Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x71      | Page 0x71: Port MIB Snapshot counter Register          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x72      | Page 0x72: Loop Discovery Register                     |

Table 1: Global Page Register (Cont.)

| Page | Description                                      |
|------|--------------------------------------------------|
| 0x85 | Page 0x85: Port 5 External PHY MII Register      |
| 0x88 | Page 0x88: IMP port External PHY MII Register    |
| 0x91 | Page 0x91: Traffic Remarking Registers           |
| 0x92 | Page 0x92: EEE Register                          |
| 0x93 | Page 0x93: 1588 Control Register                 |
| 0x94 | Page 0x94: Heartbeat Time Stamp Control Register |
| 0x95 | Page 0x95: RED Control Register                  |
| 0xa0 | Page 0xa0: CFP TCAM Register                     |
| 0xa1 | Page 0xa1: CFP Configuration Register            |
| 0xff | Page 0xff: SPI Register                          |

# Page 0x00: Control Register

Table 2: Page 0x00: Control Register

| Address   | Bits | Register Name                                          |
|-----------|------|--------------------------------------------------------|
| 0x00-0x03 | 7:0  | "Port Traffic Control Register (ports 0–3)" on page 27 |
| 0x08      | 7:0  | "IMP Port Traffic Control Register" on page 28         |
| 0x0b      | 7:0  | "Switch Mode Register" on page 28                      |
| 0x0e      | 7:0  | "IMP Port State Override Register" on page 29          |
| 0x0f      | 7:0  | "LED Refresh Register" on page 30                      |
| 0x10      | 15:0 | "LED Function 0 Control Register" on page 30           |
| 0x12      | 15:0 | "LED Function 1 Control Register" on page 31           |
| 0x14      | 15:0 | "LED Function Map Register" on page 31                 |
| 0x16      | 15:0 | "LED Enable Port Map Register" on page 32              |
| 0x18      | 15:0 | "LED Mode Map 0 Register" on page 32                   |
| 0x1a      | 15:0 | "LED Mode Map 1 Register" on page 33                   |
| 0x1d      | 7:0  | "Post LED Control Register" on page 33                 |
| 0x21      | 7:0  | "Port Forward Control Register" on page 33             |
| 0x22      | 15:0 | "Switch Control Register" on page 35                   |
| 0x24      | 15:0 | "Protected Port Selection Register" on page 35         |
| 0x26      | 15:0 | "WAN Port Select Register" on page 35                  |
| 0x28      | 31:0 | "PAUSE Capability Register" on page 36                 |
| 0x2f      | 7:0  | "Reserved Multicast Control Register" on page 36       |
| 0x32      | 15:0 | "ULF Packet Fwd Map Register" on page 37               |
| 0x34      | 15:0 | "MLF Packet Fwd Map Register" on page 37               |
| 0x36      | 15:0 | "MLF_IPMC_FWD_MAP" on page 38                          |
| 0x38      | 15:0 | "Rx Pause Pass Through Register" on page 38            |
| 0x3a      | 15:0 | "Tx Pause Pass Through Register" on page 38            |
| 0x3c      | 15:0 | "DIS_LEARN" on page 39                                 |
| 0x3e      | 15:0 | "SFT_LRN_CTL Register" on page 39                      |
| 0x40      | 31:0 | "LOW_PWR_EXP_Register" on page 40                      |
| 0x50      | 7:0  | "SCAN_RSLT_GP" on page 41                              |
| 0x5d      | 7:0  | "STS_OVERRIDE_P5" on page 41                           |
| 0x60      | 7:0  | "IMP_RGMII_CTL_REG" on page 42                         |
| 0x65      | 7:0  | "PORT5_RGMII_CTL_REG" on page 42                       |
| 0x6f      | 7:0  | "MDIO_DIRECT_ACCESS" on page 42                        |
| 0x74      | 7:0  | "MDIO_P5_ADDR" on page 43                              |
| 0x75      | 7:0  | "MDIO_P5_ADDR" on page 43                              |
| 0x78      | 7:0  | "MDIO_IMP_ADDR" on page 43                             |
| 0x79      | 7:0  | "WATCH_DOG_CTRL" on page 43                            |
| 0x80      | 7:0  | "PAUSE_FRM_CTRL" on page 44                            |

Table 2: Page 0x00: Control Register (Cont.)

| Address | Bits | Register Name                   |
|---------|------|---------------------------------|
| 0x81    | 47:0 | "PAUSE_ST_ADDR" on page 44      |
| 0x88    | 7:0  | "FAST_AGE_CTRL" on page 45      |
| 0x89    | 7:0  | "FAST_AGE_PORT" on page 45      |
| 0x8a    | 15:0 | "FAST_AGE_VID" on page 46       |
| 0x90    | 15:0 | "LED_FUNC0_EXTD_CTL" on page 46 |
| 0x92    | 15:0 | "LED_FUNC1_EXTD_CTL" on page 46 |
| 0xdd    | 7:0  | "PLL_STS" on page 47            |
| 0xde    | 15:0 | "LOW_POWER_CTRL" on page 47     |
| 0xe8    | 7:0  | "TCAM_CTRL" on page 47          |
| 0xea    | 15:0 | "TCAM_CHKSUM_STS" on page 48    |

## Port Traffic Control Register (ports 0-3)

Register Address: SPI Page 0x00, SPI Offset 0x00-0x03

Register Description: Port N 10/100/1000 Control Register

Table 3: Port Traffic Control Register (ports 0-5)

| Bits | Name                                                                                                                                                                                                                                                                                                                       | R/W | Description                                                                                                                                                                                                                                                                      | Default |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:5  | Spanning Tree Algorithm for this port. 3b'b000: No Spanning Tree (default by HW_FWDG_EN). 3b'b001: Disable State (default by ~HW_FWDG_EN). 3b'b010: Blocking State. 3b'b011: Listening State. 3b'b100: Learning State. 3b'b101: Forwarding State. 3b'b110 - 3b'b111: Reserved Programmed from the HW_FWDG_EN Strap Option. |     | for this port. 3b'b000: No Spanning Tree (default by HW_FWDG_EN). 3b'b001: Disable State (default by ~HW_FWDG_EN). 3b'b010: Blocking State. 3b'b011: Listening State. 3b'b100: Learning State. 3b'b101: Forwarding State. 3b'b101: Reserved Programmed from the HW_FWDG_EN Strap | 0x1     |
| 4:2  | RESERVED                                                                                                                                                                                                                                                                                                                   | R/W | Reserved                                                                                                                                                                                                                                                                         | 0x0     |
| 1    | TX_DIS                                                                                                                                                                                                                                                                                                                     | R/W | Disables the transmit function of the port at the 0 MAC level.                                                                                                                                                                                                                   |         |
| 0    | RX_DIS                                                                                                                                                                                                                                                                                                                     | R/W | Disables the receive function of the port at the 0 MAC level.                                                                                                                                                                                                                    |         |

## **IMP Port Traffic Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x08

Register Description: IMP Port Control Register

Table 4: IMP Port Traffic Control Register

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:5  | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                | 0x0     |
| 4    | RX_UCST_EN | R/W | Receive Unicast Enable. Allow unicast frames to be forwarded to the IMP, when the IMP is configured as the Frame Management Port, and the frame was flooded due to no matching address table entry. When cleared, unicast frames that meet the Mirror Ingress/Egress Rules will still be forwarded to the Frame Management Port. Ignored if the IMP is not selected as the Frame Management Port.       | 0       |
| 3    | RX_MCST_EN | R/W | Receive Multicast Enable. Allow multicast frames to be forwarded to the IMP, when the IMP is configured as the Frame Management Port, and the frame was flooded due to no matching address table entry. When cleared, multicast frames that meet the Mirror Ingress/Egress Rules will still be forwarded to the Frame Management Port. Ignored if the IMP is not selected as the Frame Management Port. | 0       |
| 2    | RX_BCST_EN | R/W | Receive Broadcast Enable. Allow broadcast frames to be forwarded to the IMP, when the IMP is configured as the Frame Management Port. When cleared, multicast frames that meet the Mirror Ingress/Egress Rules will still be forwarded to the Frame Management Port. Ignored if the IMP is not selected as the Frame Management Port.                                                                   | 0       |
| 1    | TX_DIS     | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                | 0       |
| 0    | RX_DIS     | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                | 0       |

#### **Switch Mode Register**

Register Address: SPI Page 0x00, SPI Offset 0x0b

Register Description: Switch Mode Register

Table 5: Switch Mode Register

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 7:5  | RESERVED | R/W | Reserved    | 0x0     |

Table 5: Switch Mode Register (Cont.)

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|--------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 4    | NOBLKCD            | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       |
| 3    | FAST_TXDESC_RERURN | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       |
| 2    | RTRY_LMT_DIS       | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       |
| 1    | SW_FWDG_EN         | R/W | Software Forwarding Enable SW_FWDG_EN = 1: Frame forwarding is enabled. SW_FWDG_EN = 0: Frame forwarding is disabled. Read from HW_FWDG_EN pin on power-on. Can be overwritten subsequently. For managed switch implementations (5388 mode), the switch should be configured to disable forwarding on power-on, to allow the processor to configure the internal address table and other parameters, before frame forwarding is enabled. |         |
| 0    | SW_FWDG_MODE       | R/W | Software Forwarding Mode. Strapped from the inverse of the HW_FWDG_EN pin at power-on. Can be overwritten subsequently. 0 = Unmanaged Mode. 1 = Managed Mode The ARL treats Reserved Multicast addresses differently dependent on this selection. See Table 3 for a precise definition.                                                                                                                                                  | 1       |

## **IMP Port State Override Register**

Register Address: SPI Page 0x00, SPI Offset 0x0e

Register Description: IMP Port States Override Register

Table 6: IMP Port State Override Register

| Bits | Name        | R/W | Description                                                                           | Default |
|------|-------------|-----|---------------------------------------------------------------------------------------|---------|
| 7    | MII_SW_OR   | R/W | MII Software Override 0: Use MII hardware pin status 1: Use contents of this register | 0       |
| 6    | RESERVED_1  | R/W | Reserved                                                                              | 0       |
| 5    | TXFLOW_CNTL | R/W | Link Partner Flow Control Capability 0: Not PAUSE capable 1: PAUSE capable            | 0       |
| 4    | RXFLOW_CNTL | R/W | Link Partner Flow Control Capability 0: Not PAUSE capable 1: PAUSE capable            | 0       |

Table 6: IMP Port State Override Register (Cont.)

| Bits | Name       | R/W | Description                                                                          | Default |
|------|------------|-----|--------------------------------------------------------------------------------------|---------|
| 3:2  | SPEED      | R/W | Speed<br>00: 10 Mb/s<br>01: 100 Mb/s<br>10: 1000 Mb/s (or 2500 Mb/s)<br>11: Reserved | 0x2     |
| 1    | DUPLX_MODE | R/W | Software Duplex Mode Setting 0: Half Duplex 1: Full Duplex                           | 1       |
| 0    | LINK_STS   | R/W | Link Status<br>0: Link fail<br>1: Link pass                                          | 0       |

## **LED Refresh Register**

Register Address: SPI Page 0x00, SPI Offset 0x0f

Register Description: LED Configuration Register

Table 7: LED Refresh Register

| Bits | Name           | R/W | Description                                                                                                                                                                                      | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | LED_EN         | R/W | Enable LED.                                                                                                                                                                                      | 1       |
| 6    | LED_POST_EXEC  | R/W | Write 1 to re-start POST.                                                                                                                                                                        | 0       |
| 5    | LED_PSCAN_EN   | R/W | Write 1 to active port scan during POST.                                                                                                                                                         | 0       |
| 4    | LED_POST_CD_EN | R/W | Write 1 to active cable diag after POST.                                                                                                                                                         | 0       |
| 3    | LED_NORM_CD_EN | R/W | Write 1 to active cable diag in normal mode.                                                                                                                                                     | 0       |
| 2:0  | LED_RFS_STOP   | R/W | LED reflsh control register. reflsh time = (N+1)*10ns 000: no reflsh; 001: 20 ms/25 Hz; 010: 30 ms/16 Hz; 011: 40 ms/12 Hz; 100: 50 ms/10 Hz; 101: 60 ms/8 Hz; 110: 70 ms/7 Hz; 111: 80 ms/6 Hz. | 0x3     |

#### **LED Function 0 Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x10

Register Description: LED Function 0 control register

Table 8: LED Function 0 Control Register

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | LED_FUNC0 | R/W | Bit 15:PHYLED3 Bit 14:AVB link Bit 13:1G/ACT (blink in auto_mode) Bit 12:10/100M/ACT (blink in auto_mode) Bit 11:100M/ACT (blink in auto_mode) Bit 10:10M/ACT (blink in auto_mode) Bit 9:SPD1G Bit 8:SPD100M Bit 7:SPD10M Bit 6:DPX/COL (blink in auto_mode) Bit 5:LNK/ACT (blink in auto_mode) Bit 4:COL (blink in auto_mode) Bit 3:ACT (blink in auto_mode) Bit 2:DPX Bit 1:LNK Bit 0:PHYLED4 | 0x220   |

## **LED Function 1 Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x12

Register Description: LED Function 1 control register

Table 9: LED Function 1 Control Register

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                       | Default        |
|------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 15:0 | LED_FUNC1 | R/W | Bit 15:PHYLED3 Bit 14:AVB link Bit 13:1G/ACT (blink in auto_mode) Bit 12:10/100M/ACT (blink in auto_mode) Bit 11:100M/ACT (blink in auto_mode) Bit 10:10M/ACT (blink in auto_mode) Bit 9:SPD1G Bit 8:SPD100M Bit 7:SPD10M Bit 6:DPX/COL (blink in auto_mode) Bit 5:LNK/ACT (blink in auto_mode) Bit 4:COL (blink in auto_mode) Bit 3:ACT (blink in auto_mode) Bit 2:DPX Bit 1:LNK | 0x324          |
| 15:0 | LED_FUNC1 | R/W | Bit 14:AVB link Bit 13:1G/ACT (blink in auto_mode) Bit 12:10/100M/ACT (blink in auto_mode) Bit 11:100M/ACT (blink in auto_mode) Bit 10:10M/ACT (blink in auto_mode) Bit 9:SPD1G Bit 8:SPD100M Bit 7:SPD10M Bit 6:DPX/COL (blink in auto_mode) Bit 5:LNK/ACT (blink in auto_mode) Bit 3:ACT (blink in auto_mode) Bit 2:DPX                                                         | de)<br>e)<br>) |

#### **LED Function Map Register**

Register Address: SPI Page 0x00, SPI Offset 0x14

Register Description: LED Function Map register

Table 10: LED Function Map Register

| Bits | Name         | R/W | Description                                                               | Default |
|------|--------------|-----|---------------------------------------------------------------------------|---------|
| 15:9 | RESERVED     | R/W | Reserved                                                                  | 0x0     |
| 8:0  | LED_FUNC_MAP | R/W | Per port select function bit. 1: select function 1, 0: select function 0. | 0x1FF   |

#### **LED Enable Port Map Register**

Register Address: SPI Page 0x00, SPI Offset 0x16

Register Description: LED Enable Map register

Table 11: LED Enable Port Map Register

| Bits | Name       | R/W | Description                                                                                                                             | Default |
|------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED   | R/W | Reserved                                                                                                                                | 0x0     |
| 8:0  | LED_EN_MAP | R/W | Per port enable function bit, 1: Enable LED function 0: Disable LED function bit[8]: port8. bit[7:6] reserved. bit[5:0]: port5 - port0. | 0x1F    |

#### **LED Mode Map 0 Register**

Register Address: SPI Page 0x00, SPI Offset 0x18

Register Description: LED Mode map 0 register

Table 12: LED Mode Map 0 Register

| Bits | Name          | R/W | Description                                                                                             | Default |
|------|---------------|-----|---------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED      | R/W | Reserved                                                                                                | 0x0     |
| 8:0  | LED_MODE_MAP0 | R/W | Combine with LED_MODEMAP1 to decide per port LED output, Mode[1:0] 00: OFF, 01: ON, 10: BLINK, 11: AUTO | 0x1FF   |

#### **LED Mode Map 1 Register**

Register Address: SPI Page 0x00, SPI Offset 0x1a

Register Description: LED Mode map 1 register

Table 13: LED Mode Map 1 Register

| Bits | Name          | R/W | Description                                                                                             | Default |
|------|---------------|-----|---------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED      | R/W | Reserved                                                                                                | 0x0     |
| 8:0  | LED_MODE_MAP1 | R/W | Combine with LED_MODEMAP1 to decide per port LED output, Mode[1:0] 00: OFF, 01: ON, 10: BLINK, 11: AUTO | 0x1FF   |

## **Post LED Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x1d

Register Description: Post LED Control Register

Table 14: Post LED Control Register

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | ACT_LED_TRIGGER  | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |
| 6:4  | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 3:0  | POST_LED_TRIGGER | R/W | Note: Post LED Control. The 4 bits control the LED on/off state during POST to allow dual-color LED to be tested. [3:0 control LED0~LED3 of each port. When '1', the LED pin is activated during POST, when '0', the LED pin is deactivated during POST. Note: The chip supports up to 4 LEDs per port. If there are only 3 bit are selected in the LED Function Control Register, LED0~LED2 are selected in the POST LED TRIGGER Register. | e<br>f  |

#### **Port Forward Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x21

Register Description: per traffic forward control register

Table 15: Port Forward Control Register

| Bits | Name                 | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|----------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | MC_FWD_EN            | R/W | Multicast Forward Enable when ARL Miss.  1: To enable DFL packet with multicast destination address to forward to the ports defined as page 0,offset 34h.                                                                                                                                                                                                                                                                                                                                                                                                | 0       |
| 6    | UC_FWD_EN            | R/W | Unicast Forward Enable when ARL Miss.  1: To enable DFL packet with unicast destination address to forward to ports defined as page 0,offset 32h.                                                                                                                                                                                                                                                                                                                                                                                                        | 0       |
| 5    | EN_AUTO_PD_WAR       | R/W | Enable auto power-down work-around when the bit OVERRIDE_AUTO_PD_WAR is set. 0: Disable. 1: Enable.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       |
| 4    | OVERRIDE_AUTO_PD_WAR | R/W | Override the default setting for enabling the auto power-down work-around. 0: Not override. 1: Override.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       |
| 3    | CABLE_DIAG_LEN       | R/W | If the cable length is less than the setting value, the green mode setting (cable diagnostic) will enable. 0: 10 meters. 1: 30 meters.                                                                                                                                                                                                                                                                                                                                                                                                                   | 0       |
| 2    | INRANGEERR_DISCARD   | R/W | In Range Error Discard When enabled, the ingress port will discard the frames with Length field mismatch the frame length. Following is the definition of InRangeErros. InRangeErrors Frames: The frames received with good CRC and one of the following. The value of Length/Type field is between 46 and 1500 inclusive, and does not match the number of (MAC Client Data + PAD) data octets received, OR The value of Length/Type field is less than 46, and the number of data octets received is greater than 46 (which does not require padding). |         |
| 1    | OUTRANGEERR_DISCARD  | R/W | Out of Range Error Discard When enabled, the ingress port will discard the frames with length field between 1500 and 1536 (exclude 1500 and 1536) and with good CRC. This option only controls the length field checking but not the frame length checking.                                                                                                                                                                                                                                                                                              | 0       |
| 0    | IP_MC                | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       |
|      |                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |

#### **Switch Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x22

Register Description: Switch Control Register

Table 16: Switch Control Register

| Bits | Name             | R/W | Description                                         | Default |
|------|------------------|-----|-----------------------------------------------------|---------|
| 15:7 | RESERVED_1       | R/W | Reserved                                            | 0x0     |
| 6    | MII_DUMB_FWDG_EN | R/W | To include port8 (IMP) for forwarding in dumb mode. | 0       |
| 5:0  | RESERVED_0       | R/W | Reserved                                            | 0x0     |

### **Protected Port Selection Register**

Register Address: SPI Page 0x00, SPI Offset 0x24

Register Description: Protected Port Select Register. Selected ports cannot forward traffic to each other.

Table 17: Protected Port Selection Register

| Bits | Name     | R/W | Description                                                                                                                                              | Default |
|------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED | R/W | Reserved                                                                                                                                                 | 0x0     |
| 8:0  | PORT_SEL | R/W | Protected Port Selection. When set, the Port will be the protected Port. Protected Ports will not be able to Transmit/ Receive Frame to/from each other. | 0x0     |

### **WAN Port Select Register**

Register Address: SPI Page 0x00, SPI Offset 0x26

Register Description: WAN Port select Register. WAN port traffic will be forwarded to a management port.

Table 18: WAN Port Select Register

| Bits  | Name       | R/W | Description                                                                                                           | Default |
|-------|------------|-----|-----------------------------------------------------------------------------------------------------------------------|---------|
| 15:10 | RESERVED_1 | R/W | Reserved                                                                                                              | 0x0     |
| 9     | EN_MAN2WAN | R/W | O: mgmt-port only uses egress direct frame to WAN-port.  1: mgmt-port could send non-egress direct frame to WAN-port. | 0       |
| 8     | RESERVED_0 | R/W | Reserved                                                                                                              | 0       |

Table 18: WAN Port Select Register (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                         | Default |
|------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | WAN_SELECT | R/W | WAN Ports Selection This field selects the WAN ports. when set to '1', the corresponding port is the WAN port. bit5: Port 5 can be selected as WAN port only when IMP1 is disabled. bit6: reserved. | 0x0     |

#### **PAUSE Capability Register**

Register Address: SPI Page 0x00, SPI Offset 0x28

Register Description: PAUSE Capability Register

Table 19: PAUSE Capability Register

| Bits  | Name         | R/W | Description                                                                                                  | Default |
|-------|--------------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | RESERVED_1   | R/W | Reserved                                                                                                     | 0x0     |
| 23    | EN_OVERRIDE  | R/W | Force the contents of the register to be used.                                                               | 0       |
| 22:18 | RESERVED     | R/W | Reserved                                                                                                     | 0x0     |
| 17:9  | RX_PAUSE_CAP | R/W | Software setting for the capability of Receiving Pause Frame. Bit 17 = Port 8, Bits 14:9 = Port 5- Port 0.   | 0x0     |
| 8:0   | TX_PAUSE_CAP | R/W | Software setting for the capability of Transmitting Pause Frame. Bit 8 = Port 8. Bits 5:0 = Port 5 - Port 0. | 0x0     |

## **Reserved Multicast Control Register**

Register Address: SPI Page 0x00, SPI Offset 0x2f

Register Description: Reserved Multicast Register

Table 20: Reserved Multicast Control Register

| Bits | Name             | R/W | Description                                                                                                        | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------|---------|
| 7    | EN_RES_MUL_LEARN | R/W | bit[7]: en_reserved_McastDA_learn.<br>0: Do not learn (default)<br>1: Learn                                        | 0       |
| 6:5  | RESERVED         | R/W | Reserved                                                                                                           | 0x0     |
| 4    | EN_MUL_4         | R/W | bit[4]: 01-80-C2-00-00-20 ~ 01-80-C2-00-00-2F. (Can be set in Unmanaged mode only). 0: Forward (default). 1: Drop. | 0       |

Table 20: Reserved Multicast Control Register (Cont.)

| Bits | Name     | R/W | Description                                                                                                                 | Default |
|------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|
| 3    | EN_MUL_3 | R/W | bit[3]: 1-80-C2-00-00-11 ~ 01-80-C2-00-00-<br>1F.(Can be set in Unmanaged mode only)<br>0: Forward (default).<br>1: Drop.]: | 0       |
| 2    | EN_MUL_2 | R/W | bit[2]: 01-80-C2-00-00-10.(Can be set in Unmanaged mode only) 0: Forward (default). 1: Drop.                                | 0       |
| 1    | EN_MUL_1 | R/W | bit[1]: 01-80-C2-00-00-02 ~ 01-80-C2-00-00-<br>0F.(Can be set in Unmanaged mode only)<br>0: Forward<br>1: Drop (default)    | 1       |
| 0    | EN_MUL_0 | R/W | bit[0]: 01-80-C2-00-00-00.(Can be set in Unmanaged mode only) 0: Forward (default). 1: Drop.                                | 0       |

#### **ULF Packet Fwd Map Register**

Register Address: SPI Page 0x00, SPI Offset 0x32

Register Description: Unicast Lookup Failed Forward Map Register

Table 21: ULF Packet Fwd Map Register

| Bits | Name                        | R/W   | Description                                                                                                                                                                          | Default |
|------|-----------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W   | Reserved                                                                                                                                                                             | 0x0     |
| 8:0  | UNI_LOOKUP_FAIL_FWD_M/<br>P | A R/W | Unicast Lookup Failed Forward Map. When unicast lookup failed Drop is enabled (Page 00, Offset 21h) and Lookup failure happen, ARL will forward the frame according to the register. | 0x0     |

#### **MLF Packet Fwd Map Register**

Register Address: SPI Page 0x00, SPI Offset 0x34

Register Description: Multicast Lookup Failed Forward Map Register

Table 22: MLF Packet Fwd Map Register

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 22: MLF Packet Fwd Map Register (Cont.)

| Bits | Name                        | R/W | Description                                                                                                                                                                                      | Default |
|------|-----------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | MUL_LOOKUP_FAIL_FRW_M<br>AP | R/W | Multicast Lookup Failed Forward Map. When Multicast lookup failed Drop is enabled (Page 00, Offset 21h) and Lookup failure happen, ARL will forward the frame according to the register setting. | 0x0     |

#### MLF\_IPMC\_FWD\_MAP

Register Address: SPI Page 0x00, SPI Offset 0x36

Register Description: IPMC Forward Map Register

Table 23: MLF\_IPMC\_FWD\_MAP

| Bits | Name             | R/W | Description       | Default |
|------|------------------|-----|-------------------|---------|
| 15:9 | RESERVED         | R/W | Reserved          | 0x0     |
| 8:0  | MLF_IPMC_FWD_MAP | R/W | IPMC Forward map. | 0x0     |

#### **Rx Pause Pass Through Register**

Register Address: SPI Page 0x00, SPI Offset 0x38

Register Description: Pause pass Through for RX Register

Table 24: Rx Pause Pass Through Register

| Bits | Name          | R/W | Description                                                                                                                  | Default |
|------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED_1    | R/W | Reserved                                                                                                                     | 0x0     |
| 8    | RESERVED_0    | R/W | Reserved, it is illegal to write to '1'.                                                                                     | 0       |
| 7:0  | RX_PAUSE_PASS | R/W | RX pause pass through map. bit[7]: Port 7. bit[5:0]: Port 5-0 1: ignore 802.3x. 0: comply with 802.3x pause frame receiving. | 0x0     |

#### **Tx Pause Pass Through Register**

Register Address: SPI Page 0x00, SPI Offset 0x3a

Register Description: Pause pass Through for TX Register

Table 25: Tx Pause Pass through Register

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 25: Tx Pause Pass through Register (Cont.)

| Bits | Name          | R/W | Description                                                                                                                                  | Default |
|------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | TX_PAUSE_PASS | R/W | TX pause pass through map. bit[8]: Port 8. bit[7]: Port 7. bit[5:0]: Port 5-0 1: ignore 802.3x. 0: comply with 802.3x pause frame receiving. | 0x0     |

## **DIS\_LEARN**

Register Address: SPI Page 0x00, SPI Offset 0x3c

Register Description: Disable Learning Register

Table 26: DIS\_LEARN

| Bits | Name      | R/W | Description                                                                                                                                                                                                                            | Default |
|------|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                               | 0x0     |
| 8:0  | DIS_LEARN | R/W | bit[8]: Port 8. bit[7]: Port 7. bit[5:0]: Port 5-0 1: Disable learning, when disable, the hardware won't do the following items: a. learn entries to ARL. b. refresh entries to ARL. c. support software learning. 0: Enable Learning. | 0x0     |

## SFT\_LRN\_CTL Register

Register Address: SPI Page 0x00, SPI Offset 0x3e

Register Description: Software Learning Control

Table 27: SFT\_LRN\_CTL Register

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 27: SFT\_LRN\_CTL Register (Cont.)

| Bits | Name          | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | SW_LEARN_CNTL | R/W | bit[8]: Port 8. bit[7]: Port 7. bit[5:0]: Port 5-0.  1: Software learning control enabled. The behaviors are as follows. a. Forwarding behavior: Incoming packet with unknown SA will be copied to CPU port. b. Learning behavior: Allow S/W to decide whether incoming packet learn or not. In S/W learning mode, the H/W learning mechanism will be disabled automatically. c. Refreshed behavior: Allow refreshed mechanism to operate properly even through the H/W learning had been disabled. This field makes no effect if the disable learning is enable (page 00h, address 3Ch) It is not allowed to enable software learning for WAN port, since all frames from WAN port are already sent to IMP port. 0: Software learning control disabled. Forwarding/Learning/Refreshed behavior to keep hardware operation. |         |

## LOW\_PWR\_EXP\_Register

Register Address: SPI Page 0x00, SPI Offset 0x40

Register Description: Low Power Expansion Register

Table 28: LOW\_PWR\_EXP\_Register

| Bits  | Name              | R/W | Description                                                                                            | Default |
|-------|-------------------|-----|--------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED_1        | R/W | Reserved                                                                                               | 0x0     |
| 24:16 | SLEEP_MACCLK_PORT | R/W | Set 1'b1 to bit field gates off the corresponding port's MAC TX/RX clocks. Bits [24:16]: Port8 - Port0 | 0x0     |
| 15:9  | RESERVED_0        | R/W | Reserved                                                                                               | 0x0     |
| 8:0   | SLEEP_SYSCLK_PORT | R/W | Set 1'b1 to bit field gates off the corresponding port's system clock. Bits [8:0]: Port8 - Port0       | 0x0     |

## SCAN\_RSLT\_GP

Register Address: SPI Page 0x00, SPI Offset 0x50

Register Description: MII Port X Scan Result Register

Table 29: SCAN\_RSLT\_GP

| Bits | Name             | R/W | Description                                                         | Default |
|------|------------------|-----|---------------------------------------------------------------------|---------|
| 7    | RESERVED_1       | R/W | Reserved                                                            | 0       |
| 6    | SCAN_TIMEOUR_ERR | R/W | PHY scan register will be override.                                 | 0       |
| 5    | TXFLOW_CNTL      | R/W | Software Tx Flow Control Enable.                                    | 0       |
| 4    | RXFLOW_CNTL      | R/W | Software Rx Flow Control Enable.                                    | 0       |
| 3:2  | SPEED            | R/W | Speed Mode.<br>2'b10: 1000M;<br>2'b01: 100M;<br>2'b00: 10M.         | 0x0     |
| 1    | DUPLX_MODE       | R/W | Software Duplex Mode Setting,<br>0: Half Duplex,<br>1: Full Duplex. | 0       |
| 0    | LINK_STS         | R/W | 1: Link Up<br>0: Link Down                                          | 0       |

## STS\_OVERRIDE\_P5

Register Address: SPI Page 0x00, SPI Offset 0x5d

Register Description: Port 5 GMII Port States Override Register

Table 30: STS\_OVERRIDE\_P5

| Bits | Name        | R/W | Description                                                                                                            | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | RESERVED_1  | R/W | Reserved                                                                                                               | 0       |
| 6    | SW_OVERRIDE | R/W | CPU set software Override bit to 1 to make bit [5:0] affected. PHY scan register will be override.                     | 0       |
| 5    | TXFLOW_CNTL | R/W | Software Tx Flow Control Enable                                                                                        | 0       |
| 4    | RXFLOW_CNTL | R/W | Software Rx Flow Control Enable                                                                                        | 0       |
| 3:2  | SPEED       | R/W | Software Port Speed setting<br>2'b10: 1000 Mb/s (or 2500 Mb/s)<br>2'b01: 100 Mb/s<br>2'b00: 10 Mb/s<br>2'b11: Reserved | 0x2     |
| 1    | DUPLX_MODE  | R/W | Software Duplex Mode Setting 0: Half Duplex 1: Full Duplex                                                             | 1       |
| 0    | LINK_STS    | R/W | 1: Link Up<br>0: Link Down                                                                                             | 1       |

## IMP\_RGMII\_CTL\_REG

Register Address: SPI Page 0x00, SPI Offset 0x60

Register Description: IMP RGMII Control register

Table 31: IMP\_RGMII\_CTL\_REG

| Bits | Name             | R/W | Description                                                                                        | Default |
|------|------------------|-----|----------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED         | R/W | Reserved                                                                                           | 0x0     |
| 2    | BYPASS_2NS_DEL   | R/W | Reserved                                                                                           | 0       |
| 1    | EN_RGMII_DLL_RXC | R/W | 1: Clock delay by DLL is enabled (Delay Mode) 0: Clock delay by DLL is disabled (Normal Mode)      |         |
| 0    | EN_RGMII_DLL_TXC | R/W | 1: RGMII tx_clk delayed timing mode (Delay Mode) 0: RGMII tx_clk aligned timing mode (Normal Mode) | 0       |

### PORT5\_RGMII\_CTL\_REG

Register Address: SPI Page 0x00, SPI Offset 0x65

Register Description: Port 5 RGMII Control register

Table 32: PORT5\_RGMII\_CTL\_REG

| Bits | Name             | R/W | Description                                                                                        | Default |
|------|------------------|-----|----------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED         | R/W | Reserved                                                                                           | 0x0     |
| 2    | BYPASS_2NS_DEL   | R/W | Reserved                                                                                           | 0       |
| 1    | EN_RGMII_DLL_RXC | R/W | 1: Clock delay by DLL is enabled (Delay Mode) 0: Clock delay by DLL is disabled (Normal Mode)      |         |
| 0    | EN_RGMII_DLL_TXC | R/W | 1: RGMII tx_clk delayed timing mode (Delay Mode) 0: RGMII tx_clk aligned timing mode (Normal Mode) | 0       |

## MDIO\_DIRECT\_ACCESS

Register Address: SPI Page 0x00, SPI Offset 0x6f

Register Description: MDIO Direct Access Enable Register

Table 33: MDIO\_DIRECT\_ACCESS

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 7:1  | RESERVED | R/W | Reserved    | 0x0     |

Table 33: MDIO\_DIRECT\_ACCESS (Cont.)

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                            | Default |
|------|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0    | MDIO_DIRECT_ACCESS | R/W | This bit is applied to software handshake protocol when two CPUs (internal CPU and external CPU) access to internal PHY register (assume the external CPU programming interface is MDIO).  1: MDIO direct access is enabled. In this condition, MDIO IO pad will connect to internal PHY.  0: MDIO direct access is disabled. In this condition, the path from MDIO IO pad to internal PHY is cut off. | 0       |

#### MDIO\_P5\_ADDR

Register Address: SPI Page 0x00, SPI Offset 0x75

Register Description: MDIO P5 Address Register

Table 34: MDIO\_P5\_ADDR

| Bits | Name     | R/W | Description                | Default |
|------|----------|-----|----------------------------|---------|
| 7:5  | RESERVED | R/W | Reserved                   | 0x0     |
| 4:0  | ADDR_P5  | R/W | P5-Port MDIO Scan ADDRESS. | 0x15    |

### MDIO\_IMP\_ADDR

Register Address: SPI Page 0x00, SPI Offset 0x78

Register Description: MDIO Port IMP Address Register

Table 35: MDIO\_IMP\_ADDR

| Bits | Name     | R/W | Description                 | Default |
|------|----------|-----|-----------------------------|---------|
| 7:5  | RESERVED | R/W | Reserved                    | 0x0     |
| 4:0  | ADDR_IMP | R/W | Port IMP MDIO Scan ADDRESS. | 0x18    |

### WATCH\_DOG\_CTRL

Register Address: SPI Page 0x00, SPI Offset 0x79

Register Description: Watch Dog Control Register

Table 36: WATCH\_DOG\_CTRL

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                       | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | SOFTWARE_RESET   | R/W | Global Software Reset. (EN_SW_RST or EN_CHIP_RST must be enabled as well). Set 1'b1 to trigger reset process. When reset process is done, this bit is cleared to 1'b0.                                                                                                            | 0       |
| 6    | EN_CHIP_RST      | R/W | Enable Chip Software Reset. Set 1'b1 to reset both switch and SoC. All registers (including SoC PLL's control registers) in both SoC and switch will be reset to their default values, the EEPROM will be reloaded, memory clear will be performed, and the ARM core will reboot. | 0       |
| 5    | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                                          | 0       |
| 4    | EN_SW_RESET      | R/W | Enable Switch Software Reset. Set 1'b1 to reset switch only. All switch's registers will be reset to their default values, and memory clear will be performed. *** Reset Process except Strap value, BCMREG and PLL.                                                              |         |
| 3    | EN_AUTO_RST      | R/W | Reserved                                                                                                                                                                                                                                                                          | 0       |
| 2    | EN_RELOAD_EEPROM | R/W | Reserved                                                                                                                                                                                                                                                                          | 0       |
| 1    | EN_RST_REGFILE   | R/W | Reserved                                                                                                                                                                                                                                                                          | 0       |
| 0    | EN_RST_SWITCH    | R/W | Reserved                                                                                                                                                                                                                                                                          | 0       |

## PAUSE\_FRM\_CTRL

Register Address: SPI Page 0x00, SPI Offset 0x80

Register Description: Pause Frame Detection Control Register

Table 37: PAUSE\_FRM\_CTRL

| Bits | Name            | R/W | Description                                                                                            | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED_2      | R/W | Reserved                                                                                               | 0x0     |
| 2:1  | RESERVED_1      | R/W | Reserved, Should SET 2'b00 for correct operation                                                       | 0x0     |
| 0    | PAUSE_IGNORE_DA | R/W | Pause_ignore_DA 0: Check DA field on Pause Frame detection 1: Ignore DA field on Pause Frame detection | 0       |

## PAUSE\_ST\_ADDR

Register Address: SPI Page 0x00, SPI Offset 0x81

Register Description: PAUSE Frame DA Address

Table 38: PAUSE\_ST\_ADDR

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 47:0 | PAUSE_ST_ADDR | R/W | Reserved    | unknown |

## FAST\_AGE\_CTRL

Register Address: SPI Page 0x00, SPI Offset 0x88

Register Description: Fast Ageing Control Register

Table 39: FAST\_AGE\_CTRL

| Bits | Name               | R/W | Description                                                                                                                                                                                                         | Default |
|------|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | FAST_AGE_STR_DONE  | R/W | Set 1'b1 to trigger fast ageing process. When Fast aging process is done, this bit is cleared to 1'b0.                                                                                                              | 0       |
| 6    | RESERVED           | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 5    | EN_AGE_MCAST       | R/W | Enable Aging Multicast entry  1: Aging multicast entries in ARL table  0: Disable aging multicast entries in ARL table  *** Note that the EN_AGE_MCAST and the EN_AGE_PORT can't enable (set to 1'b1) at same time. | 0       |
| 4    | EN_AGE_SPT         | R/W | Set 1'b1 to check spanning Tree ID (refer to EN_802_1S/MSPT_AGE_MAP at page/address = 43h/00h,02-05h)                                                                                                               | 0       |
| 3    | EN_AGE_VLAN        | R/W | Set 1'b1 to Check VLAN ID.                                                                                                                                                                                          | 0       |
| 2    | EN_AGE_PORT        | R/W | Set 1'b1 to Check Port ID                                                                                                                                                                                           | 0       |
| 1    | EN_AGE_DYNAMIC     | R/W | Set 1'b1 to Age out Dynamic Entry.                                                                                                                                                                                  | 1       |
| 0    | EN_FAST_AGE_STATIC | R/W | Set 1'b1 to Age out Static Entry.                                                                                                                                                                                   | 0       |

## FAST\_AGE\_PORT

Register Address: SPI Page 0x00, SPI Offset 0x89

Register Description: Fast Ageing Port Control Register

Table 40: FAST\_AGE\_PORT

| Bits | Name     | R/W | Description                                                                | Default |
|------|----------|-----|----------------------------------------------------------------------------|---------|
| 7:4  | RESERVED | R/W | Reserved                                                                   | 0x0     |
| 3:0  | AGE_PORT | R/W | Select Fast Ageing Source Port. Select a specified Port ID to be aged-out. | 0x0     |

### FAST\_AGE\_VID

Register Address: SPI Page 0x00, SPI Offset 0x8a

Register Description: Fast Ageing VID Control Register

Table 41: FAST\_AGE\_VID

| Bits  | Name     | R/W | Description                                                           | Default |
|-------|----------|-----|-----------------------------------------------------------------------|---------|
| 15:12 | RESERVED | R/W | Reserved                                                              | 0x0     |
| 11:0  | AGE_VID  | R/W | Select Fast Ageing VLAN ID Select a specified VLAN ID to be aged-out. | 0x0     |

### LED\_FUNC0\_EXTD\_CTL

Register Address: SPI Page 0x00, SPI Offset 0x90

Register Description: LED Function 0 Extended Control Register

Table 42: LED\_FUNC0\_EXTD\_CTL

| Bits | Name           | R/W | Description                     | Default |
|------|----------------|-----|---------------------------------|---------|
| 15:2 | RESERVED       | R/W | Reserved                        | 0x0     |
| 1:0  | LED_FUNC0_EXTD | R/W | Bit 1:200M/ACT<br>Bit 0:SPD200M | 0x0     |

### LED\_FUNC1\_EXTD\_CTL

Register Address: SPI Page 0x00, SPI Offset 0x92

Register Description: LED Function 1 Extended Control Register

Table 43: LED\_FUNC1\_EXTD\_CTL

| Bits | Name           | R/W | Description                     | Default |
|------|----------------|-----|---------------------------------|---------|
| 15:2 | RESERVED       | R/W | Reserved                        | 0x0     |
| 1:0  | LED_FUNC1_EXTD | R/W | Bit 1:200M/ACT<br>Bit 0:SPD200M | 0x0     |

### PLL\_STS

Register Address: SPI Page 0x00, SPI Offset 0xdd

Register Description: PLL Status Register

Table 44: PLL\_STS

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 7:6  | RESERVED_1    | R/W | Reserved    | 0x0     |
| 5    | SRDS_PLL_LOCK | R/W | Reserved    | 0       |
| 4    | SOC_PLL_LOCK  | R/W | Reserved    | 0       |
| 3:0  | QPHY_PLL_LOCK | R/W | Reserved    | 0x0     |

## LOW\_POWER\_CTRL

Register Address: SPI Page 0x00, SPI Offset 0xde

Register Description: Core-Level LOW Power Control Register

Table 45: LOW\_POWER\_CTRL

| Bits | Name          | R/W | Description                                                                                                                                                                             | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:7 | RESERVED_1    | R/W | Reserved                                                                                                                                                                                | 0x0     |
| 6    | SLEEP_SYS     | R/W | Writing 1'b1 to this bit will disable switch core system clock. Switch core is put into sleep mode. Programming interfaces and SPI are still active. 1'b1: sleep mode 1'b0: normal mode | 0       |
| 5    | TIMER_DISABLE | R/W | Disable switch timers for core-level. 1'b1: disable timer 1'b0: normal mode (timer running)                                                                                             | 0       |
| 4:0  | RESERVED_0    | R/W | Reserved                                                                                                                                                                                | 0x0     |

## TCAM\_CTRL

Register Address: SPI Page 0x00, SPI Offset 0xe8

Register Description: TCAM Control Register

Table 46: TCAM\_CTRL

| Bits | Name           | R/W | Description                  | Default |
|------|----------------|-----|------------------------------|---------|
| 7    | EN_TCAM_CHKSUM | R/W | 1 = To enable TCAM checksum. | 0       |
| 6:0  | RESERVED       | R/W | Reserved                     | 0x0     |

## TCAM\_CHKSUM\_STS

Register Address: SPI Page 0x00, SPI Offset 0xea

Register Description: TCAM Checksum Status Register

Table 47: TCAM\_CHKSUM\_STS

| Bits | Name                 | R/W | Description                                                                                                                                                                                             | Default |
|------|----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | CFP_TCAM_CHKSUM_ERR  | R/W | CFP TCAM checksum error.  1 = checksum error and the error address is stored in the field  "CFP_TCAM_CHKSUM_ADDR". This error can be cleared by writing new values to the error address.  0 = no error. | 0       |
| 14:8 | RESERVED             | R/W | Reserved                                                                                                                                                                                                | 0x0     |
| 7:0  | CFP_TCAM_CHKSUM_ADDR | R/W | CFP TCAM checksum address [7:0].                                                                                                                                                                        | 0x0     |

# Page 0x01: Status Register

Table 48: Page 0x01: Status Register

| Address | Bits | Register Name                        |  |
|---------|------|--------------------------------------|--|
| 0x00    | 15:0 | "LNKSTS" on page 49                  |  |
| 0x02    | 15:0 | "LNKSTSCHG" on page 50               |  |
| 0x04    | 31:0 | "SPDSTS" on page 50                  |  |
| 0x08    | 15:0 | "DUPSTS" on page 51                  |  |
| 0x0a    | 31:0 | "PAUSESTS" on page 51                |  |
| 0x0e    | 15:0 | "SRCADRCHG" on page 52               |  |
| 0x10    | 47:0 | "LSA_PORT" on page 52                |  |
| 0x40    | 47:0 | "LSA_MII_PORT" on page 52            |  |
| 0x46    | 47:0 | "BIST_STS0" on page 53               |  |
| 0x4c    | 15:0 | "BIST_STS1" on page 53               |  |
| 0x70    | 31:0 | "STRAP_PIN_STATUS" on page 53        |  |
| 0x80    | 7:0  | "DIRECT_INPUT_CTRL_VALUE" on page 54 |  |
| 0x90    | 15:0 | "RESET_STATUS" on page 55            |  |

#### **LNKSTS**

Register Address: SPI Page 0x01, SPI Offset 0x00

Register Description: Link Status Summary Register

Table 49: LNKSTS

| Bits | Name     | R/W | Description                                                                                                                                                         | Default |
|------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED | RO  | Reserved                                                                                                                                                            | 0x0     |
| 8:0  | LNK_STS  | RO  | Link Status.  9bit field indicating the Link Status for each 10/ 100/1000 BASE-T port, (bits 0-7 = 10/100/1000 BASE-T, bit 8 IMP port). 0 = Link Fail 1 = Link Pass | 0x0     |

#### **LNKSTSCHG**

Register Address: SPI Page 0x01, SPI Offset 0x02

Register Description: Link Status Change Register

Table 50: LNKSTSCHG

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                        | Default |
|------|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED    | RO  | Reserved                                                                                                                                                                                                                                                                                                                                           | 0x0     |
| 8:0  | LNK_STS_CHG | RO  | Link Status Change.  9 bit field indicating that the Link Status for an individual 10/100/1000BASE-T port had changed since the last read operation (bits 0-23 = 10/100/1000BASE-T ports, bit 8 = IMP port).  Upon change of link status, a bit remains set until cleared by a read operation.  0 = Link Status Constant,  1 = Link Status Change. |         |

#### **SPDSTS**

Register Address: SPI Page 0x01, SPI Offset 0x04

Register Description: Port Speed Summary Register

Table 51: SPDSTS

| Bits  | Name     | R/W | Description                                                                                                                                                                                                                                                                                                      | Default |
|-------|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED | RO  | Reserved                                                                                                                                                                                                                                                                                                         | 0x0     |
| 17:0  | PORT_SPD | RO  | Port Speed.  18 bit field indicating the operating speed for each 10/100/1000BASE-T port.  Bit 17:16 = Port 8 (IMP Port)  Bit 15:14 = Port 7  Bit 11:0 = Port 5 - Port 0  (Bit[1:0] for Port 0, and Bit[11:10] for Port 5)  00 = 10 Mb/s  01 = 100 Mb/s  10 = 1000 Mb/s/2000 Mb/s (if applicable)  11 = Reserved | 0x28AAA |

#### **DUPSTS**

Register Address: SPI Page 0x01, SPI Offset 0x08

Register Description: Duplex status Summary Register

Table 52: DUPSTS

| Bits | Name     | R/W | Description                                                                                                                                                                                                    | Default |
|------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED | RO  | Reserved                                                                                                                                                                                                       | 0x0     |
| 8:0  | DUP_STS  | RO  | Duplex State.  9 bit field indicating the half/full duplex state for each 10/100/1000BASE-T port.  (bits 0-5 = 10/100/1000BASE-T ports, bit 7 = port 7, bit 8 = imp port).  0 = Half Duplex.  1 = Full Duplex. | 0x1BF   |

#### **PAUSESTS**

Register Address: SPI Page 0x01, SPI Offset 0x0a

Register Description: Pause Status Summary Register

Table 53: PAUSESTS

| Bits  | Name      | R/W | Description                                                                                                                                                                                                                                                   | Default |
|-------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED  | RO  | Reserved                                                                                                                                                                                                                                                      | 0x0     |
| 17:0  | PAUSE_STS | RO  | PAUSE State.  18 bit field indicating the PAUSE state for each 10/100/1000BASE-T port and IMP port.  Bit 8- 0 = IMP port, Port 7 - Port 0 Transmit Pause Capability  Bit 17-9 = IMP port, Port 7 - Port 0 Receive Pause Capability  0 = Disabled  1 = Enabled | 0x24120 |

#### **SRCADRCHG**

Register Address: SPI Page 0x01, SPI Offset 0x0e

Register Description: Source Address Change Register

Table 54: SRCADRCHG

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                           | Default |
|------|-----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED        | RO  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| 8:0  | SRC_ADDR_CHANGE | RO  | Source Address Change.  9 bit field indicating that the value loaded into the Last Source Address register was not the same 48-bit value as the previous value. A 1 value indicates a dedicated link segment, a value greater than 1 generally indicates a mixing (repeated) segment. Upon change of SA, a bit remains set until cleared by a read operation.  0 = Source Address Constant 1 = Source Address Changed | 0x0     |

#### LSA\_PORT

Register Address: SPI Page 0x01, SPI Offset 0x10

Register Description: Port N Last Source Address

Table 55: LSA\_PORT

| Bits | Name     | R/W | Description         | Default |
|------|----------|-----|---------------------|---------|
| 47:0 | LST_ADDR | RO  | Last Source Address | 0x0     |

## LSA\_MII\_PORT

Register Address: SPI Page 0x01, SPI Offset 0x40

Register Description: Port 8 Last Source Address

Table 56: LSA\_MII\_PORT

| Bits | Name     | R/W | Description         | Default |
|------|----------|-----|---------------------|---------|
| 47:0 | LST_ADDR | RO  | Last Source Address | 0x0     |

### **BIST\_STS0**

Register Address: SPI Page 0x01, SPI Offset 0x46

Register Description: BIST Status Register 0

Table 57: BIST\_STS0

| Bits | Name      | R/W | Description | Default |
|------|-----------|-----|-------------|---------|
| 47:0 | BIST_STS0 | RO  | Reserved    | 0x0     |

### **BIST\_STS1**

Register Address: SPI Page 0x01, SPI Offset 0x4c

Register Description: BIST Status Register 1

Table 58: BIST\_STS1

| Bits | Name      | R/W | Description | Default |
|------|-----------|-----|-------------|---------|
| 15:0 | BIST_STS1 | RO  | Reserved    | 0x0     |

#### STRAP\_PIN\_STATUS

Register Address: SPI Page 0x01, SPI Offset 0x70

Register Description: Strap Pin Status Register

Table 59: STRAP\_PIN\_STATUS

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 31:21 | RESERVED_1 | RO  | Reserved    | 0x0     |

Table 59: STRAP\_PIN\_STATUS (Cont.)

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|------|--------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 20:0 | STRAP_VALUE_VECTOR | RO  | Display Strap Pin Value The detail definition refer to the pin definition in strap_pin_list_revx_2009xxxx.xls Bit 20 = Reserved Bit 19 = Reserved Bit 18 = strap_en_EEE Bit 17 = strap_CLKREF_SEL Bit 16 = strap_pll_bypass Bit 15 = strap_xtal_bypass Bit 14 = strap_wan_vol_sel Bit 13 = strap_skip_srambist Bit 12 = strap_ledmode1 Bit 11 = strap_ledmode0 Bit 10 = strap_imp_vol_sel Bit 9 = strap_imp_mode Bit 8 = strap_hw_fwdg_en Bit 7 = strap_bist_clrmem_sel | 0x0     |
|      |                    |     | Bit 6 = strap_wan_mode Bit 5 = strap_gmii_led_sel Bit 4 = strap_en_loop_detect Bit 3 = strap_en_8051                                                                                                                                                                                                                                                                                                                                                                    |         |
|      |                    |     | Bit 2 = strap_cpu_eeprom_sel  Bit 1 = strap_clock_freq[1]  Bit 0 = strap_clock_freq[0]                                                                                                                                                                                                                                                                                                                                                                                  |         |

## DIRECT\_INPUT\_CTRL\_VALUE

Register Address: SPI Page 0x01, SPI Offset 0x80

Register Description: Direct Input Control Value Register

Table 60: DIRECT\_INPUT\_CTRL\_VALUE

| Bits | Name                        | R/W | Description                                                                                                                                                                               | Default |
|------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED                    | RO  | Reserved                                                                                                                                                                                  | 0x0     |
| 2:0  | DIRECT_INPUT_CTRL_VALU<br>E | RO  | Display Direct Input Control Value The detail definition refer to the pin definition in strap_pin_list_revx_2009xxxx.xls Bit 2 = loop_detected Bit 1 = tst_enable Bit 0 = act_loop_detect | 0x0     |

## **RESET\_STATUS**

Register Address: SPI Page 0x01, SPI Offset 0x90

Register Description: Reset Status Register

Table 61: RESET\_STATUS

| Bits  | Name            | R/W | Description                                                            | Default |
|-------|-----------------|-----|------------------------------------------------------------------------|---------|
| 15:10 | RESERVED_1      | RO  | Reserved                                                               | 0x0     |
| 9     | SW_CORE_RST_STS | RO  | Switch Core Reset Status 1'b1 indicates switch core is in reset state. | 0       |
| 8     | SW_REG_RST_STS  | RO  | Reserved                                                               | 0       |
| 7:0   | RESERVED_0      | RO  | Reserved                                                               | 0x0     |

# Page 0x02: Management/Mirroring Register

Table 62: Page 0x02: Management/Mirroring Register

| Address | Bits | Register Name               |  |
|---------|------|-----------------------------|--|
| 0x00    | 7:0  | "GMNGCFG" on page 57        |  |
| 0x01    | 7:0  | "IMP0_PRT_ID" on page 58    |  |
| 0x03    | 7:0  | "BRCM_HDR_CTRL" on page 58  |  |
| 0x06    | 31:0 | "SPTAGT" on page 58         |  |
| 0x0a    | 15:0 | "BRCM_HDR_CTRL2" on page 59 |  |
| 0x0c    | 31:0 | "IPG_SHRNK_CTRL" on page 60 |  |
| 0x10    | 15:0 | "MIRCAPCTL" on page 60      |  |
| 0x12    | 15:0 | "IGMIRCTL" on page 61       |  |
| 0x14    | 15:0 | "IGMIRDIV" on page 61       |  |
| 0x16    | 47:0 | "IGMIRMAC" on page 62       |  |
| 0x1c    | 15:0 | "EGMIRCTL" on page 62       |  |
| 0x1e    | 15:0 | "EGMIRDIV" on page 63       |  |
| 0x20    | 47:0 | "EGMIRMAC" on page 63       |  |
| 0x30    | 31:0 | "DEVICE_ID" on page 64      |  |
| 0x40    | 7:0  | "CHIP_REVID" on page 64     |  |
| 0x50    | 31:0 | "HL_PRTC_CTRL" on page 65   |  |
| 0x54    | 15:0 | "RST_MIB_CNT_EN" on page 66 |  |

#### **GMNGCFG**

Register Address: SPI Page 0x02, SPI Offset 0x00

Register Description: Global Management Configuration Register

Table 63: GMNGCFG

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:6  | FRM_MNGP    | R/W | IMP Port Enable This field enables the IMP(In-band Management Port) function under management mode.  00 = No IMP Port 01 = Reserved 10 = Enable IMP Port(IMP0) only All traffic to CPU from LAN ports and WAN ports will be forwarded to IMP0. 11 = Enable Dual-IMP ports (both IMP0 and IMP1) All traffic to CPU from LAN ports will be forwarded to IMP0; and All traffic from WAN ports will be forwarded to IMP1. These bits are ignored when SW_FWD_MODE = Unmanaged in the Switch Mode Register, and the device will behave as if there is no defined management port. In the chip, IMP0 is Port 8 and IMP1 is Port 5. When only IMP0 is enabled,(FRM_MNGT_PORT = 10), IMP0 is also called IMP port. | 0x0     |
| 5:2  | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 1    | RXBPDU_EN   | R/W | Receive BPDU Enable. Enables all ports to receive BPDUs and forward to the defined Physical Management Port. Management CPU must set this bit to globally allow BPDUs to be received.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       |
| 0    | RST_MIB_CNT | R/W | Resets all MIB counters for all ports to zero (Pages 20h-28h), also including MIB Snapshot counters (Page 71h). The host must set the bit and then clear the bit in successive write cycles to activate the reset operation. Another per port reset enable bit must be set as well (Page 02h, Offset 54h, Bits 8-0; Page 70h, Offset 0h, Bit 4)                                                                                                                                                                                                                                                                                                                                                            | 0       |

### IMP0\_PRT\_ID

Register Address: SPI Page 0x02, SPI Offset 0x01

Register Description: IMP/IMP0 Port ID Register

Table 64: IMP0\_PRT\_ID

| Bits | Name        | R/W | Description                                                                                                       | Default |
|------|-------------|-----|-------------------------------------------------------------------------------------------------------------------|---------|
| 7:4  | RESERVED    | R/W | Reserved                                                                                                          | 0x0     |
| 3:0  | IMP0_PRT_ID | R/W | IMP/IMP0 Port ID This field specifies the port ID of the IMP/IMP0 port. In the chip, IMP/IMP0 is fixed at Port 8. | 0x8     |

#### BRCM\_HDR\_CTRL

Register Address: SPI Page 0x02, SPI Offset 0x03

Register Description: BRCM Header Control Register

Table 65: BRCM\_HDR\_CTRL

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| 2:0  | BRCM_HDR_EN | R/W | Broadcom Header enable bit 2: enable BRCM header for Port7 bit 1: enable BRCM header for Port5 bit 0: enable BRCM header for Port8 1: Additional header information is inserted into the Original frame, between SA field and Type/ Length field. The tag includes the BRCM header field. 0: Without additional header information. Default value is determined by hw_fwdg_en strap pin. When hw_fwdg_en = 1, default 3'b000 When hw_fwdg_en = 0, default 3'b001 (only port-8 is enabled) | 0x1     |

#### **SPTAGT**

Register Address: SPI Page 0x02, SPI Offset 0x06

Register Description: Aging Time Control Register

Table 66: SPTAGT

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 31:21 | RESERVED | R/W | Reserved    | 0x0     |

Table 66: SPTAGT (Cont.)

| Bits | Name          | R/W | Description                                                                                                                                                                                                                                                                      | Default |
|------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 20   | AGE_CHANGE_EN | R/W | Set 1 to Change Aging Timer by AGE_TIME[19:0].                                                                                                                                                                                                                                   | 0       |
| 19:0 | AGE_TIME      | R/W | Specifies the aging time in seconds for dynamically learned address. Maximum age time is 1,048,575s. Note that while 802.1D specifies a range of values of 10 - 1,000,000 s, this register does not enforce this range. Setting the AGE_TIME to zero disables the aging process. | 0x12C   |

## BRCM\_HDR\_CTRL2

Register Address: SPI Page 0x02, SPI Offset 0x0a

Register Description: BRCM Header Control 2 Register

Table 67: BRCM\_HDR\_CTRL2

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|------|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED_1  | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x0     |
| 8:5  | RESERVED_0  | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x0     |
| 4:0  | BRCM_HDR_EN | R/W | Broadcom Header Enable Additional header information is inserted into the Original frame, between SA field and Type/ Length field. The tag includes the BRCM header field.  1: Enabled (with additional header information) 0: Disabled (without additional header information). Bit 4: enable BRCM header for Port 4 Bit 3: enable BRCM header for Port 3 Bit 2: enable BRCM header for Port 2 Bit 1: enable BRCM header for Port 1 Bit 0: enable BRCM header for Port 0 Note: The reason code in the BRCM header should be set to 0 and it is useless (invalid) in these ports. |         |

## IPG\_SHRNK\_CTRL

Register Address: SPI Page 0x02, SPI Offset 0x0c

Register Description: IPG Shrink Control Register

Table 68: IPG\_SHRNK\_CTRL

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|-------|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| 17:0  | IPG_SHKCTRL | R/W | IPG Shrink Control This field specifies the IPG for each port. IPG shrinking at Egress. 00: No IPG shrinking (default) 01: IPG shrinking of 1-byte 10: IPG shrinking of 4-byte 11: IPG shrinking of 5-byte bit[17:16] = Port 8(IMP port) bit[15:14] = Port 7 bit[13:12] = Reserved bit[11:0] = Port 5 ~ Port 0 Note: For 2G mode, only port 8 supports 1-byte or 4-byte IPG shrinking (excluding 5-byte), and port 5/7 doesn't support any IPG shrinking. | 0x0     |

#### **MIRCAPCTL**

Register Address: SPI Page 0x02, SPI Offset 0x10

Register Description: Mirror Capture Control Register

Table 69: MIRCAPCTL

| Bits | Name          | R/W | Description                                                                                                                                                                                                                  | Default |
|------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | MIR_EN        | R/W | Global enable/disable for all mirroring on this chip. When reset, mirroring is disabled. When set, mirroring is enabled according to the ingress and egress control rules, to the port designated by the MIRROR_CAPTURE_PORT |         |
| 14   | BLK_NOT_MIR   | R/W | When Enabled, all traffic to Mirror_Capture_Port will be blocked except mirror traffic.                                                                                                                                      | 0       |
| 13:6 | RESERVED_1    | R/W | Reserved                                                                                                                                                                                                                     | 0x0     |
| 5:4  | RESERVED_0    | R/W | Reserved                                                                                                                                                                                                                     | 0x0     |
| 3:0  | SMIR_CAP_PORT | R/W | Mirror Capture Port ID. Port ID which identifies the single unique port which is designated as the port to which all ingress and/or egress traffic is mirrored on this chip/system.                                          | 0x0     |

#### **IGMIRCTL**

Register Address: SPI Page 0x02, SPI Offset 0x12

Register Description: Ingress Mirror Control Register

Table 70: IGMIRCTL

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | IN_MIR_FLTR | R/W | Ingress Mirror Filter. Defines the conditions under which frames received on a port that has been selected in the IN_MRROR_MASK[10:0], will be compared in order to determine if they should be forwarded to the MIRROR_CAPTURE_PORT.  00: Mirror all ingress frames. 01: Mirror all received frames with DA = IN_MIRROR_MAC. 10: Mirror all received frames with SA = IN_MIRROR_MAC. 11: Reserved                                  | 0x0     |
| 13    | IN_DIV_EN   | R/W | Ingress Divider Enable.  Mirror every nth received frame (n = IN_MIRROR_DIV + 1) that has passed through the IN_MIRROR_FILTER.                                                                                                                                                                                                                                                                                                      | 0       |
| 12:9  | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x0     |
| 8:0   | IN_MIR_MSK  | R/W | Ingress Mirror Port Mask.  9 bit mask which selectively allows any port with its corresponding bit set, to be mirrored to the port identified by the MIRROR_CAPTURE_PORT value. Note that while multiple bits in a device may be set, severe congestion and/or frame loss may occur if excessive bandwidth from the mirrored port(s) is directed to the MIRROR_CAPTURE_PORT. Bits 0-5 = Port 0-5  Bit 7 = Port 7  Bit 8 = IMP Port. | 0x0     |

#### **IGMIRDIV**

Register Address: SPI Page 0x02, SPI Offset 0x14

Register Description: Ingress Mirror Divider Register

Table 71: IGMIRDIV

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 15:10 | RESERVED | R/W | Reserved    | 0x0     |

Table 71: IGMIRDIV (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 9:0  | IN_MIR_DIV | R/W | Ingress Mirror Divider. Receive frames that have passed the IN_MIRROR_FILTER rule can further be pruned to reduce the overall number of frames returned to the MIRROR_CAPTURE_PORT. When the IN_DIV_EN bit in the Ingress Mirror Control register is set, frames that pass the IN_MIRROR_FILTER rule are further divided by the value loaded into this register, so that only one in n frames (where n = IN_MIRROR_DIV + 1) will be mirrored. |         |

#### **IGMIRMAC**

Register Address: SPI Page 0x02, SPI Offset 0x16

Register Description: Ingress Mirror Mac Address Register

Table 72: IGMIRMAC

| Bits | Name       | R/W | Description                                                                                                                        | Default |
|------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------|---------|
| 47:0 | IN_MIR_MAC | R/W | Ingress Mirror MAC Address MAC address that will be compared against ingress frames in accordance with the IN_MIRROR_FILTER rules. | 0x0     |

#### **EGMIRCTL**

Register Address: SPI Page 0x02, SPI Offset 0x1c

Register Description: Egress Mirror Control Register

Table 73: EGMIRCTL

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|-------|--------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | OUT_MIR_FLTR | R/W | Egress Mirror Filter.  Defines the conditions under which frames transmitted on a port that has been selected in the OUT_MRROR_MASK[10:0], will be compared in order to determine if they should be forwarded to the MIRROR_CAPTURE_PORT.  00: Mirror all egress frames.  01: Mirror all transmitted frames with DA = OUT_MIROR_MAC.  10: Mirror all transmitted frames with SA = OUT_MIRROR_MAC.  11: Reserved | 0x0     |

Table 73: EGMIRCTL (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 13   | OUT_DIV_EN  | R/W | Egress Divider Enable.  Mirror every nth transmitted frame (n = OUT_MIRROR_DIV + 1) that has passed through the OUT_MIRROR_FILTER.                                                                                                                                                                                                                                                                                             | 0       |
| 12:9 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0     |
| 8:0  | OUT_MIR_MSK | R/W | Egress Mirror Port Mask.  9 bit mask which selectively allows any port with its corresponding bit set, to be mirrored to the port identified by the MIRROR_CAPTURE_PORT value. Note that while multiple bits in a device may be set, severe congestion and/or frame loss may occur if excessive bandwidth from the mirrored port(s) is directed to the MIRROR_CAPTURE_PORT. Bits 0-5 = Port0-5 Bit 7 = Port7 Bit 8 = IMP Port. | 0x0     |

#### **EGMIRDIV**

Register Address: SPI Page 0x02, SPI Offset 0x1e

Register Description: Egress Mirror Divider Register

Table 74: EGMIRDIV

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:10 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 9:0   | OUT_MIR_DIV | R/W | Egress Mirror Divider.  Transmit frames that have passed the OUT_MIRROR_FILTER rule can further be pruned to reduce the overall number of frames returned to the MIRROR_CAPTURE_PORT. When the OUT_DIV_EN bit in the Egress Mirror Control register is set, frames that pass the OUT_MIRROR_FILTER rule are further divided by the value loaded into this register, so that only cp reg_profile.dat reg_profile.dat.julia6one in n frames (where n = OUT_MIRROR_DIV + 1) will be mirrored. |         |

#### **EGMIRMAC**

Register Address: SPI Page 0x02, SPI Offset 0x20

Register Description: Egress Mirror MAC Address Register

Table 75: EGMIRMAC

| Bits | Name        | R/W | Description                                                                                                                        | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------|---------|
| 47:0 | OUT_MIR_MAC | R/W | Egress Mirror MAC Address. MAC address that will be compared against egress frames in accordance with the OUT_MIRROR_FILTER rules. | 0x0     |

## **DEVICE\_ID**

Register Address: SPI Page 0x02, SPI Offset 0x30

Register Description: Device ID

Table 76: Device ID

| Bits | Name      | R/W | Description | Default       |
|------|-----------|-----|-------------|---------------|
| 31:0 | Device ID | RO  | Device ID   | A0: 0x5035    |
|      |           |     |             | B0/B1: 0x5075 |

## CHIP\_REVID

Register Address: SPI Page 0x02, SPI Offset 0x40

Register Description: Chip Version ID Register

Table 77: CHIP\_REVID

| Bits | Name  | R/W | Description                               | Default |
|------|-------|-----|-------------------------------------------|---------|
| 7:0  | REVID | R/W | Chip Version ID.<br>Bit 3:0 – Revision ID | 0x0     |
|      |       |     | 0000 – A0                                 |         |
|      |       |     | 0001 – B0                                 |         |
|      |       |     | 0010 – B1                                 |         |
|      |       |     | 00xx – Any further revisions              |         |

## **HL\_PRTC\_CTRL**

Register Address: SPI Page 0x02, SPI Offset 0x50

Register Description: High Level Protocol Control Register

Table 78: HL\_PRTC\_CTRL

| Bits  | Name                 | R/W | Description                                                                                                                                                                                          | Default |
|-------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:19 | RESERVED_1           | R/W | Reserved                                                                                                                                                                                             | 0x0     |
| 18    | MLD_QRY_FWD_MODE     | R/W | MLD Query Message Forwarding Mode 1: MLD Query Message frames will be trapped to CPU port only. 0: MLD Query Message frames will be forwarded by L2 result and also copied to CPU.                   | 0       |
| 17    | MLD_QRY_EN           | R/W | MLD Query Message Snooping/Redirect Enable 1: Enable MLD Query Message Snooping/ Redirect. 0: Disable.                                                                                               | 0       |
| 16    | MLD_RPTDONE_FWD_MODE | R/W | MLD Report/Done Message Forwarding Mode 1: MLD Report/Done Message frames will be trapped to CPU port only. 0: MLD Report/Done Message frames will be forwarded by L2 result and also copied to CPU. | 0       |
| 15    | MLD_RPTDONE_EN       | R/W | MLD Report/Done Message Snooping/Redirect Enable 1: Enable MLD Report/Done Message Snooping/Redirect. 0: Disable.                                                                                    | 0       |
| 14    | IGMP_UKN_FWD_MODE    | R/W | IGMP Unknown Message Forwarding Mode 1: IGMP Unknown Message frames will be trapped to CPU port only. 0: IGMP Unknown Message frames will be forwarded by L2 result and also copied to CPU.          | 0       |
| 13    | IGMP_UKN_EN          | R/W | IGMP Unknown Message Snooping/Redirect Enable 1: Enable IGMP Unknown Message Snooping/Redirect. 0: Disable.                                                                                          | 0       |
| 12    | IGMP_QRY_FWD_MODE    | R/W | IGMP Query Message Forwarding Mode 1: IGMP Query Message frames will be trapped to CPU port only. 0: IGMP Query Message frames will be forwarded by L2 result and also copied to CPU.                | 0       |
| 11    | IGMP_QRY_EN          | R/W | IGMP Query Message Snooping/Redirect<br>Enable<br>1: Enable IGMP Query Message Snooping/<br>Redirect.<br>0: Disable.                                                                                 | 0       |

Table 78: HL\_PRTC\_CTRL (Cont.)

| Bits | Name                 | R/W | Description                                                                                                                                                                                                            | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 10   | IGMP_RPTLVE_FWD_MODE | R/W | IGMP Report/Leave Message Forwarding Mode<br>1: IGMP Report/Leave Message frames will be<br>trapped to CPU port only.<br>0: IGMP Report/Leave Message frames will be<br>forwarded by L2 result and also copied to CPU. | 0       |
| 9    | IGMP_RPTLVE_EN       | R/W | IGMP Report/Leave Message Snooping/<br>Redirect Enable<br>1: Enable IGMP Report/Leave Message<br>Snooping/Redirect.<br>0: Disable.                                                                                     | 0       |
| 8    | IGMP_DIP_EN          | R/W | IGMP L3 DIP Checking Enable In addition to the IP datagram with a protocol value of 2, IGMP will be classified by matching its DIP with the Class D IP address (224.0.0.0 ~ 239.255.255.255).                          | 0       |
| 7:6  | RESERVED_0           | R/W | Reserved                                                                                                                                                                                                               | 0x0     |
| 5    | ICMPv6_FWD_MODE      | R/W | ICMPv6(exclude MLD) Forwarding Mode 1: ICMPv6 frames will be trapped to CPU port only. 0: ICMPv6 frames will be forwarded by L2 result and also copied to CPU.                                                         | 0       |
| 4    | ICMPV6_EN            | R/W | ICMPv6(exclude MLD) Snooping/ Redirect Enable ICMPv6, with a next header value of 58, will be classified by IPv6 datagram.                                                                                             | 0       |
| 3    | ICMPV4_EN            | R/W | ICMPv4 Snooping Enable 1: ICMPv4 frames will be forwarded by L2 result and also copied to CPU. 0: ICMPv4 frames will be forwarded by L2 result.                                                                        | 0       |
| 2    | DHCP_EN              | R/W | DHCP Snooping Enable 1: DHCP frames will be forwarded by L2 result and also copied to CPU. 0: DHCP frames will be forwarded by L2 result.                                                                              | 0       |
| 1    | RARP_EN              | R/W | RARP Snooping Enable 1: RARP frames will be forwarded by L2 result and also copied to CPU. 0: RARP frames will be forwarded by L2 result.                                                                              | 0       |
| 0    | ARP_EN               | R/W | ARP Snooping Enable 1: ARP frames will be forwarded by L2 result and also copied to CPU. 0: ARP frames will be forwarded by L2 result.                                                                                 | 0       |

## RST\_MIB\_CNT\_EN

Register Address: SPI Page 0x02, SPI Offset 0x54

Register Description: Reset MIB Counter Enable Register

Table 79: RST\_MIB\_CNT\_EN

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                  | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                                                                     | 0x0     |
| 8:0  | RST_MIB_CNT_EN | R/W | Use the enable port map to determine whether or not reset the port based MIB counters at page 0x20-0x28. When the bit of port is set and RST_MIB_CNT (page 0x2, offset 0x0, bit 0) is triggered, the port based MIB counters would be reset to 0.  Bit 0-5: Port 0-5  Bit 7: Port 7  Bit 8: Port 8(IMP port) |         |

# Page 0x03: Interrupt Control Register

Table 80: Page 0x03: Interrupt Control Register

| Address | Bits | Register Name                       |  |
|---------|------|-------------------------------------|--|
| 0x00    | 31:0 | "INT_STS" on page 69                |  |
| 0x08    | 31:0 | "INT_EN" on page 70                 |  |
| 0x10    | 15:0 | "IMP_SLEEP_TIMER" on page 71        |  |
| 0x14    | 15:0 | "WAN_SLEEP_TIMER" on page 71        |  |
| 0x18    | 7:0  | "PORT_SLEEP_STS" on page 71         |  |
| 0x20    | 31:0 | "INT_TRIGGER" on page 72            |  |
| 0x24    | 15:0 | "LINK_STS_INT_EN" on page 73        |  |
| 0x28    | 15:0 | "ENG_DET_INT_EN" on page 73         |  |
| 0x2a    | 15:0 | "LPI_STS_CHG_INT_EN" on page 74     |  |
| 0x40    | 7:0  | "CPU_RESOURCE_ARBITER" on page 74   |  |
| 0x50    | 63:0 | "CPU_DATA_SHARE" on page 74         |  |
| 0x58    | 63:0 | "CPU_DATA_SHARE_1" on page 75       |  |
| 0x80    | 31:0 | "PPPOE_SESSION_PARSE_EN" on page 75 |  |

## INT\_STS

Register Address: SPI Page 0x03, SPI Offset 0x00

Register Description: External Host Raw Interrupt Status Register

Table 81: INT\_STS

| Bits | Name    | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | INT_STS | R/W | Interrupt Status Register. This register contains the raw interrupt status bits. Only those active interrupt status bits which are enabled in page 03h, addr 04h will generate the interrupt to the host. The status bits with interrupt disabled won't generate the interrupt. CPU write a "1" to the interrupt status register to clear the corresponding interrupt status bit. Bit 31:25 - Reserved Bit 24:16 - linkStatusChangeInterrupt[8:0]. 9 bit field indicating that the its link status has changed. (enable by page: 0x03, Offset: 0x24-0x25 linkStatusChangeInterrupt Enable register or by page: 0x03, Offset: 0x28-0x29 Energy detection Interrupt Enable register) -Bit 20:16 = port 4 - port 0 -Bit 24:21 = Reserved Bit 15 - LPI Status Change Interrupt Bits 14:9 - Reserved Bit 8 - arbiter GNT interrupt 1 bit field indicating resource arbiter grant interrupt when catch the rising edge of the external CPU GNT signal. Bit 7 - Internal Memory 2-bit Error Detection Interrupt Bit 6 - Port 7 Sleep Timer Interrupt Bit 5 - ReservedBit 4 - Time Sync(1588) interrupt Bit 5 - ReservedBit 4 - Time Sync(1588) interrupt Bit 3 - Internal CPU to External Host Mailbox Doorbell Interrupt 1 bit field indicating internal CPU trigger an interrupt to external CPU. Bit 1:0 - impSleepTimerRunningInterrupt[1:0] 2 bit field indicating which of the timers has been triggeredBit 1 = IMP1 Port (WAN / Port 5) -Bit 0 = IMP0 Port (Port 8) | t       |

## INT\_EN

Register Address: SPI Page 0x03, SPI Offset 0x08

Register Description: External Host Interrupt Enable Register

Table 82: INT\_EN

| Bits | Name   | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | INT_EN | R/W | Interrupt Enable Register.  To control individual interrupt enable bits for each interrupt type  1 = enable  0 = disable  Bit 31:25 - Reserved  Bit 24:16 - linkStatusChangeEnable[8:0].  9 bit field indicating that the link status change interrupt is enable or not.  -Bit 20:16 = port 4 - port 0  -Bit 24:21 = Reserved  Bit 15 - LPI Status Change Interrupt Enable  Bits 14:9 - Reserved  Bit 8 - arbiter GNT interrupt  1 bit field indicating arbiter grant interrupt is enable or not.  Bits 7 - Internal Memory 2-bit Error Detection Interrupt Enable  Bit 6 - Port 7 Sleep Timer Interrupt Enable  Bit 5 - ReservedBit 4 - Time Sync(1588) interrupt enable  Bit 3 - Internal CPU to External Host Mailbox Doorbell Interrupt  Bit 2 - Internal CPU to External Host Semaphore Interrupt  1 bit field indicating internal CPU trigger an interrupt to external CPU is enable or not.  Bit 1:0 - impSleepTimerRunningEnable[1:0]  2 bit field indicating that IMP sleep interrupt is enable or not.  -Bit 1 = IMP1 Port (WAN / Port 5)  -Bit 0 = IMP0 Port (Port 8) |         |

### IMP\_SLEEP\_TIMER

Register Address: SPI Page 0x03, SPI Offset 0x10

Register Description: IMP Port (port 8) Sleep Timer Register

Table 83: IMP\_SLEEP\_TIMER

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                   | Default |
|-------|-----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED        | R/W | Reserved                                                                                                                                                                                                                                                                                      | 0x0     |
| 12:0  | IMP_SLEEP_TIMER | R/W | IMP Sleep Timer. The configuration value of IMP port (port 8) sleep timer to indicate the desired sleep recovery time(i.e. wake-up time). When the timer is set by the CPU to a non-zero value. it puts the IMP port to sleep. The wake-up time is the set value decrease 1. The unit is 1 us |         |

## WAN\_SLEEP\_TIMER

Register Address: SPI Page 0x03, SPI Offset 0x14

Register Description: WAN Port Sleep Timer Register

Table 84: WAN\_SLEEP\_TIMER

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED        | R/W | Reserved                                                                                                                                                                                                                                                                                         | 0x0     |
| 12:0  | WAN_SLEEP_TIMER | R/W | WAN Sleep Timer. The configuration value of port 5 sleep timer to indicate the desired sleep recovery time(i.e. wake-up time). When the timer is set by the CPU to a non-zero value. it puts the corresponding WAN port to sleep. The wake-up time is the set value decrease 1. The unit is 1 us |         |

### PORT\_SLEEP\_STS

Register Address: SPI Page 0x03, SPI Offset 0x18

Register Description: Port Sleep Status Register

Table 85: PORT\_SLEEP\_STS

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 7:3  | RESERVED | R/W | Reserved    | 0x0     |

Table 85: PORT\_SLEEP\_STS (Cont.)

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                           | Default |
|------|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2    | PORT7_SLEEP_STS    | R/W | Port 7 Sleep Status.  0 = port 7 is not in IMP_Sleep mode whenever either reset or the counter of port 7 Sleep Timer is equal to zero.(Note: the port is in IMP_SLEEP INIT state)  1 = port7 is in IMP_Sleep mode when the counter of port 7 Sleep Timer is not equal to zero.(Note: the port is not in IMP_SLEEP INIT state)         | 0       |
| 1    | WAN_PORT_SLEEP_STS | R/W | WAN Port(port5) Sleep Status.  0 = WAN port is not in IMP_Sleep mode whenever either reset or the counter of WAN SLEEP Timer is equal to zero.(Note: the port is in IMP_SLEEP INIT state)  1 = WAN port is in IMP_Sleep mode when the counter of WAN Sleep Timer is not equal to zero.(Note: the port is not in IMP_SLEEP INIT state) | 0       |
| 0    | IMP_PORT_SLEEP_STS | R/W | IMP Port(port8) Sleep Status.  0 = IMP port is not in IMP_Sleep mode whenever either reset or the counter of IMP SLEEP Timer is equal to zero.(Note: the port is in IMP_SLEEP INIT state)  1 = IMP port is in IMP_Sleep mode when the counter of IMP Sleep Timer is not equal to zero.(Note: the port is not in IMP_SLEEP INIT state) | 0       |

## INT\_TRIGGER

Register Address: SPI Page 0x03, SPI Offset 0x20

Register Description: Interrupt Trigger Register

Table 86: INT\_TRIGGER

| Bits | Name             | R/W | Description                                                                                                                                                         | Default |
|------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:3 | RESERVED         | R/W | Reserved                                                                                                                                                            | 0x0     |
| 2    | INT_CPU_DOORBELL | R/W | INT CPU to EXT CPU Mailbox doorbell interrup When the bit is set to 1, internal CPU trigger an interrupt to external CPU for Mailbox doorbell. Hardware self-clear. |         |
| 1    | EXT_CPU_DOORBELL | R/W | EXT CPU to INT CPU Mailbox doorbell interrupt When the bit is set to 1, external CPU trigger a interrupt to internal CPU for Mailbox doorbell. Hardware self-clear. |         |

Table 86: INT\_TRIGGER (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                     | Default |
|------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0    | EXT_CPU_INT | R/W | external-to-internal CPU Semaphore interrupt. When the bit is set to 1, external CPU trigger an interrupt to internal CPU. Hardware self-clear. |         |

#### LINK\_STS\_INT\_EN

Register Address: SPI Page 0x03, SPI Offset 0x24

Register Description: Link Status Interrupt Enable Register

Table 87: LINK\_STS\_INT\_EN

| Bits | Name            | R/W | Description                                                                                                | Default |
|------|-----------------|-----|------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED        | R/W | Reserved                                                                                                   | 0x0     |
| 8:0  | LINK_STS_INT_EN | R/W | It is used to gate link status interrupt<br>set "1" to enable interrupt<br>Bit 0 map to port 0 link status | 0x1FF   |
|      |                 |     | Bit 8 map to port 8 link status                                                                            |         |

### ENG\_DET\_INT\_EN

Register Address: SPI Page 0x03, SPI Offset 0x28

Register Description: Energy Detection Interrupt Enable Register

Table 88: ENG\_DET\_INT\_EN

| Bits | Name           | R/W | Description                                                                                                              | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED_1     | R/W | Reserved                                                                                                                 | 0x0     |
| 8:5  | RESERVED_0     | R/W | Reserved                                                                                                                 | 0x0     |
| 4:0  | ENG_DET_INT_EN | R/W | It is used to gate energy detect status interrupt<br>set "1" to enable interrupt<br>Bit 0 map to port 0 Energy detection | 0x0     |
|      |                |     | Bit 4 map to port 4 Energy detection                                                                                     |         |

### LPI\_STS\_CHG\_INT\_EN

Register Address: SPI Page 0x03, SPI Offset 0x2a

Register Description: LPI Status Change Interrupt Enable Register

Table 89: LPI\_STS\_CHG\_INT\_EN

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                        | Default |
|------|--------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED           | R/W | Reserved                                                                                                                                                                                                                                                                                           | 0x0     |
| 8:0  | LPI_STS_CHG_INT_EN | R/W | It is used to gate LPI Status Change Interrupt. LPI Status Change Interrupt is only used to inform internal CPU that at least one of the ports has LPI status change. 1: Enable Interrupt. 0: Disable Interrupt. Bit [0:5]: Port 0 - Port 5 Bit 6: Reserved Bit 7: Port 7 Bit 8: Port 8 (IMP port) | 0x1FF   |

### CPU\_RESOURCE\_ARBITER

Register Address: SPI Page 0x03, SPI Offset 0x40

Register Description: CPU Resource Arbiter Register

Table 90: CPU\_RESOURCE\_ARBITER

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:2  | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                 | 0x0     |
| 1    | EXT_CPU_REQ | R/W | REQ signal for external CPU. When CPU need to access critical section, it asserts REQ signal for arbitration. When granted by arbiter, the GNT signal will be asserted to inform the requester. The requester keeps asserting the REQ signal to lock the arbiter. When done, the requester deasserts REQ to give chance to the other requester.  1 = Assert 0 = Deassert | 0       |
| 0    | EXT_CPU_GNT | R/W | GNT signal for external CPU. 1 = Granted by arbiter.                                                                                                                                                                                                                                                                                                                     | 0       |

### CPU\_DATA\_SHARE

Register Address: SPI Page 0x03, SPI Offset 0x50

Register Description: CPU Data Share Register

Table 91: CPU\_DATA\_SHARE

| Bits | Name           | R/W | Description                                         | Default |
|------|----------------|-----|-----------------------------------------------------|---------|
| 63:0 | CPU_DATA_SHARE | R/W | Data to be shared by internal CPU and external CPU. | 0x0     |

### CPU\_DATA\_SHARE\_1

Register Address: SPI Page 0x03, SPI Offset 0x58

Register Description: CPU Data Share 1 Register

Table 92: CPU\_DATA\_SHARE\_1

| Bits | Name           | R/W | Description                                         | Default |
|------|----------------|-----|-----------------------------------------------------|---------|
| 63:0 | CPU_DATA_SHARE | R/W | Data to be shared by internal CPU and external CPU. | 0x0     |

#### PPPOE\_SESSION\_PARSE\_EN

Register Address: SPI Page 0x03, SPI Offset 0x80

Register Description: PPPoE Session Packet Parsing Enable Register

Table 93: PPPOE\_SESSION\_PARSE\_EN

| Bits  | Name                       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-------|----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED                   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 24:16 | PPPOE_SESSION_PARSE_E<br>N | R/W | This configuration bit can be set by software to enable parsing of PPPOE Session stage packets from each ingress port.  1: Enable parsing of PPPOE Session Stage version 1 and type 1 packets  0: Disable parsing of PPPOE Session Stage version 1 and type 1 packets (legacy)  Bit[24]: Port 8 (IMP Port)  Bit[23]: Port 7  Bit[22]: Reserved  Bit[21:16]: Port 5 - Port 0 | 0x0     |
| 15:0  | PPPOE_SESSION_ETYPE        | R/W | This EtherType value is used by the parser to identify a PPPOE Session stage packet with 0, 1, or 2 VLAN headers and IPV4/IPV6 PPP payload. The field is used only when hardware parsing of PPPOE Session packets is enabled.                                                                                                                                               | 0x8864  |

# Page 0x04: ARL Control Register

Table 94: Page 0x04: ARL Control Register

| Address | Bits | Register Name                  |
|---------|------|--------------------------------|
| 0x00    | 7:0  | "GARLCFG" on page 76           |
| 0x04    | 47:0 | "BPDU_MCADDR" on page 77       |
| 0x0e    | 15:0 | "MULTI_PORT_CTL" on page 77    |
| 0x10    | 63:0 | "MULTIPORT_ADDR0" on page 78   |
| 0x18    | 31:0 | "MPORTVEC0" on page 79         |
| 0x20    | 63:0 | "MULTIPORT_ADDR1" on page 79   |
| 0x28    | 31:0 | "MPORTVEC1" on page 80         |
| 0x30    | 63:0 | "MULTIPORT_ADDR2" on page 80   |
| 0x38    | 31:0 | "MPORTVEC2" on page 81         |
| 0x40    | 63:0 | "MULTIPORT_ADDR3" on page 81   |
| 0x48    | 31:0 | "MPORTVEC3" on page 82         |
| 0x50    | 63:0 | "MULTIPORT_ADDR4" on page 82   |
| 0x58    | 31:0 | "MPORTVEC4" on page 83         |
| 0x60    | 63:0 | "MULTIPORT_ADDR5" on page 83   |
| 0x68    | 31:0 | "MPORTVEC5" on page 84         |
| 0x70    | 31:0 | "ARL_BIN_FULL_CNTR" on page 84 |
| 0x74    | 15:0 | "ARL_BIN_FULL_FWD" on page 85  |

#### **GARLCFG**

Register Address: SPI Page 0x04, SPI Offset 0x00

Register Description: Global ARL Configuration Register

Table 95: GARLCFG

| Bits | Name         | R/W | Description                                                                                                                                                                                    | Default |
|------|--------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:3  | RESERVED_1   | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 2    | AGE_ACC      | R/W | Age Accelerate, test only. 1: Accelerate 109 times for age process. 0: Keep original age process.                                                                                              | 0       |
| 1    | RESERVED_0   | R/W | Reserved                                                                                                                                                                                       | 1       |
| 0    | HASH_DISABLE | R/W | Disable The hash function for the ARL such that entries are direct mapped to the table. The hash function is enabled as the default for the chip ARL, but can be disabled by setting this bit. |         |

### BPDU\_MCADDR

Register Address: SPI Page 0x04, SPI Offset 0x04

Register Description: BPDU Multicast Address Register

Table 96: BPDU\_MCADDR

| Bits | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 47:0 | BPDU_MC_ADDR | R/W | BPDU Multicast Address 1. Reset Value: 0x180c2000000 (not release to customer). Defaults to the 802.1 defined reserved multicast address for the Bridge Group #Address. Programming to an alternate value allows support of proprietary #protocols in place of the normal Spanning Tree Protocol. Frames with a matching #DA to this address will be forwarded only to the designated management port #(IMP). |         |

#### MULTI\_PORT\_CTL

Register Address: SPI Page 0x04, SPI Offset 0x0e

Register Description: Multiport Control Register

Table 97: MULTI\_PORT\_CTL

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                            | Default |
|-------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15    | MPORT0_TS_EN    | R/W | Mport 0 Time Sync Enable 1: Packet will be time stamped if forwarded to CPU. MPORT_VECTOR0 should be programed to CPU only if the bit is set 0: Packet will not be time-stamped                                                                                                                        | 0       |
| 14    | MPORT_DA_HIT_EN | R/W | Reserved                                                                                                                                                                                                                                                                                               | 0       |
| 13:12 | RESERVED        | R/W | Reserved                                                                                                                                                                                                                                                                                               | 0x0     |
| 11:10 | MPORT_CTRL5     | R/W | Multiport 5 Control. 2'b00: Disable Multiport 5 Forward 2'b10: Compare MPORT_ADD5 only, Forward based on MPORT_Vector 5 if matched 2'b01: Compare MPORT_ETYPE5 only, Forward based on MPORT_Vector 5 if matched 2'b11: Compare MPORT_ETYPE5 and MPORT_ADD5, Forward based on MPORT_Vector 5 if matched | 0x0     |

Table 97: MULTI\_PORT\_CTL (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                            | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 9:8  | MPORT_CTRL4 | R/W | Multiport 4 Control. 2'b00: Disable Multiport 4 Forward 2'b10: Compare MPORT_ADD4 only, Forward based on MPORT_Vector 4 if matched 2'b01: Compare MPORT_ETYPE4 only, Forward based on MPORT_Vector 4 if matched 2'b11: Compare MPORT_ETYPE4 and MPORT_ADD4, Forward based on MPORT_Vector 4 if matched | 0x0     |
| 7:6  | MPORT_CTRL3 | R/W | Multiport 3 Control. 2'b00: Disable Multiport 3 Forward 2'b10: Compare MPORT_ADD3 only, Forward based on MPORT_Vector 3 if matched 2'b01: Compare MPORT_ETYPE3 only, Forward based on MPORT_Vector 3 if matched 2'b11: Compare MPORT_ETYPE3 and MPORT_ADD3, Forward based on MPORT_Vector 3 if matched | 0x0     |
| 5:4  | MPORT_CTRL2 | R/W | Multiport 2 Control. 2'b00: Disable Multiport 2 Forward 2'b10: Compare MPORT_ADD2 only, Forward based on MPORT_Vector 2 if matched 2'b01: Compare MPORT_ETYPE2 only, Forward based on MPORT_Vector 2 if matched 2'b11: Compare MPORT_ETYPE2 and MPORT_ADD2, Forward based on MPORT_Vector 2 if matched | 0x0     |
| 3:2  | MPORT_CTRL1 | R/W | Multiport 1 Control. 2'b00: Disable Multiport 1 Forward 2'b10: Compare MPORT_ADD1 only, Forward based on MPORT_Vector 1 if matched 2'b01: Compare MPORT_ETYPE1 only, Forward based on MPORT_Vector 1 if matched 2'b11: Compare MPORT_ETYPE1 and MPORT_ADD1, Forward based on MPORT_Vector 1 if matched | 0x0     |
| 1:0  | MPORT_CTRL0 | R/W | Multiport 0 Control. 2'b00: Disable Multiport 0 Forward 2'b10: Compare MPORT_ADD0 only, Forward based on MPORT_Vector 0 if matched 2'b01: Compare MPORT_ETYPE0 only, Forward based on MPORT_Vector 0 if matched 2'b11: Compare MPORT_ETYPE0 and MPORT_ADD0, Forward based on MPORT_Vector 0 if matched | 0x0     |

## MULTIPORT\_ADDR0

Register Address: SPI Page 0x04, SPI Offset 0x10

Register Description: Multiport Address 0 Register (Default for TS)

Table 98: MULTIPORT\_ADDR0

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 0 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 0 register. Must be enabled using the MPORT_CTRL0 bit in the MultiPort Control register. |         |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 0. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 0 register.                                                                                                       | 0x0     |

#### **MPORTVECO**

Register Address: SPI Page 0x04, SPI Offset 0x18

Register Description: Multiport Vector 0 Register

Table 99: MPORTVEC0

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                          | Default |
|------|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                             | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 0. A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 0 register will be forwarded to each port with a bit set in the Multiport Vector 0 bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8 (IMP). | 0x0     |

### MULTIPORT\_ADDR1

Register Address: SPI Page 0x04, SPI Offset 0x20

Register Description: Multiport Address 1 Register

Table 100: MULTIPORT\_ADDR1

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 1 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 1 register. Must be enabled using the MPORT_CTRL1 bit in the MultiPort Control register. |         |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 1. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 1 register.                                                                                                       | 0x0     |

#### **MPORTVEC1**

Register Address: SPI Page 0x04, SPI Offset 0x28

Register Description: Multiport Vector 1 Register

Table 101: MPORTVEC1

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                       | Default |
|------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                          | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 1 A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 1 register will be forwarded to each port with a bit set in the Multiport Vector 1 bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8(IMP) | 0x0     |

### MULTIPORT\_ADDR2

Register Address: SPI Page 0x04, SPI Offset 0x30

Register Description: Multiport Address 2 Register

Table 102: MULTIPORT\_ADDR2

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 2 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 2 register. Must be enabled using the MPORT_CTRL2 bit in the MultiPort Control register. |         |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 2. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 2 register.                                                                                                       | 0x0     |

#### **MPORTVEC2**

Register Address: SPI Page 0x04, SPI Offset 0x38

Register Description: Multiport Vector 2 Register

Table 103: MPORTVEC2

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                      | Default |
|------|-----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                         | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 2. A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 2 register will be forwarded t each port with a bit set in the Multiport Vector bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8(IMP). | o       |

### MULTIPORT\_ADDR3

Register Address: SPI Page 0x04, SPI Offset 0x40

Register Description: Multiport Address 3 Register

#### Table 104: MULTIPORT\_ADDR3

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 3 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 3 register. Must be enabled using the MPORT_CTRL3 bit in the MultiPort Control register. | 0x0     |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 3. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 3 register.                                                                                                       | 0x0     |

#### **MPORTVEC3**

Register Address: SPI Page 0x04, SPI Offset 0x48

Register Description: Multiport Vector 3 Register

Table 105: MPORTVEC3

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                            | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 3. A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 3 register will be forwarded to each port with a bit set in the Multiport Vector 3 bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8(IMP). |         |

### MULTIPORT\_ADDR4

Register Address: SPI Page 0x04, SPI Offset 0x50

Register Description: Multiport Address 4 Register

Table 106: MULTIPORT\_ADDR4

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 4 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 4 register. Must be enabled using the MPORT_CTRL4 bit in the MultiPort Control register. | 0x0     |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 4. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 4 register.                                                                                                       | 0x0     |

#### **MPORTVEC4**

Register Address: SPI Page 0x04, SPI Offset 0x58

Register Description: Multiport Vector 4 Register

Table 107: MPORTVEC4

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                            | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 4. A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 4 register will be forwarded to each port with a bit set in the Multiport Vector 4 bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8(IMP). | 0x0     |

### MULTIPORT\_ADDR5

Register Address: SPI Page 0x04, SPI Offset 0x60

Register Description: Multiport Address 5 Register

#### Table 108: MULTIPORT\_ADDR5

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:48 | MPORT_E_TYPE | R/W | Multiport Ethernet Type 5 Allows a frames with a matching MPORT_E_TYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 5 register. Must be enabled using the MPORT_CTRL5 bit in the MultiPort Control register. |         |
| 47:0  | MPORT_ADDR   | R/W | Multiport Address 5. Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector 5 register.                                                                                                       | 0x0     |

#### **MPORTVEC5**

Register Address: SPI Page 0x04, SPI Offset 0x68

Register Description: Multiport Vector 5 Register

Table 109: MPORTVEC5

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                            | 0x0     |
| 8:0  | PORT_VCTR | R/W | Multiport Vector 5. A bit mask corresponding to the physical ports on the chip. A frame with a DA matching the content of the Multiport Address 5 register will be forwarded to each port with a bit set in the Multiport Vector 5 bit map. Bits 0-5: Port 0-5. Bit 6: reserved. Bit 7: Port 7. Bit 8: Port 8(IMP). |         |

### ARL\_BIN\_FULL\_CNTR

Register Address: SPI Page 0x04, SPI Offset 0x70

Register Description: ARL Bin Full Counter Register

Table 110: ARL\_BIN\_FULL\_CNTR

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                | Default |
|------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | ARL_BIN_FUL_CNTR | R/W | ARL Bin Full Counter When there is no room to insert this SA into the ARL entry in current SA learning stage, this counter will increase one to indicate. At the same time, whether this packet is copied to the IMP port with reason code "SA_Learning" depend on the ARL_BIN_FULL_FWD_EN is enabled or not This counter is shared for all ingress ports. |         |

## ARL\_BIN\_FULL\_FWD

Register Address: SPI Page 0x04, SPI Offset 0x74

Register Description: ARL Bin Full Forward Enable Register

Table 111: ARL\_BIN\_FULL\_FWD

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                                                                   | Default |
|------|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:1 | Reserved            | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 0    | ARL_BIN_FULL_FWD_EN | R/W | ARL Bin Full Forward Enable 0: Disable When there is no room to insert this SA into the ARL entry in current SA learning stage, this packet will not be copied to the IMP port. 1: Enable When there is no room to insert this SA into the ARL entry in current SA learning stage, this packet will be copied to the IMP port with reason code "SA_Learning". |         |

# Page 0x05: ARL/VTABLE Access Register

Table 112: Page 0x05: ARL/VTABLE Access Register

| Address | Bits | Register Name                        |
|---------|------|--------------------------------------|
| 0x00    | 7:0  | "ARLA_RWCTL" on page 87              |
| 0x02    | 47:0 | "ARLA_MAC" on page 87                |
| 0x08    | 15:0 | "ARLA_VID" on page 88                |
| 0x10    | 63:0 | "ARLA_MACVID_ENTRY0" on page 88      |
| 0x18    | 31:0 | "ARLA_FWD_ENTRY0" on page 89         |
| 0x20    | 63:0 | "ARLA_MACVID_ENTRY1" on page 90      |
| 0x28    | 31:0 | "ARLA_FWD_ENTRY1" on page 91         |
| 0x30    | 63:0 | "ARLA_MACVID_ENTRY2" on page 92      |
| 0x38    | 31:0 | "ARLA_FWD_ENTRY2" on page 93         |
| 0x40    | 63:0 | "ARLA_MACVID_ENTRY3" on page 94      |
| 0x48    | 31:0 | "ARLA_FWD_ENTRY3" on page 95         |
| 0x50    | 7:0  | "ARLA_SRCH_CTL" on page 96           |
| 0x51    | 15:0 | "ARLA_SRCH_ADR" on page 97           |
| 0x60    | 63:0 | "ARLA_SRCH_RSLT_0_MACVID" on page 97 |
| 0x68    | 31:0 | "ARLA_SRCH_RSLT_0" on page 98        |
| 0x70    | 63:0 | "ARLA_SRCH_RSLT_1_MACVID" on page 99 |
| 0x78    | 31:0 | "ARLA_SRCH_RSLT_1" on page 100       |
| 0x80    | 7:0  | "ARLA_VTBL_RWCTRL" on page 101       |
| 0x81    | 15:0 | "ARLA_VTBL_ADDR" on page 101         |
| 0x83    | 31:0 | "ARLA_VTBL_ENTRY" on page 102        |

### ARLA\_RWCTL

Register Address: SPI Page 0x05, SPI Offset 0x00

Register Description: ARL Read/Write Control Register

Table 113: ARLA\_RWCTL

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | ARL_STRTDN     | R/W | Start/Done Command. Write as 1 to initiate a read or write command, after first loading the MAC_ADDR_INDX register with the MAC address for which the ARL entry is to be read or written. The chip will reset the bit to indicate a write operation completed, or a read operation has completed and data from the bin entry is available in ARL Entry 0/1 Note that both ARL Entry 0 and 1 are both always read/written by the chip when accessing the address table locations in memory. |         |
| 6    | IVL_SVL_SELECT | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0       |
| 5:1  | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 0    | ARL_RW         | R/W | ARL Read/Write. 1 = Read, 0 = Write.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       |

### ARLA\_MAC

Register Address: SPI Page 0x05, SPI Offset 0x02

Register Description: MAC Address Index Register

Table 114: ARLA\_MAC

| Bits | Name          | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 47:0 | MAC_ADDR_INDX | R/W | MAC Address Index. The MAC address for which status is to be read or written. By writing the 48 bit SA or DA address, and initiating a read command, the complete ARL bin location is returned in the ARL Entry 0/1/2/3 locations. These entries are 64 bits wide. Initiating a write command will write the contents of ARL Entry 0/1/2/3 to the specified bin location (4 entries deep) and will overwrite the current contents of the bin, regardless of the status of the Valid bit(s) in each entry. |         |

### ARLA\_VID

Register Address: SPI Page 0x05, SPI Offset 0x08

Register Description: VID Index Register

Table 115: ARLA\_VID

| Bits  | Name              | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|-------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | ARLA_VIDTAB_RSRV0 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x0     |
| 11:0  | ARLA_VIDTAB_INDX  | R/W | VID Index. The MAC address for which status is to be read or written. By writing the 48 bit SA or DA address upon MAC Address Index, upon 12 bit VID Index Register if 802.1Q is enabled, and initiating a read command, the complete ARL bin location is returned in the ARL Entry 0 locations and VID Entry0. Both ARL entries are 64 bits wide. Both VID entries are 12 bits wide. Initiating a write command will write the contents of ARL Entry 0/1 and VID Entry 0/1 to the specified bin location and will overwrite the current contents of the bin, regardless of the status of the Valid bit(s) in each entry. Note: When software need to access the ARL entries in global SVL mode (Page 0x34, Address 0x00) or per port SVL mode (Page 0x34, Address 0x52-0x53), the VID index should be programmed to 0. | ,       |

## ARLA\_MACVID\_ENTRY0

Register Address: SPI Page 0x05, SPI Offset 0x10

Register Description: ARL MAC/VID Entry 0 Register

Table 116: ARLA\_MACVID\_ENTRY0

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:60 | RESERVED | R/W | Reserved    | 0x0     |

Table 116: ARLA\_MACVID\_ENTRY0 (Cont.)

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 59:48 | VID         | R/W | VID0. The VID0 register is used to write VID field of ARL table, or to read VID field of ARL table entry ARL FWD Entry 0 Register and MAC/VID Entry 0 Register compose a complete Entry in ARL Table while 802.1Q enabled Note: When the global SVL mode (Page 0x34, Address 0x00) or per port SVLmode (Page 0x34, Address 0x52-0x53) is selected and ARL_RW is "Write" in ARL Read/Write Control Register, the VID0 should be programmed to 0. |         |
| 47:0  | ARL_MACADDR | R/W | MAC Address 0.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |

### ARLA\_FWD\_ENTRY0

Register Address: SPI Page 0x05, SPI Offset 0x18

Register Description: ARL FWD Entry 0 Register

Table 117: ARLA\_FWD\_ENTRY0

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 16    | ARL_VALID  | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR0 field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static. |         |
| 15    | ARL_STATIC | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                          | 0       |

Table 117: ARLA\_FWD\_ENTRY0 (Cont.)

| Bits  | Name    | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14    | ARL_AGE | R/W | Aging Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                                                      |         |
| 13:11 | ARL_PRI | R/W | Priority Bit for DA MAC based QoS                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:9  | ARL_CON | R/W | ARL MODE  00: Forward according to FWD_MAP only.  01: Drop if the entry is matched as a destination.  10: Drop if the entry is matched as a source.  11: Copy to CPU, in addition to forwarding according to FWD_MAP.  01,10 and 11 can only be used when the entry is Static.                                                                                                                                                                                       | 0x0     |
| 8:0   | PORTID  | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_MACVID\_ENTRY1

Register Address: SPI Page 0x05, SPI Offset 0x20

Register Description: ARL MAC/VID Entry 1 Register

Table 118: ARLA\_MACVID\_ENTRY1

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:60 | RESERVED | R/W | Reserved    | 0x0     |

Table 118: ARLA\_MACVID\_ENTRY1 (Cont.)

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 59:48 | VID         | R/W | VID1. The VID1 register is used to write VID field of ARL table, or to read VID field of ARL table entry ARL FWD Entry 1 Register and MAC/VID Entry 1 Register compose a complete Entry in ARL Table while 802.1Q enabled Note: When the global SVL mode (Page 0x34, Address 0x00) or per port SVL mode (Page 0x34, Address 0x52-0x53) is selected and ARL_RW is "Write" in ARL Read/Write Control Register, the VID1 should be programmed to 0. |         |
| 47:0  | ARL_MACADDR | R/W | MAC Address 1.                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |

### ARLA\_FWD\_ENTRY1

Register Address: SPI Page 0x05, SPI Offset 0x28

Register Description: ARL FWD Entry 1 Register

Table 119: ARLA\_FWD\_ENTRY1

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 16    | ARL_VALID  | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR1 field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static. |         |
| 15    | ARL_STATIC | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                          | 0       |

Table 119: ARLA\_FWD\_ENTRY1 (Cont.)

| Bits  | Name    | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14    | ARL_AGE | R/W | Aging Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                                                      |         |
| 13:11 | ARL_PRI | R/W | Priority Bit for DA MAC based QoS                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:9  | ARL_CON | R/W | ARL MODE  00: Forward according to FWD_MAP only.  01: Drop if the entry is matched as a destination.  10: Drop if the entry is matched as a source.  11: Copy to CPU, in addition to forwarding according to FWD_MAP.  01,10 and 11 can only be used when the entry is Static.                                                                                                                                                                                       | 0x0     |
| 8:0   | PORTID  | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_MACVID\_ENTRY2

Register Address: SPI Page 0x05, SPI Offset 0x30

Register Description: ARL MAC/VID Entry 2 Register

Table 120: ARLA\_MACVID\_ENTRY2

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:60 | RESERVED | R/W | Reserved    | 0x0     |

Table 120: ARLA\_MACVID\_ENTRY2 (Cont.)

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 59:48 | VID         | R/W | VID2. The VID2 register is used to write VID field of ARL table, or to read VID field of ARL table entry ARL FWD Entry 2 Register and MAC/VID Entry 2 Register compose a complete Entry in ARL Table while 802.1Q enabled Note: When the global SVL mode (Page 0x34, Address 0x00) or per port SVL mode (Page 0x34, Address 0x52-0x53) is selected and ARL_RW is "Write" in ARL Read/Write Control Register, the VID2 should be programmed to 0. |         |
| 47:0  | ARL_MACADDR | R/W | MAC Address 2.                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |

### ARLA\_FWD\_ENTRY2

Register Address: SPI Page 0x05, SPI Offset 0x38

Register Description: ARL FWD Entry 2 Register

Table 121: ARLA\_FWD\_ENTRY2

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 16    | ARL_VALID  | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR2 field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static. |         |
| 15    | ARL_STATIC | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                          |         |

Table 121: ARLA\_FWD\_ENTRY2 (Cont.)

| Bits  | Name    | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14    | ARL_AGE | R/W | Aging Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                                                      |         |
| 13:11 | ARL_PRI | R/W | Priority Bit for DA MAC based QoS                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:9  | ARL_CON | R/W | ARL MODE  00: Forward according to FWD_MAP only.  01: Drop if the entry is matched as a destination.  10: Drop if the entry is matched as a source.  11: Copy to CPU, in addition to forwarding according to FWD_MAP.  01,10 and 11 can only be used when the entry is Static.                                                                                                                                                                                       | 0x0     |
| 8:0   | PORTID  | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_MACVID\_ENTRY3

Register Address: SPI Page 0x05, SPI Offset 0x40

Register Description: ARL MAC/VID Entry 3 Register

Table 122: ARLA\_MACVID\_ENTRY3

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:60 | RESERVED | R/W | Reserved    | 0x0     |

Table 122: ARLA\_MACVID\_ENTRY3 (Cont.)

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 59:48 | VID         | R/W | VID3. The VID3 register is used to write VID field of ARL table, or to read VID field of ARL table entry ARL FWD Entry 3 Register and MAC/VID Entry 3 Register compose a complete Entry in ARL Table while 802.1Q enabled Note: When the global SVL mode (Page 0x34, Address 0x00) or per port SVL mode (Page 0x34, Address 0x52-0x53) is selected and ARL_RW is "Write" in ARL Read/Write Control Register, the VID3 should be programmed to 0. |         |
| 47:0  | ARL_MACADDR | R/W | MAC Address 3.                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |

## ARLA\_FWD\_ENTRY3

Register Address: SPI Page 0x05, SPI Offset 0x48

Register Description: ARL FWD Entry 3 Register

Table 123: ARLA\_FWD\_ENTRY3

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 16    | ARL_VALID  | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR3 field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static. |         |
| 15    | ARL_STATIC | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                          | 0       |

Table 123: ARLA\_FWD\_ENTRY3 (Cont.)

| Bits  | Name    | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14    | ARL_AGE | R/W | Aging Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                                                      | 0       |
| 13:11 | ARL_PRI | R/W | Priority Bit for DA MAC based QoS                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:9  | ARL_CON | R/W | ARL MODE  00: Forward according to FWD_MAP only.  01: Drop if the entry is matched as a destination.  10: Drop if the entry is matched as a source.  11: Copy to CPU, in addition to forwarding according to FWD_MAP.  01,10 and 11 can only be used when the entry is Static.                                                                                                                                                                                       | 0x0     |
| 8:0   | PORTID  | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_SRCH\_CTL

Register Address: SPI Page 0x05, SPI Offset 0x50

Register Description: ARL Search Control Register

Table 124: ARLA\_SRCH\_CTL

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                                                                | Default |
|------|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | ARLA_SRCH_STDN | R/W | Start/Done. Write as 1 to initiate a sequential search of the ARL entries, returning each entry that is currently occupied (Valid = 1 and AGE = 0) in the ARL Search Result register. Reading the ARL Search Result Register causes the ARL search to continue. The chip will clear this bit to indicate the entire ARL entry database has been searched.) |         |

Table 124: ARLA\_SRCH\_CTL (Cont.)

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
|------|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 6:1  | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0     |
| 0    | ARLA_SRCH_VLID | R/W | ARL Search Result Valid Available in the ARL Search Result register. Reset by a host read to the ARL Search Result register 1, which will cause the ARL search process to continue through the ARL entries until the next entry is found with a Valid bit is set.(Note: should not reset by a host read to ARL Search VID Result Register. The correct process of reading a ARL Entry after having searched a valid one: Read ARL Search VID Result Register => Read ARL Search Result Register 1) |         |

### ARLA\_SRCH\_ADR

Register Address: SPI Page 0x05, SPI Offset 0x51

Register Description: ARL Search Address Register

Table 125: ARLA\_SRCH\_ADR

| Bits | Name                | R/W | Description                                                                                                                                                                                                                               | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | ARLA_SRCH_ADR_VALID | R/W | ARL Address Valid. Indicates the lower 15 bits of this register contain a valid internal representation of the ARL entry currently being accessed. Intended for factory test/diagnostic use only.                                         | 0       |
| 14:0 | ARLA_SRCH_ADDRESS   | R/W | ARL Address.  15 bit internal representation of the address of the ARL entry currently being accessed by the ARL search routine.  This is not a direct address of the ARL location, and is intended for factory test/diagnostic use only. | 0x0     |

### ARLA\_SRCH\_RSLT\_0\_MACVID

Register Address: SPI Page 0x05, SPI Offset 0x60

Register Description: ARL Search MAC/VID Result 0 Register

Table 126: ARLA\_SRCH\_RSLT\_0\_MACVID

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:60 | RESERVED | R/W | Reserved    | 0x0     |

Table 126: ARLA\_SRCH\_RSLT\_0\_MACVID (Cont.)

| Bits  | Name                 | R/W | Description                                                                                                                        | Default |
|-------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|---------|
| 59:48 | ARLA_SRCH_RSLT_VID_0 | R/W | ARL SEARCH VID RESULT. The ARL Search VID Result Registers Keep the VID field in Valid ARL Entry indicated by ARL Search Function. | 0x0     |
| 47:0  | ARLA_SRCH_MACADDR_0  | R/W | MAC Address.                                                                                                                       | 0x0     |

### ARLA\_SRCH\_RSLT\_0

Register Address: SPI Page 0x05, SPI Offset 0x68

Register Description: ARL Search Result 0 Register

Table 127: ARLA\_SRCH\_RSLT\_0

| Bits  | Name                        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|-------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED                    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x0     |
| 16    | ARLA_SRCH_RSLT_VLID_0       | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static. | 0       |
| 15    | ARLA_SRCH_RSLT_STATIC_<br>0 | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                         | 0       |
| 14    | ARLA_SRCH_RSLT_AGE_0        | R/W | Age. Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for the period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                  | 0       |
| 13:11 | ARLA_SRCH_RSLT_PRI_0        | R/W | Priority Bit For MAC based QoS.                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0     |
| 10:9  | ARL_CON_0                   | R/W | ARL control bit for ARL control mode enhancement                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |

Table 127: ARLA\_SRCH\_RSLT\_0 (Cont.)

| Bits | Name     | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | PORTID_0 | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_SRCH\_RSLT\_1\_MACVID

Register Address: SPI Page 0x05, SPI Offset 0x70

Register Description: ARL Search MAC/VID Result 1 Register

Table 128: ARLA\_SRCH\_RSLT\_1\_MACVID

| Bits  | Name                 | R/W | Description                                                                                                                        | Default |
|-------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:60 | RESERVED             | R/W | Reserved                                                                                                                           | 0x0     |
| 59:48 | ARLA_SRCH_RSLT_VID_1 | R/W | ARL SEARCH VID RESULT. The ARL Search VID Result Registers Keep the VID field in Valid ARL Entry indicated by ARL Search Function. | 0x0     |
| 47:0  | ARLA_SRCH_MACADDR_1  | R/W | MAC Address.                                                                                                                       | 0x0     |

## ARLA\_SRCH\_RSLT\_1

Register Address: SPI Page 0x05, SPI Offset 0x78

Register Description: ARL Search Result 1 Register

Table 129: ARLA\_SRCH\_RSLT\_1

| Bits  | Name                        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|-----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:17 | RESERVED                    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 16    | ARLA_SRCH_RSLT_VLID_1       | R/W | Valid. Set to indicate that a valid MAC address is stored in the MACADDR field, and that the entry has not aged out or been freed by the management processor. Reset when an entry is empty, the address has been aged out by the internal aging process, or the external management processor has invalidated the entry. Automatic learning will take place if an address location is not valid and has not been marked as static.                                  | 0       |
| 15    | ARLA_SRCH_RSLT_STATIC_<br>1 | R/W | Static. Set to indicate that the entry is controlled by the external management processor, and automatic learning and aging of the entry will not take place. When cleared, the internal learning and aging process will control the validity of the entry.                                                                                                                                                                                                          | 0       |
| 14    | ARLA_SRCH_RSLT_AGE_1        | R/W | Age. Set to indicate that an address entry has been learned or accessed. Reset by the internal aging algorithm. If the internal aging process detects a Valid entry has remained unused for the period set by the AGE_TIME, and the entry has not been marked as Static, the entry will have the Valid bit cleared. The Age bit is ignored if the entry has been marked as Static.                                                                                   | 0       |
| 13:11 | ARLA_SRCH_RSLT_PRI_1        | R/W | Priority Bit For MAC based QoS.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 10:9  | ARL_CON_1                   | R/W | ARL control bit for ARL control mode enhancement                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0     |
| 8:0   | PORTID_1                    | R/W | Port Identification If system turn on multicast address scheme and MAC address is multicast type and, the bit[8:0] stands for Multicast Group Forward Portmap. Bit[8]: CPU Port/MII Port Bit[7:0]: Port 7~0 If system turn off multicast address scheme and MAC address is unicast type and, the bit[3:0] stands for Unicast Forward PortID. Bit[8:4]: Reserved Bit[3:0]: Port ID/Port Number which identifies where the station with unique MACADDR_N is connected. | 0x0     |

### ARLA\_VTBL\_RWCTRL

Register Address: SPI Page 0x05, SPI Offset 0x80

Register Description: VTBL Read/Write/Clear Control Register

Table 130: ARLA\_VTBL\_RWCTRL

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | ARLA_VTBL_STDN   | R/W | Start/Done. Write as 1 to initiate a read or write or clear-table command. For Read or Write Command, the VTBL Address Index register should be loaded with the VLAN ID for which the VTBL entry is to be read or written. chip will reset the bit to indicate a write operation completed or a read operation has completed and data from the bin entry is available in VTBL Entry, or a clear-table operation has completed. | 0       |
| 6:2  | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0     |
| 1:0  | ARLA_VTBL_RW_CLR | R/W | VTBL Read/Write/Clear-table 11 = Reserved 10 = Clear-table 01 = Read 00 = Write                                                                                                                                                                                                                                                                                                                                                | 0x0     |

## ARLA\_VTBL\_ADDR

Register Address: SPI Page 0x05, SPI Offset 0x81

Register Description: VTBL Address Index Register

Table 131: ARLA\_VTBL\_ADDR

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED        | R/W | Reserved                                                                                                                                                                                                                                                                                                                                         | 0x0     |
| 11:0  | VTBL_ADDR_INDEX | R/W | VLAN Table Address Index. The VLAN Table Address Index Register is used to access VLAN Table Entry. Note: When "Per Port IVL or SVL" is selected by the Port IVL or SVL Control Register (Page 0x34, Address 0x52-0x53), 1. the VIDs are used in SVL ports MUST NOT be used in IVL ports. 2. the VID (0) should be programmed for the SVL ports. |         |

## ARLA\_VTBL\_ENTRY

Register Address: SPI Page 0x05, SPI Offset 0x83

Register Description: VTBL Entry Register

Table 132: ARLA\_VTBL\_ENTRY

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                          | Default |
|-------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:22 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| 21    | FWD_MODE   | R/W | It indicate whether the packet forwarding should be based on VLAN membership of based on ARL flow.  1: Based on VLAN membership (excluding ingress port)  0: Based on ARL flow.  Note that the VLAN membership based forwarding mode is only used for certain ISP tagged packets received from ISP port when Falcon is operating in Double Tag mode. | 0       |
| 20:18 | MSPT_INDEX | R/W | Index for 8 spanning tree.                                                                                                                                                                                                                                                                                                                           | 0x0     |
| 17:9  | UNTAG_MAP  | R/W | Untag Port Map. The VLAN-tagged Frame forward to the destination ports corresponding bits set in the Map will be untagged. Bit [17]: Port 8(IMP), Bit [16]: Port 7, Bit [15]: Reserved, Bits [14:9]: Port 5-0.                                                                                                                                       | 0x0     |
| 8:0   | FWD_MAP    | R/W | Forward PORT MAP. The VLAN-tagged Frame is allowed to be forwarded to the destination ports corresponding bits set in the Map. Bit [8]: Port 8(IMP), Bit [7]: Port 7, Bit [6]: Reserved, Bits [5:0]: Port 5-0.                                                                                                                                       | 0x0     |

# Page 0x06 Register (Reserved)

Page 0x07 Register (Reserved)

# Page 0x10–0x13: Internal GPHY MII Register

Table 133: Page 0x10-0x13: Internal GPHY MII Register

| 0x00<br>0x02<br>0x04 | 15:0<br>15:0<br>15:0 | "G_MIICTL" on page 105 "G_MIISTS" on page 105 |
|----------------------|----------------------|-----------------------------------------------|
|                      |                      |                                               |
| 0v04                 | 15:0                 |                                               |
| 0X04                 |                      | "G_PHYIDH" on page 106                        |
| 0x06                 | 15:0                 | "G_PHYIDL" on page 107                        |
| 80x0                 | 15:0                 | "G_ANADV" on page 107                         |
| 0x0a                 | 15:0                 | "G_ANLPA" on page 108                         |
| 0x0c                 | 15:0                 | "G_ANEXP" on page 108                         |
| 0x0e                 | 15:0                 | "G_ANNXP" on page 109                         |
| 0x10                 | 15:0                 | "G_LPNXP" on page 109                         |
| 0x12                 | 15:0                 | "G_B1000T_CTL" on page 110                    |
| 0x14                 | 15:0                 | "G_B1000T_STS" on page 111                    |
| 0x1e                 | 15:0                 | "G_EXT_STS" on page 111                       |
| 0x20                 | 15:0                 | "G_PHY_EXT_CTL" on page 112                   |
| 0x22                 | 15:0                 | "G_PHY_EXT_STS" on page 113                   |
| 0x24                 | 15:0                 | "G_REC_ERR_CNT" on page 113                   |
| 0x26                 | 15:0                 | "G_FALSE_CARR_CNT" on page 114                |
| 0x28                 | 15:0                 | "G_REC_NOTOK_CNT" on page 114                 |
| 0x2a                 | 15:0                 | "G_DSP_COEFFICIENT" on page 114               |
| 0x2e                 | 15:0                 | "G_DSP_COEFFICIENT_ADDR" on page 115          |
| 0x30                 | 15:0                 | "G_AUX_CTL" on page 116                       |
| 0x32                 | 15:0                 | "G_AUX_STS" on page 117                       |
| 0x34                 | 15:0                 | "G_INTERRUPT_STS" on page 117                 |
| 0x36                 | 15:0                 | "G_INTERRUPT_MSK" on page 117                 |
| 0x38                 | 15:0                 | "G_MISC_SHADOW" on page 118                   |
| 0x3a                 | 15:0                 | "G_MASTER_SLAVE_SEED" on page 119             |
| 0x3c                 | 15:0                 | "G_TEST1" on page 120                         |
| 0x3e                 | 15:0                 | "G_TEST2" on page 120                         |

### **G\_MIICTL**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x00

Register Description: MII Control Register

Table 134: G\_MIICTL

| Bits | Name        | R/W | Description                                                                           | Default |
|------|-------------|-----|---------------------------------------------------------------------------------------|---------|
| 15   | RESET       | R/W | 1: PHY reset. 0: Normal operation.                                                    | 0       |
| 14   | LOOPBACK    | R/W | 1: Loopback mode.<br>0: Normal operation.                                             | 0       |
| 13   | SPD_SEL_LSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB} 11 = Reserved 10 = 1000 Mb/s 01 = 100 Mb/s 00 = 10 Mb/s    | 1       |
| 12   | AN_EN       | R/W | 1: Auto-Negotiation Enable. 0: Auto-Negotiation disable.                              | 1       |
| 11   | PWR_DOWN    | R/W | 1: low power mode,<br>0: Normal operation.                                            | 0       |
| 10   | ISOLATE     | R/W | Electrically isolate PHY from MII.     Normal operation.                              | 0       |
| 9    | RE_AN       | R/W | RESTART AUTO-NEGOTIATION.  1: Restart Auto-Negotiation process.  0: Normal operation. | 0       |
| 8    | DUPLEX_MOD  | R/W | 1: Full Duplex.<br>0: Half Duplex.                                                    | 0       |
| 7    | COL_TEST    | R/W | 1 = Collision test mode enabled,<br>0 = Collision test mode disabled.                 | 0       |
| 6    | SPD_SEL_MSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB} 11 = Reserved 10 = 1000 Mb/s 01 = 100 Mb/s 00 = 10 Mb/s    | 0       |
| 5:0  | RESERVED    | R/W | Ignore when read.                                                                     | 0x0     |

## **G\_MIISTS**

Register Address: SPI Page 0x10–0x13, SPI Offset 0x02

Register Description: MII Status Register

Table 135: G\_MIISTS

| Bits | Name       | R/W | Description                                          | Default |
|------|------------|-----|------------------------------------------------------|---------|
| 15   | B100T4_CAP | R/W | 1 = 100Base-T4 capable<br>0 = Not 100Base-T4 capable | 0       |

Table 135: G\_MIISTS (Cont.)

| Bits | Name           | R/W | Description                                                                                                                       | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|---------|
| 14   | B100TX_FDX_CAP | R/W | 1 = 100Base-X full duplex capable<br>0 = Not 100Base-X full duplex capable                                                        | 1       |
| 13   | B100TX_CAP     | R/W | 1 = 100Base-X half duplex capable<br>0 = Not 100Base-X half duplex capable                                                        | 1       |
| 12   | B10T_FDX_CAP   | R/W | 1 = 10Base-T full duplex capable<br>0 = Not 10Base-T full duplex capable                                                          | 1       |
| 11   | B10T_CAP       | R/W | 1 = 10Base-T half duplex capable<br>0 = Not 10Base-T half duplex capable                                                          | 1       |
| 10   | B100T2_FD_CAP  | R/W | 1 = 100Base-T2 full duplex capable<br>0 = Not 100Base-T2 full duplex capable                                                      | 0       |
| 9    | B100T2_HD_CAP  | R/W | 1 = 100Base-T2 half duplex capable<br>0 = Not 100Base-T2 half duplex capable                                                      | 0       |
| 8    | EXT_STS        | R/W | 1 = Extended status information in register 0Fh<br>0 = No extended status info in register 0Fh                                    | 1       |
| 7    | RESERVED       | R/W | Reserved.                                                                                                                         | 0       |
| 6    | MF_PRE_SUP     | R/W | 1 = PHY will accept management frames with preamble suppressed 0 = PHY will not accept management frames with preamble suppressed | 1       |
| 5    | AUTO_NEGO_COMP | R/W | 1 = Auto-negotiation complete<br>0 = Auto-negotiation in progress                                                                 | 0       |
| 4    | REMOTE_FAULT   | R/W | 1 = Remote fault detected<br>0 = No remote fault detected                                                                         | 0       |
| 3    | AUTO_NEGO_CAP  | R/W | 1 = Auto-negotiation capable<br>0 = Not auto-negotiation capable                                                                  | 1       |
| 2    | LINK_STA       | R/W | 1 = Link pass<br>0 = Link fail                                                                                                    | 0       |
| 1    | JABBER_DET     | R/W | 1 = Jabber condition detected<br>0 = No jabber condition detected                                                                 | 0       |
| 0    | EXT_CAP        | R/W | 1 = Extended register capabilities supported<br>0 = Basic register set capabilities only                                          | 1       |

## **G\_PHYIDH**

Register Address: SPI Page 0x10–0x13, SPI Offset 0x04

Register Description: PHY ID High Register

Table 136: G\_PHYIDH

| Bits | Name | R/W | Description                                      | Default |
|------|------|-----|--------------------------------------------------|---------|
| 15:0 | OUI  | R/W | Bits 3:18 of organizationally unique identifier. | 0xAE02  |

### **G\_PHYIDL**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x06

Register Description: PHY ID LOW Register

Table 137: G\_PHYIDL

| Bits  | Name     | R/W | Description                                       | Default |
|-------|----------|-----|---------------------------------------------------|---------|
| 15:10 | OUI      | R/W | Bits 19:24 of organizationally unique identifier. | 0x14    |
| 9:4   | MODEL    | R/W | Device model number (metal programmable).         | 0x20    |
| 3:0   | REVISION | R/W | Device revision number (metal programmable).      | 0x0     |

### **G\_ANADV**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x08

Register Description: Auto-Negotiation Advertisement Register

Table 138: G\_ANADV

| Bits | Name          | R/W | Description                                                                        | Default |
|------|---------------|-----|------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = next page ability supported. 0 = next page ability not supported.              | 0       |
| 14   | RESERVED_2    | R/W | write as 0, ignore on read.                                                        | 0       |
| 13   | REMOTE_FAULT  | R/W | 1 = advertise remote fault detected<br>0 = advertise no remote fault detected      | 0       |
| 12   | RESERVED_1    | R/W | write as 0, ignore on read.                                                        | 0       |
| 11   | ASY_PAUSE     | R/W | 1 = Advertise asymmetric pause,<br>0 = Advertise no asymmetric pause.              | 0       |
| 10   | ADV_PAUSE_CAP | R/W | 1 = capable of full duplex Pause operation,<br>0 = not capable of Pause operation. | 0       |
| 9    | B100T4        | R/W | 1 = 100Base-T4 capable,<br>0 = not 100Base-T4 capable.                             | 0       |
| 8    | ADV_B100_FDX  | R/W | 1 = 100Base-TX full duplex capable,<br>0 = not 100Base-TX full duplex capable.     | 0       |
| 7    | ADV_B100X     | R/W | 1 = 100Base-TX capable,<br>0 = not 100Base-TX capable.                             | 0       |
| 6    | ADV_B10T_FDX  | R/W | 1 = 10Base-T full duplex capable,<br>0 = not 10Base-T full duplex capable.         | 0       |
| 5    | ADV_B10T      | R/W | 1 = 10Base-T half duplex capable,<br>0 = not 10Base-T half duplex capable.         | 0       |
| 4:0  | PROTOCOL_SEL  | R/W | 00001 = IEEE 802.3 CSMA/CD.                                                        | 0x1     |

#### **G\_ANLPA**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x0a

Register Description: Auto-Negotiation Link Partner (LP) Ability Register

Table 139: G\_ANLPA

| Bits | Name            | R/W | Description                                                                                                | Default |
|------|-----------------|-----|------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE       | R/W | 1 = link partner is next page able,<br>0 = link partner is not next page able.                             | 0       |
| 14   | ACKNOWLEDGE     | R/W | 1 = link partner has received link code word<br>0 = link partner has not received link code word.          | 0       |
| 13   | REMOTE_FAULT    | R/W | 1 = link partner has detected remote fault<br>0 = link partner has not detected remote fault.              | 0       |
| 12   | RESERVED_1      | R/W | write as 0, ignore on read.                                                                                | 0       |
| 11   | LK_PAR_ASYM_CAP | R/W | link partners asymmetric pause bit.                                                                        | 0       |
| 10   | PAUSE_CAP       | R/W | 1 = link partner is capable of Pause operation,<br>0 = link partner not capable of Pause operation.        | 0       |
| 9    | B100T4_CAP      | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                      | 0       |
| 8    | B100_TXFD_CAP   | R/W | 1 = link partner is 100Base-TX full duplex capable 0 = link partner is not 100Base-TX full duplex capable. | 0       |
| 7    | B100_TXHD_CAP   | R/W | 1 = link partner is 100Base-TX half duplex capable 0 = link partner is not 100Base-TX half duplex capable. | 0       |
| 6    | B10T_FD_CAP     | R/W | 1 = link partner is 10Base-T full duplex capable 0 = link partner is not 10Base-T full duplex capable.     | 0       |
| 5    | B10T_HD_CAP     | R/W | 1 = link partner is 10Base-T half duplex capable 0 = link partner is not 10Base-T half duplex capable.     | 0       |
| 4:0  | PROTOCOL_SEL    | R/W | link partners protocol selector (see IEEE spec for encodings)                                              | 0x0     |

### **G\_ANEXP**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x0c

Register Description: Auto-Negotiation Expansion Register

Table 140: G\_ANEXP

| Bits | Name       | R/W | Description     | Default |
|------|------------|-----|-----------------|---------|
| 15:7 | RESERVED_1 | R/W | ignore on read. | 0x0     |

Table 140: G\_ANEXP (Cont.)

| Bits | Name             | R/W | Description                                                                                                             | Default |
|------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 6    | NEXT_PAGE_ABLE   | R/W | 1 = register 6.5 determines next page receive location, 0 = register 6.5 does not determine next page receive location. | 1       |
| 5    | NEXT_PAGE        | R/W | <ul><li>1 = next pages stored in register 8,</li><li>0 = next pages stored in register 5.</li></ul>                     | 1       |
| 4    | PAR_DET_FAIL     | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                                   | 0       |
| 3    | LP_NEXT_PAGE_ABI | R/W | 1 = link partner is next page able<br>0 = link partner is not next page able.                                           | 0       |
| 2    | NEXT_PAGE_ABI    | R/W | 1 = local device is next page able,<br>0 = local device is not next page able.                                          | 1       |
| 1    | PAGE_REC         | R/W | 1 = new link code word has been received<br>0 = new link code word has not been received.                               | 0       |
| 0    | LP_AN_ABI        | R/W | <ul><li>1 = link partner is auto-negotiation able</li><li>0 = link partner is not auto-negotiation able.</li></ul>      | 0       |

## **G\_ANNXP**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x0e

Register Description: Auto-Negotiation Next Page Transmit Register

Table 141: G\_ANNXP

| Bits | Name          | R/W | Description                                                                                                             | Default |
|------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                                        | 0       |
| 14   | RESERVED_1    | R/W | ignore on read.                                                                                                         | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                                              | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message                     | 0       |
| 11   | TOGGLE        | R/W | 1 = register 6.5 determines next page receive location, 0 = register 6.5 does not determine next page receive location. | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                                           | 0x1     |

## **G\_LPNXP**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x10

Register Description: Link Partner next Page Ability Register

Table 142: G\_LPNXP

| Bits | Name          | R/W | Description                                                                                         | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                    | 0       |
| 14   | ACK           | R/W | 1 = acknowledge,<br>0 = no acknowledge.                                                             | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                          | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message | 0       |
| 11   | TOGGLE        | R/W | 1 = sent 0 during previous Link Code Word 0 = sent 1 during previous Link Code Word.                | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                       | 0x0     |

## G\_B1000T\_CTL

Register Address: SPI Page 0x10-0x13, SPI Offset 0x12

Register Description: 1000Base-T Control Register

Table 143: G\_B1000T\_CTL

| Bits  | Name                | R/W | Description                                                                                                          | Default |
|-------|---------------------|-----|----------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | TEST_MODE           | R/W | 1xx = Test Mode 4<br>011 = Test Mode 3<br>010 = Test Mode 2<br>001 = Test Mode 1<br>000 = Normal Operation.          | 0x0     |
| 12    | MAST_SLV_CONG_EN    | R/W | <ul><li>1 = enable Master/Slave manual config value,</li><li>0 = disable Master/Slave manual config value.</li></ul> | 0       |
| 11    | MAST_SLV_CONG_VALUE | R/W | 1 = configure PHY as Master when 9.12 is set 0 = configure PHY as Slave when 9.12 is set.                            | 0       |
| 10    | REPEATER_DTE        | R/W | 1 = Repeater/switch device port,<br>0 = DTE device port.                                                             | 0       |
| 9     | ADV_B1000T_FD       | R/W | 1 = Advertise 1000Base-T full duplex capable,<br>0 = Advertise not 1000Base-T full duplex<br>capable.                | 0       |
| 8     | ADV_B1000T_HD       | R/W | 1 = Advertise 1000Base-T half duplex capable,<br>0 = Advertise not 1000Base-T half duplex<br>capable.                | 0       |
| 7:0   | RESERVED            | R/W | write as 0, ignore on read.                                                                                          | 0x0     |

## G\_B1000T\_STS

Register Address: SPI Page 0x10-0x13, SPI Offset 0x14

Register Description: 1000Base-T Status Register

*Table 144: G\_B1000T\_STS* 

| Bits | Name                | R/W | Description                                                                                                                                           | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | MAST_SLV_CONG_FAULT | R/W | 1 = Master/Slave configuration fault detected<br>0 = no Master/Slave configuration fault detected<br>(cleared by restart_an, an_complete or reg read) |         |
| 14   | MAST_SLV_CONG_STS   | R/W | 1 = local PHY configured as Master,<br>0 = local PHY configured as Slave.                                                                             | 0       |
| 13   | LOCAL_REC_STS       | R/W | <ul><li>1 = local receiver status OK,</li><li>0 = local receiver status not OK.</li></ul>                                                             | 0       |
| 12   | REMOTE_REC_STS      | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                                  | 0       |
| 11   | LP_B1000T_FD_CAP    | R/W | 1 = link partner is 1000Base-T full duplex capable, 0 = link partner is not 1000Base-T full duplex capable.                                           | 0       |
| 10   | LP_B1000T_HD_CAP    | R/W | 1 = link partner is 1000Base-T half duplex capable, 0 = link partner is not 1000Base-T half duplex capable.                                           | 0       |
| 9:8  | RESERVED            | R/W | ignore on read.                                                                                                                                       | 0x0     |
| 7:0  | IDLE_ERR_CNT        | R/W | Number of idle errors since last read.                                                                                                                | 0x0     |

## **G\_EXT\_STS**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x1e

Register Description: Extended Status Register

Table 145: G\_EXT\_STS

| Bits | Name          | R/W | Description                                                                    | Default |
|------|---------------|-----|--------------------------------------------------------------------------------|---------|
| 15   | B1000X_FD_CAP | R/W | 1 = 1000Base-X full duplex capable<br>0 = not 1000Base-X full duplex capable.  | 0       |
| 14   | B1000X_HD_CAP | R/W | 1 = 1000Base-X half duplex capable,<br>0 = not 1000Base-X half duplex capable. | 0       |
| 13   | B1000T_FD_CAP | R/W | 1 = 1000Base-T full duplex capable<br>0 = not 1000Base-T full duplex capable.  | 1       |
| 12   | B1000T_HD_CAP | R/W | 1 = 1000Base-T half duplex capable,<br>0 = not 1000Base-T half duplex capable. | 1       |
| 11:0 | RESERVED      | R/W | ignore on read.                                                                | 0x0     |

## **G\_PHY\_EXT\_CTL**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x20

Register Description: PHY Extended Control Register

Table 146: G\_PHY\_EXT\_CTL

| Bits | Name                  | R/W | Description                                                                                               | Default |
|------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15   | MAC_PHY_MODE          | R/W | 1 = 10B interface mode<br>0 = GMII mode.                                                                  | 0       |
| 14   | DIS_AUTO_MDI_CROS     | R/W | 1 = automatic MDI crossover disabled,<br>0 = automatic MDI crossover enabled.                             | 0       |
| 13   | TRANSMIT_DIS          | R/W | <ul><li>1 = force transmit output to high impedance,</li><li>0 = normal operation.</li></ul>              | 0       |
| 12   | INTERRUPT_DIS         | R/W | <ul><li>1 = interrupts disabled,</li><li>0 = interrupts enabled.</li></ul>                                | 1       |
| 11   | FORCE_INTERRUPT       | R/W | 1 = force interrupt status to active,<br>0 = normal interrupt operation.                                  | 0       |
| 10   | BYPASS_ENCODE         | R/W | <ul><li>1 = bypass 4B5B encoder and decoder,</li><li>0 = normal operation.</li></ul>                      | 0       |
| 9    | BYPASS_SCRAMBLER      | R/W | <ul><li>1 = bypass scrambler and descrambler,</li><li>0 = normal operation.</li></ul>                     | 0       |
| 8    | BYPASS_NRZI_MLT3      | R/W | 1 = bypass NRZI/MLT3 encoder and decoder,<br>0 = normal operation.                                        | 0       |
| 7    | BYPASS_ALIGNMENT      | R/W | 1 = bypass receive symbol alignment,<br>0 = normal operation.                                             | 0       |
| 6    | RST_SCRAMBLER         | R/W | 1 = reset scrambler to all 1s state<br>0 = normal scrambler operation.                                    | 0       |
| 5    | EN_LED_TRAFFIC_MOD    | R/W | 1 = LED traffic mode enabled,<br>0 = LED traffic mode disabled.                                           | 0       |
| 4    | FORCE_LED_ON          | R/W | 1 = force all LEDs into ON state,<br>0 = normal LED operation.                                            | 0       |
| 3    | FORCE_LED_OFF         | R/W | 1 = force all LEDs into OFF state,<br>0 = normal LED operation.                                           | 0       |
| 2    | BLK_TXEN_MOD          | R/W | 1 = extend transmit IPGs to at least 4 nibbles in 100Base-TX mode, 0 = do not extend short transmit IPGs. | 0       |
| 1    | GMII_FIFO_MOD         | R/W | 0 = new synchronous mode,<br>1 = old asynchronous mode.                                                   | 0       |
| 0    | B1000T_PCS_TRANS_FIFO | R/W | 1 = High latency (jumbo packets),<br>0 = Low latency (low elasticity).                                    | 0       |

Page 0x10-0x13: Internal GPHY MII Register

## **G\_PHY\_EXT\_STS**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x22

Register Description: PHY Extended Status Register

Table 147: G\_PHY\_EXT\_STS

| Bits | Name                 | R/W | Description                                                                                                                              | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | AN_PAGE_SEL_MISMATCH | R/W | 1 = link partner base page selector field mismatched advertised selector field since last read 0 = no mismatch detected since last read. | 0       |
| 14   | WIRESPEED_DOWNGRADE  | R/W | 1 = autoneg advertising downgraded<br>0 = autoneg advertised as shown in regs 04h &<br>09h.                                              | 0       |
| 13   | MDI_CROS_STATE       | R/W | 1 = MDIX,<br>0 = MDI.                                                                                                                    | 0       |
| 12   | INTERRUPT_STS        | R/W | 1 = unmasked interrupt currently active 0 = interrupts clear.                                                                            | 0       |
| 11   | REMOTE_REC_STS       | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                     | 0       |
| 10   | LOCAL_REC_STS        | R/W | 1 = local receiver status OK,<br>0 = local receiver status not OK.                                                                       | 0       |
| 9    | LOCK                 | R/W | <ul><li>1 = descrambler locked,</li><li>0 = descrambler unlocked.</li></ul>                                                              | 0       |
| 8    | LINK_STS             | R/W | 1 = link pass,<br>0 = link fail.                                                                                                         | 0       |
| 7    | CRC_ERR_DET          | R/W | <ul><li>1 = CRC error detected since last read,</li><li>0 = no CRC error detected since last read.</li></ul>                             | 0       |
| 6    | CARR_ERR_DET         | R/W | 1 = carrier ext. error detected since last read,<br>0 = no carrier ext. error detected since last read.                                  | 0       |
| 5    | BAD_SSD_DET          | R/W | 1 = bad SSD error detected since last read,<br>0 = no bad SSD error detected since last read.                                            | 0       |
| 4    | BAD_ESD_DET          | R/W | 1 = bad ESD error detected since last read,<br>0 = no bad ESD error detected since last read.                                            | 0       |
| 3    | REC_ERR_DET          | R/W | 1 = receive coding error detected since last read,<br>0 = no receive error detected since last read.                                     | , 0     |
| 2    | TRMIT_ERR_DET        | R/W | 1 = transmit error code detected since last read,<br>0 = no transmit error detected since last read.                                     | 0       |
| 1    | LCK_ERR_DET          | R/W | 1 = lock error detected since last read,<br>0 = no lock error detected since last read.                                                  | 0       |
| 0    | MLT3_ERR_DET         | R/W | 1 = MLT3 code error detected since last read,<br>0 = no MLT3 error detected since last read.                                             | 0       |

## **G\_REC\_ERR\_CNT**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x24

Register Description: Receive Error Counter

Table 148: G\_REC\_ERR\_CNT

| Bits | Name        | R/W | Description                                                                                                                                                                    | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | REC_ERR_CNT | R/W | Number of non-collision packets with receive errors since last read. Freezes at FFFFh. (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) | 0x0     |

## **G\_FALSE\_CARR\_CNT**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x26

Register Description: False Carrier Sense Counter

Table 149: G\_FALSE\_CARR\_CNT

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                               | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | SERDES_BER_CNT | R/W | Number of invalid code groups received while sync_status = 1 since last cleared. Cleared by writing expansion register 4D bit 15 = 1.                                                                                                                     | 0x0     |
| 7:0  | REC_ERR_CNT    | R/W | Number of false carrier sense events since last read. Counts packets received with transmit error codes when TXERVIS bit in test register is set. Freezes at FFh. (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) |         |

## **G\_REC\_NOTOK\_CNT**

Register Address: SPI Page 0x10–0x13, SPI Offset 0x28

Register Description: Local/Remote Receiver NOT\_OK Counters

Table 150: G\_REC\_NOTOK\_CNT

| Bits | Name                 | R/W | Description                                                                        | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------|---------|
| 15:8 | LOCAL_REC_NOTOK_CNT  | R/W | since last read. Freezes at FFh.                                                   | 0x0     |
| 7:0  | REMOTE_REC_NOTOK_CNT | R/W | number of times remote receiver status was not OK since last read. Freezes at FFh. | 0x0     |

## **G\_DSP\_COEFFICIENT**

Register Address: SPI Page 0x10–0x13, SPI Offset 0x2a

Register Description: DSP Coefficient Read/Write Port Register

Table 151: G\_DSP\_COEFFICIENT

| Bits | Name            | R/W | Description | Default |
|------|-----------------|-----|-------------|---------|
| 15:0 | DSP_COEFFICIENT | R/W |             | 0x0     |

## **G\_DSP\_COEFFICIENT\_ADDR**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x2e

Register Description: DSP Coefficient Address Register

Table 152: G\_DSP\_COEFFICIENT\_ADDR

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                           | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15    | ALL_CHANNEL_CTL | R/W | when this bit is set, writes to per-channel control bits affect all channels, regardless of bits 14:13                                                                                                                                | 0       |
| 14:13 | CHANNEL_SEL     | R/W | channel select for DSP coefficient read/writes<br>and<br>per-channel control/status register bits (marked<br>by<br>*):<br>11 = channel 3<br>10 = channel 2<br>01 = channel 1<br>00 = channel 0                                        | 0x0     |
| 12    | ALL_FILTER_CTL  | R/W | when this bit is set, writes to per-filter control bits affect all filters in the specified channel, regardless of bits 11:8 (when bit 15 is also set, writes to DSP control bits affect all echo, next, and dfe filters in the chip) | 0       |

Table 152: G\_DSP\_COEFFICIENT\_ADDR (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | FILTER_SEL | R/W | select DSP filter for coefficient read/write:  1111 = EXPANSION REGISTERS  1110 = EXTERNAL SERDES REGISTERS  1101 = reserved  1100 = DCOFFSET  1011 = reserved  1010 = reserved  1001 = reserved  1001 = reserved  1011 = NEXT[3]  0110 = NEXT[2]  0101 = NEXT[1]  0100 = NEXT[1]  0101 = ECHO  0010 = DFE  0001 = FFE  0000 = misc. receiver registers (see bits 7:0)  note: NEXT[n] does not exist for channel n. If  NEXT[n] is selected for channel n, all NEXT  cancellers for that channel are selected when  writing control bits.  BIT 12 (CONTROL ALL FILTERS) MUST BE  ZERO IN ORDER TO SELECT MISC,  DCOFFSET, or FFE. | 0x0     |
| 7:0  | TAP_NUM    | R/W | selects which tap is to be read/written within the selected filter (taps are numbered from 0 to n in chronological order (earliest to latest)) when filter select = 000 (misc. receiver regs): 0 = AGC A Register 1 = AGC B & IPRF Register 2 = MSE/Pair Status Register 3 = Soft Decision Register 4 = Phase Register 5 = WireMap/Skew & ECHO/NEXT & TX & ADC Register 6 -8 = reserved 9 = Frequency Register 10 = PLL Bandwidth and Path Metric Register 11 = PLL Phase Offset Registerto 31, 61:63                                                                                                                             | 1       |

## **G\_AUX\_CTL**

Register Address: SPI Page 0x10–0x13, SPI Offset 0x30

Register Description: Auxiliary Control Register

Table 153: G\_AUX\_CTL

| Bits | Name       | R/W | Description                                                                                                                                                        | Default |
|------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | SHADOW_REG | R/W | Shadow Registers:  001 => 10 BASE-T  010 => Power Control  011 => IP Phone  100 => Misc Test  101 => Misc Test 2  110 => Manual IP Phone seed  111 => Misc Control | 0x0     |

## **G\_AUX\_STS**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x32

Register Description: Auxiliary Status Register

Table 154: G\_AUX\_STS

| Bits | Name    | R/W | Description | Default |
|------|---------|-----|-------------|---------|
| 15:0 | AUX_STS | R/W |             | 0x0     |

## **G\_INTERRUPT\_STS**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x34

Register Description: Interrupt Status Register

Table 155: G\_INTERRUPT\_STS

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_STS | R/W |             | 0x0     |

## **G\_INTERRUPT\_MSK**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x36

Register Description: Interrupt Mask Register

Table 156: G\_INTERRUPT\_MSK

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_MSK | R/W |             | 0x0     |

## **G\_MISC\_SHADOW**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x38

Register Description: Miscellaneous Shadow Registers

Table 157: G\_MISC\_SHADOW

| Bits             | Name               | R/W        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default               |
|------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>Bits</b> 15:0 | Name INTERRUPT_MSK | R/W<br>R/W | 00000 => Cabletron LED modes 00001 => DLL Control 00010 => Spare Control 1 00011 => Clock Aligner 00100 => Spare Control 2 00101 => Spare Control 3 00110 => TDR Control 1 00111 => TDR Control 2 01000 => Led Status 01001 => Led Control 01010 => Auto-Power Down 01011 => External Control 1 01100 => External Control 2 01101 => LED Selector 1 01110 => LED Selector 2 01111 => LED GPIO Control/Status 10000 => CISCO Enhanced Linkstatus Mode Control | <b>Default</b><br>0x0 |
|                  |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                  |                    |            | 11001 => Test 1000X<br>11010 => Autoneg 1000X Debug<br>11011 => Auxiliary 1000X Control<br>11100 => Auxiliary 1000X Status<br>11101 => Misc 1000X Status<br>11110 => Auto-Detect Medium<br>11111 => Mode Control                                                                                                                                                                                                                                             |                       |

## LED Selector 2 Register (Page 10h-14h: Address 38h)

Table 158: LED Selector 2 Register (Page 10h-14h: Address 38h, Shadow Value 01110)

| Bit Field | Bit Access | Field Name | Description                                                 |
|-----------|------------|------------|-------------------------------------------------------------|
| 15        | RSVD       | Reserved   | Reserved bit write has no effect and read always returns 0  |
| 14:10     | RO         | SHD1C_SEL  | always read 01101                                           |
| 09:08     | RSVD       | Reserved   | Reserved bits write has no effect and read always returns 0 |

Table 158: LED Selector 2 Register (Page 10h-14h: Address 38h, Shadow Value 01110) (Cont.)

| Bit Field | Bit Access | Field Name | Description                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07:04     | RW         | LED4_SEL   | 0000: linkspd(0) 0001: linkspd(1) 0010: xmtled 0011: activity 0100: fdxled 0101: slave 0110: interrupt 0111: quality 1000: rcvled 1001: wirespeed downgrade 1010: Bicolor LED1 1011: Cable Diagnostic Open/Short found 1100: energy_link (Cisco mode) 1101: sgmii receiving crs (from copper link partner) (do not use if snoop mode is enabled) 1110: off 1111: on Reset value is 1. |
| 03:00     | RW         | LED3_SEL   | 0000: linkspd(0) 0001: linkspd(1) 0010: xmtled 0011: activity 0100: fdxled 0101: slave 0110: interrupt 0111: quality 1000: rcvled 1001: wirespeed downgrade 1010: Bicolor LED0 1011:Cable Diagnostic Open/Short found 1100: energy_link (Cisco mode) 1101: sgmii receiving crs (from copper link partner) (do not use if snoop mode is enabled) 1111: on Reset value is 0.            |

## **G\_MASTER\_SLAVE\_SEED**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x3a

Register Description: Master/Slave Seed Register

Table 159: G\_MASTER\_SLAVE\_SEED

| Bits | Name | R/W | Description                         | Default |
|------|------|-----|-------------------------------------|---------|
| 15:0 | SEED | R/W | Shadow Register:<br>1 => HCD Status | 0x0     |

## **G\_TEST1**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x3c

Register Description: Test Register 1

Table 160: G\_TEST1

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W |             | 0x0     |

## **G\_TEST2**

Register Address: SPI Page 0x10-0x13, SPI Offset 0x3e

Register Description: Test Register 2

Table 161: G\_TEST2

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W | _           | 0x0     |

# Page 0x20-0x23: Port MIB Counter Register

Table 162: Page 0x20 – 0x23: Port MIB Counter Register

| Address | Bits | Register Name                          |
|---------|------|----------------------------------------|
| 0x00    | 63:0 | "TxOctets" on page 122                 |
| 80x0    | 31:0 | "TxDropPkts" on page 123               |
| 0x0c    | 31:0 | "TxQPKTQ0" on page 123                 |
| 0x10    | 31:0 | "TxBroadcastPkts" on page 123          |
| 0x14    | 31:0 | "TxMulticastPkts" on page 123          |
| 0x18    | 31:0 | "TxUnicastPkts" on page 124            |
| 0x1c    | 31:0 | "TxCollisions" on page 124             |
| 0x20    | 31:0 | "TxSingleCollision" on page 124        |
| 0x24    | 31:0 | "TxMultipleCollision" on page 124      |
| 0x28    | 31:0 | "TxDeferredTransmit" on page 125       |
| 0x2c    | 31:0 | "TxLateCollision" on page 125          |
| 0x30    | 31:0 | "TxExcessiveCollision" on page 125     |
| 0x34    | 31:0 | "TxFrameInDisc" on page 126            |
| 0x38    | 31:0 | "TxPausePkts" on page 126              |
| 0x3c    | 31:0 | "TxQPKTQ1" on page 126                 |
| 0x40    | 31:0 | "TxQPKTQ2" on page 126                 |
| 0x44    | 31:0 | "TxQPKTQ3" on page 127                 |
| 0x48    | 31:0 | "TxQPKTQ4" on page 127                 |
| 0x4c    | 31:0 | "TxQPKTQ5" on page 127                 |
| 0x50    | 63:0 | "RxOctets" on page 128                 |
| 0x58    | 31:0 | "RxUndersizePkts" on page 128          |
| 0x5c    | 31:0 | "RxPausePkts" on page 129              |
| 0x60    | 31:0 | "RxPkts64Octets" on page 129           |
| 0x64    | 31:0 | "RxPkts65to127Octets" on page 130      |
| 0x68    | 31:0 | "RxPkts128to255Octets" on page 130     |
| 0x6c    | 31:0 | "RxPkts256to511Octets" on page 130     |
| 0x70    | 31:0 | "RxPkts512to1023Octets" on page 131    |
| 0x74    | 31:0 | "RxPkts1024toMaxPktOctets" on page 131 |
| 0x78    | 31:0 | "RxOversizePkts" on page 131           |
| 0x7c    | 31:0 | "RxJabbers" on page 132                |
| 0x80    | 31:0 | "RxAlignmentErrors" on page 132        |
| 0x84    | 31:0 | "RxFCSErrors" on page 133              |
| 0x88    | 63:0 | "RxGoodOctets" on page 133             |
| 0x90    | 31:0 | "RxDropPkts" on page 133               |
| 0x94    | 31:0 | "RxUnicastPkts" on page 133            |
| 0x98    | 31:0 | "RxMulticastPkts" on page 134          |

Table 162: Page 0x20 – 0x23: Port MIB Counter Register (Cont.)

| Address | Bits | Register Name                          |
|---------|------|----------------------------------------|
| 0x9c    | 31:0 | "RxBroadcastPkts" on page 134          |
| 0xa0    | 31:0 | "RxSAChanges" on page 134              |
| 0xa4    | 31:0 | "RxFragments" on page 135              |
| 0xa8    | 31:0 | "RxJumboPkt" on page 135               |
| 0xac    | 31:0 | "RxSymblErr" on page 135               |
| 0xb0    | 31:0 | "InRangeErrCount" on page 135          |
| 0xb4    | 31:0 | "OutRangeErrCount" on page 136         |
| 0xb8    | 31:0 | "EEE_LPI_EVENT" on page 136            |
| 0xbc    | 31:0 | "EEE_LPI_DURATION" on page 137         |
| 0xc0    | 31:0 | "RxDiscard" on page 137                |
| 0xc8    | 31:0 | "TxQPKTQ6" on page 137                 |
| Охсс    | 31:0 | "TxQPKTQ7" on page 137                 |
| 0xd0    | 31:0 | "TxPkts64Octets" on page 138           |
| 0xd4    | 31:0 | "TxPkts65to127Octets" on page 138      |
| 0xd8    | 31:0 | "TxPkts128to255Octets" on page 138     |
| 0xdc    | 31:0 | "TxPkts256to511Octets" on page 138     |
| 0xe0    | 31:0 | "TxPkts512to1023Octets" on page 139    |
| 0xe4    | 31:0 | "TxPkts1024toMaxPktOctets" on page 139 |

### **TxOctets**

Register Address: SPI Page 0x20-0x23 SPI Offset 0x00

Register Description: TxOctets

Table 163: TxOctets

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of good bytes of data transmitted by a port (excluding preamble, but including FCS). | 0x0     |

## **TxDropPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x08

Register Description: Tx Drop Packet Counter

Table 164: TxDropPkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                              | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | This counter is increased every time a transmit packet is dropped due to lack of resources (such as transmit FIFO underflow), or an internal MAC sublayer transmit error not counted by either the TxLateCollision or the TxExcessiveCollision counters. |         |

### TxQPKTQ0

Register Address: SPI Page 0x20-0x23, SPI Offset 0x0c

Register Description: Tx Q0 Packet Counter

Table 165: TxQPKTQ0

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS0, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## **TxBroadcastPkts**

Register Address: SPI Page 0x20–0x23, SPI Offset 0x10

Register Description: Tx Broadcast Packet Counter

Table 166: TxBroadcastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a broadcast address. This counter does not include error broadcast packets or valid multicast packets. | 0x0     |

## **TxMulticastPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x14

Register Description: Tx Multicast Packet Counter

Table 167: TxMulticastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

### **TxUnicastPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x18

Register Description: Tx Unicast Packet Counter

Table 168: TxUnicastPkts

| Bits | Name  | R/W | Description                                                                               | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are addressed to a unicast address. | 0x0     |

### **TxCollisions**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x1c

Register Description: Tx Collision Counter

Table 169: TxCollisions

| Bits | Name  | R/W | Description                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of collisions experienced by a port during packet transmissions. | 0x0     |

## **TxSingleCollision**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x20

Register Description: Tx Single Collision Counter

Table 170: TxSingleCollision

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced exactly one collision. |         |

## **TxMultipleCollision**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x24

Register Description: Tx Multiple collsion Counter

Table 171: TxMultipleCollision

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced more than one collision. | 0x0     |

### **TxDeferredTransmit**

Register Address: SPI Page 0x20–0x23, SPI Offset 0x28

Register Description: Tx Deferred Transmit Counter

Table 172: TxDeferredTransmit

| Bits | Name  | R/W | Description                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets transmitted by a port for which the first transmission attempt is delayed because the medium is busy. | 0x0     |

### **TxLateCollision**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x2c

Register Description: Tx Late Collision Counter

Table 173: TxLateCollision

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times that a collision is detected later than 512 bit-times into the transmission of a packet. |         |

## **TxExcessiveCollision**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x30

Register Description: Tx Excessive Collision Counter

Table 174: TxExcessiveCollision

| Bits | Name  | R/W | Description                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets that are not transmitted from a port because the packet experienced 16 transmission attempts. | 0x0     |

### **TxFrameInDisc**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x34

Register Description: Tx Fram IN Disc Counter

Table 175: TxFrameInDisc

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of valid packets received that are discarded by the forwarding process due to lack of space on an output queue. (Not maintained or reported in the MIB counters and located in the congestion management registers, page 0Ah.) This attribute increments only if a network device is not acting in compliance with a flow-control request, or the chip internal flow control/buffering scheme has been misconfigured. |         |

#### **TxPausePkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x38

Register Description: Tx Pause Packet Counter

Table 176: TxPausePkts

| Bits | Name  | R/W | Description                                 | Default |
|------|-------|-----|---------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE events on a given port. | 0x0     |

### TxQPKTQ1

Register Address: SPI Page 0x20-0x23, SPI Offset 0x3c

Register Description: Tx Q1 Packet Counter

Table 177: TxQPKTQ1

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS1, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## **TxQPKTQ2**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x40

Register Description: Tx Q2 Packet Counter

#### Table 178: TxQPKTQ2

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS2, which is specified in MIB queue select register when QoS is enabled. | 1 0x0   |

## **TxQPKTQ3**

Register Address: SPI Page 0x20–0x23, SPI Offset 0x44

Register Description: Tx Q3 Packet Counter

Table 179: TxQPKTQ3

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS3, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## **TxQPKTQ4**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x48

Register Description: Tx Q4 Packet Counter

Table 180: TxQPKTQ4

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS4, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### **TxQPKTQ5**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x4c

Register Description: Tx Q5 Packet Counter

Table 181: TxQPKTQ5

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS5, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### **RxOctets**

Register Address: SPI Page 0x20–0x23, SPI Offset 0x50

Register Description: Rx Packet Octets Counter

#### Table 182: RxOctets

| Bits | Name  | R/W | Description                                                                                                    | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The number of bytes of data received by a port (excluding preamble, but including FCS), including bad packets. | 0x0     |

### **RxUndersizePkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x58

Register Description: Rx Under Size Packet Octets Counter

#### Table 183: RxUndersizePkts

| Bits | Name  | R/W | Description                                                                                                                     | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are less than 64 bytes long (excluding framing bits, but including the FCS). | 0x0     |

## **RxPausePkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x5c

Register Description: Rx Pause Packet Counter

Table 184: RxPausePkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE frames received by a port. The PAUSE frame must have a valid MAC control frame EtherType field (8808h), have a destination MAC address of either the MAC control frame reserved multicast address (01-80-C2-00-00-01) or the unique MAC address associated with the specific port, a valid PAUSE Opcode (0001), be a minimum of 64 bytes in length (excluding preamble but including FCS), and have a valid CRC. Although an IEEE 802.3-compliant MAC is permitted to transmit PAUSE frames only when in full-duplex mode with flow control enabled and with the transfer of PAUSE frames determined by the result of autonegotiation, an IEEE 802.3 MAC receiver is required to count all received PAUSE frames, regardless of its half/full-duplex status. An indication that a MAC is in half-duplex with the RxPausePkts incrementing indicates a noncompliant transmitting device on the network. |         |

### RxPkts64Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x60

Register Description: Rx 64 Bytes Octets Counter

Table 185: RxPkts64Octets

| Bits | Name  | R/W | Description                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are 64 bytes long. | 0x0     |

### RxPkts65to127Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x64

Register Description: Rx 65 to 127 Bytes Octets Counter

Table 186: RxPkts65to127Octets

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 65 and 127 bytes long. | · 0x0   |

### RxPkts128to255Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x68

Register Description: Rx 128 to 255 Bytes Octets Counter

Table 187: RxPkts128to255Octets

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 128 and 255 bytes long. | · 0x0   |

### RxPkts256to511Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x6c

Register Description: Rx 256 to 511 Bytes Octets Counter

#### Table 188: RxPkts256to511Octets

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 256 and 511 bytes long. | r 0x0   |

### RxPkts512to1023Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x70

Register Description: Rx 512 to 1023 Bytes Octets Counter

#### Table 189: RxPkts512to1023Octets

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

### RxPkts1024toMaxPktOctets

Register Address: SPI Page 0x20-0x23, SPI Offset 0x74

Register Description: Rx 1024 to MaxPkt Bytes Octets Counter

#### Table 190: RxPkts1024toMaxPktOctets

| Bits | Name  | R/W | Description                                                                                              | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 1024 and MaxPacket bytes long. |         |

### **RxOversizePkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x78

Register Description: Rx Over Size Packet Counter

#### Table 191: RxOversizePkts

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are greater than standard max frame size. | 0x0     |

## **RxJabbers**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x7c

Register Description: Rx Jabber Packet Counter

Table 192: RxJabbers

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that meet below frame length condition and have either an FCS error or an alignment error.  1. standard max frame size is 2000 bytes: frame length is longer than 2000 bytes.  2. standard max frame size is 1518 bytes: frame length is longer than 1518 bytes, when disable double tag, or ingress frame is untagged frame length is longer than 1522 bytes, when enable double tag and ingress frame is single tagged, or ingress frame is 1Q frame. frame length is longer than 1526 bytes, when enable double tag and ingress frame is double tagged. | 0x0     |

## RxAlignmentErrors

Register Address: SPI Page 0x20-0x23, SPI Offset 0x80

Register Description: Rx Alignment Error Counter

Table 193: RxAlignmentErrors

| Bits | Name  | R/W | Description                                                                                                                                                                                                       | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with a nonintegral number of bytes. |         |

### **RxFCSErrors**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x84

Register Description: Rx FCS Error Counter

Table 194: RxFCSErrors

| Bits | Name  | R/W | Description                                                                                                                                                                                                     | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with an integral number of bytes. |         |

### **RxGoodOctets**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x88

Register Description: Rx Good Packet Octet Counter

Table 195: RxGoodOctets

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of bytes in all good packets received by a port (excluding framing bits but including FCS). | 0x0     |

## **RxDropPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x90

Register Description: Rx Drop Packet Counter

Table 196: RxDropPkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were dropped due to lack of resources (such as lack of input buffers) or were dropped due to lack of resources before a determination of the validity of the packet was able to be made (such as receive FIFO overflow). The counter is increased only if the receive error was not counted by the RxAlignmentErrors or the RxFCSErrors counters. |         |

## **RxUnicastPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x94

Register Description: Rx Unicast Packet Counter

Table 197: RxUnicastPkts

| Bits | Name  | R/W | Description                                                                          | Default |
|------|-------|-----|--------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a porthat are addressed to a unicast address. | t 0x0   |

### **RxMulticastPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x98

Register Description: Rx Multicast Packet Counter

Table 198: RxMulticastPkts

| Bits | Name  | R/W | Description                                                                                                                                                               | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

### **RxBroadcastPkts**

Register Address: SPI Page 0x20-0x23, SPI Offset 0x9c

Register Description: Rx Broadcast Packet Counter

Table 199: RxBroadcastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to the broadcast address. This counter does not include error broadcast packets or valid multicast packets. |         |

## **RxSAChanges**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xa0

Register Description: Rx SA Change Counter

Table 200: RxSAChanges

| Bits | Name  | R/W | Description                                                                                                                                                                           | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times the SA of good receive packets has changed from the previous value. A count greater than 1 generally indicates the port is connected to a repeater-based network. |         |

April 19, 2017 • 53134-PR103

## **RxFragments**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xa4

Register Description: Rx Fragment Counter

Table 201: RxFragments

| Bits | Name  | R/W | Description                                                                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that are less than 64 bytes (excluding framing bits) and have either an FCS error or an alignment error. | 0x0     |

### **RxJumboPkt**

Register Address: SPI Page 0x20–0x23, SPI Offset 0xa8

Register Description: Jumbo Packet Counter

Table 202: RxJumboPkt

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                     | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with frame size greater than the Standard Maximum Size and less than or equal to the Jumbo Frame Size, regardless of CRC or Alignment errors.  Note: InFrame count should count the JumboPkt count with good CRC. |         |

## **RxSymblErr**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xac

Register Description: Rx Symbol Error Counter

Table 203: RxSymblErr

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of times a valid length packet was received at a port and at least one invalid data symbol was detected. Counter increments only once per carrier event and does not increment on detection of collision during the carrier event. | 0x0     |

## InRangeErrCount

Register Address: SPI Page 0x20-0x23, SPI Offset 0xb0

Register Description: InRangeErrCount Counter

Table 204: InRangeErrCount

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the following conditions. The value of Length/Type field is between 46 and 1500 inclusive, and does not match the number or (MAC Client Data + PAD) data octets received, OR The value of Length/Type field is less than 46, and the number of data octets received is greater than 46 (which does not require padding). | 0x0     |

## **OutRangeErrCount**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xb4

Register Description: OutRangeErrCount Counter

Table 205: OutRangeErrCount

| Bits | Name  | R/W | Description                                                                                                             | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the value of Length/Type field is greater than 1500 and less than 1536. |         |

## EEE\_LPI\_EVENT

Register Address: SPI Page 0x20-0x23, SPI Offset 0xb8

Register Description: EEE Low-Power Idle Event Registers

### Table 206: EEE\_LPI\_EVENT

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                     | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle event In asymmetric mode, this is simply a count of the number of times that the lowPowerAssert control signal has been asserted for each MAC. In symmetric mode, this is the count of the number of times both lowPowerAssert and the lowPowerIndicate (from the receive path) are asserted simultaneously. |         |

## **EEE\_LPI\_DURATION**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xbc

Register Description: EEE Low-Power Idle Duration Registers

Table 207: EEE\_LPI\_DURATION

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle duration. In symmetric mode, this counter accumulates the number of microseconds that the associated MAC/PHY is in the low-power idle state. In asymmetric mode, this counter accumulates the number of microseconds that the associated MAC is in the low-power idle state. The unit is 1 usec. |         |

### **RxDiscard**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xc0

Register Description: Rx Discard Counter

Table 208: RxDiscard

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were discarded by the Forwarding Process. |         |

### **TxQPKTQ6**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xc8

Register Description: Tx Q6 Packet Counter

Table 209: TxQPKTQ6

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS6, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## **TxQPKTQ7**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xcc

Register Description: Tx Q7 Packet Counter

#### Table 210: TxQPKTQ7

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS6, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## **TxPkts64Octets**

Register Address: SPI Page 0x20-0x23, SPI Offset 0xd0

Register Description: Tx 64 Bytes Octets Counter

Table 211: TxPkts64Octets

| Bits | Name  | R/W | Description                                                                         | Default |
|------|-------|-----|-------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are 64 bytes long. | 0x0     |

#### TxPkts65to127Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0xd4

Register Description: Tx 65 to 127 Bytes Octets Counter

#### Table 212: TxPkts65to127Octets

| Bits | Name  | R/W | Description                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 65 and 127 bytes long. | 0x0     |

#### TxPkts128to255Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0xd8

Register Description: Tx 128 to 255 Bytes Octets Counter

#### Table 213: TxPkts128to255Octets

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 128 and 255 bytes long. | 0x0     |

#### TxPkts256to511Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0xdc

Register Description: Tx 256 to 511 Bytes Octets Counter

Table 214: TxPkts256to511Octets

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 256 and 511 bytes long. | 0x0     |

### TxPkts512to1023Octets

Register Address: SPI Page 0x20-0x23, SPI Offset 0xe0

Register Description: Tx 512 to 1023 Bytes Octets Counter

Table 215: TxPkts512to1023Octets

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

### TxPkts1024toMaxPktOctets

Register Address: SPI Page 0x20-0x23, SPI Offset 0xe4

Register Description: Tx 1024 to MaxPkt Bytes Octets Counter

Table 216: TxPkts1024toMaxPktOctets

| Bits | Name  | R/W | Description                                                                                                 | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 1024 and MaxPacket bytes long. | 0x0     |

# Page 0x28: IMP port MIB counter Register

Table 217: Page 0x28: IMP port MIB counter Register

| Address | Bits | Register Name                              |
|---------|------|--------------------------------------------|
| 0x00    | 63:0 | "TxOctets_IMP" on page 141                 |
| 80x0    | 31:0 | "TxDropPkts_IMP" on page 142               |
| 0x0c    | 31:0 | "TxQPKTQ0_IMP" on page 142                 |
| 0x10    | 31:0 | "TxBroadcastPkts_IMP" on page 142          |
| 0x14    | 31:0 | "TxMulticastPkts_IMP" on page 142          |
| 0x18    | 31:0 | "TxUnicastPkts_IMP" on page 143            |
| 0x1c    | 31:0 | "TxCollisions_IMP" on page 143             |
| 0x20    | 31:0 | "TxSingleCollision_IMP" on page 143        |
| 0x24    | 31:0 | "TxMultipleCollision_IMP" on page 143      |
| 0x28    | 31:0 | "TxDeferredTransmit_IMP" on page 144       |
| 0x2c    | 31:0 | "TxLateCollision_IMP" on page 144          |
| 0x30    | 31:0 | "TxExcessiveCollision_IMP" on page 144     |
| 0x34    | 31:0 | "TxFrameInDisc_IMP" on page 145            |
| 0x38    | 31:0 | "TxPausePkts_IMP" on page 145              |
| 0x3c    | 31:0 | "TxQPKTQ1_IMP" on page 145                 |
| 0x40    | 31:0 | "TxQPKTQ2_IMP" on page 145                 |
| 0x44    | 31:0 | "TxQPKTQ3_IMP" on page 146                 |
| 0x48    | 31:0 | "TxQPKTQ4_IMP" on page 146                 |
| 0x4c    | 31:0 | "TxQPKTQ5_IMP" on page 146                 |
| 0x50    | 63:0 | "RxOctets_IMP" on page 147                 |
| 0x58    | 31:0 | "RxUndersizePkts_IMP" on page 147          |
| 0x5c    | 31:0 | "RxPausePkts_IMP" on page 148              |
| 0x60    | 31:0 | "RxPkts64Octets_IMP" on page 148           |
| 0x64    | 31:0 | "RxPkts65to127Octets_IMP" on page 149      |
| 0x68    | 31:0 | "RxPkts128to255Octets_IMP" on page 149     |
| 0x6c    | 31:0 | "RxPkts256to511Octets_IMP" on page 149     |
| 0x70    | 31:0 | "RxPkts512to1023Octets_IMP" on page 150    |
| 0x74    | 31:0 | "RxPkts1024toMaxPktOctets_IMP" on page 150 |
| 0x78    | 31:0 | "RxOversizePkts_IMP" on page 150           |
| 0x7c    | 31:0 | "RxJabbers_IMP" on page 151                |
| 0x80    | 31:0 | "RxAlignmentErrors_IMP" on page 151        |
| 0x84    | 31:0 | "RxFCSErrors_IMP" on page 152              |
| 0x88    | 63:0 | "RxGoodOctets_IMP" on page 152             |
| 0x90    | 31:0 | "RxDropPkts_IMP" on page 152               |
| 0x94    | 31:0 | "RxUnicastPkts_IMP" on page 152            |
| 0x98    | 31:0 | "RxMulticastPkts_IMP" on page 153          |

Table 217: Page 0x28: IMP port MIB counter Register (Cont.)

| Address | Bits | Register Name                              |
|---------|------|--------------------------------------------|
| 0x9c    | 31:0 | "RxBroadcastPkts_IMP" on page 153          |
| 0xa0    | 31:0 | "RxSAChanges_IMP" on page 153              |
| 0xa4    | 31:0 | "RxFragments_IMP" on page 154              |
| 0c28    | 31:0 | "RxJumboPkt_IMP" on page 154               |
| 0xac    | 31:0 | "RxSymblErr_IMP" on page 154               |
| 0xb0    | 31:0 | "InRangeErrCount_IMP" on page 154          |
| 0xb4    | 31:0 | "OutRangeErrCount_IMP" on page 155         |
| 0xb8    | 31:0 | "EEE_LPI_EVENT_IMP" on page 155            |
| 0xbc    | 31:0 | "EEE_LPI_DURATION_IMP" on page 156         |
| 0xc0    | 31:0 | "RxDiscard_IMP" on page 156                |
| 0xc8    | 31:0 | "TxQPKTQ6_IMP" on page 156                 |
| 0xcc    | 31:0 | "TxQPKTQ7_IMP" on page 156                 |
| 0xd0    | 31:0 | "TxPkts64Octets_IMP" on page 157           |
| 0xd4    | 31:0 | "TxPkts65to127Octets_IMP" on page 157      |
| 0xd8    | 31:0 | "TxPkts128to255Octets_IMP" on page 157     |
| 0xdc    | 31:0 | "TxPkts256to511Octets_IMP" on page 157     |
| 0xe0    | 31:0 | "TxPkts512to1023Octets_IMP" on page 158    |
| 0xe4    | 31:0 | "TxPkts1024toMaxPktOctets_IMP" on page 158 |

## TxOctets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x00

Register Description: TxOctets

Table 218: TxOctets\_IMP

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of good bytes of data transmitted by a port (excluding preamble, but including FCS). | 0x0     |

## TxDropPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x08

Register Description: Tx Drop Packet Counter

Table 219: TxDropPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                              | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | This counter is increased every time a transmit packet is dropped due to lack of resources (such as transmit FIFO underflow), or an internal MAC sublayer transmit error not counted by either the TxLateCollision or the TxExcessiveCollision counters. |         |

## TxQPKTQ0\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x0c

Register Description: Tx Q0 Packet Counter

Table 220: TxQPKTQ0\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS0, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

## TxBroadcastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x10

Register Description: Tx Broadcast Packet Counter

#### Table 221: TxBroadcastPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a broadcast address. This counter does not include error broadcast packets or valid multicast packets. | 0x0     |

## TxMulticastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x14

Register Description: Tx Multicast Packet Counter

Table 222: TxMulticastPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

## TxUnicastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x18

Register Description: Tx Unicast Packet Counter

Table 223: TxUnicastPkts IMP

| Bits | Name  | R/W | Description                                                                               | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are addressed to a unicast address. | 0x0     |

## TxCollisions\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x1c

Register Description: Tx Collision Counter

Table 224: TxCollisions\_IMP

| Bits | Name  | R/W | Description                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of collisions experienced by a port during packet transmissions. | 0x0     |

## TxSingleCollision\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x20

Register Description: Tx Single Collision Counter

Table 225: TxSingleCollision\_IMP

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced exactly one collision. | 0x0     |

## TxMultipleCollision\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x24

Register Description: Tx Multiple collision Counter

Table 226: TxMultipleCollision\_IMP

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced more than one collision. | 0x0     |

## TxDeferredTransmit\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x28

Register Description: Tx Deferred Transmit Counter

Table 227: TxDeferredTransmit\_IMP

| Bits | Name  | R/W | Description                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets transmitted by a port for which the first transmission attempt is delayed because the medium is busy. | 0x0     |

## TxLateCollision\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x2c

Register Description: Tx Late Collision Counter

Table 228: TxLateCollision\_IMP

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times that a collision is detected later than 512 bit-times into the transmission of a packet. |         |

## TxExcessiveCollision\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x30

Register Description: Tx Excessive Collision Counter

Table 229: TxExcessiveCollision\_IMP

| Bits | Name  | R/W | Description                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets that are not transmitted from a port because the packet experienced 16 transmission attempts. | 0x0     |

#### TxFrameInDisc\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x34

Register Description: Tx Fram IN Disc Counter

Table 230: TxFrameInDisc\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of valid packets received that are discarded by the forwarding process due to lack of space on an output queue. (Not maintained or reported in the MIB counters and located in the congestion management registers, page 0Ah.) This attribute increments only if a network device is not acting in compliance with a flow-control request, or the chip internal flow control/buffering scheme has been misconfigured. |         |

## TxPausePkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x38

Register Description: Tx Pause Packet Counter

Table 231: TxPausePkts\_IMP

| Bits | Name  | R/W | Description                                 | Default |
|------|-------|-----|---------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE events on a given port. | 0x0     |

### TxQPKTQ1\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x3c

Register Description: Tx Q1 Packet Counter

#### Table 232: TxQPKTQ1\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS1, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

#### TxQPKTQ2\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x40

Register Description: Tx Q2 Packet Counter

#### Table 233: TxQPKTQ2\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS2, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### TxQPKTQ3\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x44

Register Description: Tx Q3 Packet Counter

#### Table 234: TxQPKTQ3\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS3, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

#### TxQPKTQ4\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x48

Register Description: Tx Q4 Packet Counter

#### Table 235: TxQPKTQ4\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS4, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### TxQPKTQ5\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x4c

Register Description: Tx Q5 Packet Counter

Table 236: TxQPKTQ5\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS5, which is specified in MIB queue select register when QoS is enabled. | n 0x0   |

### RxOctets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x50

Register Description: Rx Packet Octets Counter

Table 237: RxOctets\_IMP

| Bits | Name  | R/W | Description                                                                                                    | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The number of bytes of data received by a port (excluding preamble, but including FCS), including bad packets. | 0x0     |

### RxUndersizePkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x58

Register Description: Rx Under Size Packet Octets Counter

#### Table 238: RxUndersizePkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                     | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are less than 64 bytes long (excluding framing bits, but including the FCS). | 0x0     |

### RxPausePkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x5c

Register Description: Rx Pause Packet Counter

Table 239: RxPausePkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE frames received by a port. The PAUSE frame must have a valid MAC control frame EtherType field (8808h), have a destination MAC address of either the MAC control frame reserved multicast address (01-80-C2-00-00-01) or the unique MAC address associated with the specific port, a valid PAUSE Opcode (0001), be a minimum of 64 bytes in length (excluding preamble but including FCS), and have a valid CRC. Although an IEEE 802.3-compliant MAC is permitted to transmit PAUSE frames only when in full-duplex mode with flow control enabled and with the transfer of PAUSE frames determined by the result of autonegotiation, an IEEE 802.3 MAC receiver is required to count all received PAUSE frames, regardless of its half/full-duplex status. An indication that a MAC is in half-duplex with the RxPausePkts incrementing indicates a noncompliant transmitting device on the network. |         |

### RxPkts64Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x60

Register Description: Rx 64 Bytes Octets Counter

Table 240: RxPkts64Octets\_IMP

| Bits | Name  | R/W | Description                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are 64 bytes long. | 0x0     |

#### RxPkts65to127Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x64

Register Description: Rx 65 to 127 Bytes Octets Counter

Table 241: RxPkts65to127Octets\_IMP

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 65 and 127 bytes long. | 0x0     |

#### RxPkts128to255Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x68

Register Description: Rx 128 to 255 Bytes Octets Counter

Table 242: RxPkts128to255Octets\_IMP

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 128 and 255 bytes long. | 0x0     |

#### RxPkts256to511Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x6c

Register Description: Rx 256 to 511 Bytes Octets Counter

Table 243: RxPkts256to511Octets\_IMP

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 256 and 511 bytes long. | r 0x0   |

## RxPkts512to1023Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x70

Register Description: Rx 512 to 1023 Bytes Octets Counter

Table 244: RxPkts512to1023Octets\_IMP

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

#### RxPkts1024toMaxPktOctets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x74

Register Description: Rx 1024 to MaxPkt Bytes Octets Counter

Table 245: RxPkts1024toMaxPktOctets\_IMP

| Bits | Name  | R/W | Description                                                                                              | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 1024 and MaxPacket bytes long. |         |

#### RxOversizePkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x78

Register Description: Rx Over Size Packet Counter

Table 246: RxOversizePkts IMP

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are greater than standard max frame size. | 0x0     |

### RxJabbers\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x7c

Register Description: Rx Jabber Packet Counter

Table 247: RxJabbers\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that meet below frame length condition and have either an FCS error or an alignment error.  1. standard max frame size is 2000 bytes: frame length is longer than 2000 bytes.  2. standard max frame size is 1518 bytes: frame length is longer than 1518 bytes, when disable double tag, or ingress frame is untagged frame length is longer than 1522 bytes, when enable double tag and ingress frame is single tagged, or ingress frame is 1Q frame. frame length is longer than 1526 bytes, when enable double tag and ingress frame is double tagged. | 0x0     |

### RxAlignmentErrors\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x80

Register Description: Rx Alignment Error Counter

Table 248: RxAlignmentErrors\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                       | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with a nonintegral number of bytes. |         |

#### RxFCSErrors\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x84

Register Description: Rx FCS Error Counter

Table 249: RxFCSErrors\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                     | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with an integral number of bytes. |         |

#### RxGoodOctets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x88

Register Description: Rx Good Packet Octet Counter

Table 250: RxGoodOctets\_IMP

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of bytes in all good packets received by a port (excluding framing bits but including FCS). | 0x0     |

### RxDropPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x90

Register Description: Rx Drop Packet Counter

Table 251: RxDropPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                            | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were dropped due to lack of resources (such as lack of input buffers) or were dropped due to lack of resources before a determination of the validity of the packet was able to be made (such as receive FIFO overflow). The counter is incremented only if the receive error was not counted by the RxAlignmentErrors or the RxFCSErrors counters. |         |

### RxUnicastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x94

Register Description: Rx Unicast Packet Counter

Table 252: RxUnicastPkts\_IMP

| Bits | Name  | R/W | Description                                                                          | Default |
|------|-------|-----|--------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a porthat are addressed to a unicast address. | t 0x0   |

#### RxMulticastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x98

Register Description: Rx Multicast Packet Counter

Table 253: RxMulticastPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                               | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

#### RxBroadcastPkts\_IMP

Register Address: SPI Page 0x28, SPI Offset 0x9c

Register Description: Rx Broadcast Packet Counter

Table 254: RxBroadcastPkts\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to the broadcast address. This counter does not include error broadcast packets or valid multicast packets. |         |

#### RxSAChanges\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xa0

Register Description: Rx SA Change Counter

Table 255: RxSAChanges\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                           | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times the SA of good receive packets has changed from the previous value. A count greater than 1 generally indicates the port is connected to a repeater-based network. |         |

### RxFragments\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xa4

Register Description: Rx Fragment Counter

Table 256: RxFragments\_IMP

| Bits | Name  | R/W | Description                                                                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that are less than 64 bytes (excluding framing bits) and have either an FCS error or an alignment error. | 0x0     |

### RxJumboPkt\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xa8

Register Description: Jumbo Packet Counter

Table 257: RxJumboPkt\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                     | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with frame size greater than the Standard Maximum Size and less than or equal to the Jumbo Frame Size, regardless of CRC or Alignment errors.  Note: InFrame count should count the JumboPkt count with good CRC. |         |

### RxSymblErr\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xac

Register Description: Rx Symbol Error Counter

Table 258: RxSymblErr\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of times a valid length packet was received at a port and at least one invalid data symbol was detected. Counter increments only once per carrier event and does not increment on detection of collision during the carrier event. | 0x0     |

#### InRangeErrCount\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xb0

Register Description: InRangeErrCount Counter

Table 259: InRangeErrCount\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the following conditions. The value of Length/Type field is between 46 and 1500 inclusive, and does not match the number or (MAC Client Data + PAD) data octets received, OR The value of Length/Type field is less than 46, and the number of data octets received is greater than 46 (which does not require padding). |         |

### OutRangeErrCount\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xb4

Register Description: OutRangeErrCount Counter

Table 260: OutRangeErrCount\_IMP

| Bits | Name  | R/W | Description                                                                                                             | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the value of Length/Type field is greater than 1500 and less than 1536. |         |

### EEE\_LPI\_EVENT\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xb8

Register Description: EEE Low-Power Idle Event Registers

Table 261: EEE\_LPI\_EVENT\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                     | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle event In asymmetric mode, this is simply a count of the number of times that the lowPowerAssert control signal has been asserted for each MAC. In symmetric mode, this is the count of the number of times both lowPowerAssert and the lowPowerIndicate (from the receive path) are asserted simultaneously. |         |

#### EEE\_LPI\_DURATION\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xbc

Register Description: EEE Low-Power Idle Duration Registers

Table 262: EEE\_LPI\_DURATION\_IMP

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle duration. In symmetric mode, this counter accumulates the number of microseconds that the associated MAC/PHY is in the low-power idle state. In asymmetric mode, this counter accumulates the number of microseconds that the associated MAC is in the low-power idle state. The unit is 1 usec. |         |

### RxDiscard\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xc0

Register Description: Rx Discard Counter

Table 263: RxDiscard\_IMP

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were discarded by the Forwarding Process. |         |

### TxQPKTQ6\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xc8

Register Description: Tx Q6 Packet Counter

Table 264: TxQPKTQ6\_IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS6, which is specified in MIB queue select register when QoS is enabled. | n 0x0   |

#### TxQPKTQ7\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xcc

Register Description: Tx Q7 Packet Counter

#### Table 265: TxQPKTQ7 IMP

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS6, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### TxPkts64Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xd0

Register Description: Tx 64 Bytes Octets Counter

#### Table 266: TxPkts64Octets\_IMP

| Bits | Name  | R/W | Description                                                                         | Default |
|------|-------|-----|-------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are 64 bytes long. | 0x0     |

#### TxPkts65to127Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xd4

Register Description: Tx 65 to 127 Bytes Octets Counter

#### Table 267: TxPkts65to127Octets\_IMP

| Bits | Name  | R/W | Description                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 65 and 127 bytes long. | 0x0     |

#### TxPkts128to255Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xd8

Register Description: Tx 128 to 255 Bytes Octets Counter

#### Table 268: TxPkts128to255Octets\_IMP

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 128 and 255 bytes long. | 0x0     |

#### TxPkts256to511Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xdc

Register Description: Tx 256 to 511 Bytes Octets Counter

Table 269: TxPkts256to511Octets\_IMP

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 256 and 511 bytes long. | 0x0     |

### TxPkts512to1023Octets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xe0

Register Description: Tx 512 to 1023 Bytes Octets Counter

Table 270: TxPkts512to1023Octets\_IMP

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

#### TxPkts1024toMaxPktOctets\_IMP

Register Address: SPI Page 0x28, SPI Offset 0xe4

Register Description: Tx 1024 to MaxPkt Bytes Octets Counter

Table 271: TxPkts1024toMaxPktOctets\_IMP

| Bits | Name  | R/W | Description                                                                                                 | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 1024 and MaxPacket bytes long. | 0x0     |

# Page 0x30: QoS Register

Table 272: Page 0x30: QoS Register

| Address | Bits | Register Name                                 |  |
|---------|------|-----------------------------------------------|--|
| 0x00    | 7:0  | "QOS_GLOBAL_CTRL" on page 159                 |  |
| 0x04    | 15:0 | "QoS IEEE 802.1p Enable Register" on page 160 |  |
| 0x06    | 15:0 | "QOS_EN_DIFFSERV" on page 160                 |  |
| 0x10    | 31:0 | "PN_PCP2TC_DEI0" on page 160                  |  |
| 0x2c    | 31:0 | "IMP_PCP2TC_DEI0" on page 161                 |  |
| 0x30    | 47:0 | "QOS_DIFF_DSCP0" on page 162                  |  |
| 0x36    | 47:0 | "QOS_DIFF_DSCP1" on page 163                  |  |
| 0x3c    | 47:0 | "QOS_DIFF_DSCP2" on page 164                  |  |
| 0x42    | 47:0 | "QOS_DIFF_DSCP3" on page 165                  |  |
| 0x48    | 31:0 | "PID2TC" on page 166                          |  |
| 0x50    | 15:0 | "TC_SEL_TABLE" on page 166                    |  |
| 0x60    | 15:0 | "IMP_TC_SEL_TABLE" on page 168                |  |
| 0x64    | 31:0 | "CPU2COS_MAP" on page 169                     |  |
| 0x70    | 31:0 | "PN_TC2COS_MAP" on page 170                   |  |
| 0x90    | 31:0 | "IMP_TC2COS_MAP" on page 171                  |  |
| 0xb0    | 31:0 | "PN_PCP2TC_DEI1" on page 172                  |  |
| 0xcc    | 31:0 | "IMP_PCP2TC_DEI1" on page 173                 |  |

### QOS\_GLOBAL\_CTRL

Register Address: SPI Page 0x30, SPI Offset 0x00

Register Description: QoS Global Control Register

Table 273: QOS\_GLOBAL\_CTRL

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                          | Default |
|------|---------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | P8_AGGREGATION_MODE | R/W | When set the IMP operated as the uplink port to the upstream network processor and the COS is decided from the TC based the normal packet classification flow. Otherwise, the IMP operates as the interface to the management CPU, and the COS is decided based on the reasons for forwarding the packet to the CPU. |         |
| 6:5  | RESERVED_1          | R/W | Reserved                                                                                                                                                                                                                                                                                                             | 0x0     |

Table 273: QOS\_GLOBAL\_CTRL (Cont.)

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                              | Default |
|------|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 4    | P5_AGGREGATION_MODE | R/W | When set the Port5 operated as the uplink port to the upstream network processor and the COS is decided from the TC based the normal packet classification flow. Otherwise, the Port5 operates as the interface to the management CPU, and the COS is decided based on the reasons for forwarding the packet to the CPU. |         |
| 3:0  | RESERVED_0          | R/W | Reserved                                                                                                                                                                                                                                                                                                                 | 0x0     |

#### **QoS IEEE 802.1p Enable Register**

Register Address: SPI Page 0x30, SPI Offset 0x04

Register Description: QoS 802.1P Enable Register

Table 274: QoS IEEE 802.1p Enable Register

| Bits | Name      | R/W | Description                                                               | Default |
|------|-----------|-----|---------------------------------------------------------------------------|---------|
| 15:9 | RESERVED  | R/W | Reserved                                                                  | 0x0     |
| 8:0  | QOS_1P_EN | R/W | Enable 802.1p priority for individual ports.<br>Bit 8:0 = Port 8~ Port 0. | 0x0     |

#### QOS\_EN\_DIFFSERV

Register Address: SPI Page 0x30, SPI Offset 0x06

Register Description: QoS DiffServ Enable Register

Table 275: QOS\_EN\_DIFFSERV

| Bits | Name            | R/W | Description                                                                 | Default |
|------|-----------------|-----|-----------------------------------------------------------------------------|---------|
| 15:9 | RESERVED        | R/W | Reserved                                                                    | 0x0     |
| 8:0  | QOS_EN_DIFFSERV | R/W | Enable DiffServ priority for individual ports.<br>Bit 8:0 = Port 8~ Port 0. | 0x0     |

#### PN\_PCP2TC\_DEI0

Register Address: SPI Page 0x30, SPI Offset 0x10

Register Description: Port N PCP to TC Map for DEI 0 Register

Table 276: PN\_PCP2TC\_DEI0

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 31:24 | RESERVED | R/W | Reserved    | 0x0     |

Table 276: PN\_PCP2TC\_DEI0 (Cont.)

| Bits  | Name           | R/W | Description                                                                                                     | Default |
|-------|----------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 23:21 | TAG111_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 111 | 0x7     |
| 20:18 | TAG110_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 110       | 0x6     |
| 17:15 | TAG101_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 101       | 0x5     |
| 14:12 | TAG100_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 100       | 0x4     |
| 11:9  | TAG011_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 011       | 0x3     |
| 8:6   | TAG010_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 010       | 0x2     |
| 5:3   | TAG001_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 001       | 0x1     |
| 2:0   | TAG000_PRI_MAP | R/W | Priority Map for DEI is equal to 0. The TC value is mapped from the 802.1P/1Q Priority Tag field with 000       | 0x0     |

### IMP\_PCP2TC\_DEI0

Register Address: SPI Page 0x30, SPI Offset 0x2c

Register Description: Port 8 (IMP) PCP to TC Map for DEI 0 Register

Table 277: IMP\_PCP2TC\_DEI0

| Bits  | Name           | R/W | Description                                                                                                     | Default |
|-------|----------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | RESERVED       | R/W | Reserved                                                                                                        | 0x0     |
| 23:21 | TAG111_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 111 | 0x7     |
| 20:18 | TAG110_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 110 | 0x6     |
| 17:15 | TAG101_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 101 | 0x5     |
| 14:12 | TAG100_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 100 | 0x4     |

Table 277: IMP\_PCP2TC\_DEI0 (Cont.)

| Bits | Name           | R/W | Description                                                                                                     | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 11:9 | TAG011_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 011 | 0x3     |
| 8:6  | TAG010_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 010 | 0x2     |
| 5:3  | TAG001_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 001 | 0x1     |
| 2:0  | TAG000_PRI_MAP | R/W | Priority Map for DEI is equal to 0.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 000 | 0x0     |

Register Address: SPI Page 0x30, SPI Offset 0x30

Register Description: DiffServ Priority Map 0 Register

Table 278: QOS\_DIFF\_DSCP0

| Bits  | Name            | R/W | Description                                         | Default |
|-------|-----------------|-----|-----------------------------------------------------|---------|
| 47:45 | PRI_DSCP_001111 | R/W | DiffServ DSCP== 001111 to Priority ID map Register. | 0x0     |
| 44:42 | PRI_DSCP_001110 | R/W | DiffServ DSCP== 001110 to Priority ID map Register. | 0x0     |
| 41:39 | PRI_DSCP_001101 | R/W | DiffServ DSCP== 001101 to Priority ID map Register. | 0x0     |
| 38:36 | PRI_DSCP_001100 | R/W | DiffServ DSCP== 001100 to Priority ID map Register. | 0x0     |
| 35:33 | PRI_DSCP_001011 | R/W | DiffServ DSCP== 001011 to Priority ID map Register. | 0x0     |
| 32:30 | PRI_DSCP_001010 | R/W | DiffServ DSCP== 001010 to Priority ID map Register. | 0x0     |
| 29:27 | PRI_DSCP_001001 | R/W | DiffServ DSCP== 001001 to Priority ID map Register. | 0x0     |
| 26:24 | PRI_DSCP_001000 | R/W | DiffServ DSCP== 001000 to Priority ID map Register. | 0x0     |
| 23:21 | PRI_DSCP_000111 | R/W | DiffServ DSCP== 000111 to Priority ID map Register. | 0x0     |
| 20:18 | PRI_DSCP_000110 | R/W | DiffServ DSCP== 000110 to Priority ID map Register. | 0x0     |
| 17:15 | PRI_DSCP_000101 | R/W | DiffServ DSCP== 000101 to Priority ID map Register. | 0x0     |
| 14:12 | PRI_DSCP_000100 | R/W | DiffServ DSCP== 000100 to Priority ID map Register. | 0x0     |

Table 278: QOS\_DIFF\_DSCP0 (Cont.)

| Bits | Name            | R/W | Description                                         | Default |
|------|-----------------|-----|-----------------------------------------------------|---------|
| 11:9 | PRI_DSCP_000011 | R/W | DiffServ DSCP== 000011 to Priority ID map Register. | 0x0     |
| 8:6  | PRI_DSCP_000010 | R/W | DiffServ DSCP== 000010 to Priority ID map Register. | 0x0     |
| 5:3  | PRI_DSCP_000001 | R/W | DiffServ DSCP== 000001 to Priority ID map Register. | 0x0     |
| 2:0  | PRI_DSCP_000000 | R/W | DiffServ DSCP== 000000 to Priority ID map Register. | 0x0     |

Register Address: SPI Page 0x30, SPI Offset 0x36

Register Description: DiffServ Priority Map 1 Register

Table 279: QOS\_DIFF\_DSCP1

| Bits  | Name            | R/W | Description                                         | Default |
|-------|-----------------|-----|-----------------------------------------------------|---------|
| 47:45 | PRI_DSCP_011111 | R/W | DiffServ DSCP== 011111 to Priority ID map Register. | 0x0     |
| 44:42 | PRI_DSCP_011110 | R/W | DiffServ DSCP== 011110 to Priority ID map Register. | 0x0     |
| 41:39 | PRI_DSCP_011101 | R/W | DiffServ DSCP== 011101 to Priority ID map Register. | 0x0     |
| 38:36 | PRI_DSCP_011100 | R/W | DiffServ DSCP== 011100 to Priority ID map Register. | 0x0     |
| 35:33 | PRI_DSCP_011011 | R/W | DiffServ DSCP== 011011 to Priority ID map Register. | 0x0     |
| 32:30 | PRI_DSCP_011010 | R/W | DiffServ DSCP== 011010 to Priority ID map Register. | 0x0     |
| 29:27 | PRI_DSCP_011001 | R/W | DiffServ DSCP== 011001 to Priority ID map Register. | 0x0     |
| 26:24 | PRI_DSCP_011000 | R/W | DiffServ DSCP== 011000 to Priority ID map Register. | 0x0     |
| 23:21 | PRI_DSCP_010111 | R/W | DiffServ DSCP== 010111 to Priority ID map Register. | 0x0     |
| 20:18 | PRI_DSCP_010110 | R/W | DiffServ DSCP== 010110 to Priority ID map Register. | 0x0     |
| 17:15 | PRI_DSCP_010101 | R/W | DiffServ DSCP== 010101 to Priority ID map Register. | 0x0     |
| 14:12 | PRI_DSCP_010100 | R/W | DiffServ DSCP== 010100 to Priority ID map Register. | 0x0     |
| 11:9  | PRI_DSCP_010011 | R/W | DiffServ DSCP== 010011 to Priority ID map Register. | 0x0     |

Table 279: QOS\_DIFF\_DSCP1 (Cont.)

| Bits | Name            | R/W | Description                                         | Default |
|------|-----------------|-----|-----------------------------------------------------|---------|
| 8:6  | PRI_DSCP_010010 | R/W | DiffServ DSCP== 010010 to Priority ID map Register. | 0x0     |
| 5:3  | PRI_DSCP_010001 | R/W | DiffServ DSCP== 010001 to Priority ID map Register. | 0x0     |
| 2:0  | PRI_DSCP_010000 | R/W | DiffServ DSCP== 010000 to Priority ID map Register. | 0x0     |

Register Address: SPI Page 0x30, SPI Offset 0x3c

Register Description: DiffServ Priority Map 2 Register

Table 280: QOS\_DIFF\_DSCP2

| Bits  | Name            | R/W | Description                                         | Default |
|-------|-----------------|-----|-----------------------------------------------------|---------|
| 47:45 | PRI_DSCP_101111 | R/W | DiffServ DSCP== 101111 to Priority ID map Register. | 0x0     |
| 44:42 | PRI_DSCP_101110 | R/W | DiffServ DSCP== 101110 to Priority ID map Register. | 0x0     |
| 41:39 | PRI_DSCP_101101 | R/W | DiffServ DSCP== 101101 to Priority ID map Register. | 0x0     |
| 38:36 | PRI_DSCP_101100 | R/W | DiffServ DSCP== 101100 to Priority ID map Register. | 0x0     |
| 35:33 | PRI_DSCP_101011 | R/W | DiffServ DSCP== 101011 to Priority ID map Register. | 0x0     |
| 32:30 | PRI_DSCP_101010 | R/W | DiffServ DSCP== 101010 to Priority ID map Register. | 0x0     |
| 29:27 | PRI_DSCP_101001 | R/W | DiffServ DSCP== 101001 to Priority ID map Register. | 0x0     |
| 26:24 | PRI_DSCP_101000 | R/W | DiffServ DSCP== 101000 to Priority ID map Register. | 0x0     |
| 23:21 | PRI_DSCP_100111 | R/W | DiffServ DSCP== 000111 to Priority ID map Register. | 0x0     |
| 20:18 | PRI_DSCP_100110 | R/W | DiffServ DSCP== 100110 to Priority ID map Register. | 0x0     |
| 17:15 | PRI_DSCP_100101 | R/W | DiffServ DSCP== 100101 to Priority ID map Register. | 0x0     |
| 14:12 | PRI_DSCP_100100 | R/W | DiffServ DSCP== 100100 to Priority ID map Register. | 0x0     |
| 11:9  | PRI_DSCP_100011 | R/W | DiffServ DSCP== 100011 to Priority ID map Register. | 0x0     |
| 8:6   | PRI_DSCP_100010 | R/W | DiffServ DSCP== 100010 to Priority ID map Register. | 0x0     |

Table 280: QOS\_DIFF\_DSCP2 (Cont.)

| Bits | Name            | R/W | Description                                         | Default |
|------|-----------------|-----|-----------------------------------------------------|---------|
| 5:3  | PRI_DSCP_100001 | R/W | DiffServ DSCP== 100001 to Priority ID map Register. | 0x0     |
| 2:0  | PRI_DSCP_100000 | R/W | DiffServ DSCP== 100000 to Priority ID map Register. | 0x0     |

Register Address: SPI Page 0x30, SPI Offset 0x42

Register Description: DiffServ Priority Map 3 Register

Table 281: QOS\_DIFF\_DSCP3

| Bits  | Name            | R/W | Description                                         | Default |
|-------|-----------------|-----|-----------------------------------------------------|---------|
| 47:45 | PRI_DSCP_111111 | R/W | DiffServ DSCP== 111111 to Priority ID map Register. | 0x0     |
| 44:42 | PRI_DSCP_111110 | R/W | DiffServ DSCP== 111110 to Priority ID map Register. | 0x0     |
| 41:39 | PRI_DSCP_111101 | R/W | DiffServ DSCP== 111101 to Priority ID map Register. | 0x0     |
| 38:36 | PRI_DSCP_111100 | R/W | DiffServ DSCP== 111100 to Priority ID map Register. | 0x0     |
| 35:33 | PRI_DSCP_111011 | R/W | DiffServ DSCP== 111011 to Priority ID map Register. | 0x0     |
| 32:30 | PRI_DSCP_111010 | R/W | DiffServ DSCP== 111010 to Priority ID map Register. | 0x0     |
| 29:27 | PRI_DSCP_111001 | R/W | DiffServ DSCP== 111001 to Priority ID map Register. | 0x0     |
| 26:24 | PRI_DSCP_111000 | R/W | DiffServ DSCP== 111000 to Priority ID map Register. | 0x0     |
| 23:21 | PRI_DSCP_110111 | R/W | DiffServ DSCP== 110111 to Priority ID map Register. | 0x0     |
| 20:18 | PRI_DSCP_110110 | R/W | DiffServ DSCP== 110110 to Priority ID map Register. | 0x0     |
| 17:15 | PRI_DSCP_110101 | R/W | DiffServ DSCP== 110101 to Priority ID map Register. | 0x0     |
| 14:12 | PRI_DSCP_110100 | R/W | DiffServ DSCP== 110100 to Priority ID map Register. | 0x0     |
| 11:9  | PRI_DSCP_110011 | R/W | DiffServ DSCP== 110011 to Priority ID map Register. | 0x0     |
| 8:6   | PRI_DSCP_110010 | R/W | DiffServ DSCP== 110010 to Priority ID map Register. | 0x0     |
| 5:3   | PRI_DSCP_110001 | R/W | DiffServ DSCP== 110001 to Priority ID map Register. | 0x0     |

Table 281: QOS\_DIFF\_DSCP3 (Cont.)

| Bits | Name            | R/W | Description                                         | Default |
|------|-----------------|-----|-----------------------------------------------------|---------|
| 2:0  | PRI_DSCP_110000 | R/W | DiffServ DSCP== 110000 to Priority ID map Register. | 0x0     |

#### PID2TC

Register Address: SPI Page 0x30, SPI Offset 0x48

Register Description: Port ID to TC Map Register

Table 282: PID2TC

| Bits  | Name     | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:27 | RESERVED | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| 26:0  | PID2TC   | R/W | Port to TC mapping table entry corresponding to the ingress port on which the packet was received. bit[26:24]: TC mapping for port 8. bit[23:21]: TC mapping for port 7. bit[20:18]: reserved. bit[17:15]: TC mapping for port 5. bit[14:12]: TC mapping for port 4. bit[11:9]: TC mapping for port 3. bit[8:6]: TC mapping for port 2. bit[5:3]: TC mapping for port 1. bit[2:0]: TC mapping for port 0. | 0x0     |

### TC\_SEL\_TABLE

Register Address: SPI Page 0x30, SPI Offset 0x50

Register Description: Port N TC Select Table Register

Table 283: TC\_SEL\_TABLE

| Bits  | Name     | R/W | Description                                                                                                                                                                                                           | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | TC_SEL_7 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC. | 0x0     |

Table 283: TC\_SEL\_TABLE (Cont.)

| Bits  | Name     | R/W | Description                                                                                                                                                                                                               | Default |
|-------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 13:12 | TC_SEL_6 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 11:10 | TC_SEL_5 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source.  2'b11: PID2TC.  2'b10: DA2TC.  2'b01: PCP2TC.  2'b00: DSCP2TC. | 0x0     |
| 9:8   | TC_SEL_4 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source.  2'b11: PID2TC.  2'b10: DA2TC.  2'b01: PCP2TC.  2'b00: DSCP2TC. | 0x0     |
| 7:6   | TC_SEL_3 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 5:4   | TC_SEL_2 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 3:2   | TC_SEL_1 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |

Table 283: TC\_SEL\_TABLE (Cont.)

| Bits | Name     | R/W | Description                                                                                                                                                                                                           | Default |
|------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1:0  | TC_SEL_0 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC. | 0x0     |

## IMP\_TC\_SEL\_TABLE

Register Address: SPI Page 0x30, SPI Offset 0x60

Register Description: Port 8 TC Select Table Register

Table 284: IMP\_TC\_SEL\_TABLE

| Bits  | Name     | R/W | Description                                                                                                                                                                                                               | Default |
|-------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | TC_SEL_7 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 13:12 | TC_SEL_6 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 11:10 | TC_SEL_5 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source.  2'b11: PID2TC.  2'b10: DA2TC.  2'b01: PCP2TC.  2'b00: DSCP2TC. | 0x0     |
| 9:8   | TC_SEL_4 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source.  2'b11: PID2TC.  2'b10: DA2TC.  2'b01: PCP2TC.  2'b00: DSCP2TC. | 0x0     |

Table 284: IMP\_TC\_SEL\_TABLE (Cont.)

| Bits | Name     | R/W | Description                                                                                                                                                                                                               | Default |
|------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:6  | TC_SEL_3 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 5:4  | TC_SEL_2 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |
| 3:2  | TC_SEL_1 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source.  2'b11: PID2TC.  2'b10: DA2TC.  2'b01: PCP2TC.  2'b00: DSCP2TC. | 0x0     |
| 1:0  | TC_SEL_0 | R/W | A lookup table is indexed by the internal flags, including IP packet, trusted tagged packet, and static MAC destination to select the TC decision source. 2'b11: PID2TC. 2'b10: DA2TC. 2'b01: PCP2TC. 2'b00: DSCP2TC.     | 0x0     |

### CPU2COS\_MAP

Register Address: SPI Page 0x30, SPI Offset 0x64

Register Description: CPU to COS Mapping Register

Table 285: CPU2COS\_MAP

| Bits  | Name       | R/W | Description                                                                                                                                                 | Default |
|-------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED   | R/W | Reserved                                                                                                                                                    | 0x0     |
| 17:15 | EXCPT_PRCS | R/W | The packet forwarded to the CPU for Exception Processing reason. The COS selection is based on the highest COS values among all the reasons for the packet. |         |

Table 285: CPU2COS\_MAP (Cont.)

| Bits  | Name       | R/W | Description                                                                                                                                                         | Default |
|-------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14:12 | PRTC_SNOOP | R/W | The packet forwarded to the CPU for Protocol Snooping reason. The COS selection is based on the highest COS values among all the reasons for the packet.            | 0x0     |
| 11:9  | PRTC_TRMNT | R/W | The packet forwarded to the CPU for Protocol Termination reason. The COS selection is based on the highest COS values among all the reasons for the packet.         | 0x0     |
| 8:6   | SW_FLD     | R/W | The packet forwarded to the CPU for Switching/<br>Flooding reason. The COS selection is based on<br>the highest COS values among all the reasons<br>for the packet. |         |
| 5:3   | SA_LRN     | R/W | The packet forwarded to the CPU for SA Learning reason. The COS selection is based on the highest COS values among all the reasons for the packet.                  | 0x0     |
| 2:0   | MIRROR     | R/W | The packet forwarded to the CPU for mirroring reason. The COS selection is based on the highest COS values among all the reasons for the packet.                    | 0x0     |

## PN\_TC2COS\_MAP

Register Address: SPI Page 0x30, SPI Offset 0x70

Register Description: Port N TC to COS Mapping Register

Table 286: PN\_TC2COS\_MAP

| Bits  | Name              | R/W | Description                                                                                                                                                                                                                                                                                                                         | Default |
|-------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | BCAST_DLF_DROP_TC | R/W | Broadcast and DLF Packet Drop Control for each TC When the bit is enabled, the broadcast and DLF (Unicast and Multicast) packet for this TC will be dropped. 0: Drop Disable 1: Drop Enable Bit[31]: TC is 7 Bit[30]: TC is 6 Bit[29]: TC is 5 Bit[28]: TC is 4 Bit[27]: TC is 3 Bit[26]: TC is 2 Bit[25]: TC is 1 Bit[24]: TC is 0 | 0x0     |

Table 286: PN\_TC2COS\_MAP (Cont.)

| 23:21       PRT111_TO_QID       R/W       *** Note that *** Queue ID 0: 000 Queue ID 0: 000 Queue ID 1: 001 Queue ID 2: 010 Queue ID 2: 010 Queue ID 3: 011 Queue ID 5: 101 Priority ID 111 mapped to TX Queue ID.         20:18       PRT110_TO_QID       R/W       Priority ID 110 mapped to TX Queue ID.       0x0         17:15       PRT101_TO_QID       R/W       Priority ID 101 mapped to TX Queue ID.       0x0         14:12       PRT100_TO_QID       R/W       Priority ID 100 mapped to TX Queue ID.       0x0         11:9       PRT011_TO_QID       R/W       Priority ID 011 mapped to TX Queue ID.       0x0         8:6       PRT010_TO_QID       R/W       Priority ID 010 mapped to TX Queue ID.       0x0         5:3       PRT001_TO_QID       R/W       Priority ID 001 mapped to TX Queue ID.       0x0         2:0       PRT000_TO_QID       R/W       Priority ID 001 mapped to TX Queue ID.       0x0 | Bits  | Name          | R/W | Description                                                                                                    | Default |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------|---------|
| 20:18 PRT110_TO_QID R/W Priority ID 110 mapped to TX Queue ID. 0x0  17:15 PRT101_TO_QID R/W Priority ID 101 mapped to TX Queue ID. 0x0  14:12 PRT100_TO_QID R/W Priority ID 100 mapped to TX Queue ID. 0x0  11:9 PRT011_TO_QID R/W Priority ID 011 mapped to TX Queue ID. 0x0  8:6 PRT010_TO_QID R/W Priority ID 010 mapped to TX Queue ID. 0x0  5:3 PRT001_TO_QID R/W Priority ID 001 mapped to TX Queue ID. 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23:21 | PRT111_TO_QID | R/W | Queue ID 0: 000<br>Queue ID 1: 001<br>Queue ID 2: 010<br>Queue ID 3: 011<br>Queue ID 4: 100<br>Queue ID 5: 101 | 0x0     |
| 14:12PRT100_TO_QIDR/WPriority ID 100 mapped to TX Queue ID.0x011:9PRT011_TO_QIDR/WPriority ID 011 mapped to TX Queue ID.0x08:6PRT010_TO_QIDR/WPriority ID 010 mapped to TX Queue ID.0x05:3PRT001_TO_QIDR/WPriority ID 001 mapped to TX Queue ID.0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20:18 | PRT110_TO_QID | R/W | •                                                                                                              | 0x0     |
| 11:9 PRT011_TO_QID R/W Priority ID 011 mapped to TX Queue ID. 0x0 8:6 PRT010_TO_QID R/W Priority ID 010 mapped to TX Queue ID. 0x0 5:3 PRT001_TO_QID R/W Priority ID 001 mapped to TX Queue ID. 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17:15 | PRT101_TO_QID | R/W | Priority ID 101 mapped to TX Queue ID.                                                                         | 0x0     |
| 8:6 PRT010_TO_QID R/W Priority ID 010 mapped to TX Queue ID. 0x0 5:3 PRT001_TO_QID R/W Priority ID 001 mapped to TX Queue ID. 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14:12 | PRT100_TO_QID | R/W | Priority ID 100 mapped to TX Queue ID.                                                                         | 0x0     |
| 5:3 PRT001_TO_QID R/W Priority ID 001 mapped to TX Queue ID. 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11:9  | PRT011_TO_QID | R/W | Priority ID 011 mapped to TX Queue ID.                                                                         | 0x0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8:6   | PRT010_TO_QID | R/W | Priority ID 010 mapped to TX Queue ID.                                                                         | 0x0     |
| 2:0 PRT000_TO_QID R/W Priority ID 000 mapped to TX Queue ID. 0x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5:3   | PRT001_TO_QID | R/W | Priority ID 001 mapped to TX Queue ID.                                                                         | 0x0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2:0   | PRT000_TO_QID | R/W | Priority ID 000 mapped to TX Queue ID.                                                                         | 0x0     |

## IMP\_TC2COS\_MAP

Register Address: SPI Page 0x30, SPI Offset 0x90

Register Description: Port 8 TC to COS Mapping Register

Table 287: IMP\_TC2COS\_MAP

| Bits  | Name              | R/W | Description                                                                                                                                                                                                                                                                                                                         | Default |
|-------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | BCAST_DLF_DROP_TC | R/W | Broadcast and DLF Packet Drop Control for each TC When the bit is enabled, the broadcast and DLF (Unicast and Multicast) packet for this TC will be dropped. 0: Drop Disable 1: Drop Enable Bit[31]: TC is 7 Bit[30]: TC is 6 Bit[29]: TC is 5 Bit[28]: TC is 4 Bit[27]: TC is 3 Bit[26]: TC is 2 Bit[25]: TC is 1 Bit[24]: TC is 0 | 0x0     |
| 23:21 | PRT111_TO_QID     | R/W | *** Note that *** Queue ID 0: 000 Queue ID 1: 001 Queue ID 2: 010 Queue ID 3: 011 Queue ID 4: 100 Queue ID 5: 101 Priority ID 111 mapped to TX Queue ID.                                                                                                                                                                            | 0x0     |

Table 287: IMP\_TC2COS\_MAP (Cont.)

| Bits  | Name          | R/W | Description                            | Default |
|-------|---------------|-----|----------------------------------------|---------|
| 20:18 | PRT110_TO_QID | R/W | Priority ID 110 mapped to TX Queue ID. | 0x0     |
| 17:15 | PRT101_TO_QID | R/W | Priority ID 101 mapped to TX Queue ID. | 0x0     |
| 14:12 | PRT100_TO_QID | R/W | Priority ID 100 mapped to TX Queue ID. | 0x0     |
| 11:9  | PRT011_TO_QID | R/W | Priority ID 011 mapped to TX Queue ID. | 0x0     |
| 8:6   | PRT010_TO_QID | R/W | Priority ID 010 mapped to TX Queue ID. | 0x0     |
| 5:3   | PRT001_TO_QID | R/W | Priority ID 001 mapped to TX Queue ID. | 0x0     |
| 2:0   | PRT000_TO_QID | R/W | Priority ID 000 mapped to TX Queue ID. | 0x0     |

## PN\_PCP2TC\_DEI1

Register Address: SPI Page 0x30, SPI Offset 0xb0

Register Description: Port N PCP to TC Map for DEI 1 Register

Table 288: PN\_PCP2TC\_DEI1

| Bits  | Name           | R/W | Description                                                                                                     | Default |
|-------|----------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | RESERVED       | R/W | Reserved                                                                                                        | 0x0     |
| 23:21 | TAG111_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 111       | 0x7     |
| 20:18 | TAG110_PRI_MAP | R/W | Priority Map for DEI is equal to 1.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 110 | 0x6     |
| 17:15 | TAG101_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 101       | 0x5     |
| 14:12 | TAG100_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 100       | 0x4     |
| 11:9  | TAG011_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 011       | 0x3     |
| 8:6   | TAG010_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 010       | 0x2     |
| 5:3   | TAG001_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 001       | 0x1     |
| 2:0   | TAG000_PRI_MAP | R/W | Priority Map for DEI is equal to 1.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 000 | 0x0     |

## IMP\_PCP2TC\_DEI1

Register Address: SPI Page 0x30, SPI Offset 0xcc

Register Description: Port 8 (IMP) PCP to TC Map for DEI 1 Register

Table 289: IMP\_PCP2TC\_DEI1

| Bits  | Name           | R/W | Description                                                                                                     | Default |
|-------|----------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 31:24 | RESERVED       | R/W | Reserved                                                                                                        | 0x0     |
| 23:21 | TAG111_PRI_MAP | R/W | Priority Map for DEI is equal to 1.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 111 | 0x7     |
| 20:18 | TAG110_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 110       | 0x6     |
| 17:15 | TAG101_PRI_MAP | R/W | Priority Map for DEI is equal to 1.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 101 | 0x5     |
| 14:12 | TAG100_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 100       | 0x4     |
| 11:9  | TAG011_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 011       | 0x3     |
| 8:6   | TAG010_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 010       | 0x2     |
| 5:3   | TAG001_PRI_MAP | R/W | Priority Map for DEI is equal to 1. The TC value is mapped from the 802.1P/1Q Priority Tag field with 001       | 0x1     |
| 2:0   | TAG000_PRI_MAP | R/W | Priority Map for DEI is equal to 1.<br>The TC value is mapped from the 802.1P/1Q<br>Priority Tag field with 000 | 0x0     |

## Page 0x31: Port Based VLAN Register

Table 290: Page 0x31: Port Based VLAN Register

| Address | Bits | Register Name                   |
|---------|------|---------------------------------|
| 0x00    | 15:0 | "PORT_VLAN_CTL" on page 174     |
| 0x10    | 15:0 | "PORT_VLAN_CTL_IMP" on page 174 |

#### PORT\_VLAN\_CTL

Register Address: SPI Page 0x31, SPI Offset 0x00

Register Description: PORT N VLAN Control Register

Table 291: PORT\_VLAN\_CTL

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                   | Default |
|------|----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                      | 0x0     |
| 8:0  | PORT_EGRESS_EN | R/W | Per bit per port VLAN forwarding vector. A bit mask corresponding to the physical ports on the chip. Set corresponding bit to '1' to enable forwarding to the egress port. Set '0' inhibit the forwarding. Bit 8: IMP port. Bit 5: Port 5. Bit 0-3: Port 0-3. | 0x1FF   |

### PORT\_VLAN\_CTL\_IMP

Register Address: SPI Page 0x31, SPI Offset 0x10

Register Description: PORT 8 VLAN Control Register

Table 292: PORT\_VLAN\_CTL\_IMP

| Bits | Name           | R/W | Description                                                                                                                                                                                                                 | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED       | R/W | Reserved                                                                                                                                                                                                                    | 0x0     |
| 8:0  | PORT_EGRESS_EN | R/W | Per bit per port VLAN forwarding vector. A bit mask corresponding to the physical ports on the chip. Set corresponding bit to '1' to enable forwarding to the egress port. Set '0' inhibit the forwarding. Bit 8: IMP port. | 0x1FF   |
|      |                |     | Bit 5: Port 5.<br>Bit 0-3: Port 0-3.                                                                                                                                                                                        |         |

# Page 0x32: Trunking Register

Table 293: Page 0x32: Trunking Register

| Address | Bits | Register Name               |
|---------|------|-----------------------------|
| 0x00    | 7:0  | "MAC_TRUNK_CTL" on page 175 |
| 0x10    | 15:0 | "TRUNK_GRP_CTL" on page 175 |

### MAC\_TRUNK\_CTL

Register Address: SPI Page 0x32, SPI Offset 0x00

Register Description: MAC Trunk Control Register

Table 294: MAC\_TRUNK\_CTL

| Bits | Name           | R/W | Description                                                                                                                                                                                                                | Default |
|------|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:4  | SERVER_1       | R/W | Reserved                                                                                                                                                                                                                   | 0x0     |
| 3    | EN_TRUNK_LOCAL | R/W | Enable Mac trunking. The chip support 2 trunking groups. The trunking group can support up to 4 ports as defined trunking group register.                                                                                  | 0       |
| 2    | SERVER_0       | R/W | Reserved                                                                                                                                                                                                                   | 0       |
| 1:0  | HASH_SEL       | R/W | index selection  00 = Use hash ((VLAN_ID + MAC_DA) ^ (VLAN_ID + MAC_SA)) to generate index.  01 = Use hash (VLAN_ID + MAC_DA) to generate index.  10 = Use hash (VLAN_ID + MAC_SA) to generate index.  11 = Illegal state. | 0x0     |

### TRUNK\_GRP\_CTL

Register Address: SPI Page 0x32, SPI Offset 0x10

Register Description: Trunk N Group Control Register

Table 295: TRUNK\_GRP\_CTL

| Bits | Name         | R/W | Description                                                                                                                  | Default |
|------|--------------|-----|------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED     | R/W | Reserved                                                                                                                     | 0x0     |
| 8:0  | EN_TRUNK_GRP | R/W | Trunk Group Enable  1 = Enable trunk group.  0 = Disable trunk_group  Bit 8: IMP port.  Bit 7: port 7.  Bits[5:0]: port 5-0. | 0x0     |

# Page 0x34: IEEE 802.1Q VLAN Register

Table 296: Page 0x34: IEEE 802.1Q VLAN Register

| Address | Bits | Register Name                          |
|---------|------|----------------------------------------|
| 0x00    | 7:0  | "VLAN_CTRL0" on page 177               |
| 0x01    | 7:0  | "VLAN_CTRL1" on page 178               |
| 0x02    | 7:0  | "VLAN_CTRL2" on page 179               |
| 0x03    | 15:0 | "VLAN_CTRL3" on page 180               |
| 0x05    | 7:0  | "VLAN_CTRL4" on page 180               |
| 0x06    | 7:0  | "VLAN_CTRL5" on page 181               |
| 0x07    | 7:0  | "VLAN_CTRL6" on page 182               |
| 0x0a    | 15:0 | "VLAN_MULTI_PORT_ADDR_CTL" on page 182 |
| 0x10    | 15:0 | "DEFAULT_1Q_TAG" on page 183           |
| 0x20    | 15:0 | "DEFAULT_1Q_TAG_IMP" on page 184       |
| 0x30    | 15:0 | "DTAG_TPID" on page 184                |
| 0x32    | 15:0 | "ISP_SEL_PORTMAP" on page 184          |
| 0x40    | 31:0 | "EGRESS_VID_RMK_TBL_ACS" on page 184   |
| 0x44    | 31:0 | "EGRESS_VID_RMK_TBL_DATA" on page 185  |
| 0x50    | 15:0 | "JOIN_ALL_VLAN_EN" on page 186         |
| 0x52    | 15:0 | "PORT_IVL_SVL_CTRL" on page 187        |

Register Address: SPI Page 0x34, SPI Offset 0x00

Register Description: 802.1Q VLAN Control 0 Registers

Table 297: VLAN\_CTRL0

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Default |
|------|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | VLAN_EN             | R/W | When set to 1, the 802.1Q VLAN function will be enabled. This bit must be set if double tagging (dt_mode or idt_mode) is enable.                                                                                                                                                                                                                                                                                                      | 0       |
| 6:5  | VLAN_LEARN_MODE     | R/W | 00: SVL (Shared VLAN Learning Mode) (MAC used to hash ARL table). 11:IVL(Individual VLAN Learning Mode) (MAC and VID used to hash ARL table). 10 = illegal Setting. 01 = illegal Setting. This rule applies to 1Q enable mode. dt_mode and idt_mode. Note: When SVL mode (00) is selected, 1. the VID in the ARL table will be learned to 0 in the hardware SA learning stage. 2. the VID (0) should be programmed in the VLAN table. | 0x3     |
| 4    | RESERVED_1          | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |
| 3    | CHANGE_1Q_VID       | R/W | Change 1Q VID to PVID This bit controls whether to replace 1Q VID to PVID. (This bit can't be set in iDT_mode) For example, when this bit is zero: No change for 1Q/ISP tag if VID!=0. when this bit is one: a.For a single tag frame with VID!=0, change the VID to PVID. b.For a double tag frame with outer tag VID!=0, change the outer tag VID to PVID.                                                                          | 0       |
| 2    | RESERVED_0          | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |
| 1    | CHANGE_1P_VID_OUTER | R/W | Change Outer 1P VID to PVID This bit controls whether to replace Ingress Outer 1P VID. (ingress VID=12'h000) to PVID For example When this bit is zero: Do not change the Outer tag VID when this bit is one: a.For a single tag frame with VID==0, change the VID to PVID b.For a double tag frame with VID==0, change the outer tag VID to PVID.                                                                                    | 1       |

Table 297: VLAN\_CTRL0 (Cont.)

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                                   | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0    | CHANGE_1P_VID_INNER | R/W | Change Inner 1P VID to PVID This bit controls whether to replace Ingress Inner 1P VID. (ingress VID=12'h000) to PVID For example When this bit is zero: (Falcon DT mode compatible) Do not change the Inner tag VID when this bit is one: For a double tag frame with the inner tag VID==0, change the inner tag VID to PVID. | 1       |

Register Address: SPI Page 0x34, SPI Offset 0x01

Register Description: 802.1Q VLAN Control 1 Registers

Table 298: VLAN\_CTRL1

| Bits | Name                  | R/W   | Description                                                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|-----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | RESERVED_3            | R/W   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                 | 0       |
| 6    | EN_IPMC_BYPASS_UNTAG  | R/W   | When deasserted, the IPMC frames tag/untag will be controlled by V_untagmap. When asserted, The IPMC frames will be preserved tagged type of frame as follow, 1.Untagged frame on ingress -> Untagged frame on egress. 2.Tagged frame on ingress -> Tagged frame on egress. **This rule do not apply to MII_manage or idt_mode.                                                                          |         |
| 5    | EN_IPMC_BYPASS_FWDMAF | P R/W | When asserted will not check IPMC frame with V_fwdmap. This rule applies to 1Q enable, dt_mode and idt_mode.                                                                                                                                                                                                                                                                                             | 0       |
| 4    | RESERVED_2            | R/W   | Reserved It's illegal to set 1.                                                                                                                                                                                                                                                                                                                                                                          | 0       |
| 3    | EN_RSV_MCAST_UNTAG    | R/W   | When asserted, reserved multicast frames tag/untag will be controlled by v_untagmap. When deasserted, reserved multicast frames will be preserved tagged type of frame as follow, 1.Untagged frame on ingress -> Untagged frame on egress.  2.Tagged frame on ingress -> Tagged frame on egress.  **This rule do not apply to MII_manage or idt_mode.  **Reserved multicast frames except GMRP amd GVRP. |         |

Table 298: VLAN\_CTRL1 (Cont.)

| Bits | Name                | R/W | Description                                                                                                                                           | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2    | EN_RSV_MCAST_FWDMAP | R/W | When asserted, reserved multicast frames (except GMRP and GVRP) will be checked by v_fwdmap.  **This rule applies to 1Q enable, dt_mode and idt_mode. | 0       |
| 1    | RESERVED_1          | R/W | Reserved It's illegal to set 0.                                                                                                                       | 1       |
| 0    | RESERVED_0          | R/W | Reserved                                                                                                                                              | 0       |

Register Address: SPI Page 0x34, SPI Offset 0x02

Register Description: 802.1Q VLAN Control 2 Registers

Table 299: VLAN\_CTRL2

| Bits | Name                        | R/W | Description                                                                                                                                                                                                                                                                                                                      | Default |
|------|-----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | RESERVED                    | R/W |                                                                                                                                                                                                                                                                                                                                  | 0       |
| 6    | EN_GMRP_GVRP_UNTAG_M<br>AP  | R/W | When asserted, GMRP/GVRP frames tag/untag will be controlled by v_untagmap. When deasserted,GMRP/GVRP frames will be preserved tagged type of frame as follow, 1.Untagged frame on ingress -> Untagged frame on egress. 2.Tagged frame on ingress -> Tagged frame on egress. **This rule do not apply to MII_manage or idt_mode. | 0       |
| 5    | EN_GMRP_GVRP_V_FWDMA<br>P   | R/W | When set to 1, GMRP,GVRP will be checked by v_fwdmap.  ** this rule do not apply to MII_manage EXP and SPI ports.                                                                                                                                                                                                                | 0       |
| 4:3  | RESERVED_2                  | R/W | Reserved                                                                                                                                                                                                                                                                                                                         | 0x2     |
| 2    | EN_MIIM_BYPASS_V_FWDM<br>AP | R/W | When set to 1, frames reveived by MII_manage port will bypass V_fwdmap checking.  **This rule applies to 1Q enable, dt_mode and idt_mode.                                                                                                                                                                                        | 0       |
| 1:0  | RESERVED_0                  | R/W | Reserved                                                                                                                                                                                                                                                                                                                         | 0x0     |

Register Address: SPI Page 0x34, SPI Offset 0x03

Register Description: 802.1Q VLAN Control 3 Registers

Table 300: VLAN\_CTRL3

| Bits | Name          | R/W | Description                                                                                                                                                                                                                                            | Default |
|------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED      | R/W | Reserved                                                                                                                                                                                                                                               | 0x0     |
| 8:0  | EN_DROP_NON1Q | R/W | When enabled, any non_1Q frame will be dropped by this port. Ports 8-0 respectively. This field makes no effect under the double tagging modes. This field is ignored by IMP port(s), the IMP port(s) won't drop non 1Q frames even this field is set. |         |

#### VLAN\_CTRL4

Register Address: SPI Page 0x34, SPI Offset 0x05

Register Description: 802.1Q VLAN Control 4 Registers

Table 301: VLAN\_CTRL4

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|-----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:6  | INGR_VID_CHK    | R/W | 00: forward ingress VID violation frame (VID is not in v_fwdmap). But do not learn in ARL table. 01: Drop frame if frame has VID violation, not Learned. 10: Do not check ingress VID violation.(Forward and Learn as no violation case) 11:Forward ingress VIO violation frame to IMP, but not learn(default) **This field is ignored by IMP port(s), the IMP port(s) won't check ingress VID violation frames. | 0x3     |
| 5    | EN_MGE_REV_GVRP | R/W | When set to 1. management port (the port with CPU) will be the destination port of GVRP frame.                                                                                                                                                                                                                                                                                                                   | 0       |
| 4    | EN_MGE_REV_GMRP | R/W | When set to 1, management port (the port with CPU) will be the destination port of GMRP frame. In multiple chip system, a GMRP frame received by a chip without CPU will pass it to expansion port, and eventually it will be forward to CPU.                                                                                                                                                                    | 0       |
| 3:2  | EN_DOUBLE_TAG   | R/W | Enable double tagging mode. 0:Disable double tagging mode 01:Enable dt_mode(Falcon double tagging mode) 10:Enable idt_mode(intelligent double tagging mode in Vulcan) when idt_mode is enable, egress VID remarking is achieved by CFP classification ID. 11:Reserved                                                                                                                                            | 0x0     |

Table 301: VLAN\_CTRL4 (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                 | Default |
|------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1    | RESV_MCAST_FLOOD | R/W | When chip is programmed as double tag mode(dt_mode and idt_mode) and management mode.  1: flood (include all data port and CPU) reserved mcast based on the VLAN rule.  0: trap reserved mcast to CPU. reserved multicast include 01-80-c2-00-00-(00,02-2f) | 0       |
| 0    | RESERVED_1       | R/W | Reserved                                                                                                                                                                                                                                                    | 0       |

## VLAN\_CTRL5

Register Address: SPI Page 0x34, SPI Offset 0x06

Register Description: 802.1Q VLAN Control 5 Registers

Table 302: VLAN\_CTRL5

| Bits | Name                               | R/W | Description                                                                                                                                                                                                                                           | Default |
|------|------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | RESERVED_2                         | R/W | Reserved #Enable Reserved Multicast Address Learn #1: The frame with reserved multicast DA will be learned. # Either {SA+Default PVID} or {SA + Frame VID} #0: It will not be learned.                                                                | 0       |
| 6    | PRESV_NON1Q                        | R/W | - en_preserv_non_1q_frame: (default 0) When set to 1, regardless of untag map in VLAN table, non-1Q frames (including 802.1p frames) will not be changed at TX. This field makes no effect under the double tagged modes (dt_mode and idt_mode).      | 0       |
| 5    | RESERVED_1                         | R/W | Reserved                                                                                                                                                                                                                                              | 0       |
| 4    | EGRESS_DIR_FRM_BYPASS<br>_TRUNK_EN | R/W | Egress Directed Frame Bypass Trunking Redirection Enable Set to 1: Egress Directed Frame From Management Port will bypass Re-Trunking Redirected Rule Set to 0: Egress Directed Frame will From Management Port will follow Trunking Redirected Rule. | 1       |
| 3    | DROP_VTABLE_MISS                   | R/W | When set to 1, a frame with V_table miss will be dropped. When set to 0, a frame with V_table miss will be forwarded to IMP.                                                                                                                          | 0       |
| 2    | EN_VID_FFF_FWD                     | R/W | 0: comply with standard, drop frame. 1: forward frame.                                                                                                                                                                                                | 0       |
| 1    | RESERVED_0                         | R/W | Reserved                                                                                                                                                                                                                                              | 0       |
|      |                                    |     |                                                                                                                                                                                                                                                       |         |

Table 302: VLAN\_CTRL5 (Cont.)

| Bits | Name                           | R/W | Description                                                                                                       | Default |
|------|--------------------------------|-----|-------------------------------------------------------------------------------------------------------------------|---------|
| 0    | EN_CPU_RX_BYP_INNER_C<br>RCCHK | R/W | 1:The management port (IMP) will ignore CRC check. 0:The management port (IMP) with CPU on it will check the CRC. |         |

#### **VLAN\_CTRL6**

Register Address: SPI Page 0x34, SPI Offset 0x07

Register Description: 802.1Q VLAN Control 6 Registers

Table 303: VLAN\_CTRL6

| Bits | Name              | R/W | Description | Default |
|------|-------------------|-----|-------------|---------|
| 7:5  | RESERVED_1        | R/W | Reserved    | 0x0     |
| 4    | DIS_ARL_BUST_LMT  | R/W | Reserved    | 0       |
| 3:1  | RESERVED_0        | R/W | Reserved    | 0x0     |
| 0    | STRICT_SFD_DETECT | R/W | Reserved    | 0       |

#### VLAN\_MULTI\_PORT\_ADDR\_CTL

Register Address: SPI Page 0x34, SPI Offset 0x0a

Register Description: VLAN Multiport Address Control Register

Table 304: VLAN\_MULTI\_PORT\_ADDR\_CTL

| Bits  | Name                | R/W | Description                                                                                                                                                                                                                                                                                                                                                            | Default |
|-------|---------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED            | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                               | 0x0     |
| 11    | EN_MPORT5_UTG_MAP   | R/W | When set to 1, MPORT_ADD5 will be checked by v_untagmap  ** this rule do not apply to MII_manage or idt_mode.  ** When set to 0, MPORT_ADDx frames will be preserved tagged type of frames as follows,  1.Untagged frame on ingress -> Untagged frame on egress.  2.Tagged frames on ingress -> tagged frames on egress.  3.1p frame on ingress -> 1Q frame on egress. |         |
| 10    | EN_MPORT5_V_FWD_MAP | R/W | When set to 1, MPORT_ADD5 will be checked by v_fwdmap ** this rule do not apply to MII_manage                                                                                                                                                                                                                                                                          | 0       |
| 9     | EN_MPORT4_UTG_MAP   | R/W | When set to 1, MPORT_ADD4 will be checked by v_untagmap ** this rule do not apply to MII_manage                                                                                                                                                                                                                                                                        | 0       |

Table 304: VLAN\_MULTI\_PORT\_ADDR\_CTL (Cont.)

| Bits | Name                | R/W | Description                                                                                      | Default |
|------|---------------------|-----|--------------------------------------------------------------------------------------------------|---------|
| 8    | EN_MPORT4_V_FWD_MAP | R/W | When set to 1, MPORT_ADD4 will be checked by v_fwdmap  ** this rule do not apply to MII_manage   | 0       |
| 7    | EN_MPORT3_UTG_MAP   | R/W | When set to 1, MPORT_ADD3 will be checked by v_untagmap ** this rule do not apply to MII_manage  | 0       |
| 6    | EN_MPORT3_V_FWD_MAP | R/W | When set to 1, MPORT_ADD3 will be checked by v_fwdmap  ** this rule do not apply to MII_manage   | 0       |
| 5    | EN_MPORT2_UTG_MAP   | R/W | When set to 1, MPORT_ADD2 will be checked by v_untagmap ** this rule do not apply to MII_manage  | 0       |
| 4    | EN_MPORT2_V_FWD_MAP | R/W | When set to 1, MPORT_ADD2 will be checked by v_fwdmap ** this rule do not apply to MII_manage    | 0       |
| 3    | EN_MPORT1_UTG_MAP   | R/W | When set to 1, MPORT_ADD1 will be checked by v_untagmap  ** this rule do not apply to MII_manage | 0       |
| 2    | EN_MPORT1_V_FWD_MAP | R/W | When set to 1, MPORT_ADD1 will be checked by v_fwdmap  ** this rule do not apply to MII_manage   | 0       |
| 1    | EN_MPORT0_UTG_MAP   | R/W | When set to 1, MPORT_ADD0 will be checked by v_untagmap  ** this rule do not apply to MII_manage | 0       |
| 0    | EN_MPORT0_V_FWD_MAP | R/W | When set to 1, MPORT_ADD0 will be checked by v_fwdmap  ** this rule do not apply to MII_manage   | 0       |

# DEFAULT\_1Q\_TAG

Register Address: SPI Page 0x34, SPI Offset 0x10

Register Description: Port N 802.1Q Default Tag Registers

Table 305: DEFAULT\_1Q\_TAG

| Bits  | Name | R/W | Description                                                                                                                                                                                        | Default |
|-------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | PRI  | R/W | Default IEEE 802.1Q priority If an ISP-tag or a customer tag is added to any incoming frame, these bits are the default priority value for the new tag.                                            | 0x0     |
| 12    | CFI  | R/W | Canonical Form Indicator (The chip don't care this bit).                                                                                                                                           | 0       |
| 11:0  | VID  | R/W | Default VLAN ID('h0 and 'hfff are illegal setting). When incoming packet is non-1Q tagged frame or priority tagged frame, Default VLAN ID will be used as the VID for the port if VLAN_1Q enabled. | 0x1     |

#### DEFAULT\_1Q\_TAG\_IMP

Register Address: SPI Page 0x34, SPI Offset 0x20

Register Description: Port 8 802.1Q Default Tag Registers

Table 306: DEFAULT\_1Q\_TAG\_IMP

| Bits  | Name | R/W | Description                                                                                                                                                                                         | Default |
|-------|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | PRI  | R/W | Default IEEE 802.1Q priority If an ISP-tag or a customer tag is added to any incoming frame, these bits are the default priority value for the new tag.                                             | 0x0     |
| 12    | CFI  | R/W | Canonical Form Indicator (The chip don't care this bit).                                                                                                                                            | 0       |
| 11:0  | VID  | R/W | Default VLAN ID.('h0 and 'hfff are illegal setting). When incoming packet is non-1Q tagged frame or priority tagged frame, Default VLAN ID will be used as the VID for the port if VLAN_1Q enabled. | 0x1     |

### DTAG\_TPID

Register Address: SPI Page 0x34, SPI Offset 0x30

Register Description: Double Tagging TPID Registers

Table 307: DTAG\_TPID

| Bits | Name     | R/W | Description                                       | Default |
|------|----------|-----|---------------------------------------------------|---------|
| 15:0 | ISP_TPID | R/W | TPID used to identify double tagged frame or not. | 0x88A8  |

### ISP\_SEL\_PORTMAP

Register Address: SPI Page 0x34, SPI Offset 0x32

Register Description: ISP Port Selection Port map Registers

Table 308: ISP\_SEL\_PORTMAP

| Bits | Name        | R/W | Description                              | Default |
|------|-------------|-----|------------------------------------------|---------|
| 15:9 | RESERVED    | R/W | Reserved                                 | 0x0     |
| 8:0  | ISP_PORTMAP | R/W | Bitmap to define which port as ISP-port. | 0x0     |

#### EGRESS\_VID\_RMK\_TBL\_ACS

Register Address: SPI Page 0x34, SPI Offset 0x40

Register Description: Egress VID Remarking Table Access Register

Table 309: EGRESS\_VID\_RMK\_TBL\_ACS

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                             | Default |
|-------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31    | GLOBAL_WR_EN | R/W | Reserved                                                                                                                                                                                                                                                                                                                | 0       |
| 30:16 | RESERVED1    | R/W | Reserved                                                                                                                                                                                                                                                                                                                | 0x0     |
| 15:8  | TBL_ADDR     | R/W | VID remarking table address This field define the address of the VID remarking table, from address 0 to address 255.                                                                                                                                                                                                    | 0x0     |
| 7:4   | EGRESS_PORT  | R/W | Egress Port Select This field selects which egress port of the VID remarking table is selected for the access. 4'b0000: port 0 4'b0001: port 1 4'b0010: port 2 4'b0011: port 3 4'b0100: port 4 4'b0101: port 5 4'b0111: port 7 4'b1000: port 8(IMP port) Others: reserved                                               | 0x0     |
| 3     | RESERVED2    | R/W | Reserved                                                                                                                                                                                                                                                                                                                | 0       |
| 2     | RESET_EVT    | R/W | Clear All EVT Tables When this bit is set, it reset sll the EVT tables. This bit will be auto-cleared by hardware when the reset is done.                                                                                                                                                                               | 0       |
| 1     | OP           | R/W | Operation 1'b0: Read operation (the data read from the table is specified in the Egress VID remarking Table DATA Register) 1'b1: Write operation (the data to be written to the table is specified in the Egress VID remarking Table Data Register)                                                                     | 0       |
| 0     | START_DONE   | R/W | Operation Start Software set this bit to start the operation after having configured all the necessary operation related information to the registers. Hardware automatically clear this bit when the operation is done. For read and write operation, this bit is clear when a single read or write operation is done. | 0       |

#### EGRESS\_VID\_RMK\_TBL\_DATA

Register Address: SPI Page 0x34, SPI Offset 0x44

Register Description: Egress VID Remarking Table Data Register

Table 310: EGRESS\_VID\_RMK\_TBL\_DATA

| Bits  | Name      | R/W | Description                                                                                                                                                                               | Default |
|-------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:30 | RESERVED1 | R/W | Reserved                                                                                                                                                                                  | 0x0     |
| 29:28 | OUTER_OP  | R/W | Outer Tag Operation This field specifies how the outer tag is modified. 00: as is 01: as received 10: removed 11: VID remarking                                                           | 0x0     |
| 27:16 | OUTER_VID | R/W | Outer VID for modification This field specifies the VID of the outer tag remarking. This field is only valid when the operation is set to '11', other than that this field is don't care. | 0x0     |
| 15:14 | RESERVED2 | R/W | Reserved                                                                                                                                                                                  | 0x0     |
| 13:12 | INNER_OP  | R/W | Inner Tag Operation This field specifies how the inner tag is modified. 00: as is 01: as received 10: removed 11: VID remarking                                                           | 0x0     |
| 11:0  | INNER_VID | R/W | Inner VID for modification This field specifies the VID of the inner tag remarking. This field is only valid when the operation is set to '11', other than that this field is don't care. | 0x0     |

## JOIN\_ALL\_VLAN\_EN

Register Address: SPI Page 0x34, SPI Offset 0x50

Register Description: Join All VLAN Enable Register

Table 311: JOIN\_ALL\_VLAN\_EN

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 311: JOIN\_ALL\_VLAN\_EN (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | JOIN_ALL_VLAN_EN | R/W | Join All VLAN Enable The VLAN-tagged Frame is always allowed to be forwarded to the destination ports irrespective of the FWD_MAP for the VLAN. In addition, no packet will be untagged if the port has this bit set even if the UNTAG_MAP bit is set for this port.  1: Enable. 0: Disable. Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 Note: This bit is used to set all VLANs into one group for this port and help user can achieve the Transparent VLAN implementation more easier in CTC3.0 |         |

## PORT\_IVL\_SVL\_CTRL

Register Address: SPI Page 0x34, SPI Offset 0x52

Register Description: Port IVL or SVL Control Register

Table 312: PORT\_IVL\_SVL\_CTRL

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                   | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | PORT_IVL_SVL_EN  | R/W | Enable the Port IVL or SVL Selection 1: Enable Per Port IVL or SVL Setting 0: Use Global IVL or SVL Setting (Page 0x34, Address 0x00) Note: When this bit is enabled, the SVL domain and IVL domain will coexist in the switch. Currently, users have to take care the VIDs usage in VLAN table between SVL domain and IVL domain.            | 0       |
| 14:9 | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 8:0  | PORT_IVL_SVL_SEL | R/W | Port IVL or SVL Selection Select the SVL or IVL for the ARL table Lookup. 1: Select SVL 0: Select IVL Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 Note: When PORT_IVL_SVL_EN is enabled, 1. the VIDs are used in SVL ports MUST NOT be used in IVL ports. 2. the VID (0) should be programmed for the SVL ports. |         |

# Page 0x36: DOS Prevent Register

Table 313: Page 0x36: DOS Prevent Register

| Address | Bits | Register Name                     |
|---------|------|-----------------------------------|
| 0x00    | 31:0 | "DOS_CTRL" on page 188            |
| 0x04    | 7:0  | "MINIMUM_TCP_HDR_SZ" on page 189  |
| 0x08    | 31:0 | "MAX_ICMPV4_SIZE_REG" on page 190 |
| 0x0c    | 31:0 | "MAX_ICMPV6_SIZE_REG" on page 190 |
| 0x10    | 7:0  | "DOS_DIS_LRN_REG" on page 190     |

# DOS\_CTRL

Register Address: SPI Page 0x36, SPI Offset 0x00

Register Description: DoS Control Register

Table 314: DOS\_CTRL

| Bits  | Name                         | R/W | Description                                                                                                                                                                                                                                                  | Default |
|-------|------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:14 | RESERVED_1                   | R/W | Reserved                                                                                                                                                                                                                                                     | 0x0     |
| 13    | ICMPV6_LONG_PING_DROP<br>_EN | R/W | ICMPv6_LongPing:The ICMPv6 Ping (Echo Request) protocol data unit carried in an unfragmented IPv6 datagram with its Payload Length indicating a value greater than the MAX_ICMPv6_Size.  1 = Drop the specified packet 0 = Do not drop                       | 0       |
| 12    | ICMPV4_LONG_PING_DROP<br>_EN | R/W | ICMPv4_LongPing:The ICMPv4 Ping (Echo Request) protocol data unit carried in an unfragmented IPv4 datagram with its Payload Length indicating a value greater than the MAX_ICMPv4_Size + size of IPv4 heater.  1 = Drop the specified packet 0 = Do not drop | 0       |
| 11    | ICMPV6_FRAGMENT_DROP_<br>EN  | R/W | ICMPv6_Fragment:The ICMPv6 protocol data unit carrier in a fragmented IPv6 datagram.  1 = Drop the specified packet  0 = Do not drop                                                                                                                         | 0       |
| 10    | ICMPV4_FRAGMENT_DROP_<br>EN  | R/W | ICMPv4_Fragment:The ICMPv4 protocol data unit carrier in a fragmented IPv4 datagram.  1 = Drop the specified packet  0 = Do not drop                                                                                                                         | 0       |
| 9     | TCP_FRAG_ERR_DROP_EN         | R/W | TCP_FragError:The Fragment_Offset = 1 in any fragment of a fragmented IP datagram carrying part of TCP data.  1 = Drop the specified packet 0 = Do not drop                                                                                                  | 0       |

Table 314: DOS\_CTRL (Cont.)

| Bits | Name                        | R/W | Description                                                                                                                                                                                                       | Default |
|------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8    | TCP_SHORT_HDR_DROP_E<br>N   | R/W | TCP_ShortHDR:The length of a TCP header carried in an unfragmented IP datagram or the first fragment of a fragmented IP datagram is less than MIN_TCP_Header_Size.  1 = Drop the specified packet 0 = Do not drop | 0       |
| 7    | TCP_SYN_ERR_DROP_EN         | R/W | TCP_SYNError:SYN=1 & ACK=0 & SRC_Port<1024 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram.  1 = Drop the specified packet 0 = Do not drop            | 0       |
| 6    | TCP_SYNFIN_SCAN_DROP_<br>EN | R/W | TCP_SYNFINScan:SYN=1 & FIN=1 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram.  1 = Drop the specified packet 0 = Do not drop                          | 0       |
| 5    | TCP_XMASS_SCAN_DROP_E<br>N  | R/W | TCP_XMASScan:Seq_Num=0 & FIN=1 & URG=1 & PSH=1 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram.  1 = Drop the specified packet 0 = Do not drop        | 0       |
| 4    | TCP_NULL_SCAN_DROP_EN       | R/W | TCP_NULLScan:Seq_Num=0 & All TCP_FLAGs=0, in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. 1 = Drop the specified packet 0 = Do not drop              | 0       |
| 3    | UDP_BLAT_DROP_EN            | R/W | UDP_BLAT:DPport=SPort in a UDP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram.  1 = Drop the specified packet  0 = Do not drop                                | 0       |
| 2    | TCP_BLAT_DROP_EN            | R/W | TCP_BLAT:DPort=SPort in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram.  1 = Drop the specified packet  0 = Do not drop                                 | 0       |
| 1    | IP_LAND_DROP_EN             | R/W | IP_LAND:IPDA=IPSA in an IP(v4/v6) datagram.  1 = Drop the specified packet  0 = Do not drop                                                                                                                       | 0       |
| 0    | RESERVED_0                  | R/W | Reserved                                                                                                                                                                                                          | 1       |

# MINIMUM\_TCP\_HDR\_SZ

Register Address: SPI Page 0x36, SPI Offset 0x04

Register Description: Minimum TCP Header Size Register

Table 315: MINIMUM\_TCP\_HDR\_SZ

| Bits | Name           | R/W | Description                                                                                                                                | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | MIN_TCP_HDR_SZ | R/W | MIN_TCP_Header_Size is programmable between 0 and 255 bytes, inclusive. The default value is set to 20 bytes (TCP header without options). | 0x14    |

#### MAX\_ICMPV4\_SIZE\_REG

Register Address: SPI Page 0x36, SPI Offset 0x08

Register Description: Maximum ICMPv4 Size Register

Table 316: MAX\_ICMPV4\_SIZE\_REG

| Bits | Name            | R/W | Description                                                                                             | Default |
|------|-----------------|-----|---------------------------------------------------------------------------------------------------------|---------|
| 31:0 | MAX_ICMPV4_SIZE | R/W | MAX_ICMPv4_Size is programmable between 0 and 9.6 KB, inclusive. The default value is set to 512 bytes. |         |

#### MAX\_ICMPV6\_SIZE\_REG

Register Address: SPI Page 0x36, SPI Offset 0x0c

Register Description: Maximum ICMPv6 Size Register

Table 317: MAX\_ICMPV6\_SIZE\_REG

| Bits | Name            | R/W | Description                                                                                             | Default |
|------|-----------------|-----|---------------------------------------------------------------------------------------------------------|---------|
| 31:0 | MAX_ICMPV6_SIZE | R/W | MAX_ICMPv6_Size is programmable between 0 and 9.6 KB, inclusive. The default value is set to 512 bytes. |         |

## DOS\_DIS\_LRN\_REG

Register Address: SPI Page 0x36, SPI Offset 0x10

Register Description: DoS Disable Learn Register

Table 318: DOS\_DIS\_LRN\_REG

| Bits | Name        | R/W | Description                                                                          | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 7:1  | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 0    | DOS_DIS_LRN | R/W | When this bit is enabled, all frames drop by dos prevent module will NOT be learned. | 0       |

# Page 0x40: Jumbo Frame Control Register

Table 319: Page 0x40: Jumbo Frame Control Register

| Address | Bits | Register Name                    |  |
|---------|------|----------------------------------|--|
| 0x01    | 31:0 | "JUMBO_PORT_MASK" on page 191    |  |
| 0x05    | 15:0 | "MIB_GD_FM_MAX_SIZE" on page 191 |  |

#### JUMBO\_PORT\_MASK

Register Address: SPI Page 0x40, SPI Offset 0x01

Register Description: Jumbo Frame Port Mask Registers

Table 320: JUMBO\_PORT\_MASK

| Bits  | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED_1         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 24    | EN_10_100_JUMBO    | R/W | Enable 10/100 Port can receive and transmit jumbo frame. Besides Bit[8:0] Jumbo Frame Port Mask select, it requires to set this bit to enable 10/100 Mb/s port jumbo frame support.                                                                                                                                                                                                                                                                                                                                                        | 0       |
| 23:9  | RESERVED_0         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 8:0   | JUMBO_FM_PORT_MASK | R/W | Jumbo Frame Port Mask. Ports defined in the Jumbo Frame Port Mask Register can Receive/Transmit Jumbo Frame (Frame Size over the bytes defined in "Standard Max. Frame Size" register and less than 9720B) Bit7:0 = Port 7-0 in chip 0. 0: Disable Jumbo Frame Capability, 1: Enable Jumbo Frame Capability, Jumbo Frames can be allowed to be delivered among these Ports. Non-Jumbo Frame will not be constrained by the register. It is recommended that no more than two ports be enabled simultaneously to ensure system performance. |         |

### MIB\_GD\_FM\_MAX\_SIZE

Register Address: SPI Page 0x40, SPI Offset 0x05

Register Description: Jumbo MIB Good Frame Max Size Registers

Table 321: MIB\_GD\_FM\_MAX\_SIZE

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 15:14 | RESERVED | R/W | Reserved    | 0x0     |

Table 321: MIB\_GD\_FM\_MAX\_SIZE (Cont.)

| Bits | Name     | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 13:0 | MAX_SIZE | R/W | Standard Max. Frame Size. The Register defines the Standard MAX. Frame Size for MAC and MIB counter. The register should be either 14'd1518 or 14'd2000. When jumbo is disable, the MAC and MIB counter use this field to check for good frame size. When this field is 1518, 1. Untagged frames will be dropped if the frame size is larger than 1518 bytes. 2. Single tagged frames will be dropped if the frame size is lager than 1522 bytes. 3. Double tagged frames will be dropped if the frame size is lager than 1526 bytes. On the other hand, when this field is 2000, all untagged, single tagged, and double tagged frames will be dropped if the frame size is larger than 2000 bytes. when jumbo is enable, all the frames will be dropped if the frame size is larger than 9720B. The Register setting will affect those MIB counting including in RxSAChange RxgoodOctets RxUnicastPkts RxMulticastPkts RxBroadcastPkts RxBroadcastPkts RxBroadcastPkts RxOverSizePkts For iProc CTP MAC, The maximum Jumbo size support in the internal CTP MAC for port 5/port 7/port 8 is 2500 byte. More than the packet size will be dropped in the internal CTF MAC. | 0x7D0   |

# Page 0x41: Common Ingress Rate control Register

Table 322: Page 0x41: Common Ingress Rate control Register

| Address | Bits | Register Name                        |  |
|---------|------|--------------------------------------|--|
| 0x00    | 31:0 | "COMM_IRC_CON" on page 193           |  |
| 0x10    | 31:0 | "BC_SUP_RATECTRL_P" on page 193      |  |
| 0x30    | 31:0 | "BC_SUP_RATECTRL_IMP" on page 196    |  |
| 0x34    | 15:0 | "BC_SUP_RATECTRL_1_P" on page 200    |  |
| 0x43    | 15:0 | "BC_SUP_RATECTRL_1_IMP" on page 201  |  |
| 0x50    | 31:0 | "BC_SUP_PKTDROP_CNT_P" on page 202   |  |
| 0x70    | 31:0 | "BC_SUP_PKTDROP_CNT_IMP" on page 202 |  |

## COMM\_IRC\_CON

Register Address: SPI Page 0x41, SPI Offset 0x00

Register Description: Common Ingress rate Control Configuration Registers

Table 323: COMM\_IRC\_CON

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED_2 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 17    | RATE_TYPE1 | R/W | Bit Rate Mode selection for Bucket 1.  0:Absolute Bit Rate Mode Incoming Bit Rate is Defined in Refresh Count in per Ingress Port Rate Control Register with Absolute amount and Nothing about Link Speed.  1:Bit Rate Related to Link Speed Mode Incoming Bit Rate is Define in Refresh Count in Per Ingress Port Rate Control Register with Related Amount to Link Speed |         |
| 16:9  | RESERVED_1 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 8     | RATE_TYPE0 | R/W | Bit Rate Mode selection for Bucket 0.  0:Absolute Bit Rate Mode Incoming Bit Rate is Defined in Refresh Count in per Ingress Port Rate Control Register with Absolute amount and Nothing about Link Speed.  1:Bit Rate Related to Link Speed Mode Incoming Bit Rate is Define in Refresh Count in Per Ingress Port Rate Control Register with Related Amount to Link Speed |         |
| 7:0   | RESERVED_0 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |

## BC\_SUP\_RATECTRL\_P

Register Address: SPI Page 0x41, SPI Offset 0x10

Register Description: Port N Receive Rate Control Registers

Table 324: BC\_SUP\_RATECTRL\_P

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|-------|--------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31    | RESERVED_1   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                          | 0       |
| 30    | BUCKET_MODE1 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       |
| 29    | BUCKET_MODE0 | R/W | Ingress Rate Control Mode Selection for Bucket 0.  1:The incoming packet will be dropped if the allowed bandwidth for those packets defined in Packet Type Mask is up.  0:The Pause Frame/Jamming Frame will be transmitted depend on Full/HalfDuplex Mode if the allowed bandwidth for those packets defined in Packet Type Mask is up.  Note: Bucket 0 can be configured as Policer or Shaper and Bucket 1 is fixed to Policer. | 1       |
| 28:24 | RESERVED_0   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x0     |
| 23    | EN_BUCKET1   | R/W | Enable Rate Control of the Ingress Port, Bucket 1 1:Enable, 0:Disable.                                                                                                                                                                                                                                                                                                                                                            | 0       |
| 22    | EN_BUCKET0   | R/W | Enable Rate Control of the Ingress Port, Bucket 0 1:Enable, 0:Disable.                                                                                                                                                                                                                                                                                                                                                            | 0       |
| 21:19 | BUCKET1_SIZE | R/W | Bucket Size for Bucket 1. Bucket Size will affect the burst traffic. 3'b000: 4 KB 3'b001: 8 KB 3'b010: 16 KB 3'b011: 32 KB 3'b100: 64 KB others: 488 KB                                                                                                                                                                                                                                                                           | 0x0     |

Table 324: BC\_SUP\_RATECTRL\_P (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 18:11 | BUCKET1_REF_CNT | R/W | Refresh Count in Bucket 1. Refresh Count Define allowing Incoming Packet Bit Rate For those Packets Defined in Suppressed Packet Type Mask in Port Receive Rate Control 1 Register When Bit Rate Mode Selection is 0(Absolute Bit Rate Mode) 1~28: Bit Rate = Refresh Count*8*1024/125, that's Bit Rate is 64 Kb ~1.792 Mb with Resolution 64 Kb 29~127: Bit Rate = (Refresh Count-27)*1024, that's Bit Rate is 2 Mb~100 Mb with Resolution 1Mb 128~240: Bit Rate = (Refresh Count - 115)*1024*8, that's Bit Rate is 104 Mb~1000 Mb with Resolution 8Mb When Bit Rate Mode Selection is 1(Bit Rate Related to Link Speed Mode) 1~125: when 10M speed Bit Rate = Refresh Count * 8 * 1024 /100, that's Bit Rate is 0.08 Mb~10 Mb with Resolution 0.08Mb 1~125: when 100M speed Bit Rate = Refresh Count * 8 * 1024/10, that's Bit Rate is 0.8 Mb~100 Mb with Resolution 0.8Mb 1~125: when 1000M Speed Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate is 8 Mb~1000 Mb with Resolution 8 Mb | 0x10    |
| 10:8  | BUCKET0_SIZE    | R/W | Bucket Size for Bucket 0. Bucket Size will affect the burst traffic. 3'b000: 4 KB 3'b001: 8 KB 3'b010: 16 KB 3'b011: 32 KB 3'b100: 64 KB others: 488 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |

Table 324: BC\_SUP\_RATECTRL\_P (Cont.)

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | BUCKET0_REF_CNT | R/W | Refresh Count in Bucket 0. Refresh Count Define allowing Incoming Packet Bit Rate For those Packets Defined in Suppressed Packet Type Mask in Port Receive Rate Control 1 Register When Bit Rate Mode Selection is 0(Absolute Bit Rate Mode) 1~28: Bit Rate = Refresh Count*8*1024/125, that's Bit Rate is 64 Kb ~1.792 Mb with Resolution 64Kb 29~127: Bit Rate = (Refresh Count-27)*1024, that's Bit Rate is 2 Mb~100 Mb with Resolution 1Mb 128~240: Bit Rate = (Refresh Count - 115)*1024*8, that's Bit Rate is 104 Mb~1000 Mb with Resolution 8Mb When Bit Rate Mode Selection is 1(Bit Rate Related to Link Speed Mode) 1~125: when 10M speed Bit Rate = Refresh Count * 8 * 1024 /100, that's Bit Rate is 0.08 Mb~10 Mb with Resolution 0.08Mb 1~125: when 100M speed Bit Rate = Refresh Count * 8 * 1024/10, that's Bit Rate is 0.8 Mb~100 Mb with Resolution 0.8Mb 1~125: when 1000M Speed Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate is 8 Mb~1000 Mb with Resolution 0.8Mb 1~125: when 1000M Speed |         |

## BC\_SUP\_RATECTRL\_IMP

Register Address: SPI Page 0x41, SPI Offset 0x30

Register Description: Port 8 Receive Rate Control Registers

Table 325: BC\_SUP\_RATECTRL\_IMP

| Bits | Name       | R/W | Description | Default |
|------|------------|-----|-------------|---------|
| 31   | RESERVED_1 | R/W | Reserved    | 0       |
| 30   | RESERVED_1 | R/W | Reserved    | 0       |

Table 325: BC\_SUP\_RATECTRL\_IMP (Cont.)

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|-------|--------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 29    | BUCKET_MODE0 | R/W | Ingress Rate Control Mode Selection for Bucket 0.  1:The incoming packet will be dropped if the allowed bandwidth for those packets defined in Packet Type Mask is up.  0:The Pause Frame/Jamming Frame will be transmitted depend on Full/HalfDuplex Mode if the allowed bandwidth for those packets defined in Packet Type Mask is up.  Note: Bucket 0 can be configured as Policer or Shaper and Bucket 1 is fixed to Policer. | 1       |
| 28:24 | RESERVED_0   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x0     |
| 23    | EN_BUCKET1   | R/W | Enable Rate Control of the Ingress Port, Bucket 1 1:Enable, 0:Disable.                                                                                                                                                                                                                                                                                                                                                            | 0       |
| 22    | EN_BUCKET0   | R/W | Enable Rate Control of the Ingress Port, Bucket 0 1:Enable, 0:Disable.                                                                                                                                                                                                                                                                                                                                                            | 0       |
| 21:19 | BUCKET1_SIZE | R/W | Bucket Size for Bucket 1. Bucket Size will affect the burst traffic. 3'b000: 4 KB 3'b001: 8 KB 3'b010: 16 KB 3'b011: 32 KB 3'b100: 64 KB others: 488 KB                                                                                                                                                                                                                                                                           | 0x0     |

Table 325: BC\_SUP\_RATECTRL\_IMP (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|-------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 18:11 | BUCKET1_REF_CNT | R/W | Refresh Count in Bucket 1. Refresh Count Define allowing Incoming Packet Bit Rate For those Packets Defined in Suppressed Packet Type Mask in Port 8 Receive Rate Control 1 Register When Bit Rate Mode Selection is 0(Absolute Bit Rate Mode) 1~28: Bit Rate = Refresh Count*8*1024/125, that's Bit Rate is 64 Kb ~1.792 Mb with Resolution 64 Kb 29~127: Bit Rate = (Refresh Count-27)*1024, that's Bit Rate is 2 Mb~100 Mb with Resolution 1 Mb 128~240: Bit Rate = (Refresh Count - 115)*1024*8, that's Bit Rate is 104 Mb~1000 Mb with Resolution 8 Mb When Bit Rate Mode Selection is 1(Bit Rate Related to Link Speed Mode) 1~125: when 10M speed Bit Rate = Refresh Count * 8 * 1024 /100, that's Bit Rate is 0.08 Mb~10 Mb with Resolution 0.08 Mb 1~125: when 100M speed Bit Rate = Refresh Count * 8 * 1024/10, that's Bit Rate is 0.8 Mb~100 Mb with Resolution 0.8 Mb 1~125: when 1000M Speed Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate = Refresh Count * 8 * 1024, that's Bit Rate is 8 Mb~1000 Mb with Resolution 0.8 | 0x10    |
| 10:8  | BUCKET0_SIZE    | R/W | Bucket Size for Bucket 0. Bucket Size will affect the burst traffic. 3'b000: 4 KB 3'b001: 8 KB 3'b010: 16 KB 3'b011: 32 KB 3'b100: 64 KB others: 488 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0     |

Table 325: BC\_SUP\_RATECTRL\_IMP (Cont.)

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|------|-----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | BUCKET0_REF_CNT | R/W | Refresh Count in Bucket 0. Refresh Count Define allowing Incoming Packet Bit Rate For those Packets Defined in Suppressed Packet Type Mask in Port 8 Receive Rate Control 1 Register When Bit Rate Mode Selection is 0 (Absolute Bit Rate Mode) 1~28: Bit Rate = Refresh Count*8*1024/125, that's Bit Rate is 64 Kb ~1.792 Mb with Resolution 64 Kb 29~127: Bit Rate = (Refresh Count-27)*1024, that's Bit Rate is 2 Mb~100 Mb with Resolution 1 Mb 128~240: Bit Rate = (Refresh Count - 115)*1024*8, that's Bit Rate is 104 Mb~1000 Mb with Resolution 8 Mb When Bit Rate Mode Selection is 1(Bit Rate Related to Link Speed Mode) 1~125: when 10M speed Bit Rate = Refresh Count * 8 * 1024 /100, that's Bit Rate is 0.08 Mb~10 Mb with Resolution 0.08 Mb 1~125: when 100M speed Bit Rate = Refresh Count * 8 * 1024/10, that's Bit Rate = Refresh Count * 8 * 1024/10, that's Bit Rate is 0.8 Mb~100 Mb with Resolution 0.8 |         |
|      |                 |     | Mb 1~125: when 1000M Speed  Bit Rate = Refresh Count * 8 * 1024, that's  Bit Rate is 8 Mb~1000 Mb with Resolution 8 Mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |

# BC\_SUP\_RATECTRL\_1\_P

Register Address: SPI Page 0x41, SPI Offset 0x34

Register Description: Port N Receive Rate Control 1 Registers

Table 326: BC\_SUP\_RATECTRL\_1\_P

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | IFG_BYTES1 | R/W | Bit Rate Mode Selection for Bucket 1 0: Rx rate excluding Preamble and IFG (20B) 1: Rx rate including Preamble and IFG (20B)                                                                                                                                                                                                                                                                | 0       |
| 14:8 | PKT_MSK1   | R/W | Packet Mask for Bucket 1 Bit 8: Unicast lookup hit Bit 9: Multicast lookup hit Bit 10: Reserved Mac Address Frame(01-80-C2- 00-00-00 ~ 01-80-C2-00-00-2F) Bit 11: Broadcast Bit 12: Multicast lookup fail Bit 13: Unicast lookup fail Bit 14: Reserved Note: PKT_MSK1 and PKT_MSK0 shouldn't have any overlaps on packet type selection. Otherwise, the accuracy of rate would be affected. | 0x0     |
| 7    | IFG_BYTES0 | R/W | Bit Rate Mode Selection for Bucket 0 0: Rx rate excluding Preamble and IFG (20B) 1: Rx rate including Preamble and IFG (20B)                                                                                                                                                                                                                                                                | 0       |
| 6:0  | PKT_MSK0   | R/W | Packet Mask for Bucket 0 Bit 0: Unicast lookup hit Bit 1: Multicast lookup hit Bit 2: Reserved Mac Address Frame(01-80-C2- 00-00-00 ~ 01-80-C2-00-00-2F) Bit 3: Broadcast Bit 4: Multicast lookup fail Bit 5: Unicast lookup fail Bit 6: Reserved Note: PKT_MSK1 and PKT_MSK0 shouldn't have any overlaps on packet type selection. Otherwise, the accuracy of rate would be affected.      | 0x0     |

# BC\_SUP\_RATECTRL\_1\_IMP

Register Address: SPI Page 0x41, SPI Offset 0x43

Register Description: Port 8 Receive Rate Control 1 Register

Table 327: BC\_SUP\_RATECTRL\_1\_IMP

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | IFG_BYTES1 | R/W | Bit Rate Mode Selection for Bucket 1 0: Rx rate excluding Preamble and IFG (20B) 1: Rx rate including Preamble and IFG (20B)                                                                                                                                                                                                                                                               | 0       |
| 14:8 | PKT_MSK1   | R/W | Packet Mask for Bucket 1 Bit 8: Unicast lookup hit Bit 9: Multicast lookup hit Bit 10: Reserved Mac Address Frame(01-80-C2-00-00-00 ~ 01-80-C2-00-00-2F) Bit 11: Broadcast Bit 12: Multicast lookup fail Bit 13: Unicast lookup fail Bit 14: Reserved Note: PKT_MSK1 and PKT_MSK0 shouldn't have any overlaps on packet type selection. Otherwise, the accuracy of rate would be affected. | 0x0     |
| 7    | IFG_BYTES0 | R/W | Bit Rate Mode Selection for Bucket 0<br>0: Rx rate excluding Preamble and IFG (20B)<br>1: Rx rate including Preamble and IFG (20B)                                                                                                                                                                                                                                                         | 0       |
| 6:0  | PKT_MSK0   | R/W | Packet Mask for Bucket 0 Bit 0: Unicast lookup hit Bit 1: Multicast lookup hit Bit 2: Reserved Mac Address Frame(01-80-C2-00-00-00 ~ 01-80-C2-00-00-2F) Bit 3: Broadcast Bit 4: Multicast lookup fail Bit 5: Unicast lookup fail Bit 6: Reserved Note: PKT_MSK1 and PKT_MSK0 shouldn't have any overlaps on packet type selection. Otherwise, the accuracy of rate would be affected.      | 0x0     |

## BC\_SUP\_PKTDROP\_CNT\_P

Register Address: SPI Page 0x41, SPI Offset 0x50

Register Description: Port N Suppressed Packet Drop Counter Register

Table 328: BC\_SUP\_PKTDROP\_CNT\_P

| Bits | Name        | R/W | Description                                                                                                                                       | Default |
|------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | PK_DROP_CNT | R/W | Packet Dropped Count. Record the Dropped packet count for Suppression Drop Count or Jumbo Filtered Count. Reset after the Register has been read. | 0x0     |

#### BC\_SUP\_PKTDROP\_CNT\_IMP

Register Address: SPI Page 0x41, SPI Offset 0x70

Register Description: Port 8 Suppressed Packet Drop Counter Register

Table 329: BC\_SUP\_PKTDROP\_CNT\_IMP

| Bits | Name        | R/W | Description                                                                                                                                       | Default |
|------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | PK_DROP_CNT | R/W | Packet Dropped Count. Record the Dropped packet count for Suppression Drop Count or Jumbo Filtered Count. Reset after the Register has been read. | 0x0     |

# Page 0x42: EAP Control Register

Table 330: Page 0x42: EAP Control Register

| Address | Bits | Register Name                     |  |
|---------|------|-----------------------------------|--|
| 0x00    | 7:0  | "EAP_GLO_CON" on page 203         |  |
| 0x01    | 7:0  | "EAP_MULTI_ADDR_CTRL" on page 203 |  |
| 0x02    | 63:0 | "EAP_DIP" on page 204             |  |
| 0x20    | 63:0 | "PORT_EAP_CON" on page 204        |  |
| 0x60    | 63:0 | "PORT_EAP_CON_IMP" on page 205    |  |

#### EAP\_GLO\_CON

Register Address: SPI Page 0x42, SPI Offset 0x00

Register Description: EAP Global Configuration Registers

Table 331: EAP\_GLO\_CON

| Bits | Name       | R/W | Description                                                                                                                   | Default |
|------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | RESERVED_0 | R/W | Reserved                                                                                                                      | 0       |
| 6    | EN_RARP    | R/W | 1'b1: allow RARP to pass<br>1'b0: drop RARP                                                                                   | 0       |
| 5    | EN_BPDU    | R/W | When EAP_BLK_MODE is set,<br>1'b1: allow BPDU to pass<br>1'b0: drop BPDU                                                      | 0       |
| 4    | EN_RMC     | R/W | When EAP_BLK_MODE is set,<br>1'b1: allow DA = 01-80-C2-00-00-02, 04-0F to<br>pass<br>1'b0: drop DA = 01-80-C2-00-00-02, 04-0F | 0       |
| 3    | EN_DHCP    | R/W | 1'b1: allow DHCP to pass<br>1'b0: drop DHCP                                                                                   | 0       |
| 2    | EN_ARP     | R/W | 1'b1: allow ARP to pass<br>1'b0: drop ARP                                                                                     | 0       |
| 1    | EN_2_DIP   | R/W | 1'b1: 2 subnet destination IP defined in EAP_DIP0_MASK & EAP_DIP1_MASK are allowed to pass 1'b0: drop                         | 0       |
| 0    | RESERVED   | R/W | Reserved                                                                                                                      | 0       |

#### EAP\_MULTI\_ADDR\_CTRL

Register Address: SPI Page 0x42, SPI Offset 0x01

Register Description: EAP Multiport Address Control Register

Table 332: EAP\_MULTI\_ADDR\_CTRL

| Bits | Name      | R/W | Description                                                                            | Default |
|------|-----------|-----|----------------------------------------------------------------------------------------|---------|
| 7:6  | RESERVED  | R/W | Reserved                                                                               | 0x0     |
| 5    | EN_MPORT5 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/60h to pass<br>1'b0: drop | 0       |
| 4    | EN_MPORT4 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/50h to pass<br>1'b0: drop | 0       |
| 3    | EN_MPORT3 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/40h to pass<br>1'b0: drop | 0       |
| 2    | EN_MPORT2 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/30h to pass<br>1'b0: drop | 0       |
| 1    | EN_MPORT1 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/20h to pass<br>1'b0: drop | 0       |
| 0    | EN_MPORT0 | R/W | 1'b1: allow multiport address define at Page/<br>Offset = 04/10h to pass<br>1'b0: drop | 0       |

#### **EAP\_DIP**

Register Address: SPI Page 0x42, SPI Offset 0x02

Register Description: EAP Destination IP Registers

Table 333: EAP\_DIP

| Bits  | Name         | R/W | Description                          | Default |
|-------|--------------|-----|--------------------------------------|---------|
| 63:32 | DIP_SUB_REG  | R/W | EAP destination IP subnet register N | 0x0     |
| 31:0  | DIP_MASK_REG | R/W | EAP destination IP mask register N   | 0x0     |

## PORT\_EAP\_CON

Register Address: SPI Page 0x42, SPI Offset 0x20

Register Description: Port N EAP Configuration Registers

Table 334: PORT\_EAP\_CON

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 63:53 | RESERVED | R/W | Reserved    | 0x0     |

Table 334: PORT\_EAP\_CON (Cont.)

| Bits  | Name          | R/W | Description                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 52:51 | EAP_MODE      | R/W | 00: Basic mode, do not check SA, 01: Reserved 10: Extend mode, check SA & port-number. Drop if SA is unknown. 11: Simplified mode, check SA & port-number. Trap to mgnt-port if SA is unknown.                                                                                                                                                                                   | 0x0     |
| 50:49 | EAP_BLK_MODE  | R/W | 00: Do not check EAP_BLK_MODE. 01: Check EAP_BLK_MODE on ingress port, only frame defined in EAP_GCFG will be forwarded. Otherwise frame will be dropped. 10: Reserved 11: Check EAP_BLK_MODE on both ingress and egress port, only frame defined in EAP_GCFG will be forwarded. Especially, the forwarding process will check whether each egress port is at block mode or not. | 0x0     |
| 48    | EAP_EN_UNI_DA | R/W | enable EAP frame with DA.                                                                                                                                                                                                                                                                                                                                                        | 0       |
| 47:0  | EAP_UNI_DA    | R/W | EAP frame DA register.                                                                                                                                                                                                                                                                                                                                                           | 0x0     |

# PORT\_EAP\_CON\_IMP

Register Address: SPI Page 0x42, SPI Offset 0x60

Register Description: IMP EAP Configuration Registers

Table 335: PORT\_EAP\_CON\_IMP

| Bits  | Name          | R/W | Description                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:53 | RESERVED      | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                         | 0x0     |
| 52:51 | EAP_MODE      | R/W | <ul> <li>00: Basic mode, do not check SA,</li> <li>01: Reserved</li> <li>10: Extend mode, check SA &amp; port-number. Drop if SA is unknown.</li> <li>11: Simplified mode, check SA &amp; port-number.</li> <li>Trap to mgnt-port if SA is unknown.</li> </ul>                                                                                                                   | 0x0     |
| 50:49 | EAP_BLK_MODE  | R/W | 00: Do not check EAP_BLK_MODE. 01: Check EAP_BLK_MODE on ingress port, only frame defined in EAP_GCFG will be forwarded. Otherwise frame will be dropped. 10: Reserved 11: Check EAP_BLK_MODE on both ingress and egress port, only frame defined in EAP_GCFG will be forwarded. Especially, the forwarding process will check whether each egress port is at block mode or not. | 0x0     |
| 48    | EAP_EN_UNI_DA | R/W | enable EAP frame with DA.                                                                                                                                                                                                                                                                                                                                                        | 0       |
| 47:0  | EAP_UNI_DA    | R/W | EAP frame DA register.                                                                                                                                                                                                                                                                                                                                                           | 0x0     |

# Page 0x43: MSPT (Multi Spanning Tree) Control Register

Table 336: Page 0x43: MSPT (Multi Spanning Tree) Control Register

| Address | Bits | Register Name                         |  |
|---------|------|---------------------------------------|--|
| 0x00    | 7:0  | "MST_CON" on page 206                 |  |
| 0x02    | 31:0 | "MST_AGE" on page 206                 |  |
| 0x10    | 31:0 | "MST_TAB" on page 206                 |  |
| 0x50    | 15:0 | "SPT_MULTI_ADDR_BPS_CTRL" on page 208 |  |

### MST\_CON

Register Address: SPI Page 0x43, SPI Offset 0x00

Register Description: MST Control Registers

Table 337: MST\_CON

| Bits | Name      | R/W | Description                                           | Default |
|------|-----------|-----|-------------------------------------------------------|---------|
| 7:1  | RESERVED  | R/W | Reserved                                              | 0x0     |
| 0    | EN_802_1S | R/W | 1: Enable 802.1s<br>0: Only one spanning tree support | 0       |

#### MST\_AGE

Register Address: SPI Page 0x43, SPI Offset 0x02

Register Description: MST Ageing Control Register

Table 338: MST\_AGE

| Bits | Name       | R/W | Description                     | Default |
|------|------------|-----|---------------------------------|---------|
| 31:8 | RESERVED   | R/W | Reserved                        | 0x0     |
| 7:0  | AGE_EN_PRT | R/W | Per-spanning tree aging enable. | 0x0     |

#### MST\_TAB

Register Address: SPI Page 0x43, SPI Offset 0x10

Register Description: MST Table N Enable Registers

Table 339: MST\_TAB

| Bits  | Name         | R/W | Description | Default |
|-------|--------------|-----|-------------|---------|
| 31:27 | MST_TAB_RSRV | R/W | Reserved    | 0x0     |
| 26:24 | RESERVED_1   | R/W | Reserved    | 0x0     |

Table 339: MST\_TAB (Cont.)

| Bits  | Name       | R/W | Description                                                                                                                                            | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 23:21 | SPT_STA7   | R/W | Spanning tree state for port 7. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |
| 20:18 | RESERVED_0 | R/W | Reserved                                                                                                                                               | 0x0     |
| 17:15 | SPT_STA5   | R/W | Spanning tree state for port 5. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |
| 14:12 | SPT_STA4   | R/W | Spanning tree state for port 4. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |
| 11:9  | SPT_STA3   | R/W | Spanning tree state for port 3. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |
| 8:6   | SPT_STA2   | R/W | Spanning tree state for port 2. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |
| 5:3   | SPT_STA1   | R/W | Spanning tree state for port 1. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |

Table 339: MST\_TAB (Cont.)

| Bits | Name     | R/W | Description                                                                                                                                            | Default |
|------|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2:0  | SPT_STA0 | R/W | Spanning tree state for port 0. 000: no spanning tree, 001: disable, 010: blocking, 011: listening, 100: learning, 101: forwarding, 110-111: reserved. | 0x0     |

## SPT\_MULTI\_ADDR\_BPS\_CTRL

Register Address: SPI Page 0x43, SPI Offset 0x50

Register Description: STP Multiport Address Bypass Control Register

Table 340: SPT\_MULTI\_ADDR\_BPS\_CTRL

| Bits | Name                 | R/W | Description                                                                                               | Default |
|------|----------------------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15:6 | RESERVED             | R/W | Reserved                                                                                                  | 0x0     |
| 5    | EN_MPORT5_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD5 will not be checked by SPT Status 1'b1: The MPORT_ADD5 will be checked by SPT Status | 0       |
| 4    | EN_MPORT4_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD4 will not be checked by SPT Status 1'b1: The MPORT_ADD4 will be checked by SPT Status | 0       |
| 3    | EN_MPORT3_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD3 will not be checked by SPT Status 1'b1: The MPORT_ADD3 will be checked by SPT Status | 0       |
| 2    | EN_MPORT2_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD2 will not be checked by SPT Status 1'b1: The MPORT_ADD2 will be checked by SPT Status | 0       |
| 1    | EN_MPORT1_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD1 will not be checked by SPT Status 1'b1: The MPORT_ADD1 will be checked by SPT Status | 0       |
| 0    | EN_MPORT0_BYPASS_SPT | R/W | 1'b0: The MPORT_ADD0 will not be checked by SPT Status 1'b1: The MPORT_ADD0 will be checked by SPT Status | 0       |

# Page 0x45: Source MAC Address Limit Control Register

Table 341: Page 0x45: Source MAC Address Limit Control Register

| Address | Bits | Register Name                             |
|---------|------|-------------------------------------------|
| 0x00    | 15:0 | "SA_LIMIT_ENABLE" on page 209             |
| 0x02    | 15:0 | "SA_LRN_CNTR_RST" on page 210             |
| 0x04    | 15:0 | "SA_OVERLIMIT_CNTR_RST" on page 210       |
| 0x10    | 15:0 | "TOTAL_SA_LIMIT_CTL" on page 210          |
| 0x12    | 15:0 | "PORT_N_SA_LIMIT_CTL" on page 211         |
| 0x22    | 15:0 | "PORT_8_SA_LIMIT_CTL" on page 212         |
| 0x30    | 15:0 | "TOTAL_SA_LRN_CNTR" on page 213           |
| 0x32    | 15:0 | "PORT_N_SA_LRN_CNTR" on page 213          |
| 0x42    | 15:0 | "PORT_8_SA_LRN_CNTR" on page 213          |
| 0x50    | 31:0 | "PORT_N_SA_OVERLIMIT_CNTR" on page 214    |
| 0x70    | 31:0 | "PORT_8_SA_OVERLIMIT_CNTR" on page 214    |
| 0x74    | 15:0 | "SA_OVER_LIMIT_COPY_REDIRECT" on page 214 |

#### SA\_LIMIT\_ENABLE

Register Address: SPI Page 0x45, SPI Offset 0x00

Register Description: SA Limit Enable Register

Table 342: SA\_LIMIT\_ENABLE

| Bits | Name        | R/W | Description                                                                                                                                                             | Default |
|------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED    | R/W | Reserved                                                                                                                                                                | 0x0     |
| 8:0  | SA_LIMIT_EN | R/W | Enables MAC Address Limit feature. Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 Note: For each trunk port, this feature should be disabled. | 0x0     |

#### SA\_LRN\_CNTR\_RST

Register Address: SPI Page 0x45, SPI Offset 0x02

Register Description: SA Learned Counters Reset Register

Table 343: SA\_LRN\_CNTR\_RST

| Bits | Name                  | R/W | Description                                                                                                                                                                                                                                                                                                                   | Default |
|------|-----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | TOTAL_SA_LRN_CNTR_RST | R/W | Total SA Learned Counter Reset Note: 1. When the Total SA Learned Counter is reset, the total SA learned in the ARL table will be inconsistent with the Total SA Learned Counter. 2. Strong recommend to use this register in debugging purpose.                                                                              |         |
| 14:9 | RESERVED              | R/W | Reserved                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 8:0  | PORT_SA_LRN_CNTR_RST  | R/W | Port SA Learned Counter Reset: Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8. Note:  1. When the Port SA Learned Counter is reset, the per port SA learned in the ARL table will be inconsistent with the Port SA Learned Counter.  2. Strong recommend to use this register in debugging purpose. | 0x0     |

#### SA\_OVERLIMIT\_CNTR\_RST

Register Address: SPI Page 0x45, SPI Offset 0x04

Register Description: SA Over Limit Counters Reset Register

Table 344: SA\_OVERLIMIT\_CNTR\_RST

| Bits | Name                            | R/W | Description                                                                                                | Default |
|------|---------------------------------|-----|------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                        | R/W | Reserved                                                                                                   | 0x0     |
| 8:0  | PORT_SA_OVER_LIMIT_CNT<br>R_RST | R/W | Port SA Over Limit Counter Reset: Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 | 0x0     |

# TOTAL\_SA\_LIMIT\_CTL

Register Address: SPI Page 0x45, SPI Offset 0x10

Register Description: Total SA Limit Control Register

Table 345: TOTAL\_SA\_LIMIT\_CTL

| Bits  | Name                 | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED             | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 12:0  | TOTAL_SA_LRN_CNT_LIM | R/W | Total SA Learned Limit It defines the maximum number of MAC addresses allowed to learn on all ports. The configured value of 0 will mean no dynamic address will be learned on the chip. When the maximum limit is set, it can't over the maximum ARL table size (4096). If it is written above the maximum ARL table size (4096), it will be to set to the maximum ARL table size (4096). |         |

## PORT\_N\_SA\_LIMIT\_CTL

Register Address: SPI Page 0x45, SPI Offset 0x12

Register Description: Port N SA Limit Control Register

Table 346: PORT\_N\_SA\_LIMIT\_CTL

| Bits  | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | OVER_LIMIT_ACTIONS | R/W | Indicates the actions after CFP when the MAC Address Limit of the port is reached.  00: Normal ACL based forwarding process will be followed and increment SA_OVER_LIMIT_CNTR.  01: Drop the packet and increment SA_OVER_LIMIT_CNTR.  If the CFP action, MAC_Limit_Bypass, is configured and applied, it will override the drop decision.  10: Copy to CPU and increment SA_OVER_LIMIT_CNTR.  The incoming packet will be copied to CPU port according to COPY_REDIRCT_PORT_ID configuration.  11: Redirect to CPU, and increment SA_OVER_LIMIT_CNTR.  The incoming packet will be redirected to CPU port according to COPY_REDIRCT_PORT_ID configuration. |         |
| 13    | RESERVED           | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       |

Table 346: PORT\_N\_SA\_LIMIT\_CTL (Cont.)

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                | Default |
|------|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 12:0 | SA_LRN_CNT_LIM | R/W | Port SA Learned Limit It defines the maximum number of MAC addresses allowed to learn on the ingress port. The configured value of 0 will mean no dynamic address will be learned on the chip. When the maximum limit is set, it can't over 4096. If it is written above 4096, it will be set to the 4096. | 0x400   |

## PORT\_8\_SA\_LIMIT\_CTL

Register Address: SPI Page 0x45, SPI Offset 0x22

Register Description: Port 8 SA Limit Control Register

Table 347: PORT\_8\_SA\_LIMIT\_CTL

| Bits  | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-------|--------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | OVER_LIMIT_ACTIONS | R/W | Indicates the actions after CFP when the MAC Address Limit of the port is reached.  00: Normal ACL based forwarding process will be followed and increment SA_OVER_LIMIT_CNTR.  01: Drop the packet and increment SA_OVER_LIMIT_CNTR.  If the CFP action, MAC_Limit_Bypass, is configured and applied, it will override the drop decision.  10: Copy to CPU and increment SA_OVER_LIMIT_CNTR.  The incoming packet will be copied to CPU port according to COPY_REDIRCT_PORT_ID configuration.  11: Redirect to CPU, and increment SA_OVER_LIMIT_CNTR.  The incoming packet will be redirected to CPU port according to COPY_REDIRCT_PORT_ID configuration. |         |
| 13    | RESERVED           | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       |
| 12:0  | SA_LRN_CNT_LIM     | R/W | Port SA Learned Limit It defines the maximum number of MAC addresses allowed to learn on the ingress port. The configured value of 0 will mean no dynamic address will be learned on the chip. When the maximum limit is set, it can't over 4096. If it is written above 4096, it will be set to the 4096.                                                                                                                                                                                                                                                                                                                                                  | 0x400   |

#### TOTAL\_SA\_LRN\_CNTR

Register Address: SPI Page 0x45, SPI Offset 0x30

Register Description: Total SA Learned Counter Register

Table 348: TOTAL\_SA\_LRN\_CNTR

| Bits  | Name                | R/W | Description                                                                                                                                                              | Default |
|-------|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED            | R/W | Reserved                                                                                                                                                                 | 0x0     |
| 12:0  | TOTAL_SA_LRN_CNT_NO | R/W | The number of SA MAC addresses learned on al ports. (Software should be able to reset the counter) This counter can't over the value programmed in TOTAL_SA_LRN_CNT_LIM. |         |

# PORT\_N\_SA\_LRN\_CNTR

Register Address: SPI Page 0x45, SPI Offset 0x32

Register Description: Port N SA Learned Counter Register

Table 349: PORT\_N\_SA\_LRN\_CNTR

| Bits  | Name          | R/W | Description                                                                                                                                                                | Default |
|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED      | R/W | Reserved                                                                                                                                                                   | 0x0     |
| 12:0  | SA_LRN_CNT_NO | R/W | The number of SA MAC addresses learned on the ingress port. (Software should be able to reset the counter) This counter can't over the value programmed in SA_LRN_CNT_LIM. |         |

#### PORT\_8\_SA\_LRN\_CNTR

Register Address: SPI Page 0x45, SPI Offset 0x42

Register Description: Port 8 SA Learned Counter Register

Table 350: PORT\_8\_SA\_LRN\_CNTR

| Bits  | Name          | R/W | Description                                                                                                                                                                | Default |
|-------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | RESERVED      | R/W | Reserved                                                                                                                                                                   | 0x0     |
| 12:0  | SA_LRN_CNT_NO | R/W | The number of SA MAC addresses learned on the ingress port. (Software should be able to reset the counter) This counter can't over the value programmed in SA_LRN_CNT_LIM. |         |

#### PORT\_N\_SA\_OVERLIMIT\_CNTR

Register Address: SPI Page 0x45, SPI Offset 0x50

Register Description: Port N SA Over Limit Counter Register

Table 351: PORT\_N\_SA\_OVERLIMIT\_CNTR

| Bits | Name               | R/W | Description                                                                                      | Default |
|------|--------------------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | SA_OVER_LIMIT_CNTR | R/W | The number of packets exceeded the port SA limit. (Software should be able to reset the counter) | 0x0     |

#### PORT\_8\_SA\_OVERLIMIT\_CNTR

Register Address: SPI Page 0x45, SPI Offset 0x70

Register Description: Port 8 SA Over Limit Counter Register

Table 352: PORT\_8\_SA\_OVERLIMIT\_CNTR

| Bits | Name               | R/W | Description                                                                                      | Default |
|------|--------------------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | SA_OVER_LIMIT_CNTR | R/W | The number of packets exceeded the port SA limit. (Software should be able to reset the counter) | 0x0     |

#### SA\_OVER\_LIMIT\_COPY\_REDIRECT

Register Address: SPI Page 0x45, SPI Offset 0x74

Register Description: SA Over Limit Actions Config Register

Table 353: SA OVER LIMIT COPY REDIRECT

| Bits | Name                  | R/W | Description                                                                                                                                                                                                                                                                                      | Default |
|------|-----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:4 | RESERVED              | R/W | Reserved                                                                                                                                                                                                                                                                                         | 0x0     |
| 3:0  | COPY_REDIRECT_PORT_ID | R/W | Defines the COPY/REDIRCT PORT ID. When the SA MAC Address limit is reached and the Over Limit Action is configured to COPY or REDIRECT, the incoming packet will be forwarded according to COPY_REDIRCT_PORT_ID. 0000 - 0100: Reserved 0101: Reserved 0110: Reserved 0111: Reserved 1000: Port 8 | 0x8     |

# Page 0x46: Port QoS Priority Control Register

Table 354: Page 0x46: Port QoS Priority Control Register

| Address | Bits | Register Name                                         |  |
|---------|------|-------------------------------------------------------|--|
| 0x00    | 7:0  | "PN_QOS_PRI_CTL" on page 215                          |  |
| 0x08    | 7:0  | "IMP_QOS_PRI_CTL" on page 216                         |  |
| 0x50    | 5:0  | "IMP_QOS_WEIGHT" on page 217                          |  |
| 0x60    | 15:0 | "Page 0x47: Port Shaper Control Register" on page 219 |  |
| 0x72    | 5:0  | "Page 0x47: Port Shaper Control Register" on page 219 |  |

#### PN\_QOS\_PRI\_CTL

Register Address: SPI Page 0x46, SPI Offset 0x00

Register Description: Port N, QoS Priority Control Register

Table 355: PN\_QOS\_PRI\_CTL

| Bits | Name                             | R/W   | Description                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|----------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | TXQ_EMPTY_STATUS_SELE<br>CT      | R/W   | Transmit queue empty status selection for scheduler reference 1: Use the empty status gated by the egress queue shaper When the maximum queue shaping rate is reached, the empty status will been sent to scheduler for reference. 0: Use the empty status directly generated by the transmit queue If the transmit queue is not empty, the empty status will never been sent to scheduler. | 0       |
| 6    | RESERVED                         | R/W   | Reserved                                                                                                                                                                                                                                                                                                                                                                                    | 0       |
| 5    | NEGATIVE_CREDIT_CLR_DIS<br>ABLE  | S R/W | Disable the clear action whenever the TXQ empty status is received with the negative credit.  1: Disable the clear action When TXQ empty status is received, the negative credit will not be clear.  0: Enable the clear action When TXQ empty status is received, the negative credit will be clear.                                                                                       |         |
| 4    | ROUNDROBIN_BURST_MOD<br>E_ENABLE | R/W   | Enable the bursting packet transmits from the serviced queue before next arbitration with Round-Robin scheduling. It only affects on any queue configured with WDRR/WRR scheduling. 1: Successive packets will be serviced before the next arbitration. 0: It represents only one packet being serviced before next arbitration.                                                            | 1       |

Table 355: PN\_QOS\_PRI\_CTL (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3    | WDRR_GRANULARITY | R/W | Granularity selector for WDRR weight or WRR weight 1: The unit of WRR weight is in term of packet. 0: The unit of WDRR weight is in term of 256-bytes.                                                                                                                                                                                                                        | 0       |
| 2:0  | SCHEDULER_SELECT | R/W | Select QoS scheduling algorithm for Q7 - Q0. [Bit2, Bit1, Bit0]: 000: for all Q7 - Q0 are Strict Priority (SP) 001: for Q7 is (SP) and Q6-Q0 are (WDRR/WRR) 010: for Q7-Q6 are (SP) and Q5-Q0 are (WDRRWRR) 011: for Q7-Q5 are (SP) and Q4-Q0 are (WDRRWRR) 100: for Q7-Q4 are (SP) and Q3-Q0 are (WDRRWRR) 101: for all Q7 - Q0 are Weighted Deplicit Round-Robin (WDRR/WRR) | !<br>!  |

# IMP\_QOS\_PRI\_CTL

Register Address: SPI Page 0x46, SPI Offset 0x08

Register Description: Port 8, QoS Priority Control Register

Table 356: IMP\_QOS\_PRI\_CTL

| Bits | Name                            | R/W  | Description                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|---------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | TXQ_EMPTY_STATUS_SELE<br>CT     | R/W  | Transmit queue empty status selection for scheduler reference 1: Use the empty status gated by the egress queue shaper When the maximum queue shaping rate is reached, the empty status will been sent to scheduler for reference. 0: Use the empty status directly generated by the transmit queue If the transmit queue is not empty, the empty status will never been sent to scheduler. | 0       |
| 6    | RESERVED                        | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                    | 0       |
| 5    | NEGATIVE_CREDIT_CLR_DIS<br>ABLE | SR/W | Disable the clear action whenever the TXQ empty status is received with the negative credit.  1: Disable the clear action When TXQ empty status is received, the negative credit will not be clear.  0: Enable the clear action When TXQ empty status is received, the negative credit will be clear.                                                                                       | 0       |

Table 356: IMP\_QOS\_PRI\_CTL (Cont.)

| Bits | Name                             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|----------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 4    | ROUNDROBIN_BURST_MOD<br>E_ENABLE | R/W | Enable the bursting packet transmits from the serviced queue before next arbitration with Round-Robin scheduling. It only affects on any queue configured with WDRR/WRR scheduling. 1: Successive packets will be serviced before the next arbitration. 0: It represents only one packet being serviced before next arbitration.                                                 | 1       |
| 3    | WDRR_GRANULARITY                 | R/W | Granularity selector for WDRR weight or WRR weight 1: The unit of WRR weight is in term of packet. 0: The unit of WDRR weight is in term of 256-bytes.                                                                                                                                                                                                                           | 0       |
| 2:0  | SCHEDULER_SELECT                 | R/W | Select QoS scheduling algorithm for Q7 - Q0. [Bit2, Bit1, Bit0]: 000: for all Q7 - Q0 are Strict Priority (SP) 001: for Q7 is (SP) and Q6-Q0 are (WDRR/WRR) 010: for Q7-Q6 are (SP) and Q5-Q0 are (WDRR/WRR) 011: for Q7-Q5 are (SP) and Q4-Q0 are (WDRR/WRR) 100: for Q7-Q4 are (SP) and Q3-Q0 are (WDRR/WRR) 101: for all Q7 - Q0 are Weighted Deplicit Round-Robin (WDRR/WRR) | ,       |

# IMP\_QOS\_WEIGHT

Register Address: SPI Page 0x46, SPI Offset 0x50

Register Description: Port 8, QoS Weight Register

Table 357: IMP\_QOS\_WEIGHT

| Bits  | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|-------|-----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:56 | Q7_WEIGHT | R/W | Queue N Weight Register.  ***Service Weight unit is in term of packet count or 256-bytes count***  This field defines the service weight for Queen N if the QoS is under weight round robin mode. If it is strict priority mode, this field doesn't affect the QoS scheduler. User should program higher Queue with higher weight. And this field mustn't be programmed as zero.  Queue 7 Weight. |         |
| 55:48 | Q6_WEIGHT | R/W | Queue 6 Weight.                                                                                                                                                                                                                                                                                                                                                                                   | 0x1     |
| 47:40 | Q5_WEIGHT | R/W | Queue 5 Weight.                                                                                                                                                                                                                                                                                                                                                                                   | 0x1     |

#### Table 357: IMP\_QOS\_WEIGHT (Cont.)

| Bits  | Name      | R/W | Description     | Default |
|-------|-----------|-----|-----------------|---------|
| 39:32 | Q4_WEIGHT | R/W | Queue 4 Weight. | 0x1     |
| 31:24 | Q3_WEIGHT | R/W | Queue 3 Weight. | 0x1     |
| 23:16 | Q2_WEIGHT | R/W | Queue 2 Weight. | 0x1     |
| 15:8  | Q1_WEIGHT | R/W | Queue 1 Weight. | 0x1     |
| 7:0   | Q0_WEIGHT | R/W | Queue 0 Weight. | 0x1     |

# Page 0x47: Port Shaper Control Register

Table 358: Page 0x47: Port Shaper Control Register

| Address | Bits | Register Name                                          |
|---------|------|--------------------------------------------------------|
| 0x00    | 31:0 | "PN_PORT_SHAPER_BYTE_BASED_MAX_REFRESH" on page 219    |
| 0x20    | 31:0 | "IMP_PORT_SHAPER_BYTE_BASED_MAX_REFRESH" on page 220   |
| 0x30    | 31:0 | "PN_PORT_SHAPER_BYTE_BASED_MAX_THD_SEL" on page 220    |
| 0x50    | 31:0 | "IMP_PORT_SHAPER_BYTE_BASED_MAX_THD_SEL" on page 220   |
| 0x60    | 31:0 | "PN_PORT_SHAPER_STS" on page 220                       |
| 0x80    | 31:0 | "IMP_PORT_SHAPER_STS" on page 221                      |
| 0x90    | 31:0 | "PN_PORT_SHAPER_PACKET_BASED_MAX_REFRESH" on page 221  |
| 0xb0    | 31:0 | "IMP_PORT_SHAPER_PACKET_BASED_MAX_REFRESH" on page 222 |
| 0xc0    | 31:0 | "PN_PORT_SHAPER_PACKET_BASED_MAX_THD_SEL" on page 222  |
| 0xe0    | 31:0 | "IMP_PORT_SHAPER_PACKET_BASED_MAX_THD_SEL" on page 222 |
| 0xe4    | 15:0 | "PORT_SHAPER_AVB_SHAPING_MODE" on page 222             |
| 0xe6    | 15:0 | "PORT_SHAPER_ENABLE" on page 223                       |
| 0xe8    | 15:0 | "PORT_SHAPER_BUCKET_COUNT_SELECT" on page 223          |
| 0xea    | 15:0 | "PORT_SHAPER_BLOCKING" on page 224                     |
| 0xee    | 15:0 | "IFG_BYTES" on page 224                                |

### PN\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_REFRESH

Register Address: SPI Page 0x47, SPI Offset 0x00

Register Description: Port N, Byte-Based, Port Shaper Shaping Rate Configure Register

Table 359: PN\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) | 0x0     |

### IMP\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_REFRESH

Register Address: SPI Page 0x47, SPI Offset 0x20

Register Description: Port 8, Byte-Based, Port Shaper Shaping Rate Configure Register

Table 360: IMP\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

### PN\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_THD\_SEL

Register Address: SPI Page 0x47, SPI Offset 0x30

Register Description: Port N, Byte-Based, Port Shaper Burst Size Configure Register

Table 361: PN\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## IMP\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_THD\_SEL

Register Address: SPI Page 0x47, SPI Offset 0x50

Register Description: Port 8, Byte-Based, Port Shaper Burst Size Configure Register

Table 362: IMP\_PORT\_SHAPER\_BYTE\_BASED\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## PN\_PORT\_SHAPER\_STS

Register Address: SPI Page 0x47, SPI Offset 0x60

Register Description: Port N, PORT Shaper Status Register

Table 363: PN\_PORT\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_PORT\_SHAPER\_STS

Register Address: SPI Page 0x47, SPI Offset 0x80

Register Description: Port 8, PORT Shaper Status Register

Table 364: IMP\_PORT\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

# PN\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_REFRESH

Register Address: SPI Page 0x47, SPI Offset 0x90

Register Description: Port N, Packet-Based, Port Shaper Shaping Rate Configure Register

Table 365: PN\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) |         |

### IMP\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_REFRESH

Register Address: SPI Page 0x47, SPI Offset 0xb0

Register Description: Port 8, Packet-Based, Port Shaper Shaping Rate Configure Register

Table 366: IMP\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

## PN\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_THD\_SEL

Register Address: SPI Page 0x47, SPI Offset 0xc0

Register Description: Port N, Packet-Based, Port Shaper Burst Size Configure Register

Table 367: PN\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_THD\_SEL

Register Address: SPI Page 0x47, SPI Offset 0xe0

Register Description: Port 8, Packet-Based, Port Shaper Burst Size Configure Register

Table 368: IMP\_PORT\_SHAPER\_PACKET\_BASED\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## PORT\_SHAPER\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x47, SPI Offset 0xe4

Register Description: Port Shaper AVB Shaping Mode Control Register

Table 369: PORT\_SHAPER\_AVB\_SHAPING\_MODE

| Bits | Name                             | R/W | Description                                                                                                                                                                                    | Default |
|------|----------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                         | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 8:0  | PORT_SHAPER_AVB_SHAPI<br>NG_MODE | R/W | Enable/Disable port shaper AVB Shaping mode for each egress port.  0: Disable AVB Shaping mode  1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

### PORT\_SHAPER\_ENABLE

Register Address: SPI Page 0x47, SPI Offset 0xe6

Register Description: Port Shaper Enable Register

Table 370: PORT\_SHAPER\_ENABLE

| Bits | Name               | R/W | Description                                                                                                                                             | Default |
|------|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED           | R/W | Reserved                                                                                                                                                | 0x0     |
| 8:0  | PORT_SHAPER_ENABLE | R/W | Enable/Disable port Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# PORT\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x47, SPI Offset 0xe8

Register Description: Port Shaper Bucket Count Select Register

Table 371: PORT\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                            | R/W  | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                        | R/W  | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | PORT_SHAPER_BUCKET_COUNT_SELECT | OR/W | Select byte-based or packet-based bucket count in port Shaper.  0: Select byte-based bucket count  1: Select packet-based bucket count bit[8:7]: port8 ~ port7.  bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# PORT\_SHAPER\_BLOCKING

Register Address: SPI Page 0x47, SPI Offset 0xea

Register Description: Port Shaper Blocking Control Register

Table 372: PORT\_SHAPER\_BLOCKING

| Bits | Name                 | R/W | Description                                                                                                                                                                             | Default |
|------|----------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                                                | 0x0     |
| 8:0  | PORT_SHAPER_BLOCKING | R/W | Blocking or non-blocking on the Port Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

## **IFG\_BYTES**

Register Address: SPI Page 0x47, SPI Offset 0xee

Register Description: IFG Correction Control Register

Table 373: IFG\_BYTES

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|------|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED  | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0     |
| 8:0  | IFG_BYTES | R/W | Enable/Disable IFG correction for each egress port.  0: Exclude the preamble and the IFG bytes from the shaping counter.  1: Include the preamble and the IFG bytes in the shaping counter.  Preamble is counted as 8 bytes. IFG is counted as 12 bytes by default, but when IFG shrinking is enabled, it should reflect the actual IFG count in the shaping counter.  bit[8:7]: port8 ~ port7.  bit[6]: reserved.  bit[5:0]: port5 ~ port0. |         |

# Page 0x48: Port Queue 0 Shaper Control Register

Table 374: Page 0x48: Port Queue 0 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE0_MAX_REFRESH" on page 225             |
| 0x20    | 31:0 | "IMP_QUEUE0_MAX_REFRESH" on page 226            |
| 0x30    | 31:0 | "PN_QUEUE0_MAX_THD_SEL" on page 226             |
| 0x50    | 31:0 | "IMP_QUEUE0_MAX_THD_SEL" on page 226            |
| 0x60    | 31:0 | "PN_QUEUE0_SHAPER_STS" on page 227              |
| 0x80    | 31:0 | "IMP_QUEUE0_SHAPER_STS" on page 227             |
| 0x90    | 31:0 | "PN_QUEUE0_MAX_PACKET_REFRESH" on page 227      |
| 0xb0    | 31:0 | "IMP_QUEUE0_MAX_PACKET_REFRESH" on page 228     |
| 0xc0    | 31:0 | "PN_QUEUE0_MAX_PACKET_THD_SEL" on page 228      |
| 0xe0    | 31:0 | "IMP_QUEUE0_MAX_PACKET_THD_SEL" on page 228     |
| 0xe4    | 15:0 | "QUEUE0_AVB_SHAPING_MODE" on page 228           |
| 0xe6    | 15:0 | "QUEUE0_SHAPER_ENABLE" on page 229              |
| 0xe8    | 15:0 | "QUEUE0_SHAPER_BUCKET_COUNT_SELECT" on page 229 |
| 0xea    | 15:0 | "QUEUE0_SHAPER_BLOCKING" on page 230            |

### PN\_QUEUE0\_MAX\_REFRESH

Register Address: SPI Page 0x48, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 0 Shaping Rate Configure Register

Table 375: PN\_QUEUE0\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

### IMP\_QUEUE0\_MAX\_REFRESH

Register Address: SPI Page 0x48, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 0 Shaping Rate Configure Register

Table 376: IMP\_QUEUE0\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                  | Default |
|-------|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                     | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5bit/7.8125us (= 64 Kb/s), (one token = 0.5bit) | 0x0     |

### PN\_QUEUE0\_MAX\_THD\_SEL

Register Address: SPI Page 0x48, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 0 Burst Size Configure Register

Table 377: PN\_QUEUE0\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# IMP\_QUEUE0\_MAX\_THD\_SEL

Register Address: SPI Page 0x48, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 0 Burst Size Configure Register

Table 378: IMP\_QUEUE0\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## PN\_QUEUE0\_SHAPER\_STS

Register Address: SPI Page 0x48, SPI Offset 0x60

Register Description: Port N, Queue 0 Shaper Status Register

Table 379: PN\_QUEUE0\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_QUEUE0\_SHAPER\_STS

Register Address: SPI Page 0x48, SPI Offset 0x80

Register Description: Port 8, Queue 0 Shaper Status Register

Table 380: IMP\_QUEUE0\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## PN\_QUEUE0\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x48, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 0 Shaping Rate Configure Register

Table 381: PN\_QUEUE0\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### IMP\_QUEUE0\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x48, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 0 Shaping Rate Configure Register

Table 382: IMP\_QUEUE0\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) |         |

### PN\_QUEUE0\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x48, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 0 Burst Size Configure Register

Table 383: PN\_QUEUE0\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE0\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x48, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 0 Burst Size Configure Register

Table 384: IMP\_QUEUE0\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## QUEUE0\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x48, SPI Offset 0xe4

Register Description: Queue 0 AVB Shaping Mode Control Register

Table 385: QUEUE0\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE0_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 0 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

### QUEUE0\_SHAPER\_ENABLE

Register Address: SPI Page 0x48, SPI Offset 0xe6

Register Description: Queue 0 Shaper Enable Register

Table 386: QUEUE0\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE0_SHAPER_ENABLE | R/W | Enable/Disable queue 0 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE0\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x48, SPI Offset 0xe8

Register Description: Queue 0 Bucket Count Select Register

Table 387: QUEUE0\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W  | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W  | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE0_SHAPER_BUCKET_<br>COUNT_SELECT | _R/W | Select byte-based or packet-based bucket count in queue 0 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE0\_SHAPER\_BLOCKING

Register Address: SPI Page 0x48, SPI Offset 0xea

Register Description: Queue 0 Shaper Blocking Control Register

#### Table 388: QUEUE0\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE0_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 0 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x49: Port Queue 1 Shaper Control Register

Table 389: Page 0x49: Port Queue 1 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE1_MAX_REFRESH" on page 231             |
| 0x20    | 31:0 | "IMP_QUEUE1_MAX_REFRESH" on page 231            |
| 0x30    | 31:0 | "PN_QUEUE1_MAX_THD_SEL" on page 232             |
| 0x50    | 31:0 | "IMP_QUEUE1_MAX_THD_SEL" on page 232            |
| 0x60    | 31:0 | "PN_QUEUE1_SHAPER_STS" on page 233              |
| 0x80    | 31:0 | "IMP_QUEUE1_SHAPER_STS" on page 233             |
| 0x90    | 31:0 | "PN_QUEUE1_MAX_PACKET_REFRESH" on page 233      |
| 0xb0    | 31:0 | "IMP_QUEUE1_MAX_PACKET_REFRESH" on page 234     |
| 0xc0    | 31:0 | "PN_QUEUE1_MAX_PACKET_THD_SEL" on page 234      |
| 0xe0    | 31:0 | "IMP_QUEUE1_MAX_PACKET_THD_SEL" on page 234     |
| 0xe4    | 15:0 | "QUEUE1_AVB_SHAPING_MODE" on page 234           |
| 0xe6    | 15:0 | "QUEUE1_SHAPER_ENABLE" on page 235              |
| 0xe8    | 15:0 | "QUEUE1_SHAPER_BUCKET_COUNT_SELECT" on page 235 |
| 0xea    | 15:0 | "QUEUE1_SHAPER_BLOCKING" on page 236            |

### PN\_QUEUE1\_MAX\_REFRESH

Register Address: SPI Page 0x49, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 1 Shaping Rate Configure Register

Table 390: PN\_QUEUE1\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                    | Default |
|-------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5bit) |         |

## IMP\_QUEUE1\_MAX\_REFRESH

Register Address: SPI Page 0x49, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 1 Shaping Rate Configure Register

Table 391: IMP\_QUEUE1\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

# PN\_QUEUE1\_MAX\_THD\_SEL

Register Address: SPI Page 0x49, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 1 Burst Size Configure Register

Table 392: PN\_QUEUE1\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# IMP\_QUEUE1\_MAX\_THD\_SEL

Register Address: SPI Page 0x49, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 1 Burst Size Configure Register

Table 393: IMP\_QUEUE1\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# PN\_QUEUE1\_SHAPER\_STS

Register Address: SPI Page 0x49, SPI Offset 0x60

Register Description: Port N, Queue 1 Shaper Status Register

Table 394: PN\_QUEUE1\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_QUEUE1\_SHAPER\_STS

Register Address: SPI Page 0x49, SPI Offset 0x80

Register Description: Port 8, Queue 1 Shaper Status Register

Table 395: IMP\_QUEUE1\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## PN\_QUEUE1\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x49, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 1 Shaping Rate Configure Register

Table 396: PN\_QUEUE1\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### IMP\_QUEUE1\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x49, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 1 Shaping Rate Configure Register

Table 397: IMP\_QUEUE1\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### PN\_QUEUE1\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x49, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 1 Burst Size Configure Register

Table 398: PN\_QUEUE1\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE1\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x49, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 1 Burst Size Configure Register

Table 399: IMP\_QUEUE1\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## QUEUE1\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x49, SPI Offset 0xe4

Register Description: Queue 1 AVB Shaping Mode Control Register

Table 400: QUEUE1\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE1_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 1 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

### QUEUE1\_SHAPER\_ENABLE

Register Address: SPI Page 0x49, SPI Offset 0xe6

Register Description: Queue 1 Shaper Enable Register

Table 401: QUEUE1\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE1_SHAPER_ENABLE | R/W | Enable/Disable queue 1 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE1\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x49, SPI Offset 0xe8

Register Description: Queue 1 Bucket Count Select Register

Table 402: QUEUE1\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W   | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE1_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 1 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE1\_SHAPER\_BLOCKING

Register Address: SPI Page 0x49, SPI Offset 0xea

Register Description: Queue 1 Shaper Blocking Control Register

#### Table 403: QUEUE1\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE1_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 1 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4a: Port Queue 2 Shaper Control Register

Table 404: Page 0x4a: Port Queue 2 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE2_MAX_REFRESH" on page 237             |
| 0x20    | 31:0 | "IMP_QUEUE2_MAX_REFRESH" on page 237            |
| 0x30    | 31:0 | "PN_QUEUE2_MAX_THD_SEL" on page 238             |
| 0x50    | 31:0 | "IMP_QUEUE2_MAX_THD_SEL" on page 238            |
| 0x60    | 31:0 | "PN_QUEUE2_SHAPER_STS" on page 239              |
| 0x80    | 31:0 | "IMP_QUEUE2_SHAPER_STS" on page 239             |
| 0x90    | 31:0 | "PN_QUEUE2_MAX_PACKET_REFRESH" on page 239      |
| 0xb0    | 31:0 | "IMP_QUEUE2_MAX_PACKET_REFRESH" on page 240     |
| 0xc0    | 31:0 | "PN_QUEUE2_MAX_PACKET_THD_SEL" on page 240      |
| 0xe0    | 31:0 | "IMP_QUEUE2_MAX_PACKET_THD_SEL" on page 240     |
| 0xe4    | 15:0 | "QUEUE2_AVB_SHAPING_MODE" on page 241           |
| 0xe6    | 15:0 | "QUEUE2_SHAPER_ENABLE" on page 241              |
| 0xe8    | 15:0 | "QUEUE2_SHAPER_BUCKET_COUNT_SELECT" on page 241 |
| 0xea    | 15:0 | "QUEUE2_SHAPER_BLOCKING" on page 242            |

### PN\_QUEUE2\_MAX\_REFRESH

Register Address: SPI Page 0x4a, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 2 Shaping Rate Configure Register

Table 405: PN\_QUEUE2\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                    | Default |
|-------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token =0.5 bit) |         |

## IMP\_QUEUE2\_MAX\_REFRESH

Register Address: SPI Page 0x4a, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 2 Shaping Rate Configure Register

Table 406: IMP\_QUEUE2\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

# PN\_QUEUE2\_MAX\_THD\_SEL

Register Address: SPI Page 0x4a, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 2 Burst Size Configure Register

Table 407: PN\_QUEUE2\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## IMP\_QUEUE2\_MAX\_THD\_SEL

Register Address: SPI Page 0x4a, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 2 Burst Size Configure Register

Table 408: IMP\_QUEUE2\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# PN\_QUEUE2\_SHAPER\_STS

Register Address: SPI Page 0x4a, SPI Offset 0x60

Register Description: Port N, Queue 2 Shaper Status Register

Table 409: PN\_QUEUE2\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_QUEUE2\_SHAPER\_STS

Register Address: SPI Page 0x4a, SPI Offset 0x80

Register Description: Port 8, Queue 2 Shaper Status Register

Table 410: IMP\_QUEUE2\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## PN\_QUEUE2\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4a, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 2 Shaping Rate Configure Register

Table 411: PN\_QUEUE2\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### IMP\_QUEUE2\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4a, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 2 Shaping Rate Configure Register

Table 412: IMP\_QUEUE2\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

## PN\_QUEUE2\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4a, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 2 Burst Size Configure Register

Table 413: PN\_QUEUE2\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE2\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4a, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 2 Burst Size Configure Register

Table 414: IMP\_QUEUE2\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## QUEUE2\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4a, SPI Offset 0xe4

Register Description: Queue 2 AVB Shaping Mode Control Register

Table 415: QUEUE2\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE2_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 2 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

## QUEUE2\_SHAPER\_ENABLE

Register Address: SPI Page 0x4a, SPI Offset 0xe6

Register Description: Queue 2 Shaper Enable Register

Table 416: QUEUE2\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE2_SHAPER_ENABLE | R/W | Enable/Disable queue 2 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE2\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4a, SPI Offset 0xe8

Register Description: Queue 2 Bucket Count Select Register

Table 417: QUEUE2\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 417: QUEUE2\_SHAPER\_BUCKET\_COUNT\_SELECT (Cont.)

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                     | Default |
|------|---------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | QUEUE2_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 2 Shaper.  0: Select byte-based bucket count  1: Select packet-based bucket count bit[8:7]: port8 ~ port7.  bit[6]: reserved.  bit[5:0]: port5 ~ port0. | t 0x0   |

# QUEUE2\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4a, SPI Offset 0xea

Register Description: Queue 2 Shaper Blocking Control Register

Table 418: QUEUE2\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE2_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 2 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4b: Port Queue 3 Shaper Control Register

Table 419: Page 0x4b: Port Queue 3 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE3_MAX_REFRESH" on page 243             |
| 0x20    | 31:0 | "IMP_QUEUE3_MAX_REFRESH" on page 244            |
| 0x30    | 31:0 | "PN_QUEUE3_MAX_THD_SEL" on page 244             |
| 0x50    | 31:0 | "IMP_QUEUE3_MAX_THD_SEL" on page 244            |
| 0x60    | 31:0 | "PN_QUEUE3_SHAPER_STS" on page 245              |
| 0x80    | 31:0 | "IMP_QUEUE3_SHAPER_STS" on page 245             |
| 0x90    | 31:0 | "PN_QUEUE3_MAX_PACKET_REFRESH" on page 245      |
| 0xb0    | 31:0 | "IMP_QUEUE3_MAX_PACKET_REFRESH" on page 246     |
| 0xc0    | 31:0 | "PN_QUEUE3_MAX_PACKET_THD_SEL" on page 246      |
| 0xe0    | 31:0 | "IMP_QUEUE3_MAX_PACKET_THD_SEL" on page 246     |
| 0xe4    | 15:0 | "QUEUE3_AVB_SHAPING_MODE" on page 247           |
| 0xe6    | 15:0 | "QUEUE3_SHAPER_ENABLE" on page 247              |
| 0xe8    | 15:0 | "QUEUE3_SHAPER_BUCKET_COUNT_SELECT" on page 247 |
| 0xea    | 15:0 | "QUEUE3_SHAPER_BLOCKING" on page 248            |

### PN\_QUEUE3\_MAX\_REFRESH

Register Address: SPI Page 0x4b, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 3 Shaping Rate Configure Register

Table 420: PN\_QUEUE3\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

### IMP\_QUEUE3\_MAX\_REFRESH

Register Address: SPI Page 0x4b, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 3 Shaping Rate Configure Register

Table 421: IMP\_QUEUE3\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

### PN\_QUEUE3\_MAX\_THD\_SEL

Register Address: SPI Page 0x4b, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 3 Burst Size Configure Register

Table 422: PN\_QUEUE3\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# IMP\_QUEUE3\_MAX\_THD\_SEL

Register Address: SPI Page 0x4b, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 3 Burst Size Configure Register

Table 423: IMP\_QUEUE3\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# PN\_QUEUE3\_SHAPER\_STS

Register Address: SPI Page 0x4b, SPI Offset 0x60

Register Description: Port N, Queue 3 Shaper Status Register

Table 424: PN\_QUEUE3\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_QUEUE3\_SHAPER\_STS

Register Address: SPI Page 0x4b, SPI Offset 0x80

Register Description: Port 8, Queue 3 Shaper Status Register

Table 425: IMP\_QUEUE3\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## PN\_QUEUE3\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4b, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 3 Shaping Rate Configure Register

Table 426: PN\_QUEUE3\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### IMP\_QUEUE3\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4b, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 3 Shaping Rate Configure Register

Table 427: IMP\_QUEUE3\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### PN\_QUEUE3\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4b, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 3 Burst Size Configure Register

Table 428: PN\_QUEUE3\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE3\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4b, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 3 Burst Size Configure Register

Table 429: IMP\_QUEUE3\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## QUEUE3\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4b, SPI Offset 0xe4

Register Description: Queue 3 AVB Shaping Mode Control Register

Table 430: QUEUE3\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE3_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 3 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

#### QUEUE3\_SHAPER\_ENABLE

Register Address: SPI Page 0x4b, SPI Offset 0xe6

Register Description: Queue 3 Shaper Enable Register

Table 431: QUEUE3\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE3_SHAPER_ENABLE | R/W | Enable/Disable queue 3 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

## QUEUE3\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4b, SPI Offset 0xe8

Register Description: Queue 3 Bucket Count Select Register

Table 432: QUEUE3\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 432: QUEUE3\_SHAPER\_BUCKET\_COUNT\_SELECT (Cont.)

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | QUEUE3_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 3 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | t 0x0   |

# QUEUE3\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4b, SPI Offset 0xea

Register Description: Queue 3 Shaper Blocking Control Register

Table 433: QUEUE3\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE3_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 3 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4c: Port Queue 4 Shaper Control Register

Table 434: Page 0x4c: Port Queue 4 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE4_MAX_REFRESH" on page 249             |
| 0x20    | 31:0 | "IMP_QUEUE4_MAX_REFRESH" on page 249            |
| 0x30    | 31:0 | "PN_QUEUE4_MAX_THD_SEL" on page 250             |
| 0x50    | 31:0 | "IMP_QUEUE4_MAX_THD_SEL" on page 250            |
| 0x60    | 31:0 | "PN_QUEUE4_SHAPER_STS" on page 251              |
| 0x80    | 31:0 | "IMP_QUEUE4_SHAPER_STS" on page 251             |
| 0x90    | 31:0 | "PN_QUEUE4_MAX_PACKET_REFRESH" on page 251      |
| 0xb0    | 31:0 | "IMP_QUEUE4_MAX_PACKET_REFRESH" on page 252     |
| 0xc0    | 31:0 | "PN_QUEUE4_MAX_PACKET_THD_SEL" on page 252      |
| 0xe0    | 31:0 | "IMP_QUEUE4_MAX_PACKET_THD_SEL" on page 252     |
| 0xe4    | 15:0 | "QUEUE4_AVB_SHAPING_MODE" on page 252           |
| 0xe6    | 15:0 | "QUEUE4_SHAPER_ENABLE" on page 253              |
| 0xe8    | 15:0 | "QUEUE4_SHAPER_BUCKET_COUNT_SELECT" on page 253 |
| 0xea    | 15:0 | "QUEUE4_SHAPER_BLOCKING" on page 254            |

### PN\_QUEUE4\_MAX\_REFRESH

Register Address: SPI Page 0x4c, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 4 Shaping Rate Configure Register

Table 435: PN\_QUEUE4\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

## IMP\_QUEUE4\_MAX\_REFRESH

Register Address: SPI Page 0x4c, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 4 Shaping Rate Configure Register

Table 436: IMP\_QUEUE4\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

# PN\_QUEUE4\_MAX\_THD\_SEL

Register Address: SPI Page 0x4c, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 4 Burst Size Configure Register

Table 437: PN\_QUEUE4\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## IMP\_QUEUE4\_MAX\_THD\_SEL

Register Address: SPI Page 0x4c, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 4 Burst Size Configure Register

Table 438: IMP\_QUEUE4\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

## PN\_QUEUE4\_SHAPER\_STS

Register Address: SPI Page 0x4c, SPI Offset 0x60

Register Description: Port N, Queue 4 Shaper Status Register

Table 439: PN\_QUEUE4\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## IMP\_QUEUE4\_SHAPER\_STS

Register Address: SPI Page 0x4c, SPI Offset 0x80

Register Description: Port 8, Queue 4 Shaper Status Register

Table 440: IMP\_QUEUE4\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

## PN\_QUEUE4\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4c, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 4 Shaping Rate Configure Register

Table 441: PN\_QUEUE4\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### IMP\_QUEUE4\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4c, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 4 Shaping Rate Configure Register

Table 442: IMP\_QUEUE4\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

### PN\_QUEUE4\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4c, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 4 Burst Size Configure Register

Table 443: PN\_QUEUE4\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE4\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4c, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 4 Burst Size Configure Register

Table 444: IMP\_QUEUE4\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## QUEUE4\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4c, SPI Offset 0xe4

Register Description: Queue 4 AVB Shaping Mode Control Register

Table 445: QUEUE4\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W   | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W   | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE4_AVB_SHAPING_MC<br>DE | ) R/W | Enable/Disable queue 4 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

#### QUEUE4\_SHAPER\_ENABLE

Register Address: SPI Page 0x4c, SPI Offset 0xe6

Register Description: Queue 4 Shaper Enable Register

Table 446: QUEUE4\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE4_SHAPER_ENABLE | R/W | Enable/Disable queue 4 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE4\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4c, SPI Offset 0xe8

Register Description: Queue 4 Bucket Count Select Register

Table 447: QUEUE4\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W   | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE4_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 4 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE4\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4c, SPI Offset 0xea

Register Description: Queue 4 Shaper Blocking Control Register

#### Table 448: QUEUE4\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE4_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 4 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4d: Port Queue 5 Shaper Control Register

Table 449: Page 0x4d: Port Queue 5 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE5_MAX_REFRESH" on page 255             |
| 0x20    | 31:0 | "IMP_QUEUE5_MAX_REFRESH" on page 256            |
| 0x30    | 31:0 | "PN_QUEUE5_MAX_THD_SEL" on page 256             |
| 0x50    | 31:0 | "IMP_QUEUE5_MAX_THD_SEL" on page 256            |
| 0x60    | 31:0 | "PN_QUEUE5_SHAPER_STS" on page 257              |
| 0x80    | 31:0 | "IMP_QUEUE5_SHAPER_STS" on page 257             |
| 0x90    | 31:0 | "PN_QUEUE5_MAX_PACKET_REFRESH" on page 257      |
| 0xb0    | 31:0 | "IMP_QUEUE5_MAX_PACKET_REFRESH" on page 258     |
| 0xc0    | 31:0 | "PN_QUEUE5_MAX_PACKET_THD_SEL" on page 258      |
| 0xe0    | 31:0 | "IMP_QUEUE5_MAX_PACKET_THD_SEL" on page 258     |
| 0xe4    | 15:0 | "QUEUE5_AVB_SHAPING_MODE" on page 258           |
| 0xe6    | 15:0 | "QUEUE5_SHAPER_ENABLE" on page 259              |
| 0xe8    | 15:0 | "QUEUE5_SHAPER_BUCKET_COUNT_SELECT" on page 259 |
| 0xea    | 15:0 | "QUEUE5_SHAPER_BLOCKING" on page 260            |

#### PN\_QUEUE5\_MAX\_REFRESH

Register Address: SPI Page 0x4d, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 5 Shaping Rate Configure Register

Table 450: PN\_QUEUE5\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

#### IMP\_QUEUE5\_MAX\_REFRESH

Register Address: SPI Page 0x4d, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 5 Shaping Rate Configure Register

Table 451: IMP\_QUEUE5\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

#### PN\_QUEUE5\_MAX\_THD\_SEL

Register Address: SPI Page 0x4d, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 5 Burst Size Configure Register

Table 452: PN\_QUEUE5\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

# IMP\_QUEUE5\_MAX\_THD\_SEL

Register Address: SPI Page 0x4d, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 5 Burst Size Configure Register

Table 453: IMP\_QUEUE5\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

#### PN\_QUEUE5\_SHAPER\_STS

Register Address: SPI Page 0x4d, SPI Offset 0x60

Register Description: Port N, Queue 5 Shaper Status Register

Table 454: PN\_QUEUE5\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

### IMP\_QUEUE5\_SHAPER\_STS

Register Address: SPI Page 0x4d, SPI Offset 0x80

Register Description: Port 8, Queue 5 Shaper Status Register

Table 455: IMP\_QUEUE5\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

#### PN\_QUEUE5\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4d, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 5 Shaping Rate Configure Register

Table 456: PN\_QUEUE5\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

#### IMP\_QUEUE5\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4d, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 5 Shaping Rate Configure Register

Table 457: IMP\_QUEUE5\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

#### PN\_QUEUE5\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4d, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 5 Burst Size Configure Register

Table 458: PN\_QUEUE5\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE5\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4d, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 5 Burst Size Configure Register

Table 459: IMP\_QUEUE5\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

### QUEUE5\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4d, SPI Offset 0xe4

Register Description: Queue 5 AVB Shaping Mode Control Register

Table 460: QUEUE5\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE5_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 5 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

#### QUEUE5\_SHAPER\_ENABLE

Register Address: SPI Page 0x4d, SPI Offset 0xe6

Register Description: Queue 5 Shaper Enable Register

Table 461: QUEUE5\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE5_SHAPER_ENABLE | R/W | Enable/Disable queue 5 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE5\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4d, SPI Offset 0xe8

Register Description: Queue 5 Bucket Count Select Register

Table 462: QUEUE5\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W   | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE5_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 5 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE5\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4d, SPI Offset 0xea

Register Description: Queue 5 Shaper Blocking Control Register

#### Table 463: QUEUE5\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE5_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 5 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4e: Port Queue 6 Shaper Control Register

Table 464: Page 0x4e: Port Queue 6 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE6_MAX_REFRESH" on page 261             |
| 0x20    | 31:0 | "IMP_QUEUE6_MAX_REFRESH" on page 261            |
| 0x30    | 31:0 | "PN_QUEUE6_MAX_THD_SEL" on page 262             |
| 0x50    | 31:0 | "IMP_QUEUE6_MAX_THD_SEL" on page 262            |
| 0x60    | 31:0 | "PN_QUEUE6_SHAPER_STS" on page 263              |
| 0x80    | 31:0 | "IMP_QUEUE6_SHAPER_STS" on page 263             |
| 0x90    | 31:0 | "PN_QUEUE6_MAX_PACKET_REFRESH" on page 263      |
| 0xb0    | 31:0 | "IMP_QUEUE6_MAX_PACKET_REFRESH" on page 264     |
| 0xc0    | 31:0 | "PN_QUEUE6_MAX_PACKET_THD_SEL" on page 264      |
| 0xe0    | 31:0 | "IMP_QUEUE6_MAX_PACKET_THD_SEL" on page 264     |
| 0xe4    | 15:0 | "QUEUE6_AVB_SHAPING_MODE" on page 264           |
| 0xe6    | 15:0 | "QUEUE6_SHAPER_ENABLE" on page 265              |
| 0xe8    | 15:0 | "QUEUE6_SHAPER_BUCKET_COUNT_SELECT" on page 265 |
| 0xea    | 15:0 | "QUEUE6_SHAPER_BLOCKING" on page 266            |

#### PN\_QUEUE6\_MAX\_REFRESH

Register Address: SPI Page 0x4e, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 6 Shaping Rate Configure Register

Table 465: PN\_QUEUE6\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                    | Default |
|-------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5bit) |         |

### IMP\_QUEUE6\_MAX\_REFRESH

Register Address: SPI Page 0x4e, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 6 Shaping Rate Configure Register

Table 466: IMP\_QUEUE6\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                    | Default |
|-------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5bit) |         |

# PN\_QUEUE6\_MAX\_THD\_SEL

Register Address: SPI Page 0x4e, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 6 Burst Size Configure Register

Table 467: PN\_QUEUE6\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

### IMP\_QUEUE6\_MAX\_THD\_SEL

Register Address: SPI Page 0x4e, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 6 Burst Size Configure Register

Table 468: IMP\_QUEUE6\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

### PN\_QUEUE6\_SHAPER\_STS

Register Address: SPI Page 0x4e, SPI Offset 0x60

Register Description: Port N, Queue 6 Shaper Status Register

Table 469: PN\_QUEUE6\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

### IMP\_QUEUE6\_SHAPER\_STS

Register Address: SPI Page 0x4e, SPI Offset 0x80

Register Description: Port 8, Queue 6 Shaper Status Register

Table 470: IMP\_QUEUE6\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

#### PN\_QUEUE6\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4e, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 6 Shaping Rate Configure Register

Table 471: PN\_QUEUE6\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

#### IMP\_QUEUE6\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4e, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 6 Shaping Rate Configure Register

Table 472: IMP\_QUEUE6\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) |         |

### PN\_QUEUE6\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4e, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 6 Burst Size Configure Register

Table 473: PN\_QUEUE6\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE6\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4e, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 6 Burst Size Configure Register

Table 474: IMP\_QUEUE6\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

### QUEUE6\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4e, SPI Offset 0xe4

Register Description: Queue 6 AVB Shaping Mode Control Register

Table 475: QUEUE6\_AVB\_SHAPING\_MODE

| Bits | Name                  | R/W   | Description                                                                                                                                                                              | Default |
|------|-----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED              | R/W   | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE6_AVB_SHAPING_MC | ) R/W | Enable/Disable queue 6 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

#### QUEUE6\_SHAPER\_ENABLE

Register Address: SPI Page 0x4e, SPI Offset 0xe6

Register Description: Queue 6 Shaper Enable Register

Table 476: QUEUE6\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE6_SHAPER_ENABLE | R/W | Enable/Disable queue 6 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE6\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4e, SPI Offset 0xe8

Register Description: Queue 6 Bucket Count Select Register

Table 477: QUEUE6\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W  | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W  | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE6_SHAPER_BUCKET_<br>COUNT_SELECT | _R/W | Select byte-based or packet-based bucket count in queue 6 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE6\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4e, SPI Offset 0xea

Register Description: Queue 6 Shaper Blocking Control Register

Table 478: QUEUE6\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE6_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 6 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x4f: Port Queue 7 Shaper Control Register

Table 479: Page 0x4f: Port Queue 7 Shaper Control Register

| Address | Bits | Register Name                                   |
|---------|------|-------------------------------------------------|
| 0x00    | 31:0 | "PN_QUEUE7_MAX_REFRESH" on page 267             |
| 0x20    | 31:0 | "IMP_QUEUE7_MAX_REFRESH" on page 268            |
| 0x30    | 31:0 | "PN_QUEUE7_MAX_THD_SEL" on page 268             |
| 0x50    | 31:0 | "IMP_QUEUE7_MAX_THD_SEL" on page 268            |
| 0x60    | 31:0 | "PN_QUEUE7_SHAPER_STS" on page 269              |
| 0x80    | 31:0 | "IMP_QUEUE7_SHAPER_STS" on page 269             |
| 0x90    | 31:0 | "PN_QUEUE7_MAX_PACKET_REFRESH" on page 269      |
| 0xb0    | 31:0 | "IMP_QUEUE7_MAX_PACKET_REFRESH" on page 270     |
| 0xc0    | 31:0 | "PN_QUEUE7_MAX_PACKET_THD_SEL" on page 270      |
| 0xe0    | 31:0 | "IMP_QUEUE7_MAX_PACKET_THD_SEL" on page 270     |
| 0xe4    | 15:0 | "QUEUE7_AVB_SHAPING_MODE" on page 270           |
| 0xe6    | 15:0 | "QUEUE7_SHAPER_ENABLE" on page 271              |
| 0xe8    | 15:0 | "QUEUE7_SHAPER_BUCKET_COUNT_SELECT" on page 271 |
| 0xea    | 15:0 | "QUEUE7_SHAPER_BLOCKING" on page 272            |

#### PN\_QUEUE7\_MAX\_REFRESH

Register Address: SPI Page 0x4f, SPI Offset 0x00

Register Description: Port N, Byte-based Queue 7 Shaping Rate Configure Register

Table 480: PN\_QUEUE7\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                    | Default |
|-------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                       | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucker in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s) (one token = 0.5 bit) |         |

#### IMP\_QUEUE7\_MAX\_REFRESH

Register Address: SPI Page 0x4f, SPI Offset 0x20

Register Description: Port 8, Byte-based Queue 7 Shaping Rate Configure Register

Table 481: IMP\_QUEUE7\_MAX\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                     | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                        | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for byte-based mode. The shaping rate is determined by MAX_REFRESH * 0.5 bit/7.8125 us (= 64 Kb/s), (one token = 0.5 bit) |         |

#### PN\_QUEUE7\_MAX\_THD\_SEL

Register Address: SPI Page 0x4f, SPI Offset 0x30

Register Description: Port N, Byte-based Queue 7 Burst Size Configure Register

Table 482: PN\_QUEUE7\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

### IMP\_QUEUE7\_MAX\_THD\_SEL

Register Address: SPI Page 0x4f, SPI Offset 0x50

Register Description: Port 8, Byte-based Queue 7 Burst Size Configure Register

Table 483: IMP\_QUEUE7\_MAX\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                   | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                      | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in byte-based mode.<br>Burst size = MAX_THD_SEL * 64B | 0x0     |

### PN\_QUEUE7\_SHAPER\_STS

Register Address: SPI Page 0x4f, SPI Offset 0x60

Register Description: Port N, Queue 7 Shaper Status Register

Table 484: PN\_QUEUE7\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

### IMP\_QUEUE7\_SHAPER\_STS

Register Address: SPI Page 0x4f, SPI Offset 0x80

Register Description: Port 8, Queue 7 Shaper Status Register

Table 485: IMP\_QUEUE7\_SHAPER\_STS

| Bits  | Name            | R/W | Description                                                                                 | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------|---------|
| 31    | IN_PROFILE_FLAG | R/W | Indicates the current state of the maximum bandwidth shaper 1: In profile 0: Out-of-profile | 1       |
| 30:29 | RESERVED        | R/W | Reserved                                                                                    | 0x0     |
| 28:0  | BUCKET_CNT      | R/W | Current count of the number of tokens in the bucket. Bit 28 is overflow bit.                | 0x0     |

#### PN\_QUEUE7\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4f, SPI Offset 0x90

Register Description: Port N, Packet-based Queue 7 Shaping Rate Configure Register

Table 486: PN\_QUEUE7\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

#### IMP\_QUEUE7\_MAX\_PACKET\_REFRESH

Register Address: SPI Page 0x4f, SPI Offset 0xb0

Register Description: Port 8, Packet-based Queue 7 Shaping Rate Configure Register

Table 487: IMP\_QUEUE7\_MAX\_PACKET\_REFRESH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                                                                                                                                                    | 0x0     |
| 17:0  | MAX_REFRESH | R/W | The number of tokens removed from the bucket in each refresh interval for packet-based mode. The shaping rate is determined by MAX_REFRESH * 2^-10 packet * 128 kHz (= 125 pps), (one token = 2^-10 packet) | 0x0     |

#### PN\_QUEUE7\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4f, SPI Offset 0xc0

Register Description: Port N, Packet-based Queue 7 Burst Size Configure Register

Table 488: PN\_QUEUE7\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

## IMP\_QUEUE7\_MAX\_PACKET\_THD\_SEL

Register Address: SPI Page 0x4f, SPI Offset 0xe0

Register Description: Port 8, Packet-based Queue 7 Burst Size Configure Register

Table 489: IMP\_QUEUE7\_MAX\_PACKET\_THD\_SEL

| Bits  | Name        | R/W | Description                                                                          | Default |
|-------|-------------|-----|--------------------------------------------------------------------------------------|---------|
| 31:18 | RESERVED    | R/W | Reserved                                                                             | 0x0     |
| 17:0  | MAX_THD_SEL | R/W | Burst size of the meter in packet-based mode.<br>Burst size = MAX_THD_SEL * 1 packet | 0x0     |

### QUEUE7\_AVB\_SHAPING\_MODE

Register Address: SPI Page 0x4f, SPI Offset 0xe4

Register Description: Queue 7 AVB Shaping Mode Control Register

Table 490: QUEUE7\_AVB\_SHAPING\_MODE

| Bits | Name                        | R/W | Description                                                                                                                                                                              | Default |
|------|-----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                    | R/W | Reserved                                                                                                                                                                                 | 0x0     |
| 8:0  | QUEUE7_AVB_SHAPING_MC<br>DE | R/W | Enable/Disable queue 7 AVB Shaping mode for each egress port. 0: Disable AVB Shaping mode 1: Enable AVB Shaping mode bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

#### QUEUE7\_SHAPER\_ENABLE

Register Address: SPI Page 0x4f, SPI Offset 0xe6

Register Description: Queue 7 Shaper Enable Register

Table 491: QUEUE7\_SHAPER\_ENABLE

| Bits | Name                 | R/W | Description                                                                                                                                                | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED             | R/W | Reserved                                                                                                                                                   | 0x0     |
| 8:0  | QUEUE7_SHAPER_ENABLE | R/W | Enable/Disable queue 7 Shaper for each egress port. 0: Disable Shaper 1: Enable Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# QUEUE7\_SHAPER\_BUCKET\_COUNT\_SELECT

Register Address: SPI Page 0x4f, SPI Offset 0xe8

Register Description: Queue 7 Bucket Count Select Register

Table 492: QUEUE7\_SHAPER\_BUCKET\_COUNT\_SELECT

| Bits | Name                                  | R/W   | Description                                                                                                                                                                                                 | Default |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                              | R/W   | Reserved                                                                                                                                                                                                    | 0x0     |
| 8:0  | QUEUE7_SHAPER_BUCKET_<br>COUNT_SELECT | _ R/W | Select byte-based or packet-based bucket count in queue 7 Shaper. 0: Select byte-based bucket count 1: Select packet-based bucket count bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

April 19, 2017 • 53134-PR103

# QUEUE7\_SHAPER\_BLOCKING

Register Address: SPI Page 0x4f, SPI Offset 0xea

Register Description: Queue 7 Shaper Blocking Control Register

#### Table 493: QUEUE7\_SHAPER\_BLOCKING

| Bits | Name                       | R/W | Description                                                                                                                                                                            | Default |
|------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED                   | R/W | Reserved                                                                                                                                                                               | 0x0     |
| 8:0  | QUEUE7_SHAPER_BLOCKIN<br>G | R/W | Blocking or non-blocking on queue 7 Shaper for each egress port. 0: No action on the Shaper 1: Blocking the Shaper bit[8:7]: port8 ~ port7. bit[6]: reserved. bit[5:0]: port5 ~ port0. | 0x0     |

# Page 0x70: Port MIB Snapshot Control Register

Table 494: Page 0x70: Port MIB Snapshot Control Register

| Address | Bits | Register Name                  |
|---------|------|--------------------------------|
| 0x00    | 7:0  | "MIB_SNAPSHOT_CTL" on page 273 |

# MIB\_SNAPSHOT\_CTL

Register Address: SPI Page 0x70, SPI Offset 0x00

Register Description: MIB Snapshot Control Register

#### Table 495: MIB\_SNAPSHOT\_CTL

| Bits | Name                        | R/W | Description                                                                                                                                 | Default |
|------|-----------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7    | SNAPSHOT_STDONE             | R/W | Write 1'b1 to initiate MIB snapshot access clear to 1'b0 when MIB snapshot access is done.                                                  | 0       |
| 6    | SNAPSHOT_MIRROR             | R/W | 1'b1: enable read address to port MIB, but data from MIB snapshot memory. 1'b0: enable to read from port MIB memory.                        | 0       |
| 5    | RESERVED                    | R/W |                                                                                                                                             | 0       |
| 4    | RST_MIB_SNAPSHOT_CNT_<br>EN | R/W | When the bit is set and RST_MIB_CNT (page 0x2, offset 0x0, bit 0) is triggered, the MIB snapshot counters at page 0x71 would be reset to 0. | 1       |
| 3:0  | SNAPSHOT_PORT               | R/W | Port number for MIB snapshot function.                                                                                                      | 0x0     |

**Broadcom**<sup>®</sup> April 19, 2017 • 53134-PR103

# Page 0x71: Port MIB Snapshot counter Register

Table 496: Page 0x71: Port MIB Snapshot counter Register

| Address | Bits | Register Name                            |
|---------|------|------------------------------------------|
| 0x00    | 63:0 | "S_TxOctets" on page 275                 |
| 0x08    | 31:0 | "S_TxDropPkts" on page 276               |
| 0x0c    | 31:0 | "S_TxQPKTQ0" on page 276                 |
| 0x10    | 31:0 | "S_TxBroadcastPkts" on page 276          |
| 0x14    | 31:0 | "S_TxMulticastPkts" on page 276          |
| 0x18    | 31:0 | "S_TxUnicastPkts" on page 277            |
| 0x1c    | 31:0 | "S_TxCollisions" on page 277             |
| 0x20    | 31:0 | "S_TxSingleCollision" on page 277        |
| 0x24    | 31:0 | "S_TxMultipleCollision" on page 277      |
| 0x28    | 31:0 | "S_TxDeferredTransmit" on page 278       |
| 0x2c    | 31:0 | "S_TxLateCollision" on page 278          |
| 0x30    | 31:0 | "S_TxExcessiveCollision" on page 278     |
| 0x34    | 31:0 | "S_TxFrameInDisc" on page 279            |
| 0x38    | 31:0 | "S_TxPausePkts" on page 279              |
| 0x3c    | 31:0 | "S_TxQPKTQ1" on page 279                 |
| 0x40    | 31:0 | "S_TxQPKTQ2" on page 279                 |
| 0x44    | 31:0 | "S_TxQPKTQ3" on page 280                 |
| 0x48    | 31:0 | "S_TxQPKTQ4" on page 280                 |
| 0x4c    | 31:0 | "S_TxQPKTQ5" on page 280                 |
| 0x50    | 63:0 | "S_RxOctets" on page 281                 |
| 0x58    | 31:0 | "S_RxUndersizePkts" on page 281          |
| 0x5c    | 31:0 | "S_RxPausePkts" on page 282              |
| 0x60    | 31:0 | "S_RxPkts64Octets" on page 282           |
| 0x64    | 31:0 | "S_RxPkts65to127Octets" on page 283      |
| 0x68    | 31:0 | "S_RxPkts128to255Octets" on page 283     |
| 0x6c    | 31:0 | "S_RxPkts256to511Octets" on page 283     |
| 0x70    | 31:0 | "S_RxPkts512to1023Octets" on page 284    |
| 0x74    | 31:0 | "S_RxPkts1024toMaxPktOctets" on page 284 |
| 0x78    | 31:0 | "S_RxOversizePkts" on page 284           |
| 0x7c    | 31:0 | "S_RxJabbers" on page 285                |
| 0x80    | 31:0 | "S_RxAlignmentErrors" on page 285        |
| 0x84    | 31:0 | "S_RxFCSErrors" on page 286              |
| 0x88    | 63:0 | "S_RxGoodOctets" on page 286             |
| 0x90    | 31:0 | "S_RxDropPkts" on page 286               |
| 0x94    | 31:0 | "S_RxUnicastPkts" on page 286            |
| 0x98    | 31:0 | "S_RxMulticastPkts" on page 287          |

Table 496: Page 0x71: Port MIB Snapshot counter Register (Cont.)

| Address | Bits | Register Name                            |  |
|---------|------|------------------------------------------|--|
| 0x9c    | 31:0 | "S_RxBroadcastPkts" on page 287          |  |
| 0xa0    | 31:0 | "S_RxSAChanges" on page 287              |  |
| 0xa4    | 31:0 | "S_RxFragments" on page 288              |  |
| 0xa8    | 31:0 | "S_RxJumboPkt" on page 288               |  |
| 0xac    | 31:0 | "S_RxSymblErr" on page 288               |  |
| 0xb0    | 31:0 | "S_InRangeErrCount" on page 288          |  |
| 0xb4    | 31:0 | "S_OutRangeErrCount" on page 289         |  |
| 0xb8    | 31:0 | "S_EEE_LPI_EVENT" on page 289            |  |
| 0xbc    | 31:0 | "S_EEE_LPI_DURATION" on page 290         |  |
| 0xc0    | 31:0 | "S_RxDiscard" on page 290                |  |
| 0xc8    | 31:0 | "S_TxQPKTQ6" on page 290                 |  |
| Охсс    | 31:0 | "S_TxQPKTQ7" on page 290                 |  |
| 0xd0    | 31:0 | "S_TxPkts64Octets" on page 291           |  |
| 0xd4    | 31:0 | "S_TxPkts65to127Octets" on page 291      |  |
| 0xd8    | 31:0 | "S_TxPkts128to255Octets" on page 291     |  |
| 0xdc    | 31:0 | "S_TxPkts256to511Octets" on page 291     |  |
| 0xe0    | 31:0 | "S_TxPkts512to1023Octets" on page 292    |  |
| 0xe4    | 31:0 | "S_TxPkts1024toMaxPktOctets" on page 292 |  |

# **S\_TxOctets**

Register Address: SPI Page 0x71, SPI Offset 0x00

Register Description: TxOctets

Table 497: S\_TxOctets

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of good bytes of data transmitted by a port (excluding preamble, but including FCS). | 0x0     |

#### **S\_TxDropPkts**

Register Address: SPI Page 0x71, SPI Offset 0x08

Register Description: Tx Drop Packet Counter

Table 498: S\_TxDropPkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                              | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | This counter is increased every time a transmit packet is dropped due to lack of resources (such as transmit FIFO underflow), or an internal MAC sublayer transmit error not counted by either the TxLateCollision or the TxExcessiveCollision counters. |         |

### S\_TxQPKTQ0

Register Address: SPI Page 0x71, SPI Offset 0x0c

Register Description: Tx Q0 Packet Counter

Table 499: S\_TxQPKTQ0

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS0, which is specified in MIB queue select register when QoS is enabled. | n 0x0   |

### **S\_TxBroadcastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x10

Register Description: Tx Broadcast Packet Counter

Table 500: S\_TxBroadcastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a broadcast address. This counter does not include error broadcast packets or valid multicast packets. | 0x0     |

#### **S\_TxMulticastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x14

Register Description: Tx Multicast Packet Counter

#### Table 501: S\_TxMulticastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                  | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

# **S\_TxUnicastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x18

Register Description: Tx Unicast Packet Counter

Table 502: S\_TxUnicastPkts

| Bits | Name  | R/W | Description                                                                               | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets transmitted by a port that are addressed to a unicast address. | 0x0     |

#### **S\_TxCollisions**

Register Address: SPI Page 0x71, SPI Offset 0x1c

Register Description: Tx Collision Counter

Table 503: S\_TxCollisions

| Bits | Name  | R/W | Description                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of collisions experienced by a port during packet transmissions. | 0x0     |

### **S\_TxSingleCollision**

Register Address: SPI Page 0x71, SPI Offset 0x20

Register Description: Tx Single Collision Counter

Table 504: S\_TxSingleCollision

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced exactly one collision. |         |

#### **S\_TxMultipleCollision**

Register Address: SPI Page 0x71, SPI Offset 0x24

Register Description: Tx Multiple collision Counter

Table 505: S\_TxMultipleCollision

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets successfully transmitted by a port that experienced more than one collision. | i 0x0   |

# **S\_TxDeferredTransmit**

Register Address: SPI Page 0x71, SPI Offset 0x28

Register Description: Tx Deferred Transmit Counter

Table 506: S\_TxDeferredTransmit

| Bits | Name  | R/W | Description                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets transmitted by a port for which the first transmission attempt is delayed because the medium is busy. | 0x0     |

#### **S\_TxLateCollision**

Register Address: SPI Page 0x71, SPI Offset 0x2c

Register Description: Tx Late Collision Counter

Table 507: S\_TxLateCollision

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times that a collision is detected later than 512 bit-times into the transmission of a packet. |         |

### **S\_TxExcessiveCollision**

Register Address: SPI Page 0x71, SPI Offset 0x30

Register Description: Tx Excessive Collision Counter

Table 508: S\_TxExcessiveCollision

| Bits | Name  | R/W | Description                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets that are not transmitted from a port because the packet experienced 16 transmission attempts. |         |

**Broadcom**<sup>®</sup> April 19, 2017 • 53134-PR103

#### **S\_TxFrameInDisc**

Register Address: SPI Page 0x71, SPI Offset 0x34

Register Description: Tx Fram IN Disc Counter

Table 509: S\_TxFrameInDisc

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of valid packets received that are discarded by the forwarding process due to lack of space on an output queue. (Not maintained or reported in the MIB counters and located in the congestion management registers, page 0Ah.) This attribute increments only if a network device is not acting in compliance with a flow-control request, or the chip internal flow control/buffering scheme has been misconfigured. |         |

#### **S\_TxPausePkts**

Register Address: SPI Page 0x71, SPI Offset 0x38

Register Description: Tx Pause Packet Counter

Table 510: S\_TxPausePkts

| Bits | Name  | R/W | Description                                 | Default |
|------|-------|-----|---------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE events on a given port. | 0x0     |

# S\_TxQPKTQ1

Register Address: SPI Page 0x71, SPI Offset 0x3c

Register Description: Tx Q1 Packet Counter

Table 511: S\_TxQPKTQ1

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS1, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

# S\_TxQPKTQ2

Register Address: SPI Page 0x71, SPI Offset 0x40

Register Description: Tx Q2 Packet Counter

#### Table 512: S\_TxQPKTQ2

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS2, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

# S\_TxQPKTQ3

Register Address: SPI Page 0x71, SPI Offset 0x44

Register Description: Tx Q3 Packet Counter

#### Table 513: S\_TxQPKTQ3

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS3, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

# S\_TxQPKTQ4

Register Address: SPI Page 0x71, SPI Offset 0x48

Register Description: Tx Q4 Packet Counter

#### Table 514: S\_TxQPKTQ4

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS4, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

### S\_TxQPKTQ5

Register Address: SPI Page 0x71, SPI Offset 0x4c

Register Description: Tx Q5 Packet Counter

Table 515: S\_TxQPKTQ5

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted or COS5, which is specified in MIB queue select register when QoS is enabled. | n 0x0   |

# **S\_RxOctets**

Register Address: SPI Page 0x71, SPI Offset 0x50

Register Description: Rx Packet Octets Counter

Table 516: S\_RxOctets

| Bits | Name  | R/W | Description                                                                                                    | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The number of bytes of data received by a port (excluding preamble, but including FCS), including bad packets. | 0x0     |

# **S\_RxUndersizePkts**

Register Address: SPI Page 0x71, SPI Offset 0x58

Register Description: Rx Under Size Packet Octets Counter

Table 517: S\_RxUndersizePkts

| Bits | Name  | R/W | Description                                                                                                                     | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are less than 64 bytes long (excluding framing bits, but including the FCS). | 0x0     |

# **S\_RxPausePkts**

Register Address: SPI Page 0x71, SPI Offset 0x5c

Register Description: Rx Pause Packet Counter

Table 518: S\_RxPausePkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of PAUSE frames received by a port. The PAUSE frame must have a valid MAC control frame EtherType field (8808h), have a destination MAC address of either the MAC control frame reserved multicast address (01-80-C2-00-00-01) or the unique MAC address associated with the specific port, a valid PAUSE Opcode (0001), be a minimum of 64 bytes in length (excluding preamble but including FCS), and have a valid CRC. Although an IEEE 802.3-compliant MAC is permitted to transmit PAUSE frames only when in full-duplex mode with flow control enabled and with the transfer of PAUSE frames determined by the result of autonegotiation, an IEEE 802.3 MAC receiver is required to count all received PAUSE frames, regardless of its half/full-duplex status. An indication that a MAC is in half-duplex with the RxPausePkts incrementing indicates a noncompliant transmitting device on the network. |         |

## S\_RxPkts64Octets

Register Address: SPI Page 0x71, SPI Offset 0x60

Register Description: Rx 64 Bytes Octets Counter

Table 519: S\_RxPkts64Octets

| Bits | Name  | R/W | Description                                                                      | Default |
|------|-------|-----|----------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are 64 bytes long. | 0x0     |

#### S\_RxPkts65to127Octets

Register Address: SPI Page 0x71, SPI Offset 0x64

Register Description: Rx 65 to 127 Bytes Octets Counter

Table 520: S\_RxPkts65to127Octets

| Bits | Name  | R/W | Description                                                                                      | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 65 and 127 bytes long. | 0x0     |

# S\_RxPkts128to255Octets

Register Address: SPI Page 0x71, SPI Offset 0x68

Register Description: Rx 128 to 255 Bytes Octets Counter

Table 521: S\_RxPkts128to255Octets

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 128 and 255 bytes long. | 0x0     |

#### S\_RxPkts256to511Octets

Register Address: SPI Page 0x71, SPI Offset 0x6c

Register Description: Rx 256 to 511 Bytes Octets Counter

Table 522: S RxPkts256to511Octets

| Bits | Name  | R/W | Description                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 256 and 511 bytes long. | r 0x0   |

#### S\_RxPkts512to1023Octets

Register Address: SPI Page 0x71, SPI Offset 0x70

Register Description: Rx 512 to 1023 Bytes Octets Counter

Table 523: S\_RxPkts512to1023Octets

| Bits | Name  | R/W | Description                                                                                        | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

#### S\_RxPkts1024toMaxPktOctets

Register Address: SPI Page 0x71, SPI Offset 0x74

Register Description: Rx 1024 to MaxPkt Bytes Octets Counter

Table 524: S\_RxPkts1024toMaxPktOctets

| Bits | Name  | R/W | Description                                                                                            | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of received packets (including erro packets) that are between 1024 and MaxPacke bytes long. |         |

#### **S\_RxOversizePkts**

Register Address: SPI Page 0x71, SPI Offset 0x78

Register Description: Rx Over Size Packet Counter

Table 525: S\_RxOversizePkts

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are greater than standard max frame size. | 0x0     |

# **S\_RxJabbers**

Register Address: SPI Page 0x71, SPI Offset 0x7c

Register Description: Rx Jabber Packet Counter

Table 526: S\_RxJabbers

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that meet below frame length condition and have either an FCS error or an alignment error.  1. standard max frame size is 2000 bytes: frame length is longer than 2000 bytes.  2. standard max frame size is 1518 bytes: frame length is longer than 1518 bytes, when disable double tag, or ingress frame is untagged frame length is longer than 1522 bytes, when enable double tag and ingress frame is single tagged, or ingress frame is 1Q frame. frame length is longer than 1526 bytes, when enable double tag and ingress frame is double tagged. | 0x0     |

# **S\_RxAlignmentErrors**

Register Address: SPI Page 0x71, SPI Offset 0x80

Register Description: Rx Alignment Error Counter

Table 527: S\_RxAlignmentErrors

| Bits | Name  | R/W | Description                                                                                                                                                                                                       | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with a nonintegral number of bytes. |         |

#### **S\_RxFCSErrors**

Register Address: SPI Page 0x71, SPI Offset 0x84

Register Description: Rx FCS Error Counter

Table 528: S\_RxFCSErrors

| Bits | Name  | R/W | Description                                                                                                                                                                                                     | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with an integral number of bytes. | 0x0     |

#### **S\_RxGoodOctets**

Register Address: SPI Page 0x71, SPI Offset 0x88

Register Description: Rx Good Packet Octet Counter

#### Table 529: S\_RxGoodOctets

| Bits | Name  | R/W | Description                                                                                                  | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------|---------|
| 63:0 | COUNT | R/W | The total number of bytes in all good packets received by a port (excluding framing bits but including FCS). | 0x0     |

# **S\_RxDropPkts**

Register Address: SPI Page 0x71, SPI Offset 0x90

Register Description: Rx Drop Packet Counter

#### Table 530: S\_RxDropPkts

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were dropped due to lack of resources (such as lack of input buffers) or were dropped due to lack of resources before a determination of the validity of the packet was able to be made (such as receive FIFO overflow). The counter is increased only if the receive error was not counted by the RxAlignmentErrors or the RxFCSErrors counters. |         |

# **S\_RxUnicastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x94

Register Description: Rx Unicast Packet Counter

Table 531: S\_RxUnicastPkts

| Bits | Name  | R/W | Description                                                                          | Default |
|------|-------|-----|--------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a porthat are addressed to a unicast address. | t 0x0   |

#### **S\_RxMulticastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x98

Register Description: Rx Multicast Packet Counter

Table 532: S\_RxMulticastPkts

| Bits | Name  | R/W | Description                                                                                                                                                               | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to a multicast address. This counter does not include error multicast packets or valid broadcast packets. |         |

#### **S\_RxBroadcastPkts**

Register Address: SPI Page 0x71, SPI Offset 0x9c

Register Description: Rx Broadcast Packet Counter

Table 533: S\_RxBroadcastPkts

| Bits | Name  | R/W | Description                                                                                                                                                                 | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that are directed to the broadcast address. This counter does not include error broadcast packets or valid multicast packets. |         |

#### **S\_RxSAChanges**

Register Address: SPI Page 0x71, SPI Offset 0xa0

Register Description: Rx SA Change Counter

Table 534: S\_RxSAChanges

| Bits | Name  | R/W | Description                                                                                                                                                                           | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of times the SA of good receive packets has changed from the previous value. A count greater than 1 generally indicates the port is connected to a repeater-based network. |         |

#### **S\_RxFragments**

Register Address: SPI Page 0x71, SPI Offset 0xa4

Register Description: Rx Fragment Counter

Table 535: S\_RxFragments

| Bits | Name  | R/W | Description                                                                                                                                       | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of packets received by a port that are less than 64 bytes (excluding framing bits) and have either an FCS error or an alignment error. | 0x0     |

#### S\_RxJumboPkt

Register Address: SPI Page 0x71, SPI Offset 0xa8

Register Description: Jumbo Packet Counter

Table 536: S\_RxJumboPkt

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                     | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with frame size greater than the Standard Maximum Size and less than or equal to the Jumbo Frame Size, regardless of CRC or Alignment errors.  Note: InFrame count should count the JumboPkt count with good CRC. |         |

# S\_RxSymblErr

Register Address: SPI Page 0x71, SPI Offset 0xac

Register Description: Rx Symbol Error Counter

Table 537: S\_RxSymblErr

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of times a valid length packet was received at a port and at least one invalid data symbol was detected. Counter increments only once per carrier event and does not increment on detection of collision during the carrier event. | 0x0     |

## **S\_InRangeErrCount**

Register Address: SPI Page 0x71, SPI Offset 0xb0

Register Description: InRangeErrCount Counter

Table 538: S\_InRangeErrCount

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the following conditions. The value of Length/Type field is between 46 and 1500 inclusive, and does not match the number or (MAC Client Data + PAD) data octets received, OR The value of Length/Type field is less than 46, and the number of data octets received is greater than 46 (which does not require padding). |         |

### S\_OutRangeErrCount

Register Address: SPI Page 0x71, SPI Offset 0xb4

Register Description: OutRangeErrCount Counter

Table 539: S\_OutRangeErrCount

| Bits | Name  | R/W | Description                                                                                                             | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of frames received with good CRC and the value of Length/Type field is greater than 1500 and less than 1536. |         |

### S\_EEE\_LPI\_EVENT

Register Address: SPI Page 0x71, SPI Offset 0xb8

Register Description: EEE Low-Power Idle Event Registers

Table 540: S\_EEE\_LPI\_EVENT

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                                   | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle event In asymmetric mode, this is simply a count of the number of times that the lowPowerAssert contro signal has been asserted for each MAC. In symmetric mode, this is the count of the number of times both lowPowerAssert and the lowPowerIndicate(from the receive path) are asserted simultaneously. | I       |

#### S\_EEE\_LPI\_DURATION

Register Address: SPI Page 0x71, SPI Offset 0xbc

Register Description: EEE Low-Power Idle Duration Registers

Table 541: S\_EEE\_LPI\_DURATION

| Bits | Name  | R/W | Description                                                                                                                                                                                                                                                                                                         | Default |
|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | EEE low-power idle duration. In symmetric mode, this counter accumulates the number of microseconds that the associated MAC/PHY is in the low-power idle state. In asymmetric mode, this counter accumulates the number of microseconds that the associated MAC is in the low-power idle state. The unit is 1 usec. |         |

### **S\_RxDiscard**

Register Address: SPI Page 0x71, SPI Offset 0xc0

Register Description: Rx Discard Counter

Table 542: S\_RxDiscard

| Bits | Name  | R/W | Description                                                                                  | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of good packets received by a port that were discarded by the Forwarding Process. |         |

# S\_TxQPKTQ6

Register Address: SPI Page 0x71, SPI Offset 0xc8

Register Description: Tx Q6 Packet Counter

#### Table 543: S\_TxQPKTQ6

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS6, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

# S\_TxQPKTQ7

Register Address: SPI Page 0x71, SPI Offset 0xcc

Register Description: Tx Q7 Packet Counter

#### Table 544: S\_TxQPKTQ7

| Bits | Name  | R/W | Description                                                                                                                | Default |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The total number of good packets transmitted on COS6, which is specified in MIB queue select register when QoS is enabled. | 0x0     |

#### S\_TxPkts64Octets

Register Address: SPI Page 0x71, SPI Offset 0xd0

Register Description: Tx 64 Bytes Octets Counter

#### Table 545: S\_TxPkts64Octets

| Bits | Name  | R/W | Description                                                                         | Default |
|------|-------|-----|-------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are 64 bytes long. | 0x0     |

#### S\_TxPkts65to127Octets

Register Address: SPI Page 0x71, SPI Offset 0xd4

Register Description: Tx 65 to 127 Bytes Octets Counter

#### Table 546: S\_TxPkts65to127Octets

| Bits | Name  | R/W | Description                                                                                         | Default |
|------|-------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 65 and 127 bytes long. | 0x0     |

#### S\_TxPkts128to255Octets

Register Address: SPI Page 0x71, SPI Offset 0xd8

Register Description: Tx 128 to 255 Bytes Octets Counter

#### Table 547: S\_TxPkts128to255Octets

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 128 and 255 bytes long. | 0x0     |

### S\_TxPkts256to511Octets

Register Address: SPI Page 0x71, SPI Offset 0xdc

Register Description: Tx 256 to 511 Bytes Octets Counter

Table 548: S\_TxPkts256to511Octets

| Bits | Name  | R/W | Description                                                                                          | Default |
|------|-------|-----|------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 256 and 511 bytes long. | 0x0     |

### S\_TxPkts512to1023Octets

Register Address: SPI Page 0x71, SPI Offset 0xe0

Register Description: Tx 512 to 1023 Bytes Octets Counter

Table 549: S\_TxPkts512to1023Octets

| Bits | Name  | R/W | Description                                                                                           | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 512 and 1023 bytes long. | 0x0     |

# S\_TxPkts1024toMaxPktOctets

Register Address: SPI Page 0x71, SPI Offset 0xe4

Register Description: Tx 1024 to MaxPkt Bytes Octets Counter

Table 550: S\_TxPkts1024toMaxPktOctets

| Bits | Name  | R/W | Description                                                                                                 | Default |
|------|-------|-----|-------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | COUNT | R/W | The number of transmitted packets (including error packets) that are between 1024 and MaxPacket bytes long. | 0x0     |

**Broadcom**<sup>®</sup> April 19, 2017 • 53134-PR103

# Page 0x72: Loop Discovery Register

Table 551: Page 0x72: Loop Discovery Register

| Address | Bits | Register Name             |
|---------|------|---------------------------|
| 0x00    | 15:0 | "LPDET_CFG" on page 293   |
| 0x02    | 7:0  | "DF_TIMER" on page 294    |
| 0x03    | 15:0 | "LED_PORTMAP" on page 294 |
| 0x05    | 47:0 | "MODULE_ID0" on page 295  |
| 0x0b    | 47:0 | "MODULE_ID1" on page 295  |
| 0x11    | 47:0 | "LPDET_SA" on page 295    |

# LPDET\_CFG

Register Address: SPI Page 0x72, SPI Offset 0x00

Register Description: Loop Detection Configuration Registers

Table 552: LPDET\_CFG

| Bits | Name         | R/W | Description                                                                                                                                                                                                                                                       | Default |
|------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | RESERVED     | R/W | Reserved                                                                                                                                                                                                                                                          | 0       |
| 14   | DFQ_SEL2     | R/W | specify which queue to be put for received discovery frame. This bit has to combine with DFQ_SEL to select which Queue will be used. {DFQ_SEL2, DFQ_SEL}: 000: Queue 0 001: Queue 1 010: Queue 2 011: Queue 3 100: Queue 4 101: Queue 5 110: Queue 6 111: Queue 7 | 0       |
| 13   | EN_TXPASS    | R/W | 1b1:when EN LPDET and act loop detect are active, LoopDetect frame would send out even if prefetch fifo is occupied by low-Q frame. 1b0:follow OV PAUSE ON (bit-2) setting                                                                                        | 0       |
| 12   | EN_LPDET     | R/W | 1b1: enable loop detection feature. (Starfighter-2 support for unmanaged mode only) 1b0: disable loop detection feature.                                                                                                                                          | 0       |
| 11   | LOOP_IMP_SEL | R/W | 1'b1: IMP support loop detection feature.<br>1'b0: IMP do not support loop detection feature.                                                                                                                                                                     | 0       |
| 10:3 | LED_RST_CTL  | R/W | specify how many times we can miss discovery time before we reset LED_warning_portmap.                                                                                                                                                                            | 0x4     |

Table 552: LPDET\_CFG (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2    | OV_PAUSE_ON | R/W | 1'b1: transmit frame in highest queue even the port is in pause on state (might not work if prefetch fifo is occupied by low-Q frame). 1'b0: transmit frame follow the pause state rule.                                                                              | 1       |
| 1:0  | DFQ_SEL     | R/W | specify which queue to be put for received discovery frame. These bits have to combine with DFQ_SEL2 to select which Queue will be used. {DFQ_SEL2, DFQ_SEL}: 000: Queue 0 001: Queue 1 010: Queue 2 011: Queue 3 100: Queue 4 101: Queue 5 110: Queue 6 111: Queue 7 | 0x1     |

# **DF\_TIMER**

Register Address: SPI Page 0x72, SPI Offset 0x02

Register Description: Discovery Frame Timer Registers

Table 553: DF\_TIMER

| Bits | Name     | R/W | Description                          | Default |
|------|----------|-----|--------------------------------------|---------|
| 7:4  | RESERVED | R/W | Reserved                             | 0x0     |
| 3:0  | DF_TIME  | R/W | From 1 sec to 15 sec,<br>4'h0: 1 sec | 0x0     |
|      |          |     | •                                    |         |
|      |          |     | 4'hE: 15 sec<br>scale = 1 sec        |         |

# LED\_PORTMAP

Register Address: SPI Page 0x72, SPI Offset 0x03

Register Description: LED Warning Port map Registers

Table 554: LED\_PORTMAP

| Bits | Name                | R/W | Description                                                                | Default |
|------|---------------------|-----|----------------------------------------------------------------------------|---------|
| 15:9 | RESERVED            | R/W | Reserved                                                                   | 0x0     |
| 8:0  | LED_WARNING_PORTMAP | R/W | LED indication for loop detection found bit 8 for IMP bit 7:0 for port 7-0 | 0x0     |

#### MODULE\_ID0

Register Address: SPI Page 0x72, SPI Offset 0x05

Register Description: Module ID 0 Registers

Table 555: MODULE\_ID0

| Bits | Name   | R/W | Description              | Default |
|------|--------|-----|--------------------------|---------|
| 47:0 | MID_SA | R/W | 48 bit SA for module ID. | 0x0     |

#### MODULE\_ID1

Register Address: SPI Page 0x72, SPI Offset 0x0b

Register Description: Module ID 1 Registers

Table 556: MODULE\_ID1

| Bits  | Name        | R/W | Description                                                                                        | Default |
|-------|-------------|-----|----------------------------------------------------------------------------------------------------|---------|
| 47    | MID_AVAIL   | R/W | module ID available, once 1 st packet received. 1: available. 0: unavailable, wait for 1st packet. | 0       |
| 46:40 | RESERVED    | R/W | Reserved                                                                                           | 0x0     |
| 39:32 | MID_PORTNUM | R/W | 8 bit portnum for module ID.                                                                       | 0x0     |
| 31:0  | MID_CRC     | R/W | 32 bits CRC for module ID.                                                                         | 0x0     |

# LPDET\_SA

Register Address: SPI Page 0x72, SPI Offset 0x11

Register Description: Loop Detect Frame SA Registers

Table 557: LPDET\_SA

| Bits | Name     | R/W | Description                                        | Default |
|------|----------|-----|----------------------------------------------------|---------|
| 47:0 | LPDET_SA | R/W | Loop Detection Frame SA.Reset Value: 0x180c2000001 | unknown |

# Page 0x85: Port 5 External PHY MII Register

Table 558: Page 0x85: Port 5 External PHY MII Register

| Address | Bits | Register Name                               |
|---------|------|---------------------------------------------|
| 0x00    | 15:0 | "G_MIICTL_EXT_P5" on page 297               |
| 0x02    | 15:0 | "G_MIISTS_EXT_P5" on page 297               |
| 0x04    | 15:0 | "G_PHYIDH_EXT_P5" on page 298               |
| 0x06    | 15:0 | "G_PHYIDL_EXT_P5" on page 299               |
| 0x08    | 15:0 | "G_ANADV_EXT_P5" on page 299                |
| 0x0a    | 15:0 | "G_ANLPA_EXT_P5" on page 300                |
| 0x0c    | 15:0 | "G_ANEXP_EXT_P5" on page 300                |
| 0x0e    | 15:0 | "G_ANNXP_EXT_P5" on page 301                |
| 0x10    | 15:0 | "G_LPNXP_EXT_P5" on page 301                |
| 0x12    | 15:0 | "G_B1000T_CTL_EXT_P5" on page 302           |
| 0x14    | 15:0 | "G_B1000T_STS_EXT_P5" on page 302           |
| 0x1e    | 15:0 | "G_EXT_STS_EXT_P5" on page 303              |
| 0x20    | 15:0 | "G_PHY_EXT_CTL_EXT_P5" on page 303          |
| 0x22    | 15:0 | "G_PHY_EXT_STS_EXT_P5" on page 304          |
| 0x24    | 15:0 | "G_REC_ERR_CNT_EXT_P5" on page 305          |
| 0x26    | 15:0 | "G_FALSE_CARR_CNT_EXT_P5" on page 306       |
| 0x28    | 15:0 | "G_REC_NOTOK_CNT_EXT_P5" on page 306        |
| 0x2a    | 15:0 | "G_DSP_COEFFICIENT_EXT_P5" on page 307      |
| 0x2e    | 15:0 | "G_DSP_COEFFICIENT_ADDR_EXT_P5" on page 307 |
| 0x30    | 15:0 | "G_AUX_CTL_EXT_P5" on page 309              |
| 0x32    | 15:0 | "G_AUX_STS_EXT_P5" on page 309              |
| 0x34    | 15:0 | "G_INTERRUPT_STS_EXT_P5" on page 309        |
| 0x36    | 15:0 | "G_INTERRUPT_MSK_EXT_P5" on page 310        |
| 0x38    | 15:0 | "G_MISC_SHADOW_EXT_P5" on page 310          |
| 0x3a    | 15:0 | "G_MASTER_SLAVE_SEED_EXT_P5" on page 311    |
| 0x3c    | 15:0 | "G_TEST1_EXT_P5" on page 311                |
| 0x3e    | 15:0 | "G_TEST2_EXT_P5" on page 311                |

# **G\_MIICTL\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x00

Register Description: External MII Control Register

Table 559: G\_MIICTL\_EXT\_P5

| Bits | Name        | R/W | Description                                                                                    | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------|---------|
| 15   | RESET       | R/W | 1: PHY reset. 0: Normal operation.                                                             | 0       |
| 14   | LOOPBACK    | R/W | 1: Loopback mode.<br>0: Normal operation.                                                      | 0       |
| 13   | SPD_SEL_LSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB}<br>11 = Reserved<br>10 = 1000 Mb/s<br>01 = 100 Mb/s<br>00 = 10 Mb/s | 1       |
| 12   | AN_EN       | R/W | Auto-Negotiation Enable.     Auto-Negotiation disable.                                         | 1       |
| 11   | PWR_DOWN    | R/W | 1:low power mode,<br>0:Normal operation.                                                       | 0       |
| 10   | ISOLATE     | R/W | Electrically isolate PHY from MII.     Normal operation.                                       | 0       |
| 9    | RE_AN       | R/W | RESTART AUTO-NEGOTIATION.  1: Restart Auto-Negotiation process.  0: Normal operation.          | 0       |
| 8    | DUPLEX_MOD  | R/W | 1: Full Duplex.<br>0: Half Duplex.                                                             | 0       |
| 7    | COL_TEST    | R/W | 1 = Collision test mode enabled,<br>0 = Collision test mode disabled.                          | 0       |
| 6    | SPD_SEL_MSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB}<br>11 = Reserved<br>10 = 1000 Mb/s<br>01 = 100 Mb/s<br>00 = 10 Mb/s | 0       |
| 5:0  | RESERVED    | R/W | External Ignore when read.                                                                     | 0x0     |

# **G\_MIISTS\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x02

Register Description: External MII Status Register

Table 560: G\_MIISTS\_EXT\_P5

| Bits | Name       | R/W | Description                                          | Default |
|------|------------|-----|------------------------------------------------------|---------|
| 15   | B100T4_CAP | R/W | 1 = 100Base-T4 capable<br>0 = not 100Base-T4 capable | 0       |

Table 560: G\_MIISTS\_EXT\_P5 (Cont.)

| 100Base-X full duplex capable 1                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|
| not 100Base-X full duplex capable                                                                                  |
| 100Base-X half duplex capable 1<br>not 100Base-X half duplex capable                                               |
| 10Base-T full duplex capable 1<br>not 10Base-T full duplex capable                                                 |
| 10Base-T half duplex capable 1<br>not 10Base-T half duplex capable                                                 |
| 100Base-T2 full duplex capable 0<br>not 100Base-T2 full duplex capable                                             |
| 100Base-T2 half duplex capable 0<br>not 100Base-T2 half duplex capable                                             |
| extended status information in register 0Fh 1 no extended status info in register 0Fh                              |
| erved 0                                                                                                            |
| PHY will accept management frames with 1 mble suppressed PHY will not accept management frames preamble suppressed |
| auto-negotiation complete 0 auto-negotiation in progress                                                           |
| remote fault detected 0 no remote fault detected                                                                   |
| auto-negotiation capable 1<br>not auto-negotiation capable                                                         |
| ink pass 0<br>ink fail                                                                                             |
| abber condition detected 0 no jabber condition detected                                                            |
| extended register capabilities supported 1 pasic register set capabilities only                                    |
| r r r r er e le a le r r er le le jr                                                                               |

# **G\_PHYIDH\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x04

Register Description: External PHY ID High Register

Table 561: G\_PHYIDH\_EXT\_P5

| Bits | Name | R/W | Description                                      | Default |
|------|------|-----|--------------------------------------------------|---------|
| 15:0 | OUI  | R/W | Bits 3:18 of organizationally unique identifier. | 0x143   |

# **G\_PHYIDL\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x06

Register Description: External PHY ID LOW Register

Table 562: G\_PHYIDL\_EXT\_P5

| Bits  | Name     | R/W | Description                                                                                               | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15:10 | OUI      | R/W | Bits 19:24 of organizationally unique identifier.                                                         | 0x2F    |
| 9:4   | MODEL    | R/W | Device model number (metal programmable).<br>Note: this register read value come from external<br>PHY.    | 0xD     |
| 3:0   | REVISION | R/W | Device revision number (metal programmable).<br>Note: this register read value come from external<br>PHY. |         |

# **G\_ANADV\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x08

Register Description: External Auto-Negotiation Advertisement Register

Table 563: G\_ANADV\_EXT\_P5

| Bits | Name          | R/W | Description                                                                        | Default |
|------|---------------|-----|------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = next page ability supported.<br>0 = next page ability not supported.           | 0       |
| 14   | RESERVED_2    | R/W | write as 0, ignore on read.                                                        | 0       |
| 13   | REMOTE_FAULT  | R/W | 1 = advertise remote fault detected<br>0 = advertise no remote fault detected      | 0       |
| 12   | RESERVED_1    | R/W | write as 0, ignore on read.                                                        | 0       |
| 11   | ASY_PAUSE     | R/W | 1 = Advertise asymmetric pause,<br>0 = Advertise no asymmetric pause.              | 0       |
| 10   | ADV_PAUSE_CAP | R/W | 1 = capable of full duplex Pause operation,<br>0 = not capable of Pause operation. | 0       |
| 9    | B100T4        | R/W | 1 = 100Base-T4 capable,<br>0 = not 100Base-T4 capable.                             | 0       |
| 8    | ADV_B100_FDX  | R/W | 1 = 100Base-TX full duplex capable,<br>0 = not 100Base-TX full duplex capable.     | 0       |
| 7    | ADV_B100X     | R/W | 1 = 100Base-TX capable,<br>0 = not 100Base-TX capable.                             | 0       |
| 6    | ADV_B10T_FDX  | R/W | 1 = 10Base-T full duplex capable,<br>0 = not 10Base-T full duplex capable.         | 0       |
| 5    | ADV_B10T      | R/W | 1 = 10Base-T half duplex capable,<br>0 = not 10Base-T half duplex capable.         | 0       |
| 4:0  | PROTOCOL_SEL  | R/W | 00001 = IEEE 802.3 CSMA/CD.                                                        | 0x1     |

# **G\_ANLPA\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x0a

Register Description: External Auto-Negotiation Link Partner (LP) Ability Register

Table 564: G\_ANLPA\_EXT\_P5

| Bits | Name            | R/W | Description                                                                                                                | Default |
|------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE       | R/W | 1 = link partner is next page able,<br>0 = link partner is not next page able.                                             | 0       |
| 14   | ACKNOWLEDGE     | R/W | 1 = link partner has received link code word<br>0 = link partner has not received link code word.                          | 0       |
| 13   | REMOTE_FAULT    | R/W | 1 = link partner has detected remote fault<br>0 = link partner has not detected remote fault.                              | 0       |
| 12   | RESERVED_1      | R/W | write as 0, ignore on read.                                                                                                | 0       |
| 11   | LK_PAR_ASYM_CAP | R/W | link partners asymmetric pause bit.                                                                                        | 0       |
| 10   | PAUSE_CAP       | R/W | <ul><li>1 = link partner is capable of Pause operation,</li><li>0 = link partner not capable of Pause operation.</li></ul> | 0       |
| 9    | B100T4_CAP      | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                                      | 0       |
| 8    | B100_TXFD_CAP   | R/W | 1 = link partner is 100Base-TX full duplex capable 0 = link partner is not 100Base-TX full duplex capable.                 | 0       |
| 7    | B100_TXHD_CAP   | R/W | 1 = link partner is 100Base-TX half duplex capable 0 = link partner is not 100Base-TX half duplex capable.                 | 0       |
| 6    | B10T_FD_CAP     | R/W | 1 = link partner is 10Base-T full duplex capable 0 = link partner is not 10Base-T full duplex capable.                     | 0       |
| 5    | B10T_HD_CAP     | R/W | 1 = link partner is 10Base-T half duplex capable<br>0 = link partner is not 10Base-T half duplex<br>capable.               | 0       |
| 4:0  | PROTOCOL_SEL    | R/W | link partners protocol selector (see IEEE spec for encoding)                                                               | 0x0     |

## **G\_ANEXP\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x0c

Register Description: External Auto-Negotiation Expansion Register

Table 565: G\_ANEXP\_EXT\_P5

| Bits | Name       | R/W | Description     | Default |
|------|------------|-----|-----------------|---------|
| 15:7 | RESERVED_1 | R/W | ignore on read. | 0x0     |

Table 565: G\_ANEXP\_EXT\_P5 (Cont.)

| Bits | Name             | R/W | Description                                                                                                                | Default |
|------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 6    | NEXT_PAGE_ABLE   | R/W | 1 = register 6.5 determines next page receive location,<br>0 = register 6.5 does not determine next page receive location. | 1       |
| 5    | NEXT_PAGE        | R/W | <ul><li>1 = next pages stored in register 8,</li><li>0 = next pages stored in register 5.</li></ul>                        | 1       |
| 4    | PAR_DET_FAIL     | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                                      | 0       |
| 3    | LP_NEXT_PAGE_ABI | R/W | 1 = link partner is next page able<br>0 = link partner is not next page able.                                              | 0       |
| 2    | NEXT_PAGE_ABI    | R/W | 1 = local device is next page able,<br>0 = local device is not next page able.                                             | 1       |
| 1    | PAGE_REC         | R/W | 1 = new link code word has been received<br>0 = new link code word has not been received.                                  | 0       |
| 0    | LP_AN_ABI        | R/W | 1 = link partner is auto-negotiation able<br>0 = link partner is not auto-negotiation able.                                | 0       |

# **G\_ANNXP\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x0e

Register Description: External Auto-Negotiation Next Page Transmit Register

Table 566: G\_ANNXP\_EXT\_P5

| Bits | Name          | R/W | Description                                                                                                                | Default |
|------|---------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                                           | 0       |
| 14   | RESERVED_1    | R/W | ignore on read.                                                                                                            | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                                                 | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message                        | 0       |
| 11   | TOGGLE        | R/W | 1 = register 6.5 determines next page receive location,<br>0 = register 6.5 does not determine next page receive location. | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                                              | 0x1     |

# **G\_LPNXP\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x10

Register Description: External Link Partner next Page Ability Register

Table 567: G\_LPNXP\_EXT\_P5

| Bits | Name          | R/W | Description                                                                                         | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                    | 0       |
| 14   | ACK           | R/W | 1 = acknowledge,<br>0 = no acknowledge.                                                             | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                          | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message | 0       |
| 11   | TOGGLE        | R/W | 1 = sent 0 during previous Link Code Word 0 = sent 1 during previous Link Code Word.                | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                       | 0x0     |

# G\_B1000T\_CTL\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x12

Register Description: External 1000Base-T Control Register

Table 568: G\_B1000T\_CTL\_EXT\_P5

| Bits  | Name                | R/W | Description                                                                                                          | Default |
|-------|---------------------|-----|----------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | TEST_MODE           | R/W | 1xx = Test Mode 4<br>011 = Test Mode 3<br>010 = Test Mode 2<br>001 = Test Mode 1<br>000 = Normal Operation.          | 0x0     |
| 12    | MAST_SLV_CONG_EN    | R/W | <ul><li>1 = enable Master/Slave manual config value,</li><li>0 = disable Master/Slave manual config value.</li></ul> | 0       |
| 11    | MAST_SLV_CONG_VALUE | R/W | 1 = configure PHY as Master when 9.12 is set 0 = configure PHY as Slave when 9.12 is set.                            | 0       |
| 10    | REPEATER_DTE        | R/W | 1 = Repeater/switch device port,<br>0 = DTE device port.                                                             | 0       |
| 9     | ADV_B1000T_FD       | R/W | 1 = Advertise 1000Base-T full duplex capable,<br>0 = Advertise not 1000Base-T full duplex<br>capable.                | 0       |
| 8     | ADV_B1000T_HD       | R/W | 1 = Advertise 1000Base-T half duplex capable,<br>0 = Advertise not 1000Base-T half duplex<br>capable.                | 0       |
| 7:0   | RESERVED            | R/W | write as 0, ignore on read.                                                                                          | 0x0     |

#### G\_B1000T\_STS\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x14

Register Description: External 1000Base-T Status Register

Table 569: G\_B1000T\_STS\_EXT\_P5

| Bits | Name                | R/W | Description                                                                                                                                           | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | MAST_SLV_CONG_FAULT | R/W | 1 = Master/Slave configuration fault detected<br>0 = no Master/Slave configuration fault detected<br>(cleared by restart_an, an_complete or reg read) |         |
| 14   | MAST_SLV_CONG_STS   | R/W | <ul><li>1 = local PHY configured as Master,</li><li>0 = local PHY configured as Slave.</li></ul>                                                      | 0       |
| 13   | LOCAL_REC_STS       | R/W | <ul><li>1 = local receiver status OK,</li><li>0 = local receiver status not OK.</li></ul>                                                             | 0       |
| 12   | REMOTE_REC_STS      | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                                  | 0       |
| 11   | LP_B1000T_FD_CAP    | R/W | 1 = link partner is 1000Base-T full duplex capable, 0 = link partner is not 1000Base-T full duplex capable.                                           | 0       |
| 10   | LP_B1000T_HD_CAP    | R/W | 1 = link partner is 1000Base-T half duplex capable, 0 = link partner is not 1000Base-T half duplex capable.                                           | 0       |
| 9:8  | RESERVED            | R/W | ignore on read.                                                                                                                                       | 0x0     |
| 7:0  | IDLE_ERR_CNT        | R/W | Number of idle errors since last read.                                                                                                                | 0x0     |

### **G\_EXT\_STS\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x1e

Register Description: External Extended Status Register

Table 570: G\_EXT\_STS\_EXT\_P5

| Bits | Name          | R/W | Description                                                                    | Default |
|------|---------------|-----|--------------------------------------------------------------------------------|---------|
| 15   | B1000X_FD_CAP | R/W | 1 = 1000Base-X full duplex capable<br>0 = not 1000Base-X full duplex capable.  | 0       |
| 14   | B1000X_HD_CAP | R/W | 1 = 1000Base-X half duplex capable,<br>0 = not 1000Base-X half duplex capable. | 0       |
| 13   | B1000T_FD_CAP | R/W | 1 = 1000Base-T full duplex capable<br>0 = not 1000Base-T full duplex capable.  | 1       |
| 12   | B1000T_HD_CAP | R/W | 1 = 1000Base-T half duplex capable,<br>0 = not 1000Base-T half duplex capable. | 1       |
| 11:0 | RESERVED      | R/W | ignore on read.                                                                | 0x0     |

# G\_PHY\_EXT\_CTL\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x20

Register Description: External PHY Extended Control Register

Table 571: G\_PHY\_EXT\_CTL\_EXT\_P5

| Bits | Name                  | R/W | Description                                                                                               | Default |
|------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15   | MAC_PHY_MODE          | R/W | 1 = 10B interface mode<br>0 = GMII mode.                                                                  | 0       |
| 14   | DIS_AUTO_MDI_CROS     | R/W | <ul><li>1 = automatic MDI crossover disabled,</li><li>0 = automatic MDI crossover enabled.</li></ul>      | 0       |
| 13   | TRANSMIT_DIS          | R/W | <ul><li>1 = force transmit output to high impedance,</li><li>0 = normal operation.</li></ul>              | 0       |
| 12   | INTERRUPT_DIS         | R/W | <ul><li>1 = interrupts disabled,</li><li>0 = interrupts enabled.</li></ul>                                | 1       |
| 11   | FORCE_INTERRUPT       | R/W | <ul><li>1 = force interrupt status to active,</li><li>0 = normal interrupt operation.</li></ul>           | 0       |
| 10   | BYPASS_ENCODE         | R/W | 1 = bypass 4B5B encoder and decoder,<br>0 = normal operation.                                             | 0       |
| 9    | BYPASS_SCRAMBLER      | R/W | <ul><li>1 = bypass scrambler and descrambler,</li><li>0 = normal operation.</li></ul>                     | 0       |
| 8    | BYPASS_NRZI_MLT3      | R/W | <ul><li>1 = bypass NRZI/MLT3 encoder and decoder,</li><li>0 = normal operation.</li></ul>                 | 0       |
| 7    | BYPASS_ALIGNMENT      | R/W | <ul><li>1 = bypass receive symbol alignment,</li><li>0 = normal operation.</li></ul>                      | 0       |
| 6    | RST_SCRAMBLER         | R/W | 1 = reset scrambler to all 1s state<br>0 = normal scrambler operation.                                    | 0       |
| 5    | EN_LED_TRAFFIC_MOD    | R/W | 1 = LED traffic mode enabled,<br>0 = LED traffic mode disabled.                                           | 0       |
| 4    | FORCE_LED_ON          | R/W | 1 = force all LEDs into ON state,<br>0 = normal LED operation.                                            | 0       |
| 3    | FORCE_LED_OFF         | R/W | 1 = force all LEDs into OFF state,<br>0 = normal LED operation.                                           | 0       |
| 2    | BLK_TXEN_MOD          | R/W | 1 = extend transmit IPGs to at least 4 nibbles in 100Base-TX mode, 0 = do not extend short transmit IPGs. | 0       |
| 1    | GMII_FIFO_MOD         | R/W | 0=new synchronous mode,<br>1=old asynchronous mode.                                                       | 0       |
| 0    | B1000T_PCS_TRANS_FIFO | R/W | 1 = High latency (jumbo packets),<br>0 = Low latency (low elasticity).                                    | 0       |

# G\_PHY\_EXT\_STS\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x22

Register Description: External PHY Extended Status Register

Table 572: G\_PHY\_EXT\_STS\_EXT\_P5

| Bits | Name                 | R/W | Description                                                                                                                                       | Default |
|------|----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | AN_PAGE_SEL_MISMATCH | R/W | 1 = link partner base page selector field<br>mismatched advertised selector field since last<br>read<br>0 = no mismatch detected since last read. | 0       |
| 14   | WIRESPEED_DOWNGRADE  | R/W | 1 = autoneg advertising downgraded<br>0 = autoneg advertised as shown in regs 04h & 09h.                                                          | 0       |
| 13   | MDI_CROS_STATE       | R/W | 1 = MDIX,<br>0 = MDI.                                                                                                                             | 0       |
| 12   | INTERRUPT_STS        | R/W | 1 = unmasked interrupt currently active 0 = interrupts clear.                                                                                     | 0       |
| 11   | REMOTE_REC_STS       | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                              | 0       |
| 10   | LOCAL_REC_STS        | R/W | 1 = local receiver status OK,<br>0 = local receiver status not OK.                                                                                | 0       |
| 9    | LOCK                 | R/W | 1 = descrambler locked,<br>0 = descrambler unlocked.                                                                                              | 0       |
| 8    | LINK_STS             | R/W | 1 = link pass,<br>0 = link fail.                                                                                                                  | 0       |
| 7    | CRC_ERR_DET          | R/W | 1 = CRC error detected since last read,<br>0 = no CRC error detected since last read.                                                             | 0       |
| 6    | CARR_ERR_DET         | R/W | 1 = carrier ext. error detected since last read,<br>0 = no carrier ext. error detected since last read.                                           | 0       |
| 5    | BAD_SSD_DET          | R/W | 1 = bad SSD error detected since last read,<br>0 = no bad SSD error detected since last read.                                                     | 0       |
| 4    | BAD_ESD_DET          | R/W | 1 = bad ESD error detected since last read,<br>0 = no bad ESD error detected since last read.                                                     | 0       |
| 3    | REC_ERR_DET          | R/W | 1 = receive coding error detected since last read,<br>0 = no receive error detected since last read.                                              | , 0     |
| 2    | TRMIT_ERR_DET        | R/W | 1 = transmit error code detected since last read,<br>0 = no transmit error detected since last read.                                              | 0       |
| 1    | LCK_ERR_DET          | R/W | 1 = lock error detected since last read,<br>0 = no lock error detected since last read.                                                           | 0       |
| 0    | MLT3_ERR_DET         | R/W | 1 = MLT3 code error detected since last read,<br>0 = no MLT3 error detected since last read.                                                      | 0       |

# G\_REC\_ERR\_CNT\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x24

Register Description: External Receive Error Counter

Table 573: G\_REC\_ERR\_CNT\_EXT\_P5

| Bits | Name        | R/W | Description                                                                                                                                                                    | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | REC_ERR_CNT | R/W | Number of non-collision packets with receive errors since last read. Freezes at FFFFh. (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) | 0x0     |

# **G\_FALSE\_CARR\_CNT\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x26

Register Description: External False Carrier Sense Counter

Table 574: G\_FALSE\_CARR\_CNT\_EXT\_P5

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                               | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | SERDES_BER_CNT | R/W | Number of invalid code groups received while sync_status = 1 since last cleared. Cleared by writing expansion register 4D bit 15 = 1.                                                                                                                     | 0x0     |
| 7:0  | REC_ERR_CNT    | R/W | Number of false carrier sense events since last read. Counts packets received with transmit error codes when TXERVIS bit in test register is set. Freezes at FFh. (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) |         |

## G\_REC\_NOTOK\_CNT\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x28

Register Description: External Local/Remote Receiver NOT\_OK Counters

Table 575: G\_REC\_NOTOK\_CNT\_EXT\_P5

| Bits | Name                 | R/W | Description                                                                        | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------|---------|
| 15:8 | LOCAL_REC_NOTOK_CNT  | R/W | since last read. Freezes at FFh.                                                   | 0x0     |
| 7:0  | REMOTE_REC_NOTOK_CNT | R/W | number of times remote receiver status was not OK since last read. Freezes at FFh. | 0x0     |

#### G\_DSP\_COEFFICIENT\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x2a

Register Description: External DSP Coefficient Read/Write Port Register

#### Table 576: G\_DSP\_COEFFICIENT\_EXT\_P5

| Bits | Name            | R/W | Description | Default |
|------|-----------------|-----|-------------|---------|
| 15:0 | DSP_COEFFICIENT | R/W |             | 0x0     |

#### G\_DSP\_COEFFICIENT\_ADDR\_EXT\_P5

Register Address: SPI Page 0x85, SPI Offset 0x2e

Register Description: External DSP Coefficient Address Register

Table 577: G\_DSP\_COEFFICIENT\_ADDR\_EXT\_P5

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                           | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15    | ALL_CHANNEL_CTL | R/W | when this bit is set, writes to per-channel control bits affect all channels, regardless of bits 14:13                                                                                                                                | 0       |
| 14:13 | CHANNEL_SEL     | R/W | channel select for DSP coefficient read/writes<br>and<br>per-channel control/status register bits (marked<br>by<br>*):<br>11 = channel 3<br>10 = channel 2<br>01 = channel 1<br>00 = channel 0                                        | 0x0     |
| 12    | ALL_FILTER_CTL  | R/W | when this bit is set, writes to per-filter control bits affect all filters in the specified channel, regardless of bits 11:8 (when bit 15 is also set, writes to DSP control bits affect all echo, next, and dfe filters in the chip) | 0       |

Table 577: G\_DSP\_COEFFICIENT\_ADDR\_EXT\_P5 (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | FILTER_SEL | R/W | select DSP filter for coefficient read/write:  1111 = EXPANSION REGISTERS  1110 = EXTERNAL SERDES REGISTERS  1101 = reserved  1100 = DCOFFSET  1011 = reserved  1010 = reserved  1001 = reserved  1000 = reserved  1011 = NEXT[3]  0110 = NEXT[2]  0101 = NEXT[1]  0100 = NEXT[1]  0100 = NEXT[0]  0011 = ECHO  0010 = DFE  0001 = FFE  0000 = misc. receiver registers (see bits 7:0)  note: NEXT[n] does not exist for channel n. If  NEXT[n] is selected for channel n, all NEXT  cancellers for that channel are selected when  writing control bits.  BIT 12 (CONTROL ALL FILTERS) MUST BE  ZERO IN ORDER TO SELECT MISC,  DCOFFSET, or FFE. | 0x0     |
| 7:0  | TAP_NUM    | R/W | selects which tap is to be read/written within the selected filter (taps are numbered from 0 to n in chronological order (earliest to latest)) when filter select = 000 (misc. receiver regs): 0 = AGC A Register 1 = AGC B & IPRF Register 2 = MSE/Pair Status Register 3 = Soft Decision Register 4 = Phase Register 5 = WireMap/Skew & ECHO/NEXT & TX & ADC Register 6 -8 = reserved 9 = Frequency Register 10 = PLL Bandwidth & Path Metric Register 11 = PLL Phase Offset Registerto 31, 61:63                                                                                                                                               | 1       |

### **G\_AUX\_CTL\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x30

Register Description: External Auxiliary Control Register

Table 578: G\_AUX\_CTL\_EXT\_P5

| Bits | Name       | R/W | Description                                                                                                                                                        | Default |
|------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | SHADOW_REG | R/W | Shadow Registers:  001 => 10 BASE-T  010 => Power Control  011 => IP Phone  100 => Misc Test  101 => Misc Test 2  110 => Manual IP Phone seed  111 => Misc Control | 0x0     |

### **G\_AUX\_STS\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x32

Register Description: External Auxiliary Status Register

Table 579: G\_AUX\_STS\_EXT\_P5

| Bits | Name    | R/W | Description | Default |
|------|---------|-----|-------------|---------|
| 15:0 | AUX_STS | R/W |             | 0x0     |

### **G\_INTERRUPT\_STS\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x34

Register Description: External Interrupt Status Register

Table 580: G\_INTERRUPT\_STS\_EXT\_P5

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_STS | R/W |             | 0x0     |

# **G\_INTERRUPT\_MSK\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x36

Register Description: External Interrupt Mask Register

Table 581: G\_INTERRUPT\_MSK\_EXT\_P5

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_MSK | R/W |             | 0x0     |

#### **G\_MISC\_SHADOW\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x38

Register Description: External Miscellaneous Shadow Registers

Table 582: G\_MISC\_SHADOW\_EXT\_P5

| Bits | Name          | R/W | Description                                                   | Default |
|------|---------------|-----|---------------------------------------------------------------|---------|
| 15:0 | INTERRUPT_MSK | R/W | 00000 => Cabletron LED modes                                  | 0x0     |
|      | _             |     | 00001 => DLL Control                                          |         |
|      |               |     | 00010 => Spare Control 1                                      |         |
|      |               |     | 00011 => Clock Aligner                                        |         |
|      |               |     | 00100 => Spare Control 2                                      |         |
|      |               |     | 00101 => Spare Control 3                                      |         |
|      |               |     | 00110 => TDR Control 1                                        |         |
|      |               |     | 00111 => TDR Control 2                                        |         |
|      |               |     | 01000 => Led Status                                           |         |
|      |               |     | 01001 => Led Control                                          |         |
|      |               |     | 01010 => Auto-Power Down                                      |         |
|      |               |     | 01011 => External Control 1                                   |         |
|      |               |     | 01100 => External Control 2                                   |         |
|      |               |     | 01101 => LED Selector 1                                       |         |
|      |               |     | 01110 => LED Selector 2                                       |         |
|      |               |     | 01111 => LED GPIO Control/Status                              |         |
|      |               |     | 10000 => CISCO Enhanced Link status Mode Control              |         |
|      |               |     | 10001 => SerDes 100-FX Status                                 |         |
|      |               |     | 10010 => SerDes 100-FX Test                                   |         |
|      |               |     | 10010 => SerDes 100-FX Test<br>10011 => SerDes 100-FX Control |         |
|      |               |     | 10100 => External SerDes Control                              |         |
|      |               |     | 10101 => SGMII Slave Control                                  |         |
|      |               |     | 10110 => Misc 1000X Control 2                                 |         |
|      |               |     | 10111 => Misc 1000X Control                                   |         |
|      |               |     | 11000 => Auto-Detect SGMII/GBIC                               |         |
|      |               |     | 11001 => Test 1000X                                           |         |
|      |               |     | 11010 => Autoneg 1000X Debug                                  |         |
|      |               |     | 11011 => Auxiliary 1000X Control                              |         |
|      |               |     | 11100 => Auxiliary 1000X Status                               |         |
|      |               |     | 11101 => Misc 1000X Status                                    |         |
|      |               |     | 11110 => Auto-Detect Medium                                   |         |
|      |               |     | 11111 => Mode Control                                         |         |

### **G\_MASTER\_SLAVE\_SEED\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x3a

Register Description: External Master/Slave Seed Register

#### Table 583: G\_MASTER\_SLAVE\_SEED\_EXT\_P5

| Bits | Name | R/W | Description                         | Default |
|------|------|-----|-------------------------------------|---------|
| 15:0 | SEED | R/W | Shadow Register:<br>1 => HCD Status | 0x0     |

#### **G\_TEST1\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x3c

Register Description: External Test Register 1

#### Table 584: G\_TEST1\_EXT\_P5

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W |             | 0x0     |

#### **G\_TEST2\_EXT\_P5**

Register Address: SPI Page 0x85, SPI Offset 0x3e

Register Description: External Test Register 2

#### Table 585: G\_TEST2\_EXT\_P5

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W |             | 0x0     |

# Page 0x88: IMP port External PHY MII Register

Table 586: Page 0x88: IMP port External PHY MII Register

| Address | Bits | Register Name                            |
|---------|------|------------------------------------------|
| 0x00    | 15:0 | "G_MIICTL_EXT" on page 313               |
| 0x02    | 15:0 | "G_MIISTS_EXT" on page 313               |
| 0x04    | 15:0 | "G_PHYIDH_EXT" on page 314               |
| 0x06    | 15:0 | "G_PHYIDL_EXT" on page 315               |
| 0x08    | 15:0 | "G_ANADV_EXT" on page 315                |
| 0x0a    | 15:0 | "G_ANLPA_EXT" on page 316                |
| 0x0c    | 15:0 | "G_ANEXP_EXT" on page 316                |
| 0x0e    | 15:0 | "G_ANNXP_EXT" on page 317                |
| 0x10    | 15:0 | "G_LPNXP_EXT" on page 317                |
| 0x12    | 15:0 | "G_B1000T_CTL_EXT" on page 318           |
| 0x14    | 15:0 | "G_B1000T_STS_EXT" on page 318           |
| 0x1e    | 15:0 | "G_EXT_STS_EXT" on page 319              |
| 0x20    | 15:0 | "G_PHY_EXT_CTL_EXT" on page 319          |
| 0x22    | 15:0 | "G_PHY_EXT_STS_EXT" on page 320          |
| 0x24    | 15:0 | "G_REC_ERR_CNT_EXT" on page 321          |
| 0x26    | 15:0 | "G_FALSE_CARR_CNT_EXT" on page 322       |
| 0x28    | 15:0 | "G_REC_NOTOK_CNT_EXT" on page 322        |
| 0x2a    | 15:0 | "G_DSP_COEFFICIENT_EXT" on page 323      |
| 0x2e    | 15:0 | "G_DSP_COEFFICIENT_ADDR_EXT" on page 323 |
| 0x30    | 15:0 | "G_AUX_CTL_EXT" on page 325              |
| 0x32    | 15:0 | "G_AUX_STS_EXT" on page 325              |
| 0x34    | 15:0 | "G_INTERRUPT_STS_EXT" on page 325        |
| 0x36    | 15:0 | "G_INTERRUPT_MSK_EXT" on page 326        |
| 0x38    | 15:0 | "G_MISC_SHADOW_EXT" on page 326          |
| 0x3a    | 15:0 | "G_MASTER_SLAVE_SEED_EXT" on page 327    |
| 0x3c    | 15:0 | "G_TEST1_EXT" on page 327                |
| 0x3e    | 15:0 | "G_TEST2_EXT" on page 327                |

# **G\_MIICTL\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x00

Register Description: External MII Control Register

Table 587: G\_MIICTL\_EXT

| Bits | Name        | R/W | Description                                                                                    | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------|---------|
| 15   | RESET       | R/W | 1: PHY reset. 0: Normal operation.                                                             | 0       |
| 14   | LOOPBACK    | R/W | 1: Loopback mode.<br>0: Normal operation.                                                      | 0       |
| 13   | SPD_SEL_LSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB}<br>11 = Reserved<br>10 = 1000 Mb/s<br>01 = 100 Mb/s<br>00 = 10 Mb/s | 1       |
| 12   | AN_EN       | R/W | 1: Auto-Negotiation enable. 0: Auto-Negotiation disable.                                       | 1       |
| 11   | PWR_DOWN    | R/W | 1: Low power mode,<br>0:Normal operation.                                                      | 0       |
| 10   | ISOLATE     | R/W | Electrically isolate PHY from MII.     Normal operation.                                       | 0       |
| 9    | RE_AN       | R/W | RESTART AUTO-NEGOTIATION.  1: Restart Auto-Negotiation process.  0: Normal operation.          | 0       |
| 8    | DUPLEX_MOD  | R/W | 1: Full Duplex.<br>0: Half Duplex.                                                             | 0       |
| 7    | COL_TEST    | R/W | 1 = Collision test mode enabled,<br>0 = Collision test mode disabled.                          | 0       |
| 6    | SPD_SEL_MSB | R/W | {SPD_SEL_MSB, SPD_SEL_LSB} 11 = Reserved 10 = 1000 Mb/s 01 = 100 Mb/s 00 = 10 Mb/s             | 0       |
| 5:0  | RESERVED    | R/W | External Ignore when read.                                                                     | 0x0     |

# **G\_MIISTS\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x02

Register Description: External MII Status Register

Table 588: G\_MIISTS\_EXT

| Bits | Name       | R/W | Description                                          | Default |
|------|------------|-----|------------------------------------------------------|---------|
| 15   | B100T4_CAP | R/W | 1 = 100Base-T4 capable<br>0 = not 100Base-T4 capable | 0       |

Table 588: G\_MIISTS\_EXT (Cont.)

| Bits | Name           | R/W | Description                                                                                                                       | Default |
|------|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|---------|
| 14   | B100TX_FDX_CAP | R/W | 1 = 100Base-X full duplex capable<br>0 = not 100Base-X full duplex capable                                                        | 1       |
| 13   | B100TX_CAP     | R/W | 1 = 100Base-X half duplex capable<br>0 = not 100Base-X half duplex capable                                                        | 1       |
| 12   | B10T_FDX_CAP   | R/W | 1 = 10Base-T full duplex capable<br>0 = not 10Base-T full duplex capable                                                          | 1       |
| 11   | B10T_CAP       | R/W | 1 = 10Base-T half duplex capable<br>0 = not 10Base-T half duplex capable                                                          | 1       |
| 10   | B100T2_FD_CAP  | R/W | 1 = 100Base-T2 full duplex capable<br>0 = not 100Base-T2 full duplex capable                                                      | 0       |
| 9    | B100T2_HD_CAP  | R/W | 1 = 100Base-T2 half duplex capable<br>0 = not 100Base-T2 half duplex capable                                                      | 0       |
| 8    | EXT_STS        | R/W | 1 = extended status information in register 0Fh<br>0 = no extended status info in register 0Fh                                    | 1       |
| 7    | RESERVED       | R/W | Reserved                                                                                                                          | 0       |
| 6    | MF_PRE_SUP     | R/W | 1 = PHY will accept management frames with preamble suppressed 0 = PHY will not accept management frames with preamble suppressed | 1       |
| 5    | AUTO_NEGO_COMP | R/W | 1 = auto-negotiation complete<br>0 = auto-negotiation in progress                                                                 | 0       |
| 4    | REMOTE_FAULT   | R/W | 1 = remote fault detected<br>0 = no remote fault detected                                                                         | 0       |
| 3    | AUTO_NEGO_CAP  | R/W | 1 = auto-negotiation capable<br>0 = not auto-negotiation capable                                                                  | 1       |
| 2    | LINK_STA       | R/W | 1 = link pass<br>0 = link fail                                                                                                    | 0       |
| 1    | JABBER_DET     | R/W | 1 = jabber condition detected<br>0 = no jabber condition detected                                                                 | 0       |
| 0    | EXT_CAP        | R/W | 1 = extended register capabilities supported<br>0 = basic register set capabilities only                                          | 1       |

# **G\_PHYIDH\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x04

Register Description: External PHY ID High Register

Table 589: G\_PHYIDH\_EXT

| Bits | Name | R/W | Description                                      | Default |
|------|------|-----|--------------------------------------------------|---------|
| 15:0 | OUI  | R/W | Bits 3:18 of organizationally unique identifier. | 0x143   |

# **G\_PHYIDL\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x06

Register Description: External PHY ID LOW Register

Table 590: G\_PHYIDL\_EXT

| Bits  | Name     | R/W | Description                                                                                               | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15:10 | OUI      | R/W | Bits 19:24 of organizationally unique identifier.                                                         | 0x2F    |
| 9:4   | MODEL    | R/W | Device model number (metal programmable).<br>Note: this register read value come from external<br>PHY.    | 0xD     |
| 3:0   | REVISION | R/W | Device revision number (metal programmable).<br>Note: this register read value come from external<br>PHY. |         |

# **G\_ANADV\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x08

Register Description: External Auto-Negotiation Advertisement Register

Table 591: G\_ANADV\_EXT

| Bits | Name          | R/W | Description                                                                                  | Default |
|------|---------------|-----|----------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = next page ability supported. 0 = next page ability not supported.                        | 0       |
| 14   | RESERVED_2    | R/W | write as 0, ignore on read.                                                                  | 0       |
| 13   | REMOTE_FAULT  | R/W | 1 = advertise remote fault detected<br>0 = advertise no remote fault detected                | 0       |
| 12   | RESERVED_1    | R/W | write as 0, ignore on read.                                                                  | 0       |
| 11   | ASY_PAUSE     | R/W | <ul><li>1 = Advertise asymmetric pause,</li><li>0 = Advertise no asymmetric pause.</li></ul> | 0       |
| 10   | ADV_PAUSE_CAP | R/W | 1 = capable of full duplex Pause operation,<br>0 = not capable of Pause operation.           | 0       |
| 9    | B100T4        | R/W | 1 = 100Base-T4 capable,<br>0 = not 100Base-T4 capable.                                       | 0       |
| 8    | ADV_B100_FDX  | R/W | 1 = 100Base-TX full duplex capable,<br>0 = not 100Base-TX full duplex capable.               | 0       |
| 7    | ADV_B100X     | R/W | 1 = 100Base-TX capable,<br>0 = not 100Base-TX capable.                                       | 0       |
| 6    | ADV_B10T_FDX  | R/W | 1 = 10Base-T full duplex capable,<br>0 = not 10Base-T full duplex capable.                   | 0       |
| 5    | ADV_B10T      | R/W | 1 = 10Base-T half duplex capable,<br>0 = not 10Base-T half duplex capable.                   | 0       |
| 4:0  | PROTOCOL_SEL  | R/W | 00001 = IEEE 802.3 CSMA/CD.                                                                  | 0x1     |
|      |               |     |                                                                                              |         |

# **G\_ANLPA\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x0a

Register Description: External Auto-Negotiation Link Partner (LP) Ability Register

Table 592: G\_ANLPA\_EXT

| Bits | Name            | R/W | Description                                                                                                | Default |
|------|-----------------|-----|------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE       | R/W | 1 = link partner is next page able,<br>0 = link partner is not next page able.                             | 0       |
| 14   | ACKNOWLEDGE     | R/W | 1 = link partner has received link code word<br>0 = link partner has not received link code word.          | 0       |
| 13   | REMOTE_FAULT    | R/W | 1 = link partner has detected remote fault<br>0 = link partner has not detected remote fault.              | 0       |
| 12   | RESERVED_1      | R/W | write as 0, ignore on read.                                                                                | 0       |
| 11   | LK_PAR_ASYM_CAP | R/W | link partners asymmetric pause bit.                                                                        | 0       |
| 10   | PAUSE_CAP       | R/W | 1 = link partner is capable of Pause operation,<br>0 = link partner not capable of Pause operation.        | 0       |
| 9    | B100T4_CAP      | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                      | 0       |
| 8    | B100_TXFD_CAP   | R/W | 1 = link partner is 100Base-TX full duplex capable 0 = link partner is not 100Base-TX full duplex capable. | 0       |
| 7    | B100_TXHD_CAP   | R/W | 1 = link partner is 100Base-TX half duplex capable 0 = link partner is not 100Base-TX half duplex capable. | 0       |
| 6    | B10T_FD_CAP     | R/W | 1 = link partner is 10Base-T full duplex capable 0 = link partner is not 10Base-T full duplex capable.     | 0       |
| 5    | B10T_HD_CAP     | R/W | 1 = link partner is 10Base-T half duplex capable 0 = link partner is not 10Base-T half duplex capable.     | 0       |
| 4:0  | PROTOCOL_SEL    | R/W | link partners protocol selector (see IEEE spec for encoding)                                               | 0x0     |

# **G\_ANEXP\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x0c

Register Description: External Auto-Negotiation Expansion Register

Table 593: G\_ANEXP\_EXT

| Bits | Name       | R/W | Description     | Default |
|------|------------|-----|-----------------|---------|
| 15:7 | RESERVED_1 | R/W | ignore on read. | 0x0     |

Table 593: G\_ANEXP\_EXT (Cont.)

| Bits | Name             | R/W | Description                                                                                                                | Default |
|------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 6    | NEXT_PAGE_ABLE   | R/W | 1 = register 6.5 determines next page receive location,<br>0 = register 6.5 does not determine next page receive location. | 1       |
| 5    | NEXT_PAGE        | R/W | <ul><li>1 = next pages stored in register 8,</li><li>0 = next pages stored in register 5.</li></ul>                        | 1       |
| 4    | PAR_DET_FAIL     | R/W | 1 = link partner is 100Base-T4 capable<br>0 = link partner is not 100Base-T4 capable.                                      | 0       |
| 3    | LP_NEXT_PAGE_ABI | R/W | 1 = link partner is next page able<br>0 = link partner is not next page able.                                              | 0       |
| 2    | NEXT_PAGE_ABI    | R/W | 1 = local device is next page able,<br>0 = local device is not next page able.                                             | 1       |
| 1    | PAGE_REC         | R/W | 1 = new link code word has been received<br>0 = new link code word has not been received.                                  | 0       |
| 0    | LP_AN_ABI        | R/W | 1 = link partner is auto-negotiation able<br>0 = link partner is not auto-negotiation able.                                | 0       |

# **G\_ANNXP\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x0e

Register Description: External Auto-Negotiation Next Page Transmit Register

Table 594: G\_ANNXP\_EXT

| Bits | Name          | R/W | Description                                                                                                             | Default |
|------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                                        | 0       |
| 14   | RESERVED_1    | R/W | ignore on read.                                                                                                         | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                                              | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message                     | 0       |
| 11   | TOGGLE        | R/W | 1 = register 6.5 determines next page receive location, 0 = register 6.5 does not determine next page receive location. | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                                           | 0x1     |

# **G\_LPNXP\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x10

Register Description: External Link Partner next Page Ability Register

Table 595: G\_LPNXP\_EXT

| Bits | Name          | R/W | Description                                                                                         | Default |
|------|---------------|-----|-----------------------------------------------------------------------------------------------------|---------|
| 15   | NEXT_PAGE     | R/W | 1 = additional next pages will follow,<br>0 = sending last page.                                    | 0       |
| 14   | ACK           | R/W | 1 = acknowledge,<br>0 = no acknowledge.                                                             | 0       |
| 13   | MES_PAGE      | R/W | 1 = message page,<br>0 = unformatted page.                                                          | 1       |
| 12   | ACKNOWLEDGE_2 | R/W | 1 = will comply with message (not used during 1000Base-T next pages) 0 = cannot comply with message | 0       |
| 11   | TOGGLE        | R/W | 1 = sent 0 during previous Link Code Word 0 = sent 1 during previous Link Code Word.                | 1       |
| 10:0 | CODE_FIELD    | R/W | message code field or unformatted code field.                                                       | 0x0     |

# G\_B1000T\_CTL\_EXT

Register Address: SPI Page 0x88, SPI Offset 0x12

Register Description: External 1000Base-T Control Register

Table 596: G\_B1000T\_CTL\_EXT

| Bits  | Name                | R/W | Description                                                                                                          | Default |
|-------|---------------------|-----|----------------------------------------------------------------------------------------------------------------------|---------|
| 15:13 | TEST_MODE           | R/W | 1xx = Test Mode 4<br>011 = Test Mode 3<br>010 = Test Mode 2<br>001 = Test Mode 1<br>000 = Normal Operation.          | 0x0     |
| 12    | MAST_SLV_CONG_EN    | R/W | <ul><li>1 = enable Master/Slave manual config value,</li><li>0 = disable Master/Slave manual config value.</li></ul> | 0       |
| 11    | MAST_SLV_CONG_VALUE | R/W | 1 = configure PHY as Master when 9.12 is set 0 = configure PHY as Slave when 9.12 is set.                            | 0       |
| 10    | REPEATER_DTE        | R/W | 1 = Repeater/switch device port,<br>0 = DTE device port.                                                             | 0       |
| 9     | ADV_B1000T_FD       | R/W | 1 = Advertise 1000Base-T full duplex capable,<br>0 = Advertise not 1000Base-T full duplex<br>capable.                | 0       |
| 8     | ADV_B1000T_HD       | R/W | 1 = Advertise 1000Base-T half duplex capable,<br>0 = Advertise not 1000Base-T half duplex<br>capable.                | 0       |
| 7:0   | RESERVED            | R/W | write as 0, ignore on read.                                                                                          | 0x0     |

#### G\_B1000T\_STS\_EXT

Register Address: SPI Page 0x88, SPI Offset 0x14

Register Description: External 1000Base-T Status Register

Table 597: G\_B1000T\_STS\_EXT

| Bits | Name                | R/W | Description                                                                                                                                           | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | MAST_SLV_CONG_FAULT | R/W | 1 = Master/Slave configuration fault detected<br>0 = no Master/Slave configuration fault detected<br>(cleared by restart_an, an_complete or reg read) |         |
| 14   | MAST_SLV_CONG_STS   | R/W | <ul><li>1 = local PHY configured as Master,</li><li>0 = local PHY configured as Slave.</li></ul>                                                      | 0       |
| 13   | LOCAL_REC_STS       | R/W | <ul><li>1 = local receiver status OK,</li><li>0 = local receiver status not OK.</li></ul>                                                             | 0       |
| 12   | REMOTE_REC_STS      | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                                  | 0       |
| 11   | LP_B1000T_FD_CAP    | R/W | 1 = link partner is 1000Base-T full duplex capable, 0 = link partner is not 1000Base-T full duplex capable.                                           | 0       |
| 10   | LP_B1000T_HD_CAP    | R/W | 1 = link partner is 1000Base-T half duplex capable, 0 = link partner is not 1000Base-T half duplex capable.                                           | 0       |
| 9:8  | RESERVED            | R/W | ignore on read.                                                                                                                                       | 0x0     |
| 7:0  | IDLE_ERR_CNT        | R/W | Number of idle errors since last read.                                                                                                                | 0x0     |

### **G\_EXT\_STS\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x1e

Register Description: External Extended Status Register

Table 598: G\_EXT\_STS\_EXT

| Bits | Name          | R/W | Description                                                                    | Default |
|------|---------------|-----|--------------------------------------------------------------------------------|---------|
| 15   | B1000X_FD_CAP | R/W | 1 = 1000Base-X full duplex capable<br>0 = not 1000Base-X full duplex capable.  | 0       |
| 14   | B1000X_HD_CAP | R/W | 1 = 1000Base-X half duplex capable,<br>0 = not 1000Base-X half duplex capable. | 0       |
| 13   | B1000T_FD_CAP | R/W | 1 = 1000Base-T full duplex capable<br>0 = not 1000Base-T full duplex capable.  | 1       |
| 12   | B1000T_HD_CAP | R/W | 1 = 1000Base-T half duplex capable,<br>0 = not 1000Base-T half duplex capable. | 1       |
| 11:0 | RESERVED      | R/W | ignore on read.                                                                | 0x0     |

# **G\_PHY\_EXT\_CTL\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x20

Register Description: External PHY Extended Control Register

Table 599: G\_PHY\_EXT\_CTL\_EXT

| Bits | Name                  | R/W | Description                                                                                               | Default |
|------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------|---------|
| 15   | MAC_PHY_MODE          | R/W | 1 = 10B interface mode<br>0 = GMII mode.                                                                  | 0       |
| 14   | DIS_AUTO_MDI_CROS     | R/W | <ul><li>1 = automatic MDI crossover disabled,</li><li>0 = automatic MDI crossover enabled.</li></ul>      | 0       |
| 13   | TRANSMIT_DIS          | R/W | <ul><li>1 = force transmit output to high impedance,</li><li>0 = normal operation.</li></ul>              | 0       |
| 12   | INTERRUPT_DIS         | R/W | <ul><li>1 = interrupts disabled,</li><li>0 = interrupts enabled.</li></ul>                                | 1       |
| 11   | FORCE_INTERRUPT       | R/W | <ul><li>1 = force interrupt status to active,</li><li>0 = normal interrupt operation.</li></ul>           | 0       |
| 10   | BYPASS_ENCODE         | R/W | <ul><li>1 = bypass 4B5B encoder and decoder,</li><li>0 = normal operation.</li></ul>                      | 0       |
| 9    | BYPASS_SCRAMBLER      | R/W | <ul><li>1 = bypass scrambler and descrambler,</li><li>0 = normal operation.</li></ul>                     | 0       |
| 8    | BYPASS_NRZI_MLT3      | R/W | <ul><li>1 = bypass NRZI/MLT3 encoder and decoder,</li><li>0 = normal operation.</li></ul>                 | 0       |
| 7    | BYPASS_ALIGNMENT      | R/W | <ul><li>1 = bypass receive symbol alignment,</li><li>0 = normal operation.</li></ul>                      | 0       |
| 6    | RST_SCRAMBLER         | R/W | 1 = reset scrambler to all 1s state<br>0 = normal scrambler operation.                                    | 0       |
| 5    | EN_LED_TRAFFIC_MOD    | R/W | 1 = LED traffic mode enabled,<br>0 = LED traffic mode disabled.                                           | 0       |
| 4    | FORCE_LED_ON          | R/W | 1 = force all LEDs into ON state,<br>0 = normal LED operation.                                            | 0       |
| 3    | FORCE_LED_OFF         | R/W | 1 = force all LEDs into OFF state,<br>0 = normal LED operation.                                           | 0       |
| 2    | BLK_TXEN_MOD          | R/W | 1 = extend transmit IPGs to at least 4 nibbles in 100Base-TX mode, 0 = do not extend short transmit IPGs. | 0       |
| 1    | GMII_FIFO_MOD         | R/W | 0 = new synchronous mode,<br>1 = old asynchronous mode.                                                   | 0       |
| 0    | B1000T_PCS_TRANS_FIFO | R/W | 1 = High latency (jumbo packets),<br>0 = Low latency (low elasticity).                                    | 0       |

# **G\_PHY\_EXT\_STS\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x22

Register Description: External PHY Extended Status Register

Table 600: G\_PHY\_EXT\_STS\_EXT

| Bits | Name                 | R/W | Description                                                                                                                              | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | AN_PAGE_SEL_MISMATCH | R/W | 1 = link partner base page selector field mismatched advertised selector field since last read 0 = no mismatch detected since last read. | 0       |
| 14   | WIRESPEED_DOWNGRADE  | R/W | 1 = autoneg advertising downgraded<br>0 = autoneg advertised as shown in regs 04h &<br>09h.                                              | 0       |
| 13   | MDI_CROS_STATE       | R/W | 1 = MDIX,<br>0 = MDI.                                                                                                                    | 0       |
| 12   | INTERRUPT_STS        | R/W | 1 = unmasked interrupt currently active 0 = interrupts clear.                                                                            | 0       |
| 11   | REMOTE_REC_STS       | R/W | 1 = remote receiver status OK,<br>0 = remote receiver status not OK.                                                                     | 0       |
| 10   | LOCAL_REC_STS        | R/W | 1 = local receiver status OK,<br>0 = local receiver status not OK.                                                                       | 0       |
| 9    | LOCK                 | R/W | 1 = descrambler locked,<br>0 = descrambler unlocked.                                                                                     | 0       |
| 8    | LINK_STS             | R/W | 1 = link pass,<br>0 = link fail.                                                                                                         | 0       |
| 7    | CRC_ERR_DET          | R/W | 1 = CRC error detected since last read,<br>0 = no CRC error detected since last read.                                                    | 0       |
| 6    | CARR_ERR_DET         | R/W | 1 = carrier ext. error detected since last read,<br>0 = no carrier ext. error detected since last read.                                  | 0       |
| 5    | BAD_SSD_DET          | R/W | 1 = bad SSD error detected since last read,<br>0 = no bad SSD error detected since last read.                                            | 0       |
| 4    | BAD_ESD_DET          | R/W | 1 = bad ESD error detected since last read,<br>0 = no bad ESD error detected since last read.                                            | 0       |
| 3    | REC_ERR_DET          | R/W | 1 = receive coding error detected since last read,<br>0 = no receive error detected since last read.                                     | , 0     |
| 2    | TRMIT_ERR_DET        | R/W | 1 = transmit error code detected since last read,<br>0 = no transmit error detected since last read.                                     | 0       |
| 1    | LCK_ERR_DET          | R/W | 1 = lock error detected since last read,<br>0 = no lock error detected since last read.                                                  | 0       |
| 0    | MLT3_ERR_DET         | R/W | 1 = MLT3 code error detected since last read,<br>0 = no MLT3 error detected since last read.                                             | 0       |

# **G\_REC\_ERR\_CNT\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x24

Register Description: External Receive Error Counter

Table 601: G\_REC\_ERR\_CNT\_EXT

| Bits | Name        | R/W | Description                                                                                                                                                                    | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | REC_ERR_CNT | R/W | Number of non-collision packets with receive errors since last read. Freezes at FFFFh. (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) | 0x0     |

# **G\_FALSE\_CARR\_CNT\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x26

Register Description: External False Carrier Sense Counter

Table 602: G\_FALSE\_CARR\_CNT\_EXT

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                 | Default |
|------|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | SERDES_BER_CNT | R/W | Number of invalid code groups received while sync_status = 1 since last cleared. Cleared by writing expansion register 4D bit 15 = 1.                                                                                                                       | 0x0     |
| 7:0  | REC_ERR_CNT    | R/W | Number of false carrier sense events since last read.  Counts packets received with transmit error codes when TXERVIS bit in test register is set. Freezes at FFh.  (Counts SerDes errors when register 1ch shadow 11011 bit 9 = 1 otherwise copper errors) |         |

## **G\_REC\_NOTOK\_CNT\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x28

Register Description: External Local/Remote Receiver NOT\_OK Counters

Table 603: G\_REC\_NOTOK\_CNT\_EXT

| Bits | Name                 | R/W | Description                                                                        | Default |
|------|----------------------|-----|------------------------------------------------------------------------------------|---------|
| 15:8 | LOCAL_REC_NOTOK_CNT  | R/W | Since last read. Freezes at FFh.                                                   | 0x0     |
| 7:0  | REMOTE_REC_NOTOK_CNT | R/W | Number of times remote receiver status was not OK Since last read. Freezes at FFh. | 0x0     |

### **G\_DSP\_COEFFICIENT\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x2a

Register Description: External DSP Coefficient Read/Write Port Register

Table 604: G\_DSP\_COEFFICIENT\_EXT

| Bits | Name            | R/W | Description | Default |
|------|-----------------|-----|-------------|---------|
| 15:0 | DSP_COEFFICIENT | R/W |             | 0x0     |

#### G\_DSP\_COEFFICIENT\_ADDR\_EXT

Register Address: SPI Page 0x88, SPI Offset 0x2e

Register Description: External DSP Coefficient Address Register

Table 605: G\_DSP\_COEFFICIENT\_ADDR\_EXT

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                           | Default |
|-------|-----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15    | ALL_CHANNEL_CTL | R/W | When this bit is set, writes to per-channel control bits affect all channels, regardless of bits 14:13                                                                                                                                | 0       |
| 14:13 | CHANNEL_SEL     | R/W | Channel select for DSP coefficient read/writes and per-channel control/status register bits (marked by *):  11 = channel 3 10 = channel 2 01 = channel 1 00 = channel 0                                                               | 0x0     |
| 12    | ALL_FILTER_CTL  | R/W | When this bit is set, writes to per-filter control bits affect all filters in the specified channel, regardless of bits 11:8 (when bit 15 is also set, writes to DSP control bits affect all echo, next, and dfe filters in the chip) | 0       |

Table 605: G\_DSP\_COEFFICIENT\_ADDR\_EXT (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | FILTER_SEL | R/W | Select DSP filter for coefficient read/write:  1111 = EXPANSION REGISTERS  1110 = EXTERNAL SERDES REGISTERS  1101 = reserved  1100 = DCOFFSET  1011 = reserved  1010 = reserved  1001 = reserved  1000 = reserved  1011 = NEXT[3]  0110 = NEXT[2]  0101 = NEXT[1]  0100 = NEXT[1]  0100 = NEXT[0]  0011 = ECHO  0010 = DFE  0001 = FFE  0000 = misc. receiver registers (see bits 7:0)  note: NEXT[n] does not exist for channel n. If  NEXT[n] is selected for channel n, all NEXT  cancellers for that channel are selected when  writing control bits.  BIT 12 (CONTROL ALL FILTERS) MUST BE  ZERO IN ORDER TO SELECT MISC,  DCOFFSET, or FFE. | 0x0     |
| 7:0  | TAP_NUM    | R/W | Selects which tap is to be read/written within the selected filter (taps are numbered from 0 to n in chronological order (earliest to latest)) when filter select = 000 (misc. receiver regs): 0 = AGC A Register 1 = AGC B & IPRF Register 2 = MSE/Pair Status Register 3 = Soft Decision Register 4 = Phase Register 5 = WireMap/Skew & ECHO/NEXT & TX & ADC Register 6 -8 = reserved 9 = Frequency Register 10 = PLL Bandwidth & Path Metric Register 11 = PLL Phase Offset Registerto 31, 61:63                                                                                                                                               |         |

## **G\_AUX\_CTL\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x30

Register Description: External Auxiliary Control Register

Table 606: G\_AUX\_CTL\_EXT

| Bits | Name       | R/W | Description                                                                                                                                                        | Default |
|------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | SHADOW_REG | R/W | Shadow Registers:  001 => 10 BASE-T  010 => Power Control  011 => IP Phone  100 => Misc Test  101 => Misc Test 2  110 => Manual IP Phone seed  111 => Misc Control | 0x0     |

#### **G\_AUX\_STS\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x32

Register Description: External Auxiliary Status Register

Table 607: G\_AUX\_STS\_EXT

| Bits | Name    | R/W | Description | Default |
|------|---------|-----|-------------|---------|
| 15:0 | AUX_STS | R/W |             | 0x0     |

#### **G\_INTERRUPT\_STS\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x34

Register Description: External Interrupt Status Register

Table 608: G\_INTERRUPT\_STS\_EXT

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_STS | R/W |             | 0x0     |

### **G\_INTERRUPT\_MSK\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x36

Register Description: External Interrupt Mask Register

Table 609: G\_INTERRUPT\_MSK\_EXT

| Bits | Name          | R/W | Description | Default |
|------|---------------|-----|-------------|---------|
| 15:0 | INTERRUPT_MSK | R/W |             | 0x0     |

#### **G\_MISC\_SHADOW\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x38

Register Description: External Miscellaneous Shadow Registers

Table 610: G\_MISC\_SHADOW\_EXT

| Bits | Name          | R/W | Description                                                | Default |
|------|---------------|-----|------------------------------------------------------------|---------|
| 15:0 | INTERRUPT_MSK | R/W | 00000 => Cabletron LED modes                               | 0x0     |
|      |               |     | 00001 => DLL Control                                       |         |
|      |               |     | 00010 => Spare Control 1                                   |         |
|      |               |     | 00011 => Clock Aligner                                     |         |
|      |               |     | 00100 => Spare Control 2                                   |         |
|      |               |     | 00101 => Spare Control 3                                   |         |
|      |               |     | 00110 => TDR Control 1                                     |         |
|      |               |     | 00111 => TDR Control 2                                     |         |
|      |               |     | 01000 => Led Status                                        |         |
|      |               |     | 01001 => Led Control                                       |         |
|      |               |     | 01010 => Auto-Power Down                                   |         |
|      |               |     | 01011 => External Control 1<br>01100 => External Control 2 |         |
|      |               |     | 01101 => External Control 2<br>01101 => LED Selector 1     |         |
|      |               |     | 01110 => LED Selector 1                                    |         |
|      |               |     | 01111 => LED GEIO Control/Status                           |         |
|      |               |     | 10000 => CISCO Enhanced Links tat us Mode                  |         |
|      |               |     | Control                                                    |         |
|      |               |     | 10001 => SerDes 100-FX Status                              |         |
|      |               |     | 10010 => SerDes 100-FX Test                                |         |
|      |               |     | 10011 => SerDes 100-FX Control                             |         |
|      |               |     | 10100 => External SerDes Control                           |         |
|      |               |     | 10101 => SGMII Slave Control                               |         |
|      |               |     | 10110 => Misc 1000X Control 2                              |         |
|      |               |     | 10111 => Misc 1000X Control                                |         |
|      |               |     | 11000 => Auto-Detect SGMII/GBIC                            |         |
|      |               |     | 11001 => Test 1000X                                        |         |
|      |               |     | 11010 => Autoneg 1000X Debug                               |         |
|      |               |     | 11011 => Auxiliary 1000X Control                           |         |
|      |               |     | 11100 => Auxiliary 1000X Status                            |         |
|      |               |     | 11101 => Misc 1000X Status                                 |         |
|      |               |     | 11110 => Auto-Detect Medium                                |         |
|      |               |     | 11111 => Mode Control                                      |         |

#### **G\_MASTER\_SLAVE\_SEED\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x3a

Register Description: External Master/Slave Seed Register

Table 611: G\_MASTER\_SLAVE\_SEED\_EXT

| Bits | Name | R/W | Description                         | Default |
|------|------|-----|-------------------------------------|---------|
| 15:0 | SEED | R/W | Shadow Register:<br>1 => HCD Status | 0x0     |

#### **G\_TEST1\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x3c

Register Description: External Test Register 1

Table 612: G\_TEST1\_EXT

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W |             | 0x0     |

#### **G\_TEST2\_EXT**

Register Address: SPI Page 0x88, SPI Offset 0x3e

Register Description: External Test Register 2

Table 613: G\_TEST2\_EXT

| Bits | Name | R/W | Description | Default |
|------|------|-----|-------------|---------|
| 15:0 | TEST | R/W |             | 0x0     |

# Page 0x91: Traffic Remarking Registers

Table 614: Page 0x91: Traffic Remarking Registers

| Address | Bits | Register Name                            |
|---------|------|------------------------------------------|
| 0x00    | 31:0 | "TRREG_CTRL0" on page 328                |
| 0x04    | 31:0 | "TRREG_CTRL1" on page 329                |
| 0x08    | 31:0 | "TRREG_CTRL2" on page 330                |
| 0x10    | 63:0 | "PN_EGRESS_PKT_TC2PCP_MAP" on page 331   |
| 0x50    | 63:0 | "IMP_EGRESS_PKT_TC2PCP_MAP" on page 333  |
| 0x60    | 63:0 | "PN_EGRESS_PKT_TC2CPCP_MAP" on page 335  |
| 0xa0    | 63:0 | "IMP_EGRESS_PKT_TC2CPCP_MAP" on page 338 |

## TRREG\_CTRL0

Register Address: SPI Page 0x91, SPI Offset 0x00

Register Description: Traffic Remarking Control 0 Register

Table 615: TRREG\_CTRL0

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|-------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED_1 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x0     |
| 24:16 | PCP_RMK_EN | R/W | PCP Remark Enable A bitmap representing one bit per port. If a bit is set, the outer PCP of the corresponding port can be re-marked by hardware. This per-port configuration, along with the perflow SPCP_RMK_DISABLE or CPCP_RMK_DISABLE bit in CFP actions decides whether the PCP field in the packet is remarked. Bit[24]: Port 8 (IMP port) Bit[23]: Port 7 Bit[22]: Reserved Bit[21:16]: Port 5 - Port 0 Note:  1. When the SPCP_RMK_DISABLE and CPCP_RMK_DISABLE are set to 0 in CFP action, this bit will OR with S_PCP_RMK_EN or C_PCP_RMK_EN. This will be backward compatible with BCM53125 family. 2. When the SPCP_RMK_DISABLE or CPCP_RMK_DISABLE is set to 1 in CFP action, the PCP Remarking will also be disabled (no matter this bit is enabled or disabled) depends on the PCP field whether in the outmost tag. | 0x0     |
| 15:9  | RESERVED_0 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x0     |

Table 615: TRREG\_CTRL0 (Cont.)

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | CFI_RMK_EN | R/W | CFI/DEI Remark Enable A bitmap representing one bit per port. If a bit is set, the CFI (in C-Tag) or the DEI (in S-Tag) bit in the outer tag of the corresponding egress port can be re-marked by hardware. In a double-tagged packet the CFI bit in the inner tag is not modified. Bit[8]: Port 8 (IMP Port) Bit[7]: Port 7 Bit[6]: Reserved Bit[5:0]: Port 5 - Port 0 Note:  1. When DEI_RMK_DISABLE is set to 0 in CFP action, this bit will OR with DEI_RMK_EN. This will be backward compatible with BCM53125 family. 2. When DEI_RMK_DISABLE is set to 1 in CFP action, this bit will control whether the DEI/CFI is remarked or not. |         |

## TRREG\_CTRL1

Register Address: SPI Page 0x91, SPI Offset 0x04

Register Description: Traffic Remarking Control 1 Register

Table 616: TRREG\_CTRL1

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|-------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED_1 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x0     |
| 24:16 | DEI_RMK_EN | R/W | DEI Remark Enable in Egress Port Enable DEI marking of all S-tagged packets transmitted on the egress port. Bit[24]: Port 8 (IMP port) Bit[23]: Port 7 Bit[22]: Reserved Bit[21:16]: Port 5 - Port 0 Note:  1. When DEI_RMK_DISABLE is set to 0 in CFP action, this bit will OR with CFI_RMK_EN in DEI remarking of S-TAG. This will be backward compatible with BCM53125 family.  2. When DEI_RMK_DISABLE is set to 1 in CFP action, this bit will be disabled. |         |

April 19, 2017 • 53134-PR103

Table 616: TRREG\_CTRL1 (Cont.)

| Bits | Name              | R/W | Description                                                                                                                                                                                                                                                                                                                                           | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | PPPOE_DSCP_RMK_EN | R/W | DSCP remaking enable for IP within PPPoE Session Packet This configuration bit can be set by software to enable remarking of the DSCP field in a PPPOE packet.  1: Enable remarking of the DSCP field in PPPOE Session Stage version 1 and type 1 packets 0: Disable remarking of the DSCP field in PPPOE Session Stage version 1 and type 1 packets. | 0       |
| 14:9 | RESERVED_0        | R/W | Reserved                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| 8:0  | DSCP_RMK_EN       | R/W | DSCP Remark Enable in Egress Port Enable DSCP marking of IP packets transmitted on the egress port Bit[8]: Port 8 (IMP Port) Bit[7]: Port 7 Bit[6]: Reserved Bit[5:0]: Port 5 - Port 0                                                                                                                                                                | 0x1FF   |

## TRREG\_CTRL2

Register Address: SPI Page 0x91, SPI Offset 0x08

Register Description: Traffic Remarking Control 2 Register

Table 617: TRREG\_CTRL2

| Bits  | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Default |
|-------|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:25 | RESERVED_1   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| 24:16 | C_PCP_RMK_EN | R/W | C-Tag PCP Remark Enable in Egress Port Enable C-PCP remarking of all 802.1Q packets or the inner C-PCP remarking of double-tagged packets on the egress port. Bit[24]: Port 8 (IMP port) Bit[23]: Port 7 Bit[22]: Reserved Bit[21:16]: Port 5 - Port 0 Note:  1. When the CPCP_RMK_DISABLE is set to 0 in CFP action, this bit will OR with PCP_RMK_EN for the C-PCP remarking. This will be backward compatible with BCM53125 family. 2. When the CPCP_RMK_DISABLE is set to 1 in CFP action, the C-PCP Remarking will also be disabled (no matter this bit is enabled or disabled). |         |
| 15:9  | RESERVED_0   | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |

Table 617: TRREG\_CTRL2 (Cont.)

| Bits | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|------|--------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | S_PCP_RMK_EN | R/W | S-Tag PCP Remark Enable in Egress Port Enable S-PCP marking of all S-tagged packets transmitted on the egress port.  Bit[8]: Port 8 (IMP Port)  Bit[7]: Port 7  Bit[6]: Reserved  Bit[5:0]: Port 5 - Port 0  Note:  1. When the SPCP_RMK_DISABLE is set to 0 in CFP action, this bit will OR with PCP_RMK_EN. This will be backward compatible with BCM53125 family.  2. When the SPCP_RMK_DISABLE is set to 1 in CFP action, the S-PCP Remarking will also be disabled (no matter this bit is enabled or disabled). |         |

## PN\_EGRESS\_PKT\_TC2PCP\_MAP

Register Address: SPI Page 0x91, SPI Offset 0x10

Register Description: Port N, Egress TC to PCP mapping Register

Table 618: PN\_EGRESS\_PKT\_TC2PCP\_MAP

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:60 | PCP_FOR_RV1_TC7 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 59:56 | PCP_FOR_RV1_TC6 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 55:52 | PCP_FOR_RV1_TC5 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 51:48 | PCP_FOR_RV1_TC4 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |

Table 618: PN\_EGRESS\_PKT\_TC2PCP\_MAP (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 47:44 | PCP_FOR_RV1_TC3 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 43:40 | PCP_FOR_RV1_TC2 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 39:36 | PCP_FOR_RV1_TC1 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 35:32 | PCP_FOR_RV1_TC0 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 31:28 | PCP_FOR_RV0_TC7 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 27:24 | PCP_FOR_RV0_TC6 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 23:20 | PCP_FOR_RV0_TC5 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 19:16 | PCP_FOR_RV0_TC4 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |

Table 618: PN\_EGRESS\_PKT\_TC2PCP\_MAP (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | PCP_FOR_RV0_TC3 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 11:8  | PCP_FOR_RV0_TC2 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x2     |
| 7:4   | PCP_FOR_RV0_TC1 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 3:0   | PCP_FOR_RV0_TC0 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x0     |

### IMP\_EGRESS\_PKT\_TC2PCP\_MAP

Register Address: SPI Page 0x91, SPI Offset 0x50

Register Description: Port 8, Egress TC to PCP mapping Register

Table 619: IMP\_EGRESS\_PKT\_TC2PCP\_MAP

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63:60 | PCP_FOR_RV1_TC7 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0xF     |
| 59:56 | PCP_FOR_RV1_TC6 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0xE     |

Table 619: IMP\_EGRESS\_PKT\_TC2PCP\_MAP (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 55:52 | PCP_FOR_RV1_TC5 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 51:48 | PCP_FOR_RV1_TC4 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 47:44 | PCP_FOR_RV1_TC3 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 43:40 | PCP_FOR_RV1_TC2 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 39:36 | PCP_FOR_RV1_TC1 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 35:32 | PCP_FOR_RV1_TC0 | R/W | The {CFI,PCP} Field for {RV,TC} = {1,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 31:28 | PCP_FOR_RV0_TC7 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |
| 27:24 | PCP_FOR_RV0_TC6 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). |         |

Table 619: IMP\_EGRESS\_PKT\_TC2PCP\_MAP (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                      | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 23:20 | PCP_FOR_RV0_TC5 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x5     |
| 19:16 | PCP_FOR_RV0_TC4 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x4     |
| 15:12 | PCP_FOR_RV0_TC3 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x3     |
| 11:8  | PCP_FOR_RV0_TC2 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x2     |
| 7:4   | PCP_FOR_RV0_TC1 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x1     |
| 3:0   | PCP_FOR_RV0_TC0 | R/W | The {CFI,PCP} Field for {RV,TC} = {0,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 1 or (PCP_RMK_EN = 0 and S_PCP_RMK_EN = 1). | 0x0     |

## PN\_EGRESS\_PKT\_TC2CPCP\_MAP

Register Address: SPI Page 0x91, SPI Offset 0x60

Register Description: Port N, Egress TC to CPCP mapping Register

Table 620: PN\_EGRESS\_PKT\_TC2CPCP\_MAP

| Bits | Name        | R/W | Description | Default |
|------|-------------|-----|-------------|---------|
| 63   | RESERVED_15 | R/W | Reserved    | 0       |

Table 620: PN\_EGRESS\_PKT\_TC2CPCP\_MAP (Cont.)

| Bits  | Name             | R/W | Description                                                                                                                                                                                                         | Default |
|-------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 62:60 | CPCP_FOR_RV1_TC7 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x7     |
| 59    | RESERVED_14      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 58:56 | CPCP_FOR_RV1_TC6 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x6     |
| 55    | RESERVED_13      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 54:52 | CPCP_FOR_RV1_TC5 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x5     |
| 51    | RESERVED_12      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 50:48 | CPCP_FOR_RV1_TC4 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x4     |
| 47    | RESERVED_11      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 46:44 | CPCP_FOR_RV1_TC3 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x3     |
| 43    | RESERVED_10      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 42:40 | CPCP_FOR_RV1_TC2 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x2     |
| 39    | RESERVED_9       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 38:36 | CPCP_FOR_RV1_TC1 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x1     |
| 35    | RESERVED_8       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 34:32 | CPCP_FOR_RV1_TC0 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x0     |
| 31    | RESERVED 7       | R/W | Reserved                                                                                                                                                                                                            | 0       |

Table 620: PN\_EGRESS\_PKT\_TC2CPCP\_MAP (Cont.)

| Bits  | Name             | R/W | Description                                                                                                                                                                                                         | Default |
|-------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 30:28 | CPCP_FOR_RV0_TC7 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x7     |
| 27    | RESERVED_6       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 26:24 | CPCP_FOR_RV0_TC6 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x6     |
| 23    | RESERVED_5       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 22:20 | CPCP_FOR_RV0_TC5 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x5     |
| 19    | RESERVED_4       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 18:16 | CPCP_FOR_RV0_TC4 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x4     |
| 15    | RESERVED_3       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 14:12 | CPCP_FOR_RV0_TC3 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x3     |
| 11    | RESERVED_2       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 10:8  | CPCP_FOR_RV0_TC2 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This is field used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x2     |
| 7     | RESERVED_1       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 6:4   | CPCP_FOR_RV0_TC1 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x1     |
| 3     | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 2:0   | CPCP_FOR_RV0_TC0 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x0     |

## IMP\_EGRESS\_PKT\_TC2CPCP\_MAP

Register Address: SPI Page 0x91, SPI Offset 0xa0

Register Description: Port 8, Egress TC to CPCP mapping Register

Table 621: IMP\_EGRESS\_PKT\_TC2CPCP\_MAP

| Bits  | Name             | R/W | Description                                                                                                                                                                                                         | Default |
|-------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 63    | RESERVED_15      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 62:60 | CPCP_FOR_RV1_TC7 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x7     |
| 59    | RESERVED_14      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 58:56 | CPCP_FOR_RV1_TC6 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x6     |
| 55    | RESERVED_13      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 54:52 | CPCP_FOR_RV1_TC5 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x5     |
| 51    | RESERVED_12      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 50:48 | CPCP_FOR_RV1_TC4 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x4     |
| 47    | RESERVED_11      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 46:44 | CPCP_FOR_RV1_TC3 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x3     |
| 43    | RESERVED_10      | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 42:40 | CPCP_FOR_RV1_TC2 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x2     |
| 39    | RESERVED_9       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 38:36 | CPCP_FOR_RV1_TC1 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x1     |

Table 621: IMP\_EGRESS\_PKT\_TC2CPCP\_MAP (Cont.)

| Bits  | Name             | R/W | Description                                                                                                                                                                                                         | Default |
|-------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 35    | RESERVED_8       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 34:32 | CPCP_FOR_RV1_TC0 | R/W | The Customer Tag PCP Field for {RV,TC} = {1,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x0     |
| 31    | RESERVED_7       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 30:28 | CPCP_FOR_RV0_TC7 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,7}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x7     |
| 27    | RESERVED_6       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 26:24 | CPCP_FOR_RV0_TC6 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,6}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x6     |
| 23    | RESERVED_5       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 22:20 | CPCP_FOR_RV0_TC5 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,5}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x5     |
| 19    | RESERVED_4       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 18:16 | CPCP_FOR_RV0_TC4 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,4}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x4     |
| 15    | RESERVED_3       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 14:12 | CPCP_FOR_RV0_TC3 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,3}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x3     |
| 11    | RESERVED_2       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 10:8  | CPCP_FOR_RV0_TC2 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,2}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This is field used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x2     |
| 7     | RESERVED_1       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 6:4   | CPCP_FOR_RV0_TC1 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,1}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. | 0x1     |

Table 621: IMP\_EGRESS\_PKT\_TC2CPCP\_MAP (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                         | Default |
|------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3    | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                            | 0       |
| 2:0  | CPCP_FOR_RV0_TC0 | R/W | The Customer Tag PCP Field for {RV,TC} = {0,0}; where RV means the CFP rate violations. When the packet doesn't go through CFP lookup, the RV is zero. This field is used when PCP_RMK_EN = 0 and C_PCP_RMK_EN = 1. |         |

# Page 0x92: EEE Register

Table 622: Page 0x92: EEE Register

| Address | Bits | Register Name                        |  |
|---------|------|--------------------------------------|--|
| 0x00    | 15:0 | "EEE_EN_CTRL" on page 341            |  |
| 0x02    | 15:0 | "EEE_LPI_ASSERT" on page 342         |  |
| 0x04    | 15:0 | "EEE_LPI_INDICATE" on page 342       |  |
| 0x06    | 15:0 | "EEE_RX_IDLE_SYMBOL" on page 343     |  |
| 0x0c    | 31:0 | "EEE_PIPELINE_TIMER" on page 343     |  |
| 0x10    | 31:0 | "EEE_SLEEP_TIMER_G" on page 343      |  |
| 0x54    | 31:0 | "EEE_SLEEP_TIMER_H_IMP" on page 344  |  |
| 0x58    | 31:0 | "EEE_MIN_LP_TIMER_G" on page 344     |  |
| 0x78    | 31:0 | "EEE_MIN_LP_TIMER_G_IMP" on page 344 |  |
| 0x7c    | 31:0 | "EEE_MIN_LP_TIMER_H" on page 345     |  |
| 0x9c    | 31:0 | "EEE_MIN_LP_TIMER_H_IMP" on page 345 |  |
| 0xa0    | 15:0 | "EEE_WAKE_TIMER_G" on page 345       |  |
| 0xb0    | 15:0 | "EEE_WAKE_TIMER_G_IMP" on page 346   |  |
| 0xb2    | 15:0 | "EEE_WAKE_TIMER_H" on page 346       |  |
| 0xc2    | 15:0 | "EEE_WAKE_TIMER_H_IMP" on page 346   |  |
| 0xc4    | 15:0 | "EEE_GLB_CONG_TH" on page 346        |  |
| 0xc6    | 15:0 | "EEE_TXQ_CONG_TH" on page 347        |  |
| 0xd3    | 15:0 | "EEE_TXQ_CONG_TH6" on page 348       |  |
| 0xd5    | 15:0 | "EEE_TXQ_CONG_TH7" on page 348       |  |

## EEE\_EN\_CTRL

Register Address: SPI Page 0x92, SPI Offset 0x00

Register Description: EEE Enable Control Registers

Table 623: EEE\_EN\_CTRL

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 623: EEE\_EN\_CTRL (Cont.)

| Bits | Name   | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | EN_EEE | R/W | Enable/Disable EEE  9 bit field to enable/disable EEE.(bit 0-5 = port 0-port 5, bit 7 = port 7, bit 8 = IMP port)  1 = Enable EEE  0 = Disable EEE  The port 0 ~ port 4(internal PHY) default value read from en_eee strap pin on power-on. Can be overwritten subsequently.  For unmanaged switch, the default value is suggested to enable EEE on power-on(i.e. en_eee_pin = 1).  For managed switch, the default value is suggested to disable EEE on power-on(i.e. en_eee_pin = 0). to allow the processor to initial application and configuration, before EEE is enable. |         |

#### EEE\_LPI\_ASSERT

Register Address: SPI Page 0x92, SPI Offset 0x02

Register Description: EEE Low Power Assert Status Registers

Table 624: EEE\_LPI\_ASSERT

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                         | Default |
|------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                                                                                            | 0x0     |
| 8:0  | LPI_ASSERT | R/W | Low Power Assert input signal status.  9 bit indicating that a lowPowerAssert input signal that commands the transmit MAC to generate low-power idle symbols to the PHY once the transmit MAC is done transmitting any in-process packet.(bit 0-5 = port 0- port 5, bit 7 = port 7, bit 8 = IMP port)  1 = asserted  0 = deasserted |         |

#### EEE\_LPI\_INDICATE

Register Address: SPI Page 0x92, SPI Offset 0x04

Register Description: EEE Low Power Indicate Status Registers

Table 625: EEE\_LPI\_INDICATE

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 625: EEE\_LPI\_INDICATE (Cont.)

| Bits | Name         | R/W | Description                                                                                                                                                                                                                                                                      | Default |
|------|--------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | LPI_INDICATE | R/W | lowPowerIndicate output signal status.  9 bit indicating that a lowPowerIndicate output that is asserted whenever the receive PHY is sending low-power idle symbols to the receive MAC.(bit 0-5 = port 0- port 5, bit 7 = port 7, bit 8 = IMP port)  1 = asserted 0 = deasserted | 0x0     |

#### EEE\_RX\_IDLE\_SYMBOL

Register Address: SPI Page 0x92, SPI Offset 0x06

Register Description: EEE Receiving Idle Symbols Status Registers

Table 626: EEE\_RX\_IDLE\_SYMBOL

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                            | Default |
|------|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                                               | 0x0     |
| 8:0  | RX_IDLE_SYMBOL | R/W | receivingIdleSymbols output signal status.  9 bit indicating that a receivingIdleSymbols output that is asserted whenever the receive PHY is sending normal idle symbols to the receive MAC.(bit 0-5 = port 0- port 5, bit 7 = port 7, bit 8 = IMP port)  1 = asserted  0 = deasserted | 0x0     |

#### **EEE\_PIPELINE\_TIMER**

Register Address: SPI Page 0x92, SPI Offset 0x0c

Register Description: EEE Pipeline Delay Timer Registers

Table 627: EEE\_PIPELINE\_TIMER

| Bits | Name           | R/W | Description                                                                                                       | Default |
|------|----------------|-----|-------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | PIPELINE_TIMER | R/W | EEE pipeline delay timer load value. The unit is system clock rate (ex. If system clock = 100 MHz, unit = 10 ns). | 0x20    |

## EEE\_SLEEP\_TIMER\_G

Register Address: SPI Page 0x92, SPI Offset 0x10

Register Description: EEE Port N Sleep Delay Timer - 1G Registers

#### Table 628: EEE\_SLEEP\_TIMER\_G

| Bits | Name          | R/W | Description                                                         | Default |
|------|---------------|-----|---------------------------------------------------------------------|---------|
| 31:0 | SLEEP_TIMER_G | R/W | EEE sleep delay timer load value for 1G operation. The unit is 1us. | 0x190   |

#### EEE\_SLEEP\_TIMER\_H\_IMP

Register Address: SPI Page 0x92, SPI Offset 0x54

Register Description: EEE Port 8(IMP) Sleep Delay Timer - 100M Registers

Table 629: EEE\_SLEEP\_TIMER\_H\_IMP

| Bits | Name              | R/W | Description                                                              | Default |
|------|-------------------|-----|--------------------------------------------------------------------------|---------|
| 31:0 | SLEEP_TIMER_H_IMP | R/W | EEE sleep delay timer load value for 100M operation.<br>The unit is 1us. | 0xFA0   |

#### EEE\_MIN\_LP\_TIMER\_G

Register Address: SPI Page 0x92, SPI Offset 0x58

Register Description: EEE Port Minimum Low-Power Duration Timer - 1G Registers

Table 630: EEE\_MIN\_LP\_TIMER\_G

| Bits | Name           | R/W | Description                                                                              | Default |
|------|----------------|-----|------------------------------------------------------------------------------------------|---------|
| 31:0 | MIN_LP_TIMER_G | R/W | EEE minimum low-power duration delay timer load value for 1G operation. The unit is 1us. | 0x32    |

#### EEE MIN LP TIMER G IMP

Register Address: SPI Page 0x92, SPI Offset 0x78

Register Description: EEE Port 8(IMP) Minimum Low-Power Duration Timer Registers

Table 631: EEE\_MIN\_LP\_TIMER\_G\_IMP

| Bits | Name               | R/W | Description                                                                              | Default |
|------|--------------------|-----|------------------------------------------------------------------------------------------|---------|
| 31:0 | MIN_LP_TIMER_G_IMP | R/W | EEE minimum low-power duration delay timer load value for 1G operation. The unit is 1us. | 0x32    |

## EEE\_MIN\_LP\_TIMER\_H

Register Address: SPI Page 0x92, SPI Offset 0x7c

Register Description: EEE Port Minimum Low-Power Duration Timer - 100M Registers

Table 632: EEE\_MIN\_LP\_TIMER\_H

| Bits | Name           | R/W | Description                                                                                | Default |
|------|----------------|-----|--------------------------------------------------------------------------------------------|---------|
| 31:0 | MIN_LP_TIMER_H | R/W | EEE minimum low-power duration delay timer load value for 100M operation. The unit is 1us. | 0x1F4   |

#### EEE\_MIN\_LP\_TIMER\_H\_IMP

Register Address: SPI Page 0x92, SPI Offset 0x9c

Register Description: EEE Port 8(IMP) Minimum Low-Power Duration Timer - 100M Registers

Table 633: EEE\_MIN\_LP\_TIMER\_H\_IMP

| Bits | Name               | R/W | Description                                                                                | Default |
|------|--------------------|-----|--------------------------------------------------------------------------------------------|---------|
| 31:0 | MIN_LP_TIMER_H_IMP | R/W | EEE minimum low-power duration delay timer load value for 100M operation. The unit is 1us. | 0x1F4   |

#### **EEE\_WAKE\_TIMER\_G**

Register Address: SPI Page 0x92, SPI Offset 0xa0

Register Description: EEE Port N Wake Transition Timer - 1G Registers

Table 634: EEE\_WAKE\_TIMER\_G

| Bits | Name         | R/W | Description                                                                   | Default |
|------|--------------|-----|-------------------------------------------------------------------------------|---------|
| 15:0 | WAKE_TIMER_G | R/W | EEE wake transition delay timer load value for 1G operation. The unit is 1us. | 0x11    |

#### EEE\_WAKE\_TIMER\_G\_IMP

Register Address: SPI Page 0x92, SPI Offset 0xb0

Register Description: EEE Port 8(IMP) Wake Transition Timer - 1G Registers

#### Table 635: EEE\_WAKE\_TIMER\_G\_IMP

| Bits | Name             | R/W | Description                                                                   | Default |
|------|------------------|-----|-------------------------------------------------------------------------------|---------|
| 15:0 | WAKE_TIMER_G_IMP | R/W | EEE wake transition delay timer load value for 1G operation. The unit is 1us. | 0x11    |

#### EEE\_WAKE\_TIMER\_H

Register Address: SPI Page 0x92, SPI Offset 0xb2

Register Description: EEE Port N Wake Transition Timer - 100M Registers

#### Table 636: EEE\_WAKE\_TIMER\_H

| Bits | Name         | R/W | Description                                                                     | Default |
|------|--------------|-----|---------------------------------------------------------------------------------|---------|
| 15:0 | WAKE_TIMER_H | R/W | EEE wake transition delay timer load value for 100M operation. The unit is 1us. | 0x24    |

#### EEE\_WAKE\_TIMER\_H\_IMP

Register Address: SPI Page 0x92, SPI Offset 0xc2

Register Description: EEE Port 8(IMP) Wake Transition Timer - 100M Registers

#### Table 637: EEE WAKE TIMER H IMP

| Bits | Name             | R/W | Description                                                                     | Default |
|------|------------------|-----|---------------------------------------------------------------------------------|---------|
| 15:0 | WAKE_TIMER_H_IMP | R/W | EEE wake transition delay timer load value for 100M operation. The unit is 1us. | 0x24    |

#### EEE\_GLB\_CONG\_TH

Register Address: SPI Page 0x92, SPI Offset 0xc4

Register Description: EEE Global Congestion Threshold Registers

#### Table 638: EEE\_GLB\_CONG\_TH

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 15:11 | RESERVED | R/W | Reserved    | 0x0     |

Table 638: EEE\_GLB\_CONG\_TH (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 10:0 | GLB_CONG_TH | R/W | EEE Global packet buffer congestion threshold. If this threshold is set to zero, then EEE is effectively disabled, if this threshold is set equal to or greater than the number of cells implemented in the packet buffer, then protections against packet loss are disabled. The unit is "Buffer Cell Size": 256-byte cell. The initial value is selected by the HW strap pin: mmu_mem_sel. If (mmu_mem_sel = 0), then MMU is 128 KB size and the threshold is 0x100. If (mmu_mem_sel = 1), then MMU is 384 KB size and the threshold is 0x300. |         |

#### EEE\_TXQ\_CONG\_TH

Register Address: SPI Page 0x92, SPI Offset 0xc6

Register Description: EEE TXQ N Congestion Threshold Registers

Table 639: EEE\_TXQ\_CONG\_TH

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|-------|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:11 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| 10:0  | TXQ_CONG_TH | R/W | EEE TXQ packet buffer congestion threshold. If this threshold is set to zero, then EEE for queue N is effectively disabled, if this threshold is set equal to or greater than the number of cells implemented in the packet buffer, then protections against packet loss are disabled. The unit is "Buffer Cell Size": 256-byte cell. The initial value is selected by the HW strap pin: mmu_mem_sel. If (mmu_mem_sel = 0), then MMU is 128 KB size and the thresholds for each queue N are [0x01F,0x01F,0x01F,0x001,0x001,0x001]. If (mmu_mem_sel = 1), then MMU is 384 KB size and the thresholds for each queue N are [0x050,0x050,0x050,0x050,0x051]. |         |

#### EEE\_TXQ\_CONG\_TH6

Register Address: SPI Page 0x92, SPI Offset 0xd3

Register Description: EEE TXQ 6 Congestion Threshold Registers

Table 640: EEE\_TXQ\_CONG\_TH6

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:11 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:0  | TXQ_CONG_TH | R/W | If this threshold is set to zero, then EEE for queue 6 is effectively disabled, if this threshold is set equal to or greater than the number of cells implemented in the packet buffer, then protections against packet loss are disabled. The unit is "Buffer Cell Size": 256-byte cell. The inital value is selected by the HW strap pin: mmu_mem_sel. If (mmu_mem_sel = 0), then MMU is 64 KB size and the threshold is 0x001. If (mmu_mem_sel = 1), then MMU is 384 KB size and the threshold is 0x001. |         |

#### EEE\_TXQ\_CONG\_TH7

Register Address: SPI Page 0x92, SPI Offset 0xd5

Register Description: EEE TXQ 7 Congestion Threshold Registers

Table 641: EEE\_TXQ\_CONG\_TH7

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:11 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 10:0  | TXQ_CONG_TH | R/W | If this threshold is set to zero, then EEE for queue 7 is effectively disabled, if this threshold is set equal to or greater than the number of cells implemented in the packet buffer, then protections against packet loss are disabled. The unit is "Buffer Cell Size": 256-byte cell. The inital value is selected by the HW strap pin: mmu_mem_sel. If (mmu_mem_sel = 0), then MMU is 64 KB size and the threshold is 0x001. If (mmu_mem_sel = 1), then MMU is 384 KB size and the threshold is 0x001. |         |

# Page 0x93: 1588 Control Register

Table 642: Page 0x93: 1588 Control Register

| Address | Bits | Register Name                          |
|---------|------|----------------------------------------|
| 0x00    | 15:0 | "PORT_ENABLE" on page 351              |
| 0x02    | 15:0 | "TX_MODE_PORT" on page 351             |
| 0x10    | 15:0 | "TX_MODE_PORT_IMP" on page 352         |
| 0x12    | 15:0 | "RX_MODE_PORT" on page 353             |
| 0x20    | 15:0 | "RX_MODE_PORT_IMP" on page 353         |
| 0x22    | 15:0 | "TX_TS_CAP" on page 353                |
| 0x24    | 15:0 | "RX_TS_CAP" on page 354                |
| 0x28    | 15:0 | "RX_PORT_0_LINK_DELAY_LSB" on page 354 |
| 0x2a    | 15:0 | "RX_PORT_0_LINK_DELAY_MSB" on page 355 |
| 0x2c    | 15:0 | "RX_PORT_1_LINK_DELAY_LSB" on page 355 |
| 0x2e    | 15:0 | "RX_PORT_1_LINK_DELAY_MSB" on page 355 |
| 0x30    | 15:0 | "RX_PORT_2_LINK_DELAY_LSB" on page 356 |
| 0x32    | 15:0 | "RX_PORT_2_LINK_DELAY_MSB" on page 356 |
| 0x34    | 15:0 | "RX_PORT_3_LINK_DELAY_LSB" on page 356 |
| 0x36    | 15:0 | "RX_PORT_3_LINK_DELAY_MSB" on page 357 |
| 0x38    | 15:0 | "RX_PORT_4_LINK_DELAY_LSB" on page 357 |
| 0x3a    | 15:0 | "RX_PORT_4_LINK_DELAY_MSB" on page 357 |
| 0x3c    | 15:0 | "RX_PORT_5_LINK_DELAY_LSB" on page 358 |
| 0x3e    | 15:0 | "RX_PORT_5_LINK_DELAY_MSB" on page 358 |
| 0x44    | 15:0 | "RX_PORT_8_LINK_DELAY_LSB" on page 358 |
| 0x46    | 15:0 | "RX_PORT_8_LINK_DELAY_MSB" on page 359 |
| 0x48    | 15:0 | "RX_PORT_0_TS_OFFSET_LSB" on page 359  |
| 0x4a    | 15:0 | "RX_PORT_0_TS_OFFSET_MSB" on page 359  |
| 0x4c    | 15:0 | "RX_PORT_1_TS_OFFSET_LSB" on page 360  |
| 0x4e    | 15:0 | "RX_PORT_1_TS_OFFSET_MSB" on page 360  |
| 0x50    | 15:0 | "RX_PORT_2_TS_OFFSET_LSB" on page 361  |
| 0x52    | 15:0 | "RX_PORT_2_TS_OFFSET_MSB" on page 361  |
| 0x54    | 15:0 | "RX_PORT_3_TS_OFFSET_LSB" on page 362  |
| 0x56    | 15:0 | "RX_PORT_3_TS_OFFSET_MSB" on page 362  |
| 0x58    | 15:0 | "RX_PORT_4_TS_OFFSET_LSB" on page 363  |
| 0x5a    | 15:0 | "RX_PORT_4_TS_OFFSET_MSB" on page 363  |
| 0x5c    | 15:0 | "RX_PORT_5_TS_OFFSET_LSB" on page 364  |
| 0x5e    | 15:0 | "RX_PORT_5_TS_OFFSET_MSB" on page 364  |
| 0x64    | 15:0 | "RX_PORT_8_TS_OFFSET_LSB" on page 365  |
| 0x66    | 15:0 | "RX_PORT_8_TS_OFFSET_MSB" on page 365  |
| 0x68    | 15:0 | "TX_PORT_0_TS_OFFSET_LSB" on page 366  |

Table 642: Page 0x93: 1588 Control Register (Cont.)

| Address | Bits | Register Name                         |
|---------|------|---------------------------------------|
| 0x6a    | 15:0 | "TX_PORT_0_TS_OFFSET_MSB" on page 366 |
| 0x6c    | 15:0 | "TX_PORT_1_TS_OFFSET_LSB" on page 367 |
| 0x6e    | 15:0 | "TX_PORT_1_TS_OFFSET_MSB" on page 368 |
| 0x70    | 15:0 | "TX_PORT_2_TS_OFFSET_LSB" on page 369 |
| 0x72    | 15:0 | "TX_PORT_2_TS_OFFSET_MSB" on page 369 |
| 0x74    | 15:0 | "TX_PORT_3_TS_OFFSET_LSB" on page 370 |
| 0x76    | 15:0 | "TX_PORT_3_TS_OFFSET_MSB" on page 370 |
| 0x78    | 15:0 | "TX_PORT_4_TS_OFFSET_LSB" on page 371 |
| 0x7a    | 15:0 | "TX_PORT_4_TS_OFFSET_MSB" on page 371 |
| 0x7c    | 15:0 | "TX_PORT_5_TS_OFFSET_LSB" on page 372 |
| 0x7e    | 15:0 | "TX_PORT_5_TS_OFFSET_MSB" on page 373 |
| 0x84    | 15:0 | "TX_PORT_8_TS_OFFSET_LSB" on page 374 |
| 0x86    | 15:0 | "TX_PORT_8_TS_OFFSET_MSB" on page 374 |
| 0x88    | 15:0 | "TIME_CODE_N" on page 375             |
| 0xa2    | 15:0 | "RX_CTL" on page 375                  |
| 0xa4    | 15:0 | "RX_TX_CTL" on page 376               |
| 0xa6    | 15:0 | "VLAN_ITPID" on page 376              |
| 0xac    | 15:0 | "NSE_DPLL_1" on page 377              |
| 0xae    | 15:0 | "NSE_DPLL_2_N" on page 377            |
| 0xb4    | 15:0 | "NSE_DPLL_3_N" on page 377            |
| 0xb8    | 15:0 | "NSE_DPLL_4" on page 378              |
| 0xba    | 15:0 | "NSE_DPLL_5" on page 378              |
| 0xbc    | 15:0 | "NSE_DPLL_6" on page 378              |
| 0xbe    | 15:0 | "NSE_DPLL_7_N" on page 379            |
| 0xc6    | 15:0 | "NSE_NCO_1_N" on page 379             |
| 0xca    | 15:0 | "NSE_NCO_2_N" on page 379             |
| 0xd0    | 15:0 | "NSE_NCO_3_0" on page 380             |
| 0xd2    | 15:0 | "NSE_NCO_3_1" on page 380             |
| 0xd4    | 15:0 | "NSE_NCO_3_2" on page 380             |
| 0xd6    | 15:0 | "NSE_NCO_4" on page 381               |
| 0xd8    | 15:0 | "NSE_NCO_5_0" on page 381             |
| 0xda    | 15:0 | "NSE_NCO_5_1" on page 381             |
| 0xdc    | 15:0 | "NSE_NCO_5_2" on page 382             |
| 0xde    | 15:0 | "NSE_NCO_6" on page 382               |
| 0xe0    | 15:0 | "NSE_NCO_7_0" on page 383             |
| 0xe2    | 15:0 | "NSE_NCO_7_1" on page 384             |
| 0xe4    | 15:0 | "TX_COUNTER" on page 384              |
| 0xe6    | 15:0 | "RX_COUNTER" on page 384              |

### PORT\_ENABLE

Register Address: SPI Page 0x93, SPI Offset 0x00

Register Description: Port Enable Control Registers

Table 643: PORT\_ENABLE

| Bits | Name            | R/W | Description                                                                                                                                                                                                                | Default |
|------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RX_PORT_1588_EN | R/W | Enables the 1588 RX slice. Bit 15 enable RX port 8 Bit 14 enable RX port 7 Bit 13 enable RX port 5 Bit 12 enable RX port 4 Bit 11 enable RX port 3 Bit 10 enable RX port 2 Bit 9 enable RX port 1 Bit 8 enable RX port 0   | 0x0     |
| 7:0  | TX_PORT_1588_EN | R/W | Enables the 1588 TX slice.  Bit 7 enable TX port 8  Bit 6 enable TX port 7  Bit 5 enable TX port 5  Bit 4 enable TX port 4  Bit 3 enable TX port 3  Bit 2 enable TX port 2  Bit 1 enable TX port 1  Bit 0 enable TX port 0 | 0x0     |

### TX\_MODE\_PORT

Register Address: SPI Page 0x93, SPI Offset 0x02

Register Description: Port N TX Event Message Mode1 Selection Registers

Table 644: TX\_MODE\_PORT

| Bits | Name        | R/W | Description                            | Default |
|------|-------------|-----|----------------------------------------|---------|
| 15:8 | RESERVED    | R/W | Reserved                               | 0x0     |
| 7:6  | TX_MODE1_M3 | R/W | TX Port mode selection event message 3 | 0x0     |
| 5:4  | TX_MODE1_M2 | R/W | TX Port mode selection event message 2 | 0x0     |
| 3:2  | TX_MODE1_M1 | R/W | TX Port mode selection event message 1 | 0x0     |

Table 644: TX\_MODE\_PORT (Cont.)

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1:0  | TX_MODE1_M0 | R/W | TX Port mode selection event message 0 Example: {bit1, bit0} 2'b00: event 0 message - NA 2'b01: event 0 message - update correction field 2'b10: event 0 message - replace correction field and origin timestamp field, original timestamp would be replaced by 80bits original time code registers at page 0x93, offset 0x88-0x91. 2'b11: event 0 message - replace origin timestamp field by 80bits local updated time code. |         |

## TX\_MODE\_PORT\_IMP

Register Address: SPI Page 0x93, SPI Offset 0x10

Register Description: Port 8 TX Event Message Mode1 Selection Registers

Table 645: TX\_MODE\_PORT\_IMP

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| 7:6  | TX_MODE1_M3 | R/W | TX Port mode selection event message 3                                                                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 5:4  | TX_MODE1_M2 | R/W | TX Port mode selection event message 2                                                                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 3:2  | TX_MODE1_M1 | R/W | TX Port mode selection event message 1                                                                                                                                                                                                                                                                                                                                                                                      | 0x0     |
| 1:0  | TX_MODE1_M0 | R/W | TX Port mode selection event message 0 Example: {bit1, bit0} 2'b00: event 0 message - NA 2'b01: event 0 message - update correction fie 2'b10: event 0 message - replace correction fiel and origin timestamp field, original timestamp would be replaced by 80bits original time code registers at page 0x93, offset 0x88-0x91. 2'b11: event 0 message - replace origin timestamp field by 80bits local updated time code. | d       |

#### RX\_MODE\_PORT

Register Address: SPI Page 0x93, SPI Offset 0x12

Register Description: Port N RX Event Message Mode1 Selection Registers

Table 646: RX\_MODE\_PORT

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                           | Default  |
|------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 15:8 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                              | 0x0      |
| 7:6  | RX_MODE1_M3 | R/W | RX Port mode selection event message 3                                                                                                                                                                                                                                                | 0x0      |
| 5:4  | RX_MODE1_M2 | R/W | RX Port mode selection event message 2                                                                                                                                                                                                                                                | 0x0      |
| 3:2  | RX_MODE1_M1 | R/W | RX Port mode selection event message 1                                                                                                                                                                                                                                                | 0x0      |
| 1:0  | RX_MODE1_M0 | R/W | RX Port mode selection event message 0 Example: {bit1, bit0} 2'b00: event 0 message - NA 2'b01: event 0 message - update correction field 2'b10: event 0 message - insert timestamp 2'b11: event 0 message - insert internal IEEE time code[63:0] or "previous frame sync time stamp" | 0x0<br>d |

#### RX\_MODE\_PORT\_IMP

Register Address: SPI Page 0x93, SPI Offset 0x20

Register Description: Port 8 RX Event Message Mode1 Selection Registers

Table 647: RX\_MODE\_PORT\_IMP

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                                           | Default  |
|------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 15:8 | RESERVED    | R/W | Reserved                                                                                                                                                                                                                                                                              | 0x0      |
| 7:6  | RX_MODE1_M3 | R/W | RX Port mode selection event message 3                                                                                                                                                                                                                                                | 0x0      |
| 5:4  | RX_MODE1_M2 | R/W | RX Port mode selection event message 2                                                                                                                                                                                                                                                | 0x0      |
| 3:2  | RX_MODE1_M1 | R/W | RX Port mode selection event message 1                                                                                                                                                                                                                                                | 0x0      |
| 1:0  | RX_MODE1_M0 | R/W | RX Port mode selection event message 0 Example: {bit1, bit0} 2'b00: event 0 message - NA 2'b01: event 0 message - update correction field 2'b10: event 0 message - insert timestamp 2'b11: event 0 message - insert internal IEEE time code[63:0] or "previous frame sync time stamp" | 0x0<br>b |

#### TX\_TS\_CAP

Register Address: SPI Page 0x93, SPI Offset 0x22

Register Description: TX SOP Timestamp Capture Enable Registers

Table 648: TX\_TS\_CAP

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                     | Default |
|------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | TX_CS_DIS | R/W | Reserved                                                                                                                                                                                                                                                        | 0x0     |
| 7:0  | TX_TS_CAP | R/W | Individual bits enable the timestamp capture of the appropriate TX port bit 7 enable TX port 8 bit 6 enable TX port 7 bit 5 enable TX port 5 bit 4 enable TX port 4 bit 3 enable TX port 3 bit 2 enable TX port 2 bit 1 enable TX port 1 bit 0 enable TX port 0 | 0x0     |

## RX\_TS\_CAP

Register Address: SPI Page 0x93, SPI Offset 0x24

Register Description: RX SOP Timestamp Capture Enable Registers

Table 649: RX\_TS\_CAP

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                     | Default |
|------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RX_CS_DIS | R/W | Reserved                                                                                                                                                                                                                                                        | 0x0     |
| 7:0  | RX_TS_CAP | R/W | Individual bits enable the timestamp capture of the appropriate RX port bit 7 enable RX port 8 bit 6 enable RX port 7 bit 5 enable RX port 5 bit 4 enable RX port 4 bit 3 enable RX port 3 bit 2 enable RX port 2 bit 1 enable RX port 1 bit 0 enable RX port 0 | 0x0     |

## RX\_PORT\_0\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x28

Register Description: Port 0 RX PORT Link delay LSB Registers

Table 650: RX\_PORT\_0\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

## RX\_PORT\_0\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x2a

Register Description: Port 0 RX PORT Link delay MSB Registers

Table 651: RX\_PORT\_0\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} | . 0x0   |

#### RX\_PORT\_1\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x2c

Register Description: Port 1 RX PORT Link delay LSB Registers

Table 652: RX\_PORT\_1\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

#### RX\_PORT\_1\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x2e

Register Description: Port 1 RX PORT Link delay MSB Registers

Table 653: RX\_PORT\_1\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} |         |

#### RX\_PORT\_2\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x30

Register Description: Port 2 RX PORT Link delay LSB Registers

Table 654: RX\_PORT\_2\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

#### RX\_PORT\_2\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x32

Register Description: Port 2 RX PORT Link delay MSB Registers

Table 655: RX\_PORT\_2\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                               | Default |
|------|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed ns The final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} | . 0x0   |

#### RX\_PORT\_3\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x34

Register Description: Port 3 RX PORT Link delay LSB Registers

Table 656: RX\_PORT\_3\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} |         |

#### RX\_PORT\_3\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x36

Register Description: Port 3 RX PORT Link delay MSB Registers

Table 657: RX\_PORT\_3\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} | . 0x0   |

#### RX\_PORT\_4\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x38

Register Description: Port 4 RX PORT Link delay LSB Registers

Table 658: RX\_PORT\_4\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

#### RX\_PORT\_4\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x3a

Register Description: Port 4 RX PORT Link delay MSB Registers

Table 659: RX\_PORT\_4\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} | . 0x0   |

#### RX\_PORT\_5\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x3c

Register Description: Port 5 RX PORT Link delay LSB Registers

Table 660: RX\_PORT\_5\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

#### RX\_PORT\_5\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x3e

Register Description: Port 5 RX PORT Link delay MSB Registers

Table 661: RX\_PORT\_5\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                               | Default |
|------|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed ns The final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} | . 0x0   |

#### RX\_PORT\_8\_LINK\_DELAY\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x44

Register Description: Port 8 RX PORT Link delay LSB Registers

Table 662: RX\_PORT\_8\_LINK\_DELAY\_LSB

| Bits | Name              | R/W | Description                                                                                                                | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_LSB | R/W | Port RX link delay register, the unit is signed not the final port RX link delay = {RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_LSB} |         |

## RX\_PORT\_8\_LINK\_DELAY\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x46

Register Description: Port 8 RX PORT Link delay MSB Registers

Table 663: RX\_PORT\_8\_LINK\_DELAY\_MSB

| Bits | Name              | R/W | Description                                                                                                                         | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | RX_LINK_DELAY_MSB | R/W | Port RX link delay register, the unit is signed ns<br>The final port RX link delay =<br>{RX0_LINK_DELAY_MSB,RX0_LINK_DELAY_<br>LSB} | . 0x0   |

#### RX\_PORT\_0\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x48

Register Description: Port 0 RX Timestamp Offset LSB Registers

Table 664: RX\_PORT\_0\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_0\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x4a

Register Description: Port 0 RX Timestamp Offset MSB Registers

Table 665: RX PORT 0 TS OFFSET MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 665: RX\_PORT\_0\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

### RX\_PORT\_1\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x4c

Register Description: Port 1 RX Timestamp Offset LSB Registers

Table 666: RX\_PORT\_1\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

### RX\_PORT\_1\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x4e

Register Description: Port 1 RX Timestamp Offset MSB Registers

Table 667: RX\_PORT\_1\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 667: RX\_PORT\_1\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## RX\_PORT\_2\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x50

Register Description: Port 2 RX Timestamp Offset LSB Registers

Table 668: RX\_PORT\_2\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_2\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x52

Register Description: Port 2 RX Timestamp Offset MSB Registers

Table 669: RX\_PORT\_2\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 669: RX\_PORT\_2\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## RX\_PORT\_3\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x54

Register Description: Port 3 RX Timestamp Offset LSB Registers

Table 670: RX\_PORT\_3\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_3\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x56

Register Description: Port 3 RX Timestamp Offset MSB Registers

Table 671: RX\_PORT\_3\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 671: RX\_PORT\_3\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## RX\_PORT\_4\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x58

Register Description: Port 4 RX Timestamp Offset LSB Registers

Table 672: RX\_PORT\_4\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_4\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x5a

Register Description: Port 4 RX Timestamp Offset MSB Registers

Table 673: RX\_PORT\_4\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 673: RX\_PORT\_4\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## RX\_PORT\_5\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x5c

Register Description: Port 5 RX Timestamp Offset LSB Registers

Table 674: RX\_PORT\_5\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_5\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x5e

Register Description: Port 5 RX Timestamp Offset MSB Registers

Table 675: RX\_PORT\_5\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 675: RX\_PORT\_5\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## RX\_PORT\_8\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x64

Register Description: Port 8 RX Timestamp Offset LSB Registers

Table 676: RX\_PORT\_8\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_RX_LSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB} | 0x0     |

## RX\_PORT\_8\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x66

Register Description: Port 8 RX Timestamp Offset MSB Registers

Table 677: RX\_PORT\_8\_TS\_OFFSET\_MSB

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_1 | R/W | Reserved    | 0x0     |

Table 677: RX\_PORT\_8\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port TX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | RESERVED_0       | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 3:0  | TS_OFFSET_RX_MSB | R/W | Port RX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port RX timestamp = NCO timestamp + {TS_OFFSET_RX_MSB, TS_OFFSET_RX_LSB}                                  | 0x0     |

## TX\_PORT\_0\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x68

Register Description: Port 0 TX Timestamp Offset LSB Registers

Table 678: TX\_PORT\_0\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

## TX\_PORT\_0\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x6a

Register Description: Port 0 TX Timestamp Offset MSB Registers

Table 679: TX\_PORT\_0\_TS\_OFFSET\_MSB

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 15:12 | RESERVED | R/W | Reserved    | 0x0     |

Table 679: TX\_PORT\_0\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | TS_LD            | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |
| 3:0  | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB}                                  | 0x0     |

## TX\_PORT\_1\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x6c

Register Description: Port 1 TX Timestamp Offset LSB Registers

Table 680: TX\_PORT\_1\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

## TX\_PORT\_1\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x6e

Register Description: Port 1 TX Timestamp Offset MSB Registers

Table 681: TX\_PORT\_1\_TS\_OFFSET\_MSB

| Bits  | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|-------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 11:8  | TS_CAP           | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4   | TS_LD            | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |
| 3:0   | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB}                                  | 0x0     |

## TX\_PORT\_2\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x70

Register Description: Port 2 TX Timestamp Offset LSB Registers

Table 682: TX\_PORT\_2\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

## TX\_PORT\_2\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x72

Register Description: Port 2 TX Timestamp Offset MSB Registers

Table 683: TX\_PORT\_2\_TS\_OFFSET\_MSB

| Bits  | Name     | R/W | Description                                                                                                                                                                                                                                                           | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 11:8  | TS_CAP   | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4   | TS_LD    | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |

Table 683: TX\_PORT\_2\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3:0  | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

### TX\_PORT\_3\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x74

Register Description: Port 3 TX Timestamp Offset LSB Registers

Table 684: TX\_PORT\_3\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

### TX\_PORT\_3\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x76

Register Description: Port 3 TX Timestamp Offset MSB Registers

Table 685: TX\_PORT\_3\_TS\_OFFSET\_MSB

| Bits  | Name     | R/W | Description                                                                                                                                                                                                                                                           | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 11:8  | TS_CAP   | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |

Table 685: TX\_PORT\_3\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:4  | TS_LD            | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |
| 3:0  | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB}                                  | 0x0     |

### TX\_PORT\_4\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x78

Register Description: Port 4 TX Timestamp Offset LSB Registers

Table 686: TX\_PORT\_4\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

#### TX\_PORT\_4\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x7a

Register Description: Port 4 TX Timestamp Offset MSB Registers

Table 687: TX\_PORT\_4\_TS\_OFFSET\_MSB

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 15:12 | RESERVED | R/W | Reserved    | 0x0     |

Table 687: TX\_PORT\_4\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | TS_CAP           | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4  | TS_LD            | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |
| 3:0  | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB}                                  | 0x0     |

## TX\_PORT\_5\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x7c

Register Description: Port 5 TX Timestamp Offset LSB Registers

Table 688: TX\_PORT\_5\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

## TX\_PORT\_5\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x7e

Register Description: Port 5 TX Timestamp Offset MSB Registers

Table 689: TX\_PORT\_5\_TS\_OFFSET\_MSB

| Bits  | Name             | R/W | Description                                                                                                                                                                                                                                                           | Default |
|-------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 11:8  | TS_CAP           | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4   | TS_LD            | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |
| 3:0   | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB}                                  | 0x0     |

## TX\_PORT\_8\_TS\_OFFSET\_LSB

Register Address: SPI Page 0x93, SPI Offset 0x84

Register Description: Port 8 TX Timestamp Offset LSB Registers

Table 690: TX\_PORT\_8\_TS\_OFFSET\_LSB

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TS_OFFSET_TX_LSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

## TX\_PORT\_8\_TS\_OFFSET\_MSB

Register Address: SPI Page 0x93, SPI Offset 0x86

Register Description: Port 8 TX Timestamp Offset MSB Registers

Table 691: TX\_PORT\_8\_TS\_OFFSET\_MSB

| Bits  | Name     | R/W | Description                                                                                                                                                                                                                                                           | Default |
|-------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED | R/W | Reserved                                                                                                                                                                                                                                                              | 0x0     |
| 11:8  | TS_CAP   | R/W | TS_CAP Port RX timestamp event message capture. bit[11] Normal mode event message 3 capture TS enable bit[10] Normal mode event message 2 capture TS enable bit[9] Normal mode event message 1 capture TS enable bit[8] Normal mode event message 0 capture TS enable |         |
| 7:4   | TS_LD    | R/W | TS_LD Port RX timestamp event message link delay. bit[7] Normal mode event message 3 Link Delay enable bit[6] Normal mode event message 2 Link Delay enable bit[5] Normal mode event message 1 Link Delay enable bit[4] Normal mode event message 0 Link Delay enable |         |

Table 691: TX\_PORT\_8\_TS\_OFFSET\_MSB (Cont.)

| Bits | Name             | R/W | Description                                                                                                                                                                                                                          | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3:0  | TS_OFFSET_TX_MSB | R/W | Port TX timestamp offset register, the unit is signed ns. This register compensates the delay of analog front end or MACSEC and EEE buffer delay. The final port TX timestamp = NCO timestamp + {TS_OFFSET_TX_MSB, TS_OFFSET_TX_LSB} | 0x0     |

### TIME\_CODE\_N

Register Address: SPI Page 0x93, SPI Offset 0x88

Register Description: Original Time Code N Registers

Table 692: TIME\_CODE\_N

| Bits | Name        | R/W | Description                                                                                                                                                                        | Default |
|------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TIME_CODE_N | R/W | Original time code value that will be used in egress port for sync, delay_req and Pdelay_req message.  TIME_CODE={TIME_CODE_4, TIME_CODE_3, TIME_CODE_2, TIME_CODE_1, TIME_CODE_0} | 0x0     |

#### RX\_CTL

Register Address: SPI Page 0x93, SPI Offset 0xa2

Register Description: Receive Control Registers

Table 693: RX\_CTL

| Bits | Name                  | R/W | Description                                                                                                     | Default |
|------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RESERVED              | R/W | Reserved                                                                                                        | 0x0     |
| 7    | RX_AS_DA_EN           | R/W | Enables the 802.1as MAC DA check when 1588 detection in receiving side. 48'h0180_c200_000e                      | 0       |
| 6    | RX_L2_DA_EN           | R/W | Enables the Layer2 MAC DA check when 1588 detection in receiving side. 48'h011b_1900_0000 or 48'h0180_c200_000e | 0       |
| 5    | RX_L4_IP_ADDRESS_EN   | R/W | Enables the Layer4 IP address check when 1588 detection in receiving side.                                      | 0       |
| 4    | RX_L4_IPV6_ADDRESS_EN | R/W | Enables the Layer4 IP address check when 1588 detection in receiving side.                                      | 0       |
| 3    | RX_AS_EN              | R/W | Enables the 802.1as packet detection in receiving side.                                                         | 1       |

Table 693: RX\_CTL (Cont.)

| Bits | Name           | R/W | Description                                                      | Default |
|------|----------------|-----|------------------------------------------------------------------|---------|
| 2    | RX_L2_EN       | R/W | Enables the 1588 L2 packet detection in receiving side.          | 1       |
| 1    | RX_IPV4_UDP_EN | R/W | Enables the 1588 L4/UDP IPV4 packet detection in receiving side. | 1       |
| 0    | RX_IPV6_UDP_EN | R/W | Enables the 1588 L4/UDP IPV6 packet detection in receiving side. | 1       |

## RX\_TX\_CTL

Register Address: SPI Page 0x93, SPI Offset 0xa4

Register Description: Receive and Transmit Control Registers

Table 694: RX\_TX\_CTL

| Bits | Name                 | R/W | Description                                                                                                                                     | Default |
|------|----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RESERVED             | R/W | Reserved                                                                                                                                        | 0x0     |
| 7    | TX_CRC_EN            | R/W | Enable the CRC check in PTP detection transmission side. 1 - 1588 detection need to check original CRC 0 - ignore the original CRC check        | 1       |
| 6:4  | TX_L4_IP_ADDRESS_SEL | R/W | Selects the Layer4 IP address check when 1588 detection in transmission side. 3'b100 - 32'224.0.1.129 3'b010 - reserved 3'b001 - 32'224.0.0.107 | 0x0     |
| 3    | RX_CRC_EN            | R/W | Enable the CRC check in PTP detection receiving side. 1 - 1588 detection need to check original CRC 0 - ignore the original CRC check           | 1       |
| 2:0  | RX_L4_IP_ADDRESS_SEL | R/W | Selects the Layer4 IP address check when 1588 detection in receiving side. 3'b100 - 32'224.0.1.129 3'b010 - reserved 3'b001 - 32'224.0.0.107    | 0x0     |

## **VLAN\_ITPID**

Register Address: SPI Page 0x93, SPI Offset 0xa6

Register Description: VLAN 1tags ITPID Registers

Table 695: VLAN\_ITPID

| Bits | Name  | R/W | Description                    | Default |
|------|-------|-----|--------------------------------|---------|
| 15:0 | ITPID | R/W | The ITPID of VLAN tags packet. | 0x8100  |

### NSE\_DPLL\_1

Register Address: SPI Page 0x93, SPI Offset 0xac

Register Description: NSE DPLL Register 1

Table 696: NSE\_DPLL\_1

| Bits  | Name             | R/W | Description                                                        | Default |
|-------|------------------|-----|--------------------------------------------------------------------|---------|
| 15:12 | SPARE_REG1       | R/W | Reserved                                                           | 0x0     |
| 11:9  | TS_DEBUG         | R/W | Reserved                                                           | 0x0     |
| 8     | TS_DEBUG_EN      | R/W | Reserved                                                           | 0       |
| 7     | RX_TEST_SEL      | R/W | Reserved                                                           | 0       |
| 6     | SPARE_REG0       | R/W | Reserved                                                           | 0       |
| 5:1   | TEST_BUS_SEL     | R/W | Reserved                                                           | 0x0     |
| 0     | DPLL_SELECT_MODE | R/W | DPLL select mode<br>0 - phase lock mode<br>1 - frequency lock mode | 0       |

## NSE\_DPLL\_2\_N

Register Address: SPI Page 0x93, SPI Offset 0xae

Register Description: NSE DPLL Register 2\_ N

Table 697: NSE\_DPLL\_2\_N

| Bits | Name        | R/W | Description                                                                            | Default |
|------|-------------|-----|----------------------------------------------------------------------------------------|---------|
| 15:0 | REF_PHASE_N | R/W | DPLL initial reference phase<br>REF_PHASE = {REF_PHASE_2,<br>REF_PHASE_1, REF_PHASE_0} | 0x0     |

## NSE\_DPLL\_3\_N

Register Address: SPI Page 0x93, SPI Offset 0xb4

Register Description: NSE DPLL Register 3\_ N

Table 698: NSE\_DPLL\_3\_N

| Bits | Name              | R/W | Description                                                                                          | Default |
|------|-------------------|-----|------------------------------------------------------------------------------------------------------|---------|
| 15:0 | REF_PHASE_DELTA_N | R/W | DPLL initial reference delta phase<br>REF_PHASE_DELTA =<br>{REF_PHASE_DELTA_1,<br>REF_PHASE_DELTA_0} | 0x0     |

### NSE\_DPLL\_4

Register Address: SPI Page 0x93, SPI Offset 0xb8

Register Description: NSE DPLL Register 4

Table 699: NSE\_DPLL\_4

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:8 | RESERVED | R/W | Reserved    | 0x0     |
| 7:0  | DPLL_K1  | R/W | DPLL K1     | 0x0     |

## NSE\_DPLL\_5

Register Address: SPI Page 0x93, SPI Offset 0xba

Register Description: NSE DPLL Register 5

Table 700: NSE\_DPLL\_5

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:8 | RESERVED | R/W | Reserved    | 0x0     |
| 7:0  | DPLL_K2  | R/W | DPLL K2     | 0x0     |

### NSE\_DPLL\_6

Register Address: SPI Page 0x93, SPI Offset 0xbc

Register Description: NSE DPLL Register 6

Table 701: NSE\_DPLL\_6

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:8 | RESERVED | R/W | Reserved    | 0x0     |
| 7:0  | DPLL_K3  | R/W | DPLL K3     | 0x0     |

### NSE\_DPLL\_7\_N

Register Address: SPI Page 0x93, SPI Offset 0xbe

Register Description: NSE DPLL Register7\_ N

Table 702: NSE\_DPLL\_7\_N

| Bits | Name          | R/W | Description                                                                                                        | Default |
|------|---------------|-----|--------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | LOOP_FILTER_N | R/W | DPLL initial loop filter value<br>LOOP_FILTER = {LOOP_FILTER_3,<br>LOOP_FILTER_2, LOOP_FILTER_1,<br>LOOP_FILTER_0} | 0x0     |

### NSE\_NCO\_1\_N

Register Address: SPI Page 0x93, SPI Offset 0xc6

Register Description: NSE NCO Register 1\_ N

Table 703: NSE\_NCO\_1\_N

| Bits | Name                        | R/W | Description                                                                                                                                                        | Default |
|------|-----------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | NSE_REG_NCO_FREQCNTR<br>L_N | R/W | Frequency stepping control registers. Only valid when freq_mdio_sel is set to be 1'b1.  NSE_REG_NCO_FREQCNTRL = {NSE_REG_NCO_FREQCNTRL_1, NSE_REG_NCO_FREQCNTRL_0} | 0x0     |

## NSE\_NCO\_2\_N

Register Address: SPI Page 0x93, SPI Offset 0xca

Register Description: NSE NCO Register 2\_ N

Table 704: NSE\_NCO\_2\_N

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                             | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | LOCAL_TIME_UP_N | R/W | Register to control upper 44 bits of local timer LOCAL_TIME_UP = {LOCAL_TIME_UP_2[11:0], LOCAL_TIME_UP_1, LOCAL_TIME_UP_0} LOCAL_TIME_UP_2[15]:reserved. LOCAL_TIME_UP_2[14]: FREQ_MDIO_SEL 1'b1: Use NCO_FREQCNTRL_REG as input for NCO adder. 1'b0: Use DPLL as input for NCO adder. LOCAL_TIME_UP_2[13:12]:reserved. | 0x0     |

## NSE\_NCO\_3\_0

Register Address: SPI Page 0x93, SPI Offset 0xd0

Register Description: NSE NCO Register 3\_0

Table 705: NSE\_NCO\_3\_0

| Bits | Name              | R/W | Description                                                                                                                                     | Default |
|------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | INTERVAL_LENGTH_0 | R/W | Specifies the interval length between two synous pulses. Align at nco[32:3]. unit=8ns. INTERVAL_LENGTH = {INTERVAL_LENGTH_1, INTERVAL_LENGTH_0} | t 0x80  |

#### NSE\_NCO\_3\_1

Register Address: SPI Page 0x93, SPI Offset 0xd2

Register Description: NSE NCO Register 3\_1

Table 706: NSE\_NCO\_3\_1

| Bits  | Name                 | R/W | Description                                                                                                                                       | Default |
|-------|----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | PULSE_TRAIN_LENGTH_0 | R/W | Specifies the width of the first synout pulse. Align at nco[11:3]. unit=8ns.  PULSE_TRAIN_LENGTH =  {PULSE_TRAIN_LENGTH_1,  PULSE_TRAIN_LENGTH_0} | 0x2     |
| 13:0  | INTERVAL_LENGTH_1    | R/W | Specifies the interval length between two synout pulses. Align at nco[32:3]. unit=8ns. INTERVAL_LENGTH = {INTERVAL_LENGTH_1, INTERVAL_LENGTH_0}   | 0x0     |

## NSE\_NCO\_3\_2

Register Address: SPI Page 0x93, SPI Offset 0xd4

Register Description: NSE NCO Register 3\_2

Table 707: NSE\_NCO\_3\_2

| Bits | Name                 | R/W | Description                                                                                                                                       | Default |
|------|----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:7 | FRMSYNC_PULSE_LENGTH | R/W | Specifies the width of the second synout pulse. Align at nco[11:3]. unit=8ns.                                                                     | 0x4     |
| 6:0  | PULSE_TRAIN_LENGTH_1 | R/W | Specifies the width of the first synout pulse. Align at nco[11:3]. unit=8ns.  PULSE_TRAIN_LENGTH =  {PULSE_TRAIN_LENGTH_1,  PULSE_TRAIN_LENGTH_0} | 0x0     |

### NSE\_NCO\_4

Register Address: SPI Page 0x93, SPI Offset 0xd6

Register Description: NSE NCO Register 4

Table 708: NSE\_NCO\_4

| Bits  | Name               | R/W | Description                                                                                                                        | Default |
|-------|--------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED           | R/W | Reserved                                                                                                                           | 0x0     |
| 11:0  | NSE_REG_TS_DIVIDER | R/W | Divider for syncin. If it is set to 4, TS will generate one pulse to latch local time into ts_sync_time_reg every 4 syncin pulses. | 0x0     |

### NSE\_NCO\_5\_0

Register Address: SPI Page 0x93, SPI Offset 0xd8

Register Description: NSE NCO Register 5\_0

Table 709: NSE\_NCO\_5\_0

| Bits | Name            | R/W | Description                                                                                                                                                                                      | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:4 | SYNOUT_TS_REG_0 | R/W | When local timer is equal to synout_ts_reg, a one-time pulse will be generated on syncout.  Note only [47:4] are used here.  SYNOUT_TS_REG = {SYNOUT_TS_REG_2, SYNOUT_TS_REG_1, SYNOUT_TS_REG_0} | 0x10    |
| 3:0  | SPARE_REG       | R/W | Reserved Since the lower 4 bits will change depend on freq control register, we do not compare the lower 4 bits. It can be used as reserved register.                                            | 0x0     |

## NSE\_NCO\_5\_1

Register Address: SPI Page 0x93, SPI Offset 0xda

Register Description: NSE NCO Register 5\_1

Table 710: NSE\_NCO\_5\_1

| Bits | Name            | R/W | Description                                                                                                                                                                                      | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | SYNOUT_TS_REG_1 | R/W | When local timer is equal to synout_ts_reg, a one-time pulse will be generated on syncout.  Note only [47:4] are used here.  SYNOUT_TS_REG = {SYNOUT_TS_REG_2, SYNOUT_TS_REG_1, SYNOUT_TS_REG_0} | 0x0     |

## NSE\_NCO\_5\_2

Register Address: SPI Page 0x93, SPI Offset 0xdc

Register Description: NSE NCO Register 5\_2

Table 711: NSE\_NCO\_5\_2

| Bits | Name            | R/W | Description                                                                                                                                                                   | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | SYNOUT_TS_REG_2 | R/W | When local timer is equal to synout_ts_reg, a one-time pulse will be generated on syncout. Note only [47:4] are used here. SYNOUT_TS_REG_2, SYNOUT_TS_REG_1, SYNOUT_TS_REG_0} | 0x0     |

# NSE\_NCO\_6

Register Address: SPI Page 0x93, SPI Offset 0xde

Register Description: NSE NCO Register 6

Table 712: NSE\_NCO\_6

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|-------|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:14 | GMODE      | R/W | Global synchronization mode selection 2'b01: Assumes that all PHYs in the system share the same TX clock. No hot plugging. NCO is set to nominal Frequency (equivalent to freerunning). Syncln0 is used as a One-Time reset signal, or alternatively power up reset. 2'b10: Assumes that PHYs do not share the same TX clock. No hot plugging. Assumes that CPU is not involved in synchronization process. No MDIO initialization is required. Syncln0 is used to distribute a reference clock to all PHYs. FrameSync only, at rate = 1 kHz. DPLL is used to lock to Syncln0 signal. 2'b11: Assumes that PHYs do not share the same TX clock. Hot plugging allowed. Assumes that a CPU is involved: CPU can control the Syncln0/1 signal going to the PHYs (via some simple FPGA, or using SyncOut on one of the PHYs). CPU will issue MDIO commands, to be executed on next FrameSync (on SyncIn0 or SyncIn1 inputs). DPLL is used to lock to SyncIn0 Signal. | 0x1     |
| 13    | TS_CAPTURE | R/W | 1 - enable time stamp to be captured by ts_capture_time on the next frame sync event 0 - no time stamp will be captured by ts_capture_time register on the next frame sync event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       |
| 12    | NSE_INIT   | R/W | 1 - Initialize NSE block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       |

Table 712: NSE\_NCO\_6 (Cont.)

| Bits | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                  | Default |
|------|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11   | M34_LOCAL_SYNC_DIS | R/W | Disable syncout treat as local sync in when synin_mode equal to 3 or 4                                                                                                                                                                                                                                                                                       | 0       |
| 10   | SPARE_REG1         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                     | 0       |
| 9    | RESET_LOCK_STATE   | R/W | Diagnostic purpose only: reset lock FSM back to idle state                                                                                                                                                                                                                                                                                                   | 0       |
| 8    | RESET_SYNCIN_STATE | R/W | Diagnostic purpose only: reset syncin FSM back to idle state                                                                                                                                                                                                                                                                                                 | 0       |
| 7    | RESET_SYNC_STATE   | R/W | Diagnostic purpose only: reset sync FSM back to idle state                                                                                                                                                                                                                                                                                                   | 0       |
| 6    | SPARE_REG0         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                     | 0       |
| 5:2  | FRAMESYN_MODE      | R/W | Only valid when gmode is set to 2'b11. Used when CPU is involved in the system. bit[2]: use long pulse on syncin0 for frame sync bit[3]: use syncin1 as frame sync bit[4]: use internal syncout as frame sync bit[5]: cpu trigger immediate frame sync                                                                                                       | 0x1     |
| 1:0  | SYNOUT_MODE        | R/W | Sync out mode selection 2'b00: power-up default. sync_out pin functions as sync_in1. 2'b01: generate a one time output pulse on a match with synout_ts_reg 2'b10: generate a pulse train. Detailed pulse train specification is in NSE NCO Register 4. 2'b11: generate a pulse train and insert a one time frame sync event, under sync out mode1 condition. | 0x0     |

## NSE\_NCO\_7\_0

Register Address: SPI Page 0x93, SPI Offset 0xe0

Register Description: NSE NCO Register 7\_0

Table 713: NSE\_NCO\_7\_0

| Bits | Name             | R/W | Description                                                 | Default |
|------|------------------|-----|-------------------------------------------------------------|---------|
| 15:0 | LENGTH_THRESHOLD | R/W | Length to specify frame sync condition. Align at NCO[18:3]. | 0x4     |

## NSE\_NCO\_7\_1

Register Address: SPI Page 0x93, SPI Offset 0xe2

Register Description: NSE NCO Register 7\_1

Table 714: NSE\_NCO\_7\_1

| Bits | Name         | R/W | Description                                                  | Default |
|------|--------------|-----|--------------------------------------------------------------|---------|
| 15:0 | EVENT_OFFSET | R/W | Offset timer for frame sync to kick off. Align at NCO[18:3]. | 0x8     |

#### TX\_COUNTER

Register Address: SPI Page 0x93, SPI Offset 0xe4

Register Description: TX Counter Register

Table 715: TX\_COUNTER

| Bits | Name       | R/W | Description                         | Default |
|------|------------|-----|-------------------------------------|---------|
| 15:0 | TX_COUNTER | R/W | The number of packets into TX side. | 0x0     |

#### **RX\_COUNTER**

Register Address: SPI Page 0x93, SPI Offset 0xe6

Register Description: RX Counter Register

Table 716: RX\_COUNTER

| Bits | Name       | R/W | Description                         | Default |
|------|------------|-----|-------------------------------------|---------|
| 15:0 | RX_COUNTER | R/W | The number of packets into RX side. | 0x0     |

## Page 0x94: Heartbeat Time Stamp Control Register

Table 717: Page 0x94: Heartbeat Time Stamp Control Register

| Address | Bits | Register Name                   |
|---------|------|---------------------------------|
| 0x00    | 15:0 | "TS_READ_START_END" on page 385 |
| 0x02    | 15:0 | "HEARTBEAT_N" on page 385       |
| 0x08    | 15:0 | "TIME_STAMP_N" on page 386      |
| 0x0e    | 15:0 | "TIME_STAMP_INFO_N" on page 386 |
| 0x12    | 15:0 | "CNTR_DBG" on page 386          |
| 0x76    | 15:0 | "RX_CF_SPEC" on page 387        |
| 0x7c    | 15:0 | "TIMECODE_SEL" on page 387      |
| 0x7e    | 15:0 | "TIME_STAMP_3" on page 388      |

### TS\_READ\_START\_END

Register Address: SPI Page 0x94, SPI Offset 0x00

Register Description: Timestamp READ START and END Register

Table 718: TS\_READ\_START\_END

| Bits | Name                | R/W | Description                              | Default |
|------|---------------------|-----|------------------------------------------|---------|
| 15   | PORT8_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 14   | PORT8_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 13   | PORT7_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 12   | PORT7_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 11   | PORT5_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 10   | PORT5_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 9    | PORT4_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 8    | PORT4_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 7    | PORT3_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 6    | PORT3_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 5    | PORT2_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 4    | PORT2_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 3    | PORT1_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 2    | PORT1_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |
| 1    | PORT0_TS_READ_END   | R/W | Write 1 to end the time stamp reading.   | 0       |
| 0    | PORT0_TS_READ_START | R/W | Write 1 to start the time stamp reading. | 0       |

## **HEARTBEAT\_N**

Register Address: SPI Page 0x94, SPI Offset 0x02

Register Description: Heartbeat Register N

Table 719: HEARTBEAT\_N

| Bits | Name        | R/W | Description                                                                                                                                                                                                                                                   | Default |
|------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | HEARTBEAT_N | R/W | Output of the snapshot of the time stamp, when TS_CAPTURE is enabled and frame sync is triggered. TS_CAPTURE is located at NSE_NCO_6[13]. frame sync source is selected by the setting of NSE_NCO_6[5:2]. HEARTBEAT = {HEARTBEAT_2, HEARTBEAT_1, HEARTBEAT_0} |         |

#### TIME\_STAMP\_N

Register Address: SPI Page 0x94, SPI Offset 0x08

Register Description: Time Stamp Register N

Table 720: TIME\_STAMP\_N

| Bits | Name         | R/W | Description                                                                                                                                                            | Default |
|------|--------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TIME_STAMP_N | R/W | Output of the timestamp of 1588 rx/tx packet.<br>Each port has 16-entry FIFO to store the time<br>stamp.<br>TIME_STAMP = {TIME_STAMP_2,<br>TIME_STAMP_1, TIME_STAMP_0} | 0x0     |

### TIME\_STAMP\_INFO\_N

Register Address: SPI Page 0x94, SPI Offset 0x0e

Register Description: Time Stamp Register Info N

Table 721: TIME\_STAMP\_INFO\_N

| Bits | Name              | R/W | Description                                                                                                                                                | Default |
|------|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TIME_STAMP_INFO_N | R/W | Output SOP Time Stamp Info<br>INFO_0 = 1588 packet sequence ID<br>INFO_1 = {message type[3:0], TX(1'b1)/<br>RX(1'b0), port number[2:0], sequence ID[15:8]} | 0x0     |

## CNTR\_DBG

Register Address: SPI Page 0x94, SPI Offset 0x12

Register Description: Control and Debug Registers

Table 722: CNTR\_DBG

| Bits  | Name           | R/W | Description                                                                                                                                                                                                                                                                         | Default |
|-------|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:12 | RESERVED       | R/W | Reserved                                                                                                                                                                                                                                                                            | 0x0     |
| 11:10 | HB_CNTL        | R/W | heartbeat read start and end bit<br>bit[11]: end<br>bit[10]: start                                                                                                                                                                                                                  | 0x0     |
| 9:7   | TS_SLICE_SEL   | R/W | TS_SLICE_SEL                                                                                                                                                                                                                                                                        | 0x0     |
| 6:5   | TC_80_LEAP     | R/W | 80 bits time code counter control bit[6] - A command set by the CPU. Equivalent to Increment by 2 on the next time. Afterwards revert to default behavior. bit[5] - A command set by the CPU. Equivalent to Increment by 0 on the next time. Afterwards revert to default behavior. |         |
| 4:2   | CNTR_SLICE_SEL | R/W | CNTR_SLICE_SEL                                                                                                                                                                                                                                                                      | 0x0     |
| 1     | RST_RX_CNTR    | R/W | RST_RX_CNTR                                                                                                                                                                                                                                                                         | 0       |
| 0     | RST_TX_CNTR    | R/W | RST_TX_CNTR                                                                                                                                                                                                                                                                         | 0       |

## RX\_CF\_SPEC

Register Address: SPI Page 0x94, SPI Offset 0x76

Register Description: Enable RX CF update Registers

Table 723: RX\_CF\_SPEC

| Bits | Name       | R/W | Description                                                                                                                                                                                                                                                         | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RESERVED   | R/W | Reserved                                                                                                                                                                                                                                                            | 0x0     |
| 7:0  | RX_CF_SPEC | R/W | Individual bits enable CF update when timestamp insertion enable in RX port bit 7 enable RX port 8 bit 6 enable RX port 7 bit 5 enable RX port 5 bit 4 enable RX port 4 bit 3 enable RX port 3 bit 2 enable RX port 2 bit 1 enable RX port 1 bit 0 enable RX port 0 | 0x0     |

## TIMECODE\_SEL

Register Address: SPI Page 0x94, SPI Offset 0x7c

Register Description: TX RX Time Code Select Registers

Table 724: TIMECODE\_SEL

| Bits | Name            | R/W | Description                                                                                                                                                                                            | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:8 | RX_TIMECODE_SEL | R/W | RX time code select bit[7:6]: port8-port7 bit[5:0]: port5-port0 1'b1: internal IEEE time code[63:0] is stored at time stamp register 0~3. 1'b0: time stamp[47:0] is stored at time stamp register 0~2. | 0x0     |
| 7:0  | TX_TIMECODE_SEL | R/W | TX time code select bit[7:6]: port8-port7 bit[5:0]: port5-port0 1'b1: internal IEEE time code[63:0] is stored at time stamp register 0~3. 1'b0: time stamp[47:0] is stored at time stamp register 0~2. | 0x0     |

## TIME\_STAMP\_3

Register Address: SPI Page 0x94, SPI Offset 0x7e

Register Description: Time Stamp Register 3

Table 725: TIME\_STAMP\_3

| Bits | Name         | R/W | Description                                                                                                                                  | Default |
|------|--------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:0 | TIME_STAMP_3 | R/W | When RX_TIMECODE_SEL or TX_TIMECODE_SEL is set, TIME_STAMP_3 represents internal IEEE time code[63:48]. Otherwise, don't care this register. | 0x0     |

# Page 0x95: RED Control Register

Table 726: Page 0x95: RED Control Register

| Address | Bits | Register Name                             |
|---------|------|-------------------------------------------|
| 0x00    | 15:0 | "RED_CONTROL" on page 389                 |
| 0x02    | 15:0 | "TC2RED_PROFILE_TABLE" on page 390        |
| 0x04    | 15:0 | "RED_EGRESS_BYPASS" on page 390           |
| 0x06    | 15:0 | "RED_AQD_CONTROL" on page 390             |
| 0x08    | 15:0 | "RED_EXPONENT" on page 391                |
| 0x0a    | 15:0 | "RED_DROP_ADD_TO_MIB" on page 391         |
| 0x10    | 31:0 | "RED_PROFILE_DEFAULT" on page 392         |
| 0x14    | 31:0 | "RED_PROFILE_N" on page 392               |
| 0x20    | 31:0 | "RED_PROFILE_N" on page 392               |
| 0x6c    | 15:0 | "RED_DROP_CNTR_RST" on page 393           |
| 0x70    | 31:0 | "PN_PORT_RED_PKT_DROP_CNTR" on page 393   |
| 0x90    | 31:0 | "IMP_PORT_RED_PKT_DROP_CNTR" on page 393  |
| 0xa0    | 63:0 | "PN_PORT_RED_BYTE_DROP_CNTR" on page 394  |
| 0xe0    | 63:0 | "IMP_PORT_RED_BYTE_DROP_CNTR" on page 394 |

## **RED\_CONTROL**

Register Address: SPI Page 0x95, SPI Offset 0x00

Register Description: RED Control Register

Table 727: RED\_CONTROL

| Bits | Name     | R/W | Description                                                                                                                                                                        | Default |
|------|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED | R/W | Reserved                                                                                                                                                                           | 0x0     |
| 8:0  | RED_EN   | R/W | Ingress Port RED Function Enable 1: Enable RED in this ingress port. 0: Disable RED in this ingress port. Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 | 0x0     |

#### TC2RED\_PROFILE\_TABLE

Register Address: SPI Page 0x95, SPI Offset 0x02

Register Description: RED Table Configuration Register

#### Table 728: TC2RED\_PROFILE\_TABLE

| Bits  | Name               | R/W | Description                                                                                                                                                                                                          | Default |
|-------|--------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15    | TC2RED_TABLE_WR_RD | R/W | 1: Write table.<br>0: Read table<br>This is a write-clear bit.                                                                                                                                                       | 0       |
| 14:13 | RESERVED           | R/W | Reserved                                                                                                                                                                                                             | 0x0     |
| 12:4  | TC2RED_TABLE_ADDR  | R/W | TC2RED Profile table entry index: Bit[12:9]: Ingress Port Number, 0~8: port 0~8, others: reserved. Bit[8:6]: TC[2:0] Bit [5]: DEI Bit. Bit [4]: Flow Mark, Yellow frames or Legacy RED frame marked by Flow Policer. | 0x0     |
| 3:0   | TC2RED_TABLE_DATA  | R/W | TC2RED Profile Table Read or Write data                                                                                                                                                                              | 0x0     |

#### RED\_EGRESS\_BYPASS

Register Address: SPI Page 0x95, SPI Offset 0x04

Register Description: RED Egress Bypass Register

#### Table 729: RED\_EGRESS\_BYPASS

| Bits | Name              | R/W | Description                                                                                              | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED          | R/W | Reserved                                                                                                 | 0x0     |
| 8:0  | RED_EGRESS_BYPASS | R/W | Bypass RED drop at egress side. Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 | 0x80    |

## RED\_AQD\_CONTROL

Register Address: SPI Page 0x95, SPI Offset 0x06

Register Description: RED AQD Control Register

#### Table 730: RED\_AQD\_CONTROL

| Bits  | Name       | R/W | Description | Default |
|-------|------------|-----|-------------|---------|
| 15:12 | RESERVED_2 | R/W | Reserved    | 0x0     |

Table 730: RED\_AQD\_CONTROL (Cont.)

| Bits | Name          | R/W | Description                                                                                                                                                                                                                                                                   | Default |
|------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11:8 | AQD_PERIOD    | R/W | Period (0us~150us) for AQD calculation, unit:10us.                                                                                                                                                                                                                            | 0x8     |
| 7:6  | RESERVED_1    | R/W | Reserved                                                                                                                                                                                                                                                                      | 0x0     |
| 5    | AQD_RST       | R/W | Set 1 to reset AQD calculation for all ports and all queues.                                                                                                                                                                                                                  | 0       |
| 4    | RED_FAST_CORR | R/W | RED Fast Correction This bit is used to decided whether AQD should be forced to be equal to QD when the computed value is greater than QD.  1: Force AQD to be equal to QD when AQD is greater than QD.  0: Does not force AQD to be equal to QD when AQD is greater than QD. | 0       |
| 3:0  | RESERVED_0    | R/W | Reserved                                                                                                                                                                                                                                                                      | 0x0     |

### **RED\_EXPONENT**

Register Address: SPI Page 0x95, SPI Offset 0x08

Register Description: RED AQD Weighted Factor Register

Table 731: RED\_EXPONENT

| Bits | Name         | R/W | Description                                        | Default |
|------|--------------|-----|----------------------------------------------------|---------|
| 15:8 | RESERVED     | R/W | Reserved                                           | 0x0     |
| 7:0  | RED_EXPONENT | R/W | RED_EXPONENT: Weighted factor for AQD calculation. | 0x5     |

### RED\_DROP\_ADD\_TO\_MIB

Register Address: SPI Page 0x95, SPI Offset 0x0a

Register Description: RED Drop Add to MIB Register

Table 732: RED\_DROP\_ADD\_TO\_MIB

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:9 | RESERVED | R/W | Reserved    | 0x0     |

Table 732: RED\_DROP\_ADD\_TO\_MIB (Cont.)

| Bits | Name                | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8:0  | RED_DROP_ADD_TO_MIB | R/W | Port RED Dropped Numbers are added to MIB Counter Enable When this bit is enabled, the frames are dropped by RED function will add the dropped numbers (RED_PKT_DROP_CNTR) to the TxFrameInDisc MIB counters in each egress port.  1: Enable RED Dropped Numbers are added to MIB Counter.  0: Disable RED Dropped Numbers are added to MIB Counter. Bit 5 - 0: Port 5 - Port 0 Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8 |         |

### RED\_PROFILE\_DEFAULT

Register Address: SPI Page 0x95, SPI Offset 0x10

Register Description: Default RED profile Register

Table 733: RED\_PROFILE\_DEFAULT

| Bits | Name                | R/W | Description                                                                                                                                                                                                                           | Default |
|------|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:4 | RESERVED            | R/W | Reserved                                                                                                                                                                                                                              | 0x0     |
| 3:0  | RED_PROFILE_DEFAULT | R/W | Default RED profile number. When RED_DEFAULT from CFP Action is set, the default RED profile number is used to select the RED profile. This override can be used for UDP streams as well as non-IP traffic that do not react to WRED. |         |

### RED\_PROFILE\_N

Register Address: SPI Page 0x95, SPI Offset 0x20

Register Description: RED profile N Register

Table 734: RED\_PROFILE\_N

| Bits  | Name     | R/W | Description | Default |
|-------|----------|-----|-------------|---------|
| 31:26 | RESERVED | R/W | Reserved    | 0x0     |

Table 734: RED\_PROFILE\_N (Cont.)

| Bits  | Name          | R/W | Description                                                                                                                                                                                                                                         | Default |
|-------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 25:22 | RED_DROP_PROB | R/W | Drop Probability of RED profile. Indicates drop probability compared to R (middle 8 bits from Random Number Generator). A lower value configured in the RED_DROP_PROB will result in a lower probability of packet drops when a queue is congested. | 0x0     |
| 21:11 | RED_MAX_THD   | R/W | Maximum Threshold of RED profile.  A value that must be configured to be lower or the same as the maximum depth of the queue and higher than or equal to RED_MIN_THD                                                                                | 0x0     |
| 10:0  | RED_MIN_THD   | R/W | Minimum Threshold of RED profile. A value that must be configured to be lower or the same as the maximum depth of the queue and RED_MAX_THD                                                                                                         | 0x0     |

#### RED\_DROP\_CNTR\_RST

Register Address: SPI Page 0x95, SPI Offset 0x6c

Register Description: RED Drop Counter Reset Register

Table 735: RED\_DROP\_CNTR\_RST

| Bits | Name              | R/W | Description                                                                                                                            | Default |
|------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED          | R/W | Reserved                                                                                                                               | 0x0     |
| 8:0  | RED_DROP_CNTR_RST | R/W | 1: Reset RED drop counter. 0: Don't reset RED drop counter. Bit 5 - 0: Port 5 - Port 0. Bit 6: Reserved. Bit 7: Port 7. Bit 8: Port 8. | 0x0     |

### PN\_PORT\_RED\_PKT\_DROP\_CNTR

Register Address: SPI Page 0x95, SPI Offset 0x70

Register Description: PORT N RED Packet Drop Counter Register

Table 736: PN\_PORT\_RED\_PKT\_DROP\_CNTR

| Bits | Name              | R/W | Description                                                                  | Default |
|------|-------------------|-----|------------------------------------------------------------------------------|---------|
| 31:0 | RED_PKT_DROP_CNTR | R/W | Frames are dropped by RED function in this egress port (Counted by Packets). | 0x0     |

## IMP\_PORT\_RED\_PKT\_DROP\_CNTR

Register Address: SPI Page 0x95, SPI Offset 0x90

April 19, 2017 • 53134-PR103

Register Description: PORT 8 RED Packet Drop Counter Register

Table 737: IMP\_PORT\_RED\_PKT\_DROP\_CNTR

| Bits | Name              | R/W | Description                                                                  | Default |
|------|-------------------|-----|------------------------------------------------------------------------------|---------|
| 31:0 | RED_PKT_DROP_CNTR | R/W | Frames are dropped by RED function in this egress port (Counted by Packets). | 0x0     |

## PN\_PORT\_RED\_BYTE\_DROP\_CNTR

Register Address: SPI Page 0x95, SPI Offset 0xa0

Register Description: PORT N RED Byte Drop Counter Register

Table 738: PN\_PORT\_RED\_BYTE\_DROP\_CNTR

| Bits | Name               | R/W | Description                                                                | Default |
|------|--------------------|-----|----------------------------------------------------------------------------|---------|
| 63:0 | RED_BYTE_DROP_CNTR | R/W | Frames are dropped by RED function in this egress port (Counted by Bytes). | 0x0     |

### IMP\_PORT\_RED\_BYTE\_DROP\_CNTR

Register Address: SPI Page 0x95, SPI Offset 0xe0

Register Description: PORT 8 RED Byte Drop Counter Register

Table 739: IMP\_PORT\_RED\_BYTE\_DROP\_CNTR

| Bits | Name               | R/W | Description                                                                | Default |
|------|--------------------|-----|----------------------------------------------------------------------------|---------|
| 63:0 | RED_BYTE_DROP_CNTR | R/W | Frames are dropped by RED function in this egress port (Counted by Bytes). | 0x0     |

# Page 0xa0: CFP TCAM Register

Table 740: Page 0xa0: CFP TCAM Register

| Address | Bits | Register Name                       |
|---------|------|-------------------------------------|
| 0x00    | 31:0 | "CFP_ACC" on page 395               |
| 0x04    | 15:0 | "RATE_METER_GLOBAL_CTL" on page 397 |
| 0x10    | 31:0 | "CFP_DATA" on page 398              |
| 0x30    | 31:0 | "CFP_MASK" on page 399              |
| 0x50    | 31:0 | "ACT_POL_DATA0" on page 399         |
| 0x54    | 31:0 | "ACT_POL_DATA1" on page 400         |
| 0x58    | 31:0 | "ACT_POL_DATA2" on page 401         |
| 0x60    | 31:0 | "RATE_METER0" on page 403           |
| 0x64    | 31:0 | "RATE_METER1" on page 404           |
| 0x68    | 31:0 | "RATE_METER2" on page 404           |
| 0x6c    | 31:0 | "RATE_METER3" on page 405           |
| 0x70    | 31:0 | "RATE_METER4" on page 405           |
| 0x74    | 31:0 | "RATE_METER5" on page 405           |
| 0x78    | 31:0 | "RATE_METER6" on page 406           |
| 0x7c    | 15:0 | "TC2COLOR" on page 406              |
| 0x80    | 31:0 | "STAT_GREEN_CNTR" on page 407       |
| 0x84    | 31:0 | "STAT_YELLOW_CNTR" on page 407      |
| 0x88    | 31:0 | "STAT_RED_CNTR" on page 407         |

## CFP\_ACC

Register Address: SPI Page 0xa0, SPI Offset 0x00

Register Description: CFP Access Registers

Table 741: CFP\_ACC

| Bits  | Name   | R/W | Description                                                                                                                                                                                                                                                                                                                      | Default |
|-------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:28 | RD_STS | R/W | Read Status. This field indicates the status of read operation. 1 means read data valid, 0 means read data not yet valid. Hardware will auto clear this bit whenever software read this register. 4'b1000: Statistic RAM 4'b0100: Rate Meter RAM 4'b0010: Action/policy RAM 4'b0001: TCAM 4'b0000: Not ready Others: not allowed | 0x0     |

Table 741: CFP\_ACC (Cont.)

| Bits  | Name       | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
|-------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 27    | SERCH_STS  | R/W | Search Status. This field indicates the status of search operation. Hardware will set this bit whenever a valid search content has been updated at the TCAM data register 0-7, and the address has been updated at the address bits of this register. Hardware will auto clear this bit whenever software read this register. After software read this bit as '1', software need to read TCAM_DATAO_REG to TCAM_DATA7_REG, and TCAM_MASKO_REG to TCAM_MASK7_REG. Hardware uses the "read operation" of TCAM_DATA7_REG as the signal of starting search again, in this case, software need to be carefully arrange the order of reading the TCAM data and mask registers. The TCAM_DATA7_REG need to the last one to read, otherwise, the TCAM data or mask registers might be overwritten by the next valid entry. |         |
| 26:24 | RESERVED_1 | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0     |
| 23:16 | XCESS_ADDR | R/W | Access Address. This field indicates the address offset of the RAM blocks for the operation. For read and write operation, this is the target address for the TCAM and RAM blocks. For search operation, this is the initial search address which set by the software. This field contains the address of a valid content when the search_status is set. Hardware finishes search operation whenever it reaches the last entry of the TCAM.                                                                                                                                                                                                                                                                                                                                                                        |         |
| 15    | TCAM_RST   | R/W | TCAM Reset. Software set this bit to reset all the valid bit of all entries of the TCAM. It is necessary that software to perform TCAM reset before start to programming the TCAM, if software is not going to program all the entries in the TCAM. Software can only reset the TCAM while CFP is in disable state, i.e., no any port is enabled to request CFP lookup. Software is not allowed to reset TCAM in the middle of CFP lookup. Hardware automatically clear this bit when the reset operation is done.                                                                                                                                                                                                                                                                                                 | 0       |

Table 741: CFP\_ACC (Cont.)

| Bits  | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14:10 | RAM_SEL         | R/W | RAM Selection. This field selects the target of the operation. 5'b1_1000: Red Statistic RAM 5'b1_0000: Yellow Statistic RAM 5'b0_1000: Green Statistic RAM 5'b0_0100: Rate Meter RAM 5'b0_0010: Action/policy RAM 5'b0_0001: TCAM 5'b0_0000: no operation others: not allowed                                                                                                                                                                                              | 0x0     |
| 9:6   | RESERVED_0      | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| 5     | KEY_0_1_RAW_ENC | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0       |
| 4     | CFP_RAM_CLEAR   | R/W | CFP RAM Clear<br>When this bit is set, the CFP Action RAM, Rate<br>Meter, and Static counters will be clear. This bit<br>will be auto-cleared by hardware when the clear<br>is done.                                                                                                                                                                                                                                                                                       |         |
| 3:1   | OP_SEL          | R/W | Operational Select. 3'b000: No op 3'b001: Read operation (for TCAM and RAM) 3'b010: Write operation (for TCAM and RAM) 3'b100: Search operation (for TCAM only) others: reserved                                                                                                                                                                                                                                                                                           | 0x0     |
| 0     | OP_STR_DONE     | R/W | Operation Start. Software set this bit to start the operation after having configured all the necessary operation related information to the registers. Hardware automatically clear this bit when the operation is done. For read and write operation, this bit is clear when a single read or write operation is done. For search operation, this bit is clear only when all the searches are done. For TCAM reset, software needn't to set this bit to start the reset. |         |

## RATE\_METER\_GLOBAL\_CTL

Register Address: SPI Page 0xa0, SPI Offset 0x04

Register Description: CFP RATE METER Global Control Registers

Table 742: RATE\_METER\_GLOBAL\_CTL

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 15:3 | RESERVED | R/W | Reserved    | 0x0     |

Table 742: RATE\_METER\_GLOBAL\_CTL (Cont.)

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                            | Default |
|------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2    | RATE_REFRESH_EN | R/W | Rate Meter Refresh Enable. This field enables hardware for rate meter refresh. Software should set this bit after the rate meter RAM has been initialized, and software would like to start rate meter refresh (Global control).                                                                                                                       | 0       |
| 1:0  | PKT_LEN_CORR    | R/W | Packet Length Correction (Global control) 2'b00: No packet length correction for the flow meter computations 2'b01: Add Preamble and SFD length (8 bytes) to the packet length for the flow meter computations 2'b10: Add IFG, Preamble, and SFD lengths (20 bytes) to the packet length for the flow meter computations 2'b11: Reserved (Not Allowed) | 0x0     |

## CFP\_DATA

Register Address: SPI Page 0xa0, SPI Offset 0x10

Register Description: CFP TCAM Data X Registers

Table 743: CFP\_DATA

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default |
|------|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | TCAM_DATA | R/W | TCAM Data. The rule data (refer to slice format) to be read from or write to the TCAM data. Whenever the mask is enabled (1'b0) for the corresponding key data, and then the read back key data would be ignored. Note that the bit [1:0] of this register are the valid bits of the rule. These two bits should be both '1' to validate this entry. The rule's LSB is in this register bit[2]. CFP_DATA0[31:0] for tcam_data[31:0] CFP_DATA1[31:0] for tcam_data[63:32] CFP_DATA2[31:0] for tcam_data[127:96] CFP_DATA4[31:0] for tcam_data[127:96] CFP_DATA5[31:0] for tcam_data[191:160] CFP_DATA6[31:0] for tcam_data[223:192] CFP_DATA7[31:0] for tcam_data[231:224] CFP_DATA7[31:8] for Reserved |         |

### CFP\_MASK

Register Address: SPI Page 0xa0, SPI Offset 0x30

Register Description: CFP TCAM Mask X Registers

Table 744: CFP\_MASK

| Bits | Name      | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default |
|------|-----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:0 | TCAM_MASK | R/W | TCAM Data. The mask data to be read from or write to the TCAM mask. Note that the bit [1:0] of this register are the valid bits of the rule. These two bits should be both '1' to validate this entry. The mask's LSB is in this register bit[2]. CFP_MASK0[31:0] for tcam_mask[31:0] CFP_MASK1[31:0] for tcam_mask[63:32] CFP_MASK2[31:0] for tcam_mask[95:64] CFP_MASK3[31:0] for tcam_mask[127:96] CFP_MASK4[31:0] for tcam_mask[159:128] CFP_MASK5[24:0] for tcam_mask[231:128] CFP_MASK7[31:0] for tcam_mask[231:224] CFP_MASK7[31:0] for tcam_mask[231:224] CFP_MASK7[31:8] for Reserved | 0x0     |

### ACT\_POL\_DATA0

Register Address: SPI Page 0xa0, SPI Offset 0x50

Register Description: CFP Action/Policy Data 0 Registers

Table 745: ACT\_POL\_DATA0

| Bits  | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                                | Default |
|-------|--------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:26 | NEW_DSCP_IB        | R/W | New_DSCP value. (In IPv4 header, this field is called TOS field, and the IP checksum field needs to be updated accordingly. In IPv6 header, this field is called TrafficClass field, and there is no IP checksum to be updated)                                                                                                                                            | 0x0     |
| 25:24 | CHANGE_FWRD_MAP_IB | R/W | It indicates whether to enforce new egress direction for the matched packet.  00: No destination changes to the ARL derived destination.  01: Removing ARL destinations (port list) according to the DST_Map setting.  10: Replacing ARL derived destinations with the DST_Map derived dest.  11: Adding the DST_Map derived destinations to the ARL derived destinations. | 0x0     |

Table 745: ACT\_POL\_DATA0 (Cont.)

| Bits  | Name        | R/W | Description                                                                                                                                                                                                                                                 | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 23:14 | DST_MAP_IB  | R/W | It indicates the port(s) to which the packet is forwarded or removed. Bits [23:22]: reserved, Bit [21]: port 8(IMP), Bit [20]: port 7, Bits [19:14]: port 5 - port 0.                                                                                       | 0x0     |
| 13    | CHANGE_TC   | R/W | It indicates whether to enforce new traffic class for the matched packet to be queue with the corresponding COS at its egress Ethernet port(s) (excluding IMP port) before being transmitted. (To be used together with TC2COS mapping at each egress port) |         |
| 12:10 | NEW_TC      | R/W | It indicates whether the packet is allowed to be forwarded to the port it is originally received from.                                                                                                                                                      | 0x0     |
| 9     | LOOP_BK_EN  | R/W | It indicates whether the packet is allowed to be forwarded to the port it is originally received from.                                                                                                                                                      | 0       |
| 8:3   | REASON_CODE | R/W | It indicates the reasons why the packet is forwarded to CPU, when the corresponding Change_FWD action indicates packet forwarding to CPU.                                                                                                                   | 0x0     |
| 2     | STP_BYP     | R/W | It indicates whether the CFP generated forwarding decision is subject to the STP port state based filing.                                                                                                                                                   | 0       |
| 1     | EAP_BYP     | R/W | It indicates whether the CFP generated forwarding decision is subject to the 802.1x EAP port state based filing.                                                                                                                                            | 0       |
| 0     | VLAN_BYP    | R/W | It indicates whether the CFP generated forwarding decision is subject to the VLAN based filing.                                                                                                                                                             | 0       |

## ACT\_POL\_DATA1

Register Address: SPI Page 0xa0, SPI Offset 0x54

Register Description: CFP Action/Policy Data 1 Registers

Table 746: ACT\_POL\_DATA1

| Bits | Name        | R/W | Description                                                                                                                                                                   | Default |
|------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31   | RED_DEFAULT | R/W | It indicates whether to use RED/WRED default profile. Set 1'b1 to use RED default profile. The default profile, RED_PROFILE_DEFAULT, is configured at page 0x95, offset 0x10. |         |

Table 746: ACT\_POL\_DATA1 (Cont.)

| Bits  | Name               | R/W | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|-------|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 30:29 | NEW_COLOR          | R/W | New color value to replace original flow-policer input color. 00: Green 01: Yellow 10: Red 11: Reserved                                                                                                                                                                                                                                                                  | 0x0     |
| 28    | CHANGE_COLOR       | R/W | It indicates whether to modify the flow-policer input color. Set 1'b1 to change color.                                                                                                                                                                                                                                                                                   | 0       |
| 27:20 | CHAIN_ID           | R/W | If it is the result of Slice 0 chained search. it indicates the ChainID to be used as part of Chain slice key. 0x00 indicates no valid ChainID. Otherwise, it indicates the Classification ID if the packet needs to be forwarded to CPU. 0x00 indicates no valid Classification ID                                                                                      | 0x0     |
| 19    | CHANGE_DSCP_OB     | R/W | It indicates whether to modify the IP DSCP field of the matched packet based on the New_DSCP value.                                                                                                                                                                                                                                                                      | 0       |
| 18:13 | NEW_DSCP_OB        | R/W | New_DSCP value. (In IPv4 header, this field is called TOS field, and the IP checksum field needs to be updated accordingly. In IPv6 header, this field is called TrafficClass field, and there is no IP checksum to be updated)                                                                                                                                          | 0x0     |
| 12:11 | CHANGE_FWRD_MAP_OB | R/W | It indicates whether to enforce new egress direction for the matched packet.  00: No destination changes to the ARL derived destination.  01: Removing ARL destinations (portmap) according to the DST_Map setting.  10: Replacing ARL derived destinations with the DST_Map derived dest.  11: Adding the DST_Map derived destinations to the ARL derived destinations. | 0x0     |
| 10:1  | DST_MAP_OB         | R/W | It indicates the port(s) to which the packet is forwarded or removed. Bits [10:9]: reserved, Bit [8]: port 8(IMP), Bit [7]: port 7, Bits [6:1]: port 5 - port 0.                                                                                                                                                                                                         | 0x0     |
| 0     | CHANGE_DSCP_IB     | R/W | packet based on the New_DSCP value.                                                                                                                                                                                                                                                                                                                                      | 0       |

## ACT\_POL\_DATA2

Register Address: SPI Page 0xa0, SPI Offset 0x58

Register Description: CFP Action/Policy Data 2 Registers

Table 747: ACT\_POL\_DATA2

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                            | Default |
|------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:8 | RESERVED         | R/W | Reserved                                                                                                                                                                                                                                                                                                                                               | 0x0     |
| 7    | DEI_RMK_DISABLE  | R/W | It indicates whether the DEI field in the S-TAG should be remarked at the egress port if the perport DEI remarking (DEI_RMK_EN) is enabled. If set, this per-flow configuration disables the DEI remarking (DEI_RMK_EN) only. Note: If the DEI field in the S-TAG is enabled by CFI_RMK_EN (Legacy application), the DEI_RMK_DISABLE can't disable it. | 0       |
| 6    | CPCP_RMK_DISABLE | R/W | It indicates whether the PCP field in the C-TAG should be remarked at the egress port if the perport PCP remarking (PCP_RMK_EN or C_PCP_RMK_EN) is enabled.  If set, this per-flow configuration disables remarking of PCP field of C-TAG in the packet even when the per-port (PCP_RMK_EN or C_PCP_RMK_EN) configuration bit is enabled.              |         |
| 5    | SPCP_RMK_DISABLE | R/W | It indicates whether the PCP field in the S-TAG should be remarked at the egress port if the perport PCP remarking (PCP_RMK_EN or S_PCP_RMK_EN) is enabled.  If set, this per-flow configuration disables remarking of PCP field of S-TAG in the packet even when the per-port (PCP_RMK_EN or S_PCP_RMK_EN) configuration bit is enabled.              |         |
| 4:2  | NEW_TC_O         | R/W | If the Change_TC_O action is chosen for a packet matching the CFP rule, then this field indicates the new Traffic Class to be used for determining the PCP and DEI of a packet after it is scheduled for transmission on an Egress Ethernet or an IMP port.                                                                                            | 0x0     |
| 1    | CHANGE_TC_O      | R/W | It indicates whether save the new traffic class (New_TC_O) for the matched packet to be saved in the queue at its egress Ethernet port(s) instead of the TC that was used for determining the packets color, COS, and RED/WRED profile. The saved TC_O in the packet is used for optionally re-mark a packet's PCP and DEI before it is transmitted.   | 0       |
| 0    | MAC_LIMIT_BYPASS | R/W | If the MAC Address Limit feature is enabled on a port and the OVER_LIMIT_ACTIONS is set to 1, then the MAC_Limit_Bypass action will override the drop decision because of the MAC address limit.                                                                                                                                                       | 0       |

Register Address: SPI Page 0xa0, SPI Offset 0x60

Register Description: CFP RATE METER DATA 0 Registers

Table 748: RATE\_METER0

| Bits | Name         | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|------|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:5 | RESERVED     | R/W | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0     |
| 4:3  | POLICER_MODE | R/W | Policer Mode Selection 2'b00: RFC2698 Mode. Indicates that the Policer is compliant with RFC2698 2'b01: RFC4115 Mode. Indicates that the Policer is compliant with RFC4115 2'b10: MEF Mode. Indicates that the Policer is compliant with MEF (MEF6.1, 10.2) and, as a special case, that the Policer is also compliant with RFC2697 when EIR = 0 and CF = 1 2'b11: Disable mode. In this mode the metering function is disabled and the traffic is not subjected to any metering. The color of a disabled flow is marked Green by the Flow Policer function. | 0x0     |
| 2    | CF           | R/W | Coupling_Flag When the Policer_Mode is MEF, this bit indicates the Coupling Flag described in MEF6.1 and MEF10.2. When the bit is set, tokens added to cirTokenBucket are diverted to eirTokenBucket when cirTokenBucket is full. dropped. When the PolicerMode is not MEF, this bit is ignored.                                                                                                                                                                                                                                                             |         |

Table 748: RATE\_METER0 (Cont.)

| Bits | Name           | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|------|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1    | POLICER_ACTION | R/W | When the Policer_Mode is neither MEF nor Disable, this bit indicates the action to be taken for packets that will be marked Red by the Policer Algorithm in either the color-aware or the color-blind mode. Otherwise, when the Policer_Mode is MEF or Disable, this bit is ignored.  This bit is used to select the *_IB or *_OB in CFP Action Table when GREEN, YELLOW or RED packet marked by Policer.  When this bit is 0,  GREEN packets: the *_IB actions in the CFP Action Table are taken  YELLOW packets: the *_OB actions are in the CFP Action Table are taken  RED packets: dropped  When this bit is 1,  GREEN packets: the *_IB actions in the CFP Action Table are taken  YELLOW packets: the *_IB actions in the CFP Action Table are taken  YELLOW packets: the *_OB actions are in the CFP Action Table are taken  RED packets: the *_OB actions are in the CFP Action Table are taken  RED packets: the *_OB actions are in the CFP Action Table are taken. RED/WRED profile for Yellow packets are used. | 0       |
| 0    | CM             | R/W | Color Mode Selection 0: Color-Aware Mode Selected 1: Color-Blind Mode Selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |

Register Address: SPI Page 0xa0, SPI Offset 0x64

Register Description: CFP RATE METER DATA 1 Registers

Table 749: RATE\_METER1

| Bits  | Name       | R/W | Description                                                                                                                            | Default |
|-------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:23 | RESERVED   | R/W | Reserved                                                                                                                               | 0x0     |
| 22:0  | EIR_TK_BKT | R/W | EIR Token Bucket The cumulative Peak/excess token bucket in bits. Note: Excess or Peak (depending on the RFC selected in Policer Mode) | 0x0     |

### RATE\_METER2

Register Address: SPI Page 0xa0, SPI Offset 0x68

Register Description: CFP RATE METER DATA 2 Registers

Table 750: RATE\_METER2

| Bits  | Name         | R/W | Description                                                                                                                                                          | Default |
|-------|--------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:20 | RESERVED     | R/W | Reserved                                                                                                                                                             | 0x0     |
| 19:0  | EIR_BKT_SIZE | R/W | EIR Token Limit Excess or Peak Burst Size in bytes. The maximum value/depth of EIR Token Bucket Note: Excess or Peak (depending on the RFC selected in Policer Mode) | 0x0     |

Register Address: SPI Page 0xa0, SPI Offset 0x6c

Register Description: CFP RATE METER DATA 3 Registers

Table 751: RATE\_METER3

| Bits  | Name        | R/W | Description                                                                                                                                                                                                       | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:19 | RESERVED    | R/W | Reserved                                                                                                                                                                                                          | 0x0     |
| 18:0  | EIR_REF_CNT | R/W | EIR Meter Rate Information Rate in bits, amount by which EIR Token Bucket is increased each unit of time (250 us) Support Max rate = 2 Gb/s. Note: Excess or Peak (depending on the RFC selected in Policer Mode) | 0x0     |

## RATE\_METER4

Register Address: SPI Page 0xa0, SPI Offset 0x70

Register Description: CFP RATE METER DATA 4 Registers

Table 752: RATE\_METER4

| Bits  | Name       | R/W | Description                                                                           | Default |
|-------|------------|-----|---------------------------------------------------------------------------------------|---------|
| 31:23 | RESERVED   | R/W | Reserved                                                                              | 0x0     |
| 22:0  | CIR_TK_BKT | R/W | CIR Token Bucket The cumulative committed token bucket maintained by hardware in bits | 0x0     |

### **RATE\_METER5**

Register Address: SPI Page 0xa0, SPI Offset 0x74

Register Description: CFP RATE METER DATA 5 Registers

Table 753: RATE\_METER5

| Bits  | Name         | R/W | Description                                                                                    | Default |
|-------|--------------|-----|------------------------------------------------------------------------------------------------|---------|
| 31:20 | RESERVED     | R/W | Reserved                                                                                       | 0x0     |
| 19:0  | CIR_BKT_SIZE | R/W | CIR Token Limit<br>Committed Burst Size in bytes.<br>The maximum value/depth of cirTokenBucket | 0x0     |

Register Address: SPI Page 0xa0, SPI Offset 0x78

Register Description: CFP RATE METER DATA 6 Registers

Table 754: RATE\_METER6

| Bits  | Name        | R/W | Description                                                                                                                                           | Default |
|-------|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 31:19 | RESERVED    | R/W | Reserved                                                                                                                                              | 0x0     |
| 18:0  | CIR_REF_CNT | R/W | CIR Meter Rate Committed Information Rate in bits. Amount by which CIR Token Bucket is increased each unit of time(250 us). Support Max rate =2 Gb/s. | 0x0     |

#### **TC2COLOR**

Register Address: SPI Page 0xa0, SPI Offset 0x7c

Register Description: TC to COLOR Mapping Registers

Table 755: TC2COLOR

| Bits  | Name                  | R/W | Description                                                                                                | Default |
|-------|-----------------------|-----|------------------------------------------------------------------------------------------------------------|---------|
| 15:11 | RESERVED              | R/W | Reserved                                                                                                   | 0x0     |
| 10:9  | TC2COLOR_MAP_COLOR    | R/W | Specify COLOR of TC2COLOR MAP according to ING_PORT/TC/DEI value 00: Green 01: Yellow 10: Red 11: Reserved | 0x0     |
| 8     | TC2COLOR_MAP_DEI      | R/W | Specify DEI value of TC2COLOR MAP table                                                                    | 0       |
| 7:5   | TC2COLOR_MAP_TC       | R/W | Specify TC value of TC2COLOR MAP table                                                                     | 0x0     |
| 4:1   | TC2COLOR_MAP_ING_PORT | R/W | Specify Ingress Port number of TC2COLOR MAP table                                                          | 0x0     |
| 0     | TC2COLOR_MAP_RW       | R/W | TC2COLOR Table Read/Write Access  1: Write TC2COLOR MAP register  0: Read TC2COLOR MAP register            | 0       |

### STAT\_GREEN\_CNTR

Register Address: SPI Page 0xa0, SPI Offset 0x80

Register Description: Policer Green color statistic counter

Table 756: STAT\_GREEN\_CNTR

| Bits | Name       | R/W | Description                                                                                       | Default |
|------|------------|-----|---------------------------------------------------------------------------------------------------|---------|
| 31:0 | GREEN_CNTR | R/W | This field contains the data to read from or write to the GREEN counter of Policer statistic RAM. |         |

#### STAT\_YELLOW\_CNTR

Register Address: SPI Page 0xa0, SPI Offset 0x84

Register Description: Policer Yellow color statistic counter

Table 757: STAT\_YELLOW\_CNTR

| Bits | Name        | R/W | Description                                                                                        | Default |
|------|-------------|-----|----------------------------------------------------------------------------------------------------|---------|
| 31:0 | YELLOW_CNTR | R/W | This field contains the data to read from or write to the Yellow counter of Policer statistic RAM. | 0x0     |

#### STAT\_RED\_CNTR

Register Address: SPI Page 0xa0, SPI Offset 0x88

Register Description: Policer RED color statistic counter

Table 758: STAT\_RED\_CNTR

| Bits | Name     | R/W | Description                                                                                     | Default |
|------|----------|-----|-------------------------------------------------------------------------------------------------|---------|
| 31:0 | RED_CNTR | R/W | This field contains the data to read from or write to the RED counter of Policer statistic RAM. | 0x0     |

# Page 0xa1: CFP Configuration Register

Table 759: Page 0xa1: CFP Configuration Register

| Address | Bits | Register Name              |
|---------|------|----------------------------|
| 0x00    | 15:0 | "CFP_CTL_REG" on page 408  |
| 0x10    | 7:0  | "UDF_0_A_0_8" on page 409  |
| 0x20    | 7:0  | "UDF_1_A_0_8" on page 410  |
| 0x30    | 7:0  | "UDF_2_A_0_8" on page 411  |
| 0x40    | 7:0  | "UDF_0_B_0_8" on page 412  |
| 0x50    | 7:0  | "UDF_1_B_0_8" on page 413  |
| 0x60    | 7:0  | "UDF_2_B_0_8" on page 414  |
| 0x70    | 7:0  | "UDF_0_C_0_8" on page 415  |
| 0x80    | 7:0  | "UDF_1_C_0_8" on page 416  |
| 0x90    | 7:0  | "UDF_2_C_0_8" on page 417  |
| 0xa0    | 7:0  | "UDF_0_D_0_11" on page 418 |

### CFP\_CTL\_REG

Register Address: SPI Page 0xa1, SPI Offset 0x00

Register Description: CFP Control Registers

Table 760: CFP\_CTL\_REG

| Bits | Name       | R/W | Description                                                                                        | Default |
|------|------------|-----|----------------------------------------------------------------------------------------------------|---------|
| 15:9 | RESERVED   | R/W | Reserved                                                                                           | 0x0     |
| 8:0  | CFP_EN_MAP | R/W | The bitmap to enable CFP function. When set to one, the corresponding port CFP feature is enabled. | 0x0     |

## UDF\_0\_A\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x10

Register Description: UDFs of slice 0 for IPv4 packet Registers

Table 761: UDF\_0\_A\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_0_A_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. | )       |

## UDF\_1\_A\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x20

Register Description: UDFs of slice 1 for IPv4 packet Registers

Table 762: UDF\_1\_A\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_1_A_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2) .UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2) .UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2) .UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. | )       |

## UDF\_2\_A\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x30

Register Description: UDFs of slice 2 for IPv4 packet Registers

Table 763: UDF\_2\_A\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_2_A_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_0\_B\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x40

Register Description: UDFs of slice 0 for IPv6 packet Registers

Table 764: UDF\_0\_B\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_0_B_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2). UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2). UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2). UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. | )       |

## UDF\_1\_B\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x50

Register Description: UDFs of slice 1 for IPv6 Registers

Table 765: UDF\_1\_B\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_1_B_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_2\_B\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x60

Register Description: UDFs of slice 2 for IPv6 Registers

Table 766: UDF\_2\_B\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_2_B_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_0\_C\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x70

Register Description: UDFs of slice 0 for none-IP Registers

Table 767: UDF\_0\_C\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_0_C_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2). UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2). UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2). UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_1\_C\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x80

Register Description: UDFs of slice 1 for none-IP Registers

Table 768: UDF\_1\_C\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_1_C_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_2\_C\_0\_8

Register Address: SPI Page 0xa1, SPI Offset 0x90

Register Description: UDFs of slice 2 for none-IP Registers

Table 769: UDF\_2\_C\_0\_8

| Bits | Name            | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_1_C_0_8 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

## UDF\_0\_D\_0\_11

Register Address: SPI Page 0xa1, SPI Offset 0xa0

Register Description: UDFs for IPv6 Chain Rule Registers

Table 770: UDF\_0\_D\_0\_11

| Bits | Name             | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default |
|------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | CFG_UDF_0_D_0_11 | R/W | UDF Configuration Each byte of this field represents the configuration of each UDF_n_X[N], where n = 0,1,2; X = A,B,C,D and [N] = 0-11. The configuration of UDF_n_X0 is in the lowest byte and the configuration of UDF_n_X1 is in the second lowest byte and so on. Following are the UDF definitionUDF_n_A0,,UDF_n_A8: These UDFs are used by IPv4 packets for Slice n.(n = 0,1 or 2)UDF_n_B0,,UDF_n_B8: These UDFs are used by IPv6 packets for Slice n.(n = 0,1 or 2)UDF_n_C0,,UDF_n_C8: These UDFs are used by Non-IP packets for Slice n.(n = 0,1 or 2)UDF_n_D0,,UDF_n_D11: These UDFs are used by IPv6 packet for the Chain Slice. Cfg_UDF_n_X[N][7:5]: the offset base 000: Start of frame; 010: End of L2; 011: End of L3; Others: Reserved Cfg_UDF_n_X[N][4:0]: the offset=N indicate the UDF starts from the location 2N bytes after the location implied by the offset base. |         |

# Page 0xff: SPI Register

Table 771: Page 0xff: SPI Register

| Address | Bits | Register Name         |
|---------|------|-----------------------|
| 0xf0    | 7:0  | "SPIDIO0" on page 419 |
| 0xf1    | 7:0  | "SPIDIO1" on page 419 |
| 0xf2    | 7:0  | "SPIDIO2" on page 420 |
| 0xf3    | 7:0  | "SPIDIO3" on page 420 |
| 0xf4    | 7:0  | "SPIDIO4" on page 420 |
| 0xf5    | 7:0  | "SPIDIO5" on page 420 |
| 0xf6    | 7:0  | "SPIDIO6" on page 420 |
| 0xf7    | 7:0  | "SPIDIO7" on page 421 |
| 0xfd    | 7:0  | "SPICTL" on page 421  |
| 0xfe    | 7:0  | "SPISTS" on page 422  |
| 0xff    | 7:0  | "PAGEREG" on page 422 |

#### SPIDIO0

Register Address: SPI Page 0xff, SPI Offset 0xf0

Register Description: SPI Data I/O Register 0

Table 772: SPIDIO0

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 0 | 0x0     |

#### SPIDIO1

Register Address: SPI Page 0xff, SPI Offset 0xf1

Register Description: SPI Data I/O Register 1

Table 773: SPIDIO1

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 1 | 0x0     |

#### SPIDIO2

Register Address: SPI Page 0xff, SPI Offset 0xf2

Register Description: SPI Data I/O Register 2

Table 774: SPIDIO2

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 2 | 0x0     |

#### SPIDIO3

Register Address: SPI Page 0xff, SPI Offset 0xf3

Register Description: SPI Data I/O Register 3

Table 775: SPIDIO3

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 3 | 0x0     |

#### SPIDIO4

Register Address: SPI Page 0xff, SPI Offset 0xf4

Register Description: SPI Data I/O Register 4

Table 776: SPIDIO4

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 4 | 0x0     |

#### SPIDIO5

Register Address: SPI Page 0xff, SPI Offset 0xf5

Register Description: SPI Data I/O Register 5

Table 777: SPIDIO5

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 5 | 0x0     |

### SPIDIO6

Register Address: SPI Page 0xff, SPI Offset 0xf6

Register Description: SPI Data I/O Register 6

Table 778: SPIDIO6

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 6 | 0x0     |

#### SPIDIO7

Register Address: SPI Page 0xff, SPI Offset 0xf7

Register Description: SPI Data I/O Register 7

Table 779: SPIDIO7

| Bits | Name     | R/W | Description    | Default |
|------|----------|-----|----------------|---------|
| 7:0  | RESERVED | R/W | SPI Data I/O 7 | 0x0     |

## **SPICTL**

Register Address: SPI Page 0xff, SPI Offset 0xfd

Register Description: SPI Control Register

Table 780: SPICTL

| Bits | Name   | R/W | Description                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | SPICTL | R/W | SPI control information. bit 7: (SPIF) SPI R/W Complete Flag bit 6: (WCOL) SPI Write Collision bit 5: (RACK) SPI read data ready ack (self- clearing) bit 4: (MODF) SPI Mode Fault Flag bit 3: ( ) None defined bit 2: (SHDT) Short Data Bytes bit 1: (TXRDY) SMP Tx Ready Flag - should check it every 8 bytes bit 0: (RXRDY) SMP Rx Ready Flag - should check it every 8 bytes | 0x0     |

#### **SPISTS**

Register Address: SPI Page 0xff, SPI Offset 0xfe

Register Description: SPI Status Register

Table 781: SPISTS

| Bits | Name     | R/W | Description                                                                                                                                                                          | Default |
|------|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7:0  | RESERVED | R/W | bit[7](SPIF): SPI Read/Write Complete Flag<br>bit[6](RESERVED_1): Reserved<br>bit[5](RACK): SPI Read Data Ready<br>Acknowledgement (self-cleaning)<br>bit[4:0](RESERVED_0): Reserved | 0x0     |

#### **PAGEREG**

Register Address: SPI Page 0xff, SPI Offset 0xff

Register Description: PAGE Control Register

Table 782: PAGEREG

| Bits | Name     | R/W | Description | Default |
|------|----------|-----|-------------|---------|
| 7:0  | RESERVED | R/W | Next Page   | 0x0     |

# **Section 2: Revision History**

| Revision      | Date     | Change Description                                                            |
|---------------|----------|-------------------------------------------------------------------------------|
| 53134-PR103-R | 04/19/17 | Updated:                                                                      |
|               |          | <ul> <li>Table 2: "Page 0x00: Control Register," on page 26</li> </ul>        |
|               |          | Table 59: "STRAP_PIN_STATUS," on page 53                                      |
| 53134-PR102-R | 10/06/16 | Updated:                                                                      |
|               |          | <ul> <li>"LED Function Map Register" on page 47</li> </ul>                    |
|               |          | <ul> <li>"PORT_VLAN_CTL" on page 297</li> </ul>                               |
|               |          | <ul> <li>"PORT_VLAN_CTL_IMP" on page 298</li> </ul>                           |
|               |          | <ul> <li>"Page 0x85: Port 5 External PHY MII Register" on page 486</li> </ul> |
|               |          | Added:                                                                        |
|               |          | "LED Selector 2 Register (Page 10h-14h: Address 38h)" on page 211             |
| 53134-PR101-R | 01/29/16 | Updated:                                                                      |
|               |          | <ul> <li>Table 2: "Page 0x00: Control Register," on page 7.</li> </ul>        |
|               |          | <ul> <li>Table 8: "IMP Port State Override Register," on page 13.</li> </ul>  |
|               |          | <ul> <li>Table 40: "STS_OVERRIDE_P5," on page 29.</li> </ul>                  |
|               |          | Table 69: "LNKSTS," on page 42.                                               |
|               |          | <ul> <li>Table 70: "LNKSTSCHG," on page 43.</li> </ul>                        |
|               |          | <ul> <li>Table 71: "SPDSTS," on page 43.</li> </ul>                           |
|               |          | <ul> <li>Table 72: "DUPSTS," on page 44.</li> </ul>                           |
|               |          | Table 73: "PAUSESTS," on page 44.                                             |
|               |          | <ul> <li>Table 74: "SRCADRCHG," on page 45.</li> </ul>                        |
|               |          | <ul> <li>Table 75: "LSA_PORT," on page 45.</li> </ul>                         |
|               |          | • .                                                                           |
|               |          | <ul> <li>Table 77: "LSA_MII_PORT," on page 46.</li> </ul>                     |
|               |          | <ul> <li>Table 78: "BIST_STS0," on page 46.</li> </ul>                        |
|               |          | Table 79: "BIST_STS1," on page 46.                                            |
|               |          | • .                                                                           |
|               |          | • .                                                                           |
|               |          | <ul> <li>Table 82: "STRAP_PIN_STATUS," on page 47.</li> </ul>                 |
|               |          | <ul> <li>Table 83: "DIRECT_INPUT_CTRL_VALUE," on page 48.</li> </ul>          |
|               |          | Table 84: "RESET_STATUS," on page 49.                                         |
|               |          | • .                                                                           |
|               |          | Table 102: "Device ID," on page 58.                                           |
|               |          | Table 103: "CHIP_REVID," on page 59.                                          |
| 53134-PR100-R | 04/24/15 | Initial release.                                                              |

**Broadcom**<sup>®</sup> April 19, 2017 • 53134-PR103



Web: www.broadcom.com Corporate Headquarters: San Jose, CA © 2017 by Broadcom. All rights reserved.

53134-PR103

April 19, 2017