Úvod do informačních technologií

Jan Outrata

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

přednášky

Binární logika

Číselné soustavy (1)

Počítač = počítací stroj ... počítání s čísly

Člověk:

- deset hodnot (deset prstů na rukách), deset symbolů (číslic, 0 až 9)
- použití desítkové (dekadické) poziční číselné soustavy: číslo jako součet mocninné řady o základu (radixu) 10, zápis = posloupnost symbolů pro koeficienty řady, pozice (pořadí) symbolu určuje mocninu (řád)

$$(1024)_{10} = 1 \cdot 10^3 + 0 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0$$

 jiné číselné soustavy: dvanáctková (hodiny), šedesátková (minuty, sekundy), dvacítková (dřívější platidla) aj.

Číselné soustavy (2)

Věta (O reprezentaci přirozených čísel (včetně 0))

Libovolné přirozené číslo N (včetně 0) lze vyjádřit jako součet mocninné řady o základu $B \geq 2, B \in \mathbb{N}$:

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B^1 + a_0 \cdot B^0,$$

kde $0 \le a_i < B, a_i \in \mathbb{N}$ jsou koeficienty řady.

Číslo N se (v poziční číselné soustavě o základu B) zapisuje jako řetěz symbolů (číslic) S_i pro koeficienty a_i zleva v pořadí pro i od n-1 k 0:

$$(S_{n-1}S_{n-2}\dots S_1S_0)_B$$

Číselné soustavy (2)

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ postupným přičítáním:

```
egin{aligned} N &= a_0 \\ B' &= B \\ 	extbf{for } i &= 1 	extbf{ to } n-1 	extbf{ do } \\ N &= N + a_i * B' \\ B' &= B' * B \end{aligned}
```

Získání zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ čísla N (dané hodnoty) postupným odečítáním:

```
\begin{array}{ll} B'=1, i=0\\ \text{while } B'*B\leq N \text{ do}\\ B'=B'*B\\ i=i+1\\ \text{for } i\text{ to } 0\text{ do}\\ a_i=N/B'\\ N=N-a_i*B'\\ \end{array}; \text{celočíselné dělení}\\ N=N-B'+B'\\ \vdots=N \text{ mod } B'\\ \end{array}
```

Číselné soustavy (2)

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným přičítáním:

```
N = a_0
B' = B
for i = 1 to n - 1 do
N = N + a_i * B
B' = B' * B
```

Získání zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ čísla N (dané hodnoty) postupným odečítáním:

```
\begin{array}{l} B'=1, i=0\\ \text{while } B'*B \leq N \text{ do}\\ B'=B'*B\\ i=i+1\\ \text{for } i \text{ to } 0 \text{ do}\\ a_i=N/B' & \text{; celočíselné dělení}\\ N=N-a_i*B' & \text{; } = N \text{ mod } B' \end{array}
```

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným násobením:

```
N=a_{n-1} for i=n-2 to 0 do N=N*B+a_i
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

```
\begin{array}{l} a_0 = N \bmod B \\ i = 1 \\ \mbox{while } N \geq B \mbox{ do} \\ N = N/B & \mbox{; celočíselné dělení} \\ a_i = N \bmod B \\ i = i \pm 1 \end{array}
```

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným násobením:

```
N=a_{n-1} for i=n-2 to 0 do N=N*B+a_i
```

Získání zápisu $(S_{n-1}S_{n-2}...S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

```
a_0=N mod B i=1 while N \geq B do N=N/B ; celočíselné dělení a_i=N mod B i=i+1
```

Číselné soustavy (3)

$$N = a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B + a_0$$

= $(\dots (a_{n-1} \cdot B + a_{n-2}) \cdot B + \dots + a_1) \cdot B + a_0$

Získání (hodnoty) čísla N z jeho zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ postupným násobením:

$$N=a_{n-1}$$
 for $i=n-2$ to 0 do $N=N*B+a_i$

Získání zápisu $(S_{n-1}S_{n-2}\dots S_1S_0)_B$ čísla N (dané hodnoty) postupným dělením:

```
a_0 = N \mod B i=1 while N \geq B do N = N/B \qquad \qquad \text{; celočíselné dělení} a_i = N \mod B i=i+1
```

ÚKOL

- 1 Pro několik čísel zjistěte (hodnotu) čísla ze zápisů ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.
- Pro několik čísel zjistěte zápis čísla (dané hodnoty) ve dvojkové, osmičkové, desítkové a šestnáctkové soustavě.

Číselné soustavy (4)

Počítač:

- první mechanické počítací stroje dekadické, tj. používající desítkovou soustavu
- mechanické součásti mající 10 stabilních stavů = deset hodnot
- elektromechanické a elektronické součásti: nejsnadněji realizovatelné 2 stabilní stavy (relé sepnuto/rozepnuto, elektronkou či tranzistorem proud prochází/neprochází, mezi částmi integrovaného obvodu je/není napětí) = 2 hodnoty, 2 symboly (číslice, 0 a 1) -> digitální zařízení
- použití dvojkové (binární) poziční číselné soustavy: číslo jako součet mocninné řady o základu 2, zápis = posloupnost symbolů pro koeficienty, pozice symbolu určuje mocninu

$$(11)_{10} = (1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Dlaší typy dat (čísla s řádovou čárkou, znaky), odvozeny od (celých) čísel \rightarrow **binární reprezentace** všech typů dat.

Číselné soustavy (5)

Počítač pro člověka:

- **p** použití pozičních číselných soustav o základu 2^k $(k \in \mathbb{N})$:
 - osmičkové (oktalové): symboly (číslice) 0 až 7
 - šestnáctkové (hexadecimální): symboly (číslice) 0 až 9 a A až F
- jednoduchý převod mezi soustavami:

Převod zápisu čísla v soustavě o základu B^k $(k \in \mathbb{N})$ na zápis v soustavě o základu B (a naopak):

každý symbol soustavy o základu B^k zapisující nějaké číslo nahradíme k-ticí symbolů soustavy o základu B zapisující stejné číslo (a naopak, k-tice symbolů v zápisu brány zprava, chybějící symboly nahrazeny 0)

Binární logika (1)

Základní operace v počítači = logické operace

- formální logický základ = výroková logika zkoumá pravdivostní hodnotu výroků (pravda/nepravda, spojky/operátory "neplatí, že" → operace negace ¬, "a současně platí" → konjunkce ∧, "nebo platí" → disjunkce ∨, "jestliže platí, pak platí" → implikace ⇒ aj.)
- ullet výroky = $oldsymbol{logick\'e}$ výrazy vyhodnocovan\'e na hodnoty pravda/nepravda, 1/0
- matematický aparát pro práci s log. výrazy: Booleova algebra (binární, dvoustavová, logika), George Boole, množiny
- fyzická realizace logické elektronické obvody základ digitálních zařízení
- binární logika: univerzální, teoreticky zvládnutá, efektivně realizovatelná logickými el. obvody

Binární logika (2)

Logická proměnná x

- lacktriangle veličina nabývající dvou možných diskrétních logických hodnot: $oldsymbol{0}$ (nepravda) a $oldsymbol{I}$ (pravda)
- lacktriangle definice: $x=\mathbf{I}$ jestliže $x \neq \mathbf{0}$ a $x=\mathbf{0}$ jestliže $x \neq \mathbf{I}$

$\textbf{Logick\'a funkce } f(x_1,\dots,x_n)$

- funkce n logických proměnných x_1, \ldots, x_n nabývající dvou možných diskrétních hodnot $\mathbf{0}$ (nepravda) a \mathbf{I} (pravda)
- logická proměnná = logická funkce identity proměnné, skládání funkcí
- základní = logické operace

Booleova algebra (binární logika)

- algebra logických proměnných a logických funkcí
- dvouhodnotová algebra, algebra dvou stavů
- relace rovnosti: f = g, právě když $(f = \mathbf{I} \land g = \mathbf{I}) \lor (f = \mathbf{0} \land g = \mathbf{0})$

Logické operace (1)

3 základní:

Negace (inverze)

pravdivá, když operand nepravdivý, jinak nepravdivá

\overline{x}
Ι
0

• operátory: \overline{x} , NOT x, $\neg x$ (výrokově negace, algebraicky negace), \overline{X} (množinově doplněk)

Logické operace (2)

Logický součin (konjunkce)

pravdivá, když oba operandy pravdivé, jinak nepravdivá

x	y	$x \cdot y$
0	0	0
0	Ι	0
Ι	0	0
Ι	Ι	I

• operátory: $x \cdot y/xy$ (prázdný), x AND y, $x \wedge y$ (výrokově konjunkce, algebraicky průsek), $X \cap Y$ (množinově průnik)

Logické operace (3)

Logický součet (disjunkce)

nepravdivá, když oba operandy nepravdivé, jinak pravdivá

x	y	x+y
0	0	0
0	Ι	I
I	0	I
Ι	Ι	I

operátory: x + y, $x \rightarrow QR$ y, $x \lor y$ (výrokově disjunkce, algebraicky spojení), $X \cup Y$ (množinově sjednocení)

Binární logika (3)

Logický výraz

- korektně vytvořená posloupnost (symbolů) logických proměnných a funkcí (operátorů) spolu se závorkami
- priority sestupně: negace, log. součin, log. součet
- např. $x \cdot \overline{y} + f(x, z) = (x \cdot \overline{y}) + f(x, z)$
- zápis logické funkce

Logická rovnice

- = dva logické výrazy v relaci rovnosti =
- ekvivalentní úpravy: negace obou stran, logický součin/součet obou stran se stejným výrazem, ..., log. funkce obou stran se stejnými ostatními operandy funkce
- NEekvivalentní úpravy: "krácení" obou stran o stejný (pod)výraz, např. x+y=x+z není ekvivalentní s y=z

Binární logika (4)

Axiomy (Booleovy algebry)

komutativita:

$$x \cdot y = y \cdot x$$
 $x + y = y + x$

distributivita:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 $x + y \cdot z = (x+y) \cdot (x+z)$

■ identita/neutrálnost (existence neutrální hodnoty):

$$\mathbf{I} \cdot x = x \qquad \mathbf{0} + x = x$$

komplementárnost:

$$x \cdot \overline{x} = \mathbf{0}$$
 $x + \overline{x} = 1$

Logické operace (3)

Vlastnosti základních logických operací

nula a jednička (agresivita):

$$\mathbf{0} \cdot x = \mathbf{0} \qquad \mathbf{I} + x = \mathbf{I}$$

idempotence:

$$x \cdot x = x$$
 $x + x = x$

asociativita:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 $x + (y + z) = (x + y) + z$

involuce (dvojí negace):

$$\overline{\overline{x}} = x$$

De Morganovy zákony:

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$
 $\overline{x + y} = \overline{x} \cdot \overline{y}$

absorpce:

$$x \cdot (x+y) = x$$
 $x + x \cdot y = x$

a další

Logické operace (4)

Vlastnosti základních logických operací – použití

- lacktriangle důkazy: s využitím axiomů a již dokázaných vlastností, rozborem případů (dosazením všech možných kombinací hodnot 0 a I za proměnné)
- ekvivalentní úpravy (pro zjednodušování) logických výrazů
- **.** . .

Logické operace (5)

Další operace

Implikace

nepravdivá, když první operand pravdivý a druhý nepravdivý, jinak pravdivá

x	y	$x \to y$
0	0	I
0	Ι	I
Ι	0	0
Ι	Ι	I

 \blacksquare operátory: $x \to y, \ x \to y$ (výrokově i algebraicky implikace), $X \subseteq Y$ (množinově podmnožina)

Logické operace (6)

Ekvivalence

pravdivá, když operandy mají stejnou hodnotu, jinak nepravdivá

x	y	$x \equiv y$
0	0	I
0	Ι	0
Ι	0	0
Ι	Ι	I

• operátory: $x \equiv y$, x XNOR y, $x \equiv y$ (výrokově i algebraicky ekvivalence), $X \equiv Y$ (množinově ekvivalence nebo rovnost)

Logické operace (7)

Nonekvivalence (negace ekvivalence, aritmetický součet modulo 2)

pravdivá, když operandy mají různou hodnotu, jinak nepravdivá

\boldsymbol{x}	y	$x \oplus y$
0	0	0
0	Ι	I
Ι	0	I
Ι	Ι	0

• operátory: $x \oplus y$, $x \times XOR$ y, $x \not\equiv y$ (výrokově i algebraicky negace ekvivalence), $X \not\equiv Y$ (množinově negace ekvivalence)

Logické operace (8)

Shefferova funkce (negace logického součinu)

nepravdivá, když oba operandy pravdivé, jinak pravdivá

x	y	$x \uparrow y$
0	0	I
0	Ι	I
Ι	0	I
Ι	Ι	0

lacktriangle operátory: $x \uparrow y$, x NAND y

Logické operace (9)

Piercova funkce (negace logického součtu)

pravdivá, když oba operandy nepravdivé, jinak nepravdivá

x	y	$x \downarrow y$
0	0	I
0	Ι	0
Ι	0	0
Ι	Ι	0

lacktriangle operátory: $x\downarrow y$, x NOR y

Logické funkce (1)

- zadání **pravdivostní tabulkou**:
 - úplně funkční hodnota $f(x_i)$ definována pro všech 2^n možných přiřazení hodnot proměnným $x_i, 0 \le i < n$
 - neúplně funkční hodnota pro některá přiřazení není definována (např. log. obvod realizující funkci ji neimplementuje)
- základní tvary (výrazu):
 - součinový (úplná konjunktivní normální forma, ÚKNF) log. součin log. součtů všech proměnných nebo jejich negací (úplných elementárních disjunkcí, ÚED)

$$(X_0 + \ldots + X_{n-1}) \cdot \ldots \cdot (X_0 + \ldots + X_{n-1})$$
 $X_i = x_i \text{ nebo } \overline{x_i} \text{ (literál)}$

 součtový (úplná disjunktivní normální forma, ÚDNF) – log. součet log. součinů všech proměnných nebo jejich negací (úplných elementárních konjunkcí, ÚEK)

$$(X_0 \cdot \ldots \cdot X_{n-1}) + \ldots + (X_0 \cdot \ldots \cdot X_{n-1})$$
 $X_i = x_i$ nebo $\overline{x_i}$

Logické funkce (2)

Převod log. funkce $f(x_i)$ na základní tvar (normální formu)

- ekvivalentními úpravami a doplněním chybějících proměnných nebo jejich negací
- tabulkovou metodou:
 - 1 pro řádky s $f(x_i)=\mathbf{0}(\mathbf{I})$ sestroj log. součet (součin) všech x_i pro $x_i=\mathbf{0}(\mathbf{I})$ nebo $\overline{x_i}$ pro $x_i=\mathbf{I}(\mathbf{0})$
 - 2 výsledná ÚKNF (ÚDNF) je log. součinem (součtem) těchto log. součtů (součinů)

x	y	z	f(x,y,z)	ÚED	ÚEK
0	0	0	0	x+y+z	
0	0	I	0	$x + y + \overline{z}$	
0	I	0	0	$x + \overline{y} + z$	
0	I	I	I		$\overline{x} \cdot y \cdot z$
I	0	0	0	$\overline{x} + y + z$	
I	0	I	I		$x \cdot \overline{y} \cdot z$
I	I	0	I		$x \cdot y \cdot \overline{z}$
Ι	I	I	I		$x \cdot y \cdot z$

$$\begin{array}{l} \mathsf{\acute{U}KNF}(f(x,y,z)) \colon (x+y+z) \cdot (x+y+\overline{z}) \cdot (x+\overline{y}+z) \cdot (\overline{x}+y+z) \\ \mathsf{\acute{U}DNF}(f(x,y,z)) \colon \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z \end{array}$$

ÚKOL

Převeďte několik log. funkcí se třemi a více proměnnými do ÚKNF a ÚDNF.

Logické funkce (3)

Věta (O počtu log. funkcí)

Existuje právě $2^{(2^n)}$ logických funkcí s n proměnnými.

Funkce f^1 jedné proměnné

x	f_0 0	f_1 x	$\frac{f_2}{\overline{x}}$	f_3 \mathbf{I}
0	0	0	I	Ι
Ι	0	I	0	I

Funkce f^2 dvou proměnných

x	y	f_0	f_1	f_2	f_3 x	f_4	f_5 y	$f_6 \oplus$	f_7 +	f_8 \downarrow	$f_9 \equiv$	$\frac{f_{10}}{\overline{y}}$	f_{11}	$\frac{f_{12}}{\overline{x}}$	f_{13} \rightarrow	f_{14}	f_{15} \mathbf{I}
0	0	0	0	0	0	0	0	0	0	I	I	I	I	I	I	I	I
0	Ι	0	0	0	0	I	I	I	I	0	0	0	0	I	I	I	I
I	0	0	0	I	I	0	0	I	I	0	0	I	I	0	0	I	I
I	Ι	0	I	0	I	0	I	0	I	0	I	0	I	0	I	0	I

Logické funkce (4)

Funkce více než dvou proměnných

pro n=3:

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

a podobně pro n>3

Věta (O reprezentaci log. funkcí, Shannonův expanzní teorém)

Jakoukoliv logickou funkci libovolného počtu proměnných lze vyjádřit pomocí logických funkcí dvou proměnných (např. základních logických operací $\overline{x}, x \cdot y, x + y$).

Logické funkce (4)

Funkce více než dvou proměnných

pro n=3:

$$f(x, y, z) = x \cdot f(\mathbf{I}, y, z) + \overline{x} \cdot f(\mathbf{0}, y, z)$$

a podobně pro n>3

Věta (O reprezentaci log. funkcí, Shannonův expanzní teorém)

Jakoukoliv logickou funkci libovolného počtu proměnných lze vyjádřit pomocí logických funkcí dvou proměnných (např. základních logických operací \overline{x} , $x \cdot y$, x + y).

Logické funkce (5)

Zjednodušení výrazu logické funkce

- optimalizace za účelem dosažení co nejmenšího počtu operátorů (v kompromisu s min. počtem typů operátorů)
- důvod: méně (typů) log. obvodů realizujících funkci (menší, levnější, nižsí spotřeba, . . .)

Algebraická minimalizace

$$\begin{array}{ll} f &=& \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z \\ & // \ \text{dvakrát přičteme} \ x \cdot y \cdot z \ \text{(idempotence)} \\ f &=& (\overline{x} \cdot y \cdot z + x \cdot y \cdot z) + (x \cdot \overline{y} \cdot z + x \cdot y \cdot z) + (x \cdot y \cdot \overline{z} + x \cdot y \cdot z) \\ & // \ \text{distributivita} \\ f &=& y \cdot z \cdot (\overline{x} + x) + x \cdot z \cdot (\overline{y} + y) + x \cdot y \cdot (\overline{z} + z) \ // \ \text{komplementárnost} \\ f &=& x \cdot y + y \cdot z + x \cdot z \end{array}$$

pro složitější výrazy náročná

Logické funkce (5)

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

- nahrazení algebraických ekvivalentních úprav geometrickými postupy
- nalezení minimálního výrazu
- f I k výrazu v základním součtovém tvaru se sestaví tzv. **Karnaughova mapa** = tabulka vyplněná f I v buňkách reprezentující log. součiny, součiny reprezentované sousedními buňkami se liší v f 1 proměnné
- hledání smyček (minterm) v mapě splňujících jisté podmínky (min. počet, max. obdélníková oblast vyplněná I, počet políček mocnina 2, mohou se překrývat, pokrytí všech I)
- 3 smyčky po vyloučení komplementárních proměnných a jejich negací reprezentují log. součiny výsledného součtového tvaru

Logické funkce (6)

Zjednodušení výrazu logické funkce

Karnaughova metoda (Veitch diagram)

$$f = \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

	$\overline{x} \cdot \overline{y}$	$\overline{x} \cdot y$	$x \cdot y$	$x \cdot \overline{y}$
\overline{z}				
z		(I	(I)	I

Obrázek: Karnaughova mapa

$$f = x \cdot y + y \cdot z + x \cdot z$$

výpočetně náročná (hledání smyček)

Další algoritmické metody: tabulační (Quine-McCluskey), branch-and-bound (Petrick), Esspreso logic minimizer aj.

ÚKOL

Pokuste se minimalizovat log. funkce z přechozího úkolu.

Logické funkce (7)

Úplný systém logických funkcí

- = množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- ightarrow množina log. funkcí dvou proměnných (Věta o reprezentaci log. funkcí)
 - lacksquare (1) negace \overline{x} , log. součin $x\cdot y$ a log. součet x+y
- lacksquare (2) negace \overline{x} a implikace x o y
- a další

Minimální úplný systém logických funkcí

- = úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný
- (1) NENÍ: $x \cdot y = \overline{x} + \overline{y}$, $x + y = \overline{x} \cdot \overline{y}$ (De Morganovy zákony, dvojí negace)
- **(**2) je
- (3) negace \overline{x} a log. součin $x \cdot y$
- (4) negace \overline{x} a log. součet x + y
- a další

Logické funkce (7)

Úplný systém logických funkcí

- = množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných)
- ightarrow množina log. funkcí dvou proměnných (Věta o reprezentaci log. funkcí)
 - (1) negace \overline{x} , log. součin $x \cdot y$ a log. součet x + y
- (2) negace \overline{x} a implikace $x \to y$
- a další

Minimální úplný systém logických funkcí

- úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný
- (1) NENÍ: $x \cdot y = \overline{x} + \overline{y}$, $x + y = \overline{x} \cdot \overline{y}$ (De Morganovy zákony, dvojí negace)
- (2) je
- (3) negace \overline{x} a log. součin $x \cdot y$
- (4) negace \overline{x} a log. součet x + y
- a další

Logické funkce (8)

Minimální úplný systém logických funkcí

Jediná funkce:

- **Shefferova** ↑ (negace log. součinu)
- Piercova ↓ (negace log. součtu)
- důkaz: vyjádření např. negace a log. součinu (součtu)

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

- 1 vyjádření funkce v základním součtovém tvaru
- z jednodušení výrazu funkce, např. pomocí Karnaughovy metody
- 3 aplikace De Morganových zákonů pro převedení výrazu do tvaru, který obsahuje pouze Shefferovy nebo pouze Piercovy funkce

Logické funkce (8)

Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce

$$f = \overline{x} \cdot y \cdot z + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

$$f = x \cdot y + y \cdot z + x \cdot z$$

$$f = \overline{\overline{x \cdot y} \cdot \overline{y \cdot z}} + x \cdot z$$

$$f = \overline{\overline{\overline{x \cdot y} \cdot \overline{y \cdot z}} \cdot \overline{x \cdot z}}$$

$$f = (\overline{x} + y + z) \cdot (x + \overline{y} + z) \cdot (x + y + \overline{z}) \cdot (x + y + z)$$

$$f = (x + y) \cdot (y + z) \cdot (x + z)$$

$$f = \overline{x + y + y + z} \cdot (x + z)$$

$$f = \overline{\overline{x + y + y + z}} + \overline{x + z}$$

$$f = \overline{\overline{x + y + y + z}} + \overline{x + z}$$

ÚKOL

Vyjádřete log. operace negace, log. součin, log. součet, implikace, ekvivalence a nonekvivalence pomocí (1) Shefferovy funkce a (2) Piercovy funkce.

Fyzická realizace logických funkcí (1)

- dříve pomocí **spínacích relé** a **elektronek**, plus pasivní součástky (rezistor aj.)
- dnes pomocí tranzistorů (a diod) v integrovaných obvodech: technologie RTL, DTL, TTL, CMOS aj.

Obrázek: Příklad realizace log. operací NAND a NOR (v rezistorovětranzistorové logice, RTL)

- realizace log. operací pomocí integrovaných obvodů logických členů, hradel
 - vstupy = reprezentované log. proměnné
 - výstup = výsledek realizované log. operace
 - ullet stavy (signály) na vstupech/výstupu = log. (binární) hodnoty 0/I= míra informace s jednotkou 1 bit
- symbolické značky log. členů ve schématech zapojení logických obvodů realizujících lib. log. funkci

Fyzická realizace logických funkcí (2)

Obrázek: Symbolické značky logických členů (podle normy IEC)

Obrázek: Symbolické značky logických členů (tradiční, ANSI)

Fyzická realizace logických funkcí (3)

$$f = \overline{\overline{\overline{x \cdot y \cdot \overline{y \cdot z} \cdot \overline{x \cdot y \cdot \overline{y \cdot z}} \cdot \overline{x \cdot z}}} \cdot \overline{x \cdot z}$$

Obrázek: Schéma zapojení log. obvodu realizujícího log. funkci f pomocí log. členů realizujících log. operaci NAND

ÚKOL

Nakreslete schéma zapojení log. obvodu realizujícího log. operace NOT, AND, OR, implikace, ekvivalence a XOR pomocí log. členů realizujících operaci (1) NAND a (2) NOR.

Logické obvody

- jeden výstup: realizace jedné log. funkce
- více výstupů: realizace více log. funkcí zároveň \to realizace vícebitové log. funkce $^{\rm n}f$
- n-tice vstupů: reprezentace **vícebitových (n-bitových) log. proměnných** $^{n}\mathbf{x}=$ **vícebitový log. obvod**
- kombinační: stavy na výstupech obvodu (tj. funkční hodnota) závisí pouze na okamžitých stavech na vstupech (tj. hodnotách proměnných)
- sekvenční: stavy na výstupech obvodu (tj. funkční hodnota) závisí nejen na okamžitých stavech na vstupech (tj. hodnotách proměnných), ale také na přechozích stavech na vstupech

Kombinační logické obvody (1)

- stavy na výstupech obvodu (tj. funkční hodnota) závisí pouze na okamžitých stavech na vstupech (tj. hodnotách proměnných)
- jedné kombinaci stavů na vstupech odpovídá jediná kombinace stavů na výstupech

Kombinační logické obvody (2)

Komparátor

- lacksquare provádí srovnání hodnot dvou log. proměnných A a B na vstupu
- tři výstupy udávající pravdivost vztahů: A < B, A > B a A = B, realizace tříbitové log. funkce $Y_< = Y(A < B), Y_> = Y(A > B), Y_= = Y(A = B)$
- jednobitový:

$$\begin{array}{ll} Y_{<} = \overline{A} \cdot B & Y_{>} = A \cdot \overline{B} & Y_{=} = A \cdot B + \overline{A} \cdot \overline{B} \\ Y_{<} = \overline{\overline{\overline{A} \cdot B}} & Y_{>} = \overline{\overline{A} \cdot \overline{B}} & Y_{=} = \overline{\overline{A} \cdot B} \cdot \overline{A \cdot \overline{B}} \end{array}$$

Kombinační logické obvody (3)

Komparátor

A	B	$Y_{<}$	$Y_{>}$	$Y_{=}$
0	0	0	0	I
0	I	I	0	0
Ι	0	0	Ι	0
Ι	\mathbf{I}	0	0	\mathbf{I}

Obrázek: Pravdivostní tabulka a schéma zapojení jednobitového komparátoru

 vícebitový: zřetězené zapojení jednobitových pro každý řád vícebitových proměnných od nejvýznamějšího po nejméně významný

Obrázek: Schéma zapojení čtyřbitového komparátoru

Kombinační logické obvody (4)

Multiplexor

- \blacksquare přepíná na výstup Q log. hodnotu na jednom z 2^n datových vstupů D_i vybraném na základě n-bitové hodnoty na adresním vstupu A
- \blacksquare kromě výstupu Q navíc ještě negovaný (invertovaný) výstup \overline{Q}
- např. čtyřvstupý (4 datové vstupy, dvoubitový adresní vstup) realizuje log. funkci

$$Q = \overline{A_0} \cdot \overline{A_1} \cdot D_0 + A_0 \cdot \overline{A_1} \cdot D_1 + \overline{A_0} \cdot A_1 \cdot D_2 + A_0 \cdot A_1 \cdot D_3$$

Kombinační logické obvody (5)

Multiplexor

Obrázek: Pravdivostní tabulka a schéma zapojení čtyřvstupého multiplexoru

použití: multiplexování datových vstupů na základě adresy

Kombinační logické obvody (6)

Binární dekodér

nastaví (na I) jeden z 2^n výstupů S_i odpovídající n-bitové hodnotě na adresním vstupu A

A_0	A_1	S_0	S_1	S_2	S_3
0	0	I	0	0	0
I	0	0	Ι	0	0
0	I	0	0	Ι	0
I	I	0	0	0	I

Obrázek: Pravdivostní tabulka a schéma zapojení bin. dekodéru se čtyřmi výstupy

použití: dekodér adresy pro výběr místa v paměti

Kombinační logické obvody (7)

Binární sčítačka

- čísla ve dvojkové soustavě = binárně reprezentovaná
- platí stejná pravidla aritmetiky jako v desítkové soustavě, např. (+ je zde aritmetické sčítání!):

$$0+0=0 \qquad 0+I=I \qquad I+I=I0$$

- lacksquare sčítačka sečte binární hodnoty v každém řádu dvou n-bitových proměnných A a B podle pravidel aritmetiky pro sčítání, tj. s přenosem hodnoty do vyššího řádu
- lacktriangle realizuje log. funkce součtu S_i v řádu $0 \leq i < n$ a přenosu r_i z řádu i do vyššího řádu:

$$S_i = A_i \oplus B_i \oplus r_{i-1}$$
 $r_i = A_i \cdot B_i + (A_i \oplus B_i) \cdot r_{i-1},$ $r_{-1} = 0$

Kombinační logické obvody (8)

Binární sčítačka

A_i	B_i	r_{i-1}	S_i	r_i
0	0	0	0	0
0	0	\mathbf{I}	I	0
0	I	0	I	0
0	I	\mathbf{I}	0	I
I	0	0	I	0
I	0	\mathbf{I}	0	I
I	I	0	0	I
I	Ι	\mathbf{I}	I	I

Obrázek: Pravdivostní tabulka a schéma zapojení jednobitové sčítačky (pro řád i)

- vícebitová: zřetězené zapojení jednobitových pro každý řád vícebitových proměnných od nejméně významného po nejvýznamější s přenosem do vyššího řádu
- použití: (aritmetické) sčítání binárně reprezentovaných 8-, 16-, 32-, atd. bitových čísel

Sekvenční logické obvody (1)

- stavy na výstupech obvodu (tj. funkční hodnota) závisí nejen na okamžitých stavech na vstupech (tj. hodnotách proměnných), ale také na přechozích stavech na vstupech
- předchozí stavy na vstupech zachyceny vnitřním stavem obvodu
- nutné identifikovat a synchronizovat stavy obvodu v čase
- čas: periodický impulsní signál = "hodiny" (clock), diskrétně určující okamžiky synchronizace obvodu, generovaný krystalem o dané frekvenci

Obrázek: Časový signál "hodin" (clock)

■ zpětné vazby z (některých) výstupů na (některé) vstupy

Sekvenční logické obvody (2)

Přenos dat (hodnot vícebitových log. proměnných):

- sériový: bity (hodnoty 0/I) přenášeny postupně v čase za sebou po jednom datovém vodiči
- **paralelní**: bity přenášeny zároveň v čase po více datových vodičích
- úlohy transformace mezi sériovým a paralelním přenosem

Obrázek: Sériový a paralelní přenos dat

Sekvenční logické obvody (3)

Klopné obvody

nejjednodušší sekvenční obvody

druhy:

- astabilní: nemají žádný stabilní stav, periodicky (např. podle hodinových impulsů) překlápí výstupy z jednoho stavu do druhého; použití jako generátory impulsů
- monostabilní: jeden stabilní stav na výstupech, po vhodném řídícím signálu je po definovanou dobu ve stabilním stavu; použití k vytváření impulsů dané délky
- bistabilní: oba stavy na výstupech stabilní, zůstává v jednom stabilním stavu dokud není vhodným řídícím signálem překlopen do druhého; použití pro realizaci pamětí

Řízení:

- lacksquare asynchronně signály (0 nebo I) na datových vstupech
- synchronně hodinovým signálem
- hladinou signálu: horní (I) nebo dolní (0)
- **hranami** signálu: nástupní (0 o I u horní hladiny) nebo sestupní (0 o I u dolní hladiny)

Sekvenční logické obvody (4)

Klopný obvod (typu) RS

- nejjednodušší bistabilní, základ ostatních
- jednobitový paměťový člen
- asynchronní vstupy R (Reset) pro nulování log. hodnoty na výstupu Q (v čase i) a S (Set) pro nastavení hodnoty
- lacksquare kromě výstupu Q navíc ještě negovaný (invertovaný) výstup \overline{Q}

Sekvenční logické obvody (5)

Klopný obvod (typu) RS

R	S	Q_i	$\overline{Q_i}$
0	0	Q_{i-1}	$\overline{Q_{i-1}}$
0	Ι	I	0
I	0	0	I
\mathbf{I}	Ι	N/A	N/A

Obrázek: Pravdivostní tabulka a schéma zapojení klopného obvodu RS

lacktriangle varianta se synchronizačním vstupem CLK s hodinových signálem

Obrázek: Schéma zapojení klopného obvodu RS s hodinovým vstupem CLK

Sekvenční logické obvody (6)

Klopný obvod (typu) RS

lacktriangle varianta **Master-Slave**: dva obvody RS (s hodinovým signálem) za sebou, řízení sestupní hranou signálu na vstupu CLK (u druhého negovaný)

Sekvenční logické obvody (7)

Klopný obvod (typu)

Obrázek: Schéma zapojení klopného obvodu D

- \blacksquare odstranění stavu $R=S=\mathbf{I}$ u obvodu RS (s hodinovým signálem), navíc mohou být (prioritní) vstupy R a S
- varianta Master-Slave: obvody D a RS (s hodinovým signálem) za sebou, řízení sestupní hranou signálu na vstupu CLK (u druhého negovaný)
- implementace ve formě integrovaných obvodů 7474, 7475

Sekvenční logické obvody (8)

Klopný obvod (typu) JK

Obrázek: Schéma zapojení klopného obvodu JK

- \blacksquare odstranění stavu $R=S=\mathbf{I}$ u varianty Mater-Slave obvodu RS, navíc mohou být (prioritní) vstupy R a S
- implementace ve formě integrovaných obvodů 7472, 7473, 7476

Sekvenční logické obvody (9)

Obvody v počítačích:

paralelní registr (střádač): vícebitová paměť pro hodnotu dodanou paralelně na více vstupů, paralelní zapojení klopných obvodů D

Obrázek: Schéma zapojení čtyřbitového paralelního registru

 sériový (posuvný) registr: vícebitová paměť pro hodnotu dodanou sériově na vstupu, sériové zapojení klopných obvodů D, použití pro transformaci sériových dat na paralelní

Obrázek: Schéma zapojení čtyřbitového sériového registru

Sekvenční logické obvody (10)

Obvody v počítačích:

■ <mark>čítač</mark>: paměť počtu impulsů na hodinovém vstupu, binárně reprezentovaný počet na vícebitovém výstupu, zřetězené zapojení klopných obvodů JK

Obrázek: Schéma zapojení čtyřbitového čítače

sériová sčítačka: (aritmetické) sčítání log. hodnot dodávaných na vstupy v sériovém tvaru po jednotlivých řádech