6.5 函数凸性与拐点

一、凸函数的定义

凸函数 弦位于弧的上方

凹函数 弦位于弧的下方

定义1: 设f为区间I上的函数. 若对于I上的任意 x_1, x_2 和实数 $\lambda \in (0,1)$,总有

 $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2),$ (1) 则称 f 为 I上的一个凸函数.

者(1)式中的≤改为<,则称 ƒ为 I 上的严格凸函数.

定义1: 设f为区间I上的函数. 若对于I上的任意 x_1, x_2 和实数 $\lambda \in (0,1)$,总有

 $f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2),$ (2) 则称 f 为 I上的一个凹函数.

者(2)式中的≥改为>,则称 ƒ为 I 上的严格凹函数。

注: 若 f 为 I 上的凸函数 ,则 – f 为 I 上的凹函数 . 若 f 为 I 上的凹函数 ,则 – f 为 I 上的凸函数 .

引理: f(x)为区间 I上的凸函数的充要条件是:

对于 I 中的任意三点 $x_1 < x_2 < x_3$,有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2} \tag{3}$$

推论: f(x)为区间 I上的凸函数的充要条件是:

对于 I中的任意三点 $x_1 < x_2 < x_3$,有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

二、凸函数的判定

定理1:设f为区间I上的可导函数,则下述论断 互相等价:

- (1) f(x) 为 I 上的凸函数;
- (2) f'(x) 为 I 上的增函数;
- (3) 对于任意 $x_1, x_2 \in I$,有

$$f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1).$$

定理2: 设 f(x) 在区间 I 上二阶可导,则 f(x)

在区间 I 上是凸(凹)函数的充要条件为:

$$f''(x) \ge 0 \quad (f''(x) \le 0).$$

例1、求下列函数的凹凸区间。

$$(1)y = x^4$$
;

(2)
$$y = \sqrt[3]{x}$$
.

→ 凸函数的性质

性质1: 设 f(x) 为开区间 I 上的凸 (凹) 函数,则 $\forall x_0 \in I, f'_+(x_0)$ 与 $f'_-(x_0)$ 均存在.

推论: 开区间 I 上的凸(凹)函数为连续函数.

性质2: 设 f(x) 为开区间 I 上的可导凸 (凹) 函数,则 x_0 为 f(x) 的极值点的充要条件是 $f'(x_0) = 0$.

性质3: 设 f(x) 定义在开区间 I 上,且不恒为常数.

- (1) 若 f(x) 为凸函数,则 f(x)在 I 上无最大值.
- (2) 若 f(x) 为凹函数,则 f(x)在 I 上无最小值.

推论: (1) 若 f(x) 为闭区间 [a,b] 上的凸连续函数,则 $f(x) \leq \max\{f(a), f(b)\}.$

(2)若 f(x)为闭区间 [a,b]上的凹连续函数,则 $f(x) \ge \min\{f(a), f(b)\}.$

例2、证明: $1+x^2 \le 2^x \le 1+x$, 其中 $x \in [0,1]$.

• 詹森不等式: f 为 I 上的凸函数充要条件是对任意 $x_1, \dots, x_n \in I$, $\lambda_1 + \dots + \lambda_n = 1$, 其中 $0 < \lambda_i < 1$ $(1 \le i \le n)$. 有

$$f(\lambda_1 x_1 + \dots + \lambda_n x_n) \leq \lambda_1 f(x_1) + \dots + \lambda_n f(x_n).$$

特别地,取 $\lambda_i = 1/n (1 \le i \le n)$,有:

$$f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \leq \frac{1}{n} \left[f(x_1)+f(x_2)+\cdots+f(x_n)\right],$$

例3、设 $a_i > 0$ ($1 \le i \le n$),证明

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}.$$

例4、设a,b,c>0.证明

$$(abc)^{\frac{a+b+c}{3}} \leq a^a b^b c^c.$$

三、拐点

定义2: 若 y = f(x) 在点 $(x_0, f(x_0))$ 处有穿过曲线的切线,并且曲线在切线的两侧分别是严格凸和严格凹的,则称点 $(x_0, f(x_0))$ 为 y = f(x)的拐点。

定理3: 设 f(x) 在点 x_0 二阶可导 ,若 $(x_0, f(x_0))$ 是 曲线 y = f(x) 的拐点 ,则 $f''(x_0) = 0$.

注:可能的拐点 $(x_0, f(x_0))$ $f''(x_0) = 0 \text{ 或 } f''(x_0) \text{ 不存在.}$

定理4: 设 f(x) 在 x_0 上可导, 在 $U^0(x_0)$ 上二阶可导. 若 f''(x) 在 $U^0_+(x_0)$ 与 $U^0_-(x_0)$ 上 符号相反, 则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

例5、求下列函数的拐点。

$$(1) y = \arctan x;$$

$$(2)y = \sqrt[3]{x}$$
.

例6、求 $f(x) = 3x^4 - 4x^3 + 1$ 的单调区间, 凹凸区间, 极值及拐点.

x	$(-\infty,0)$	0	$\left(0,\frac{2}{3}\right)$	$\frac{2}{3}$	$(\frac{2}{3},1)$	1	$(1,+\infty)$
<i>y</i> '	_	0	-	I	1	0	+
y"	+	0	_	0	+	+	+
y	凸	拐点 (0,1)	<u>\</u>	拐点 (² / ₃ , ¹¹ / ₂₇)	凸	极小值 0	/凸

思考: 画出 $f(x) = 3x^4 - 4x^3 + 1$ 的近似图像.

$f(x) = 3x^4 - 4x^3 + 1$ 的近似图像:

作 业

习题6-5: 1(4)、2、5(2)、6、9(1)