

"Test Manual" - Overview

1. i) 1 sample or 2 samples

ii) If 1 sample: σ_x known or unknown
If 2 samples: dependent or independent

- 2. State H_0 and H_1 (given)
- Select and calculate the test statistic
- 4. Select α (given)
- 5. Find the critical value in the table
- 6. Result

"Test Manual" - 3rd Step

When to use which test? We want to make a statement about the mean of a population, μ_x , based on a sample with size n_x and mean \bar{x}

1 Sample

•
$$\sigma_x$$
 known \rightarrow Gauss/z-test $z_0 = \frac{\bar{x} - \mu_0}{\sigma_x} \sqrt{n} \sim N(0,1)$

•
$$\sigma_{\chi}$$
 unknown \rightarrow t-test $t_0 = \frac{\bar{x} - \mu_0}{s_X} \sqrt{n} \sim t_{n-1}$ with $s_{\chi}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \bar{x})^2$

2 Samples

• independent
$$\to$$
 Welch-test $t_0 = \frac{\bar{x} - \bar{w} - \mu_0}{s_{\bar{x} - \bar{w}}} \sim_{\mathrm{approx}} t_{\mathrm{df}}$ with $s_{\bar{x} - \bar{w}}^2 = \frac{s_x^2}{n_x} + \frac{s_w^2}{n_w}$ and

$$s_x^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \bar{x})^2 \quad \text{(df} = \frac{\left(s_{\bar{x} - \bar{w}}^2\right)^2}{\frac{s_x^4}{n_x^2(n_x - 1)} + \frac{s_w^4}{n_w^2(n_w - 1)}} \text{ rounded to nearest integer number)}$$

• dependent
$$\rightarrow$$
 Paired t-test $t_0=\frac{\bar{d}-\mu_0}{s_d}\,\sqrt{n}\sim t_{n-1}$ with $s_d^2=\frac{1}{n-1}\cdot\sum_{i=1}^n(d_i-\bar{d})^2$ and $\bar{d}=\frac{1}{n}\sum_{i=1}^nd_i=\bar{x}-\bar{w}$, $d_i=x_i-w_i$, $\mu_D=\mu_X-\mu_W$

"Test Manual" – 5th Step

How to find the critical value in the table? For

Gauss/z-Test

→ use normal distribution

• t-Test, Welch-Test and Paired t-Test → use t-distribution

H ₁	t ^c range	t ^c value
$\mu_x \neq \mu_0$	can be any, ℝ	$\left t_{1-\frac{\alpha}{2};\mathrm{df}}^{c}\right = \left t_{\frac{\alpha}{2};\mathrm{df}}^{c}\right $
$\mu_x > \mu_0$	must be positive, $\mathbb{R}_{>0}$	$t_{1-\alpha;\mathrm{df}}^c$
$\mu_x < \mu_0$	must be negative, $\mathbb{R}_{<0}$	$t_{lpha;\mathrm{df}}^c$

"Test Manual" - 6th Step

Reject H₀:

H ₁	p-value criterion	test statistic criterion
$\mu_x \neq \mu_0$	p < α	$ t_0 > \left t_{1-\frac{\alpha}{2}; \mathrm{df}}^c \right $
$\mu_x > \mu_0$	p < α	$t_0 > t_{1-\alpha;\mathrm{df}}^c$
$\mu_x < \mu_0$	p < α	$t_0 < t_{\alpha;\mathrm{df}}^c$

Example: Learning Method Comparison

In order to compare two learning methods, results have been measured for a group of students. Test if the students got better (higher) results using method 2. Assume the difference follows a normal distribution, (significance level of 5%, i.e., $\alpha = 0.05$).

student	1	2	3	4	5
method 1 (x)	8	6	8	8	4
method 2 (w)	10	9	7	12	7

1.) i) 2 samples ii) dependent

2.)
$$H_0$$
: $\mu_D = \mu_X - \mu_W \ge \mu_0 = 0$

$$H_0$$
: $\mu_D = \mu_X - \mu_W \ge \mu_0 = 0$ H_1 : $\mu_D = \mu_X - \mu_W < \mu_0 = 0$

 \rightarrow Paired t-Test: $t_0 = \frac{\bar{d} - \mu_0}{s_d} \sqrt{n} \sim t_{n-1}$ with unbiased sample variance $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$ 3.)

sample means: $\bar{x} = 6.8$, $\bar{w} = 9.0$, difference $\bar{d} = -2.2$,

$$s_d^2 = 3.7$$
, $s_d = 1.9235 \implies t_0 = -2.5574$

4.) $\alpha = 0.05$

5.)
$$\rightarrow t_{\alpha;n-1}^c = -t_{1-\alpha;n-1}^c \text{ (sym.)} \Rightarrow t_{0.05;4}^c = -t_{0.95;4}^c \stackrel{\text{table}}{=} -2.132$$

 $t_0 = -2.557 < -2.132 = t_{0.05;4}^c \implies \text{Reject } H_0: \text{Learning method 2 is significantly better.}$ 6.)

Example: Learning Method Comparison – step 3 details

In order to compare two learning methods, results have been measured for a group of students. Test if the students got better (higher) results using method 2. Assume the difference follows a normal distribution, (significance level of 5%, i.e., $\alpha = 0.05$).

student	1	2	3	4	5
method 1 (x)	8	6	8	8	4
method 2 (w)	10	9	7	12	7

3.)

sample means:
$$\bar{x} = \frac{1}{5}(8+6+8+8+4) = 6.8$$
, $\bar{w} = \frac{1}{5}(10+9+8+12+7) = 9.0$

difference:
$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \bar{x} - \bar{w} = -2.2$$

sample variance:
$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$$
, $d_i = x_i - w_i$,

$$s_d^2 = \frac{1}{4} \left((8 - 10 + 2.2)^2 + (6 - 9 + 2.2)^2 + (8 - 7 + 2.2)^2 + (8 - 12 + 2.2)^2 + (4 - 7 + 2.2)^2 \right) = 3.7$$

$$s_d = 1.9235$$

Confidence Intervals

Find confidence intervals for μ_x , which—under H_0 —contain the true value μ_x with a probability of at least $1 - \alpha$ (confidence level). We differentiate two cases:

• σ_x known:

confidence interval:

$$[I_u(x), I_o(x)] = \left[\bar{x} - z_{1-\frac{\alpha}{2}}^c \frac{\sigma_x}{\sqrt{n}}, \ \bar{x} + z_{1-\alpha/2}^c \frac{\sigma_x}{\sqrt{n}}\right]$$

• σ_x unknown, use s_x as estimate instead:

confidence interval:
$$[I_u(x), I_o(x)] = \left[\bar{x} - t_{1-\frac{a}{2}; n-1}^c \frac{s_x}{\sqrt{n}}, \bar{x} + t_{1-\frac{a}{2}; n-1}^c \frac{s_x}{\sqrt{n}}\right]$$

- Values of μ_0 within the confidence interval cannot be rejected regarding a significance level of α
 - \rightarrow Reject H_0 if μ_0 is not in the confidence interval

Finding the estimators

- Squared error of a point (residual): $e_i^2 = (y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$
- Residual Sum Squares: RSS = $\sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left(y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right)^2$

$$\min_{\widehat{\beta}_0,\widehat{\beta}_1} \left\{ RSS = \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2 \right\}$$

... (set partial derivatives equal to zero)

$$\Rightarrow \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\Rightarrow \hat{\beta}_{1} = \frac{Cov(x,y)}{Var(x)} = \frac{\sum_{i}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum_{i}^{n}(x_{i}-\bar{x})^{2}} = \frac{\frac{1}{n}\sum_{i}^{n}x_{i}y_{i}-\bar{x}\bar{y}}{\frac{1}{n}\sum_{i}^{n}x_{i}^{2}-\bar{x}^{2}} = \frac{S_{xy}}{S_{xx}}$$

Finding the estimators

- Squared error of a point (residual): $e_i^2 = \left(y_i (\hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_{ij})\right)^2$
- Residual Sum Squares: $RSS = e^T e = (y \mathbf{X}\hat{\beta})^T (y \mathbf{X}\hat{\beta})$

$$\min_{\widehat{\beta}} \left\{ RSS = (y - \mathbf{X}\widehat{\beta})^T (y - \mathbf{X}\widehat{\beta}) \right\}$$

... (take derivative and use FOC and SOC)

$$\Rightarrow \qquad \widehat{\beta} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Testing the significance of regression coefficients

- Follow "test manual" from Tutorial 2 to do the Hypothesis testing
- The test statistic is calculated as follows:

$$t_0 = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

$$SE(\hat{\beta}_1) = \sqrt{\frac{RSS}{\sum_{i=1}^{n} (x_i - \bar{x})^2} * \frac{1}{n-2}}$$

When to reject H₀?

H_1	using p-value	using test statistic
$\hat{\beta}_j \neq 0$	p < α	$ t_0 \ge \left t_{1-\frac{\alpha}{2};df}^c \right $
$\hat{\beta}_j > 0$	p < α	$t_0 \ge t_{1-\alpha;df}^c$
$\hat{\beta}_j < 0$	p < α	$t_0 \le t_{\alpha;df}^c$

Evaluation of model

Measure the difference between true observations and the regression line

• Residual Sum of Squares (RSS): $RSS = \sum_{i=1}^n \hat{e}_i^2 = \sum_{i=1}^{n-1} \left(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right)^2$

Mean Squared Error (MSE):

$$MSE = \frac{RSS}{n}$$

Root Mean Squared Error (RMSE):

RMSE =
$$\sqrt{MSE}$$

Coefficient of Determination (R²):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{TSS}$$

Gauss-Markov Theorem

Property	What does it mean?	Why do we need that?	How can we test that?
Linearity	Regression linear in the coefficients β	Core assumption of linear regression	Do not transform β , only the covariates
No Multicollinearity	 rank(X) = p No high correlation between covariates 	Impossible to estimate coefficientsNon-significant coefficients	Variance Inflation Factor
Homoskedasticity	$Var(\varepsilon_i \mathbf{X}) = \sigma^2 \ \forall i$	Some observations have more "weight"Biased standard errors	White TestBreusch-Pagan Test
No Autocorrelation	$Cov(\varepsilon_i, \varepsilon_j) = 0 \ \forall i, j$	Omitted variablesFunctional misfitMeasurement errors	Durbin-Watson Statistic
Exogeneity	$\mathrm{E}(\varepsilon_i \mathbf{X})=0 \ \forall i$	Omitted variablesMeasurement errors	Instrument Variables

Under these assumptions, the OLS estimator is BLUE

Panel regression

Fixed Effects Model:

$$y_{it} = (\beta_0 + \lambda_i) + \beta_1 x_{1it} + \beta_2 x_{2it} + ... + \beta_p x_{pit} + \varepsilon_{it}$$

Random Effects Model:

$$y_{it} = \beta_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_p x_{pit} + \lambda_i + u_{it}$$

Lagrange Multiplier Test: Test of individual effects for panel models

H₀: No individual effects

Hausman Test: Test of fixed effects vs. random effects

H₀: Random effects estimator is consistent and efficient

Generalized Linear Models

- GLMs are a general class of linear models
- Consist of three components:
- Random: Identifies dependent variable μ and probability distribution
- Systematic: Identifies the set of explanatory variables $(X_1, ..., X_k)$
- Link function: Identifies function of μ that is linear

$$g(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

Example: Linear regression uses identity link $(g(\mu) = \mu)$

Question: Which link function could be useful for a binary dependent variable?

From Logistic Function to Logit

Logistic Function:

$$p(x_i) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$

transform ...

Logit:

$$\ln(\frac{p(x_i)}{1 - p(x_i)}) = x_i'\beta$$

 \Leftrightarrow

$$\frac{p(x_i)}{1-p(x_i)} = e^{x_i'\beta} \qquad \text{odds}$$

Logistic Regression:

$$\ln(\frac{p(x_i)}{1 - p(x_i)}) = x_i'\beta + \varepsilon_i$$

Interpreting the coefficient of logistic regression

$$x_{ij} \in x_i$$
:

$$\ln(\frac{p(x_i)}{1 - p(x_i)}) = x_i'\beta$$

$$(x_{ij}+1) \in \tilde{x}_i$$
:

$$\ln(\frac{p(\tilde{x}_i)}{1 - p(\tilde{x}_i)}) = \tilde{x}_i'\beta$$

$$\ln(\frac{p(\tilde{x}_i)}{1 - p(\tilde{x}_i)}) - \ln(\frac{p(x_i)}{1 - p(x_i)}) = \tilde{x}_i'\beta - x_i'\beta = \beta_j$$

$$\Leftrightarrow \qquad \beta_j = \ln(\frac{\frac{p(\widetilde{x}_i)}{1 - p(\widetilde{x}_i)}}{\frac{p(x)}{1 - p(x)}})$$

$$\Leftrightarrow e^{\beta j} = \frac{\frac{p(\widetilde{x}_i)}{1 - p(\widetilde{x}_i)}}{\frac{p(x_i)}{1 - p(x_i)}}$$

odds ratio

Summary: Interpreting the coefficient of logistic regression

Effect of change in $x_{i,i}$:

on log-odds (A), odds (B) and probability (C)

$$\Delta x_{ij} = 1 > 0$$

$$\Rightarrow \qquad \Delta \ln(\frac{p(x_i)}{1 - p(x_i)}) = \ln(\frac{p(\tilde{x}_i)}{1 - p(\tilde{x}_i)}) - \ln(\frac{p(x_i)}{1 - p(x_i)}) = \beta_j$$
(A)

$$\Leftrightarrow \qquad e^{\beta j} = \frac{\frac{p(\widetilde{x}_i)}{1 - p(\widetilde{x}_i)}}{\frac{p(x_i)}{1 - p(x_i)}} \tag{B), (C)}$$

β_j	$ln(\frac{p}{1-p})$ (A)	$\frac{p}{1-p}$ (B)	p (C)
$\beta_j > 0$	increases by eta_j	increases by a factor of e^{eta_j}	Magnitude of increase unknown
$\beta_j < 0$	decreases by β_j	decreases by a factor of e^{β_j}	Magnitude of decrease unknown

From Incidence Rate to Link Function

$$\mu(x) = e^{x_i'\beta}$$

transform ...

$$\ln(\mu(x)) = x_i'\beta$$

$$\ln(\mu(x)) = x_i'\beta + \varepsilon_i$$

Interpreting the coefficient of poisson regression

$$x_{ij} \in x_i$$
:

$$\ln(\mu(x_i)) = x_i'\beta$$

$$(x_{ij}+1) \in \tilde{x}_i$$
:

$$\ln(\mu(\tilde{x}_i)) = \tilde{x}_i'\beta$$

$$\ln(\mu(\tilde{x}_i)) - \ln(\mu(x_i)) = \tilde{x}_i'\beta - x_i'\beta = \beta_j$$

$$\Leftrightarrow \qquad \beta_j = \ln(\frac{\mu(\tilde{x}_i)}{\mu(x_i)})$$

$$\Leftrightarrow \qquad e^{\beta j} = \frac{\mu(\tilde{x}_i)}{\mu(x_i)}$$

incidence rate ratio

Summary: Interpreting the coefficient of poisson regression

Effect of change in x_{ij} :

on log-incidence rate (A), incidence rate (B)

$$\Delta x_{ij} = 1 > 0$$

$$\Rightarrow \qquad \Delta \ln(\mu(x_i)) = \ln(\mu(\tilde{x}_i)) - \ln(\mu(x_i)) = \beta_j$$
(A)

$$\Leftrightarrow \qquad e^{\beta_j} = \frac{\mu(\tilde{x}_i)}{\mu(x_i)} \tag{B}$$

$oldsymbol{eta_j}$	$ln(\mu(x_i))$ (A)	$\mu(x_i)$ (B)
$\beta_j > 0$	increases by β_j	increases by a factor of e^{eta_j}
$\beta_j < 0$	decreases by β_j	decreases by a factor of e^{β_j}

Maximum Likelihood Estimation

Goal: Maximize the joint probability of observing the set of dependent variables of the random sample

- Logistic regression: $L = \prod_{i=1}^n p^{y_i} (1-p)^{1-y_i}$ with $p = \frac{e^{X\beta}}{1+e^{X\beta}}$
- Poisson regression: $L = \prod_{i=1}^{n} p$ with $p = \frac{e^{X\beta y}}{y!} e^{-e^{X\beta}}$

Use numerical algorithm to find the maximum → gradient ascent

```
\begin{array}{l} k \ = \ 1, \ \text{feasible start point} \ \beta^{(1)} \in \mathbb{R}^n, \ \text{parameter} \ \varepsilon > 0 \\ \text{While} \ ( \ \left\| \nabla L(\beta^{(k)}) \right\| \geq \varepsilon \ ) \ \{ \\ \bullet \ \ \text{Choose step size} \ \alpha > 0 \\ \bullet \ \ \text{Set} \ \beta^{(k+1)} = \beta^{(k)} + \alpha^* \nabla L \big( \beta^{(k)} \big) \\ \bullet \ \ k + + \\ \} \end{array}
```


Evaluation and Goodness-of-Fit

- Null deviance: -2ln(L(null))
- Residual deviance: −2 ln(L(fitted))
- McFadden R²:

$$R_{McFadden}^2 = 1 - \frac{LL(fitted)}{LL(null)}$$

Likelihood ratio test: Does fitted model explain significantly more variance than null model?

$$D = -2\ln\left(\frac{L(null)}{L(fitted)}\right) = -2(LL(null) - LL(fitted))$$

Wald test: Is a particular coefficient significant?

$$H_0$$
: $\beta_i = 0$