The Metamathematics of Randomness

Jan Reimann

January 26, 2007

(Original) Motivation

Effective extraction of randomness

In my PhD-thesis I studied the computational power of reals effectively random for Hausdorff measures.

The Dimension Problem

Can we efficiently extract uniform randomness from such reals?

Examples:

- Von Neumann's trick
- randomness extractors in computational complexity
- factors of dynamical systems (Sinai, Ornstein)

Motivation

The basic paradigm

This lead eventually to another question:

Which reals are random with respect to a (continuous) probability measure?

The answers to this question took an unexpected turn.

Measures on Cantor Space

Outer measures from premeasures

Approximate sets from outside by open sets and weigh with a general measure function.

- ▶ A premeasure is a function $\rho: 2^{<\omega} \to \mathbb{R}_0^+ \cup \{\infty\}$.
- ▶ One can obtain an outer measure μ_{ρ} from ρ by letting

$$\mu_{\rho}(X) = \inf_{C \subseteq 2^{<\omega}} \left\{ \sum_{\sigma \in C} \rho(\sigma) : \ \bigcup_{\sigma \in C} N_{\sigma} \supseteq X \right\},$$

where N_{σ} is the basic open set induced by σ . (Set $\mu_{\rho}(\emptyset) = 0$.)

The resulting $\mu=\mu_\rho$ is a countably subadditive, monotone set function, an outer measure.

Measures on Cantor Space

Types of measures

Probability measures: based on a premeasure ρ which satisfies

- $\blacktriangleright \ \rho(\emptyset) = 1 \ \text{and}$

For probability measures it holds that $\mu_{\rho}(N_{\sigma}) = \rho(\sigma)$.

Hausdorff measures: based on a premeasure ρ which satisfies

- If $|\sigma| = |\tau|$, then $\rho(\sigma) = \rho(\tau)$.
- \triangleright $\rho(n)$ is nonincreasing.
- $\rho(n) \to 0 \text{ as } n \to \infty.$
- ► For example: $\rho(\sigma) = 2^{-|\sigma|s}$, $s \ge 0$.

The actual definition of Hausdorff measures is more complicated, but we are only interested in nullsets.

Measures on Cantor Space

Nullsets

The way we constructed outer measures, $\mu(A)=0$ is equivalent to the existence of a sequence $(W_n)_{n\in\omega}$, $W_n\subseteq 2^{<\omega}$, such that for all n,

$$A\subseteq \bigcup_{\sigma\in W_n} N_\sigma \quad \text{and} \quad \sum_{\sigma\in W_n} \rho(\sigma)\leqslant 2^{-n}.$$

Thus,

every nullset is contained in a G_{δ} nullset.

Effective G_{δ} sets

By requiring that the covering nullset is effectively G_{δ} , we obtain a notion of effective nullsets.

Definition

- A test relative to $z \in 2^{\omega}$ is a set $W \subseteq \mathbb{N} \times 2^{<\omega}$ which is c.e. in z.
- ▶ A real x passes a test W if $x \notin \bigcap_n N(W_n)$, where $W_n = \{\sigma : (n, \sigma) \in W\}$.

Hence a real passes a test W if it is not in the G_{δ} -set represented by W.

Martin-Löf tests

To test for randomness, we want to ensure that W actually describes a nullset.

Definition

Suppose μ is a measure on 2^{ω} . A test W is correct for μ if for all n,

$$\sum_{\sigma \in W_n} \mu(N_\sigma) \leqslant 2^{-n}.$$

Any test which is correct for μ will be called a test for μ .

Representation of measures

An effective test for randomness should have access to the measure it is testing for.

- ► Therefore, represent it by an infinite binary sequence.
- Outer measures are determined by the underlying premeasure ρ. It seems reasonable to represent these values via approximation by rational intervals.

Definition

Given a premeasure ρ , define its rational representation r_{ρ} by letting, for all $\sigma \in 2^{<\omega}$, $q_1, q_2 \in \mathbb{Q}$,

$$\langle \sigma, \mathfrak{q}_1, \mathfrak{q}_2 \rangle \in r_\rho \ \Leftrightarrow \ \mathfrak{q}_1 < \rho(\sigma) < \mathfrak{q}_2.$$

Randomness

Representation of measures

The condition $q_1 < \rho(\sigma) < q_2$ induces a subbasis for the weak topology on the space of probability measures.

- More general, if a space X is Polish, so is the space $\mathcal{P}(X)$ of all probability measures on X (under the weak topology). Also, if X is compact metrizable, so is $\mathcal{P}(X)$.
- This yields various ways to represent a measure: Cauchy sequences, list of basic open balls it is contained in, etc.
- ► We can obtain a nice effective representation (e.g. by following the framework in Moschovakis' book).

Theorem

There is a recursive surjection $\pi: 2^{\omega} \to \mathcal{P}(2^{\omega})$ and a Π_1^0 subset P of 2^{ω} such that $\pi \upharpoonright_P$ is one-to-one and $\pi(P) = \mathcal{P}(2^{\omega})$.

Tests for Arbitrary Measures

Definition

Suppose ρ is a premeasure on 2^ω and $z\in 2^\omega$. A real is $\mu_\rho\text{-}z\text{-random}$ if it passes all $r_\rho\oplus z\text{-tests}$ which are correct for μ_ρ .

Hence, a real x is random with respect to an arbitrary measure μ_{ρ} if and only if it passes all tests which are enumerable in the representation r_{ρ} of the underlying premeasure ρ .

- ▶ n-randomness: tests r.e. in $\emptyset^{(n-1)}$.
- Accordingly, arithmetical randomness.

Making Reals Random

Image measures

Let μ be a probability measure and $f:2^\omega\to 2^\omega$ be a continuous (Borel) function.

Define the image measure μ_f by setting

$$\mu_f(\sigma) = \mu(f^{-1}N_{\sigma})$$

Conservation of randomness

If the transformation f is computable in z, then it should preserve randomness, i.e. it should map a $\mu\text{-}z\text{-}\text{random}$ real to a $\mu_f\text{-}z\text{-}\text{random}$ one.

Making Reals Random

Computable measures

Trivially, every atom of a measure is random with respect to it.

► For recursive reals, this is the only way to become random.

If μ is a computable measure, then an atom of μ is $\mu\text{-random}$ iff it is computable.

Theorem (Levin, Kautz)

If a real is noncomputable and random with respect to a computable probability measure, then it is Turing equivalent to a λ -random real.

► The proof works by showing that the distribution function can be computed effectively.

Hausdorff Randomness

The dimension problem

Let $h: \mathbb{N} \to \mathbb{R}^{\geqslant 0}$ be a computable, nondecreasing, unbounded function (effective dimension function).

▶ Interesting connection with Kolmogorov complexity: A real x is Hausdorff 2^{-h} -random if and only if for some c,

$$K(x \upharpoonright_n) \geqslant h(n) - c$$
 for all n .

The dimension problem

If x is Hausdorff 2^{-h} -random, does it compute a λ -random real?

Non-trivial Randomness

The basic question

Unfortunately, not every Hausdorff 2^{-h} -random real is random for some computable probability measure (for arbitrary h).

▶ Join a λ -random and a 1-generic with appropriate density.

Question

Are such reals at least non-trivially random with respect to some measure? What reals are in general?

Non-trivial Randomness

Too coarse

It turns out every non-recursive real is random.

Theorem (Reimann and Slaman)

For any real x, the following are equivalent.

- (i) There exists (a representation of) a measure μ such that $\mu(\{x\}) = 0$ and x is 1-random for μ .
- (ii) x is not computable.

Non-trivial Randomness

Making reals random

Features of the proof:

- Conservation of randomness.
- Randomness of cones:
 - ► Kucera's coding argument shows that every degree above \emptyset' contains a λ -random.
 - ▶ Relativize this using the Posner-Robinson Theorem.
 - ► Conclude that every non-recursive real x is Turing equivalent to some λ -z-random real for some real z.
- A basis theorem for relative randomness.

Non-Trivial Randomness

Making reals random

The Turing equivalence to a λ -random real translates into effectively closed consistency conditions for a probability measure.

► The following basis theorem (Downey, Hirschfeldt, Miller, and Nies; Reimann and Slaman) ensures that one of the measures will not affect the randomness of z.

Theorem

If $B \subseteq 2^{\omega}$ is nonempty and Π_1^0 , then, for every y which is λ -random there is $z \in B$ such that y is λ -random relative to z.

► This argument seems to be applicable in more generality, proving existence of measures.

Randomness for Continuous Measures

In the proof there is no control over the measure that makes $\boldsymbol{\chi}$ random.

- Atoms cannot be avoided.
- Uses a special (though natural) representation of $M(2^{\omega})$ as a particular Π_1^0 class.

Question

What if one admits only continuous probability measures?.

Randomness for Continuous Measures

Characterizing randomness for continuous measures

Theorem (Reimann and Slaman)

Let x be a real. For any $z \in 2^{\omega}$, the following are equivalent.

- (i) x is truth-table equivalent to a λ -z-random real.
- (ii) x is random for a continuous (dyadic) measure recursive in z.
- (iii) There exists a functional Φ recursive in z which is an order-preserving homeomorphism of 2^ω such that $\Phi(x)$ is λ -z-random.

This is an effective version of the classical isomorphism theorem for continuous probability measures.

Question

Which level of logical complexity guarantees continuous randomness?

Let NCR_n be the set of all reals which are not n-random relative to any continuous measure.

- Kjos-Hanssen and Montalban: Every member of a countable Π₁⁰ class is contained in NCR₁. (It follows that elements of NCR₁ is cofinal in the hyperarithmetical Turing degrees.)
- ▶ Woodin: outside Δ_1^1 the Posner-Robinson theorem holds with tt-equivalence.
- ▶ Conclude that $NCR_1 \subseteq \Delta_1^1$.

Examples of higher order

Theorem

Kleene's 0 is an element of NCR₃.

Based on this, one can use the theory of jump operators (Jockusch and Shore) to obtain a whole class of examples.

Proof:

- Tree representation $0 = \{e : \text{ the eth recursive tree } T_e \subseteq \omega^{<\omega} \text{ is well-founded}\}.$
- ▶ Suppose 0 is 3-random for some μ .
- ▶ We want to use domination properties of random reals.

Examples of higher order

- ▶ Well-known (Kurtz and others): If X is n-random for μ , n>1, then every function $f\leqslant_T X$ is dominated by a function recursive in μ' .
- ► Therefore, μ' computes a uniform family $\{g_e\}$ of functions dominating the leftmost infinite path of T_e .
- ▶ Infer: For every e, the following are equivalent.
 - (i) T_e is well-founded.
 - (ii) The subtree of T_e to the left of g_e is finite.
- ▶ The latter condition is $\Pi_1^0(\mu')$, hence \emptyset is $\Pi_2^0(\mu)$.
- ▶ But this is impossible if \emptyset is 3-random for μ .

The non-helpfulness lemma

The domination property of higher randomness implies that random reals are not helpful when adding them as oracles/parameters.

Lemma

Suppose that $n\geqslant 2$, $y\in 2^\omega$, and R is λ -n-random relative to μ . If i< n, y is recursive in $(R\oplus \mu)$ and recursive in $\mu^{(i)}$, then y is recursive in μ .

Corollary: For all k, $\emptyset^{(k)}$ is not n-random relative to any μ , $n \ge 2$.

- ▶ Suppose $\emptyset^{(k)}$ is n-random relative to μ .
- ▶ \emptyset' is recursively enumerable relative to μ and recursive in the supposedly n-random $\emptyset^{(k)}$. Hence, \emptyset' is recursive in μ and so \emptyset'' is recursively enumerable relative to μ .
- ▶ Use induction to conclude $\emptyset^{(k)}$ is recursive in μ , a contradiction.

Upper Bounds for Continuous Randomness

In general, can we give a distinct bound on NCR_n like in the case n=1?

- ▶ There is some evidence that NCR_n grows very quickly with n.
- Can we give an upper bound?

Theorem (Reimann and Slaman)

For all n, NCR_n is countable.

NCR_n is Countable

Show that the complement of NCR_n contains an upper Turing cone.

- Show that the complement of NCR_n contains a Turing invariant and cofinal (in the Turing degrees) Borel set.
- ▶ We can use the set of all y that are Turing equivalent to some $z \oplus R$, where R is (n + 1)-random relative to a given z.
- ► These y will be n-random relative to some continuous measure and are T-above z.
- ► Use Martin's result on Borel Turing sets to infer that the complement of NCR_n contains a cone.
- ► The cone is given by the Turing degree of a winning strategy in the corresponding game.

NCR_n is Countable Main Features of the Proof

Go on to show that the elements of NCR_n show up at a rather low level of the constructible universe.

▶ $NCR_n \subseteq L_{\beta_n}$, where β_n is the least ordinal such that

 $L_{\beta_{\mathfrak{n}}}\vDash \mathsf{ZFC}^{-} + \text{ there exist } \mathfrak{n} \text{ many iterates of the power set of } \omega,$

where ZFC⁻ is Zermelo-Fraenkel set theory without the Power Set Axiom.

NCR_n is Countable

Main Features of the Proof

Given $x \notin L_{\beta_n}$, construct a set G such that

- (i) $L_{\beta_n}[G]$ is a model of ZFC_n^- .
- (ii) For all $y \in L_{\beta_n}[G] \cap 2^{\omega}$, $y \leqslant_T x \oplus G$.

G is constructed by Kumabe-Slaman forcing.

The existence of G allows to conclude:

- ▶ If x is not in L_{β_n} , it will belong to every cone with base in $L_{\beta_n}[G]$.
- In particular, it will belong to the cone given by Martin's argument (relativized to G − use absoluteness), i.e. the cone avoiding NCR_n.
- ► Hence x is random relative to G for some continuous μ, hence in particular μ-random.

NCR_n is Countable

Is the metamathematics necessary?

Question

Do we need to use metamathematical methods to prove the countability of NCR_n ?

We make fundamental use of Borel determinacy; this suggests to analyze the metamathematics in this context.

Borel Determinacy and Iterates of the Power Set

The necessity of iterates of the power set is known from a result by Friedman.

- Martin's proof of Borel determinacy starts with a description of a Borel game and produces a winning strategy for one of the players.
- The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the strategy.

Theorem (Friedman)

 $\mathsf{ZFC}^- \nvdash \mathsf{All} \; \Sigma_5^0$ -games on countable trees are determined.

Martin improved this to Σ_{\perp}^{0}

Borel Determinacy and Iterates of the Power Set

Inductively one can infer from Friedman's result that in order to prove full Borel determinacy, a result about sets of reals, one needs infinitely many iterates of the power set of the continuum.

- The proof works by showing that there is a model of ZFC⁻ for which Σ₄⁰-determinacy does not hold.
- ▶ This model is L_{β_0} .

NCR and Iterates of the Power Set

We can work along similar lines to obtain a result concerning the countability of NCR_n .

Theorem

For every k, the statement

For every n, NCR_n is countable.

cannot be proven in

ZFC⁻ + there exists k many iterates of the power set of ω .

NCR and Iterates of the Power Set

Features of the proof

The proof (for k=0) shows that there is an n such that NCR $_n$ is cofinal in the Turing degrees of $L_{\beta_0}.$ Hence, NCR $_n$ is not countable in $L_{\beta_0}.$

► The witnesses for NCR_n are Jensen's master codes of models L_{α} for limit ordinals $\alpha < \beta_0$.

We choose $\mathfrak n$ large enough to capture recognition and comparison (of well-foundedness) of models they code.

NCR and Iterates of the Power Set

Features of the proof

Suppose some M_{λ} , $\lambda < \beta_0$, were n-random relative to μ .

- Let \mathfrak{M} be the sequence of possible master codes which are recursive in μ (satisfying some arithmetical formula).
 - ► The well-founded part of \mathfrak{M} is of the form $\mathfrak{M}_{<\gamma} = (M_{\alpha} : \alpha < \gamma)$ for some $\gamma \leqslant \lambda$.
 - $\mathfrak{M}_{<\gamma}$ is uniformly arithmetically definable from M_λ and hence from μ .
- $ightharpoonup M_{\gamma}$ is obtained by iterating uniformly arithmetically definable operations on $\mathfrak{M}_{<\gamma}$.
- ▶ The results at each step and M_{γ} itself are recursive in M_{λ} .
- ► The results at each step and M_{γ} itself are recursive in μ , by the non-helpfulness lemma.
- $ightharpoonup M_{\gamma}$ is in the well-founded part of \mathfrak{M} . Contradiction.