Wyznaczenie przyśpieszenia ziemskiego poprzez wykorzystanie wahadła matematycznego

1. Teoria

Wahadło matematyczne to punkt materialny zawieszony na nieważkiej i nierozciągliwej nici, wychylonej z położenia równowagi o kąt α . Wahadło to możemy z dobrym przybliżeniem traktować jako ciężką i niewielką kulę, zawieszoną na lince.

$$T = 2\pi\sqrt{\frac{l}{g}} \text{ g} = (4\pi^2 l)/T^2$$

2. Tabele pomiarowe

Długość nici L1= 1,5m

Diagose file L1= 1,5111		
Pomiar	$t_{10}[s]$	$T_{10}[s]$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
	$t_{ ext{sr}} = \dots$	$T_{ m sr}=\dots$

Długość nici L2= 1m

Pomiar	t ₁₀ [s]	$T_{10}[s]$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
	$t_{ m \acute{s}r}$ =	$T_{ m sr}=$

Długość nici L3= 0.5m

Pomiar	t ₁₀ [s]	$T_{10}[s]$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
	$t_{sr}=\dots$	$T_{ m sr}$ =

3. Obliczenia

Tabela 1: $g_1=(4\pi^2 l)/T2=...m/s^2$ Tabela 2: $g_2=(4\pi^2 l)/T2=...m/s^2$ Tabela 3: $g_3=(4\pi^2 l)/T2=...m/s^2$

Średnie przyspieszenie= $(g_1+g_2+g_3)/3=... m/s^2$

4. Błędy pomiarowe

- Linijka $\Delta I = \pm 1$ mm= ± 0.001 m
- Czas reakcji ΔT=±(0,01+0,2)= ±0,21 s
- względną niepewność pomiaru przyspieszenia ziemskiego(dla tabeli 1):

$$\frac{\Delta g_{wyz}}{g_{wyz}} = \frac{\Delta l_{mierz}}{l_{mierz}} + 2 \frac{\Delta T_{\acute{s}r}}{T_{\acute{s}r}} = \dots$$

$$\Delta g_{wyz} = \dots * g_{wyz} = \dots \left[\frac{m}{s^2} \right]$$

• względną niepewność pomiaru przyspieszenia ziemskiego(dla tabeli 2):

$$\frac{\Delta g_{wyz}}{g_{wyz}} = \frac{\Delta l_{mierz}}{l_{mierz}} + 2 \frac{\Delta T_{\acute{s}r}}{T_{\acute{s}r}} = \dots$$

$$\Delta g_{wyz} = \dots * g_{wyz} = \dots \left[\frac{m}{s^2} \right]$$

• względną niepewność pomiaru przyspieszenia ziemskiego(dla tabeli 3):

$$\frac{\Delta g_{wyz}}{g_{wyz}} = \frac{\Delta l_{mierz}}{l_{mierz}} + 2 \frac{\Delta T_{\acute{s}r}}{T_{\acute{s}r}} = \dots$$

$$\Delta g_{wyz} = \dots * g_{wyz} = \dots \left[\frac{m}{s^2} \right]$$

•
$$S_{10} = \sqrt{(1/90^*[(t_1-t_{sr})+...(t_{10}-t_{sr})]} = ...s$$

5. Wykres

6. Wnioski

Wyniki są w zakresie prawidłowego przyspieszenia ziemskiego gdzie g=9.81 m/s 2 .

Wynika z tego, że dzięki wahadłu matematycznemu można wyznaczyć przyspieszenie ziemskie.