Universidade Federal de Goiás Instituto de Informática Introdução à Programação Lista - L1- a

Prof. Msc. Elias Batista Ferreira Prof. Msc. Gilmar Ferreira Arantes Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Instruções para a Resolução dos Problemas

Os problemas devem ser submetidos ao sistema Sharif da sua turma. A pontuação de cada problema é definida de acordo com o grau de dificuldade do problema, conforme a tabela abaixo:

Grau de Dificuldade	Pontos
+	1
++	2
+++	3
++++	4
++++	5

A lista Lista L1 completa vale 100 pontos (que correspondem a 10 em termos de nota da lista). No Sharif a Lista L1 aparece segmentada em três listas. Este texto corresponde à lista L1- a. Para obter os cem pontos o aluno deve conseguir resolver um número de exercícios de graus de dificuldade +, ++ e +++ que somados formem 90 pontos. Pontos excedentes obtidos com exercícios desses graus de dificuldade serão descartados. Os 10 pontos restantes devem ser obtidos resolvendo-se problemas com graus de dificuldade ++++ ou +++++.

Sumário

1	Consumo de energia (+)	3
2	Conversões para o Sistema Métrico (+)	5
3	Custo da Lata de Cerveja (+)	6
4	Cálculo do Delta na Equação de Báskara (+)	7
5	Volume da Pirâmide de Base Hexagonal (+)	8
6	Tempo em segundos (+)	9
7	Cálculo da Área de um Triângulo (++)	10
8	Custo Final de um Carro (++)	11
9	Decolagem (++)	12
10	Quatro Algarismos (++)	14
11	Número Invertido (+++)	15
12	Valor em Notas e Moedas (+++)	16
13	Sistemas de Equação Linear (++++)	17

1 Consumo de energia (+)

Sabendo-se que 100 kW de energia custam 70% do salário mínimo, escreva um algoritmo em Linguagem C que leia o valor do salário mínimo e a quantidade de kW gasta por uma residência. Calcule e imprima:

- o valor em reais de cada kW;
- o valor em reais a ser pago pelo consumo da residência;
- o novo valor a ser pago pela residência com um desconto de 10%.

Entrada

O programa deve ler o valor do salário mínimo e a quantidade de kW gasta por uma residência. Ambos os valores são reais.

Saída

O programa deve imprimir três linhas contento o texto:

Custo por kW: R\$ x.xx Custo do consumo: R\$ x.xx Custo com desconto: R\$ x.xx

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".
- Para compilar e testar o seu programa no Linux:
 - abra um terminal. Use o comando cd (change dir) para mudar para a pasta onde seu arquivo com o programa em C se encontra;
 - suponha que o nome do seu programa é: meuproq.c;
 - para compilar digite gcc meuprog.c -o meuprog na linha de comando do terminal;
 - para executar seu programa na linha de comando do termina: ./meuprog;

Exemplo

Entrada	a					
81						
3.54						
Saída						
Custo	por	kW:	R\$	0.57		
i					_	

Custo do consumo: R\$ 2.01 Custo com desconto: R\$ 1.81

2 Conversões para o Sistema Métrico (+)

Muitos países estão passando a utilizar o sistema métrico. Faça um programa para executar as seguintes conversões:

- Ler uma temperatura em Fahrenheit e imprimir o equivalente em Celsius ($C = \frac{5(F-32)}{9}$).
- Ler uma quantidade de chuva dada em polegadas e imprimir o equivalente em milímetros (1 polegada = 25.4 mm).

Entrada

O programa deve ler dois valores na entrada: um valor em Fahrenheit e outro valor em polegadas. Ambos os valores são do tipo double. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir duas linhas. Aa primeira contém a frase: O VALOR EM CELSIUS = X, onde X é o valor de temperatura convertido de Fahrenheit para Celsius e deve ter duas casas decimais. A segunda linha deve conter a frase: A QUANTIDADE DE CHUVA E = Y, onde Y é o valor em milímetros correspondente ao valor em polegadas dado como entrada. Y é um valor real (double) e deve ter duas casas decimais. Logo após o valor de Y, o programa deve imprimir o caractere de quebra de linha '\n'.

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".
- Para compilar e executar o seu programa no Linux:
 - abra um terminal. Use o comando cd (change dir) para mudar para a pasta onde seu arquivo com o programa em C se encontra;
 - suponha que o nome do seu programa é: meuproq.c;
 - para compilar digite gcc meuprog.c -o meuprog na linha de comando do terminal;
 - para executar seu programa na linha de comando do termina: ./meuprog;

Eı	ntrada
53	3
12	20
Sa	nída
0	VALOR EM CELSIUS = 11.66
Α	QUANTIDADE DE CHUVA E = 3048.00

3 Custo da Lata de Cerveja (+)

Um fabricante de latas deseja desenvolver um programa para calcular o custo de uma lata cilíndrica de alumínio, sabendo-se que o custo do alumínio por m² é R\$ 100,00.

Entrada

O programa deve ler dois valores na entrada: o raio e a altura da lata. Ambos os valores correspondem a valores em metros. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir a frase: O VALOR DO CUSTO E = XXX.XX, onde XXX.XX é o valor do custo da lata. Logo após o valor do custo da lata o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

- O seu programa deve utilizar a constante π com o valor aproximado de 3.14159.
- O valor total da área de um cilindro é dada por $A_t = 2A_c + A_l$, onde A_c é a área do círculo, calculada como: $A_c = \pi r^2$ e A_l é a área lateral do cilindro, computada por $A_l = 2\pi ra$, onde r é o raio e a a altura da lata em metros.
- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".

Eı	ntrada				
0.	.02				
0.	.09				
Sa	ıída				
0	VALOR	DO	CUSTO	E =	1.38

4 Cálculo do Delta na Equação de Báskara (+)

Fazer um programa para ler os valores dos coeficientes A, B e C de uma equação quadrática e calcular e imprimir o valor do discriminante (Δ). O valor de Δ é dado pela fórmula: $\Delta = B^2 - 4AC$.

Entrada

O programa deve ler três valores reais na entrada. O primeiro valor corresponde ao valor do coeficiente *A*, o segundo, do coeficiente *B* e o terceiro, do coeficiente *C*, de uma equação do seguro grau. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE DELTA E = X, onde X é o valor de delta computado pelo seu programa e deve conter no máximo 2 casas decimais. Após o valor de delta, o programa deve imprimir um caractere de quebra de linha: "\n".

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".

Eı	ntrada					
5						
12	2					
4						
Sa	ıída					
0	VALOR	DE	DELTA	Ε	=	64.00

5 Volume da Pirâmide de Base Hexagonal (+)

O volume (V) de uma pirâmide cuja base é um hexágono regular é computado pela Equação 1:

$$v = \frac{1}{3} \cdot A_b \cdot h,\tag{1}$$

onde h é a altura da pirâmide e A_b é a área do hexágono que forma a base da pirâmide. A área do hexágono é computada pela Equação 2:

$$A_b = \frac{3 \cdot a^2 \cdot \sqrt{3}}{2},\tag{2}$$

onde a é o comprimento de uma aresta do hexágono regular.

Entrada

O programa deve ler uma linha com dois números double, separados entre si por um espaço. O primeiro número corresponde à altura da pirâmide e o segundo número corresponde a uma aresta do hexágono que forma a base da pirâmide. Ambos são valores em metros.

Saída

O programa deve emitir a frase: O VOLUME DA PIRAMIDE E = x METROS CUBICOS, onde x é o valor do volume da pirâmide em metros cúbicos e com duas casas decimais. Ao final da frase o programa deve imprimir o caractere de quebra de linha (\n).

Observação

A raiz quadrada de três na Eq. 2 pode ser obtida utilizando-se a função sqrt(). Par usar essa função, é necessário incluir o arquivo math.h no início do programa: #include<math.h>. Utilize apenas variáveis do tipo double para armazenar números reais.

E	ntrada							
12	2.0							
8	. 0							
Sa	aída							
0	VOLUME	DA	PIRAMIDE	Ε	=	665.10	METROS	CUBICOS

Entrada
0.45
0.23
Saída
O VOLUME DA PIRAMIDE E = 0.02 METROS CUBICOS

Tempo em segundos (+)

Fazer um programa que leia um valor de tempo expresso em horas, minutos e segundos e que converta esse tempo para um valor em segundos.

Entrada

O programa deve ler três linhas na entrada. A primeira contém um valor em horas, a segunda, contém um valor em minutos e a terceira, contém um valor em segundos. Os valores são todos números inteiros.

Saída

O programa deve imprimir uma linha contendo a frase: O TEMPO EM SEGUNDOS E = X, onde X é o valor do tempo convertido em segundos. Após o valor do tempo em segundos, o programa deve imprimir um caractere de quebra de linha: '\n'.

Eı	ıtrada				
5					
12	2				
1					
Sa	ída				
0	TEMPO	EM	SEGUNDOS	E =	18721

7 Cálculo da Área de um Triângulo (++)

Desenvolver um algoritmo para ler os comprimentos dos três lados de um triângulo $(L_1, L_2 \in L_3)$ e calcular a área do triângulo.

Considerações

A área de um triângulo pode ser computada pela fórmula:

$$A = \sqrt{T(T - L_1)(T - L_2)(T - L_3)}$$

onde

$$T = \frac{L_1 + L_2 + L_3}{2}$$

A função sqrt () computa a raiz quadrada de uma expressão. Para usar essa função você deve incluir o arquivo de cabeçalho math.h, inserindo a seguinte diretiva de pré-processamento logo no início do seu arquivo com o programa em C: #include < math.h>

Entrada

O programa deve ler três valores reais na entrada, cada um correspondendo ao comprimento de um lado do triângulo. Cada valor ocorre em uma linha diferente na entrada.

Saída

O programa deve imprimir uma linha contendo a frase: A AREA DO TRIANGULO E = X, onde X é o valor da área do triângulo e deve conter no máximo 2 casas decimais. Após o valor da área do triângulo, o programa deve imprimir um caractere de quebra de linha: "\n".

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".
- Para compilar um programa que usa funções declaradas em math.h, é necessário usar a opção lm do compilador: gcc meuprog.c -o meuprog -lm.

Eı	ntrada						
4							
5							
6							
Sa	ıída						
A	AREA	DO	TRIANGULO	Ε	=	9.92	

8 Custo Final de um Carro (++)

O custo ao consumidor de um carro novo é a soma do custo de fábrica com a porcentagem do distribuidor e dos impostos (aplicados ao custo de fábrica). Supondo que a porcentagem do distribuidor seja de x% do preço de fábrica e os impostos de y% do preço de fábrica, fazer um programa para ler o custo de fábrica de um carro, a percentagem do distribuidor e o percentual de impostos, calcular e imprimir o custo final do carro ao consumidor.

Entrada

O programa deve ler três valores na entrada: o preço de fábrica do carro, o percentual do distribuidor e o percentual de impostos. Cada valor aparece em uma linha de entrada. Todos os valores são do tipo double.

Saída

O programa deve imprimir uma linha, contento a frase O VALOR DO CARRO E = Z, onde Z é o valor do preço final do carro ao consumidor. O valor de Z deve ter duas casas decimais. Após imprimir o valor do preço final, o programa deve imprimir o caractere de quebra de linha '\n'.

Observações

Eı	ntrada				
25	5000				
12	2				
30)				
Sa	ıída				
0	VALOR	DO	CARRO	E =	35500.00

9 Decolagem (++)

Escrever um algoritmo que leia a massa (em toneladas) de um avião, sua aceleração (m/s^2) e o tempo (s) que levou do repouso até a decolagem. O programa deve calcular e escrever a velocidade atingida (Km/h), o comprimento da pista (m) e o trabalho mecânico realizado (J) no momento da decolagem.

Dicas

- v = velocidade; a = aceleração; t = tempo;
- m = massa;
- s =espaço percorrido;
- W = trabalho mecânico realizado;
- Um double deve ser lido com "%lf"

- 1 m/s = 3.6 Km/h;
- v = a * t;
- $s = \frac{at^2}{2}$;
- $W = \frac{mv^2}{2}$;
- A massa utilizada no trabalho é em Kg

Entrada

O programa deve ler três linhas de entrada. A primeira linha contém um valor do tipo *double* representando a massa do avião em toneladas. A segunda linha, contém um valor do tipo double correspondente à aceleração de avião. A terceira, linha contém um valor do tipo *double* correspondente ao tempo em segundos gasto na decolagem.

Saída

O programa deve imprimir três linhas. A primeira, contém a frase: VELOCIDADE = x, onde x é o valor da velocidade do avião em Km/h. A segunda, contém a frase: ESPACO PERCORRIDO = y, onde y corresponde ao espaço em metros percorrido pelo avião durante a decolagem. A terceira linha contém a frase: TRABALHO REALIZADO = z, onde z corresponde ao valor do trabalho em Joules, realizado pelo avião durante a decolagem. Os valores de x, y e z devem ser do tipo double e devem conter duas casas decimais e após esses valores deve vir o caractere de quebra de linha \n.

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".

Entrada	
10	
5	
90	
Saída	
VELOCIDADE = 1620.00	
ESPACO PERCORRIDO = 20250.00	
TRABALHO REALIZADO = 1012500000	$\cap \cap$

Entrada	
3	
30	
25	
Saída	
VELOCIDA	ADE = 2700.00
ESPACO E	PERCORRIDO = 9375.00
TRABALHO	REALIZADO = 843750000.00

Quatro Algarismos (++) **10**

Dado um número inteiro de três algarismos, construir outro número inteiro de quatro algarismos de acordo com a seguinte regra: os três primeiros algarismos, contados da esquerda para a direita são iguais ao número dado. O quarto algarismo é um digito de controle calculado da seguinte forma: primeiro algarismo + segundo algarismo×3 + terceiro algarismo×5. O dígito de controle é igual ao resto da divisão dessa soma por 7.

Entrada

O programa deve ler uma linha de dados contendo apenas um número com três algarismos.

Saída

O programa deve imprimir uma linha contendo a frase: O NOVO NUMERO E = X, onde X é o novo número inteiro com quatro algarismos, seguido por um caractere de quebra de linha: '\n'.

Observações

Eı	ntrada				
12	23				
Sa	ıída				
0	NOVO	NUMERO	Ε	=	1231

11 Número Invertido (+++)

Escreva um programa para ler um número de três dígitos e imprimir o número invertido.

Entrada

A entrada contém apenas um número com três dígitos. Esse número é diferente de zero e não é múltiplo de 10 ou 100.

Saída

A saída deve conter apenas uma linha com o número correspondente ao valor da entrada, com seus dígitos invertidos. Logo após o número, deve ser impresso o caractere de quebra de linha: '\n'.

Entrada
123
Saída
321
Entrada
Entrada 987
987

12 Valor em Notas e Moedas (+++)

Escreva um algoritmo par ler um valor em reais e calcular qual o menor número possível de notas de \$R 100, \$R 50, \$R 10 e moedas de \$R 1 em que o valor lido pode ser decomposto. O programa deve escrever a quantidade de cada nota e moeda a ser utilizada.

Entrada

O programa deve ler uma única linha na entrada, contendo um valor em Reais. Considere que somente um número inteiro seja fornecido como entrada.

Saída

O programa deve imprimir quatro frases, uma em cada linha: NOTAS DE 100 = X, NOTAS DE 50 = Y, NOTAS DE 10 = Z, MOEDAS DE 1 = W, onde X, Y, Z e W correspondem às quantidades de cada nota ou moeda necessárias para corresponder ao valor em Reais dado como entrada. Após cada quantidade, o programa deve imprimir um caractere de quebra de linha: '\n'.

Entrada	1			
46395				
Saída				
NOTAS	DE	100) =	= 463
NOTAS	DE	50	=	1
NOTAS	DE	10	=	4
MOEDAS	DE	1	=	5

13 Sistemas de Equação Linear (++++)

Dado um sistema de equações lineares do tipo:

$$ax + by = c$$
$$dx + ey = f$$

Escreva um programa para ler os valores dos coeficientes: a, b, c, d, e e f e calcular os valores de x e y.

Entrada

O programa deve ler os valores de a, b, c, d, e, f nesta ordem, um valor por linha. Os valores são números reais (double).

Saída

O programa deve imprimir uma linha contendo a frase: O VALOR DE X E = z, onde z é o valor da variável x, escrito com duas casas decimais. O programa deve imprimir uma segunda linha contendo a frase: O VALOR DE Y E = w, onde w corresponde ao valor da variável y escrito com duas casas decimais. Ao final da segunda linha o programa deve imprimir um caractere de quebra de linha: '\n'.

Observação

- Utilize o tipo double para trabalhar com valores de ponto flutuante
- Para ler uma variável do tipo double, utilize o formato "%lf"
- Para imprimir uma expressão em ponto flutuante com *x* casas decimais utilize a formatação "%.xlf". Por exemplo, para imprimir apenas duas casas decimais: "%.2lf".

Eı	ntrada					
7						
8						
12	2					
3						
5						
9						
Sa	ıída					
0	VALOR	DE	Χ	Ε	=	-1.09
0	VALOR	DE	Y	Ε	=	2.45