

Our mandate is to advance knowledge about cancer and other diseases and to use our technologies to improve health through disease prevention, diagnosis, and therapeutic approaches.

As a Process Development
Coordinator I help ensure our
laboratory and analytical approaches
are providing the best possible
results.

Bioinformatics in Practice

GATCCTGGAGGATCCTGGGAG GATCCTGGAGGATCCTGGGAG GATCCTGGAGAATCCTGGGAG GATCCTGGAGAATCCTGGGAG

Sequence

Other experiments

Computational models

Bioinformatics

Scientific publications

Improved disease understanding and treatment

Environmental discoveries

Bioinformatics in Practice

GATCCTGGAGGATCCTGGGAG GATCCTGGAGGATCCTGGGAG GATCCTGGAGAATCCTGGGAG GATCCTGGAGAATCCTGGGAG

Sequence

Other experiments

Computational models

Scientific publications

Improved disease understanding and treatment

Environmental discoveries

Illumina Sequencing

1.) Cells

2.) DNA

3.) Sheared DNA, with sequencing adapters

Sequencers at the Genome Sciences Centre

	Bases Per Second	# Machines	Total Bases / Sec.
HiSeq X	8,700,000	5	43.5 million
HiSeq 2500	3,100,000	4	12.4 million
NextSeq	1,300,000	2	2.6 million
MiSeq	50,000	3	150 thousand

~55 million bases per second

How much sequence is that?

Human Genome: 3,000,000,000 bases (approx.)

- At the Genome Sciences Centre, we can sequence the number of bases in 1 human genome every:
 - 3 billion bases / 55 million bases per sec = 54.5 sec
- The first human genome draft sequence took roughly 10 years to sequence and assemble

How do we extract meaning from the sequence data?

2,000,000,000 reads per sample

150 bases per read

3,000,000,000 base reference genome

Data Interpretation

 For efficiency and to help interpretation, we often describe a sample by how it differs from a reference sample

- To compare samples, we:
 - align sequence reads to a reference genome
 - find locations where our sample differs from the reference

Reference Genome

...ACTCGCTAGCTAGCCCTAGGATAGCTTAGAGACCCTCGCGAAATAGACCCTCGAT...

AGCCCTAGGATAGCTTA

ACCCTCGCGAAATAGAC

AGCTAGCCCTAGGATAG

ACCCTCGCGAAATAGAC

TAGCTAGCCCTAGGATA

GACCCTCGCGAAATAGA

CTAGCTAGCCCTAGGAT

AGACCCTCGCGAAATAG

GCTAGCTAGCCCTAGGA

TAGAGACCCTCGCGAAA

GCTAGCTAGCCCTAGGA

CTTAGAGACCCTCGCGA

GCTAGCTAGCCCTAGGA

CTTAGAGACCCTCGCGA

GCTAGCTAGCCCTAGGA

Real Alignments

Assembly

AGCCCTAGGATAGCTTA

AGCTAGCCCTAGGATAG

TAGCTAGCCCTAGGATA

CTAGCTAGCCCTAGGAT

GCTAGCTAGCCCTAGGA

ACCCTCGCGAAATAGAC

ACCCTCGCGAAATAGAC

GACCCTCGCGAAATAGA

AGACCCTCGCGAAATAG

TAGAGACCCTCGCGAAA

..GCTAGCTAGCCCTAGGATAGCTTAGAGACCCTCGCGAAATAGAC... Contig

Contig

ACTCGCTAGCCCTAGGATAGCTTA ----- GAGACCCTCGCGAAATAGA

Reference Genome

Summary So Far

We sequence billions of reads per genome sample

- Useful / actionable results are identified via:
 - Read alignment
 - Read assembly

 We describe samples by how they differ from a reference sample

Other Data Types

 Epigenomics – investigates the chromatin and methylation status of regions of the genome

Proteomics – measures protein expression and modifications

 Exome/Capture – queries specific targeted regions of the genome

RNA sequencing – measures RNA expression and variation

Genome and Transcriptome

Genome and Transcriptome

Genome and Transcriptome

Genome sequencing allow us to find:

- SNVs (single nucleotide variants)

 CCCTTTTGGGGAA
- CNVs (copy number variants)
 - $\qquad \qquad \longleftrightarrow$
- SVs (structural variants)

The transcriptome can be sequenced to find:

- Gene expression estimates
- •Gene fusions Gene1a Gene2b
- •SNVs in expressed genes

Personalized Medicine

Personalized Medicine Intermediate Results

Somatic SNV calling

Gene fusion analysis

RNA expression correlation

Somatic copy number

Report

TESTCOLO829nano100ng

2016/11/18

Research Centre Canada's Michael Smith Genome Sciences Centre

Tumour Genome Analysis

Whole genome: Transcriptome: Somatic

Report version: 3.0.1 Knowledgebase version: 2.2.12 TESTCOLO829nano100ng PATIENT INFORMATION Patient ID: TESTCOLO8 Gender: Male Tumour Sample: Unspecified 29nano100n

Tumour Type: g Case Type: Adult Constitutional Sample: Peripheral Blood Report Date: 2016/11/18 Age at Diagnosis: Not specified Physician: Zadeh Protocol: WGS; RNA-seq

PATIENT TUMOUR ANALYSIS SUMMARY

GENOME STAT	US	TISSUE COMPA	RATORS	SUBTYPING	MICROBIAL C	ONTENT
Tumour Content	Ploidy Model	Normal Expression	Disease Expression	Subtype	Species	Integration
100%	tetraploid	compendium average	SKCM	Not specified	None	None
For description of method see A	DDENDIV	Dotale in EVEDESSION ANALYS	IS cortion	Dotalle in EVERESSION ANALYSIS costion	Dotale in MICROPIAL CONTE	NT coction

MUTATION SIGNATURE MUTATION BURDEN (in protein coding genes)

Details in SMALL SOMATIC MUTATIONS section

Not specified		Single nucleotide variants (SNVs):	213	Insertions and deletions (Indels):	6	Structural variants (SVs):	145
Interpreted prevalence:		MODERATE		MODERATE		HIGH	
Percentile among compen	dium:	87		74		84 (POG)	
Percentile among SKCM:		40		74			

KEY GENOMIC AND TRANSCRIPTOMIC ALTERATIONS IDENTIFIED

Small Mutations:	1	Copy Number Varia	ants:	1	Structural Vari	iants:	0	Expression Outliers:	11
BRAF (p.V600E)	APC (c	copy loss)		KA (increa ession)	esed	CCNA2 (inc expression)		IGF1R (increased expression)	
KDR (increased expression)	MDM2 expres	(increased sion)		(increase ession)	d	PRSS8 (red expression)	uced	PTEN (reduced ex	pression)
SKP2 (increased expression)	TOP2A expres	A (increased sion)		3 (increase ession)	ed				
Additional variants of uncertain significance (VUS) detected in cancer-related genes:						er-related genes:	18		

Details in STRUCTURAL VARIATION section

GENOMIC EVENTS WITH POTENTIAL THERAPEUTIC ASSOCIATION					
Genomic Event	Approved in this cancer type	Approved in other cancer type	Emerging evidence		
AURKA (increased expression)			resistance		
BRAF (p.V600E)		inferred resistance; sensitivity	reduced-sensitivity; resistance; response; sensitivity		
CCNA2 (increased expression)			resistance		
IGF1R (increased expression)			sensitivity		

A detailed report of results for a patient's sample is provided to the clinician allowing them to view the genetic landscape of a patient's disease.

This approach has enabled treating clinicians to make informed clinical decisions based on the genomic information integrated with other clinical features.

Summary

 Bioinformatics is (among other things) the process through which the interpretation of billions of sequence observations yields a distilled list of actionable findings

- This is accomplished in equal parts by:
 - Powerful computing infrastructure
 - Advanced algorithms
 - Trained individuals from a diverse set of fields

Upcoming webinars & training events can be found on the WestGrid website:

https://www.westgrid.ca/events

If attendees would like to learn more about Compute Canada / WestGrid high performance computing resources and services, please visit:

https://docs.computecanada.ca

