Atoms in Singularland

Hankyung Ko

Based on joint works with Ben Elias, Nicolas Libedinsky, Leonardo Patimo

FD Seminar, 8 february 2024

A $Coxeter\ group$ is a group W, together with a finite generating set S, presented by relations of the following form:

A $Coxeter\ group$ is a group W, together with a finite generating set S, presented by relations of the following form:

A *Coxeter group* is a group W, together with a finite generating set S, presented by relations of the following form:

▶ the braid relation

$$\underbrace{st\cdots}_{m} = \underbrace{ts\cdots}_{m}$$
, for each $s,t \in S$ with $m = m_{st} = m_{ts} < \infty$;

A $Coxeter\ group$ is a group W, together with a finite generating set S, presented by relations of the following form:

▶ the braid relation

$$\underbrace{st\cdots}_{m} = \underbrace{ts\cdots}_{m}$$
, for each $s, t \in S$ with $m = m_{st} = m_{ts} < \infty$;

▶ the reflection relation

$$ss = e$$

for each $s \in S$;

A $Coxeter\ group$ is a group W, together with a finite generating set S, presented by relations of the following form:

▶ the braid relation

$$\underbrace{st\cdots}_{m} = \underbrace{ts\cdots}_{m}$$
, for each $s,t \in S$ with $m = m_{st} = m_{ts} < \infty$;

▶ the reflection relation

$$ss = e$$

for each $s \in S$;

Example. Symmetric groups S_n with $S = \{s_i := (i, i+1)\}_{1 \le i \le n-1}$,

A $Coxeter\ group$ is a group W, together with a finite generating set S, presented by relations of the following form:

▶ the braid relation

$$\underbrace{st\cdots}_{m} = \underbrace{ts\cdots}_{m}$$
, for each $s,t \in S$ with $m = m_{st} = m_{ts} < \infty$;

▶ the reflection relation

$$ss = e$$

for each $s \in S$;

Example. Symmetric groups S_n with $S = \{s_i := (i, i+1)\}_{1 \le i \le n-1}$, with the braid relations

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$
 and $s_i s_j = s_i s_i$ for $|i - j| > 1$.

▶ An *expression* of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.

- ▶ An *expression* of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.
- ▶ The *length function*: for $w \in W$, the length $\ell(w)$ is the smallest number of letters in an expression of w.

- An *expression* of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.
- ▶ The *length function*: for $w \in W$, the length $\ell(w)$ is the smallest number of letters in an expression of w.
- ▶ An expression $[s_1, ..., s_r]$ of $w \in W$ is *reduced* if $r = \ell(w)$.

- ▶ An expression of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.
- ▶ The *length function*: for $w \in W$, the length $\ell(w)$ is the smallest number of letters in an expression of w.
- ▶ An expression $[s_1, ..., s_r]$ of $w \in W$ is *reduced* if $r = \ell(w)$.

Matsumoto's Theorem

Any two reduced expressions of $w \in W$ are related by braid relations.

- ▶ An expression of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.
- ▶ The *length function*: for $w \in W$, the length $\ell(w)$ is the smallest number of letters in an expression of w.
- ▶ An expression $[s_1, ..., s_r]$ of $w \in W$ is *reduced* if $r = \ell(w)$.

Matsumoto's Theorem

Any two reduced expressions of $w \in W$ are related by braid relations.

Fact: if $|W| < \infty$, there's a unique longest element in W.

- An expression of $w \in W$ is a string $[s_1, s_2, ..., s_r]$ of elements in S such that $w = s_1 s_2 \cdots s_r$.
- ▶ The *length function*: for $w \in W$, the length $\ell(w)$ is the smallest number of letters in an expression of w.
- ▶ An expression $[s_1, ..., s_r]$ of $w \in W$ is *reduced* if $r = \ell(w)$.

Matsumoto's Theorem

Any two reduced expressions of $w \in W$ are related by braid relations.

Fact: if $|W| < \infty$, there's a unique longest element in W.

Fact: the finite Coxeter groups are classified into the types *ABDEFH* and the dihedral groups.

Example: affine symmetric group \widetilde{S}_3

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

$$D_{s_i}D_{s_{i+1}}D_{s_i} = D_{s_{i+1}}D_{s_i}D_{s_{i+1}}, \quad D_{s_i}D_{s_j} = D_{s_j}D_{s_i} \text{ for } |i-j| > 1 \quad \text{(braid relations)}$$

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Moreover, this gives a presentation of the algebra generated by D_{s_i} ,

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Moreover, this gives a presentation of the algebra generated by D_{s_i} , called the *nilCoxeter algebra* (or nilHecke algebra).

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Moreover, this gives a presentation of the algebra generated by D_{s_i} , called the *nilCoxeter algebra* (or nilHecke algebra). It has a basis $\{D_w\}_{w\in W}$, where $D_w=D_sD_t\cdots D_u$ if $w=st\cdots u$ is a reduced expression.

Let $(W, S) = (S_n, \{s_1, \dots, s_{n-1}\})$, for simplicity, and consider its natural action on $R = K[x_1, \dots, x_n]$.

The *Demazure operator* for s_i is the map $D_{s_i}: R \to R$

$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

Moreover, this gives a presentation of the algebra generated by D_{s_i} , called the *nilCoxeter algebra* (or nilHecke algebra). It has a basis $\{D_w\}_{w\in W}$, where $D_w=D_sD_t\cdots D_u$ if $w=st\cdots u$ is a reduced expression.

Demazure operators, general

Let (W, S) be a Coxeter group and consider its natural action on R = Sym(V), where V is a reasonable (faithful etc) realization.

The *Demazure operator* for $s \in S$ is the map $D_s : R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}.$$

Theorem [Demazure, 1973]

The Demazure operators satisfy

$$\underbrace{D_sD_t\cdots}_m = \underbrace{D_tD_s\cdots}_m, \text{ for each } s,t\in S \qquad \qquad \text{(braid relations)}$$

$$D_sD_s = 0. \qquad \qquad \text{(nilquadratic relations)}$$

Moreover, this gives a presentation of the algebra generated by D_s , called the *nilCoxeter algebra* (or nilHecke algebra). It has a basis $\{D_w\}_{w\in W}$, where $D_w=D_sD_t\cdots D_u$ if $w=st\cdots u$ is a reduced expression.

Note
$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}$$
 is s_i -invariant, i.e., belongs to

$$R^{s_i} = \{ f \in R \mid s_i(f) = f \}.$$

Note
$$D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}$$
 is s_i -invariant, i.e., belongs to

$$R^{s_i} = \{ f \in R \mid s_i(f) = f \}.$$

Decompose the Demazure operator as

$$D_{s_i}:R\stackrel{\delta_{s_i}}{\longrightarrow}R^{s_i}\stackrel{\iota_{s_i}}{\longleftrightarrow}R.$$

Note $D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}$ is s_i -invariant, i.e., belongs to

$$R^{s_i} = \{ f \in R \mid s_i(f) = f \}.$$

Decompose the Demazure operator as

$$D_{s_i}: R \xrightarrow{\delta_{s_i}} R^{s_i} \stackrel{\iota_{s_i}}{\hookrightarrow} R.$$

Then for example the nilquadratic relation factors as

$$D_{s_i}D_{s_i}=\iota_{s_i}\circ\delta_{s_i}\circ\iota_{s_i}\circ\delta_{s_i}=0$$

and follows from the zoomed-in relation

$$\delta_{s_i} \circ \iota_{s_i} = 0.$$

Note $D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}$ is s_i -invariant, i.e., belongs to

$$R^{s_i} = \{ f \in R \mid s_i(f) = f \}.$$

Decompose the Demazure operator as

$$D_{s_i}: R \xrightarrow{\delta_{s_i}} R^{s_i} \stackrel{\iota_{s_i}}{\longleftrightarrow} R.$$

Then for example the nilquadratic relation factors as

$$D_{s_i}D_{s_i}=\iota_{s_i}\circ\delta_{s_i}\circ\iota_{s_i}\circ\delta_{s_i}=0$$

and follows from the zoomed-in relation

$$\delta_{s_i} \circ \iota_{s_i} = 0$$

Geometrically: Considering the algebraic groups $GL_n \supset P_i \supset B(orel)$, the ring R is the B-equivariant cohomology; R^{s_i} is the P_i -equivariant cohomology; δ_{s_i} is the pushforward; ι_{s_i} is the pullback.

Let (W,S) be a Coxeter group. For a subset $I\subseteq S$, denote by W_I the subgroup generated by $I\subseteq W$.

Let (W,S) be a Coxeter group. For a subset $I\subseteq S$, denote by W_I the subgroup generated by $I\subseteq W$. Then (W_I,I) is a Coxeter group.

Let (W, S) be a Coxeter group. For a subset $I \subseteq S$, denote by W_I the subgroup generated by $I \subseteq W$. Then (W_I, I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

Let (W, S) be a Coxeter group. For a subset $I \subseteq S$, denote by W_I the subgroup generated by $I \subseteq W$. Then (W_I, I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

The Coxeter complex consists of the left cosets for W_I in W for all $I \subsetneq S$.

Let (W, S) be a Coxeter group. For a subset $I \subseteq S$, denote by W_I the subgroup generated by $I \subseteq W$. Then (W_I, I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

The Coxeter complex consists of the left cosets for W_I in W for all $I \subsetneq S$.

We assume: $I \subseteq S$ is *finitary* i.e., W_I is finite; so W_I has the longest element w_I .

Let (W,S) be a Coxeter group. For a subset $I\subseteq S$, denote by W_I the subgroup generated by $I\subseteq W$. Then (W_I,I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

The Coxeter complex consists of the left cosets for W_I in W for all $I \subsetneq S$.

We assume: $I \subseteq S$ is *finitary* i.e., W_I is finite; so W_I has the longest element w_I .

For $I, J \subseteq S$ finitary, consider the **finitary (parabolic) double cosets**:

$$p = W_I w W_J = \{xwy \in W \mid x \in W_I, y \in W_J\}$$

Let (W,S) be a Coxeter group. For a subset $I\subseteq S$, denote by W_I the subgroup generated by $I\subseteq W$. Then (W_I,I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

The Coxeter complex consists of the left cosets for W_I in W for all $I \subsetneq S$.

We assume: $I \subseteq S$ is *finitary* i.e., W_I is finite; so W_I has the longest element w_I .

For $I, J \subseteq S$ finitary, consider the **finitary (parabolic) double cosets**:

$$p = W_I w W_J = \{xwy \in W \mid x \in W_I, y \in W_J\}$$

• Each p contains a unique maximal element \overline{p}

Let (W,S) be a Coxeter group. For a subset $I\subseteq S$, denote by W_I the subgroup generated by $I\subseteq W$. Then (W_I,I) is a Coxeter group.

Example. Symmetric groups have $W_I = S_a \times S_b \times \cdots \times S_c \subseteq S_n$.

The Coxeter complex consists of the left cosets for W_I in W for all $I \subsetneq S$.

We assume: $I \subseteq S$ is *finitary* i.e., W_I is finite; so W_I has the longest element w_I .

For $I, J \subseteq S$ finitary, consider the **finitary (parabolic) double cosets**:

$$p = W_I w W_J = \{xwy \in W \mid x \in W_I, y \in W_J\}$$

- Each p contains a unique maximal element \overline{p}
- ► Each *p* contains a unique minimal element *p*

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Given $I \subset J \subset S$, the operator $D_{w_I w_I^{-1}} : R \to R$ is shown to restrict to

$$\partial_{[I,J]}:R^I\to R^J.$$

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Given $I \subset J \subset S$, the operator $D_{w_J w_J^{-1}} : R \to R$ is shown to restrict to

$$\partial_{[I,J]}:R^I\to R^J.$$

Also let $\partial_{[J,I]}: R^J \hookrightarrow R^I$ be the inclusion, where $I \subset J \subset S$.

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Given $I \subset J \subset S$, the operator $D_{w_I w_I^{-1}} : R \to R$ is shown to restrict to

$$\partial_{[I,J]}:R^I\to R^J.$$

Also let $\partial_{[J,I]}: R^J \hookrightarrow R^I$ be the inclusion, where $I \subset J \subset S$.

Example: $\partial_{[\varnothing,J]}: R \to R^J$ is given by

$$\partial_{[\varnothing,J]}(f) = D_{w_J}(f) = \frac{\sum_{w \in W_J} (-1)^{\ell(w)} w(f)}{\prod_{i < j} (x_i - x_j)}.$$

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Given $I \subset J \subset S$, the operator $D_{w_I w_I^{-1}} : R \to R$ is shown to restrict to

$$\partial_{[I,J]}:R^I\to R^J.$$

Also let $\partial_{[J,I]}: R^J \hookrightarrow R^I$ be the inclusion, where $I \subset J \subset S$.

Example: $\partial_{[\varnothing,J]}: R \to R^J$ is given by

$$\partial_{[\varnothing,J]}(f) = D_{w_J}(f) = \frac{\sum_{w \in W_J} (-1)^{\ell(w)} w(f)}{\prod_{i < j} (x_i - x_j)}.$$

Remarks. These too come from geometry.

Take for $I \subset S$ the invariant ring

$$R^{I} = \{ f \in R \mid s_{i}(f) = f \text{ for } s_{i} \in I \} = R^{W_{I}}.$$

Given $I \subset J \subset S$, the operator $D_{w_I w_I^{-1}} : R \to R$ is shown to restrict to

$$\partial_{[I,J]}: R^I \to R^J.$$

Also let $\partial_{[J,I]}: R^J \hookrightarrow R^I$ be the inclusion, where $I \subset J \subset S$.

Example: $\partial_{[\varnothing,J]}: R \to R^J$ is given by

$$\partial_{[\varnothing,J]}(f) = D_{w_J}(f) = \frac{\sum_{w \in W_J} (-1)^{\ell(w)} w(f)}{\prod_{i < j} (x_i - x_j)}.$$

Remarks. These too come from geometry. The inclusion $R^J \subset R^I$ is a Frobenius extension with trace $\partial_{[I,J]}$.

$$m = \frac{I}{I_s}$$

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}, \partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- ▶ whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}$, $\partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Notation.

$$\partial_{[I_0,I_1,\cdots,I_d]} = \partial_{[I_0,I_1]}\partial_{[I_1,I_2]}\cdots\partial_{[I_{d-1},I_d]}.$$

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- ▶ whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}$, $\partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Notation.

$$\partial_{[I_0,I_1,\cdots,I_d]} = \partial_{[I_0,I_1]}\partial_{[I_1,I_2]}\cdots\partial_{[I_{d-1},I_d]}.$$

We want to present ${\mathcal D}$ by (the above) generators and relations

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- ▶ whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}$, $\partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Notation.

$$\partial_{[I_0,I_1,\cdots,I_d]} = \partial_{[I_0,I_1]}\partial_{[I_1,I_2]}\cdots\partial_{[I_{d-1},I_d]}.$$

We want to present ${\mathcal D}$ by (the above) generators and relations

Example. if $I \subset J \subset K$ then $\partial_{[I,J,K]} = \partial_{[I,K]}$ and $\partial_{[K,J,I]} = \partial_{[K,I]}$.

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- ▶ whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}, \partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Notation.

$$\partial_{[I_0,I_1,\cdots,I_d]} = \partial_{[I_0,I_1]}\partial_{[I_1,I_2]}\cdots\partial_{[I_{d-1},I_d]}.$$

We want to present ${\mathcal D}$ by (the above) generators and relations

Example. if $I \subset J \subset K$ then $\partial_{[I,J,K]} = \partial_{[I,K]}$ and $\partial_{[K,J,I]} = \partial_{[K,I]}$.

Note. It is enough to have $\partial_{[I,Is]}$, $\partial_{[Is,I]}$ as generators, where $Is := I \sqcup \{s\}$.

Definition. Let \mathcal{D} be the K-linear category

- whose objects are R^I where $I \subset S$ are finitary subsets;
- ▶ whose morphisms are generated by the singular Demazure operators $\partial_{[I,J]}$, $\partial_{[J,I]}$, for $I \subset J \subset S$ finitary.

Notation.

$$\partial_{[I_0,I_1,\cdots,I_d]} = \partial_{[I_0,I_1]}\partial_{[I_1,I_2]}\cdots\partial_{[I_{d-1},I_d]}.$$

We want to present ${\mathcal D}$ by (the above) generators and relations

Example. if $I \subset J \subset K$ then $\partial_{[I,J,K]} = \partial_{[I,K]}$ and $\partial_{[K,J,I]} = \partial_{[K,I]}$. **Note.** It is enough to have $\partial_{[I,Is]}, \partial_{[Is,I]}$ as generators, where $Is := I \sqcup \{s\}$.

and give a basis.

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that,

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation : " $+s$ ")

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation : " $+s$ ")

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation: " $+s$ ")

An expression I_{\bullet} is *reduced* if $\partial_{I_{\bullet}} \neq 0$. (There's a more natural definition.)

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation : " $+s$ ")

An expression l_{\bullet} is *reduced* if $\partial_{l_{\bullet}} \neq 0$. (There's a more natural definition.)

'Regular' example: $[\emptyset, \{s\}, \emptyset, \{t\}, \emptyset, \{s\}, \emptyset, \{u\}, \emptyset, \{t\}, \emptyset, \{s\}, \emptyset]$

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation: " $+s$ ")

An expression l_{\bullet} is *reduced* if $\partial_{l_{\bullet}} \neq 0$. (There's a more natural definition.)

'Regular' example: $[\varnothing, \{s\}, \varnothing, \{t\}, \varnothing, \{s\}, \varnothing, \{u\}, \varnothing, \{t\}, \varnothing, \{s\}, \varnothing]$ in additive notation: $[\varnothing + s - s + t - t + s - s + u - u + t - t + s - s]$

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \dots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation: " $+s$ ")

An expression l_{\bullet} is *reduced* if $\partial_{l_{\bullet}} \neq 0$. (There's a more natural definition.)

'Regular' example: $[\emptyset, \{s\}, \emptyset, \{t\}, \emptyset, \{s\}, \emptyset, \{u\}, \emptyset, \{t\}, \emptyset, \{s\}, \emptyset]$ in additive notation: $[\varnothing + s - s + t - t + s - s + u - u + t - t + s - s]$

Other examples:
$$[\emptyset, \{s\}, \{s, t\}, \{s, t, u\}, \{s, u\}, \{u\}, \emptyset], [\{s, t, u\}, \{s, u\}]$$

A (singular) expression is a string

$$I_{\bullet} = [I_0, I_1, I_2, \ldots, I_r]$$

of finitary subsets of S such that, for each i, either

$$I_i = I_{i-1} \setminus s$$
 ('additive' notation : " $-s$ ")

or

$$I_i = I_{i-1}s$$
. ('additive' notation: " $+s$ ")

An expression l_{\bullet} is *reduced* if $\partial_{l_{\bullet}} \neq 0$. (There's a more natural definition.)

'Regular' example:
$$[\varnothing, \{s\}, \varnothing, \{t\}, \varnothing, \{s\}, \varnothing, \{u\}, \varnothing, \{t\}, \varnothing, \{s\}, \varnothing]$$
 in additive notation: $[\varnothing + s - s + t - t + s - s + u - u + t - t + s - s]$

Other examples:
$$[\emptyset, \{s\}, \{s, t\}, \{s, t, u\}, \{s, u\}, \{u\}, \emptyset], [\{s, t, u\}, \{s, u\}]$$
 in additive notation: $[\emptyset + s + t + u - t - s - u], [\{s, t, u\} - t]$

Rewrite expressions as

$$[[J_0 \supseteq K_1 \subsetneq J_1 \supsetneq K_2 \subsetneq \cdots \supsetneq K_d \subseteq J_d]]. \tag{*}$$

Rewrite expressions as

$$[[J_0 \supseteq K_1 \subsetneq J_1 \supsetneq K_2 \subsetneq \cdots \supsetneq K_d \subseteq J_d]]. \tag{*}$$

An alternative formulation of regular reduced expression:

A reduced expression of $w \in W$ is a string $[s, t, \dots, u]$ in S such that

$$w = st \cdots u$$

and

$$\ell(\mathsf{st}\cdots\mathsf{u})=\ell(\mathsf{s})+\ell(\mathsf{t})+\cdots+\ell(\mathsf{u}).$$

Rewrite expressions as

$$[[J_0 \supseteq K_1 \subsetneq J_1 \supsetneq K_2 \subsetneq \cdots \supsetneq K_d \subseteq J_d]]. \tag{*}$$

Definition [Williamson 2008, Elias-K. 2021]

Given $I, J \subset S$ finitary, a reduced expression of a double coset $p = W_I \setminus W/W_J$ is a string (\star) , with $J_0 = I$ and $J_d = J$, such that

$$\overline{p} = w_{J_0} w_{K_1}^{-1} w_{J_1} w_{K_2}^{-1} w_{J_2} \dots w_{K_d}^{-1} w_{J_d}$$

and

$$\ell(\overline{p}) = \ell(w_{J_0}) - \ell(w_{K_1}) + \ell(w_{J_1}) - \ell(w_{K_2}) + \ldots - \ell(w_{K_d}) + \ell(w_{J_d}).$$

Definition [Williamson 2008, Elias-K. 2021]

A reduced expression of $p = W_I w W_J$ is a string

$$[[J_0\supset K_1\subset J_1\supset K_2\subset\cdots\supset K_d\subset J_d]],$$

with $J_0 = I$ and $J_d = J$, such that

$$\overline{p} = w_{J_0} w_{K_1}^{-1} w_{J_1} w_{K_2}^{-1} w_{J_2} \cdots w_{K_d}^{-1} w_{J_d}$$

and

$$\ell(\overline{p}) = \ell(w_{J_0}) - \ell(w_{K_1}) + \ell(w_{J_1}) - \ell(w_{K_2}) + \ldots - \ell(w_{K_d}) + \ell(w_{J_d}).$$

Example. A 'regular' singular expression

$$\{w\} \leftrightharpoons [\varnothing + s - s + t - t + \dots + u - u]$$

Definition [Williamson 2008, Elias-K. 2021]

A reduced expression of $p = W_I w W_J$ is a string

$$[[J_0\supset K_1\subset J_1\supset K_2\subset\cdots\supset K_d\subset J_d]],$$

with $J_0 = I$ and $J_d = J$, such that

$$\overline{p} = w_{J_0} w_{K_1}^{-1} w_{J_1} w_{K_2}^{-1} w_{J_2} \cdots w_{K_d}^{-1} w_{J_d}$$

and

$$\ell(\overline{p}) = \ell(w_{J_0}) - \ell(w_{K_1}) + \ell(w_{J_1}) - \ell(w_{K_2}) + \ldots - \ell(w_{K_d}) + \ell(w_{J_d}).$$

Example. A 'regular' singular expression

$$\{w\} \leftrightharpoons [\varnothing + s - s + t - t + \dots + u - u]$$

is reduced if and only if $w = st \cdots u$ is reduced.

As noted above, we have the relations

$$[J+s+t] \leftrightharpoons [J+t+s] \qquad \qquad \text{(upup relation)}$$

$$[J-s-t] \leftrightharpoons [J-t-s] \qquad \qquad \text{(downdown relation)}$$

between reduced expressions.

As noted above, we have the relations

$$[J+s+t] \leftrightharpoons [J+t+s] \qquad \qquad \text{(upup relation)}$$

$$[J-s-t] \leftrightharpoons [J-t-s] \qquad \qquad \text{(downdown relation)}$$

between reduced expressions.

Some nontrivial relations

The switchback relations are of the form

$$[J + u_0 - u_d] \leftrightharpoons [J - u_1 + u_0 - u_2 + u_1 - u_3 + u_2 \cdot \cdot \cdot - u_{d-1} + u_{d-2} - u_d + u_{d-1}]$$

where u_i is a certain periodic sequence in (finitary) $J' = J \sqcup \{u_0\} \subseteq S$.

As noted above, we have the relations

$$[J+s+t] \leftrightharpoons [J+t+s] \qquad \qquad \text{(upup relation)}$$

$$[J-s-t] \leftrightharpoons [J-t-s] \qquad \qquad \text{(downdown relation)}$$

between reduced expressions.

Some nontrivial relations

The *switchback relations* are of the form

$$[J + u_0 - u_d] \leftrightharpoons [J - u_1 + u_0 - u_2 + u_1 - u_3 + u_2 \cdot \cdot \cdot - u_{d-1} + u_{d-2} - u_d + u_{d-1}]$$

where u_i is a certain periodic sequence in (finitary) $J' = J \sqcup \{u_0\} \subseteq S$.

The u_i sequence and the number d depend on $u_0 \neq u_1$ and the type of J'.

As noted above, we have the relations

$$[J+s+t] \leftrightharpoons [J+t+s] \qquad \qquad \text{(upup relation)}$$

$$[J-s-t] \leftrightharpoons [J-t-s] \qquad \qquad \text{(downdown relation)}$$

between reduced expressions.

Some nontrivial relations

The switchback relations are of the form

$$[J + u_0 - u_d] \leftrightharpoons [J - u_1 + u_0 - u_2 + u_1 - u_3 + u_2 \cdot \cdot \cdot - u_{d-1} + u_{d-2} - u_d + u_{d-1}]$$

where u_i is a certain periodic sequence in (finitary) $J' = J \sqcup \{u_0\} \subseteq S$.

The u_i sequence and the number d depend on $u_0 \neq u_1$ and the type of J'.

We call these (singular) braid relations.

Singular Matsumoto Theorem [Elias-K.]

For finitary $I, J \subseteq S$ and a double coset $p \in W_I \setminus W/W_J$, any two reduced expressions of p are related by braid relations (upup, downdown, and switchback).

Singular Matsumoto Theorem [Elias-K.]

For finitary $I,J\subseteq S$ and a double coset $p\in W_I\backslash W/W_J$, any two reduced expressions of p are related by braid relations (upup, downdown, and switchback).

It follows that $\partial_p := \partial_{I_{\bullet}}$, where I_{\bullet} is a reduced expression for p, is well-defined.

Singular Matsumoto Theorem [Elias-K.]

For finitary $I, J \subseteq S$ and a double coset $p \in W_I \setminus W/W_J$, any two reduced expressions of p are related by braid relations (upup, downdown, and switchback).

It follows that $\partial_p := \partial_{I_{\bullet}}$, where I_{\bullet} is a reduced expression for p, is well-defined.

Non-reduced expressions? Recall the following zoomed-in version of $D_sD_s=0$.

$$\partial_{[Js,J,Js]} = \partial_{[Js-s+s]} = 0.$$
 (nilquadratic relation)

Singular Matsumoto Theorem [Elias-K.]

For finitary $I,J\subseteq S$ and a double coset $p\in W_I\backslash W/W_J$, any two reduced expressions of p are related by braid relations (upup, downdown, and switchback).

It follows that $\partial_p := \partial_{I_{\bullet}}$, where I_{\bullet} is a reduced expression for p, is well-defined.

Non-reduced expressions? Recall the following zoomed-in version of $D_sD_s=0$.

$$\partial_{[Js,J,Js]} = \partial_{[Js-s+s]} = 0.$$
 (nilquadratic relation)

Presentation Theorem [Elias-K., Elias-K.-Libedinsky-Patimo]

The braid and nilquadratic relations generate all relations beteewn compositions of Demazure operators. That is, \mathcal{D} has a presentation by the generators $\partial_{[I,Is]}$, $\partial_{[Is,I]}$ and the above relations.

Singular Matsumoto Theorem [Elias-K.]

For finitary $I,J\subseteq S$ and a double coset $p\in W_I\backslash W/W_J$, any two reduced expressions of p are related by braid relations (upup, downdown, and switchback).

It follows that $\partial_p := \partial_{I_{\bullet}}$, where I_{\bullet} is a reduced expression for p, is well-defined.

Non-reduced expressions? Recall the following zoomed-in version of $D_sD_s=0$.

$$\partial_{[Js,J,Js]} = \partial_{[Js-s+s]} = 0.$$
 (nilquadratic relation)

Presentation Theorem [Elias-K., Elias-K.-Libedinsky-Patimo]

The braid and nilquadratic relations generate all relations beteewn compositions of Demazure operators. That is, \mathcal{D} has a presentation by the generators $\partial_{[I,Is]}, \partial_{[Is,I]}$ and the above relations. Moreover, the category \mathcal{D} has a basis $\{\partial_p \mid p \in W_l \backslash W/W_l, I, J \subset S \text{ finitary}\}.$

Let $p \in W_I \backslash W/W_J$ be a finitary double coset.

Let $p \in W_I \backslash W/W_J$ be a finitary double coset.

Definition. The *left (resp. right) redundancy* of *p* is the subset

$$\mathsf{LR}(p) = I \cap \underline{p} J \underline{p}^{-1} \subset I, \quad \mathsf{resp.,} \quad \mathsf{RR}(p) = \underline{p}^{-1} I \underline{p} \cap J \subset J,$$

Let $p \in W_I \backslash W/W_J$ be a finitary double coset.

Definition. The *left (resp. right) redundancy* of *p* is the subset

$$\mathsf{LR}(p) = I \cap \underline{p} J \underline{p}^{-1} \subset I, \quad \mathsf{resp.,} \quad \mathsf{RR}(p) = \underline{p}^{-1} I \underline{p} \cap J \subset J,$$

Definition. We call p a *core coset* if LR(p) = I and RR(p) = J.

Let $p \in W_I \backslash W/W_J$ be a finitary double coset.

Definition. The *left (resp. right) redundancy* of *p* is the subset

$$\mathsf{LR}(p) = I \cap \underline{p} J \underline{p}^{-1} \subset I, \quad \mathsf{resp.,} \quad \mathsf{RR}(p) = \underline{p}^{-1} I \underline{p} \cap J \subset J,$$

Definition. We call p a core coset if LR(p) = I and RR(p) = J.

Remark. A coset $W_I w W_J$ is core if and only if $W_I w W_J = w W_J = W_I w$.

Let $p \in W_I \backslash W/W_J$ be a finitary double coset.

Definition. The *left (resp. right) redundancy* of *p* is the subset

$$\mathsf{LR}(p) = I \cap \underline{p} J \underline{p}^{-1} \subset I, \quad \mathsf{resp.,} \quad \mathsf{RR}(p) = \underline{p}^{-1} I \underline{p} \cap J \subset J,$$

Definition. We call p a *core coset* if LR(p) = I and RR(p) = J.

Remark. A coset $W_I w W_J$ is core if and only if $W_I w W_J = w W_J = W_I w$.

Example. Any $W_{\varnothing}wW_{\varnothing}=\{w\}$ is core.

Let $p \in W_I \setminus W/W_J$ be a finitary double coset.

Definition. The *left (resp. right) redundancy* of *p* is the subset

$$\mathsf{LR}(p) = I \cap \underline{p} J \underline{p}^{-1} \subset I, \quad \mathsf{resp.,} \quad \mathsf{RR}(p) = \underline{p}^{-1} I \underline{p} \cap J \subset J,$$

Definition. We call p a core coset if LR(p) = I and RR(p) = J.

Remark. A coset $W_I w W_J$ is core if and only if $W_I w W_J = w W_J = W_I w$.

Example. Any $W_{\varnothing}wW_{\varnothing}=\{w\}$ is core.

The low road theorem [Elias-K. 2021]

Given $p \in W_I \setminus W/W_J$, the double coset $p^{core} := W_{LR(p)} p W_{RR(p)}$ is a core coset. Moreover, if $p^{core} \leftrightharpoons M_{\bullet}$ is a reduced expression then

$$p \leftrightharpoons [[I \supset \mathsf{LR}(p)]] \circ M_{\bullet} \circ [[\mathsf{RR}(p) \subset J]]$$

is a reduced expression.

Left cosets in \widetilde{S}_3

Core cosets in \widetilde{S}_3

Core cosets in $W_{\{g\}}\backslash W/W_J$, where $J\subset S$ runs

Core cosets in $W_I \setminus W/W_J$, where $J \subset S$ runs

is called *Tits cone intersection* by Iyama-Wemyss whose pictures I paste:

Definition. An atom is a core coset with a (unique) reduced expression

$$a \leftrightharpoons [I + s - t].$$

Definition. An atom is a core coset with a (unique) reduced expression

$$a \leftrightharpoons [I + s - t].$$

Example. For each $s \in S$ the coset $\{s\} \leftrightharpoons [\emptyset + s - s]$ is an atom.

Definition. An atom is a core coset with a (unique) reduced expression

$$a \leftrightharpoons [I + s - t].$$

Example. For each $s \in S$ the coset $\{s\} \leftrightharpoons [\emptyset + s - s]$ is an atom.

Definition. An atomic (reduced) expression is a(n reduced) expression of the form

$$p \leftrightharpoons a \circ a' \circ \cdots \circ a'' := [I + s - t + s' - t' + \cdots + s'' - t'']$$

where a, a', \dots, a'' are atoms. (Or think of

$$\partial_{p} = \partial_{\mathbf{a}}\partial_{\mathbf{a}'}\cdots\partial_{\mathbf{a}''} = \partial_{[I+s-t+s'-t'+\cdots+s''-t'']}.$$

Definition. An atom is a core coset with a (unique) reduced expression

$$a \leftrightharpoons [I + s - t].$$

Example. For each $s \in S$ the coset $\{s\} \leftrightharpoons [\emptyset + s - s]$ is an atom.

Definition. An atomic (reduced) expression is a(n reduced) expression of the form

$$p \leftrightharpoons a \circ a' \circ \cdots \circ a'' := [I + s - t + s' - t' + \cdots + s'' - t'']$$

where a, a', \dots, a'' are atoms. (Or think of

$$\partial_p = \partial_a \partial_{a'} \cdots \partial_{a''} = \partial_{[I+s-t+s'-t'+\cdots+s''-t'']}.$$

Example. For a regular (reduced) expression $w = st \cdots u$ in W, the expression $\{w\} \leftrightharpoons [\emptyset + s - s + t - t + \dots + u - u]$ is an atomic (reduced) expression.

Atoms in \widetilde{S}_3

An atomic expression

Let \mathcal{D}^{at} be the subcategory of \mathcal{D} generated by the atoms, i.e., the morphisms $\partial_{\mathbf{a}}$ where \mathbf{a} are atoms.

Let \mathcal{D}^{at} be the subcategory of \mathcal{D} generated by the atoms, i.e., the morphisms ∂_a where a are atoms.

Theorem [Elias-K.-Libedinsky-Patimo, K.]

The category \mathcal{D}^{at} has a basis

 $\{\partial_p \mid p \text{ is a core double coset}\}$

Let \mathcal{D}^{at} be the subcategory of \mathcal{D} generated by the atoms, i.e., the morphisms ∂_a where a are atoms.

Theorem [Elias-K.-Libedinsky-Patimo, K.]

The category \mathcal{D}^{at} has a basis

$$\{\partial_p \mid p \text{ is a core double coset}\}$$

and a presentation by generators (the atoms ∂_a) and the following relations:

atomic braid relations

$$\underbrace{\partial_{\mathbf{a}}\partial_{\mathbf{b}'}\partial_{\mathbf{a}''}\cdots}_{m}=\underbrace{\partial_{\mathbf{b}}\partial_{\mathbf{a}'}\partial_{\mathbf{b}''}\cdots}_{m},$$

where a', a'', \cdots and b', b'', \cdots are certain twists of the atoms a and b; and $m = m_{a,b} \ge 2$ is an integer determined by a switchback relation.

atomic nilguadratic relations

$$\partial_{\mathbf{a}}\partial_{\mathbf{a}^{-1}}=0.$$

Let $Q=(Q_0,Q_1)$ be a quiver and let $\overline{Q}=(Q_0,Q_1\sqcup Q_1^{op})$ be the double quiver.

Let $Q=(Q_0,Q_1)$ be a quiver and let $\overline{Q}=(Q_0,Q_1\sqcup Q_1^{op})$ be the double quiver. We will assume that Q is extended Dynkin, i.e., the Dynkin diagram of a (simply-laced) affine Coxeter type.

Let $Q=(Q_0,Q_1)$ be a quiver and let $\overline{Q}=(Q_0,Q_1\sqcup Q_1^{op})$ be the double quiver. We will assume that Q is extended Dynkin, i.e., the Dynkin diagram of a (simply-laced) affine Coxeter type. Let (W,S) be this Coxeter group.

Let $Q=(Q_0,Q_1)$ be a quiver and let $\overline{Q}=(Q_0,Q_1\sqcup Q_1^{op})$ be the double quiver. We will assume that Q is extended Dynkin, i.e., the Dynkin diagram of a (simply-laced) affine Coxeter type. Let (W,S) be this Coxeter group.

Definition. The associated *preprojective algebra* Π is the completion of the path algebra for \overline{Q} modulo the ideal $(\sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha)$.

Let $Q=(Q_0,Q_1)$ be a quiver and let $\overline{Q}=(Q_0,Q_1\sqcup Q_1^{op})$ be the double quiver. We will assume that Q is extended Dynkin, i.e., the Dynkin diagram of a (simply-laced) affine Coxeter type. Let (W,S) be this Coxeter group.

Definition. The associated *preprojective algebra* Π is the completion of the path algebra for \overline{Q} modulo the ideal $(\sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha)$.

Theorem [Iyama-Reiten, Buan-Iyama-Reiten-Scott].

The ideals

$$I_s = (1 - e_s), \quad \text{for } s \in Q_0 = S$$

and their products are tilting modules. Moreover, we have a bijection

$$W \rightarrow \{(basic) \text{ tilting modules for } \Pi\}$$

given by $w \mapsto I_w = I_s I_t \cdots I_u$ where $w = st \cdots u$ is a reduced expression in (W, S).

Tilting theory for contracted preprojective algebras

In the same setting, for $J \subset S = Q_0$ consider the idempotent $e_J = 1 - \sum_{s \in J} e_s$ and the *contracted preprojective algebra*

$$\Gamma_J = e_J \Pi e_J$$
.

Tilting theory for contracted preprojective algebras

In the same setting, for $J \subset S = Q_0$ consider the idempotent $e_J = 1 - \sum_{s \in J} e_s$ and the *contracted preprojective algebra*

$$\Gamma_J = e_J \Pi e_J$$
.

Theorem [Iyama-Wemyss, Tits Cone Intersections and Applications].

Let Q be extended Dynkin. Then we have a bijection

{core double cosets in
$$(W, S)$$
} $\rightarrow \bigsqcup_{J \subsetneq S}$ {tilting modules for Γ_J }

given by $W_J \times W_I \longmapsto e_J I_x e_I$.

Tilting theory for contracted preprojective algebras

In the same setting, for $J \subset S = Q_0$ consider the idempotent $e_J = 1 - \sum_{s \in J} e_s$ and the *contracted preprojective algebra*

$$\Gamma_J = e_J \Pi e_J$$
.

Theorem [Iyama-Wemyss, Tits Cone Intersections and Applications].

Let Q be extended Dynkin. Then we have a bijection

$$\{\text{core double cosets in }(W,S)\} \to \bigsqcup_{J \subsetneq S} \{\text{tilting modules for } \Gamma_J\}$$

given by $W_J \times W_I \longmapsto e_J I_X e_I$. Moreover, a reduced composition $-\circ$ a by an atom corresponds to a tilting mutation on the right side.

Theorem [Iyama-Wemyss, Tits Cone Intersections and Applications]

Let Q be extended Dynkin and fix $J \subsetneq S$. Then we have a bijection

{core double cosets in $W_I \setminus W/W_I$ } \rightarrow {tilting modules for Γ_J }.

Theorem [Iyama-Wemyss], original version.

Let Q be extended Dynkin and fix $J \subsetneq S$. Then we have a bijection

{chambers in the Tits J-cone} \rightarrow {tilting modules for Γ_J }.

Theorem [Iyama-Wemyss], original version.

Let Q be extended Dynkin and fix $J \subsetneq S$. Then we have a bijection

 $\{\text{chambers in the Tits } J\text{-cone}\} \rightarrow \{\text{tilting modules for } \Gamma_J\}.$

If $|S \setminus J| = 3$ then the Tits *J*-cone is one of the following types:

Recall the regular Demazure operator $D_s: R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}, \qquad \text{(or, for } s = s_i \in S_n,) \quad D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Recall the regular Demazure operator $D_s: R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}, \qquad \text{(or, for } s = s_i \in S_n,) \quad D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

The (twisted) Leibniz rule is well-known:

$$D_s(f \cdot g) = s(f)D_s(g) + D_s(f)g.$$

Recall the regular Demazure operator $D_s: R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}, \qquad \text{(or, for } s = s_i \in S_n,) \quad D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

The (twisted) Leibniz rule is well-known:

$$D_s(f \cdot g) = s(f)D_s(g) + D_s(f)g.$$

Singular analogue.

Recall the regular Demazure operator $D_s: R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}, \qquad \text{(or, for } s = s_i \in S_n,) \quad D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

The (twisted) Leibniz rule is well-known:

$$D_s(f \cdot g) = s(f)D_s(g) + D_s(f)g.$$

Singular analogue. An atomic Leibniz rule (for an atom a) is

$$\partial_{\mathbf{a}}(f \cdot g) = \underline{p}(f)\partial_{\mathbf{a}}(g) + \sum_{p < \mathbf{a}} \partial_{p}(T_{p}(f) \cdot g) \tag{*}$$

where $T_p(f)$ is some element depending on the coset p < a and we use the Bruhat order on double cosets.

Recall the regular Demazure operator $D_s: R \to R$

$$D_s(f) = \frac{f - s(f)}{\alpha_s}, \qquad \text{(or, for } s = s_i \in S_n,) \quad D_{s_i}(f) = \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

The (twisted) Leibniz rule is well-known:

$$D_s(f \cdot g) = s(f)D_s(g) + D_s(f)g.$$

Singular analogue. An atomic Leibniz rule (for an atom a) is

$$\partial_{\mathbf{a}}(f \cdot g) = \underline{p}(f)\partial_{\mathbf{a}}(g) + \sum_{p < \mathbf{a}} \partial_{p}(T_{p}(f) \cdot g) \tag{*}$$

where $T_p(f)$ is some element depending on the coset p < a and we use the Bruhat order on double cosets.

Remark. The summands in (\star) have interpretation in terms of singular light leaves, a basis of the singular Hecke category, aka singular Soergel bimodules, and (\star) is equivalent to an essential property of singular Bott-Samelson bimodules for singular Soergel calculus.

where $T_p(f)$ is some l

28 / 29

a and we use the

Papers in Singularland (boldface for cited)

Elias-K., A Singular Coxeter presentation, arXiv:2105.08563 (2023)

The Singular Land (with Elias, Libedinsky, Patimo), Season 1 (2023-2024)

EKLP, **Demazure operators for double cosets**, arXiv:2307.15021

EKLP, Subexpressions and the Bruhat order for double cosets, arXiv:2307.15726

EKLP, On reduced expressions for core double cosets (to be posted)

EKLP, Singular Light Leaves, arXiv:2401.03053

K, An Atomic Coxeter presentation, arXiv:2312.16666

The Singular Land Season 2 is coming:

Atomic Leibniz rule, Singular Soergel calculus, ...