

Introduction to Neural Networks

Johns Hopkins University
Engineering for Professionals Program
605-447.71/625-438.71
Dr. Mark Fleischer

Copyright 2013 by Mark Fleischer

Module 2.4: Mathematical Review-Metric Spaces

This Sub-Module Covers ...

- Some mathematical review of Metric Spaces and will set the stage for using:
 - directional derivatives in conjunction with calculus based optimization to define the
 - Method of Steepest Descent (MOSD)---used to train Perceptrons.
- Also provides additional insights into dynamical systems.

What is 'Distance' and 'Magnitude'?

- Need capability to rank and/compare objects using a simple criterion.
- Want a flexible yet abstract notion of distance or length or magnitude.
- The following principles provide a very abstract, general way of defining the essential properties of a 'length'.

Length

Desirable properties of a "length" (magnitude or norm):

- 1. Positivity: $||\mathbf{y}|| \ge 0$ for all y and $||\mathbf{y}|| = 0$ if and only if $\mathbf{y} = \mathbf{0}$.
- 2. Homogeneity: ||cy|| = |c| ||y|| for all scalars c and vectors y.
- 3. The Triangle Inequality: $||x + y|| \le ||x|| + ||y||$ for all vectors x and y.

Examples of a Norm

$$\left|\vec{a}\right| \equiv \left\|\vec{a}\right\| = \left[\sum_{i=1}^{n} a_i^2\right]^{\frac{1}{2}}$$

This is called the Euclidean Norm.

$$\left|\vec{a}\right|_p \equiv \left\|\vec{a}\right\|_p = \left[\sum_{i=1}^n a_i^p\right]^{\frac{1}{p}}$$
 This is the *p*-norm.

If
$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$$
 for some set of *n* linearly independent vectors \mathbf{v}_i . Then

$$\|\mathbf{y}\|_{\mathbf{V}} \equiv \sum_{i=1}^{n} |\alpha_i|$$
 is a norm with respect to the matrix $(\mathbf{v}_1 | \mathbf{v}_2 | \cdots |_{\mathbf{v}_n}^{\mathbf{v}})$.

Metric Spaces

We've already alluded to some issues for measuring mathematical things. We need tools that allow us to *rank* mathematical objects and *rank relationships* between and among mathematical objects.

- 1. $\rho(x, y) = \rho(y, x) \ge 0$. Positivity
- 2. $\rho(x, x) = 0$; $\rho(x, y) = 0 \Leftrightarrow x = y$. Homogeneity
- 3. $\rho(x, z) + \rho(z, y) \ge \rho(x, y)$. Triangle Inequality

where ρ is a function defined on $M \times M$, hence (M, ρ) is called a Metric Space

The metric function ρ can take on many forms!

We define ρ based on what is necessary and convenient!

Various Forms of Metrics

$$\rho_{\infty}(x, y) = \max_{i} |x_{i} - y_{i}|$$
$$|x_{i} - y_{i}| \le |x_{i} - z_{i}| + |z_{i} - y_{i}|$$

$$\rho(f(x),g(x)) = \underset{x \in [a,b]}{\text{Max}} |f(x) - g(x)|$$

$$\rho(\vec{a}, \vec{b}) = \|\vec{a} - \vec{b}\| = \left[\sum_{i=1}^{n} (a_i - b_i)^2\right]^{\frac{1}{2}} = (\vec{a} - \vec{b}, \vec{a} - \vec{b})^{\frac{1}{2}}$$

Orthogonality and Angles

We can posit that for any two mathematical objects, there corresponds a number between -1 and 1 that conveys how these objects are related.

$$\cos \theta = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

We can say that this corresponds to the angle between two vectors.

Convergent Sequences

Limit Points: A sequence $\{x_n\}$ is convergent and has a limit point

$$x^* \in M$$
, if $\rho(x_n, x^*) \to 0$ as $n \to \infty$,

$$\chi_n \longrightarrow \chi^*$$

Mappings in Metric Spaces

Define two sets and two Metric Spaces:

$$D(f) = \{x : x \in M \land f(x) \text{ is defined} \}$$

$$R(f) = \{x' : x' \in M' \land \exists x \in D(f) \ni x' = f(x) \}$$

Boundedness

Contraction Mapping

A Mapping is a contraction if it is bounded and

$$\exists k \ge 0 \land 0 \le k < 1, \exists \forall x, y \in D(f)$$
$$\rho'(f(x), f(y)) \le k\rho(x, y)$$

An Example

Define
$$\rho(x_1, x_2) = |x_1 - x_2|$$

A Useful Fact

 $\Delta y = f'(\xi)\Delta x$ where ξ is some "intermediate" value.

The Mean Value Theorem

$$|\Delta y| = |f(x_1) - f(x_2)|$$

$$= |f'(\xi)\Delta x|$$

$$\leq |f'(\xi)| |\Delta x|$$

$$= f'(\xi) |x_1 - x_2|$$

Putting It All Together

$$|\Delta y| = |f(x_1) - f(x_2)| = \rho(f(x_1), f(x_2))$$

Therefore,

$$\rho(f(x_1), f(x_2)) \le f'(\xi)\rho(x_1, x_2)$$
and since $0 \le x_1, x_2 < \frac{1}{2}$, and $f'(x) = 2x$
then it follows that $f'(\xi) < 1$

$$\forall x, y \in D(f) \text{ and } 0 \le k < 1$$

 $\rho'(f(x), f(y)) \le k\rho(x, y)$
is a Contraction Mapping

A Numerical Example

$$\rho(\frac{1}{4}, \frac{1}{2}) = \frac{1}{4}$$

$$\rho(f(\frac{1}{4}), f(\frac{1}{2})) = \rho((\frac{1}{4})^2, (\frac{1}{2})^2)$$

$$= \rho(\frac{1}{16}, \frac{1}{4})$$

$$= \frac{3}{16}$$
Note that $\frac{3}{16} < \frac{1}{4}$

How Would You Use This in The Context of Fixed Points?

$$\forall x_1, x_2 \in D(f) \text{ and } 0 \le k < 1$$

 $\rho'(f(x_1), f(x_2)) \le k\rho(x_1, x_2)$

$$\forall x_1, x_2 \in D(f) \text{ and } 0 \le k < 1$$
$$\rho'(x^*, f(x_2)) \le k\rho(x^*, x_2)$$

because by definition, a fixed point x^* is such that

$$f(x^*) = x^*$$

Dynamical Systems

- Neural Networks can be fashioned into dynamical systems.
- Feeding outputs back as inputs and cycling them ala fixed point exercise.
- How does such a system behave?
- Stay tuned.