# Σημειώσεις Στατιστική & Πιθανότητες

Καναβούρας Κωνσταντίνος http://users.auth.gr/konkanant

2016, Εαρινό εξάμηνο

- Γ. Ζιούτας Πιθανότητες
- Δ. Κουγιουμτζής Στατιστική
- Βιβλίο: Πιθανότητες και Στατιστική για Μηχανικούς, Γ. Ζιούτας

• Εξετάσεις: 8 μονάδες (τουλάχιστον 4/8 για να περάσει)

• Test: 2 μονάδες

## Μέρος Ι

# Πιθανότητες

# Κεφάλαιο 1

#### Είδη φαινομένων

- 1. **Αιτιοχρατικά** (καθοριστικά): Ξέρω το αποτέλεσμα του φαινομένου όταν γνωρίζω τα αίτια/τις προϋποθέσεις/το περιβάλλον του.
- 2. Στοχαστικά: Δεν μπορώ να προβλέψω το αποτέλεσμα, ακόμα και αν γνωρίζω τα παραπάνω.

Μπορεί να υπάρχει και αβεβαιότητα λόγω μη ιδανικών μοντέλων πρόβλεψης. Ο μηχανικός πρέπει να γνωρίζει και να μπορεί να μετρά αυτήν την αβεβαιότητα.

### 1.1 Πείραμα τύχης

Στοχαστικό φαινόμενο που μπορούμε να δοκιμάσουμε όσες φορές θέλουμε, ακριβώς με τις ίδιες συνθήκες, και γνωρίζουμε όλα τα δυνατά αποτελέσματα, αν και δε γνωρίζουμε ακριβώς το αποτέλεσμα κάθε πειράματος.

- Ε: Πείραμα τύχης (Experiment)
- S:  $\{s_1, s_2, \ldots, s_n\}$  Δειγματοχώρος (Sample space)
- $s_i$ : Δειγματοσημεία

 $\pi.\chi$ .

 $E_1$   $S_1 = \{1, 2, 3, 4, 5, 6\} \rightarrow$  ρίψη ζαριού

 $E_2$   $S_2 = \{KKK, KK\Gamma, K\Gamma K, \Gamma KK, K\Gamma \Gamma, \Gamma \Gamma K, \Gamma \Gamma \Gamma\} \rightarrow$ ρίψη κέρματος 3 φορές

 $E_3$   $S_3 = \{0, 1, \dots, N\} \rightarrow$  ελαττωματικά προϊόντα

 $E_4$   $S_4 = \{0, 1, 2, 3 \dots\} \rightarrow$  αριθμός ατόμων που εκπέμπει ραδιενεργό υλικό

 $E_5$   $S_5 = \{x | x \ge 0, x \in \mathbb{R}\} \to χρόνος γενονότος$ 

Υποσύνολα του δειγματικού χώρου, π.χ.  $A=\{4,5,6\}\subseteq S$  ονομάζονται γεγονότα. Συνήθως συμβολίζονται A,B,W,R. Λέμε ότι ένα γεγονός πραγματοποιείται.

Το S είναι σίγουρο γεγονός.

το  $\{\}\subseteq S$  ονομάζεται αδύνατο γεγονός και συμβολίζεται  $\emptyset.$ 

$$S = \{s_1, s_2, \dots, s_n\}$$

Το δυναμοσύνολο  $S^*$  περιέχει όλα τα δυνατά υποσύνολα του S:

$$S^* = \{\{\}, \{s_1\}, \{s_2\}, \dots, \{s_n\}, \{s_1, s_2\}, \{s_1, s_3\}, \dots, \{s_1, s_2, s_3\} \dots\}$$

Είναι:

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n}a^{0}b^{n}$$
$$(1+1)^{n} = \binom{n}{0} \cdot 1 + \binom{n}{1} \cdot 1 + \binom{n}{2} \cdot 1 + \dots + \binom{n}{n} \cdot 1$$
$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Παρατηρούμε ότι το  $S^*$  έχει  $2^n$  στοιχεία αν το S έχει n.

# Διαγράμματα Venn





Ισότητα



Περιεκτικότητα

Συμπλήρωμα



Ισότητα

### 1.1.1 Πράξεις



Ένωση  $A \cup B$ 



 $extbf{Toμή} A \cap B$ 



 $\mathbf{\Delta}$ ιαφορά A-B

Παρατηρώ ότι:

$$(x - y) + y = x$$
$$(A - B) \cup B = A \cup B$$

### 1.1.2 Ιδιότητες

- $\bullet \ A \cup B = B \cup A$
- $A \cup (B \cup \Gamma) = (A \cup B) \Gamma$
- $A \cup (B \cap \Gamma) = (A \cup B) \cap (A \cup \Gamma)$
- $\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$

#### 1.1.3

$$S = \{KK, K\Gamma, \Gamma K, \Gamma \Gamma\}$$
 
$$A = \{KK, K\Gamma, \Gamma K\} \leftarrow \text{ τουλάχιστον μία κεφαλή}$$
 
$$B = \{KK, \Gamma K\} \leftarrow \text{ κεφαλή στη 2η ρίψη}$$

$$A \cup B = \{KK, K\Gamma, \Gamma K\}$$
$$A \cap B = \{KK, \Gamma K\}$$
$$A - B = \{K\Gamma\}$$

#### 1.1.4

$$S, A, B, \Gamma$$

- Τουλάχιστον ένα από  $A, B, \Gamma$ :  $A \cup B \cup \Gamma$
- Μόνο ένα από τα  $A,B,\Gamma$ :  $(A-(B\cup\Gamma))\cup (B-(A\cup\Gamma))\cup (\Gamma-(A\cup B))=(A\cap\overline{B}\cap\overline{C})\cap (\overline{A}\cap B\cap\overline{C})\cap (\overline{A}\cap\overline{B}\cap\overline{C})$
- Ακριβώς δύο από τα  $A, B\Gamma$ :  $(A \cap B \Gamma) \cap (A \cap \Gamma B) \cap (B \cap \Gamma A)$
- Το πολύ δύο από τα  $A,B,\Gamma$ :  $\overline{A\cap B\cap \Gamma}=\overline{A}\cup \overline{B}\cup \overline{CPPP}$

 $\pi.\chi$ .

$$A, B, \Gamma$$

Σε ένα παιχνίδι όπου κερδίζει ο παίκτης που πρώτος φέρνει κεφαλή, ποιο είναι το γεγονός να κερδίσει ο A, αν  $A_i, B_i, \Gamma_i$  τα ενδεχόμενα στην i-οστή ρίψη να κερδίσει ένας παίκτης.

$$WA = A_1 \cup \left(\overline{A_1} \cap \overline{B_2} \cap \overline{\Gamma_3} \cap A_4\right) \cup \left(\overline{A_4} \cap \overline{B_5} \cap \overline{\Gamma_6} \cap A_7\right) \cup \dots$$

Να βρεθούν τα  $WB, W\Gamma$