CONTENTS

1 데이터분석과 기계학습

- 2 Linear Regression
- Multi-variable
 Linear Regression

- □ 기계학습 예제를 위해 가장 간단한 형태의 데이터를 고려해보자
 - 우리반 학생들의 수학 공부시간 대비 시험점수가 아래와 같다. 내가 7시간 공부하면 몇 점 받을 수 있을까?

이름	수학 공부시간	점수
야쓰오	2	3
정	4	4
블리츠	6	5
페이커	8	6

- □ 기계학습을 위해 모델링 예제로 바꿔보자
 - 어떻게 모델링을 해야할까?

- □ 모델링 방법1: 선형회귀
 - □ 가설: 데이터의 관계를 선형으로 표현할 수 있지 않을까? (예, 공부시간 대비 성적은 비례)
 - 종속 변수 y와 한 개 이상의 독립 변수 X와의 선형 상관 관계를 모델링하는 회귀분석 기법 (위키)

- □ 모델링 방법1: 선형회귀
 - 관측된 표본 데이터를 가장 잘 설명할 수 있는 선을 하나 찾는다. = 최적화된 w, b조합을 찾는다.

가능한 w와 b 조합 중에 어떤 모델이 다른 모델보다 더 좋다고 할 수 있을까?

평가할 척도가 필요하다!!

□ 선형회귀 평가

- 관측된 표본데이터와 우리가 선택한 w, b값으로 생성한 직선을 비교해 차이가 적은 w, b값을 찾자

w₁ = 0.1, b₁ = 0.4로 가정해보자

 $f_1(x) = 0.1*x + 0.4$

어떤 평가척도를 사용해서 w, b를 평가할까?

- 관측된 표본(x₁, y₁)과 f1과의 **편차**= (f₁(x₁) y₁) = 1.2
- 전체 편차의 합= $\Sigma_{i=1}(f_1(x_i) y_i) = 0$??
- 전체 편차의 평균= 1/n*Σ_{i=1}(f₁(x_i) y_i) = 0 ??
- 편차 제곱의 평균= $1/n*Σ_{i=1}(f_1(x_i) y_i)^2 = 0.8$

02. Linear Regression (선형회귀 평가-MSE)

□ 선형회귀 평가: Mean Squared Error(MSE) == 편차 제곱의 평균 (분산?)

- 과연 편차 제곱의 평균 (MSE)는 w, b에 따른 차이를 잘 반영할까?

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$f_{1}(x) = 0.1 * x + 0.4$$

$$x_{1}, y_{1} \rightarrow (f_{\theta_{1}}(2.0) - 3.0)^{2} = ((0.1 * 2.0 + 4.0) - 3.0)^{2} = 1.44$$

$$x_{2}, y_{2} \rightarrow (f_{\theta_{1}}(4.0) - 4.0)^{2} = ((0.1 * 4.0 + 4.0) - 4.0)^{2} = 0.16$$

$$x_{3}, y_{3} \rightarrow (f_{\theta_{1}}(6.0) - 5.0)^{2} = ((0.1 * 6.0 + 4.0) - 5.0)^{2} = 0.16$$

$$x_{4}, y_{4} \rightarrow (f_{\theta_{1}}(8.0) - 6.0)^{2} = ((0.1 * 8.0 + 4.0) - 6.0)^{2} = 1.44$$

$$f_{2}(x) = 0.8 * x + 0.0$$

$$x_{1}, y_{1} \rightarrow (f_{\theta_{2}}(2.0) - 3.0)^{2} = ((0.8 * 2.0 + 0.0) - 3.0)^{2} = 1.96$$

$$x_{2}, y_{2} \rightarrow (f_{\theta_{2}}(4.0) - 4.0)^{2} = ((0.8 * 4.0 + 0.0) - 4.0)^{2} = 0.64$$

$$x_{3}, y_{3} \rightarrow (f_{\theta_{2}}(6.0) - 5.0)^{2} = ((0.8 * 6.0 + 0.0) - 5.0)^{2} = 0.04$$

$$x_{4}, y_{4} \rightarrow (f_{\theta_{2}}(8.0) - 6.0)^{2} = ((0.8 * 8.0 + 0.0) - 6.0)^{2} = 0.16$$

$$f_{3}(x) = 0.5 * x + 2 \qquad \text{MSE} = 0$$

02. Linear Regression (선형회귀 평가-MSE)

- □ 선형회귀 평가: Mean Squared Error(MSE)의 의미
 - □ 분산은 평균을 기준으로 퍼져있는 정도를 나타내는 대푯값.
 - □ 분산이 클 수록 데이터의 분포도가 평균에서 들쭉날쭉 불안정하다, 즉 **오차가 많다**는 의미

우리가 가정(**H**ypothesis)한 w,b에

- 오차가 많다 = 손실이 많다
 - Cost function = Loss function

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

□ 최적의 선형회귀란?

- 관측된 표본 데이터를 가장 잘 설명할 수 있는 선을 하나 찾는다. = 최적화된 w, b조합을 찾는다. = Cost(w, b)가 최저 값을 보이는 w, b 값을 찾는다.

Cost(w,b)를 최소화하는 w, b 값을 찾는다.

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

$$\underset{W,b}{\operatorname{minimize}} \cos t(W,b)$$

□ Cost(w, b)가 최저 값을 보이는 w, b를 어떻게 찿을까?

 $cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$ $\begin{array}{c} \text{minimize } cost(W,b) \end{array}$

- w값의 변화에 의해 Cost(w)값이 어떻게 달라지는지 살펴보자
- cost값이 작아지는 방향으로 조금씩 w값을 업데이트 하자!!

□ Cost 값이 작아지는 방향은 어떻게 찿을까? - 바로 미분! = 기울기

J(w)
Initial weight
이 지점의 기울기 = 미분 값
Global cost minimum
J_{min}(w)

 $\underset{W,b}{\operatorname{minimize}} \operatorname{cost}(W,b)$

$$cost(W) = rac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$rac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

□ Cost 값이 작아지는 방향은 어떻게 찾을까? - 바로 미분! = 기울기

J(w)
Initial
weight
이 지점의 기울기 = 미분 값
Global cost minimum
J_{min}(w)

$$\underset{W,b}{\operatorname{minimize}} \operatorname{cost}(W,b)$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

$$\frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

$$\frac{\partial}{\partial W} cost(W) = \frac{\partial}{\partial W} \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

$$\frac{1}{2m} \sum_{i=1}^{m} 2(Wx^{(i)} - y^{(i)})x^{(i)}$$

$$\frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})x^{(i)}$$

$\underset{W,b}{\operatorname{minimize}} \operatorname{cost}(W,b)$

□ Gradient Descent Algorithm

- 미분을 이용해 cost값이 작아지는 방향으로 조금씩 w값을 업데이트 하자!!

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

☐ Gradient Descent Algorithm

- 미분을 이용해 cost값이 작아지는 방향으로 조금씩 w값을 업데이트 하자!!

 $\begin{aligned} cost(W,b) &= \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2 \\ &\text{minimize } cost(W,b) \end{aligned}$

☐ Gradient Descent Algorithm

- cost값이 작아지는 방향으로 조금씩 w, b값을 업데이트 하자!!

☐ Gradient Descent Algorithm

- cost값이 작아지는 방향으로 조금씩 w, b값을 업데이트 하자!!

□ Gradient Descent Algorithm 정리

1. 가설에 따라 W(weight)을 설정하고 X를 넣어 예측 결과물을 얻는다.	Prediction
2. 가설에 따른 결과와 실제 값과의 차이를 계산한다.	Cost Function
3. 가설과 실제 값의 차이(에러)가 어떤 값(w)에서 비롯되었는가?	Differentiation (미분)
4. 역으로 내려가면서 추정하여 w의 가중치를 계산한다.	Back Propagation
5. 추정된 가중치*learning rate 만큼 W 값을 변화시킨다.	Weight Update

