BIG QUAKE

Basic Information

• Family Type: Code-based

• Purpose: Key Encapsulation

• **NIST Security Level:** Levels 1, 3, and 5 (depending on the parameter selection)

Technical Overview

• **Mathematical Foundation:** Based on quasi-cyclic binary Goppa codes, which are an extension of classical Goppa codes, reducing key size by introducing quasi-cyclic properties.

• Key Components:

- Public Key Size: Varies, examples include 103,896 bytes (for security level 1) and 253,896 bytes (for other levels).
- Private Key Size: Not explicitly mentioned, derived from support and Goppa polynomial parameters.
- o Ciphertext Size: Includes encapsulated keys, values vary based on parameters.

Performance Characteristics

• Speed:

- Key Generation: Not directly specified but involves generating parity-check matrices and Goppa polynomials.
- o **Encapsulation:** Efficient due to quasi-cyclic nature.
- Decapsulation: Polynomial-time decryption leveraging Goppa polynomial structure.
- Memory Requirements: Varies based on m (extension degree) and other parameters, optimized for embedded systems with restricted computing resources.

Security Analysis

- **Classical Security:** Based on the difficulty of decoding generic linear codes and distinguishing Goppa codes from random codes.
- **Quantum Security:** Provides resistance against quantum attacks by leveraging the quasi-cyclic structure and associated decoding problems.

Known Attack Vectors:

- o Algebraic attacks exploiting quasi-cyclic properties.
- o Key recovery attacks, including brute force on Goppa polynomials.
- Message recovery attacks using decoding algorithms.

Implementation Considerations

- Hardware Requirements: Light-weight scheme suitable for embedded systems.
- **Software Complexity:** Simplified due to quasi-cyclic structure.
- **Integration Challenges:** May involve ensuring uniform randomness in key generation and parameter tuning.

Advantages and Limitations

Pros:

- o Reduces key size compared to classical Goppa codes.
- o Maintains high security against both classical and quantum attacks.
- o Suitable for embedded systems.

Cons:

- o Public key size remains relatively large (e.g., over 100 KB).
- Requires careful parameter selection to avoid vulnerabilities from quasi-cyclic attacks.

Standardization Status

- **NIST Round:** BIG QUAKE does not appear in the final Round 3 or 4 submissions based on the NIST list provided. It is evaluated as a proposal but not as a finalist or alternate candidate.
- Other Standards: Focused on addressing NIST's requirements for quantum-resistant cryptography.

BIKE

Basic Information

Algorithm Name: BIKE (Bit Flipping Key Encapsulation)

Family Type: Code-based
Purpose: Key Encapsulation
NIST Security Level: 1, 3, and 5

Technical Overview

Mathematical Foundation: QC-MDPC (Quasi-Cyclic Moderate Density Parity Check) codes **Key Components:**

Public Key Size:

o Level 1: 20,326 bits

- o Level 3: 43,786 bits
- o Level 5: 65,498 bits

• Private Key Size:

- o Level 1: 2,130 bits
- o Level 3: 2,296 bits
- o Level 5: 4,384 bits

Ciphertext Size:

- o Level 1: 20,326 bits
- o Level 3: 43,786 bits
- o Level 5: 65,498 bits

Performance Characteristics

Speed:

Key Generation:

- o Level 1: 730,025 cycles
- o Level 3: 1,709,921 cycles
- o Level 5: 2,986,647 cycles

Encapsulation:

- o Level 1: 689,193 cycles
- o Level 3: 1,850,425 cycles
- o Level 5: 3,023,816 cycles

Decapsulation:

- o Level 1: 2,901,203 cycles
- o Level 3: 7,666,855 cycles
- o Level 5: 17,483,906 cycles

Memory Requirements:

Dependent on representation but generally:

- Private Key: w·log2(r)w \cdot \log_2(r)w·log2(r)
- Public Key and Ciphertext: nnn (equal to their bit size above)

Security Analysis

Classical Security: Equivalent to NIST levels (AES-128, AES-192, AES-256)

Quantum Security: Comparable reductions for QC-MDPC codes

Known Attack Vectors:

- 1. Information Set Decoding (ISD)
- 2. Exploiting the quasi-cyclic structure (provides r-speedup)

Implementation Considerations

Hardware Requirements: Supports x86 platforms with AVX2 and AVX512 optimizations

Software Complexity: Requires cryptographic libraries for modular operations

Integration Challenges: Batch key generation for efficiency requires secure state management

Advantages and Limitations

Pros:

- Compact ciphertext size compared to other code-based schemes
- Relatively simple decoding using bit flipping algorithms

Cons:

- High decapsulation latency
- Dependence on quasi-cyclic structure may introduce vulnerabilities

Standardization Status

NIST Round:

Advanced to Round 4

Other Standards: No other concurrent standards mentioned

CFPKM

Basic Information

Family Type: Multivariate Polynomial-based

Purpose: Key Encapsulation

NIST Security Level: Not explicitly mentioned in the document

Technical Overview

Mathematical Foundation: Solving a system of noisy non-linear polynomials, also known as the PoSSo with Noise problem

Key Components:

• **Public Key Size:** 696 bytes (CFPKM128)

• Private Key Size: 128 bytes (CFPKM128)

• Ciphertext Size: 729 bytes

Performance Characteristics

Speed:

• Key Generation: ~72 ms

• Encapsulation: ~108 ms

• **Decapsulation:** ~143 ms

Memory Requirements: Not specifically stated

Security Analysis

Classical Security: 128 bits (CFPKM128)

Quantum Security: Not explicitly provided

Known Attack Vectors:

- 1. Exhaustive Search
- 2. Arora-Ge Grobner Basis
- 3. Hybrid Attack combining error analysis and Grobner Basis

Implementation Considerations

Hardware Requirements: Tested on a Linux platform with 31.3 GiB RAM and Intel i7-6600U CPU

Software Complexity: Relatively high due to reliance on solving noisy polynomial systems and Grobner Basis techniques

Integration Challenges: Complexity in ensuring parameter selection avoids vulnerabilities from known attacks

Advantages and Limitations

Pros:

- 1. Smaller key and communication sizes compared to lattice-based schemes
- 2. Flexible and secure against many known classical and quantum attacks

Cons:

- 1. Reliance on relatively new and less analyzed PoSSo with Noise problem
- 2. Increased computational complexity due to Grobner Basis requirements

Standardization Status

Other Standards: No other concurrent standards mentioned

Classic McEliece

Basic Information

• Family Type: Code-based cryptography

• **Purpose:** Key Encapsulation Mechanism (KEM)

• NIST Security Level: IND-CCA2 (Categories 5)

Technical Overview

• Mathematical Foundation: Binary Goppa Codes

Key Components:

o **Public Key Size:** mceliece8192128 uses 1,357,824 bytes

o **Private Key Size:** mceliece8192128 uses 14,080 bytes

o Ciphertext Size: mceliece8192128 uses 240 bytes

Performance Characteristics

• Speed:

o **Key Generation:** 4 billion cycles (approx. 2 seconds)

o **Encapsulation:** ~300,000 cycles

Decapsulation: ~450,000 cycles

Memory Requirements: Large RAM usage due to key size

Security Analysis

- Classical Security: Over 256-bit security against information-set decoding
- Quantum Security: Resilient to quantum attacks using Grover's algorithm
- Known Attack Vectors: Information-set decoding remains the primary attack vector

Implementation Considerations

- Hardware Requirements: FPGA implementations optimize performance significantly
- Software Complexity: High due to the size of public/private keys

• Integration Challenges: Large public key size poses challenges in practical implementations

Advantages and Limitations

- Pros:
 - o Proven stability and security track record over decades
 - o Resilient against both classical and quantum attacks
- Cons:
 - o Very large public key size
 - o Relatively slow key generation process

Standardization Status

- NIST Round: Advanced to Round 4
- Other Standards: No other concurrent standards mentioned

Compact-LWE

Basic Information

- Family Type: Lattice-based
- Purpose: Public Key Encryption
- NIST Security Level: Comparable to AES-192 (194 bits of classical security)

Technical Overview

- **Mathematical Foundation:** Learning with Errors (LWE) problem, modified with additional secret values and errors (Compact-LWE).
- Key Components:
 - o Public Key Size: ~2064 bytes
 - Private Key Size: ~232 bytes
 - Ciphertext Size: ~36 bytes for a 4-byte plaintext block

Performance Characteristics

- Speed:
 - o **Key Generation:** ~1.55 seconds for 10,000 key pairs
 - Encryption: ~1.29 seconds for 32-byte plaintext (10,000 encryptions)

- Decryption: ~0.18 seconds for 32-byte plaintext (10,000 decryptions)
- **Memory Requirements:** Designed for lightweight applications, with an implementation for Contiki OS on wireless sensor nodes.

Security Analysis

- Classical Security: 194 bits
- Quantum Security: Likely comparable but not explicitly defined in the document
- Known Attack Vectors:
 - Resistant to lattice-based attacks such as CVP and SIS.
 - Errors introduced in Compact-LWE samples are too large for traditional latticebased attacks to succeed.

Implementation Considerations

- **Hardware Requirements:** Minimal; tested on low-power devices like Tmote Sky sensor nodes.
- **Software Complexity:** Straightforward implementation; uses simple mathematical operations.
- Integration Challenges: Public key size (~2 KB) is relatively large compared to RSA or ECC, which may limit its utility in some contexts.

Advantages and Limitations

- Pros:
 - Resistant to standard LWE attacks due to its construction.
 - Lightweight design suitable for constrained environments.
 - o Deterministic correctness with no decryption failures.
- Cons:
 - o Larger public key size compared to classical encryption schemes.
 - Relatively less adoption and standardization compared to other lattice-based schemes.

Standardization Status

- NIST Round: Did not advance beyond Round 1.
- Other Standards: Not mentioned in the document.

CRYSTALS-DILITHIUM

Basic Information

Family Type: Lattice-based **Purpose:** Digital Signatures

NIST Security Level: 1-5 (depending on parameters)

Technical Overview

Mathematical Foundation: Hardness of finding short vectors in lattices **Key Components:**

• Public Key Size: 896 - 1760 bytes (varies by security level)

• Private Key Size: 112 - 3856 bytes

• Signature Size: 1487 - 3366 bytes

Performance Characteristics

Speed:

• **Key Generation:** ~170,000-512,000 cycles (Haswell)

• **Signing:** ~765,000-1,817,000 cycles (Haswell)

• Verification: ~196,000-548,000 cycles (Haswell)

Memory Requirements: Efficient for various devices, including AVX2 optimizations

Security Analysis

Classical Security: 68-176 bits Quantum Security: 62-160 bits

Known Attack Vectors: Lattice reduction techniques (e.g., BKZ)

Implementation Considerations

Hardware Requirements: Efficient with AVX2 optimizations for modern CPUs **Software Complexity:** Modular and efficient, leveraging SHAKE-128/256 **Integration Challenges:** None significant due to standardized components

Advantages and Limitations

Pros:

- Compact public key and signature size
- Simple to implement securely
- Deterministic signing to minimize attacks

Cons:

- Performance may vary on non-optimized hardware
- Requires careful parameter selection to maintain security

Standardization Status

NIST Round: Advanced to Round 3 Finalist

Other Standards: No other concurrent standards mentioned

CRYSTALS-KYBER

Basic Information

- Family Type: Lattice-based (Module Learning with Errors MLWE).
- Purpose: Key Encapsulation Mechanism (KEM).
- **NIST Security Level**: Supports Levels 1, 3, and 5.

Technical Overview

- Mathematical Foundation: Hardness of solving MLWE problems in module lattices.
- Key Components:
 - Public Key Size: 736 bytes (Kyber512), 1088 bytes (Kyber768), 1440 bytes (Kyber1024).
 - Private Key Size: 1632 bytes (Kyber512), 2400 bytes (Kyber768), 3168 bytes (Kyber1024).
 - Ciphertext Size: 800 bytes (Kyber512), 1152 bytes (Kyber768), 1504 bytes (Kyber1024).

Performance Characteristics

- **Speed** (for Kyber512, reference implementation on Intel Core i7-4770K):
 - o Key Generation: 141,872 cycles.
 - o Encapsulation: 205,468 cycles.
 - Decapsulation: 246,040 cycles.

Memory Requirements

Efficient in memory usage; no heap allocations required.

Security Analysis

- Classical Security: Based on MLWE problem; core-SVP hardness of 112 bits (Kyber512).
- Quantum Security: Core-SVP hardness of 102 bits (Kyber512).
- Known Attack Vectors: Decryption failures, side-channel attacks, multi-target attacks.

Implementation Considerations

Hardware Requirements: Supports optimizations via AVX2 for better performance.

- **Software Complexity**: Moderate; requires careful implementation to avoid timing and side-channel attacks.
- **Integration Challenges**: Requires efficient pseudorandom number generation and compression techniques.

Advantages and Limitations

Pros:

- 1. Strong security based on MLWE.
- 2. Small ciphertext and key sizes compared to other lattice-based schemes.

Cons:

- 1. Requires high cycle counts for operations on constrained devices.
- 2. Vulnerable to side-channel attacks if not implemented with constant-time operations.

Standardization Status

- NIST Round: Advanced to Round 3 and selected as one of the final standards.
- Other Standards: Adopted widely in post-quantum cryptography discussions.

DAGS

Basic Information

Family Type: Code-based

Purpose: Key Encapsulation

• **NIST Security Level:** 1, 3, 5 (depending on parameter sets)

Technical Overview

- Mathematical Foundation: Syndrome Decoding Problem (SDP) and Quasi-Dyadic Generalized Srivastava (GS) codes
- Key Components:
 - Public Key Size:

DAGS-1: 6760 bytes

DAGS-3: 8448 bytes

DAGS-5: 11616 bytes

Private Key Size:

DAGS-1: 432640 bytes

DAGS-3: 1284096 bytes

DAGS-5: 2230272 bytes

Ciphertext Size:

- DAGS-1: 552 bytes
- DAGS-3: 944 bytes
- DAGS-5: 1616 bytes

Performance Characteristics

- Speed (cycles):
 - Key Generation:
 - DAGS-1: ~49 billion
 - DAGS-3: ~107 billion
 - DAGS-5: ~137 billion
 - Encapsulation:
 - DAGS-1: ~20 million
 - DAGS-3: ~26 million
 - DAGS-5: ~49 million
 - Decapsulation:
 - DAGS-1: ~23 million
 - DAGS-3: ~25 million
 - DAGS-5: ~261 million
- **Memory Requirements:** Significant, especially for private key storage.

Security Analysis

- Classical Security: ≥128 bits for all levels
- Quantum Security: Same as classical due to reliance on structured coding problems
- Known Attack Vectors:
 - Information Set Decoding (ISD)
 - o Faugère-Otmani-Perret-Tillich (FOPT) structural attack

Implementation Considerations

- Hardware Requirements: Significant computational and memory resources
- **Software Complexity:** Relatively high due to intricate matrix operations
- Integration Challenges: Large key sizes may limit deployment on constrained devices

Advantages and Limitations

Pros:

- o IND-CCA security in both classical and quantum random oracle models
- Efficient encapsulation and decapsulation operations
- Compact public key compared to other code-based schemes

Cons:

- o Large private key size
- o Vulnerable to FOPT attacks if parameters are not carefully chosen

Standardization Status

- NIST Round: Did not advance beyond Round 1
- Other Standards: None mentioned

Ding Key Exchange

Basic Information

Family Type: Lattice-based Purpose: Key Encapsulation

NIST Security Level: Not specified

Technical Overview

Mathematical Foundation: Ring Learning with Errors (RLWE)

Key Components:

• Public Key Size: Not explicitly mentioned

• Private Key Size: Not explicitly mentioned

• Ciphertext Size: Not explicitly mentioned

Performance Characteristics

Speed:

- **Key Generation:** Not explicitly mentioned
- Encryption/Signing: Not explicitly mentioned
- **Decryption/Verification:** Not explicitly mentioned

Memory Requirements: Not explicitly mentioned

Security Analysis

Classical Security: Not explicitly mentioned

Quantum Security: Based on the RLWE problem, resistant to known quantum attacks

Known Attack Vectors:

- BKZ lattice reduction
- Sieving algorithms

Implementation Considerations

Hardware Requirements: Not specified Software Complexity: Not specified

Integration Challenges: Not explicitly detailed

Advantages and Limitations

Pros:

- Efficient rounding and reconciliation methods reduce communication costs
- Based on RLWE, providing strong security guarantees

Cons:

- Requires further analysis on RLWE hardness and parameter choices
- Communication costs, while reduced, remain larger compared to some alternatives

Standardization Status

NIST Round: Did not advance beyond Round 1

Other Standards: No other concurrent standards mentioned

DME: Double Matrix Exponentiation Cryptosystem

Family Type: Multivariate-based

Purpose: Public-key encryption, digital signatures, and key encapsulation

NIST Security Level: Not specified for standard levels but claims to achieve 128-bit and 256-bit

classical security

Technical Overview

Mathematical Foundation: Multivariate polynomial systems based on double matrix exponentiation over finite fields

Key Components:

Public Key Size: 1152 bytes (128-bit security) or 2304 bytes (256-bit security)

- Private Key Size: 144 bytes (128-bit security) or 288 bytes (256-bit security)
- Ciphertext Size: 18 bytes (128-bit security) or 36 bytes (256-bit security)

Performance Characteristics

Speed:

- **Key Generation:** Parameters suggest practical performance with modern processors
- Encryption/Signing: Supports encryption for arbitrary message sizes within the field
- Decryption/Verification: Fast decryption using explicit inversion maps

Memory Requirements:

 Efficient for hardware and software implementations with modest resource requirements

Security Analysis

Classical Security: Achieves 128-bit and 256-bit security against classical attacks **Quantum Security:** Claims equivalent security to AES-256 for 256-bit parameters but lacks thorough structural attack analysis

Known Attack Vectors:

- Gröbner basis attacks
- Algebraic cryptanalysis
- Structural attacks (yet to be fully explored)

Implementation Considerations

Hardware Requirements: Supports efficient implementation on modern CPUs with typical resources

Software Complexity: Medium complexity due to structured polynomial transformations **Integration Challenges:** New and untested; may face challenges in widespread adoption

Advantages and Limitations

Pros:

- Flexible parameterization for different security levels
- Compact ciphertexts and private keys
- Resistant to timing side-channel attacks

Cons:

- Limited analysis of resistance to new structural attacks
- Some failure probability in digital signatures requiring message padding

Standardization Status

NIST Round: Did not advance beyond Round 1 **Other Standards:** No concurrent standards

DRS

Basic Information

Family Type: Lattice-based Purpose: Digital Signatures

NIST Security Level: Not explicitly stated; parameters suggest up to Level 5 security.

Technical Overview

Mathematical Foundation:

- Based on the Guaranteed Distance Decoding (GDD) problem in diagonal dominant lattices.
- Relies on the unique Shortest Vector Problem (uSVP) and Bounded Distance Decoding (BDD).

Key Components:

- **Public Key Size:** Proportional to the lattice dimension nnn and the bound on coefficients of the matrix PPP.
- Private Key Size: Defined by lattice dimension nnn, noise levels, and a random seed.
- **Signature Size:** Proportional to the lattice dimension and the norm bounds on reduced vectors.

Performance Characteristics

Speed:

- Key Generation: Involves lattice basis transformations, dependent on matrix size and dimensions.
- Signing: Reduction of message vectors until they satisfy lattice conditions.
- Verification: Relies on equality checks and modular arithmetic.

Memory Requirements:

• Public key matrix storage, private seed storage, and intermediate matrix operations.

Security Analysis

Classical Security: Estimated for different lattice dimensions, up to 256 bits.

Quantum Security: Claims resilience against known quantum attacks due to reliance on hard lattice problems.

Known Attack Vectors:

- BDD-based attacks using uSVP reduction.
- Security depends on parameters such as lattice dimension nnn, reduction matrix sparsity, and noise levels.

Implementation Considerations

Hardware Requirements: Moderate computational and memory resources for large matrix operations.

Software Complexity: Involves generating diagonal dominant lattices, vector reductions, and signature verification.

Integration Challenges: Ensuring efficient handling of large matrix operations and avoiding overflow errors in modular arithmetic.

Advantages and Limitations

Pros:

- Strong theoretical foundation in lattice problems.
- Provides digital signatures with tunable security parameters.

Cons:

- High computational overhead for key generation and verification.
- Relatively large key and signature sizes compared to other schemes.

Standardization Status

NIST Round: Did not advance to Round 3 or Round 4.

Other Standards: Not currently adopted in other cryptographic standards.

DualModeMS

Basic Information

• Family Type: Multivariate-based

• Purpose: Digital Signatures

• **NIST Security Level**: Levels 1, 3, and 5 (parameters provided for 128, 192, and 256-bit security levels)

Technical Overview

- Mathematical Foundation: Multivariate quadratic equations over finite fields (HFEvschemes)
- Key Components:
 - o **Public Key Size**: Varies by security level:

Level 1: 528 bytes

• Level 3: 1,560 bytes

Level 5: 2,112 bytes

Private Key Size: Approximately 18 MB

Signature Size:

Level 1: 32 KB

Level 3: 79 KB

Level 5: 149 KB

Performance Characteristics

- Speed:
 - o Key Generation:

Optimized: ~552 seconds

■ Non-optimized: ~797 seconds

o Signing: 2.05 seconds

Verification: 2.84 ms

• **Memory Requirements**: Public key and signature sizes significantly affect memory, especially with higher security levels.

Security Analysis

- Classical Security:
 - Resistant to exhaustive search and Grover's algorithm-based quantum attacks.
 - Security depends on the difficulty of solving quadratic systems of equations over finite fields.
- Quantum Security:
 - Specific parameter choices address quantum adversaries, although Gröbner basis attacks and BooleanSolve have implications for efficiency.
- Known Attack Vectors:
 - Gröbner basis attacks

- Approximation algorithms
- Key-recovery attacks

Implementation Considerations

- **Hardware Requirements**: Requires substantial resources for large-scale key generation and signing.
- **Software Complexity**: Moderate, leveraging existing multivariate signature scheme principles.
- **Integration Challenges**: Large signature sizes may challenge low-bandwidth environments.

Advantages and Limitations

- Pros:
 - o Small public key size relative to similar multivariate schemes.
 - o Comprehensive security analyses, including provable reductions.
- Cons:
 - o Large signature size.
 - o Computationally expensive key generation.

Standardization Status

• **NIST Round**: Did not advance to Round 3 or Round 4.

EMBLEM

Basic Information

• Family Type: Code-based

• **Purpose**: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Level 3

Technical Overview

• Mathematical Foundation: Decoding random linear codes over finite fields

• Key Components:

o **Public Key Size**: 147,456 bytes

o **Private Key Size**: 8,192 bytes

o Ciphertext Size: 256 bytes

Performance Characteristics

• Speed:

- Key Generation: ~1,000 operations/second
- o **Encryption/Encapsulation**: ~1,500 operations/second
- o **Decryption/Decapsulation**: ~1,200 operations/second
- Memory Requirements: Moderate memory requirements (RAM usage dependent on implementation).

Security Analysis

- Classical Security: 128 bits
- Quantum Security: 64 bits
- Known Attack Vectors:
 - Algebraic decoding attacks
 - o Syndrome decoding attacks

Implementation Considerations

- **Hardware Requirements**: Suitable for standard hardware with moderate computational power.
- **Software Complexity**: Relatively straightforward to implement.
- **Integration Challenges**: Large public key size can present storage and transmission challenges.

Advantages and Limitations

- Pros:
 - High level of security against classical attacks.
 - Efficient encryption and decapsulation.
- Cons:
 - Very large public key size.
 - Moderate resistance against quantum attacks.

Standardization Status

- NIST Round: Did not advance beyond Round 1.
- Other Standards: Not mentioned.

R.EMBLEM

Basic Information

- Family Type: Code-based
- **Purpose**: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Level 3

Technical Overview

• Mathematical Foundation: Based on random quasi-cyclic linear codes.

Key Components:

o Public Key Size: 73,728 bytes

o Private Key Size: 4,096 bytes

o Ciphertext Size: 128 bytes

Performance Characteristics

Speed:

o Key Generation: ~2,000 operations/second

Encryption/Encapsulation: ~2,500 operations/second

Decryption/Decapsulation: ~2,000 operations/second

• Memory Requirements: Lower memory requirements compared to EMBLEM.

Security Analysis

• Classical Security: 128 bits

• Quantum Security: 64 bits

Known Attack Vectors:

o Information-set decoding attacks

o Structural attacks on quasi-cyclic codes

Implementation Considerations

- Hardware Requirements: Suitable for devices with constrained resources.
- **Software Complexity**: Simple to implement with available libraries.
- **Integration Challenges**: Smaller public key size compared to EMBLEM makes it more practical.

Advantages and Limitations

- Pros:
 - Reduced key size compared to EMBLEM.
 - $\circ\quad$ Faster encryption and decapsulation.
- Cons:
 - Lower security margin against advanced quantum attacks.
 - o Dependent on the strength of the quasi-cyclic structure.

Standardization Status

- **NIST Round**: Did not advance beyond Round 1.
- Other Standards: Not mentioned.

FALCON

Basic Information

• Family Type: Lattice-based

• **Purpose:** Digital Signatures

• **NIST Security Level:** 1, 2, 3, 5

Technical Overview

- Mathematical Foundation: Based on the Gentry-Peikert-Vaikuntanathan (GPV)
 framework and NTRU lattices
- Key Components:
 - o **Public Key Size:** Varies based on security level, around 897–1793 bytes
 - o **Private Key Size:** 512–1024 bytes
 - o **Signature Size:** Compact, 666–1330 bytes depending on security level

Performance Characteristics

- Speed:
 - o **Key Generation:** Efficient, due to reliance on Fast Fourier Transform (FFT)
 - Encryption/Signing: Supports over 1000 signatures per second on standard hardware
 - o **Decryption/Verification:** Extremely fast due to modular design and FFT
- Memory Requirements: Optimized for compactness, making it suitable for embedded devices

Security Analysis

- Classical Security: Proven secure under lattice hardness assumptions
- Quantum Security: Secure under the quantum random oracle model
- Known Attack Vectors:
 - Lattice reduction
 - Key recovery attacks
 - Overstretched NTRU attacks

Implementation Considerations

- Hardware Requirements: Requires FFT operations, but efficient for constrained devices
- **Software Complexity:** Moderate; key generation and FFT operations demand precise implementation
- **Integration Challenges:** Limited by reliance on floating-point arithmetic for some operations

Advantages and Limitations

- Pros:
 - o Highly compact signatures and keys
 - o Proven security in both classical and quantum models
 - Very fast signing and verification
 - o Modular and adaptable design for other lattice types
- Cons:
 - Relies on floating-point arithmetic, limiting some hardware compatibility
 - o Implementation requires advanced understanding of lattice-based mathematics

Standardization Status

- **NIST Round:** Advanced to Round 3 as a Digital Signature Finalist
- Other Standards: None currently mentioned.

FrodoKEM

Basic Information

- Family Type: Lattice-based
- **Purpose:** Key Encapsulation
- NIST Security Level: FrodoKEM-640 targets Level 1, FrodoKEM-976 targets Level 3.

Technical Overview

- Mathematical Foundation: Learning With Errors (LWE) problem
- Key Components:
 - o **Public Key Size:** FrodoKEM-640: ~9.7 KB; FrodoKEM-976: ~15.4 KB
 - Private Key Size: FrodoKEM-640: ~9.7 KB; FrodoKEM-976: ~15.4 KB
 - o Ciphertext Size: FrodoKEM-640: ~9.5 KB: FrodoKEM-976: ~15.2 KB

Performance Characteristics

- Speed:
 - o **Key Generation:** Not specified in document

- Encapsulation: Not specified in document
- o **Decapsulation:** Not specified in document
- **Memory Requirements:** High due to large matrix operations.

Security Analysis

- Classical Security: Matches AES-128 for FrodoKEM-640 and AES-192 for FrodoKEM-976.
- Quantum Security: Assumes hardness of LWE against quantum attacks.
- Known Attack Vectors: Based on lattice reduction and attacks on LWE problems.

Implementation Considerations

- **Hardware Requirements:** Supports x64 Intel with optional AES acceleration; ARM implementation available.
- Software Complexity: Relatively simple compared to ring-LWE-based constructions.
- Integration Challenges: None specified.

Advantages and Limitations

- Pros:
 - o Conservative and highly secure parameterization.
 - Easy to implement due to algebraically unstructured lattices.

Cons:

- Larger key and ciphertext sizes compared to structured-lattice approaches.
- Higher computational cost.

Standardization Status

- NIST Round: Advanced to Round 2 but not a finalist.
- Other Standards: None specified.

GeMSS

Basic Information

Family Type: Multivariate-based

Purpose: Digital Signatures

• **NIST Security Level:** 1, 3, 5 (depending on parameter set)

Technical Overview

- **Mathematical Foundation:** Hidden Field Equations with vinegar and minus modifiers (HFEv-)
- Key Components:

Public Key Size:

- 352.18 KB (GeMSS128)
- 1237.96 KB (GeMSS192)
- 3040.69 KB (GeMSS256)

Private Key Size:

- 14.208 KB (GeMSS128)
- 39.440 KB (GeMSS192)
- 82.056 KB (GeMSS256)

Signature Size:

- 48 bytes (GeMSS128)
- 88 bytes (GeMSS192)
- 104 bytes (GeMSS256)

Performance Characteristics

• Speed:

Key Generation:

- GeMSS128: 42 ms (optimized)
- GeMSS192: 166 ms (optimized)
- GeMSS256: 424 ms (optimized)

o Signing:

- GeMSS128: 260 ms (optimized)
- GeMSS192: 694 ms (optimized)
- GeMSS256: 1.09 s (optimized)

Verification:

- GeMSS128: 41 μs (optimized)
- GeMSS192: 117 μs (optimized)
- GeMSS256: 336 µs (optimized)
- **Memory Requirements:** Depends on parameter set; large public key sizes require significant storage.

Security Analysis

- Classical Security: Matches specified security levels (128, 192, 256 bits)
- Quantum Security: Designed to withstand attacks leveraging Grover's and BooleanSolve algorithms

Known Attack Vectors: Grobner bases attacks, algebraic structure exploitation

Implementation Considerations

- Hardware Requirements: Supports optimizations with AVX2 and specialized polynomial multiplication
- **Software Complexity:** Requires handling of large matrix operations and efficient polynomial arithmetic
- Integration Challenges: Large public key size could pose challenges in constrained environments

Advantages and Limitations

- Pros:
 - Very small signature size
 - o Fast verification
 - Well-studied mathematical foundation
- Cons:
 - Very large public key size
 - o High computational cost for key generation and signing

Standardization Status

- NIST Round: Reached Round 3 as a Digital Signature Algorithm
- Other Standards: Not mentioned in concurrent standards

Giophantus

Basic Information

- Family Type: Algebraic Surface Cryptosystem (ASC)
- **Purpose**: Public-key encryption
- NIST Security Level: Not specified in the document.

Technical Overview

- **Mathematical Foundation**: Solving indeterminate equations over quotient rings RqR_qRq.
- Key Components:
 - Public Key Size: Polynomial equations of degree dXd_XdX (actual size not specified).
 - o **Private Key Size**: Polynomials of degree n-1n-1n-1 over $R\ell R_{\ell}$ (size not explicitly stated).

o **Ciphertext Size**: Dependent on parameters $n, \ell, q, dX, drn, \ell, q, dX, d_rn, \ell, q, dX, dr.$

Performance Characteristics

- Speed:
 - o **Key Generation**: Details not provided.
 - o **Encryption**: Dependent on bivariate polynomial generation.
 - o **Decryption**: Relies on solving equations with small solutions over RqR_qRq.
- Memory Requirements: Not specified in the document.

Security Analysis

- **Classical Security**: Based on the hardness of solving non-linear indeterminate equations.
- **Quantum Security**: Introduces a new computational assumption analogous to Learning With Errors (LWE), termed Indeterminate Equation Learning with Errors (IE-LWE).
- Known Attack Vectors:
 - Linear Algebra Attack
 - Lattice-Based Attacks (including subfield lattice attack)

Implementation Considerations

- Hardware Requirements: Computational operations on polynomial rings over FqF_qFq.
- Software Complexity: Requires efficient polynomial arithmetic in RqR_qRq.
- Integration Challenges: Designing parameters to balance efficiency and security.

Advantages and Limitations

- Pros:
 - Hardness of indeterminate equations ensures robustness.
 - Proven IND-CPA security with Fujisaki–Okamoto conversion.
- Cons:
 - o No general solution for parameter recommendations.
 - o Vulnerability to lattice-related attacks if parameters are not carefully chosen.

Standardization Status

- NIST Round: Did not advance to Round 3 or Round 4.
- Other Standards: Not mentioned

Gravity-SPHINCS

Basic Information

Family Type: Hash-based Purpose: Digital Signatures

NIST Security Level: Not explicitly mentioned in the provided documents

Technical Overview

Mathematical Foundation: Hash-based signature scheme using Merkle trees and Winternitz one-time signatures (WOTS).

Key Components:

Public Key Size: Not explicitly stated

• Private Key Size: Not explicitly stated

• Signature Size: Typically 20–30 KiB

Performance Characteristics

Speed:

 Not explicitly detailed, but optimizations like batch signing are intended to enhance performance.

Memory Requirements: Reduced memory due to optimizations like secret key caching.

Security Analysis

Classical Security: Relies on collision resistance of hash functions.

Quantum Security: Secure under the assumption that hash functions remain resistant

to quantum attacks.

Known Attack Vectors:

• Collision resistance of hash functions is critical to the scheme's security.

Implementation Considerations

- **Hardware Requirements:** Optimized for AES-NI instructions, supports pipelining and multithreading.
- Software Complexity: Includes multiple optimizations for practical efficiency.
- **Integration Challenges:** The scheme's signature size can be a limitation in certain applications.

Advantages and Limitations

Pros:

- High assurance of security based on well-understood hash function properties.
- Flexibility in performance and size trade-offs.
- Stateless design simplifies implementation.

Cons:

- Large signature size compared to other schemes.
- Complex construction with multiple layers and optimizations.

Standardization Status

NIST Round: Did not advance beyond Round 1.

Other Standards: None mentioned.

Guess Again

Basic Information

Family Type: Unconditionally Secure Scheme (with Decryption Errors)

Purpose: Public-Key Encryption
NIST Security Level: Not specified

Technical Overview

Mathematical Foundation: Random walks and probabilistic interval guessing.

Key Components:

• Public Key Size: ~18,000 bits

• Private Key Size: ~16,000 bits

• Ciphertext Size: ~18,000 bits for a single bit encryption

Performance Characteristics

Speed:

- Key Generation: Computationally intensive (involves multiple random walks).
- **Encryption:** ~0.016 seconds per bit (without parallelization).
- **Decryption:** Same order as encryption.

Memory Requirements: ~32 MB (including offline pre-computation phase).

Security Analysis

Classical Security: Security against computationally unbounded adversaries, with controlled decryption errors.

Quantum Security: Claims security against quantum adversaries as well. **Known Attack Vectors:** No specific computational attacks; security relies on information-theoretical principles.

Implementation Considerations

Hardware Requirements: Basic computational resources; efficiency improves with pre-computation.

Software Complexity: High due to the reliance on random walk computations and probabilistic interval selection.

Integration Challenges: Limited to specific scenarios due to high ciphertext expansion factor.

Advantages and Limitations

Pros:

- 1. Security does not rely on computational assumptions.
- 2. Resistant to quantum adversaries.

Cons:

- 1. Extremely high ciphertext expansion factor.
- 2. Practical use is limited to applications requiring very high security for small data.

Standardization Status

NIST Round: Did not advance to Round 3 or 4.

Other Standards: Not mentioned in the documentation.

Gui

Basic Information

- Family Type: Multivariate Cryptography, BigField schemes
- Purpose: Digital Signatures
- NIST Security Level: Not explicitly mentioned; suggested for categories I-VI based on proposed parameter sets.

Technical Overview

- Mathematical Foundation: HFEv- signature scheme (modification of HFEv, focusing on optimized key/signature sizes and security).
- Key Components:
 - Public Key Size:

• Gui-184: 416.3 KB

• Gui-312: 1,955.1 KB

Gui-448: 5,789.2 KB

Private Key Size:

• Gui-184: 19.1 KB

Gui-312: 59.3 KB

Gui-448: 155.9 KB

Signature Size:

• Gui-184: 360 bits

Gui-312: 504 bits

Gui-448: 664 bits

Performance Characteristics

• Speed (Gui-184):

o Key Generation: 213 ms

o Signature Generation: 10.4 ms

o Signature Verification: 0.051 ms

Memory Requirements:

o Gui-184: 3.3 MB (verification) to 3.5 MB (key generation).

Security Analysis

- Classical Security: Varied by instance, ranging from 143 bits to 274 bits based on parameter sets.
- **Quantum Security:** Resistant to Grover's algorithm and quantum brute-force attacks (as claimed by the document).

• Known Attack Vectors:

- o Brute force attacks
- Direct attacks
- o Rank attacks (Kipnis-Shamir type)
- Distinguishing attacks

Implementation Considerations

- **Hardware Requirements:** Implementation optimized for processors supporting PCLMULQDQ instruction sets.
- **Software Complexity:** Involves extensive use of finite field arithmetic and Cantor-Zassenhaus algorithms.
- Integration Challenges: High memory requirements for higher security parameter sets.

Advantages and Limitations

Pros:

- $\circ \quad \text{Balanced security-efficiency trade-off.}$
- o Scalable across various NIST security levels.
- o Side-channel resistant implementation.

• Cons:

- o Large key sizes, especially for higher security levels.
- o Computationally expensive key generation process.

Standardization Status

- **NIST Round:** Did not advance to Round 3 or Round 4.
- Other Standards: Not mentioned.

HILA5

Basic Information

- Family Type: Lattice-based
- Purpose: Key Encapsulation Mechanism (KEM) and Public Key Encryption
- NIST Security Level: Claims to meet Category 5 (comparable to AES-256 level)

Technical Overview

- Mathematical Foundation: Ring Learning With Errors (Ring-LWE)
- Key Components:

o Public Key Size: 1824 bytes

o **Private Key Size**: 1824 bytes

o Ciphertext Size: 2012 bytes

Performance Characteristics

• Speed:

o **Key Generation**: 68.7 μs

 \circ **Encapsulation**: 89.9 µs

Decapsulation: 175.4 μs

• Memory Requirements: Comparable to other lattice-based cryptosystems

Security Analysis

- Classical Security: Comparable to AES-256
- Quantum Security: Estimated to meet the highest NIST Category 5 requirements
- Known Attack Vectors: Standard lattice-based attacks

Implementation Considerations

- Hardware Requirements: Efficiently implementable on both CPUs and FPGAs
- **Software Complexity**: Moderate, based on the Ring-LWE construction
- Integration Challenges: Reconciliation method introduces minor implementation complexities

Advantages and Limitations

• Pros:

- o Very low decryption failure rate
- o Efficient performance for both hardware and software implementations

• Cons:

- o Slightly larger ciphertext size compared to some other candidates
- o Requires careful tuning of reconciliation parameters

Standardization Status

• NIST Round: Did not advance to Round 3

• Other Standards: None noted

HiMQ-3

Basic Information

Family Type: Multivariate Quadratic Equations (MQ) **Purpose:** Digital Signatures **NIST Security Level:** Not explicitly mentioned in the document; requires confirmation for the specific implementation.

Technical Overview

Mathematical Foundation: The algorithm is based on the hardness of the Multivariate Quadratic Problem (MQ-Problem) and integrates the Isomorphism of Polynomials (IP) and MinRank problems. It employs a three-layer structure for the generation of multivariate quadratic equations.

Key Components:

- Public Key Size: Not explicitly detailed in this section of the document.
- Private Key Size: Consists of the central map, linear affine mappings, and associated secret parameters.
- **Signature/Ciphertext Size:** Signature depends on the output of the multivariate quadratic system, specific sizes need further verification.

Performance Characteristics

Speed:

- **Key Generation:** Optimized for reduced public and private key sizes through efficient parameterization.
- **Signing:** Designed for high-speed signing operations, leveraging efficient solvers for central maps.
- Verification: Relies on inverting polynomial systems, ensuring verification under defined constraints.

Memory Requirements: Minimal memory overheads for key storage, but dependent on implementation.

Security Analysis

Classical Security: Relies on the infeasibility of solving MQ-Problems with current algorithms.

Quantum Security: Offers resistance to quantum attacks by leveraging the intrinsic difficulty of the MQ and related problems, achieving an approximate 112-bit security level against quantum algorithms like Grover's.

Known Attack Vectors:

- **Direct Attacks:** Complexity estimates indicate resilience with lower bounds provided for security levels.
- Key Recovery Attacks: Resilient to attacks exploiting equivalent or good keys.
- **MinRank Attack:** Complexity tied to extracting low-rank matrices from the quadratic system.
- **HighRank Attack:** Defense against extraction of low-usage variables in polynomial terms.
- Kipnis-Shamir Attack: Resilient under parameter constraints.

Implementation Considerations

Hardware Requirements: Moderate; parameters ensure lightweight operations on standard hardware.

Software Complexity: Moderate to high, given the need for polynomial system handling and secure parameter generation.

Integration Challenges: Compatibility with existing cryptographic frameworks and standards needs validation.

Advantages and Limitations

Pros:

- 1. High-speed signing performance.
- 2. Reduced key sizes compared to alternatives.
- 3. Strong theoretical foundation in multivariate quadratic systems.

Cons:

- 1. Complexity in parameter tuning.
- 2. Higher computational demands for certain attack defenses.

Standardization Status

NIST Round: Did not advance beyond Round 1. However, exhibits foundational contributions to MQ-based schemes.

Other Standards: None explicitly mentioned.

HQC

Hamming Quasi-Cyclic (HQC)

Basic Information

- Family Type: Code-based Cryptography
- **Purpose**: Key Encapsulation Mechanism (KEM)
- NIST Security Level: 1, 3, and 5

Technical Overview

- Mathematical Foundation: Syndrome Decoding Problem for Quasi-Cyclic Codes
- Key Components:
 - o **Public Key Size**: Varies with parameters (e.g., ~5,558 bytes for security level 1)
 - o **Private Key Size**: Varies (e.g., ~252 bytes for security level 1)
 - o Ciphertext Size: Varies (e.g., ~5,622 bytes for security level 1)

Performance Characteristics

- Speed:
 - o Key Generation: ~0.17 ms for security level 1
 - Encapsulation: ~0.36 ms for security level 1
 - o **Decapsulation**: ~0.57 ms for security level 1
- Memory Requirements: Not explicitly provided

Security Analysis

- Classical Security: Matches security levels 1, 3, and 5
- Quantum Security: Matches security levels 1, 3, and 5
- Known Attack Vectors: Based on decoding errors in Quasi-Cyclic codes

Implementation Considerations

- Hardware Requirements: No specialized hardware needed
- **Software Complexity**: Moderate, includes BCH code operations
- Integration Challenges: Larger key sizes compared to other candidates

Advantages and Limitations

- Pros:
 - o IND-CCA2 security achievable
 - o Code-based cryptography with strong theoretical foundation

Cons:

- o Large key sizes
- o Higher computation time compared to lattice-based schemes

Standardization Status

• NIST Round: Advanced to Round 4

• Other Standards: Not specified

KINDI

Basic Information

• Family Type: Lattice-based

• **Purpose:** Key Encapsulation Mechanism (KEM) and Public-Key Encryption (PKE)

• **NIST Security Level:** Levels 2 to 5 (varies by parameter set)

Technical Overview

• Mathematical Foundation: Module Learning With Errors (MLWE)

• Key Components:

o **Public Key Size:** Varies from 1184 bytes to 2368 bytes

o **Private Key Size:** Varies from 1472 bytes to 2752 bytes

o Ciphertext Size: Varies from 1792 bytes to 3328 bytes

Performance Characteristics

• Speed (in CPU cycles):

Key Generation: ~203,096 to ~429,952 (Reference Implementation)

Encryption/Encapsulation: ~247,793 to ~562,640 (Reference Implementation)

Decryption/Decapsulation: ~312,211 to ~698,041 (Reference Implementation)

Memory Requirements:

o **Ciphertext:** 1792 to 3328 bytes

o **Public Key:** 1184 to 2368 bytes

Secret Key: 1472 to 2752 bytes

Security Analysis

• Classical Security: 181 to 365 bits (depending on parameter set)

• Quantum Security: 164 to 330 bits (depending on parameter set)

• Known Attack Vectors: Primal attacks, dual attacks, and lattice sieving-based attacks

Implementation Considerations

• Hardware Requirements: Tested on Intel Core i5-6200U with 8GB RAM

- Software Complexity: Relies on SHAKE functions and FFT optimizations for efficiency
- Integration Challenges: Minimal; suitable for TLS and constrained environments

Advantages and Limitations

- Pros:
 - o Efficient encryption and decryption with low failure rates
 - o Supports flexible parameter sets for various security levels
 - Compact keys and ciphertexts
- Cons:
 - o Slightly higher decryption times for higher security levels
 - o Requires careful parameter tuning to avoid decryption failures

Standardization Status

• NIST Round: Did not advance beyond Round 1

LAC

Basic Information

Family Type: Lattice-based Cryptosystems

Purpose: Key Encapsulation Mechanism (KEM), Digital Signatures

NIST Security Level: 1, 3, 5

Technical Overview

Mathematical Foundation: Polynomial Learning with Errors (poly-LWE) problem over the ring $Rq=Zq[x]/(xn+1)R_q=Z_q[x]/(x^n+1)Rq=Z_q[x]/(xn+1)$

Key Components:

- Public Key Size: 544 bytes (LAC128), 1056 bytes (LAC192, LAC256)
- Private Key Size: 1056 bytes (LAC128), 2080 bytes (LAC192, LAC256)
- Ciphertext Size: 1024 bytes (LAC128), 1536 bytes (LAC192), 2048 bytes (LAC256)

Performance Characteristics

Speed:

- **Key Generation:** 12.56 μs (LAC128, optimized version), 39.62 μs (AVX2-based version)
- Encryption: 17.21 µs (LAC128, optimized version)
- **Decryption:** 8.79 μs (LAC128, optimized version)

Memory Requirements: Minimal due to efficient AVX2-based implementation.

Security Analysis

Classical Security: Up to 256 bits Quantum Security: Up to 290 bits

Known Attack Vectors: Based on solving the poly-LWE problem using lattice reduction

techniques like BKZ.

Implementation Considerations

Hardware Requirements: Intel x64 processors with AVX2 instructions for optimized performance.

Software Complexity: Moderate, relies on AVX2 and efficient BCH coding.

Integration Challenges: Requires specialized AVX2-compatible processors for best

performance.

Advantages and Limitations

Pros:

- High efficiency with small key and ciphertext sizes.
- Resistance to known quantum and classical attacks.

Cons:

- Limited to specific dimensions (e.g., n=512,1024n = 512, 1024n=512,1024).
- Requires AVX2 for optimal performance.

Standardization Status

NIST Round: Advanced to Round 3.

Other Standards: None.

LAKE

Basic Information

Family Type: Lattice-based

• **Purpose:** Key Encapsulation Mechanism (KEM)

• **NIST Security Level:** Level 1, 3, and 5 (different parameter sets for varying security levels)

Technical Overview

- Mathematical Foundation: Learning With Errors (LWE) problem
- Key Components:
 - o Public Key Size: 966 bytes (Level 1), 1506 bytes (Level 3), 1982 bytes (Level 5)
 - o Private Key Size: 1218 bytes (Level 1), 1866 bytes (Level 3), 2472 bytes (Level 5)

Ciphertext Size: 1087 bytes (Level 1), 1696 bytes (Level 3), 2270 bytes (Level 5)

Performance Characteristics

- Speed:
 - o **Key Generation:** 50,000+ ops/sec (Level 1)
 - Encapsulation: ~40,000 ops/sec (Level 1)
 - o **Decapsulation:** ~35,000 ops/sec (Level 1)
- Memory Requirements: Minimal RAM footprint for implementation on constrained devices

Security Analysis

- Classical Security: Matches claimed security levels against classical attacks
- Quantum Security: Designed to resist quantum attacks leveraging Grover's and Shor's algorithms
- Known Attack Vectors: Analysis against brute force, side-channel, and lattice reduction attacks

Implementation Considerations

- Hardware Requirements: Designed for efficient implementation on low-power devices
- Software Complexity: Moderate complexity due to lattice operations
- Integration Challenges: Requires careful parameter tuning for high-performance environments

Advantages and Limitations

- Pros:
 - Compact key and ciphertext sizes for lattice-based schemes
 - o High-speed operations, suitable for real-time applications
- Cons:
 - o Potential overhead in parameter generation
 - o Requires optimization for memory-constrained environments

Standardization Status

• NIST Round: Did not advance beyond Round 2

LEDAkem

Basic Information

• Family Type: Code-based

• **Purpose:** Key Encapsulation Mechanism (KEM)

• **NIST Security Level:** Not explicitly mentioned in the document, but parameters are chosen to meet standard security levels for post-quantum cryptography.

Technical Overview

• Mathematical Foundation: Based on Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes and Niederreiter cryptosystem.

Key Components:

o **Public Key Size:** $(n_0 - 1) * p$ bits

o **Private Key Size:** $n_0(d_V + m)dlog_2(p)e$ bits (dependent on parameters)

o **Ciphertext Size:** Size of the syndrome vector, p bits.

Performance Characteristics

• Speed:

o Key Generation: Efficient due to QC-LDPC structure

- Encryption/Signing: Syndrome computation involves sparse matrix multiplications
- o **Decryption/Verification:** Efficient iterative decoding algorithm (Q-decoder)
- **Memory Requirements:** Optimized due to sparse matrix representation; public key size proportional to p.

Security Analysis

- Classical Security: Resistant to classical ISD attacks and decoding attacks based on sparse matrix representations.
- **Quantum Security:** Parameters account for potential speed-ups from Grover's algorithm in ISD.
- **Known Attack Vectors:** Reaction attacks (mitigated by ephemeral keys), decoding attacks, and low-weight codeword finding attacks.

Implementation Considerations

• **Hardware Requirements:** Efficient matrix operations can be implemented on low-end hardware.

- **Software Complexity:** Requires careful implementation of sparse matrix operations and decoding algorithms.
- Integration Challenges: Ensuring parameter choices meet desired security levels against both classical and quantum attacks.

Advantages and Limitations

- Pros:
 - o Compact public keys due to QC-LDPC structure
 - Efficient decoding and encryption algorithms
 - Resistant to several known attack vectors
- Cons:
 - o Decryption Failure Rate (DFR) needs to be carefully managed
 - Parameter selection impacts security and efficiency trade-offs

Standardization Status

- **NIST Round:** Did not advance beyond Round 1.
- Other Standards: None mentioned.

•

LEDApkc:

Basic Information

Family Type: Code-based

Purpose: Public-key cryptosystem for encryption

NIST Security Level: Multiple security levels proposed, depending on parameters.

Technical Overview

Mathematical Foundation: Based on low-density parity-check (LDPC) codes and McEliece cryptosystem principles.

Key Components:

- Public Key Size: Depends on parameters; typically large for code-based cryptosystems.
- **Private Key Size:** Smaller compared to public key due to compact representations.
- **Ciphertext Size:** Parameter-dependent; efficiency improvements noted with LDPC codes.

Performance Characteristics

Speed:

- Key Generation: Parameterized for efficiency; relies on LDPC principles.
- Encryption: Exploits LDPC decoding efficiencies.

• **Decryption:** Includes tailored decoding for LDPC structures, offering reduced computational load.

Memory Requirements: Focuses on minimizing storage through compact LDPC representation.

Security Analysis

Classical Security: Depends on the hardness of decoding linear codes.

Quantum Security: Parameter-dependent; LDPC codes are resilient under standard assumptions.

Known Attack Vectors: Primarily statistical and structural attacks on LDPC codes. Mitigated through parameter tuning.

Implementation Considerations

Hardware Requirements: Modular arithmetic with large matrices.

Software Complexity: Moderate to high due to decoding algorithms and parameterization.

Integration Challenges: Compatibility with existing systems due to large key sizes.

Advantages and Limitations

Pros:

- Compact private keys.
- Exploits LDPC efficiency for performance.

Cons:

- Large public key size.
- Vulnerable to specific QC-LDPC-related attacks if improperly parameterized.

Standardization Status

NIST Round: Did not advance beyond Round 1.

Other Standards: Not mentioned.

Lepton

Basic Information

Family Type: Learning Parity with Noise (LPN)-based

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level: Not specified in the document

Technical Overview

Mathematical Foundation: Learning Parity with Noise (LPN) and Compact Learning Parity with Noise (CLPN)

Key Components:

• **Public Key Size:** Not explicitly mentioned

• Private Key Size: Not explicitly mentioned

• Ciphertext Size: Not explicitly mentioned

Performance Characteristics

Speed:

- **Key Generation:** Implementation details suggest ANSI C is used for reference, targeting Intel x64 processors.
- **Encryption/Signing:** Concrete cycle counts were not detailed but mention optimization potential.
- **Decryption/Verification:** Similarly, no precise cycle count provided.

Memory Requirements: Moderate, as the implementation avoids trading space for speed except for a small pre-computed file (~32.4 KB).

Security Analysis

Classical Security: Estimated classical security varies based on parameters, e.g., 103-bit to 299-bit.

Quantum Security: Estimated quantum security ranges from 51-bit to 149-bit.

Known Attack Vectors:

- 1. Brute-force attacks on LPN and CLPN problems
- 2. Best known attacks target low-noise LPN solvers

Implementation Considerations

Hardware Requirements: Compatible with Intel Core-i7 processors and 4 GB RAM (reference implementation).

Software Complexity: Moderate, with potential for further optimization.

Integration Challenges: Not explicitly mentioned.

Advantages and Limitations

Pros:

- 1. Based on well-studied LPN problem
- 2. Efficient for low-power devices

Cons:

- 1. Large key sizes compared to alternatives
- 2. Efficiency challenges for specific parameter settings

Standardization Status

NIST Round: Did not advance beyond Round 1

Other Standards: No other concurrent standards mentioned

LIMA

Basic Information

• Family Type: Lattice-based

• **Purpose**: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Configurable from Levels 1 to 5 (depending on parameter sets)

Technical Overview

- Mathematical Foundation: Learning With Errors (LWE) problem
- Key Components:
 - Public Key Size: Ranges from 1,024 bytes to 2,048 bytes (depending on security level)
 - o **Private Key Size**: Ranges from 1,024 bytes to 2,048 bytes
 - o Ciphertext Size: Ranges from 1,024 bytes to 2,048 bytes

Performance Characteristics

- Speed:
 - Key Generation: Fast (specific benchmarks depend on the implementation platform)
 - o **Encryption**: Moderate
 - Decryption: Moderate
- Memory Requirements: Requires substantial memory due to lattice operations and parameter sizes.

Security Analysis

- Classical Security: Equivalent to standard LWE-based cryptographic systems
- Quantum Security: Resistant to known quantum attacks (based on LWE hardness)

• **Known Attack Vectors**: Vulnerable to side-channel attacks if implemented improperly; relies on secure noise sampling.

Implementation Considerations

- **Hardware Requirements**: Efficient for hardware implementation; can leverage vectorized instructions for performance.
- Software Complexity: Medium to high due to lattice arithmetic.
- **Integration Challenges**: Requires careful parameter selection for balancing security and performance.

Advantages and Limitations

- Pros:
 - Configurable security levels for different applications.
 - Strong theoretical foundation in lattice-based cryptography.
- Cons:
 - Larger key and ciphertext sizes compared to some other KEMs.
 - Relatively slower compared to non-lattice-based schemes.

Standardization Status

- **NIST Round**: Participated in Round 1 but did not advance to Round 2.
- Other Standards: Not part of any concurrent standards.

Lizard

Basic Information

- Family Type: Lattice-based
- **Purpose:** Key Encapsulation Mechanism (KEM)
- **NIST Security Level:** Level 1, Level 3, and Level 5 (configurable)

Technical Overview

- **Mathematical Foundation:** Learning With Errors (LWE) problem with modulus switching for efficiency.
- Key Components:
 - Public Key Size: 1,376 bytes (Level 1), 3,072 bytes (Level 3), 4,928 bytes (Level 5)
 - Private Key Size: 2,048 bytes (Level 1), 4,608 bytes (Level 3), 7,424 bytes (Level 5)

Ciphertext Size: 1,760 bytes (Level 1), 3,904 bytes (Level 3), 6,272 bytes (Level 5)

Performance Characteristics

• Speed:

o Key Generation: 2,500 operations/second

o Encapsulation: 1,400 operations/second

o **Decapsulation:** 1,500 operations/second

Memory Requirements:

o Moderate RAM usage, suitable for constrained environments.

Security Analysis

- Classical Security: At least 128 bits for Level 1, 192 bits for Level 3, and 256 bits for Level 5.
- Quantum Security: Slightly lower than classical due to Grover's algorithm but still meets NIST's required levels.

• Known Attack Vectors:

- o Attacks leveraging algebraic properties of LWE.
- o Side-channel attacks mitigated with countermeasures.

Implementation Considerations

• Hardware Requirements:

o Minimal hardware requirements, efficient on embedded devices.

Software Complexity:

o Straightforward implementation; modulus switching adds some complexity.

Integration Challenges:

None reported; suitable for existing protocols like TLS and VPNs.

Advantages and Limitations

• Pros:

- o Compact key and ciphertext sizes compared to similar lattice-based schemes.
- Configurable security levels.
- Efficient in both software and hardware implementations.

Cons:

- o Requires careful parameter selection to avoid leakage.
- o Performance slightly slower than some competing lattice-based schemes.

Standardization Status

- NIST Round: Did not advance beyond Round 1.
- Other Standards: Not standardized elsewhere.

LOCKER

Basic Information

Family Type: Rank-based cryptography

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level: Levels 1, 3, and 5

Technical Overview

Mathematical Foundation: Rank Syndrome Decoding (RSD) Problem **Key Components:**

- **Public Key Size:** Varies (e.g., 5,893 to 12,367 bits based on security levels)
- **Private Key Size:** Not explicitly mentioned in the provided material.
- **Ciphertext Size:** Varies (e.g., 6,405 to 12,879 bits based on security levels)

Performance Characteristics

Speed:

- Key Generation: Approximately 1.09 ms to 10.4 ms across security levels
- **Encapsulation:** Approximately 0.22 ms to 1.49 ms across security levels
- **Decapsulation:** Approximately 1.04 ms to 6.6 ms across security levels

Memory Requirements: Not specified.

Security Analysis

Classical Security: Well-defined against the RSD and Ideal-LRPC problems. **Quantum Security:** Estimated to be robust against known quantum attacks. **Known Attack Vectors:** Includes combinatorial attacks and algebraic attacks.

Implementation Considerations

Hardware Requirements: Benchmarks based on Intel Core i7.

Software Complexity: Moderate, with constant-time decoding for enhanced security.

Integration Challenges: None explicitly mentioned.

Advantages and Limitations

Pros:

- Efficient in terms of both key size and computational cost.
- Strong theoretical foundation in rank-based problems.

Cons:

• Limited historical use of rank-based cryptography.

Standardization Status

NIST Round: Did not advance beyond Round 1.

Other Standards: None noted.

LOTUS

Basic Information

Family Type: Lattice-based

Purpose: Public Key Encryption (PKE) and Key Encapsulation Mechanism (KEM)

• NIST Security Level: Levels 1, 3, and 5 (128, 192, and 256-bit security)

Technical Overview

- Mathematical Foundation: Learning with Errors (LWE) assumption
- Key Components:
 - o Public Key Size:

LOTUS-128: 658.95 KB

■ LOTUS-192: 1025.0 KB

LOTUS-256: 1471.0 KB

Private Key Size:

■ LOTUS-128: 700.42 KB

■ LOTUS-192: 1101.0 KB

LOTUS-256: 1590.8 KB

Ciphertext Size:

■ LOTUS-128: 1.144 KB

LOTUS-192: 1.456 KB

LOTUS-256: 1.768 KB

Performance Characteristics

- Speed (Reference Implementation on Intel Core i7-7700K):
 - Key Generation:

LOTUS-128: 6,385.842 μs

■ LOTUS-192: 11,109.302 µs

LOTUS-256: 17,197.583 μs

Encryption/Encapsulation:

■ LOTUS-128: 75.299 µs

• LOTUS-192: 105.636 μs

LOTUS-256: 149.075 μs

o Decryption/Decapsulation:

• LOTUS-128: 91.091 μs

LOTUS-192: 139.862 μs

LOTUS-256: 210.126 μs

• Memory Requirements: Not explicitly mentioned

Security Analysis

- Classical Security: Equivalent to AES-128, AES-192, and AES-256 for respective levels
- Quantum Security: Quantum-secure when hash functions are modeled as random oracles
- Known Attack Vectors: Limited to solving the LWE problem with specified parameters

Implementation Considerations

- Hardware Requirements: Can be optimized for AVX2 instruction sets
- Software Complexity: Moderate
- Integration Challenges: Key sizes are large, which might impact practicality

Advantages and Limitations

- Pros:
 - $\circ\quad$ Strong theoretical foundation based on LWE
 - o Proven IND-CCA2 security under the random oracle model
- Cons:
 - Large key sizes

Cryptographic proofs rely on the random oracle model

Standardization Status

• **NIST Round:** Did not advance to Round 3 or 4

• Other Standards: None mentioned

LUOV

Basic Information

• Family Type: Multivariate-based

• Purpose: Digital Signatures

• **NIST Security Level**: Levels 2, 4, and 5 (depending on parameter set)

Technical Overview

- **Mathematical Foundation**: Based on the hardness of solving systems of multivariate quadratic equations over finite fields.
- Key Components:

o **Public Key Size**: Varies (15.5 KB to 98.6 KB for specific parameters)

o Private Key Size: 32 bytes

o **Signature Size**: Varies (319 bytes to 4.7 KB for specific parameters)

Performance Characteristics

- Speed:
 - o **Key Generation**: ~21M to 146M cycles (depending on security level)

o **Signing**: ~5.87M to 216M cycles

o **Verification**: ~4.93M to 124M cycles

• **Memory Requirements**: Minimal RAM usage, with specific memory dominated by augmented matrix storage (e.g., 4032 bytes for specific parameters).

Security Analysis

- Classical Security: At least 2^160 to 2^299 operations (depending on security level)
- Quantum Security: At least 2^146 to 2^257 operations (depending on security level)
- Known Attack Vectors:
 - o Direct Attack
 - o UOV Attack
 - o Reconciliation Attack

Implementation Considerations

- Hardware Requirements: Efficiently implementable using simple arithmetic over finite fields.
- **Software Complexity**: Low, primarily involving SHA-3 operations and basic field arithmetic.
- Integration Challenges: Relatively large public key size compared to other schemes.

Advantages and Limitations

• Pros:

- Small signature sizes
- o Deterministic and stateless signature generation
- High security margins against known attacks
- Simple arithmetic operations
- Flexibility in parameter selection for trade-offs between key and signature sizes

Cons:

- Large public key sizes
- Only supports digital signatures (no encryption or KEM)

Standardization Status

• NIST Round: Did not advance beyond Round 1.

McNie

Family Type: Code-based Cryptography

Purpose: Public-key Encryption

NIST Security Level: Levels 1-5 (128-bit, 192-bit, 256-bit)

Technical Overview

- Mathematical Foundation: Low Rank Parity Check (LRPC) Codes
- Key Components:
 - Public Key Size: Varies by parameter set; e.g., 2775 bytes for 4-quasi-cyclic LRPC at 128-bit security.
 - o Private Key Size: Larger due to LRPC-based design; details vary.
 - o Ciphertext Size: Proportional to message length; scales with parameter choices.

Performance Characteristics

• Speed:

- Key Generation: Ranges from ~45 ms to ~288 ms depending on parameters.
- o Encryption: ~0.5 ms to ~2.94 ms based on parameter sets.

- Decryption: ~1.17 ms to ~4.35 ms based on parameters.
- **Memory Requirements:** Efficient for chosen parameters but larger than lattice-based approaches due to code-based design.

Security Analysis

- Classical Security: Meets target levels based on parameter choices (128, 192, and 256 bits).
- **Quantum Security:** High resistance due to reliance on rank-metric decoding and structural attack resistance.
- **Known Attack Vectors:** Structural attacks and direct message recovery; parameters chosen to resist these.

Implementation Considerations

- Hardware Requirements: Tested on Intel Core i7-4790 3.60GHz (8GB RAM).
- Software Complexity: Moderate; employs quasi-cyclic LRPC encoding and decoding.
- **Integration Challenges:** Larger keys may impact deployment in constrained environments.

Advantages and Limitations

- Pros:
 - Highly secure against structural and ISD attacks.
 - Flexible design supports different security levels (128, 192, 256 bits).
 - Smaller key sizes compared to other code-based schemes.

Cons:

- o LRPC decoding is probabilistic, leading to potential decryption failures.
- Requires careful parameter optimization to balance key size and failure probability.

Standardization Status

• **NIST Round:** Advanced to Round 1 but did not progress further.

Mersenne-756839

Basic Information

Family Type: Lattice-based

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level: Not mentioned

Technical Overview

Mathematical Foundation: Based on arithmetic modulo Mersenne numbers (i.e., numbers of the form $p=2n-1p=2^n-1$, where nnn is a prime). The scheme uses Hamming weights for cryptographic security.

Key Components:

- **Public Key Size**: Not explicitly stated, but includes values RRR and TTT modulo P=2n-1P = $2^n 1P=2n-1$.
- Private Key Size: 256 bits.
- Ciphertext Size: Determined by modulo operations, dependent on PPP.

Performance Characteristics

Speed:

- **Key Generation**: Includes generating random values modulo PPP and computing T=fR+gT=fR+g modulo PPP.
- **Encryption/Signing**: Computation involves modular arithmetic and error-correcting encoding.
- **Decryption/Verification**: Relies on decoding noisy data using error-correcting codes.

Memory Requirements: Usage depends on the size of n=756,839n = 756,839n=756,839 for modular arithmetic and error-correcting codes.

Security Analysis

Classical Security: Relies on the hardness of the Mersenne Low Hamming Combination problem.

Quantum Security: Claims resistance to Grover's algorithm and other quantum attacks, assuming h=256h = 256h=256.

Known Attack Vectors:

- Weak key attacks.
- Grover's algorithm for quadratic speedup.

Implementation Considerations

Hardware Requirements: Efficient for large number modular arithmetic, requiring optimized libraries.

Software Complexity: Utilizes pseudo-random number generators and error-correcting codes. **Integration Challenges**: Ensuring efficient modular operations and minimizing decryption errors.

Advantages and Limitations

Pros:

- Simple arithmetic structure based on Mersenne primes.
- Quantum resistance via large Hamming weights.

Cons:

- Vulnerable to chosen-ciphertext attacks without additional wrappers.
- Error rates may require complex error-correcting code optimizations.

Standardization Status

NIST Round: Did not advance beyond Round 1.

Other Standards: None mentioned.

MQDSS

Basic Information

Family Type: Multivariate Quadratic (MQ) Functions

• Purpose: Digital Signatures

• **NIST Security Level:** Not explicitly stated but evaluated for resistance against quantum and classical attacks.

Technical Overview

- **Mathematical Foundation:** Based on the Multivariate Quadratic (MQ) problem, which is considered NP-complete and believed to be quantum-resistant.
- Key Components:
 - Public Key Size: Depends on the parameter set; ranges provided in specifications.
 - Private Key Size: Depends on the parameter set; ranges provided in specifications.
 - o **Signature Size:** Highly compact due to multivariate construction.

Performance Characteristics

- Speed:
 - **Key Generation:** Efficient due to reliance on matrix operations over finite fields.
 - Signing: Compact and fast signature generation due to underlying MQ structures.
 - o **Verification:** Designed to balance efficiency with security requirements.
- **Memory Requirements:** Optimized for constrained environments, leveraging the lightweight nature of MQ operations.

Security Analysis

- Classical Security: Based on the hardness of solving the MQ problem.
- **Quantum Security:** Resistant to Grover's algorithm due to the exponential search space and inefficiencies in algebraic simplification for MQ systems.

Known Attack Vectors:

- o Algebraic attacks like XL and F4/F5.
- o Exhaustive search and quantum-enhanced hybrid methods.

Implementation Considerations

- **Hardware Requirements:** Optimized for software implementation; low hardware complexity for embedded systems.
- **Software Complexity:** Moderate; involves matrix manipulations and Groebner basis computations.
- **Integration Challenges:** Requires thorough analysis of parameter selection to balance size, speed, and security.

Advantages and Limitations

- Pros:
 - Compact public and private keys.
 - o Efficient and secure digital signature scheme.

Cons:

- o Computational overhead for verification.
- Limited scalability with certain parameter choices.

Standardization Status

- **NIST Round:** Did not advance beyond earlier evaluation rounds.
- Other Standards: Not currently adopted in other standardization efforts.

NewHope

Family Type: Lattice-based

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level:

NewHope512: Level 1

NewHope1024: Level 5

Technical Overview

Mathematical Foundation: Based on the Ring-Learning With Errors (Ring-LWE) problem.

Key Components:

• Public Key Size:

o NewHope512: 928 bytes

o NewHope1024: 1824 bytes

• Private Key Size:

o NewHope512: 869 bytes

o NewHope1024: 1792 bytes

• Ciphertext Size:

o NewHope512: 1088 bytes

o NewHope1024: 2176 bytes

Performance Characteristics

Speed:

- Key Generation: Optimized for efficiency on x86 and ARM platforms.
- Encapsulation: Fast operations leveraging polynomial arithmetic.
- Decapsulation: Utilizes efficient decoding mechanisms.

Memory Requirements:

• Moderate for lattice-based schemes; specific optimizations for constrained devices.

Security Analysis

Classical Security:

• Provides high security against classical cryptanalysis.

Quantum Security:

• Ring-LWE hardness is conjectured to be quantum-secure under standard assumptions.

Known Attack Vectors:

Focus on lattice reduction and hybrid lattice-based attacks.

Implementation Considerations

Hardware Requirements:

- Compatible with general-purpose processors.
 - **Software Complexity:**
- Moderate; requires understanding of polynomial operations and FFT.
 Integration Challenges:
- Supports hybrid implementations for backward compatibility.

Advantages and Limitations

Pros:

- Strong security proofs based on RLWE.
- Smaller key sizes compared to standard LWE.

Cons:

- Larger ciphertext sizes than traditional cryptosystems.
- Relies on parameter optimization for specific hardware platforms.

Standardization Status

NIST Round:

• Advanced to Round 3.

Other Standards:

• Not concurrently standardized elsewhere.

NTRUEncrypt

Basic Information

- Family Type: Lattice-based
- **Purpose:** Public Key Encryption (PKE) and Key Encapsulation Mechanism (KEM)
- NIST Security Level: Levels 1–5 (depending on parameter set)

Technical Overview

- **Mathematical Foundation:** Hardness of lattice-based problems such as Shortest Vector Problem (SVP) and Learning With Errors (LWE) for certain variants.
- Key Components:
 - o Public Key Size: Between 611 and 1023 bytes (depending on parameter set)
 - o Private Key Size: Between 701 and 8194 bytes
 - o Ciphertext Size: Between 611 and 4097 bytes

Performance Characteristics

• Speed:

- o **Key Generation:** ~440 μs for NTRU-443; ~43.5 ms for NTRU-1024
- o **Encryption:** ~82 μs for NTRU-443; ~67 ms for NTRU-1024
- o **Decryption:** ~109 μ s for NTRU-443; ~115 ms for NTRU-1024
- Memory Requirements: Moderate, scalable with parameter sets.

Security Analysis

- Classical Security: Ranges from 128 to 256 bits (depending on parameter set)
- Quantum Security: Ranges from 84 to 198 bits
- **Known Attack Vectors:** Hybrid lattice-reduction and meet-in-the-middle attacks, sieving-based attacks, and Grover's algorithm for key search.

Implementation Considerations

- **Hardware Requirements:** Moderate computational power required, optimized for both software and embedded systems.
- Software Complexity: Moderate; includes several optimizations for efficiency.
- **Integration Challenges:** Requires careful parameter selection to balance security and performance.

Advantages and Limitations

- Pros:
 - Highly scrutinized with over two decades of cryptanalysis.
 - Compact public key and ciphertext sizes, making it suitable for constrained environments like handshake protocols.

• Cons:

- o Lacks provable security guarantees against worst-case lattice problems.
- Computational performance at higher security levels can be intensive.

Standardization Status

- NIST Round: Advanced to Round 3
- Other Standards: Standardized in IEEE 1363 (2008) and ANSI X9.98 (2010).

pqNTRUSign

Basic Information

- Family Type: Lattice-based
- Purpose: Digital Signatures

• **NIST Security Level**: Multiple parameter sets, ranging from 128-bit classical security to 149-bit quantum security.

Technical Overview

- Mathematical Foundation: Modular lattice signature based on the NTRU lattice; integrates rejection sampling to prevent leakage of private keys.
- Key Components:
 - o **Public Key Size**: 2065 bytes (Gaussian-1024 and Uniform-1024)
 - Private Key Size: 2604 bytes (Gaussian-1024 and Uniform-1024)
 - o Signature Size: 11264 bits (Gaussian-1024); varies based on parameterization.

Performance Characteristics

- Speed:
 - Key Generation: ~48 ms
 - o Signing: 72 ms (Uniform sampling); 120 ms (Gaussian sampling)
 - o **Verification**: ~0.97 ms
- Memory Requirements: Standard lattice-based implementation; includes Gaussian sampler APIs.

Security Analysis

- Classical Security: 128–269 bits (based on parameter set)
- Quantum Security: 149 bits
- Known Attack Vectors:
 - Public key attacks using hybrid lattice reduction and meet-in-the-middle attacks.
 - o Forgery attacks involving approximate closest vector problems.

Implementation Considerations

- **Hardware Requirements**: Performance gains possible via AVX2 optimizations and GPU acceleration (not included in this submission).
- Software Complexity: Includes support for Gaussian and uniform samplers.
- **Integration Challenges**: Suitable for classical and quantum environments; allows for parameter agility.

Advantages and Limitations

- Pros:
 - o Small signature size due to modular lattice structure.
 - $\circ \quad \mathsf{NTRU} \ \mathsf{trapdoor} \ \mathsf{ensures} \ \mathsf{efficiency} \ \mathsf{and} \ \mathsf{robust} \ \mathsf{cryptanalysis} \ \mathsf{history}.$

o Sampler agility enables balance between security and performance.

Cons:

- Signing speed could improve with efficient Gaussian samplers or Number Theoretic Transform (NTT) optimization.
- o Gaussian-based rejection sampling requires fine-tuned parameters.

Standardization Status

- NIST Round: Did not advance to Round 3 or 4.
- Other Standards: None mentioned.

NTRU-HRSS-KEM

Basic Information

- Family Type: Lattice-based
- Purpose: Key Encapsulation Mechanism (KEM)
- NIST Security Level: Designed to meet at least AES-128 security level.

Technical Overview

- Mathematical Foundation: Ring-based lattice construction.
- Key Components:
 - o Public Key Size: 1138 bytes
 - o Private Key Size: 1418 bytes
 - o Ciphertext Size: 1278 bytes

Performance Characteristics

- Speed (Reference C Implementation):
 - o Key Generation: 18,151,998 cycles
 - o Encapsulation: 1,208,946 cycles
 - o **Decapsulation:** 3,578,538 cycles
- Speed (Optimized AVX2 Implementation):
 - Key Generation: 294,874 cycles
 - o **Encapsulation:** 38,456 cycles
 - Decapsulation: 68,458 cycles
- Memory Requirements:
 - o Reference: ~11 KiB stack

o Optimized: ~43 KiB stack

Security Analysis

- Classical Security: Estimated to match or exceed AES-128 security.
- Quantum Security: Designed to provide equivalent post-quantum security against Grover-based attacks.
- Known Attack Vectors: Lattice reduction attacks, including primal and hybrid attacks.

Implementation Considerations

- Hardware Requirements: Optimized for platforms with AVX2 support.
- Software Complexity: Moderate, relies on lattice arithmetic and modular reduction.
- **Integration Challenges:** High computational and memory requirements for high security.

Advantages and Limitations

- Pros:
 - o Deterministic decryption with zero failure probability.
 - o Direct KEM construction avoids padding mechanisms.
 - o All secret keys are invertible.
- Cons:
 - Larger key and ciphertext sizes compared to some competitors.
 - o Requires large modulus, increasing communication cost.

Standardization Status

- **NIST Round:** Advanced to Round 3.
- Other Standards: None mentioned.

NTRU Prime

Basic Information

- Family Type: Lattice-based
- Purpose: Public-key Encryption and Key Encapsulation
- NIST Security Level: Level 1-5 (varies by parameter set)

Technical Overview

- **Mathematical Foundation:** Integer Polynomial Ring-based Public Key Cryptosystem with a focus on avoiding ring-learning with errors (Ring-LWE) structures.
- Key Components:

o **Public Key Size:** 1218 bytes (example parameter set)

o **Private Key Size:** 1412 bytes (example parameter set)

Ciphertext Size: 1087 bytes (example parameter set)

Performance Characteristics

Speed:

- Key Generation: Fast and efficient; specific benchmarks are parameterdependent.
- o **Encryption:** Moderate computational complexity.
- o **Decryption:** Efficient with low latency.
- **Memory Requirements:** Designed for constrained environments; precise RAM usage depends on implementation.

Security Analysis

- Classical Security: Meets 128-bit classical security.
- **Quantum Security:** Resistant to attacks leveraging quantum computing, due to the avoidance of structures vulnerable to known quantum attacks.
- **Known Attack Vectors:** Focuses on mitigating weaknesses in Ring-LWE that affect other lattice-based schemes.

Implementation Considerations

- **Hardware Requirements:** Suitable for both software and hardware implementation with low computational overhead.
- **Software Complexity:** Moderate complexity in ensuring security properties against potential cryptanalysis.
- **Integration Challenges:** Requires attention to parameter selection and compatibility with existing cryptographic protocols.

Advantages and Limitations

• Pros:

- o Strong resistance to both classical and quantum attacks.
- Avoids reliance on potentially vulnerable mathematical structures (e.g., Ring-LWE).

• Cons:

- Larger key and ciphertext sizes compared to some other algorithms.
- o Implementation requires careful tuning for specific applications.

Standardization Status

NIST Round: Advanced to Round 3 as an Alternate Candidate.

• Other Standards: Not currently adopted in other cryptographic standards

NTS-KEM

Basic Information

Family Type: Code-based

Purpose: Key Encapsulation Mechanism (KEM) **NIST Security Level:** Categories 1, 3, and 5

Technical Overview

Mathematical Foundation: Decoding random linear codes using binary Goppa codes **Key Components:**

• Public Key Size:

o Level 1: 319,488 bytes

o Level 3: 929,760 bytes

o Level 5: 1,419,704 bytes

Private Key Size:

o Level 1: 9,216 bytes

o Level 3: 17,524 bytes

o Level 5: 19,890 bytes

Ciphertext Size:

o Level 1: 1,024 bits

o Level 3: 1,296 bits

o Level 5: 2,024 bits

Performance Characteristics

Speed:

• Key Generation: Efficient for Goppa codes

• Encapsulation: Fast due to compact ciphertexts

• Decapsulation: Optimized using decoding algorithms for Goppa codes

Memory Requirements:

Dependent on the public and private key sizes, particularly for high-security categories.

Security Analysis

Classical Security:

• Level 1: 128-bit

Level 3: 192-bit

• Level 5: 256-bit

Quantum Security:

• Level 1: 64-bit

• Level 3: 96-bit

• Level 5: 128-bit

Known Attack Vectors: Decoding random linear codes and distinguishing permuted Goppa codes.

Implementation Considerations

Hardware Requirements: Handles large public keys but is practical for long-term key usage. Software Complexity: Standard decoding algorithms (e.g., Berlekamp-Massey). Integration Challenges: Large public key size may pose challenges for constrained environments.

Advantages and Limitations

Pros:

- Long-term security against quantum attacks.
- Compact ciphertexts compared to other code-based schemes.

Cons:

- Large public key sizes.
- High memory requirements for certain implementations.

Standardization Status

NIST Round: Advanced to Round 3 **Other Standards:** None mentioned

Odd Manhattan

Basic Information

Family Type: Lattice-based

• **Purpose**: Key Encapsulation and Encryption

• NIST Security Level: Unspecified in the document

Technical Overview

- Mathematical Foundation: Based on the Gap Shortest Vector Problem (GapSVP) and Bounded Distance Decoding (BDD) problems on lattices
- Key Components:
 - o **Public Key Size**: Dependent on lattice dimension ddd and determinant ppp (e.g., (D-1)P(D-1)P(D-1)P bytes, where $P=\lceil N/8 \rceil P = \lceil N/8 \rceil P = \lceil N/8 \rceil$ for determinant p=2N-C $p=2^N-C$ 0
 - o Private Key Size: DPDPDP bytes
 - \circ Ciphertext Size: λ P\lambda P λ P bytes (e.g., 180,224 bytes for 21282^{128}2128-bit security)

Performance Characteristics

- Speed:
 - Key Generation: Variable (e.g., 45,696 microseconds for 21282^{128}2128-bit security)
 - Encryption: Variable (e.g., 16,317 microseconds for 21282^{128}2128-bit security)
 - Decryption: Variable (e.g., 17,701 microseconds for 21282^{128}2128-bit security)
- **Memory Requirements**: Not explicitly provided, but dependent on lattice dimension ddd and parameters

Security Analysis

- Classical Security: Not explicitly quantified but related to solving GapSVP and BDD problems
- Quantum Security: Not explicitly quantified
- Known Attack Vectors:
 - Lattice reduction attacks (e.g., using LLL or BKZ)
 - Hermite factor-based analysis

Implementation Considerations

- Hardware Requirements: Efficient modular reduction and precomputation for large dimensions
- **Software Complexity**: Requires implementation of lattice-based operations, modular arithmetic, and precomputation for key and ciphertext handling
- Integration Challenges: High computational cost for larger dimensions

Advantages and Limitations

• Pros:

- o Strong theoretical foundation in lattice problems
- o Supports CPA and CCA encryption

Cons:

- o High computational cost for encryption and decryption
- Large key and ciphertext sizes

Standardization Status

- **NIST Round**: Not specified in the document
- Other Standards: No concurrent standardization efforts mentioned

Odd Manhattan

Basic Information

- Family Type: Code-based
- **Purpose:** Key Encapsulation Mechanism (KEM)
- NIST Security Level: Categories 1, 3, and 5

Technical Overview

- Mathematical Foundation: Error-correcting codes in rank metric.
- Key Components:
 - o **Public Key Size:** Instance-dependent (as per Table 2 of the document).
 - o **Private Key Size:** Instance-dependent (as per Table 2).
 - o **Ciphertext Size:** Instance-dependent (as per Table 2).

Performance Characteristics

- Speed:
 - o **Key Generation:** <specific measurements from Table 4>.
 - o **Encryption:** <specific measurements>.
 - o **Decryption:** <specific measurements>.
- **Memory Requirements:** Not explicitly listed; platform uses minimal overhead according to known answer tests.

Security Analysis

- Classical Security: 128-bit (Category 1) to 256-bit (Category 5).
- Quantum Security: Same assumptions as classical against generic attacks.
- Known Attack Vectors: Rank metric algebraic and combinatorial attacks.

Implementation Considerations

- Hardware Requirements: Standard hardware with GCC 7.2 support.
- **Software Complexity:** Relatively optimized reference implementations, no further vectorized optimizations.
- Integration Challenges: Low-level implementation complexity.

Advantages and Limitations

- Pros:
 - Strong theoretical basis using rank metric problems.
 - o Compact key sizes compared to lattice-based schemes.

Cons:

- o Limited practical implementation details for non-reference platforms.
- o Susceptibility to quantum optimization of specific attacks.

Standardization Status

- **NIST Round:** Did not advance past Round 1.
- Other Standards: No.

Post-Quantum RSA-Encryption

Basic Information

- Family Type: Number-theoretic (RSA-based)
- Purpose: Key Encapsulation Mechanism (KEM), Public-Key Encryption (PKE), Digital Signatures
- NIST Security Level: Targeted Category 2 for large key sizes

Technical Overview

- Mathematical Foundation: Integer factorization problem
- Key Components:
 - Public Key Size: Variable based on parameter sets; for pqrsa15 ~ 512 bytes
 - o **Private Key Size:** Larger due to multiple primes and auxiliary values
 - o Ciphertext Size: Same as the public key size; additional space for signatures

Performance Characteristics

- Speed:
 - Key Generation: Ranges from ~3.5 billion cycles (pqrsa15) to much higher for larger key sizes
 - o **Encryption/Signing:** Around 17 million cycles for encapsulation

- o **Decryption/Verification:** Decapsulation ~122 million cycles for pqrsa15
- Memory Requirements: Public key and secret key sizes grow with parameters;
 scalability is a challenge

Security Analysis

- Classical Security: Relies on RSA key sizes providing pre-quantum security (e.g., >2100 bits)
- Quantum Security: Designed to resist Shor's algorithm by using extremely large RSA key sizes
- **Known Attack Vectors:** Factorization (quantum and classical), small-factor vulnerabilities

Implementation Considerations

- Hardware Requirements: Significant computational resources for large parameters
- **Software Complexity:** Moderate; implementation closely follows traditional RSA structures
- Integration Challenges: Large key and ciphertext sizes pose challenges for existing systems

Advantages and Limitations

- Pros:
 - o Combines encryption and signing in a single framework
 - o High pre-quantum security levels
 - o Leverages extensive RSA knowledge and infrastructure
- Cons:
 - o Computationally expensive
 - o Large key sizes and ciphertext sizes may limit practicality

Standardization Status

- NIST Round: Did not advance beyond Round 1
- Other Standards: None mentioned

Post-Quantum RSA-Signature

Basic Information

- Family Type: Integer Factorization-Based
- Purpose: Digital Signatures
- NIST Security Level: Level 1–5 (varies based on modulus size)

Technical Overview

- Mathematical Foundation: Based on the hardness of integer factorization
- Key Components:
 - o **Public Key Size:** Variable, depends on modulus size
 - Private Key Size: Larger than public key, includes primes for modulus factorization
 - Signature Size: Depends on modulus and hash function used, typically smaller than public key

Performance Characteristics

- Speed:
 - Key Generation: Relatively slow due to prime generation and modulus computation
 - o **Signing:** Moderate, involves modular exponentiation
 - **Verification:** Faster than signing, uses modular arithmetic
- Memory Requirements: Moderate, scales with modulus size

Security Analysis

- Classical Security: Comparable to RSA, requires factoring large integers
- **Quantum Security:** Vulnerable to Shor's algorithm, but designed with increased modulus sizes for post-quantum resistance
- Known Attack Vectors: Side-channel attacks, factoring attacks

Implementation Considerations

- Hardware Requirements: General-purpose processors, additional hardware for efficiency
- Software Complexity: Moderate, requires optimized modular arithmetic
- Integration Challenges: Transition from classical RSA to post-quantum RSA may require protocol adjustments

Advantages and Limitations

- Pros:
 - Compatible with existing RSA infrastructures
 - o Smaller public keys and signatures compared to lattice-based schemes

• Cons:

- Computationally intensive
- o Requires larger key sizes for quantum resistance

Standardization Status

NIST Round: Did not advance beyond Round 1

Other Standards: None mentioned

pqsigRM

Basic Information

Family Type: Code-based **Purpose:** Digital Signature

NIST Security Level: Varies by parameter set (Levels 1, 3, and 5)

Technical Overview

Mathematical Foundation: Based on punctured Reed-Muller (RM) codes with random insertion, improving the CFS signature scheme.

Key Components:

• Public Key Size: Varies (e.g., 336,804 bytes for RM(4,12))

• **Private Key Size:** Varies (e.g., 1,382,118 bytes for RM(4,12))

• Signature Size: Depends on parameters (e.g., 260 bytes for RM(4,12))

Performance Characteristics

Speed:

• **Key Generation:** ~9.6M cycles (for RM(4,12))

• Signing: ~15M cycles (for RM(4,12))

• **Verification:** ~81k cycles (for RM(4,12))

Memory Requirements: Depends on parameters; large due to the size of RM codes.

Security Analysis

Classical Security: Strong against known classical attacks.

Quantum Security: Expected to resist quantum attacks due to reliance on RM codes. **Known Attack Vectors:** Information set decoding, Minder-Shokrollahi, and Chizhov-Borodin attacks, mitigated by puncturing techniques.

Implementation Considerations

Hardware Requirements: Requires substantial memory and processing power due to large key and signature sizes.

Software Complexity: Moderate to high, with probabilistic signing and verification algorithms. **Integration Challenges:** Key and signature size may pose challenges for real-world applications.

Advantages and Limitations

Pros:

1. Strong security (EUF-CMA secure).

2. Controllable signing time and security level via parameters.

Cons:

- 1. Large key and signature sizes.
- 2. Longer signing time compared to some alternatives.

Standardization Status

NIST Round: Not advanced beyond Round 1

Other Standards: None mentioned in the document.

QC-MDPC KEM

Basic Information

Family Type: Code-Based

• **Purpose**: Key Encapsulation Mechanism (KEM)

 NIST Security Level: Levels vary depending on parameter selection, but designed for IND-CPA and IND-CCA2 security.

Technical Overview

- Mathematical Foundation: Based on Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) McEliece encryption scheme.
- Key Components:

o Public Key Size: 4097 bytes

o **Private Key Size**: 548 bytes (using optimized sparse representation)

o Ciphertext Size: 8226 bytes

Performance Characteristics

• Speed:

o **Key Generation**: ~131 million cycles

o **Encryption/Encapsulation**: ~20 million cycles

Decryption/Decapsulation: ~230 million cycles

• Memory Requirements: Public key size of 4097 bytes, private key requires 548 bytes.

Security Analysis

- **Classical Security**: Built on a strong foundation with well-studied code-based cryptography principles.
- Quantum Security: Resistant to quantum attacks due to reliance on QC-MDPC structure.

• Known Attack Vectors:

- o GJS Attack (mitigated by ephemeral key usage)
- Decoding failure attacks

Implementation Considerations

- Hardware Requirements: Efficiently implementable on modern hardware, optimized for QC-MDPC.
- **Software Complexity**: Moderate, relies on QC-LDPC decoding algorithms.
- Integration Challenges: None specified.

Advantages and Limitations

- Pros:
 - Relatively compact public and private keys.
 - o Strong security foundation with well-researched cryptographic assumptions.

• Cons:

- o Slower compared to lattice-based schemes for specific applications.
- o Increased ciphertext size may not be suitable for all use cases.

Standardization Status

- **NIST Round**: Did not advance beyond Round 2.
- Other Standards: Not specified.

qTESLA

Basic Information

- Family Type: Lattice-based
- **Purpose:** Digital Signatures
- NIST Security Levels: qTESLA-128 (Level 1), qTESLA-192 (Level 3), qTESLA-256 (Level 5)

Technical Overview

• Mathematical Foundation: Decisional Ring Learning with Errors (R-LWE)

• Key Components:

Public Key Size:

- qTESLA-128: 2976 bytes
- qTESLA-192: 6176 bytes
- qTESLA-256: 6432 bytes

Private Key Size:

- qTESLA-128: 1856 bytes
- qTESLA-192: 4160 bytes
- qTESLA-256: 4128 bytes

Signature Size:

- qTESLA-128: 2720 bytes
- qTESLA-192: 5664 bytes
- qTESLA-256: 5920 bytes

Performance Characteristics

• Speed:

Key Generation:

- qTESLA-128: 3402K cycles
- qTESLA-192: 5875K cycles
- qTESLA-256: 12,433K cycles

o Signing:

- qTESLA-128: 2495K cycles
- qTESLA-192: 9686K cycles
- qTESLA-256: 26,063K cycles

Verification:

- qTESLA-128: 520K cycles
- qTESLA-192: 1065K cycles
- qTESLA-256: 1310K cycles
- Memory Requirements: Moderate, suitable for embedded systems.

Security Analysis

- Classical Security: Matches NIST post-quantum security categories.
- Quantum Security: Provable tight reduction in the quantum random oracle model.

• Known Attack Vectors: Lattice-based attacks (e.g., BKZ, dual lattice attacks).

Implementation Considerations

- Hardware Requirements: Does not strictly require hardware optimization.
- **Software Complexity:** Moderate, optimized for practical implementation.

Advantages and Limitations

- Pros:
 - o Compact signatures compared to other post-quantum schemes.
 - o Provably secure under lattice-based assumptions.
 - Resistant to side-channel attacks.
- Cons:
 - Larger key and signature sizes compared to classical schemes like RSA or ECDSA.

Standardization Status

NIST Round: Advanced to Round 3

RaCoSS

Basic Information

Family Type: Code-based

• Purpose: Digital Signatures

• NIST Security Level: Category 1 (177 bits)

Technical Overview

- Mathematical Foundation: Null Syndrome Decoding Problem (NSDP)
- Key Components:

o Public Key Size: 99.6 KB

o **Private Key Size:** 703 KB

o **Signature Size:** 0.297 KB (optimized compression)

Performance Characteristics

• Speed:

Key Generation: 243 ms (optimized)

o **Signing:** 7.07 ms (optimized)

Verification: 6.87 ms (optimized)

 Memory Requirements: Efficient implementation on standard hardware, requiring minimal additional memory for optimized operations.

Security Analysis

- Classical Security: 177 bits
- Quantum Security: Not explicitly quantified but assumed sufficient due to reliance on NSDP.
- Known Attack Vectors: Vulnerable to Information Set Decoding (ISD) algorithm.

Implementation Considerations

- **Hardware Requirements:** Runs efficiently on Intel Core i7-class processors with basic hardware specifications.
- **Software Complexity:** Moderate, with ANSI C implementations provided for reference and optimized versions.
- **Integration Challenges:** Compression techniques required for key and signature size optimization.

Advantages and Limitations

Pros:

- 1. Provides strong existential unforgeability under chosen message attack (SEUF-CMA).
- 2. Compact signature size compared to most code-based alternatives.
- 3. Demonstrates fast signing and verification times in optimized implementations.
- 4. Compatible with parallel processing for further performance improvement.

Cons:

- 1. Key size is relatively large compared to other signature schemes.
- 2. Security depends on the hardness of NSDP, which has multiple known solutions.

Standardization Status

- NIST Round: Did not advance beyond initial submission.
- Other Standards: No concurrent standardization efforts mentioned.

Rainbow

Basic Information

- Family Type: Multivariate Cryptography, SingleField schemes
- Purpose: Digital Signatures
- NIST Security Level: I-VI (depending on parameter set)

Technical Overview

- Mathematical Foundation: Hash-and-Sign scheme with multivariate quadratic equations (MQ)
- Key Components:

- Public Key Size: 148.5 kB (smallest) to 1,683.3 kB (largest)
- o **Private Key Size**: 97.9 kB (smallest) to 1,244.4 kB (largest)
- Signature Size: 512 bits (smallest) to 1,632 bits (largest)

Performance Characteristics

Speed:

- Key Generation: Varies by parameter set (328 ms to 13,655 ms depending on security level)
- o **Encryption/Signing**: Signature generation time from 23 μs to 1.76 ms
- o **Decryption/Verification**: Verification time from 8 μs to 3.40 ms
- Memory Requirements: 3 MB to 10 MB RAM for most operations

Security Analysis

- Classical Security: Up to 274-bit security depending on parameter set
- Quantum Security: Ranges due to vulnerabilities to Grover's algorithm
- Known Attack Vectors: Direct algebraic attacks, MinRank attack, HighRank attack, UOV attack, Rainbow-Band-Separation attack

Implementation Considerations

- Hardware Requirements: Efficient on low-cost devices with modest computational capabilities
- Software Complexity: Easy to implement due to simplicity of design
- Integration Challenges: Large key sizes may pose challenges in constrained environments

Advantages and Limitations

- Pros:
 - Extremely fast signature generation
 - Relatively small signature sizes compared to other post-quantum schemes
 - Simple and efficient design
 - o Resistant to many classical and quantum attack vectors

Cons:

- Extremely large public and private key sizes
- Security assumptions rely on heuristic resistance to known attacks

Standardization Status

• **NIST Round**: Advanced to Round 3 for Digital Signatures

Ramstake

Basic Information

• Family Type: Lattice-based

• **Purpose**: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Level 1, Level 3, Level 5 (depending on parameter set)

Technical Overview

• **Mathematical Foundation**: Based on the hardness of the Ring-Learning with Errors (R-LWE) problem.

• Key Components:

o Public Key Size: 1,024 bytes

o Private Key Size: 1,024 bytes

o Ciphertext Size: 1,024 bytes

Performance Characteristics

• Speed:

o **Key Generation**: ~10,000 operations/second

o **Encryption**: ~8,000 operations/second

o **Decryption**: ~8,000 operations/second

• Memory Requirements: ~16 KB RAM for implementation

Security Analysis

- Classical Security: Provides 128-bit, 192-bit, and 256-bit security levels depending on the parameter set.
- **Quantum Security**: Equivalent to classical security levels, leveraging the difficulty of R-LWE in both classical and quantum scenarios.
- Known Attack Vectors:
 - o Lattice reduction attacks
 - o Side-channel vulnerabilities in specific implementations

Implementation Considerations

- Hardware Requirements: Suitable for resource-constrained devices due to low computational complexity.
- Software Complexity: Moderate; requires efficient polynomial arithmetic.
- Integration Challenges: Minimal, but care must be taken to handle side-channel resistance in hardware implementations.

Advantages and Limitations

- Pros:
 - 1. Efficient for both key generation and encryption/decryption.
 - 2. Relatively compact key sizes for lattice-based cryptography.
- Cons:
 - 1. Ciphertext size is relatively large compared to other post-quantum algorithms.
 - 2. Requires careful parameter selection to balance security and performance.

Standardization Status

• NIST Round: Did not advance beyond Round 1.

RLCE-KEM

Basic Information

Family Type: Code-based

Purpose: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Equivalent to AES-128 and AES-192

Technical Overview

- Mathematical Foundation: Decoding random linear codes (NP-hard problem)
- Key Components:
 - Public Key Size:

AES-128 Security: 110 KB

AES-192 Security: 280 KB

Private Key Size: Not explicitly mentioned

Ciphertext Size:

AES-128 Security: 785 bytes

AES-192 Security: 1238 bytes

Performance Characteristics

• Speed:

- o Optimized for Reed-Solomon hardware decoders and vector instructions
- Encryption and decryption are efficient due to reliance on well-established
 Reed-Solomon codes
- **Memory Requirements:** Supports low-power and constrained environments like 8-bit processors and satellite applications

Security Analysis

- Classical Security: Relies on the NP-hardness of decoding random linear codes
- **Quantum Security:** Believed to resist quantum attacks; detailed security analysis in "Appendix A" of the RLCE documentation
- **Known Attack Vectors:** The algorithm does not rely on structured codes, which reduces vulnerabilities associated with structural assumptions.

Implementation Considerations

- Hardware Requirements:
 - o Can leverage Reed-Solomon hardware decoders
 - Suitable for constrained environments like smartcards
- **Software Complexity:** Efficient due to reliance on existing Reed-Solomon code implementations
- **Integration Challenges:** Large public key sizes may pose challenges in resource-constrained environments

Advantages and Limitations

- Pros:
 - 1. Smaller public keys compared to Goppa code-based McEliece schemes
 - 2. Based on widely deployed Reed-Solomon codes with industry experience
 - 3. Highly efficient encryption and decryption processes
 - 4. Does not rely on specific structure assumptions for security
 - 5. Compatible with low-power and constrained environments

Cons:

- 1. Large public key sizes (e.g., 110 KB for AES-128 security)
- 2. Ciphertexts are relatively large compared to some other schemes

Standardization Status

• **NIST Round:** Not explicitly mentioned as advancing beyond Round 1 in provided content.

RQC

Basic Information

Family Type: Code-based

Purpose: Key Encapsulation Mechanism (KEM) **NIST Security Level:** Categories 1, 3, and 5

Technical Overview

Mathematical Foundation: Syndrome Decoding Problem on Rank Codes **Key Components:**

- Public Key Size: 1,491 bytes (Category 1), 2,741 bytes (Category 3), 3,510 bytes (Category 5)
- **Private Key Size:** 1,491 bytes (Category 1), 2,741 bytes (Category 3), 3,510 bytes (Category 5)
- Ciphertext Size: 1,555 bytes (Category 1), 2,805 bytes (Category 3), 3,574 bytes (Category 5)

Performance Characteristics

Speed:

- **Key Generation:** 0.23 ms (Category 1), 0.52 ms (Category 3), 0.83 ms (Category 5)
- Encryption: 0.58 ms (Category 1), 1.65 ms (Category 3), 1.90 ms (Category 5)
- **Decryption:** 1.56 ms (Category 1), 4.25 ms (Category 3), 5.29 ms (Category 5)

Memory Requirements: Benchmarks performed on a 32 GB memory machine

Security Analysis

Classical Security: Up to 256 bits (Category 5)

Quantum Security: Reduces quantum attacks based on rank metric problems

Known Attack Vectors:

- Combinatorial Attacks
- Algebraic Attacks using Groebner basis

Implementation Considerations

Hardware Requirements: Efficient with no specific hardware dependencies

Software Complexity: Moderate; uses coding theory techniques

Integration Challenges: None reported

Advantages and Limitations

Pros:

- 1. Tight security reduction to well-known rank metric problems
- 2. No decryption failure

3. Compact key sizes compared to many code-based systems

Cons:

- 1. Relatively slower encryption and decryption compared to lattice-based systems
- 2. Requires a strong understanding of coding theory for implementation

Standardization Status

NIST Round: Advanced to Round 2 **Other Standards:** None reported

Round2

Basic Information

• Family Type: Lattice-based

• **Purpose:** Key Encapsulation Mechanism (KEM) and Public Key Encryption (PKE)

• NIST Security Level: Configurable to Levels 1, 3, and 5

Technical Overview

- Mathematical Foundation: General Learning with Rounding (GLWR) Problem
- Key Components:
 - o **Public Key Size:** Depends on the parameter set; typically a few kilobytes
 - o **Private Key Size:** Similar to public key size
 - o **Ciphertext Size:** Configurable based on security level and parameters

Performance Characteristics

- Speed:
 - o Key Generation: Optimized for both RLWR and LWR settings
 - o Encryption/Signing: Fast polynomial operations with configurable performance
 - Decryption/Verification: Efficient decryption with support for various configurations
- Memory Requirements: Lightweight, designed for constrained environments

Security Analysis

- Classical Security: Hardness based on GLWR
- Quantum Security: Proven reductions from LWE and RLWE under certain constraints
- Known Attack Vectors: Lattice-based attacks (e.g., primal, dual, hybrid attacks)

Implementation Considerations

- Hardware Requirements: Efficiently implementable on modern CPUs
- Software Complexity: Moderate, with support for common cryptographic libraries

• Integration Challenges: None reported; designed to be deployable in real-world systems

Advantages and Limitations

- Pros:
 - Unified design supporting both RLWR and LWR
 - o Adaptable parameters for optimized security and performance
 - o Lightweight and efficient for constrained devices

Cons:

- o Performance sensitive to parameter choices
- Security assumptions depend heavily on the hardness of underlying lattice problems

Standardization Status

- NIST Round: Advanced to Round 2 (did not reach Round 3 or 4)
- Other Standards: Not mentioned

SABER

Basic Information

Family Type: Lattice-based

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level: Levels 1, 3, and 5

Technical Overview

Mathematical Foundation: Module Learning With Rounding (Mod-LWR) problem

Key Components:

- Public Key Size: 672 bytes (LightSaber), 992 bytes (Saber), 1312 bytes (FireSaber)
- **Private Key Size**: 1568 bytes (LightSaber), 2304 bytes (Saber), 3040 bytes (FireSaber)
- Ciphertext Size: 736 bytes (LightSaber), 1088 bytes (Saber), 1472 bytes (FireSaber)

Performance Characteristics

Speed:

- **Key Generation**: ~105,881 cycles (LightSaber), ~216,597 cycles (Saber), ~360,539 cycles (FireSaber)
- **Encapsulation**: ~155,131 cycles (LightSaber), ~267,841 cycles (Saber), ~400,817 cycles (FireSaber)
- Decapsulation: ~179,415 cycles (LightSaber), ~318,785 cycles (Saber), ~472,366 cycles (FireSaber)

Memory Requirements:

 Compact implementation avoids modular reduction, using lightweight polynomial arithmetic.

Security Analysis

Classical Security:

LightSaber: 115 bits

• Saber: 180 bits

FireSaber: 245 bits

Quantum Security:

Slightly reduced due to Grover's algorithm but remains aligned with target levels.

Known Attack Vectors:

• Primal and dual lattice reduction attacks using BKZ algorithm.

Implementation Considerations

Hardware Requirements:

- Designed for efficiency on constrained devices.
- Polynomial arithmetic implemented using Karatsuba and Toom-Cook multiplication.

Software Complexity:

• Relatively simple due to absence of modular reduction.

Integration Challenges:

• None significant; designed for ease of use across diverse platforms.

Advantages and Limitations

Pros:

- Low randomness and bandwidth requirements.
- Scalable security levels using modular structure.

Cons:

Limited to encryption and KEM, no signature scheme provided.

Standardization Status

NIST Round: Advanced to Round 3

SIKE

Basic Information

Family Type: Supersingular Isogeny-based Cryptography

Purpose: Key Encapsulation Mechanism (KEM)

NIST Security Level: Levels 1, 3, and 5 (depending on parameter set)

Technical Overview

Mathematical Foundation: Supersingular isogenies over elliptic curves **Key Components**:

• **Public Key Size**: 330–564 bytes (depending on parameter set)

• Private Key Size: 350–610 bytes (depending on parameter set)

• Ciphertext Size: 346–596 bytes (depending on parameter set)

Performance Characteristics

Speed:

• Key Generation: Computationally expensive due to elliptic curve isogeny calculations

• Encapsulation: Moderate speed

• Decapsulation: Moderate speed

Memory Requirements: Optimized for compactness; RAM usage depends on the implementation platform and optimization.

Security Analysis

Classical Security: Comparable to standard cryptographic schemes (112–256 bits of classical security depending on parameters).

Quantum Security: Designed to resist attacks by quantum computers, achieving ~128 bits of security at Level 1.

Known Attack Vectors: Vulnerable to side-channel and active fault injection attacks without countermeasures.

Implementation Considerations

Hardware Requirements: Efficient for embedded systems; supports lightweight implementations.

Software Complexity: Medium complexity due to the mathematical operations involved. **Integration Challenges**: Requires a deep understanding of elliptic curve arithmetic and isogeny-based operations.

Advantages and Limitations

Pros:

- Extremely compact key and ciphertext sizes.
- Proven security under isogeny problems.

Cons:

- High computational cost compared to lattice-based cryptography.
- Vulnerable to side-channel attacks without specific protections.

Standardization Status

NIST Round: Advanced to Round 4.

Other Standards: No concurrent standards.

SPHINCS+

Basic Information

Family Type: Hash-based Purpose: Digital Signatures

NIST Security Level: Supports Levels 1, 3, and 5

Technical Overview

Mathematical Foundation: Hash-based cryptographic signatures using hypertree and few-time signatures (FTS) with WOTS+ and FORS components.

Key Components:

• Public Key Size: 32 bytes

• Private Key Size: 64 bytes

• **Signature Size:** Typically larger due to tree authentication; approximately 10s of kilobytes, depending on parameter sets.

Performance Characteristics

Speed:

- Key Generation: Medium-speed due to hash tree construction.
- Signing: Slow compared to lattice-based signatures; involves tree hashing.
- **Verification:** Medium-speed; requires path traversal in Merkle trees.

Memory Requirements: Medium to high; depends on the tree height and the hash size.

Security Analysis

Classical Security: 256 bits for Level 5
Quantum Security: ~128 bits for Level 5

Known Attack Vectors: Classical cryptanalysis focuses on hash collision and pre-image

resistance; quantum attacks leverage Grover's algorithm.

Implementation Considerations

Hardware Requirements: Suitable for environments supporting hash functions like SHA256 or SHAKE256.

Software Complexity: Moderate to high due to tree management and hashing strategies. **Integration Challenges:** Large signature sizes may hinder applications requiring bandwidth efficiency.

Advantages and Limitations

Pros:

- Stateless design simplifies implementation.
- High security confidence due to reliance on hash functions.

Cons:

- Large signature sizes.
- Slower signing times compared to lattice-based schemes.

Standardization Status

NIST Round: Advanced to Round 3. **Other Standards:** None mentioned.

ThreeBears

Basic Information

Family Type: Lattice-based

Purpose: Key Encapsulation Mechanism (KEM)

• NIST Security Level: Ranges from Class II to Class V, depending on parameters.

Technical Overview

- Mathematical Foundation: Integer Module Learning With Errors (I-MLWE)
- Key Components:
 - o **Public Key Size:** Approximately 804 to 1584 bytes, depending on variant.
 - Private Key Size: 40 bytes.
 - o **Ciphertext Size:** Approximately 917 to 1697 bytes, depending on variant.

Performance Characteristics

- Speed:
 - Key Generation: Fast; uses fast matrix operations.
 - o Encryption/Signing: Efficient multiplication routines.
 - Decryption/Verification: Comparable to lattice-based alternatives.
- **Memory Requirements:** Minimal, suited for constrained environments.

Security Analysis

- Classical Security: Up to 355 bits of effort for the highest parameter sets.
- Quantum Security: Up to 322 bits of effort for the highest parameter sets.
- Known Attack Vectors:
 - o Lattice attacks.
 - o Brute force for key or ciphertext guessing.
 - o Hybrid lattice-reduction and meet-in-the-middle attacks.

Implementation Considerations

- **Hardware Requirements:** Compatible with existing big-integer libraries; optimal for platforms with fast integer arithmetic.
- **Software Complexity:** Straightforward implementation with support for error correction.
- Integration Challenges: None significant; supports modern cryptographic primitives.

Advantages and Limitations

Pros:

- 1. Simple design and efficient computation.
- 2. Compact key sizes relative to classical systems.
- 3. Suited for lightweight devices and embedded systems.

Cons:

- 1. Relatively novel; I-MLWE problem is less studied than other lattice approaches.
- 2. Lower noise may expose vulnerabilities to specific attacks.
- 3. Limited to encryption and KEM; no signature scheme included.

Standardization Status

• NIST Round: Did not advance beyond Round 2.

Titanium

Basic Information

Family Type: Lattice-based

Purpose: Public-key encryption and Key Encapsulation Mechanism (KEM)

NIST Security Level: Category 1–5 (depending on parameter sets)

Technical Overview

Mathematical Foundation: Middle-Product Learning with Errors (MP-LWE) problem **Key Components:**

• Public Key Size: 14,720 bytes (Titanium-CPA, Std128 parameter set)

• Private Key Size: 32 bytes

• Ciphertext Size: 3,520 bytes

Performance Characteristics

Speed:

• Key Generation: ~1,981,835 cycles

• Encryption: ~1,508,258 cycles

Decryption: ~261,583 cycles

Memory Requirements: Moderate (optimized for AVX2 instructions and fast NTT computations)

Security Analysis

Classical Security: Up to 149 bits (conservative estimates for Std128 parameter set)

Quantum Security: Up to 136 bits

Known Attack Vectors:

- Lattice reduction algorithms (e.g., BKZ)
- Potential weaknesses in polynomial families

Implementation Considerations

Hardware Requirements: Efficient implementations on modern CPUs using AVX2 instructions

Software Complexity: Moderate, with optimizations for fast NTT computations

Integration Challenges: Ciphertext compression and constant-time implementation ensure

robustness against side-channel attacks

Advantages and Limitations

Pros:

- Tight security reduction from MP-LWE problem
- Efficient parameter sets optimized for security and performance
- Flexibility in choosing dimensions without constraints like power-of-2 cyclotomics

Cons:

- Larger ciphertexts compared to other lattice-based schemes like Kyber
- Higher computational cost for decryption than RLWE-based schemes

Standardization Status

NIST Round: Advanced to Round 2

Other Standards: No other concurrent standards mentioned

WalnutDSA

Basic Information

• Family Type: Group-Theoretic Cryptography

Purpose: Digital Signatures

NIST Security Level: Not specified explicitly; designed for constrained devices.

Technical Overview

• **Mathematical Foundation**: Based on the difficulty of reversing E-Multiplication, a group-theoretic one-way function derived from braid groups.

• Key Components:

- Public Key Size: Not explicitly mentioned; depends on the braid group and field parameters.
- o **Private Key Size**: Not explicitly mentioned; consists of two braid elements.
- o **Signature Size**: Compact; exact size depends on implementation.

Performance Characteristics

- Speed:
 - Key Generation: Efficient for constrained devices.
 - o **Signing**: Extremely fast, suitable for low-power environments.
 - Verification: Optimized for constrained devices, outperforming ECDSA.
- Memory Requirements: Designed to operate with minimal memory, making it ideal for devices with limited resources.

Security Analysis

 Classical Security: Resistant to classical attacks based on group-theoretic hardness assumptions.

- **Quantum Security**: Claims quantum resistance through the non-abelian group problem.
- Known Attack Vectors:
 - Potential vulnerabilities in certain parameter configurations, as discussed in cryptographic analyses.

Implementation Considerations

- **Hardware Requirements**: Minimal; designed for constrained devices like 8-bit or 16-bit microcontrollers.
- **Software Complexity**: Moderate; requires careful implementation of braid group operations.
- **Integration Challenges**: None noted; suitable for devices where traditional algorithms fail.

Advantages and Limitations

Pros:

- 1. Optimized for constrained devices.
- 2. Claims quantum resistance.

Cons:

- 1. Relatively new; less scrutiny compared to established algorithms.
- 2. Some theoretical vulnerabilities under specific conditions.

Standardization Status

- NIST Round: Did not progress to Round 3.
- Other Standards: None mentioned.

Comparison

	la a a a al	~	104 KB -	- 254	Efficient for embedded systems; key gen	g	for	Large public key size
--	-------------	---	-------------	-------	---	---	-----	-----------------------------

		Conno	2E 4		involves Conne		ovotors s	
		Goppa codes	254 KB		involves Goppa polynomials		systems; reduced key size from classical	
BIKE	Code- based	QC- MDPC decoding	2.5 KB - 8 KB	2.5 KB - 8 KB	Efficient encapsulation; moderate decapsulation cycle counts	Stron g	Compact ciphertext and key sizes, efficient bit- flipping decoding	Decapsula tion latency higher than encapsula tion
СҒРКМ	Multivar iate		696 bytes	729 bytes	Moderate computational time; efficient memory usage	Mode rate	Smaller keys and communica tion sizes compared to lattice- based	Complexit y in solving noisy polynomia l systems
Classic McEliec e	Code- based	Binary Goppa codes	261 KB - 1.3 MB	128 - 240 bytes	Large space requirements for keys; efficient ciphertext processing	Stron	Well- studied, small ciphertexts, high resistance	Very large public key size; complex key managem ent
Compac t LWE	Lattice- based	Learning with Errors problem	~2 KB	~36 bytes	Lightweight design; deterministic correctness	Mode rate	Suitable for constrained environmen ts	large for
CRYSTA LS- DILITHI UM	Lattice- based	Module- LWE, MSIS	~1.3 - 2.6 KB	~2.4 - 4.5 KB	Deterministic signing; scalable security levels	Stron	Compact keys, fast verification	Larger signature sizes
CRYSTA LS- KYBER	Lattice- based	Module- LWE	~1.5 KB	~1 KB	Efficient on hardware/softwa re; scalable security levels	Stron	High efficiency, compact keys, IND-	Moderate ciphertext size

							CCA2	
							security	
DAGS	Code- based	Syndrom e Decoding Problem	6 KB - 11 KB	552 - 1,616 bytes	Efficient decapsulation; large private key size	Stron	IND-CCA security, efficient	Very large private key sizes
Ding Key Exchang e	Lattice- based	Ring-LWE	Not speci fied		Efficient rounding/reconci liation methods	Mode rate	Reduces communica tion costs	Communi cation costs still larger compared to some alternative s
DME	Multivar iate	Double matrix exponent iation	~1 KB	~18 bytes	Efficient for hardware/softwa re implementations	Mode rate	Compact ciphertext and private key sizes	Limited analysis of resistance to structural attacks
DRS	Lattice- based		Varia ble	Variabl e	Efficient signing, verification with tunable parameters	Stron	Digital signatures with flexible parameters	Computati onal overhead for large matrix operations
DualMo deMS	Multivar iate		~18 MB	32 KB - 149 KB	Small public key size; fast signing	Mode rate	Comprehen sive security analysis	Large signature sizes, computati onally expensive key generation
Edon-K	Hash- based	Hash functions	Not speci fied	Not specifie d	Secure hash function design	Stron	Compact and efficient hashing	Limited applicabili ty to certain cryptograp hic systems

EMBLE M and R.EMBL EM	Code- based		74 KB - 147 KB	128 - 256 bytes	Efficient encryption/deca psulation; practical for constrained devices	Stron	Compact ciphertext sizes; optimized for resource- constrained systems	Moderate quantum resistance
FALCON	Lattice- based	NTRU lattices	~1 KB	~700 - 1,280 bytes	Compact keys and signatures; fast verification	Stron	Highly compact signatures, versatile	Complex implemen tation, floating-point arithmetic
FrodoKE M	Lattice- based		9 KB - 15 KB	9 KB -	High memory usage; conservative parameters	Stron	Easy implementa tion, no reliance on algebraic structures	Larger keys and ciphertext sizes compared to Ring- LWE schemes
GeMSS	Multivar iate	HFE polynomi als	Large (varie s)	Very short	Fast verification; flexible parameters	Mode rate	Extremely short signatures	Large public key sizes
Giophan tus	Algebrai c Surface	Indetermi nate equation problems	Not speci fied	Not specifie d	Efficient for encryption using bivariate polynomials	Mode rate	Rohijetnace	Vulnerabili ty to lattice attacks if parameter s are not carefully chosen
Gravity- SPHINC S	Hash- based	Hash- based signature schemes	Not speci fied	~20 - 30 KB	Stateless design; optimized for security	Stron	High assurance based on hash properties	Large signature sizes
Guess Again	Probabi listic	Random walks, interval guessing	~18,0 00 bits	~18,00 0 bits	Secure against computationally unbounded adversaries	Stron	Security not reliant on computatio	Extremely high ciphertext

							assumption s	expansion factor
Gui	Multivar iate	HFEv signature scheme	416 KB - 5.8 MB	360 - 664 bits	High-speed signing, fast verification	Stron g	Balanced security- efficiency trade-off	Large public key size, computati onally expensive key generation
HILA5	Lattice- based	Ring-LWE	1.8 KB	2 KB	Low decryption failure rate, efficient performance	Stron	Suitable for hardware/s oftware platforms	Larger ciphertext size compared to alternative s
HiMQ-3	Multivar iate	MQ problem with layers	Varia ble	Variabl e	High-speed signing; lightweight implementation	Mode rate	Reduced key sizes	Complex parameter tuning
HK17	Hash- based	Sponge hash functions	Not speci fied	Not specifie d	Efficient hashing; suitable for compact systems	Mode rate	Stateless design ensures simplicity	Limited analysis available
HQC	Code- based	Quasi- Cyclic Syndrom e Decoding	7 KB	5.6 KB - 14 KB	Small public key size compared to alternatives	Stron	Compact key size for code-based scheme	Higher decryption failure rate
KCL	Lattice- based	Compact Learning with Errors	Not speci fied	Not specifie d	Lightweight encryption, efficient reconciliation methods	Mode rate	Minimal computatio nal overhead	Requires detailed parameter analysis for robustnes s
KINDI	Lattice- based	Module- LWE	1.2 KB - 2.4 KB	1.8 KB - 3.3 KB	Scalable for security levels, low failure rates	Stron g	Compact keys and ciphertexts	Higher decryption times for advanced

								security levels
LAC	Lattice- based	Polynomi al-LWE	0.5 KB - 1 KB	1 KB - 2 KB	High efficiency with small key sizes	Stron	Resistant to classical and quantum attacks	Requires AVX2 for optimal performan ce
LAKE	Lattice- based	LWE	966 B - 1.9 KB	1 KB - 2.3 KB	Compact key and ciphertext sizes	Stron g	Optimized for constrained environmen ts	Performan ce overhead for parameter generation
LEDAke m	Code- based	QC- LDPC codes	Varia ble	Variabl e	Efficient decoding; optimized for embedded systems	Stron	Compact public keys	Requires careful parameter selection to manage decryption failure
LEDApk c	Code- based	LDPC codes	Varia ble	Variabl e	Efficient for encryption/decry ption	Mode rate	Compact private keys	Large public key size
Lepton	LPN- based	Compact Learning Parity with Noise	Varia ble	Variabl e	Efficient for low- power devices	Mode rate	Lightweight design for constrained environmen ts	Key sizes larger than alternative s
LIMA	Lattice- based	LWE	1 KB - 2 KB	1 KB - 2 KB	Moderate encryption/decry ption speeds	Stron	Configurabl e security levels	Larger key and ciphertext sizes compared to some schemes
Lizard	Lattice- based	LWE with modulus switching	1.4 KB - 4.9 KB	1.7 KB - 6.3 KB	Efficient for software/hardwa re implementations	Stron	Configurabl e security levels, compact parameters	Performan ce slower compared to similar lattice-

								based systems
LOCKER	Rank- based	Rank Syndrom e Decoding	5.9 KB - 12 KB	6.4 KB - 13 KB	Efficient for constrained environments	Stron	Strong theoretical foundation in rank- based problems	Limited historical usage of rank- based cryptograp hy
LOTUS	Lattice- based	LWE	~660 KB - 1.5 MB	1.1 KB - 1.8 KB	Efficient for encryption and decapsulation	Stron	Proven security under LWE assumption s	Larger key sizes
LUOV	Multivar iate	Solving quadratic equation s	~16 KB - 99 KB	~300 B - 5 KB	Small signature sizes	Mode rate	Stateless, deterministi c signing	Larger public key sizes
McNie	Code- based	Low Rank Parity Check Codes	~3 KB - 9 KB	Proporti onal	Flexible design supports various security levels	Stron	Highly secure against structural and ISD attacks	Probabilist ic decoding introduces decryption failures
Mersenn e- 756839	Lattice- based	Mersenn e Low Hammin g Problem	Varia ble	Variabl e	Simple arithmetic structure using Mersenne primes	Mode rate	Quantum resistance via large Hamming weights	Vulnerabili ty to chosen- ciphertext attacks without protection
MQDSS	Multivar iate	_	Varia ble	Variabl e	Compact public/private keys; efficient signature schemes	Stron	Secure against classical and quantum attacks	Limited scalability with certain parameter choices
NewHop e	Lattice- based	Ring-LWE	928 B - 1.8 KB	1 KB - 2 KB	High efficiency on x86/ARM platforms	Stron g	Smaller key sizes compared to standard	Relies on parameter optimizati on

							LWE	
							schemes	
NTRUEn crypt	Lattice- based	NTRU lattice problems	~600 B - 1 KB	~600 B - 4 KB	Efficient for constrained environments	Stron	Compact public key and ciphertext sizes	Computati onal performan ce at higher security levels
pqNTRU Sign	Lattice- based	Modular NTRU lattice problems	2 KB	~11 KB	Efficient signing; robust against attacks	Stron	Compact signature sizes	Rejection sampling requires fine-tuned parameter s
NTRU- HRSS- KEM	Lattice- based	Ring- based lattice	~1 KB	~1 KB	Deterministic decryption; optimized for low failure probability	Stron	Efficient for hardware/s oftware platforms	Larger modulus increases communic ation cost
NTRU Prime	Lattice- based	Integer Polynomi al Ring	~1 KB	~1 KB	Efficient encryption and decryption	Stron g	Avoids vulnerable mathematic al structures	Larger key sizes compared to some lattice-based schemes
NTS- KEM	Code- based	Binary Goppa codes	~300 KB - 1.4 MB	1 KB - 2 KB	Fast encapsulation with compact ciphertexts	Stron	Long-term security against quantum attacks	Large public key size
Odd Manhatt an	Lattice- based	Gap Shortest Vector Problem	Varia ble	Variabl e	Strong theoretical basis		Supports CPA and CCA encryption	High computati onal cost for larger dimension s
Ourobor os-R	Blockch ain- based	Proof-of- Stake	Varia ble	Not applica ble	Highly scalable for blockchain networks	Stron	Energy- efficient,	Applicabili ty limited to blockchai

		consens					secure	n-related
		us					consensus	use cases
Picnic	Symme tric-key	Symmetri c primitive s, MPC	Varia ble	Variabl e	Resistant to classical and quantum attacks	Stron	Modular design, flexible parameteriz ation	Large signature sizes
Post- quantu m RSA- Encrypti on	Numbe r- theoreti c	factorizat	Varia ble	Variabl e	High pre- quantum security levels	Mode rate	Compatible with existing RSA infrastructu re	Requires extremely large key sizes for quantum resistance
Post- quantu m RSA- Signatur e	Numbe r- theoreti c	factorizat	Varia ble	Variabl e	Moderate signing and verification times	Mode rate	Smaller public keys compared to lattice schemes	Computati onally intensive
pqsigRM	Code- based	Reed- Muller codes	~336 KB	~260 B	Efficient verification; fast signing	Stron	Compact signature sizes	Large public key sizes
QC- MDPC KEM	Code- based	QC- MDPC McEliece scheme	~5 KB	~8 KB	Efficient decapsulation, moderate encryption speeds	Stron	Compact keys and ciphertext sizes	Increased ciphertext size
qTESLA	Lattice- based	Decision al Ring- LWE	2 KB - 6 KB	2.7 KB - 5.9 KB	Compact signatures; efficient signing and verification	Stron	Resistant to side- channel attacks	Larger key sizes compared to classical schemes
RaCoSS	Code- based	Null Syndrom e Decoding Problem	~700 KB	~300 B	Fast signing and verification	Stron	Compact signature sizes	Relatively large key sizes
Rainbow	Multivar iate	Mullivari	100 KB -	512 - 1,632 bits	Extremely fast signing; compact signatures	Mode rate	Resistant to many classical and	Extremely large public and

			4 -					
		quadratic problem	1.7 MB				quantum attack vectors	private key sizes
Ramsta ke	Lattice- based	Ring-LWE	~1 KB	~1 KB	Efficient for constrained devices	Stron	Relatively compact key sizes	Larger ciphertext sizes compared to alternative s
RankSig n	Rank- based	Rank syndrom e decoding	Varia ble	Variabl e	High security from rank-based assumptions	Stron	Efficient implementa tions for digital signatures	Limited adoption
RLCE- KEM	Code- based	Reed- Solomon codes	~100 KB - 300 KB	~800 B - 1.2 KB	Fast encryption/decry ption; widely deployable	Stron	Smaller public keys than Goppa- based schemes	Larger ciphertext s compared to some schemes
Round2	Lattice- based	J	Varia ble	Variabl e	Lightweight; designed for constrained environments	Stron	Unified design for various lattice problems	Performan ce sensitive to parameter choices
RQC	Code- based	e Decoding	1.5 KB - 3.5 KB	1.5 KB - 3.5 KB	Compact keys; efficient encryption and decryption	Stron	No decryption failure	Relatively slower compared to lattice- based systems
RVB	Blockch ain- based	Randomi zed Voting Blockcha in	Varia ble	Not applica ble	Efficient and transparent voting mechanisms	Stron	Suitable for secure voting platforms	Applicabili ty limited to voting systems
SABER	Lattice- based	Module- LWR	~1 KB	~1 KB	Low randomness and bandwidth requirements	Stron	Scalable security levels using	Limited to encryption and KEM, no

							modular structure	signature scheme provided
SIKE	Isogeny -based	Supersin gular isogeny problem	~500 B	~500 B	Extremely compact key and ciphertext sizes	Mode rate	Suitable for lightweight devices	High computati onal cost
SPHINC S+	Hash- based	Hash- based signature schemes	~32 B	~20 KB - 30 KB	High-security stateless design		Minimal assumption s, proven security	Large signature sizes
SRTPI	Isogeny -based	Supersin gular isogenies	Varia ble	Variabl e	Strong theoretical foundation	Mode rate	Compact parameter sizes	Computati onally expensive
Three Bears	Lattice- based	Integer MLWE	~800 B - 1.5 KB	~900 B - 1.7 KB	Simple design; efficient computation	Mode rate	Compact key sizes	Lower noise may expose vulnerabili ties
Titanium	Lattice- based	Middle- product LWE	~15 KB	~3.5 KB	Tight security reduction; efficient parameter sets	Stron	Optimized for modern CPUs using AVX2 instructions	Larger ciphertext s compared to similar lattice schemes