OBJECT OF THE ASSIGNMENT:

To understand how the perceptron learning rule learns the weight and bias values for multiple-neuron perceptrons.

PROBLEM:

Solve a four-category classification problem having two/three components in the input.

- Implement the perceptron learning rule for a two-neuron perceptron.
- Implement the perceptron learning rule for a four-neuron perceptron.

INPUT OF THE PROBLEM:

Training dataset/testing dataset

OUTPUT OF THE PROBLEM:

- Display weight/bias values of proper decision boundaries and the number of epochs when the perceptron learning rule converges; otherwise display the maximum number of epochs if proper decision boundaries are not found.
- Predict the classes (target vectors) of testing examples.

DATASETS:

Dataset 1

This is a four-class classification problem described in Problem P4.3 in the textbook.

Training Data

Training Pattern i		p ₁	p ₂	p 3	p 4	p 5	p 6	p 7	p 8
Neural Inputs	p_1	1	1	2	2	-1	-2	-1	-2
	p_2	1	2	-1	0	2	1	-1	-2
Target Values	t_1	0	0	0	0	1	1	1	1
	t ₂	0	0	1	1	0	0	1	1

Testing Data

0 .

$$\mathbf{P}_9 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \mathbf{P}_{10} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}, \mathbf{P}_{11} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \mathbf{P}_{12} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}.$$

Dataset 2

Suppose that we want to distinguish between watermelons, bananas, pineapples, and oranges, based on three sensor measurements (shape, texture, and weight). Your TA will provide you a dataset containing 1000 training examples and another dataset containing 40 testing examples.

EXPERIMENTS:

Two-neuron perceptron:

- Dataset 1
 - Begin your algorithm with the following initial weights and biases to train your perceptron network:

$$\circ \quad W = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

- Expected output
- o The weight/bias values of the final decision boundaries are

$$\circ \quad W = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, b = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

- Dataset 2 Use the first two components. That is, shape and texture.
- Dataset 2 Use the three components. That is, shape, texture, and weight.

Four-neuron perceptron

Run your four-neuron perceptron on Dataset 1. Suppose that we change the
target vectors to have four components. For example, the following table
shows a possible mapping between two-neuron and four-neuron target
vectors.

Target vectors	$[0\ 0]^T$	$[0\ 1]^T$	$[1\ 0]^T$	$[1\ 1]^T$
of two-neuron				
Target vectors	$[1\ 0\ 0\ 0]^T$	$[0\ 1\ 0\ 0]^T$	$[0\ 0\ 1\ 0]^T$	$[0\ 0\ 0\ 1]^T$

- Run your four-neuron perceptron on Dataset 2 and use the first two components.
- Run your four-neuron perceptron on Dataset 2 and use all of the three components.

REMARK: One variation of the perceptron learning rule is

 $W^{new} = W^{old} + \alpha ep^T$ and $b^{\{new\}} = b^{\{old\}} + \alpha e$ where e = (t - a) and α is called the learning rate (small positive value, e.g., 0.1).

DISCUSSION:

Summarize your results and discuss what your observations. For example:

- Compare the performance of your two-neuron perceptron and four-neuron perceptron.
- Compare the performance of different initial weights/biases.
- Compare the performance of different learning rates.
- Everything else you consider it is important.