# I Exemples

On rappelle que  $P \subset NP \subset EXP \subset Décidables$ .

Donner la classe de complexité la plus précise possible des problèmes suivants :

1.

### REGEXP-EQUIV

Instance : deux expressions régulières  $e_1$  et  $e_2$ .

Question :  $L(e_1) = L(e_2)$  ?

Solution: On peut:

- transformer  $e_1$  et  $e_2$  en automates  $A_1$  et  $A_2$  avec l'algorithme de Thompson ou de Berry-Sethi (complexité polynomiale)
- déterminiser  $A_1$  et  $A_2$  (complexité exponentielle)
- construire des automates produits  $A_1'$  et  $A_2'$  reconnaissants  $L(A_1) \cap \overline{L(A_2)}$  et  $L(A_2) \cap \overline{L(A_1)}$  (complexité polynomiale)
- tester si  $L(A'_1) = \emptyset$  et  $L(A'_2) = \emptyset$  en cherchant un chemin d'un état initial vers un état final par parcours en profondeur (complexité polynomiale)

D'où REGEXP-EQUIV  $\in$  EXP.

2.

# $\text{CHEMIN-}{\leq}$

Instance : un graphe G = (S, A), deux sommets  $s, t \in S$  et un entier k. Question : existe-t-il un chemin élémentaire de s à t de longueur  $\leq k$ ?

Solution : CHEMIN- $\leq \in P$  avec un parcours en largeur.

3.

#### CHEMIN-≥

Instance : un graphe G=(S,A), deux sommets  $s,t\in S$  et un entier k. Question : existe-t-il un chemin élémentaire de s à t de longueur  $\geq k$ ?

Solution : CHEMIN- $\geq$   $\in$  NP, où un certificat est un chemin de longueur supérieur ou égal à k, qui est bien de taille polynomiale. On peut vérifier un certificat en temps polynomial : il suffit de vérifier que le chemin est élémentaire et de longueur supérieure ou égale à k.

4.

## CHEMIN-≥-ARBRE

Instance : un arbre G = (S, A).

Question : existe-t-il un chemin élémentaire de s à t de longueur  $\geq k$ ?

Solution : On peut enraciner G puis calculer le diamètre d (c'est-à-dire la distance maximum entre deux sommets, qui est aussi la longueur maximum d'un chemin élémentaire) de G avec une fonction récursive en complexité linéaire. Il suffit ensuite de tester si  $d \ge k$ .

5.

# CHEMIN-HAMILTONIEN

Instance : un graphe G = (S, A).

Question : G admet-il un chemin hamiltonien, c'est-à-dire un chemin passant exactement une fois par chaque sommet ?

Solution : CHEMIN-HAMILTONIEN  $\in$  NP, où un certificat est un chemin hamiltonien. On peut vérifier un certificat en temps polynomial : il suffit de vérifier que le chemin passe exactement une fois par chaque sommet.

### COUPLAGE-PARFAIT-BIPARTI

Instance : un graphe biparti G = (S, A). Question : G admet-il un couplage parfait ?

6. Solution : On calcule un couplage maximum avec l'algorithme des chemins augmentants (en complexité O(|S||A|)), et on vérifie que sa taille est  $\frac{|S|}{2}$ . Donc COUPLAGE-PARFAIT-BIPARTI  $\in$  P.

# II k-COLOR

Soit G = (S, A) un graphe non orienté. On appelle k-coloration de G une fonction  $c: S \longrightarrow \{1, 2, ..., k\}$  telle que pour tout arc  $(u, v) \in A$ , on a  $c(u) \neq c(v)$ .

Pour  $k \in \mathbb{N}^*$ , on considère le problème suivant :

# k-COLOR

Entrée : un graphe G = (S, A) non orienté

Sortie : G est-il k-colorable ?

1. Montrer que 1-COLOR et 2-COLOR appartiennent à P.

Solution: 1-COLOR est vrai si et seulement si le graphe ne contient aucune arête. 2-COLOR est vrai si et seulement si le graphe est biparti, ce qui peut être testé en temps linéaire (parcours en profondeur en alternant les couleurs).

2. Montrer que 3-COLOR appartient à NP.

Solution: On peut vérifier en temps polynomial qu'une coloration est correcte en parcourant les arêtes du graphe.

3. Montrer que 3-COLOR se réduit polynomialement à 3-SAT.

Solution : Soit G = (S, A) un graphe non orienté. Pour chaque sommet  $u \in S$ , on créé des variables  $x_{u,1}, x_{u,2}, x_{u,3}$   $(x_{u,i} \text{ va être vrai ssi le sommet } u \text{ est colorié avec la couleur } i)$ .

Pour chaque sommet u, on ajoute la clause  $(x_{u,1} \lor x_{u,2} \lor x_{u,3})$  (chaque sommet doit être colorié) et  $\neg x_{u,j} \lor \neg x_{u,j'}$  pour  $j \neq j'$  (un sommet ne peut pas être colorié avec deux couleurs différentes).

Pour chaque arête  $(u, v) \in A$ , on ajoute les clauses  $\neg x_{u,i} \lor \neg x_{v,i}$  (deux sommets adjacents ne peuvent pas être coloriés de la même couleur).

La formule  $\phi$  obtenue par conjonction de ces clauses est une instance de 3-SAT et est satisfiable si et seulement si G est 3-colorable. De plus, la construction et la taille de  $\phi$  sont polynomiales en la taille de G.

Dans la suite, on veut trouver une réduction polynomiale de 3-SAT à 3-COLOR.

On considère une formule  $\varphi$  de 3-SAT de variables  $x_1, ..., x_n$  et on veut construire un graphe G qui soit 3-colorable si et seulement si  $\varphi$  est satisfiable.

On ajoute n sommets dans G (encore appelés  $x_1, ..., x_n$  par abus de notation) correspondant à  $x_1, ..., x_n$ , n sommets correspondant à  $\neg x_1, ..., \neg x_n$  et 3 sommets V, F, B reliés deux à deux.

Dans un 3-coloriage de G, S et F doivent être de couleurs différentes. Chaque variable  $x_i$  sera considérée comme fausse si le sommet correspondant est de la même couleur que F et vraie s'il est de la même couleur que V.

4. Expliquer comment ajouter des arêtes à G pour que chaque variable  $x_i$  soit vraie ou fausse (c'est-à-dire coloriée avec la même couleur que F ou la même couleur que V) et de valeur opposée à  $\neg x_i$ .

Solution : Pour chaque i, on relie  $x_i$ ,  $\neg x_i$  et B deux à deux. Ainsi,  $x_i$  est coloriée avec la même couleur que V ou F et  $\neg x_i$  avec la couleur opposée.

On considère un sous-graphe (gadget) de la forme suivante à ajouter dans G:



5. Montrer que si  $v_1$  et  $v_2$  sont de la même couleur que F alors la couleur de s est imposée et préciser cette dernière.

Solution : On trouve que s doit être de la même couleur que F.

6. Montrer que si  $v_1$  ou  $v_2$  est de la même couleur que V alors il existe un coloriage de G où s est de la même couleur que V.

Solution : Si  $v_1 = v_2 = V$ , on peut utiliser le coloriage :



Si  $v_1 = V$  et  $v_2 = F$  (le cas  $v_1 = F$  et  $v_2 = V$  étant symétrique):



7. Quelle formule logique le gadget ci-dessus permet-il de représenter ?

Solution:  $v_1 \vee v_2$ .

8. Quel gadget ajouter à G de façon pour représenter une clause  $\ell_1 \vee \ell_2 \vee \ell_3$ ?

 $\underline{\text{Solution}}: \text{Comme } \ell_1 \vee \ell_2 \vee \ell_3 = (\ell_1 \vee \ell_2) \vee \ell_3, \text{ on connecte la sortie du gadget de } \ell_1 \vee \ell_2 \text{ à l'entrée du gadget de } \ell_3:$ 



9. Montrer que 3-COLOR est NP-complet.

Solution : Pour chaque clause  $\ell_1 \vee \ell_2 \vee \ell_3$  de  $\varphi$ , on ajoute un gadget comme ci-dessus ainsi qu'une arête entre s et B et une arête entre s et F, pour forcer la valeur de s à V.

Soit G le graphe obtenu. Montrons que G est 3-colorable si et seulement si  $\varphi$  est satisfiable.

- Supposons  $\phi$  satisfiable. Alors il existe une valuation mettant au moins un littéral de chaque clause à vrai. On colorie les sommets correspondants à ces littéraux avec V et les autres avec F. Alors chaque gadget possède au moins un sommet en entrée avec la couleur V donc il peut-être colorié d'après la question 6.
- Supposons que G est 3-colorable. Alors chaque gadget est colorié correctement. On peut alors construire une

valuation v en prenant vrai pour chaque littéral correspondant à un sommet colorié avec V et faux pour les autres.

Chaque gadget a une sortie coloriée avec V donc au moins un sommet en entrée colorié avec V. Donc chaque clause possède au moins un littéral à vrai : cette valuation satisfait  $\varphi$ .

10. Montrer que k-COLOR est NP-complet pour  $k \geq 4$ .

 $\underline{\rm Solution}:$  On montre que  $k\text{-}\mathrm{COLOR}\in \mathrm{NP}$  en utilisant une coloration comme certificat.

Montrons k-COLOR  $\leq_p (k+1)$ -COLOR.

Soit G une instance de k-COLOR. Soit G' le graphe obtenu en ajoutant un sommet s et en le reliant à tous les sommets de G. Alors G est k-colorable si et seulement si G' est (k+1)-colorable.

Ainsi k-COLOR  $\leq_p (k+1)$ -COLOR. Comme 3-COLOR est NP-complet, on en déduit par récurrence immédiate que k-COLOR est NP-complet pour tout  $k \geq 4$ .

# III Stable et clique

## STABLE

- $\bullet$  Instance : un graphe G et un entier k
- ullet Question : G contient-il un ensemble stable de taille k, c'est-à-dire un ensemble de k sommets deux à deux non adjacents ?

# CLIQUE

- $\bullet$  Instance : un graphe G et un entier k
- Question : G contient-il une clique de taille k, c'est-à-dire un ensemble de k sommets deux à deux adjacents ?
- 1. Montrer que STABLE  $\in$  NP.
- 2. Pour  $\varphi = \bigwedge_{k=1}^{p} C_k$  une instance de 3-SAT, on définit  $G_{\varphi} = (S, A)$  où :
  - S contient un sommet par littéral, autant de fois qu'il apparaît dans  $\varphi$ .
  - A contient une arête entre deux sommets s'ils sont dans la même clause ou s'ils sont la négation l'un de l'autre. Dessiner  $G_{\varphi}$  si  $\varphi = (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee z) \wedge (x \vee y \vee z) \wedge (\overline{x} \vee \overline{y})$ .
- 3. Montrer que si  $G_{\varphi}$  contient une clique de taille p alors  $\varphi$  est satisfiable.
- 4. Montrer que si  $\varphi$  est satisfiable alors  $G_{\varphi}$  contient une clique de taille p. Conclure.
- $5.\ \,$  Montrer que CLIQUE est NP-complet.

### Solution:

- 1. Un sous-ensemble  $X \subseteq S$  est un certificat. Un vérificateur consiste à vérifier que pour  $\{x,y\} \subseteq X, \{x,y\} \notin A$ . Cela se fait bien en temps polynomial.
- 2. On obtient le graphe suivant :



3. Si  $G_{\varphi}$  possède un stable X de taille m, alors un seul sommet par clause peut être choisi (car tous les sommets d'une même clause sont adjacents). De plus, il n'est pas possible de choisir un sommet x et un sommet  $\overline{x}$  (qui sont toujours adjacents). On définit une valuation  $\mu$  tel que  $\mu(\ell) = 1$  si  $\ell \in X$  et  $\mu(\ell) = 0$  sinon. D'après la remarque précédente,  $\mu$ 

- est bien défini et  $\mu$  est un modèle de chaque clause, donc un modèle de  $\varphi$ .
- 4. Si  $\varphi$  est satisfiable, il possède un modèle  $\mu$ . Il existe (au moins) un littéral  $\ell_i$  dans chaque clause  $C_i$  tel que  $\mu(\ell_i) = 1$ . On choisit les sommets correspondant dans le graphe  $G_{\varphi}$  pour former un ensemble X. Cet ensemble forme bien un stable de taille m.
- 5. Comme  $G_{\varphi}$  se construit en temps polynomial en  $|\varphi|$ , on a montré par les deux questions précédentes que 3-SAT  $\leq_p$  STABLE. Sachant que 3-SAT est NP-complet, on en déduit que STABLE est NP-difficile, donc NP-complet (car dans NP).
- 6. On a montré dans des exercices précédents que CLIQUE e NP et que STABLE  $\leq_p$  CLIQUE. On en déduit que CLIQUE est NP-complet.