Vector

Father of Vector: J. Willard Gibbs

- 1) If A and B is the two points then it's vector notation from A to B is \overrightarrow{AB} Where 'AB' indicates the magnitude and 'upper arrow' indicates the direction.
- 2) In Vector, $\overrightarrow{AB} = -\overrightarrow{BA}$
- 3) If O (0,0) is the origin and A (x,y) be the any point on space then the position vector, $\vec{a} = \mathbf{a} = \overrightarrow{OA} = (x,y)$ in Row Vector Or

$$\overrightarrow{OA} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 in Column Vector

- 4) If P (x₁,y₁) and Q (x₂,y₂) are the two points then vector $\overrightarrow{PQ} = (x_2-x_1, y_2-y_1)$ In row and it's Magnitude, $|\overrightarrow{PQ}| = PQ = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$ and direction, $\tan \theta = \frac{y_2-y_1}{x_2-x_1}$
- 5) If A (x,y) be the any point then $|\vec{A}| = \sqrt{x^2 + y^2}$

Direction,
$$\tan \theta = \frac{y}{x}$$
 or $\theta = \tan^{-1} \left(\frac{y}{x} \right)$

6) Intercept of Vector and relation of Direction:

X-intercept	Y-intercept	Direction (Angle -θ)
Positive (+ve)	0	$\theta = 0^{\circ}$
Negative (-ve)	0	$\theta = 180^{\circ}$
0	Positive	$\theta = 90^{\circ}$
0	Negative	$\theta = 270^{\circ}$
Positive	Positive	0°<θ<90°
Negative	Positive	90°<θ<180°
Negative	Negative	180°<θ<270°
Positive	Negative	270°<θ<360°

7) Unit Vector:

Magnitude of Unit Vector = 1 unit

Unit Vector,
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$

Also, We can also write $\vec{a} = (x,y) = x\hat{i} + y\hat{j}$

- 8) If $\vec{a} = (x_1, y_1)$ and $\vec{b} = (x_1, y_1)$ are said to be equal if $x_1 = x_2$ and $y_1 = y_2$
- 9) Like and Unlike Vectors:

 \vec{a} and \vec{b} are said to be like if $\vec{a} = k\vec{b}$ and Direction of \vec{a} = Direction of \vec{b}

Otherwise Unlike. Where k is scalar.

i.e $\vec{a} = k\vec{b}$ is written as $(x_1,y_1) = (kx_1,ky_1)$

NOTE: All like or unlike vectors are Parallel Vector.

Addition of Vector

10) In ΔABC, the Triangle Law of Vector Addition is

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

11) In □ABCD, the Parallelogram Law of Vector Addition is

$$\overrightarrow{AB}$$
 + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}

12) Addition of two Vectors:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$$

- 13) If \vec{a} and \vec{b} are two vectors then $\vec{a} + \vec{b}$ and $k\vec{a}$ both are Vectors, this is Closure Property.
- 14) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$, this is Commutative Property.
- 15) $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$, this is Associative Property.
- 16) $\vec{a} + (-\vec{a}) = 0$, this is Inverse Property.
- 17) $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$, this is Distributive Property.
- 18) $\vec{a} + 0 = 0 + \vec{a} = \vec{a}$, this is Identity Property.
- 19) Subtraction of Two Vectors:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}$$

20) In $\triangle ABC$, M is the midpoint of BC then $\overrightarrow{AB} + \overrightarrow{AC} = 2 \overrightarrow{AM}$

Thank You!!!