Júpiter Ataca!

Por Fidel I. Schaposnik - Argentina

Timelimit: 3

Júpiter está invadindo! As principais cidades tem sido destruídas por espaçonaves Jovianas e a humanidade está lutando contra. Nlogônia está à frente da contraofensiva, invadindo os sistemas de controle das espaçonaves.

Diferente dos computadores Terráqueos, nos quais usalmente um byte possui 2 ⁸ valores possíveis, os computadores Jovianos usam bytes com B possíveis valores, {0,1,...,B-1}. Os engenheiros de software Nlogonianos tem realizado engenharia reversa sobre o firmware das espaçonaves Jovianas, e planejam sabotá-lo de modo que as embarcações eventualmete autodestruam-se.

Como uma medida de segurança, entretanto, as espaçonaves Jovianas rodam um programa supervisor que periodicamente checa a integridade do firmware, aplicando hashing sobre porções dele e comparando o resultado contra valores bons conhecidos. Para aplicar o hashing sobre uma porção do firmware do byte na posição i até o byte na posição j, o supervisor usa a função de hashing

$$H(f_i, \dots f_j) = \sum_{k=0}^{j-i} B^k f_{j-k} \pmod{P}$$

onde P é um número primo. Por exemplo, se B = 20 e P = 139, enquanto os bytes 2 ao 5 do firmware tem os valores f_2 = 14, f_3 = 2, f_4 = 2 e f_5 = 4 então

$$H(f_2, ..., f_5) = B^0 f_5 + B^1 f_4 + B^2 f_3 + B^3 f_2 \pmod{P}$$

= $20^0 \times 4 + 20^1 \times 2 + 20^2 \times 2 + 20^3 \times 14 \pmod{139}$
= $4 + 40 + 800 + 112000 \pmod{139}$
= $112844 \pmod{139}$
= 115

Os criptologistas Nlogonianos precisam encontrar um meio de sabotar o firmware sem esbarrar no supervisor. Como um primeiro passo, a você foi atribuída a função de escrever um programa para simular a intercalagem de dois tipos de comandos: edição de bytes do firmware pelos engenheiros de software Nlogonianos, e o cálculo de hashes de porções do firmware pelo program supervisor Joviano. No início da simulação o valor de cada byte é zero.

Entrada

Cada caso de teste é descrito usando várias linhas. A primeira linha contém quatro inteiros $\bf B$, $\bf P$, $\bf L$ e $\bf N$, onde $\bf B$ é o número de possíveis valores de um byte Joviano, $\bf P$ é o módulo da hash Joviana ($2 \le \bf B < \bf P \le 10^9$ e $\bf P$ primo), $\bf L$ é o comprimento (número de bytes Jovianos) do firmware das espaçonaves, e $\bf N$ é o número de comandos a simular ($1 \le \bf L$, $\bf N \le 10^5$). No início da simulação o valor de cada byte no firmware é $\bf f_i$ = 0 para 1 $\bf S = \bf L$. Cada uma das $\bf N$ linhas seguintes descreve um comando a simular. Cada descrição de comando começa com uma letra maiúscula que é ou um 'E' ou um 'H', com os seguintes significados.

- 'E': A linha descreve um comando de edição. A letra é seguida por dois inteiros I e V indicando que o byte na posição I do firmware (ou seja, f_i) deve receber o valor V (1 ≤ I ≤ L e 0 ≤ V ≤ B-1).
- 'H': A linha descreve um comando de hash. A letra é seguida por dois inteiro I e J indicando que H(f_i...f_j) deve ser computado (1 ≤ I ≤ J ≤ L).

O último caso de teste é seguido por uma linha contendo quatro zeros.

Saída

Para cada caso de teste imprima os resultados de cada comando de hashing na entrada. Na i-ésima linha escreva um inteiro representando o resultado do i-ésimo comando de hashing. Imprima uma linha contendo um único caractere '-' (hífen) após cada caso de teste.

Exemplo de Entrada	Exemplo de Saída
20 139 5 7	115
E 1 12	_
E 2 14	345678
E 3 2	349
E 4 2	678
E 5 4	_
Н 2 5	824973478
E 2 14	236724326
10 1000003 6 11	450867806
E 1 3	0
E 2 4	_
E 3 5	
E 4 6	
E 5 7	
E 6 8	
Н 1 6	
E 3 0	
E 3 9	
Н 1 3	
H 4 6	
99999935 999999937 100000 7	
E 100000 6	
E 1 7	
Н 1 100000	
E 50000 8	
Н 1 100000	
Н 25000 75000	
Н 23987 23987	
0 0 0 0	

ACM/ICPC South America Contest 2011.