Análisis Exhaustivo: Capítulo 3 Newtonian Gravity

Mauro Jélvez

Motivación del Enfoque Newtoniano

El autor utiliza la gravedad newtoniana por tres razones fundamentales:

- 1. **Intuición física**: Las ecuaciones newtonianas son más accesibles y relacionables con sistemas físicos cotidianos.
- 2. **Correspondencia**: Para un universo homogéneo e isotrópico, los resultados coinciden exactamente con los de la Relatividad General (RG).
- 3. **Pedagogía**: Muestra cómo conceptos clásicos (energía, potencial gravitatorio) se generalizan en cosmología.

1. Teorema de Newton Revisitado

1.1. Demostración Detallada

El teorema que establece que "una partícula dentro de una cáscara esférica no experimenta fuerza gravitacional neta" se deriva de:

$$F = -Gm \int \frac{\rho(\mathbf{r}')(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d^3r'$$
 (1)

Para una cáscara de radio R y densidad superficial σ , la fuerza en r < R es:

$$F = -2\pi Gm\sigma R^2 \int_0^{\pi} \frac{(r - R\cos\theta)\sin\theta}{(R^2 + r^2 - 2Rr\cos\theta)^{3/2}} d\theta$$

= 0 (por simetría)

1.2. Implicaciones Cosmológicas

Este teorema permite:

- Ignorar masa exterior al radio de interés
- Modelar el universo como conjunto de capas esféricas concéntricas
- Mantener consistencia con el principio cosmológico (homogeneidad)

2. Derivación Paso a Paso de la Ecuación de Friedmann

2.1. Configuración Inicial

Consideramos:

- Una partícula de prueba m en la superficie de una esfera de radio físico r(t) = a(t)x
- Masa interior $M = \frac{4\pi}{3}\rho(t)r^3(t)$ (homogeneidad)
- Energía total por unidad de masa: $\frac{U}{m}$ = const.

2.2. Desarrollo Matemático

$$\begin{split} \frac{U}{m} &= \frac{1}{2}\dot{r}^2 - \frac{GM}{r} \\ &= \frac{1}{2}(\dot{a}x)^2 - \frac{G}{ax}\left(\frac{4\pi}{3}\rho a^3x^3\right) \\ &= x^2\left(\frac{1}{2}\dot{a}^2 - \frac{4\pi G}{3}\rho a^2\right) \end{split}$$

Definiendo $k \equiv -\frac{2U}{mx^2c^2}$ (adimensional), obtenemos:

$$\left[\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \rho - \frac{kc^2}{a^2} \right] \tag{2}$$

2.3. Interpretación Física Profunda

Desglose Término por Término

- *a*/*a*: Tasa de expansión (Hubble)
- $\frac{8\pi G}{3}\rho$: Fuente gravitacional (materia+energía)
- k/a^2 : Término de curvatura/energía total
 - -k > 0: Energía negativa (universo cerrado)
 - -k = 0: Energía exactamente cero (plano)
 - -k < 0: Energía positiva (universo abierto)

3. Ecuación del Fluido Cosmológico

3.1. Origen Termodinámico

Partimos de la primera ley:

$$dE = \delta O - pdV \tag{3}$$

Para procesos adiabáticos ($\delta Q = 0$) en un volumen comóvil $V = V_0 a^3$:

$$d(\rho c^{2}V) = -pdV$$

$$Vd\rho + \rho dV = -\frac{p}{c^{2}}dV$$

$$\frac{d\rho}{\rho + p/c^{2}} = -3\frac{da}{a} \quad \text{(usando } dV/V = 3da/a\text{)}$$

Integrando obtenemos la ecuación de continuidad:

$$\left|\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0\right| \tag{4}$$

Tipo	Ecuación de Estado	Solución
Materia	p = 0	$\rho \propto a^{-3}$
Radiación	$p = \rho c^2/3$	$\rho \propto a^{-4}$
Energía Oscura	$p = -\rho c^2$	ρ = constante

3.2. Casos Especiales

4. Ecuación de Aceleración

4.1. Derivación Completa

Diferenciamos la ecuación de Friedmann respecto al tiempo:

$$2H(\ddot{a}/a - H^2) = \frac{8\pi G}{3}\dot{\rho} + \frac{2kc^2H}{a^2}$$

$$= \frac{8\pi G}{3} \left[-3H(\rho + p/c^2) \right] + 2H \left[H^2 - \frac{8\pi G}{3}\rho \right]$$

$$= -8\pi G H \rho - \frac{8\pi G H p}{c^2} + 2H^3 - \frac{16\pi G H}{3}\rho$$

Simplificando:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) \tag{5}$$

4.2. Interpretación Relativista

El término $\rho + 3p/c^2$ aparece en RG como la traza del tensor energía-momento:

$$T^{\mu}_{\mu} = -\rho + 3p \tag{6}$$

Explicando por qué la presión gravita:

- En RG, la presión es fuente de gravedad (no solo la densidad)
- La combinación $\rho + 3p/c^2$ es la "densidad gravitacional efectiva"
- Presión negativa (como en Λ) puede causar repulsión gravitacional

5. Discusión sobre el Parámetro de Curvatura k

5.1. Normalización Matemática

El libro discute tres convenciones comunes:

- 1. $k \in \{-1, 0, 1\}$ con a dimensional (ej. en Mpc)
- 2. k dimensional (en Mpc⁻²) con a adimensional
- 3. Reescalado completo para absorber k en la métrica

5.2. Significado Geométrico

5.3. Relación con la Energía Total

La constante *k* está directamente relacionada con la energía mecánica específica total:

$$k = -\frac{2U}{mc^2x^2} \tag{7}$$

Donde:

- U > 0 (energía positiva) $\Rightarrow k < 0$ (universo abierto)
- $-U = 0 \Rightarrow k = 0$ (universo crítico)
- $U < 0 \Rightarrow k > 0$ (universo cerrado)

Fig. 1. Tipos de curvatura espacial para diferentes valores de k

Limitaciones y Conexiones con RG

El texto enfatiza que aunque el enfoque newtoniano reproduce las ecuaciones FLRW, falla en:

- Explicar por qué k debe ser uniforme en todo el espacio
- Describir perturbaciones inhomogéneas (requiere RG)
- Incorporar efectos no estáticos como ondas gravitacionales

La conexión completa con RG se establece mediante:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{8}$$

que para la métrica FLRW lleva a las mismas ecuaciones obtenidas aquí.

Contexto Fundamental

Este capítulo desarrolla las ecuaciones cosmológicas clave usando mecánica newtoniana, demostrando que - para un universo homogéneo e isotrópico - coinciden con las predicciones de la relatividad general. El enfoque newtoniano proporciona intuición física clara sobre:

- El significado de la ecuación de Friedmann como conservación de energía
- El rol de la presión en la dinámica cosmológica
- La interpretación geométrica del parámetro k

Teorema de Newton para Distribuciones Esféricas

6.1. Formulación Exacta

Para una distribución de masa con simetría esférica $\rho(r)$, la fuerza sobre una partícula de prueba m a distancia r es:

$$F(r) = -\frac{GM(r)m}{r^2} \tag{9}$$

donde M(r) es la masa contenida dentro del radio r:

$$M(r) = 4\pi \int_0^r \rho(r')r'^2 dr'$$
 (10)

6.2. Implicaciones Cosmológicas

En un universo homogéneo (ρ constante en el espacio):

$$M(r) = \frac{4\pi}{3}\rho r^3 \tag{11}$$

La fuerza gravitacional resulta lineal en *r*:

$$F(r) = -\frac{4\pi G\rho}{3}mr\tag{12}$$

Esta dependencia lineal es crucial para mantener la homogeneidad durante la expansión.

7. Derivación Detallada de la Ecuación de Friedmann

7.1. Configuración del Problema

Consideramos:

- Un sistema de coordenadas comóviles x (constantes para cada partícula)
- Coordenadas físicas $\mathbf{r}(t) = a(t)\mathbf{x}$
- Una partícula de prueba m en la superficie de una esfera de radio físico r(t)

7.2. Conservación de Energía

La energía total por unidad de masa es:

$$\frac{U}{m} = \underbrace{\frac{1}{2}\dot{r}^2}_{\text{Four (control in Four (co$$

Sustituyendo $M(r) = \frac{4\pi}{3}\rho r^3$ y r = ax:

$$\frac{U}{m} = \frac{1}{2}(\dot{a}x)^2 - \frac{4\pi G\rho}{3}(ax)^2 \tag{14}$$

Reorganizando:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} \tag{15}$$

donde definimos $k \equiv -\frac{2U}{mx^2c^2}$ como un parámetro adimensional de curvatura.

7.3. Interpretación de Términos

Término	Interpretación Newtoniana	Interpretación Rela- tivista
$(\dot{a}/a)^2$	Energía cinética escalada	Componente tiempo- tiempo de Einstein
$\frac{8\pi G}{3}\rho$	Potencial gravitacional	Contenido material (T_{00})
k/a^2	Energía total por unidad de masa	Curvatura espacial

8. Ecuación del Fluido Cosmológico

8.1. Primera Ley de la Termodinámica

Para un elemento de volumen comóvil $V \propto a^3$:

$$dE + pdV = 0$$

$$\operatorname{Con} E = \rho c^{2}V:$$
(16)

$$d(\rho c^2 V) + p dV = 0 \implies V d\rho + (\rho + p/c^2) dV = 0$$
 (17)

8.2. Ecuación Diferencial

Dividiendo por dt y usando $\dot{V}/V = 3\dot{a}/a$:

$$\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0\tag{18}$$

8.3. Soluciones para Diferentes Ecuaciones de Estado

Casos Especiales

- Materia no relativista (p = 0): $\rho \propto a^{-3}$
- Radiación $(p = \rho c^2/3)$: $\rho \propto a^{-2}$
- Energía del vacío $(p = -\rho c^2)$: ρ = constante

9. Ecuación de Aceleración

9.1. Derivación desde la Ecuación de Friedmann

Diferenciando respecto al tiempo:

$$2\frac{\dot{a}}{a}\frac{\ddot{a}a - \dot{a}^2}{a^2} = \frac{8\pi G}{3}\dot{\rho} + \frac{2kc^2\dot{a}}{a^3}$$
 (19)

Usando la ecuación del fluido para $\dot{\rho}$ y la ecuación de Friedmann para k/a^2 :

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) \tag{20}$$

9.2. Interpretación Física

- El término $\rho + 3p/c^2$ representa la densidad efectiva gravitacional
- La presión contribuye positivamente a la desaceleración
- Una p < 0 (como en la energía oscura) puede causar aceleración cósmica

10. Análisis del Parámetro de Curvatura k

10.1. Normalización Convencional

Se puede reescalar k para tomar solo los valores $\{-1,0,1\}$ mediante:

$$\hat{a} = \frac{a}{\sqrt{|k|}} \tag{21}$$

La ecuación de Friedmann se reescribe como:

$$\left(\frac{\dot{\hat{a}}}{\hat{a}}\right)^2 = \frac{8\pi G}{3}\rho \pm \frac{1}{\hat{a}^2} \tag{22}$$

donde + corresponde a k = -1 y - a k = +1.

10.2. Relación con la Geometría

k	Geometría	Volumen	Destino Final
+1	Esférica	Finito	Colapso
0	Plana	Infinito	Expansión eterna
-1	Hiperbólica	Infinito	Expansión eterna

Limitaciones del Enfoque Newtoniano

- No explica por qué k debe ser el mismo en todas partes (homogeneidad)
- No distingue entre curvatura espacial y temporal
- No incorpora efectos relativistas como ondas gravitacionales
- Sin embargo, para el caso FLRW da resultados idénticos a RG