

SUITES DE NOMBRE REELS

Version 1

Dr Euloge KOUAME © UVCI 2017

Aout 2017

Table des matières

Objectifs	5
I - I. Généralités	7
A. I-1. Définition d'une suite	7
B. II-2. Suite majorée, minorée, bornée	7
C. II-3. Monotonie	8
D. Exercice	9
II - II. Limites	11
A. II-1. Limite finie, Limite infinie	11
B. II-3. Propriétés des limites	12
C. II-4. Formes indéterminées	13
D. II-5. Limite et inégalités	13
E. II-6. Existence de Limites	13
F. Exercice	14
G. Exercice	14
III - III. Suites Remarquables	15
A. III-1. Suite Arithmétique	15
B. III- 2. Suite Géométrique	16
C. Exercice : Déterminer la limite des suites suivante	17
D. Exercice	17
E. Exercice	17
F. Exercice	17
G. Exercice	18
Ressources annexes	19

Solution des exercices	21
Bibliographie	23
Webographie	25

Objectifs

À la fin de cette leçon, vous serez capable de:

- définir une suite de nombres ;
- connaître les conditions de convergence et la limite d'une suite
- manipuler les suites arithmétiques et géométriques.

I. Généralités

I-1. Définition d'une suite	7
II-2. Suite majorée, minorée, bornée	7
II-3. Monotonie	8
Exercice	9

A. I-1. Définition d'une suite

Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème terme ou terme général de la

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(un)_{n>n0}$.

- $(\sqrt{n})_{n\geq 0}$, est la suite de termes : $0,1,\sqrt{2}$, $\sqrt{3}$,... (-1)n, est la suite qui alterne +1, -1, +1, -1,...

Définition : Suite Extraite

Soit une suite $(u_n)_{n\in\mathbb{N}}$. On appelle **suite extraite** de u_n toute suite $(u_{\sigma(n)})_{n\in\mathbb{N}}$, où σ est une application strictement croissante de N dans N.

- u_{2n} et u_{2n+1} sont des suites extraites de u_n
- u_{n^2} est une suite extraite de u_n

B. II-2. Suite majorée, minorée, bornée

Définition

- Soit $(u_n)_{n\in\mathbb{N}}$ une suite:

 $(u_n)_{n\in\mathbb{N}}$ est **majorée** si $\exists M\!\in\!\mathbb{R}\,, \forall\,n\!\in\!\mathbb{N}\,, u_n\!\leq\!M\,.$ $(u_n)_{n\in\mathbb{N}}$ est **minorée** si $\exists\,m\!\in\!\mathbb{R}\,, \forall\,n\!\in\!\mathbb{N}\,, u_n\!\geq\!m\,.$ $(u_n)_{n\in\mathbb{N}}$ est **bornée** si elles est majorée et minorée c'est a dire $\exists\,M\!\in\!\mathbb{R}\,, \forall\,n\!\in\!\mathbb{N}\,, |u_n|\!\leq\!M\,.$

C. II-3. Monotonie

- Définition

 Soit $(u_n)_{n\in\mathbb{N}}$ une suite:

 $(u_n)_{n\in\mathbb{N}}$ est croissante si $\forall n\in\mathbb{N}, u_{n+1}\geq u_n$.

 $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}, u_{n+1}>u_n$.

 $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}, u_{n+1}\leq u_n$.

 $(u_n)_{n\in\mathbb{N}}$ strictement décroissante si $\forall n\in\mathbb{N}, u_{n+1}< u_n$.

 $(u_n)_{n\in\mathbb{N}}$ est monotone si elle est croissante ou décroissante.
 - $_{n\in\mathbb{N}}$ est **strictement monotone** si elle est strictement croissante ou strictement décroissante.

- Remarque $(u_n)_{n\in\mathbb{N}} \text{ est croissante si et seulement si } \forall n\in\mathbb{N}, u_{n+1}-u_n\geq 0.$ Si est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n\in\mathbb{N}, \frac{u_{n+1}}{u_n}\geq 1$.

- La suite (u_n) définie par u_n=(-1)n/n pour n>1, n'est ni croissante ni décroissante. Elle est majorée par 1/2 et minorée par -1.
 La suite (1/n) est strictement décroissante. Elle est majorée par 1 (borne atteinte pour n = 1), elle est minorée par 0 mais cette valeur n'est jamais

D. Exercice

- 1. La suite $\left(\frac{n}{(n+1)}\right)_{n\in\mathbb{N}}$ est-elle monotone ? Est-elle bornée ?
- 2. La suite $\left(\frac{(n\sin{(n\,!)})}{(1+n^2)}\right)_{n\in\mathbb{N}}$ est elle bornée?
- 3. Réécrire les phrases suivantes en une phrase mathématique.
- (a) $(u_n)_{n\in\mathbb{N}}$ est majorée par 7.
- (b) $(u_n)_{n\in\mathbb{N}}$ est constante.
- (c) $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang.
- (d) $(u_n)_{n\in\mathbb{N}}$ n'est pas strictement croissante.
- 4. Est-il vrai qu'une suite croissante est minorée ? Majorée ?
- 5. Soit x > 0 un réel, montrer que la suite $\left(\frac{x^n}{(n!)}\right)_{n\in\mathbb{N}}$ est décroissante à partir d'un certain rang

II. Limites

II-1. Limite finie, Limite infinie	11
II-3. Propriétés des limites	12
II-4. Formes indéterminées	13
II-5. Limite et inégalités	13
II-6. Existence de Limites	13
Exercice	14
Evercice	1/

A. II-1. Limite finie, Limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

DéfinitionLa suite $(u_n)_{n\in\mathbb{N}}$ a pour **limite** un réel / si : pour tout $\varepsilon > 0$, il existe un entier naturel N tel que n > N alors $|u_n - l| < \varepsilon$.

 $\forall \epsilon \geq 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq N \Rightarrow |u_n - l| \leq \epsilon).$

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers \mathbb{I} . Autrement dit u_n est proche d'aussi près que l'on veut de / a partir d'un certain rang.

Une suite $(u_n)_{n\in\mathbb{N}}$ est **convergente** si elle admet une limite **finie**. Elle est **divergente** sinon (c'est-à-dire soit la suite tend vers $+\infty$ ou $-\infty$, soit elle n'admet

pas de limite).

On parlera de la limite, si elle existe, car il y a unicité de la limite :

Proposition 1.

Si une suite est convergente, sa limite est unique.

B. II-3. Propriétés des limites

Proposition 2.

Toute suite convergente est bornée.

Remarque

La réciproque est fausse. Exemple de la suite (-1)n qui est bornée mais non convergente car égale a 1 si n pair et -1 si n impair

Proposition 3.

Si u_n est convergente, toute suite extraite de un converge et tend vers la même limite.

Méthode

La contraposée de cette proposition permet de montrer qu'une suite diverge : il suffit pour cela d'en extraire deux suites qui convergent vers deux limites différentes. (illustration par la remarque précédente).

Proposition 4. (Opérations sur les limites)

```
Soient (u_n)_{n\in\mathbb{N}} et (v_n)_{n\in\mathbb{N}} deux suites convergentes.

1. Si \lim_{n\to+\infty} u_n = \ell, où \ell\in\mathbb{R}, alors pour \lambda\in\mathbb{R} on a \lim_{n\to+\infty} \lambda u_n = \lambda \ell.

2. Si \lim_{n\to+\infty} u_n = \ell et \lim_{n\to+\infty} v_n = \ell', où \ell,\ell'\in\mathbb{R}, alors \lim_{n\to+\infty} (u_n+v_n) = \ell+\ell'
\lim_{n\to+\infty} (u_n\times v_n) = \ell\times \ell'
3. Si \lim_{n\to+\infty} u_n = \ell où \ell\in\mathbb{R}^*=\mathbb{R}\setminus\{0\} alors u_n\neq 0 pour n assez grand et \lim_{n\to+\infty} \frac{1}{u_n} = \frac{1}{\ell}.
```

Proposition 5. (Opérations sur les limites infinies)

```
Soient (u_n)_{n\in\mathbb{N}} et (v_n)_{n\in\mathbb{N}} deux suites telles que \lim_{n\to+\infty}v_n=+\infty.

1. \lim_{n\to+\infty}\frac{1}{v_n}=0

2. Si (u_n)_{n\in\mathbb{N}} est minorée alors \lim_{n\to+\infty}(u_n+v_n)=+\infty.

3. Si (u_n)_{n\in\mathbb{N}} est minorée par un nombre \lambda>0 alors \lim_{n\to+\infty}(u_n\times v_n)=+\infty.

4. Si \lim_{n\to+\infty}u_n=0 et u_n>0 pour n assez grand alors \lim_{n\to+\infty}\frac{1}{u_n}=+\infty.
```


Exemple

la suite \sqrt{n} tend vers $+\infty$ donc la suite $(1/\sqrt{n})$ tend vers 0.

Proposition 6.

Si la suite u_n est bornée et $\lim_{n\to +\infty} v_n = 0$ alors $\lim_{n\to +\infty} (u_n \times v_n) = 0$.

Exemple

Si $u_n = \cos(n)$ et $v_n = (1/\sqrt{n})$ alors $\lim_{n \to +\infty} (u_n \times v_n) = 0$.

II. Limites

C. II-4. Formes indéterminées

Dans certaines situations, on ne peut rien dire à priori sur la limite d'une suite, il faut faire une étude au cas par cas.

Exemple

D. II-5. Limite et inégalités

Proposition 7.

Exemple

Montrer en utilisant le théorème de Gendarme la limite de la suite $u_n = (\cos x)/n$ pour tout n non nul.

Correction: gendarme exple.png (cf. gendarme exple p 19)

E. II-6. Existence de Limites

Proposition 8.

- Toute suite croissante et majorée est convergente
- Toute suite décroissante et minorée est convergente

Définition : Suites adjacentes

On dit que deux suites réelles u_n et v_n sont **adjacentes** si l'une est croissante, l'autre décroissante et si $\lim_{n\to+\infty} (u_n - v_n) = 0$.

Proposition 9.

Deux suites réelles adjacentes sont convergentes et ont la même limite.

Complément: Limites utiles

Soit a un reel > 1 et n un entier ≥ 1

$$\lim_{n\to\infty}\frac{a^n}{n^k}=+\infty \cdot \lim_{n\to\infty}\frac{n!}{a^n}=+\infty \cdot \lim_{n\to\infty}\frac{n^n}{n!}=+\infty .$$

F. Exercice

[Solution n°1 p 21]

	Soie	nt u_n et v_n deux suites réelles et a un réel. Quelles sont les asse	rtions vraies ?
		si ($ u_n $) converge vers 0, alors (u_n) converge vers 0.	
		si ($ u_n $) converge vers a , alors (u_n) converge vers a ou $-a$.	
		si (u_n) converge vers a , alors (u_n) converge vers $ a $.	
		si (u_n) est a termes strictement positif, alors a est strictement	positif.
		si (v_n) converge vers 0, alors $(u_n v_n)$ converge vers 0.	
G.	Ex	ercice	
	Soit	(un) une suite réelle. Les énoncés suivants sont-ils exacts ?	[Solution n°2 p 21]
		Si (un) converge, alors elle est monotone	
	Ш	Si (u _n) converge, alors elle est monotone Si (u _n) diverge, alors elle est monotone	

III. Suites Remarquables

III-1. Suite Arithmétique	15
III- 2. Suite Géométrique	16
Exercice : Déterminer la limite des suites suivante	17
Exercice	18

A. III-1. Suite Arithmétique

Définition

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **arithmétique** s'il existe un réel r appelé **raison** de la suite tel :

pour tout $n \in \mathbb{N}$, $\mathbf{u}_{n+1} = \mathbf{u}_n + \mathbf{r}$.

Remarque

- u_n est constante si r=0.
- Elle est strictement croissante si r > 0 et strictement décroissante si r < 0.
- Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$, et plus généralement : pour tout entier (p,q), $u_n = u_p + (n-p)r$.
- Réciproquement, si le terme général d'une suite s'écrit $u_n = a + nb$, alors $(u_n)_{n \in \mathbb{N}}$ est une suite arithmétique de premier terme $u_0 = a$ et de raison b.

Proposition 10.

La suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique \Leftrightarrow Pour tout $n\in\mathbb{N}$, $u_n+u_{n+2}=2u_{n+1}$. (prouvez en appliquant la définition)

Définition

On dit que trois réels a, b, c sont en **progression arithmétique** s'ils sont des termes successifs d'une suite arithmétique : cela équivaut a dire que a + c = 2b.

Proposition 11.

La somme des n premiers termes d'une suite arithmétique u_n de raison r est :

$$S_n = \sum_{k=0}^{n-1} u_k = nu_0 + \frac{n(n-1)}{2} r = \frac{n}{2} (u_0 + u_{n-1})$$

Plus généralement, la somme de n termes successifs est :

$$S_n = \sum_{k=m}^{m+n-1} u_k = \frac{n}{2} (u_m + u_{m+n-1})$$

Exemple
$$S_9 = 2 + 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 = 9/2 (2+26) = 126.$$

B. III- 2. Suite Géométrique

pour tout $n \in \mathbb{N}$, $\mathbf{u}_{n+1} = \mathbf{q} \ \mathbf{u}_n$

Remarque

 u_n est constante si q = 1

si q > 0, la suite garde un signe constant et est monotone.

Plus précisément :

- si $u_0 > 0$ et q > 1, $u_n > 0$ et strictement croissante.
- si $u_0 > 0$ et 0 < q < 1, $u_n > 0$ et strictement décroissante.
- si $u_0 < 0$ et q > 1, $u_n < 0$ et strictement croissante.
- si $u_0 < 0$ et 0 < q < 1, $u_n < 0$ et strictement décroissante.

Proposition 12.

La somme des n premiers termes d'une suite géométrique u_n de raison q est :

Siq
$$\neq$$
 1, $S_n = \sum_{k=0}^{n-1} u_k = u_0 \sum_{k=0}^{n-1} q^k = u_0 \frac{1-q^n}{1-q}$

Plus généralement, si $q \neq 1$, la somme de n termes successifs est :

$$S_n = \sum_{k=m}^{m+n-1} u_k = u_m \frac{1-q^n}{1-q}$$

Montrer que la limite de (1 + 2 + 22 + ... + 2n)/2n est 1.

Proposition 13.

Soit u_n une suite géométrique de raison q et de premier terme $u_0 \neq 0$.

1) Si |q| < 1, $\lim_{n \to +\infty} u_n = 0$.

III. Suites Remarquables

2) Si
$$|q| > 1$$
, $\lim_{n \to +\infty} u_n = +\infty$.

3) Si q = 1,
$$\lim_{n\to +\infty} u_n = u_0$$
.

4) Si
$$q = -1$$
, u_n n'a pas de limite.

C. Exercice : Déterminer la limite des suites suivante

[Solution n°3 p 21]

Exercice

$$u_n = 1 + 1/2n$$

D. Exercice

$$u_n = (n - (-1)n) / (n + (-1)n)$$

[Solution n°4 p 22]

E. Exercice

$$u_n = (3n - 2n)/(3n + 2n)$$

[Solution n°5 p 22]

F. Exercice

[Solution n°6 p 22]

$$u_n = \sqrt{n^2 + n} - \sqrt{n}$$

G. Exercice

On considère une suite (u_n) définie sur \mathbb{N} par : $u_0 = 6$; $u_{n+1} = \frac{1}{3}u_n + 2$;

On pose $v_n = u_n - 3$.

- 1) a) Montrer que la suite v_n est une suite géométrique dont on déterminera la raison et le premier terme v_0 .
- b) Exprimer v_n puis un en fonction de n.
- c) En déduire les limites de v_n et u_n .
- 2) Pour tout entier n , on pose $S_n = v_0 + v_1 + ... + v_n$. Déterminer limite de S_n .

°

Ressources annexes

- gendarme exple

Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{\cos x}{n}, \ \forall n\in\mathbb{N}^*.$ On a $-1\leq\cos x\leq 1$ d'où $-\frac{1}{n}\leq u_n\leq \frac{1}{n}, \ \forall n\in\mathbb{N}^*.$ Comme $\lim_{n\to+\infty}\left(-\frac{1}{n}\right)=\lim_{n\to+\infty}\frac{1}{n}=0,$ on a finalement $\lim_{n\to+\infty}u_n=0.$

Solution des exercices

> Solution	n°1 (exercice p. 14)
~	si ($ u_n $) converge vers 0, alors (u_n) converge vers 0.
	si ($ u_n $) converge vers a , alors (u_n) converge vers a ou - a . (-1) n contredit
	si (u_n) converge vers a , alors (u_n) converge vers $ a $. continuite de la valeur absolue
	si (un) est a termes strictement positif, alors a est strictement positif. 1/n converge vers 0 bien que tous ses terme soient strictement positifs
	si (v_n) converge vers 0, alors (u_nv_n) converge vers 0.
> Solution	n°2 (exercice p. 14)
	Si (u_n) converge, alors elle est monotone contre exemple $(-1)n/n$
	Si (u _n) diverge, alors elle est monotone exemple (-1)n
	Si (u _n) diverge, alors elle est non bornée exemple (-1)n
	Si (un) est croissante et majorée, alors elle converge.
> Solution	n°3 (exercice p. 17)
Exerc	rice
1	
> Solution	n°4 (exercice n 17)

1

> Solution n°5 (exercice p. 17)

1

> Solution n°6 (exercice p. 17)

+∞

Bibliographie

[04] François Liret, Maths en pratique à l'usage des étudiants Cours et exercices, Dunod, 2006

[04] Wieslawa J. Kaczor, Maria T. Nowak, PROBLÈMES D'ANALYSE I, Exercices et corrigés, EDP Sciences, 2008.

Webographie

[04] http://www.discmath.ulg.ac.be/