Crittografia e Sicurezza

A.A. 2006/2007

Giacomo Verticale

Esercizi di Crittografia e Sicurezza

Esercitazioni del corso di *Crittografia e Sicurezza* tenuto dal prof. Maurizio Decina.

Giacomo Verticale giacomo.verticale@polimi.it www.elet.polimi.it/upload/vertical/

1

Aritmetica modulare

1.1 GCD e algoritmo di Euclide

Esercizio 1.1 *Calcolare d* = gcd(360, 294) *in due modi:*

- 1. fattorizzando ciascuno dei numeri e poi fattorizzando d;
- 2. usando l'algoritmo di Euclide.

Soluzione Osserviamo che

$$360 = 6^2 \times 10 = 5 \times 3^2 \times 2^3$$

 $294 = 2 \times 3 \times 7^2$

Il gcd è il prodotto dei fattori comuni, ciascuno preso con l'esponente minore. Quindi

$$d = 3 \times 2 = 6$$

Definiamo:

$$r_0 = \max(a, b)$$

$$r_1 = \min(a, b)$$

Il nostro scopo è scrivere una sequenza di espressioni del tipo:

$$r_0 = q_1 r_1 + r_2$$

$$\cdots$$

$$r_{j-2} = q_{j-1} r_{j-1} + r_j$$

$$\cdots$$

Dove j è l'indice della espressione, r_j e q_j sono numeri interi. L'algoritmo è inizializzato con:

$$r_0 \leftarrow a$$

$$r_1 \leftarrow b$$

$$j \leftarrow 0$$

L'algoritmo termina quando $r_j = 0$ e si ha $d = \gcd(a, b) = r_{j-1}$.

Quindi $d = \gcd(360, 294) = 6$.

Esercizio 1.2 Trovare $d = \gcd(841,294)$ ed esprimere d come combinazione lineare dei due numeri.

Soluzione L'algoritmo di Euclide esteso permette di trovare i coefficienti s e t tali per cui:

$$gcd(a, b) = r_0 s + r_1 t$$

 con
 $r_0 = max(a, b)$
 $r_1 = min(a, b)$

Si definiscono le seguenti ricorrenze:

$$s_{j} = \begin{cases} 1 & \text{se } j = 0 \\ 0 & \text{se } j = 1 \\ s_{j-2} - q_{j-1}s_{j-1} & \text{se } j \ge 2 \end{cases}$$

e

$$t_{j} = \begin{cases} 0 & \text{se } j = 0 \\ 1 & \text{se } j = 1 \\ s_{j-2} - q_{j-1}s_{j-1} & \text{se } j \ge 2 \end{cases}$$

Per come sono definiti s_j e t_j , vale sempre la seguente relazione:

$$r_j = r_0 s_j + r_1 t_j$$

Quindi i valori s,t che permettono di esprimere il gcd come combinazione lineare dei due numeri sono i coefficienti s_j,t_j ottenuti in corrispondenza di $r_j = \gcd(a,b)$, ovvero dell'ultimo resto non nullo.

La tabella mostra tutti i passaggi dell'algoritmo mettendo in evidenza r_j , q_j e il calcolo dell'espressione $r_j = r_0s_j + r_1t_j$.

j	r_j	$ q_j $		s_j	t_{j}	$r_0s_j + r_1t_j$
0	841	_		1	0	841
1	294	2	_	0	1	294
2	253	1	$841 = 2 \cdot 294 + 253$	1	-2	253
3	41	6	$294 = 1 \cdot 253 + 41$	-1	3	41
4	7	5	$253 = 6 \cdot 41 + 7$	7	-20	7
5	6	1	$41 = 5 \cdot 7 + 6$	-36	103	6
6	1	6	$7 = 1 \cdot 6 + 1$	43	-123	1
7	0	_	$6 = 6 \cdot 1 + 0$	-294	841	0

Poiché l'ultimo resto non nullo si ottiene per j=6, i due numeri sono primi tra loro e i coefficienti cercati sono s=43 e t=-123.

Normalmente non scriveremo tutte le colonne della tabella (che contengono molte ripetizioni), ma semplicemente le espressioni $r_{j-2} = q_{j-1}r_{j-1} + r_j$ e le colonne s_i e t_i .

	s_j	t_j
_	1	0
_	0	1
$841 = 2 \cdot 294 + 253$	1	-2
$294 = 1 \cdot 253 + 41$	-1	3
$253 = 6 \cdot 41 + 7$	7	-20
$41 = 5 \cdot 7 + 6$	-36	103
$7 = 1 \cdot 6 + 1$	43	-123
$6 = 6 \cdot 1 + 0$	-294	841

1.2 Algoritmo di Euclide con polinomi

Esercizio 1.3 Si consideri lo spazio dei polinomi f(x) con coefficienti reali in cui il coefficiente di grado massimo è unitario. Due polinomi f(x) e g(x) si dicono primi fra loro se $\gcd(f(x),g(x))=1$.

Trovare $d(x) = \gcd(x^4 + x^2 + 1, x^2 + 1)$ e trovare i polinomi s(x) e t(x) tali per cui d(x) = s(x) f(x) + t(x) g(x).

Soluzione

$$\begin{array}{c|ccccc} & & & s_{j}(x) & t_{j}(x) \\ \hline - & & 1 & 0 \\ - & & 0 & 1 \\ x^{4} + x^{2} + 1 & = x^{2} \cdot (x^{2} + 1) + 1 & 1 & -x^{2} \\ x^{2} + 1 & = (x^{2} + 1) \cdot 1 + 0 & -(x^{2} + 1) & x^{4} + x^{2} + 1 \end{array}$$

$$d(x) = 1$$
$$s(x) = 1$$
$$t(x) = -x^{2}$$

Infatti $1 = 1 \cdot (x^4 + x^2 + 1) - x^2 \cdot (x^2 + 1)$.

Esercizio 1.4 Calcolare $d(x) = \gcd(x^4 - 4x^3 + 6x^2 - 4x + 1, x^3 - x^2 + x - 1)$.

Soluzione

L'ultimo resto non nullo è 2x - 2 = 2(x - 1). Prendiamo come gcd il polinomio monico x - 1.

$$d(x) = x - 1$$

$$u(x) = -\frac{1}{4}x + \frac{1}{4}$$

$$v(x) = \frac{1}{4}x^2 - x + \frac{5}{4}$$

Esercizio 1.5 Se un polinomio f(x) ha radici multiple, esse sono radici di gcd(f(x), f'(x)). Trovare la radice multipla del polinomio $x^2 - 2x^3 - x^2 + 2x + 1$.

Soluzione

$$f'(x) = 4x^3 - 6x^2 - 2x + 2$$

$$x^{4} - 2x^{3} - x^{2} + 2x + 1 = \left(\frac{1}{4}x - \frac{1}{8}\right)\left(4x^{3} - 6x^{2} - 2x + 2\right) + \left(-\frac{5}{4}x^{2} + \frac{5}{4}x + \frac{5}{4}\right)$$
$$4x^{3} - 6x^{2} - 2x + 2 = \left(-\frac{16}{5}x + \frac{8}{5}\right)\left(-\frac{5}{4}x^{2} + \frac{5}{4}x + \frac{5}{4}\right) + 0$$

Quindi la radice multipla è $x^2 - x - 1$. Infatti

$$x^4 - 2x^3 - x^2 + 2x + 1 = (x^2 - x - 1)^2$$

1.3 Teorema cinese del resto

Esercizio 1.6 Trovare le soluzioni della seguente congruenza:

$$3x \equiv 4 \pmod{7}$$

Soluzione Si consideri che

$$3^{-1} \cdot 3x \equiv 3^{-1} \cdot 4 \pmod{7}$$

Usando l'algoritmo di Euclide possiamo ricavare che

$$3 \cdot 5 = 15 = 7 \cdot 2 + 1 \equiv 1 \pmod{7}$$

Quindi l'inverso di 3 è 5. Possiamo scrivere:

$$5 \cdot 3x \equiv 5 \cdot 4 \pmod{7}$$

 $x \equiv 20 \mod 7 \equiv 6 \pmod{7}$

La soluzione è quindi:

$$x = 6 + 7k$$
, $\forall k \in \mathbb{Z}$

Esercizio 1.7 *Trovare le soluzioni del seguente sistema di congruenze:*

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{11} \\ x \equiv 5 \pmod{16} \end{cases}$$

Soluzione Il teorema cinese del resto garantisce che la soluzione esiste se $m_i = \{3,5,11,16\}$ sono primi tra loro a coppie. È facile verificare che 3, 5 e 11 sono primi e che $16 = 2^4$, quindi non esistono fattori in comune.

Si definiscono quindi:

$$a_{i} = \{2, 3, 4, 5\}$$

$$m_{i} = \{3, 5, 11, 16\}$$

$$M = \prod_{i=1}^{4} m_{i} = 3 \cdot 5 \cdot 11 \cdot 16 = 2640$$

$$z_{i} = \frac{M}{m_{i}}$$

$$y_{i} = z_{i}^{-1} \pmod{m_{i}}$$

$$x = \sum_{i=1}^{4} a_{i} y_{i} z_{i} \mod M$$

Nel caso in esame:

Quindi:

$$x = 2 \cdot 1 \cdot 880 + 3 \cdot 2 \cdot 528 + 4 \cdot 5 \cdot 240 + 5 \cdot 13 \cdot 165 \equiv 1973 \pmod{2640}$$

1.4 Residui quadratici

Esercizio 1.8 *Calcolare* $(\frac{91}{167})$.

Soluzione Osserviamo che 167 è primo, quindi si può usare la definizione di simbolo di Legendre:

$$\left(\frac{a}{p}\right) = \begin{cases} +1 & \text{se } a \text{ è un quadrato} \pmod{p} \\ -1 & \text{altrimenti} \end{cases}$$

Inoltre 167 \equiv 3 (mod 4), quindi a è un quadrato mod p se e solo se:

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

Nel nostro caso dobbiamo calcolare ($91^{83} \mod 167$). Per svolgere il calcolo usiamo l'algoritmo Square-and-Multiply.

Quindi

$$91^{83} \equiv 166 \equiv -1 \pmod{167}$$

allora 91 non è un quadrato e il simbolo di Legendre vale -1:

$$\left(\frac{91}{167}\right) = -1$$

Esercizio 1.9 Calcolare $(\frac{91}{167})$ usando la legge di reciprocità quadratica.

Soluzione Osserviamo che $91 = 7 \times 13$, quindi:

$$\left(\frac{91}{167}\right) = \left(\frac{7}{167}\right) \left(\frac{13}{167}\right)$$

La legge di reciprocità dice che:

$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{se } m \equiv n \equiv 3 \pmod{4} \\ \left(\frac{n}{m}\right) & \text{altrimenti} \end{cases}$$

Nel nostro caso:

$$167 \mod 4 = 3$$
 $7 \mod 4 = 3$
 $13 \mod 4 = 1$

Quindi:

$$\left(\frac{91}{167}\right) = -\left(\frac{167}{7}\right)\left(\frac{167}{13}\right)$$

Applichiamo la proprietà per cui, se $a \equiv b \pmod{p}$ e gcd(a, p) = 1:

$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

e otteniamo

$$\left(\frac{91}{167}\right) = -\left(\frac{6}{7}\right)\left(\frac{11}{13}\right)$$

Osserviamo che $6 \equiv -1 \pmod{7}$, quindi:

$$\left(\frac{6}{7}\right) = \left(\frac{-1}{7}\right) = (-1)^{(7-1)/2} = (-1)^3 = -1$$

Osserviamo che $11 \equiv -2 \pmod{13}$ e che $13 \equiv 5 \pmod{8}$, quindi:

$$\left(\frac{11}{13}\right) = \left(\frac{-1}{13}\right) \left(\frac{2}{13}\right) = (-1)^{(13-1)/2} \cdot (-1) = -1$$

Quindi il risultato è:

$$\left(\frac{91}{167}\right) = -(-1)(-1) = -1$$

Esercizio 1.10 Valutare il simbolo di Legendre $(\frac{1801}{8191})$ fattorizzando solo i numeri pari.

Soluzione Calcoliamo innanzitutto gcd(1801, 8191).

j	r_j	
0	8191	_
1	1801	_
2	987	$8191 = 4 \cdot 1801 + 987$
3	814	$1801 = 1 \cdot 987 + 814$
4	173	$987 = 1 \cdot 814 + 173$
5	122	$814 = 4 \cdot 173 + 122$
6	51	$173 = 1 \cdot 122 + 51$
7	20	$122 = 2 \cdot 51 + 20$
8	11	$51 = 2 \cdot 20 + 11$
9	9	$20 = 1 \cdot 11 + 9$
10	2	$11 = 1 \cdot 9 + 2$
11	1	$9 = 4 \cdot 2 + 1$
12	0	$2 = 2 \cdot 1 + 1$

Osserviamo che:

$$1801 \mod 4 = 1$$
 $8191 \mod 4 = 3$
 $8191 \mod 1801 = 987$
 $\gcd(8191, 1801) = 1$

Applicando la legge di reciprocità:

$$\left(\frac{1801}{8191}\right) = \left(\frac{8191}{1801}\right) = \left(\frac{987}{1801}\right)$$

Osserviamo ancora che:

$$1801 \mod 4 = 1$$
 $987 \mod 4 = 3$
 $1801 \mod 987 = 814$
 $\gcd(987, 1801) = \gcd(8191 \mod 1801, 1801) = 1$
 $987 \mod 8 = 3$

Quindi:

$$\left(\frac{987}{1801}\right) = \left(\frac{814}{987}\right) = \left(\frac{2}{987}\right)\left(\frac{407}{987}\right) = -\left(\frac{407}{987}\right)$$

Osserviamo ancora che:

$$407 \mod 4 = 3$$
 $987 \mod 4 = 3$
 $987 \mod 407 = 173$
 $\gcd(407,987) = 1$

Quindi:

$$-\left(\frac{407}{987}\right) = \left(\frac{173}{407}\right)$$

Osserviamo ancora che:

$$407 \mod 4 = 3$$
 $173 \mod 4 = 1$
 $987 \mod 407 = 61$
 $\gcd(407, 173) = 1$

Quindi:

$$\left(\frac{173}{407}\right) = \left(\frac{61}{173}\right)$$

Osserviamo ancora che:

$$61 \mod 4 = 1$$
 $173 \mod 4 = 1$
 $173 \mod 61 = 51$
 $\gcd(61, 173) = 1$

Quindi:

$$\left(\frac{61}{173}\right) = \left(\frac{51}{61}\right)$$

Osserviamo ancora che:

$$61 \mod 4 = 1$$
 $51 \mod 4 = 3$
 $61 \mod 51 = 10$
 $\gcd(61,51) = 1$
 $51 \mod 8 = 3$

Quindi:

$$\left(\frac{51}{61}\right) = \left(\frac{2}{51}\right)\left(\frac{5}{51}\right) = -\left(\frac{5}{51}\right)$$

Osserviamo ancora che:

$$5 \mod 4 = 1$$
 $51 \mod 4 = 3$
 $51 \mod 5 = 1$
 $\gcd(5,51) = 1$

Quindi:

$$-\left(\frac{5}{51}\right) = -\left(\frac{1}{5}\right) = -1$$

Esercizio 1.11 (Cifrario di Hill su \mathbb{Z}_4) Il messaggio binario in chiaro P = 011000110100 viene cifrato usando un cifrario di Hill su \mathbb{Z}_4 . Il cifrario usa come chiave una matrice K con dimensione 2×2 .

- 1. Dire che condizioni deve rispettare la chiave K.
- 2. Cifrare il messaggio P considerando il caso

$$K = \begin{pmatrix} 0 & 1 \\ 3 & 3 \end{pmatrix}$$

- 3. Decifrare il messaggio ottenuto al passo precedente
- 4. Usando la coppia messaggio in chiaro / messaggio cifrato ottenuta ai punti precedenti, effettuare un attacco di tipo known plaintext e ricavare la chiave K.

Soluzione

1. La chiave *K* deve rispettare le seguenti due condizioni:

$$\begin{cases} \det(K) \neq 0 \\ \gcd(\det(K), 4) = 1 \end{cases}$$

Notare che, per convenzione, la 2 implica la 1.

2. Per prima cosa convertiamo il messaggio binario in elementi di \mathbb{Z}_4 . Poiché gli elementi sono $\{0,1,2,3\}$ la cosa più semplice è convertire ogni coppia di bit in un numero. Pertanto il messaggio diventa:

$$P = \begin{pmatrix} 1 & 2 & 0 & 3 & 1 & 0 \end{pmatrix}$$

La chiave è una matrice 2×2 , quindi il testo in chiaro deve essere diviso in vettori P_i di due elementi:

$$P_1 = (1 \ 2)$$

 $P_2 = (0 \ 3)$
 $P_3 = (1 \ 0)$

Procediamo quindi applicando la formula:

$$C_i = P_i \cdot K \pmod{4}$$

$$C_1 = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \pmod{4}$$
 $C_2 = \begin{pmatrix} 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 9 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix} \pmod{4}$
 $C_3 = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix} \pmod{4}$

Quindi il testo cifrato C risulta:

$$C = (2 \ 3 \ 1 \ 1 \ 0 \ 1)$$

che, espresso in binario, diventa C = 101101010001.

3. Occorre per prima cosa calcolare la matrice inversa della chiave:

$$K^{-1} = \frac{1}{-3} \begin{pmatrix} 3 & -1 \\ -3 & 0 \end{pmatrix} \pmod{4}$$

Occorre trovare l'elemento inverso di -3 in \mathbb{Z}_4 . Ma $-3 \equiv 1 \pmod 4$, e l'inverso di 1 è ancora 1, quindi:

$$K^{-1} = \begin{pmatrix} 3 & 3 \\ 1 & 0 \end{pmatrix} \pmod{4}$$

Calcoliamo il testo in chiaro:

$$P_{1} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 9 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \pmod{4}$$

$$P_{2} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 3 \end{pmatrix} \pmod{4}$$

$$P_{3} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix} \pmod{4}$$

Quindi il testo in chiaro è:

$$P = \begin{pmatrix} 1 & 2 & 0 & 3 & 1 & 0 \end{pmatrix}$$

4. Dobbiamo costruire una equazione del tipo:

$$\begin{pmatrix} P_i \\ P_j \end{pmatrix} K = \begin{pmatrix} C_i \\ C_j \end{pmatrix}$$

dove le righe P_i , C_i e P_j , C_j sono due coppie testo in chiaro / testo cifrato di lunghezza due.

Risolvendo rispetto alla matrice delle incognite otterremo la chiave. Per risolvere l'equazione la matrice del testo in chiaro deve essere invertibile; dovremo tenere presente questo fatto nello scegliere le righe della matrice.

Fortunatamente la matrice costruita usando P_1 e P_2 va bene, infatti:

$$\det\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = 3$$

che non è né nullo né multiplo di 2.

Quindi possiamo scrivere:

$$K = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$$
$$= 3 \begin{pmatrix} 4 & 7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & 3 \end{pmatrix} \pmod{4}$$

Nella equazione precedente si è posto $1/3 \equiv 3 \pmod{4}$, per calcolare l'inverso di 3 è possibile usare l'algoritmo di Euclide esteso, oppure si può osservare che $3 \cdot 3 = 9 \equiv 1 \pmod{4}$.

1.5 Cifratura con matrici

Esercizio 1.12 Alice e Bob usano una tecnica di cifratura affine basata sull'aritmetica in \mathbb{Z}_{10} . L'algoritmo di cifratura è la espressione:

$$C_i = P_i \cdot K + B \pmod{10}$$

I vettori riga 1×2 C_i e P_I contengono rispettivamente la coppia i-esima di numeri cifrata e in chiaro, mentre la chiave è composta dalla matrice K e dal vettore B.

La chiave condivisa è:

$$K = \begin{pmatrix} 3 & 7 \\ 2 & 7 \end{pmatrix}$$
$$B = \begin{pmatrix} 4 & 9 \end{pmatrix}$$

- 1. Verificare che K sia una chiave valida.
- 2. Cifrare il messaggio:

$$P = (6 \ 7 \ 3 \ 9 \ 3 \ 6)$$

- 3. Decifrare il messaggio cifrato.
- 4. Portare un attacco di tipo known-plaintext e trovare la chiave (K e B).

Soluzione Perché *K* sia valida devono essere rispettate le seguenti condizioni:

$$\begin{cases} \det(K) \neq 0 \\ \gcd(\det(K), 10) = 1 \end{cases}$$

Nel nostro caso abbiamo che det(K) = 7 e le due condizioni sono rispettate. Scomponiamo il messaggio P in 3 vettori riga:

$$P_1 = \begin{pmatrix} 6 & 7 \end{pmatrix}$$

 $P_2 = \begin{pmatrix} 3 & 9 \end{pmatrix}$
 $P_3 = \begin{pmatrix} 3 & 6 \end{pmatrix}$

Calcoliamo i testi cifrati:

$$C_1 = \begin{pmatrix} 6 & 7 \end{pmatrix} \begin{pmatrix} 3 & 7 \\ 2 & 7 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} 6 & 0 \end{pmatrix}$$

 $C_2 = \begin{pmatrix} 3 & 9 \end{pmatrix} \begin{pmatrix} 3 & 7 \\ 2 & 7 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix}$
 $C_3 = \begin{pmatrix} 3 & 6 \end{pmatrix} \begin{pmatrix} 3 & 7 \\ 2 & 7 \end{pmatrix} + \begin{pmatrix} 4 & 9 \end{pmatrix} = \begin{pmatrix} 5 & 2 \end{pmatrix}$

Il testo cifrato è quindi:

$$C = (6 \ 0 \ 1 \ 3 \ 5 \ 2)$$

Per decifrare il messaggio occorre invertire la matrice *K*. L'algoritmo di decifratura è l'espressione:

$$P = CK^{-1} - BK^{-1}$$

$$K^{-1} = \frac{1}{7} \begin{pmatrix} 7 & -7 \\ -2 & 3 \end{pmatrix} \mod 10$$

L'inverso di 7 (mod 10) si può trovare usando l'algoritmo esteso di Euclide:

L'inverso di 7 è 3, infatti:

$$7 \cdot 3 \mod 10 = 21 \mod 10 = 1$$

Quindi:

$$K^{-1} = 3 \begin{pmatrix} 7 & 3 \\ 8 & 3 \end{pmatrix} \mod 10 = \begin{pmatrix} 1 & 9 \\ 4 & 9 \end{pmatrix}$$
$$-BK^{-1} = -\begin{pmatrix} 4 & 9 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ 4 & 9 \end{pmatrix} = \begin{pmatrix} 0 & 3 \end{pmatrix}$$

Calcoliamo i testi in chiaro:

$$P_{1} = \begin{pmatrix} 6 & 0 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 7 \end{pmatrix}$$

$$P_{2} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 9 \end{pmatrix}$$

$$P_{3} = \begin{pmatrix} 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \end{pmatrix}$$

Per scoprire la chiave dato un insieme di coppie P_i , C_i , occorre scrivere un sistema di equazioni:

$$C_1 = P_1 K + B \tag{1.1}$$

$$C_2 = P_2 K + B \tag{1.2}$$

$$C_3 = P_3 K + B \tag{1.3}$$

Sottraendo la (1.3) alla (1.2) e alla (1.1), si ottiene una nuova equazione in cui la costante B non è presente e da cui si può ricavare la matrice K:

$$\begin{pmatrix} C_1 - C_3 \\ C_2 - C_3 \end{pmatrix} = \begin{pmatrix} P_1 - P_3 \\ P_2 - P_3 \end{pmatrix} K \tag{1.4}$$

$$K = \begin{pmatrix} P_1 - P_3 \\ P_2 - P_3 \end{pmatrix}^{-1} \begin{pmatrix} C_1 - C_3 \\ C_2 - C_3 \end{pmatrix}$$
 (1.5)

$$K = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -2 \\ -4 & 1 \end{pmatrix} \tag{1.6}$$

Perché l'attacco abbia successo è necessario che la matrice dei testi in chiaro sia invertibile. Poiché:

$$\det\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix} = 9$$

la matrice è invertibile e non ci sono fattori comuni con 10, pertanto l'inversa è unica:

$$K = \frac{1}{9} \begin{pmatrix} 3 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -4 & 1 \end{pmatrix} = 9 \begin{pmatrix} 7 & -7 \\ -12 & 3 \end{pmatrix} = \begin{pmatrix} 63 & -63 \\ -108 & 27 \end{pmatrix}$$

$$K \equiv \begin{pmatrix} 3 & 7 \\ 2 & 7 \end{pmatrix} \pmod{10}$$

Da notare che $9^{-1} \equiv 9 \pmod{10} = 9$, infatti $9 \cdot 9 \pmod{10} = 1$.

Trovato *K* si può usare la (1.1) per trovare *B*:

$$B = C_1 - P_1 K = \begin{pmatrix} 6 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 \end{pmatrix}$$

 $B \equiv \begin{pmatrix} 4 & 9 \end{pmatrix} \pmod{10}$

Esercizio 1.13 *Calcolare x tale che* $x^2 \equiv 76 \pmod{167}$.

Soluzione Prima di tutto verifichiamo se l'equazione ha soluzione. Siccome 167 è primo, 76 è un quadrato se

$$76^{\frac{167-1}{2}} = 76^{83} \equiv 1 \pmod{167}$$

Per verificare che $76^{83} \mod 167 = 1$ si può usare l'algoritmo Square-and-Multiply:

Siccome $167 \equiv 3 \pmod{4}$, si può usare la formula veloce per estrarre le radici:

$$x = \pm 76^{\frac{167+1}{4}} \mod 167 = \pm 76^{42} \mod 167$$

Anche qui possiamo usare l'algoritmo SQUARE-AND-MULTIPLY:

Come è facile verificare, $x = \pm 57$.

Esercizio 1.14 *Calcolare x tale che x*² $\equiv 100 \pmod{231}$.

Soluzione Poiché $231 = 3 \times 7 \times 11$, il problema si riconduce a trovare la soluzione del sistema:

$$x^{2} \equiv 100 \equiv 1 \pmod{3}$$

$$x^{2} \equiv 100 \equiv 2 \pmod{7}$$

$$x^{2} \equiv 100 \equiv 1 \pmod{11}$$

Per verificare che la soluzione esista, calcoliamo i numeri di Legendre:

$$\left(\frac{1}{3}\right) = 1$$

$$\left(\frac{2}{7}\right) = 2^{\frac{7-1}{2}} \mod 7 = 1$$

$$\left(\frac{2}{7}\right) = 1$$

Quindi la soluzione esiste. Osservando poi che $3 \equiv 7 \equiv 11 \pmod 4$, si può usare la formula per calcolare velocemente le radici:

$$x \equiv \pm 1 \pmod{3}$$

$$x \equiv \pm 2^{\frac{7+1}{4}} \equiv 4 \pmod{7}$$

$$x \equiv \pm 1 \pmod{11}$$

Il teorema del resto cinese ci permette di trovare la *x* cercata. Definiamo:

$$z_1 = 231/3 = 77$$
 $y_1 \equiv 77^{-1} \equiv 2^{-1} \equiv 2 \pmod{3}$
 $z_2 = 231/7 = 33$ $y_2 \equiv 33^{-1} \equiv 5^{-1} \equiv 3 \pmod{7}$
 $z_3 = 231/11 = 21$ $y_3 \equiv 21^{-1} \equiv 10^{-1} \equiv 10 \pmod{11}$

Per trovare gli inversi possiamo osservare che $z_1 \equiv -1 \pmod 3$ e $z_3 \equiv -1 \pmod {11}$, quindi y_1 e y_3 sono gli inversi di se stessi. Per y_2 usare l'algoritmo di Euclide esteso:

Combinando le soluzioni negli $2^3 = 8$ casi otteniamo le 8 radici:

$$x \equiv 1 \cdot 77 \cdot 2 + 4 \cdot 33 \cdot 3 + 1 \cdot 21 \cdot 10 \equiv 67 \pmod{231}$$

$$x \equiv -1 \cdot 77 \cdot 2 + 4 \cdot 33 \cdot 3 + 1 \cdot 21 \cdot 10 \equiv 221 \pmod{231}$$

$$x \equiv 1 \cdot 77 \cdot 2 - 4 \cdot 33 \cdot 3 + 1 \cdot 21 \cdot 10 \equiv 199 \pmod{231}$$

$$x \equiv -1 \cdot 77 \cdot 2 - 4 \cdot 33 \cdot 3 + 1 \cdot 21 \cdot 10 \equiv 122 \pmod{231}$$

$$x \equiv 1 \cdot 77 \cdot 2 + 4 \cdot 33 \cdot 3 - 1 \cdot 21 \cdot 10 \equiv 109 \pmod{231}$$

$$x \equiv -1 \cdot 77 \cdot 2 + 4 \cdot 33 \cdot 3 - 1 \cdot 21 \cdot 10 \equiv 32 \pmod{231}$$

$$x \equiv 1 \cdot 77 \cdot 2 - 4 \cdot 33 \cdot 3 - 1 \cdot 21 \cdot 10 \equiv 10 \pmod{231}$$

$$x \equiv -1 \cdot 77 \cdot 2 - 4 \cdot 33 \cdot 3 - 1 \cdot 21 \cdot 10 \equiv 16 \pmod{231}$$

1.6 Crittosistema di Rabin

Esercizio 1.15 (Crittosistema di Rabin) Si consideri un testo composto dalle sole 26 lettere maiuscole codificate con numeri interi progressivi. Si consideri 'A' = 65, 'B' = 66 e così via fino a 'Z' = 90.

Alice e Bob comunicano usando un crittosistema di Rabin. La chiave pubblica di Alice è

$$m = p \cdot q = 209$$

La chiave privata (ovvero la coppia p, q) è tenuta segreta.

Bob cifra, lettera per lettera, il seguente messaggio: "WADE" e lo invia ad Alice. Eve, che conosce le prime due lettere del messaggio in chiaro ma ignora le ultime due, ottiene una copia del messaggio cifrato.

- 1. Cifrare il messaggio
- 2. Spiegare come può Eve ricavare la chiave privata di Alice.
- 3. Decifrare la parte restante del messaggio.

Soluzione

1. Il messaggio in chiaro *P* è la sequenza:

$$P = (87 \ 65 \ 68 \ 69)$$

Il messaggio cifrato M si ottiene elevando al quadrato modulo m.

$$C_i = P_i^2 \bmod 209$$

$$C = (45 \ 45 \ 26 \ 163)$$

2. Ricordiamo che ad ogni M_i corrispondono 4 possibili P_i . Supponiamo che le quattro radici di M_i siano $\pm r$ e $\pm s$, allora $\gcd(r+s,pq)$ sarà uguale a p oppure a q. Nel caso in esame notiamo che i numeri 87 e 65 vengono entrambi cifrati con 45. Calcoliamo quindi il massimo comune denominatore:

$$gcd(87 + 65, 209) = gcd(152, 209) = 19.$$

Per cui i due fattori di m sono q = 19 e p = 209/19 = 11.

3. Per decifrare sfruttiamo il Teorema Cinese del Resto. Partiamo da $M_3 = 26$. Dobbiamo prima risolvere le equazioni modulo p e q. Definiamo $m_1 = p$ e $m_2 = q$. Dopodiché risolviamo il sistema di equazioni:

$$a_i^2 = 26 \mod m_i$$

$$\begin{cases} a_1^2 = 26 \mod 11 = 4 \\ a_2^2 = 26 \mod 19 = 7 \end{cases}$$

Usando le regole per risolvere i quadrati modulo $k \text{ con } k \equiv 3 \pmod{4}$ otteniamo:

$$\begin{cases} a_1 = 4^{\frac{11+1}{4}} \mod 11 = 4^3 \mod 11 = 9 \\ a_2 = 7^{\frac{19+1}{4}} \mod 19 = 7^5 \mod 19 = 11 \end{cases}$$

Si verifica facilmente che le radici cercate esistono e coincidono con i valori trovati. Ora bisogna combinare tra loro le soluzioni. L'algoritmo prevede che si calcoli:

$$z_i = 209/m_i$$

$$y_i = z_i^{-1} \mod m_i$$

$$x = \sum_i (\pm a_i) y_i z_i \mod 209$$

Calcoliamo:

$$z_1 = 19$$
$$z_2 = 11$$

$$y_1 = 19^{-1} \mod 11$$

 $y_2 = 11^{-1} \mod 19$

Per trovare y_1 e y_2 possiamo usare il teorema di euclide esteso oppure il teorema di Fermat. Risulta:

$$y_1 = 7 \mod 11 = 7$$

 $y_2 = 7 \mod 19 = 7$

$$x = \begin{cases} 9 \cdot 19 \cdot 7 + 11 \cdot 11 \cdot 7 \mod 209 &= 163 \\ 9 \cdot 19 \cdot 7 - 11 \cdot 11 \cdot 7 \mod 209 &= 141 \\ -9 \cdot 19 \cdot 7 + 11 \cdot 11 \cdot 7 \mod 209 &= 68 \\ -9 \cdot 19 \cdot 7 - 11 \cdot 11 \cdot 7 \mod 209 &= 46 \end{cases}$$

Delle quattro soluzioni ottenute teniamo solo x=68= 'D' perché le altre soluzioni non corrispondono a lettere del nostro alfabeto.

Per $M_4 = 163$ procediamo allo stesso modo, ottenendo x = 69 = 'E'.

Campi finiti

2.1 Anelli di Polinomi

2.1.1 Algoritmo di Euclide

Esercizio 2.1 Siano $f(x) = x^4 + x^3 + x^2 + 1$ e $g(x) = x^3 + 1$ polinomi con coefficienti in \mathbb{Z}_2 . Trovare $d(x) = \gcd(f(x), g(x))$ ed esprimelo come combinazione lineare di $f \in g$.

Solutione

Per effettuare le divisioni tra polinomi ricordiamo che si applica la lunga divisione e che siamo in algebra modulo 2 (quindi 1 + 1 = 0).

Il gcd è d(x) = x + 1 e può essere scritto come:

$$x + 1 = (x + 1)(x^4 + x^3 + x^2 + 1) + x^2(x^3 + 1)$$

Esercizio 2.2 *Trovare il fattore multiplo in* $f(x) = x^4 - x^2 + 1 \in \mathbb{Z}_3[x]$.

Soluzione Se un fattore è multiplo, è presente sia in f(x) che in f'(x), pertanto comparirà nel gcd(f, f').

Nel caso in esame $f'(x) = 4x^3 - 2x = x^3 + x$.

$$\begin{array}{c|cccc}
 r(x) & q(x) \\
\hline
 x^4 - x^2 + 1 & -- \\
 x^3 + x & x \\
 x^2 + 1 & x \\
 0 & -- \\
 & \cdots
\end{array}$$

Quindi $gcd(f, f') = x^2 + 1$.

2.2 Cifrari

Esercizio 2.3 (S-box AES semplificato) Un S-box opera come segue:

- i 4 bit in ingresso $(b_0b_1b_2b_3)$ sono convertiti in un polinomio N(x) di grado 3 con coefficienti in \mathbb{Z}_2 ;
- il polinomio N(x) viene considerato un elemento di $GF(16) = \mathbb{Z}_2[x]/(x^4 + x + 1)$ e invertito, ottenendo l'elemento $N^{-1}(x)$; l'inverso di 0 è convenzionalmente posto a 0;
- i coefficienti di $N^{-1}(x)$ sono usati per formare un nuovo polinomio $N(y) \in \mathbb{Z}_2[y]/(y^4+1)$;
- l'output del S-box sono i coefficienti del polinomio M(y) costruito come segue:

$$M(y) = N(y) \cdot a(y) + b(y) \bmod (y^4 + 1)$$
 (2.1)

con

$$a(y) = y^3 + y^2 + 1 (2.2)$$

$$b(y) = y^3 + 1 (2.3)$$

(2.4)

- 1. Dati i bit in ingresso 1000, calcolare l'output del S-box.
- 2. Verificare che $\mathbb{Z}_2[y]/(y^4+1)$ non forma un campo.
- 3. Verificare che a(y) è invertibile in $\mathbb{Z}_2[y]/(y^4+1)$ e trovare $a^{-1}(y)$.
- 4. Trovare lo S-box inverso a quello dato.
- 5. Decifrare la sequenza di bit 1000.

Soluzione La sequenza di bit 1000 corrisponde al polinomio $N(x) = x^3$. Occorre trovare l'inverso di $x^3 \pmod{x^4 + x + 1}$. Usiamo l'algoritmo di Euclide per i polinomi e otteniamo:

Quindi $N^{-1}(x) = x^3 + x^2 + x + 1$. Tenendo presente che $x^4 = x + 1$ verifichiamo che $N(x)N^{-1}(x) = 1$:

$$(x^{3} + x^{2} + x + 1)x^{3} = (x^{3} + x^{2} + x + 1)xxx$$
$$(x^{3} + x^{2} + x + 1)x = x^{4} + x^{3} + x^{2} + x = x^{3} + x^{2} + 1$$
$$(x^{3} + x^{2} + 1)x = x^{4} + x^{3} + x = x^{3} + 1$$
$$(x^{3} + 1)x = x^{4} + x = 1$$

Definiamo il polinomio $N(y) = y^3 + y^2 + y + 1$ e calcoliamo M(y):

$$M(y) = (y^3 + y^2 + y + 1)(y^3 + y^2 + 1) + (y^3 + 1) \mod (y^4 + 1) =$$

$$= (y^6 + y^3 + y + 1) + (y^3 + 1) \mod (y^4 + 1) =$$

$$= y^6 + y \mod (y^4 + 1) =$$

$$= y^2 + y$$

L'output del S-box è 0110.

Il polinomio y^4+1 è riducibile, infatti $y^4+1=(y+1)^4$. Quindi $\mathbb{Z}_2[y]/(y^4+1)$ non forma un campo.

Il polinomio a(y) è invertibile $\pmod{y^4+1}$ se $\gcd(a(y), y^4+1) = 1$. Al solito procediamo con l'algoritmo di Euclide

Come è facile verificare, $a^{-1}(y) = y^2 + y + 1$.

Noto M(y), lo S-box inverso è composto dai seguenti passi.

• Si calcola

$$N(y) = M(y)a^{-1}(y) + a^{-1}(y)b(y) \mod (y^4 + 1) =$$

= $M(y)(y^2 + y + 1) + (y^3 + y^2) \mod (y^4 + 1)$

- A partire da N(y) si costruisce il polinomio $N^{-1}(x) \in GF(16)$.
- Si calcola l'inverso N(x).

La sequenza 1000 corrisponde al polinomio $M(y) = y^3$. Il polinomio N(y) vale:

$$N(y) = y^{3}(y^{2} + y + 1) + (y^{3} + y^{2}) \mod (y^{4} + 1) =$$

$$= y^{5} + y^{4} + y^{2} \mod (y^{4} + 1) =$$

$$= y + 1 + y^{2} = y^{2} + y + 1$$

Il polinomio da invertire in GF(16) è $N^{-1}(x)x^2 + x + 1$ che ha come inverso $(x^2 + x)$. Infatti:

$$(x^2 + x + 1)(x^2 + x) = x^4 + x^3 + x^2 + x^3 + x^2 + x = x^4 + x \pmod{x^4 + x + 1}$$

= $(x + 1) + x = 1$

Esercizio 2.4 Mostrare che $r(x) = x^2 + 1 \in \mathbb{Z}_3[x]$ è irriducibile. Trovare l'inverso moltiplicativo di $(2x + 1) \mod r(x)$.

Soluzione Se r(x) fosse riducibile, sarebbe divisibile per un polinomio d(x) di grado inferiore (grado uno). I polinomi di grado 1 sono:

$$x$$

$$x + 1$$

$$x + 2$$

$$2x = 2 \cdot x$$

$$2x + 1 = 2(x + 2)$$

$$2x + 2 = 2(x + 1)$$

Non considerando i polinomi che sono uguali a meno di una costante moltiplicativa, restano tra polinomi: x, x + 1, x + 2:

$$x^2 + 1 = x \cdot x + 1 \tag{2.5}$$

$$x^{2} + 1 = (x+2)(x+1) + 2 (2.6)$$

(2.7)

Quindi $(x^2 + 1)$ non è riducibile.

Per calcolare $(2x+1)^{-1}$ usiamo l'algoritmo di Euclide:

Per comodità si riporta la divisione $\frac{x^2+1}{2x+1}$. Nello svolgimento ricordiamo sempre che $x^2=-1=2$.

$$\begin{array}{c|ccccc}
x^2 & +1 & -x+1 \\
x^2 & -x & & -x-1 \\
\hline
& x & +1 \\
& x & -1 \\
\hline
& 2 & & \\
\end{array}$$

Quindi possiamo scrivere che

$$(2x+1)(x+1) \mod (x^2+1) = 2$$

e l'inverso di 2x + 1 sarà $(-x - 1) \equiv (2x + 2)$.

Alternativamente potevamo calcolare l'inverso come $(2x+1)^{9-2}$ mod (x^2+1) usando Square-and-Multiply.

Esercizio 2.5 (Cifrario di Hill su GF(4)) Il messaggio binario in chiaro P = 011000110100 viene cifrato usando un cifrario di Hill su GF(4). Come usale, gli elementi del campo sono la classe dei resti modulo $r(x) = x^2 + x + 1$. Il cifrario usa come chiave una matrice K con dimensione 2×2 .

- 1. Dire che condizioni deve rispettare la chiave K.
- 2. Cifrare il messaggio P considerando il caso

$$K = \begin{pmatrix} 0 & 1 \\ x+1 & x+1 \end{pmatrix}$$

- 3. Decifrare il messaggio ottenuto al passo precedente
- 4. Usando la coppia messaggio in chiaro / messaggio cifrato ottenuta ai punti precedenti, effettuare un attacco di tipo known plaintext e ricavare la chiave K.

Soluzione

1. La chiave *K* deve rispettare le seguenti condizioni:

$$\begin{cases} \det(K) \neq 0 \\ \gcd(\det(K), x^2 + x + 1) = 1 \end{cases}$$

Notare che, poiché operiamo in un campo, la seconda è sempre vera per qualunque *K* che rispetti la 1.

2. Per prima cosa convertiamo il messaggio binario in elementi di GF(4). Poiché gli elementi sono $\{0,1,x,x+1\}$ la cosa più semplice è convertire ogni coppia di bit in un polinomio. Pertanto il messaggio diventa:

$$P = \begin{pmatrix} 1 & x & 0 & x+1 & 1 & 0 \end{pmatrix}$$

La chiave è una matrice 2×2 , quindi il testo in chiaro deve essere diviso in vettori P_i di due elementi:

$$P_1 = (1 \ x)$$

 $P_2 = (0 \ x+1)$
 $P_3 = (1 \ 0)$

Procediamo quindi applicando la formula:

$$C_i = P_i \cdot M \pmod{4} \tag{2.8}$$

$$C_{1} = (1 \ x) \begin{pmatrix} 0 & 1 \\ x+1 & x+1 \end{pmatrix} = (x^{2}+x \ x^{2}+x+1)$$

$$= (1 \ 0) \ (\text{mod } x^{2}+x+1)$$

$$C_{2} = (0 \ x+1) \begin{pmatrix} 0 & 1 \\ x+1 & x+1 \end{pmatrix} = (x^{2}+2x+1 \ x^{2}+2x+1)$$

$$= (x \ x) \ (\text{mod } x^{2}+x+1)$$

$$C_{3} = (1 \ 0) \begin{pmatrix} 0 & 1 \\ x+1 & x+1 \end{pmatrix} = (0 \ 1) \ (\text{mod } x^{2}+x+1)$$

Quindi il testo cifrato C risulta:

$$C = \begin{pmatrix} 1 & 0 & x & x & 0 & 1 \end{pmatrix}$$

che, espresso in binario, diventa C = 010010100001.

3. Occorre per prima cosa calcolare la matrice inversa della chiave:

$$K^{-1} = \frac{1}{-(x+1)} \begin{pmatrix} x+1 & -1 \\ -(x+1) & 0 \end{pmatrix} = x \begin{pmatrix} x+1 & 1 \\ x+1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 1 & 0 \end{pmatrix} \pmod{x^2 + x + 1}$$

Nel fare questo calcolo si consideri che $\frac{1}{x+1} \equiv x$, infatti $x(x+1) = x^2 + x = x + 1 + 1 = x$.

Calcoliamo il testo in chiaro:

$$P_{1} = (1 \ 0) \begin{pmatrix} 1 \ x \\ 1 \ 0 \end{pmatrix} = (1 \ x) \pmod{x^{2} + x + 1}$$

$$P_{2} = (x \ x) \begin{pmatrix} 1 \ x \\ 1 \ 0 \end{pmatrix} = (2x \ x^{2}) = (0 \ x + 1) \pmod{x^{2} + x + 1}$$

$$P_{3} = (0 \ 1) \begin{pmatrix} 1 \ x \\ 1 \ 0 \end{pmatrix} = (1 \ 0) \pmod{x^{2} + x + 1}$$

Quindi il testo in chiaro è:

$$P = \begin{pmatrix} 1 & x & 0 & x+1 & 1 & 0 \end{pmatrix}$$

4. Dobbiamo costruire una equazione del tipo:

$$\begin{pmatrix} P_i \\ P_j \end{pmatrix} K = \begin{pmatrix} C_i \\ C_j \end{pmatrix}$$

dove le righe P_i , C_i e P_j , C_j sono due coppie testo in chiaro / testo cifrato di lunghezza due.

Risolvendo rispetto alla matrice delle incognite otterremo la chiave. Per risolvere l'equazione la matrice del testo in chiaro deve essere invertibile; dovremo tenere presente questo fatto nello scegliere le righe della matrice.

Fortunatamente la matrice costruita usando P_1 e P_2 va bene, infatti:

$$\det\begin{pmatrix} 1 & x \\ 0 & x+1 \end{pmatrix} = x+1$$

che non è nullo.

Quindi possiamo scrivere:

$$K = \begin{pmatrix} 1 & x \\ 0 & x+1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix} = \frac{1}{x+1} \begin{pmatrix} x+1 & -x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix}$$
$$= x \begin{pmatrix} x+1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix} = \begin{pmatrix} x+1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix}$$
$$= \begin{pmatrix} 1 & x+1 \\ 0 & x \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ x & x+1 \end{pmatrix} = \begin{pmatrix} x^2+x+1 & x^2+x \\ x^2 & x^2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ x+1 & x+1 \end{pmatrix} \pmod{x^2+x+1}$$