```
import xgboost as xgb
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import root mean squared error
from bayes_opt import BayesianOptimization
#df = pd.read_csv('../data/sample submission.csv')
df = pd.read_csv('../data/data.csv', sep=';', encoding='latin1')
print(df)
₹
                     Category
              Ιd
                                Manufacturer
                                                 Model Prod. year Gear box type \
            2680
                         Jeep
                                     HYUNDAI
                                                    H1
                                                              2014
                                                                       Automatic
            5960
                        Sedan
                                  MITSUBISHI
                                                Mirage
                                                              2002
                                                                       Automatic
                         Jeep
    2
            2185
                                     HYUNDAI
                                              Santa FE
                                                              2014
                                                                       Automatic
            15905
                               MERCEDES-BENZ
                                                              1992
                        Sedan
                                                 E 260
                                                                          Manual
    4
            15337
                                       HONDA
                                                   FIT
                                                              2015
                    Universal
                                                                       Automatic
             . . .
                                         . . .
                                                   . . .
                                                              . . .
    . . .
    16346
           19198
                         Jeep
                                      TOYOTA
                                                 RAV 4
                                                              2015
                                                                       Automatic
    16347
            3583
                        Sedan
                                      TOYOTA
                                                 Prius
                                                              2009
                                                                       Automatic
            18497
                                   SSANGYONG
                                                REXTON
                                                              2015
                                                                       Automatic
    16348
                         Jeep
    16349
            4565
                  Goods wagon
                                        OPEL
                                                 Combo
                                                              2011
                                                                          Manual
    16350 11586
                        Sedan
                                        FORD
                                                Fusion
                                                              2013
                                                                       Automatic
           Leather interior Fuel type Engine volume Drive wheels Cylinders \
    0
                              Diesel
                                               2.5
                                                          Front
    1
                        No
                              Petrol
                                               1.8
                                                          Front
    2
                       Yes
                              Diesel
                                                 2
                                                          Front
    3
                        No
                                 CNG
                                               2.6
                                                           Rear
                       Yes
                              Hybrid
                                                                         4
    4
                                               1.5
                                                          Front
    . . .
                       . . .
                                                            . . .
                                                                       . . .
                              Petrol
    16346
                       Yes
                                               2.5
                                                            4x4
                                                                         4
    16347
                       Yes
                              Hybrid
                                               1.5
                                                                         4
                                                          Front
    16348
                       Yes
                              Diesel
                                                          Front
    16349
                        No
                              Diesel
                                         1.3 Turbo
                                                          Front
                                                                         4
    16350
                       Yes
                              Hybrid
                                                          Front
             Mileage Doors Airbags
                                          Wheel
                                                 Color Sales Fee price
    0
            74210 km
                                  4 Left wheel
                                                 Silver
                                                              777 22433
            160000 km
                                  2 Left wheel
                                                                   7500
                         4
                                                  White
    2
            51106 km
                                  4 Left wheel
                                                  White
                                                              639 27284
    3
                0 km
                                  4 Left wheel
                                                  Beige
                                                                   3450
            35624 km
                                  4 Left wheel
                                                  Black
                                                              308 26644
    4
    . . .
                                                              . . .
                                                   Grey
                                                              934 28225
    16346
           149019 km
                                  0 Left wheel
    16347
           142426 km
                                 12 Left wheel
                                                  White
                                                              746
                                                                   1882
    16348
           123303 km
                         4
                                  4 Left wheel
                                                  Black
                                                              765 36219
    16349
            95000 km
                         4
                                  4 Left wheel
                                                  White
                                                              490
                                                                   9408
```

640

1646

0 Left wheel

[16351 rows x 18 columns]

16350 174619 km

DATOS FALTANTES

```
# verificar datos faltantes
for col in df.columns.to list():
 calc = (df[col].isna().sum()/df.shape[0])*100
 print(f'{col} missing Values: {calc}%')
→ Id missing Values: 0.0%
    Category missing Values: 0.0%
     Manufacturer missing Values: 0.0%
     Model missing Values: 0.0%
     Prod. year missing Values: 0.0%
     Gear box type missing Values: 0.0%
     Leather interior missing Values: 0.0%
    Fuel type missing Values: 0.0%
     Engine volume missing Values: 0.0%
    Drive wheels missing Values: 0.0%
     Cylinders missing Values: 0.0%
    Mileage missing Values: 0.0%
     Doors missing Values: 0.0%
    Airbags missing Values: 0.0%
     Wheel missing Values: 0.0%
     Color missing Values: 0.0%
     Sales Fee missing Values: 0.0%
     price missing Values: 0.0%
```

VARIABLES CATEGÓRICAS

ENCODING

```
def label_encoding(dataset, column_name):
    label_encoder = LabelEncoder()
    dataset[column_name] = label_encoder.fit_transform(dataset[column_name])
    return dataset, label_encoder
def frequency encoding(dataset, col):
    freq = dataset[col].value_counts(normalize=True)
    dataset[col] = dataset[col].map(freq)
    return dataset, freq
df2 = df
def to zero(n):
 if n == '-': return 0
 return n
```

```
def mileage_km(n):
 return n.replace(' km', '')
def turbo(n):
 if 'Turbo' in n: return 1
 return 0
def engine_volume(n):
 return n.replace(' Turbo', '')
def doors(n):
 if n == '>5': return 6
 return n
df2['Turbo'] = df2['Engine volume'].map(turbo)
df2['Sales Fee'] = df2['Sales Fee'].map(to_zero)
df2['Mileage'] = df2['Mileage'].map(mileage_km)
df2['Engine volume'] = df2['Engine volume'].map(engine_volume)
df2['Doors'] = df2['Doors'].map(doors)
df2.head(20)
```

16/11/24, 21:11 12.ipynb - Colab

_	_	_
۰		_
-	7	~
	_	_

•	Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
0	2680	Jeep	HYUNDAI	H1	2014	Automatic	Yes	Diesel	2.5	Front	4	74210	4	4	Left wheel	Silver	777	22433	0
1	5960	Sedan	MITSUBISHI	Mirage	2002	Automatic	No	Petrol	1.8	Front	4	160000	4	2	Left wheel	White	0	7500	0
2	2185	Jeep	HYUNDAI	Santa FE	2014	Automatic	Yes	Diesel	2	Front	4	51106	4	4	Left wheel	White	639	27284	0
3	15905	Sedan	MERCEDES-BENZ	E 260	1992	Manual	No	CNG	2.6	Rear	6	0	4	4	Left wheel	Beige	0	3450	0
4	15337	Universal	HONDA	FIT	2015	Automatic	Yes	Hybrid	1.5	Front	4	35624	4	4	Left wheel	Black	308	26644	0
5	13792	Hatchback	HONDA	FIT	2014	Automatic	Yes	Petrol	1.5	Front	4	78000	4	4	Left wheel	White	501	25638	0
6	12015	Microbus	FORD	Transit	2007	Manual	No	Diesel	2.4	Rear	4	165000	4	2	Left wheel	Blue	0	17249	0
7	307	Sedan	TOYOTA	Camry	2015	Automatic	Yes	Hybrid	2.5	Front	4	35000	4	10	Left wheel	Grey	456	39201	0
8	1054	Sedan	TOYOTA	Camry	2012	Automatic	Yes	Hybrid	2.5	Front	4	156518	4	12	Left wheel	White	781	3607	0
9	7945	Sedan	HYUNDAI	Elantra	2012	Automatic	Yes	Petrol	1.6	Front	4	165294	4	4	Left wheel	Silver	531	16308	0
10	15234	Minivan	MERCEDES-BENZ	Vito	2007	Tiptronic	Yes	Diesel	3.0	Rear	6	250000	4	4	Left wheel	Black	0	30640	1
11	2277	Jeep	LEXUS	RX 450	2010	Automatic	Yes	Hybrid	3.5	4x4	6	167222	4	12	Left wheel	Black	1399	5018	0
12	1660	Sedan	HYUNDAI	Sonata	2016	Automatic	Yes	LPG	2	Front	4	287140	4	4	Left wheel	White	891	18817	0
13	15966	Sedan	FORD	F150	2016	Automatic	Yes	Petrol	3.5	Front	4	33543	4	4	Left wheel	White	1493	126322	0
14	11541	Coupe	HYUNDAI	Genesis	2010	Automatic	Yes	Petrol	3.8	Front	4	151977	4	4	Left wheel	Blue	1511	16621	0
15	1579	Jeep	TOYOTA	RAV 4	2010	Variator	Yes	Petrol	2	4x4	4	167300	6	8	Left wheel	Blue	0	23207	0
16	3011	Jeep	HYUNDAI	Tucson	2016	Automatic	Yes	Diesel	2	Front	4	27243	4	4	Left wheel	Grey	891	29633	0
17	4573	Jeep	MERCEDES-BENZ	ML 350	2009	Automatic	Yes	Diesel	3.5	4x4	6	274088	4	12	Left wheel	Black	1624	6272	0
18	6342	Jeep	MERCEDES-BENZ	GL 450	2006	Automatic	Yes	LPG	4.5	4x4	6	181000	4	6	Left wheel	Black	0	21000	1
19	15558	Sedan	HYUNDAI	Sonata	2015	Automatic	Yes	Petrol	2	Front	4	59150	4	4	Left wheel	Grev	765	42692	0

```
df2, freq_category = frequency_encoding(df2, 'Category')
df2, freq_manufacturer = frequency_encoding(df2, 'Manufacturer')
df2, freq_model = frequency_encoding(df2, 'Model')
# Prod. Year
df2, freq_gear_box_type = frequency_encoding(df2, 'Gear box type')
df2, label_leather_interior = label_encoding(df2, 'Leather interior')
df2, freq_fuel_type = frequency_encoding(df2, 'Fuel type')
# Engine volume: quitar el turbo y crear variable aparte
df2, freq_drive_wheels = frequency_encoding(df2, 'Drive wheels')
# Cylinders
df2, freq_mileage = frequency_encoding(df2, 'Mileage') # quitar km
# Doors: cambiar >5 por 4
# Airbags
df2, freq_wheel = frequency_encoding(df2, 'Wheel')
df2, freq_color = frequency_encoding(df2, 'Color')
# Sales Fee: cambiar '-' por '0'
df2.head()
```

16/11/24, 21:11 12.ipynb - Colab

→		Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
	0	2680	0.287567	0.196869	0.022567	2014	0.702832	1	0.211363	2.5	0.670907	4	0.000061	4	4	0.922512	0.195951	777	22433	0
	1	5960	0.453183	0.015106	0.000428	2002	0.702832	0	0.528286	1.8	0.670907	4	0.006483	4	2	0.922512	0.233380	0	7500	0
	2	2185	0.287567	0.196869	0.027521	2014	0.702832	1	0.211363	2	0.670907	4	0.000122	4	4	0.922512	0.233380	639	27284	0
	3 1	15905	0.453183	0.105315	0.000061	1992	0.096875	0	0.024524	2.6	0.118097	6	0.036817	4	4	0.922512	0.006850	0	3450	0
	4 1	15337	0.018592	0.050028	0.022690	2015	0.702832	1	0.185065	1.5	0.670907	4	0.000061	4	4	0.922512	0.261941	308	26644	0

OUTLIERS

```
for col in df2.columns:
   df2[col] = pd.to_numeric(df2[col])
# Tratar con outliers
def cuantificaOutliers(dataset):
 for col in dataset.columns:
   q1, q3 = np.percentile(dataset[col],[25,75])
   iqr = q3-q1
   lower\_bound = q1 - (1.5*iqr)
   upper_bound = q3 + (1.5*iqr)
   outlier = dataset[(dataset[col]<lower_bound)|(dataset[col]>upper_bound)]
   print(col, ' ', outlier.shape[0], ' ', outlier.shape[0]/dataset.shape[0]*100, '%')
cuantificaOutliers(df2)
→ Id 0 0.0 %
    Category 0 0.0 %
    Manufacturer 0 0.0 %
    Model 0 0.0 %
    Prod. year 824 5.039447128615987 %
    Gear box type 0 0.0 %
    Leather interior 0 0.0 %
    Fuel type 0 0.0 %
    Engine volume 1184 7.241147330438505 %
    Drive wheels 0 0.0 %
    Cylinders 4140 25.31955232095896 %
    Mileage 2015 12.323405296312153 %
    Doors 763 4.666381261084949 %
    Airbags 0 0.0 %
    Wheel 1267 7.7487615436364745 %
    Color 0 0.0 %
    Sales Fee 136 0.831753409577396 %
    price 901 5.510366338450248 %
    Turbo 1618 9.89541924041343 %
def Modifica_Outliers (dataset,columna):
 q1, q3 = np.percentile(dataset[columna], [25, 75])
 # Calculate the interquartile range
 iqr = q3 - q1
```

```
# Calculate the lower and upper bounds
 lower_limit = q1 - (1.5 * iqr)
 upper_limit = q3 + (1.5 * iqr)
 dataset[columna] = np.where(dataset[columna]>upper_limit,upper_limit,np.where(dataset[columna]<lower_limit,lower_limit,dataset[columna]))</pre>
 return (dataset)
Modifica_Outliers(df2, 'Engine volume')
Modifica_Outliers(df2,'Prod. year')
Modifica_Outliers(df2,'Mileage')
Modifica_Outliers(df2, 'Sales Fee')
cuantificaOutliers(df2)
→ Id 0 0.0 %
    Category 0 0.0 %
    Manufacturer 0 0.0 %
    Model 0 0.0 %
    Prod. year 0 0.0 %
    Gear box type 0 0.0 %
    Leather interior 0 0.0 %
    Fuel type 0 0.0 %
    Engine volume 0 0.0 %
    Drive wheels 0 0.0 %
    Cylinders 4140 25.31955232095896 %
    Mileage 0 0.0 %
    Doors 763 4.666381261084949 %
    Airbags 0 0.0 %
    Wheel 1267 7.7487615436364745 %
    Color 0 0.0 %
    Sales Fee 0 0.0 %
    price 901 5.510366338450248 %
    Turbo 1618 9.89541924041343 %
```

ANÁLISIS DE CORRELACIÓN

```
# Realizar un análisis de correlación
corr = df2.corr(method='pearson')
mask = np.triu(np.ones_like(corr, dtype=bool))
f, ax = plt.subplots(figsize=(11,9))
cmap = sns.diverging_palette(230, 20, as_cmap=True)

plt.tight_layout()
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={'shrink':0.5}, annot=True)
```

16/11/24, 21:11 12.ipynb - Colab

→ <Axes: >

Id -

- 0.3

- 0.2

- 0.1

- 0.0

- -0.1

- -0.2

- -0.3

-0.4

- -0.5

```
correlations = df2.corr()['price'].abs().sort_values(ascending=False)
print("Correlación con la variable objetivo (Curado):\n", correlations)
→ Correlación con la variable objetivo (Curado):
     price
                         1.000000
    Doors
                        0.032986
                        0.021632
    Category
    Gear box type
                        0.020325
    Turbo
                        0.015388
                        0.013929
    Wheel
    Airbags
                        0.013830
    Model
                        0.012108
    Prod. year
                        0.010756
    Mileage
                        0.010522
    Id
                        0.009915
    Cylinders
                        0.006525
    Sales Fee
                        0.005070
    Engine volume
                        0.005026
    Color
                        0.004539
    Fuel type
                        0.003239
    Manufacturer
                        0.002938
    Leather interior
                        0.000998
    Drive wheels
                        0.000685
    Name: price, dtype: float64
```

VARIABLES

```
df3 = df2
df3 = df3.drop('Model', axis=1)
df3 = df3.drop('Engine volume', axis=1)
df3 = df3.drop('Cylinders', axis=1)
df3 = df3.drop('Sales Fee', axis=1)
df3 = df3.drop('Color', axis=1)
df3 = df3.drop('Mileage', axis=1)
df3 = df3.drop('Fuel type', axis=1)
df3 = df3.drop('Manufacturer', axis=1)
df3 = df3.drop('Leather interior', axis=1)
df3 = df3.drop('Drive wheels', axis=1)
df3.head()
```

₹		Id	Category	Prod. year	Gear box type	Doors	Airbags	Wheel	price	Turbo
	0	2680	0.287567	2014.0	0.702832	4	4	0.922512	22433	0
	1	5960	0.453183	2002.0	0.702832	4	2	0.922512	7500	0
	2	2185	0.287567	2014.0	0.702832	4	4	0.922512	27284	0
	3	15905	0.453183	2000.0	0.096875	4	4	0.922512	3450	0
	4	15337	0.018592	2015.0	0.702832	4	4	0.922512	26644	0

```
df4 = df3
y = df4['price']
```

```
x = df4.drop('price', axis=1)
```

MODELO

16/11/24, 21:11

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=101)
#model = LogisticRegression(max_iter=100)
#model.fit(x_train,y_train)
#yhat = model.predict(x_test)
# Definir función objetivo para la optimización bayesiana
def xgb_evaluate(max_depth, learning_rate, n_estimators, subsample, colsample_bytree):
   params = {
        'objective': 'reg:squarederror',
        'max_depth': int(max_depth),
        'learning rate': learning rate,
        'n_estimators': int(n_estimators),
        'subsample': subsample,
        'colsample_bytree': colsample_bytree,
        'random_state': 42
   model = xgb.XGBRegressor(**params)
   model.fit(x_train, y_train)
   y_val_pred = model.predict(x_test)
   return -root_mean_squared_error(y_test, y_val_pred)
param bounds = {
    'max_depth': (5, 15),
    'learning_rate': (0.001, 0.05),
    'n_estimators': (1000, 4000),
    'subsample': (0.6, 1.0),
    'colsample bytree': (0.4, 0.9)
# Ejecutar optimización bayesiana
optimizer = BayesianOptimization(f=xgb_evaluate, pbounds=param_bounds, random_state=42, verbose=2)
optimizer.maximize(init points=10, n iter=25)
best params = optimizer.max['params']
best_params['max_depth'] = int(best_params['max_depth'])
best_params['n_estimators'] = int(best_params['n_estimators'])
print("Mejores parámetros encontrados:")
print(best params)
               | target | colsam... | learni... | max depth | n esti... | subsample
    | 1
                  -4.115e+0 | 0.5873
                                        0.04759
                                                   12.32
                                                                | 2.796e+03 | 0.6624
     1 2
                  -4.115e+0 | 0.478
                                          0.003846 | 13.66
                                                                | 2.803e+03 | 0.8832
     3
                  -4.115e+0 | 0.4103
                                        0.04853 | 13.32
                                                                | 1.637e+03 | 0.6727
     1 4
                  -4.116e+0 | 0.4917
                                        0.01591 | 10.25
                                                                | 2.296e+03 | 0.7165
     | 5
                  -4.116e+0 | 0.7059
                                        0.007835 | 7.921
                                                                | 2.099e+03 | 0.7824
```

- 1	U	-4.1106+0	0.7520	0.010/0	10.14	2.7776703	0.0100	i
	7	-4.116e+0	0.7038	0.009356	5.651	3.847e+03	0.9863	
	8	-4.116e+0	0.8042	0.01593	5.977	3.053e+03	0.7761	
	9	-4.116e+0	0.461	0.02526	5.344	3.728e+03	0.7035	
	10	-4.116e+0	0.7313	0.01627	10.2	2.64e+03	0.6739	ĺ
	11	-4.116e+0	0.7019	0.01565	9.108	1.653e+03	0.9864	
	12	-4.116e+0	0.6252	0.02128	14.39	2.802e+03	0.9265	ĺ
	13	-4.116e+0	0.692	0.003341	5.358	1.314e+03	0.6933	
	14	-4.116e+0	0.6343	0.04966	14.22	2.295e+03	0.7262	ĺ
	15	-4.116e+0	0.8038	0.009614	8.167	1.807e+03	0.8904	
	16	-4.115e+0	0.6456	0.01353	12.35	2.787e+03	0.9192	
	17	-4.116e+0	0.4377	0.04078	9.667	1.917e+03	0.7195	
	18	-4.115e+0	0.4413	0.04529	10.94	3.249e+03	0.8992	
	19	-4.116e+0	0.7641	0.03371	14.95	2.22e+03	0.8155	ĺ
	20	-4.116e+0	0.4668	0.03713	8.013	1.569e+03	0.6907	
	21	-4.116e+0	0.5357	0.03293	5.622	3.241e+03	0.9837	ĺ
	22	-4.116e+0	0.6564	0.03828	12.29	2.788e+03	0.9329	
	23	-4.116e+0	0.7702	0.002994	11.79	2.787e+03	0.7503	
	24	-4.116e+0	0.6528	0.02607	12.91	1.991e+03	0.969	ĺ
	25	-4.115e+0	0.5131	0.009412	13.37	1.991e+03	0.8316	
	26	-4.115e+0	0.7124	0.03839	8.835	1.57e+03	0.935	ĺ
	27	-4.116e+0	0.6831	0.003556	8.642	1.49e+03	0.662	ĺ
	28	-4.116e+0	0.668	0.04028	13.26	2.648e+03	0.8185	
	29	-4.115e+0	0.669	0.02167	11.27	3.249e+03	0.9827	ĺ
	30	-4.115e+0	0.5156	0.02531	12.79	2.796e+03	0.6687	
	31	-4.115e+0	0.5179	0.03158	13.5	3.556e+03	0.9243	
	32	-4.115e+0	0.5474	0.02377	10.84	3.25e+03	0.8236	ĺ
	33	-4.116e+0	0.8921	0.01937	7.062	3.232e+03	0.8698	ĺ
	34	-4.116e+0	0.6988	0.02791	10.19	3.249e+03	0.993	ĺ
	35	-4.116e+0	0.7132	0.04317	12.9	3.556e+03	0.7553	ĺ

Mejores parámetros encontrados:

{'colsample_bytree': 0.44125072350089034, 'learning_rate': 0.04528657078564977, 'max_depth': 10, 'n_estimators': 3249, 'subsample': 0.8992348442759469}

```
xgb_reg = xgb.XGBRegressor(objective="reg:squarederror", **best_params)
xgb_reg.fit(x_train, y_train)
predictions = xgb_reg.predict(x_test)
```

V EVALUACIÓN

```
#print('Accuracy: ', metrics.accuracy_score(y_test,predictions))
print((root_mean_squared_error(predictions, y_test)))
→ 411458.71370964573
scores = cross_val_score(xgb_reg, x, y, cv=10, scoring='f1_weighted')
print("Scores de cada fold:", scores)
print("Promedio del F1 score:", scores.mean())
🚁 c:\Python312\Lib\site-packages\sklearn\model_selection\_validation.py:1000: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details:
     Traceback (most recent call last):
      File "c:\Python312\Lib\site-packages\sklearn\metrics\_scorer.py", line 139, in __call__
        score = scorer._score(
                ^^^^^
```

```
File "c:\Python312\Lib\site-packages\sklearn\metrics\ scorer.py", line 376, in score
   return self._sign * self._score_func(y_true, y_pred, **scoring_kwargs)
                      ^^^^^
 File "c:\Python312\Lib\site-packages\sklearn\utils\ param validation.py", line 213, in wrapper
   return func(*args, **kwargs)
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 1293, in f1_score
   return fbeta score(
          ^^^^^
 File "c:\Python312\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper
   return func(*args, **kwargs)
  File "c:\Python312\Lib\site-packages\sklearn\metrics\ classification.py", line 1485, in fbeta score
   _, _, f, _ = precision_recall_fscore_support(
                ^^^^^
 File "c:\Python312\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper
   return func(*args, **kwargs)
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 1789, in precision_recall_fscore_support
   labels = check set wise labels(y true, y pred, average, labels, pos label)
            ^^^^^
  File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 1561, in _check_set_wise_labels
   y_type, y_true, y_pred = _check_targets(y_true, y_pred)
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 112, in _check_targets
   raise ValueError(
ValueError: Classification metrics can't handle a mix of multiclass and continuous targets
 warnings.warn(
c:\Python312\Lib\site-packages\sklearn\model selection\ validation.py:1000: UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_scorer.py", line 139, in __call__
   score = scorer._score(
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_scorer.py", line 376, in _score
   return self._sign * self._score_func(y_true, y_pred, **scoring_kwargs)
                      ^^^^^
 File "c:\Python312\Lib\site-packages\sklearn\utils\ param validation.py", line 213, in wrapper
   return func(*args, **kwargs)
  File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 1293, in f1_score
   return fbeta score(
  File "c:\Python312\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper
   return func(*args, **kwargs)
 File "c:\Python312\Lib\site-packages\sklearn\metrics\ classification.py", line 1485, in fbeta score
   _, _, f, _ = precision_recall_fscore_support(
 File "c:\Python312\Lib\site-packages\sklearn\utils\_param_validation.py", line 186, in wrapper
   return func(*args, **kwargs)
 File "c:\Python312\Lib\site-packages\sklearn\metrics\_classification.py", line 1789, in precision_recall_fscore_support
```

OUTPUT FILE

```
df_eval = pd.read_csv('.../data/Evaluation.csv', sep=';', encoding='latin1')
df eval['Turbo'] = df eval['Engine volume'].map(turbo)
df eval['Sales Fee'] = df eval['Sales Fee'].map(to zero)
df_eval['Mileage'] = df_eval['Mileage'].map(mileage_km)
df_eval['Engine volume'] = df_eval['Engine volume'].map(engine_volume)
df eval['Doors'] = df eval['Doors'].map(doors)
df eval['Category'] = df eval['Category'].map(freq category).fillna(0)
df_eval['Manufacturer'] = df_eval['Manufacturer'].map(freq_manufacturer)
df_eval['Model'] = df_eval['Model'].map(freq_model)
df_eval['Gear box type'] = df_eval['Gear box type'].map(freq_gear_box_type)
df_eval['Leather interior'] = label_leather_interior.transform(df_eval['Leather interior'])
df_eval['Fuel type'] = df_eval['Fuel type'].map(freq_fuel_type)
df_eval['Drive wheels'] = df_eval['Drive wheels'].map(freq_drive_wheels)
df_eval['Mileage'] = df_eval['Mileage'].map(freq_mileage)
df_eval['Wheel'] = df_eval['Wheel'].map(freq_wheel)
df_eval['Color'] = df_eval['Color'].map(freq_color)
df_eval = df_eval.drop('Model', axis=1)
df_eval = df_eval.drop('Engine volume', axis=1)
df eval = df eval.drop('Cylinders', axis=1)
df_eval = df_eval.drop('Sales Fee', axis=1)
df eval = df eval.drop('Color', axis=1)
df_eval = df_eval.drop('Mileage', axis=1)
df_eval = df_eval.drop('Fuel type', axis=1)
df_eval = df_eval.drop('Manufacturer', axis=1)
df_eval = df_eval.drop('Leather interior', axis=1)
df_eval = df_eval.drop('Drive wheels', axis=1)
print(df eval)
                                                                      Wheel \
             Id Category Prod. year Gear box type Doors Airbags
          15246 0.453183
                                           0.702832
                                                                 6 0.922512
                                2014
                                                      4
    1
           5176 0.453183
                                 2013
                                           0.702832
                                                      4
                                                                12 0.922512
           3143 0.287567
                                 2009
                                           0.702832
                                                                 4 0.922512
           3360 0.287567
                                 2011
                                           0.096875
                                                      2
                                                                 2 0.922512
           3105 0.027093
                                 2013
                                           0.702832
                                                      4
                                                                12 0.922512
    2881 17665 0.453183
                                2009
                                           0.702832
                                                               12 0.922512
    2882
           6554 0.287567
                                2015
                                           0.702832
                                                      4
                                                                12 0.922512
          18661 0.453183
                                2014
                                           0.702832
                                                                 0 0.077488
    2883
                                                      4
           6825 0.453183
                                 2014
                                                                 4 0.922512
    2884
                                           0.702832
                                                      4
    2885 11266 0.015779
                                1996
                                           0.096875
                                                                 2 0.922512
          Turbo
    0
              0
    1
    2
              0
              0
    3
    4
              0
            . . .
    2881
              0
    2882
              0
    2883
              0
```

```
2884
             0
    2885
             0
    [2006 -----1
for col in df_eval.columns:
   if col == 'Id':
       continue
   df_eval[col] = pd.to_numeric(df_eval[col])
print(df_eval)
₹
            Id Category Prod. year Gear box type Doors Airbags
                                                                  Wheel \
         15246 0.453183
                              2014
                                        0.702832
                                                    4
                                                            6 0.922512
          5176 0.453183
                              2013
                                        0.702832
                                                            12 0.922512
    1
          3143 0.287567
                                        0.702832
                                                    4
                                                            4 0.922512
                              2009
          3360 0.287567
                                                            2 0.922512
    3
                              2011
                                        0.096875
          3105 0.027093
                              2013
                                        0.702832
                                                            12 0.922512
    . . .
                               . . .
                                           ...
    2881 17665 0.453183
                              2009
                                        0.702832
                                                   4
                                                            12 0.922512
    2882
          6554 0.287567
                              2015
                                        0.702832
                                                    4
                                                            12 0.922512
    2883 18661 0.453183
                              2014
                                        0.702832
                                                            0 0.077488
    2884
          6825 0.453183
                              2014
                                        0.702832
                                                            4 0.922512
    2885 11266 0.015779
                              1996
                                        0.096875
                                                    4
                                                            2 0.922512
          Turbo
    0
    1
    2
             0
    3
             0
```