Measure Theory

Kaizhao Liu

 $\mathrm{May}\ 25,\ 2025$

Contents

1	Real Analysis	ŀ
	1.1	E
	1.2 Differentiation and Integration	

4 CONTENTS

Chapter 1

Real Analysis

1.1

1.2 Differentiation and Integration

For conceptual simplicity, we study \mathbb{R} instead of \mathbb{R}^n in this section. Let us first recall what we learned in elementary calculus.

Theorem 1.2.1 (Newton-Leibniz). Let f be a Riemann integrable function on [a, b].

Definition 1.2.2 (Bounded Variation).

Theorem 1.2.3 (Jordan Decomposition Theorem).

$$f(x) = g(x) - h(x)$$

where g(x) and h(x)

Bounded variable functions says that it has a length

Bounded variable functions are a.e. differentiable But it does not satisfies the desirable property: Length is equal to the integral of derivative, which is also known as the **fundamental theorem of calculus**.

Example 1.2.4.

Definition 1.2.5 (Absolute Continuous).

Theorem 1.2.6. If f is absolute continuous function on [a, b], then

$$f(x) - f(a) = \int_a^x f'(t) dt, \quad x \in [a, b].$$

It is beneficial to compare it with the "classical" version (Theorem 1.2.1).