Exercise 2.9.2 Obtain the geodesic equations (2.87) in three different ways:

- (a) By using the Euler-Lagrange equations (and $[g^{\mu\nu}]$ from Exercise 1.
- (b) By extracting $[g^{\mu\nu}]$ from the line element (2.86), calculating the $\Gamma^{\mu}_{\nu\sigma}$ from $g^{\mu\nu}$ and $g_{\mu\nu}$ using equation (2.13), and then calculating \ddot{x}^{μ} using equation (2.71).
- (c) By substituting for T, X, Y, Z in T = X = Y = Z = 0, using equations (2.85)

Solution. Let K be an inertial (non-rotating) system with coordinates (T,X,Y,Z) and line element

$$c^{2} d\tau^{2} = c^{2} dT^{2} - dX^{2} - dY^{2} - dZ^{2}$$
(2.84)

Denote $X^0 = cT$, $X^1 = X$, $X^2 = Y$, $X^3 = Z$.

Let K' be a rotating system with coordinates (t,x,y,z), defined by

$$t = T$$
 $T = t$
 $x = X \cos \omega t + Y \sin \omega t$ $X = x \cos \omega t - y \sin \omega t$
 $y = X \sin \omega t + Y \cos \omega t$ $Y = x \sin \omega t + y \cos \omega t$ $Z = Z$ (2.85)

Denote $x^0 = ct$, $x^1 = x$, $x^2 = y$, $x^3 = z$, and $\dot{x}^0 = c\dot{t}$, $\dot{x}^1 = \dot{x}$, $\dot{x}^2 = \dot{y}$, $\dot{x}^3 = \dot{z}$, $\ddot{x}^1 = \ddot{x}$, $\ddot{x}^2 = \ddot{y}$, $\ddot{x}^3 = \ddot{z}$, where dot represents differentiation by τ . The spacetime geodesic equations of motion are

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\sigma} \frac{dx^{\sigma}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0 \tag{2.71}$$

We are to show that for a free particle with mass in the rotating frame K', these equations may be expressed as

$$\ddot{t} = 0
 \ddot{x} - \omega^2 x \, \dot{t}^2 - 2 \, \omega \, \dot{y} \, \dot{t} = 0
 \ddot{y} - \omega^2 y \, \dot{t}^2 + 2 \, \omega \, \dot{x} \, \dot{t} = 0
 \ddot{z} = 0$$
(2.87)

Part (a): The Euler-Lagrange equations (2.17) are $\frac{d}{d\tau} \frac{\partial L}{\partial \dot{x}^{\sigma}} - \frac{\partial L}{\partial x^{\sigma}} = 0$ where the Lagrangian is $L = \frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$ and we regard x^{μ} and \dot{x}^{μ} as independent variables. Keep in mind that $g_{\mu\nu}$ is a function of x^{μ} .

First,

$$\dot{x}^0 = c \dot{t} = \frac{c \, dt}{d\tau} \stackrel{\text{(A.6)}}{=} \frac{c}{\gamma}$$
, a constant $\Rightarrow \ddot{x}^0 = c \ddot{t} = 0 \Rightarrow \ddot{t} = 0$

In terms of K'coordinates, the line element was computed in Exercise 2.9.1 as

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = c^{2} d\tau^{2}$$

$$= [c^{2} - \omega^{2}(x^{2} + y^{2})] dt^{2} + 2\omega y dx dt - 2\omega x dy dt - dx^{2} - dy^{2} - dz^{2}.$$
 (2.86)

Dividing by c^2 yields

$$d\tau^2 = \left[1 - \frac{(x^2 + y^2)\omega^2}{c^2}\right] dt^2 + 2\frac{y\omega}{c} dx dt - 2\frac{x\omega}{c} dy dt - dx^2 - dy^2 - dz^2,$$

from which we can extract

$$g_{00} = \frac{c^2 - (x^2 + y^2)\omega^2}{c^2}$$
, $g_{11} = g_{22} = g_{33} = -1$, $g_{01} = g_{10} = \omega y$, $g_{02} = g_{20} = -x \omega$,

and all others are zero.

Thus, the Lagrangian, L, is

$$L = \frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$$

$$= \frac{1}{2} \left\{ \frac{c^{2} - (x^{2} + y^{2}) \omega^{2}}{c^{2}} c^{2} \dot{t}^{2} + 2 y \omega \dot{x} \dot{t} - 2 x \omega \dot{y} \dot{t} - \dot{x}^{2} - \dot{y}^{2} - \dot{z}^{2} \right\}$$

$$= \frac{1}{2} \left[c^{2} - (x^{2} + y^{2}) \omega^{2} \right] \dot{t}^{2} + \omega (y \dot{x} - x \dot{y}) \dot{t} - \frac{1}{2} (\dot{x}^{2} - \dot{y}^{2} - \dot{z}^{2})$$

$$\frac{\partial L}{\partial x^{1}} = \frac{\partial L}{\partial x} = -\omega^{2} x \dot{t}^{2} - \omega \dot{y} \dot{t}$$

$$\frac{\partial L}{\partial x^{2}} = \frac{\partial L}{\partial y} = -\omega^{2} y \dot{t}^{2} + \omega \dot{x} \dot{t}$$

$$\frac{\partial L}{\partial x^{3}} = \frac{\partial L}{\partial z} = 0$$

$$\frac{\partial L}{\partial \dot{x}^{1}} = \frac{\partial L}{\partial \dot{x}} = \omega y \dot{t} - \dot{x}$$

$$\frac{\partial L}{\partial \dot{x}^{2}} = \frac{\partial L}{\partial \dot{y}} = -\omega x \dot{t} - \dot{y}$$

$$\frac{\partial L}{\partial \dot{x}^{3}} = \frac{\partial L}{\partial \dot{z}} = -\dot{z}$$

$$\frac{d}{d\tau} \frac{\partial L}{\partial \dot{x}^{1}} = \omega \dot{y} \dot{t} - \ddot{x}$$

$$\frac{d}{d\tau} \frac{\partial L}{\partial \dot{x}^{2}} = -\omega \dot{x} \dot{t} - \ddot{y}$$

$$\frac{d}{d\tau} \frac{\partial L}{\partial \dot{x}^{3}} = -\ddot{z}$$

and Euler-Lagrange equations $\frac{d}{dx} \left(\frac{\partial L}{\partial \dot{x}^{\sigma}} \right) - \frac{\partial L}{\partial x^{\sigma}} = 0$ become:

(1)
$$0 = \omega \dot{y} \dot{t} - \ddot{x} + \omega^2 x \dot{t}^2 + \omega \dot{y} \dot{t} \Rightarrow \ddot{x} - \omega^2 x \dot{t}^2 - 2 \omega \dot{y} \dot{t} = 0 \checkmark$$

(2)
$$0 = -\omega \dot{x} \dot{t} - \ddot{y} + \omega^2 y \dot{t}^2 - \omega \dot{x} \dot{t} \Rightarrow \ddot{y} - \omega^2 y \dot{t}^2 + 2 \omega \dot{x} \dot{t} = 0 \checkmark$$

(3)
$$0 = -\ddot{z} \checkmark$$

Part (b): In part (a) we found that

$$(g_{\mu\nu}) = \begin{pmatrix} 1 - \frac{(x^2 + y^2)\omega^2}{c^2} & \frac{y\omega}{c} & -\frac{x\omega}{c} & 0\\ \frac{y\omega}{c} & -1 & 0 & 0\\ -\frac{x\omega}{c} & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

The contravariant metric tensors matrix is

$$(g^{\mu\nu}) = (g_{\mu\nu})^{-1} = \begin{pmatrix} 1 & \frac{y\omega}{c} & -\frac{x\omega}{c} & 0\\ \frac{x\omega}{c} & -1 + \frac{y^2\omega^2}{c^2} & -\frac{xy\omega^2}{c^2} & 0\\ -\frac{x\omega}{c} & -\frac{xy\omega^2}{c^2} & -1 + \frac{x^2\omega^2}{c^2} & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

The Christoffel coefficients are computed from the covariant and contravariant metric tensors. There are 64 connection coefficients:

$$\Gamma^{\mu}_{\nu\,\sigma} \ = \ \frac{1}{2} \, g^{\mu\rho} \ (\partial_{\nu} \, g_{\rho\,\sigma} \ + \partial_{\,\sigma} \, g_{\nu\rho} \ - \partial_{\rho} \, g_{\nu\,\sigma} \,) = g^{\mu\delta} \, \Gamma_{\delta\nu\gamma}.$$

Using Mathematica, we find that the only non-zero ones are:

$$\Gamma_{00}^{1} = -\frac{x \omega^{2}}{c^{2}}, \quad \Gamma_{02}^{1} = \Gamma_{20}^{1} = -\frac{\omega}{c},$$

$$\Gamma_{00}^{2} = -\frac{y \omega^{2}}{c^{2}}, \quad \Gamma_{01}^{2} = \Gamma_{01}^{2} = \frac{\omega}{c}.$$

For reference, the non-zero coefficients are computed from $g^{\mu\delta}$ and the non-zero $\Gamma_{\delta\nu\gamma}$ coefficients, as shown below. Take care in the computations for $\Gamma_{\delta\nu\gamma}$ that terms like $\frac{\partial x}{\partial t}$ equal zero because the coordinates are considered to be independent of each other.

μ	δ	$g^{\mu\delta}$
0	0	1
0	δ 0 1 2 3	g ^{μδ} 1 yω/c -xω/c 0
0	2	$-\frac{x \omega}{c}$
0	3	0
1	0	$ \begin{array}{c} c \\ 0 \\ \underline{y \omega} \\ c \end{array} $
μ 0 0 0 1	1	$-1+\frac{y^2\omega^2}{c^2}$
1	2 3 0	$-\frac{x y \omega^2}{c^2}$
1	3	0
2	0	$-\frac{x \omega}{c}$
1 1 2 2 2 2 3 3 3 3	1	$-\frac{xy\omega^2}{c^2}$
2	2 3 0 1 2 3	$-1 + \frac{x^2 \omega^2}{2}$
2	3	0
3	0	0
3	1	0 0 0 0
3	2	0
3	3	-1

δ	V	γ	$\Gamma_{\delta \nu \gamma}$
0	0	1	
0	0	2	$-\frac{x \omega^2}{c^2}$ $-\frac{y \omega^2}{c^2}$ $-\frac{x \omega^2}{c^2}$
0	1	0	$-\frac{x\omega^2}{c^2}$
0	2	0	$-\frac{x \omega^2}{c^2}$ $-\frac{y \omega^2}{c^2}$ $\frac{x \omega^2}{c^2}$ $\frac{\omega}{c}$ c
1	0	0	$\frac{x \omega^2}{c^2}$
1	0	2	<u>a</u> c
1	2	0	<u>3</u> 1 c
2	0	0	$\frac{y \omega^2}{c^2}$ $-\frac{\omega}{c}$ $-\frac{\omega}{c}$
2	0	1	$-\frac{\omega}{c}$
2	1	0	$-\frac{\omega}{c}$

			,
μ	v	γ	$\Gamma^{\mu}_{\nu\gamma}$
1	0	0	$-\frac{x\omega^2}{c^2}$
1	0	2	3 c
1	2	0	$-\frac{a}{c}$
2	0	0	$-\frac{y \omega^2}{c^2}$
2	0	1	<u>3</u> c
2	1	0	31 c

This yields the geodesic equations (2.87): $\ddot{\mathbf{x}} + \Gamma^{\mu}_{\nu\gamma}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\gamma} = 0$ $0 = \ddot{\mathbf{x}}^{0} + \Gamma^{0}_{\nu\sigma}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\sigma} = c\ \dot{t}^{0} + 0 = c\ \dot{t} \Rightarrow 0 = t\ \checkmark$

$$0 = \ddot{x}^{1} + \Gamma_{v\sigma}^{1} \dot{x}^{v} \dot{x}^{\sigma} = \ddot{x}^{1} + \Gamma_{00}^{1} (\dot{x}^{0})^{2} + 2 \Gamma_{02}^{1} \dot{x}^{0} \dot{x}^{2}$$

$$= \ddot{x}^{1} + \Gamma_{00}^{1} c^{2} \dot{t}^{2} + 2 \Gamma_{02}^{1} c \dot{y} \dot{t}$$

$$= \ddot{x} - \left(\frac{x \omega^{2}}{c^{2}}\right) c^{2} \dot{t}^{2} + 2 \left(-\frac{\omega}{c}\right) c \dot{y} \dot{t} = \ddot{x} - \omega^{2} x \dot{t}^{2} - 2 \omega \dot{y} \dot{t}$$

$$0 = \ddot{x}^{2} + \Gamma_{v\sigma}^{2} \dot{x}^{v} \dot{x}^{\sigma} = \ddot{x}^{2} + \Gamma_{00}^{2} (\dot{x}^{0})^{2} + 2 \Gamma_{01}^{2} \dot{x}^{0} \dot{x}^{1}$$

$$= \ddot{x}^{2} + \Gamma_{00}^{2} c^{2} \dot{t}^{2} + 2 \Gamma_{01}^{2} c \dot{x} \dot{t}$$

$$= \ddot{y} - \frac{\omega^{2}}{c^{2}} y c^{2} \dot{t}^{2} + 2 \frac{\omega}{c} c \dot{x} \dot{t} = \ddot{y} - \omega^{2} y \dot{t}^{2} + 2 \omega \dot{t} \dot{x}$$

$$0 = \ddot{x}^{3} + \Gamma_{v\sigma}^{3} \dot{x}^{v} \dot{x}^{\sigma} = \ddot{x}^{3} + 0 = \ddot{z}$$

$$\checkmark$$

Part (c): We can rewrite equation (2.84) by dividing both sides by $d\tau^2$:

$$c^2 \stackrel{(2.84)}{=} c^2 T^2 - X^2 - Y^2 - Z^2$$

$$\Rightarrow 0 = \dot{c}^2 = 2[c^2 T T - X X - Y Y - Z Z]$$

$$\Rightarrow T = X = Y = Z = 0.$$

Thus,
$$t = T = 0$$
 and $z = Z = 0$

From the 2nd equation on RHS of equations (2.85) we get

$$\dot{x} = -\omega x t \sin \omega t - \omega y t \cos \omega t + \dot{x} \cos \omega t - \dot{y} \sin \omega t.$$

Then, keeping in mind that t = 0, we get

$$0 = X = \cos \omega t \, [\ddot{x} - \omega^2 x \, \dot{t}^2 - 2\omega \, \dot{y} \, \dot{t}] - \sin \omega t \, [\ddot{y} - \omega^2 y \, \dot{t}^2 + 2\omega \, \dot{x} \, \dot{t}].$$

Since equations (2.85) hold for all t, this implies

$$\ddot{x} - \omega^2 x \dot{t}^2 - 2\omega \dot{y} \dot{t} = 0$$
 and $\ddot{y} - \omega^2 y \dot{t}^2 + 2\omega \dot{x} \dot{t} = 0$