Riesgo, Incertidumbre y Finanzas Trabajo Práctico 4

19 de julio de 2019

1. Muestre que

$$\operatorname{Cov}\left(r_{p}, r_{q}\right) = \frac{C}{D} \left(E\left(r_{p}\right) - \frac{A}{C} \right) \left(E\left(r_{q}\right) - \frac{A}{C} \right) + \frac{1}{C}$$

donde p y q son dos partafolios de frontera cualesquiera, y A, C, D están definidos como en las notas de clase. Utilizando esta expresión, compute una expresión para $\sigma^2(r_p)$ y muestre la forma que tiene la frontera de portafolios.

- 2. Muestre que para cualquier portafolio p vale que $Cov(r_p, r_{mv}) = Var(r_{mv})$, donde r_{mv} es el retorno del portafolio de minima varianza.
- 3. Sea α_p el vector de pesos de algún portafolio p en la frontera. Llame α_q al portafolio en la frontera de cero covarianza con p. Obtenga una expresión analitica para α_q
- 4. Muestre que el portafolio de cero covarianza con pzc(p) = q es una combinación lineal entre el portafolio p y el de mínima varianza.

$$\alpha_q = \Theta \alpha_p + (1 - \Theta) \alpha_{mv}$$

5. Utilice el código de MATLAB EXAMPLE4a para obtener el portafolio de mercado cuando hay restricciones al shortselling (i.e., no se puede ir short en ningún activo). Compare este portafolio con el obtenido sin restricciones.