- For a closed Riemann surface M, there exists a representation $\rho = \rho_M : \pi_1(M) \to 0$ Isom⁺(\tilde{M}) such that M is isometric to $\Gamma \backslash \tilde{M}$, where $\Gamma = \Gamma_M = \rho(\pi_1(M))$.
- When M has genus > 1, the universal cover \tilde{M} is the hyperbolic plane \mathbb{H} , and Isom⁺(\mathbb{H}) \approx $PSL(2, \mathbb{R}).$

2022-12-13 9:25:55 PM

objective: modularize the argument

- for a subset A of T, let G_A be ∩_{x∈A}G_a where G_a is the isotropy subgroup of G at a.
 for a subgroup H of G, let T^H be the subtree of fixed points of H acting on T.
- Observations:

 - What can be said of G_{T^H} vis-a-vis H? What can be said of T^{G_A} vis-a-vis A? Answer: (1) T^H is connected for any H, so at the very least, this will contain the subtree spanned by A. (2) there exists a [core] geodesic c = c(A) and a radius r = r(A) such that $T^{G_A} = B_r(c) = \bigcup_{x \in c} B_r(x)$.
 - Under what conditions on H, H' will $G_{TH} = G_{TH'}$?