

Baseball IV

Produced by Dr. Mario | UNC STOR 390

- Recall Evaluation of Hitter Effectiveness
 - Runs Created
 - Linear Weights
 - Both Based on Team Data
 - Scaled Player Information for Prediction
- Problem: Player Hits HR 50% of Time = 54 RC/G
- Definition of Monte Carlo Simulation
 - Developing a Computer Model to Repeatedly Play Out an Uncertain Situation
 - Used Across All Industries
 - Term Coined by Polish Physicist Stanislaw Ulam
 - Simple Simulation Shows Previously Discussed Player = 27 RC/G

- Monte Carlo Simulation in R
 - Theoretical Player Either Hits a Home Run or Gets an Out

```
HR.OUT.MC=function(home.run.percent,n.Sim) {
  runs.result = rep(NA,n.Sim)
  for(i in 1:n.Sim){
    runs=0
    outs=0
    while(outs<3){</pre>
      sample=runif(1)
      if(sample>home.run.percent){
        outs=outs+1
      }else{
        runs=runs+1
    runs.result[i]=runs
  return(runs.result)
```


- Monte Carlo Simulation in R
 - Suppose Player Hits Home Run 50% of the Time

```
Player.5=HR.OUT.MC(0.5,10000)
Player.5=tibble(R.per.I=Player.5,
R.per.G=Player.5*9)
```


- Monte Carlo Simulation in R
 - Suppose Player Hits Home Run 75% of the Time

```
Player.75=HR.OUT.MC(0.75,10000)
Player.75=tibble(R.per.I=Player.75,
R.per.G=Player.75*9)
```

```
ggplot(Player.75) +
  geom_histogram(aes(x=R.per.G),fill="deepskyblue2") +
  geom_vline(xintercept=mean(Player.75$R.per.G),size=2) +
  ylab("Frequency") + xlab("Runs Per Game")+
  annotate("text", x = 350, y = 1200,size=4,
    label = paste("Average Runs/Game=",mean(Player.75$R.per.G))) +
  theme_classic()
```


Simulating Runs from Team Full of Ichiros

Possible Plate Appearances Events

- Long List of Assumptions
 - Errors Advance All Base Runners 1 Base
 - Long Single Advances Each Runner 2 Bases
 - Short Single Advances All Runners 1 Base
 - Short Double Advances Each Runner 2 Bases
 - Long Double Scores a Runner from First
 - Etc.
- Assign Probabilities According to Relative Frequencies of Player
- Program for Simulation

LVCIIC
Strikeout
Walk
Hit by pitch
Error
Long single (advance 2 bases)
Medium single (score from 2nd)
Short single (advance one base)
Short double
Long double
Triple
Home run
Ground into double play
Normal ground ball
Line drive or infield fly
Long fly
Medium fly
Short fly

- Simulating Runs from Team Full of Ichiros
 - Probabilities Based on Ichiro 2004 Statistics

	Number	Probability
Plate Appearances	762	
At Bats +Sac. Hits + Sac. Bunts	709	
Errors	13	0.0170604
Outs (in play)	371	0.4868766
Strikeouts	63	0.0826772
BB	49	0.0643045
НВР	4	0.0052493
Singles	225	0.2952756
2B	24	0.0314961
3B	5	0.0065617
HR	8	0.0104987

- Simulating Runs from Team Full of Ichiros
 - Probabilities of Special Cases
 - 30% of Singles are Long Singles
 - 50% of Singles are Medium Singles
 - 20% of Singles are Short Singles
 - 53.8% of Outs in Play are Ground Balls
 - 15.3% of Outs in Play are Infield Flies
 - 30.9% of Outs in Play are Fly Balls
 - Etc.
 - Result of Simulation = Within 1% of True Actual Runs Per Game
 - Specific to Ichiro
 - Random Number < 0.295 = Single
 - 0.295 < Random Number < (0.295+0.487) = Out (In-Play)
 - Goal of Simulation
 - Estimate # of Runs for Thousands of Innings
 - Average Across All Innings
 - Multiply by $\frac{26.72}{3} \approx 9$ to estimate RC/G

Results Under Simulation

Player	Year	RC/G
Ichiro	2004	6.92
Nomar	1997	5.91
Bonds	0.72	21.02

Problem: Unusual # of Intentional Walks Eliminating Intentional Walks: 15.98 RC/G

Added Value of Albert Pujols Measured by Runs

Team Without

Outcome	Number
Plate Appearances	5591
At Bats + Sac. Hits + Sac. Bunts	5095
Errors	92
Outs (in Play)	2824
Strikeouts	872
BB	439
HPB	57
Singles	887
2B	259
3B	26
HR	135

Outcome Number Plate Appearances 634 At Bats + Sac. Hits + Sac. Bunts 538 Errors 10 Outs (in play) 301 Strikeouts 50 BB 92 HBP 4 Singles 94 2B 33 3B 1 HR 49

Pujols Alone

Average Team

Outcome	Number
Plate Appearances	6236.27
At Bats +Sac. Hits + Sac. Bunts	5658.03
Errors	102
Outs (in play)	3027.23
Strikeouts	1026.37
BB	528.23
НВР	50
Singles	986.67
2B	304.5
3B	31.73
HR	179.53

ER = Earned Run IP = Innings

- Hypothetical Pitcher Ricky Vaughn
 - Situation 1
 - Ricky Lets 2 Batters on Base
 - Next Batter Gets Single and 1 Batter Scores
 - Ricky is Charged with 1 Earned Run
 - Situation 2
 - Ricky Lets 2 Batters on Base
 - Next Batter Hits Ball to Outfielder Who Drops the Ball
 - This Unearned Run is Not Charged to Ricky
 - Recall: ERA = Earned Run Average

$$ERA = 9 \times \frac{ER}{IP}$$

• Ricky Gives Up 22 Earned Runs in 72 innings

$$ERA = 9 \times \frac{22}{72} = 2.75$$

Problems with ERA

- Influenced by Errors (Subjective)
- Influenced by Relief Pitcher
- Influenced by Fielding Performance
- Different Pitchers Evaluated Differently
 - Starting Pitchers = Wins
 - Relief Pitchers = Saves
- Past ERA to Predict Future ERA
 - Why Predict Future ERA?
 - Weak Relationship
 - Low Linear Correlation
 - Results Based on Pitchers with More than 10 Innings

ER = Earned Run IP = Innings

- Evaluating Forecast Error
 - Mean Absolute Deviation (MAD)

$$MAD = \frac{1}{n} \times \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

From ERA Model, MAD = 0.68

y = Current ERA

 \hat{y} = Forecast ERA

K = Strikeout

BB = Walk

HBP = Hit by Pitch

HR = Home Run

- Additional Measures of Pitcher Effectiveness
 - Analysis by Voros McCracken (2001)
 - Fraction of Batters Faced by Pitchers That Result in Balls in Play
 - Fraction of Balls in Play That Result in Hits
 - Fraction of Batters Faced by Pitchers That Do Not Result in Balls in Play
 - Defense Independent Pitching Stats (DIPS)
 - K, BB, HBP, and HR
 - Independent of Teams Fielding Ability

- Evaluating Forecast Error
 - Mean Absolute Deviation (MAD)

$$MAD = \frac{1}{n} \times \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

• From ERA Model, MAD = 0.68

y = Current ERA

 $\hat{\mathbf{y}}$ = Forecast ERA

K = Strikeout

BB = Walk

HBP = Hit by Pitch

HR = Home Run

- Additional Measures of Pitcher Effectiveness
 - Analysis by Voros McCracken (2001)
 - Fraction of Batters Faced by Pitchers That Result in Balls in Play
 - Fraction of Balls in Play That Result in Hits
 - Fraction of Batters Faced by Pitchers That Do Not Result in Balls in Play
 - Defense Independent Pitching Stats (DIPS)
 - K, BB, HBP, and HR
 - Independent of Teams Fielding Ability

- Defense-Independent Component ERA
 - Formula $DICE = 3 + \frac{13 \times HR + 3(BB + HBP) 2K}{IP}$
 - Only DIPS Involved in Formula for DICE
 - Forecast Model $ERA_t = 1.975 + 0.56 \times DICE_{t-1}$

K = Strikeout
BB = Walk
HBP = Hit by Pitch
HR = Home Run
IP = Inning Pitched
t = Time (Years)

- Correlation is 0.44 Compared to 0.34 when Last Year's ERA is Used
- MAD is 0.51 Compared to 0.68 when Last Year's ERA is Used
- Conclusion: Previous DICE is a Better Predictor of ERA than Previous ERA
- Holy Grail of Mathletics = Forecasting Performance

America's Greatest Pastime

Final Inspiration

Politicians are like batters.

The best do their job 1/3 of the time.

-Mahatma Mario