

We claim:

- 1 1. A method for determination of the length of objects in traffic, especially passenger cars, trucks, buses, motorbikes, bicycles and pedestrians, comprising the steps of:
 - 4 - emitting radar signals from a vehicle which are reflected by an object which is to be measured,
 - 5 - receiving the reflected radar signals in the vehicle,
 - 6 - evaluating the frequency spectra of the reflected radar signals, and
 - 7 - determining the reflection peaks contained in the frequency spectra,
 - 8 - determining the width of the reflection peaks, and
 - 9 - determining the length of the object by means of the determined width.
- 10 2. The method according to Claim 1, wherein from the vehicle a radar chirp is emitted in a continuous wave radar or a pulse is emitted in a pulse radar measurement method or a frequency shift keying (FSK) transmission signal is emitted as a radar transmission signal.
- 1 3. The method according to Claim 1, wherein the length of the object is determined from the range resolution ΔR of the radar chirp and the width of the reflection peaks $\Delta \kappa$ essentially according to the formula $L = \Delta R \cdot \Delta \kappa$.
- 1 4. The method according to Claim 1, wherein the width of the reflection peaks is determined at a specified amplitude.
- 1 5. The method according to Claim 1, wherein in a CW radar the frequency spectra of the reflected radar signals are determined by Fast Fourier Transformation, or in a pulse radar the number of range gates, whose reception power are above the decision threshold are measured.

- 1 6. The method according to Claim 1, wherein the radar signals are generated by
2 means of linear frequency modulated continuous wave radar sensors and/or
3 pulse radar sensors and/or FSK-modulated sensors.

- 1 7. The method according to Claim 1, wherein the weight of the object is
2 estimated, at least by means of the determined length of the object.

- 1 8. The method according to Claim 7, wherein the determined weight of the object
2 is made available to driver assistance systems.

- 1 9. The method according to Claim 7, wherein by means of the determined weight
2 or length of the object, interventions in the driving dynamics or protection
3 devices, especially occupant protection devices or pedestrian protection
4 devices, are controlled.

- 1 10. The method according to Claim 7, wherein an estimated collision severity is
2 determined by means of the determined weight of the object.,

- 1 11. The method according to Claim 1, wherein an object contour of the object is
2 determined with an image processing camera system and/or a contour-
3 measuring laser sensor.

- 1 12. The method according to Claim 11, wherein the determined object contours are
2 used to refine, adjust and/or verify additional vehicle data and/or for
3 interpretation of the traffic scene closer to reality.

- 1 13. A device for determination of the length of an object in traffic, comprising:
 - 2 - a radar sensor that transmits and receives radar signals,
 - 3 - a frequency analysis device that determines a frequency spectrum of the
 - 4 received radar signals,
 - 5 - a detection device that determines reflection peaks contained in the
 - 6 frequency spectrum, wherein the detection device is designed to determine
 - 7 the width of the reflection peaks, and
 - 8 - a length calculation device that calculates the length of the object being
 - 9 measured, partly from the width of the reflection peaks.
- 1 14. The device according to Claim 13, wherein the radar sensor is designed to emit
2 a radar chirp in a continuous wave radar or a pulse in a pulse radar
3 measurement method or a frequency shift keying (FSK) transmission signal as
4 a radar transmission signal.
- 1 15. The device according to Claim 13, wherein the length calculation device
2 determines the length of the object from the range resolution ΔR of the radar
3 chirp and the width of the reflection peaks $\Delta \kappa$ essentially according to the
4 formula $L = \Delta R \cdot \Delta \kappa$.
- 1 16. The device according to Claim 13, wherein the radar sensor is a CW radar and
2 the frequency analysis device operates with a Fast Fourier Transformation.
- 1 17. The device according to Claim 13, wherein the radar sensor is a pulse radar.
- 1 18. The device according to Claim 13, wherein the radar signals are generated by
2 means of linear frequency modulated continuous wave radar sensors and/or
3 pulse radar sensors and/or FSK-modulated sensors.
- 1 19. The device according to Claim 13, wherein the weight of the object is
2 estimated, at least by means of the determined length of the object.

- 1 20. The device according to Claim 19, wherein the determined weight of the object
- 2 is made available to driver assistance systems.
- 1 21. The device according to Claim 19, further comprising means to control
- 2 interventions in the driving dynamics or protection devices, especially
- 3 occupant protection devices or pedestrian protection devices by means of the
- 4 determined weight or length of the object.
- 1 22. The device according to Claim 19, further comprising means for determining
- 2 an estimated collision severity by means of the determined weight of the
- 3 object.
- 1 23. The device according to Claim 13, further comprising an image processing
- 2 camera system and/or a contour-measuring laser sensor to determine an object
- 3 contour.