

What's New Pulseq

Maxim Zaitsev

Division of Medical Physics, Dept. of Radiology, University Medical Center Freiburg, Germany

What is 'New' in a Continuum?

- Some interesting/relevant developments from the past ~12 months
- RF simulation
- Peripheral nerve stimulation (PNS)
- Data labels, slice positions
- Mechanical resonances

Some more fun stuff...

RF Simulation & Analysis

In addition to TOPPE's slice profile calculation... mr.calcRfCenter() & mr.calcRfBandwidth()

- return RF peak position / FT width
- Fast, only for approximate guidance, small tip-angle approximation (STA)

 Fast RF simulation based on the rotation formalism (ignoring relaxation)

See <u>demoUnsorted/demoRfSimulation.m</u> in the main Pulseq repository for numerous use examples

Peripheral Nerve Stimulation Prediction

- Direct integration with the SAFE model (Siemens-specific)
- Open-SAFE by Filip Szczepankiewicz
 https://github.com/filip-szczepankiewicz/safe_pns_prediction

seq.calcPNS()

- Analyze the sequence in memory for PNS
- Ideally requires access to the pertinent scanner-specific PNS model data (stored in *.asc files)

Pulseq Extensions

- Pulseq file format readily supports very flexible Extension objects
- Established extensions
 - Cardiac triggering
 - Trigger (digital output) pulses
 - Data labeling (the traditional use of the LABEL extension)
- Labels to control sequence execution
 - ONCE labels
 - NOPOS, NOROT, NOSCALE labels
- Labels may provide hints for the interpreters
 - New GE (and possibly candidate Philips) interpreters detect the "TR Loop"

New Label Display and Debugging Options

- Labeling of the raw data is often desirable
 - Online recon & integration with Gadgetron
- seq.plot('TimeDisp', 'ms', 'label', 'lin,slc');
- adc_lbl=seq.evalLabels('evolution','adc');

```
adc_lbl =

struct with fields:

LIN: [0 0 2 4 6 8 10 12 14 16 18 20

IMA: [0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

REF: [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

NOISE: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SLC: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```



```
      38
      39
      40
      41
      42
      43
      44
      46
      48
      50
      52
      54
      56
      58
      60
      ...
      ]

      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```


New Labels: ONCE

- Some interpreters offer the option run/repeat the Pulseq sequence multiple times without a delay
- Label ONCE when set to
- 1. Mark blocks that are only executed on the first repetition
- 2. Mark blocks that are only executed on the last repetition
- Possible use cases:
 - Calibration scans performed once at the beginning
 - Signal preparation
 - dummy scans in GRE or
 - α/2 TR/2 preparation in trueFISP
- As example see <u>demoSeq/writeTrufi.m</u>

Multi-Slice Mode

- Traditionally Pulseq presents itself as a "3D sequence"
 - FOV in the [Definitions] section inscribes all slices
 - FOV positioning works similarly for all sequences
 - Positions of individual slices are not visible to the user.
- New definitions switch the sequence to a 2D multi-slice mode:

```
seq.setDefinition('SlicePositions', slicePositionsArray);
seq.setDefinition('SliceThickness', thickness_in_m);
seq.setDefinition('SliceGap', sliceGap_in_m);
```


3D-mode vs. 2D-mode

'legacy' 3D mode

- Homogeneous handling for all imaging and spectroscopy sequences
- Inner life of the sequence is opaque

new 2D multi-slice mode

- 2D sequences need special handling
- Correct slice position information in raw data
- More familiar user experience

Gradient Spectrogram Analysis

CAUTION! Gradient coil have mechanical resonances

(forbidden echo spacings)

 Pulseq now provides a demo (not a function yet) for a spectral analysis of the sequence in memory, see <u>demoUnsorted/gradSpectrum.m</u>

 We would like to hear from the manufacturers how to handle this knowledge

Ready for the Fun Part?

Pulseq & Gradient Music

Experimental mrMusic library for creating gradient music

DISCLAIMERS:

- You are completely, entirely and absolutely responsible for the health or damage of your gradient system
- Always check the gradient spectrum and avoid the mechanical resonances of your system
- Never use the maximum gradient amplitude

mrMusic how-to

- Located in demoUnsorted of the main repository (lib + 4 demo scripts)
 - musicBadinerie.m, musicEntertainer.m, musicRootBeerRag.m & musicSoundTest.m
- 1. Initialize the mrMusic environment:

```
mrMusic.init; % this creates over 30 global variables
```

- 2. Create the melody as a cell array of bars and channels (n x 3) melody = { [...], [...]; }
- 3. Convert melody to a channel-frequency table
 [pitches, durations] = mrMusic.melodyToPitchesAndDurations(...);
- 4. Populate the Sequence object with the music piece seq = mrMusic.musicToSequence (seq, ...);
- 5. Check how it sounds seq.sound();

More about Melody and Notes

- Notes: a, b, c, d, e, f, g, h; '_is' is high '_es' is flat; 'a1' is the middle A
- Octaves: _bb, _b, _1, _2, _3;
- 'o' is a delay
- To define duration divide the note by the fractional duration, e.g. cis2/16 is C# of the second octave with the duration of 1/16th
- Enjoy!

mrMusic: Concluding Remarks

- Really easy to create nice 3-voice tunes
- Music can be combined with imaging or spectroscopy
- Many more options available (explore examples)
 - Sound quality settings (wave vs. sawtooth)
 - Temperaments for Baroque music
 - Staccato & Legato
 - Tuning for avoiding mechanical resonances
 - **.**..
- Enjoy responsibly!

Acknowledgements:

Berkin Bilgic Borjan Gagoski

Frank Zijlstra Imam Shaik

Jon-Fredrik Nielsen Juergen Hennig

Moritz Zaiss Naveen Murthy

Qiang Liu Qingping Chen

Sebastian Littin Will Grissom

Douglas Noll

Jeff Fessler

Mojtaba Shafiekhani

Niklas Wehkamp

Scott Peltier

Yogesh Rathi

THANK YOU FOR YOUR ATTENTION!

