

Universidade Federal de Goiás Instituto de Informática Engenharia de Software

Matriz Curricular: ENGSO-BN-2 - 2017.1

Plano de Disciplina

Ano 2019 - 1º Semestre

Dados da Disciplina

Código Disc.	Nome	Carga Horária	
		Teórica	Prática
10000079	Algoritmos e Estruturas de Dados 2 - NBC	64	0

Fabio Moreira Costa Prof

Turma A

Ementa

Árvores: formas de representação, recursão em árvores, árvores binárias, árvores binárias de busca, árvores balanceadas (AVL ou rubro-negras). Filas de prioridades. Heaps, Heapsort. Hashing: tipos de funções de hashing; tratamento de colisões. Definições de Grafos. Estruturas de Dados para representação de grafos. Algoritmos básicos em grafos.

Objetivo Geral

Ensino de estruturas de dados básicas para consulta de dados armazenados em memória principal (árvores binárias balanceadas e tabelas hash). Ensino de estruturas de dados para representar grafos e de algoritmos básicos em grafos. Desenvolver no aluno a noção de complexidade de tempo e de espaço dos algoritmos estudados.

Objetivos Específicos

- 1. Apresentar a estrutura de dados "árvore", suas variantes e principais formas de representação em memória; apresentar os algoritmos básicos para realizar operações sobre árvores.
- 2. Apresentar árvores binárias balanceadas, os algoritmos para realizar as operações de consulta, inserção e remoção de dados nessas estruturas; discutir a complexidade de tempo de execução dos algoritmos apresentados.
- 3. Apresentar a estrutura de dados árvore B, e os respectivos algoritmos para busca, inserção e remoção de elementos.
- 4. Apresentar o conceito de tabelas de dispersão (tabelas hash), suas principais formas de implementação e representação em memória, bem como os algoritmos associados e métodos de tratamento de colisão. Explorar as características de projeto de funções de hash.
- 5. Apresentar os conceitos fundamentais de grafos, as estruturas de dados básicas utilizadas para representá-los e os algoritmos básicos para manipulação e percurso em grafos, juntamente com um estudo da complexidade de tempo de execução desses algoritmos.

Relação com Outras Disciplinas

Constituem pré-requisitos as disciplinas de Introdução à Programação e Algoritmos e Estruturas de Dados:

1. O estudo das propriedades dos algoritmos e estruturas de dados estudadas nesta disciplina

tem relação com conteúdos abordados na disciplina de Análise e Projeto de Algoritmos.

Conteúdos estudados nesta disciplina encontram aplicações em diversas outras disciplinas do curso, como Compiladores, Banco de Dados e Sistemas Operacionais.

Programa

- 1. Árvores: conceito, formas de representação, árvores binárias, caminhamento em árvores binárias, árvores binárias de busca.
- 2. Aplicações de árvores: heaps e filas de prioridade, heapsort, Union & Find.
- 3. Árvores binárias balanceadas (árvores AVL e árvores Rubro Negras): definição, operações de busca, inserção e remoção de elementos.
- 4. Árvores B: definição, operações de busca, inserção e remoção de elementos.
- 5. Tabelas Hash: Funções de hashing, tratamento de colisões, representação em memória, hashing universal e hashing perfeito.
- 6. Grafos: conceitos fundamentais, representação de grafos (listas e matrizes de adjacências); algoritmos básicos em grafos (buscas em largura e em profundidade, caminhos mínimos).

Procedimentos Didáticos

Legend	Descrição	Objetivo
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
14/03/19	AEX, OTR	O. Introdução à disciplina de Algoritmos e Estruturas de Dados 1. Apresentação e discussão do plano de ensino. Atividade supervisionada: o aluno deverá apresentar um resumo dos assuntos estudados na disciplina de AED1 e sua relação com os conteúdos da ementa de AED2 (entrega via Moodle).	2
14/03/19	AEX, RE	1. Árvores: conceito, formas de representação, árvores binárias, caminhamento em árvores binárias, árvores binárias de busca. Atividade supervisionada: exercícios de programação e lista de exercícios (com acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle).	6
28/03/19	AEX, RE, OTR	 Aplicações de árvores: heaps e filas de prioridade, heapsort, Union & Find. Atividade supervisionada: exercícios de programação e lista de exercícios (acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle). 	8
11/04/19	AEX, RE, OTR	3. Árvores binárias balanceadas (árvores AVL e árvores Rubro Negras): definição, operações de busca, inserção e remoção de elementos. Atividade supervisionada: exercícios de programação e lista de exercícios (acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle).	12

Inicio	Proc. Didático	Tópico	# Aul.
02/05/19	AEX, RE, OTR	4. Árvores B: definição, operações de busca, inserção e remoção de elementos. Atividade supervisionada: exercícios de programação e lista de exercícios (acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle).	12
23/05/19	AEX, RE, OTR	5. Tabelas Hash: Funções de hashing, tratamento de colisões, representação em memória, hashing universal e hashing perfeito. Atividade supervisionada: exercícios de programação e lista de exercícios (acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle).	12
13/06/19	AEX, RE, OTR	6. Grafos: conceitos fundamentais, representação de grafos (listas e matrizes de adjacências); algoritmos básicos em grafos (buscas em largura e em profundidade, caminhos mínimos). Atividade supervisionada: exercícios de programação e lista de exercícios (acompanhamento e supervisão no horário de atendimento do professor, assim como via fórum do Moodle).	12
Total			64

Critério de Avaliação

Serão aplicadas várias avaliações (práticas e teóricas) no decorrer do semestre letivo, da seguinte forma:

- 03 avaliações escritas (AE), referentes ao conteúdo (cumulativo) ministrado no semestre
- listas de exercícios teóricos (LE)
- listas de exercícios de programação (EP).

Para composição da nota final, será calculada a média ponderada das notas obtidas nas avaliações, da sequinte forma:

NF = ((AE1+AE2+AE3)/3)*0.6 + EP*0.3 + LE*0.1

O aluno será aprovado se obtiver média maior ou igual a 6,0 e frequência acima de 75%.

Data da Realização das Provas

As avaliações escritas (AE) terão duração de 100 minutos cada e serão aplicadas nas seguintes datas:

AE1: 25/4 AE2: 06/6 AE3: 11/7

Local de Divulgação dos Resultados das Avaliações

Presencialmente, em sala de aula.

Bibliografia Básica

TENENBAUM, A. M.; LANGSAM, Y.; AUGENSTEIN, M. Estruturas de Dados Usando C. São Paulo: Makron

Books, 1995.

SZWARCFITER, J. L.; Markenzon, L. Estruturas de Dados e seus Algoritmos. 2a ediça o . LTC, 1994.

FEOFILOFF, P. Algoritmos em Linguagem C. Editora Campus/Elsevier, 2009.

Bibliografia Complementar

CORMEN, T. et al. Algoritmos: Teoria e Prática .2a ediça o , Rio de Janeiro: Editora Campus, 2002.

ZIVIANI, N. Projeto de Algoritmos com implementaça o em Java e C++. São Paulo: Editora Thomson, 2006.

SEDGEWICK, R. Algorithms in C++. 3rd. Edition, Addison-Wesley 1998. (Parts 1-4).

SALVETTI, D.D.; BARBOSA, L.M. Algoritmos. São Paulo: Makron Books, 1998.

ZIVIANI, N. Projeto de Algoritmos com implementaça o em Pascal e . C

3a ediça o . SãoPaulo: Editora Thomson, 2010.

Bibliografia Sugerida

- LEISERSON, Charles, E. RIVEST, Ronald L. CORMEN, Thomas H. Algoritmos Teoria e Prática, Campus, 2001.
- DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, Cengage Learning, 2002.
- SEDGEWICK, R. Algorithms in C++. 3rd. Edition, Addison-Wesley 1998. (Parts 1-4).

Termo de Entrega	Termo de Aprovação		
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia		
Prof(a) Fabio Moreira Costa	Prof. Dr. Sérgio Teixeira de Carvalho		
Professor	Diretor do Instituto de Informática		
Termo de Homologação			
Data de Expedição: Goiânia, de	e de		