Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Jeff Livas for the US LISA Telescope Team
NASA Goddard Space Flight Center
Greenbelt, MD 20771
Nov 2017

Telescope Team

GSFC Gravitational Astrophysics branch [663]:

- Jeff LIVAS, Ryan DEROSA, Shannon SANKAR

GSFC Optics branch [551]:

 Peter BLAKE, Joseph HOWARD, Ritva KESKI-KUHA, Hui LI, Len SEALS, Anita THOMPSON, Garrett WEST

Newton Engineering (mechanical):

- Justin WARD, Joseph IVANOV, Alex MILLER

EDGE Space Systems (thermal): Angel DAVIS

Genesis Engineering: Mike Miller

University of Florida:

- Professor Guido MUELLER's group

This work was supported by NASA grants 11-SAT11-0027 and 14-SAT14-0014.

Outline

- Mission Context and Science
- Measurement Principles
- Telescope Description
- Challenges
- Summary

MISSION CONTEXT AND SCIENCE

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^4 years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{\odot} , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range $1.17-1.60~M_{\odot}$, with the total mass of the system $2.74^{+0.04}_{-0.01}M_{\odot}$. The source was localized within a sky region of 28 deg² (90% probability) and had a luminosity distance of 40^{+8}_{-14} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

DOI: 10.1103/PhysRevLett.119.161101

Why is this important?

The Gravitational Wave Spectrum

Image credit: NASA

ESA/NASA Activities

- Phase A to start early 2018:
 - Follows selection by SPC earlier this year
 - Intended to be competitive industrial study
 - 18 month duration
 - ESA Study Office has been established
 - Science Study Team has been established
 - US team also assembled to address decadal survey

https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf

GSFC plans:

- Plan to produce a Breadboard by 2022
- Currently iterating through optical/ structural/thermal design
- Other technologies also under development

https://lisa.nasa.gov/

MEASUREMENT PRINCIPLES

Measurement Challenge

- Lowest order radiator is a quadrupole
 - Dipole radiation forbidden by conservation of momentum
 - Simplest quadrupole: a "dumbell"

- Time-varying strain (ΔL/L): ~10-21 /√Hz
- 5 pm/√Hz / 5 Gm
- signal frequencies from 10⁻⁴ to 1 Hz,
- signal durations of months to centuries
- Measurement concept
 - Measure distance changes between free-falling mirrors
 - Preferred measurement conditions:
 - A long measurement path to make ΔL large
 - A very quiet place to avoid disturbances to the test masses: SPACE!

Constellation Response

Payload Integrated with Bus

Payload systems

- Interferometer Measurement System (IMS)
 - Laser
 - Telescope
 - Optical bench
- Disturbance Reduction System (DRS)
 - Gravitational Reference Sensor (GRS)
 - µN thrusters
 - Control laws

Assembly DRS Detail

Full Spacecraft Bus

GRS

colloidal µN thrusters

(Note: solar array not shown)

11

Physics of the Cosmos Program Organic Organic Program Program Organic P

Inter-Spacecraft Distance Measurement

- Test-mass to test-mass measured in 3 parts:
 - 2 × test-mass to spacecraft measurements (short-arm: LPF tests this)
 - 1 × spacecraft to spacecraft interferometer (long-arm)
 total separation = d₁ + d₁₂ + d₂

TELESCOPE DESCRIPTION

Telescope Functional Description/Requirements

- Afocal beam expander/reducer
 - 300 mm dia. primary
 - 2.24 mm dia. on bench
 - 134X magnification
- Simultaneous transmit and receive

$$P_{\text{received}} \propto D_{\text{primary}}^4$$

- Conjugate pupils to minimize tilt to length coupling
 - Map angular motion of the spacecraft jitter to angular motion on the optical bench without lateral beam walk or piston
- Smooth wavefront (λ /30) to minimize tilt to length coupling, also helps maximize on-axis power transmission
- Dimensionally stable (path-length fluctuations directly compete with pm scale measurement)
- Low back-scatter of transmit beam into receiver
 - $\sim 1 \text{ W transmitted}, \sim 500 \text{ pW received}$

Key Telescope Requirements

Parameter Driven by		Required Value	
Primary diameter	Shot noise (power trans- mission and collection, $P_{\text{remived}} \propto D_{\text{primary}}^4$)	300 mm	
Optical throughput (power effi- ciency)	Shot noise (SNR _{shot} $\propto 1/\sqrt{P_{maxiwal}}$)	$\eta > 0.85$	
Entrance pupil (large aperture) diameter	Shot noise	300 mm	
Entrance pupil (large aperture) location	Tilt to length coupling	In the plane of the COM of the PM (virtual)	
Exit pupil (small aperture) diam- eter	Optical bench design	2.24 mm	
Exit pupil (small aperture) loca- tion	Optical bench design	200-250 mm behind primary	
Afocal magnification	Optical bench design	300/2.24 ≈ 134x	
Field of regard (acquisition detec- tor)	Link acquisition	± 500 µrad (approx. 0.03° or 100°)	
Field of regard (science detector)	Spacecraft orbits	± 20 μrad (approx. 4")	
Field of view (science detector)	Stray light	± 8 μrad (approx. 1.7")	
Exit pupil (small aperture) distor- tion	Heterodyne efficiency (SNR)	< 10 %	
Optical path length stability	Phase noise in series with main science measurement	$< 1 \text{ pm}/\sqrt{\text{Hz}} \sqrt{\left(1 + \left(\frac{3 \text{ mHz}}{f}\right)^4\right)},$ for $1 \times 10^{-4} < f < 1 \text{ Hz}$	
Back-scattered light from trans- mit beam	Phase noise in series with main science measurement	$< 1 \times 10^{-10}$ into Science field of view	
Wavefront error	Pointing errors couple wavefront aberration into phase noise in se- ries with the main science mea- surement	$\lambda/30$ rms in the Science field of regard	

challenging challenging

Current 4-mirror Design

M1/M2 Angular Magnification reduced from 74 to 55.8X (25% reduction) M3/M4 now 2.4X, total is still 134X

Further M1/M2 Magnification reduction in process

Design residual WFE: 8.2 nm rms

- Off-axis Cassegrain for stray light performance
- Schwarzschild-style pupil extender
- Simplified Design to reduce mirror cost, risk

Extended "Bobsled"

View from space

Materials choice

ZERODUR® like properties

Silicon Carbide like properties

CHALLENGES

SiC Spacer Dimensional Stability Demonstration

Spacer Activity Objective

- Develop and test a design for the main spacer element between the primary and secondary mirrors
- M1 M2 spacing identified as critical by tolerance analysis
- SiC meets stability requirement with on-orbit $\Delta T(f)$
- On-axis Quadpod would not meet scattered light requirement

SiC Spacer Design

SiC Spacer Design: QuadPod

Thermal Model to Determine Test Conditions

Scattered Light Analysis

Mirror	RMS surface roughness (Å)	MIL-STD 1246D CL	
M1	15	300	l
M2	15	200	1
M3	5	200	
M4	5	200	

Conflicting accounts of onorbit levels

Pupil Plane Scatter Irradiance

- Source power = 1W
- Total power on the detector = 6.6x10⁻¹¹ W → (barely) meets specification of less than 10⁻¹⁰

	Path#	# Rays	Power %	Power	1st scatter surface
3	7	2291695	74.947	4.9421e-11	.20140417_elisa_baseline.M3.Front
4	3	2711030	23.053	1.5201e-11	.20140417_elisa_baseline.M4.Front
2	11	2565386	1.9733	1.3012e-12	.20140417_elisa_baseline.M2.Front
1	14	1399213	0.026184	1.7266e-14	.20140417_elisa_baseline.M1.Front
Totals		8967324	100	6.5941e-11	

aft optics contributes most of the scattered light

Summary

- Gravitational waves enable dramatic new window on the Universe
- Precision metrology application drives requirements, not image quality
 - Pico-meter-level pathlength stability
 - Low coherent backscattered light
 - Minimize tilt-to-length coupling
- Requirements drive design
 - Zerodur for pathlength stability
 - Off-axis for scattered light
 - Pupil relay to minimize tilt-to-length
- Robust, manufacturable design
 - Approximately 10 units needed