Discrete Mathematics Quiz 1

2025-4-21

	Name	Student Number	序号		
			by 5dbwat4		
(35	%) Determine whether	the following statements ar	e true or false.		
(5 <u>j</u>	points for a correct ans	wer, 0 points for a blank an	swer, -2 points for an incor	rect answei	r)
a)	If x is not occurring in	in A, then $\exists x (P(x) \to A) \equiv \forall$	$\forall x P(x) \to A.$	()
b)	If A , B , and C are sets	, then $A - (B \cap C) = (A - A)$	$B)\cup (A-C).$	()
c)	If n is integer, then n	$= \left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor.$		()
d)	Suppose $P(x, y)$ is a predicate and the universe for the variables x and y is $\{1,2,3,4\}$. Suppose				
	P(1,3), P(2,1), P(3,2	c), P(3,4), P(4,1), P(4,4) as	re true, and $P(x, y)$ is false of	herwise. Th	nen
	the statement $\forall y \exists x (($	$x \le y$) $\land P(x, y)$ is true.		()
e)	$n^{0.01}$ is $O(\log_{1.01} n)^{99}$	999.		()
f) The set of positive real numbers less than 1 with decimal representations c				sting only o	of 0s
	and 1s is countable.			()
g)	$2025^{2026} \equiv 1 \pmod{3}$	2027).		()

2. (12%) Write a proposition equivalent to $p \oplus q$,

1.

- a) using only p, q, \neg , and the connective \wedge .
- b) using only p, q, and the connective | ("|" represents NAND 与非).
- 3. (9%) Find the full conjunctive normal form of $(p \oplus q) \vee r$.
- 4. (8%) Build all the functions from $A = \{1,2\}$ to $B = \{a,b\}$ and point out which is bijection, and which is surjection.
- 5. (9%) If all the positive integers that are relatively prime with 77 are arranged into a strictly increasing sequence, find the 600th term of this sequence.
- 6. (9%) Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, and $x \equiv 3 \pmod{8}$.
- 7. (9%) Prove that the distributive law $A_1 \cup (A_2 \cap \cdots \cap A_n) = (A_1 \cup A_2) \cap \cdots \cap (A_1 \cup A_n)$ is true for all n > 2.
- 8. (9%) Prove that every positive integer (n > 2) can be expressed as the sum of different Fibonacci numbers.