5 To the state of the state of

WHAT IS CLAIMED IS:

1. A compound of Formula IIIA:

Formula IIIA

5 wherein:

X is oxygen, methylene, difluoromethylene, imido;

n = 0, 1, or 2;

m = 0, 1, or 2;

n + m = 0, 1, 2, 3, or 4;

B is a purine or a pyrimidine residue linked through the 9- or 1-position, respectively;

 $Z = OH \text{ or } N_3;$

 $Z' = OH \text{ or } N_3;$

Y = H or OH;

15 Y' = H or OH;

provided that when Z is N₃, Y is H or when Z' is N₃, Y' is H;

 R_4 is oxo, amino, cyano, aralkoxy, C_{1-6} alkoxy, C_{1-6} alkylamino, or dialkylamino; R_5 is hydrogen, acyl or benzoyl, C_{1-6} alkyl, phenyloxy, C_{1-5} alkanoyl or

absent;

 R_6 is oxo, hydroxy, mercapto, C_{1-4} alkoxy, C_{7-12} arylalkoxy, C_{1-6} alkylthio, amino, C_{1-5} disubstituted amino, triazolyl, C_{1-6} alkylamino or di- C_{1-4} alkylamino, where the alkyl groups is optionally linked to form a heterocycle or link to N^3 to form a substituted ring; or

30

5

10

R₅ and R₆ taken together form a 5-membered fused imidazole ring between positions 3 and 4 of the pyrimidine ring, which is optionally substituted on the 4- or 5- positions of the etheno moiety with C₁₋₄alkyl, phenyl, or phenyloxy, which themselves are optionally substituted;

 R_7 is hydrogen, hydroxy, cyano, nitro, C_{2-8} alkenyl, C_{1-4} alkyl, phenyl, substituted C_{2-8} alkynyl, halogen, C_{1-4} alkyl, substituted C_{1-4} alkyl, CF_3 , C_{2-6} alkyl, C_{2-3} alkenyl, allylamino, bromvinyl, ethyl propenoate, propenoic acid, C_{2-3} alkynyl, substituted C_{2-3} alkynyl; or

R₆ and R₇ taken together form a 5 or 6-membered saturated or unsaturated ring bonded through N or O at R₆, such ring optionally contain substituents that themselves contain functionalities;

 R_8 is hydrogen, amino or di- C_{1-4} alkylamino, C_{1-4} alkoxy, C_{7-12} arylalkoxy, C_{1-4} alkylthio, C_{7-12} arylalkylthio, carboxamidomethyl, carboxymethyl, methoxy, methylthio, phenoxy or phenylthio; provided that when R_8 is amino or substituted amino, R_7 is hydrogen;

provided that when B = adenine, adenine 1-oxide, or $1,N^6$ -ethenoadenine, then:

- (a) $R_6 \neq \text{oxo when } R_4 = \text{oxo}, Y = Z = \text{OH and } R_5 = R_7 = R_8 = \text{H};$
- (b) $R_7 \neq Br$ when $R_4 = R_6 = oxo$, Y = Z = OH, and $R_5 = R_8 = H$;

provided that when B = adenine, then:

- (a) $R_6 \neq$ amino when $R_4 = \infty$, Y = Z = OH, R_5 is absent, $R_7 = R_8 = H$, and n + m = 0, 1, or 2;
- (b) $R_7 \neq CH_3$ when $R_4 = R_6 = 0x_0$, Y = H, Z = OH, and $R_5 = R_8 = H$;
- (c) $R_7 \neq F$ when $R_4 = R_6 = 0$ oxo, Y = H, Z = OH, $R_5 = R_8 = H$ and n + m = 2;

provided that when B = thymine, Y'= H and Z' = N_3 ; then $R_7 \neq F$, when $R_4 = R_6 = 0$ oxo, Y = OH, Z = OH, $R_5 = R_8 = H$, and n + m = 0; provided that when B = thymine, Y' = H and Z' = N_3 ; then $R_7 \neq CH_3$ when $R_4 = R_6 = 0$ oxo, Y = H, Z = N_3 , $R_5 = R_8 = H$, and n + m = 0;

provided that when B = guanine, then:

(a) $R_6 \neq \text{oxo when } R_4 = \text{oxo}$, Y = Z = OH, $R_5 = R_7 = R_8 = H$ and n + m = 1 or 2;

33

10

(b) $R_6 \neq$ amino when $R_4 =$ oxo, Y = Z = OH, R_5 is absent, $R_7 = R_8 =$ H, n+m=1 or 2;

provided that when B is uridine, or 5-Br-uridine, then

(a)
$$R_6 \neq \text{oxo when } R_4 = \text{oxo}, Y = Z = \text{OH and } R_6 = R_7 = R_8 = \text{H};$$

(b)
$$R_7 \neq Br$$
 when $R_4 = R_6 = oxo$, $Y = Z = OH$, and $R_5 = R_8 = H$;

provided that when B is 5-FU, then $R_7 \neq F$, when $R_4 = R_6 = \infty$, Y = H, Z = OH, $R_5 = R_8 = H$, and n + m = 0;

provided that when B is cytosine, then $R_6 \neq$ amino, when $R_4 = \infty$, Y = Z = OH, R_5 is absent, $R_7 = R_8 = H$, and n + m = 1, or 2; and

provided that when B is cytosine, then $R_6 \neq \infty$, when $R_4 = \infty$, Y = Z = OH and $R_6 = R_7 = R_8 = H$, and n + m = 2.

2. A compound according to Formula IIA:

Formula IIA

20

wherein:

```
X is oxygen, methylene, difluoromethylene, imido;

n = 0, 1, or 2;

m = 0, 1, or 2;

n + m= 0, 1, 2, 3, or 4;

B is a purine residue linked through the 9- position;

Z = OH or N<sub>3</sub>;

Z' = OH or N<sub>3</sub>;

Y = H or OH;

Y' = H or OH;

provided that when Z is N<sub>3</sub>, Y is H or when Z'is N<sub>3</sub>, Y' is H;
```

 R_1 is H, C_{1-8} alkyl, phenyl or phenyloxy, optionally substituted with halogen, hydroxy, C_{1-4} alkoxy, C_{1-4} alkyl, C_{6-10} aryl, carboxy, cyano, nitro, sulfonamido, sulfonate, phosphate, sulfonic acid, amino or substituted amino, wherein the amino is singly or doubly substituted by a C_{1-4} alkyl and when doubly substituted, the alkyl groups are optionally linked to form a heterocycle; or $A(C_{1-6}$ alkyl) $CONH(C_{1-6}$ alkyl)B wherein A and B are amino, mercapto, hydroxy or carboxyl;

R₂ is O or is absent; or

 R_1 and R_2 taken together forms a 5-membered fused imidazole ring, which is optionally substituted on the 4- or 5- positions of the etheno moiety with C_{1-4} alkyl, phenyl or phenyloxy, optionally substituted with halogen, hydroxy, C_{1-4} alkoxy, C_{1-4} alkyl, C_{6-10} aryl, arylalkyl, carboxy, cyano, nitro, sulfonamido, sulfonate, phosphate, sulfonic acid, amino or substituted amino, wherein the amino is singly or doubly substituted by a C_{1-4} alkyl and when doubly substituted, the alkyl groups is optionally linked to form a heterocycle; and

 R_3 is H, C_{1-8} alkyl, phenyl or phenyloxy, optionally substituted with halogen, hydroxy, C_{1-4} alkoxy, C_{1-4} alkyl, C_{6-10} aryl, carboxy, cyano, nitro, sulfonamido, sulfonate, phosphate, sulfonic acid, amino or substituted amino, wherein the amino is singly or doubly substituted by a C_{1-4} alkyl and when doubly substituted, the alkyl groups is optionally linked to form a heterocycle; C_{7-12} arylalkyl; C_{1-4} alkylamino, phenylamino,

30 C₇₋₁₂arylalkylamino, C₁₋₄alkoxy, or C₇₋₁₂arylalkyloxy; C₁₋₄alkylthio, phenylthio, C₇₋₁₂arylalkylthio, or -A(C₁₋₆alkyl)CONH(C₁₋₆alkyl)B- wherein A and B are independently

30

5

10

amino, mercapto, hydroxy or carboxyl;

provided that $R_1 \neq H$, when X is oxygen, methylene, or diffuoromethylene, Y is OH, B is adenine, R_2 is absent, and R_3 is hydrogen;

provided that $R_1 \neq H$, when n + m = 2, X is oxygen, Y is OH, B is adenine, R_2 is absent, and R_3 is bromo, or 6-aminohexyl;

provided that $R_1 \neq H$, when n + m = 2, X is oxygen, Y is H, B is adenine, R_2 is absent, and R_3 is H;

provided that $R_2 \neq 0$, when n + m = 2, X is oxygen, Y is OH, $R_1 = R_3 = H$, and B is adenine, adenine 1-oxide, or $1,N^6$ -ethenoadenine;

provided that R_1 and R_2 do not form a 5-membered fused imidazole ring, when n + m = 2, X is oxygen, Y is OH, R_3 is H, and B is adenine, adenine 1-oxide, or ethenoadenine.

- 3. The compound according to Claim 1 or 2, wherein the ribosyl moieties are in the D- configuration.
- 4. The compound according to Claim 1 or 2, wherein the ribosyl moieties are in the L- configuration.
- 5. A pharmaceutical composition comprising a compound of Formula IA or IB as described in Claim 1 or 2, or a pharmaceutically acceptable salt therof together with a pharmaceutically acceptable carrier therefor.
- 6. A method of treating chronic obstructive pulmonary diseases in a mammal by administering an effective chronic obstructive pulmonary disease treatment amount of a compound of Formula IA or IB as described in Claim 1 or 2.
 - 7. A method of treating sinusitis, otitis media or nasolacrimal duct obstruction in a mammal by administering an effective mucus secretion clearing amount of a compound of Formula IA or IB as described in Claim 1 or 2.

- 8. A method of treating dry eye in a mammal by administering an effective dry eye treatment amount of a compound of Formula IA or IB as described in Claim 1 or 2.
- A method of treating retinal detachment in a mammal by administering an
 effective retinal detachment treatment amount of a compound of Formula I as described in Claim 1 or 2.
 - 10. A method of facilitating sputum induction in a mammal by administering an amount of a compound of Formula IA or IB as described in Claim 1 or 2, effective to facilitate sputum induction.
 - 11. A method of facilitating expectoration in a mammal by administering an amount of a compound of Formula IA or IB as described in Claim 1 or 2, effective to facilitating expectoration.