From Theory to Computation: A Simulation-Based Approach for Difference-in-Differences Validation

ECON 383: Causal Inference Augusto Gonzalez-Bonorino

Motivation

- Causal queries are complex
- RCTs are reliable, but not generalizable nor often feasible
- Foundational assumptions are often untestable
- Reliance on expert intuition and heuristics can lead to misinterpretations
- Growing focus on computational methods to embrace complex relationships
- Career goals and research interests

Main Idea

- Explore general methods for simulating DGPs
- Parametrize key sources of bias in panel datasets
- Simulation as a technique for "stress testing" causal models
- Systematic exploration of Difference-In-Differences robustness to selected biases

Literature Review

- RCTs have been the gold standard

Literature Review

- RCTs are reliable but fail to generalize
- Traditional methods rely on expert intuition, institutional knowledge, and are not generalizable
- Sensitivity analysis methods have been evolving rapidly
 - R^2 parametrization, Coefficient stabilization, honestDiD, ...
- ML and Deep generative techniques have recently been proposed for synthetic data validation
 - Credence, GANITE, GAIN, GANs, Monte Carlo, ...
- Most recent efforts try to combine RCTs and observational methods

Methodology and Contribution

Function generate_panel_data:

Initialize panel_data with unit and time dimensions
Define post-treatment period based on treatment_start_period

Generate observed_covariate as a random normal variable Create unobserved_effect based on heterogeneity_intensity Simulate time_varying_confounder as a function of time and observed_covariate

Assign treatment based on post period and selection_bias_intensity Define control and treatment group trends

Calculate outcome incorporating treatment_effect, biases, and random noise Return panel_data

Results & Implications

- Unadjusted 2-way FE implementation of DiD
- Robust to selection and unit-heterogeneity as the literature suggests
- Sensitive to time-varying confounders and parallel-trends violation
- Note relatively small SEs for largest biases

Experiment	Mean Estimate	Mean Diff.	Mean SE
Unbiased Balanced Panel	2.983	-0.017	1.212
Unbiased Long Panel	3.001	0.001	1.904
Unbiased Short Panel	3.033	0.033	0.783
Selection Bias	2.998	-0.002	0.548
Time-Varying Confounders	4.756	1.756	0.107
Parallel Trends	28.004	25.004	0.821
Heterogeneity Bias	3.002	0.002	0.821

Table 1: Summary of Experiment Results

Panel Structure Experiments

Figure 1: DiD Estimates for Different Panel Structures

Selected Biases Experiments

Figure 2: Impact of Various Biases on DiD Estimates

Taxonomy

Traditional Approaches

Key Methods: Within-transformation, TSCS, Hausman tests, Placebo tests.

Advantages: Straightforward, well-understood, easy implementation.

Disadvantages: Indirect testing, reliant on data quality and expert intuition,

doesn't conclusively prove assumptions.

Sensitivity Analysis

Key Methods: Manski Bounds, Oster's approach, R² parametrization.

Advantages: Nuanced understanding of model dependence, quantifies uncertainty and

confounder strength in the context of the study.

Disadvantages: Complex calculations, challenging to interpret, context-specific

Simulation Approaches

Key Methods: Bootstrapping, Monte Carlo simulations.

Advantages: Directly tests model robustness, uncovers hidden limitations.

Disadvantages: Requires careful scenario design, computationally intensive,

generalization might prove uninformative

Limitations & Future Work

- Extension to Other Models: Applying this methodology to a broader range of econometric models.
- Deepening Realism: Enhancing simulations to better mirror complex, real-world datasets.
- Cumulative Bias Effects: Exploring the interplay and cumulative impact of multiple biases.
- Empirical Relevance: Ensuring future research addresses practical, real-world econometric challenges.

Thank You!