АНАЛОГИИ СВОЙСТВ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ВЕЛИЧИН

© Чуев А.С., <u>chuev@mail.ru</u>

МГТУ им. Н.Э. Баумана

МП 1 У им. п.Э. д аумана	
Источники поля	
Заряды, электрические диполи, электреты	Движущиеся заряды, линейные проводники с током, петлевые токи, магниты
$q; \rho V,$	$q\vec{\mathbf{v}} = I \cdot \vec{l} = \vec{j}V$
$\vec{p}_{a} = q\vec{l}$	$\vec{p}_m = IS\vec{n}$
	учета влияния вещественной среды
$ \varphi = \frac{W}{q_{\Pi p}}; \varphi = \frac{1}{4\pi\varepsilon_0} \frac{q_0}{r}; $	$\left \vec{A} \right = \frac{W}{\left \vec{j}_{\Pi p} \right V} \; ; \vec{A} = \frac{\mu_0}{4\pi r} \int \vec{j}_0 dV \; ;$
$ec{E} = rac{ec{F}}{q_{\Pi p}} \; ; ec{E} = rac{1}{4\pi arepsilon_0} rac{q_0}{r^2} ec{e}_r$	$B = \frac{F}{j_{\Pi p}V}; d\vec{B} = \frac{\mu_0}{4\pi r^2} \left[\vec{j}_0 \times \vec{e}_r \right] dV$
Виртуально-вещественные, вещественные и суммарные полевые параметры	
$\vec{D} = \frac{\sum \vec{p}_e^{supm}}{V};$ $\vec{P} = \frac{\sum \vec{p}_q}{V}; P_n == \sigma' = \frac{q'^{noe}}{S};$	$ec{H} = rac{\sum ec{p}_m^{\ eupm}}{V}; \ ec{J} = rac{\sum ec{p}_m}{V}; \ J_R = i'^{noe} = rac{I'^{noe}}{2\pi R};$
$\vec{E} = \frac{1}{\varepsilon \varepsilon_0} \vec{D} = \frac{1}{\varepsilon_0} (\vec{D} + \vec{P}^*); \vec{P}^* = -\vec{P}$	$ec{B}=\mu\mu_0ec{H}=\mu_0(ec{H}+ec{J})$
Вещественная реакция на внешнее поле	
$\vec{P} = \kappa \varepsilon_0 \vec{E}$; $\kappa = \varepsilon - 1$; $\vec{P}^* = -\kappa * \vec{D}$; $\kappa^* = \frac{\varepsilon - 1}{\varepsilon}$	$\vec{J} = \chi \vec{H}$; $\chi = \mu - 1$
Интегральные соотношения для векторов	
$ \oint \vec{D}d\vec{S} = q ; $	$\oint \vec{H} d\vec{l} = \sum I;$
$\oint \vec{P}d\vec{S} = -q';$	$ \oint \vec{J}d\vec{l} = \sum (I'); $
$\oint \vec{E}d\vec{S} = \frac{q}{\varepsilon\varepsilon_0} = \frac{1}{\varepsilon_0}(q - q')$	$\oint \vec{B}d\vec{l} = \mu\mu_0 I = \mu_0 (I + I')$
Дифференциальные соотношения для векторов	
$\operatorname{div} \vec{D} = \rho \; ;$	$\operatorname{rot} \vec{H} = \vec{j}$;
$\operatorname{div}\vec{P} = -\rho';$	$\operatorname{rot} \vec{J} = \vec{j}';$
$\operatorname{div}\vec{E} = \frac{\rho}{\varepsilon\varepsilon_0} = \frac{1}{\varepsilon_0}(\rho - \rho')$	$\operatorname{rot} \vec{B} = \mu \mu_0 \vec{j} = \mu_0 (\vec{j} + \vec{j}')$
Поведение векторов на границе двух сред	
$E_{\tau 1} = E_{\tau 2}; D_{n1} = D_{n2};$ $D_{\tau 1} = D_{\tau 2}$	$B_{n1} = B_{n2}; H_{\tau 1} = H_{\tau 2}; \operatorname{div} \vec{B} = 0;$ $\operatorname{div} \vec{H} = 0; \operatorname{div} \vec{B} = \mu_0 \operatorname{div} \vec{J}$

Термины и формулы, выделенные красным цветом и рамкой, не являются общепризнанными.