FSL pre-processing

Neuroimaging workshop session #8

Outline

- Command line processing (bash scripting)
- Introduction to bash <u>https://peerherholz.github.io/workshop_weizmann/prerequisites/intro_to_shell.html</u>
- GUI: Follow this tutorial (https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/fMRI_04_Preprocessing.html)
- FMRIprep https://fmriprep.org/en/stable/

First pass

Preprocessing steps

Control

Constants and variables

- Input fMRI: sub-CC120182/ses-1/func/sub-CC120182_task-rest_bold.nii.gz
- Input anat: sub-CC120182/ses-1/anat/sub-CC120182_T1w.nii.gz
- Output directory: fsl_preproc_outputs
- Repetition time

fslval sub-CC120182/ses-1/func/sub-CC120182_task-rest_bold.nii.gz pixdim4

Extract volumes of functional data

Extract info "fslinfo"

fslinfo sub-CC120182/ses-1/func/sub-CC120182_task-rest_bold.nii.gz

Extract of one volume "fslroi"

Slice timing correction

Slice timing correction in FSL

slicetimer -i input_image.nii.gz -o output_func_data_st -r TR --odd

Motion in fMRI

Motion correction in FSL

mcflirt -in output_func_data_st -out output_func_data_mcf -plots -refvol 0

Plotting motion parameters

fsl_tsplot -i output_func_data_mcf.par -t "MCFLIRT rotation radians" -u 1 - start=1 -finish=3 -a x,y,z -w 640 -h 144 -o rot.png

BET on functional image

fslmaths output_func_data_mcf -Tmean mean_func

bet2 mean_func mask -f 0.35 -n -m

fslmaths output_func_data_mcf -mas mask_mask output_func_data_bet

fslmaths output_func_data_bet -Tmean mean_func

BET on structural image

fslreorient2std bet input_structural structural_brain –B –f 0.35

Segment BET image into 3 classes

fast –t 1 –n 3 –B –g –o structural_brain structural_brain

Registration – input images

Subject images

Mean functional

Structural

Structural brain

Standard templates

Registration methodology

https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/Preprocessing/Registration_Normalization.html

Registration – linear schematic

Mean functional to high resolution

Mean functional

Structural brain

High resolution to standard

Structural brain

Standard template

Registration – linear

Mean functional to high resolution subject brain

flirt -ref structural_brain.nii.gz -in mean_func.nii.gz -out meanfunc2highres -omat meanfunc2highres.mat -cost corratio -dof 6 -searchrx -90 90 -searchry -90 90 -interp trilinear

High resolution subject brain to standard

flirt -ref /usr/local/fsl/data/standard/MNI152_T1_2mm_brain -in structural_brain_restore.nii.gz -out highres2standard -omat highres2standard.mat -cost corratio -dof 12 -searchrx -90 90 -searchry -90 90 -searchrz -90 90 -interp trilinear

Registration – nonlinear schematic

High resolution to standard

Apply transformations to mean functional

Warp

output

Registration non-linear

High resolution subject brain to standard

```
fnirt --in=structural.nii.gz --aff=highres2standard.mat --
cout=highres2standard_warp --iout=highres2standard_fnirt --
jout=highres2standard_jac --config=T1_2_MNI152_2mm --
ref=/usr/local/fsl/data/standard/MNI152_T1_2mm --
refmask=/usr/local/fsl/data/standard/MNI152_T1_2mm_brain_mask --
warpres=10,10,10
```

applywarp --ref=/usr/local/fsl/data/standard/MNI152_T1_2mm_brain -in=mean_func.nii.gz --out=meanfunc2standard_w -warp=highres2standard_warp --premat=meanfunc2highres.mat

Registration – nonlinear schematic

High resolution to standard

Apply transformations to high resolution anatomical

Structural

Registration non-linear

Apply transformation to high resolution subject brain

applywarp --ref=/usr/local/fsl/data/standard/MNI152_T1_2mm_brain -- in=structural_brain --out=highres2standard_w --warp=highres2standard_warp

Final step in registration

applywarp --ref=/usr/local/fsl/data/standard/MNI152_T1_2mm -in=filtered_functional_data --warp=highres2standard_warp.nii.gz -out=registered_functional --premat=meanfunc2highres.mat --interp=trilinear

Steps not covered here

- Frame Displacement Estimation
- Confounds Extraction
- Bandpass filtering