1. Modular arithmetic.

A. Ushakov

MA503, September 7

Contents

This course provides an introduction to the theory of public key cryptography and to the mathematical ideas underlying that theory.

- Division with a remainder.
- Division is correctly defined.
- Divisibility.
- Properties of divisibility.
- Greatest common divisor.
- Euclidean algorithm.
- Bezout's identity.
- Integral linear combinations of a and b.
- Prime numbers.

- Properties of prime numbers.
- Prime power factorization.
- Fundamental theorem of arithmetic.
- Linear Diophantine equations. Examples.
- Least common multiple.
- Congruence modulo *n*. Properties.
- Congruence class.
- Arithmetic of congruences.

Integer numbers

Natural numbers are numbers used in counting, $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$.

The set of integer numbers consists of natural numbers, negative natural numbers and zero

$$\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$$

We work with two binary operations on \mathbb{Z} :

- addition, +
- multiplication, ·

The set \mathbb{Z} is naturally ordered, for $a, b \in \mathbb{Z}$:

$$a < b \Leftrightarrow b - a \in \mathbb{N}$$
.

Properties of integers

Properties of integers, for every $a,b,c\in\mathbb{Z}$	
(1) Associativity of addition	a + (b+c) = (a+b) + c
(2) Associativity of multiplication	a(bc) = (ab)c;
(3) Commutativity of addition	a+b=b+a;
(4) Commutativity of multiplication	ab = ba;
(5) Distributivity	a(b+c)=ab+ac;
(6) Properties of 0	$0+a=a,\ 0\cdot a=0;$
(7) Properties of 1	$1 \cdot a = a;$
(8) Properties of negation	-(-a) = a, $a(-b) = -(ab)$, $(-a)(-b) = ab$;
(9) No zero divisors	ab = 0 implies $a = 0$ or $b = 0$.
Properties of $\mathbb N$	
(10) Induction principle	$P(1) \land \forall i, \ P(i) \rightarrow P(i+1) \text{ implies } \forall i, \ P(i).$
(11) Well-ordering principle	Every nonempty subset of $\mathbb N$ has the least element.

Based on these axioms we develop divisibility theory for integers.

Division with a remainder

Let $a, b \in \mathbb{Z}$ and $b \neq 0$.

Definition

To **divide** a by b means to find $q, r \in \mathbb{Z}$ such that

$$a = b \cdot q + r$$
 and $0 \le r < |b|$. (1)

We call q the **quotient** and r the **remainder** of division.

• Dividing 7 by 3 we get the quotient 2 and the remainder 1 because

$$7 = 3 \cdot 2 + 1$$
 and $0 \le 1 < |3|$.

ullet Dividing -7 by 3 we get the quotient -3 and the remainder 2 because

$$-7 = 3 \cdot (-3) + 2$$
 and $0 \le 2 < |3|$.

(Remember that the remainder must be non-negative!)

ullet Dividing -7 by -3 we get the quotient 3 and the remainder 2 because

$$-7 = (-3) \cdot 3 + 2$$
 and $0 \le 2 < |-3|$.

Division by 0 makes no sense!

Division is possible!

Theorem

For any $a,b\in\mathbb{Z}$ with $b\neq 0$ there exists a unique pair $q,r\in\mathbb{Z}$ such that:

$$a = b \cdot q + r$$
 and $0 \le r < b$.

Proof. Assuming $a \ge 0$ and $b \ge 0$ (other cases are similar).

Existence:

- Define a "set of potential remainders" $S = \{a qb \mid q \in \mathbb{Z} \text{ and } a qb \geq 0\} \subseteq \mathbb{N} \cup \{0\}.$
- $a \in S \implies S \neq \emptyset \implies S$ contains the least element r.
- $r \in S$ \Rightarrow r = a qb for some $q \in \mathbb{Z}$ \Rightarrow a = qb + r.
- If $r \ge b$, then $r b = a (q + 1)b \ge 0$ belongs to S and is smaller than r. That contradicts our choice of r.
- Hence, r < b and (q, r) is a required pair.

Division is possible!

Theorem

For any $a,b\in\mathbb{Z}$ with $b\neq 0$ there exists a unique pair $q,r\in\mathbb{Z}$ such that:

$$a = b \cdot q + r$$
 and $0 \le r < b$.

Proof. Assuming $a \ge 0$ and $b \ge 0$ (other cases are similar).

Uniqueness:

- Assume that (q_1, r_1) and (q_2, r_2) satisfy (1).
- On the way to contrary assume that $r_1 \neq r_2$, e.g., $r_1 > r_2$. Then

$$a = q_1b + r_1 = q_2b_2 + r_2.$$

Hence,

$$r_1 - r_2 = (q_2 - q_1)b$$
 and $0 < r_1 - r_2 < b$,

which is impossible (b does not divide any integer in the set $\{1, \ldots, b-1\}$).

• Thus, $r_1 = r_2$ and $q_1 = q_2$.

Divisibility

Let $a, b \in \mathbb{Z}$ and $b \neq 0$.

Definition (Divisibility)

We say that b divides a and write $b \mid a$ if a = bq for some $q \in \mathbb{Z}$.

- b is a divisor (factor) of a;
- a is a multiple of b.

Every nontrivial $n \in \mathbb{Z}$ has finitely many divisors.

For instance:

- 6 has divisors $\pm 1, \pm 2, \pm 3, \pm 6$.
- -21 has divisors $\pm 1, \pm 3, \pm 7, \pm 21$.

Divisibility properties-I (can be skipped)

Proposition (Transitivity)

For any $a, b, c \in \mathbb{Z}$ if $a \mid b$ and $b \mid c$, then $a \mid c$;

Proposition

For any $a, b, c, d \in \mathbb{Z}$ if $a \mid b$ and $c \mid d$, then $ac \mid bd$;

Proposition

If $m \neq 0$, then for any $a, b \in \mathbb{Z}$ ($a \mid b \Leftrightarrow am \mid bm$);

Proof for $a \mid b \Rightarrow am \mid bm$:

$$a \mid b \Rightarrow b = qa \Rightarrow bm = q \cdot am \Rightarrow am \mid bm$$

Proof for $a \mid b \Leftarrow am \mid bm$: (proving the contropositive statement):

$$a \nmid b \Rightarrow b = qa + r$$
, s.t. $0 < r < a$
 $\Rightarrow mb = qam + rm$, s.t. $0 < rm < am$
 $\Rightarrow am \nmid bm$.

Divisibility properties-II

Proposition

For any $a, b \in \mathbb{Z}$ if $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.

Every nontrivial multiple b of a satisfies $|a| \leq |b|$:

$$\ldots, -4a, -3a, -2a, -a, 0, a, 2a, 3a, 4a, \ldots$$

Proposition

Let $c \in \mathbb{Z}$, $a_1, \ldots, a_n \in \mathbb{Z}$, and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$. If $c \mid a_i$ for every $i = 1, \ldots, n$, then $c \mid (\alpha_1 a_1 + \ldots + \alpha_n a_n)$.

$$c \mid a_1$$
 $a_1 = q_1c$ $\Rightarrow \alpha_1 a_1 + \ldots + \alpha_n a_n = \alpha_1 q_1 c + \ldots + \alpha_n q_n c = c(\alpha_1 q_1 + \ldots + \alpha_n q_n)$ $c \mid a_n$ $a_n = q_n c$

Greatest common divisor

Definition

d is a **common divisor** of a and b if $d \mid a$ and $d \mid b$.

Definition

d is the **greatest common divisor** of a and b if $d \mid a$ and $d \mid b$ and d is the greatest number with this property.

We can find gcd(a, b) using the definition for small a, b, namely, we can enumerate all divisors of a and b and choose the greatest common divisor.

- gcd(2,3) = 1,
- gcd(8, 12) = 4,
- gcd(-6, 12) = 6,
- $\gcd(-15, 120, 25) = 5,$
- gcd(0,0) is not defined because every nontrivial integer divides 0. (In some books gcd(0,0) = 0!)

For large a, b this approach is inefficient: it requires factorization of a and b which is computationally hard.

Euclidean algorithm

(Euclidean Lemma)

$$b = qa + r \implies \gcd(a, b) = \gcd(a, r).$$

d is a common divisor for $(a, b) \Leftrightarrow d$ is a common divisor for (a, b - qa).

(The Euclidean algorithm to compute gcd(a, b))

Assuming $|b| \ge |a|$

$$b = q_1 \cdot a + r_1$$
 \Rightarrow $gcd(a, b) = gcd(a, r_1),$ where $r_1 < |a| \le |b|$
 $a = q_2 \cdot r_1 + r_2$ $= gcd(r_2, r_1),$ where $r_2 < r_1 < |a|$
 $r_1 = q_3 \cdot r_2 + r_3$ $= gcd(r_2, r_3),$ where $r_3 < r_2 < r_1$

...

$$r_{k-2} = q_k \cdot r_{k-1} + r_k = 0$$
 = gcd $(r_{k-1}, 0) = r_{k-1}$.

For instance,
$$8 = 1 \cdot 5 + 3$$
 \Rightarrow $\gcd(8,5) = \gcd(3,5)$ $= \gcd(3,2)$ $= \gcd(1,2)$ $= \gcd(1,0) = 1$.

The number of steps k is bounded by $\log_2(|a|) + \log_2(|b|)$.

Bezout's identity

Bezout's identity claims that gcd(a, b) can be expressed as an integral linear combination of a and b.

Theorem (Bezout's identity)

For any $a, b \in \mathbb{Z}$ (not both trivial) $gcd(a, b) = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$!

E.g., for
$$a = 5, b = 8$$
 we have $gcd(5, 8) = 1 = (-3) \cdot 5 + 2 \cdot 8$ and so $\alpha = -3, \beta = 2$.

 α, β are not uniquely defined for a, b.

E.g., for a = 5, b = 8 we have

$$\gcd(5,8) = 1 = (-3) \cdot \frac{5}{5} + 2 \cdot \frac{8}{2} \qquad (\alpha = -3, \beta = 2)$$

$$= 5 \cdot \frac{5}{5} + (-3) \cdot \frac{8}{2} \qquad (\alpha = 5, \beta = -3)$$

$$= 13 \cdot \frac{5}{5} + (-8) \cdot \frac{8}{2} \qquad (\alpha = 13, \beta = -8)$$

$$= \text{etc.}$$

To find α and β one can use computations produced by the Euclidean algorithm.

See worked out examples below.

Bezout's identity: worked out example-I

Example

For a=8 and b=5, using the Euclidean algorithm compute gcd(8,5):

$$8 = 1 \cdot 5 + 3$$
 $\Rightarrow \gcd(8,5) = \gcd(3,5)$
 $5 = 1 \cdot 3 + 2$ $= \gcd(3,2)$
 $3 = 1 \cdot 2 + 1$ $= \gcd(1,2)$
 $2 = 2 \cdot 1 + 0$ $= \gcd(1,0) = 1$

Then, express 1 as an integral linear combination of 5 and 8:

$$\begin{aligned} 1 &= 1 \cdot 3 - 1 \cdot 2 & \text{(combination of 2 and 3)} \\ &= 1 \cdot 3 - 1 \cdot (5 - 1 \cdot 3) = (-1) \cdot 5 + 2 \cdot 3 & \text{(combination of 3 and 5)} \\ &= (-1) \cdot 5 + 2 \cdot (8 - 1 \cdot 5) = (-3) \cdot 5 + 2 \cdot 8 & \text{(combination of 5 and 8)}. \end{aligned}$$

Thus, $\alpha = 2$ and $\beta = -3$.

Be careful when you choose α and β . Remember that

- α is for a,
- β is for b.

Bezout's identity: worked out example-II

Example

For a = 10 and b = 17, using the Euclidean algorithm compute gcd(10, 17):

$$\begin{array}{lll} 17 = 1 \cdot 10 + 7 & \Rightarrow & \gcd(10, 17) = \gcd(10, 7) \\ 10 = 1 \cdot 7 + 3 & = \gcd(3, 7) \\ 7 = 2 \cdot 3 + 1 & = \gcd(3, 1) \\ 3 = 3 \cdot 1 + 0 & = \gcd(0, 1) = 1. \end{array}$$

Then, express 1 as an integral linear combination of 17 and 10:

$$\begin{split} 1 &= 1 \cdot 7 - 2 \cdot 3 & \text{(combination of 3 and 7)} \\ &= 1 \cdot 7 - 2 \cdot (10 - 1 \cdot 7) = (-2) \cdot 10 + 3 \cdot 7 & \text{(combination of 7 and 10)} \\ &= (-2) \cdot 10 + 3 \cdot (17 - 1 \cdot 10) = (-5) \cdot 10 + 3 \cdot 17 & \text{(combination of 10 and 17)}. \end{split}$$

Thus, $\alpha = -5$ and $\beta = 3$.

Integral linear combinations of a and b

Let $a, b \in \mathbb{Z}$ (not both trivial).

Q. What numbers can be expressed as integral linear combinations of a, b?

For instance, if a = 5 and b = 8, then:

- 0 = 0.5 + 0.8
- $1 = -3 \cdot 5 + 2 \cdot 8$
- $-1 = 3 \cdot 5 + -2 \cdot 8$
- $2 = -6 \cdot 5 + 4 \cdot 8$
- $-2 = 6 \cdot 5 + -4 \cdot 8$
- $3 = -1 \cdot 5 + 1 \cdot 8$

Every integer can be expressed as an integral linear combination of 5 and 8!

On the other hand, any integral linear combination of a=4 and b=6 is even. Hence, we cannot express odd numbers as integral linear combinations of 4 and 6!

Integral linear combinations of a and b

Fix $a, b \in \mathbb{Z}$. Let $c \in \mathbb{Z}$.

Theorem (Only multiples of gcd(a, b) can be expressed as $\alpha a + \beta b$)

$$c = \alpha a + \beta b$$
 for some $\alpha, \beta \in \mathbb{Z}$ \Leftrightarrow $gcd(a, b) \mid c$.

- " \Rightarrow " Suppose that $c = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$. We have
 - $gcd(a, b) \mid a \Rightarrow a = q_1 gcd(a, b)$.
 - $gcd(a, b) | b \Rightarrow b = q_2 gcd(a, b)$.
 - $\bullet \ c = \alpha \mathbf{a} + \beta \mathbf{b} = \alpha \mathbf{q}_1 \gcd(\mathbf{a}, \mathbf{b}) + \beta \mathbf{q}_2 \gcd(\mathbf{a}, \mathbf{b}) = \gcd(\mathbf{a}, \mathbf{b})(\alpha \mathbf{q}_1 + \beta \mathbf{q}_2).$
 - Therefore, $gcd(a, b) \mid c$.
- " \Leftarrow " Suppose that $gcd(a, b) \mid c$.
 - Then $c = q \gcd(a, b) \stackrel{\text{Bezout}}{=} q(\alpha a + \beta b) = q\alpha \cdot a + q\beta \cdot b$
 - So, c is an integral linear combination of a and b.

Corollary

gcd(a,b) is the least positive integer of the form $\alpha a + \beta b$

Integers of the form $\alpha a + \beta b$ are multiples of gcd(a, b):

$$\dots$$
, $-2\gcd(a,b)$, $-\gcd(a,b)$, 0, $\gcd(a,b)$, $2\gcd(a,b)$, $3\gcd(a,b)$, \dots

Integral linear combinations of a and b

Fix $a, b \in \mathbb{Z}$. Let $c \in \mathbb{Z}$.

Theorem (Only multiples of $\gcd(a,b)$ can be expressed as lpha a + eta b

$$c = \alpha a + \beta b$$
 for some $\alpha, \beta \in \mathbb{Z} \quad \Leftrightarrow \quad \gcd(a, b) \mid c$

" \Rightarrow " Suppose that $c = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$. We have

- $gcd(a, b) \mid a \Rightarrow a = q_1 gcd(a, b)$.
- $gcd(a, b) \mid b \Rightarrow b = q_2 gcd(a, b)$.
- $c = \alpha a + \beta b = \alpha q_1 \gcd(a, b) + \beta q_2 \gcd(a, b) = \gcd(a, b)(\alpha q_1 + \beta q_2).$
- Therefore, $gcd(a, b) \mid c$.
- " \Leftarrow " Suppose that $gcd(a, b) \mid c$.
 - Then $c = q \gcd(a, b) \stackrel{Bezout}{=} q(\alpha a + \beta b) = q\alpha \cdot a + q\beta \cdot b$
 - ullet So, c is an integral linear combination of a and b.

Corollary

gcd(a, b) is the least positive integer of the form $\alpha a + \beta b$.

Integers of the form $\alpha a + \beta b$ are multiples of gcd(a, b):

$$\ldots$$
, $-2\gcd(a,b)$, $-\gcd(a,b)$, 0, $\gcd(a,b)$, $2\gcd(a,b)$, $3\gcd(a,b)$, \ldots

 $\gcd(a,b)$ is the least positive number in that list. $\leftarrow \square \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \rightarrow \bigcirc \rightarrow$

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors.

If n > 1 is not prime, then we say it is **composite**.

Prime numbers: $2, 3, 5, 7, 11, 13, 17, 19, \dots$

Definition

 $a, b \in \mathbb{Z}$ are called **coprime** if gcd(a, b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance,

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

Theorem

- a, b are coprime $\Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- a,b are coprime $\iff 1=\gcd(a,b) \iff 1=lpha a+eta b$ for some $lpha,eta\in\mathbb{Z}$.

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors. If n > 1 is not prime, then we say it is **composite**.

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, . . .

Definition

 $a, b \in \mathbb{Z}$ are called **coprime** if gcd(a, b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance,

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

Theorem

- a, b are coprime \Leftrightarrow 1 = α a + β b for some $\alpha, \beta \in \mathbb{Z}$.
- a, b are coprime $\Leftrightarrow 1 = \gcd(a, b) \Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors.

If n > 1 is not prime, then we say it is **composite**

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, . . .

Definition

 $a, b \in \mathbb{Z}$ are called **coprime** if gcd(a, b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

Theorem

- a, b are coprime $\Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- a, b are coprime $\Leftrightarrow 1 = \gcd(a, b) \Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c.

$$a, b$$
 are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$

$$\Rightarrow$$
 $c = \alpha a c + \beta b c$ is divisible by a .

Lemma

Assume p is prime and $a \in \mathbb{Z}$. Then either p | a or a and p are coprime.

$$p$$
 is prime \Rightarrow $\gcd(a,p) = \begin{cases} 1 & \text{if } p \nmid a \Rightarrow a \text{ and } p \text{ are coprime,} \\ p & \text{if } p \mid a \end{cases}$

Lemma

Assume p is prime and b, $c \in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

- (Case-I) $p \mid b \Rightarrow$ we are done.
- (Case-II) $p \nmid b \Rightarrow p$ and b are coprime $\Rightarrow p \mid c$.

Corollary

Let p be a prime. If $p\mid a_1\ldots a_n$, then $p\mid a_i$ for some $i=1,\ldots,n$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c

$$a,b$$
 are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha,\beta \in \mathbb{Z}$ $\Rightarrow c = \alpha a c + \beta b c$ is divisible by a .

Lemma

Assume p is prime and $a \in \mathbb{Z}$. Then either $p \mid a$ or a and p are coprime.

$$p ext{ is prime } \Rightarrow \gcd(a,p) = \begin{cases} 1 & \text{if } p \nmid a \Rightarrow a \text{ and } p \text{ are coprime,} \\ p & \text{if } p \mid a \end{cases}$$

Lemma

Assume p is prime and b, c $\in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

- (Case-I) $p \mid b \Rightarrow$ we are done.
- (Case-II) $p \nmid b \Rightarrow p$ and b are coprime $\Rightarrow p \mid c$.

Corollary

Let p be a prime. If $p \mid a_1 \dots a_n$, then $p \mid a_i$ for some $i = 1, \dots, n$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c

$$a, b$$
 are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$
 $\Rightarrow c = \alpha ac + \beta bc$ is divisible by a .

Lemma

Assume p is prime and $a \in \mathbb{Z}$. Then either p | a or a and p are coprime.

$$p$$
 is prime \Rightarrow $\gcd(a,p) = \begin{cases} 1 & \text{if } p \nmid a \Rightarrow a \text{ and } p \text{ are coprime,} \\ p & \text{if } p \mid a \end{cases}$

Lemma

Assume p is prime and b, $c \in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

- (Case-I) $p \mid b \Rightarrow$ we are done.
- (Case-II) $p \nmid b \Rightarrow p$ and b are coprime $\Rightarrow p \mid c$.

Corollary

Let p be a prime. If $p \mid a_1 \dots a_n$, then $p \mid a_i$ for some $i = 1, \dots, n$.

Prime power factorization

Definition

Suppose that $n = p_1^{r_1} \dots p_k^{r_k}$, where p_i are distinct primes and $r_i \in \mathbb{N}$. The product $p_1^{r_1} \dots p_k^{r_k}$ is called the **prime power factorization** of n.

- PPF(2) = 2,
- $PPF(15) = 3 \cdot 5$,
- PPF(28) = $2^2 \cdot 7$,
- PPF(960) = $2^6 \cdot 3 \cdot 5$.

Lemma

For any n > 1 there exists a prime p such that $p \mid n$.

It is easy to see that the least number greater than 1 dividing n must be prime.

There are infinitely many prime numbers.

Fundamental theorem of arithmetic

Theorem

Each integer n > 1 has a prime power factorization (PPF)

$$n=p_1^{r_1}\dots p_k^{r_k},$$

where p_i are distinct primes and $r_i \in \mathbb{N}$. This factorization is unique up to a permutation of factors.

Proof.

Existence of PPF(n)**.** Sufficient to express n as a product of prime numbers.

- If n is prime, then PPF(n) = n.
- Otherwise, $n = p_1 n_1$, for some prime p_1 and $1 < n_1 < n$. If n_1 is prime, then we are done
- Otherwise, $n = p_1p_2n_2$, for some prime p_2 and $1 < n_2 < n_1$. If n_2 is prime, then we are done
- etc.
- \bullet Eventually, we express n as a product of prime numbers.

Fundamental theorem of arithmetic

Theorem

Each integer n > 1 has a prime power factorization (PPF)

$$n=p_1^{r_1}\dots p_k^{r_k},$$

where p_i are distinct primes and $r_i \in \mathbb{N}$. This factorization is unique up to a permutation of factors.

Proof.

Uniqueness. Sufficient to prove that equal products of prime numbers

$$p_1 \dots p_s = q_1 \dots q_t$$

have the same factors (up to a permutation).

- p_1 is prime and divides $q_1 \dots q_t$, hence it divides some q_i (wma i=1). But q_1 is prime, which means that $p_1=q_1$. Remove p_1 and q_1 from LHS and RHS to get $p_2 \dots p_s=q_2 \dots q_t$.
- p_2 is prime and divides $q_2 \dots q_t$, Arguing as before $p_2 = q_j$ for some j (wma j = 2).
- Continue the same way and see that the factors on the left and on the right are the same

Linear Diophantine equations

A Diophantine equation is an equation where only integer solutions are allowed. An equation ax + by = c where $a, b, c \in \mathbb{Z}$ are fixed integers and x, y are unknowns is called a linear Diophantine equation.

$\mathsf{Theorem}$

Let $d = \gcd(a, b)$. A Diophantine equation ax + by = c has a solution if and only if $d \mid c$ in which case there are infinitely many solutions described as follows:

$$\begin{cases} x = x_0 + \frac{b}{d}n, \\ y = y_0 - \frac{a}{d}n, \end{cases} n \in \mathbb{Z},$$

where (x_0, y_0) is a particular solution.

For instance, later we will find a general solution for the equation 10x + 16y = 4:

$$\begin{cases} x = -6 + 8n, \\ y = 4 - 5n, \end{cases}$$

Each value of n defines x and y, e.g.

- $n = -1 \implies x = -14, v = 9$
- \bullet $n=0 \Rightarrow x=-6, y=4$
- $\bullet \quad n=1 \quad \Rightarrow \quad x=2, \ \ v=-1$
- $n = 2 \implies x = 10, y = -6$

So, the formula for x,y is a parametrization of the set of solutions using a parameter n.

Linear Diophantine equations: proof

Theorem

Let $d = \gcd(a, b)$. A Diophantine equation ax + by = c has a solution if and only if $d \mid c$ in which case there are infinitely many solutions described as follows:

$$\left\{ \begin{array}{l} x = x_0 + \frac{b}{d}n, \\ y = y_0 - \frac{a}{d}n, \end{array} \right. \quad n \in \mathbb{Z},$$

where (x_0, y_0) is a particular solution.

The pairs (x, y) defined above are solutions because

$$ax_0 + by_0 = c$$
 \Rightarrow $a\left(x_0 + \frac{b}{d}n\right) + b\left(y_0 - \frac{a}{d}n\right) = c$.

Conversely, if (x, y) is a solution, then

$$\begin{aligned} ax + by &= c &\Rightarrow & a(x - x_0) + b(y - y_0) = 0 \\ &\Rightarrow & a(x - x_0) = b(y_0 - y) \\ &\Rightarrow & \frac{a}{d}(x - x_0) = \frac{b}{d}(y_0 - y) & \text{where } \gcd(\frac{a}{d}, \frac{b}{d}) = 1 \\ &\Rightarrow & \frac{b}{d} \mid x - x_0 &\Rightarrow & x = x_0 + \frac{b}{d}n \\ &\Rightarrow & y = y_0 - \frac{a}{d}n. \end{aligned}$$

Linear Diophantine equations: examples

- 1. Find a general solution for the linear Diophantine equation 10x + 16y = 4.
 - Use Euclidean algorithm to find gcd(10, 16) = 2.
 - (Bezout identity) $-3 \cdot 10 + 2 \cdot 16 = 2$.
 - Multiply coefficients by 2 to get $-6 \cdot 10 + 4 \cdot 16 = 4$.
 - That gives a particular solution $x_0 = -6$, $y_0 = 4$.
 - Finally, form a general solution

$$\begin{cases} x = -6 + \frac{16}{2}n, \\ y = 4 - \frac{10}{2}n, \end{cases} \text{ which is } \begin{cases} x = -6 + 8n, \\ y = 4 - 5n, \end{cases}$$

- 2. Find a general solution for the linear Diophantine equation $x \cdot 19 + y \cdot 53 = -3$.
 - Use Euclidean algorithm to find gcd(19,53) = 1.
 - (Bezout identity) $-39 \cdot 19 + 14 \cdot 53 = 1$.
 - Multiply coefficients by -3 to get $117 \cdot 19 42 \cdot 53 = -3$.
 - That gives a particular solution $x_0 = 117$, $y_0 = -42$.
 - Finally, form a general solution

$$\begin{cases} x = 117 + 53n \\ y = -42 - 19n \end{cases}$$

Least common multiple

Definition

The **least common multiple** for a and b denoted by lcm(a, b) is the least positive integer m such that

$$a \mid m$$
 and $b \mid m$.

Let $a=p_1^{a_1}\dots p_m^{a_m}$ and $b=p_1^{b_1}\dots p_m^{b_m}$, where p_1,\dots,p_m are distinct primes and $a_1,\dots,a_m,b_1,\dots,b_m$ are non-negative integers. Then

$$ab = p_1^{a_1 + b_1} \dots p_m^{a_m + b_m}$$
 $\gcd(a, b) = p_1^{\min(a_1, b_1)} \dots p_m^{\min(a_m, b_m)}$ $\operatorname{lcm}(a, b) = p_1^{\max(a_1, b_1)} \dots p_m^{\max(a_m, b_m)}.$

Since $a + b = \min(a, b) + \max(a, b)$ for any $a, b \in \mathbb{Z}$, the following theorem holds.

Theorem

$$ab = \gcd(a, b) \operatorname{lcm}(a, b).$$

One can use the formula above to efficiently compute lcm(a, b). For instance,

$$\mathsf{lcm}(60,45) = \frac{60 \cdot 45}{\mathsf{gcd}(60,45)}.$$

That reduces computing lcm to Euclidean algorithm - > 4 - >

A binary relation on \mathbb{Z} : congruence modulo n

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.

Definition

a is congruent to b modulo n if a and b give the same remainder when divided by n.

(Notation for congruence)

- $a \equiv b \mod n$.
- \bullet $a \equiv_n b$.

For instance:

- $-4 \equiv_3 2 \equiv_3 8$ because when we divide -4, 2, or 8 by 3 we get the same remainder 2;
- $-1 \equiv_4 3 \equiv_4 11$. because when we divide -1, 3, or 11 by 4 we get the same remainder 3.

Congruences: properties

Proposition

$$a \equiv_n b \Leftrightarrow n \mid (b-a).$$

$$a \equiv_n b \quad \Rightarrow \quad a = q_1 n + r \text{ and } b = q_2 n + r \text{ for some } q_1, q_2, r \in \mathbb{Z}$$

$$\Rightarrow \quad b - a = n(q_2 - q_1) \quad \Rightarrow \quad n \mid b - a.$$
 $a \not\equiv_n b \quad \Rightarrow \quad a = q_1 n + r_1 \text{ and } b = q_2 n + r_2 \text{ for some } q_1, q_2, r_1 < r_2 \in \mathbb{Z}$

$$\Rightarrow \quad b - a = n(q_2 - q_1) + (r_2 - r_1) \quad \Rightarrow \quad n \nmid b - a.$$

Proposition

 \equiv_n is an equivalence relation on \mathbb{Z} .

- (R) $a \equiv_n a$ because $n \mid (a a)$.
- (S) $a \equiv_n b \Rightarrow n \mid (b-a) \Rightarrow n \mid (a-b) \Rightarrow b \equiv_n a$.
- $(\mathsf{T}) \begin{array}{c} \mathsf{a} \equiv_{\mathsf{n}} \mathsf{b} \\ \mathsf{b} \equiv_{\mathsf{n}} \mathsf{c} \end{array} \Rightarrow \begin{array}{c} \mathsf{n} \mid \mathsf{b} \mathsf{a} \\ \mathsf{n} \mid \mathsf{c} \mathsf{b} \end{array} \Rightarrow \mathsf{n} \mid (\mathsf{b} \mathsf{a}) + (\mathsf{c} \mathsf{b}) = \mathsf{c} \mathsf{a} \Rightarrow \mathsf{a} \equiv_{\mathsf{n}} \mathsf{c}.$

Definition

Denote by $[a]_n$ the equivalence class of a, called the **congruence class** of a modulo n.

Congruence class modulo n

By definition,

$$[a]_n = \{b \in \mathbb{Z} \mid b \equiv_n a\} = \{b \in \mathbb{Z} \mid n \mid b - a\}$$

$$= \{b \in \mathbb{Z} \mid b - a = qn \text{ for some } q \in \mathbb{Z}\}$$

$$= \{b \in \mathbb{Z} \mid b = a + qn \text{ for some } q \in \mathbb{Z}\}$$

$$= \{\dots, a - 2n, a - n, a, a + n, a + 2n, \dots\},$$

which is the set of all numbers b that give the same remainder as a when divided by n.

Proposition

There are exactly n distinct congruence classes modulo n:

$$[0]_n, [1]_n, \ldots, [n-1]_n.$$

Proof.

There are exactly *n* remainders of division by *n*: 0, 1, 2, ..., n-1.

 $0, 1, 2, \ldots, n-1.$

By definition, $[a]_n$ is the set on numbers that are the same as a modulo n. So, we can think that $[a]_n$ is a number modulo n.

Definition

$$\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}.$$

Congruence classes

For instance, there are exactly 5 classes modulo 5:

- $\bullet \ [0]_5 = \{\ldots, -10, -5, 0, 5, 10, \ldots\} = [5]_5 = [10]_5 = \ldots$
- $\bullet \ [1]_5 = \{\ldots, -9, -4, 1, 6, 11, \ldots\} = [6]_5 = [11]_5 = \ldots$
- $\bullet \ [2]_5 = \{\ldots, -8, -3, 2, 7, 12, \ldots\} = [7]_5 = [12]_5 = \ldots;$
- $[3]_5 = {\ldots, -7, -2, 3, 8, 13, \ldots} = [8]_5 = [13]_5 = \ldots;$
- $\bullet \ \ [4]_5=\{\ldots,-6,-1,4,9,14,\ldots\}=[9]_5=[14]_5=\ldots.$

Proposition

The least non-negative number in $[a]_n$ is the remainder of division of a by n.

 $[a]_n \in \mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$ and so $[a]_n = [r]_n$ for some $0 \le r < n$ which must be the remainder of division of a by n.

Arithmetic of congruences

Define binary operations + and \cdot on \mathbb{Z}_n as follows:

$$[a]+[b]=[a+b] \quad \text{ and } \quad [a]\cdot [b]=[ab].$$

For instance,

$$[2]_6 + [5]_6 = [7]_6$$

$$[3]_6 \cdot [5]_6 = [15]_6$$

$$[4]_6 + [-7]_6 = [-3]_6$$

$$[4]_6 \cdot [-7]_6 = [-28]_6.$$

Q. What can go wrong with our definition of + and \cdot ?

- $+, \cdot$ are operations on congruence classes from \mathbb{Z}_n .
- \bullet But, + and \cdot are defined using representatives of classes.

Now, imagine the following situation:

- $[a_1] = [a_2],$
- $[b_1] = [b_2]$,
- but $[a_1] + [b_1] \neq [a_2] + [b_2]$,

i.e., sums of equal classes are different. In that case we would say that + is not well-defined.

Arithmetic of congruences: well-definedness

+ is well-defined on \mathbb{Z}_n .

Indeed, for any $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ we have

$$\begin{aligned}
[a_1] &= [a_2] \\
[b_1] &= [b_2]
\end{aligned}
\Rightarrow \begin{array}{l} n \mid (a_2 - a_1) \\
n \mid (b_2 - b_1)
\end{aligned}
\Rightarrow n \mid (a_2 - a_1) + (b_2 - b_1) = (a_2 + b_2) - (a_1 + b_1)$$

$$\Rightarrow [a_1 + b_1] = [a_2 + b_2].$$

· is well-defined on \mathbb{Z}_n .

Indeed, for any $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ we have

$$\begin{aligned}
[a_1] &= [a_2] \\
[b_1] &= [b_2]
\end{aligned}
\Rightarrow
\begin{aligned}
n \mid (a_2 - a_1) \\
n \mid (b_2 - b_1)
\end{aligned}
\Rightarrow
n \mid a_2(b_2 - b_1) + b_1(a_2 - a_1) = a_2b_2 - a_1b_1
\end{aligned}
\Rightarrow
[a_1b_1] &= [a_2b_2].$$

Arithmetic of congruences: properties

For every $[a],[b],[c] \in \mathbb{Z}_n$

Properties of $+_n$	
[0] is the trivial element	[0] + [a] = [a] + [0] = [a]
[-a] is the inverse of $[a]$	[a] + [-a] = [-a] + [a] = [0]
$+_n$ is associative	([a] + [b]) + [c] = [a] + ([b] + [c])
$+_n$ is commutative	[a] + [b] = [b] + [a]
Properties of ·n	
[1] is the unity	$[1] \cdot [a] = [a] \cdot [1] = [a]$
·n is associative	$([a] \cdot [b]) \cdot [c] = [a] \cdot ([b] \cdot [c])$
· _n is commutative	$[a] \cdot [b] = [b] \cdot [a]$
distributivity	[a]([b] + [c]) = [a][b] + [a][c]

Proofs are very straightforward. For instance,

[0] is the trivial element:
$$[0] + [a] = [a] + [0] = [a]$$

$$[0] + [a] = [0 + a] = [a] = [a + 0] = [a] + [0] = [a + 0]$$

$$[-a]$$
 is the inverse of $[a]$: $[a] + [-a] = [-a] + [a] = [0]$

$$[-a] + [a] = [-a + a] = [0] = [a - a] = [a] + [-a] = [a + a]$$

$$+_n$$
 is associative: $([a] + [b]) + [c] = [a] + ([b] + [c])$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + ([b + c]) = [a] + ([b] + [c])$$

Examples: Working with numbers modulo n

We can use congruences to compute remainders of division. For instance

Compute
$$r = (34 \cdot 17) \% 29$$

- \bullet We can compute the product 34 \cdot 17 and then divide by 29.
- ullet But, to avoid long multiplication we can consider the congruence class [34 \cdot 17]₂₉

$$[34 \cdot 17] = [34] \cdot [17]$$
$$= [5] \cdot [-12]$$
$$= [-60]$$
$$= [27].$$

Hence, r = 27. (Recall that r is the least non-negative number in $[34 \cdot 17]_{29}$)

Remark. We can do the same computations without classes:

$$34 \cdot 17 \equiv 5 \cdot (-12)$$
$$\equiv -60$$
$$\equiv 27.$$

That replaces = with \equiv .

Examples: Working with numbers modulo n

Compute 2¹⁰⁰ % 7.

The modulus is small. We can compute several powers of 2 modulo 7 until we get 1

$$2^1 \equiv_7 2$$
, $2^2 \equiv_7 4$, $2^3 \equiv_7 1$.

But then

$$2^{100} = (2^3)^{33} \cdot 2$$
 (exponentiation properties)
 $\equiv 1^{33} \cdot 2 = 2$ (replacing 2^3 with 1)

Hence, 2 is the remainder of division of 2^{100} by 7.

Prove that $7 \mid (5^{2n} + 3 \cdot 2^{5n-2})$ for every $n \in \mathbb{N}$.

We can show that $5^{2n} + 3 \cdot 2^{5n-2} \equiv_7 0$ directly as follows:

$$5^{2n} + 3 \cdot 2^{5n-2} = 25^{n} + 3 \cdot 8 \cdot 2^{5n-5}$$

$$\equiv_{7} 4^{n} + 3 \cdot 2^{5(n-1)}$$

$$= 4 \cdot 4^{n-1} + 3 \cdot 32^{n-1}$$

$$= 4 \cdot 4^{n-1} + 3 \cdot 4^{n-1} = 7 \cdot 4^{n-1} \equiv_{7} 0.$$

(One can also solve this problem using induction.)