This problem set covers material from Week 8, dates 4/07- 4/11. Unless otherwise noted, all problems are taken from the textbook. Problems can be found at the end of the corresponding chapter.

Instructions: Write or type complete solutions to the following problems and submit answers to the corresponding Canvas assignment. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A general rubric for homework problems appears on the final page of this assignment.

Monday 4/07

- 1. 6.10 Note, you don't have to re-prove things that we've already shown! If we've shown something before, you can simply reference the result here.
- 2. We're going to set-up the calculation of the skewness of the $\text{Exp}(\lambda)$ distribution. However, we will not finish the calculation because it involves integration by parts several times. You'll find the skew in a later problem!
 - (a) Let $X \sim \text{Exp}(\lambda)$. Define Y as the standardized version of X, so $Y = \frac{X \mu}{\sigma}$ where $\mu = \mathbb{E}[X]$ and $\sigma = \text{SD}(X)$ (use the appropriate mean and SD for this distribution). Find the PDF of Y (don't forget the support).
 - (b) Use part (a) to set-up the calculation for Skew(X). No need to evaluate the integral, but simply appreciate that you don't want to evaluate it!

Wednesday 4/09

3. The continuous random variable L has the Laplace distribution if its PDF is

$$f_L(l) = \frac{1}{2}e^{-|l|}, \qquad l \in \mathbb{R}$$

- (a) Find the MGF of the Laplace distribution. Don't forget to define where it is finite.
- (b) Let $X, Y \stackrel{\text{iid}}{\sim} \text{Exp}(1)$. Define L = X Y. Use MGFs to show that the distribution of L is Laplace.
- 4. Suppose $X_i \stackrel{\text{indep}}{\sim} N(\mu_i, \sigma_i^2)$ for $i = 1, \dots, n$.
 - (a) Define the r.v. $Y = \sum_{i=1}^{n} X_i$. Use MGFs to find the exact distribution of Y.
 - (b) Now suppose that the $\mu_i = \mu$ and $\sigma_i^2 = \sigma^2$ for all i. Define the random variable $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Find the exact distribution of \bar{X} .
 - (c) In 1-2 sentences, clearly state what (a) and (b) tell us.

- Due: Tuesday 4/15, 11:59pm
- 5. We will see that sometimes, we can get the moments of a distribution directly from the MGF without needing to take derivatives.

For this problem, let $X \sim \text{Exp}(\lambda)$.

- (a) We found that $M_X(t) = \frac{\lambda}{\lambda t}$ for $t < \lambda$. Working backwards, find a Taylor series representation of this $M_X(t)$. That is, find the form of the coefficients a_n such that $M_X(t) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$.
- (b) What are these a_n equivalent to?!
- (c) Now, let's re-find the skew of an $\text{Exp}(\lambda)$ distribution. Starting with the definition of skew, use your work from (a) and (b) to re-find the skew. (You should get the same value as in 2b!)

Friday 4/11

None!

Due: Tuesday 4/15, 11:59pm

General rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no
	doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor
	arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key
	justification for why the solution is valid. Alternatively, the solution
	is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant com-
	ponent of the problem or makes a significant mistake. Alternatively,
	in a multi-part problem, a majority of the solutions are correct and
	well-written, but one part is missing or is significantly incorrect.
2	The solution is either correct but not adequately written, or it is
	adequately written but overlooks a significant component of the
	problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Al-
	ternatively, the solution briefly indicates the correct answer, but
	provides no further justification.
0	Either the solution is missing entirely, or the author makes no non-
	trivial progress toward a solution (i.e. just writes the statement of
	the problem and/or restates given information).
7.7	
Notes:	For problems with multiple parts, the score represents a holistic
	review of the entire problem. Additionally, half-points may be used
77	if the solution falls between two point values above.
Notes:	For problems with code, well-written means only having lines of
	code that are necessary to solving the problem, as well as presenting
	the solution for the reader to easily see. It might also be worth
	adding comments to your code.