Nadia Chirkova

Gaussian processes

2021

Sampling points from a distribution

Sampling points from a multivariate distribution

 $(x_1, x_2) \sim p(x_1, x_2)$

 $x \sim p(x), x \in \mathbb{R}^2$

2-dimensional distribution

... n-dimensional distribution:

$$(x_1, \dots, x_n) \sim p(x_1, \dots, x_n)$$

 $x \sim p(x), x \in \mathbb{R}^n$

Multivariate normal (Gaussian) distribution

$$\mathcal{N}(\mu, \Sigma) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)), \qquad \begin{array}{c} x \in \mathbb{R}^d \\ \mu \in \mathbb{R}^d \\ \Sigma \in \mathbb{R}^{d \times d} \end{array}$$

Images from https://medium.com/ming-learns-thing/machine-learning-bayesian-linear-regression-f160c4eaef99, C. Bishop. Pattern Recognition and Machine Learning

Multivariate normal (Gaussian) distribution

$$\mathcal{N}(\mu, \Sigma) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)), \qquad \begin{aligned} x \in \mathbb{R}^d \\ \mu \in \mathbb{R}^d \end{aligned}$$

Images from https://medium.com/ming-learns-thing/machine-learning-bayesian-linear-regression-f160c4eaef99, C. Bishop. Pattern Recognition and Machine Learning

Sampling functions from a process

Multivariate distribution
— sample **points**

each line is a sample from the process

Sampling functions from a process

When we plot a function in python, we define a function as a sequence of points

each line is a sample from the process

Process

Gaussian process

 $f(x) \sim GP(m(x), k(x, x')) \qquad f$ $m(x) \qquad - \text{ mean function}$ $k(x, x') \qquad - \text{ covariance (or kernel) function}$ (x may be a vector in general case)

Gaussian process

$$f(x) \sim GP(m(x), k(x, x'))$$

m(x) — mean function

k(x, x') — covariance (or kernel) function

(x may be a vector in general case)

Definition of Gaussian process:

every finite set of function values has a multivariate normal distribution

$$\forall n \quad \forall (x_1, \dots, x_n) \quad (f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = \{m(x_i)\}_{i=1}^n \quad \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$$

$$f(x) \sim GP(m(x), k(x, x'))$$

 $m(x) = 0$
 $k(x, x') = \sigma^2[x = x']$
[condition] = 1 if condition is True else 0

$$f(x) \sim GP(m(x), k(x, x'))$$
$$m(x) = 0$$

$$k(x, x') = \sigma^2[x = x']$$
[condition] = 1 if condition is True else 0

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = 0 \qquad \Sigma = \sigma^2 I$

$$f(x) \sim GP(m(x), k(x, x'))$$

 $m(x) = 0$
 $k(x, x') = \sigma^2[x = x']$
[condition] = 1 if condition is True else 0

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = 0$ $\Sigma = \sigma^2 I$
 $p(f(x_1), \dots, f(x_n)) = \prod_{i=1}^n \mathcal{N}(0, \sigma^2)$

(all x are independent on each other)

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = \sigma^{2}[x = x']$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = 0$ $\Sigma = \sigma^2 I$
 $p(f(x_1), \dots, f(x_n)) = \prod_{i=1}^n \mathcal{N}(0, \sigma^2)$

(all x are independent on each other)

for any x f(x) is sampled independently

Example 2: constant function

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = C$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{C\}_{i,j=1}^{n,n}$$

Example 2: constant function

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = C$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{C\}_{i,j=1}^{n,n}$$

$$\begin{aligned}
&\forall i \neq j \\
&\operatorname{Corr}(f(x_i), f(x_j)) = \frac{\operatorname{Cov}(f(x_i), f(x_j))}{\sqrt{\operatorname{Var}(f(x_i))\operatorname{Var}(f(x_j))}} = \frac{C}{\sqrt{C}^2} = 1 \\
&\operatorname{Var}(f(x_i)) = \operatorname{Var}(f(x_j)) = C, \quad \mathbb{E}f(x_i) = \mathbb{E}f(x_j) = 0
\end{aligned}$$

Example 2: constant function

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = C$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{C\}_{i, i=1}^{n, n}$$

$$\begin{aligned}
&\forall i \neq j \\ &\operatorname{Corr}(f(x_i), f(x_j)) = \frac{\operatorname{Cov}(f(x_i), f(x_j))}{\sqrt{\operatorname{Var}(f(x_i))\operatorname{Var}(f(x_j))}} = \frac{C}{\sqrt{C}^2} = 1 \\ &\operatorname{Var}(f(x_i)) = \operatorname{Var}(f(x_j)) = C, \quad \mathbb{E}f(x_i) = \mathbb{E}f(x_j) = 0
\end{aligned}$$

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$$

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$$

if
$$||x_i - x_j|| \approx 0 \implies \Sigma_{ij} \approx \sigma^2 = \Sigma_{ii} = \Sigma_{jj} \implies f(x_i) \approx f(x_j)$$

if $||x_i - x_j|| \gg 0 \implies \Sigma_{ij} \approx 0$, $f(x_i)$ and $f(x_j)$ are not correlated

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$$

if
$$||x_i - x_j|| \approx 0 \quad \Rightarrow \quad \Sigma_{ij} \approx \sigma^2 = \Sigma_{ii} = \Sigma_{jj} \quad \Rightarrow \quad f(x_i) \approx f(x_j)$$

if $||x_i - x_j|| \gg 0$ \Rightarrow $\Sigma_{ij} \approx 0$, $f(x_i)$ and $f(x_j)$ are not correlated

$$f(x) \sim GP(m(x), k(x, x'))$$

$$m(x) = 0$$

$$k(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

$$(f(x_1), \dots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = 0 \qquad \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$$

 σ^2 defines the "height" of the function ℓ^2 defines the frequency of fluctuations

 ℓ^2 defines the frequency of fluctuations

More kernels

Sum-kernel

Sum-kernel (multidimensional case):

$$k(x, x') = x^{T} x' + \sigma_1^2 \exp\left(-\frac{||x - x'||^2}{2\ell^2}\right) + \sigma_2^2 [x = x'] + \sigma_3^2$$

 $x, x' \in \mathbb{R}^d, d$ – number of features

Sampling functions from a process

Multivariate distribution
— sample **points**

Process -sample functions f(x) $f(x) \sim GP(m(x), k(x, x'))$

each line is a sample from the process

Given: (1) training data and (2) prior Gaussian process over prediction functions a(x)

Training data ● ● :

$$X^{tr}=\{x_i^{tr}\}_{i=1}^N,\,x_i^{tr}\in\mathbb{R}^d \text{ --- input data}$$

$$Y^{tr}=\{y_i^{tr}\}_{i=1}^N,\,y_i^{tr}\in\mathbb{R} \text{ --- targets}$$

N – number of objects, d – number of features

Given: (1) training data and (2) prior Gaussian process over prediction functions a(x)

Training data ● ● :

$$X^{tr}=\{x_i^{tr}\}_{i=1}^N,\,x_i^{tr}\in\mathbb{R}^d \text{ --input data}$$

$$Y^{tr}=\{y_i^{tr}\}_{i=1}^N,\,y_i^{tr}\in\mathbb{R} \text{ ---targets}$$

N – number of objects, d – number of features

Test points ○ ○ ○ (any set of points):

$$X^{te} = \{x_i^{te}\}_{i=1}^M, x_i^{te} \in \mathbb{R}^d$$

Given: (1) training data and (2) prior Gaussian process over prediction functions a(x)

Training data ● ● :

$$X^{tr}=\{x_i^{tr}\}_{i=1}^N,\,x_i^{tr}\in\mathbb{R}^d \text{ --- input data}$$

$$Y^{tr}=\{y_i^{tr}\}_{i=1}^N,\,y_i^{tr}\in\mathbb{R} \text{ --- targets}$$

N – number of objects, d – number of features

Test points • • • (any set of points):

$$X^{te} = \{x_i^{te}\}_{i=1}^M, x_i^{te} \in \mathbb{R}^d$$

Find:

$$p(a(x_1^{te}), \dots, a(x_M^{te})) - ?$$
 p(ooo)

Conditioning in multivariate normal distribution

Definition of Gaussian process: every finite set of function values has a multivariate normal distribution

$$\forall n \ \forall (x_1, \dots, x_n) \ (a(x_1), \dots, a(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = \{m(x_i)\}_{i=1}^n \ \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$

Conditioning in multivariate normal distribution

Definition of Gaussian process: every finite set of function values has a multivariate normal distribution

$$\forall n \ \forall (x_1, \dots, x_n) \ (a(x_1), \dots, a(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = \{m(x_i)\}_{i=1}^n \ \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$

Conditioning in multivariate normal distribution

Definition of Gaussian process: every finite set of function values has a multivariate normal distribution

$$\forall n \ \forall (x_1, \dots, x_n) \ (a(x_1), \dots, a(x_n)) \sim \mathcal{N}(\mu, \Sigma)$$

 $\mu = \{m(x_i)\}_{i=1}^n \ \Sigma = \{k(x_i, x_j)\}_{i,j=1}^{n,n}$

According to properties of normal distribution:

Training and prediction in GP for regression

Prediction:

34/38

Training and prediction in GP for regression

Training:

$$\mathbf{p} \ (\bullet \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet \bullet) = \mathcal{N} \ (\ \bullet \bullet$$

Prediction:

35/38

Parametric vs non-parametric models

Parametric models:

Non-parametric models:

Prediction: a(x) – function of x

and parameters θ

a(x) – function of x

and training data

Training: finding θ based

on training data

none

(or tuning a small number of parameters)

Examples: decision trees

(Bayesian) linear regression

kNN

Gaussian processes

Pros and cons of Gaussian processes

+ uncertainty estimation

- kernel (covariance) function?
 - slow computation

Training: O(N3)

$$\mathsf{p} \ (\bullet \bullet \bullet \bullet) = \mathcal{N} (\ \ \bullet \ \) \xrightarrow{\max_{\sigma_1, \sigma_2, \sigma_3, \ell}}$$

Prediction: O(N) — mean, $O(N^2)$ — std

$$p(\circ) = \sqrt{(}$$

N — number of training objects

37/38

Summary

- Gaussian process is a ``distribution'' over functions
- Regression with Gaussian Process generalizes kNN in a probabilistic manner
- Gaussian Processes provide reliable uncertainty estimates but require careful choice of kernel function and are slow in training and testing

Questions

Consider we are given the following training data (1 feature):

X	У
-1.5	1
0.5	3
0.7	2.5

We use zero mean function and RBF-kernel: $k(x, x') = 0.5 \exp\left(-\frac{(x - x')^2}{2}\right)$

• What prediction will we make for a new object $x_{\star} = 0$? for $x_{\star} = 3$?

$$p(a(x_*)) = \mathcal{N}(m_*, \sigma_*) \quad m_* = k_*^T K^{-1} Y, \quad \sigma_*^2 = k_{**} - k_*^T K^{-1} k_*$$

$$k_{**} = k(x_*, x_*), \quad k_* = \{k(x_i, x_*)\}_{i=1}^N, \quad K = \{k(x_i, x_j)\}_{i,j=1}^{N,N}, \quad Y = \{y_i\}_{i=1}^N$$

X	У
-1.5	1
0.5	3
0.7	2.5

$$K = 0.5 \cdot \begin{bmatrix} 1 & \exp(-\frac{(-1.5 - 0.5)^2}{2}) & \exp(-\frac{(-1.5 - 0.7)^2}{2}) \\ \exp(-\frac{(-1.5 - 0.5)^2}{2}) & 1 & \exp(-\frac{(0.5 - 0.7)^2}{2}) \\ \exp(-\frac{(-1.5 - 0.7)^2}{2}) & \exp(-\frac{(0.5 - 0.7)^2}{2}) & 1 \end{bmatrix}$$

$$p(a(x_*)) = \mathcal{N}(m_*, \sigma_*) \quad m_* = k_*^T K^{-1} Y, \quad \sigma_*^2 = k_{**} - k_*^T K^{-1} k_*$$

$$k_{**} = k(x_*, x_*), \quad k_* = \{k(x_i, x_*)\}_{i=1}^N, \quad K = \{k(x_i, x_j)\}_{i,j=1}^{N,N}, \quad Y = \{y_i\}_{i=1}^N$$

X	у
-1.5	1
0.5	3
0.7	2.5

$$K = 0.5 \cdot \begin{bmatrix} 1 & \exp(-\frac{(-1.5 - 0.5)^2}{2}) & \exp(-\frac{(-1.5 - 0.7)^2}{2}) \\ \exp(-\frac{(-1.5 - 0.5)^2}{2}) & 1 & \exp(-\frac{(0.5 - 0.7)^2}{2}) \\ \exp(-\frac{(-1.5 - 0.7)^2}{2}) & \exp(-\frac{(0.5 - 0.7)^2}{2}) & 1 \end{bmatrix}$$

For
$$x_* = 0$$
: $k_* = 0.5 \cdot \left[\exp\left(-\frac{(0+1.5)^2}{2}\right) \cdot \exp\left(-\frac{(0-0.5)^2}{2}\right) \cdot \exp\left(-\frac{(0-0.7)^2}{2}\right) \right]$

 $k_{**} = [0.5]$

$$p(a(x_*)) = \mathcal{N}(m_*, \sigma_*) \quad m_* = k_*^T K^{-1} Y, \quad \sigma_*^2 = k_{**} - k_*^T K^{-1} k_*$$

$$k_{**} = k(x_*, x_*), \quad k_* = \{k(x_i, x_*)\}_{i=1}^N, \quad K = \{k(x_i, x_j)\}_{i,j=1}^{N,N}, \quad Y = \{y_i\}_{i=1}^N$$

$$K = 0.5 \cdot \begin{bmatrix} 1 & \exp\left(-\frac{(-1.5 - 0.5)^2}{2}\right) & \exp\left(-\frac{(-1.5 - 0.7)^2}{2}\right) \\ \exp\left(-\frac{(-1.5 - 0.5)^2}{2}\right) & 1 & \exp\left(-\frac{(0.5 - 0.7)^2}{2}\right) \\ \exp\left(-\frac{(-1.5 - 0.7)^2}{2}\right) & \exp\left(-\frac{(0.5 - 0.7)^2}{2}\right) & 1 \end{bmatrix}$$

For
$$x_* = 0$$
: $k_* = 0.5 \cdot \left[\exp\left(-\frac{(0+1.5)^2}{2}\right) \cdot \exp\left(-\frac{(0-0.5)^2}{2}\right) \cdot \exp\left(-\frac{(0-0.7)^2}{2}\right) \right]$ $k_{**} = \left[0.5\right]$

$$\mu_* = \begin{bmatrix} 0.162 & 0.441 & 0.391 \end{bmatrix} \begin{bmatrix} 0.5 & 0.067 & 0.044 \\ 0.067 & 0.5 & 0.490 \\ 0.044 & 0.490 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2.5 \end{bmatrix} \quad \sigma_*^2 = 0.5 - \begin{bmatrix} 0.162 & 0.441 & 0.391 \end{bmatrix} \begin{bmatrix} 0.5 & 0.067 & 0.044 \\ 0.067 & 0.5 & 0.490 \\ 0.044 & 0.490 & 0.5 \end{bmatrix} \begin{bmatrix} 0.162 \\ 0.441 \\ 0.391 \end{bmatrix}$$

$$p(a(x_*)) = \mathcal{N}(m_*, \sigma_*) \quad m_* = k_*^T K^{-1} Y, \quad \sigma_*^2 = k_{**} - k_*^T K^{-1} k_*$$

$$k_{**} = k(x_*, x_*), \quad k_* = \{k(x_i, x_*)\}_{i=1}^N, \quad K = \{k(x_i, x_j)\}_{i,j=1}^{N,N}, \quad Y = \{y_i\}_{i=1}^N$$