Modélisation probabiliste n-d et conditionnement probabiliste

G. Perrin

guillaume.perrin@univ-eiffel.fr

Année 2022-2023

Plan de la séance

Introduction

- 2 Modélisation probabiliste n-d
- Conditionnement statistique

- Précédemment, nous avons vu comment caractériser une unique variable aléatoire X (PDF, CDF, moments statistiques, quantiles...).
- Si X_1, \ldots, X_d forment d v.a., alors on appelle $\mathbf{X} = (X_1, \ldots, X_d)$ vecteur aléatoire, aux dépendances potentiellement diverses.

Exercice : corrélation, dépendance et causalité.

- peut-on dire que deux variables dépendantes sont corrélées?
- peut-on dire que deux variables corrélées sont dépendantes?
- peut-on dire que la corrélation implique la causalité?

De manière plus générale, pour introduire les dépendances :

- Identification des dépendances, à partir de tests expérimentaux (linéaires, monotones, fréquentielles, temporelles...)
- Modélisation des dépendances, à travers la notion de copule.

• La prise en compte des dépendances est difficile mais primordiale!

Plan de la séance

Introduction

- 2 Modélisation probabiliste n-d
- 3 Conditionnement statistique

Comme pour les v.a., un **vecteur aléatoire** $\mathbf{X} = (X_1, \dots, X_d)$ est caractérisé par sa fonction de répartition multidimensionnelle, $F_{\mathbf{X}}$, telle que :

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_d \leq x_d).$$

Par construction, toute CDF vérifie les propriétés suivantes :

- F_X est monotone et non décroissante par rapport à toutes ses variables,
- F_X est continue à droite par rapport à tous ses variables,
- $0 \le F_X(x) \le 1$,
- $\lim_{x_1,\dots,x_d\to+\infty} F_{\boldsymbol{X}}(\boldsymbol{x}) = 1$, $\lim_{x_i\to-\infty} F_{\boldsymbol{X}}(\boldsymbol{x}) = 0$, $1 \le i \le d$.

Si elle existe, la PDF multidimensionnelle f_X de X (ou densité jointe) est par ailleurs définie par :

$$\mathbb{P}(\boldsymbol{X}\in\mathcal{D}^d)=\int_{\mathcal{D}^d}f_X(d\boldsymbol{x})d\boldsymbol{x},$$

où \mathcal{D}^d est n'importe quel sous espace de \mathbb{R}^d sur lequel f_X est bien définie. Par construction, on peut vérifier que :

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{\partial^d F_{\mathbf{X}}}{\partial x_1 \cdots \partial x_d}(\mathbf{x}).$$

On nomme par ailleurs i^e marginale de X, la fonction f_{X_i} telle que :

$$f_{X_i}(x_i) = \int_{x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_d} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}.$$

Le paramétrage de la CDF multidimensionnelle de $\boldsymbol{X}=(X_1,\ldots,X_d)$ s'effectue généralement en trois temps :

- paramétrage des d CDF unidimensionnelles F_{X_i} de X_i ,
- introduction du vecteur $\boldsymbol{U} = (U_1, \dots, U_d) = (F_{X_1}(X_1), \dots, F_{X_d}(X_d)),$
- paramétrage de la relation de dépendance entre les composantes de \boldsymbol{U} dans l'hypercube $[0,1]^d$ (objectif de cette séance), à travers l'introduction d'une fonction copule C, telle que :

$$C(u_1,\ldots,u_d)=\mathbb{P}(U_1\leq u_1,\ldots,U_d\leq u_d).$$

Exercices:

- Vérifier que les composantes de *U* sont uniformément distribuées sur [0,1].
- 2 Calculer $F_X(x)$ en fonction de C et F_{X_i} .

D'un point de vue formel, on dira que la fonction C de $[0,1]^d$ dans [0,1] est un copule ssi :

- $C(\mathbf{u}) = 0$ si $\prod_{i=1}^{d} u_i = 0$ (la fonction s'annule si l'une de ses composantes est nulle),
- $C(1,\ldots,1,u,1,\ldots,1) = u$,
- *C* est *d*-non-décroissante.

Pour d = 2, cela se traduit par :

- C(u,0) = C(0,u) = 0,
- C(u,1) = C(1,u) = u,
- $C(u_2, v_2) C(u_2, v_1) C(u_1, v_2) + C(u_1, v_1) \ge 0$ pour tout $0 \le u_1 \le u_2 \le 1$ et $0 \le v_1 \le v_2 \le 1$.

Théorème de Sklar

• Toute fonction de répartition F_X peut s'exprimer à partir de ses marginales F_{X_i} et d'un copule C, tel que :

$$F_{\mathbf{X}}(\mathbf{x}) = C(F_{X_1}(x_1), \dots, F_{X_d}(x_d)).$$

• Si les marginales F_{X_i} sont continues, la fonction copule est unique.

La réciproque est également vraie : si C est un copule, et F_{X_i} définissent des CDF unidimensionnelles, alors $C(F_{X_1}(x_1), \ldots, F_{X_d}(x_d))$ caractérise une fonction de répartition.

Théorème de Fréchet-Hoeffding

Pour tout copule C et tout $(u_1, \ldots, u_d) \in [0, 1]^d$,

$$W(u_1,\ldots,u_d)\leq C(u_1,\ldots,u_d)\leq M(u_1,\ldots,u_d),$$

$$W(u_1,\ldots,u_d) = \max\left\{1-d+\sum_{i=1}^d u_i,0\right\}, \quad M(u_1,\ldots,u_d) = \min\left\{u_1,\ldots,u_d\right\}.$$

Exercices:

- Montrer que M est un copule. Interpréter la relation de dépendance entre les grandeurs.
- Montrer que si d=2, W est également un copule. Pour d>2, on peut seulement affirmer qu'il existe un copule \widehat{C} (pouvant varier) tel que $W(\mathbf{u}) = \widehat{C}(\mathbf{u})$.

Copule indépendant

Les composantes de \boldsymbol{X} sont indépendantes ssi $C(\boldsymbol{u}) = \prod_{i=1}^d u_i$

Démonstration :

- Si les composantes de X sont indépendantes, alors $\mathbb{P}(X_1 \leq x_1, \dots, X_d \leq x_d) = \prod_{i=1}^d \mathbb{P}(X_i \leq x_i)$, si bien que $C(\mathbf{u}) = \prod_{i=1}^d u_i$.
- Réciproquement, si $C(\boldsymbol{u}) = \prod_{i=1}^d u_i$, alors $\mathbb{P}(X_1 \leq x_1, \dots, X_d \leq x_d) = \prod_{i=1}^d \mathbb{P}(X_i \leq x_i)$ et on en déduit que les composantes de \boldsymbol{X} sont indépendantes.

Copule indépendant et bornes de Fréchet-Hoeffding :

Commenter les différences entre les trois copules 2D représentés.

Copule gaussien

Si \pmb{X} est un vecteur aléatoire gaussien de moyenne $\pmb{\mu}$ et de matrice de covariance [R], alors son copule est défini par :

$$C(u_1,\ldots,u_d)=\Phi\left(\phi^{-1}(u_1),\ldots,\phi^{-1}(u_d)\right),\,$$

$$\phi(x) = \int_{-\infty}^{x_i} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy,$$

$$\Phi(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \sqrt{\det([R])}} \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T [R]^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

Copules archimédiens - caractéristiques

- Les copules archimédiens forment une classe de copules.
- (+) La plupart des copules archimédiens présentent une expression explicite (ce qui n'est pas le cas pour le copule gaussien).
- (+) La popularité de ces copules provient du fait qu'ils permettent de modéliser la dépendance entre les composantes de X pour n'importe quelle valeur de d, à partir d'un unique paramètre, nommé θ.
- (-) Pour ce type de copules, les dépendances entre composantes de **X** présentent les mêmes structures.

18 / 26

Copules archimédiens - définition

La fonction C est un copule archimédien si elle peut s'écrire sous la forme $C(x_1,\ldots,x_d;\theta)=\psi^{[-1]}(\psi(x_1;\theta)+\ldots+\psi(x_d;\theta);\theta)$, où ψ est une fonction positive, continue, convexe, strictement décroissante sur [0, 1], telle que $\psi(1;\theta)=0$ et telle que sa fonction inverse, ψ^{-1} , est d-monotone.

- ψ est appelée fonction génératrice.
- $\psi^{[-1]}$ est appelée pseudo-inverse de ψ , et vérifie :

$$\psi^{[-1]}(x;\theta) \begin{cases} = \psi^{-1}(x;\theta) \text{ si } 0 \le x \le \psi(0;\theta) ,\\ = 0 \text{ sinon.} \end{cases}$$

Copules archimédiens - exemples

- **Gumbel** : $\psi(x; \theta) = (-\log(x))^{\theta}$, $\psi^{-1}(x; \theta) = \exp(-x^{1/\theta})$, $\theta \in [1, +\infty[$.
- Clayton : $\psi(x;\theta) = \frac{1}{\theta}(x^{-\theta} 1), \ \psi^{-1}(x;\theta) = (1 + \theta x)^{-1/\theta}, \ \theta \in [-1, +\infty[\setminus \{0\}.]$
- Frank : $\psi(x;\theta) = -\log\left(\frac{\exp(-\theta x) 1}{\exp(-\theta) 1}\right)$, $\psi^{-1}(x;\theta) = -\frac{1}{\theta}\log(1 + \exp(-x)(\exp(-\theta) 1))$, $\theta \in \mathbb{R} \setminus \{0\}$.
- Joe: $\psi(x; \theta) = -\log(1 (1 x)^{\theta}), \ \psi^{-1}(x; \theta) = 1 (1 \exp(-x))^{1/\theta}, \ \theta \in [1, +\infty[.]$

Exercice : montrer que le copule indépendent est un copule archimédien. Calculer sa fonction génératrice et son pseudo inverse.

Copules archimédiens - exemples

Commenter les différences entre les quatre copules 2D représentés.

Copules empiriques

- Supposons que l'on dispose de N réalisations de X, $\{X^{(1)}, \ldots, X^{(N)}\}$, dont les CDF marginales sont connues et écrites F_i .
- On peut alors définir :

$$U_j^{(i)} := F_j(X_j^{(i)}) \approx \widehat{U}_j^{(i)} := \frac{1}{N} \sum_{n=1}^N 1_{X_j^{(n)} \leq X_j^{(i)}}.$$

• On peut alors définir l'approximation empirique du copule C par :

$$C(u_1,\ldots,u_d)\approx \widehat{C}(u_1,\ldots,u_d):=\frac{1}{N}\sum_{n=1}^N 1_{\widehat{U}_1^{(n)}\leq u_1,\ldots,\widehat{U}_d^{(n)}\leq u_d}.$$

En pratique, il faut que N soit très grand (et que d soit petit) pour que l'approximation empirique soit pertinente...

Plan de la séance

Introduction

2 Modélisation probabiliste n-d

3 Conditionnement statistique

Partie 2 : conditionnement statistique

Théorème de Bayes

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Conditionnement par une variable aléatoire

Si X et Y sont deux variables aléatoires, alors (Y|X=x) est également une variable aléatoire. Notons alors f_X , f_Y et $f_{Y|X=x}$ leurs PDFs, ainsi que $f_{(X,Y)}$ la loi jointe de (X,Y) (on se limite au cas où ces fonctions existent). On déduit alors :

$$f_{Y|X=x}(y) = \begin{cases} 0 \text{ si } f_X(x) = 0, \\ \frac{f_{(X,Y)}(x,y)}{f_X(x)} \text{ sinon.} \end{cases}$$

Attention : Y|X désigne l'application $x \mapsto Y|X = x$. Ainsi, $\mathbb{E}[Y|X]$ correspond à l'application $x \mapsto \mathbb{E}[Y|X = x]$ (\leftrightarrow espérance conditionnelle).

Partie 2 : conditionnement statistique

Quelques propriétés associées au conditionnement statistique

- Si X et Y sont indépendants, alors $f_{Y|X=x} = f_Y$.
- Pour toute fonction g, $\mathbb{E}[g(Y)|Y] = g(Y)$.
- Espérance totale : $\mathbb{E}[g(X,Y)] = \mathbb{E}[\mathbb{E}[g(X,Y)|X]]$.
- Variance totale : $Var(g(X, Y)) = \mathbb{E}(Var(g(X, Y)|X)) + Var(\mathbb{E}(g(X, Y)|X))$.
- Inégalité de Jensen : si g est convexe, alors $g(X, \mathbb{E}[Y|X]) \leq \mathbb{E}[g(X,Y)|X]$.

Exercice : prouver les trois premières propriétés.

Partie 2 : conditionnement statistique

Lien entre tirage conditionné et génération de réalisations associées à un copule

- Remarquons que si X et Y sont deux v.a., et si $X^{(1)}$ est une réalisation de X, et $Y^{(1)}$ est une réalisation de $Y|X=X^{(1)}$, alors $(X^{(1)},Y^{(1)})$ est une réalisation particulière de (X,Y).
- De manière générale, la génération de réalisations indépendantes d'un vecteur *U* de composantes uniformément distribuées sur [0,1] et de copule *C* passe par la généralisation en dimension *d* de cette approche basée sur des tirages conditionnés.
- Ceci justifie l'importance des copules explicites, dont les lois conditionnées sont des lois faciles à générer...

Exercice : soient X et Y deux v.a. gaussiennes centrées réduites de covariance ρ . Expliquer comment générer des réalisations de (X,Y) par tirage conditionné.

Plan de la séance

Introduction

- 2 Modélisation probabiliste n-d
- 3 Conditionnement statistique