

Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada

antunes@ibilce.unesp.br, socorro@ibilce.unesp.br

Grafos Eulerianos

Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos, Notas de aula, IBILCE, Unesp, 2002-2013.

Grafos Eulerianos

Introdução

Grafos Eulerianos Digrafos Eulerianos

No início do curso nós estudamos o problema das Pontes de Konigsberg e representamos o problema através do seguinte grafo::

Queríamos saber se é possível fazer um passeio pela cidade, começando e terminando no mesmo lugar e passando por cada uma das pontes apenas uma vez.

Em outras palavras queríamos encontrar no grafo acima um trajeto fechado que incluísse todas as arestas do grafo.

Definições

Grafos Eulerianos Digrafos Eulerianos

Definição 1. Um trajeto que inclua todas as arestas de um dado grafo G(V, A) é chamado de trajeto **euleriano**.

Seja G um grafo conexo. Dizemos que G é **euleriano** se possui um trajeto euleriano fechado.

Um grafo G não-euleriano é dito ser **semi-euleriano** se possui um trajeto euleriano.

Observação: Note que em um grafo euleriano cada aresta é percorrida uma, e uma única, vez.

Exemplos

Grafos Eulerianos Digrafos Eulerianos

A seguir temos exemplos de grafos euleriano, semi-euleriano e não-euleriano:

Resultado auxiliar

Grafos Eulerianos Digrafos Eulerianos

Lema 2. Se G(V, A) é um grafo tal que $d(v) \ge 2$ para todo $v \in V$, então G contém um ciclo.

Demonstração. Se G possui laços ou arestas paralelas, não há o que provar.

Vamos supor que G é um grafo simples. Seja $v_0 \in V$ um vértice arbitrário de G. Como $d(v) \geq 2$ para todo $v \in V$, podemos construir um passeio $v_0 \to v_1 \to v_2 \cdots$ indutivamente escolhendo v_{i+1} como sendo qualquer vértice adjacente a v_i exceto v_{i-1} .

Como G possui uma quantidade finita de vértices, em algum momento escolheremos algum vértice, digamos v_k , pela segunda vez.

A parte do passeio entre e primeira e a segunda ocorrência de v_k constitui um ciclo.

Condição necessária e suficiente

Grafos Eulerianos Digrafos Eulerianos

Teorema 3 (Euler, 1736). Um grafo conexo G(V, A) é euleriano se, e somente se, o grau de cada vértice de G é par.

Demonstração. (\Rightarrow) Seja T um trajeto euleriano fechado de G. Cada vez que um vértice v ocorre no trajeto T, há uma contribuição de duas unidades para o grau de v (uma aresta para chegar a v e outra para sair).

Isto vale não só para os vértices intermediários mas também para o vértice final, pois "saímos" e "entramos" no mesmo vértice no início e no final do trajeto.

Como cada aresta ocorre exatamente uma vez em T, cada vértice possui grau par.

Cont. da demonstração

Grafos Eulerianos Digrafos Eulerianos

(\Leftarrow) A prova é por indução no número de arestas de G. Suponhamos que o grau de cada vértice de G é par. Como G é conexo, $d(v) \geq 2$ para todo $v \in V$. Segue então do lema anterior que G contém um ciclo C.

Se C contém todas as arestas de G, o teorema está provado.

Se não, removemos de G as arestas de C, resultando num grafo H, possivelmente desconexo, com menos aretas do que G.

Cont. da demonstração

Grafos Eulerianos Digrafos Eulerianos

É fácil ver que todos os vértices de H possuem grau par. Logo, pela hipótese de indução, cada componente de H possui um trajeto euleriano fechado.

Além disso, pela conexidade de G, cada componente de H possui ao menos um vértice em comum com C.

Portanto, concatenando os trajetos euleriados fechados de cada componente de H com o ciclo C obtemos um trajeto euleriano fechado em G, ou seja, G é um grafo euleriano.

Exercícios

Grafos Eulerianos Digrafos Eulerianos

Corolário 4. Um grafo conexo é euleriano se, e somente se, puder ser decomposto em circuitos disjuntos:

$$G = \bigcup_i C_i, \qquad C_i \cap C_j = \text{grafo nulo.}$$

Corolário 5. Um grafo conexo é semi-euleriano se, e somente se, possui exatamente dois vértices de grau ímpar.

Algoritmo de Decomposição

Grafos Eulerianos Digrafos Eulerianos

Considere um grafo conexo G(V,A), onde d(v) é par $\forall v \in V$.

Passo 1: Determine um circuito C_1 em G.

Defina $T_1 = C_1$ e $G_1 = G$.

Se T_1 possui todas as arestas de G, pare. T_1 é o trajeto procurado.

Faça k=1.

Passo 2: Faça k=k+1. Construa o subgrafo $G_k(\bar{V}_k, \bar{A}_k)$ removendo de G_{k-1} as arestas pertencentes a $T_{k-1}(V_{k-1}, A_{k-1})$. Remova de G_k os vértices isolados.

Passo 3: Determine um vértice $v \in \overline{V}_k \cap V_{k-1}$. A partir de v determine um circuito C_k em G_k .

Passo 4: Determine $T_k = T_{k-1} \cup C_k$.

Se T_k possui todas as arestas de G, vá para o Passo 5.

Caso Contrário, retorne ao Passo 2.

Passo 5: Pare. T_k é o trajeto procurado e $G = \bigcup_{i=1}^{k} C_i$.

Exercícios

Grafos Eulerianos Digrafos Eulerianos

Verifique se os grafos abaixo são eulerianos. Se possível exiba um trajeto euleriano.

Algoritmo de Fleury

Grafos Eulerianos Digrafos Eulerianos

Considere um grafo conexo G(V,A), onde d(v) é par $\forall v \in V$.

Comece em qualquer vértice v e percorra as arestas de forma aleatória, seguindo sempre as seguintes regras:

- 1. Exclua as arestas depois de passar por elas;
- 2. Exclua os vértices isolados, caso ocorram;
- 3. Passe por uma ponte¹ somente se não houver outra alternativa.

¹Uma aresta é dita ser uma **ponte** se a sua remoção torna o grafo desconexo.

Exemplo

Grafos Eulerianos Digrafos Eulerianos

Aplique o Algoritmo de Fleury para encontrar um trajeto euleriano no grafo abaixo a partir do vértice 5.

Digrafos Eulerianos

Definições

Grafos Eulerianos Digrafos Eulerianos

Definição 6. Um trajeto **orientado** que inclua todas as arestas de um dado digrafo G(V, A) é chamado de trajeto **euleriano**.

Seja G um digrafo conexo. Dizemos que G é **euleriano** se possui um trajeto euleriano fechado.

Um digrafo G não-euleriano é dito ser **semi-euleriano** se possui um trajeto euleriano.

Definições

Grafos Eulerianos Digrafos Eulerianos

Definição 7. Um trajeto **orientado** que inclua todas as arestas de um dado digrafo G(V, A) é chamado de trajeto **euleriano**.

Seja G um digrafo conexo. Dizemos que G é **euleriano** se possui um trajeto euleriano fechado.

Um digrafo G não-euleriano é dito ser **semi-euleriano** se possui um trajeto euleriano.

Observações:

- 1. Um digrafo conexo euleriano é necessariamente fortemente conexo.
- 2. Entretanto, nem todo digrafo fortemente conexo é euleriano.

Exemplos

Grafos Eulerianos Digrafos Eulerianos

Teorema de Euler para digrafos

Grafos Eulerianos Digrafos Eulerianos

Teorema 8. Um digrafo conexo D(V,A) é euleriano se, e somente se, D é balanceado, i.e., $d_e(v) = d_s(v) \ \forall \ v \in V$.

Demonstração: Exercício.

Teorema de Euler para digrafos

Grafos Eulerianos Digrafos Eulerianos

Teorema 9. Um digrafo conexo D(V,A) é euleriano se, e somente se, D é balanceado, i.e., $d_e(v) = d_s(v) \ \forall \ v \in V$.

Demonstração: Exercício.

Corolários? Exercícios.