$$V_o = 10 \text{ V}, R = 10 \Omega, L = 10^{-2} \text{ H}$$

$$L \text{ and } R \text{ in series}$$

$$V = V_o \cos \omega t$$

$$f$$
 (Hz) 100 10^3 10^4 ω (rad/s) 628 6.3×10^3 6.3×10^4 ωL (Ω) 6.3 63 628 I_{max} (A) 0.85 0.16 0.016 ϕ 32° 81° 89°

$$I_{max} = \frac{V_0}{\sqrt{R^2 + (\omega L)^2}}$$

$$I = I_{max} cos(\omega t - \phi)$$
 ωt and ϕ both in radians or both in degrees

$$\tan \phi = \frac{\omega L}{R}$$