Regularity properties of L-S mensures

F: R-R increasing & right cts

 $\mathcal{M}_{F}(E) = \inf \left\{ \underbrace{\sum (F(b_{j}) - F(a_{j}))} \mid E \subset \bigcup (a_{j}, b_{j}) \right\} \qquad \forall E \in \mathcal{M}_{F} \ge B_{\mathbb{R}}$

terms: $\forall E \in \mathcal{M}_F$, $\mathcal{M}_F(E) = \inf \left\{ \sum_{\mu_F(a_i, b_i)} \mid E \subset U(a_{i,b_i}) \right\}$.

Af denote the inf on the RHS by NCE).

Step 1: MF (E) = V(E).

If E C U (a;,b;), Can write each

 $(a_{j},b_{j}) = \underbrace{\prod}_{i}(a_{j}^{i},b_{j}^{i}].$

Then $E \subset \bigcup_{j} (\coprod_{i} (a_{j}^{i}, b_{j}^{i}))$, so

 $\mu_{\mathbf{F}}(\mathbf{E}) \leq \sum_{i} \sum_{i} \mu_{\mathbf{F}}(a_{j}^{i}, b_{j}^{i}) = \sum_{j} \mu_{\mathbf{F}}(a_{j}, b_{j})$

⇒ MF(E) ≤ V(E).

Step 2: V(E) = MF(E).

Let E>o. Then J (aj, bj) s.t. ECU(aj, bj)

and $\sum_{\mu_{F}(a_{j},b_{j})} \leq \mu_{F}(E) + \frac{\varepsilon}{2}$. $F(b_{j})-F(a_{j})$

By right cont. if F,
$$\forall j \exists S_j > 0$$
 s.t.

$$F(b_j + S_j) - F(b_j) < \frac{\varepsilon}{2^{j-1}}.$$

Then $E \subset U(a_j, b_j + S_j)$ and
$$\sum M_F(a_j, b_j + S_j) \leq \sum M_F(a_j, b_j + S_j)$$

$$= \sum (F(b_j + S_j) - F(a_j))$$

$$(\sum (F(b_j) - F(a_j) + \frac{\varepsilon}{2^{j+1}})$$

 $\leq M_F(E) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = M_F + \varepsilon.$

$$(X, \tau)$$
 Havs doth top. sp.

Let $\forall x \neq y \in X \exists U, V \in \tau \in A. x \in U, y \in J, U \cap V = \emptyset.$

$$M \subset P(X)$$
 σ -alg s.t. $B_{\tau} \subset M$. (i.e. $\tau \subset M$).

A measure in on m is called outer regular

if
$$\mu(E) = \inf \{ \mu(U) \mid E \in U \in T \}$$

Page 2

and inner regula if $n(t) = \sup \left\{ n(K) \mid \text{compact } K \in E \right\}.$

it's regular : f both inner & outer regular.

The MF is regular.

Step | Outer regular. Let $\varepsilon > 0$ Pf: Let $E \in M_{\varepsilon}$. By the lemma, $f \in \mathcal{A}$. $\exists (a_{i},b_{i}) \quad s.t. \quad E \subset U(a_{i},b_{i}) \quad and$ $\sum_{M_{\varepsilon}} (a_{i},b_{i}) \leq M_{\varepsilon}(\varepsilon) + \varepsilon.$

Set $U = U(a_1b_1)$. by subadditivity & monotonicity, $M_F(E) \le M_F(u) \le 2M_F(a_0,b_1) \le M_F(E) + \varepsilon$ Hence $\forall E > 0$, $\exists open \ U \supseteq E$ s.t. $M_F(u) \in M_F(E) + \varepsilon$. $\Rightarrow M_F(E) = \inf \{ M_F(u) \mid E \subset U \circ pen \}$.

Step 2:

Step 2a: assume E is bdd, so \overline{E} is cpt, and $\mu_F(\overline{E}) < \infty$.

Let $\varepsilon > 0$. by step!, E open U Containy $\overline{E} \setminus E$ s.t. $\mathcal{U}_F(U) \leq \mathcal{U}_F(\overline{E} \setminus E) + \varepsilon.$

Then K := E\u is cpt 4
contained in E.

Thun
$$M_{F}(K) = M_{F}(E) - M_{F}(E \cap K')$$

$$= M_{F}(E) - M_{F}(E \cap U)$$

$$= M_{F}(E) - [M_{F}(U) - M_{F}(U \setminus E)]$$

$$\geq M_{F}(E) - M_{F}(U) + M_{F}(E \setminus E)$$

$$= M_{F}(E) - E$$

So MF(E) = Sup [MF(K) | E>K compact].

Step 26 Earbitray in MF.

$$\mathbb{R} = \coprod (j, j+1)$$
, so $\mathbb{E} = \coprod \mathcal{E}_{j}$. where $\mathbb{E}_{j} = \mathbb{E}_{n}(j, j+1)$.

S.t.
$$M_F(k_j) \ge M_F(E_j) - \frac{\varepsilon}{2^{j+1}}$$
.

For
$$n \in \mathbb{N}$$
, let $F_n = \prod_{i=1}^n K_i$, cpt.

$$\forall n, \mu_{\mathsf{F}}(\mathsf{F}_{\mathsf{N}}) \geq \mu_{\mathsf{F}}\left(\frac{\mathsf{n}}{\mathsf{L}}\mathsf{E}_{\mathsf{j}}\right) - \frac{\mathsf{E}}{2}$$

Case) if
$$\mu_{\bar{t}}(\bar{t}) = \infty$$
, Since $\mu_{\bar{t}}(\hat{I}, \bar{t};) / \infty$

eventually
$$\mu_{E}(F_{N}) > M$$
 for any fixed M.
Then $\sup \{\mu(K) \mid E > K \text{ cpt } \} = \infty = \mu(E)$.

Case 2:
$$\mu_{F}(F) < \infty$$
. Then $\exists N \leq 1$.
$$\mu_{F}(E) \leq \mu_{F}\left(\prod_{j=1}^{N} E_{j} \right) + \frac{\varepsilon}{2}$$

$$\leq \mu_{F}(F_{N}) + \frac{\varepsilon}{2}$$

So
$$\forall \in S$$
, $\exists c$ $\Rightarrow c$

 \Box

Hausdorff Measure (Ch 11).

Let
$$(X, p)$$
 be a nutric space in $\{(X, p)\}$ by $\{(A, B)\}$ in $\{(X, p)\}$ be a nutric space in $\{(X, p)\}$ by $\{(A, B)\}$ in $\{(X, p)\}$ in $\{($

Det intim: An order mensor
$$\mu^*$$
 on $P(X)$ is called a (Carathiology) metric order measure if
$$P(A,B) > 0 \implies \mu^*(A \perp B) = \mu^*(A) + \mu^*(B).$$

$$\Rightarrow A \cap B = \emptyset$$

Page :

Prop. If μ^* is a meteric outer measure on P(x), then $B_p \subset M^*$

Def: If (X, p) metric space, $P \ge 0$ and E > 0, $\int_{-\infty}^{\infty} \frac{diam(s) = \sup_{xy \in s} p(x, y)}{\inf_{xy \in s}}$.

define $\eta^{*}(E) := \inf_{xy \in s} \left\{ \sum_{i=1}^{\infty} \frac{diam(s)}{diam(s)} \le E \lor n_i \right\}$.

and $E \le UR$.

Show lim not is a metric outer measure.

Proposition of the state of t

restricts to B = mx for 7 p

2. Hoursdarff measure 2p on Bp 4p>0.