## Dinâmica Molecular CsCyp

José Geraldo de Carvalho Pereira

November 6, 2014

#### **Abstract**

Colaboração com o grupo do Dr. Celso Benedetti com o objetivo de analisar a consequência estrutural/funcional da mutação S58F na proteína CsCyp. A ciclofilina CsCyp possui um mecanismo de regulação pela redução/oxidação da ponte dissulfeto C40-C168, sendo que quando esta ponte está presente, a proteína encontra-se na forma inativa. Em um trabalho anterior do grupo do Dr. Celso Benedetti sobre a CsCyp criou-se a hipótese de que a ponte dissulfeto alteraria estruturalmente o loop variável. Esta alteração seria então propagada por meio do E83 para o loop catalítico o qual fecharia o sítio ativo. Neste trabalho buscamos simular por meio de dinâmica molecular como a mudança S58F afetaria a atividade e também comparar os resultados com a proteína selvagem e com a mutação E83A.

### Mecanismo CsCyp

O grupo

#### Resultados

#### CsCyp wt

Na simulação de 100ns da CsCyp wt e da CsCyp wt S-S não foi observado o movimento do loop catalítico (D73-E83) descrito no mecanismo proposto pelo grupo do Dr. Celso Benedetti [Campos et al., 2013]. É possível questionarmos se o tempo e o número de simulações seriam suficientes ou não para permitir observarmos essa mudança conformacional do loop catalítico fechando o sitio ativo, no entanto, há também a possibilidade de ocorrerem outras mudanças conformacionais que poderiam regular a atividade da CsCyp.

Ao contrário do que poderia se esperar, a simulação sugere que as regiões do loop catalítico são estáveis em conformações muito similares durante a simulação, mas foi possível observar que outras regiões próximas ao sítio ativo sofrem efeitos tão ou até mais intensos resultantes da ligação dissulfeto  $C^{40}-C^{168}$ .

Uma dessas regiões é o longo loop (S88-G101) consecutivo sequencialmente ao loop catalítico. Ambos estão em contato com outro loop (A108-Q118) que também demonstra ser influenciado pela ligação S-S. Esse último, possui resíduos relacionados a atividade catalítica e a ligação do substrato como A108, N109, A110 e o G116.

No caso da CsCyp wt o loop (A108-Q118) apresentou maior flexibilidade em relação à CsCyp wt S-S, sendo que nessa última ele apresentou também uma aparente mudança conformacional. Interessantemente, a flexibilidade desta região está possivelmente relacionada a atividade catalítica em CypA [Eisenmesser et al., 2002] e assim, a diminuição da flexibilidade desta região estaria de acordo com a inibição da atividade nesta proteína.

Outra região que apresenta mudança conformacional e alteração na flexibilidade é a região T126-H133 a qual forma uma hélice e possui resíduos que participam do sítio ativo (W128, L129 e H133). Essa região está em contato tanto com o loop longo (S88-G101) assim como com o loop (A108-Q118) por meio da H133. Na CsCyp wt S-S o W128 parece se distanciar do sítio ativo, o que, devido a sua função catalítica, também estaria de acordo com a inibição da proteína. Não foi possível determinar precisamente quem poderia ter maior influência na alteração estrutural da região T126-H133, mas o resíduo F95 apresentou uma diferença conformacional

em sua cadeia lateral, a qual esta em contato direto com essa região, o que pode ser um indício que o loop longo (S88-G101) estaria propagando o sinal da ponte dissulfeto.



Figure 1: CsCyp wt: RMSF dos últimos 50ns da simulação de 100ns

#### CsCyp S58F

As simulações de 100ns da CsCyp S58F e da CsCyp S58F S-S foram feitas para procurar compreender estruturalmente como esta mutação poderia afetar o funcionamento e a regulação da CsCyp.

A CsCyp S58F demonstrou maior estabilidade que as CsCyp wt na avaliação do RMSF e uma estrutura média muito similar a CsCyp wt sem a ponte dissulfeto. Isso sugere que ela também seja a conformação ativa, mas não sabemos se a possível diferença de estabilidade está relacionada a maior ou menor eficiência enzimática.

A CsCyp S58F S-S, diferentemente da CsCyp *wt* S-S, para possuir uma conformação mais semelhante a CsCyp ativa. Observamos inclusive uma maior mobilidade estrutural no loop A108-Q118 em relação a CsCyp S58F, mobilidade que, como mencionada anteriormente, pode estar relacionada a função catalítica [Eisenmesser et al., 2002]. Há também uma



Figure 2: CsCyp wt S-S: RMSF dos últimos 50ns da simulação de 100ns

maior estabilidade do loop catalítico em uma posição que amplia o sítio ativo, e maior mobilidade do longo loop (S88-G101) e do loop variável.

Esses dados nos permite levantar diversas hipóteses:

- 1. A mudança S58F anula a regulação da CsCyp pela ponte dissulfeto. Uma evidência para essa hipótese seria a a semelhança entre a CsCyp S58F S-S e a CsCyp *wt*.
- 2. A mudança S58F poderia aumentar a eficiência da CsCyp S58F em relação a CsCyp *wt*, o que seria uma consequência do aumento de estabilidade da conformação ativa.
- 3. A mudança S58F poderia inverter o mecanismo de regulação. Da mesma forma que o aumento de estabilidade



Figure 3: CsCyp S58F: RMSF dos últimos 50ns da simulação de 100ns



Figure 4: CsCyp S58F S-S: RMSF dos últimos 50ns da simulação de 100ns

# **Bibliography**

Campos, B. M., Sforça, M. L., Ambrosio, A. L. B., Domingues, M. N., Brasil de Souza, T. d. A. C., Barbosa, J. a. A. R. G., Paes Leme, A. F., Perez, C. A., Whittaker, S. B.-M., Murakami, M. T., Zeri, A. C. d. M. and Benedetti, C. E. (2013). A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins. Plant physiology *162*, 1311–23.

Eisenmesser, E. Z., Bosco, D. A., Akke, M. and Kern, D. (2002). Enzyme dynamics during catalysis. Science (New York, N.Y.) 295, 1520–3.