PCT

BEST AVAILABLE COPY International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G01N 33/574, 33/68, C07K 14/47, G01N 33/577

(11) International Publication Number: WO 98/10291

(43) International Publication Date: 12 March 1998 (12.03.98)

(21) International Application Number: PCT/GB97/02394

(22) International Filing Date: 5 September 1997 (05.09.97)

(30) Priority Data:

9618600.2 6 September 1996 (06.09.96) GB 9707132.8 8 April 1997 (08.04.97) GB

(71) Applicant (for all designated States except US): CENTER FOR CLINICAL & BASIC RESEARCH [DK/DK]; Ballerup Byvej 222, DK-2750 Ballerup (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BYRJALSEN, Inger [DK/DK]; Melanders Vaenge 5, DK-2970 Hoersholm (DK). LARSEN, Peter, Mose [DK/DK]; Vestervang 10, DK-8000 Aarhus C (DK). FEY, Stephen, John [GB/DK]; Vestervang 7, DK-8000 Aarhus C (DK).

(74) Agent: SMART, Peter, J.; W.H. Beck, Greener & Co., 7 Stone Buildings, Lincoln's Inn, London WC2A 3SZ (GB). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM

(57) Abstract

Assay methods are provided for detection or quantitation of any of several proteins which are specifically produced in the endometrium in association with hyperplasia, adenocarcinoma or the proliferative phase of the endometrium. The relevant proteins have been identified by 2D gel electrophoresis with subsequent sequence identification by mass spectroscopic finger printing of tryptic digests.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Al	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AJ	M Armenia	PI	Finland	LT	Lithuania	SK	Slovakia
A7	C Austria	FR	France	LU	Luxembourg	SN	Senegal
Al	J Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	C Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
B/	Bosnia and Herzegovina	GR	Georgia	MD	Republic of Moldova	TG	Togo
BI	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BI	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BI	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BO	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BI	t Brazil	1L	Israel	MR	Mauritania	UG	Uganda
B	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
C/	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CI	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
C	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CI	I Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CI	d Cameroon		Republic of Korea	PL	Poland		
C	f China	KR	Republic of Korea	PT	Portugal		
C	J Cuba	KZ	Kazakstan	RO	Romania		
C	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DI	Germany	u	Liechtenstein	SD	Sudan		
Di	C Denmark	LK	Sri Lanka	SE	Sweden		
KI	Estonia	LR	Liberia	SG	Singapore		

-1-

BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM

The endometrium is the mucous lining of the uterine cavity. During the menstrual cycle, the endometrium is the organ in the body that shows the greatest changes under the influence of the sex hormones, oestradiol and progesterone. In the oestrogen dominated phase the endometrium proliferates until progesterone from the corpus luteum transforms the oestrogen-primed proliferative endometrium to a secretory phase endometrium. In due course this is followed by shedding of the fully transformed endometrium during the menstruation, and a new cycle will begin.

Persistent unbalanced oestrogen stimulation either due to increased endogenous production of oestrogens, or replacement therapy in which oestrogens are given alone, is associated with increased risk of developing endometrial hyperplasia and subsequently endometrial adenocarcinoma. Histologically, these pathological conditions are characterised by increased thickness of the endometrium and irregular pattern of the endometrial glandular cells.

20 Endometrial adenocarcinoma is a life threatening condition.

At present the endometrial status is assessed by histological and biochemical analysis of endometrial biopsies. This is time-consuming, expensive and causes discomfort for the woman. It would be highly desirable to identify biochemical markers which could be measured in body fluids reflecting the endometrial status, obviating the need for endometrial biopsies. The detection of such markers in histological samples would also however be advantageous as an additional method of recognising the histological status of such samples.

We have now discovered that certain proteins are produced in the endometrium in increased amounts associated with hyperplasia and that certain proteins are produced in increased amounts associated with adenocarcinoma. These two groups of proteins overlap somewhat. The present invention relates in a first aspect to such proteins and to their diagnostic uses.

-2-

Unless otherwise indicated, references to the proteins herein include references to modified forms of the proteins and derivatives of the proteins, including but not restricted to glycosylated, phosphorylated, acetylated, 5 methylated or lipidated forms thereof.

Thus the invention provides a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a nucleic acid coding therefor, or an antibody thereto.

The invention includes a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and characterised by one of the following combinations of molecular weight and pI values:

$hyp\epsilon$	~~~		•••
IVIDE		1 (1)	

	- T	Mid lette
	pI	MW kDa
25	6.7	91
	6.6	90
	6.9	64
	6.6	67
	6.3	66
30	6.8	46
	5.7	41
	5.5	35
	5.3	13
	6.6	101
35	5.8	14
	7.4	51
	8.2	44
	9.5	48

	adenoca	arcinoma
5	pI	MW (kDa)
	6.3	32
	6.0	109
	6.7	91
	6.6	90
10.	6.9	64
	6.6	67
	6.3	66
	6.2	62
	6.2	45
15	5.7	45
	5.4	33
	6.3	27
	6.5	103
	6.8	90
20	6.9	78
	5.3	13
	6.2	130
	6.3	66
	6.3	73
25	8.3	32
	8.1	55
	8.2	44
	6.6	111
	7.7	43
30	9.5	48
	8.3	32
	7.7	39

or a fragment or breakdown product thereof, or a nucleic 35 acid coding therefor, or an antibody thereto.

Said protein, fragment, breakdown product, antibody or nucleic acid may preferably be detected in a body fluid sample but may also be detailed in other forms of sample such as histological samples or cytological samples.

-4-

The invention includes an immunological binding partner specifically reactive with a protein as defined above with a 5 fragment or breakdown product thereof or with a nucelic acid coding therefor.

It also includes a cell line producing a monoclonal antibody being such an immunological binding partner.

The invention includes also an assay kit for use in 10 such an analysis method comprising an immunological binding partner as described.

This aspect of the invention has resulted from studies aiming to detect endometrial proteins with synthesis in endometrial adenocarcinoma as compared to the 15 synthesis during the normal menstrual cycle; to detect endometrial proteins with increased synthesis in endometrial hyperplasia as compared to the synthesis during the normal menstrual cycle; and to detect proteins cycle-related expression during the normal menstrual cycle.

In a second aspect the invention relates to the discovery of markers of the "proliferative" phase of the human endometrium. A protein marker for the "secretory" phase of the endometrium has been previously described, see US-A-4,489,166. No similar marker has been described for 25 the proliferative phase although certain candidate proteins were described in Ref. 1.

20

Under influence of the sex hormones, oestradiol and progesterone, the human endometrium undergoes cyclical variation with an oestrogen-dominated phase, i.e. 30 proliferative phase, an ovulation phase, i.e. the interval phase, a progesterone-dominated phase, i.e. the secretory phase, and finally the endometrium is shed, i.e. the The same cyclical variation of menstrual phase. endometrium is seen in postmenopausal women receiving 35 sequentially combined hormone replacement therapy. demand for endometrial status assessment has increased in the latest decade, not only on account of the extensive research into fertility, but also in order to

WO 98/10291

estimate endometrial response to the large number combined oestrogens/progestogen preparations used in hormone replacement therapy. It would be highly desirable to identify biochemical markers which could be measured in body 5 fluids reflecting the endometrial status, obviating the need for endometrial biopsies. Studies have suggested that serum placental protein 14 (PP14), which is produced in the glandular cells of the secretory phase endometrium (Ref. 3), is a reliable marker of the secretory phase endometrium. 10 has been shown that serum PP14 strongly correlates with the secretory activity of the endometrium in postmenopausal women receiving hormone replacement therapy (Ref. 4,5). the similar marker exists for proliferative phase endometrium.

-5-

PCT/GB97/02394

We have now discovered that certain proteins are produced in the endometrium in increased amounts in proliferative phase endometrium as compared to secretory phase endometrium.

According to this aspect of the invention there is now provided a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel elctrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

pI	MW(kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	59
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic 5 acid coding therefor or an antibody thereto.

Such a method may preferably be for detecting the phase of the endometrium.

The preferred features of the first aspect of the invention apply also to this second aspect.

- This aspect of the invention includes a method of determining the proliferative/secretory phase status of the endometrium comprising the quantitative or qualitative measurement in a sample of any one or more of the proteins defined above or a breakdown product or fragment thereof.
- 15 It also includes an immunological binding partner for any of the said proteins, breakdown products or fragments or a cell line producing such a binding partner.

the sequences and properties of proteins discussed above relate to human proteins, the assay procedures of the invention may be practised on samples arising from other species. Especially in this context, 5 references to proteins herein should be understood to include proteins having a degree of homology of at least 60% with the given amino acid sequences irrespective of any modifications of said amino acids. When determining homology, modified amino acids such as phosphorylated, acetylated, amidated, methylated, glycosylated or lipidated derivatives of an amino acid should thus be considered to be the same as the amino acid without any such modification. Such peptides may be derived from similar proteins from other species, e.g. other mammals such as mouse, rabbit, 15 guinea pig, pig, or cow or may be entirely or predominantly of synthetic origin.

The degree of homology may be advantageously be at least 65%, or at least 70%. Under certain circumstances, it is advantageous that the degree of homology is even higher such as at least 80% or at least 90%. Other DNA sequences which encode substantially the same amino acid sequence as a gene encoding a marker protein, i.e. a marker gene, may be used in the practice of the present invention. These include, but are not limited to, allelic genes and homologous genes from other species.

Nucleic acid fragments comprising a nucleotide sequence which codes for a protein described above or a peptide derived from it as well as nucleic acid fragments which hybridise with these nucleic acid fragments or a part thereof under stringent hybridisation conditions, e.g. 5 mM monovalent ions (0.1xSSC), neutral pH and 65°C are important aspects of the invention. The term "highly stringent", when used in conjunction with hybrisidation conditions, is as defined in the art, i.e. 5-10°C under the melting point T_m, cf, Sambrook et al, 1989, pages 11.45 - 11.49.

By the term "nucleic acid" is meant a polynucleotide of high molecular weight which can occur as either DNA or RNA and may be either single-stranded or double-stranded.

-8-

Once the amino acid sequences of the proteins of utility in the present invention are known, it is possible to synthesise DNA or RNA probes which may be used for:

5

25

- i) direct detection of DNA and RNA expressing said proteins on a fixed or frozen tissue section using, e.g. chromogenous, chemiluminescent or immunofluorescent techniques;
- ii) polymerase chain reaction (PCR) or other amplification techniques; and
- iii) locating the part or all of the gene, isogene, pseudogene or other related genes either in cDNA libraries, genomic libraries or other collections of genetic material from either the host or other animals, including man.
- In another aspect, the invention relates to a binding means which specifically binds to a relevant protein or peptide or nucleic acid fragment as described above. In particular, the invention relates to an antibody which specifically binds to a relevant protein or peptide or an antigen-binding fragment thereof, i.e. a polyclonal antibody, a monoclonal antibody, chimeric antibody, single chain antibody fragment, Fab and Fab' fragments, and an Fab expression library.

It is contemplated that both monoclonal and polyclonal antibodies will be useful in providing the basis for one or more assays to detect relevant peptides and proteins.

Antibodies which are directed against epitopes that are specific for the proteins will be most useful as cross reaction will be minimised therewith.

Based upon the identification of relevant proteins described above, assay methods and kits may be produced according to standard methodology. Thus, the proteins may be obtained in purified form, either by extraction from tissues or by synthesis, and antibodies may be raised thereto or to characterising peptide sequences thereof. Standard assay formats employing such antibodies may be utilised according to the invention.

Preferred immunoassays are contemplated as including various types of enzyme linked immunoassays (ELISA), immunoblot techniques, and the like, known in the art.

5 However, it is readily appreciated that utility is not limited to such assays, and useful embodiments including RIAs and other non-enzyme linked antibody binding assays or procedures. The proteins themselves or peptides derived from the protein sequences may be used in detecting auto-antibodies to such proteins.

Samples of the proteins described above have been subjected to trypsin digestion and the molecular weight of the resulting fragments has been determined by mass spectrometry. This provides a "fingerprint" of the protein which can be matched to date in established data bases available to those working in this field. This procedure has enabled us to identify certain of the proteins as being previously known in other contexts. No matches have been found for certain others, indicating that they have not previously been known.

The invention will be illustrated and explained further by the following description in which the Figures as follows:-

Figure 1: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial
proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the
second dimension by sodium dodecyl sulphate
polyacrylamide gel electrophoresis. The locations
of the spots with increased synthesis in
hyperplasia are indicated.

Figure 2: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial
proteins separated in the first dimension by nonequilibrium pH gradient gel electrophoresis
(NEPHGE; pI 6.5-11) and in the second dimension by
sodium dodecyl sulphate polyacrylamide gel

-10-

electrophoresis. The locations of the spots with increased synthesis in hyperplasia are indicated.

Figure 3: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel elctrophoresis. The locations increased synthesis the spots with adenocarcinoma are indicated.

5

10

15

- Figure 4: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by nongradient gel electrophoresis equilibrium pН (NEPHGE; pI 6.5-11) and in the second dimension by sulphate polyacrylamide dodecyl electrophoresis. The locations of the spots with adenocarcinoma increased synthesis in are indicated.
- Figure 5: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial
 proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the
 second dimension by sodium dodecyl sulphate
 polyacrylamide gel electrophoresis. The locations
 of the spots with increased synthesis in
 proliferative phase endometrium are indicated.
- Figure 6: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by non-30 gradient gel electrophoresis equilibrium pН (NEPHGE; pI 6.5-11) and in the second dimension by dodecyl sulphate polyacrylamide electrophoresis. The locations of the spots with synthesis proliferative phase increased in 35 endometrium are indicated.
 - Figure 7: Tryptic digestion mass spectroscopic characteristics of I#350. The peaks marked with a star

-11-

are not protein identification specific but represents methodologically non-specific peaks.

Figure 8: Tryptic digestion mass spectroscopic characteristics of I#687. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

5

10

- Figure 9: Tryptic digestion mass spectroscopic characteristics of N#414. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- Figure 10: Tryptic digestion mass spectroscopic characteristics of I#1035. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- 15 Figure 11:Tryptic digestion mass spectroscopic characteristics of N#26. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- Figure 12:Tryptic digestion mass spectroscopic characteristics of N#31+N#32. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

To identify proteins expressed at an increased level in differing endometrial conditions, endometrial samples were obtained as follows.

menstrual obtained Normal cycle samples were described in Ref. 1. Endometrial biopsies were collected from 13 pre-menopausal, regular cycling women (35-50 years 30 old) undergoing endometrial curettage (n=1) or hysterectomy (removal of the uterus) (n=12) for a variety of medical reasons not related to abnormality or malignancy of the endometrium. None used hormone contraception. For pathological condition samples, endometrial biopsies were 35 collected from 16 patients (41 to 79 years old) undergoing endometrial curettage (n=9) or hysterectomy (n=7)medical reasons related to abnormality or malignancy of the endometrium.

-12-

The samples were treated as described in Ref. 1. The proteins of the endometrial biopsies were metabolically labelled with ¹⁵S-methionine for 20 hours, and total cell lysates were processed for 2D gel electrophoresis, technique in which proteins are separated in the first dimension according to the isoelectric point and in the second dimension according to the molecular weight. It was possible to study proteins with iso-electric points ranging from 3.5 to 11 and relative molecular weights ranging from 10 10 to 300 kDa. After electrophoresis the gels were fixed and treated for fluorography. The fluorograms of the 2D gel electrophoresis were subjected to quantitative analysis by computer-aided analysis, by which the density of each spot was quantified, the fluorogram patterns were matched i.e. 15 numbers were assigned to each spot and the same spot was given the same number on all the fluorograms. The density (quantity synthesis) of each spot was assessed to find proteins with increased synthesis in endometrial adenocarcinoma or hyperplasia and assessed for periodic 20 characteristics during the normal menstrual cycle to find proteins with the menstrual cycle-related synthesis.

Some of the menstrual cycle-related proteins identified have been identified by amino acid sequence analysis (Ref.2). Selected menstrual cycle-related 25 proteins were excised from several 2D gels, concentrated by sodium dodecylsulphate polyacrylamide gel horesis, and cleaved in situ by trypsin. The tryptic fragments were extracted and separated by reverse phase high pressure liquid chromatography. Finally, the 30 amino-terminal amino acid sequence of selected tryptic fragments were determined for each protein. identification the amino acid sequences of the tryptic fragments were compared to previously reported sequences by searching in databases.

The hyperplasia and adenocarcinoma associated proteins of the present invention may be sequenced and further characterised by similar methods.

-13-

Out of a total number of approximately 1,700 spots, 14 spots were found to have increased synthesis in hyperplasia. The locations of these are shown in Figures 1 and 2. 5 27 spots had increased synthesis in adenocarcinoma. The locations of these are shown in Figures 3 and 4. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular (MW) of the spots with increased synthesis is given in Table 1, and the spots with hyperplasia increased synthesis in adenocarcinoma are listed in Table 2. Eight spots had increased expression in both hyperplasia adenocarcinoma. Based on subjective evaluation, preferred subgroups of spots were selected with increased in hyperplasia and in adenocarcinoma, respectively. The preferred subgroup of spots with increased synthesis in hyperplasia were selected as being showing the highest relative spots increase expression in hyperplasia as compared to the obtained from women during the normal mentrual cycle and women with irregular proliferative phase endometrium. Similarly, the preferred subgroup of spots with increased synthesis in adenocarcinoma were selected as the spots showing the highest relative increase in expression in 25 adenocarcinoma as compared to the samples obtained from women during the normal menstrual cycle and women with irregular proliferative phase endometrium. The preferred subgroup of 7 spots with increased synthesis in hyperplasia is given in Table 3, and the preferred subgroup of 12 spots 30 with increased synthesis in adenocarcinoma is given in Table 4.

-14-

TABLE 1

Endometrial proteins with increased synthesis in hyperplasia					
Match #	Match # pI MW(kDa)				
I#111	6.7	91			
I#121	6.6	90			
I#158	6.9	64			
I#177	6.6	67			
I#191	6.3	66			
I#307	6.8	46			
I#350	5.7	41			
I#405	5.5	35			
I#653	5.3	13			
I#892	6.6	101			
I#1183	5.8	14			
N#126	7.4	51			
N#148	8.2	44			
N#414	9.5	48			

-15-Table 2

	Table 2		
Endometrial proteins with increased synthesis in adenocarcinoma			
Match #	pΙ	MW(kDa)	
I#16	6.3	32	
I#53	6.0	109	
I#111	6.7	91	
I#121	6.6	90	
I#158	6.9	64	
I#177	6.6	67	
I#191	6.3	66	
I#194	6.2	62	
I#337	6.2	45	
I#346	5.7	45	
I#436	5.4	33	
I#452	6.3	27	
I#542	6.5	103	
I#558	6.8	90	
I#627	6.9	78	
I#653	5.3	13	
I#788	6.2	130	
I#1137	6.3	66	
I#1271	6.3	73	
N#15	8.3	32	
N#91	8.1	55	
N#148	8.2	44	
N#251	6.6	111	
N#354	7.7	43	
N#414	9.5	48	
N#549	8.3	32	
N#551	7.7	39	

WO 98/10291

-16-

TABLE 3

Preferred endometr	ial proteins with in hyperplasia	creased synthesis in
Match #	pI	MW(kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#350	5.7	41
I#405	5.5	35
I#653	5.3	13
I#892	6.6	101

5

TABLE 4

D		
Preferred endometr	rial proteins with inc adenocarcinoma	reased synthesis in
Match #	pI	MW (kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#194	6.2	62
I#337	6.2	45
I#346	5.7	45
I#452	6.3	27
I#627	6.9	78
I#653	5.3	13
N#91	8.1	55
N#354	7.7	43
N#551	7.7	39

-17-

Out of the total number of approximately 1,700 spots, 135 had a menstrual cycle-related expression. These 135 spots had maximal expression as follows: 61 spots in 5 proliferative endometrium, 29 spots in interval phase endometrium, 41 in secretory phase endometrium and 4 in late secretory/menstrual phase endometrium. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular weight (MW) of a preferred subgroup of these spots which show increased synthesis in proliferative phase endometrium are given in Table 5 and their positions are indicated in Figures 5 and 6.

TABLE 5

	TABLE 3				
	Endometrial proteins with menstrual cycle-related expression Maximal expression in proliferative phase endometrium				
Match #	pI	MW (kDa)			
I#103	6.9	86			
I#590	5.4	34			
I#687	5.6	67			
I#960	5.3	23			
I#1035	6.8	52			
N#8	8.7	47			
N#21	8.2	138			
N#26	6.5	124			
N#31	7.7	119			
N#32	7.8	119			
N#64	8.1	66			
N#71	7.1	59			
N#74	6.8	66			
N#124	7.9	48			
N#192	7.7	31			
N#207	6.8	29			
N#265	7.2	70			
N#332	8.0	119			
N#342	6.7	62			

Fluorographs of gels exemplifying those upon which the identifications given in Tables 1 to 5 above are based appear in Figures 1 to 6.

-19-

The proteins described above may be further characterised by partial amino acid sequence analysis as described in Ref. 2, or by the more sensitive technique of mass spectrometric peptide mapping. By way of example, we have identified the proteins for which previously given names, data-base accession numbers and amino acid sequences are given in Table 6. Mass spectroscopic characteristics of tryptic digests of further proteins are shown in Figures 7 to 13 which have not matches to any known protein. These proteins can be sequenced by known techniques and are included per se within the scope of the invention.

15

TABLE 6

Match #	Name ID	Amino Acid Sequence
I#191 And I#1137 SEQ ID No.1	Human heat shock 70 kD protein 1 P08107	MAKAAAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGE TKAFYPEEIS SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH FVEEFKRKHK KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA RFEELCSDLF RSTLEPVEKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ EAEKYKAEDE VQRERVSAKN ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE QVCNPIISGL YQGAGGPGPG GFGAQGPKGG SGSGPTIEEV D
I#337 SEQ ID No.2	CAMP- dependent protein kinase type I-beta regulatory chain	ASPPACPSEE DESLKGCELY VQLHGIQQVL KDCIVHLCIS KPERPMKFLR EHFEKLEKEE NRQILARQKS NSQSDSHDEE VSPTPPNPVV KARRRGGVS AEVYTEEDAV SYVRKVIPKD YKTMTALAKA ISKNVLFAHL DDNERSDIFD AMFPVTHIAG ETVIQQGNEG DNFYVVDQGE VDVYVNGEWV TNISEGGSFG ELALIYGTPR AATVKAKTDL KLWGIDRDSY RRILMGSTLR

-20-

		-20-
	P31321	KRKMYEEFLS KVSILESLEK WERLTVADRL EPVQFEDGEK IVVQGEPGDD FYIITEGTAS VLQRRSPNEE YVEVGRLGPS DYFGEIALLL NRPRAATVVA RGPLKCVKLD RPRFERVLGP CSEILKRNIQ RYNSFISLTV
I#346 And	Vimentin P08670	STRSVSSSSY RRMFGGPGTA SRPSSSRSYV TTSTRTYSLG SALRPSTSRS LYASSPGGVY
I#405	200070	ATRSSAVRLR SSVPGVRLLQ DSVDFSLADA INTEFKNTRT NEKVELQELN DRFANYIDKV RFLEQQNKIL LAELEQLKGQ GKSRLGDLYE
		EEMRELRRQV DQLTNDKARV EVERDNLAED IMRLREKLQE EMLQREEAEN TLQSFRQDVD
SEQ ID		NASLARLDLE RKVESLQEEI AFLKKLHEEE
No.3		IQELQAQIQE QHVQIDVDVS KPDLTAALRD
		VRQQYESVAA KNLQEAEEWY KSKFADLSEA ANRNNDALRQ AKQESTEYRR QVQSLTCEVD
		ALKGTNESLE ROMREMEENF AVEAANYODT
		IGRLQDEIQN MKEEMARHLR EYQDLLNVKM
		ALDIEIATYR KLLEGEESRI SLPLPNFSSL NLRETNLDSL PLVDTHSKRT FLIKTVETRD
		GQVINETSQH HDDLE
I# 45 2	Heat Shock 27	MTERRVPFSL LRGPSWDPFR DWYPHSRLFD
	KD Protein	QAFGLPRLPE EWSQWLGGSS WPGYVRPLPP AAIESPAVAA PAYSRALSRQ LSSGVSEIRH
SEQ ID	P04792	TADRWRVSLD VNHFAPDELT VKTKDGVVEI
		TGKHEERQDE HGYISRCFTR KYTLPPGVDP
No.4	And	TQVSSSLSPE GTLTVEAPMP KLATQSNEIT IPVTFESRAO LGGRSCKIR
	72.0	
	Prohibitin	MAAKVFESIG KFGLALAVAG GVVNSALYNV
	P35232	DAGHRAVIFD RFRGVQDIVV GEGTHFLIPW VQKPIIFDCR SRPRNVPVIT GSKDLQNVNI
	(in	TLRILFRPVA SQLPRIFTSI GEDYDERVLP
	admixture)	SITTEILKSV VARFDAGELI TQRELVSRQV SDDLTERAAT FGLILDDVSL THLTFGKEFT
		EAVEAKQVAQ QEAERARFVV EKAEQQKKAA
		IISAEGDSKA AELIANSLAT AGDGLIELRK
		LEAAEDIAYQ LSRSRNITYL PAGQSVLLQL PQ
I#436	Tropomyosin fibroblast	MDAIKKKMOM LKLDKENALD RAEQAEADKK AAEDRSKQLE DELVSLQKKL KGTEDELDKY
And	isoform TM3	SEALKDAQEK LELAEKKATD AEADVASLNR
T.4.E.O.O.		RIQLVEEELD RAQERLATAL QKLEEAEKAA
I#590	P09494	DESERGMKVI ESRAQKDEEK MEIQEIQLKE AKHIAEDADR KYEEVARKLV IIESDLERAE
SEQ ID		ERAELSEGQV RQLEEQLRIM DQTLKALMAA
No.5		EDKYSOKEDR YEEEIKVLSD KLKEAETRAE
		FAERSVTKLE KSIDDLEEKV AHAKEENLSM HQMLDQTLLE LNNM
I#627	Serotrans-	MRLAVGALLV CAVLGLCLAV PDKTVRWCAV
	ferrin precursor	SEHEATKCQS FRDHMKSVIP SDGPSVACVK KASYLDCIRA IAANEADAVT LDAGLVYDAY
SEQ ID	PICCUISOI	LAPNNLKPVV AEFYGSKEDP QTFYYAVAVV
]	P02787	KKDSGFQMNQ LRGKKSCHTG LGRSAGWNIP
No.6	1 1 3	IGLLYCDLPE PRKPLEKAVA NFFSGSCAPC ADGTDFPQLC QLCPGCGCST LNQYFGYSGA
	7	FKCLKDGAGD VAFVKHSTIF ENLANKADRD
		QYELLCLDNT RKPVDEYKDC HLAQVPSHTV
•		VARSMGGKED LIWELLNQAQ EHFGKDKSKE

-21-

		-21-			
			DLLFKDSAHG		
			AIRNLREGTC		
		VKWCALSHHE	RLKCDEWSVN	SVGKIECVSA	
	1		MNGEADAMSL		
			YNKSDNCEDT		
		VKKSASDLTW	DNLKGKKSCH	TAVGRTAGWN	
		IPMGLLYNKI	NHCRFDEFFS	EGCAPGSKKD	
		SSLCKLCMGS	GLNLCEPNNK	EGYYGYTGAF	
		RCLVEKGDVA	FVKHQTVPQN	TGGKNPDPWA	
		KNLNEKDYEL	LCLDGTRKPV	EEYANCHLAR	
		APNHAVVTRK	DKEACVHKIL	RQQQHLFGSN	
		VTDCSGNFCL	FRSETKDLLF	RDDTVCLAKL	
\forall		HDRNTYEKYL	GEEYVKAVGN	LRKCSTSSLL	EACTFRRP
N#8	47 KD Heat	MESTICATO	LLAVALAAEV	KKDVEVVVDC	
N#O	Shock Protein		TLAEPSTGLA		
	Precursor		VVVASSLGLV	_	
	Frecursor				
SEQ ID	D20042		LRDEEVHAGL SRLYGPSSVS		
No 7	P29043		NFPDKRSALQ		
No.7			VERTDGALLV		
			RGFMVTRSYT		
j			KLQLVEMPLA		
			EKLLTKEQLK		
			EVTHDLQKHL	_	
	i*		GKKDLYLASV		
			GREELRSPKL		
			FIGRLVRLKG		
	<u> </u>				
N#124	Ubiquinol-		SRFYSLKVAP		
	cytochrom C		TKLPNGLVIA		
	reductase		YEDFSNLGTT		
SEQ ID	complex core	TKGASSFKIT	RGIEAVGGKL	SVTATRENMA	
324 12	protein 2		DILMEFLLNV		
No.8	precursor	VADLQPQLKI	DKAVAFQNPQ	THVIENLHAA	
			YCPDYRIGKV		
	P22695		IGLGVSHPVL		
\			ANYRGGEIRE		
			AEANAFSVLQ		
i			QAVAKATQQP		
			ISQATAAGDV	_	
			VQAAKNKLKA		1
			LVAGSYMPPS		
		NADIINAAKK	FVSGQKSMAA	SGNLGHTPFV	DEL
N#126	Alpha Enolase	SILKIHAREI	FDSRGNPTVE	VDLFTSKGLF	
	•		GIYEALELRD		
	P06733		TIAPALVSKK		
CEO TO	- 3 - 7 - 2 - 3		NKSKFGANAI		
SEQ ID			RHIADLAGNS		
No.9	h *		KLAMQEFMIL		
		MRIGAEVYHN	LKNVIKEKYG	KDATNVGDEG	
			EGLELLKTAI		
		IGMDVAASEF	FRSGKYDLDF	KSPDDPSRYI	
		SPDQLADLYK	SFIKDYPVVS	IEDPFDQDDW	
			GIQVVGDDLT		
M. 9			LKVNQIGSVT		
	A		RSGETEDTFI		
			ERLAKYNQLL		
		KFAGRNFRNP			
i i					

		-22-
N#148	Phospho-	SLSNKLTLDK LDVKGKRVVM
	glycerate	RVDFNVPMKNNQITNNQRIK AAVPSIKFCL
	kinase 1	DNGAKSVVLM
SEQ ID		
JEQ 10	P00558	SHLGRPDGVP MPDKYSLEPV AVELKSLLGK
No.10	"	DVLFLKDCVG PEVEKACANP AAGSVILLEN
		LRFHVEEEGK GKDASGNKVK AEPAKIEAFR
		ASLSKLGDVY VNDAFGTAHR AHSSMVGVNL
i		PQKAGGFLMK KELNYFAKAL ESPERPFLAI
		LGGAKVADKI QLINNMLDKV NEMIIGGGMA
		FTFLKVLNNM EIGTSLFDEE GAKIVKDLMS
I		KAEKNGVKIT LPVDFVTADK FDENAKTGQA
1		TVASGIPAGW MGLDCGPESS KKYAEAVTRA
1		KQIVWNGPVG VFEWEAFARG TKALMDEVVK
i	1	ATSRGCITII GGGDTATCCA KWNTEDKVSH
1	ŀ	VSTGGGASLE LLEGKVLPGV DALSNIL
114207	- :	<u> </u>
ท#207	Triose-	MAPSRKFFVG GNWKMNGRKQ SLGELIGTLN
	phosphat	AAKVPADTEV VCAPPTAYID FARQKLDPKI
	isomerase	AVAAQNCYKV TNGAFTGEIS PGMIKDCGAT
SEQ ID	Tour	WVVLGHSERR HVFGESDELI GQKVAHALAE
No. 11	ISHUT	GLGVIACIGE KLDEREAGIT EKVVFEQTKV
No.11	S29743	IADNVKDWSK VVLAYEPVWA IGTGKTATPQ
1	}	QAQEVHEKLR GWLKSNVSDA VAQSTRIIYG
		GSVTGATCKE LASQPDVDGF LVGGASLKPE
		FVDIINAKQ
N#332	Hypo-thetical	PVPLSFLSTV CDPRVQDGAA ERTGAADGEE
	Protein	FLGGGGLPAE LFQKKVVASF PRTVLSTGMD
•	KIAA0083	NRYLVLAVNT VQNKEGNCEK RLVITASQSL
CEO TO		ENKELCILRN DWCSVPVEPG DIIHLEGDCT
SEQ ID	P51530	SDTWIIDKDF GYLILYPDML ISGTSIASSI
No.12	- 32330	RCMRRAVLSE TFRSSDPATR QMLIGTVLHE
1		VFQKAINNSF APEKLQELAF QTIQEIRHLK
]		EMYRLNLSQD EIKQEVEDYL PSFCKWAGDF
i .		MHKNTSTDFP QMQLSLPSDN SKDNSTCNIE
		VVKPMDIEES IWSPRFGLKG KIDVTVGVKI
		HRGYKTKYKI MPLELKTGKE SNSIEHRSQV
		VLYTLLSQER RADPEAGLLL YLKTGQMYPV
ì		PANHLDKREL LKLRNOMAFS LFHRISKSAT
		RQKTQLASLP QIIEEEKTCK YCSQIGNCAL
		YSRAVEQQMD CSSVPIVMLP KIEEETQHLK
		QTHLEYFSLW CLMLTLESQS KDNKKNHQNI
j	i	WLMPASEMEK SGSCIGNLIR MEHVKIVCDG
		QYLHNFQCKH GAIPVTNLMA GDRVIVSGEE
		RSLFALSRGY VKEINMTTVT CLLDRNLSVL
H .		PESTLFRLDQ EEKNCDIDTP LGNLSKLMEN
		TFVSKKLRDL IIDFREPQFI SYLSSVLPHD
		AKDTVACILK GLNKPQRQAM KKVLLSKDYT
1		LIVGMPGTGK TTTICTLVRI LYACGFSVLL
		TSYTHSAVDN ILLKLAKFKI GFLRLGQIQK
1 '		VHPAIQQFTE QEICRSKSIK SLALLEELYN
[SQLIVATTCM GINHPIFSRK IFDFCIVDEA
l l		SQISQPICLG PLFFSRRFVL VGDHQQLPPL
Į ;	1	VLNREARALG MSESLFKRLE QNKSAVVQLT
]		VQYRMNSKIM SLSNKLTYEG KLECGSDKVA
]		NAVINLRHFK DVKLELEFYA DYSDNPWLMG
l l	(P)	VFEPNNPVCF LNTDKVPAPE QVEKGGVSNV
1		TEAKLIVFLT SIFVKAGCSP SDIGIIAPYR
		QQLKIINDLL ARSIGMVEVN TVDKYQGRDK
		SIVLVSFVRS NKDGTVGELL KDWRRLNVAI
		TRAKHKLILL GCVPSLNCYP PLEKLLNHLN
50 V 1	N	

-23-

		-23-
		SEKLIIDLPS REHESLCHIL GDFQRE
N#342 SEQ ID No.13	Catalase P04040	MADSRDPASD QMQHWKEQRA AQKADVLTTG AGNPVGDKLN VITVGPRGPL LVQDVVFTDE MAHFDRERIP ERVVHAKGAG AFGYFEVTHD ITKYSKAKVF EHIGKKTPIA VRFSTVAGES GSADTVRDPR GFAVKFYTED GNWDLVGNNT PIFFIRDPIL FPSFIHSQKR NPQTHLKDPD MVWDFWSLRP ESLHQVSFLF SDRGIPDGHR HMNGYGSHTF KLVNANGEAV YCKFHYKTDQ GIKNLSVEDA ARLSQEDPDY GIRDLFNAIA TGKYPSWTFY IQVMTFNQAE TFPFNPFDLT KVWPHKDYPL IPVGKLVLNR NPVNYFAEVE QIAFDPSNMP PGIEASPDKM LQGRLFAYPD THRHRLGPNY LHIPVNCPYR ARVANYQRDG PMCMQDNQGG APNYYPNSFG APEQQPSALE HSIQYSGEVR RFNTANDDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA QIFIQKKAVK NFTEVHPDYG SHIQALLDKY NAEKPKNAIH TFVQSGSHLA AREKANL
N#551 SEQ ID No.14	Hetero- geneous nuclear ribonucleo- proteins A2/B1 P22626	MEKTLETVPL ERKKREKEQF RKLFIGGLSF ETTEESLRNY YEQWGKLTDC VVMRDPASKR SRGFGFVTFS SMAEVDAAMA ARPHSIDGRV VEPKRAVARE ESGKPGAHVT VKKLFVGGIK EDTEEHHLRD YFEEYGKIDT IEIITDRQSG KKRGFGFVTF DDHDPVDKIV LQKYHTINGH NAEVRKALSR QEMQEVQSSR SGRGGNFGFG DSRGGGGNFG PGPGSNFRGG SDGYGSGRGF GDGYNGYGGG PGGGNFGGSP GYGGGRGGYG GGGPGYGNQG GGYGGGYDNY GGGNYGSGNY NDFGNYNQQP SNYGPMKSGN FGGSRNMGGP YGGGNYGPGG SGGSGGYGGR SRY
I#960 (Prolifer ative phase marker) SEQ ID No.15	Steroid membrane binding protein X99714	MAAEDVAATG ADPSELEGGG LLHEIFTSPL NLLLLGLCIF LLYKIVRGDQ PAASDSDDDE PPPLPRLKRR DFTPAELRRF DGVQDPRILM AINGKVFDVT KGRKFYGPEG PYGVFAGRDA SRGLATFCLD KEALKDEYDD LSDLTPAQQE TLNDWDSQFT FKYHHVGKLL KEGEEPTVYS DEEEPKDESA RKND
I#177 (Hyperpla sia & Cancer Marker) SEQ ID No.16	Heat shock cognate 71 KD protein P11142	MSKGPAVGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA MNPTNTVFDA KRLIGRRFDD AVVQSDMKHW PFMVVNDAGR PKVQVEYKGE TKSFYPEEVS SMVLTKMKEI AEAYLGKTVT NAVVTVPAYF NDSQRQATKD AGTIAGLNVL RIINEPTAAA IAYGLDKKVG AERNVLIFDL GGGTFDVSIL TIEDGIFEVK STAGDTHLGG EDFDNRMVNH FIAEFKRKHK KDISENKRAV RRLRTACERA KRTLSSSTQA SIEIDSLYEG IDFYTSITRA RFEELNADLF RGTLDPVEKA LRDAKLDKSQ IHDIVLVGGS TRIPKIQKLL QDFFNGKELN KSINPDEAVA YGAAVQAAIL SGDKSENVQD LLLLDVTPLS LGIETAGGVM TVLIKRNTTI PTKQTQTFTT YSDNQPGVLI QVYEGERAMT KDNNLLGKFE LTGIPPAPRG VPQIEVTFDI DANGILNVSA VDKSTGKENK ITITNDKGRL SKEDIERMVQ EAEKYKAEDE KQRDKVSSKN SLESYAFNMK ATVEDEKLQG KINDEDKQKI LDKCNEIINW LDKNQTAEKE EFEHQQKELE KVCNPIITKL YQSAGGMPGG MPGGFPGGGA

ID: Accession Identification in protein or nucleotide databases (e.g. SwissProt, Protein Identification Resource (PIR) or EMBL)

The proteins of interest may be isolated from endometrial tissue or other protein sources by 2D gel electrophoresis or by using chromatographic techniques. Poly- or monoclonal antibodies towards the protein of interest can be raised, and immunoassays can be established based on such antibodies. Synthetic peptides being fragments characteristic of such proteins may be used for the same purposes. Assays may be based on more than one such protein for measurement at one time.

Ref.1: Byrjalsen et al. Hum Reprod 1995;10:13-18.

Ref.2: Byrjalsen et al., Hum Reprod 1995;10:2760-2766.

Ref.3: Julkunen et al., Endocrinology 1986;118:1782-1786.

15 Ref.4: Byrjalsen et al., Obstet Gynecol 1992;79:523-528.

Ref.5: Byrjalsen et al., Hum Reprod 1992;7:1042-1047.

SEQUENCE LISTING

5

{ : ; GENERAL INFORMATION:

10

(i) APPLICANT:

- (A) NAME: Center for Clinical and Basic Research
- 15 (B) STREET: Ballerup Byvej 222,
 - (C) CITY: Ballerup
 (E) COUNTRY: Denmark

 - (F) POSTAL CODE (ZIP): DK-2750
- 20 (ii) TITLE OF INVENTION: Biochemical Markers for the Human Endometrium
 - (iii) NUMBER OF SEQUENCES: 16
- 25 (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Rélease #1.0, Version #1.30 (EPO)
- 30 (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9618600.2
 - (B) FILING DATE: 06-SEP-1996
- 35 (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9707132.8
 - (B) FILING DATE: 08-APR-1997
- (2) INFORMATION FOR SEQ ID NO: 1: 40
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 641 amino acids (B) TYPE: amino acid
- (C) STRANDEDNESS: single 45
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- 50 (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

60

- 55 (A) ORGANISM: homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
 - Met Ala Lys Ala Ala Ala Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser
- Cys Val Gly Val Phe Gln His Gly Lys Val Glu Ile Ile Ala Asn Asp 65
 - Gln Gly Asn Arg Thr Thr Pro Ser Tyr Val Ala Phe Thr Asp Thr Glu

-26-

	Arg	Leu 50	Ile	Gly	Asp	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Leu	Asn	Pro	Gln
5	Asn 65	Thr	Val	Phe	Asp	Ala 70	Lys	Arg	Leu	Ile	Gly 75	Arg	Lys	Phe	Gly	Asp 80
10	Prc	7al	Val	Gln	Ser	Asp	Met	Lys	His	Trp	Pro	Phe	Gln	Val	Ile	Asn
					85					90					95	
15	Asp	Gly	Asp	Lys 100	Pro	Lys	Val	Gln	Val 105	Ser	Tyr	Lys	Gly	Glu 110	Thr	Lys
20	Ala	Phe	Tyr 115	Pro	Glu	Glu	Ile	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys
	Glu	Ile 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Tyr	Pro	Val	Thr 140	Asn	Ala	Val	Ile
25	Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
	Ala	Gly	Val	Ile	Ala 165	Gly	Leu	Asn	Val	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
30	Thr	Ala	Ala	Ala 180	Ile	Ala	Tyr	Gly	Leu 185	Asp	Arg	Thr	Gly	Lys 190	Gly	Glu
35	Arg	Asn	Val 195	Leu	Ile	Phe	Asp	Leu 200	Gly	Gly	Gly	Thr	Phe 205	Asp	Val	Ser
	Ile	Leu 210	Thr	Ile	Asp	Asp	Gly 215	Ile	Phe	Glu	Val	Lys 220	Ala	Thr	Ala	Gly
40	Asp 225	Thr	His	Leu	Gly	Gly 230	Glu	Asp	Phe	Asp	Asn 235	Arg	Leu	Val	Asn	His 240
	Phe	Val	Glu	Glu	Phe 245	Lys	Arg	Lys	His	Lys 250	Lys	Asp	Iìe	Ser	Gln 255	Asn
45	Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg
50	Thr	Leu	Ser 275	Ser	Ser	Thr	Gln	Ala 280	Ser	Leu	Glu	Ile	Asp 285	Ser	Leu	Phe
30	Glu	Gly 290	Ile	Asp	Phe	Tyr	Thr 295	Ser	Ile	Thr	Arg	Ala 300	Arg	Phe	Glu	Glu
55	Leu 305	Cys	Ser	Asp	Leu	Phe 310	Arg	Ser	Thr	Leu	Glu 315	Pro	Val	Glu	Lys	Ala 320
	Leu	Arg	Asp	Ala	Lys 325	Leu	Asp	Lys	Ala	Gln 330	Ile	His	Asp	Leu	Val 335	Leu
60	Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Val	Gln	Lys	Leu	Leu 350	Gln	Asp
c s	Phe	Phe	Asn 355	Gly	Arg	Asp	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 365	Asp	Glu	Ala
65	Val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	Met	Gly	Asp	Lys

-27-

		Se: 385	r Glu	וsA נ	n Val	l Gl:	n Asp 390	Lei	ı Le	ı Lei	ı Le	ւ Asg 395	o Val	L Ala	a Pro) Le	ser 400
5		Leu	Gly	Leu	Glu	Thr 405	Ala	Gly	Gly	Уal	Met 410	Thr	Ala	Leu	Ile	Lys 415	Arg
10		Asn	Ser	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Ile	Phe	Thr	Thr 430	Tyr	Ser
10	_																
		Asn	Agn	Gln	Pro	G1 v	Val	Len	Ile	Gln	Val	Tvr	Glu	Glv	Glu	Arg	Ala
15	:	лэр	71511	435		0_,	,,,		440			-,-		445			
		Met	Thr	Lys	Asp	Asn	Asn	Leu	Leu	Gly	Arg	Phe	Glu	Leu	Ser	Gly	Ile
20			450					455					460				
		Pro 465	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480
25		Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Thr	Asp	Lys	Ser	Thr 495	Gly
		Lys	Ala	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
30		Glu	Glu	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
		Asp	Glu 530	Val	Gln	Arg	Glu	Arg 535	Val	Ser	Ala	Lys	Asn 540	Ala	Leu	Glu	Ser
35		Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ser	Ala	Val	Glu	Asp 555	Glu	Gly	Leu	Lys	Gly 560
40		Lys	Ile	Ser	Glu	Ala 565	Asp	Lys	Lys	Lys	Val 570	Leu	Asp	Lys	Cys	Gln 575	Glu
		Val	Ile	Ser	Trp 580	Leu	Asp	Ala	Asn	Thr 585	Leu	Ala	Glu	Lys	Asp 590	Glu	Phe
45		Glu	His	Lys 595	Arg	Lys	Glu	Leu	Glu 600	Gln	Val	Cys	Asn	Pro 605	Ile	Ile	Ser
		Gly	Leu 610	Tyr	Gln	Gly	Ala	Gly 615	Gly	Pro	Gly	Pro	Gly 620	Gly	Phe	Gly	Ala
50		Gln 625	Gly	Pro	Lys	Gly	Gly 630	Ser	Gly	Ser	Gly	Pro 635	Thr	Ile	Glu	Glu	Val 640
55		Asp															
	(2)	INFO	RMAT:	ION I	FOR S	SEQ I	D NO): 2	:								
60		(i)	(A) (B) (C)	LEN TYI STI	CHANGTH:	380 mino EDNES) ami o aci SS: s	ino a id sing:	acids	3							
65		(ii)	MOLI	ECULI	E TYP	PE: p	prote	ein									
		(iii)	HYP	OTHE?	CICAI	ے: NG)			•							

-28-(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: homo sapiens 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Ala Ser Pro Pro Ala Cys Pro Ser Glu Glu Asp Glu Ser Leu Lys Gly
1 10 15 10 Cys Glu Leu Tyr Val Gln Leu His Gly Ile Gln Gln Val Leu Lys Asp 20 25 30 15 Cys Ile Val His Leu Cys Ile Ser Lys Pro Glu Arg Pro Met Lys Phe 35 40 20 Leu Arg Glu His Phe Glu Lys Leu Glu Lys Glu Glu Asn Arg Gln Ile 50 60 Leu Ala Arg Gln Lys Ser Asn Ser Gln Ser Asp Ser His Asp Glu Glu 65 70 75 80 25 Val Ser Pro Thr Pro Pro Asn Pro Val Val Lys Ala Arg Arg Arg Gly Gly Val Ser Ala Glu Val Tyr Thr Glu Glu Asp Ala Val Ser Tyr 30 Val Arg Lys Val Ile Pro Lys Asp Tyr Lys Thr Met Thr Ala Leu Ala 115 120 125 35 Lys Ala Ile Ser Lys Asn Val Leu Phe Ala His Leu Asp Asp Asn Glu Arg Ser Asp Ile Phe Asp Ala Met Phe Pro Val Thr His Ile Ala Gly 145 150 155 160 40 Glu Thr Val Ile Gln Gln Gly Asn Glu Gly Asp Asn Phe Tyr Val Val 165 170 175 Asp Gln Gly Glu Val Asp Val Tyr Val Asn Gly Glu Trp Val Thr Asn 180 185 190 45 Ile Ser Glu Gly Gly Ser Phe Gly Glu Leu Ala Leu Ile Tyr Gly Thr 195 200 205 50 Pro Arg Ala Ala Thr Val Lys Ala Lys Thr Asp Leu Lys Leu Trp Gly 210 215 220 Ile Asp Arg Asp Ser Tyr Arg Arg Ile Leu Met Gly Ser Thr Leu Arg 225 230 240 55 Lys Arg Lys Met Tyr Glu Glu Phe Leu Ser Lys Val Ser Ile Leu Glu Ser Leu Glu Lys Trp Glu Arg Leu Thr Val Ala Asp Arg Leu Glu Pro 260 265 270 60 Val Gln Phe Glu Asp Gly Glu Lys Ile Val Val Gln Gly Glu Pro Gly 275 280 285 65 Asp Asp Phe Tyr Ile Ile Thr Glu Gly Thr Ala Ser Val Leu Gln Arg

295

-29-

	Arg 305	Ser	Pro	Asn	GLu	310	Tyr	Vai	Glu	vai	315	Arg	_eu	GIY	P10	320
5	Asp	Tyr	Phe	Gly	GLu 325	Ile	Ala	Leu	Leu	Leu 330	Asn	Arg	Pro	Arg	Ala 335	Ala
	Thr	Val	Val	Ala 340	Arg	, Glà	Pro	Leu	Lys 345	Cys	Val	Lys	Leu	Asp 350	Arg	Pro
10	Arg	Phe	Glu 355	Arg	Val	Leu	Gly	Pro 360	Cys	Ser	Glu	Ile	Leu 365	Lys	Arg	Asn
15	Ile	Gln 370	Arg	Tyr	Asn	Ser	Phe 375	Ile	Ser	Leu	Thr	Val 380				
20	(2) INFOR	RMATI	ON E	OR S	SEQ 1	D NC): 3:									
20	(i)	(B)	JENCE LEN TYE STE	IGTH: PE: a	465 umino	ami aci	no a	cids	i							
25			TOE													
	(ii)				_		ein									
30	(iii))										
	(iv)															
35	(vi)		ORG				sapi	.ens								
	(xi)	SEQU	ENCE	DES	CRI	PTION	1: SE	Q II	NO:	3:						
40	Ser 1	Thr	Arg	Ser	Val 5	Ser	Ser	Ser	Ser	Tyr 10	Arg	Arg	Met	Phe	Gly 15	Gly
45		Gly		20					25					30		
	Ser	Thr	Arg 35	Thr	Tyr	Ser	Leu	Gly 40	Ser	Ala	Leu	Arg	Pro 45	Ser	Thr	Ser
50		Ser 50					55					60				
	65	Ala				70					75					80
55		Ser			85					90					95	
60	Asn	Thr	Arg	Thr 100	Asn	Glu	Lys	Val	Glu 105	Leu	Gln	Glu	Leu	Asn 110	Asp	Arg
00	Phe	Ala	Asn 115	Tyr	Ile	Asp	Lys	Val 120	Arg	Phe	Leu	Glu	Gln 125	Gln	Asn	Lys
65	Ile	Leu 130	Leu	Ala	Glu	Leu	Glu 135	Gln	Leu	Lys	Gly	Gln 140	Gly	Lys	Ser	Arg

-30-

	Leu 145	G! y	Asp	Leu	Tyr	Glu 150	Glu	Glu	Met	Arg	Glu 155	Leu	Arg	Arg	Gln	Val 160
5	Asp	Sln	Leu	Thr	Asn 165	Asp	Lys	Ala	Arg	Val 170	Glu	Val	Glu	Arg	Asp 175	Asn
1.0	Leu	Ala	Glu	Asp 180	Ile	Met	Arg	Leu	Arg 185	Glu	Lys	Leu	Gln	Glu 190	Glu	Met
10	Leu	Gln	Arg 195	Glu	Glu	Ala	Glu	Asn 200	Thr	Leu	Gln	Ser	Phe 205	Arg	Gln	qzA
15	Val	Asp 210	Asn	Ala	Ser	Leu	Ala 215	Arg	Leu	Asp	Leu	Glu 220	Arg	Lys	Val	Glu
20	Ser 225	Leu	Gln	Glu	Glu	Ile 230	Ala	Phe	Leu	Lys	Lys 235	Leu	His	Glu	Glu	Glu 240
	Ile	Gln	Glu	Leu	Gln 245	Ala	Gln	Ile	Gln	Glu 250	Gln	His	Val	Gln	Ile 255	Asp
25	Val	Asp	Val	Ser 260	Lys	Pro	Asp	Leu	Thr 265	Ala	Ala	Leu	Arg	Asp 270	Val	Arg
30	Gln	Gln	Tyr 275	Glu	Ser	Val	Ala	Ala 280	Lys	Asn	Leu	Gln	Glu 285	Ala	Glu	Glu
30	Trp	Tyr 290	Lys	Ser	Lys	Phe	Ala 295	Asp	Leu	Ser	Glu	Ala 300	Ala	Asn	Arg	Asn
35	Asn 305	Asp	Ala	Leu	Arg	Gln 310	Ala	Lys	Gln	Glu	Ser 315	Thr	Glu	Tyr	Arg	Arg 320
	Gln	Val	Gln	Ser	Leu 325	Thr	Cys	Glu	Val	Asp 330	Ala	Leu	Lys	Gly	Thr 335	Asn
40	Glu	Ser	Leu	Glu 340	Arg	Gln	Met	Arg	Glu 345	Met	Glu	Glu	Asn	Phe 350	Ala	Val
4 E	Glu	Ala	Ala 355	Asn	Tyr	Gln	Asp	Thr 360	lle	Gly	Arg	Leu	Gln 365	Asp	Glu	Ile
45	Gln	Asn 370	Met	Lys	Glu	Glu	Met 375	Ala	Arg	His	Leu	Arg 380	Glu	Tyr	Gln	Asp
50	Leu 385	Leu	Asn	Val	Lys	Met 390	Ala	Leu	Asp	Ile	Glu 395	Ile	Ala	Thr	Tyr	Arg 400
	Lys	Leu	Leu	Glu	Gly 405	Glu	Glu	Ser	Arg	Ile 410	Ser	Leu	Pro	Leu	Pro 415	Asn
55	Phe	Ser	Ser	Leu 420	Asn	Leu	Arg	Glu	Thr 425	Asn	Leu	Asp	Ser	Leu 430	Pro	Leu
	Val	Asp	Thr 435	His	Ser	Lys	Arg	Thr 440	Phe	Leu	Ile	Lys	Thr 445	Val	Glu	Thr
60	Arg	Asp 450	Gly	Gln	Val	Ile	Asn 455	Glu	Thr	Ser	Gln	His 460	His	Asp	Asp	Leu
65																

55 Glu 465 -31-

	(2) INFO	ORMA1	rion	FOR	SEQ	ID I	NO:	4 :								
5	(i)	4) E) ()	QUENCA) LE B) TY C) ST O) TO	engti (PE: (Rani	H: 47 amir DEDNE	71 an no ac ESS:	nino cid sino	aci	ds							
10	(ii)	MOI	LECUI	E TY	PE:	prot	ein									
	(iii)	HYF	OTHE	TICA	AL: N	10										
15	(iv)	ANT	'I-SE	NSE:	NO											
	(vi)		GINA) OR				sap	iens	.							
20																
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC	: 4:						
25	Met 1	Thr	Glu	Arg	Arg 5	Val	Pro	Phe	Ser	Leu 10	Leu	Arg	Gly	Pro	Ser 15	Trp
	Asp	Pro	Phe	Arg 20	Asp	Trp	Туг	Pro	His 25	Ser	Arg	Leu	Phe	Asp 30	Gln	Ala
30	Phe	Gly	Leu 35	Pro	Arg	Leu	Pro	Glu 40	Glu	Trp	Ser	Gln	Trp 45	Leu	Gly	Gly
2-	Ser	Ser 50	Trp	Pro	Gly	Tyr	Val 55	Arg	Pro	Leu	Pro	Pro 60	Ala	Ala	Ile	Glu
35	Ser 65	Pro	Ala	Val	Ala	Ala 70	Pro	Ala	Tyr	Ser	Arg 75	Ala	Leu	Ser	Arg	Gln 80
40	Leu	Ser	Ser	Gly	Val 85	Ser	Glu	Ile	Arg	His 90	Thr	Ala	Asp	Arg	Trp 95	Arg
	Val	Ser	Leu	Asp 100	Val	Asn	His	Phe	Ala 105	Pro	Asp	Glu	Leu	Thr 110	Val	Lys
45			115					120					125	Glu		
50	Asp	Glu 130	His	Gly	Tyr	Ile	Ser 135	Arg	Cys	Phe	Thr	Arg 140	Lys	Tyr	Thr	Leu
50	Pro 145	Pro	Gly	Val	Asp	Pro 150	Thr	Gln	Val	Ser	Ser 155	Ser	Leu	Ser	Pro	Glu 160
55	Gly	Thr	Leu	Thr	Val 165	Glu	Ala	Pro	Met	Pro 170	Lys	Leu	Ala	Thr	Gln 175	Ser
	Asn	Glu	Ile	Thr 180	Ile	Pro	Val	Thr	Phe 185	Glu	Ser	Arg	Ala	Gln 190	Leu	Gly
60	Gly	Arg	Ser 195	Cys	Lys	Ile	Arg	Met 200	Ala	Ala	Lys	Val	Phe 205	Glu	Ser	Ile
65	Gly	Lys 210	Phe	Gly	Leu	Ala	Leu 215	Ala	Val	Ala	Gly	Gly 220	Val	Val	Asn	Ser

-32-

	Ala 225	Leu	Tyr	Asn	Val	Asp 230	Ala	Gly	His	Arg	Ala 235	Val	Ile	Phe	Asp	Arg 240
5	Phe	Arg	Gly	Val	Gln 245	Asp	Ile	Val	Val	Gly 250	Glu	Gly	Thr	His	Phe 255	Leu
10	Ile	Pro	Trp	Val 260	Gln	Lys	Pro	Ile	11e 265	Phe	Asp	Cys	Arg	Ser 270	Arg	Pro
	Arg	Asn	Val 275	Pro	Val	Ile	Thr	Gly 280	Ser	Lys	Asp	Leu	Gln 285	Asn	Val	Asn
15	Ile	Thr 290	Leu	Arg	Ile	Leu	Phe 295	Arg	Pro	Val	Ala	Ser 300	Gln	Leu	Pro	Arg
	Ile 305	Phe	Thr	Ser	Ile	Gly 310	Glu	Asp	Tyr	Asp	Glu 315	Arg	Val	Leu	Pro	Ser 320
20	Ile	Thr	Thr	Glu	Ile 325	Leu	Lys	Ser	Val	Val 330	Ala	Arg	Phe	Asp	Ala 335	Gly
25	Glu	Leu	Ile	Thr 340	Gln	Arg	Glu	Leu	Val 345	Ser	Arg	Gln	Val	Ser 350	Asp	Asp
23	Leu	Thr	Glu 355	Arg	Ala	Ala	Thr	Phe 360	Gly	Leu	Ile	Leu	Asp 365	Asp	Val	Ser
30	Leu	Thr 370	His	Leu	Thr	Phe	Gly 375	Lys	Glu	Phe	Thr	Glu 380	Ala	Val	Glu	Ala
	Lys 385	Gln	Val	Ala	Gln	Gln 390	Glu	Ala	Glu	Arg	Ala 395	Arg	Phe	Val	Val	Glu 400
35	Lys	Ala	Glu	Gln	Gln 405	Lys	Lys	Ala	Ala	Ile 410	Ile	Ser	Ala	Glu	Gly 415	Asp
40	Ser	Lys	Ala	Ala 420	Glu	Leu	Ile	Ala	Asn 425	Ser	Leu	Ala	Thr	Ala 430	Gly	Asp
40	Gly	Leu	Ile 435	Glu	Leu	Arg	Lys	Leu 440	Glu	Ala	Ala	Glu	Asp 445	Ile	Ala	Tyr
45	Gln	Leu 450	Ser	Arg	Ser	Arg	Asn 455	Ile	Thr	Tyr	Leu	Pro 460	Ala	Gly	Gln	Ser
	Val 465	Leu	Leu	Gln	Leu	Pro 470	Gln									
50	(2) INFOR	I TAM	ON E	FOR S	EQ 1	D NC): 5:									
55	(i)	(A) (B) (C)	LEN TYP	IGTH: PE: a VANDE	284 mino DNES	TERIS ami aci SS: s	no a d ingl	cids	•							
60	(ii)						in									
	(iii))										
<i>c</i> E	(iv)															
65	(vi)					omo	sapi	.ens								

-33-

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 5:						
5	Met l	Asp	Ala	Ile	Lys 5	Lys	Lys	Met	Gln	Met 10	Leu	Lys	Leu	Asp	Lys 15	Glu
	Asn	Ala	Leu	Asp 20	Arg	Ala	Glu	Gln	Ala 25	Glu	Ala	Asp	Lys	Lys 30	Ala	Ala
10	Glu	Asp	Arg 35	Ser	Lys	Gln	Leu	Glu 40	Asp	Glu	Leu	Val.	Ser 45	Leu	Gln	Lys
15	Lys	Leu 50	Lys	Gly	Thr	Glu	Asp 55	Glu	Leu	Asp	Lys	Tyr 60	Ser	Glu	Ala	Leu
13	Lys 65	Asp	Ala	Gln	Glu	Lys 70	Leu	Glu	Leu	Ala	Glu 75	Lys	Lys	Ala	Thr	Asp 80
20	Ala	Glu	Ala	Asp	Val 85	Ala	Ser	Leu	Asn	Arg 90	Arg	Ile	Gln	Leu	Val 95	Glu
	Glu	Glu	Leu	Asp 100	Arg	Ala	Gln	Glu	Arg 105	Leu	Ala	Thr	Ala	Leu 110	Gln	Lys
25																
	Leu	Glu	Glu 115	Ala	Glu	Lys	Ala	Ala 120	Asp	Glu	Ser	Glu	Arg 125	Gly	Met	Lys
30	Val	Ile 130	Glu	Ser	Arg	Ala	Gln 135	Lys	Asp	Glu	Glu	Lys 140	Met	Glu	Ile	Gln
35	Glu 145	Ile	Gln	Leu	Lys	Glu 150	Ala	Lys	His	Ile	Ala 155	Glu	Asp	Ala	Asp	Arg 160
33	Lys	Tyr	Glu	Glu	Val 165	Ala	Arg	Lys	Leu	Val 170	Ile	Ile	Glu	Ser	Asp 175	Leu
40	Glu	Arg	Ala	Glu 180	Glu	Arg	Ala	Glu	Leu 185	Ser	Glu	Gly	Gln	Val 190	Arg	Gln
	Leu	Glu	Glu 195	Gln	Leu	Arg	Ile	Met 200	Asp	Gln	Thr	Leu	Lys 205	Ala	Leu	Met
45	Ala	Ala 210	Glu	Asp	Lys	Tyr	Ser 215	Gln	Lys	Glu	Asp	Arg 220	Tyr	Glu	Glu	Glu
50	Ile 225	Lys	Val	Leu	Ser	Asp 230	Lys	Leu	Lys	Glu	Ala 235	Glu	Thr	Arg	Ala	Glu 240
	Phe	Ala	Glu	Arg	Ser 245	Val	Thr	Lys	Leu	Glu 250	Lys	Ser	Ile	Asp	Asp 255	Leu
55	Glu	Glu	Lys	Val 260	Ala	His	Ala	Lys	Glu 265	Glu	Asn	Leu	Ser	Met 270	His	Gln
	Met	Leu	Asp 275	Gln	Thr	Leu	Leu	Glu 280	Leu	Asn	Asn	Met				

60

65

-34-

		(2) INI	FORM	AT	ION	FOR	SEQ	ID N	0: 6	:								
	5	(:		(A (B (C	UENC ; LE) TY) ST) TO	NGTH PE: RAND	: 69 amin EDNE	8 am o ac SS:	ino id sing	acid	İs							
	10	(ii	.) M	OL.	ECUL	E TY	PE:	prot	ein									
		(iii	.) H	ΥP	OTHE	TICA	L: N	0										
	15	(iv) A	NT.	I-SE	NSE:	NO											
•	.	(vi			GINA:				sap	iens								
:	20	(xi) SI	EQI	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 6:						
		M e 1	t A	rg	Leu	Ala	Val 5	Gly	Ala	Leu	Leu	Val 10	Cys	Ala	Val	Leu	Gly 15	Leu
2	25	Су	s Le	eu	Ala	Val 20	Pro	Asp	Lys	Thr	Val 25	Arg	Trp	Cys	Ala	Val 30	Ser	Glu
-	30	Hi	s G	lu	Ala 35	Thr	Lys	Cys	Gln	Ser 40	Phe	Arg	Asp	His	Met 45	Lys	Ser	Val
-	50	11	e Pi 50	ro D	Ser	Asp	Gly	Pro	Ser 55	Val	Ala	Cys	Val	Lys 60	Lys	Ala	Ser	Tyr
-	35	Le 65		sp	Cys	Ile	Arg	Ala 70	Ile	Ala	Ala	Asn	Glu 75	Ala	Asp	Ala	Val	Thr 80
		Le	u As	sp	Ala	Gly	Leu 85	Val	Tyr	Asp	Ala	Tyr 90	Leu	Ala	Pro	Asn	Asn 95	Leu
7	10	Ly	s Pi	co	Val	Val 100	Ala	Glu	Phe	Tyr	Gly 105	Ser	Lys	Glu	Asp	Pro 110	Gln	Thr
4	15	Ph	е Ту	/r	Tyr 115	Ala	Val	Ala	Val	Val 120	Lys	Lys	Asp	Ser	Gly 125	Phe	Gln	Met
		As		l n 30	Leu	Arg	Gly	Lys	Lys 135	Ser	Суз	His	Thr	Gly 140	Leu	Gly	Arg	Ser
5	0	A1 14	a G1 5	ly	Trp	Asn	Ile	Pro 150	Ile	Gly	Leu	Leu	Tyr 155	Cys	Asp	Leu	Pro	Glu 160
•	55	Pr	o Az	g	Lys	Pro	Leu 165	Glu	Lys	Ala	Val	Ala 170	Asn	Phe	Phe	Ser	GL y 175	Ser
•		Су	s Al	la	Pro	Cys 180	Ala	Asp	Gly	Thr	Asp 185	Phe	Pro	Gln	Leu	Cys 190	Gln	Leu
6	50	Су	s Pr	co	Gly 195	Cys	Gly	Cys	Ser	Thr 200	Leu	Asn	Gln	Tyr	Phe 205	Gly	Tyr	Ser
-	55	G1	y Al 21	la lO	Phe	Lys	Cys	Leu	Lys 215	Asp	Gly	Ala	Gly	Asp 220	Val	Ala	Phe	Val
		Ly 22	s Hi S	is	Ser	Thr	Ile	Phe 230	Glu	Asn	Leu	Ala	Asn 235	Lys	Ala	Asp	Arg	Asp 240

-35-Gln Tyr Glu Leu Cys Leu Asp Asn Thr Arg Lys Pro Val Asp Glu Tyr Lys Asp Cys His Leu Ala Gln Val Pro Ser His Thr Val Val Ala 260 265 270 5 Arg Ser Met Gly Gly Lys Glu Asp Leu Ile Trp Glu Leu Leu Asn Gln 275 280 285 10 Ala Gln Glu His Phe Gly Lys Asp Lys Ser Lys Glu Phe Gln Leu Phe 290 295 300 Ser Ser Pro His Gly Lys Asp Leu Leu Phe Lys Asp Ser Ala His Gly 305 310 315 320 15 Phe Leu Lys Val Pro Pro Arg Met Asp Ala Lys Met Tyr Leu Gly Tyr 325 330 335 Glu Tyr Val Thr Ala Ile Arg Asn Leu Arg Glu Gly Thr Cys Pro Glu 340 345 35020 Ala Pro Thr Asp Glu Cys Lys Pro Val Lys Trp Cys Ala Leu Ser His 25 His Glu Arg Leu Lys Cys Asp Glu Trp Ser Val Asn Ser Val Gly Lys 370 375 380 Ile Glu Cys Val Ser Ala Glu Thr Thr Glu Asp Cys Ile Ala Lys Ile 30 385 Met Asn Gly Glu Ala Asp Ala Met Ser Leu Asp Gly Gly Phe Val Tyr 35 Ile Ala Gly Lys Cys Gly Leu Val Pro Val Leu Ala Glu Asn Tyr Asn 420 425 43040 Ala Val Val Lys Lys Ser Ala Ser Asp Leu Thr Trp Asp Asn Leu Lys 450 455 460 Gly Lys Lys Ser Cys His Thr Ala Val Gly Arg Thr Ala Gly Trp Asn 465 470 475 480 45 Ile Pro Met Gly Leu Leu Tyr Asn Lys Ile Asn His Cys Arg Phe Asp 50 Glu Phe Phe Ser Glu Gly Cys Ala Pro Gly Ser Lys Lys Asp Ser Ser 500 505 510 Leu Cys Lys Leu Cys Met Gly Ser Gly Leu Asn Leu Cys Glu Pro Asn 515 520 525 55 Asn Lys Glu Gly Tyr Tyr Gly Tyr Thr Gly Ala Phe Arg Cys Leu Val 530 540 60 Glu Lys Gly Asp Val Ala Phe Val Lys His Gln Thr Val Pro Gln Asn Thr Gly Gly Lys Asn Pro Asp Pro Trp Ala Lys Asn Leu Asn Glu Lys 565 570 65 Asp Tyr Glu Leu Leu Cys Leu Asp Gly Thr Arg Lys Pro Val Glu Glu 580 585 585

								- 3	6 -							
	Tyr	Ala	Asn 595	Суѕ	His	Leu	Ala	Arg 600		Pro	Asn	His	Ala 605		Val	Thr
5	Arg	Lys 610	Asp	Lys	Glu	Ala	Cys 615	Val	His	Lys	Ile	Leu 620		Gln	Gln	Gln
10	His 625	Leu	Phe	Gly	Ser	Asn 630	Val	Thr	Asp	Cys	Ser 635		Asn	Phe	Cys	Leu 640
	Phe	Arg	Ser	Glu	Thr 645	Lys	Asp	Leu	Leu	Phe 650	Arg	Asp	Asp	Thr	Val 655	
15	Leu	Ala	Lys	Leu 660	His	Asp	Arg	Asn	Thr 665	Tyr	Glu	Lys	Tyr	Leu 670	Gly	Glu
	Glu	Tyr	Val 675	Lys	Ala	Val	Gly	Asn 680	Leu	Arg	Lys	Cys	Ser 685	Thr	Ser	Ser
20	Leu	Leu 690	Glu	Ala	Cys	Thr	Phe 695	Arg	Arg	Pro						
25	(2) INFO	SEQ(JENCI LEI	E CHA	ARACI	reris 7 ami	STICS ino a	S:	5							
30		(C)	ST	RANDI	emino EDNES SY:]	3S: 5	singl	le								
	(ii)	MOLE	ECULI	E TY	PE: p	prote	ein									
35	(iii)	HYPO	THE	CICAI	.: NC)										
<i>.</i>	(iv)	ANT	-SE	ISE:	МО											
40	(vi)				JRCE: SM: H		sapi	ens								
	(xi)	SEQU	ENCE	DES	CRIE	OITS	1: SE	Q II	NO:	7:		•				
45	Met 1	Arg	Ser	Leu	Leu 5	Leu	Gly	Thr	Leu	Cys 10	Leu	Leu	Ala	Val	Ala 15	Leu
	Ala	Ala	Glu	Val 20	Lys	Lys	Pro	Val	Glu 25	Ala	Ala	Ala	Pro	Gly 30	Thr	Ala
50	Glu	Lys	Leu 35	Ser	Ser	Lys	Ala	Thr 40	Thr	Leu	Ala	Glu	Pro 45	Ser	Thr	Gly
55	Leu	Ala 50	Phe	Ser	Leu	Tyr	Gln 55	Ala	Met	Ala	Lys	Asp 60	Gln	Ala	Val	Glu
- -	Asn 65	Ile	Leu	Val	Ser	Pro 70	Val	Val	Val	Ala	Ser 75	Ser	Leu	Gly	Leu	Val 80
60	Ser	Leu	Gly	Gly	Lys	Ala	Thr	Thr	Ala	Ser	Gln	Ala	Lys	Ala	Val	Leu
			-	•	85					90			•		95	

Ser Ala Glu Gin Leu Arg Asp Glu Glu Val His Ala Gly Leu Gly Glu 100 105 110

Leu Leu Arg Ser Leu Ser Asn Ser Thr Ala Arg Asn Val Thr Trp Lys
115 120 125

65

-37-

	Leu	Gly 130	Ser	Arg	Leu	Tyr	Gly 135	Pro	Ser	Ser	Val	Sez 140		Ala	Asp	geA ·
5	Phe 145	Val	Arg	Ser	Ser	Lys 150		His	Tyr	Asn	Cys 155		His	Ser	Lys	Ile 160
10	Asn	Phe	Pro	Asp	Lys 165		Ser	Ala	Leu	Gln 170		Ile	Asn	Glu	Trp 175	
	Ala	Gln	Thr	Thr 180	Asp	Gly	Lys	Leu	Pro 185	Glu	Val	Thr	Lys	Asp 190	Val	Glu
15	Arg	Thr	Asp 195	Gly	Ala	Leu	Leu	Val 200	Asn	Ala	Met	Phe	Phe 205	Lys	Pro	His
	Trp	Asp 210	Glu	Lys	Phe	His	His 215	Lys	Met	Val	Asp	Asn 220		Gly	Phe	Met
20	Val 225	Thr	Arg	Ser	Tyr	Thr 230	Val	Gly	Val	Thr	Met 235	Met	His	Arg	Thr	Gly 240
25	Leu	Tyr	Asn	Tyr	Tyr 245	Asp	Asp	Glu	Lys	Glu 250	Lys	Leu	Gln	Leu	Val 255	Glu
	Met	Pro	Leu	Ala 260	His	Lys	Leu	Ser	Ser 265	Leu	Ile	Ile	Leu	Met 270	Pro	His
30	His	Val	Glu 275	Pro	Leu	Glu	Arg	Leu 280	Glu	Lys	Leu	Leu	Thr 285	Lys	Glu	Gln
	Leu	Lys 290	Ile	Trp	Met	Gly	Lys 295	Met	Gln	Lys	Lys	Ala 300	Val	Ala	Ile	Ser
35	Leu 305	Pro	Lys	Gly	Val	Val 310	Glu	Val	Thr	His	Asp 315	Leu	Gln	Lys	His	Leu 320
40	Ala	Gly	Leu	Gly	Leu 325	Thr	Glu	Ala	Ile	Asp 330	Lys	Asn	Lys	Ala	Asp 335	Leu
	Ser	Arg	Met	Ser 340	Gly	Lys	Lys ·	Asp	Leu 345	Tyr	Leu	Ala	Ser	Val 350	Phe	His
45	Ala	Thr	Ala 355	Phe	Glu	Leu	Asp	Thr 360	Asp	Gly	Asn	Pro	Phe 3 65	Asp	Gln	Asp
	Ile	Tyr 370	Gly	Arg	Glu	Glu	Leu 375	Arg	Ser	Pro	Lys	Leu 380	Phe	Tyr	Ala	Asp
50	His 385	Pro	Phe	Ile	Phe	Leu 390	Val	Arg	Asp	Thr	Gln 395	Ser	Gly	Ser	Leu	Leu 400
55	Phe	Ile	Gly	Arg	Leu 405	Val	Arg	Leu	Lys	Gly 410	Asp	Lys	Met	Arg	Asp 415	Glu
	Leu															

60 (2) INFORMATION FOR SEQ ID NO: 8:

65

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 453 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

-38-

	(iii)	нүрс	THE?	rica	L: N	0										
-	(iv)	ANT	I-SE	NSE:	NO											
5	(vi)		GINAI ORO				sap:	iens								
10	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: SI	EQ II	ONO:	: 8:						
	Met 1	Lys	Leu	Leu	Thr 5	Arg	Ala	Gly	Ser	Phe 10	Ser	Arg	Phe	Tyr	Ser 15	Leu
15		Val	Ala	Pro 20	Lys	Val	Lys	Ala	Thr 25	Ala	Ala	Pro	Ala	Gly 30		Pro
20	Pro	Gln	Pro 35	Gln	Asp	Leu	Glu	Phe 40	Thr	Lys	Leu	Pro	Asn 45	Gly	Leu	Val
	Ile	Ala 50	Ser	Leu	Glu	Asn	Tyr 55	Ser	Pro	Val	Ser	Arg 60	Ile	Gly	Leu	Phe
25	Ile 65	Lys	Ala	Gly	Ser	Arg 70	Tyr	Glu	Asp	Phe	Ser 75	Asn	Leu	Gly	Thr	Thr 80
20	His	Leu	Leu	Arg	Leu 85	Thr	Ser	Ser	Leu	Thr 90	Thr	Lys	Gly	Ala	Ser 95	Ser
30	Phe	Lys	Ile	Thr 100	Arg	Gly	Ile	Glu	Ala 105	Val	Gly	Gly	Lys	Leu 110	Ser	Val
35	Thr	Ala	Thr 115	Arg	Glu	Asn	Met	Ala 120	Tyr	Thr	Val	Glu	Cys 125	Leu	Arg	Gly
40	Asp	Val 130	Asp	Ile	Leu	Met	Glu 135	Phe	Leu	Leu	Asn	Val 140	Thr	Thr	Ala	Pro
	Glu 145	Phe	Arg	Arg	Trp	Glu 150	Val	Ala	Asp	Leu	Gln 155	Pro	Gln	Leu	Lys	Ile 160
45	Asp	Lys	Ala	Val	Ala 165	Phe	Gln	Asn	Pro	Gln 170	Thr	His	Val	Ile	Glu 175	Asn
50	Leu	His	Ala	Ala 180	Ala	Tyr	Gln	Asn	Ala 185	Leu	Ala	Asn	Pro	Leu 190	Tyr	Cys
30	Pro	Asp	Tyr 195	Arg	Ile	Gly	Lys	Val 200	Thr	Ser	Glu	Glu	Leu 205	His	Tyr	Phe
55	Val	Gln 210	Asn	His	Phe	Thr	Ser 215	Ala	Arg	Met	Ala	Leu 220	Ile	Gly	Leu	Gly
	Val 225	Ser	His	Pro	Val	Leu 230	Lys	Gln	Val	Ala	Glu 235	Gln	Phe	Leu	Asn	Met 240
60	Arg	Gly	Gly	Leu	Gly 245	Leu	Ser	Gly	Ala	Lys 250	Ala	Asn	Tyr	Arg	Gly 255	Gly
65	Glu	Iie	Arg	Glu 2 6 0	Gln	Asn	Gly	Asp	Ser 265	Leu	Val	His	Ala	Ala 270	Phe	Val
	Ala	Glu	Ser 275	Ala	Val	Ala	Gly	Ser 280	Ala	Glu	Ala	Asn	Ala 285	Phe	Ser	Val

-39-

	rer	290		vai	Leu	Gly	295		Pro	HIS	va I	300		l GT	y Sei	: As
5	Th: 305	Thr	Ser	His	Leu	His 310		Ala	Val	Ala	Lys 315		a Thr	Gli	n Glr	Pr. 32
10	Phe	e Asp	Val	Ser	Ala 325		Asn	Ala	Ser	Tyr 330		Asp	Ser	Gly	/ Leu 335	
10	Gly	/ Ile	Tyr	Thr 340	Ile	Ser	Gln	Ala	Thr 345	Ala	Ala	Gly	/ Asp	Va 3		Ly
15	Ala	Ala	Tyr 355	Asn	Gln	Val	Lys	Arg 360	Ile	Ala	Gln	Gly	Asn 365		Ser	Ası
	Thr	370	Val	Gln	Ala	Ala	Lys 375	Asn	Lys	Leu	Lys	Ala 380		Tyr	Leu	Met
20	Ser 385	Val	Glu	Ser	Ser	Glu 390	Суѕ	Phe	Leu	Glu	Glu 395	Val	Gly	Ser	Gln	A1a
25	Leu	Val	Ala	Gly	Ser 405	Tyr	Met	Pro	Pro	Ser 410	Thr	Val	Leu	Gln	Gln 415	Ile
	Asp	Ser	Val	Ala 420	Asn	Ala	Asp	Ile	Ile 425	Asn	Ala	Ala	Lys	Lys 430		Val
30	Ser	Gly	Gln 435	Lys	Ser	Met	Ala	Ala 440	Ser	Gly	Asn	Leu	Gly 445	His	Thr	Pro
	Phe	Val 450	Asp	Glu	Leu											
35	(2) INFO	RMAT]	ON E	OR S	SEQ 1	D NC): 9:									
	(i)		JENCE LEN						1							
40		(B)	TYP	E: a	mino	aci	.d									
		(C)	STR			S: s inea		e								
45	(ii)	MOLE	CULE	TYF	E: p	rote	in									
	(iii)	нүрс	THET	ICAL	: NO)										
50	(iv)	ANTI	-SEN	SE:	NO											
	(vi)	ORIG (A)	INAL ORG	SOU ANIS	RCE: M: h	omo	sapi	ens								
55	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	9:						
	Ser 1	Ile	Leu	Lys	Ile 5	His .	Ala .	Arg		Ile 10	Phe	Asp	Ser	Arg	Gly 15	Asn
60	Pro	Thr	Val	Glu 20	Val .	Asp :	Leu		Thr 25	Ser	Lys	Gly	Leu	Phe 30	Arg	Ala
	Ala	Val	Pro :	Ser	Gly .	Ala :		Thr (Gly	Ile	Tyr	Glu	Ala 45	Leu	Glu	Leu
65	Arg	Asp	Asn A	Asp	Lys	Thr i	Arg '	Tyr I	Met (Gly	Lys	Gly	Val	Ser	Lys	Ala

	65	Glu	HIS	iie	Asn	Lys 70	Thr	ile	Ala	Pro	75	Leu	vai	ser	rvs	90 rys
5	Leu	Asn	Val	Thr	Glu 85	Gln	Glu	Lys	Ile	Asp 90	Lys	Leu	Met	Ile	Glu 95	Met
10	Asp	Gly	Thr	Glu 100	Asn	Lys	Ser	Lys	Phe 105	Gly	Ala	Asn	Ala	Ile 110	Leu	Gly
10	Val	Ser	Leu 115	Ala	Val	Cys	Lys	Ala 120	Gly	Ala	Val	Glu	Lys 125	Gly	Val	Pro
15	Leu	Tyr 130	Arg	His	Ile	Ala	Asp 135	Leu	Ala	Gly	Asn	Ser 140	Glu	Val	Ile	Leu
	Pro 145	Val	Pro	Ala	Phe	Asn 150	Val	Ile	Asn	Gly	Gly 155	Ser	His	Ala	Gly	Asn 160
20	Lys	Leu	Ala	Met	Gln 165	Glu	Phe	Met	Ile	Leu 170	Pro	Val	Gly	Ala	Ala 175	Asn
25	Phe	Arg	Glu	Ala 180	Met	Arg	Ile	Gly	Ala 185	Glu	Val	Tyr	His	Asn 190	Leu	Lys
دع	Asn	Val	Ile 195	Lys	Glu	Lys	Tyr	Gly 200	Lys	Asp	Ala	Thr	Asn 205	Val	Gly	Asp
30	Glu	Gly 210	Gly	Phe	Ala	Pro	Asn 215	Ile	Leu	Glu	Asn	Lys 220	Glu	Gly	Leu	Glu
	Leu 225	Leu	Lys	Thr	Ala	Ile 230	Gly	Lys	Ala	Gly	Tyr 235	Thr	Asp	Lys	Val	Val 240
35	Ile	Gly	Met	Asp	Val 245	Ala	Ala	Ser	Glu	Phe 250	Phe	Arg	Ser	Gly	Lys 255	Tyr
40	Asp	Leu	Asp	Phe 260	Lys	Ser	Pro	Asp	Asp 265	Pro	Ser	Arg	Tyr	Ile 270	Ser	Pro
	Asp	Gln	Leu 275	Ala	Asp	Leu	Tyr	Lys 280	Ser	Phe	Ile	Lys	Asp 285	Tyr	Pro	Val
45	Val	Ser 290	Ile	Glu	Asp	Pro	Phe 295	Asp	Gln	Asp	Asp	Trp 300	Gly	Ala	Trp	Gln
50	Lys 305	Phe	Thr	Ala	Ser	Ala 310	Gly	Ile	Gln	Val	Val 315	Gly	Asp	Asp	Leu	Thr 320
30	Val	Thr	Asn	Pro	Lys 325	Arg	Ile	Ala	Lys	Ala 330	Val	Asn	Glu	Lys	Ser 335	Cys
55	Asn	Cys	Leu	Leu 340	Leu	Lys	Val	Asn	Gln 345	Ile	Gly	Ser	Val	Thr 350	Glu	Ser
c 0	Leu	Gln	Ala 355	Суз	Lys	Leu	Ala	Gln 360	Ala	Asn	Gly	Trp	Gly 365	Val	Met	Val
60	Ser	His 370	Arg	Ser	Gly	Glu	Thr 375	Glu	Asp	Thr	Phe	Ile 380	Ala	Asp	Leu	Val
65	Val 385	Gly	Leu	Cys	Thr	Gly 390	Gln	Ile	Lys	Thr	Gly 395	Ala	Pro	Cys	Arg	Ser 400
	Glu	Arg	Leu	Ala	Lys 405	Tyr	Asn	Gln	Leu	Leu 410	Arg	Ile	Glu	Glu	Glu 415	Leu

	Sly	y Ser	Lys A	Ala Ly 120	s Ph	e Ala	a Gl	y Ar		n Ph	e Ar	g As	n Pro 430		u Ala
5	Lys	5													
10	(2) INFO	ORMATI	ON FO	R SEQ	ID 1	NO: 1	10:								
10	(i)	(A)	LENG	CHARA	17 an	nino		is							
15		(C)	STRA	: ami NDEDN LOGY:	ESS:	sing	jle								
	(ii)	MOLE	CULE	TYPE:	prot	ein									
20	(iii)	нүро	THETI	CAL: 1	NO										
20	(iv)	ANTI	-SENS	E: NO											
25	(vi)			SOURCE NISM:		sap	iens								
	(xi)	SEQU	ENCE	DESCRI	PTIO	N: S	EQ I	D NO	: 10	:					
30	Ser l	Leu	Ser A	sn Lys 5	Leu	Thr	Leu	Asp	Lys 10	Leu	Asp	Val	Lys	Gly 15	Lys
35	Arg	Val '	Val Me 20	et Arg	, Val	Asp	Phe	Asn 25	Val	Pro	Met	Lys	Asn 30	Asn	Gln
33	Ile	Thr i	Asn As 35	sn Gln	Arg	Ile	Lys 40	Ala	Ala	Val	Pro	Ser 45	Ile	Lys	Phe
40	Cys	Leu / 50	Asp As	sn Gly	Ala	Lys 55	Ser	Val	Val	Leu	Met 60	Ser	His	Leu	Gly
45	Arg 65	Pro A	Asp Gl	y Val	Pro 70	Met	Pro	Asp	Lys	Tyr 75	Ser	Leu	Glu	Pro	Val 80
	Ala	Val (Glu L€	u Lys 85	Ser	Leu	Leu	Gly	Lys 90	Asp	Val	Leu	Phe	Leu 95	Lys
50	Asp	Cys \	/al G1	y Pro	Glu	Val	Glu	Lys 105	Ala	Cys	Ala	Asn	Pro 110	Ala	Ala
	Gly	Ser \	/al Il l15	e Leu	Leu	Glu	Asn 120	Leu	Arg	Phe	His	Val 125	Glu	Glu	Glu
55	Gly	Lys G	Sly Ly	s Asp	Ala	Ser 135	Gly	Asn	Lys	Val	Lys 140	Ala	Glu	Pro	Ala
60	Lys 145	Ile G	lu Al	a Phe	Arg 150	Ala	Ser	Leu	Ser	Lys 155	Leu	Gly	Asp	Val	Tyr 160
	Val	Asn A	sp Al	a Phe 165	Gly	Thr	Ala	His	Arg 170	Ala	His	Ser	Ser	Met 175	Val
65	Gly	Val A	sn Le 18	u Pro O	Gln	Lys	Ala	Gly 185	Gly	Phe	Leu	Met	Lys 190	Lys	Glu

-42-

		Leu	Asn	Tyr 195	Phe	Ala	Lys	Ala	Leu 200	Glu	Ser	Pro	Glu	Arg 205	Pro	Phe	Leu
5		Ala	11e 210	Leu	Gly	Gly	Ala	Lys 215	Val	Ala	Asp	Lys	Ile 220	Gin	Leu	:le	Asn
		Asn 225	Met	Leu	Asp	Lys	Val 230	Asn	Glu	Met	Ile	11e 235	Gly	Gly	Gly	Met	Ala 240
LO		Phe	Thr	Phe	Leu	Lys 245	Val	Leu	Asn	Asn	Met 250	Glu	Ile	Gly	Thr	Ser 255	Leu
L 5 [.]		Phe	Asp	Glu	Glu 260	Gly	Ala	Lys	Ile	Val 265	Lys	Asp	Leu	Met	Ser 270	Lys	Ala
		Glu	Lys	Asn 275	Gly	Val	Lys	Ile	Thr 280	Leu	Pro	Val	Asp	Phe 285	Val	Thr	Ala
20		Asp	Lys 290	Phe	Asp	Glu	Asn	Ala 295	Lys	Thr	Gly	Gln	Ala 300	Thr	Val	Ala	Ser
		Gly 305	Ile	Pro	Ala	Gly	Trp 310	Met	Gly	Leu	Asp	Cys 315	Gly	Pro	Glu	Ser	Ser 320
25		Lys	Lys	Tyr	Ala	Glu 325	Ala	Val	Thr	Arg	Ala 330	Lys	Gln	Ile	Val	Trp 335	Asn
30		Gly	Pro	Val	Gly 340	Val	Phe	Glu	Trp	Glu 345	Ala	Phe	Ala	Arg	Gly 350	Thr	Lys
		Ala	Leu	Met 355	Asp	Glu	Val	Val	Lys 360	Ala	Thr	Ser	Arg	Gly 365	Cys	Ile	Thr
35		Ile	Ile 370	Gly	Gly	Gly	Asp	Thr 375	Ala	Thr	Cys	Cys	Ala 380	Lys	Trp	Asn	Thr
		Glu 385	Asp	Lys	Val	Ser	His 390	Val	Ser	Thr	Gly	Gly 395	Gly	Ala	Ser	Leu	Glu 400
40		Leu	Leu	Glu	Gly	Lys 405	Val	Leu	Pro	Gly	Val 410	Asp	Ala	Leu	Ser	Asn 415	Ile
45		Leu															
	(2)	INFO	RMAT:	ION	FOR :	SEQ	ID N	0: 1	1:								
50		(i)	(A (B (C	UENC LE TY ST TO	NGTH PE: { RAND	: 24 amin EDNE	9 am o ac SS:	ino id sing	acid	5							
55		(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(iii)	нүр	отне	TICA	L: N	0										
60		(iv)	ANT	I-SE	NSE:	NO											
		(vi)		GINA) OR				sap	iens								
65		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 11	:					
		Met 1	Ala	Pro	Ser	Arg 5	Lys	Phe	Phe	Val	Gly 10	Gly	Asn	Trp	Lys	Met 15	Asn

-43-

	Gly	Arg	Lys	Gln 20	Ser	Leu	Gly	Glu	Leu 25	Ile	Gly	Thr	Leu	Asn 30	Ala	Ala
5	Lys	Val	Pro 35	Ala	Asp	Thr	Glu	Val 40	Val	Cys	Ala	Pro	Pro 45	Thr	Ala	Tyr
	Ile	Asp 50	Phe	Ala	Arg	Gln	Lys 55	Leu	Asp	Pro	Lys	Ile 60	Ala	Val	Ala	Ala
10	Gln 65	Asn	Cys	Tyr	Lys	Val 70	Thr	Asn	Gly	Ala	Phe 75	Thr	Gly	Glu	Ile	Ser 80
15	Pro	Gly	Met	Ile	Lys 85	Asp	Cys	Gly	Ala	Thr 90	Trp	Val	Val	Leu	Gly 95	His
	Ser	Glu	Arg	Arg 100	His	Val	Phe	Gly	Glu 105	Ser	Asp	Glu	Leu	Ile 110	Gly	Gln
20	Lys	Val	Ala 115	His	Ala	Leu	Ala	Glu 120	Gly	Leu	Gly	Val	Ile 125	Ala	Cys	Ile
25	Gly	Glu 130	Lys	Leu	Asp	Glu	Arg 135	Glu	Ala	Gly	Ile	Thr 140	Glu	Lys	Val	Val
25	Phe 145	Glu	Gln	Thr	Lys	Val 150	Ile	Ala	Asp	Asn	Val 155	Lys	Asp	Trp	Ser	Lys 160
30	Val	Val	Leu	Ala	Tyr 165	Glu	Pro	Val	Trp	Ala 170	Ile	Gly	Thr	Gly	Lys 175	Thr
	Ala	Thr	Pro	Gln 180	Gln	Ala	Gln	Glu	Val 185	His	Glu	Lys	Leu	Arg 190	Gly	Trp
35	Leu	Lys	Ser 195	Asn	Val	Ser	Asp	Ala 200	Val	Ala	Gln	Ser	Thr 205	Arg	Ile	Ile
40	Tyr	Gly 210	Gly	Ser	Val	Thr	Gly 215	Ala	Thr	Cys	Lys	Glu 220	Leu	Ala	Ser	Gln
-10	Pro 225	Asp	Val	Asp	Gly	Phe 230	Leu	Val	Gly	Gly	Ala 235	Ser	Leu	Lys	Pro	Glu 240
45	Phe	Val	Asp	Ile	Ile 245	Asn	Ala	Lys	Gln							
	(2) INFO	RMATI	ON E	or s	EQ 1	D NO): 12	2:								
50	(i)	(B)	JENCE LEN TYP STP	IGTH: PE: a VANDE	107 mino DNES	6 am aci S: s	iino .d :ingl	acio	ls							
55	(ii)	MOLE	CULE	TYE	E: p	rote	in									
	(iii)	нүрс	THEI	ICAI	.: NC)										
60	(iv)	ANTI	-SEN	ISE:	NO											
	(vi)		SINAL ORG				sapi	.ens								
		,,														

65

-44-

	(XI)	SEQ	UENCI	E DES	SCRI	PTIO	N: 51	EQ L	טא ט	: 12	:					
5	Pro 1	Val	Pro	Leu	Ser 5	Phe	Leu	Ser	Thr	Val 10	Cys	Asp	Pro	Arg	Val 15	Gln
	Asp	Gly	Ala	Ala 20	Glu	Arg	Thr	Gly	Ala 25	Ala	Asp	Gly	Glu	Glu 30	Phe	Leu
10	Gly	Gly	Gly 35	Gly	Leu	Pro	Ala	Glu 40	Leu	Phe	Gln	Lys	Lys 45	Val	Val	Ala
15 [.]	Ser	Phe 50	Pro	Arg	Thr	Val	Leu 55	Ser	Thr	Gly	Met	Asp 60	Asn	Arg	Tyr	Leu
	Val 65	Leu	Ala	Val	Asn	Thr 70	Val	Gln	Asn	Lys	Glu 75	Gly	Asn	Cys	Glu	Lys 80
20	Arg	Leu	Val	Ile	Thr 85	Ala	Ser	Gln	Ser	Leu 90	Glu	Asn	Lys	Glu	Leu 95	Cys
	Ile	Leu	Arg	Asn 100	Asp	Trp	Cys	Ser	Val 105	Pro	Val	Glu	Pro	Gly 110	Asp	Ile
25	Ile	His	Leu 115	Glu	Gly	Asp	Cys	Thr 120	Ser	Asp	Thr	Trp	Ile 125	Ile	Asp	Lys
30	Asp	Phe 130	Gly	Tyr	Leu	Ile	Leu 135	Tyr	Pro	Asp	Met	Leu 140	Ile	Ser	Gly	Thr
	Ser 145	Ile	Ala	Ser	Ser	Ile 150	Arg	Cys	Met	Arg	Arg 155	Ala	Val	Leu	Ser	Glu 160
35	Thr	Phe	Arg	Ser	Ser 165	Asp	Pro	Ala	Thr	Arg 170	Gln	Met	Leu	Ile	Gly 175	Thr
	Val	Leu	His	Glu 180	Val	Phe	Gln	Lys	Ala 185	Ile	Asn	Asn	Ser	Phe 190	Ala	Pro
40	Glu	Lys	Leu 195	Gln	Glu	Leu	Ala	Phe 200	Gln	Thr	Ile	Gln	Glu 205	Ile	Arg	His
45	Leu	Lys 210	Glu	Met	Tyr	Arg	Leu 215	Asn	Leu	Ser	Gln	Asp 220	Glu	Ile	Lys	Gln
	Glu	Val	Glu	Asp	Tyr	Leu	Pro	Ser	Phe	Cys	Lys	Trp	Ala	Gly	Asp	Phe
50	225					230					235					240
	Met	His	Lys	Asn	Thr 245	Ser	Thr	Asp	Phe	Pro 250	Gln	Met	Gln	Leu	Ser 255	Leu
55	Pro	Ser	Asp	Asn 260	Ser	Lys	Asp	Asn	Ser 265	Thr	Cys	Asn	Ile	Glu 270	Val	Val
60	Lys	Pro	Met 275	Asp	Ile	Glu	Glu	Ser 280	Ile	Trp	Ser	Pro	Arg 285	Phe	Gly	Leu
	Lys	Gly 290	Lys	Ile	Asp	Val	Thr 295	Val	Gly	Val	Lys	Ile 300	His	Arg	Gly	Tyr
65	Lys 305	Thr	Lys	Tyr	Lys	Ile 310	Met	Pro	Leu	Glu	Leu 315	Lys	Thr	Gly	Lys	Glu 320

-45-

	Ser	λsn	Ser	Ile	Glu 325	His	Arg	Ser	Gln	Val 330	Val	Leu	Tyr	Thr	Leu 335	Leu
5	Ser	Gin	Glu	Arg 340	Arg	Ala	Asp	Pro	Glu 345	Ala	Gly	Leu	Leu	Leu 350	Tyr	Leu
10	Lys	Thr	Gly 355	Gln	Met	Tyr	Pro	Val 360	Pro	Ala	Asn	His	Leu 365	Asp	Lys	Arg
10	Glu	Leu 370	Leu	Lys	Leu	Arg	Asn 375	Gln	Met	Ala	Phe	Ser 380	Leu	Phe	His	Arg
15	11e 385	Ser	Lys	Ser	Ala	Thr 390	Arg	Gln	Lys	Thr	Gln 395	Leu	Ala	Ser	Leu	Pro 400
	Gln	Ile	Ile	Glu	Glu 405	Glu	Lys	Thr	Cys	Lys 410	Tyr	Cys	Ser	Gln	Ile 415	Gly
20	Asn	Cys	Ala	Leu 420	Tyr	Ser	Arg	Ala	Val 425	Glu	Gln	Gln	Met	Asp 430	Cys	Ser
25	Ser	Val	Pro 435	Ile	Val	Met	Leu	Pro 440	Lys	Ile	Glu	Glu	Glu 445	Thr	Gln	His
23	Leu	Lys 450	Gln	Thr	His	Leu	Glu 455	Tyr	Phe	Ser	Leu	Trp 460	Cys	Leu	Met	Leu
30	Thr 465	Leu	Glu	Ser	Gln	Ser 470	Lys	Asp	Asn	Lys	Lys 475	Asn	His	Gln	Asn	Ile 480
	Trp	Leu	Met	Pro	Ala 485	Ser	Glu	Met	Glu	Lys 490	Ser	Gly	Ser	Cys	Ile 495	Gly
35	Asn	Leu	Ile	Arg 500	Met	Glu	His	Val	Lys 505	lle	Val	Cys	Asp	Gly 510	Gln	Tyr
40	Leu	His	Asn 515	Phe	Gln	Cys	Lys	His 520	Gly	Ala	Ile	Pro	Val 525	Thr	Asn	Leu
	Met	Ala 530	Gly	Asp	Arg	Val	Ile 535	Val	Ser	Gly	Glu	Glu 540	Arg	Ser	Leu	Phe
45	Ala 545	Leu	Ser	Arg	Gly	Tyr 550	Val	Lys	Glu	Ile	Asn 555	Met	Thr	Thr	Val	Thr 560
	Cys	Leu	Leu	Asp	Arg 565	Asn	Leu	Ser	Val	Leu 570	Pro	Glu	Ser	Thr	Leu 575	Phe
50	Arg	Leu	Asp	Gln 580	Glu	Glu	Lys	Asn	Cys 585	Asp	Ile	qzA	Thr	Pro 590	Leu	Gly
55	Asn	Leu	Ser 595	Lys	Leu	Met	Glu	Asn 600	Thr	Phe	Val	Ser	Lys 605	Lys	Leu	Arg
60	Asp	Leu 610	Ile	Ile	Asp	Phe	Arg 615	Glu	Pro	Gln	Phe	Ile 620	Ser	Tyr	Leu	Ser
30	Ser 625	۷al	Leu	Pro	His	Asp 630	Ala	Lys	Asp	Thr	Val 635	Ala	Cys	Ile	Leu	Lys 640
65	Gly	Leu	Asn	Lys	Pro 645	Gln	Arg	Gln	Ala	Met 650	Lys	Lys	Val	Leu	Leu 655	Ser
	Lys	Asp	Tyr	Thr 660	Leu	Ile	Val	Gly	Met 665	Pro	Gly	Thr	Gly	Lys 670	Thr	Thr

-46-

	Thr	ile	675		Leu	Val	Arg	11e 680		Tyr	Ala	Cys	Gly 685	Phe	Ser	Val
5	Leu	Leu 690	Thr	Ser	Tyr	Thr	His 695	Ser	Ala	Val	Asp	Asn 700	::e	Leu	Seu	Ļуз
10	Leu 705	Ala	Lys	Phe	Lys	Ile 710	Gly	Phe	Leu	Arg	Leu 715	Gly	Gln	Iie	Gln	Lys 720
10	Val	His	Pro	Ala	Ile 725	Gln	Gln	Phe	Thr	Glu 730	Gln	Glu	Ile	Cys	Arg 735	Ser
15	Lys	Ser	Ile	Lys 740	Ser	Leu	Ala	Leu	Leu 745	Glu	Glu	Leu	Tyr	Asn 750	Ser	Gln
	Leu	Ile	Val 755	Ala	Thr	Thr	Cys	Met 760	Gly	Ile	Asn	His	Pro 765	Ile	Phe	Ser
20	Arg	Lys 770	Ile	Phe	Asp	Phe	Cys 775	Ile	Val	Asp	Glu	Ala 780	Ser	Gln	Ile	Ser
25	Gln 785	Pro	Ile	Cys	Leu	Gly 790	Pro	Leu	Phe	Phe	Ser 795	Arg	Arg	Phe	Val	Leu 800
23	Val	Gly	Asp	His	Gln 805	Gln	Leu	Pro	Pro	Leu 810	Val	Leu	Asn	Arg	Glu 815	Ala
30	Arg	Ala	Leu	Gly 820	Met	Ser	Glu	Ser	Leu 825	Phe	Lys	Arg	Leu	Glu 830	Gln	Asn
	Lys	Ser	Ala 835	Val	Val	Gln	Leu	Thr 840	Val	Gln	Tyr	Arg	Met 845	Asn	Ser	Lys
35	Ile	Met 850	Ser	Leu	Ser	Asn	Lys 855	Leu	Thr	Tyr	Glu	Gly 860	Lys	Leu	Glu	Cys
40	Gly 865	Ser	Asp	Lys	Val	Ala 870	Asn	Ala	Val	Ile	Asn 875	Leu	Arg	His	Phe	Lys 880
	Asp	Val	Lys	Leu	Glu 885	Leu	Glu	Phe	Tyr	Ala 890	Asp	Tyr	Ser	Asp	Asn 895	Pro
45	Trp	Leu	Met	Gly 900	Val	Phe	Glu	Pro	Asn 905	Asn	Pro	Val	Cys	Phe 910	Leu	Asn
	Thr	Asp	Lys 915	Val	Pro	Ala	Pro	Glu 920	Gln	Val	Glu	Lys	Gly 925	Gly	Val	Ser
50																
	Asn	Val 930	Thr	Glu	Ala	Lys	Leu 935	Ile	Val	Phe	Leu	Thr 940	Ser	Ile	Phe	Val
55	Lys 945	Ala	Gly	Cys	Ser	Pro 950	Ser	Asp	Ile	Gly	Ile 955	Ile	Ala	Pro	Tyr	Arg 960
60	Gln	Gln	Leu	Lys	Ile 965	Ile	Asn	Asp	Leu	Leu 970	Ala	Arg	Ser	Ile	Gly 975	Met
. -	Val	Glu	Val	Asn 980		Val	Asp	Lys	Tyr 985		Gly	Arg	Λsp	Lys 990		Ile
65	Val	Leu	Val 995		Phe	Val	Arg	Ser 1000	Asn	Lys	Asp	Gly	Thr	Val	Gly	Glu

-47-

	Leu	Leu 101	Lys 0	Asp	Trp	Arg	Arg 101		Asr	val	Ala	102		Arq	Ala	Lys
5	His 102		Leu	Ile	Leu	Leu 103		Cys	. Val	. Pro	Ser 103		: Asr	Cys	Туг	Pro 1040
	Pro	Leu	Glu	Lys	Leu 104		Asn	His	Leu	Asn 105		Glu	Lys	Leu	Ile 105	Ile 5
10	Asp	Leu	Pro	Ser 106	Arg 0	Glu	His	Glu	Ser 106		Cys	His	Ile	Leu 107		Asp
15	Phe	Gln	Arg 107													
	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0: 1	3:								
20	(i)	(A (B (C	UENC) LE) TY) ST) TO	NGTH PE: RAND	: 52 amin EDNE	7 am o ac. SS:	ino id sing	acid	s							
25	(ii)	MOL	ECULI	E TY	PE: j	prot	ein									
	(iii)	нүрс	OTHE	rica:	L: NO	o										
	(iv)	ANT:	I-SEI	NSE:	NO											
30	(vi)		GINAI) OR(sap:	iens								
35	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	۷: SI	EQ I	ON C	: 13	:					
	Met 1	Ala	Asp	Ser	Arg 5	Asp	Pro	Ala	Ser	Asp 10	Gln	Met	Gln	His	Trp 15	Lys
40	Glu	Gln	Arg	Ala 20	Ala	Gln	Lys	Ala	Asp 25	Val	Leu	Thr	Thr	Gly 30	Ala	Gly
45	Asn	Pro	Val 35	Gly	Asp	Lys	Leu	Asn 40	Val	Ile	Thr	Val	Gly 45	Pro	Arg	Gly
	Pro	Leu 50	Leu	Val	Gln	Asp	Val 55	Val	Phe	Thr	Asp	Glu 60	Met	Ala	His	Phe
50	Asp 65	Arg	Glu	Arg	Ile	Pro 70	Glu	Arg	Val	Val	His 75	Ala	Lys	Gly	Ala	Gly 80
55	Ala	Phe	Gly	Tyr	Phe 85	Glu	Val	Thr	His	Asp 90	Ile	Thr	Lys	Tyr	Ser 95	Lys
	Ala	Lys	Val	Phe 100	Glu	His	Ile	Gly	Lys 105	Lys	Thr	Pro	Ile	Ala 110	Val	Arg
60	Phe	Ser	Thr 115	Val	Ala	Gly	Glu	Ser 120	Gly	Ser	Ala	Asp	Thr 125	Val	Arg	Asp
65	Pro	Arg 130	Gly	Phe	Ala	Val	Lys 135	Phe	Tyr	Thr	Glu	Asp 140	Gly	Asn	Trp	Asp
	Leu 145	Val	Gly	Asn	Asn	Thr	Pro	Ile	Phe	Phe	Ile	Arg	Asp	Pro	Ile	Leu

	Phe	Pro	Ser	Phe	165	His	Ser	Gln	Lys	Arg 170	Asn	Pro	Gin	Thr	His 175	Leu
5	Lys	Asp	Pro	Asp 180	Met	۷al	Trp	Asp	Phe 185	Trp	Ser	Leu	Arg	Pro 190	Glu	Ser
10	Leu	His	Gln 195	Val	Ser	Phe	Leu	Phe 200	Ser	Asp	Arg	Gly	Ile 205	Pro	Asp	Gly
10	His	Arg 210	His	Met	Asn	Gly	Tyr 215	Gly	Ser	His	Thr	Phe 220	Lys	Leu	Val	Asn
15.	Ala 225	Asn	Gly	Glu	Ala	Val 230	Tyr	Cys	Lys	Phe	His 235	Tyr	Lys	Thr	Asp	Gln 240
	Gly	Ile	Lys	Asn	Leu 245	Ser	Val	Glu	Asp	Ala 250	Ala	Arg	Leu	Ser	Gln 255	Glu
20	Asp	Pro	Asp	Tyr 260	Gly	Ile	Arg	Asp	Leu 265	Phe	Asn	Ala	Ile	Ala 270	Thr	Gly
25	Lys	Tyr	Pro 275	Ser	Trp	Thr	Phe	Tyr 280	Ile	Gln	Val	Met	Thr 285	Phe	Asn	Gln
	Ala	Glu 290	Thr	Phe	Pro	Phe	Asn 295	Pro	Phe	Asp	Leu	Thr 300	Lys	Val	Trp	Pro
30	His 305	Lys	Asp	Tyr	Pro	Leu 310	Ile	Pro	Val	Gly	Lys 315	Leu	Val	Leu	Asn	Arg 320
	Asn	Pro	Val	Asn	Tyr 325	Phe	Ala	Glu	Val	Glu 330	Gln	Ile	Ala	Phe	Asp 335	Pro
35	Ser	Asn	Met	Pro 340	Pro	Gly	Ile	Glu	Ala 345	Ser	Pro	Asp	Lys	Met 350	Leu	Gln
40	Gly	Arg	Leu 355	Phe	Ala	Туr	Pro	Asp 360	Thr	His	Arg	His	Arg 365	Leu	Gly	Pro
		370		His			375		-		_	38Ó				
45	Asn 385	Tyr	Gln	Arg	Asp	Gly 390	Pro	Met	Суѕ	Met	Gln 395	Asp	Asn	Gln	Gly	Gly 400
	Ala	Pro	Asn	Tyr	Tyr 405	Pro	Asn	Ser	Phe	Gly 410	Ala	Pro	Glu	Gln	Gln 415	Pro
50	Ser	Ala	Leu	Glu 420	His	Ser	Ile	Gln	Tyr 425	Ser	Gly	Glu	Val	Arg 430	Arg	Phe
55	Asn	Thr	Ala 435	Asn	Asp	Asp	Asn	Val 440	Thr	Gln	Val	Arg	Ala 445	Phe	Tyr	Val
	Asn	Val 450	Leu	Asn	Glu	Glu	Gln 455	Arg	Lys	Arg	Leu	Cys 460	Glu	Asn	Ile	Ala
60	Gly 465	His	Leu	Lys	Asp	Ala 470	Gln	Ile	Phe	Ile	Gln 475	Lys	Lys	Ala	Val	Lys 480
65	Asn	Phe	Thr	Glu	Val 485	His	Pro	Asp	Tyr	Gly 490	Ser	His	Ile	Gln	Ala 495	Leu
	Leu	Asp	Lys	Tyr 500	Asn	Ala	Glu	Lys	Pro 505	Lys	Asn	Ala	Ile	His 510	Thr	Phe

-49-

Val Gln Ser	Gly Ser His L	eu Ala Ala Arg	Glu Lys Ala Asn Leu
515		520	525

			012				520)				525	•		
5	(2) INFO	RMATIC	ON FOR	SEQ	ID N	10: 1	4:								
10	(i)	(B) (C)	LENGT:	H: 35 amir DEDNE	3 am no ac SSS:	nino :id sing	acio	ds							
	(ii)	MOLEC	ULE T	PE:	prot	ein									
15	(iii)	НҮРОТ	HETICA	AL: N	10										
	(iv)	ANTI-	SENSE:	NO											
20	(vi)	ORIGI (A)	NAL SO ORGANI			sap	iens								
25	(xi)	SEQUE	NCE DE	SCRI	PTIO	N: S	EQ I	D NO	: 14	:					
	Met 1	Glu L	ys Thr	Leu 5	Glu	Thr	Val	Pro	Leu 10	Glu	Arg	Lys	Lys	Arg 15	Glů
30	Lys	Glu G	ln Phe 20	Arg	Lys	Leu	Phe	Ile 25	Gly	Gly	Leu	Ser	Phe 30	Glu	Thr
	Thr	Glu G		Leu	Arg	Asn	Tyr 40	Tyr	Glu	Gln	Trp	Gly 45	Lys	Leu	Thr
35	Asp	Cys V	al Val	Met	Arg	Asp 55	Pro	Ala	Ser	Lys	Arg 60	Ser	Arg	Gly	Phe
40	Gly 65	Phe V	al Thr	Phe	Ser 70	Ser	Met	Ala	Glu	Val 75	Asp	Ala	Ala	Met	Ala 80
40	Ala	Arg P	co His	Ser 85	Ile	Asp	Gly	Arg	Val 90	Val	Glu	Pro	Lys	Arg 95	Ala
45	Val	Ala A	rg Glu 100		Ser	Gly	Lys	Pro 105	Gly	Ala	His	Val	Thr 110	Val	Lys
	Lys	Leu Pi	ne Val 15	Gly	Gly	Ile	Lys 120	Glu	Asp	Thr	Glu	Glu 125	His	His	Leu
50	Arg	Asp Ty 130	r Phe	Glu	Glu	Туг 135	Gly	Lys	Ile	Asp	Thr 140	Ile	Glu	Ile	Ile
55	Thr 145	Asp Ar	g Gln	Ser	Gly 150	Lys	Lys	Arg	Gly	Phe 155	Gly	Phe	Val	Thr	Phe 160
60	Asp	Asp Hi	s Asp	Pro 165	Val	Asp	Lys	Ile	Val 170	Leu	Gln	Lys	Tyr	His 175	Thr
60	Ile	Asn Gl	y His 180	Asn	Ala	Glu	Val	Arg 185	Lys	Ala	Leu	Ser	Arg 190	Gln	Glu
65	Met	Gln Gl 19	u Val 5	Gln	Ser	Ser	Arg 200	Ser	Gly	Arg	Gly	Gly 205	Asn	Phe	Gly
		Gly As 210	p Ser	Arg	Gly	Gly 215	Gly	Gly	Asn	Phe	Gly 220	Pro	Gly	Pro	Gly

-50-

	Ser 225	Asn	Phe	Arg	Gly	Gly 230	Ser	Asp	Gly	Tyr	Gly 235	Ser	Gly	Arg	Gly	Phe 240
5	Gly	Asp	Gly	Tyr	Asn 245	Gly	Tyr	Gly	Gly	Gly 250	Pro	Glγ	Gly	Gly	Asn 255	Phe
	Gly	Gly	Ser	Pro 260	Gly	Tyr	Gly	Gly	Gly 265	Arg	Gly	Gly	Tyr	Gly 270	Gly	Gly
10	Gly	Pro	Gly 275	Tyr	Gly	Asn	Gln	Gly 280	Gly	Gly	Tyr	Gly	Gly 285	Gly	Tyr	Asp
15	Asn	Tyr 290	Gly	Gly	Gly	Asn	Tyr 295	Gly	Ser	Gly	Asn	Tyr 300	Asn	Asp	Phe	Gly
	Asn 305	Tyr	Asn	Gln	Gln	Pro 310	Ser	Asn	Tyr	Gly	Pro 315	Met	Lys	Ser	Gly	Asn 320
20	Phe	Gly	Gly	Ser	Arg 325	Asn	Met	Gly	Gly	Pro 330	Tyr	Gly	Gly	Gly	Asn 335	Tyr
25	Gly	Pro	Gly	Gly 340	Ser	Gly	Gly	Ser	Gly 345	Gly	Tyr	Gly	Gly	Arg 350	Ser	Arg
23	Tyr															
30	(2) INFO	RMAT	ON E	FOR S	SEQ 1	D NO): 15	5:								
30	(i)	SEQUAL (A)	LEN	NGTH:	194 amino	l ami	ino a id	acids	5							
35		(C)	STE TOE	RANDI				Le								
	(ii)	MOLE	CUL	E TYI	PE: p	orote	ein									
4.0	(iii)	нүрс	THE	ricai	L: NO)										
40	(iv)	ANT	I-SEI	NSE:	NO											
45	(vi)		GINAI ORG				sap	iens								
	(xi)	SEO	JENCI	E DES	SCRII	PTIO	N: SI	EQ II	ON C	: 15:	:					
50		Ala										Asp	Pro	Ser	Glu	Leu
	1				5					10					15	
55	Glu	Gly	Gly	Gly 20	Leu	Leu	His	Glu	Ile 25	Phe	Thr	Ser	Pro	Leu 30	Asn	Lev
	Leu	Leu	Leu 35	Gly	Leu	Суѕ	Ile	Phe 40	Leu	Leu	Tyr	Lys	Ile 45	Val	Arg	Gly
60	Asp	Gln 50	Pro	Ala	Ala	Ser	Asp 55	Ser	Asp	Asp	Asp	Glu 60	Pro	Pro	Pro	Leu
<i>-</i>	2ro 65	Arg	Leu	Lys	Arg	Arg 70	Asp	Phe	Thr	Pro	Ala 75	Glu	Leu	Arg	Arg	Phe 80
65	Asp	Gly	Val	Gln	Asp	Pro	Arg	Ile	Leu	Met 90	Ala	Ile	Asn	Gly	Lys 95	Va)

-51-

	Phe	Asp	Val	Thr 100		Gly	Arg	Lys	Phe 105		Gly	Pro	Glu	Gly 110		Tyr
5	Gly	Val	Phe 115	Ala	Gly	Arg	Asp	Ala 120	Ser	Arg	Gly	Leu	Ala 125	Thr	Phe	Cys
10	Leu	Asp 130	Lys	Glu	Ala	Leu	Lys 135	Asp	Glu	Tyr	Asp	Asp 140	Leu	Ser	Asp	Leu
10	Thr 145	Pro	Ala	Gln	Gln	Glu 150	Thr	Leu	Asn	Asp	Trp 155	Asp	Ser	Gln	Phe	Thr 160
15	Phe	Lys	Tyr	His	His 165	Val	Gly	Lys	Leu	Leu 170	Lys	Glu	Gly	Glu	Glu 175	Pro
	Thr	Vai	Tyr	Ser 180	Asp	Glu	Glu	Glu	Pro 185	Lys	Asp	Glu	Ser	Ala 190	Arg	Lys
20	Asn	Asp														
	(2) INFO	RMAT	ION I	FOR S	SEQ 1	ED NO): 1	6:								
25	(i)	(A) (B) (C)	LEI TYI STI	E CHANGTH: PE: a RANDI POLOG	: 640 amino EDNES	am: aci	ino a id sing!	acids	5							
30	(ii)	MOLE	CULI	E TYI	PE: p	prote	ein									
	(iii)	нүрс	THE	FICAI	L: NO)										
35	(iv)	ANT	-SE	NSE:	NO											
	(vi)			L SOU			sapi	iens								
10																
	(xi)	SEQU	JENCE	E DES	CRIE	OIT	1: SE	Q II	NO:	16:						
15	Met 1	Ser	Lys	Gly	Pro 5	Ala	Val	Gly	Ile	Asp 10	Leu	Gly	Thr	Thr	Tyr 15	Ser
	Cys	Val	Gly	Val 20	Phe	Gln	His	Gly	Lys 25	Val	Glu	Ile	Ile	Ala 30	Asn	Asp
50	Gln	Gly	Asn 35	Arg	Thr	Thr		Ser 40	Tyr	Val	Ala		Thr 45	Asp	Thr	Glu
55	Arg	Leu 50	Ile	Gly	Asp	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Met	Asn	Pro	Thr
50	Asn 65	Thr	Val	Phe	Asp	Ala 70	Lys	Arg	Leu	Ile	Gly 75	Arg	Arg	Phe	Asp	Asp 80
-	Ala	Val	Val	Gln	Ser 85	Asp	Met	Lys	His	Trp 90	Pro	Phe	Met	Val	Val 95	Asn
55	Asp	Ala	Gly	Arg 100	Pro	Lys	Val	Gln	Val 105	Glu	Tyr	Lys	Gly	Glu 110	Thr	Lys
	Ser	Phe	Tyr 115	Pro	Glu	Glu	Val	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys

-52-

PCT/GB97/02394

	Glu	Ile 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Lys	Thr	Val	Thr 140	Asn	Ala	Val	Val
5	Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
	Ala	Gly	Thr	Ile	Ala 165	Gly	Leu	Asn	Val	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
10	Thr	Ala	Ala	Ala 180	Ile	Ala	Tyr	Gly	Leu 185	Asp	Lys	Lys	Val	Gly 190	Ala	Glu
15	Arg	Asn	Val 195	Leu	Ile	Phe	Asp	Leu 200	Gly	Gly	Gly	Thr	Phe 205	Asp	Val	Ser
	Ile	Leu 210	Thr	Ile	Glu	Asp	Gly 215	Ile	Pice	Glu	Val	Lys 220	Ser	Thr	Ala	Gly
20	Asp 225	Thr	His	Leu	Gly	Gly 230	Glu	Asp	Phe	Asp	Asn 235	Arg	Met	Val	Asn	His 240
25	Phe	Ile	Ala	Glu	Phe 245	Lys	Arg	Lys	His	Lys 250	Lys	Asp	Ile	Ser	Glu 255	Asn
23	Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg
30	Thr	Leu	Ser 275	Ser	Ser	Thr	Gln	Ala 280	Ser	Ile	Glu	Ile	Asp 285	Ser	Leu	Tyr
	Glu	Gly 290	Ile	Asp	Phe	Tyr	Thr 295	Ser	Ile	Thr	Arg	Ala 300	Arg	Phe	Glu	Glu
35	Leu 305	Asn	Ala	Asp	Leu	Phe 310	Arg	Gly	Thr	Leu	Asp 315	Pro	Val	Glu	Lys	Ala 320
40	Leu	Arg	Asp	Ala	Lys 325	Leu	Asp	Lys	Ser	Gln 330	Ile	His	Asp	Ile	Val 335	Leu
40	Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Ile	Gln	Lys	Leu	Leu 350	Gln	Asp
45	Phe	Phe	Asn 355	Gly	Lys	Glu	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 365	Asp	Glu	Ala
	Val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	Ser	Gly	Asp	Lys
50	Ser 385	Glu	Asn	Val	Gln	Asp 390	Leu	Leu	Leu	Leu	Asp 395	Val	Thr	Pro	Leu	Ser 400
55	Leu	Gly	Ile	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410	Thr	Val	Leu	lle	Lys 415	Arg
	Asn	Thr	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Thr	Phe	Thr	Thr 430	Tyr	Ser
60	Asp	Asn	Gln 435	Pro	Gly	Val	Leu	Ile 440	Gln	Val	Tyr	Glu	Gly 445	Glu	Arg	Ala
C C	Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Lys	Phe	Glu 460	Leu	Thr	Gly	Ile
65	Pro 465		Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480

-53-

	Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Ser	Ala 490	Val	Asp	Lys	Ser	Thr 495	Gly
5	Lys	Glu	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
	Glu	Ąsp	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
10	Asp	Glu 530	Lys	Gln	Arg	Asp	Lys 535	Val	Ser	Ser	Lys	Asn 540	Ser	Leu	Glu	Ser
15	Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ala	Thr	Val	Glu	Asp 555	Glu	Lys	Leu	Gln	Gly 560
	Lys	Ile	Asn	Asp	Glu 565	Asp	Lys	Gln	Lys	Ile 570	Leu	Asp	Lys	Cys	Asn 575	Glu
20	Ile	Ile	Asn	Trp 580	Leu	Asp	Lys	Asn	Gln 585	Thr	Ala	Glu	Lys	Glu 590	Glu	Phe
25	Glu	His	Gln 595	Gln	Lys	Glu	Leu	Glu 600	Lys	Val	Cys	Asn	Pro 605	Ile	Ile	Thr
23	Lys	Leu 610	Tyr	Gln	Ser	Ala	Gly 615	Gly	Met	Pro	Gly	Gly 620	Met	Pro	Gly	Gly
30	Phe 625	Pro	Gly	Gly	Gly	Ala 630	Pro	Pro	Ser	Gly	Gly 63 5	Ala	Ser	Ser	Gly	Pro 640
	Thr	Ile	Glu	Glu	Val 645	Asp										

-54-

CLAIMS

5 1. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a nucleic acid coding therefor or antibodies thereto.

15

2. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and characterised by one of the following combinations of molecular weight and pI values:

hyperplasia pΙ MW kDa 25 6.7 91 6.6 90 6.9 64 6.6 67 6.3 66 6.8 30 46 5.7 41 5.5 35 5.3 13 6.6 101 35 5.8 14 7.4 51 8.2 44 9.5 48

	adenoca	arci	.noma
5	pΙ	MW	(kDa)
	6.3		32
	6.0	1	.09
	6.7		91
	6.6		90
10	6.9		64
	6.6		67
	6.3		66
	6.2		62
	6.2		45
15	5.7		45
	5.4		33
	6.3		27
	6.5	1	03
	6.8		90
20	6.9		78
	5.3		13
	6.2	1	30
	6.3		66
	6.3		73
25	8.3		32
	8.1		55
	8.2	•	44
	6.6	1	11
	7.7		43
30	9.5	•	48
	8.3		32
	7.7	:	39

or a fragment or breakdown product thereof, or a nucleic 35 acid coding therefor or antibodies thereto.

3. A method as claimed in Claim 1 or Claim 2, wherein said protein, fragment, breakdown product, antibodies, or nucleic acid is detected in a body fluid sample.

-56-

- 4. An immunological binding partner specifically reactive with a protein as defined in Claim 1 or Claim 2 or with a 5 fragment or breakdown product thereof or with a nucleic acid coding therefor.
 - 5. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 4.
- 6. An assay kit for use in a method as claimed in Claim 1 or Claim 2, comprising an immunological binding partner as claimed in Claim 4.

10

7. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

pI	MW(kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic sacid coding therefor, or an antibody thereto.

- 8. A method as claimed in Claim 7, for detecting the phase of the endometrium.
- 9. A method as claimed in Claim 7 or Claim 8, wherein said protein, fragment, or breakdown product is detected in a body fluid sample.
- 10. An immunological binding partner specifically reactive 15 with a protein as defined in Claim 7 or with a fragment or breakdown product thereof or with a nucleic acid coding therefor.

-58-

- 11. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 10.
- 125 12. An assay kit for use in a method as claimed in Claim 7 or Claim 8, comprising an immunological binding partner as claimed in Claim 10.
 - 13. A protein produced by the endometrium in increased

 10 amounts in hyperplasia or in adenocarcinoma as shown by

 2D gel electrophoresis comparison of cell lysates of
 endo-metrial biopsies from normal endometrium and
 endometrium showing hyperplasia or adenocarcinoma,
 excluding variations due to the menstrual cycle, and
 characterised by one of the following combinations of
 molecular weight and pI values:

hyperplasia

	pI	MW kDa
20	6.7	91
	6.6	90
	6.9	64
	6.8	46
	5.7	41
25	5.3	13
	6.6	101
	5.8	14
	9.5	48

-59-

	adend	carcinoma
	pΙ	MW (kDa)
	6.3	32
5	6.0	109
	6.7	91
	6.6	90
	6.9	64
	6.2	62
10	6.5	103
	6.8	90
	5.3	13
	6.2	130
	6.3	66
15	6.3	73
	8.3	32
	8.1	55
	6.6	111
	7.7	43
20	9.5	48
	8.3	32

14. A protein produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

-60-

pI	MW(kDa)
6.9	86
5.6	67
6.8	52
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.7	31

15. A protein as claimed in Claim 13 or Claim 14,
5 characterised by the properties:-

MW(kDa)
41
67
48
52
124
119
119

and by the respective tryptic digestion MS spectra shown in Figures 7 to 12.

16. The use of a protein as defined in any one of Claims 1,2 or 7 or a fragment thereof, for detecting autoantibodies to a said protein.

F16. 1

SUBSTITUTE SHEET (RULE 26)

F19. 4

F15.5

F19. 6

SUBSTITUTE SHEET (RULE 26)

9000

Counts

0

68.70hr

87.6321

15000

LL'9911

SUBSTITUTE SHEET (RULE 26)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.