PROJETO 2

MÓDULO BÁSICO (60%)

RASTREAMENTO DE MODELOS PLANARES

O projeto 2 pode ser feito por equipes de 2 a 4 pessoas e deve ser entregue em sala de aula na sexta-feira, dia 13/02, às 08 horas em um dos laboratórios de graduação do Cln. O objetivo do projeto é, usando a biblioteca OpenCV, rastrear um modelo simples planar como ilustrado na figura abaixo, em que uma capa de livro é rastreada:

OPENCV

O projeto deve ser realizado utilizando a biblioteca de visão computacional OpenCV.

MODELO PLANAR

Escolha e armazenamento de um modelo para ser rastreado – um modelo planar deve ser selecionado, sua textura fornecida e suas features extraídas e armazenadas também com uma coordenada 3D (recomenda-se simplesmente adicionar z=1 às coordenadas 2D das features). Sugestões incluem capas de livros, uma das faces de caixas de cereais, fachadas de prédios e visões aéreas de partes da cidade.

VISUALIZAÇÃO DOS RESULTADOS INTERMEDIÁRIOS EM JANELA DO OPENCV (HIGHGUI)

Renderize os resultados intermediários (extração, casamento e quadrilátero da pose) em uma janela gerenciada pela biblioteca auxiliar highgui autocontida na OpenCV.

VISUALIZAÇÃO DO RESULTADO FINAL EM JANELA DO OPENGL (GLUT)

Renderize o resultado final (modelo 3D .obj em cima do modelo planar rastreado) em uma janela gerenciada pela biblioteca auxiliar GLUT.

EXTRAÇÃO DE FEATURES

Mostre as *features* extraídas na imagem de entrada. Caso as *features* possuam orientação e escala (ex.: *features* SIFT ou SURF) mostrar estes atributos localizados (com setas, ou quadrados rotacionados).

CASAMENTO DE FEATURES

Mostrar as correspondências ligando linhas como mostrado na imagem acima.

CÁLCULO DE POSE

Partir das correspondências obtidas calcular uma pose de câmera, usar a pose para mostrar um quadrilátero exaltando o perímetro do modelo rastreado como mostrado na figura acima (usando a janela da highgui, autocontida no OpenCV) e usar a pose como entrada para renderizar um modelo 3D usando o código do projeto 1.

MÓDULOS ESPECÍFICOS (20% CADA)

COMPARAÇÕES DE PERFORMANCE

Testar variações de tipos de *features*, algoritmos de casamento e de cálculo de pose. Criar uma tabela comparativa mostrando a diferença de consumo de tempo de processamento e de memória para cada um dos casos.

HEURÍSTICAS PARA MELHORIA DO DESEMPENHO

Propor e implementar melhorias de performance (velocidade), de robustez (reduzir falhas de rastreamento) ou de precisão. Demonstrar a diferença do código rodando sem e com a heurística proposta.

TRATAMENTO DA ENTRADA

Implementar métodos de processamento de imagem para melhorar a entrada e assim melhorar o rastreamento (ex.: normalização do histograma para tratar a iluminação, borramento gaussiano para diminuir o ruído, etc). Analisar o efeito dos métodos testados.

DESAFIO: CRIAR UM MÉTODO PARA EXTRAÇÃO E DESCRIÇÃO DE FEATURES

Criar um método para extração e descrição de features, implementar e demonstrar o funcionamento do mesmo.

CRITERIOS DE AVALIAÇÃO
ASPECTO VISUAL
 □ Resolução da imagem de saída (meta é HD ou Full HD) □ Rodar em tela cheia (fullscreen) □ Percepção clara das etapas implementadas
PERFORMANCE
 Taxa de atualização interativa (meta é 30 quadros por segundo, mas até 5 quadros por segundo é aceitável) Precisão para prover experiência agradável, eliminar tremidas (<i>jitter</i>) e atrasos de resposta que mostrem o resultado se arrastando para se aproximar do objeto rastreado (<i>drift</i>).
IMPLEMENTAÇÃO
 Clareza no código implementado (código limpo, livre de códigos comentados e com comentários explicando as principais classes e funções) Código modularizado (separar em classes ou pelo menos em arquivos distintos cada uma das responsabilidades do projeto) Clareza na explicação da implementação (cada integrante do grupo deve explicar sua participação no projeto de forma consistente e clara)
DESAFIO: APLICABILIDADE
Resultados devem ter potencial de aplicação real no mercado, responder perguntas como: Em que cenário seu resultado é útil? Que empresas se interessariam pela tecnologia?
ENTRECA

ENTREGA

Dia 13 de fevereiro durante a aula (8h)

Obs.: os desafios adicionam pontos na nota global diretamente!