ELECTRONICS ENGINEERING DEPARTMENT SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT

DIGITAL ELECTRONICS & LOGIC DESIGN LAB

LAB 3: 26.08.2020-27.08.2020

Objectives of Today's Lab

- Design the following circuits:
 - Half Adder
 - Full Adder
 - Half Substractor
 - ► Full Substractor

using basic logic gates.

- Implement the above circuits using Multisim Online and verify the functionality.
- Assignment.

What is Adder circuit?

- Binary adder is a digital circuit that performs addition of binary numbers.
- In computers and other kinds of processors, adders are used in the Arithmetic Logic Units (ALU).
- They are also used in other parts of the processors, for example:
 - to calculate addresses
 - implementing increment and decrement operations and other similar applications.

Getting Started

- To design any digital circuit, we must know its Boolean expression.
- In digital circuits, Boolean expression describes how the output(s) behave according to changes in the inputs.
 - For example, y = a.b (Identify this!!)
- ⇒We must arrive at Boolean expression for all these circuits.
- Further, Boolean expressions can be optimized using:
 - ▶ Laws of Boolean Algebra (√)
 - Karnaugh Map

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	0
0	I	0
I	0	0
I	I	I

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	0
0	I	0
I	0	0
I	I	I

AND gate: $Y = A \cdot B$

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	I
0	I	0
I	0	0
I	I	0

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	[
0	I	0
I	0	0
I	I	0

NOR gate: Y = A + B

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	0
0	I	I
I	0	I
I	I	0

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	0
0	I	I
I	0	I
I	I	0

XOR gate : $Y = A \oplus B$

Identify the gate from Truth-table and draw its circuit symbol.

Α	В	Y
0	0	0
0	I	[
I	0	0
I	I	0

Α	В	Y
0	0	0
0	I	I
I	0	0
I	I	0

This is not a gate. But, it does have a Boolean expression.

$$Y = \overline{A} \cdot B$$

Α	В	Y
0	0	0
0	I	0
I	0	I
I	I	0

This is not a gate. But, it does have a Boolean expression.

$$Y = A . \overline{B}$$

Α	В	Y
0	0	0
0	I	I
I	0	I
I	I	0

The Boolean expression for this truth table can be described as:

$$Y = \overline{A} \cdot B + A \cdot \overline{B}$$

Α	В	Y
0	0	I
0	I	0
I	0	0
I	I	0

The Boolean expression for this truth table can be described as:.

$$Y = A . B$$

Does this mean $A \cdot B = A + B$?

Revisiting Laws of Boolean Algebra

Law of Addition	Law of Multiplication
x + 0 = x	$x \cdot 1 = x$
x + x' = 1	$x \cdot x' = 0$
x + x = x	$x \cdot x = x$
x + 1 = 1	$x \cdot 0 = 0$
(x')' = x	
x + y = y + x	$x \cdot y = y \cdot x$
x+(y+z) = (x+y)+z	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
$x \cdot (y+z) = x \cdot y+x \cdot z$	$x+y\cdot z = (x+y)\cdot (x+z)$
$(x+y)' = x' \cdot y'$	$(x \cdot y)' = x' + y'$
$x + (x \cdot y) = x$	$x \cdot (x + y) = x$

Α	В	С	Y
0	0	0	0
0	0	I	0
0	I	0	0
0	I	1	1
I	0	0	0
I	0	1	1
l	l	0	I
I	Ī		l

Α	В	С	Y
0	0	0	0
0	0	I	0
0	I	0	0
0	I	I	I
I	0	0	0
I	0	I	I
I	I	0	I
	l		I

$$Y = A'BC + AB'C + ABC' + ABC$$

Α	В	С	Y
0	0	0	0
0	0	1	I
0	I	0	I
0	I	I	0
I	0	0	I
I	0	I	0
I	[0	0
I		Ī	I

Α	В	С	Y
0	0	0	0
0	0	I	1
0	I	0	I
0	I	I	0
I	0	0	1
I	0	I	0
l	l	0	0
I	I	[I

$$Y = A'B'C + A'BC' + AB'C' + ABC$$

What is a Half Adder?

- ▶ The half adder adds two single binary digits A and B.
- ▶ It has two outputs, sum (S) and carry (C).
- The carry represents an overflow into the next digit of a multi-digit addition.

Fig.: Block Diagram Representation

Half Adder

▶ Truth-table:

Α	В	С	S
0	0	0	0
0	I	0	I
I	0	0	I
I	I	I	0

Write the Boolean Expression

Half Adder

▶ Truth-table:

Α	В	С	S
0	0	0	0
0	I	0	I
I	0	0	I
I	I	I	0

Boolean Expression

Sum,
$$S = A \oplus B$$

Carry, $C = A \cdot B$

Half Adder

Fig.: Half Adder

What is a Full Adder?

- ▶ Full-adder adds three I-bit numbers: A, B, and Cin.
- A and B are the operands, and C_{in} is a bit carried from the previous stage.
- The circuit produces two output bits: Output carry C_{out} and Sum S.

Fig.: Block Diagram Representation

▶ Truth-table

Α	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0	I	0	I
0	I	0	0	I
0	I	I	I	0
I	0	0	0	I
I	0	I	I	0
I	I	0	I	0
I	I	I	I	I

Write the Boolean Expression

Α	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0		0	I
0	I	0	0	I
0	I	I	I	0
I	0	0	0	I
I	0	I	I	0
I	I	0	I	0
I	l	I	I	I

$$C_{\text{out}} = A'BC_{\text{in}} + AB'C_{\text{in}} + ABC_{\text{in}}' + ABC_{\text{in}}$$

 $S = A'B'C_{\text{in}} + A'BC_{\text{in}}' + AB'C_{\text{in}}' + ABC_{\text{in}}$

Lets simplify these expressions using Laws of Boolean algebra.

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}'$$

$$S = A'B'C_{in} + ABC_{in} + A'BC_{in}' + AB'C_{in}'$$

$$S = (A'B' + AB).C_{in} + (A'B + AB').C_{in}'$$

$$\triangleright$$
 S = (A \bigoplus B)'.C_{in} + (A \bigoplus B).C_{in}'

$$\triangleright$$
 S = A \oplus B \oplus C

- $C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}'$
- $C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in} + ABC_{in} + ABC_{in}$
- $C_{out} = A'BC_{in} + ABC_{in} + AB'C_{in} + ABC_{in} + ABC_{in}' + ABC_{in$
- $C_{out} = (A' + A)BC_{in} + (B' + B)AC_{in} + (C_{in}' + C_{in})AB$

Fig.: Full Adder

Half Substractor

- A substractor can be designed using the same approach as that of an adder.
- The half substractor is a digital circuit which is used to perform subtraction of two bits.
- It has two inputs, the minuend A and subtrahend B and two outputs, the difference D and borrow out B_{out}.
- The borrow out signal is set when the substractor needs to borrow from the next digit in a multi-digit subtraction.
- \triangleright B_{out} = I when A < B.
 - i.e. $B_{out} = I$ if and only if A = 0 and B = I

Half-Substractor

Truth-Table

Α	В	B_{out}	D
0	0	0	0
0	I	I	I
I	0	0	I
I	I	0	0

Boolean Expressions:

Full Substractor

- Full substractor is a digital circuit which is used to perform subtraction of three input bits: the minuend A, subtrahend B and borrow in B_{in}
- The full substractor generates two output bits: the difference D and borrow out B_{out} .
- ullet B_{in} is set when the previous digit is borrowed from A. So, B_{in} is also subtracted from A as well as the subtrahend B.
 - \rightarrow A B B_{in}
- A borrow out needs to be generated when $A < (B + B_{in})$

Full Substractor

Truth-Table

В	B_{in}	B _{out}	D
0	0	0	0
0	I	I	I
I	0	I	I
I	I	I	0
0	0	0	I
0	I	0	0
I	0	0	0
I	I	I	I
	0 0 1 1 0 0	0 0 0 1 1 0 1 0 0 0 0 0 1	0 0 0 0 I I I 0 I 0 0 0 0 I 0

Fig.: Full Substractor

Boolean Expressions:

$$B_{out} = A'B'B_{in} + A'BB_{in}' + A'BB_{in} + ABB_{in} = A'B + A'B_{in} + BB_{in}$$

$$D = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in} = A \oplus B \oplus C$$

Fig.: Circuit Schematic of Half Adder

Fig.: Expected Waveform

Window Comparator: Transient

