Name:	Roll Number:

Quiz-3

Max. Time: 20 min Max. Points: 20

Note: Solve all parts. Limit your written responses to the provided space.

- Q.1. [8] Choose by putting a check mark on the most appropriate option. Note: No cutting/overwriting is allowed.
- i. Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
- (A) True (B) False
- ii. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with A as its standard matrix, is one-to-one if and only if the columns of A span \mathbb{R}^m .
- (A) True (B) False
- iii. The columns of the standard matrix for a linear transformation A from \mathbb{R}^n to \mathbb{R}^m are the images of the of the columns of $n \times n$ identity matrix I.
- (A) True (B) False
- iv. When two linear transformations are performed one after another, the combined effect may not always be linear.
- (A) True (B) False
- v. If A is a 3×5 matrix representing a linear transformation T, then T cannot map \mathbb{R}^5 onto \mathbb{R}^3 .
- (A) True (B) False
- vi. The codomain of the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the set of all linear combinations of the columns of A.
- (A) True (B) False
- vii. The transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector \mathbf{x} in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
- (A) True (B) False
- viii. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and \mathbf{c} is in \mathbb{R}^m , then whether or not \mathbf{c} is in the range of T is a uniqueness question.
- (A) True (B) False

Q.2. [7+5]

a) For the following transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$, find all vectors in \mathbb{R}^4 that get mapped to the origin in \mathbb{R}^3 .

$$A = \begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}$$

Solve
$$A\mathbf{x} = \mathbf{0}$$
.
$$\begin{bmatrix} 1 & -4 & 7 & -5 & 0 \\ 0 & 1 & -4 & 3 & 0 \\ 2 & -6 & 6 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 7 & -5 & 0 \\ 0 & 1 & -4 & 3 & 0 \\ 0 & 2 & -8 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 7 & -5 & 0 \\ 0 & 1 & -4 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -9 & 7 & 0 \\
0 & 1 & -4 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
-4x_3 \\
-4x_3 \\
0 \\
0 \\
0
\end{bmatrix}
= 0, \begin{cases}
x_1 = 9x_3 - 7x_4 \\
x_2 = 4x_3 - 3x_4 \\
x_3 \text{ is free} \\
x_4 \text{ is free}
\end{cases}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 9x_3 - 7x_4 \\ 4x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 9 \\ 4 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -7 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

b) Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$. Give the standard matrix for the linear transformation A that first reflects points through the horizontal axis x_1 and then reflects points through the line $x_2=x_1$.

$$\mathbf{e}_1 \to \mathbf{e}_1 \to \mathbf{e}_2$$
 and $\mathbf{e}_2 \to -\mathbf{e}_2 \to -\mathbf{e}_1$, so $A = \begin{bmatrix} \mathbf{e}_2 & -\mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Name:	Roll Number: