

Bases de Dados

T10 - Álgebra Relacional Parte I

Prof. Daniel Faria

Prof. Flávio Martins

Sumário

- Recapitulação Breve
- Álgebra Relacional
- Exemplos

Recapitulação Breve

Concepção de Bases de Dados

Especificação de Requisitos

- requisito funcional 1:
- requisito funcional 2:
- ...
- restrição de integridade 1
- restrição de integridade 2
- ..

Relação

- Conjunto de tuplos n-ários que obedecem a uma especificação de nome e domínio de dados definida num cabeçalho
 - Representada normalmente como uma tabela

Conversão E-A-Relacional

- Entidades e associações E-A representam também conjuntos de tuplos de dados
- Conversão entre os dois modelos de dados visa:
 - Preservar todas as relações semânticas dos dados no modelo E-A
 - Minimizando a redundância de dados no modelo relacional

Conversão E-A-Relacional

Modelo E-A	Modelo Relacional	
Entidade	Relação (mesmos atributos e mesma chave)	
Associação 0-N-*	Relação (chaves das entidades associadas mais atributos da associação)	
Associação 1-N-*	Relação + restrição de integridade para participação obrigatória	
Associação 1–*	Chave da segunda entidade e atributos da associação incorporados na primeira entidade	
Associação 0-1-*	Como 0-N mas chave é a primeira entidade ou como 1 (mas com NULLs)	
Entidade Fraca	dade Fraca Relação com chave composta por chave parcial + chave da entidade forte	
Generalização / Especialização		
Agregação	Interior = associação; exterior = associação c/ agregação como entidade	

Álgebra Relacional

Modelo Relacional (sem NULLs)

- Lógica de predicados de dois valores (verdadeiro ou falso)
- Selecção de dados baseada na teoria dos conjuntos usando:
 - Cálculo relacional: linguagem lógica declarativa com variáveis e quantificação; a base da otimização de queries
 - Álgebra relacional: linguagem procedimental imperativa sem variáveis;
 fundação teórica para o SQL
- Teorema de Codd: uma query pode ser formulada em cálculo relacional (independente do domínio) sse pode ser formulada em álgebra relacional

Motivação

- A Álgebra Relacional permite-nos pensar conceptualmente na interrogação a bases de dados relacionais
- Ajuda-nos a estruturar queries SQL

Álgebra Relacional

- Linguagem procedimental que consiste em operações algébricas sobre relações, cujo resultado é também uma relação
 - Inclui operações unárias (argumento é uma só relação) e binárias (argumento são duas relações)
- Uma vez que o resultado de cada operação é uma relação, operações de álgebra relacional podem ser combinadas em expressões

Álgebra Relacional

- Operadores básicos
 - Seleção: σ
 - Projeção: □
 - Produto Cartesiano: ×
 - Renomear: ρ
 - Diferença: –
 - o União: U

Sobre estes operadores podem-se definir outros, e.g.:

- Join: ⋈
- Interseção: ∩
- Divisão: ÷
- ...

Operadores de Álgebra Relacional

- Operação unária que seleciona tuplos de uma relação que satisfazem um determinado predicado
- Notação: $\sigma_{p}(r)$
 - em que p é o predicado de seleção
- E.g. seleciona todos os professores do departamento de Física

$$\sigma_{dept="Physics"}$$
 (professor)

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

ID	name	dept	salary
2	Jack	Physics	95000
3	Jill	Physics	82000

- Um predicado de seleção deve ser booleano
- São permitidos os operadores de comparação: =,
 ≠, >, ≥, <, ≤
- Predicados podem ser compostos usando os operadores lógicos: ∧ (and), ∨ (or), ¬ (not)
- E.g. seleciona todos os professores do departamento de Física com salário > \$90,000

$$\sigma_{dept\ name="Physics" \land salary > 90000} (professor)$$

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

ID	name	dept	salary
2	Jack	Physics	95000

- Um predicado de seleção pode comparar um atributo com um literal (como nos exemplos anteriores) ou dois atributos
 - E.g. seleciona todos os departamentos cujo nome é igual ao nome do seu edifício
 - \bullet $\sigma_{dept\ name=building}(department)$

Propriedades:

• A seleção é um operador comutativo:

$$\sigma_{p1}(\sigma_{p2}(r)) = \sigma_{p2}(\sigma_{p1}(r))$$

 Pode sempre reduzir-se uma série de seleções sobre uma relação a uma seleção única com todas as condições conjugadas com AND:

$$\sigma_{p1}(\sigma_{p2}(r)) = \sigma_{p1 \wedge p2}(r)$$

Projeção / Project

- Operação unária que devolve uma projeção da relação argumento num espaço dimensional inferior, i.e., apenas com os atributos listados
- Notação: $\prod_{A1,A2,...,Ak} (r)$
 - onde cada *Ai* é um nome de atributo da relação *r*
- O resultado é definido como a relação obtida removendo da relação original todos os atributos não listados
 - Linhas duplicadas são removidas do resultado, uma vez que o resultado tem de ser uma relação

Projeção / Project

 E.g. obter apenas o salário (ou excluir tudo menos o salário) dos professores

$$\prod_{salary}$$
 (professor)

- Notar que não há garantia que os tuplos mantenham a ordem (não há ordem nos tuplos de uma relação)
- Notar ainda a exclusão do tuplo duplicado "82000"

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

Projeção / Project

Propriedades:

• A projeção **não é** um operador comutativo:

$$\prod_{\langle list1\rangle} (\prod_{\langle list2\rangle} (r)) \neq \prod_{\langle list2\rangle} (\prod_{\langle list1\rangle} (r))$$

- Porque a projeção $\prod_{\langle x \rangle}(r)$ só está definida se $x \subseteq r$
- Pode sempre reduzir-se uma série de projeções "definidas" sobre uma relação a uma projeção única com os atributos da última projeção:

$$\prod_{\langle list1 \rangle} (\prod_{\langle list2 \rangle} (r)) = \prod_{\langle list1 \rangle} (r) \text{ sse } list1 \subseteq list2 \subseteq r$$

Combinação de Operações

- Como referimos, o resultado de cada operação de álgebra relacional é uma relação
- Isto permite combinar várias operações em expressões, usando o resultado de uma operação como argumento de outra
- E.g. seleciona os nomes de todos os professores do departamento de Física

$$\prod_{name} (\sigma_{dept \ name = "Physics"}(professor))$$

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

Produto Cartesiano / Cross-Join

- Operação binária que combina todos os tuplos de uma relação com todos os tuplos de uma segunda relação
- Notação: r × s
- E.g.: professor × teaches

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

ID	course
1	OCH-101
1	BCH-101
3	NPH-315

3 tuplos, 2 atributos

professor.ID	name	dept	salary	teaches.ID	course
1	John	Chemistry	65000	1	OCH-101
1	John	Chemistry	65000	1	BCH-101
1	John	Chemistry	65000	3	NPH-315
4	Joan	Biology	82000	1	OCH-101
4	Joan	Biology	82000	1	BCH-101
4	Joan	Biology	82000	3	NPH-315

Produto Cartesiano / Cross-Join

Propriedades:

O produto cartesiano é um operador comutativo

$$r \times s = s \times r$$

(relações não têm ordem de atributos nem de tuplos)

O produto cartesiano é um operador associativo

$$r \times (s \times t) = r \times s \times t$$

Produto Cartesiano / Cross-Join

- O exemplo professor × teaches contém todos os pares professor, ensina (relacionados ou não)
- Se queremos apenas os pares relacionados:

ID	name	dept	salary
1	John	Chemistry	65000
2	Jack	Physics	95000
3	Jill	Physics	82000
4	Joan	Biology	82000

ID	course
1	OCH-101
1	BCH-101
3	NPH-315

 $\sigma_{professor.id=teaches.id}$ (professor × teaches)

professor.ID	name	dept	salary	teaches.ID	course
1	John	Chemistry	65000	1	OCH-101
1	John	Chemistry	65000	1	BCH-101
3	Jill	Physics	82000	3	NPH-315

Join

- Operação binária que combina um produto cartesiano com uma seleção com um predicado sobre atributos
- Definição: $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
 - \circ Em que θ é um predicado de atributos de $r \cup s$
- Portanto, o exemplo anterior pode ser reescrito como:
 - professor ⋈ professor.id=teaches.id teaches

Join

Propriedades:

- Join é um operador comutativo e associativo
- Há ainda "associatividade mútua" entre seleção e join / produto cartesiano quando o predicado de seleção apenas diz respeito a uma relação
- E.g. listar os cursos ensinados por professores do departamento de física

$$\sigma_{dept_name="Physics"}(professor \bowtie_{professor.id=teaches.id} teaches)$$

- $\sigma_{dept\ name="Physics"}(professor) \bowtie_{professor.id=teaches.id} teaches$
- As duas queries não são idênticas são equivalentes

Natural Join

- Corresponde a um Join, em que:
 - \circ θ é um predicado de igualdade entre todos os atributos com o mesmo nome nas duas relações
 - Atributos duplicados são removidos do resultado (projeção)
- Definição: $r \bowtie s = \prod_{r \cup s} (\sigma_{r,A1=s,A1 \land ... \land r,An=s,An}(r \times s))$
 - em que $\{A1,...,An\} = r \cap s$
- E.g. para duas relações r(a,b,c,d) e s(a,b,e,f,g)

$$r \bowtie s = \prod_{a,b,c,d,e,f,a} (\sigma_{r,a=s,a \land r,b=s,b}(r \times s))$$

Join vs. Natural Join

Join

 $professor \bowtie_{professor.id=teaches.id} teaches$

professor.ID	name	dept	salary	teaches.ID	course
1	John	Chemistry	65000	1	OCH-101
1	John	Chemistry	65000	1	BCH-101
3	Jill	Physics	82000	3	NPH-315

Natural Join

professor ⋈ *teaches*

ID	name	dept	salary	course
1	John	Chemistry	65000	OCH-101
1	John	Chemistry	65000	BCH-101
3	Jill	Physics	82000	NPH-315

Remoção de colunas duplicadas (já não é preciso desambiguar)

Renomear / Rename

- Operação unária que atribui um (novo) nome a uma relação e opcionalmente aos seus atributos
 - Tipicamente utilizada para dar nome à relação resultante de uma operação de álgebra relacional (que caso contrário é anónima)
- Notação: $\rho_x(r)$ ou $\rho_x r$
 - Atribui o nome x à relação r
- Notação: $\rho_{x(A1,A2,...,An)}(r)$
 - Atribui o nome x à relação r e renomeia os seus atributos (pela ordem que ocorrem) para (A1,A2,...,An)

Renomear / Rename

- Notação: $\rho_{x(3\to A)}(r)$
 - \circ Atribui o nome x à relação r e renomeia o terceiro atributo para A
- NOTA:
 - Quando há renomear envolvido, passamos a considerar a ordem dos atributos de uma relação (que teoricamente não existe)!
 - Quebra a comutatividade de operações que combinam relações (produto cartesiano e joins)
 - Torna a ordem dos atributos numa projeção relevante

Diferença / Set-Difference

- Operação binária que devolve os tuplos que estão numa primeira relação mas não numa segunda relação
- Notação: *r* − *s*
- A diferença só está definida para relações compatíveis, i.e., r e s têm de:
 - ter a mesma aridade
 - ter domínios de atributos compatíveis
- E.g. encontrar todos os cursos lecionados no primeiro semestre de 2022/2023 mas não no segundo

$$\prod_{\text{course}} (\sigma_{\text{semester}="1"\text{Nyear}="2022/2023"}(\text{edition})) - \prod_{\text{course}} (\sigma_{\text{semester}="2"})$$

$$\text{Near}= (\sigma_{\text{semester}="2"})$$

$$\text{LISBOA}$$

Diferença / Set-Difference

$$\prod_{\text{course}} (\sigma_{\text{semester=1} \land \text{year="2022/2023"}}(\text{edition})) - \prod_{\text{course}} (\sigma_{\text{semester=2} \land \text{year="2022/2023"}}(\text{edition}))$$

course	year	semester	coordinator	
OCH-101	2021/2022	1	John	
BCH-101	2021/2022	2	John	
NPH-315	2022/2023	1	John	
OCH-101	2022/2023	1	Joan	
BCH-101	2022/2023	2	Joan	
NPH-315	2022/2023	2	Joan	

Propriedades: a diferença não é comutativa nem associativa

União / Union

- Operação binária que devolve os tuplos que estão numa primeira relação ou numa segunda relação
- Notação: *r* U *s*
- Tal como a diferença, a união só está definida para relações compatíveis
- E.g. encontrar todos os cursos lecionados no primeiro ou segundo semestres de 2022/2023

$$\prod_{\text{course}} (\sigma_{\text{semester="1"Ayear="2022/2023"}}(\text{edition})) \ \cup \ \prod_{\text{course}} (\sigma_{\text{semester="2"}} (\sigma_{\text{semester="2"}})$$

$$\text{Ayear="2022/2023"}(\text{edition}))$$

União / Union

$$\prod_{\text{course}} (\sigma_{\text{semester=1} \Lambda \text{year="2022/2023"}}(\text{edition})) \ \cup \\ \prod_{\text{course}} (\sigma_{\text{semester=2} \Lambda \text{year="2022/2023"}}(\text{edition}))$$

course	year	semester	coordinator					
OCH-101	2021/2022	1	John		course			
BCH-101	2021/2022	2	John		NPH-315			
NPH-315	2022/2023	1	John		OCH-101		cours	
OCH-101	2022/2023	1	Joan		OCH-101	0011-101		NPH-3
BCH-101	2022/2023	2	Joan				OCH-1	
NPH-315	2022/2023	2	Joan		course		BCH-1	
			1		BCH-101			
					NPH-315			

Propriedades: a uni\(\tilde{a}\) é comutativa e associativa

Interseção / Set-Intersection

- Operação binária que devolve os tuplos que estão numa primeira relação e numa segunda relação
- Definição: $r \cap s = r \cup s ((r s) \cup (s r))$
- Novamente, a interseção só está definida para relações compatíveis
- E.g. encontrar todos os cursos lecionados em ambos o primeiro e segundo semestres de 2022/2023

$$\prod_{\text{course}} (\sigma_{\text{semester="1"Ayear="2022/2023"}}(\text{edition})) \cap \prod_{\text{course}} (\sigma_{\text{semester="2"}} (\sigma_{\text{semester="2"}}))$$

Interseção / Set-Intersection

$$\prod_{\text{course}} (\sigma_{\text{semester=1} \land \text{year="2022/2023"}}(\text{edition})) \cap \\ \prod_{\text{course}} (\sigma_{\text{semester=2} \land \text{year="2022/2023"}}(\text{edition}))$$

course	year	semester	coordinator		
OCH-101	2021/2022	1	John	course	
BCH-101	2021/2022	2	John	NPH-315	
NPH-315	2022/2023	1	John	OCH-101	
OCH-101	2022/2023	1	Joan	OCH-101	course
BCH-101	2022/2023	2	Joan		NPH-315
NPH-315	2022/2023	2	Joan	course	
			1	 BCH-101	
				NPH-315	

Propriedades: a interseção é comutativa e associativa

Exemplos

Base de Dados "Reservas de Barcos"

```
Sailors(<u>sid</u>, sname, rating, age)
Boats(<u>bid</u>, bname, color)
Reserves(<u>sid</u>, <u>bid</u>, day)
sid: FK(Sailors)
bid: FK(Boats)
```


Exemplo 1

Quais os nomes dos marinheiros que reservaram o barco 33?

$$\prod_{sname} (\sigma_{bid=33}(reserve \bowtie_{r.sid=s.sid} sailor))$$

Sailor									
sid sname rating age									
101	Maria	1	35						
120	Zé	2	30						
134	João	3	60						

Reserve								
sid	bid	day						
101	33	01/01/2020						
120	30	11/01/2019						
134	33	07/03/2019						
101	20	11/11/2019						

	Reserve X Sailor									
r.sid	bid	day	s.sid	sname	rating	age				
101	33	01/01/2020	101	Maria	1	35				
101	33	01/01/2020	120	Zé	2	30				
101	33	01/01/2020	134	João	3	60				
120	30	11/01/2019	101	Maria	1	35				
120	30	11/01/2019	120	Zé	2	30				
120	30	11/01/2019	134	João	3	60				
134	33	07/03/2019	101	Maria	1	35				
134	33	07/03/2019	120	Zé	2	30				
134	33	07/03/2019	134	João	3	60				
101	20	11/11/2019	101	Maria	1	35				
101	20	11/11/2019	120	Zé	2	30				
101	20	11/11/2019	134	João	3	60				

Reserve r.sid = s.sid Sailor										
r.sid	bid	day	s.sid	sname	rating	age				
101	33	01/01/2020	101	Maria	1	35				
120	30	11/01/2019	120	Zé	2	30				
134	33	07/03/2019	134	João	3	60				
101	20	11/11/2019	101	Maria	1	35				

Exemplo 2

Quais os nomes dos marinheiros que reservaram um barco vermelho?

$$\prod_{sname} (\sigma_{color="red"}(boat) \bowtie_{b.bid=r.bid} reserve \bowtie_{r.sid=s.sid} sailor)$$

Exemplos 3-5

• Quais os nomes dos marinheiros que reservaram pelo menos um barco ? $\prod_{sname} (reserve \bowtie_{r,sid=s,sid} sailor)$

 Quais os nomes dos marinheiros que reservaram um barco vermelho ou verde?

$$\prod_{sname} (\sigma_{color="red" \lor color="green"}(boat) \bowtie_{b.bid=r.bid} reserve \bowtie_{r.sid=s.sid} sailor)$$

 Quais os ids dos marinheiros com idade superior a 20 que não reservaram um barco vermelho?

$$\prod_{sid}(\sigma_{age>20}(sailor)) - \prod_{sid}((\sigma_{color="red"}(boat)) \bowtie_{b,bid=r,bid} reserve)$$

Exemplo 6

Qual o marinheiro mais velho?

$$\prod_{sname}(sailor) - \prod_{s1.sname}(\sigma_{s1.age < s2.age}(\rho_{s1} \ sailor \times \rho_{s2} sailor)$$
Todos os marinheiros
$$Todos os marinheiros que são mais novos que outro marinheiro$$

João

	S1 x S2										
s1.sid	s1.sname	s1.rating	s1.age	s2.sid	s2.sname	s2.rating	s2.age				
101	Maria	1	35	101	Maria	1	35				
101	Maria	1	35	120	Zé	2	30				
101	Maria	1	35	134	João	3	60				
120	Zé	2	30	101	Maria	1	35				
120	Zé	2	30	120	Zé	2	30				
120	Zé	2	30	134	João	3	60				
134	João	3	60	101	Maria	1	35				
134	João	3	60	120	Zé	2	30				
134	João	3	60	134	João	3	60				

RelaX - relational algebra calculator

```
Relational Algebra SQL Group Editor

TO P←→TYAV¬=≠≥≤∩∪+-×MMMMMNND=--/*{} ■ ■ ※

1 your query goes here ...

keyboard shortcuts:

execute statement: [CTRL]+[RETURN]

execute selection: [CTRL]+[SHIFT]+[RETURN]

autocomplete: [CTRL]+[SPACE]

Download **D History*
```

http://dbis-uibk.github.io/relax/calc/local/uibk/local/6

Usem para praticar!

