人工智能课程中 促进计算思维培养的EACSI教学研究

范福兰 江 雪* 黄艳琳 李韩婷 雷雪英

牆 要: 计算思维是个体认识世界的一种基本思维方式,已经成为中小学生学科核心素养的重要组成部分。针对 在人工智能课堂中利用编程工具提升学生的计算思维提出了 EACSI 教学模型,即将人工智能课程教学分为五个 阶段:项目体验、分析拆解、学习创作、合作分享、迭代改进。通过对武汉市某小学五年级学生开展实证研究, 检验了该模型在人工智能教学活动设计中的有效性,为我国人工智能相关学科的教学研究提供了理论指导与实践 参考。

关键词: 人工智能课程: 计算思维: EACSI 教学模型

中国分类号: G434 文献标识码: A 文章编号: 1672-1438(2023)10-0041-05

在信息化时代背景下, 计算思维已经成为中小学 生必备的智能素养之一, 计算思维被描述为计算机时 代每个人解决问题的基本技能四。计算思维指使用计 算机的方法定义和解决现实世界问题以获得可转移解 决方案所需的概念基础[2]。Korkmaz等基于文献将创造 能力、算法思维、批判性思维、问题解决、合作能力 作为计算思维的核心技能圖。人工智能课程是一种综 合性课程和实践性课程,融合了众多领域的学科知 识,需要学生在实践活动中感受、理解、掌握人工智 能相关的原理、方法与技能, 人工智能课程与计算思 维在培养目标上具有契合性[4],都指向培养具有综合 性思维能力的人才。计算思维作为当前人工智能课程 的重要培养目标,能够促进学生个体发展,帮助学生 在复杂的信息社会环境中顺利生存⑤。在过去的几年 中、人们对基础教育阶段学校的计算思维教育及其在 学生获得思维技能和数字能力方面的作用越来越感兴 趣。因此本研究的重点是EACSI理论框架的构建和教 学方法的创新,旨在培养学生的计算思维,为人工智 能课程教学提供理论指导和实践参考。

一、理论基础

1.创造性学习螺旋

Resnick强调学习思考和创造性行为的重要性,提 出了创造性学习螺旋间,展示了培养创造力的过程。 他认为创造性学习必须经历五个环节: 想象, 学生在 游戏中通过想象确定自己要创造的物体或故事情节, 学生的想象是创造之源;创造,学生不能只停留在想 象阶段, 学生要把之前大脑中想象的物体或故事情节 创造出来,这是学生自己动手实践的过程;游戏,学 生在游戏中对自己创造的物体或故事情节进行迭代与 改进;分享,学生之间互相交流想法,推动目标和故 事情节的发展;反思,当学生构建和创作的物体或故 事情节出现问题时,要学会自我反思、找出问题原 因, 进而优化重构; 接着是新一轮的想象, 学生重 新建构想法、转变方向,激发下一轮的创造性学习活 动、学生的整个学习活动是螺旋式上升的。

作者简介:范福兰,博士,讲师;通讯作者:江雪,在读硕士研究生;黄艳琳,在读硕士研究生;李韩婷,在读硕士 研究生: 雷雪英, 在读硕士研究生。中南民族大学教育学院, 430074

基金项目: 国家自然科学基金资助项目"小样本困境下的多模态协作学习情感智能识别研究"(编号: 62207033); 中南民族大学中央高校基本科研业务费专项资金项目"小样本多模态数据驱动的学习情感智能识别研究"(编号: CSZ23013)。

2.项目式学习

基于项目的学习(Project-Based Learning)指在选 择和使用不同学习资源的基础上, 学习者围绕特定 的学习项目,从不同项目环节中获得知识技能、充 分发展能力的学习[7],包括选定项目、制订计划、活 动探究、作品制作、成果交流和活动评价六个基本步 骤图。王金爽通过行动研究验证了高中信息技术课堂 应用项目式学习对于培养学生的计算思维具有促进作 用門。王滨的项目化编程教学活动实践研究证明。项 目式学习在提升学习积极性、培养创新能力等方面 具有积极作用[10]。项目式学习能够为学生提供真实 的情境。将复杂的计算机语言代码与真实情境任务 相结合,激发学生的学习兴趣,同时兼顾人工智能 教育相关知识。

二、人工智能课程EACSI教学模型的构建

EACSI教学模型(见图1)由三大层次组成, 计算思 维层是本教学模型的最终目标层, EACSI教学层是本 教学模型的核心层, 教学内容层将人工智能教学内容 分为六大教学模块。

EACSI教学模型

1.计算思维层

本教学模型以培养计算思维为主要目标。随 着世界各地对教育的认识不断深化, 培养有创新 能力、创造力、解决问题能力的人才已成为教育 的主要目标。研究人员认为, 计算思维与数学、 阅读和写作一样,是未来公民应该具备的一项基 本素养。国际教育技术协会(ISTE)认为计算思维是 一个解决问题的过程,并将解决问题、合作、创造 力、算法思维和批判性思维确定为 "21世纪学生的

标准"[11]。本文研究培养学生的计算思维便从这五 个维度着手。

2.EACSI教学层

EACSI教学层主要把课堂教学分为五个阶段。 项目体验(Experience): 让学生建立对项目的基本了 解,初步对问题进行分析和定义。教师根据教学目 标、课本内容或者学生兴趣确定项目主题,创设与 项目主题相关的问题情境, 引导学生积极参与课堂 问题讨论, 最后引出任务主题。学生需要在情境问 题中初步感知项目主题、明确问题,建立对项目的 总体了解。

分析拆解(Analyze): 让学生将项目任务进行分 解,构思问题解决步骤。教师需要给学生提供项目的 背景知识、人工智能相关知识,教授编程模块,指导 学习小组分析项目中包含的编程角色、背景、模块以 及脚本顺序等, 引导学生利用思维导图或学习流程图 等构思问题解决步骤,拆解项目任务,实时追踪各个 小组的项目计划完成情况, 以便及时评价与反馈。

学习创作(Create): 学生利用编程软件创作作品, 添加创意。学生在此之前已习得人工智能知识与编程 相关技能、能够自主创作作品。因此让学生通过确定 编程角色、背景、模块和脚本顺序, 利用可视化思维 工具,将想法付诸实践,在原有设计的基础上动脑思 考,添加创意与亮点,并学会如何升级脚本。学习创 作阶段是学生将头脑中的想法变成行动的关键阶段。

合作分享(Share): 小组成员相互学习、交流与 分享。学生完成动画作品创作后,以小组为单位展示 动画作品,并与同伴交流与分享创作过程中的学习经 验、遇到的困难等。学生互评可以从作品的新颖性、 技术性、精巧性和综合性展开, 教师要引导学生如何 科学有效地评价他人作品。

迭代改进(Iterate): 优化脚本, 自我反思与评 价。学生在交流分享之后通过总结之前的学习经验和 学习过程,检查脚本程序是否简洁、清晰易懂,教师 重点指导学生如何纠错与调试。根据图形化编程的修 补理念, 学生会根据实际情况不断地对自己创作的作 品进行迭代和改进, 在作品中尝试加入各种新想法和 创意[12],教师也可以根据学生的学习情况提出更高的 创作要求。作品完成后, 教师要引导学生进行自我反 思与评价、总结与梳理。

3.教学内容层

教师可根据不同学段选择不同的人工智能教学内 容。美国的《K-12计算机科学框架》中介绍了K-12阶 段人工智能教育的五大内容、包含算法、变量、控制 结构、模块化及程序开发[13]。我国颁布的《普通高中 信息技术课程标准(2017年版)》,将与人工智能教学 相关的内容设置在选择性必修模块部分, 主要包括六 部分内容, "人工智能初步"是其中之一[14]。笔者结 合中美两国的人工智能教学内容选择了六大教学模块 供一线教研人员选择,分别是基础语法、逻辑运用、 算法原理、编程数学、工程艺术和智能项目。

三、人工智能课程应用EACSI教学模型的实践 1.教学设计与实施

本项目针对武汉市某小学五年级学生开展、实施 周期为两个学期,每学期实施时间均为两个月。本次 课程主题为"七星瓢虫织花布"(第二学期),让学生 设计一个编程作品,并进行升级,使其"织出不同图 案的花布",最后优化脚本。教学目标是让学生通过 完成项目任务, 习得人工智能知识, 掌握编程技能, 培养计算思维。

2.教学效果分析

(1)问卷数据分析

本研究采用问卷调查的方式对学生的计算思维能 力进行测量,该问卷是在Özgen Korkmaz^[3]等的计算思 维量表(CTS)基础上改编而来。在课程开始与结束时, 笔者将问卷打印出来, 让学生在课堂中独立填写, 组 织学生进行前测和后测。参与课程学习的学生共有15 人,其中男生9人,女生6人。

如图2所示,将EACSI教学模型运用于课堂后,学 生在算法思维、批判性思维、问题解决能力、合作能 力四个分维度上后测均值均比前测有较大的提升, 但 创造能力维度提升不够显著。可见, 在人工智能课堂 上采用EACSI教学能够促进学习者自我表达、运用智 慧和想象的能力,按照步骤进行思考、理解算法、应 用和评估的能力,与同伴合作解决问题的能力,以及 批判性分析评估问题的能力。"七星瓢虫织花布"教 学设计与实施过程见图3。

图2 计算思维能力量表前后测均值对比

图3 "七星瓢虫织花布"教学设计与实施过程 本研究对学生学习前后的计算思维能力进行配 对样本t检验,结果如表1所示,配对检验结果为: t=-4.200,对应的显著性P值为0.01,小于0.05,拒绝原 假设,表明:在经过"七星瓢虫织花布"主题的人工智 能课程学习后,学生的计算思维水平在算法思维、批判 性思维、问题解决能力、合作能力维度上有明显提升。

表1 配对样本t检验

	配对差值					ė.	显	
	平均	标准	标准 误差	差值 95% 置信区间		t	日由度	著 性
	值	差	平均值	下限	上限		汉	(双尾)
配对1	-7.600	7.008	1.809	-11.481	-3.719	-4200	14	0.001

(2)学生作品评价工具及数据分析

学生作品评价从创造力的角度对学生的前后编 程作品进行分析与评价。本研究采用Besemer[15]提出 的创新产品分解矩阵、并结合Scratch动画作品评价 量表从创新性角度对学生作品进行量化评价。此量 表一级指标为:新颖性、技术性、精巧性和综合性。 依据各项指标从低到高划分5个等级,对学生的编程 作品进行量化评价,结果如表2所示。可以看出,学 生作品的整体创新性有所提高。特别体现在新颖性 的三个指标上。

表 2	作品	人 立仁	山江	11/4	田 2	ナル
友リ	1/2 000	有川 ボエ	M 14	你红	未 X	T tr

衣2 作品创新性评价结果对比								
一级	二级	采用EACS 动前学生统		采用EACSI教学活 动后学生编程作品				
指标	指标	M	SD	M	SD			
新颖性	主题和表达 形式新颖	4.08	0.67	4.26	0.92			
	内容创作注 重原创性	4.30	0.35	4.44	0.44			
	构思巧妙、 创意独特	3.97	0.72	4.12	0.79			
	作品运行稳 定、无明显 差错	3.81	0.57	3.84	0.69			
	脚本使用简 洁、易懂	4.09	0.32	4.21	0.40			
技术性	操作方便、 易于控制	4.16	0.30	4.28	0.35			
	模块选用 合理,逻辑关系合理、清晰	4.06	0.36	4.17	0.49			
	界面布局合 理、色彩搭 配协调	4.07	0.41	4.19	0.50			
精巧性和 综合性	舞台背景和 角色美观、 清晰	4.10	0.41	4.16	0.53			
	角色、背景、情境契合作品主题 内容	4.13	0.28	4.25	0.38			

四、总结与思考

笔者构建了面向人工智能课程的EACSI教学模 型。在武汉市某小学五年级学生课堂上实施人工智能 课程教学,并采用单组前后测准实验研究验证其教学 效果。研究结果表明,促进计算思维培养的EACSI教 学模型在一定程度上能够提升学生的算法思维、批判 性思维、问题解决能力、合作能力, 但在创造能力方

面无明显效果。

面向人工智能课程的EACSI案例教学还是有值得 反思的地方,创造能力是计算思维五个维度中显著性 差异最弱的维度。究其原因, 教师在学习创作等环节 给学生搭建的支架灵活性不够, 教学策略也没有做到 及时调整与跟进。例如在分析拆解、学习创作环节。 教师可以引导学生综合运用多种可视化的思维导图工 具,帮助学生在作品设计时融入更多的创意[16]。

通过创新教育教学模式,帮助学生在轻松愉悦的 学习环境中习得丰富的人工智能知识、提高人工智能 学习积极性和培养高阶思维能力, 对中小学人工智能 课堂教学的有效开展具有实践意义。但该教学模型仍 有不足之处,前期的教学准备工作、师资条件、教学 设备还需进一步完善,不足之处将在后续研究中进行 修改和完善。@

参考文献

- [1] WING J M. Computational thinking[J]. Communications of the Acm, 2006(3): 33-35.
- [2] SHUTE V J, SUN C, ASBELL-CLARKE J. Demystifying computational thinking[J]. Educational Research Review, 2022:142-158.
- [3] Özgen Korkmaz, Recep Cakir M, Yaşar Özden. A validity and reliability study of the computational thinking scales (CTS)[J]. Computers in Human Behavior, 2017: 72.
- [4] 段波. 面向计算思维发展的中学人工智能课程 活动设计 [J]. 天津师范大学学报 (基础教育 版),2022(1):53-58.
- [5] 郭伟, 肖广德. 论计算思维的培养对学生发展的价 值 —— 基于人与信息技术关系的分析 [J]. 现代教 育技术,2019(7):39-44.
- [6] MITCHEL R, KEN R. Lifelong kindergarten: Cultivating creativity through projects, passion, peers, and play[M]. The MIT Press. 2018.
- [7] 高志军, 陶玉凤. 基于项目的学习 (PBL) 模式在教 学中的应用 [J]. 电化教育研究, 2009 (12): 92-95.

∰ 课程建设与教学改革研究

- [8] 刘景福, 钟志贤. 基于项目的学习 (PBL) 模式研究 [J]. 外国教育研究,2002(11):18-22.
- [9] 王金爽.项目式学习促进高中生计算思维发展的实 践研究 [D]. 哈尔滨: 哈尔滨师范大学, 2021: 7-8.
- [10] 王滨. 基于项目教学法的小学创客教育课程教学设 计与实践 [D]. 西安: 陕西师范大学, 2018: 3-4.
- [11] International Society of Technology in Education. ISTE Standards for Educators: Computational Thinking Competencies [EB/ OL] https://www.iste.org/standards/ computational-thinking.
- [12] 孙立会, 周丹华, 基干 Scratch 的儿童编程教育教 学模式的设计与构建 —— 以小学科学为例 [J]. 电 化教育研究,2020(6):75-82.

- [13] 赵蔚,李士平,姜强,等.培养计算思维,发展 STEM 教育 —— 2016 美国《K-12 计算机科学框架》 解读及启示 [J]. 中国电化教育, 2017(5): 47-53.
- [14] 教育部, 普通高中信息技术课程标准 (2017年版) [S]. 北京:人民教育出版社,2018.
- [15] BESEMER S P. Creative product analysis matrix: Testing the model structure and a comparison among products—three novel chairs[J]. Creativity Research Journal, 1998 (4): 333-346.
- [16] 任友群, 隋丰蔚, 李锋. 数字土著何以可能?—— 也谈计算思维进入中小学信息技术教育的必要性和 可能性 [J]. 中国电化教育, 2016(1): 2-8.

(上接34页)

保障了实验工作的有序推进。四是一六六中具有一支 专业知识扎实和乐于奉献的教师团队,为课程共享提 供了智力保障。立足当下国际国内形势的变化, 一六 六中的 "DNA条码"项目式课程如何获得持续发展还 是一个值得探索的问题。2020年10月,《中共中央关 于制定国民经济和社会发展第十四个五年规划和二〇 三五年远景目标的建议》中再次强调要坚定不移地贯 彻新发展理念,并将"坚持新发展理念"作为必须遵 循的原则之一[5]。2021年7月,中共中央办公厅、国务 院办公厅印发《关于进一步减轻义务教育阶段学生作 业负担和校外培训负担的意见》,要求各地要巩固义 务教育基本均衡成果, 积极开展义务教育优质均衡创 建工作,促进新优质学校成长,扩大优质教育资源。 在实现教育现代化的过程中,建议更多学校能够切实 践行新发展理念, 打破校际资源壁垒, 减少教育资源 的重复投入,通过课程共建共享,扎实推进"双减" 工作,实现教育均衡、公平、共赢和可持续发展。

参考文献

[1] 张福生,课程资源共享及其实践路径[J],中国教

育学刊,2012(9):60-63.

- [2] 黄忠敬,以共享课程建设推进区域教育优质均衡发 展 [J]. 课程·教材·教法,2016(3):58-64.
- [3] 王可.论共享型校本课程开发 [J]. 当代教育科 学,2017(2):46-50.
- [4] 北京市第一六六中学. 引领学生体验"走进科学" 之路——北京市第一六六中学"高中生命科学创新 人才培养实验班"[J]. 北京教育(普教), 2011(6): 6.
- [5] 中共中央关于制定国民经济和社会发展第十四 个五年规划和二○三五年远景目标的建议 [EB/ OL] https://www.ccps.gov.cn/xtt/202011/ t20201103_144493. shtml?from=singlemessage.
- [6] 中共中央办公厅 国务院办公厅印发《关于进一步减 轻义务教育阶段学生作业负担和校外培训负担的意 见》[EB/OL]. http://www.gov.cn/zhengce/2021-07/24/ content_5627132. htm.