Topic 5 Vector Calculus I

Dr Teh Yong Liang

Email: youliangzheng@gmail.com

Outline

- A Vector Field
- A Gradient Field & its Scalar Potential
- Jacobian, Divergence & Curl
- Scalar & Vector Line Integrals
- Conservative Vector Fields
- Green's Theorem

Recall: Vector function of a line.

Concept of a Vector Function
$$\vec{v}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

A vector function is one that takes in input/s and produces an output vector. The "machine" perspective of a multivariable vector function is shown below.

Conceptually, at each input coordinate $\mathbf{x} = (x, y, z, ...)$ in the domain of the function, there is an output vector of m dimensions. Hence, in the continuum of the input space, there exists a field of vectors. So a vector function is also called a vector field.

A Vector Field

 $\mathbf{F}(t) = egin{bmatrix} f_1(t) & imes - ext{component} \ f_2(t) & imes - ext{component} \ imes & imes - ext{component} \ imes & im$

Graphically, a vector field can be represented as a field of vectors (duh). Some examples are shown.

Wind velocity,
$$\mathbf{v}(x,y) = \begin{bmatrix} v_1(x,y) \\ v_2(x,y) \end{bmatrix} \leftarrow \mathsf{X}$$
-comp.

https://seos-project.eu/oceancurrents/oceancurrents-c02-p02.html

A Vector Field

Example: Sketch the electric field for a negative point charge below. What happens to the electric field strength as the distance from the point charge increases?

$$E(x,y) = rac{-1}{x^2+y^2}egin{bmatrix} x \ y \end{bmatrix}$$

At
$$(1,1)$$
,

$$E(1,1) = \frac{-1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

At
$$(-1,-1)$$
,

$$E(-1,-1) = \frac{-1}{2} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

At
$$(2,2)$$
,
 $E(2,2) = \frac{-1}{8} {2 \choose 2} = -\frac{1}{4} {1 \choose 1}$

As the distance is increased, the electric field strength decreases.

A Gradient Field

A gradient field is simply a field of gradient vectors, which means a gradient field is also a vector field. For example, for the scalar function $f(x, y) = x^2 + y^2$, its gradient field is

$$abla f(x,y) = egin{bmatrix} 2x \ 2y \end{bmatrix}$$

For any gradient field $\nabla f(\mathbf{x})$ where \mathbf{x} is the input vector, the scalar function $f(\mathbf{x})$ is also called a scalar potential.

Note that all gradient fields are vector fields but not vice-versa as elaborated later.

2D vector field plotter:

https://www.geogebra.org/m/QPE4PaDZ

A scalar potential can be obtained from a gradient field by integration, since the gradient field is obtained by differentiating the scalar potential function. For example, consider the gradient field

$$abla f(x,y) = egin{bmatrix} 3x^2y + y\cos{(xy)} \ x^3 + x\cos{(xy)} + 3 \end{bmatrix}$$
 \leftarrow fy

To get f(x,y), we can integrate f(x,y) w.r.t. x first, i.e.

$$f(x,y)=\int 3x^2y+y\cos{(xy)}\,dx=x^3y+\sin{(xy)}+g(y)$$

Note that **g(y)** has to been included in the antiderivative because differentiating **g(y)** w.r.t. x gives zero. The constant of integration is embedded into g(y).

Then, to obtain g(y), we differentiate w.r.t. y to obtain $f_{v}(x,y)$ as

$$f_y(x,y) = x^3 + x\cos{(xy)} + g'(y)$$

Comparing to $f_v(x, y)$ from the gradient field, i.e.

$$f_y(x,y) = x^3 + x\cos{(xy)} + 3$$

we can observe that g'(y) = 3. So we have

$$g(y)=\int 3\,dy=3y+c$$

Hence, the scalar potential function is

$$f(x,y) = x^3y + \sin(xy) + 3y + c$$

Exercise: For the earlier example, show that the same scalar potential can be obtained by integrating $f_{\nu}(x,y)$ instead.

$$\nabla f(x,y) = \begin{bmatrix} \frac{3x^2y + y\cos(xy)}{x^3 + x\cos(xy) + 3} \end{bmatrix} \leftarrow f_{x}$$

$$f(x,y) = \int x^3 + x\cos(xy) + 3 \, dy = x^3y + \sin(xy) + 3y + g(x)$$

$$f_{x}(x,y) = \frac{3x^2y + y\cos(xy) + 0 + g'(x)}{x^3 + x\cos(xy) + 0 + g'(x)}.$$

$$(\text{omparing with 1st row of } \nabla f, g(x) = 0.$$

$$f(x,y) = x^3y + \sin(xy) + 3y + C_{y}$$

Exercise: Evaluate the scalar potential for the gradient field below.

$$\nabla f(x,y,z) = \begin{bmatrix} \frac{e^x \sin y - yz}{e^x \cos y - xz} \\ \frac{e^x \cos y - xz}{z - xy} \end{bmatrix} \leftarrow f_x \\ \leftarrow f_y \\ \leftarrow f_y \\ \leftarrow f_z \\ \frac{\partial}{\partial z} g(x,y) = 0.$$

$$f(x,y,z) = \int z - xy \, dz = \frac{z^2}{2} - xyz + g(x,y)$$

$$f_x(x,y,z) = 0 - yz + g_x(x,y)$$

$$Comparing: g_x(x,y) = e^x \sin y \rightarrow g(x,y) = \int e^x \sin y \, dx = e^x \sin y + h(y).$$

$$f(x,y,z) = \frac{z^2}{2} - xyz + e^x \sin y + h(y).$$

$$f_y(x,y,z) = 0 - xz + e^x \cos y + h'(y)$$

$$ANS: f(x,y,z) = e^x \sin y - xyz + \frac{z^2}{2} + c.$$
 10

Analogous to the gradient of a scalar field (function), the Jacobian of a vector field represents the rate of change (ROC) of the vector function w.r.t. each independent variable. Eg, for a vector field

$$\mathbf{F}(x,y) = egin{bmatrix} f_1(x,y) \ f_2(x,y) \end{bmatrix}$$

its Jacobian (matrix) is

$$\mathbf{J_F}(x,y) = \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial x} & \frac{\partial \mathbf{F}}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} \leftarrow \text{ROC of x-component of } \mathbf{F}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathsf{ROC w.r.t.} \times \ \mathsf{ROC w$$

Generally, for a vector function **F** of n inputs and m output vector components, its Jacobian is

$$\mathbf{J_F}(x_1,\ldots,x_n) = egin{bmatrix} rac{\partial \mathbf{F}}{\partial x_1} & rac{\partial \mathbf{F}}{\partial x_2} & \ldots & rac{\partial \mathbf{F}}{\partial x_n} \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \ldots & rac{\partial f_1}{\partial x_n} \\ dots & \ddots & dots \\ rac{\partial f_m}{\partial x_1} & \ldots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Hence, the Jacobian of a vector function is a matrix containing rates of change of each output vector component w.r.t. each input variable. It is the 'gradient' of a vector field.

Example: Determine the Jacobian of the vector field below and explain its meaning graphically with respect to the vector field at point (1, 1).

$$\overrightarrow{F}(1,2) = \begin{pmatrix} 1/2 \\ -1 \end{pmatrix}$$

$$J_{F}(x,y) = \begin{pmatrix} 1/2 \\ 0 \\ -1/2 \end{pmatrix}$$

$$\frac{1}{2}$$

Exercise: Given the vector field $\mathbf{F}(x, y)$ depicted at 4 points shown below, state the polarity (estimated) of each element in $\mathbf{J}_{\mathbf{F}}(2, 3)$.

ANS: Polarity of
$$\mathbf{J_F}(2,3) = \begin{bmatrix} + & + \\ - & + \end{bmatrix}$$

The divergence of a vector field is a **scalar** quantity that measures the degree of 'outflow-ness' the vector field is **at a point**. For a 2D & 3D vector field, the divergence are respectively defined as

The respectively defined as
$$\nabla \cdot \mathbf{F} = \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}, \qquad \nabla \cdot \mathbf{F} = \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Notice that the divergence is a sum of the rate of change of each vector component in its own direction.

But how does this scalar quantity measure 'outflow-ness'?

To understand the divergence intuitively, consider a 2D velocity field $\mathbf{V}(x,y) = [v_1, v_2]^T$. At any point (x, y) in the field, consider an area element as shown below. We can see that the 'net (volume) outflow' from the area element is

Net Outflow
$$=\left(v_1+\frac{\partial v_1}{\partial x}dx\right)dy+\left(v_2+\frac{\partial v_2}{\partial y}dy\right)dx-v_1dy-v_2dx$$
 $=\left(\frac{\partial v_1}{\partial x}+\frac{\partial v_2}{\partial y}\right)\underbrace{dxdy}_{+}=\left(\nabla\cdot\mathbf{V}\right)dA$
 $v_2(x,y)$

Since dA > 0, the net outflow depends on the divergence of the velocity field. When the divergence is positive, it means there is more outflow than inflow, hence resulting in a positive net outflow.

For example, consider the flow velocity field $\mathbf{V}(x, y) = [x, y]^T$. The divergence is

$$abla \cdot \mathbf{V} = rac{\partial}{\partial x}(x) + rac{\partial}{\partial y}(y) = 1 + 1 = 2$$

The **positive** divergence everywhere means at every point in the velocity field, there is **more outflow than inflow**, as can be verified by the **'expansionary' vector field** shown.

Draw an area element anywhere in this field and you can observe there is a positive net outflow across the element.

Exercise: For each vector field below, determine the divergence. For (a), explain the divergence with respect to the vector field.

a)
$$\mathbf{F}(x,y) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\nabla \cdot \vec{\mathsf{F}} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}$$

$$= 0 + 0 = 0.$$

Since the vector field is a constant vector field, the inflow to an element is always equal to the outflow, so the divergence is zero at all points.

b)
$$\mathbf{F}(x, y, z) = \begin{bmatrix} x^2y \\ xz \\ xyz \end{bmatrix}$$

$$\nabla \cdot \vec{\mathsf{F}} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

$$= 2xy + 0 + xy = 3xy.$$

Curl of a Vector Field

The curl of a **3D** vector field is a **vector** quantity that measures the circulation (rotation effect) of the vector field **at a point**. It is defined by

$$abla imes \mathbf{F} = egin{bmatrix} \partial_x \ \partial_y \ \partial_z \end{bmatrix} imes egin{bmatrix} f_1 \ f_2 \ f_3 \end{bmatrix} = egin{bmatrix} \partial_y f_3 - \partial_z f_2 \ \partial_z f_1 - \partial_x f_3 \ \partial_x f_2 - \partial_y f_1 \end{bmatrix}$$

To understand the curl more intuitively, firstly consider the flow velocity field $\mathbf{V}(x, y, z) = [y, 0, 0]^T$ as shown on the next slide. The curl is

$$abla imes \mathbf{V} = egin{bmatrix} \partial_x \ \partial_y \ \partial_z \end{bmatrix} imes egin{bmatrix} y \ 0 \ 0 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ -1 \end{bmatrix}$$

Curl of a Vector Field

Notice that the constant curl vector points in the negative z direction (into the screen). Using the right-hand rule, the circulation viewed from the top is clockwise.

This means, at each point in the vector field **V**, there is a **tendency for an object to rotate clockwise about the axis of rotation** given by the curl vector.

Hence, if the curl of a vector field is **not the zero vector**, than an **object flowing along the field will rotate about the curl axis** as it moves.

Top view of vector field at any z value.

Curl of a Vector Field

Exercise: Using intuition, what do you think is the curl of the vector field shown? Compute it to verify.

$$\vec{\nabla} \times \vec{\nabla} = \vec{O}$$
 (since $\vec{\nabla}$ is symmetric about the origin.)

$$\overrightarrow{\triangle} \times \overrightarrow{\triangle} = \begin{pmatrix} 3/9x \\ 3/9x \\ 3/9x \end{pmatrix} \cdot \begin{pmatrix} -x \\ -y \\ -x \\ 0 - 0 \end{pmatrix} = \begin{pmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{pmatrix} = \overrightarrow{0}$$

3D vector field plotter: https://www.geogebra.org/m/u3xregNW

Divergence & Curl of a Whirlpool

Exercise: Watch the following video of a whirlpool. What is the average divergence and curl of the velocity field of the water flow (in the top-view 2D plane)?

Curl,
$$\vec{\nabla} \times \vec{\nabla} \approx \begin{pmatrix} 0 \\ 0 \\ + \end{pmatrix}$$
 and the z-comp (or magnitude of $\vec{\nabla} \times \vec{\nabla}$) increases towards the center of the whirlpool.

https://youtube.com/shorts/QwuC7f_HF3Y?si=wjDv-xqEoDB6IOk0

Line Integrals (aka Path integral.)

A line integral is simply an integration of a function along a line, or a path. If the integrand function is a **scalar** function, then we have a **scalar** line integral. If it is a **vector** function, then we have a **vector** line integral. An example of each is shown below.

A scalar line integral is simply summing up the values of a function multiplied by an infinitesimal distance ds along a path C. As illustrated, for a function f(x, y), the line integral can be viewed as giving the area of a surface projected from path C towards the function surface.

To evaluate the line integral more easily, parameterization of the path C can be applied. Let r(t) be a vector pointing to path C, we have

C, we have
$$\begin{aligned} \mathbf{r}(t) &= \left[\frac{x(t)}{y(t)}\right] \rightarrow \mathbf{r}'(t) = \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix}, \ \mathbf{dr} = \mathbf{r}'(t) \, dt, \\ \Rightarrow ds &= |\mathbf{dr}| = |\mathbf{r}'(t) \, dt| = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt \end{aligned}$$

Hence, the scalar line integral of f(x, y) along path C parameterized by $\mathbf{r}(t) = [x(t), y(t)]$ is

$$\int_C f(x,y)\,ds = \int_C f(\mathbf{r}(t))\left|\mathbf{r}'(t)
ight|dt = \int_C f(\mathbf{r}(t))\left\sqrt{\left[x'(t)
ight]^2 + \left[y'(t)
ight]^2}\,dt$$

Similarly, for a scalar line integral of f(x, y, z) along a path C in 3D space parameterized by $\mathbf{r}(t) = [x(t), y(t), z(t)]$, we have

$$\int_C f(x,y,z)\,ds = \int_C f(\mathbf{r}(t))\left|\mathbf{r}'(t)
ight|dt = \int_C f(\mathbf{r}(t))\left[x'(t)
ight]^2 + \left[y'(t)
ight]^2 + \left[z'(t)
ight]^2 dt$$

One can deduce that the total arc length of path C can be computed by the scalar line integral $\int_C ds = \int_C |{\bf r}'(t)| \ dt$

25

Example: Evaluate the line integral of the function below along the straight line C on the plane from (0, 0) to (1, 1). Use the parameterizations x = t and $x = t^2$. What do you notice

$$f(x,y) = x + y$$

Parameterize C1:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t \\ t \end{pmatrix} \rightarrow \vec{r}'(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$L = \int_{C} f(\vec{r}(t)) \sqrt{(x')^{2} + (y')^{2}} dt = \int_{t=0}^{t=1} \frac{(t+t)}{f(x(t), y(t))} dt = 2\sqrt{2} \int_{0}^{t} t dt = 2\sqrt{2} \left(\frac{t^{2}}{2}\right) \Big|_{0}^{t}$$

$$= \sqrt{2} \int_{0}^{t} t dt = 2\sqrt{2} \left(\frac{t^{2}}{2}\right) \Big|_{0}^{t}$$

$$= \sqrt{2} \int_{0}^{t} t dt = 2\sqrt{2} \left(\frac{t^{2}}{2}\right) \Big|_{0}^{t}$$
ANS

Parameterize C1:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t^2 \\ t^2 \end{pmatrix} \rightarrow \vec{r}'(t) = \begin{pmatrix} zt \\ zt \end{pmatrix}$$

$$L = \int_{C} f(\vec{r}(t)) \sqrt{(x')^{2} + (y')^{2}} dt = \int_{t=0}^{t=1} \frac{(t^{2} + t^{2})}{4t^{2} + 4t^{2}} dt = 2\sqrt{8} \int_{0}^{t} t^{3} dt = 2(2\sqrt{2}) \left(\frac{t^{4}}{4}\right) \Big|_{0}^{t}$$

$$= \sqrt{2} \int_{0}^{t} t^{3} dt = 2(2\sqrt{2}) \left(\frac{t^{4}}{4}\right) \Big|_{0}^{t}$$

$$= \sqrt{2} \int_{0}^{t} t^{3} dt = 2(2\sqrt{2}) \left(\frac{t^{4}}{4}\right) \Big|_{0}^{t}$$

Notice that the line integrals are the same since the area is the same even when the parameterization is changed.

Exercise: Evaluate the scalar line integral of the function below along the helix path parameterized by $\mathbf{r}(t)$ from (x, y, z) = (1, 0, 0) to $(1, 0, 2\pi)$. What is the length of the helix path?

$$f(x,y,z) = xy + z, \quad \underline{\mathbf{r}(t)} = \begin{bmatrix} \cos t \\ \sin t \\ t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$$

$$\mathbf{r}'(t) = \begin{bmatrix} \cos t \\ \cos t \end{bmatrix}$$

ANS:
$$2\sqrt{2}\pi^2$$
. Length = $2\sqrt{2}\pi$.

Path length =
$$\int_{c}^{c} ds = \int_{0}^{2\pi} \frac{\int_{sin^{2}t+cos^{2}t+1}^{2\pi} dt}{\int_{2}^{2\pi} \int_{0}^{2\pi} ds} = \sqrt{2\pi} \pi$$

 $= \sqrt{2} \left[\frac{4\pi^2}{2} \right] = 2\sqrt{2} \pi^2 //$

 $= \sqrt{2} \int_{0}^{2\pi} \frac{1}{2} \sin(2t) + t dt = \sqrt{2} \left[\frac{1}{4} \cos(2t) + \frac{t^{2}}{2} \right]^{2\pi}$

Analogous to a scalar line integral, the vector line integral sums up the dot-product of a vector function with an infinitesimal displacement \mathbf{dr} along a path \mathbf{C} . Using parameterization $\mathbf{r}(t)$ of the path, the vector line integral of $\mathbf{F}(x, y)$ is

$$egin{aligned} \int_C \mathbf{F}(x,y) \cdot \mathbf{dr} &= \int_C \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \ &= \int_C \left[f_1(\mathbf{r}(t))
ight] \cdot \left[x'(t)
ight] \, dt \ &= \int_C f_1(\mathbf{r}(t)) x'(t) + f_2(\mathbf{r}(t)) y'(t) \, dt \end{aligned}$$

dr: infinitesimal displacement vector.r'(t): tangential velocity vector to path.

Similarly, the vector line integral of $\mathbf{F}(x, y, z)$ over a path \mathbf{C} in 3D space parameterized by $\mathbf{r}(t) = [x(t), y(t), z(t)]$ is

$$egin{aligned} \int_C \mathbf{F}(x,y,z) \cdot \mathbf{dr} &= \int_C \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_C egin{bmatrix} f_1(\mathbf{r}(t)) \ f_2(\mathbf{r}(t)) \ f_3(\mathbf{r}(t)) \end{bmatrix} \cdot egin{bmatrix} x'(t) \ y'(t) \ z'(t) \end{bmatrix} \, dt \ &= \int_C f_1(\mathbf{r}(t)) x'(t) + f_2(\mathbf{r}(t)) y'(t) + f_3(\mathbf{r}(t)) z'(t) \, dt \end{aligned}$$

In the case where the vector field is a force field \mathbf{F} , then the vector line integral gives the **work done** by the vector field on an object when it traversed path \mathbf{C} . This is because the infinitesimal work done over a small displacement \mathbf{dr} is $d\mathbf{W} = \mathbf{F} \cdot \mathbf{dr}$, so

$$ext{Work done, } W = \int_C dW = \int_C \mathbf{F} \cdot \mathbf{dr}$$

Another commonly used way to express a vector line integral is by recognizing that

$$\mathbf{dr} = \mathbf{r}'(t)\,dt = egin{bmatrix} x'(t)\,dt \ y'(t)\,dt \ z'(t)\,dt \end{bmatrix} = egin{bmatrix} dx \ dy \ dz \end{bmatrix}$$

which gives

$$\int_C \mathbf{F}(x,y) \cdot \mathbf{dr} = \int_C egin{bmatrix} f_1 \ f_2 \end{bmatrix} \cdot egin{bmatrix} dx \ dy \end{bmatrix} = \int_C f_1 \, dx + f_2 \, dy$$

$$\int_C \mathbf{F}(x,y,z) \cdot \mathbf{dr} = \int_C egin{bmatrix} f_1 \ f_2 \ f_3 \end{bmatrix} \cdot egin{bmatrix} dx \ dy \ dz \end{bmatrix} = \int_C f_1 \, dx + f_2 \, dy + f_3 \, dz \; dz$$

The above is called the differential form of a vector line integral.

Example: Evaluate the vector line integral of the function below over a semi-circular path C shown.

$$\mathbf{F}(x,y) = egin{bmatrix} -y \ x \end{bmatrix}$$

$$\mathbf{F}(x,y) = \begin{bmatrix} -y \\ x \end{bmatrix} \qquad \text{Parameterize} \qquad \text{by} \qquad \mathbf{F}(t) = \begin{pmatrix} \times(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

$$\mathbf{F}(x,y) = \begin{bmatrix} -y \\ x \end{bmatrix} \qquad \mathbf{F}(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}.$$

$$\begin{array}{ccc}
R = 1 & \text{along } C. \\
\hline
F(t) & t = 0 \\
\hline
1 & x
\end{array}$$

$$\overrightarrow{F}(\overrightarrow{r}(t)) \cdot r'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \cdot \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} = \sin^2 t + \cos^2 t = 1.$$

$$\mathcal{L} = \int_0^{\pi} |dt| = t \Big|_0^{\pi} = \pi / I$$

Exercise: Evaluate the work done on a object subjected to the radial force field (in Newtons) below over a path parameterized by $\mathbf{r}(t)$ (in meters) from (x, y, z) = (0, 0, 0) to (1, 3, 2). What is the work done if the path is traversed by the object in the reverse direction?

$$\mathbf{F}(x,y,z) = egin{bmatrix} x \ y \ z \end{bmatrix}, \ \mathbf{r}(t) = egin{bmatrix} t \ 3t^2 \ 2t^3 \end{bmatrix}$$
 $extstyle extstyle exts$

$$\vec{F} \cdot \vec{r}' = \begin{pmatrix} t \\ 3t^{2} \\ 2t^{3} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 6t \\ 6t^{2} \end{pmatrix} = t + 18t^{3} + 12t^{5}$$

$$W = \int_{0}^{1} \vec{F} \cdot \vec{r}' dt = \int_{0}^{1} t + 18t^{3} + 12t^{5} dt = \dots = 7 \int_{1/2}^{1/2} t^{2} dt$$

since the path is reversed, r'(t) would be multiplied by -1, so the line integral become multiplied by a -1.

A conservative vector field is one where its **line integral is independent of the path** taken, but **only depends on the start and end points of the path**. For example, a gravitational force field $\mathbf{F}(x, y, z)$ (near Earth's surface) given by

is conservative, because

$$egin{align} \int_C \mathbf{F}(x,y,z) \cdot \mathbf{dr} &= \int_{t_0}^{t_1} -mgz'(t) \, dt \ &= -mg \int_{z_0}^{z_1} \, dz = mg(z_0-z_1) \ \end{align*}$$

which only depends on the height z at the start and end points.

And, the scalar potential E(x, y, z) of the gravitational field can be inspected to be

$$E(x,y,z) = -mgz + c$$

which means the line integral can be evaluated by

$$\int_C \mathbf{F}(x,y,z) \cdot \mathbf{dr} = mg(z_0-z_1) = -mgz_1 - (-mgz_0) = E(x_1,y_1,z_1) - E(x_0,y_0,z_0)$$

This implies that the scalar potential can be used to evaluate the line integral in a

conservative vector field. In fact, the proof is

$$\int_{C} \mathbf{F} \cdot \mathbf{dr} = \int_{C} \underbrace{\nabla E(\mathbf{r}(t)) \cdot \mathbf{r}'(t)}_{\text{Chain rule}} dt = \int_{t_{0}}^{t_{1}} \underbrace{\frac{dE(\mathbf{r}(t))}{dt}}_{\text{FTC}} dt = E(\mathbf{r}(t_{1})) - E(\mathbf{r}(t_{0}))$$

Hence, all conservative vector fields are gradient fields (& vice-versa).

But, how do we know if a vector field is conservative in the first place before the scalar potential is used to compute the line integral? It turns out that all conservative vector fields (gradient fields) have **zero curl**, because

$$egin{aligned}
abla imes
abla E = egin{bmatrix} \partial_x \ \partial_y \ \partial_z \end{bmatrix} imes egin{bmatrix} E_x \ E_y \ E_z \end{bmatrix} = egin{bmatrix} E_{zy} - E_{yz} \ -(E_{zx} - E_{xz}) \ E_{yx} - E_{xy} \end{bmatrix} = \mathbf{0} \end{aligned}$$

by symmetry of mixed partials. So one can check for zero curl of a vector field before using the scalar potential to evaluate a line integral.

Example: From the last exercise, is the force field \mathbf{F} conservative? If so, evaluate the line integral from (x, y, z) = (0, 0, 0) to (1, 3, 2) over any path and reconcile with the value obtained earlier. $\mathbf{E}_{\mathbf{x}}$

ANS: 7 J.

$$E_z = h'(z)$$
. Companing, $h'(z) = Z \rightarrow h(z) = \frac{z^2}{2} + C$.

$$: E(x,y,z) = \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + C$$

Over any path from
$$(0,0,0)$$
 to $(1,3,2)$,
$$W = E(1,3,2) - E(0,0,0)$$

ver any path from
$$(0,0,0)$$
 to $(1,3,2)$,

 $N = E(1,3,2) - E(0,0,0)$
 $= \frac{1}{2} + \frac{9}{2} + \frac{4}{2} - 0 = 7J$

(Same as $\int \vec{F} \cdot \vec{dr}$ in earlier example.)

Green's Theorem

The Green's theorem relates the curl of a vector field **F**(x, y) **inside** a closed curve to the line integral **along** the curve, defined by

$$\iint_D (
abla imes \mathbf{F}) \cdot \mathbf{k} \, dA = \iint_D rac{\partial f_2}{\partial x} - rac{\partial f_1}{\partial y} \, dA = \oint_C \mathbf{F} \cdot \mathbf{dr}$$

Intuitively, one can imagine that the sum of circulation (rotation effect) of a vector field within a region (D) has a net circulative effect on the boundary (C) of the region, that is the line integral.

Imagine curve C behaves like a 'conveyor belt' being moved by circulative flow inside it.

Note that the Green's theorem applies **only to a closed curve C** (counter-clockwise).

Proof of Green's Theorem

The proof of the Green's theorem is divided into 3 parts. Firstly, consider a rectangular region D bounded by closed curve C as shown. The line integral of a vector field $\mathbf{F}(x,y)$ is

$$\oint_C \mathbf{F}(x,y) \cdot \mathbf{dr} = \int_{C_1} \mathbf{F}(x,y) \cdot \mathbf{dr} + \int_{C_2} \mathbf{F}(x,y) \cdot \mathbf{dr} + \int_{C_3} \mathbf{F}(x,y) \cdot \mathbf{dr} + \int_{C_4} \mathbf{F}(x,y) \cdot \mathbf{dr}$$

The four paths C_1 to C_2 can be parameterized by

$$C_1: x=t, y=c, \ C_2: x=b, y=s, \ C_3: x=t, y=d, \ C_4: x=a, y=s.$$

Hence, the **F.dr** integrands are

$$\vec{V}_{i}(t) = \begin{pmatrix} t \\ c \end{pmatrix}$$
 $C_{1} : \mathbf{F} \cdot \mathbf{dr} = \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} dt = f_{1}(t, c) dt,$
 $\vec{V}_{i}(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $C_{2} : f_{2}(b, s) ds, \quad C_{3} : f_{1}(t, d) dt, \quad C_{4} : f_{2}(a, s) ds.$

Proof of Green's Theorem

The Green theorem is then proven for the rectangular region D as follows.

$$\int_{C} \mathbf{F}(x,y) \cdot d\mathbf{r} = \int_{a}^{b} f_{1}(t,c) \, dt + \int_{c}^{d} f_{2}(b,s) \, ds + \int_{b}^{a} \int_{b}^{b} f_{1}(t,d) \, dt + \int_{c}^{d} f_{2}(a,s) \, ds$$

$$= \int_{a}^{b} f_{1}(t,\underline{c}) - f_{1}(t,\underline{d}) \, dt + \int_{c}^{d} f_{2}(\underline{b},s) - f_{2}(\underline{a},s) \, ds$$

$$= \int_{a}^{b} \int_{d}^{\underline{c}} \frac{\partial f_{1}(t,y)}{\partial y} \, dy dt + \int_{c}^{d} \int_{\underline{a}}^{\underline{b}} \frac{\partial f_{2}(x,s)}{\partial x} \, dx ds$$

$$= -\int_{a}^{b} \int_{c}^{d} \frac{\partial f_{1}(x,y)}{\partial y} \, dy dx + \int_{c}^{d} \int_{\underline{a}}^{\underline{b}} \frac{\partial f_{2}(x,y)}{\partial x} \, dx dy$$

$$= \int_{a}^{b} \int_{c}^{d} \frac{\partial f_{2}(x,y)}{\partial x} - \frac{\partial f_{1}(x,y)}{\partial y} \, dx dy dx \leftarrow \text{correction.}$$

$$= \iint_{D} \frac{\partial f_{2}}{\partial x} - \frac{\partial f_{1}}{\partial y} \, dA = \iint_{D} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA \qquad \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial f_{1}}{\partial x} - \frac{\partial f_{1}}{\partial y}\right) \hat{k} = \left(\frac{\partial$$

Proof of Green's Theorem | Topic | Theorem | T

The second part of the proof uses the fact that line integrals over non-overlapping connected regions is equal to that of the overall region, i.e.

$$\underbrace{\int_{C_1} \mathbf{F} \cdot \mathbf{dr} + \int_{C_3} \mathbf{F} \cdot \mathbf{dr} + \int_{C_2} \mathbf{F} \cdot \mathbf{dr} - \int_{C_3} \mathbf{F} \cdot \mathbf{dr}}_{= \underbrace{\int_{C_1} \mathbf{F} \cdot \mathbf{dr} + \int_{C_2} \mathbf{F} \cdot \mathbf{dr}}_{= \underbrace{\int_{C_1 + C_2} \mathbf$$

Clearly, the above can be extended to a region that is composed of any number of non-overlapping rectangles

Hence, the Green's theorem is proven over a general region composed of rectangles as shown in the next slide.

Proof of Green's Theorem

The last part of the proof uses the fact that any general region can be 'fitted' **exactly** by an **infinite** number of rectangles. This is the same concept when a Riemann sum becomes a Riemann integral in finding the exact area under a curve.

Hence, the Green's theorem is proven for a general region D bounded by **closed curve** C oriented **counterclockwise**.

The following examples will demonstrate the use of the Green's theorem.

As the rectangles get **infinitesimally thin**, a general region can be fitted.

Green's Theorem

For 2D vector fields:
$$\vec{\nabla} \times \vec{F} = \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \hat{K}$$

Example: Continuing from an earlier example, use Green's theorem to evaluate the line integral of **F** over the closed curve C. Then, calculate the line integral directly to verify.

$$\mathbf{F}(x,y) = \begin{bmatrix} -y \\ x \end{bmatrix} \qquad \forall x \vec{F} = \begin{bmatrix} 1 - (-1) \end{bmatrix} \hat{K} = 2\hat{K} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \qquad \qquad \forall preferred since more efficient.$$

$$\begin{cases} 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 2$$

$$= 2 \iint_{D} d\hat{A} = 2 \left(\frac{\pi(1)^2}{2} \right) = \pi$$
Area of semi-circle.

ANS: π. 4

From previous example:
(Slide 31)
$$T$$

 $L_{c_1} = \int_0^1 dt = t \Big|_0^T = T$

$$L_{c_2} = \int_0^T dt = t \Big|_0^T = T$$

Lc = Lc, + Lc

For
$$C_2$$
, $\vec{r}_2(t) = \begin{pmatrix} t \\ 0 \end{pmatrix} \rightarrow \vec{r}_2(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$\mathcal{L}_{C_2} = \int_{-1}^{1} \vec{F} \cdot \vec{r}_2^{-1} dt = \int_{-1}^{1} \begin{pmatrix} 0 \\ t \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt$$

$$= \int_{-1}^{1} 0 dt = 0 .$$

= T + 0 = T Same as

Green's Theorem

Exercise: Use Green's theorem to evaluate the line integral below over the closed curve C which is a triangle with vertices (-1, 2), (4, 2) and (4, 5), oriented clockwise.

$$\int_{C} \sin(x^{2}) dx + (3x - y) dy$$

$$\int_{1}^{1} \Rightarrow (\sin(x^{2})) \cdot (dx)$$

$$\int_{2}^{1} \Rightarrow (\sin(x^{2})) \cdot (dx)$$

$$\mathcal{L} = -\iint_{D} \frac{\partial f_{z}}{\partial x} - \frac{\partial f_{i}}{\partial y} dA = -\iint_{D} 3 - 0 dA = -3 \iint_{D} dA = -3 \left(\frac{1}{2} (5)(3) \right)$$

End of Topic 5

If you thought vectors and calculus are hard, vector calculus probably just brought it to a whole new level.

Source: 3Blue1Brown

Excellent Visualization of Vector Fields, Divergence & Curl https://youtu.be/rB83DpBJQsE