गणितीय निदर्शन का परिचय

A2.1 भूमिका

आप प्रारंभिक कक्षाओं से ही, अपने वास्तविक जगत से जुड़ी समस्याएँ हल करते आए हैं। उदाहरण के लिए, आपने साधारण ब्याज के प्रश्न संबंधित सूत्र का प्रयोग करके हल किए हैं। यह सूत्र (या समीकरण) ब्याज और इससे संबंधित अन्य तीन राशियों अर्थात् मूलधन, ब्याज-दर और अविध के बीच का एक संबंध है। यह सूत्र गणितीय प्रतिरूप या निदर्श (mathematical model) का एक उदाहरण है। गणितीय निदर्श (प्रतिरूप) एक गणितीय संबंध होता है जो वास्तविक जीवन से जुड़ी किसी स्थित की व्याख्या करता है।

गणितीय निदर्शों का प्रयोग वास्तविक जीवन से जुड़ी अनेक स्थितियों का हल ज्ञात करने में किया जाता है. जैसे

- उपग्रह छोड़ना।
- मानसून के आने की प्रागुक्ति करना।
- वाहनों से होने वाले प्रदूषण को नियंत्रित करना।
- बड़े शहरों में ट्रैफिक जाम को कम करना।

इस अध्याय में, हम आपको गणितीय निदर्श बनाने के प्रक्रम से, जिसे गणितीय प्रतिरूपण या गणितीय निदर्शन (mathematical modelling) कहा जाता है, परिचित कराएँगे। गणितीय निदर्शन में हम वास्तविक जीवन से जुड़ी एक समस्या लेते हैं और इसे एक तुल्य गणितीय समस्या के रूप में लिखते हैं। फिर हम गणितीय समस्या का हल करते हैं और इसके हल का निर्वचन (की व्याख्या) वास्तविक जीवन से जुड़ी समस्या के पदों में करते हैं। इसके बाद, हम देखते हैं कि यह हल वास्तविक जीवन से जुड़ी समस्या के संदर्भ में, किस सीमा तक मान्य है। अत:, गणितीय निदर्शन में लागू होने वाले चरण होते हैं: सूत्रण (formulation), हल (solution), निर्वचन (व्याख्या) (interpretation) और मान्यकरण (validation)।

सबसे पहले हम उस प्रक्रम को लेंगे जिसका प्रयोग आप अनुच्छेद A2.2 में शब्द-समस्याओं को हल करने में करेंगे। यहाँ हम कुछ शब्द-समस्याओं पर चर्चा करेंगे जो आपके द्वारा पिछली कक्षाओं में हल की गई समस्याओं के समान हैं। बाद में चलकर आप यह देखेंगे कि जिन चरणों का प्रयोग आपने शब्द-समस्याओं को हल करने में किया है, उनमें से कुछ चरणों का प्रयोग गणितीय निदर्शन में भी किया जाता है।

अगले अनुच्छेद अर्थात् A2.3 में हम कुछ सरल निदर्शों (models) पर चर्चा करेंगे।

अनुच्छेद A 2.4 में हम निदर्शन के समग्र प्रक्रम (overall process) उसके लाभ और उसकी कुछ सीमाओं पर चर्चा करेंगे।

A2.2 शब्द समस्याओं का पुनर्विलोकन

इस अनुच्छेद में, हम कुछ शब्द-समस्याओं पर चर्चा करेंगे जो उन समस्याओं के समान हैं जिन्हें आप पिछली कक्षाओं में हल कर चुके हैं। आइए हम सबसे पहले अनुक्रमानुपाती विचरण से संबंधित एक समस्या लें।

उदाहरण 1: मैंने अपनी कार से 432 km की दूरी तय की और इसमें 48 लीटर पेट्रोल लगा। मुझे अपनी कार से उस स्थान तक जाना है जो 180 km दूर है। इसके लिए मुझे कितने पेट्रोल की आवश्यकता होगी?

हल: यहाँ हम इस समस्या को हल करने में प्रयुक्त चरणों का उल्लेख करेंगे।

चरण 1: सूत्रण: हम जानते हैं कि हम जितनी अधिक दूरी तय करेंगे उतने ही अधिक पेट्रोल की आवश्यकता होती है, अर्थात् पेट्रोल की मात्रा तय की गई दूरी के अनुक्रमानुपाती होगी।

432 km की दूरी तय करने के लिए आवश्यक पेट्रोल की मात्रा = 48 लीटर

180 km की दूरी तय करने के लिए आवश्यक पेट्रोल की मात्रा = ?

गणितीय वर्णन: मान लीजिए

 $x = \dot{x}$ द्वारा तय की जाने वाली दूरी $y = \dot{x}$ लिए आवश्यक पेट्रोल की मात्रा

y, x के अनुक्रमानुपाती है।

अत:, y = kx, जहाँ k एक अचर है।

मैं, 48 लीटर पेट्रोल में 432 km की दूरी तय कर सकता हूँ।

अत:, y = 48, x = 432

इसलिए, $k = \frac{y}{x} = \frac{48}{432} = \frac{1}{9}$

क्योंकि $y = kx \ \, \tilde{\xi},$ इसलिए $y = \frac{1}{9}x \tag{1}$

समीकरण (या सूत्र) (1) आवश्यक पेट्रोल की मात्रा और तय की गई दूरी के बीच का संबंध बताती है।

चरण 2: हल: हमें 180 km की दूरी तय करने के लिए आवश्यक पेट्रोल की मात्रा ज्ञात करनी है। अत: हमें y का मान ज्ञात करना है, जबिक x=180 है। समीकरण (1) में x=180 रखने पर, हमें यह प्राप्त होता है:

$$y = \frac{180}{9} = 20$$

चरण 3: निर्वचन (व्याख्या): क्योंकि y = 20 है, इसलिए $180 \, \mathrm{km}$ की दूरी तय करने के लिए हमें 20 लीटर पेट्रोल की आवश्यकता होगी।

क्या यह बात आपकी समझ में आई है या नहीं कि सभी स्थितियों में सूत्र (1) को लागू नहीं किया जा सकता? उदाहरण के लिए, मान लीजिए कि 432 km वाला मार्ग पहाड़ों में होकर है और 180 km वाला मार्ग समतल मैदान में है। पहाड़ी मार्ग से तो कार में पेट्रोल की खपत कुछ तेज दर से होगी, परन्तु 180 km वाले मार्ग से कार में पेट्रोल की खपत इस दर से नहीं होगी, अपितु धीमी दर से होगी। अत: यह सूत्र तभी लागू होता है जबिक वे सभी स्थितियाँ जो उस दर को प्रभावित करती हैं जिससे दोनों यात्राओं में पेट्रोल की खपत दर समान हो। या, यदि स्थितियों में अंतर हो, तो कार के लिए आवश्यक पेट्रोल की मात्रा पर इस अंतर का प्रभाव बहुत कम होगा। केवल ऐसी स्थिति में ही पेट्रोल की खपत तय की गई दूरी के अनुक्रमानुपाती होगी। समस्या हल करते समय, हम इसे मान कर चलते हैं, अर्थात् इसे हम परिकल्पलित कर लेते हैं।

उदाहरण 2: मान लीजिए सुधीर ने 8% की साधारण वार्षिक ब्याज दर से ₹ 15000 निवेश किए हैं। निवेश से उसे जो धनराशि मिलती है उससे वह एक वाशिंग मशीन, जिसकी कीमत ₹ 19000 है, खरीदना चाहता है। बताइए कि वह कितनी अविध के लिए ₹ 15000 निवेश करे जिससे कि वाशिंग मशीन खरीदने के लिए उसे पर्याप्त धनराशि प्राप्त हो जाए?

हल: चरण 1: समस्या का सूत्रण: यहाँ हमें मूलधन और ब्याज-दर ज्ञात है। ब्याज वह धनराशि है जो कि वाशिंग मशीन खरीदने के लिए आवश्यक ₹ 15000 से अतिरिक्त धनराशि है। हमें वर्षों की संख्या ज्ञात करनी है।

गणितीय वर्णन : साधारण ब्याज का सूत्र $I = \frac{Pnr}{100}$ है, जहाँ P =मुलधन

$$n = aq i aq i$$

I = अर्जित ब्याज

यहाँ

मूलधन = ₹15000

सुधीर द्वारा वाशिंग मशीन खरीदने के लिए आवश्यक धन = ₹19000 अत:. अर्जित किया जाने वाला ब्याज = ₹19000 – 15000

वर्षों की वह संख्या जिसमें ₹15000 की राशि जमा की गई है = n

8% की दर पर n वर्षों में ₹15000 पर ब्याज = I

तब,

$$I = \frac{13000 \times h \times 8}{100}$$

अत:,

$$I = 1200 n \tag{1}$$

उपरोक्त से वर्षों की संख्या और ब्याज के बीच का संबंध प्राप्त हो जाता है, जबिक 8% की वार्षिक दर पर ₹15000 निवेश किए गए हों।

हमें वह अवधि ज्ञात करना है जिसमें अर्जित ब्याज ₹4000 है। समीकरण (1) में I=4000 रखने पर, हमें यह प्राप्त होता है:

$$4000 = 1200 n \tag{2}$$

चरण 2: समस्या का हल: समीकरण (2) का हल करने पर, हमें यह प्राप्त होता है:

$$n = \frac{4000}{1200} = 3\frac{1}{3}$$

चरण 3: निर्वचन: क्योंकि $n=3\frac{1}{3}$ और एक वर्ष का तिहाई 4 महीने होते हैं, इसिलए 3 वर्ष और 4 महीने बाद सुधीर वािशंग मशीन खरीद सकता है।

क्या आप उन परिकल्पनाओं का अनुमान लगा सकते हैं, जिन्हें आपको ऊपर के उदाहरण में करना है? हम यहाँ यह मान लेते हैं कि उस अविध में भी ब्याज-दर वही बनी रहेगी जिसमें हम ब्याज परिकलित करते हैं, अन्यथा सूत्र $I=\frac{Pnr}{100}$ लागू नहीं होगा। हमने यह भी मान लिया है कि उस समय तक वाशिंग मशीन की कीमत में कोई वृद्धि नहीं होती, जब तक कि सुधीर आवश्यक धनराशि एकत्रित नहीं कर लेता।

उदाहरण 3: एक मोटर-बोट एक नदी में ऊर्ध्वप्रवाह (upstream) जाकर, नदी के किनारे बसे दो नगरों के बीच की दूरी छ: घंटे में तय करती है। यही दूरी वह अनुप्रवाह (downstream) पाँच घंटे में तय करती है। यदि धारा की चाल 2 km/h हो, तो शांत जल में बोट की चाल ज्ञात कीजिए।

हल: चरण 1: सूत्रण: हमें नदी की धारा की चाल और दो स्थानों के बीच की दूरी तय करने का समय ज्ञात है। हमें शांत जल में बोट की चाल ज्ञात करनी है।

गणितीय वर्णन: मान लीजिए बोट की चाल x km/h है, लिया गया समय t घंटा है और तय की दूरी y km/h है। तब,

$$y = tx \tag{1}$$

है। मान लीजिए दो स्थानों के बीच की दूरी d km है।

ऊर्ध्वप्रवाह जाने में बोट की वास्तविक चाल = बोट की चाल - धारा की चाल,

क्योंकि बोट नदी के प्रवाह के विरुद्ध जा रही है।

अत: ऊर्ध्वप्रवाह में, बोट की चाल = (x-2) km/h

यदि यह ऊर्ध्वप्रवाह दो नगरों के बीच की दूरी तय करने में 6 घंटे लेती हो, तो समीकरण (1) से हमें यह प्राप्त होता है:

$$d = 6(x - 2) \tag{2}$$

अनुप्रवाह जाते समय बोट की चाल में नदी की चाल जोड़नी होती है।

अतः अनुप्रवाह में, बोट की चाल = (x + 2) km/h

अनुप्रवाह इसी दूरी को तय करने में बोट 5 घंटा लेती है।

अत:,
$$d = 5(x+2)$$

(2) और (3) से, हमें यह प्राप्त होता है:

$$5(x+2) = 6(x-2)$$
 (4)

चरण 2: हल ज्ञात करना

समीकरण (4) को x में हल करने पर, हमें x = 22 प्राप्त होता है।

चरण 3 : निर्वचन

क्योंकि x = 22 है, इसलिए शांत जल में मोटर-बोट की चाल 22 km/h होगी।

ऊपर के उदाहरण में, हम जानते हैं कि हर जगह नदी की चाल समान नहीं होती। किनारे के निकट यह धीरे प्रवाहित होती है और बीच धारा में तेज प्रवाहित होती है। बोट किनारे से चलना प्रारंभ करती है और नदी की बीच धारा की ओर जाती है। जब यह गंतव्य स्थान के निकट आ जाती है, तो इसकी चाल किनारे के निकट आते हुए कम होती जाती है। अत: बीच धारा में बोट की चाल और किनारे पर बोट की चाल में थोड़ा अंतर होता है। क्योंकि यह किनारे के निकट बहुत कम समय तक रहती

है, इसलिए नदी की चाल का यह अंतर केवल थोड़ी अविध के लिए ही प्रभावित करता है। अत: नदी की चाल में हम इस अंतर की उपेक्षा कर सकते हैं। बोट की चाल में हुए थोड़े परिवर्तन की भी हम उपेक्षा कर सकते हैं। साथ ही, नदी की चाल के अतिरिक्त पानी (जल) और बोट की सतह के बीच का घर्षण भी बोट की वास्तविक चाल को प्रभावित करेगा। यहाँ भी हम यह मान लेते हैं कि यह प्रभाव बहुत कम है।

अत: यहाँ हम यह मान लेते हैं कि:

- 1. नदी की चाल और बोट की चाल पूरे समय अचर बनी रहती है।
- 2. बोट और पानी के बीच का घर्षण और वायु के कारण हो रहा घर्षण उपेक्षणीय है। ऊपर की गई परिकल्पनाओं के आधार पर, हमने शांत जल में बोट की चाल ज्ञात की है। जैसा कि ऊपर दी गई शब्द-समस्याओं में हमने देखा है कि एक शब्द-समस्या का हल करने में तीन चरण लागू होते हैं। ये चरण निम्नलिखित हैं:
 - 1. सूत्रण: हम समस्या का विश्लेषण करते हैं और देखते हैं कि समस्या के हल में कौन-कौन से कारकों का अधिक प्रभाव है। ये सुसंगत कारक (relevant factors) कहलाते हैं। हमारे पहले उदाहरण में, सुसंगत कारक तय की गई दूरी और खपत किया गया पेट्रोल है। हमने मार्ग की अवस्था, चलाने की चाल जैसे अन्य कारकों की उपेक्षा कर ली है। अन्यथा समस्या इतनी कठिन हो जाएगी कि इसे हल करना अधिक कठिन हो जाएगा। जिन कारकों की हम उपेक्षा कर देते हैं, उन्हें असंगत कारक (irrelevant factors) कहा जाता है।

तब हम एक या अधिक गणितीय समीकरणों के रूप में समस्या की गणितीयत: व्याख्या करते हैं।

- 2. हल: कुछ उपयुक्त विधियों की सहायता से चरण 1 में प्राप्त गणितीय समीकरणों को हल करके, हम समस्या का हल ज्ञात करते हैं।
- 3. निर्वचन: हम देखते हैं कि चरण 2 में प्राप्त हल का अर्थ मूल शब्द-समस्या के संदर्भ में क्या है।

यहाँ आपके लिए कुछ प्रश्न दिए जा रहे हैं। इन प्रश्नों के लिए ऊपर बताए गए तीन चरणों को लागू करके शब्द-समस्याओं को हल करने में जिन चरणों का प्रयोग किया जाता है, उन्हें आपने समझा है या नहीं। इसकी जाँच आप कर सकते हैं।

प्रश्नावली A 2.1

नीचे दी गई प्रत्येक समस्या में स्पष्ट रूप से बताइए कि ऊपर दिए गए चरणों 1, 2 और 3 को लागू करने में सुसंगत और असंगत कौन-कौन से कारक हैं।

 मान लीजिए एक कंपनी को कुछ समय के लिए एक कंप्यूटर की आवश्यकता है। कंपनी या तो ₹ 2000 प्रति माह की दर से कंप्यूटर किराए पर ले सकती है या ₹ 25000 में एक 368

कंप्यूटर खरीद सकती है। यदि कंपनी को लंबी अवधि तक कंप्यूटर का प्रयोग करना है, तो कंपनी को इतना किराया देना पड़ेगा कि इससे सस्ता तो यह होगा कि वह कंप्यूटर खरीद ले। इसके विपरीत, यदि कंपनी को थोड़े समय, अर्थात् केवल एक महीने के लिए ही कंप्यूटर का प्रयोग करना है, तो ऐसी स्थिति में किराए पर कंप्यूटर लेना अधिक सस्ता पड़ेगा। उन महीनों की संख्या बताइए जिसके बाद कंप्यूटर को खरीदना अधिक सस्ता पड़ेगा।

- 2. मान लीजिए एक कार स्थान A से चलना प्रारंभ करती है और वह एक अन्य स्थान B की ओर 40 km/h की चाल से जाती है। उसी समय एक अन्य कार स्थान B से चलना प्रारंभ करती है और वह A की ओर 30 km/h की चाल से जाती है। यदि A और B के बीच की दूरी 100 km है, तो बताइए कि कितने समय बाद एक कार दूसरी कार से मिलेगी।
- 3. पृथ्वी से चंद्रमा लगभग $384000 \, \mathrm{km}$ की दूरी पर है और पृथ्वी के प्रति परिक्रमा करने का पथ लगभग वृत्तीय है। यह मानकर कि चंद्रमा पृथ्वी की परिक्रमा 24 घंटे में पूरा करता है, बताइए कि किस चाल से चंद्रमा पृथ्वी की परिक्रमा करेगा। ($\pi = 3.14$ लीजिए)
- 4. एक परिवार उन महीनों में, जिनमें वह वाटर हीटर का प्रयोग नहीं करता, बिजली के लिए औसतन ₹ 1000 भुगतान करता है। जिन महीनों में वह वाटर हीटर का प्रयोग करता है, उन महीनों में बिजली का औसत बिल ₹ 1240 आता है। वाटर हीटर का प्रयोग करने की लागत ₹ 8 प्रति घंटा है। एक दिन में वाटर हीटर का प्रयोग जितने औसत घंटों के लिए किया जाता है उसे ज्ञात कीजिए।

A2.3 कुछ गणितीय निदर्श

अभी तक अपनी चर्चा में हमने कोई नई बात नहीं कही है। इस अनुच्छेद में, हम पहले बताए गए चरणों में एक और चरण बढ़ा देंगे। इस चरण को **मान्यकरण** (validation) कहा जाता है। मान्यकरण का अर्थ क्या है? आइए हम देखें कि इसका अर्थ क्या है। वास्तविक जीवन से जुड़ी स्थिति में, हम उस निदर्श को स्वीकार नहीं कर सकते जिससे प्राप्त उत्तर वास्तविकता से मेल नहीं खाता हो। वास्तविकता के विरुद्ध उत्तर की जाँच करने और यदि आवश्यक हो तो, गणितीय वर्णन में आपरिवर्तन करने के इस प्रक्रम को मान्यकरण कहा जाता है।

यह निदर्शन का एक अति महत्वपूर्ण चरण है। इस अनुच्छेद में, हम आपको इस चरण से परिचित कराएँगे।

इस संदर्भ में आइए पहले हम एक उदाहरण लें, जहाँ हमें मान्यकरण के बाद अपने निदर्श का आपरिवर्तन (modification) करने की आवश्यकता नहीं होती।

उदाहरण 4: मान लीजिए आपके पास 6 मीटर लंबा और 5 मीटर चौड़ा एक कमरा है। आप इस कमरे के फर्श पर 30 cm की भुजा वाली वर्गाकार मोजाइक टाइलों को लगवाना चाहते हैं। इसके लिए कितनी टाइलों की आवश्यकता होगी? एक गणितीय निदर्श बनाकर इसे हल कीजिए।

हल: सूत्रण: इस समस्या को हल करने के लिए, हमें कमरे का क्षेत्रफल और एक टाइल का क्षेत्रफल लेना होता है। टाइल की एक भुजा की लंबाई 0.3 मीटर है। क्योंकि कमरे की लंबाई 6 मीटर है, इसलिए कमरे की लंबाई के अनुदिश एक पंक्ति में $\frac{6}{0.3} = 20$ टाइलें लगाई जा सकती हैं (देखिए आकृति A2.1)।

क्योंकि कमरे की चौड़ाई 5 मीटर है, और $\frac{5}{0.3}=16.67$ है, अतः, एक स्तंभ में हम 16 टाइलें लगा सकते हैं। क्योंकि $16\times0.3=4.8$ है, इसलिए चौड़ाई के अनुदिश 5-4.8=0.2 मीटर स्थान पर टाइलें नहीं लगी होंगी। इस भाग में (खाली स्थान में) साइज के अनुसार टाइलों को काटकर लगाना होगा। टाइल से बिना ढके फर्श की चौड़ाई 0.2 मीटर है, जो टाइल की लंबाई 0.3 m के आधे से अधिक है। अतः, हम एक टाइल को दो बराबर-बराबर आधे भागों में नहीं बाँट सकते और शेष भाग को ढकने के लिए दोनों आधे भागों का प्रयोग नहीं कर सकते।

गणितीय वर्णनः

आवश्यक टाइलों की कुल संख्या = (लंबाई के अनुदिश टाइलों की संख्या × चौड़ाई में टाइलों की संख्या) + बिना ढके हुए क्षेत्र पर टाइलों की संख्या (1) हल: जैसा कि हम ऊपर कह चुके हैं कि लंबाई के अनुदिश टाइलों की संख्या 20 है और चौड़ाई के अनुदिश टाइलों की संख्या 16 है। अंतिम पंक्ति के लिए, हमें 20 और टाइलों की आवश्यकता होगी। इन मानों को (1) में प्रतिस्थापित करने पर, हमें यह प्राप्त होता है:

$$(20 \times 16) + 20 = 320 + 20 = 340$$

निर्वचन: फर्श पर लगाने के लिए 340 टाइलों की आवश्यकता होगी।

मान्यकरण: व्यावहारिक जीवन में आपका मिस्त्री आपसे कुछ और टाइल मांग सकता है, क्योंकि साइज के अनुसार काटते समय टाइलें टूट-फूट गई थीं। आपका मिस्त्री इस काम में कितना कुशल है उस पर ही टाइलों की संख्या निर्भर करेगी। परन्तु, इसके लिए समीकरण (1) का आपरिवर्तन करने की आवश्यकता नहीं है। इससे हमें एक स्थूल अनुमान (rough estimate) मिल जाता है कि कितनी टाइलों की आवश्यकता होगी। अत: यहाँ हम रुक सकते हैं।

आइए अब हम एक अन्य स्थिति लें।

उदाहरण 5: वर्ष 2000 में संयुक्त राष्ट्र के 191 सदस्य देशों ने एक घोषणा पर हस्ताक्षर किए। अपनी घोषणा में ये सभी देश, वर्ष 2015 तक कुछ विकास लक्ष्य प्राप्त करने पर सहमत थे। इन लक्ष्यों को मिलेनियम विकास लक्ष्य कहा जाता है। इनमें से एक लक्ष्य लिंग समानता को बढ़ाना है। यह लक्ष्य प्राप्त कर लिया गया है कि नहीं, इसका एक सूचक प्राथमिक, माध्यमिक और तृतीयक (tertiary) शिक्षा में लड़िकयों और लड़कों का अनुपात है। भारत में, जो कि घोषणा पर हस्ताक्षर करने वाला एक सदस्य देश है, इस अनुपात में वृद्धि हुई है। उन लड़िकयों के प्रतिशत आंकड़े, जिन्होंने विद्यालय में प्रवेश लिया है, सारणी A 2.1 में दिए गए हैं।

सारणी **A2.**1

वर्ष	नामांकन (% में)
1991-92	41.9
1992-93	42.6
1993-94	42.7
1994-95	42.9
1995-96	43.1
1996-97	43.2
1997-98	43.5
1998-99	43.5
1999-2000	43.6*
2000-01	43.7*
2001-02	44.1*

म्रोत: शैक्षिक आंकड़े, वेब पेज, शिक्षा विभाग भारत सरकार

^{*} बताता है कि आंकड़े अनंतिम है।

इन आंकड़ों का प्रयोग करके, गणितीय रूप में वह दर बताइए जिस अनुपात पर प्राथमिक विद्यालयों में भर्ती की गई लड़िकयों की संख्या बढ़ रही है। उस वर्ष का भी अनुमान लगाइए जबिक भर्ती की गई लड़िकयों की संख्या 50% तक पहुँच जाएगी।

हल: आइए पहले हम इस समस्या को एक गणितीय समस्या में बदल दें।

चरण 1: सूत्रण: सारणी A2.1 में वर्ष 1991-92, 1992-93 आदि के नामांकन दिए गए हैं। क्योंकि विद्यार्थी शैक्षिक वर्ष के प्रारंभ में प्रवेश लेते हैं, इसिलए हम वर्षों को 1991, 1992 आदि ले सकते हैं। आइए हम यह मान लें कि प्राथमिक विद्यालयों में प्रवेश लेने वाली लड़िक्यों के प्रतिशत में उसी दर से वृद्धि होती रहती है जैसा कि सारणी A2.1 में दिया गया है। अत: विशिष्ट वर्ष का महत्व नहीं है, अपितु वर्षों की संख्या का महत्व है (इसी प्रकार की स्थिति तब थी जबिक 8% की दर से तीन वर्षों के लिए ₹ 15000 का साधारण ब्याज ज्ञात किया था। यहाँ इस बात का कोई महत्व नहीं है कि तीन वर्ष की अविध 1999 से 2003 है या 2001 से 2004 है (महत्वपूर्ण है वर्षों में ब्याज दर का होना)। यहाँ भी, हम यह देखेंगे कि 1991 के बाद नामांकन में किस प्रकार वृद्धि हुई है। ऐसा हम 1992 के बाद बीत गए वर्षों की संख्या और संगत नामांकन की तुलना द्वारा करेंगे। आइए हम 1991 को 0 वाँ वर्ष मान लें और 1992 के लिए 1 लिखें, क्योंकि 1991 के बाद 1992 तक 1 वर्ष निकल गया है। इसी प्रकार, 1993 के लिए 2, 1994 के लिए 3 आदि लिखेंगे। अत:, अब सारणी A2.1, सारणी A 2.2 के समान दिखाई पडेगी।

सारणी A2.2

वर्ष 🖊	नामांकन (% में)
0	41.9
1	42.6
2	42.7
3	42.9
4	43.1
5	43.2
6	43.5
7	43.5
8	43.6
9	43.7
10	44.1

नामांकन में हुई वृद्धि नीचे सारणी में दी गई है:

सारणी A2.3

वर्ष	नामांकन (% में)	वृद्धि
0	41.9	0
1	42.6	0.7
2	42.7	0.1
3	42.9	0.2
4	43.1	0.2
5	43.2	0.1
6	43.5	0.3
7	43.5	0
8	43.6	0.1
9	43.7	0.1
10	44.1	0.4

1991 से 1992 तक की एक वर्ष की अविध में नामांकन 41.9% से बढ़कर 42.6% तक हो गया। अर्थात् नामांकन में 0.7% की वृद्धि हुई है। दूसरे वर्ष के अंत में, इसमें 0.1% की वृद्धि हुई है अर्थात् यह 42.6% से बढ़कर 42.7% हो गया है। ऊपर की सारणी से, हम वर्षों की संख्या और प्रतिशत में कोई निश्चित संबंध प्राप्त नहीं कर सकते। परन्तु वृद्धि अपरिवर्ती बनी रहती है। केवल पहले वर्ष में और दसवें वर्ष में अधिक वृद्धि हुई है। इन मानों का माध्य यह है:

$$\frac{0.7 + 0.1 + 0.2 + 0.2 + 0.1 + 0.3 + 0 + 0.1 + 0.1 + 0.4}{10} = 0.22$$

आइए हम यह मान लें कि नामांकन में अपरिवर्ती रूप से (steadily) 0.22 प्रतिशत की दर से वृद्धि हो रही है।

गणितीय वर्णन: हमने यह मान लिया है कि नामांकन में 0.22% प्रति वर्ष की दर से अपरिवर्ती रूप से वृद्धि हो रही है।

अत:, पहले वर्ष में नामांकन प्रतिशत (EP) =
$$41.9 + 0.22$$
 दूसरे वर्ष में, EP = $41.9 + 0.22 + 0.22 = 41.9 + 2 \times 0.22$ तीसरे वर्ष में, EP = $41.9 + 0.22 + 0.22 = 41.9 + 3 \times 0.22$ अत:, n वें वर्ष में नामांकन प्रतिशत = $41.9 + 0.22n$, जहाँ $n \ge 1$ है। (1)

अब, हमें वर्षों की वह संख्या भी ज्ञात करनी है जिसमें नामांकन 50% पहुँच जाएगा। अत: हमें निम्नलिखित समीकरण से n का मान ज्ञात करना है:

$$50 = 41.9 + 0.22n \tag{2}$$

चरण 2: हल: n के लिए (2) को हल करने पर, हमें यह प्राप्त होता है:

$$n = \frac{50 - 41.9}{0.22} = \frac{8.1}{0.22} = 36.8$$

चरण 3: निर्वचन: क्योंकि वर्षों की संख्या एक पूर्णांकीय मान है, इसलिए हम अगला उच्च पूर्णांक 37 लेंगे। अत:, 1991 + 37 = 2028 में नामांकन प्रतिशत 50% हो जाएगा।

शब्द-समस्या को तो प्राय: हम यहीं तक हल करते हैं। लेकिन, चूँकि हम वास्तविक जीवन से जुड़ी स्थिति पर अध्ययन कर रहे हैं, इसलिए हमें यह देखना होगा कि किस सीमा तक यह मान वास्तविक स्थिति से मेल खाता है।

चरण 4: मान्यकरण: आइए हम यह देखें कि सूत्र (2) वास्तविकता से मेल खाता है कि नहीं। आइए हम सूत्र (2) का प्रयोग करके ज्ञात वर्षों के मान ज्ञात करें और अंतर ज्ञात करके, ज्ञात मानों के साथ इनकी तुलना करें। सारणी A2.4 में ये मान दिए गए हैं।

सारणी A2.4

वर्ष	नामांकन (% में)	(2) द्वारा दिए गए मान (% में)	अंतर (% में)
0	41.9	41.90	0
1	42.6	42.12	0.48
2	42.7	42.34	0.36
3	42.9	42.56	0.34
4	43.1	42.78	0.32
5	43.2	43.00	0.20
6	43.5	43.22	0.28
7	43.5	43.44	0.06
8	43.6	43.66	-0.06
9	43.7	43.88	-0.18
10	44.1	44.10	0.00

जैसा कि आप देख सकते हैं कि सूत्र (2) द्वारा दिए गए कुछ मान वास्तविक मान से लगभग 0.3% से 0.5% तक कम हैं। इससे लगभग 3 से 5 वर्षों का अंतर आ सकता है, क्योंकि वास्तव में प्रति वर्ष वृद्धि 1% से 2% तक है। इतना अंतर स्वीकार्य हो सकता है और हम यहीं रुक सकते हैं। इस स्थिति में, हमारा गणितीय निदर्श (2) है।

मान लीजिए कि यह त्रुटि काफी बड़ी है और हमें इस निदर्श में सुधार लाना है। तब हमें चरण 1 पर पुन: लौटकर जाना होगा, पुन: सूत्रण करना होगा और समीकरण (1) को बदलना होगा। आइए हम इसे करें।

चरण 1 : पुन:सूत्रण : हम यहाँ भी यह मान लेंगे कि नामाकंन प्रतिशत के मानों में अपरिवर्ती रूप से 0.22% की वृद्धि हो रही है। परन्तु यहाँ अब हम त्रुटि को कम करने के लिए एक संशुद्धि गुणक (correction factor) का प्रयोग करेंगे। इसके लिए हम सभी त्रुटियों का माध्य ज्ञात करते हैं। माध्य यह है:

$$\frac{0.48 + 0.36 + 0.34 + 0.32 + 0.2 + 0.28 + 0.06 - 0.06 - 0.18 + 0}{10} = 0.18$$

हम त्रुटियों का माध्य लेते हैं और इस मान से अपने त्रुटि को संशुद्ध करते हैं।

संशोधित गणितीय वर्णन: आइए अब हम (1) में दिए गए नामांकन प्रतिशत के लिए अपने सूत्र में त्रुटियों का माध्य जोड़ दें। अत:, हमारा संशोधित सूत्र यह हो जाएगा:

$$n$$
वें वर्ष में प्रतिशत नामांकन = $41.9 + 0.22n + 0.18 = 42.08 + 0.22n$, जहाँ $n \ge 1$ (3)

हम अपने समीकरण (2) में भी उपयुक्तरूप से आपिरवर्तन करेंगे। n में हमारा नया समीकरण यह होगा:

$$50 = 42.08 + 0.22n \tag{4}$$

चरण 2: परिवर्तित हल: n के लिए समीकरण (4) को हल करने पर, हमें यह प्राप्त होता है:

$$n = \frac{50 - 42.08}{0.22} = \frac{7.92}{0.22} = 36$$

चरण 3 : निर्वचन : क्योंकि n = 36 है, इसलिए वर्ष 1991 + 36 = 2027 में प्राथमिक विद्यालयों में लड़िकयों का नामांकन 50% तक पहुँच जाएगा।

चरण 4: मान्यकरण: आइए हम पुन: सूत्र (4) की सहायता से प्राप्त मानों की तुलना वास्तविक मानों से करें। सारणी A 2.5 में मानों की यह तुलना दी गई है।

			Δ.		_	_
		т	т	Α.	7	-
₹~	ı۲	•	ш	н		

वर्ष	नामांकन (% में)	(2) द्वारा दिए गए मान	मानों के बीच का अंतर	(4) द्वारा दिए गए मान	मानों के बीच का अंतर
0	41.9	41.90	0	41.9	0
1	42.6	42.12	0.48	42.3	0.3
2	42.7	42.34	0.36	42.52	0.18
3	42.9	42.56	0.34	42.74	0.16
4	43.1	42.78	0.32	42.96	0.14
5	43.2	43.00	0.2	43.18	0.02
6	43.5	43.22	0.28	43.4	0.1
7	43.5	43.44	0.06	43.62	- 0.12
8	43.6	43.66	- 0.06	43.84	- 0.24
9	43.7	43.88	- 0.18	44.06	- 0.36
10	44.1	44.10	0	44.28	- 0.18

जैसा कि आप देख सकते हैं कि (2) से प्राप्त मानों की तुलना में (4) से प्राप्त अनेक मान वास्तविक मान के अधिक निकट हैं। इस स्थिति में त्रुटियों का माध्य 0 है।

हम अपने प्रक्रम को यहीं रोक देंगे। अत:, समीकरण (4) हमारा गणितीय वर्णन है जो कि वर्षों और कुल नामांकन में लड़िकयों के प्रतिशत नामांकन के बीच का गणितीय संबंध स्थापित करता है। हमने एक गणितीय निदर्श का निर्माण किया है, जो वृद्धि की व्याख्या करता है।

वह प्रक्रम, जिसका हमने ऊपर की स्थिति में अनुसरण किया है, उसे गणितीय निदर्शन (mathematical modelling) कहा जाता है।

हमने उपलब्ध गणितीय साधनों से एक गणितीय निदर्श का निर्माण करने का प्रयास किया है। उपलब्ध आंकड़ों से प्रागुक्तियाँ करने के उत्तम गणितीय साधन भी उपलब्ध हैं। परन्तु वे इस पाठ्यक्रम के अध्ययन क्षेत्र से बाहर हैं। इस निदर्श को बनाने का हमारा उद्देश्य आपको निदर्शन प्रक्रम से परिचित कराना है, न कि इस चरण पर परिशुद्ध प्रागुक्तियाँ (accurate predictions) करना।

आप अभी तक की गई चर्चा को कितना समझ पाए हैं इसके लिए हम चाहेंगे कि आप वास्तविक जीवन से जुड़ी कुछ स्थितियों का निदर्शन करें। यहाँ आपके लिए एक प्रश्नावली दी जा रही है।

प्रश्नावली A2.2

1. ओलंपिक खेलों में जबसे 400 मीटर की दौड़ शुरू हुई है तब से स्वर्ण पदक पाने वालों का समय नीचे की सारणी में दिया गया है। वर्षों और समयों से संबंधित एक गणितीय निदर्श बनाइए। इसका प्रयोग अगले ओलंपिक में लगने वाले समय का आकलन करने में कीजिए:

सारणी A 2.6

वर्ष	समय (सेकंडों में)
1964	52.01
1968	52.03
1972	51.08
1976	49.28
1980	48.88
1984	48.83
1988	48.65
1992	48.83
1996	48.25
2000	49.11
2004	49.41

A 2.4 निदर्शन प्रक्रम, इसके लाभ और इसकी सीमाएँ

आइए अब हम गणितीय निदर्शन के उन पहलुओं पर विचार करते हुए, जिन्हें हमने प्रस्तुत उदाहरणों में दिखाया है, अपनी चर्चा यहीं समाप्त करें। पिछले अनुच्छेदों की पुष्ठभूमि से, अब हम इस स्थिति में आ गए हैं कि हम निदर्शन में प्रयुक्त होने वाले चरणों का एक संक्षिप्त परिदृश्य दे सकें।

चरण 1: सूत्रण: अनुच्छेद A 2.2 के उदाहरण 1 के सूत्रण चरण और A 2.3 में चर्चित निदर्श के सूत्रण चरण के बीच के अंतर की ओर आपने अवश्य ध्यान दिया होगा। उदाहरण 1 में सभी सूचनाएँ तुरंत उपयोगी रूप में हैं। परन्तु A 2.3 में दिए गए निदर्श में ऐसा नहीं है। साथ ही, एक गणितीय वर्णन प्राप्त करने में कुछ समय भी लगा था। हमने अपने पहले सूत्र की जाँच की है, जिसमें पाया कि यह उतना उत्तम नहीं है, जितना कि दूसरा था। व्यापक रूप में, यह प्राय: सत्य होता है। अर्थात् उस स्थिति में जबिक हम वास्तविक जीवन से जुड़ी स्थितियों का निदर्शन करने का प्रयास कर रहे होते हैं, इसमें प्राय: पहले निदर्श को संशोधित करने की आवश्यकता होती है। जब हम वास्तविक जीवन से जुड़ी

समस्या हल कर रहे होते हैं, तो सूत्रण करने में काफी समय लग सकता है। उदाहरण के लिए, न्यूटन के तीन गित-नियम, जो कि गित के गिणतीय वर्णन हैं, के कथन सरलता से दिए जा सकते हैं। परन्तु इन नियमों तक पहुँचने के लिए उसे काफी मात्रा में आंकड़ों का अध्ययन करना पड़ा था और उन कार्यों की ओर ध्यान देना पड़ा था जो कि उसके पूर्व के वैज्ञानिकों ने किए थे। सृत्रण में निम्नलिखित तीन चरण लाग करने होते हैं:

- (i) समस्या का कथन: प्राय: समस्या का कथन स्थूल रूप से दिया जाता है। उदाहरण के लिए, हमारा स्थूल लक्ष्य तो यह सुनिश्चित करना है कि लड़कों और लड़िकयों के नामांकन बराबर हैं। इसका अर्थ यह हो सकता है कि विद्यालय जाने वाले आयु के लड़कों की कुल संख्या का 50% और विद्यालय जाने वाली आयु की लड़िकयों की कुल संख्या का 50% नामांकित होनी चाहिए। एक अन्य विधि यह है कि यह सुनिश्चित किया जाय कि विद्यालय जाने वाले बच्चों में से 50% लड़िकयाँ हैं। हमने अपनी समस्या में दूसरे दृष्टिकोण को अपनाया है।
- (ii) सुसंगत कारकों को पहचानना: पहले यह निर्णय लीजिए कि हमारी समस्या में कौन-कौन सी राशियाँ और संबंध महत्वपूर्ण हैं और कौन-कौन महत्वपूर्ण नहीं हैं, जिनकी उपेक्षा की जा सकती है। उदाहरण के लिए, प्राथमिक विद्यालयों में नामांकन संबंधी हमारी समस्या में पिछले वर्ष में नामांकित लड़िकयों का प्रतिशत इस वर्ष नामांकित लड़िकयों की संख्या को प्रभावित कर सकता है। ऐसा इसिलए है कि विद्यालय में जैसे-जैसे और लड़िकयों नामांकित होती जाती हैं वैसे-वैसे उनके माता-पिता अनुभव करने लगेंगे कि वे अपनी लड़िकयों को भी विद्यालय में भर्ती कराएं। परन्तु, हमने इस कारक की उपेक्षा कर दी है, क्योंकि एक निश्चित प्रतिशत से अधिक नामांकन हो जाने के बाद ही यह महत्वपूर्ण हो सकता है। साथ ही, इस कारक को बढ़ा देने के बाद निदर्श और अधिक जिंटल हो सकता है।
- (iii) गिणतीय वर्णन: आइए अब हम यह मान लें कि हमें यह स्पष्ट हो गया है कि समस्या क्या है और इसका कौन-सा पहलू अन्य पहलुओं से अधिक सुसंगत है। तब हमें एक समीकरण, एक आलेख या अन्य उपयुक्त गणितीय वर्णन के रूप में निहित पहलुओं के बीच का संबंध ज्ञात करना होता है। यदि यह एक समीकरण है, तो हमारे गणितीय समीकरण में प्रत्येक महत्वपूर्ण पहलू को एक चर से निरूपित करना चाहिए।

चरण 2 : हल ज्ञात करना : गणितीय सूत्रण से हल प्राप्त नहीं होता। हमें समस्या के इस गणितीय तुल्य को हल करना होता है। यही वह स्थल है जहाँ हमारा गणितीय ज्ञान उपयोगी सिद्ध होता है।

चरण 3: हल का निर्वचन: गणितीय हल निर्दर्श के चरों के कुछ मान होते हैं। हमें वास्तविक जीवन से जुड़ी समस्या को पुन: लेना होगा और यह देखना होगा कि समस्या में इन मानों का क्या अर्थ है। चरण 4: हल का मान्यकरण: जैसा कि हमने A 2.3 में यह देखा कि हल ज्ञात करने के बाद, हमें यह देखना होगा कि हल वास्तविकता से मेल खाता है कि नहीं। यदि यह मेल खाता है, तो गणितीय निर्दर्श स्वीकार्य होता है। यदि गणितीय हल मेल नहीं खाता, तो हमें सूत्रण चरण पर पुन: आ जाएँ और हम अपने निर्दर्श में सुधार लाने का प्रयास करें।

प्रक्रम के इस चरण में शब्द-समस्याओं को हल करने और गणितीय निदर्शन के बीच एक बड़ा अंतर होता है। निदर्शन में यह एक अति महत्वपूर्ण चरण है जो कि शब्द-समस्याओं में नहीं होता है। हाँ, यह संभव है कि वास्तविक जीवन से जुड़ी स्थितियों में हमें अपने उत्तर का मान्यकरण करने की आवश्यकता नहीं होती क्योंकि समस्या सरल है और हमें सीधे सही हल प्राप्त हो जाता है। अनुच्छेद A2.3 में लिए गए निदर्श में ऐसा ही था।

हमने उस क्रम का संक्षिप्त विवरण दिया है जिसमें नीचे दी गई आकृति A 2.2 में गणितीय निदर्शन के चरण लागू किए गए हैं। मान्यकरण चरण से सूत्रण चरण की ओर जाने को **बिंदुकित तीर** से दिखाया गया है। ऐसा इसलिए किया गया है कि हो सकता है इस चरण को पुन: लागू करना आवश्यक न भी हो।

आकृति A 2.2

अब, क्योंकि आपने गणितीय निदर्शन से संबंधित चरणों का अध्ययन कर लिया है, इसलिए आइए हम इसके कुछ पहलुओं पर चर्चा कर लें।

गणितीय निदर्शन का उद्देश्य वास्तविक जगत से जुड़ी समस्या के बारे में, उसे गणितीय समस्या में रूपांतरित करके कुछ उपयोगी सूचनाएँ प्राप्त करना है। यह विशेष रूप से तब उपयोगी होता है जबिक सीधे प्रेक्षण करके या प्रयोग करने जैसे अन्य साधनों से सूचना प्राप्त करना या तो संभव न हो या बहुत खर्चीला हो।

आपको यह जानकर भी आश्चर्य हो सकता है कि हमें गणितीय निदर्शन का प्रयोग क्यों करना चाहिए? आइए हम निदर्शन के लाभ पर कुछ चर्चा करें। मान लीजिए हम ताजमहल पर मथुरा रिफाइनरी के विसर्जन के संक्षारक प्रभाव पर अध्ययन करना चाहते हैं। हम ताजमहल पर सीधे प्रयोग नहीं करना चाहेंगे, क्योंकि ऐसा करना सुरक्षित नहीं होगा। वास्तव में, हम इस संबंध में ताजमहल का एक छोटा मॉडल ले सकते हैं। परन्तु इसके लिए हमें विशिष्ट सुविधाओं की आवश्यकता हो सकती है, जोकि काफी खर्चीली हो सकती है। यही वह स्थल है जहाँ गणितीय निदर्शन काफी उपयोगी सिद्ध हो सकता है।

मान लीजिए हम यह ज्ञात करना चाहते हैं कि 5 साल बाद कितने प्राथमिक विद्यालयों की आवश्यकता होगी। तब हम एक गणितीय निदर्श का प्रयोग करके, यह समस्या हल कर सकते हैं। इसी प्रकार, केवल निदर्शन करके वैज्ञानिकों ने अनेक परिघटनाओं की व्याख्या की है।

अनुच्छेद A2.4 में आपने यह देखा है कि उत्तम विधियों को लागू करके दूसरे उदाहरण में हम उत्तर में सुधार लाने का प्रयास कर सकते थे। लेकिन हम वहीं रुक गए, क्योंकि हमारे पास कोई गणितीय साधन उपलब्ध नहीं है। ऐसी स्थिति वास्तविक जीवन में भी हो सकती है। प्राय: हमें सिन्नकट उत्तरों से ही संतुष्ट हो जाना पड़ता है, क्योंकि गणितीय साधन उपलब्ध नहीं होते हैं। उदाहरण के लिए, मौसम के निदर्शन में प्रयुक्त निदर्श समीकरण इतने जिटल होते हैं कि यथा स्थिति हल ज्ञात करने के गणितीय साधन उपलब्ध नहीं हैं।

आप आश्चर्य कर सकते हैं कि किस सीमा तक हमें अपने निदर्श में सुधार लाना चाहिए। इसमें सुधार लाने के लिए, प्राय: हमें अन्य कारकों को भी ध्यान में रखने की आवश्यकता होती है। जब हम ऐसा करते हैं, तब हम अपने गणितीय समीकरणों में और चर बढ़ा देते हैं। तब हमें एक अति जटिल निदर्श प्राप्त हो सकता है, जिसका प्रयोग करना कठिन होगा। निदर्श इतना सरल होना चाहिए कि उसका प्रयोग किया जा सके। एक उत्तम निदर्श दो कारकों को संतुलित करता है:

- 1. परिशुद्धता (accuracy), अर्थात् यह वास्तविकता से कितना निकट है।
- 2. प्रयोग की सरलता

उदाहरण के लिए, न्यूटन के गित के नियम काफी सरल, परन्तु इतने शक्तिशाली हैं कि इससे अनेक भौतिक स्थितियों का निदर्शन किया जा सकता है।

अत:, क्या गणितीय निदर्शन सभी समस्याओं का उत्तर है, बिल्कुल नहीं! इसकी अपनी सीमाएँ हैं।

अत: यह बात हमें अपने मस्तिष्क में रखना चाहिए कि निदर्श वास्तिवक जीवन से जुड़ी समस्या का केवल एक सरलीकरण है और ये दोनों समान नहीं होते। यह बहुत कुछ उस अंतर के समान है जो किसी देश के भौतिक लक्षणों को दर्शाने वाले मानचित्र और स्वयं उस देश में होता है। इस मानचित्र से हम समुद्र तल से एक स्थान की ऊँचाई तो ज्ञात कर सकते हैं परन्तु हम यहाँ के लोगों के अभिलक्षणों के बारे में कुछ ज्ञात नहीं कर सकते। अत: हमें निदर्श का प्रयोग केवल उद्देश्य को ध्यान में रखकर करना चाहिए और यह भी ध्यान रखना होता है कि इसका निर्माण करते समय हमने किन-किन कारकों की उपेक्षा कर दी है। हमें निदर्श का प्रयोग केवल लागू होने वाली सीमाओं के अंदर ही करनी चाहिए। आगे की कक्षाओं में हम इस पहलू पर कुछ विस्तार से चर्चा करेंगे।

प्रश्नावली A 2.3

- 1. आपकी पाठ्य पुस्तक में दी गई शब्द-समस्याओं को हल करने में और गणितीय निदर्शन के प्रक्रम में क्या अंतर है?
- 2. मान लीजिए आप चौराहे पर खड़े वाहनों के प्रतीक्षा-काल को कम-से-कम करना चाहते हैं। निम्नलिखित कारकों में कौन-से कारक महत्वपूर्ण हैं और कौन-से कारक महत्वपूर्ण नहीं हैं?
 - (i) पेट्रोल की कीमत।

380

(ii) वह दर जिससे चार अलग-अलग सड़कों से आने वाले वाहन चौराहे पर पहुँचते हैं।

(iii) साइकिल और रिक्शा आदि जैसी धीमी गति से चलने वाले वाहनों और कार तथा मोटर साइकिल जैसी तेज गति से चलने वाले वाहनों का अनुपात।

A 2.5 सारांश

इस परिशिष्ट में, आपने निम्नलिखित बिन्दुओं का अध्ययन किया है:

- 1. शब्द-समस्याओं को हल करने में प्रयुक्त चरणों का पुनर्विलोकन करना।
- 2. कुछ गणितीय निदर्शों का निर्माण करना।
- 3. गणितीय निदर्शन में प्रयुक्त नीचे बॉक्स में दिए गए चरणों पर चर्चा:
 - 1. सूत्रण:
 - (i) समस्या का कथन लिखना
 - (ii) सुसंगत कारकों को पहचानना
 - (iii) गणितीय वर्णन
 - 2. हल ज्ञात करना
 - 3. वास्तविक जगत से जुड़ी समस्या के संदर्भ में हल का निर्वचन
 - 4. यह देखना कि किस सीमा तक निदर्श अध्ययन की जा रही समस्या का एक उत्तम निरूपण है।
- 4. गणितीय निदर्शन का उद्देश्य, लाभ और सीमाएँ।