

y fundamentos de simulación digital

Leonardo Plazas Nossa Germán Moncada Méndez

Leonardo Plazas Nossa

Es Ingeniero Electrónico y Magíster en Teleinformática; tiene 12 años de experiencia en el sector de las Telecomunicaciones y 9 años como docente en la Universidad Distrital Francisco José de caldas.

Germán Moncada Méndez

Es Ingeniero Electrónico, Especialista en Física y en Ingeniería de Software, se ha desempeñado como docente en la Universidad Piloto de Colombia, Universidad de La Salle y en la Universidad Distrital Francisco José de caldas.

Conceptos y fundamentos de simulación digital

Leonardo Plaza Nossa Germán Moncada Méndez

_ Contenido

Pre	Presentación		
1.	Introducción		13
	1.1.	Usos de la simulación	14
	1.2.	Planeación del modelo de simulación y su experimentación	17
	1.3.	Cultura de la simulación en diferentes escenarios	18
	1.3.1.	Gestión cualitativa	18
	1.3.2.	Gestión cuantitativa	19
	1.4.	Orígenes de la simulación	19
	1.5.	Algunos conceptos básicos de la POO	21
	1.6.	Estado actual de la simulación	22
	1.7.	Desarrollo de simulaciones como recursos de aprendizaje	23
	1.7.1.	El modelo conceptual	24
	1.7.2.	Construcción del modelo conceptual	25
	1.7.2.1	. Dinámica molecular y dinámica browniana	27
2.	Modelos		31
	2.1.	El modelo de espacio de estados	35
	2.2.	Modelos estocásticos	37
	2.2.1.	Modelo Bayesiano	38
	2.2.2.	Bootstrapping como inferencia estadística	39
	2.2.3.	Modelos con memoria larga	43
	2.3.	Criterios de selección de un modelo	44

	2.4.	Validación de un modelo	44
	2.5.	Clasificación de los modelos	45
	2.5.1.	Sistemas que se pueden modelar	48
	2.5.2.	Proceso estocástico	49
	2.5.3.	Modelos determinísticos	51
	2.6.	Uso y ventajas de los modelos	54
	2.6.1.	Proceso de una simulación	55
3.	Valid	ación de la simulación de un modelo	57
	3.1.	Diseño del experimento	58
	3.2.	Prueba de hipótesis	58
	3.3.	Diseño experimental	59
	3.3.1	Estimación de la función de verosimilitud	61
	3.3.2	Errores de la simulación	69
	3.3.3.	Fiabilidad de software para simulación	70
	3.3.4.	Modelos de fiabilidad de software	71
4.	Espec	cificaciones en el desarrollo de software de simulación	75
	4.1.	Importancia de los requerimientos	75
	4.2.	Requisitos software de simulación	79
	4.3.	Diseño y realización de un modelo	85
5.	Uso y	limitaciones de la simulación	91
	5.1.	Bases para la simulación por computador	92
	5.2.	Enfoque informático de la simulación	93
	5.3.	Realización de la simulación	94
6.	Interpretaciones de probabilidad		
	6.1.	Definición de proceso aleatorio	98
	6.2.	Modelos de procesos aleatorios prácticos	99
	6.3.	Conceptos sobre σ álgebra	101
	6.3.1.	Variables aleatorias	103
	6.3.2.	Función acumulativa de probabilidad	103
	6.3.3.	Variables aleatorias de 2-dimensiones	104
	6.3.4.	Probabilidad condicional bivariada	105

7.	Distr	ibuciones de probabilidad	107
	7.1.	Variables aleatorias continuas	107
	7.1.1.	Distribución normal o gaussiana	110
	7.1.2.	Distribución log-normal	110
	7.1.3.	Distribución de Weibull	110
	7.1.4.	Distribución Gamma	111
	7.2.	Variables aleatorias discretas	111
	7.2.1.	Distribución binomial	112
	7.2.2.	Distribución exponencial	112
	7.2.3.	Distribución de Poisson	112
	7.2.4.	Distribución chi-cuadrado	115
8.	Procesos aleatorios de Poisson y gaussianos		117
	8.1.	Proceso de Poisson	117
	8.1.1.	Modelo de Poisson para la frecuencia	119
	8.2.	Proceso aleatorio gaussiano	122
	8.2.1.	Fractalidad	122
9.	Generación de números aleatorios		129
	9.1.	Propiedades deseadas de un generador	131
	9.2.	Generadores congruenciales-lineales (GCL)	131
	9.3.	Generadores congruenciales lineales multiplicativos	133
	9.4.	Condiciones estadísticas de la sucesión pseudoaleatoria	134
10.	Pruebas de bondad de ajuste de números aleatorios		137
	10.1.	Prueba de chi-cuadrado	138
	10.2.	Prueba de Kolmogorov-Smirnov	139
	10.3.	Aplicaciones de números aleatorios	142
	10.3.1.	Uso de números aleatorios para evaluar integrales	142
11.	Generación de variables aleatorias		147
	11.1.	Transformada inversa para distribuciones discretas empíricas	147
	11.2.	Caso distribución uniforme discreta	148
	11.3.	Distribución normal	148
	11.3.1.	Algoritmo para generar variables aleatorias con distribución lognormal	152

	11.3.2.	Generación de variables aleatorias por el método de convolución	153
	11.4.	Transformación inversa de distribuciones continuas	153
	11.5.	Método del rechazo	156
12.	Teoría de colas		159
	12.1.	Tipos de colas	160
	12.2.	Sistema ideal de colas	162
	12.3.	Clasificación de un sistema de colas	163
	12.3.1.	Aplicaciones de la simulación en un sistema de colas	165
13.	Simulación de Montecarlo		167
	13.1.	Utilización de Montecarlo para simular un sistema de demanda de servicio	168
	13.1.1.	Simulación de eventos discretos	169
	13.1.2.	Desarrollo de la simulación y el algoritmo de una línea de espera	169
	13.2.	Modelado de series de tiempo	174
	13.2.1.	Modelos univariantes	174
	13.2.2.	Diseño de la simulación de un movimiento browniano	180
	13.3.	Recursividad del movimiento browniano	182
	13.3.1	Generación de los ensayos aleatorios	183
14.	Herramientas tecnológicas en la simulación		185
	14.1.	Tecnología en problemas complejos	185
	14.2.	Movimiento browniano generalizado	188
	14.3.	Coeficiente de Hurst	189
15.	Refer	encias	193

Presentación

La elaboración de este trabajo surge de la necesidad de integrar herramientas para el modelamiento y la simulación de procesos y sistemas en proyectos de investigación a nivel de pregrado y posgrado involucrando los temas de las ciencias y sus aplicaciones en la simulación de experimentos utilizando las tecnologías de las comunicaciones y la información. Adicionalmente, se pensó en la práctica pedagógica con sus protagonistas –el estudiante y el profesor–, por ello sería imposible no mencionar la experiencia.

En lo referente al contenido de este documento se decidió en primera instancia hacer un énfasis en el entendimiento, la comprensión y la apropiación de los conceptos y el manejo operativo de la simulación de fenómenos para desarrollar procesos de modelamiento de sistemas y su simulación mediante herramientas tecnológicas.

Este documento presenta los conceptos relacionados con la simulación de procesos estocásticos; en forma general, se incluyen los siguientes componentes de modelado:

Modelo lingüístico: capacidad de usar las palabras de modo efectivo (ya sea hablando, escribiendo, etc.), esto incluye la habilidad de manipular la sintaxis o escritura del lenguaje, la fonética o los sonidos del lenguaje, la semántica o significado del lenguaje o división, y la pragmática o los usos prácticos.

Modelo lógico matemático: capacidad de usar los números y las variables de manera efectiva y de razonar adecuadamente.

Modelo computacional: dada la complejidad matemática de algunos modelos, se precisa el conocimiento de herramientas informáticas, y la habilidad para adaptar los algoritmos que procesan las relaciones entre las variables que representan el modelo y su posterior codificación a un lenguaje de programación para ejecutar un experimento, que al realizarlo de manera física sería azaroso y costoso.

Modelo visual o representación gráfica de un sistema: describe las formas necesarias para representar un sistema; se pueden obtener relaciones funcionales que permiten extrapolar o interpolar el comportamiento a un fenómeno o proceso.

Desde la perspectiva disciplinar. Un estudiante, un analista o un ingeniero deben aplicar el pensamiento sistémico para clasificar e identificar las variables aleatorias o determinísticas de los sistemas sociales, físicos –como exposiciones de cuerpos a temperaturas extremas–, químicos, tecnológicos –como el control de posicionamiento de un satélite o la orientación de una antena–, y, en general, todos los relacionados con las ciencias naturales o socioeconómicas como las inversiones, la ecología y los sistemas de líneas de espera. Todos estos fenómenos se modelan y se simulan mediante experimentos en el computador, en el cual se calculan los parámetros que describen las medidas de rendimiento del sistema.

Con esta fuente de consulta que se añade a la bibliografía existente, se pretende aportar una visión de las pautas que ayudan a la toma de decisiones relacionadas con el desempeño de los sistemas, contribuyendo a una nueva perspectiva del estudio de la simulación.

El proceso de la simulación se mira en este contexto como sinergia entre las ciencias naturales, la matemática, la estadística y las ciencias de la computación. Sin ser un trabajo para especialistas, se supone que el lector tiene alguna experiencia previa en cuanto a los temas relacionados.

La elección del orden de consulta de los temas puede depender del criterio del lector, se pueden encontrar tópicos relacionados con el modelamiento y la simulación de sistemas determinísticos o aleatorios ya sea en forma sincrónica o asincrónica.

Los procesos de modelamiento y simulación, la realización de los algoritmos y su codificación de los casos propuestos serán abordados de manera rigurosa, pero su formalismo solo irá hasta donde lo permitan las herramientas matemáticas y computacionales convencionales.

Se recomienda al lector seguir el orden del libro tal como se presenta, e ir analizando los casos propuestos y su simulación; no obstante, si este escrito es abordado por especialistas se recomienda ir directamente a sus temas de interés.

El texto se inicia con un acercamiento intuitivo a las herramientas del modelaje, y paulatinamente estas se presentan de manera más formal en la medida en que se abordan los temas. Este trabajo se presenta de forma tal que se privilegia la memoria a largo plazo, y si se debe consultar de nuevo un tema se puede correlacionar con los ya vistos.

En la primera parte se hace una introducción a la identificación, caracterización y clasificación de variables de un sistema para su modelamiento y posterior simulación, se presentan las ventajas y desventajas del uso de la simulación, las estrategias para planear y construir el modelo de un sistema, y se hace una revisión de los conceptos básicos de sistemas, modelos y su simulación.

En la segunda parte se hace referencia a los tipos de simulación, tales como simulación continua, discreta, combinada (discreta-continua), Montecarlo y distribuida. Se hace una comparación entre soluciones analíticas y computacionales teniendo en cuenta que el modelo es una representación isomórfica o equivalente de la realidad. En la clasificación de los modelos se hace énfasis en dos grupos, los determinísticos y los aleatorios; los modelos aleatorios tienen un mayor grado de complejidad por tener propiedades relacionadas con la no linealidad, por ello su estudio requiere de una base sólida de conocimientos en probabilidad y procesos estocásticos.

En la tercera parte se presentan los métodos para generar variables aleatorias y los correspondientes algoritmos recursivos para la generación de números aleatorios; adicionalmente, se muestran las pruebas de bondad de ajuste de los valores aleatorios generados, lo anterior con el fin de validar el modelo y su simulación.

Finalmente, se presentan los parámetros necesarios para el diseño y la optimización del experimento de simulación en el computador; a título de ejemplo: se menciona el análisis de datos del movimiento browniano, el análisis de la varianza, y los valores medios o esperados, estos proporcionan un análisis de los resultados de la simulación.

Este trabajo fue realizado en torno al proyecto Cubesat-UD: Telemedicina y Telemetría adscrito al grupo de investigación Gitem de la Facultad de Ingeniería de la Universidad Distrital Francisco José de Caldas, por el ingeniero Leonardo Plazas Nossa, con la colaboración del ingeniero Germán Moncada Méndez de la Universidad Piloto de Colombia.

1. Introducción

El objetivo de este trabajo es presentar varios temas de la simulación o Experimentación de sistemas mediante el uso del computador; aunque está pensado y dirigido a estudiantes de ingeniería, no obstante puede ser utilizado por profesionales que analizan, gestionan y presentan soluciones a diferentes problemas.

Para abarcar los diversos tópicos se espera que los estudiantes estén familiarizados con las ciencias exactas y de la computación, en particular aquellos temas relacionados con la probabilidad, la aritmética congruencial, la física y la estadística. El conocimiento subrayado está relacionado con el formalismo necesario en el estudio de las ciencias que utilizan como lenguaje el simbolismo formal; sin embargo, se necesita una gran cantidad del ingrediente intuicionista como lo hace también la matemática.

Adicionalmente, se abordan algunos conceptos elementales acerca del origen y el estado actual de la simulación, sobre modelamiento de sistemas y experimentos en el computador, y se indican las principales ventajas y desventajas de los modelos de simulación y su clasificación. Uno de los puntos más importantes es el establecimiento de los pasos que se deben seguir para realizar un estudio de simulación. La simulación es la representación de la operación de algún proceso o sistema del mundo real a través del tiempo. Ya sea hecha manualmente o en un computador, la simulación involucra la generación de una historia artificial de un sistema y su observación para obtener inferencias relacionadas con las características operativas del sistema real. Los modelos de simulación pueden ser utilizados como una herramienta de análisis para predecir los efectos de cambios en sistemas existentes, o como una herramienta de diseño para predecir el comportamiento de sistemas nuevos.

Colecciones de la universidad distrital francisco josé de caldas

La Editorial UD se complace en entregar a sus lectores sus siete primeras colecciones con las cuales consolida su sello editorial. Con una llamativa propuesta visual, el lector podrá encontrar los mejores títulos en áreas como: literatura, medio ambiente, artes, antropología, historia, ingeniería, sociología, pedagogía y otros; nuestras colecciones son:

Letras colombianas Tierra y vida Didácticas Creaciones Espacios Diálogos Ciudadanía y democracia

Otros títulos de esta colección:

Transformación de imágenes a través del álgebra lineal Samuel Barreto Melo, Edgar Betancourt Rozo,

Visual Basic y ASP.NET a su alcance Carlos Vanegas

Diseño geométrico de vías con aplicaciones en Excel y Autocad Wilman Muñoz Con los nuevos avances de la tecnología se han cambiado las estrategias de solución de algunos problemas. Es así como el uso de las nuevas tendencias de la tecnología aplicada a la educación, dan un lugar prominente a la simulación como herramienta para el modelamiento y simulación de fenómenos naturales y/o sociales, tratados como experimentos aleatorios o deterministicos.

Este libro intenta recoger estas nuevas tendencias para que el estudiante analice, proponga y pueda practicar de manera intencional utilizando como eje de pensamiento el modelamiento y construcción, y caracterización de variables aleatorias, para solucionar problemas no deterministicos.

Conceptos y Fundamentos de simulación digital es un texto que nace del afán de apasionar a los estudiantes y por qué no, a profesores de ingeniería y de las ciencias exactas, por el estudio y práctica de la simulación digital.

