15-213

"The course that gives CMU its Zip!"

Integers Sep 3, 2002

Topics

- Numeric Encodings
 - Unsigned & Two's complement
- Programming Implications
 - C promotion rules
- Basic operations
 - Addition, negation, multiplication
- Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Initialization

```
x < 0 ⇒ ((x*2) < 0)</li>
ux >= 0
x & 7 == 7 ⇒ (x<<30) < 0</li>
ux > -1
x > y ⇒ -x < -y</li>
x * x >= 0
x > 0 & y > 0 ⇒ x + y > 0
x >= 0 ⇒ -x <= 0</li>
x <= 0 ⇒ -x >= 0 15-213, F'02
```

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

$$\text{Short int } \mathbf{x} = 15213;$$

$$\text{short int } \mathbf{y} = -15213;$$

$$\text{Bit}$$

■ C short 2 bytes long

	Decimal	Hex Binary	
X	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	152 ⁻	13	-152	13
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		45949		45242

Numeric Ranges

Unsigned Values

■
$$UMax = 2^w - 1$$
111...1

Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax$$
 = $2^{w-1} - 1$
011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

		W						
	8	16	32	64				
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615				
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807				
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808				

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- \blacksquare UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
 - K&R App. B11
- Declares constants, e.g.,
 - ULONG MAX
 - LONG_MAX
 - LONG_MIN
- Values platform-specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	– 7
1010	10	-6
1011	11	– 5
1100	12	–4
1101	13	-3
1110	14	– 2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

- \blacksquare U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- $\blacksquare T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer
 15-213, F'02

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;
```

Resulting Value

- No change in bit representation
- Nonnegative values unchanged
 - ux = 15213
- Negative values change into (large) positive values
 - uy = 50323

Relation between Signed & Unsigned

Maintain Same Bit Pattern

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

- 9 - 15-213, F'02

Relation Between Signed & Unsigned

Weight	-152	213	503	23
1	1	1	1	1
2	1	2	1	2
4	0	0	0	0
8	0	0	0	0
16	1	16	1	16
32	0	0	0	0
64	0	0	0	0
128	1	128	1	128
256	0	0	0	0
512	0	0	0	0
1024	1	1024	1	1024
2048	0	0	0	0
4096	0	0	0	0
8192	0	0	0	0
16384	1	16384	1	16384
32768	1	-32768	1	32768
Sum		-15213		50323

uy = y + 2 * 32768 = y + 65536

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

■ Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- **■** Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

Cons	stant ₁	Const	tant ₂	Relation	Evaluation
	0	OU		==	unsigned
	-1	0		<	signed
	-1	OÜ		>	unsigned
	2147483647	-21474	483648	>	signed
	2147483647U	-21474	483648	<	unsigned
	-1	-2		>	signed
	(unsigned) -1	-2		>	unsigned
	2147483647	214748	83648U	<	unsigned
– 12 –	2147483647	(int)	2147483648U	>	signed , F'02

Explanation of Casting Surprises

2's Comp. \rightarrow Unsigned

- 13 -

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

■ Make *k* copies of sign bit:

15-213, F'02

Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex		Binary					
X	15213			3В	6D			00111011	01101101
ix	15213	00	00	3В	6D	0000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

- 15 - 15-213, F'02

Justification For Sign Extension

Prove Correctness by Induction on k

■ Induction Step: extending by single bit maintains value

Key observation:

- $-2^{w-1} = -2^w + 2^{w-1}$
- Look at weight of upper bits:

$$x -2^{w-1} x_{w-1}$$

 $x' -2^{w} x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}$

Why Should I Use Unsigned?

Don't Use Just Because Number Nonzero

C compilers on some machines generate less efficient code

```
unsigned i;
for (i = 1; i < cnt; i++)
  a[i] += a[i-1];</pre>
```

Easy to make mistakes

```
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit's Worth of Range

Working right up to limit of word size

15-213, F'02

Negating with Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Increment

$$= -x + x' + (-x + 1) = -1 + (-x + 1)$$
 $= -x + 1 = -x$

Warning: Be cautious treating int's as integers

Comp. & Incr. Examples

x = 15213

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
~X	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 1001001 1
У	-15213	C4 93	11000100 10010011

0

	Decimal	Hex	Binary		
0	0	00 00	00000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	00000000 00000000		

- 19 - 15-213, F'02

Unsigned Addition

Standard Addition Function

■ Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \ge 2^w \end{cases}$$

Visualizing Integer Addition

Integer Addition

- 4-bit integers *u*, *v*
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

-21 - 15-213, F'02

Visualizing Unsigned Addition

Wraps Around

- If true sum ≥ 2^w
- At most once

True Sum

Overflow

- 22 - 15-213, F'02

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w}-1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$\mathsf{UAdd}_{\mathsf{w}}(u\,,\,\mathbf{0})\,=\,u$$

■ Every element has additive inverse

• Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

■ Will give s == t

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Visualizing 2's Comp. Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

- 26 - 15-213, F'02

Detecting 2's Comp. Overflow

Task

- Given $s = TAdd_w(u, v)$
- **Determine if** $s = Add_w(u, v)$
- Example

```
int s, u, v;
s = u + v;
```

Claim

Overflow iff either:

```
u, v < 0, s \ge 0 (NegOver)

u, v \ge 0, s < 0 (PosOver)

ovf = (u < 0 == v < 0) && (u < 0 != s < 0);
```


Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

Let
$$TComp_w(u) = U2T(UComp_w(T2U(u)))$$

 $TAdd_w(u, TComp_w(u)) = 0$

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Multiplication

Computing Exact Product of w-bit numbers x, y

Either signed or unsigned

Ranges

- Unsigned: $0 \le x^* y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*–1 bits
- Two's complement max: $x^* y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

15-213, F'02

Unsigned Multiplication in C

Standard Multiplication Function

■ Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to w-bit number $up = UMult_w(ux, uy)$
- Modular arithmetic: *up* = *ux* · *uy* mod 2^w

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number $p = TMult_w(x, y)$

15-213, F'02

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p

Power-of-2 Multiply with Shift

Operation

- \blacksquare u << k gives u * 2^k
- Both signed and unsigned

Examples

- u << 3
- u << 5 u << 3 u * 24
- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $[\mathbf{u} / 2^k]$
- Uses logical shift

	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 В6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\blacksquare x \gg k \text{ gives } [x / 2^k]$
- Uses arithmetic shift
- Rounds wrong direction when $\mathbf{u} < \mathbf{0}$

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
у >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil x \mid 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Case 1: No rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication

$$0 \leq \mathsf{UMult}_{w}(u, v) \leq 2^{w}-1$$

Multiplication Commutative

$$UMult_w(u, v) = UMult_w(v, u)$$

■ Multiplication is Associative

```
UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)
```

■ 1 is multiplicative identity

$$UMult_w(u, 1) = u$$

Multiplication distributes over addtion

```
UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))
```

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

■ Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

```
u > 0 \Rightarrow u + v > v

u > 0, v > 0 \Rightarrow u \cdot v > 0
```

■ These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
-39 - 15213 * 30426 == -10030 (16-bit words)
15-213, F'02
```

C Puzzle Answers

- Assume machine with 32 bit word size, two's comp. integers
- *TMin* makes a good counterexample in many cases

$$\square x < 0$$
 \Rightarrow ((x*2) < 0) False: TMin

$$\square$$
 ux >= 0 True: $0 = UMin$

□ x & 7 == 7
$$\Rightarrow$$
 (x<<30) < 0 True: $x_1 = 1$

$$\square$$
 ux > -1 False: 0

$$\Box x > y$$
 $\Rightarrow -x < -y$ False: -1 , TMin

$$\Box x * x >= 0$$
 False: 30426

$$\square x > 0 \&\& y > 0 \Rightarrow x + y > 0$$
 False: TMax, TMax

$$\square x >= 0$$
 $\Rightarrow -x <= 0$ True: $-TMax < 0$

$$\square x \le 0$$
 $\Rightarrow -x \ge 0$ False: TMin