Machine Learning Basics — FULL REVISION

Day 1: Introduction to Supervised Learning

- What is Supervised Learning?
 - You train the model on labeled data (input + correct output).
 - Two types:
 - **Regression** → Predict numbers (e.g., price)
 - Classification → Predict categories (e.g., spam/not spam)

Real-life Example:

- Regression: Predicting house price from size
- Classification: Predicting if tumor is benign or malignant
- Notebook: Supervised_learning_intro.ipynb

🔽 Day 2: Linear Regression

- Simple Linear Regression:
 - One input feature (X) → one output (Y)
 - Formula: y = mx + c(m = slope, c = intercept)

Multiple Linear Regression:

• More than one feature: y = m1x1 + m2x2 + ... + c

You learned:

- How to plot the regression line
- Evaluate using R² score (closer to 1 = better)
- Residual plots to check assumptions
- Notebook: Linear_Regression_in_depth.ipynb

Day 3: Logistic Regression

- Goal:
 - Predict probabilities for classification problems (output is 0 or 1)

You implemented:

- Logistic regression on Breast Cancer dataset
- Evaluated with:
 - Confusion Matrix (TP, FP, FN, TN)
 - ROC Curve and AUC Score
 - Accuracy, Precision, Recall, F1-Score
- Notebook: Logistic_Regression_Breast_Cancer_data.ipynb

Day 4: Decision Trees & Random Forests

Decision Trees:

- Splits data into branches using feature thresholds
- Good for both classification & regression

Random Forest:

- Multiple decision trees combined (ensemble)
- More accurate and robust
- Feature importance gives you insight into which features matter most
- Folder: Decision Trees & Random Forests

Day 5 (Part A): Model Evaluation Metrics

Classification Metrics:

- Accuracy: Correct predictions / total
- Precision: Correct positives out of predicted positives
- Recall: Correct positives out of actual positives
- F1 Score: Harmonic mean of Precision & Recall
- ROC Curve: True Positive Rate vs. False Positive Rate
- **AUC**: Area under ROC Curve (1 = best)

Day 5 (Part B): Unsupervised Learning

K-Means Clustering:

- Groups data into K clusters
- You used Elbow Method to choose the best K
- Visualized clusters

PCA (Principal Component Analysis):

- Reduced number of features
- Kept only the most important directions of variance
- Used for visualization and speeding up models
- Folder: Model Evaluation & Unsupervised Learning

🔽 Day 6 (Part A): Model Tuning — Data Split

- train_test_split:
 - Split your data into training and testing sets (usually 80/20)
- Avoid Data Leakage:
 - Don't leak test data info into training
 - Always split first, then scale or encode separately

Day 6 (Part B): Cross Validation + GridSearchCV

- K-Fold Cross Validation:
 - Divides data into K parts and rotates training/testing

Reduces overfitting, gives better model reliability

GridSearchCV:

- Searches over a grid of hyperparameters
- Picks the best model using cross-validation scores

Folder: Classification Model Tuning

Day 7: ML Mini Project — House Price Prediction

You Did:

- Cleaned & preprocessed the dataset (nulls, scaling, encoding)
- Applied multiple models:
 - Linear Regression
 - o Decision Tree
 - Random Forest
 - Ridge & Lasso (regularized regressions)

III Evaluated Using:

MAE: Mean Absolute Error

• MSE: Mean Squared Error

• RMSE: Root Mean Squared Error

• R² Score: Measures goodness of fit

Project: House_Price_Prediction_ML

- Organized folders for each day's topic
- Well-documented notebooks
- Tisualizations of models and performance
- Great for showing recruiters your hands-on skills

What You Mastered

Skill Tools/Concepts

Regression & Classification Linear & Logistic Regression

Tree-based Models Decision Tree, Random Forest

Model Evaluation Accuracy, Precision, Recall, ROC-AUC

Unsupervised Learning K-Means, PCA, Clustering, Elbow method

Model Tuning Cross-validation, GridSearchCV

Real-world ML project Data Cleaning, Feature Engineering, Multiple Models