Visualization

info-20002: foundations of informatics

Why Visualisation

Pre-attentive Attention

Preattentive processing of visual information is performed automatically on the entire visual field detecting basic features of objects in the display. Such basic features include colors, closure, line ends, contrast, tilt, curvature and size. These simple features are extracted from the visual display in the preattentive system and later joined in the focused attention system into coherent objects. Preattentive processing is done quickly, effortlessly and in parallel without any attention being focused on the display. [Treisman, 1985; Treisman, 1986]

Treisman, A. (1985). <u>Preattentive Processing in Vision</u>. Computer Vision, Graphics, and Image Processing (31):2, pp. 157–177

Why Visualisation

Treisman, A. (1985). <u>Preattentive Processing in Vision</u>. Computer Vision, Graphics, and Image Processing 31(2): 157–177

Why Visualisation

An example of a boundary detection from Treisman's experiments: (a) a boundary defined by a unique feature hue (red circles and red squares on the top, blue circles and blue squares on the bottom) is preattentively classified as horizontal; (b) a boundary defined by a conjunction of features (red circles and blue squares on the left, blue circles and red squares on the right) cannot be preattentively classified as vertical.

Treisman, A. (1985). <u>Preattentive Processing in Vision</u>. Computer Vision, Graphics, and Image Processing (31):2, pp. 157–177

Visualization is

- Way of seeing meaning/relationships in data prosthetic to our mental models
- Visualisations amplify cognition
- Visualisations provide a space for exploring data
- Exploratory and explanatory
 - "discover the unexpected; describe & explain the expected" (National Visualization and Analytics Center, Pacific Northwest Laboratory)

Visualization in story telling

Napoleon's 1812 Russian Campagin

Minard's map of Napoleon's 1812 Russian Campagin

Visualization is

a mapping from *data variables* to *visual variables*

Examples:

- Temperature → brightness of colour
- City → hue of colour
- City \rightarrow location (x coordinate)

Data variables

Continuous and discrete variables

Continuous

Numerical or quantitative (Mackinlay, 2086) Numbers or anything that can have a range

Discrete

Anything else

• Discrete/categorical

Ordinal

Ordered/ranked set

Example: (N, P, H3, H2B, H2A, H1)

Nominal

Unordered set

Examples: (sydney,melbourne,perth,...) and (male,female)

Data variables - Steven's Types (Scales)

- Nominal scale
- Ordinal scale
- Interval scale
 - Has no meaningful zero point (no origin)
 - Express difference (interval) between two measurements
 - Examples: dates (AD), latitude
 - Celcius temperature scale
 - To say that "2°C temperature is twice as hot as 1°C" is NOT meaningful

Ratio scale

- Has a meaningful, unique and non-arbitrary zero point.
- Examples: mass, length, duration, angle.
- Kelvin temperature scale contains absolute zero point.
- It is meaningful to say that "a 2-metre object has "twice the length" of a 1-metre object"

Stevens, S. S. (1946). "On the Theory of Scales of Measurement". Science 103 (2684): 677–680.

Visual Variables

Functions of Visualisation

Associative function

grouping of all correspondences differentiated by a variable perceived as *similar*

Selective function

isolation of correspondences differentiated by a variable perceived as *different*, forming families

Ordering function

a spontaneous visual perception of rank perceived as *ordered*

Quantitative function

a visual difference between two categories expressed as a numerical ratio perceived as *proportional*

Variables vs Functions

Accuracy of Visual Variables

Accuracy of Visual Variables

What are the data/visual variables?

What are the data/visual variables?

Visualisation Steps

Data Definition

Define the visualisation goal and the supporting data variables

Visualisation Selection

Select appropriate visual structure

Data Pre-Processing

Preparing raw data to visualisation-ready data

Visual Transformation

Mapping data variables to visual elements