Nasa Formal Methods (NFM) 2024, Moffett Field, California (USA)

Quantitative Input Usage Static Analysis

Denis Mazzucato, Marco Campion, and Caterina Urban

4 June 2024


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                 -20° angle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3: risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```



```
1: landing coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```

```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
   risk = 0
4: else if landing_coeff > 5 then
   risk = 3
6: else
7: risk = floor(landing_coeff) - 2
                                    langle
```



```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
   risk = 3
6: else
   risk = floor(landing_coeff) - 2
                                    langle
```


$$risk = 3$$

$$risk = 3$$

- risk = 3
- 0 < risk < 3


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
                                                       speed
3:  risk = 0
4: else if landing_coeff > 5 then
5: risk = 3
6: else
7: risk = floor(landing_coeff) - 2
```


Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Number of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Distance of reachable outcomes

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

RANGE

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

RANGE

Goal: Quantify the impact of speed and angle on risk

Distance of reachable outcomes

Num	ber o	f reac	habl	e ou	tcomes

	RANGE	OUTCOMES
angle	3	2
speed	2	3

	Range	OUTCOMES
angle	3	2
speed	2	3

Find k such that

	Range	Outcomes
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

Find k such that

	Range	OUTCOMES
angle	$3 \le k$	$2 \leq k$
speed	$2 \le k$	$3 \leq k$

Smallest *k* permitted by the abstraction!

Find k such that

	Range	OUTCOMES
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

Smallest *k* permitted by the abstraction!

1. Output Buckets

Find k such that

	Range	OUTCOMES
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

Smallest *k* permitted by the abstraction!

- 1. Output Buckets
- 2. Backward Abstract Analysis

Find k such that

	Range	OUTCOMES
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

Smallest k permitted by the abstraction!

- 1. Output Buckets
- 2. Backward Abstract Analysis
- 3. Abstract Implementations of RANGE and OUTCOMES

Find k such that

	Range	OUTCOMES
angle	$3 \le k$	$2 \le k$
speed	$2 \le k$	$3 \leq k$

Smallest *k* permitted by the abstraction!

- 1. Output Buckets
- 2. Backward Abstract Analysis
- 3. Abstract Implementations of RANGE and OUTCOMES

RANGE¹ and OUTCOMES¹


```
1: landing_coeff = abs(angle) + speed
2: if landing_coeff < 2 then
 3: risk = 0
4: else if landing_coeff > 5 then
 5: risk = 3
 6: else
                                                          risk
 7: risk = floor(landing_coeff) - 2
      angle speed
                                                                      Dutput Space
Input Space
                          Input-Output Relations
```


1) Output Buckets

Abstract Elements

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

angle =
$$-4$$
 \wedge
 $1 \le \text{speed} \le 3$

angle = 1
 \wedge
 $1 \le \text{speed} \le 3$

Abstract Elements

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

3) Abstract Implementation of Impact Definitions

Combinations

high high low medium low low medium low

angle

speed

Combinations

hight lowt medium lowt medium lowt lowt speed

hight lowt medium lowt lowt speed

Combinations

angle

speed

high high low medium medium medium

Combinations

angle

speed

Combinations

high high low medium medium low low low

angle

Combinations

hight hight lowt medium lowt lowt lowt speed

hight lowt medium lowt lowt speed

Combinations

hight hight lowt medium lowt lowt speed

hight lowt medium lowt lowt speed

Combinations

high high low medium medium medium

angle

high high low medium medium medium Combinations

angle

angle 2 3 3

Combinations	high high medium	high [‡] low [‡]	low [‡] medium [‡]	high high medium low	
angle	2	3	2	3	\Longrightarrow

Goal: Quantify the impact of speed and angle on risk

	Range	Outcomes	
angle	3	2	
speed	2	3	

Goal: Quantify the impact of speed and angle on risk

	Range	Outcomes	RANGE	OUTCOMES ^{\(\beta\)}
angle	3	2	3	4
speed	2	3	2	3

Source of Imprecision

Abstraction of the Backward Analysis

Source of Imprecision

Abstraction of the Backward Analysis

Choice of the Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal_avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk1, uk2, uk3, uk4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal_avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk1, uk2, uk3, uk4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```


41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

41 Output Buckets

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uk_1, uk_2, uk_3, uk_4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```

C. M. Reinhart and K. S. Rogoff. Growth in a time of debt.

American Economic Review 2010.

+1.7%

```
1: def mean_growth_rate_60_90(
       portugal1, portugal2, portugal3,
2:
3:
       norway1,
4:
       uk1, uk2, uk3, uk4,
5:
       usa1, usa2, usa3):
     portugal avg = avg(portugal1, portugal2, portugal3)
6:
     norway_avg = avg(norway1)
     uk_avg = avg(uki, uk2, uk3, uk4)
8:
     usa_avg = avg(usa1, usa2, usa3)
9:
     return avg(portugal_avg, norway_avg, uk_avg, usa_avg)
10:
```


Goal: Quantify the impact of speed and angle on risk 1: landing_coeff = abs(angle) + speed 2: if landing_coeff < 2 then 3: risk = 0 4: else if landing_coeff > 5 then 5: risk = 3 6: else 7: risk = floor(landing_coeff) - 2

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024

Spoiler (Submitted)

Quantify the Impact on Timing Behavior

Denis Mazzucato et al. Quantitative Input Usage Static Analysis, NFM 2024