

# ADVANCED VEHICLE BLACKBOX

Jose Garza, Prisha Srivastava, Lide Su, Christian Loth

# Problem Background



- Chances of collision increase as drivers perform unsafe maneuvers.
- Drivers are unaware of their driving behaviours.
- Insurance companies charge for insurance based on assumptions of age and car model. Creates unfair system.
- Accidents are preventable.



## Needs Statement



- Drivers need to recognize their bad driving habits in order to determine areas of improvement and awareness of their consequences.
- Drivers need a device that constantly monitors their driving behavior.
- Drivers need a customized user interface that develops a holistic driving profile for them.



# Goal and Objectives



The goal of this project is to encourage healthy and responsible driving practices through automatic, real-time monitoring systems. Incorporating a user-specific interface creates an accurate profile such that it increases self-awareness. We hope that by creating a time sensitive profile algorithm, we are able to realistically grasp a driver's current driving behavior and through consistent monitoring, reduce their chances of collisions or accidents.

## Literature Review



- Military Vehicle Blackbox Ahmad Asi, Benjimin Chang, Mehdi Dadfarnia, Serge Kamta, and Ifzalul Khan
  - o Prevent Data Loss: high-speed SSD, pressure sensor, GPS, data rotator software.
  - o Funded by US Military
- IoT-based Blackbox Karthika M\*, Anitha A
  - o Data sent to IoT via ESP8266 chip
  - Alcohol sensor, gyroscopes, light and ultrasonic sensor
  - Output displayed in LCD Screen, saved on cloud
- IoT-based Blackbox IEEE
  - Similar to the above project
  - Sends text messages for data retrieval
  - Contacts medical assistance during collisions
  - Focus on protecting victims of car crashes.
- DVR Dashcams
  - Contain Event Data Recorder
  - Cost-efficient

# Design Constraints and feasibility Im | TEXAS A&M

### Technical

- We will be relying on a combination of wired and wireless sensor implementation (i.e OBD) to reduce wiring issues.
- Proper Wiring is main focus here

## Physical

- We are designing our prototype with compactness in mind, in order to make our product accessible for various vehicles.
- Our outside "hull" for our microcomputer will be 3-D printed such that it contains ports for outside connections and a space to fit the raspberry pi inside.

## Economical

- Provided \$600 Budget: Purchase of materials for embedded system
- Remaining budget for unexpected purchases

### • Time

- End of April
- Create bi-weekly sprints + burn up charts.

## Evaluation of alternative solutions IM TEXAS A&M

### Dash Cams

- Standard dash cams lack the implementation of GPS, IMU and OBD
- They are only helpful in the case of collision, as they keep videographic proof of lanes leading upto the collision.
- Therefore, it cannot identify the driver's behavior because anyone can get into a bad accident, whether they are good or bad drivers.

#### Front+Rear Camera

- Image recognition is expensive and difficult, making it a tough starting point for our project.
- O Does not guarantee accuracy and often requires training models several times on lane detection to get it to work well.
- o limits insightful data on a user's holistic driving behavior.

#### Standard IMU

• IMU lacks insight from road conditions (i.e bumpy, traffic giving inconsistent speed reading) needed for an advanced driving detection system.

#### • GPU based Web Platform

• Location tracking and speed detection through GPS may lack context in situations where driving above or below the speed limit is realistic.

## • Speed Alert System

• Creating an alarm system that sounds an alarm each time a user goes above speed limit can result in distracted drivers, causing them to be frustrated and reduce their focus from responsible driving.

# Proposed Design



## High Level Block Design



# Proposed Design



Sensor & Data Retrieval Flowchart



# Proposed Design





Embedded
System Design
Flowchart

# Approach for design validation IM TEXAS A&M

Our design is intended to transition from prototype to final deployment through a series of layered testing that allows us to thoroughly examine the functionality of hardware and software aspects of our project.

## Hardware

- Run simple python commands on Raspi terminal to check each sensor status.
- Use multimeter to check soldering connection

## Software

- Viewing 'Transaction Logs' in SQL Server to check if new data entry has been made for a given timestamp
- Usage Scenario
  - Slow-speed Area
  - o Fast-lane roads
  - High Traffic Area
  - o Rough Terrain Area

# Economic analysis and budget IM | TEXAS A&M

- Total = \$345.50
- Economical viability: Volume Production \$250.
- Sustainability: Parts are ordinary common parts that can easily be found from more than one vendor
- Manufacturability: Highly modularized and flexible since data is handled on the cloud side

| Description                    | Price    | Quantity |
|--------------------------------|----------|----------|
| Raspberry Pi 4 Camera          | \$24.59  | 1        |
| Adafruit GPS Hat               | \$29.95  | 1        |
| External GPS antenna           | \$19.95  | 1        |
| IMU (Accelerometer & Gyro)     | \$14.95  | 1        |
| Standoffs for Pi HATs          | \$0.75   | 1        |
| RF Adapter cable               | \$3.95   | 1        |
| Bluetooth interface OBD port   | \$13.99  | 1        |
| Raspberry Pi 4                 | \$167.95 | 1        |
| SD card with 512 GB            | \$29.99  | 1        |
| Car charger for Raspberry Pi 4 | \$14.44  | 1        |
| Suction Cup Mount              | \$24.99  | 1        |
| 3D Printed Enclosure           | \$25.00  | 1        |

## Schedule of tasks



| Task # | Task Description                          | Start Date | End Date   |
|--------|-------------------------------------------|------------|------------|
| 1      | Web Application starter code              | 02/17/2022 | 02/22/2022 |
| 2      | Dashboard Design                          | 02/22/2022 | 02/24/2022 |
| 3      | Assemble and install Camera, IMU, GPS     | 02/24/2022 | 02/28/2022 |
| 4      | Connect Raspberry Pi to Server            | 02/24/2022 | 02/28/2022 |
| 5      | Connect OBD port interface                | 02/24/2022 | 02/28/2022 |
| 6      | Setup AWS Database                        | 02/24/2022 | 03/10/2022 |
| 7      | Setup AWS Lambda & API                    | 02/24/2022 | 03/10/2022 |
| 8      | Obtain raw data from modules              | 02/28/2022 | 03/03/2022 |
| 9      | Integrate OBD python library              | 02/28/2022 | 03/07/2022 |
| 10     | Concurrently obtain data from GPS and OBD | 03/08/2022 | 03/15/2022 |
| 11     | Format data file                          | 03/10/2022 | 03/24/2022 |
| 12     | Record Camera video and store as needed   | 03/10/2022 | 03/20/2022 |
| 13     | Retrieve data and make error handlings    | 03/15/2022 | 03/29/2022 |
| 14     | WebApp Google API integration             | 03/10/2022 | 03/17/2022 |
| 15     | WebApp: Login View                        | 03/10/2022 | 03/17/2022 |
| 16     | WebApp: Report View                       | 03/10/2022 | 03/22/2022 |
| 17     | Implement uploading data to server        | 03/17/2022 | 03/24/2022 |
| 18     | Develop analyzing algorithm               | 03/22/2022 | 04/05/2022 |
| 19     | Testing-WebApp displaying retrieved data  | 03/24/2022 | 04/07/202  |
| 20     | Determine metrics for reckless behavior   | 04/05/2022 | 04/12/2022 |
| 21     | Final testing                             | 04/05/2022 | 04/19/2022 |
| 22     | Correct/Perform minor improvements        | 04/14/2022 | 04/21/2022 |

## Major Tasks Schedule Breakdown:

- Assemble and install necessary packages of the modules by the 02/28/2022
- Software: Setup necessary AWS API functions, tables in database, among other AWS configurations by 03/10/2022
- Hardware: Working on concurrently obtaining and storing data of all the modules by 03/17/2022
- Web Application Development with basic data and APIs functionality: 03/24/2022
- Develop Analyzing Algorithm by 04/05/2022
- Metrics testing and final testing by April 19, 2022

# Project Management and teamwork IM TEXAS A&M

 Due to the project encompassing hardware and software at a similar level. The team will split into two groups:

Hardware





Software





# Societal, safety and environmental analysis



## Societal

Society benefits directly from reduced poor driving practices -- more saved lives.

## Safety

 Blackbox will be manufactured in a compact design such that driver's ability to drive is not impacted by the device

## Environmental

- Reducing carbon footprint through use of car's battery outlet instead of external source of power.
- Reusing data during training purposes to reduce gas emissions caused from project

