CHAPTER 4:

PARAMETRIC METHODS SECTIONS 4.1 ~ 4.5 half of 4.6

Parametric Estimation

- $\square \mathcal{X} = \{ x^t \}_t \text{ where } x^t \sim p(x)$
- Parametric estimation:

Assume a form for p ($x \mid \theta$) and estimate θ , its sufficient statistics, using X

e.g., N (
$$\mu$$
, σ^2) where $\theta = \{ \mu$, $\sigma^2 \}$

Maximum Likelihood Estimation

lacksquare Likelihood of heta given the sample X

$$I(\vartheta | X) = p(X | \vartheta) = \prod_{t} p(x^{t} | \vartheta)$$

(note the conditional independence)

■ Log likelihood

$$\mathcal{L}(\vartheta \mid \mathcal{X}) = \log I(\vartheta \mid \mathcal{X}) = \sum_{t} \log p(x^{t} \mid \vartheta)$$

Maximum likelihood estimator (MLE)

$$\vartheta^* = \operatorname{argmax}_{\vartheta} \mathcal{L}(\vartheta \mid X)$$

Examples: Bernoulli/Multinomial

 \square Bernoulli: Two states, failure/success, x in $\{0,1\}$

$$P(x|p_{o}) = p_{o}^{x} (1 - p_{o})^{(1-x)}$$

$$L(p_{o}|X) = \log \prod_{t} p_{o}^{x^{t}} (1 - p_{o})^{(1-x^{t})}$$

$$MLE: p_{o} = \sum_{t} x^{t} / N$$

□ Multinomial: K>2 states, x_i in $\{0,1\}$

$$P(x_{1},x_{2},...,x_{K}|p_{1},p_{2},...,p_{K}) = \prod_{i} p_{i}^{x_{i}}$$

$$\mathcal{L}(p_{1},p_{2},...,p_{K}|\mathcal{X}) = \log \prod_{t} \prod_{i} p_{i}^{x_{i}^{t}}$$

$$MLE: p_{i} = \sum_{t} x_{i}^{t} / N$$

See Tutorial 1 for the derivation.

Gaussian (Normal) Distribution

$$\square$$
 $p(x) = \mathcal{N}(\mu, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

 \square MLE for μ and σ^2 :

$$m = \frac{\sum_{t} x^{t}}{N}$$

$$S^{2} = \frac{\sum_{t} (x^{t} - m)^{2}}{N}$$

Evaluating an estimator: Bias and Variance

Unknown parameter θ Estimator d = d(X) on sample XBias: $b_{\theta}(d) = E_{X}[d(X)] - \theta$ (0 means unbiased estimator, e.g. sample mean, which is also consistent) $E[d] \quad \theta$ bias

Variance: E_{χ} [(d (χ)– E_{χ} [d (χ)])²]

Mean square error:

$$r (d,\theta) = E [(d-\theta)^{2}]$$

$$= (E [d] - \theta)^{2} + E [(d-E [d])^{2}]$$

$$= Bias^{2} + Variance$$

(see textbook page 70 for a detailed derivation)

Evaluating an estimator: Bias and Variance

Bayes' Estimator

- \Box Treat ϑ as a random variable with prior $p(\vartheta)$
- □ Bayes' rule: $p(\vartheta | X) = p(X | \vartheta) p(\vartheta) / p(X)$ (posterior)
- Maximum a Posteriori (MAP):

$$\vartheta_{\text{MAP}} = \operatorname{argmax}_{\vartheta} p(\vartheta \mid \mathcal{X}) = \operatorname{argmax}_{\vartheta} p(\mathcal{X} \mid \vartheta) p(\vartheta)$$

- \square Maximum Likelihood (ML): $\vartheta_{\mathsf{ML}} = \operatorname{argmax}_{\vartheta} p(\mathcal{X} | \vartheta)$
- \square Bayes': $\vartheta_{\text{Bayes'}} = \mathsf{E}[\vartheta \,|\, \mathcal{X}] = \int \vartheta \, \rho(\vartheta \,|\, \mathcal{X}) \, d\vartheta$
- □ Full: $p(x \mid X) = \int p(x \mid \vartheta) p(\vartheta \mid X) d\vartheta$

Bayes' Estimator: Example

- $\square x^t \sim \mathcal{N}(\vartheta, \sigma_0^2)$ and $\vartheta \sim \mathcal{N}(\mu, \sigma^2)$
- $\square \vartheta_{ML} = m = \sum_{t} x^{t} / N$
- $_{\square}$ $\vartheta_{\mathsf{MAP}}=\vartheta_{\mathsf{Bayes'}}=$

$$E[\theta | X] = \frac{N/\sigma_0^2}{N/\sigma_0^2 + 1/\sigma^2} m + \frac{1/\sigma^2}{N/\sigma_0^2 + 1/\sigma^2} \mu$$

Derivation:

$$p(X|\theta) = \frac{1}{(2\pi)^{N/2}\sigma^N} \exp\left[-\frac{\sum_t (x^t - \theta)^2}{2\sigma^2}\right]$$
$$p(\theta) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}\right]$$

Parametric Classification

Discriminant function

$$g_i(x) = p(x | C_i)P(C_i) \propto P(C_i|x)$$

or

$$g_i(x) = \log p(x \mid C_i) + \log P(C_i)$$

$$p(x \mid C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

 \square Given the sample $\mathcal{X} = \{x^t, r^t\}_{t=1}^N$

$$X \in \Re \qquad r_i^t = \begin{cases} 1 \text{ if } x^t \in C_i \\ 0 \text{ if } x^t \in C_j, j \neq i \end{cases}$$

- \square Assume $p(x|C_i)$ are Gaussian
- ML estimates are

$$\hat{P}(C_{i}) = \frac{\sum_{t} r_{i}^{t}}{N} \quad m_{i} = \frac{\sum_{t} x^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}} \quad s_{i}^{2} = \frac{\sum_{t} (x^{t} - m_{i})^{2} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discriminant

$$g_{i}(x) = -\frac{1}{2}\log 2\pi - \log \sigma_{i} - \frac{(x - \mu_{i})^{2}}{2\sigma_{i}^{2}} + \log P(C_{i})$$

$$= -\frac{1}{2}\log 2\pi - \log s_{i} - \frac{(x - m_{i})^{2}}{2s_{i}^{2}} + \log \hat{P}(C_{i})$$

Regression

$$r = f(x) + \varepsilon$$

estimator: $g(x | \theta)$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 $p(r | x) \sim \mathcal{N}(g(x | \theta), \sigma^2)$

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log \prod_{t=1}^{N} p(x^{t}, r^{t})$$

$$= \log \prod_{t=1}^{N} p(r^{t} \mid x^{t}) + \log \prod_{t=1}^{N} p(x^{t})$$

doesn't depend on g

Regression: From LogL to Error

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{\left[r^{t} - g(x^{t} \mid \theta) \right]^{2}}{2\sigma^{2}} \right]$$

$$= -N \log \sqrt{2\pi}\sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}$$

$$E(\theta \mid \mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}$$

Other Error Measures

□ Square Error: $E(\theta \mid \mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}$

□ Relative Square Error:

$$E\left(\theta \mid \mathcal{X}\right) = \frac{\sum_{t=1}^{N} \left[r^{t} - g\left(x^{t} \mid \theta\right)\right]^{2}}{\sum_{t=1}^{N} \left[r^{t} - \overline{r}\right]^{2}}$$

- □ Absolute Error: $E(\vartheta \mid X) = \sum_{t} |r^{t} g(x^{t} \mid \vartheta)|$
- □ ε-sensitive Error:

$$E(\vartheta \mid X) = \sum_{t} 1(|r^{t} - g(x^{t}| \vartheta)| > \varepsilon) (|r^{t} - g(x^{t}|\vartheta)| - \varepsilon)$$