AYUDA TWO-TIME PAD

Supongamos que estos son los mensajes originales (en la práctica 1 los desconocemos pero queremos adivinarlos):

$m_0 =$	k	Α	i	х	0		1	i	b	e
$m_1 =$	a	В		С	d		е	f		g
$m_2 =$	h	1	j		k	1	m		n	0

Sabemos que se ha utilizado la misma clave para cifrar los mensajes:

Los mensajes cifrados que conocemos son:

$$c_0 = m_0 \oplus k$$

$$c_1 = m_1 \oplus k$$

$$c_2 = m_2 \oplus k$$

Calculando $c_0 \oplus c_1$ podemos conseguir una relación entre m_0 y m_1 :

$$c_0 \oplus c_1 = m_0 \oplus m_1$$

$$c_0 \oplus c_2 = m_0 \oplus m_2$$

$$c_1 \oplus c_2 = m_1 \oplus m_2$$

El resultado de realizar el XOR entre un espacio y una letra a-z/A-z es el siguiente:

$'a' \oplus ' '='A' \rightarrow 97 \oplus 32 = 65$	$'A' \oplus ' '='a' \rightarrow 65 \oplus 32 = 97$
$'b' \oplus ' '='B' \rightarrow 98 \oplus 32 = 66$	$'B' \oplus ' '='b' \rightarrow 66 \oplus 32 = 98$
$'z' \oplus ' '= 'Z' \rightarrow 122 \oplus 32 = 90$	$'Z' \oplus ' '='z' \rightarrow 90 \oplus 32 = 122$

Entonces, calculando $c_0 \oplus c_1$ conseguimos la siguiente información:

$m_0 =$	k	а	i	Х	0		L	·	b	е
$m_1 =$	а	b		С	d		Ε	f		g
$c_0 \oplus c_1 = m_0 \oplus m_1 =$?	?	_	?	?	?	?	?	В	?

Si detectamos una letra 97-122 ('a'-'z') o 65-90 ('A'-'Z') significa que m_0 o m_1 tiene un espacio en esa posición.

Podemos realizar el mismo análisis con $c_0 \oplus c_2$ y $c_1 \oplus c_2$:

$m_0 =$	k	а	i	Х	0		1	i	b	е
$m_2 =$	h	i	j		k	_	m		n	0
$c_0 \oplus c_2 = m_0 \oplus m_2 =$?	?	?	Х	?	L	?	-	?	?

$m_1 =$	а	b		С	d		е	f		g
$m_2 =$	h	i	j		k	1	m		n	0
$c_0 \oplus c_2 = m_0 \oplus m_2 =$?	?	J	С	?	L	?	F	Ν	?

Finalmente, si por ejemplo detectamos los espacios en m_0 podemos calcular la clave en esa posición, teniendo en cuenta que $k=m\oplus c$.

$c_0 =$	$c_0[0]$	$c_0[1]$	$c_0[2]$	$c_0[3]$	$c_0[4]$	$c_0[4]$	$c_0[6]$	$c_0[7]$	$c_0[8]$	$c_0[9]$
$m_0 =$						32				
key =						$c_0[4] \oplus 32$				

Podemos repetir el mismo proceso con m_1 y m_2 :

$c_1 =$	$c_{1}[0]$	$c_1[1]$	$c_{1}[2]$	$c_1[3]$	$c_{1}[4]$	$c_{1}[4]$	$c_1[6]$	$c_1[7]$	c ₁ [8]	$c_1[9]$
$m_1 =$			32			32			32	
key =			$c_1[2] \oplus 32$			$c_0[4] \oplus 32$			$c_1[8] \oplus 32$	

$c_2 =$	$c_{2}[0]$	$c_{2}[1]$	$c_{2}[2]$	$c_2[3]$	$c_{2}[4]$	$c_{2}[4]$	$c_{2}[6]$	$c_{2}[7]$	$c_{2}[8]$	$c_{2}[9]$
$m_2 =$				32				32		
key =			$c_1[2] \oplus 32$	$c_2[3] \oplus 32$		$c_0[4] \oplus 32$		$c_2[7] \oplus 32$	$c_1[8] \oplus 32$	

Hemos conseguido adivinar parte de la clave comparando 3 mensajes, si tenemos acceso a más mensajes podremos conseguir más información de la clave.

Una vez que adivinamos la clave, podemos calcular el *plaintext* $m=k\oplus c$.