Tarea 10 – Administración de Redes GNU/Linux.

Contenido	
PREVIAMENTE	
Actividad 1. Configuración de la Red	3
Actividad 2. Servicio SSH. Simétrico	7
Actividad 3. Servicio SSH. Asimétrico	12
Actividad 4. Servidor Web	15
Actividad 5. VS Code + SSH + Apache2	18
Recursos	21
Criterios de Corrección	21

PREVIAMENTE

Es importante que tengáis claro como vais a configurar los <u>adaptadores de red</u> en vuestro hipervisor para cada una de las maquinas.

En Ubuntu Server la configuración de la red se realiza a través de la herramienta netplan. No dudéis en preguntar.

En server01 (Ubuntu Sever 22.04):

- 1 adaptador de red Adaptador puente (IP Dinámica)
- 2 adaptador de red Red interna (IP 192.168.10.1/24)
- Crea el usuario tu-nick¹. Añádelo al grupo "Administradores" (sudoers) del equipo.
- Instala el <u>servicio ssh</u> y confirma que este operativo.

En cliente01: (Ubuntu Desktop 22.04)

- 1 adaptador de red Red interna (IP 192.168.10.2/24)
- Crea el usuario tu-nombre-pila. Añádelo al grupo "Administradores" (sudoers) del equipo.

NOTA: Configurar la subred, las IPs y los usuarios ESTRICTAMENTE tal y como se indica.

NOTA: No es necesario documentar este aparatado. Se entiende que lo sabéis hacer y se confía en que lo hagáis correctamente para el buen desarrollo de la tarea.

¹ Corresponde con tu nick de educantabria, en mi caso es fcuadradoa01

ACTIVIDAD 1. CONFIGURACIÓN DE LA RED

La tarea que nos atañe está basada en el diagrama de red adjunto.

1. Confirma que server01 tiene la IP especificada (LAN) y tiene acceso a internet.

Configuramos el fichero netplan, a través del editor de consola nano y nos debe de quedar de la siguiente forma:

```
GNU nano 6.2 /etc/netplan/00-installer-config.yaml
# This is the network config written by 'subiquity'
network:
   ethernets:
    ens33:
       dhcp4: true
   ens34:
       addresses:
       - 192.168.10.1/24
   version: 2
```

Ejecutamos el comando netplan apply para que aplique la nueva configuración y ya con mediante el comando ip a podemos ver como queda configurada las interfaces.

La primera interfaz ens33 es la que tiene acceso a internet y la segunda ens34 esta en una red interna con la ip que nos indica el diagrama. Si además hacemos un ping www.google.es

```
instalador@cabuerniga:~$ ping www.google.es
PING www.google.es (142.250.200.131) 56(84) bytes of data.
64 bytes from mad41s14-in-f3.1e100.net (142.250.200.131): icmp_seq=1 ttl=128 time=16.3 ms
64 bytes from mad41s14-in-f3.1e100.net (142.250.200.131): icmp_seq=2 ttl=128 time=16.0 ms
64 bytes from mad41s14-in-f3.1e100.net (142.250.200.131): icmp_seq=8 ttl=128 time=15.8 ms
64 bytes from mad41s14-in-f3.1e100.net (142.250.200.131): icmp_seq=4 ttl=128 time=20.7 ms
^C
--- www.google.es ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 15.770/17.213/20.714/2.030 ms
instalador@cabuerniga:~$
```

Para confirmar que nuestra puerta de enlace en la interfaz ens33 ejecutamos el comando jo route show

```
instalador@cabuerniga:~$ ip route show
default via 192.168.128.2 dev ens33 proto dhcp src 192.168.128.128 metric 100
192.168.10.0/24 dev ens34 proto kernel scope link src 192.168.10.1
192.168.128.0/24 dev ens33 proto kernel scope link src 192.168.128.128 metric 100
192.168.128.2 dev ens33 proto dhcp scope link src 192.168.128.128 metric 100
instalador@cabuerniga:~$
```

La IP del cliente la configuramos de forma gráfica. Y confirmamos que ambas maquinas tienen conectividad entre ellas:

Y un ping entre maquinas...

Aunque lo piden en el apartado siguiente, la puerta de enlace del cliente01 será la IP del server01, que es la máquina que le permite salir a internet. El DNS tenemos varias opciones, por simplificar dejamos el 8.8.8.8

Hablita enrutamiento en server01 para que el cliente01 tenga acceso a internet a través de él. Es
decir, server01 funcione como la puerta de enlace de cliente01. Decide tú que DNS configurar en
cliente01.

En primer lugar, debemos permitir que server01 permita hacer **forward**, es decir, dejar pasar paquetes y conexiones <u>a través de él</u> y que no son para él.

Editamos el fichero: /etc/sysctl.conf y descomentamos la línea en cuestión:

```
GNU nano 6.2
                                                /etc/sysctl.conf
  /etc/sysctl.conf - Configuration file for setting system variables
  See /etc/sysctl.d/ for additional system variables.
See sysctl.conf (5) for information.
#kernel.domainname = example.com
# Uncomment the following to stop low—level messages on console
#kernel.printk = 3 4 1 3
# Functions previously found in netbase
# Uncomment the next two lines to enable Spoof protection (reverse-path filter)
 Turn on Source Address Verification in all interfaces to
# prevent some spoofing attacks
#net.ipv4.conf.default.rp_filter=1
#net.ipv4.conf.all.rp_filter=1
# Uncomment the next line to enable TCP/IP SYN cookies
# See http://lwn.net/Articles/277146/
# Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1
# Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1_
# Uncomment the next line to enable packet forwarding for IPv6
  Enabling this option disables Stateless Address Autoconfiguration
  based on Router Advertisements for this host
#net.ipv6.conf.all.forwarding=1
                                            [ Wrote 68 lines ]
                               ^W Where Is
   Help
                ~O Write Out
                                                 Cut
                                                                Execute
                                                                               Location
                                                                                           M-U Undo
   Exit
                  Read File
                                  Replace
                                                 Paste
                                                                Justify
                                                                               Go To Line
```

Ahora habiltamos NAT en la interfaz que funciona como WAN, la que tiene acceso a internet, en nuestro caso es **ens33**

sudo iptables -t nat -A POSTROUTING -o ens33 -j MASQUERADE

```
instalador@cabuerniga:~$ sudo iptables –t nat –A POSTROUTING –o ens33 –j MASQUERADE
[sudo] password for instalador:
instalador@cabuerniga:~$ _
```

Y con esto ya es suficiente. Existen más configuraciones posibles, pero no nos interesa ahondar más.

3. Confirma que cliente01 tiene la IP especificada (LAN) y tiene acceso a internet.

4. Confirma que ambas máquinas están en la misma red haciendo un ping entre ellas.

Ya está realizado.

ACTIVIDAD 2. SERVICIO SSH. SIMÉTRICO

Desde cliente01. Iniciamos sesión con el usuario tu-nombre-de-pila.

Abrimos la terminal (consola/bash):

1. Nos conectamos remotamente (ssh) a server01 con el usuario tu-nick2.

Para no estar escribiendo la ip del servidor constantemente, añadimos una entrada al fichero que contiene el DNS local: /etc/hosts

² Es importante que se diferencie entre el usuario con el que estoy trabajando en el cliente y el usuario con el que me voy a conectar al servidor, que debe de ser un usuario local del servidor.

Y añadimos la entrada como se muestra en la imagen anterior.

En el servidor, confirmamos que el servicio ssh está corriendo:

Ahora conectarnos vía ssh es muy fácil:

```
fcuadradoa01@cerredo:~$ ssh instalador@server01
instalador@server01's password:
Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-89-generic x86 64)
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
  System information as of vie 17 may 2024 11:21:27 UTC
  System load: 0.0
                                     Processes:
                                                               209
  Usage of /: 29.0% of 18.53GB
                                     Users logged in:
  Memory usage: 18%
                                     IPv4 address for ens33: 192.168.128.128
                                     IPv4 address for ens34: 192.168.10.1
  Swap usage:
```

2. Creamos una carpeta y algún archivo, confirmando que estamos trabajando sobre server01.

```
instalador@cabuerniga:~$ mkdir bocarte
instalador@cabuerniga:~$ cd bocarte/
instalador@cabuerniga:~/bocarte$ touch muyricos.txt
instalador@cabuerniga:~/bocarte$ ls
muvricos.txt
instalador@cabuerniga:~/bocarteS
```

3. Cerramos la sesión remota.

Tecleamos exit

```
instalador@cabuerniga:~/bocarte$ exit
logout
Connection to server01 closed.
fcuadradoa01@cerredo:~S
```

Copia un archivo desde cliente01 a server01 utilizando el comando scp.

```
fcuadradoa01@cerredo:-$ touch sardinas.txt
fcuadradoa01@cerredo:~$ ls
                      Plantillas sardinas.txt Videos
fcuadradoa01@cerredo:~$ scp sardinas.txt instalador@server01:bocarte
instalador@server01's password:
sardinas.txt
                                                     0
                                                           0.0KB/s
                                             100%
                                                                    00:00
fcuadradoa01@cerredo:~$
```

Ahora si nos conectamos remotamente, confirmamos que se ha copiado el archivo en la carpeta:

```
instalador@cabuerniga:~$ cd bocarte/
instalador@cabuerniga:~/bocarte$ ls
muyricos.txt sardinas.txt
instalador@cabuerniga:~/bocarte$
```

Es IMPORTANTE tener claro que el comando **scp** copia archivos directamente al home del usuario que se conecta.

5. ¿Te puedes conectar por ssh desde tu equipo de trabajo a server@1? ¿A qué IP te conectas?

SÍ. A la IP de la WAN. La que me haya asignado el hipervisor.

Desde el entorno gráfico:

6. Instalamos el software Remmina.

Aunque se puede instalar directamente desde la "tienda" de Ubuntu, a nosotros nos encanta la terminal, así que:

7. Desde Remmina, creamos una conexión ssh a server01, la guardamos y nos conectamos con el usuario tu-nick haciendo uso de ella.

Y la nos conectamos:

8. Confirmamos que los archivos y carpeta creados en el paso 2 están en server01.

```
Last login: Fri May 17 11:27:06 2024 from 192.168.10.2 instalador@cabuerniga:~$ ls

bocarte
instalador@cabuerniga:~$ cd bocarte/
instalador@cabuerniga:~/bocarte$ ls
muyricos.txt sardinas.txt

instalador@cabuerniga:~/bocarte$
```

9. Cerramos la sesión remota.

ACTIVIDAD 3. SERVICIO SSH. ASIMÉTRICO

Desde cliente01. Iniciamos sesión con el usuario tu-nombre-de-pila.

1. Crea un juego de claves pública /privada. Copia la clave correspondiente al servidor ssh, asociándolo al usuario tu-nick. ¿Qué clave has copiado al servidor?

Escribimos el comando

\$ ssh-keygen -t rsa

El parámetro -t rsa especifica el algoritmo utilizado por el juego de claves. RSA es el más común.

```
fcuadradoa01@cerredo:~$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/fcuadradoa01/.ssh/id rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/fcuadradoa01/.ssh/id_rsa
Your public key has been saved in /home/fcuadradoa01/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:fz98eubV30H8WUdIhB3ABu9qUHfSkfrEEzVoJ9IEWUc fcuadradoa01@cerredo
The key's randomart image is:
+---[RSA 3072]----+
           .+BOBEo
            +=**+.
           ..*==.0
          . 0.0* +
             .0 =
                =1
           + ..
          . . .0 =
               oB.
+----[SHA256]----+
fcuadradoa01@cerredo:~$
```

Dejamos las opciones por defecto: la ubicación de los ficheros y si queremos securizarlo con una clave. Confirmamos que las claves están:

```
fcuadradoa01@cerredo:~$ ls .ssh/ -l

total 16
-rw------ 1 fcuadradoa01 fcuadradoa01 2610 may 21 13:35 id_rsa
-rw-r--r-- 1 fcuadradoa01 fcuadradoa01 574 may 21 13:35 id_rsa.pub
-rw------ 1 fcuadradoa01 fcuadradoa01 978 may 17 13:21 known_hosts
-rw-r--r-- 1 fcuadradoa01 fcuadradoa01 142 may 17 13:21 known_hosts.old
fcuadradoa01@cerredo:~$
```

La llave pública lleva el .pub

2. Conéctate con ellas desde la terminal a server01.

Primero tenemos que copiar nuestra clave publica al servidor donde nos queremos conectar. Decir, que con este juego de llaves que es nuestro, nos podemos conectar a tantos servidores como queramos, sin más que copiarlos la clave publica, y mantener en nuestro poder la clave privada.

Como no hemos cambiado la ruta por defecto de las claves el comando ssh-copy-id sabe donde ir a buscarcarlas y su nombre. En caso contrario hubiese que haberlo especificado para decir al servervidor que fichero contiene la clave pública que queremos copiarle.

Nos conectamos:

```
fcuadradoa01@cerredo:~$ ssh instalador@server01
Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-89-generic x86 64)
 * Documentation: https://help.ubuntu.com
                  https://landscape.canonical.com
 * Management:
                  https://ubuntu.com/advantage
 * Support:
 System information as of mar 21 may 2024 11:41:54 UTC
 System load:
                                   Processes:
                                                           211
               0.0
 Usage of /:
               29.0% of 18.53GB
                                  Users logged in:
                                                          Θ
 Memory usage: 18%
                                  IPv4 address for ens33: 192.168.128.128
                                  IPv4 address for ens34: 192.168.10.1
 Swap usage:
               0%
El mantenimiento de seguridad expandido para Applications está desactivado
Se pueden aplicar 135 actualizaciones de forma inmediata.
85 de estas son actualizaciones de seguridad estándares.
Para ver estas actualizaciones adicionales, ejecute: apt list --upgradable
Active ESM Apps para recibir futuras actualizaciones de seguridad adicionales.
Vea https://ubuntu.com/esm o ejecute «sudo pro status»
Last login: Tue May 21 11:30:54 2024 from 192.168.10.2
instalador@cabuerniga:~$
```

El servidor podemos confirmar que tenemos la clave publica copiada:

```
instalador@cabuerniga:~$ cat ./.ssh/authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCxTxDtlY9f0A8Kvz30qFw8nkB8THN94JbjeyLKjTdw
IlpvdKl6cLJCUhWACUiLglI2gWCOZ0XkWoT7aKNXj9ZyA6qVDfHd0Em91Gf+15VYYSo6e/Fq8hR8NTzd
o27CZJV83tH3nQWHxvcWqQQ26fYq1oab2l1wC+9Xar20vbhJSlde3ovgFJBpP1Az1oOwgzqWV7SbzUR3
hh9mcjRtEXG4KmHaH6nNGKK0zmz4X1nzB0GpCBdyStvE4TuihILk7bDlLKPOlpx3sxMTw4ZRfkJoONYD
p8HX0f2dp5FG09NSBngHhalhfUhnR5koDCdsvTTV+yNg8wn6J4lqQ8HA0+T0M3alMG33n2c+yrz5aGWh
YHNZPOayqWqklsecLfY509//Lx28pXl98pVs7dMqv/LSpumJpEXPcX2GUb96RIINXhEBjhH/chS9itOp
AzXESHNSCUhTuvuiaJYdRHQGmN4Aqmun8srrW1AQDISFw90iS7PoqWCLTrhVA06YDvpuHpE= fcuadra
doa01@cerredo
tnscatador@cabuerniga:~$
```

Que está asociada no solo al servidor sino también al usuario instalador.

3. Conéctate con ellas desde el software Remmina a server01.

La configuración quedaría así:

Y si nos conectamos:

ACTIVIDAD 4. SERVIDOR WEB

Vamos a implementar una intranet en nuestra LAN:

1. Instala el servidor web Apache2 en la maquina server01. Confirma que el servicio está corriendo.

Para la instalación, comando:

\$ sudo apt-get install apache2

Confirmar que el servicio está corriendo:

\$ service apache2 status

2. Sobrescribe la página index.html y añade código HTML que te identifique, a tu elección.

Antes de modificar la página original, una buen práctica es hacer una copia:

```
instalador@cabuerniga:~$ sudo mv /var/www/html/index.html /var/www/html/index.html.old instalador@cabuerniga:~$ _
```

Ahora, ya editamos con nano:

```
GNU nano 6.2 /var/www/html/index.html

<html>
<html>
<html>
<html>
<k>La &uacute; nica manera de hacer un trabajo genial, es amar lo que haces

<tool>
<html>

<html>
```

Y...

3. Visualiza la página web anterior desde cliente01. ¿A través de que puerto escucha el servidor web?

¿Puedes demostrar que puertos tienes abiertos y escuchando server01?

Se deduce, que al menos el puerto 80 del servidor está abierto, ya nos ha brindo una pagina html a través de http (puerto por defecto).

Instalamos en el cliente01 la herramienta nmap

```
fcuadradoa01@cerredo:~$ sudo apt install nmap
[sudo] contraseña para fcuadradoa01:
Leyendo lista de paquetes... Hecho
Creando árbol de dependencias... Hecho
Leyendo la información de estado... Hecho
Los paquetes indicados a continuación se instalaron de forma automática y ya no
son necesarios.
  libflashrom1 libftdi1-2
Utilice «sudo apt autoremove» para eliminarlos.
Se instalarán los siguientes paquetes adicionales:
  libblas3 liblinear4 liblua5.3-0 lua-lpeg nmap-common
Paquetes sugeridos:
  liblinear-tools liblinear-dev ncat ndiff zenmap
Se instalarán los siguientes paquetes NUEVOS:
  libblas3 liblinear4 liblua5.3-0 lua-lpeg nmap nmap-common
O actualizados, 6 nuevos se instalarán, O para eliminar y 406 no actualizados.
Se necesita descargar 6.113 kB de archivos.
Se utilizarán 26,8 MB de espacio de disco adicional después de esta operación.
¿Desea continuar? [S/n] s
```

Y la ejecutamos contra server01:

```
fcuadradoa01@cerredo:~$ nmap -A -v -o resultados.txt 192.168.10.1
Warning: The -o option is deprecated. Please use -oN
Starting Nmap 7.80 ( https://nmap.org ) at 2024-05-22 12:07 CEST
```

Y efectivamente confirmamos que está escuchando por el puerto 22 y el puerto 80:

Además hemos dejado el resultado en el fichero resultados.txt por si es necesario un uso posterior.

ACTIVIDAD 5. VS CODE + SSH + APACHE2

Ahora, queremos editar la página web index.html del punto 3, pero desde un IDE, para que nos resulta más cómodo y amigable. Para ello utilizaremos MS Visual Studio Code. Este IDE nos proporciona un plugin para conectarnos a través de SSh a la máquina que tiene el código, en nuestro caso server01, y editarlo directamente desde nuestro equipo local (cliente01).

En la máquina cliente01:

1. Instalamos Microsoft Visual Studio Code.

Para instalar el software en cuestión lo podemos hacer con el gestor de paquetes snap, quizás sea la opción mas sencilla. Además **snap** se va a convertir en el gestor de paquetes por defecto para Ubuntu, por lo que es bueno nos vayamos familiarizando con él.

```
instalador@cerredo:~ Q = - □ x

instalador@cerredo:~$ sudo snap install --classic code
[sudo] contraseña para instalador:

Descargar snap "code" (159) del canal "stable"

62% 12.3MB/s 10.2s
```

2. Instalamos un plugin, en VS Code, para conectarnos vía ssh.

Mejor instalar la oficial de Microsoft para tal fin.

3. Configuramos y guardamos una conexión ssh a server01.

Aprovechamos la clave asimétrica que ya tenemos configurada de pasos anteriores y agregamos un nuevo registro en nuestro fichero ./ssh/config

Ahora escogemos la conexión serve01... (lo siento me he comido la "r" final)

4. Editamos la página index.html, desde la conexión anterior.

Hay que tocar permisos del archivo index.html

```
instalador@cabuerniga:/var/www/html$ sudo chmod o+w index.html
instalador@cabuerniga:/var/www/html$ _
```

Y luego lo abrimos desde menú File...

5. Visualizamos los cambios desde nuestro navegador web.

RECURSOS

[consultado marzo 2024] Netplan.io

https://netplan.io/

[consultado marzo-2024] Netplan documentation

How to enable DHCP on an interface - Netplan documentation

[consultado feb-2023] SSH clave pública y privada:

SSH clave publica y privada - El Taller del Bit

[consultado feb-2023] Copiar clave pública SSH a un server Linux | SCP y ssh-copy-id

https://eltallerdelbit.com/copiar-clave-publica-ssh-scp-ssh-copy-id/

Apuntes de la plataforma.

CRITERIOS DE CORRECCIÓN

Actividad 1. 2 puntos.

Actividad 2. 2 puntos

Actividad 3: 2 puntos

Actividad 4: 2 puntos.

Actividad 5: 2 puntos

RECORDAD QUE LAS ENTREGAS QUE NO CUMPLAN CON EL FORMATO EXIGIDO DE "ENTEGA DE TAREAS" SERAN PENALIZADAS.

CAPTURA LAS PANTALLAS que <u>JUSTIFIQUEN</u> lo solicitado

COMENTA las CAPTURAS de PANTALLA

IDENTIFICATE EN TODAS LAS CAPTURAS

Fecha fin entrega: 3 de mayo de 2024