Algebră liniară, Aplicații liniare

1. Fie $L: \mathbb{R}^4 \to \mathbb{R}^3$ o aplicație liniară ce are relativ la bazele canonice din cele două spații matricea:

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 & 2 \\ 1 & -1 & 0 & -1 \\ -1 & 2 & 1 & 2 \end{array} \right]$$

Să se determine expresia analitică a aplicației liniare L, adică "regula" după care asociază la orice vector $v = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ un unic vector $w = (y_1, y_2, y_3)^T \in \mathbb{R}^3$. Să se afle L(v), dacă $v = (-1, 1, 0, 3)^T \in \mathbb{R}^4$.

2. Fie $\mathcal{B} = (v_1, v_2, v_3)$ o bază arbitrară în \mathbb{R}^3 , relativ la care un operator liniar $L : \mathbb{R}^3 \to \mathbb{R}^3$ are matricea:

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

Tinand seama de definiția matricii aplicatiei liniare să se deducă fără a efectua nici un calcul, care este exprimarea vectorului $L(v_2)$ în baza \mathcal{B} .

3. Fie $\mathcal{B} = (e_1, e_2)$ baza canonică în \mathbb{R}^2 şi $T : \mathbb{R}^2 \to \mathbb{R}^2$ un operator liniar. Ştiind că $T(e_1) = (-1, 6)^T$, $T(e_2) = (2, 5)^T$, să se determine expresia analitică a lui T şi să se calculeze apoi w = T(v), unde $v = (2, -3)^T$.

4. Aplicatia liniară $L: \mathbb{R}^2 \to \mathbb{R}^3$ are realtiv la bazele canonice din \mathbb{R}^2 şi \mathbb{R}^3 expresia analitică următoare:

$$L(x_1, x_2) = (-2x_1 + 3x_2, 7x_1 - 4x_2, x_1 + 2x_2)$$

Să se determine matricea aplicației liniare relativ la bazele canonice.

5. Să se determine matricea relativ la baza canonică din \mathbb{R}^3 a proiecției ortogonale, $P: \mathbb{R}^3 \to S$, pe subspațiul S de ecuație -2x + y + z = 0.

Indicatie: Găsiți mai întâi o bază oarecare în S, apoi o bază ortonormată, $\overline{\mathcal{B}} = (u_1, u_2)$ și în final matricea proiecției ortogonale.

6. Deduceți expresia analitică a proiecției ortogonale a lui \mathbb{R}^2 pe un subspațiu S de dimensiune unu, în care o bază oarecare este $\overline{\mathcal{B}} = (w = (a, b)^T)$. Apoi expresia analitică a proiecției ortogonale a lui \mathbb{R}^3 pe un subspațiu de dimensiune 1, generat de vectorul $t = (a, b, c)^T$.

Indicație. Construiti "o bază ortonormată" în subspațiul de dimensiune 1 și aplicați apoi modalitatea de determinare a matricii proiecției ortogonale pe un subspațiu al lui \mathbb{R}^2 , respectiv, \mathbb{R}^3 .

- 7. Spaţiul \mathbb{R}^3 este raportat la reperul ortonormat drept $\mathcal{R} = (O; (e_1, e_2, e_3)$ de axe ortogonale. Să se se scrie matricea rotației $R^y_{\pi/3}$ în jurul lui Oy și apoi să se determine care sunt coordonatele punctului M' știind că vectorul său de poziție este $\overrightarrow{OM'} = R^y_{\pi/3}(\overrightarrow{OM})$ și M(-1,2,3).
- 8. Matricea rotației plane de unghi θ în baza canonică este

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Fie $\mathcal{B}' = (u_1, u_2)$ o altă bază ortonormată din \mathbb{R}^2 , astfel încât măsura $(e_1, u_1) = \alpha$. Să se determine matricea rotației în această bază când:

- a) Baza \mathcal{B}' este o bază dreaptă (vezi cursul 6 pentru matricea de trecere de la baza canonică la \mathcal{B}').
 - b) Baza \mathcal{B}' este o bază strâmbă (vezi tot cursul 6).

Vă surprinde rezultatul?

După ce ați rezolvat această problemă concluzionați care ar fi matricea rotației plane de unghi θ pe care ar trebui s-o aplicați unei imagini din canvas-ul html5 sau a unei imagini digitale raportate la un sistem stâng, pentru a o roti cu unghiul θ .

Cine dorește un bonus îmi transmite o imagine a rezolvării sau dacă știți și voi LaT_EX, atunci editați în LaT_EX.

9. a) Urmărind contrucția teoretică din curs să se construiască expresia analitică în baza canonică a rotației în spațiul \mathbb{R}^3 în jurul axei de direcție $v = (1, 1, 2)^T$, cu unghiul $\theta = \pi/6$.

Opțional: b) Să se scrie codul C/C++ al funcției care calculează matricea relativ la baza canonică a unei rotații de unghi θ în jurul axei de direcție $v \neq \theta$.

Prototipul funcției în C ar putea fi (dar NU e obligatoriu să folosiți pointeri dacă nu știți sa-i manipulați):

double **rotatie_arbitrara(double theta, double *v);