CaseStudy_GiulioCattoni_MarioGarcia.R

2023-12-17

```
CASE STUDY 2
# Giulio Cattoni
# Mario Garcia
# INTRODUCTION:
# We present a solution for the case study n.2 for the period [2020-2022].
# Up to now the normal VaR distribution, is a method that is used in the financial
# markets to make previsions.
# All the statements that we made referred to the good-fitting of the normal VaR
# distribution have to be considered related on the dramatic scenario of Covid-19.
# In order to have a more complete analysis at the end of the case study, we
present
# a deepening, where we choose a different period [2015-17], to understand which
# is the behave of the normal VaR distribution for different levels of confidence.
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##
    method
                      from
##
     as.zoo.data.frame zoo
library(quantmod)
## Loading required package: xts
## Loading required package: TTR
library(moments)
# Functions
getPrices <- function(TickerSymbols, start, end, type){</pre>
  NumberOfStocks <- length(TickerSymbols)</pre>
 prices <- get.hist.quote(TickerSymbols[1], start=start, end=end, quote=type)</pre>
```

```
goodSymbols <- TickerSymbols[1]</pre>
  for (d in 2:NumberOfStocks) {
    tryCatch({
      P <- get.hist.quote(TickerSymbols[d], start=start, end=end, quote=type)
      prices <- cbind(prices,P)</pre>
      goodSymbols <- c(goodSymbols,TickerSymbols[d])</pre>
    }, error=function(err) { print(paste("Download ERROR: ", TickerSymbols[d])) }
)
  prices <- data.frame(coredata(prices))</pre>
  colnames(prices) <- goodSymbols</pre>
  NumberOfGoodStocks <- dim(prices)[2]
  T <- dim(prices)[1]
  badSymbols <- rep(FALSE, NumberOfGoodStocks)</pre>
  for (d in 1:NumberOfGoodStocks) {
    if (is.na(prices[1,d]) | is.na(prices[T,d])) {
      badSymbols[d] <- TRUE</pre>
    } else {
      if ( sum(is.na(prices[,d]))>0) {
        print(paste(goodSymbols[d]," NAs filled: ", sum(is.na(prices[,d]))))
        prices[,d]<-na.approx(prices[,d])</pre>
    }
  if (sum(badSymbols)>0){
    prices <- prices[!badSymbols]</pre>
    print(paste("Removed due to NAs: ", goodSymbols[badSymbols]))
  if ( sum(is.na(prices))==0 ) {
    if (sum(prices == 0) > 0) {print("Check Zeros!")}
  } else {print("Check NAs and Zeros")}
  prices
}
Expected Shortfall 95 <- function(returns,alpha=0.95){</pre>
  N <- length(returns)</pre>
  VaR<-sort(coredata(returns))[ceiling(N*(1-alpha))]</pre>
  ES <- sum(returns[returns<=VaR])/length(returns[returns<=VaR])</pre>
  colnames(ES)<- colnames(returns)</pre>
  return(ES)
ValueAtRisk 95 <- function(returns,alpha=0.95){</pre>
  N = length(returns)
  sorted_return<- sort(returns)</pre>
  var<- sorted_return[ceiling(N*(1-alpha))]</pre>
  colnames(var)<- colnames(returns)</pre>
  return(var)
}
```

```
Expected_Shortfall_99 <- function(returns,alpha=0.99){</pre>
  N <- length(returns)</pre>
  VaR<-sort(coredata(returns))[ceiling(N*(1-alpha))]</pre>
  ES <- sum(returns[returns<=VaR])/length(returns[returns<=VaR])
  colnames(ES)<- colnames(returns)</pre>
  return(ES)
}
ValueAtRisk_99 <- function(returns,alpha=0.99){</pre>
  N = length(returns)
  sorted_return<- sort(returns)</pre>
  var<- sorted_return[ceiling(N*(1-alpha))]</pre>
  colnames(var)<- colnames(returns)</pre>
  return(var)
}
NewVarFunction95 <- function(returns){</pre>
  var<- mean(returns)-1.645*sd(returns)</pre>
  return(var)
}
NewVarFunction99 <- function(returns){</pre>
  var<- mean(returns)-2.326*sd(returns)</pre>
  return(var)
}
getReturns <- function(prices) {</pre>
  NumberOfStocks <- dim(prices)[2]</pre>
  length <- dim(prices)[1]</pre>
  returns <- matrix(rep(0,NumberOfStocks*(length-1)), ncol=NumberOfStocks,
nrow=length-1)
  for (ind in 1:NumberOfStocks) {
    returns[,ind] <- diff(log(prices[,ind]))</pre>
  colnames(returns)<- colnames(prices)</pre>
  returns
# Get symbols
SP500 <- read.table("C:/Users/catto/OneDrive/Desktop/HfWU/Geisinger - Financial</pre>
Analytics/Theory/SP500Ticker.csv", sep=";", header=TRUE)
Symbols <- SP500[,1]
# Get closing prices
Close <- getPrices(Symbols, start = "2020-01-01", end = "2022-12-31", "Close")
# Calculate returns
Returns <- getReturns(Close)</pre>
names(Returns) <- names(Close)</pre>
```

```
# Calculate VaR and ES at 95%
VAR95 <- apply(Returns,2,ValueAtRisk_95)
ES95 <- apply(Returns,2,Expected_Shortfall_95)

# Apply is a command that for a matrix "Returns" through
# the columns "2", enforces the function "ValueAtRisk_95".

# Plotting sorted VaR and ES, we can confirm that ES is always lower than the VaR
# compared to the same quantile.
plot(sort(VAR95),col="darkblue",type = "p",pch=16, main="VaR vs ES at 95%",
xlab="Stocks", ylab="Value")
points(sort(ES95),col="red",pch=16)
legend("bottomright", legend=c("VaR", "ES"), col=c("darkblue", "red"), pch=16)</pre>
```

VaR vs ES at 95%


```
# Calculate VaR and ES at 99%
VAR99 <- apply(Returns,2,ValueAtRisk_99)
ES99 <- apply(Returns,2,Expected_Shortfall_99)

# Plot VaR and ES at 99%; as the previous ES is always lower.
plot(sort(VAR99),col="darkblue",type = "p",pch=16, main="VaR vs ES at 99%",
xlab="Stocks", ylab="Value")
points(sort(ES99),col="red",pch=16)
legend("bottomright", legend=c("VaR", "ES"), col=c("darkblue", "red"),pch=16)</pre>
```

VaR vs ES at 99%


```
# Calculate the mean and standard deviation of the returns
MeanRet<- apply(Returns,2,mean)</pre>
STDRet <- apply(Returns,2,sd)</pre>
# Generate a normal distribution with the same mean and standard deviation as
# the matrix of returns.
set.seed(1998)
NormDistr <- matrix(nrow = nrow(Returns), ncol = ncol(Returns))</pre>
for (i in 1:ncol(Returns)) {
  NormDistr[,i] <- rnorm(n = nrow(Returns), mean = MeanRet[i], sd = STDRet[i])</pre>
}
# Before running rnorm command, we need to set a seed. In this way can identify
# the same outliers, everytime we run the code.
# Calculate the VaR for the normal distribution
NormVar95 <- apply(NormDistr, 2, NewVarFunction95)</pre>
NormVar99 <- apply(NormDistr,2,NewVarFunction99)</pre>
# Plot VaR for the returns and the normal distribution.
plot(sort(VAR95),col="darkblue",type = "p",pch=16, main="Returns VaR vs Normal
Distribution VaR at 95%", xlab="Stocks", ylab="Value")
points(sort(NormVar95), col="red", pch=16)
```

```
legend("bottomright", legend=c("Returns VaR", "Normal Distribution VaR"),
col=c("darkblue", "red"), pch=16)
```

Returns VaR vs Normal Distribution VaR at 95%


```
plot(sort(VAR99),col="darkblue",type = "p",pch=16, main="Returns VaR vs Normal
Distribution VaR at 99%", xlab="Stocks", ylab="Value")
points(sort(NormVar99),col="red",pch=16)
legend("bottomright", legend=c("Returns VaR", "Normal Distribution VaR"),
col=c("darkblue", "red"), pch=16)
```

Returns VaR vs Normal Distribution VaR at 99%


```
# We observe that we are plotting in the negative ordinate, the NormVaR is lower
# than the Statistical VaR calculated from the real returns with alpha = 0.95,
# that suggest us a conservative way to forecast it.
# At alpha=99%, the NormVar is higher indicating an underestimation of the risk,
# and this is because the real returns have heavier tails than the normal
distribution.
# We are expecting that the mean kurtosis of the outliers and of the real returns
# is greater than the normal distribution's kurtosis.
# Extreme events are more common (as in this pandemic case) than predicted
# by the normal model, which becomes evident at higher confidence
# Levels.
# In order to have also a graphical answer we could plot the density of both
# distribution:
plot(density(VAR95), main = "Density of VaRs at 95%", col="darkblue", xlim=c(-
0.12,0), lwd=2)
lines(density(NormVar95), col="red", lwd=2)
legend("topleft",legend=c("Returns", "Normal Distribution"),cex=0.7,
col=c("darkblue", "red"),pch=16)
```

Density of VaRs at 95%

Red Line Left of blue suggests that VAR95 data may not fit a normal distribution
well.

plot(density(VAR99), main = "Density of VaRs at 99%", col="darkblue", xlim=c(0.20,0), ylim=c(0,32), lwd=2)
lines(density(NormVar99), col="red", lwd=2)
legend("topleft", legend=c("Returns", "Normal Distribution"), cex=0.7,
col=c("darkblue", "red"), pch=16)

Density of VaRs at 99%


```
# The tails of statistical VaR distribution are really heavier.

# IDENTIFY OUTLIERS

# We use the command applot to compare quantile per quantile the

# distribution of the real returns with its normal distribution.

# If there are points that are far from the abline, those are outliers.

plot(VAR95,NormVar95, main="Plot of VaRs at 95%",xlab="VAR95",ylab="NormVar95")

abline(a=0,b=1.15,lwd=2,col="red") #y = bx + a
```

Plot of VaRs at 95%

qqplot(VAR95,NormVar95, main="QQ Plot of VaRs at
95%",xlab="VAR95",ylab="NormVar95")
abline(a=0,b=1.15,lwd=2,col="red") #y = bx + a

QQ Plot of VaRs at 95%


```
# In order to applicate STD method to find the value of outliers, we have to know
# their distance from the abline.
\# ax + by + c = 0
Distance95 <- abs((-1.15*VAR95+NormVar95)/sqrt(1+1.15^2))
meanDistance95 <- mean(Distance95)</pre>
stdDistance95 <- sd(Distance95)</pre>
# We choose a variable (2) to create the thresholds in order to identify the
outliers.
minDistance95 <- meanDistance95-(2*stdDistance95)</pre>
maxDistance95 <- meanDistance95+(2*stdDistance95)</pre>
#The outliers need to be outside the thresholds
Outliers95 <- Distance95[which(Distance95 < minDistance95 | Distance95 >
maxDistance95)]
# Transforming the names of outliers in a string vector
NamesOutliers95 <- names(Outliers95)</pre>
NamesOutliers95
## [1] "AAL" "APA" "AXON" "BIO" "BIIB" "BG"
                                                     "CZR" "ENPH" "GEN" "GNRC"
## [11] "LRCX" "MRO" "OXY" "OKE" "RL"
                                             "TRGP" "VTR"
# Get the returns of the outliers
OutReturns95 <- Returns[,NamesOutliers95]</pre>
# Calculate the kurtosis and the minimum of the returns of the outliers
KurtOut95 <- apply(OutReturns95,2,kurtosis)</pre>
MinOut95 <- apply(OutReturns95,2,min)</pre>
# Calculate the mean of the kurtosis and the min of the the outliers
MeanKurtOut95 <- mean(KurtOut95)</pre>
MeanMinOut95 <- mean(MinOut95)</pre>
# Calculate the kurtosis and the min of the normal VaR distribution
KurtNorm <- apply(NormDistr, 2, kurtosis)</pre>
MinNorm <- apply(NormDistr,2,min)</pre>
# Calculate the mean of the kurtosis and the min of the normal distribution
MeanKurtNorm <- mean(KurtNorm)</pre>
MeanMinNorm <- mean(MinNorm)</pre>
```

```
# Calculate the kurtosis and min of the returns
KurtReturns <- apply(Returns, 2, kurtosis)</pre>
MinReturns <- apply(Returns, 2, min)</pre>
# Calculate the mean of the kurtosis of the returns
MeanKurtReturns <- mean(KurtReturns)</pre>
MeanMinReturns <- mean(MinReturns)</pre>
# Excluding outliers to see how is their impact on the mean kurtosis and minimal
# values in the statistical distribution.
CloseWO95<- Close[, !names(Close)%in%NamesOutliers95]
ReturnsW095<- getReturns(CloseW095)</pre>
KurtReturnsW095 <- apply(ReturnsW095,2,kurtosis)</pre>
MinReturnsW095 <- apply(ReturnsW095,2,min)</pre>
MeanKurtReturnsWO95 <- mean(KurtReturnsWO95)</pre>
MeanMinReturnsWO95 <- mean(MinReturnsWO95)</pre>
# Creating data frame to visualize the statistical measures.
Comparison Out95 Returns<-
data.frame(MeanKurtOut95, MeanKurtReturns, MeanMinOut95, MeanMinReturns)
Comparison_Out95_Norm<-
data.frame(MeanKurtOut95, MeanKurtNorm, MeanMinOut95, MeanMinNorm)
Comparison Norm Returns <-
data.frame(MeanKurtNorm,MeanKurtReturns,MeanMinNorm,MeanMinReturns)
Comparison ReturnsWO95 Returns <-
data.frame(MeanKurtReturnsWO95, MeanKurtReturns, MeanMinReturnsWO95, MeanMinReturns)
Comparison_Norm_ReturnsWO95 <-
data.frame(MeanKurtNorm, MeanKurtReturnsWO95, MeanMinNorm, MeanMinReturnsWO95)
Comparison_Out95_Returns
     MeanKurtOut95 MeanKurtReturns MeanMinOut95 MeanMinReturns
##
## 1
          33.42339
                           13.88552
                                      -0.3793521
                                                      -0.1859536
Comparison_Out95_Norm
##
     MeanKurtOut95 MeanKurtNorm MeanMinOut95 MeanMinNorm
          33.42339
                        2.998544
                                   -0.3793521 -0.08104994
# Of course the outliers have a worse performance than the mean of both
distributions.
Comparison Norm Returns
##
     MeanKurtNorm MeanKurtReturns MeanMinNorm MeanMinReturns
## 1
         2.998544
                          13.88552 -0.08104994
                                                    -0.1859536
```

```
# We can see how far is the normal model to a correct approximation of the
measures
# of this period.
Comparison ReturnsWO95 Returns
##
     MeanKurtReturnsWO95 MeanKurtReturns MeanMinReturnsWO95 MeanMinReturns
## 1
                13.14201
                                13.88552
                                                 -0.1785939
                                                               -0.1859536
Comparison Norm ReturnsWO95
     MeanKurtNorm MeanKurtReturnsWO95 MeanMinNorm MeanMinReturnsWO95
## 1
         2.998544
                             13.14201 -0.08104994
                                                          -0.1785939
# In this comparison analysis we can observe that there is a significant
# difference between the measures of the normal model and the real events.
# As the graphics said to us before, the normal model doesn't consider the extreme
# events.
# Exclusion of outliers appears to reduce kurtosis and minimal values,
# but these still remain significantly different from the normal distribution.
# This is enough to justify that a normal distribution isn't a good approximation
# for VaR of real returns.
# However it's really important to specify that SP500 is NOT a equally weighted
# portfolio.
# So, although the metrics may show significant differences from the mean,
# it's not clear if the mean of actual returns differs significantly from the
# mean of returns excluding outliers.
#We repeat the analysis for the confidence level of 99%.
plot(VAR99, NormVar99, main="Plot of VaRs at 99%", xlab="VAR99", ylab="NormVar99")
abline(a=0.006,b=0.92,lwd=2,col="red") #y= bx + a
```

Plot of VaRs at 99%

qqplot(VAR99,NormVar99, main="QQ Plot of VaRs at
99%",xlab="VAR99",ylab="NormVar99")
abline(a=0.006,b=0.92,lwd=2,col="red") #y= bx + a

QQ Plot of VaRs at 99%


```
# As we can expected from the comparison of the plot of VAR99 and NormVar99
# we can find outliers in a higher position from the abline, that means that the
# quantiles of statistical distribution are greater than the normal one.
Distance99 <- abs((-0.92*VAR99+NormVar99-0.006)/sqrt(1+0.92^2))
meanDistance99 <- mean(Distance99)</pre>
stdDistance99 <- sd(Distance99)</pre>
minDistance99 <- meanDistance99-(2*stdDistance99)</pre>
maxDistance99 <- meanDistance99+(2*stdDistance99)</pre>
Outliers99 <- Distance99[which(Distance99 < minDistance99 | Distance99 >
maxDistance99)]
NamesOutliers99 <- names(Outliers99)</pre>
NamesOutliers99
## [1] "BIIB" "CZR" "CINF" "DRI" "FANG" "EPAM" "GEN"
                                                            "HPO" "LW"
                                                                           "I YV"
## [11] "MRO" "NCLH" "OXY" "OKE" "PPL"
                                                     "ROP"
                                                            "SPG"
                                                                    "SEDG" "WRK"
                                             "RHI"
# Get the returns of the outliers
OutReturns99 <- Returns[,NamesOutliers99]</pre>
# Calculate the kurtosis and the minimal returns of the outliers
KurtOut99 <- apply(OutReturns99,2,kurtosis)</pre>
MinOut99 <- apply(OutReturns99,2,min)</pre>
# Calculate the mean of the kurtosis and the minimal returns of the outliers
MeanKurtOut99 <- mean(KurtOut99)</pre>
MeanMinOut99 <- mean(MinOut99)</pre>
# Exclude outliers to see how is their impact on the mean kurtosis and minimal
# values in the statistical distribution.
CloseWO99<- Close[, !names(Close)%in%NamesOutliers99]</pre>
ReturnsW099<- getReturns(CloseW099)</pre>
KurtReturnsW099 <- apply(ReturnsW099,2,kurtosis)</pre>
MinReturnsW099 <- apply(ReturnsW099,2,min)</pre>
MeanKurtReturnsW099 <- mean(KurtReturnsW099)</pre>
MeanMinReturnsW099 <- mean(MinReturnsW099)</pre>
# Make comparisons between outliers
Comparison Out99 Returns<-
data.frame(MeanKurtOut99, MeanKurtReturns, MeanMinOut99, MeanMinReturns)
Comparison Out99 Norm<-
data.frame(MeanKurtOut99, MeanKurtNorm, MeanMinOut99, MeanMinNorm)
Comparison Out95 Out99 <-
data.frame(MeanKurtOut95, MeanKurtOut99, MeanMinOut95, MeanMinOut99)
Comparison ReturnsWO99 Returns <-
data.frame(MeanKurtReturnsWO99, MeanKurtReturns, MeanMinReturnsWO99, MeanMinReturns)
Comparison Norm ReturnsWO99 <-
```

```
data.frame(MeanKurtNorm, MeanKurtReturnsW099, MeanMinNorm, MeanMinReturnsW099)
Comparison Out95 Returns
##
    MeanKurtOut95 MeanKurtReturns MeanMinOut95 MeanMinReturns
## 1
         33,42339
                        13.88552
                                   -0.3793521
                                                 -0.1859536
Comparison_Out99_Returns
    MeanKurtOut99 MeanKurtReturns MeanMinOut99 MeanMinReturns
## 1
          31,2417
                        13.88552
                                   -0.3464359
                                                 -0.1859536
Comparison_Out99_Norm
##
    MeanKurtOut99 MeanKurtNorm MeanMinOut99 MeanMinNorm
## 1
          31.2417
                     2.998544
                                -0.3464359 -0.08104994
Comparison Out95 Out99
    MeanKurtOut95 MeanKurtOut99 MeanMinOut95 MeanMinOut99
## 1
         33.42339
                       31.2417
                                 -0.3793521
                                            -0.3464359
Comparison_ReturnsWO99_Returns
    MeanKurtReturnsWO99 MeanKurtReturns MeanMinReturnsWO99 MeanMinReturns
##
## 1
               13.14853
                              13.88552
                                          -0.1791391
                                                            -0.1859536
Comparison Norm ReturnsWO99
    MeanKurtNorm MeanKurtReturnsW099 MeanMinNorm MeanMinReturnsW099
##
## 1
        2.998544
                           13.14853 -0.08104994
                                                       -0.1791391
# In this comparison, we observe that increasing alpha level doesn't correspond
# to an increase of their measures of kurtosis and minimal values.
# The reasons behind this discrepancy are:
# - Different outliers for different confidence levels.
# - Kurtosis is more closely related to the shape of the tails of the
distribution.
# However, especially for a 99% confidence level, the difference between the
# distribution and the observed distribution is too significant to assume that
# the normal distribution is a good-fitting model.
```

```
# DEEPENING:
# In order to evaluate the normal VaR distribution in a more specific analysis, we
# should take a different panel of time. In this case we choose a good financial
# period [2015-2017]
# Using the previous analysis we plot the Statistical Vs Normal VaR distribution,
# we renaming the variables in order to exclude cases of overwriting.
SP5001 <- read.table("C:/Users/catto/OneDrive/Desktop/HfWU/Geisinger - Financial</pre>
Analytics/Theory/SP500Ticker.csv", sep=";", header=TRUE)
Symbols1 <- SP5001[,1]
Close1 <- getPrices(Symbols1, start = "2015-01-01", end = "2017-12-31", "Close")
Returns1 <- getReturns(Close1)</pre>
names(Returns1) <- names(Close1)</pre>
VAR951 <- apply(Returns1, 2, ValueAtRisk_95)</pre>
ES951 <- apply(Returns1, 2, Expected_Shortfall_95)</pre>
VAR991 <- apply(Returns1, 2, ValueAtRisk_99)</pre>
ES991 <- apply(Returns1, 2, Expected_Shortfall_99)
MeanRet1 <- apply(Returns1, 2, mean)</pre>
STDRet1 <- apply(Returns1, 2, sd)</pre>
# We'll use the same seed to obtain the same normal distribution in order to get
# more accuracy. Of course the values are different because they are calculated
# with a different mean and standard deviation of the period [2020-22].
set.seed(1998)
NormDistr1 <- matrix(nrow = nrow(Returns1), ncol = ncol(Returns1))</pre>
for (i in 1:ncol(Returns1)) {
  NormDistr1[, i] <- rnorm(n = nrow(Returns1), mean = MeanRet1[i], sd =</pre>
STDRet1[i])
NormVar951 <- apply(NormDistr1, 2, NewVarFunction95)</pre>
NormVar991 <- apply(NormDistr1, 2, NewVarFunction99)</pre>
plot(sort(VAR951), col="darkblue", type = "p", pch=16, main="Returns VaR vs Normal
Distribution VaR at 95%", xlab="Stocks", ylab="Value")
points(sort(NormVar951), col="red", pch=16)
legend("bottomright", legend=c("Returns VaR", "Normal Distribution VaR"),
col=c("darkblue", "red"), pch=16)
```

Returns VaR vs Normal Distribution VaR at 95%


```
# We observe that in good financial period, for a confidence level of 95%
# the VaR of a normal distribution roughly fit with the Statistical one.
# We also have to say that in the external part of the graphic, there are
# blue points that are really far from the normal distribution. We are expecting
# that they represent the substantially difference between normal and real
returns'
# kurtosis.

plot(sort(VAR991), col="darkblue", type = "p", pch=16, main="Returns VaR vs Normal
Distribution VaR at 99%", xlab="Stocks", ylab="Value")
points(sort(NormVar991), col="red", pch=16)
legend("bottomright", legend=c("Returns VaR", "Normal Distribution VaR"),
col=c("darkblue", "red"), pch=16)
```

Returns VaR vs Normal Distribution VaR at 99%


```
# For a confidence level of 99%, despite the period is thriving, the normal model,
# underestimates the probability of extreme events.

plot(density(VAR951),xlim=c(-0.09,0),col="darkblue",lwd=2,main="Density 2015-17 at
95%",ylim=c(0,80))
lines(density(NormVar951),col="red",lwd=2)
legend("topleft",legend=c("Returns", "Normal Distribution"),cex=0.7,
col=c("darkblue", "red"),pch=16)
```

Density 2015-17 at 95%

plot(density(VAR95), main="Density 2020-22 at 95%", col="darkblue", xlim=c(0.12,0), ylim=c(0,50), lwd=2)
lines(density(NormVar95), col="red", lwd=2)
legend("topleft", legend=c("Returns", "Normal Distribution"), cex=0.7,
col=c("darkblue", "red"), pch=16)

Density 2020-22 at 95%

Here we can see that if we consider a dependence level of 95% normal model
represent a good-fit-model in order to forecast VaR.
In a worse case scenario as it is Covid-19, the distribution are more asymmetric
and not valid to forecast VaR.

plot(density(VAR991),xlim=c(-0.16,0),col="darkblue",lwd=2,main="Density 2015-17 at
99%",ylim=c(0,48))
lines(density(NormVar991),col="red",lwd=2)
legend("topleft",legend=c("Returns", "Normal Distribution"),cex=0.7,
col=c("darkblue", "red"),pch=16)

Density 2015-17 at 99%

N = 473 Bandwidth = 0.002859

```
plot(density(VAR99),main="Density 2020-22 at 99%",col="darkblue",xlim=c(-
0.19,0),ylim=c(0,35),lwd=2)
lines(density(NormVar99),col="red",lwd=2)
legend("topleft",legend=c("Returns", "Normal Distribution"),cex=0.7,
col=c("darkblue", "red"),pch=16)
```

Density 2020-22 at 99%


```
# At 99% the normal distribution is totally disaligned with the statistical one
# in all scenarios. We can assume that for an higher level of confidence
# the normal distribution of VaRs isn't useful because doesn't consider the
# more extreme event.

# IDENTIFY OUTLIERS
qqplot(VAR951,NormVar951, main="QQ Plot of VaRs at 95%", xlab="VAR95",
ylab="NormVar95")
abline(a=0.0025, b=1.15, lwd=2, col="red") #y = bx + a
```

QQ Plot of VaRs at 95%


```
# This applot is the best in terms of outliers that we will see in this analysis
Distance 951 <- abs((-1.15 * sort(VAR951) + sort(NormVar951) - 0.0025) / sqrt(1 +
1.15^2))
meanDistance951 <- mean(Distance951)</pre>
stdDistance951 <- sd(Distance951)</pre>
minDistance951 <- meanDistance951 - (2 * stdDistance951)</pre>
maxDistance951 <- meanDistance951 + (2 * stdDistance951)</pre>
Outliers951 <- Distance951[which(Distance951 < minDistance951 | Distance951 >
maxDistance951)]
NamesOutliers951 <- names(Outliers951)</pre>
NamesOutliers951
## [1] "ENPH" "FCX" "MU"
                               "AMCR"
# There are only 4 outliers in a 491 stocks.
OutReturns951 <- Returns1[,NamesOutliers951]</pre>
KurtOut951 <- apply(OutReturns951, 2, kurtosis)</pre>
MinOut951 <- apply(OutReturns951, 2, min)</pre>
MeanKurtOut951 <- mean(KurtOut951)</pre>
MeanMinOut951 <- mean(MinOut951)</pre>
KurtNorm1 <- apply(NormDistr1, 2, kurtosis)</pre>
MinNorm1 <- apply(NormDistr1, 2, min)</pre>
MeanKurtNorm1 <- mean(KurtNorm1)</pre>
MeanMinNorm1 <- mean(MinNorm1)</pre>
KurtReturns1 <- apply(Returns1,2,kurtosis)</pre>
MinReturns1 <- apply(Returns1,2,min)</pre>
MeanKurtReturns1 <- mean(KurtReturns1)</pre>
MeanMinReturns1 <- mean(MinReturns1)</pre>
```

```
CloseWO951<- Close1[, !names(Close1)%in%NamesOutliers951]
ReturnsW0951<- getReturns(CloseW0951)</pre>
KurtReturnsW0951 <- apply(ReturnsW0951,2,kurtosis)</pre>
MinReturnsW0951 <- apply(ReturnsW0951,2,min)</pre>
MeanKurtReturnsW0951 <- mean(KurtReturnsW0951)</pre>
MeanMinReturnsW0951 <- mean(MinReturnsW0951)</pre>
Comparison_Out951_Returns1<-</pre>
data.frame(MeanKurtOut951,MeanKurtReturns1,MeanMinOut951,MeanMinReturns1)
Comparison Norm1 Returns1 <-
data.frame(MeanKurtNorm1, MeanKurtReturns1, MeanMinNorm1, MeanMinReturns1)
Comparison ReturnsWO951 Returns1 <-
data.frame(MeanKurtReturnsWO951, MeanKurtReturns1, MeanMinReturnsWO951, MeanMinReturn
s1)
Comparison_Norm1_ReturnsWO951 <--</pre>
data.frame(MeanKurtNorm1, MeanKurtReturnsWO951, MeanMinNorm1, MeanMinReturnsWO951)
Comparison_Out951_Returns1
##
     MeanKurtOut951 MeanKurtReturns1 MeanMinOut951 MeanMinReturns1
## 1
           33.95679
                             12.09101
                                         -0.2467254
                                                           -0.100548
Comparison Norm1 Returns1
##
     MeanKurtNorm1 MeanKurtReturns1 MeanMinNorm1 MeanMinReturns1
## 1
          2,998906
                            12.09101 -0.04894817
                                                         -0.100548
Comparison_ReturnsWO951_Returns1
     MeanKurtReturnsWO951 MeanKurtReturns1 MeanMinReturnsWO951 MeanMinReturns1
## 1
                 11.90452
                                   12.09101
                                                    -0.09930125
                                                                        -0.100548
Comparison_Norm1_ReturnsWO951
##
     MeanKurtNorm1 MeanKurtReturnsWO951 MeanMinNorm1 MeanMinReturnsWO951
## 1
          2.998906
                                11.90452 -0.04894817
                                                               -0.09930125
# We repeat the analysis for a level of confidence of 99%
qqplot(VAR991,NormVar991, main="QQ Plot of VaRs at 99%", xlab="VAR991",
ylab="NormVar991")
abline(a=0.0045, b=0.95, lwd=2, col="red") # y = bx + a
```

QQ Plot of VaRs at 99%


```
Distance991 \leftarrow abs((-0.95 * sort(VAR991) + sort(NormVar991) - 0.0045) / sqrt(1 +
0.95^2)
meanDistance991 <- mean(Distance991)</pre>
stdDistance991 <- sd(Distance991)</pre>
minDistance991 <- meanDistance991 - (2 * stdDistance991)</pre>
maxDistance991 <- meanDistance991 + (2 * stdDistance991)</pre>
Outliers991 <- Distance991[which(Distance991 < minDistance991 | Distance991 >
maxDistance991)]
NamesOutliers991 <- names(Outliers991)</pre>
NamesOutliers991
## [1] "ENPH" "WMB"
                        "TRGP" "FCX" "NRG"
                                               "AMD"
                                                       "MRO"
                                                               "NEM"
                                                                               "MU"
## [11] "NOW"
OutReturns991 <- Returns[,NamesOutliers991]</pre>
KurtOut991 <- apply(OutReturns991, 2, kurtosis)</pre>
MinOut991 <- apply(OutReturns991, 2, min)</pre>
MeanKurtOut991 <- mean(KurtOut991)</pre>
MeanMinOut991 <- mean(MinOut991)</pre>
CloseWO991<- Close1[, !names(Close1)%in%NamesOutliers991]</pre>
ReturnsW0991<- getReturns(CloseW0991)</pre>
KurtReturnsW0991 <- apply(ReturnsW0991,2,kurtosis)</pre>
MinReturnsW0991 <- apply(ReturnsW0991,2,min)</pre>
MeanKurtReturnsW0991 <- mean(KurtReturnsW0991)</pre>
MeanMinReturnsW0991 <- mean(MinReturnsW0991)</pre>
Comparison_Out991_Returns1<-
data.frame(MeanKurtOut991,MeanKurtReturns1,MeanMinOut991,MeanMinReturns1)
Comparison_Out951_Out991 <-
```

```
data.frame(MeanKurtOut951, MeanKurtOut991, MeanMinOut951, MeanMinOut991)
Comparison ReturnsWO991 Returns1 <-
data.frame(MeanKurtReturnsWO991, MeanKurtReturns1, MeanMinReturnsWO991, MeanMinReturn
Comparison Norm1 ReturnsWO991 <-
data.frame(MeanKurtNorm1, MeanKurtReturnsWO991, MeanMinNorm1, MeanMinReturnsWO991)
Comparison_Out951_Returns1
##
    MeanKurtOut951 MeanKurtReturns1 MeanMinOut951 MeanMinReturns1
## 1
          33.95679
                           12.09101
                                     -0.2467254
                                                       -0.100548
Comparison Out991 Returns1
##
    MeanKurtOut991 MeanKurtReturns1 MeanMinOut991 MeanMinReturns1
## 1
          19.42016
                           12.09101
                                      -0.2885686
                                                       -0.100548
Comparison_Out951_Out991
    MeanKurtOut951 MeanKurtOut991 MeanMinOut951 MeanMinOut991
## 1
                         19.42016
          33.95679
                                    -0.2467254
                                                  -0.2885686
Comparison ReturnsWO991 Returns1
    MeanKurtReturnsWO991 MeanKurtReturns1 MeanMinReturnsWO991 MeanMinReturns1
##
## 1
                                                 -0.09712043
                                                                   -0.100548
                12.03641
                                 12.09101
Comparison Norm1 ReturnsWO991
    MeanKurtNorm1 MeanKurtReturnsWO991 MeanMinNorm1 MeanMinReturnsWO991
## 1
         2.998906
                              12.03641 -0.04894817
                                                           -0.09712043
# From the data, we observe an increase of kurtosis for both outliers and returns
# from 2015-2017 to 2020-2022. This suggests a "heavier" return distribution over
time,
# indicating more extreme values.
# That is made as a confirm of 2015-17 is a better case scenary. There were also
# geopolitical events like Brexit or american election, that could affect
# the outliers of this distribution, but they had a less relevant impact on the
# returns despite of the pandemic scenary.
# CONCLUSION:
# In conclusion, our analysis revealed that, in extreme market conditions,
# it might not be the optimal strategy to predict Value at Risk (VaR) for both
# 95% and 99% confidence levels using a normal distribution.
# In other conditions, as we have seen in the deepening, the normal VaR
distribution
# appeared to work efficiently if compared with a better case scenario.
# There was a acceptable fit as seen by the Normal VaR values, which matched
# approximatively with the VaR calculated for real returns.
# But when we analyise the 99% confidence level there were some notable variations
# between the VaR distribution based on real returns and the VaR at 99% normal
```

distribution. The statistical VaR distribution's tails were heavier indicating
that at this confidence level, the normal model can't get the quantity and
impact of the extreme events.
From the analysis of outliers, we registered a significantly difference on
the statistical measures of kurtosis and minimal values from what we expected
by the normal model, and what represent the reality.
In addition, the density plots showed that, in comparison to the normal
distribution,
the statistical VaR distribution presented a larger tail spread.
This illustrates how hard it was for the standard model to accurately represent
the risk of extremely abnormal movements in markets, especially in times of
crisis like the one we examined.