$$V_{FB} = \phi_{ms} - \frac{Q_{ox}}{C_{ox}} \tag{3.40}$$

其中, ϕ_{ms} 為金屬閘極與矽基板間的功函數差, C_{ox} 為單位面積的氧化層電容,而 Q_{ox} 為位於 SiO_2/Si 界面處之單位面積「等效正電荷」(注意若 Q_{ox} 為負電荷,則對應的平帶電壓為較正的值)。此外,(3.29)或(3.39)式的臨界電壓也跟着修正為:

$$V_{T} = \phi_{ms} - \frac{Q_{ox}}{C_{ox}} - \frac{Q_{sc}}{C_{ox}} + 2\psi_{B} \qquad (實際狀況下)$$
 (3.41)

同樣地,(3.30)式可修正如下:

$$V_{T} = \phi_{ms} - \frac{Q_{ox}}{C_{ox}} + \frac{\sqrt{2\epsilon_{s}qN_{A}(2\psi_{B})}}{C_{ox}} + 2\psi_{B} \qquad (\text{for real n-MOS})$$
 (3.42a)

$$V_T = \phi_{ms} - \frac{Q_{ox}}{C_{ox}} - \frac{\sqrt{2\epsilon_s q N_D (-2\psi_B)}}{C_{ox}} + 2\psi_B \qquad \text{(for real p-MOS)} \tag{3.42b}$$

綜合以上,實際的 MOS 要發生強反轉所須要的臨界電壓必須足以先達到平帶狀態(即 ϕ_{ms} 和 $-Q_{ox}/C_{ox}$ 兩項),接着使半導體表面造成空乏(即 $-Q_{sc}/C_{ox}$ 項),最後感應出強反轉層(即 $2\psi_B$ 項)。表 3-2 乃針對目前業界廣泛使用的 n-MOS(即 n^+ poly/SiO $_2/p\text{-Si}$)與 p-MOS(即 p^+ poly/SiO $_2/n\text{-Si}$)結構,將臨界電壓公式(3.41)中各參數的符號極性作一整理。

	V _T =	$\phi_{ m ms}$	$-\frac{Q_{ox}}{C_{ox}}$	$-\frac{Q_{sc}}{C_{ox}}$	+2ψ _B
n-MOS 與 n-MOSFET	+	_	與氧化層之界面等效電	+	+
p-MOS 與 p-MOSFET	_	+	荷 Qox 的極性 相反	` _	_

表 3-2 常見之臨界電壓與其各參數的符號極性