

Product Specification

CUSTOMER	Fujitsu
DATE OF ISSUE	2013.05.21

MODEL NO.	LTN156AT32
EXTENSION CODE	-701

Approved by	Y.E.PARK 13/05/21			
Prepared by	W.W.LEE 13/05/21			
IT Development Team Samsung Display Co., Ltd				

SAMSUNG DISPLAY

Table of Contents

REVISION HISTORY	3
1. GENERAL DESCRIPTION	4
2. ABSOLUTE MAXIMUM RATINGS	6
2.1 ENVIRONMENTAL ABSOLUTE RATINGS	7
3. OPTICAL CHARACTERISTICS	8
4. BLOCK DIAGRAM	
4.1 TFT LCD MODULE	
5. ELECTRICAL CHARACTERISTICS	13
5.1 TFT LCD MODULE 5.2 BACK LIGHT UNIT 5.3 LED DRIVER 5.4 LVDS INTERFACE 5.5 INTERFACE TIMING 5.6 INPUT COLOR DATA MAPPING 5.7 POWER ON/OFF SEQUENCE 5.8 INPUT TERMINAL PIN ASSIGNMENT	
6. PIXEL FORMAT	24
7. OUTLINE DIMENSION	25
8. MARKING	26
9. GENERAL PRECAUTIONS	26
9.1 STORAGE	26
10. APPENDIX	27

REVISION HISTORY

Date.	Rev. No.	Page	Revision Description
13/05/21	V0.0		Initial Release

1. GENERAL DESCRIPTION

DESCRIPTION

The LTN156AT32-701 uses a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFTs as switching components. This model is composed of a TFT LCD panel, a driver circuit, and a backlight unit. This 15.6" model has a resolution of 1366 x 768 pixels and can display up to 262,144 colors.

FEATURES

High contrast ratio
HD (1366 x 768 pixels) resolution
Low power consumption
Fast Response
LED back light with an embedded LED driver
DE (Data enable) only mode
3.3V LVDS Interface
Onboard EDID chip

APPLICATIONS

Notebook PC

If the intent to use this product is for other purpose, please contact Samsung Display.

GENERAL INFORMATION

Item	Specification	Unit	Note
Display area	344.232 (H) x 193.536 (V) (15.6"diagonal)	mm	
Driver Element	a-Si TFT active matrix		
Display colors	262,144 (6bit)		
Number of pixel	1366 *768(HD)	Pixel	16:9
Pixel Arrangement	RGB vertical stripe		
Pixel pitch	0.252 (H) x 0.252 (V) (TYP.)	mm	
Display Mode	Normally white, TN mode		
Thickness of glass	0.5	mm	
Surface treatment	Haze 25%, Hardness 3H		Anti-Glare
Environmental safe regulation	Pb Free, Halogen Free		
Barray Canaranatian	Total 4.26W(Typ) @Logic 0.8W(Typ) BLU 3.46W (Typ)		Mosaic
Power Consumption	Total 5.0W(Max)		PTN

MECHANICAL INFORMATION

Item		Min.	Тур.	Max.	Unit	Note
Madula	Horizontal (H)	358.8	359.3	359.8	mm	
Module Size	Vertical (V)	209.0	209.5	210.0	mm	
Size	Depth (D)	-	5.0	5.5	mm	(1)
Weight		-	440	450	g	

NOTE (1) Measuring method for thickness

Force to be applied for measurement: The 200gf when using the height gauge.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ENVIRONMENTAL ABSOLUTE RATINGS

Item	Symbol	Min.	Max.	Unit	Note
Storage temperate	TSTG	-20	60	°C	(1)
Operating temperature (Temperature of glass surface)	TOPR	0	50	°C	(1)
Shock (non-operating)	Snop	-	240	G	(2), (4)
Vibration (non-operating)	Vnop	-	2.41	G	(3), (4)

Note (1) The range of temperature and relative humidity is shown in the graph below 90% RH Max. . (39 $^{\circ}$ C \geq Ta) If the temperature is higher than 40 $^{\circ}$ C, the maximum temperature of wet–bulb shall be less than 39 $^{\circ}$ C. No condensation

- (2) Vibrate $\pm X$, $\pm Y$, and $\pm Z$ axis in the shape of the half sine wave one time for 2ms.
- (3) Vibrate the X, Y, and Z randomly within a 5 500 Hz range for 30min.
- (4) When testing a vibration and a shock, the fixture, which holds the module to be tested, shall be hard and rigid in order for the module not to be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

 $V_{LCD_VCC} = 3.3V$, $V_{SS} = GND = 0V$

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V_{LCD_VCC}	V _{SS} - 0.3	4.0		(1), (2)
LVDS Input Voltage	V_{LVDS}	V _{SS} - 0.3	2.0	V	

Note (1) Within Ta (25 \pm 2 °C)

(2) BACKLIGHT UNIT

VSS = GND = 0V

Item	Symbol	Min.	Max.	Unit	Note
BLU Supply Voltage	V_{BL_PWR}	V _{SS} - 0.3	26.5	V	(1), (2)
BLU Supply Current	I _{BL_PWR}	-	0.96	А	(1), (2) Vin=12V Duty 100%

Note (1) Within Ta (25 \pm 2 °C)

2.3 THE OTHERS

(1) STATIC ELECTRICITY PRESSURE RESISTANCE

Item	Test Conditions	Remark
CONTACT DISCHARGE	150pF, 330Ω , \pm 8kV, 200points, 1 time/point	Operating
AIR DISCHARGE	150pF, 330 Ω , \pm 15kV, 200points, 1 time/point	Operating

⁽²⁾ Permanent damage to the device may occur if exceed maximum values.

⁽²⁾ Permanent damage to the device may occur if exceed maximum values

3. OPTICAL CHARACTERISTICS

The following items are measured under the stable conditions.* The optical characteristics should be measured in the dark room or the equivalent environment by the methods shown in the Note (5). Measuring equipment: TOPCON SR-3

Ta = 25 ± 2 °C, $V_{LCD\ VCC}$ =3.3V, f_{V} = 60Hz, f_{DCLK} = 72.33MHz, I_{F} = 100% duty

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio Response time (Rising + Falling) Average Luminance of White (5 Points)		CR		300	500	-	1	(1),(2),(5)
		T_{RT}		-	16	25	msec	(1),(3)
		$Y_{L,AVE}$	Normal	190	220	-	cd/m²	IF=100% Duty (1),(4)
Cross Mod	ulation	DSHA	Viewing	-	1.0	2.0	%	(7)
	Dod	R_X	Angle	-0.03	0.619	+0.03		
	Red	R_{Y}	$\phi = 0$	0.302	0.350	0.362		
Color	Green	G_X	$\theta = 0$		0.340	+0.03		(1),(5)
Chromaticit		GY		-0.03	0.600			
У	Blue	B_X			0.154			
(CIE)		B_Y			0.095			
	White	W_X			0.313			
	Willie	W_Y			0.329			
	Hor.	θ_{L}		40	45	-		
Viewing	1101.	θ_{H}	CR ≥ 10	40	45	-	D	(1) (5)
Angle	Ver.	фн	At center	10	15	-	Degrees	(1),(5)
	ver.	ϕ_L		30	35	-		
Color Gamut		CG		55	60	-	%	
White variati	on (13P)	δ_{L}		-	1.44	1.6		(6)

SAMSUNG DISPLAY

Note (1) The definition of viewing angle: The range of viewing angle ($10 \le C/R$)

Note (2) The definition of contrast ratio (CR): The ratio of max. gray and min gray at 5 points (4, 5, 7, 9, and 10)

$$CR = \frac{CR(4) + CR(5) + CR(7) + CR(9) + CR(10)}{5}$$

Points = $\frac{4}{9}$, $\frac{5}{7}$, $\frac{9}{9}$, $\frac{10}{10}$ at the figure of Note(6).

Note (3) The definition of Response time: Subtotal of the time, during which the transmission changes from 10% to 90% when the TFT turns on and off.

Note (4) The definition of average luminance of white: Measure the luminance of white at 5 points.

Note (5) Measure the panel, which is left for 30 min. at the normal temp. after leaving it for 30 min with turning the back light on at the rating. The measurement should be executed under the condition including the ambient temp., $25 \, \text{C} \pm 2 \, \text{C}$, the dark room, windless (removed the direct wind), and no vibration.

Note (6) The definition of white variation at 13 points (δ L)

$$\delta L = \frac{\text{Maximum luminance of 13 points}}{\text{Minimum luminance of 13 points}}$$

SAMSUNG DISPLAY

Note (7) The definition of crosstalk (Cross modulation)

: The phenomenon, which the contrast ratio is decreased by the interference of signal between pixels Crosstalk Calculation Method

Crosstalk Modulation Ratio(D_{SHA}) =
$$\frac{|Y_A - Y_B|}{|Y_A|} \times 100 \text{ (%)}$$

Where

 Y_A , Y_B = Measured under the 2° viewing angle (Measured area: ψ 12 mm)

The rectangle area, which excludes the black-colored rectangle includes the range, which is from 1 gray to 63 gray.

1) The method of measurement for horizontal-crosstalk

2) The method of measurement for vertical-crosstalk

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 THE STRUCTURE OF LED PLACEMENT

(1 channels x 4ea = 4ea)

5. ELECTRICAL CHARACTERISTICS

5.1 TFT LCD MODULE

 $Ta = 25 \pm 2 ^{\circ}C$

Iten	n	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supp	y Voltage	V_{LCD_VCC}	3.0	3.3	3.6	V	
T-CON TTL	High	V_{IH}	0.7 V _{LCD_VCC}	-	-	V	(1)
Input Voltage	Low	V_{IL}	-	-	0.3 V _{LCD_VCC}	V	(1)
	60Hz	f_V	-	60	-	Hz	
Vsync	50Hz	f_V	-	50	-	Hz	(2)
	40Hz	f_V	-	40	-	Hz	(3)
Hsync	60Hz	f_H	46.50	47.40	48.60	kHz	
	60Hz	f_{DCLK}	67.24	72.33	83.88	MHz	
Main Frequency	50Hz	f _{DCLK}	-	60.28	-	MHz	(2)
	40Hz	f_{DCLK}	-	48.22	-	MHz	(3)
Rush Cu	ırrent	${ m I}_{\sf RUSH}$	-	-	1.5	Α	(5)
	White	I_{LCD_VCC}	-	242	303	mA	
	Mosaic	I_{LCD_VCC}	-	242	303	mA	(2) (4)
	Black	I_{LCD_VCC}	-	242	303	mA	(2), (4)
Input Current	V.Stripe	I_{LCD_VCC}	-	400	450	mA	
Input Current	Red	I_{LCD_VCC}	-	400	450	mA	
	Green	I_{LCD_VCC}	-	400	450	mA	(2), (4)
	Blue	I_{LCD_VCC}	-	400	450	mA	
	1Dot	I_{LCD_VCC}	-	400	450	mA	(2), (4)
Logic Input Powe	r Consumption	P _{LCD_VCC}	-	0.8	1.0	W	(4)*(b)
EDID Input	Voltage	V_{EDID}	3.0	3.3	3.6	V	
EDID Input	Current	I_{EDID}	-	-	5	mA	
Skey		PS	-400	-	400	ps	(2)

Note (1) The data pins for display and signal pins for timing should be connected. (GND= 0V)

⁽²⁾ $f_V = 60$ Hz, $f_{DCLK} = 72.33$ MHZ, $V_{LCD_VCC} = 3.3$ V, DC Current.

⁽³⁾ In the case of 40Hz & 50Hz for sDRRS, FOS,

Flicker & Brightness are not guaranteed, because their level might be different from 60Hz operation.

Note (4) The dissipation pattern for power

Note (5) The condition for measurement for rush current

5.2 BACK LIGHT UNIT

Ta = 25 ± 2 °C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	IF	-	115	-	mA	
LED Forward Voltage	VF	6.1	6.4	6.7	٧	IF = 120mA
LED Array Voltage	VP	-	25.6	-	V	
LED Power Consumption	Р	-	3.46	4.0	W	
LED Life time	Hr	15,000	-	-	Hours	(1)
LED Counts	Q	-	4	-	EA	

Note (1) The life time (Hr) of LEDs can be defined as the time during which it continues to operate under the condition, which the Ta is 25 ± 2 °C and IF= 115.0 mArms until the one of the following events occurs when the brightness becomes 50% or lower than the original.

5.3 LED DRIVER

The manufacturer of LED driver: Richtek RT8510

Ta= 25 ± 2 °C

Iter	n	Symbol	Min.	Тур.	Max.	Unit	Note
Input Voltage	Input Voltage		7	12	21	V	
Input Current	Input Current		-	289	333	mA	Vin=12V Duty 100%
PWM duty Ratio		D _{BL_PWM_DIM}	1	-	100	%	(1)
External DVA/A4 Ex			0.2	1	2	kHz	APS ON
External PWM Fi	equency	F _{BL_PWM_DIM}	0.12	1	2	kHz	APS OFF
DIAMA Decelution		Ь	0.8	-	-	%	APS ON
PWM Resolution		$R_{BL_PWM_DIM}$	0.3			%	APS OFF
In-Rush Current		$I_{RUSH_BL_PWR}$	-	-	1.5	Α	(2)
EN Control	High		2.0	-	5.0	V	
Level	Low	V _{BL_ENABLE}	0.0	-	0.8	V	
PWM Control	High		2.0	-	5.0	V	
Level	Low	V _{BL_PWM_DIM}	0.0	-	0.8	V	
VBL_PWR @ LEI	VBL_PWR @ LED Driver On		7	-	21	V	
VBL_PWR @ LED Driver Off		V_{BL_PWR} V_{BL_PWR}	0	-	2	V	
Operating freque	ency	FO	0.8	1.0	1.2	kHz	
Efficiency		η	-	85	-	%	

Note (1) Rush current measurement condition

The VBL_PWR rising time is 470us.

5.4 LVDS INTERFACE

5.4.1 LVDS DC Specifications

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential input high threshold voltage	V _{TH}	1	-	+200	mV	V - 1 2V
Differential input low threshold voltage	V _{TL}	-200	-	-	mV	V _{CM} = 1.2V
Differential input voltage	V _{ID}	200	400	600	mV	
Common mode voltage	V_{CM}	0.4	1.2	1.8	V	V _{ID} = 200mV

5.4.2 LVDS AC Specifications

Characterist	Characteristics			Тур.	Max.	Unit	Remarks
ROUTCLK frequency		f_{RCP}	67.24	72.33	83.88	MHz	
LVDS RX Skew	85MHz	-	-	-	400	ps	
(Strobe) Right Margin	50MHz	T_{RSRM}	-	-	700	ps	
LVDS RX Skew	85MHz		-400	-	-	ps	
(Strobe) Left Margin	50MHz	T_{RSLM}	-700	-	-	ps	

< The definition of LVDS DC characteristics >

< The definition of LVDS Receiver Skew (Strobe) Margin >

5.4.3 LVDS SSC Specification

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Remarks
Modulation Rate	F _{mr}	-3	0	+3	%	
Modulation Frequency	F _{mf}	30	-	300	kHz	@ MAINCLK = 72.33MHz

< Definition of SSC (Spread Spectrum Clock) >

5.4.4 Timing diagrams of LVDS transmission

5.5 INTERFACE TIMING

5.5.1 TIMING PARAMETERS

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Frame Frequency	Cycle	T _V	775	790	810	Lines	
Vertical active in the display term	Display Period	T _{VD}	1	768	-	Lines	
Scanning time in one line	Cycle	T _H	1446	1526	1726	Clocks	
Horizontal active in the display term	Display Period	T _{HD}	-	1366	-	Clocks	

5.5.2 TIMING DIAGRAMS OF INTERFACE SIGNAL

5.6 INPUT COLOR DATA MAPPING

										Data	Signa	l								Gray
Color	Display			R	ed					Gr	een					Bl	ue			Scale
		R0	Rl	R2	R3	R4	R5	G0	Gl	G2	G3	G4	G5	В0	Bl	B2	В3	45	B5	Level
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	-
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	-
Basic	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-
Colors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	-
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	-
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	Dark	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
Gray	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	R3~R60
Of Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	160
	¥	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R61
	Light	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R62
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R63
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
	Dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	G1
Gray	↑	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	G2
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	G3~G60
Of Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	03-000
oreca	↓	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	G61
	Light	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	G62
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	G63
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
	Dark	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	B1
Gray	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	B2
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B60
Of Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	↓	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	B61
	Light	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	B62
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	B63

Note (1) Definition of gray: Rn: Red gray, Gn: Green gray, Bn: Blue gray (n=gray level)

Note (2) Input signal: 0 =Low level voltage, 1=High level voltage

5.7 POWER ON/OFF SEQUENCE

To prevent the product from being latched up or the DC in the LCD module from starting an operation, the order to turn the power on and off should be changed to the order as shown in the diagram below.

Timing (ms)	Remarks
$0.5 < T_1 \le 10$	V _{LCD_VCC} rising time from 10% to 90%
0 < T ₂ ≤50	Interval from $V_{\text{LCD_VCC}}$ to valid data at power ON
0 < T ₃ ≤50	Interval from valid data OFF to V _{LCD_VCC} OFF at power Off
150 ≤T ₄	V _{LCD_VCC} OFF time for Windows restart
200 ≤T ₅	Interval from valid data to B/L enable at power ON
0 < T ₆	Interval from valid data off to B/L disable at power Off
0 < T ₇ ≤10	V _{LCD_VCC} falling time from 90% to 10%
10 < T ₈	Interval from valid data on to LED driver Vin rising time 10%
10 < T ₉	Interval from LED driver Vin falling time 10% to valid data Off
$0.5 < T_{10} \le 10$	LED V _{in} rising time from 10% to 90%
0.5 < T ₁₁ ≤10	LED V _{in} falling time from 90% to 10%
0 < T ₁₂	Interval from LED driver Vin rising time 90% to PWM ON
0 < T ₁₃	Interval from PWM Off to LED driver Vin falling time 90%
0 ≤ T ₁₄	Interval from PWM ON to B/L Enable ON
0 ≤ T ₁₅	Interval from B/L Enable Off to PWM Off

SAMSUNG DISPLAY

The backlight may be flashed if the interface signal remains floated when the above-mentioned signal becomes invalid.

Note (1) The power voltage from system shall be supplied to the input pin of LCD constantly.

- (2) Enable the voltage to the LED within the range, which the LCD is operated. The screen becomes white when turning the back-light on before the LCD is operated or turning the LCD off before turning the back-light off. Operation or the LCD turns off before the back-light turns off; the display may momentarily become white.
- (3) Don't leave the system at a high impedance state, which the interface signal is out for a long time after the VLCD_VCC is enabled.
- (4) The T4 should be measured the module is fully discharged.
- (5) The interface signal shall not maintain the high impedance when the power is on.

5.8 INPUT TERMINAL PIN ASSIGNMENT

5.8.1 INPUT SIGNAL & POWER

(LVDS, Connector: 20455-040E-0, I-PEX or the equipment with the equivalent capability)

		or the equipment with the equivalent capability)
Pin	Symbol	Function
1	NC	Hot Plug Detect or No connection (optional)
2	LCD_VCC	LCD logic and driver IC Power (3.3V typ.)
3	LCD_VCC	LCD logic and driver IC Power (3.3V typ.)
4	VCC_EDID	DDC power
5	NC (WPN)	Reserved for the use by LCD manufacturer (WPN)
6	CLK_EDID	DDC clock
7	DAT_EDID	DDC data
8	RX0-	Negative LVDS differential data input for pixel
9	RX0+	Positive LVDS differential data input for pixel
10	H_GND	High speed ground
11	RX1-	Negative LVDS differential data input for pixel
12	RX1+	Positive LVDS differential data input for pixel
13	H_GND	High speed ground
14	RX2-	Negative LVDS differential data input for pixel
15	RX2+	Positive LVDS differential data input for pixel
16	H_GND	High speed ground
17	RXC-	Negative LVDS differential clock input for pixel
18	RXC+	Positive LVDS differential clock input for pixel
19	H_GND	High speed ground
20	NC	No connection
21	NC	No connection
22	LCD_GND	LCD logic and driver IC Ground
23	NC	No connection
24	NC	No connection
25	LCD_GND	LCD logic and driver IC Ground
26	NC	No connection
27	NC	No connection
28	LCD_GND	LCD logic and driver IC Ground
29	NC	No connection
30	NC	No connection
31	BL_GND	Backlight ground
32	BL_GND	Backlight ground
33	BL_GND	Backlight ground
34	NC	Hot Plug Detect or No connection (optional)
35	BL_PWM_DIM	Signal input for the system PWM for dimming
36	BL_ENABLE	Backlight on/off
37	NC	APS on/off or No connection (optional)
38	BL_PWR	Backlight power
39	BL_PWR	Backlight power
40	BL_PWR	Backlight power

6. PIXEL FORMAT

7. OUTLINE DIMENSION

8. MARKING

A nameplate is affixed to the specified location on each product.

(1)Parts number : LTN156AT32(2)Revision code : 3 letters

(3)Lot number : X X X X XXX XX XX 701

9. GENERAL PRECAUTIONS

9.1 STORAGE

We highly recommend to comply with the criteria in the table below.

ITEM	Unit	Min.	Max.								
Storage	(℃)	5	40								
Temperature	()										
Storage	(0/ rLl)	25	75								
Humidity	(761日)	(%rH) 35 75									
Storage Life	12 months										
Storage	- The storage room should be equipped with a good ventilation facility, which has a										
Condition	temperature controlling system.										
	- Products should be placed on the p	allet, which is away from th	e wall not on the floor.								
	- Prevent products from being expos	ed to the direct sunlight, m	oisture, and water;								
	Be cautious not to pile the products	up.									
	- Avoid storing products in the enviro	onment, which other hazard	lous material is placed.								
	- If products are delivered or kept in	the storage facility more th	an 3 months, we recommend								
	you to leave products under the cor	ndition including a 20°C ten	nperature and a humidity of								
	50% for 24 hours.										
	- If you store semi-manufactured pro	ducts for more than 3 mon	ths, bake the products under								
	the condition including the 50 $^\circ$ C ter	mp. and the 10% humidity f	or 24hrs after being used.								

10. APPENDIX

Only Internal

[OPTICAL CHARACTERISTICS]

The following items are measured under the stable conditions.* The optical characteristics should be measured in the dark room or the equivalent environment by the methods shown in the Note (5). Measuring equipment: TOPCON SR-3

Ta = 25 ± 2 °C, VLCD_VCC = 3.3V, fv= 60Hz, f_{DCLK} = 72.33MHz, IF = 100% duty

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Flicker	F		1	3.2	5.2		(8)

Note (8) The definition of flicker: The phenomenon, which the pixel on the screen of LCD panel blinks.

- 1) Calculate the figure with observing the standard for the measurement for the flicker.
- 2) Measurement point

3) Pattern to measure the flicker: Inverting driving of DOT

[LED DRIVER]

The manufacturer of LED driver: Richtek RT8510

 $Ta = 25 \pm 2 \, ^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
OVP driving Voltage	Vovp	-	-	42	٧	

[ELECTRICAL CHARACTERISTICS]

TFT LCD MODULE

 $Ta = 25 \pm 2 \, ^{\circ}C$

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage Ripple	Active Period	VLCD_VCC_RI	-	-	0.05 * V _{LCD_} VCC	V	(1)

Note (1) $f_V = 60$ Hz, $f_{DCLK} = 72.33$ MHz, $V_{LCD_VCC} = 3.3$ V, Sub Dot Pattern