D1 Stationary Point P3

1	The equation of a curve is $y = x + \cos 2x$. Find the <i>x</i> -coordinates of the stationary points of the c for which $0 \le x \le \pi$, and determine the nature of each of these stationary points.	
	© UCLES 2005	9709/03/O/N/05
2	The curve with equation $y = 6e^x - e^{3x}$ has one stationary point.	
	(i) Find the x-coordinate of this point.	[4]
	(ii) Determine whether this point is a maximum or a minimum point.	[2]
	© UCLES 2006	9709/03/O/N/06
3	The curve with equation $y = e^{-x} \sin x$ has one stationary point for which $0 \le x \le \pi$.	
	(i) Find the x-coordinate of this point.	[4]
	(ii) Determine whether this point is a maximum or a minimum point.	[2]
	© UCLES 2007	9709/03/O/N/07
4	4 The curve $y = \frac{e^x}{\cos x}$, for $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$, has one stationary point. Find the <i>x</i> -coordinate of this parameters $\frac{e^x}{\cos x}$.	
	© UCLES 2008	9709/03/O/N/08
5	The curve $y = \frac{\ln x}{x^3}$ has one stationary point. Find the <i>x</i> -coordinate of this point.	[4]
	© UCLES 2011	9709/33/M/J/11
6	The equation of a curve is $y = 3 \sin x + 4 \cos^3 x$.	
	(i) Find the x-coordinates of the stationary points of the curve in the interval $0 < x < \pi$.	[6]
	(ii) Determine the nature of the stationary point in this interval for which x is least.	[2]
	© UCLES 2012	9709/32/M/J/12

7	The curve with equation $y = \frac{e^{2x}}{x^3}$ has one stationary point.
	(i) Find the <i>x</i> -coordinate of this point. [4]
	(ii) Determine whether this point is a maximum or a minimum point. [2]
	© UCLES 2012 9709/33/M/J/12
3	The equation of a curve is $y = 3\cos 2x + 7\sin x + 2.$
	Find the <i>x</i> -coordinates of the stationary points in the interval $0 \le x \le \pi$. Give each answer correct to 3 significant figures. [7]
	© UCLES 2015 9709/31/M/J/15
)	A curve has equation $y = \cos x \cos 2x$. Find the <i>x</i> -coordinate of the stationary point on the curve in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6]
	© UCLES 2015 9709/32/M/J/15
10	The curve with equation $y = \frac{e^{2x}}{4 + e^{3x}}$ has one stationary point. Find the exact values of the coordinates of this point. [6]
	© UCLES 2015 9709/33/M/J/15
11	The curve with equation $y = \sin x \cos 2x$ has one stationary point in the interval $0 < x < \frac{1}{2}\pi$. Find the x -coordinate of this point, giving your answer correct to 3 significant figures. [6]
2	The curve with equation $y = \frac{(\ln x)^2}{x}$ has two stationary points. Find the exact values of the coordinates of these points. [6]
	© UCLES 2016 9709/32/M/J/16

13	The curve with equation $y = \frac{2 - \sin x}{\cos x}$ has one stationary point in the interval $-\frac{1}{2}\pi < x < 1$	· 1 _π			
.0					
	(i) Find the exact coordinates of this point.	[5]			
	© UCLES 2017	9709/32/O/N/17			
	e^{3x}				
14	A curve has equation $y = \frac{e^{3x}}{\tan \frac{1}{2}x}$. Find the x-coordinates of the stationary points of the	e curve in the			
	interval $0 < x < \pi$. Give your answers correct to 3 decimal places.	[6]			
	© UCLES 2018	9709/31/M/J/18			
15 The curve $y = \sin \left(x + \frac{1}{3}\pi\right) \cos x$ has two stationary points in the interval $0 \le x \le \pi$.					
	(i) Find $\frac{dy}{dx}$.	[2]			
	(ii) By considering the formula for $\cos(A+B)$, show that, at the stationary points on the curve, $\cos(2x+\frac{1}{3}\pi)=0$. [2]				
	(iii) Hence find the exact x-coordinates of the stationary points.	[3]			
	© UCLES 2019	9709/33/M/J/19			
16	The curve with equation $y = \frac{e^{-2x}}{1 - x^2}$ has a stationary point in the interval $-1 < x < 1$. hence find the <i>x</i> -coordinate of this stationary point, giving the answer correct to 3 decire				
	© UCLES 2019	9709/32/O/N/19			