On the Sequential Probability Ratio Test in Hidden Markov Models

Oscar Darwin 🗅

Department of Computer Science, Oxford University, United Kingdom

Stefan Kiefer

Department of Computer Science, Oxford University, United Kingdom

- Abstract

We consider the Sequential Probability Ratio Test applied to Hidden Markov Models. Given two Hidden Markov Models and a sequence of observations generated by one of them, the Sequential Probability Ratio Test attempts to decide which model produced the sequence. We show relationships between the execution time of such an algorithm and Lyapunov exponents of random matrix systems. Further, we give complexity results about the execution time taken by the Sequential Probability Ratio Test.

2012 ACM Subject Classification Theory of computation \rightarrow Random walks and Markov chains; Mathematics of computing \rightarrow Stochastic processes; Theory of computation \rightarrow Logic and verification

Keywords and phrases Markov chains, hidden Markov models, probabilistic systems, verification

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

A (discrete-time, finite-state) $Hidden\ Markov\ Model\ (HMM)$ (often called $labelled\ Markov\ chain$) has a finite set Q of states and for each state a probability distribution over its possible successor states. Every state is associated with a probability transition over a successor state and an emitted letter (observation). For example, consider the following HMM:

In state q_1 , the probability of emitting a and the next state being also q_1 is $\frac{1}{3}$, and the probability of emitting b and the next state being q_2 is $\frac{2}{3}$. An HMM is typically viewed as a producer of a finite or infinite word of emitted observations. For example, starting in q_1 , the probability of producing a word with prefix aba is $\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$, whereas starting in q_2 , the probability of aba is $\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$. The random sequence of states is considered not observable (which explains the term hidden in HMM).

HMMs are widely employed in fields such as speech recognition (see [31] for a tutorial), gesture recognition [9], signal processing [13], and climate modeling [1]. HMMs are heavily used in computational biology [16], more specifically in DNA modeling [11] and biological sequence analysis [15], including protein structure prediction [24] and gene finding [3]. In computer-aided verification, HMMs are the most fundamental model for probabilistic systems; model-checking tools such as Prism [25] or Storm [14] are based on analyzing HMMs efficiently.

One of the most fundamental questions about HMMs is whether two initial distributions are (trace) equivalent, i.e., generate the same distribution on infinite observation sequences. In the example above, we argued that (the Dirac distributions on) the states q_1, q_2 are not equivalent. The equivalence problem is very well studied and can be solved in polynomial

time using algorithms that are based on linear algebra [32, 28, 35, 12]. The equivalence problem has applications in verification, e.g., of randomised anonymity protocols [22].

Equivalence is a strong notion, and a natural question about nonequivalent distributions in a given HMM is how different they are. For initial distributions π_1, π_2 on the states of the HMM, let us write $\mathbb{P}_{\pi_1}, \mathbb{P}_{\pi_2}$ for the induced probability measure on infinite observation sequences; i.e., $\mathbb{P}_{\pi_i}(E)$, for a measurable event $E \subseteq \Sigma^{\omega}$, is the probability that the random infinite word $w \in \Sigma^{\omega}$ produced starting from π_i is in E. Then, the total variation distance between $\mathbb{P}_{\pi_1}, \mathbb{P}_{\pi_2}$ is defined as

$$d(\pi_1,\pi_2) \ := \ \sup \left\{ |\mathbb{P}_{\pi_1}(E) - \mathbb{P}_{\pi_2}(E)| \mid \text{measurable } E \subseteq \Sigma^\omega \right\}.$$

This supremum is a maximum; i.e., there always exists a "maximizing event" $E \subseteq \Sigma^{\omega}$ with $d(\pi_1, \pi_2) = \mathbb{P}_{\pi_1}(E) - \mathbb{P}_{\pi_2}(E)$. In these terms, initial distributions π_1, π_2 are equivalent if and only if $d(\pi_1, \pi_2) = 0$. The total variation distance was studied in more detail in [10]. There it was shown that the problem whether $d(\pi_1, \pi_2) = 1$ holds can also be decided in polynomial time. Call distributions π_1, π_2 distinguishable if $d(\pi_1, \pi_2) = 1$. Distinguishability was used for runtime monitoring [23] and diagnosability [4, 2] of stochastic systems.

Distributions π_1, π_2 that are distinguishable (i.e., $d(\pi_1, \pi_2) = 1$) can nevertheless be "hard" to distinguish. In our example above, (the Dirac distributions on) q_1, q_2 are distinguishable. If we replace the transition probabilities $\frac{1}{3}, \frac{2}{3}$ in the HMM by $\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon$, respectively, states q_1, q_2 remain distinguishable for every $\varepsilon > 0$, although, intuitively, the smaller $\varepsilon > 0$ the more observations are needed to define an event E such that $\mathbb{P}_{\pi_1}(E) - \mathbb{P}_{\pi_2}(E)$ is close to 1.

To make this more precise, for initial distributions π_1, π_2 , a word $w \in \Sigma^{\omega}$ and $n \in \mathbb{N}$ consider the *likelihood ratio*

$$L_n(w) := \frac{\mathbb{P}_{\pi_1}(w_n \Sigma^{\omega})}{\mathbb{P}_{\pi_2}(w_n \Sigma^{\omega})},$$

where w_n denotes the length-n prefix of w. In the example above, we argued that $\mathbb{P}_{q_1}(aba\Sigma^{\omega})=\frac{1}{3}\cdot\frac{2}{3}\cdot\frac{2}{3}$ and $\mathbb{P}_{q_2}(aba\Sigma^{\omega})=\frac{2}{3}\cdot\frac{1}{3}\cdot\frac{1}{3}$. Thus, for any word w starting with aba we have $L_n(w)=2$. We consider the likelihood ratio L_n as a random variable for every $n\in\mathbb{N}$. It turns out more natural to focus on the \log -likelihood ratio $\ln L_n$. One can show that the limit $\lim_{n\to\infty}\ln L_n\in[-\infty,\infty]$ exists \mathbb{P}_{π_1} -almost surely and \mathbb{P}_{π_2} -almost surely (see, e.g., [10, Proposition 6]). In fact, if π_1,π_2 are distinguishable, then $\lim_{n\to\infty}\ln L_n=\infty$ holds \mathbb{P}_{π_1} -almost surely and $\lim_{n\to\infty}\ln L_n=\infty$ holds \mathbb{P}_{π_2} -almost surely. This suggests the "average slope", $\lim_{n\to\infty}\frac{1}{n}\ln L_n$, of increase or decrease of $\ln L_n$ as a measure of how distinguishable two distinguishable distributions π_1,π are.

The log-likelihood ratio plays a central role in the sequential probability ratio test (SPRT) [36], which is optimal [37] among sequential hypothesis tests (such tests attempt to decide between two hypotheses without fixing the sample size in advance). In terms of an HMM and two initial distributions π_1, π_2 , the SPRT attempts to decide, given longer and longer prefixes of an observation sequence $w \in \Sigma^{\omega}$, which of π_1, π_2 is more likely to emit w. The SPRT works as follows: fix a lower and an upper threshold (which determine type-I and type-II errors); given increasing prefixes of w keep track of $\ln L_n(w)$, and when the upper threshold is crossed output π_1 and stop, and when the lower threshold is crossed output π_2 and stop. Again, it is natural to assume that the average slope of increase or decrease of $\ln L_n$ determines how long the SPRT needs to cross one of the thresholds.

If the average slope $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ exists and equals a number ℓ with positive probability, we call ℓ a *likelihood exponent*. The term is motivated by a close relationship to *Lyapunov* exponents, which characterise the growth rate of certain random matrix products. As the

most fundamental contribution of this paper, we show that the average slope exists almost surely and that any HMM with m states has at most $m^2 + 1$ likelihood exponents.

The rest of the paper is organised as follows. In Section 3 we exhibit a tight connection between the SPRT and likelihood exponents; i.e., the time taken by the SPRT depends on the likelihood exponents of the HMM. This connection motivates our results on likelihood exponents in the rest of the paper. In Section 4 we prove complexity results concerning the probability that the average slope equals a particular likelihood exponent. In Section 5 we show that the average slope exists almost surely and prove our bound on the number of likelihood exponents. Further, we show that the likelihood exponents can be efficiently expressed in terms of Lyapunov exponents. In Section 6 we show that for deterministic HMMs one can compute likelihood exponents in polynomial time. We conclude in Section 7.

2 Preliminaries

We write \mathbb{N} for the set of non-negative integers. For $d \in \mathbb{N}$ we write $[d] = \{1, \ldots, d\}$. For a finite set Q, vectors $\mu \in \mathbb{R}^Q$ are viewed as row vectors, and their transpose (a column vector) is denoted by μ^{\top} . The norm $\|\mu\|$ is assumed to be the l_1 norm: $\|\mu\| = \sum_{q \in Q} |\mu_q|$. We write $\vec{0}, \vec{1}$ for the vectors all whose entries are 0, 1, respectively. For $q \in Q$, we denote by $e_q \in \{0,1\}^Q$ the vector with $(e_q)_q = 1$ and $(e_q)_{q'} = 0$ for $q' \neq q$. A matrix $M \in [0,1]^{Q \times Q}$ is stochastic if $\vec{1}^{\top} = M\vec{1}^{\top}$. We often identify vectors $\mu \in [0,1]^Q$ such that $\|\mu\| = 1$ with the corresponding probability distribution on Q. For $\mu \in [0,\infty)^Q$ we write $\sup(\mu) := \{q \in Q \mid \mu_q > 0\}$.

For a finite alphabet Σ and $n \in \mathbb{N}$ we denote by $\Sigma^n, \Sigma^*, \Sigma^\omega$ the sets of length-n words, finite words, infinite words, respectively. For $w \in \Sigma^\omega$ we write w_n for the length-n prefix of w.

A Hidden Markov Model (HMM) is a triple $\mathcal{H}=(Q,\Sigma,\Psi)$ where Q is a finite set of states, Σ is a set of observations (or "letters"), and the function $\Psi:\Sigma\to[0,1]^{Q\times Q}$ specifies the transitions such that $\sum_{a\in\Sigma}\Psi(a)$ is stochastic. A Markov chain is a pair (Q,T) where Q is a finite set of states and $T\in[0,1]^{Q\times Q}$ is a stochastic matrix. A Markov chain (Q,T) is naturally associated with its directed graph $(Q,\{(q,r)\mid T_{q,r}>0\})$, and so we may use graph concepts, such as strongly connected components (SCCs), in the context of a Markov chain. Trivial SCCs are considered SCCs. The embedded Markov chain of an HMM (Q,Σ,Ψ) is the Markov chain $(Q,\sum_{a\in\Sigma}\Psi(a))$. We say that an HMM is strongly connected if the graph of its embedded Markov chain is.

▶ **Example 1.** The HMM from the introduction is the triple
$$\mathcal{H} = (\{q_1, q_2\}, \{a, b\}, \Psi)$$
 with $\Psi(a) = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{2}{3} \end{pmatrix}$ and $\Psi(b) = \begin{pmatrix} 0 & \frac{2}{3} \\ \frac{1}{3} & 0 \end{pmatrix}$. The embedded Markov chain is $(\{q_1, q_2\}, \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix})$.

Fix an HMM $\mathcal{H}=(Q,\Sigma,\Psi)$ for the rest of the section. We extend Ψ to the mapping $\Psi:\Sigma^*\to [0,1]^{Q\times Q}$ with $\Psi(a_1\cdots a_n)=\Psi(a_1)\cdot\ldots\cdot\Psi(a_n)$ and $\Psi(\varepsilon)=I$, where ε is the empty word and I the $Q\times Q$ identity matrix. We call a finite sequence $v=q_0a_1q_1\cdots a_nq_n\in Q(\Sigma Q)^*$ a path and $v(\Sigma Q)^\omega$ a cylinder set and an infinite sequence $q_0a_1q_1a_2q_2\cdots\in Q(\Sigma Q)^\omega$ a run. To $\mathcal H$ and an initial probability distribution $\pi\in [0,1]^Q$ we associate the probability space $(Q(\Sigma Q)^\omega, \mathcal G^*, \mathbb P_\pi)$ where $\mathcal G^*$ is the σ -algebra generated by the cylinder sets and $\mathbb P_\pi$ is the unique probability measure with $\mathbb P_\pi(q_0a_1q_1\cdots a_nq_n(\Sigma Q)^\omega)=\pi_q\prod_{i=1}^n\Psi(a_i)_{q_{i-1},q_i}$. As the states are often irrelevant, for $E\subseteq \Sigma^\omega$ and $E\uparrow:=\{q_0a_1q_1a_2q_2\cdots \mid a_1a_2\cdots \in E\}\in \mathcal G^*$ we view also E as an event and may write $\mathbb P_\pi(E)$ to mean $\mathbb P_\pi(E\uparrow)$. In particular, for $w\in \Sigma^*$ we have $\mathbb P_\pi(w\Sigma^\omega)=\|\pi\Psi(w)\|$. For $E\subseteq \Sigma^\omega$ we write $\mathbb I_E$ for the indicator random variable with $\mathbb I_E(w)=1$ if $w\in E$ and $\mathbb I_E(w)=0$ if $w\notin E$. By $\mathbb E_\pi$ we denote the expectation with respect to $\mathbb P_\pi$. If π is the Dirac distribution on state q, then we write $\mathbb E_q$.

A Markov chain (Q,T) and an initial distribution $\iota \in [0,1]^Q$ are associated with a probability measure \mathbb{P}_{ι} on measurable subsets of Q^{ω} ; the construction of the probability space is similar to HMMs, without the observation alphabet Σ .

Let (Q, Σ, Ψ) be an HMM and let π_1, π_2 be two initial distributions. The total variation distance is $d(\pi_1, \pi_2) := \sup_{E \uparrow \in \mathcal{G}^*} |\mathbb{P}_{\pi_1}(E) - \mathbb{P}_{\pi_2}(E)|$. This supremum is actually a maximum due to Hahn's decomposition theorem; i.e., there is an event $E \subseteq \Sigma^{\omega}$ such that $d(\pi_1, \pi_2) = \mathbb{P}_{\pi_1}(E) - \mathbb{P}_{\pi_2}(E)$. We call π_1 and π_2 distinguishable if $d(\pi_1, \pi_2) = 1$. Distinguishability is decidable in polynomial time [10].

Let π_1 and π_2 be initial distributions. For $n \in \mathbb{N}$, the *likelihood ratio* L_n is a random variable on Σ^{ω} given by $L_n(w) = \frac{\|\pi_1 \Psi(w_n)\|}{\|\pi_2 \Psi(w_n)\|}$. Based on results from [10] we have the following lemma

- ▶ Lemma 2. Let π_1, π_2 be initial distributions.
- 1. $\lim_{n\to\infty} L_n$ exists \mathbb{P}_{π_2} -almost surely and lies in $[0,\infty)$.
- **2.** $\lim_{n\to\infty} L_n = 0$ \mathbb{P}_{π_2} -almost surely if and only if π_1 and π_2 are distinguishable.
- ▶ Example 3. We illustrate convergence of the likelihood ratio using an example from [26] where the authors use HMMs to model sleep cycles. They took measurements of 51 healthy and 51 diseased individuals and using electrodes attached to the scalp, they read electrical signal data as part of an electroencephalography (EEG) during sleep. They split the signal into 30 second intervals and mapped each interval onto the simplex $\Delta^3 = \{(x_1, x_2, x_3, x_4) \in [0, 1]^4 \mid \sum_{i=1}^4 x_i = 1\}$. For each individual this results in a time series of points in Δ^3 . They modelled this data using two HMMs, each with 5 states, for healthy and diseased individuals using a numerical maximum likelihood estimate. Each state is associated with a probability density function describing the distribution of observations in Δ^3 . We describe in Appendix A.2 how we obtained from this an HMM $\mathcal{H} = (Q, \Sigma, \Psi)$ with (finite) observation alphabet $\Sigma = \{a_1, \ldots, a_5\}$ and two initial distributions π_1, π_2 corresponding to healthy and diseased individuals, respectively. Using the algorithm from [10] one can show that π_1 and π_2 are distinguishable.

We sampled runs of \mathcal{H} started from π_1 and π_2 and plotted the corresponding sequences of $\ln L_n$. We refer to each of these two plots as a log-likelihood plot; see Figure 1.

Figure 1 The two images show two log-likelihood plots of sample runs produced by π_1 and π_2 , respectively.

By Lemma 2.2 it follows that $\ln L_n$ converges \mathbb{P}_{π_1} -a.s. (almost-surely) to ∞ and \mathbb{P}_{π_2} -a.s. to $-\infty$. This is affirmed by Figure 1. Both log-likelihood plots also appear to follow a particular slope. This suggests that we can distinguish between words produced by π_1 and π_2 by tracking the value of $\ln L_n$ to see whether it crosses a lower or upper threshold. This is the intuition behind the Sequential Probability Ratio Test (SPRT).

3 Sequential Probability Ratio Test

Fix an HMM $H = (Q, \Sigma, \Psi)$ for the rest of the paper. Given initial distributions π_1, π_2 and error bounds $\alpha, \beta \in (0, 1)$, the SPRT runs as follows. It continues to read observations and computes the value of $\ln L_n$ until $\ln L_n$ leaves the interval [A, B], where $A := \ln \frac{\alpha}{1-\beta}$ and $B := \ln \frac{1-\alpha}{\beta}$. If $\ln L_n \leq A$ the test outputs " π_2 " and if $\ln L_n \geq B$ the test outputs " π_1 ". We may view the SPRT as a random variable SPRT_{α,β}: $\Sigma^{\omega} \to \{\pi_1, \pi_2, ?\}$, where ? denotes that the SPRT does not terminate, i.e., $\ln L_n \in [A, B]$ for all n. We have the following correctness property.

▶ Proposition 4. Suppose π_1 and π_2 are distinguishable. Let $\alpha, \beta \in (0,1)$. By choosing $A = \ln \frac{\alpha}{1-\beta}$ and $B = \ln \frac{1-\alpha}{\beta}$, we have $\mathbb{P}_{\pi_1}(\mathrm{SPRT}_{\alpha,\beta} = \pi_2) \leq \alpha$ and $\mathbb{P}_{\pi_2}(\mathrm{SPRT}_{\alpha,\beta} = \pi_1) \leq \beta$.

In the following we consider the SPRT with respect to the measure \mathbb{P}_{π_2} . This is without loss of generality as there is a dual version of the SPRT, say $\overline{\text{SPRT}}$ with $\overline{L}_n = 1/L_n$ instead of L_n , such that $\overline{\text{SPRT}}_{\beta,\alpha} = \text{SPRT}_{\alpha,\beta}$. Define the stopping time

$$N_{\alpha,\beta} := \min\{n \in \mathbb{N} \mid \ln L_n \notin [A, B]\} \in \mathbb{N} \cup \{\infty\}.$$

We have that $N_{\alpha,\beta}$ is monotone decreasing in the sense that for $\alpha \leq \alpha'$ and $\beta \leq \beta'$ we have $N_{\alpha,\beta} \geq N_{\alpha',\beta'}$. When π_1 and π_2 are distinguishable, $N_{\alpha,\beta}$ is \mathbb{P}_{π_2} -a.s. finite by Lemma 2.2.

3.1 Expectation of $N_{\alpha,\beta}$

Consider the two-state HMM where $p_1 \neq p_2$.

$$p_1: a (1-p_1): b p_2: a (1-p_2): b$$

(The Dirac distributions of) s_1 and s_2 are distinguishable. Further, the increments $\ln L_{n+1} - \ln L_n$ are independent and identically distributed (i.i.d.) and $0 > \mathbb{E}_{s_2}[\ln L_{n+1} - \ln L_n] = p_2 \ln \frac{p_1}{p_2} + (1-p_2) \ln \frac{1-p_1}{1-p_2} =: \ell$. Intuitively as ℓ gets more negative, the HMMs become more different. Indeed, Wald [36] shows that the expected stopping time $\mathbb{E}_{s_2}[N_{\alpha,\beta}]$ and ℓ are inversely proportional:

$$\mathbb{E}_{s_2}[N_{\alpha,\beta}] = \frac{\beta \ln \frac{1-\alpha}{\beta} + (1-\beta) \ln \frac{\alpha}{1-\beta}}{\rho}.$$
 (1)

This Wald formula cannot hold in general for (multi-state) HMMs. The increments $\ln L_{n+1} - \ln L_n$ need not be independent and $\mathbb{E}_{s_2}[\ln L_{n+1} - \ln L_n]$ can be different for different n. Further, $|\ln L_{n+1} - \ln L_n|$ can be unbounded; cf. [23, Example 6].

Nevertheless, in Figure 1 we observed that $\ln L_n$ appears to decrease linearly (on the π_2 plot). Indeed, we show in Theorem 8 below that the limit $\lim_{n\to\infty}\frac{1}{n}\ln L_n$ exists \mathbb{P}_{π_2} -almost

¹ In fact, ℓ is the *KL-divergence* of the distributions f_1, f_2 where $f_i(a) = p_i$ and $f_i(b) = 1 - p_i$ for i = 1, 2.

surely. Intuitively it corresponds to the average slope of the log-likelihood plot for π_2 . In the two-state case, there is a simple proof of this using the law of large numbers:

$$\lim_{n \to \infty} \frac{1}{n} \ln L_n = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} [\ln L_{i+1} - \ln L_i] = \mathbb{E}_{\pi_2} [\ln L_1 - \ln L_0] = \ell \quad \mathbb{P}_{\pi_2} \text{-a.s.}$$

The number ℓ is called a likelihood exponent, as defined generally in the following definition.

▶ **Definition 5.** For initial distributions π_1, π_2 , a number $\ell \in [-\infty, 0]$ is a likelihood exponent if $\mathbb{P}_{\pi_2}(\lim_{n\to\infty}\frac{1}{n}\ln L_n=\ell)>0$.

By Lemma 2.1 we have $\mathbb{P}_{\pi_2}(\lim_{n\to\infty}\frac{1}{n}\ln L_n>0)=0$, as $\mathbb{P}_{\pi_2}(\lim_{n\to\infty}L_n<\infty)=1$. Hence, we may restrict likelihood exponents to $[-\infty,0]$. We write $\Lambda_{\pi_1,\pi_2}\subseteq [-\infty,0]$ for the set of likelihood exponents for π_1,π_2 and define $\Lambda:=\bigcup_{\pi_1,\pi_2}\Lambda_{\pi_1,\pi_2}$; i.e., Λ depends only on the HMM \mathcal{H} . For $\ell\in\Lambda$ we define the event $E_\ell=\{\lim_{n\to\infty}\frac{1}{n}\ln L_n=\ell\}$.

- ▶ **Example 6.** In the case of Example 3 we have $\Lambda_{\pi_1,\pi_2} = \{\ell\}$ where the slope of the right hand side of Figure 1 suggests that $\ell \approx -\frac{80}{10000} = -0.008$.
- ▶ **Example 7.** Even for fixed π_1, π_2 there may be multiple likelihood exponents. Consider the following HMM with initial Dirac distributions $\pi_1 = e_{s_1}$ and $\pi_2 = e_{s_4}$.

We observe two different likelihood exponents depending on the first letter produced. If the first letter is a then $\ln L_{n+1} - \ln L_n$ are i.i.d. for $n \ge 1$ and $\lim_{n \to \infty} \frac{1}{n} \ln L_n = \frac{1}{2} \ln \frac{1/3}{1/2} + \frac{1}{2} \ln \frac{2/3}{1/2} = \frac{1}{2} \ln \frac{8}{9} =: \ell$ like the two-state example above. If the first letter is b then $L_n = \frac{3}{2}$ for all $n \ge 1$ and $\lim_{n \to \infty} \frac{1}{n} \ln L_n = 0$. Thus, $\Lambda_{\pi_1, \pi_2} = \{\ell, 0\}$ and $\mathbb{P}_{\pi_2}(E_\ell) = \mathbb{P}_{\pi_2}(E_0) = \frac{1}{2}$.

The following theorem is perhaps the most fundamental contribution of this paper.

▶ **Theorem 8.** For any initial distributions π_1, π_2 the limit $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ exists \mathbb{P}_{π_2} -almost surely. Furthermore, we have $|\Lambda| \leq |Q|^2 + 1$.

It follows from a stronger theorem, Theorem 23, which we prove in Section 5.

Returning to the SPRT, we investigate how $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ influences the performance of the SPRT for small α and β . Intuitively we expect a steeper slope in the likelihood plot (cf. Figure 1) to lead to faster termination. In the two-state case, Wald's formula (1) becomes

$$\mathbb{E}_{s_2}[N_{\alpha,\beta}] = \frac{\beta \ln \frac{1-\alpha}{\beta} + (1-\beta) \ln \frac{\alpha}{1-\beta}}{\ell} \sim \frac{\ln \alpha}{\ell} \text{ (as } \alpha, \beta \to 0), \tag{2}$$

where we use the notation \sim defined as follows. For functions $f,g:(0,\infty)\times(0,\infty)\to(0,\infty)$ we write " $f(x,y)\sim g(x,y)$ (as $x,y\to 0$)" to denote that for all $\varepsilon>0$ there is $\delta>0$ such that for all $x,y\in(0,\delta)$ we have $f(x,y)/g(x,y)=[1-\varepsilon,1+\varepsilon]$.

In Theorem 9 below we generalise Equation (2) to arbitrary HMMs. Indeed a very similar asymptotic identity holds. In the case that $\Lambda = \{\ell\}$ and $\ell \in (-\infty, 0)$ we have $\mathbb{E}_{s_2}[N_{\alpha,\beta}] \sim \frac{\ln \alpha}{\ell}$ as $\alpha, \beta \to 0$. If $|\Lambda| > 1$ then we condition our expectation on $\lim_{n \to \infty} \frac{1}{n} \ln L_n$.

▶ **Theorem 9** (Generalised Wald Formula). Let ℓ be a likelihood exponent and let π_1 and π_2 be initial distributions.

- 1. If $\ell \in (-\infty, 0)$ then $\mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_\ell] \sim \frac{\ln \alpha}{\ell}$ (as $\alpha, \beta \to 0$).
- **2.** If $\ell = 0$ then there exist $\alpha, \beta > 0$ such that $\mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_{\ell}] = \infty$.
- 3. If $\ell = -\infty$ then $\sup_{\alpha,\beta} \mathbb{E}_{\pi_2} [N_{\alpha,\beta} \mid E_{\ell}] < \infty$.

The theorem above pertains to the expectation of $N_{\alpha,\beta}$. In the next subsection we give additional information about the distribution of $N_{\alpha,\beta}$, further strengthening the connection between $N_{\alpha,\beta}$ and likelihood exponents.

3.2 Distribution of $N_{\alpha,\beta}$

3.2.1 Likelihood Exponent 0

- **Example 10.** We continue with Example 7 to illustrate the second case in Theorem 9. By picking $\alpha = \frac{1}{4}$, $\beta = \frac{1}{4}$ the thresholds for the SPRT are $A = \ln \frac{1}{3}$ and $B = \ln 3$. If the first letter is b, then $\ln L_n = \ln \frac{3}{2}$ for all n > 1, thus never crosses the SPRT bounds and $\lim_{n \to \infty} \frac{1}{n} \ln L_n = 0$. Hence with probability $\frac{1}{2}$ the SPRT fails to terminate and $N_{\alpha,\beta} = \infty$. It follows that $\mathbb{P}_{\pi_2}(E_0) = \frac{1}{2}$ and $\mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_0] = \infty$ and, thus, $\mathbb{E}_{\pi_2}[N_{\alpha,\beta}] = \infty$. The second part of Theorem 9 says that the expectation of $N_{\alpha,\beta}$ conditioned under E_0 is infinite. The following proposition strengthens this statement. Conditioning under E_0 , the probability that $N_{\alpha,\beta}$ is infinite converges to 1 as $\alpha,\beta \to 0$. Recall that $N_{\alpha,\beta}$ is monotone decreasing. It follows that $\{N_{\alpha',\beta'} = \infty\} \subseteq \{N_{\alpha,\beta} = \infty\}$ if $\alpha \le \alpha'$ and $\beta \le \beta'$.
- ▶ **Proposition 11.** The following two equalities hold up to \mathbb{P}_{π_2} -null sets:

$$E_0 = \left\{ \lim_{n \to \infty} L_n > 0 \right\} = \bigcup_{\alpha, \beta > 0} \left\{ N_{\alpha, \beta} = \infty \right\}.$$

Thus, $\lim_{\alpha,\beta\to 0} \mathbb{P}_{\pi_2}(N_{\alpha,\beta}=\infty) = \mathbb{P}_{\pi_2}(E_0)$.

▶ Corollary 12 (using Lemma 2.2). Initial distributions π_1 and π_2 are distinguishable if and only if $\mathbb{P}_{\pi_2}(E_0) = 0$ if and only if $\mathbb{P}_{\pi_2}(N_{\alpha,\beta} < \infty) = 1$ holds for all $\alpha, \beta > 0$.

3.2.2 Likelihood Exponent $-\infty$

▶ **Example 13.** Consider now a modification of Example 7 where state s_3 has the b loop removed.

The likelihood exponents are $-\infty$ and $\ell := \frac{1}{2} \ln \frac{8}{9}$ so that $\Lambda = \{-\infty, \ell\}$. Also, $\mathbb{P}_{s_4}(E_{-\infty}) = \mathbb{P}_{s_4}(E_{\ell}) = \frac{1}{2}$. Up to \mathbb{P}_{s_4} -null sets the events $E_{-\infty}$, $b\Sigma^{\omega}$ and $ba^*b\Sigma^{\omega}$ are equal. The event $ba^*b\Sigma^{\omega}$ represents the right chain producing an observation which the left chain cannot produce, causing the SPRT to terminate for any α, β . Therefore conditioned on $E_{-\infty}$, the random variable $N_{\alpha,\beta} - 1$ is bounded by a geometric random variable with parameter $\frac{1}{2}$. Hence $\sup_{\alpha,\beta} \mathbb{E}_{\pi_2} \left[N_{\alpha,\beta} \mid E_{-\infty} \right] \leq 1 + 2$.

We define the stopping time $N_{\perp} = \min\{n \in \mathbb{N} \mid L_n = 0\}$. Note that $\sup_{\alpha,\beta} N_{\alpha,\beta} \leq N_{\perp}$ since $\{L_n = 0\} \subseteq \{L_n \leq \frac{\alpha}{1-\beta}\}$ for all α, β . By the following proposition, the reverse inequality also holds.

▶ Proposition 14. The events $E_{-\infty}$ and $\{L_n = 0 \text{ for some } n\}$ are equal. Thus $\sup_{\alpha,\beta} N_{\alpha,\beta} = N_{\perp}$ and $\lim_{\alpha,\beta\to 0} \mathbb{P}_{\pi_2}(N_{\alpha,\beta} < \infty) = \mathbb{P}_{\pi_2}(E_{-\infty})$.

Applying this to Example 13, we obtain $\sup_{\alpha,\beta} \mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_{-\infty}] = 3$.

3.2.3 Likelihood Exponent in $(-\infty, 0)$

Conditioned on E_{ℓ} where $\ell \in (-\infty, 0)$, Theorem 9 states that $N_{\alpha,\beta}$ scales with $\frac{\ln \alpha}{\ell}$ in expectation. The following result shows that this relationship also holds \mathbb{P}_{π_2} -almost surely.

▶ Proposition 15. Let $\ell \in \Lambda$ and assume $\ell \in (-\infty, 0)$. We have

$$\mathbb{P}_{\pi_2} \Big(N_{\alpha,\beta} \sim \frac{\ln \alpha}{\ell} \ \left(as \ \alpha, \beta \to 0 \right) \, \Big| \ E_\ell \Big) \ = \ 1.$$

In fact, we prove the first part of Theorem 9 using Proposition 15. If there were a bound $M \in \mathbb{N}$ such that \mathbb{P}_{π_2} -a.s. $\frac{N_{\alpha,\beta}}{-\ln\alpha} \leq M$, the first part of Theorem 9 would follow from Proposition 15 by the dominated convergence theorem. However this is not the case in general. Instead we show in Appendix B.4 that the set of random variables $\{\frac{N_{\alpha,\beta}}{-\ln\alpha} \mid 0 < \alpha,\beta \leq \frac{1}{2}\}$ is uniformly integrable with respect to the measure \mathbb{P}_{π_2} and then use Vitali's convergence theorem.

Example 16. Recall Example 3, where $\Lambda = \{\ell\}$. Figure 2 demonstrates the asymptotic

Figure 2 The time taken by the SPRT for $0 \le -\ln \alpha = -\ln \beta \le 1000$.

relationship in Proposition 15. Each of the 50 lines correspond to a sample run and we record the value of $N_{\alpha,\beta}$ for $0 \le -\ln \alpha = -\ln \beta \le 1000$. From the figure we estimate $-\frac{1}{\ell}$ as $\frac{10^5}{800} = 125$. This coincides with the estimate given in Example 6.

We conclude from this section that the performance of the SPRT, in terms of its termination time $N_{\alpha,\beta}$, is tightly connected to likelihood exponents. This motivates our study of likelihood exponents in the rest of the paper.

4 Probability of E_{ℓ}

In this section we aim at computing $\mathbb{P}_{\pi_2}(E_\ell)$ for a likelihood exponent ℓ . We show the following theorem.

- ▶ **Theorem 17.** Given an HMM and initial distributions π_1, π_2 ,
- **1.** one can compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$ in PSPACE;
- **2.** one can decide whether $\mathbb{P}_{\pi_2}(E_0) = 0$ (i.e., $0 \notin \Lambda_{\pi_1,\pi_2}$) in polynomial time;
- **3.** deciding whether $\mathbb{P}_{\pi_2}(E_0) = 1$, whether $\mathbb{P}_{\pi_2}(E_{-\infty}) = 0$, and whether $\mathbb{P}_{\pi_2}(E_{-\infty}) = 1$ are all PSPACE-complete problems.

The following example illustrates the construction underlying the PSPACE upper bound.

▶ **Example 18.** Consider another adaption of Example 7.

If the first letter produced by s_4 is b, then $L_n = \frac{3}{2}$ for all $n \in \mathbb{N}$. If the first two letters are ab, then $L_1 = \frac{1}{2}$ and $L_n = 0$ for $n \geq 2$. If the first two letters are aa, then $s_5 \in \text{supp}(e_{s_1}\Psi(aaw))$ for all $w \in \Sigma^*$, and therefore, up to a \mathbb{P}_{s_4} -null set, $L_n > 0$ holds for all $n \in \mathbb{N}$, which implies (using Proposition 14) that there is $\ell \in (-\infty, 0)$ such that $\lim_{n \to \infty} \frac{1}{n} \ln L_n = \ell$. Thus, $\Lambda_{s_1, s_4} = \{-\infty, \ell, 0\}$.

The likelihood ratio L_n is 0 if and only if $\operatorname{supp}(\pi_1 \Psi(w_n)) = \emptyset$. In order to track the support of $\pi_1 \Psi(w_n)$, we consider the left part of the HMM as an NFA with s_1 as the initial state and its determinisation as shown in the DFA below.

Almost surely, s_4 produces a word that drives this DFA into a bottom SCC, which then determines $\lim_{n\to\infty} \frac{1}{n} \ln L_n$: concretely, the bottom SCC $\{\{s_5\}, \{s_2, s_5\}\}$ is associated with ℓ , the bottom SCC $\{\emptyset\}$ with $-\infty$, and the bottom SCC $\{\{s_3\}\}$ with 0.

In general, the observations need not be produced uniformly at random but by an HMM. Therefore, in the following construction, we also keep track of the "current" state of the HMM which produces the observations. For $S \subseteq Q$ and $a \in \Sigma$, define $\delta(S, a) := \{q' \in Q \mid \exists q \in S : \Psi(a)_{q,q'} > 0\}$. Define the Markov chain $\mathcal{B} := (2^Q \times Q, T)$ where

$$T_{(S,q),(S',q')} := \sum_{\delta(S,a)=S'} \Psi(a)_{q,q'}.$$

Given initial distributions π_1, π_2 on Q as before, define an initial distribution ι on $2^Q \times Q$ by $\iota((\operatorname{supp}(\pi_1), q)) := (\pi_2)_q$. Intuitively, the left part S of a state (S, q) tracks the support of $\pi_1 \Psi(w_n)$, and the right part q tracks the current state of the HMM that had been initialised at a random state from π_2 . The following lemma states the key properties of this construction.

▶ **Lemma 19.** Consider the Markov chain $\mathcal{B} = (2^Q \times Q, T)$ defined above.

- 1. Every bottom SCC of \mathcal{B} is associated with a single likelihood exponent; i.e., for every bottom SCC $C \subseteq 2^Q \times Q$ there is $\ell(C) \in [-\infty, 0]$ such that for any initial distribution $\pi_1 \in [0, 1]^Q$ and any state $q_2 \in Q$ with $(\operatorname{supp}(\pi_1), q_2) \in C$ we have $\Lambda_{\pi_1, e_{q_2}} = {\ell(C)}$.
- **2.** Let $(S,q) \in C$ for a bottom SCC C. If $S = \emptyset$ then $\ell(C) = -\infty$; otherwise, if e_q and the uniform distribution on S are not distinguishable then $\ell(C) = 0$; otherwise $\ell(C) \in (-\infty, 0)$.
- **3.** We have $\mathbb{P}_{\pi_2}(E_\ell) = \mathbb{P}_{\iota}(\{visit\ bottom\ SCC\ C\ with\ \ell(C) = \ell\}).$

All parts of the lemma rely on the observation that $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ depend only on the support of π_1 and on the support of π_2 . The first part of the lemma follows from Lévy's 0-1 law. We use this lemma for the proof of Theorem 17.1.

Proof sketch for Theorem 17.1. The Markov chain \mathcal{B} from Lemma 19 is exponentially big but can be constructed by a PSPACE transducer, i.e., a Turing machine whose work tape (but not necessarily its output tape) is PSPACE-bounded. This PSPACE transducer can also identify the bottom SCCs. For each bottom SCC C, the PSPACE transducer also decides whether $\ell(C) = -\infty$ or $\ell(C) \in (-\infty, 0)$ or $\ell(C) = 0$, using Lemma 19.2 and the polynomial-time algorithm for distinguishability from [10]. Finally, to compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$, by Lemma 19.3, it suffices to set up and solve a linear system of equations for computing hitting probabilities in a Markov chain. This system can also be computed by a PSPACE transducer. Since linear systems of equations can be solved in the complexity class NC, which is included in polylogarithmic space, one can use standard techniques for composing space-bounded transducers to compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$ in PSPACE.

Proof of Theorem 17.2. Immediate from Corollary 12 and the polynomial-time decidability of distinguishability [10].

Towards a proof of Theorem 17.3, we use the *mortality* problem, which asks, given a finite set of states Q, a finite alphabet Σ , and a function $\Phi: \Sigma \to \{0,1\}^{Q \times Q}$, whether there exists a word $w \in \Sigma^*$ such that $\Phi(w)$ is the zero matrix. The mortality problem can be viewed as a special case of the NFA non-universality problem (given an NFA, does it reject some word?). Like NFA universality, the mortality problem is PSPACE-complete [21].

Concerning $\mathbb{P}_{\pi_2}(E_{-\infty})$ (cf. Theorem 17.3), we actually show a stronger result, namely that any nontrivial approximation of $\mathbb{P}_{\pi_2}(E_{-\infty})$ is PSPACE-hard. The proof is also based on the mortality problem.

▶ Proposition 20. There is a polynomial-time computable function that maps any instance of the mortality problem to an HMM and initial distributions π_1, π_2 so that if the instance is positive then $\mathbb{P}_{\pi_2}(E_{-\infty}) = 1$ and if the instance is negative then $\mathbb{P}_{\pi_2}(E_{-\infty}) = 0$. Thus, any nontrivial approximation of $\mathbb{P}_{\pi_2}(E_{-\infty})$ is PSPACE-hard.

Proof. Let (Q, Σ, Φ) be an instance of the mortality problem. If there is $q \in Q$ that indexes a zero row in $\sum_{a \in \Sigma} \Phi(a)$, remove the row and column indexed by q in all $\Phi(a)$. Thus, we can assume without loss of generality that $\sum_{a \in \Sigma} \Phi(a)$ has no zero row. Construct an HMM (Q, Σ, Ψ) so that $\Phi(a)$ and $\Psi(a)$ have the same zero pattern for all $a \in \Sigma$. Define π_1 as a uniform distribution on Q. Define π_2 as a Dirac distribution on a fresh state that emits letters from Σ uniformly at random. Thus, if (Q, Σ, Φ) is a positive instance of the mortality problem then $\mathbb{P}_{\pi_2}(E_{-\infty}) = 1$, and if (Q, Σ, Φ) is a negative instance then $\mathbb{P}_{\pi_2}(E_{-\infty}) = 0$.

The proof that deciding whether $\mathbb{P}_{\pi_2}(E_0) = 1$ is PSPACE-hard is similarly based on mortality.

5 Representing Likelihood Exponents

In the following we show that one can efficiently represent likelihood exponents in terms of *Lyapunov exponents*. The definition of Lyapunov exponents is based on the following definition.

▶ **Definition 21.** A matrix system is a triple $\mathcal{M} = (Q, \Sigma, \Psi)$ where Q is a finite set of states, Σ is a finite set of observations, and $\Psi : \Sigma \to \mathbb{R}_{\geq 0}^{Q \times Q}$ specifies the transitions. (Note that an HMM is a matrix system.) A Lyapunov system is a pair $S = (\mathcal{M}, \rho)$ where $\mathcal{M} = (Q, \Sigma, \Psi)$ is a matrix system and $\rho \in (0, 1]^{\Sigma}$ is a probability distribution with full support, such that the directed graph (Q, E) with $E = \{(q, r) \mid \sum_{a \in \Sigma} \Psi_{q, r}(a) > 0\}$ is strongly connected.

We can identify the probability distribution ρ from this definition with the single-state HMM $(\{s\}, \Sigma, \Psi_{\rho})$ where $\Psi_{\rho}(a)_{s,s} = \rho(a)$ for all $a \in \Sigma$. In this way, ρ produces a random infinite word from Σ^{ω} . The following lemma is known from [29].

▶ Lemma 22 ([29]). Let $((Q, \Sigma, \Psi), \rho)$ be a Lyapunov system. Then there is $\lambda \in \mathbb{R}$ such that, for all $q \in Q$, \mathbb{P}_{ρ} -a.s., either $e_q \Psi(w_n) = \vec{0}$ for some $n \in \mathbb{N}$ or the limit $\lim_{n \to \infty} \frac{1}{n} \ln \|e_q \Psi(w_n)\|$ exists and equals λ .

For a Lyapunov system S we call $\lambda(S) = \lambda$ from the lemma the Lyapunov exponent defined by S. We prove the following theorem, which implies Theorem 8.

▶ Theorem 23. Given an HMM (Q, Σ, Ψ) we can compute in polynomial time $2K \leq 2|Q|^2$ Lyapunov systems $S_1^1, S_1^2, S_2^1, S_2^1, S_2^2, \ldots, S_K^1, S_K^2$ such that for any initial distributions π_1, π_2 the limit $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ exists \mathbb{P}_{π_2} -a.s. and lies in

$$\Lambda \ \subseteq \ \{-\infty\} \cup \{\lambda(\mathcal{S}^1_1) - \lambda(\mathcal{S}^2_1), \dots, \lambda(\mathcal{S}^1_K) - \lambda(\mathcal{S}^2_K)\} \,.$$

In particular, the HMM (Q, Σ, Ψ) has at most $|Q|^2 + 1$ likelihood exponents.

In the rest of the section we provide more details on the construction underlying Theorem 23. As an intermediate concept (between the given HMM and the Lyapunov systems from Theorem 23) we define *generalized Lyapunov systems*.

First, for two matrix systems $\mathcal{M}_1=(Q_1,\Sigma,\Psi_1)$ and $\mathcal{M}_2=(Q_2,\Sigma,\Psi_2)$ with finite Q_1,Q_2,Σ and transitions $\Psi_1,\Psi_2:\Sigma\to\mathbb{R}^{Q\times Q}_{\geq 0}$ we define the directed graph $G_{\mathcal{M}_1,\mathcal{M}_2}=(Q_1\times Q_2,E)$ such that there is an edge from (q_1,q_2) to (r_1,r_2) if there is $a\in\Sigma$ with $\Psi_1(a)_{q_1,r_1}>0$ and $\Psi_2(a)_{q_2,r_2}>0$.

A generalized Lyapunov system is a triple $S = (\mathcal{M}, \mathcal{H}, C)$ where $\mathcal{M} = (Q_1, \Sigma, \Psi_1)$ is a matrix system and $\mathcal{H} = (Q_2, \Sigma, \Psi_2)$ is a strongly connected HMM and $C \subseteq Q_1 \times Q_2$ is a bottom SCC of $G_{\mathcal{M},\mathcal{H}}$. Given a generalized Lyapunov system, one can efficiently compute an "equivalent" Lyapunov system:

- ▶ Lemma 24. Let $S = ((Q_1, \Sigma, \Psi_1), (Q_2, \Sigma, \Psi_2), C)$ be a generalized Lyapunov system.
- 1. There is $\lambda \in \mathbb{R}$, henceforth called $\lambda(\mathcal{S})$, such that, for all $\pi_1 \in [0, \infty)^{Q_1}$ and all probability distributions $\pi_2 \in [0, 1]^{Q_2}$ with $\operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \subseteq C$, we have \mathbb{P}_{π_2} -a.s. that either $\pi_1 \Psi_1(w_n) = \vec{0}$ for some $n \in \mathbb{N}$ or the limit $\lim_{n \to \infty} \frac{1}{n} \ln \|\pi_1 \Psi_1(w_n)\|$ exists and equals $\lambda(\mathcal{S})$.
- 2. One can compute in polynomial time a Lyapunov system S' such that $\lambda(S) = \lambda(S')$. Let $\mathcal{H} = (Q, \Sigma, \Psi)$ be an HMM. Let $R \subseteq Q \times Q$ be a (not necessarily bottom) SCC of the graph $G_{\mathcal{H},\mathcal{H}}$ such that $Q_R := \{q_2 \in Q \mid \exists q_1 \in Q : (q_1, q_2) \in R\}$ is a bottom SCC of the graph of $\sum_{a \in \Sigma} \Psi(a)$. We call such R a right-bottom SCC. Clearly there are at most

 $|Q|^2$ right-bottom SCCs. Towards Theorem 23 we want to define, for each right-bottom SCC R, two generalized Lyapunov systems $\mathcal{S}_R^1, \mathcal{S}_R^2$. Intuitively, \mathcal{S}_R^1 and \mathcal{S}_R^2 correspond to the numerator and the denominator of the likelihood ratio, respectively.

For a function of the form $\Phi: \Sigma \to \mathbb{R}^{Q \times Q}$ and $P \subseteq Q$ we write $\Phi_{|P}: \Sigma \to \mathbb{R}^{P \times P}$ for the function with $\Phi_{|P}(a)(q,r) = \Phi(a)(q,r)$ for all $a \in \Sigma$ and $q,r \in P$; i.e., $\Phi_{|P}(a)$ denotes the principal submatrix obtained from $\Phi(a)$ by restricting it to the rows and columns indexed by P.

Define $\Psi'(a,r)_{q,r} := \Psi(a)_{q,r}$ for all $a \in \Sigma$ and $q,r \in Q$. Then $(Q,\Sigma \times Q,\Psi')$ is an HMM, which is similar to \mathcal{H} , but which emits, in addition to an observation from Σ , also the next state. Since Q_R is a bottom SCC of the graph of $\sum_{a \in \Sigma} \Psi(a)$, the HMM $\mathcal{H}_2 := (Q_R, \Sigma \times Q_R, \Psi'_{|Q_R})$ is strongly connected. This HMM \mathcal{H}_2 will be used both in \mathcal{S}_R^1 and in \mathcal{S}_R^2 .

Next, define $\overline{\Psi}: (\Sigma \times Q) \to [0,1]^{(Q \times Q) \times (Q \times Q)}$ by

$$\overline{\Psi}(a,r_2)_{(q_1,q_2),(r_1,r_2)} \; := \; \Psi(a)_{q_1,r_1} \quad \text{for all } a \in \Sigma \; \text{ and } q_1,q_2,r_1,r_2 \in Q \,.$$

Now define $\mathcal{S}_R^1 := (\mathcal{M}^1, \mathcal{H}_2, C^1)$, where $\mathcal{M}^1 := (R, \Sigma \times Q_R, \overline{\Psi}_{|R})$ and $C^1 := \{((q_1, q_2), q_2) \mid (q_1, q_2) \in R\}$. Finally, denoting by $R' \subseteq Q_R \times Q_R$ the SCC of the graph $G_{\mathcal{H}, \mathcal{H}}$ that contains the "diagonal" vertices $(q, q) \in Q_R \times Q_R$, define $\mathcal{S}_R^2 := (\mathcal{M}^2, \mathcal{H}_2, C^2)$, where $\mathcal{M}^2 := (R', \Sigma \times Q_R, \overline{\Psi}_{|R'})$ and $C^2 := \{((q_1, q_2), q_2) \mid (q_1, q_2) \in R'\}$.

For sets $U, V \subseteq Q \times Q$ let $U \longrightarrow_{G_{\mathcal{H},\mathcal{H}}} V$ denote that there are $u \in U$ and $v \in V$ such that v is reachable from u in $G_{\mathcal{H},\mathcal{H}}$. We are ready to state the following key technical lemma:

▶ Lemma 25. Given an HMM (Q, Σ, Ψ) , let $\mathcal{R} \subseteq 2^{Q \times Q}$ be the set of its right-bottom SCCs, and, for $R \in \mathcal{R}$, let $\mathcal{S}_R^1, \mathcal{S}_R^2$ be the generalized Lyapunov systems defined above. Then, for any initial distributions π_1, π_2 , the limit $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ exists \mathbb{P}_{π_2} -a.s. and lies in

$$\{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}, \operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \longrightarrow_{G_{\mathcal{H},\mathcal{H}}} R\}.$$

Thus,
$$\Lambda_{\pi_1,\pi_2} \subseteq \{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}, \operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \longrightarrow_{G_{\mathcal{H},\mathcal{H}}} R\}.$$

Proof sketch. Let π_1, π_2 be initial distributions. Very loosely speaking, we show in the appendix that on \mathbb{P}_{π_2} -almost every run w there is a right-bottom SCC R which "traps" "most" of the mass of $\pi_1\Psi(w_n)$ and $\pi_2\Psi(w_n)$. This can be made meaningful and formal using (the cross-product systems) $\mathcal{S}_R^1, \mathcal{S}_R^2$. We then show that on \mathbb{P}_{π_2} -almost every such run w, for both i=1,2, the limit $\lim_{n\to\infty}\frac{1}{n}\ln\|\pi_i\Psi(w_n)\|$ exists and equals $\lambda(\mathcal{S}_R^i)$ (or $\pi_1\Psi(w_n)=\vec{0}$ for some n). It follows that

$$\lim_{n \to \infty} \frac{1}{n} \ln L_n = \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|\pi_1 \Psi(w_n)\|}{\|\pi_2 \Psi(w_n)\|} = \lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2).$$

With Lemma 25 at hand, the proof of Theorem 23 is easy:

Proof of Theorem 23. As argued before, the set \mathcal{R} of right-bottom SCCs of the given HMM has at most $|Q|^2$ elements. These right-bottom SCCs R and the associated generalized Lyapunov systems $\mathcal{S}_R^1, \mathcal{S}_R^2$ can be computed in polynomial time. By Lemma 25 we have $\Lambda = \bigcup_{\pi_1,\pi_2} \Lambda_{\pi_1,\pi_2} \subseteq \{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}\}$. By Lemma 24.2, for each $R \in \mathcal{R}$ one can compute in polynomial time an equivalent Lyapunov system.

Theorem 23 allows us to represent the likelihood exponents of an HMM in terms of Lyapunov exponents. In general, approximating or even computing Lyapunov exponents is hard, but there are practical approximation algorithms using convex optimisation [30, 34].

6 Deterministic HMMs

In Sections 4 and 5 we have seen that the problems of representing/computing likelihood exponents and of computing their probabilities tend to be computationally difficult. In this section we study deterministic HMMs and show that this subclass leads to tractable problems. An HMM (Q, Σ, Ψ) is deterministic if, for all $a \in \Sigma$, all rows of $\Psi(a)$ contain at most one non-zero entry. Thus, for all $q \in Q$ and $w \in \Sigma^*$, we have $|\sup(e_q \Psi(w))| \leq 1$.

A useful observation is that the Markov chain $\mathcal{B} = (2^Q \times Q, T)$, which was defined before Lemma 19 and can be exponential in general, has only quadratic size in the deterministic case if we restrict it to the part that is reachable from initial Dirac distributions.

▶ **Example 26.** Consider the deterministic HMM (Q, Σ, Ψ) in Figure 3(a). Let $\pi_1 = e_{q_1}$

Figure 3 Cross-product constructions for a deterministic HMM.

and $\pi_2 = e_{q_2}$ (the latter is indicated by an arrow pointing to q_2). Then the relevant (i.e., reachable from $(\{q_1\}, q_2)$) part of \mathcal{B} is shown in Figure 3(b). Let us add back the observations that gave rise to the transitions in \mathcal{B} , and for simplicity drop the set brackets in the left component of states. We obtain the HMM in Figure 3(c). With this HMM we may keep track of the exact likelihood ratio. For example, suppose that the word aba is emitted, so that $L_3 = \frac{\|e_{q_1}\Psi(aba)\|}{\|e_{q_2}\Psi(aba)\|} = \frac{1}{2}$ and $\sup(e_{q_1}\Psi(aba)) = \{q_2\}$ and $\sup(e_{q_2}\Psi(aba)) = \{q_1\}$. Suppose the next letter is b (which is the case with probability $\frac{1}{3}$). Then L_4 arises from L_3 by multiplying with $\frac{\Psi_{q_2,q_1}(b)}{\Psi_{q_1,q_2}(b)} = 2$, and the supports are switched again. In terms of log-likelihoods, we have $\ln L_4 = \ln L_3 + \ln 2$. This motivates the Markov chain shown in Figure 3(d), where the transitions outgoing from a state (r_1, r_2) are labelled by the log-likelihood ratio of their corresponding probabilities in the HMM. The Markov chain has stationary distribution $(\frac{2}{3}, \frac{1}{3})$. By the strong ergodic theorem for Markov chains, we obtain (the irrational number)

$$\lim_{n\to\infty} \tfrac{1}{n} \ln L_n \ = \ \tfrac{2}{3} \left(\tfrac{2}{3} \ln \tfrac{1}{2} + \tfrac{1}{3} \ln 2 \right) + \tfrac{1}{3} \left(\tfrac{1}{3} \ln 2 + \tfrac{2}{3} \ln \tfrac{1}{2} \right) \ = \ \tfrac{1}{3} \ln 2 + \tfrac{2}{3} \ln \tfrac{1}{2} = -\tfrac{1}{3} \ln 2 \, .$$

In general there may again be several likelihood exponents, including $-\infty$ and 0. For the rest of the section, let $\mathcal{H} = (Q, \Sigma, \Psi)$ be a deterministic HMM. Motivated by Example 26,

define an HMM $\mathcal{A} = ((Q \times Q) \cup s_{\perp}, \hat{\Sigma}, \hat{\Psi})$, where s_{\perp} is a fresh state, and

$$\hat{\Sigma} := \left\{ \ln \frac{\Psi(a)_{q_1, r_1}}{\Psi(a)_{q_2, r_2}} \in [-\infty, \infty) \middle| a \in \Sigma, \ q_1, r_1, q_2, r_2 \in Q, \ \Psi(a)_{q_2, r_2} \neq 0 \right\} \cup \{-\infty\}$$

$$\hat{\Psi}(\hat{a})_{(q_1, q_2), (r_1, r_2)} := \sum \left\{ \Psi(a)_{q_2, r_2} \middle| a \in \Sigma : \hat{a} = \ln \frac{\Psi(a)_{q_1, r_1}}{\Psi(a)_{q_2, r_2}} \right\} \quad \text{for } \hat{a} \neq -\infty$$

$$\hat{\Psi}(-\infty)_{(q_1, q_2), s_{\perp}} := \sum \left\{ \Psi(a)_{q_2, r_2} \middle| a \in \Sigma, \ r_2 \in Q : \sum_{r_1 \in Q} \Psi(a)_{q_1, r_1} = 0 \right\}$$

$$\hat{\Psi}(-\infty)_{s_{\perp}, s_{\perp}} := 1.$$

Note that the embedded Markov chain of \mathcal{A} is similar to the Markov chain \mathcal{B} from Lemma 19: states $(\{q_1\}, q_2)$ in \mathcal{B} are called (q_1, q_2) in \mathcal{A} , the states (\emptyset, q) in \mathcal{B} are subsumed by the state s_{\perp} of \mathcal{A} , and the states (S, q) in \mathcal{B} with |S| > 1 are not represented in \mathcal{A} . The observations in $\hat{\Sigma} \subseteq [-\infty, \infty)$ track the log-likelihood ratio.

▶ Example 27. Consider the HMM \mathcal{H} on the left, with initial distributions $\pi_1 = e_{q_1}$ and $\pi_2 = e_{q_2}$. The part of \mathcal{A} reachable from (q_1, q_2) is shown on the right:

Here we have $\Lambda_{\pi_1,\pi_2} = \{-\infty,0\}$ with $\mathbb{P}_{\pi_2}(E_{-\infty}) = \mathbb{P}_{\pi_2}(E_0) = \frac{1}{2}$.

Denote by $\bar{\mathcal{A}}$ the embedded Markov chain of \mathcal{A} . Let $C \subseteq Q \times Q$ be a non- $\{s_{\perp}\}$ bottom SCC of $\bar{\mathcal{A}}$. Let $\mu \in [0,1]^C$ denote the stationary distribution of the restriction of $\bar{\mathcal{A}}$ on C. Define the vector $\nu \in \mathbb{R}^C$ of average observations by $\nu_{(r_1,r_2)} := \sum_{\hat{a} \in \hat{\Sigma}} \|e_{(r_1,r_2)}\hat{\Psi}(\hat{a})\| \cdot \hat{a}$. By the strong ergodic theorem for Markov chains, the average observation in C equals $\mu\nu^{\top} =: \ell(C)$. Extend this definition by $\ell(\{s_{\perp}\}) := -\infty$. Then we have the following lemma.

▶ Lemma 28. Let $\pi_1 = e_{q_1}$ and $\pi_2 = e_{q_2}$ be initial distributions. For the Markov chain $\bar{\mathcal{A}}$ define $\iota := e_{(q_1,q_2)}$. We have $\mathbb{P}_{\pi_2}(E_\ell) = \mathbb{P}_{\iota}(\{visit\ bottom\ SCC\ C\ with\ \ell(C) = \ell\})$.

The proof is essentially the same as in Lemma 19.3. This gives us the following result.

- ▶ Theorem 29. Given a deterministic HMM (Q, Σ, Ψ) with initial Dirac distributions π_1, π_2 , one can compute in polynomial time
- **1.** Λ_{π_1,π_2} as a set of expressions of the form $\sum_i x_i \ln y_i$ where $x_i, y_i \in \mathbb{Q}$, and
- **2.** $\operatorname{Pr}_{\pi_2}(E_\ell)$ for each such $\ell \in \Lambda_{\pi_1,\pi_2}$.

Proof sketch. The theorem follows mostly from Lemma 28, with the slight complication that for part 2 we have to check numbers of the form $\sum_i x_i \ln y_i$ (where $x_i, y_i \in \mathbb{Q}$) for equality. But this can be done in polynomial time as shown in [17].

7 Conclusions

We have shown that the performance of the SPRT is tightly connected with likelihood exponents. These numbers are related to Lyapunov exponents and can be viewed as a distance measure between HMMs. We have shown that the number of likelihood exponents is quadratic in the number of states. The associated computational problems tend to be complex (PSPACE-hard), but become tractable for deterministic HMMs. In our work we did not make any ergodicity assumptions on the HMMs, unlike in earlier works from mathematics and engineering such as [20, 8, 18, 19]. Efficient approximation of likelihood exponents, in theory or praxis, remains an open problem.

- References

- 1 P. Ailliot, C. Thompson, and P. Thomson. Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions. *Journal of the Royal Statistical Society*, 58(3):405–426, 2009.
- 2 S. Akshay, H. Bazille, E. Fabre, and B. Genest. Classification among hidden Markov models. In Proceedings of the Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 150 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.FSTTCS. 2019.29, doi:10.4230/LIPIcs.FSTTCS.2019.29.
- 3 M. Alexandersson, S. Cawley, and L. Pachter. SLAM: Cross-species gene finding and alignment with a generalized pair hidden Markov model. *Genome Research*, 13:469–502, 2003.
- 4 N. Bertrand, S. Haddad, and E. Lefaucheux. Accurate approximate diagnosability of stochastic systems. In *Proceedings of Language and Automata Theory and Applications (LATA)*, volume 9618 of *Lecture Notes in Computer Science*, pages 549–561. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-30000-9_42, doi:10.1007/978-3-319-30000-9_42.
- V.I. Bogachev. *Measure Theory*. Number v. 1 in Measure Theory. Springer Berlin Heidelberg, 2007. URL: https://books.google.co.uk/books?id=CoSIe7h5mTsC.
- 6 A. Borodin. On relating time and space to size and depth. SIAM Journal of Computing, 6(4):733-744, 1977. URL: https://doi.org/10.1137/0206054, doi:10.1137/0206054.
- 7 A. Borodin, J. von zur Gathen, and J.E. Hopcroft. Fast parallel matrix and GCD computations. *Information and Control*, 52(3):241–256, 1982. URL: https://doi.org/10.1016/S0019-9958(82)90766-5, doi:10.1016/S0019-9958(82)90766-5.
- 8 B. Chen and P. Willett. Detection of hidden Markov model transient signals. *IEEE Transactions on Aerospace and Electronic Systems*, 36(4):1253–1268, 2000. doi:10.1109/7.892673.
- **9** F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand gesture recognition using a real-time tracking method and hidden Markov models. *Image and Vision Computing*, 21(8):745–758, 2003.
- 10 T. Chen and S. Kiefer. On the total variation distance of labelled Markov chains. In *Proceedings* of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 33:1–33:10, Vienna, Austria, 2014.
- G.A. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin of Mathematical Biology, 51(1):79–94, 1989.
- 12 C. Cortes, M. Mohri, and A. Rastogi. L_p distance and equivalence of probabilistic automata. International Journal of Foundations of Computer Science, 18(04):761–779, 2007.
- M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models. *IEEE Transactions on Signal Processing*, 46(4):886–902, April 1998
- 14 C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A Storm is coming: A modern probabilistic model checker. In *Proceedings of Computer Aided Verification (CAV)*, pages 592–600. Springer, 2017.
- 15 R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.
- S.R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315–1316, October 2004.
- 17 K. Etessami, A. Stewart, and M. Yannakakis. A note on the complexity of comparing succinctly represented integers, with an application to maximum probability parsing. *ACM Trans. Comput. Theory*, 6(2):9:1–9:23, 2014. URL: https://doi.org/10.1145/2601327, doi: 10.1145/2601327.
- 18 C.-D. Fuh. SPRT and CUSUM in hidden Markov models. *The Annals of Statistics*, 31(3):942-977, 2003. URL: https://doi.org/10.1214/aos/1056562468, doi:10.1214/aos/1056562468

- E. Grossi and M. Lops. Sequential detection of Markov targets with trajectory estimation. IEEE Transactions on Information Theory, 54(9):4144-4154, 2008. doi:10.1109/TIT.2008.928261.
- 20 B.-H. Juang and L. R. Rabiner. A probabilistic distance measure for hidden Markov models. AT&T Technical Journal, 64(2):391-408, 1985. URL: https:// onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1985.tb00439.x, doi:https:// doi.org/10.1002/j.1538-7305.1985.tb00439.x.
- 21 J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both. Theoretical Computer Science, 410(47):5010-5021, 2009. URL: https://www.sciencedirect.com/science/article/pii/S0304397509005477, doi:https://doi.org/10.1016/j.tcs.2009.07.049.
- S. Kiefer, A.S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equivalence for probabilistic automata. In *Proceedings of the 23rd International Conference on Computer Aided Verification (CAV)*, volume 6806 of *LNCS*, pages 526–540. Springer, 2011.
- S. Kiefer and A.P. Sistla. Distinguishing hidden Markov chains. In *Proceedings of the 31st Annual Symposium on Logic in Computer Science (LICS)*, pages 66–75, New York, USA, 2016. ACM.
- A. Krogh, B. Larsson, G. von Heijne, and E.L.L. Sonnhammer. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *Journal of Molecular Biology*, 305(3):567–580, 2001.
- M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In *Proceedings of Computer Aided Verification (CAV)*, volume 6806 of *LNCS*, pages 585–591. Springer, 2011.
- 26 R. Langrock, B. Swihart, B. Caffo, N. Punjabi, and C. Crainiceanu. Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms. Statistics in medicine, 32, 08 2013. doi:10.1002/sim.5747.
- 27 C.M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
- 28 A. Paz. Introduction to Probabilistic Automata (Computer Science and Applied Mathematics).
 Academic Press, Inc., Orlando, FL, USA, 1971.
- V.Yu. Protasov. Asymptotics of products of nonnegative random matrices. Functional Analysis and Its Applications, 47:138–147, 2013.
- V.Yu. Protasov and R.M. Jungers. Lower and upper bounds for the largest Lyapunov exponent of matrices. Linear Algebra and its Applications, 438(11):4448-4468, 2013. URL: https://www.sciencedirect.com/science/article/pii/S002437951300089X, doi:https://doi.org/10.1016/j.laa.2013.01.027.
- 31 L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. *Proceedings of the IEEE*, 77(2):257–286, 1989.
- 32 M.P. Schützenberger. On the definition of a family of automata. *Information and Control*, 4(2):245–270, 1961.
- 33 Theodore J. Sheskin. Conditional mean first passage time in a markov chain. *International Journal of Management Science and Engineering Management*, 8(1):32–37, 2013. doi:10.1080/17509653.2013.783187.
- D. Sutter, O. Fawzi, and R. Renner. Bounds on Lyapunov exponents via entropy accumulation. *IEEE Transactions on Information Theory*, 67(1):10–24, 2021. doi:10.1109/TIT.2020. 3026959.
- W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput., 21(2):216–227, April 1992.
- A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics, 16(2):117 186, 1945. URL: https://doi.org/10.1214/aoms/1177731118, doi:10.1214/aoms/1177731118.
- A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. *The Annals of Mathematical Statistics*, 19(3):326–339, 1948. URL: http://www.jstor.org/stable/2235638.

A Proofs and Additional Material on Section 2

A.1 Proof of Lemma 2

- ▶ **Lemma 2.** Let π_1, π_2 be initial distributions.
- 1. $\lim_{n\to\infty} L_n$ exists \mathbb{P}_{π_2} -almost surely and lies in $[0,\infty)$.
- **2.** $\lim_{n\to\infty} L_n = 0$ \mathbb{P}_{π_2} -almost surely if and only if π_1 and π_2 are distinguishable.

Proof. The first part is [10, Proposition 6]. Towards the second part, the following equalities hold.

$$1 - d(\pi_1, \pi_2) = \lim_{n \to \infty} \sum_{w \in \Sigma^n} \min\{\|\pi_1 \Psi(w)\|, \|\pi_2 \Psi(w)\|\} \quad \text{by [10, Theorem 7]}$$

$$= \lim_{n \to \infty} \sum_{w \in \Sigma^n} \min\{L_n(w), 1\} \|\pi_2 \Psi(w)\|$$

$$= \lim_{n \to \infty} \mathbb{E}_{\pi_2} \left[\min\{L_n, 1\}\right]$$

$$= \mathbb{E}_{\pi_2} \left[\lim_{n \to \infty} \min\{L_n, 1\}\right] \quad \text{as } 0 \le \min\{L_n(w), 1\} \le 1.$$

Then, $\lim_{n\to\infty} \min\{L_n, 1\} = 0 \iff \lim_{n\to\infty} L_n = 0.$

A.2 Details on Example 3

In [26] they derived two embedded Markov chains with the following transition matrices:

$$T_1 = \begin{bmatrix} 0.793 & 0.099 & 0.035 & 0.064 & 0.009 \\ 0.078 & 0.769 & 0.006 & 0.144 & 0.003 \\ 0.018 & 0.004 & 0.833 & 0.134 & 0.012 \\ 0.022 & 0.094 & 0.054 & 0.827 & 0.002 \\ 0.011 & 0.005 & 0.035 & 0.005 & 0.945 \end{bmatrix}, T_2 = \begin{bmatrix} 0.641 & 0.109 & 0.031 & 0.040 & 0.015 \\ 0.202 & 0.699 & 0.008 & 0.089 & 0.003 \\ 0.026 & 0.002 & 0.823 & 0.062 & 0.035 \\ 0.123 & 0.189 & 0.114 & 0.808 & 0.016 \\ 0.007 & 0.001 & 0.024 & 0.001 & 0.931 \end{bmatrix}$$

Their HMMs are state-labelled. For each state i, they fit a Dirichlet probability density function (pdf) f_i describing the distribution of observations in Δ^3 emitted at state i. The pdfs of diseased and healthy individuals were so similar that they used the same pdf for both HMMs. Thus the two HMMs differ only in the transition probabilities.

Since Δ^3 is infinite and in this paper we assume finite observation alphabets, we partition the simplex into the sets

$$U_k = \{ x \in \Delta^3 \mid f_k(x) \ge \sup_i f_i(x) \}$$

for $k=1,\ldots,5$. The set U_k contains the points in Δ^3 most likely to be produced in state k. We assign a letter a_k for each U_k , and define a set of observations $\Sigma = \{a_1,\ldots,a_5\}$. Thus, the probability of producing letter a_k from state i is given as $O_{i,k} = \int_{U_k} f_i(x) \, dx$. We estimated the entries of O using a numerical Monte Carlo technique. We generated 100,000 samples from all 5 Dirichlet distributions in their paper which yielded the estimate

$$O = \begin{pmatrix} 0.9172 & 0.0803 & 0 & 0.0002 & 0.0024 \\ 0.0719 & 0.8606 & 0 & 0.0665 & 0.0010 \\ 0 & 0.0007 & 0.8546 & 0.1055 & 0.0392 \\ 0.0008 & 0.0998 & 0.0663 & 0.8257 & 0.0075 \\ 0.0109 & 0.0094 & 0.1046 & 0.0334 & 0.8416 \end{pmatrix}$$

Since we consider transition labelled HMMs, we define transition functions Ψ_1, Ψ_2 with

$$\Psi_m(a_k)_{i,j} = \left(T_m\right)_{i,j} O_{i,k}$$

for m=1,2. Let Q=[10]. We construct the HMM (Q,Σ,Ψ) where

$$\Psi(a) = \begin{pmatrix} \Psi_1(a) & 0\\ 0 & \Psi_2(a) \end{pmatrix}$$

for each $a \in \Sigma$.

Let π_1 and π_2 be the Dirac distributions on states 1 and 6 respectively. These initial distributions correspond to healthy and diseased individuals started from sleep state 1.

B Proofs from Section 3

B.1 Proof of Proposition 4

▶ Proposition 4. Suppose π_1 and π_2 are distinguishable. Let $\alpha, \beta \in (0,1)$. By choosing $A = \ln \frac{\alpha}{1-\beta}$ and $B = \ln \frac{1-\alpha}{\beta}$, we have $\mathbb{P}_{\pi_1}(\mathrm{SPRT}_{\alpha,\beta} = \pi_2) \leq \alpha$ and $\mathbb{P}_{\pi_2}(\mathrm{SPRT}_{\alpha,\beta} = \pi_1) \leq \beta$.

Proof. We wish to control the probabilities $\mathbb{P}_{\pi_2}(L_N > B)$ and $\mathbb{P}_{\pi_1}(L_N < A)$ by choosing suitable values of A and B. Write $N := N_{\alpha,\beta}$ and let $W_n^1 = \{w \in \Sigma^\omega \mid A \leq L_m(w) \leq B \ \forall m < n, L_n < A\}$ then

$$\mathbb{P}_{\pi_1}(L_N < A) = \sum_{n=1}^{\infty} \mathbb{P}_{\pi_1}(W_n^1) = \sum_{n=1}^{\infty} \sum_{w \in W_n^1} \pi_1 \Psi(w) \mathbb{1}^T = \sum_{n=1}^{\infty} \sum_{w \in W_n^1} L_n(w) \pi_2 \Psi(w) \mathbb{1}^T$$

$$\leq A \sum_{n=1}^{\infty} \sum_{w \in W^1} \pi_2 \Psi(w) \mathbb{1}^T = A \sum_{n=1}^{\infty} \mathbb{P}_{\pi_2}(W_n^1) = A \mathbb{P}_{\pi_2}(L_N < A).$$

Similarly, we may derive $\mathbb{P}_{\pi_2}(L_N > b) \geq \frac{1}{b} \mathbb{P}_{\pi_1}(L_N > b)$ so it follows that

$$A \ge \frac{\mathbb{P}_{\pi_1}(L_N < A)}{\mathbb{P}_{\pi_2}(L_N < A)} = \frac{\mathbb{P}_{\pi_1}(L_N < A)}{1 - \mathbb{P}_{\pi_2}(L_N > B)}$$
$$B \le \frac{\mathbb{P}_{\pi_1}(L_N > B)}{\mathbb{P}_{\pi_2}(L_N > B)} = \frac{1 - \mathbb{P}_{\pi_1}(L_N < A)}{\mathbb{P}_{\pi_2}(L_N > B)}$$

to guarantee the error bounds $\alpha = \mathbb{P}_{\pi_1}(L_N < A)$ and $\beta = \mathbb{P}_{\pi_2}(L_N > B)$.

B.2 Proof of Theorem 9

- ▶ **Theorem 9** (Generalised Wald Formula). Let ℓ be a likelihood exponent and let π_1 and π_2 be initial distributions.
- 1. If $\ell \in (-\infty, 0)$ then $\mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_\ell] \sim \frac{\ln \alpha}{\ell}$ (as $\alpha, \beta \to 0$).
- **2.** If $\ell = 0$ then there exist $\alpha, \beta > 0$ such that $\mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_{\ell}] = \infty$.
- 3. If $\ell = -\infty$ then $\sup_{\alpha, \beta} \mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_\ell] < \infty$.

We will prove Theorem 9 later using results in this section

▶ Proposition 11. The following two equalities hold up to \mathbb{P}_{π_2} -null sets:

$$E_0 = \left\{ \lim_{n \to \infty} L_n > 0 \right\} = \bigcup_{\alpha, \beta > 0} \left\{ N_{\alpha, \beta} = \infty \right\}.$$

Thus, $\lim_{\alpha,\beta\to 0} \mathbb{P}_{\pi_2}(N_{\alpha,\beta}=\infty) = \mathbb{P}_{\pi_2}(E_0)$.

Towards the proof of Proposition 11 we use the following which is Theorem 5 from [23].

▶ **Lemma 30.** Let (Q, Σ, Ψ) be an HMM and let π_1 and π_2 be initial distributions. If π_1 and π_2 are distinguishable then there is c > 0 such that

$$\mathbb{P}_{\pi_2}\Big(L_{2|Q|n} \leq 1\Big) - \mathbb{P}_{\pi_1}\Big(L_{2|Q|n} \geq 1)\Big) \geq 1 - 2\exp\big(-\frac{c^2}{18}n\big).$$

Proof of Proposition 11. By Lemma 19 there are a set of bottom SCCs \mathcal{Z} in \mathcal{B} . Such that for all $Z \in \mathcal{Z}$ we have $\ell(Z) = \{0\}$. Let $\pi \in [0,1]^Q$ and $r \in Q$ such that (supp π, r) $\in Z$. Suppose that π and δ_r are distinguishable then by Lemma 30 both $\mathbb{P}_{\delta_r}(L_n^* \geq 1) \leq 2 \exp\left(-\frac{c^2}{18}n\right)$ and $\mathbb{P}_{\pi}(L_n^* \leq 1) \leq 2 \exp\left(-\frac{c^2}{18}n\right)$ where L_n^* is the likelihood ratio started from initial distributions π and δ_r . Fix $-\frac{c^2}{18} \leq \alpha \leq 0$ and define the event $W_n = \{1 > L_n^* \geq e^{n\alpha}\}$. Then

$$\begin{split} \mathbb{P}_{\delta_r} (\lim_{n \to \infty} \frac{1}{n} \ln L_n^* > \alpha) &\leq \mathbb{P}_{\delta_r} (\liminf_n \{\frac{1}{n} \ln L_n^* \geq \alpha\}) \\ &\leq \liminf_n \mathbb{P}_{\delta_r} (\frac{1}{n} \ln L_n^* \geq \alpha) \\ &\leq \liminf_n \mathbb{P}_{\delta_r} (L_n^* \geq e^{n\alpha}) \\ &= \liminf_n \left[\mathbb{P}_{\delta_r} (1 > L_n^* \geq e^{n\alpha}) + \mathbb{P}_{\pi_2} (L_n^* \geq 1) \right] \\ &\leq \liminf_n \left[\sum_{w \in W_n} \delta_r \Psi(w) \mathbb{1}^T + 2 \exp\left(-\frac{c^2}{18}n\right) \right] \\ &\leq \liminf_n \left[e^{-n\alpha} \sum_{w \in W_n} \pi \Psi(w) \mathbb{1}^T \right] \\ &\leq \liminf_n \left[e^{-n\alpha} \mathbb{P}_{\pi} (L_n^* < 1) \right] \\ &\leq \liminf_n \left[e^{-n\alpha} 2 \exp\left(-\frac{c^2}{18}n\right) \right] \\ &= 0. \end{split}$$

In particular, $\mathbb{P}_{\pi_2}(\lim_{n\to\infty}\frac{1}{n}\ln L_n=0)=0$ which contradicts $\Lambda=\{0\}$. Hence π and δ_r are not distinguishable and so \mathbb{P}_{δ_r} -almost surely, we have $\lim_{n\to\infty}L_n^*>0$. By conditioning on the events $\{a_1r_1\cdots a_nr_n\in(\Sigma Q)^*\mid \text{supp }\pi_1\Psi(w)=\text{supp }\pi,r_n=r\}$ it follows that $E_0=\{\lim_{n\to\infty}L_n>0\}$. We now show the second equality. If $\lim_{n\to\infty}L_n>0$ then for α,β small enough L_n never crosses the SPRT bounds. Hence, we have $\{\lim_{n\to\infty}L_n>0\}\subseteq\bigcup_{\alpha,\beta}\{N_{\alpha,\beta}=\infty\}$. For the converse inclusion, suppose that $N_{\alpha,\beta}=\infty$ for some α,β this would contradict $\lim_{n\to\infty}L_n=0$ since then $N_{\alpha,\beta}$ would be \mathbb{P}_{π_2} -almost surely finite.

B.3 Proof of Proposition 14

▶ Proposition 14. The events $E_{-\infty}$ and $\{L_n = 0 \text{ for some } n\}$ are equal. Thus $\sup_{\alpha,\beta} N_{\alpha,\beta} = N_{\perp} \text{ and } \lim_{\alpha,\beta\to 0} \mathbb{P}_{\pi_2}(N_{\alpha,\beta} < \infty) = \mathbb{P}_{\pi_2}(E_{-\infty}).$

Proof. The right-to-left inclusion is clear. Towards the converse, let $p_{min} > 0$ be the minimum non-zero entry in π_1 and all $\Psi(a)$ where $a \in \Sigma$. Suppose that $L_n > 0$ holds for all n. Then we have for all $n \ge 1$:

$$\frac{1}{n} \ln L_n = \frac{1}{n} \ln \frac{\|\pi_1 \Psi(w_n)\|}{\|\pi_2 \Psi(w_n)\|} \ge \frac{1}{n} \ln \|\pi_1 \Psi(w_n)\| \ge \frac{1}{n} \ln p_{min}^{n+1} = \frac{n+1}{n} \ln p_{min}$$

$$\ge 2 \ln p_{min}.$$

Thus, $\lim_{n\to\infty}\frac{1}{n}\ln L_n\neq -\infty$. We have $\sup_{\alpha,\beta}N_{\alpha,\beta}\leq N_{\perp}$. Also,

$$\bigcap_{\alpha,\beta} \{ L_n \not\in (\frac{\alpha}{1-\beta}, \frac{1-\alpha}{\beta}) \} = \{ L_n = 0 \}$$

for all $n \in \mathbb{N}$ and so $\sup_{\alpha,\beta} N_{\alpha,\beta} = N_{\perp}$. The final claim follows because $\{N_{\perp} < \infty\} = E_{-\infty}$.

B.4 Proof of Proposition 15

Towards the proof of Proposition 15 we first show the following lemma.

▶ Lemma 31. The set of random variables $\{\frac{N_{\alpha,\beta}}{-\ln\alpha} \mid 0 < \alpha, \beta \leq \frac{1}{2}\}$ is uniformly integrable with respect to the measure \mathbb{P}_{π_2} ; i.e.

$$\lim_{K\to\infty}\sup_{\alpha,\beta}\mathbb{E}_{\pi_2}\left[-\frac{N_{\alpha,\beta}}{\ln\alpha}\mathbb{1}_{\frac{N_{\alpha,\beta}}{-\ln\alpha}\geq -K}\right]=0.$$

We use the following technical lemma which is Lemma 9 from [23].

Lemma 32. There is a number c > 0, computable in polynomial time, such that

$$\mathbb{P}_{\pi_2} \Big(L_{2|Q|n} \ge \exp(-\frac{c^2}{36}n) \Big) \le 4 \exp\Big(-\frac{c^2}{36}n\Big).$$

Proof of Lemma 31. By Proposition 15, conditioned on E_{ℓ} we have $\lim_{\alpha,\beta\to 0} \frac{N_{\alpha,\beta}}{\ln \alpha}$ exists \mathbb{P}_{π_2} -almost surely. Hence, the convergence is also in \mathbb{P}_{π_2} -measure. Therefore, by the Vitali convergence theorem[5] it is sufficient to show that the set of random variables $\{\frac{N_{\alpha,\beta}}{\ln \alpha} \mid \alpha,\beta\in(0,\frac{1}{2})\}$ is uniformly integrable conditioned on V_k . In fact, because

$$\lim_{K \to \infty} \sup_{\alpha, \beta} \mathbb{E}_{\pi_{2}} \left[\frac{N_{\alpha, \beta}}{-\ln \alpha} \mathbb{1}_{\frac{N_{\alpha, \beta}}{-\ln \alpha} \ge -K} \right] \ge \mathbb{P}_{\pi_{2}}(E_{\ell}) \lim_{M \to \infty} \sup_{\alpha, \beta} \frac{1}{-\ln \alpha} \mathbb{E}_{\pi_{2}} \left[\frac{N_{\alpha, \beta}}{-\ln \alpha} \mathbb{1}_{\frac{N_{\alpha, \beta}}{-\ln \alpha} \ge -K} \mid E_{\ell} \right], \tag{3}$$

It is sufficient to check the uniform integrability condition without conditioning on V_k . For fixed $M \geq \frac{144|Q|}{c^2}$, write $m_{\alpha} = \lfloor \frac{-M \ln \alpha}{2|Q|} \rfloor$. It follows that

$$\frac{2|Q|m_{\alpha}}{\ln \alpha} \leq M \text{ and } \alpha \geq \exp{-\frac{c^2}{36}m_{\alpha}}.$$

Further, $m_{\alpha} \geq \frac{M \ln 2}{2|Q|} - 1$. The following holds

$$\mathbb{E}_{\pi_{2}} \left[\frac{N_{\alpha,\beta}}{-\ln \alpha} \mathbb{1}_{\frac{N_{\alpha,\beta}}{-\ln \alpha} \ge M} \right]$$

$$= \frac{1}{-\ln \alpha} \sum_{n=0}^{\infty} \mathbb{P}_{\pi_{2}} \left(N_{\alpha,\beta} \mathbb{1}_{N_{\alpha,\beta} \ge 2|Q|m_{\alpha}} > n \right)$$

$$\leq \frac{2|Q|}{-\ln \alpha} \left(m_{\alpha} \, \mathbb{P}_{\pi_{2}} (N_{\alpha,\beta} \ge 2|Q|m_{\alpha}) + \sum_{n=m_{\alpha}}^{\infty} \mathbb{P}_{\pi_{2}} \left(N_{\alpha,\beta} \ge 2|Q|n \right) \right)$$

$$\leq M \mathbb{P}_{\pi_{2}} \left(L_{2|Q|m_{\alpha}} \ge \alpha \right) + \frac{2|Q|}{-\ln \alpha} \sum_{n=m_{\alpha}}^{\infty} \mathbb{P}_{\pi_{2}} \left(L_{2|Q|n} \ge \alpha \right)$$

$$\leq M \mathbb{P}_{\pi_{2}} \left(L_{2|Q|m_{\alpha}} \ge \exp{-\frac{c^{2}}{36}m_{\alpha}} \right) + \frac{2|Q|}{-\ln \alpha} \sum_{n=m_{\alpha}}^{\infty} \mathbb{P}_{\pi_{2}} \left(L_{2|Q|n} \ge \exp{-\frac{c^{2}}{36}n} \right)$$

$$\leq 4M \exp{-\frac{c^{2}}{36}m_{\alpha}} + \frac{8|Q|}{-\ln \alpha} \sum_{n=m_{\alpha}}^{\infty} \exp{-\frac{c^{2}}{36}n}$$

$$\leq 4M \exp{-\frac{c^{2}}{36}m_{\alpha}} + \frac{8|Q|\exp{-\frac{c^{2}}{36}m_{\alpha}}}{-\ln \alpha} \frac{1}{1 - \exp{c^{2}/36}}$$

$$\leq 4M \exp{-\frac{c^{2}}{36} \left(\frac{M \ln 2}{2|Q|} - 1 \right)} + \frac{8|Q|\exp{\left(-\frac{c^{2}}{36} \left(\frac{M \ln 2}{2|Q|} - 1 \right)} \right)}{\ln 2} \frac{1}{1 - \exp{c^{2}/36}}$$

$$\to 0$$

as $K \to \infty$ where the fourth inequality follows by Lemma 32. Hence, Equation (3) must hold.

▶ Proposition 15. Let $\ell \in \Lambda$ and assume $\ell \in (-\infty, 0)$. We have

$$\mathbb{P}_{\pi_2} \Big(N_{\alpha,\beta} \sim \frac{\ln \alpha}{\ell} \ (as \ \alpha, \beta \to 0) \ \Big| \ E_\ell \Big) \ = \ 1.$$

Proof. Since $\Psi_{\min}^n \leq L_n \leq \Psi_{\min}^{-n}$ it follows that

$$N_{\alpha,\beta} \ge \frac{\min\{\ln \frac{\alpha}{1-\beta}, \ln \frac{\beta}{1-\alpha}\}}{\ln \Psi_{\min}}$$

Hence $N_{\alpha,\beta} \to \infty$ \mathbb{P}_{π_2} -almost surely as $\alpha,\beta \to 0$. Consider the case $\ell_k \in (-\infty,0)$. Let $U_{\alpha,\beta} = \{w \in \Sigma^\omega \mid \ln L_{N_\alpha} \leq \ln \frac{\alpha}{1-\beta}\}$. The set $\bigcap_{\alpha,\beta \in (0,1]} U_{\alpha,\beta}^c \subseteq \{L_n \text{ is unbounded}\}$. Hence, $\lim_{\alpha,\beta \to 0} \mathbb{1}_{U_{\alpha,\beta}} = 1$ \mathbb{P}_{π_2} -almost surely. Conditioned on V_k it follows that

$$0 \le \mathbb{1}_{U_{\alpha,\beta}} \frac{\ln \frac{\alpha}{1-\beta} - \ln L_{N_{\alpha,\beta}}}{N_{\alpha}} \le \mathbb{1}_{U_{\alpha,\beta}} \frac{\ln L_{N_{\alpha,\beta}-1} - \ln L_{N_{\alpha,\beta}}}{N_{\alpha,\beta}} \to 0 \text{ as } \alpha \to 0.$$

And so

$$\lim_{\alpha,\beta\to 0}\frac{\ln\alpha}{N_{\alpha,\beta}}=\lim_{\alpha\to 0}\frac{\ln\frac{\alpha}{1-\beta}}{N_{\alpha,\beta}}=\lim_{\alpha\to 0}\frac{\ln L_{N_{\alpha,\beta}}}{N_{\alpha,\beta}}=\ell_k.$$

CVIT 2016

C Proofs from Section 4

C.1 Proof of Lemma 19

▶ **Lemma 19.** Consider the Markov chain $\mathcal{B} = (2^Q \times Q, T)$ defined above.

- 1. Every bottom SCC of \mathcal{B} is associated with a single likelihood exponent; i.e., for every bottom SCC $C \subseteq 2^Q \times Q$ there is $\ell(C) \in [-\infty, 0]$ such that for any initial distribution $\pi_1 \in [0, 1]^Q$ and any state $q_2 \in Q$ with $(\operatorname{supp}(\pi_1), q_2) \in C$ we have $\Lambda_{\pi_1, e_{q_2}} = {\ell(C)}$.
- **2.** Let $(S,q) \in C$ for a bottom SCC C. If $S = \emptyset$ then $\ell(C) = -\infty$; otherwise, if e_q and the uniform distribution on S are not distinguishable then $\ell(C) = 0$; otherwise $\ell(C) \in (-\infty, 0)$.
- **3.** We have $\mathbb{P}_{\pi_2}(E_\ell) = \mathbb{P}_{\iota}(\{visit\ bottom\ SCC\ C\ with\ \ell(C) = \ell\}).$

Proof. 1. Let $C \subseteq 2^Q \times Q$ be a bottom SCC of \mathcal{B} . Let π, π' be distributions on Q and $q, q' \in Q$ such that $(\operatorname{supp}(\pi), q), (\operatorname{supp}(\pi'), q') \in C$. Suppose that $\ell \in \Lambda_{\pi, e_q}$; i.e.,

$$\mathbb{P}_{e_q}\left(\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\pi\Psi(w_n)\|}{\|e_q\Psi(w_n)\|}=\ell\right) = x \quad \text{for some } x>0.$$
(4)

It suffices to show that $\Lambda_{\pi',e_{q'}} = \{\ell\}$, i.e.,

$$\mathbb{P}_{e_{q'}}\left(\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\pi'\Psi(w_n)\|}{\|e_{q'}\Psi(w_n)\|}=\ell\right) = 1.$$

By Lévy's 0-1 law it suffices to show that for all paths $q'a_1q_1\cdots a_mq_m$ with $\mathbb{P}_{e_{q'}}(q'a_1q_1\cdots a_mq_m(\Sigma Q)^{\omega})>0$ there is y>0 with

$$\mathbb{P}_{e_{q'}}\left(\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\pi'\Psi(w_n)\|}{\|e_{q'}\Psi(w_n)\|}=\ell\mid q'a_1q_1\cdots a_mq_m(\Sigma Q)^{\omega}\right)\geq y.$$
 (5)

Let $u = q'a_1q_1 \cdots a_mq_m$ be a path with $\mathbb{P}_{e_{q'}}(u(\Sigma Q)^{\omega}) > 0$. Since C is a bottom SCC of \mathcal{B} , we have

$$\mathbb{P}_{e_{q'}}(\exists k \ge m : \operatorname{supp}(\pi'\Psi(a_1 \cdots a_m \cdots a_k)) = \operatorname{supp}(\pi), \ q_k = q \mid u(\Sigma Q)^{\omega})) = 1.$$

Thus, letting $v = q'a_1q_1 \cdots a_mq_m \cdots a_kq_k$, with $k \geq m$, be an arbitrary extension of u with $\mathbb{P}_{e_{q'}}(v(\Sigma Q)^{\omega}) > 0$ and $\sup(\pi'\Psi(a_1 \cdots a_m \cdots a_k)) = \sup(\pi)$ and $q_k = q$, we have

$$\mathbb{P}_{e_{q'}}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|\pi'\Psi(w_n)\|}{\|e_{q'}\Psi(w_n)\|} = \ell \mid u(\Sigma Q)^{\omega}\right)$$

$$\geq \mathbb{P}_{e_{q'}}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|\pi'\Psi(w_n)\|}{\|e_{q'}\Psi(w_n)\|} = \ell \mid v(\Sigma Q)^{\omega}\right)$$

$$\geq \mathbb{P}_{e_q}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(\pi'\Psi(a_1\cdots a_k))\Psi(w_n)\|}{\|(e_{q'}\Psi(a_1\cdots a_k))\Psi(w_n)\|} = \ell\right)$$

$$\geq \mathbb{P}_{e_q}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(\pi'\Psi(a_1\cdots a_k))\Psi(w_n)\|}{\|e_q\Psi(w_n)\|} = \ell \text{ and } (6)$$

$$\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(e_{q'}\Psi(a_1\cdots a_k))\Psi(w_n)\|}{\|e_q\Psi(w_n)\|} = 0\right)$$
(7)

Concerning the event in (6), by (4) and since $\operatorname{supp}(\pi'\Psi(a_1\cdots a_k)) = \operatorname{supp}(\pi)$, we have

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\|(\pi' \Psi(a_1 \cdots a_k)) \Psi(w_n)\|}{\|e_q \Psi(w_n)\|} = \ell \right) \geq x.$$

Concerning the event in (7), it follows from Lemma 2.1 that

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\|(e_{q'} \Psi(a_1 \cdots a_k)) \Psi(w_n)\|}{\|e_q \Psi(w_n)\|} \le 0 \right) = 1.$$

Further, since $\mathbb{P}_{e_{q'}}(q'a_1q_1\cdots a_kq_k(\Sigma Q)^{\omega})>0$, we have $q\in \operatorname{supp}(e_{q'}\Psi(a_1\cdots a_k))$ and so

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\| (e_{q'} \Psi(a_1 \cdots a_k)) \Psi(w_n) \|}{\| e_q \Psi(w_n) \|} \ge 0 \right) \ = \ 1 \,.$$

Thus, continuing the inequality chain from above, we conclude that

$$\mathbb{P}_{e_{q'}}\left(\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\pi'\Psi(w_n)\|}{\|e_{q'}\Psi(w_n)\|}=\ell\ \bigg|\ u(\Sigma Q)^\omega\right)\ \geq\ x\,,$$

proving (5), as desired.

- 2. Let $(S,q) \in C$ for a bottom SCC C. If $S = \emptyset$ then we may define $\ell(C) = -\infty$. Otherwise, let π_S denote the uniform distribution on S. Suppose that π_S and e_q are not distinguishable. By Corollary 12 it follows that $0 \in \Lambda_{\pi_S, e_q}$. Using part 1 we obtain $\ell(C) = 0$. Finally, suppose that π_S and e_q are distinguishable. By Corollary 12 it follows that $0 \notin \Lambda_{\pi_S, e_q}$. Since C does not contain any states of the form (\emptyset, q') , by Proposition 14 we have $-\infty \notin \Lambda_{\pi_S, e_q}$. Using part 1 we obtain $\ell(C) \in (-\infty, 0)$.
- **3.** We define a function f that maps paths of \mathcal{H} to paths of \mathcal{B} as follows. Set $f(q_0a_1q_2\cdots a_mq_m):=(S_0,q_0)(S_1,q_1)\cdots(S_m,q_m)$ where $S_0=\operatorname{supp}(\pi_1)$ and $\delta(S_{i-1},a_i)=S_i$ for all $1\leq i\leq m$. The Markov chain \mathcal{B} is constructed so that for any path $v=(S_0,q_0)(S_1,q_1)\cdots(S_m,q_m)$ we have

$$\mathbb{P}_{\iota}(v(2^Q\times Q)^{\omega})\ =\ \mathbb{P}_{\pi_2}(f^{-1}(v)(\Sigma Q)^{\omega})\,.$$

Let C be any bottom SCC, and let $\ell = \ell(C)$. Define the event

$$V_C := \{q_0 a_1 q_1 \cdots \in Q(\Sigma Q)^\omega \mid \exists m \in \mathbb{N} : f(q_0 a_1 q_1 \cdots a_m q_m) \text{ ends in } C\}.$$

So we have $\mathbb{P}_{\iota}(\{\text{visit }C\}) = \mathbb{P}_{\pi_2}(V_C)$, and it suffices to show that $\mathbb{P}_{\pi_2}(E_{\ell} \mid V_C) = 1$. Let $u = q_0 a_1 q_1 \cdots a_m q_m$ be a path with $\mathbb{P}_{\pi_2}(u(\Sigma Q)^{\omega}) > 0$ such that f(u) ends in C, say in $(S,q) \in C$, with $q = q_m$. Thus, $\sup(\pi_1 \Psi(a_1 \cdots a_m)) = S$ and $q \in \sup(\pi_2 \Psi(a_1 \cdots a_m))$. It suffices to show that $\mathbb{P}_{\pi_2}(E_{\ell} \mid u(\Sigma Q)^{\omega}) = 1$. We have:

$$\mathbb{P}_{\pi_{2}}(E_{\ell} \mid u(\Sigma Q)^{\omega})
= \mathbb{P}_{\pi_{2}}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|\pi_{1}\Psi(w_{n})\|}{\|\pi_{2}\Psi(w_{n})\|} = \ell \mid u(\Sigma Q)^{\omega}\right)
= \mathbb{P}_{e_{q}}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(\pi_{1}\Psi(a_{1}\cdots a_{m}))\Psi(w_{n})\|}{\|(\pi_{2}\Psi(a_{1}\cdots a_{m}))\Psi(w_{n})\|} = \ell\right)
\geq \mathbb{P}_{e_{q}}\left(\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(\pi_{1}\Psi(a_{1}\cdots a_{m}))\Psi(w_{n})\|}{\|e_{q}\Psi(w_{n})\|} = \ell\right)$$

$$\lim_{n\to\infty} \frac{1}{n} \ln \frac{\|(\pi_{2}\Psi(a_{1}\cdots a_{m}))\Psi(w_{n})\|}{\|e_{q}\Psi(w_{n})\|} = 0$$
(9)

Concerning the event in (8), by part 2 and since $\operatorname{supp}(\pi_1 \Psi(a_1 \cdots a_m)) = S$, we have

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\|(\pi_1 \Psi(a_1 \cdots a_m)) \Psi(w_n)\|}{\|e_q \Psi(w_n)\|} = \ell \right) = 1.$$

Concerning the event in (9), it follows from Lemma 2.1 that

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\| (\pi_2 \Psi(a_1 \cdots a_m)) \Psi(w_n) \|}{\| e_q \Psi(w_n) \|} \le 0 \right) = 1.$$

Further, since $q \in \text{supp}(\pi_2 \Psi(a_1 \cdots a_m))$, we have

$$\mathbb{P}_{e_q} \left(\lim_{n \to \infty} \frac{1}{n} \ln \frac{\| (\pi_2 \Psi(a_1 \cdots a_m)) \Psi(w_n) \|}{\| e_q \Psi(w_n) \|} \ge 0 \right) \ = \ 1 \, .$$

Thus, the events in (8) and (9) occur \mathbb{P}_{e_q} -a.s. We conclude that $\mathbb{P}_{\pi_2}(E_\ell \mid u(\Sigma Q)^\omega) = 1$, as desired.

We can finally prove Theorem 9. We use the fact that conditional expected time of visiting a state in a Markov chain is finite. This follows directly from the main result of [33].

Proof of Theorem 9. The first point follows by Lemma 31 and Proposition 15 using Vitali's convergence theorem. The second point follows from Proposition 11. Finally, by Proposition 14 we have $\sup_{\alpha,\beta} \mathbb{E}_{\pi_2}[N_{\alpha,\beta} \mid E_{-\infty}] \leq \mathbb{E}_{\pi_2}[N_{\perp} \mid E_{-\infty}] < \infty$ since by Lemma 19 $L_n = 0$ if and only if we visit a bottom SCC C such that $(\emptyset, q) \in C$ for some $q \in Q$.

C.2 Proof of Theorem 17

Below we refer to the complexity class NC, the subclass of P comprising those problems solvable in polylogarithmic time by a parallel random-access machine using polynomially many processors; see, e.g., [27, Chapter 15]. To prove membership in PSPACE in a modular way, we use the following pattern:

▶ Lemma 33. Let P_1 , P_2 be two problems, where P_2 is in NC. Suppose there is a reduction from P_1 to P_2 implemented by a PSPACE transducer, i.e., a Turing machine whose work tape (but not necessarily its output tape) is PSPACE-bounded. Then P_1 is in PSPACE.

Proof. Note that the output of the transducer is (at most) exponential. Problems in NC can be decided in polylogarithmic space [6, Theorem 4]. Using standard techniques for composing space-bounded transducers (see, e.g., [27, Proposition 8.2]), it follows that P_1 is in PSPACE.

Now we prove the following theorem from the main body.

- ▶ **Theorem 17.** Given an HMM and initial distributions π_1, π_2 ,
- **1.** one can compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$ in PSPACE;
- **2.** one can decide whether $\mathbb{P}_{\pi_2}(E_0) = 0$ (i.e., $0 \notin \Lambda_{\pi_1,\pi_2}$) in polynomial time;
- **3.** deciding whether $\mathbb{P}_{\pi_2}(E_0) = 1$, whether $\mathbb{P}_{\pi_2}(E_{-\infty}) = 0$, and whether $\mathbb{P}_{\pi_2}(E_{-\infty}) = 1$ are all PSPACE-complete problems.
- **Proof.** 1. The Markov chain \mathcal{B} from Lemma 19 is exponentially big but can be constructed by a PSPACE transducer, i.e., a Turing machine whose work tape (but not necessarily its output tape) is PSPACE-bounded. The DAG (directed acyclic graph) structure, including the SCCs, of a graph can be computed in NL, which is included in NC. Using the pattern of Lemma 33, the DAG structure of the Markov chain \mathcal{B} can be computed in PSPACE. Thus, there is a PSPACE transducer that computes both \mathcal{B} and its DAG structure. For each bottom SCC C, the PSPACE transducer also decides whether $\ell(C) = -\infty$ or $\ell(C) \in (-\infty, 0)$ or $\ell(C) = 0$, using Lemma 19.2 and the polynomial-time algorithm for

distinguishability from [10]. Finally, to compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$, by Lemma 19.3, it suffices to set up and solve a linear system of equations for computing hitting probabilities in a Markov chain. This system can also be computed by a PSPACE transducer. Linear systems of equations can be solved in NC [7, Theorem 5]. Using Lemma 33 again, we conclude that one can compute $\mathbb{P}_{\pi_2}(E_{-\infty})$ and $\mathbb{P}_{\pi_2}(E_0)$ in PSPACE.

- 2. This part was proved in the main body.
- 3. The claims concerning $\mathbb{P}_{\pi_2}(E_{-\infty})$ follow from part 1 and Proposition 20. Consider the problem whether $\mathbb{P}_{\pi_2}(E_0)=1$. By part 1, it is in PSPACE. Towards PSPACE-hardness we reduce again from mortality. Let (Q, Σ, Φ) be an instance of the mortality problem. Let $Q':=Q\cup\{q_\perp,q_2\}$ for fresh states q_\perp,q_2 , and let $\Sigma':=\Sigma\cup\{\$\}$ for a fresh letter \$. Obtain Φ' from Φ by adding, for every $q\in Q'$, a \$-labelled transition to q_\perp , and an a-labelled loop from q_2 to itself for all $a\in\Sigma$. Construct an HMM (Q',Σ',Ψ) so that $\Phi'(a)$ and $\Psi(a)$ have the same zero pattern for all $a\in\Sigma'$ (e.g., use uniform distributions). See Figure 4. Let $\pi_1\in[0,1]^{Q'}$ be the uniform distribution on Q (i.e., $(\pi_1)_{q_\perp}=(\pi_1)_{q_2}=0$),

Figure 4 Illustration of the reduction from mortality to $\mathbb{P}_{\pi_2}(E_0) < 1$. In this example, $\Phi(ab)$ is the zero matrix. Accordingly, we have $\mathbb{P}_{\pi_2}(E_0) < 1$, as $L_2(abw) = 0$ for all $w \in \Sigma^{\omega}$.

and let π_2 be the Dirac distribution on q_2 .

Suppose (Q, Σ, Φ) is a positive instance of the mortality problem. Let $v \in \Sigma^*$ such that $\Phi(v)$ is the zero matrix. Then $L_{|v|}(vw) = 0$ holds for all $w \in \Sigma^{\omega}$. It follows that $\mathbb{P}_{\pi_2}(E_{-\infty}) > 0$ and so $\mathbb{P}_{\pi_2}(E_0) < 1$.

Conversely, suppose (Q, Σ, Φ) is a negative instance of the mortality problem. The word produced from q_2 contains $\mathbb{P}_{e_{q_2}}$ -a.s. the letter \$, i.e., is of the form u\$v for $u \in \Sigma^*$ and $v \in (\Sigma \cup \{\$\})^{\omega}$. Since (Q, Σ, Φ) is a negative instance, it follows that $\operatorname{supp}(\pi_1 \Psi(u\$)) = \{q_{\perp}\} = \operatorname{supp}(e_{q_{\perp}} \Psi(u\$))$. Thus, $\lim_{n \to \infty} L_n > 0$. Hence, $\mathbb{P}_{\pi_2}(E_0) = 1$.

D Proofs from Section 5

- ▶ Lemma 24. Let $S = ((Q_1, \Sigma, \Psi_1), (Q_2, \Sigma, \Psi_2), C)$ be a generalized Lyapunov system.
- **1.** There is $\lambda \in \mathbb{R}$, henceforth called $\lambda(S)$, such that, for all $\pi_1 \in [0,\infty)^{Q_1}$ and all probability distributions $\pi_2 \in [0,1]^{Q_2}$ with $\operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \subseteq C$, we have \mathbb{P}_{π_2} -a.s. that

either $\pi_1 \Psi_1(w_n) = \vec{0}$ for some $n \in \mathbb{N}$ or the limit $\lim_{n \to \infty} \frac{1}{n} \ln \|\pi_1 \Psi_1(w_n)\|$ exists and equals $\lambda(\mathcal{S})$.

- **2.** One can compute in polynomial time a Lyapunov system S' such that $\lambda(S) = \lambda(S')$.
- ▶ Lemma 34. Let $\mathcal{M} = (Q_1, \Sigma, \Psi_1)$ be a matrix system and let $\mathcal{H} = (Q_2, \Sigma, \Psi_2)$ be an HMM. Let $\pi_1 \in [0, \infty)^{Q_1}$ and $\pi_2 \in [0, 1]^{Q_2}$ then the following hold
- 1. One can compute in polynomial time a reducible Lyapunov system $\overline{\mathcal{M}} = ((\overline{Q}, \overline{\Sigma}, \overline{\Psi}), \rho)$ and initial distribution $\pi \in [0, 1]^{Q'}$ such that for any measurable set $A \subseteq \mathbb{R}$

$$\mathbb{P}_{\rho}(\|\pi\Psi'(w_n')\| \in A) = \mathbb{P}_{\pi_2}(\|\pi_1\Psi_1(w_n)\| \in A) \tag{10}$$

where w_n and w'_n are words in Σ^n and $(\Sigma')^n$ respectively.

- 2. If supp $(\pi_1) \times \text{supp } (\pi_2)$ is contained within a bottom SCC of $G_{\mathcal{M},\mathcal{H}}$. Then, π is contained within a strongly connected component of the graph of $\overline{\mathcal{M}}$.
- 3. For each subset $A \subseteq Q_1 \times Q_2$ the event $\{\text{supp } \pi \overline{\Psi} = A\}$ is \mathbb{P}_{μ} -measurable. \mathbb{P}_{μ} -measurable event $\{\}\subseteq \overline{\Sigma}^{\omega}$ such tha

Proof. We have that for each $p \in Q_2$, $\sum_{a \in \Sigma} \sum_{q \in Q_2} \Psi_2(a)_{p,q} = 1$. Let $\tau : [Q_2 \times \Sigma] \to Q_2 \times \Sigma$ be an arbitrary ordering on $Q_2 \times \Sigma$ and write $\tau(k) = (q_k, a_k)$. We define the function

$$\kappa_p(x) = (q_K, a_K) \text{ when } \sum_{k=1}^{K-1} \Psi(a_k)_{p,q_k} \le x < \sum_{k=1}^K \Psi(a_k)_{p,q_k}$$
(11)

where for notational purposes, $\sum_{k=1}^{0} \Psi(a_k)_{p,q_k} = 0$. For each $p \in Q_2$, since $\sum_{k=1}^{|Q_2 \times \Sigma|} \Psi(a_k)_{p,q_k} = 1$ it follows that κ_p is well defined on the interval [0,1) and $\mathcal{M}_{Leb}(\kappa_p^{-1}\{(q,a)\}) = \Psi(a)_{p,q}$. Let $\overline{\Sigma}$ be the set of atomic elements of the finite σ -algebra $\sigma\{\kappa_p^{-1}\{(q,a)\} \mid p,q \in Q_2, a \in \Sigma\}$ which is computable in polynomial time. For any $a' \in \overline{\Sigma}$ and $p \in Q_2$ the image $\kappa_p(a')$ contains exactly one element. Let $\tilde{\kappa}(a') \in Q_2 \times A$ denote this element. Let $\overline{Q} = Q_1 \times Q_2$. We also define the transition matrix $\overline{\Psi} : \overline{\Sigma} \to \mathbb{R}_{>0}^{\overline{Q} \times \overline{Q}}$

$$\overline{\Psi}(a')_{(q_1,r_1),(q_2,r_2)} = \begin{cases} \Psi(a)_{q_1,q_2} & (r_2,a) = \tilde{\kappa}_{r_1}(a') \\ 0 & \text{else.} \end{cases}$$

The triple $\mathcal{M} = (\overline{Q}, \overline{\Sigma}, \overline{\Psi})$ is a matrix system. Further, let $\rho = \mathcal{M}_{Leb}$ then the pair $\mathcal{S}' = (\mathcal{M}, \mathcal{M}_{Leb})$ is a reducible Lyapunov system (a representation of) which can be computed in $O(|Q_2|^2|Q_1|^2|\Sigma|)$ time.

Given a starting state r_0 we may extend the mapping $\kappa_{r_0} : [0,1)^n \to (Q_2 \times \Sigma)^n$ for $n \in \mathbb{N}$ by letting $\kappa_{r_0}(a'w) = (a,r_1)\kappa_{r_1}(w)$ where $\kappa_{r_0}(a') = (a,r_1)$. Fix $(r_1,a_1)\cdots(r_n,a_n) \in (Q_2 \times \Sigma)^n$. For a word $w' = a'_1 \cdots a'_n \in \{\kappa_{j_0}(a'_1 \dots a'_n) = (r_1,a_1), \cdots, (r_n,a_n)\}$ and start and end states (q_0,r_0) and (q_n,r_n) respectively, we have

$$\overline{\Psi}(w')_{(q_0,r_0),(q_n,r_n)} = \sum_{\substack{(q_1,\dots,q_{n-1})\in Q_1^{n-1}}} \overline{\Psi}(a'_1)_{(q_0,r_0),(q_1,r_1)} \dots \overline{\Psi}(a'_n)_{(q_{n-1},r_{n-1}),(q_n,r_n)}$$

$$= \sum_{\substack{(q_1,\dots,q_{n-1})\in Q_1^{n-1}}} \Psi(a_1)_{q_0,q_1} \dots \Psi(a_n)_{q_{n-1},q_n}$$

$$= \Psi(a_1 \dots a_n)_{q_0,q_n}.$$

Further, we have

$$\Psi(a_1)_{r_0,r_1} \dots \Psi(a_n)_{r_{n-1},r_n} = \sum_{a'_1 \dots a'_n \in [0,1)^n} \mathcal{M}_{Leb}(a'_1 \times \dots \times a'_n) \mathbb{1}_{\kappa_{r_0}(a'_1 \dots a'_n) = (r_1,a_1),\dots,(r_n,a_n)}$$

$$= \mathbb{P}_{\mathcal{M}_{Leb}}(\kappa_{r_0}(a'_1 \dots a'_n) = a_1 \dots a_n).$$

Write π for the initial distribution on $Q_1 \times Q_2$ given by $\pi_{(q,r)} = (\pi_1)_q(\pi_2)_r$. Then Equation (10) follows from the above. Finally, the induced graph of $\overline{\Psi}$ equals $G_{\mathcal{M},\mathcal{H}}$ which implies the last point in the lemma.

A reducible Lyapunov system is a Lyapupov system $((Q, \Sigma, \Psi), \rho)$ where the graph (Q, E) with $E = \{(q, r) \mid \sum_{a \in \Sigma} \Psi_{q,r}(a) > 0\}$ is not necessarily strongly connected. For sets $U, V \subseteq Q$, write $U \to_{\Psi} V$ if there is a path in (Q, E) from a state in U to a state in V. The following result is a direct consequence of Theorem 3 from [29].

▶ Lemma 35. Let $((Q, \Sigma, \Psi), \rho)$ be a reducible Lyapunov system and suppose (Q, E) has strongly connected components C_1, \ldots, C_K . Each $k \in [K]$, $S_k := ((C_k, \Sigma, \Psi_{|C_k}), \rho)$ is a Lyapunov system and further for any initial distribution π , limit $\lim_{n\to\infty} \frac{1}{n} \ln \|\pi\Psi(w_n)\|$ exists \mathbb{P}_{ρ} -a.s. and lies in

$$\{-\infty\} \cup \Big\{\lambda(\mathcal{S}_k) \mid k \in [K], \text{supp } (\pi) \to_{\Psi} C_k\Big\}.$$

▶ **Lemma 25.** Given an HMM (Q, Σ, Ψ) , let $\mathcal{R} \subseteq 2^{Q \times Q}$ be the set of its right-bottom SCCs, and, for $R \in \mathcal{R}$, let $\mathcal{S}_R^1, \mathcal{S}_R^2$ be the generalized Lyapunov systems defined above. Then, for any initial distributions π_1, π_2 , the limit $\lim_{n\to\infty} \frac{1}{n} \ln L_n$ exists \mathbb{P}_{π_2} -a.s. and lies in

$$\{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}, \ \operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \longrightarrow_{G_{\mathcal{H},\mathcal{H}}} R\}.$$

Thus,
$$\Lambda_{\pi_1,\pi_2} \subseteq \{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}, \operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \longrightarrow_{G_{\mathcal{H},\mathcal{H}}} R\}.$$

- add graph structure to Lemma 34.
- Lemma 34 needs the ability to split by producing bottom SCC.

Proof of ??. Let $P_1, \ldots, P_L \subset Q$ be the bottom SCCs of Ψ and let $F_l = \{(a_i r_i)_{i=1}^{\infty} \in \Sigma^{\omega} \mid \exists k \in \mathbb{N} \text{ s.t } r_k \in P_l\}.$

Write $w_{k+1,n}$ for the prefix of Conditioned on F_l , there is a prefix

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \ln \|\pi_2 \Psi(w_n)\| &= \lim_{n \to \infty} \frac{1}{n} \ln \|\pi_2 \Psi(w_k) \Psi(w_{k+1,n})\| \\ &= \lim_{n \to \infty} \frac{1}{n} \left[\ln \frac{\|\pi_2 \Psi(w_k) \Psi(w_{k+1,n})\|}{\|e_{r_k} \Psi(w_{k+1,n})\|} + \ln \|e_{r_k} \Psi(w_{k+1,n})\| \right] \\ &= \lim_{n \to \infty} \frac{1}{n} \ln \|e_{r_k} \Psi(w_{k+1,n})\| \end{split}$$

since $r_k \in \text{supp } \pi_2 \Psi(w_k)$.

By Lemma 34 there are reducible Lyapunov systems $\overline{\mathcal{M}}_l = (Q \times P_l, \overline{\Sigma}, \overline{\Psi})$ with embedded graphs

 $\mathcal{G}_{\mathcal{H},\mathcal{H}}$ and strongly connected components C_1,\ldots,C_K such that by Lemma 35 we have that $\lim_{n\to\infty}\frac{1}{n}\ln\|\pi_1\Psi(w_n)\|$ exists \mathbb{P}_{π_2} -a.s. and lies in

$$\{-\infty\} \cup \Big\{\lambda(\mathcal{S}_k) \mid k \in [K], \text{supp } (\pi_1) \times \text{supp } (\pi_2) \to_{\mathcal{G}_{\mathcal{H},\mathcal{H}}} C_k\Big\}.$$

For each strongly connected component C_k of $\mathcal{G}_{\mathcal{H},\mathcal{H}}$ the event each SCC has

 $\frac{C_k}{\mathcal{M}}$

Not conditioned, it's when you start

Split space into hitting of end components, we then have reducible lyap system. This gives us the reachability result.

Show the space of end components in the producing chain combined with the SCCs in lemma 35 are the same as right bottom SCCs.

The S's in lemma 25 have the same distribution as Sk in lemma 35.

Equivalent reducible Lyapunov system. With graph $G_{H,H}$.

Each right bottom SCC corresponds to a SCC in the reducible lyap sys which is reachable. any pair of initial distributions correspond to an initial distribution in the reducible lyap sys.

We define the following sets

$$C^* = \{(q,r) \in Q \times Q \mid \operatorname{supp}(\pi_1) \times \operatorname{supp}(\pi_2) \to_{G_{\mathcal{H},\mathcal{H}}} \{(q,r)\}, (q,r) \in R \text{ for some } R \in \mathcal{R}\}$$

$$C_0 = C^* \cap \{(q,r) \in Q \times Q \mid (q,r) \text{ is in a bottom SCC of } G_{\mathcal{H},\mathcal{H}}\}$$

Conditioned on a produced word $r_0 a_1 r_1 \cdots a_m r_m \in (\text{supp } \pi_2)(\Sigma Q)^*$ we have

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|\pi_1 \Psi(a_1 \cdots a_m) \Psi(w_n)\|}{\|\pi_2 \Psi(a_1 \cdots a_m) \Psi(w_n)\|} &= \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|\pi_1 \Psi(a_1 \cdots a_m) \Psi(w_n)\|}{\|\delta_{r_m} \Psi(w_n)\|} \\ &- \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|\pi_2 \Psi(a_1 \cdots a_m) \Psi(w_n)\|}{\|\delta_{r_m} \Psi(w_n)\|} \\ &= \max_{q \in \text{supp}} \max_{\pi_1 \Psi(a_1 \cdots a_m)} \lim_{n \to \infty} \frac{1}{n} \ln \frac{\|\delta_q \Psi(w_n)\|}{\|\delta_{r_m} \Psi(w_n)\|}. \end{split}$$

The state r_m is \mathbb{P}_{π_2} -almost surely in a bottom SCC of $\sum_{a \in \Sigma} \Psi(a)$. Hence, we have $\Lambda_{\pi_1,\pi_2} \subset \{\ell \in \bigcup_{R \in \mathcal{R}} \Lambda_{\delta_q,\delta_r} \mid (q,r) \in C^*\}$ since . We then define subsets $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_M = C^*$ and then prove the claim

$$\{\ell \in \Lambda_{\delta_{\alpha},\delta_{\alpha}} \mid (q,r) \in C_m\} \subset \{-\infty\} \cup \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2) \mid R \in \mathcal{R}, R \subset C^*\}$$
(12)

for all $m \leq M$ by induction.

Consider the case $(q, r) \in C_b$ then for a word $ra_1r_1 \cdots a_mr_m \in r(\Sigma Q)^*$ since r_m is in a bottom SCC of $\sum_{a \in \Sigma} \Psi(a)$ we have that (q, r) and (r, r) are both in bottom SCCs of $G_{\mathcal{H}, \mathcal{H}}$. Hence, there are right-bottom SCCs R and R' such that

$$\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\delta_q\Psi(a_1\cdots a_m)\|}{\|\delta_r\Psi(a_1\cdots a_m)\|}=\lim_{n\to\infty}\frac{1}{n}\ln\frac{\|\delta_{(q,r)}\overline{\Psi}_{|R}(a_1r_1\cdots a_mr_m)\|}{\|\delta_{(r,r)}\overline{\Psi}_{|R'}(a_1r_1\cdots a_mr_m)\|}\in\{-\infty,\lambda(S_R^1)-\lambda(S_R^2)\}.$$

Write $R_1, \ldots, R_M \subseteq C^*$ for the remaining right-bottom SCCs in C^* ordered in such a way that $R_i \to_{G_{\mathcal{H},\mathcal{H}}} R_j$ implies $i \geq j$. This ordering exists due to the DAG structure of right-bottom SCCs under the $\to_{G_{\mathcal{H},\mathcal{H}}}$ transitive relation. We define $C_{m+1} = C_m \cup R_{m+1}$. Assume the claim given in Equation (12) holds for some $C := C_m$. All outgoing transitions of $R := R_{m+1}$ go to states in C. Consider the block matrix system $(C \cup R, \Sigma \times Q_R, \overline{\Psi}_{|C \cup R})$. Then for $a \in \Sigma$, we have the block definition

$$\overline{\Psi}_{|C \cup R}(a) = \begin{pmatrix} \overline{\Psi}_{|R}(a) & & T \\ 0 & & \overline{\Psi}_{|C}(a) \end{pmatrix}$$

where T is a matrix representing the transitions from the sets of states R to C. Let $w \in (\Sigma Q_R)^{\omega}$ with prefix $w_n = a_1 r_1 \cdots a_n r_n \in (\Sigma Q_R)^n$ (we assume $n \geq 3$). We write $w_{k+1,n}$

for the word $a_{k+1}r_{k+1}\cdots a_nr_n$. It follows that

$$\overline{\Psi}_{|C \cup R}(w_n) = \begin{pmatrix} \overline{\Psi}_{|R}(w_n) & \sum_{k=1}^n \overline{\Psi}_{|R}(w_{k-1})T(a_kr_k)\overline{\Psi}_{|C}(w_{k+1,n}) \\ 0 & \overline{\Psi}_{|C}(w_n) \end{pmatrix}$$

where w_0 and $w_{n+1,n}$ are both interpreted as the empty word ε . If $(q,r) \in C$ then Equation (12) holds immediately so assume $(q,r) \in R$. Therefore if the limits exist,

$$\lim_{n \to \infty} \frac{1}{n} \ln \|e_{(q,r)} \overline{\Psi}_{|C \cup R}(w_n)\| = \lim_{n \to \infty} \frac{1}{n} \ln \|e'_{(q,r)} [\overline{\Psi}_{|R}(w_n) + \sum_{k=1}^{n} \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n})]\|$$

$$= \lim_{n \to \infty} \frac{1}{n} \ln \|e'_{(q,r)} \sum_{k=1}^{n} \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n})\|$$

$$= \lim_{n \to \infty} \max_{k \le n} \frac{1}{n} \ln \|e'_{(q,r)} \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n})\|$$

$$\geq \max \left\{ \lim_{n \to \infty} \frac{1}{n} \ln \|e'_{(q,r)} \overline{\Psi}_{|R}(w_n)\|, \right.$$

$$\sup_{k \in \mathbb{N}} \lim_{n \to \infty} \frac{1}{n} \ln \|e'_{(q,r)} \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n})\| \right\}$$

where $e'_{(q,r)}$ is the dirac distribution for the state $(q,r) \in R$. Write $((i_1,j_1),(i_2,j_2))_k \in \text{supp } T(a_k)$ for a possible transition from R to C. Further, let

$$X:=\max\Big\{\lim_{n\to\infty}\frac{1}{n}\ln\|e_{q,r}'\overline{\Psi}_{|R}(w_n)\|,\sup_{k\in\mathbb{N}}\lim_{n\to\infty}\frac{1}{n}\ln\|e_{(q,r)}'\overline{\Psi}_{|R}(w_{k-1})T(a_kr_k)\overline{\Psi}_{|C}(w_{k+1,n})\|\Big\}$$

Let $I(w_k)$ be the characteristic vector of supp $e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_kr_k)$ then clearly $\lim_{n\to\infty}\frac{1}{n}\ln\|I(w_k)\overline{\Psi}_{|C}(w_{k+1,n})\|=\lim_{n\to\infty}\frac{1}{n}\ln\|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_kr_k)\overline{\Psi}_{|C}(w_{k+1,n})\|.$ For all $\varepsilon>0$ we have

$$\mathbb{P}_{e_r} \Big(\liminf_{k \to \infty} \left\{ |\frac{1}{k} \ln \|e_{(q,r)}' \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \| \leq X + \varepsilon \right\} \Big) = 1$$

and because $I(w_k)$ falls in a finite set

$$\mathbb{P}_{e_r}\left(\liminf_{n-k-1\to\infty}\left\{\frac{1}{n-k-1}\ln\|I(w_k)\overline{\Psi}_{|C}(w_{k+1,n})\|\leq X+\varepsilon\right\}\right)=1$$

Let $\overline{1} \in [0,1]^C$ be a row vector with all entries equal to 1. We have

$$\frac{1}{k} \ln \|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_{k}r_{k})\| \leq X + \varepsilon \wedge \frac{1}{n-k-1} \ln \|I(w_{k})\overline{\Psi}_{|C}(w_{k+1,n})\| \leq X + \varepsilon
\implies \frac{1}{n} \ln \|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_{k}r_{k})\overline{\Psi}_{|C}(w_{k+1,n})\|
\leq \frac{1}{n} \ln \|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_{k}r_{k})\overline{1}^{T}I(w_{k})\overline{\Psi}_{|C}(w_{k+1,n})\|
\leq \frac{1}{n} \ln \|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_{k}r_{k})\| + \frac{1}{n} \ln \|I(w_{k})\overline{\Psi}_{|C}(w_{k+1,n})\|
\leq \frac{k}{n} \frac{1}{k} \ln \|e'_{(q,r)}\overline{\Psi}_{|R}(w_{k-1})T(a_{k}r_{k})\| + \frac{n-k-1}{n} \frac{1}{n-k-1} \ln \|I(w_{k})\overline{\Psi}_{|C}(w_{k+1,n})\|
\leq \frac{k}{n} (X + \varepsilon) + \frac{n-k-1}{n} (X + \varepsilon)
\leq (X + \varepsilon).$$

It follows that

and $n - k \ge K$

Each limit

Write $H_{k,n}$

There is some word w_k such that supp $e_{(q,r)} \sum_{k=1}^n \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \subset C$. Hence $\lim_{n\to\infty} \frac{1}{n} \ln \|\|$

Clearly $\lim_{n\to\infty}\frac{1}{n}\ln\|\overline{\Psi}_{|C\cup R}(w_n)\| \geq \lim_{n\to\infty}\frac{1}{n}\ln\max\{\|\overline{\Psi}_{|C}(w_n)\|,\|\overline{\Psi}_{|R}(w_n)\|\}$. Further.

Since $||T|| \le 1$ it follows that

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \ln \|e_{(q,r)} \overline{\Psi}_{|C \cup R}(w_n)\| &= \lim_{n \to \infty} \frac{1}{n} \ln \left[\|e_{(q,r)} \sum_{k=1}^n \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n}) \| \right] \\ &\leq \liminf_{n \to \infty} \max_{k \le n} \frac{1}{n} \ln \left[\|e_{(q,r)} \overline{\Psi}_{|R}(w_{k-1}) T(a_k r_k) \overline{\Psi}_{|C}(w_{k+1,n}) \| \right] \\ &\leq \liminf_{n \to \infty} \frac{1}{n} \ln \left[\|e_{(q,r)} \overline{\Psi}_{|R}(w_{k-1}) T(a_{kn} r_{kn}) \overline{\Psi}_{|C}(w_{kn+1,n}) \| \right] \end{split}$$

where $k_n(w) = \arg\max_{k \le n} \frac{1}{n} \ln \|\overline{\Psi}_{|R}(a_1 \cdots a_{k-1}) T(a_k) \overline{\Psi}_{|C}(a_{k+1} \cdots a_n)\|$. for $w \in \{n - k_n \to \infty\}$.

Since $k_n \leq n$ we have that the sequence k_n/n is bounded. Therefore by the Bolzano-Weierstrauss theorem there is a convergent subsequence k_{a_n} .

We have that supp $e_i \overline{\Psi}_{|R}(w_{k_{a_n}-1})$ falls in a finite set, so without loss of generality we assume it is constant. Hence,

$$\lim_{n\to\infty} \frac{1}{n} \ln \|\overline{\Psi}_{|C\cup R}(w_n)\| \in \{\lambda(\mathcal{S}_R^1) - \lambda(\mathcal{S}_R^2)\} \cup \{-\infty\} \cup \{\lambda(\mathcal{S}_{R'}^1) - \lambda(\mathcal{S}_{R'}^2) \mid R' \in \mathcal{R}, R' \subseteq C\}.$$

Thus the claim holds for $C_{m+1} = C \cup R$. By induction the claim then holds for $C_M = C^*$ which completes the proof.

E Proofs from Section 6

- ▶ Theorem 29. Given a deterministic HMM (Q, Σ, Ψ) with initial Dirac distributions π_1, π_2 , one can compute in polynomial time
- **1.** Λ_{π_1,π_2} as a set of expressions of the form $\sum_i x_i \ln y_i$ where $x_i, y_i \in \mathbb{Q}$, and
- **2.** $\operatorname{Pr}_{\pi_2}(E_\ell)$ for each such $\ell \in \Lambda_{\pi_1,\pi_2}$.

Proof. In a Markov chain, one can compute the stationary distribution and hitting probabilities in polynomial time by solving a linear system of equations. Thus, the numbers $\ell(C)$ defined before Lemma 28 can be computed in polynomial time. Both parts of the theorem follow then from Lemma 28. A slight complication is that for part 2, for an $\ell = \sum_i x_i \ln y_i \in \Lambda_{\pi_1,\pi_2}$, in order to compute $\mathbb{P}_{\pi_2}(E_\ell)$ we have to sum the hitting probabilities for all C with $\ell = \ell(C)$. To select those C we have to compare numbers of the form $\sum_i x_i \ln y_i$ where $x_i, y_i \in \mathbb{Q}$, and it is not immediately obvious how to do that. However, one can compare two such numbers for equality in polynomial time as shown in [17].