32,768-word × 8-bit High Speed Psuedo Static RAM

Features

- Single 5 V (±10%)
- · Access time
 - CE access time: 100/120/150/200 ns
 - Address access time: 50/60/75/100 ns (in static column mode)
- · Cycle time
 - Random read/write cycle time: 160/190/235/310 ns
 - Static column mode cycle time: 55/65/80/105 ns
- Low power: 175 mW typ, active
- · All inputs and outputs TTL compatible
- · Static column mode capability
- · Non-multiplexed address
- 256 refresh cycles (4 ms)
- · Refresh functions
 - Address refresh
 - Automatic refresh
 - Self refresh

Access time	Package
100 ns	300-mil 28-pin
120 ns	[─] plastic DIP (DP-28N)
150 ns	_ (=
200 ns	
100 ns	28-pin plastic
120 ns	SOP (FP-28DA)
150 ns	_,
200 ns	_
100 ns	_
120 ns	_
150 ns	_
200 ns	
	100 ns 120 ns 150 ns 200 ns 100 ns 120 ns 120 ns 120 ns 150 ns 150 ns

Ordering Information

Type No.	Access time	Package
HM65256BP-10	100 ns	600-mil 28-pin
HM65256BP-12	120 ns	─plastic DIP (DP-28)
HM65256BP-15	150 ns	-
HM65256BP-20	200 ns	
HM65256BLP-10	100 ns	_
HM65256BLP-12	120 ns	_
HM65256BLP-15	150 ns	
HM65256BLP-20	200 ns	_
HM65256BSP-10	100 ns	300-mil 28-pin
HM65256BSP-12	120 ns	Tplastic DIP (DP-28N)
HM65256BSP-15	150 ns	_ ,
HM65256BSP-20	200 ns	_

Pin Arrangement

Block Diagram

Truth Table

CE	ŌĒ	WE	I/O Pin	Mode	
L	L	н	Low Z	Read	
L	×	L	High Z	Write	
L	Н	н	High Z		
Н	L	×	High Z	Refresh	
Н	Н	×	High Z	Standby	

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Terminal voltage with respect to V _{SS}	V _T	-1.0 to +7.0	v	
Power dissipation	P _T	1.0	W	
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +125	•c	
Storage temperature under bias	Tbias	-10 to +85	°C	

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	V _{CC}	4.5	5.0	5.5	٧	
	V _{SS}	0	0	0	٧	
Input voltage	V _{IH}	2.2	_	6.0	٧	
	V _{IL}	-0.5 °		0.8	٧	··-·

Note: $V_{IL} \min = -3.0 \text{ V for pulse width} \le 10 \text{ ns.}$

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%)

		HM65256B HM6525			5256E	256BL				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Test conditions	
Operating power supply current	I _{CC1}	_	35	65	_	35	65	mA	I _{VO} = 0 mA tcyc = min	
Standby power	I _{SB1}	_	1	2	_	1	2	mA	$\overline{CE} = V_{IH}$, $\overline{OE} = V_{IH}$, $Vin \ge 0$ v	
supply current	I _{SB2}		_	_	_	0.05	0.1	mA	$\overline{CE} > V_{CC} - 0.2 \text{ V},$ $\overline{OE} \ge V_{CC} - 0.2, \text{ Vin } \ge 0$	
Operating power	I _{CC2}	_	1	2		0.6	1	mA	$\overline{CE} = V_{IH}$, $\overline{OE} = V_{IL}$, $Vin \ge 0 \text{ V}$	
supply current in self refresh mode	I _{CC3}	_	_		_	50	100	μΑ	$\frac{CE}{OE} \ge V_{CC} - 0.2 \text{ V},$ $\frac{OE}{OE} \le 0.2 \text{ V}, \text{ Vin } \ge 0 \text{ V}$	
Input leakage current	l _{Ll}	-10	_	10	-10		10	μА	V_{CC} = 5.5 V, Vin = V_{SS} to V_{CC}	
Output leakage current	: I _{LO}	-10	_	10	-10		10	μА	$\overline{OE} = V_{IH}, V_{I/O} = V_{SS}$ to V_{CC}	
Output voltage	V _{OL}		_	0.4		_	0.4	V	I _{OL} = 2.1 mA	
	V _{OH}	2.4	_		2.4	_	_	٧	I _{OH} = -1 mA	

Capacitance

Parameter	Symbol	Тур	Max	Unit	Test conditions	
Input capacitance	Cin	_	5	pF	Vin = 0 V	
Input/output capacitance	CI/O		7	pF	V _{I/O} = 0 V	

Note: These parameters are sampled and not 100% tested.

6

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%)

AC Test Conditions:

• Input pulse levels: 2.4 V, 0.4 V

• Input rise and fall times: 5 ns

• Timing measurement level: 2.2 V, 0.8 V

• Reference level: $V_{OH} = 2.0 \text{ V}$ $V_{OL} = 0.8 \text{ V}$

• Output load: 1 TTL and 100 pF

(including scope and jig)

		HM65	HM65256B-10 HM65256B-12		256B-12	HM65256B-15		HM65256B-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Random read or write cycle time	t _{RC}	160	_	190	_	235	_	310	_	ns
Static column mode read or write cycle	t _{RSC}	55	_	65	_	80	_	105	_	ns
Chip enable access time	t _{CEA}	_	100	_	120	_	150		200	ns
Address access time	t _{AA}	_	50	_	60	_	75	_	100	ns
Output enable access time	t _{OEA}	_	40	_	50		60	_	75	ns
Chip disable to output in high Z	t _{CHZ}	_	25	_	25		30		35	ns
Chip enable to output in low Z	t _{CLZ}	30	_	30	_	35	_	40	_	ns
Output enable to output in low Z	touz	10	_	10	_	10	_	10	_	ns
Output disable to output in high Z	t _{OHZ}		25	_	25	_	30	_	35	ns
Chip enable pulse width	t _{CE}	100 n	s 4 ms	120 n	s 4 ms	150 n	s 4 ms	200 n	s 4 ms	
Chip enable precharge time	t _P	50	_	60	_	75		100		ns
Address set-up time	t _{AS}	0	_	0	_	0	_	0	_	ns
Row address hold time	t _{RAH}	20	_	20	_	25		30		ns
Column address hold time	t _{CAH}	100	_	120	_	150	_	200	_	ns
Read command set-up time	t _{RCS}	0	_	0	_	0	_	0	_	ns
Read command hold time	t _{RCH}	0		0		0	_	0	_	ns
Output enable hold time	t _{ОНС}	0		0	_	0	_	0		ns
Output enable to chip enable delay time	toco	0		0	_	0	_	0	_	ns
Output hold time from column address	t _{ОН}	5	_	5	_	5	_	10	_	ns
Write command pulse width	t _{WP}	25	_	25	_	30	_	35	_	ns
Chip enable to end of write	t _{CW}	100	_	120	_	150	_	200	_	ns

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%) (cont)

		HM65256B-10		HM65256B-12		HM65256B-15		HM65256B-20			
Parameter	Symbol	Min	Min Max		Min Max		Max	Min	Max	Unit	
Column address set-up time	t _{ASW}	0	_	0		0	_	0		ns	
Column address hold time after write	t _{AHW}	0	_	0	_	0	_	0	_	ns	
Data valid to end of write	t _{DW}	20		20	_	25	_	30	_	ns	
Data in hold time for write	t _{DH}	0		0	_	0	_	0		ns	
Output active from end of write	tow	5	_	5	_	5	_	5		ns	
Write to output in high Z	t _{WHZ}	_	25		25	_	30	_	35	ns	
Transition time (rise and fall)	t _T	3	50	3	50	3	50	3	50	ns	
Refresh command delay time	t _{RFD}	50	_	60	_	75	_	100	_	ns	
Refresh precharge time	t _{FP}	30	_	30	_	30	_	30	_	ns	
Refresh command pulse width for automatic refresh	t _{FAP}	80	10000	080	10000	80	10000	80	10000	ns (
Automatic refresh cycle time	t _{FC}	160	_	190		235	_	310		ns	
Refresh command pulse width for self refresh	t _{FAS}	1000	0—	1000	0 —	1000	0 —	1000	0 —	ns	
Refresh reset time for self refresh	t _{FRS}	160	_	190	_	235	_	310		ns	
Refresh period	t _{REF}	_	4	_	4	_	4		4	ns	

Notes: 1. t_{CHZ}, t_{OHZ}, and t_{WHZ} are defined as the time at which the output achieves the open circuit conditions.

- 2. t_{CLZ} , t_{OLZ} and t_{OW} are sampled under the condition of $t_T = 5$ ns, and not 100% tested.
- 3. A write occurs during the overlap of a low CE and low WE.
- If CE goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
- 5. If input signals of opposite phase to the outputs are applied in a write cycle, OE or WE must disable output buffers prior to applying data to the device and data inputs must be floating prior to OE or WE turning on output buffers.
- V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- An initial pause of 100 µs is required after power-up followed by a minimum of 8 initialization cycles.
- At the end of self refresh, refresh reset time (t_{FRS}) is required to reset the internal self refresh
 operation of the RAM. During t_{FRS}, CE and OE must be kept high. If auto refresh follows self
 refresh, low transition of OE at the beginning of auto refresh must not occur during t_{FRS} period.

Timing Waveforms

Read Cycle (1) (CE controlled)

Read Cycle (2) (OE controlled)

Write Cycle (1) (OE Clock)

Write Cycle (2) (OE fixed low)

Static Column Mode Read Cycle

Static Column Mode Write Cycle

Automatic Refresh Cycle

Self Refresh Cycle

