Stat 541 Homework #1

Kenny Flagg

February 1, 2016

1.
$$\sum_{i=1}^{a} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{..})^{2} = \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} (y_{ij}^{2} - 2y_{ij}\bar{y}_{..} + \bar{y}_{..}^{2})$$

$$= \sum_{i=1}^{a} \left(\sum_{j=1}^{n_{i}} y_{ij}^{2} - 2 \left(\sum_{j=1}^{n_{i}} y_{ij} \right) \bar{y}_{..} + \sum_{j=1}^{n_{i}} \bar{y}_{..}^{2} \right)$$

$$= \sum_{i=1}^{a} \left(\sum_{j=1}^{n_{i}} y_{ij}^{2} - 2y_{i.}\bar{y}_{..} + n_{i}\bar{y}_{..}^{2} \right)$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} y_{ij}^{2} - 2 \left(\sum_{i=1}^{a} y_{i.} \right) \bar{y}_{..} + \left(\sum_{i=1}^{a} n_{i} \right) \bar{y}_{..}^{2}$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} y_{ij}^{2} - 2y_{..}\bar{y}_{..} + N\bar{y}_{..}^{2}$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} y_{ij}^{2} - 2y_{..}\frac{y_{..}}{N} + N \left(\frac{y_{..}}{N} \right)^{2}$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} y_{ij}^{2} - 2 \frac{y_{..}^{2}}{N} + \frac{y_{..}^{2}}{N}$$

$$= \sum_{i=1}^{a} \sum_{j=1}^{n_{i}} y_{ij}^{2} - \frac{y_{..}^{2}}{N}$$

2. (a) Under H_0 the test statistic is $F_0 \sim F(5, 24)$ so for each α we reject H_0 if:

Signifiance Level	Rejection Region
$\alpha = 0.01$	$F_0 \ge F_{0.01}(5, 24) = 3.90$
$\alpha = 0.05$	$F_0 \ge F_{0.05}(5, 24) = 2.62$
$\alpha = 0.10$	$F_0 \ge F_{0.10}(5, 24) = 2.10$

(b) First we need the overall total:

$$y_{..} = \sum_{i} \sum_{j} y_{ij} = \sum_{i} y_{i.} = 50 + 75 + 100 + 90 + 60 + 75 = 450$$

Next, find SS_T and SS_{Trt} :

$$SS_{T} = \sum_{i} \sum_{j} (y_{ij} - \bar{y}_{..})^{2} = \sum_{i} \sum_{j} y_{ij}^{2} - \frac{y_{..}^{2}}{N} = 7858 - \frac{450^{2}}{30} = 1108$$

$$SS_{Trt} = \sum_{i} \sum_{j} (\bar{y}_{i.} - \bar{y}_{..})^{2} = \sum_{j} \frac{y_{i.}^{2}}{n_{i}} - \frac{y_{..}^{2}}{N} = \frac{50^{2}}{5} + \frac{75^{2}}{5} + \frac{100^{2}}{5} + \frac{90^{2}}{5} + \frac{60^{2}}{5} + \frac{75^{2}}{5} - \frac{450^{2}}{30} = 340$$

Now we can fill in the ANOVA table:

Source of	Sum		Mean	
Variation	Squares	d.f.	Square	F-Ratio
Treatment	340	5	68	$F_0 = 2.125$
Error	768	24	32	
Total	1108	29		

- (c) We would reject H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ for $\alpha = 0.10$ only.
- (d) With all of the original observations, the treatment means were $\bar{y}_{1.} = 10$, $\bar{y}_{2.} = 15$, $\bar{y}_{3.} = 20$, $\bar{y}_{4.} = 18$, $\bar{y}_{5.} = 12$, and $\bar{y}_{6.} = 15$. Treatment 3 had the largest mean. With the one observation removed, the new mean for treatment 3 is $\bar{y}_{3.} = 16$ which is close to the means for treatments 2 and 6 and is no longer the largest mean. Thus there is less between-treatment variability so MS_{Trt} will decrease.

3. I ran the following SAS code:

```
data catalysts;
  input catalyst concentration @@;
datalines;
1 58.2 1 57.2 1 58.4 1 55.8 1 54.9
2 56.3 2 54.5 2 57.0 2 55.3
3 50.1 3 54.2 3 55.4
4 52.9 4 49.9 4 50.0 4 51.7;

proc glm data = catalysts;
  class catalyst;
  model concentration = catalyst;
```

Here is the resulting ANOVA table:

The GLM Procedure

Dependent Variable: concentration

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
		1	•		
Model	3	85.6758333	28.5586111	9.92	0.0014
Error	12	34.5616667	2.8801389		
Corrected Total	15	120.2375000			

4. (a) Yes, we can compute:

$$SS_E = \sum_{i} (n_i - 1)s_i^2$$

(b) No, we need the sample variance s^2 for the whole sample so we can compute:

$$SS_{Trt} = \left(\sum_{i} n_i - 1\right) s^2$$

(c) No, we need s^2 to find SS_{Trt} as above and then we can compute:

$$SS_T = SS_{Trt} + SS_E$$