

3
(4.6.1) Pigelined
ID stage takes the longest (i.e. \$50ps)
[: dod= cycle time = 350 ps]
Non-pipelined
(IF+IO+ EX +MEM+WB)
clode agale time = (250 + 350+ 150+300+200)ps
=> [clock cycle fim c = 1250ps]
(4.8.2) LW uses all stages
Non-pipelire d
total latency = (250+ 350+150+300+200) ps
=> (total latency = 1250 ps)
Pipe-lited
Through put is improved, and latency only
Through put is improved, and latency only depends on the longest stage length.
=> total latency = (5 stages). (ID stage)
= (5) (350 ps)
=) total (atency = 1750 ps)

5ince ID stage is the longest,

if you split its stage into two new

stages, the time for each of those stages
will be halved (ie. 350/2 = 175ps).

After the split, the new clock cycle time
will depend on the longest stage, which is

now MEM stage,

=> | New clocker cycle time after ID ght = 300ps

(4.8.4) Only "In" and "sw" instructions deal with data nemory.

Otilitation = IN + SW = (20 + 15) %

=>/Utilization = 35%

(4.8.5) Only "Iw" and "alu" instructions are utilized in this case.

Utilization = 1w + alu = (20 + 45) r.

=> (Utilization = 65%

(U,13)
a.) sw R16, -100 (R6)
1 6in a 1810)
all PE QUILUD 3 data ha fard
In live 1, R6 is destination and R16 is whiten in WB stage To live) Pu is destination register and
In live 1, Rb is destination and Rle is
written in WB stage
In live 2, Ry is destination register and written in
In live 2, Ry is destruction written in RIC off set by +8 is written in
WB stage (and rt) In live 3 there is a hazard; source register?
In live 3 there is a hazard; source verister
Ry is unavailable
from i're 2 (i. only 1 dependency)
(U.13.2) Data hazard between live 2 and 3
SW R16, -100 (R6)
IW RY, 8(RIG) 3
add R5, RW (R.4) 3 data hazard
> SW RIG, -100 (RG)
= 1 w RU, 8 (RIG)
NOP
add KS,
IF ID EX MEM WB total
IF ID EX MEM WIS
NOP NOP NOP NOP NOP NOP NOP

(4.13.3) (Cycles)
I JF ID EX MEM WIS 2 IF ID EX MEM WE
3 IF ID EX MENING
with forwarding, one stage must be forwarded to get R4 value before WB stage
(1.13.41) Without forwarding
totalex time docte cycles 250ps = [2250ps] with full forwarding
total or time Telescle cycles = 300 ps: (2100 ps)
Greedup = 2250 (5 2100 ps = 1.07) so
it's a slight speedup
(4.13.5) 9 cycles
I IF ID EX MEM WB
2 IF ID EX MEM WB
IF ID NOP NOP EX MEM W

Total ex. time = (9 cycles), (290ps)

Total ex. time = 2610 ps)

No forwarding from before...

Total ex. time = 2250ps

=> speedup = 2250 ps = 0.86)

it's slower now.

(0.0) (0.0)