ECONOMETRIE

CURS 04

- note de curs -

IAŞI - 2024-

Tematica C04

Modelul iniar simplu

- 1. Regresia prin origine
- 2. Problema liniarității exemple

Regresia prin origine

Situaţii în care am putea construi un model de regresie prin origine:

- 1.În urma testării parametrilor modelului, parametrul β_0 are o valoare nesemnificativă statistic, iar parametrul β_1 este semnificativ statistic;
- 2. Există suport teoretic care să impună estimarea unui model care trece prin origine lipsa influenței variabilei independente conduce la o medie zero pentru variabila dependentă (analiza de cost, legătura dintre lungimea și greutatea persoanelor).

Regresia prin origine -Aplicatie

Pentru un eșantion de 28 de studente de la FEEA anul II, se studiază legătura dintre greutate si inaltime.

Model Summary

Model	R R Square		Adjusted R Square	Std. Error of the Estimate	
1	.563ª	.317	.291	5.58360	

a. Predictors: (Constant), INALTIMEA (CM)

Model Summary

Model	R R Square ^b		Adjusted R Square	Std. Error of the Estimate	
1	.995ª	.990	.990	5.73870	

- a. Predictors: INALTIMEA (CM)
- b. For regression through the origin (the no-intercept model), R Square measures the proportion of the variability in the dependent variable about the origin explained by regression. This CANNOT be compared to R Square for models which include an intercept.

ANOVA^a

Model		Sum of Squares df M		Mean Square	F	Sig.	
1	Regression	376.373	1	376.373	12.072	.002 ^b	
	Residual	810.591	26	31.177			
	Total	1186.964	27				

a. Dependent Variable: GREUTATEA (KG)

b. Predictors: (Constant), INALTIMEA (CM)

ANOVA^{a,b}

Model	30	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	87993.816	1	87993.816	2671.926	.000°
	Residual Total	889.184 88883.000 ^d	27 28	32.933		

a. Dependent Variable: GREUTATEA (KG)

b. Linear Regression through the Origin

c. Predictors: INALTIMEA (CM)

d. This total sum of squares is not corrected for the constant because the constant is zero for regression through the origin.

Coefficients^a

		Unstandardiz	Unstandardized Coefficients				95.0% Confiden	ice Interval for B
١	Model	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-47.149	29.696		-1.588	.124	-108.189	13.892
	INALTIMEA (CI	n) .618	.178	.563	3.475	.002	.252	.984

a. Dependent Variable: GREUTATEA (KG)

Coefficients^{a,b}

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1 IN/	ALTIMEA (CM)	.336	.006	.995	51.691	.000

a. Dependent Variable: GREUTATEA (KG)

b. Linear Regression through the Origin

Regresia prin origine

În cazul modelului de regresie $Y = \beta_1 X + \varepsilon$ aplicarea metodei celor mai mici pătrate se simplifică.

Relația de minimizat este de forma: $S = \sum_{i} (y_i - \hat{\beta}_i x_i)^2 = min$.

Condiția de extrem conduce la ecuația:

$$2\sum_{i}(y_i-\hat{\beta_i}x_i)(-x_i)=0$$

sau

$$\hat{\beta}_i \sum_i x_i^2 = \sum_i y_i x_i$$

sau

$$\hat{\beta}_i = \frac{\sum_i y_i x_i}{\sum_i x_i^2}.$$

Estimatorul $\hat{\beta}_1$ este nedeplasat. Pentru statistica t utilizata pentru testarea parametrului β_1 vom avea n-1 grade de libertate fata de n-2 in modelul cu constanta.

Regresia prin origine

Probleme privind utilizarea modelelor prin origine

- 1. Suma erorilor nu mai este zero;
- 2. R² poate fi negativ sau poate avea o valoare foarte mare, prin urmare interpretarea acestuia nu mai are sens.

Ca alternativă se utilizează o variantă a lui R², și anume:

$$r^2 = \frac{(\sum_i y_i x_i)^2}{\sum_i x_i^2 \sum_i y_i^2}$$
, unde $0 < r^2 < 1$.

- 1. În practică se recomandă evitarea eliminării parametrului β_0 chiar dacă testul Student semnalează faptul că acesta nu este reprezentativ.
- 2. Există un model de regresie liniară prin origine pentru care probleme modelului liniar prin origine dispar: Acesta este modelul de regresie liniară cu variabile standardizate.
- 3. În acest caz, panta dreptei de regresie are aceeaşi valoare cu coeficientul de corelaţie Pearson (b_i=r).