Transition to Advanced Math - Assignment 7 - Chapter 7

Name: Tam Nguyen

1. Suppose $x \in Z$. Then x is even if and only if 3x + 5 is odd.

Solution:

First, we prove that if x is even, then 3x+5 is odd.

Assume that x is even, then x = 2k with k is some integers.

Then 3x+5 = 3.2k+5 = 6k+5.

Hence, if x is even, 3x + 5 is odd.

Conversely, suppose 3x+5 odd, then 3x+5 = 2k+1.

We then have $3x + 4 = 2k \iff 3x = 2k - 4$. Since 2k - 4 is an even number, then 3x is also an even number. We then observe that 2 and 3 are two prime numbers that have the greatest common factor is 1. Therefore, x must be an even number in order to have 3x is even.

With two sides are proved above, we then have x is even if and only if 3x+5 is odd.

7. Suppose $x, y \in R$. Then $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.

Solution:

First, we prove that if $(x + y)^2 = x^2 + y^2$, then x = 0 or y = 0.

 $(x+y)^2 = x^2 + y^2 \iff 2xy = 0.$

The equation above is true if and only if x = 0, or y = 0, or x = y = 0.

Conversely, suppose x = 0 or y = 0, then 2xy = 0. We then add both side of equation above with $x^2 + y^2$ (> 0) to have: $x^2 + 2xy + y^2 = x^2 + y^2$.

This new equation equals to $(x+y)^2 = x^2 + y^2$

With two sides are proved above, we then have $(x+y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.

8. Suppose $a,b \in Z$. Prove that $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.

Solution:

First we prove that if $a \equiv b \pmod{10}$, then $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.

Suppose $a \equiv b \pmod{10}$. This means $10 \mid (ab)$, so there is an integer k for which a - b = 10k.

From this we get ab = 2(5n), which implies 2 - (ab), so $a \equiv b \pmod{2}$. But we also get a - b = 5(2n), which implies $5 \mid (ab)$, so $a \equiv b \pmod{5}$.

Conversely, suppose $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$. Since $a \equiv b \pmod{2}$ we get 2 - (ab), so there is an integer k for which ab = 2k. Therefore, ab = 2k is even. Also, from $a \equiv b \pmod{3}$ we get b = 2k where is an integer l for which: a - b = 5l.

But since we know a b is even, it follows that I must be even also, for if it were

odd then a - b = 5l would be odd (because a - b would be the product of two odd integers). Hence l = 2m for some integer m. Thus a - b = 5l = 5.2m = 10m. This means $10 \mid (a - b)$, so $a \equiv b \pmod{10}$.

17. There is a prime number between 90 and 100.

Solution:

In the range from 90 to 100, there are only two possible prime numbers which are 91 and 97. However, 91 = 13.7. We then prove that 97 is a prime number.

We then test factor of 97 by divide 97 to all prime number which is smaller than $\sqrt{97}$. We then have 97 is not divisible by 2, 3, 5, 7. Therefore, 97 is a prime number

20. There exists an $n \in N$ for which $11 \mid (2n-1)$

Solution:

11 is a prime number which has only two factors are 1 and 11. Therefore, we have two cases:

Case 1: 2n-1 = 1 if and only if n = 0

Case 2: 2n-1 = 11 if and only if n = 6.

Therefore, there true exists an $n \in N$ for which $11 \mid (2n-1)$. For example, n = 0.

28. Prove the division algorithm: If $a,b \in N$, there exist unique integers q, r for which a = bq + r, and $0 \le r < b$. (A proof of existence is given in Section 1.9, but uniqueness needs to be established too.)

Solution:

Existence Take from section 1.9

Given integers a,b with a,b \in N, form the set A = $\{a - xb : x \in Z, 0 \le a - xb\} \subseteq \{0, 1, 2, 3, ...\}$

In general, let r be the smallest element of the set A. Then r = a - qb for some $x = q \in Z$, so a = qb + r. Moreover, $0 \le r < b$, as follows. The fact that $r \in A \subseteq \{0, 1, 2, 3...\}$ implies $0 \le r$.

In addition, it cannot happen that $r \ge b$: If this were the case, then the non-negative number r - b = (a - qb) - b = a - (q+1)b having form a-xb would be a smaller element of A than r, which is contradict with the fact that r was chosen as the smallest element of A. Since $r \not\ge b$, it must be that r < b. Therefore $0 \le r < b$.

We've now produced a q and an r for which a = qb + r and $0 \le r < b$

Uniqueness: Suppose that we have to sets of integers q, r and q', r' satisfying a = bq + r with $0 \le r < b$

and a = bq' + r' with $0 \le r' < b$

We want to show that q' = q and r' = r. We then have b(q' - q) + r' - r = 0.

Since $0 \le r < b$ and $0 \le r' < b$, we have b < r - r' < b. From this we obtain -1 < q' - q = (r - r')/b < 1

Since $q' \in Z$, this implies that q' = 0. This in turn implies that r' = 0.