

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-337237

(43)公開日 平成8年(1996)12月24日

(51)Int.Cl.⁶
B 65 D 5/40
75/26

識別記号

府内整理番号

F I
B 65 D 5/40
75/26

技術表示箇所

Z

審査請求 未請求 請求項の数1 O.L. (全5頁)

(21)出願番号

特願平7-145780

(22)出願日

平成7年(1995)6月13日

(71)出願人 000003193

凸版印刷株式会社

東京都台東区台東1丁目5番1号

(72)発明者 森嶋 繁徳

東京都台東区台東1丁目5番1号 凸版印
刷株式会社内

(72)発明者 今井 隆之

東京都台東区台東1丁目5番1号 凸版印
刷株式会社内

(72)発明者 戸祭 丈夫

東京都台東区台東1丁目5番1号 凸版印
刷株式会社内

最終頁に続く

(54)【発明の名称】 液体用紙容器

(57)【要約】

【目的】容器成形性の優れた、成型時にピンホールの発生がないバリヤー基材を、バリヤー層に用いた液体用紙容器を提供すること。

【構成】板紙を基材とし、金属箔、無機化合物蒸着薄膜を形成したフィルム、またはバリヤー性プラスチックフィルムをバリヤー層とする積層材料を用いて周壁を形成した液体用紙容器において、前記積層材料の最内面樹脂層に、メタセロン触媒を用いて製造したポリエチレン樹脂層を用いたことを特徴とする。

【特許請求の範囲】

【請求項1】板紙を基材とし、金属箔、無機化合物蒸着薄膜を形成したフィルム、またはバリヤー性プラスチックフィルムをバリヤー層とする積層材料を用いて周壁を形成した液体用紙容器において、前記積層材料の最内層樹脂層に、メタロセン触媒を用いて製造したポリエチレン樹脂層を用いたことを特徴とする液体用紙容器。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、板紙を基材とし、金属箔、無機化合物蒸着薄膜を形成したフィルム、バリヤー性プラスチックフィルムをバリヤー層とする積層材料を用いて周壁を形成した液体用紙容器に関し、特には、成形性、充填性等の機械適性に優れた最内層を有する液体用紙容器に関する。

【0002】

【従来の技術】板紙を基材としアルミニウム箔、無機化合物蒸着薄膜を形成したフィルム、またはバリヤー性プラスチックフィルムをバリヤー層とする積層材料を用いて周壁を形成した液体用紙容器としては、頂部が切り妻屋根型をした角筒状容器(図2)、円筒状容器(図3)、テーパーを有する紙カップ状容器(図4)、あるいは頂部がフラットなレンガ状容器等様々な形態の液体用紙容器が流通している。そしてこの積層材料の構成は、例えば、バリヤー層が無機化合物蒸着薄膜を形成したフィルムの場合、「容器外側」ポリエチレン層/板紙層/ポリエチレン層/ポリエチレン層/ポリエチレンテレフタレート層/酸化ケイ素蒸着薄膜層/ポリエチレン層【容器内側】からなる構成が使用されており、最内層のポリエチレン層に使われるポリエチレン樹脂は、エチレンガスを1000気圧以上の高圧下で重合反応を行わせて得られる高圧法ポリエチレン、または低密度ポリエチレンと呼ばれる樹脂が一般的であった。

【0003】しかしながら、この構成の液体用紙容器は、最内層の低密度ポリエチレン層を加熱して溶かし、容器に成形する際に、バリヤー層を有する積層材料を成形する場合、ポリエチレン層を溶かすために熱エネルギーを与えるとポリエチレン層にピンホールが発生することがある。特に、バリヤー層にアルミニウム箔が用いられない場合、熱伝導性が悪く、そのため、ポリエチレン層を溶かすに十分な熱エネルギーを与えると、しばしばポリエチレン層にピンホールが発生し、逆に熱を絞るとピンホールは発生しないものの十分なシール(成形)ができず、ピンホールの発生がなく、かつ、シール不良のない条件を充填成形機の側から設定条件を決めるることは非常に難しく、仮に設定条件が決められたとしても適性条件の許容範囲は非常に狭いものであった。一方、シール適性だけを考慮するならば、最内層のポリエチレン層の代わりにアイオノマー樹脂や、エチレン・酢

酸ビニル共重合体樹脂等の検討がされてきたが、独特の樹脂臭が内容物に与える影響が大きく、内容物が飲食物や香気成分を大切にするものの場合には、官能面からもその使用は困難であった。

【0004】

【発明が解決しようとする課題】本発明は、板紙を基材とし金属箔、無機化合物蒸着薄膜を形成したフィルム、またはバリヤー性プラスチックフィルムをバリヤー層とし、かつ、最内層樹脂が高圧法ポリエチレン樹脂とする積層材料を用いて周壁を形成する液体用紙容器に関する上記のような問題点を除去するためになされたもので、容器の成形性の優れた、成形時にピンホールの発生がないバリヤー層を用いた液体用紙容器を提供することを目的とする。

【0005】

【課題を解決するための手段】本発明は上記目的を達成するために、板紙を基材とし、金属箔、無機化合物蒸着薄膜を形成したフィルム、またはバリヤー性プラスチックフィルムをバリヤー層とする積層材料を用いて周壁を形成した液体用紙容器において、前記積層材料の最内層樹脂層に、メタロセン触媒を用いて製造したポリエチレン樹脂層を用いたことを特徴とする液体用紙容器を提供するものである。

【0006】メタロセン触媒は、二塩化ジルコノセンとメチルアルモキサンを組み合わせたカミンスキー触媒と呼ばれるもので、エチレンに対して高い重合活性を示し、さらに活性点が均一であるという特徴を持つ。このメタロセン触媒を用いてエチレンを重合させて得たポリエチレン樹脂は、従来の高圧法により作製したポリエチレン樹脂と較べて、低温シール性を有する、ヒートシール開始温度が低い、適性シール温度幅が広い、透明性を有する、強靭で機械的特性に優れる等の特徴がある。

【0007】また、金属箔はアルミニウム箔が代表的で、蒸着薄膜を形成する無機化合物は、酸化ケイ素、酸化アルミニウム、酸化マグネシウムの単独、またはこれらの混合物からなる。さらに、バリヤー性プラスチックは、ポリ塩化ビニリデン、エチレン-ビニルアルコールから成るフィルム、またはこれらの樹脂をコートしたフィルムである。

【0008】

【作用】上記のように本発明によれば、メタロセン触媒を使用して製造したポリエチレン樹脂を積層材料の最内層樹脂層に用いたので、従来より低い温度で、かつ、広い温度範囲でシール(成形)が可能となる。また、トップ部及びボトム部の成形シール時に、ホットエアー等の熱量を過度にかけなくとも成形が可能なので、過加熱によるトップ部及びボトム部のピンホール等を発生させることがない。

【0009】

【実施例】以下実施例により本発明を詳細に説明する。

先ず、メタロセン触媒を用いて製造したポリエチレン樹脂を、例えば、インフレーション法等の方法でフィルム化し、 $6.0\text{ }\mu\text{m}$ 厚のポリエチレンフィルムを作製した。次いで、液体用紙容器作製のための積層材料を作製した。すなわち、基材層となる坪量が 320 g/m^2 の板紙の表裏に、 $2.0\text{ }\mu\text{m}$ 厚と $2.5\text{ }\mu\text{m}$ 厚のポリエチレン層を押し出しラミネーション法により積層した。これとは別に、 400 \AA 厚の酸化ケイ素蒸着薄膜を施した $1.2\text{ }\mu\text{m}$ 厚のポリエチレンテレフタレートフィルムのポリエチレンテレフタレート面に、上述の $6.0\text{ }\mu\text{m}$ 厚のメタロセン触媒を用いて製造したポリエチレンフィルムをドライラミネーション法によりウレタン系接着剤を用いて積層した。上述のポリエチレン層/板紙層/ポリエチレン層構成の積層材料の $2.5\text{ }\mu\text{m}$ 厚のポリエチレン層と、酸化ケイ素蒸着薄膜層/ポリエチレンテレフタレート層/メタロセン触媒を用いて製造したポリエチレン層構成の積層材料の酸化ケイ素蒸着薄膜層とを、押し出しラミネーション法により $3.0\text{ }\mu\text{m}$ 厚のポリエチレンで貼り合わせて、図1に示す本実施例の【容器外側】 $2.0\text{ }\mu\text{m}$ 厚ポリエチレン層(11)／ 320 g/m^2 板紙層(12)／ $2.5\text{ }\mu\text{m}$ 厚ポリエチレン層(13)／ $3.0\text{ }\mu\text{m}$ 厚ポリエチレン層(14)／ 400 \AA 厚酸化ケイ素蒸着薄膜層(15)／ $1.2\text{ }\mu\text{m}$ 厚ポリエチレンテレフタレート層(16)／ $6.0\text{ }\mu\text{m}$ 厚メタロセン触媒を用いて製造したポリエチレン層(17)【容器内側】構成の液体用紙容器の積層材料(10)を作製した。

【0010】次に、作製した積層材料(10)を用いて、図2に示す切り妻屋根型頂部を有する角筒型液体用紙容器(20)を作製した。すなわち、作製した積層材料(10)を通常の打抜機で打抜き、液体用紙容器のブランク板を作製し、このブランク板をサック貼り機でサイドシールしてスリーブを作製した。

【0011】このスリーブをホットエー方式の熱源を採用している充填成形機に装填し、外径が $70\text{ mm} \times 70\text{ mm}$ 、高さが 140 mm の 500 ml リトル容量の液体用紙容器を作製した。その際、トップ成形部(21)とボトム成形部(22)のヒーター温度を $270\text{ }-\text{ }340\text{ }^\circ\text{C}$ まで $10\text{ }^\circ\text{C}$ おきに変化させて、容器成形可能な温度条件を求める。その評価結果を表1に示す。

【0012】(比較例1) これとは別個に、本実施例の液体用紙容器と比較評価するため、図5に示す従来構成の【容器外側】 $2.0\text{ }\mu\text{m}$ 厚ポリエチレン層(51)／ 320 g/m^2 板紙層(52)／ $2.5\text{ }\mu\text{m}$ 厚ポリエチレン層(53)／ $3.0\text{ }\mu\text{m}$ 厚ポリエチレン層(54)／ 400 \AA 厚酸化ケイ素蒸着薄膜層(55)／ $1.2\text{ }\mu\text{m}$ 厚ポリエチレンテレフタレート層(56)／ $6.0\text{ }\mu\text{m}$ 厚ポリエチレン層(57)【容器内側】構成の液体用紙容器の積層材料(50)を実施例と同様の方法で作製した。なお、最内層のポリエチレン層には、高圧法で作製した低密度ポリエチレン樹脂である三井石油化学工業株式会社

製のインフレーショングレードであるミラソン401Pを使用した。

【0013】この積層材料(50)から実施例と同様の方法でスリーブを作製し、実施例と同様にこのスリーブをホットエー方式の熱源を採用している充填成形機に装填し、外径が $70\text{ mm} \times 70\text{ mm}$ 、高さが 140 mm の 500 ml リトル容量の液体用紙容器を作製した。その際、トップ成形部とボトム成形部のヒーター温度を $270\text{ }-\text{ }340\text{ }^\circ\text{C}$ まで $10\text{ }^\circ\text{C}$ おきに変化させて、容器成形可能な温度条件を求める。その評価結果を表1に示す。

【0014】

【表1】

【0015】表1の結果から、最内層にメタロセン触媒を用いて製造したポリエチレンを用いた積層材料を使用した液体用紙容器(実施例)は、高圧法により製造したポリエチレンを最内層に用いた液体用紙容器(比較例1)と比較して、トップ成形部、ボトム成形部とも成形可能温度が低くなり、しかも適性シール温度範囲が拡がることが判明した。

【0016】

【発明の効果】上記のように本発明によれば、従来より低い温度で成形シールが可能になり、しかもシール適性温度範囲が拡がったので、紙容器成形充填機の成形シールの条件出しが容易になり、成形充填機の生産性が向上する。また、アルミニウム箔をバリヤー層として用いた積層材料においても、シール適性温度範囲は拡がり、成形充填機の生産性が向上する。さらに、メタロセン触媒を使って製造したポリエチレンは、分子量分布がそろっているので、飲料や香気成分を大切にする内容物を充填した際の樹脂臭の影響も少なくなる。

【図面の簡単な説明】

【図1】本発明の液体用紙容器の積層材料の一構成例を示す断面図である。

【図2】同積層材料を用いて組み立てた液体用紙容器の一実施例を示す斜視図である。

【図3】別の液体用紙容器の実施例を示す斜視図である。

【図4】さらに別の液体用紙容器の実施例を示す斜視図である。

【図5】従来の液体用紙容器の積層材料の一構成例を示す断面図である。

【符号の説明】

10……積層材料

11……ポリエチレン層

12……板紙層

13……ポリエチレン層

14……ポリエチレン層

15……酸化ケイ素蒸着薄膜層

16……ポリエチレンテレフタレート層

17 ……メタロセン触媒を用いて製造したポリエチレン層
 20 ……液体用紙容器
 21 ……トップ成形部
 22 ……ボトム成形部
 50 ……積層材料
 51 ……ポリエチレン層

52 ……板紙層
 53 ……ポリエチレン層
 54 ……ポリエチレン層
 55 ……酸化ケイ素蒸着薄膜層
 56 ……ポリエチレンテレフタレート層
 57 ……ポリエチレン層

【図1】

【図2】

【図3】

【図4】

【図5】

【手続補正書】

【提出日】平成7年11月17日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】

【表1】

〔評価結果〕

トップ成形部温度

	270	280	290	300	310	320	330	340
実施例	×	○	○	○	○	○	△	△
比較例1	×	×	×	×	○	○	△	△

ボトム成形部温度

	270	280	290	300	310	320	330	340
実施例	×	×	○	○	○	○	○	△
比較例1	×	×	×	×	○	○	○	△

〔備考〕 温度単位 °C

判定 ○ シール良好
 △ ピンホール発生
 × シール不良

フロントページの続き

(72)発明者 山本 秀樹

東京都台東区台東1丁目5番1号 凸版印

刷株式会社内