Unit 1 What is Machine Learning?

EL-GY6143/CS-GY 6923: INTRODUCTION TO MACHINE LEARNING PROF. PEI LIU

Learning Objectives

- □ Identify data-driven learning vs. expert or domain knowledge-based approaches
- ☐ Provide examples of machine learning used today
- ☐Given a new problem, qualitatively describe how machine learning can be used
 - Formulate a potential machine learning task
 - Identify the data needed for the task
 - Identify objectives
- □Classify a machine learning task:
 - Supervised vs. unsupervised, regression vs. classification
- ☐ For supervised learning, identify the predictors and target variables

Outline

- What is Machine Learning?
- ☐ Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning
- ■Why the hype today?
- ■Some slides from:
 - A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

What is Machine Learning?

Learn to improve algorithms from data.

Image from Christoph Molnar, https://christophm.github.io/interpretable-ml-book

Traditional approach

Domain or expert knowledge

Machine Learning

Data-driven

Why?

- Human expertise does not exist (ex: complex medical processes we don't fully understand)
- Humans are unable to explain their expertise (speech recognition)
- Solution change or adapt in time (routing on a computer network)

Example 1: Digit Recognition

Images are 28 x 28 pixels

- ☐ Problem: Recognize a digit from the image
- ■MNIST dataset challenge
 - Dataset developed in 1990s to spur AI research on a challenging problem for the time
 - Data taken from census forms
 - Became a classic benchmark for machine vision problems
 - We will see this dataset extensively in this class

Classical "Expert" Approach

- □Idea: Use your knowledge about digits
 - You are an "expert" since you can do the task
- ☐ Construct simple rules and code them
- Expert rule example: "Image is a digit 7 if...":
 - There is a single horizontal line, and
 - There is a single vertical line
- ☐Rule seems simple and reasonable
- ■But,...

Images are 28 x 28 pixels

```
def count_vert_lines(image):
    ...
def count_horiz_lines(image):
    ...

def classify(image):
    ...
    nv = count_vert_lines(image)
    nh = count_horiz_lines(image)
    ...

if (nv == 1) and (nh == 1):
    digit = 7
    ...

return digit
```

Problems with Expert Rules

- ☐ Simple expert rule breaks down in practice
 - Hard to define a "line" precisely
 - Orientation, length, thickness, ...
 - May be multiple lines...
- ☐General problem: We cannot easily code our knowledge
 - We can do the task
 - But, it is hard to translate to simple mathematical formula

```
def count_vert_lines(image):
    ...
def count_horiz_lines(image):
    ...

def classify(image):
    ...
    nv = count_vert_lines(image)
    nh = count_horiz_lines(image)
    ...

if (nv == 1) and (nh == 1):
        digit = 7
    ...

return digit
```


ML Approach: Learn from Data

Training inputs images x_i (ex. 5000 ex per class)

 $f(\mathbf{x})$

Training output labels $y_i \in \{0,1,...,9\}$

- ☐Do not use your "expert" knowledge
- Learn the function from data!
- □Supervised learning:
 - Get many labeled examples (x_i, y_i) , i = 1, ..., N (Called the training data)
 - $^{\circ}\,$ Each example has an input x_i and output y_i
 - Learn a function f(x) such that: $f(x_i) = y_i$ for "most" training examples

ML Approach Benefits and Challenges

- ☐ Learned systems do very well on image recognition problems
 - On MNIST, <u>current systems</u> get <0.21% errors (as of 1/20/2018)
 - Used widely in commercial systems today (e.g. OCR)
 - Cannot match this performance with an expert system
- ☐But, there are challenges:
 - How do we acquire data? Someone has to manually label examples.
 - How do we parametrize a set of functions f(x) to search?
 - How do we fit the function to data?
 - $\circ\,$ If a function works on training example, will it generalize on new data?
 - in a function works on training example, will be generalize on new data.

- 00011(1112
- azzda 2 2 3 3 3 3
- 344445555
- 4477777388
- 888194999

☐ This is what you will learn in this class

Example 2: Face Detection

- □ Problem: For each image region, determine if face or non-face
- ☐ More challenging than digit recognition
 - Even harder to describe a face via "rules" in a robust way

Supervised Learning Approach

- □ Data: Get large number of face and non-face examples
- ☐ Typical early dataset
 - 5000 faces (all near frontal, vary age, race, gender, lighting)
 - 10^8 non faces
 - Faces are normalized (scale, translation)
- Learn a classifier from a class of functions
 - Each function maps image to binary value "face" or "non-face"
 - Select function that works well on training data
 - For good performance, functions may be complex
 - Many parameters
- ☐ Many more datasets are available now:
 - See http://www.face-rec.org/databases/
 - You can use this for your project!

Rowley, Baluja and Kanade, 1998

Example 3: Spam Detection

□Classification problem:

• Is email junk or not junk?

☐ For ML, must represent email numerically

- Common model: bag of words
- Enumerate all words, i = 1, ..., N
- Represent email via word count $x_i = \text{num instances of word } i$

☐Challenge:

- Very high-dimensional vector
- System must continue to adapt (keep up with spammers)

Example 4: Stock Price Prediction

- □Can you predict the price of a stock?
- ☐What variables would you use?
- ■What is a non-machine learning approach?

Machine Learning in Many Fields

- ☐ Retail: Market basket analysis, Customer relationship management (CRM)
- ☐ Finance: Credit scoring, fraud detection
- ☐ Manufacturing: Control, robotics, troubleshooting
- ☐ Medicine: Medical diagnosis
- ☐ Telecommunications: Spam filters, intrusion detection
- ☐ Bioinformatics: Motifs, alignment
- ■Web mining: Search engines
- **...**

In-Class Exercise 1

For each of the proposed algorithms below, indicate whether the use a machine learning (i.e. data driven) approach or not (e.g. expert or domain knowledge)

Num	Algorithm	ML Approach?	
		Yes	No
1	A robot determines its route in a room using a shortest path algorithm combined with data on the obstacle locations.		
2	You predict the weather tomorrow using data on how whether has changed in the past.		
3	A computer program playing poker decides to fold or not fold in a game by calculating the probability that its poker hand is the best.		
4	A program estimates whether a customer will purchase a product from sales records of past customers and their attributes.		

Outline

- ■What is Machine Learning?
 - Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning
 - Reinforcement learning
- ■Why the hype today?
- ■Some slides from:
 - $^{\circ}\,$ A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

Classification

- □ Supervised learning
 - Learn mapping from features x to target y
- □Classification:
 - Target is discrete. One of a finite number of values
 - ∘ Ex: Binary $y \in \{0,1\}$
- ☐ Example: Credit assessment
 - Target: customer is high-risk or low-risk
 - Features: income & saving $x = (x_1, x_2)$
- ☐ Learn a function from features to target
 - Use past training data
 - Need to get this data
- ☐ The function on the right is an example of a decision tree.

Regression

- □ Also supervised learning
- ☐ Predicting a continuous-valued target
- **■**Example:
 - \circ Predict y = happiness score (e.g. from surveys)
 - From x = income, country, age, ...
 - Can use multiple predictors
- ☐ Assume some form of the mapping
 - Ex. Linear: $y = \beta_0 + \beta_1 x$
 - Find parameters β_0 , β_1 from data

Happiness Score

Income

https://www.scribbr.com/statistics/simple-linear-regression/

Unsupervised Learning

- ☐ Learning "what normally happens"
- ■No output
 - Just values x. No target y
- □Clustering: Grouping similar instances
- Example applications
 - Customer segmentation
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Example: Document classification http://www.ibm.com/support/knowledgecenter/
/SSBRAM_8.7.0/com.ibm.classify.ccenter.doc/
c_WBG_Taxonomy_Proposer.htm

Reinforcement Learning

- ☐ Agent learns to make actions that interact with an environment to maximize a reward
 - Agent typically acts in a closed loop system
- ☐ Key tradeoffs:
 - Exploitation (Learn from past actions) vs. exploration (try new choices)
 - Credit assignment: Which actions in the past led to the current reward?

Types of Machine Learning

https://www.7wdata.be/visualization/types-of-machine-learning-algorithms-2/

In-Class Exercise 2

For each machine learning problem below (Problem 1 to 5), determine which type of ML algorithm would be best:

- · A. Supervised learning: Classification
- · B. Supervised learning: Regression
- · C. Unsupervised learning
- D. Reinforcement learning

For supervised learning problems, state possible predictors and target (There is no single correct solution).

Num	ML Problem	Algorithm: A to D
1	Estimate the increase in sales from attributes of an advertising campaign.	
2	Predict if a tissue sample is cancerous or not from an image of the tissue.	
3	Train a computer to steer a car from camera data. For training, you have recorded the steering actions of an expert human driver along with the camera data that the human saw.	
4	Train a computer to steer a car from camera data. In this case, there is no labeled data. The computer must learn how the steering affects the motion of the car.	
5	Classify survey data into groups with similar responses.	

Outline

- ■What is Machine Learning?
- ☐ Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning

- ■Some slides from:
 - A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

What ML is Doing Today?

- □ Autonomous driving
- Jeopardy
- ☐ Very difficult games: Alpha Go
- Machine translation
- ☐ Many, many others...

Why Now?

- ☐ Machine learning is an old field
 - Much of the pioneering statistical work dates to the 1950s
- ■So what is new now?
- ☐Big Data:
 - Massive storage. Large data centers
 - Massive connectivity
 - Sources of data from Internet and elsewhere
- □ Computational advances
 - Distributed machines, clusters
 - GPUs and hardware

Google Tensor Processing Unit (TPU)

Exercise

- ☐ Break into small groups
- ☐ Take a field that interests you:
 - Ex. Driving a car, social networks, recommend a movie to watch, ...
- □ Identify a specific task that can be done with machine learning
 - What is the objective of the task?
 - What is the data you need?
 - What type of ML problem is this? Classification, regression, ...
 - How would your approach compare to an expert-driven method?

