CSCE 465 Computer & Network Security

Instructor: Abner Mendoza

Introduction to Cryptography

Roadmap

Basic Crypto Concepts and Definitions

Some Early (Breakable) Cryptosystems

"Key" Issues

Basic Concepts and Definitions

Cryptography

- Cryptography: the art of secret writing
- Converts data into unintelligible (randomlooking) form
 - Must be reversible (can recover original data without loss or modification)
- Not the same as compression
 - Usually n bits in, n bits out
 - Can be combined with compression
 - What's the right order?

Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.

Cryptanalysis

- "code breaking", "attacking the cipher"
- Difficulty depends on
 - sophistication of the cipher
 - amount of information available to the code breaker
- Any cipher can be broken by exhaustive trials, but rarely practical
 - When can you recognize if you have succeeded?

Breaking an Encryption Scheme

- Ciphertext only:
 - Exhaustive search until "recognizable plaintext"
 - Need enough ciphertext
- Known plaintext:
 - Secret may be revealed (by spy, time), thus <ciphertext,
 plaintext> pair is obtained
 - Great for monoalphabetic ciphers
- Chosen plaintext:
 - Choose text, get encrypted
 - Useful if limited set of messages

Brute Force Attacks

- Number of encryption/sec: 1 million to 1 billion/sec
- 56-bit key broken in 1 week with 120,000 processors (\$6.7m)
- 56-bit key broken in 1 month with 28,000 processors (\$1.6m)
- 64-bit key broken in 1 week with 3.1×10^7 processors (\$1.7b)
- 128-bit key broken in 1 week with 5.6 \times 10²⁶ processors

The "Weakest Link" in Security

- Cryptography is rarely the weakest link
- Weaker links
 - Implementation of cipher
 - Distribution or protection of keys

Models for Evaluating Security

- Unconditionally Secure (Perfectly Secure)
 - Uncertainty/entropy H(p)=H(p|c)
- Provably Secure
 - As difficult to break as solving well-known and supposedly difficult problem
- Computationally Secure

Secret Keys v.s. Secret Algorithms

Security by obscurity

- We can achieve better security if we keep the algorithms secret
- Hard to keep secret if used widely
- Reverse engineering, social engineering

Publish the algorithms

- Security of the algorithms depends on the secrecy of the keys
- Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms

Secret Keys v.s. Secret Algorithms (Cont'd)

- Commercial world
 - Published
 - Wide review, trust
- Military
 - Keep algorithms secret
 - Avoid giving enemy good ideas
 - Military has access to the public domain knowledge anyway.

Some Early Ciphers

Caesar Cipher

- Replace each letter with the one n (e.g., 3) letters later in the alphabet
 - ex.: plaintext CAT → ciphertext FDW

Trivial to break

Mono-Alphabetic Ciphers

- Generalized substitution cipher: an arbitrary (but fixed) mapping of one letter to another
 - 26! (≈ $4.0*10^{26} \approx 2^{88}$) possibilities
- The key must specify which permutation; how many bits does that take?

plaintext <u>alphabet</u>

ciphertext <u>alphabet</u>

Attacking Mono-Alphabetic Ciphers

- Broken by statistical analysis of letter, word, and phrase frequencies of the language
- Frequency of single letters in English language, taken from a large corpus of text:

A ≈ 8.2%	H ≈ 6.1%	O ≈ 7.5%	V ≈ 1.0%
B ≈ 1.5%	I ≈ 7.0%	P ≈ 1.9%	W ≈ 2.4%
C ≈ 2.8%	J ≈ 0.2%	$Q \approx 0.1\%$	X ≈ 0.2%
D ≈ 4.3%	K ≈ 0.8%	R ≈ 6.0%	Y ≈ 2.0%
E ≈ 12.7%	L ≈ 4.0%	S ≈ 6.3%	Z ≈ 0.1%
F ≈ 2.2%	M ≈ 2.4%	T ≈ 9.1%	
G ≈ 2.0%	N ≈ 6.7%	U ≈ 2.8%	

(Tip: Counting Letter Frequencies)

Program letter, written by TJ O'Connor

Permutation Ciphers

- The previous codes are all based on substituting one symbol in the alphabet for another symbol in the alphabet
- Permutation cipher: permute (rearrange, transpose) the letters in the message
 - the permutation can be fixed, or can change over the length of the message

Permutation... (Cont'd)

- Permutation cipher ex. #1:
 - Permute each successive block of 5 letters in the message according to position offset <+1,+3,-2,0,-2>

plaintext message

ciphertext message

A Perfectly Secure Cipher: One-Time Pads

- According to a theorem by Shannon, a perfectly secure cipher requires:
 - a key length at least as long as the message to be encrypted
 - the key can only be used once (i.e., for each message we need a new key)
- Very limited use due to need to negotiate and distribute long, random keys for every message

OTP... (Cont'd)

Idea

- generate a random bit string (the key) as long as the plaintext, and share with the other communicating party
- encryption: XOR this key with plaintext to get ciphertext
- decrypt: XOR same key with ciphertext to get plaintext

OTP... (Cont'd)

Why can't the key be reused?

Some "Key" Issues

Types of Cryptography

- Number of keys
 - Hash functions: no key
 - Secret key cryptography: one key
 - Public key cryptography: two keys public, private
- The way in which the plaintext is processed
 - Stream cipher: encrypt input message one symbol at a time
 - Block cipher: divide input message into blocks of symbols, and processes the blocks in sequence
 - May require padding

Secret Key Cryptography

- Same key is used for encryption and decryption
- Also known as
 - Symmetric cryptography
 - Conventional cryptography
- Ciphertext approximately the same length as plaintext
- Examples
 - Stream Cipher: RC4
 - Block Cipher: DES, IDEA, AES

Public Key Cryptography

- Invented/published in 1975
- A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
 - Asymmetric cryptography

Hash Algorithms

- Also known as
 - Message digests
 - One-way transformations
 - One-way functions
 - Hash functions
- Length of H(m) much shorter then length of m
- Usually fixed lengths: 128 or 160 bits

Summary

- Cryptography is a fundamental, and most carefully studied, component of security
 - not usually the "weak link"
- "Perfectly secure" ciphers are possible, but too expensive in practice
- Early ciphers aren't nearly strong enough
- Key distribution and management is a challenge for any cipher