

統計學(一)

第六章 抽樣分佈 (Distributions of Sample Statistics)

授課教師: 唐麗英教授

國立交通大學工業工程與管理學系

聯絡電話:(03)5731896

e-mail: litong@cc.nctu.edu.tw

2013

☆ 本講義未經同意請勿自行翻印 ☆

本課程內容參考書目

教科書

P. Newbold, W. L. Carlson and B. Thorne(2007). Statistics for Business and the Economics, 7th Edition, Pearson.

• 參考書目

- Berenson, M. L., Levine, D. M., and Krehbiel, T. C. (2009). Basic business statistics: Concepts and applications, 11th EditionPrentice Hall.
- Larson, H. J. (1982). *Introduction to probability theory and statistical inference*, 3rd Edition, New York: Wiley.
- Miller, I., Freund, J. E., and Johnson, R. A. (2000). Miller and Freund's Probability and statistics for engineers, 6th Edition, Prentice Hall.
- Montgomery, D. C., and Runger, G. C. (2011). Applied statistics and probability for engineers, 5th Edition, Wiley.
- Watson, C. J. (1997). *Statistics for management and economics*, 5th Edition. Prentice Hall.
- 唐麗英、王春和(2013),「從範例學MINITAB統計分析與應用」,博碩文化公司。
- 唐麗英、王春和(2008),「SPSS統計分析」,儒林圖書公司。
- 唐麗英、王春和(2007),「Excel 統計分析」,第二版,儒林圖書公司。
- 唐麗英、王春和(2005),「STATISTICA與基礎統計分析」,儒林圖書公司。

抽樣分布 (Sampling Distributions)

Sampling Distributions (抽樣分佈)

Recall: Parameter and statistic (參數與統計量)

- A quantity computed from the observations in a population is called a parameter.
- A quantity computed from the observations in a sample is called a statistic.

Example: 1) μ , σ and P are parameters.

2) $\overline{\mathbf{X}}$, S and $\widehat{\mathbf{p}}$ are statistics.

Sampling Distributions (抽樣分佈)

• Sampling Distribution 抽樣分佈

- The **probability distribution** of a **statistic** that results when random sample of size **n** are repeatedly drawn from a given population is called the **sampling distribution** of the **statistic**.
- 統計量之機率分佈稱為「抽樣分佈」。

• Example:

- The distribution of sample mean \overline{X} is one type of sampling distribution. The distribution of sample proportion \hat{p} is another type of sampling distribution.

樣本平均數的抽樣分布 (The Sampling Distributions of Means)

1) What is the Sampling Distribution of the Sample Mean, \overline{X} (When σ is known)?

i.e., How the statistic \overline{X} behaves in the repeated sampling?

• 例1:

Suppose a population consists of four numbers (N=4): 1,2,3,4

Since the four values are distinct, the population probability distribution assigns an equal probability of 1/4 to each value of x in the population.

X	P(x)	xP(x)	$x^2P(x)$
1	1/4	1/4	1/4
2	1/4	2/4	4/4
3	1/4	3/4	9/4
4	1/4	4/4	16/4

The **population mean** and **variance** are

$$\mu = \sum_{i=1}^n x P(x_i) = 2.5, \qquad \sigma^2 = \sum_{i=1}^N x^2 P(x_i) - \mu^2 = 7.5 - 2.5^2 = 1.25$$

• Step 1: Take a random sample of size 2 with replacement from the population. How many possible samples are there?

4*4=16 possible samples.

Sample	Sample mean $\overline{\mathbf{X}}$	Sample	Sample mean \overline{X}
(1,1)	1	(3,1)	2
(1,2)	1.5	(3,2)	2.5
(1,3)	2	(3,3)	3
(1,4)	2.5	(3,4)	3.5
(2,1)	1.5	(4,1)	2.5
(2,2)	2	(4,2)	3
(2,3)	2.5	(4,3)	3.5
(2,4)	3	(4,4)	4

• Step 2: Construct the probability distribution for the sample

For this probability distribution of \overline{X} , the <u>mean</u> of the sample mean \overline{X} and the variance of the sample mean \overline{X} are :

$$\mu_{\overline{X}} = \qquad \qquad \sigma^2_{\overline{X}} =$$

Conclusions :

1)
$$\mu_{\overline{X}} = \mu$$

2) $\sigma_{\bar{x}} = \sigma/\sqrt{n}$, where **n** is the sample size.

3) Whether the distribution of the original population is normal or **not**, the distribution of the **sample mean** is close to **Normal**.

Note: When n gets **larger**, the distribution of \bar{x} gets closer to the **Normal distribution**.

Following Figures gives the sampling distributions of $\overline{\mathbf{X}}$ for four different population probability distributions with n= 2, 6, 30, respectively.

• The Central Limit Theorem (C.L.T.) 中央極限定理

If random samples of n observations are drawn from a population with mean μ and standard deviation σ , when \mathbf{n} is large ($n \geq 30$), the sampling distribution of $\overline{\mathbf{X}}$ is approximately normally distributed with $\mu_{\overline{X}} = \mu$, and $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$.

That is,
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
, if $n \ge 30$.

The **approximation** will become more and more **accurate** as **n** becomes large.

Remark:

- 1. If the population is normal, then distribution of the sample mean \overline{X} will always be normal, **regardless** of the sample size (n).
- 2. If $\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right), \sum_{i=1}^{n} x \sim N(n\mu, \sqrt{n}\sigma)$

Figure 6.5
Sampling
Distributions from a Distribution of 100 Normally Distributed
Random Values with Various
Sample Sizes:
Demonstration of Central Limit Theorem

Resoucre:

"Statistics for Business and the Economics", 7th Edition, by P. Newbold, W. L. Carlson and B. Thorne, Pearson, 2007.

• 例1:

Suppose that X follows a distribution with mean μ =10 and variance σ^2 = 4. A sample of size 25 are drawn from this population. What is the probability distribution of \overline{X} ?

Application of the Central Limit Theorem

• 例2:

The **average** vitamin B-2 content of a certain brand of vitamins is **30** mg with a **standard deviation** of **2** mg. A quality control inspector selects **36** pills for testing. What is the probability that the **average** vitamin B-2 content of these 36 pills is **less than 28 mg**?

Application of the Central Limit Theorem

• 例3:

If a 1-gallon can of a certain kind of paint covers on the average 513.3 square feet with a standard deviation of 31.5 square feet, what is the probability that the mean area covered by a sample of 40 of these 1-gallon cans will be anywhere from 510.0 to 520.0 square feet?

Application of the Central Limit Theorem

Note: When the sample size, n, is not a small fraction of a finite Population with size N, the sampling Distribution of $\overline{\mathbf{X}}$ is Normal with

mean
$$\mu_{\overline{X}} = E(\overline{X}) = \mu$$

$$\sigma_{\overline{X}}^2 = Var(\overline{X}) = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$$

Note: $\frac{N-n}{N-1}$ is called the finite population correction (fpc) factor (有限母體校正因子)

- What is the Sampling Distribution of the Sample Proportion, \hat{p}
 - **− P**: Population Proportion
 - \hat{p} : Sample proportion = x/n = 成功次數/總試驗次數
- Theorem : Sampling Distribution of \hat{p}

When the sample size **n** is large, the sampling distribution of \hat{p} is approximately normal with **mean** P and **standard deviation** $\sqrt{\frac{pq}{n}}$.

$$\hat{p} \sim N(p, \sqrt{\frac{pq}{n}})$$

• 例1:

A production line at a manufacturing company produces **10%** defective items. If a sample of n=64 items is taken, what is the probability that the **sample defective rate** is **less** than 8%?

• 例 2:請參考課本289頁 例6.7

A random sample of 270 homes was taken from a large population of older homes to estimate the proportion for homes with unsafe wiring. If, in fact, 20% of the homes have unsafe wiring, what is the probability that the sample proportion will be between 16% and 24% of homes with unsafe wiring?

• [Ans]

$$P = 0.2 \quad n = 270$$

$$\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.2(1-0.2)}{270}} = 0.024$$

$$P(0.16 < \hat{p} < 0.24) = P(\frac{0.16 - P}{\sigma_{\hat{p}}} < \frac{\hat{p} - P}{\sigma_{\hat{p}}} < \frac{0.24 - P}{\sigma_{\hat{p}}})$$

$$= P(-1.67 < Z < 1.67)$$

$$= 0.9050$$

2) What is the Sampling Distribution of the Sample Mean, \overline{X} (When σ is unknown)?

Theorem

– If \overline{X} is the mean of a random sample of size $\bf n$ taken from a **normal** population having the mean μ and the **variance** σ^2 , the sample statistic

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

has a **t-distribution** with **degrees of freedom**(d.f.)(自由度)v=n-1.

Note: **t-distribution** is also called "**Student's t-distribution**".

• What is "Student's" t-Distribution?

The probability distribution of **t** statistic was first published in 1908 in a paper by **W. S. Gosset**. At the time, Gosset was employed by an Irish brewery (釀 酒場) that disallowed publication of research by members of its staff. To circumvent this restriction, he published his work secretly under the name "**Student**". Consequently, the distribution of **t** is usually called the **Student's t-distribution**, or simply the **t**-distribution.

Student in 1908

Born June 13, 1876

Canterbury, Kent, England

Died October 16, 1937 (aged 61)

Beaconsfield, Buckinghamshire, England

source:

http://en.wikipedia.org/wiki/William_Sealy_Gosset

Properties of t-Distribution

The t-distribution is very much like a Z-distribution

Comparison of t-distribution and Z-distribution

- 1) Both are **symmetric**, bell-shaped.
- 2) Both have a **mean** of 0.
- 3) t is **more variable** than Z in repeated sampling. (There is more area in the tails of the t-distribution, and the Z-distribution is higher in the middle).
- 4) As the number of **d.f.** increases (i.e., as **n** increases) without limit, the **t**-distribution approaches **Z**-distribution.

Degree of Freedom

What is the Degree of Freedom?

- We use the degrees of freedom as a measure of sample information.
- For example, we say that the t statistic has degrees of freedom n-1.

• Why?

- There are **n** degrees of freedom or **independent pieces** of information in the random sample of size *n* from the normal distribution.
- In calculating $\mathbf{t} = \frac{\overline{X} \mu}{s_{/\sqrt{n}}}$, we **do not know σ** and need to use the sample data to estimate **σ**. When the data (the values in the sample) are used to compute the mean \overline{X} for obtaining $S^2 = \sum_{i=1}^n (x_i \overline{X})^2/(n-1)$, there is 1 less degree of freedom in the information used to estimate $\mathbf{\sigma}^2$.

• t-distribution table

Table 8 in the Appendix Tables of the textbook (**page 866**) gives the value of t_{α} which locates an area of α in the **upper** tail of the t-distribution for various values of α and for **d.f.** ranging from 1 to ∞ .

Note

- When d.f. ≥ 29 (or $n \geq 30$), **Z**-distribution is very close to **t**-distribution.

For selected probabilities, α , the table shows the values $t_{\nu,\alpha}$ such that $P(t_{\nu} > t_{\nu,\alpha}) = \alpha$, where t_{ν} is a Student's t random variable with ν degrees of freedom. For example, the probability is .10 that a Student's t random variable with 10 degrees of freedom exceeds 1.372.

ν	α										
		0.100	1980	0.050	17/11/11	0.025	450	0.010		0.005	
1	- 25	3.078		6.314		12.706		31.821	(Fey F	63.657	
2		1.886		2.920		4.303		6.965		9.925	
3	1 - 11	1.638		2.353		3.182		4.541		5.841	
4	10.71	1.533		2.132		2.776		3.747		4.604	
5		1.476		2.015		2.571		3.365		4.032	
6		1.440		1.943		2.447		3.143		3.707	
7	100	1.415		1.895		2.365		2.998		3.499	
8	10010	1.397		1.860		2.306		2.896		3.355	
9		1.383		1.833		2.262		2.821		3.250	
10	-min	1.372		1.812		2.228		2.764		3.169	
11		1.363		1.796		2.201		2.718		3.106	
12		1.356		1.782		2.179		2.681		3.055	
13		1.350		1.771		2.160		2.650		3.012	
14		1.345		1.761		2.145		2.624		2.977	
15		1.341		1.753		2.131		2.602		2.947	
16		1.337		1.746		2.120		2.583		2.921	
17		1.333		1.740		2.110		2.567		2.898	
18		1.330		1.734		2.101		2.552		2.878	
19		1.328		1.729		2.093		2.539		2.861	
20		1.325		1.725		2.086		2.528		2.845	
21	17.	1.323		1.721		2.080		2.518		2.831	
22		1.321		1.717		2.074		2.508		2.819	
23		1.319		1.714		2.069		2.500		2.807	
24		1.318		1.711		2.064		2.492		2.797	
25		1.316		1.708		2.060		2.485		2.787	
26		1.315		1.706		2.056		2.479		2.779	
27		1.314		1.703		2.052		2.473		2.771	
28		1.313		1.701		2.048		2.467		2.763	
29	C. 50	1.311		1.699		2.045		2.462		2.756	
30		1.310		1.697		2.042		2.457		2.750	
40	4	1.303		1.684		2.021		2.423		2.704	
60	100	1.296		1.671		2.000		2.390		2.660	
∞		1.282		1.645		1.960		2.326		2.576	

Reproduced with permission of the trustees of Biometrika, from Biometrika Tables for Statisticians, vol. 1 (1966).

• 例1:

- Find t_{α} and $t_{\alpha/2}$ when $\alpha=0.05$ and n=6.

• [Ans]

ν			11/4			α		
		0.100		0.050	Total I	0.025	0.010	0.005
1	157	3.078	MRE	6.314		12.706	31.821	63.657
2		1.886	100	2.920		4.303	6.965	9.925
3	10	1.638		2.353		3.182	4.541	5.841
4	V581,	1.533		2.132	500	2.776	3.747	4.604
5	1	1.476		2.015		2.571	3.365	4.032

$$t_{.05, 5} = 2.015$$
 , $t_{.025, 5} = 2.571$.

• 例2:

- Find t_{α} and $t_{\alpha/2}$ when α =0.01 and n=20.

• [Ans]

ν			11171	TIPE T		α				
		0.100	-010	0.050	THE .	0.025	18/11	0.010	Ė	0.005
1	100	3.078		6.314		12.706		31.821		63.657
2		1.886		2.920		4.303		6.965		9.925
3		1.638		2.353		3.182		4.541		5.841
4	1554.1	1.533		2.132		2.776		3.747		4.604
5	3 -	1.476		2.015		2.571		3.365		4.032
	•				•••			A. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
11		1.363		1.796		2.201		2.718		3.106
12	3.0 30	1.356		1.782		2.179		2.681		3.055
13	1.0	1.350		1.771		2.160		2.650		3.012
14		1.345		1.761		2.145		2.624		2.977
15		1.341		1.753		2.131		2.602		2.947
16		1.337		1.746		2.120		2.583		2.921
17		1.333		1.740		2.110		2.567		2.898
18		1.330	70.00	1.734	Shippi Filling	2.101	(37)	2.552		2.878
19	100	1.328		1.729		2.093		2.539		2.861
20		1.325		1.725		2.086		2.528		2.845

 $t_{.01, 19} = 2.539$, $t_{.005, 19} = 2.861$.

• 例3:

- Find t_{α} and $t_{\alpha/2}$ when α =0.10 and n=42.

• [Ans]

ν						α			
		0.100	001	0.050	Tre	0.025	18131	0.010	0.005
1	169	3.078	MRÆ	6.314		12.706		31.821	63.657
2		1.886	101	2.920		4.303		6.965	9.925
3		1.638	U.Z	2.353		3.182		4.541	5.841
4	12.41	1.533	TO H	2.132		2.776		3.747	4.604
5	1	1.476	Turff	2.015		2.571		3.365	4.032
•••					•••				
40	4: -	1.303	- 1.77	1.684		2.021		2.423	2.704
60	la co-	1.296		1.671	16,5	2.000	W	2.390	2.660
∞		1.282		1.645		1.960		2.326	2.576

$$t_{.10, \infty} = 1.282$$
 , $t_{.05, \infty} = 1.645$.

Sampling Distributions of Sample Variance, S²

χ^2 -Distribution

- If s^2 is the variance of a random sample of size **n** taken from a *Normal* population having the variance σ^2 , then

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a (Greek letter, **Chi**) distribution with the **d.f.** = ν = n-1.

- Table 7 on pages 865 of the Appendix Tables gives the value of which locates an area of α in the <u>upper</u> tail of the χ^2 -distribution for various values of α and **d.f**.

χ² -Distribution Table

• 例1:

- If n= 20, use Table 7 (p.865) to determine $\chi_{0.05}^2 = ?$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997

• 例 2:

Consider a cannery that produces 8-ounce cans of processed corn. Quality control engineers have determined that process is operating properly when the true variation σ^2 of the fill amount per can is less than 0.0025. A random sample of n=10 cans is selected from a day's production, and the fill amount (in ounces) recorded for each. Of interest is the sample variance, S^2 . If, in fact, $\sigma^2 = 0.001$, find the probability that S^2 exceeds 0.0025. Assume that the fill amounts are normally distributed.

• [Ans] (1/2)

We want to calculate $P(S^2 > 0.0025)$. Assume the sample of 10 fill amount is selected from a normal distribution.

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square probability distribution with v=(n-1) degrees of freedom. Consequently, the probability we seek can be written

$$P(S^{2} > 0.0025) = P\left[\frac{(n-1)S^{2}}{\sigma^{2}} > \frac{(n-1)(0.0025)}{\sigma^{2}}\right] = P\left[\chi^{2} > \frac{(n-1)(0.0025)}{\sigma^{2}}\right]$$

Substituting n = 10 and σ^2 = 0.001, we have

$$P(S^2 > 0.0025) = P\left[\chi^2 > \frac{9(0.0025)}{0.001}\right] = P(\chi^2 > 22.5).$$

• [Ans] (2/2)

We want to find the probability α such that

for
$$n=10 (v = 9)$$
, we obtain

$$\chi_{0.01}^2 = 21.666$$
 and $\chi_{0.005}^2 = 23.589$

i.e.,
$$0.005 < P(\chi^2 > 22.5) < 0.01$$

$$\chi_{\alpha}^{2} > 22.5$$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^2_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

Thus, the probability that the variance of the sample fill amounts exceeds 0.0025 is small (between 0.005 and 0.01) when the true population variance σ^2 equals 0.001.

• 例 3:請參考課本297頁 例6.10

Shirley Mendez is the manager of quality assurance for Green Valley Foods Inc., a packer of frozen vegetable products. Shirley wants to be sure that the variation of package weight is small so that the company does not produce a large proportion of packages that are under the stated package weight. She has asked you to obtain upper and lower limits for the ratio of the sample variance divided by the population variance for a random sample of n = 20 observations. The limits are such that the probability that the ratio is below the lower limits is 0.025 and the probability that the ratio is above the upper limit is 0.025. Thus, 95% of the ratios will be between these limits. The population distribution can be assumed to be normal.

• [Ans] (1/2)

$$P\left(\frac{s^2}{\sigma^2} < K_L\right) = 0.025 \text{ and } P\left(\frac{s^2}{\sigma^2} > K_U\right) = 0.025$$

$$0.025 = P\left[\frac{(n-1)s^2}{\sigma^2} < (n-1)K_L\right] = P[\chi_{19}^2 < (n-1)K_L]$$

$$0.025 = P\left[\frac{(n-1)s^2}{\sigma^2} > (n-1)K_U\right] = P[\chi_{19}^2 < (n-1)K_U]$$

查表可得
$$\chi_{19L}^2 = 8.91$$
, $\chi_{19U}^2 = 32.85$

• [Ans] (2/2)

$$0.025 = P\left[\frac{(n-1)s^2}{\sigma^2} < (n-1)K_L\right] = P[8.91 < (19)K_L]$$

$$0.025 = P\left[\frac{(n-1)s^2}{\sigma^2} > (n-1)K_U\right] = P[32.85 < (19)K_U]$$

$$K_L$$
=0.469, K_U =1.729

The 95% acceptance interval for the ratio of sample variance divided by population variance is as follows:

$$P\left(0.469 \le \frac{s^2}{\sigma^2} \le 1.729\right) = 0.95$$

Sampling Distributions of Sample Variance, $\frac{s_1^2}{s_2^2}$

F-Distribution

F-Distribution

- Let χ_1^2 and χ_2^2 be two **independent chi-square** random variables with v_1 and v_2 degrees of freedom, respectively, then

$$F = \frac{\chi_1^2 / \nu_1}{\chi_2^2 / \nu_2}$$

has a **F** distribution with v_1 numerator d.f. (分子自由度) and v_2 denominator d.f. (分母自由度)

• Theorem:

- If s_1^2 and s_2^2 are the variances of a random sample of size n_1 and n_2 taken from two normal population having the same variances, then

$$F = \frac{s_1^2}{s_2^2}$$

has a **F** distribution with **d. f**. = $(v_1, v_2) = (n_1 - 1, n_2 - 1)$.

F-Distribution Table

F-Distribution Table

- TABLE 9 on pages 867-869 of the Appendix Tables gives the value of F_{α} which locates an area of α in the <u>upper</u> tail of the F-distribution for various values of α and **d.f.**
- Ø 4: If $n_1 = 7$, $n_2 = 13$, use TABLE 9 to determine $F_{.01} = ?$

DENOMINATOR	v_2						No my		Nu
	1	2	3	4	5	6	7	8	9
1	4052	4999.5	5403	5625	5764	5859	5928	5982	6022
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
. 7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.30	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
4.5	0.40	101	F 40	4.00	4.50	4.22	111	4.00	2 00

本單元結束

統計學(一)唐麗英老師上課講義 46