Handwritten Text Recognition

Rob Zifchak March 2020

The Problem

Can images of handwritten text be properly interpreted by a computer?

There are plenty of use cases for HTR(Handwritten Text Recognition) technologies today:

- Extracting handwritten fields from documents
- Signature verification
- Reading addresses from mail
- Scanning/reading Checks
- many more

Proposed Objective

Train Convolutional Neural Network to extract features from training images, and correctly classify handwritten words.

Data Details

IAM Handwriting Database

FKI Research Group

- 657 unique writers handwriting from 1,539 pages of scanned text containing 12,224 unique words
- After removing damaged samples and imbalances in class distributions, overall modeling data contains <u>21,308 samples</u>, and <u>78 unique words</u>.

Samples Preview

- Image samples are a variety of dimensions
- Some writers handwriting is messy and hard to classify, even to the human eye.
- Nested file structures are not conducive to word classification

"been"

"talks"

"from"

"the"

Preprocessing

 For properly loading a CNN, images must be sorted and stored in unique directories based on their class labels.

For example: Words --/
/--the
/--how

0	0	8	41	77	119	178	221	234	248
0	8	28	41	77	128	192	234	248	255
0	8	28	41	119	178	221	248	255	248
0	8	41	77	128	192	248	255	248	234
8	28	77	119	178	234	255	248	221	192
28	77	119	178	221	248	255	234	221	192
51	95	128	192	234	255	248	234	178	150
77	119	150	221	248	248	234	192	150	128

- Images are then converted to grayscale, and reshaped to (64, 64, 1)
 - 1 representing color channel (grayscale = 1, RGB = 3)

ConvNet Architecture Overview

In each convolutional layer, Convolution function, Max Pooling, and ReLu activation occur

Model Results

4 layers conv/pooling/ReLu

• Epochs: 70

Batch Size: 341

Optimizer: Adam

• Train Accuracy: 0.9669

Validation Accuracy: 0.7943

• Test acc: 0.7872

Conclusions

- Recognizing handwritten text image is no simple task.
- Although I do not feel optimal accuracy has been achieved, 78% is still progress considering the natural variations and similarities in handwriting.

Future Work:

- Implement Transfer learning with pre-trained models.
- Integrate multi-label/multi-class approach for classification at character level.
- Develop thresholding coordinates and bounding boxes.

A Closer Look

Convolution:

Filter(3x3) Slides over the input(5x5) taking the dot product at each stride. The sum is then added to appropriate position in feature map

4	

1	1	1	0	0	
0	1	1	1	0	
0	0	1x1	1x0	1x1	
0	0	1 x 0	1x1	0x0	
0	1	1x1	0x0	0x1	

Pooling:

Take the maximum value for each window. This decreases feature map while retaining important values.

1	1	2	4	,	6	8
5	6	7	8			
3	2	1	0		3	4
1	2	3	4			