Multiple Sign Changing Radially Symmetric Solutions in a General Class of Quasilinear Elliptic Equations *

Claudianor O. Alves[†] Jose V. A. Goncalves[‡] Kaye O. Silva[§]

Abstract

In this paper we prove that the equation $-(r^{\alpha}\phi(|u'(r)|)u'(r))' = \lambda r^{\gamma}f(u(r)), \ 0 < r < R$, where $\alpha, \gamma, \mathbf{R}$ are given real numbers, $\phi: (0, \infty) \to (0, \infty)$ is a suitable twice differentiable function, $\lambda > 0$ is a real parameter and $f: \mathbf{R} \to \mathbf{R}$ is continuous, admits an infinite sequence of sign-changing solutions satisfying u'(0) = u(R) = 0. The function f is required to satisfy tf(t) > 0 for $t \neq 0$. Our technique explores fixed point arguments applied to suitable integral equations and shooting arguments. Our main result extends earlier ones in the case ϕ is in the form $\phi(t) = |t|^{\beta}$ for an appropriate constant γ .

1 Introduction

We study the nonlinear eigenvalue problem

$$\begin{cases}
-(r^{\alpha}\phi(|u'(r)|)u'(r))' = \lambda r^{\gamma}f(u(r)), & 0 < r < R, \\
u'(0) = u(R) = 0,
\end{cases}$$
(P_{\lambda})

where $\lambda > 0$ is a parameter, $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\alpha, \gamma \in \mathbb{R}$ are suitable constants. We shall assume that $\phi : (0, \infty) \to (0, \infty)$ is a twice differentiable, C^1 -function, satisfying

- (ϕ_1) (i) $t\phi(t) \to 0$ as $t \to 0$,
 - (ii) $t\phi(t) \to \infty$ as $t \to \infty$,
- (ϕ_2) $t\phi(t)$ is strictly increasing in $(0,\infty)$,
- (ϕ_3) there are constants $\gamma_1, \gamma_2 > 1$ such that

$$\gamma_1 - 1 \le \frac{(t\phi(t))'}{\phi(t)} \le \gamma_2 - 1, \ t > 0.$$

Concerning f, the following conditions will be imposed:

$$(f_1) \ tf(t) > 0, \ t \neq 0,$$

^{*}Partially supported by PROCAD/CAPES/UFG/UnB-Brazil

[†]Claudianor O. Alves was supported by CNPQ/Brasil.

[‡]Jose V. A. Goncalves was supported by CNPq/Brazil

[§]Kaye O. Silva was supported by CAPES/Brazil

 (f_2) there exists $d_{\infty} > 0$ such that f is nondecreasing in $(-\infty, d_{\infty}]$,

$$(f_3)$$
 $\liminf_{\nu \to 0^{\pm}} \int_0^{\nu} |f(t)|^{\frac{-1}{\gamma_1 - 1}} \operatorname{sgn}(f(t)) dt < \infty.$

Remark 1.1. We observe that condition (f_3) is equivalent to the following:

$$(f_3') \qquad \max \left\{ \int_{-x}^0 [-f(t)]^{\frac{-1}{\gamma_1 - 1}} dt, \int_0^y [f(t)]^{\frac{-1}{\gamma_1 - 1}} dt \right\} < \infty,$$

for each x, y > 0, where $\gamma'_1 = \gamma_1/(\gamma_1 - 1)$.

Our main objective in this work is to prove the following result:

Theorem 1.1. Let $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$. Assume (ϕ_1) - (ϕ_3) , (f_1) - (f_2) and

$$\gamma \ge \max\left\{\alpha, \frac{-\alpha}{\gamma_1 - 1}\right\}. \tag{(\gamma, \alpha)}$$

Then there is a positive number Λ such that for each $\lambda \in (0, \Lambda]$, problem (P_{λ}) admits a positive solution u_0 and an infinite sequence $\{u_{\ell}\}_{\ell=1}^{\infty}$ of solutions satisfying:

$$u_l(0) = d_\ell, \tag{1.1}$$

$$u_{\ell}$$
 has precisely ℓ zeroes in $(0, R)$, (1.2)

where $\{d_\ell\}_{\ell=1}^{\infty}$ is an infinite sequence of real numbers such that

$$d_{\infty} > d_1 > \dots > d_{\ell} > \dots > 0. \tag{1.3}$$

The proof of Theorem 1.1 is strongly based on the shooting method. In this regard, consider the initial value problem

$$\begin{cases}
-(r^{\alpha}\phi(|u'(r)|)u'(r))' = \lambda r^{\gamma}f(u(r)), & r > 0, \\
u(0) = d, u'(0) = 0,
\end{cases} (P_{\lambda,d})$$

where $d \in (0, d_{\infty}]$.

The auxiliary result below will play a crucial role in this work.

Theorem 1.2. Let $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$. Assume (ϕ_1) - (ϕ_3) , (γ, α) and (f_1) - (f_2) . Then there exists a positive number $\Lambda = \Lambda(d_{\infty})$ such that for each $\lambda \in (0, \Lambda]$, problem $(P_{\lambda,d})$ has a unique solituon $u(\cdot, d, \lambda) = u(\cdot, d) \in C^1([0, \infty))$. In addition, for each $d \in (0, d_{\infty}]$, there is a sequence $\{z_{\ell}\}_{\ell=1}^{\infty}$ of zeroes of $u(\cdot, d)$, $z_{\ell} = z_{\ell}(d)$, such that

$$z_1(d_\infty) \ge R$$
, $u(r,d) > 0$ if $0 < r < z_1(d)$,

$$z_1(d) < z_2(d) < \dots < z_{\ell}(d) < \dots,$$
 (1.4)

 $u'(r,d) < 0 \text{ if } 0 < r \le z_1(d), u(r,d) \ne 0 \text{ if } z_{\ell} < r < z_{\ell+1} \text{ and } u'(z_{\ell},d) \ne 0,$

$$z_{\ell}(d) \to 0 \text{ as } d \to 0 \text{ and } z_{\ell}(d) \to z_{\ell}(\underline{d}) \text{ as } d \to \underline{d}, \quad \underline{d} \in (0, d_{\infty}],$$
 (1.5)

if
$$\underline{d} \in (0, d_{\infty}]$$
 and $u(\cdot, \underline{d})$ has k zeroes in $(0, R)$ then $u(\cdot, d)$ has at most $k + 1$ zeroes in $(0, R)$ whenever $d < \underline{d}$, d close enough to \underline{d} . (1.6)

2 Background

Consider the problem

$$\begin{cases}
-\operatorname{div}(a(x)|\nabla u(x)|^{\beta}\nabla u(x)) &= \lambda \ b(x)f(u), \ x \in B_R, \\
u(x) &= 0, \ x \in \partial B_R,
\end{cases} (P1_{\lambda})$$

where $B_R \subset \mathbf{R^N}$ is the ball of radius R centered at the origin, the functions a, b are radially symmetric and $\beta > -1$. Making $a = b \equiv 1$, $\beta = p - 2$ with $1 and <math>\lambda = 1$, $(P1_{\lambda})$ becomes

$$\begin{cases}
-(r^{N-1}|u'(r)|^{p-2}u'(r))' = r^{N-1}f(u(r)), & 0 < r < R, \\
u'(0) = u(R) = 0.
\end{cases}$$
(P2)

It was shown in [6] that if $f(t) = |t|^{\delta-1}t$ with $1 < \delta + 1 < p < N$ then (P2) has infinitely many nodal solutions.

In [3], it was shown that the more general problem

$$\begin{cases}
 -(r^{\alpha}|u'(r)|^{\beta}u'(r))' = \lambda r^{\gamma}f(u(r)), & 0 < r < R, \\
 u'(0) = u(R) = 0
\end{cases}$$
(P3)

admits infinitely many solutions if λ is positive and small enough,

$$\beta > -1, \quad \gamma \ge \max\left\{\alpha, \frac{-\alpha}{\beta + 1}\right\},$$
(2.1)

and conditions $(f_1), (f_2)$ and a stronger form of (f_3) hold.

Regarding (P3), an example of a function safistying $(f_1), (f_2), (f_3)$ with $\beta > 0$ is f(t) = arctg(t).

As was pointed out by Clement, Figueiredo & Mitidieri [8] the operator

$$(r^{\alpha}|u'(r)|^{\beta}u'(r))'$$

represents the radial form of the well known operators:

p-Laplacian with $1 when <math>\alpha = N - 1$, $\beta = p - 2$,

 $\mbox{$k$-Hessian with $1 \le k \le N$} \ \ \mbox{when} \ \ \alpha = N-k, \ \beta = k-1.$

The problem

$$\begin{cases}
-\Delta_{\Phi} u = \lambda f(u) & \text{in } B \\
u = 0 & \text{on } \partial B,
\end{cases}$$

$$(\Phi)$$

where

$$\Phi(t) = \int_0^t s\phi(s)ds,$$

 Δ_{Φ} is the Φ -Laplacian operator namely

$$\Delta_{\Phi} u = \operatorname{div}(\phi(|\nabla u|)\nabla u),$$

and $B \subset R^N$ is the ball of radius R centered at the origin, was addressed by many authors (see e.g. Fukagai & Narukawa[4] and its references). A weak solution of (Φ) is by definition an element $u \in W_0^{1,\Phi}(B)$ (the usual Orlicz-Sobolev space) such that

$$\int_{B} \phi(|\nabla u|) \nabla u \nabla v dx = \lambda \int_{B} f(u) v dx, \ v \in W_0^{1,\Phi}(B).$$
 (2.2)

The radially symmetric form of (Φ) is

$$\begin{cases} -(r^{N-1}\phi(|u'(r)|)u'(r))' = \lambda r^{N-1}f(u(r), \ 0 < r < R \\ u'(0) = u(R) = 0 \end{cases}$$

which is a special case of (P_{λ}) , (see further remarks in the Appendix).

Theorem 1.1 extends the main results of [3], [6], in the sense that we were able to treat both with a more general class of quasilinear operators and a broader class of terms f.

Problems like (P_{λ}) have been investigated by many authors and we would like to refer the reader to Saxton & Wei [16], Castro & Kurepa [7], Cheng [5], Strauss [14], Ni & Serrin [12], Castro, Cóssio & Neuberger [9], Fukagai & Narukawa [4], Mihailescu & Radulescu [10, 11] and their references. Here, we would point out that in [4], Fukagai & Narukawa have mentioned that this type of problem appears in some fields of physics, such as, nonlinear elasticity, plasticity and generalized Newtonian fluids.

3 Proof of Theorem 1.1

Take $\lambda \in (0,\Lambda]$ where $\Lambda > 0$ is given in Theorem 1.2. We proceed in two steps:

Step 1. (Existence of a positive solution of (P_{λ}) .) Let $d \in (0, d_{\infty}]$. We shall use the notations in Theorem 1.2. So $z_1 = z_1(d)$ denotes the first zero of $u(\cdot) = u(\cdot, d)$. Set

$$A_0 = \{ d \in (0, d_\infty] \mid z_1(d) \ge R \}$$
 and $d_0 := \inf A_0$.

By (1.4) in theorem 1.2, $z_1(d_{\infty}) \geq R$. So $A_0 \neq \emptyset$. We will show that

$$d_0 > 0 \text{ and } z_1(d_0) = R.$$
 (3.1)

Indeed, assume on the contrary that $d_0 = 0$. Take a sequence $(d_j) \subseteq A_0$ such that $d_j \to 0$. By $(1.5), z_1(d_j) \to 0$, which is a contradiction.

Now, assume $z_1(d_0) > R$. Pick a sequence $(d_j) \subseteq (0, d_\infty]$ such that $d_j < d_0$ and $d_j \to d_0$. Applying (1.5) we infer that $z_1(d_j) \to z_1(d_0)$. Once $z_1(d_0) > R$, it follows that $z_1(d_j) > R$, which shows that $d_j \in A_0$. But this contradicts the definition of d_0 . Therefore $z_1(d_0) = R$ and this completes the proof of (3.1). As a byproduct there is a positive solution of (P_λ) .

Step 2. (Existence of an infinite sequence of sign-changing solutions of (P_{λ}) .) At first consider

$$A_1 := \left\{ d \in (0, d_0] \mid z_1(d) < R, z_2(d) \ge R \right\} \text{ and } d_1 := \inf A_1.$$

We claim that

$$A_1 \neq \emptyset, \quad 0 < d_1 < d_0,$$
 (3.2) $z_1(d_1) < R, \quad z_2(d_1) = R.$

Let us show at first that $A_1 \neq \emptyset$. Indeed, by **Step 1** $z_1(d_0) = R$. By (1.6), if $d \in (0, d_0)$ with d close to d_0 then $u(\cdot, d)$ has at most one zero in (0, R). Assume by contradiction that $u(\cdot, d)$ has no zero in (0, R). Then $z_1(d) \geq R$ with $d < d_0$, impossible. It follows that $u(\cdot, d)$ has precisely one zero in (0, R) and so $d \in A_1$, showing that $A_1 \neq \emptyset$.

To show that $d_1 > 0$, assume by contradiction that there is a sequence $\{d_j\} \subset A_1$ such that $d_j \to 0$. By (1.5), $z_2(d_j) \to 0$ contradicting $z_2(d_j) \ge R$.

It follows from $z_1(d_0) = R$ and definition of A_1 that $d_1 < d_0$. Therefore $0 < d_1 < d_0 \le d_{\infty}$.

It remains to show that $z_1(d_1) < R$ and $z_2(d_1) = R$. To do it, let $\{d_j\} \subseteq A_1$ such that $d_j \to d_1$, so that $z_1(d_j) \to z_1(d_1) \le R$ and $z_2(d_j) \to z_2(d_1) \ge R$.

If $z_1(d_1) = R$ then $u(\cdot, d_1)$ has no zeros in (0, R). By (1.6), if $d < d_1$ and d is close to d_1 , $u(\cdot, d)$ has at most one zero in (0, R). If $u(\cdot, d)$ has one zero then we have $d < d_1$ and $d \in A_1$, a contradiction.

On the other hand, if $u(\cdot,d)$ has no zero then $d \geq d_0 > d_1$ which is again a contradiction. Therefore, $z_1(d_1) < R$. Now, assume by contradiction that $z_2(d_1) > R$. Let $d_j \to d_1$ with $d_j < d_1$. Then, $z_1(d_j) \to z_1(d_1) < R$ and in addition, $z_2(d_j) \to z_2(d_1) > R$, so that, $z_1(d_j) < R$ and $z_2(d_j) > R$ for large j, which is impossible. Thus $z_2(d_1) = R$.

By induction, iterating the arguments above, we construct a sequence $\{d_\ell\}_{\ell=1}^{\infty} \subseteq (0, d_{\infty}]$ such that

$$0 < \dots < d_{\ell} < \dots < d_{1} < d_{\infty},$$
 (3.3)
$$z_{\ell}(d_{\ell}) < R, \ z_{\ell+1}(d_{\ell}) = R,$$

with $d_{\ell} := \inf A_{\ell}$, where

$$A_{\ell} := \left\{ d \in (0, d_{\ell}] \mid z_{\ell}(d) < R, z_{\ell+1}(d) \ge R \right\}.$$

This ends the proof of step 2.

To finish the proof of Theorem 1.1, we use steps 1 and 2 to conclude that for $\lambda \in (0, \Lambda]$ the functions given by Theorem 1.2, namely $u_{\ell}(\cdot) = u(\cdot, d_{\ell}) \in C^1([0, R])$ for $\ell \geq 1$, satisfy

$$r^{\alpha}\phi(|u'_{\ell}(r)|)u'_{\ell}(r)$$
 is differentiable,

$$-(r^{\alpha}\phi(|u'_{\ell}(r)|)u'_{\ell}(r))' = \lambda r^{\gamma}f(u_{\ell}(r)), \ 0 < r < R,$$

$$u'_{\ell}(0) = 0$$
 and $u_{\ell}(R) = 0$,

that is, u_l is a classical solution of (P_{λ}) , u_{ℓ} has precisely ℓ zeroes in (0,R) and so

$$u_0, u_1, u_2, \cdots,$$

is an infinite sequence of solutions of (P_{λ}) as claimed in the statement of Theorem 1.1.

4 Proof of Theorem 1.2

At first we set

$$\Phi(t) = \int_0^t s\phi(s)ds, \quad H(t) = t\Phi'(t) - \Phi(t), \quad F(t) = \int_0^t f(s)ds.$$

The results below will play a crucial role in this paper.

Lemma 4.1. Assume (γ, α) and let $d \in [0, d_{\infty}]$, $\lambda > 0$ and T > 0. If u is a solution of $(P_{\lambda,d})$ in [0, T], then

$$H(|u'(r)|) \le \lambda r^{\gamma - \alpha} [F(d) - F(u(r))], \ r \ge 0.$$
 (4.1)

$$F(u(r)) \le F(d) \text{ for } r \in [0, T] \tag{4.2}$$

Lemma 4.2. Assume that (ϕ_1) - (ϕ_3) , (γ, α) and (f_1) - (f_2) holds. If $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$ and $d \in (0, d_{\infty}]$, then problem $(P_{\lambda,d})$ has a unique solution $u(\cdot, d, \lambda) = u(\cdot, d) = u(\cdot) \in C^1([0, \infty))$. In addition,

if
$$d_0 \in (0, d_\infty]$$
 then $u(r, d) \to u(r, d_0)$ as $d \to d_0$, uniformly in $[0, T]$ for $T > 0$, (4.3)

if
$$d_0 \in (0, d_\infty]$$
 then $u'(r, d) \to u'(r, d_0)$ as $d \to d_0$, uniformly on compact subsets of $(0, \infty]$, (4.4)

4.1 Proofs of Lemmas 4.1 and 4.2

Integrating the equation in $(P_{\lambda,d})$ we get to

$$\phi(|u'(r)|)u'(r) = -r^{-\alpha} \int_0^r \lambda t^{\gamma} f(u(t))dt, \ r > 0.$$
(4.5)

Setting

$$h(t) := t\phi(t), \tag{4.6}$$

we see that h is invertible with differentiable inverse h^{-1} . Then,

$$u'(r) = h^{-1} \left(-r^{-\alpha} \int_0^r \lambda t^{\gamma} f(u(t)) dt \right) \text{ if } u'(r) > 0,$$
 (4.7)

$$u'(r) = -h^{-1} \left(-r^{-\alpha} \int_0^r \lambda t^{\gamma} f(u(t)) dt \right) \quad \text{if} \quad u'(r) < 0, \tag{4.8}$$

Once f is continuous and $\gamma \geq \alpha$, we conclude from the above equalities that $u \in C^1$.

Proof of Lemma 4.1. From (4.7) and (4.8), we infer that $u \in C^2$ at the points r > 0 where $u'(r) \neq 0$. Computing derivatives in $(P_{\lambda,d})$ and multiplying the resulting equality by u'(r), we are led to

$$-\alpha r^{\alpha-1}\phi(|u'(r)|)|u'(r)|^2 - r^{\alpha}\frac{d}{dt}h(|u'(r)|)u'(r)u''(r) = \lambda r^{\gamma}f(u(r))u'(r), \ u'(r) \neq 0.$$
 (4.9)

Consider the functional $E:[0,\infty)\to\mathbb{R}$ defined by

$$E(0) = \lambda F(d) \text{ and } E(r) = r^{\alpha - \gamma} [H(|u'(r)|)] + \lambda F(u(r)), \ r > 0,$$

where $H(t) = t\Phi'(t) - \Phi(t) = \int_0^t h'(s)s \ ds$. Note that

$$E'(r) = r^{\alpha - \gamma} [H(|u'(r)|)]' + (\alpha - \gamma) r^{\alpha - \gamma - 1} H(|u'(r)|) + \lambda f(u(r)) u'(r), \ r > 0$$

and

$$[H(|u'(t)|)]' = \frac{d}{dt}h(|u'(r)|)u'(r)u''(r), \ u'(r) \neq 0.$$

Therefore from (4.9),

$$E'(r) = (\alpha - \gamma)r^{\alpha - \gamma - 1}H(|u'(r)|) - \alpha r^{\alpha - \gamma - 1}\phi(|u'(r)|)|u'(r)|^2 \ u'(r) \neq 0.$$

From Lemma 5.6 in the Appendix, the last inequality combined with hypothesis (γ, α) gives

$$E'(r) \le \frac{\gamma_1 - 1}{\gamma_1} (\alpha - \gamma) r^{\alpha - \gamma - 1} \phi(|u'(r)|) |u'(r)|^2 - \alpha r^{\alpha - \gamma - 1} \phi(|u'(r)|) |u'(r)|^2 < 0, \ u'(r) \ne 0.$$
 (4.10)

Next, we will prove that E is continuous at the origin and therefore, as E is non-decreasing by the previous inequality, it follows that $E(r) \leq E(0)$ for all $r \geq 0$. Note that equation (4.5) implies

$$\Phi(|u'(r)|) = \Phi\left(h^{-1}\left(\left|r^{-\alpha}\int_0^r \lambda t^{\gamma} f(u(t))dt\right|\right)\right),$$

which in turn gives

$$\Phi(|u'(r)|) \le \Phi\left(h^{-1}\left(\frac{\lambda C_{\delta,d}r^{\gamma-\alpha+1}}{\gamma+1}\right)\right), \ r \in [0,\delta),\tag{4.11}$$

where $C_{\delta,d} = \max_{r \in [0,\delta]} |f(u(r))|$. We choose $\delta > 0$ small and apply Lemmas 5.1 and 5.2 to conclude from (4.11) that

$$\Phi(|u'(r)|) \le \left(\frac{\lambda C_{\delta,d}}{\gamma+1}\right)^{\frac{\gamma_2}{\gamma_1-1}} r^{\frac{\gamma_2}{\gamma_1-1}(\gamma-\alpha+1)}, \forall \ r \in [0,\delta).$$

$$(4.12)$$

We apply condition Δ_2 (see inequality (5.1) in the Appendix) in the definition of E to infer that

$$E(r) \le (\gamma_2 - 1)r^{\alpha - \gamma} \Phi(|u'(r)|) + \lambda F(u(r)), \ r > 0.$$
(4.13)

Thus, (4.12) and (4.13) lead to

$$E(r) \le Cr^{(\alpha-\gamma) + \frac{\gamma_2}{\gamma_1 - 1}(\gamma - \alpha + 1)} + \lambda F(u(r)), \ r \in [0, \delta).$$
 (4.14)

Recalling that $\gamma_2 \geq \gamma_1$, we have that

$$(\alpha - \gamma) + \frac{\gamma_2}{\gamma_1 - 1} (\gamma - \alpha + 1) \ge \frac{\gamma_1 - \alpha + \gamma}{\gamma_1 - 1} > 0.$$

Hence, from (4.14) that $\lim_{r\to 0} E(r) \leq \lambda F(d)$. On the other hand, by Lemma 5.6, we know that $H(t) \geq 0$ for all $t \geq 0$. Then, by definition of E, $E(r) \geq \lambda F(u(r))$ for all r > 0. Gathering these information, we conclude that

$$\lim_{r \to 0} E(r) = \lambda F(d).$$

Therefore, as (4.10) is true,

$$E(r) \le E(0)$$
 for $r \ge 0$,

which is equivalent to the desired inequality namely (4.1)

Proof of Lemma 4.2 We will at first study existence and uniqueness of local solutions of $(P_{\lambda,d})$. Let $\epsilon > 0$ and consider

$$\begin{cases}
-(r^{\alpha}\phi(|u'(r)|)u'(r))' = \lambda r^{\gamma}f(u(r)), & 0 < r < \epsilon, \\
u(0) = d, \quad u'(0) = 0.
\end{cases}$$

$$(P_{\lambda,d,\epsilon})$$

We shall need the following result whose proof is left to the Appendix.

Lemma 4.3. $(P_{\lambda,d,\epsilon})$ has a unique solution $u(\cdot) = u(\cdot,d,\lambda,\epsilon) \in C^2([0,\epsilon))$ for small ϵ .

Proof of Uniqueness in Lemma 4.2 Assume that u, v are two $C^1([0, \infty))$ solutions. Let

$$S_0 = \{r \ge 0 : u(t) = v(t), 0 \le t \le r\}.$$

We will show that

$$S_0 \neq \emptyset$$
, S_0 is both open and closed in $[0, \infty)$. (4.15)

Indeed, by Lemma 4.3 above, $[0, \epsilon) \subset S_0$ for $\epsilon > 0$ small enough, which shows that $S_0 \neq \emptyset$. Moreover, since u, v are C^1 functions we infer that S_0 is closed. To finish we shall prove that S_0 is open. To achieve that let $\hat{r} \in S_0$ with $\hat{r} > 0$. We distinguish between two cases.

Case 1.
$$u'(\hat{r}) = v'(\hat{r}) = 0$$

Assume $u(\hat{r}) = v(\hat{r}) = \hat{d}$. If $\hat{d} = 0$ then, up to a translation in the domain, we are within the settings of Lemma 4.1. Therefore, using (4.1), observing that by hypothesis (f_1) one has $F(u(r)) \geq 0$ for $r \geq \hat{r}$, and noticing that $F(\hat{d}) = 0$, we get

$$H(|u'(r)|) \le \lambda r^{\gamma - \alpha} \left(F(\widehat{d}) - F(u(r)) \right) \le 0 \text{ for } r \ge \widehat{r},$$

from where it follows that u(r) = 0 for $r \ge \hat{r}$, because by Lemma 5.6 in the Appendix

$$H(t) > 0 \ \forall t > 0 \ \text{and} \ H(t) = 0 \Leftrightarrow t = 0.$$

The same argument works to prove that v(r) = 0 for $r \ge \hat{r}$. Consequently, $r \ge \hat{r}$, u(r) = v(r) = 0 and then, $S_0 = [0, \infty)$ is open. On the other hand, if $\hat{d} > 0$, we define

$$\widehat{K}_{\rho}^{\epsilon}(\widehat{d}) = \{ u \in C([\widehat{r}, \widehat{r} + \epsilon]) : \ u(0) = \widehat{d}, \ \|u - \widehat{d}\|_{\infty} \le \rho \},$$

$$\widehat{T}(u(r)) = \widehat{d} - \int_{\widehat{r}}^{r} h^{-1} \left(t^{-\alpha} \int_{\widehat{r}}^{t} \lambda \tau^{\gamma} f(u(\tau)) d\tau \right) dt, \ \forall \ r \in [0, \epsilon],$$

where ϵ, ρ are positive and ϵ is small. The same proofs of (5.8) and (5.9) can be do here, and then the Banach Fixed Point Theorem guarantees a unique fixed point for the operator \widehat{T} when ϵ is small, therefore, u(r) = v(r) in a small neighbourhood of \widehat{r} , which implies that S_0 is open.

Case 2.
$$u'(\widehat{r}) = v'(\widehat{r}) \neq 0$$
.

Note that there is a neighbourhood V of \hat{r} such that $u'(r), v'(r) \neq 0$ for $r \in V$. So in V, we must conclude, as in (4.10) (here we use the same notation as in the proof of Lemma 4.1) that if z denotes either u or v then

$$(r^{\alpha-\gamma}H(|z'(r)|) + \lambda F(z(r)))' = -\frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} r^{\alpha-\gamma-1} \phi(|z'(r)|) z'(r)|^2.$$

Integrating from \hat{r} to r and subtracting the corresponding equations for z=u and z=v, we obtain (remember that $u(\hat{r})=v(\hat{r})$ and $u'(\hat{r})=v'(\hat{r})$)

$$r^{\alpha-\gamma}[H(|u'(r)|) - H(|v'(r)|)] + \lambda [F(u(r)) - F(v(r))] = -\frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \int_{\widehat{r}}^r t^{\alpha-\gamma-1} \left[\phi(|u'(t)|)|u'(t)|^2 - \phi(|v'(t)|)|v'(t)|^2\right] dt.$$
(4.16)

Next we consider three auxliary continuous functions, namely

$$A_{1}(t) = \begin{cases} \frac{H(|u'(t)|) - H(|v'(t)|)}{u'(t) - v'(t)}, & u'(t) \neq v'(t) \\ \phi(|u'(t)|)u'(t), & u'(t) = v'(t), \end{cases}$$

$$A_{2}(t) = \begin{cases} \frac{h(|u'(t)|)|u'(t)| - h(|v'(t)|)|v'(t)|}{u'(t) - v'(t)}, & u'(t) \neq v'(t) \\ \frac{d}{dt}[h(|u'(t)|)|u'(t)|], & u'(t) = v'(t), \end{cases}$$

$$B(t) = \begin{cases} \lambda \frac{F(u(t)) - F(v(t))}{u(t) - v(t)}, & u(t) \neq v(t) \\ \lambda f(u(t)), & u(t) = v(t). \end{cases}$$

Let w(r) = u(r) - v(r). From (4.16),

$$r^{\alpha-\gamma}A_1(r)w'(r) + B(r)w(r) = -\frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \int_{\hat{r}}^r t^{\alpha-\gamma-1}A_2(t)w'(t)dt. \tag{4.17}$$

Once $u'(\hat{r}) \neq 0$, we have that in a neighbourhood of \hat{r} , the function $1/A_1$ is well defined and continuous, and so, equation (4.17) is the same as

$$w'(r) + \frac{B(r)}{A_1(r)} r^{\gamma - \alpha} w(r) = -\frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} \int_{\hat{r}}^r t^{\alpha - \gamma - 1} A_2(t) w'(t) dt.$$
 (4.18)

As h is two times differentiable and $u'(\hat{r}) \neq 0$, A_2 is continuously differentiable in a neighborhood of \hat{r} , therefore, from (4.18) and integration by parts we obtain

$$w'(r) + \frac{B(r)}{A_1(r)} r^{\gamma - \alpha} w(r) = \frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} r^{\alpha - \gamma - 1} A_2(r) w(r) + \frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} \int_{\widehat{r}}^r \left[t^{\alpha - \gamma - 1} A_2(t) \right]' w(t) dt,$$

hence

$$w'(r) + \left[\frac{B(r)}{A_1(r)} r^{\gamma - \alpha} - \frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} r^{\alpha - \gamma - 1} A_2(r) \right] w(r) =$$

$$- \frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} \int_{\widehat{x}}^r \left[t^{\alpha - \gamma - 1} A_2(t) \right]' w(t) dt.$$

$$(4.19)$$

We introduce the notation

$$D_1(r) = \frac{B(r)}{A_1(r)} r^{\gamma - \alpha} - \frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)} r^{\alpha - \gamma - 1} A_2(r),$$

$$D_2(r) = -\frac{\alpha + \gamma(\gamma_1 - 1)}{\gamma_1} \frac{r^{\gamma - \alpha}}{A_1(r)},$$

$$D_3(r) = \left[t^{\alpha - \gamma - 1} A_2(t)\right]',$$

which implies from (4.19) that

$$w'(r) + D_1(r)w(r) = D_2(r) \int_{\hat{r}}^r D_3(s)w(s)ds.$$
 (4.20)

We integrate equation (4.20) from \hat{r} to r, which combined with the fact that, $A_1, A_2, 1/A_1, A'_2, B$ are bounded functions (remember they are all continuous functions in a neighborhood of \hat{r}) to conclude that

$$|v(r)| \leq \int_{\widehat{r}}^{r} |D_1(s)||v(s)|ds + \int_{\widehat{r}}^{r} |D_2(s)| \int_{\widehat{r}}^{s} |D_3(r)||v(t)|dtds$$

$$\leq C \int_{\widehat{r}}^{r} |v(s)|ds,$$

where C > 0 is a constant. By the Gronwall Inequality, v = 0 in a neighborhood of \hat{r} . Therefore, S_0 is open and (4.15) is proved.

Proof of Existence in Lemma 4.2. Let

$$S_{\infty} = \{r > 0 \mid (P_{\lambda,d}) \text{ has a solution in } [0,r)\}$$
 and $T_{\infty} = \sup S_{\infty}$.

We will prove that

$$T_{\infty} = \infty. \tag{4.21}$$

Assume, on the contrary, that $T_{\infty} < \infty$. First note that S_{∞} is a closed set. Indeed, let $r_n \to r$ with $r_n \in S_{\infty}$. If $r < r_n$ for some n then $r \in S_{\infty}$ by force, so we can assume that $r_n < r$ and without loss of generality that $r_n < r_{n+1}$. If u_n are the solutions associated with r_n , we define $u : [0, r) \to \mathbb{R}$ by $u(x) := u_n(x)$ of $x \in [0, r_n)$. Once (4.15) is satisfied, we conclude that u is well defined and it is a solution of $(P_{\lambda,d})$, which implies that $r \in S_{\infty}$.

Since S_{∞} is closed, we have that $T_{\infty} \in S_{\infty}$. Let u be the solution associated with T_{∞} . We first observe that from (4.1), |u'| is bounded, which implies that u can be continuously extended to T_{∞} . Moreover, equation (4.5) guarantees that $u'(T_{\infty})$ is uniquely defined, so there are two cases to consider.:

Case 1.
$$u'(T_{\infty}) = 0$$
.

If $u(T_{\infty}) = 0$, consider the extension of u namely $\tilde{u} : [0, \infty) \to \mathbb{R}$ given by $\tilde{u}(t) = 0$ for $t \geq T_{\infty}$. Then \tilde{u} is a C^1 function and it is also a solution of $(P_{\lambda,d})$, which is an absurd. Otherwise, if $u(T_{\infty}) = d^{\infty} > 0$, consider the operator T defined by

$$T(u(r)) = d^{\infty} - \int_{T_{\infty}}^{r} h^{-1} \left(t^{-\alpha} \int_{T_{\infty}}^{t} \lambda \tau^{\gamma} f(u(\tau)) d\tau \right) dt.$$

Following the same lines as in the proof of either (5.8) or (4.15) **Case 1**, we have that T has unique fixed point $v : [0, T_{\infty} + \epsilon]$, which is an absurd due to the definition of T_{∞} .

Case 2. $u'(T_{\infty}) \neq 0$.

Assume without loss of generality that $u'(T_{\infty}) > 0$. Then, by (4.5),

$$u'(r) = h^{-1} \left(r^{-\alpha} \int_0^r \lambda t^{\gamma} f(u(t)) dt \right)$$

in a neighborhood of T_{∞} . Hence, u is C^2 in a neighborhood of T_{∞} , which implies by $(P_{\lambda,d})$ that

$$u''(r) = -\left[\frac{d}{dt}h(u'(r))\right]^{-1} \left(\frac{\alpha}{r}\phi(u'(r))u'(r) + \lambda r^{\gamma-\alpha}f(u(r))\right).$$

By the last equation and Peano's Theorem, u can be extended to $[0, T_{\infty} + \delta)$, where $\delta > 0$ and thus we reach an absurd, because such extension is also a solution to $(P_{\lambda,d})$. This finishes the proof of Case 2. Therefore, (4.21) is proved and thus Claim 2 is also proved.

Proof of (4.3). Remember that

$$r^{\alpha}\phi(|u'(r)|)u'(r) = -\int_0^r \lambda t \gamma f(u(t))dt. \tag{4.22}$$

Assume that $d_n \to d_0$ and set $u_n(r) = u(r, d_n)$, $u_0(r) = u(r, d_0)$. Inequality (4.5) implies that $|u'_n(r)|$ is bounded for $r \in [0, T]$, therefore, by Áscoli-Arzéla Theorem, there is a subesequence, still denoted by u_n , such that $u_n \to v$ uniformly in [0, T] for some $v \in C([0, T])$. Now we will prove that $v = u_0$.

First note that by Lebesgue's Theorem

$$\int_0^r \lambda t \gamma f(u_n(t)) dt \to \int_0^r \lambda t \gamma f(v(t)) dt,$$

and by (4.22),

$$r^{\alpha}\phi(|u_n'(r)|)u_n'(r) \to -\int_0^r \lambda t \gamma f(v(t))dt, \ r \in [0,T].$$

As a consequence,

$$|u_n'(r)| \to h^{-1}\left(r^{-\alpha} \left| \int_0^r \lambda t \gamma f(v(t)) dt \right| \right), \ r \in [0, T].$$

$$(4.23)$$

The combination of (4.22) and (4.23) implies that $u'_n(r) \to w(r)$ for all $r \in [0, T]$ where w is a continuous function. Hence, applying Lebesgue's Theorem we obtain

$$u_n(r) - d_n = \int_0^r u'_n(t)dt \to \int_0^r w(t)dr, \ r \in [0, T],$$

which implies that w(r) = v'(r) and v'(0) = 0. Once

$$\phi(|v'(r)|)v'(r) = -r^{-\alpha} \int_0^r \lambda t^{\gamma} f(v(t)) dt,$$

is satisfied and since $v(0) = d_0$, it follows by the uniqueness of solutions given by theorem 4.2 that $v = u_0$, which concludes the proof of (4.3).

Proof of (4.4). Let $0 < a \le r \le b < \infty$ and assume that $d_n \to d_0$. By (4.22),

$$r^{\alpha}|\phi(|u_n'(r)|)u_n'(r) - \phi(|u_0'(r)|)u_0'(r)| \le \int_0^r \lambda t^{\gamma}|f(u_n(t)) - f(u_0(t))|dt.$$

Since (u_n) converges uniformly to u_0 in [a,b], we conclude from the previous inequality that

$$(\phi(|u_n'(r)|)u_n'(r) - \phi(|u_0'(r)|)u_0'(r))(u_n'(r) - u_0'(r)) \to 0,$$

uniformly in [a, b]. Now, we combine a generalized form of Simon's inequality, see Lemma 5.5 in the Appendix, with the last convergence to conclude that $u'_n \to u'_0$ uniformly in [a, b]. This finishes the proof of Lemma 4.2.

4.2 Proof of Theorem 1.2 (Continued)

Proof of (1.4). We will start by proving that there is $z_1 = z_1(d) > 0$ such that $u(z_1) = 0$, $u'(z_1) < 0$ and

$$u(r) > 0, \ u'(r) < 0 \text{ for } 0 < r < z_1.$$
 (4.24)

Suppose, on the contrary, that u(r) > 0 for all r > 0. It follows from (4.22) and conditions (f_1) , (f_2) that u'(r) < 0 and

$$-u'(r) \ge h^{-1} \left(\lambda \frac{r^{\gamma - \alpha + 1}}{\gamma + 1} f(u(r)) \right), \ r > 0.$$

Note that $u'(r) \to 0$ if $r \to \infty$ because u(r) > 0. Hence, the previous inequality implies that $u(r) \to 0$ if $r \to \infty$. Moreover, by Lemma 5.1 and the previous inequality, we also obtain

$$-u'(r) \ge \max\left\{ \left(\frac{\lambda r^{\gamma-\alpha+1} f(u(r))}{(\gamma+1)h(1)}\right)^{\frac{1}{\gamma_1-1}}, \left(\frac{\lambda r^{\gamma-\alpha+1} f(u(r))}{(\gamma+1)h(1)}\right)^{\frac{1}{\gamma_2-1}}\right\}, r > 0,$$

which implies

$$-u'(r)\min\{f(u(r))^{\frac{-1}{\gamma_1-1}}, f(u(r))^{\frac{-1}{\gamma_1-2}}\} \ge \min\left\{\left(\frac{\lambda r^{\gamma-\alpha+1}}{(\gamma+1)h(1)}\right)^{\frac{1}{\gamma_1-1}}, \left(\frac{\lambda r^{\gamma-\alpha+1}}{(\gamma+1)h(1)}\right)^{\frac{1}{\gamma_2-1}}\right\}$$

for each r > 0. We integrate the last inequality from 0 to r and apply the change of variables t = u(s) to conclude that

$$\int_{u(r)}^{d} \min\{f(t)^{\frac{-1}{\gamma_1 - 1}}, f(t)^{\frac{-1}{\gamma_2 - 1}}\} dt \ge \int_{0}^{r} \min\left\{ \left(\frac{\lambda s^{\gamma - \alpha + 1}}{(\gamma + 1)h(1)}\right)^{\frac{1}{\gamma_1 - 1}}, \left(\frac{\lambda s^{\gamma - \alpha + 1}}{(\gamma + 1)h(1)}\right)^{\frac{1}{\gamma_2 - 1}} \right\} ds. \quad (4.25)$$

Hypothesis (γ, α) implies that the right hand side of (4.25) converges to infinity as $r \to \infty$. Therefore, (4.25) yields

$$\liminf_{r \to \infty} \int_{u(r)}^{d} \min\{f(t)^{\frac{-1}{\gamma_1 - 1}}, f(t)^{\frac{-1}{\gamma_2 - 1}}\} dt = \infty,$$

which combined with (f_1) and the fact that $u(r) \to 0$ if $r \to \infty$, implies a contradiction to (f_3) and thus, (4.24) is true. To proceed, we will prove that there is $\Lambda > 0$ such that

$$z_1(d_\infty, \lambda) \ge R \text{ if } 0 < \lambda \le \Lambda.$$
 (4.26)

Indeed, by (4.22),

$$-u'(r) \le h^{-1} \left(\frac{\lambda f(d_{\infty}) r^{\gamma - \alpha + 1}}{\gamma + 1} \right) \text{ for } r \in [0, z_1(d_{\infty}, \lambda)].$$

Integrating from 0 to $r \in [0, d_{\infty}]$ and making use of Lemma 5.1, we get that

$$-u(r) + d_{\infty} \leq \max \left\{ (\gamma_1 - 1) \left(\frac{\lambda f(d_{\infty})}{(\gamma + 1)h(1)} \right)^{\frac{1}{\gamma_1 - 1}} \frac{r^{\frac{\gamma - \alpha + \gamma_1}{\gamma_1 - 1}}}{\gamma - \alpha + \gamma_1},$$

$$(\gamma_2 - 1) \left(\frac{\lambda f(d_{\infty})}{(\gamma + 1)h(1)} \right)^{\frac{1}{\gamma_2 - 1}} \frac{r^{\frac{\gamma - \alpha + \gamma_2}{\gamma_2 - 1}}}{\gamma - \alpha + \gamma_2} \right\}.$$

$$(4.27)$$

Let $\nu \in (0,1)$. Choose $r_{\infty}(\nu) \in (0, z_1(d_{\infty}, \lambda))$ such that $u(r_{\infty}(\nu), d_{\infty}) = \nu d_{\infty}$. Set $r = r_{\infty}(\nu)$ in (4.27) and choose the maximum value in the right hand side of (4.27) which actually is

$$(\gamma_1 - 1) \left(\frac{\lambda f(d_{\infty})}{(\gamma + 1)h(1)} \right)^{\frac{1}{\gamma_1 - 1}} \frac{r_{\infty}(\nu)^{\frac{\gamma - \alpha + \gamma_1}{\gamma_1 - 1}}}{\gamma - \alpha + \gamma_1}.$$

Take R > 0 and choose $\Lambda_{\nu} > 0$ satisfying

$$1 - \nu = \left[\left(\frac{\lambda f(d_{\infty})}{(\gamma + 1)h(1)} \right)^{\frac{1}{\gamma_1 - 1}} \frac{\gamma_1 - 1}{\gamma - \alpha + \gamma_1} \right]^{-1} \frac{\Lambda_{\nu}^{\frac{1}{\gamma_1 - 1}} R^{\frac{\gamma - \alpha + \gamma_1}{\gamma_1 - 1}}}{d_{\infty}}.$$
 (4.28)

We infer from (4.27) and (4.28) that

$$\left[\left(\frac{\lambda f(d_{\infty})}{(\gamma+1)h(1)} \right)^{\frac{1}{\gamma_1-1}} \frac{\gamma_1-1}{\gamma-\alpha+\gamma_1} \right]^{-1} \Lambda_{\nu}^{\frac{1}{\gamma_1-1}} R^{\frac{\gamma-\alpha+\gamma_1}{\gamma_1-1}} \leq (\gamma_1-1) \left(\frac{\lambda f(d_{\infty})}{(\gamma+1)h(1)} \right)^{\frac{1}{\gamma_1-1}} \frac{r_{\infty}(\nu)^{\frac{\gamma-\alpha+\gamma_1}{\gamma_1-1}}}{\gamma-\alpha+\gamma_1},$$

which implies that

$$\Lambda_{\nu}^{\frac{1}{\gamma_1-1}} R^{\frac{\gamma-\alpha+\gamma_1}{\gamma_1-1}} < \lambda^{\frac{1}{\gamma_1-1}} r_{\infty}(\nu)^{\frac{\gamma-\alpha+\gamma_1}{\gamma_1-1}}.$$

Hence,

$$R \le r_{\infty}(\nu) \le z_1(d_{\infty}, \lambda) \text{ if } 0 < \lambda \le \Lambda_{\nu}.$$
 (4.29)

To finish the proof of (4.26), first note that the maximum of two continuous functions is a continuous function. Therefore, (4.27) combined with (4.28) gives

$$\Lambda_{\nu}^{\frac{1}{\eta-1}} \stackrel{\nu \to 0}{\longrightarrow} \left(\frac{\lambda f(d_{\infty})}{(\gamma+1)h(1)} \right)^{\frac{1}{\eta-1}} \frac{\eta-1}{\gamma-\alpha+\eta} \frac{d_{\infty}}{R^{\frac{\gamma-\alpha+\eta}{\eta-1}}},$$

where either $\eta = \gamma_1$ or $\eta = \gamma_2$ depending on whether the maximum in (4.27) is assumed at γ_1 or γ_2 . Note also that $r_{\nu}(d_{\infty})$ is continuous on ν and $r_{\nu}(d_{\infty}) \to z_1(d_{\infty}, \lambda)$ as $\nu \to 0$, therefore, we conclude from (4.29) that

$$R \leq z_1(d_{\infty}, \lambda)$$
 if $0 < \lambda \leq \Lambda$,

where

$$\Lambda := \frac{\lambda f(d_{\infty})}{(\gamma + 1)h(1)} \left(\frac{\eta - 1}{\gamma - \alpha + \eta}\right)^{\eta - 1} \frac{d_{\infty}^{\eta - 1}}{R^{\gamma - \alpha + \eta}}.$$

Now we will show that there is $z_2 = z_2(d) > z_1$ such that $u(z_2) = 0$, $u'(z_2) > 0$ and

$$u(r) < 0, \ z_1 < r < z_2.$$
 (4.30)

In fact, since $u'(z_1) < 0$ then, u'(r) < 0 in a neighborhood of z_1 . We start by proving that there is $m_1 > z_1$ such that $u'(m_1) = 0$. Thus, suppose by contradiction that it is not true, i.e. u'(r) < 0 for all $r > z_1$. We have by (4.2) that

$$\int_0^{u(r)} f(t)dt \le F(d), \ r \ge 0.$$

If there is some sequence $r_n \to \infty$ such that $u(r_n) \to -\infty$ then, by the previous inequality we infer that

$$\int_{-\infty}^{0} f(s)ds = \lim_{n} \int_{u(r_n)}^{0} f(s)ds \ge -F(d),$$

which is impossible, because (f_1) , (f_2) imply that $\int_{-\infty}^{0} f(s)ds = -\infty$. Hence, there is C > 0 such that

$$u(r) \ge -C$$
, $u'(r) < 0$, $\forall r \ge z_1$,

and consequently $u(r) \to L$ as $r \to \infty$ for some L < 0. Now, by (4.1),

$$\frac{\Phi(|u'(r)|)}{r^{\gamma-\alpha+1}} \to 0 \text{ as } r \to \infty,$$

which implies by using the inequality $\Phi(s) \geq cs^2\phi(s)$ that

$$\frac{\phi(|u'(r)|)}{r^{\gamma-\alpha+1}} \to 0.$$

On one hand (4.22) and the previous limits imply that

$$\frac{1}{r^{\gamma+1}} \int_0^r t^{\gamma} f(u(t)) dt \to 0,$$

and on the other side, (f_1) and L'Hospital rule imply that

$$\lim_{r \to \infty} \frac{1}{r^{\gamma+1}} \int_0^r t^{\gamma} f(u(t)) dt = \lim_{r \to \infty} \frac{r^{\gamma} f(u(r))}{(\gamma+1)r^{\gamma}} = \frac{f(L)}{\gamma+1} < 0,$$

which is an absurd. Therefore, $u'(m_1) = 0$ for some $z_1 < m_1$, so that

$$u(r) < 0$$
 for $z_1 < r < m_1$ and $u'(r) < 0$ for $z_1 \le r < m_1$.

Now, taking $r > m_1$, r close to m_1 we have

$$\int_{m_1}^r t^{\gamma} f(u(t)) < 0,$$

which implies by (4.22) that

$$u(r) < 0$$
, $u'(r) > 0$ for all $r > m_1$, r close to m_1 .

Assume by contradiction that u(r) < 0 for $r > m_1$, so that u'(r) > 0. Since by (f_2)

$$-r^{\alpha}\phi(|u'(r)|)u'(r) = \lambda \int_{m_1}^r t^{\gamma}f(u(t))dt \le \frac{\lambda f(u(r))}{\gamma + 1}(r^{\gamma + 1} - m_1^{\gamma + 1}),$$

we get by taking $r > \overline{r} = 2^{\frac{1}{\gamma+1}} m_1$ above, that $r^{\gamma+1} - m_1^{\gamma+1} > \frac{r^{\gamma+1}}{2}$ and so

$$-r^{\alpha}\phi(|u'(r)|)u'(r) \le \frac{\lambda f(u(r))}{2(\gamma+1)}r^{\gamma+1},$$

which, combined with Lemma 5.1 gives

$$u'(r) \ge \min\left\{ \left(\frac{-\lambda f(u(r))}{2(\gamma+1)} r^{\gamma-\alpha+1} \right)^{\frac{1}{\gamma_1-1}}, \left(\frac{-\lambda f(u(r))}{2(\gamma+1)} r^{\gamma-\alpha+1} \right)^{\frac{1}{\gamma_2-1}} \right\}, \ r > \overline{r}.$$
 (4.31)

Integrating in (4.31) from \overline{r} to r, we have

$$\int_{\overline{r}}^{r} u'(t) \max\{(-f(u(t)))^{\frac{-1}{\gamma_1 - 1}}, (-f(u(t)))^{\frac{-1}{\gamma_2 - 1}}\} dt \ge \int_{\overline{r}}^{r} \min\left\{\left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_1 - 1}}, \left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_2 - 1}}\right\} dt,$$

for $r > \overline{r}$. Making the change of variables y = u(t),

$$\int_{u(\overline{r})}^{u(r)} \max\{(-f(t))^{\frac{-1}{\gamma_1 - 1}}, (-f(t))^{\frac{-1}{\gamma_2 - 1}}\} dt \ge \int_{\overline{r}}^{r} \min\left\{\left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_1 - 1}}, \left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_2 - 1}}\right\} dt. \tag{4.32}$$

Once u(r) < 0 and u'(r) > 0 for $r > \overline{r}$ it follows that $u'(r) \to 0$ as $r \to \infty$. Hence, inequality (4.31) implies that $u(r) \to 0$ as $r \to \infty$. Moreover, the right hand side of (4.32) converges to ∞ due to hypothesis (γ, α) . Therefore

$$\liminf \int_{u(\overline{r})}^{u(r)} \max\{(-f(t))^{\frac{-1}{\gamma_1-1}}, (-f(t))^{\frac{-1}{\gamma_2-1}}\} = \infty,$$

which contradicts (f_3) , so (4.30) is proved. Now we will prove that there is $z_3 = z_3(d) > z_2$ such that $u(z_3) = 0$, $u'(z_3) < 0$ and

$$u(r) > 0 \text{ for all } r \in (z_2, z_3).$$
 (4.33)

Indeed, since by (4.30), $u'(z_2) > 0$, so that

$$u'(r) > 0$$
 for all $r > z_2$, r close to z_2 .

We claim that there is $m_2 > z_2$ such that $u'(m_2) = 0$. In fact, othewise, u'(r) > 0, for all $r > z_2$, which gives that u(r) > 0 for $r > z_2$. By (4.2),

$$\int_0^{u(r)} f(t)dt \le \int_0^d f(t)dt,$$

so that $u(r) \leq d$ for $r \geq z_2$. Hence, there is $L \in (0, d]$ such that

$$u(r) \to L \text{ and } u(r) \le L, \ r \ge z_2.$$

As in the proof of (4.30),

$$\frac{1}{r^{\gamma+1}} \int_0^r t^{\gamma} f(u(t)) dt \to 0,$$

and

$$\lim_{r\to\infty}\frac{1}{r^{\gamma+1}}\int_0^rt^{\gamma}f(u(t))dt=\lim_{r\to\infty}\frac{r^{\gamma}f(u(r))}{(\gamma+1)r^{\gamma}}=\frac{f(L)}{\gamma+1}<0,$$

which is an absurd. As a consequence, there is $m_2 > z_2$ such that $u'(m_2) = 0$ and u'(r) > 0, $z_2 \le r < m_2$, proving the claim. Assume again, by contradiction, that u(r) > 0 for all $r > m_2$ so that u'(r) < 0 also for all $r > m_2$. We have (similar to the proof of (4.30))

$$-r^{\alpha}\phi(|u'(r)|)u'(r) = \lambda \int_{m_2}^r t^{\gamma} f(u(t))dt \ge \frac{\lambda f(u(r))}{\gamma + 1} (r^{\gamma + 1} - m_2^{\gamma + 1}).$$

Setting $\overline{r} = 2^{\frac{1}{\gamma+1}} m_2$ and taking $r > \overline{r}$,

$$-r^{\alpha}\phi(|u'(r)|)u'(r) \ge \frac{\lambda f(u(r))}{2(\gamma+1)}r^{\gamma+1},$$

which combined with (5.1) gives

$$-u'(r) \ge \min\left\{ \left(\frac{\lambda f(u(r))}{2(\gamma+1)} r^{\gamma-\alpha+1}\right)^{\frac{1}{\gamma_1-1}}, \left(\frac{\lambda f(u(r))}{2(\gamma+1)} r^{\gamma-\alpha+1}\right)^{\frac{1}{\gamma_2-1}}\right\}, \ r > \overline{r}.$$

$$(4.34)$$

Integrating (4.34) from \overline{r} to r and making the change of variables u(t) = s, we get

$$\int_{u(\overline{r})}^{u(r)} - \max\{f(t)^{\frac{-1}{\gamma_1 - 1}}, f(t)^{\frac{-1}{\gamma_2 - 1}}\}dt \ge \int_{\overline{r}}^{r} \min\left\{\left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_1 - 1}}, \left(\frac{t^{\gamma - \alpha + 1}}{2(\gamma + 1)}\right)^{\frac{1}{\gamma_2 - 1}}\right\}dt.$$

Taking lim inf in both sides, we arrive at a contradiction with (f_3) and so (4.33) is true. To finish the proof of (4.4) we argue as in (4.30) and (4.33) to get zeroes z_4, z_5 and inductively, a sequence with the properties asserted in (1.4).

Proof of (1.5). We start by proving that $z_1(d) \to 0$ when $d \to 0$. By (4.22) and (4.24) we obtain

$$-u'(r) = h^{-1}\left(r^{-\alpha} \int_0^r \lambda t^{\gamma} f(u(t)) dt\right), \ r \in [0, z_1].$$

Now we apply (f_2) and Lemma 5.1 to conclude that

$$-u'(r) \ge \min\left\{ \left(\lambda \frac{r^{\gamma - \alpha + 1} f(u(r))}{\gamma + 1}\right)^{\frac{1}{\gamma_1 - 1}}, \left(\lambda \frac{r^{\gamma - \alpha + 1} f(u(r))}{\gamma + 1}\right)^{\frac{1}{\gamma_2 - 1}}\right\}, \ r \in [0, z_1],$$

which implies that

$$-u'(r) \max \left\{ f(u(r))^{\frac{-1}{\gamma_1 - 1}}, f(u(r))^{\frac{-1}{\gamma_2 - 1}} \right\} \ge \min \left\{ \left(\lambda \frac{r^{\gamma - \alpha + 1}}{\gamma + 1} \right)^{\frac{1}{\gamma_1 - 1}}, \left(\lambda \frac{r^{\gamma - \alpha + 1}}{\gamma + 1} \right)^{\frac{1}{\gamma_2 - 1}} \right\}, \ r \in [0, z_1].$$

Integrating from 0 to r and making the change of variables y = u(t) we get to

$$\int_{u(r)}^{d} \max \left\{ f(t)^{\frac{-1}{\gamma_1 - 1}}, f(t)^{\frac{-1}{\gamma_2 - 1}} \right\} dt \ge \int_{0}^{r} \min \left\{ \left(\lambda \frac{t^{\gamma - \alpha + 1}}{\gamma + 1} \right)^{\frac{1}{\gamma_1 - 1}}, \left(\lambda \frac{t^{\gamma - \alpha + 1}}{\gamma + 1} \right)^{\frac{1}{\gamma_2 - 1}} \right\} dt.$$

Taking $r = z_1(d)$ in the previous inequality and making use of (γ, α) and (f_3) , we conclude that $z_1(d) \to 0$ as $d \to 0$. Now, letting $\ell \ge 1$, we assume that u(r) > 0 in $(z_{\ell}(d), z_{\ell+1}(d))$, so that by the notations of (4.30) and (4.33) we have u'(r) > 0 in $(z_{\ell}(d), m_{\ell}(d))$ and u'(r) < 0 in $(m_{\ell}(d), z_{\ell+1}(d))$ (the case u(r) < 0 in $(z_{\ell}(d), z_{\ell+1}(d))$ is handled similarly). Now, using (f_2) in (4.22), taking $m_{\ell}(d) \le r \le z_{\ell+1}(d)$ and then applying lemma 5.1, we obtain successively

$$r^{\alpha}h(-u'(r)) \ge \lambda f(u(r)) \frac{r^{\gamma+1} - m_{\ell}(d)^{\gamma+1}}{\gamma + 1},$$

$$-u'(r)\max\{f(u(r))^{\frac{-1}{\gamma_1-1}}, f(u(r))^{\frac{-1}{\gamma_2-1}}\} \ge \min\left\{\left(\lambda \frac{r^{\gamma+1} - m_{\ell}(d)^{\gamma+1}}{(\gamma+1)r^{\alpha}}\right)^{\frac{1}{\gamma_1-1}}, \left(\lambda \frac{r^{\gamma+1} - m_{\ell}(d)^{\gamma+1}}{(\gamma+1)r^{\alpha}}\right)^{\frac{1}{\gamma_2-1}}\right\}.$$

Note that $r^{\gamma-\alpha} \geq m_{\ell}(d)^{\gamma-\alpha}$ since $\gamma \geq \alpha$, therefore

$$r^{\gamma-\alpha+1} - r^{-\alpha} m_{\ell}(d)^{\gamma+1} \ge m_{\ell}(d)^{\gamma-\alpha} (r - m_{\ell}(d)),$$

which gives

$$-u'(r) \max\{f(u(r))^{\frac{-1}{\gamma_{1}-1}}, f(u(r))^{\frac{-1}{\gamma_{2}-1}}\} \ge \min\left\{ \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (r-m_{\ell}(d)) \right]^{\frac{1}{\gamma_{1}-1}}, \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (r-m_{\ell}(d)) \right]^{\frac{1}{\gamma_{2}-1}} \right\}.$$

$$(4.35)$$

Integrating from $m_{\ell}(d)$ to $z_{\ell+1}(d)$, making the change of variables y=u(t), we find that

$$\int_{0}^{u(m_{\ell}(d))} \max\{f(t)^{\frac{-1}{\gamma_{1}-1}}, f(t)^{\frac{-1}{\gamma_{2}-1}}\} dt \ge
\int_{m_{\ell}(d)}^{z_{\ell+1}(d)} \min\left\{ \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (r-m_{\ell}(d)) \right]^{\frac{1}{\gamma_{1}-1}}, \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (r-m_{\ell}(d)) \right]^{\frac{1}{\gamma_{2}-1}} \right\} dt.$$
(4.36)

Assume now $z_{\ell}(d) < r < m_{\ell}(d)$. Then by a similar argument, this time, integrating from $z_{\ell}(d)$ to $m_{\ell}(d)$ we deduce that

$$\int_{0}^{u(m_{\ell}(d))} \max\{f(t)^{\frac{-1}{\gamma_{1}-1}}, f(t)^{\frac{-1}{\gamma_{2}-1}}\} dt \ge
\int_{z_{\ell}(d)}^{m_{\ell}(d)} \min\left\{ \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (m_{\ell}(d) - r) \right]^{\frac{1}{\gamma_{1}-1}}, \left[\frac{\lambda m_{\ell}(d)^{\gamma-\alpha}}{(\gamma+1)} (m_{\ell}(d) - r) \right]^{\frac{1}{\gamma_{2}-1}} \right\} dt.$$
(4.37)

Now, since $u(m_{\ell}(d)) \leq d$ we have by (f_3) that the left hand side of (4.36) and (4.37) converge to zero, and therefore, $\lim_{d\to 0} z_{\ell}(d) = \lim_{d\to 0} z_{\ell+1}(d)$ for each $\ell \geq 1$. Once $z_1(d) \to 0$ as $d \to 0$, we see that $z_{\ell}(d) \to 0$ as $d \to 0$.

We pass to the proof that $z_{\ell}(d) \to z_{\ell}(d_0)$ if $d \to d_0$. Let us first show that $z_1(d) \to z_1(d_0)$ as $d \to d_0$. Indeed, let $d_n \to d_0$, $u_n(\cdot) = u(\cdot, d_n)$ and $u_0(\cdot) = u(\cdot, d_0)$ so that we have from (4.3) that $u_n \to u$ uniformly in compact subsets of $(0, \infty)$. For each $\epsilon > 0$ small we find

$$u_0(r) > 0$$
, $0 \le r \le z_1(d_0) - \epsilon$ and $u_0(z_1(d_0) + \epsilon) < 0$,

so that

$$u_n(r) > 0, \ 0 \le r \le z_1(d_0) - \epsilon \text{ and } u_n(z_1(d_0) + \epsilon) < 0,$$

for sufficiently large n. As a consequence, $z_1(d_0) - \epsilon < z_1(d_n) < z_1(d_0) + \epsilon$, showing that $z_1(d_n) \to z_1(d_0)$. Now, assume by induction that $z_\ell(d_n) \to z_\ell(d_0)$ for some $\ell > 1$. We will show that $z_{\ell+1}(d_n) \to z_{\ell+1}(d_0)$. For that matter, we assume $u_0(t) < 0$ for $z_\ell(d_0) < t < z_{\ell+1}(d_0)$ (the other case is handled similarly). Taking $\epsilon > 0$ small, we find that $u_n(t) < 0$ for $z_\ell(d_0) + \epsilon \le t \le z_{\ell+1}(d_0) - \epsilon$ and $u_n(z_{\ell+1}(d_0) + \epsilon) > 0$, showing that $z_{\ell+1}(d_0) - \epsilon < z_{\ell+1}(d_n) < z_{\ell+1}(d_0) + \epsilon$. Consequently, $z_{\ell+1}(d_n) \to z_{\ell+1}(d_0)$ as $d \to d_0$, which finishes the proof of (1.5).

Proof of (1.6).

Let $d \in (0, d_0)$. It suffices to show that $z_{\ell+2}(d) > R$ whenever d is close enough to d_0 . We assume that $u(r, d_0) < 0$ for $r \in (z_{\ell}(d_0), z_{\ell+1}(d_0))$ (the other case is handled similarly).

Notice that as $z_{\ell}(d_0)$ is increasing an there is only ℓ zeroes in (0, R), we must show that $z_{\ell+1}(d_0) \geq R$ and $z_{\ell+2}(d_0) > R$. However, as $z_{\ell+2}(d) \to z_{\ell+2}(d_0)$ for $d \to d_0$, we have $z_{\ell+2}(d) > R$ whenever d is close enough to d_0 . This completes the proof of Theorem 1.2.

5 Appendix

Remark 5.1. (On the radially symmetric form of (Φ)) Let u be a weak solution of (Φ) , radially symmetric in the sense that u(x) = u(|x|) = u(r). Let $r \in (0, R)$ and pick $\epsilon > 0$ small such that $0 < r < r + \epsilon < R$.

Consider the radially symmetric cut-off function $v_{r,\epsilon}(x) = v_{r,\epsilon}(r)$, where

$$v_{r,\epsilon}(t) := \begin{cases} 1 & \text{if } 0 \le t \le r, \\ linear & \text{if } r \le t \le r + \epsilon, \\ 0 & \text{if } r + \epsilon \le t \le R. \end{cases}$$

and notice that $v_{r,\epsilon} \in W_0^{1,\Phi}(B) | \cap Lip(\overline{B})$. By replacing v with $v_{r,\epsilon}$ in (2.2), we get to

$$\frac{-1}{\epsilon} \int_{B(0,r+\epsilon)\backslash B(0,r)} \phi(|u'(|x|)|)u'(|x|)dx = \lambda \int_{B(0,r+\epsilon)} f(u(|x|))v_{r,\epsilon}(|x|)dx.$$

Making the change of variables $x = r\omega$ with r > 0 and $\omega \in \partial B(0,1)$ and letting $\epsilon \to 0$ we infer that

$$\phi(|u'(r)|)u'(r)r^{N-1} = \lambda \int_0^r f(u(r))r^{N-1}dr,$$

which gives

$$(r^{N-1}\phi(|u'(r)|)u'(r))' = \lambda r^{N-1}f(u(r)).$$

So the radially symetric form of (Φ) is

$$\begin{cases} -(r^{N-1}\phi(|u'(r)|)u'(r))' = \lambda r^{N-1}f(u(r), \ 0 < r < R \\ u'(0) = u(R) = 0. \end{cases}$$

Lemma 5.1. Assume that ϕ satisfies (ϕ_1) - (ϕ_3) . Then

$$h(1)\min\{h^{-1}(s)^{\gamma_1-1},h^{-1}(s)^{\gamma_2-1}\}\leq s\leq h(1)\max\{h^{-1}(s)^{\gamma_1-1},h^{-1}(s)^{\gamma_2-1}\},\ s>0.$$

Proof. Condition (ϕ_3) implies that

$$(\gamma_1 - 1)\frac{d}{dt}\ln t \le \frac{d}{dt}\ln h(t) \le (\gamma_2 - 1)\frac{d}{dt}\ln t, \ \forall \ t > 0.$$

Let $t \leq 1$. Integrating the previous inequality from t to 1, we get

$$h(1)t^{\gamma_1-1} \le h(t) \le h(1)t^{\gamma_2-1}, \ t \le 1.$$

Let $t \geq 1$. Iintegrating the previous inequality from 1 to t, we get

$$h(1)t^{\gamma_2-1} \le h(t) \le h(1)t^{\gamma_1-1}, \ \forall \ t \ge 1.$$

Therefore

$$h(1)\min\{t^{\gamma_1-1},t^{\gamma_2-1}\} \le h(t) \le h(1)\max\{t^{\gamma_1-1},t^{\gamma_2-1}\}, \ \forall \ t>0.$$

Letting $t = h^{-1}(s)$, the lemma is proved.

Lemma 5.2. Assume ϕ satisfies (ϕ_1) - (ϕ_3) . Then

$$\Phi(1)\min\{t^{\gamma_1},t^{\gamma_2}\} \le \Phi(t) \le \Phi(1)\max\{t^{\gamma_1},t^{\gamma_2}\},\ t>0.$$

Proof. From (ϕ_3) ,

$$\gamma_1 t \phi(t) \le t h'(t) + t \phi(t) \le \gamma_2 t \phi(t), \ \forall t > 0,$$

which implies, after integration from 0 to t that,

$$\gamma_1 \le \frac{t\Phi'(t)}{\Phi(t)} \le \gamma_2, \ t > 0. \tag{5.1}$$

The previous inequality is called condition Δ_2 . To finish the proof, we proceed as in the proof of lemma 5.1 to conclude the desired inequality.

Lemma 5.3. Assume that ϕ satisfies (ϕ_1) - (ϕ_3) . Then

$$[h^{-1}]'(t) \le \frac{t^{\frac{-\gamma_2+2}{\gamma_2-1}}}{h(1)^{\gamma_2}(\gamma_1-1)}, \ t \le 1.$$

Proof. Remember that

$$[h^{-1}]'(t) = \frac{1}{h'(h^{-1}(t))}, \ t > 0.$$
 (5.2)

From the proofs of Lemmas 5.1 and 5.2,

$$h(1)(\gamma_1 - 1)\min\{t^{\gamma_1 - 2}, t^{\gamma_2 - 2}\} \le h'(t) \le h(1)(\gamma_2 - 1)\max\{t^{\gamma_1 - 2}, t^{\gamma_2 - 2}\} \text{ for } t > 0.$$
 (5.3)

Gathering (5.2) and (5.3), we see that

$$[h^{-1}]'(t) \le \frac{[h^{-1}(t)]^{-\gamma_2+2}}{h(1)(\gamma_1-1)}, \ t \le 1.$$

Now we use Lemma 5.1 to obtain

$$[h^{-1}]'(t) \le \frac{t^{\frac{-\gamma_2+2}{\gamma_2-1}}}{h(1)^{\gamma_2}(\gamma_1-1)}, \ t \le 1.$$

Lemma 5.4. Assume that $\phi:(0,\infty)\to(0,\infty)$ is a differentiable function satisfying (ϕ_3) . Then, there is a positive constant Γ_1 such that

$$\sum_{i,j=1}^{N} \frac{\partial a_j}{\partial \eta_i}(\eta) \xi_i \xi_j \ge \Gamma_1 \phi(|\eta|) |\xi|^2, \tag{5.4}$$

where $a_j(\eta) = \phi(|\eta|)\eta_j$, $\eta \in \mathbb{R}^N \setminus \{0\}$ and $\xi \in \mathbb{R}^N$.

Proof. Indeed, by (ϕ_3) ,

$$(\gamma_1 - 2)\phi(t) \le t\phi'(t) \le (\gamma_2 - 2)\phi(t).$$
 (5.5)

Suppose first that $\gamma_1 < 2$. Note that

$$\sum_{i,j=1}^{N} \frac{\partial a_j}{\partial \eta_i}(\eta) \xi_i \xi_j = \phi(|\eta|) |\xi|^2 + \frac{\phi'(|\eta|) |\langle \eta, \xi \rangle|^2}{|\eta|}$$
(5.6)

If $\phi'(|\eta|) < 0$, then $\phi'(|\eta|)|\langle \eta, \xi \rangle|^2 \ge \phi'(|\eta|)|\eta|^2|\xi|^2$. From (5.5) and (5.6),

$$\sum_{i,j=1}^{N} \frac{\partial a_j}{\partial \eta_i}(\eta) \xi_i \xi_j \ge (\gamma_1 - 1) \phi(|\eta|) |\xi|^2.$$

If $\phi'(|\eta|) \geq 0$, then take $\Gamma_1 = 1$.

If $\gamma_1 \geq 2$, then (5.5) is satisfied with $\Gamma_1 = 1$, as can readily be seen from (5.6) and noting that $\phi'(t) \geq 0$ in this case.

We now prove a Simon type inequality.

Lemma 5.5. Assume that $\phi:(0,\infty)\to(0,\infty)$ is a differentiable function satisfying (ϕ_1) - (ϕ_3) . Then

$$\langle \phi(|\eta|)\eta - \phi(|\eta'|)\eta', \eta - \eta' \rangle \ge \min\{4, 4\Gamma_1\} \frac{|\eta - \eta'|}{1 + |\eta| + |\eta'|} \Phi\left(\frac{|\eta - \eta'|}{4}\right), \tag{5.7}$$

where Γ_1 was given in lem.a 5.4, $\eta, \eta' \in \mathbb{R}^N$ and $\langle \cdot, \cdot \rangle$ denotes inner product.

Proof. If $\eta, \eta' = 0$ then (5.7) is obviously satisfied. If only one of them is 0, let's say, $\eta' = 0$, then

$$\phi(|\eta|)|\eta|^2 \ge \Phi(|\eta|) \ge 4\Phi\left(\frac{|\eta|}{4}\right),$$

where in the last inequalities we have used the properties of an N-function (note that an N-function is convex). So (5.7) is satisfied. If $\eta, \eta' \neq 0$, assume without loss of generality that $|\eta| \leq |\eta'|$. Then, an application of Cauchy-Schwartz inequality implies that

$$\frac{|\eta - \eta'|}{4} \le |t\eta + (1 - t)\eta'| \le 1 + |\eta| + |\eta'|, \ t \in [0, 1/4].$$

We conclude from the last inequality, (5.6) and the properties of an N-function that

$$\begin{split} \langle \phi(|\eta|)\eta - \phi(|\eta'|)\eta', \eta - \eta' \rangle &= \sum_{i=1}^{N} \int_{0}^{1} \frac{d}{dt} [a_{j}(t\eta + (1-t)\eta')](\eta_{j} - \eta'_{j}) dt \\ &= \int_{0}^{1} \sum_{i,j=1}^{N} \frac{\partial a_{j}}{\partial \eta_{i}} [t\eta + (1-t)\eta'](\eta_{i} - \eta'_{i})(\eta_{j} - \eta'_{j}) dt \\ &\geq \Gamma_{1} \int_{0}^{1} \phi(|t\eta + (1-t)\eta'|)|\eta - \eta'|^{2} dt \\ &\geq \Gamma_{1} \int_{0}^{1/4} \phi(|t\eta + (1-t)\eta'|)|\eta - \eta'|^{2} dt \\ &= \Gamma_{1} \int_{0}^{1/4} \phi(|t\eta + (1-t)\eta'|)|\eta - \eta'|^{2} \frac{|t\eta + (1-t)\eta'|}{|t\eta + (1-t)\eta'|} dt \\ &\geq 4\Gamma_{1} \frac{|\eta - \eta'|}{1 + |\eta| + |\eta'|} \phi\left(\frac{|\eta - \eta'|}{4}\right) \left(\frac{|\eta - \eta'|}{4}\right)^{2} \\ &\geq 4\Gamma_{1} \frac{|\eta - \eta'|}{1 + |\eta| + |\eta'|} \Phi\left(\frac{|\eta - \eta'|}{4}\right). \end{split}$$

Lemma 5.6. Assume ϕ satisfies (ϕ_1) - (ϕ_3) . Then, the function $H(t) = t\Phi'(t) - \Phi(t)$ is strictly increasing and satisfies

$$(\gamma_1 - 1)\Phi(t) \le H(t) \le (\gamma_2 - 1)\Phi(t), \ t \ge 0,$$

$$\frac{\gamma_1 - 1}{\gamma_1} t \Phi'(t) \le H(t) \le \frac{\gamma_2 - 1}{\gamma_2} t \Phi'(t), \ t \ge 0.$$

Proof. Indeed, as (ϕ_3) is satisfied, we have that

$$t\Phi'(t) - r\Phi'(r) > (t - r)\Phi'(t) > \int_r^t \tau \phi(\tau) d\tau, t > r \ge 0,$$

which implies that H is strictly incresing. On the other hand, condition (5.1) implies the desired inequalities.

Proof of Lemma 4.3 Indeed, take $\rho \in (0, d)$ and set

$$K_{\rho}^{\epsilon}(d) = \{ u \in C([0, \epsilon]) \mid u(0) = d, \|u - d\|_{\infty} \le \rho \}.$$

Take $\epsilon > 0$ small. If $u \in K_{\rho}^{\epsilon}(d)$, then by continuity, u(r) > 0, $r \in [0, \epsilon]$. Hence, for small ϵ , a solution of $(P_{\lambda,d,\epsilon})$ satisfies $u'(r) \leq 0$ for $r \in [0,\epsilon]$ (this was showed in the proof of proposition (4.1)) and

$$u(r) = d - \int_0^r h^{-1} \left(t^{-\alpha} \int_0^t \lambda \tau^{\gamma} f(u(\tau)) d\tau \right) dt, \ \forall \ r \in [0, \epsilon].$$

We infer that the solutions of $(P_{\lambda,d,\epsilon})$, for small ϵ , are fixed points of the operator

$$T(u(r)) = d - \int_0^r h^{-1} \left(t^{-\alpha} \int_0^t \lambda \tau^{\gamma} f(u(\tau)) d\tau \right) dt, \ \forall \ r \in [0, \epsilon].$$

Now we will verify that there exist $\epsilon, \rho > 0$ and $k \in (0,1)$ such that

$$T\left(K_{\rho}^{\epsilon}(d)\right) \subset K_{\rho}^{\epsilon}(d),$$
 (5.8)

and

$$||Tu - Tv||_{\infty} \le k||u - v||_{\infty}.$$
 (5.9)

Therefore, by the Banach Fixed Point Theorem, T has a unique fixed point, which in turn will be a $C^2([0,\epsilon])$ solution of $(P_{\lambda,d,\epsilon})$. With respect to (5.8), let $\rho \in (0,d/2]$, which implies that $u(r) \in [d/2,2d]$ for $u \in K_{\rho}^{\epsilon}(d)$. Therefore, for $u \in K_{\rho}^{\epsilon}(d)$ we have that

$$h^{-1}\left(r^{-\alpha}\int_0^s \lambda t^{\gamma} f(u(t))dt\right) \le h^{-1}\left(\frac{\lambda \|f\|_{\infty,d} s^{\gamma-\alpha+1}}{\gamma+1}\right), \ s \in [0,\epsilon],$$

where $||f||_{\infty,d} = \max_{s \in [d/2,2d]} f(s)$. For small ϵ , we can apply lemma 5.1 in the Appendix to conclude from the previous inequality that

$$\begin{split} |T(u(r)) - T(u(0))| &= \int_0^r h^{-1} \left(r^{-\alpha} \int_0^s \lambda t^{\gamma} f(u(t)) dt \right) ds \\ &\leq \int_0^r h^{-1} \left(\frac{\lambda \|f\|_{\infty, d} s^{\gamma - \alpha + 1}}{\gamma + 1} \right) ds \\ &\leq \int_0^r h(1) \left(\frac{\lambda \|f\|_{\infty, d} s^{\gamma - \alpha + 1}}{\gamma + 1} \right)^{\frac{1}{\gamma_1 - 1}} ds \\ &= h(1) \left(\frac{\lambda \|f\|_{\infty, d}}{\gamma + 1} \right)^{\frac{1}{\gamma_1 - 1}} r^{\frac{\gamma - \alpha + \gamma_1}{\gamma_1 - 1}}, \ r \in [0, \epsilon]. \end{split}$$

As $\gamma \geq \alpha$, we obtain from the last inequality that there is $\epsilon > 0$ such that $Tu \in C([0, \epsilon])$ and $|T(u(r)) - d| \leq \rho$ for $r \in [0, \epsilon]$, which finishes the proof of (5.8). Now we pass to the proof of (5.9). We first prove it by assuming that $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$. Fix ρ as in (5.8) and take $u, v \in K_{\rho}^{\epsilon}(d)$. By the Mean Value Theorem, there is $h \in (0, 1)$ such that

$$T(v(r))-T(u(r))=\int_0^r\left[h^{-1}\left(s^{-\alpha}\int_0^s\lambda t^\gamma f(u(t))dt\right)-h^{-1}\left(s^{-\alpha}\int_0^s\lambda t^\gamma f(v(t))dt\right)\right]ds=\\ \int_0^r\left[(h^{-1})'\left(s^{-\alpha}\int_0^s\lambda t^\gamma f(hu(t)+(1-h)v(t))dt\right)\left(s^{-\alpha}\int_0^s\lambda t^\gamma f'(hu(t)+(1-h)v(t))(u(t)-v(t))dt\right)\right]ds.$$

Choose ϵ small in such a way that the number $s^{-\alpha} \int_0^s \lambda t^{\gamma} f(hu(t) + (1-h)v(t)) dt$ for $s \in [0, \epsilon]$ is small. Therefore, Lemma 5.3 and the last equality implies that for $1 < \gamma_2 \le 2$ (note that in this case, the function $t \mapsto t^{\frac{-\gamma_2+2}{\gamma_2-1}}$ is decreasing)

$$|T(v(r)) - T(u(r))| \leq \int_0^r \left[c \left(s^{-\alpha} \int_0^s \lambda t^{\gamma} |f(hu(t) + (1 - h)v(t))| dt \right)^{\frac{-\gamma_2 + 2}{\gamma_2 - 1}} \left(s^{-\alpha} \int_0^s \lambda t^{\gamma} |f'(hu(t) + (1 - h)v(t))| |u(t) - v(t)| dt \right) \right] ds \leq \int_0^r \left[c \left(s^{-\alpha} \int_0^s \lambda ||f||_{\infty,d'} t^{\gamma} dt \right)^{\frac{-\gamma_2 + 2}{\gamma_2 - 1}} \left(s^{-\alpha} \int_0^s \lambda ||f'||_{\infty,d} t^{\gamma} dt \right) ||u - v||_{\infty} \right] ds = \int_0^r \left[c \left(\lambda ||f||_{\infty,d'} \frac{s^{-\alpha + \gamma + 1}}{\gamma + 1} \right)^{\frac{-\gamma_2 + 2}{\gamma_2 - 1}} \left(\lambda ||f'||_{\infty,d} \frac{s^{-\alpha + \gamma + 1}}{\gamma + 1} dt \right) ||u - v||_{\infty} \right] ds = c \left(\frac{\lambda ||f||_{\infty,d'}}{\gamma + 1} \right)^{\frac{-\gamma_2 + 2}{\gamma_2 - 1}} \frac{\lambda ||f'||_{\infty,d}}{\gamma + 1} r^{\frac{-\alpha + \gamma + \gamma_2}{\gamma_2 - 1}} ||u - v||_{\infty},$$

where $||f||_{\infty,d'} = \min_{s \in [d/2,2d]} |f(s)|$ and $||f'||_{\infty,d} = \max_{s \in [d/2,2d]} |f'(s)|$. If on the other hand, we have that $\gamma_2 \geq 2$, i.e., $t \mapsto t^{\frac{-\gamma_2+2}{\gamma_2-1}}$ is increasing then, we must conclude that

$$|T(v(r)) - T(u(r))| \le c \left(\frac{\lambda ||f||_{\infty,d}}{\gamma + 1}\right)^{\frac{-\gamma_2 + 2}{\gamma_2 - 1}} \frac{\lambda ||f'||_{\infty,d}}{\gamma + 1} r^{\frac{-\alpha + \gamma + \gamma_2}{\gamma_2 - 1}} ||u - v||_{\infty},$$

where $||f||_{\infty,d} = \max_{\in [d/2,d]} f(s)$. In both cases, hypothesis (γ,α) implies the existence of ϵ such that (5.9) is true in the case $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$.

References

- [1] J. V. Goncalves & C. A. Santos, Positive solutions of some quasilinear singular second order equations. Journal of the Australian Mathematical Society 76 (2001) 125-140.
- [2] J. V. Goncalves & C. A. Santos, Classical solutions of singular Monge-Ampére equations in a ball, Journal of Mathematical Analysis and Applications, 305 (2005) 240-252.
- [3] J. V. Goncalves & A. L. Melo, Multiple sign changing solutions in a class of quasilinear equations, Differential Integral Equations, 15 (2002) 147-165.
- [4] N. Fukagai & K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Annali di Matematica 186 (2007) 539-564.
- [5] Y. Cheng, On the existence of radial solutions of a nonlinear elliptic equation on the unit ball, Nonlinear Anal. 24 (1995) 287 - 307.
- [6] J. Iaia, Radial solutions to a p-Laplacian Dirichlet problem, Applicable Anal. 58 (1995) 335 -350.
- [7] A. Castro & A. Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987) 57-64.
- [8] Ph. Clément, D.G. de Figueiredo & E. Mitidieri, Quasilinear elliptic equations with critical exponents, Top. Meth. Nonl. Anal. 7 (1996), 133-170.

- [9] A. Castro, J. Cossio & J. M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (4) (1997), 1041-1053.
- [10] M. Mihailescu & V. Radulescu; Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces, C.R. Acad. Sci. Paris, Ser. I 346 (2008), 401-406.
- [11] M. Mihailescu & V. Radulescu; Existence and multiplicity of solutions for a quasilinear non-homogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007), 416-432.
- [12] W. M. Ni & J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 39 (1986) 379 - 399.
- [13] J. Simon, Regularité de la solution d'une equation non lineaire dans R^N, Springer Lecture Notes in Math. # 665 (Ph. Benilan Editor) (1978), 203 227.
- [14] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149–162.
- [15] P. Tolksdorff, On quasilinear boundary value problems in domains with corners, Nonlinear Anal. 5 (1981) 721-735.
- [16] R. Saxton & D. Wei, Radial solutions to a nonlinear p-harmonic Dirichlet problem, Applicable Anal. 51 (1993) 59 80.

Claudianor O. Alves

Universidade Federal de Campina Grande Unidade Acadêmica de Matemática 58109-970 Campina Grande, PB - Brazil email: coalves@yahoo.com.br

Jose V. A. Goncalves

Universidade Federal de Goiás Instituto de Matemática e Estatística 74001-970 Goiânia, GO - Brazil email: goncalves.jva@gmail.com

Kaye O. Silva

Instituto Federal Goiano Núcleo de Estatística, Matemática e Matemática Aplicada 74085-010 Urutaí, GO - Brazil email: kaveoliveira@hotmail.com