MỤC LỤC

A. Một số kiến thức cần học. (đọc chỗ nào không hiểu vào xem slide là hiểu thoọiii, easy mà)

- 1.1 VLC
- 1.2 WU-LEE
- 1.3 Jsteg
- 1.4 OUTGESS

Link slide chương 2:

https://drive.google.com/file/d/1L451DiH_nonG6P0lCasBP-IJ-Tp2UC0M/view?usp=sharing

B. Giải đề.

A. Một số kiến thức cần học

1.1 VLC (đề thi không thấy có, học cái này sau)

Bảng mã Huffman của DC

Phạm vi	Loại DC	Từ mã	Độ dài
0	0	010	3
-1, 1	1	011	4
-3, -2, 2, 3	2 3	100	5
$-7, \ldots, -4, 4, \ldots, 7$	3	00	5
$-15, \ldots, -8, 8, \ldots, 15$	4	101	7
$-31, \ldots, -16, 16, \ldots, 31$	5	110	8
$-63, \ldots, -32, 32, \ldots, 63$	6	1110	10
$-127, \ldots, -64, 64, \ldots, 127$	7	11110	12
$-255, \ldots, -128, 128, \ldots, 255$	8	111110	14
$-511, \ldots, -256, 256, \ldots, 511$	9	1111110	16
$-1023, \ldots, -512, 512, \ldots, 1023$	A	11111110	18
$-2047, \ldots, -1024, 1024, \ldots, 2047$	В	111111110	20

Bảng mã huffman của AC

Run/			Run/		
Category	Base Code	Length	Category	Base Code	Length
0/0	1010 (= EOB)	4			
0/1	00	3	8/1	11111010	9
0/2	01	4	8/2	1111111111000000	17
0/3	100	6	8/3	11111111110110111	19
0/4	1011	8	8/4		20
0/5	11010	10	8/5	11111111110111001	21
0/6	111000	12	8/6	11111111110111010	22
0/7	1111000	14	8/7	11111111110111011	23
0/8	1111110110	18	8/8	111111111101111100	24
0/9	11111111110000010	25	8/9	11111111110111101	25
0/A	11111111110000011	26	8/A	111111111101111110	26
1/1	1100	5	9/1	111111000	10
1/2	111001	8	9/2	111111111101111111	18
1/3	1111001	10	9/3	11111111111000000	19
1/4	111110110	13	9/4	11111111111000001	20
1/5	11111110110	16	9/5		21
1/6	11111111110000100	22	9/6		22
1/7	11111111110000101	23	9/7		23
1/8	11111111110000110	24	9/8		24
1/9	111111111100001111	25	9/9		25
1/A	11111111110001000	26	9/A	11111111111000111	26
2/1	11011	6	A/1	111111001	10
2/2	11111000	10	A/2	11111111111001000	18
2/3	1111110111	13	A/3		19
2/4	1111111110001001	20	A/4		20
2/5		21	A/5		21
2/6	1111111110001011	22	A/6		22
2/7	1111111110001100	23	A/7	1111111111001101	23

$\underline{\text{Một số giải thích khi chuyển VLC}} \ (\textit{theo cách hiểu vẹt của mình})$

Đổi sang hệ Bin	<u>Loại</u>	<u>Độ dài</u>	Kết quả(Từ mã + Độ
			<u>dài cái đối ra hệ Bin)</u>

	25	25 = 11001	5	8-3=5	110 11001
0,1	1	1=01	0/1	3-2=1	00 1
0,2	2	2=10	0/2	4-2=2	01 10
0, -5	-5	5=101 -> -5=010	0/3	6-3=3	100 010
2, -2	-2	2=10 -> -2=01	A/2	10-8=2	11111000 01
0, -1	-1	1=01 -> -1=10	0/1	3-2=1	00 0

EOB mặc định đổi ra là 1010

1.2 WU-LEE

- □ Thuật toán: (..)
 - Bước 1: Chia ảnh F thành các khối nhỏ, mỗi khối có kích thước là $m \times n$
 - Bước 2: Với mỗi khối ảnh nhỏ F_i thu được từ bước
 1, ta kiểm tra điều kiện sau:

$$0 < SUM(F_i \land K) < SUM(K)$$

- o Nếu đúng thì chuyển đến bước 3 để giấu thông tin vào trong khối F_i
- o Không đúng thì không giấu dữ liệu vào trong khối F_i (khối F_i được giữ nguyên)

• Bước 3: Gọi bít cần giấu vào trong khối F_i là b, thực hiện các bước sau để thay đổi F_i

if $(SUM(F_i \land K) \mod 2 = b)$ then $giữ nguyễn F_i$

else if $(SUM(F_i \land K) = 1)$ then

Chọn ngẫu nhiên một bít (j,k) thỏa mãn đồng thời $[F_i]_{jk} = 0$ và $[K]_{jk} = 1$ sau đó chuyển giá trị của bít $[F_i]_{jk}$ thành I

else if $(SUM(F_i \land K) = SUM(K) - 1)$ then

Chọn ngẫu nhiên một bít (j,k) thỏa mãn đồng thời $[F_i]_{jk}=1$ và $[K]_{jk}=1$ sau đó chuyển giá trị của bít $[F_i]_{jk}$ thành 0

else Chọn ngẫu nhiên một bứ mà $[K]_{jk}=1$ chuyển giá trị của bứ $[F_i]_{jk}$

từ 0 trở thành 1, hoặc từ 1 trở thành 0

<u>VD:</u>

Thuật toán Wu-Lee (..)

- □VD:
 - Cần nhúng thông tin B vào ảnh F sử dụng khóa K như sau

	F_{1}		F_2					
1	1	0	1	1	1			
1	1	1	1	1	0			
0	1	0	0	0	0			
0	0	1	0	0	0			
1	1	0	1	1	1			
0	1	1	0	1	0			
	F_3			F_4				

Thông tin giấu B = 011

1	1	0							
1	1	1							
0	1	0							
K									

<u>GIÅI</u>

Thuật toánWu-Lee (..)

- □Bước 1:
 - •Chia ảnh F thành 4 khối nhỏ F_1 , F_2 , F_3 , F_4 có kích thước là 3×3
- □Bước 2:
 - •Với mỗi F_i , kiểm tra điều kiện $0 < SUM(F_i \land K) < SUM(K)$
 - \circ Đúng thì giấu vào F_i (thực hiện bước 3)
 - \circ Sai thì giữ nguyên F_i (không giấu)

 \Box Với F_1

• Vì $0 < SUM(F_1 \land K) = SUM(K) = 6$ nên không giấu được dữ liệu vào trong F_1

 \Box Với F_2

• Vì $0 < SUM(F_2 \land K) = 4 < SUM(K) = 6$, nên một bít sẽ được giấu vào khối F_2 (giấu bit 0)

• Thực hiện bước 3

o Ta thấy $SUM(F_2 \land K) \mod 2 = 4 \mod 2 = 0$ và cũng chính là bằng bít cần giấu b=0 vì vậy khối F_2 được giữ nguyên

\Box Với F_3

•Ta có $0 < SUM(F_3 \land K) = 3 <$ SUM(K) = 6 nên có thể giấu bít thứ 2 là b = 1 vào khối này

•Thực hiện bước 3

○ Kiểm tra thấy $SUM(F_3 \land K) \mod 2 =$ 3 $\mod 2 = 1$ cũng chính bằng bít cần giấu nên ta vẫn giữ nguyên F_3

$\Box V\acute{o}iF_4$

• Ta có $0 < SUM(F_4 \land K) = 4 < SUM(K)$ nên có thể giấu bít thứ 3 là b = 1 vào khối này

• Thực hiện bước 3

o Kiểm tra thấy $SUM(F_4 \land K) \mod 2 = 4 \mod 2 = 0 \neq b$

o Kiểm tra $SUM(F_4 \land K) = 4 \neq 1 \ v \grave{a} \neq SUM(K) - 1 = 5 \ vì vậy chọn ngẫu nhiên một bít <math>[K]_{jk} = 1 \ r \grave{o}i$ đảo bít $[F]_{jk}$, cụ thể ở đây ta chọn bít $[K]_{21} = 1 \ v \grave{a}$ đảo bít $[F_4]_{21}$ từ 1 thành 0

□ Kết quả

	F_{1}			F_2							F_1'			F_2'	
1	1	0	1	1	1					1	1	0	1	1	1
1	1	1	1	1	0	Thô: giấu				1	1	1	1	1	0
0	1	0	0	0	0			•••• →		0	1	0	0	0	0
0	0	1	0	0	0	1	1	0		0	0	1	0	0	0
1	1	0	1	1	1	1	1	1		1	1	0	0	1	1
0	1	1	0	1	0	0	1	0		0	1	1	0	1	0
	F ₃			F_4			K				F_3'			F_4'	

1.3 Jsteg

■ Bài tập áp dụng:

□ Cho ma trận các hệ số DCT 8 × 8 như sau:

1480	49	-61	0	0	0	1	0
10	0	1	-22	11	8	0	0
1	1	0	0	0	0	0	0
-19	0	1	27	1	1	1	1
1	1	0	0	0	0	0	0
-30	0	-19	1	0	1	0	1
0	0	0	0	1	-4	1	0
1	1	0	0	1	0	1	1

□ Áp dụng thuật toán Jsteg để ẩn đoạn mã 8 bit m = 00101101 và thực hiện trích xuất m sau khi nhúng.

GIẢI

■ Giải: Thực hiện nhúng tin m = 00101101

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	480	49	-61	0	0	0	1	0
1480 48 -60 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	10	0	1	-22	11	8	0	0
-19 0 1 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	0	0	0	0	0	0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	1	27	1	1	1	1
-30 0 -19 1 0 1 0 1 0 0 0 0 1 -4 1 0 1 1 0 0 0 0 1 0 1 1	1	1	0	0	0	0	0	0
0 0 0 0 1 -4 1 0 1 1 0 0 0 0	-30	0	-19	1	0	1	0	1
1 1 0 0 1 1 1	0	0	0	0	1	-4	1	0
	1	1	0	0	1	0	1	1
0 0 0 1 -4								

Các kĩ thuật trên ảnh số

■ Trích xuất:

480	48	-60	0	0	0	1	
11	0	1	-22	11	9	0	(
1	1	0	0	0	0	0	0
-18	0	1	27	1	1	1	1
1	1	0	0	0	0	0	0
-30	0	-19	1	0	1	0	1
0	0	0	0	1	-4	1	0
1	1	0	0	1	0	1	1

Mẹo nhỏ: Lẻ giảm / chẵn tăng

1.4 OUTGESS

VD1: Ån tin

- Bài tập áp dụng:
 - □ Cho ma trận các hệ số DCT 8 × 8 như sau:

1480	49	-61	0	0	0	1	0
10	0	1	-22	11	8	0	0
1	1	0	0	0	0	0	0
-19	0	1	27	1	1	1	1
1	1	0	0	0	0	0	0
-30	0	-19	1	0	1	0	1
0	0	0	0	1	-4	1	0
1	1	0	0	1	0	1	1

- □ Dựa trên thuật toán Outguess, yêu cầu:
 - Tạo chuỗi giả ngẫu nhiên DCT bằng cách trích rút các hệ số DCT trên theo sắp xếp zig – zag, sau đó dịch phải k = 3 vị trí
 - Thực hiện ẩn tin m = 01101011 trong khối ma trận trên

Giải

VD2: Trích xuất

<u>GIÅI</u>

B. LÀM ĐÈ:

Cơ quan an ninh bắt được một điệp viên, qua quá trình khai thác điệp viên này đã khai ra cách thức liên lạc trao đổi thông tin với tổ chức của hắn ở nước ngoài qua hình thức thực hiện giấu tin trong ảnh. Dựa vào cách thức liên lạc, thực hiện quá trình trao đổi thông tin mô tả ở bên dưới, giả sử $\mathbf{K} = (\mathbf{SBD} + \mathbf{43})$ mod 255

Sinh viên giúp cơ quan an ninh tiến hành thực hiện:

- a) Giải mã thông tin \mathbf{M} có độ dài 8 bit từ tổ chức bên ngoài gửi cho điệp viên với $\mathbf{T}_{\text{extract}}$ và $\mathbf{X}_{\text{extract}}$
- b) Giấu thông điệp \mathbf{P} với độ dài 8 bít trong đó $\mathbf{P} = (\mathbf{SBD} + \mathbf{19}) \mod 255$ vào \mathbf{T}_{embed} và vào \mathbf{X}_{embed} Trong đó, quá trình trao đổi thông tin diễn ra như sau:
 - Bước 1: Tổ chức bên ngoài và điệp viên thống nhất một khóa chung quy ước K (là một số tự nhiên trong khoảng từ 0-255). Khóa K này sẽ được chuyển thành 8 bít thông tin K = k₇k₆k₅k₄k₃k₂k₁k₀
 - **Bước 2**: Khi điệp viên nhận được ảnh giấu tin, hắn sẽ thực hiện trích xuất tin như sau:
 - **Bước 2a**: Lấy ma trận điểm ảnh T_{extract} và tiến hành giải mã theo thuật toán **Wulee** với khóa K_{exract} để thu được Q_i từ các khối T_i tương ứng, ta có giá trị Q=Q₇Q₆Q₅Q₄Q₃Q₂Q₁Q₀. Trường hợp T_i không được giấu tin thì loại bỏ Q_i và thêm giá trị 0 vào bít có trọng số lớn nhất ví dụ Q₃ và Q₅ không giấu tin thì Q= **00**Q₇Q₆Q₄Q₂Q₁Q₀

				М	a trận T _{ext}	ract			
T ₀	1	0	1	0	0	0	0	1	T ₄
	1	0	0	1	1	0	1	1	
T ₁	0	1	0	1	1	0	1	0	T ₅
	1	0	0	1	0	1	1	0	
T ₂	0	0	0	1	0	1	1	0	T ₆
	1	1	0	1	0	0	0	1	
T ₃	0	0	1	1	1	0	1	0	T ₇
	0	1	0	1	1	1	0	1	

K _{extract}				
k ₇ k ₆ k ₅ k ₄				
k ₃	k ₂	k ₁	k ₀	

- **Bước 2b:** Trường hợp Q lẻ thì thuật toán giấu tin trong ảnh là thuật toán **Outguess** và thực hiện trích rút các hệ số của ma trận DCT $\mathbf{X}_{\text{extract}} = X$, biết rằng ma trận DCT ảnh gốc đã bị xáo trộn bằng cách sắp xếp zig-zag sau đó dịch vòng từ trên xuống 3 hàng trước khi nhúng.
- Trường hợp Q chẵn thì thuật toán giấu tin trong ảnh sử dụng là thuật toán Jsteg và thực hiện trích rútcác hệ số của ma trận DCT $X_{extract} = X$ lần lượt theo chiều dọc từ trên xuống dưới và từ trái sang phải.

X							
435	-37	-64	0	45	0	1	0
3	0	1	13	-21	1	0	0
0	1	19	0	0	0	0	0
12	0	23	13	1	-47	1	1
1	15	0	0	0	17	0	0
23	0	-19	1	0	1	0	1
0	-11	0	0	1	29	1	0
1	1	0	0	1	0	1	1

- Bước 3: Khi giấu tin gửi đi P, điệp viên thực hiện như sau
 - Bw'oc 3a: Lấy ma trận điểm ảnh T_{embed} và tiến hành mã hóa theo thuật toán Wulee với khóa K_{embed}

T_{embed}							
-	T_1	Т	「 ₂	Т	- 3	Т	4
1	0	1	0	0	0	0	1
1	0	0	1	1	0	1	1
0	1	0	1	1	0	1	0
1	0	0	1	0	1	1	0
0	0	0	1	0	1	1	0
1	1	0	1	0	0	0	1
0	0	1	1	1	0	1	0
0	1	0	1	1	1	0	1
-	T ₅	7	6	Т	7	1	8

K _{embed}				
k ₇	k ₃			
k ₆	k ₂			
k ₅	k ₁			
k ₄	k _o			

- **Bước 3b**: Trường hợp P lẻ sử dụng thuật toán giấu **Jsteg**, sau đó thực hiện nhúng tin $P=P_7P_6P_5P_4P_3P_2P_1P_0$ vào ma trận hệ số DCT $\mathbf{X_{embed}} = \mathbf{X}$.
- Trường hợp P chẵn thì sử dụng thuật toán giấu tin Outgess, thực hiện nhúng tin P=P₇P₆P₅P₄P₃P₂P₁P₀ vào ma trận hệ số DCT X_{embed} = X trong đó điệp viên tạo chuỗi giả ngẫu nhiên bằng sắp xếp zig-zag, sau đó dịch vòng theo chiều từ trên xuống (P mod 3) + 1 hàng.

GIÅI

T0	1	0	1	0	0	0	0	1	T4
	1	0	0	1	1	0	1	1	
T1	0	1	0	1	1	0	1	0	T5
	1	0	0	1	0	1	1	0	
T2	0	0	0	1	0	1	1	0	T6
	1	1	0	1	0	0	0	1	
Т3	0	0	1	1	1	0	1	0	T7
	0	1	0	1	1	1	0	1	

Buốc 1:

Giả sử SBD = 91

 $K = (91 + 43) \mod 255 = 134$

 $134_{10} = 10000110_2$

$K_{extract}$				
1	0	0	0	
0	1	1	0	

Bước 2a:

 \bullet Tính: T_i ^ $K_{extract}$

1	0	0	0				
0	0	0	0				
	$T_0^K_{extract}$						
0	0	0	0				
0	0	0	0				
	$T_1^K_{extract}$						
0	0	0	0				
0	1	0	0				
$T_2^K_{extract}$							
0	0	0	0				
0	1	0	0				

T_{α}	^ <i>K</i>	
* .3	extract	

0	0	0	0
0	0	1	0
		- A	

		T_4 ^ K_{extr}	act
1	0	0	0
0	1	1	0

		$T_5^K_{extr}$	act
0	0	0	0
0	0	0	0

		1 ₆ 'K _{extr}	act
1	0	0	0
0	1	0	0

$$T_7$$
 $^{\wedge}K_{extract}$

•

SUM $(K_{extract})=3$

- ✓ SUM $(T_0^K_{extract}) = 1 < SUM (K_{extract}) = 3$ SUM $(T_0^K_{extract}) \mod 2 = 1 \mod 2 = 1$
 - \rightarrow Q₀ = 1
 - \rightarrow Q = Q₇Q₆Q₅Q₄Q₃Q₂Q₁**1**
- ✓ SUM $(T_1^K_{extract}) = 0$ => T_1 không nhúng tin
 - \rightarrow Q₁ = 0
 - \rightarrow Q = **0** Q₇Q₆Q₅Q₄Q₃Q₂1
- ✓ SUM $(T_2^K_{extract}) = 1 < SUM (K_{extract}) = 3$

SUM $(T_2 ^K_{extract}) \mod 2 = 1 \mod 2 = 1$

- \rightarrow Q₂ = 1
- \rightarrow Q = 0 Q₇Q₆Q₅Q₄Q₃**1** 1
- ✓ SUM $(T_3^K_{extract}) = 1 < SUM (K_{extract}) = 3$

SUM
$$(T_3 {^{\wedge}} K_{extract}) \mod 2 = 1 \mod 2 = 1$$

 $\Rightarrow Q_3 = 1$
 $\Rightarrow Q = 0 Q_7 Q_6 Q_5 Q_4 1 1 1$

✓ SUM
$$(T_4^K_{extract}) = 1 < \text{SUM } (K_{extract}) = 3$$

SUM $(T_4^K_{extract}) \mod 2 = 1 \mod 2 = 1$

→
$$Q_4 = 1$$

→ $Q = 0 Q_7 Q_6 Q_5 1 1 1 1 1$

✓ SUM
$$(T_5^K_{extract}) = 3 = SUM (K_{extract}) = 3 => T_5 \text{ không nhúng tin}$$

→ $Q = 0 \ 0 \ Q_7 Q_6 \ 1 \ 1 \ 1 \ 1$

✓ SUM
$$(T_6^K_{extract}) = 0$$
 => T_6 không nhúng tin
→ $Q = 0 \ 0 \ 0 \ Q_7 \ 1 \ 1 \ 1 \ 1$

✓ SUM
$$(T_7^K_{extract}) = 2 < \text{SUM } (K_{extract}) = 3$$

SUM $(T_7^K_{extract}) \mod 2 = 2 \mod 2 = 0$

$$\rightarrow$$
 Q₇ = 0
 \rightarrow Q = 0 0 0 0 1 1 1 1 1

 \rightarrow Vậy Q = 0 0 0 0 1 1 1 1 1 $_2$ = 15 $_{10}$ (Nếu Q lẻ làm Outguess, Q chẵn làm jsteg. Ở trong trường hợp này, vì Q =15 là lẻ nên chỉ dùng thuật toán Outguess ở bước 2b nhé)

Bước 2b:

b1, Giả sử nếu Q lẻ. Ta làm Outguess

435	-37	-64	0	45	0	1	0
3	0	1	13	-21	1	0	0
0	1	19	0	0	0	0	0
12	0	23	13	1	-47	1	1
1	15	0	0	0	17	0	0
23	0	-19	1	0	17	0	1

• Sắp xếp zig-zag

435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	23	15	23	0	0	0
13	0	1	1	0	0	0	1
0	-19	-11	1	1	0	1	0
-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1

• Dịch vòng từ trên xuống 3 hàng

-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1
435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	23	15	23	0	0	0
13	0	1	1	0	0	0	1
0	-19	-11	1	1	0	1	0

• Kết quả

-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1
435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	23	15	23	0	0	0
13	0	1	1	0	0	0	1

b2, Giả sử nếu Q chẵn. Ta làm Jsteg

 \rightarrow m = 1 0 1 1 1 1 0 1

Bước 3a:

 $P = (91 + 19) \bmod 255 = 110_{10} = 01101110_2$ (P chỉ để nhúng ở bước sau cùng thôi)

K_{embed}			
1	0		
0	1		
0	1		
0	0		

1	0	
0	0	
0	1	
0	0	
1	$T_1 ^K_e$	mbed

1	0	
0	1	
0	1	
0	0	
	$T_2 ^K_e$	mbed

0	0	
0	0	
0	0	
0	0	
	$T_3 ^K_e$	mbed

0	0
0	1
0	0
0	0
	T

 $T_4^K_{embed}$

0	0

0	0

1 0

0	1	
0	0	
0	0	
	T_ ^ K	_

 $T_5 ^K_{embed}$

0	1
0	1
0	0
I	T ^ K

 T_6 K_{embed}

0	0	
0	0	
0	0	
	$T_7 ^K_e$	mbed

 $\begin{array}{c|c}
0 & 1 \\
\hline
0 & 0 \\
\hline
0 & 0
\end{array}$ $T_8^K_{embed}$

SUM $(K_{embed})=3$

✓ Với T₁

- $0 < \text{SUM} (T_1 \land K_{embed}) = 2 < \text{SUM} (K_{embed}) = 3$
 - -> Có thể giấu bit thứ 1 là p=0 vào khối này (01101110)
- SUM $(T_1 ^K_{embed}) \mod 2 = 2 \mod 2 = 0$; p= 0. Vậy SUM $(T_1 ^K_{embed}) \mod 2 = p$ --> Khối T_1 được giữ nguyên.

✓ Với T₂

- $0 < \text{SUM}(T_2 \land K_{embed}) = 3$; SUM $(K_{embed}) = 3$. Vì SUM $(T_2 \land K_{embed}) = \text{SUM}(K_{embed})$
- -> Nên không giấu được dữ liệu vào trong T_2

✓ Với T₃

- SUM $(T_3 ^K_{embed}) = 0$
- -> Nên không giấu được dữ liệu vào trong T₃

✓ Với T₄

- $0 < \text{SUM}(T_4 \land K_{embed}) = 1 < \text{SUM}(K_{embed}) = 3$
- -> Có thể giấu bit thứ 2 là p= 1 vào khối này (01101110)
- SUM $(T_4 ^K_{embed}) \mod 2 = 1 \mod 2 = 1$; p=1. Vậy SUM $(T_4 ^K_{embed}) \mod 2 = p$ --> Khối T_4 được giữ nguyên.

✓ Với T₅

- $0 < \text{SUM} (T_5^* K_{embed}) = 1 < \text{SUM} (K_{embed}) = 3$
- -> Có thể giấu bit thứ 3 là p=1 vào khối này (01101110)
- SUM $(T_5^K_{embed}) \mod 2 = 1 \mod 2 = 1$; p= 1. Vậy SUM $(T_5^K_{embed}) \mod 2 = p$
- --> Khối T₅ được giữ nguyên

✓ Với T₆

- $0 < \text{SUM} (T_6 ^K_{embed}) = 2 < \text{SUM} (K_{embed}) = 3$
- -> Có thể giấu bit thứ 4 là p=0 vào khối này (01101110)
- SUM $(T_6 ^K_{embed}) \mod 2 = 2 \mod 2 = 0$; p = 0. Vậy SUM $(T_6 ^K_{embed}) \mod 2 = p$
- --> Khối T₆ được giữ nguyên.

✓ Với T₇

- $SUM(T_7^K_{embed}) = 0$
- -> Nên không giấu được dữ liệu vào trong T₇

✓ Với T₈

- $0 < \text{SUM} (T_8^{\ \ \ } K_{embed}) = 2 < \text{SUM} (K_{embed}) = 3$
- -> Có thể giấu bit thứ 5 là p=1 vào khối này (01101110)

•

- $SUM(T_8^K_{embed}) \mod 2 = 2 \mod 2 = 0$; $p=1.V_{ay} SUM(T_8^K_{embed}) \mod 2 \# p$
- $SUM(T_8^K_{embed}) = 2 \# 1$
- SUM(T_8 ^ K_{embed}) = 2 ; SUM(K)-1=3-1=2. Vậy SUM(T_8 ^ K_{embed}) = SUM(K_{embed})-1 Chọn ngẫu nhiên một bit thỏa mãn đồng thời $[K]_{11}$ =1 và $[T_8]_{11}$ =1 chuyển giá trị của bit $[T_8]_{11}$ từ 1 trở thành 0.

1	0	0	0
0	1	 0	1
0	0	0	0
0	0	0	0

Vậy: ta thu được T' sau khi nhúng P:

Т	T' ₁		2	T' ₃		T' ₄	
1	0	1	0	0	0	0	0
0	0	0	1	0	0	0	1
0	1	0	1	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0
T	' 5	Т	6	Т	7	Т	' 8

Giấu tin bằng thuật toán Outguess (vì P chẵn)

Bước 3b:

b1, Giả sử nếu Q lẻ. Ta làm Jsteg

 $P = 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0$

435	-37	-64	0	45	0	1	0
3	0	1	13	-21	1	0	0
0	1	19	0	0	0	0	0
12	0	23	13	1	-47	1	1
1	15	0	0	0	17	0	0
23	0	-19	1	0	1	0	1
23	0 -11	-19	0	0	1 29	0	0

_								
	435	-36	-65	0	45	0	1	0
	2	0	1	13	-21	1	0	0
	0	1	19	0	0	0	0	0
>	12	0	23	13	1	-47	1	1
	1	15	0	0	0	17	0	0
	23	0	-19	1	0	1	0	1
	0	-11	0	0	1	29	1	0
	1	1	0	0	1	0	1	1

b2, Giả sử nếu Q chẵn. Ta làm Outguess

435	-37	-64	0	45	0	1	0
3	0	1	13	-21	1	0	0
0	1	19	0	0	0	0	0
12	0	23	13	1	-47	1	1
1	15	0	0	0	17	0	0
23	0	-19	1	0	1	0	1
0	-11	0	0	1	29	1	0
1	1	0	0	1	0	1	1

• Sắp xếp zig-zag

435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	23	15	23	0	0	0
13	0	1	1	0	0	0	1
0	-19	-11	1	1	0	1	0
-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1

• Dịch vòng theo chiều trên xuống (p mod 3) + 1 = (110 mod 3) + 1 = 3 hàng.

-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1
435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	1 23	0 15	19 23	13	45	0

• Thực hiện ẩn tin: P = 0 1 1 0 1 1 1 0

-47	0	0	0	1	17	0	0
0	0	1	1	0	1	0	0
29	1	0	1	1	0	1	1
435	-37	3	0	0	-64	0	1
1	12	1	0	19	13	45	0
-21	0	23	15	23	0	0	0
13	0	1	1	0	0	0	1
0	-19	-11	1	1	0	1	0

	-46	0	0	0	1	17	0	0
	0	0	1	1	0	1	0	0
	29	1	0	1	1	0	1	1
>	435	-36	3	0	0	-65	0	1
	1	13	1	0	18	13	45	0
	-21	0	23	15	23	0	0	0
	13	0	1	1	0	0	0	1
	0	-19	-11	1	1	0	1	0

Note tí:

Xanh : DCHồng : AC

• Ở ví dụ trên: Q với P người ta cho đều là chẵn, nhưng mình làm thêm TH lẻ để mọi người hình dung cách làm thôii nha. Chứ trong bài làm, chỉ làm 1 TH là:bước 2b làm Q chẵn, bước 3b làm P chẵn thôi nhé.

Link file word:

https://drive.google.com/file/d/1SkIPLE kHVev o2 KaoeTOP-x7mhuiv2/view?usp=sharing

Không hiểu chỗ nào cứ mò slide xem qua 1 chút.