Automate finite (exerciții)

Exemplul 1. Graful finit orientat de mai jos este reprezentarea grafică a automatul finit determinist $A = (\Sigma, Q, \delta, q_0, F)$ care acceptă toate șirurile binare care conțin un număr par de 0 și un număr impar de 1, având $\mathbf{Q} = \{q_0, q_1, q_2, q_3\}$, unde:

- q_0 este starea în care şirul binar conţine un număr par de zero şi un număr par de 1;
- q_1 este starea în care şirul binar conţine un număr impar de zero şi un număr par de 1;
- q_2 este starea în care şirul binar conţine un număr impar de zero şi un număr impar de 1;
- q_3 este starea în care şirul binar conține un număr par de zero şi un număr impar de 1;

- I. Să se verifice următoarele afirmații: $w_1 = 1001010 \in \mathcal{T}(A)$ și $w_2 = 1011001$, $w_3 = 01010101$, $w_4 = 10101010 \notin \mathcal{T}(A)$.
- II. Să se demonstreze că $\mathcal{T}(A)$ este mulțimea șirurilor binare cu un număr par de 0 și un număr impar de 1.

Rezolvare.

I. Explicaţia, pentru care există exact 4 stări, rezultă din faptul că la trecerea dintr-o stare în alta automatul poate accepta ori simbolul 0 ori simbolul 1, astfel că, șirul binar inițial ori pierde un 0, ori pierde un 1. Adică, automatul din starea q_0 , în care șirul are un număr par de 0 și un număr par de 1, ajunge ori în starea q_1 , șirul inițial pierzând un 0 și rămânând cu acelaşi număr par de 1, ori în starea 1, șirul inițial pierzând un 1 și rămânând cu același număr de 10. Ca urmare, din stările 11 și 12 automatul ajunge obligatoriu în starea 13.

Cum q_3 este starea finală, trebuie ca din starea q_2 automatul să ajungă în starea q_3 , iar din starea q_1 să ajungă în starea q_3 prin intermediul stării q_2 . Deasemeni, indiferent de starea în care se află automatul trebuie să accepte simbolurile 0 și 1, lucrul care explică legăturile duble dintre oricare două noduri ale reprezentării grafice.

Mai întâi, se definește forma analitică a automatului A, astfel:

- $\Sigma = \{0,1\};$
- $\mathbf{Q} = \{q_0, q_1, q_2, q_3\};$
- $F = \{q_3\};$
- funcția de tranziție δ este definită în următorul tabel:

	δ	0	1
\rightarrow	q_0	q_1	q_3
	q_1	q_0	q_2
	q_2	q_3	q_1
	q_3	q_2	q_0

I. Folosind relația (**) din cursul 3, se poate scrie:

$$\begin{split} & \boldsymbol{\delta}(q_0, \mathbf{1}001010) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_0, 1), 001010) = \boldsymbol{\delta}(q_3, \mathbf{0}01010) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_3, 0), 01010) = \\ & = \boldsymbol{\delta}(q_2, \mathbf{0}1010) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_2, 0), 1010) = \boldsymbol{\delta}(q_3, \mathbf{1}010) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_3, 1), 010) = \\ & = \boldsymbol{\delta}(q_0, \mathbf{0}10) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_0, 0), 10) = \boldsymbol{\delta}(q_1, \mathbf{1}0) = \boldsymbol{\delta}(\boldsymbol{\delta}(q_1, 1), 0) = \boldsymbol{\delta}(q_2, 0) = q_3 \in \mathbf{F}. \end{split}$$

Deci cuvântul w_1 este acceptat de automatul \boldsymbol{A} .

Pentru cuvântul w_2 se poate scrie:

$$\delta(q_0, \mathbf{1}011001) = \delta(\delta(q_0, 1), 011001) = \delta(q_3, \mathbf{0}11001) = \delta(\delta(q_3, 0), 11001) = \delta(q_2, \mathbf{1}1001) = \delta(\delta(q_2, 1), 1001) = \delta(q_1, \mathbf{1}001) = \delta(\delta(q_1, 1), 001) = \delta(q_2, \mathbf{0}01) = \delta(\delta(q_2, 0), 01) = \delta(q_3, \mathbf{0}1) = \delta(\delta(q_3, 0), 1) = \delta(q_2, \mathbf{0}1) = \delta(\delta(q_2, 0), 01) = \delta(q_3, 01) = \delta(\delta(q_3, 0), 0$$

Deci cuvântul w_2 nu este acceptat de automatul \boldsymbol{A} .

La fel se verifică și celelalte afirmații.

II. Arătăm prin inducție după n = |w| că din q_0 se poate ajunge în q_0 , q_1 , q_2 , q_3 numai prin:

Stare	Nr. de <i>0</i>	Nr. de 1	
q 0	par	par	
q 1	impar	par	
q ₂	impar	impar	
q 3	par	impar	

Pentru n = 1 și n = 2: evident.

Prin inducție, trecem de la n la n+1.

Considerăm o stare oarecare și analizăm pe rând stările anterioare.

În starea q₀ putem ajunge:

- din q_1 dacă w se termină cu 0; atunci ajungem la (par, par);
- sau din q_3 dacă w se termină cu 1; atunci ajungem la (par, par).

Exercițiul 1. Să se determine automatele finite nedeterministe ale căror limbaje acceptate sunt:

$$L_1=\{a^nba^m|\ n\geq 1, m\geq 2\}$$
 și $L_2=\{w\in T^*|\ a^2b\ subcuv$ ânt al lui $w\}$, iar
$$\pmb{\Sigma}=\{{\rm a,b}\}.$$

Exercițiul 2. Să se determine limbajul acceptat de automatul finit :

Exercițiul 3. Să se elimine stările nefolositoare din automatul finit:

și să se determine limbajul acceptat de acest automat.

Exercițiul 4. Să se determine gramatica regulată G = (N, T, S, P) echivalentă cu automatul finit determinist A_D , care are următoarea funcție de tranziție:

	δ_{D}	0	1
\rightarrow	q_0	q_2	q_0
	q_1	q_3	q_2
	q_2	q_1	q_3
*	q_3	q_2	q_0