Syllabus de Procesos Estocásticos I

Prof. Rafael Miranda Cordero

Semestre 2024-1

Objetivo General. Introducirnos y profundizar en el estudio de los procesos estocásticos clásicos. Objetivos Específicos.

- Entender el formalismo matemático de los procesos estocásticos.
- Profundizar en los ejemplos de procesos estocásticos que han sido más relevantes a través de la historia y que aun siguen siendo empleados.
- Entender la parte teórica de algunas aplicaciones y como estas se pueden llevar a cabo.
- Realizar simulaciones computacionales de algunos procesos.

Temario

- 1. Cadenas de Markov
 - 1.1 Definiciones elemnetales
 - 1.2 Tiempos de Llegada
 - 1.3 Clasificación de estados y descomposición del espacio de estados
 - 1.4 Distribución Estacionaria
 - 1.5 Simulación de Cadenas de Markov
- 2. Proceso Poisson
 - 2.1 Definiciones y propiedades
 - 2.2 Tiempos de Espera
 - 2.3 Generalizaciones
 - 2.4 Simulación de los Procesos Poisson
- 3. Martingalas en timepo discreto
 - 3.1 Definiciones, propiedades y ejemplos
 - 3.2 Tiempos de Paro
 - 3.3 Teorema de Paro Opcional y de Convergencia

3.4 Métodos variacionales

4. Movimiento Browniano

- 4.1 Definición y propiedades
- 4.2 Caminatas Aleatorias y Movimiento Browniano
- 4.3 Tiempos de Llegada
- 4.4 Otros Movimientos Brownianos
- 4.5 Aplicaciones
- 4.6 Simulación del Movimiento Browniano

Programa General de Actividades del Curso

A continuación se muestra el programa general de las actividades del curso. Estas pueden ser elaboradas en equipos de máximo 5 personas.

Semana	Fechas	Temas	Actividades
1	14-18 agos- to	Introducción	N/A
2	21-25 agosto	Introducción a Cadenas de Markov	N/A
3	28 agosto-1 septiembre	Calculos con la función de transición Tiempos de llegada	Tarea 1. Cadenas de Markov
4	4-8 septiembre	Clasificación de estados	Tarea 2. Cadenas de Markov
5	11-14 septiembre	Accesibilidad y Comunica- ción Probabilidades de Absorción	Preparación Examen Parcial I
6	18-22 septiembre	Descomposición del Espacio de Estados Cadenas de Markov Nota- bles	Examen Parcial I Tarea 3. Cadenas de Markov
7	25-29 septiembre	Recurrencia Nula y Positiva Distribución Estacionaria	Tarea 4. Cadenas de Markov
8	2-6 octubre	Convergencia a la Distribución Estacionaria	Preparación Examen Parcial II
9	9-13 octubre	Definiciones y Propiedades del Proceso Poisson	Examen Parcial II Tarea 5. Proceso Poisson
10	16-20 octu- bre	Tiempos de Espera Distribución condicional de los tiempos de llegada	Tarea 6. Proceso Poisson

11	23-27 octubre	Proceso Poisson Compuesto Proceso Poisson Homogéneo	Preparación Examen Parcial III
12	30, 31 octu- bre	Simulación y Aplicaciones	Examen Parcial III Proyecto: Asignación
13	6-10 no- viembre	Definición y Propiedades del Movimiento Browniano Caminatas Aleatorias y Mo- vimiento Browniano	Tarea 7. Movimiento Browniano Proyecto: Seguimiento 1
14	13-17 noviembre	Tiempos de llegada Otros Movimientos Brownia- nos	Preparación Examen Parcial IV Proyecto: Seguimiento 2
15	21-24 noviembre	Algunas Aplicaciones del Movimiento Browniano Definiciones, propieades y ejemplos de martingalas	Examen Parcial IV Tarea 8. Martingalas a Tiempo Discreto Proyecto: Preparación para Presentación
16	27 noviembre- 1 diciembre	Teorema de paro opcional y de convergencia	Proyecto: Presentación

Fechas de Entrega

Las tareas se entregan una semana después de la asignación de las mismas.

Tarea 1. Cadenas de Markov	4 de septiembre
Tarea 2. Cadenas de Markov	11 de septiembre
Examen Parcial I	18 de septiembre
Tarea 3. Cadenas de Markov	25 de septiembre
Tarea 4. Cadenas de Markov	2 de octubre
Examen Parcial II	9 de octubre
Tarea 5. Proceso Poisson	16 de octubre
Tarea 6. Proceso Poisson	23 de octubre
Examen Parcial III	30 de octubre
Proyecto: Asignación	3 de noviembre
Tarea 7. Movimiento Browniano	13 de noviembre
Proyecto: Seguimiento 1	10 de noviembre
Proyecto: Seguimiento 2	17 de noviembre
Examen Parcial IV	21 de noviembre
Proyecto: Preparación para Presenta-	24 de noviembre
ción	24 de noviembre
Tarea 8. Martingalas a Tiempo Discreto	27 de noviembre
Proyecto: Presentación	1 de diciembre

Evaluación

La evaluación esta ponderada de la siguiente forma

Actividad	Porcentaje
Exámenes	40%
Proyecto	20%
Prácticas	+20 %
Total	120%

Para aprobar el curso es necesario.

- 1. Tener promedio aprobatorio.
- 2. Tener a lo más un examen reprobado.

Además de ello debes considerar que

- 1. Sólo puedes reponer 2 de los exámenes.
- 2. No es posible reponer tareas ni el proyecto final.
- 3. Las tareas y exposiciones son en equipos de al menos 2 personas y a lo más 5.
- 4. Las prácticas de simulación pueden otorgar hasta 2 puntos extras en la calificación final.

Especificaciones de los Proyectos Esta sección se agregará en los siguientes días.

Bibliografía

- 1. Ross, S. M. (1996). Stochastic processes (2a ed.). New York: Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc.
- 2. Hoel, P. G., Port, S. C., &Stone, C. J. (1972).Introduction to stochastic processes. Houghton Mifflin Co., Boston, Mass.
- 3. Rincón, L.(2012). Introducción a los procesos estocásticos. Las Prensas de Ciencias, UNAM.
- 4. Durrett, R. (2012). Essentials of Stochastic Processes, Second Edition. Springer.
- 5. Durrett, R. (2019). Probability: Theory and Examples Fith Edition. Cambridge University Press.