2014 年第五届全国大学生数学竞赛决赛 (数学类一、二年级) 试卷

一、(本题 15 分) 设S 为 \mathbf{R}^3 中的抛物面 $z=rac{1}{2}\Big(x^2+y^2\Big)$, $P=\Big(a,b,c\Big)$ 为S 外一固定点,

满足 $a^2 + b^2 > 2c$. 过 P 作 S 的所有切线. 证明: 这些切线的切点落在同一张平面上.

二、(本题 15 分) 设实二次型 $f(x_1, x_2, x_3, x_4) = x^T A x$, 其中

$$x = egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix}, A = egin{pmatrix} 2 & a_0 & 2 & -2 \ a & 0 & b & c \ d & e & 0 & f \ g & h & k & 4 \end{pmatrix},$$

 a_0,a,b,c,d,e,f,g,h,k 皆为实数. 已知 $\lambda_1=2$ 是 A 的一个几何重数为 3 的特征值. 试回答以下问题:

- (1) A 能否相似于对角矩阵; 若能, 请给出证明; 若不能, 请给出例子;
- (2) 当 $a_0 = 2$ 时,试求 $f(x_1, x_2, x_3, x_4)$ 在正交变换下的标准型.

三、(本题 15 分) 设
$$n$$
 阶实方阵 $A=\begin{pmatrix}a_1&b_1&0&\cdots&0*&\ddots&\ddots&\ddots&0*&\ddots&\ddots&\ddots&0*&\ddots&\ddots&\ddots&b_{n-1}*&\cdots&\cdots&a_n\end{pmatrix}$ 有 n 各线性无关的特征向量,

 b_1,\cdots,b_{n-1} 均不为 0. 记 $W=\left\{X\in R^{n imes n}\mid XA=AX
ight\}$. 证明: W 是实数域 R 上的向量空间,且 I,A,\cdots,A^{n-1} 为其一组基,其中 I 为 n 阶单位阵.

四、(本题 15 分)设 f(x,y)为 $\left[a,b\right]$ ×R 上关于 y 单调下降的二元函数.设 $y=y\left(x\right),z=z\left(x\right)$ 是可微函数,且满足:

$$y' = f(x, y), z' \le f(x, z), x \in [a, b]$$

已知 $z(a) \le y(a)$. 求证: $z(x) \le y(x), x \in [a,b]$.

五、(本题 20 分) 设 f(x) 是 $[0,+\infty)$ 上非负可导函数,

$$f(0)=0,f'\!\left(x\right)\leq\frac{1}{2}.$$

更多资料关注-微信公众号: 爱吃老冰棍 全年免费分享

假设 $\int_0^{+\infty} f(x) \, \mathrm{d} \, x$ 收敛. 求证: 对于任意 $\alpha > 1, \int_0^{+\infty} f^\alpha(x) \, \mathrm{d} \, x$ 也收敛,并且

$$\int_0^{+\infty} f^lpha(x) \,\mathrm{d}\,x \leq \left[\int_0^{+\infty} f(x) \,\mathrm{d}\,x
ight]^eta, eta = rac{lpha+1}{2}.$$

六、(本题 20 分) 对多项式 f(x),记 $\mathrm{d}\big(f\big)$ 表示其最大和最小实根之间的距离. 设 $n\geq 2$ 为自然数. 求最大实数 C ,使得对任意所有根都是实数的 n 次多项式 f(x) ,都有 $\mathrm{d}\big(f'\big)\geq C\,\mathrm{d}\big(f\big).$