

Alfaomega Grupo Editor

Comunicaciones

Castro-Fusario

Capítulo 6:

La capa física

Temas:

- 6.1 Introducción
- 6.2 Tipos de transmisión
- 6.3 Modos de transmisión
- 6.4 La capa física
- 6.5 Interfaces y buses en modo paralelo
- 6.6 Buses e interfaces en modo serie
- 6.7 Sincronismo

6.1 Introducción

Sistema de comunicaciones: transporta información desde su fuente hasta un sumidero utilizando un canal.

La fuente genera un mensaje que un transductor convierte en señales eléctricas.

En el otro extremo se realizará el proceso inverso.

Las **señales eléctricas** necesitarán de un **transmisor** que se encarga de adaptar las señales eléctricas al **canal de comunicaciones**, y de un **receptor** que haga las funciones inversas.

6.2 Tipos de transmisión

6.2.1 Método símplex

Una estación siempre actúa como fuente y la otra siempre como colector.

6.2.2 Método semidúplex

Una estación A y otra estación corresponsal B actúan durante un periodo como fuente y colector, pero posteriormente intercambian su función.

6.2.3 Método dúplex

Dos estaciones, A y B, actúan a la vez como fuente y colector, pueden transmitir y recibir información en forma simultánea.

Los servicios dúplex para poder ser prestados requieren tres condiciones:

- Medio físico capaz de transmitir en ambos sentidos.
- Sistema de transmisión capaz de enviar y recibir a la vez.
- Protocolo de comunicaciones que lo permita.

6.3 Modos de transmisión

6.3.1 Introducción

Se necesitan procedimientos muy precisos para enviar y recibir información, para saber exactamente dónde comienza y dónde finaliza cada conjunto de bits que componen los campos que constituyen los paquetes transmitidos.

6.3.2 Transmisión en modo paralelo

6.3.2.1 Definición

Los *n* bits que componen cada byte o carácter se transmiten en un solo ciclo de reloj.

6.3.2.2 Características de la transmisión en modo paralelo

- Se usa en las computadoras para realizar la transferencia interna de los datos.
- Códigos de 8 bits por byte: en cada ciclo se transfieren los 8 bits de cada carácter simultáneamente.

- Dos formas de transmisión en paralelo:
 - Hay n líneas diferentes (una por bit)
 - Hay una única línea que envía cada bit por multiplexación de frecuencias.
- Se usa para transmitir muchos bytes por segundo y no hay problemas de sincronización entre extremos.
- No se usa para más de decenas de metros ya que el tiempo de llegada de los bits difiere de una línea a otra.

6.3.3 Transmisión en modo serie

6.3.3.1 Definición

Los bits que componen cada carácter se transmiten con cada ciclo de reloj, a razón de un bit por ciclo.

6.3.3.2 Características de la transmisión en modo serie

- Se envía un bit después del otro hasta completar cada carácter.
- Es típico de los sistemas teleinformáticos.
- Las señales transmitidas deben pasar al modo paralelo al llegar a los equipos informáticos.
 - Este proceso de transformación se denomina deserialización.
- Las señales se transforman del modo paralelo al modo serie por serialización.
- La secuencia de los bits transmitidos se efectúa siempre por orden de pesos crecientes -n1, n2,..., n8—, es decir, al revés de como se escriben las cifras en el sistema de numeración binario, donde los pesos crecientes se escriben siempre a la izquierda.
- Cuando se transmite con bit de paridad, este se transmite siempre en último término.

6.3.3.3 Receptor-Transmisor Asincrónico Universal (UART)

Dispositivo que controla un puerto serie

Convierte los datos transmitidos en modo paralelo por el bus interno en modo serie, y viceversa (procesos de serialización y deserialización).

Construida por circuitos integrados o chips, que pueden ser parte de la placa base de un computador, de un modem o de un equipos con puerto serie.

Manejar las interrupciones de los dispositivos conectados al puerto.

Se puede programar:

- Velocidad de transmisión.
- Paridad (par o impar).
- Longitud del bloque.
- Bits de parada.

6.4 La capa física

6.4.1 Generalidades

La comunicación a nivel de capa física entre dos equipos se realiza a través de interfaces o buses digitales estandarizados.

La normalización permite interconectar diferentes equipos de diferentes fabricantes.

Interfaz o bus digital estándar: conjunto de normas mecánicas, eléctricas y lógicas que permiten que las señales digitales puedan ser transmitidas a través de un vinculo físico.

6.4.2 Normalización de las interfaces de la capa física

6.4.2.1 Aspectos generales

Finalidades:

- Asegurar la compatibilidad mecánica de su conector.
- Establecer niveles de tensión máxima y mínima y características eléctricas de cada circuito
- Establecer las señales en cada contacto del conector
- Determinar relaciones lógicas para mantener el dialogo entre los equipos.

6.4.2.1 Aspectos generales

Niveles de normalización de las interfaces de la capa física:

6.5 Interfaces y buses en modo paralelo

6.5.1 Generalidades

Hay un conjunto de interfaces y buses normalizados por los propios fabricantes de hardware.

Intercambian información entre componentes internos del computador y periféricos.

Ventajas: aumenta la velocidad de transmisión en distancias cortas.

También se pueden lograr altas velocidades con buses en modo serie.

6.5.2 Características técnicas de algunas interfaces o buses en modo paralelo

6.5.2.1 Interfaz ATA

Advance Technology Attachment (ATA) empleada para interconectar el motherboard con los discos rígidos y los dispositivos de almacenamiento y de lectura (CD–ROM o DVD).

Mantenida y actualizada por el Comité Técnico N.º 13 del Comité Internacional para los Estándares en Tecnología de la Información (*Technical Committee # 13 of The International Committee for Information Technology Standards* INCITS), del Instituto Nacional Americano de Estándares (ANSI).

6.5.2.2 Interfaz IEEE 1284 - Centronics

Interfaz en paralelo, bidireccional, con velocidad máxima de 150 kbyte por segundo (depende del software).

Intercambiar 8 bits por unidad de tiempo en forma simultánea.

El puerto de la impresora (LPT) intercambia de 25 tipos de señales diferentes (control: 4; estado: 5; datos: 8 y tierra: 8).

- Las **señales de control** :controlan la interfaz y señalizan durante el establecimiento de la comunicación.
 - Ponen a los valores normales de la impresora tal como fueron ajustados, insertar líneas en cada retorno de carro, indicar que las líneas de datos están activas con valores validos, etc.
- Las señales de estado (*status*): indican falta de papel, ultimo carácter recibido, indicador de ocupado, impresora en línea, etc.
- Las **señales de datos:** intercambian un bit por cada byte transmitido desde el computador a la impresora.
 - Hay nuevas versiones que permiten flujo bidireccional.
- Las **señales de tierra** son el retorno de cada una de las líneas utilizadas para la transmisión de los datos.

- 6.6 Buses e interfaces en modo serie
- 6.6.1 Recomendaciones RS 232-V.24
- 6.6.1.1 Consideraciones generales

Las más difundidas son las interfaces descriptas por dos normas parecidas pero no iguales:

- -V.24 de la UIT-T
- -RS 232 de la EIA (actualmente TIA 232).

6.6.1.2 Características técnicas principales

- Distancia máxima entre equipos: 15 metros (50 pies).
- Velocidad máxima de transferencia de datos: 20 kbps.
- Cantidad máxima de usuarios por conectar: 2 usuarios (enlaces punto a punto).
 - Esta recomendación no acepta interconexiones del tipo multipunto.
- Susceptible al ruido existente en el medio ambiente.
- Rangos de voltaje de trabajo para el intercambio de señales de:
 - + 3 a 25 Volt.
 - 3 a 25 Volt.
- Codificación en banda base NRZ

6.6.1.3 Principales limitaciones que presenta

- Reducida velocidad de transferencia de datos (hoy es limitante).
- Distancia máxima entre equipos insuficiente para algunas aplicaciones.

Los 15 metros son suficientes para la conexión de un modem de datos a un computador.

En algunas aplicaciones se necesita simultáneamente velocidad y distancia.

La norma estipula una capacitancia máxima de 2500 pF total entre puntas; valor que se alcanza a los 15 metros.

6.6.1.4 Características de normalización para el nivel mecánico Para la interfaz RS 232 se utiliza un conector tipo **Cannon** de 25 contactos, especificado en la ISO 2110, conocido como DB 25.

Si se necesitan menos contactos se puede utilizar el conector normalizado ISO 4902/TIA 564, conocido como DB-9.

- 6.6.1.6 Características de normalización para el nivel lógico
- Dos clases de circuitos: Primarios y Secundarios. Para cada uno de ellos se indica el sentido de las señales (hacia ETCD o ETD).
- Características y funciones de los circuitos: **Señales de datos** desde el ETD:

 - por el Circuito N° 103 (contacto 2) para transmitir
 - por el Circuito N° 104 (contacto 3) para recibir.
- Si el ETCD utilizara canal secundario desde el ETD:
 - -Circuito N° 118 (contacto 14) para transmitir
 - -Circuito N° 119 (contacto 16) para recibir.

6.6.3 Recomendación X.21

6.6.3.1 Consideraciones generales

Desde 1969 se plantean las líneas de abonado digitales.

En 1972 salen la Recomendación X.21 y la X.21 bis.

Especifica la manera en que el ETD establece y libera las llamadas mediante el intercambio de señales con el ETCD.

Fuente	Señales	PIN	Ficha	PIN	Señales	Fuente
Común ETCD ETCD ETCD - - ETCD ETCD ETCD	Tierra de la señal (SG) Preparado para recibir (CTS) Detección portadora de línea (DCD) Indicación de llamada (RI) No asignada No asignada Recepción de datos (A) Recepción de datos (B) Recepción de sincronismo (A)	B D F J L N R T V	FICNA	A C E H K M P S	Tierra de chasis (GND) Petición para transmitir (RTS) Equipo listo para recibir (DSR) Terminal listo para recibir (DTR) No asignada No asignada Transmisión de datos (A) Transmisión de datos (B) Sincronismo del terminal (A)	Común ETD ETCD ETD - - ETD ETD ETD
ETCD	Recepción de sincronismo (B) No asignada No asignada No asignada No asignada No asignada No asignada No asignada	Z BB DD FF JJ LL NN		W Y AA CC EE HH KK MM	Sincronismo del Terminal (B) Transmisión de sincronismo (A) Transmisión de sincronismo (B) No asignada No asignada No asignada No asignada No asignada	ETD ETD ETD - - - -

6.6.3.2 Características de normalización para el nivel mecánico Conector de 15 contactos (ISO 4903 o DA 15). Solamente son utilizados ocho contactos.

6.6.3.3 Características de normalización para el nivel eléctrico

Hay dos especificaciones: una para circuitos no equilibrados y otra para circuitos equilibrados.

Recomendación X.26: transmisión asimétrica y circuito desbalanceado.

Equivalente a la Recomendación V.10:

X.26 (V.10): características eléctricas de circuitos de intercambio desequilibrados, de doble corriente, de uso general con equipos integrados en el campo de las comunicaciones de datos.

Recomendación X.27: circuito balanceado y transmisión simétrica.

Alcanzar hasta 10 Mbps, dependiendo de la distancia.

Equivalente a la Recomendación V.11:

X.27 (V.11): características eléctricas de circuitos de intercambio equilibrados, de doble corriente, de uso general con equipos integrados en el campo de las comunicaciones de datos.

6.6.3.4 Características de normalización para el nivel lógico

- Descripción de los circuitos.
- La norma establece cuatro tipos de circuitos:
 - Circuitos de datos
 - Circuitos de control
 - Circuitos de sincronización
 - Circuitos de tierra
- Características de los procedimientos
 - Establecimiento de la llamada
 - Transferencia de datos: es dúplex y se realiza por los circuitos T y R
 - Liberación de la llamada: se produce por la vuelta a 0 (estado inactivo) de los circuitos C e I.
 - Sincronismo: el circuito S se utiliza para la sincronización del ETD y del ETCD (comunicaciones sincrónicas). El circuito B se usa opcionalmente.

6.6.4 Interfaz USB

6.6.4.1 Consideraciones generales

La interfaz USB es similar a la RS 232 o a la IEEE 1242 (Centronics) pero permite conectar múltiples dispositivos al mismo tiempo, por cuanto funciona como un bus.

Universal Serial Bus (USB): desarrollada y estandarizada en 1995 por un conjunto de empresas.

Versiones:

- **Versión 1.0** *Low Speed USB* (1996) hasta 1,5 Mbps.
- **Versión 1.1** *Full speed USB* (1998) hasta 12 Mbps.
- Versión 2.0 High speed USB (2000) hasta 480 Mbps.
- Versión 3.0 Superspeed USB (2008) hasta 5 Gbps.

6.6.4.2 Características particulares

- Permite la interconexión de diferentes dispositivos y equipos.
- Juego de conectores adaptado para distintas aplicaciones.
- La interfaz estandarizada, simple, práctica y económica.
- No requiere un conjunto de diferentes cables o conectores.
- Permite la conexión en caliente (conexión de dispositivos encendidos)
 - USB 2.0 habla de attach/removal
 - USB 3.0 habla de *hot insertion/removal*.
- *Plug and Play:* el sistema operativo identifica automáticamente un dispositivo ni bien este es conectado y carga el drive apropiado para que el mismo esté inmediatamente operativo.

- Como bus admite **hasta 127 periféricos** (no todos a la vez).
- **Proporciona energía eléctrica** a ciertos dispositivos conectados a la interfaz USB, que no requieren un elevado consumo de potencia.
- Bajo costo de implementación.
- Protocolo complejo ejecutado fundamentalmente por el equipo que tiene los periféricos conectados.

6.6.4.3 Características técnicas

- Soporta en tiempo real voz, datos, audio y video.
 Para interconectar un disco rígido usa la modalidad best effort.
- Longitud máxima de cables:
 - USB 1.1 3 metros
 - USB 2.0 5 metros;
- Las versiones son compatibles entre ellas.
- Funciona en modo serie y el intercambio de datos es bidireccional.
- En la versión 2.0 funciona en modo *half-dúplex*.

CARACTERÍSTICAS	APLICACIONES	ATRIBUTOS
LOW-SPEED Equipos interactivos 10 - 100 Kbps	Teclados Mouses Juegos Periféricos Varios Equipos derealidad virtual	Bajo costo Fácil de usar Conexión y desconexión dinámica Conectividad de Múltiples Periféricos
FULL-SPEED	RTPC	Bajo costo
TOLE-STEED	Banda Ancha	Fácil de usar
Telefonía, Audio, Video Comprimido	Audio	Latencia y Ancho de Banda Garantizados
500 Kbps - 10 Mbps	Micrófonos	Conectividad de Múltiples Periféricos
HIGH-SPEED		Bajo costo
	Video	Fácil de usar
	Almacenamiento	Gran Ancho de Banda
	Aplicaciones dinámicas	Conexión y desconexión dinámica
Video, Almacenamiento	Banda Ancha	Conectividad de Múltiples Periféricos
25 - 400 Mbps		Latencia y Ancho de Banda Garantizados
SUPER SPEED		Bajo costo
	RTPC	Fácil de usar
	Banda Ancha	Gran Ancho de Banda
	Audio	Conexión y desconexión dinámica
Video, Almacenamiento	Micrófonos	Conectividad de Múltiples Periféricos
Hasta 5 Gbps		Latencia y Ancho de Banda Garantizados

6.6.4.4 Características de normalización para el nivel mecánico Características de los conectores:

- Simplicidad de conexión, requiere muy poca fuerza y es difícil estropearlo.
- No se requieren tornillos, clips o sujetadores
- Diseño robusto y contactos eléctricos están protegidos por cápsulas metálicas, revestidos con material aislante.

USB

Estándar A

Estándar B

1 2

4 3

- D+

Pin	Nombre	Color del cable	Descripción
1	VCC	Rojo	+ 5 v
2	D -	Blanco	Datos -
3	D+	Verde	Datos +
4	GND	Negro	Tierra

Los hilos se denominan D+ y D-

Señalización diferencial en semidúplex para combatir los efectos del ruido electromagnético en enlaces mas largos (estos no pueden tener mas de 5 m).

Interconexión de dos dispositivos que funcionan con el bus USB:

Hay otro tipo de conectores (Mini–A, Mini–B, Micro–AB y Micro–B) para distintas aplicaciones.

6.6.4.5 Características de normalización para el nivel eléctrico

La normalización del nivel eléctrico de la interfaz USB comprende los aspectos que hacen a la señalización, la distribución de potencia y otras especificaciones que corresponden a la capa física.

En la operación *High-Speed* (480 Mbps), el cable debe estar conectado en cada extremo a través de una resistencia a tierra mitad de la impedancia diferencial del cable, o sea 45 Ω .

Señales:

- La tensión entre positivo y tierra: $5,25 \text{ Volt} \ge V \ge 4,75 \text{ Volt } (5 \text{ V} 5\%).$
- La corriente para USB 2.0 es de 500 mA para cinco dispositivos externos. Para USB 3.0 es de 900 mA para seis dispositivos.

6.6.4.6 Características de las señales en banda base que utiliza Para la transmisión de paquetes utiliza el código banda base NRZI. La codificación de un "0" es representada por un cambio de nivel. La transmisión de un "1" es representada sin cambio.

6.6.4.7 Conexión de dispositivos a través de hub

La conexión de varios dispositivos a un solo computador se puede hacer de dos maneras:

- -mediante la existencia de varios puertos USB
- -mediante la existencia de un *hub* que centralice las conexiones.

En el computador la conectividad permite que varios dispositivos periféricos se conecten directamente a el mediante el *root hub* (hub raiz), administrado por el hardware de la USB.

Se pueden instalar varios puertos sobre el mismo *mother board* (placa madre).

Si la cantidad de periféricos no supera la cantidad de puertos disponibles, cada uno de ellos quedara conectado directamente al *root hub*.

La topología es de tipo estrella, con centro en el *root hub*, y con los hub externos puede tomar la forma de árbol descendente.

Los equipos pueden tener distintas versiones de la interfaz.

Los hub externos se pueden instalar en cascada hasta en cinco niveles.

6.6.4.8 Características de normalización para el nivel lógico

La USB tiene un **único controlador** dentro del *host*.

Los dispositivos no pueden utilizar el bus a menos que su controlador en el *host* los autorice.

El controlador permitirá que los dispositivos se comuniquen de a uno a la vez.

El ancho de banda disponible varía según la versión de la interfaz que está instalada.

Nunca dos dispositivos pueden conectarse en forma directa entre si, sólo a través del *host*.

El protocolo funciona con cuatro tipos diferentes de paquetes.

Son identificados por medio de un campo que se denomina **Campo Identificador de Paquetes** (**PIF** *Packet Identifier Field*).

6.6.4.10 Características principales de la versión USB 3.0

- Preserva el modelo de funcionamiento y de ser de un bus con una notable sencillez.
- Es compatible con todas las versiones anteriores.
- Mejora significativamente la velocidad máxima de transferencia.
- Proporciona mas potencia a los dispositivos conectados.
- Posee una arquitectura de dual-bus:
 - -uno funciona para ejecutar la función denominada SuperSpeed (bus 3.0)
 - -el segundo ejecuta las funciones que requieren las versiones anteriores para permitir la compatibilidad (1.0, 1.1. y 2.0).
- Agrega al cable de conexión dos pares mas para ejecutar las funciones del bus SuperSpeed.
- Para permitir la operación de los cuatro cables que se agregan al cable de conexión, el conector, si bien es compatible con las versiones anteriores, agrega cuatro nuevos contactos.
- Aumenta las funciones de la capa de enlace, haciendo mas flexible su funcionamiento.

6.6.4.11 Diferencias significativas entre las versiones 2.0 y 3.0

Características	Versión 2.0 high speed	Versión 3.0 superspeed	
Velocidad de transmisión	Low Speed 1,5 Mbps; Full Speed 12 Mbps y High Speed 480 Mbps.	5 Gbps	
Interfase de datos	Semiduplex con dos alambres. Señaliza- ción diferencial. Transmisión unidirecciio- nal.	Dual simplex con cuatro alambres. Transmisión bidireccional simultánea. Señalización diferencial, con utilización separada para el uso desde USB 2.0.	
Cable de transmisión de las señales de datos	Dos alambres para señales Low Speed, Full Speed o High Speed.	Seis alambres: Cuatro para transmisión Super Speed; y dos para las modalida- des de la USB 2.0	
Protocolo utilizado en el bus	Tráfico de paquetes transmitidos en la modalidad broadcast a todos los dispositivos. El host interroga (sondea ⁶⁷) a cada uno de los dispositivos.	Tráfico de paquetes ruteados en formas explícita. El host mantiene con cada uno de los dispositivos un flujo de vtráfico asincrónico.	
Potencia del bus	Proporciona potencia para dispositivos de bajo consumo o en estado latente confi- gurados de todas sus versiones (de Low a High Speed).	Trabaja de la misma manera que USB 2.0 con un 50% de incremento para dispositivos sin configurary hasta 80 si está configurado.	
Estado de los puertos	El hardware del puerto detecta las co- nexiones; y el software del sistema usa comandos para la transición al estado ha- bilitado.	El Hardware detecta las conexiones y po- ne al puerto en estado operacional listo para la comunicación de datos.	

6.6.5 Interfaz FireWire-IEEE 1394

6.6.5.1 Consideraciones generales

Bus que opera en la capa física.

Interconecta a muy alta velocidad en modo serie.

Usado para la transferencia de datos en tiempo real de dispositivos multimedia, tales como videocámaras, dispositivos de audio y video.

La comunicación no depende de un control centralizado.

Es un modelo de protocolo peer-to-peer.

6.6.5.2 Características particulares

- Opera en forma totalmente digital, evitando las conversiones.
- Conectores con dimensiones reducidas y cable delgado.
- Enlaces punto a punto hasta una distancia de 4,25 metros con topología de árbol.
 Con repetidores puede ser extendido hasta los 100 metros o más con cable UTP o fibra.
- Permite la conexión *Plug and Play*.
- Soporta hasta 64 dispositivos sobre una red.
- Permite la conexión en cadena (denominada Daisy Chained), es decir, sin necesidad de contar con un *hub* o un *switch*.
- Interconecta dos o mas dispositivos sin necesidad de que la interfaz requiera de un computador para su funcionamiento.
- Puede trabajar en modo sincrónico o asincrónico.

6.6.5.3 Características técnicas del cable y los conectores

Los cables y conectores utilizan seis o cuatro contactos.

Dos pares llevan las señales de datos y un par, las de alimentación de potencia. También pueden usarse cables sin alimentación de energía.

	Conector de 4 pin	Conector de 6 pin	Señales	Descripción
200		1	Tensión	+30v unregulater DC
		2	Tierra	TIERRA
	1	3	datos B	Par trenzado B
	2	4	datos B	
	3	5	datos A	Par trenzado A
	4	6	datos A	

6.6.5.4 Diferentes estándares

• Norma IEEE-1394-1995 (FireWire): estándar original denominado FireWire 400.

Puede transferir datos a 100, 200 y 400 Mbps en modo semidúplex (valores aproximados).

Cada modo se conoce como S100, S200 y S400.

Estándar S400: cable hasta 72 metros y con conector de seis contactos puede recibir potencia del orden de 7/8 W.

- Norma IEEE-1394a-2000 (FireWire): mejora de la original mantiene compatibilidad. Incorpora un conector con cuatro contactos y un cable con cuatro conductores (sin energía).
- Norma IEEE-1394b-2002 (FireWire): conocida como FireWire 800 o S800.

Transfiere hasta 800 Mbps en modo dúplex.

Cambia codificación y señalización (antes *data/strobe* o Modo Alfa, ahora esquema *8B10B*).

Compatible con sistemas anteriores al S400, pero hay incompatibilidad en los conectores y cables (adaptadores).

- Norma IEEE-1394c-2006 (FireWire): conocida como S800.
 - Usa conectores RJ-45 categoria 6a.
- Norma IEEE-1394d-2009 (FireWire): en el 2009 se busca superar 6 Gbps.

6.6.6 Comparación entre USB y IEEE 1394

- USB es protocolo maestro-esclavo, pero IEEE 1384 es un protocolo *peer-to-peer* (más eficiente).
- USB requiere un computador para el controlador y su *hub root* . FireWire no tiene ese requisito, cualquier nodo puede controlar la red.
- USB proporciona una tensión de línea de 5 V y hasta 500 mA de corriente (2,5 W de potencia).
 - IEEE 1394 puede suministrar hasta 30 V y hasta 60 W (típico es menor de 20 W).
- USB es simple y de muy bajo costo.
 FireWire es para equipos de mayor requerimiento (aplicaciones en modo sincrónico como audio y video).
- USB conecta teclados, mouse, impresoras, memorias *flash* o dispositivos de almacenamiento de baja capacidad.
 - IEEE 1394 conecta discos rígidos externos de gran capacidad, equipos de audio, filmadoras o equipos de video.
- IEEE 1394 posee mayor ancho de banda y menos latencia que USB.

6.7 Sincronismo

6.7.1 Concepto de sincronismo

El receptor debe adquirir una señal de reloj para alinear los bits recibidos.

El sincronismo es fundamental en los sistemas de transmisión, para que diferentes equipos intercambien datos sin errores.

Diferentes partes de un sistema alinean sus escalas de tiempo o a adoptan una base de tiempo común.

6.7.2 La escala del tiempo

Un reloj mide el tiempo por métodos aproximados o de mucha precisión.

Forma simple: un generador de oscilaciones y un contador de las mismas.

(Si sabemos cuanto dura cada oscilación, podemos saber el tiempo transcurrido).

El reloj puede usar el movimiento mecánico de un péndulo o la vibración de átomos en un cristal como el cuarzo.

La unidad de tiempo es el <mark>segundo</mark>, antes definido como la 86 400 ava parte de la duración del día solar medio.

Actualmente la medición del segundo se efectúa tomando como base el Tiempo Atómico (TA).

La escala del tiempo debe reflejar necesariamente los cambios de velocidad de la rotación de la tierra para evitar errores en la navegación.

En la escala UTC el tiempo es medido utilizando relojes atómicos.

Cuando la diferencia entre el tiempo atómico y el basado en la rotación de la tierra se aproxima a un segundo, se introduce un salto de un segundo entero en la escala UTC (*leap second*) una vez por año.

La escala UTC comienza a las 00:00:00 horas en meridiano de Greenwich y finaliza a las 23:59.59.

La superficie terrestre fue dividida en 24 husos horarios.

6.7.3 Las funciones de las distintas señales de tiempo

Las señales de tiempo tienen funciones horarias y funciones patrones.

Función horaria: los relojes presentar una escala horaria en tiempo real.

Ejemplo: la hora UTC o la hora oficial.

Para generar la señal horaria los relojes toman una señal de un reloj externo con mucha mayor precisión.

Sincronismo de tiempo: alinea a través de las redes la hora UTC.

Función patrón: proporcionada por los relojes de alta precisión para asegurar el sincronismo de tiempo y de frecuencia.

Sincronismo de frecuencia: distribución de señales de tiempo para sincronizar los distintos equipos de una red .

Cada red tiene sus propios relojes patrones primarios y secundarios.

Estándar primario: señal referencia para la sincronización de frecuencia de otros relojes.

Ejemplo: relojes de cesio.

Estándares secundarios: fuente de referencia para la sincronización que debe ser sincronizado por una fuente primaria.

Ejemplo: relojes de rubidio o de cuarzo.

6.7.4 Distintos tipos de sincronismo

6.7.4.1 Sincronismo de bit

Procedimiento para determinar el momento en que se debe empezar a contar un bit y para asegurar que se mantenga su periodo constante.

Dos técnicas:

Se genera una señal de reloj que sincroniza el flujo de datos del código en banda base.

Otra técnica extraer la señal de sincronización de la propia señal recibida.

Alternativas del sincronismo de bits: el periodo se puede empezar a contar al principio, durante un estado intermedio o al final.

La frecuencia del reloj que muestrea la línea de comunicaciones debe ser mucho mayor que la velocidad con que llegan los datos por la misma línea.

El sincronismo de bit permite :

- -en un receptor conocer con precisión los datos recibidos
- en un repetidor regenerativo regenerar las señales digitales deformadas.

6.7.4.2 Sincronismo de byte

Procedimiento para determinar el comienzo y la finalización de la transmisión de un byte o carácter.

Muy importante en el caso de la transmisión asincrónica.

6.7.4.3 Sincronismo de trama

Procedimiento para sincronizar la unidad de datos que se utiliza en el nivel de enlace. Hay un mecanismo de detección de errores en un campo especifico de la trama.

Estrategias de sincronización de tramas:

- Cuando el receptor pierde el sincronismo de trama, realinea a través de los bits de sincronismo.
- Cuando está sincronizado se controlan los delimitadores.

6.7.4.4 Sincronismo de paquetes

Técnica de paquetes: divide el mensaje en segmentos y agrega una cabecera.

Los paquetes son ruteados según el estado de la red y la programación de los conmutadores de paquetes o *routers*.

Los paquetes pueden ser de longitud variada o fija.

Paquetes de longitud fija son llamados comúnmente celdas.

El intercambio de paquetes es efectiva para integrar datos, voz u otro tipo de trafico en tiempo real en una sola red.

Características:

- Debido a las colas dentro de la red, los paquetes sufren demoras (o *delay*) aleatorias
- Los paquetes de una misma fuente son ruteados en forma independiente, cada uno puede seguir un camino diferente en la red y podrían arribar a sus destinos desordenados.
- No es factible recuperar el sincronismo a nivel de paquetes en el extremo receptor sin incorporar procedimientos específicos independientes del sincronismo a nivel de bits de la capa física.

6.7.4.5 Sincronismo de red

El sincronismo de red distribuye señales de tiempo y frecuencia desde los relojes patrones a los distintos equipos utilizando los vínculos existentes.

Funciones:

- Sincronizar los relojes patrones.
- Alinear los relojes ubicados en los equipos
- Sincronizar las redes satelitales, las móviles y sus respectivos terminales.
- Alinear las fases de los distintos conjuntos de antenas.
- Permitir el posicionamiento para facilitar la navegación.

6.7.5 Los relojes utilizados en la red

6.7.5.1 Los relojes patrones

Las características principales son: exactitud, estabilidad a corto y a largo plazo.

Relojes patrones de cesio son el estándar primario.

Son osciladores atómicos que operan en la frecuencia de resonancia del Ce 133.

Los relojes patrones de cesio no requieren un ajuste de frecuencia pero admiten la introducción de una señal externa de referencia de sincronismo.

Relojes patrones para estándar secundario son los relojes de rubidio o de cuarzo.

6.7.5.2 Características de calidad de los relojes patrones

La red de sincronismo permite que los relojes se vayan sincronizando en el siguiente orden:

Cesio - Rubidio - Cuarzo.

La calidad de los relojes es definida sobre la base de dos parámetros: estabilidad y precisión.

Estabilidad es la capacidad de generar intervalos de tiempo o de frecuencia de valores constantes, a través de periodos prolongados.

Precisión es la relación entre el resultado de la comparación entre

- -los valores medidos
- -los valores reales.

Un reloj puede tener un error de frecuencia importante (por ser poco preciso), pero el error se puede mantener constante en el tiempo (por ser muy estable).

6.7.6 Transmisión asincrónica

6.7.6.1 Introducción

En el receptor se debe identificar en qué partes del mensaje recibido se producen las transiciones.

La trasmisión asincrónica lo hace analizando los caracteres.

6.7.6.2 Descripción del procedimiento asincrónico

- Antes de que el sistema se active, la línea siempre se encuentra en estado de tensión máxima (un "1").
- El bit de arranque indica donde empieza el carácter transmitido Corresponde a una señal de mínima tensión en la línea (un "0")
- Luego se transmiten los bits de datos que se almacenan en una memoria intermedia
- El bit o los bits de parada se encargan siempre de volver a colocar la señal en el nivel máximo

• Mientras no vuelva a recibirse un bit de arranque, la señal quedara en reposo en el nivel

máximo.

6.7.6.3 Características de la transmisión asincrónica

- Los terminales asincrónicos se denominan terminales en modo carácter.
- La transmisión asincrónica se denomina también arrítmica o de start-stop.
- La transmisión asincrónica se utiliza a velocidades de modulación de hasta 1 200 baudios.
- Si se utiliza un bit de arranque y dos de parada en la transmisión de una señal con un código de 7 bits mas uno de paridad, el rendimiento es del 72% (8 bits de 11 transmitidos).
- Entre dos caracteres puede mediar cualquier separación en tiempo.

Ventajas y desventajas:

- En caso de errores se pierde siempre una cantidad pequeña de caracteres
- Bajo rendimiento de transmisión (hay bits de sincronismo por cada carácter)
- Permite el uso de equipamiento económico y tecnología menos sofisticada.
- Se adecúa más fácilmente en aplicaciones donde el flujo transmitido es más irregular.
- Son especialmente aptos cuando no es necesario lograr altas velocidades.

D = tiempo variable entre caracteres Bit de parada = 1,5 d d = duración de cada bit

6.7.7 Transmisión sincrónica

6.7.7.1 Introducción

Se desea mayor proporción de bits útiles (información) respecto del total.

Tecnologías mas sofisticadas permiten transmisión conjunta de señales de sincronismo con las señales de datos.

6.7.7.2 Descripción del procedimiento sincrónico

Hay dos relojes, uno en el receptor y otro en el transmisor.

La información útil es transmitida entre dos grupos de Bytes denominados delimitadores llamados *flag* (bandera).

Un grupo delimitador es el de encabezado, que se encarga de resincronizar los relojes (osciladores), y el de terminación, que suele cumplir varias funciones.

Los relojes deben permanecer estables durante un tiempo largo (osciladores con precisión superior a 1:100 000).

Los relojes se resincronizan periódicamente usando códigos de banda base.

6.7.7.3 Características de la transmisión sincrónica

• Los bloques transmitidos tiene entre 128 y 1 024 Bytes.

Si son cortos se pierde rendimiento.

Si son largos, en caso de errores se demora la retransmisión.

- La señal de sincronismo en el extremo fuente puede ser generada por el equipo terminal de datos o por el equipo modem (nunca ambos simultáneamente).
- Rendimiento de la transmisión sincrónica:
 - -con bloques de 1 024 Bytes
 - -se usan no más de 10 Bytes de cabecera y terminación
 - -rendimiento supera el 99%.

Ventajas y desventajas:

- Alto rendimiento en la transmisión.
- Los equipamientos necesarios son de tecnología mas compleja y de costos más altos.
- Aptos para transmisiones de altas velocidades (superiores a 1200 baudios).
- El flujo de datos es más regular.
- Si hay errores de transmisión, hay muchos bytes para retransmitir

Dos tipos de procedimientos sincrónicos relacionados con los protocolos:

- -orientados al bit
- -orientados al carácter.