Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EN3ES11 Principles of Electrical Engineering

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

cces	sary. r	votations and symbols have then usual meaning.	
Q.1	i.	Which of the following parameter remains same for every element in a series circuit?	1
		(a) Current (b) Voltage (c) Resistance (d) None of these	
	ii.	Two resistors of 2-ohm and 3-ohm are connected in series, the	1
		equivalent resistance will be-	
		(a) 2 ohm (b) 3 ohm (c) 5 ohm (d) 1 ohm	
	iii.	If a 6 ohm, 2ohm and 4ohm resistor is connected in delta, find the equivalent star connection?]
		(a) 10hm, 20hm, 30hm (b) 20hm, 40hm, 70hm	
		(c) 5ohm, 4ohm, 2ohm (d) 1ohm, 2ohm, 2/3ohm	
	iv.	Application of Thevenin's theorem to a circuit yields?	1
		(a) Equivalent voltage source and resistance in series	
		(b) Equivalent current source and resistance in parallel	
		(c) Both (a) and (b)	
		(d) None of these	
	v.	Active power consumed by purely capacitive circuit is-	1
		(a) Zero (b) Infinite (c) 1 Watt (d) None of these	
	vi.	Power factor of purely inductive circuit is-	1
		(a) One (unity) (b) Zero lagging	
		(c) Zero leading (d) None of these	
	vii.	The full-load iron loss of a transformer is 1600 W. At half-load, the	1
		iron loss will be-	
		(a) 1600 W (b) 6400 W (c) 400 W (d) 800 W	
	viii.	Unit of magnetic flux is-	1

(b) Ohms

(d) None of these

(a) Ampere-turns/Weber

(c) Weber

- ix. Which of the following is not a characteristic of an ideal transducer? 1
 - (a) High dynamic range
- (b) Low linearity
- (c) High repeatability
- (d) Low noise
- x. Which of the following is an example of electrical safety device?
 - (a) Voltmeter

- (b) Ammeter
- (c) Wattmeter
- (d) Fuse
- Q.2 i. Define the following-

4

- (a) Ideal and practical voltage source
- (b) Ideal and practical current source
- ii. Determine the current flowing through 5-ohm resistor by mesh 6 analysis?

OR iii. Determine the current flowing in 6-ohm resistor by nodal analysis? 6

Q.3 i. State and explain Norton's theorem?

- 4
- ii. Determine the current flowing in 4-ohm resistor by superposition **6** theorem?

OR iii. Determine the current flowing in 1-ohm resistor by Thevenin's **6** theorem?

Q.4	i.	Define the following-
		(a) Form factor (b) Peak factor
		(c) Power factor (d) Admittance
	ii.	A coil of resistance 100 ohms and inductance 100 micro-Henry is
		connected in series with 100 pico-Farad capacitor. The circuit is
		connected to a 10 V variable frequency source. Calculate
		(a) Resonant frequency (b) Quality factor of the circuit
		(c) Voltage across L and C at resonance condition.
OR	iii.	Three impedances of (70.7+j70.7) ohms, (120+j160) ohms, (120+j90)
		ohms are connected in parallel across 250 V supply. Determine the
		following:
		(a) Impedance of the circuit
		(b) Supply current
		(c) Power factor
Q.5	i.	Compare electric circuit and magnetic circuit in brief.
	ii.	What are the ideal properties of a transformer? An ideal transformer
		with rating 20 kVA and 100/200 V, determine the rated value of
		primary and secondary current.
OR	iii.	Explain working principle of transformer. Derive the condition for
		maximum efficiency of a single-phase transformer.
Q .6		Attempt any two:
	i.	Define earthing and necessity of earthing. What are the safety devices
		used in electrical system?

Explain classification of transducer with applications.

Explain basic layout of the distribution system.

7

5

Scheme of Marking

Faculty of Engineering End Sem Examination Dec-2023

Principals of Electrical Engineering (T) – EN3ES11 (T)

Programme: B.Tech. Branch/Specialisation: all

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)	(a)	
	ii)	(c)	1
	iii)	(d)	1
	iv)	(a)	1
	v)	(a)	1
*	vi)	(d)	1
	vii)	(a)	1
	viii)	(c)	1
	ix)	(b)	1
	x)	(d)	1
			1
Q.2	i.	Define Part (a) – 2 marks	-
		Define Part (b) – 2 marks	4
	ii.	Each loop equation – 1 mark, 3 equation 3 - marks	6
OR	iii.	Ans: Current through 5Ω resistor 2.6A	
	111.	Each nodal equation – 1 mark, total 3 equations 3 - marks. Ans. Current through 6Ω resistor 0.46A	6
		0	
0.2			
Q.3	i.	State and explain Nortons	4
	ii.	Single source circuit making- 1 marks, total 2 circuit 2-marks, star-delta/delta-star transformation in voltage only circuit 1- marks, Ans. Current through 4Ω resistor(5.12A) 2-marks	6
OR	iii.	To draw Rth circuit 1-mark, calculate Rth 1-mark, Draw Vth circuit 1 mark, calculate Vth 1 marks, draw thevenin's equivalent circuit 1-mark, load current calculation 1 marks Ans: Rth = 2Ω , Vth = $4V$, IL= $1.3A$	6
2.4	i.	Define each part 1-mark, total 4 part 4-marks	
`		Part 1-mark, total 4 part 4-marks	4

	ii.	Draw circuit-1.5 marks (a)1.5 marks (b) 1.5 marks (c) 1.5 marks	6
		Ans: F0= 1.59 Mhz, Q= 10, V=100V	
OR	iii.	Draw circuit-1.5 marks	
		(a)1.5marks (b) 1.5 marks (c) 1.5 marks	6
		Ans: Zeq= $33.16+j32.44 \Omega$, I= $5.388A$, pf=0.714	
		33.10+J32.44 S2, 1= 3.388A, pf=0.714	
Q.5	i.	Comment	
Q.5		Compare electrical and magnetic circuit	3
	ii.	Ideal properties of transformer: 4-marks	7
		Calculate Ip and Is: 3-marks	'
		Ans: $Ip = 200A$, $Is = 100 A$	
OR	iii.	Working principal of transformer: 4 marks	
		Drive condition for efficiency: 3 marks	7
		one, s marks	
Q.6			
	i.	Define earthing: 2-marks	
		Necessity of earthing: 1 marks	5
		Safety devices: 2 marks	
	ii.	Classification of transducer: 3 marks	
		Applications: 2 marks	5
OR	iii.	Layout of distribution system: 3 marks	
		Explanation 2 marks	5
		2. Presidential 2 marks	

Much Marie

Suena Verified.

Auragento.

16/12/2023