Introduction to Week Five

Initial Value Problems

- Video: Euler Method | Lecture 48 7 min
- Reading: When the Euler Method is Exact
 10 min
- Video: Modified Euler Method | Lecture 49 9 min
- Reading: When the Modified Euler
 Method is Exact
 10 min
- Video: Runge-Kutta Methods | Lecture 50 12 min
- Video: Second-Order Runge-Kutta
 Methods | Lecture 51
 7 min
- Reading: Ralston's Method 5 min
- Reading: Runge-Kutta Methods and Quadrature Formulas

 10 min
- Video: Higher-Order Runge-Kutta
 Methods | Lecture 52
 10 min
- Reading: Fourth-Order Runge-Kutta
 Method and Simpson's Rule
 10 min

Systems of Differential Equations
Initial Value Problems in MATLAB

Boundary Value Problems

Quiz

Programming Assignment: The Two-Body Problem

When the Modified Euler Method is Exact

Let $\dot x=bt$, with initial condition $x(0)=x_0$ and b a constant. With $t=n\Delta t$, show that the Modified Euler method results in the exact solution

$$x(t)=x_0+rac{1}{2}bt^2.$$

✓ Completed

√ Dislike

Go to next item

🖒 Like

Report an issue