Sep 23, 14 13:55			: HW4:The	isen	Page 1/2
*	, 0.26151, 0.3191 , 0.21715, 0.2666		.52981, 0.64670 .46117, 0.61612	<u> </u>	
*-	, 0.28271, 0.3587	7, 0.38036, 0	.39697, 0.42963		
_ *	, 0.28271, 0.3587 , 0.49841, 0.5207 , 0.48495, 0.5169	3, 0.53804, 0 1. 0.55418 0	.55058, 0.56790 .55961, 0.58869		
			=====		
Model Name: ZDT3 Searcher Name: MaxWalkSa	+				
Seed: 1					
MaxWalkSat Options: Prob: 0.75					
MaxTries: 500 MaxChanges	500				
Threshold: 1e-06 Slices:					
Time to run (s): 0.31979	3				
Average per run (s): 0.0		26 0 00526	0.00536	00536	
	, -0.00536, -0.00		====	00536	
- *	, 0.00379, 0.0045	0.00713, 0	.00753, 0.01312		
- * Î	, 0.00409, 0.00493 , 0.00409, 0.00643	2, 0.00728, 0 L, 0.00735, 0	.01077, 0.01338 .00876, 0.01177		
- *	, 0.00409, 0.0064 , 0.00409, 0.0061 , 0.00409, 0.0066 , 0.00399, 0.0072	1, 0.00783, 0	.01127, 0.01879		
* - *	, 0.00409, 0.00669	9, 0.00843, 0 R 0.00900 0	.01160, 0.01601 .01855, 0.02151		
- *	, 0.00409, 0.0054	/, U.UU651, U	.00/14, 0.01339		
*	, 0.00409, 0.00608 , 0.00522, 0.0066		.01537, 0.02215 .00981, 0.01614		
*	, 0.00458, 0.0069	5, 0.00776, 0	.00954, 0.01383		
*_	, 0.00382, 0.0053	2, 0.00753, 0	.00944, 0.01623		
* - *-	, 0.00409, 0.00468 , 0.00409, 0.00408		.00739, 0.00827 .01191, 0.02317		
- *	, 0.00409, 0.0061	7, 0.00780, 0	.01223, 0.02425		
* -	, 0.00407, 0.0051 . 0.00433. 0.0056	L, 0.00686, 0 5, 0.00738, 0	.00809, 0.01101 .00997, 0.02194		
- *	, 0.00535, 0.0072	0, 0.00851, 0	.01097, 0.01894		
- * *	, 0.00409, 0.00499 , 0.00499, 0.0078	5, 0.00646, 0 9, 0.00864, 0	.00988, 0.01383		
*	, 0.00499, 0.0065	7, 0.00782, 0	.01158, 0.01487		
*	, 0.00412, 0.0060	0, 0.00751, 0	.00922, 0.01968		
*	, 0.00452, 0.00683 , 0.00482, 0.0066	L, 0.00841, 0), 0.00715, 0	.01032, 0.02064 .00823, 0.01186		
* -	, 0.00409, 0.0071	3. 0.00951. 0	.01204. 0.01392		
*	, 0.00467, 0.0065 , 0.00442, 0.0055	5, 0.00851, 0 9, 0.00752, 0	.01320, 0.01654 .01284, 0.02053		
*	, 0.00409, 0.0060	5, 0.00732, 0	.00960. 0.02046		
*	, 0.00409, 0.0075	5, 0.00864, 0	.01129, 0.01993		
* *	, 0.00409, 0.00463 , 0.00428, 0.0058		.00819, 0.00987 .01063, 0.01788		
- *	, 0.00377, 0.0045	3, 0.00584, 0	.01037, 0.02271		
- * *	, 0.00383, 0.00449 , 0.00409, 0.0075	5, 0.00696, 0 7, 0.00904, 0	.00954, 0.01068 .01426, 0.02366		
*	, 0.00625, 0.0079	5, 0.00977, 0	.01180, 0.02071		
* -	, 0.00377, 0.0067				
*	0 00456 0 0050	1 0 00772 0	.00910, 0.01676		
*	, 0.00430, 0.0038 , 0.00551, 0.0069 , 0.00409, 0.0050 , 0.00409, 0.0050	7, 0.00859, 0	.01414, 0.02303		
- *	, 0.00409, 0.0050	L, 0.00742, 0 9, 0.00625, 0			
* -	, 0.00448, 0.0074	0.00814, 0	.00961, 0.01400		
- * *	, 0.00441, 0.0053 , 0.00409, 0.0069	5, 0.00728, 0 5, 0.00802, 0	.00818, 0.01303 .01429, 0.02147		
- *	, 0.00491, 0.0067	L, 0.00923, 0	.01192, 0.02005		
* -	, 0.00364, 0.00409, 0.0075	9, 0.00534, 0	.00926, 0.01046		
- *	, 0.00409, 0.0055		.00831, 0.01099		
*	, 0.00409, 0.0067	5, 0.00768, 0	.01276, 0.01770		
*	, 0.00409, 0.0059 , 0.00418, 0.0069	7, 0.00901, 0 2, 0.00847, 0	.01241, 0.01663 .01151, 0.01344		
*	, 0.00409, 0.0071	1, 0.0085/, 0	.01122, 0.0205/		
* *	, 0.00466, 0.0065 , 0.00409, 0.0068		.01339, 0.02301 .01026, 0.01993		
*	, 0.00493, 0.0060	5, 0.00895, 0	.00983, 0.02039		
* -	, 0.00409, 0.0073	7, 0.01027, 0	.01343, 0.02333		
·	, 0.00504, 0.0065		.01177, 0.01719		
*	, 0.00250, 0.0054	3, 0.00746, 0	.00916, 0.01269		
*	, 0.00409, 0.0066 , 0.00358, 0.0058	4, U.UU713, 0 1, 0.00639. n	.uu883, 0.01336 .01160, 0.02331		
- *	, 0.00409, 0.0046	2, 0.00767, 0	.01305, 0.02444		
	, 0.00612, 0.00713 , 0.00224, 0.0058		.01172, 0.01793 .00884, 0.01776		
:	, 0.00454, 0.0073	9, 0.01230, 0	.01454, 0.02107		
*	, 0.00409, 0.0062	5, 0.00898, 0	.01218, 0.02347		
- *	, 0.00483, 0.0062 , 0.00476, 0.0053		.00813, 0.02204 .01592, 0.02334		
-*	, 0.00359, 0.0064	3, 0.00781, 0	.01115, 0.02132		
*	, 0.00473, 0.0074		.01372, 0.02352		
- *	, 0.00218, 0.00528 , 0.00409, 0.0056		.00893, 0.01310 .00907, 0.01675		
- *	, 0.00388, 0.0051	1, 0.00826, 0	.01313, 0.02281		
*	, 0.00437, 0.00600 , 0.00391, 0.00500		.01044, 0.01646 .00771, 0.01302		
*	, 0.00457, 0.0067	L, 0.00701, 0	.01037, 0.01897		
*	, 0.00467, 0.0070	2, 0.00860, 0	.01256, 0.02216		
*	, 0.00472, 0.0074		.01315, 0.02029		

Sep 23, 14 13:55			ristopher Theisen
			Page 2/2
	*	CSC710SbSe: HW4:Theisen , 0.00453, 0.00914, 0.01260, 0.01801, 0.02511 , 0.00508, 0.00765, 0.01210, 0.01793, 0.02295 , 0.00462, 0.00798, 0.01110, 0.01467, 0.02146 , 0.00273, 0.00581, 0.00702, 0.01067, 0.02146 , 0.00409, 0.00712, 0.00740, 0.01004, 0.01338 , 0.00409, 0.00666, 0.00720, 0.01067, 0.01216 , 0.00409, 0.00606, 0.00720, 0.00814, 0.01216 , 0.00409, 0.00668, 0.00846, 0.01067, 0.01620 , 0.00509, 0.00683, 0.00846, 0.01023, 0.02180 , 0.00409, 0.00668, 0.00750, 0.00989, 0.02187 , 0.00419, 0.00655, 0.00755, 0.01257, 0.02294 , 0.00419, 0.00605, 0.00786, 0.01257, 0.02294 , 0.00419, 0.00602, 0.00714, 0.00811, 0.02157 , 0.00419, 0.00602, 0.00714, 0.00811, 0.02165 , 0.00409, 0.00665, 0.00979, 0.01131, 0.02236 , 0.00409, 0.00665, 0.00979, 0.01131, 0.02236 , 0.00409, 0.006653, 0.00772, 0.00952, 0.01330 , 0.00409, 0.006653, 0.00772, 0.00952, 0.01330 , 0.00409, 0.006653, 0.00772, 0.00952, 0.01330 , 0.00409, 0.006654, 0.00768, 0.01311, 0.02296 , 0.00409, 0.006659, 0.00743, 0.00952, 0.01270 , 0.00460, 0.00653, 0.00743, 0.00952, 0.02044 , 0.00460, 0.00669, 0.00743, 0.00952, 0.02044 , 0.00460, 0.00669, 0.00747, 0.00930, 0.02011 , 0.00460, 0.00669, 0.00747, 0.00930, 0.02011 , 0.00460, 0.00669, 0.00747, 0.00930, 0.02011 , 0.00460, 0.00669, 0.00739, 0.00805, 0.01115 , 0.00409, 0.00669, 0.00739, 0.00805, 0.01115 , 0.00409, 0.00669, 0.00739, 0.00805, 0.01115 , 0.00409, 0.00669, 0.00739, 0.00805, 0.01115 , 0.00409, 0.00668, 0.00739, 0.00805, 0.01115 , 0.00409, 0.00688, 0.00709, 0.00789, 0.01637 , 0.00409, 0.00688, 0.00709, 0.00789, 0.01637 , 0.00409, 0.00688, 0.00709, 0.00789, 0.01637 , 0.00409, 0.00688, 0.00709, 0.00789, 0.01637 , 0.00409, 0.00688, 0.00709, 0.00709, 0.00809, 0.01224 , 0.00491, 0.00688, 0.00709, 0.00809, 0.01220, 0.01893 , 0.00491, 0.00688, 0.00870, 0.01220, 0.01893 , 0.00491, 0.00688, 0.00870, 0.01220, 0.01893 , 0.00491, 0.00688, 0.00870, 0.01220, 0.01893 , 0.00491, 0.00666, 0.00791, 0.00975, 0.01819 , 0.00409, 0.00722, 0.00791, 0.00975, 0.01819 , 0.00409, 0.00666, 0.00791, 0.00995, 0.01443 , 0.00352, 0.00461,	

Sep	23, 14 1	4:01	csc710sbse: HW4:Theisen	Page 1/1
	name ,			
1 , 2 ,	x1 , x2 ,	51 800	11 (*), 0.34, 0.49, 0.51, 0.51, 200 (*), 6.00, 7.00, 8.00, 8.00,	0.60 9.00
ank ,	name ,			
1,	x1 ,	30	20 (*), 0.10, 0.20, 0.30, 0.30, 20 (*), 0.10, 0.20, 0.30, 0.30, 200 (0.40
2 ,	x2 ,	800	20 (*), 0.10, 0.20, 0.30, 0.30, 200 (*), 6.00, 7.00, 8.00, 8.00,	9.00
	name ,			
1 ,	x5 , x3 ,	30 35	20 (*), 0.10, 0.20, 0.30, 0.30, 15 (*-), 0.15, 0.25, 0.35, 0.35,	0.40
3,	x1 , x2 ,	80 80	20 (*), 0.10, 0.20, 0.30, 0.30, 15 (*-), 0.15, 0.25, 0.35, 0.35, 11 (*), 0.34, 0.49, 0.51, 0.51, 0.51, 20 (*), 0.60, 0.70, 0.80, 0.80, 20 (*), 0.60, 0.70, 0.80, 0.80, 0.80,	0.90
ank ,	name ,	med	igr	0.50
				00, 101.00
1 ,	x2 , x3 ,	10000	, 150 (*),99.00, 99.50, 100.00, 101. , 100 (*),99.00, 100.00, 100.00, 101. , 150 (*),99.00, 99.50, 100.00, 101. , 100 (*),99.00, 99.50, 100.00, 101.	00, 101.00
	name ,			.00, 101.00
				13.00
1 ,	x2 , x3 ,	1400 2300	0 (*),11.00, 11.00, 12.00, 13.00, 0 (*),14.00, 14.00, 22.00, 31.00, 0 (*),23.00, 23.00, 24.00, 31.00, 0 (*),32.00, 32.00, 33.00, 34.00,	31.00 31.00
	name ,			34.00
				11.00
1 , 1 ,	x2 , x3 ,	1100 1100	0 (*),11.00, 11.00, 11.00, 11.00, 0 (*),11.00, 11	11.00 11.00
	name ,			
1 , 1 ,	x1 , x2 ,	1100 1100	0 (*),11.00, 11.00, 11.00, 11.00, 0 (*),11.00, 11	11.00 11.00
				35.00
	name ,			0.06
2 ,	x3 , x1 ,	51 71	54 (*), 0.01, 0.10, 0.24, 0.55, 49 (*), 0.10, 0.30, 0.51, 0.67, 38 (), 0.28, 0.53, 0.71, 0.87,	0.88
ank ,	name ,	med	iqr	
1,	kids ,	2000	300 (*),16.00, 18.00, 20.00, 21.00, 12700 (-* -),32.00, 53.00, 78.00, 180. 3500 (-*-),43.00, 63.00, 82.00, 98.00, 20.00	23.00
2 ,	magazine ,	8200 44300	3500 (-*-),43.00, 63.00, 82.00, 98.00, 20200 (*	112.00 34.00, 711.00
			, , , , , , , , , , , , , , , ,	

```
csc710sbse: HW4:Theisen
                                                                                                                                                                                                                               Page 1/1
     Sep 23, 14 13:35
#From Class Discussion 8/26/2014
from _future__ import division
import sys,re,random,math
import numpy as np
sys.dont_write_bytecode = True
class Options:
    #Globals
    debug = False
    seed = 1
   #MaxWalkSat options
mws_prob = 0.75
mws_maxTries = 500
mws_maxChanges = 500
mws_threshold = .000001
mws_slices = 10
    #Simulated Annealing options
sa_kmax = 500
sa_cooling = .6
    def printGlobals(self):
    print "Seed:", self.seed
```

```
csc710sbse: HW4:Theisen
     Sep 23, 14 13:25
                                                                                                                                                                                                            Page 1/1
from __future__ import division
import sys,re,random,math
import numpy as np
sys.dont_write_bytecode = True
 from sk import *
def rdiv8():
  rdivDemo([
    ["novels", 287, 332, 443, 711, 534],
    ["kids", 23, 18, 16, 20, 21],
    ["magazine", 112, 98, 43, 63, 82],
    ["cookbooks", 232, 180, 32, 53, 78],
    ])
  rdiv8()
```

```
csc710sbse: HW4:Theisen
                                                                                                                                          Page 1/1
  Sep 23, 14 13:49
import sys
from datetime import datetime
import random
sys.dont_write_bytecode = True
from models import *
from searchers import *
from utils import *
from options import *
myOpt = Options()
#Inspired by vivekaxl's display function
def display(model, searcher, startTime, scores, r):
 if r = 0:
    print "No valid runs!"
else:
    print "Runs:", r
    print "Average per run (s): ", diff/r
    print xtile(scores,width=25,show="%1.5f")
  print "==
def main(modelList, searcherList):
 r = 10
for klass in modelList:
     for searcher in searcherList:
       startTime = datetime.now()
scores = []
myKlass = klass()
mySearcher = searcher()
random.seed(myOpt.seed)
        fantom.seed(myopt.seed)
for _ in range(r):
    result, valid = mySearcher.run(myKlass)
    if valid = True:
             scores.append(result)
        display(klass, mySearcher, startTime, scores, len(scores))
modelList = [ZDT3, Viennet3]
searcherList = [MWS]
main(modelList, searcherList)
```

```
csc710sbse: HW4:Theisen
  Sep 23, 14 14:00
## Hyptotheis Testing Stuff
### Standard Stuff
#### Standard Headers
from future import division
import sys, random, math
sys.dont_write_bytecode = True
#### Standard Utils
class o():
 "Anonymous container"

def __init__(i,**fields) :
    i.override(fields)
  def override(i,d): i.__dict__.update(d); return i
  def __repr__(i):
    d = i.__dict_
   def show(i):
   return [k for k in sorted(i.__dict__.keys())
if ¬ "_" in k]
Misc functions:
rand = random.random
any = random.choice
seed = random.seed
exp = lambda n: math.e**n
     = lambda n: math.log(n,math.e)
     = lambda n: round(n,2)
def median(lst,ordered=False):
 if ¬ ordered: lst= sorted(lst)
 n = len(lst)
 p = n//2
if n % 2: return lst[p]
 q = p - 1
q = max(0,min(q,n))
return (lst[p] + lst[q])/2
def msecs(f):
 import time
  t1 = time.time()
  return (time.time() - t1) * 1000
def pairs(lst):
  "Return all pairs of items i,i+1 from a list."
  last=lst[0]
 for i in lst[1:]:
    yield last,i
     last = i
def xtile(lst,lo=0,hi=100,width=50,
               chops=[0.1 ,0.3,0.5,0.7,0.9],
marks=["-" ," "," ","-"," "],
               bar="|",star="*",show="%3.0f"):
" " "The function _xtile_ takes a list of (possibly) unsorted numbers and presents them as a horizontal
 xtile chart (in ascii format). The default is a
contracted quintile that shows the 10,30,50,70,90 breaks in the data (but this can be
 changed- see the optional flags of the function).
 def pos(p) : return ordered[int(len(lst)*p)]
  def place(x) :
    return int(width*float((x - lo))/(hi - lo+0.00001))
 def pretty(lst) :
    return ','.join([show % x for x in lst])
ordered = sorted(lst)
        = min(lo,ordered[0])
= max(hi,ordered[-1])
 what = [pos(p) for p in chops]
where = [place(n) for n in what]
out = [""] * width
  for one, two in pairs (where):
    for i in range(one, two):
       out[i] = marks[0]
    marks = marks[1:]
  out[int(width/2)]
 out[place(pos(0.5))] = star
return '('+''.join(out) + ")," + pretty(what)
```

```
csc710sbse: HW4:Theisen
  Sep 23, 14 14:00
                                                                                                                   Page 2/7
def tileX():
  import random
  random.seed(1)
  nums = [random.random()**2 for in range(100)]
  print xtile(nums,lo=0,hi=1.0,width=25,show=" %5.2f")
### Standard Accumulator for Numbers
Note the _lt_ method: this accumulator can be sorted by median values
Warning: this accumulator keeps _all_ numbers. Might be better to use
class Num:
  "An Accumulator for numbers"
  def __init__(i,name,inits=[]):
    i.n = i.m2 = i.mu = 0.0
     i.all=[]
     i._median=None
    i.name = name
i.rank = 0
     for x in inits: i.add(x)
  def s(i)
                    : return (i.m2/(i.n - 1))**0.5
  def add(i,x):
    i. median=None
     i.all += [x]
    delta = x - i.mu
     i.mu += delta*1.0/i.n
  i.m2 += delta*(x - i.mu)

def __add__(i,j):
    return Num(i.name + j.name,i.all + j.all)
  def quartiles(i):
   def p(x) : return int(100*g(xs[x]))
    i.median()
    xs = i.all
n = int(len(xs)*0.25)
  return p(n) , p(2*n) , p(3*n) def median(i):
    if ¬ i._median:
    i.all = sorted(i.all)
       i._median=median(i.all)
  return i._median
def __lt__(i,j):
    return i.median() < j.median()</pre>
  def spread(i):
    i.all=sorted(i.all)
     n1=i.n*0.25
     n2=i.n*0.75
    if len(i.all) ≤ 1:
       return 0
     if len(i.all) ≡ 2:
    return i.all[1] - i.all[0] else:
       return i.all[int(n2)] - i.all[int(n1)]
### The A12 Effect Size Test
def al2slow(lst1,lst2):
  "how often is x in lst1 more than y in lst2?"
  more = same = 0.0
  for x in lstl:
    for y in 1st2:
      if x = y : same += 1
elif x > y : more += 1
  x= (more + 0.5*same) / (len(lst1)*len(lst2))
  return x
def a12(lst1,lst2):
   "how often is x in lst1 more than y in lst2?"
  def loop(t,t1,t2):
   while t1.j < t1.n \( \tau \) t2.j < t2.n:
      h1 = t1.l[t1.j]</pre>
       h2 = t2.1[t2.j]
       h3 = t2.1[t2.j+1] if t2.j+1 < t2.n else None
       if h1> h2:
       t1.j += 1; t1.gt += t2.n - t2.j
elif h1 = h2:
         if h3 \wedge h1 > h3 :
             t1.gt += t2.n - t2.j - 1
         t1.j += 1; t1.eq += 1; t2.eq += 1
       else:
t2,t1 = t1,t2
     return t.gt*1.0, t.eq*1.0
  "st1 = sorted(lst1, reverse=True)
  1st2 = sorted(1st2, reverse=True)
  n1 = len(lst1)
n2 = len(lst2)
```

Page 1/7

```
csc710sbse: HW4:Theisen
   Sep 23, 14 14:00
                                                                                                                                                         Page 3/7
         = o(1=1st1, j=0,eq=0,gt=0,n=n1)
= o(1=1st2, j=0,eq=0,gt=0,n=n2)
   gt,eq= loop(t1, t1, t2)
   return gt/(n1*n2) + eq/2/(n1*n2)
  def f1(): return al2slow(11,12)
def f2(): return al2(11,12)
   for n in [100,200,400,800,1600,3200,6400]:
      11 = [rand() for _ in xrange(n)]
12 = [rand() for _ in xrange(n)]
     t1 = msecs(f1)

t2 = msecs(f2)
      print n, g(f1()),g(f2()),int((t1/t2))
 " " " Output:
                a12(slow) tfast / tslow
n a12(fast)
100 0 53
200 0.48
                 0.48
                            26
72
800 0.5
                0.5
                 0.51
1600 0.51
3200 0.49
                 0.49
                              109
6400 0.5
                 0.5
                             244
## Non-Parametric Hypothesis Testing
The following _bootstrap_ method was introduced in
1979 by Bradley Efron at Stanford University. It was inspired by earlier work on the
jackknife.
Improved estimates of the variance were [developed later][efron01].
[efron01]: http://goo.gl/14n8Wf "Bradley Efron A R.J. Tibshirani. An Introduction to the Bootstrap (Chapman & Hall/CRC M
To check if two populations _(y0,z0)_
are different, many times sample with replacement from both to generate _(y1,z1), (y2,z2), (y3,z3)_.. etc.
def sampleWithReplacement(lst):
    "returns a list same size as list"
 def any(n) : return random.uniform(0,n)
def one(lst): return lst[ int(any(len(lst))) ]
return [one(lst) for _ in lst]
Then, for all those samples,
check if some *testStatistic* in the original pair
hold for all the other pairs. If it does more than (say) 99%
of the time, then we are 99% confident in that the
populations are the same.
In such a _bootstrap_ hypothesis test, the *some property
is the difference between the two populations, muted by the joint standard deviation of the populations.
def testStatistic(y,z):
    ""Checks if two means are different, tempered
   by the sample size of 'y' and 'z' " " "
      tmp1 = tmp2 = 0

for y1 in y.all: tmp1 += (y1 - y.mu)**2

for z1 in z.all: tmp2 += (z1 - z.mu)**2
      s1 = (float(tmp1)/(y.n - 1))**0.5
s2 = (float(tmp2)/(z.n - 1))**0.5
      delta = z.mu - y.mu
      if s1+s2:
        delta = delta/((s1/y.n + s2/z.n)**0.5)
      return delta
The rest is just details:
 + Efron advises
 to make the mean of the populations the same (see
 the _yhat,zhat_ stuff shown below).
+ The class _total_ is a just a quick and dirty accumulation class.
+ For more details see [the Efron text][efron01].
def bootstrap(y0,z0,conf=0.01,b=1000):
   " " "The bootstrap hypothesis test from
   p220 to 223 of Efron's book 'An
   introduction to the boostrap. " "
      "quick and dirty data collector"
```

```
csc710sbse: HW4:Theisen
    Sep 23, 14 14:00
                                                                                                                                                                        Page 4/7
       def __init__(i,some=[]):
    i.sum = i.n = i.mu = 0 ; i.all=[]
          for one in some: i.put(one)
       def put(i.x):
           i.all.append(x);
          i.sum +=x; i.n += 1; i.mu = float(i.sum)/i.n
   def __add__(i1,i2): return total(i1.all + i2.all)
y, z = total(y0), total(z0)
   tobs = testStatistic(y,z)
yhat = [y1 - y.mu + x.mu for y1 in y.all]
zhat = [z1 - z.mu + x.mu for z1 in z.all]
   bigger = 0.0
   for i in range(b):
       if testStatistic(total(sampleWithReplacement(yhat)),
                                    total(sampleWithReplacement(zhat))) > tobs:
          higger += 1
  return bigger / b < conf
#### Examples
def _bootstraped():
   def worker(n=1000,
      return n, mul, sigmal, mu2, sigma2,
   'different' if bootstrap(x,y) else 'same' # very different means, same std
   print worker(mul=10, sigmal=10,
   mu2=100, sigma2=10)
# similar means and std
   print worker(mul= 10.1, sigmal=1,
mu2= 10.2, sigma2=1)
# slightly different means, same std
   print worker(mul= 10.1, sigmal= 1,
   # different in mu eater by large std

print worker(mul= 10.1, sigma1= 10,
                         mu2= 10.8, sigma2= 1)
Output:
 bootstraped()
 (1000, 10, 10, 100, 10, 'different')
 (1000, 10.1, 1, 10.2, 1, 'same')
(1000, 10.1, 1, 10.8, 1, 'different')
 (1000, 10.1, 10, 10.8, 1, 'same')
Warning—the above took 8 seconds to generate since we used 1000 bootstraps
As to how many bootstraps are enough, that depends on the data. There are
results saying 200 to 400 are enough but, since I am suspicious man, I run it for 1000.
Which means the runtimes associated with bootstrapping is a significant issue.
To reduce that runtime, I avoid things like an all-pairs comparison of all treatments (see below: Scott-knott). Also, BEFORE I do the boostrap, I first run
the effect size test (and only go to bootstrapping in effect size passes:
def different(11,12):
   #return bootstrap(11,12) and a12(12,11)
   return a12(12,11) A bootstrap(11,12)
## Saner Hypothesis Testing
The following code, which you should use verbatim does the following:
 + All treatments are clustered into _ranks_. In practice, dozens of treatments end up generating just a handful of ranks. + The numbers of calls to the hypothesis tests are minimized:
   + Treatments are sorted by their median value.
  + Treatments are divided into two groups such that the expected value of the mean values _after_ the split is minimized; 
+ Hypothesis tests are called to test if the two groups are truly difference. 
+ All hypothesis tests are non-parametric and include (1) effect size tests and (2) tests for statistically significant numbers;
        + Slow bootstraps are executed if the faster _A12_ tests are passed:
In practice, this means that the hypothesis tests (with confidence of say, 95%)
 + With this method, 16 treatments can be studied using less than _∑<sub>1,2,4,8,16</sub>log<sub>2</sub>i = 15_hypothesis tests and confidence _0.99<sup + But if did this with the 120 all—pairs comparisons of the 16 treatments, we would have total confidence _0.99<sup>120</sup>=0.30.
```

csc710sbse: HW4:Theisen Sep 23, 14 14:00 For examples on using this code, see _rdivDemo_ (below) def scottknott(data,cohen=0.3,small=3, useA12=False,epsilon=0.01): " " Recursively split data, maximizing delta of the expected value of the mean before and after the splits. Reject splits with under 3 items " " " all = reduce(lambda x,y:x+y,data) same = lambda 1,r: abs(1.median() - r.median()) ≤ all.s()*cohen same = lambda l, r: ¬ different(l.all,r.all) big = lambda n: n > small return rdiv(data,all,minMu,big,same,epsilon) def rdiv(data, # a list of class Nums all, # all the data combined into one num div, # function: find the best split big, # function: rejects small splits same, # function: rejects similar splits epsilon): # small enough to split two parts " " "Looks for ways to split sorted data, Recurses into each split. Assigns a 'rank' number to all the leaf splits found in this way. def recurse(parts.all.rank=0): "Split, then recurse on each part." cut,left,right = maybeIgnore(div(parts,all,big,epsilon), same, parts) rank = recurse(parts[:cut],left,rank) + 1 rank = recurse(parts[cut],left,rank) # if no cut, then all get same rank for part in parts: part.rank = rank return rank recurse(sorted(data),all) return data def maybeIgnore((cut,left,right), same,parts): if same(sum(parts[:cut],Num('upto')), sum(parts[cut:],Num('above'))): cut = left = right = None return cut, left, right def minMu(parts,all,big,epsilon): " " Find a cut in the parts that maximizes the expected value of the difference in the mean before and after the cut. Reject splits that are insignificantly different or that generate very small subsets. cut, left, right = None, None, None before, mu = 0, all.mu for i,l,r in leftRight(parts,epsilon): **if** big(l.n) ^ big(r.n): n = all.n * 1.0 now = 1.n/n*(mu-1.mu)**2 + r.n/n*(mu-r.mu)**2if now > before: before,cut,left,right = now,i,l,r return cut, left, right def leftRight(parts,epsilon=0.01): " " Iterator. For all items in 'parts', return everything to the left and everything from here to the end. For reasons of efficiency, take a first pass over the data to pre-compute and cache right-hand-sides rights = {} n = j = len(parts) - 1 while j > 0: rights[j] = parts[j] if j < n: rights[j] += rights[j+1] j -=1</pre> left = parts[0] for i, one in enumerate(parts): **if** i> 0: if parts[i]._median - parts[i-1]._median > epsilon: yield i,left,rights[i] left += one ## Putting it All Together Driver for the demosdef rdivDemo(data): return int(100 * (x - lo) / (hi - lo + 0.00001))

data = map(lambda lst:Num(lst[0],lst[1:]),

```
csc710sbse: HW4:Theisen
  Sep 23, 14 14:00
                                                                                                                               Page 6/7
                 data
   ranks=[]
  for x in scottknott(data,useAl2=True):
     ranks += [(x.rank,x.median(),x)]
  all=[]
  for _,__,x in sort
all = sorted(all)
             ,x in sorted(ranks): all += x.all
  lo, hi = all[0], all[-1]
  line = "----
last = None
  last = x.rank
The demos:
def rdiv0():
  rdivDemo([
           ["x1",0.34, 0.49, 0.51, 0.6],
["x2",6, 7, 8, 9]])
rank
         name, med, ior
          x1, 51, 11(*
                                      ), 0.34, 0.49, 0.51, 0.51, 0.60
          x2. 800. 200 (
                                  | ---- *-- ), 6.00, 7.00, 8.00, 8.00, 9.00
def rdiv1():
  rdivDemo([
          ["x1",0.1, 0.2, 0.3, 0.4],
["x2",0.1, 0.2, 0.3, 0.4],
["x3",6, 7, 8, 9]])
rank
          name, med, iqr
                                          ), 0.10, 0.20, 0.30, 0.30, 0.40
         x2, 30, 20(*
x3, 800, 200(
                                          ), 0.10, 0.20, 0.30, 0.30, 0.40
                                            *-- ), 6.00, 7.00, 8.00, 8.00, 9.00
def rdiv2():
          ["x1",0.34, 0.49, 0.51, 0.6], ["x2",0.6, 0.7, 0.8, 0.9], ["x3",0.15, 0.25, 0.4, 0.35],
           ["x4",0.6, 0.7, 0.8, 0.9],
["x5",0.1, 0.2, 0.3, 0.4]])
. . .
rank,
          name, med, iqr
                30 . 20 (--- *--- |
                                              ), 0.10, 0.20, 0.30, 0.30, 0.40
         x3, 35, 15(---- *- |
x1, 51, 11( ----- *--
                                             ), 0.15, 0.25, 0.35, 0.35, 0.40
                                                ), 0.34, 0.49, 0.51, 0.51, 0.60
               80 , 20 (
80 , 20 (
                                  | ---- *-- ), 0.60, 0.70, 0.80, 0.80, 0.90
                                    ---- *-- ), 0.60, 0.70, 0.80, 0.80, 0.90
def rdiv3():
  rdivDemo([
       \[ \text{"x1",101, 100, 99, 101, 99.5}, \]
\[ \text{"x2",101, 100, 99, 101, 100}, \]
\[ \text{"x3",101, 100, 99.5, 101, 99}, \]
\[ \text{"x4",101, 100, 99, 101, 100} \]
rank,
         name, med, iqr
                                                  ),99,00, 99,50, 100,00, 101,00, 101,00
                                                       ),99.00, 100.00, 100.00, 101.00, 101.00
          x2, 10000, 100 (-
                                        *
                                                  ),99.00, 99.50, 100.00, 101.00, 101.00
                                                      ),99.00, 100.00, 100.00, 101.00, 101.00
 1.
          x4 10000 100 (-
def rdiv4():
  rdivDemo([
        ["x1",11,12,13].
```

Page 5/7

```
csc710sbse: HW4:Theisen
    Sep 23, 14 14:00
                                                                                                                                                                               Page 7/7
            ["x2",14,31,22],
["x3",23,24,31],
["x5",32,33,34]])
 rank
              name, med, iqr
                                                           ),11.00, 11.00, 12.00, 13.00, 13.00
),14.00, 14.00, 22.00, 31.00, 31.00
),23.00, 23.00, 24.00, 31.00, 31.00
              x1, 1100, 0(*
             x2, 1400, 0(
x3, 2300, 0(
x5, 3200, 0(
                                                         * ),32.00, 32.00, 33.00, 34.00, 34.00
name, med, iqr
 rank,
              x1, 1100, 0(*
                                                            ),11.00, 11.00, 11.00, 11.00, 11.00
              x2, 1100, 0(*
x3, 1100, 0(*
                                                            ),11.00, 11.00, 11.00, 11.00, 11.00
                                                            ),11.00, 11.00, 11.00, 11.00, 11.00
def rdiv6():
   rdivDemo([
           ["x1",11,11,11],
["x2",11,11,11],
["x4",32,33,34,35]])
 rank,
              name, med, iqr
              x1, 1100, 0 (*
x2, 1100, 0 (*
x4, 3400, 200 (
                                                           ),11.00, 11.00, 11.00, 11.00, 11.00
                                                            ),11.00, 11.00, 11.00, 11.00, 11.00
                                                         -* ),32.00, 33.00, 34.00, 34.00, 35.00
def rdiv7():
   rdivDemo([
        ["xl"] + [rand()**0.5 for _ in range(256)],

["x2"] + [rand()**2 for _ in range(256)],

["x3"] + [rand() for _ in range(256)]
 ])
 rank,
              name, med, iqr
              x2, 25, 50(-- * -|------ ),0.01, 0.09, 0.25, 0.47, 0.86
x3, 49, 47(------ *| ------ ),0.08, 0.29, 0.49, 0.66, 0.89
x1, 73, 37( -----|- * ---- ),0.32, 0.57, 0.73, 0.86, 0.95
 def _rdivs():
   seed(1)
rdiv0(); rdiv1(); rdiv2(); rdiv3();
rdiv4(); rdiv5(); rdiv6(); rdiv7()
  rdivs()
```

```
csc710sbse: HW4:Theisen
    Sep 23, 14 1:52
                                                                                                                                                                                                                 Page 1/1
#From Class Discussion 8/26/2014
from _future__ import division
import sys,re,random,math
import numpy as np
sys.dont_write_bytecode = True
 from options import *
 #Taken verbatim from the class website.
 def pairs(lst):
     last=lst[0]
    for i in lst[1:]:
        yield last,i
last = i
contracted _quintile_ that shows the
  10,30,50,70,90 breaks in the data (but this can be changed—see the optional flags of the function).
    def pos(p): return ordered[int(len(lst)*p)]
def place(x):
    return int(width*float((x - lo))/(hi - lo))
    def pretty(lst):
    return ','.join([show % x for x in lst])
ordered = sorted(lst)
  ordered = sorted(lst)
lo = min(lo,ordered[0])
hi = max(hi,ordered[-1])
what = [pos(p) for p in chops]
where = [place(n) for n in what]
out = [""] * width
for one, two in pairs(where):
    for i in range(one, two):
        out[i] = marks[0]
    marks = marks[1:]
out[int(width/2)] = bar
out[place(pos(0.5))] = star
return ''.join(out) + "." + pretty(what)
```

Sep 23, 14 1:11	csc710sbse: HW4:Theisen	Page 1/1
<pre>from sim_anneal import * from max_walk_sat import *</pre>		

csc710sbse: HW4:Theisen Sep 23, 14 13:47 Page 1/1 #Structure from SA Lecture import sys,re,random,math sys.dont_write_bytecode = True from options import * from utils import * myOpt = Options() class MWS: debug = False name = "MaxWalkSat" def say(self, x): sys.stdout.write(str(x)); sys.stdout.flush() def specificRun(self, probability, klass): fon = klass XVarBest = fon.XVar eBest = e = 1 for i in xrange(myOpt.mws_maxTries): fon.Chaos() for j in xrange(myOpt.mws_maxChanges): eNew = fon.Energy() if(eNew < myOpt.mws_threshold): #% means found a solution and quit self.say('%') eBest = eNew XVarBest = list(fon.XVar) #print '\nQuitting...' return eBest, XVarBest else: #modify random part of solution if probability > random.uniform(0,1): fon.Neighbor() self.say('+') #maximize for some random fon.BestNeighbor() self.say('.') temp.append(eNew) if (i+1)*(j+1) % 40 ≡ 0 ∧ len(temp) ≠ 0: #print '' self.say(int(math.fabs(eNew-1)*100)) self.say('') print xtile(temp,width=25,show="%1.5f") temp = [] #print '' return -1, XVarBest def run(self, klass): theBest = -1 valid = False eBest, XVarBest = self.specificRun(myOpt.mws_prob, klass) if eBest = -1: #print 'No Best Found for prob = ', i self.say('' theBest = eBest valid = True return theBest, valid def printOptions(self): print(upclons(self): print "MaxWalkSat Options:" print "Prob:", myOpt.mws_prob print "MaxTries:", myOpt.mws_maxTries, "MaxChanges", myOpt.mws_maxChanges print "Threshold:", myOpt.mws_threshold, "Slices:", myOpt.mws_slices

csc710sbse: HW4:Theisen Sep 23, 14 13:34 Page 1/1 #Structure from SA Lecture import sys,re,random,math sys.dont_write_bytecode = True from options import * from utils import * myOpt = Options() class SA: name = "SA" def say(self, x): if myOpt.debug: sys.stdout.write(str(x)); sys.stdout.flush() def run(self, klass): XVarBest = sa.XVar eBest = e = 1 #print 'start energy: ', eBest temp = [] self.say(int(math.fabs(eBest-1)*100)) self.say(int(math.fabs(eBestself.say('') while k < myOpt.sa_kmax: sa.Neighbor() eNew = sa.Energy() if eNew < eBest: eBest = eNew XVarBest = list(sa.XVar) self.say('!')</pre> if eNew < e:</pre> e = eNew self.say('+') #Probability Check from SA Lecture elif math.exp(-1*(eNew-e)/(k/myOpt.sa_kmax**myOpt.sa_cooling))<random.uniform(0,1): #P function should be between 0 and 1 #more random hops early, then decreasing as time goes on sa.Chaos() self.say('?') self.say('.') k = k + 1if k % 50 = 0 ^ k ≠ myOpt.sa_kmax ^ len(temp) ≠ 0: #print '' self.say(int(math.fabs(eBest-1)*100)) self.say('') print xtile(temp,width=25,show="%1.5f") temp = [] if myOpt.debug: #print '\nFound best - e: ', eBest #print 'Variables: ' for vars in XVarBest: self.say(vars) self.say(",") #print "\n" return eBest, True def printOptions(self): print "SA Options:" print "KMAX:", myOpt.sa_kmax, "Cooling:", myOpt.sa_cooling


```
csc710sbse: HW4:Theisen
                                                                                                                                                                                                        Page 1/1
    Sep 23, 14 13:09
#From Class Discussion 8/26/2014
from _future__ import division
import sys,re,random,math
import numpy as np
sys.dont_write_bytecode = True
from model_base import *
from options import *
class ZDT3(Model):
    smin = 0
    smax = 1
    n = 30
    XVar = [random.uniform(smin, smax) for i in range (0, n)]
   XVarMax = XVar
eMax = 0
    eMin = 0
    def Energy(self):
       X = self.XVar
f1 = X[0]
       g = l+9*(np.sum([X[i] for i in range (l, self.n)])/(self.n-l))
f2 = g*(l-np.sqrt(X[0]/g)-(x[0]/g)*math.sin(l0*math.pi*x[0]))
return (math.fabs(f1-f2) - self.eMin) / (self.eMax - self.eMin)
  def RawEnergy(self):
    X = self.XVar
fl = X[0]
    g = 1+9*(np.sum([X[i] for i in range (1, self.n)])/(self.n-1))
f2 = g*(1-np.sqrt(X[0]/g)-(X[0]/g)*math.sin(10*math.pi*X[0]))
return math.fabs(f1-f2)
   def __init__(self):
    self.Baseline(10000)
         self.XVar = self.XVarMax
```

csc710sbse: HW4:Theisen	Page 1/

csc710sbse: HW4:Theisen Page 1/1 Sep 23, 14 1:46 #From Class Discussion 8/26/2014 from _future__ import division import sys,re,random,math import numpy as np sys.dont_write_bytecode = True from model_base import * from options import * class Fonseca(Model): n = 3 smin = -4 smax = 4 XVar = [random.uniform(smin, smax) for i in range (0, 3)] XVarMax = XVar eMax = 0 eMin = 0 def Energy(self): f1 = (1-math.e**(-np.sum([self.XVar[i]-(1/np.sqrt(i+1))**2 for i in range (0, 3)]))) f2 = (1-math.e**(-np.sum([self.XVar[i]+(1/np.sqrt(i+1))**2 for i in range (0, 3)]))) return (math.fabs(f1+f2) - self.eMin) / (self.eMax - self.eMin) def RawEnergy(self): f1 = (1-math.exp(-np.sum([self.XVar[i]-(1/np.sqrt(i+1))**2 for i in range (0, 3)]))) f2 = (1-math.exp(-np.sum([self.XVar[i]+(1/np.sqrt(i+1))**2 for i in range (0, 3)]))) return math.fabs(f1+f2) def __init__(self): self.Baseline(10000) self.XVar = self.XVarMax


```
csc710sbse: HW4:Theisen
   Sep 23, 14 1:48
                                                                                                                                                         Page 1/1
#From Class Discussion 8/26/2014
from _future__import division
import sys,re,random,math
import numpy as np
sys.dont_write_bytecode = True
from options import *
myOpt = Options()
rand = random.random
class Model:
   #Default Values overwritten by subclass; should have better defaults, but...
   smin = 1
  smax = 1

XVar = [random.uniform(smin, smax) for i in range (0, n)]

XVarMax = XVar
   eMax = 0
eMin = 0
  def Energy(self):
    print "Energy Class Undefined!"
  def RawEnergy(self):
    print "RawEnergy Class Undefined!"
   def Neighbor(self):
       self.XVar[random.randint(0, self.n-1)] = random.uniform(self.smin, self.smax)
   def BestNeighbor(self):
      toChange = random.randint(0, self.n-1)
toIncrement = (self.smax - self.smin) / myOpt.mws_slices
curMax = 1
       maxVal = self.XVar[toChange]
      for i in xrange(myOpt.mws_slices):
    self.XVar[toChange] = self.smin + toIncrement
          x = self.Energy()
         if x < curMax:
curMax = x
            maxVal = self.XVar[toChange]
  def Chaos(self):
   for vars in self.XVar:
         vars = random.uniform(self.smin, self.smax)
   def Baseline(self, numRuns):
      self.Chaos()
self.eMax = self.eMin = self.RawEnergy()
      runs = 1
       while runs < numRuns:
         self.Neighbor()
eNew = self.RawEnergy()
if eNew > self.eMax: #find largest difference
        If enew > self.emax. #ind largest difference
self.eMax = eNew
self.XVarMax = self.XVar
#print self.XVarMax, eNew
if eNew < self.eMin: #find smallest difference
self.eMin = eNew
#print 'Min: ', self.XVar, eNew
      runs += 1
#print 'Baseline: ', self.eMin, ', ', self.eMax
   def __init__(self):
    print "Default init Shouldn't be used!"
```


csc710sbse: HW4:Theisen Page 1/1 Sep 23, 14 13:19 #From Class Discussion 8/26/2014 from _future__ import division import sys,re,random,math import numpy as np sys.dont_write_bytecode = True from model_base import * from options import * class Viennet3(Model): smin = -3.0 smax = 3 n = 2 XVar = [random.uniform(smin, smax) for i in range (0, n)] XVarMax = XVar eMax = 0 eMin = 0 def Energy(self): Her Energy(self): X = self.XVar f1 = 0.5*X[0]**2 + X[1]**2 + math.sin(X[0]**2+X[1]**2) f2 = (3*X[0]-2*X[1]+4)**2/8 + (X[0]-X[1]+1)**2/27 + 15 f3 = 1/(X[0]+X[1]+1) - 1.1*math.e**(-X[0]**2-X[1]**2) return (math.fabs(f1-f2-f3) - self.eMin) / (self.eMax - self.eMin) def RawEnergy(self): Mef RawEnergy(self): X = self.XVar f1 = 0.5*X[0]**2 + X[1]**2 + math.sin(X[0]**2+X[1]**2) f2 = (3*X[0]-2*X[1]+4)**2/8 + (X[0]-X[1]+1)**2/27 + 15 f3 = 1/(X[0]+X[1]+1) - 1.1*math.e**(-X[0]**2-X[1]**2) return math.fabs(f1-f2-f3) def __init__(self): self.Baseline(10000) self.XVar = self.XVarMax