Application of the Millepede algorithm to the Time and Position Calibration of NeuLAND

Yanzhao Wang¹, Håkan Johansson², Igor Gasparic³, and Andreas Zilges¹

¹Institute for Nuclear Physics, University of Cologne ²Chalmers University of Technology, Sweden ³GSI Helmholtzzentrum für Schwerionenforschung

> HK 51.3 DPG-Frühjahrstagung Gießen 2024

Supported by BMBF (05P21PKFN1)

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

+ Fiber

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

Geometry:

- 26 planes
- $\bullet \ 250 \times 250 \, \mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

Symbols:

x: position of the interaction

t: time of the interaction

 $L: \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{scintillator}$

 t_l : time of the left PMT signal

 $t_{r}: \mathsf{time}\ \mathsf{of}\ \mathsf{the}\ \mathsf{right}\ \mathsf{PMT}\ \mathsf{signal}$

 C_e : effective speed of light

Time relation:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot \underline{C_e}}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l \right)$$

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}: \mbox{length of the scintillator}$

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}:$ length of the scintillator

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle C_e} + extstyle t_{ extstyle sync}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l \right)$$

Additional calibration parameters:

t_{sync}: time synchronization among scintillators

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}: {\sf length} \ {\sf of} \ {\sf the} \ {\sf scintillator}$

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle C_e} + extstyle t_{ extstyle sync}$$

Position relation:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{\mathsf{offset}}
ight)$$

Additional calibration parameters:

- t_{sync}: time synchronization among scintillators
- ullet $t_{
 m offset}$: time offset between adjacent PMTs

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}:$ length of the scintillator

 t_l : time of the left PMT signal

 t_r : time of the right PMT signal

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot C_e} + t_{ extstyle extsty$$

Position relation:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{\mathsf{offset}}
ight)$$

Additional calibration parameters:

- t_{sync}: time synchronization among scintillators
- t_{offset} : time offset between adjacent PMTs

Total number of calibration parameters: 3900

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration with muon tracks

$$t = (t_r + t_l)/2 - L/(2 \cdot C_e) + t_{\text{sync}}$$
 (1)

$$x = \frac{C_e}{c} \cdot (t_r - t_l + \frac{t_{\text{offset}}}{c}) / 2 \tag{2}$$

$$x_{\mu} = a_x^i \cdot z_{\mu} + b_x^i \tag{3}$$

$$y_{\mu} = a_y^i \cdot z_{\mu} + b_y^i \tag{4}$$

$$t_{\mu} = a_t^i \cdot z_{\mu} + b_t^i \tag{5}$$

Calibration parameters for the ith track:

global parameters:

 $C_e, t_{\sf sync}, t_{\sf offset}$

local parameters:

 $a_{x}^{i}, a_{y}^{i}, a_{t}^{i}, b_{x}^{i}, b_{y}^{i}, b_{t}^{i}$

Calibration principle

Calibration relation

$$x = C_1 \cdot t + C_2$$

Data fitting:

Minimize

residual =
$$\sum_{i} \frac{(x_i - x(t_i, C_1, C_2))^2}{2 * \sigma_i^2}$$

Calibration with muon tracks

$$t = (t_r + t_l)/2 - L/(2 \cdot C_e) + t_{\text{sync}}$$
 (1)

$$x = \frac{C_e}{t_l} \cdot \left(t_r - t_l + \frac{t_{\text{offset}}}{t_l}\right) / 2 \tag{2}$$

$$x_{\mu} = a_x^i \cdot z_{\mu} + b_x^i \tag{3}$$

$$y_{\mu} = a_y^i \cdot z_{\mu} + b_y^i \tag{4}$$

$$t_{\mu} = a_t^i \cdot z_{\mu} + b_t^i \tag{5}$$

Calibration parameters for the *i*th track:

global parameters:

 $C_e, t_{\sf sync}, t_{\sf offset}$

local parameters:

$$a_x^i, a_y^i, a_t^i, b_x^i, b_y^i, b_t^i$$

With 10'000 tracks, the total number of calibration parameters is 63'900!

Side view of NeuLAND

Procedures

Obtain the positions of bars with signals

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}:m$ global parameters

 $p_{1\ldots l}^{j}:l$ local parameters for the $j{\rm th}~\mu$ track

n : the total number of μ tracks

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, \dots, g_{m}, p_{1}^{j}, \dots, p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}:m$ global parameters

 $p_{1...l}^{j}:l$ local parameters for the jth μ track

n : the total number of μ tracks

Newton's method:

$$\longleftarrow m \longrightarrow \longleftarrow \sim n \cdot l \longrightarrow$$

$$\begin{bmatrix} \sum_{j} \mathcal{C}_{j} & \dots & \mathcal{G}_{j} & \dots \\ \hline \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & 0 & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & \vdots \\ \vdots &$$

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, \dots, g_{m}, p_{1}^{j}, \dots, p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 p_1^j , : l local parameters for the jth μ track

n : the total number of μ tracks

Newton's method:

$$\begin{bmatrix} \sum_{j} C_{j} & \dots & G_{j} & \dots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \Delta \mathbf{p}^{j} & \vdots & \ddots & \vdots \\ \Delta \mathbf{p}^{j} & \vdots & \ddots & \vdots \\ \partial_{\mathbf{p}^{j}} Z & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\$$

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 $p_{1...l}^{j}: l$ local parameters for the jth μ track

n : the total number of μ tracks

Newton's method.

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_j \mathcal{C}_j + \sum_j \left(-\mathcal{G}_j \Gamma_j^{-1} \mathcal{G}_j^T
ight)$$

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 $p_{1\ldots l}^{j}:l$ local parameters for the $j{\rm th}~\mu$ track

n : the total number of μ tracks

Newton's method.

$$k - m \longrightarrow k - n \cdot l \longrightarrow k$$

$$\begin{bmatrix} \sum_{j} \mathcal{C}_{j} & \dots & \mathcal{G}_{j} & \dots \\ \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathcal{G}_{j}^{T} & 0 & \Gamma_{j} & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} = - \begin{bmatrix} \partial_{\mathbf{g}} \mathcal{Z} \\ \vdots \\ \vdots \\ \vdots \\ \partial_{\mathbf{p}^{j}} \mathcal{Z} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_j \mathcal{C}_j + \sum_j \left(-\mathcal{G}_j \Gamma_j^{-1} \mathcal{G}_j^T
ight)$$

Advantages

- Simultaneous fitting of all parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 p_1^j , : l local parameters for the jth μ track

n: the total number of μ tracks

Newton's method:

$$\begin{bmatrix} \sum_{j} C_{j} & \cdots & \vdots & \bigcap_{j} & \cdots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots &$$

Matrix Dimension reduction! (Schur complement method)

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$ilde{\mathcal{C}} = \sum_j \mathcal{C}_j + \sum_j \left(-\mathcal{G}_j \Gamma_j^{-1} \mathcal{G}_j^T
ight)$$

Advantages

- Simultaneous fitting of all parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction

Algorithm implementation: Millepede-II

Millepede-ii. https://www.desv.de/~kleinwrt/MP2/doc/html/index.html. [Online: accessed 2024-03-041

Comparisons of the PMT time offsets

Comparisons on time synchronization

Comparisons of the effective speed of light

Summary and outlook

Summary

- Large number of fitting parameters in time and position calibration
- Simultaneous fitting of local and global parameters using the Millepede algorithm
- Consistent results compared to the current method

Outlook

- Apply Millepede algorithm to energy calibration
- Improve precision of calibration parameters
- Possible applications on other detectors in the R³B experiment

