Unsupervised Task Discovery for Multi-Task Acoustic Modeling

Josh Meyer

joshua.richard.meyer@gmail.com | @_josh_meyer_ | jrmeyer.github.io

Abstract

- Multi-Task Learning works (good for low-resource languages)
- ► However, tasks are hard to make
- ► Better to discover tasks automatically
- Experiment with k-means on MFCCs
- ► Data == 1.5 hours of Kyrgyz audio-book
- Initial Results Promising

Figure 1: Multi-Task Learning Architecture

1. Background

- Multi-Task Learning in Acoustic Modeling
 - Multilingual
 - new language == new task
 - e.g. English vs. Kyrgyz
 - Monolingual
 - new linguistic encoding == new task
 - e.g. vowels vs. consonants; monophones vs. triphones

Figure 2: Label Correspondance of Decision Tree / DNN

2. Alignment

- ► Feature Extraction
 - ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context
 & 12 frame right-context, CMVN
- GMM Alignment
 - Monophones: 1,000 Gaussians, 25
 iterations EM // Triphones: 2,000 leaves
 & 5,000 Gaussians, 25 iterations EM

3. Clustering

- k-means Clustering
 - A set number of clusters is discovered via TensorFlow's standard k-means clustering.

4. Mapping Triphone States \rightarrow Clusters

► All training examples aligned to triphone state are mapped to most common k-means cluster.

Figure 3: GMM-aligned training examples

Figure 4: k-means clustered training examples

Figure 5: GMM-aligned training examples

5. Cluster Contents

- ▶ 672 leaves in Kaldi and 1024 clusters in TF
- 185 new labels after mapping
 123 / 185 are interpretable
- ► 84 / 185 contain only one phoneme
 - ▶ 9 / 84 contained > 1 triphone of phoneme
- 101 / 184 contain mixed phonemes
 39 / 101 only vowels or only consonants

Table 1: Discovered intelligible Phoneme Clusters

Vowels	5	Consonants		
a j	a u	k r	gnm	
a o	a ih	kр	s sh ch	
e j	e ih	r ng	tksp	
e y	o u	d ch	m ng	
u ih y	u ih	t k	t k h	
i e y	o ih	d z	tks	
a e oe j ih	j ih	Ιz	t ch d	
a ih o u y		n p	t k zh b	
			t g b s sh z zh	

6. Multi-Task DNN Training Set-up

- DNN Acoustic model training
 - Multi-Task Time-Delay Neural Network
 - ▶ 5-epochs, 11 hidden layers, *ReLU* activations
 - ho $\alpha_{\textit{initial}} = 0.0015 \rightarrow \alpha_{\textit{final}} = 0.00015$
 - ▶ Each task has penultimate + ultimate output layer

Figure 6: Model Accuracy During Training (Simple Loss)

7. Testing Setup

- \triangleright k-folds cross-validation (k == 5)
 - ▶ 511 utterances for train
 - ▶ 100 utterances for test
- Decoded with 1-gram LM

8. Results: Traditional Weighting Scheme

- $\blacktriangleright \mathsf{Loss} = ((1 \alpha) * \mathit{MAIN} + \alpha * \mathit{AUX})$
- WER better than Baseline in 4/9 experiments

Table 2: WER% for Traditional Weighting Scheme

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		$57.55~\pm 1.82$	
+ 256 clusters	$57.93 \ \pm 1.63$	$57.04 \ \pm 1.58$	$57.66 \ \pm 1.24$
+ 1024 clusters	57.69 ± 3.78	$\textbf{56.99} \pm 3.08$	$57.60~\pm 0.79$
+ 4096 clusters	$57.25~\pm 2.87$	$58.07 \ \pm 1.35$	$57.45~\pm 0.32$

9. Results: Simple Weighting Scheme

- $\blacktriangleright \mathsf{Loss} = (\mathit{MAIN} + \alpha * \mathit{AUX})$
- WER better than Traditional Loss
- ► WER better than Baseline in 6/9 experiments

Table 3: WER% for Simple Weighting Scheme

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		$57.55~\pm 1.82$	
+ 256 clusters	57.33 ± 2.49	$58.02 \ \pm 2.09$	$57.18\ \pm0.56$
+ 1024 clusters	57.74 ± 3.06	56.88 ±1.33	$57.13\ \pm1.55$
+ 4096 clusters	57.56 ± 2.53	$57.49 \ \pm 3.17$	$57.31 \ \pm 1.31$

10. Discussion

- ► Good auxiliary tasks exist (we just need to find them)
- Initial Results show small improvements, given good hyper-parameters
- Clustering in high-dimensional feature space isn't great
- ▶ Find better projections: LDA, source DNN activations (from well-resourced lang)
- Big net overfits to both tasks
 - add more tasks
 - use smaller net

11. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.