

Progress in Traitor Tracing with Applications to Group Testing

Thijs Laarhoven

(Joint work with Jeroen Doumen, Jan-Jaap Oosterwijk, Peter Roelse, Boris Škorić, Benne de Weger)

mail@thijs.com
http://www.thijs.com/

Champaign, Illinois, USA (October 1, 2013)

Outline

Introduction

The Tardos scheme

A capacity-achieving score function

The dynamic Tardos scheme

Applications to group testing

Conclusion

Problem: Illegal redistribution

User	C	эру	rigl	nte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Problem: Illegal redistribution

User	C	ору	rig	hte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

User	С	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

User	C	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	С	эру	rigl	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	эру	rigl	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

Problem: Collusion attacks

User	C	эру	/rig	hte	d c	ont	en	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

Problem: Collusion attacks

User	C	ору	rig	nte	d c	ont	en	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Problem: Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

Solution: Collusion-resistant schemes

User	C	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted))				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

1. An algorithm to construct collusion-resistant codes

User	C	ору	rig	hte	d c	ont	en	t (f	ing	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)								
Antonino	?	? ?	?	? ?	?				
Boris	?	? ?	?	? ?	?				
Caroline	?	? ?	?	? ?	?				
David	?	? ?	?	? ?	?				
Eve	?	? ?	?	? ?	?				
Fred	?	? ?	?	? ?	?				
Gábor	?	? ?	?	? ?	?				
Henry	?	? ?	?	? ?	?				
Сору	?	? ?	?	? ?	?				

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)	
Antonino		
Boris		
Caroline	$X \in \{0,1\}^{n imes \ell}$	
David	(/)	
Eve		
Fred		
Gábor		
Henry		
Сору	$y \in \{0,1\}^\ell$	• • •

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)	
Antonino		
Boris	$V = (0, 1) n \times \ell$	
Caroline	$X \in \{0,1\}^{n imes \ell}$	• • •
David Eve		• • •
Eve Fred	(5— 22)	• • • •
Gábor	$\left([Tar03] \colon \ell = L \cdot c^2 \log n / \varepsilon \right)$	• • •
Henry		• • •
——————————————————————————————————————		•••
Сору	$y \in \{0,1\}^\ell$	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Solution: Collusion-resistant schemes

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

The Tardos scheme: Overview

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of p_i from pirates.
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - Hide choice of p_i from pirates.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of *p_i* from pirates.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{i,i} < 0)$ for differences $(X_{i,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of *p_i* from pirates.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{i,i} < 0)$ for differences $(X_{i,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

TU/e

The Tardos scheme: Codewords

p _i	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	 <i>p</i> ₁₂₀₀
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 X _{1,1208}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1208}$
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	 $X_{8,1208}$
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	 <i>У</i> 1208

The Tardos scheme: Codewords

1a. For each segment *i*, generate $p_i \sim F$.

p_i	p_1	p_2	<i>p</i> ₃	p_4	p_5	• • •	p_{1200}
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$		$X_{1,1208}$
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$		$X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$		$X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$		$X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$		$X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$		$X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$		$X_{7,1208}$
Henry	$X_{8,1}$	X _{8,2}	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$		X _{8,1208}
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅		<i>y</i> 1208

The Tardos scheme: Codewords

1a. For each segment *i*, generate $p_i \sim F$.

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	 X _{1,1208}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1208}$
Henry	$X_{8,1}$	<i>X</i> _{8,2}	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	 X _{8,1208}
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>Y</i> 1208

The Tardos scheme: Codewords

1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	 X _{1,1208}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1208}$
Henry	$X_{8,1}$	X _{8,2}	X _{8,3}	$X_{8,4}$	$X_{8,5}$	 X _{8,1208}
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>y</i> 1208

The Tardos scheme: Codewords

1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>У</i> 1208

The Tardos scheme: Coalition

Pirates get their versions, ...

p _i				-	•	
Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	 <i>y</i> 1208

 $\mathsf{Coalition} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\}$

The Tardos scheme: Coalition

Pirates get their versions, compare them ...

p _i		٠	-			
Antonino						 •
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	 <i>y</i> 1208

The Tardos scheme: Coalition

Pirates get their versions, compare them and make a copy.

p _i			•	•	•		
Antonino							
Boris					•		
Caroline	1	0	0	1	0	 0	
David							
Eve	0	0	1	0	1	 0	
Fred							
Gábor							
Henry	1	0	0	0	1	 0	
Сору	0	0	0	1	1	 0	

TU/e

The Tardos scheme: Scores

The copy is distributed and detected by the tracer.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	0	0	0	1	1	 0

The Tardos scheme: Scores

2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	0	0	0	1	1	 0

 $\mathsf{Coalition} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\}$

The Tardos scheme: Scores

2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5
Сору	0	0	0	1	1	 0

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{i,i}$
	1 O E	100	0.4	1 O E	ı O 1	10 E	
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	0
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	0
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	0
Сору	0	0	0	1	1	 0	

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

 $Coalition = \{Caroline, Eve, Henry\}$

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	
•							

 $\begin{aligned} & \mathsf{Coalition} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \\ & \mathsf{Accused} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \end{aligned}$

The Tardos scheme: Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>			
Boris Caroline David Eve Fred Gábor Henry $ \begin{array}{c} 250 \\ 200 \\ 50 \\ \hline \\ 200 \\ 200 \\ \hline \\ 200$	p _i	0.20	0.05	0.88	0.79	0.98		0.18	$\sum_i S_{j,i}$
Henry +269	Antonino Boris Caroline David Eve Fred		300 250 200 150 100 50 -50	Z = 1	46				+14 -19 +291 +29 +292 -53
Copy 0 0 0 1 1 0	Henry		0	200 400			1200 140	0	+269
	Сору	0	0	0	1	1		0	

 $\begin{aligned} & \mathsf{Coalition} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \\ & \mathsf{Accused} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \end{aligned}$

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ightharpoonup Hide choice of p_i from pirates.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{i,i} > 0)$ for matches $(X_{i,i} = y_i)$.
 - ▶ Negative scores $(S_{i,i} < 0)$ for differences $(X_{i,i} \neq y_i)$.
 - ▶ Large scores $(|S_{j,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

The Tardos scheme: Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ightharpoonup Hide choice of p_i from pirates.
 - 1b. For each segment *i*, user *j*, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{i,i} > 0)$ for matches $(X_{i,i} = y_i)$.
 - ▶ Negative scores $(S_{i,i} < 0)$ for differences $(X_{i,i} \neq y_i)$.
 - ▶ Large scores $(|S_{j,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

What is the best choice for F and g?

The Tardos scheme: Improvements

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[O+13]
L: 100 g: g ^{Tar} F: F ^{arc}	$oldsymbol{g}^{\mathrm{Tar}}$	$oldsymbol{g}^{\mathrm{Tar}}$	$oldsymbol{g}^{\mathrm{Tar}}$	g^{sym}	g^{sym}	g^{sym}	g^{sym}	

The Tardos scheme: Improvements

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[O+13]
L: 100 g: g ^{Tar} F: F ^{arc}	$oldsymbol{g}^{\mathrm{Tar}}$		$oldsymbol{g}^{\mathrm{Tar}}$	$g^{ m sym}$	g^{sym}		g^{sym}	

$$\mathbf{g}^{\mathrm{Tar}}(X_{j,i}, y_i, p_i) = \begin{cases} 0, & \text{if } X_{j,i} = 0, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{j,i} = 0, y_i = 1, \\ 0, & \text{if } X_{j,i} = 1, y_i = 0, \\ +\sqrt{(1-p_i)/p_i}, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

The Tardos scheme: Improvements

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[O+13]
L: 100 g: g ^{Tar} F: F ^{arc}	g^{Tar}	g^{Tar}	g^{Tar}	g^{sym}	g^{sym}	_	g^{sym}	

$$\mathbf{g}^{\text{sym}}(X_{j,i}, y_i, p_i) = \begin{cases} +\sqrt{p_i/(1-p_i)}, & \text{if } X_{j,i} = 0, y_i = 0, \\ -\sqrt{p_i/(1-p_i)}, & \text{if } X_{j,i} = 0, y_i = 1, \\ -\sqrt{(1-p_i)/p_i}, & \text{if } X_{j,i} = 1, y_i = 0, \\ +\sqrt{(1-p_i)/p_i}, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

The Tardos scheme: Improvements

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[O+13]
L: 100 g: g ^{Tar} F: F ^{arc}	g^{Tar}	$oldsymbol{g}^{\mathrm{Tar}}$	$g^{ m Tar}$	g^{sym}	g^{sym}	_	g^{sym}	

$$\mathbf{g}^{\text{int}}(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -1, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)/p_i, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

The Tardos scheme: Comparison

Table: Constructive upper bounds on L (large c asymptotics).

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[O+13]
L: 100 g: g ^{Tar} F: F ^{arc}	$g^{ m Tar}$		$oldsymbol{g}^{\mathrm{Tar}}$	g^{sym}	g^{sym}		g^{sym}	

Table: Information-theoretic lower bounds on L (large c asymptotics).

	[Tar03]	[AT09]	[HM09]	[HM12]
<i>L</i> :	$\Omega(1)$	"2"	2?	2
F :	?	?	F^{arc} ?	$F^{ m arc}$
ρ :	?	?	int?	int

The Tardos scheme: Comparison

Table: Constructive upper bounds on L (large c asymptotics).

[Tar03]	[S+06]	[N+07]	[BT08]	[S+08]	[N+09]	[LdW12]	[LdW13]	[0+13]
L: 100 g: g ^{Tar} F: F ^{arc}	$oldsymbol{g}^{\mathrm{Tar}}$		$oldsymbol{g}^{\mathrm{Tar}}$	g^{sym}	g^{sym}		g^{sym}	

Table: Information-theoretic lower bounds on L (large c asymptotics).

	[Tar03]	[AT09]	[HM09]	[HM12]
<i>L</i> :	$\Omega(1)$	"2"	2?	2
F :	?	?	F^{arc} ?	$F^{ m arc}$
ρ :	?	?	int?	int

Efficient capacity-achieving construction

Main result: Using the score function $g = g^{int}$ given by

$$g^{\text{int}}(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -1, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)/p_i, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

and the distribution function $F = F^{\rm arc}$ given by

$$F^{
m arc}(p_i) = rac{2}{\pi} \arcsin \sqrt{p_i}$$

we get an efficient construction that achieves capacity for large c.

Previous slides dealt with the static setting:

- First generate X, then y, then trace.
- Static content: video on demand, software, ...
- Optimized Tardos scheme achieves capacity.

- $X_1, y_1, X_2, y_2, \ldots, X_{\ell}, y_{\ell}$.
- Dynamic content: live streams of baseball, football, ...
- More efficient schemes?
- What is the capacity?

Previous slides dealt with the static setting:

- First generate X, then y, then trace.
- Static content: video on demand, software, ...
- Optimized Tardos scheme achieves capacity.

- $X_1, y_1, X_2, y_2, \ldots, X_{\ell}, y_{\ell}$.
- Dynamic content: live streams of baseball, football, ...
- More efficient schemes?
- What is the capacity?

The static Tardos scheme

Earlier example, with n = 8 users and c = 3 colluders.

The static Tardos scheme

Bigger example, with $n = 10^6$ users and c = 25 colluders.

The static Tardos scheme

Catch many, sometimes.

The static Tardos scheme

Catch many, sometimes. Catch one, worst-case.

The static Tardos scheme

Instead of disconnecting pirates at the end...

The dynamic Tardos scheme

Instead of disconnecting pirates at the end, disconnect them asap!

The dynamic Tardos scheme

Instead of disconnecting pirates at the end, disconnect them asap!

The dynamic Tardos scheme

Catch all, worst-case!

The dynamic Tardos scheme

Catch all, worst-case!

The dynamic Tardos scheme

Main result: By disconnecting users as soon as their scores are too large, we can catch *all pirates* in the worst-case with equivalent code lengths as in the static setting.

Previous slides dealt with the static setting:

- First generate X, then y, then trace.
- Static content: video on demand, software, ...
- Optimized Tardos scheme achieves capacity.

- $X_1, y_1, X_2, y_2, \ldots, X_{\ell}, y_{\ell}$.
- Dynamic content: live streams of cricket, football, ...
- More efficient schemes?
- What is the capacity?

Previous slides dealt with the static setting:

- First generate X, then y, then trace.
- Static content: video on demand, software, ...
- Optimized Tardos scheme achieves capacity.

- $X_1, y_1, X_2, y_2, \ldots, X_{\ell}, y_{\ell}$.
- Dynamic content: live streams of cricket, football, ...
- More efficient schemes? The dynamic Tardos scheme!
- What is the capacity?

Previous slides dealt with the static setting:

- First generate X, then y, then trace.
- Static content: video on demand, software, ...
- Optimized Tardos scheme achieves capacity.

- $X_1, y_1, X_2, y_2, \ldots, X_{\ell}, y_{\ell}$.
- Dynamic content: live streams of cricket, football, ...
- More efficient schemes? The dynamic Tardos scheme!
- What is the capacity?

TU/e

Problem: Blood testing

User		I		I	I	I		
Antonino	1	0	0	0	0	0	0	0
Boris	0	1	0	0	0	0	0	0
Caroline	0	0	1	0	0	0	0	0
David	0	0	0	1	0	0	0	0
Eve	0	0	0	0	1	0	0	0
Fred	0	0	0	0	0	1	0	0
Gábor	0	0	0	0	0	0	1	0
Henry	0	0	0	0	0	0	0	1

TU/e

Problem: Blood testing

User		I	I	I	I	I		
Antonino	1	0	0	0	0	0	0	0
Boris	0	1	0	0	0	0	0	0
Caroline	0	0	1	0	0	0	0	0
David	0	0	0	1	0	0	0	0
Eve	0	0	0	0	1	0	0	0
Fred	0	0	0	0	0	1	0	0
Gábor	0	0	0	0	0	0	1	0
Henry	0	0	0	0	0	0	0	1

TU/e

Problem: Blood testing

User		I	I	I		I		I
Antonino	1	0	0	0	0	0	0	0
Boris	0	1	0	0	0	0	0	0
Caroline	0	0	1	0	0	0	0	0
David	0	0	0	1	0	0	0	0
Eve	0	0	0	0	1	0	0	0
Fred	0	0	0	0	0	1	0	0
Gábor	0	0	0	0	0	0	1	0
Henry	0	0	0	0	0	0	0	1
Result	0	0	1	0	0	0	0	0

Solution: Using pools

User		I	I	I	I	I	ı
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				

Solution: Using pools

User		ı	I	I	I	I	ı
Antonino	0	0	0				
Boris	0	•	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				

Solution: Using pools

User		I	I	I	I	I	ı
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				
Result	0	1	0				

Problem: Several defectives

User	I	I	l	I	I	I	
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				

Problem: Several defectives

User	I	I	I	I	I	I	
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				

Problem: Several defectives

User	I	I	I		I	I	I
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				
Result	1	1	0				

TU/e

Traitor tracing: All-1 attack

User	I	I	I		I	I	I
Antonino	0	0	0				
Boris	0	0	1				
Caroline	0	1	0				
David	0	1	1				
Eve	1	0	0				
Fred	1	0	1				
Gábor	1	1	0				
Henry	1	1	1				
Result	1	1	0				
-	1	1	0				

The Tardos scheme

1. An algorithm to construct collusion-resistant codes 1a. For each segment i, generate $p_i \sim F$.

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

- 1b. For each segment i, user j, choose $X_{i,j} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -1, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)/p_i, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

A group testing scheme

1. An algorithm to construct collusion-resistant codes 1a. For each segment i, generate $p_i \sim F$.

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$

- 1b. For each segment i, user j, choose $X_{i,j} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -1, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)/p_i, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

A group testing scheme: Terminology

1. An algorithm to construct the group testing matrix 1a. For each test i, generate $p_i \sim F$.

$$F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$$
.

- 1b. For each test i, person j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace test results to defectives 2a. For each test i, person j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -1, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)/p_i, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. For each person j, mark person j iff $\sum_i S_{j,i}$ is "large".

A group testing scheme: Optimization

- 1. An algorithm to construct the group testing matrix
 - 1a. For each test *i*, generate $p_i \sim F$.

$$F(p_i) = H(p_i - p). \quad (p \approx \frac{1}{c})$$

- 1b. For each test i, person j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace test results to defectives
 - 2a. For each test i, person j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)^c/(1-(1-p_i)^c), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. For each person j, mark person j iff $\sum_i S_{j,i}$ is "large".

TU/e

A group testing scheme: Static

TU/e

A group testing scheme: Dynamic

Applications to group testing

First result: Using the score function $g = g^{all-1}$ given by

$$g^{\text{all}-1}(X_{j,i}, y_i, p_i) = \begin{cases} +p_i/(1-p_i), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p_i(1-p_i)^{c-1}/(1-(1-p_i)^c), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p_i)^c/(1-(1-p_i)^c), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

and taking $p_i \equiv p pprox rac{1}{c}$, we get a group testing scheme that uses

$$\ell \sim 2c \log n$$

group tests to find all c ill people with probability at least $1-\varepsilon$.

Applications to group testing

Second result: By optimizing g and p, we get a framework for *arbitrary* group testing models:

- Noisy group testing, dilution: $\ell \sim 2c \log n/(1-r)$
- Noisy group testing, additive: $\ell \sim 2c \log n/(1-\sqrt{2r})$
- ...
- Threshold group testing, majority: $\ell \sim \pi c \log n$
- Threshold group testing, Bernoulli: $\ell \sim 4c \log n$
- Threshold group testing, linear gap: $\ell \sim 2c^2 \log n$
- ...

Applications to group testing

Second result: By optimizing g and p, we get a framework for *arbitrary* group testing models:

- Noisy group testing, dilution: $\ell \sim 2c \log n/(1-r)$
- Noisy group testing, additive: $\ell \sim 2c \log n/(1-\sqrt{2r})$
- ...
- Threshold group testing, majority: $\ell \sim \pi c \log n$
- Threshold group testing, Bernoulli: $\ell \sim 4c \log n$
- Threshold group testing, linear gap: $\ell \sim 2c^2 \log n$
- ...

We can combine this with the dynamic Tardos idea to get more efficient *adaptive* group testing schemes as well!

Conclusion

Progress in Traitor Tracing...

- Outline of the Tardos scheme
- A capacity-achieving score function
- A dynamic version of Tardos' scheme
- Open problem: Dynamic capacity?

...with Applications to Group Testing

- Construction based on the Tardos scheme
- Optimized bias (p) and score function
- Improves upon best known results
- Framework can be applied to other models
- Can be improved in the adaptive setting

TU/e

Questions?