Model explainability

Krzysztof J. Geras

Opening notes

- The only purpose of this talk is that you learn stuff.
- If you have questions, ask. It's more interesting for everyone that way, including me.
- We can go through the slides or we can stop and focus on what you find most interesting.
- It's better to develop a understanding of fewer things than to have a shallow understanding of many things.
- My goal is to give an idea for what is possible and enable you to selfstudy effectively.
- We will focus on classification.

What is model explainability?

- On a high-level: "can we explain this model's decision process in terms understandable to humans?"
- No consistent definition.
- "Explainability" exchangeable with "interpretability", and "intelligibility" to an extent.
- This is a set of model-dependent techniques rather than consistent science.
- Model-level explanation / example-level explanation.
- Post-training / embedded into training.

Explainability in simple models – decision trees

Peter Grabusts, Arkady Borisov, Ludmila Aleksejeva. Ontology-Based Classification System Development Methodology. Information Technology and Management Science.

Explainability in simple models – k-NN

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Explainability in simple models – logistic regression

$$\hat{p}(x,\beta) = \frac{1}{1 + e^{-(\beta_0 + \sum_{i=1}^K \beta_i x_i)}}$$

Explainability / expressivity tradeoff

- The simpler models, which are easier to explain are usually not very expressive.
- Easy to understand what knowledge is encoded in a decision tree and how it makes predictions. Typically, difficult for deep neural networks.
- This statement should be interpreted with some caution, e.g. kNN can represent any classification surface and is very easily explainable.
- Sometimes embedding explainability into the model improves generalization.

Explainability in deep learning

- These simple models are great, but it is difficult to solve any interesting learning task with them. We need something more powerful.
- We will focus on methods computer vision. Generalizations to other types of data are often straight-forward.
- There is a wide variety of different methods, mostly focusing on indicating the objects in the image that determine prediction. We will look at just a few.

Gradient-based methods

$$\frac{\partial f(\hat{p}(\boldsymbol{x},\boldsymbol{\beta}))}{\partial \boldsymbol{x}}$$

Perturbation-based methods

"Weak" localization-based methods

"Strong" localization-based methods

Meanwhile, in practice...

Why deep learning is the right tool for medical image analysis

Some initial successes

[Gulshan et al, JAMA 2016]

[Bejnordi et al, JAMA 2017] [Coudray et al, Nature Medicine 2018]

[Wu et al, IEEE TMI 2019] [McKinney et al, Nature 2020]

[Ardila et al, Nature Medicine 2019]

[Esteva et al, Nature 2017]

Some initial successes

[Gulshan et al, JAMA 2016]

[Bejnordi et al, JAMA 2017] [Coudray et al, Nature Medicine 2018]

[Wu et al, IEEE TMI 2019] [McKinney et al, Nature 2020]

[Ardila et al, Nature Medicine 2019]

[Esteva et al, Nature 2017]

Case study: breast cancer screening

- About 40 million exams performed yearly in the US.
- About 250 thousand women are diagnosed with cancer.
- About 40 thousand lose their lives to cancer.

Breast cancer screening

R-MLO (right mediolateral oblique)

L-MLO (left mediolateral oblique)

R-CC (right cranial caudal)

L-CC (left cranial caudal)

Diagnostic workflow

Cancer prediction

Cancer prediction task

Why classification of medical images is hard

Why classification of medical images is hard

Challenges of learning from medical imaging data

- Public data sets are very tiny. Hospitals are not keen to share data between themselves.
- Labeling medical imaging data on a pixel level is difficult.
- Medical image data has very different properties than natural images for which standard neural networks are designed.
- The standard neural network architectures do not have any direct mechanism to explain their predictions.
- Evaulating the impact of machine learning is difficult.

Globally-Aware Multiple Instance Classifier

annotated input patch map saliency map (B) saliency map (M) ROI patches

0.28 0.42 0.06

0.06 0.12 0.06

Comparison to prior models

Model	AUC(M)	AUC(B)	#Param	Mem(GB)	Fwd/Bwd (ms)	FLOPs
ResNet 34 + fc	0.736 ± 0.026	0.684 ± 0.015	21.30M	13.95	189/459	1622B
ResNet $34 + 1 \times 1$ conv	0.889 ± 0.015	0.772 ± 0.008	21.30M	12.58	201/450	1625B
DMV-CNN (w/o heatmaps)	0.827 ± 0.008	0.731 ± 0.004	6.13M	2.4	38/86	65B
DMV-CNN (w/ heatmaps)	0.886 ± 0.003	0.747 ± 0.002	6.13M	2.4	38/86	65B
Faster R-CNN	0.908 ± 0.014	0.761 ± 0.008	104.8M	25.75	920/2019	_3
GMIC-ResNet-18	0.913 ± 0.007	0.791 ± 0.005	15.17M	3.01	46/82	122B
GMIC-ResNet-34	0.909 ± 0.005	0.790 ± 0.006	25.29M	3.45	58/94	180B
GMIC-ResNet-50	0.915 ± 0.005	0.797 ± 0.003	27.95M	5.05	66/131	194B
GMIC-ResNet-18-ensemble	0.930	0.800	-	-	-	-
GMIC-ResNet-34-ensemble	0.920	0.795	-	-	-	-
GMIC-ResNet-50-ensemble	0.927	0.805	-	-	-	-

Interpreting mammographically occult cases

Comparison to human performance

Reader study:

- 360 exams with a biopsy, 360 negative exams.
- 7 attending radiologists.
- Radiologists asked for a prediction of probability of malignancy.

Improving radiologist performance

Improving radiologist performance

Code and models

https://github.com/nyukat/GMIC

GMIC

An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization

```
deep-learning
                 pytorch
                            medical-imaging
                                                breast-cancer
breast-cancer-diagnosis
                          breast-cancer-screening
```

● Jupyter Notebook 🗗 AGPL-3.0 💡 21 🖒 75 🕛 0 ╏ 0 Updated on Mar 8

Similar ideas can be generalized to 3D...

... and breast ultrasound

Specificity and sensitivity.

Radiologists: 80.7% and 90.1%.

Al's specificity at radiologists'

sensitivity: 85.6%

Al's sensitivity at radiologists'

specificity: 94.5%

... and COVID-19 deterioration

Will this person deteriorate in 24, 48, 72 or 96 hours?

Shamout et al. An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department. npj Digital Medicine 2021

Discovering knowledge through machine learning

Neural Networks

Conclusions

- Explainability is important in applications such as life sciences and medicine.
- Explainable models, such as the Globally-Aware Multiple Instance Classifier (GMIC) will be used a lot in the future.
- Al is soon going to be very clearly superhuman in medical imaging tasks.
- Discovering knowledge on biological and physical processes through explainable neural networks will be a hot topic soon.

Thank you!

