Problem Set 3 Solutions

6.S091: Causality IAP 2023

Problem 1: Constructing Minimal I-MAPs [5 points]

Question

You should use the partial-correlation based conditional independence test which you coded in Problem Set 2. An implementation of the necessary functions can be found at

https://github.com/csquires/6.S091-causality/blob/main/psets/pset3/utils.py

(a) Write a function

minimal_map(samples, permutation, alpha)

which constructs the graph \mathcal{G}_{π} for the permutation π , using the partial-correlation based conditional independence test with significance level alpha.

Samples of $(X_1, X_2, X_3, X_4, X_5)$ are in the file imap_samples.csv at

https://github.com/csquires/6.S091-causality/blob/main/psets/pset3/imap_samples.csv

Run minimal_imap(imap_samples, permutation, 0.05) for the following permutations:

$$\pi_a = [1, 2, 3, 4, 5]$$

$$\pi_b = [5, 4, 1, 2, 3]$$

$$\pi_c = [5, 4, 3, 2, 1]$$

The graph \mathcal{G}_{π_a} should have 4 edges. Draw the graphs for each permutation π_a , π_b , and π_c .

(b) Recall that a Chickering sequence from \mathcal{G} to \mathcal{H} is a sequence of DAGs, where each consecutive pair in the sequence is related by a covered edge reversal or an edge addition. Construct a Chickering sequence from \mathcal{G}_{π_a} to \mathcal{G}_{π_b} . You can do this problem by hand, you do not need to write a function.

Answer

- (a) See Figure 1.
- (b) See Figure 2.

Figure 1: Minimal IMAPs

Figure 2: Chickering sequence

Problem 2: d-separation defines a graphoid [5 points]

Questions

In this problem, you will show that two of the graphoid properties hold for d-separation. Throughout the problem, let $A, B_1, B_2, S \subseteq \mathcal{X}$ be disjoint subsets of nodes in a DAG \mathcal{G} , and let $B = B_1 \cup B_2$.

- (a) Weak Union. Suppose there is a d-connecting path γ from $A \in \mathbf{A}$ to $B \in \mathbf{B}_1$ given $\mathbf{S} \cup \mathbf{B}_2$. Show that there is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}$ given \mathbf{S} .
- (b) Contraction. Suppose there is a d-connecting path γ from $A \in \mathbf{A}$ to $B \in \mathbf{B}$ given S. Show that either:
 - There is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}_2$ given \mathbf{S} , or
 - There is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}_1$ given $\mathbf{S} \cup \mathbf{B}_2$.

Answers

- (a) Weak Union. Let γ_k be a non-collider in γ . Then $\gamma_k \notin \mathbf{S}$, so γ_k is unblocked given \mathbf{S} . Let γ_k be a collider in γ . Then either
 - (i) $\overline{\operatorname{de}}_{\mathcal{G}}(\gamma_k) \cap \mathbf{S} \neq \emptyset$, or
 - (ii) $\overline{\operatorname{de}}_{\mathcal{G}}(\gamma_k) \cap \mathbf{S} = \emptyset$, but $\overline{\operatorname{de}}_{\mathcal{G}}(\gamma_k) \cap \mathbf{B}_2 \neq \emptyset$.

Let γ_k be the collider on γ closest to A for which case (ii) holds, if any such collider exists. Let γ' be the concatenation of γ_1 , the segment of γ from A to γ_k , and γ_2 , a shortest path from γ_k to some descendant B' in \mathbf{B}_2 . Then γ' is d-connecting between A and B': it is unblocked at all nodes in γ_1 , and at all nodes in γ_2 , since all nodes in γ_2 are non-colliders which are not in \mathbf{S} .

(b) Contraction. If $B \in \mathbf{B}_2$, then γ_k is a d-connecting path from $A \in \mathbf{A}$ to $B' = B \in \mathbf{B}_2$ given S. Otherwise, if γ_k is a collider in γ , then $\overline{\deg}(\gamma_k) \cap \mathbf{S} \neq \emptyset$, so γ_k is unblocked given $\mathbf{S} \cup \mathbf{B}_2$. If γ_k is a non-collider in γ , it is not in \mathbf{S} , so either (i) it is unblocked given $\mathbf{S} \cup \mathbf{B}_2$, or (ii) we have $\gamma_k \in \mathbf{B}_2$. Let γ_k be the non-collider on γ closest to A for which case (ii) holds, if any such non-collider exists. If such a non-collider exists, then γ' equal to the segment of γ from A to γ_k is a d-connecting path from A to $B' = \gamma_k \in \mathbf{B}_2$. Otherwise, γ is a d-connecting path from A to B.

Problem 3: Searching an Equivalence Class [5 points]

Question

The folder

https://github.com/csquires/6.S091-causality/tree/main/psets/pset3/mec_examples contains pairs of the form

starting_dag1.csv ending_dag1.csv

where the starting DAG \mathcal{G} is Markov equivalent to the ending DAG \mathcal{H} . Each file represents a DAG in adjacency matrix form, i.e., each file stores a matrix A where $A_{ij} = 1$ if and only if the associated DAG \mathcal{G} has an edge $i \to j$. Starter code for loading DAGs can be found at

https://github.com/csquires/6.S091-causality/blob/main/psets/pset3/search_mec.py

(a) Write a function

covered_edge_neighbors(dag)

which, given a DAG \mathcal{G} , returns all DAGs \mathcal{G}' which differ from \mathcal{G} by exactly one covered edge reversal. starting_dag1 should have 5 neighbors. How many neighbors do starting_dag2 and starting_dag3 have?

(b) Write a function

search_mec(starting_dag, ending_dag)

which takes two Markov equivalent DAGs \mathcal{G} and \mathcal{H} and returns a sequence of covered edge reversals from \mathcal{G} to \mathcal{H} .

The sequence of covered edges can be found by breadth-first search using covered_edge_neighbors. For breadth-first search, you might need to maintain a set of already-visited states. In Python, I recommend using a frozenset containing the edges of a DAG to represent each state, which is hashable and hence can be used in a set or as keys of a dictionary.

The shortest path from starting_dag1 to ending_dag1 should be of length 6 (where the length of the path is the number of covered edge flips). How long is the shortest path from starting_dag2 to ending_dag2? How long is the shortest path from starting_dag3 to ending_dag3?

Answer

- (a) starting_dag2 has 4 covered edges, and thus 4 neighbors. starting_dag3 also has 4 covered edges, and thus 4 neighbors.
- (b) The shortest path from starting_dag2 to ending_dag2 is 1 covered edge flip. The shortest path from starting_dag3 to ending_dag3 is 3 covered edge flips.