Control Systems

G V V Sharma*

1

CONTENTS

1 **Compensators**

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

1 Compensators

- 1.1. For a unity feedback system shown in 1.2, $\frac{10}{s(s+1)}$. Design a lead compensator such that the phase margin of the system is 45° and appropriate steady state error is less than or equal to $\frac{1}{15}$ units of the final output value. Further the gain crossover frequency of the system must be less than 7.5rad/sec.
- 1.2. For the control system shown in 1.2 write the steady state output for step input.

Solution:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) \tag{1.2.1}$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
 (1.2.1)
$$\lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{sR(s)G(s)}{1 + G(s)}$$
 (1.2.2)

$$\lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{G(s)}{1 + G(s)}$$
 (1.2.3)

1.3. What do you mean by steady state error and write the expression for steady state error for control system shown in 1.2 considering step

Solution: Steady-state error is the difference

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

between the input and the output for a prescribed test input as time tends to infinity.

$$e_{ss} = \lim_{s \to 0} \frac{1}{1 + G(s)} \tag{1.3.1}$$

1.4. Write the general expression for the transfer function of a phase lead compensator.

Solution:

$$G_c(s) = K_{comp} \frac{(1 + \alpha T s)}{(1 + T s)}$$
 (1.4.1)

1.4 shows the compensated control system.

1.5. Calculate the steady state output value and steady state error for the control system shown in 1.2, where $G(s) = \frac{10}{s(s+1)}$. Consider the input to be unit step.

Solution:

Steady state value:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} \frac{10}{10 + s(s+1)}$$
 (1.5.1)

$$\lim_{t \to \infty} y(t) = 1 \tag{1.5.2}$$

Steady state error:

$$e_{ss} = \lim_{s \to 0} \frac{s(s+1)}{10 + s(s+1)}$$
 (1.5.3)

$$e_{ss} = 0$$
 (1.5.4)

1.6. Choose a value of K_{comp} which satisfies the steady state error condition.

Solution: As the steady state error for unit step response is always zero, any value of K_{comp} satisfies the steady state error condition in compensated system. For simplicity let us choose $K_{comp} = 1$.

1.7. Calculate phase margin and gain cross over frequency of open-loop transfer function G(S). **Solution:**

Gain cross over frequency:

$$G(j\omega) = \frac{10}{j\omega(j\omega+1)}$$
 (1.7.1)

$$|G(j\omega)| = \frac{10}{\sqrt{\omega^4 + \omega^2}}$$
 (1.7.2)

$$\frac{10}{\sqrt{\omega^4 + \omega^2}} = 1 \tag{1.7.3}$$

$$\omega_{gc} = 3.084$$
 (1.7.4)

Phase Margin:

$$\phi = -90^{\circ} - tan^{-1}(\omega)$$
 (1.7.5)

$$pm = 180^{\circ} - 90^{\circ} - tan^{-1}(\omega_{gc})$$
 (1.7.6)

$$pm = 17.966^{\circ}$$
 (1.7.7)

(1.7.8)

1.8. Write the expression for maximum phase of a lead compensator and the frequency where it occurs

Solution:

$$\phi_{max} = \sin^{-1}\left(\frac{\alpha - 1}{\alpha + 1}\right) \tag{1.8.1}$$

$$\omega_m = \frac{1}{T\alpha}$$
 (1.8.2) 1.14. Verify using a python plot.

1.9. Calculate the value of ϕ_{max} required to meet desired phase margin.

Solution:

$$\phi_{max} = 45^{\circ} - pm + 15^{\circ} \tag{1.9.1}$$

$$\phi_{max} = 45^{\circ} - 17.966^{\circ} + 15^{\circ} \tag{1.9.2}$$

$$\phi_{max} = 42.034^{\circ} \tag{1.9.3}$$

Here the extra 15° has been added to compensate for the shift in ω_{gc} .

(1.5.3) 1.10. Using (1.8.1) calculate the value of α

Solution:

$$\sin(42.034^\circ) = \frac{\alpha - 1}{\alpha + 1} \tag{1.10.1}$$

$$0.669 = \frac{\alpha - 1}{\alpha + 1} \tag{1.10.2}$$

$$0.331\alpha = 1.669 \tag{1.10.3}$$

$$\alpha = 5.04$$
 (1.10.4)

1.11. Choose appropriate value for ω_m .

Solution:

• For maximum increase in phase margin we have to ensure that ϕ_{max} occurs at frequency close to ω_{gc} of G(s).

$$\omega_m = 3.084 rad/sec \tag{1.11.1}$$

- We know that ω_{gc} gets shifted slightly when we cascade a compensator to original transfer function, to compensate for the shift we have already added an extra 15° to ϕ_{max} .
- (1.7.4) 1.12. Using (1.8.2) calculate the value of T.

Solution:

$$T = \frac{1}{\omega_m \alpha} \tag{1.12.1}$$

$$T = \frac{1}{\omega_m \alpha}$$
 (1.12.1)
$$T = \frac{1}{15.54}$$
 (1.12.2)

$$T = 0.064 \tag{1.12.3}$$

1.13. Write the final expression of the Lead compensator designed.

Solution:

$$G_c(s) = \frac{(1 + 0.322s)}{(1 + 0.064s)} \tag{1.13.1}$$

- Zero at s = -3.084
- Pole at s = -15.54

Solution:

codes/ee18btech11044 2.py

Fig. 1.14