Smith normal form let A be any square matrix over a pid R. then there exist a sequence of invertible row and column operations on A transforming it into the form $\operatorname{diag}(d_1,\ldots,d_r,0,\ldots,0)$ where $d_1\mid\ldots\mid d_r$.

algorithm over Euclidean domains

1. if A = 0 terminate.

otherwise, find $a_{ij} \neq 0$ and perform $R_1 \leftrightarrow R_j \& C_1 \leftrightarrow C_j$.

- 2. once $a_{11} \neq 0$, if there is an element a_{1j} of the first row or an element a_{i1} of the first column not divisible by a_{11} , decrease the norm of a_{11} via (\star) and return to step 2.
- 3. once a_{11} divides all elements in the first row and column, make A into $\begin{pmatrix} a_{11} & 0 & \cdots \\ 0 & * & * \\ \vdots & * & * \end{pmatrix}$ via $(\star\star)$.
- 4. if a_{11} does not divide all the elements of A, decrease the norm of a_{11} via $(\star \star \star)$ and return to step 2.
- 5. once a_{11} divides all elements of A, apply the algorithm for the reduced, lower right part of A.

exercise find the steps $(\star), (\star\star)$ and $(\star\star\star)$ and prove the algorithm's correctness.

exercise

- i. let $A \in \mathbf{Z}^{d \times d}$ have determinant ± 1 . then A^{-1} has integer entries.
- ii. more generally, let $v_1, \ldots, v_d \in \mathbf{Z}^d$ be linearly independent over \mathbf{R} . then

$$[\mathbf{Z}^d: \mathbf{Z}v_1 \oplus \ldots \oplus \mathbf{Z}v_d] = |[0,1)v_1 + \ldots + [0,1)v_n \cap \mathbf{Z}^n| = |\det v_{ij}|$$

$$7 = \det \left(\begin{array}{cc} 2 & 3 \\ -1 & 2 \end{array} \right) = \left[\mathbf{Z}^2 : \mathbf{Z} \left[\begin{array}{c} 2 \\ -1 \end{array} \right] \oplus \mathbf{Z} \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \right]$$