Kattar NEET 2026

Physical Chemistry By Amit Mahajan Sir

Redox Reaction

- Q1 In which of the following reactions, the underlined substance has been oxidized?
 - (A) $Br_2 + H_2S \rightarrow 2HBr + S$
 - (B) $2HgCl_2 + SnCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$
 - (C) $Cl_2 + 2Kl \rightarrow 2KCl + I_2$
 - (D) $2Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2} + I_{2}$
- **Q2** In the reaction, $IO_3^- + SO_2 + 4H_2O \rightarrow I_2 + SO_4^{2-}$ +8H⁺, the coefficient of SO₂ is.
 - (A)3
- (B) 4
- (C)5
- (D) 6
- Q3 Which of the following statements is true about oxidation state of S in Na₂S₄O₆?
 - (A) All S-atoms are in + 2.5 state.
 - (B) All S-atoms are in + 2 state.
 - (C) Two S-atoms are in 0 state and other two is in +5 state.
 - (D) Two S-atom are in -1 state and other two is in +6 state.
- Q4 Zn gives H₂ gas with H₂SO₄ and HCl but not with HNO₃ because
 - (A) Zn acts as an oxidising agent when it reacts with HNO₃
 - (B) HNO₃ is weaker acid than H₂SO₄ and HCl
 - (C) In electrochemical series, Zn is above
 - (D) NO₃⁻ is reduced in preference to hydronium ion
- **Q5** Which of the following involves a redox reaction?
 - (A) Reaction of H₂SO₄ with NaOH
 - (B) Production of ozone from oxygen in the atmosphere by lightning
 - (C) Production of nitrogen oxides from nitrogen and oxygen in the atmosphere by lightning
 - (D) Evaporation of water
- **Q6** Oxidation number of P in PO_4^{3-} , of S in SO_4^{2-} and that of Cr in ${
 m Cr_2}$ ${
 m O_7^{2-}}$ are respectively

- (A) +3, +6and +5
- (B) +5, +3 and +6
- (C) -3, +6 and +6
- (D) +5. +6 and +6
- Q7 The oxidation states of sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order
 - (A) $S_2O_6^{2-}$ < $S_2O_4^{2-}$ < SO_3^{2-}
 - (B) $S_2O_4^{2-}$ < SO_3^{2-} < $S_2O_6^{2-}$
 - (C) ${\rm SO_3}^{2-} < {\rm \ S_2O_4}^{2-} < {\rm S_2O_6}^{2-}$
 - (D) $S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$
- Q8 If an element is in its lowest oxidation state, under proper conditions, it can act as:
 - (A) A reducing agent
 - (B) An oxidizing agent
 - (C) Oxidizing as well as reducing agent
 - (D) Neither oxidizing nor reducing agent
- Q9 Standard reduction potentials of the half reaction are given below:

$$\begin{split} &F_{2}\left(g\right)+2e_{-}\rightarrow2F^{-}\left(aq\right);\,E^{^{\circ}}=+\,2.85\;V\\ &Cl_{2}\left(g\right)+2e_{-}\rightarrow2\,Cl^{-}\left(aq\right);\,E^{^{\circ}}=+\,1.36\;V \end{split}$$

$${
m Br}_2 \ ({
m l}) + 2{
m e}_-
ightarrow 2 \, {
m Br}^- \ ({
m aq}); \ {
m E}^{\, \hat{}} = + \ 1.06 \ {
m V}$$

$$I_2\left(s\right)+2e_-\to 2l^-\left(aq\right);\ E^{°}=+\ 0.53\ V$$
 The strongest oxidising and reducing agents respectively are

- (A) F_2 and I^-
- (B) Br₂ and Cl⁻
- (C) Cl₂ and Br⁻
- (D) Cl_2 and l_2
- Q10 $Cl_2 \xrightarrow{NaOH} NaCl + NaClO + H_2O$ The equivalent mass of Cl₂ in the above reaction
- (A) $\frac{\mathrm{M}}{5}$ (C) $\frac{\mathrm{M}}{2}$
- Q11 In which of the following processes nitrogen is oxidised?

- (A) $\mathrm{NH_4^+}
 ightarrow \mathrm{N}_2$
- (B) $\mathrm{NO_3^-} \rightarrow \mathrm{NO}$
- (C) $\mathrm{NO}_2
 ightarrow \mathrm{NO}_2^-$
- (D) $\mathrm{NO}_3^- o \mathrm{NH}_4^+$
- Q12 Match the following:

Column – I (Acid)			Column – II (Equivalent wt.)	
(A)	H ₄ P ₂ O ₆	(I)	M/3	
(B)	H ₃ PO ₄	(II)	М	
(C)	H ₃ BO ₃	(III)	M/2	
(D)	H ₂ SO ₄	(IV)	M/4	

- (A) A-I, B-III, C-II, D-IV
- (B) A-IV, B-I, C-II, D-III
- (C) A-III, B-I, C-IV, D-II
- (D) A-IV, B-II, C-I, D-III
- Q13 Which of the following species cannot show disproportionation reaction?
 - (A) BrO⁻
- (B) BrO_2^-
- (C) BrO_3^-
- (D) BrO_4^-
- Q14 In which one of the following changes, there is transfer of five electrons?
 - (A) $\mathrm{MnO_4^-}
 ightarrow \mathrm{Mn}^{2+}$
 - (B) $\mathrm{CrO}_4^{2-}
 ightarrow \mathrm{Cr}^{3+}$
 - (C) ${
 m MnO_4^-}
 ightarrow {
 m MnO_2}$
 - (D) $\operatorname{Cr}_2\operatorname{O}_7^{2-} o 2\operatorname{Cr}^{3+}$
- Q15 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: MnO₂ can acts as an oxidizing agent as well as reducing agent.

Reason R: Oxidation state of Mn in MnO₂ lies between its possible highest and lowest oxidation state.

In the light of the above statements, choose the correct answer from the options given below:

- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.

- Q16 An element, which never has a positive oxidation state in any of its compounds, is:
 - (A) Boron
- (B) Oxygen
- (C) Chlorine
- (D) Fluorine
- **Q17** Match the following:

Column – I (Compound)		Column – II (Oxidation state of nitrogen)	
(A)	N ₂ O ₅	(1)	-2
(B)	NaN ₃	(11)	+5
(C)	NO	(III)	-1/3
(D)	N ₂ H ₄	(IV)	+2

- (A) A-II, B-III, C-IV, D-I
- (B) A-III, B-I, C-IV, D-II
- (C) A-IV, B-III, C-I, D-II
- (D) A-III, B-IV, C-II, D-I
- Q18 When Sn^{2+} changes to Sn^{4+} in a reaction
 - (A) It loses two electrons
 - (B) It gains two electrons
 - (C) It loses two protons
 - (D) It gains two protons
- Q19 When iron or zinc is added to CuSO₄ solution, copper is precipitated. It is due to
 - (A) Oxidation of Cu²⁺
 - (B) Reduction of Cu²⁺
 - (C) Hydrolysis of CuSO₄
 - (D) Ionization of CuSO₄
- Q20 Which substance is serving as a reducing agent in the following reaction?

$$\begin{aligned} &14 H^{+} + C r_{2} \ O_{7}^{2-} + 3 N i \rightarrow 2 \, C r^{3+} + 7 H_{2} O \\ &+ 3 \, N i^{2+} \end{aligned}$$

- (A) H₂O
- (B) Ni
- (C) H⁺
- (D) $Cr_2 O_7^{2-}$
- Q21 The oxidation number of chlorine in HOCl
 - (A) 1
- (B) O
- (C) +1
- (D) +2
- **Q22** Oxidation number of oxygen in O_2 molecule is
 - (A) +1
- (B) O

- (C) +2
- (D) 2
- Q23 The oxidation states of phosphorus vary from
 - (A) 3 to + 5
 - (B) 1 to +1
 - (C) 3 to +3
 - (D) 5 to +1
- Q24 The oxidation state of nitrogen in N₃H is
 - $(A) + \frac{1}{3}$
- (B) + 3
- (C) -1
- (D) $-\frac{1}{3}$
- Q25 If HNO₃ changes into N₂O, the oxidation number of N is changed by
 - (A) + 2
- (B) 1
- (C) 0
- (D) + 4
- Q26 The oxidation states of the most electronegative element in the products of the reaction of BaO₂ with dilute H₂SO₄ are
 - (A) 0 and -1
 - (B) 1 and 2
 - (C) 2 and 0
 - (D) 2 and + 1
- Q27 The potential of H-electrode in standard state is;
 - (A) 1.0 V
- (B) 0.0 V
- (C) 10 V
- (D) 0.1 V
- Q28 Oxidation number of oxygen in potassium super oxide (KO_2) is
 - (A) 2
- (B) 1
- (C) 1/2
- (D) 1/4
- Q29 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Equivalent weight of NH_3 in the reaction $N_2 o NH_3$ is 17/3 while that of N_2 is 28/6.

Reason R: Equivalent weight

Molecular weight

 $= \frac{1}{\text{Mole of e-lost or gained by 1 mole species}}$

In the light of the above statements, choose the correct answer from the options given below:

- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.

- (D) Both A and R are true but R is NOT the correct explanation of A.
- Q30 Given below are two statements:

Statement I: I - can never act as an oxidizing agent.

Statement II: Oxidizing agent undergoes reduction.

In the light of the above statements, choose the most appropriate answer from the options given

- (A) Statement I is correct but Statement II is incorrect.
- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q31 Oxidation state of S in Caro's acid (H₂SO₅) and Marshall's acid (H₂S₂O₈) respectively are;
 - (A) +8 and +7
- (B) +7 and +7
- (C) +6 and +6
- (D) +5 and +6
- Q32 The given reaction is known as;

$$(\mathrm{NH_4})_2\,\mathrm{Cr_2}\,\mathrm{O_7} \overset{\Delta}{ o} \mathrm{N_2} + \mathrm{Cr_2}\,\mathrm{O_3} + 4\mathrm{H_2}\mathrm{O}$$

- (A) Comproportionation reaction
- (B) Disproportionation reaction
- (C) Non-Redox reaction
- (D) Intramolecular Redox Reaction.
- Q33 Number of moles of ferrous oxalate oxidised by 2 mole of KMnO₄ in acidic medium is:
 - (A) $\frac{10}{3}$
- (C) $\frac{8}{3}$
- (D) 5
- Q34 Number of mixed oxides among the given oxides

Fe₃O₄, Pb₃O₄,P₄O₁₀,Mn₂O₇,Mn₃O₄

- (A) 5
- (B) 3
- (C)4
- (D) 2
- Q35 One mole of N₂H₄ losses 10 moles of electrons to form a new compound Y. Assuming that all nitrogen appear in the new compound, the oxidation state of nitrogen in Y is; (Assume no change in oxidation state of Hydrogen)
 - (A) + 5
- (B) + 4

- (C) +3
- (D) +1
- Q36 Given below are two statements:

Statement-I: MnO_4^- can act as a self indicator.

Statement-II: Layer test is used for the identification of Cl-.

In the light of the above statements, choose the most appropriate answer from the options given

- (A) Statement I is correct but Statement II is incorrect.
- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q37 How many species among the following undergo disproportionation in the alkaline medium?

$$P_4(s), S_8(s), F_2(g), Cl_2(g), NO_2(g)$$

- (A) 4
- (B)3
- (C) 5
- (D)2
- Q38 Non-redox reaction among the following is;
 - (A) $2H_2O \rightarrow 2H_2 + O_2$
 - (B) $2NaH \rightarrow 2Na+H_2$
 - (C) $2H_2O_2 \rightarrow 2H_2O + O_2$
 - (D) $CaCO_3 \rightarrow CaO + CO_2$
- Q39 Match List-I with List-II:

List-I (Compound)		List-II (Oxidation State of Oxygen)	
A.	NaO ₂	l.	-2
B.	Al ₂ O ₃	II.	-1/3
C.	BaO ₂	III.	-1/2
D.	KO ₃	IV.	-1

Choose the correct answer from the options given below:

- (A) A-III, B-II, C-I, D-IV
- (B) A-IV, B-III, C-II, D-I
- (C) A-II, B-III, C-IV, D-I
- (D) A-III, B-I, C-IV, D-II
- **Q40** Equivalent mass of HCl in the given reaction is; $\mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 + \mathsf{14HCl} \to \mathsf{2KCl} + \mathsf{2CrCl}_3 + \mathsf{3Cl}_2 + \mathsf{7H}_2\mathsf{O}$ (A) 15.64 (B) 36.5

- (C) 85.16
- (D) 2.6
- Q41 The difference in the oxidation numbers of the two types of Bromine atoms in Br₃O₈ is;
 - (A)3
- (B) 2
- (C)4
- (D) 5
- Q42 Which among the following compounds can act as oxidising as well as reducing agent?
 - (A) HNO_3
- (B) Cl_2O_7
- (C) KI
- (D) SO_2
- Q43 Oxidation state of two Chlorine atoms in bleaching powder CaOCl₂ are:
 - (A) +1 and -1
- (B) 0 and -1
- (C) 0 and +1
- (D) -1 and +3
- Q44 The formula of compound containing atoms A, B and C having oxidation states +2, +5 and -2 respectively is;
 - (A) $B_3(AC_2)_2$
- (B) $A_2(B_2C)_3$
- (C) $A_3(BC_4)_2$
- (D) $C_2(AB)_3$
- Q45 In which of the following compounds oxidation state of Hydrogen is -1?
 - (A) NaHSO₄
- (B) $C_6H_{12}O_6$
- (C) KH_2PO_4
- (D) NaBH₄
- Q46 Given below are two statements:

Statement-I: O_3 reduces H_2O_2 into H_2O .

Statement-II: A negative E° means that the redox couple is a weaker reducing agent than the H^+/H_2 couple.

In the light of the above statements, choose the most appropriate answer from the options given

- (A) Statement I is correct but Statement II is incorrect.
- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q47 KMnO₄ is a strong oxidising agent in acidic medium. To provide acidic medium, H₂SO₄ is used instead of HCl. This is because;
 - (A) H_2SO_4 is weaker acid than HCl
 - (B) HCl is oxidised to Cl₂ by KMnO₄

- (C) HCl is monobasic acid
- (D) HCl is oxidised to HClO₄ by KMnO₄
- **Q48** Identify the **incorrect** order among the following.
 - (A) Zn > Cu > Ag: Reducing activity.
 - (B) $F_2 > Cl_2 > Br_2$: Oxidising power.
 - (C) Na > K > Ca: Reducing power.
 - (D) $MnO_4^- > Cr_2O_7^{2-} > MnO_2$: Oxidising activity in acidic medium.
- Q49 Identify non-metal displacement reaction among the following;
 - (A) TiCl₄ + 2Mg \rightarrow 2MgCl₂+Ti
 - (B) $2F_2 + 2NaOH \rightarrow 2NaF + OF_2 + H_2O$
 - (C) 2Fe + $3H_2O \rightarrow Fe_2O_3 + 3H_2$
 - (D) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- Q50 Oxidation state of each of the two extreme sulphur in $S_4 O_6^{2-}$ is
 - (A) 0
- (B) + 5
- (C) + 2.5
- (D) +1
- Q51 Incorrect statement(s) among the following is/are:
 - (I) All displacement reactions are redox reactions.
 - (II) Oxygen cannot have positive oxidation state in its compounds.
 - (III) Metal cannot have zero oxidation state in its compounds.
 - (A) II only
- (B) I only
- (C) I and II only
- (D) I, II and III
- Q52 Oxidant and reductant in the given reaction respectively are;
 - $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
 - (A) Cu(I) and Sulphur of Cu₂S
 - (B) Cu(I) and Copper of Cu₂S
 - (C) Cu(II) and Copper of Cu₂S
 - (D) Cu(II) and Sulphur of Cu₂S
- **Q53** Consider the reaction:

$$xFe^{2+} + yCr_2O_7^{2-} + zH^+ \longrightarrow xFe^{3+}$$

$$+\,2\,yCr^{3+}+{\textstyle\frac{z}{2}}H_2O$$

The value of x, y and z for the balanced reaction are

(A)
$$x = 3$$
, $y = 1$, $z = 10$

(B)
$$x = 3$$
, $y = 2$, $z = 8$

(C)
$$x = 6$$
, $y = 2$, $z = 15$

(D)
$$x = 6$$
, $y = 1$, $z = 14$

- **Q54** In $M_{0.85}$ O, metal exists in +2 and +3 oxidation state. The percentage of metal ions existing as +2 in the metal is,
 - (A) 55%
- (B) 64.7%
- (C) 58.2%
- (D) 71.3%
- Q55 In CrO₅, oxidation state of Cr and Number of peroxide bonds respectively are;
 - (A) +10 and 0
- (B) +6 and 2
- (C) + 8 and 1
- (D) +4 and 3
- **Q56** A compound of Xe and F contains 63.28% Xe. The oxidation state of Xe in the compound is; [Given: Xe = 131 u, F = 19 u]
 - (A) + 6
- (B) + 4
- (C) +2
- (D) + 5
- Q57 Equivalent mass of Cl₂ in the following reaction

$$\begin{array}{c} \operatorname{Cl}_2 + \operatorname{OH}^- \longrightarrow \operatorname{Cl}^- + \operatorname{ClO}_3^- + \operatorname{H}_2\operatorname{O} \\ \text{(A)} \ \frac{71 \times 3}{5} \\ \text{(C)} \ \frac{71}{3} \end{array} \qquad \qquad \begin{array}{c} \operatorname{(B)} \ \frac{71 \times 5}{3} \\ \text{(D)} \ \frac{71}{5} \end{array}$$

- **Q58** Oxidation number of Pt in $[Pt(C_2H_4)Cl_3]^-$ is;
 - (A) +1
- (B) O
- (C) +2
- (D) +3
- Q59 When Iron is rusted;
 - (A) It is oxidised only
 - (B) It is reduced only
 - (C) It is oxidised as well as reduced
 - (D) It neither oxidised nor reduced
- **Q60** Highest oxidation state of lodine in its compounds is:
 - (A) +1
- (B) + 3
- (C) + 5
- (D) +7

Answer Key

Q1	(C)
Q2	(C)
Q3	(C)
Q4	(D)
Q5	(C)
Q6	(D)
Q7	(B)
Q8	(A)
Q9	(A)
Q10	(D)
Q11	(A)
Q12	(B)

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

(D)

(A)

(C)

(D)

(A)

(A)

(B)

(B)

(C)

(B)

(A)

(D)

(D)

(B)

(B)

(C)

(C)

(C)

- Q31 (C)
- Q32 (D)
- (A) Q33
- Q34 (B)
- (C) Q35
- Q36 (A)
- Q37 (A)
- Q38 (D)
- Q39 (D)
- Q40 (C)
- Q41 (B)
- Q42 (D)
- Q43 (A)
- Q44 (C)
- Q45 (D)
- Q46 (A)
- Q47 (B)
- Q48 (C)
- Q49 (C)
- Q50 (B)
- Q51 (D)
- Q52 (A)
- Q53 (D)
- Q54 (B)
- Q55 (B)
- Q56 (B)
- Q57 (A)
- Q58 (C)
- Q59 (A)
- Q60 (D)

Hints & Solutions

Q1 Text Solution:

Q2 Text Solution:

$$[SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^-] \times 5$$

 $5SO_2 + 10 H_2O \rightarrow 5 SO_4^{2-} + 20H^+ + 10e^-$
 $2IO_3^- + 10e^- + 12H^+ \rightarrow I_2 + 6H_2O$

$$5 SO_2 + 2 IO_3^- + 4 H_2O \rightarrow 5 SO_4^{2-} + I_2 + 8H^+$$

∴ Coefficient of $SO_2 = 5$.

Q3 Text Solution:

$$Na_2S_4O_6$$

O. S of S = 0, + 5

Q4 Text Solution:

Zinc gives H₂ gas with dil H₂SO₄/HCl but not with HNO₃ because in HNO₃, NO₃⁻ ion is reduced

and give N₂O, NO and NO₂

Q5 Text Solution:

- (a) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ (neutralization)
- (b) $3\overset{0}{O_2}\overset{\mathrm{Light}}{\longrightarrow} 2\overset{0}{O_3}$ (not redox reaction)
- (c) $\stackrel{0}{N_2} + \stackrel{0}{O_2} \stackrel{Light}{\longrightarrow} \stackrel{+2-2}{2NO}$ (redox reaction) here oxidation of N $_2$ and reduction of O $_2$ is taking place

(d) $H_2O(1) \xrightarrow{\Delta} H_2O(g)$ (not redox reaction)

Q6 Text Solution:

$$PO_4^{3-} = x + 4 (-2) = -3; x - 8 = -3; x = +5$$

 $SO_4^{2-} = x + 4 (-2) = -2; x - 8 = -2; x = +6$
 $Cr_2 O_7^{2-} = 2x + 7 (-2) = -2; 2x - 14 = -2;$

$$2x = 12; x = +6$$

Q7 Text Solution:

$$egin{array}{l} SO_3^{2-} \longrightarrow & \text{S is in + 4 oxidation state} \\ S_2O_4^{2-} \longrightarrow & \text{S is in + 3 oxidation state} \\ S_2O_6^{2-} \longrightarrow & \text{S is in + 5 oxidation state} \\ \end{array}$$

Q8 Text Solution:

In its lowest oxidation state, an element can't be reduced (no lower state possible), but it can be oxidized by losing electrons, so it acts as a reducing agent.

Q9 Text Solution:

 F_2 is the strongest oxidizing agent as it has highest reduction potential while I^- is the strongest reducing agent since it has lowest reduction potential.

Q10 Text Solution:

For oxidation, $n_O = 1 \times 2 = 2$ For reduction, $n_R = 1 \times 2 = 2$ For disproportionation reaction

$$egin{array}{l} n = rac{n_0 imes n_R}{n_0 + n_R} \ n = rac{2 imes 2}{2 + 2} = 1 \ E_{ ext{Cl}_2} = rac{M_{ ext{Cl}_2}}{n} = rac{M}{1} \end{array}$$

Q11 Text Solution:

$$\overset{-3}{ ext{NH}_{4}^{+}}
ightarrow \overset{0}{ ext{N}_{2}} + 3 ext{e}^{-}$$

Oxidation process, in terms of electron transfer, is the loss of electron.

Q12 Text Solution:

$$\begin{split} E &= \frac{\text{molecular weight}}{\text{number of ionizable H}^+} \\ \text{n-factor:- H}_2 \text{SO}_4 &= 2 \\ \text{H}_3 \text{BO}_3 &= 1 \\ \text{H}_3 \text{PO}_4 &= 3 \\ \text{H}_4 \text{P}_2 \text{O}_6 &= 4 \end{split}$$

Q13 Text Solution:

Disproportionation reactions are a special type of redox reactions. In a disproportionation reaction an element in one oxidation state is simultaneously oxidised and reduced. In BrO_4^- , the Br-atom is in maximum oxidation state (+7)

Q14 Text Solution:

$$\mathrm{MnO_4}^-$$
 + 8H+ + 5e $^
ightarrow$ $\mathrm{Mn^{2+}}$ + 4H $_2$ O

Q15 Text Solution:

The electronic configuration of Mn is $1s^2 2s^2 p^6$ $3s^2p^6d^54s^2$

Therefore, it can lose 7 electrons and oxidation state can very in between 0 to 7.

In MnO_2 , oxidation state of Mn is +4, which lies between highest and lowest oxidation state, so it can act as an oxidation agent as well reducing agent.

Q16 Text Solution:

An element that never has a positive oxidation state in any of its compound is fluorine. Fluorine only shows negative oxidation states whereas other halogens shows negative as well as positive oxidation state.

Q17 Text Solution:

1.
$$N_2O_5: 2x + 5(-2) = 0 \Rightarrow x = +5$$

2. NaN₃: +1+3x = 0
$$\Rightarrow x = \frac{-1}{3}$$

3. NO :
$$x + (-2) = 0 \Rightarrow x = +2$$

4.
$$N_2H_4$$
: $2x + 4(+1) = 0 \Rightarrow x = -2$

Q18 Text Solution:

 $Sn^{2+}\to Sn^{4+}+2e^-.$ In this reaction Sn^{2+} change in Sn^{4+} it is called an oxidation reaction.

Q19 Text Solution:

Oxidation
$$\begin{array}{c|c}
 & & \downarrow \\
\hline
0 & +2 & \downarrow +2 & 0 \\
Zn + CuSO_4 \longrightarrow ZnSO_4 + Cu
\end{array}$$
Reduction

In this reaction Cu²⁺ change in Cu, hence it is called as reduction reaction.

Q20 Text Solution:

The oxidation number of Ni changes from 0 to +2.

Q21 Text Solution:

HOCl:
$$+1 + (-2) + x = 0$$

x = $+1$

Q22 Text Solution:

In free state oxidation state of an element is always zero.

Q23 Text Solution:

Phosphorus shows – 3 to + 5 oxidation state.

Q24 Text Solution:

In hydrazoic acid (N₃H) nitrogen shows $-\frac{1}{3}$ oxidation state.

$$\tilde{N}_3H$$

$$3x + 1 = 0, 3x = -1, x = -\frac{1}{3}$$

Q25 Text Solution:

$$HNO_3: +1 + x + 3(-2) = 0$$

$$x - 5 = 0 \Rightarrow x = +5$$

$$N_2O: 2x - 2 = O$$

$$2x = +2 \Rightarrow x = +1$$

∴ Change in oxidation number = 4.

Q26 Text Solution:

In H_2O_2 oxygen shows = -1 (peroxide) oxidation state

and in $BaSO_4$ oxygen shows = -2 oxidation state.

Q27 Text Solution:

$${
m E_{H^+/H_2}^o} = 0.0{
m V}$$

Q28 Text Solution:

$$\hat{KO_2}$$
, $+1+2x=0$, $x=-\frac{1}{2}$

Q29 Text Solution:

Both A and R are true and R is the correct explanation of A.

$$\stackrel{0}{\mathrm{N}_2} + 6\mathrm{e}^-
ightarrow 2\mathrm{N}^{3-}$$

∴ equivalent weight of

$$\mathrm{NH_3}=rac{14+3}{3}=rac{17}{3}$$
 while for $\mathrm{N_2}=rac{14 imes2}{6}=rac{28}{6}$

Q30 Text Solution:

I - can never act as an oxidizing agent. Oxidizing agent undergoes reduction.

Q31 Text Solution:

$$2x + 2(+1) + 6(-2) + 2(-1) = 0$$
 $x = +6$

Q32 Text Solution:

In intramolecular Redox reaction, different elements in same compound are oxidised and reduced.

Q33 Text Solution:

$$\begin{array}{l} \operatorname{KMn}\operatorname{O_4} \overset{\operatorname{H}^+}{\to} \operatorname{Mn}^{2+} + 5\mathrm{e}^- \\ \operatorname{Fe}^{2+} &\longrightarrow \operatorname{Fe}^{3+} + 1\mathrm{e}^- \\ \operatorname{C_2O_4^{2-}} &\longrightarrow 2\operatorname{CO_2} + 2\mathrm{e}^- \\ \operatorname{Equivalent} \text{ of } \operatorname{KMnO_4} = \operatorname{equivalent} \text{ of } \operatorname{FeC_2O_4} \\ \operatorname{2\times5} = \operatorname{mole} \times \operatorname{3} \\ n_{FeC_2O_4} &= \frac{10}{3} \end{array}$$

Q34 Text Solution:

- Fe₃O₄: FeO+Fe₂O₃
- Pb₃O₄: 2PbO+PbO₂
- Mn₃O₄: 2MnO+MnO₂
- Mn₂O₇: Single oxide
- P₄O₁₀: Dimer of P₂O₅

Q35 Text Solution:

$$N_2^{4-} \longrightarrow 10e^- + 2N^{+x}$$
 $-4 = -10 + 2x$
 $2x = 6$
 $x = +3$

Q36 Text Solution:

• Intensely coloured ${\rm MnO_4^-}$ act as a self indicator.

• Layer test is used for the identification of Brand I⁻.

Q37 Text Solution:

•
$$P_4(s) \xrightarrow{OH^-} PH_3 + H_2 PO_2^-$$

• $S_8(s) \xrightarrow{OH^-} S^{2-} + S_2O_3^{2-}$
• $Cl_2(g) \xrightarrow{OH^-} ClO^- + Cl^-$
• $NO_2(g) \xrightarrow{OH^-} NO^- + NO^-$

Q38 Text Solution:

$$\overset{+2}{\mathrm{Ca}}\,\overset{+4}{\mathrm{CO}_3}\overset{-2}{\longrightarrow}\overset{+2}{\mathrm{Ca}}\overset{-2}{\mathrm{O}}+\overset{+4}{\mathrm{CO}_2}$$

Since the oxidation state of each atom remains the same, so it is a non-redox reaction.

Q39 Text Solution:

NaO
$$_2$$
 (Sodium Superoxide): $+1 + 2x = 0$ $\Rightarrow x = -\frac{1}{2}$ Al $_2$ O $_3$ (Aluminium Oxide): 2 Al $^{3+} + 3$ O $^{2-}$ BaO $_2$ (Barium Peroxide): $+2 + 2x = 0 \Rightarrow 2x = -2 \Rightarrow x = -1$ KO $_3$ (Potassium Ozonide): $+1 + 3x = 0 \Rightarrow 3x = -1 \Rightarrow x = -\frac{1}{3}$

Q40 Text Solution:

$$egin{aligned} ig(\mathrm{n_{factor}} ig)_{\mathrm{HCl}} &= rac{6}{14} = rac{3}{7} \ \mathrm{E_{HCl}} &= rac{36.5}{(3/7)} = 36.5 imes rac{7}{3} = rac{255.5}{3} = 85.16 \end{aligned}$$

Q41 Text Solution:

required difference = 6 - 4 = 2

Q42 Text Solution:

In SO_2 , S is present in +4 oxidation state so it can be oxidised and reduced both as its minimum and maximum oxidation states are -2 and +6 respectively.

Q43 Text Solution:

$$CaOCl_2: Ca^{2+} + Cl^- + OCl^-$$

$$-2 + x = -1$$

$$x = +1$$

Q44 Text Solution:

Net charge on a compound is zero.

Net charge on $A_3(BC_4)_2$:

$$=3(+2)+2(+5)+8(-2)$$

=0

Q45 Text Solution:

Electronegativity of H is more than B so in NaBH₄ oxidation state of H is -1.

Q46 Text Solution:

• O₃ oxidises H₂O₂ into O₂.

$$O_3 \longrightarrow O_2 + [O]$$

$$H_2O_2 + [O] \longrightarrow H_2O + O_2$$

$$O_3 + H_2O_2 \longrightarrow O_2 + H_2O + O_2$$

(OA) (RA)

A negative E° means that the redox couple is a stronger reducing agent than the H⁺/H₂ couple.

Q47 Text Solution:

KMnO₄ oxidises HCl into Cl₂.

Q48 Text Solution:

Reducing power: K > Ca > Na

Q49 Text Solution:

H₂ displacement reactions are non-metal displacement reactions.

In reaction (C), hydrogen (a non-metal) is displaced by iron (a metal). Therefore, it is a nonmetal displacement reaction.

Q50 Text Solution:

$$\begin{array}{c|cccc}
O & O & O \\
-5 & 0 & 0 & ||+5 \\
O & S - S - S - S - S - O
\end{array}$$

Q51 Text Solution:

- NaCl+AgNO₃→AgCl + NaNO₃. It is a nonredox reaction.
- In OF₂, oxidation state of O is +2.
- In Fe(CO)₅ oxidation state of Fe is 0.

Q52 Text Solution:

Q53 Text Solution:

$$6\,\mathrm{Fe^{2+}} + \mathrm{Cr_2}\,\mathrm{O_7^{2-}} + 14\mathrm{H^+} \longrightarrow 6\,\mathrm{Fe^{3+}} \ + 2\,\mathrm{Cr^{3+}} + 7\mathrm{H}_2\,\mathrm{O}$$

Q54 Text Solution:

$$M_{0.85}O = \left(M^{2+}\right)_x \! \left(M^{3+}\right)_{0.85-x} \! \left(O^{2-}\right)_1$$

Total charge on compound = 0

$$+2x + 3(0.85-x) - 2(1) = 0$$

$$x = 0.55$$

% of
$$M^{2+}$$
 in $M = \frac{0.55}{0.85} \times 100 = 64.70\%$

Q55 Text Solution:

Q56 Text Solution:

$$\begin{array}{l} \text{XeF}_{\text{n}} \\ \text{\% of Xe} = \frac{\text{mass of Xe}}{\text{Mass of Compound}} \times 100 \\ 63.\,28 = \frac{131 \times 100}{131 + 19n} \end{array}$$

$$x = 4$$

$$\therefore$$
 XeF₄: x + 4(-1) = 0
x = +4

Q57 Text Solution:

$$\begin{split} &\operatorname{Cl_2} \xrightarrow{n_1=2} 2\operatorname{Cl}^- + 2e^- \\ &10e^- + \operatorname{Cl_2} \xrightarrow{n_2=10} 2\operatorname{Cl}^{+5} \\ &n = \frac{n_1n_2}{n_1+n_2} = \frac{2\times 10}{2+10} = \frac{20}{12} = \frac{5}{3} \\ &\operatorname{E}_{\operatorname{Cl_2}} = \frac{71}{(5/3)} = \frac{71\times 3}{5} \end{split}$$

Q58 Text Solution:

Q59 Text Solution:

For Halogen except F, maximum oxidation state is +7.

