

THE PROJECT

From the sales data in King County, I will do the data analysis and select influence factors for making a prediction model. Then, the following questions will be answered:

- How does the location affect the price?
- 2. Do built and renovated times affect the price?
- 3. Does selling time affect the price?
- Can we predict the price from a condition?

LOCATION EFFECT

BUILT AND RENOVATED TIMES

Mean prices for yr_built_cat 1900-1939 639911.185238 1940-1979 503076.052348 1980-2019 538176.536572 Name: price, dtype: float64

Median prices for yr_built_cat

1900-1939 597000.0 1940-1979 459975.0 1980-2019 475000.0

Name: price, dtype: float64

Mean prices for renovated original 532330.073109 renovated 731288.941176 Name: price, dtype: float64

Median prices for renovated original 484000.0 renovated 721000.0

Name: price, dtype: float64

SELLING TIME

Mean prices for year 2014 538130.161706 2015 544165.609507

Name: price, dtype: float64

Median prices for year

2014 489000.0 2015 499000.0

Name: price, dtype: float64

Mean prices for day_cat weekday 540430.406543 weekend 525963.441860 Name: price, dtype: float64

Median prices for day_cat

weekday 490000.0 weekend 484000.0

Name: price, dtype: float64

PRICE PREDICTION

Est.Price = 0.2827x sqft_living + 0.4312x grade + 0.2161x condition + 0.0614x floors + 0.3554x lat + 0.2396x waterfront - 0.1997

1.974

6.923

0.0314

OLS Regression Results

Dep. Variable:		price	R-squ	ared:		0.634
Model:		OLS	Adj.	R-squared:		0.634
Method:	Lea	st Squares	F-sta	tistic:		1615.
Date:	Fri, 2	8 May 2021	Prob	(F-statistic):		0.00
Time:		11:14:10	Log-L	ikelihood:		5049.0
No. Observations:		5590	AIC:			-1.008e+04
Df Residuals:		5583	BIC:			-1.004e+04
Df Model:		6				
Covariance Type:		nonrobust				
	coef s	td err	t	P> t	[0.025	0.975]
const -0	.1997	0.011	 -17.959	0.000	-0.221	-0.178
sqft living 0	.2827	0.010	29.752	0.000	0.264	0.301
grade 0	.4312	0.013	32.138	0.000	0.405	0.457
condition 0	.2161	0.012	18.526	0.000	0.193	0.239
floors 0	.0614	0.005	11.786	0.000	0.051	0.072
lat 0	.3554	0.007	53.562	0.000	0.342	0.368
waterfront 0	.2396	0.031	7.707	0.000	0.179	0.301

0.031

Notes:

Omnibus:

Kurtosis:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

Durbin-Watson:

Jarque-Bera (JB):

Train Mean Squarred Error: 0.009616167526054365 Test Mean Squarred Error: 0.009811975982764534

FUTURE PLAN

For the future, I should include more detail about location, such as downtown, shopping mall, supermarket or public transportation, to increase the accuracy of prediction.

THANK YOU