SISTEMAS MICROPROCESSADOS I

Prof.: João Castelo

Avaliação

AV2	NOTA
Prática - Portas de I/O	3,0
Prática - Timer	7,0
AV3	NOTA
Apresentação	3,0
Prova de conceito	3,0
Simulação e Montagem do circuito	2,0
Desempenho em sessão tutorial	2,0

Sistemas de Clock - MSP430

Família 1xx

- Sistema de clock: BCS Basic Clock System;
- Composto por um ou dois osciladores capazes de funcionar como cristais ou ressonadores externos, além de um oscilador interno controlado digitalmente (DCO).

Família 2xx

- Sistema de clock: BCS+
- Idêntico ao BCS com algumas inovações: ampliação da frequência de trabalho (até 16 MHz), diminuição do consumo de energia é do tempo de partida do oscilador interno.

Família 4xx

- Sistema de clock: FLL+ Frequency-Locked Loop (Laço amarrado em frequência);
- Composto por um ou dois osciladores capazes de funcionar como cristais ou ressonadores externos, além de um oscilador interno controlado digitalmente (DCO), que é ajustado e controlado por um hardware interno.
- Isso garante que o oscilador trabalhe em uma frequência múltipla de um cristal externo de baixa frequência.

Sinais de clock

- MCLK clock principal
 - Sincronizar a CPU e eventualmente outros periféricos do sistema.
- SMCLK clock secundário
 - Fonte de clock alternativa para os diversos periféricos do microcontrolador.
- ACLK auxiliar de clock
 - Fonte de clock de precisão para periféricos durante modos de baixo consumo.

BCS+

LFXT1CLK – Oscilador de Baixa/Alta Frequência

- Circuito encontrado em todos os dispositivos MSP430.
- Fornece sinais de clock de precisão para periféricos como os timers.
- Pode ser mantido em operação na maioria dos modos de baixa potência permitindo que o programador mantenha os periféricos internos em operação (CPU parada).
- Pode usar tanto cristais, ressonadores ou fontes externas de 32768Hz quanto da ordem de MHz (0,4 a 16 MHz)

LFXT1CLK

A principal aplicação é a construção de relógios de tempo real (RTC):

- Utiliza o modo de baixa frequência e um cristal de 32768 Hz;
- Configura um timer para operar a partir do sinal ACLK pode manter o chip em um modo de baixa potência - LPM3 e ao mesmo tempo mantém um relógio baseado em um timer funcionando;
- A cada intervalo de tempo definido o timer gera uma interrupção;
- Isso faz com que o chip saia do modo de baixo consumo e execute a rotina de interrupção que deve atualizar o horário e se for o caso retornar ao modo de baixo consumo.

LFXT1CLK

LFXT1CLK

Desativa o gerador de clock

Seleciona entre baixa e alta frequência

Seleciona entre LFTX1 e VLO

Seleciona os capacitores internos de acordo com a frequência do cristal

LFXT1CLK - Outras arquiteturas

- Diferenças:
 - Família 1xx: capacitores internos fixos.
 - Família 4xx: capacitores são selecionáveis de 1, 6 8 ou 70pF.

Figura 5-2

LFXT1 Oscillator

XCAPxPF

ACLK/n

VLOCLK

• Oscilador interno com um consumo muito baixo, com frequência típica de 12kHz;

VLOCLK

XT2CLK – Oscilador de Alta Frequência

- Alguns dispositivos implementam um segundo oscilador projetado especificamente para operar em altas frequências (450kHz a 8MHz, ou 16MHz no caso da família 2xx).
- Esse oscilador comporta-se exatamente como o oscilador LFXT1CLK no modo de alta frequência (XT).

XT2CLK

XT2CLK

Desativa o gerador de clock (com exceção para o MCLK ou SMCLK)

DCOCLK

 Os dispositivos das famílias 1xx e 2xx incluem um circuito oscilador controlado digitalmente capaz de operar em uma gama bastante ampla de frequências e sob o controle do usuário.

DCOCLK

DCOCLK

MCLK

- Pode ser selecionado das fontes LFXT1CLK, VLOCLK, XT2CLK ou DCOCLK;
- Pode ser dividido por 1, 2, 4 ou 8;
- É usado para gerar o clock para a CPU.

MCLK

MCLK

SMCLK

- SMCLK: Clock Sub Principal (Sub-main Clock):
 - Pode ser selecionado das fontes XT2CLK ou DCOCLK;
 - Pode ser dividido por 1, 2, 4 ou 8;
 - É usado para gerar o clock dos periféricos.

SMCLK

- ACLK: Clock Auxiliary (Auxiliary Clock):
 - Pode ser selecionado das fontes LFXT1CLK ou VLOCLK;
 - Pode ser dividido por 1, 2, 4 ou 8;
 - Sua função principal é gerar o clock para os periféricos.

DÚVIDAS?