Serial No.

: 09/590,447

Filed

June 9, 2000

AMENDMENTS AND STATUS OF CLAIMS

1. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of administering to a mammal in need thereof a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand comprising a compound of the formula

$$(R_3)_0$$
 $(R_2)_m$ R_1 $(R_2)_m$ R_1

formula (3)

wherein the dashed line represents a bond or absence of a bond;

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or

X is $(C(R_1)_2)_n$ where R_1 is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

 R_2 is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF₃, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C_1 - C_{12} alkylbenzyloxy;

 R_3 is hydrogen, lower alkyl of 1 to 6 carbons or F; m is an integer having the value of 0 - 3;

o is an integer having the value of 0 - 4 when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

[R₃] $\underline{R'_3}$ is hydrogen, lower alkyl of 1 to 6 carbons, F or $(R_{15})_r$ -phenyl, $(R_{15})_r$ -naphthyl, or $(R_{15})_r$ - heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

Serial No. Filed 09/590,447 June 9, 2000

R₄ is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R₂ groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is $(CH_2)_q$ where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said compound.

- 2. (Original) A method in accordance with Claim 1 where X is (C(R1)2)n and n is 1.
 - 3. (Original) A method in accordance with Claim 1 where X is S.
 - 4. (Original) A method in accordance with Claim 1 where X is O.
 - 5. (Original) A method in accordance with Claim 1 where X is NR.
 - 6. (Original) A method in accordance with Claim 1 where Y is phenyl.
 - 7. (Original) A method in accordance with Claim 1 where Y is thienyl.

Serial No. : 09/590,447 **Filed** : June 9, 2000

8. (Original) A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (1) and (2).

- 9. (Original) A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents absence of a bond.
- 10. (Original) A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents a bond.
- 11. (Original) A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (3) and (4).
- 12. (Original) A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents absence of a bond.
- 13. (Original) A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents a bond.

14-30 (Withdrawn)

31. (Previously amended) A method of treating a hypercholesterolemic mammal comprising the steps: administering to a mammal in need thereof a pharmaceutically acceptable composition comprising an FXR antagonist having the following formula

$$(R_3)_0$$
 $(R_2)_m$ R_1 $Si(R_4)_3$ $(R_2)_m$ R_1

formula (3)

wherein the dashed line represents a bond or absence of a bond:

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or X is $(C(R_1)_2)_n$ where R_1 is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

R₂ is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF₃, fluoro substituted

Serial No. : 09/590,447 **Filed** : June 9, 2000

alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C_1 - C_{12} .alkylbenzyloxy;

R₃ is hydrogen, lower alkyl of 1 to 6 carbons or F; m is an integer having the value of 0 - 3;

o is an integer having the value of 0 - 4 when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

R'₃ is hydrogen, lower alkyl of 1 to 6 carbons, F or $(R_{15})_r$ -phenyl, $(R_{15})_r$ -naphthyl, or $(R_{15})_r$ - heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

R₄ is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R_2 groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is (CH₂)_q where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said compound.

Serial No.

09/590.447

Filed

June 9, 2000

- 32. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor.
- 33. (Original) The method of claim 32 wherein said pathological condition comprises hypercholesterolemia.
- 34. (Original) The method of claim 32 wherein said pathological condition comprises hypocholesterolemia.
- 35. (Original) The method of claim 32 wherein said pathological condition is characterized by the overproduction of bile acids.
- 36. (Original) The method of claim 32 wherein said pathological condition is characterized by the underproduction of bile acids.
- 37. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of administering to a mammal in need thereof a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand having the formula

$$R_4$$
 R_4 R_4 R_2 R_2

wherein $\mathbf{R_2}$ is H or lower alkyl, $\mathbf{R_4}$ is lower alkyl of 1 to 8 carbons and B is $\mathrm{CH_2OH}$ or $\mathrm{COOR_8}$ where $\mathbf{R_8}$ is H or ethyl.

- 38. (Original) A method in accordance with Claim 31 where R2 is H and R4 is ethyl.
- 39. (Original) A method in accordance with Claim 32 where B is CH2OH.
- 40. (Original) A method in accordance with Claim 33 where B is COOR8.