EDA Analyis Report

Nicole Chen

2025-02-24

Introduction

This report aims to present an exploratory data analysis of the World Bank data for the "World" region in 2022(Bank 2022). We will focus on three key indicators - "Life Expectancy, Exports as a Share of GDP, and Education Expenditure as a Share of GDP" - and include visualizations and statistical summaries.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Loading

```
df = pd.read_csv("wdi.csv")
df.head()
```

	country	inflation_rate	$exports_gdp_share$	gdp_growth_rate	gdp_per_capita	adult_lite
0	Afghanistan	NaN	18.380042	-6.240172	357.261153	NaN
1	Albania	6.725203	37.197085	4.826688	6846.426143	98.5
2	Algeria	9.265516	30.808979	3.600000	4961.552577	NaN
3	American Samoa	NaN	46.957520	1.735016	18017.458938	NaN
4	Andorra	NaN	NaN	9.564612	42414.059009	NaN

Exploratory Data Analysis for Three Factors

Data Overview

Table $(\mathbf{ref?})(\text{tab:summary-table})$ provides a summary of key economic indicators used in this analysis.

```
df.info()
df.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217 entries, 0 to 216
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	country	217 non-null	object
1	inflation_rate	173 non-null	float64
2	exports_gdp_share	179 non-null	float64
3	gdp_growth_rate	206 non-null	float64
4	gdp_per_capita	207 non-null	float64
5	adult_literacy_rate	54 non-null	float64
6	<pre>primary_school_enrolment_rate</pre>	156 non-null	float64
7	education_expenditure_gdp_share	137 non-null	float64
8	measles_immunisation_rate	193 non-null	float64
9	health_expenditure_gdp_share	20 non-null	float64
10	income_inequality	28 non-null	float64
11	unemployment_rate	186 non-null	float64
12	life_expectancy	209 non-null	float64
13	total_population	217 non-null	float64

dtypes: float64(13), object(1)

memory usage: 23.9+ KB

	inflation_rate	$exports_gdp_share$	gdp_growth_rate	gdp_per_capita	adult_literacy_rate	pr
count	173.000000	179.000000	206.000000	207.000000	54.000000	15
mean	12.404067	47.630189	4.393817	20520.336828	80.971722	10
std	19.467053	35.631646	6.706923	30640.741594	18.430839	12
\min	-6.687321	1.571162	-28.758584	250.634225	27.280001	67
25%	5.518129	24.363501	2.545226	2599.752468	74.760000	94
50%	7.930929	40.817640	4.213483	7606.237525	85.452465	99
75%	11.665567	59.741910	6.200000	27542.145523	95.875000	10

	inflation_rate	$exports_gdp_share$	gdp_growth_rate	gdp_per_capita	adult_literacy_rate	pı
max	171.205491	211.278206	63.334587	226052.001905	100.000000	15

Checking for Missing Values

df.isnull().sum()

country	0
inflation_rate	44
exports_gdp_share	38
gdp_growth_rate	11
gdp_per_capita	10
adult_literacy_rate	163
<pre>primary_school_enrolment_rate</pre>	61
education_expenditure_gdp_share	80
measles_immunisation_rate	24
health_expenditure_gdp_share	197
income_inequality	189
unemployment_rate	31
life_expectancy	8
total_population	0
dtype: int64	

Factor 1: Life Expectancy

df["life_expectancy"].describe()

```
count
         209.000000
         72.416519
mean
std
          7.713322
min
         52.997000
25%
          66.782000
50%
          73.514634
75%
          78.475000
          85.377000
max
```

Name: life_expectancy, dtype: float64

Factor 2: Exports as a Share of GDP

```
df["exports_gdp_share"].describe()

count 179.000000

mean 47.630189

std 35.631646

min 1.571162

25% 24.363501

50% 40.817640
```

Name: exports_gdp_share, dtype: float64

59.741910

211.278206

Factor 3: Education Expenditure as a Share of GDP

```
df["education_expenditure_gdp_share"].describe()
```

```
137.000000
count
           4.164884
mean
std
           1.771027
           0.348517
min
25%
           2.951592
50%
           3.938396
75%
           4.959176
max
          10.703345
Name: education_expenditure_gdp_share, dtype: float64
```

Visualizations

75%

max

Distribution of Life Expectancy

```
plt.figure(figsize=(5,3))
sns.histplot(df["life_expectancy"].dropna(), bins=30, kde=True, color="green")
plt.title("Distribution of Life Expectancy")
plt.xlabel("Life Expectancy (Years)")
```


: Distribution of Life Expectancy {#fig:life-expectancy}

Findings 1:

As shown in (ref?)(fig:life-expectancy), most countries have a life expectancy between 60 and 80 years. There are outliers with low life expectancy, which could indicate conflicts or poor healthcare.

Boxplot of Life Expectancy

```
plt.figure(figsize=(5,3))
sns.boxplot(x=df['life_expectancy'], color='purple')
plt.title("Boxplot of Life Expectancy")
plt.xlabel("Life Expectancy (Years)")
plt.show()
```

Boxplot of Life Expectancy

: Boxplot of Life Expectancy {#fig:life-expectancy2}

Findings 2:

As shown in (ref?)(fig:life-expectancy2), the boxplot confirms the presence of lower outliers in life expectancy. The median value is around 72 years, aligning with the statistical summary.

Scatter Plot of Exports vs. Education Expenditure

Figure (ref?)(fig:exports-vs-education) illustrates the relationship between Exports as a Share of GDP and Education Expenditure.

```
plt.figure(figsize=(5,3))
sns.scatterplot(data=df, x="exports_gdp_share", y="education_expenditure_gdp_share", hue="con
plt.title("Exports as a Share of GDP vs. Education Expenditure")
plt.xlabel("Exports as a Share of GDP (%)")
plt.ylabel("Education Expenditure as a Share of GDP (%)")
plt.show()
```


: Relationship between Exports as a Share of GDP and Education Expenditure $\{\# fig: exports-vs-education\}$

Findings 3:

As shown in (ref?)(fig:exports-vs-education), Countries with higher exports do not necessarily allocate more to education. This suggests that economic priorities vary, with some nations investing heavily in education regardless of trade levels.

Scatter Plot of Exports vs. Life Expectancy

```
plt.figure(figsize=(5,3))
sns.scatterplot(data=df, x='exports_gdp_share', y='life_expectancy', hue='country', palette=
plt.title("Exports as a Share of GDP vs. Life Expectancy")
plt.xlabel("Exports as a Share of GDP (%)")
plt.ylabel("Life Expectancy (Years)")
plt.show()
```


: Relationship between Exports as a Share of GDP and Life Expectancy $\{\# \text{fig:exports-vs-life-expectancy}\}$

Findings 3:

As shown in (ref?)(fig:exports-vs-life-expectancy), exports as a share of GDP shows high variability, with some economies relying heavily on trade while others do not. Also, education expenditure varies widely, suggesting different government spending priorities.

Summary Table

Table (ref?)(tab:summary-table) provides a statistical summary of the three key indicators.

summary_table = df[["life_expectancy", "exports_gdp_share", "education_expenditure_gdp_share
summary_table

	life_expectancy	exports_gdp_share	education_expenditure_gdp_share
count	209.000000	179.000000	137.000000
mean	72.416519	47.630189	4.164884
std	7.713322	35.631646	1.771027
\min	52.997000	1.571162	0.348517
25%	66.782000	24.363501	2.951592

	life_expectancy	$exports_gdp_share$	education_expenditure_gdp_share
50%	73.514634	40.817640	3.938396
75%	78.475000	59.741910	4.959176
max	85.377000	211.278206	10.703345

: Summary statistics of selected World Bank indicators {#tab:summary-table}

Cross-Referenced Discussion

As shown in **Table (ref?)(tab:summary-table)**, the mean life expectancy is approximately 72 years, with a significant variation among countries. **Figure (ref?)(fig:exports-vs-education)** suggests that there is no strong correlation between Exports as a Share of GDP and Education Expenditure, indicating different national priorities regarding trade and education funding.

Furthermore, Figure (ref?)(fig:life-expectancy) demonstrates that life expectancy varies widely among nations, with most countries clustering between 60 and 80 years. This aligns with global health disparities highlighted in prior research (Bank 2022; (UNDP) 2022).

References

Bank, World. 2022. "World Development Indicators 2022." World Bank Publications. https://databank.worldbank.org/source/world-development-indicators.

(UNDP), United Nations Development Programme. 2022. "Human Development Report 2021/2022: Uncertain Times, Unsettled Lives." *United Nations Publications*. https://hdr.undp.org/content/human-development-report-2021-22.