

Production of pseudovector ($J^{PC} = 1^{++}$) heavy quarkonia by virtual Z boson in e^+e^- collisions *

N.N. Achasov

Laboratory of Theoretical Physics

S.L. Sobolev Institute for Mathematics

Universitetskii prospekt, 4

Novosibirsk 90, 630090, Russia †

(February 1, 2008)

Abstract

It is shown that $BR(\chi_{b1}(1P) \rightarrow Z \rightarrow e^+e^-) \simeq 3.3 \cdot 10^{-7}$, $BR(\chi_{b1}(2P) \rightarrow Z \rightarrow e^+e^-) \simeq 4.1 \cdot 10^{-7}$ and $BR(\chi_{c1}(1P) \rightarrow Z \rightarrow e^+e^-) \simeq 10^{-8}$ that give a good chance to search for the direct production of pseudovector 3P_1 heavy quarkonia in e^+e^- collisions ($e^+e^- \rightarrow Z \rightarrow {}^3P_1$) even at current facilities not to mention b and $c - \tau$ factories.

12.15.Ji, 13.15.Jr, 13.65.+i

Typeset using REVTEX

*This work was supported partly by RFBR-94-02-05 188, RFBR-96-02-00 548 and INTAS-94-3986

†E-mail: achasov@math.nsk.su

Broadly speaking, production of narrow p wave pseudovector bound states of heavy quarks 3P_1 with $J^{PC} = 1^{++}$, like $\chi_{b1}(1p)$, $\chi_{b1}(2p)$ and $\chi_{c1}(1p)$ [1], in e^+e^- collisions via the virtual intermediate Z boson ($e^+e^- \rightarrow Z \rightarrow {}^3P_1$), could be observed by experiment at least at b and $c - \tau$ factories for amplitudes of weak interactions grow with energy increase in this energy regions $\propto G_F E^2$.

In present paper it is shown that the experimental investigation of this interesting phenomenon is possible at current facilities.

First and foremost let us calculate the ${}^3P_1 \rightarrow Z \rightarrow e^+e^-$ amplitude. We use a handy formalism of description of a nonrelativistic bound state decays given in the review [2].

The Feynman amplitude describing a free quark-antiquark annihilation into the e^+e^- pair has the form

$$M(\bar{Q}(p_{\bar{Q}})Q(p_Q) \rightarrow Z \rightarrow e^+(p_+)e^-(p_-)) = \frac{\alpha\pi}{2\cos^2\theta_W \sin^2\theta_W} \frac{1}{E^2 - m_Z^2} j^{e\alpha} j_\alpha^Q = \\ \frac{\alpha\pi}{2\cos^2\theta_W \sin^2\theta_W} \frac{1}{E^2 - m_Z^2} \bar{e}(p_-)[(-1 + 4\sin^2\theta_W)\gamma^\alpha - \gamma^\alpha\gamma_5]e(-p_+) \cdot \\ \bar{Q}_C(-p_{\bar{Q}})[(t_3 - e_Q \sin^2\theta_W)\gamma_\alpha + t_3\gamma_\alpha\gamma_5]Q^C(p_Q) \quad (1)$$

where the notation is quite marked unless generally accepted.

One can ignore the vector part of the electroweak electron-positron current $j^{e\alpha}$ in Eq. (1) for $(1 - 4\sin^2\theta_W) \simeq 0.1$. As for the electroweak quark-antiquark current j_α^Q , only its axial-vector part contributes to the pseudovector (1^{++}) quarkonia annihilation. So, the amplitude of interest is

$$M(\bar{Q}(p_{\bar{Q}})Q(p_Q) \rightarrow Z \rightarrow e^+(p_+)e^-(p_-)) = \sigma_Q \frac{\alpha\pi}{4\cos^2\theta_W \sin^2\theta_W} \frac{1}{m_Z^2} j_5^{e\alpha} j_{\alpha 5}^Q = \\ \sigma_Q \frac{\alpha\pi}{4\cos^2\theta_W \sin^2\theta_W} \frac{1}{m_Z^2} \bar{e}(p_-)\gamma^\alpha\gamma_5 e(-p_+)\bar{Q}_C(-p_{\bar{Q}})\gamma_\alpha\gamma_5 Q^C(p_Q) \quad (2)$$

where $\sigma_c = 1$ and $\sigma_b = -1$. The term of order of E^2/m_Z^2 is omitted in Eq. (2).

In the c.m. system one can write that

$$M(\bar{Q}(p_{\bar{Q}})Q(p_Q) \rightarrow Z \rightarrow e^+(p_+)e^-(p_-)) \simeq -\sigma_Q \frac{\alpha\pi}{4\cos^2\theta_W \sin^2\theta_W} \frac{1}{m_Z^2} j_{i5}^{e\alpha} j_{i5}^Q = \\ -\sigma_Q \frac{\alpha\pi}{4\cos^2\theta_W \sin^2\theta_W} \frac{1}{m_Z^2} \bar{e}(p_-)\gamma_i\gamma_5 e(-p_+)\bar{Q}_C(-p_{\bar{Q}})\gamma_i\gamma_5 Q^C(p_Q) = M(\mathbf{p}) \quad (3)$$

ignoring the term of order of $2m_e/E$ ($j_{05}^e = (2m_e/E)j_5$ in the c.m. system). Hereafter the three-momentum $\mathbf{p} = \mathbf{p}_Q = -\mathbf{p}_{\bar{Q}}$ in the c.m. system.

To construct the effective Hamiltonian for the 1^{++} quarkonium annihilation into the e^+e^- pair one expresses the axial-vector quark-antiquark current j_{i5}^Q in Eq. (3) in terms of two-component spinors of quark w^α and antiquark v_β using four-component Dirac bispinors

$$Q^C(p_Q) = Q^C Q(p_Q) = \frac{1}{\sqrt{2m_Q}} Q^C \left(\begin{array}{c} \sqrt{\varepsilon + m_Q} w \\ \sqrt{\varepsilon - m_Q} (\mathbf{n} \cdot \boldsymbol{\sigma}) w \end{array} \right),$$

$$\bar{Q}_C(-p_{\bar{Q}}) = Q_C \bar{Q}(-p_{\bar{Q}}) = -\frac{1}{\sqrt{2m_Q}} Q_C \left(\begin{array}{c} \sqrt{\varepsilon - m_Q} v(\mathbf{n} \cdot \boldsymbol{\sigma}) \\ \sqrt{\varepsilon + m_Q} v \end{array} \right) \quad (4)$$

where Q^C and Q_C are color spinors of quark and antiquark respectively, $\mathbf{n} = \mathbf{p}/|\mathbf{p}|$.

As the result

$$j_{i5}^Q = i \frac{2\sqrt{6}}{2m_Q} \varepsilon_{kin} p_k \chi_n \eta_0 \quad (5)$$

where $\chi_n = v\sigma_n w/\sqrt{2}$ and $\eta_0 = Q_C Q^C / \sqrt{3}$.

The spin-factor χ_i and the color spin-factor η_0 are contracted as follows $\chi_i \chi_j = \delta_{ij}$ and $\eta_0 \eta_0 = 1$.

The 3P_1 bound state wave function in the coordinate representation has the form

$$\Psi_j({}^3P_1, \mathbf{r}, m_A) = \frac{1}{\sqrt{2}} \eta_0 \varepsilon_{jpl} \chi_p \frac{r_l}{r} \sqrt{\frac{3}{4\pi}} R_P(r, m_A) \quad (6)$$

where $r = |\mathbf{r}|$, $R_P(r, m_A)$ is a radial wave function with the normalization $\int_0^\infty |R_P(r, m_A)|^2 r^2 dr = 1$, m_A is a mass of a 3P_1 bound state.

For use one needs the 3P_1 bound state wave function in the momentum representation.

It has the form

$$\Psi_j({}^3P_1, \mathbf{p}, m_A) = \frac{1}{\sqrt{2}} \eta_0 \varepsilon_{jpl} \chi_p (\psi_P(\mathbf{p}, m_A))_l \quad (7)$$

where

$$(\psi_P(\mathbf{p}, m_A))_l = \sqrt{\frac{3}{4\pi}} \int \frac{r_l}{r} R_P(r, m_A) \exp\{-i(\mathbf{p} \cdot \mathbf{r})\} d^3 r. \quad (8)$$

The amplitude of the 3P_1 bound state $\rightarrow e^+e^-$ annihilation is given by

$$M(A_j \rightarrow e^+ e^-) \equiv \int M(\mathbf{p}) \Psi_j(^3P_1, \mathbf{p}, m_A) \frac{d^3 p}{(2\pi)^3} \quad (9)$$

where A_j stands for a 3P_1 state.

As seen from Eq. (3) to find the $M(A_j \rightarrow e^+ e^-)$ amplitude one needs to calculate the convolution and contraction of a quark-antiquark pair axial-vector current with a 3P_1 bound state wave function

$$\begin{aligned} \int j_{i5}^Q \Psi_j(^3P_1, \mathbf{p}, m_A) \frac{d^3 p}{(2\pi)^3} &= i \frac{2\sqrt{6}}{m_A} \varepsilon_{kin} \chi_n \eta_0 \int p_k \cdot \Psi_j(^3P_1, \mathbf{p}, m_A) \frac{d^3 p}{(2\pi)^3} = \\ i \delta_{ij} \frac{4}{\sqrt{3}} \frac{1}{m_A} \int p_k (\psi_P(\mathbf{p}, m_A))_k &\frac{d^3 p}{(2\pi)^3} = \delta_{ij} 2 \frac{3}{\sqrt{\pi}} \frac{1}{m_A} R'_P(0, m_A) \end{aligned} \quad (10)$$

where $R'_P(0, m_A) = dR_P(r, m_A)/dr|_{r=0}$. Deriving Eq. (10) we put, as it usually is, $2m_Q = m_A$ and took into account that $R_P(r, m_A) \rightarrow r R'_P(0, m_A)$ when $r \rightarrow 0$.

So,

$$M(A_j \rightarrow e^+ e^-) = -\sigma_Q 3\sqrt{\pi} \frac{\alpha}{2 \cos^2 \theta_W \sin^2 \theta_W} \frac{1}{m_Z^2} \frac{1}{m_A} R'_P(0) \bar{e}(p_-) \gamma_j \gamma_5 e(-p_+) . \quad (11)$$

The width of the $A \rightarrow e^+ e^-$ decay

$$\begin{aligned} \Gamma(A \rightarrow e^+ e^-) &= \frac{1}{3} \sum_{j e^+ e^-} \int |M(A_j \rightarrow e^+ e^-)|^2 (2\pi)^4 \delta^4(m_A - p_- - p_+) \frac{d^3 p_+}{(2\pi)^3} \frac{d^3 p_-}{(2\pi)^3} \simeq \\ \frac{1}{3} \sum_{j e^+ e^-} \int |M(A_j \rightarrow e^+ e^-)|^2 &\frac{1}{8\pi} \simeq \\ \frac{\alpha^2}{32} \frac{3}{\cos^4 \theta_W \sin^4 \theta_W} \frac{1}{m_Z^4} \frac{1}{m_A^2} |R'_P(0, m_A)|^2 &Sp(\hat{p}_+ \gamma_j \gamma_5 \hat{p}_- \gamma_j \gamma_5) \simeq \\ \frac{\alpha^2}{8} \frac{1}{\cos^4 \theta_W \sin^4 \theta_W} \frac{1}{m_Z^4} |R'_P(0, m_A)|^2 &\simeq 12.3 \alpha^2 \frac{1}{m_Z^4} |R'_P(0, m_A)|^2 \end{aligned} \quad (12)$$

where terms of order of $(2m_e/m_A)^2$ are omitted, $\sin^2 \theta_W = 0.225$ is put, the normalization $\bar{e}(p_-)e(p_-) = 2m_e$ and $\bar{e}(-p_+)e(-p_+) = -2m_e$ is used. Note that for the quark and antiquark we use the normalization $\bar{Q}(p_Q)Q(p_Q) = 1$ and $\bar{Q}(-p_Q)Q(-p_Q) = -1$, see Eq. (4).

To estimate a possibility of the $\chi_{c1}(1P)$, $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ production in $e^+ e^-$ collisions it needs to estimate the branching ratio $BR(A \rightarrow e^+ e^-)$.

In a logarithmic approximation [2,3] the decay of the 3P_1 level into hadrons is caused by the decays $^3P_1 \rightarrow g + q\bar{q}$ where g is gluon and $q\bar{q}$ is a pair of light quarks: $u\bar{u}$, $d\bar{d}$, $s\bar{s}$ for $\chi_{c1}(1P)$ and $u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ for $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$. The relevant width [2,3]

$$\Gamma_{log} \left(^3P_1 \equiv A \rightarrow gq\bar{q} \right) \simeq \frac{N}{3} \frac{128}{3\pi} \frac{\alpha_s^3}{m_A^4} |R'_P(0, m_A)|^2 \ln \frac{m_A R(m_A)}{2} \quad (13)$$

where N is the number of the light quark flavors and $R(m_A)$ is the quarkonium radius. Using Eqs. (12) and (13) one gets that

$$BR(A \rightarrow e^+e^-) \simeq \frac{3}{N} 0.9 \frac{\alpha^2}{\alpha_s^3} \left(\frac{m_A}{m_Z} \right)^4 \frac{1}{\ln(m_A R(m_A)/2)} \left[1 - \sum_V BR(A \rightarrow \gamma V) \right] \quad (14)$$

where the radiative decays $\chi_{c1}(1P) \rightarrow \gamma J/\psi$, $\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S)$, $\chi_{b1}(2P) \rightarrow \gamma \Upsilon(1S)$ and $\chi_{b1}(2P) \rightarrow \gamma \Upsilon(2S)$ are taken into account.

A convention [2] uses that $L(m_A) = \ln(m_A R(m_A)/2) \simeq 1$ for $\chi_{c1}(1P)$, i.e. when $m_A = 3.51 \text{ GeV}$ [1]. As for $\chi_{b1}(1P)$, $m_A = 9.89 \text{ GeV}$ [1], and $\chi_{b1}(2P)$, $m_A = 10.2552 \text{ GeV}$ [1], it depends on the m_A behavior of the quarkonium radius $R(m_A)$. For example, the coulomb-like potential gives that $R(m_A) \sim 1/m_A$ and the logarithm practically does not increase, $L(3.51 \text{ GeV}) \simeq L(9.89 \text{ GeV}) \simeq L(10.2552 \text{ GeV}) \simeq 1$. Alternatively, the harmonic oscillator potential gives $R(m_A) \sim 1/\sqrt{m_A \omega_0}$, where $\omega_0 \simeq 0.3 \text{ GeV}$, that leads to $L(9.89 \text{ GeV}) \simeq L(10.2552 \text{ GeV}) \simeq 1.5$. To be conservative one takes $L(9.89 \text{ GeV}) = L(10.2552 \text{ GeV}) = 2$.

So, putting $\alpha_s(3.51 \text{ GeV}) = 0.2$, $BR(\chi_{c1}(1P) \rightarrow \gamma J/\psi) = 0.27$ [1], $N = 3$, $L(3.51 \text{ GeV}) = 1$, $m_A = m_{\chi_{c1}(1P)} = 3.51 \text{ GeV}$ and $m_Z = 91.2 \text{ GeV}$ one gets from Eq. (14) that

$$BR(\chi_{c1}(1P) \rightarrow e^+e^-) = 0.96 \cdot 10^{-8}. \quad (15)$$

Putting $\alpha_s(9.89 \text{ GeV}) = \alpha_s(10.2552 \text{ GeV}) = 0.17$, $BR(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S)) = 0.35$ [1], $BR(\chi_{b1}(2P) \rightarrow \gamma \Upsilon(1S)) + BR(\chi_{b1}(2P) \rightarrow \gamma \Upsilon(2S)) = 0.085 + 0.21 = 0.295$ [1], $N = 4$, $L(9.89 \text{ GeV}) = L(10.2552 \text{ GeV}) = 2$, $m_A = m_{\chi_{b1}(1P)} = 9.89 \text{ GeV}$, $m_A = m_{\chi_{b1}(2P)} = 10.2552 \text{ GeV}$ and $m_Z = 91.2 \text{ GeV}$ one gets from Eq. (14) that

$$BR(\chi_{b1}(1P) \rightarrow e^+e^-) = 3.3 \cdot 10^{-7}, \quad (16)$$

$$BR(\chi_{b1}(2P) \rightarrow e^+e^-) = 4.1 \cdot 10^{-7}.$$

Let us discuss possibilities to measure the branching ratios under consideration .

The cross section of a reaction $e^+e^- \rightarrow A \rightarrow out$ at resonance peak [1]

$$\sigma(A) \simeq 1.46 \cdot 10^{-26} BR(A \rightarrow e^+e^-) BR(A \rightarrow out) \left(\frac{GeV}{m_A} \right)^2 cm^2. \quad (17)$$

So, for the $\chi_{c1}(1P)$ state production

$$\sigma(\chi_{c1}(1P)) \simeq 1.14 \cdot 10^{-35} BR(\chi_{c1}(1P) \rightarrow out) cm^2 \quad (18)$$

and for the production of the $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ states

$$\sigma(\chi_{b1}(1P)) \simeq 4.8 \cdot 10^{-35} BR(\chi_{b1}(1P) \rightarrow out) cm^2, \quad (19)$$

$$\sigma(\chi_{b1}(2P)) \simeq 5.6 \cdot 10^{-35} BR(\chi_{b1}(2P) \rightarrow out) cm^2.$$

In general, the visible cross section at the peak of the narrow resonances like J/ψ , $\Upsilon(1S)$ and so on is suppressed by a factor of order of $\Gamma_{tot}/\Delta E$ where ΔE is an energy spread. But, fortunately, the $\chi_{c1}(1P)$ resonance width equal to $0.88 MeV$ [1] is not small in comparison with energy spreads of current facilities, for example, $\Delta E \simeq 2 MeV$ at BEPC (China), see [1]. Taking into account that the luminosity at BEPC [1] is equal to $10^{31} cm^{-2}s^{-1}$, $\Gamma_{tot}(\chi_{c1}(1P))/\Delta E \simeq 0.44$ and the cross section of the $\chi_{c1}(1P)$ production is equal to $1.14 \cdot 10^{-35} cm^2$, see Eq. (18), one can during an effective year (10^7 seconds) working produce 501 $\chi_{c1}(1P)$ states.

Note that such a number of $\chi_{c1}(1P)$ states gives 135 (27%) unique decays $\chi_{c1}(1P) \rightarrow \gamma J/\psi$.

The $c - \tau$ factories (luminosity $\sim 10^{33} cm^{-2}s^{-1}$) could produce several tens of thousands of the $\chi_{c1}(1P)$ states.

As for the $\chi_{b1}(1P)$ state, its width is unknown up to now [1]. Let us estimate it using the $\chi_{c1}(1P)$, J/ψ , $\Upsilon(1S)$ widths, and the quark model.

In the quark model

$$\Gamma(3S_1 \equiv V \rightarrow ggg) = \frac{40}{81\pi} (\pi^2 - 9) \frac{\alpha_s^3}{m_V^2} |R_S(0, m_V)|^2 \quad (20)$$

One gets from Eqs. (13) and (20) that

$$\begin{aligned} & \frac{\Gamma(A \rightarrow gq\bar{q})}{\Gamma(V \rightarrow ggg)} = \\ & \frac{\Gamma_{tot}(A)}{\Gamma_{tot}(V)} \frac{BR(A \rightarrow hadrons)}{[BR(V \rightarrow hadrons) - BR(V \rightarrow virtual \gamma \rightarrow hadrons)]} = \\ & 99.4 \frac{N}{3} \left(\frac{m_V}{m_A} \right)^2 \left| \frac{R'_P(0, m_A)}{m_A R_S(0, m_V)} \right|^2 \ln \frac{m_A R(m_A)}{2}. \end{aligned} \quad (21)$$

So,

$$\begin{aligned} & \frac{\Gamma_{tot}(\chi_{b1}(1P))}{\Gamma_{tot}(\Upsilon(1S))} = 0.53 \frac{\Gamma_{tot}(\chi_{c1}(1P))}{\Gamma_{tot}(J/\psi)} \left| \frac{R'_P(0, m_{\chi_{b1}(1P)}) R_S(0, m_{J/\psi})}{R'_P(0, m_{\chi_{c1}(1P)}) R_S(0, m_{\Upsilon(1S)})} \right|^2 = \\ & 5.3 \left| \frac{R'_P(0, m_{\chi_{b1}(1P)}) R_S(0, m_{J/\psi})}{R'_P(0, m_{\chi_{c1}(1P)}) R_S(0, m_{\Upsilon(1S)})} \right|^2. \end{aligned} \quad (22)$$

Calculating Eq. (22) one used data from [1], $BR(\Upsilon(1S) \rightarrow hadrons) - BR(\Upsilon(1S) \rightarrow virtual \gamma \rightarrow hadrons) = 0.83$, $BR(J/\psi \rightarrow hadrons) - BR(J/\psi \rightarrow virtual \gamma \rightarrow hadrons) = 0.69$, $\Gamma_{tot}(\chi_{c1}(1P))/\Gamma_{tot}(J/\psi) = 10$, and $L(m_{b1}(1P))/L(m_{c1}(1P)) = 2$ as in the foregoing.

The unknown factor in Eq. (22) depends on a model. In the Coulomb-like potential model it is

$$\left| \frac{R'_P(0, m_{\chi_{b1}(1P)}) R_S(0, m_{J/\psi})}{R'_P(0, m_{\chi_{c1}(1P)}) R_S(0, m_{\Upsilon(1S)})} \right|^2 = \left(\frac{m_{\chi_{b1}(1P)}}{m_{\chi_{c1}(1P)}} \right)^5 \left(\frac{m_{J/\psi}}{m_{\Upsilon(1S)}} \right)^3 = 6.2. \quad (23)$$

In the harmonic oscillator potential it is

$$\left| \frac{R'_P(0, m_{\chi_{b1}(1P)}) R_S(0, m_{J/\psi})}{R'_P(0, m_{\chi_{c1}(1P)}) R_S(0, m_{\Upsilon(1S)})} \right|^2 = \left(\frac{m_{\chi_{b1}(1P)}}{m_{\chi_{c1}(1P)}} \right)^{2.5} \left(\frac{m_{J/\psi}}{m_{\Upsilon(1S)}} \right)^{1.5} = 2.5. \quad (24)$$

To be conservative one takes Eq. (24). Thus one expects

$$\Gamma_{tot}(\chi_{b1}(1P)) \simeq 13 \Gamma_{tot}(\Upsilon(1S)) \simeq 0.695 \text{ MeV}. \quad (25)$$

Let us estimate a number of the $\chi_{b1}(1P)$ states which can be produced at CESR (Cornell) [1]. Taking into account that luminosity at CESR is equal to $10^{32} \text{ cm}^{-2} \text{s}^{-1}$, $\Delta E \simeq 6 \text{ MeV}$, $\Gamma_{tot}(\chi_{b1}(1P))/\Delta E \simeq 0.12$ and the cross section of the $\chi_{b1}(1P)$ production is equal to $4.8 \cdot 10^{-35} \text{ cm}^2$, see Eq. (19), one can during an effective year (10^7 seconds) working

produce 5622 $\chi_{b1}(1P)$ states. This number of the $\chi_{b1}(1P)$ states gives 1968 (35%) unique decays $\chi_{b1}(1P) \rightarrow \gamma\Upsilon(1S)$.

At VEPP-4M (Novosibirsk) [1] one can produce a few hundreds of the $\chi_{b1}(1P)$ states.

As for the b factories with luminosities $10^{33} \text{ cm}^{-2}\text{s}^{-1}$ and $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ [1], they could produce tens and hundreds of thousands of the $\chi_{b1}(1P)$ states.

As for the $\chi_{b1}(2P)$ state, it is impossible to estimate its width by the considered way. The point is that the $\chi_{c1}(2P)$ is unknown up to now [1] (probably, this state lies above the threshold production of the $D\bar{D}^* + D^*\bar{D}$ heavy quarkonia). Nevertheless, it seems reasonable that $\Gamma_{tot}(\chi_{b1}(2P)) \sim 1 \text{ MeV}$ as in the case of the $\chi_{b1}(1P)$ state. That is why it is reasonable to believe, see Eq. (19), that there is a good chance to search for the direct production of the $\chi_{b1}(2P)$ state as in the case of the $\chi_{b1}(1P)$ state.

So, the current facilities give some chance to observe the $\chi_{c1}(1P)$ state production in the e^+e^- collisions and to study the production of the $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ states in the e^+e^- collisions in sufficient detail.

The $c - \tau$ and b factories would give possibilities to study in the e^+e^- collisions the $\chi_{c1}(1P)$ state production in sufficient detail and the production of the $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ states in depth. Probably, it is possible to observe the $\chi_{c1}(2P)$ state production at the $c - \tau$ factories.

The fine effects considered above are essential not only to the understanding of the quark model but can be used for identification of the $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ states because the angular momentum J of the states named as $\chi_{b1}(1P)$ and $\chi_{b1}(2P)$ needs confirmation [1].

I would like to thank V.V. Gubin, A.A. Kozhevnikov and G.N. Shestakov for discussions.

REFERENCES

- [1] Particle Data Group, Phys. Rev. D 50 (1994) 1173.
- [2] N.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Phys.Rep. 41 (1978) 1.
- [3] R. Barbieri, R. Gatto and E. Remiddi, Phys. Lett. B 61 (1976) 465.