QDB: From Quantum Algorithms Towards Correct Quantum Programs

Yipeng Huang, Margaret Martonosi

Detailed debugging effort across quantum algorithms

Quantum chemistry algorithms

- Calculating molecule properties from first principles
- Use quantum mechanical system to simulate quantum mechanics!
- Near term: needs few qubits, needs no error correction

Shor's integer factorization quantum algorithm

- Factors large integers in polynomial time!
- (known best classical algorithms take exponential time)
- Distant future: needs many qubits, needs error correction

Where possible, validate across quantum languages

Semantic gap

• Need languages, abstractions...

Tools gap

- Need optimizing compilers, simulators, debuggers...
 Infrastructure gap
- Need more abundant, more reliable qubits...

Educational gap

• Need researchers, college curricula, K-12 pipeline...

Bug type 3: coding up basic operations

Classify quantum programming bugs, pair with defenses, debugging and assertions

Bug type 1: classical input parameters

Bug type 2:

quantum

initial

values

k, the algorithm iteration	0	1	2	3	•••
$a = 7^{2^k} \bmod 15$	7	4	1	1	
$a^{-1}; a \times a^{-1} \equiv 1 \bmod 15$	13 12	4	1	1	

Defense 1: algorithm progress assertions

Defense 2:

precondition
assertions

Defense 3: support for modules and unit tests

Superposition underlies power, but precludes 'printf'

Bug type 4A: iterating operations

Bug

type 4B:

recursing

operations

Defense
4A:
support for
numeric
data types

Defense

4B:

Huge state space limits simulation to 'toy' problems

Bug type 4C: mirroring operations

 $|x\rangle$ if c=0

Mirror image

submodules

support for controlled operations

Defense

Teams now racing towards accurate and more qubits

Bug type 5: qubit garbage collection

probability		output							
		0	1	2	3	4	5	6	7
ancilla	0	1/8	0	1/8	0	1/8	0	1/8	0
	4	1/64	1/64	1/64	1/64	1/64	1/64	1/64	1/64
	7	1/64	1/64	1/64	1/64	1/64	1/64	1/64	1/64
	8	1/64	1/64	1/64	1/64	1/64	1/64	1/64	1/64
	13	1/64	1/64	1/64	1/64	1/64	1/64	1/64	1/64

4C: support for reversible compute

Beauregard, 2003

Defense 5:

postcondition
assertions