Oblivious Computation Part III - OptORAMa

Gilad Asharov

Bar-Ilan University

Access Patterns Reveal Information!

Access Patterns Reveal Information!

Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa'20]

Statistical security

OptORAMa

[Asharov, Komargodski, Lin, Nayak, Peserico, Shi'20]

There exists an ORAM with O(log N) worst-case overhead

**Asymptotically Optimal!

- Computational Security (OWF)
 - Matches [LN'18]
- PRF -> Random Oracle
 - Statistical security
 - Matches [GO'96]

- Word size: log N
- Client's memory size O(1) words
- Passive server
- Balls and bins model
- Large hidden constant
- Based on hierarchical ORAM

A Short Tutorial

Hierarchical Solution

$$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$$

[Ostrovsky'90],...,[KLO12]

PanORAMa

 $O(\log N \log \log N)$

Patel, Persiano, Raykova, Yeo'18

OptORAMa

 $O(\log N)$

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]

Non-Recurrent Hash Table

```
Build(X):
```

X is an array of pairs <addr,val>

Lookup(addr):

If addr \in X, return val; otherwise return \bot

Also supports "dummy lookups" (addr = \perp)

Security holds as long as each addr is looked up at most once!

Non-Recurrent Hash Table

- Balls into bins
- Each level has a PRF key K mark ball addr to bin PRF_K(addr) Build O(n log n), Lookup O(log n $\omega(1)$)

"Bin Packing"

Lookup

It is guaranteed that we do not look for the same addr twice!

- Lookup(addr): visit bin PRFk(addr) and scan for addr
- Lookup(dummy): visit and scan a random bin

Simulate Build: Oblivious sorts - easy

Simulate Lookup: Each Lookup() -> scan a random bin

Cost: Build — $O(n \log n)$, each lookup $O(\log^2 n)$

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]

Phase I: Lookup

Phase II: Build

Phase I: Lookup

```
Perform Lookup(addr) in T_1,...,T_{logN}
If item found in T_i, then Lookup(\bot) in T_{i+1},...,T_{logN}
```

Phase II: Build

Phase I: Lookup

If op=read, then store the found item as \mathbf{v} If op=write, then ignore the found item and use $\mathbf{v} = \mathbf{data}^*$

Phase II: Build

Phase I: Lookup

Phase II: Build

Find the first empty level I, and run T_I .**Build**($T_1 \cup ... \cup T_{I-1} \cup \{<addr, v>\})$ Mark $T_1,...,T_{I-1}$ as empty and T_I as ready

Invariant: never query the same addr twice between two Rebuilds

Read(9)

Read(9)

Read(9)

Write(25,JRY)

Write(25,JRY)

Rebuild

After Some More Accesses...

After Some More Accesses...

After Some More Accesses...

Total Cost - Basic Hierarchical ORAM

Lookup: perform lookup in $\log N$ levels, each requires $\log^2 N$

 $O(\log^3 N)$

Rebuild: Rebuild level i every 2^i accesses, over N accesses:

 $O(\log^2 N)$

$$\sum_{i=1}^{\log N} \frac{N}{2^i} \cdot 2^i \cdot \log 2^i = N \cdot \sum_{i=1}^{\log N} i \approx N \log^2 N$$

2logN

Improvements [gm'11,klo'12]

Lookup: perform lookup in $\log N$ levels, each requires $\log^2 M$ effectively O(1)

Rebuild: Rebuild level i every 2^i accesses

2logN

From Hierarchical ORAM to PanORAMa

- PanORAMa: Rebuild HT for a *randomly shuffled* input in $O(N \log \log N)$
 - All elements that were not visited are still randomly shuffled in the eye of the adversary!
- **But...**
 - Each layer is shuffled, but the concatenation is not shuffled
 - PanORAMa showed how to "intersperse" arrays in $O(N \log \log N)$

PanORAMa

Intersperse

Generate random Aux with n_0 zeros, n_1 ones $(n_0 + n_1 = n)$

Oblivious route

Challenge: Move the elements Obliviously PanORAMa: Implemented in O(n log log n)

Intersperse From Oblivious Tight Compaction

0

Generate random Aux

Remember all "move balls"

Perform same "swaps"

Intersperse in O(n)!

Rebuilding Hash Tables in Linear Time

Weaker Primitive (But Suffices!) — Assumes Permuted Inputs

Warmup: Goldreich and Ostrovsky

- Balls into bins
- Each level has a PRF key K mark ball addr to bin PRF_K(addr) Build O(n log n), Lookup O(log n $\omega(1)$)

Implementation:

Oblivious Sorts

Dummy

Build(X) where X is Randomly Permuted?

Is it secure?

An adversary can distinguish between

n "real" lookups

OptORAMa: Build

- 1) Throw the n elements into n/polylogk bins according to a PRF key K reveal access pattern
- 2) Sample an independent (secret) loads of throwing n' = n-n/log n balls into the bins
- 3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
- 4) Build each major bin using smallHT; build overflow pile using cuckoo hash

OptORAMa: Build

- 1) Throw the n elements into n/polylogk bins according to a PRF key K reveal access pattern
- 2) Sample an independent (secret) loads of throwing n' = n-n/log n balls into the bins
- 3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
- 4) Build each major bin using smallHT; build overflow pile using cuckoo hash

OptORAMa: Lookup

Overflow pile (n/log n balls)

Lookup(addr):

Search in **overflow pile**; If **found** - visit random bin Otherwise - visit PRF_K(addr)

Security

Overflow pile (n/logn balls)

Security

Overflow pile (n/logn balls)

Security

Access pattern of (Build,Lookup) looks like two independent instances of balls-into-bins processes

ShortH

Looking inside the bins

Packing - The Idea

- Given n balls each of size D bits, word size w
- Classical oblivious sort costs $O(\lceil D/w \rceil \cdot n \cdot \log n)$
- What if $D \ll w$?
- Packing: put w/D balls in one memory word!

- Can sort in time $O(D/w \cdot n \cdot \log^2 n)$
- When n and D are small (say $n = w^4$ and $D = \log w$), we can sort in linear time! ($\frac{n \log^2 n}{w} \le n \text{ vs. } n \cdot \log n$)

Where is it Being Used?

Where is it Being Used?

Previously: build a structure on a bin using oblivious sort $n \log n -> \log \log N$ overhead We can remove it using the packing trick

From Amortized Complexity to Worst-Case Complexity

De-amortization of Ostrovsky and Shoup '97

We got a taste of $O(\log N)$ overhead — in amortized

Some operations require much longer - O(N)

Can we get $O(\log N)$ in worse-case?

Classic de-amortization technique of hierarchical ORAM is not compatible with OptORAMa and PanORAMa!

De-amortization Friendly Rebuild

Instead of "full / empty" -> "full / half full"

How Does it Help Us?

Easier to de-amortize: Looking at only two consecutive levels

De-amortizing Rebuild of Level i

Randomness Reuse

(PanORAMa / OptORAMa)

(27,ABC) (9,BCD) (11,RDT) (32,TPO)

Randomness Reuse

(PanORAMa / OptORAMa)

Elements that we did not touch are still randomly shuffled!!

PanORAMa and OptORAMa do not perform full **Rebuild** -> Use the randomness from previous **Rebuild**

-> Reduced **Rebuild** from $O(n \log n)$ to O(n) work

Main Challenge:

We might re-consume the randomness!

Main Idea

Two copies - same data in each level

Each level has an active copy, and a copy that is being rebuilt

Main Idea

A

(22,JRY) Lookup
(25,SPY)

B

Main Idea

If the element is found -> put in both copies

Independent randomness!

See:

Asharov, Komargodski, Lin, Shi:

Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Conclusions

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]

 $O(\log N)$

Computational security [OptORAMa'20]

 $O(\log^2 N)$

Statistical security [PathORAM, CircuitORAM]

References Works mentioned in Part III

Goldreich, Ostrovsky:

Software Protection and Simulation on Oblivious RAM, JACM 1996

Ostrovsky, Shoup:

Private Information Storage, STOC 1997

Goodrich and Mitzenmacher:

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation, ICALP 2011

Kushilevitz, Lu, Ostrovsky:

On the (In)Security of Hash-Based Oblivious RAM and a New Balancing Scheme, SODA 2012

Patel, Persiano, Raykova, Yeo:

PanORAMa: Oblivious RAM with logarithmic Overhead, FOCS 2018

Asharov, Komargodski, Lin, Nayak, Peserico, Shi:

OptORAMa: Optimal Oblivious RAM, EUROCRYPT 2020

Asharov, Komargodski, Lin, Shi:

Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Thank You!