



# Concept of Operations Visualization in Support of Ares I Production

**Jim Chilton**  
**Vice President, Exploration Launch Systems**

**3 October 2008**



# Introduction

## *Boeing Production of Ares I Upper Stage and Instrument Unit*

Boeing | Space Exploration | Exploration Launch Systems

- **Boeing selected in 2007 to manufacture Ares I Upper Stage (US) and Instrument Unit (IU) to NASA's design**
  - Architecturally similar to Apollo/Saturn 3<sup>rd</sup> Stage
  - Requires use of latest manufacturing and integration processes to meet NASA budget and schedule targets
- **NASA Marshall Space Flight Center (MSFC) and Boeing are working together to develop cost effective and lean US/IU production**
  - Production at MSFC's Michoud Assembly Facility (MAF) outside of New Orleans, Louisiana
  - One of the largest manufacturing plants in the world (174,000 m<sup>2</sup>)



# Comparison of MAF Manufactured Stages

## Saturn/Shuttle/Ares

Boeing | Space Exploration | Exploration Launch Systems



# Need for CONOP Visualization/Simulation

*Reduces Life Cycle Cost during early design*

Boeing | Space Exploration | Exploration Launch Systems

- **NASA challenge: convert MAF into 3<sup>rd</sup> generation liquid oxygen/hydrogen rocket stage factory**
  - Minimize disruption to ongoing Shuttle External Tank operations
  - Produce 2 to 6 Ares I Upper Stages/year for ISS missions
  - Produce up to 2 Ares V vehicles/year for lunar missions
- **Production experience: 80% of life cycle cost established during first 20% of design process**
  - NASA tasked Boeing with producibility analysis for Ares Upper Stage
  - Boeing aircraft (e.g. 737, F-18, Chinook) and spacecraft (Shuttle, ISS) production demonstrate value of virtual manufacturing and CONOP visualization during early design
- **Production and operation visualizations can reduce tooling, factory capacity, safety, and build process risks while spreading program support across government, academia, media and public constituencies**

# NASA/Boeing Production Visualization

*DELMIA (Digital Enterprise Lean Manufacturing Interactive Application)*

Boeing | Space Exploration | Exploration Launch Systems

- **Promotes timely, concurrent and collaborative producibility analysis (Boeing) supporting Upper Stage Design Cycles (NASA)**
  - Assembly Simulation (30% - 45% typical savings)
    - Validates operation sequences & tooling concepts
    - Enables optimization of assembly processes
    - Reduces downstream production planning
  - Human Factors/Ergonomics (45% - 55% typical savings)
    - Identifies hazardous operations (hardware/ personnel)
    - Ensures accessibility during assembly/test/ operation/maintenance
  - Factory Definition and Analysis (50% - 75% typical savings)
    - Validates floor space & factory operations
    - Validates operation sequences & large scale tooling concepts
    - Highlights capital investment requirements
    - Identifies assembly anomalies

# Ares I IU Production CONOP/Simulation

*Validated avionics assembly and handling*

Boeing | Space Exploration | Exploration Launch Systems

■ Movie Here

# Benefits of DELMIA CONOPs Visualization

## Production and Launch Operations

Boeing | Space Exploration | Exploration Launch Systems

- **NASA and Boeing reduced overall Upper Stage production flow time at MAF by over 100 man-days to 312.5 man-days**
- **Identified technician access issues during Launch-48 hours to remove the Ares I Thrust Vector Control (TVC) Actuator Locks during Preliminary Design Review**

*DELMIA virtual manufacturing simulation validated a 25% reduction in Upper Stage assembly man-days*



*Technician access obstructed to J-2X engine in Ares I Interstage*



*Technician easily accesses J-2X TVC "left" Actuator Lock.*



*Technician strains to access J-2X TVC "right" Actuator Lock.*

# NASA/Boeing Flight Operations Visualization

## *ICON (Interactive Concept of Operations)*

Boeing | Space Exploration | Exploration Launch Systems

- **Boeing and NASA developed flight ops visualization analog to production visualization**
  - Provides context for Ares element (Ares I and V) production at MAF over many years
  - Illustrates range of Constellation element types, scale of time and complexity of interfaces required of Ares vehicle family
  - Presents benefits of Constellation investment by visualizing architecture and describing the benefits to the implementers (industry), owners (public) and financiers (government)
- **ICON provides interactive access to Ares using real mission parameters**
  - 2-D data (such as trajectory, or ephemeris data, operations schemas, slides, spreadsheets, movies, documents, or web-based data)
  - 3-D data (such as CAD models, contour maps, terrain maps, etc.)
  - Specific different user views (selectable cameras)

# Ares ICON Simulation

Boeing | Space Exploration | **Exploration Launch Systems**

▪ **ICON Here**

# Benefits of ICON Visualization

*Ares ISS, Lunar and Mars flight operations*

Boeing | Space Exploration | Exploration Launch Systems

- Ability for user to configure mission encourages ownership and identifies areas for improvement
- Mission options (e.g., Orion abort) or spacecraft detail (e.g., Interstage components) added as needed
  - Allows quick customization for unique audience and tailoring of messages
- Effective, low cost advocacy, outreach and education tool
  - Used to help science community visualize potential Ares interplanetary applications



Mission Configuration Screen



Ares I Upper Stage De-orbit Segment



# Conclusions

*CONOP visualizations will be critical to sustaining Ares/Constellation*

Boeing | Space Exploration | Exploration Launch Systems

- NASA and Boeing have used a variety of visualization tools to enhance design producibility and more effectively understand Ares operations
- DELMIA and ICON visualization provides timely insight into potential system problems and allow cost effective evaluation of alternate approaches
- The collaborative nature of DELMIA and ICON visualization and simulation tools can significantly reduce design cycle time and encourage a diversity of involvement across Ares/Constellation elements
- These tools identify changes earlier in the life cycle where the cost of change is less and promotes greater interaction and ownership by a larger pool of Constellation constituents (government, industry, academia, media and public)