Analysis of IR PS 1599 | Introduction

Michaël Aklin

University of Pittsburgh

f you co	ould pick a	any year t	o live in		
which o	ne would i	t be?			

We never had it better...

Source: UN WPP (2022); Zijdeman et al. (2015); Riley (2005)

OurWorldInData.org/life-expectancy • CC BY

Note: Shown is the 'period life expectancy'. This is the average number of years a newborn would live if age-specific mortality rates in the current vear were to stay the same throughout its life.

Figure 1: Life expectancy

GDP per capita, 1820 to 2018

This data is adjusted for differences in the cost of living between countries, and for inflation. It is measured in constant 2011 international-\$.

Figure 2: Income

- ▶ Made possible thanks to technological innovation
- From 1st to 4th Industrial Revolutions (~1760-today)

- ▶ Made possible thanks to technological innovation
- From 1st to 4th Industrial Revolutions (~1760-today)
- More energy devote to more goods and services than ever

Made possible thanks to technological innovation

► And yet...

- ► From 1st to 4th Industrial Revolutions (~1760-today)
- ▶ More energy devote to more goods and services than ever

A time of "polycrises"

- Economy
- Health
- Environment
- Society and politics
- \rightarrow time of global crises of all sorts

Economy

Income Gains Widely Shared in Early Postwar Decades — But Not Since Then

Real family income between 1947 and 2018, as a percentage of 1973 level

Note: Breaks indicate implementation of a redesigned questionnaire (2013) and an updated data processing system (2017).

Source: CBPP calculations based on U.S. Census Bureau Data

Health

Figure 4: Source: Johns Hopkins University.

Health

*2021 estimates are based on provisional data.

Figure 5: Source: CDC via Scientific American.

Environment

GLOBAL AVERAGE SURFACE TEMPERATURE

Society...

Figure 7: Plummeting trust

and politics

Figure 3: Far-right vote shares (local projections): financial crisis recessions

Figure 8: Far-right vote goes up 30% after a financial crisis. Source: Funke et al 2016.

ΑI

We provided mental health support to about 4,000 people — using GPT-3. Here's what happened

2:50 PM · Jan 6, 2023

Figure 9: Source: twitter.com

 \blacktriangleright Key: both + and - are caused by technology

- \blacktriangleright Key: both + and are caused by technology
- Innovations have helped so much...

- \triangleright Key: both + and are caused by technology
- Innovations have helped so much...
- ▶ But: from climate change to social media, they are also a source of malaise

- \triangleright Key: both + and are caused by technology
- Innovations have helped so much...
- But: from climate change to social media, they are also a source of malaise
- Questions:

- \triangleright Key: both + and are caused by technology
- Innovations have helped so much...
 - ▶ But: from climate change to social media, they are also a source of malaise
- Questions:
 - ▶ Why is bad technology succeeding?

- \triangleright Key: both + and are caused by technology
- Innovations have helped so much...
 - ▶ But: from climate change to social media, they are also a source of malaise
- Questions:
 - ▶ Why is bad technology succeeding?
 - Why is good technology too often struggling?

- \triangleright Key: both + and are caused by technology
- Innovations have helped so much... But: from climate change to social media, they are also a
- source of malaise
- Questions: Why is bad technology succeeding?

 - Why is good technology too often struggling? Can we make our societies more sustainable?

- \blacktriangleright Key: both + and are caused by technology
- Innovations have helped so much...
 But: from climate change to social media, they are also a
- source of malaise
- Questions:
 Why is bad technology succeeding?

What kind of policies are needed?

- Why is good technology too often struggling?
- Can we make our societies more sustainable?

- ► Substance during regular classes
 - learn about the role of technology in our societies

- ► Substance during regular classes
 - learn about the role of technology in our societies
 - develop a sophisticated understanding of sustainability

- ► Substance during regular classes
 - learn about the role of technology in our societies
 - b develop a sophisticated understanding of sustainability
 - politics behind this + how to design public policies

Welcomel

- ► Substance during regular classes
 - learn about the role of technology in our societies
 - develop a sophisticated understanding of sustainability
 - politics behind this + how to design public policies
- Skills during workshops

Welcomel

- ► Substance during regular classes
 - learn about the role of technology in our societies
 - develop a sophisticated understanding of sustainability
 - politics behind this + how to design public policies
- ► Skills during workshops
 - analyze and report real data for policymaking

Welcomel

- ► Substance during regular classes
 - learn about the role of technology in our societies
 - develop a sophisticated understanding of sustainability
 - ▶ politics behind this + how to design public policies
- Skills during workshops
 - analyze and report real data for policymaking
 - develop your problem-solving skills

Semester divided in 3 parts

1. Welfare, technology, and sustainable development

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology
- 3. Big picture: challenges ahead

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology
- 3. Big picture: challenges ahead

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology
- 3. Big picture: challenges ahead

Lectures

Theory

Concretely

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology
- 3. Big picture: challenges ahead

Lectures

- Theory
- Case studies

Concretely

Semester divided in 3 parts

- 1. Welfare, technology, and sustainable development
- 2. Politics of sustainable technology
- 3. Big picture: challenges ahead

Lectures

- **▶** Theory
- Case studies
- Policy solutions

▶ Midterm: 30%. In class.

- Midterm: 30%. In class.
- ▶ Research report:

- Midterm: 30%. In class.
- Research report:
 - Analyze real US survey data to find out who is willing to adopt clean technology.

- Midterm: 30%. In class.
- Research report:
 - Analyze real US survey data to find out who is willing to adopt clean technology.
 - ▶ 40%. Due on 4/21.

- Midterm: 30%. In class.
- Research report:
 - Analyze real US survey data to find out who is willing to adopt clean technology.
 - ▶ 40%. Due on 4/21.
- Policy report:

- Midterm: 30%. In class.
- Research report:
 - Analyze real US survey data to find out who is willing to adopt clean technology.
 - ▶ 40%. Due on 4/21.
- Policy report:
 - Scientific literature review + policy recommendations on a problem connected to technology adoption.

- Midterm: 30%. In class.
- Research report:
 - Analyze real US survey data to find out who is willing to adopt clean technology.
 - ▶ 40%. Due on 4/21.
- Policy report:
 - Scientific literature review + policy recommendations on a problem connected to technology adoption.
 - ▶ 30%. Due on 4/21.

- ▶ (Respectful) engagement lots of opportunities!
- Readings: multi-disciplinary, technical, online

- ► (Respectful) engagement lots of opportunities!
- ▶ Readings: multi-disciplinary, technical, online
- Attendance is mandatory but not checked

- ▶ (Respectful) engagement lots of opportunities!
- ▶ Readings: multi-disciplinary, technical, online
- Attendance is mandatory but not checked
- ► COVID policy

- (Respectful) engagement lots of opportunities!
- ▶ Readings: multi-disciplinary, technical, online
- Attendance is mandatory but not checked
- COVID policy
- Canvas/webpage: syllabus, slides, assignments

- ► (Respectful) engagement lots of opportunities!
- ▶ Readings: multi-disciplinary, technical, online
- Attendance is mandatory but not checked
- ► COVID policy
- Canvas/webpage: syllabus, slides, assignments
- Office hours

- ► (Respectful) engagement lots of opportunities!
- ▶ Readings: multi-disciplinary, technical, online
- Attendance is mandatory but not checked
- COVID policy
- Canvas/webpage: syllabus, slides, assignments
- Office hours
- Communication is key (grades, etc.)

Questions?

aklin@pitt.edu

Source for title page painting: Raymond Simboli, Allegheny-Ludlum Steel Mill, Pittsburgh