Density Practice

1	Is each sentence sometimes true, always true, or always false? (a) Gold is denser than water. (c) Air is denser than water.			
	(b) Gold is heavier than water. (d) Helium is heavier than air.			
2	Complete the sentences filling in the blanks. Use the words density, mass, larger, smaller, sink, float, metre, centimetre, volume. Not all words are used. A cubic of water is heavier than a cubic of silver. This is because it has more			
	If we want to compare fairly, we take some water and silver of the same			
	The silver will then be heavier, as its (in g/cm ³) is larger.			
	This means that a silver lump will in water.			
3	Here is a list of materials. Number them in order of density. Put 1 against the least dense material, and 5 against the most dense.			
	air ice water gold iron			
4	A $1500\mathrm{cm^3}$ brick has a mass of $3000\mathrm{g}$.			
	(a) Mass of 1 cm^3 of brick $=$ $ =$ $ =$ $ =$ $ =$ $ =$ $ =$ $ =$			
	(b) Complete the sentence: The density of brick (in g/cm^3) is			
	(c) $15 \mathrm{g}$ of cement has a volume of $10 \mathrm{cm}^3$. Work out its density using an equation.			
	$\max(g) = \operatorname{density}(g/\operatorname{cm}^3) \times \operatorname{volume}(\operatorname{cm}^3)$			
	= _ × _ 10			
	(d) $40~{\rm g}$ of straw has a volume of $800~{\rm cm}^3$. Work out the density in g/cm 3 .			
5	Gold has a density of 19 g/cm^3 .			
	(a) Complete the sentence: The mass of 1 cm^3 of gold is grams.			
	(b) Work out the mass of 4 cm ³ of gold using an equation.			
	mass (g) = density $(g/cm^3) \times volume(cm^3)$			
	$= 19 \times 10^{-1}$			

(c) Work out the mass of 25 cm³ of gold using an equation.

- (d) If a gram of gold costs £50, what is the cost of 25 cm 3 of gold.
- 6 Toffee has a density of 4 g/cm^3 .
 - (a) What is the mass of 1 cm³ of toffee?
 - (b) If you divide 80 g of toffee into 4 g pieces, how many pieces would you have?
 - (c) What is the volume of $80\,\mathrm{g}$ of toffee? Count the $1\,\mathrm{cm}^3$ (4 g) pieces.
 - (d) Work out the volume of $600\,\mathrm{g}$ of milkshake using an equation.

7 In the table, match each quantity to its unit and symbol. Choose from the symbols m, V and ρ . Choose from the units g, cm³ and g/cm³.

Quantity	Symbol	Unit
Volume		
Mass		
Density		

- 8 Complete the word equations using density, mass and volume.
 - (a) mass =

(b) volume =

(c) density =

- 9 Rewrite your word equations using symbols.
 - (a) V =

(b) $\rho =$

(c) m =

- 10 Use your understanding of density, or the formulae, to calculate
 - (a) The density of osmium (a metal) if 1100 g has a volume of 50 cm^3 .
 - (b) The mass of 200 cm³ of brass (density = 8.7 g/cm^3).
 - (c) The volume of 60 g of packing polystyrene ($\rho = 0.03$ g/cm³).
 - (d) The mass of 1000 cm^3 of chocolate (density = 1.3 g/cm^3).
 - (e) The volume of 2 kg of petrol ($ho=0.75~{
 m g/cm^3}$, 1 kg $=1000~{
 m g}$).
- 11 A 45 g block of ice has a volume of 50 cm³.
 - (a) Calculate the density of ice in g/cm³.
 - (b) Water has a density of 1.0 g/cm^3 . Do you think an ice cube will float in water? Why?
- (c) Will all masses of ice float in water, or only small ones?
- 12 In this question, we will work out the mass of the water in a swimming pool.
 - (a) A cubic metre of water measures $100~{\rm cm}\times 100~{\rm cm}\times 100~{\rm cm}$. Calculate the volume of a cubic metre in cm³.
 - (b) Calculate the mass of a cubic metre of water in grams. The density is 1.0 g/cm^3 .
 - (c) Write the mass of a cubic metre of water in kilograms. (1 kg = 1000 g)
 - (d) A swimming pool measures $50~{\rm m}\times 10~{\rm m}$ and the water is $1.25~{\rm m}$ deep. Calculate the volume of water in the pool in cubic metres.
 - (e) Multiply your answers to parts (c) and (d) to get the mass of the water in the pool in kilograms.