A Taste of Problems and Fixes in Program Evaluation

Causality Worries for Economists

Nick Mader

Data Science for Social Good Summer Fellowship, 2013

Outline

- Preliminaries
- 2 Problems
- Math on Problems
- 4 Some Fixes
- Summary

- An economist?
- Leading projects on education and motherhood?
- Don't you have something better to do?
- Like ruin an economy with flawed models of the macroeconomy?

- An economist?
- Leading projects on education and motherhood?
- Don't you have something better to do?
- Like ruin an economy with flawed models of the macroeconomy?

- An economist?
- Leading projects on education and motherhood?
- Don't you have something better to do?
- Like ruin an economy with flawed models of the macroeconomy?

- An economist?
- Leading projects on education and motherhood?
- Don't you have something better to do?
- Like ruin an economy with flawed models of the macroeconomy?

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

- I'm a microeconomist. We deal with data and empirics.
 - Unlike macroeconomists
- I don't deal with money
 - Turns out that the human beings economists have been studying are the same ones that sociologists and psychologists have been studying!
- Economists still differ from sociologists and statisticians are distinguished by our toolkit
 - Many important questions do not come/can't be put in an experimental framework
 - Econometrics as a field developed to deal with inability to experiment

Improving public policy

- There are phenomena that we care about, and want to improve – crime, poverty, poor educational attainment
- Question is: what's effective in changing them?
- Causes are complex, and the data only partially reflects all the things that matter

Improving public policy

- There are phenomena that we care about, and want to improve crime, poverty, poor educational attainment
- Question is: what's effective in changing them?
- Causes are complex, and the data only partially reflects all the things that matter

Improving public policy

- There are phenomena that we care about, and want to improve – crime, poverty, poor educational attainment
- Question is: what's effective in changing them?
- Causes are complex, and the data only partially reflects all the things that matter

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools
 - ...have unstable families, support them
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

- Plot variables, run correlations, calculate conditional averages
- ullet Bivariate comparisons are interesting, but correlation eq causation
- Graduation rates differ by race. If minority kids...
 - ...go to bad schools, reform the schools;
 - ...have unstable families, support them;
 - ...are bad at school, forget about them.
- Can only close the door on incorrect hypotheses when we have data
- Big danger when we're missing important data, and don't sweat over what that is.

A cautionary tale from the NLSY79

- Let's look at descriptives
- Let's add explanatory variables
- Is everything in the data set? Are we happy with our conclusions?

A cautionary tale from the NLSY79

- Let's look at descriptives
- Let's add explanatory variables
- Is everything in the data set? Are we happy with our conclusions?

A cautionary tale from the NLSY79

- Let's look at descriptives
- Let's add explanatory variables
- Is everything in the data set? Are we happy with our conclusions?

• Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

• Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

• Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

• Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

• Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

Suppose that the truth is:

$$y_i = \beta' x_i + \alpha d_i + \varepsilon_i$$

- y_i is the outcome that we're interested in (for simplicity, a continuous variable), observed for individuals i = 1, ..., N
- x_i is a vector of information about individuals gender, race, neighborhood, prior school attendance patterns
- d_i is a binary variable reflecting whether i received some treatment $(d_i = 1)$ or not $(d_i = 0)$
- ε_i is everything else not in our data that influences y_i e.g. motivation, family stability, socio-emotional stability, high quality relationships, positive outlook
- α and β are parameters that measure the rates at which d_i and x_i transfer into y_i .

- Resources: $\{x_i, d_i, y_i\}_{i=1}^N$
- Interests: $\{\alpha, \beta\}$
- We've got a linear setup—how about a linear projection of y_i on the space defined by (x_i, d_i) to recover the slope parameters?

$$\mathsf{E}\left[y_{i}|x_{i},d_{i}\right] = \beta'x_{i} + \alpha d_{i} + \mathsf{E}\left[\varepsilon_{i}|\mathbf{x}_{i},\mathbf{d}_{i}\right]$$

- Oops. ε_i isn't orthogonal to x_i and d_i .
 - That sounds technical. Is a problem?

- Resources: $\{x_i, d_i, y_i\}_{i=1}^N$
- Interests: $\{\alpha, \beta\}$
- We've got a linear setup—how about a linear projection of y_i on the space defined by (x_i, d_i) to recover the slope parameters?

$$\mathsf{E}\left[y_{i}|x_{i},d_{i}\right] = \beta'x_{i} + \alpha d_{i} + \mathsf{E}\left[\varepsilon_{i}|x_{i},d_{i}\right]$$

- Oops. ε_i isn't orthogonal to x_i and d_i .
 - That sounds technical. Is a problem?

- Resources: $\{x_i, d_i, y_i\}_{i=1}^N$
- Interests: $\{\alpha, \beta\}$
- We've got a linear setup-how about a linear projection of y_i on the space defined by (x_i, d_i) to recover the slope parameters?

$$\mathsf{E}\left[y_{i}|x_{i},d_{i}\right] = \beta'x_{i} + \alpha d_{i} + \mathsf{E}\left[\varepsilon_{i}|\mathbf{x}_{i},\mathbf{d}_{i}\right]$$

- Oops. ε_i isn't orthogonal to x_i and d_i .
 - That sounds technical. Is a problem?

- Resources: $\{x_i, d_i, y_i\}_{i=1}^N$
- Interests: $\{\alpha, \beta\}$
- We've got a linear setup-how about a linear projection of y_i on the space defined by (x_i, d_i) to recover the slope parameters?

$$\mathsf{E}\left[y_{i}|x_{i},d_{i}\right] = \beta'x_{i} + \alpha d_{i} + \mathsf{E}\left[\varepsilon_{i}|\mathbf{x}_{i},\mathbf{d}_{i}\right]$$

- Oops. ε_i isn't orthogonal to x_i and d_i .
 - That sounds technical. Is a problem?

- Resources: $\{x_i, d_i, y_i\}_{i=1}^N$
- Interests: $\{\alpha, \beta\}$
- We've got a linear setup-how about a linear projection of y_i on the space defined by (x_i, d_i) to recover the slope parameters?

$$\mathsf{E}\left[y_{i}|x_{i},d_{i}\right] = \beta'x_{i} + \alpha d_{i} + \mathsf{E}\left[\varepsilon_{i}|\mathbf{x}_{i},\mathbf{d}_{i}\right]$$

- Oops. ε_i isn't orthogonal to x_i and d_i .
 - That sounds technical. Is a problem?

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathbf{x}}' \mathbf{x}_{\mathbf{i}} + \pi_{\mathbf{d}} d_{\mathbf{i}} + \eta_{\mathbf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathbf{x}}' \mathbf{x}_{\mathbf{i}} + \pi_{\mathbf{d}} d_{\mathbf{i}} + \eta_{\mathbf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables

Very likely when treatment targets at-risk populations

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathbf{x}}' \mathbf{x}_{\mathbf{i}} + \pi_{\mathbf{d}} d_{\mathbf{i}} + \eta_{\mathbf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables

Very likely when treatment targets at-risk populations

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathbf{x}}' \mathbf{x}_{\mathbf{i}} + \pi_{\mathbf{d}} d_{\mathbf{i}} + \eta_{\mathbf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables

Very likely when treatment targets at-risk populations

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathsf{x}}' \mathsf{x}_{\mathsf{i}} + \pi_{\mathsf{d}} \mathsf{d}_{\mathsf{i}} + \eta_{\mathsf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables
 - Very likely when treatment targets at-risk populations

 There's a theoretical relationship between what we don't observe and what we do:

$$\varepsilon_{\mathbf{i}} = \pi_{\mathbf{x}}' \mathbf{x}_{\mathbf{i}} + \pi_{\mathbf{d}} d_{\mathbf{i}} + \eta_{\mathbf{i}}$$

- $\pi \neq 0$ means that there's some relationship between what we don't observe and what we do observe
 - Unobserved neighborhood processes will hang with indicators of neighborhood of residence
 - Delinquency and disengagement will hang with (low) attendance
 - $\pi_d < 0$ means that program participation is associated with negative unobservables
 - Very likely when treatment targets at-risk populations

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- When we vary d_i , we switch on other stuff
 - ullet An effective program (lpha>0)
 - ulletthat targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded guestion

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$
 - ulletthat targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - ullet may look ineffective (if $lpha+\pi_d\leq 0)$
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded question

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded guestion

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha>0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded question

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded question

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- ullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord
 - Loaded question

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- ullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord.
 - Loaded question.

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord.
 - Loaded question.

$$y_i = (\beta + \pi_x)' x_i + (\alpha + \pi_d) d_i + \eta_i$$

- We're no longer in the world of ceteris paribus
- \bullet When we vary d_i , we switch on other stuff
 - An effective program $(\alpha > 0)$...
 - ...that targets kids who are at-risk in ways we can't account for $(\pi_d < 0)$...
 - may look ineffective (if $\alpha + \pi_d \leq 0$)
- We have data, ran stats that other people can't do. We're very smart. Shouldn't we close programs that look ineffective?
 - Good lord.
 - Loaded question.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., are in the data)
 unproblematic factors explain program participation
 - Regress y_i on x_i and E[d_i|x_i,z_i] where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., *are* in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., *are* in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., are in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., are in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., are in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

- We need to return to a ceteris paribus world
- Instrumental Variables methods remove the portion of d_i that is associated with unobserved factors
 - Instead, rely only on what known (i.e., are in the data), unproblematic factors explain program participation
 - Regress y_i on x_i and $\mathbf{E}[d_i|x_i,z_i]$ where z_i are "unproblematic" variables that explain participation in treatment (the "instrumental variables")
- Control Function methods directly account for unobserved factors whose presence we can infer
 - Regress y_i on x_i , d_i and $\mathbf{E}[\varepsilon_i|x_i,d_i,z_i]$
- A variety of implementations will yield more and less flexible (and complex) results.

Complications that we can add

- Vector-valued treatment there are a lot of programs out there
- Non-continuous outcomes

Complications that we can add

- Vector-valued treatment there are a lot of programs out there
- Non-continuous outcomes

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have—versus what you need to have—measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have—versus what you need to have—measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it.

- Planning: Think about what you have-versus what you need to have-measured
 - Use partners to get perspective on what you need
 - Worry a lot about what you don't have
- Implementing: Respect and manage high stakes
 - In academia, high stakes are getting lit up in seminar
 - In program evaluation, high stakes are killing a good program
 - Communicate caveats
 - But: being smart using data is constructive. Carefully add to the mix.
- Iterating Solutions: Your computer is not your only tool
 - Missing data? Go and get it.