EXERCÍCIOS DE REVISÃO PRÉ CÁLCULO DIFERENCIAL E INTEGRAL III

PROF. SUZANA MATOS UECE - 2017.2

Exercício 1.

Use o gráfico da Figura 1a para responder às seguintes questões, fazendo aproximações razoáveis quando for necessário.

- a) Com quais valores de x vale y = 1?
- b) Com quais valores de x vale y = 3?
- c) Com quais valores de y vale x = 3?
- d) Com quais valores de x vale $y \leq 0$?
- e) Quais são os valores máximo e mínimo de y e em quais valores de x eles ocorrem?

Exercício 2.

Para a função cujo gráfico está na Figura 1b abaixo, encontre

- a) $\lim_{x\to 2^-} f(x)$
- b) $\lim_{x\to 2^+} f(x)$
- c) $\lim_{x\to 2} f(x)$
- d) f(2)

y = f(x)

FIGURA 1. Figuras das Questões 1 e 2.

Exercício 3.

Encontre os limites:

a)
$$\lim_{x \to 3} x^3 - 3x^2 + 9$$
 b) $\lim_{t \to -2} \frac{t^3 + 8}{t + 2}$ d) $\lim_{x \to 3^+} \frac{x}{x - 3}$ e) $\lim_{x \to 3^-} \frac{x}{x - 3}$

b)
$$\lim_{t \to -2} \frac{t^3 + 8}{t + 2}$$

c)
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 + x - 6}$$

f) $\lim_{x \to 0^+} e^{1/x}$

$$d) \lim_{x \to 3^+} \frac{x}{x-3}$$

e)
$$\lim_{x \to 3^-} \frac{x}{x-3}$$

f)
$$\lim_{x \to 0^+} e^{1/x}$$

g)
$$\lim_{x \to 0^-} e^{1/x}$$

h)
$$\lim_{x \to \pi/2^-} \ln(\tan(x))$$
 i) $\lim_{x \to +\infty} \cos(\frac{1}{x})$

i)
$$\lim_{x \to +\infty} \cos(\frac{1}{x})$$

$$j) \lim_{x \to +\infty} \sin(\frac{\pi x}{2 - 3x})$$

k)
$$\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta}$$

1)
$$\lim_{x\to 0} \frac{\tan 7x}{\sin 3x}$$

Exercício 4.

Encontre os pontos x, se houver, nos quais f não é contínua:

a)
$$f(x) = 5x^4 - 3x + 7$$
 b) $f(x) = \sqrt[3]{x - 8}$

b)
$$f(x) = \sqrt[3]{x - 8}$$

c)
$$f(x) = \frac{x+2}{x^2-4}$$

d)
$$f(x) = \frac{3}{x} + \frac{x-1}{x^2-1}$$

d)
$$f(x) = \frac{3}{x} + \frac{x-1}{x^2 - 1}$$
 e) $f(x) = \begin{cases} 2x + 3 & x \le 4 \\ 7 + \frac{16}{x} & x > 4 \end{cases}$

Exercício 5.

Esboce o gráfico da derivada da função cujo gráfico é dado.

FIGURA 2. Figuras da Questão 5.

Exercício 6.

Encontre $dy/dx|_{x=1}$:

a)
$$y = 1 + x + x^2 + x^3 + x^4 + x^5$$

a)
$$y = 1 + x + x^2 + x^3 + x^4 + x^5$$
 b) $y = \frac{1 + x + x^2 + x^3 + x^4 + x^5}{x^3}$

c)
$$y = (1 = x)(1 + x)(1 + x^2)(1 + x^4)$$
 d) $y = x^{24} + 2x^{12} + 3x^8 + 4x^6$

d)
$$y = x^{24} + 2x^{12} + 3x^8 + 4x^6$$

Exercício 7.

Encontre f'(x):

a)
$$f(x) = 4\cos(x) + 2\sin(x)$$

$$f(x) = 2\sin^2(x)$$

a)
$$f(x) = 4\cos(x) + 2\sin(x)$$
 b) $f(x) = 2\sin^2(x)$ c) $f(x) = \frac{5 - \cos(x)}{5 + \sin(x)}$

d)
$$f(x) = (x^3 + 2x)^{37}$$

d)
$$f(x) = (x^3 + 2x)^{37}$$
 e) $f(x) = \tan(\sqrt{x})$

f)
$$f(x) = \sqrt{3x - sen^2(4x)}$$

Exercício 8.

Encontre d^2y/dx^2 :

a)
$$y = x \cos(x)$$

b)
$$y = cossec(x)$$

c)
$$y = \tan(x)$$

d)
$$y = x\cos(5x - \sin^2(x))$$
 e) $y = \frac{1+x}{1-x}$

e)
$$y = \frac{1+x}{1-x}$$

Exercício 9.

Calcule as integrais usando uma substituição apropriada:

a)
$$\int (4x-3)^9 dx$$

b)
$$\int e^{2x} dx$$

c)
$$\int \frac{\sin(5/x)}{x^2} dx$$

d)
$$\int_{-1}^{1} \sqrt{1-x^2} dx$$

e)
$$\int_{1}^{5} \frac{1}{\sqrt{2x-1}} dx$$

Exercício 10.

Use uma ferramenta gráfica para plotar em coordenadas polares e desenhe-as:

a)
$$r = 1 - \cos(\theta)$$
, onde $\theta = [0, 2\pi]$

b)
$$r = 1 - \sin(\theta)$$
, onde $\theta = [0, 2\pi]$

c)
$$r = \sin(2 * \theta)$$
, onde $\theta = [0, 2\pi]$

d)
$$r = \sin(4 * \theta)$$
, onde $\theta = [0, 2\pi]$

e)
$$r = \theta$$
, onde $\theta = [0, 2\pi]$

f)
$$r = \theta$$
, onde $\theta = [0, 5\pi]$

OBS: Tente diminuir o domínio de θ e ver o gráfico se montando aos poucos, por exemplo: $\theta = [0, \pi/4], \ \theta = [0, \pi/2], \ \theta = [0, \pi]...$

Exercício 11.

Determine o produto escalar dos vetores e o cosseno do ângulo entre eles:

a)
$$u = i + 2j, v = 6i - 8j$$

b)
$$\mathbf{u} = <-7, -3>, \mathbf{v} = <0, 1>$$

c)
$$y = i - 3i + 7k$$
 $y = 8i - 2i - 2k$

c)
$$\mathbf{u} = \mathbf{i} - 3\mathbf{j} + 7\mathbf{k}, \mathbf{v} = 8\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$$
 d) $\mathbf{u} = <-3, 1, 2 >, \mathbf{v} = <4, 2, -5 >$

Exercício 12.

Determine $\mathbf{u} \times \mathbf{v}$ e explique porque ele é ortogonal ou não aos vetores \mathbf{u} e \mathbf{v} :

a)
$$\mathbf{u} = <1, 2, -3>, \mathbf{v} = <-4, 1, 2>$$

b)
$$\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}, \mathbf{v} = -\mathbf{i} - 3\mathbf{j} + \mathbf{k}$$

c)
$$\mathbf{u} = 4\mathbf{i} + \mathbf{k}, \mathbf{v} = 2\mathbf{i} - \mathbf{j}$$

d)
$$\mathbf{u} = <1, 2, -3>, \mathbf{v} = <-2, -4, 6>$$