Math 215 Exam #1 Practice Problems

- 1. For each of the following statements, say whether it is true or false. If the statement is true, prove it. If false, give a counterexample.
 - (a) If A is a 2×2 matrix such that A(Ax) = 0 for all $x \in \mathbb{R}^2$, then A is the zero matrix.
 - (b) A system of 3 equations in 4 unknowns can never have a unique solution.
 - (c) If V is a vector space and S is a finite set of vectors in V, then some subset of S forms a basis for V.
 - (d) Suppose A is an $m \times n$ matrix such that $A\mathbf{x} = \mathbf{b}$ can be solved for any choice of $\mathbf{b} \in \mathbb{R}^m$. Then the columns of A form a basis for \mathbb{R}^m .
 - (e) Given 3 equations in 4 unknowns, each describes a hyperplane in \mathbb{R}^4 . If the system of those 3 equations is consistent, then the intersection of the hyperplanes contains a line.
 - (f) If A is a symmetric matrix (i.e. $A = A^T$), then A is invertible.
 - (g) If m < n and A is an $m \times n$ matrix such that $A\mathbf{x} = \mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbb{R}^m$, then there exists $\mathbf{z} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{z}$ has infinitely many solutions.
 - (h) The set of polynomials of degree ≤ 5 forms a vector space.
- 2. For each of the following, determine whether the given subset is a subspace of the given vector space. Explain your answer.
 - (a) Vector Space: \mathbb{R}^4 .

Subset: The vectors of the form

 $\left[\begin{array}{c} a \\ b \\ 0 \\ d \end{array}\right]$

(b) Vector Space: \mathbb{R}^2 .

Subset: The solutions to the equation 2x - 5y = 11.

(c) Vector Space: \mathbb{R}^n .

Subset: All $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = 2x$ where A is a given $n \times n$ matrix.

(d) Vector Space: \mathbb{R}^3 .

Subset: The intersection of P_1 and P_2 , where P_1 and P_2 are planes through the origin.

(e) Vector Space: All polynomials.

Subset: The quadratic (i.e. degree 2) polynomials.

(f) **Vector Space:** All real-valued functions.

Subset: Functions of the form $f(t) = a \cos t + b \sin t + c$ for $a, b, c \in \mathbb{R}$.

3. Consider the matrix

$$A = \left[\begin{array}{cc} 1 & a \\ a & 1 \end{array} \right].$$

- (a) Under what conditions on a is A invertible?
- (b) Choose a non-zero value of a that makes A invertible and determine A^{-1} .
- (c) For each value of a that makes A non-invertible, determine the dimension of the nullspace of A.

1

4. Consider the system of equations

- (a) Find all solutions when the above system is homogeneous (i.e. $b_1 = b_2 = b_3 = 0$). Find a basis for the space of solutions to the homogeneous system.
- (b) Let S be the set of vectors $\mathbf{b} = \left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right]$ such that the system can be solved. What is the dimension of S?
- (c) It's easy to check that the vector $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ is a solution to the system that arises when $b_1 = 3$, $b_2 = 5$, and $b_3 = 8$. Find *all* the solutions to this system.