$Week-1 \mid Summary$

Karthik Thiagarajar

1. Misc	1
1.1. Notation	1
1.2. Data-matrix	2
1.3. Data-point	2
2. Centering the dataset	
3. Covariance matrix	4
4. Optimization problem	5
5. Principal components	6
6. Projections	8
7. Reconstruction error revisited	9
8. Variance captured	10
9. Compression	11

1. Misc

1.1. Notation

Scalars:

$$x_1, x_2, y_1, y_2, z_2, z_2, a, b, \alpha, \beta$$

Column vector:

$$\mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Row vector:

$$\mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{x}^T = \begin{bmatrix} x_1 & \cdots & x_d \end{bmatrix}$$

Matrix:

$$\mathbf{X} \in \mathbb{R}^{d \times n}$$

1.2. Data-matrix

$$\mathbf{X} \in \mathbb{R}^{d \times n}$$

- ullet $d \rightarrow$ number of features
- ullet n o number of data-points

$$\mathbf{X} = \left[egin{array}{cccc} ert & \mathbf{x}_1 & \cdots & \mathbf{x}_n \ ert & & ert \end{array}
ight]$$

1.3. Data-point

$$\mathbf{x}_i \in \mathbb{R}^d$$

2. Centering the dataset

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

If the dataset is already centered, $\overline{\mathbf{x}} = \mathbf{0}$. If $\overline{x} \neq \mathbf{0}$, do the following:

$$\mathbf{x}_i' = \mathbf{x}_i - \overline{\mathbf{x}}$$

$$\mathbf{X}_c = \left[egin{array}{cccc} | & & & | \ \mathbf{x}_1' & \cdots & \mathbf{x}_n' \ | & & | \end{array}
ight]$$

 \mathbf{X}_c is the centered data-matrix.

Remark: From now we will work only with the centered data-matrix and will be calling it \mathbf{X} (the subscript c will be dropped)

3. Covariance matrix

$$\mathbf{C} = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 1 \end{bmatrix}$$

Shape

$$\mathbf{C} \in \mathbb{R}^{d \times d}$$

Outer-product form

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

Matrix-form

$$\mathbf{C} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

Scalar form

$$C_{pq} = \frac{1}{n} \sum x_{ip} x_{iq}$$

 C_{pq} captures the covariance between the p^{th} feature and the q^{th} feature.

As a special case:

$$C_{pp} = \frac{1}{n} \sum x_{ip}^2$$

 C_{pp} captures the variance of the p^{th} feature.

Properties

- \bullet $\mathbf{C}^T = \mathbf{C}$
- All eigenvalues of C are non-negative.
 - $-\lambda_1 \geqslant \cdots \geqslant \lambda_d \geqslant 0$
- ullet There is an orthonormal basis for \mathbb{R}^d made up of eigenvectors of ${f C}$
 - $-\{\mathbf{w}_1, \cdots, \mathbf{w}_d\}$
 - This comes from the spectral theorem.

Note: If $\bf C$ is a square matrix, then $(\lambda, {\bf w})$ is said to be an eigenvalue-eigenvector pair if $\bf C{\bf w}=\lambda {\bf w}$. Note that ${\bf w}\neq {\bf 0}$ for it to be an eigenvector.

Remark: \mathbf{w}_i will always represent a unit-norm vector in the rest of the document.

4. Optimization problem

Minimizing the reconstruction error

$$\min_{\mathbf{w}} \ \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - \left(\mathbf{x}_i^T \mathbf{w}\right) \mathbf{w}||^2$$

Maximizing the variance

$$\max_{\mathbf{w}} \ \mathbf{w}^T \mathbf{C} \mathbf{w}$$

Both forms are equivalent to each other.

5. Principal components

Let $(\lambda_1, \mathbf{w}_1), \dots, (\lambda_d, \mathbf{w}_d)$ be the eigen-pairs of \mathbf{C} , where $\lambda_1 \geqslant \dots \geqslant \lambda_d$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_d\}$ is an orthonormal basis for \mathbb{R}^d . \mathbf{w}_i is termed the i^{th} principal component of \mathbf{C} . To be more precise:

$$\mathbf{C}\mathbf{w}_i = \lambda_i \mathbf{w}_i$$

$$\mathbf{w}_i^T \mathbf{w}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$\lambda_1 = \max_{\mathbf{w}} \ \mathbf{w}^T \mathbf{C} \mathbf{w}$$

$$\mathbf{w}_1 = \underset{\mathbf{w}}{\operatorname{arg}} \underset{\mathbf{w}}{\operatorname{max}} \quad \mathbf{w}^T \mathbf{C} \mathbf{w}$$

$$\mathbf{w}_1^T \mathbf{C} \mathbf{w}_1 = \lambda_1$$

6. Projections

(Vector) Projection of \mathbf{x}_i onto the j^{th} PC

$$\left(\mathbf{x}_{i}^{T}\mathbf{w}_{j}\right)\mathbf{w}_{j}$$

Scalar projection of \mathbf{x}_i onto the j^{th} PC (or) coordinate of the data-point along this direction:

$$\mathbf{x}_i^T \mathbf{w}_j$$

The projection of a data-point \mathbf{x}_i onto the top k principal components:

$$\mathbf{x}_i' = (\mathbf{x}_i^T \mathbf{w}_1) \mathbf{w}_1 + \cdots + (\mathbf{x}_i^T \mathbf{w}_k) \mathbf{w}_k$$

To represent the reconstruction and scalar projections in matrix form:

$$\mathbf{W} \in \mathbb{R}^{d \times k}$$

$$\mathbf{W} = \left[egin{array}{cccc} ert & & ert \ \mathbf{w}_1 & \cdots & \mathbf{w}_k \ ert & & ert \end{array}
ight]$$

Scalar projections

$$\mathbf{X}' \in \mathbb{R}^{k \times n}$$

$$\mathbf{X}' = egin{bmatrix} \mathbf{x}_1^T \mathbf{w}_1 & \mathbf{x}_n^T \mathbf{w}_k \ dash & \cdots & dash \ \mathbf{x}_1^T \mathbf{w}_k & \mathbf{x}_n^T \mathbf{w}_k \end{bmatrix}$$

$$\mathbf{X}' = \mathbf{W}^T \mathbf{X}$$

Reconstruction

$$\mathbf{X}' \in \mathbb{R}^{d \times n}$$

$$\mathbf{X}' = \mathbf{W}\mathbf{W}^T\mathbf{X}$$

7. Reconstruction error revisited (for k directions)

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{x}_i'||^2$$

$$\frac{1}{n} \sum_{i=1}^{n} \left| \left| \mathbf{x}_{i} - \sum_{j=1}^{k} \left(\mathbf{x}_{i}^{T} \mathbf{w}_{j} \right) \mathbf{w}_{j} \right| \right|^{2}$$

8. Variance captured

Total variance:

$$\lambda_1 + \cdots + \lambda_d$$

Variance along a given direction **w** (unit vector):

$$\frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \mathbf{w} \right)^{2}$$

$$\mathbf{w}^T \mathbf{C} \mathbf{w}$$

Proportion of variance captured by top k PCs:

$$\frac{\lambda_1 + \cdots + \lambda_k}{\lambda_1 + \cdots + \lambda_d}$$

Heuristic to choose the value of k: smallest value that captures 95% of the variance in the dataset.

9. Compression

Reconstruction

$$\frac{nk+dk}{dn} = \frac{k(d+n)}{dn}$$

Retaining only scalar projections

$$\frac{kn}{dn} = \frac{k}{d}$$