Уравнения с разделяющимися переменными

(15.02.2021)

1. Начнём занятие с разбора задачи повышенной сложности.

Задача. Функция $f: \mathbb{R} \to \mathbb{R}$ называется однородной порядка $\alpha \in \mathbb{R}$, если для любых $x \in \mathbb{R}^n$ и $t \in \mathbb{R}$ верно равенство $f(tx) = t^{\alpha} f(x)$.

- а) Пусть F(x,y) непрерывно дифференцируемая однородная функция порядка α . Докажите тождество $xF'_x(x,y) + yF'_y(x,y) = \alpha F(x,y)$.
- b) Пусть $P(x,y),\ Q(x,y)$ непрерывно дифференцируемые однородные функции одного и того же порядка. Докажите, что $\mu(x,y)=\frac{1}{xP(x,y)+yQ(x,y)}$ интегрирующий множитель уравнения $P(x,y)\,\mathrm{d} x+Q(x,y)\,\mathrm{d} y=0.$

Решение. а) Продифференцировав равенство $F(tx, ty) = t^{\alpha} F(x, y)$ по t, имеем

$$xF'_x(tx, ty) + yF'_y(tx, ty) = \alpha t^{\alpha - 1}F(x, y).$$

Подставляя t=1, получаем $xF_x'(x,y)+yF_y'(x,y)=\alpha F(x,y).$

b) Докажем равенство $(\mu(x,y)P(x,y))'_y = (\mu(x,y)Q(x,y))'_x$. Имеем

$$\begin{split} \frac{\partial}{\partial y} \left(\frac{P(x,y)}{xP(x,y) + yQ(x,y)} \right) &= \frac{P_y'(xP + yQ) - P(xP_y' + yQ_y' + Q)}{(xP + yQ)^2} = \\ &= \frac{y(P_y'Q - PQ_y') - PQ}{(xP + yQ)^2}. \end{split}$$

Аналогичным образом находим, что

$$\frac{\partial}{\partial x} \left(\frac{Q(x,y)}{xP(x,y) + yQ(x,y)} \right) = \frac{x(PQ'_x - P'_xQ) - PQ}{(xP + yQ)^2}.$$

Поэтому, достаточно доказать, что $y(P_y'Q-PQ_y')=x(PQ_x'-P_x'Q)$. Пусть α — порядок однородности функций P и Q. Имеем

$$y(P'_{y}Q - PQ'_{y}) - x(PQ'_{x} - P'_{x}Q) = Q(yP'_{y} + xP'_{x}) - P(xQ'_{x} + yQ'_{y}) =$$

$$= \alpha PQ - \alpha PQ = 0.$$

2. Пусть $D \subset \mathbb{R} \times \mathbb{R}^n$ — область. Рассмотрим обыкновенное дифференциальное уравнение

$$y' = f(x, y), \quad f \in C(D). \tag{1}$$

Определение 1. Пусть $F: D \to \mathbb{R} - \phi$ ункция, заданная на области $D, u(x_0, y_0) \in D$. Будем говорить, что уравнение $F(x, y) = F(x_0, y_0)$ локально однозначно разрешимо, если существуют окрестности U u V точек x_0 u y_0 , соответственно, u функция $y: U \to V$, такие, что $U \times V \subset D$ u

$$(F(x,y) = 0 \ e \ U \times V) \Leftrightarrow (y = y(x), x \in U).$$

Определение 2. Функцию $u(x,y) \in C^1(D)$ называют общим интегралом уравнения (1) в области D, если

- 1. для каждой точки $(x_0, y_0) \in D$ уравнение $u(x, y) = u(x_0, y_0)$ локально однозначно разрешимо;
- 2. произвольная функция $y: U \to V$, удовлетворяющая равенству $u(x, y(x)) \equiv C$, является решением уравнения (1) (U и V интервалы, такие, что $U \times V \subset D$).

Найдём общий интеграл уравнения вида

$$y' = f(x)q(y), \quad f \in C(a,b), \quad q \in C(\alpha,\beta), \tag{2}$$

которое называется уравнением с разделяющимися переменными. Из теоремы Пикара – Линделёфа следует, что для произвольной точки $(x_0,y_0)\in(a,b)\times(\alpha,\beta)$ задача Коши для уравнения (2) однозначно разрешима. Пусть $y_1< y_2<\ldots< y_n\in(\alpha,\beta)$ — все корни уравнения g(y)=0. Очевидно, что постоянная функция $y(x)\equiv y_i,\ i\in\{1,2,\ldots,n\}$, является решением уравнения (2). Выберем два подряд идущих корня $y_i,\ y_{i+1}$ и определим прямоугольник $H\stackrel{\mathrm{def}}{=}(a,b)\times(y_i,y_{i+1})$. Для произвольной точки $(x_0,y_0)\in H$ рассмотрим такое решение y=y(x) уравнения (2), что $y(x_0)=y_0$. Так как $g(y(x))\neq 0$, то

$$\frac{y'(x)}{g\big(y(x)\big)} = f(x), \quad \text{а значит,} \quad \int\limits_{x_0}^x \frac{y'(s)}{g\big(y(s)\big)} \, \mathrm{d}s = \int\limits_{x_0}^x f(t) \, \mathrm{d}t.$$

Вводя новую переменную z = y(s), получим

$$\int_{y_0}^{y} \frac{\mathrm{d}z}{g(z)} = \int_{x_0}^{x} f(t) \, \mathrm{d}t.$$

Пусть $G(y) = \int g(y)^{-1} dy$ и $F(x) = \int f(x) dx$. Тогда $G(y) - F(x) = G(y_0) - F(x_0)$. Из теоремы о неявно заданной функции следует, что функция $u(x,y) \stackrel{\text{def}}{=} G(y) - F(x)$ — общий интеграл уравнения (2) в прямоугольнике H.

Перейдём к уравнениям в нормальной дифференциальной форме.

$$P(x,y) dx + Q(x,y) dy = 0, \quad (x,y) \in D.$$
 (3)

Напомним определение общего интеграла для уравнения (3).

Определение 4. Пусть $F: D \to \mathbb{R} - \phi$ ункция, заданная на области $D, u(x_0, y_0) \in D$. Будем говорить, что уравнение $F(x, y) = F(x_0, y_0)$ локально однозначно разрешимо, если существуют окрестность $U \subset D$ точки (x_0, y_0) и кривая $\gamma(t) = (x(t), y(t)): I \to U$ такие, что

- 1. $F(x(t), y(t)) = F(x_0, y_0), npu \ scex \ t \in I;$
- 2. ecnu $(\tilde{x}, \tilde{y}) \in U$ и $F(\tilde{x}, \tilde{y}) = F(x_0, y_0)$, то найдётся такое $\tilde{t} \in I$, что $\tilde{x} = x(\tilde{t})$ и $\tilde{y} = y(\tilde{t})$.

Определение 5. Функцию $u(x,y) \in C^1(D)$ называют общим интегралом уравнения (3) в области D, если

- 1. для каждой точки $(x_0, y_0) \in D$ уравнение $u(x, y) = u(x_0, y_0)$ локально однозначно разрешимо;
- 2. если $\gamma(t) = (x(t), y(t)) : I \to D$ решение уравнения $u(x(t), y(t)) \equiv C$, то γ параметризация решения уравнения (3).

Из теоремы о неявно заданной функции следует, что если функция $u(x,y)\colon D\to\mathbb{R}$ такова, что $P=u_x',\ Q=u_y'$ и $|u_x'(x,y)|+|u_y'(x,y)|\neq 0$ в каждой точке $(x,y)\in D$, то u(x,y) — общий интеграл уравнения (3).

Уравнение в нормальной дифференциальной форме вида

$$P_1(x)Q_1(x) dx + P_2(x)Q_2(y) dy = 0,$$
(4)

называется уравнением с разделяющимися переменными. Разделив обе части уравнения (4) на $Q_1(y)P_2(x)$, перейдём к уравнению с разделёнными переменными

$$\frac{P_1(x)}{P_2(x)} dx + \frac{Q_2(y)}{Q_1(y)} dy = 0,$$
5

которое является уравнением в полных дифференциалах. Общий интеграл уравнения (5) найдём по формуле

$$u(x,y) = \int \frac{P_1(x)}{P_2(x)} dx + \int \frac{Q_2(y)}{Q_1(y)} dy.$$

Переход от уравнения (4) к уравнению (5) корректен, если $P_2(x)Q_1(y) \neq 0$. С другой стороны, не сложно видеть, что если $P_2(x^*)=0$ (или $Q_1(y^*)=0$), то кривая $x\equiv x^*$ (или $y \equiv y^*$) является решением уравнения (4).

Пример. Судно выходит из точки О с постоянной скоростью у плывёт по направлению оси Оу. Одновременно (в момент времени t=0) из точки A(a,0) выходит вдогонку на пересечение катер, плывущий со скоростью 2v. Найдите уравнене кривой погони, описанной катером, и минимальное время, необходимое для достижения суда катером.

Решение. Пусть K(x(t), y(t)) — координаты катера в момент времени t, а $\ell(t)$ — длина дуги кривой погони от A до K(t) (см. рис.). Тогда $\ell(t)=2vt$. Так как в момент времени t судно находится в точке S(0,vt), то тангенс угла наклона прямой K(t)S(t) равен

$$-\frac{(vt - y(t))}{x(t)} = \frac{y(t) - vt}{x(t)} = \frac{y(t) - \ell(t)/2}{x(t)}.$$

Так как x(t) — строго убывает, то существует обратная функция t = t(x). Поэтому, не меняя обозначения, будем считать, что y и ℓ зависят от x. Так как прямая K(t)S(t) является касательной к кривой погони, а тангенс угла наклона касательной равен y', то верно равенство

$$y' = \frac{y(x) - \ell(x)/2}{x}$$
, а значит, $xy' - y = -\ell(x)/2$. (*)

Так как $\ell' = -\sqrt{1+(y')^2}$, то продифференцировав обе части второго равенства из (*), полу-ЧИМ

$$y' + xy'' - y' = xy'' = \frac{\sqrt{1 + (y')^2}}{2}.$$

Пусть u = y', тогда $xu' = \frac{1}{2}\sqrt{1 + u^2}$. Следовательно,

$$\frac{\mathrm{d}u}{\sqrt{1+u^2}} = \frac{1}{2}\frac{\mathrm{d}x}{x}$$
, а значит, $\ln(u+\sqrt{1+u^2}) = \frac{1}{2}\ln x + C$.

Так как $u|_{t=0}=0$ и $x|_{t=0}=a$, то $C=-\frac{1}{2}\ln a$. Поэтому,

$$\ln(u + \sqrt{1 + u^2}) = \frac{1}{2} \ln \frac{x}{a}, \quad \text{r.e.} \quad y' + \sqrt{1 + (y')^2} = \sqrt{\frac{x}{a}}.$$
 (**)

Так как $y'+\sqrt{1+(y')^2}=\frac{-1}{u'-\sqrt{1+(y')^2}},$ то из (**) следует, что

$$y' - \sqrt{1 + (y')^2} = -\sqrt{\frac{a}{x}}$$
, азначит, $y' = \frac{1}{2} \left(\sqrt{\frac{x}{a}} - \sqrt{\frac{a}{x}} \right)$.

Поэтому, $y = \frac{x\sqrt{x}}{3\sqrt{a}} - \sqrt{ax} + C$. Так как $x|_{t=0} = a$ и $y|_{t=0} = 0$, то $= \frac{2a}{3}$. Таким образом, кривая погони совпадает с графиком функции

$$y(x) = \frac{x\sqrt{x}}{3\sqrt{a}} - \sqrt{ax} + \frac{2a}{3}.$$

При x = 0 имеем $y = \frac{2a}{3}$, поэтому катер догонит корабль в момент времени $t = \frac{y}{v} = \frac{2a}{3v}$.

- **2.** Решите следующие номера 675, 679, 683, 688, 691, 698 при этом решение задачи 688 сфотографируйте и вышлите для проверки до конца занятия.
 - 3. Домашнее задание: 676, 680, 684, 689, 692.
 - **4.** Задача повышенной сложности (срок сдачи следующее занятие): $\Pi y cmb \ y(x) onpeden\"e$ нное на отрезке [a,b] решение уравнения

$$y' = \frac{P(x,y)}{Q(x,y)},$$

где P(x,y) и Q(x,y) — многочлены второй степени, причём $Q(x,y(x)) \neq 0$ при $x \in [a,b]$. Докажите, что прямая, не касающаяся ни в одной точке графика функции y(x), не может пересекать эту кривую более чем в трёх точках.