

Выполнил:

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Методы машинного обучения

Отчёт по лабораторной работе № 3

«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

студент группы ИУ5 – 23М Кругов Т.Ю. Преподаватель: Гапанюк Ю.Е. In [168]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style='ticks')
```

```
In [253]:
```

```
data = pd.read_csv('titanic.csv')
games = pd.read_csv('vgsales.csv')
data.head()
```

Out[253]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

Проверим набор данных пассажиров Титаника на наличие пропусков данных

In [170]: ▶

```
for col in data.columns:
    count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, count))
print ('{} - размер датасета'.format(data.shape))
```

```
PassengerId - 0
Survived - 0
Pclass - 0
Name - 0
Sex - 0
Age - 177
SibSp - 0
Parch - 0
Ticket - 0
Fare - 0
Cabin - 687
Embarked - 2
(891, 12) - размер датасета
```

Можно заметить, что пропущены 177 значений столбца Age, 2 значения столбца Embarked и целых 687 значений столбца Cabin. Исходя из полученных данных целесообразным будет полное удаление столбца Cabin. Для столбцов Age и Embarked следует удалить строки с пропущенными значениями

In [171]:
▶

del data['Cabin']
data

Out[171]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500

891 rows × 11 columns

После удаления столбца Cabin воспользуемся методом dropna() для удаления строк, содержащих пропуски данных

In [172]:
▶

```
data_ = data.dropna(axis=0, how='any')
(data.shape, data_.shape)
```

```
Out[172]:
```

```
((891, 11), (712, 11))
```

In [173]:

```
data_.dropna(inplace=True)
data_.reset_index(drop=True, inplace=True)
data_
```

c:\users\timofey\virtln\mmo\lib\site-packages\ipykernel_launcher.py:1: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.

Out[173]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
707	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.1250
708	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
709	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
710	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
711	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500

Можно заметить, что размер набора данных уменьшился на 179 строк.

```
In [ ]:
```

В исходном наборе данных присутствуют категориальные признаки, которые необходимо преобразовать в числовые

Узнаем количество уникальных значений каждого категориального признака

```
In [175]:

print ('{} - {}'.format(data_['Sex'].unique(), data_['Embarked'].unique()))

['male' 'female'] - ['S' 'C' 'Q']

In [176]:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
ohe = OneHotEncoder()
```

Воспользуемся двумя методами кодирования: Label encoding и One-hot encoding. Признак Sex закодируем первым методом, а признак Embarked - вторым

```
In [177]:

sex = le.fit_transform(data_['Sex'])
np.unique(sex)
```

```
Out[177]:
```

array([0, 1])

```
sex
Out[178]:
array([1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0,
      0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0,
      1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,
      0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0,
      0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
      1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
      1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
      0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1,
      1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
      0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1,
      0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
      1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
      0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0,
      0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1,
      1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
      0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
      0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
In [83]:
                                                                                        M
sex = pd.DataFrame({'Sex':sex.T})
```

Out[83]:

In [178]:

	Sex
0	1
1	0
2	0
3	0
4	1
707	0
708	1
709	0
710	1
711	1

712 rows × 1 columns

Удалим столбец Sex, в исходном наборе данных и заменим его на новый с числовыми значениями

```
H
In [84]:
del data_['Sex']
data_j1 = data_.join(sex)
data_j1
                                               . . .
Метод One-Hot Encoding
In [215]:
                                                                                               H
cat_data = data_j1['Embarked']
In [216]:
                                                                                               H
cat_enc = pd.DataFrame({'Embarked':cat_data.T})
cat_enc
Out[216]:
     Embarked
  0
            S
   1
            С
  2
            S
            S
            S
 707
            Q
 708
            S
 709
            S
 710
            С
 711
            Q
712 rows × 1 columns
In [217]:
                                                                                               H
cat_enc.shape
Out[217]:
(712, 1)
                                                                                               H
In [218]:
embarked = ohe.fit_transform(cat_enc[['Embarked']])
```

```
In [219]:
ohe.categories_
Out[219]:
[array(['C', 'Q', 'S'], dtype=object)]
                                                                                             H
In [220]:
embarked.todense()[0:5]
Out[220]:
matrix([[0., 0., 1.],
        [1., 0., 0.],
        [0., 0., 1.],
        [0., 0., 1.],
        [0., 0., 1.]])
In [221]:
embarked.toarray()
Out[221]:
array([[0., 0., 1.],
       [1., 0., 0.],
       [0., 0., 1.],
       [0., 0., 1.],
       [1., 0., 0.],
       [0., 1., 0.]])
In [222]:
                                                                                             H
e = embarked.transpose()
e.toarray()
Out[222]:
array([[0., 1., 0., ..., 0., 1., 0.],
       [0., 0., 0., \ldots, 0., 0., 1.],
       [1., 0., 1., ..., 1., 0., 0.]])
```

```
In [223]:
e0 = e[0].toarray()
e0
Out[223]:
array([[0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
      0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.,
      0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1., 0., 0.,
      0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
      0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0.,
      0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.,
      0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.,
      0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0.,
      1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0.,
      0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1.,
      0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 1., 0.,
      1., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1.,
      0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0.,
In [224]:
e1 = e[1].toarray()
```

e2 = e[2].toarray()

```
In [225]:
data_j2 = pd.DataFrame({'E1':e0[0],'E2':e1[0],'E3':e2[0]})
data_j2
Out[225]:
     E1 E2 E3
  0 0.0 0.0 1.0
  1 1.0 0.0 0.0
  2 0.0 0.0 1.0
  3 0.0 0.0 1.0
  4 0.0 0.0 1.0
     ...
         ... ...
707 0.0 1.0 0.0
708 0.0 0.0 1.0
709 0.0 0.0 1.0
710 1.0 0.0 0.0
711 0.0 1.0 0.0
712 rows × 3 columns
In [231]:
                                                                                              H
data_j2.dtypes
Out[231]:
E1
      float64
E2
      float64
E3
      float64
dtype: object
Изменим тип признаков датафрейма на с float64 на int
In [237]:
data_j2['E1'] = data_j2['E1'].astype('int')
data_j2['E2'] = data_j2['E2'].astype('int')
data_j2['E3'] = data_j2['E3'].astype('int')
```

In [238]: ▶

data_j2

Out[238]:

	E1	E2	E 3
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1
707	0	1	0
708	0	0	1
709	0	0	1
710	1	0	0
711	0	1	0

712 rows × 3 columns

Объединим датафреймы

In [239]:

```
del data_j1['Embarked']
new_data = data_j1.join(data_j2)
new_data
```

Out[239]:

	Passengerld	Survived	Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Sex	E
0	1	0	3	Braund, Mr. Owen Harris	22.0	1	0	A/5 21171	7.2500	1	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1	0	PC 17599	71.2833	0	
2	3	1	3	Heikkinen, Miss. Laina	26.0	0	0	STON/O2. 3101282	7.9250	0	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	1	0	113803	53.1000	0	
4	5	0	3	Allen, Mr. William Henry	35.0	0	0	373450	8.0500	1	
707	886	0	3	Rice, Mrs. William (Margaret Norton)	39.0	0	5	382652	29.1250	0	
708	887	0	2	Montvila, Rev. Juozas	27.0	0	0	211536	13.0000	1	
709	888	1	1	Graham, Miss. Margaret Edith	19.0	0	0	112053	30.0000	0	
710	890	1	1	Behr, Mr. Karl Howell	26.0	0	0	111369	30.0000	1	
711	891	0	3	Dooley, Mr. Patrick	32.0	0	0	370376	7.7500	1	

712 rows × 13 columns

Также возможно использование быстрого варианта one-hot кодирования с помощью pandas get_dummies()

In [229]: ▶

pd.get_dummies(cat_enc)

Out[229]:

	Embarked_C	Embarked_Q	Embarked_S
0	0	0	1
1	1	0	0
2	0	0	1
3	0	0	1
4	0	0	1
707	0	1	0
708	0	0	1
709	0	0	1
710	1	0	0
711	0	1	0

712 rows × 3 columns

Масштабирование

In [240]:
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

МіпМах масштабирование

```
In [241]:

sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(new_data[['Fare']])
```

```
In [246]:

print(new_data['Fare'].mean())
```

34.567251404494385

```
In [243]: 
▶
```

```
plt.hist(new_data['Fare'], 50)
plt.show()
```


In [247]: ▶

```
plt.hist(sc1_data, 50)
plt.show()
```



```
In [250]: 
▶
```

```
plt.hist(new_data['Pclass'], 50)
plt.show()
```



```
In [252]: ▶
```

```
sc11 = MinMaxScaler()
sc11_data = sc1.fit_transform(new_data[['Pclass']])
plt.hist(sc11_data, 50)
plt.show()
```



```
In [249]:

plt.hist(new_data['Age'], 50)
plt.show()
```



```
In [248]:

sc2 = StandardScaler()
sc2_data = sc2.fit_transform(new_data[['Age']])
plt.hist(sc2_data, 50)
plt.show()
```


Дополнительно поработаем со вторым набором данных о видеоиграх

```
In [257]: ▶
```

```
games.head()
```

Out[257]:

	Rank	Name	Platform	Year Genre		Publisher NA_Sale		EU_Sales	JP_Sales	
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	

Проверим набор данных видеоигр на наличие пропусков данных

```
In [267]:

for co in games.columns:
    counter = games[games[co].isnull()].shape[0]
    print('{} - {}'.format(co, counter))
print ('{} - размер датасета'.format(games.shape))
```

```
Rank - 0
Name - 0
Platform - 0
Year - 271
Genre - 0
Publisher - 58
NA_Sales - 0
EU_Sales - 0
JP_Sales - 0
Other_Sales - 0
Global_Sales - 0
(16598, 11) - размер датасета
```

```
In [272]:
```

```
games['Year'].unique()
```

Out[272]:

```
array([2006., 1985., 2008., 2009., 1996., 1989., 1984., 2005., 1999., 2007., 2010., 2013., 2004., 1990., 1988., 2002., 2001., 2011., 1998., 2015., 2012., 2014., 1992., 1997., 1993., 1994., 1982., 2003., 1986., 2000., nan, 1995., 2016., 1991., 1981., 1987., 1980., 1983., 2020., 2017.])
```

Проведем импьютацию пропущенных значений

```
H
In [274]:
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
data_imput = games['Year']
data_imput
Out[274]:
0
         2006.0
1
         1985.0
2
         2008.0
3
         2009.0
4
         1996.0
          . . .
16593
         2002.0
16594
         2003.0
         2008.0
16595
16596
         2010.0
16597
         2003.0
Name: Year, Length: 16598, dtype: float64
                                                                                               H
In [275]:
data_imput = pd.DataFrame({'Year':data_imput.T})
data_imput
Out[275]:
         Year
    0 2006.0
    1 1985.0
    2 2008.0
    3 2009.0
    4 1996.0
16593 2002.0
16594 2003.0
16595 2008.0
16596 2010.0
16597 2003.0
16598 rows × 1 columns
```

```
In [276]:
                                                                                           H
data_imput.shape
Out[276]:
(16598, 1)
                                                                                           M
In [277]:
indicator = MissingIndicator()
missing_value = indicator.fit_transform(data_imput)
missing_value
Out[277]:
array([[False],
       [False],
       [False],
       [False],
       [False],
       [False]])
In [278]:
                                                                                           M
strategies=['mean', 'median', 'most_frequent']
In [279]:
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_imput)
    return data_num_imp[missing_value]
In [285]:
                                                                                           H
def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    missing_value = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[missing_value]
    return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_dat
```

('Year', 'most_frequent', 271, 2009.0, 2009.0)