<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivati... / Lecture 5: Finding vectors normal to level cur...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:08:25

Explore

Note about video: The class 8.01 mentioned in the following video is a physics class (classical mechanics) at MIT.

Motivation from physics

Start of transcript. Skip to the end.

PROFESSOR: So this is more than just an exercise

in trying to figure out how big dot products are

by looking at a picture.

It's actually used a lot in problems about vectors.

And let me give you a motivating example, so similar to things

0:00 / 0:00

Download video file

2.0x

X

Video

Transcripts

Download SubRip (.srt) file <u>Download Text (.txt) file</u>

Consider a mass on an inclined plane where \vec{g} is the force of gravity.

The vector that forms the tangent component of \vec{g} is labeled \vec{g}_{tan} . This vector is tangent to the inclined plane. The vector that forms the normal component of $ec{m{g}}$ is labeled $ec{m{g}}_{norm}$ and is normal to the inclined plane. We have

$$ec{g} = ec{g}_{tan} + ec{g}_{norm}.$$

The general math problem here is to find the tangential and normal components of the vector. Consider the two vectors $ec{m{v}}$ and $ec{m{u}}$ below.

We want to decompose \vec{v} into a piece in the \vec{u} direction and a piece that is normal to \vec{u} so that

$$ec{v} = ec{a} + ec{b}$$

where

- $ec{a}$ is the component of $ec{v}$ in the $ec{u}$ direction, and
- $ec{m{b}}$ is the component of $ec{m{v}}$ perpendicular to the $ec{m{u}}$ direction.

Derivation of decomposition

Given \vec{u} and \vec{v} , find \vec{a} and \vec{b} .

What do we know about $ec{a}$? Well, we know $ec{a}$ is in the same direction as $ec{u}$, which means

$$ec{a}=\lambdaec{u}$$

for some number $\lambda>0$. Now, we need to find λ .

We saw in the previous question that

$$ec{u}\cdotec{v}=ec{u}\cdotec{a}=ec{u}\cdot(\lambdaec{u})=\lambda\left(ec{u}\cdotec{u}
ight).$$

So λ is given by

$$\lambda = rac{ec{u} \cdot ec{v}}{ec{u} \cdot ec{u}}.$$

This means

$$oxed{ec{a} = \left(rac{ec{u}\cdotec{v}}{ec{u}\cdotec{u}}
ight)ec{u}}$$

Now, how do we find $ec{m{b}}$? We already found $ec{m{a}}$ and we know that $ec{m{v}}=ec{m{a}}+ec{m{b}}$. So

$$\left[ec{b} = ec{v} - ec{a}
ight].$$

Decompose the vector $ec{v}=\langle 1,2
angle$ into components that point in the direction of $ec{u}=\langle 1,1
angle$ and normal to $ec{m{u}}$.

Using the formula derived above, we want to write $ec{v} = ec{a} + ec{b}$, where

$$ec{a} = rac{\langle 1,1
angle \cdot \langle 1,2
angle}{\langle 1,1
angle \cdot \langle 1,1
angle} \langle 1,1
angle = rac{3}{2} \langle 1,1
angle = \langle 3/2,3/2
angle.$$

Then we use vector subtraction to find the component normal to \vec{a} :

$$ec{b}=\langle 1,2
angle -\langle 3/2,3/2
angle =\langle -1/2,1/2
angle$$

Sanity check: Verify that \vec{a} and \vec{b} are normal by taking their dot product:

$$\langle 3/2, 3/2 \rangle \cdot \langle -1/2, 1/2 \rangle = -3/4 + 3/4 = 0 \checkmark$$

Does vector length and angle matter?

Start of transcript. Skip to the end.

PROFESSOR: Yeah

STUDENT: So it doesn't matter if v or u have different size,

if u is bigger than v or the other way around?

PROFESSOR: OK, yeah, so the question is, so in the picture,

v is longer than u, and the question is, does that matter.

0:00 / 0:00

▶ 2.0x

X

CC

Video

<u>Download video file</u>

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Does vector length matter?

What if $|ec{v}| < |ec{u}|$? Does it matter which vector is longer?

Let's draw a picture.

The same formula will work.

What if the angle is obtuse?

What if $heta>\pi/2$? Then the picture would look like the following.

In this case, $\lambda < 0$ and $ec{a}$ is in the opposite direction of $ec{u}$.

Remark 10.2

- If we replace \vec{u} by $2\vec{u}$ or $\frac{1}{3}\vec{u}$, the \vec{a} and \vec{b} components don't change.
- If $|ec{u}|=1$, then

$$ec{u} \cdot ec{u} = u_1^2 + u_2^2 = |ec{u}|^2 = 1$$

and the formula becomes

$$ec{a} = (ec{v} \cdot ec{u}) \, ec{u}.$$

10. Vector decomposition

Topic: Unit 2: Geometry of Derivatives / 10. Vector decomposition

Hide Discussion

Add a Post

Show all posts 💙	by recent activity 🕶
[staff] decomposing of other vector Lam just wondering, can we decompose u vector into two small p	ieces at same time and find out relationship between components
? [STAFF] What happened to the course 8.01x on EDX? Hello, staff. It's an offtopic quesiton, but maybe you know. Parallel	to 18.02x, I have registered for mechanics course, 8.01x for Septe
very simple derivation Thats the simplest derivation of the projection formula ive seen. V	ery easy to understand.
? Why vec(u) * vec(a) = vec(v) * vec(u)? I don't understand the reason why vec(u) * vec(a) = vec(v) * vec(a)	7 ? Can anyone explain this?
Physics conventions Just a note on the labeling of the "g" vector. It would be more con	ventional (and consistent with physics notation) to refer to g" as th

revious Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>