Série 4 Travaux dirigés d'algèbre tensoriel

Exercice 1

Considérez le tenseur $F = 3\overrightarrow{e_1} \otimes \overrightarrow{e_1} - 2\overrightarrow{e_1} \otimes \overrightarrow{e_2} - \overrightarrow{e_2} \otimes \overrightarrow{e_2} + 2\overrightarrow{e_2} \otimes \overrightarrow{e_3} - \overrightarrow{e_3} \otimes \overrightarrow{e_1}$

- 1. Déterminer le déterminant de F noté det F et la trace de F notée trA.
- 2. Quel est l'image du vecteur $u = 3\overrightarrow{e_1} \overrightarrow{e_2} + 2\overrightarrow{e_3}$ par le tenseur F.
- 3. Décomposer F en sa partie symétrique notée symF et celle antisymétrique notée antF.
- 4. Quel est le vecteur axial de ant F.
- 5. Calculer l'inverse du tenseur F notée F^{-1} et l'adjugé ou le tenseur adjoint F^* de F.
- 6. Donner la partie sphérique sph(F) et la partie déviatorique dev(F).

Exercice 2

Considérez le tenseur $F = -\overrightarrow{e_1} \otimes \overrightarrow{e_1} + \overrightarrow{e_1} \otimes \overrightarrow{e_3} + 2\overrightarrow{e_2} \otimes \overrightarrow{e_1} - \overrightarrow{e_2} \otimes \overrightarrow{e_2} + 2\overrightarrow{e_3} \otimes \overrightarrow{e_2} - \overrightarrow{e_3} \otimes \overrightarrow{e_3}$

- 1. Déterminer le déterminant de F noté det F et la trace de F notée trA.
- 2. Quel est l'image du vecteur $u = 3\overrightarrow{e_1} \overrightarrow{e_2} + 2\overrightarrow{e_3}$ par le tenseur F.
- 3. Décomposer F en sa partie symétrique notée symF et celle antisymétrique notée antF.
- 4. Quel est le vecteur axial de ant F.
- 5. Calculer l'inverse du tenseur F notée F^{-1} et l'adjugé ou le tenseur adjoint F^* de F.
- 6. Donner la partie sphérique $sph\left(F\right)$ et la partie déviatorique $dev\left(F\right)$.

Exercice 3

Soit un repère $\overrightarrow{e_i}$ avec (1=1,2,3) d'origine O, tel que $\overrightarrow{e_1}$ soit orthogonal à $\overrightarrow{e_2}$, mais tel que $\overrightarrow{e_3}$ ne soit pas orthogonal au plan $(\overrightarrow{e_1},\overrightarrow{e_2})$. On effectue le changement de base suivant :

$$\overrightarrow{E_1} = \overrightarrow{e_1} \quad \overrightarrow{E_2} = \overrightarrow{e_2} \quad \overrightarrow{E_3} = -\overrightarrow{e_3}$$

- 1. Un vecteur $\overrightarrow{OM} = \overrightarrow{x}$ a pour composante (x^1, x^2, x^3) dans la base $\overrightarrow{e_i}$. Donner ces composantes contravariantes X^i dans la base $\overrightarrow{E_i}$.
- 2. Donner les matrices de changement de base pour les vecteurs de base et les composantes de \vec{x} . Écrire ces expressions sous forme tensorielle.