

An Uncertain World

Uncertainty at 3 Points

Parameter Uncertainty

- <u>Parameter</u> = value which summarizes data for a population; these can be expectations (*mean*) or values which describe an input-output relationship (*slope of a linear model*)
- <u>Statistic</u> = value which summarizes data from a particular sample (*i.e.* sample mean).
- <u>Estimation</u> = use a *statistic* to estimate a *parameter* of the distribution of a random variable, where
 - Estimator ($\hat{\theta}$): function used to compute <u>estimate</u>
 - \circ Estimand (θ): parameter of interest

Example of a parameter: mean

- Consider a model which predicts the mean... i.e. $\hat{y} = \theta$
- Given a dataset $\{x_1, x_2, ..., x_n\}$, the estimate for this parameter is the sample mean:

The distribution of an estimator is called its sampling distribution.

Bias and Variance

• Bias = expected difference between estimator $(\hat{\theta})$ and parameter (θ)

In general: Bias
$$(\widehat{\theta}) = E[\widehat{\theta} - \theta]$$

For example:
$$E[\overline{X}_n - \mu_X]$$

• Variance = expected squared difference between estimator ($\hat{\theta}$) and E[estimator] (mean)

In general:
$$E[(\widehat{\theta} - E[\widehat{\theta}])^2]$$

For example:
$$E\left[\left(\overline{X}_{n} - E\left[\overline{X}_{n}\right]\right)^{2}\right]$$

Bias and Variance

High bias, low variance

Low bias, high variance

High bias, high variance

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Central Limit Theorem (CLT)

- For large n, the sampling distribution of \overline{X}_n is approximately normal.
- Formally, we can write:

$$\overline{x}_n \sim N(\mu, \sigma^2 \overline{x}_n)$$
, where $\sigma \overline{x}_n = \frac{\sigma_X}{\sqrt{n}}$

Variance Standard error

Whatever the form of the population distribution, the sampling distribution tends to a Gaussian, and its dispersion is given by the central limit theorem [1]

Central Limit Theorem (CLT)

• We can use the CLT to construct **Confidence Intervals**

Question: What's a 95% confidence interval?

Answer: An interval which includes 95% of the sample means.

Another Answer: If we constructed this interval 100 times, it would contain the true mean in 95 of those instances.

Distribution of sample means (\bar{x}) around population mean (μ)

Central Limit Theorem (CLT)

- We can also say that 95% of the sample means are between μ 1.96 σ and μ + 1.96 σ
- Alternatively, 95% of the time the true mean μ will be between $\overline{x_n}$ 1.96 σ and $\overline{x_n}$ + 1.96 σ

Example: Old Faithful

- Say we estimate that the mean value of eruption times is 3.4877831 (with n=272 observations)
- Is this a good estimate? How good is it?
- Mean = 3.49, Stdev = 1.14, SE = 0.07
- CI is therefore 3.49 + -1.96*(0.07) = 3.49 + -0.14

The Bootstrap

- CLT excellent for datasets with approximately gaussian noise, and does a good job getting a distribution of parameter estimates. What if standard errors not normal?
- Bootstrap = a powerful technique to construct confidence intervals using artificially drawn samples in addition to an originally-drawn sample

The Bootstrap

```
Your Sample S has N observations For b in 1:numBootstrap: resample N from S with replacement -> S* Fit model to S* -> \hat{\theta}^*(bootstrap statistics) Record your bootstrap statistics
```

Return the distribution of bootstrap statistics

The Bootstrap

Now that we have a distribution of bootstrap statistics, we can construct a CI

• For example, a 90% confidence interval centred at the sample mean would be

$$CI = \left[\hat{\theta} - \delta_{0.95}^*, \hat{\theta}^* - \delta_{0.05}^*\right]$$

where
$$\delta^* = \hat{\theta}^* - \hat{\theta}$$

and where $\delta_{0.95}^*$ is the 95% percentile of the bootstrap distribution

Prediction Uncertainty

Training data
$$\mathcal{D} = \left\{ \left(x_1, y_1 \right), \left(x_2, y_2 \right), \dots, \left(x_n, y_n \right) \right\}$$

$$\widehat{y}_{i} = f\left(x_{i}, \theta\right)$$

$$L(y,f(x,\theta))$$

Parameter estimate

$$\widehat{\theta}$$

$$\widehat{y}_{i} = f(x_{i}, \widehat{\theta})$$

How does uncertainty in our parameter estimate influence the uncertainty of our prediction?

How much would the prediction change if we had used a different set of training data?

• Example: say we want to fit a cubic spline to this data. We can use a linear expansion of B-spline basis functions $h_i(x)$.

• We store the B coefficients of these basis functions into a vector θ , and fit $\hat{y} = f(x) = X\theta$.

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} h_1(x_1) & h_2(x_1) & \cdots & h_p(x_1) \\ h_1(x_2) & h_2(x_2) & \cdots & h_p(x_2) \\ & & & & & \\ h_1(x_n) & h_2(x_n) & \cdots & h_p(x_n) \end{pmatrix}_{n \times n} \begin{pmatrix} \beta_1 \\ \dots \\ \beta_p \end{pmatrix}_{p \times n}$$

- Here is our fit $\widehat{y} = \widehat{f}(x) = X\widehat{\theta}$
- Is it any good? Yes, but how confident can we be of this?

• Let's use bootstrap:

- From our original sample, generate a new sample (with replacement)
- For this new sample, get a new parameter estimate $\hat{\theta}_h^*$
- Do this as many times as you can

• We can plot each new prediction $\hat{y}_{h}^{*} = \hat{f}_{h}^{*}(x) = X\hat{\theta}_{h}^{*}$

And since we now have a distribution of samples for each x, we can compute a 95% Confidence Interval (CI)

 Note that we could have also used CLT to get the CIs

- true value of f(x), not for new observations $(x_{\text{new}}, y_{\text{new}})$ • Why? A CI for new data would need to also consider random variability (σ^2) between $f(x_n)$ and y_n .

Let'sss try it in Python...

Summary

- Parameter Uncertainty
 - o Parameters, Statistics, Estimation
 - Example using Population/Sample Mean
 - o Bias and variance
 - The Central Limit Theorem (CLT)
 - Constructing a Confidence Interval (CI)
 - Bootstrap
- Prediction Uncertainty
 - B-spline example (Bootstrap)
- Coding examples of CLT, Bootstrap