

Leeture

Planning and State-space Exploration

Assumption

- Fully Observable 1. environ ment
 - 2. Deterministic environment
 - 3. We have a model (transition func)

Objective s

sequence of actions

- To find (a plan) that take an agent from initial state to goal state
- Using minimum cost
 maximize utility

State Space

State Space is a graph

nodes: State

edges: Possible actions

Search Algorithm

Search Problem Formulation **

Formulation

- 1. Initial State
- 2. Possible actions 3. Transition function
 - 4. Goal test function
 - 5. Cost function

< Formulate e

Agent

* run inside agent & no action committed

Search Problem

Example: Pathfinding

Formulation

1. Initial State:
$$S_0 = (1, 1)$$

- { u, d, r, l} 2. Action space: (possible action)
- 3. Transition function:

Given input state =
$$(x, y)$$

if action == u , return $(x, y-1)$

if action == D, return (x, y+1)

- A. Goal test function: S = = (5,4)
- 5. Cost function: if mud, return if grass, return

Example: Abstract State-Space Grouph

