

rtables: existing, fit for purpose, production ready

Gabriel Becker, presented by Liming Li

rtables

existing, fit for purpose, production ready

Gabriel Becker, Architect Liming Li, senior data scientist

Who We Are

Gabriel Becker

- Architect, primary author of rtables and related packages
- Frequent collaborator with R-core on improvements to R itself

Liming Li

- Technical Lead chevron team, NEST Project
- Author of `mmrm`, `sasr` packages

Production Ready - The Proof Is In The Pudding

TLG-catalog

Fully reproducible, open-source code to generate hundreds of clinical trial analysis and reporting tables

- 6 Table Categories
- 88 Top-level Catalog Entries
- ~225 Table Variants
- All entries use rtables as their core underlying table engine

https://insightsengineering.github.io/tlg-catalog/

TLG-catalog - Table Variant Counts By Category*

- Adverse event 68
- Safety(Concomitant Medication, ECG, Vital Sign, etc) 49
- Efficacy 39
- Lab Results 38
- Pharmacokinetic 12
- Other 26

https://insightsengineering.github.io/tlg-catalog/

^{*} These categories are organizational within the tlg-catalog and do not have a broader meaning

Chevron - package supporting regulatory reporting

- Built on top of rtables, tern
- Covering a big amount of standard templates
- One-line to generate tables
- Moderate flexibility of customization
- Highly scalable
- To be open-sourced soon!

Adoption Within Roche

- Roche has adopted rtables in production for table generation
- chevron is built on rtables to provide user with standard tables
- tern provide analyze functionality for customized analysis
- Submission of first Roche clinical trial analyzed via R (rtables/chevron/tern) in preparation
- All new trials expected to follow suit moving forward

Paradigm Shift - The rtables Conceptual Model

The First Step In Creating a Table

Calculating cell values, right?

Reporting Tables Are Faceted Data Visualizations

Imagine Manually Subsetting Facet Data When Using ggplot2 (or lattice)

Subsetting data and calculating facet statistics

Humans

Computers

Tables As Faceted Data Visualizations

Declaring Facets

- split_rows_by() (and siblings) add row faceting structure
- split_cols_by() (and siblings) add column faceting structure
- Column and row facet structure declared independently
 - Asin facet_grid(rows = , cols =)

Column Faceting - ggplot2 and rtables

```
ggplot(ex_adsl, mapping = aes(x = AGE)) +
  geom_boxplot() +
  facet_grid(cols = vars(ARM))
```



```
lyt <- basic_table() |>
    split_cols_by("ARM") |>
    analyze("AGE", range, format = "xx.xx - xx.xx")
build_table(lyt, ex_adsl)
```


Row Faceting - ggplot2 and rtables

```
ggplot(ex_adsl, mapping = aes(x = AGE)) +
  geom_boxplot() +
  facet_grid(rows = vars(SEX))
```


	all obs
F	
range 	21.00 - 64.00
M range	20.00 - 69.00
U range	27.00 - 38.00
UNDIFFERENTIATED	21.00 30.00
range	28.00 - 46.00

Grid Faceting - ggplot2 **and** rtables


```
lyt3 <- basic_table() |>
   split_cols_by("ARM") |>
   split_rows_by("SEX") |>
   analyze("AGE", range, format = "xx.xx - xx.xx")
build_table(lyt3, ex_adsl)
```

	A: Drug X	B: Placebo	C: Combination
F range	21.00 - 47.00	23.00 - 58.00	21.00 - 64.00
M range U	23.00 - 50.00	21.00 - 62.00	20.00 - 69.00
range UNDIFFERENTIATED	28.00 - 34.00	27.00 - 35.00	31.00 - 38.00
range	28.00 - 28.00	InfInf	44.00 - 46.00

Nested Faceting Structure

Consecutive splits give nested facet structure, same as giving multiple variables in one dim to facet_grid()

	A: Di	rug X	B: Pla	acebo	C: Comb	ination
	F	М	F	М	F	М
range	21.0 - 47.0	23.0 - 50.0	23.0 - 58.0	21.0 - 62.0	21.0 - 64.0	20.0 - 69.0

Pooling of Groups

```
library(tibble)
combodf <- tribble(</pre>
    ~valname, ~label, ~levelcombo, ~exargs,
    "A B", "Arms A+B", c("A: Drug X", "B: Placebo"), list(),
    "A C", "Arms A+C", c("A: Drug X", "C: Combination"), list())
lyt <- basic table(show colcounts = TRUE) %>%
    split cols by("ARM", split fun = add combo levels(combodf)) %>%
    analyze("AGE")
tbl <- build table(lyt, DM)
      A: Drug X B: Placebo C: Combination Arms A+B
                                                         Arms A+C
       (N=121)
                (N=106)
                                 (N=129)
                                              (N=227)
                                                        (N=250)
        34.91
                    33.02
                                  34.57
                                                34.03
                                                          34.73
Mean
```

That's it. That's all it takes.

Faceting is fully customizable

- Restrict to allowed level combinations when splitting on logically nested concepts.
 - E.g., AEBODSYS -> AEDECOD
 - o trim_levels_to_map, trim_levels_in_group
- Require, restrict, reorder, drop facets
- Combine existing facets into new virtual facets
 - all/total facet simply a special case of this
- Facet based on quartiles/bins of non-categorical variable
- Literally anything else you can possibly think of
 - o make_split_fun


```
ex_adsl3 <- ex_adsl |>
 mutate(B1HL = factor(ifelse(BMRKR1 > mean(BMRKR1), "H", "L"),
                       levels = c("L", "H")))
lyt <- basic_table() |>
 split_cols_by("ARM") |>
 split_rows_by("SEX") |>
 split_rows_by("B1HL") |>
  analyze("AGE", \(x) list(B = "a"))
build_table(lyt, ex_adsl3)
```



```
lyt <- basic_table() |>
  split_cols_by("ARM") |>
  split_rows_by("SEX") |>
  split_rows_by("B1HL") |>
  analyze("AGE", \(x) list(B = "a"))

build_table(lyt, ex_adsl3)
```



```
lyt <- basic_table() |>
  split_cols_by("ARM") |>
  split_rows_by("SEX") |>
  split_rows_by("B1HL") |>
  analyze("AGE", \(x) list(B = "a"))
```

build_table(lyt, ex_adsl3)


```
lyt <- basic_table() |>
    split_cols_by("ARM") |>
    summarize_row_groups() |>
    split_rows_by("SEX") |>
    summarize_row_groups() |>
    split_rows_by("B1HL") |>
    summarize_row_groups() |>
    analyze("AGE", afun = \(x) list(B = "a"))
```


Viewing Complex Multi-Section Tables through the rtables lense

Hazard Ratio 95% CI p-value Interaction p-value n Treatment: A: Drug X vs control (B: Placebo) 247 0.70 (0.51, 0.96) 0.0293 Covariate: Age 247 0.8626 34 (0.51, 0.97) 0.70

0.75

0.66

0.65

247

Treatment Effect Adjusted for Covariate

(0.48, 1.16) (0.34, 1.28)

(0.33, 1.27)

0.9197

Effect/Covariate Included in the Model

BLACK OR AFRICAN AMERICAN

RACE ASIAN

WHITE

Effect/Covariate Included in the Model			Treatment	t Effect Adju	isted for Co	ovariate
	n	Hazard	Ratio	95% CI	p-value	Interaction p-value
Treatment:						

		W/W-015-040-040-040-04-1			
reatment:					
A: Drug X vs control (B: Placebo)	247	0.70	(0.51, 0.96)	0.0293	
ovariate:					
Age	247				0.8626
34		0.70	(0.51, 0.97)		
RACE	247				0.9197
ASIAN		0.75	(0.48, 1.16)		
BLACK OR AFRICAN AMERICAN		0.66	(0.34, 1.28)		
WHITE		0.65	(0.33, 1.27)		

Two distinct top-level sections

	n	Hazard Ratio	95% CI	p-value	Interaction p-value	
reatment:	0.47		10.71			
A: Drug X vs control (B: Placebo)	247	0,70	(0.51, 0.96)	0.0293		
Age 34	247	0.70	(0.51, 0.97)		Two subse	
RACE ASIAN BLACK OR AFRICAN AMERICAN WHITE	247	0.75 0.66 0.65	(0.48, 1.16) (0.34, 1.28) (0.33, 1.27)		0.9197 table (one per va	

	n	Hazard Ratio	95% CI	p-value	Interaction p-value	
eatment:						
A: Drug X vs control (B: Placebo)	247	0.70	(0.51, 0.96)	0.0293		
variate:	0.47				0.0000	Values for
Age 34	247	0.70	(0.51, 0.97)		0.8626	"Covariate as
RACE	247				0.9197	Whole"
ASIAN		0.75	(0.48, 1.16)			
BLACK OR AFRICAN AMERICAN		0.66	(0.34, 1.28)			(content rows)
WHITE		0.65	(0.33, 1.27)			

	n	Hazard Ratio	33001	p value	Interaction p-value	
reatment:						
A: Drug X vs control (B: Placebo)	247	0,70	(0.51, 0.96)	0.0293		
ovariate:	247				0.8626	Values for each
Age 34	247	0.70	(0.51, 0.97)		0.0020	level within each
RACE	247	0.70	(0.51, 0.97)		0.9197	
ASIAN	937	0.75	(0.48, 1.16)		M. S.	Covariate
BLACK OR AFRICAN AMERICAN		0.66	(0.34, 1.28)			(analysis rows)
WHITE		0.65	(0.33, 1.27)			(, ,
***************************************		0.00	(0.55) 1.1/			

Columns Reflect different elements of the same model fit

	n	Hazard Ratio	95% CI	p-value	Interaction p-va
Freatment:					
A: Drug X vs control (B: Placebo)	247	0.70	(0.51, 0.96)	0.0293	
Covariate:					
Age	247				0.8626
34	000000	0.70	(0.51, 0.97)		
RACE	247				0.9197
ASIAN		0.75	(0.48, 1.16)		
BLACK OR AFRICAN AMERICAN		0.66	(0.34, 1.28)		
WHITE		0.65	(0.33, 1.27)		

Now suppose we have cox_model_main_el_direct

- Caches cox models based on the row facet it is in
- Extracts a particular aspect of the model based on
 - Which one depends on 'variable' associated with table column
 - Whether it is generating a covariate summary or individual effect row

Full reproducible code available in the advanced rtables training section here: https://insightsengineering.github.io/adv_rtables_training/training2.html#30

Then the code for our table looks something like

```
myvars <- list("n", "hr", c("lcl", "ucl"), "pval", "pval inter")</pre>
myvarlabs <- c("n", "Hazard Ratio", "95% CI", "p-value (eff)", "p-value (inter)")
formats <- c(n = "xx", hr = "xx.xx", lcl = "(xx.xx, xx.xx)", pval = "xx.xxxx", pval_inter = "xx.xxxx")
env <- new.env()</pre>
env_lst <- replicate(length(myvars), list(env))</pre>
lvt <- basic table() %>%
    split_cols_by_multivar(rep("STUDYID", length = length(myvars)),
                           varlabels = myvarlabs,
                           extra_args = list(model_el = myvars,
                                              cache env = env lst)) %>%
    summarize_row_groups(cfun = cox_model_main_el_direct) %>%
    split_rows_by_multivar(c("AGE", "RACE"),
                           varlabels = c("Age", "Ethnicity"),
                           split label = "Covariate:".
                           indent mod = -1) %>%
    summarize row groups(cfun = cox model el direct,
                         extra_args = list(cov_main = TRUE)) %>%
    analyze colvars(afun = cox model el direct)
```


Columns For Different Aspects Of The Model

```
lvt <- basic table() %>%
     split_cols_by_multivar(rep("STUDYID", length = length(myvars)),
                                varlabels = myvarlabs,
                                extra args = list(model el = myvars,
                                                      cache env = env lst)) %>%
     summarize row groups(cfun = cox model main el direct) %>%
     split_rows_by_multivar(c("AGE", "RACE"),
                                varlabels = c("Age", "Ethnicity"),
                                split label = "Covariate:",
                                indent mod = -1) %>%
                                                                                                          Columns Reflect
     summarize row groups(cfun = cox model el direct,
                                                                                                          different elements
                              extra args = list(cov main = TRUE)) %>%
                                                                                                          of the same
     analyze_colvars(afun = cox_model_el_direct)
                                                                                                          model fit
                                                                Effect/Covariate Included in the Model
                                                                                                     Freatment Effect Adjusted for Covariate
                                                                                                 Hazard Ratio
                                                                                                              95% CI
                                                                                                                             Interaction p-value
                                                                                                                      p-value
                                                                Treatment:
                                                                 A: Drug X vs control (B: Placebo)
                                                                                             247
                                                                                                    0.70
                                                                                                            (0.51, 0.96) 0.0293
                                                                 Age
                                                                 34
                                                                                                            (0.51, 0.97)
                                                                 RACE
                                                                 ASIAN
                                                                                                    0.75
                                                                                                            (0.48, 1.16)
                                                                 BLACK OR AFRICAN AMERICAN
                                                                                                    0.66
                                                                                                            (0.34, 1.28)
```


Summary Of Overall Model

n	Treatme Hazard Ratio					
247	0.70	(0.51,	0.96)	0.0293		
247	0.70	(0.51.	0.97)			
247	0.75	(0.48,	1.16)		The state of the s	
	0.66				sections	
	247	n Hazard Ratio 247 0.70 247 0.70 247 0.75 0.66	n Hazard Ratio 95% 247 0.70 (0.51, 247 0.70 (0.51, 247 0.70 (0.51, 247 0.75 (0.48, 0.66 (0.34,	n Hazard Ratio 95% CI 247 0.70 (0.51, 0.96) 247 0.70 (0.51, 0.97) 247 0.75 (0.48, 1.16) 0.66 (0.34, 1.28)	n Hazard Ratio 95% CI p-value 247 0.70 (0.51, 0.96) 0.0293 247 0.70 (0.51, 0.97) 247 0.75 (0.48, 1.16) 0.66 (0.34, 1.28)	247 0.70 (0.51, 0.96) 0.0293 247 0.70 (0.51, 0.97) 0.8626 247 0.75 (0.48, 1.16) 0.66 (0.34, 1.28) Two distitop-level sections

Facet By Covariate

	n	Hazard Ratio	95% CI	p-value	Interaction p-value	
reatment:						
A: Drug X vs control (B: Placebo)	247	0.70	(0.51, 0.96)	0.0293		
ovariate:						Two subsections
Age 34	247				0.8626	
34		0.70	(0.51, 0.97)			in "Covariate"
RACE	247				0.9197	table
ASIAN		0.75	(0.48, 1.16)			5777.5
BLACK OR AFRICAN AMERICAN		0.66	(0.34, 1.28)			(one per variable
WHITE		0.65	(0.33, 1.27)			(tono por ranno

Covariate Model Summaries

Covariate Model Individual Terms

```
lvt <- basic table() %>%
     split_cols_by_multivar(rep("STUDYID", length = length(myvars)),
                                 varlabels = myvarlabs,
                                 extra args = list(model el = myvars,
                                                        cache env = env lst)) %>%
     summarize_row_groups(cfun = cox_model_main_el_direct) %>%
     split_rows_by_multivar(c("AGE", "RACE"),
                                 varlabels = c("Age", "Ethnicity"),
                                  split label = "Covariate:",
                                  indent mod = -1) %>%
     summarize_row_groups(cfun = cox_model_el_direct,
                               extra_args = list(cov_main = TRUE)) %>%
     analyze_colvars(afun = cox_model_el_direct)
                                                                   Effect/Covariate Included in the Model
                                                                                                     Treatment Effect Adjusted for Covariate
                                                                                             n Hazard Ratio
                                                                                                            95% CI
                                                                                                                    p-value Interaction p-value
                                                                   Treatment:
                                                                    A: Drug X vs control (B: Placebo)
                                                                                             247
                                                                                                   0.70
                                                                                                          (0.51, 0.96) 0.0293
                                                                                                                                             Values for each
                                                                                                  0.70
                                                                                                         (0.51, 0.97)
                                                                                                                                             level within each
                                                                                                                                             Covariate
                                                                    ASIAN
                                                                                                         (0.48, 1.16)
                                                                                                                                             (analysis rows)
                                                                    BLACK OR AFRICAN AMERICAN
                                                                                                         (0.34, 1.28)
                                                                                                         (0.33, 1.27)
```


But Wait - There's More!

A Ton More We Don't Have Time To Show You

- Context-preserving horizontal and vertical pagination
 - Group summaries repeated after vertical pagebreaks
 - "Page-by" splitting where values of a splitting variable are rendered as sections of pages with page titles
 - Specify page size/font etc (monospace only)
- Full Control of how values are rendered
 - Multi-valued cells
 - Convenient format declaration
 - Full control via functions
 - Decimal alignment within columns supported
- Title/Footer materials
- Referential Footnotes on columns, rows and cells
 - Including repeated symbols (same footnote on multiple cells)
- Listings support via separate rlistings package with simplified interface
- Tables modeled as objects
 - Interact with table after creation
 - Modify formats, etc
 - Query values programmatically
- Specified column widths and word-wrapping
 - Row labels
 - Cell values
- qtable-easy start akin to qplot from ggplot2

Q&A

Doing now what patients need next

Presentation title

Presentation subtitle

Name, position

DATE | confidentiality level

Presentation title

Presentation subtitle

Name, position

Table of contents

Slide title

Subtitle goes here but is not mandatory

Table design - copy/paste to reuse

	Column A	Column B	Column C	Column D
Row 1				
Row 2				
Row 3				

"Use this slide to insert a longer quote into your presentation. The quote can be multiple lines of text or even more than one paragraph."

- John Doe

"Use this slide to insert a shorter quote into your presentation. Use the placeholder on the left to insert an image."

- Jane Doe

How to use the cover slide layouts

DATE I confidentiality level

Default cover

- If you want to exchange the image, click the image and hit "replace image", then select the picture from your computer
- Fill in title, subtitle, presenter information, date & confidentiality level (public use, for internal use only, confidential, secret)
- Delete the alternative cover layout

Alternative cover

- Used when a longer title is required (e.g. scientific context) or when the use of an image would be inappropriate
- Fill in title, subtitle, presenter information, date & confidentiality level (public use, for internal use only, confidential, secret)
- Delete the default cover layout

Footnotes

If you need to include footnotes or references in your presentation, you must do so manually by using the pre-styled content elements found here. Just copy and paste the footnotes below in the exact same position and change the text.

For referencing to the footnotes within the text, use these numbers: 12345678910

¹ Ornare donec felis nascetur class

² Sed do eiusmod tempor incididunt

³ Labore et dolore magna aliquat

Colour palette
Primary colours / Roche Blue

Dark Blue	#022366
Roche Blue	#0b41cd
Light Blue	#1482FA
Extra Light Blue	#BDE3FF

Colour palette

Accent colours

Extra Dark Orange	#B22B0D
Dark Orange	#ED4A0D
Orange	#FF7D29
Light Orange	#FFBD69

Extra Dark Red	#8C0000
Dark Red	#C40000
Red	#FF1F26
Light Red	#FF8782

Colour paletteBase colours: neutrals and greys

Neutral 1	#FAC9B5
Neutral 2	#FAD6C7
Neutral 3	#FFE8DE
Neutral 4	#FFF7F5

Grey 1	#544F4F
Grey 2	#706B69
Grey 3	#C2BAB5
Grey 4	#DBD6D1
Grey 5	#F5F5F2

Colour palette

Status colours: used for traffic light charts, project reporting or in financial context

Red	#FF1F26
Yellow	#FFD60C
Green	#00B458

Wordmarks and partner logos

Default cover

Use View/Guides/Show Guides to help you position the logo or word mark

A: partner logos

- e.g. in co-branding situations, joint ventures etc.
- Left-align the logo with the title/subtitle
- The logo height should be the same as the Roche hexagon height

B: word marks

- e.g. for internal projects, org units etc.
- The baseline of the word mark is aligned with the baseline of the date and confidentiality level
- Left-align the word mark with the guideline showing you the left margin

Wordmarks and partner logos

Alternative cover

Use View/Guides/Show Guides to help you position the logo or word mark

A: partner logos

- e.g. in co-branding situations, joint ventures etc.
- Left-align the logo with the guideline showing you the left margin
- The logo height should be the same as the Roche hexagon height

B: word marks

- e.g. for internal projects, org units etc.
- The baseline of the word mark is aligned with the baseline of the date and confidentiality level
- Left-align the word mark with the guideline showing you the left margin