Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Рубежный контроль №1 «Методы обработки» по дисциплине «Методы машинного обучения» Вариант 2

ИСПОЛНИТЕЛЬ:

Бол	ПОТ	МН	Андрей Сергеевич Группа ИУ5-23М
	"	"	2021 г.

Задача 2: Для набора данных проведите кодирование одного (произвольного) категориального признака с использованием метода "target (mean) encoding".

```
In [6]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from category_encoders.target_encoder import TargetEncoder as ce_TargetEncoder
         %matplotlib inline
         sns.set(style="ticks")
student = pd.read_csv('C:/archive/StudentsPerformance.csv')
student.head()
         race/ethnicity parental level of education
                                            lunch test preparation course math score reading score writing score
   gender
0 female
              group B
                           bachelor's degree
                                          standard
   female
             group C
                              some college
                                          standard
                                                           completed
                                                                         69
                                                                                    90
                                                                                              88
2 female
              group B
                                                                         90
                                                                                    95
                                                                                              93
                            master's degree
                                          standard
                                                              none
                                                                         47
     male
              group A
                          associate's degree free/reduced
                                                              none
                                                                                    57
                                                                                              44
             group C
                              some college
                                                              none
data features = list(zip(
# признаки
[i for i in student.columns],
zip(
     # типы колонок
     [str(i) for i in student.dtypes],
     # проверим есть ли пропущенные значения
     [i for i in student.isnull().sum()]
)))
# Признаки с типом данных и количеством пропусков
data_features
[('gender', ('object', 0)),
 ('race/ethnicity', ('object', 0)),
 ('parental level of education', ('object', 0)),
 ('lunch', ('object', 0)),
 ('test preparation course', ('object', 0)),
 ('math score', ('int64', 0)),
 ('reading score', ('int64', 0)),
 ('writing score', ('int64', 0))]
```

#Добавим целевой признак gender_le
dct = {'female': 0, 'male': 1}
student['gender_le'] = student['gender'].map(dct)
student.head()

	genaer	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	gender_ie
0	female	group B	bachelor's degree	standard	none	72	72	74	0
1	female	group C	some college	standard	completed	69	90	88	0
2	female	group B	master's degree	standard	none	90	95	93	0
3	male	group A	associate's degree	free/reduced	none	47	57	44	1
4	male	group C	some college	standard	none	76	78	75	1

```
ce_TargetEncoder1 = ce_TargetEncoder()
student_MEAN_ENC = ce_TargetEncoder1.fit_transform(student[student.columns.difference(['gender_le'])], student['gender_le'])
student_MEAN_ENC.head()
   aender
           lunch math score parental level of education race/ethnicity reading score test preparation course writing score
     0.0 0.489922
                                      0.466102
                                                 0.452632
                                                                              0.479751
     0.0 0.489922
                       69
                                      0.477876
                                                 0.435737
                                                                 90
                                                                              0.486034
                                                                                             88
     0.0 0.489922
                       90
                                      0.389831
                                                 0.452632
                                                                 95
                                                                              0.479751
                                                                                             93
     1.0 0.467606
                       47
                                      0.477477
                                                 0.595506
                                                                              0.479751
                                                                                             44
     1.0 0.489922
                       76
                                      0.477876
                                                 0.435737
                                                                              0.479751
student['race/ethnicity'].unique()
array(['group B', 'group C', 'group A', 'group D', 'group E'],
         dtype=object)
student MEAN ENC['race/ethnicity'].unique()
array([0.45263158, 0.43573668, 0.59550562, 0.50763359, 0.50714286])
```

Задача 22: Для набора данных проведите масштабирование данных для одного (произвольного) числового признака с использованием масштабирования по максимальному значению.

```
#Оставим только числовые признаки

X_AL = student.drop(student.columns[[0,1,2,3,4]], axis = 1)

X_ALL = X_AL.drop('gender_le', axis = 1)

X_ALL.head()
```

math score reading score writing score 0 72 72 74 69 90 88 2 90 93 3 47 57 44 76 78 75

```
# Функция для восстановления датафрейма
# на основе масштабированных данных
def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
    return res
```

```
from sklearn.preprocessing import MaxAbsScaler

cs51 = MaxAbsScaler()
data_cs51_scaled_temp = cs51.fit_transform(X_ALL)
# φορмируем DataFrame на основе массива
data_cs51_scaled = arr_to_df(data_cs51_scaled_temp)
data_cs51_scaled.describe()
```

	math score	reading score	writing score
count	1000.000000	1000.000000	1000.000000
mean	0.660890	0.691690	0.680540
std	0.151631	0.146002	0.151957
min	0.000000	0.170000	0.100000
25%	0.570000	0.590000	0.577500
50%	0.660000	0.700000	0.690000
75%	0.770000	0.790000	0.790000
max	1.000000	1.000000	1.000000

Дополнительное задание: Построить график «ящик с усами».

sns.boxplot(x=student["race/ethnicity"], y=student["math score"])
<matplotlib.axes._subplots.AxesSubplot at 0x5f8a530>

