AMERICAN COMPUTER SCIENCE LEAGUE

2019-2020 _____ Contest #1

Junior Division - Number Transformation

PROBLEM: Given a positive integer (call it N), a position in that integer (call it P), and a transition integer (call it D). Transform N as follows:

- If the P^{th} digit of N from the right is from 0 to 4, add D to it. Replace the P^{th} digit by the units digit of the sum. Then, replace all digits to the right of the P^{th} digit by 0.
- If the P^{th} digit of N from the right is from 5 to 9, subtract D from it. Replace the P^{th} digit by the leftmost digit of the absolute value of the difference. Then, replace all digits to the right of the P^{th} digit by 0.

Example 1: N = 7145032, P = 2, D = 8. The 2nd digit from the right is 3; add 8 to it (3+8=11), and replace the 3 with 1 to get 7145012. Replace the digits to the right by 0s to get 7145010.

Example 2: N = 1540670, P = 3, D = 54. The 3^{rd} digit from the right is 6; the absolute value of 6-54 is 48; replace with the 4 to get 1540470. Replace the digits to the right with 0s to get 1540400.

INPUT: There will be 5 sets of data. Each set contains 3 positive integers: N, P, and D. N will be less than 10^{15} ; P and D will be valid inputs. No input will cause an output to have a leading digit of 0.

OUTPUT: Print the transformed number. The printed number may not have any spaces between the digits.

SAMPLE INPUT: (http://www.datafiles.acsl.org/2020/contest1/jr-sample-input.txt)

124987 2 3

540670 3 9

7145042 2 8

124987 2 523

4386709 1 2

SAMPLE OUTPUT:

- 1. 124950
- 2. 540300
- 3. 7145020
- 4. 124950
- 5. 4386707

AMERICAN COMPUTER SCIENCE LEAGUE

2019-2020	 Contest #1

Junior Division - Number Transformation

TEST DATA

TEST INPUT:

4318762 4 3 72431685 1 7 123456789 7 8 9876543210 10 25 314159265358 8 428

TEST OUTPUT:

- 1. 4315000
- 2. 72431682
- 3. 121000000
- 4. 1000000000
- 5. 314140000000