Introduction to Data Science (machine learning).

1. Artificial Intelligence (AI)

• **Definition**: All is the creation of applications that can perform specific tasks without human intervention.

Key Features:

- Al applications are autonomous.
- o They mimic human decision-making and reasoning processes.

Examples:

1. Netflix Recommendation System:

- An AI module analyses user preferences (e.g., action movies) and recommends similar content.
- Operates independently without direct human involvement.

2. Self-Driving Cars:

- AI modules control vehicle navigation.
- Tasks include traffic light recognition, obstacle detection, and realtime decision-making.

3. Amazon/E-commerce Recommendations:

 Recommends products based on user purchase history and browsing behavior.

2. Machine Learning (ML)

• **Definition**: A subset of AI that uses statistical tools and algorithms to analyze and predict outcomes based on data.

• Key Characteristics:

ML involves identifying patterns and relationships in data.

Outputs can be continuous (regression) or categorical (classification).

Relationship to AI:

- o ML is a "smaller circle" within AI's "universe."
- o Any ML project ultimately contributes to Al applications.

Examples of Use Cases:

- o Predicting house prices based on size and number of rooms.
- Recommending personalized products to users.

3. Deep Learning

• **Definition**: A subset of ML designed to mimic the human brain using **multi-layered** neural networks.

Origins:

- In the 1950s, scientists theorized machines could learn like humans.
- Deep learning was developed to replicate human learning processes.

Key Concepts:

o Multi-Layered Neural Networks:

- Use multiple layers of interconnected nodes to process data.
- The complexity enables learning from raw, unstructured data (e.g., images, text).
- Focuses on learning patterns and features at different levels (e.g., shapes in images, sentence context).

Applications:

o Image recognition, speech processing, autonomous systems.

4. Data Science

• **Definition**: An interdisciplinary field that encompasses AI, ML, and deep learning to extract insights and build predictive models.

Key Characteristics:

- Overlaps with all AI subsets.
- o Relies heavily on mathematics, statistics, and domain knowledge.
- Tools and techniques:
 - Exploratory Data Analysis (EDA).
 - Feature engineering.
 - Statistical modeling.

Role of a Data Scientist:

- Works across AI, ML, and deep learning domains.
- o Requires expertise in algorithms, programming, and analytics.

Detailed Explanation of Machine Learning Types

A. Supervised Learning

- **Definition**: A learning method where models are trained on labelled data (data with input-output pairs).
- Key Features:
 - o Requires independent features (inputs) and a dependent feature (output).
 - o Example: House price prediction.
 - Inputs: House size, number of rooms.
 - Output: House price.
- Types of Problems:

1. Regression:

Output is continuous (e.g., price, temperature).

2. Classification:

Output is categorical (e.g., pass/fail).

- **Binary Classification**: Two categories (e.g., pass/fail).
- Multi-Class Classification: More than two categories (e.g., pass, fail, maybe).

• Key Algorithms:

 Linear Regression, Ridge, Lasso, Logistic Regression, Decision Trees, Random Forests, XGBoost.

B. Unsupervised Learning

• **Definition**: A learning method where models find hidden patterns or groupings in unlabeled data.

• Key Features:

- No labeled outputs.
- Focuses on clustering data into meaningful groups.

• Example: Customer Segmentation:

- Inputs: Salary, Spending Score.
- Outcome: Groups customers into clusters (e.g., high earners, frequent spenders).

Key Algorithms:

o K-Means Clustering, Hierarchical Clustering, DBSCAN.

C. Reinforcement Learning

• **Definition**: A trial-and-error-based learning approach where agents learn by interacting with the environment and receiving rewards or penalties.

Key Example:

- A child learning to walk:
 - Falls and adjusts based on pain (penalty).
 - Successful steps reinforce good behavior.

Applications:

o Gaming AI, robotic process automation, self-driving cars.

Mathematical Foundations

1. Equation of a Straight Line

- Standard Form: y=mx+cy = mx + c
 - o mm: Slope (rate of change in yy as xx changes).
 - o cc: Intercept (where the line crosses the y-axis).

Generalized Form:

- \circ y= β 0+ β 1xy = \beta_0 + \beta_1x.
- o Equation can represent linear relationships in supervised learning.

2. Planes and Hyperplanes

- 3D Plane Equation: W1X1+W2X2+W3X3+b=0W_1X_1 + W_2X_2 + W_3X_3 + b = 0.
- **N-Dimensional Plane Equation**: WTX+b=0W^TX + b = 0, where:
 - WW: Coefficients vector.
 - XX: Feature vector.
 - bb: Intercept.

3. Distance from a Plane

- **Formula**: Distance d=WTS|W|d = \frac{W^T S}{|W|}, where:
 - o SS: Coordinates of the point.
 - WW: Perpendicular vector to the plane.

• Insights:

- o Points above the plane have positive distances.
- o Points below the plane have negative distances.

Instance-Based vs. Model-Based Learning

Instance-Based Learning

- **Definition**: Memorizes training data and uses it directly for predictions.
- Key Characteristics:
 - No pattern recognition.
 - o Relies on similarity to training instances (e.g., nearest neighbors).
- **Examples**: K-Nearest Neighbors (KNN).

Model-Based Learning

- **Definition**: Learns patterns and generalizes for future predictions.
- Key Characteristics:
 - o Builds a generalized model (e.g., decision boundaries).
 - Faster and more efficient for new predictions.
- **Examples**: Decision Trees, Random Forests.

Key Differences

Aspect	Instance-Based	Model-Based	
Learning Method	Memorizes data	Learns patterns	
Prediction Speed	Slower	Faster	
Storage Requirements	High (full dataset)	Low (compact model)	
Generalization Ability	Low	High	

Conclusion

- AI, ML, Deep Learning, and Data Science:
 - o Each contributes to building intelligent applications.
- Supervised and Unsupervised Learning:
 - o Core approaches to solving regression, classification, and clustering problems.
- Mathematical Concepts:
 - o Essential for understanding machine learning algorithms.
- Instance vs. Model-Based Learning:
 - o Highlights different approaches to training and prediction.

Siddhartha