Chapter 1

Sequence

1.1 Homework

Exercise 1.1.1 Let $(a)_n$ and (b_n) be real valued sequences such that $\lim a_n =$ *a* and $\lim b_n = b$ where $a, b \in \mathbb{R}$. Prove that

- [1] $\lim (a_n + \lambda b_n) = a + \lambda b$, for all $\lambda \in \mathbb{R}$. [2] $\lim a_n b_n = ab$.
- [3] $\lim \frac{a_n}{b_n} = \frac{a}{b}$ whenever $b \neq 0$ and $b_n \neq 0$ for all n.

Proof. First we know that $\lim a_n = a$ and $\lim b_n = b$.

[1] Let $\lambda \in \mathbb{R}$. We want to make

$$|a_n + \lambda b_n - a - \lambda b| = |a_n - a + \lambda (b_n - b)|$$

$$\leq |a_n - a| + |\lambda| \cdot |b_n - b|$$

as small as we want. Let $\epsilon > 0$. Because $\lim a_n = a$ and $\lim b_n = b$, there exist N_1 , $N_2 \in \mathbb{N}$ such that

$$|a_n-a|\leq \frac{\epsilon}{2}, \qquad \forall n\geq N_1$$

and

$$|b_n - b| \le \frac{\epsilon}{2} \cdot \frac{1}{|\lambda| + 1}, \quad \forall n \ge N_2$$

Note that these two inequalities both hold for all index n larger that max $\{N_1, N_2\}$. Letting $N = \max\{N_1, N_2\}$, hence $\forall n \geq N$, we have

$$|a_n + \lambda b_n - a - \lambda b| \le |a_n - a| + |\lambda| \cdot |b_n - b|$$

$$\le \frac{\epsilon}{2} + \frac{|\lambda|}{|\lambda| + 1} \cdot \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that $\lim(a_n + \lambda b_n) = a + \lambda b$.

[2] Observe that

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab|$$

 $\leq |a_n| |b_n - b| + |b| |a_n - a|.$

As we'll soon prove (in later exercise) that a convergent sequence is bounded, hence there is M>0 such that $|a_n|< M$ for all $n\in \mathbb{N}$. Now we can preced the proof the same fashion as in the previous exercise, so I am going to omit the part $\max\{N_1,N_2\}$ for simplicity's sake.

Let $\epsilon > 0$. Because $\lim a_n = a$ and $\lim b_n = b$, there is a shared integer $N \in \mathbb{N}$ for which the inequalities

$$|a_n - a| \le \frac{1}{|b| + 1} \cdot \frac{\epsilon}{2}$$

 $|b_n - b| \le \frac{\epsilon}{2M}$

both hold for all $n \ge N$. Therefore, for any $n \ge N$,

$$|a_n b_n - ab| \le |a_n||b_n - b| + |b||a_n - a|$$

$$\le M|b_n - b| + |b||a_n - a|$$

$$\le M \cdot \frac{\epsilon}{2M} + \frac{|b|}{|b| + 1} \cdot \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus $\lim a_n b_n = ab$.

[3] First, we claim that $\lim_{h \to 0} \frac{1}{h_n} = \frac{1}{h}$. Observe that

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{1}{|b_n||b|} \cdot |b_n - b|$$

So we need to find the upper bound of $\frac{1}{|b_n|}$, i.e. the lower bound of $|b_n|$. Becase $\lim b_n = b \neq 0$, we can choose $\epsilon := \frac{|b|}{2}$ in the definition of the convergent b_n , hence there exists $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$, the inequality $|b_n - b| \leq \frac{|b|}{2}$ hold. From Triangle Inequality,

$$|b| \le |b - b_n| + |b_n| \le \frac{|b|}{2} + |b_n|$$

this shows that $|b_n| \ge \frac{|b|}{2}$. So we found that $\frac{1}{|b||b_n|} \le \frac{2}{|b|^2}$ for each $n \ge N_1$.

Now let us fix an $\epsilon > 0$. Because $\lim b_n = b$, there is $N_2 \in \mathbb{N}$ such that

$$|b_n - b| \le \frac{|b|^2}{2} \cdot \epsilon$$

for all $n \ge N_2$. Letting $N = \max\{N_1, N_2\}$, we obtain that for each $n \ge N$,

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{1}{|b_n||b|} \cdot |b_n - b| \le \frac{2}{|b|^2} \cdot \frac{|b|^2}{2} \cdot \epsilon = \epsilon$$

Now, we can finish the proof by writing

$$\lim \frac{a_n}{b_n} = \lim a_n \cdot \frac{1}{b_n} = a \cdot \frac{1}{b} = \frac{a}{b}.$$

Exercise 1.1.2 Let (a_n) be a divergent sequence. Prove that $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

Proof. First fix an $\epsilon > 0$. Because (a_n) diverges, then there exists $N \in \mathbb{N}$ such that $\forall n \geq N, |a_n| > \frac{1}{\epsilon}$. This implies that

$$\left|\frac{1}{a_n}\right|<\epsilon.$$

Hence $\lim a_n = 0$ as expected.

Exercise 1.1.3 If a sequence converges, prove that its limit is unique.

Proof. Let (a_n) be a convergent sequence, and suppose that $a, a_0 \in \mathbb{R}$ be its limit. To prove that its limit is unique, we want to show that $a = a_0$. Assume by the contrary that $a \neq a_0$, by the definition of convergent sequence, we can choose $\epsilon := \frac{|a-a_0|}{2} \neq 0$ so there's an $N \in \mathbb{N}$ such that both inequalities

$$|a_n - a| < \frac{|a - a_0|}{2}$$
 and $|a_n - a_0| < \frac{|a - a_0|}{2}$

hold for all $n \ge N$. Using Triangle Inequality, we get

$$|a - a_0| = |a - a_n + a_n - a_0|$$

$$\leq |a_n - a| + |a_n - a_0|$$

$$< \frac{|a - a_0|}{2} + \frac{|a - a_0|}{2}$$

$$= |a - a_0|$$

a contradiction. Therefore, we must have that $a = a_0$.

Exercise 1.1.4 Prove that a convergent sequence is bounded. Is the converse true?

Proof. Let (a_n) converges to $a \in \mathbb{R}$. From definition, we can choose $\epsilon = 1$, then there's $N \in \mathbb{N}$ for which $|a_n - a| < \epsilon = 1$ holds for all $n \geq N$. Therefore, for all $n \geq N$

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|.$$

Now, we let

$$M = \max\{|a_0|, |a_1|, \dots, |a_{N-1}|, 1 + |a|\}$$

this simply shows that $|a_n| \le M$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded. The converse statement is not generally true. Take for example the sequence (a_n) : $1,-1,1,-1,\ldots$ is a bounded sequence yet it failed to have a limit. \square

Exercise 1.1.5 Prove that the convergence of (a_n) implies the convergence of $|a_n|$. Is the converse true?

Proof. Suppose that (a_n) converges to $a \in \mathbb{R}$. We claim that $\lim |a_n| = |a|$. Let $\epsilon > 0$ be an arbitrary positive real number. Because $\lim a_n = a$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n - a| < \epsilon$. Using triangle inequality, we get

$$||a_n| - |a|| \le |a_n - a| < \epsilon$$

for all $n \ge N$. This proves that $\lim |a_n| = |a|$.

The converse is not generally true. In fact, we can find a counter example to disprove the claim. Consider the sequence $a_n = (-1)^n$. It's easy to see that $|a_n| = 1$ converges, yet a_n diverges.

Exercise 1.1.6 Prove the density of \mathbb{Q} in \mathbb{R} , i.e. that is to prove that for every $a, b \in \mathbb{R}$ with a < b, there is $q \in \mathbb{Q}$ such that a < q < b.

Proof. Without loss of generality, we can assume that 0 < a < b. From Archimedean property, we can find $n \in \mathbb{N}$ such that $n > \frac{1}{b-a}$ or

$$\frac{1}{n} < b - a$$
.

Let us define $K = \{k \in \mathbb{N} : \frac{k}{n} \le a\}$ and let $m := \max K$. Therefore, $\frac{m}{n} \le a$, and since m is the maximal element, it's next term must not in the set K, in other words $m + 1 \notin K$. Hence

$$a < \frac{m+1}{n} = \frac{m}{n} + \frac{1}{n} < a + (b-a) = b$$

We had just found $m, n \in \mathbb{N}$ such that $a < \frac{m+1}{n} < b$. This proves that there's a rational between any two real numbers.

Exercise 1.1.7 Prove the following via the definition of convergence:

- [1] $\lim \frac{2n+1}{n-2} = 2$ [2] $\lim \frac{\sqrt{n-1}}{\sqrt{n+1}} = 1$ [3] $\lim \frac{\sqrt[3]{n^3-3}}{2n} = \frac{1}{2}$ [4] $\lim \frac{2\sqrt{n+3}}{n-3} = 0$

- [5] $\lim(n-\sqrt{n})=\infty$.

Proof. Prove the following limits via definition:

[1] Let us fix $\epsilon > 0$. Using Archimedean property, there is $N \in \mathbb{N}$ such that $N > \frac{5}{\epsilon} + 2$ or

$$\frac{5}{N-2} < \epsilon$$
.

It's also clear that N > 2. Hence for any $n \ge N$,

$$\left| \frac{2n+1}{n-2} - 2 \right| = \left| \frac{2n+1-2n+4}{n-2} \right|$$

$$= \left| \frac{5}{n-2} \right| = \frac{5}{n-2} \qquad \text{(because } n > 2\text{)}$$

$$\leq \frac{5}{N-2} \qquad \text{(because } n \geq N\text{)}$$

$$< \epsilon$$

[2] First we claim that $\left| \frac{\sqrt{n-1}}{\sqrt{n}+1} - 1 \right| < \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$ greater than 1. For any n > 1, we have

$$(n-1)^{2} < n(n-1)$$

$$\implies n-1 < \sqrt{n(n-1)}$$

$$\implies n - \sqrt{n(n-1)} + \sqrt{n} < 1 + \sqrt{n}$$

$$\implies \frac{\sqrt{n} - \sqrt{n-1} + 1}{1 + \sqrt{n}} < \frac{1}{\sqrt{n}}$$

$$\implies 1 - \frac{\sqrt{n-1}}{\sqrt{n} + 1} < \frac{1}{\sqrt{n}}$$

Note also that $\frac{n-1}{\sqrt{n}-1}-1=\frac{\sqrt{n-1}-\sqrt{n}-1}{\sqrt{n}+1}<0$, then we must have

$$\left| \frac{\sqrt{n-1}}{\sqrt{n}+1} - 1 \right| = 1 - \frac{\sqrt{n-1}}{\sqrt{n}+1} < \frac{1}{\sqrt{n}}$$

as claimed. Now fix an $\epsilon > 0$. By Archimedean property, there is $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon^2}$. Therefore for all $n \geq N$,

$$\left| \frac{\sqrt{n-1}}{\sqrt{n}+1} - 1 \right| < \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \epsilon.$$

Thus,
$$\lim \frac{\sqrt{n-1}}{\sqrt{n}+1} = 1$$
.

[3] As before, we first claim that $\left| \frac{\sqrt[3]{n^3 - 3}}{n} - 1 \right| < \frac{3}{n^3}$ for any n > 2.

Observe that if n > 2 then $n^3 > 3 \Rightarrow 1 - \frac{3}{n^3} > 0$. It's also easy to see that $\sqrt[3]{n^3 - 3} < n$, and hence

$$\left| \frac{\sqrt[3]{n^3 - 3}}{n} - 1 \right| = 1 - \frac{\sqrt[3]{n^3 - 3}}{n}$$

$$= 1 - \sqrt[3]{1 - \frac{3}{n^3}}$$

$$= \frac{1 - (1 - \frac{3}{n^3})}{1 + \sqrt[3]{a} + \sqrt[3]{a^2}}, \quad \text{where } a = 1 - \frac{3}{n^3} > 0$$

$$< \frac{3}{n^3}$$

for any n>2 as expected. Now fix $\epsilon>0$. By Archimedean property there's $N\in\mathbb{N}$ such that $N\geq\sqrt[3]{\frac{3}{2\epsilon}}$. Thus for any $n\geq\max\{2,N\}$, we have

$$\left| \frac{\sqrt[3]{n^3 - 3}}{2n} - \frac{1}{2} \right| < \frac{3}{2n^3} \le \frac{3}{2N^3} < \epsilon.$$

Therefore,
$$\lim \frac{\sqrt[3]{n^3} - 3}{2n} = \frac{1}{2}.$$

[4] Note that for any $n \ge 10$, we have

$$\frac{2\sqrt{n}+3}{n-3} < \frac{2\sqrt{n}+6}{n-9} = \frac{2}{\sqrt{n}-3}$$

Fix an $\epsilon > 0$. From Archimedean property, there is $N \in \mathbb{N}$ such that

$$N \ge \left(3 + \frac{2}{\epsilon}\right)^2$$
.

Thus for any $n \ge \max\{10, N\}$ we obtain that

$$\left|\frac{2\sqrt{n}+3}{n-3}\right| < \frac{2}{\sqrt{n}-3} < \frac{2}{\sqrt{N}-3} < \epsilon.$$

Hence,
$$\lim \frac{2\sqrt{n}+3}{\sqrt{n}-3} = 0$$

[5] Let $\epsilon > 0$, and let $a_n := n - \sqrt{n} = \sqrt{n}(\sqrt{n} - 1)$. It's clear that (a_n) is an increasing sequence. Also, we have

$$n - \sqrt{n} = \left(\sqrt{n} - \frac{1}{2}\right)^2 - \frac{1}{4},$$

then from Archimedean property, there is $N \in \mathbb{N}$ such that

$$N > \left(\frac{1}{2} + \sqrt{\epsilon + \frac{1}{4}}\right)^2.$$

Thus, for any $n \ge N$, we have

$$|a_n| = n - \sqrt{n} \ge N - \sqrt{N}$$

= $\left(\sqrt{N} - \frac{1}{2}\right)^2 - \frac{1}{4} > \epsilon$

Therefore,
$$\lim(n-\sqrt{n})=\infty$$
.