EE462L, Spring 2014 H-Bridge Inverter Basics

H-Bridge Inverter Basics – Creating AC from DC

Switching rules

- Either A+ or A- is closed,
 but <u>never</u> at the same time *
- Either B+ or B- is closed,
 but never at the same time *
- *same time closing would cause a short circuit from Vdc to ground (shoot-through)
- *To avoid dhoot-through when using real switches (i.e. there are turn-on and turn-off delays) a dead-time or blanking time is implemented

Corresponding values of Va and Vb

- A+ closed, Va = Vdc
- A- closed, Va = 0
- B+ closed, Vb = Vdc
- B- closed, Vb = 0

$$V_{load} = V_A - V_B = V_{AB}$$

Vdc

Corresponding values of Vab

- •A+ closed and B- closed, Vab = Vdc
- •A+ closed and B+ closed, Vab = 0
- •B+ closed and A- closed, Vab = -Vdc
- •B– closed and A– closed, Vab = 0

- The free wheeling diodes permit current to flow even if all switches are open
- These diodes also permit lagging currents to flow in inductive loads

$$V_{load} = V_A - V_B = V_{AB}$$

H-Bridge Inverter

• Square wave modulation:

ons)

Basic Square Wave Operation (sometimes used for 50 Hz or 60Hz applications)

The Vab = 0 time is not required but can be used to reduce the rms value of V_{load}

Many Loads Have Lagging Current – Consider an Inductor

There must be a provision for voltage and current to have opposite signs with respect to each other

Load Current Can Always Flow, Regardless of Switching State

Example - when current flows left to right through the load

Load Current Can Always Flow, cont.

Example - when current flows right to left through the load

Load Current Can Always Flow, cont.

Load Current Can Always Flow, cont.

The four firing circuits do not have the same ground reference. Thus, the firing circuits require isolation.

H-Bridge Inverter

Harmonics with square wave modulation

Harmonic #1 (fundamental)

Question - How can a sinusoidal (or other) input signal be amplified with low distortion?

Answer – the switching can be controlled in a smart way so that the FFT of V_{load} has a strong fundamental component, plus high-frequency switching harmonics that can be easily filtered out and "thrown into the trash"

Implementation of Unipolar Pulse Width Modulation (PWM)

Vcont is the input signal we want to amplify at the output of the inverter.

Vcont is usually a sinewave, but it can also be a music signal.

V_{tri} is a triangle wave whose frequency is at least 30 times greater than Vcont.

Ratio m_a = peak of control signal divided by peak of triangle wave

Ratio m_f = frequency of triangle wave divided by frequency of control signal

Ratio m_a = peak of control signal divided by peak of triangle wave

Ratio m_f = frequency of triangle wave divided by frequency of control signal

Load voltage with

 $m_a = 0.5$

(i.e., in the linear region)

Load voltage with

 $m_a = 1.5$

(i.e., overmodulation)

Variation of RMS value of no-load fundamental inverter output voltage (V_{1rms}) with m_a

For single-phase inverters m_a also equals the ratio between the peak output voltage and the input V_{dc} voltage.

RMS magnitudes of load voltage frequency components with respect to $\frac{V_{dc}}{\sqrt{2}}$ for f_{tri} >> f_{cont}

Frequency	$m_a = 0.2$	$m_a = 0.4$	$m_a = 0.6$	$m_a = 0.8$	$m_a = 1.0$	
f _{cont}	0.200	0.400	0.600	0.800	1.000	
$2f_{tri} \pm f_{cont}$	0.190	0.326	0.370	0.314	0.181	†
$2f_{tri} \pm 3f_{cont}$		0.024	0.071	0.139	0.212	2f _{tri} cluster
$2f_{tri} \pm 5f_{cont}$				0.013	0.033	↓
4f _{tri} ± f _{cont}	0.163	0.157	0.008	0.105	0.068	†
$4f_{tri} \pm 3f_{cont}$	0.012	0.070	0.132	0.115	0.009	4f _{tri} cluster
$4f_{tri} \pm 5f_{cont}$			0.034	0.084	0.119	Tirl cluster
$4f_{tri} \pm 7f_{cont}$				0.017	0.050	\

100Hz Signal as Input, Inverter Output

Waveform generator output

Inverter output

Top curve: 100Hz waveform generator output, Bottom curve: Output of inverter powering 5Ω power load resistor (scope set to average over one cycle)

FFT of 100Hz Inverter Output

FFT of inverter output with 100Hz input signal

Inverter Performance with Music Input

Top curve: Audio output of CD player to inverter, Bottom curve: Output of inverter to speakers (scope set to average over one cycle)

PWM controlled H-Bridge Inverter

- Very efficient
- Distortion higher than linear amplifier, but a linear amplifier has, at best, 50% efficiency
- Perfectly suited for motor drives where voltage and frequency control are needed
- Well suited for bass music amplification, such as automotive applications, or where high power is more important than a little loss in quality