Digital Logic Circuits 'Number Systems' ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj Office: Broun 360

Decimal – our 'goto' representation

Whole Numbers

$$-13_{10}=1*(10^1)+3*(10^0)$$

Real Numbers

$$-143.79_{10}=1*(10^{2})+4*(10^{1})+3*(10^{0})+7*(10^{-1})+9*(10^{-2})$$

- Base (or radix) of 10
- Difficult to implement in hardware
- Susceptible to noise

Binary – A Computer's Representation

- Devices have two states, on and off
- Easier to implement and less prone to noise
- A base of 2
- Whole

$$-1101_2=1*(2^3)+1*(2^2)+0*(2^1)+1*(2^0)=13_{10}$$

Real

$$-10.11_2=1*(2^1)+0*(2^0)+1*(2^{-1})+1*(2^{-2})=2.75_2$$

Why Hex/Octal?

- Decimal is our natural number system
- Binary works well for electronic representation
- Where do Hexadecimal and Octal fit in?
 - Trade off between ease of interpretation and efficient use of storage

Octal and Hexadecimal

Octal (Base 8)

$$-127.1_{8}^{-1*(8^{2})+2*(8^{1})+7*(8^{0})+1*(8^{-1})=87.125_{10}^{-1}$$

- Hexadecimal (Base 16)
 - 16 digits, 0 through F

$$-1A6.4_{16}^{}=1*(16^{2})+10*(16^{1})+6*(16^{0})+4*(16^{-1})=422.25_{10}^{}$$

Number Bases

• Counting:

Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Oct	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	20
Hex	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F	10

Addition

 We can perform arithmetic in any base just like we do in base 10

•
$$13.5_{10} + 5.25_{10} = 18.75_{10}$$

Subtraction

 We can perform arithmetic in any base just like we do in base 10

•
$$13.5_{10} - 5.25_{10} = 8.25_{10}$$

Octal/Hex Math

Add octal/hex add/sub examples

Base Conversion

Binary-to-Decimal

$$-1001.01_2=1*(2^3)+0*(2^2)+0*(2^1)+1*(2^0)+0*(2^{-1})+1*(2^{-1})$$

$$= 8_{10}+1_{10}+.25_{10}=9.25_{10}$$

- But were not limited to these two base values
- Octal Base 8

$$-1001.01_2=1*(2^3)+0*(2^2)+0*(2^1)+1*(2^0)+0*(2^{-1})+1*(2^{-1})$$

$$^2)=10_8+1_8+.2_8=11.2_8$$

- 16 digits written as 0 to F
- Hexadecimal(Hex) Base 16

$$-1001.01_2=1*(2^3)+0*(2^2)+0*(2^1)+1*(2^0)+0*(2^{-1})+1*(2^{-1})$$

$$= 8_{16}+1_{16}+.4_{16}=9.4_{16}$$

Base Conversion

Decimal-to-Binary (Divide/Multiply by Radix)

Base Conversion

Decimal-to-Octal (Divide/Multiply by Radix)

Decimal to Binary

• 404.625₁₀

Decimal to Octal

Decimal to Hex

• 404.625₁₀

Fraction

Uses For Hex/Octal

- Both of these base values allow compact representation of binary values
- 404.625₁₀=110010100.101₂
- Octal Group binary digits into threes
 - 110 010 100.101₂=6 2 4.5₈
- Hex Group binary digits into fours
 - $-0001\ 1001\ 0100.1010_2 = 194.A_{16}$

Why does this work?

- Base values of 8 and 16 are powers of the original 2
- 8 = 2³, Octal groups binary digits by 3
- 16 = 2⁴, Hex groups binary digits by 4
- Works for other values as long as one base is multiple of another
- However, these are the most commonly used

Multiplication

Division

Negative Numbers

- Whole numbers are only half of the number line
- How do we represent negative numbers?
 - Sign/Magnitude
 - 1's Compliment
 - 2's Compliment
 - Floating Point

Sign Magnitude

- An additional bit is used to indicate sign
- Using small values:

- 0101=+5
- 1101=-5
- For this example: Maximum value,7
- Minimum value of -7
- 15 values total, two ways to represent zero

1's Complement

- Negative Number is the inverse (compliment) of the positive value
- 0101₂=+5
- 1010₂=-5
- For this example: Maximum value, 7
- Minimum value of -7
- 15 values total, two ways to represent zero

1's Comp Arithmetic

- End around carry is cumbersome to implement
- Show example here

2's Complement

- Overflow/Carry
- Negative value is inverse of positive, plus 1
- 0101₂=+5
- 1011₂=-5
- For this example: Maximum value,7
- Minimum value of -8
- Only 1 way to represent zero

2's Complement

MSB still indicates sign (0=positive,1=negative)

Unsigned Values

8	4	2	1

2's Complement Signed Values

-8	4	2	1

- Smallest value: $1000_2 = -8_{10}$
- Largest value: 0111₂=+7₁₀
- +0 = -0

2's Comp. Addition

Negative # Summary Sign/Magnitude

- Pros
 - A reasonable first choice
 - Easiest for human interpretation

- Cons
 - Requires two
 separate circuits
 (add/subtract)
 - Must add logic to decide which to use
 - 1 less value than comparable unsigned number
 - 2 zeros

Negative # Summary One's Complement

- Pros
 - Add and Subtract now implemented in one circuit
- Cons
 - End-around carry still difficult to implement
 - Not as easily interpreted by humans (But down we care?)
 - 1 less value than comparable unsigned number
 - 2 zeros

Negative # Summary Two's Complement

- Pros
 - Add and Subtract implemented in one circuit
 - No end-around carry
 - No wasted values
 - One zero representation

- Cons
 - Still hard to interpret
 (But do we care?)

Other uses for Binary

- Real values are useful but binary values are not limited to numbers
- Can be used to encode symbols
 - BCD: Assign decimal digits to binary equivalent
 - ASCII: A representation of text
 - Gray Code: A variety of uses

Binary Coded Decimal (BCD)

- If we only store values in binary, in what format can they be interpreted most readily?
- Represent each decimal digit as a collection of binary values.
- How many binary bits does it take to represent decimal digits 0 to 9?
- Is this an efficient use of storage?

BCD Table

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

American Standard Code for Information Inter change (ASCII)

- What if we want to transmit a letter?
- 26 letters (English at least), how many bits do we need to encode?
 - K=2^N, K # of codes, N # of bits
- K=26 here, solving for N:
 - N=LOG₂ K
 - LOG₂ 26=4.70043...
- Which way do we round?
 - $K=2^4=16, K=2^5=32$
 - UP!

American Standard Code for Information Exchange (ASCII)

- ASCII defines an 8 bit (1 byte) code word
- K=2⁸=256 code words

American Standard Code for Information Exchange (ASCII)

<u>Dec</u>	H	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Cl	<u>hr</u>
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	a#64;	0	96	60	140	4#96;	8
1	1	001	SOH	(start of heading)	33	21	041	a#33;	1	65	41	101	A	A	97	61	141	a#97;	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	"	66	42	102	B	В	98	62	142	4#98;	b
3	3	003	ETX	(end of text)				a#35;		67			a#67;					a#99;	C
4				(end of transmission)				a#36;		68			D					d	
5				(enquiry)	37			a#37;		69			E					e	
6				(acknowledge)	38			a#38;	6	70			a#70;					a#102;	
7			BEL	(bell)	39			a#39;	1	71			a#71;			700		g	
8	_	010		(backspace)	40			a#40;		72			a#72;					a#104;	
9			TAB	•				a#41;		73			a#73;					i	
10		012		(NL line feed, new line)				6#42;					a#74;					j	
11		013		(vertical tab)	ı			a#43;	+				a#75;					k	
12		014		(NP form feed, new page)				a#44;	r				a#76;					l	
13		015		(carriage return)	ı			a#45;	_	77			a#77;					m	
14		016		(shift out)	46			a#46;		78			a#78;					n	
15		017		(shift in)	47			6#47;		79			a#79;					o	
		020		(data link escape)				a#48;		80			4#80;					p	
			DC1		49			a#49;		81			4#81;					q	_
				(device control 2)				6#50;		82			۵#82;					r	
				(device control 3)				3		ı			۵#83;					s	
				(device control 4)				4					۵#8 4 ;					t	
				(negative acknowledge)				6#53;					4#85; ۵#85					u	
				(synchronous idle)				a#54;					4#86;					v	
				(end of trans. block)	ı			7			_		a#87;					w	
				(cancel)				& # 56;					a#88;					x	
		031		(end of medium)	57			9		89			a#89;					y	
		032		(substitute)	58			%#58;		90			a#90;					z	
		033		(escape)	59			6#59;	-	91			[-				{	
		034		(file separator)				<		92			\	-	ı				
		035		(group separator)				=		93			6#93;	-				}	
		036		(record separator)				>					a#94;					~	
31	TF.	037	US	(unit separator)	63	ЗF	077	?	2	95	5 F	137	a#95;	_	127	7 F	177		DEL

Source: www.LookupTables.com

Gray Code

- Frank Gray Bell Labs (1947)
- Used to reduce the effects of noise on analog values
- Used in circuit minimization (Karnaugh Maps)
- Discrete Optimization
- Not limited to these uses

 Hamming Distance: The minimum number of substitutions to change one value to another.

1	0	1	1
0	0	1	0

- Hamming distance equals 2
- Code is a reordering of values so that similar values are separated by a hamming distance of one

A 2 bit Gray Code:

Decimal	Binary	Gray
0	00	00
1	01	01
2	10	11
3	11	10

 Notice the Gray Code has a hamming distance of one when wrapping from 3 to 0

- If transmitted value is corrupted, the interpreted value is only changed by one.
- 01₂ become 11₂
- Binary interpretation: 1₁₀ becomes 3₁₀
- Gray Code: 1 becomes 2

- We can extend this to larger values
- A 3 bit Gray Code
- 010₂ becomes 110₂
- Binary:2₁₀ becomes
 6₁₀
- Gray: 3₁₀ becomes 4₁₀

Decimal	Binary	Gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Error Detection/Correction

- Parity: an additional bit can be used to detect errors
- Given a byte (8 bits) a parity bit is added

```
d1 d2 d3 d4 d5 d6 d7 d8 P
```

- The weight of the value: The number of 1's in the binary value
- Even parity: P must be chosen to make the weight an even number
- Odd parity: P must be chosen to make the weight an odd number
- For every N bits sent, N+1 bits required
- Can't detect location of error

Parity Example

Even Parity Example (valid transmission):

d1	d2	d3	d4	Р
1	1	0	1	1

Which transmissions are valid (even parity)?

d1	d2	d3	d4	Р
1	0	0	0	1
0	1	1	1	0
0	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Parity Example

Even Parity Example (valid transmission):

d1	d2	d3	d4	Р
1	1	0	1	1

Which transmissions are valid (even parity)?

d1	d2	d3	d4	Р
1	0	0	0	1
0	1	1	1	0
0	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Checksum

- Lineup subsets
 of data and a
 checksum value
 of equal length
- Nibbles here (4 bits)
- Detect errors in columns, we'll use even parity here

N1	1	0	1	1
N2	0	1	1	1
N3	1	0	0	1
Checksum	0	1	0	1

Parity & Checksum

- Using these together we can detect the position of single bit errors
- How many bits in subsets?
- How many subsets to use?

N1	1	0	1	1	1
N2	0	1	1	1	1
N3	1	0	0	1	0
Checksum	0	1	0	1	

Parity & Checksum Example

Which bit is wrong?

N1	1	0	0	0	1	
N2	0	1	1	1	0	
N3	0	0	0	0	0	
Checksum	1	1	1	0	1	

What is the corrected set of values?

Parity & Checksum Example

Which bit is wrong?

N1	1	0	0	0	1	
N2	0	1	1	1	0	
N3	0	0	0	0	0	
Checksum	1	1	1	0		

What is the corrected set of values?

$$-8_{10},6_{10},0_{10}$$

- Another error detection/correction scheme
- 7 bits used to transmit 4 bits of data

1	2	3	4	5	6	7
p1	p2	d1	p4	d2	d3	<mark>d</mark> 4

- Apply even parity to:
 - -p1,3,5,7
 - -p2,3,6,7
 - p4,5,6,7

1	2	3	4	5	6	7
1	0	1	1	0	1	0

Find the 'Error Syndrome'

1	2	3	4	5	6	7
1	0	1	1	0	1	0

- Find errors in each parity group and write as a 3 bit value: p4 p2 p1 (1=error,0=no error)
- If no errors found, syndrome will equal 000₂

When there is an error:

1	2	3	4	5	6	7
1	1	1	1	0	1	0

- p4 p2 p1=010₂
- Error syndrome indicates position of error

Another error:

1	2	3	4	5	6	7
1	0	1	1	0	0	0

- p4 p2 p1=110₂
- Error syndrome indicates position of error
- Now we can detect error and position
- However, at the cost of transmitting additional bits for an equal amount of data

