Derivate partiale. Functii diferentiabile

Fie $f: D \to \mathbb{R}$ unde $D \subset \mathbb{R}^n$ este o multime deschisa si fie $a = (a_1, a_2, \dots, a_n) \in D$. Functia f este derivabila partial in punctul a in raport cu x_k daca limita

$$\lim_{x_k \to a_k} \frac{f(a_1, a_2, \dots, a_{k-1}, x_k, a_{k+1}, \dots a_n) - f(a_1, a_2, \dots, a_n)}{x_k - a_k}$$

exista si este finita. Daca exista, valoarea acestei limite se numeste derivata partiala a functiei f in raport cu x_k in punctul a si se noteaza cu $\frac{\partial f}{\partial x_k}(a)$.

Daca f este derivabila partial in raport cu x_k in orice punct din D, atunci se obtine o functie

$$\frac{\partial f}{\partial x_k}: D \to \mathbb{R}$$
, definita prin $a \mapsto \frac{\partial f}{\partial x_k}(a)$, $a \in D$.

Spunem ca f este diferentiabila (sau derivabila) in a daca exista o aplicatie liniara $T: \mathbb{R}^n \to \mathbb{R}$ (i.e. T(x+y) = T(x) + T(y) si $T(\alpha x) = \alpha T(x)$, pentru orice $\alpha \in \mathbb{R}$, si orice $x, y \in \mathbb{R}^n$) astfel ca

$$\lim_{x \to a} \frac{f(x) - f(a) - T(x - a)}{\|x - a\|} = 0$$

Daca T exista atunci este unica, se noteaza cu df(a) sau f'(a) si se numeste diferentiala lui f in a. Se poate verifica (exercitiu) cu usurinta ca

Propozitie. Daca f este diferentiabila in a atunci este continua in a.

Propozitie. Daca f este diferntiabila in a atunci exista $\frac{\partial f}{\partial x_k}(a)$ pentru orice $i \in \{1, 2, \dots, n\}$ si

$$df(a)(u_1, u_2, \dots, u_n) = \frac{\partial f}{\partial x_1}(a)u_1 + \frac{\partial f}{\partial x_2}(a)u_2 + \dots + \frac{\partial f}{\partial x_n}(a)u_n.$$

Demonstratie. Fie e_k vectorul din \mathbb{R}^n care are 1 pe pozitia k si zero in rest. Intrucat f este diferentiabila rezulta ca

$$\lim_{t \to 0} \frac{f(a + te_k) - f(a) - df(a)(te_k)}{|t|} = 0$$

sau echivalent

$$\lim_{t \to 0} \frac{f(a + te_k) - f(a) - df(a)(te_k)}{t} = 0,$$

ceea ce arata ca f are derivata partiala si

$$\frac{\partial f}{\partial x_k}(a) = \lim_{t \to 0} \frac{f(a + te_k) - f(a)}{t} = df(a)(e_k)$$

Daca $u = (u_1, \dots, u_n), u = u_1 e_1 + u_2 e_2 + \dots + u_n e_n$ si atunci

$$df(a)(u_1, u_2, \dots, u_n) = u_1 df(e_1) + u_2 df(e_2) + \dots + u_n df(e_n)$$

$$= \frac{\partial f}{\partial x_1}(a)u_1 + \frac{\partial f}{\partial x_2}(a)u_2 + \dots + \frac{\partial f}{\partial x_n}(a)u_n.$$

Se poate verifica imediat ca

Propozitie. Orice functie liniara $f: \mathbb{R}^n \to \mathbb{R}$ este diferentiabila in orice a si

$$df(a) = f$$
.

In particular, aplicatiile $\operatorname{pr}_i:\mathbb{R}^n\to\mathbb{R}$ definite prin

$$\operatorname{pr}_i(u_1, u_2, \dots, u_n) = u_i$$
, pentru orice (u_1, u_2, \dots, u_n)

sunt liniare, si deci

$$d\mathrm{pr}_i(a) = \mathrm{pr}_i$$
, pentru orice $i = 1, 2, \dots, n$,

fapt care ne indreptateste sa introducem notatia

$$pr_i = dx_i$$

Cu acesta notatie avem

$$df(a)(u_1, u_2, \dots, u_n) = \frac{\partial f}{\partial x_1}(a)u_1 + \frac{\partial f}{\partial x_2}(a)u_2 + \dots + \frac{\partial f}{\partial x_n}(a)u_n$$

$$= \frac{\partial f}{\partial x_1}(a)\operatorname{pr}_1(u_1, u_2, \dots, u_n) + \dots + \frac{\partial f}{\partial x_n}(a)\operatorname{pr}_n(u_1, u_2, \dots, u_n)$$

$$= \frac{\partial f}{\partial x_1}(a)dx_1(u_1, u_2, \dots, u_n) + \dots + \frac{\partial f}{\partial x_n}(a)dx_n(u_1, u_2, \dots, u_n)$$

pentru orice (u_1, u_2, \ldots, u_n) si deci

$$df(a) = \frac{\partial f}{\partial x_1}(a)dx_1 + \frac{\partial f}{\partial x_2}(a)dx_2 + \dots + \frac{\partial f}{\partial x_n}(a)dx_n.$$

Teorema (Conditie suficienta de diferentiabilitate). Fie D o multime deschisa din \mathbb{R}^n , fie $f: D \to \mathbb{R}$ si $a = (a_1, a_2, \dots, a_n) \in D$. Daca exista o vecinatate V a lui a cu proprietatea ca exista toate derivatele partiale in orice punct din V si acestea sunt continue in a, atunci f este diferentiabila in a si

$$df(a) = \frac{\partial f}{\partial x_1}(a)dx_1 + \frac{\partial f}{\partial x_2}(a)dx_+ \dots + \frac{\partial f}{\partial x_n}(a)dx_n.$$

Demonstratie. Fara a restrange generalitate, putem presupune ca vecinatatea V lui a este $B(a,r) = \{x \in D : ||x-a|| < r\}$ bila deschisa cu centrul in a si raza r > 0, pe care avand in vedere ca D este multime deschisa, o putem considera inclusa in D. Fie $x = (x_1, x_2, \ldots, x_n) \in D$. Definim functiile g_1, g_2, \ldots, g_n astfel

Atunci

$$f(x_1, x_2, \dots, x_n) - f(a_1, a_2, \dots, a_n) = \sum_{i=1}^n (g_i(x_i) - g_i(a_i))$$

Fiecare din functiile g_i satisface ipotezele teoremei lui Lagrange referitoare la o functie reala de variabila reala continua pe un compact si derivabila pe interiorul acelui interval. Prin urmare exista $\xi_i \in (x_i, a_i)$ astfel incat

$$g_i(x_i) - g_i(a_i) = (x_i - a_i)g_i'(\xi_i)$$

Atunci

$$g_1(x_1) - g_1(a_1) = (x_1 - a_1) \frac{\partial f}{\partial x_1}(\xi_1, x_2, x_3, \dots, x_n)$$

$$g_2(x_2) - g_2(a_2) = (x_2 - a_2) \frac{\partial f}{\partial x_2}(a_1, \xi_2, x_3, \dots, x_n)$$

.....

$$g_n(x_n) - g_n(a_n) = (x_n - a_n) \frac{\partial f}{\partial x_n} (a_1, a_2, a_3, \dots, \xi_n)$$

Definim aplicatia liniara $T: \mathbb{R}^n \to \mathbb{R}$ prin

$$T(u_1, u_2, \dots, u_n) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)u_i.$$

Obtinem

Deoarece

$$\frac{|x_1 - a_1|}{\|x_1 - a_1\|} \le 1, \quad i = 1, 2, \dots, n$$

deducem ca

$$\frac{|f(x) - f(a) - T(x - a)|}{\|x - a\|} \leq \left| \frac{\partial f}{\partial x_1}(\xi_1, x_2, x_3, \dots, x_n) - \frac{\partial f}{\partial x_1}(a_1, a_2, a_3, \dots, a_n) \right| + \left| \frac{\partial f}{\partial x_2}(x_1, \xi_2, x_3, \dots, x_n) - \frac{\partial f}{\partial x_1}(a_1, a_2, a_3, \dots, a_n) \right| + \dots + \left| \frac{\partial f}{\partial x}(a_1, a_2, a_3, \dots, \xi_n) - \frac{\partial f}{\partial x}(a_1, a_2, a_3, \dots, a_n) \right|$$

Deoarece derivatele partiale ale functiei f sunt continue in a, exista limita termenilor din membrul doi a inegalitatii (1) pentru $x \to a$ si aceasta este egala cu zero. Prin urmare

$$\lim_{x \to a} \frac{f(x) - f(a) - T(x - a)}{\|x - a\|} = 0$$

Asadar f este diferentiabila in a si

$$df(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) dx_i$$

Exemplu. Fie $f(x, y, z) = xe^y + xyz + z^2$. Atunci

$$\frac{\partial f}{\partial x} = e^y + yz, \ \frac{\partial f}{\partial y} = xe^y + xz, \ \frac{\partial f}{\partial z} = xy + 2z.$$

Deci

$$\frac{\partial f}{\partial x}(1,0,2) = 1, \ \frac{\partial f}{\partial y}(1,0,2) = 3, \ \frac{\partial f}{\partial z}(1,0,2) = (4)$$

si atunci

$$df(1,0,2) = \frac{\partial f}{\partial x}(1,0,2)dx + \frac{\partial f}{\partial y}(1,0,2)dy + \frac{\partial f}{\partial z}(1,0,2)dz = dx + 3dy + 4dz$$

Pentru $(a, b, c) \in \mathbb{R}^3$ avem df(1, 0, 2)(a, b, c) = a + 3b + 4c.

Fie $E \subset \mathbb{R}^n$, $F \subset \mathbb{R}^m$ multimi deschise si fie $u_1, \ldots, u_m : E \to \mathbb{R}$ functii cu derivate partiale continue si astfel incat pentru orice $(x_1, x_2, \ldots, x_n) \in E$

$$(u_1(x_1, x_2, \dots, x_n), \dots, u_m(x_1, x_2, \dots, x_n)) \in F.$$

Daca $\varphi: F \to \mathbb{R}$ admite derivate partiale continue pe D atunci functia $f: F \to \mathbb{R}$ definita prin

$$f(x_1, x_2, \dots, x_n) = \varphi(u_1(x_1, x_2, \dots, x_n), \dots, u_m(x_1, x_2, \dots, x_n))$$

admite derivate partiale continue si

$$\frac{\partial f}{\partial x_k}(x_1, x_2, \dots, x_n) = \sum_{i=1}^m \frac{\partial \varphi}{\partial u_i} \left(u_1(x_1, x_2, \dots, x_n), \dots, u_m(x_1, x_2, \dots, x_n) \right) \frac{\partial u_i}{\partial x_k}(x_1, x_2, \dots, x_n).$$

Vom scrie

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^m \frac{\partial \varphi}{\partial u_i} \frac{\partial u_i}{\partial x_k}, \ k = 1, 2, \dots, n.$$

Exemplu. Daca $f(x, y, z) = \varphi(xyz, x^2 + y^2 + z^2, x + yz)$ atunci

$$\frac{\partial f}{\partial x} = \frac{\partial \varphi}{\partial u} yz + \frac{\partial \varphi}{\partial v} 2x + \frac{\partial \varphi}{\partial w}$$
$$\frac{\partial f}{\partial y} = \frac{\partial \varphi}{\partial u} xz + \frac{\partial \varphi}{\partial v} 2y + \frac{\partial \varphi}{\partial w} z$$
$$\frac{\partial f}{\partial z} = \frac{\partial \varphi}{\partial u} xy + \frac{\partial \varphi}{\partial v} 2x + \frac{\partial \varphi}{\partial w} y$$

Derivate partiale si diferentiale de ordin superior

Fie D o multime deschisa din \mathbb{R}^n si $f: D \to \mathbb{R}$ o functie care admite derivate partiale $\frac{\partial f}{\partial x_j}$ pe D. La randul ei functia $\frac{\partial f}{\partial x_j}$ poate avea derivata partiala in raport cu x_i notata

$$\frac{\partial^2 f}{\partial x_i \partial x_j}$$
 adica $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial^2 f}{\partial x_i \partial x_j}$

si numita derivata partiala de ordinul al doilea a lui f.

$$\frac{\partial^2 f}{\partial x_i \partial x_j}$$
 cu $i \neq j$ se numesc derivate partiale mixte de ordinul 2

In mod similar se definesc derivatele partiale de ordinul $n \geq 3$.

Teorema (Schwarz). Fie $f:D\subset\mathbb{R}^n\to\mathbb{R}$ si $a\in D$. Daca derivatele partiale mixte $\frac{\partial^2 f}{\partial x_i\partial x_j}$, $\frac{\partial^2 f}{\partial x_j\partial x_i}$ exista intr-o vecinatate a lui a si acestea sunt continue in a, atunci

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$

Fie $f: D \subset \mathbb{R}^n \to \mathbb{R}$ unde D este o multime deschisa. Daca f admite derivate partiale de ordinul doi continue pe o vecinatate a punctului $a \in D$, functia $d^2f(a): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definita prin

$$d^{2}f(a)(u,v) = \sum_{i,j=1}^{n} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}} u_{i}v_{j}$$

unde $u, v \in \mathbb{R}^n$, se numeste diferentiala de ordinul doi a lui f in a. Similar, daca f admite derivate partiale de ordinul 3 continue pe o vecinatate a punctului $a \in D$, functia $d^3f(a): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definita prin

$$d^{3}f(a)(u, v, w) = \sum_{i,j,k=1}^{n} \frac{\partial^{3}f}{\partial x_{i}\partial x_{j}\partial x_{k}} u_{i}v_{j}w_{k},$$

unde $u, v, w \in \mathbb{R}^n$ se numeste diferentiala de ordinul doi a lui f in a. Similar se defineste diferentiala de ordinul k. Vom folosi notatia

$$d^{2}f(u, u) = d^{2}f(u)^{2}$$

$$d^{3}f(u, u) = d^{2}f(u)^{3}$$

$$\dots$$

$$d^{k}f(u, \dots, u) = d^{k}f(u)^{k}$$

Teorema (Formula lui Taylor cu restul lui Lagrange in cazul n dimensional). Daca D este o multime deschisa si convexa din \mathbb{R}^k si $f:D\subset\mathbb{R}^k\to\mathbb{R}$ este o functie care admite derivate partiale de ordinul n+1 continue pe multim D si atunci pentru orice $a\in D$ si orice $x\in D$ exista $\xi\in[a,x]=\{tx+(1-t)a,0\leq t\leq 1\}$ astfel incat

$$f(x) = f(a) + \frac{1}{1!}df(a)(x-a) + \frac{1}{2!}d^2f(a)(x-a)^2 + \dots + \frac{1}{n!}d^nf(a)(x-a)^n + \frac{1}{(n+1)!}d^{n+1}f(\xi)(x-a)^{n+1}$$

Extreme locale pentru functii de mai multe variabile

Fie $f: A \to \mathbb{R}$, unde $A \subset \mathbb{R}^n$. Un punct $a \in A$ se numeste punct de maxim local (relativ) daca exista vecinatate U al lui a astfel incat $f(x) \leq f(a)$ putru orice $x \in U \cap A$ (adica daca exista r > 0 astfel incat $f(x) \leq f(a)$ putru orice $x \in B(a, r) \cap A$).

Un punct $a \in D$ se numeste punct de minim local (relativ) daca exista o vecinatate U al lui a astfel incat $f(x) \geq f(a)$ puntru orice $x \in U \cap A$, (adica daca exista r > 0 astfel incat $f(x) \geq f(a)$ puntru orice $x \in B(a,r) \cap A$). Punctele de maxim local si cele de minim local se numesc puncte de extrem local.

Fie $f: D \to \mathbb{R}$. Spunem ca $a \in D$ este punct critic (stationar) pentru f daca f este diferentiabila in a si df(a) = 0.

Fie $D \subset \mathbb{R}^n$ o multime deschisa si $f: D \to \mathbb{R}$ o functie diferentiabila in $a \in D$. Matricea cu n linii si n coloane

$$H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \le i,j \le n}$$

se numeste matricea hessiana a functie f in punctul a.

Observam ca

$$d^2 f(a)(u,u) = u^t H_f(a)u, \text{ unde } u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \in \mathbb{R}^n, \text{ si } u^t = (u_1, u_2, \dots, u_n)$$

.

Teorema (Fermat). Fie $f: D \to \mathbb{R}$ o functie diferentiabila in $a \in D$. Daca f este diferentiabila in a atunci df(a) = 0 (adica $\frac{\partial f}{\partial x_i} = 0$ pentru i = 1, 2, ..., n).

Fie $a=(a_1,a_2,\ldots)$ ca in enunt. Consideram r>0 astfel incat $B(a,r)\subset D$ si f(x)-f(a) are semn constant pentru orice $x\in B(a,r)$. Fie

$$\varphi: (-r,r) \to \mathbb{R}, \quad \varphi(t) = f(a_1 + t, a_2, \dots, a_n).$$

Atunci $\varphi(t)-\varphi(a)$ are semn constant pe (-r,r). Cum φ este derivabila pe (-r,r) aplicand Teorema lui Fermat pentru functii de o variabila reala rezulta ca $\varphi(0)=0$. In consecinta, $\frac{\partial f}{\partial x_i}(a)=0$. Similar aratam ca $\frac{\partial f}{\partial x_i}(a)=0$ pentru $i=2,\ldots,n$.

Teorema (Criteriu de stabilire a punctelor de extrem pentru functii de mai multe variabile). Fie $f: D \to \mathbb{R}$ o functie care admite derivate partiale de ordinul doi continue pe D si $a \in D$ un punct critic al sau.

- (1) Daca $d^2f(u,u)>0$ pentru orice $u\in\mathbb{R}^n\setminus\{0\}$ atuncia este punct de minim local
- (2) Daca $d^2f(u,u) < 0$ pentru orice $u \in \mathbb{R}^n \setminus \{0\}$ atunci a este punct de maxim local
- (3) Daca exista $u, \in \mathbb{R}^n \setminus \{0\}$ astfel incat $d^2f(u,u) > 0$ si $d^2f(u,u) < 0$ atunci a nu este punct de extrem local

Demonstratie. Fie $\alpha > 0$ astfel incat $d^2(a)(u,u) \ge \alpha$ pentru orice $u \in \mathbb{R}^n$ cu ||u|| = 1. Cum functia are derivate partiale de ordinul doi continue rezulta ca exista $\delta > 0$ astfel incat pentru orice $c \in \mathbb{R}^n$ cu $||c - a|| < \delta$ si orice $u \in \mathbb{R}^n$ cu ||u|| = 1 sa avem

$$d^2(a)(u,u) \ge \frac{\alpha}{2}.$$

Conform formulei lui Taylor din cazul n-dimesnional rezulta ca exista b pe segmentul [a, a + tu] astfel incat

$$f(a + tu) = f(a) + df(a)(tu) + \frac{1}{2}d^2f(b)(tu, tu)$$

In concluzie

$$f(a+tu) - f(a) = \frac{t^2}{2}d^2f(b)(u,u) \ge 0$$

De aici rezulta ca a este punct de minim local al lui f.

Celelalte afirmatii se demonsteaza utilizand argumente similare (vezi pag 242-244 din carte!).

Corolar. Fie $f:D\subset\mathbb{R}^2\to\mathbb{R}$ functie care admite derivate partiale de ordinul doi continue pe D si $(x_0,y_0)\in D$ un punct critic al sau. Fie

$$H_f(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix}$$

Notam $\Delta_1 = \frac{\partial^2 f}{\partial x^2}(x_0, y_0)$ si $\Delta_2 = \det H_f(x_0, y_0)$.

- (1) Daca $\Delta_1 > 0$ si $\Delta_2 > 0$ atunci (x_0, y_0) este punct de minim local;
- (2) Daca $\Delta_1 < 0$ si $\Delta_2 > 0$ atunci (x_0, y_0) este punct de maxim local;
- (3) Daca $\Delta_2 < 0$ atunci (x_0, y_0) nu este punct de extrem local

Exemplu. Determinati punctele de extrem local ale functiei $f: \mathbb{R}^3 \to \mathbb{R}, f(x,y) = x^3 + 3xy^2 - 15x - 12y$

Avem

$$\frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 15, \qquad \frac{\partial f}{\partial y} = 6xy - 12$$

Obtinem punctele critice (1,2), (-1,-2), (2,1), (-2,-1). Matricea Hesiana este

$$H_f(x,y) = \left(\begin{array}{cc} 6x & 6y \\ 6y & 6x \end{array}\right)$$

$$H_f(1,2) = \begin{pmatrix} 6 & 12 \\ 12 & 6 \end{pmatrix}, \quad \Delta_2 < 0 \Rightarrow (1,2) \text{ nu este punct de extrem local}$$

$$H_f(-1,-2) = \begin{pmatrix} 6 & 12 \\ 12 & 6 \end{pmatrix}, \ \Delta_2 < 0 \Rightarrow (1,2) \text{ nu este punct de extrem local}$$

$$H_f(2,1) = \begin{pmatrix} 12 & 6 \\ 6 & 12 \end{pmatrix}, \ \Delta_1 = 12 > 0, \ \Delta_2 = 108 > 0 \Rightarrow (1,2) \text{ este punct de minim local}$$

$$H_f(-2,-1) = \begin{pmatrix} -12 & -6 \\ -6 & -12 \end{pmatrix}, \ \Delta_1 = -12 < 0, \ \Delta_2 = 108 > 0 \Rightarrow (1,2) \text{ este pct de maxim local}$$

Corolar. Fie $f:D\subset\mathbb{R}^2\to\mathbb{R}$ functie care admite derivate partiale de ordinul doi continue pe D si $a\in D$ un punct critic. Fie

$$\Delta_1 = a_{11}, \ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \Delta_n = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

unde $a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$.

- (1) Daca $\Delta_1 > 0, \Delta_2 > 0, \dots, \Delta_n > 0$ atunci a este punct de minim local
- (3) Daca $\Delta_1 < 0, \Delta_2 > 0, \dots, (-1)^n \Delta_n > 0$ atuncia este punct de maxim local
- (3) Daca $\Delta_1 \geq 0, \Delta_2 \geq 0, \dots, \Delta_n \geq 0$ sau $\Delta_1 \leq 0, \Delta_2 \geq 0, \dots, (-1)^n \Delta_n \geq 0$ dar exista j astfel incat $\Delta_j = 0$ atunci nu se poate trage nicio concluzie
 - (4) In celelate cazuri a nu este punct de extrem local al lui f.

Exercitii

- 1) Calculati derivatele partiale de ordinul I, derivatele partiale de ordinul II si df(2,1) pentru urmatoarele functii:
 - (1) $f(x,y) = \frac{x+y}{2x-y}$
 - (2) $f(x,y) = e^{x^2+y^2}$
- 2) Calculati derivatele partiale de ordinul I, derivatele partiale de ordinul II si df(1, -1, 1) pentru urmatoarele functii:
 - (1) $f(x, y, z) = xz + x^2z + \sin(x + 2y + z)$
 - (2) $f(x, y, z) = z \ln(x + y^2) + e^{x+yz}$
- 3) Determinati punctele de extrem local ale functiilor

(1)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 + y^3 - 6xy + 2$$

(2)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 + 8y^3 - 2xy - 1$$

(3)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 2x^2 - 2xy + y^2 + 4x + 2y$$

(4)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = -x^2 + 2xy + 3y^2 - 6x - 2y - 2y$$

(5)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^4 + y^4 - x^2 - y^2 - xy$$

(6)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3xy^2 - x^3 - 15x - 36y$$

(7)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = x^3 + y^2 + z^2 + 12xy + 2z$$

(8)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = x^4 + y^4 + 4xy + z^4 - 4z$$

(9)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = z^3 + 3zy^2 - 15z - 12y + x^2 - 2x$$

Integrala Riemann pentru functii de o variabila reala

Fie [a, b] un interval inchis si marginit din \mathbb{R} . Se numeste diviziune a intervalului [a, b] un sistem de puncte

$$\Delta: a = x_0 < x_1 < \dots < x_n = b.$$

Vom nota cu D[a, b] multimea diviziunilor intervalului [a, b]. Numarul

$$\|\Delta\| = \max_{1 \le i \le n} |x_i - x_{i-1}|$$

se numeste norma diviziunii Δ . Spunem ca diviziunea Δ' este mai fina decat diviziunea Δ si notam $\Delta \prec \Delta'$ daca Δ' contine punctele diviziunii Δ . Un sistem de n puncte $\xi = \{\xi_1, \xi_2, ..., \xi_n\}, \ \xi_i \in [x_{i-1}, x_i]$ se numeste sistem de puncte intermediare asociat diviziunii Δ . Suma

$$\sigma_{\Delta}(f,\xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

se numeste suma Riemann asociata diviziunii Δ si sistemului de puncte intermediare ξ .

Definitie. O functie $f:[a,b]\to\mathbb{R}$ se numeste integrabila Riemann daca exista un numar real I astfel incat pentru orice $\varepsilon>0$ exista $\eta_{\varepsilon}>0$ astfel incat

$$|\sigma_{\Delta}(f,\xi) - I| < \varepsilon$$

oricare ar fi diviziunea Δ cu $\|\Delta\| < \eta_{\varepsilon}$ si oricare ar fi sistemul de puncte intermediare ξ asociat lui Δ . Numarul I este unic determinat, se numeste integrala lui f pe [a,b] si se noteaza $\int_a^b f(x)dx$.

Fie $f:[a,b]\to\mathbb{R}$ o functie marginita si fie

$$\Delta: a = x_0 < x_1 < \dots < x_n = b.$$

o diviziune a intervalului [a, b]. Fie

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$

Definim

$$s_{\Delta}(f) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$
 suma Darboux inferioara

$$S_{\Delta}(f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 suma Darboux superioara

Lema. Daca $\Delta \prec \Delta'$ atunci $s_{\Delta}(f) \leq s_{\Delta'}(f) \leq S_{\Delta'}(f) \leq S_{\Delta}(f)$

Lema. Pentu oricare diviziuni Δ si Δ' $s_{\Delta}(f) \leq S_{\Delta'}(f)$

Fie $\underline{\int}_a^b f = \sup_{\Delta} s_{\Delta}(f)$ si $\overline{\int}_a^b f = \inf_{\Delta} S_{\Delta}(f)(f)$. Din lemele anterioare rezulta ca

$$\underline{\int}_{a}^{b} f \leq \overline{\int}_{a}^{b} f$$

Teorema 1. Fie $f:[a,b]\to\mathbb{R}$ o functie marginita. Atunci urmatoarele afirmatii sunt echivalente

- (i) f este integrabila Riemann
- (ii) $\underline{\int}_{a}^{b} f = \overline{\int}_{a}^{b} f$
- (iii) pentru orice $\varepsilon > 0$ exista o diviziunea Δ a intervalului [a,b] astfel incat $S_{\Delta}(f) s_{\Delta}(f) < \varepsilon$.
- (iv) pentru orice $\varepsilon > 0$ exista $\eta_{\varepsilon} > 0$ astfel incat oricare ar fi diviziunea Δ a intervalului [a,b], cu $\|\Delta\| < \eta_{\varepsilon}$ sa avem $S_{\Delta}(f) s_{\Delta}(f) < \varepsilon$.

Teorema. Daca $f:[a,b] \to \mathbb{R}$ este o functie monotona, atunci este integrabila Riemann.

Demonstratie. Sa presupunem ca f este crescatoare si nu este o functie constanta. Fie $\varepsilon > 0$ si fie

$$\Delta : a = x_0 < x_1 < \dots < x_n = b$$

o diviziune a intervalului [a, b] cu $||\Delta|| < \eta_{\varepsilon}$ unde $\eta_{\varepsilon} = \frac{\varepsilon}{f(b) - f(a)}$ Deoarece f este crescatoare, avem $m_i = f(x_{i-1})$ si $M_i = f(x_i)$. Atunci avem

$$S_{\Delta}(f) - s_{\Delta}(f) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))(x_i - x_{i-1}) \le \frac{\varepsilon}{f(b) - f(a)}(f(b) - f(a)) < \varepsilon.$$

Din Teorema 1, deducem ca f este integrabila.

Teorema. Daca $f:[a,b]\to\mathbb{R}$ este o functie continua pe [a,b], atunci este integrabila Riemann.

Demonstratie. Fie $\varepsilon > 0$. Functia f fiind continua pe [a,b], este uniform continua pe [a,b]. Rezulta ca exista $\eta_{\varepsilon} > 0$ astfel incat oricare ar fi $x,y \in [a,b]$ cu $|x-y| < \eta_{\varepsilon}$ avem $|f(x) - f(y)| < \frac{\varepsilon}{b-a}$.

Fie $\Delta: a = x_0 < x_1 < \dots < x_n = b$ o diviziune a intervalului [a, b] cu $\|\Delta\| < \eta_{\varepsilon}$. Deoarece o functie continua pe un interval constanat este marginita si isi atinge marginile rezulta ca exista $\xi_i, \eta_i \in [x_{i-1}, x_i]$ astfel incat $m_i = f(\xi_i)$ si $M_i = f(\eta_i)$. Atunci

$$S_{\Delta}(f) - s_{\Delta}(f) = \sum_{i=1}^{n} (f(\eta_i) - f(\xi_i))(x_i - x_{i-1})$$

si deci

$$S_{\Delta}(f) - s_{\Delta}(f) = \sum_{i=1}^{n} (f(\eta_i) - f(\xi_i))(x_i - x_{i-1}) < \frac{\varepsilon}{b-a}(b-a) = \varepsilon.$$

Aplicand Teorema 1 rezulta ca f este integrabila.

Definitie. Fie $f: I \to \mathbb{R}$, unde $I \subset \mathbb{R}$ este un interval. Functia $F \to \mathbb{R}$ se numeste primitiva a functiei f pe intervalul I, daca F este derivabila pe I si $F'(x) = f(x) \ \forall x \in I$.

Teorema. Fie $f:[a,b]\to\mathbb{R}$ o functie continua si fie $F(x)=\int_a^x f(t)dy,\,x\in[a,b]$. Atunci F este o primitiva a lui f, adica F este derivabila pe [a,b] si F'(x)=f(x) $\forall x\in[a,b]$.

Demonstratie. Fie $x_0 \in [a, b]$ si $\varepsilon > 0$. Deoarece f este continua in x_0 , exista $\delta > 0$ astfel incat

$$|f(x) - f(x_0)| < \varepsilon$$
, pentru orice $x \in U = (x_0 - \delta, x_0 + \delta) \cap [a, b]$

Daca $x \in J$, $x < x_0$ atunci

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{\int_x^{x_0} (f(t) - f(x_0))}{x_0 - x} \right| < \varepsilon.$$

Similar se arata ca daca $x \in J$, $x < x_0$,

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| < \varepsilon.$$

Deci

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = f(x_0)$$

si atunci F este derivabila in x_0 si $F'(x_0) = f(x_0)$.

Teorema. Fie $f:[a,b]\to\mathbb{R}$ o functie continua si fie F o primitiva a ei. Atunci

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Demonstratie. Fie

$$G(x) = \int_{a}^{x} f(t)dt.$$

Rezulta ca G'(x) = f(x) si deci(F - G)' = 0. In consecinta F si G difera printr-o constanta C. Asadar F(x) = G(x) + C pentru orice $x \in [a, b]$ Dar G(a) = 0 si deciF(a) = C si atunci $F(b) - F(a) = \int_a^b f(t) dt$.

Teorema. Fie $g:[a,b]\to J$ o functie derivabila si cu derivata continua pe [a,b]. Daca $f:J\to\mathbb{R}$ este continua atunci

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(x)dx.$$

Demonstratie. Pentru $x \in J$, fie

$$F(x) = \int_{g(a)}^{x} f(u)du$$

Deoarece f este continua, rezulta ca F este derivabila si F'=f pe J. Atunci $F\circ g$ este derivabila si

$$(F \circ g)' = f \circ g \cdot g'$$

Functia $f \circ g \cdot g'$ este integrabila (fiind continua) si avem

$$\int_{a}^{b} f(g(x))g'(x)dx = F \circ g(b) - F \circ g(a) = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(x)dx.$$

Integrale improprii pe intervale nemarginite

Definitie. Fie $f:[a,\infty)\to\mathbb{R}$ o functie integrabila pe orice interval [a,c] cu c>a. Daca exista $\lim_{c\to\infty}\int_a^c f(x)dx$ aceasta limita se numeste integrala improprie a functie f pe $[a,\infty)$ si se noteaza cu $\int_a^\infty f(x)dx$, adica

$$\int_{a}^{\infty} f(x)dx = \lim_{c \to \infty} \int_{a}^{c} f(x)dx$$

Daca limita este finita spunem ca integrala este convergenta. Daca limita este infinita sau nu exista, integrala este divergenta. Analog, daca $f:(-\infty,b]\to\mathbb{R}$ este integrabila pe orice interval [a,c] cu c< b si daca exista $\lim_{c\to\infty}\int_a^c f(x)dx$ aceasta limita se numeste integrala improprie a functie f pe $[a,\infty)$ si se noteaza cu $\int_a^\infty f(x)dx$, adica

$$\int_{-\infty}^{b} f(x)dx = \lim_{c \to -\infty} \int_{c}^{b} f(x)dx$$

Daca limita este infinita sau nu exista, integrala este divergenta. Daca $f: \mathbb{R} \to \mathbb{R}$ si daca integralele $\int_{-\infty}^{c} f(x)dx$ si $\int_{c}^{\infty} f(x)dx$ sunt convergente atunci $\int_{-\infty}^{\infty} f(x)dx$ este convergenta si

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

unde c este orice numar real.

Exemplu. Studiati coonvergenta integralei

$$\int_0^\infty \frac{1}{x^2 + 1} dx$$

Pentru c > 0 aven

$$\int_0^c \frac{1}{1+x^2} dx = \arctan c$$

Deoarece

$$\lim_{c \to \infty} \int_0^c \frac{1}{1 + x^2} dx = \lim_{c \to \infty} \arctan c = \frac{\pi}{2}$$

Deci integrala este convergenta si

$$\int_{0}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{2}.$$

Exemplu. Studiati coonvergenta integralei

$$\int_{-\infty}^{0} e^{x} dx$$

Pentru c < 0 aven

$$\int_{0}^{0} e^{x} dx = e^{x}|_{c}^{0} = 1 - e^{c}$$

si atunci

$$\lim_{c \to -\infty} \int_{c}^{0} e^{x} dx = \lim_{c \to \infty} (1 - e^{c}) = 1.$$

Deci integrala este convergenta si

$$\int_{-\infty}^{0} e^x dx = 1.$$

Exemplu. Integrala improprie

$$\int_{a}^{\infty} \frac{1}{x^{\lambda}} dx, \quad a > 0$$

este convergenta daca si numai daca $\lambda > 1$.

Pentru $\lambda = 1$

$$\int_{a}^{\infty} \frac{1}{x} dx = \lim_{c \to \infty} \int_{a}^{c} \frac{1}{x} dx = \lim_{c \to \infty} (\ln c - \ln a) = \infty$$

Pentru $\lambda \neq 1$

$$\lim_{c \to \infty} \int_a^c \frac{1}{x^{\lambda}} dx = \lim_{c \to \infty} \frac{a}{1 - \lambda} (c^{1 - \lambda} - a^{1 - \lambda}) = \begin{cases} +\infty & \text{daca } \lambda < 1 \\ \frac{a^{1 - \lambda}}{\lambda - 1} & \text{daca } \lambda > 1. \end{cases}$$

Asadar,

$$\int_{a}^{\infty} \frac{1}{x^{\lambda}} dx = \begin{cases} +\infty & \text{daca } \lambda \leq 1\\ \frac{a^{1-\lambda}}{\lambda - 1} & \text{daca } \lambda > 1. \end{cases}$$

Integrale improprii pentru functii nemarginite

Definitie. Fie $f:[a,b)\to\mathbb{R}$ astfel incat $\lim_{x\nearrow b}|f(x)|=\infty$. Daca f este integrabila pe orice interval [a,c] cu c< b si daca exista $\lim_{c\nearrow b}\int_a^c f(x)dx$ aceasta limita se numeste integrala improprie a functie f pe [a,b) si se noteaza cu $\int_a^b f(x)dx$, adica

$$\int_{a}^{b} f(x)dx = \lim_{c \to b} \int_{a}^{c} f(x)dx$$

Daca limita este finita spunem ca integrala este convergenta. Daca limita este infinita sau nu exista, integrala este divergenta. Analog, daca $f:(a,b]\to\mathbb{R}$ este integrabila pe orice interval [c,b] cu c>a si daca exista $\lim_{c\searrow a}\int_c^bf(x)dx$ aceasta limita se numeste integrala improprie a functie f pe (a,b) si se noteaza cu $\int_c^bf(x)dx$, adica

$$\int_{a}^{b} f(x)dx = \lim_{c \searrow a} \int_{c}^{b} f(x)dx$$

Daca limita este infinita sau nu exista, integrala este divergenta.

Exemplu. Integrala improprie

$$\int_0^1 \frac{1}{x^{\lambda}} dx,$$

este convergenta daca si numai daca $\lambda > 1$.

Pentru $\lambda=1$

$$\int_{a}^{\infty} \frac{1}{x} dx = \lim_{c \searrow 0\infty} \int_{c}^{1} \frac{1}{x} dx = \lim_{c \searrow 0} (\ln 1 - \ln c) = \infty$$

Daca $\lambda \neq 1$

$$\lim_{c \searrow 0} \int_{c}^{1} \frac{1}{x^{\lambda}} dx = \lim_{c \searrow \infty} \frac{a}{1 - \lambda} (1 - c^{1 - \lambda}) = \begin{cases} +\infty & \text{daca } \lambda > 1\\ \frac{1}{1 - \lambda} & \text{daca } \lambda > 1. \end{cases}$$

Asadar,

$$\int_0^1 \frac{1}{x^{\lambda}} dx = \begin{cases} +\infty & \text{daca } \lambda \le 1\\ \frac{1}{\lambda - 1} & \text{daca } \lambda > 1. \end{cases}$$

Exemplu. Studiati coonvergenta integralei

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$

Deoarece

$$\lim_{c \nearrow 1} \int_0^c \frac{1}{\sqrt{1 - x^2}} dx = \lim_{c \nearrow 1} \arcsin c = \frac{\pi}{2}.$$

Rezulta ca integrala este convergenta si

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{2}$$

Functiile Beta si Gama ale lui Euler

Teorema. Integrala improprie $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$ este convergenta pentru orice p,q>0.

Integrala $\Gamma(p) = \int_0^\infty x^{p-1} e^{x-1} dx$ este convergenta pentru orice p>0

Funcria $B:(0,\infty)\times(0,\infty)\to\mathbb{R}$ se nuemste functia Beta a lui Euler si functia $\Gamma:(0,\infty)\to\mathbb{R}$ se numeste functia Gama a lui Euler.

Propozitie. (1) $\Gamma(1) = 1$

(2)
$$\Gamma(p+1) = p\Gamma(p), \forall p > 0 \quad \Gamma(n+1) = n!, \forall n \in \mathbb{N}$$

$$(3) B(p,q) = B(q,p)$$

(4)
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \forall p,q > 0 \text{ si } B(p,q) = \frac{(n-1)!(m-1)!}{(m+n-1)!}, \forall m,n \in \mathbb{N}^*$$

Exercitii. Sa se studieze natura urmtoarelor integrale improprii si sa se determine valorile acestora, in caz de convergenta

(1)
$$\int_0^\infty \sin x dx$$

(2)
$$\int_0^2 \frac{1}{\sqrt[4]{x}} dx$$

(3)
$$\int_1^\infty \frac{1}{x^4} dx$$

(4)
$$\int_0^1 \frac{1}{x^3} dx$$

(5)
$$\int_0^\infty xe^{-x}dx$$

(6)
$$\int_3^\infty \frac{1}{x^2 - 3x + 2} dx$$

$$(7) \int_0^\infty x^2 e^{-x^3} dx$$

(8)
$$\int_{0}^{\infty} e^{-x^2} dx$$

Serii de puteri

Se numeste serie de puteri o serie de forma $\sum_{n=0}^{\infty} a_n x^n$. Numarul

$$R = \sup \left\{ r \ge 0 : \sum_{n=0}^{\infty} |a_n| r^n \text{ este convergenta } \right\}$$

se numeste raza de convergenta a seriei de puteri. Intervalul (-R, R) se numeste intervalul de convergenta al seriei de puteri. Multimea A a punctelor in care seria de puteri este convergenta se numeste multimea de convergenta a seriei de puteri.

Teorema. Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri. Daca exista $\omega = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ atunci

$$R = \begin{cases} \frac{1}{\omega} & \text{daca} & 0 < \omega < \infty \\ 0 & \text{daca} & \omega = \infty \\ \infty & \text{daca} & \omega = 0 \end{cases}$$

Daca exista $\omega = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ atunci

$$R = \begin{cases} \frac{1}{\omega} & \text{daca} & 0 < \omega < \infty \\ 0 & \text{daca} & \omega = \infty \\ \infty & \text{daca} & \omega = 0 \end{cases}$$

Teorema (Teorema I a lui Abel). Fie $\sum_{n=0}^{\infty} a_n x^n$ serie de puteri cu raza de convergenta R. Atunci

- (i) pentru orice $x \in (-R, R)$ seria este absolut convergenta.
- (ii) pentru orice $x \notin [-R, R]$ seria este divergenta.

Corolar. Cu notatiile de mai sus, daca $0 < R < \infty$, atunci $(-R,R) \subset A \subset [-R,R]$

Exercitiu. Determinati multimea de convergenta pentru urmatoarele serii de puteri

$$(1) \sum_{n=0}^{\infty} \frac{3^n}{n^2 + 1} x^n \quad (2) \sum_{n=0}^{\infty} \frac{(-2)^n}{n^3} x^n \quad (3) \sum_{n=0}^{\infty} \frac{(-2)^n}{n^3} x^n \quad (4) \sum_{n=1}^{\infty} \frac{1}{n 2^n} x^n$$

$$(5) \sum_{n=1}^{\infty} \frac{n+1}{n^2 + 1} x^n \quad (6) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n x^n$$

Teorema. Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri cu raza de convergenta R > 0. Atunci functia $s: (-R, R) \to \mathbb{R}$ definita prin

$$s(x) = \sum_{n=0}^{\infty} a_n x^n$$

este continua pe (-R, R).

Teorema (Teorema a II-a a lui Abel). Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri cu raza de convergenta R > 0 si multimea de convergenta A. Daca seria de puteri este convergenta in punctul R (respectiv -R) atunci suma s a seriei, adica functia $s: A \to \mathbb{R}$ definita prin

$$s(x) = \sum_{n=0}^{\infty} a_n x^n$$

este o functie continua in R (respectiv -R).

Teorema. Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri cu raza de convergenta R. Atunci seria de puteri $\sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ are aceasi raza de convergenta R. Daca R > 0, atunci functia $s: (-R, R) \to \mathbb{R}$

$$s(x) = \sum_{n=0}^{\infty} a_n x^n.$$

este derivabila si

$$s'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n.$$

pentru orice $x \in (-R, R)$.

Teorema. Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri cu raza de convergenta R. Atunci seria de puteri $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ obtinuta prin integrarea termen cu termen a seriei $\sum_{n=0}^{\infty} a_n x^n$ are aceasi raza de convergenta R. Daca R > 0, atunci functia $S: (-R, R) \to \mathbb{R}$

$$S(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

este o primitiva a functiei $s:(-R,R)\to\mathbb{R}$,

$$s(x) = \sum_{n=0}^{\infty} a_n x^n,$$

adica S'(x) = s(x) pentru orice $x \in (-R, R)$.

Fie I un interval deschis astfel incat $0 \in I$ si fie $f \in C^{\infty}(I)$. Seria

$$\sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^n(0)}{n!} x^n + \dots$$

se numeste seria Taylor asociata functiei f in punctul 0. Cu aceste notatii avem

Teorema. Seria Taylor a functiei f in punctul 0 este convergenta in punctul $x \in I$ si suma ei este egala cu f(x) daca si numai daca valorile in x ale resturilor R_n ale formulelor lui Taylor formeaza un sir $(R_n(x))_{n\geq 1}$ convergent catre 0.

Exemplu. Folosind teorema de mai sus sa se arate ca:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots, \quad \forall x \in \mathbb{R}$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad \forall x \in \mathbb{R}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots, \quad \forall x \in \mathbb{R}$$

Sa consideram $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$. Intrucat $f^{(n)}(0) = 1$ pentru orice $n \geq 1$, polinomul Taylor de grad n asociat lui f in punctul 0 este

$$T_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

iar seria Taylor corespunzatoare este

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

Fie $x \in \mathbb{R}$. Folosind Formula lui Taylor cu restul lui Lagrange, obtinem $0 < \theta_x < x$ astfel incat

$$f(x) = T_n(x) + e^{\theta_x} \frac{x^{n+1}}{(n+1)!}$$

Deoarece $|\theta_x| < |x|$ avem $|e_x^{\theta}| \le e^{|\theta_x|} < e^{|x|}$ si atunci

$$\lim_{n \to \infty} \left| e^{\theta_x} \frac{x^{n+1}}{(n+1)!} \right| \le \lim_{n \to \infty} e^{|x|} \frac{|x|^{n+1}}{(n+1)!} = 0$$

Asadar, pentru orice $x \in \mathbb{R}$

$$\lim_{n \to \infty} |f(x) - T_n(x)| = 0$$

si in concluzie

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad \forall x \in \mathbb{R}.$$

Pentru sin si cos se procedeaza similar (exercitiu!)

Exemplu. Este binecunoscut faptul ca pentru orice $x \in \mathbb{R}$,

$$1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$

si in consecinta, daca $x \in (-1,1),$ trecand la limita cu $n \to \infty$ rezulta ca

$$\sum_{n=0}^{\infty} x^n = 1 + x + \dots + x^n + \dots = \frac{1}{1-x}.$$
 (1)

Inlocuind pe x cu -x in relatia de mai sus, pentru $x \in (-1,1)$ avem

$$\sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 \dots + (-1)^n x^n + \dots = \frac{1}{1+x}.$$
 (2)

Exemplu. Sa se dezvolte in serie de puteri ale lui x functia $f(x) = \arctan x$ si sa se precizeze intervalul pe care dezvoltare este valabila.

Evident

$$f'(x) = \frac{1}{1+x^2}, \ x \in \mathbb{R}.$$

Inlocuind pe x cu x^2 in relatia (2), rezulata ca

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n}, \quad x \in (-1,1)$$
 (3)

De aici prin integrare termen cu termen obtinem

$$\arctan x = c + x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in (-1,1)$$

Facand acum x = 0 rezulta ca c = 0 si deci

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in (-1,1)$$

Pentru x = 1 seria din membru stang devine

$$1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^n \frac{1}{2n+1} + \dots$$

Cu criteriul lui Leibniz deducem ca aceasta serie este convergenta si atunci din Teorema I lui Abel pentru serii de puteri obtinem

$$\frac{\pi}{4} = \lim_{\substack{x \to 1 \\ x < 1}} \arctan x = 1 - \frac{1}{3} + \frac{1}{5} + \dots + (-1)^n \frac{1}{2n+1} + \dots$$

In mod similar avem

$$-\frac{\pi}{4} = \lim_{\substack{x \to -11 \\ x > 1}} \arctan x = -1 + \frac{1}{3} - \frac{1}{5} + \dots + (-1)^{n+1} \frac{1}{2n+1} + \dots$$

Asadar

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in [-1,1].$$

Exercitiu. Sa se dezvolte in serie de puteri ale lui x functia $f(x) = \ln(1-x)$, x > -1 si sa se precizeze intervalul pe care dezvoltarea este valabila.

Procedand ca in exemplul anterior se obtine

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots, \forall x \in (-1,1]$$

Integrale duble

Pe parcursul intregului curs D va fi o multime din plan marginita de o curba inchisa si neteda pe portiuni.

Fie $f: D \to \mathbb{R}$ si fie $\Delta = \{D_i, i = 1, ..., n\}$ o acoperire a multimii D (adica $D \subset \cup_i D_i$) cu multimi de forma dreptunghiulara (sau mai general avand forma de paralelograme) astfel incat

$$\begin{cases} D \cap D_i \neq \emptyset \text{ pentru } i = 1, \dots, n \\ \text{interior}(D_i) \cap \text{interior}(D_k) = \emptyset \text{ pentru } i \neq k \end{cases}$$

Fie

diam
$$(D_i) = \sup \left\{ \sqrt{(x - x')^2 + (y - y')^2} : (x, y), (x', y') \in D_i \right\}$$

diametrul multimii A si fie

$$||\Delta|| = \max\{\operatorname{diam}(D_i), i = 1, 2, \dots, n\}$$

norma acoperirii. Daca $(x_i, y_i) \in D_i$ si definim suma Riemann

$$\sigma_{\Delta}(f) = \sum_{i=1}^{n} f(x_i, y_i) \operatorname{aria}(D_i)$$

Integrala functiei f este prin definitie

$$\iint_D f(x,y)dxdy = \lim_{\|\Delta\| \to 0} \sigma_{\Delta}(f)$$

cu conditia ca limita sa existe si sa fie finita. In acest caz spunem ca f este integrabila pe D.

Clase de functii integrabile

- 1) Daca D este o multime compacta si f este continua pe D atunci este integrabila pe D.
- 2) Daca functia f este marginita si are discontinuitati pe un numar finit de curbe netede atunci ea este integrabila.

Interpretare geometrica a integralei duble

- 1) Daca $f \geq 0$, atunci $\iint_D f(x,y) dx dy$ reprezinta volumul cuprins intre graficul functiei si planul XOY;
- 2) $\iint_D dx dy$ preprezinta aria multimi
iD.

Poprietati ale integralei duble

1) Daca f este integrabil pe D si $\alpha \in \mathbb{R}$, atunci αf este integrabila pe D si avem

$$\iint_{D} \alpha f(x, y) dx dy = \iint_{D} \alpha f(x, y) dx dy$$

2) Daca f si g sunt functii integrabile pe D si atunci f+g este integrabila pe D si avem

$$\iint_D (f(x,y) + g(x,y))dxdy = \iint_D f(x,y)dxdy + \iint_D g(x,y,x)dxdy$$

3) Daca f este integrabile pe D si D' iar D si D' nu au puncte interioare comune atunci F este integrabile pe $D \cup D'$ si avem

$$\iint_{D \cup D'} f(x, y) dx dy = \iint_{D} f(x, y) dx dy + \iint_{D'} \alpha f(x, y) dx dy.$$

4) Daca $f \ge 0$ este o functie integrabila pe D atunci

$$\iint_D f(x,y)dxdy \ge 0.$$

Reducerea integralei duble la o integrala iterata

1) Fie $D = [a, b] \times [c, d]$ si $f: D \to \mathbb{R}$ o functie integrabila pe D. Atunci

$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_c^d f(x,y)dy\right)dx = \int_c^d \left(\int_a^b f(x,y)dx\right)dy$$

2) Fie $D = \{(x,y) \in \mathbb{R}^2 : a \leq x \leq b, \alpha(x) \leq y \leq \beta(x)\}$ unde $\alpha, \beta : [a,b] \to \mathbb{R}$ sunt continue. O astfel de multime se numeste domeniu simplu in raport cu Oy. Daca $f: D \to \mathbb{R}$ este o functie integrabila pe D, atunci

$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_{\alpha(x)}^{\beta(x)} f(x,y)dy \right) dx.$$

3) Fie $D = \{(x,y) \in \mathbb{R}^2 : c \leq x \leq d, \varphi(y) \leq x \leq \psi(y)\}$ unde $\varphi, \psi : [c,d] \to \mathbb{R}$ sunt continue. O astfel de multime se numeste domeniu simplu in raport cu axa Ox. Daca $f:D\to\mathbb{R}$ este o functie integrabila pe D, atunci

$$\iint_D f(x,y)dxdy = \int_c^d \left(\int_{\varphi(y)}^{\psi(y)} f(x,y)dx \right) dy.$$

Example 2. Sa se calculze integrala

$$\iint_{D} (2x+y)dxdy, \text{ unde } D = [0,1] \times [0,2]$$

$$\iint_D (2x+y)dxdy = \int_0^1 \left(\int_0^2 (x+y)dy \right) dx = \int_0^1 \left(x^2 + xy \right) \Big|_0^2 dx = \int_0^1 (4+2x)dx = 5$$

Example 3. Sa se calculze

$$\iint_{D} (3x + y) dx$$

unde D este multimea marginita de curbele $y = x^2 + 1$ $y = -x^2$ x = 0 x = 3.

$$\iint_D (3x+2y)dx = \int_0^3 (3xy+y^2)|_{-x^2}^{x^2+1}dx = \int_0^3 (6x^3+3x+2x^2+1)dx$$

Schimbarea de Variabila in integrala dubla

Fie $T: \Omega \to D$, o aplicatie bijectiva de clasa C^1 , definita prin

$$T: \left\{ \begin{array}{l} x = x(u, v) \\ y = y(u, v) \end{array} \right.$$

astfel incat

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0 \text{ pe } \Omega.$$

Cu aceste notatii,

Formula de schimbare de variabila

Fie f este o functie integrabila pe D, atunci

$$\iint_D f(x,y) dx dy = \iint_{\Omega} f(x(u,v),y(u,v) \left| \frac{D(x,y)}{D(u,v)} \right| du dv.$$

Fie $A_1(u,v)$, $A_2(u+\Delta u,v)$, $A_3(u+\Delta u,v+\Delta v)$, $A_4(u,v+\Delta v)$ un dreptunghi infinitezimal din Ω . Fie $P_1P_2P_3P_4$ imaginea dreptunghiului $A_1A_2A_3A_4$ prin transformarea T. Aria patrulateriu curbiliniu $P_1P_2P_3P_4$ poate fi aporximata cu aria paralelogramului $B_1B_2B_3B_4$, unde

$$B_{1}(x(u,v),y(u,v)),$$

$$B_{2}(x(u,v) + \frac{\partial x}{\partial u}(u,v)\Delta u, \ y(u,v) + \frac{\partial y}{\partial u}(u,v)\Delta u),$$

$$B_{3}(x(u,v) + \frac{\partial x}{\partial u}(u,v)\Delta u + \frac{\partial x}{\partial v}(u,v)\Delta v, \ y(u,v) + \frac{\partial y}{\partial u}(u,v)\Delta u + \frac{\partial y}{\partial v}(u,v)\Delta v)$$

$$B_{4}(x(u,v) + \frac{\partial x}{\partial v}(u,v)\Delta v, \ y(u,v) + \frac{\partial y}{\partial v}(u,v)\Delta v),$$

Aria triunghiului $B_1B_2B_4$ este egala cu

$$\pm \frac{1}{2} \begin{vmatrix} x(u,v) & y(u,v) & 1 \\ x(u,v) + \frac{\partial x}{\partial u}(u,v)\Delta u & y(u,v) + \frac{\partial y}{\partial u}(u,v)\Delta u & 1 \\ x(u,v) + \frac{\partial x}{\partial v}(u,v)\Delta v & y(u,v) + \frac{\partial y}{\partial v}(u,v)\Delta v & 1 \end{vmatrix}$$

$$\pm \frac{1}{2} \begin{vmatrix} \frac{\partial x}{\partial u}(u,v)\Delta u & \frac{\partial y}{\partial u}(u,v)\Delta u \\ \frac{\partial x}{\partial v}(u,v)\Delta v & \frac{\partial y}{\partial v}(u,v)\Delta v \end{vmatrix}$$

$$\pm \frac{1}{2} \begin{vmatrix} \frac{\partial x}{\partial u}(u,v)\frac{\partial y}{\partial v}(u,v) - \frac{\partial x}{\partial v}(u,v)\frac{\partial y}{\partial u}(u,v) \end{vmatrix} \Delta u \Delta v.$$

Cum aceasi arie o are si triunghiul $B_2B_3B_4$, rezulta ca

$$\operatorname{aria}(B_1 B_2 B_3 B_4) = \left| \frac{\partial x}{\partial u}(u, v) \frac{\partial y}{\partial v}(u, v) - \frac{\partial x}{\partial v}(u, v) \frac{\partial y}{\partial u}(u, v) \right| \Delta u \Delta v.$$

Daca (s,t) este un punct din dreptunghiul $A_1A_2A_3A_4$, atunci

$$\operatorname{aria}(P_1 P_2 P_3 P_4) \approx \left| \frac{D(x, y)}{D(u, v)}(s, t) \right| \operatorname{aria}(A_1 A_2 A_3 A_4).$$

Fie $\Delta = \{A_1, A_2, \dots A_n\}$ o acoperire a multimii Ω cu multimii de forma dreptunghiulara. Notam cu P_i imaginea multimii $R_i \cup \Omega$ prin transformarea T. Fie $P = \{P_1, \dots, P_n\}$. Observam ca $\|P\| \to 0$ daca si numai $\|\Delta\| \to 0$. Atunci

$$\iint_{D} f(x,y)dxdy = \lim_{\|P\| \to 0} \sum_{i} f(x_{i}, y_{i})\operatorname{aria}(P_{i})$$

$$= \lim_{\|\Delta\| \to 0} \sum_{i} f(x(s_{i}, t_{i}), y(s_{i}, t_{i})\operatorname{aria}\left|\frac{D(x, y)}{D(u, v)}(s_{i}, t_{i})\right| \operatorname{aria}(A_{i})$$

$$= \iint_{\Omega} f(x(u, v), y(u, v) \left|\frac{D(x, y)}{D(u, v)}\right| dudv.$$

Trecerea de la coordonate polare la coordonate carteziene

$$\begin{cases} x = \rho \cos \theta & \rho \in [0, \infty) \\ y = \rho \sin \theta & \theta \in [0, 2\pi] \end{cases}$$

In acest caz, avem

$$\frac{D(x,y)}{D(\rho,\theta)} = \rho$$

Trecerea de la coordonate polare generalizate la coordonate carteziene

$$\begin{cases} x = a\rho \cos \theta & \rho \in [0, \infty) \\ y = b\rho \sin \theta & \theta \in [0, 2\pi] \end{cases}$$

In acest caz, avem

$$\frac{D(x,y)}{D(\rho,\theta)} = ab\rho$$

Example 4. 1) Calculati

$$\iint_D y dx dy, \qquad D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 4, x, y \ge 0\}$$

Trecem la coordonate polare

$$x = \rho \cos \theta, y = \rho \sin \theta$$

si atunci domeniul D devine

$$\rho \in [0,2], \quad \theta \in [0,\frac{\pi}{2}]$$

Cum $dxdy = \frac{D(x,y)}{D(\rho,\theta)} = \rho d\rho d\theta$, avem

$$\iint_D y dx dy = \int_0^2 \left(\int_0^{\frac{\pi}{2}} \rho^2 \sin \theta d\theta \right) d\rho = \int_0^2 (-\rho^2 \cos \theta) \Big|_0^{\frac{\pi}{2}} d\rho = \int_0^2 \rho^2 d\rho = \frac{8}{3}$$

2) Calculati

$$\iint_{D} \sqrt{1 - \frac{x^2}{9} - \frac{y^2}{4}} dx dy, \qquad D = \{(x, y) \in \mathbb{R}^2, \frac{x^2}{9} + \frac{y^2}{4} \le 1\}$$

Trecem la coordonate polare generalizate

$$x = 2\rho\cos\theta, y = 3\rho\sin\theta$$

In coordonate polare generalizate domesniul D devine

$$\rho \in [0,1], \quad \theta \in [0,2\pi]$$

Avem

$$dxdy = \frac{D(x,y)}{D(\rho,\theta)} = 6\rho d\rho d\theta,$$

si atunci

$$\iint_{D} \sqrt{1 - \frac{x^2}{9} - \frac{y^2}{4}} dx dy = \int_{0}^{1} \left(\int_{0}^{2\pi} 6\rho \sqrt{1 - \rho^2} \right) d\rho = 4\pi.$$

Integrale tripla

In cele ce urmeaza multimea V va fi o multime din plan marginita de o suprafata inchisa si neteda pe portiuni.

Fie $f:V\to\mathbb{R}$ si fie $\Delta=\{V_i:i=1,2,\ldots,n\}$ o acoperire a multimii V (adica $V\subset \cup_i V_i$) cu multimi de forma paralelipipedica astfel incat

$$\begin{cases} V \cap V_i \neq \emptyset \\ \text{interior}(V_i) \cap \text{interior}(V_j) = \emptyset \text{ pentru } i \neq j \end{cases}$$

Fie

$$diam(V_i) = \max \left\{ \sqrt{(x-x')^2 + (y-y')^2 + (y-y')^2} : (x,y,z), (x',y',z') \in V_i \right\}$$

diametrul multimii A si fie

$$||\Delta|| = \max\{\operatorname{diam}(V_i), i = 1, 2, \dots, n\}$$

norma acoperirii. Daca $(x_i, y_i, z_i) \in V_i \cap V$ definim suma Riemann

$$\sigma_{\Delta}(f) = \sum_{i=1}^{n} f(x_i, y_i, z_i) \operatorname{vol}(V_i)$$

Integrala functiei f pe domeniul V este prin definitie

$$\iiint_V f(x,y)dxdy = \lim_{\|\Delta\| \to 0} \sigma_{\Delta}(f)$$

cu conditia ca limita sa existe si sa fie finita. In acest caz spunem ca f este integrabila pe V.

Clase de functii integrabile

- 1) Daca V este o multime compacta iar f este continua pe V atunci este integrabila pe V
- 2) Daca functia f este marginita si are discontinuitati pe un numar finit de suprafete netede atunci ea este integrabila.

Interpretare geometrica a integralei triple

$$\iint_V dx dy$$
 preprezinta volumul multimi
i $V \subset \mathbb{R}^3$

Poprietati ale integralei triple

1) Daca f este integrabila pe V si $\alpha \in \mathbb{R}$, atunci αf este integrabila pe V si avem

$$\iiint_{V} \alpha f(x, y, z) dx dy dz = \alpha \iiint_{V} f(x, y, z) dx dy dz$$

2) Daca f si g sunt functii integrabile pe V si atunci f+g este integrabila pe V si avem

$$\iiint_{V} (f(x,y,z) + g(x,y,z)) dx dy dz = \iiint_{V} f(x,y,z) dx dy dz + \iiint_{V} g(x,y,z) dx dy dz$$

3) Daca f este integrabile pe V si V' iar V si V' nu au puncte interioare comune atunci F este integrabile pe $V \cup V'$ si avem

$$\iiint_{V \cup V'} f(x, y, z) dx dy dz = \iiint_{V} f(x, y, z) dx dy dz + \iiint_{V'} \alpha f(x, y, z) dx dy dz.$$

4) Daca $f \ge 0$ este o functie integrabila pe V atunci

$$\iiint_V f(x, y, z) dx dy dz \ge 0.$$

Metode de calcul

1) Daca $V = [a, b] \times [c, d] \times [k, p]$

$$\iiint_V f(x,y,z)dxdydz = \int_a^b \left(\int_c^d \left(\int_k^p f(x,y,z)dz \right) dy \right) dx$$

2) Domeniul V este cuprins ntre planele z=a si z=b. Notam cu V_z proiectia pe planul XOY a intersectiei lui V cu planul $z=z_0$ unde $a \le z_0 \le b$, Daca

$$V_z = \{(x, y) \in \mathbb{R}^2 : (x, y, z_0) \in V\}.$$

Atunci,

$$\iiint_V f(x,y,z)dxdydz = \int_a^b \left(\iint_{V_z} f(x,y,z)dxdy\right)dz.$$

3) Domeniul V este simplu in raport cu Oz, adica este limitat de o suprafata laterala cilindrica cu generatoarele paralele cu axa Oz si marginita de suprafetele $z = \varphi(x, y)$, $(x, y) \in D$ si $z = \psi(x, y)$, $(x, y) \in D$. Asadar

$$V = \{(x, y, z) \in \mathbb{R}^3 : \varphi(x, y) < z < \psi(x, y), (x, y) \in D\}.$$

Atunci,

$$\iiint_V f(x,y,z)dxdydz = \int_D \left(\iint_{S_i(x,y)}^{S_s(x,y)} f(x,y,z)dxdy \right) dz.$$

Example 5. Calculati

$$\iiint_{V} x dx dy dz, \ V: x+y+z \le 1, \ x,y,z \ge 0$$

Observam ca

$$V = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1 - x - y, \ (x, y) \in D\}$$

unde D, proiectia lui V pe planul xOy este

$$D = \{(x, y) \in \mathbb{R}^2, x + y \le 1, x, y \ge 0\}$$

Atunci

$$\iiint_{V} z dx dy dz = \iint_{D} \left(\int_{0}^{1-x-y} x dz \right) dx dy = \iint_{D} x (1-x-y) dx dy$$

$$= \int_{0}^{1} \left(\int_{0}^{1-x} (x-x^{2}-xy) dy \right) dx = \int_{0}^{1} \left(xy - x^{2}y - \frac{y^{2}}{2} \right) \Big|_{0}^{1-x} dx$$

$$= \int_{0}^{1} \left[x (1-x) - x^{2} (1-x) - \frac{(1-x)^{2}}{2} \right] dx = \cdots$$

Example 6. Calculati

$$\iiint_{V} (x^2 + y^2) dx dy dz, \ V : x^2 + y^2 \le z^2, \ 0 \le z \le 3$$

Observam ca

$$V = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 3, \ (x, y) \in D\}$$

unde unde D, proiectia lui V pe planul xOy este

$$D = \{(x, y) \in \mathbb{R}^2 : \ x^2 + y^2 \le 9\}$$

Deci,

$$\iiint_{V} z dx dy dz = \iint_{D} \left(\int_{\sqrt{x^2 + y^2}}^{3} (x^2 + y^2) dz \right) dx dy = \iint_{D} (x^2 + y^2) (3 - \sqrt{x^2 + y^2}) dx dy$$

Trecand la coordonate polare

$$\begin{cases} x = \rho cos\theta \\ y = \rho sin \theta \end{cases}$$

domeniul D devine

$$D': \begin{cases} 0 \le \rho \le 3\\ 0 \le \theta \le 2\pi \end{cases}$$

Cum

$$dxdy = \frac{D(x,y)}{D(\rho,\theta)} dxdy = \rho d\rho d\theta$$

avem

$$\iint_{D} (x^{2} + y^{2})(3 - \sqrt{x^{2} + y^{2}}) dx dy = \iint_{D'} \rho^{3}(3 - \rho) d\rho d\theta = \int_{0}^{3} \left(\int_{0}^{2\pi} (3\rho^{3} - \rho^{4}) d\theta \right) d\rho$$
$$= 2\pi \int_{0}^{3} (3\rho^{3} - \rho^{4}) d\rho = \frac{243}{10}\pi.$$

Schimbarea de variabila in integrala tripla

Fie $T:\Omega \to V,$ o aplicatie bijectiva de clasa ${\bf C}^1,$ definita prin

$$T: \begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \\ z = z(u, v, w) \end{cases}$$

astfel incat

$$\frac{D(x,y,z)}{D(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0 \text{ pe } \Omega$$

Cu aceste notatii,

Formula de schimbare de variabila

Daca f este o functie integrabila pe V, atunci

$$\iiint_V f(x,y,z) dx dy dz = \iiint_\Omega f(x(u,v,w),y(u,v,w),z(u,v,w) \left| \frac{D(x,y,z)}{D(u,v,w)} \right| du dv dw.$$

Coordonate sferice

$$\begin{cases} x = \rho \sin \theta \cos \varphi \\ y = \rho \sin \theta \sin \varphi \\ z = \rho \cos \theta \end{cases} \qquad \rho \in [0, \infty), \ \theta \in [0, \pi], \ \varphi \in [0, 2\pi]$$

In acest caz, avem

$$\frac{D(x,y,z)}{D(\rho,\theta,\varphi)} = \begin{vmatrix} \sin\theta\cos\varphi & \rho\cos\theta\cos\varphi & -\rho\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & \rho\cos\theta\sin\varphi & \rho\sin\theta\cos\varphi \\ \cos\theta & -\rho\sin\theta & 0 \end{vmatrix} = \rho^2\sin\theta$$

Coordonate sferice generalizate

$$\begin{cases} x = a\rho \sin \theta \cos \varphi \\ y = b\rho \sin \theta \sin \varphi \\ z = c\rho \cos \theta \end{cases} \qquad \rho \in [0, \infty), \ \theta \in [0, \pi], \ \varphi \in [0, 2\pi]$$

In acest caz, avem

$$\frac{D(x,y,z)}{D(\rho,\theta,\varphi)} = \begin{vmatrix} a\sin\theta\cos\varphi & a\rho\cos\theta\cos\varphi & -a\rho\sin\theta\sin\varphi \\ b\sin\theta\sin\varphi & b\rho\cos\theta\sin\varphi & b\rho\sin\theta\cos\varphi \\ c\cos\theta & -c\rho\sin\theta & 0 \end{vmatrix} = abc\rho^2\sin\theta$$

Calculati integrala

$$\iiint_{V} \left(\frac{x^{2}}{4} + \frac{y^{2}}{9} + z^{2}\right) dx dy dz, \quad V = \{(x, y, z) \in \mathbb{R}^{3} : \frac{x^{2}}{4} + \frac{y^{2}}{9} + z^{2} \le 1, z \ge 0\}$$

$$\begin{cases} x = 2\rho \sin \theta \cos \varphi \\ y = 3\rho \sin \theta \sin \varphi \\ z = \rho \cos \theta \end{cases} \qquad \rho \in [0, 1] \ \theta \in [0, \pi/2], \ \varphi \in [0, \pi]$$

$$\frac{D(x, y, z)}{D(\rho, \theta, \varphi)} = 6\rho^2 \sin \theta.$$

Prin aceasta transformare domeniul V define $V' = [0, 1] \times [0, \pi/2] \times [0, \pi]$ Avem

$$\iiint_{V} \left(\frac{x^{2}}{4} + \frac{y^{2}}{9} + z^{2}\right) dx dy dz = \iiint_{V'} \rho^{2} \cdot 6\rho^{2} \sin\theta d\rho d\theta d\varphi = \iiint_{V'} 6\rho^{4} \sin\theta \cdot d\rho d\theta d\varphi$$
$$= \iint_{V} \left(\int_{0}^{\pi/2} \left(\int_{0}^{2\pi} 6\rho^{4} \sin\theta d\varphi\right) d\theta\right) d\rho = \int_{0}^{1} 2\pi \cdot 6\rho^{4} d\rho = \int_{0}^{1} 12\pi \rho^{3} d\rho = 12\pi/5$$

Exercitii

Calculati integralele

(1)
$$\iint_D (2xy + e^x) dxdy$$
 unde $D = [0, 1] \times [0, 4]$

(2)
$$\iint_D (x + \sin(2y)) dx dy$$
 unde D este marginit de curbele $y = x - 1$, $y = -x + 1$, $x = 0$

(3)
$$\iint_D (3x^2y - 1)dxdy \text{ unde } D = \{(x, y) \in \mathbb{R} | x^2 + y^2 \le 4, x \le 0\}$$

(4)
$$\iint_{D} (2xy + x^2 - y^2) dx dy \text{ unde } D = \{(x, y) \in \mathbb{R} | x^2 + y^2 \le 9, x - y \le 0, x + y \ge 0\}$$

(5)
$$\iiint (y\sin^2 z + x\cos 2z)dxdydz, \text{ unde } V = [2, 4] \times [1, 3] \times \left[0, \frac{\pi}{4}\right]$$

(6)
$$\iiint_{V} (x+z)dxdydz, \text{ unde } V = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 9, x, y \ge 0, z \le 0\}$$

(7)
$$\iiint_V (xz+y)dxdydz, \text{ unde } V = \{(x,y,z) \in \mathbb{R}^3 | 1 \le x^2 + y^2 + z^2 \le 16, y, z \ge 0 \}.$$

(8)
$$\iint_D (x+xy)dxdy$$
, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + \frac{y^2}{4} \le 9, \ x \ge y\}$

(9)
$$\iint_D (x^2 + y) dx dy$$
, D este limiat de curbele $y = x^2, x = y^2$

(10)
$$\iint_D \frac{1}{(y+x)^2} dx dy, \ D \text{ este limitat de dreptele } y-2x=0, y+2x=0, y=1, \ y=2$$

11)
$$\iiint_{V} (xy+z)dxdydz, \quad V = [0,1] \times [0,2] \times [1,3]$$

12)
$$\iiint_{V} (z+1)dxdydz, \quad V = \{(x,y,z) \in \mathbb{R}^3 : 3x + y + z = 6, \ x,y,z \ge 0\}$$

13)
$$\iiint_{V} (x^2 + y^2) dx dy dz, \quad V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 2z, \ y \ge 0, \ 0 \le z \le 2\}$$

14)
$$\iiint_{V} xy dx dy dz, \quad V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, -1 \le z \le 2\}$$

15)
$$\iiint_{V} (x + y + xz^{2}) dx dy dz, \quad V = [0, 1] \times [1, 3] \times [0, 2]$$