The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as a 'success'. Define:

$$\operatorname{Bin}(n,k,p) \triangleq \sum_{j=0}^{k} \binom{n}{j} p^{j} (1-p)^{n-j}, \tag{6}$$

$$b^* \triangleq \overline{\operatorname{Bin}}(n, k, \delta)$$

$$\triangleq \arg\min_{b} \left(\operatorname{Bin}(n, k, b) \le 1 - \delta \right). \tag{7}$$

Let E_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'). Thus,

$$Pr\{E_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)). \tag{8}$$

There is a probability of at most δ , that $k=m\cdot\hat{c}(\theta,S_m)$ 'successes' would fall into the right tail of the binomial of size δ (where the probability of a single success is $c(\theta,P)$). If this happens, then we get that the probability for at most $k=m\cdot\hat{c}(\theta,S_m)$ 'successes' is greater than $1-\delta$. Mathematically,

$$Pr\{E_k\} > 1 - \delta. \tag{9}$$

When considering b^* to be the probability of a single success, it holds (7)

$$Bin(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$$
(10)

Since E_k is the event of at most $k = m \cdot \hat{c}(\theta, S_m)$ 'successes', where a probability for each success is $c(\theta, P)$, and it is more likely than the event of at most k successes where the probability for a single success is b^* , we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

הל הע כנה שהסיבוי של היותר הא הצלחות הע לל אל היותר של היותר של היותר של היותר של היותר של היותר של היותר בלחות הע לל .1-5 2017 (h) c" (1-c) -K < .m

שטמיצ בקובפי את לשבי אל הסיכני שיהיה ינתר ה- ליח ר שיהיה ינתר גר ליש בקובפי שיהיה ינתר גר ליש בקובפי שיהיה בלן היהיה בינתר גר ליש בלן בל היהיה בינתר ביני שיהיה בלן בל בינתר ביני שיהיהיה בינתר ב

אם אכן אבן באר בונה ל של ההתליות השנימית. הסירוי שהוא הל הגוב העל לכן כול ז- היא הא האורץ שנרה, הסירוי אההתליות האניתית הקיימת בארה בא לב

ער הסיכני ענגלה את היוסניברים 5 m צין ב-ל. לק, בהומן מסינו את הווסניברים 3 m, הסינוי מ- 200 בא ב-ל. Lemma 4.1. Let P be any distribution and consider a selection function g_{θ} with a threshold θ whose coverage is $c(\theta, P)$. Let $0 < \delta < 1$ be given and let $\hat{c}(\theta, S_m)$ be the empirical coverage w.r.t. the set S_m , sampled i.i.d. from P. Let $b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)$ be the solution of the following equation:

$$\underset{b}{arg\,min}\left(\sum_{j=0}^{m\cdot\hat{c}(\theta,S_m)}\binom{m}{j}b^j(1-b)^{m-j}\leq 1-\delta\right).\eqno(4)$$

Then,

$$Pr_{S_m}\{c(\theta, P) < b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)\} < \delta.$$
 (5)

Proof. The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as

$$Bin(n, k, p) \triangleq \sum_{j=0}^{k} {n \choose j} p^{j} (1-p)^{n-j}, \qquad (1)$$

$$b^* \triangleq \overline{Bin}(n, k, \delta)$$

$$\triangleq \underset{b}{\operatorname{arg min}} (Bin(n, k, \delta) \leq 1 - \delta). \qquad (4) \qquad (2)$$

$$\mathbf{f}(\theta, S_{-k}) \text{ samples } x \text{ satisfy } a_{\theta}(x) = 1 \text{ (or at most } k \text{ 'successes')} \text{ when considering } (2)$$

$$b^* \triangleq \overline{\operatorname{Bin}}(n, k, \delta)$$

$$\triangleq \underset{b}{\operatorname{arg\,min}} \left(\operatorname{Bin}(n,k,b) \le 1 - \delta \right). \quad \text{(4)} \quad \text{-} \Gamma \quad \text{b.s.}$$

Let E_k be the event that at most $k=m\cdot\hat{c}(\theta,S_m)$ samples x satisfy $g_\theta(x)=1$ (or at most k 'successes'), when considering $c(\theta,P)$ to be the probability of a single success. Thus,

שליים) צייר $Pr\{E_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)).$

אר החלול הא By definition, there is a probability of at most δ , that $k=m\cdot\hat{c}(\theta,S_m)$ 'successes' would full into the <u>right tail</u> of the binomial of size δ (where the probability of a single success is $c(\theta,P)$). If this happens, then we get that the probability for at most $k=m\cdot\hat{c}(\theta,S_m)$ 'successes' is greater than $1-\delta$. Mathematically,

$$Pr\{E_k\} > 1 - \delta. \tag{4}$$

Let \hat{E}_k be the event that at most $k=m\cdot\hat{c}(\theta,S_m)$ samples x satisfy $g_{\theta}(x)=1$ (or at most k 'successes when the probability for a single success is b^* . It holds (2) that,

$$Pr\{\hat{E}_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$$
(5)

Therefore.

$$Pr\{E_k\} > Pr\{\hat{E}_k\}. \tag{6}$$

Consider the following statement,

let p_1 , p_2 be two different probabilities for a single success. If the probability of at most k successes (out of n attempts) is more likely when considering p_1 as the probability of a single success, rather than p_2 , we can conclude that $p_1 < p_2$

Therefore, since the event of E_k occurs with higher probability then the event \hat{E}_k , see Eq. (6), we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

אגניבליה ששיע

Lemma 4.1. Let P be any distribution and consider a selection function g_{θ} with a threshold θ whose coverage is $c(\theta, P)$. Let $0 < \delta < 1$ be given and let $\hat{c}(\theta, S_m)$ be the empirical coverage w.r.t. the set S_m , sampled i.i.d. from P. Let $b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)$ be the solution of the following

$$arg\min_{b} \left(\sum_{j=0}^{m \cdot \hat{c}(\theta, S_m)} \binom{m}{j} b^j (1-b)^{m-j} \le 1-\delta \right). \tag{4}$$

$$Pr_{S_m}\{c(\theta, P) < b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)\} < \delta.$$
 (5)

Proof. We aim to establish an upper bound, b^* , for the coverage, $c(\theta, P)$, that holds with a probability of at most δ . The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as a

'success'. Define:

 $\triangleq \arg\min\left(\operatorname{Bin}(n,k,b) \leq 1-\delta\right).$

(n) pi (1-p)n-i (1)(n) b (1-b)n-

Let E_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when considering $c(\theta, P)$ to be the probability of a single success. Thus, (m) cⁱ (1-c)^{m-i}

$$Pr\{E_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)).$$

PriEnd is exactly Ĉ= Ĉ(0,5m) (3)

is 1.5.

(5)

By definition, there is a probability of at most δ , that $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' would fall into the right tail of size δ of the binomial (where the probability of a single success is $c(\theta, P)$). If this happens, then we get that the probability for at most $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' is greater than $1 - \delta$. Mathematically,

$$Pr\{E_k\} > 1 - \delta.$$
 PriEnd is exactly this area (which is greater than the principle of th

Let \hat{E}_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when the probability for a single success is b^* . It holds (2) that, Pr(Ek) is exactly (n) by (1-6)

 $Pr{\hat{E}_k} = Bin(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$

Therefore,

$$Pr\{E_k\} > Pr\{\hat{E}_k\}. \tag{6}$$

Consider the following statement,

let p_1, p_2 be two different probabilities for a single success. If the probability of at most k successes (out of n attempts) is more likely when considering p_1 as the probability of a single success, rather than p_2 , we can conclude that $p_1 < p_2$.

Therefore, since the event of E_k occurs with higher probability then the event \hat{E}_k , see Eq. (6), we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

Pr[Fn] > Pr[Fn] => (6 b*

חשבר שאים קל אגר

Lemma 4.1. Let P be any distribution and consider a selection function g_{θ} with a threshold θ whose coverage is $c(\theta, P)$. Let $0 < \delta < 1$ be given and let $\hat{c}(\theta, S_m)$ be the empirical coverage w.r.t. the set S_m , sampled i.i.d. from P. Let $b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)$ be the solution of the following equation:

$$arg\min_{b} \left(\sum_{j=0}^{m \cdot \hat{c}(\theta, S_m)} \binom{m}{j} b^j (1-b)^{m-j} \le 1-\delta \right). \tag{4}$$

Ther

$$Pr_{S_m}\{c(\theta, P) < b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)\} < \delta.$$
 (5)

Proof. We aim to establish an upper bound, b^* , for the coverage, $c(\theta, P)$, that holds with a probability of at most δ . The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as a 'success'. Define:

$$\operatorname{Bin}(n,k,p) \triangleq \sum_{j=0}^{k} \binom{n}{j} p^{j} (1-p)^{n-j}$$

$$\binom{n}{j} p^{j} ($$

$$b^* \triangleq \overline{\text{Bin}}(n, k, \delta)$$

$$\triangleq \underset{b}{\text{arg min }} (\text{Bin}(n, k, b) \leq 1 - \delta).$$

$$\stackrel{\text{(n)}}{\Rightarrow} b^{j} (1 - b)^{n-j} \text{ by the definition of } b^{j}, \text{this carea.} is exactly if the definition of the property of$$

Note that given n, k, the function Bin(n, k, p) is a monotonically decreasing function in p. Therefore, the solution b^* of Eq. [2] exists as a result of the Intermediate value theorem.

Let E_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when considering $c(\theta, P)$ to be the probability of a single success. Thus,

$$Pr\{E_k\} = \text{Bin}(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)). \xrightarrow{\hat{c} \in \mathcal{C}(\theta, S_m)} \xrightarrow{\text{C} \in \mathcal{C}(\theta, S$$

By definition, for every number between $0 < \tilde{\delta} < 1$, there is a probability of at most $\tilde{\delta}$, that $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' would fall into the right tail of size $\tilde{\delta}$ of the binomial. If this happens, then we get that the probability for at most $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' is greater than $1 - \tilde{\delta}$. We can apply this claim using the value $\tilde{\delta} = \delta$ introduced in the lemma, using $c(\theta, P)$ as the probability for a single success. Mathematically,

$$Pr\{E_k\} > 1 - \delta.$$

Let \hat{E}_k be the event that at most $k=m\cdot\hat{c}(\theta,S_m)$ samples x satisfy $g_{\theta}(x)=1$ (or at most k 'successes'), when the probability for a single success is b^* . It holds (2) that,

$$Pr\{\hat{E}_k\} = \text{Bin}(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$$

Therefore,

$$Pr\{E_k\} > Pr\{\hat{E}_k\}. \tag{6}$$

Consider the following statement,

let p_1 , p_2 be two different probabilities for a single success. If the probability of at most k successes (out of n attempts) is more likely when considering p_1 as the probability of a single success, rather than p_2 , we can conclude that $p_1 < p_2$.

Therefore, since the event of E_k occurs with higher probability then the event \hat{E}_k , see Eq. (6), we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

Lemma 4.1. Let P be any distribution and consider a selection function g_{θ} with a threshold θ whose coverage is $c(\theta, P)$. Let $0 < \delta < 1$ be given and let $\hat{c}(\theta, S_m)$ be the empirical coverage w.r.t. the set S_m , sampled i.i.d. from P. Let $b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)$ be the solution of the following

$$arg\min_{b} \left(\sum_{j=0}^{m \cdot \hat{c}(\theta, S_m)} {m \choose j} b^j (1-b)^{m-j} \le 1-\delta \right). \tag{4}$$

$$Pr_{S_m}\{c(\theta, P) < b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)\} < \delta.$$
 (5)

Proof. We aim to establish an upper bound, b^* , for the coverage, $c(\theta, P)$, that holds with a probability of at most δ . The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as a 'success'. Define: (n) pi (1-p)n-i

Note that given n, k, the function Bin(n, k, p) is a monotonically decreasing function in p. Therefore, the solution b^* of Eq. 2 exists as a result of the intermediate value theorem.

Let E_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when considering $c(\theta, P)$ to be the probability of a single success. Thus,

$$Pr\{E_k\} = \text{Bin}(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)). \xrightarrow{\hat{c}: \hat{c}(\theta, S_m)} \xrightarrow{\hat{c}: \hat{c}(\theta,$$

By definition, for every number between $0 < \tilde{\delta} < 1$, there is a probability of at most $\tilde{\delta}$, that $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' would fall into the right tail of size δ of the binomial. If this happens, then we get that the probability for at most $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' is greater than $1 - \delta$. We can apply this claim using the value $\delta = \delta$ introduced in the lemma, using $c(\theta, P)$ as the probability for a single success. Mathematically,

(6)

Let \hat{E}_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when the probability for a single success is b^* . It holds (2) that,

$$Pr\{\hat{E}_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$$

$$Pr\{\hat{E}_k\} > Pr\{\hat{E}_k\}.$$

$$(5)$$

Therefore,

Consider the following statement,

let p_1 , p_2 be two different probabilities for a single success. If the probability of at most k successes (out of n attempts) is more likely when considering p_1 as the probability of a single success, rather than p_2 , we can conclude that $p_1 < p_2$.

Therefore, since the event of E_k occurs with higher probability then the event \hat{E}_k , see Eq. (6), we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

