STATISTICS

1. Which of the following can be considered as random variable?
a) The outcome from the roll of a die
b) The outcome of flip of a coin
c) The outcome of exam
d) All of the mentioned
Answer: d) All of the mentioned
2. Which of the following random variable that take on only a countable number of possibilities?
a) Discrete
b) Non Discrete
c) Continuous
d) All of the mentioned
Answer: a) Discrete
3. Which of the following function is associated with a continuous random variable?
a) pdf
b) pmv
c) pmf
d) all of the mentioned
Answer: a) pdf
4. The expected value or of a random variable is the center of its distribution.

a) mode
b) median
c) mean
d) bayesian inference
Answer: c) mean
5. Which of the following of a random variable is not a measure of spread?
a) variance
b) standard deviation
c) empirical mean
d) all of the mentioned
Answer: c) empirical mean
6. The of the Chi-squared distribution is twice the degrees of freedom.
a) variance
b) standard deviation
c) mode
d) none of the mentioned
Answer: a) variance
7. The beta distribution is the default prior for parameters between
a) 0 and 10
b) 1 and 2
c) 0 and 1
d) None of the mentioned

Answer: c) 0 and 1

- 8. Which of the following tool is used for constructing confidence intervals and calculating standard errors for difficult statistics?
- a) baggyer
- b) bootstrap
- c) jacknife
- d) none of the mentioned

Answer: b) bootstrap

- 9. Data that summarize all observations in a category are called ______data.
- a) frequency
- b) summarized
- c) raw
- d) none of the mentioned

Answer: b) summarized

10. What is the difference between a boxplot and histogram?

Answer: A histogram is a type of bar chart that graphically displays the frequencies of a data set. A histogram plots the frequency on the Y-axis and variable to be measured on the X-axis.

A boxplot is a chart that graphically represents the five most important descriptive values for a data set. These values include the minimum value, the first quartile, the median, the third quartile, and the maximum value.

A histogram is preferable over a box plot is when there is very little variance among the observed frequencies. A box plot allows to compare multiple data sets better than histograms as they are less detailed and take up less space.

11. How to select metrics?				
Answer: The metrics used in Classification problem are:				
Confusion matrix				
Type I Error				
Type II Error				
Accuracy				
Recall				
Precision				
Specificity				
F1 Score				
ROC Curve-AUC Score				
PR Curve				
Generally Accuracy, F1 score and ROC Curve-AUC Score are chosen best metrics for the classification problem.				
The metrics used in Regression problem are:				
Mean Squared Error				
Root Mean Squared Error				
Mean Absolute Error				
R-Squared				
Generally R-Squared is chosen best metrics for the regression problem.				
12. How do you assess the statistical significance of an insight?				
Answer:				
==> Creating a null hypothesis.				
==> Creating an alternative hypothesis.				

- ==> Determining the significance level.
- ==> Deciding on the type of test we use.
- ==> Performing a power analysis to find out the sample size.
- ==> Calculating the standard deviation.
- ==> Using the standard error formula.
- ==> Determining the t-score.
- ==> Finding the degrees of freedom.
- ==> Using a t-table.
- 13. Give examples of data that does not have a Gaussian distribution, nor log-normal.

Answer:

Distribution	Type Data	Examples
Lognormal	Continuous	Cycle or lead time data
Weibull	Continuous	Mean time-to-failure data, time
		to repair and material strength
Exponential	Continuous	Constant failure rate conditions
		of products
Poisson	Discrete	Number of events in a specific
		time period
Binomial	Discrete	Proportion or number of
		defectives

14. Give an example where the median is a better measure than the mean.

Answer: Mean is sensitive to outliers.

For example, we have the following data: 1,2,3,4,5

Mean = (1+2+3+4+5)/5 = 15/5 = 3

Median = Middle value = 3

Here the mean and median are same. When an outlier is added to the same data.

Data: 1,2,3,4,5,100

Mean = (1+2+3+4+5+100)/6 = 19.16

Median = Middle value = Mean of middle values =(3+4)/2 = 3.5

So, we can say that median is a better measure because median is not much effected to the added outlier.

15. What is the Likelihood?

Answer: Likelihood refers to finding the best distribution of the data given a particular value of some feature or some situation in the data. Likelihood function measures the goodness of fit of a statistical model to a sample of data for given values of the unknown parameters.