Energy Consumption Prediction

Sommaire

Description du Projet
Exploration
Data Processing
Modélisation
Optimisation

Description du Projet

Mettre en place un modèle prédictif sur la consommation d'energie

Objectifs:

- 1. Réalisez une analyse univariée et bivariée
- 2. Réalisez une ACP puis une matrice de corrélation
- 3. Identifier les variables importantes
- 4. Identifier les variables nulles, les outliers, etc
- 5. Tester différents modèles de prédiction afin de répondre au mieux à la problématique.
- 6. Compare ces algorithmes, puis optimiser les hyperparamètres du modèle sélectionné

Let's BEGIN

Import des librairies utiles et brêve description du dataset

	OSEBuildingID	Latitude	Longitude	YearBuilt	Number of Buildings	Number of Floors	PropertyGFATotal	PropertyGFAParkin
count	3376.000000	3376.000000	3376.000000	3376.000000	3368.000000	3376.000000	3.376000e+03	3376.00000
mean	21208.991114	47.624033	-122.334795	1968.573164	1.106888	4.709123	9.483354e+04	8001.52608
std	12223.757015	0.047758	0.027203	33.088156	2.108402	5.494465	2.188376e+05	32326.72392
min	1.000000	47.499170	-122.414250	1900.000000	0.000000	0.000000	1.128500e+04	0.00000
25%	19990.750000	47.599860	-122.350662	1948.000000	1.000000	2.000000	2.848700e+04	0.00000
50%	23112.000000	47.618675	-122.332495	1975.000000	1.000000	4.000000	4.417500e+04	0.00000
75%	25994.250000	47.657115	-122.319407	1997.000000	1.000000	5.000000	9.099200e+04	0.00000
max	50226.000000	47.733870	-122.220966	2015.000000	111.000000	99.000000	9.320156e+06	512608.00000

Le dataset est composés de 3376 ligne avec 17 features.

Data Exploration est la première étape de l'analyse des données. Elle permet d'explorer et de visualiser les données afin de découvrir des informations dès le départ ou d'identifier des zones ou des modèles à approfondir.

représente figure Cette distribution de la variable (la variable SiteEnergyUse prédire).

Univariate Analysis

Visualization of the Type of Buildings

0

Data Exploration

Bivariate Analysis

Visualization the behavior of Energy Use with Building

0

Data Exploration

Visualization the behavior of Number of Buildings by Type

0

Data Exploration

Visualization the behavior of PropertyGFATotal with ENERGYSTARScore by Building

Visualization the behavior of BuildingType with ENERGYSTARScore by Building

0

Data Exploration

le7

Electricity(kWh)

0

Data Exploration

Visualization the behavior of NumberofBuildings with SiteEnergyUse(kBtu) by YearBuilt

Lors de cette étape, nous nettoyons notre jeu de données. Elle peut consister à gérer les valeurs nulles ou manquantes, gérer les outliers et/ou les doublons, faire du feature reduction, etc.

ACP & Correlation Matrix

- Identifing the most important variables

```
# Removing useless features
newdata = dataset.drop(columns=['Electricity(kWh)', 'Longitude', 'Latitude', 'SiteEnergyUseWN(kBtu)'])
#Printing the shape
print(newdata.shape)
(3376, 13)
```

O

0

OSEBuildingID BuildingType PrimaryPropertyType PropertyName YearBuilt NumberofBuildings NumberofFloors PropertyGFATotal PropertyGFAParking PropertyGFABuilding(s) LargestPropertyUseType ENERGYSTARScore SiteEnergyUse(kBtu)	0 0 0 0 8 0 0 0 20 843 5	NEXT	OSEBuildingID BuildingType PrimaryPropertyType PropertyName YearBuilt NumberofBuildings NumberofFloors PropertyGFATotal PropertyGFAParking PropertyGFABuilding(s) LargestPropertyUseType ENERGYSTARScore SiteEnergyUse(kBtu)	0 0 0 0 0 0 0 0	
--	--	------	--	--------------------------------------	--

Data PreProcessing

(3357, 13)

count mean std	3.376000e+03 5.408019e+06 2.159304e+07		
min 25% 50% 75%	1.340900e+04 9.386493e+05 1.813404e+06		
max	4.218227e+06 8.739237e+08 SiteEnergyUse(kBtu),	dtype: float64	

3376.000000 count 14.582695 mean std 1.155866 min 9.503681 25% 13.752197 50% 14.410716 75% 15.254925 20.588504 max Name: SiteEnergyUse(kBtu), dtype: float64

Lors de cette étape, nous nettoyons notre jeu de données. Elle peut consister à gérer les valeurs nulles ou manquantes, gérer les outliers et/ou les doublons, faire du feature reduction, etc.

La première chose à faire est le Label Encoder pour gérer les valeurs catégorielles.


```
(2685, 12)
(2685,)
(672, 12)
(672,)
```


Feature Scaling

:	0	1	2	3	4	5	6	7	8	9	10	11
0	0.791171	-0.181140	-0.227791	1.302887	-1.265148	-0.129224	0.494204	0.310194	-0.361823	0.367131	-0.328804	1.254732
1	0.735443	0.661774	0.982308	0.530952	-1.140636	-0.129224	-0.744767	0.051780	-0.361823	0.097141	2.268370	0.526994
2	1.072907	3.190517	-1.092147	-0.347707	0.011106	-0.129224	-0.744767	-0.103486	-0.361823	-0.054184	-1.028043	0.569802
3	-1.281084	0.661774	-0.746405	0.454277	-2.074481	-0.129224	-0.125281	1.334079	-0.361823	1.402456	-0.029130	0.398570
4	-1.639188	3.190517	-1.092147	1.637565	0.664798	-0.129224	-0.538272	0.331910	-0.361823	0.391082	-1.028043	0.997884

Linear Regression
XgBoost Regressor
Random Forest Regressor
Decision Tree Regression
Lasso Regression

	Model	Score	MAE	RMSE	EX_TIME	CROSS
1	XgBoost Regressor	0.776	333.197	210902.684	0.777	76.00
2	Random Forest Regression	0.760	335.674	225893.854	0.946	74.80
0	Linear Regression	0.680	414.537	301666.575	0.006	66.32
4	Lasso Regression	0.680	414.636	301511.304	0.019	66.32
3	Decision Tree Regressor	0.491	465.664	479830.762	0.042	51.02

Optimize Our Model

Grid Search

C'est une méthode d'optimisation (hyperparameter optimization) qui va nous permettre de tester une série de paramètres et de comparer les performances pour en déduire le meilleur paramétrage.

Il existe plusieurs manières de tester les paramètres d'un modèle et le Grid Search est une des méthodes les plus simples. Pour chaque paramètre, on détermine un ensemble de valeurs que l'on souhaite tester.

Grid Search

```
# Importing GridSearch
from sklearn.model selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')
#setting the hyperparameters
param grid = [
   {'n estimators': [30, 50, 80, 100], 'max features': [2, 4, 6, 8, 10, 12]},
grid search = GridSearchCV(model rf, param grid, cv=5, verbose=2,
                        scoring='neg_mean_squared_error',
                        return train score=True)
grid search.fit(x train, y train)
Fitting 5 folds for each of 24 candidates, totalling 120 fits
[CV] END .....max features=2, n estimators=30; total time=
                                                                    0.0s
[CV] END .....max_features=2, n_estimators=30; total time=
                                                                    0.0s
[CV] END .....max_features=2, n_estimators=50; total time=
                                                                    0.1s
[CV] END .....max_features=2, n_estimators=50; total time=
                                                                    0.1s
[CV] END .....max features=2, n estimators=50; total time=
                                                                    0.1s
[CV] END .....max_features=2, n_estimators=50; total time=
                                                                    0.1s
[CV] END .....max features=2, n estimators=50; total time=
                                                                    0.1s
LCMJ END
                          may footunes_2 n actimatons_00: total time_
                                                                    0 20
```


Grid Search

```
# displaying the best parameters
grid search.best params
{'max features': 6, 'n estimators': 100}
# displaying the results
cvres = grid search.cv results
for mean score, params in zip(cvres["mean test score"], cvres["params"]):
    print(np.sqrt(-mean score), params)
487.6469767228032 {'max features': 2, 'n estimators': 30}
483.8540301570484 {'max_features': 2, 'n_estimators': 50}
483.1065420618409 {'max features': 2, 'n estimators': 80}
479.912573735219 {'max features': 2, 'n estimators': 100}
488.08688558619684 {'max features': 4, 'n estimators': 30}
481.5209126692242 {'max features': 4, 'n estimators': 50}
477.61900623993677 {'max features': 4, 'n estimators': 80}
480.31594185416657 {'max features': 4, 'n estimators': 100}
484.38049070509504 {'max_features': 6, 'n_estimators': 30}
482.3028721979103 {'max features': 6, 'n estimators': 50}
480.04951718741876 {'max features': 6, 'n estimators': 80}
476.8866447005832 {'max features': 6, 'n estimators': 100}
485.42758226221486 {'max features': 8, 'n estimators': 30}
480.1019805511762 {'max features': 8, 'n estimators': 50}
```