SIRE: Separate Intra- and Inter-sentential Reasoning for Document-level Relation Extraction

ACL-IJCNLP Findings 2021

ING Lab 논문 세미나 2021-07-14

Document-level Relation Extraction

DocRED (ACL 2019) [paper] [dataset]

기존 Relation Extraction은 한 문장 내의 두 entity 간의 관계를 예측하는 task

Document-level Relation Extraction은 전체 문서 내의 두 entity 간의 관계를 예측하는 task로, 좀 더 어려운 문제

기존과 같이 한 문장만 보고 추측할 수 있는 문제도 있지만, 두 entity가 서로 떨어져 있는 경우 논리적인 추론이 필요함

평가지표: F1, Ign F1

* Ign F1은 train와 dev/test 사이의 relation facts에 대한 중복을 제외하고 구한 F1

ABBA Live

[1] <u>ABBA Live</u> is an album of live recordings by <u>Swedish</u> pop group <u>ABBA</u>, released by <u>Polar Music</u> in <u>1986</u>. ... [6] The tracks were mostly taken from <u>ABBA</u>'s concerts at <u>Wembley Arena</u> in <u>London</u> in <u>November 1979</u>. ... [13] It was remastered ...

Head: Polar Music
Tail: Swedish

relation: country of origin evidence: [1]

Head: Wembley Arena

Tail: London

relation: located in evidence: [6]

IBM Research-Brazil

[1] <u>IBM Research–Brazil</u> is one of twelve research laboratories comprising <u>IBM Research</u>, its first in <u>South America</u>. ... [2] It was established in <u>June 2010</u>, with locations in <u>São Paulo</u> and <u>Rio de Janeiro</u>. ... [5] In collaboration with <u>Brazil</u>'s government, it will help <u>IBM</u> ... [6] ... <u>IBM</u> has 4 priority areas in <u>Brazil</u> ...

Motivation

Relation types in DocRE

intra-sentential: 두 entity가 같은 문장 안에 등장하는 경우

inter-sentential: 그렇지 않은 경우

Previous work in DocRE

relation의 종류에 상관없이 모든 entity pair들에 대하여 가능한 relation을 예측하는 방식으로 접근

- → 언어학적 관점에서 intra-sentential과 inter-sentential은 다른 패턴으로 표현되어야 한다.
- → SIRE (Separate Intra- and Inter-sentential Reasoning)

SIRE

3개의 Module로 구성되어 있음 (Intra- and Inter-sentential Relation Representation Module, Logical Reasoning Module, Classification Module)

Intra-sentential Relation Representation Module

Encoding

각 문장 (S_i) 내 단어 $(w_i^{S_i})$ 들을 시퀀스 벡터 $(g_i^{S_i})$ 로 전환하는 단계

 $\{$ word, entity type, co-reference $\}$ embedding을 concat하여 단어 벡터를 구성 (x)

$$\mathbf{x} = [E_w(w); E_t(t); E_c(c)]$$

단어 representation을 sentence-level encoder (f_{enc}^S) 에 넣어 최종 시퀀스 벡터를 구성 $(g_i^{S_i})$

$$[\mathbf{g}_1^{\mathcal{S}_i},\ldots,\mathbf{g}_{n_i}^{\mathcal{S}_i}] = f_{enc}^{\mathcal{S}}([\mathbf{x}_1^{\mathcal{S}_i},\ldots,\mathbf{x}_{n_i}^{\mathcal{S}_i}])$$

sentence-level encoder: LSTM or BERT

Intra-sentential Relation Representation Module

Representing

각 entity pair $(e_{i,h},e_{i,t})$ 에 대하여 intra-sentential한 관계를 표현하는 단계

head entity mention과 tail entity mention이 같은 문장에 등장하는 문장들의 집합 ($S_{co-occur}$) 에 대하여, 각 문장별로 context representation을 구한다 $\{S_{i_1}, S_{i_2}, \dots, S_{i_C}\}$

* 저자진들은 context representation을 두 mention와 관련 높은 top K개의 단어들로 정의하였음

head entity mention과 tail entity mention을 query로 하여 문장 내 모든 단어들에 대한 relatedness (attention) score를 구하여 이를 기반으로 top K related word를 구한다

$$\begin{split} \mathbf{e}_{i,h}^{\mathcal{S}_{i_j}} &= \frac{1}{t-s+1} \sum_{k=s}^t \mathbf{g}_k^{\mathcal{S}_{i_j}} \\ s_{i,k} &= \sigma((W_{intra} \cdot [\mathbf{e}_{i,h}^{\mathcal{S}_{i_j}}; \mathbf{e}_{i,t}^{\mathcal{S}_{i_j}}])^T \cdot \mathbf{g}_k^{\mathcal{S}_{i_j}}) \end{split}$$

$$\alpha_{i,k} = Softmax(s_{i,k})$$

Intra-sentential Relation Representation Module

Representing

각 entity pair $(e_{i,h},e_{i,t})$ 에 대하여 intra-sentential한 관계를 표현하는 단계

top K related word의 representation과 전체 weighted average representation을 더하여 context

information(
$$c_i^{S_{i_j}}$$
)을 구축
$$\mathbf{c}_i^{S_{i_j}} = \beta \cdot \frac{1}{K} \sum_{k \in topK(\alpha_{i,*})} \mathbf{g}_k^{S_{i_j}} + (1-\beta) \cdot \sum_t^{n_{i_j}} \alpha_{i,t} \mathbf{g}_t^{S_{i_j}}$$

st 이유: relatedness score를 구하기 위해 적용한 W_{intra} 에 대한 gradient를 구해야 학습이 가능하기 때문

최종 relational representation은 각 문장의 head, tail, context representation을 average

Inter-sentential Relation Representation Module

Encoding

각 문서(D)내 단어 (w_i^D) 들을 시퀀스 벡터 (g_i^D) 로 전환하는 단계

intra-와 동일한 방식으로 단어 representation을 구성

단어 representation을 document-level encoder (f_{enc}^D) 에 넣어 시퀀스 벡터를 구성 (g_j^D)

mention-level graph (MG)를 적용하여 좀 더 문서 안의 상호 관계를 잘 표현할 수 있도록 함

Mention-level Graph

Mention-level Graph in GAIN (왼쪽)

mention node와 document node로 구성 서로 다른 mention 끼리 document node를 pivot으로 하여 2단계만에 접근 가능

Mention-level Graph in SIRE (오른쪽)

GAIN의 MG는 local context information을 반영하고 있지 못함 따라서, sentence node와 그에 상응되는 edge를 추가하여 MG에 local information을 주입

- Intra-Entity Edge: 동일한 entity에 대한 mention끼리 연결
- Inter-Entity Edge: 동일 문장 내 서로 다른 entity에 대한 mention끼리 연결
- Document Edge: 문서 내 모든 mention과 document node와 연결

Mention-level Graph

- Sentence-Mention Edge: 각 문장 내 mention와 문장과 연결
- Sentence-Document Edge:
 각 문장과 document node와
 여결
- 기존 Intra-,Inter-Entity Edge는 동일

Inter-sentential Relation Representation Module

Encoding

각 문서(D)내 단어 (w_i^D) 들을 시퀀스 벡터 (g_i^D) 로 전환하는 단계

적용한 Mention Graph으로 부터 R-GCN 및 feature aggregation을 적용하면 각 node에 대한 representation을 뽑아낸다

$$\mathbf{h}_{u}^{(l+1)} = ReLU\left(\sum_{t \in \mathcal{T}} \sum_{v \in \mathcal{N}_{u}^{t} \cup \{u\}} \frac{1}{c_{u,t}} W_{t}^{(l)} \mathbf{h}_{v}^{(l)}\right) \qquad \mathbf{h}_{u}^{(0)} = \frac{1}{t-s+1} \sum_{j=s}^{t} \mathbf{g}_{j}^{\mathcal{D}};$$

$$\mathbf{m}_{u} = ReLU(W_{u} \cdot [\mathbf{h}_{u}^{(0)}; \mathbf{h}_{v}^{(1)}; \dots; \mathbf{h}_{u}^{(N)}])$$

Inter-sentential Relation Representation Module

Representing

각 entity pair $(e_{i,h}, e_{i,t})$ 에 대하여 inter-sentential한 관계를 표현하는 단계

entity representation은 MG을 통해 구한 mention representation의 평균 $\mathbf{e}_i = \frac{1}{N} \sum_{j \in M(e_i)} \mathbf{m}_j$

$$\mathbf{e}_i = \frac{1}{N} \sum_{i \in M(e_i)} \mathbf{m}_i$$

전체 mention node에 대하여 attention을 적용하여 어느 mention이 추론의 evidence가 될 수 있을지 모델링 → context representation

$$P(\mathcal{S}_k|e_{i,h}, e_{i,t}) = \sigma(W_k \cdot [\mathbf{e}_{i,h}; \mathbf{e}_{i,t}; \mathbf{m}_{\mathcal{S}_k}])$$

$$\alpha_{i,k} = \frac{P(\mathcal{S}_k|e_{i,h}, e_{i,t})}{\sum_l P(\mathcal{S}_l|e_{i,h}, e_{i,t})} \qquad \mathbf{c}_i = \sum_k^l \alpha_{i,k} \cdot \mathbf{m}_{\mathcal{S}_k}$$

최종 relation representation은 head, tail, context을 concat

$$\mathbf{r}_i = [\mathbf{e}_{i,h}; \mathbf{e}_{i,t}; \mathbf{c}_i]$$

Logical Reasoning Module

Logical Reasoning in Previous Work

각 entity pair 간들의 경로들을 단서로 하여 사용

문제: 모든 entity pair들이 연결되어 있지 않기도 하고 그래프 내에 올바른 추론 경로가 있다는 보장이 없음

Logical Reasoning in SIRE

self-attention을 사용하여 logical reasoning을 모델링 한 entity pair (e_h,e_t) 에 대하여 two-hop 형식의 logical reasoning chain $\{e_h \to e_k \to e_t\}$ 이 있다고 가정 $(e_k$ 는 문서 내 존재하는 다른 entity)

$$\mathbf{r}_{i}^{new} = \sum_{\mathbf{r}_{k} \in \mathcal{R}_{att} \cup \{\mathbf{r}_{i}\}} \gamma_{k} \cdot \mathbf{r}_{k}$$

$$\gamma_k = Softmax((W_{att} \cdot \mathbf{r}_i)^T \cdot \mathbf{r}_k)$$

 $*R_{att}$ 는 (e_h, e_k) , (e_k, e_t) 에 대한 relational representation

Classification Module

DocRE를 multi-label classification task로 formulate하여 학습: two FC layer with sigmoid

$$P(r|e_{i,h}, e_{i,t}) = sigmoid\left(W_1\sigma(W_2\mathbf{r}_i + b_1) + b_2\right)$$

loss는 binary cross entropy

$$\mathcal{L}_{rel} = -\sum_{\mathcal{D} \in \mathcal{C}} \sum_{h \neq t} \sum_{r_i \in \mathcal{R}} \mathbb{I}(r_i = 1) \log P(r_i | e_{i,h}, e_{i,t})$$
$$+ \mathbb{I}(r_i = 0) \log (1 - P(r_i | e_{i,h}, e_{i,t}))$$

Experiment

Dataset

DocRED: document-level 데이터셋 중 가장 큰 규모

CDR: Chemical-Disease Reactions 데이터셋 GDA: Gene-Disease-Associations 데이터셋

Experiment Settings

SIRE-GloVe: word embedding (GloVe 100d) + encoder (BiLSTM 512d)

SIRE-BERT: word embedding (BERT-base) + encoder (BERT-base)

*CDR/GDA는 BioBERT-Base v1.1 사용

Baselines

BILSTM, BERT, HIN-GloVe, HIN-BERT, CorefBERT, LSR-GloVe, LSR-BERT, GLRE-BERT, GAIN-BERT, BRAN

Experiment

Model	Dev			Test		
	Ign F1	F1	Intra-F1	Inter-F1	Ign F1	F1
BiLSTM (Yao et al., 2019b)	48.87	50.94	57.05	43.49	48.78	51.06
HIN-GloVe (Tang et al., 2020)	51.06	52.95	-	-	51.15	53.30
LSR-GloVe (Nan et al., 2020)	48.82	55.17	60.83	48.35	52.15	54.18
GAIN-GloVe (Zeng et al., 2020)	53.05	55.29	61.67	48.77	52.66	55.08
SIRE-GloVe	54.10	55.91	62.94	48.97	54.04	55.96
-LR Module	53.73	55.58	62.77	47.87	53.75	55.55
-context	52.57	54.41	61.66	46.92	52.33	54.15
-inter4intra	52.23	54.26	60.81	48.36	51.77	53.30
BERT (Wang et al., 2019a)	-	54.16	61.61	47.15	-	53.20
BERT-Two-Step (Wang et al., 2019a)	-	54.42	61.80	47.28	-	53.92
HIN-BERT (Tang et al., 2020)	54.29	56.31	-	-	53.70	55.60
CorefBERT (Ye et al., 2020)	55.32	57.51	-	-	54.54	56.96
GLRE-BERT (Wang et al., 2020)	-	-	-	-	55.40	57.40
LSR-BERT (Nan et al., 2020)	52.43	59.00	65.26	52.05	56.97	59.05
GAIN-BERT (Zeng et al., 2020)	59.14	61.22	67.10	53.90	59.00	61.24
SIRE-BERT	59.82	61.60	68.07	54.01	60.18	62.05

Model	CDR	GDA
BRAN (Verga et al., 2018)	62.1	-
EoG (Wang et al., 2020)	63.6	81.5
LSR (Nan et al., 2020)	64.8	82.2
GLRE-BioBERT (Wang et al., 2020)	68.5	-
SIRE-BioBERT	70.8	84.7

Ablation Study

SIRE-GloVe에 대하여 실험 진행

Logical Reasoning Module의 효과를 검증하기 위한 실험

logical reasoning module 제거 후 F1 0.41 하락

context representation의 효과를 검증하기 위한 실험

context 제거 후 F1 1.81 하락

intra-와 inter-의 구분 필요성을 검증하기 위한 실험

intra-sentential entity pairs에 대해서도 inter-sentential module을 적용했을 때, F1 2.66, Intra-F1 2.13 하락

Model		Dev			Test	
	Ign F1	F1	Intra-F1	Inter-F1	Ign F1	F1
SIRE-GloVe	54.10	55.91	62.94	48.97	54.04	55.96
-LR Module	53.73	55.58	62.77	47.87	53.75	55.55
-context	52.57	54.41	61.66	46.92	52.33	54.15
-inter4intra	52.23	54.26	60.81	48.36	51.77	53.30

Reasoning Performance

Reasoning Ability

dev set 안에 two-hop을 통해 예측할 수 있는 relation에 대해서만 F1 score를 평가

기존 모델 배이 Infer-F1 점수가 상당히 높고, Logical Reasoning module을 제외했을 때 그만큼 성능 감소

Model	Infer-F1	P	R
BiLSTM	38.73	31.60	50.01
GAIN-GloVe	40.82	32.76	54.14
SIRE-GloVe	42.72	34.83	55.22
- LR Module	39.18	31.97	50.59

Case Study

Case Study on Intra- and Inter-sentential relation instances

Intra의 경우 잘 예측함을 확인할 수 있음

Inter의 경우, 각 문장 별 attention score를 보면 [1], [2] 문장을 모델이 supporting evidence로 판단 (점수 0.87, 0.66)

Sao Paulo와 South America 사이의 logical reasoning chain에서 **Sao Paul** - **Brazil** - **South America** 로 올바른 reasoning 수행 [(Sao Paulo, Brazil) : 0.32, (Brazil, South America): 0.45)

Type	Examples				
	"Your Disco Needs You" is a song performed by Australian recording artist and songwriter Kylie Minogue, taken from her seventh studio album Light Years (2000). Relation: performer				
Intra-sentential relation instances	Lark Force was an <u>Australian Army</u> formation established in <u>March 1941</u> during <u>World</u> <u>War II</u> for service in <u>New Britain</u> and <u>New Ireland</u> . Relation: inception				
	<u>Lake Hiawatha</u> is one of the few lakes through which <u>Minnehaha Creek</u> flows, and the last one before it reaches <u>Minnehaha Falls</u> and then the <u>Mississippi River</u> . Relation: mouth of the watercourse				
Inter-sentential relation instances	[1] (0.87) IBM Research—Brazil is one of twelve research laboratories comprising IBM Research, its first in South America. [2] (0.66) It was established in June 2010, with locations in São Paulo and Rio de Janeiro. [3] (0.01) Research focuses on Industrial Technology and Science, [4] (0.04) The new lab, IBM's ninth [5] (0.38) In collaboration with Brazil's government, it will help IBM to develop Relation: continent Logical reasoning attention weight: (São Paulo, Brazil) 0.32 (São Paulo, June 2010) 0.03 (Brazil, South America) 0.45 (June 2010, South America) 0.02				

Conclusion

- 저자진의 이전 연구 또한 SOTA였으나 다시 SOTA를 달성한 연구
- 자신의 기존 연구를 진행하면서 생각한 문제점을 해결하고자 하는 모습이 보임
- Graph 기반이라 RoBERTa-large와 같은 큰 encoder를 사용하는 것이 어려운 것으로 추정? (이 때의 성능이 궁금)