Divide-and-Conquer

謝仁偉 副教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2017 Spring

Outline

- Introduction
- The Maximum-Subarray Problem
- The Matrix Multiplication Problem

Divide-and-Conquer

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
 - If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

Recurrences (1/2)

- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
 - The worst-case running time T(n) of the MERGE-SORT procedure can be described by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1, \end{cases}$$

whose solution we claimed to be $T(n) = \Theta(n \lg n)$.

3

4

Recurrences (2/2)

- Recurrences can take many forms:
 - A recursive algorithm might divide subproblems into unequal sizes, such as a 2/3-to-1/3 split.
 - $T(n) = T(2n/3) + T(n/3) + \Theta(n)$.
 - Subproblems are not necessarily constrained to being a constant fraction of the original problem size.
 - For example, a recursive version of linear search would create just one subproblem containing only one element fewer than the original problem.
 - $T(n) = T(n-1) + \Theta(1)$.

Outline

- Introduction
- The Maximum-Subarray Problem
- The Matrix Multiplication Problem

Maximum-Subarray Problem (1/2)

- Suppose that you been offered the opportunity to invest a company. The stock price of the company is rather volatile.
- You are allowed to buy one unit of stock only one time and then sell it at a later date, buying and selling after the close of trading for the day.
- To compensate for this restriction, you are allowed to learn what the price of the stock will be in the future. Your goal is to maximize your profit.

Maximum-Subarray Problem (2/2)

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Change		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7

- You would want to buy at the lowest possible price and later on sell at the highest possible price—to maximize your profit.
- Unfortunately, you might not be able to buy at the lowest price and then sell at the highest price within a given period.

How to Maximize Your Profit? (1/2)

 You might think that you can always maximize profit by either buying at the lowest price or selling at the highest price.

How to Maximize Your Profit? (2/2)

How about this case?

→ The maximum profit does not always start at the lowest price or end at the highest price!

10

Brute-Force Solution

- We can easily devise a brute-force solution to this problem: just try every possible pair of buy and sell dates in which the buy date precedes the sell date.
- → A period of n days has C(n, 2) such pairs of dates, and this approach would take $Ω(n^2)$ time.
- Can we do better?

Transformation

- We want to find a sequence of days over which the net change from the first day to the last is maximum.
- Instead of looking at the daily prices, let us instead consider the daily change in price, where the change on day i is the difference between the prices after day i – 1 and after day i.
- We now want to find the nonempty, contiguous subarray of *A* with the largest sum.
 - We call this contiguous subarray the maximum subarray.

Maximum Subarray

- The maximum-subarray problem is interesting only when the array contains some negative numbers.
 - If all the array entries were nonnegative, then the maximum-subarray problem would present no challenge, since the entire array would give the greatest sum.

Solution Using Divide-and-Conquer (1/2)

- Suppose we want to find a maximum subarray of the subarray A[low .. High].
- Divide-and-conquer suggests that we divide the subarray into two subarrays of as equal size as possible.

13

Solution Using Divide-and-Conquer (2/2)

To find a maximum subarray crossing the midpoint is not a smaller instance of our original problem, because it has the added restriction that the subarray it chooses must cross the midpoint.

– We just need to find maximum subarrays of the form A[i...mid] and A[mid + 1...j] and then combine them.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

```
left-sum = -\infty
    sum = 0
    for i = mid downto low
        sum = sum + A[i]
        if sum > left-sum
            left-sum = sum
            max-left = i
    right-sum = -\infty
    sum = 0
    for j = mid + 1 to high
        sum = sum + A[j]
11
12
        if sum > right-sum
13
            right-sum = sum
14
            max-right = j
    return (max-left, max-right, left-sum + right-sum) 16
```

15

Illustration


```
FIND-MAXIMUM-SUBARRAY (A, low, high)
    if high == low
 2
        return (low, high, A[low]) // base case: only one element
    else mid = |(low + high)/2|
 4
        (left-low, left-high, left-sum) =
             FIND-MAXIMUM-SUBARRAY (A, low, mid)
        (right-low, right-high, right-sum) =
 5
             FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
        (cross-low, cross-high, cross-sum) =
 6
             FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
        if left-sum \geq right-sum and left-sum \geq cross-sum
             return (left-low, left-high, left-sum)
 9
        elseif right-sum \ge left-sum and right-sum \ge cross-sum
10
             return (right-low, right-high, right-sum)
```

Outline

- Introduction
- The Maximum-Subarray Problem
- The Matrix Multiplication Problem

The Matrix Multiplication Problem

else return (cross-low, cross-high, cross-sum)

• If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then in the product $C = A \cdot B$, we define the entry

$$c_{ij}$$
, for $i, j = 1, 2, ..., n$, by $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.

SQUARE-MATRIX-MULTIPLY (A, B)

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

19

17

11

18