常微分方程第二次作业

闫磊

September 18, 2016

1 P48.1

求下列方程的解

1.1 (4)

 $\begin{array}{l} \frac{dy}{dx}-\frac{n}{x}y=e^{x}x^{n}\\ \mathbf{解}:\ \diamondsuit\ u=e^{\int\frac{-n}{x}\ dx}\\ \mathbf{可解}\ u=\frac{1}{x^{n}}\\ \mathbf{等式两边同乘}\ \mathbf{u},\ \mathbf{可得}\ (\frac{y}{x^{n}})'=e^{x}\\ \mathbf{两边同时积分可得}\ y=(e^{x}+c)x^{n} \end{array}$

1.2 (15)

 $\frac{dy}{dx} = \frac{1}{xy + x^3y^3}$ 解: 原式可以化为 $\frac{dx}{dy} = xy + x^3y^3$ 这就化为了一个伯努利方程, 两边同除 y^3 , 可得 $\frac{x'}{x^3} = \frac{y}{x^2} + y^3$ 令 $v = \frac{1}{x^2}$ 可化简为 $v' + 2vy = -2y^3$ 令 $u = e^{\int 2y \, dy}$ 等式两边同乘 u 可得 $(e^{y^2}v)' = -2y^3e^{y^2}$ 积分可得 $v = 1 - y^2 + ce^{-y^2}$ 把 v 替换掉得到 $x^2(1 - y^2 + ce^{-y^2}) = 1$

1.3 (16)

 $y=e^x+\int_0^xy(t)\,dt$ 解: 等式两边同时求导得 $y'=e^x+y$

移项得
$$y'-y=e^x$$
 令 $u=e^{\int -1\,dx}=\frac{1}{e^x}($ 取 $c=0)$ 等式两边同乘 \mathbf{u} 得 $(\frac{y}{e^x})'=1$ 积分得 $y=(x+c)e^x$

2 P50.7

求解下列方程

2.1 (3)

$$y'sinxcosx - y - sin^3x = 0$$
解: 两边同除 $sinxcosx$ 得 $y' - \frac{1}{sinxcosx}y = \frac{sin^2x}{cosx}$ 令 $u = e^{\int \frac{-1}{sinxcosx} dx}$ 两边同时乘 u 得 $(\frac{cosx}{sinx}y)' = sinx$ 积分得 $y = -sinx + ctanx$

3 P60.1

验证下列方程是恰当微分方程,并求出方程的解

3.1 (1)

$$(x^2+y)dx + (x-2y)dy = 0$$

解:因为 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 1$
所以方程是恰当微分方程,把方程分项组合得 $x^2dx + ydx + xdy - 2ydy = 0$
即 $d(\frac{x^3}{3}) + d(xy) - d(y^2) = 0$
于是方程的通解为 $\frac{x^3}{3} + xy - y^2 = c$ c 为任意常数

3.2(2)

$$(y-3x^2)dx-(4y-x)dy=0$$
解: 因为 $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=1$ 所以方程是恰当微分方程,把方程分项组合得 $ydx-3x^2dx-4ydy+xdy=0$ 即 $d(xy)-d(x^3)-d(2y^2)=0$ 于是方程的通解为 $xy-x^3-2y^2=c$ c 为任意常数

4 变上限求导

 $\int_{x}^{x0} p(t) dt$ 解:设 $F(x) = \int_{x}^{x0} p(t) dt$ 由 Newtown-Leibniz 公式可得 F' = p(x)

