Tecniche Algoritmiche: programmazione dinamica

Una breve presentazione

Programmazione dinamica

Tecnica bottom-up:

- 1. Identifica dei sottoproblemi del problema originario, procedendo logicamente dai problemi più piccoli verso quelli più grandi
- 2. Utilizza una tabella per memorizzare le soluzioni dei sottoproblemi incontrati: quando si incontra lo stesso sottoproblema, sarà sufficiente esaminare la tabella
- 3. Si usa quando i sottoproblemi non sono indipendenti, e lo stesso sottoproblema può apparire più volte

Esempio: numeri di Fibonacci

Un "case study"

Problema: calcolo della istanza tra stringhe

Siano X e Y due stringhe di lunghezza m ed n:

$$X = x_1 \cdot x_2 \cdot \dots \cdot x_m \qquad Y = y_1 \cdot y_2 \cdot \dots \cdot y_n$$

Vogliamo calcolare la "distanza" tra X e Y, ovvero il minimo numero delle seguenti operazioni elementari che permetta di trasformare X in Y

inserisci
$$(a)$$
: Inserisci il carattere a nella posizione corrente della stringa. Cancella il carattere a dalla posizione corrente della

cancella(a): Cancella il carattere a dalla posizione corrente della stringa. Sostituisci il carattere a con il carattere b nella posizione corrente della stringa.

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Esempio

Azione	Costo	Stringa ottenuta	
Inserisco P	1	P RISOTTO	
Mantengo R	0	PR ISOTTO	
Sostituisco I con E	1	PRE SOTTO	
Mantengo S	0	PRES OTTO	
Cancello O	1	PRES TTO	
Mantengo T	0	PREST TO	
Cancello T	1	PREST O	
Mantengo O	0	PRESTO	

Approccio

- Denotiamo con $\delta(X,Y)$ la distanza tra X e Y
- Definiamo X_i il prefisso di X fino all'i-esimo carattere, per $0 \le i \le m$ (X_0 denota la stringa vuota):

$$X_i = x_1 \cdot x_2 \cdot \dots \cdot x_i \text{ se } i \geq 1$$

- Risolveremo il problema di calcolare $\delta(X,Y)$ calcolando $\delta(X_i,Y_j)$ per ogni i, j tali che $0 \le i \le m$ e $0 \le j \le n$
- Manterremo le informazioni in una tabella D di dimensione m × n

Inizializzazione della tabella

- Alcuni sottoproblemi sono molto semplici
- $\delta(X_0, Y_j)=j$ partendo dalla stringa vuota X_0 , basta inserire uno ad uno i j caratteri di Y_j
- $\delta(X_i, Y_0)=i$ partendo da X_i , basta rimuovere uno ad uno gli i caratteri per ottenere Y_0
- Queste soluzioni sono memorizzate rispettivamente nella prima riga e nella prima colonna della tabella D

Avanzamento nella tabella (1/3)

• Se $x_i=y_j$, il minimo costo per trasformare X_i in Y_j è uguale al minimo costo per trasformare X_{i-1} in Y_{i-1}

$$D[i,j] = D[i-1, j-1]$$

• Se $x_i \neq y_j$, distinguiamo in base all'ultima operazione usata per trasformare X_i in Y_j in una sequenza ottima di operazioni

Avanzamento nella tabella (2/3)

 $inserisci(y_i)$:

il minimo costo per trasformare X_i in Y_i è uguale al minimo costo per trasformare X_i in Y_{i-1} più 1 per inserire il carattere y_i

$$D[i,j] = 1 + D[i, j-1]$$

 $cancella(x_i)$:

il minimo costo per trasformare X_i in Y_i è uguale al minimo costo per trasformare X_{i-1} in Y_i più 1 per la cancellazione del carattere x_i

$$D[i,j] = 1 + D[i-1,j]$$

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Avanzamento nella tabella (3/3)

 $sostituisci(x_i, y_i)$:

il minimo costo per trasformare X_i in Y_i è uguale al minimo costo per trasformare X_{i-1} in Y_{i-1} più 1 per sostituire il carattere x_i per y_i

$$D[i,j] = 1 + D[i-1, j-1]$$

In conclusione:

$$D[i,j] = \begin{cases} D[i-1,j-1] & \text{se } x_i = y_j \\ 1 + \min\{D[i,j-1], D[i-1,j], D[i-1,j-1]\} & \text{se } x_i \neq y_j \end{cases}$$

Pseudocodice

```
algoritmo distanzaStringhe(stringa\ X, stringa\ Y) 
ightarrow intero
  matrice D di (m+1) \times (n+1) interi
  for i = 0 to m do D[i, 0] \leftarrow i
  for j = 1 to n do D[0, j] \leftarrow j
  for i = 1 to m do
      for j = 1 to n do
         if (x_i \neq y_i) then
             D[i,j] \leftarrow 1 + \min\{D[i,j-1], D[i-1,j], D[i-1,j-1]\}
         else D[i,j] \leftarrow D[i-1,j-1]
  return D[m, n]
```

Tempo di esecuzione ed occupazione di memoria: O(mn)

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Esempio di esecuzione

		P	R	Е	S	T	O
	0	1	2	3	4	5	6
R	1	1	1	2	3	4	5
I	2	2	2	2	3	4	5
S	3	3	3	3	2	3	4
О	4	4	4	4	3	3	3
T	5	5	5	5	4	3	4
T	6	6	6	6	5	4	4
О	7	7	7	7	6	5	4

Consideriamo la tabella D costruita dall'algoritmo.

In grassetto sono indicate due sequenze di operazioni che permettono di ottenere la distanza tra le stringhe

Conclusione

Programmazione dinamica: varie applicazioni: calcolo dei numeri di Fibonacci, distanza tra stringhe, associatività del prodotto tra matrici, cammini minimi tra tutte le coppie di nodi (algoritmo di Floyd e Warshall)