Universidad Tecnológica Nacional Facultad Regional Córdoba Cátedra de Ingeniería y Calidad de Software Docentes: Judith Meles- Laura Covaro

Software Configuration Management (SCM)

. (o más allá del Commit, Update)

Software en contexto

¿Cuándo pensamos en Software... en qué pensamos?

Conjunto de:

- Programas
- Procedimientos
- Reglas
- Documentación
- Datos

El Software

- Información:
 - estructurada con propiedades lógicas y funcionales.
 - creada y mantenida en varias formas y representaciones.
 - confeccionada para ser procesada por computadora en su estado más desarrollado

Elsoftware

Enero

La evolución del software

Problemas

Cambios en el Software

Tienen su origen en:

- Cambios del negocio y nuevos requerimientos
- Soporte de cambios de productos asociados
- « Reorganización de las prioridades de la empresa por crecimiento
- Cambios en el presupuesto
- Defectos encontrados a corregir
- Oportunidades de mejora

SCM como disciplina de soporte

Es una actividad "paragüas", transversal a todo el proyecto, relevante para el producto a lo largo de su ciclo de vida.

Disciplinas de soporte del Software

Aseguramiento de Calidad de Software

Un poco de Historia

Tiene su origen a mediados de 1950s, cuando CM (por Configuration Management) originalmente utilizado para desarrollo de hardware y control de producción, fue utilizado en el desarrollo de software.

Definición

Una disciplina que aplica dirección y monitoreo administrativo y técnico a: identificar y documentar las características funcionales y técnicas de los ítems de configuración, controlar los cambios de esas características, registrar y reportar los cambios y su estado de implementación y verificar correspondencia con los requerimientos

(ANSI/IEEE 828, 1990)

¿Por qué deberíamos gestionar la configuración del software?

Su propósito es establecer y mantener la integridad de los productos de software a lo largo de su ciclo de vida.

Involucra para la configuración:

- Identificarla en un momento dado
- Controlar sistemáticamente sus cambios
- Mantener su integridad y origen

Integridad del Producto

- satisface las necesidades del usuario
- puede ser fácil y completamente rastreado durante su ciclo de vida
- satisface criterios de performance
- cumple con sus expectativas de costo

El software: un blanco móvil

Problemas en el manejo de componentes

- Pérdida de un componente
- Pérdida de cambios (el componente que tengo no es el último)
- Sincronía fuente objeto ejecutable
- Regresión de fallas
- Doble mantenimiento
- Superposición de cambios
- Cambios no validados

Algunos Conceptos Clave para la Gestión de Configuración de Software

Îtem de Configuración de Software (SCI)

Documentos de diseño, código fuente, código ejecutable, etc.

Se llama **ítem de configuración** (IC) a todos y cada uno de los artefactos que forman parte del producto o del proyecto, que pueden sufrir cambios o necesitan ser compartidos entre los miembros del equipo y sobre los cuales necesitamos conocer su estado y evolución.

Algunos ejemplos de Ítems de Configuración

- Plan de CM
- Propuestas de Cambio
- Visión
- Riesgos
- Plan de desarrollo
- Prototipo de Interfaz
- Guía de Estilo de IHM
- Manual de Usuario
- Requerimientos
- Plan de Calidad
- Arquitectura del Software
- Plan de Integración

- Planes de Iteración
- Estándares de codificación
- Casos de prueba
- Código fuente
- Gráficos, iconos, ...
- Instructivo de ensamble
- Programa de instalación
- Documento de despliegue
- Lista de Control de entrega
- Formulario de aceptación
- Registro del proyecto

Versión

- Una versión se define, desde el punto de vista de la evolución, como la forma particular de un artefacto en un instante o contexto dado.
- El control de versiones se refiere a la evolución de un único ítem de configuración (IC), o de cada IC por separado.
- La evolución puede representarse gráficamente en forma de grafo.

Evolución lineal de un ítem de configuración

Variante

- Una variante es una versión de un ítem de configuración (o de la configuración) que evoluciona por separado.
- Las variantes representan configuraciones alternativas.
- Un producto de software puede adoptar distintas formas (configuraciones) dependiendo del lugar donde se instale.
- Por ejemplo, dependiendo de la plataforma (máquina + S.O.) que la soporta, o de las funciones opcionales que haya de realizar o no.

La Configuración del Software

Un conjunto de ítems de configuración con su correspondiente versión en un momento determinado

¿Qué es un Repositorio?

- Un repositorio de información conteniendo los ítems de configuración (ICs)
- Mantiene la historia de cada IC con sus atributos y relaciones.
- Usado para hacer evaluaciones de impacto de los cambios propuestos.
- Pueden ser una o varias bases de datos

Ejemplo de Repositorio...

Funcionamiento del Repositorio

Repositorios Centralizados

- Un servidor contiene todos los archivos con sus versiones.
- Los administradores tiene mayor control sobre el repositorio.
- * Falla el servidor y "estamos al horno".

Repositorios Descentralizados

- Cada cliente tiene una copia exactamente igual del repositorio completo.
- Si un servidor falla sólo es cuestión de "copiar y pegar".
- Posibilita otros workflows no disponibles en el modelo centralizado.

Identificación de la Línea Base

- Se utilizan etiquetas para "marcar" las baseline
- No confundir con la versión del Producto

Líneas Base

- Una configuración que ha sido revisada formalmente y sobre la que se ha llegado a un acuerdo
- Sirve como base para desarrollos posteriores y puede cambiarse sólo a través de un procedimiento formal de control de cambios
- Permiten ir atrás en el tiempo y reproducir el entorno de desarrollo en un momento dado del proyecto

Baseline (Línea Base) Componente Enero Febrero Marzo В Cambio Línea Base 29

Representación de Líneas Base

Pueden ser:

- De especificación (Requerimientos, Diseño)
- De productos que han pasado por un control de calidad definido previamente

Evolución de una configuración

Creación de ramas

- Existe una rama principal (trunk, master)
- Sirven para bifurcar el desarrollo
- Pueden tener razones de creación con semántica
- Permiten la experimentación

Integración de ramas

- La operación se llama merge
- Lleva los cambios a la rama principal
- Pueden surgir conflictos (resolvemos con diff)
- Todas las ramas deberían
 eventualmente integrarse a la
 principal o ser descartadas

Definición de Gestión de Configuración de Software

Una disciplina que aplica dirección y monitoreo administrativo y técnico a: <u>identificar</u> y documentar las características funcionales y técnicas de los <u>ítems de configuración</u>, <u>controlar los cambios</u> de esas características, <u>registrar y reportar los cambios y su estado</u> de implementación y <u>verificar correspondencia con los requerimientos</u>

(ANSI/IEEE 828, 1990)

Actividades Fundamentales de la Gestión de Configuración de Software

Control de Cambios Informes de SCM: Identificación Estado Elementos de Ítems Principales Auditorías de Configuración

de configuración de ítems

Identificación de ítems de configuración

- Identificación unívoca de cada ítem de configuración
- Convenciones y reglas de nombrado
- Definición de la Estructura del Repositorio
- Ubicación dentro de la estructura del repositorio

Ítems de Configuración para un proyecto de desarrollo de software

Producto

- ERS
- Arquitectura
- Código
- Manual de Usuario

Proyecto

- Plan de Proyecto
- Cronograma

Iteración

- Plan de Iteración
- Reporte de Defectos

Control de Cambios

Proceso de Control de Cambios

Control de Cambios

- Tiene su origen en un Requerimiento de Cambio a uno o varios ítems de configuración que se encuentran en una línea base.
- Es un Procedimiento formal que involucra diferentes actores y una evaluación del impacto del cambio

El Comité de Control de Cambios

"Whew! That was close! We almost decided something!"

Está formado por representantes de todas las áreas involucradas en el desarrollo:

- Análisis, Diseño
- Implementación
- Testing
- Otros interesados

 Auditorías de Configuración de Software

Auditoria de Gestión de Configuración

Auditoría Funcional de Configuración

Auditoría Física de Configuración

Auditorias de Configuración

- Auditoría física de configuración (PCA)
 Asegura que lo que está indicado para cada ICS en la línea base o en la actualización se ha alcanzado realmente.
- Auditoría funcional de configuración (FCA) Evaluación independiente de los productos de software, controlando que la funcionalidad y performance reales de cada ítem de configuración sean consistentes con la especificación de requerimientos.

Auditoría de Gestión de Configuración y V&V

Sirve a dos procesos básicos: la validación y la verificación

- Validación: el problema es resuelto de manera apropiada que el usuario obtenga el producto correcto.
- Verificación: asegura que un producto cumple con los objetivos preestablecidos, definidos en la documentación de líneas base (línea base). Todas la funciones son llevadas a cabo con éxito y los test cases tengan status "ok" o bien consten como "problemas reportados" en la nota de release.

Informes de Estado

Registro e Informe de Estado

- « Se ocupa de mantener los registros de la evolución del sistema.
- Maneja mucha información y salidas por lo que se suele implementar dentro de procesos automáticos.
- Incluye reportes de rastreabilidad de todos los cambios realizados a las líneas base durante el ciclo de vida.

Algunas preguntas que podría responder

- ¿Cuál es el estado del ítem?
- ¿Un requerimiento de cambio ha sido aprobado o rechazado por el CCB?
- ¿ Qué versión de ítem implementa un requerimiento de cambio aprobado (saber cuál es el componente que contiene la mejora)?
- ¿Cuál es la diferencia entre una versión y otra dada?

Plan de Gestión de Configuración

También se planifica! Qué debería incluir el plan?

- Reglas de nombrado de los CI
- Herramientas a utilizar para SCM
- Roles e integrantes del Comité
- Procedimiento formal de cambios
- Plantillas de formularios
- Procesos de Auditoría

Evolución de la Gestión de Configuración de Software

Integración, Entrega y Despliegue Continuos

Estrategias de Despliegue Continuo: Blue-Green Deployment

Estrategias de Despliegue Continuo: Canary Deployment

Estrategias de Despliegue Continuo: A/B Testing

Before

Live

V1.0

After

Live

$$V1.0(A) = 71\%$$

V1.2 (C) = 63%

Gestión de Configuración de Software en ambientes Ágiles

Recuerdan... Manifiesto Ágil

SCM en Agile

- Sirve a los practicantes (equipo de desarrollo) y no viceversa.
- Hace seguimiento y coordina el desarrollo en lugar de controlar a los desarrolladores.
- * Responde a los cambios en lugar de tratar de evitarlos.
- Esforzarse por ser transparente y "sin fricción", automatizando tanto como sea posible.
- Coordinación y automatización frecuente y rápida.
- Eliminar el desperdicio no agregar nada más que valor.
- Documentación Lean y Trazabilidad.
- Feedback continuo y visible sobre calidad, estabilidad e integridad

SCM en Agile, algunos tips....

- Es responsabilidad de todo el equipo.
- « Automatizar lo más posible.
- Educar al equipo.
- Tareas de SCM embebidas en las demás tareas requeridas para alcanzar el objetivo del Sprint.

SCM en Agile, para debatir....

- ¿ Qué pasa con el Comité de Control de Cambios?
- ¿ ¿Qué items de configuración podemos tener?
- ¿Qué pasa con las auditorías?
- ¿ Qué pasa con los reportes de estado?

Referencias

- Bersoff, E.H., "Elements of Software Configuration Management",
- IEEE Transactions on Software Engineering, vol 10, nro. 1, enero 1984, pp 79-87
- Little Book of Configuration Management http://www.spmn.com
- SCM & the Agile Manifesto http://www.scmpatterns.com/agilescm/
- Harness.io https://harness.io/blog/continuous-verification/blue-green-canary-deployment-strategies/