lab1 report

B10902105 何珮瑄

Modules

I add new modules below:

Adder

Adder has two inputs data1_in data2_in and one output data_o.

Adder takes two 32-bit binary numbers as inputs (data1_in and data2_in), performs binary addition on them, and outputs the result as a 32-bit binary number on the data_o output port.

ALU Control

ALU Control has two inputs funct i, ALUOp i and one output ALUCtrl o.

ALU takes control signals (funct_i and ALUOP_i) and generates the appropriate control signal for the ALU operation as ALUCTI_o. This control signal specifies the type of operation (e.g., addition, subtraction, bitwise AND, XOR, etc.) to be performed by the ALU based on the input conditions.

ALU

```
ALU has inputs data1_i data2_i ALUCtrl_i, and output data_o
```

It takes two 32-bit binary numbers, performs a specific operation on them based on the control signal (ALUCTT_i), to determine the operation as a 32-bit binary number on the data_o output port.

Control

```
Control has one input op_i and outputs ALUOP_O, ALUSTC_O, RegWrite_O
```

It generates control signals (ALUOP_O, ALUSTC_O, REGWrite_O) based on the input opcode Op_i, determining the type of ALU operation, the source of data for the ALU operation, and whether data should be written back to registers

lab1 report

MUX32

MUX32 has inputs data1_i data2_i select_i and output data_o

MUX32" module is a 32-bit multiplexer that takes two 32-bit data sources (data1_i and data2_i) and selects one of them based on the control signal (select_i). The selected data is then provided as the output on the data_o.

Sign_Extend

one input data_i and one output data_o

[{20{data_i[11]}}] creates a 20-bit concatenation of the most significant bit (data_i[11]), and concatenation with the original data_i[11:0]. Sign_Extend module takes a 12-bit input, sign-extends it to 32 bits, and provides the sign-extended output on the data_o

CPU

Finally, the CPU connects these components together as the final data path given in the spec.

Development Environment:

macOS & iverilog

lab1 report