Програмування

ТЕМА 5. СИМВОЛИ ТА РЯДКИ

Символи та коди

Алфавітом *Ch* назвемо множину символів.

До цієї множини входять латинські букви, арабські цифри, спеціальні математичні і інші символи, розділові знаки, символи національних алфавітів.

Для збереження у пам'яті комп'ютера кожному символу повинно бути співставлене деяке число, яке називають кодом символа.

Стандарти кодування символів

Назва	Кіль- кість кодів	Діапа- зон кодів	Символи	Особливості
ASCII	128	0 - 127	латинські літери, цифри, розділові знаки, дужки	Всі цифри йдуть підряд, латинські літери впорядковані за алфавітом
CP866U	256	0 - 255	ASCII + кирилиця	Символи російської абетки впорядковані за алфавітом, але не всі йдуть підряд
ANSI	256	0 - 255	ASCII + символи національних алфавітів	символи національних алфавітів вказані у «кодових сторінках» по 128 символів. Сторінка для кирилиці - 1251
KOI-8	256	0 - 255	ASCII + кирилиця	Символи кирилиці не впорядковані за алфавітом

Стандарт Unicode

Unicode – це універсальний стандарт для кодування всіх символів

UCS (universal character set) Ta UTF (Unicode transformation format)

Будемо використовувати позначення кодів у системі числення за основою 16 наступним чином:

0xhhhh,

де hhhh – число у системі числення за основою 16.

Спочатку у Unicode було 65 536 (2^{16}) символів.

Потім частину кодів — від 0xD800 до 0xDFFF — виділили для розширення так, що додаткові символи позначаються двохбайтними так званими сурогатними парами.

Стандарт Unicode.2

Зараз вважають, що коди просто можуть мати 6 цифр у системі числення за основою 16 (від 0х000000 до 0х10FFFF).

€ 17 кодових площин (planes) по 65 536 символів (у нульовій площині мінус 2048 символів)

Загальна потенційна кількість символів

 $65\ 536 * 17 - 2048 = 1\ 112\ 064.$

На сьогодні у 10 версії Unicode зайнято біля 137 000 кодових позицій.

Символ у Unicode позначається U+hhhh (або U+hhhhh або U+hhhhhh), де hhhh — код символа у системі числення за основою 16.

UTF-8

Формат представлення зі змінною кількістю байтів на символ.

ASCII – символи кодуються одним байтом так само, як і у ASCII.

Інші символи – від 2 до 4 байтів

Unicode UTF-8:

Діапазон кодів

Байти

0x0000000 — 0x0000007F: 0xxxxxxx

0x00000080 — 0x000007FF: 110xxxxx 10xxxxxx

0x00000800 — 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx

0x00010000 — 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Тут ххххххх – це окремі біти, які можуть набувати значення 0 або 1

UTF-16 ta UTF-32

UTF-16

- Символи представляються 2 байтами, окрім символів, які представляються сурогатними парами
- UTF-16BE в цьому представленні старший байт іде спочатку
- UTF-16LE в цьому представленні молодший байт іде спочатку
- ВЕ та LE означають big-endians та little-endians. У перекладі «тупокінечники» та «гострокінечники».

UTF-32

- Всі символи представляються 4 байтами
- UTF-32BE та UTF-32LE аналогічно UTF-16BE та UTF-16LE

UTF-16 та UTF-32 ВЕ та LE

Символи y Python

У Python за угодою символи представлені у форматі UTF-8.

Для перетворення символів з/в інші стандарти кодування передбачені дії кодування (encoding) та декодування (decoding).

Рядки

носій

Визначимо множину слів у алфавіті Ch, яку позначимо W, наступним чином:

- 1. Порожне слово $\Lambda \in W$
- Якщо A ∈ W, c ∈ Ch, то Ac ∈ W, де Ac − результат приписування символа с праворуч до слова A.

Нехай len(A) — довжина слова A, або кількість символів у слові A.

Тоді позначимо

$$W_n = \{A: A \in W, len(A) \le n\}$$

Ця множина W_n і є носієм типу рядок.

У Python обмеження n, як і для цілих чисел, залежить тільки від об'єму доступної пам'яті.

Рядки-константи

Константи-рядки, як і було вже сказано, беруться у

```
• апострофи ' '
```

- подвійні лапки " "
- потрійні апострофи "" "
- потрійні подвійні лапки """ """

Порожній рядок позначається " (або "").

Основні операції над рядками

Операція	Опис
ord(c)	Код символа с
chr(n)	Символ з кодом n (точніше, - рядок з 1 символа з кодом n)
str(x)	Перетворення х у рядок
s+t	конкатенація s та t
s * n або n * s	n зчеплених копій s
s[i]	i-й символ s, починаючи з 0 (точніше, - рядок з 1 i-го символа),
	якщо i < 0, то повертає (-i) символ з кінця рядка
s[i:j]	Вирізка з s від і до j (підрядок, що починається з і –го символа та
	закінчується ј -1 символом)
s[i:j:k]	Вирізка з s від і до j з кроком k
len(s)	довжина s
min(s)	Найменший символ рядка s
max(s)	Найбільший символ рядка s
s.index(x[, i[, j]])	Індекс першого входження х до s (починаючи з індекса і та
	перед індексом ј)
s.count(x)	Кількість входжень х до s

Відношення для символів

Для символів визначені 6 стандартних відношень з множини

При цьому, якщо c_1, c_2 — символи, $r \in Rel$, то

$$c_1 r c_2 \equiv \operatorname{ord}(c_1) r \operatorname{ord}(c_2)$$

Відношення для рядків

Визначено 6 стандартних відношень з множини Rel.

- Відношення а == b означає попарну рівність всіх символів з двох рядків а, b.
- Відношення a < b визначається рекурсивно:
- 1. Якщо a == ", b != ", то a < b == True
- 2. Якщо b == ", то a < b == False
- 3. Якщо a != ", b != ", a[0] != b[0] то a < b ≡ a[0] < b[0]
- 4. Якщо a != ", b != ", a[0] == b[0] то a < b \equiv a[1:] < b[1:]
- Інші відношення з множини *Rel* визначається через бульові операції та відношення == та <.

Окрім відношень з множини *Rel*, для рядків визначено ще 2 відношення:

```
x in a, x not in a
```

∘ де x – символ (чи рядок), а – рядок.

x in a == True, коли х входить у а

x not in a == True, коли x не входить y a

Інструкції для рядків

Визначено присвоєння, введення та виведення

```
a = e, a = input(S), print(a)
```

Визначено також цикл по всіх символах рядка з лічильником - символом

```
for x in a:

P
```

Рядки є такими, що не змінюються (immutable). Це означає, що вже існуючий рядок змінити не можна.

Так, s = s + t створює новий рядок, який є конкатенацією s та t.

Приклади

Показати всі символи у діапазоні від a до b разом з їх кодами

Обчислити кількість входжень символа *а* у рядок *s*

Рядки як послідовності

Рядки у Python є одним з типів послідовностей.

Послідовності складаються з елементів. Для рядків цими елементами є символи.

До послідовностей відносяться також раніше розглянуті діапазони (range) та списки і кортежі, які будуть розглянуті пізніше.

Визначені вище операції для рядків (окрім ord та chr) а також відношення in та not in є спільними для всіх типів послідовностей.

Спільним також є цикл

```
for x in a:

P
```

Вирізки

Вирізки (slices) також визначені для всіх типів послідовностей

Вирізки задають частину послідовності.

Повний формат

s[i:j:k], що означає елементи від і-го до (j-1) з кроком k

Наприклад, якщо s == 'abcd',

Якщо опущено k, то вважається, що k == 1. Якщо k опущено, то не вказують також другу ':'.

Якщо опущено і, то вважається, що і == 0.

Якщо опущено j, то вважається, що j == len(s).

Так, у попередньому прикладі s[:3] == 'abc', s[2:] == 'cd'. S[:] == 'abcd'.

к може набувати також від'ємних значень. Це означає вибір елементів послідовності справа наліво.

Наприклад, s[::-1] == 'dcba'

Escape-послідовності

Escape-послідовності призначені для завдання спеціальних символів у рядках.

Escape-	Значення
послідовність	
\<новий рядок>	Ігнорується (продовження рядка на наступний)
\\	Обернена коса риска(зберігає ∖)
Λ'	Апостроф (зберігає ')
\"	Подвійні лапки (зберігає ")
\a	Дзвінок
\b	Крок назад
\f	Завершення форми
\n	Кінець рядка
\r	Повернення каретки
\t	Табуляція
\v	Вертикальна табуляція

Escape-послідовності.2

Escape-	Значення
послідовність	
\xhh	Символ зі значенням hh (рівно 2 цифри) у системі числення
	за основою 16
\000	Символ зі значенням ооо (до 3 цифр) у вісімковій системі
	числення
\0	Null: двйковий 0-символ (не завершує рядок)
\uhhhh	Символ Unicode з 16-бітним значенням у системі числення за
	основою 16
\Uhhhhhhhh	Символ Unicode з 32-бітним значенням у системі числення за
	основою 16
\<інше>	He є escape-послідовністю (зберігає \ та <інше>)

Приклади

Перевірити, чи є рядок симетричним

Замінити всі входження у перший рядок s другого рядка с третім рядком s1

Додаткові функції для рядків

Функція	Опис
s.capitalize()	Повертає копію рядка s, у якій перший символ – велика
	літера, а інші — маленькі.
s.center(width[, fillchar])	Повертає s, центрований у рядку довжини width. Початок
	та кінець рядка заповнюються символом fillchar (за угодою
	- пропуск).
s.endswith(suffix[, start[,	Повертає True, якщо рядок s завершується суфіксом suffix.
end]])	Якщо вказано start, end, то перевіряється s[start:end]
s.expandtabs(tabsize=8)	Повертає копію рядка s, у якій всі символи табуляції ('\t')
	замінюються визначеною кількістю пропусків, в залежності
	від поточної позиції.
s.find(sub[, start[, end]])	Повертає найменший індекс входження sub у s. Якщо
	вказано start, end, то перевіряється s[start:end] Повертає -1
	якщо sub не знайдено.
s.format(*args, **kwargs)	Виконує форматування рядка. Замість полів підстановки '{
	}' вставляються аргументи.

Додаткові функції для рядків.2

Функція	Опис
s.isalnum()	Повертає True, якщо всі символи рядка s є літерами або цифрами.
s.isalpha()	Повертає True, якщо всі символи рядка s є літерами.
s.isdigit()	Повертає True, якщо всі символи рядка s є цифрами.
s.isidentifier()	Повертає True, якщо рядок s є ідентифікатором.
s.islower()	Повертає True, якщо всі літери рядка s у нижньому регістрі
s.isnumeric()	Повертає True, якщо всі символи рядка s є числовими.
s.isprintable()	Повертає True, якщо всі символи рядка s є друкованими.
s.isspace()	Повертає True, якщо всі символи рядка s є пропусками.
s.istitle()	Повертає True, якщо рядок s є заголовком (усі слова починаються з
	великої літери).
s.isupper()	Повертає True, якщо всі літери рядка s у верхньому регістрі
s.ljust(width[,	Повертає s, вирівняний по лівому краю у рядку довжини width. Кінець
fillchar])	рядка заповнюються символом fillchar (за угодою - пропуск).
s.lower()	Повертає копію рядка s, у якій всі літери рядка s переведені до
	нижнього регістру

30.10.2017

Додаткові функції для рядків.3

Функція	Опис
s.lstrip([chars])	Повертає копію рядка s, в якій ліворуч видалено символи,
	що входять у chars (за угодою – пропуски)
s.replace(old, new[, count])	Повертає копію рядка s, в якій всі входження рядка old
	замінюються new. Якщо задано count, то замінюється не
	більше count входжень
s.rfind(sub[, start[, end]])	Повертає найбільший індекс входження sub y s. Якщо
	вказано start, end, то перевіряється s[start:end] Повертає -1
	якщо sub не знайдено.
<pre>s.rindex(sub[, start[, end]])</pre>	Te ж саме, що rfind(), однак дає помилку, якщо sub не
	знайдено.
s.rjust(width[, fillchar])	Повертає s, вирівняний по правому краю у рядку довжини
	width. Початок рядка заповнюються символом fillchar (за
	угодою - пропуск).
s.rstrip([chars])	Повертає копію рядка s, в якій праворуч видалено
	символи, що входять у chars (за угодою – пропуски)

Додаткові функції для рядків.4

Функція	Опис
s.strip([chars])	Повертає копію рядка s, в якій ліворуч та праворуч
	видалено символи, що входять у chars (за угодою –
	пропуски)
s.swapcase()	Повертає копію рядка s, в якій маленькі літери змінені на
	великі та навпаки.
s.title()	Повертає копію рядка s у форматі заголовку (усі слова
	починаються з великої літери).
s.upper()	Повертає копію рядка s у форматі з усіма великими
	літерами.
s.zfill(width)	Повертає копію рядка s, в якій зліва вставлені символи '0'
	так, щоб загальна довжина рядка дорівнювала width. Якщо
	присутній знак + або -, він зберігається на початку рядка.

Приклад

Перевірити, чи є рядок присвоєнням вигляду

<змінна> = <ціле_число>

Резюме

Ми розглянули:

- 1. Символи. Стандарти кодування символів.
- Unicode. Кодування символів у Unicode та формати представлення символів.
- 3. Рядки: носій, операції, відношення та інструкції.
- 4. Рядки як послідовності
- 5. Вирізки та їх використання.
- Додаткові функції для рядків.

Де прочитати

- 1. Обвінцев О.В. Інформатика та програмування. Курс на основі Python. Матеріали лекцій. К., Основа, 2017
- 2. A Byte of Python (Russian) Версия 2.01 Swaroop C H (Translated by Vladimir Smolyar), http://wombat.org.ua/AByteOfPython/AByteofPythonRussian-2.01.pdf
- 3. Бублик В.В., Личман В.В., Обвінцев О.В.. Інформатика та програмування. Електронний конспект лекцій, 2003 р.,
- 4. Марк Лутц, Изучаем Python, 4-е издание, 2010, Символ-Плюс
- 5. Python 3.4.3 documentation
- 6. https://docs.python.org/3/howto/unicode.html
- 7. http://unicode-table.com/ru/
- 8. http://www.joelonsoftware.com/articles/Unicode.html (переклад російською http://local.joelonsoftware.com/wiki/%D0%90%D0%B1%D1%81%D0%BE%D0%BB%D1%8E%D1%82%D0%BD%D1 %8B%D0%B9 %D0%9C%D0%B8%D0%BD%D0%B8%D0%BC%D1%83%D0%BC, %D0%BA%D0%BE%D1%82%D0%BE %D1%80%D1%8B%D0%B9 %D0%9A%D0%B0%D0%B6%D0%B4%D1%8B%D0%B9 %D0%A0%D0%B0%D0%B7%D1 %80%D0%B0%D0%B1%D0%BE%D1%82%D1%87%D0%B8 %D0%9F%D1%80%D0%BE%D0%B3%D1%80% D0%B0%D0%BC%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE %D0%9F%D1%80%D0%B5%D1%81%D0%BF%D0%B 5%D1%87%D0%B5%D0%B0%D0%B8%D1%8F %D0%9E%D0%B1%D1%8F%D0%B7%D0%B0%D1%82%D0%B5%D0 %BB%D1%8C%D0%BD%D0%BE %D0%94%D0%BE%D0%BB%D0%B6%D0%B5%D0%BD %D0%97%D0%BD%D0%B0 %D1%82%D1%8C %D0%BE Unicode %D0%B8 %D0%9D%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%85 %D0%A1%D0%B8%D0%BC%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2)
- 9. https://ru.wikipedia.org/wiki/%D0%AE%D0%BD%D0%B8%D0%BA%D0%BE%D0%B4