Universidade Federal de Minas Gerais Departamento de Matemática - ICEX

Análise II - 2021

Lista 2 - Teorema da Função Inversa e Implícita

- 1. Seja $g: U \to \mathbb{R}^k$ diferenciável em $U \subset \mathbb{R}^m$. Defina $\zeta: U \to \mathbb{R}^k$ pondo $\zeta(x) = g(x)/|f(x)|$, onde $f: U \to \mathbb{R}^n$ é diferenciável e $f(x) \neq 0$ para todo $x \in U$. Calcule $\zeta'(x) \cdot v$, para todo $x \in U$ e $v \in \mathbb{R}^m$.
- 2. Sejam $U \subset \mathbb{R}^m$ aberto, $\varphi : U \times [a,b] \to \mathbb{R}^n$ contínua, com derivada parcial contínua $\partial_1 \varphi : U \times [a,b] \to \mathcal{L}(\mathbb{R}^m;\mathbb{R}^n)$, e $\alpha,\beta:U \to [a,b]$ funções de classe C^1 . Considere a aplicação $f:U \to \mathbb{R}^n$, definida por

$$f(x) = \int_{\alpha(x)}^{\beta(x)} \varphi(x, t) dt.$$

Prove que $f \in C^1$ e calcule $f'(x) \cdot h$ para $x \in U$ e $h \in \mathbb{R}^m$ arbitrários.

3. Se $f: \mathbb{R}^n \to \mathbb{R}$ é diferenciável e f(0) = 0, prove que existem funções $g_i: \mathbb{R}^n \to \mathbb{R}$ para $i = 1, \dots, n$ tal que

$$f(x_1, \dots, x_n) = \sum_{i=1}^n x_i g_i(x_1, \dots, x_n).$$

4. Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é homogênea de grau m se $f(tx) = t^m f(x)$ para todo $x \in \mathbb{R}^n$ e todo $t \in \mathbb{R}$. Se f é diferenciável, mostre que

$$\sum_{i=1}^{m} x_i \frac{\partial f}{\partial x_i}(x) = mf(x).$$

- 5. Seja $f: U \to \mathbb{R}^n$ de classe C^k $(k \ge 1)$ no aberto $U \subset \mathbb{R}^m$. Se, num ponto $a \in U$, a derivada $f'(a): \mathbb{R}^m \to \mathbb{R}^n$ tem posto p, então existe um mergulho $\varphi: V \to U$ de classe C^k , definido num aberto $V \subset \mathbb{R}^p$, tal que $f \circ \varphi: V \to \mathbb{R}^n$ é um mergulho.
- 6. Se $U \subset \mathbb{R}^m$ aberto. Se a função diferenciável $f: U \to \mathbb{R}$ cumpre a condição de Lipschitz $|f(x) f(y)| \le c|x-y|$ então $|df(x) \cdot v| \le c|v|$ para $x \in U$ e $v \in \mathbb{R}^m$.
- 7. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ duas vezes diferenciável. Suponga que $\frac{\partial f}{\partial y^2} = c^2 \frac{\partial f}{\partial x^2}$ em todos os pontos de \mathbb{R}^2 , onde c é uma constante. Prove que existem funções $\varphi: \mathbb{R} \to \mathbb{R}$, $\psi: \mathbb{R} \to \mathbb{R}$, duas vezes diferenciáveis, tais que $f(x,y) = \varphi(x-cy) + \psi(x+cy)$.
- 8. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 , com $\frac{\partial f}{\partial y} \neq 0$, e $\zeta: I \to \mathbb{R}$ tal que $f(x, \zeta(x)) = 0$ para todo $x \in I$. Prove que ζ é de classe C^1 .
- 9. Seja $f: U \to \mathbb{R}$ contínua no aberto $U \subset \mathbb{R}^2$, tal que $(x^2 + y^4)f(x, y) + f(x, y)^3 = 1$ para qualquer $(x, y) \in U$. Prove que $f \in C^{\infty}$.
- 10. Sejam $f, g : \mathbb{R}^n \to \mathbb{R}$ tais que $g(x) = f(x) + (f(x))^5$. Se $g \in \mathbb{C}^r$ então $f \in \mathbb{C}^r$.
- 11. Sejam $f: U \to \mathbb{R}^n$ Lipschitziana no aberto $U \subset \mathbb{R}^m$, com $a \in U$, e $g: V \to \mathbb{R}^p$ diferenciável no aberto $V \subset \mathbb{R}^n$, com $f(U) \subset V$ e b = f(a). Se g'(b) = 0 então $g \circ f: U \to \mathbb{R}^p$ é diferenciável no ponto a, com $(g \circ f)'(a) = 0$.
- 12. Seja $f:U\to\mathbb{R}^m$ diferenciável no aberto $U\subset\mathbb{R}^m$. Se |f(x)| é constante quando x varia em U então o determinante do jacobiano de f é identicamente nulo.
- 13. Seja $f: \mathbb{R}^m \to \mathbb{R}^m$ de classe C^1 tal que para cada $x, v \in \mathbb{R}^m$ quaisquer tem-se $\langle f'(x) \cdot v, v \rangle \geq |\alpha| |v|^2$, onde $\alpha > 0$ é uma constante. Prove que $|f(x) f(y)| \geq \alpha |x y|$ para todo $x, y \in \mathbb{R}^m$ arbitrários. Conclua que $f(\mathbb{R}^m)$ é fechado, e daí, que f é um difeomorfismo de \mathbb{R}^m sobre si mesmo.
- 14. Prove o Lema de Morse (veja o Elon Lima Vol 2. página 285): Seja a um ponto crítico não-degenerado de uma função $f:U\to\mathbb{R}$ de classe C^k $(k\geq 3)$ num aberto $U\subset\mathbb{R}^n$. Existe um sistema de coordenadas $\zeta:V\to W$, de classe C^{k-2} , com $a\in W\subset U$, $0\in V$ e $\zeta(0)=a$, tal que

$$f \circ \zeta(y) = f(a) + \sum_{i,j=1}^{m} a_{ij} y_i y_j$$

para todo $y = (y_1, \dots, y_n) \in V$, onde $a_{ij} = \frac{1}{2} \cdot \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$.

Professor Arturo Fernández - Livro E. Lima e M. Spivak.