

Основы искусственного интеллекта

Лекция 2

Основы прикладной математики для машинного обучения

к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Основные величины в линейной алгебре (ЛА) и операции над ними

Матрица (M_a) – прямоугольная таблица чисел с компонентами a_{ij}

$$\mathbf{M}_{\mathsf{a}} = \left(\left(\mathbf{a}_{ij} \right) \right)$$
 или $\mathbf{M}_{\mathsf{a}} = \left(\mathbf{a}_{ij} \right)$

Понятие *тензорной* величины в ЛА отождествляется с ее физическими и геометрическими аналогами

Физические аналоги: ?

$$a_i' = \alpha_{ij}a_j$$

Физические аналоги: ?

Тензором второго ранга (тензором) в N-мерном пространстве называется математическая величина, характеризуемая N^2 компонентами a_{ij} , каждая из которых при повороте множества координат с помощью матрицы косинусов преобразуется по закону:

$$\mathbf{a}'_{ij} = \alpha_{ip}\alpha_{jq}\alpha_{pq}$$

Физические аналоги: ?

$$T_a = (a_{ijk})$$

В машинном обучении тензор отождествляется с многомерным массивом*!!!

^{*} Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. – 2-е изд., испр. – М.: ДМК Пресс, 2018. – 652с.

Форма записи. Правило Эйнштейна и исключение Лурье.

```
{
m M_a} = (a_{ij}) — матрица {
m M_a} с компонентами a_{ij} i — номер строки j — номер столбца
```

Правило Эйнштейна: если в одночлене (например, a_ib_i или kf_k , или c_id_i и т.п.), содержащем индексированные переменные, встречаются повторяющиеся индексы или одинаковые с индексами буквы, то по этим индексам или индексам и буквам производится суммирование. Например:

Исключение Лурье: суммирование в одночлене по повторяющимся индексам или индексам и одинаковым с ними буквам не производится, если такие индексы или буквы в любом виде встречаются с обеих сторон знака равенства (неравенства, тождества и т.п.) в уравнениях или равенствах (неравенствах, тождествах и т.п.). Например:

Основные алгебраические операции над матрицами в ЛА

Операция	Матричная форма	Скалярная форма*	Примечание
Умножение матрицы на скаляр	$\lambda \mathbf{M}_{\mathrm{a}}$	λa_{ij}	
Транспонирование	$\mathbf{M}_c = \mathbf{M}_{\mathrm{a}}^T$	$c_{ij} = a_{ji}$	
Сложение (вычитание) матриц одинаковой размерности	$\mathbf{M}_c = \mathbf{M}_{\mathrm{a}} \pm \mathbf{M}_b$	$c_{ij} = a_{ij} \pm b_{ij}$	$\mathbf{M}_{a[m \times n]}, \mathbf{M}_{b[m \times n]}, \mathbf{M}_{c[m \times n]}$

Основные алгебраические операции над матрицами в ЛА

Операция	Матричная форма	Скалярная форма*	Примечание
Умножение матриц	$\mathbf{M}_c = \mathbf{M}_a \mathbf{M}_b$	$c_{ij} = a_{ik}b_{kj}$	$\mathbf{M}_{a[m \times p]}, \mathbf{M}_{b[p \times n]}, \mathbf{M}_{c[m \times n]}$ Операция не коммутативна!!!

Пример: Найти произведение матриц, используя покомпонентную форму записи: $c_{ij}=a_{ik}b_{kj}$

Основные алгебраические операции над матрицами в ЛА

Операция	Матричная форма	Скалярная форма*	Примечание
Определитель матрицы	$c = \mathbf{M}_{a} $ $c = \mathbf{M}_{a_{[2 \times 2]}} $ $c = \mathbf{M}_{a_{[3 \times 3]}} $	$c = \in_{ij3} a_{1i} a_{2j}$ $c = \in_{ijk} a_{1i} a_{2j} a_{3k}$	c — скаляр, \in_{ijk} - символ Леви-Чивиты

Пример: Найти определитель матрицы [3x3], используя покомпонентную форму записи: $c = \in_{ijk} a_{1i}a_{2j}a_{3k}$

Тензорная и скалярная (покомпонентная) форма записи

Величина	Тензорная форма	Скалярная форма
Тензор нулевого ранга (скаляр)	$\mathbf{\tilde{T}}=a$	a
Тензор первого ранга (вектор)	$\mathbf{\tilde{T}_a} = \vec{a} = \llbracket a_i rbracket$	a_i $i = 1, \dots n$
Тензор второго ранга	$\mathbf{T}_{\mathbf{a}} = \llbracket a_{ij} \rrbracket$	a_{ij}
Тензор третьего ранга	$\mathbf{T}_a = \llbracket a_{ijk} rbracket$	a_{ijk}
•••		

Основные операции над тензорами в ЛА

	Операция	Тензорная форма	Скалярная форма*	Примечание
скалярное кторов	Умножение тензора на скаляр	$\lambda \mathbf{T}_{\mathrm{a}}$	$\lambda a, \ \lambda a_i, \ \lambda a_{ij}, \ \dots$	для тензора нулевого ранга, для тензора первого ранга, для тензора второго ранга,
	Транспонирование	$\boldsymbol{T}_{c} = \mathbf{T}_{a}^{T}$	$c_{ij} = a_{ji}$	
	Сложение (вычитание) тензоров одного ранга одинаковой размерности	$\mathbf{T}_c = \mathbf{T}_a \pm \mathbf{T}_b$	$c_{ij} = a_{ij} \pm b_{ij}$	$T_{a[m \times n]}, T_{b[m \times n]}, T_{c[m \times n]}$ аналогично для тензоров любого ранга одинаковой размерности
калярное зоров	Скалярное произведение тензоров одного ранга	$c = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$ $c = \mathbf{T}_{\mathbf{a}} \cdot \mathbf{T}_{\mathbf{b}}$	$c = a_i b_i$ $c = a_{ij} b_{ij}$	с - скаляр
	Скалярное произведение тензоров различного ранга	$\mathbf{T}_c = \mathbf{T}_{\mathrm{a}} \cdot \mathbf{T}_{b}$	$r_a = 2, r_b = 3: c_k = a_{ij}b_{ijk}$	$r = \begin{cases} r_b - r_a & \text{if } r_a < r_b \\ r_a - r_b & \text{if } r_b < r_a \end{cases}$
		$\mathbf{T}_d = \mathbf{T}_b \cdot \mathbf{T}_a$	$r_a = 2, r_b = 3 : d_k = b_{ijk} a_{jk}$	Операция не коммутативна!!!

Пример: Найти скалярное произведение векторов

Пример: Найти скалярное произведение тензоров

Основные операции над тензорами в ЛА

Операция	Тензорная форма	Скалярная форма*	Примечание
Тензорное произведение тензоров	$\mathbf{T}_{c}^{\mathbf{z}} = \mathbf{T}_{a}^{\mathbf{z}_{a}} \otimes \mathbf{T}_{b}^{\mathbf{z}_{a}}$	$c_{ij} = a_i b_j$ $c_{ijk} = a_{ij} b_k$	$r = r_a + r_b$
Векторное произведение тензоров первого	$\vec{c} = \vec{a} \times \vec{b}$	$c_{\mathbf{i}} = \in_{ijk} a_{j} a_{k}$	\in_{ijk} - символ Леви-Чивиты

Пример: Найти тензорное произведение тензоров

Понятие градиента скалярной и векторной функции

$$f = f(X)$$
 - скалярная функция, $X = (x_i)$, $i = 1, ... n$

$${\pmb F} = {\pmb F}({\pmb X})$$
 - векторная функция, ${\pmb X} = (x_i)$, $i = 1, ... n$

$$\nabla = \left[\frac{\partial}{\partial x_i}\right]$$
 — оператор Гамильтона, $i = 1, ... n$

Операция	Тензорная форма	Скалярная форма*	Примечание
Градиент скалярной функции	$\nabla f(x)$	$\left[\!\!\left[\frac{\partial f}{\partial x_i}\right]\!\!\right]$	i = 1, n результат - вектор
Градиент векторной функции	$ abla\!$	$\left[\!\!\left[\frac{\partial F_j}{\partial x_i}\right]\!\!\right]$	i=1,n, j=1,n результат — тензор 2го ранга
Производная векторной функции по векторному аргументу	$F \otimes \nabla$	$\left[\!\!\left[rac{\partial F_i}{\partial x_j} ight]\!\!\right]$	i=1,n, j=1,n результат — тензор 2го ранга

Пример: градиент функции $f(X) = 2x_1 + x_1x_2^2$

Пример: градиент функции
$$F(X) = \begin{bmatrix} 2x_1 + x_2^2 \\ x_1x_2 \end{bmatrix}$$

X4 X3 X2 X1

Основы прикладной математики для машинного обучения

Метод градиентного спуска

$$f=f(\textbf{\textit{X}})$$
 - скалярная функция, $\textbf{\textit{X}}=\left(x_{j}\right)$, $i=1,\ldots n$

 $f_{min} = f(X^*)$ - минимум (экстремум) функции, X^* - точка минимума (экстремума)

Инициализация:

- α шаг градиентного спуска (скорость обучения);
- $X^0 = (x_i^0)$ начальное приближение точки минимума;
- $f^0 = f(X^0)$ начальное значение экстремума;
- $\nabla f^0 = \left[\frac{\partial f(X)}{\partial x_i} \right]^0$ значение градиента в начальной точке.

Градиентный спуск:

- Шаг градиентного спуска:

$$x_j^{l+1} = x_j^l - \alpha \frac{\partial f}{\partial x_j}|_l$$
 или $X^{l+1} = X^l - \alpha |\nabla f|_l$

- Компоненты градиента и значение функции на текущем шаге l:

$$\nabla f^{l+1} = \left[\frac{\partial f(X)}{\partial x_i} \right]^{l+1}, \qquad f^{l+1} = f(X_j^{l+1})$$

Условие останова:

opt =
$$[X^{l+1}, f^{l+1}]$$
 if $\|\nabla f^{l+1}\| < \varepsilon$

