# Estimate Variances of Model Parameters Using Perturbed SSE Curve Fitting (PSCF) Method

Client: Prof. Robert Hayes

Department of Nuclear Engineering, North Carolina State University

Team: Chien-Lan Hsueh

Department of Statistics, North Carolina State University

#### **NC STATE UNIVERSITY**

### **Outline**

- > Introduction
  - Background
  - Research Questions
  - Research Methods
- Perturbed SSE Curve Fitting (PSCF) Method
  - Proposed Algorithm and Its Applications
  - > Implementation
  - Fitting Strategies
  - > Results
- Statistical Methods
  - Non-Linear Regression Model
  - Bootstrap Confidence Intervals
  - Delta Method Normality
- Comparison of Estimation
- > Conclusion

### Introduction

- > To model a physical process, we often need to estimate the model parameters using the measurement data.
  - ➤ We are interested in not only the point estimates but also the uncertainties associated with them.
- > Our client, Prof. Robert Hayes (Department of Nuclear Engineering, NCSU), has developed an algorithm to estimate such uncertainties.
- ➤ He would like to know if this method is valid, how well does it estimate and if it can be backed up by statistics theory.

# **Background**

- The research of retrospective dosimetry involves measurements of radiation dosages and inferences of the actual radiation exposures
- ➤ A direct radiation measurement on the subjects provides an accurate depth profile measurement
  - But it is costly and time consuming. Sometimes, it can be dangerous to do.
- > Therefore, Prof. Hayes has developed a new method:
  - 1. Analyze forensic luminescence data that is high correlated to the actual radiation dosage
  - 2. Fit the dose deposition profile using Monte Carlo n-particle method (MCNP)
  - 3. With the obtained best fitted model parameter as a reference, a series of "perturbed" model fittings is then used in a normal curve fitting to estimate the variance of the parameter

### **Research Questions**

- 1. How good the algorithm is in term of determining the variances of physical model parameters?
- 2. If there is a solid statistics ground to support and backup the validity of this method?
- 3. If yes in (2), can it be improved and further generalized to any physical models?
- 4. If no in (2), how well does it estimate as an approximation approach?

### **Research Methods**

- In this study, we implement the algorithm and investigate how well dose it estimate a model parameter's standard deviation.
- ➤ We also compare it with other statistical methods:
  - 1. Nonlinear Regression Model
  - 2. Bootstrap Confidence Intervals
    - Parametric bootstrap
    - Non-parametric bootstrap
  - 3. Delta Method Normality

# Perturbed SSE Curve Fitting Method

1. Measurements of forensic luminescence



2. MCNP fitting to obtain the best-fit parameter  $\lambda$ 



3. "Perturbed" the best-fit parameter  $\lambda$  for SSE curve

4. Inverse the SSE curve



5. Estimate  $\hat{\sigma}^2$  by fitting a Gaussian curve

# Case Study - Radiation Decay



http://www.sprawls.org/ppmi2/RADPEN/



## **Gaussian Curve Fit**



# **Challenges of PSCF Method**

- 1. How to inverse  $SSE(\lambda)$ ?
- 2. Fitting range to consider?
  - > How wide?
  - Location of fitting range?

Inverse SSE curve Fit a Gaussian curve



# **Challenges of PSCF Method**

- 1. How to inverse  $SSE(\lambda)$ ?
- 2. Fitting range to consider?
  - ➤ How wide?
  - Location of fitting range?

Inverse SSE curve Fit a Gaussian curve



# **Challenges of PSCF Method**

- 1. How to inverse  $SSE(\lambda)$ ?
- 2. Fitting range to consider?
  - ➤ How wide?
  - ➤ Location of fitting range?

Inverse SSE curve Fit a Gaussian curve



#### **NC STATE UNIVERSITY**

# **Objective Function**

- 1. How to inverse  $SSE(\lambda)$ ?
- 2. Fitting range to consider?
  - ➤ How wide?
  - ➤ Location of fitting range?



$$\widehat{SSE}(\lambda=x)\simeq h-a\cdot e^{rac{-1}{2\sigma^2}(x-\mu)^2}$$

- $\rightarrow h$ , a: how to inverse and scale SSE( $\lambda$ )
- $\triangleright \mu, \sigma^2$ : Gaussian curve
- > range
  - Lower bound
  - > Width

### Fit All 6 Parameters



- > The smallest fitting error (RSS) we can get
- > But a very narrow fitting range is used to fit
- Off-centered fitting range

### Fit 6-1=5 Parameters

#### Fix 1 parameter and keep the others free to vary



- ➤ The fittings with small RSS use narrow fitting range
- Many of them are off-centered

#### Learnings:

Need to specify the fitting range (width)

### Fit 6-2=4 Parameters

Fix range (width) and force it centered (location)



- Fix the fitting range to be 1x, 1.5x, 2x, 2.5x, 3x and 3.5x wide
- Force the fitting range centered at the minimum of  $SSE(\lambda)$

#### Learnings:

- The obtained  $\hat{\sigma}$  vary from 0.829 to 2.691
- ➤ The estimate using this method is not stable

### Fit 6-2=4 Parameters

Fix the 2 range parameters (lower bound and width)



- ➤ The fittings with small RSS use narrow fitting range
- Many of them are off-centered

#### Learnings:

- Need to specify the fitting range (width)
- Need to specify the center

### Fit 6-2=4 Parameters – Grid Search

**Specify fitting range (width) and lower bound (location)** 



Fitting Range (Related to Best-Fitted Lambda)

- Set up a grid of the fitting ranges for each Gaussian curve fitting
  - Fitting range (width): 1x, 1.2x,..., 4x
  - Lower bound (location)
  - ➤ Totally 136 scenarios

### Fit 6-2=4 Parameters – Grid Search

Fix range (width) and force it centered (location)



- > Set up a grid of the fitting ranges for each Gaussian curve fitting
  - Fitting range (width)
  - Lower bound (location)

#### Learnings:

- $\triangleright$  There is no global minimum for SSE( $\lambda$ )
- ightharpoonup Obtained  $\hat{\sigma}$  vary depending on how we specify the fitting range

#### **NC STATE** UNIVERSITY

# **PSCF Method**

| method<br><chr></chr> | fitting_initial_setup<br><s3: glue=""></s3:>     | lambda<br><dbl></dbl> | std.error<br><dbl></dbl> |
|-----------------------|--------------------------------------------------|-----------------------|--------------------------|
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -2, range=4)     | 3.349                 | 0.29470                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.9, range=3.8) | 3.324                 | 0.25860                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.8, range=3.6) | 3.274                 | 0.32150                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.7, range=3.4) | 3.247                 | 0.27020                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.6, range=3.2) | 3.230                 | 0.26390                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.5, range=3)   | 3.186                 | 0.21380                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.4, range=2.8) | 3.153                 | 0.18730                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.3, range=2.6) | 3.119                 | 0.18510                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.2, range=2.4) | 3.102                 | 0.17760                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1.1, range=2.2) | 3.081                 | 0.14730                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -1, range=2)     | 3.051                 | 0.12010                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -0.9, range=1.8) | 3.038                 | 0.11160                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -0.8, range=1.6) | 3.011                 | 0.10280                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -0.7, range=1.4) | 2.990                 | 0.10900                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -0.6, range=1.2) | 2.973                 | 0.08096                  |
| PSCF - Centered       | init. (h, a, lb, range)= (1, 1, -0.5, range=1)   | 2.959                 | 0.08292                  |

Range: 0.08096 - 0.3215

### Fit 6-2=4 Parameters – Grid Search

Fix range (width) and force it centered (location)



- > Set up a grid of the fitting ranges for each Gaussian curve fitting
  - > Fitting range (width)
  - Lower bound (location)

#### Learnings:

- $\triangleright$  There is no global minimum for SSE( $\lambda$ )
- $\triangleright$  Obtained  $\hat{\sigma}$  vary depending on how we specify the fitting range

# Non-Linear Regression

 $Y = e^{-\lambda X} \ \lambda_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ 

```
Nonlinear regression model model: y ~ fmod(x, lambda) data: df lambda
```

2.925

residual sum-of-squares: 0.349

Number of iterations to convergence: 2 Achieved convergence tolerance: 7.308e-06



x (measurement distance)

| method               | lambda      | std.error   | lower_0.95  | upper_0.95  | width       |
|----------------------|-------------|-------------|-------------|-------------|-------------|
| <chr></chr>          | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| Nonlinear Regression | 2.924786    | 0.0946027   | 2.812288    | 3.187712    | 0.3754246   |

# **Bootstrap Confidence Interval**







| method<br><chr></chr>    | lambda<br><dbl></dbl> | std.error<br>< g > | lower_0.95<br><dbl></dbl> | upper_0.95<br><dbl></dbl> | width<br><dbl></dbl> |
|--------------------------|-----------------------|--------------------|---------------------------|---------------------------|----------------------|
| Parametric Bootstrap     | 3.075166              | N.A.               | 2.908155                  | 3.236575                  | 0.3284194            |
| Non-parametric Bootstrap | 2.931697              | NA                 | 2.668177                  | 3.167169                  | 0.4989925            |

# **Delta Method Normality**

$$\hat{\lambda}(Y) = -rac{1}{x} \ln Y$$
 $\Rightarrow g(Y) \stackrel{\bullet}{\sim} N\Big(g(\mu), \left[g'(\mu)
ight]^2 \sigma^2\Big)$ 
 $g(Y_n) \stackrel{\bullet}{\sim} N\Big(g( heta_0), \left[g'( heta_0)
ight]^2 \sigma^2/n\Big)$ 



| method                 | lambda      | std.error   | lower_0.95  | upper_0.95  | width       |
|------------------------|-------------|-------------|-------------|-------------|-------------|
| <chr></chr>            | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| Delta Method Normality | 3.067518    | 0.09930124  | 2.870483    | 3.264554    | 0.3940704   |

#### **NC STATE** UNIVERSITY

# Comparison

| method<br><chr></chr> | <chr></chr> | lambda<br><dbl></dbl> | std.error<br><dbl></dbl> |
|-----------------------|-------------|-----------------------|--------------------------|
| PSCF - Centered       | max         | 3.349                 | 0.32150                  |
|                       | min         | 2.959                 | 0.08096                  |

| method<br><chr></chr>          | lambda<br><dbl></dbl> | std.error<br><dbl></dbl> | lower_0.95<br><dbl></dbl> | upper_0.95<br><dbl></dbl> | width<br><dbl></dbl> |
|--------------------------------|-----------------------|--------------------------|---------------------------|---------------------------|----------------------|
| Nonlinear Regression           | 2.924786              | 0.09460270               | 2.812288                  | 3.187712                  | 0.3754246            |
| Parametric Bootstrap           | 3.075166              | N.A.                     | 2.908155                  | 3.236575                  | 0.3284194            |
| Non-parametric Bootstrap       | 2.931697              | NA                       | 2.668177                  | 3.167169                  | 0.4989925            |
| Delta Method Normality         | 3.067518              | 0.09930124               | 2.870483                  | 3.264554                  | 0.3940704            |
| Truth (All sample sizes = 100) | 3.000000              | 0.10000000               | 2.801578                  | 3.198422                  | 0.3968434            |

### Conclusion

#### **Findings Regarding the Research Question**

- 1. How good the algorithm is in term of determining the variances of physical model parameters? The obtained estimation greatly depends on initial conditions of the Gaussian curve fitting.
- 2. If there is a solid statistics ground to support and backup the validity of this method? No, because there is no global minimum in the Gaussian curve fitting.
- 3. If yes in (2), can it be improved and further generalized to any physical models?
- 4. If no in (2), how well does it estimate as an approximation approach? It gives a wide range of estimation on the standard deviation.

Although the proposed method is not a good way to estimate the variance of a model parameter, we can still rely on the other statistical methods like Non-linear regression, Bootstrap CI and Delta method.