acsefunctions

Release 0.1

Your Name

CONTENTS

Python Module Index	3
Index	5

```
Special functions: factorial, gamma, and Bessel.
```

```
acsefunctions.special.bessel(alpha, x, n_terms=20)
```

Compute the Bessel function J_alpha(x) using its series expansion.

Parameters

- alpha (float) Order of the Bessel function.
- **x** (float or numpy.ndarray) Input value(s).
- n_terms (int, optional) Number of terms in the series (default is 20).

Returns

Computed J_alpha(x).

Return type

float or numpy.ndarray

Examples

```
>>> bessel(0, 0)
1.0
>>> bessel(0, 1) # Approximate value
0.7651976865579666
>>> bessel(0, np.array([0, 1]))
array([1. , 0.76519769])
```

acsefunctions.special.factorial(n)

Compute the factorial n! for non-negative integers.

Parameters

n (int or numpy.ndarray) – Non-negative integer input(s).

Returns

Computed n!.

Return type

int or numpy.ndarray

Raises

ValueError – If n is negative.

Examples

```
>>> factorial(0)
1
>>> factorial(5)
120
>>> factorial(np.array([0, 1, 2]))
array([1, 1, 2])
```

acsefunctions.special.gamma(z, T=100, M=1000)

Compute the gamma function gamma(z) for z > 0 using numerical integration.

Uses trapezoidal rule on gamma(z) = 0^{∞} t^(z-1) e^(-t) dt.

Parameters

- **z** (*float* or *numpy.ndarray*) Input value(s), must be positive.
- T (float, optional) Upper integration limit (default is 100).

CONTENTS 1

```
• M (int, optional) – Number of integration points (default is 1000).
```

Returns

Computed gamma(z).

Return type

float or numpy.ndarray

Raises

ValueError – If $z \le 0$.

Examples

```
>>> gamma(1)
1.0
>>> gamma(0.5) # Approximately sqrt(pi)
1.7724538209055159
>>> gamma(np.array([1, 2]))
array([1., 1.])
```

2 CONTENTS

PYTHON MODULE INDEX

а

 $\begin{tabular}{ll} acsefunctions.special, 1\\ acsefunctions.transcendental, 1\\ \end{tabular}$

INDEX

```
A

acsefunctions.special
   module, 1

acsefunctions.transcendental
   module, 1

B

bessel() (in module acsefunctions.special), 1

F

factorial() (in module acsefunctions.special), 1

G

gamma() (in module acsefunctions.special), 1

M

module
   acsefunctions.special, 1
   acsefunctions.transcendental, 1
```