Aula 8: Circuitos com Amplificadores Operacionais – Parte 1

Objetivos

- Aprender a utilizar amplificadores operacionais
- Implementar um circuito comparador com amplificador operacional
- Implementar um amplificador n\u00e4o inversor com amplificador operacional
- Implementar um amplificador inversor com amplificador operacional
- Verificar a característica de slew-rate.

Lista de material

- Osciloscópio, gerador de sinais e multímetro;
- Resistores $R_1 = 1 k\Omega$, $R_2 = 3.3 k\Omega$;
- Potenciômetro de $10 \text{ k}\Omega$;
- Amplificador operacional TL071 ou equivalente.

Instruções

Roteiro da experiência

1) Monte o circuito abaixo, utilizando uma alimentação simétrica ± 15 V e uma **entrada triangular de 15** V_{pp} e 100 Hz. Inicialmente utilize V_x = 0 V.

- a) Esboce o sinal de saída (CH2) juntamente com o sinal de entrada (CH1), na mesma escala e posição vertical. No gráfico, indique também o valor correspondente a V_x . (Gráficos disponíveis na folha seguinte).
- b) Altere V_x para 5 V e repita o item anterior.
- c) Por que este circuito é chamado de **comparador**? Explique. (Dica: considerando que tensão alta corresponde a "Sim" e tensão baixa corresponde a "Não", pode-se afirmar que a saída do circuito fornece a "resposta" a uma certa "pergunta". Que pergunta é essa?)

[iiiii
[
<u> </u>
F : : : :

2) Monte o circuito abaixo, utilizando uma alimentação simétrica ± 15 V e uma entrada senoidal de 4 V_{pp} e 1 kHz (ou seja, V_{in} = 2.sen(2 π 1000t). Mostre a entrada no CH1 e a saída no CH2, ambos em **acoplamento CC**. Deixe ambos os canais na **posição vertical de 0.00V**.

a) Verifique se a saída do circuito obedece a seguinte relação:

$$V_{\text{out}} = \left(1 + \frac{R_2}{R_1}\right) V_{\text{in}}$$

b)	Calcule, ut ganho igua		equação a	interior, o valor	de R ₂ par	a que o	amplifica	ador a	presente	um
c)	Substitua	o resistor	R ₂ pelo	potenciômetro	e ajuste	seu cu	rsor até	que	o ganho	do

c) Substitua o resistor R₂ pelo potenciômetro e ajuste seu cursor até que o ganho do amplificador seja igual a 3. Lembre-se que, para determinar o ganho, basta dividir a tensão de saída (CH2) pela tensão de entrada (CH1). Retire o potenciômetro do circuito e meça a resistência entre os dois terminais utilizados na montagem. O valor medido está próximo ao calculado no item b)?

d) Determine os níveis de tensão (positivo e negativo) nos quais ocorre saturação do amplificador operacional. Qual é o maior valor de R_2 para o qual o circuito amplifica o sinal de entrada sem distorcer?

de entrada sem distorcer?

e) Quais das suas respostas aos itens anteriores mudariam caso o sinal de entrada fosse de $2\,V_{pp}$? (OBS.: não é preciso refazer as questões, pode-se respondê-las teoricamente).

3) Monte o circuito abaixo, utilizando uma alimentação simétrica ± 15 V e uma entrada senoidal de 4 V_{pp} e 1 kHz (ou seja, V_{in} = 2.sen($2\pi 1000t$). Mostre a entrada no CH1 e a saída no CH2, ambos em **acoplamento CC**. Deixe ambos os canais na **posição vertical de 0.00V**.

a) Verifique se a saída do circuito obedece a seguinte relação:

$$V_{out} = \left(-\frac{R_2}{R_1}\right) V_{in}$$

b) Calcule, utilizando a equação anterior, o valor de R₂ para que o amplificador apresente um ganho igual a 3.

c) Substitua o resistor R₂ pelo potenciômetro e ajuste seu cursor até que o ganho do amplificador seja igual a 3. Lembre-se que, para determinar o ganho, basta dividir a tensão de saída (CH2) pela tensão de entrada (CH1). Retire o potenciômetro do circuito e meça a resistência entre os dois terminais utilizados na montagem. O valor medido está próximo ao calculado no item b)?

4) Implemente um amplificador inversor de ganho unitário e aplique em sua entrada uma onda quadrada com frequência de 50 kHz e amplitude de ± 5 V. Calcule o valor do *slew-rate* por meio da fórmula SR = $\Delta V/\Delta t$ em [V/ μs], em que Δt é o tempo necessário para que a tensão de saída varie de ΔV , a diferença entre os valores máximo e mínimo da saída. Compare com o valor fornecido pelo fabricante.