Aurora Hermoso Carazo y Ma Dolores Ruiz Medina

Final

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Deducir la distribución de $\frac{(n-1)S^2}{\sigma^2}$, siendo (X_1,\ldots,X_n) muestra aleatoria simple de $X\to\mathcal{N}(\mu,\sigma^2)$, partiendo de la dependencia de \overline{X} y S^2 .
- 2. a) Especificar las condiciones que debe cumplir una familia de distribuciones para ser regular en el sentido de Frechet-Cramer-Rao y definir la función de información. Dar la definición de estimador eficiente (especificando cada una de las condiciones que aparecen en la definición) y el teorema de caracterización de tales estimadores.
 - b) Sea (X_1, \ldots, X_n) muestra aleatoria simple de X con función de densidad $f_{\theta}(x) = e^{\theta x}, \quad x \ge \theta$.
 - Encontrar un estadístico suficiente y completo, probando que lo es.
 - \blacksquare Encontrar, si existe, un UMVUE para θ . ¿Es suficiente? Razonar la respuesta.
 - \blacksquare Encontrar el estimador máximo verosímil de θ . ¿Es insesgado este estimador? Razonar la respuesta.

3.

- a) Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable $X \to \mathcal{N}(\mu_0, \sigma^2)$ con media conocida. Encontrar el test de la razón de verosimilitud de tamaño α para contrastar: $\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases}$
- b) El nº de clientes que visitan una oficina sigue una distribución de Poisson con parámetro λ , $P(\lambda)$, y el nº de visitas al día es independiente un día de otro. Para contrastar que el nº medio de visitas por día es 0'5 frente a que es 0'6, se hace un estudio durante 10 días y el nº total que visitan es 12. Plantear y resolver el contraste de hipótesis adecuada a la hipótesis con el test más potente de tamaño 0'005 y ver si se acepta o no la hipótesis nula, H_0 .
- 4. a) Definir el modelo de Gauss-Markov especificando el significado de sus componentes. Explicar en qué consiste el problema de regresión lineal simple, plantear este problema en términos de un modelo lineal y especificar el contraste de regresión como caso particular de la hipótesis lineal general.

 $b)\$ Comparan4métodos de enseñanza seleccionando 22alumnos. Las calificaciones obtenidas fueron:

Método 1	2	4 4,5	4,5	8	7		
Método 2	3	8,5	8	5,5	5		
Método 3	6,5	2	2,5	3,5	8	4	5
Método 4	5	7,5	3,5	6			

¿Se puede afirmar que los 4 métodos son igualmente eficaces? Especificar las hipótesis necesarias para la resolución de este problema.

5. A partir de los siguientes datos sobre el nº de visitas diarias a un banco, durante 200 días, contrastar si el nº de visitas diarias sigue una distribución $\mathcal{P}(\lambda)$, con $\lambda = 2$.

nº de vistas	0	1	2	3	4	5	6	7
nº de días	29	51	60	30	19	9	1	1