Modele Markov Ascunse De la Teorie la Aplicații

Alexandru Sorici, Tudor Berariu

Asociația Română pentru Inteligență Artificială

31 octombrie 2012

- 1 Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învățarea Automată

- 1 Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învățarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învățarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învătarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învățarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- Demo: Recunoașterea Simbolurilor
- Tipuri de MMA

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învătarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- O Discutii si Concluzii

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învățarea Automată
- 2 Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- Discutii și Concluzii

What is Machine Learning?

Machine Learning

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine Learning Applications

- Computer Vision: Google Car
- Machine Translation
- Speech Recognition
- Recommender Systems
- Intelligent Advertising

Machine Learning Classification

Types of Machine Learning Problems

- Regression
- Classification
- Reinforcement Learning
- supervised learning (eg. ..)
- unsupervised

- Aplicații în Învățarea Automată pentru MMA
 - Invățarea Automată
 - MMA în Învățarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- Discutii și Concluzii

Sequence / Temporal problems (I)

OBJECT TRACKING

Speaker GPS
Detection

Robotics

Surface
to air Ship or rocket
missille navigation

SPEECH RECOGNITION

Voice User Interfaces e.g. SIRI Speech-to-Text Processing Direct Voice Input - Aircraft

GESTURE RECOGNITION

Personalized
Signature Recognition
Human Activity Recognition
Sign Language Recognition

Sequence / Temporal problems (II)

BIOINFORMATICS

Protein Sequencing

Modeling of a Gene Regulatory Network

ECONOMICS

Stock Price Prediction

Econometrics

- estimate a country's econmic indicators across time -

Probabilistic Reasoning over Time - Models

Consider some of the previously presented problems \dots

Probabilistic Reasoning over Time - Models

Consider some of the previously presented problems \dots

How do we model such dynamic situations?

Probabilistic Reasoning over Time - Models

Consider some of the previously presented problems ...

How do we model such dynamic situations?

States and Observations

- The process of change is viewed as a series of time slices (snapshots)
- Each time slice contains a set of random variables
 - \mathbf{O}_t set of all *observable* evidence variables at time t
 - \mathbf{Q}_t set of all *unobservable* / *hidden* state variables at time t

Consider some of the previously presented problems \dots

Consider some of the previously presented problems ...

What assumptions (if any) do we make?

Consider some of the previously presented problems ...

What assumptions (if any) do we make?

Stationary Process

The process of change is governed by laws that do not themselves change over time.

Implication: we need to specify conditional distributions only for the variables within a *representative* timeslice.

Consider some of the previously presented problems ...

What assumptions (if any) do we make?

Stationary Process

The process of change is governed by laws that do not themselves change over time.

Implication: we need to specify conditional distributions only for the variables within a *representative* timeslice.

Markov Assumption

The current state in a process of change depends only on a finite history of previous states.

Implication: there is a bounded number of "parents" for the variables in each time slice.

$$P(Q_t|Q_{1:t-1}) = P(Q_t|Q_{t-1}) \qquad P(O_t|Q_{1:t},Q_{1:t-1}) = P(O_t|Q_t)$$

What are the basic inference tasks that must be solved?

What are the basic inference tasks that must be solved?

Filtering (monitoring)

The task of computing the belief state - the posterior distribution over the current state, given all evidence to date.

 $P(\mathbf{Q}_t|\mathbf{o}_{1:t})$

What are the basic inference tasks that must be solved?

Filtering (monitoring)

The task of computing the belief state - the posterior distribution over the current state, given all evidence to date.

$$P(\mathbf{Q}_t|\mathbf{o}_{1:t})$$

Evaluation (likelihood)

The task of computing the likelihood of the evidence up to present.

$$P(o_{1:t})$$

Prediction

The task of computing the posterior distribution over the future state, given all evidence to date.

 $P(\mathbf{Q}_{t+k}|\mathbf{o}_{1:t})$, for some k>0

Prediction

The task of computing the posterior distribution over the future state, given all evidence to date.

 $P(\mathbf{Q}_{t+k}|\mathbf{o}_{1:t})$, for some k>0

Smoothing (hindsight)

The task of computing the posterior distribution over a past state, given all evidence to the present.

 $P(\mathbf{Q}_k | \mathbf{o}_{1:t})$, for some $1 \le k < t$

Provides a better estimate of the state than was available at the time.

Most likely explanation

Given a sequence of observations, find the sequence of states that is most likely to have generated those observations. $argmax_{q_{1:t}} \mathbf{P}(\mathbf{q}_{t+k}|\mathbf{o}_{1:t})$, for some k>0

Most likely explanation

Given a sequence of observations, find the sequence of states that is most likely to have generated those observations. $argmax_{q_{1:t}} \mathbf{P}(\mathbf{q}_{t+k}|\mathbf{o}_{1:t})$, for some k>0

Learning

Given a set of observation sequences, find a method to learn the transition (e.g. $\mathbf{P}(\mathbf{q}_{t+1} = s_j | \mathbf{q}_t = s_i)$, $1 \le i, j < N$) and sensor $(\mathbf{P}(\mathbf{o}_t | \mathbf{q}_t))$ models from the observations.

Probabilistic Reasoning over Time - Known Methods

Dynamic Bayesian Networks (DBN)

A DBN is Bayesian network that represents a temporal probability model.

Figura: A highly simplified DBN for monitoring a vehicle [KF09]

Applied in problems like: object tracking, human activity recognition, protein sequencing etc.

Probabilistic Reasoning over Time - Known Methods

Kalman Filters (Linear Dynamical Systems)

A temporal model of one or more real-valued variables that evolve linearly over time, with some Gaussian noise.

Figura: BN structure for a linear dynamical system with position X_t , velocity \dot{X}_t , and position measurement Z_t

- can be viewed as DBNs where all variables are continuous and all dependencies are linear gaussian
- wide application in object tracking

Probabilistic Reasoning over Time - Known Methods

Hidden Markov Models (HMM)

An HMM is a temporal probabilistic model in which the state of the process is described by a single discrete random variable. The possible values of the variable are the possible states of the world.

Used successfully in applications like:

- Handwriting Recognition
- Gesture Recognition
- Speech Recognition
- Part-of-Speech Tagging
- DNA Sequencing

- Aplicaţii în Învăţarea Automată pentru MMA
 - Învăţarea Automată
 - MMA în Învătarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- Discutii și Concluzi

The 3 fundamental problems [Rab89]

- Particularization of temporal inference problems to the HMM case
- The restricted structure of the HMM allows for elegant implementations of all the basic algorithms

The 3 fundamental problems [Rab89]

- Particularization of temporal inference problems to the HMM case
- The restricted structure of the HMM allows for elegant implementations of all the basic algorithms

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

The 3 fundamental problems [Rab89]

- Particularization of temporal inference problems to the HMM case
- The restricted structure of the HMM allows for elegant implementations of all the basic algorithms

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

Best Explanation of Observations Problem

Given a model and a sequence of observations how do we choose a corresponding sequence of states which *gives meaning* to the observations? How do we *uncover* the hidden part of the model?

The 3 fundamental problems [Rab89]

- Particularization of temporal inference problems to the HMM case
- The restricted structure of the HMM allows for elegant implementations of all the basic algorithms

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

Best Explanation of Observations Problem

Given a model and a sequence of observations how do we choose a corresponding sequence of states which *gives meaning* to the observations? How do we *uncover* the hidden part of the model?

Model Estimation (Training) Problem

Given some observed sequences, how do we adjust the parameters of an HMM model that best tries to explain the observations?

Outline

- Aplicații în Învățarea Automată pentru MMA
 - Învătarea Automată
 - MMA în Învătarea Automată
- Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- Discutii și Concluzii

Să considerăm următorul exmeplu:

 un robot ce urmărește evoluția stărilor emoționale ale unui om

Senzor:

cameră video

Să modelăm împreună această problemă definind componentele unui Model Markov Ascuns!

(**s**₃:nervos) **s**₁:vesel **s**₂:trist

N - numărul de stări ascunse

N = 3

Stări:

• **s**₁: vesel

• **s**₂: trist

• s₃: nervos

A - matricea distribuțiilor de probabilitate ale tranzițiilor între stări

$$\mathbf{A} = \{a_{i,j}\}, \ 1 \le i, j \le N$$
$$a_{i,j} = P(q_{t+1} = s_i | q_t = s_i)$$

$$\sum_{i=1}^{N} a_{i,j} = 1, \quad 1 \le i \le N$$

$$\mathbf{A} = \begin{array}{c} s_1 & s_2 & s_3 \\ s_2 & 0.8 & 0.1 & 0.1 \\ s_2 & s_3 & \end{array}$$

A - matricea distribuțiilor de probabilitate ale tranzițiilor între stări

$$\mathbf{A} = \{a_{i,j}\}, \ 1 \le i, j \le N$$
$$a_{i,j} = P(q_{t+1} = s_j | q_t = s_i)$$

$$\sum_{j=1}^{N} a_{i,j} = 1, \quad 1 \le i \le N$$

$$\mathbf{A} = \begin{bmatrix} s_1 & s_2 & s_3 \\ s_1 & 0.8 & 0.1 & 0.1 \\ s_2 & 0.25 & 0.25 & 0.5 \\ s_3 & 0.25 & 0.25 & 0.5 \end{bmatrix}$$

A - matricea distribuțiilor de probabilitate ale tranzițiilor între stări

$$\mathbf{A} = \{a_{i,j}\}, \ 1 \le i, j \le N$$
$$a_{i,j} = P(q_{t+1} = s_j | q_t = s_i)$$

$$\sum_{j=1}^{N} a_{i,j} = 1, \quad 1 \le i \le N$$

$$\mathbf{A} = \begin{array}{ccc} s_1 & s_2 & s_3 \\ s_1 & 0.8 & 0.1 & 0.1 \\ s_2 & 0.25 & 0.25 & 0.5 \\ s_3 & 0.8 & 0.2 & 0 \end{array}$$

Π - distribuția stării inițiale

$$\Pi = \{\pi_i\}, \quad 1 \leq i \leq N$$
 $\pi_i = P(q_1 = s_i)$

$$\mathbf{\Pi} = \begin{pmatrix} s_1 & s_2 & s_3 \\ 0.7 & 0.2 & 0.1 \end{pmatrix}$$

Deocamdată am descris un lant Markov.

$$A = \begin{array}{ccc} s_1 & s_2 & s_3 \\ s_1 & 0.8 & 0.1 & 0.1 \\ s_2 & 0.25 & 0.25 & 0.5 \\ s_3 & 0.8 & 0.2 & 0 \end{array}$$

$$\Pi = \begin{pmatrix} s_1 & s_2 & s_3 \\ 0.7 & 0.2 & 0.1 \end{pmatrix}$$

vesel → vesel → nervos → trist

$$Q = [q_1:S_1 q_2:S_1 q_3:S_3 q_4:S_2]$$

Deocamdată am descris un lanț Markov.

$$A = \begin{array}{ccc} s_1 & s_2 & s_3 \\ s_1 & 0.8 & 0.1 & 0.1 \\ s_2 & 0.25 & 0.25 & 0.5 \\ s_3 & 0.8 & 0.2 & 0 \end{array}$$

$$\Pi = \begin{pmatrix} s_1 & s_2 & s_3 \\ 0.7 & 0.2 & 0.1 \end{pmatrix}$$

Notație:
$$\mathbf{Q} = [q_1 q_2 \cdots q_T]$$

$$P(Q|A,\Pi)=\pi_{q_1}a_{q_1,q_2}\cdots a_{q_{T-1},q_T}$$

$$P(s_1,s_1,s_3,s_2|A,\Pi)=\pi_1\cdot a_{1,1}\cdot a_{1,3}\cdot a_{3,2}$$

 $=0.8 \cdot 0.8 \cdot 0.1 \cdot 0.2 = 0.0128$

M - numărul de valori observabile distincte

M = 3

valori observabile:

- **v**₁: zâmbmet / rânjet
- **v**₂: nimic
- v₃: încruntare

B - matricea distribuțiilor de probabilitate ale valorilor observabile

$$\mathbf{B} = \{b_{j,k}\} \ 1 \le j \le N, 1 \le k, \le M$$
$$b_{j,k} = b_j(v_k)$$
$$= P(o_t = v_k | q_t = s_j)$$

$$\sum_{k=1}^{M} b_{j,k} = 1, \quad 1 \le j \le N$$

$$\mathbf{B} = \begin{array}{ccc} s_1 & v_1 & v_2 & v_3 \\ s_2 & 0 & 0.2 & 0.8 \\ s_2 & & & & \\ \end{array}$$

B - matricea distribuțiilor de probabilitate ale valorilor observabile

$$\mathbf{B} = \{b_{j,k}\} \ 1 \le j \le N, 1 \le k, \le M$$
$$b_{j,k} = b_j(v_k)$$
$$= P(o_t = v_k | q_t = s_j)$$

$$\sum_{k=1}^{M} b_{j,k} = 1, \quad 1 \le j \le N$$

$$\mathbf{B} = \begin{array}{c} s_1 & v_2 & v_3 \\ s_2 & 0 & 0.2 & 0.8 \\ s_3 & 0.7 & 0 \end{array}$$

B - matricea distribuțiilor de probabilitate ale valorilor observabile

$$\mathbf{B} = \{b_{j,k}\} \ 1 \le j \le N, 1 \le k, \le M$$
$$b_{j,k} = b_j(v_k)$$
$$= P(o_t = v_k | q_t = s_j)$$

$$\sum_{k=1}^{M} b_{j,k} = 1, \quad 1 \le j \le N$$

$$\mathbf{B} = \begin{array}{ccc} s_1 & v_2 & v_3 \\ s_2 & 0 & 0.2 & 0.8 \\ 0.3 & 0.7 & 0 \\ 0.4 & 0 & 0.6 \end{array}$$

 λ - parametrii Modelului Markov Ascuns

$$\lambda = (A, B, \Pi)$$

A - matricea distribuțiilor de probabilitate ale tranzițiilor între stări

B - matricea distribuțiilor de probabilitate ale valorilor observabile

Π - distribuția stării inițiale

O - secvența de observații

$$O = [o_1 o_2 \cdots o_T]$$

O - secvența de observații

$$O = [o_1 o_2 \cdots o_T]$$

O - secvența de observații

$$O = [o_1 o_2 \cdots o_T]$$

O - secvența de observații

$$O = [o_1 o_2 \cdots o_T]$$

• Exemplul a fost adaptat după:

R. Zubek. Introduction to hidden markov models. *AI Game Programming Wisdom*, 3:633–646, 2006

Problema evaluării

```
Date fiind un model și o secvență de observații , cum calculăm probabilitatea ca secvența de observații să fi fost generată de acel model?
```

Problema evaluării

```
Date fiind un model \lambda = (A, B, \Pi) și o secvență de observații , cum calculăm probabilitatea ca secvența de observatii să fi fost generată de acel model?
```

Problema evaluării

```
Date fiind un model \lambda = (A, B, \Pi) și o secvență de observații O = [o_1 o_2 \cdots o_T], cum calculăm probabilitatea ca secvența de observații să fi fost generată de acel model?
```

Problema evaluării

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații $O = [o_1 o_2 \cdots o_T]$, cum calculăm probabilitatea $P(O|\lambda)$ ca secvența de observații să fi fost generată de acel model?

Problema evaluării

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații $O = [o_1 o_2 \cdots o_T]$, cum calculăm probabilitatea $P(O|\lambda)$ ca secvența de observații să fi fost generată de acel model?

• Prin enumerarea tuturor secventelor posibile de stări:

$$P(O|\lambda) = \sum_{\text{all } O} P(O|Q,\lambda) \cdot P(Q|\lambda) \tag{1}$$

$$P(O|\lambda) = \sum_{\text{all } Q} P(O|Q,\lambda) \cdot P(Q|\lambda) \tag{1}$$

$$P(O|\lambda) = \sum_{\text{all } Q} P(O|Q,\lambda) \cdot P(Q|\lambda) \tag{1}$$

$$P(O|Q,\lambda) = \prod_{t=1}^{I} P(o_{t}|q_{t},\lambda) = \prod_{t=1}^{I} b_{q_{t}}(o_{t}) = b_{q_{1}}(o_{1}) \cdot \ldots \cdot b_{q_{T}}(o_{T}) \quad (2)$$

$$P(O|\lambda) = \sum_{\text{all } Q} P(O|Q,\lambda) \cdot P(Q|\lambda) \tag{1}$$

$$P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) = b_{q_1}(o_1) \cdot \ldots \cdot b_{q_T}(o_T) \quad (2)$$

$$P(Q|\lambda) = \pi_{q_1} \prod_{t=2}^{I} a_{q_{t-1},q_t} = \pi_{q_1} \cdot a_{q_1,q_2} \cdot a_{q_2,q_3} \cdot \ldots \cdot a_{q_{T-1},q_T}$$
 (3)

$$P(O|\lambda) = \sum_{\mathsf{all}\ Q} P(O|Q,\lambda) \cdot P(Q|\lambda) \tag{1}$$

$$P(O|Q,\lambda) = \prod_{t=1}^{T} P(o_t|q_t,\lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) = b_{q_1}(o_1) \cdot \ldots \cdot b_{q_T}(o_T) \quad (2)$$

$$P(Q|\lambda) = \pi_{q_1} \prod_{t=2}^{r} a_{q_{t-1},q_t} = \pi_{q_1} \cdot a_{q_1,q_2} \cdot a_{q_2,q_3} \cdot \ldots \cdot a_{q_{T-1},q_T}$$
(3)

$$P(O|\lambda) = \sum_{\text{all } Q} P(O, Q|\lambda) = \sum_{\text{all } Q} P(O, |Q, \lambda) \cdot P(Q, \lambda)$$

$$= \sum_{\text{all } Q} \left(\pi_{q_1} \cdot b_{q_1}(o_1) \cdot \prod_{t=2}^T b_{q_t}(o_t) a_{q_{t-1}, q_t} \right)$$

$$(1)$$

Problema explicării unei secvențe de observații

Date fiind un model și o secvență de observații , cum alegem o secvență corespunzătoare de stări care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?

Problema explicării unei secvențe de observații

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații , cum alegem o secvență corespunzătoare de stări care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?

Problema explicării unei secvențe de observații

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații $O = [o_1 o_2 \cdots o_T]$, cum alegem o secvență corespunzătoare de stări care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?

Problema explicării unei secvențe de observații

```
Date fiind un model \lambda = (A, B, \Pi) și o secvență de observații O = [o_1 o_2 \cdots o_T], cum alegem o secvență corespunzătoare de stări Q = [q_1 q_2 \cdots q_T] care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?
```

Problema explicării unei secvențe de observații

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații $O = [o_1 o_2 \cdots o_T]$, cum alegem o secvență corespunzătoare de stări $Q = [q_1 q_2 \cdots q_T]$ care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?

- Există mai multe criterii pentru cea mai bună sevență
 - Secvența celor mai probabile stări (luate individual):

$$Q_{\text{best}} = [\hat{q}_1 \ \hat{q}_2 \ \dots \hat{q}_T], \quad \hat{q}_t = \underset{s_i}{\operatorname{argmax}} \ P(q_t = s_i | O, \lambda)$$
 (4)

Problema explicării unei secvențe de observații

Date fiind un model $\lambda = (A, B, \Pi)$ și o secvență de observații $O = [o_1 o_2 \cdots o_T]$, cum alegem o secvență corespunzătoare de stări $Q = [q_1 q_2 \cdots q_T]$ care să dea un înțeles observațiilor? Cum descoperim partea ascunsă a modelului?

- Există mai multe criterii pentru cea mai bună sevență
 - Secvența celor mai probabile stări (luate individual):

$$Q_{\text{best}} = [\hat{q}_1 \ \hat{q}_2 \ \dots \hat{q}_T], \quad \hat{q}_t = \underset{s_i}{\operatorname{argmax}} \ P(q_t = s_i | O, \lambda)$$
 (4)

Cea mai bună cale (de dimensiune T)

$$Q_{\text{best}} = \underset{Q}{\operatorname{argmax}} \ P(Q|O, \lambda) = \underset{Q}{\operatorname{argmax}} \ P(Q, O|\lambda) \tag{5}$$

```
Problema Estimării Modelului (Învățării)
```

Date fiind niște secvențe de observații , cum *ajustăm* parametrii ai unui MMA astfel încât să explice cel mai bine observatiile?

Reformularea celor 3 probleme fundamentale ale MMA

```
Problema Estimării Modelului (Învățării)
```

Date fiind niște secvențe de observații $\mathcal{O} = [O_1 O_2 \cdots O_L]$, cum ajustăm parametrii ai unui MMA astfel încât să explice cel mai bine observațiile?

Reformularea celor 3 probleme fundamentale ale MMA

Problema Estimării Modelului (Învățării)

Date fiind niște secvențe de observații $\mathcal{O} = [O_1 O_2 \cdots O_L]$, cum *ajustăm* parametrii $\lambda = (A, B, \Pi)$ ai unui MMA astfel încât să explice cel mai bine observatiile?

Reformularea celor 3 probleme fundamentale ale MMA

Problema Estimării Modelului (Învățării)

Date fiind niște secvențe de observații $\mathcal{O} = [O_1 O_2 \cdots O_L]$, cum ajustăm parametrii $\lambda = (A, B, \Pi)$ ai unui MMA astfel încât să explice cel mai bine observațiile?

• Întrebarea se poate reformula matematic:

$$\lambda_{\mathsf{best}} = \underset{\lambda}{\mathsf{argmax}} \ P(\mathcal{O}|\lambda) \tag{6}$$

Outline

- Aplicații în Învățarea Automată pentru MMA
 - Invățarea Automată
 - MMA în Învătarea Automată
- 2 Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- Discutii și Concluzi

:)

Outline

- 1 Aplicații în Învățarea Automată pentru MMA
 - Invățarea Automată
 - MMA în Învătarea Automată
- 2 Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- 6 Discutii si Concluzii

:)

Outline

- 1 Aplicații în Învățarea Automată pentru MMA
 - Invățarea Automată
 - MMA în Învătarea Automată
- 2 Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- 6 Discutii si Concluzii

Outline

- Aplicații în Învățarea Automată pentru MMA
 - Învățarea Automată
 - MMA în Învătarea Automată
- 2 Teoria MMA
 - Cele Trei Probleme ale MMA
 - Fundamente Matematice
- Implementarea MMA
 - Problema Evaluării: Algoritmul Forward-Backward
 - Problema Interpretării: Algoritmul Viterbi
 - Problema Estimării: Algoritmul Baum-Welch
 - Learning from Observations: Baum-Welch algorithm
- 4 Demo: Recunoașterea Simbolurilor
- Tipuri de MMA
- 6 Discutii si Concluzii

Learning from observations - Reminder

Model Estimation (Training) Problem

Given some observed sequences, how do we adjust the parameters of an HMM model that best tries to explain the observations?

Learning from observations - Reminder

Model Estimation (Training) Problem

Given some observed sequences, how do we adjust the parameters of an HMM model that best tries to explain the observations?

Adjust the model parameters $\lambda = (A, B, \Pi)$ to obtain $\max_{\lambda} P(O|\lambda)$

Learning from observations - Reminder

Model Estimation (Training) Problem

Given some observed sequences, how do we adjust the parameters of an HMM model that best tries to explain the observations?

Adjust the model parameters $\lambda = (A, B, \Pi)$ to obtain $\max_{\lambda} P(O|\lambda)$

The observation sequence used to adjust the model parameters is called a training sequence.

Training problem is crucial - allows to create best models for real phenomena.

Learning from observations - Aspects of the approach

Learning from observations - Aspects of the approach

Problem

There is no known way to analytically solve for the model which maximizes the probability of the observation sequence.

Learning from observations - Aspects of the approach

Problem

There is no known way to analytically solve for the model which maximizes the probability of the observation sequence.

Solution

We can choose $\lambda = (A, B, \Pi)$ such that $\max_{\lambda} P(O|\lambda)$ is locally maximized using an iterative procedure such as Baum-Welch.

The method is an instance of the EM algoritm [DLR77] for HMMs.

We first define some auxiliary variables:

$$\xi_{t,i,j} = \xi_t(i,j) = P(q_t = s_i, q_{t+1} = s_j | O, \lambda)$$

The probability of being in state s_i at time t and in state s_j at time t+1, given the model and the observation sequence.

We first define some auxiliary variables:

$$\xi_{t,i,j} = \xi_t(i,j) = P(q_t = s_i, q_{t+1} = s_j | O, \lambda)$$

The probability of being in state s_i at time t and in state s_j at time t+1, given the model and the observation sequence.

$$\gamma_{t,i} = \gamma_t(i) = P(q_t = s_i | O, \lambda)$$

The probability of being in state s_i at time t, given the model and the observation sequence.

We first define some auxiliary variables:

$$\xi_{t,i,j} = \xi_t(i,j) = P(q_t = s_i, q_{t+1} = s_j | O, \lambda)$$

The probability of being in state s_i at time t and in state s_j at time t+1, given the model and the observation sequence.

$$\gamma_{t,i} = \gamma_t(i) = P(q_t = s_i | O, \lambda)$$

The probability of being in state s_i at time t, given the model and the observation sequence.

From the definitions it follows that:

$$\gamma_t(i) = \sum_{i=1}^N \xi_t(i,j)$$

Figura: Sequence of operations required for the computation of the joint event that the system is in state S_i at time t and state S_j at time t+1 [Rab89]

$$\alpha_{t,i} = P(o_1, o_2, \dots, o_t, q_t = S_i | \lambda)$$

$$\beta_{t,i} = P(o_{t+1}o_{t+2}\cdots o_T|q_t = S_i, \lambda)$$

$$\xi_{t}(i,j) = \frac{\alpha_{t,i} \cdot a_{i,j} \cdot b_{j}(o_{t+1}) \cdot \beta_{t+1,j}}{P(O|\lambda)}$$

$$= \frac{\alpha_{t,i} \cdot a_{i,j} \cdot b_{j}(o_{t+1}) \cdot \beta_{t+1,j}}{\sum_{k=1}^{N} \sum_{l=1}^{N} \alpha_{t,k} \cdot a_{k,l} \cdot b_{l}(o_{t+1}) \cdot \beta_{t+1,l}}$$

How do these auxiliary variables help?

$$\sum_{t=1}^{I-1} \gamma_t(i) =$$
expected number of transitions from S_i

$$\sum_{t=1}^{T-1} \xi_t(i,j) = \text{expected number of transitions from } S_i \text{ to } S_j$$

$$\bar{\pi}_i = \text{ expected no. of times in state } S_i \text{ at time } (t=1) = \gamma_t(i)$$

$$ar{\pi_i} = ext{ expected no. of times in state } S_i ext{ at time } (t=1) = \gamma_t(i)$$

$$egin{aligned} egin{aligned} ar{a_{i,j}} &= rac{ ext{expected no. of transitions from } S_i ext{ to } S_j \\ &= \sum_{t=1}^{T-1} \xi_t(i,j) \\ &= \sum_{t=1}^{T-1} \gamma_t(i) \end{aligned}$$

$$ar{\pi_i} = ext{ expected no. of times in state } S_i ext{ at time } (t=1) = \gamma_t(i)$$

$$egin{aligned} ar{a_{i,j}} &= rac{ ext{expected no. of transitions from } S_i ext{ to } S_j \ ext{expected no. of transition from } S_i \end{aligned}$$
 $= rac{\displaystyle\sum_{t=1}^{T-1} \xi_t(i,j)}{\displaystyle\sum_{t=1}^{T-1} \gamma_t(i)}$

$$b_{j,k}^- = rac{ ext{expected no. of times in } S_j ext{ observing symbol } v_k}{ ext{expcted no. of times in } S_j}$$

$$= rac{\sum_{t=1,O_t=v_k}^T \gamma_t(j)}{= \frac{1}{2} \sum_{t=1}^T \gamma_t(t)} v_t(t)$$

The routine for the general case:

Baum-Welch - Let's write some code

LET'S WRITE SOME CODE :-)

Features:

Features:

Define

Define, organize and visualize a dataset of symbols defined with mouse movements.

Features:

Define

Define, organize and visualize a dataset of symbols defined with mouse movements.

Train

Train a HMM-based recognition engine on a symbol dataset.

Features:

Define

Define, organize and visualize a dataset of symbols defined with mouse movements.

Train

Train a HMM-based recognition engine on a symbol dataset.

Recognize

Recognize new symbols and view classification metrics.

Features:

Define

Define, organize and visualize a dataset of symbols defined with mouse movements.

Train

Train a HMM-based recognition engine on a symbol dataset.

Recognize

Recognize new symbols and view classification metrics.

Default included symbols: **left arrow, right arrow, circle, square, infinity**

A simple symbol recognition application - A View

Figura: A view of the symbol recognition application GUI

Adapted from [YX94].

HMM Structure

```
N(\text{number of states}) = 8
2 discrete observable variables per state - coef_{FFT}(x), coef_{FFT}(y)
M(\text{number of values for each observable variable}) = 256
Transition model:
```

- Bakis
- Ergodic

A simple symbol recognition application - Results

Dataset size

5 symbols: left arrow, right arrow, circle, square, infinity 100 samples per symbol: 50 training, 10 validation, 40 testing

```
>> symbol performance test('eroodic')
----- Testing trained HMM models -----
## Results for the model of symbol "left_arrow":
       Accuracy: 0.97500
       Precision: 1.00000
       Recall: 0.97500
       Confusion matrix line:
## Results for the model of symbol "right_arrow":
       Accuracy: 1.00000
       Precision: 1.00000
       Recall: 1.00000
       Confusion matrix line:
## Results for the model of symbol "circle":
       Accuracy: 0.90244
       Precision: 0 97368
       Recall: 0.92500
       Confusion matrix line:
## Results for the model of symbol "square":
       Accuracy: 0.95238
       Precision: 0.95238
       Recall: 1.00000
       Confusion matrix line:
## Results for the model of symbol "infinity":
       Accuracy: 0.97561
       Precision: 0.97561
       Recall: 1 00000
       Confusion matrix line: 0
```

```
>> symbol performance test('bakis')
----- Testing trained HMM models -----
## Results for the model of symbol "left_arrow":
        Accuracy: 0.90000
        Precision: 1,00000
        Recall: 0 90000
        Confusion matrix line:
## Results for the model of symbol "right_arrow":
        Accuracy: 1,00000
        Precision: 1.00000
        Recall: 1.00000
        Confusion matrix line:
## Results for the model of symbol "circle":
        Accuracy: 0.97561
        Precision: 0.97561
        Recall: 1.00000
        Confusion matrix line:
## Results for the model of symbol "square":
       Accuracy: 0.97500
        Precision: 1.00000
        Recall: 0.97500
        Confusion matrix line:
## Results for the model of symbol "infinity":
        Accuracy: 1.00000
        Precision: 1.00000
        Recall: 1.00000
        Confusion matrix line:
```

:)

- [DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 1–38, 1977.
 - [KF09] D. Koller and N. Friedman. *Probabilistic Graphical Models: Principles and Techniques.* MIT Press, 2009.
- [Rab89] L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. *Proceedings of the IEEE*, 77(2):257–286, 1989.
- [YX94] J. Yang and Y. Xu. Hidden markov model for gesture recognition. Technical report, DTIC Document, 1994.
- [Zub06] R. Zubek. Introduction to hidden markov models. *AI Game Programming Wisdom*, 3:633–646, 2006.

Thank you!

Baftă, șailor!