Randomised Algorithms Winter term 2022/2023, Exercise Sheet No. 4

Authors:

Ben Ayad, Mohamed Ayoub Kamzon, Noureddine

November 12, 2022

Exercise 1.

(a) Every deterministic algorithm has a predefined list of S that it checks in the same order, hence is s^* was the last item in the algorithm's list, it would be forced to try all words in S. To know this input we can try a naive approach, try all words of S as input, and collect the time it took the algorithm to break the lock, the input we are looking for would take the longest time.

(b) For |S| = 1 there is only one input and hence, $\mathbb{P}[T = 1] = 1 = 1/|S|$. Let's suppose that for some set S' of size $n \ge 1$ we have $\mathbb{P}[T = k] = \frac{1}{|S'|}$ for all $1 \le k \le n$.

Let S be a set of size n+1, we have the following for some $k \in \{1, ..., n+1\}$:

$$\mathbb{P}[T=k] = \mathbb{P}[T=k|T\leq n]\mathbb{P}[T\leq n] + \mathbb{P}[T=k|T=n+1]\mathbb{P}[T=n+1]$$

For k < n:

 $\mathbb{P}[T=k|T\leq n]=\frac{1}{n}$ (using the hypothesis, knowing that $T\leq n$, gives us one less choice and puts us back to the hypothesis n), and $\mathbb{P}[T=k|T=n+1]=0$, which yields, $\mathbb{P}[T=k]=\frac{1}{n}\mathbb{P}[T\leq n]=0$ $\begin{array}{l} \frac{1}{n}\frac{n}{n+1}=\frac{1}{n+1}\\ For\ k=n+1:\\ \mathbb{P}[T=k]=\mathbb{P}[T=k|T=n+1]\mathbb{P}[T=n+1]=1\frac{1}{n+1}=\frac{1}{n+1} \end{array}$

$$[T=k] = \mathbb{P}[T=k|T=n+1]\mathbb{P}[T=n+1] = 1\frac{1}{n+1} = \frac{1}{n+1}$$

Hence, for all $k \in \{1, ..., n+1\}$: $\mathbb{P}[T=k] = \frac{1}{n+1}$ which completes our induction.

For |S| = n, let's compute $\mathbb{E}[T]$:

$$\mathbb{E}[T] = \sum_{k=1}^{n} k \mathbb{P}[T = k]$$
$$= \frac{1}{n} \frac{n(n+1)}{2}$$
$$= \frac{n+1}{2}$$

(c) The hardest distribution p is a uniform one, otherwise (if p favoured some combinations), then there are always some deterministic algorithms that would check for those combinations first, and hence make the expected numbers of checks smaller in average.

Let p be the uniform distribution over words of S, let A be any optimal determinitic algorithm, hence, for each $k \in \{1, \ldots, |S|\}$, there is one and only one input I_j such that $k = C(I_j, A)$, this observation justifies the equality [*] below.

$$\mathbb{E}[C(I_p, A)] = \sum_{k} C(I_k, A) \mathbb{P}[I_k]$$

$$= \frac{1}{|S|} \sum_{k} k \quad [*]$$

$$= \frac{|S| + 1}{2}$$

Now let q be a probability distribution over the set of deterministic algorithms \mathcal{A} , using Yao's minmax theorem we get:

$$\frac{|S|+1}{2} \le \max_{I \in S} \mathbb{E}[C(I, A_q)]$$

From the last inequality, we can conclude that no randomized algorithm can do better in average that $\frac{|S|+1}{2}$, (there is always an input that has higher cost than that), and hence the the algorithm in **(b)** is optimal.

Exercise 2.

Let $C = \{x_1, \ldots, x_N\}$ be a random cut of the graph, where $\{x_i\}_{1 \leq i \leq N}$ representes the edges. We are obviously interested in $\mathbb{E}[N]$, i.e., the expected number of edges in a cut. Let $E = \{e_1, \ldots, e_{|E|}\}$ and let the RV X_i be the indicator of edge e_i in C.

and let the RV
$$X_i$$
 be the indicator of edge e_i in C .

Clearly $N = \sum_{i=1}^{|E|} X_i$, and hence, $\mathbb{E}[N] = \sum_{i=1}^{|E|} \mathbb{E}[X_i]$

Now we prove that $\mathbb{E}(X_i) = 1/2$. Suppose the edge e_i connects the vertices A and B.

$$\begin{split} \mathbb{E}[X_i] &= \mathbb{P}[X_i = 1] \\ &= \mathbb{P}[\{A \ random \ cut \ contains \ e_i\}] \\ &= \mathbb{P}[\{A \ cut \ contains \ one \ and \ only \ one \ of \ A \ or \ B \ \}] \end{split}$$

Each cut is defined by a split of vertices S_1/S_2 , where S_1 selects $j \in \{1, ..., |V| - 1\}$ vertices at random from V. Each vertex has 1/2 probability to be in S_1 (resp. S_2).

$$\begin{split} \mathbb{P}[\{(A,B) \in (S_1,S_2) \lor (A,B) \in (S_2,S_1)\}] &= \mathbb{P}[\{(A,B) \in (S_1,S_2)\}] + \mathbb{P}[\{(A,B) \in (S_2,S_1)\}] \\ &= \mathbb{P}[\{A \in S_1 \land B \in S_2\}] + \mathbb{P}[\{A \in S_1 \land B \in S_1\}] \\ &= \mathbb{P}[\{A \in S_1\}]\mathbb{P}[\{B \in S_2\}] + \mathbb{P}[\{A \in S_1\}]\mathbb{P}[\{B \in S_1\}] \\ &= 1/21/2 + 1/21/2 = 1/2 \end{split}$$