Math 310: Problem Set 3 Avinash Iyer

Problem 1

Find $\sup(A)$ and $\inf(A)$ where

(a)
$$A := \left\{1 - \frac{(-1)^n}{n} \mid n \in \mathbb{N}\right\}$$

(b)
$$A := \left\{ \frac{1}{n} - \frac{1}{m} \mid m, n \in \mathbb{N} \right\}$$

(c)
$$A := \{ \frac{m}{n} \mid m, n \in \mathbb{N}, \ m+n \le 10 \}$$

(a)

 $\sup(A) = 2$: For any $t \in A$, t < 2, we can find a_t as follows:

$$a_t := \begin{cases} 1, & t < 1 \\ \frac{4}{3}, & 1 \le t < \frac{4}{3} \\ 2, & t = \frac{4}{3} \end{cases}$$

 $\inf(A) = \frac{1}{2}$: For any $t \in A$, $t > \frac{1}{2}$, we can find a_t as follows:

$$a_t := \begin{cases} 1, & t > 1 \\ \frac{3}{4}, & \frac{3}{4} < t \le 1 \\ \frac{1}{2}, & t < \frac{3}{4} \end{cases}$$

(b

 $\sup(A) = 1$: For any $t \in A$, t < 1, we can find $a_t > t$ as follows:

- (1) Take $|t| \geq t$.
- (2) If $|t|<\frac{1}{2}$, find m such that $\frac{1}{m}<|t|$ (which exists by the Archimedean Property corollary). Set $a_t=1-\frac{1}{m}$.
- (3) If $|t| > \frac{1}{2}$, then find m such that $\frac{1}{m} < 1 |t|$, and set $a_t = 1 \frac{1}{m}$.

In all three cases, $a_t > t$, meaning $\sup(A) = 1$

 $\inf(A) = -1$

(c)

Since A is finite, $\sup(A) = \max(A) = 9$ and $\inf(A) = \min(A) = \frac{1}{9}$

Problem 2

Suppose $u = \sup(A)$ such that $u \notin A$. Show that there is a strictly increasing sequence

$$t_1 < t_2 < t_3 < \dots$$

With $t_n \in A$ and $t_n + \frac{1}{n} > u$ for all $n \ge 1$

Let $t_n = u - \frac{1}{2n}$. t_n must be a strictly increasing sequence because $t_{n+1} = u - \frac{1}{2n+2} > u - \frac{1}{2n} = t_n$.

Additionally, $t_n + \frac{1}{n} = u - \frac{1}{n} < u$, meaning $t_n \in A$.

Math 310: Problem Set 3 Avinash Iyer

Problem 3

If m is a lower bound for $A \subseteq \mathbb{R}$, show that the following are equivalent:

- (i) $m = \inf(A)$
- (ii) $\forall t > m, \ \exists a_t \in A \ni a_t < t$
- (iii) $\forall \varepsilon > 0, \exists a_{\varepsilon} \ni m + \varepsilon > a_{\varepsilon}$

Problem 4

Let $A, B \in \mathbb{R}$ be bounded subsets.

(a) Show that

$$sup(A + B) = sup(A) + sup(B)$$
$$inf(A + B) = inf(A) + inf(B)$$

(b) If t > 0, show that

$$\sup(tA) = t \sup(A)$$
$$\inf(tA) = t \inf(A)$$