

Basic Electrical Technology

LECTURE 2 - 23 OCTOBER 2021

ACTIVE & PASSIVE FLEMENTS

Active Elements - Sources

Voltage Source

≻ Ideal:

- Maintains constant voltage irrespective of connected load
- \circ Internal resistance $R_s = 0$

Ideal Voltage Source (DC)

Practical:

- Terminal voltage changes based on the connected load
- o Internal resistance R_s ≠ 0

Practical Voltage Source

Active Elements - Sources

Current Source

≻Ideal:

- Maintains constant current irrespective of the load connected
- o Internal resistance R_s = ∞

Ideal Current Source (DC)

> Practical:

- Output current changes based on the connected load
- $_{\circ}$ Internal resistance $R_s < \infty$

Practical Current Source

Resistor

Energy Consuming Element

Resistor

- > Passive electric device that dissipates energy
- > Resistance: property which opposes flow of current
 - Symbol: R
 - Ounit: Ohms (Ω)
 - \circ Power Consumed = I^2R

- Conductance
 - Reciprocal of resistance
 - Symbol: G
 - Unit Siemens (S)

Resistors

Series connection of Resistors

Parallel connection of Resistors

- Current (I) in the all the resistors remains same
- $V = V_1 + V_2 + V_3$
- $R_{eq} = R_1 + R_2 + R_3$

- Voltage (V) is same
- $I = I_1 + I_2 + I_3$
- $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Resistors

Series Resistors
$$R_1 \mapsto R_1 + R_2$$
 Equivalent resistance $R_1 + R_2$

$$V_1 = rac{R_1}{R_1 + R_2} \, V_s \qquad V_2 = rac{R_2}{R_1 + R_2} \, V_s$$

$$I_s$$
 $I_1 \Rightarrow R_1$ $I_2 \Rightarrow R_2$ $I_3 \Rightarrow R_2$ $I_4 \Rightarrow R_2$ $I_5 \Rightarrow R_2$ $I_5 \Rightarrow R_2$ $I_7 \Rightarrow R_2$ $I_8 \Rightarrow R_2$

Delivering and absorbing power by a source

- A battery is discharging (delivering power/energy) if,
 - Current coming out from positive (+) terminal
- A battery is charging (absorbing power/energy) if,
 - Current flowing into positive (+) terminal
- When current flows through a resistor,
 - Power is dissipated

10 V battery is discharging5V battery is charging

Illustration 1

Find the equivalent resistance of the networks given below.

Ans: 2.5 Ohms

Ans: 2 Ohms

Illustration 2

Determine the equivalent resistance between the points A and B for the given resistive network with 1 Ω resistors

Ans: 2 Ohms

Illustration 3

Determine the equivalent resistance between the points A & C and a & b, respectively for the given resistive network. Each resistance is R Ohms.

Ans: 2R/3 Ohms

Ans: R/2 Ohms

Inductor

Energy Storing Element

Inductor

Passive electric device that stores energy in its magnetic field when current flows through it

- A coil of wire wound on a core
 - Example: Air core Inductor, iron core inductor

- Symbol: L
- Unit: Henry (H)

$$v_L = L \frac{di}{dt}$$

Inductive Circuit

For a coil uniformly wound on a non-magnetic core of uniform cross section, self-inductance is given by

$$L = \frac{\mu_0 A N^2}{l}$$

where,

l = length of the magnetic circuit in meters

A =cross sectional area in square meters

 μ_o = Permeability of air = $4\pi \times 10^{-7}$

N = No. of turns in the coil

Equivalent Inductance

Inductors in series

$$L_{eq} = L_1 + L_2 + \dots + L_n$$

Inductors in Parallel

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

Energy Stored in an Inductor

Instantaneous power,

$$p = v_L \cdot i = L i \frac{di}{dt}$$

Energy absorbed in 'dt' time is

$$dw = L i di$$

 \blacksquare Energy absorbed by the magnetic field when current increases from $\bf 0$ to $\bf I$ amperes, is

$$W = \int_0^I L \, i \, di = \frac{1}{2} L \, I^2$$

Capacitor

Energy Storing Element

Capacitors

- Passive electric device that stores energy in the electric field between a pair of closely spaced conductors
- **Capacitance**: Property which opposes the rate of change of voltage
 - Symbol: C
 - Unit: Farad (F)

The capacitive current is proportional to the rate of change of voltage across it

$$i_c = C \frac{dv_c}{dt}$$

Charge stored in a capacitor whose plates are maintained at constant voltage:

$$Q = CV$$

Terminologies

Electric field strength,

$$E = \frac{V}{d} \ volts/m$$

Electric flux density,

$$D = \frac{Q}{A} C/m^2$$

Permittivity of free space,

$$\varepsilon_0 = 8.854 \times 10^{-12} \ F/m$$

- lacktriangle Relative permittivity, $oldsymbol{arepsilon}_{r}$
- Capacitance of parallel plate capacitor

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Equivalent Capacitance

Capacitors in Series

$$\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n}$$

Capacitors in Parallel

$$C_{eq} = C_1 + C_2 + \ldots + C_n$$

Energy stored in a Capacitor

Instantaneous power

$$p = v_c \times i = C v_c \frac{dv_c}{dt}$$

Energy supplied during 'dt' time is:

$$dw = C v_c dv_c$$

Energy stored in the electric field when potential rises from 0 to V volts is,

$$W = \int_0^V C v_c dv_c = \frac{1}{2}CV^2$$
 Joules

Quiz Time

UNGRADED

1

An inductor and a resistor opposes _____ & ____ respectively

- a) flow of current, rate of change of current
- b) rate of change of current, flow of current
- c) rate of change of current, rate of change of current
- d) flow of current, flow of current

The source voltage is ____

- a) 10 V
- b) 20 V
- c) 30 V
- d) 40 V

3

Two incandescent bulbs of 40 W and 60 W ratings are connected in series across the mains. Assuming the voltage rating of both the bulbs to be same, which of the following statement(s) is (are) correct?

- a) The bulbs together will consume 100 W
- b) The bulbs together will consume 50 W
- The 60 W bulb glows brighter
- d) The 40 W bulb glows brighter

Resistors in the following circuit are connected in

- a) Series
- b) Parallel
- c) Combination of series and parallel
- d) None of the above

