INTRODUCCIÓN

FIABILIDAD

Daniel Blanco Calviño

EL RENDIMIENTO Y LA ESCALABILIDAD NO LO SON TODO

- Hemos visto por qué nuestro sistema debe:
 - Rendir bien.
 - Comportarse bien cuando la carga aumente.
- Pero esto **no es suficiente**.
 - Si tenemos fallos e interrupciones en el servicio la experiencia de usuario se verá afectada.

EL RENDIMIENTO Y LA ESCALABILIDAD NO LO SON TODO

- Hemos visto por qué nuestro sistema debe:
 - Rendir bien.
 - Comportarse bien cuando la carga aumente.
- Pero esto no es suficiente.
 - Si tenemos fallos e interrupciones en el servicio la experiencia de usuario se verá afectada.
- Debemos asegurar la fiabilidad.

FIABILIDAD

• Probabilidad de que el software se ejecute durante un determinado período de tiempo sin que se produzcan fallos.

• Uptime.

Tiempo que nuestro sistema está operativo.

• Downtime.

Tiempo que nuestro sistema no está operativo.

• Disponibilidad (%) = uptime / tiempo total

• ¿Qué sucede si tenemos múltiples servicios?

• ¿Qué sucede si tenemos múltiples servicios?

- ¿Qué sucede si tenemos múltiples servicios?
- uptime = (n° servicios operativos / n° servicios totales) * tiempo.
 - No tiene en cuenta el porcentaje de uso de cada uno.

- ¿Qué sucede si tenemos múltiples servicios?
- uptime = (n° servicios operativos / n° servicios totales) * tiempo.
 - No tiene en cuenta el porcentaje de uso de cada uno.
- uptime = (n° peticiones exitosas (est.) / n° peticiones totales (est.)) * tiempo.
 - No tiene en cuenta la relevancia de cada servicio.

- ¿Qué sucede si tenemos múltiples servicios?
- uptime = (n° servicios operativos / n° servicios totales) * tiempo.
 - No tiene en cuenta el porcentaje de uso de cada uno.
- uptime = (n° peticiones exitosas (est.) / n° peticiones totales (est.)) * tiempo.
 - No tiene en cuenta la relevancia de cada servicio.
- Ponderando cada servicio según su uso y relevancia.

OTRAS MÉTRICAS

- Mean Time Between Failures (MTBF)
 - Tiempo medio entre fallos de nuestro sistema. Nos interesa un MTBF alto.

- Mean Time To Recover (MTTR)
 - Tiempo medio para recuperar el sistema de algún fallo. Nos interesa un MTTR lo más bajo posible.

ALTA DISPONIBILIDAD

- ¿Qué significa un sistema con alta disponibilidad?
 - · ¿90%?
 - · ¿95%?
 - · ¿99%?
 - · ¿100%?

- Nuestros interesados quieren el 100%, pero no es algo realizable.
 - Fallos humanos.
 - Fallos hardware.
 - o Problemas en proveedores externos.
 - Mantenimiento.

Availability %	Downtime por año	Downtime por mes	Downtime por semana	Downtime al día
90% ("un nueve")	36.53 días	73.05 horas	16.80 horas	2.40 horas
95% ("un nueve cinco")	18.26 días	36.53 horas	8.40 horas	1.20 horas
99% ("dos nueves")	3.65 días	7.31 horas	1.68 horas	14.40 minutos
99.9% ("tres nueves")	8.77 horas	43.83 minutos	10.08 minutos	1.44 minutos
99.99% ("cuatro nueves")	52.60 minutos	4.38 minutos	1.01 minutos	8.64 segundos
99.999% ("cinco nueves")	5.26 minutos	26.30 segundos	6.05 segundos	864.00 milisegundos

Fuente: Wikipedia

TOLERANCIA A LOS FALLOS

- No importa lo mucho que nos esforcemos, los fallos son inevitables.
- Debemos buscar la tolerancia a los fallos.
 - o Prevención.
 - Detección.
 - Recuperación.

PREVENCIÓN A LOS FALLOS

- Punto único de fallo (Single Point Of Failure)
 - Elemento que si falla hace que el sistema al complete quede inoperativo.
 - Servidor.
 - BBDD.
 - Servicio de terceros.
- Es importante eliminar los máximos puntos únicos de fallo posibles.
 - Se debe aplicar redundancia.
 - Múltiples servidores (escalado horizontal).
 - Múltiples BBDD.

DETECCIÓN DE LOS FALLOS

- Una detección rápida de los fallos es vital.
 - Aviso a posibles interesados.
 - Puesta en marcha de estrategias de contención y recuperación.
- Nuestro sistema debe detectar fallos parciales por si mismo.
 - Envío de peticiones a un servidor saludable en lugar de uno con problemas.
- Monitorización.
 - Automática.
 - Equipo dedicado.

RECUPERACIÓN DE LOS FALLOS

- Recuperar el sistema cuanto antes para que los usuarios sufran el menor impacto posible.
 - Apagar por completo el sistema.
 - Rollback a versión anterior.
 - Copia de seguridad de los datos.
- La recuperación debe ser lo más sencilla posible.
- Una vez recuperado, se debe documentar.
 - Post Mortem con las causas, los pasos para recuperar el sistema y las estrategias de prevención para que no vuelva a ocurrir en el futuro si es posible.