Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 742 202 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 13.11.1996 Bulletin 1996/46

(21) Application number: 96106956.4

(22) Date of filing: 03.05.1996

(51) Int. Cl.⁵: **C07C 323/48**, C07C 317/28, C07C 323/52, C07C 337/04, C07F 7/10, A01N 33/26, C07C 323/22, C07C 335/32, C07C 317/24, C07C 331/04, C07C 329/16

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL PT

(30) Priority: 12.05.1995 JP 137482/95 15.02.1996 JP 50744/96

(71) Applicant: NIHON BAYER AGROCHEM K.K. Tokyo 108 (JP)

(72) Inventors:

 Kitagawa, Yoshinori Moka-shi, Tochigi (JP)

Wada, Katsuaki
 Oyama-shi, Tochigi (JP)

 Kyo, Yoshiko Oyama-shi, Tochigi (JP)

Otsu, Yuichi
 Oyama-shi, Tochigi (JP)

Hattori, Yumi
 Yuki-shi, İbaraki (JP)

Obinata, Toru
 Oyama-shi, Tochigi (JP)

Abe, Takahisa
 Oyama-shi, Tochigi (JP)

 Shibuya, Katsuhiko Minamikawachi-machi (JP)

Andersch, Wolfram, Dr.
 51469 Bergisch Gladbach (DE)

(74) Representative: Linkenhell, Dieter et al Bayer AG Konzernverwaltung RP Patente Konzern 51368 Leverkusen (DE)

(54) Benzophenone hydrazone derivatives as insecticides

(57) Summary Of The Invention

Novel benzophenonehydrazone derivatives represented by the formula (I):

wherein, R^1 is halogen; R^2 is hydrogen or C_{1-4} alkyl; R^3 is cyano, optically substituted C_{1-4} alkyl, C_{2-4} alkenyl, C_{3-4} alkyl-nyl, C_{1-4} alkyl-carbonyl or C_{1-4} alkoxy-thiocarbonyl; R^4 is hydrogen, phenyl, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-8} alkenyl, C_{2-8}

EP 0 742 202 A2

 R^5 is hydrogen, formyl, phenyl, optionally substituted C_{1-8} alkyl, optionally substituted C_{2-8} alkenyl, optionally substituted C_{1-8} alkyl-carbonyl, optionally substituted C_{1-6} alkyl-carbonyl, optionally substituted C_{1-8} alkoxy-carbonyl, optionally substituted C_{1-8} alkoxy-carbonyl, optionally substituted C_{2-8} cycloalkyl-carbonyl, optionally substituted C_{2-8} alkenyl-carbonyl or optionally substituted benzoyl; R^6 is hydrogen or halogen; R^7 is hydrogen, halogen or C_{1-2} alkyl-carbonyl or C_{1-4} alkoxy-thiocarbonyl; R^8 is 0, 1 or 2, provided that n is 0 when R^8 is cyano, R^8 is a single bond of Anti form or of Syn form.

The benzophenonehydrazone derivatives of the formula (I) have excellent insecticidal activities.

Description

5

15

20

25

30

40

55

The present invention relates to novel benzophenone hydrazone derivatives, to processes for the preparation thereof and to their use as insecticides, as well as to novel intermediates for their preparation and to processes for their preparation.

It has been already known that certain 4-substituted-4'-alkysufonyloxybenzophenone hydrazone derivatives have insecticidal activities (see British Crop Protection Conference Pests and Diseases 1984, Vol.2, 405 - 412, Japanese Patent Kokai Publications Sho 54-122261 (=EP-3913-A, USP4394387), Sho 56-45452 (=EP-26040-A, USP4331680, USP4432994), Hei 2-138246 (=EP-355832-A, USP4980373), Hei 3-74356 (DERWENT AN-91-136915), Hei 4-1173 (DERWENT AN-92-053936), Hei 6-25134(=CA2094010), Hei 6-184079 (=USP5340837, USP5405871), Hei 7-149708(=EP-647622), Hei 7-242618(=CA2139465) and Hei 7-247261 (=DERWENT AN-95-363559)).

However, the level and/or duration of activity of these known compounds are not entirely satisfactory in all fields of application, in particular against certain organisms or when low concentrations are applied.

There have now been found novel benzophenone hydrazone derivatives of the formula (I):

wherein

R¹ is halogen,

R² is hydrogen or C₁₋₄ alkyl,

R³ is cyano, optionally substituted C₁₋₄ alkyl, C₂₋₄ alkenyl or C₃₋₄ alkynyl, C₁₋₄ alkyl-carbonyl or C₁₋₄ alkoxy-thiocarbonyl

35 R⁴ is hydrogen, phenyl, benzyl, optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₈ alkenyl, -CO-R⁸, -CO-O-R⁹ or

is hydrogen, formyl, phenyl, optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₈ alkenyl, optionally substituted C₁₋₈ alkyl-carbonyl, optionally substituted C₁₋₆ alkyl-carbonyl, optionally substituted C₁₋₈ alkoxy-carbonyl, optionally substituted C₁₋₈ alkoxy-oxalyl, optionally substituted C₂₋₈ alkenyl-carbonyl or optionally substituted benzoyl,

R⁶ is hydrogen or halogen,

R⁷ is hydrogen, halogen or C₁₋₂ alkyt,

n is 0, 1 or 2, provided that n is 0 when R3 is cyano, C1-4 alkyl-carbonyl or C1-4 alkoxy-thiocarbonyl,

is a single bond of Anti form or of Syn form,

is optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₈ alkenyl, optionally substituted phenyl, optionally substituted C₁₋₈ alkyl-carbonyl or optionally substituted C₁₋₈ alkoxy-carbonyl, or hydrogen,

 R^9 is optionally substituted C_{1-8} alkyl, optionally substituted C_{3-8} cycloalkyl, optionally substituted C_{2-8} alkenyl or optionally substituted C_{3-8} alkynyl,

R¹⁰ is hydrogen or C₁₋₄ alkyl,

R¹¹ is hydrogen, optionally substituted C₁₋₄ alkyl or optionally substituted phenyl and,

Z is oxygen or sulfur.

5

10

15

20

25

30

35

45

50

55

The compounds of the formula (I), according to the invention, are obtained when

(a) in the case where R⁵ is hydrogen: compounds of the formula (II)

$$\begin{array}{c|c}
R^6 & 0 \\
R^7 \\
C & C \\
R^7
\end{array}$$

$$\begin{array}{c}
CH-S(O)n-R^3 \\
R^2
\end{array}$$
(II)

wherein R1, R2, R3, R6, R7 and n are defined as above, are reacted with compounds of the formula (III)

wherein R^4 is defined as above; in the presence of an inert solvent, and, if appropriate, in the presence of an acid catalyst,

or

(b) in the case where R5 is hydrogen and R4 is

and R¹¹ is not hydrogen, then R¹¹ is replaced by R¹², then R¹² is optionally substituted C₁₋₄ alkyl or optionally substituted phenyl: compounds of the formula (IV)

$$\begin{array}{c}
H \\
N \\
R^{5}
\end{array}$$

$$\begin{array}{c}
R^{7} \\
CH \\
R^{2}
\end{array}$$

$$\begin{array}{c}
(IV) \\
(IV) \\
R
\end{array}$$

wherein R1, R2, R3, R6, R7 and n are defined as above, are reacted with compound of the formula (V)

wherein R12 is optionally substituted C1-4 alkyl or optionally substituted phenyl, in the presence of an in rt solvent,

5

10

15

20

25

(c) in the case where R4 is -CO-R8 or -CO-O-R9, provided that R8 is not hydrogen, then R8 or -O-R9 is replaced by R¹³, the aforementioned compounds of the formula (IV) are reacted with compounds of the formula (VI)

wherein hal is chlorine or bromine and R13 is R8 or -O-R9, in the presence of an inert solvent, and if appropriate in the presence of an acid binder,

(d) in the case where \mathbb{R}^5 is not hydrogen, then \mathbb{R}^5 is replaced by \mathbb{R}^{14} : compounds of the formula (VII)

30

wherein R1, R2, R3, R4, R6, R7 and n have the same meaning as mentioned above, are reacted with compounds of the formula (VIII)

35

40

wherein hal and R14 have the same meaning as mentioned above, in the presence of an inert solvent, and if appropriate in the presence of an acid binder,

(e) in the case where n is 1: compounds the formula (IX)

$$\begin{array}{c}
R^{5} \\
N \\
R^{6}
\end{array}$$

$$\begin{array}{c}
R^{7} \\
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{2}
\end{array}$$
(IX)

50

55

45

wherein R1, R2, R3, R4, R5, R6 and R7 have the same meaning as mentioned above, are oxidized in the presence of an inert solvent,

(f): in the cas where n is 2: compounds of th formula (X)

$$\begin{array}{c}
R^{5} \\
N \\
R^{6}
\end{array}$$

$$\begin{array}{c}
R^{7} \\
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{2}
\end{array}$$

$$\begin{array}{c}
(X) \\
$

wherein R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ have the same meanings as mentioned above and q is 0 or 1, are oxidized in the presence of an inert solvent.

The benzophenone hydrazone derivatives of the formula (I) according to the invention exhibit powerful insecticidal action, especially against lepidoptera, coleoptera and soil insects.

According to the invention, unexpectedly, the benzophenone hydrazone derivatives of the formula (I) exhibit substantially, superior insecticidal action as compared with those of the compounds described in the above references which are similar to the compounds of the invention.

In the compounds of the formula (I) according to the invention, and the respective formulae representing their intermediates employed for the preparation of the compounds of formula (I), each of the halogen as well as the halogen parts of the haloalkyl, haloalkenyl and haloalkoxy represent fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine or bromine.

Alkyl represents, for example, methyl, ethyl, propyl, isopropyl, n-(iso-, sec- or tert-)butyl, n-(iso-, sec-, tert- or neo-)pentyl and n-(iso-, sec-, tert- or neo-)hexyl, preferably, methyl, ethyl, propyl, isopropyl and n-(iso-, sec- or tert-)butyl.

Alkenyl represents, for example, vinyl, allyl, isopropenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 2- (or 3-)butenyl, 2-(3- or 4-)pentenyl,

Alkynyl represents, for example, propargyl.

Phenyl and the phenoxy may optionally be substituted by one or more than one substituent. The substituent(s) of those are selected from the group consisting of halogen(fluorine, chlorine, bromine), cyano, nitro, alkyl (methyl, ethyl, propyl or isopropyl), haloalkyl(trifluoromethyl), alkoxy(methoxy, ethoxy), haloalkoxy (trifluoromethoxy) and alkylthio(methylthio).

Cycloalkyl represents, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyc

Alkoxy represents, for example, methoxy, ethoxy, propoxy, isopropoxy, n-(iso-, sec- or tert-)butoxy, n-(iso-, sec-, tert- or neo-)pentoxy, n-(iso-, sec-, tert- or neo-)hexoxy.

Haloalkoxy represents the above mentioned alkoxy groups which are substituted with the same or different halogen atom(s) and is, for example, trifluoromethoxy.

Alkylthio represents, for example, methylthio, ethylthio, propylthio, isopropylthio, n-(iso-, sec- or tert-)butylthio, n-(iso-, sec-, tert- or neo-)pentylthio, n-(iso-, sec-, tert- or neo-)hexylthio.

Among the benzophenone hydrazone derivatives according to the invention, of the formula (I), preferred compounds are those in which

R¹ is halogen,

R² is hydrogen or C₁₋₃ alkyl,

is cyano, C_{1.4} alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, methoxy, ethoxy and trimethylsilyl or is C_{2.3} alkenyl, propargyl, methyl-carbonyl, methoxy-thiocarbonyl or ethoxy-thiocarbonyl,

R⁴ is hydrogen, C₁₋₄ alkyl, C₂₋₄ alkenyl, phenyl, or is benzyl, -CO-R⁸, -CO-O-R⁹ or

5**5**

45

50

5

10

15

30

is hydrogen, formyl, phenyl, C₁₋₆ alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ alkylthio, hydroxycarbonyl, C₁₋₆ alkoxy-carbonyl, phenyl, which is substituted by halogen and methoxyphenyl or is C₂₋₆ alkenyl, C₃₋₆ alkynyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ halogenalkyl-carbonyl, C₁₋₄ alkoxy-C₁₋₆ alkyl-carbonyl, C₁₋₆ alkyl-oxalyl, C₁₋₆ alkoxy-carbonyl which may be substituted by one or more than one substitutent selected from the group consisting of C₃₋₆ cycloalkyl and C₁₋₄ alkoxy or is C₁₋₆ alkoxy-oxalyl, C₃₋₆ cycloalkyl-carbonyl which may be substituted by C₁₋₄ alkyl, C₂₋₆ alkenyl-carbonyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, nitro, cyano, C₁₋₄ alkoxy and C₁₋₄ alkylthio,

. 10 R⁶ is hydrogen or halogen,

5

30

35

40

R⁷ is hydrogen or halogen or C₁₋₂ alkyl,

n is 0, 1 or 2, provided that n is 0 when R³ is cyano, methyl-carbonyl, methoxy-thiocarbonyl or ethoxy-thiocarbonyl

is a single bond of Anti form or of Syn form,

is C₁₋₆ alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ alkoxy-carbonyl and phenoxy or is C₂₋₆ alkenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen and phenyl, or is phenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, nitro, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy and C₁₋₄ alkythio, or is C₃₋₆ cycloalkyl which may be substituted by C₁₋₄ alkyl, or is C₁₋₆ alkyl-carbonyl or C₁₋₆ alkoxy-carbonyl, or hydrogen,

 R^9 is C_{1-6} alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, phenyl, 4-nitrophenyl, trimethylsilyl and C_{3-6} cycloalkyl, or is C_{3-6} cycloalkyl, or C_{2-6} alkenyl which may be substituted by phenyl or is C_{3-6} alkynyl,

R¹⁰ is hydrogen or C₁₋₄ alkyl,

is hydrogen, C₁₋₄ alkyl which may be substituted by halogen or is phenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy and is oxygen or sulfur.

Particularly preferred benzophenone hydrazone derivatives of the formula (I) are those in which

R¹ is fluorine, chlorine, bromine or iodine,

R² is hydrogen, methyl, ethyl or n-propyl,

is cyano, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, cyanomethyl, fluoromethyl, chloromethyl, difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3,3-tetrafluoropropyl, methoxymethyl, ethoxymethyl, trimethylsilylmethyl, vinyl, allyl, propargyl, methyl-carbonyl or ethoxy-thiocarbonyl,

R⁴ is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, allyl, phenyl, benzyl, -CO-R⁸, -CO-O-R⁹ or

is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, methoxymethyl, ethoxymethyl, methylthiomethyl, methylthioethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, difluoromethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, cyanomethyl, cyanomethyl, vinyl, allyl, propargyl, phenyl, benzoyl, cinnamoyl, benzyl, 4-chlorobenzoyl, 4-methoxybenzoyl, formyl,methylcarbonyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, 2,2,2-trifluoroethylcarbonyl, 5-bromopentylcarbonyl, methoxymethylcarbonyl, methyloxalyl, propyloxalyl, isopropyloxalyl, n-butyl-oxalyl, methoxycarbonyl, ethoxycarbonyl, propoxyoxalyl, butoxycarbonyl, ethoxyoxalyl, propoxyoxalyl, butoxyoxalyl, cyclopropylcarbonyl, 1-methylcyclopropylcarbonyl, cyclopropylmethoxycarbonyl or 2-methoxyethoxycarbonyl, hydroxycarbonylethyl,

R⁶ is hydrogen, fluorine or chlorine,

R⁷ is hydrogen, bromine or m thyl,

n is 0, 1 or 2, provided that n is 0 when R³ is methyl-carbonyl or ethoxy-thiocarbonyl,

is a single bond of Anti form or of Syn form,

	R ⁸	is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, cyanomethyl, 2 chloroethyl, 3-chloropropyl, 4-chlorobutyl, m thoxym thyl, 2-methoxyethyl, phenoxymethyl, ethoxycarbonyl methyl, vinyl, isopropenyl, 1-propenyl, 2,3,3-trifluoro-2-propenyl, phenyl, 4-chlorophenyl, 4-bromophenyl, 4 methylphenyl, 4-methoxyphenyl, styryl, cyclopropyl, cyclopentyl, cyclohexyl, 1-methylcyclopropyl, methylcarbonyl, ethylcarbonyl, propylcarbonyl, methoxycarbonyl, ethoxycarbonyl or propyoxcarbonyl, or hydrogen,
5	R ⁹	is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, neo-pentyl, 2-methylbutyl n-hexyl, trimethylsilylmethyl, allyl, cyclopentyl, cyclohexyl, 2-methyl-2-propenyl, propargyl, 2-chloroethyl 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, cyclopropylmethyl, cyclohexylmethyl, benzyl or 4-nitrobenzyl
10	R ¹⁰ R ¹¹	is hydrogen or methyl, is hydrogen, methyl, ethyl, 2-chloroethyl, phenyl, 2-chlorophenyl, 2-methoxyphenyl or 4-trifluoromethoxyphenyl, and
	Z .	is oxygen or sulfur.
15		
20		
25		
30		
		•
35		
40		-
45		
50		
5 5		

Specifically mentioned are the following compounds in Table 1 to Table 4.

Table 1

5	O II R ⁵ N C C C R ⁹
. 10	7 V
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
. 15	R ¹ CH 2 R ²

						••		
	R ¹	R ²	R ³	<u>n_</u>	R ⁵	R ⁶	R ⁷	_R ⁹
	F	Н	CH₃	0	н	н	Н	CH ₃
20	F	Н	CH ₃	0	н	Н	Н	C ₂ H ₅
20	F	Н	CH3	0	Н	3-F	н	CH ₃
	F	Н	CH ₃	0	Н	3-F	н	C ₂ H ₅
	F	Н	CH3	1	Н	н	н	CH ₃
	F	Н	CH ₃	1	Н	н	Н	C ₂ H ₅
25	F	Н	CH ₃	1	Н	Н	Н	n-C ₃ H ₇
	F	Н	CH ₃	1	н	Н	Н	iso-C ₃ H ₇
	F	Н	CH₃	1	Н	н	н	iso-C ₄ H ₉
	F	Н	CH ₃	1	H	н	Н	CH ₂ CF ₃
30	F	Н	CH ₃	2	Н	Н	Н	C₂H₅
	F	Н	сн₃	2	н	н	Н	n-C ₃ H ₇
	F	Н	CH ₃	2	н	н	Н	iso-C ₃ H ₇
	F	Н	CH ₃	2	н	н	Н	iso-C ₄ H ₉
35	F	Н	CH ₃	2	Н	*H	Н	CH ₂ CF ₃
	F	Н	C ₂ H ₅	0	н	н	Н	C ₂ H ₅
	F	Н	C₂H₅	0	н	3-F	Н	C ₂ H ₅
	F	Н	C ₂ H ₅	1	н	н	Н	CH ₃
	F	Н	C ₂ H ₅	1	Н	Н	Н	C₂H ₅
40	F	Н	C ₂ H ₅	1	Н	н	Н	CH ₂ CF ₃
	F	Н	C ₂ H ₅	1	н	н	Н	iso-C ₃ H ₇
	F	Н	C ₂ H ₅	2	н	н	Н	CH ₃
	F	Н	C ₂ H ₅	2	Н	н	Н	C ₂ H ₅
45	F	Н	C ₂ H ₅	2	Н	н	Н	n-C ₃ H ₇
	F	H	C₂H₅	2	H	Н	Н	iso-C ₄ H ₉
	F	Н	C ₂ H ₅	2	Н	н	Н	CH ₂ CF ₃
	F	Н	C ₂ H ₅	2	н	3-F	Н	C ₂ H ₅
50	F	Н	CH ₂ CH ₂ F	0	н	н	Н	CH ₃
	F	H	CH ₂ CF ₃	0	н	н	Н	CH₃
	F CI	H	CH ₂ CF ₃	0	Н	3-F	Н	CH ₃
	CI	Н	CH ₃	0	Н	н	Н	CH ₃

55

Table 1 (continued)

5	R ¹ R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
3						К.	_ K
	CI H	CH ₃	0	н	н	н	0.11
	CI H	CH ₃	0	 Н	Н	Н	C ₂ H ₅
	CI H	CH ₃	0	н	Н		n-C ₃ H ₇
10	CI H	CH ₃	0	H		Н	iso-C ₃ H ₇
	CI H	CH ₃	0	н	H H	H	sec-C ₄ H ₉
	CI H	CH ₃	0	H		H	tert-C ₄ H ₉
	CI H	CH ₃	0	H	н	H	n-C ₄ H ₉
15	CI H	CH ₃	0	H	Н	Н	iso-C ₄ H ₉
	CI H	CH ₃	0	Н	Н	Н	n-C ₅ H ₁₁
	CI H	CH ₃	0	н	H	Н	neo-C ₅ H ₁₁
	CI H	CH ₃	0	H	Н	Н	CH ₂ CH(CH ₃)C ₂ H ₅
20	CI H	CH ₃	0		Н	Н	n-C ₆ H ₁₃
20	CI H	CH ₃	0	Н	Н	Н	n-C ₇ H ₁₅
	CI H	CH ₃	0	H H	Н	Н	n-C ₈ H ₁₇
	CI H	CH ₃	0	H	Н	Н	CH ₂ CH≖CH ₂
	CI H	CH ₃	0	Н	Н	Н	CH ₂ C(CH ₃)=CH ₂
25	CI H	CH ₃	0	H	Н	Н	CH ₂ C≡CH
	CI H	CH ₃	0	H	Н	Н	CH₂C ₆ H ₅
	CI H	CH ₃	0	H	Н	H	CH ₂ CF ₃
	CI H	CH ₃	0	H	Н	Н	CH ₂ CH ₂ CI
30	CI H	CH ₃	0	Н	Н	H	CH ₂ CH ₂ OCH ₃
		O. 13	U	П	Н	H	CH ₂ Si(CH ₃) ₃
	CI H	CH ₃	0	н	н	н	
		3	•	••	- 11	п	-a [‡] (`)
35	.					•	
•	CI H	CH ₃	0	Н	Н	Н	- ⟨\)
	CI H	СН ₃	0	Н	Н	н	
	CI H		_				\leftarrow
40		CH ₃	0	Н	Н	2-F	C₂H₅
		CH ₃	0	Н	Н	3-F	C₂H ₅
		CH₃	0	H	Н	3-CI	C₂H₅
	CI H	CH ₃	0	H	Н	3-Br	C₂H₅
45		CH ₃	0	H	Н	3-CH ₃	C₂H₅
	CI H	CH₃	0	H	2-F	Н	CH ₃
	CI H	CH ₃	0	H	2-F	Н	C₂H₅
	CIH	CH ₃	0	н	2-CI		CH ₃
50	CI H	CH ₃	0	Н	2-CI		C ₂ H ₅
- -	CI H	CH ₃	0	H	3-F	Н	CH₃
	CI H	CH₃ CH₃	0	H	3-F		C ₂ H ₅
	- , ,,	∪13	0	н	3-CI	Н	CH ₃

Table 1 (continued)

5	R ¹	R ²	R ³	<u>n</u>	R ⁵	R ⁶	R ⁷	R ⁹
	CI	Н	CH ₃	0	Н	3-CI	Н	C ₂ H ₅
	CI	Н	CH ₃	0	CH ₃	Н	Н	CH ₃
	CI	Н	CH ₃	0	CH ₃	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	CH ₃	Н	Н	n-C ₃ H ₇
10	CI	Н	CH ₃	0	CH ₃	Н	H:	iso-C ₃ H ₇
	CI	Н	CH ₃	0	CH ₃	Н	Н	CH ₂ CF ₃
	CI	Н	CH ₃	0	C ₂ H ₅	Н	Н	CH ₃
•	CI	Н	CH ₃	0	C ₂ H ₅	Н	н	C ₂ H ₅
15	CI	Н	CH ₃	0	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	н	CH ₃	0	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	0	C ₂ H ₅	Н	н	n-C ₄ H ₉
-	CI	Н	CH ₃	0	C ₂ H ₅	Н	Н	iso-C₄H ₉
20	CI	Н	CH ₃	0	C ₂ H ₅	Н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	0	C ₂ H ₅	Н	н	CH ₂ CF ₃
	CI	Н	CH ₃	0	n-C ₃ H ₇	н	Н	CH ₃
	CI	Н	CH3	0	n-C ₃ H ₇	Н	Н	C ₂ H ₅
<i>25</i>	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	n-C ₃ H ₇
25	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	0	n-C ₃ H ₇	н	Н	CH ₂ CF ₃
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	CH ₃
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	C ₂ H ₅
30	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C₄H ₉
	CI	Н	CH ₃	0	iso-C ₃ H ₇	, H	Н	iso-C ₄ H ₉
35	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	CI	Н	CH ₃	Ō	iso-C ₃ H ₇	Н	Н	CH ₂ CF ₃
	CI	Н	CH ₃	0	n-C ₄ H ₉	Н	Н	CH ₃
	CI	н	CH ₃	0	n-C₄H ₉	Н	Н	C ₂ H ₅
40	CI	Н	CH ₃	0	n-C ₄ H ₉	Н	Н	n-C ₃ H ₇
,	CI	Н	CH ₃	0	n-C ₄ H ₉	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	0	CHF ₂	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	CH₂OCH₃	Н	Н	CH₃
	CI	н	CH ₃	0	CH2OCH3	Н	Н	C ₂ H ₅
45	CI	н	CH₃	0	CH ₂ OCH ₃	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	CH ₂ OCH ₃	Н	Н	iso-C ₃ H ₇
	CI	H	CH ₃	0	CH ₂ OCH ₃	Н	Н	CH ₂ CF ₃
	CI	Н	CH3	0	CH ₂ OC ₂ H ₅	н	Н	CH ₃
50	CI	H	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	н	CH₃	0	CH ₂ OC ₂ H ₅	Н	Н	iso-C ₃ H ₇

Table 1 (continued)

5		<u>R</u> 1	R ²	R ³	<u>n</u>	R ⁵	R ⁶	R ⁷	R ⁹
		CI	Н	CH₃	0	CH ₂ OC ₂ H ₅	Н	Н	CH ₂ CF ₃
		CI	Н	CH ₃	0	CH ₂ SCH ₃	Н	Н	CH ₃
		CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	C ₂ H ₅
10		CI	Н	CH₃	0	CH ₂ SCH ₃	Н	Н	n-C ₃ H ₇
		CI	H.	CH ₃	0	CH ₂ SCH ₃	Н	Н	iso-C ₃ H ₇
		CI	Н	CH ₃	0	CH ₂ SCH ₃	Н	н	CH ₂ CF ₃
		CI	Н	CH ₃	0	CH ₂ C ₆ H ₅	н	Н	C ₂ H ₅
15		CI	Н	СН ₃	0 .	CH ₂ CO2C ₂ H ₅	Н	н	C ₂ H ₅
73		CI	Н	CH ₃	0	CH ₂ CH ₂ CO2C ₂ H ₅	Н	Н	C ₂ H ₅
		CI	Н	CH3	0	СНО	Н	н	CH ₃
		CI	Н	CH ₃	0	СНО	Н	Н	C ₂ H ₅
		CI	Н	CH ₃	0	COCH ₃	Н	Н	CH ₃
20		CI	Н	CH ₃	0	COCH ₃	Н	Н	C ₂ H ₅
		CI	Н	CH ₃	0	COCH3	Н	н	n-C ₃ H ₇
		CI	Н	CH ₃	0	COCH3	Н	Н	iso-C ₃ H ₇
		CI	Н	CH ₃	0	COC ₂ H ₅	Н	н	CH ₃
25		CI	Н	CH ₃	0	COC ₂ H ₅	Н	н	C₂H₅
		CI	Н	CH ₃	0	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
		CI	Н	CH ₃	0	COC ₂ H ₅	Н	н	iso-C ₃ H ₇
		CI	Н	CH ₃	0	COC ₂ H ₅	Н	Н	CH ₂ CF ₃
30		CI	Н	CH₃	0	COC ₃ H ₇ -n	Н	Н	CH ₃
		CI	Н	СН₃	0	COC ₃ H ₇ -n	н	Н	C ₂ H ₅
		CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
		CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	iso-C ₃ H ₇
35		CI	Н	CH ₃	0	COC ₃ H ₇ -n	Ĥ	Н	n-C ₄ H ₉
		CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	sec-C ₄ H ₉
		CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	iso-C ₄ H ₉
		CI	н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	CH ₂ CF ₃
40		CI	Н	CH ₃	0	COC ₃ H ₇ -iso	Н	Н	CH ₃
	*	CI	н	CH ₃	0	COC ₃ H ₇ -iso	н	Н	C₂H₅
		CI	Н	CH ₃	0	COC ₃ H ₇ -iso	Н	Н	n-C ₃ H ₇
		CI	Н	CH ₃	0	COC ₄ H ₉ -n	Н	Н	CH ₃
45		CI	н	CH ₃	0	COC ₄ H ₉ -n	н	Н	C ₂ H ₅
45		CI	Н	CH ₃	0	COC ₄ H ₉ -n	Н	н	n-C ₃ H ₇
		CI	н	CH ₃	0	COC ₄ H ₉ -n	н	н	iso-C ₃ H ₇
50		CI	н	CH₃	0	o "-C	н	н	CH ₃
		CI	н	CH ₃	0	-c- - -	н	н	C₂H₅

Table 1 (continued)

	<u>R</u> 1	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
5	CI	н	CH ₃	0	0 -C	н	н	n-C ₃ H ₇
	CI	н	CH ₃	0	O OH,	н	н	C ₂ H ₅
10	CI	Н	CH₃	0	COC ₆ H ₅	н	н	СН₃
	CI	Н	CH ₃	0	COC ₆ H ₅	н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	COC ₆ H ₅	н	Н	n-C ₃ H ₇
•	CI.	Н	CH,	0	COC ₈ H ₅	Н	н	iso-C ₃ H ₇
15	CI	Н	CH ₃	0	COC ₆ H₅	Н	Н	CH ₂ CF ₃
	CI	н	CH ₃	0	0 -c-⟨_}-cı	н	н	C ₂ H ₅
20	CI	н	CH3	0	-¢-{_}-œ - ţ	н	н	C ₂ H ₅
	CI	Н	CH₃	0	COCH=CHC ₆ H ₅	н	н	C ₂ H ₅
	CI	Н	сн₃	0	COCHZOCH3	Н	н	CH ₃
<i>25</i>	CI	Н	сн₃	0	COCH ₂ OCH ₃	Н	н	C ₂ H ₅
	CI	Н	СН₃	0	COCH ₂ OCH ₃	н	Н	n-C ₃ H ₇
	CI	Н	сн₃	1	н	Н	Н	CH ₃
	CI	Н	сн₃	1	Н	Н	Н	C₂H₅
	CI	Н	сн₃	1	Н	Н	Н	n-C ₃ H ₇
30	CI	Н	сн₃	1	н	Н	н	iso-C ₃ H ₇
	CI	Н	сн₃	1	Н	Н	Н	CH ₂ CF ₃
	CI	Н	CH₃	1	н	Н	Н	iso-C ₄ H ₉
	CI	Н	CH₃	1	Н	Н	Н	tert-C ₄ H ₉
35	CI	Н	CH₃	1	н	2-CI	Н	C ₂ H ₅
	CI	н	CH₃	1	Н	2-F	Н	C ₂ H ₅
	CI	Н	CH ₃	1	Н	3-F	Н	C ₂ H ₅
	CI	Н	CH ₃	1	Н	3-CI	Н	C ₂ H ₅
40	CI	Н	CH ₃	1	СН₃	Н	Н	C ₂ H ₅
*	CI	Н	CH ₃	1	C ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	1	C ₂ H ₅	н	Н	CH ₂ CF ₃
	CI	Н	CH₃	1	C₂H₅	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	1	C ₂ H ₅	Н	Н	n-C ₄ H ₉
45	CI	Н	CH₃	1	C ₂ H ₅	Н	Н	sec-C ₄ H _g
	CI	Н	CH3	1	C ₂ H ₅	Н	Н	iso-C ₄ H ₉
	CI	Н	CH3	1	C ₂ H ₅	Н	Н	CH ₃
	CI	Н	CH3	1	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
50	CI	Н	CH3	1	iso-C ₃ H ₇	Н	Н	CH ₃
	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	C ₂ H ₅
	CI	Н	CH3	1	iso-C ₃ H ₇	Н	н	n-C ₃ H ₇

Table 1 (continued)

5		R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
		CI	Н	CH ₃	1	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
		CI	Н	CH3	1	CH2OCH3	Н	Н	CH ₃
		CI	Н	CH₃	1	CH ₂ OCH ₃	Н	н	C ₂ H ₅
10		CI	Н	CH₃	1	CH ₂ OC ₂ H ₅	Н	н	CH ₃
,,		CI	Н	CH ₃	1		- H	н	C ₂ H ₅
		CI	н	CH ₃	1	CH ₂ SCH ₃	Н	н	CH ₃
		CI	Н	CH ₃	1	CH ₂ SCH ₃	н	н	C ₂ H ₅
		CI	н	CH3	1	сосн	н	Н	C ₂ H ₅
15		CI	Н	CH₃	1	COC ₂ H ₅	н	н	CH ₃
		CI	Н	CH ₃	1	COC ₂ H ₅	Н	н	C ₂ H ₅
		CI	н	CH ₃	1	COC ₂ H ₅	н	Н	n-C ₃ H ₇
		CI	н	CH ₃	1	COC ₂ H ₅	н	Н	iso-C ₃ H ₇
20		CI	н	CH ₃	1	COC ₃ H ₇ -n	Н	н	CH ₃
		CI	Н	CH ₃	1	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
		CI	Н	CH ₃	1	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
		CI	Н	CH ₃	1	COC ₃ H ₇ -n	н	н	iso-C ₃ H ₇
		CI	н	сн₃	1	COC ₃ H ₇ -iso	Н	н	CH ₃
25		CI	Н	CH ₃	1	COC ₃ H ₇ -iso	Н	н	C ₂ H ₅
		CI	н	снз	1	COC ₃ H ₇ -iso	Н	н	n-C ₃ H ₇
		CI	Н	CH ₃	1	COC ₃ H ₇ -iso	Н	н	iso-C ₃ H ₇
30		CI	н	CH ₃	1	0 -c	н	н	CH ₃
		CI	Н	CH3	1	-c>	н	н	n-C ₃ H ₇
35		CI	Н	CH3	1	0=0	н	н	iso-C ₃ H ₇
		Cl	Н	CH3	1	o = -	н	н	C ₂ H ₅
40	••	CI	Н	CH ₃	1	COC ₆ H ₅	н	ш	C U
		CI	Н	CH ₃	1	COC ₈ H ₅	Н	Н	CH ₃
		CI	н	CH ₃	1	COC ₆ H ₅	Н	Н	C ₂ H ₅
		CI	Н	CH ₃	1	COC ₈ H ₅	Н	Н	n-C ₃ H ₇
45		CI	Н	CH ₃	1		Н	Н	iso-C ₃ H ₇
		CI	Н	CH ₃	1	COCHZOCH3	Н	H	CH ₃
		CI	Н	CH ₃	1	COCH ₂ OCH ₃	Н		C₂H₅
		CI	Н	CH ₃	2	H		Н	n-C ₃ H ₇
		CI	н	CH ₃	2	Н	Н	Н	CH ₃
50		CI	н	CH ₃	2	л Н	Н	Н	C₂H₅
		CI	н	CH ₃	2	H	Н	н	CH ₂ CF ₃
			•••	∵ '3	2	п	Н	н	n-C ₃ H ₇

Tabl 1 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	CI	Н	CH₃	2	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₃	2	Н	Н	Н	iso-C₄H ₉
	CI	Н	CH₃	2	Н	Н	Н	sec-C ₄ H ₉
10	CI	Н	CH₃	2	Н	н	Н	tert-C ₄ H ₉
	CI	Н	CH₃	2	CH ₃	Н	Н	C ₂ H ₅
	CI	Н	CH₃	2	C ₂ H ₅	Н	Н	CH ₃
	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	C ₂ H ₅
15	CI	Н	CH ₃	2	C ₂ H ₅	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	2	C ₂ H ₅	н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	n-C ₄ H ₉
	CI	Н	CH₃	2	C ₂ H ₅	Н	Н	iso-C₄H ₉
20	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	sec-C₄H ₉
	CI	Н	CH ₃	2	C ₂ H ₅	н	Н	CH ₂ CF ₃
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	CH ₃
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	C ₂ H ₅
25	CI	Н	CH ₃	2	iso-C ₃ H ₇	н	Н	n-C ₃ H ₇
25	CI	H	CH ₃	2	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	2	CH ₂ OCH ₃	Н	Н	CH ₃
	CI	Н	CH ₃	2	CH ₂ OCH ₃	н	Н	C ₂ H ₅
30	CI	Н	CH ₃	2	CH ₂ OC ₂ H ₅	н	Н	CH ₃
30	CI	Н	CH₃	2	CH ₂ OC ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	2	CH₂SCH₃	Н	Н	CH₃
	CI	Н	CH ₃	2	CH ₂ SCH ₃	н	Н	C ₂ H ₅
<i>35</i>	CI	Н	CH ₃	2	COCH ₃	* H	Н	C ₂ H ₅
39	CI	Н	CH ₃	2	COC ₂ H ₅	Н	Н	CH ₃
	CI	Н	CH ₃	2	COC ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	CH₃	2	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
40	CI	Н	CH ₃	2	COC₂H₅	Н	Н	iso-C ₃ H ₇
40	CI	Н	CH ₃	2	COC ₃ H ₇ -n	Н	Н	C₂H₅
	CI	Н	CH ₃	2	COC ₃ H ₇ -n	н	Н	n-C ₃ H ₇
	CI	Н	CH₃	2	COC ₃ H ₇ -n	Н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	2	COC ₃ H ₇ -n	н	Н	CH ₃
45	CI	Н	CH₃	2	COC ₃ H ₇ -iso	Н	Н	CH₃
	CI	Н	CH ₃	2	COC ₃ H ₇ -iso	н	Н	C ₂ H ₅
	CI	Н	CH ₃	2	COC ₃ H ₇ -iso	н	Н	n-C ₃ H ₇
	CI	Н	CH₃	2	COC ₃ H ₇ -iso	Н	н	iso-C ₃ H ₇
50	CI	н	CH ₃	2	O "'	н	н	CH ₃

Table 1 (continued)

	R ¹ R ²	R ³	n R ⁵		<u>8</u> 6 R	7 R ⁹
5	CI H	CH ₃	2 .	0 -C	н н	C ₂ H ₅
	сі н	сн₃	2 .	O -C	н н	n-C ₃ H ₇
10	сі н	CH ₃	2 _	о 	н н	iso-C ₃ H ₇
15	сі н	CH ₃	2 CC	C ₆ H ₅ ∤	н н	CH ₃
	CI H	CH ₃			1 н	
	CI H	CH ₃	2 CC		н н	
	.CI H	CH ₃			+ н	
20	CI H	CH ₃			н н	3 /
	CI H	CH ₃			н н	
	CI H	CH ₃		-	4 F	
	CI H	C ₂ H ₅	0 н		4 F	
	CI H	C ₂ H ₅	0 H		4 F	
25	CI H	C ₂ H ₅	0 Н		H F	2 3
	CI H	C ₂ H ₅	0 Н		н н	
	CI H	C ₂ H ₅	0 Н	1	н н	
	CI H	C ₂ H ₅	0 Н	1	н н	
30	CI H	C ₂ H ₅	0 Н	1	н н	
	CI H	C ₂ H ₅	0 н	1	н н	
	CI H	C ₂ H ₅	0 Н	i	н н	
	CI H	C ₂ H ₅	0 H	1	н	
35	CI H	C ₂ H ₅	0 H		2-F H	
	CI H	C ₂ H ₅	0 H	;	3-F H	
	CI H	C ₂ H ₅	0 H	:	2-CI +	
	CI H	C ₂ H ₅	0 H	:	3-CI +	
40 ~	CI H	C₂H₅	0 C	H ₃	н н	
	CI H	C₂H₅			н н	H C ₂ H ₅
	CI H	C ₂ H ₅			H I	H n-C ₃ H ₇
	CI H	C₂H₅			н і	iso-C ₃ H ₇
	CI H	C₂H₅			н і	H CH ₃
45	CI H	C₂H₅	0 C	₂ H ₅	H I	H C ₂ H ₅
	CI H	C₂H₅			H I	H n-C ₃ H ₇
	CI H	C ₂ H ₅			н і	H iso-C ₃ H ₇
	CI H	C₂H₅			н і	H n-C ₄ H ₉
50	CI H	C₂H₅		2 9	H I	H iso-C ₄ H ₉
	CI H	C₂H₅		4 9	H I	H sec-C₄H ₉
	CI H	C ₂ H ₅	0 C	₂ H ₅	н	H CH ₂ CF ₃

Table 1 (continued)

5	R^1 R^2	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
J	СІН	C ₂ H ₅	0	n-C ₃ H ₇	Н	H	CH ₃
	СІН	C ₂ H ₅	0	n-C ₃ H ₇	н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	n-C ₃ H ₇	н	н	°2′ '5 n-C ₃ H ₇
	CI H	C ₂ H ₅	0	n-C ₃ H ₇	н	н	iso-C ₃ H ₇
10	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	H	H	CH ₃
	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	н	н	C ₂ H ₅
	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	Н	н	0 ₂ . ₁₅ n-C ₃ H ₇
•	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	Н	н	iso-C ₃ H ₇
15	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	н	Н	n-C ₄ H ₉
	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
	CI H	C ₂ H ₅	0	iso-C ₃ H ₇	н	Н	sec-C ₄ H ₉
	CIH	C ₂ H ₅	0	iso-C ₃ H ₇	н	н	CH ₂ CF ₃
20	CI H	C ₂ H ₅	0	n-C ₄ H ₉	н	Н	CH ₃
	CI H	C ₂ H ₅	0	n-C ₄ H ₉	н	Н	C _z H ₅
	CI H	C ₂ H ₅	0	n-C ₄ H ₉	н	н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	n-C ₄ H ₉	н	Н	iso-C ₃ H ₇
<i>2</i> 5	CI H	C ₂ H ₅	0	CH ₂ OCH ₃	н	н	CH ₃
25	CI H	C ₂ H ₅	0	CH ₂ OCH ₃	н	Н	C₂H₅
	CI H	C ₂ H ₅	0	CH ₂ OCH ₃	н	Н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	CH ₂ OCH ₃	н	Н	iso-C ₃ H ₇
	CI H	C ₂ H ₅	0	CH ₂ OCH ₃	н	Н	CH ₂ CF ₃
30	CI H	C ₂ H ₅	0	CH2OC2H5	н	Н	CH ₃
	CI H	C ₂ H ₅	0	CH ₂ OC ₂ H ₅	н	Н	C₂H₅
	CI H	C₂H₅	0	CH ₂ OC ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI H	C₂H₅	0	CH ₂ OC ₂ H ₅	н	Н	iso-C ₃ H ₇
35	CI H	C₂H₅	0	CH ₂ OC ₂ H ₅	T H	Н	CH ₂ CF ₃
	CI H	C ₂ H ₅	0	CH₂SCH₃	Н	Н	CH ₃
	CI H	C ₂ H ₅	0	CH₂SCH₃	Н	Н	C₂H₅
	CI H	C ₂ H ₅	0	CH₂SCH₃	н	Н	n-C ₃ H ₇
40	CI H	C ₂ H ₅	0	CH₂SCH₃	н	Н	iso-C ₃ H ₇
*	CI H	C ₂ H ₅	0	CH₂SCH₃	Н	Н	CH ₂ CF ₃
	CI H	C₂H₅	0	СНО	Н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	COCH3	Н	Н	CH ₃
15	CI H	C ₂ H ₅	0	COCH3	н	Н	C ₂ H ₅
45	CI H	C ₂ H ₅	0	COCH3	Н	Н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	COC₂H₅	Н	Н	CH ₃
	CI H	C ₂ H ₅	0	COC ₂ H ₅	н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	COC₂H₅	н	Н	n-C ₃ H ₇
50	CI H	C ₂ H ₅	0	COC ₂ H ₅	Н	Н	iso-C ₃ H ₇
	CI H	C ₂ H ₅	0	COC ₂ H ₅	н	Н	CH ₂ CF ₃
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	CH ₃

Table 1 (continued)

5	R^1 R^2	R ³	n_	R ⁵	R ⁶	R ⁷	R ⁹
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	н	Н	iso-C ₃ H ₇
10	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	n-C₄H ₉
,,,	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	iso-C ₄ H ₉
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	sec-C ₄ H ₉
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -n	Н	Н	CH ₂ CF ₃
•	CI H	C ₂ H ₅	0	COC ₃ H ₇ -iso	Н	Н	CH ₃
15	CI H	C ₂ H ₅	0	COC ₃ H ₇ -iso	н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	COC ₃ H ₇ -iso	Н	н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	COC ₄ H ₉ -n	Н	н	CH ₃
	CIH	C ₂ H ₅	0	COC ₄ H ₉ -n	Н	Н	C ₂ H ₅
20	CIH	C ₂ H ₅	0	COC ₄ H ₉ -n	Н	Н	n-C ₃ H ₇
	CI H	C ₂ H ₅	0	COC ₄ H _g -n	Н	Н	iso-C ₃ H ₇
	CI H	C ₂ H ₅	0	COCH2OCH3	Н	Н	CH ₃
	CI H	C ₂ H ₅	0	COCH ₂ OCH ₃	н	Н	C ₂ H ₅
25	CI H	C ₂ H ₅	0	сосносна	Н	Н	n-C ₃ H ₇
25	_			0			3.7
	CI H	C ₂ H ₅	0	-C- 	Н	Н	CH3
30	СІН	C ₂ H ₅	0	-c	н	н	C ₂ H ₅
	сі н	C₂H₅	0	0 -C	н	н	n-C ₃ H ₇
35	СІН	C ₂ H ₅	0	COC ₆ H ₅	u	ы	CH
	CI H	C ₂ H ₅	0	COC ₆ H ₅	Н	Н	CH ₃
	CI H	C ₂ H ₅	0	COC ₆ H ₅	Н	Н	C ₂ H ₅
	CI H	C ₂ H ₅	0	COC ₆ H ₅	Н	Н	n-C ₃ H ₇
40	CI H	C ₂ H ₅	0	COC ₆ H ₅	Н	Н	iso-C ₃ H ₇
		~2' '5	·	_	Н	Н	CH ₂ CF ₃
	CI H	C ₂ H ₅	0	-c-⟨_}-œң	н	н	C ₂ H ₅
45	CI H	0.11	_				
		C₂H ₅	1	H	Н	Н	CH3
		C₂H₅	1	H	Н	Н	C ₂ H ₅
		C₂H₅	1	Н	Н	Н	n-C ₃ H ₇
50	CI H	C ₂ H ₅	1	H	Н	Н	iso-C ₃ H ₇
		C ₂ H ₅	1	Н	Н	Н	iso-C ₄ H ₉ CH ₂ CF ₃
	CI H	C ₂ H ₅	1	н	Н	Н	CH ₂ CF ₃

Table 1 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	CI	Н	C ₂ H ₅	1	C₂H₅	н	н	CH ₃
	CI	Н	C ₂ H ₅	1	C ₂ H ₅	Н	н	C ₂ H ₅
	CI	Н	C₂H₅	1	C ₂ H ₅	Н	н	n-C ₃ H ₇
10	CI	Н	C₂H₅	1	C ₂ H ₅	Н	н	iso-C ₃ H ₇
10	CI	н	C ₂ H ₅	1	C ₂ H ₅	н	н	n-C ₄ H ₉
	CI	Н	C₂H₅	1	C ₂ H ₅	н	н	iso-C ₄ H ₉
	CI	Н	C₂H₅	1	C ₂ H ₅	Н	н	sec-C ₄ H ₉
•	CI	Н	C ₂ H ₅	1	C ₂ H ₅	Н	н	CH ₂ CF ₃
15	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	н	н	CH ₃
	CI	Н	C₂H₅	1	iso-C ₃ H ₇	н	н	C ₂ H ₅
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
20	CI	H	C ₂ H ₅	1	CH2OCH3	Н	Н	CH ₃
	CI	Н	C₂H₅	1	CH ₂ OC ₂ H ₅	Н	Н	СН3
	CI	Н	C₂H₅	1	CH2OC2H5	Н	Н	C ₂ H ₅
	CI	Н	C₂H₅	1	CH ₂ SCH ₃	Н	н	CH ₃
25	CI	Н	C ₂ H ₅	1	CH ₂ SCH ₃	Н	н	C ₂ H ₅
25	CI	Н	C ₂ H ₅	1	COC ₂ H ₅	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	1	COC ₂ H ₅	Н	н	C ₂ H ₅
	CI	н	C ₂ H ₅	1	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
	Cf	н	C₂H₅	1	COC ₂ H ₅	Н	Н	iso-C ₃ H ₇
30	CI	Н	C₂H₅	1	COC ₃ H ₇ -n	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -n	н	н	C ₂ H ₅
	CI	н	C₂H₅	1	COC ₃ H ₇ -n	н	н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -n	Н	Н	iso-C ₃ H ₇
<i>35</i>	CI	Н	C₂H₅	1	COC ₃ H ₇ -iso	-н	н	CH ₃
	CI	Н	C₂H₅	1	COC ₃ H ₇ -iso	Н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -iso	н	Н	n-C ₃ H ₇
	CI	н	C ₂ H ₅	1	COC ₃ H ₇ -iso	н	н	iso-C ₃ H ₇
40	CI	н	C ₂ H ₅	1	-c>	н	н	CH ₃
	CI	н	C ₂ H ₅	1	-c	н	н	C ₂ H ₅
45	CI	н	C ₂ H ₅	1	-c	н	н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	-c-	н	н	iso-C ₃ H ₇
50	CI	н	C ₂ H ₅	1	COCH CCH			
	CI	Н	C ₂ H ₅	1	COCH OCH	н	H	CH₃
	٠,	••	21 15	1	COCH ₂ OCH ₃	Н	Н	C ₂ H ₅

Table 1 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	CI	н	C ₂ H ₅	1	COCH2OCH3	Н	Н	n-C ₃ H ₇
	CI	н	C₂H₅	1	COC ₆ H ₅	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	1	COC ₈ H ₅	Н	Н	C ₂ H ₅
10	CI	Н	C₂H₅	1	COC ₈ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	COC ₆ H ₅	Н	Н	iso-C ₃ H ₇
	CI	Н	C₂H₅	2	Н	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	2	Н	Н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	н	Н	Н	n-C ₃ H ₇
15	CI	Н	C ₂ H ₅	2	Н	н	Н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	Н	н	н	iso-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	н	Н	Н	CH ₂ CF ₃
	CI	Н	C₂H₅	2	Н	2-F	н	C ₂ H ₅
20	CI	Н	C₂H₅	2	Н	3-F	н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	Н	2-CI	н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	Н	3-CI	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	н	CH ₃
25	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	Н	C₂H₅
23	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	н	n-C ₃ H ₇
	CI	н	C ₂ H ₅	2	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	Н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	н	sec-C ₄ H ₉
30	CI	Н	C ₂ H ₅	2	C ₂ H ₅	Н	Н	iso-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	Н	Н	CH ₂ CF ₃
	CI	н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	H.	н	C ₂ H ₅
35	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	н	Н	n-C₃H ₇
	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	н	iso-C ₃ H ₇
	CI	Н	C₂H₅	2	CH ₂ OCH ₃	н	н	CH ₃
	CI	Н	C₂H₅	2	CH ₂ OCH ₃	Н	н	C ₂ H ₅
40	CI	Н	C ₂ H ₅	2	CH ₂ OC ₂ H ₅	Н	н	CH ₃
•	CI	Н	C ₂ H ₅	2	CH ₂ OC ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	CH ₂ SCH ₃	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	2	CH ₂ SCH ₃	Н	н	C ₂ H ₅
-	CI	Н	C ₂ H ₅	2	CHO	Н	н	C ₂ H ₅
45	CI	Н	C ₂ H ₅	2	COC ₂ H ₅	н	н	CH ₃
	CI	Н	C ₂ H ₅	2	COC ₂ H ₅	н	Н	C ₂ H ₅
	CI	н	C ₂ H ₅	2	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	COC ₂ H ₅	Н	н	iso-C ₃ H ₇
50	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	Н	н	CH ₃
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇

Table 1 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	H	Н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -iso	H	Н	CH ₃
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -iso	Н	н	C ₂ H ₅
10	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -iso	Н	Н	n-C ₃ H ₇
70	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -iso	Н	Н	iso-C ₃ H ₇
·	CI	н	C ₂ H ₅	2	-c	н	н	сн3
15	CI	Н	C ₂ H ₅	2	-c- <u>-</u>	н	н	C ₂ H ₅
	CI	н	C ₂ H ₅	2	-c	Н	н	n-C ₃ H ₇
20	CI	Н	C ₂ H ₅	2	-c	н	н	iso-C ₃ H ₇
	CI	Н	C₂H₅	2	COC ₆ H ₅	Н	Н	CH3
	CI	Н	C ₂ H ₅	2	COC ₆ H ₅	Н	Н	C ₂ H ₅
25	CI	Н	C ₂ H ₅	2	COC ₆ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	COCH ₂ OCH ₃	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	2	COCH ₂ OCH ₃	Н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	2	COCH ₂ OCH ₃	Н	H	n-C ₃ H ₇
	CI	н	n-C ₃ H ₇	0	Н	Н	Н	CH ₃
30	CI	Н	n-C ₃ H ₇	0	Н	Н	Н	C ₂ H ₅
	CI	Н	n-C ₃ H ₇	0	Н	Н	Н	n-C ₃ H ₇
	CI	Н	n-C ₃ H ₇	0	Н	Н	н	iso-C ₄ H ₉
	CI	Н	n-C ₃ H ₇	0	C ₂ H ₅	Н	Н	CH ₃
35	CI	Н	n-C ₃ H ₇	0	C ₂ H ₅	Н	н	C₂H₅
	CI	Н	n-C ₃ H ₇	0	iso-C ₃ H ₇	Н	н	C ₂ H ₅
	CI	Н	n-C ₃ H ₇	0	COC ₃ H ₇ -n	Н	н	C ₂ H ₅
	CI	Н	n-C ₃ H ₇	1	Н	Н	н	CH ₃
40	CI	Н	n-C ₃ H ₇	1	Н	Н	Н	C ₂ H ₅
•	CI	Н	n-C ₃ H ₇	1	Н	н	Н	n-C ₃ H ₇
	CI	Н	n-C ₃ H ₇	1	Н	н	н	iso-C ₃ H ₇
	CI	Н	n-C ₃ H ₇	1	Н	н	Н	iso-C ₄ H ₉
	CI	Н	n-C ₃ H ₇	1	Н	н	н	CH ₂ CF ₃
45	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	CH ₃
	CI	Н	n-C ₃ H ₇	2	н	Н	н	C ₂ H ₅
	CI	Н	n-C ₃ H ₇	2	Н	н	Н	CH ₂ CF ₃
	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	n-C ₃ H ₇
50	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	n-C ₃ H ₇	2	н	Н	Н	iso-C ₄ H ₉
	CI	Н	iso-C ₃ H ₇	0	н	Н	Н	СН

Table 1 (continued)

5	R^1 R^2	R ³	n	_R ⁵	R ⁶	R ⁷	R ⁹
	CI H	iso-C ₃ H ₇	0	Н	Н	Н	C ₂ H ₅
	CI H	iso-C ₃ H ₇	1	н	Н	Н	CH ₃
	CI H	iso-C ₃ H ₇	1	Н	Н	Н	C ₂ H ₅
10	CI H	iso-C ₃ H ₇	2	н	н	Н	CH ₃
10	CI H	iso-C ₃ H ₇	2	н	Н	Н	C ₂ H ₅
	CI H	n-C ₄ H ₉	0	н	Н	н	C ₂ H ₅
	CI H	sec-C ₄ H ₉	0	н	н	н	C ₂ H ₅
•	CI H	CH2OCH3	Q	н	Н	Н	CH ₃
15	CIH	CH ₂ OCH ₃	0	Н	н	Н	C ₂ H ₅
	CI H	CH ₂ OC ₂ H ₅	0	н	Н	Н	C ₂ H ₅
	CIH	CH ₂ SI(CH ₃) ₃	0	н	Н	Н	C ₂ H ₅
	CIH	CH ₂ F	0	Н	Н	Н	C ₂ H ₅
20	CI H	CH ₂ F	1	н	Н	Н	CH ₃
	CI H	CH ₂ F	1	н	н	Н	C ₂ H ₅
	CI H	CH ₂ F	1	н	н	Н	n-C ₃ H ₇
	CI H	CH ₂ F	1	н	н	Н	iso-C ₃ H ₇
	CI H	CH ₂ F	1	Н	н	н	iso-C ₄ H ₉
25	CI H	CH ₂ F	1	н	H	Н	CH ₂ CF ₃
	CI H	CHF,	0	Н	н	н	CH ₃
	CI H	CHF ₂	0	Н	н	Н	C ₂ H ₅
	CIH	CHF ₂	0	н	Н	Н	iso-C ₃ H ₇
30	CIH	CHF ₂	0	н	Н	Н	iso-C ₄ H ₉
	CI H	CHF ₂	0	н	н	Н	n-C ₄ H ₉
	CI H	CHF ₂	0	Н	н	Н	n-C ₅ H ₁₁
	CI H	CHF ₂	0	н	H_	н	л-С ₆ Н ₁₃
35	CI H	CHF ₂	0	Н	H	Н	CH ₂ CF ₃
	CI H	CHF ₂	0	C₂H₅	н	Н	CH ₃
	CI H	CHF ₂	0	C ₂ H ₅	н	н	C ₂ H ₅
	CI H	CHF ₂	0	iso-C ₃ H ₇	н	н	CH ₃
40	CI H	CHF ₂	0	iso-C ₃ H ₇	Н	Н	C ₂ H ₅
40	~ CI H	CHF ₂	0	COC ₃ H ₇ -n	н	н	C ₂ H ₅
	CI H	CHF ₂	1	Н	н	Н	CH ₃
	CI H	CHF ₂	1	н	н	н	C ₂ H ₅
	CI H	CHF ₂	1	н	н	н	CH ₂ CF ₃
45	CI H	CHF ₂	1	Н	н	н	n-C ₃ H ₇
	CI H	CHF,	1	н	н	Н	iso-C ₃ H ₇
	CI H	CHF ₂	1	Н	н	н	iso-C ₄ H ₉
	CI H	CF ₃	0	н	н	н	CH ₃
50	Cl H	CF ₃	0	н	н	н	C ₂ H ₅
	CIH	CF ₃	0	н	н	н	CH ₂ CF ₃
	CI H	CF ₃	0	н	н	н	iso-C ₄ H ₉
		-			• •		130-041 19

Table 1 (continued)

5	R^1 R^2	R ³	<u>n</u>	_R ⁵	R ⁶	R ⁷	R ⁹
	CI H	CF ₃	0	н	н	Н	n-C ₄ H ₉
	CI H	CF ₃	0	н	н	н	n-C _S H ₁₁
	CI H	CF ₃	0	Н	н	Н	n-C ₆ H ₁₃
10	CI H	CH₂CI	0	Н	н	Н	C ₂ H ₅
70	Ci H	CH₂CH₂F	0	Н	н	н	C ₂ H ₅
	CI H	CH ₂ CH ₂ F	0	Н	н	н	CH ₂ CF ₃
	CI H	CH ₂ CH ₂ F	0	Н	н	Н	CH ₃
•	CI H	CH ₂ CH ₂ F	0	н	н	н	iso-C ₄ H ₉
15	CI H	CH₂CH₂F	0	Н	н	Н	n-C ₃ H ₇
	CI H	CH ₂ CH ₂ F	1	н	н	Н	CH ₃
	CI H	CH ₂ CH ₂ F	1	Н	н	Н	C ₂ H ₅
	CI H	CH ₂ CH ₂ F	1	Н	Н	Н	n-C ₃ H ₇
20	CI H	CH ₂ CH ₂ F	1	Н	н	Н	iso-C ₃ H ₇
	CI H	CH ₂ CH ₂ F	1	Н	н	Н	iso-C ₄ H ₉
	CI H	CH ₂ CH ₂ F	1	Н	Н	Н	CH ₂ CF ₃
	CI H	CH ₂ CH ₂ F	2	Н	н	н	CH ₃
<i>25</i>	CI H	CH ₂ CH ₂ F	2	Н	н	н	C ₂ H ₅
25	CI H	CH ₂ CH ₂ F	2	Н	н	Н	CH ₂ CF ₃
	CI H	CH ₂ CH ₂ F	2	н	н	н	n-C ₃ H ₇
	CI H	CH ₂ CH ₂ F	2	н	н	Н	iso-C ₃ H ₇
	CI H	CH ₂ CH ₂ F	2	н	Н	н	iso-C ₄ H ₉
30	CI H	CH ₂ CHF ₂	0	Н	н	н	CH ₃
	СІН	CH ₂ CHF ₂	0	н	н	Н	C ₂ H ₅
	CI H	CH ₂ CHF ₂	0	Н	н	Н	CH ₂ CF ₃
	CI H	CH2CHF2	0	н	н	Н	iso-C₄H ₉
35	CI H	CH ₂ CHF ₂	0	н	ŤН	Н	n-C ₃ H ₇
	CI H	CH ₂ CHF ₂	1	Н	н	Н	CH ₃
	CI H	CH ₂ CHF ₂	1	Н	н	Н	C ₂ H ₅
	CI H	CH ₂ CHF ₂	1	Н	н	Н	n-C ₃ H ₇
40	CI H	CH ₂ CHF ₂	1	Н	н	Н	iso-C ₃ H ₇
	CI H	CH ₂ CHF ₂	1	Н	н	н	iso-C ₄ H _g
	CI H	CH ₂ CHF ₂	1	Н	н	н	CH ₂ CF ₃
	CI H	CH ₂ CHF ₂	2	Н	н	Н	CH ₃
	CI H	CH ₂ CHF ₂	2	н	н	н	C ₂ H ₅
45	CI H	CH ₂ CHF ₂	2	Н	н	Н	CH ₂ CF ₃
	CI H	CH ₂ CHF ₂	2	н	н	Н	n-C ₃ H ₇
	CI H	CH ₂ CHF ₂	2	н	н	н	iso-C ₃ H ₇
	CI H	CH ₂ CHF ₂	2	Н	н	Н	iso-C ₄ H ₉
50	CI H	CH₂CF3	0	C ₂ H ₅	н	н	C ₂ H ₅
	CI H	CH ₂ CF ₃	0	COC ₃ H ₇ -n	н	н	C ₂ H ₅
	CI H	CH ₂ CF ₃	0	iso-C ₃ H ₇	Н	н	C ₂ H ₅

Table 1 (continued)

5	£	₹ <u>1</u>	R ²	R ³	_1_	R ⁵	R ⁶	R ⁷	R ⁹
		CI	Н	CH₂CF₃	0	Н	Н	Н	CH ₃
		CI	H	CH ₂ CF ₃	0	C ₂ H ₅	н	н	сн₃
		CI	Н	CH ₂ CF ₃	0	н	Н	н	C₂H₅
		CI	н	CH ₂ CF ₃	0	Н	н	н	n-C ₄ H ₉
10	C	CI	н	CH ₂ CF ₃	0	н	н	н	iso-C ₄ H ₉
	(CI	Н	CH ₂ CF ₃	0	Н	Н	∘H	CH ₂ CF ₃
	(CI	Н	CH ₂ CF ₃	1	Н	н	н	CH ₃
•		CI	Н	CH ₂ CF ₃	1	н	н	Н	C ₂ H ₅
15		CI	Н	CH ₂ CF ₃	1	Н	Н	Н	CH₂CF₃
		CI	н	CH ₂ CF ₃	1	Н	н	Н	n-C ₃ H ₇
		CI	Н	CH₂CF₃	1	Н	Н	Н	iso-C ₃ H ₇
	· (21	Н	CH ₂ CF ₃	1	Н	Н	н	iso-C ₄ H ₉
20	C	CI	Н	CH₂CF ₃	2	Н	Н	н	CH ₃
	C		Н	CH ₂ CF ₃	2	Н	Н	Н	C ₂ H ₅
		CI	Н	CH ₂ CF ₃	2	Н	Н	Н	CH ₂ CF ₃
		CI	Н	CH ₂ CF ₃	2	Н	Н	Н	n-C ₃ H ₇
25			Н	CH₂CF₃	2	н	Н	н	iso-C ₃ H ₇
25		CI	н	CH ₂ CF ₃	2	Н	Н	н	iso-C ₄ H ₉
		C)	Н	CH₂CH₂CI	0	н	Н	н	C ₂ H ₅
		21	н	CH₂CH₂CI	2	н	Н	Н	C ₂ H ₅
		Ci	Н	CH₂CH₂CH₂F	0	н	Н	Н	C ₂ H ₅
30			Н	CH ₂ CH ₂ CH ₂ F	2	н	Н	н	C ₂ H ₅
			Н	CH ₂ CF ₂ CF ₂ H	0	н	Н	н	C ₂ H ₅
			Н	CF2CF2CF3	0	н	Н	Н	C _z H ₅
			Н	CH ² CH ² CH ³ CI	0	н	H	Н	C ₂ H ₅
35		Ci	Н	CH≃CH ₂	0	н	H	Н	CH ₃
		CI	Н	CH≃CH ₂	0	Н	Н	Н	C₂H₅
			Н	CH2CH=CH2	0	н	н	Н	C ₂ H ₅
		CI	Н	CH ₂ CH=CH ₂	1	Н	Н	н	C ₂ H ₅
40			Н	CH ₂ CH=CH ₂	2	Н	Н	Н	C ₂ H ₅
			Н	CH ₂ C≡CH	0	Н	Н	н	C ₂ H ₅
		CI	Н	CH ₂ C=CH	0	Н	Н	Н	CH ₃
		CI	Н	CH ₂ C≡CH	1	Н	Н	Н	C₂H₅
		Cl	Н	CH ₂ C≅CH	2	Н	Н	Н	C ₂ H ₅
45		Cl	Н	CH ₂ CN	0	Н	Н	Н	CH ₃
			н	CH₂CN	0	Н	Н	Н	C ₂ H ₅
			H	CH ₂ CN	1	н	н	Н	C ₂ H ₅
		CI	H	CH ₂ CN	2	Н	н	Н	C ₂ H ₅
50		CI	CH ₃	CH ₃	0	Н	Н	Н	CH ₃
		C1	CH ₃	CH ₃	0	н	Н	Н	C ₂ H ₅
	(CI	CH ₃	CH3	0	Н	Н	Н	iso-C ₄ H ₉

Table 1 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	_R ⁹
	CI	CH3	CH3	0	Н	Н	Н	n-C ₄ H ₉
	CI	CH3	CH3	0	Н	Н	Н	CH2CF3
	CI	CH3	CH ₃	1	Н	Н	Н	CH ₃
	CI	CH3	CH3	1	Н	Н	Н	C₂H₅
10	CI	CH ₃	CH ₃	1	Н	н	н	iso-C ₄ H ₉
	CI	CH³	CH ₃	1	Н	Н	Н	CH ₂ CF ₃
	CI	CH3	CH ₃	2	н	Н	Н	CH ₃
•	CI	CH₃	CH3	2	Н	Н	H ^c	C ₂ H ₅
15	CI	CH ₃	CH ₃	2	н	н	н	iso-C ₄ H ₉
	CI	CH ₃	CH ₃	2	н	Н	Н	CH ₂ CF ₃
	CI	C ₂ H ₅	CH ₃	0	H	н	н	CH ₃
,	CI	C ₂ H ₅	CH ₃	0	Н	Н	Н	C ₂ H ₅
20	CI	C ₂ H ₅	CH ₃	1	Н	H	Н	C ₂ H ₅
	CI	C ₂ H ₅	CH ₃	2	Н	н	н	C ₂ H ₅
	CI	n-C ₃ H ₇	CH ₃	0	Н	Н	н	C ₂ H ₅
	Br	Н	CH ₃	0	Н	Н	н	CH ₃
	Br	Н	CH ₃	0	Н	Н	н	C ₂ H ₅
25	Br	Н	CH ₃	0	Н	Н	н	n-C ₃ H ₇
	Br	Н	CH ₃	0	Н	Н	н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	н	Н	Н	n-C ₄ H ₉
	Br	н	CH ₃	0	Н	Н	Н	sec-C ₄ H ₉
30	Br	Н	CH ₃	0	н	н	н	iso-C ₄ H ₉
	Br	Н	CH ₃	0	н	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	0	Н	н	Н	n-C ₅ H ₁₁
	Br	Н	CH ₃	0	Н	"H	н	n-C ₆ H ₁₃
35	Br	Н	CH ₃	0	Н	Н	н	CH ₂ C≕CH
	Br	Н	CH ₃	0	н	Н	Н	CH ₂ C ₆ H ₅
	Br	Н	CH ₃	0	н	Н	Н	CH ₂ CF ₃
	Br	Н	CH ₃	0	CH ₃	н	н	CH ₃
40	Br	Н	CH ₃	0	CH ₃	Н	Н	C₂H _s
40 ~	Br	Н	CH3	0	C ₂ H ₅	Н	Н	CH ₃
	Br	Н	CH3	0	C ₂ H ₅	н	Н	C₂H _s
	Br	Н	CH ₃	0	C ₂ H ₅	н	н	n-C ₃ H ₇
	Br	Н	CH ₃	0	C ₂ H ₅	н	н	iso-C ₃ H ₇
45	Br	Н	сн₃	0	C ₂ H ₅	н	н	n-C ₄ H ₉
	Br	н	CH ₃	0	C ₂ H ₅	н	н	iso-C ₄ H ₉
	Br	Н	CH ₃	0	C ₂ H ₅	Н	н	sec-C₄H ₉
	Br	Н	CH ₃	0	C ₂ H ₅	Н	н	CH ₂ CF ₃
50	Br	Н	CH₃	0	iso-C ₃ H ₇	Н	Н	сн₃
	Br	н	CH ₃	0	iso-C ₃ H ₇	Н	Н	C₂H ₅
	Br	Н	CH₃	0	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
								- ·

Table 1 (continued)

5	R1	R ²	_R ³	<u>n</u>	R ⁵	R ⁶	R ⁷	R ⁹
	Br	Н	CH3	0	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₄ H ₉
	Br	Н	CH₃	0	iso-C ₃ H ₇	н	н	CH2CF3
10	Br	Н	CH₃	0	CH ₂ SCH ₃	Н	Н	CH ₃
70	Br	H ·	CH3	0	CH ₂ OCH ₃	Н	Н	сн₃
	Br	Н	CH3	0	CH ₂ OCH ₃	Н	Н	C ₂ H ₅
	Br	Н	CH3	0	CH ₂ OC ₂ H ₅	Н	Н	C ₂ H ₅
	Br	Н	CH3	0	CH ₂ SCH ₃	Н	Н	C ₂ H ₅
15	Br	н	CH ₃	0	СНО	Н	Н	C ₂ H ₅
	Br	н	CH3	0	COCH3	H	Н	CH ₃
	Br	Н	CH ₃	0	COCH ₃	Н	Н	C ₂ H ₅
	Br	Н	CH ₃	0	COC ₂ H ₅	н	н	CH₃
20	Br	Н	CH ₃	0	COC ₂ H ₅	Н	н	C ₂ H ₅
	Br	Н	CH3	0	COC ₂ H ₅	н	Н	n-C ₃ H ₇
	Br	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	CH ₃
	Br	Н	CH3	0	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
25	Br	н	CH3	0	COC ₃ H ₇ -n	Н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	COC ₃ H ₇ -n	Н	н	iso-C₄H ₉
	Br	н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	Br	Н	CH3	0	COCH2OCH3	Н	н	n-C ₃ H ₇
30	Br	H	CH ₃	0	COC _e H ₅	Н	Н	CH ₃
30	8r	н	CH ₃	0	COC ₆ H ₅	Н	Н	C ₂ H ₅
					0			2 3
	Br	Н	CH3	0	-4-7-7	Н	Н	C ₂ H ₅
					0 (/-ws	-		
35								
	Br	H	CH ₃	0	COCH=CHC ₆ H ₅	Н	Н	C₂H₅
	Br	Н	CH ₃	0	COCH2OCH3	Н	Н	CH ₃
	Br	Н	CH ₃	0	COCH₂OCH₃	Н	Н	C₂H₅
40	Br	Н	CH ₃	1	Н	Н	Н	CH3
	· Br	Н	CH ₃	1	н	н	Н	C₂H₅
	Br	Н	CH ₃	1	н	Н	Н	n-C ₃ H ₇
	Br	Н	CH3	1	Н	Н	Н	iso-C ₃ H ₇
45	Br	Н	CH3	1	н	Н	Н	iso-C ₄ H ₉
~	Br	Н	CH3	1	н	Н	Н	CH ₂ CF ₃
	Вг	Н	CH ₃	1	C ₂ H ₅	Н	Н	CH ₃
	Br	H	CH₃	1	C ₂ H ₅	Н	Н	C ₂ H ₅
	Br	H	CH ₃	1	C ₂ H ₅	н	Н	n-C ₃ H ₇
50	Br	H	CH ₃	1	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	Br	H	CH3	1	iso-C ₃ H ₇	Н	Н	CH ₃
	Br	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	C ₂ H ₅

Table 1 (continued)

5	R ¹ R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	Br H	CH ₃	1	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	Br H	CH ₃	1	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	Br H	CH₃	1	COC ₂ H ₅	н	Н	CH ₃
10	Вг Н	CH₃	1	COC ₂ H ₅	н	н	C ₂ H ₅
70	Br H	CH₃	1	COC ₃ H ₇ -n	н	н	CH ₃
	Br H	CH₃	1	COC ₃ H ₇ -n	н	·H	C ₂ H ₅
	Br H	CH ₃	1	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
	Вг Н	CH3.	1	COC ₃ H ₇ -n	н	Н	n-C ₃ H ₇
15	Br H	CH ₃	1	COCH ₂ OCH ₃	н	н	n-C ₃ H ₇
	Br Ḥ	CH₃	1	COCH2OCH3	Н	Н	C ₂ H ₅
	Br H	CH ₃	1	COCH2OCH3	н	Н	CH ₃
	Вг Н	CH ₃	1	COC ₃ H ₇ -n	н	Н	iso-C ₃ H ₇
20	Br H	CH₃	2	Н	н	н	CH ₃
	Br H	CH ₃	2	Н	Н	н	C ₂ H ₅
	Br H	CH₃	2	Н	н	Н	iso-C ₃ H ₇
	Br H	CH3	2	Н	н	Н	iso-C ₄ H ₉
25	Br H	CH ₃	2	Н	Н	Н	n-C ₃ H ₇
	Br H	CH ₃	2	н	н	Н	CH ₂ CF ₃
	Br H	CH ₃	2	C ₂ H ₅	н	Н	CH ₃
	Br H	CH ₃	2	C ₂ H ₅	Н	Н	C₂H _s
30	Br H	CH ₃	2	C ₂ H ₅	н	Н	n-C ₃ H ₇
	Br H	CH ₃	2	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	Br H	CH ₃	2	iso-C ₃ H ₇	Н	Н	CH ₃
	Br H	CH3	2	iso-C ₃ H ₇	н	Н	C ₂ H ₅
<i>35</i>	Br H	CH3	2	iso-C ₃ H ₇	- H	Н	n-C ₃ H ₇
•	Br H	CH3	2	iso-C ₃ H ₇	н	Н	iso-C ₃ H ₇
	Br H	CH ₃	2	CH₂OCH₃	Н	Н	CH₃ ,
	Br H	CH ₃	2	COC₂H₅	Н	Н	C ₂ H ₅
	Br H	CH3	2	COCH2OCH3	Н	Н	C ₂ H ₅
40	Br H	CH ₃	2	COC ₂ H ₅	Н	Н	CH ₃
	Br H	CH ₃	2	COC ₂ H ₅	Н	Н	n-C ₃ H ₇
	Br H	CH ₃	2	COC ₃ H ₇ -n	Н	Н	CH ₃
	Br H	CH ₃	2	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
45	Br H	CH ₃	2	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	Br H	CH ₃	2	COC ₃ H ₇ -n	н	Н	iso-C ₃ H ₇
	Br H	CH ₃	2	COCH2OCH3	н	Н	n-C ₃ H ₇
	Br H	CH ₃	2	COCH2OCH3	н	Н	CH ₃
50	Br H	CH ₃	2	COC ₆ H ₅	н	Н	C₂H₅
	Br H	C₂H₅	0	Н	н	Н	CH ₃
	Br H	C ₂ H ₅	0	Н	н	Н	C ₂ H ₅

Table 1 (continued)

								-
5	<u>R</u> 1	R ²	R ³	n_	R ⁵	R ⁶	R ⁷	R ⁹
•	Br	Н	C₂H₅	0	Н	Н	Н	n-C ₃ H ₇
	Br	Н	C₂H₅	0	Н	н	Н	iso-C ₄ H ₉
	Br	Н	C₂H₅	. 0	н	н	Н	CH ₂ CF ₃
	Br	Н	C₂H₅	0	CH ₃	н	Н	CH ₃
10	Br	Н	C₂H₅	0	CH ₃	н	Н	C ₂ H ₅
	Br	Н	C₂H₅	0	C ₂ H ₅	Н	Н	CH ₃
	Br	Н	C ₂ H ₅	0	C ₂ H ₅	Н	Н	C₂H₅
	. Br	Н	C₂H₅	0	C ₂ H ₅	Н	Н	n-C ₃ H ₇
15	Br	Н	C₂H₅	0	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	Br		C₂H₅	0	C ₂ H ₅	н	н	n-C ₄ H _g
	Br		C₂H₅	0	C ₂ H ₅	Н	Н	iso-C ₄ H ₉
	· Br		C₂H₅	0	C ₂ H ₅	Н	н	sec-C ₄ H ₉
20	Br		C₂H₅	0	C ₂ H ₅	н	Н	CH ₂ CF ₃
	Br		C₂H₅	0	iso-C ₃ H ₇	н	Н	CH ₃
	Br		C₂H ₅	0	iso-C ₃ H ₇	Н	Н	C ₂ H ₅
	Br	Н	C₂H₅	0	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
0.5	Br	Н	C₂H₅	0	iso-C ₃ H ₇	н	н	iso-C ₃ H ₇
25	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	Н	Н	CH ₂ CF ₃
	Br		C₂H₅	0	CH₂OCH₃	н	Н	CH ₃
	Br		C₂H₅	0	CH ₂ OCH ₃	Н	н	C₂H ₅
30	Br		C₂H₅	0	CH₂SCH₃	н	Н	CH ₃
	Br	Н	C₂H₅	0	CH ₂ SCH ₃	н	Н	C ₂ H ₅
	Br	Н	C₂H₅	0	CHO	Н	Н	C ₂ H ₅
	Br		C₂H₅	0	COCH3	н	Н	C ₂ H ₅
35	Br		C₂H ₅	0	COC ₂ H ₅	H*	Н	CH ₃
	Br	• •	C₂H ₅	0	COC ₂ H ₅	Н	Н	C ₂ H ₅
	Br		C₂H₅	0	COC ₂ H ₅	н	н	n-C ₃ H ₇
	Br		C₂H₅	0	COC ₂ H ₅	н	Н	iso-C ₃ H ₇
40	Br		C₂H₅	0	COC₃H ₇ -n	н	Н	CH₃ ´ ́
40	- Br		C₂H ₅	0	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
	Br		C₂H ₅	0	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	Br		C₂H₅	0	COC ₃ H ₇ -n	н	Н	iso-C ₃ H ₇
	8r		C₂H ₅	0	COC ₃ H ₇ -n	Н	Н	iso-C ₄ H ₉
45	Br		C₂H ₅	0	COCH2OCH3	н	Н	CH ₃
	Br		C ₂ H ₅	0	COCHZOCHZ	н	Н	C ₂ H ₅
	Br		C ₂ H ₅	0	COCH ₂ OCH ₃	н	Н	n-C ₃ H ₇
	Br		C⁵H²	0	COC ₆ H ₅	н	Н	CH ₃
50	Br		C ₂ H ₅	0	COC ₆ H ₅	н	Н	C₂H _s
	Br -		C ₂ H ₅	1	н	н	Н	CH ₃
	Br	Н	C₂H₅	1	Н	н	н	C ₂ H ₅

Table 1 (continued)

5	R1 R2	R ³	n	R ⁵	R ⁶ _	R ⁷	R ⁹
	Br H	C₂H₅	1	н	Н	Н	n-C ₃ H ₇
	Br H	C₂H₅	1	Н	н	Н	iso-C ₃ H ₇
	Br H	C ₂ H ₅	1	н	н	Н	iso-C ₄ H ₉
10	Br H	C ₂ H ₅	1	Н	н	н	CH ₂ CF ₃
	Br H	C₂H₅	1	C₂H₅	н	н	CH ₃
	Br H	C₂H₅	1	C₂H₅	н	Н	C₂H₅
	Br H	C ₂ H ₅	1	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	Br H	C₂H₅	1	C₂H₅	н	н	iso-C ₃ H ₇
15	Br H	C₂H₅	1	iso-C ₃ H ₇	н	Н	CH₃ .
	Br H	C₂H₅	1	iso-C ₃ H ₇	Н	Н	C ₂ H ₅
	. Br H	C₂H₅	1	iso-C ₃ H ₇	Н	н	n-C ₃ H ₇
	Br H	C ₂ H ₅	1	COC ₂ H ₅	н	Н	CH ₃
20	Br H	C ₂ H ₅	1	COC ₂ H ₅	н	Н	C ₂ H ₅
	Br H	C₂H₅	1	COC ₂ H ₅	н	Н	n-C ₃ H ₇
	Br H	C₂H₅	1	COC ₃ H ₇ -n	Н	Н	CH ₃
	Br H	C ₂ H ₅	1	COC ₃ H ₇ -n	н	Н	C ₂ H ₅
25	Br H	C ₂ H ₅	1	COC ₃ H ₇ n	н	Н	n-C ₃ H ₇
	Br H	C₂H₅	1	COC ₃ H ₇ -n	н	Н	iso-C ₃ H ₇
	Br H	C ₂ H ₅	1	iso-C ₃ H ₇	н	н	iso-C ₃ H ₇
	Br H	C ₂ H ₅	1	COCH2OCH3	н	Н	CH ₃
30	Br H	C₂H₅	1	COCH2OCH3	н	Н	C₂H ₅
	Br H	C₂H₅	1	COCH2OCH3	н	Н	n-C ₃ H ₇
	Br H	C₂H₅	2	Н	Н	н	CH ₃
	Br H	C₂H₅	2	Н	н	Н	C ₂ H ₅
35	Br H	C₂H₅	2	Н	- H	Н	n-C ₃ H ₇
33	Br H	C ₂ H ₅	2	Н	н	Н	iso-C ₃ H ₇
	Br H	C ₂ H ₅	2	Н	н	Н	iso-C ₄ H ₉
	Br H	C₂H₅	2	Н	н	Н	CH ₂ CF ₃
	Br H	C ₂ H ₅	2	C ₂ H ₅	н	Н	CH ₃
40	Br H	C ₂ H ₅	2	C ₂ H ₅	Н	Н	C ₂ H ₅
	Вг Н	C ₂ H ₅	2	C ₂ H ₅	Н	Н	n-C₃H ₇
	Br H	C ₂ H ₅	2	C ₂ H ₅	н	Н	iso-C ₃ H ₇
	Br H	C ₂ H ₅	2	iso-C ₃ H ₇	н	Н	CH ₃
45	Br H	C ₂ H ₅	2	iso-C ₃ H ₇	н	Н	C ₂ H ₅
	Br H	C ₂ H ₅	2	iso-C ₃ H ₇	н	н	n-C ₃ H ₇
	Br H	C₂H₅	2	iso-C ₃ H ₇	н	Н	iso-C ₃ H ₇
	Br H	C₂H₅	2	CH₂OCH₃	н	Н	C ₂ H ₅
50	Br H	C ₂ H ₅	2	COC ₂ H ₅	н	н	CH ₃
	Br H	C₂H₅	2	COC ₂ H ₅	н	н	C ₂ H ₅
	Br H	C₂H₅	2	COC ₂ H ₅	н	Н	n-C ₃ H ₇

Tabl 1 (continued)

								-
5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁹
	Br	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	н_	Н	CH ₃
	Br	Н	C ₂ H ₅	2	COC ₃ H ₇ n	н	н	C₂H ₅
	Br	Н	C₂H₅	2	COC ₃ H ₇ -n	н	н	iso-C ₃ H ₇
10	Br	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	Br	Н	C ₂ H ₅	2 COC ₃ H ₇ -n	CH ₃			
	Br	H T	C ₂ H ₅	2		Н	Н	C ₂ H ₅
	Br	Н	C ₂ H ₅	2	COCH ₂ OCH ₃	Н	Н	n-C ₃ H ₇
15	8r	н	n-C ₃ H ₇	0	н	н	Н	C ₂ H ₅
15	Br	н	n-C ₃ H ₇	1	Н	н	н	CH ₃
	Br	Н	n-C ₃ H ₇	1	Н	Н	н	C₂H₅
	Br	Н	n-C ₃ H ₇	1	Н	Н	Н	n-C ₃ H ₇
	Br	Н	n-C ₃ H ₇	1	н	Н	Н	iso-C ₃ H ₇
20	Br	Н	n-C ₃ H ₇	1	Н	Н	Н	iso-C ₄ H ₉
	Вг	Н	n-C ₃ H ₇	1	Н	Н	Н	CH ₂ CF ₃
	Br	Н	n-C ₃ H ₇	2	н	Н	н	CH ₃
	Br	Н	n-C ₃ H ₇	2	н	Н	Н	C₂H₅
25	Br	Н	n-C ₃ H ₇	2	н	Н	Н	n-C ₃ H ₇
	Вг	Н	n-C ₃ H ₇	2	Н	Н	Н	iso-C ₃ H ₇
	Br	Н	n-C ₃ H ₇	2	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	n-C ₃ H ₇	2	н	н	Н	CH ₂ CF ₃
30	Br	Н	CH ₂ CH=CH ₂	0	Н	Н	Н	C ₂ H ₅
	Br	Н	CH ₂ CH=CH ₂	2	Н	Н	Н	C ₂ H ₅
	Br	Н	CH ₂ F	1	Н	Н	Н	CH ₃
	Br	н	CH₂F	1	Н	Н	Н	C ₂ H ₅
35	Вг	Н	CH₂F	1	Н	ΗŤ	H	n-C ₃ H ₇
	Br	Н	CH ₂ F	1	Н	Н	н	iso-C ₃ H ₇
	 Вг	Н	CH ₂ F	1	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	CH₂F			Н	н	CH ₂ CF ₃
40	Br	Н	CHF ₂			H	Н	C ₂ H ₅
40	Br	Н	CHF ₂			Н	Н	CH ₂ CF ₃
	Br	Н	CHF ₂			Н	Н	CH ₃
	Br	Н	CHF ₂			Н	Н	iso-C ₄ H ₉
	Br	Н	CHF ₂	0		Н	Н	n-C ₃ H ₇
45	Br	Н	CHF ₂	1	Н	Н	Н	CH ₃
	Br	H	CHF ₂				Н	C₂H₅
	Br	Н	CHF ₂			Н	Н	n-C ₃ H ₇
	Br Br	Н	CHF ₂					iso-C ₃ H ₇
50	Br Br	Н	CHF ₂					iso-C ₄ H ₉
	Br D.	Н	CHF ₂	1	H	Н	Н	CH₂CF ₃
	Br	Н	CF ₃	0	Н	Н	Н	C ₂ H ₅

Table 1 (continued)

5	R^1 R^2	R ³	n	R ⁵		R ⁶	R ⁷	R ⁹
	Br H	CF ₃	0	Н		Н	Н	CH ₂ CF ₃
	Br H	CF ₃	0	Н		Н	Н	CH ₃
	Br H	CF ₃	0	Н		н	Н	iso-C₄H ₉
10	Br H	CF ₃	0	н		Н	Н.	n-C ₄ H ₉
	Br H	CH₂CH₂F	0	Н		Н	Н	CH ₃
	Br H	CH₂CH₂F	0	н		н	Н	C ₂ H ₅
	Br H	CH₂CH₂F	1	н		н	Н	CH ₃
15	Br H	CH₂CH₂F	1	Н		Н	Н	C ₂ H ₅
,3	Br H	CH ₂ CH ₂ F	1	Н		Н	Н	л-С ₃ Н ₇
	Br H	CH ₂ CH ₂ F	1	Н		Н	Н	iso-C ₃ H ₇
	Br H	CH₂CH₂F	1	Н		н	Н	iso-C ₄ H ₉
	Вг Н	CH₂CH₂F	1	Н		Н	Н	CH ₂ CF ₃
20	Br H	CH₂CH₂F	2	Н		Н	Н	CH₃ Ĭ
	Br H	CH ₂ CH ₂ F	2	Н		Н	н	C₂H₅
	Br H	CH ₂ CH ₂ F	2	Н		н	Н	n-C ₃ H ₇
	Br H	CH₂CH₂F	2	н		Н	н	iso-C ₃ H ₇
25	Br H	CH ₂ CH ₂ F	2	н		н	Н	iso-C ₄ H ₉
	Br H	CH₂CH₂F	2	Н		Н	Н	CH ₂ CF ₃
	Br H	CH ₂ CHF ₂	0	н		Н	н	C ₂ H ₅
	Br H	CH ₂ CHF ₂	0	Н		Н	Н	CH ₃
30	Br H	CH ₂ CHF ₂	1	Н		Н	Н	CH ₃
	Br H	CH ₂ CHF ₂	1	Н		Н	Н	C ₂ H ₅
	Br H	CH ₂ CHF ₂	1	н		Н	Н	n-C ₃ H ₇
	Br H	CH ₂ CHF ₂	1	Н		Н	н	iso-C ₃ H ₇
35	Br H	CH2CHF2	1	Н	·	Н	Н	iso-C₄H _g
	Br H	CH ₂ CHF ₂	1	Н		Н	Н	CH ₂ CF ₃
	Br H	CH ₂ CHF ₂	2	Н		Н	Н	C ₂ H ₅
	Br H	CH ₂ CHF ₂	2	Н		Н	н	CH ₃
40	Br H	CH ₂ CF ₃	0	Н		н	Н	C ₂ H ₅
	Br H	CH ₂ CF ₃	0	Н		Н	Н	CH₃
	Br H	CH ₂ CF ₃	0	C ₂ H ₅		Н	Н	C₂H₅
	Br H	CH ₂ CF ₃	0	C ₂ H ₅		Н	Н	CH ₃
	Br H	CH ₂ CF ₃	1	н		Н	Н	сн₃
45	Br H	CH ₂ CF ₃	1	Н		Н	Н	C₂H₅
	Br H	CH ₂ CF ₃	1	Н		Н	Н	n-C ₃ H ₇
	Br H	CH ₂ CF ₃	1	Н		H	Н	iso-C ₃ H ₇
	Br H	CH ₂ CF ₃	1	Н		Н	Н	iso-C ₄ H ₉
50	Br H	CH ₂ CF ₃	1	Н		Н	Н	CH ₂ CF ₃
	Br H	CH ₂ CF ₃	2	н		Н	Н	CH ₃
	Br H	CH ₂ CF ₃	2	Н		Н	Н	C ₂ H ₅

					_ \$	Table 2 O		-
5	-				R.	N R S		
10				F	P P	\$ N = CH CH CH R	S(O)n-F	3 R
15	R ¹ F	R ²	R ³		R ⁵	R ⁶	R ⁷	R ⁸
	7	Н	CH ₃	0	Н	H	Н	CH ₃
	r	H	CH ₃	0	H	н	Н	C ₂ H ₅
	F.	Н	CH ₃	0	Н	Н	H	n-C ₃ H ₇
20	F	Н	CH ₃	0	Н	Н	H	iso-C ₃ H ₇
	F	Н	CH ₃	0	H	н	Н	n-C ₄ H ₉
	F	H	CH ₃	0	Н	н	Н	iso-C ₄ H ₉
	F	Н	CH ₃	0	Н	Н	Н	tert-C ₄ H ₉
25	F	Н	CH ₃	0	H	н	H	(CH ₂)₃C1
23	F	Н	CH ₃	0	Н	н	Н	CH₂CN
		Н	CH ₃	0	Н	н	Н	C ₆ H ₅
	F	Н	CH ₃	0	Н	н	Н	- √_ >-cı
30	F	Н	CH₃	0	Н	Н	Н	$\neg \triangleleft$
	F	Н	CH₃	0	н	Н	Н	→ CH3
<i>35</i>	F	Н	CH ₃	1	н	н	Н	СН
	F	Н	CH ₃	1	Н	н	Н	C ₂ H ₅
	F	Н	CH ₃	1	Н	н	Н	n-C ₃ H ₇
	F	Н	CH ₃	1	н	н	н	iso-C₃H ₇
40	F	Н	CH ₃	1	н	н	н	п-С₄Н₃
40	F	H	CH₃	1	Н	н	н	iso-C ₄ H ₉
	F	Н	CH ₃	1	н	н	Н	tert-C ₄ H ₉
	F	Н	CH ₃	1	Н	н	Н	(CH ₂)₃Cl
	F	Н	CH ₃	1	н	н	Н	CH₂CN
45	F	Н	CH₃	1	Н	Н	Н	C ₆ H ₅
	F	н	CH ₃	1	Н	Н	Н	
50	F	н	CH ₃	1	н	н	н	$\overline{}$
	F	Н	CH3	1	Н	н	H	~ ⇔

Table 2 (continued)

	<u>R</u> 1	R ²	R ³	n	R ⁵	R	s _A 7	-R8
5	F	н	CH ₃	2	Н	Н		CH₃
	F	Н	CH ₃	2	Н	Н	Н	C ₂ H _s
	F	Н	CH ₃	2	Н	н	н	n-C ₃ H ₇
	F	Н	CH ₃	2	Н	H	Н	iso-C ₃ H ₇
10	F	Н	CH₃	2	Н	Н	Н	n-C ₄ H ₉
10	F	Н	CH ₃	2	Н	Н	н	iso-C ₄ H ₉
	F	Н	CH ₃	2	Н	Н	- H	tert-C ₄ H ₉
	F	Н	CH ₃	2	Н	Н	Н	(CH₂)₃Cl
	F	Н	CHs	2	Н	н	Н	CH₂CN
15	F	Н	CH ₃	2	Н	н	Н	CeHs
	F	Н	CH₃	2	н	Н	н	cı
	F	Н	CH ₃	2	Н	н	н	$\overline{}$
20	F	н	СН₃	2	н	н	н н	→ CH3
	F	н	C₂H₅	0	Н	н	н	СН₃
25	F	Н	C₂Hs	0	Н	· Н	H H	C₂H₅
	F	Н	C₂Hs	0	Н	н	н н	n-C₃H ₇
	F	Н	C₂Hs	0	Н	H	н н	iso-C ₃ H ₇
	F	Н	C₂H ₅	0	Н	H	l H	n-C₄H₂
	F	Н	C ₂ H ₅	0	Н	H	I H	iso-C₄H ₉
30	F	Н	C₂H₅	0	Н	F	I H	tert-C ₄ H ₉
	F	Н	C ₂ H ₅	0	Н	ŀ	I H	(CH₂)₃Cl
	F	Н	C ₂ H ₅	0	Н	F	i H	CH₂CN
	F	Н	C₂H₅	0	Н	۲	I . H	C ₆ H ₅
35	F	Н	C₂Hs	0	Н	۲	н н	— <u>—</u> —CI
	F	Н	C₂H₅	0	Н	H	н н	$\overline{}$
40	F	Н	C₂H₅	0	Н	ŀ	н н	d √
	F	Н	C ₂ H ₅	1	Н)		CH ₃
	F	Н	C₂Hs	1	Н	ŀ		C₂H₅
45	F	Н	C₂H₅	1	Н	ŀ		n-CaH7
	F	Н	C₂H₅	1	Н	H		iso-C₃H ₇
	F	Н	C₂H ₅	1	Н	ŀ		n-C ₄ H ₉
	F	Н	C ₂ H ₅	1	Н		H H	iso-C ₄ H ₉
	F	Н	C₂H₅	1	н		н н	tert-C ₄ H ₉
50	F	Н	C₂H₅	1	Н		н н	(CH₂)₃CI
	F	Н	C ₂ H ₅	1	Н	ŀ	н н	CH₂CN

Table 2 (continued)

	<u>R</u> 1	R ²	R ³	n	R ⁵	я ⁶	R ⁷	8 8
5	F	Н	C₂H₅	1	Н	н	н	C ₆ H ₅
	۴	Н	C₂H₅	1	Н	Н	Н	cı
10	F	н	C ₂ H ₅	1	н	н	Н	$\overline{}$
	F	н	C₂H₅	1	н	н	н	CH₃
•	F	Н	· C₂Hs	2	н	Н	Н	СНэ
15	F	Н	C ₂ H ₅	2	н	Н	Н	C ₂ H ₅
	F	Н	C₂H₅	2	н	н	н	n-C ₃ H ₇
	F	Н	C ₂ H ₅	2	Н	н	Н	iso-C₃H ₇
	F	Н	C ₂ H ₅	2	Н	Н	н	n-C ₄ H ₉
20	F	Н	C ₂ H ₅	2	н	н	Н	iso-C₄H ₉
	F	Н	C ₂ H ₅	2	Н	Н	Н	tert-C ₄ H ₉
	F	Н	C₂H₅	2	н	Н	н	(CH₂)₃CI
	F	Н	C₂H₅	2	Н	Н	Н	CH₂CN
25	F	Н	C₂H₅	2	Н	Н	Н	C ₆ H ₅
	F	Н	C₂H₅	2	н	н	Н	CI
	F	Н	C₂H₅	2	Н	н	Н	$\overline{}$
30	F	н	C ₂ H ₅	2	н	н	н	CH ₃
	C1	Н	CH₃ CH₃	0	Н	Н	Н	Н
	CI	Н		0	Н	н	Н	СН
35	CI	Н	CH ₃	0	Н	Н	н	C ₂ H ₅
	CI	Н	CH ₃	0	н	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	Н	н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	0	Н	Н	Н	n-C ₄ H ₉
40	CI	Н	CH ₃	0	Н	Н	Н	sec-C ₄ H ₉
70	~ CI	Н	CH ₃	0	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CH ₃	0	н	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	Н	Н	Н	n-CsH ₁₁
	CI	Н	CH ₃	0	н	Н	Н	n-CeH ₁₃
45	CI	Н	CH₃	0	Н	Н	Н	CeHs
	CI	Н	CH₃	0	Н	Н	Н	─ F
50	CI	Н	CH ₃	0	н	н	н	- C I
- -	CI	н	CH ₃	0	н	н	н	—(_>_CI —(>_Br

EP 0 742 202 A2

Table 2 (continued)

	R ¹	R ²	A ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	CI ·	Н	CH3	0	Н	Н	Н	-(_>-CH ₃
	CI	н	CH3	0	н	H	н	
10	CI	н	CH ₃	0	н	н	Н	CN
	CI	Н	CH₃	0	Н	н	н	NO ₂
15	CI	н	CH ₃	0	Н	н	Н	— <u>~</u> —осн ₃
	CI	Н	CH3	0	Н	H	н	— <u></u> _>-scн ₃
	CI	Н	CH₃	0	Н	Ħ	н	CH=CH₂
20	CI	Н	CH ₃	0	Н	H	Н	CH=CHC6Hs
	CI	Н	CH ₃	0	н	H	н	CH=CHCH3
	CI	Н	CH ₃	0	Н	н	н	C(=CH ₂)CH ₃
	CI	Н	CH ₃	0	Н	н	Н	CH ₂ CF=CF ₂
25	CI	н	CH ₃	0	Н	Н	Н	-CH2-(_)-CI
	CI	Н	CH₃	0	Н	н	Н	CH2CH2CI
	CI	Н	CH ₃	0	Н	н	н	(CH₂)₄CI
	CI	Н	CH ₃	0	Н	н	н	(CH₂)₃CI
30	CI	Н	CH ₃	0	Н	н	Н	CH ₂ OCH ₃
	CI	Н	CH ₃	0	Н	н	н	CH2CH2OCH3
	CI	Н	CH ₃	0	Н	н	н	CH₂CN
	CI	Н	CH ₃	0	Н	н.	Н	CH2CO2C2Hs
35	CI	н	CH ₃	0	Н	н	н	-CH2-O-(_)
	CI	Н	CH ₃	0	Н	Н	Н	$\overline{}$
40	CI	Н	CH₃	0	н	н	н	 CH₃.
	CI	н	CH3	0	Н	н	н	$\overline{}$
45	CI	н	CH ₃	0	Н	Н	Н	$\overline{}$
	CI	Н	CH ₃	0	Н	2-CI	н	CH ₃
	CI	Н	CH ₃	0	н	2-C1	н	C₂H₅
F0	CI	Н	CH ₃	0	Н	2-CI	Н	n-CaH7
50	CI	Н	CH ₃	0	Н	2-C1	н	n-C₄H₀
	CI	Н	CH ₃	0	Н	3-C1	Н	CH₃

Table 2 (continued)

	R ¹	я ²	A3	n	R ⁵	R ⁶	R ⁷	R ⁸
5	CI	Н	CH ₃	0	Н	 3-CI	Н	C ₂ H _s
	CI	Н	CH ₃	0	Н	3-C1	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	Н	3-C1	Н	n-C₄H₀
	CI	Н	CH ₃	0	н	2-F	н	CH ₃
10	CI	Н	CH ₃	0	н	2-F	Н	C₂Hs
	CI	Н	CH ₃	0	Н	2-F	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	Н	2-F	Н	n-C4He
•	CI	Н	. CH ₃	0	Н	3-F	Н	CH ₃
•	CI	Н	CH ₃	0	Н	3-F	Н	C₂Hs
15	CI	Н	CH ₃	0	Н	3-F	Н	n-C ₃ H ₇
	CI	Н	CH₃	0	Н	3-F	Н	n-C₄H₀
	CI	Н	CH ₃	0	Н	3-F	Н	sec-C ₄ H ₉
	CI	Н	CH ₃	0	CH ₃	н	н	CH ₃
20	CI	Н	CH ₃	0	CH ₃	н	Н	C₂Hs
20	CI	Н	CH ₃	0	CH ₃	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	CH ₃	Н	Н	iso-C₃H ₇
	CI	Н	CH₃	0	CH ₃	Н	Н	n-C₄H₃
	CI	Н	CH ₃	0	CH ₃	H	Н	sec-C ₄ H ₉
25	CI	Н	CH ₃	0	CH ₃	Н	Н	tert-C ₄ H ₉
	CI	Н	CH3	0	CH ₃	н	н	iso-C ₄ H ₉
	CI	Н	CH₃	0	CH ₃	н	Н	CeHs
	CI	Н	CH ₃	0	CH ₃	Н	Н	- C I
30	CI	н	СНэ	0	CH ₃	н	н	(CH₂)₃CI
	CI	н	CH ₃	Ö	CH ₃	н	Н	(CH₂)₄CI
	CI	н	CH ₃	Ō	CH ₃	Н	Н	CH₂CN
	CI	Н	CH ₃	0	CH ₃	H	→H	CH2OCH3
35	CI	Н	CH ₃	Ö	CHs	Н	н	CH2CO2C2H5
	CI	Н	CH ₃	0	C ₂ H ₅	Н	н	
	CI	н	СН₃	0	C ₂ H ₅	н	н	CH ₃
	CI	H	CH ₃	0	C₂Hs	н	Н	C ₂ Hs
40	CI	Н	CH ₃	0	C₂H5	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	C₂H₅	Н	Н	iso-C ₃ H ₇
	CI	н	CH ₃	0	C₂H₅	н	н	n-C ₄ H ₉
	CI	Н	CH ₃	0	C₂H₅	Н	Н	iso-C₄H₃
45	CI	н	CH₃	0	C₂H₅	н	н	sec-C ₄ H _e
	CI	Н	CH ₃	0	C₂H₅	н	н	tert-C ₄ H ₉
	CI	Н	CHs	0	C₂Hs	н	н	(CH2)3CI
	CI	Н	CH ₃	0	C₂H₅	н	н	(CH ₂) ₄ Cl
	CI	н	CH ₃	0	C₂H₅	н	н	CH₂CN
50	CI	Н	CH ₃	0	C₂H₅	н	н	CH₂OCH₃
	CI	Н	CH ₃	0	C ₂ H ₅	н	н	CH ₂ CO ₂ C ₂ H ₅

Table 2 (continued)

_	R ¹	R ²	R ³	ก	R ⁵	R ⁶	R ⁷	R8
5	CI.	Н	CH ₃	0	C ₂ H ₅	Н	Н	CeHs
	CI	Н	CH ₃	0	n-C₃H7	Н	Н	- √_ >-CI
	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	н	CH₃
10	CI	Н	CH3	0	n-C₃H₁	Н	Н	C ₂ H ₅
	CI	Н	CH3	0	n-C ₃ H ₇	Н	Н	n-C₃H7
	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	iso-C₃H ₇
	CI		CH ₃	- 0	n-C ₃ H ₇	Н	Н	π-C₄H ₉
15	CI	Н	CH ₃	0	n-C ₃ H ₇	H	Н	iso-C₄H₀
75	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	0	n-C ₃ H ₇	Н	H	tert-C ₄ H ₉
	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	(CH₂)₃CI
-	CI	Н	CH₃	0	n-C ₃ H ₇	Н	Н	(CH₂)₄Cl
20	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	CH₂CN
	CI	Н	CH ₃	0	n-C₃H₂	Н	Н	CH2CO2C2H5
	CI	Н	CH₃	0	n-C ₃ H ₇	Н	Н	CH2OCH3
	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	C ₆ H ₅
25	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	CH₃
20	CI	Н	CH ₃	0	iso-C₃H ₇	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C₄H₃
30	CI	Н	CH₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₄ H ₉
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	0	iso-C₃H ₇	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	(CH₂)₃CI
35	CI	H	CH ₃	0	iso-C ₃ H ₇	н -	Н	(CH₂)₄CI
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	CH₂CN
	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	
	CI	Н	CH3	0	iso-C ₃ H ₇	Н	Н	CH₂OCH₃
	CI	Н	CH₃	0	iso-C ₃ H ₇	Н	Н	C ₆ H ₅
40 ~	CI	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	
	CI	Н	CH ₃	0	CH₂OCH₃	н	н	CH₃
	CI	Н	CH ₃	0	CH2OCH3	Н	Н	C ₆ H ₅
45	CI	Н	CH₃	0	CH ₂ OC ₂ H ₅	Н	Н	CH ₃
	C)	Н	CH ₃	0	CH ₂ OC ₂ H ₅	H	Н	C ₆ H ₅
	CI	Н	CH ₃	0	CH₂SCH₃	Н	H	CH ₃
	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	CeHs
	CI	Н	CH ₃	0	COCH ₃	Н	Н	CH₃
50	CI	Н	CH ₃	0	COC₂H₅	Н	Н	CHs
	ĊI	Н	CH ₃	0	COC₂Hs	Н	н	C₂Hs
	CI	Н	CH ₃	1	н	Н	Н	CH ₃

Table 2 (continued)

	<u>R</u> 1	R ²	8 3.	n	R ⁵	R ⁶	R ⁷	R ⁸
5	CI.	Н	CH ₃	1	Н	 н	Н	C₂Hs
	CI	Н	CH ₃	1	н	H	Н	n-C₃H ₇
	CI	н	CH ₃	1	н	H	Н	iso-C₃H ₇
	CI	Н	CH ₃	1	Н	H	н	n-C ₄ H ₉
10	CI	Н	CH ₃	1	н	H	Н	iso-C ₄ H ₉
70	CI	н	CH ₃	1	Н	H	Н	tert-C₄H₃
	CI	Н	CH ₃	1	Н	H	Н	(CH₂)₃CI
	CI	Н	. CH ₃	1	Н	H -	н	CH₂CN
	CI	Н	CH ₃	1	Н	H	Н	CH ₂ OCH₃
15	CI	Н	CH ₃	1	н	H	н	
	CI	н	CH ₃	1	Н	H	Н	$\overline{}$
	CÎ	н	СН₃	1	н	H	н	/CH3
20	٠.	• •	J	•	••			$\overline{}$
	CI	н	CH ₃	1	н	н	н	C ₆ H ₅
	CI	н	CH ₃	1	н	н	н	
	Ci	••	01.13	•	••	• •		(_)-CI
25	CI	H	CH ₃	1	Н	2-CI	Н	C ₂ H ₅
	CI	Н	CH₃	1	Н	3-CI	Н	CH ₃
	CI	Н	CH ₃	1	CH ₃	H	н	CH ₃
	CI	Н	CH ₃	1	CHs	H	Н	C ₂ H ₅
30	CI	Н	CH ₃	1	CH ₃	н	Н	n-C ₃ H ₇
30	CI	Н	CH₃	1	CH ₃	H	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	1	CH₃	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	1	CH ₃	н	Н	iso-C₄H₃
	CI	Н	CH ₃	1	CH₃	Н	- H	sec-C ₄ H ₉
<i>35</i>	CI	Н	CH ₃	1	CH₃	н	Н	tert-C ₄ H ₉
	CI	Н	CH₃	1	CH₃	н	н	(CH₂)₃CI
	CI	Н	CH3	1	CH ₃	H	Н	(CH₂)₄CI
	CI	Н	CH ₃	1	CH ₃	H	Н	CH₂CN
40	CI	Н	CH₃	1	CH ₃	H	Н	CH ₂ CO ₂ C ₂ H ₅
•	CI	Н	CH ₃	1	CH ₃	H	Н	CH ₂ OCH ₃
	CI	н	CH ₃	1	CH ₃	H	Н	C ₆ H ₅
	CI	Н	CH ₃	1	CH ₃	H	Н	
45	CI	н	СН₃	1	C₂H₅	н	Н	CH ₃
	CI	н	CH ₃	1	C₂H5	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	1	C ₂ H ₅	н	н	n-CaH7
	CI	н	CH ₃	1	C₂H ₅	н	Н	iso-C ₃ H ₇
50	CI	н	CH ₃	1	C ₂ H ₅	Н	н	n-CaHe
<i>50</i>	CI	н	CH ₃	1	C₂Hs	н	н	iso-C ₄ H ₉
	CI	н	CH ₃	1	C₂Hs	н	н	sec-C ₄ H ₉
		- •		•		· •	-	· · · · · · ·

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	
5	CI.	Н	CH ₃	1	C ₂ H ₅	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	1	C ₂ H ₅	н	Н	(CH₂)₃CI
	CI	Н	CH ₃	1	C ₂ H ₅	н	Н	(CH₂)₄Cl
	CI	Н	CH ₃	1	C ₂ H ₅	H	Н	CH₂CN
10	CI	Н	CH ₃	1	C ₂ H ₅	н	Н	CH ₂ CO ₂ C ₂ H ₅
	CI	Н	CH₃	1	C ₂ H ₅	н	Н	CH ₂ OCH ₃
	CI	Н	CH ₃	1	C ₂ H ₅	н	н	C ₆ H ₅
	CI		- CH ₃	1	C ₂ H ₅	Н	Н	(T)
•	٥.	••	J. 13	•	02/15	••	• • •	-(-)-(1
15	CI	Н	CH ₃	1	n-C ₃ H ₇	H	Н	CH₃
	CI	Н	CH ₃	1	n-C ₃ H ₇	н	Н	C₂H₅
	CI	н	CH₃	1	n-C₃H₂	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	1	n-CsH7	H	н	iso-C ₃ H ₇
20	CI	н	CH ₃	1	n-C ₃ H ₇	н	н	n-C₄H₀
	CI	Н	СН₃	1	n-C ₃ H ₇	н	Н	iso-C₄H₃
	CI	Н	CH ₃	1	n-C ₂ H ₇	н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	1	n-C ₃ H ₇	н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	1	n-C ₃ H ₇	н	Н	(CH ₂) ₃ Cl
25	CI	Н	CH₃	1	n-C ₃ H ₇	н	н	(CH₂)₄CI
	CI	Н	CH ₃	1	n-CsH7	н	Н	CH₂CN
	CI	Н	CH ₃	1	n-C ₂ H ₇	н	Н	CH2CO2C2H5
	CI	Н	CH₃	1	n-C ₃ H ₇	н	Н	CH ₂ OCH ₃
30	CI	Н	CH₃	1	n-C₃H ₇	н	Н	C ₆ H ₅
	CI	н	CH₃	1	n-CaH7	н	н	-CI
	CI	Н	CH ₃	1	iso-C₃H ₇	н	Н	CH ₃
35	CI	Н	CH ₃	1	iso-C₃H ₇	н -	Н	C₂Hs
	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	n-CaH7
	CI	Н	CH₃	1	iso-C ₃ H ₇	н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	1	iso-C₃H ₇	н	Н	n-CaH ₉
	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
40	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	1	iso-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
	CI	н	CH₃	1	iso-C₃H7	н	Н	(CH₂)₃CI
	CI	Н	CH₃	1	iso-C ₃ H ₇	н	Н	(CH₂)₄CI
45	CI	Н	CH₃	1	iso-C ₃ H ₇	н	Н	CH₂CN
	CI	Н	CH₃	1	iso-C₃H7	н	Н	CH2CO2C2H5
	CI	Н	CH ₃	1	iso-C₃H7	Н	Н	CH ₂ OCH₃
	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	C ₆ H ₅
50	CI	Н	CH ₃	1	iso-C₃H7	н	Н	(-)-cı
50	~.		٠	_				
	CI	Н	CH₃	2	Н	н	Н	CH ₂
	CI	Н	CH₃	2	H	н	Н	C₂H₅

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	CI.	Н	CH ₃	2	Н	 Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	2	Н	н	н	iso-C₃H ₇
	CI	Н	CH ₃	2	н	н	н	n-C ₄ H ₉
	CI	н	СН₃	2	н	Н	н	iso-C ₄ H ₉
10	CI	Н	СН₃	2	н	н	н	tert-C ₄ H ₉
10	CI	Н	CH ₃	2	н	н	н	(CH₂)₃Cl
	CI	Н	CH ₃	2	н	н	Н	CH₂CN
	CI	Н	. CH ₃	2	н	н	Н	CH ₂ OCH₃
•	CI	Н	CH ₃	2	Н	н	Н	CH2CO2C2H5
15	CI	Н	CH ₃	2	н	Н	Н	_1
								7
	ÇI	н	CH₃	2	н	H	н	_CH₃
								$\overline{}$
20	CI	Н	CH ₃	2	Н	Н	Н	C ₆ H ₅
	CI	Н	CH ₃	2	Н	Н	н	-√_>-cı
								<u>_</u>
	CI	Н	CH ₃	2	Н	2-CI	Н	C ₂ H _s
25	CI	Н	CH₃	2	Н	3-C1	Н	C₂H ₅
	CI	Н	СН₃	2	CH₃	н	Н	CH₃
	CI	н	CH ₃	2	CH3	Н	Н	C₂H₅
	CI	Н	CH₃	2	CH₃	Н	Н	n-C ₃ H ₇
30	CI	Н	CH ₃	2	CH₃	Н	н	iso-C ₃ H ₇
	CI	Н	CH₃	2	CH₃	н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	2	CH ₃	н	Н	iso-C ₄ H ₉
	CI	Н	CH₃	2	CH₃	Н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	2	CH ₃	Н	- H	tert-C ₄ H ₉
35	CI	Н	CH₃	2	CH ₃	Н	Н	(CH₂)₃CI
	CI	Н	CH₃	2	CH ₃	Н	Н	(CH₂)₄CI
	CI	Н	CH₃	2	CH₃	Н	Н	CH₂CN
	CI	Н	CH ₃	2	CH₃	H	Н	CH ₂ CO ₂ C ₂ H ₅
40	CI	Н	СНз	2	CH ₂	Н	Н	CH₂OCH₃
	CI	Н	CH ₃	2	CH ₃	Н	Н	C ₆ H ₅
	CI	Н	CH₃	2	CH₃	Н	Н	(>-cı
	CI	Н	CH ₃	2	C₂H₅	Н	н	СН₃
45	CI	Н	CH ₃	2	C₂H₅	Н	Н	C₂H₅
	CI	Н	CH ₃	2	C₂H₅	н	Н	n-C₃H₂
	CI	Н	CH ₃	2	C₂Hs	н	Н	iso-C ₃ H ₇
	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	n-C ₄ H ₉
50	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	iso-C₄H₂
	CI	Н	CH ₃	2	C₂H₅	Н	н	sec-C ₄ H ₉
	CI	Н	CH ₃	2	C₂H₅	Н	Н	tert-C ₄ H ₉

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	
5	Ci ,	Н	CH ₃	2	C₂Hs	Н	Н	(CH₂)₃CI
	CI	Н	CH ₃	2	C₂Hs	Н	Н	(CH₂)₄CI
	CI	Н	CH₃	2	C₂H₅	н	н	CH₂CN
	CI	Н	CH ₃	2	C2H5	Н	Н	CH2CO2C2Hs
10	CI	H	CH ₃	2	C ₂ H ₅	Н	Н	CH ₂ OCH₃
	CI	Н	CH₃	2	C ₂ Hs	Н	Н	C ₆ H ₅
	CI	Н	CH₃	2	C₂H₅	н	Н	cı
	CI	Н	CH ₃	2	n-C ₃ H ₇	н	Н	CH ₃
15	CI	H	CH ₃	2	n-C ₃ H ₇	н	н	C₂H₅
	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	CI	Н	CH₃	2	n-C ₃ H ₇	Н	Н	iso-C₃H ₇
	CI	Н	CH ₃	2	n-C₃H₂	Н	Н	n-C₄H₃
20	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	iso-C ₄ H ₉
20	CI	Н	CH ₃	2	n-C₃H₂	Н	Н	sec-C ₄ H ₉
	CI	Н	CH₃	2	n-C ₃ H ₇	н	Н	tert-C₄H₃
	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	(CH₂)₃CI
	CI	Н	CH₃	2	n-C ₃ H ₇	Н	Н	(CH₂)₄CI
25	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	CH₂CN
	CI	Н	CH₃	2	n-C ₃ H ₇	Н	Н	CH2CO2C2H5
	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	CH₂OCH₃
	CI	Н	CH₃	2	n-C ₃ H ₇	Н	Н	C ₆ H ₅
30	CI	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	
	CI	Н	CH₃	2	iso-C ₃ H ₇	н	Н	CH ₃
	CI	Н	CH₃	2	iso-C ₃ H ₇	Н	Н	C₂H₅
	CI	Н	CH ₃	2	iso-C₃H ₇	н -	Н	n-C ₃ H ₇ ***
<i>35</i>	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₃	2	iso-C ₃ H ₇	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	2	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
40 ~	CI	Н	CH ₃	2	iso-C ₃ H ₇	н	н	tert-C ₄ H ₉
40 ~	CI	Н	CH₃	2	iso-C ₃ H ₇	Н	Н	C ₆ H ₅
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	(_>-cı
	CI	Н	CH ₃	2	iso-C ₃ H ₇	н	н	(CH₂)₃CI
45	CI	Н	CH₃	2	iso-C₃H₂	Н	н	(CH₂)₄CI
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	CH₂CN
	CI	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	CH2CO2C2Hs
	CI	Н	CH ₃	2	iso-C ₃ H ₇	н	Н	CH ₂ OCH ₃
50	CI	Н	C₂H₅	0	н	н	Н	CH ₃
50	CI	Н	C ₂ H ₅	0	Н	н	Н	C ₂ H ₅
	CI	н	C₂H₅	0	Н	Н	Н	n-C₃H ₇

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	 R ⁶	R ⁷	R ⁸
5	CI .	Н	C₂H₅	0	Н	н	Н	iso-C₃H7
	CI	н	C₂H5	0	Н	H	Н	n-C ₄ H ₉
	CI	н	C₂H₅	0	Н	H	Н	iso-C₄H ₉
	CI	Н	C₂Hs	0	Н	H	Н	sec-C₄H₀
40	CI	Н	C ₂ H ₅	0	н	H	Н	tert-C ₄ H ₉
10	CI	Н	C₂H₅	0	н	H	Н	n-CaH11
	CI	Н	C₂H₅	0	Н	н	Н	n-C ₆ H ₁₃
	CI	Н	. C₂H₅	0	н	H	Н	C ₆ H ₅
15	CI	Н	C₂Hs	0	Н	H ·	Н	— (_)—CI
	CI	Н	C₂Hs	0	н	н	н	CI ————————————————————————————————————
20	CI	Н	C₂H₅	0	н	Н	н	$\overline{}$
	CI	н	C ₂ H ₅	0	н	Н	н	→ CH3
25	CI	н	C ₂ H ₅	0	н	Н	н	$\overline{}$
	CI	Н	C₂Hs	0	н	Н	н	$\overline{}$
	CI	н	C ₂ H ₅	0	Н	н	Н	CH=CH₂
30	CI	н	C₂H5	ō	Н	Н	н	CH=CHC6Hs
	CI	н	C ₂ H ₅	ō	Н	Н	н	CH2CF=CF2
	CI	н	C ₂ H ₅	0	Н	Н	н	(CH₂)₄Cl
	CI	Н	C₂Hs	0	н	н	- H	(CH ₂) ₃ Cl
35	CI	н	C₂H₅	0	н	н	Н	CH₂CN
	CI	Н	C₂H₅	0	н	н	н	CH₂OCH₃
	CI	Н	C₂H₅	0	н	Н	н	CH2CO2C2H5
	CI	Н	C ₂ H ₅	0	CH ₃	H	н	CH ₃
40 -	CI	Н	C ₂ H ₅	0	CH ₃	н	Н	CH ₃
-	CI	н	C₂Hs	0	CH ₃	н	Н	C₂Hs
	CI	Н	C₂H₅	0	CH₃	Н	Н	n-CaH7
	CI	н	C ₂ H ₅	0	CH₃	н	Н	iso-C₃H ₇
	CI	Н	C ₂ H ₅	0	СН₃	н	Н	n-C4H9
45	CI	Н	C ₂ H ₅	0	CH ₃	н	Н	iso-C₄H₃
	Cl	Н	C ₂ H ₅	0	CH ₃	Н	Н	sec-C ₄ H ₉
	Ci	Н	C ₂ H ₅	0	CH₃	Н	н	tert-C ₄ H ₉
	CI	Н	C₂H₅	0	CH ₃	Н	Н	(CH₂)₃CI
50	CI	Н	C ₂ H ₅	0	CH ₃	Н	Н	(CH₂)₄CI
	CI	Н	C ₂ H ₅	0	CH ₃	Н	Н	CH₂CN
	CI	Н	C ₂ H ₅	0	CH₃	Н	н	CH2OCH3

Table 2 (continued)

H H R R R R R R R R		<u>R</u> 1	A ²	A3	_	R ⁵	R ⁶	R ⁷	- R ⁸
Ci	5								
CI H C2Hs 0 CHs H H CHs CI H C2Hs 0 C3Hs H H CCHs CI H C3Hs 0 C3Hs H H C2Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 C3Hs H H I ISO-C3Hs CI H C3Hs 0 N-C3Hr H H I C3Hs CI H C3Hs 0 N-C3Hr H H I C3Hs CI H C3Hs 0 N-C3Hr H H I C3Hs CI H C3Hs 0 N-C3Hr H H I ISO-C3Hr CI H C3Hs 0 N-C3Hr H I I II									
10									C6H5
CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H ISO-C3H7 CI H C3Hs 0 C3Hs H H ISO-C3H7 CI H C3Hs 0 C3Hs H H ISO-C3H7 CI H C3Hs 0 C3Hs H H ISO-C3H6 CI H C3Hs 0 C3Hs H H SEC-C3H6 CI H C3Hs 0 C3Hs H H SEC-C3H6 CI H C3Hs 0 C3Hs H H E1T-C3H6 CI H C3Hs 0 C3Hs H H ICH3ACI CI H C3Hs 0 C3Hs H H ICH3ACI CI H C3Hs 0 C3Hs H H CH3ACI CI H C3Hs 0 C3Hs H H CH3ACI CI H C3Hs 0 C3Hs H H CH3ACI CI H C3Hs 0 C3Hs H H CH3COC3 CI H C3Hs 0 C3Hs H H CH3COC3 CI H C3Hs 0 C3Hs H H CH3COC3 CI H C3Hs 0 C3Hs H H C4H3CI CI H C3Hs 0 C3Hs H H C4H3CI CI H C3Hs 0 C3Hs H H C4H3CI CI H C3Hs 0 C3Hs H H C3Hs 25 CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs CI H C3Hs 0 C3Hs H H C3Hs 35 CI H C3Hs 0 C3Hr H H C3Hs CI H C3Hs 0 C3Hr H H H C3Hs CI H C3Hs 0 C3Hr H H H C3Hs CI H C3Hs 0 C3Hr H H H C3Hs CI H C3Hs 0 C3Hr H H C3Hs CI H C3Hs 0 C3C3Hr H H C3Hs CI H C3Hs 0 C3C3Hr H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs CI H C3Hs 0 C3C3Hr H H H C3Hs		Ci	н	C₂H₅	0	CH₃	Н	Н	()>-cı
CI	10				0	C₂H₅	н	Н	CH₃
C H					0	C₂H₅	Н	Н	C ₂ H ₅
CI					0			Н	n-C ₃ H ₇
15				•	0				iso-C ₃ H ₇
Cl	45				0				
CI H C2Hs 0 C2Hs H H H (CH2)2CI CI H C2Hs 0 C2Hs H H H (CH2)2CI CI H C3Hs 0 C2Hs H H CCH2)2CI CI H C3Hs 0 C2Hs H H CCH2)2CI CI H C3Hs 0 C2Hs H H CCH2)CCI CI H C3Hs 0 C2Hs H H CCH2OCH CI H C3Hs 0 C2Hs H H CCH2OCH CI H C3Hs 0 C2Hs H H CCH2OCC2Hs CI H C3Hs 0 C2Hs H H CCH2OCC2Hs CI H C3Hs 0 C2Hs H H CCH3OCC2Hs CI H C3Hs 0 C2Hs H H C4H2OC3C2Hs CI H C3Hs 0 C2Hs H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3C3C3Hs CI H C3Hs 0 C3Hs H H H C3C3C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 C3Hs H H H C3Hs CI H C3Hs 0 SSO-C3Hs H H H C3Hs CI H C3Hs 0 SSO-C3Hs H H H C3Hs CI H C3Hs 0 SSO-C3Hs H H H C3Hs CI H C3Hs 0 SSO-C3Hs H H H C3Hs	15								iso-C4H9
CI H C2Hs 0 C2Hs H H CCH2).CI CI H C2Hs 0 C2Hs H H CCH2).C2C2Hs CI H C2Hs 0 C2Hs H H CCCO.C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C2Hs H H H C2Hs CI H C2Hs 0 C3C2Hs H H H C2Hs CI H C2Hs 0 C3C2Hs H H H C2Hs CI H C2Hs 0 C3C2Hh H H C3C3C3Hh CI H C2Hs 0 C3CC3Hh H H C2Hs CI H C2Hs 0 C3CC3Hh H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh H H H C3CC3C3Hh CI H C2Hs 0 C3CC3Hh CI H C2Hs 0 C3CC3Hh CI H C3Hs 0 C					0				
20					0				tert-C ₄ H ₉
CI H C2Hs 0 C2Hs H H CH2CN CI H C2Hs 0 C2Hs H H CH2COC43 CI H C2Hs 0 C2Hs H H CH2CO2C2Hs CI H C2Hs 0 C2Hs H H CH3CO2C2Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C3Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H H C3Hs CI H C2Hs 0 C2Hs H H H C3Hs CI H C2Hs 0 C2Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3Hs H H H C3Hs CI H C2Hs 0 C3C3Hr H H H C3Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs CI H C2Hs 0 C3C3Hr H H H C2Hs					0				
CI H C2Hs 0 C2Hs H H CH2OCHs CI H C2Hs 0 C2Hs H H CH2CO2C2Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C4Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H H C2Hs CI H C2Hs 0 C2Hs H C2Hs CI H C2Hs 0 C2Hr H C2Hs CI H C2Hs 0 C2Hr H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C2Hr H H H C2Hs CI H C2Hs 0 C3Hr H H C2Hs CI H C2Hs 0 C3C3Hr H H C3Hs CI H C2Hs 0 C3C3Hr H H C2Hs CI H C2Hs 0 C3C3Hr H H C2Hs CI H C2Hs 0 C3C3Hr H H C3Hs	20				0				
CI H C₂Hs 0 C₂Hs H H CH₂CC₂C₂Hs CI H C₂Hs 0 C₂Hs H H C₄Hs CI H C₂Hs 0 C₂Hs H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C∃Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₂Hs H H H C₂Hs CI H C₂Hs 0 C₃C-C₃Hr H H C₂Hs					0	C₂H5		н	CH₂CN
25					0	C₂H₅	Н	Н	CH2OCH3
25 CI H C₂Hs O C₂Hs H H CH₃ CI H C₂Hs O n-C₃Hr H H CH₃ CI H C₂Hs O n-C₃Hr H H C₂Hs CI H C₂Hs O n-C₃Hr H H C₂Hs CI H C₂Hs O n-C₃Hr H H N-C₃Hr CI H C₂Hs O n-C₃Hr H H N-C₃Hr CI H C₂Hs O n-C₃Hr H H N-C₃Hs CI H C₂Hs O n-C₃Hr H H Sec-C₃Hg CI H C₂Hs O n-C₃Hr H H Sec-C₃Hg CI H C₂Hs O n-C₃Hr H H Sec-C₃Hg CI H C₂Hs O n-C₃Hr H H C€H₂₃CI CI H C₂Hs O n-C₃Hr H H C€H₂CO CI H C₂Hs O n-C₃Hr H H C€Hs CI H C₂Hs O n-C₃Hr H H C∃Hs CI H C₂Hs O iso-C₃Hr H H C₂Hs CI H C₂Hs O iso-C₃Hr H H C₂Hs CI H C₂Hs O iso-C₃Hr H H C₂Hs CI H C₂Hs O iso-C₃Hr H H N n-C₃Hr CI H C₂Hs O iso-C₃Hr H H N n-C₃Hr CI H C₂Hs O iso-C₃Hr H H N n-C₃Hr					0	C₂H₅	Н	Н	CH2CO2C2H5
CI H C2Hs 0 C2Hs H H CH3 CI H C2Hs 0 n-C3H7 H H CH3 CI H C2Hs 0 n-C3H7 H H C3H5 CI H C2Hs 0 n-C3H7 H H N C3H5 CI H C2Hs 0 n-C3H7 H H N N-C3H7 CI H C2Hs 0 n-C3H7 H H N N-C3H8 CI H C2Hs 0 n-C3H7 H H N N-C3H8 CI H C2Hs 0 n-C3H7 H H N SEC-C4H9 CI H C2Hs 0 n-C3H7 H H N SEC-C4H9 CI H C2Hs 0 n-C3H7 H H N SEC-C4H9 CI H C2Hs 0 n-C3H7 H H N SEC-C4H9 CI H C2Hs 0 n-C3H7 H H CH2)3CI CI H C2Hs 0 n-C3H7 H H CH2)3CI CI H C2Hs 0 n-C3H7 H H CH2CN CI H C2Hs 0 n-C3H7 H H CH2COC22H5 CI H C2Hs 0 n-C3H7 H H CH2COCH3 CI H C2Hs 0 n-C3H7 H H C4HS CI H C2Hs 0 iso-C3H7 H H C3H5 CI H C2Hs 0 iso-C3H7 H H N C2H5 CI H C2Hs 0 iso-C3H7 H H N C2H5 CI H C2Hs 0 iso-C3H7 H H N C3H5 CI H C2Hs 0 iso-C3H7 H H N C3H5 CI H C2Hs 0 iso-C3H7 H H N C3H5 CI H C2Hs 0 iso-C3H7 H H N C3H5 CI H C2Hs 0 iso-C3H7 H H N C3H5 CI H C2Hs 0 iso-C3H7 H H N N-C3H9	05	CI	Н	C₂H₅	0	C₂Hs	Н	Н	C ₆ H ₅
CI H C2Hs 0 n-C3H7 H H C2Hs CI H C2Hs 0 n-C3H7 H H H n-C3H7 CI H C2Hs 0 n-C3H7 H H n-C3H7 CI H C2Hs 0 n-C3H7 H H n-C3H9 CI H C2Hs 0 n-C3H7 H H n-C4H9 CI H C2Hs 0 n-C3H7 H H siso-C4H9 CI H C2Hs 0 n-C3H7 H H sec-C4H9 CI H C2Hs 0 n-C3H7 H H sec-C4H9 CI H C2Hs 0 n-C3H7 H H cct-C4H9 CI H C2Hs 0 n-C3H7 H H (CH2)3CI CI H C2Hs 0 n-C3H7 H H (CH2)4CI CI H C2Hs 0 n-C3H7 H H CCt-CN CI H C2Hs 0 n-C3H7 H H C2Hs CI H C2Hs 0 n-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H N n-C3H7 CI H C2Hs 0 iso-C3H7 H H N n-C3H7 CI H C2Hs 0 iso-C3H7 H H N n-C3H9 CI H C2Hs 0 iso-C3H7 H H N n-C3H9 CI H C2Hs 0 iso-C3H7 H H N n-C3H9 CI H C2Hs 0 iso-C3H7 H H N n-C3H9	25	CI	Н	C ₂ H ₅	0	C₂H₅	Н	н	()-cı
30			н		0	n-C ₃ H ₇	Н	н	СН₃
CI H C2Hs 0 n-C3H7 H H H iso-C3H7 CI H C2Hs 0 n-C3H7 H H H iso-C3H9 CI H C2Hs 0 n-C3H7 H H H iso-C4H9 CI H C2Hs 0 n-C3H7 H H H iso-C4H9 CI H C2Hs 0 n-C3H7 H H H iso-C4H9 CI H C2Hs 0 n-C3H7 H H H tert-C4H9 CI H C2Hs 0 n-C3H7 H H H (CH2)4CI CI H C2Hs 0 n-C3H7 H H H (CH2)4CI CI H C2Hs 0 n-C3H7 H H CH2CN CI H C2Hs 0 n-C3H7 H H CH2CN CI H C2Hs 0 n-C3H7 H H CH2CN CI H C2Hs 0 n-C3H7 H H CH2CO2C2H5 CI H C2Hs 0 n-C3H7 H H CH2CO1 CI H C2Hs 0 n-C3H7 H H CH2CO1 CI H C2Hs 0 n-C3H7 H H C4H2 CI H C2Hs 0 n-C3H7 H H C4H2 CI H C2Hs 0 n-C3H7 H H C4H3 CI H C2Hs 0 iso-C3H7 H H C2H5 CI H C2Hs 0 iso-C3H7 H H C2H5 CI H C2Hs 0 iso-C3H7 H H N C2H5 CI H C2Hs 0 iso-C3H7 H H N C2H5 CI H C2Hs 0 iso-C3H7 H H N C2H5 CI H C2Hs 0 iso-C3H7 H H N n-C3H7 CI H C2Hs 0 iso-C3H7 H H N n-C4H9 CI H C2Hs 0 iso-C3H7 H H N n-C4H9 CI H C2Hs 0 iso-C3H7 H H N n-C4H9 CI H C2Hs 0 iso-C3H7 H H N n-C4H9					0		Н	Н	C₂H₅
CI H C₂Hs 0 n-C₃H7 H H H iso-C₄H9 CI H C₂Hs 0 n-C₃H7 H H Sec-C₄H9 CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CO₂C₂Hs CI H C₂Hs 0 n-C₃H7 H H CH₂CO₁C CI H C₂Hs 0 n-C₃H7 H H CH₂CO₁C CI H C₂Hs 0 n-C₃H7 H H C₂Hs CI H C₂Hs 0 n-C₃H7 H H C₂Hs CI H C₂Hs 0 n-C₃H7 H H C₂Hs CI H C₂Hs 0 iso-C₃H7 H H N-C₃H7 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9	30				0	n-C ₃ H ₇	Н	Н	n-C ₃ H ₇
CI H C₂Hs 0 n-C₃H7 H H Sec-C₄H9 CI H C₂Hs 0 n-C₃H7 H H Sec-C₄H9 CI H C₂Hs 0 n-C₃H7 H H H tert-C₄H9 CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CO₂C₂Hs CI H C₂Hs 0 n-C₃H7 H H CH₂COH3 CI H C₂Hs 0 n-C₃H7 H H CH₂COH3 CI H C₂Hs 0 n-C₃H7 H H C₄Hs CI H C₂Hs 0 n-C₃H7 H H C₄Hs CI H C₂Hs 0 n-C₃H7 H H C₄Hs CI H C₂Hs 0 iso-C₃H7 H H C₂Hs CI H C₂Hs 0 iso-C₃H7 H H N-C₃H7 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9			Н	C₂Hs	0	n-C ₃ H ₇	н	н	iso-CsH7
CI H C₂Hs 0 n-C₃H7 H H H Sec-C₄H9 CI H C₂Hs 0 n-C₃H7 H H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₄CI CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CO₂C₂Hs CI H C₂Hs 0 n-C₃H7 H H CH₂CO+C₂Hs CI H C₂Hs 0 n-C₃H7 H H CH₂CO+C₂Hs CI H C₂Hs 0 n-C₃H7 H H C-c⋅C CI H C₂Hs 0 n-C₃H7 H H C-c⋅C CI H C₂Hs 0 n-C₃H7 H H C-c⋅C CI H C₂Hs 0 iso-C₃H7 H H C-c⋅C CI H C₂Hs 0 iso-C₃H7 H H C₂Hs CI H C₂Hs 0 iso-C₃H7 H H C₂Hs CI H C₂Hs 0 iso-C₃H7 H H N-C₃H7 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H5 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H5 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H5 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9 CI H C₂Hs 0 iso-C₃H7 H H N-C₃H9			Н	C₂H ₅	0	n-C ₃ H ₇	н	Н	n-C ₄ H ₉
CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H (CH₂)₃CI CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CN CI H C₂Hs 0 n-C₃H7 H H CH₂CO₂C₂Hs CI H C₂Hs 0 n-C₃H7 H H CH₂CO₂C₂Hs CI H C₂Hs 0 n-C₃H7 H H C₂CO⊆C₂Hs CI H C₂Hs 0 iso-C₃H7 H H C₂CO⊆C₂Hs CI H C₂Hs 0 iso-C₃H7 H H C₂CO⊆C₃H5 CI H C₂Hs 0 iso-C₃H7 H H C₂CO⊆C₃H5 CI H C₂CO⊆C₃H7 H H C₂CO⊆C₃H7 CI H C₂CO⊆C₃H7 H H N n-C₃CO⊆C₃H7 CI H C₂CO⊆C₃H5 CI H C₂CO⊆C₃H7 H H N n-C₃CO⊆C₃H7			Н	C₂Hs	0	n-C ₃ H ₇	н	Н	iso-C4H9
CI H C2Hs 0 n-C3H7 H H (CH2)aCl CI H C2Hs 0 n-C3H7 H H (CH2)aCl CI H C2Hs 0 n-C3H7 H H (CH2)aCl CI H C2Hs 0 n-C3H7 H H CH2CN CI H C2Hs 0 n-C3H7 H H CH2CO2C2Hs CI H C2Hs 0 n-C3H7 H H CH2CO2C2Hs CI H C2Hs 0 n-C3H7 H H CH2CO2C3H5 CI H C2Hs 0 n-C3H7 H H C42OCH3 CI H C2Hs 0 n-C3H7 H H C4HS CI H C2Hs 0 n-C3H7 H H C4HS CI H C2Hs 0 iso-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H n-C3H7				C ₂ H ₅	0	n-CaH7	н -	н	sec-C ₄ H ₉
CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CN CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CN CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ COCH ₃ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₄ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₄ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉	35				0	n-C ₃ H ₇	н	н	tert-C ₄ H ₉
CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CN CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ CO ₂ C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₄ CO ₂ CO ₃				C₂Hs	0	n-C ₃ H ₇	н	н	(CH ₂) ₃ CI
CI H C ₂ H _S 0 n-C ₃ H ₇ H H CH ₂ CO ₂ C ₂ H _S CI H C ₂ H _S 0 n-C ₃ H ₇ H H CH ₂ OCH ₃ CI H C ₂ H _S 0 n-C ₃ H ₇ H H C ₆ H _S CI H C ₂ H _S 0 n-C ₃ H ₇ H H C ₆ H _S CI H C ₂ H _S 0 iso-C ₃ H ₇ H H CH ₃ CI H C ₂ H _S 0 iso-C ₃ H ₇ H H C ₂ H _S CI H C ₂ H _S 0 iso-C ₃ H ₇ H H C ₂ H _S CI H C ₂ H _S 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H _S 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H _S 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H _S 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H _S 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉			Н	C₂H₅	0	n-CaH7	н	Н	(CH₂)₄CI
CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H CH ₂ OCH ₃ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₆ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₆ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₆ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉			Н	C₂H ₅	0	n-C ₃ H ₇	н	Н	CH₂CN
CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₆ H ₅ CI H C ₂ H ₅ 0 n-C ₃ H ₇ H H C ₄ CI CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₄ C ₄ CI CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₄ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₄ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₄ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉	40				0		Н	Н	CH2CO2C2H5
CI H C ₂ H ₅ 0 n-C ₂ H ₇ H H CH ₃ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H CH ₃ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ 50 CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉				C ₂ H ₅	0	n-C ₃ H ₇	Н	Н	CH ₂ OCH₃
CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H CH ₃ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H C ₂ H ₅ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₆ 0 iso-C ₃ H ₇ H H iso-C ₃ H ₇ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉		CI	Н	C ₂ H ₅	0	n-C ₃ H ₇	Н	Н	C ₆ H ₅
CI H C2Hs 0 iso-C3H7 H H CH3 CI H C2Hs 0 iso-C3H7 H H C2Hs CI H C2Hs 0 iso-C3H7 H H n-C3H7 CI H C2Hs 0 iso-C3H7 H H iso-C3H7 CI H C2Hs 0 iso-C3H7 H H n-C4H9 CI H C2Hs 0 iso-C3H7 H H iso-C4H9		CI	Н	C₂H₅	0	n-C ₃ H ₇	Н	н	()-cı
CI H C ₂ H ₅ 0 iso-C ₂ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₆ 0 iso-C ₂ H ₇ H H iso-C ₃ H ₇ 50 CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉	45		н	C ₂ H ₅	0	iso-C₃H₁	Н	Н	CH ₃
CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₃ H ₇ CI H C ₂ H ₆ 0 iso-C ₃ H ₇ H H iso-C ₃ H ₇ 50 CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉			Н	C₂H ₅	0	iso-C₃H ₇	Н		
CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₃ H ₇ 50 CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉		CI	Н	C₂H₅	0	iso-C ₃ H ₇	Н		
50 CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H n-C ₄ H ₉ CI H C ₂ H ₅ 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉		CI	Н	C₂H₅	0	iso-C ₃ H ₇	н		
CI H C ₂ H _s 0 iso-C ₃ H ₇ H H iso-C ₄ H ₉	50	CI	н	C₂H₅	0	iso-C ₃ H ₇	Н		
At the same of the		CI	Н	C₂Hs	0		н		
		CI	Н	C₂H ₅	0	iso-C ₃ H ₇	н		sec-C ₄ H ₉

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5		Н.	C₂H₅	0	CH ₃	Н	Н	CH₂CN
	CI	H	C₂H₅	0	CH₃	н	Н	CH ₂ OCH ₃
	CI	Н	C₂H ₅	0	iso-C ₃ H ₇	н	Н	tert-C ₄ H ₉
	CI	н	C₂H₅	0	iso-C₃H7	н	н	(CH₂)₃CI
10	CI	Н	C₂H₅	0	iso-C ₂ H ₇	Н	Н	(CH₂)₄CI
	CI	Н	C₂Hs	0	iso-C₃H ₇	н	н	CH₂CN
	CI	н	C ₂ H ₅	0	iso-C ₃ H ₇	н	н	CH2OCH3
	CI	Н	C₂Hs	0	iso-C ₃ H ₇	Н	н	CH2CO2C2H5
15	CI	Н	C₂Hs	0	iso-C ₂ H ₇	н	Н	CeHs
15	CI	Н	C₂Hs	0	iso-C ₃ H ₇	н	Н	⟨_ >-cı
	ÇI	Н	C₂H₅	0	CH₂OCH₃	Н	н	СН₃
	CI	Н	C ₂ H ₅	0	CH₂SCH₃	Н	Н	CH ₃
20	CI	Н	C₂Hs	0	COC₂H ₅	Н	Н	CH ₃
	CI	н	C ₂ H ₅	0	COC₂H ₅	н	н	C₂Hs
	CI	н	C₂H₅	0	COC ₃ H ₇ -n	Н	н	CH ₃
	CI	Н	C₂H₅	1	Н	Н	Н	CH ₃
25	CI	Н	C2H5	1	Н	Н	Н	C₂H ₅
25	CI	н	C₂Hs	1	Н	Н	н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	C₂Hs	1	Н	Н	Н	n-C ₄ H ₉
	CI	Н	C2Hs	1	Н	H	Н	iso-C4H9
30	CI	Н	C ₂ H ₅	1	Н	н	Н	tert-C ₄ H ₉
	CI	Н	C₂Hs	1	Н	Н	Н	(CH₂)₃Cl
	CI	Н	C₂H₅	1	н	Н	Н	CH₂CN
	CI	Н	C₂H₅	1	Н	Н	Н	CH₂OCH₃
35	CI	Н	C₂H ₅	1	н	Н	H	
	CI	Н	C₂H₅	1	Н	Н	Н	$\overline{}$
	CI	н	C₂H₅	1	н	н	н	-CH₃
40	CI	Н	C ₂ H ₅	1	н	Н	н	CeHs
	CI	Н	C₂H₅	1	Н	Н	Н	()-cı
	CI	Н	C₂Hs	1	CH₃	н	Н	CH ₃
45	CI	Н	C2H5	1	CH₃	н	н	C ₂ Hs
	CI	Н	C₂Hs	1	CH ₃	Н	Н	n-C ₃ H ₇
	CI	Н	C₂Hs	1	CH₃	Н	н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	CH ₃	н	H	n-CaHe
50	CI	Н	C ₂ H ₅	1	CH ₃	H	н	iso-C ₄ H ₉
	CI	Н	C2Hs	1	CHs	н	н	sec-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	CH₃	н	н	tert-C ₄ H ₉

Table 2 (continued)

	R ¹	R ²	_R 3	n	R ⁵	_R 6	R ⁷	8
5	CI.	Н	C₂Hs	1	CH ₃	H	Н	(CH₂)₃CI
	CI	Н	C₂Hs	1	CH ₃	Н	Н	(CH₂)₄CI
	CI	Н	C₂H₅	1	CH ₃	Н	Н	CH₂CN
	Cl	Н	C₂H₅	1	CH₃	Н	Н	CH2CO2C2Hs
10	CI	Н	C₂H₅	1	CH₃	Н	Н	CH2OCH3
	CI	Н	C₂H₅	1	CH₃	Н	Н	C ₆ H ₅
	CI	Н	C₂H₅	1	CH ₃	Н	Н	- C I
-	Cl	Н	C ₂ H ₅	1	C₂Hs	Н	н	CHs
15	CI	Н	C ₂ H ₅	1	C ₂ H ₅	Н	Н	C ₂ H ₅
	CI	Н	C₂H₅	1	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	C ₂ H ₅	Н	н	iso-C₃H ₇
	CI	Н	C₂H₅	1	C₂Hs	н	Н	n-C ₄ H ₉
20	CI	Н	C₂H₅	1	C ₂ H ₅	Н	Н	iso-C₄H₀
	CI	Н	C ₂ H ₅	1	C₂Hs	н	Н	sec-C ₄ H ₉
	CI	Н	C₂H₅	1	CzHs	H	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	1	C ₂ H ₅	Н	Н	(CH ₂) ₃ CI
	CI	Н	C ₂ H ₅	1	C ₂ Hs	Н	Н	(CH₂)₄CI
25	CI	Н	C ₂ H ₅	1	C ₂ H ₅	Н	н	CH₂CN
	CI	Н	C₂H₅	1	C ₂ H ₅	Н	Н	CH2OCH3
	CI	H	C⁵Ĥs	1	C ₂ H ₅	Н	Н	CH2CO2C2H5
	CI	Н	C ₂ H ₅	1	C₂H₅	Н	Н	CeHs
30	CI	Н	C₃H₅	1	C ₂ H ₅	Н	Н	CI
	CI	Н	C ₂ H ₅	1	n-CaH7	Н	Н	CH ₃
	CI	Н	C2H5	1	n-CaH7	Н	н	C2Hs
	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	н -	н	n-CaH7
35	CI	Н	C₂H₅	1	n-CaH ₇	Н	н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	п-СаН7	Н	Н	n-C-He
	CI	Н	C₂H₅	1	n-CaH7	Н	Н	iso-C ₄ H ₉
	CI	Н	C₂Hs	1	n-CaH ₇	Н	Н	sec-C ₄ H ₉
40 _	CI	Н	C₂H₅	1	n-CaHz	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂Hs	1	n-C₃H₂	н	Н	(CH2)3CI
	CI	Н	C₂H₅	1	n-CaH7	Н	Н	(CH₂)₄CI
	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	Н	CH₂CN
45	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	Н	CH2CO2C2H5
45	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	Н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	Н	C ₆ H ₅
	CI	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	н	
50	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	н	н	CH₃
	CI	н	C₂Hs	1	iso-C₃H ₇	Н	Н	C₂Hs
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇

Table 2 (continued)

	<u>R</u> 1	я ²	R ³	n	R ⁵	ค ⁶	_ R ⁷	R ⁸
5	CI	Н	C₂H₅	1	iso-CaH7	Н	Н	iso-C ₃ H ₇
	CI	Н	G₂Hs	1	iso-C₃H₁	Н	н	n-C ₄ H ₉
	CI	Н	C₂H₅	1	iso-C ₂ H ₇	Н	Н	iso-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
10	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	tert-C₄H₂
70	CI	Н	C₂H₅	1	iso-C ₃ H ₇	н	Н	(CH₂)₃CI
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	(CH₂)₄CI
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	н	Н	CH₂CN
•	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	CH ₂ OCH ₃
15	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	CH2CO2C2Hs
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	Н	C ₆ H ₅
	CI	Н	C₂Hs	1	iso-C ₃ H ₇	Н	Н	<_>-cı
00	CI	Н	C ₂ H ₅	2	Н	Н	н	CH₃
20	CI	Н	C₂Hs	2	Н	н	н	C₂H₅
	CI	Н	C₂H₅	2	н	Н	Н	n-C ₃ H ₇
	CI	Н	C₂H₅	2	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	C₂H₅	2	Н	Н	Н	n-C ₄ H ₉
25	CI	Н	C₂H₅	2	Н	Н	н	iso-C₄H₃
	CI	Н	C₂Hs	2	Н	н	H	tert-C ₄ H ₉
	CI	Н	C₂H₅	2	Н	Н	н	(CH₂)₃CI
	CI	Н	C₂H₅	2	Н	Н	Н	CH₂CN
30	CI	Н	C₂Hs	2	Н	Н	н	CH₂OCH₃
	CI	Н	C₂H₅	2	H	Н	Н	CH2CO2C2H5
	CI	Н	C₂Hs	2	Н	Н	Н	$\overline{}$
35	CI	н	C₂H₅	2	Н	Н	- H	ĊH,
	CI	Н	C₂H₅	2	Н	Н	Н	C ₆ H ₅
	CI	Н	C₂Hs	2	н	Н	н	
40 ~	CI	Н	C₂H₅	2	CH ₃	Н	н	CH ₃
	CI	Н	C₂H₅	2	CH ₃	Н	н	C ₂ H ₅
	CI	Н	C₂H₅	2	CH ₃	Н	Н	n-C₃H₂
	CI	Н	C₂H₅	2	CH ₃	Н	Н	iso-C₃H7
45	CI	Н	C₂H₅	2	CH ₃	Н	Н	n-C ₄ H ₉
	CI	Н	C₂H₅	2	CH ₃	Н	Н	iso-C ₄ H ₉
	CI	Н	C₂H ₅	2	CH₃	Н	н	sec-C ₄ H ₉
	CI	Н	C₂H₅	2	CH ₃	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂H ₅	2	CH ₃	н	Н	(CH₂)₃CI
50	CI	Н	C₂Hs	2	CH ₃	Н	Н	(CH₂)₄CI
	CI	Н	C₂H₅	2	CH₃	Н	Н	CH₂CN

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	В ⁶	в ⁷	
5	CI	Н	C ₂ H ₅	2	CH₃	Н	Н	CH2CO2C2H5
	CI	Н	C₂H₅	2	CH₃	Н	Н	CH ₂ OCH ₃
	CI	Н	C₂H₅	2	CH ₃	Н	Н	C ₆ H ₅
	CI	Н	C₂H₅	2	CH₃	Н	Н	()-cı
10	CI	н	C₂H₅	2	C₂H₅	Н	н	CH₃
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	Н	C₂H₅
	CI	Н	C₂H5	2	C₂H₅	H	Н	n-C ₃ H ₇
•	CI	Н	C₂H₅	2	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
15	CI	Н	C₂H₅	2	C ₂ H ₅	н	Н	n-C ₄ H ₉
	CI	Н	C₂H₅	2	C₂H5	Н	Н	iso-C ₄ H ₉
	CI	Н	C₂H₅	2	C ₂ H ₅	Н	Н	sec-C₄H₀
=	CI	Н	C₂H ₅	2	C₂Hs	Н	Н	tert-C ₄ H ₉
20	CI	Н	C ₂ H ₅	2	C₂Hs	Н	Н	(CH₂)₃CI
	CI	Н	C₂H₅	2	C₂H₅	Н	Н	(CH₂)₄CI
	Cl	Н	C ₂ H ₅	2	C₂H₅	н	Н	CH₂CN
	CI	Н	C₂H₅	2	C₂H₅	н	н	CH2CO2C2H5
	CI	Н	C ₂ H ₅	2	C₂H₅	Н	Н	CH ₂ OCH ₃
25	CI	Н	C₂H₅	2	C₂Hs	Н	Н	C ₆ H ₅
	CI	Н	C ₂ H ₅	2	C ₂ H ₅	Н	н	()-cı
	CI	Н	C₂H₅	2	n-C ₃ H ₇	н	Н	CH ₃
30	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	C₂Hs
	CI	Н	C₂H ₅	2	n-C ₃ H ₇	н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	n-C ₄ H ₉
35	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	H +	Н	iso-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	CI	Н	C₂H₅	2	n-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	(CH₂)₃CI
	CI	Н	C₂Hs	2	n-C ₃ H ₇	Н	Н	(CH₂)₄CI
40 ~	CI	Ή	C₂H ₅	2	n-C ₃ H ₇	Н	Н	CH₂CN
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	CH2CO2C2H5
	CI	Н	C ₂ H ₅	2	n-C ₃ H ₇	Н	Н	CH₂OCH₃
	CI	Н	C₂H₅	2	n-C ₃ H ₇	Н	Н	C ₆ H ₅
45	CI	Н	C ₂ H ₅	2	n-C₃H₁	н	Н	
	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	н	H	CH ₃
	CI	н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	Н	C₂Hs
	CI	н	C₂Hs	2	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
50	CI	н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	н	Н	n-C ₄ H ₉
	CI	н	C ₂ H ₅	2	iso-C ₂ H ₇	Н	н	iso-C ₄ H ₉

Table 2 (continued)

_	<u>R</u> 1	R ²	R ³	n	R ⁵	R ⁶	я ⁷	R ⁸
5	CI	Н	C ₂ H ₅	2	iso-C₃H ₇	Н	Н	sec-C ₄ H ₉
	CI	Н	C₂H₅	2	iso-C₃H₁	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	(CH₂)₃CI
	CI	Н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	(CH₂)₄CI
10	CI	Н	C₂H₅	2	iso-C₃H7	H	н	CH₂CN
	CI	Н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	CH2CO2C2H5
	CI	Н	C₂H₅	2	iso-C ₃ H ₇	Н	н	CH₂OCH₃
-	CI	Н	C₂H₅	2	iso-C₃H7	Н	н	C ₆ H ₅
15	CI	Н	C ₂ H ₅	2	iso-C₃H ₇	Н	Н	
	CI	Н	n-C₃H7	0	н .	н	н	СН₃
	CI -	Н	n-C ₃ H ₇	0	Н	Н	Н	C ₂ H ₅
20	CI	Н	n-C₃H₂	0	Н	Н	н	n-C ₃ H ₇
20	CI	Н	n-C₃H₁	0	н	Н	Н	iso-C₃H7
	CI	H	n-C ₃ H ₇	0	Н	Н	Н	n-C₄H₃
	CI	Н	n-C ₃ H ₇	0	Н	Н	Н	iso-C₄H₃
	CI	Н	n-C₃H ₇	0	Н	Н	н	tert-C ₄ H ₉
25	CI	Н	n-C₃H7	0	Н	Н	Н	(CH₂)₃CI
	CI	Н	n-C ₃ H ₇	0	Н	Н	Н	CH₂CN
	CI	Н	n-C₃H₂	0	Н	Н	Н	CH ₂ OCH₃
	CI	Н	n-C ₃ H ₇	0	Н	Н	н	CH ₂ CO ₂ C ₂ H ₅
30	CI	Н	n-C₃H₂	0	Н	Н	Н	$\overline{}$
	CI	н	n-C ₃ H ₇	0	Н	н	н	- CH ₃
35	CI	Н	n-C₃H7	0	Н	н	H	C ₆ H ₅
	CI	Н	n-C ₃ H ₇	0	н	Н	н	
	CI	Н	n-C ₃ H ₇	1	Н	Н	Н	CH₃
40	CI	Н	n-C₃H₁	1	Н	Н	Н	C ₂ H ₅
•	CI	Н	n-C₃H 7	1	Н	Н	Н	n-C ₃ H ₇
	CI	Н	n-C ₃ H ₇	1	Н	Н	н	iso-C₃H ₇
	CI	Н	n-C₃H ₇	1	Н	Н	Н	n-C ₄ H ₉
45	CI	Н	n-C₃H₁	1	Н	Н	Н	iso-C ₄ H ₉
.5	CI	Н	n-C₃H₁	1	н	Н	н	tert-C ₄ H ₉
	CI	Н	n-C₃H₁	1	Н	Н	Н	(CH₂)₃CI
	CI	Н	n-C ₃ H ₇	1	Н	Н	Н	CH₂CN
	CI	Н	n-C₃H₁	1	Н	Н	Н	CH ₂ OCH₃
50	CI	Н	n-C ₃ H ₇	1	Н	Н	Н	CH2CO2C2H5
	CI	Н	n-C₃H₁	1	н	Н	Н	\rightarrow

Table 2 (continued)

								_
_	<u>B</u> 1	R ²	_R ³	n	R ⁵	 A ₆	R ⁷	R ⁸
5	CI	н	n-C ₂ H ₇	1	Н	Н	н	CH ₃
	٥.							
	CI	Н	n-C₃H₁	1	Н	Н	н	C ₆ H ₅
10	CI	Н	n-C₃H₁	1	Н	Н	н	- ⟨ ->-cı
	CI	н	n-C ₃ H ₇	2	Н	н	н	CH ₃
	CI	Н	n-C ₃ H ₇	2	Н	Н	н	C₂H₅
,	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	n-C₃H ₇
15	CI	Н	n-C ₃ H ₇	2	Н	, H	Н	iso-C ₃ H ₇
	CI	Н	n-C₃H7	2	Н	Н	Н	n-C ₄ H ₉
	CI	Н	n-C ₃ H ₇	2	Н	Н	н	iso-C ₄ H ₉
-	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	tert-C ₄ H ₉
20	CI	Н	n-C ₃ H ₇	2 ·	Н	Н	н	(CH₂)₃CI
	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	CH₂CN
	CI	Н	n-C ₃ H ₇	2	Н	Н	Н	CH₂OCH₃
	CI	Н	n-C ₂ H ₇	2	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
25	CI	Н	n-C₃H₁	2	Н	Н	Н	$\overline{}$
	CI	Н	n-C ₃ H ₇	2	Н	Н	н	→ CH ₃
	CI	Н	n-C ₃ H ₇	2	н	Н	Н	C ₆ H ₅
30	CI	Н	n-C ₃ H ₇	2	Н	н	Н	()-cı
	CI	Н	CH₂F	0	н	н	н	CH ₃
	CI	Н	CH₂F	0	Н	н	Н	C₂Hs
35	CI	Н	CH₂F	0	Н	Н	Н	n-C ₃ H ₇
	CI	Н	CH₂F	0	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₂F	0	Н	Н	Н	n-C₄H₃
	CI	Н	CH₂F	0	Н	 н	Н	iso-C ₄ H ₉
40	CI	Н	CH₂F	0	Н	Н	Н	tert-C ₄ H ₉
40	CI	Н	CH₂F	0	Н	Н	н	(CH₂)₃Cl
	CI	Н	CH₂F	0	Н	Н	Н	CH₂CN
	CI	Н	CH₂F	0	Н	Н	Н	CH ₂ OCH ₃
	CI	Н	CH₂F	0	Н	Н	H	CH ₂ CO ₂ C ₂ H ₅
45	CI	Н	CH₂F	0	Н	н	н	$\overline{}$
	CI	Н	CH₂F	0	н	н	н	- CH ₃
50	. CI	н	CH₂F	0	н	н	н	CeHs
	CI	Н	CH₂F	0	Н	Н	н	-{-}-cı

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	 R ⁶	R ⁷	R ^{8 ,}
5	CI	Н	CH₂F	1	Н	Н	Н	CH ₃
	CI	Н	CH₂F	1	Н	Н	Н	C₂Hs
	CI	Н	CH₂F	1	Н	н	Н	n-C ₃ H ₇
	CI	Н	CH₂F	1	Н	Н	Н	iso-C₃H7
10	CI	Н	CH₂F	1	Н	Н	Н	n-C₄H₃
	CI	Н	CH₂F	1	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CH₂F	1	н	Н	Н	tert-C ₄ H ₉
	CI	Н	CH₂F	1	Н	Н	Н	(CH₂)₃Cl
	CI	Н	CH₂F	1	Н	Н	н	CH₂CN
15	CI	Н	CH₂F	1	Н	Н	н	CH ₂ OCH₃
	CI	Н	CH₂F	1	Н	H	Н	CH2CO2C2H5
	Cl	Н	CH₂F	1	Н	Н	Н	$\overline{}$
								CH3
20	CI	Н	CH₂F	1	Н	Н	н	→
	CI	н	CH₂F	1	Н	н	н	C ₆ Hs
	CI	Н	CH₂F		Н			O 01 15
	Ci	п	CH2F	1	п	Н	Н	(_)>-cı
25	CI	Н	CH₂F	2	н	Н	Н	CH ₃
	CI	Н	CH₂F	2	н	H	H	C₂Hs
	CI	н	CH₂F	2	Н	Н	н	n-C₃H ₇
	CI	Н	CH₂F	2	н	н	H	iso-C ₃ H ₇
30	CI	Н	CH₂F	2	Н	Н	Н	n-C ₄ H ₉
	CI	Н	CH₂F	2	Н	Н	н	iso-C ₄ H ₉
	CI	Н	CH₂F	2	Н	н	Н	tert-C ₄ H ₉
	CI	Н	CH₂F	2	Н	н	Н	(CH₂)₃CI
35	CI	Н	CH₂F	2	Н	н	н	CH₂CN
33	CI	Н	CH₂F	2	Н	н	н	CH₂OCH₃
	CI	Н	CH₂F	2	Н	Н	н	CH ₂ CO ₂ C ₂ H ₅
	CI	Н	CH₂F	2	Н	Н	н	$\overline{}$
40								,СН ₃
	CI	Н	CH₂F	2	Н	Н	Н	\leftarrow
	CI	Н	CH₂F	2	н	H	н	C ₆ H ₅
45	CI	Н	CH₂F	2	Н	Н	H	()-CI
	CI	н	CHF₂	0	н	Н	Н	СН₃
	CI	Н	CHF ₂	0	Н	н	н	C ₂ H ₅
	CI	Н	CHF₂	0	Н	Н	Н	n-C₃H ₇
50	CI	Н	CHF₂	0	Н	Н	Н	iso-C₃H ₇
	CI	Н	CHF₂	0	Н	н	Н	n-C₄H ₉
	CI	Н	CHF₂	0	н	н	H	iso-C₄H₃

Table 2 (continued)

	B ¹	R ²	R ³	n	R ⁵	 ·R ⁶	R ⁷	-R ⁸
5	CI	Н	CHF ₂	0	Н	Н	H ·	tert-C₄H₀
	CI	Н	CHF₂	0	Н	н	н	(CH₂)₃CI
	CI	Н	CHF ₂	0	Н	н	н	CH₂CN
	CI	Н	CHF ₂	0	Н	н	н	CH ₂ OCH₃
10	Ci	н	CHF ₂	0	Н	Н	Н	CH2CO2C2H5
	CI	Н	CHF₂	0	Н	Н	Н	$\overline{}$
	CI	н	CHF₂	0	Н	н	н	CH₃
15	CI	н	CHF₂	0	н	н	н	C ₆ H ₅
	CI	н	CHF₂	0	Н	Н	Н	-√_>-cı
	CI	Н	CHF₂	1	н	н	н	СНз
20	CI	н	CHF₂	1	Н	Н	Н	C ₂ H ₅
	CI	Н	CHF ₂	1	Н	н	Н	n-C ₃ H ₇
	CI	н	CHF₂	1	Н	Н	н	iso-C ₃ H ₇
	CI	Н	CHF ₂	1	Н	Н	Н	n-C ₄ H ₉
25	CI	Н	CHF₂	1	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CHF ₂	1	Н	Н	н	tert-C ₄ H ₉
	CI	Н	CHF₂	1	Н	н	н	(CH₂)₃CI
	CI	Н	CHF ₂	1	Н	Н	Н	CH₂CN
	CI	Н	CHF₂	1	Н	Н	Н	CH ₂ OCH₃
30	CI	Н	CHF₂	1	Н	Н	н	CH2CO2C2H5
	CI	Н	CHF ₂	1	Н	Н	н	$\overline{}$
35	CI	н	CHF₂	1	н	н	н	→ CH,
	CI	Н	CHF₂	1	Н	н	Н	C ₆ H ₅
	CI	Н	CHF₂	1	н	н	Н	
40	CI	Н	CHF₂	2	Н	Н	Н	СНэ
	CI	Н	CHF ₂	2	Н	Н	Н	C ₂ H ₅
	CI	Н	CHF ₂	2	Н	Н	H	n-C ₃ H ₇
	CI	Н	CHF₂	2	Н	Н	Н	iso-C ₃ H ₇
45	CI	Н	CHF₂	2	Н	н .		n-C ₄ H ₉
	CI	Н	CHF₂	2	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CHF ₂	2	Н	Н	Н	tert-C ₄ H ₉
	CI	Н	CHF₂	2	Н	Н	Н	(CH₂)₃CI
	CI	Н	CHF₂	2	Н	Н	Н	CH₂CN
50	CI	Н	CHF₂	2	Н	Н	Н	CH ₂ OCH₃
	CI	Н	CHF₂	2	Н	Н	Н	CH2CO2C2H5

Table 2 (continued)

	<u>R</u> 1	R ²	_R ³	n	R ⁵	 R ⁶	R ⁷	R ⁸
5	CI	Н	CHF₂	2	Н	Н	Н	$\neg \neg$
	CI	н	CHF₂	2	н	н	Н	ĊH₃
10	CI	Н	CHF₂	2	н	Н	н	C ₆ H ₅
	CI	Н	CHF₂	2	н	Н	Н	()-cı
•	CI	н	CF₃	0	н	Н	н	CH₃
15	CI	Н	CH₂CH₂F	0	н	Н	. H	CH ₃
	CI	Н	. CH₂CH₂F	0	Н	н	Н	C₂Hs
	CI	Н	CH₂CH₂F	0	Н	н	Н	n-C₃H ₇
	CI	Н	CH₂CH₂F	0	н	н	Н	iso-C₃H ₇
20	CI	Н	CH₂CH₂F	0	н	Н	н	n-C ₄ H ₉
20	CI	Н	CH₂CH₂F	0	Н	Н	Н	iso-C ₄ H ₉
	CI	н	CH₂CH₂F	0	Н	Н	Н	tert-C ₄ H ₉
	CI	Н	CH₂CH₂F	0	н	Н	Н	(CH ₂) ₃ Cl
	CI	Н	CH₂CH₂F	0	Н	Н	н	CH₂CN
25	CI	Н	CH₂CH₂F	0	н	Н	Н	CH ₂ OCH ₃
	CI	Н	CH₂CH₂F	0	Н	Н	Н	CH2CO2C2H5
	CI	Н	CH ₂ CH ₂ F	0	Н	Н	н	1
				•	•••	••	• •	
30	CI	Н	CH₂CH₂F	0	н	Н	н	→ CH,
	CI	Н	CH₂CH₂F	0	н	Н	н	C ₆ H ₅
35	CI	Н	CH₂CH₂F	0	Н	Н	н	()-cı
•	CI	н	CH₂CH₂F	1	н	н	1.1	CU
	CI	Н	CH₂CH₂F	1	Н		Н	CH ₃
	CI	н	CH ₂ CH ₂ F	1	Н	Н	Н	C₂H₅
	CI	н	CH₂CH₂F	1		Н	Н	n-C ₃ H ₇
40	CI	Н		1	Н	Н	н	iso-C₃H ₇
	CI	Н	CH₂CH₂F		Н	Н	Н	n-C ₄ H ₉
	CI	Н	CH₂CH₂F	1	Н	Н	н	iso-C ₄ H ₉
	CI		CH₂CH₂F	1	Н	Н	Н	tert-C ₄ H ₉
45		Н	CH₂CH₂F	1	Н	Н	Н	(CH₂)₃CI
	CI	Н	CH₂CH₂F	1	Н	Н	H	CH₂CN
	CI	Н	CH₂CH₂F	1	Н	Н	Н	CH ₂ OCH ₃
	CI	Н	CH₂CH₂F	1	Н	Н	Н	CH₂CO₂C₂H₅
	CI	Н	CH₂CH₂F	1	Н	Н	Н	$\neg \triangleleft$
50	CI	н	CH₂CH₂F	1	н	н	н	_CH₃

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵		R ⁶	R ⁷	R ⁸
5	CI	н	CH₂CH₂F	1	Н		н	Н	C ₆ H ₅
	CI	Н	CH₂CH₂F	1	Н		Н	Н	— (_)−CI
	CI	Н	CH₂CH₂F	2	Н		н	Н	CH₃
10	CI	Н	CH₂CH₂F	2	Н		Н	Н	C ₂ H ₅
	CI	Н	CH₂CH₂F	2	Н		Н	Н	n-C₃H ₇
	CI	Н	CH₂CH₂F	2	Н		н	Н	iso-C₃H7
	CI	Н	CH₂CH₂F	2	Н		н	Н	n-C ₄ H ₉
	CI	Н	CH₂CH₂F	2	Н		н	Н	iso-C ₄ H ₉
15	CI	Н	CH₂CH₂F	2	Н		н	н	tert-C₄H₀
	CI	Н	CH₂CH₂F	2	н		Н	Н	(CH₂)₃CI
	CI	Н	CH₂CH₂F	2	Н		Н	Н	CH₂CN
-	CI	н	CH₂CH₂F	2	н		н	Н	CH₂OCH₃
20	CI	Н	CH₂CH₂F	2	Н		Н	Н	CH2CO2C2H5
	CI	Н	CH₂CH₂F	2	Н		Н	Н	$\overline{}$
25	CI	Н	CH₂CH₂F	2	н		н	н	- CH³
25	CI	Н	CH₂CH₂F	2	н		Н	н	C ₆ H ₅
	CI	н	CH₂CH₂F	2	н		н	Н	
	Ci	Н	CH₂CHF₂	0	н		н	н	CH₃
30	CI	Н	CH₂CHF₂	0	Н		Н	н	C ₂ H ₅
	CI	Н	CH₂CHF₂	0	Н		Н	н	n-C ₃ H ₇
	CI	Н	CH₂CHF₂	0	H		Н	Н	iso-C ₃ H ₇
	CI	Н	CH₂CHF₂	0	Н		Н	н	n-C ₄ H ₉
35	CI	Н	CH₂CHF₂	0	Н		Н	Н	iso-C4H9
	CI	Н	CH₂CHF₂	0	Н		Н	Н	tert-C₄H ₉
	CI	Н	CH₂CHF₂	0	Н		Н	Н	(CH₂)₃CI
	CI	Н	CH₂CHF₂	0	Н		H	Н	CH₂CN
40	CI	Н	CH₂CHF₂	0	Н		Н	Н	CH₂OCH₃
40	CI	Н	CH₂CHF₂	0	Н		Н	Н	CH ₂ CO ₂ C ₂ H ₅
	CI	Н	CH₂CHF₂	0	Н		Н	Н	$\overline{}$
45	CI	Н	CH₂CHF₂	0	н		н	н	←CH³
	CI	Н	CH₂CHF₂	0	Н	•	н	Ĥ	C ₆ H ₅
	CI	н	CH ₂ CHF ₂	0	Н		н	H	()-cı
50	CI	н	CH₂CHF₂	1	Н		н	н	CH ₃
	CI	Н	CH₂CHF₂	1	Н		Н	Н	C ₂ H ₅
	CI	Н	CH₂CHF₂	1	Н		н	Н	n-C ₃ H ₇

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ^{8 -}
	CI	Н	CH ₂ CHF ₂	1	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₂CHF₂	1	Н	Н	Н	n-C ₄ H ₉
	CI	Н	CH₂CHF₂	1	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CH₂CHF₂	1	Н	Н	Н	tert-C ₄ H ₉
10	CI	Н	CH₂CHF₂	1	Н	Н	Н	(CH₂)₃CI
	CI	Н	CH₂CHF₂	1	Н	Н	Н	CH₂CN
	CI	Н	CH₂CHF₂	1	Н	Н	Н	CH ₂ OCH ₃
	CI	Н	CH₂CHF₂	1	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
15	CI	Н	CH ₂ CHF ₂	1	Н	н	Н	$\overline{}$
	CI	Н	CH₂CHF₂	1	н	Н	Н	CH₃ →
20	CI	Н	CH₂CHF₂	1	Н	Н	н	C ₆ H ₅
	CI	Н	CH ₂ CHF ₂	1	н	Н	Н	-√_>-cı
	CI	Н	CH₂CHF₂	2	Н	н	Н	CH ₃
	CI	Н	CH₂CHF₂	2	Н	Н	Н	C₂Hs
25	CI	Н	CH₂CHF₂	2	Н	Н	Н	n-C₃H₁
	Cl	Н	CH₂CHF₂	2	Н	Н	Н	iso-C₃H ₇
	CI	Н	CH ₂ CHF ₂	2	Н	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₂ CHF ₂	2	Н	Н	Н	iso-C ₄ H ₉
30	CI	Н	CH₂CHF₂	2	Н	Н	Н	tert-C ₄ H ₉
	Cl	Н	CH₂CHF₂	2	Н	Н	Н	(CH₂)₃CI
	CI	Н	CH₂CHF₂	2	Н	Н	Н	CH₂CN
	CI	Н	CH₂CHF₂	2	Н	Н	Н	CH ₂ OCH₃
	CI	Н	CH₂CHF₂	2	Н	Н	н	CH2CO2C2H5
35	CI	Н	CH ₂ CHF ₂	2	Н	Н	Н	$\neg \triangleleft$
	CI	н	CH₂CHF₂	2	н	Н	н	→ CH³
40	CI	Н	CH ₂ CHF ₂	2	н	н	Н	C ₆ H ₅
	CI	Н	CH ₂ CHF ₂	2	Н	Н	Н	- √_ >-CI
	CI	Н	CH₂CF₃	0	Н	н	Н	CH ₃
45	CI	Н	CH₂CF₃	0	Н	н	Н	C ₂ H ₅
	CI	Н	CH₂CF₃	0	Н	Н	н	n-C ₃ H ₇
	CI	Н	CH₂CF₃	0	Н	н	н	iso-C₃H ₇
	CI	Н	CH₂CF₃	0	н	Н	н	n-C ₄ H ₉
	CI	Н	CH ₂ CF ₃	0	Н	Н	н	iso-C₄H₀
50	CI	Н	CH₂CF₃	0	Н	н	Н	tert-C ₄ H ₉
	CI	Н	CH₂CF₃	0	Н	Н	Н	(CH₂)₃CI

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
	CI	Н	CH ₂ CF ₃	0	Н	Н	Н	CH₂CN
	Cl	Н	CH ₂ CF ₃	0	Н	H	Н	CH₂OCH₃
	CI	Н	CH ₂ CF ₃	0	н	Н	Н	CH2CO2C2H5
10	CI	Н	CH₂CF₃	0	Н	Н	Н	$\neg \triangleleft$
10	CI	н	CH₂CF₃	0	Н	н	н	с ң,
	CI	Н	CH₂CF₃	0	Н	н	Н	C ₆ H ₅
15	CI	Н	CH₂CF₃	0	Н	Н	Н	
	CI	н	CH₂CF₃	1	н	Н	н	СН₃
	CI	Н	CH₂CF₃	1	Н	Н	Н	C₂Hs
20	CI	Н	CH₂CF₃	1	Н	Н	Н	n-C₃H7
	CI	Н	CH₂CF₃	1	H	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₂CF₃	1	Н	Н	Н	n-C ₄ H ₉
	CI	Н	CH₂CF₃	1	Н	Н	Н	iso-C ₄ H ₉
25	CI	Н	CH₂CF₃	1	Н	Н	Н	tert-C ₄ H ₉
	CI	Н	CH₂CF₃	1	Н	Н	Н	(CH₂)₃CI
	CI	Н	CH₂CF₃	1	Н	Н	Н	CH₂CN
	CI	Н	CH₂CF₃	1	Н	Н	Н	CH ₂ OCH₃
30	CI	Н	CH₂CF₃	1	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
30	CI	Н	CH₂CF₃	1	Н	Н	Н	$\overline{}$
	CI	Н	CH ₂ CF ₃	1	н	н	н	→ CH³
35	CI	Н	CH₂CF₃	1	н	Н	н	C ₆ H ₅
	CI	Н	CH₂CF₃	1	Н	Н	Н	(>-cı
	CI	н	CH₂CF₃	2	н	Н	н	CH₃
40	CI	Н	CH₂CF₃	2	Н	Н	Н	C₂H₅
	CI	Н	CH₂CF₃	2	Н	Н	Н	n-C₃H₂
	CI	Н	CH ₂ CF ₃	2	Н	Н	Н	iso-C ₃ H ₇
	CI	Н	CH₂CF₃	2	Н	Н	Н	n-C ₄ H ₉
45	CI	Н	CH ₂ CF ₃	2	Н	Н	Н	iso-C ₄ H ₉
	CI	Н	CH₂CF₃	2	Н	Н	Н	tert-C₄H₃
	CI	Н	CH ₂ CF ₃	2	Н	Н	Н	(CH₂)₃CI
	CI	Н	CH₂CF₃	2	Н	Н	Н	CH₂CN
50	CI	Н	CH₂CF₃	2	н	Н	Н	CH ₂ OCH₃
- •	CI	Н	CH₂CF₃	2	H	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	CI	Н	CH₂CF₃	2	Н	Н	Н	$\neg \Box$

Table 2 (continued)

						· == · · · · · · · · · · · · · · · · ·			_
5	R ¹	R ²	R ³	n	R ^S		R ⁶	R ⁷	R ⁸
3	CI	Н	CH₂CF₃	2	Н		н	Н	CH ₃
	٠,	••	01/2013	~	••		П	а	\leftarrow
	CI	н	CH CE	_	.,				
10			CH₂CF₃	2	Н		Н	H	C ₆ H ₅
10	CI	Н	CH ₂ CF ₃	2	Н		Н	Н	()>-cı
	CI	CH₃	CH ₃	0	Н		Н	н	CH₃
	CI	CH ₃	CH ₃	1	Н		Н	Н	CH₃
	CI	CH ₃	CH ₃	2	н		Н	Н	CH₃
15	Br	Н	CH ₃	0	Н		Н	Н	CH ₂ OCH ₃
	Br	Н	CH ₃	0	Н		Н	н	CH2CO2C2H5
	Br	Н	CH ₃	0	Н		Н	н	CH₃
	Br	Н	CH ₃	0	н		Н	H	C₂H₅
20	Br	Н	CH ₃	0	н		Н	н	n-C ₃ H ₇
	Br	Н	CH ₃	0	н		н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	н		Н	н	n-C ₄ H ₉
	Br	Н	CH ₃	0	Н		Н	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	0	н		Н	Н	iso-C ₄ H ₉
25	Br	Н	CH ₃	0	н		Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	0	н		н	Н	n-CsH ₁₁
	Br	Н	CH ₃	0	н		Н	Н	n-C ₆ H ₁₃
	Br	Н	CH ₃	0	Н		н	Н	_1
30									7
	Br	Н	CH ₃	0	Н		Н	Н	CH ₃
	_								V
	Br	Н	CH ₃	0	Н		Н	Н	-()
35	Br	н	СНз	0	н		н	н	$\tilde{\wedge}$
									\rightarrow
	Br D-	H	CH ₃	0	Н		Н	Н	C ₆ H ₅
	Br	Н	CH ₃	0	Н		Н	Н	- √_ >-cı
40	Br	11	011	•					CI
	DI	Н	CH ₃	0	Н		Н	Н	
									<u></u> / 0,
	Br	Н	CH ₃	0	н		Н	Н	CH=CH₂
45	Br	Н	CH ₃	0	Н		Н	Н	CH=CHCH₃
70	Br	Н	CH ₃	0	н		Н	H	C(=CH₂)CH₃
	Br	Н	CH ₃	0	Н		Н	Н	CH=CHC6Hs
	Br	Н	CH ₃	0	Н		н	Н	-CH2-()-CI
50	_								
50	Br	Н	CH ₃	0	Н		Н	Н	(CH₂)₄CI
	Br Ba	Н	CH ₃	0	H		H	Н	(CH ₂) ₃ Cl
	Br	Н	CH ₃	0	Н		Н	Н	CH₂CN
									<u> •</u>

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
J	Br	Н	CH ₃	0	Н	Н	Н	CH ₂ OC ₆ H ₅
	Br	Н	CH ₃	0	CH ₃	Н	Н	CH₃
	Br	Н	CH ₃	0	CH ₃	Н	Н	C₂H₅
	Br	Н	CH ₃	0	CH ₃	Н	Н	n-C ₃ H ₇
10	Br	Н	CH ₃	0	CH3	н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	CH₃	Н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	0	CH₃	Н	H	iso-C ₄ H ₉
	Br	Н	CH ₃	0	CH ₃	Н	H _.	sec-C ₄ H ₉
15	Br	Н	CH ₃	0	CH ₃	Н	Н	tert-C ₄ H ₉
15	Br	Н	CH ₃	0	CH ₃	Н	Н	(CH₂)₃CI
	Br	Н	CH ₃	0	CH ₃	Н	Н	(CH₂)₄Cl
	Br	Н	CH ₃	0	CH ₃	Н	н	CH₂CN
•	Br	Н	CH₃	0	CH ₃	Н	Н	CH₂CO₂C₂H₅
20	Br	Н	CH ₃	0	CH ₃	Н	Н	CH₂OCH₃
	Br	Н	CH₃	0	CH ₃	Н	Н	C ₆ H ₅
	Br	Н	CH ₃	0	CH ₃	Н	Н	⟨ _>-cı
05	Br	Н	CH₃	0	C₂H₅	Н	н	CH₃
25	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	C ₂ H ₅
	Br	Н	CH ₃	0	C ₂ H ₅	Н	н	n-C ₃ H ₇
	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	Br	Н	CH₃	0	C₂H₅	Н	н	n-C ₄ H ₉
30	Br	Н	CH₃	0	C₂H₅	Н	Н	iso-C₄H₃
	Br	Н	CH ₃	0	C₂H₅	Η.	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	(CH₂)₃CI
35	Br	Н	CH ₃	0	C₂H₅	Н	Н	(CH₂)₄CI
00	Br	Н	CH ₃	0	C₂Hs	Н	Н	CH₂CN
	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	CH2CO2C2H5
	Br	Н	CH ₃	0	C₂H₅	н	Н	CH2OCH3
	Br	Н	CH ₃	0	C₂H₅	Н	Н	C ₆ H ₅
40	Br	Н	CH ₃	0	C ₂ H ₅	Н	Н	- √_ >-cı
	Br	Н	CH ₃	0	n-C₃H ₇	н	н	CH ₃
	Br	Н	CH ₃	0	n-C₃H ₇	Н	н	C₂Hs
45	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	n-C ₃ H ₇
40	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	H	iso-C ₃ H ₇
	Br	Н	CH ₃	0	n-C ₃ H ₇	H	Н	n-C ₄ H ₉
	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	iso-C ₄ H ₉
	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
50	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	(CH₂)₃CI
	Br	Н	CH ₃	0	n-C ₃ H ₇	н	Н	(CH₂)₄CI

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷ _	R ⁸
J	Br	Н	CH ₃	0	n-C₃H₁	Н	Н	CH₂CN
	Br	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	CH2CO2C2H5
	Br	Н	CH ₃	0	n-C ₃ H ₇	н	Н	CH2OCH3
	Br	Н	CH ₃	0	n-C₃H₂	н	Н	C ₆ H ₅
10	Br	Н	CH₃	0	n-C₃H ₇	н	н	>-cı
	Br	н	CH₃	0	iso-C₃H ₇	н	н	CH ₃
	Br	Н	CH ₃	0	iso-C₃H₂	Н	Н	C₂H₅
15	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	n-C₄H₃
	Br	Н	СН₃	0	iso-C ₃ H ₇	Н	Н	iso-C ₄ H ₉
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
20	Br	Н	CH ₃	0	iso-C₃H₁	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	(CH₂)₃CI
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	(CH₂)₄CI
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	CH₂CN
25	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	CH ₂ CO ₂ C ₂ H ₅
20	Br	Н	CH ₃	0	iso-C₃H ₇	Н	Н	CH₂OCH₃
	Br	Н	CH ₃	0	iso-C ₃ H ₇	Н	Н	C ₆ H ₅
	Br	Н	CH ₃	0	iso-C₃H ₇	Н	н	-√_>-cı
30	Br	Н	CH ₃	0	CH2OCH3	н	Н	СН₃
	Br	Н	CH ₃	0	CH ₂ OCH ₃	Н	н	C ₆ H ₅
	Br	Н	CH ₃	0	CH ₂ OC ₂ H ₅	н	Н	CH ₃
	Br	Н	CH3	0	CH2OC2H5	н	Н	C ₆ H ₅
05	Br	Н	CH ₃	1	Н	н	н	CH ₃
35	Br	Н	CH ₃	1	н	н	Н	C ₂ H ₅
	Br	Н	CH ₃	1	Н	н	н	n-C ₃ H ₇
	Br	Н	CH ₃	1	Н	н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	1	Н	Н	н	n-C ₄ H ₉
40	Br	Н	CH ₃	1	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	CH ₃	1	Н	н	н	tert-C ₄ H ₉
	Br	Н	CH ₃	1	Н	Н	н	(CH₂)₃CI
	Br	Н	CH ₃	1	Н	Н	Н	CH₂CN
AE	Br	Н	CH ₃	1	Н	н	н	CH₂OCH₃
4 5	Br	Н	CH ₃	1	Н	н	H	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	CH ₃	1	Н	Н	н	- ✓
50	Br	н	CH ₃	1	н	н	н	- ⟨ CH³
	Br	н	CH ₃	1	н	н	н	C ₆ H ₅

Table 2 (continued)

								-
F	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	Br	Н	CH ₃	1	Н	Н	Н	(>-cı
	Br	н	CH₃	1	CH ₃	н	н	CH₃
	Br	Н	CH₃	1	CH ₃	Н	Н	C₂H₅
10	Br	н	CH₃	1	CH₃	Н	Н	n-C ₃ H ₇
	Br	Н	CH ₃	1	CH ₃	Н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	1	CH ₃	Н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	1	CH ₃	Н	Н	Iso-C ₄ H ₉
, 4E	Br	Н	CH ₃	1	CH ₃	Н	н	sec-C ₄ H ₉
15	Br	Н	CH ₃	1	CH ₃	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	1	CH ₃	Н	Н	(CH₂)₃CI
	Br	Н	CH ₃	1	CH ₃	Н	Н	(CH₂)₄CI
-	Br	Н	CH ₃	1	CH ₃	Н	Н	CH₂CN
20	Br	Н	CH ₃	1	CH ₃	Н	Н	CH ₂ OCH₃
	Br	Н	CH ₃	1	CH ₃	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	CH₃	1	CH ₃	Н	Н	C ₆ H ₅
	Br	Н	CH ₃	1	CH ₃	Н	Н	-√_>-cı
25	Br	н	CH ₃	1	C ₂ H ₅	Н	н	CH₃
	Br	Н	CH ₃	1	C ₂ H ₅	Н	Н	C ₂ H ₅
	Br	Н	CH ₃	1	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	Br	Н	CH₃	1	C ₂ H ₅	Н	Н	iso-C₃H ₇
30	Br	Н	CH ₃	1	C ₂ H ₅	Н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	1	C₂Hs	Н	Н	iso-C ₄ H ₉
	Br	Н	CH₃	1	C ₂ H ₅	Н	Н	sec-C ₄ H ₉
	Br	Н	CH₃	1	C₂Hs	Н	Н	tert-C ₄ H ₉
35	Br	Н	CH ₃	1	C₂H₅	Н	Н	(CH₂)₃CI
55	Br	Н	CH₃	1	C₂H ₅	Н	Н	(CH₂)₄CI
	Br	Н	CH₃	1	C₂H₅	Н	н	CH₂CN
	Br	Н	CH ₃	1	C₂H₅	Н	Н	CH2CO2C2H5
	Br	Н	CH ₃	1	C₂H₅	Н	Н	CH₂OCH₃
40	Br	Н	CH₃	1	C₂H₅	Н	H	C ₆ H ₅
	Br	Н	CH ₃	1	C₂Hs	Н	н	- √_ >-CI
	Br	Н	CH₃	1	n-C₃H7	Н	Н	CH ₃
45	Br	Н	CH ₃	1	n-C₃H7	Н	н	C ₂ H ₅
,,,	Br	Н	CH ₃	1	n-C₃H7	Н	Н	n-C₃H7
	Br	Н	CH₃	1	n-C ₃ H ₇	Н	Н	iso-C₃H7
	Br	Н	CH ₃	1	n-C₃H₁	Н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	1	n-C ₃ H ₇	н	Н	iso-C ₄ H ₉
50	Br	Н	CH ₃	1	n-C₃H7	Н	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	1	n-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
	Br	Н	CH₃	1	n-C₃H₂	Н	Н	(CH₂)₃CI

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸⁻
5	Br	Н	CH ₃	1	n-C ₃ H ₇	Н	н	(CH₂)₄CI
	Br	Н	CH ₃	1	n-C₃H ₇	н	н	CH₂CN
	Br	н	CH ₃	1	n-C₃H7	Н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	н	CH ₃	1	n-C₃H₂	Н	Н	CH ₂ OCH ₃
10	Br	н	CH ₃	1	n-C ₃ H ₇	н	н	C ₆ H ₅
10	Br	н	CH ₃	1	n-C ₃ H ₇	н	н	- C I
	Br	Н	CH ₃	1	iso-C₃H₁	н	Н	CH ₃
	Br	Н	CH ₃	1	iso-C₃H₁	н	Н	C ₂ H ₅
15	Br	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	n-C ₃ H ₇
	Br	н	CH ₃	1	iso-C ₃ H ₇	н	Н	iso-C ₃ H ₇
	Br	н	CH ₃	1	iso-C ₃ H ₇	н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
20	Br	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	1	iso-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
	Br	Н	CH₃	1	iso-C ₃ H ₇	н	Н	(CH₂)₃CI
	Br	Н	CH ₃	1	iso-C₃H7	Н	Н	(CH₂)₄CI
	Br	Н	CH₃	1	iso-C₃H ₇	Н	Н	CH₂CN
25	Br	Н	CH ₃	1	iso-C₃H ₇	н	Н	CH₂CO₂C₂H₅
	Br	Н	CH ₃	1	iso-C₃H7	Н	н	CH ₂ OCH ₃
	Br	Н	CH₃	1	iso-C ₃ H ₇	Н	Н	C ₆ H ₅
	Br	Н	CH₃	1	iso-C₃H7	н	Н	- √_> -cı .
30	_			_				
	Br	Н	CH ₃	2	Н	н	Н	CH₃
	Br	Н	CH ₃	2	H	H	Н	C₂Hs
	Br	Н	CH ₃	2	H	Н	Н	n-C ₃ H ₇
35	Br	Н	CH ₃	2	Н	н	Н	iso-C ₃ H ₇
	Br	Н	CH ₃	2	H	H	Н	n-C ₄ H ₉
	Br	Н	CH ₃	2	Н	H	Н	iso-C ₄ H ₉
	Br	Н	CH ₃	2	H	H	Н	tert-C₄H₃
	Br	Н	CH ₃	2	H	Н	Н	(CH₂)₃Cl
40	Br	Н	CH₃	2	Н	н	Н	CH₂CN
	Br	Н	CH₃	2	H	Н	H	CH ₂ OCH ₃
	Br	Н	CH₃	2	H	H	Н	CH₂CO₂C₂H₅
	Br	н	CH ₃	2	Н	н	Н	$\overline{}$
45	Br	Н	CH₃	2	Н	Н	н	CH ₃
	Br	н	СН₃	2	Н	Н	н	C ₆ H ₅
50	Br	Н	CH ₃	2	н	н	Н	
	Br	Н	CH ₃	2	CH ₃	н	н	CH ₃

Table 2 (continued)

_	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	Br	Н	CH ₃	2	CH ₃	Н	Н	C₂H ₅
	Br	Н	CH ₃	2	CH ₃	Н	Н	n-C₃H ₇
	Br	Н	CH ₃	2	CH₃	H	Н	iso-C₃H7
	Br	Н	CH ₃	2	CH₃	Н	Н	n-C₄H₃
10	Br	Н	CH ₃	2	CH ₃	Н	Н	iso-C₄H₂
	Br	Н	CH₃	2	CH ₃	Н	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	2	CH ₃	Н	н	tert-C ₄ H ₉
	Br	Н	CH ₃	2	CH ₃	н	Н	(CH₂)₃CI
15	Br	Н	CH ₃	2	CH ₃	Н	Н	(CH₂)₄CI
15	Br	Н	CH ₃	2	CH₃	Н	Н	C ₆ H ₅
	Br	Н	CH₃	2	CH ₃	Н	Н	(_)-cı
•	Br	Н	CH ₃	2	C ₂ H ₅	н	Н	CH₃
20	Br	Н	CH ₃	2	C ₂ H ₅	Н	н	C₂H₅
	Br	Н	CH ₃	2	C ₂ H ₅	Н	Н	n-C₃H₂
	Br	Н	CH ₃	2	C ₂ H ₅	н	н	iso-C₃H7
	Br	Н	CH ₃	2	CH ₃	н	Н	CH₂CN
25	Br	Н	CH ₃	2	CH₃	Н	Н	CH2CO2C2H5
20	Br	Н	CH ₃	2	CH ₃	Н	Н	CH ₂ OCH ₃
	8r	Н	CH ₃	2	C₂Hs	Н	H	n-C ₄ H ₉
	Br	Н	CH ₃	2	C₂H₅	Н	Н	iso-C₄H₃
	Br	Н	CH ₃	2	C₂H₅	Н	Н	sec-C ₄ H ₉
30	Br	Н	CH ₃	2	C₂H₅	Н	Н	tert-C ₄ H ₉
	Br	Н	CH ₃	2	C₂Hs	Н	Н	(CH₂)₃CI
	Br	Н	CH ₃	2	C₂H₅	Н	Н	(CH₂)₄CI
	Br	Н	CH₃	2	C₂H₅	Н	Н	CH₂CN
35	Br	Н	CH ₃	2	C₂H₅	Н	Н	CH2CO2C2H5
	Br	Н	CH ₃	2	C₂H₅	Н	Н	CH ₂ OCH ₃
	Br	Н	CH ₃	2	C₂H₅	н	Н	C ₆ H ₅
	Br	Н	CH₃	2	C ₂ H ₅	Н	н	
40	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	H	CH₃
	Br	Н	CH ₃	2	n-C₃H ₇	Н	Н	C₂H₅
	Br	Н	CH ₃	2	n-C ₃ H ₇	н	н	n-C ₃ H ₇
	Br	Н	CH₃	2	n-C ₃ H ₇	Н	н	iso-C ₃ H ₇
45	Br	Н	CH ₃	2	n-C ₃ H ₇	н	Н	n-C ₄ H ₉
	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	H	iso-C ₄ H ₉
	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	Br	н	CH ₃	2	n-C ₃ H ₇	Н	н	tert-C ₄ H ₉
	Br	Н	CH ₃	2	n-C₃H ₇	Н	Н	(CH ₂) ₃ CI
50	Br	Н	CH₃	2	n-C ₃ H ₇	Н	• H	(CH₂)₄CI
	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	н	CH₂CN
	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	CH2CO2C2H5

Table 2 (continued)

	<u>R</u> 1	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸⁻
5	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	CH ₂ OCH₃
	Br	Н	CH ₃	2	n-C ₃ H ₇	Н	Н	C ₆ H ₅
	Br	н	СН₃	2	n-C ₃ H ₇	н	Н	— Ç _>—CI
10	Br	н	CH ₃	2	iso-C ₃ H ₇	н	Н	CH ₃
	Br	Н	CH ₃	2	iso-C₃H ₇	н	н	C₂H₅
	Br	Н	CH ₃	2	iso-C₃H7	н	н	n-C ₃ H ₇
	Br	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	iso-C₃H7
	Br	Н	CH ₃	2	iso-C ₃ H ₇	н	Н	n-C ₄ H ₉
15	Br	Н	CH₃	2	iso-C₃H7	н	н	iso-C ₄ H ₉
	Br	Н	CH ₃	2	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	Br	Н	CH₃	2	iso-C ₃ H ₇	Н	н	tert-C ₄ H ₉
	Br	Н	CH ₃	2	iso-C ₃ H ₇	н	Н	(CH₂)₃CI
20	Br	Н	CH ₃	2	iso-C₃H7	н	Н	(CH ₂) ₄ CI
	Br	н	CH ₃	2	iso-C ₃ H ₇	н	н	CH₂CN
	Br	Н	CH ₃	2	iso-C₃H ₇	н	н	CH2CO2C2H5
	Br	Н	CH ₃	2	iso-C ₃ H ₇	H	н	CH ₂ OCH ₃
	Br	Н	CH₃	2	iso-C ₃ H ₇	н	Н	C ₆ H ₅
25	Br	н	CH ₃	2	iso-C ₃ H ₇	Н	Н	CI
	Br	Н	C₂H₅	0	н	н	н	CH ₃
	Br	Н	C₂H₅	0	Н	н	Н	C₂Hs
30	Br	н	C₂H5	0	Н	н	н	n-C ₃ H ₇
	Br	н	C₂H₅	0	Н	Н	Н	iso-C ₃ H ₇
	Br	Н	C₂H₅	0	Н	н	н	n-C ₄ H ₉
	Br	Н	C₂H₅	0	Н	Н	Н	iso-C ₄ H ₉
35	Br	Н	C₂H₅	0	Н	н	Н	sec-C ₄ H ₉
33	Br	Н	C₂H₅	0	Н	н	Н	tert-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	н	H	Н	n-CsH11
	Br	Н	C ₂ H ₅	0	Н	Н	н	n-C ₆ H ₁₃
	Br	Н	C ₂ H ₅	0	Н	Н	Н	(CH₂)₄CI
40	Br	Н	C ₂ H ₅	0	Н	Н	Н	(CH₂)₃CI
	Br	Н	C₂H5	0	Н	Н	Н	CH₂CN
	Br	H	C₂H₅	0	н	н	Н	$\overline{}$
45	Br	Н	C₂H₅	0	н	н	. н	$\overline{}$
	Br	Н	C₂H₅	0	CH ₃	н	Н	CH ₃
	Br	н	C ₂ H ₅	0	CH ₃	н	н	C₂H₅
50	Br	н	C₂H₅	0	CH ₃	н	Н	n-C ₃ H ₇
50	Br	н	C ₂ H ₅	0	CH₃	н	н	iso-C ₃ H ₇
	Br	Н	C ₂ H ₅	0	СНэ	н	H	n-C ₄ H ₉

Table 2 (continued)

5	<u>R</u> 1	R ²	R ³	n	R ⁵	 R ⁶	R ⁷	R ⁸
	Br	Н	C₂H₅	0	CH ₃	Н	Н	iso-C₄H₂
	8r	Н	C₂H₅	0	CH₃	Н	Н	sec-C ₄ H ₉
	Br	Н	C₂H5	0	CH ₃	Н	Н	tert-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	CH₃	Н	Н	(CH₂)₃CI
10	Br	Н	C ₂ H ₅	0	CH₃	н	н	(CH₂)₄CI
	Br	Н	C₂H₅	0	CH ₃	Н	Н	CH₂CN
	Br	Н	C₂H₅	0	CH ₃	Н	Н	CH2CO2C2H5
	Br	Н	C₂H₅	0	CH ₃	Н	Н	CH₂OCH₃
15	Br	Н	C ₂ H ₅	0	CH₃	Н	Н	C ₆ H ₅
	Br	Н	C ₂ H ₅	0	CH ₃	Н	н	- ⟨ _>-CI
	Br	Н	C₂H5	0	C ₂ H ₅	Н	Н	CH ₃
-	Br	Н	C₂H5	0	C ₂ H ₅	Н	н	C₂H₅
20	Br	Н	C₂H₅	0	C ₂ H ₅	Н	Н	n-C ₂ H ₇
	Br	Н	C₂H₅	0	C ₂ H ₅	Н	Н	iso-C ₃ H ₇
	Br	Н	C₂H₅	0	C ₂ H ₅	н	н	n-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	C ₂ H ₅	Н	н	iso-C ₄ H ₉
25	Br	Н	C ₂ H ₅	0	C ₂ H ₅	н	н	sec-C ₄ H ₉
25	Br	Н	C₂H₅	0	C₂Hs	н	Н	tert-C₄H₃
	Br	Н	C₂H₅	0	C ₂ H ₅	Н	н	(CH ₂) ₃ Cl
	Br	Н	C ₂ H ₅	0	C ₂ H ₅	Н	Н	(CH₂)₄CI
	Br	Н	C ₂ H ₅	0	C ₂ H ₅	Н	н	CH₂CN
30	Br	Н	C₂H₅	0	C₂H₅	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C₂H₅	0	C₂H₅	н	. н	CH ₂ OCH ₃
	Br	Н	C₂Hs	0	C₂H₅	Н	Н	C ₆ H ₅
	Br	Н	C ₂ H ₅	0	C₂H₅	н	Н	()-cı
35	Br	Н	C₂H₅	0	n-C ₃ H ₇	Н	н	CH₃
	Br	Н	C ₂ H ₅	Ō	n-C ₃ H ₇	н	н	C ₂ H ₅
	Br	Н	C₂H₅	Ö	n-C₃H ₇	н	н	n-C ₃ H ₇
	Br	Н	C₂H₅	Ö	n-C ₃ H ₇	н	н	iso-C₃H ₇
40	Br	Н	C₂H₅	0	n-C ₃ H ₇	Н	Н	n-C ₄ H ₉
	Br	н	C ₂ H ₅	0	n-C ₃ H ₇	н	н	iso-C ₄ H ₉
	Br	Н	C₂H₅	0	n-C ₃ H ₇	Н	H	sec-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	n-C ₃ H ₇	 Н	H	tert-C ₄ H ₉
45	Br	Н	C ₂ H ₅	0	n-CaH7	Н	H	(CH₂)₃CI
45	Br	Н	C ₂ H ₅	Ö	n-CaH7	н	H	(CH₂)₄CI
	Br	Н	C₂H₅	Ö	n-CaHz	н	н	CH₂CN
	Br	н	C ₂ H ₅	ō	n-CaH7	н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	H	C ₂ H ₅	ō	n-C ₃ H ₇	н	н	CH ₂ OCH ₃
50	Br	Н	C ₂ H ₅	Ö	n-C ₃ H ₇	н	н	C6H5
	Br	Н	C ₂ H ₅	0	n-C ₃ H ₇	н	н	

Table 2 (continued)

5	R1	R ²	R ³	n	В 5	д ⁶	R ⁷	R ⁸
5	Br	Н	C ₂ H ₅	0	iso-C₃H ₇	Н	Н	CH ₃
	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	Н	Н	C₂H₅
	Br	Н	C ₂ H ₅	0	iso-C₃H7	Н	Н	n-C₃H₁
	Br	Н	C ₂ H ₅	0	iso-C ₂ H ₇	Н	Н	iso-C ₃ H ₇
10	Br	Н	C₂H₅	0	iso-C₃H₁	Н	Н	n-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	Н	H	iso-C ₄ H ₉
	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	Br	Н	C₂Hs	0	iso-C ₃ H ₇	Н	Н	tert-C ₄ H ₉
15	Br	Н	C₂H₅	0	iso-C₃H ₇	Н	Н	(CH ₂) ₃ Cl
70	Br	Н	C ₂ H ₅	0	iso-C ₃ H ₇	Н	Н	(CH ₂) ₄ Cl
	Br	Н	C₂H₅	0	iso-C₃H7	Н	Н	CH₂CN
	Br	Н	C₂H₅	0	iso-C ₃ H ₇	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C₂H₅	0	iso-C ₃ H ₇	Н	Н	CH ₂ OCH ₃
20	Br	Н	C₂H₅	0	iso-C₃H ₇	Н	Н	C ₆ H ₅
	Br	Н	C₂H₅	0	iso-C ₃ H ₇	Н	Н	\\\CI
	Br	Н	C₂H₅	0	CH ₂ OCH ₃	Н	Н	CH ₃
05	Br	Н	C ₂ H ₅	0	CH₂SCH₃	Н	Н	CH ₃
25	Br	Н	C₂H₅	1	Н	н	Н	CH ₃
	Br	Н	C ₂ H ₅	1	Н	Н	Н	C₂H₅
	Br	Н	C ₂ H ₅	1	Н	н	Н	n-C ₃ H ₇
	Br	Н	C₂H₅	1	Н	Н	Н	n-C₄H₃
30	Br	Н	C ₂ H ₅	1	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	Н	H	Н	tert-C ₄ H ₉
	Br	Н	C₂H₅	1	Н	Н	Н	(CH ₂) ₃ CI
	Br	Н	C ₂ H ₅	1	Н	Н	Н	CH₂CN
<i>35</i>	Br	Н	C ₂ H ₅	1	Н	Н	Н	CH ₂ OCH₃
	Br	Н	C ₂ H ₅	1	Н	Н	Н	CH2CO2C2H5
	Br	Н	C₂H₅	1	Н	Н	Н	$\overline{}$
40	Br	Н	C ₂ H ₅	1	Н	н	Н	→ CH³
	Br	Н	C₂H₅	1	н	Н	Н	C ₆ H ₅
	Br	Н	C ₂ H ₅	1	Н	Н	Н	()-cı
45	Br	Н	C₂H₅	1	CH ₃	н	н	СН₃
	Br	Н	C₂H₅	1	CH₃	Н	Н	C₂H ₅
	Br	Н	C₂H₅	1	CH ₃	Н	Н	n-C ₃ H ₇
	Br	Н	C₂H₅	1	CH ₃	Н	Н	iso-C₃H7
50	Br	Н	C₂H₅	1	CH ₃	Н	Н	n-C₄H₃
	Br	Н	C₂H₅	1	CH ₃	н	Н	iso-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	CH ₃	Н	Н	sec-C ₄ H ₉

Table 2 (continued)

	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	Br	н	C₂H₅	1	CH ₃	н	Н	tert-C ₄ H ₉
	Br	н	C ₂ H ₅	1	CH ₃	Н	Н	(CH₂)₃CI
	Br	Н	C ₂ H ₅	1	CH ₃	н	Н	(CH₂)₄CI
	Br	Н	C₂H₅	1	CH ₃	Н	Н	CH₂CN
10	Br	Н	C ₂ H ₅	1	CH₃	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C₂H₅	1	CH ₃	Н	Н	CH₂OCH₃
	Br	Н	C ₂ H ₅	1	CH ₃	Н	н	C ₆ H ₅
	Br	Н	C₂H₅	1	CH ₃	Н	Н	CI
15	Br	Н	C ₂ H ₅	1	C ₂ H ₅	н	н	CH ₃
	Br	Н	C ₂ H ₅	1	C ₂ H ₅	н	Н	C ₂ H ₅
	Br	Н	C₂H₅	1	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	Br	Н	C ₂ H ₅	1	C ₂ H ₅	н	Н	iso-C ₃ H ₇
20	Br	Н	C₂Hs	1	C ₂ H ₅	н	Н	n-C ₄ H ₉
	Br	Н	C₂H₅	1	C ₂ H ₅	н	Н	iso-C₄H₀
	Br	Н	C₂H₅	1	C ₂ H ₅	н	Н	sec-C ₄ H ₉
	Br	Н	C₂Hs	1	C₂Hs	Н	Н	tert-C₄H₀
	Br	Н	C₂H₅	1	C₂Hs	Н	Н	(CH₂)₃Cl
25	Br	Н	C ₂ H ₅	1	C₂Hs	н	Н	(CH₂)₄CI
	Br	Н	C ₂ H ₅	1	C₂H₅	н	Н	CH₂CN
	Br	Н	C ₂ H ₅	1	C₂H ₅	Н	Н	CH2CO2C2H5
	Br	Н	C₂H₅	1	C₂H₅	Н	Н	CH ₂ OCH₃
30	Br	Н	C ₂ H ₅	1	C₂H ₅	Н	Н	C ₆ H ₅
	Br	Н	C₂Hs	1	C₂H₅	н	Н	()-CI
	Br	Н	C ₂ H ₅	1	n-C ₃ H ₇	Н	Н	CH ₃
	Br	Н	C₂H₅	1	n-C ₃ H ₇	н	Н	C₂H₅
35	Br	Н	C₂H₅	1	n-C ₃ H ₇	Н	Н	n-C ₃ H ₇
	Br	Н	C ₂ H ₅	1	n-C₃H7	Н	Н	iso-C ₃ H ₇
	Br	Н	C ₂ H ₅	1	n-C₃H7	Н	Н	n-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	n-C ₃ H ₇	н	Н	iso-C ₄ H ₉
40	Br	Н	C₂H₅	1	n-C ₃ H ₇	н	Н	sec-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	n-C ₂ H ₇	н	Н	tert-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	n-C ₃ H ₇	н	Н	(CH₂)₃Cl
	Br	Н	C₂H₅	1	n-C ₃ H ₇	Н	Н	(CH₂)₄CI
	Br	Н	C ₂ H ₅	1	n-C₃H₂	Н	Н	CH₂CN
45	Br	Н	C₂H₅	1	n-C₃H7	н	Ĥ	CH2CO2C2H5
	Br	Н	C ₂ H ₅	1	n-C ₃ H ₇	н	Н	CH ₂ OCH ₃
	Br	Н	C₂Hs	1	n-C ₃ H ₇	н	Н	CeHs
	Br	н	C₂H₅	1	n-C ₃ H ₇	Н	Н	-√_>-cı
50	_							
	Br	Н	C ₂ H ₅	1	iso-C₃H ₇	н	Н	CH ₃
	Br	Н	C₂H₅	1	iso-C ₃ H ₇	Н	Н	C₂H₅

Table 2 (continued)

F	<u>R</u> 1	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	Br	Н	C₂H₅	1	iso-C₃H₁	Н	Н	n-C₃H ₇
	Br	Н	C₂H₅	1	iso-C ₃ H ₇	H	Н	iso-C ₃ H ₇
	Br	Н	C₂H₅	1	iso-C ₃ H ₇	Н	Н	n-C ₄ H ₉
	Br	Н	C ₂ H ₅	1	iso-C ₃ H ₇	н	Н	iso-C ₄ H ₉
10	Br	Н	C₂H₅	1	iso-C ₃ H ₇	Н	Н	sec-C ₄ H ₉
	Br	Н	C₂H₅	1	iso-C₃H ₇	Н	Н	tert-C ₄ H ₉
	Br	Н	C₂Hs	1	iso-C ₃ H ₇	н	н	(CH₂)₃Cl
	Br	Н	C₂H ₅	1	iso-C ₃ H ₇	Н	Н	(CH ₂) ₄ Cl
15	Br	Н	C₂Hs	1	iso-C₃H ₇	Н	Н	CH₂CN
15	Br	Н	C₂Hs	1	iso-C₃H ₇	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C₂H ₅	1	iso-C ₃ H ₇	Н	Н	CH ₂ OCH₃
	Br	Н	C₂Hs	1	iso-C ₃ H ₇	н	Н	C ₆ H ₅
	Br	Н	C₂H5	1	iso-C ₃ H ₇	Н	н	
20								
	Br	Н	C₂H₅	2	Н	Н	н	CH ₃
	Br	Н	C₂H5	2	Н	Н	Н	C ₂ H ₅
	Br	Н	C₂Hs	2	н	Н	Н	n-C₃H ₇
25	Br	Н	C ₂ H ₅	2	Н	Н	н	n-C ₄ H ₉
23	Br	Н	C₂H5	2	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	C₂H₅	2	Н	Н	Н	tert-C ₄ H ₉
	Br	Н	C₂H₅	2	Н	Н	Н	(CH₂)₃Cl
	Br	Н	C₂H₅	2	Н	Н	Н	CH₂CN
30	Br	Н	C₂H₅	2	Н	н	Н	CH2OCH3
	Br	Н	C₂H₅	2	Н	Н	H	CH2CO2C2H5
	Br	Н	C₂Hs	2	н	Н	н	$\overline{}$
35	Br	н	C₂H₅	2	н	н	н	← CH³
	Br	Н	C₂Hs	2	н	Н	н	C ₆ H ₅
	Br	Н	C ₂ H ₅	2	н	Н	Н	(>-cı
40	Br	н	C₂Hs	2	CH ₃	н	н	CH ₃
	Br	Н	C ₂ H ₅	2	CH ₃	Н	H	
	Br	н	C ₂ H ₅	2	CH ₃	Н	Н	C₂H₅ n-C₃H ₇
	Br	н	O2H5	2	CH ₃			
45	Br	H	C₂Hs	2	CH ₃	Н	Н	iso-C ₃ H ₇
	Br	н	C₂Hs C₂Hs	2	CH ₃	H H	H H	n-C ₄ H ₉
	Br	н	C2H5	2	CH ₃			iso-C ₄ H ₉
	Br	Н	C2Hs	2	CH ₃	H H	Н	sec-C ₄ H ₉
50	Br	н	C ₂ H ₅	2	CH ₃		H	tert-C ₄ H ₉
50	Br	н	C₂Hs C₂Hs	2	CH ₃	Н	H	(CH₂)₃CI
	Br	н	C₂∩s C₂Hs	2	CH ₃	H H	Н	(CH₂)₄CI
	٠,		U21 15	4	OFIS	п	Н	CH₂CN

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	\tilde{R}^B
J	Br	Н	C₂H₅	2	CH ₃	н	Н	CH ₂ CO ₂ C ₂ H ₅
	Βr	Н	C ₂ H ₅	2	CH₃	н	Н	CH₂OCH₃
	Br	Н	C₂H₅	2	CH₃	H	H	C ₆ H ₅
10	Br	Н	C ₂ H ₅	2	CH ₃	н	н	<->-cı
,,,	Br	н	C ₂ H ₅	2	C₂H₅	н	Н	CH₃
	Br	Н	C₂Hs	2	C ₂ H ₅	н	Н	C₁3 C₂H₅
	Br	н	C₂H ₅	2	C₂Hs	н	н	0-21 15 n-C3H7
	Br	н	C₂H₅	2	C ₂ H ₅	н	Н	iso-C ₃ H ₇
15	Br	Н	C₂H₅	2	C ₂ H ₅	н	Н	n-C ₄ H ₉
	Br	Н	C₂H₅	2	C ₂ H ₅	H	Н	iso-C ₄ H ₉
	Br	Н	C ₂ H ₅	2	C ₂ H ₅	н	н	sec-C ₄ H ₉
	Br	Н	C₂H₅	2	C ₂ H ₅	н	Н	tert-C ₄ H ₉
20	Br	Н	C ₂ H ₅	2	C ₂ H ₅	H	н	(CH₂)₃CI
	Br	н	C₂H₅	2	C ₂ H ₅	н	н	(CH ₂)₄CI
	Br	н	C₂H₅	2	C₂H₅	н	н	CH₂CN
	Br	н	C ₂ H ₅	2	C ₂ H ₅	н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C ₂ H ₅	2	C ₂ H ₅	н	Н	CH₂OCH₃
25	Br	Н	C₂H₅	2	C ₂ H ₅	н	Н	C ₆ H ₅
	Br	Н	C₂Hs	2	C₂H₅	Н	Н	(>-cı
	Br	н	C₂H₅	2	n-C₃H₂	н	н	CH₃
30	Br	Н	C₂H₅	2	n-C ₃ H ₇	Н	Н	C ₂ H ₅
50	Br	Н	C₂H₅	2	n-C₃H₂	н	Н	n-C ₃ H ₇
	Br	Н	C₂Hs	2	n-C₃H₂	Н	н	iso-C ₃ H ₇
	Br	Н	C ₂ H ₅	2	n-C ₃ H ₇	н	Н	n-C₄H₃
	Br	Н	C₂H₅	2	n-C₃H ₇	Н	Н	iso-C ₄ H ₉
35	Br	Н	C₂H₅	2	n-C ₃ H ₇	н	Н	sec-C ₄ H ₉
	Br	Н	C₂H₅	2	n-C ₂ H ₇	н	Н	tert-C ₄ H ₉
	Br	Н	℃₂H₅	2	n-C ₃ H ₇	н	Н	(CH₂)₃CI
	Br	Н	C₂H₅	2	n-C ₃ H ₇	н	н	(CH₂)₄CI
40	Br	Н	C₂H₅	2	n-C ₃ H ₇	н	H	CH₂CN
	Br	Н	C ₂ H ₅	2	n-C ₃ H ₇	н	н	CH2CO2C2H5
	Br	Н	C₂H₅	2	n-C₃H ₇	н	н	CH₂OCH₃
	Br	Н	C₂Hs	2	n-C₃H₂	н	Н	C ₆ H ₅
4 5	Br	Н	C₂H₅	2	n-C₃H ₇	H	Н	
	Br	Н	C₂H₅	2	iso-C ₃ H ₇	н	Ĥ	СН₃
	Br	н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	C₁3 C₂H₅
	Br	н	C₂H₅	2	iso-C₃H ₇	н	Н	n-C ₃ H ₇
50	Br	Н	C ₂ H ₅	2	iso-C₃H ₇	н	н	iso-C₃H ₇
50	Br	Н	C ₂ H ₅	2	iso-C₃H7	н	H	n-C ₄ H ₉
	Br	Н	C₂Hs	2	iso-C₃H7	н	н	iso-C ₄ H ₉
			- · -	_		• •	••	

Table 2 (continued)

_	R ¹	R ²	я ³	n	R ⁵	₽6	R ⁷	R ⁸
5	Br	Н	C₂H₅	2	iso-C₃H7	Н	Н	sec-C ₄ H ₉
	Br	н	C₂H₅	2	iso-C₃H₂	н	Н	tert-C ₄ H ₉
	Br	Н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	н	(CH₂)₃CI
	Br	Н	C ₂ H ₅	2	iso-C ₃ H ₇	н	н	(CH₂)₄CI
10	Br	Н	C ₂ H ₅	2	iso-C₃H ₇	Н	н	CH₂CN
	Br	н	C ₂ H ₅	2	iso-C ₃ H ₇	н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	CH ₂ OCH ₃
	Br	н	C₂H₅	2	iso-C₃H ₇	Н	н	C ₆ H ₅
15	Br	н	C₂Hs	2	iso-C₃H7	н	н	
	Br	н	n-C ₃ H ₇	0	н	н	н	СНэ
	Br	Н	n-C ₃ H ₇	0	Н	Н	Н	C₂H _s
	Br	Н	n-C ₃ H ₇	0	Н	Н	Н	n-C ₃ H ₇
20	Br	Н	n-C ₃ H ₇	0	Н	н	Н	n-C ₄ H ₉
	Br	Н	n-C ₃ H ₇	0	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	n-C ₃ H ₇	0	Н	Н	н	tert-C ₄ H ₉
	Br	Н	n-C₃H₁	0	н	Н	Н	(CH ₂) ₃ Cl
	Br	Н	n-C₃H ₇	0	Н	Н	Н	CH₂CN
25	Br	Н	n-C ₃ H ₇	0	H	Н	н	CH₂OCH₃
	Br	Н	n-C ₃ H ₇	0	Н	н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	H	n-C ₃ H ₇	0	н	Н	Н	- ✓
30	Br	н	n-C ₃ H ₇	0	н	н	Н	- C H₃
	Br	Н	n-C₃H₁	0	н	Н	н	C ₆ H ₅
	Br	Н	n-C ₃ H ₇	0	н	Н	Н	-√_>-cı
35	Br	н	n-C ₃ H ₇	1	н	н	u	CU
	Br	н	n-C ₃ H ₇	1	Н	Н	Н	CH ₃ C ₂ H ₅
	Br	н	n-C ₃ H ₇	1	н	Н	H H	02∩s n-C₃H₁
	Br	н	n-C₃H7	1	н	н	Н	n-C ₄ H ₉
40	Br	н	n-C ₃ H ₇	1	H	н	н	iso-C ₄ H ₉
	Br	Н	n-C ₃ H ₇	1	н	H	н	tert-C ₄ H ₉
	Br	Н	n-C ₃ H ₇	1	н	Н	н	(CH ₂) ₃ CI
	Br	Н	n-C ₃ H ₇	1	н	н	H	CH₂CN
45	Br	Н	n-C ₃ H ₇	1	H	H	н	CH ₂ OCH ₃
45	Br	Н	n-C ₃ H ₇	1	н	Н	н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	n-C₃H₂	1	Н	н	н	— ○
50	Br	н	n-C₃H7	1	н	н	н	- C H₃
	Br	н	n-C₃H₁	1	н	н	Н	C ₆ H ₅

Table 2 (continued)

5	R ¹	R ²	R ³	n	A ⁵	R ⁶	R ⁷	-R ⁸
	Br	Н	n-C₃H ₇	1	Н	Н	Н	\\CI
	Br	H	n-C₃H₂	2	Н	Н	н	CH₃
	Br	Н	n-C₃H₂	2	Н	Н	н	C₂H₅
10	Br	Н	n-C3H7	2	Н	Н	Н	n-C ₃ H ₇
	Br	Н	n-C₃H₂	2	Н	Н	Н	n-C ₄ H ₉
	Br	Н	n-C₃H ₇	2	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	n-C₃H7	2	Н	Н	н	tert-C ₄ H ₉
15	Br	Н	n-C ₃ H ₇	2	Н	Н	Н	(CH₂)₃CI
,,,	Br	Н	n-C ₃ H ₇	2	Н	Н	Н	CH₂CN
	Br	Н	n-C₃H ₇	2	H	Н	н	CH₂OCH₃
	Br	Н	n-C₃H₁	2	Н	Н	Н	CH2CO2C2H5
	Br	Н	n-C₃H7	2	Н	Н	н	$\overline{}$
20								-
	Br	Н	n-C₃H7	2	H	Н	Н	- ⟨
	Br	Н	n-C ₃ H ₇	2	н	н	н	C ₆ H ₅
25	Br	Н	n-C₃H ₇	2	Н	Н	Н	()-cı
	Br	Н	CHF₂	0	н	н	Н	CH₃
	Br	Н	CHF₂	0	Н	н	Н	C₂H₅
30	Br	Н	CHF₂	0	Н	н	Н	n-C₃H ₇
50	Br	Н	CHF₂	0	Н	Н	Н	n-C ₄ H ₉
	Br	н	CHF₂	0	H	н	Н	iso-C ₄ H ₉
	Br	Н	CHF₂	0	Н	Н	Н	tert-C ₄ H ₉
	Br	Н	CHF₂	0	Н	Н	Н	(CH₂)₃CI
35	Br	Н	CHF₂	0	H	Н	н	CH₂CN
	Br	Н	CHF ₂	0	Н	Н	Н	CH₂OCH₃
	Br	Н	CHF ₂	0	Н	Н	Н	CH2CO2C2H5
	Br	Н	CHF₂	0	Н	Н	Н	$\overline{}$
40	Br	н	CHF2	0	н	н	н	CH₃ →
	Br	н	CHF₂	0	н	н	н	C ₆ H ₅
45	Br	Н	CHF₂	0	н	Н	н	- -
	Br	Н	CHF₂	1	н	н	н	CH ₃
	Br	н	CHF₂	1	H	Н	н	C₂H₅
	Br	Н	CHF₂	1	Н	н	H	n-C ₃ H ₇
50	Br	Н	CHF₂	1	н	Н	Н	n-C ₄ H ₉
	Br	Н	CHF₂	1	н	Н	Н	iso-C ₄ H ₉
	Br	Н	CHF₂	1	Н	Н	Н	tert-C ₄ H ₉
							•	· -

Table 2 (continued)

5	<u>R</u> 1	R ²	R ³	n	R ⁵	 R ⁶	R ⁷	R ⁸⁻
5	Br	Н	CHF ₂	1	Н	н	Н	(CH₂)₃CI
	Br	Н	CHF₂	1	Н	H	н	CH₂CN
	Br	Н	CHF₂	1	Н	н	Н	CH ₂ OCH ₃
	Br	Н	CHF ₂	1	Н	н	н	CH2CO2C2H5
10	Br	Н	CHF₂	1	Н	н	Н	$\overline{}$
	Br	н	CHF₂	1	н	н	н	⇔
15	Br	Н	CHF ₂	1	Н	Н	н	C ₆ H ₅
	Br	Н	CHF₂	1	Н	Н	н	cı
	Br	Н	CHF₂	2	н	н	н	CH ₃
00	Br	Н	CHF₂	2	н	н	н	C₂H₅
20	Br	Н	CHF₂	2	н	н	н	n-C₃H₁
	Br	Н	CHF ₂	2	Н	н	н	n-C ₄ H ₉
	Br	н	CHF₂	2	Н	Н	н	iso-C ₄ H ₉
•	Br	н	CHF ₂	2	Н	Н	Н	tert-C ₄ H ₉
25	Br	Н	CHF ₂	2	Н	н	Н	(CH₂)₃CI
	Br	Н	CHF₂	2	Н	Н	Н	CH₂CN
	Br	Н	CHF₂	2	Н	н	н	CH ₂ OCH ₃
	Br	Н	CHF ₂	2	Н	н	н	CH ₂ CO ₂ C ₂ H ₅
30	Br	Н	CHF₂	2	Н	н	Н	$\neg \triangleleft$
	Br	Н	CHF₂	2	н	н	н	ĊH,
	Br	Н	CHF₂	2	н	н	Н	C ₆ H ₅
35	Br	Н	CHF ₂	2	н	н	н	(>-cı
	Br	Н	CF3	0	н	н	н	C ₆ H ₅
	Br	Н	CF ₃	0	Н	н	Н	CH ₃
	Br	Н	CH₂CH₂F	0	Н	н	Н	СН₃
40	Br	Н	CH₂CH₂F	0	Н	н	н	C₂H₅
	Br	Н	CH₂CH₂F	0	Н	н	Н	n-CaH7
	Br	Н	CH₂CH₂F	0	н	Н	Н	iso-C₃H7
	Br	Н	CH₂CH₂F	0	Н	Н	Н	n-C ₄ H ₉
45	Br	Н	CH₂CH₂F	0	Н	Н	Н	iso-C₄H₃
45	Br	Н	CH₂CH₂F	0	Н	н	Н	tert-C ₄ H ₉
	Br	Н	CH₂CH₂F	0	H	Н	Н	(CH₂)₃Cl
	Br	Н	CH₂CH₂F	0	н	Н	н	CH₂CN
	Br	Н	CH₂CH₂F	0	Н	н	Н	CH ₂ OCH ₃
50	Br	Н	CH₂CH₂F	0	Ή.	н	н	CH2CO2C2H5
	Br	Н	CH₂CH₂F	0	Н	н	н	$\overline{}$

EP 0 742 202 A2

Table 2 (continued)

_	R ¹	R ²	A3	_n	R ⁵	R	6 R	7 R8	
5	Br	Н	CH₂CH₂F	0	Н	Н	н) 기
	Br	н	CH₂CH₂F	0	н	н	н	C ₆ H ₅	
	Br	Н	CH₂CH₂F	0	н	н		-(
10	Br	н	CH₂CH₂F	1	Н	н	н	CH₃	
	Br	Н	CH₂CH₂F	1	н	н		C₂H₅	i
	Br	Н	CH₂CH₂F	1	н	н		n-C ₃	
	Br	Н	CH ₂ CH ₂ F	1	Н	н		iso-C	
15	Br	Н	CH₂CH₂F	1	н	н			
	Br	Н	CH₂CH₂F	1	Н	н	н		
	Br	Н	CH₂CH₂F	1	Н	н			
-	Br	Н	CH₂CH₂F	1	Н	Н	Н		
20	Br	Н	CH₂CH₂F	1	Н	н		•	•
20	Br	Н	CH₂CH₂F	1	Н	Н	н		OCH ₃
	Br	Н	CH₂CH₂F	1	Н	н	н		CO ₂ C ₂ H ₅
	Br	Н	CH₂CH₂F	1	Н	н	н		◁
25	Br	Н	CH₂CH₂F	1	н	н	н	4	대, フ
	Br	Н	CH₂CH₂F	1	Н	н	н	C ₆ H ₅	i
30	Br	н	CH₂CH₂F	1	Н	Н	Н	~	_>_cı
	Br	Н	CH₂CH₂F	2	Н	Н	н	СН	
	Br	Н	CH₂CH₂F	2	Н	н	н		;
	Br	Н	CH₂CH₂F	2	Н	Н	н		
35	Br	Н	CH₂CH₂F	2	Н	Н	н	iso-0	CaH7
	Br	Н	CH₂CH₂F	2	Н	Н	Н	n-C ₄	H ₉
	Br	Н	CH₂CH₂F	2	Н	Н	Н	iso-C	C ₄ H ₉
	Br	Н	CH₂CH₂F	2	Н	н	Н	tert-0	C ₄ H ₉
	Br	Н	CH₂CH₂F	2	Н	Н	Н	(CH;	ı)₃Cl
40	Br	Н	CH₂CH₂F	2	Н	Н	Н	CH₂€	CN
	Br	н	CH₂CH₂F	2	Н	Н	Н	CH₂4	OCH ₃
	Br	Н	CH₂CH₂F	2	Н	. Н	Н	CH₂	CO₂C₂H₅
	Br	Н	CH₂CH₂F	2	Н	н	н		\triangleleft
45	Br	н	CH₂CH₂F	2	Н	н	н	4	Э Н,
	Br	Н	CH₂CH₂F	2	Н	н	н	C ₆ H ₉	š
50	Br	Н	CH₂CH₂F	2	н	Н		-<	>_cı
	Br	н	CH₂CHF₂	0	Н	н	н		

Table 2 (continued)

5	<u>н</u> 1	R ²	R ³	n	R ⁵	 R ⁶	R ⁷	R ⁸
5	Br	Н	CH₂CHF₂	0	Н	Н	н	C ₂ H ₅
	Br	H	CH₂CHF₂	0	Н	н	н	n-C ₃ H ₇
	Br	Н	CH₂CHF₂	0	Н	Н	н	iso-C ₃ H ₇
	Br	Н	CH ₂ CHF ₂	0	Н	Н	н	n-C ₄ H ₉
10	Br	Н	CH₂CHF₂	0	Н	Н	н	iso-C ₄ H ₉
	Br	Н	CH ₂ CHF ₂	0	Н	н	Н	tert-C ₄ H ₉
	Br	Н	CH ₂ CHF ₂	0	н	Н	Н	(CH₂)₃CI
	Br	Н	CH₂CHF₂	0	H	Н	Н	CH₂CN .
15	Br	Н	CH₂CHF₂	0	Н	Н	H	CH ₂ OCH ₃
13	Br	Н	CH ₂ CHF ₂	0	Н	Н	Н	CH2CO2C2H5
	Br	Н	CH₂CHF₂	0	Н	Н	Н	$\neg \triangleleft$
20	Br	Н	CH₂CHF₂	0	н	н	н	
	Br	н	CH₂CHF₂	0	н	Н	н	C ₆ H ₅
	Br	Н	CH₂CHF₂	0	н	Н	Н	>-cı
25	Br	Н	CH₂CHF₂	1	Н	н	н	CH ₃
	Br	Н	CH₂CHF₂	1	Н	н	н	C₂H₅
	Br	Н	CH2CHF2	1	Н	Н	н	n-C ₃ H ₇
	Br	Н	CH₂CHF₂	1	Н	н	н	iso-C₃H7
	Br	Н	CH₂CHF₂	1	Н	Н	Н	n-C₄H₃
30	Br	Н	CH₂CHF₂	1	н	н	н	iso-C ₄ H ₉
	Br	Н	CH₂CHF₂	1	Н	Н	Н	tert-C ₄ H ₉
	Br	Н	CH₂CHF₂	1	Н	Н	н	(CH ₂) ₃ Cl
	Br	Н	CH ₂ CHF ₂	1	Н	н	н	CH₂CN
35	Br	H	CH₂CHF₂	1	Н	Н	н	CH ₂ OCH₃
	Br	Н	CH₂CHF₂	1	Н	н	н	CH2CO2C2H5
	Br	Н	CH₂CHF₂	1	Н	Н	Н	$\overline{}$
40	Br	н	CH₂CHF₂	1	н	н	н	С Н3
	Br	н	CH₂CHF₂	1	н	Н	Н	C ₆ H ₅
	Br	н	CH₂CHF₂	1	Н	Н	Н	-CI
45	Br	н	CH₂CHF₂	2	н	н	H	CH ₃
	Br	н	CH ₂ CHF ₂	2	н	Н	H	C₂H₅
	Br	н	CH ₂ CHF ₂	2	н	н	н	n-C₃H ₇
	Br	н	CH₂CHF₂	2	н	Н	н	iso-C ₃ H ₇
50	Br	Н	CH ₂ CHF ₂	2	н	H	н	n-C ₄ H ₉
	Br	Н	CH ₂ CHF ₂	2	н	Н	Н	iso-C ₄ H ₉
	Br	Н	CH₂CHF₂	2	H	Н	н	tert-C ₄ H ₉

Table 2 (continued)

E	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	Br	Н	CH₂CHF₂	2	Н	Н	Н	(CH₂)₃CI
	Br	Н	CH₂CHF₂	2	Н	Н	Н	CH₂CN
	Br	Н	CH₂CHF₂	2	Н	Н	Н	CH2OCH3
	Br	Н	CH₂CHF₂	2	Н	Н	Н	CH2CO2C2H5
10	Br	Н	CH₂CHF₂	2	н	н	Н	$\overline{}$
	Br	н	CH₂CHF₂	2	н	н	н	→ CH ₃
15	Br	Н	CH₂CHF₂	2	Н	Н	Н	C ₆ H ₅
	Br	Н	CH ₂ CHF ₂	2	Н	н	Н	- √_ >-cı
	Br	Н	CH₂CF₃	0	н	Н	Н	CH ₃
20	Br	Н	CH ₂ CF ₃	0	Н	Н	Н	C ₂ H ₅
	Br	Н	CH ₂ CF ₃	0	Н	Н	Н	n-C ₃ H ₇
	Br	Н	CH₂CF₃	0	Н	Н	н	iso-C₃Hr
	Br	Н	CH₂CF₃	0	Н	Н	Н	n-C ₄ H ₉
	Br	Н	CH₂CF₃	0	н	Н	Н	iso-C₄H₃
25	Br	Н	CH₂CF₃	0	Н	Н	Н	tert-C ₄ H ₉
	Br	Н	CH₂CF₃	0	Н	н	Н	(CH ₂)₃CI
	Br	Н	CH₂CF₃	0	Н	Н	Н	CH₂CN
	Br	Н	CH ₂ CF ₃	0	Н	н	н	CH ₂ OCH ₃
30	Br	Н	CH₂CF₃	0	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	CH₂CF₃	0	н	н	Н	$\overline{}$
35	Br	н	CH ₂ CF ₃	0	н	н	н	с ң,
55	Br	н	CH₂CF₃	0	Н	н	Н	C ₆ H ₅
	Br	н	CH₂CF₃	0	Н	н	н	-{-}-cı
	Br	н	CH₂CF₃	1	н	н	н	CH ₃
40	Br	н	CH₂CF₃	1	Н	Н	Н	C ₂ H ₅
	Br	Н	CH₂CF₃	1	Н	н	Н	n-C ₃ H ₇
	Br	Н	CH₂CF₃	1	Н	Н	н	iso-C ₂ H ₇
	Br	Н	CH₂CF₃	1	н	н	Н	n-C ₄ H ₉
45	Br	Н	CH ₂ CF ₃	1	Н	Н	H	iso-C ₄ H ₉
	Br	Н	CH ₂ CF ₃	1	Н	Н	Ĥ	tert-C ₄ H ₉
	Br	Н	CH ₂ CF ₃	1	Н	н	Ĥ	(CH₂)₃Cl
	Br	Н	CH ₂ CF ₃	1	Н	Н	Н	CH₂CN
	Br	Н	CH₂CF₃	1	Н	Н	н	CH₂OCH₃
50	Br	Н	CH ₂ CF ₃	1	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
	Br	Н	CH₂CF₃	1	н	Н	Н	→ □

Table 2 (continued)

5	R ¹	n ²	R ³	n	я ⁵	R ⁶	R ⁷	R ⁸
-	Br	н	CH₂CF₃	1	Н	н	н	CH ₃
	Br	Н	CH ₂ CF ₃	1	н	н	н	C ₆ H ₅
10	Br	Н	CH₂CF₃	1	Н	Н	Н	(>-cı
	Br	н	CH₂CF₃	2	Н	Н	Н	CH₃
	Br	Н	CH₂CF₃	2	Н	Н	Н	C₂H₅
45	Br	Н	CH ₂ CF ₃	2	Н	Н	Н	n-C₃H₁
15	Br	Н	CH₂CF₃	2	Н	Н	Н	iso-C ₃ H ₇
	Br	Н	CH ₂ CF ₃	2	Н	н	Н	n-C ₄ H ₉
	Br	Н	CH₂CF₃	2	Н	Н	Н	iso-C ₄ H ₉
	Br	Н	CH₂CF₃	2	Н	Н	Н	tert-C₄H₀
20	Br	Н	CH ₂ CF ₃	2	н	Н	Н	(CH ₂) ₃ Cl
	Br	Н	CH ₂ CF ₃	2	Н	Н	Н	CH₂CN
	Br	Н	CH ₂ CF ₃	2	Н	Н	Н	CH ₂ OCH ₃
	Br	Η .	CH ₂ CF ₃	2	Н	Н	Н	CH2CO2C2H5
25	Br	Н	CH₂CF₃	2	Н	Н	н	$\neg \triangleleft$
	Br	н	CH₂CF₃	2	н	н	н	- CH³
20	Br	Н	CH₂CF₃	2	Н	Н	Н	C ₆ H ₅
30	Br	Н	CH₂CF₃	2	H	Н	н	>-CI
	1	Н	C ₂ H ₅	0	Н	н	н	C ₆ H ₅
	1	H	CH ₃	0	Н	Н	Н	CH ₃
35	ı	Н	CH ₃	0	Н	н	Н	C ₂ H ₅
	ſ	Н	CH ₃	0	Н	н	Н	n-C ₃ H ₇
	1	Н	CH ₃	0	н	н	Н	iso-C₃H ₇
	1	Н	CH ₃	0	н `	Н	н	n-C ₄ H ₉
	}	Н	CH ₃	2	H	H	Н	C ₂ H ₅
40	ſ	Н	CH₃	1	Н	н	н	C ₂ H ₅
	CI	Н	CH ₃	0	Н	Н	Н	COCH ₃
	CI	Н	CH ₃	1	Н	н	Н	COCH ₃
	CI	Н	CH ₃	2	Н	н	н	COCH ₃
45	CI	Н	C ₂ H ₅	0	Н	Н	Н	COCH ₃
	CI	Н	CH ₃	0	H	н	н	CO ₂ CH ₃
	CI	Н	CH ₃	1	Н	н	Н	CO ₂ CH ₃
	CI	Н	CH ₃	2	н	н	Н	CO₂CH₃
50	CI	Н	C ₂ H _s	0	Н	Н	Н	CO ₂ CH ₃
50	CI	H	C ₂ H ₅	1	Н	Н	H	CO ₂ CH ₃
	CI	Н	C ₂ H ₅	2	н	Н	н	CO ₂ CH ₃

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
	CI	Н	СН₃	0	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	1	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	2	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂H₅	0	Н	Н	Н	CO ₂ C ₂ H ₅
10	CI	Н	C ₂ H ₅	1	Н	н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂H₅	2	Н	H	H	CO ₂ C ₂ H ₅
	Br	н	C ₂ H ₅	0	Н	н	н	CH ₃
15	Br	н	C₂H₅	0	н	н	н	- -
	Br	Н	C₂H₅	0	н	н	Н	C ₆ H ₅
	- Br	Н	C₂H₅	0	Н	Н	Н	CH ₂ CO ₂ C ₂ H ₅
20	Br	Н	C₂H₅	0	Н	н	Н	CH ₂ OCH ₃
	Br	Н	C ₂ H ₅	0	н	Н	Н	$\neg \triangleleft$
	Br	н	C ₂ H ₅	1	Н	н.	н	iso-C ₃ H ₇
25	Br	н	C₂H₅	1	Н	Н	Н	sec-C ₄ H ₉
25	Br	Н	C₂Hs	2	н	н	Н	iso-C₃H ₇
	Br	н	C₂Hs	2	н	Н	Н	sec-C ₄ H ₉
	Br	н	CH₃	1	н	н	Н	sec-C ₄ H ₉
	Br	Н	CH ₃	2	Н	Н	Н	sec-C ₄ H ₉
30	CI	Н	C₂H₅	0	C₂Hs	н	н	→
	CI	Н	C ₂ H ₅	0	C ₂ H ₅	н	н	COCH ₃
	CI	H	C₂H₅	0	C₂Hs	Н	Н	CO ₂ C ₂ H ₅
35	CI	н	C₂Hs	0	C₂H₅ .	н	н	CO₂CH₃
	CI	. H	C₂H₅	0	CH2OC2H5	Н	н	C₂H₅
	CI	Н	C₂H₅	0	CH2OC2H5	Н	н	CH₂OCH₃
	CI	Н	C₂H₅	0	CH₂OC₂H₅	Н	Н	n-C ₃ H ₇
40	CI	Н	C₂H₅	0	CH ₂ OC ₂ H ₅	н	Н	n-C₄H₃
40	CI	Н	C₂H₅	0	CH ₂ OC ₂ H ₅	Н	Н	tert-C ₄ H ₉
	CI	H	C₂H₅	0	CH ₂ OCH₃	Н	Н	C₂H₅
	CI	Н	C₂H₅	0	CH ₂ OCH₃	Н	Н	CH₂OCH₃
	CI	Н	C₂H₅	0	CH ₂ OCH ₃	Н	Н	n-C ₃ H ₇
45	CI	Н	C₂H₅	0	CH ₂ OCH ₃	н	Н	n-C ₄ H ₉
	CI	Н	C₂H₅	0	CH₂OCH₃	Н	Н	tert-C ₄ H ₉
	CI	н	C₂H₅	0	CH₂SCH₃	Н	Н	C₂H₅
	CI	Н	C₂H₅	0	CH₂SCH₃	Н	н	CH ₂ OCH ₃
50	CI	Н	C ₂ H ₅	0	CH₂SCH₃	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	0	CH₂SCH₃	н	Н	n-C₄H₃
	CI	Н	C₂H₅	0	CH₂SCH₃	Н	н	tert-C₄H₃

Table 2 (continued)

	<u>R</u> 1	R ²	R ³	_	R ^S	В ⁶	В ⁷	г ⁸
5				n				<u>n</u>
	CI	Н	C ₂ H ₅	0	CH₃	н	Н	$\overline{}$
	CI	н	C ₂ H ₅	0	CH ₃	н	н	COCH₃
	CI	н	C ₂ H ₅	0	CH ₃	Н	Н	CO ₂ C ₂ H ₅
10	CI	Н	C ₂ H ₅	0	CH ₃	н	н	CO₂CH₃
	CI	Н	C ₂ H ₅	0	COC ₂ H ₅	Н	н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	0	COC₂H5	н	Н	n-CaHz
	CI	Н	C₂H₅	0	COC₂H₅	н	н	n-C ₄ H ₉
15	CI	Н	C ₂ H ₅	0	COC₂H₅	Н	Н	tert-C ₄ H ₉
15	CI	Н	C₂H₅	0	COC ₃ H ₇ -n	Н	н	C₂H₅
	CI	Н	C ₂ H ₅	0	COC ₃ H ₇ -n	н	Н	CH ₂ OCH ₃
	CI	Н	C₂H₅	0	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	0	COC₃H₁-n	Н	Н	n-C ₄ H ₉
20	CI	Н	C ₂ H ₅	0	COC ₃ H ₇ -n	н	Н	tert-C ₄ H ₉
	CI	Н	C ₂ H ₅	0	COCH ₃	н	Н	C ₂ H ₅
	CI	Н	C ₂ H ₅	0	COCH ₃	Н	Н	CH₂OCH₃
	CI	Н	C ₂ H ₅	0	COCH ₃	Н	н	CH ₃
25	CI	Н	C₂H₅	0	COCH ₃	н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	0	COCH3	Н	н	n-C4He
	CI	Н	C₂H₅	0	COCH ₃	н	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	0	Н	Н	Н	(CH₂)₅Br
	CI	Н	C₂H₅	0	Н	Н	Н	CH₂CH₂CO₂H
30	CI	Н	C₂H₅	0	Н	Н	Н	CH₂CH₂SCH₃
	Ci	Н	C₂H₅	0	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂H₅	0	Н	Н	Н	CO ₂ CH ₃
	CI	Н	C₂H₅	0	Н	Н	Н	COCH ₃
35	CI	Н	C₂H₅	0	iso-C₃H₁	Н	Н	\dashv
	CI	н	C₂H₅	0	iso-C₃H7	н	н	COCH ₃
	CI	н	C₂Hs	ō	iso-C₃H ₇	Н	н	CO ₂ CH ₃
	CI	Н	C₂H₅	0	n-C ₃ H ₇	Н	Н	_
40				_		• • • • • • • • • • • • • • • • • • • •	••	$\neg \triangleleft$
	CI	Н	C ₂ H ₅	0	n-C ₃ H ₇	н	Н	COCH ₃
	CI	Н	C ₂ H ₅	0	n-C ₃ H ₇	Н	Н	CO ₂ CH ₃
	CI	Н	C₂H₅	1	C ₂ H ₅	н	н	\rightarrow
45	CI	н	C₂H₅	1	C ₂ H ₅	н	н	COCH ₃
	CI	Н	C ₂ H ₅	1	C ₂ H ₅	н	H	CO ₂ C ₂ H ₅
	CI	Н	C₂Hs	1	C ₂ H ₅	н	Н	CO ₂ CH ₃
	CI	Н	C₂Hs	1	CH ₂ OC ₂ H ₅	н	н	C ₂ H ₅
50	CI	Н	C₂Hs	1	CH ₂ OC ₂ H ₅	н	н	CH ₂ OCH ₃
50	CI	Н	C₂H₅	1	CH ₂ OC ₂ H ₅	H	Н	CH ₃
	CI	н	C ₂ H ₅	1	CH₂OC₂H₅	н	н	n-C ₃ H ₇

Table 2 (continued)

								-
5	<u>B</u> 1	R ²	н ³	n	R ⁵	R ⁶	R ⁷	R ⁸
	Cl	Н	C ₂ H ₅	1	CH ₂ OC ₂ H ₅	Н	Н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	CH ₂ OC ₂ H ₅	н	н	tert-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	CH ₂ OCH ₃	н	Н	C₂H₅
10	CI	Н	C ₂ H ₅	1	CH ₂ OCH₃	н	н	CH ₂ OCH ₃
10	CI	н	C ₂ H ₅	. 1	CH ₂ OCH ₃	н	н	CH₃
	CI	Н	C₂H₅	1	CH ₂ OCH ₃	н	Н	n-C ₃ H ₇
	CI	Н	C₂Hs	1	CH ₂ OCH ₃	н	Н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	CH ₂ OCH ₃	н	Н	tert-C ₄ H ₉
15	CI	Н	C ₂ H _s	1	CH ₂ SCH₃	н	Н	C₂H₅
	CI	Н	C₂H₅	1	CH₂SCH₃	Н	н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	1	CH₂SCH₃	н	Н	CH₃
	Ct	Н	C ₂ H ₅	1	CH ₂ SCH ₃	Н	н	n-C ₃ H ₇
	CI	Н	C₂H₅	1	CH₂SCH₃	н	н	n-C ₄ H ₉
20	CI	Н	C ₂ H ₅	1	CH₂SCH₃	н	н	tert-C ₄ H ₉
	CI	Н	C₂H₅	1	CH3	н	Н	$\overline{}$
	CI	Н	C ₂ H ₅	1	CH ₃	·н	Н	COCH ₃
25	CI	Н	C ₂ H ₅	1	CH ₃	н	н	CO ₂ C ₂ H ₅
	CI	H	C ₂ H ₅	1	CH ₃	н	Н	CO₂CH₃
	CI	Н	C ₂ H ₅	1	COC₂H ₅	н	н	C ₂ H ₅
	CI	Н	C ₂ H ₅	1	COC₂H ₅	н	Н	CH₂OCH₃
	CI	Н	C₂H₅	1	COC ₂ H ₅	н	н	CH₃
30	CI	Н	C ₂ H ₅	1	COC ₂ H ₅	Н :	н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	COC₂H₅	н	Н	n-C ₄ H ₉
	CI	Н	C₂H₅	1	COC ₂ H ₅	н	Н	tert-C ₄ H ₉
	CI	H	C ₂ H ₅	1	COC ₃ H ₇ -n	н	Н	C₂Hs
35	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -n	н	Н	CH₂OCH₃
	CI	Н	C₂H₅	1	COC ₃ H ₇ -n	н	Н	CH₃
	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -n	н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	1	COC ₃ H ₇ -n	н	н	n-C ₄ H ₉
	CI	Н	C₂H₅	1	COC₃H ₇ -n	н	н	tert-C ₄ H ₉
40	CI	Н	C₂H ₅	1	COCH ₃	Н	Н	C₂Hs
	CI	Н	C₂H₅	1	COCH ₃	н	Н	CH₂OCH₃
	CI	Н	C ₂ H ₅	1	COCH ₃	н	Н	CH₃
	CI	Н	C ₂ H ₅	1	COCH ₃	н	Н	n-C₃H ₇
45	CI	Н	C₂H₅	1	COCH ₃	н	Н	n-C ₄ H ₉
	CI	Н	C₂H ₅	1	COCH₃	н	Н	tert-C ₄ H ₉
	CI	Н	C ₂ H ₅	1	Н	Н	Н	(CH₂)₅Br
	CI	Н	C ₂ H ₅	1	H	н	н	CH₂CH₂CO₂H
	CI	Н	C ₂ H ₅	1	Н	Н	Н	CH₂CH₂SCH₃
50	CI	Н	C₂H₅	1	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂H₅	1	н	Н	Н	CO ₂ CH ₃
	CI	Н	C₂H₅	1	Н	Н	Н	COCH

Table 2 (continued)

_	R ¹	R ²	д ³	n	R ⁵	R ⁶	R ⁷	R ⁸
5	CI	Н	C₂H₅	1	н	Н	Н	-0
	CI	Н	C₂H₅	1	Н	Н	Н	
	CI	Н	C ₂ H ₅	1	Н	н	Н	sec-C ₄ H ₉
10	CI	Н	C₂H₅	1	iso-C ₃ H ₇	н	Н	$\neg \triangleleft$
	CI	н	C ₂ H ₅	1	iso-C₃H ₇	Н	Н	COCH ₃
	CI	Н	C ₂ H ₅	1	iso-C ₃ H ₇	Н	н	CO ₂ CH ₃
15	CI	Н	C₂H₅	1	n-C ₃ H ₇	Н	Н	$\overline{}$
	CI	Н	C₂H₅	1	n-C ₃ H ₇	Н	Н	COCH ₃
	CI	Н	C₂H₅	1	n-C ₃ H ₇	н	Н	CO ₂ CH ₃
	CI	Н	C₂H₅	2	C₂H₅	Н	Н	$\neg \triangleleft$
20	CI	Н	C ₂ H ₅	2	C ₂ H ₅	н	Н	COCH ₃
	Cl	Н	C₂H₅	2	C₂H₅	Н	н	CO ₂ C ₂ H ₅
	CI	Н	C ₂ H ₅	2	C₂H₅	н	Н	CO ₂ CH ₃
	CI	Н	C ₂ H ₅	2	CH ₂ OC ₂ H ₅	Н	н	C₂Hs
25	CI	Н	C ₂ H ₅	2	CH ₂ OC ₂ H ₅	Н	Н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	2	CH ₂ OC ₂ H ₅	Н	Н	CH ₃
	CI	Н	C₂H₅	2	CH ₂ OC ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	CH ₂ OC₂H₅	Н	Н	n-C ₄ H ₉
	CI	H	C₂H₅	2	CH ₂ OC ₂ H ₅	Н	Н	tert-C₄He
30	CI	Н	C ₂ H ₅	2	CH₂OCH₃	Н	н	C₂H ₅
	CI	Н	C ₂ H ₅	2	CH ₂ OCH ₃	н	Н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	2	CH2OCH3	н	н	CH₃
	CI	Н	C₂Hs	2	CH ₂ OCH ₃	Н	Н	n-C ₃ H ₇
35	CI	Н	C ₂ H ₅	2	CH ₂ OCH ₃	Н	н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	CH ₂ OCH ₃	Н	Н	tert-C ₄ H ₉
•	CI	Н	C₂H₅	2	CH₂SCH₃	Н	Н	C₂H₅
	CI	Н	C₂H₅	2	CH₂SCH₃	Н	Н	CH ₂ OCH ₃
	CI	Н	C ₂ H ₅	2	CH ₂ SCH ₃	Н	Н	CH ₃
40	CI	Н	C₂H₅	2	CH₂SCH₃	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	CH₂SCH₃	Н	Н	n-C ₄ H ₉
	CI	Н	C₂H₅	2	CH₂SCH₃	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	2	CH ₃	Н	Н	-
45	CI	Н	C₂Hs	2	CH ₃	н	Н	COCH ₃
	CI	Н	C₂H₅	2	CH ₃	н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂Hs	2	CH ₃	н	Н	CO ₂ CH ₃
	CI	н	C ₂ H ₅	2	COC₂H₅	н	Н	C₂H₅
50	CI	Н	C₂Hs	2	COC₂H ₅	н	н	CH ₂ OCH ₃
	CI	Н	C₂Hs	2	COC ₂ H ₅	Н	Н	CH ₃
	CI	Н	C ₂ H ₅	2	COC ₂ H ₅	н	н	n-C₃H ₇

Table 2 (continued)

5	<u>R¹</u>	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ^B
3	CI	Н	C ₂ H ₅	2	COC ₂ H ₅	Н	Н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	COC₂H ₅	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	2	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
	CI	Н	C₂H₅	2	COC ₃ H ₇ -n	Н	Н	CH₂OCH₃
10	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	Н	Н	CH ₃
	CI	Н	C₂H₅	2	COC ₃ H ₇ -n	Н	Н	n-C ₃ H ₇
	CI	Н	C ₂ H ₅	2	COC₃H₂-n	Н	Н	n-C ₄ H ₉
	CI	Н	C ₂ H ₅	2	COC ₃ H ₇ -n	Н	Н	tert-C₄H ₉
15	CI	Н	C₂H₅	2	COCH ₃	Н	Н	C ₂ H ₅
10	CI	H	C₂H₅	2	COCH ₃	Н	н	CH2OCH3
	CI	Н	C₂H₅	2	COCH ₃	Н	н	CH₃
	CI	Н	C₂H₅	2	COCH ₃	Н	Н	n-C ₃ H ₇
	CI	Н	C₂H₅	2	COCH ₃	Н	Н	n-C ₄ H ₉
20	CI	Н	C₂H₅	2	COCH ₃	Н	Н	tert-C ₄ H ₉
	CI	Н	C₂H₅	2	Н	Н	Н	(CH₂)₅Br
	CI	Н	C₂H₅	2	Н	Н	Н	CH₂CH₂CO₂H
	CI	Н	C ₂ H ₅	2	Н	Н	Н	CH₂CH₂SCH₃
25	CI	Н	C₂H₅	2	н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	C₂H₅	2	Н	Н	Н	CO₂CH₃
	CI	Н	C ₂ H ₅	2	Н	Н	Н	COCH ₃
	CI	Н	C₂H₅	2	Н	н	Н	$\overline{}$
30	CI	Н	C ₂ H ₅	2	Н	Н	Н	
	CI	Н	C₂H₅	2	н	н	н	sec-C ₄ H ₉
	CI	н	C₂H₅	2	iso-C₃H7	Н	н	4
35								\rightarrow
	CI	Н	C₂H₅	2	iso-C ₃ H ₇	Н	Н	COCH₃
	CI	Н	C ₂ H ₅	2	iso-C ₃ H ₇	Н	Н	CO ₂ CH ₃
	CI	Н	C₂H₅	2	n-C ₃ H ₇	Н	Н	$\neg \triangleleft$
40	CI	Н	C₂H₅	2	n-C ₃ H ₇	Н	Н	COCH ₃
	CI	Н	C₂H₅	2	n-C ₃ H ₇	Н	н	CO ₂ CH ₃
	CI	Н	CH₂CF₃	0	C ₂ H ₅	н	Н	C₂Hs
	CI	Н	CH ₂ CF ₃	0	C₂H₅	Н	Н	CH₂OCH₃
45	CI	Н	CH ₂ CF ₃	0	C₂Hs	Н	Н	CH ₃
10	CI	Н	CH ₂ CF ₃	0	C₂H₅	Н	Н	n-C ₃ H ₇
	CI	Н	CH₂CF₃	0	CH₃	Н	Н	C ₂ H ₅
	CI	Н	CH₂CF₃	0	CH ₃	Н	Н	CH₂OCH₃
	CI	Н	CH₂CF₃	0	CH₃	Н	Н	CH ₃
50	CI	Н	CH ₂ CF ₃	0	CH ₃	Н	Н	n-C₃H ₇
	CI	Н	CH₂CF₃	1	C₂Hs	Н	Н	C ₂ H ₅
	CI	Н	CH₂CF₃	1	C₂H₅	Н	Н	CH ₂ OCH ₃

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
-	CI	Н	CH₂CF₃	1	C₂H₅	Н	Н	CH ₃
	CI	Н	CH₂CF₃	1	C₂H₅	Н	Н	n-C₃H ₇
	CI	Н	CH₂CF₃	1	CH ₃	Н	Н	C₂H₅
	CI	Н	CH₂CF₃	1	CH ₃	Н	Н	CH ₂ OCH ₃
10	CI	Н	CH₂CF₃	1	CH ₃	Н	Н	CH ₃
	CI	Н	CH₂CF₃	1	CH₃	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₂ CF ₃	2	C₂H₅	Н	Н	C₂H₅
	CI	Н	CH ₂ CF ₃	2	C₂Hs	Н	Н	CH ₂ OCH ₃
15	CI	Н	CH₂CF₃	2	C₂H ₅	Н	Н	CH ₃
,,,	CI	Н	CH₂CF₃	2	C ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	CH₂CF₃	2	CH₃	Н	Н	C₂H₅
	CI	Н	CH₂CF₃	2	CH ₃	Н	н	CH ₂ OCH ₃
	CI	Н	CH₂CF₃	2	CH ₃	Н	Н	CH₃
20	CI	Н	CH₂CF₃	2	CH₃	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	C₂H₅	Н	Н	- <1
								•
	CI	Н	CH ₃	0	C₂H₅	Н	Н	COCH ₃
25	CI	H	CH ₃	0	C₂H₅	Н	Н	CO₂C₂H₅
25	CI	Н	CH ₃	0	C₂H₅	Н	Н	CO ₂ CH ₃
	CI	Н	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	C₂H₅
	CI	Н	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	CH ₂ OCH ₃
	CI	Н	CH ₃	0	CH2OC2H5	Н	Н	n-C ₃ H ₇
30	CI	Н	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	n-C₄H₃
	CI	Н	CH ₃	0	CH ₂ OC ₂ H ₅	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	CH₂OCH₃	Н	Н	C₂H ₅
	CI	Н	CH₃	0	CH₂OCH₃	Н	Н	CH ₂ OCH ₃
35	CI	Н	CH ₃	0	CH₂OCH₃	Н	Н	n-C ₃ H ₇
33	CI	Н	CH ₃	0	CH₂OCH₃	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	0	CH₂OCH₃	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	C₂Hs
	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	CH₂OCH₃
40	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	n-C₃H ₇
	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	n-C₄H₃
	CI	Н	CH ₃	0	CH₂SCH₃	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	CH ₃	Н	Н	\rightarrow
45	CI	н	CH ₃	0	CH ₃	н	н	COCH ₃
	CI	H	CH ₃	0	CH ₃	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	0	CH₃	Н	Н	CO₂CH₃
	CI	Н	CH ₃	0	COC₂H₅	Н	Н	C ₂ H ₅
50	CI	Н	CH ₃	0	COC₂H₅	Н	н	CH₂OCH₃
	CI	Н	CH ₃	0	COC₂H ₅	H	н	n-C ₃ H ₇
	CI	Н	CH ₃	0	COC₂H ₅	н	Н	n-C ₄ H ₉

Table 2 (continued)

								-
5	<u>R</u> 1	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸
	CI	Н	CH ₃	0	COC₂H₅	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	н	CH₂OCH₃
10	CI	Н	CH₃	0	COC ₃ H ₇ -n	Н	н	CH ₃
10	CI	Н	CH ₃	0	COC ₃ H ₇ -n	Н	Н	n-C₃H₂
	CI	Н	CH₃	0	COC ₃ H ₇ -n	н	Н	n-C ₄ H ₉
	CI	Н	CH₃	0	COC₃H ₇ -n	Н	н	tert-C ₄ H ₉
	CI	Н	CH ₃	0	COC ₆ H ₅	Н	Н	CH ₃
15	CI	Н	CH₃	0	COCH ₃	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	0	COCH ₃	Н	Н	CH₂OCH₃
	CI	Н	CH ₃	0	COCH ₃	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	0	COCH ₃	н	Н	n-C ₄ H ₉
20	CI	Н	CH₃	. 0	COCH ₃	н	н	tert-C ₄ H ₉
20	CI	Н	CH₃	0	Н	н	Н	(CH₂)sBr
	CI	Н	CH ₃	0	Н	Н	Н	CH₂CH₂CO₂H
	CI	Н	CH ₃	0	Н	Н	Н	CH₂CH₂SCH₃
	CI	Н	CH₃	0	н	Н	н	CH ₂ CO ₂ CH ₃
25	CI	Н	CH₃	0	Н	н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	0	Н	Н	н	CO₂CH₃
	CI	Н	CH₃	0	н	Н	Н	COCH ₃
	CI	Н	CH ₃	0	iso-C ₃ H ₇	н	Н	$\overline{}$
30	CI	н	СН₃	•	ion C I I	• •		•
	Ci	Н	CH ₃	0 0	iso-C₃H7 iso-C₃H7	Н	Н	COCH ₃
	CI	н	CH ₃	0		Н	Н	CO₂CH₃
	O.	• •	CH3	U	n-C₃H ₇	Н	Н	\rightarrow
35	CI	Н	. CH ₃	0	n-C ₃ H ₇	н	н	COCH ₃
35	CI	Н	CH ₃	0	n-C ₃ H ₇	Н	Н	CO ₂ CH ₃
	CI	Н	CH ₃	1	C₂H₅	н	Н	1
							••	~
	CI	Н	CH ₃	1	C₂H₅	Н	Н	COCH ₃
40	CI	Н	CH₃	1	C₂Hs	н	н	CO ₂ C ₂ H ₅
	CI	Н	CH₃	1	C₂H₅	н	н	CO ₂ CH ₃
	CI	Н	CH ₃	1	CH ₂ OC ₂ H ₅	Н	н	C₂H₅
	CI	Н	CH ₃	1	CH ₂ OC ₂ H ₅	Н	Н	CH ₂ OCH ₃
4 5	CI	Н	CH ₃	1	CH2OC2H5	н	н	CH₃
	CI	Н	CH ₃	1	CH ₂ OC ₂ H ₅	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	1	CH ₂ OC ₂ H ₅	Н	н	n-C₄H₃
	CI	Н	CH ₃	1	CH2OC2H5	н	Н	tert-C₄H₀
	CI	Н	CH ₃	1	CH ₂ OCH ₃	Н	Н	C₂H _s
50	CI	Н	CH ₃	1	CH ₂ OCH ₃	Н	Н	CH₂OCH₃
	CI	Н	CH ₃	1	CH₂OCH₃	Н	Н	CH ₃
	CI	Н	CH ₃	1	CH₂OCH₃	Н	Н	n-C₃H₁

Table 2 (continued)

_	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	R ⁸⁻
5	CI	Н	CH ₃	1	CH ₂ OCH ₃	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	1	CH₂OCH₃	Н	Н	tert-C ₄ H ₉
	CI	Н	CH₃	1	CH₂SCH₃	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	1	CH₂SCH₃	Н	н	CH₂OCH₃
10	CI	Н	CH₃	1	CH₂SCH₃	н	Н	CH ₃
	CI	Н	CH₃	1	CH₂SCH₃	н	н	n-C ₃ H ₇
	CI	Н	CH₃	1	CH ₂ SCH₃	Н	н	n-C ₄ H ₉
	CI	Н	CH ₃	1	CH₂SCH₃	Н	Н	tert-C ₄ H ₉
15	CI	Н	CH ₃	1	CH ₃	Н	н	$\neg \triangleleft$
	CI	Н	CH ₃	1	CH ₃	Н	н	COCH ₃
	CI	Н	CH₃	1	CH ₃	н	н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	1	CH ₃	Н	Н	CO₂CH₃
20	CI	Н	CH ₃	1	COC₂H₅	н	н	C₂H₅
	CI	Н	CH₃	1	COC₂Hs	Н	н	CH₂OCH₃
	CI	Н	CH ₃	1	COC₂H₅	Н	Н	CH ₃
	CI	Н	CH₃	1	COC₂H ₅	н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	1	COC₂H ₅	Н	,H	n-C ₄ H ₉
25	CI	Н	CH ₂	1	COC₂H₅	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	1	COC ₃ H ₇ -n	Н	H	C ₂ H ₅
	CI	Н	CH₃	1	COC₃H ₇ -n	Н	Н	CH ₂ OCH ₃
	CI	Н	CH₃	1	COC₃H ₇ -n	Н	Н	CH ₃
30	Cl	Н	CH ₂	1	COC₃H ₇ -n	Н	Н	n-C₃H ₇
	CI	Н	CH ₃	1	COC₃H₂-n	Н	н	n-C₄H•
	CI	Н	CH₃	1	COC ₃ H ₇ -n	Н	Н	tert-C ₄ H ₉
	CI	H	CH ₃	1	COCH ₃	н	Н	C ₂ H ₅
35	CI	Н	CH ₃	1	COCH ₃	Н	Н	CH₂OCH₃
33	CI	Н	CH3	1	COCH ₃	Н	Н	CH ₃
	CI	Н	CH ₃	1	COCH ₃	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	1	COCH ₃	Н	Н	n-C ₄ H ₉
	CI	H	CH ₃	1	COCH ₃	Н	Н	tert-C ₄ H ₉
40	CI	Н	CH ₃	1	Н	Н	Н	(CH₂)₅Br
	CI	Н	CH₃	1	Н	Н	Н	CH₂CH₂CO₂H
	CI	Н	CH ₃	1	Н	Н	Н	CH₂CH₂SCH₃
	CI	Н	CH ₃	1	Н	Н	Н	CH ₂ CO ₂ CH ₃
45	Cł	Н	CH ₃	1	Н	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	1	Н	Н	H	CO₂CH₃
	CI	Н	CH ₃	1	Н	Н	Ĥ	COCH ₃
	CI	Н	СН₃	1	Н	Н	Н ,	$\overline{}$
50	CI	н	CH ₃	1	Н	н	н	- <>
	CI	Н	CH ₃	1	Н	Н	Н	sec-C ₄ H ₉

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	я ⁶	R ⁷	- Я ⁸
	CI	Н	CH ₃	1	iso-C ₃ H ₇	Н	н	\rightarrow
	CI	Н	CH ₃	1	iso-C₃H ₇	Н	Н	COCH ₃
40	CI	Н	CH ₃	1	iso-C ₃ H ₇	н	Н	CO₂CH₃
10	CI	н	СН₃	1	n-C ₃ H ₇	Н	Н	\rightarrow
	CI	Н	CH ₃	1	n-C ₃ H ₇	Н	н	COCH₃
	CI	Н	CH ₃	1	n-C ₃ H ₇	Н	Н	CO₂CH₃
15	Cl	н	CH ₃	2	C ₂ H ₅	Н	Н	\rightarrow
	CI	Н	CH ₃	2	C ₂ H ₅	Н	н	COCH ₃
	CI	Н	CH₃	2	C ₂ H ₅	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	2	C ₂ H ₅	Н	Н	CO₂CH₃
20	CI	Н	CH ₃	2	CH ₂ OC ₂ H ₅	н	н	C₂H́s
	CI	Н	CH ₃	2	CH2OC2H5	Н	Н	CH₂OCH₃
	CI	Н	CH ₃	2	CH ₂ OC ₂ H ₅	Н	Н	CH ₃
	CI	H	CH ₃	2	CH2OC2H5	Н	Н	n-C₃H ₇
05	Ci	Н	CH ₃	2	CH₂OC₂H₅	Н	Н	n-C ₄ H ₉
25	CI	Н	CH ₃	2	CH ₂ OC ₂ H ₅	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	2	CH ₂ OCH ₃	н	н	C₂H₅
	CI	Н	CH ₃	2	CH₂OCH₃	Н	Н	CH ₂ OCH ₃
	CI	Н	CH ₃	2	CH₂OCH₃	н	Н	CH₃
30	CI	Н	CH ₃	2	CH2OCH3	Н	Н	n-C ₃ H ₇
	CI	Н	CH ₃	2	CH ₂ OCH ₃	Н	н	n-C₄H ₉
	CI	Н	CH ₃	2	CH₂OCH₃	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	2	CH₂SCH₃	Н	Н	C₂Hs
25	CI	Н	CH ₃	2	CH₂SCH₃	Н	н	CH ₂ OCH ₃
35	CI	Н	CH ₂	2	CH₂SCH₃	Н	н	CH₃
	CI	Н	CH₃	2	CH₂SCH₃	Н	н	n-C ₃ H ₇
	CI	Н	CH ₃	2	CH₂SCH₃	Н	Н	n-C₄H₃
	CI	Н	CH₃	2	CH₂SCH₃	н	н	tert-C ₄ H ₉
40	CI	Н	CH ₃	2	CH ₃	н	Н	\neg
	CI	Н	CH₃	2	CH ₃	н	Н	COCH ₃
	CI	Н	CH ₃	2	CH ₃	Н	Н	CO ₂ C ₂ H ₅
	CI	Н	CH ₃	2	CH₃	H ·	Н	CO ₂ CH ₃
45	CI	Н	CH ₃	2	COC₂H₅	Н	Н	C ₂ H ₅
	CI	Н	CH ₃	2	COC₂H₅	Н	н	CH ₂ OCH ₃
	CI	Н	CH ₃	2	COC ₂ H ₅	Н	Н	CH ₃
	CI	Н	CH ₃	2	COC₂H ₅	Н	Н	n-C ₃ H ₇
50	CI	Н	CH ₃	2	COC₂H ₅	Н	Н	n-C ₄ H ₉
	CI	Н	CH ₃	2	COC₂H ₅	Н	н	tert-C ₄ H ₉
	CI	н	CH ₃	2	COC ₃ H ₇ -n	Н	Н	C ₂ H ₅

Table 2 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	_ R ⁷	R ⁸
•	CI	Н	CH ₃	2	COC ₃ H ₇ -n	Н	Н	CH₂OCH₃
	CI	Н	CH₃	2	COC₃H₁-n	Н	Н	CH₃
	CI	Н	CH ₃	2	COC₃H ₇ -n	Н	Н	n-C₃H ₇
40	CI	Н	CH ₃	2	COC₃H ₇ -n	Н	Н	n-C ₄ H ₉
10	CI	Н	CH ₃	2	COC₃H ₇ -n	Н	Н	tert-C ₄ H ₉
	CI	Н	CH ₃	2	COCH ₃	н	Н	C ₂ H ₅
	CI	Н	CH ₃	2	COCH3	Н	Н	CH ₂ OCH ₃
•	CI	Н	CH₃	2	COCH ₃	Н	н	CH ₃
15	CI	Н	CH ₃	2	COCH ₃	н	н	n-C₃H ₇
	CI	Н	CH ₃	2	COCH ₃	Н	Н	n-C ₄ H ₉
	CI	Н	CH₃	2	COCH ₃	Н	Н	tert-C ₄ H ₉
	CI ·	Н	CH₃	2	Н	Н	Н	(CH ₂) ₅ Br
20	CI	Н	CH ₃	2	Н	Н	Н	CH₂CH₂CO₂H
	CI	Н	CH ₃	2	Н	Н	н	CH₂CH₂SCH₃
	CI	Н	CH₃	2	Н	Н	Н	CH₂CO₂CH₃
	CI	Н	CH ₃	2	Н	н	Н	CO ₂ C ₂ H ₅
25	CI	Н	CH₃	2	Н	Н	н	CO₂CH₃
	CI	Н	CH₃	2	Н	Н	Н	COCH ₃
	Cl	Н	CH ₃	2	Н	н	Н	$\overline{}$
30	CI	Н	CH ₃	2	Н	Н	Н	
	CI	Н	CH ₃	2	Н	Н	н	sec-C ₄ H ₉
	CI	Н	CH ₃	2	iso-C₃H7	Н	Н	$\overline{}$
35	CI	Н	CH ₃	2	iso-C₃H ₇	Н	Н	COCH ₃
	CI	Н	CH ₃	2	iso-C₃H7	н	н	CO ₂ CH ₃
	CI	Н	CH3	2	n-C₃H ₇	н	Н	$\overline{}$
	CI	Н	CH₃	2	n-C ₃ H ₇	н	н	COCH ₃
40	CI	Н	CH ₃	2	n-C₃H ₇	Н	Н	CO ₂ CH ₃

Table 3

5

10

 R^1 R^2 R^3 R⁴ R⁵ R⁶ R⁷ 15 Br Н C₂H₅ 0 Н Н Н Н Br Н C₂H₅ 0 tert-C₄H₉ Н Н н Br H C_2H_5 2 Н н Н Н Br Н C_2H_5 1 Н Н Н Н 20 Br H CH₃ 0 Н н Н Н Br Н CH₃ 0 tert-C₄H₉ Н Н Н Br Н CH₃ 2 Н Н н Н Br Н CH₃ 2 CH₃ CH₃ Н Н 25 Br H CH₃ 2 CH₃ Н Н Н Br H CH₃ 2 C_6H_5 H -Н Н Br H CH₃ 2 Н Н Н 30 Br H CH₃ 1 Н Н Н Н CI H C₂H₅ 0 Н Н Н Н CI H C_2H_5 0 tert-C₄H₉ Н Н Н CI H C_2H_5 2 н Н Н Н CI Н C_2H_5 2 CH₃ 35 CH₃ Н Н CI H C₂H₅ 2 CH₃ Н Н Н CI H C₂H₅ 2 C₆H₅ н Н Н CI H C₂H₅ 2 Н Н Н 40 CI H 2 C_2H_5 Н Н н CI H C_2H_5 1 н Н Н Н CI H CH₃ 0 Н Н н Н 45 CI H CH₃ 0 tert-C₄H₉ Н Н Н CI H CH₃ 2 Н Н Н Н CI H CH₃ 2 CH₃ н Н Н CI Н CH₃ 2 iso-C₃H₇ Н Н Н

2

2

2

55

50

CI H

CI H

CI H

CH₃

CH₃

CH₃

CH,CH=CH,

CH₃

n-C₄H₉

Н

Н

CH₃

н

Н

Н

Н

Н

Н

Table 3 (continued)

5	R ¹ R	² R ³	n_	R ⁴	R ⁵	R ⁶	R ⁷	
	CI H	CH ₃	2	CH ₂ C ₆ H ₅	Н	Н	Н	-
	CI H	CH ₃	2	CH ₃	C ₆ H ₅	Н	Н	
	CI H	CH ₃	2	C ₆ H ₅	н	н	н	
10	CI H	CH ₃	2	-√_>-cı	Н	Н	Н	
	CI H	CH ₃	2	-√_>CI	н	н	Н	
15	сі н	CH ₃	2	CI ————————————————————————————————————	н	Н	н	
	ÇI H	CH ₃	2	{_}}-Br	н	н	н	
20	CI H	CH ₃	2	-{_}-a•j	н	Н	н	
	CI H	CH ₃	2	(}-coF₃	Н	Н	Н	
	CI H	CH ₃	2	-√_>-oo+j	н	Н	Н	
25	сі н	CH ₃	2	CI 	н	н	н	
	CI H	CH ₃	2	-{_}-a+a+g₂	н	Н	Н	
30	CI H	CH ₃	2	-\(\bar{-}\)\-\NO_2	Н	н	Н	
	CI H	CH ₃	2	-√_}-F	Н	н	н	
	CI H	CH ₃	1	н	Н	н	Н	
35	CI H	~	0	Н	Н	Н	Н	
	CI H	4	1	Н	Н	Н	н	
	CI H	3	0	Н	Н	Н	н	
	CI H	2 3	0	Н	Н	Н	н	
40	CI H	2 2	0	Н	Н	Н	н	
	CI H	CH,CHF,	0	Н	н	Н	н	

						Tab	le 4	·			
5	R NH-C-N 11 2 11										
10				R R		% N=C \	\frac{1}{2}	,S(C CH I₂ R	3 0)n-R		
15								Ŕ			
	R ¹	R^2	R ³	n	R ⁵	R^6	R ⁷	Z	R ¹⁰	R ¹¹	
	Br	H	CH ₃	0	H	н	H	0	н	C ₆ H ₅	
-	Br	Н	CH ₃	0	Н	Н	Н	0	Н	н	
20	Br	Н	CH ₃	0	Н	Н	Н	S	Н	Н	
	Br	Н	CH ₃	1	Н	Н	H	0	Н	Н	
	CI	Н	CH ₂ CF ₃	0	Н	Н	Н	0	Н	Н	
	CI	Н	CH ₂ CF ₃	0	Н	Н	Н	S	Н	Н	
25	CI	Н	CH ₂ CH ₂ F	0	Н	Н	Н	0	Н	Н	
	CI	Н	CH ₂ CH ₂ F	0	Н	Н	Н	S	Н	Н	
	CI	Н	CH ₂ CHF ₂	0	Н	Н	Н	0	Н	Н	
	CI	Н	CH ₂ CHF ₂	0	Н	Н	Н	S	Н	Н	
30	Ci	Н	CH₃	0	Н	Н	Н	S	CH ₃	CH ₃	
	CI	Н	CH ₃	0	Н	Н	Н	0	Н	C ₂ H ₅	
	CI	Н	CH ₃	0	Н	Н	Н	0	н	- ⟨_ }-cı	
<i>35</i>	CI	Н	CH ₃	0	Н	Н	Н	0	Н	-{_}-\\\	
	Cl	Н	CH ₃	0	Н	Н	Н	0	Н	C ₆ H ₅	
	CI	Н	CH ₃	0	Н	Н	H	S	Н	C _s H ₅	
	CI	Н	CH ₃	0	Н	Н	Н	0	Н	CH ₂ CH ₂ CI	
40	CI	Н	CH ₃	0	Н	Н	н	0	Н	CH ₃	
	CI	Н	CH ₃	0	Н	Н	Н	S	Н	CH₃	
	CI	Н	CH₃	0	Н	Н	Н	0	Н	н	
	CI	Н	CH ₃	0	Н	Н	Н	s	Н	Н	
45	CI	Н	CH ₃	2	Н	Н	Н	0	Н	C ₂ H ₅	
	CI	Н	CH ₃	2	Н	Н	Н	S	Н	H	

Table 4 (continued)

5	R ¹	R ²	R ³	n	R ⁵	R ⁶	R ⁷	Z	R ¹⁰	R ¹¹
	CI	Н	CH ₃	1	Н	н	Н	s	Н	Н
10	CI	н	CH ₃	0	Н	Н	Н	0	Н	CI ————————————————————————————————————
	CI	н	CH ₃	0	Н	Н	Н	0	Н	H ₃ CO
15	CI	Н	CH ₃	0	Н	Н	Н	s	н	- ⟨ <u>-</u> ⟩

20 In process (a), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone and ethyl carbazate are used as the starting materials, the reaction is illustrated by the following equation:

25
$$CI \xrightarrow{C} CH_{\overline{2}} S \cdot CH_{3} + H_{2}N - NH \cdot C \cdot O \cdot C_{2}H_{5}$$

$$NH - C - O - C_{2}H_{5}$$

$$NH - C - O - C_{2}H_{5}$$

$$CI \xrightarrow{C} CH_{\overline{2}}S - CH_{3}$$

45

50

55

In process (b), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone hydrazone and 4-trifluoro-methoxyphenyl isocyanate are used as the starting materials, the reaction is illustrated by the following equation:

In process (c), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone hydrazone and isobutyl chlorocarbonate are used as the starting materials, the reaction is illustrated by the following equation:

25
$$\begin{array}{c}
 & \text{NH}_{2} \\
 & \text{N} \\
 & \text{CI}
\end{array}$$

$$\begin{array}{c}
 & \text{CI} \\
 & \text{CH}_{2}\text{S}-\text{CH}_{3}
\end{array}$$

$$\begin{array}{c}
 & \text{O} \\
 & \text{II} \\
 & \text{CI}
\end{array}$$

$$\begin{array}{c}
 & \text{O} \\
 & \text{II} \\
 & \text{NH}\cdot\text{C}\cdot\text{O}-\text{CH}_{2}\text{CH}(\text{CH}_{3})_{3}
\end{array}$$

$$\begin{array}{c}
 & \text{O} \\
 & \text{NH}\cdot\text{C}\cdot\text{O}-\text{CH}_{2}\text{CH}(\text{CH}_{3})_{3}
\end{array}$$

$$\begin{array}{c}
 & \text{NH}\cdot\text{C}\cdot\text{O}-\text{CH}_{2}\text{CH}(\text{CH}_{3})_{3}
\end{array}$$

$$\begin{array}{c}
 & \text{NH}\cdot\text{C}\cdot\text{O}-\text{CH}_{2}\text{CH}(\text{CH}_{3})_{3}
\end{array}$$

$$\begin{array}{c}
 & \text{NH}\cdot\text{C}\cdot\text{O}-\text{CH}_{2}\text{CH}(\text{CH}_{3})_{3}
\end{array}$$

40

45

50

55

In process (d), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone and methyliodide are used as the starting materials, the reaction is illustrated by the following equation:

20

25

45

50

55

In process (e), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone is oxidized by sodium periodate, the reaction is illustrated by the following equation:

In process (f), if, for example, 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone is oxi-40 dized by m-chloroperbenzoic acid, the reaction is illustrated by the following equation:

In process (a), the compounds of the formula (II) mean compounds based on the above definitions of R¹, R², R³, R⁶, R⁷ and n, preferably compounds based on the above preferred definitions.

The starting compounds of the formula (II) are novel, and can be obtained by the following processes: (g) in the case where n is 0: compounds of the formula (XI)

$$\begin{array}{c}
R^{6} & O \\
R^{7} & CH-hal \\
R^{2}
\end{array}$$
(XI)

wherein R¹, R², R⁶, R⁷ and hal have the same meaning mentioned above, are reacted with compounds of the formula (XII) or salts thereof

wherein R3 has the same meaning mentioned above,

in the presence of inert solvent, and if appropriate, in the presence of an acid binder,

(h) in the case where n is 0:

compounds of the formula (XIII) or salts thereof

wherein R1, R2, R6 and R7 have the same meaning mentioned above, are reacted with compounds of the formula (XIV)

$$R^{15}-R^3 (XIV)$$

5

wherein R³ has the same meanings mentioned above, and R¹⁵ is chlorine, bromine or iodine; in the presence of an inert solvent, and if appropriate, in the presence of an acid binder,

(i) in the case where n is 0 and R¹ is fluorine or chlorine:

compounds of the formula (XV)

NC
$$R^7$$
 $S-R^3$ (XV)

20

15

wherein R2, R3 and R7 have the same meaning mentioned above, are reacted with compounds of the formula (XVI)

25

$$\mathbb{R}^{16} \longrightarrow \mathbb{R}^{17}$$
 (XVI)

30

wherein R⁶ has the same meaning mentioned above and R¹⁶ is fluorine or chlorine, and R¹⁷ is lithium, magnesium bromide or magnesium iodide, in the presence of an inert solvent, and if appropriate, in the presence of an acid binder, 35

(k) in the case where n is 0: compounds of the formula (XVII

40

$$R^{17} \xrightarrow{R^7} CH-S-R^3$$
(XVII)

45

wherein R2, R3, R7 and R16 have the same meanings as mentioned above, are reacted with compounds of the 50 formula (XVIII)

wherein R1 and R6 have the same meanings as mentioned above, in the presence of an inert solvent,

or (m) in the case where n is 0, R^2 is hydrogen and R^3 is perfluoroalkyl, then R^3 is replaced by R^{18} : compounds of the formula (XIX)

wherein R^1 , R^6 and R^7 have same meaning as mentioned above, are reacted with compounds of the formula (XX)

R¹⁸-I XX()

wherein R^{18} is C_{1-4} perfluoroalkyl, o in the presence of an inert solvent, an if appropriate, in the presence of an acid binder,

(n) in the case where n is 0 and R^2 is C_{1-4} alkyl, then R^2 is replaced by R^{19} : compounds of the formula (XXI)

 $R^{1} \xrightarrow{C} \xrightarrow{C} R^{7} CH_{2}-S-R^{3}$ (XXI)

wherein R¹, R³, R⁶ and R⁷ have same meaning as mentioned above, are reacted with compounds of the formula

wherein hall has the same meaning as mentioned above and R^{19} is C_{1-4} alkyl, in the presence of an inert solvent, and if appropriate in the presence of an acid binder, or

(p) in the case where n is 1:

5

25

30

35

50

40 compounds of the formula (XXIII)

 $R^{6} \qquad \qquad \begin{array}{c} O \\ II \\ C \\ C \\ C \\ C \\ R^{7} \end{array}$ $CH-S-R^{3}$ $R^{2} \qquad \qquad (XXIII)$

wherein R^1 , R^2 , R^3 , R^6 and R^7 have the same meaning mentioned above, are oxidized, if appropriate, in the presence of an inert solvent,

(q) in the case where n is 2: compounds of the formula (XXIV)

55 Compounds of the formula (AATV)

$$R^{6} \qquad \qquad \downarrow \\ R^{1} \qquad \qquad \downarrow \\ R^{1} \qquad \qquad \downarrow \\ CH-S(O)q-R^{3} \qquad \qquad (XXIV)$$

wherein R^1 , R^2 , R^3 , R^6 , R^7 and q have the same meaning mentioned above, are oxidized, if appropriate, in the presence of an inert solvent.

Examples of the compounds of the formula (II) are shown in Table 5:

Table 5

	R ¹	R ⁶	R ⁷	A	R ¹	R ⁶	R ⁷	A
	Br	Н	Н	CH(CH ₃)SCH ₃	CI	Н	н.	CH ₂ S(CH ₂) ₃ F
	Br	Н	Н	CH(CH3)SO2CH3	CI	Н	Н	CH ₂ SC ₂ H ₅
15	Br	Н	Н	CH(CH ₃)SOCH ₃	CI	н	Н	CH ₂ SC ₃ H ₇ -iso
	Br	Н	Н	CH ₂ SC ₂ H ₅	CI	н	н	CH ₂ SC ₃ H ₇ -n
	Br	Н	Н	CH ₂ SC ₃ H ₇ -n	CI	Н	Н	CH₂SC₄H ₉ -n
÷	Br	Н	Н	CH ₂ SCF ₃	CI	Н	н	CH ₂ SC ₄ H ₉ -sec
20	Br	Н	Н	CH ₂ SCH ₂ CF ₃	CI	Н	Н	CH ₂ SCF ₂ CF ₂ CF ₃
	Br	Н	Н	CH₂SCH₂CH≃CH₂	CI	Н	н	CH ₂ SCF ₂ CF ₃
	Br	Н	Н	CH ₂ SCH ₂ CH ₂ F	CI	н	н	CH ₂ SCF ₂ CHF ₂
	8r	Н	Н	CH ₂ SCH ₂ CHF ₂	CI	Н	н	CH ₂ SCF ₃
25	Br	Н	Н	CH ₂ SCH ₂ F	CI	Н	Н	CH ₂ SCH ₂ C≡CH
20	Br	Н	н	CH₂SCH₃	CI	Н	н	CH ₂ SCH ₂ CF ₂ CF ₂ H
	Br	Н	Н	CH ₂ SCHF ₂	CI	Н	Н	CH ₂ SCH ₂ CF ₂ CF ₃
	Br	Н	Н	CH ₂ SO ₂ C ₂ H ₅	CI	Н	н	CH ₂ SCH ₂ CF ₃
	Br	Н	Н	CH ₂ SO ₂ C ₃ H ₇ -n	CI	Н	н	CH,SCH=CH,
30	Br	Н	Н	CH2SO2CH2CF3	CI	Н	н	CH2SCH2CH=CH2
	Br	Н	Н	CH2SO2CH2CH=CH2	CI	Н	н	CH2S CH2CH2CH2CI
	Br	Н	Н	CH ₂ SO ₂ CH ₂ CH ₂ F	CI	Н	Н	CH ₂ SCH ₂ CH ₂ CI
	Вr	Н	н	CH ₂ SO ₂ CH ₂ CHF ₂	CI	Н	Н	CH ₂ SCH ₂ CH ₂ F
35	Br	Н	Н	CH ₂ SO ₂ CH ₃	CI	H-	Н	CH ₂ SCH ₂ CHF ₂
	Br	н	Н	CH ₂ SOC ₂ H ₅	CI	Н	н	CH ₂ SCH ₂ CN
	Br	Н	Н	CH ₂ SOC3H ₇ -n	CI	Н	Н	CH ₂ SCH ₂ F
	Br	Н	Н	CH ₂ SOCH ₂ CF ₃	CI	Н	н	CH ₂ SCH ₂ CI
	Br	Н	Н	CH2SOCH2CH=CH2	Cî	н	Н	CH ₂ SCH ₃
40 -	Br	Н	Н	CH2SOCH2CH2F	CI	Н	2-CI	CH ₂ SCH ₃
	Br	Н	н	CH2SOCH2CHF2	CI	н	3-CI	CH ₂ SCH ₃
	Br	Н	Н	CH ₂ SOCH ₂ F	CI	н	2-F	CH₂SCH₃
	Br	Н	Н	CH ₂ SOCH ₃	CI	Н	3-F	CH ₂ SCH ₃
45	Br	Н	Н	CH ₂ SOCHF ₂	CI	н	2-Br	CH ₂ SCH ₃
	CI	Н	н	CH(C2H5)SCH3	CI	н	3-Br	CH ₂ SCH ₃
	CI	Н	Н	CH(C2H5)SO2CH3	CI	н	3-CH ₃	CH ₂ SCH ₃
	CI	Н	Н	CH(C2H5)SOCH3	CI	н	2-CH ₃	CH ₂ SCH ₃
50	CI	Н	Н	CH(CH ₃)SCH ₃	CI	Н	н	CH ₂ SCHF ₂
50	CI	Н	Н	CH(CH ₃)SO ₂ CH ₃	CI	Н	Н	CH ₂ SO ₂ C ₂ H ₅
	CI	Н	Н	CH(CH3)SOCH3	CI	Н	Н	CH ₂ SO ₂ C ₃ H ₇ -n
	CI	Н	Н	CH(n-C ₃ H ₇)SCH ₃	CI	Н	Н	CH ₂ SO ₂ CH ₂ C≡CH

Table 5 (continued)

								-
5	R ¹	R ⁶	R ⁷	A	R ¹	R ⁶	R ⁷	Α
	CI I	Н	Н	CH2SO2CH2CF3	CI	3-F	Н	CH₂SCH₃
	CI I	H	Н	CH2SO2CH2CH=CH2	CI	2-CI	Н	CH ₂ SO ₂ C ₂ H ₅
	CI I	Н	Н	CH2SO2CH2CH2CH2F	CI	2-F	н	CH ₂ SO ₂ C ₂ H ₅
10	CI H	H	Н	CH2SO2 CH2CH2CH2CI	CI	3-F	Н	CH ₂ SO ₂ C ₂ H ₅
70	CI I	H	Н	CH2SO2CH2CH2CI	CI	2-CI	н	CH ₂ SO ₂ CH ₃
	CI I	Н	Н	CH2SO2CH2CH2F	CI	2-F	Н	CH ₂ SO ₂ CH ₃
	CI F	H	Н	CH2SO2CH2CHF2	CI	3-F	Н	CH ₂ SO ₂ CH ₃
	CI I	Н	Н	CH2SO2CH3	CI	2-CI	Н	CH ₂ SOC ₂ H ₅
15	CI I	Н	2-CI	CH ₂ SO ₂ CH ₃	CI	2-F	Н	CH ₂ SOC ₂ H ₅
		Н	3-CI	CH ₂ SO ₂ CH ₃	CI	3-F	Н	CH ₂ SOC ₂ H ₅
		Н	2-F	CH ₂ SO ₂ CH ₃	CI	2-CI	H	CH2SOCH3
	CI I	Н	3-F	CH ₂ SO ₂ CH ₃	CI	2-F	Н	CH ₂ SOCH ₃
20		Н	2-Br	CH2SO2CH3	CI	3-F	Н	CH ₂ SOCH ₃
	CI I	Н	3-Br	CH ₂ SO ₂ CH ₃	CI	3-CI	Н	CH ₂ SC ₂ H ₅
	CI I	Н	3-CH ₃	CH ₂ SO ₂ CH ₃	CI	3-CI	Н	CH ₂ SCH ₃
	CI I	Н	2-CH ₃	CH ₂ SO ₂ CH ₃	CI	3-CI	Н	CH ₂ SO ₂ C ₂ H ₅
25		Н	Н	CH ₂ SOC ₂ H ₅	CI	3-C1	Н	CH ₂ SO ₂ CH ₃
	CI I	Н	Н	CH ₂ SOC ₃ H ₇ -n	CI	3-C1	Н	CH ₂ SOC ₂ H ₅
		H	Н	CH₂SOCH₂C≡CH	CI	3-CI	н	CH ₂ SOCH ₃
		Н	Н	CH2SOCH2CF3	F	Н	Н	CH ₂ SC ₂ H ₅
		Н	Н	CH2SOCH2CH=CH2	F	Н	Н	CH ₂ SCH ₃
30		Н	Н	CH2SO CH2CH2CH2CI	F	Н	Н	CH ₂ SO ₂ C ₂ H ₅
		H	Н	CH ₂ SOCH ₂ CH ₂ CI	F	Н	Н	CH ₂ SO ₂ CH ₃
		H	Н	CH ₂ SOCH ₂ CH ₂ F	F	Н	Н	CH2SOC2H5
		Н	Н	CH2SOCH2CHF2	F	Н	H	CH2SOCH3
35		H	Н	CH ₂ SOCH ₂ F	F	3-F-	Н	CH2SC2H5
		Н	Н	CH ₂ SOCH ₃	F	3-F	Н	CH ₂ SCH ₃
		Н	2-CI	CH2SOCH3	F	3-F	Н	CH ₂ SO ₂ C ₂ H ₅
		Н	3-CI	CH2SOCH3	F	3-F	Н	CH2SO2CH3
40		Н	2-F	CH2SOCH3	F	3-F	Н	CH ₂ SOC ₂ H ₅
*		Н	3-F	CH2SOCH3	F	3-F	Н	CH₂SOCH₃
		Н	2-Br	CH2SOCH3	ı	Н	Н	CH ₂ SC ₂ H ₅
		Н	3-Br	CH ₂ SOCH ₃	1	Н	Н	CH ₂ SCF ₃
45		Н	3-CH ₃	CH ₂ SOCH ₃	1	Н	Н	CH ₂ SCH ₂ CF ₃
40		Н	2-CH ₃	CH2SOCH3	I	Н	Н	CH2SCH2CH2F
		H 	Н	CH ₂ SOCHF ₂	i	Н	Н	CH2SCH2CHF2
		2-CI	Н	CH ₂ SC ₂ H ₅	ı	Н	Н	CH₂SCH₃
		2-F	Н	CH ₂ SC ₂ H ₅	١	Н	Н	CH ₂ SCHF ₂
50		3-F	H	CH ₂ SC ₂ H ₅	1	H	Н	CH ₂ SO ₂ C ₂ H ₅
			Н	CH ₂ SCH ₃	1	Н	Н	CH ₂ SO ₂ CH ₃
	CI 2	2-F	Н	CH₂SCH₃	1	Н	Н	CH ₂ SOC ₂ H ₅

Table 5 (continued)

5	R ¹	R ⁶	R ⁷	Α
	1	Н	Н	CH ₂ SOCH ₃
	CI	Н	Н	CH ₂ SOCH ₃
	CI	Н	Н	CH ₂ SCN
10	CI	Н	Н	CH2SCSOCH3
	CI	Н	Н	CH2CSOC2H5
	CI	Н	Н	CH2SCH2Si(CH3)3
	CI	Н	Н	CH2SOCH2Si(CH3)3
15	CI	Н	Н	CH2SO2CH2Si(CH3)3
	Br	Н	Н	CH2SCH2Si(CH3)3
	Br	Н	Н	CH2SOCH2Si(CH3)3
	Br	Н	Н	CH ₂ SO ₂ CH ₂ Si(CH ₃) ₃
20				

In the process (g), the starting materials of the formula (XI) are in part known, for example, 4-chloro-4'-chloromethylbenzophenone is described in Japanese Patent Kokoku Publication Sho 46-10164 together with production method thereof, or the staring materials of the formula (XI) can be obtained by halogenating benzophenones of the formula (XXV)

wherein, R¹, R², R⁶ and R⁷ have the same meanings as mentioned above, according to conventional methods, using, for example, N-bromosuccinimide or N-chlorosuccinimide as halogenating agent.

The compounds of the formula (XXV) can be obtained by a Friedel-Crafts reaction wherein substituted benzoyl halides and alkyl-substituted benzenes are used as starting materials, and aluminum chloride is used as a catalyst.

The compounds of the formula (XI) may be exemplified as follows:

4-chloro-4'-chloromethylbenzophenone,

50

- 4-chloromethyl-4'-fluorobenzophenone,
- 4-bromo-4'-chloromethylbenzophenone.
- 4-bromomethyl-4'-chlorobenzophenone,
- 4-bromomethyl-4'-fluorobenzophenone,
- 4-bromo-4'-bromomethylbenzophenone,
 - 4-(1-bromoethyl)-4'-chlorobenzophenone.
 - 4-(1-bromopropyl)-4'-chlorobenzophenone, and the like.

In the above process (g), the compounds of the formula (XII) are well known in the field of organic chemistry and, for example, there may be mentioned: methylmercaptan and salts thereof, ethylmercaptan and salts thereof, and the like.

In the above process (h), the compounds of the formula (XIII) are novel and such compounds can be synthesized by, for instance, reacting benzophenones of the above formula (XI) with thiourea. This reaction is well known per se in the field of organic chemistry and can be carried out by the method analogous to that described in "Jikken Kagaku Koza

(Experimental Chemistry Course)" fourth edition, edited by Japanese Chemical Society, Vol. 25, page 336, 1992, published by Maruzen.

Examples of the compounds of the formula (XIII) are are shown in following Table 6.

5

Table 6

In the process (h), the compounds of the formula (XIV) are known in the field of organic chemistry and, for example, there may be mentioned: methyl iodide, ethyl iodide, methyl bromide, ethyl bromide, boromodifluoromethane, iodotrifluoromethane, 1-bromo-2-fluoroethane, 1-bromo-2-chloroethane, 2,2,2-trifluoro-1-iodoethane, 1-bromo-2,2-difluoroethane, and the like.

In the process (j), the compounds of the formula (XV) can be obtained when compounds of the formula (XXVI)

NC
$$\mathbb{R}^7$$
 (XXVI)

wherein R2 and R7 are defined as above,

are reacted with the compound of the formula (XII),

in the presence of an acid binder, and, if appropriate, in the presence of an inert solvent, under the same reaction conditions as described for process (g).

The compounds of the formula (XXVI) are well known and include the following: 4-cyanobenzyl bromide, 4-cyanobenzyl chloride, and the like.

In the process (j), the compounds of the formula (XV) are well known and exemplified by the following compounds: 4-methylmercaptobenzonitril, and the like.

In the process (j), the compounds of the formula (XVI) are obtained by metalation of compounds of the formula (XXVII)

$$\mathbb{R}^{16} \longrightarrow \mathbb{R}^{20}$$
 (XXVII)

wherein R^6 and R^{16} have same meaning as mentioned above, and R^{20} is bromine or iodine, with alkyllithium or magnesium,

in the presence of an inert solvent, and, if appropriate, in the presence of a catalyst.

The following compounds of the formula (XXVII) may be mentioned: 4-fluorobromobenzen, 4-fluoroiodobenzen, 4-chlorobromobenzen, 4-chlorobromobenzene, 2-fluoro-4-chlorobromobenzene, 3-fluoro-4-chlorobromobenzene, and the like.

In the process (k), the compounds of the formula (XVII) are obtained by metalation of compounds of the formula (XXVIII)

$$R^{20} \xrightarrow{R^7} CH-S-R^3$$

$$R^2 \qquad (XXVIII)$$

35

40

45

50

55

30

25

5

15

wherein, R^2 , R^3 , R^7 and R^{20} have same meaning mentined above, with alkyllithium or magnesium, in the presence of an inert solvent, and, if appropriate, in the presence of a catalyst.

The compounds of the formula (XXVIII) are well known and include the following:

4-methylthiomethylbromobenzene, 4-methylthiomethyliodobenzene, 4-ethylthiomethylbromobenzene, 4-ethylthiomethyliodobenzene, and the like.

In the process (m), the compounds of the formula (XIX) are well known compounds in the field of organic chemistry, and include the following: 4-(4-chlorobenzoyl)benzylthiocyanate, and the like.

In the process (m), the compounds of the formula (XX) are well known compounds in the field of organic chemistry, and include the following: iodotrifluoromethane, iodopentafluoroethane, and the like.

The reaction in the process (m) can be conducted by a method analogous to that described in Journal of Fluorine Chemistry Vol.43, 27-24 (1989).

In the process (n), the compounds of the formula (XXI) are synthesized by the above processes (g) to (m) and include the following:

4-fluoro-4'-methylmercaptomethylbenzophenone,

4-chloro-4'-methylmercaptomethylbenzophenone,

4-bromo-4'-methylmercaptomethylbenzophenone,

4-iodo-4'-methylmercaptomethylbenzophenone,

4-fluoro-4'-ethylmercaptomethylbenzophenone,

4-chloro-4'-ethylmercaptomethylbenzophenone,

4-bromo-4'-ethylmercaptomethylbenzophenone, and the like.

In the process (n), the compounds of the formula (XXII) are known in the field of organic chemistry and include the following: methyl iodide, ethyl iodid , methyl bromide, ethyl bromide, and the like.

The process (n) is well known per se in the field of organic chemistry and can be carried out by, for example, the method similar to that described in "Jikken Kagaku Koza (Experimental Chemistry Course)" fourth edition, edited by Japanese Chemical Society, Vol. 25, page 329, 1992, published by Maruzen.

In the process (n), the compounds of the formula (XXIII) are synthesized by the above processes (g) to (n). As examples thereof, the following compounds in addition to those exemplified as the compounds of the above formula (XXI) may be mentioned:

```
4-bromo-4'-(1-methylmercaptoethyl)benzophenone, 4-chloro-4'-(1-methylmercaptoethyl)benzophenone,
```

4-chloro-4'-(1-methylmercaptopropyl)benzophenone,

4-chloro-4'-(1-methylmercaptobutyi)benzophenone, and the like.

As the oxidizing agents used in the above process (p), there may be mentioned, for example, aqueous hydrogen peroxide, peracetic acid, m-chloroperbenzoic acid, OXONE™, sodium periodate, t-butylhydroperoxide and N-bromosuccinimide.

The oxidation reaction in the above production methods (p) and (q) can be carried out by, for example, the method similar to that described in "Jikken Kagaku Koza (Experimental Chemistry Course)" fourth edition, edited by Japanese Chemical Society, Vol. 24, page 350 or 365, 1992, published by Maruzen.

In the above process (q), the compounds of the formula (XXIV) are synthesized by the above production methods (g) to (p). As examples thereof, the following compounds in addition to those exemplified as the compounds of the above formulae (XXI) and (XXIII) may be mentioned:

```
4-fluoro-4'-methylsulfinylmethylbenzophenone,
```

4-chloro-4'-methylsulfinylmethylbenzophenone.

4-chloro-4'-difluoromethylsulfinylmethylbenzophenone.

4-bromo-4'-methylsulfinylmethylbenzophenone.

4-iodo-4'-methylsulfinylmethylbenzophenone,

4-ethylsulfinylmethyl-4'-fluorobenzophenone.

4-chloro-4'-ethylsulfinylmethylbenzophenone,

4-bromo-4'-ethylsulfinylmethylbenzophenone,

4-bromo-4'-(1-methylsulfinylethyl)benzophenone,

4-chloro-4'-(1-methylsulfinylethyl)benzophenone,

4-chloro-4'-(1-methylsulfinylpropyl)benzophenone,

4-chloro-4'-(1-methylsulfinylbutyl)benzophenone, and the like.

As the oxidizing agents which can be used in the above production method (q), there may be mentioned, for example, potassium permanganate, sodium perborate in addition to the oxidizing agents described in connection with the above production method (p).

In the process (a), starting compounds of the formula (III) mean compounds based on the above definition of R⁴, preferably compounds based on the above preferred definition.

In the process (a), the compounds of the formula (III) are well known in the field of organic chemistry, and include the following:

hydrazine hydrate, methyl carbazate, ethyl carbazate, n-propyl carbazate, isopropyl carbazate, n-butyl carbazate, isobutyl carbazate, tert-butylhydrazine, acetohydrazide, benzohydrazide, semicarbazide, thiosemicarbazide, formic hydrazide, and the like.

In the processes (b) and (c), starting compounds of the formula (IV) mean compounds based on the above definition of R¹, R², R³, R⁶, R⁷ and n, preferably compounds based on the above preferred definitions.

The compounds of the formula (IV) are synthesized by the above processes (a), (d), (e) and (f). Specific examples of the compounds of the formula (IV) include the following compounds:

```
4-fluoro-4'-methylmercaptomethylbenzophenone hydrazone,
```

4-chloro-4'-methylmercaptomethylbenzophenone hydrazone,

4-chloro-4'-difluoromethylmercaptomethylbenzophenone hydrazone,

4-chloro-4'-trifluoromethylmercaptomethylbenzophenone hydrazone,

4-bromo-4'-methylmercaptomethylbenzophenone hydrazone,

4-ethylmercaptomethyl-4'-fluorobenzophenone hydrazone,

4-chloro-4'-methylsulfinylmethylbenzophenone hydrazone,

4-ethylsulfinylmethyl-4'-bromobenzophenone hydrazone,

4-bromo-4'-methylsulfonylmethylbenzophenone hydrazone,

122

50

55

10

25

30

4-chloro-4'-methylsulfonylmethylbenzophenone hydrazone, and the like.

In the process (b), the compounds of the formula (V), as the starting material, are well known in the field of organic chemistry. Examples thereof which may be mentioned are as follows:

4-trifluoromethoxyphenylisocyanate, phenylisocyanate, and the like.

In the process (c), the compounds of the formula (VI) as the starting material are well known in the field of organic chemistry. Examples thereof which may be mentioned are as follows:

methyl chlorocarbonate, ethyl chlorocarbonate, propyl chlorocarbonate, isopropyl chlorocarbonate, butyl chlorocarbonate, butyl chlorocarbonate, isobutyl chlorocarbonate, tert-butyl chlorocarbonate, methyl bromocarbonate, ethyl bromocarbonate, propyl bromocarbonate, isopropyl bromocarbonate, butyl bromocarbonate, isobutyl bromocarbonate, tert-butyl bromocarbonate, allyl bromocarbonate, acetyl chloride, acetyl bromide, propionyl chloride, butyryl chloride, isobutyryl chloride, valeryl chloride, pivaloyl chloride, and the like.

In the processes (d), the compounds of the formula (VII) are synthesized by the above processes (a), (b), (c) and (f). Examples thereof include the following compounds:

15

20

- 4-fluoro-4'-methylmercaptomethylbenzophenone hydrazone,
- 4-bromo-4'-methylmercaptomethylbenzophenone hydrazone,
- 4-iodo-4'-methylmercaptomethylbenzophenone hydrazone,
- 4-chloro-4'-ethylmercaptomethylbenzophenone hydrazone,
- 4-bromo-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone,
 - 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone,
 - 4-chloro-4'-ethylmercaptomethylbenzophenone ethoxycarbonylhydrazone,
 - 4-chloro-4'-(1-methylmercaptoethyl)benzophenone ethoxycarbonylhydrazone, and the like.

In the process (d), the compounds of the formula (VIII) as the starting material are those which are well known in the field of organic chemistry. Examples thereof which may be mentioned are as follows: methyl iodide, ethyl iodide, propyl iodide, chloromethyl methyl ether, chloromethyl ethyl ether, chloromethyl methyl sulfide, acetyl chloride, benzoyl chloride, cinnamoyl chloride, methylchloroformate, methyl chlorocarbonate, ethyl chlorocarbonate, propyl chlorocarbonate, isopropyl chlorocarbonate, butyl chlorocarbonate, isobutyl chlorocarbonate, tert-butyl chlorocarbonate, methyl bromocarbonate, ethyl bromocarbonate, propyl bromocarbonate, isopropyl bromocarbonate, and the like.

In the process (e), the compounds of the formula (IX) are obtained by the processes (a) to (d). Examples thereof include the following compounds, in addition to those exemplified as the compounds of formulae (IV) and (VII).

As the oxidizing agents which are used in the above processes (e) and (f), there may be mentioned the oxidizing agents described in connection with the process (n).

In the process (f), the compounds of the formula (X) are the compounds according to the invention, which are synthesized by the above processes (a) to (e). As example thereof, the following compounds in addition to those exemplified as the compounds of the above formulae (IV) and (VII) may be mentioned:

- 4-fluoro-4'-methylsulfinylmethylbenzophenone hydrazone,
- 4-bromo-4'-methylsulfinylmethylbenzophenone hydrazone,
- 4-iodo-4'-methylsulfinylmethylbenzophenone hydrazone,
- 4-chloro-4'-ethylsulfinylmethylbenzophenone hydrazone,
- 4-chloro-4'-methylsulfinylmethylbenzophenone ethoxycarbonylhydrazone, and
- 4-bromo-4'-ethylsulfinylmethylbenzophenone ethoxycarbonylhydrazone.

As are mentioned hereinabove, the compounds of the formulae (II), (XIII), (XIX), (XXII), and (XXIV) which are employed as starting materials or intermediates in the preparation of the compounds of the formula (I) are novel, and then those compounds can be represented by the following formula (XXIX):

50

40

45

$$\mathbb{R}^{1}$$
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

wherein

5

10

45

R¹ is halogen,

15 R² is hydrogen or C₁₋₄ alkyl,

R⁶ is hydrogen or halogen,

R⁷ is hydrogen, halogen or C₁₋₂ alkyl,

n is 0, 1 or 2,

X is cyano, optionally substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₃₋₄ alkynyl, C₁₋₄ alkylcarbonyl, C₁₋₄ alkoxy-thiocarbonyl or carboxamidine and their salts, provided that when X is cyano, C₁₋₄ alkylcarbonyl C₁₋₄ alkoxy-thiocarbonyl or carboxamidine and their salts then n is 0.

The reaction of the above production method (a) can be carried out in an appropriate diluent. As such diluents, there may be mentioned optional inert organic solvents, for example, aliphatic, alicyclic or aromatic hydrocarbons (which may be optionally chlorinated), such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene and dichlorobenzene; ethers such as ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF) and diethylene glycol dimethyl ether (DGM); nitriles such as acetonitrile, propionitrile and acrylonitrile; alcohols, with the proviso that R³ is not monohalogenomethyl, such as methanol, ethanol, isopropanol, butanol and ethylene glycol; esters such as ethyl acetate and amyl acetate; acid amides such as dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and hexamethylphosphoric triamide (HMPA); and sulfones and sulfoxides such as dimethyl sulfoxide (DMSO) and sulfolan.

The reaction in the above production method (a), can be carried out in the presence of an acid cataylst. Examples of usable acid catalysts may be mentioned: mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrochromic acid, organic acids such as formic acid, acetic acid, trifluoroacetic acid, and propionic acid, methanesulfonic acid, benzenesulfonyl acid and p-toluenesulfonic acid: and organic amine hydrochlorides auch as pyridine hydrochloride and triethylamine hydrochloride and the like.

The reaction of the production method (a) can be conducted at a temperature within a substantially broad range, but it is generally possible to employ a reaction temperature of about -20 to about 200°C, preferably about 20 to about 150°C. Further, the reaction should preferably be conducted under normal pressure but it may optionally be operated under an elevated or reduced pressure.

For carrying out the production method (a), for instance, 1 mole of the compound of the formula (II) can be reacted with 1 to 10 moles of the compound of the formula (III) in a diluent such as ethanol and in the presence of an acid catalyst such as acetic acid to thereby obtain the object compound of the formula (I).

In carrying out the process (b) mentioned above, use may be made, as suitable diluent, of any inert solvent.

Examples of such diluents are aliphatic, cycloaliphatic and aromatic, optionally chlorinated, hydrocarbons such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and the like; ethers such as diethyl ether, methyl ethyl ether, diisopropyl ether, dibutyl ether, dioxane, dimethoxyethane(DME), tetrahydrofurane (THF), dimethylene glycol dimethyl ether and the like; ketones such as acetone, methylethyl ketone (MEK), methyl-isopropyl ketone, methyl-isobutyl ketone (MIBK) and the like; nitriles such as acetonitrile, propionitrile and the like; esters such as ethyl acetate, amyl acetate and the like, acid amides such as dimethyl formamide (DMF), dimethyl acetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric traimide (HMPA) and the like; sulfones and sulfoxides such as dimethyl sulfoxide (DMSO), sulfolane and the like; and base such as pyridine.

In the above mentioned process (b), the reaction temperature can be varied within a substantially wide range. In general, the reaction is carried out at a temperature of from about -120 °C to about 200 °C, preferably from 20 °C to about 100 °C.

Further, the reaction is carried out under normal pressure, although it is also possible to employ a higher or reduced pressure.

When the above mentioned process (b) according to the present invention is carried out, use is made, for example, of about 1 to 3 moles of the compound of the formula (V) in a diluent such as acetonitrile per 1 mole of the compounds represented by the general formula (IV) to obtain the desired compounds.

The reaction of the above production method (c) can be carried out in an appropriate diluent, for example, an optional inert organic solvent. Examples of such organic solvents are: aliphatic, alicyclic or aromatic hydrocarbons (which may be optionally chlorinated), such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene and dichlorobenzene; ethers such as ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF) and diethylene glycol dimethyl ether (DGM); ketones such as acetone, methyl ethyl ketone (MEK), methyl-isopropyl ketone and methyl isobutyl ketone (MIBK); nitriles such as acetonitrile, propionitrile and acrylonitrile; esters such as ethyl acetate and amyl acetate; acid amides such as dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and hexamethylphosphoric triamide (HMPA); and sulfones and sulfoxides such as dimethyl sulfoxide (DMSO) and sulfolan.

The production method (c) can also be carried out in the presence of an acid binding agent. Examples of usable acid binding agents are as follows: inorganic bases, for example, hydroxides, carbonates and bicarbonates of alkali metals or alkaline earth metals, such as sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; organic bases, for example, tertiary amines, N,N-dialkylanilines and pyridines, such as triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2,2,2]octane (DABCO) and 1,8-diazabicyclo[5,4,0]undec-6-ene (DBU).

The reaction of the production method (c) can be conducted at a temperature within a substantially broad range, but it is generally possible to employ a reaction temperature of about -70 to about 150°C, preferably about -10 to about 80°C. Further, the reaction should preferably be conducted under normal pressure but it may optionally be operated under an elevated or reduced pressure.

For carrying out the production method (c), for instance, 1 mole of the compound of the formula (IV) can be reacted with 1 to 3 moles of the compound of the formula (VI) in a diluent such as dichloromethane and in the presence of a base such as 4-(N,N-dimethylamino)pyridine to thereby obtain the object compound of the formula (I).

In carrying out the process (d) mentioned above, use may be made, as suitable diluent, of any inert solvent. Examples of such diluents are aliphatic, cycloaliphatic and aromatic, optionally chlorinated, hydrocarbons such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and the like; ethers such as diethyl ether, methyl ether, diisopropyl ether, dibutyl ether, dioxane, dimethoxyethane(DME), tetrahydrofurane (THF) dimethylene glycol dimethyl ether and the like; ketones such as acetone, methylethyl ketone (MEK), methyl-isopropyl ketone, methyl-isobutyl ketone (MIBK) and the like; nitriles such as acetonitrile, propionitrile and the like; esters such as ethyl acetate, amyl acetate and the like, acid amides such as dimethyl formamide (DMF), dimethyl acetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric traimide (HMPA) and the like; sulfones and sulfoxides such as dimethyl sulfoxide (DMSO), sulfolane and the like; and base such as pyridine.

The process (d) according to the invention is carried out preferably in the presence of an acid binder. As example of such acid binder may be mentioned: inorganic bases including hydroxide, carbonate, bicarbonate of alkali metals and alkali earth metals such as, for example, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, and the like, inorganic alkali metal amide including lithium amide, sodium amide, potassium amide, and the like, organic bases including alkorate, tertiary amines, N,N-dialkylanilines, and pyridines such as, for example, triethylamine, tributylamine, 1,1,4,4-tetramethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethlaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diaza-bicyclo-[2,2,2]octane (DABCO), 1,8-diazabicyclo[5,4,0]-undec-7-ene (DBU) and the like.

In the above mentioned process (d), the reaction temperature can be varied within a substantially wide range. In general, the reaction is carried out at a temperature of from about -70°C about 150°C, preferably from -10°C to about 100°C. Further, the reaction is carried out under normal pressure, although it is also possible to employ a higher or reduced pressure.

45

50

When the above mentioned process (d) according to the present invention is carried out, use is made, for example, about 1 to 5 moles of the compound of the formula (VIII), in diluent such as tetrahydrofurane and in the presence of an acid binder, such as sodium hydrogencarbonate, per 1 mole of the compounds represented by the general formula (VII) to obtain the desired compounds.

The reaction of the above production methods (e) and (f) can be carried out in an appropriate diluent. As such diluents, there may be mentioned water and optional inert organic solvents, for example, aliphatic, alicyclic or aromatic hydrocarbons (which may be optionally chlorinated) such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene and dichlorobenzene; ethers such as ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane

(DME), tetrahydrofuran (THF) and diethylene glycol dimethyl ether (DGM); nitriles such as acetonitrile, propionitrile and acrylonitrile; and alcohols such as methanol, ethanol, isopropanol, butanol and ethylene glycol.

The reaction of the production method (e) can be conducted at a temperature within a substantially broad range, but it is generally possible to employ a reaction temperature of about -30°C to about 150°C, preferably about -20°C to about 100°C. Furthermore, the reaction should preferably be conducted under normal pressure but it may optionally be operated under an elevated or reduced pressure.

For carrying out the production method (e), for instance, 1 mole of the compound of the formula (IX) can be reacted with 1 to 10 moles of an oxidizing agent in a diluent such as methanol to thereby obtain the object compound of the formula (I).

The production method (f) can be conducted at a temperature within a substantially broad range, but it is generally possible to employ a reaction temperature of about -70°C to about 150°C, preferably about -10°C to about 100°C. Further, the reaction should preferably be conducted under normal pressure but it may optionally be operated under an elevated or reduced pressure.

For carrying out the production method (f), for instance, 1 mole of the compound of the formula (X) can be reacted with 1 to 3 moles of an oxidizing agent in a diluent such as dichloromethane to thereby obtain the object compound of the formula (I).

Further, the compounds of the formula (I), according to the invention can be used for combating a broad range of various pests, particularly injurious sucking insects, biting insects and other plantparasitic pests as well as pests of stored cereals and hygiene pests, and can be used as insecticides for combating them.

Examples of such pests are as follows:

As insects, there may be mentioned pests from the order of the Coleoptera, for example, Callosobruchus chinensis, Sitophilus zeamais, Tribolium castaneum, Epilachna vigintioctomaculata, Agriotes fuscicollis, Anomala rufocuprea, Leptinotrarsa decemlineata, Diabrotica spp., Monochamus alternatus, Lissorhoptrus oryzophihus and Lyctus bruneus; pests from the order of the Lepidoptera, for example, Lymantria dispar, Malacosoma neustria, Pieris rapae, Spodoptera litura, Mamestra brassicae, Chilo suppressalis, Pyrausta nubilalis, Ephestia cautella, Adoxophyes orana, Carpocapsa pomonella, Agrotis fucosa, Galleria mellonella, Plutella xylostella, Heliothis virescens and Phyllocnistis citrella; pests from the order of the Hemiptera, for example, Nephotettix cincticeps, Nilaparvata lugens, Pseudococcus comstocki, Unaspis yanonensis, Myzus persicase, Aphis pomi, Aphis gossypii, Lipaphis erysimi, Stephanitis nashi, Nezara

spp., Cimex lectularius, Trialeurodes vaporariorum and Psylla spp.;
pests from the order of the Orthoptera, for example, Blattela germanica, Periplaneta americana, Gryllotralpa africana and Locusta migratoria migratoriodes;

pests from the order of the Isoptera, for example, *Deucotermes speratus* and *Coptotermes formosanus*; and pests from the order of the Diptera, for example, *Musca domestica*, *Aedes aegypti, Hylemia platura, Culex pipiens, Anopheles sinensis* and *Culex tritaeniorhynchus*.

As mites, there may be mentioned, for example, Tetranychus kanzawai, Tetranychus urticae, panonychus citri, Aculops pelekassi and Tarsonemus spp.

As nematodes, there may be mentioned, for example, Meloidogyne incognita, Bursaphelenchus xylophilus, Aphelenchoides besseyi, Heterodera glycines and Pratylenchus spp.

Further, in the pharmaceutical field of veterinary medicine, the novel compounds according to the invention are effective against various injurious animal parasites (endoparasites and ectoparasites), such as insects and helminths. Examples of such animal parasites include the following pests:

As insects, there may be mentioned, for example, Gastrophilus spp., Stomoxys spp., Trichodectes spp., Rhodnius spp. and Ctenocephalides spp.

As mites, there may be mentioned, for example, Ornithodoros spp., Ixodes spp. and Boophilus spp.

In this specification, the "insecticide(s)" is a generic term for substances having combating action against all the pests as mentioned above.

In the case of the use as insecticides, the active compounds of the formula (I) can be converted into customary formulations, such as solutions, wettable powders, suspensions, powders, foams, pastes, tablets, granules, aerosols, natural and synthetic materials impregnated with active compounds, very fine capsules in polymeric substances and in coating compositions for seed, furthermore in formulations used with buring equipment, such as fumigating cartridges, fumigating cans and fumigating coils and the like, as well as ULV cold- and warm-mist formulations.

These formulations are produced in the manner known per se, for example, by mixing the active compounds with extenders, that is liquid solvents, liquefied gases under pressure and/or solid carriers, optionally with the use of surface-active agents, that is emulsifying agents and/or dispersing agents and/or foam-forming agents. Use of a surface-active agent is preferred.

As liquid solvents or carriers, there are suitable in the main: aromatic hydrocarbons, such as xylene, toluene or alkyl naphthalenes; chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride; aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl

ethyl ketone, methyl isobutyl ketone or cyclohexanone; strongly polar solvents, such as dimethyl-formamide and dimethylsulfoxide; as well as water. In the case of the use of water as an liquid solvent or carrier, organic solvents can be used as auxiliary solvents.

By liquefied gaseous diluents or carriers there are meant liquids which are gaseous at normal temperature and under atmospheric pressure, for example aerosol propellants, such as butane, propane, nitrogen, carbon dioxide and halogeno-hydrocarbons.

As solid diluents or carriers there are suitable: for example, ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as highly-dispersed silicic acid, alumina and silicates.

As solid carriers for granules there are suitable: for example, crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, as well as synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.

As emulsifying and/or foam-forming agents there are suitable: for example non-ionic and anionic emulsifiers, such as polyoxy-ethylene-fatty acid esters, polyoxyethylene-fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl-sulfonates, alkyl-sulfates, arylsulfonates as well as albumin hydrolysation products.

As dispersing agents there are suitable: for example lignin-sulphite waste liquors and methylcellulose.

Adhesives may also be used in formulations such as powders, granules and emulsions, and the followings are to be mentioned as examples of usable adhesives: for example carboxymethylcellulose and natural and synthetic polymers such as gum arabic, polyvinyl alcohol and polyvinyl acetate.

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs and metal phthalocyanine dyestuffs, and trace nutrients such as salts of metals, for example iron, manganese, boron, copper, cobalt, molybdenum and zinc.

The formulations in general can contain between 0.1 and 95 per cent by weight, preferably between 0.5 and 90% by weight of the above active compound.

The active compounds of the formula (I), according to the invention, can be present in their commercially available formulations and the use forms prepared with these formulations as a mixture with other active compounds, such as insecticides, attractants, sterilants, miticides, nematocides, fungicides, growth-regulating substances or herbicides. The above insecticides include, for example, organic phosphate, carbamates, carboxylates, chlorinated hydrocarbons and insecticidal substances produced by microorganisms.

The active compounds of the formula (I), according to the invention, can further be present as a mixture with synergistic agents. Synergistic agents are compounds which increase the action of the active compounds, without it being necessary for the synergistic agent added to be active itself.

The content of the active compounds of the formula (I), according to the invention, in their use form can be varied within wide limits. The concentration of the active compounds of the formula (I) according to the invention in their use form can generally be from 0.0000001 to 100 per cent by weight, preferably between 0.00001 and 1 per cent by weight.

The compounds of the formula (I), according to the invention, can be employed in a customary manner appropriate for the use forms, for example, by spraying and by scattering. The compounds of formula (I) can be applied for the treatment of soil and of leaves. They also show activity after systemic translocation. Further, the active compounds according to the invention have a good stability to alkali on limed substances and excellent residual action on wood and soil. Thus, they are extremely effective for combating hygiene pests and pests of stored cereals.

Then, the following Examples illustrates the invention, but they should not be regarded as limiting the scope of the invention.

Synthesis Example 1

45

10

20

25

30

35

55

50

An ethanol solution (50 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (9.3 g), hydrazine hydrate (6 ml) and acetic acid (3 ml) was heated for 20 hours with refluxing. The solvent was distilled off under reduced pressure, and then the obtained oily substance was diluted with dichloromethane and washed successively with an aqueous 5% sodium hydroxide solution, water and an aqueous saturated sodium chloride solution, followed by drying over anhydrous mag-

nesium sulfate. The solvent was then distilled off to obtain 4-chloro-4'-methylmercaptomethylbenzophenone hydrazone (7.1 g) as an isomer mixture (syn form/anti form = about 1:1). n_D^{20} 1.6350

5 Synthesis Example 2

 $\begin{array}{c} O \\ N - NH - C - O - C_2H_5 \\ C \\ C \\ CH_2 - S - CH_3 \end{array}$

An ethanol solution (100 ml) of 4-fluoro-4'-methylmercaptomethylbenzophenone (7.8 g), ethyl carbazate (9.4 g) and acetic acid (9 ml) was heated for 20 hours with refluxing. The solvent was distilled off under reduced pressure, and then the obtained oily substance was diluted with dichloromethane, and washed successively with an aqueous 5% sodium hydroxide solution, water and an aqueous saturated sodium chloride solution, followed by drying over anhydrous magnesium sulfate. The solvent was then distilled off to obtain 4-fluoro-4'-methylmercaptomethylbenzophenone ethoxycar-bonylhydrazone (6.4 g) as an isomer mixture.

Synthesis Example 3

An ethanol solution (100 ml) of 4-chloro-4'-methylsulfinylmethyl benzophenone (5.8 g), ethyl carbazate (6.3 g) and pyridinium p-toluenesulfonate (0.1 g) was heated for 6 hours with refluxing. After cooling to a room temperature, the reaction mixture was poured into ice-water, and the precipitated crystals were collected by filtration, and washed successively with an aqueous sodium bicarbonate solution and water. After air-drying, 4-chloro-4'-methylsulfinylmethylbenzophenone ethoxycarbonylhydrazone (6.4 g) was obtained as an isomer mixture.

melting point: 65 - 70°C

A reaction was conducted in the same manner as in Synthesis Example 3 except that 4-chloro-4'-methylsulfonyl-methylbenzophenone (6.2 g) was used instead of 4-chloro-4'-methylsulfinylmethylbenzophenone to thereby obtain 4-chloro-4'-methylsulfonylmethylbenzophenone ethoxycarbonylhydrazone (6.7 g) as an isomer mixture. melting point: 166 - 169°C

55

Synthesis Example 4

5

10

An ethanol solution (100 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (8.3 g), ethyl carbazate (10 g) and pyridinium p-toluenesulfonate (0.1 g) was heated for 16 hours with refluxing. After cooling to a room temperature, the reaction mixture was poured into ice water, and then the precipitated crystals were collected by filtration, and washed with water. After air-drying, 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone (9.4 g) was obtained as an isomer mixture.

melting point: 105 - 109°C

This mixture (1.0 g) was purified by silica gel column chromatography (developing solvent: n-hexane:ethyl acetate = 9:1) to obtain 0.24 g of Isomer A having a melting point of 106 - 107°C from the first eluate portion and 0.56 g of Isomer B having a melting point of 117 - 120°C from the second eluate portion.

Synthesis Example 5

30

35

To a dichloromethane solution (30 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone hydrazone (1.5 g) and 4-40 (N,N-dimethylamino)pyridine (1.2 g), isobutyl chlorocarbonate (0.8 g) was dropwise added under cooling with ice and subsequently stirred at a room temperature for 20 hours. The reaction mixture was then successively washed with 2N hydrochloric acid, water and an aqueous saturated sodium chloride solution, and dried over anhydrous magnesium sulfate. After distilling off the solvent, the crude product was purified by silica gel column chromatography (developing solvent: ethyl acetate:n-hexane = 1:4) to obtain 4-chloro-4'-methylmercaptomethylbenzophenone isobutoxycarbonyl hydrazone (0.5 g) as an isomer mixture.

50

Synthesis Example 6

5

10

To a acetonitrile solution (10 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (0.5 g), 4-trifluoromethoxyphenyl isocyanate (0.3 g) was added and stirred at a room temperature for 10 hours. After the soluvent was distilled off under reduced pressure, the resdue was recrystallized from ethanol to obtain 4-chloro-4'-methylmercaptomethylbenzophenone4-(4-trifluoromethoxyphenyl)-semi-carbazone (0.5 g).

melting point: 179 - 183 °C

Synthesis Example 7

25

20

30

To a dimethylformamide solution (10 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone ethoxycarbonylhydrazone (3.6 g), sodiumuhydride-60% oil suspension (0.4 g) was added under an argon atmosphere and stirred at a room temperature untill the evolution of hydrogen gas ceased.

And then methyl iodide (3 g) was added and stirred at room temperature for 16 hours. After the reaction mixture was poured into ice-water, ethyl acetate was added thereto. Then the organic layer was separated, and washed successively with an aqueous 2 N hydrochloric acid solution, water and aqueous saturated sodium chloride solution, followed by drying over anhydrous sodium sulfate. After distilling off the solvent, the obtained crude product was purified by silca gel colum chromatography (developing solvent n-hexane:ethyl acetate = 5:1) to obtain 4-chloro-4'-methylmercaptomethylbenzophenone N'-ethoxycarbonyl-N'-methylhydrazone (1.5 g). n_D²⁰ 1.6039

45

The following Table 7 shows the compounds synthesized in the above Synthesis Examples 1 to 7 together with the compounds synthesized in the same manner as those in the Synthesis Examples 1 to 7. Compounds of Nos. 1 to 30, and 33 to 216 are isomer mixtures (anti form/syn form). Compound Nos. 31 and 32 are pure isomers.

50

5					melting point or	refractive index n ²⁰ = 1 6890	$n_D^{20} = 1.6350$	45 - 51 °C	124 - 130 °C	$n_0^{20} = 1.5972$	$n_D^{20} = 1.6032^{'}$	$n_D^{20} = 1.6186$	98 - 103 °C	$n_0^{20} = 1.5984$	125 - 135 °C
10					7	X I	I	I	I	I	I	I	I	I	I
15					ن د	Y	I	r	I	I	I	I	I	r	I
20 25	Table 7			, S(O)n — R³ 	<u>0</u> ئ	I	I	r	I	сн2осн3	CH ₂ SCH ₃	CH ₃	I	сн2осн3	I
30	Ta	Zw Zw	Z=O		4	H	I	I	I	CO ₂ C ₂ H ₅	со2сн3	со2сн3			
35				=_ 	c	0	0	-	2	0	0	0	0	0	
40	•				ę,	CH ₃	CH ₃	СН3	CH ₃	CH ₃	CH3	СН3	GH ₃	CH ₃	cH3
45					75 25	I	I	I	I	I	I	I	r	I	I
50					Compound No R ¹		7 7	3 C	4 Ω	5 Br	6 Br	7 Br	8 Br	9 Br	10 Br

5			melting point or	refractive index	$n_D^{20} = 1.6267$	$n_{\rm D}^{20} = 1.5824$	$n_D^{20} = 1.5941$	28 - 63 °C	179 - 183 °C	$n_0^{20} = 1.5763$	$n_D^{20} = 1.5773$	$n_{\rm D}^{20} = 1.5903$	$n_D^{20} = 1.6088$	$n_D^{20} = 1.6039$	$n_D^{20} = 1.5824$	$n_D^{20} = 1.5872$	$n_{\rm D}^{20} = 1.5740$	$n_D^{20} = 1.5830$
10				R,	r	I	I	I	I	ı	I	I	r	I	r	I	I	I
15				Re	I	I	I	I	I	r	I	I	I	I	I	r	I	I
20		ned)		R ⁵	I	I	I	I	I	CH2CO2C2H5	CH ₂ OC ₂ H ₅	сн2осн3	сн28сн3	cH ₃	OHF ₂	OH3	COC ₃ H ₇ -iso	coc ₃ H ₇ -n
25		Table 7 (continued)							-			-		•	J		Ŭ	J
30		Table		R⁴	CO ₂ CH ₃	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	со2сн3	со2сн3	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅
35				د	0	0	0	-	7	0	0	0	0	0	0	0	0	0
40	•			R³	C ₂ H ₅	CH ₂ CF ₃	CH2CHF2	£	£,	H H	S. F.	Н	g.	GH ₃	СН³	CH,	CH³	CH ₃
45				R ²	I	I	I	I	I	I	I	I	I	I	r	I	I	I
				æ	ğ	ă	ă	ă	ğ	ਹ	ប	ਹ	ច	ប	ច	ច	ប៊	ច
50			Compound	No.	11	12	13	41	15	16	17	18	19	20	21	22	23	24

5		melting point or refractive index	n _D = 1.5996	$n_{\rm D}^{20} = 1.6036$	$n_D^{20} = 1.6175$	$n_D^{20} = 1.6318$	$n_D^{20} = 1.6015$	105 - 109 °C	106 - 107 °C	117 - 120 °C	105 -106.5 °C	$n_D^{20} = 1.5872$	$n_0^{20} = 1.5954$	$n_D^{20} = 1.6229$	98 - 101 °C	$n_D^{20} = 1.6029$	136 - 140 °C	38.5 - 147.5 °C	115 - 119 °C
10		Α,	I	I	I	I	I	I	I	I	r	I	x	I	I	r	I	r	I
15		α	I	r	I	I	I	r	I	I	·I	I	I	I	I	I	r	r	I
20 25	ontinued)	RŞ	0=0-	- C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, SH,200	COCH=CHC ₆ H ₅	сосн	I	I	I	r	n-C ₃ H ₇	I	I	I	сн ₂ осн ₃	I	I	I
30	Table 7 (continued)	R4	со2с2Н5	CO ₂ C ₂ H ₅	CO ₂ CH ₂ CF ₃	CO2CH2CH=CH2	CO2CH2CH2CI	со2сн3	со2сн3	со2сн3	CO ₂ C ₃ H ₇ -iso								
35		c	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0
40	~	R ³	CH ₃	cH ₃	CH ₃	CH ₃	cH ₃	cH ₃	GH ₃	СН3	CH ₂ CN	сн³	CH ₃	снз	снз	cH ₃	cH ₃	CH ₂ CN	CH ³
45		R ²	r	I	I	I	r	I	I	I	I	I	r	I	I	r	r	I	I
		œ	ਹ	ប	ច	ច	ប	ਹ	ប	ਹ	ច	ប	ច	ਹ	ਹ	ਹ	ច	ច	ច
50		Compound No.	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	4

5		melting point or	$n_{\rm c}^{20} = 1.6103$	94 - 98 °C	79 - 83 °C	3° 68 - 88	63.5 - 66.5 °C	52 - 55 °C	124 - 125 °C	$_3 n_D^{20} = 1.6147$	77 - 78.5 °C	$n_D^{20} = 1.5732$	87 - 92 °C	125 -127 °C	$n_D^{20} = 1.6267$	70 - 71 °C	98 - 101 °C	$n_D^{20} = 1.5908$	$n_0^{20} = 1.5772$	118 - 124 °C	127 - 137 °C	$n_D^{20} = 1.5838$	$n_D^{20} = 1.5603$
10		۵,	I	I	I	I	I	I	3-Br	3-CH ₃	I	I	I	I	I	I	I	I	I	I	I	I	I
15		œ Oz	I	I	I	I	I	I	I	I	Ι	I	Ι	I	I	I	I	I	I	Ι	I	I	I
20	-																						
25	Table 7 (continued)	å	I	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I	I	I	r	I	I
30	Table	<u>ب</u>	CO ₂ C ₄ H _g -iso	CO ₂ C ₃ H ₇ -n	CO ₂ C ₄ H ₉ -n	CO ₂ C ₅ H ₁₁ -n	CO ₂ C ₆ H ₁₃ -n	CO ₂ C ₄ H ₉ -tert	$CO_2C_2H_5$	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ CH ₂ CF ₃	со2сн3	CO ₂ C ₂ H ₅	, co ₂ cH ₃	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ CH ₃	CO ₂ C ₂ H ₅	CO ₂ CH ₃
35		c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40	*	R³	CH ₃	CH ₃	cH ₃	c _H	cH ₃	CH ₃	сну	снз	C_2H_5	C ₂ H ₅	C_2H_5	C_3H_7 -iso	C ₃ H ₇ -iso	C ₃ H ₇ -n	C ₃ H ₇ -n	C ₄ H ₉ -n	CF ₃	СН2С≡СН	CH ₂ C≡ CH	CH ₂ CF ₃	CH ₂ CF ₃
45		R ²	I	I	I	I	I	I	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I
		<u>,</u>	ច	ប	ប	ັວ	ರ	ប	ਹ	ਠ	ប	ਹ	ฉ	ច	ច	ច	\bar{o}	ច	ᇹ	ច	ច	ច	ច
50		Compound No.	42	43	44	45	46	47	48	49	90	51	52	53	54	22	26	22	58	59	09	61	62

5	·	melting point or	refractive index	J. 62 - 22		ن :	67 - 81 °C	$n_D^{20} = 1.5762$	$n_D^{20} = 1.5838$	85 - 88.5 °C	85 - 88 °C	0° 07 - 69	60 - 75 °C	$n_D^{20} = 1.5835$	69.5 - 72 °C	64.5 - 72 °C	2° 69 - 75	amorphous	166 - 169 °C	205 - 208 °C	190 - 193 °C	93 - 95 °C	70 - 78 °C	$n_{\rm D}^{20} = 1.5930$	131 - 138 °C	147 - 149 °C	$n_D^{20} = 1.6205$
10			ω,	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	r	I	I	I	I	I	I	r	I
15			å	I	I	Ι	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
20																											
25	Table 7 (continued)		R ₅	Ι	I	I	I	I	I	Ι	r	r	I	I	I	I	r	I	I	I	I	r	I	I	I	I	I
30	Table		R4	CO2C2H5	CO2C2H5	CO ₂ CH ₃	CO2C2Hs	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C ₂ H ₅	CO2CH3	$CO_2C_2H_5$	CO ₂ CH ₃	CO ₂ C ₂ H ₅	согснз	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ CH ₃	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C₄H₃-tert	CO ₂ C ₂ H ₅	со2сн3	CO ₂ CH ₃	CO ₂ CH ₃	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅
35			_	0	0	0	0	0	0	0	0	-	_	-	-	-	<u>_</u>	-	7	7	7	7	5	2	2	2	0
40	÷		R³	CH2CH2CH2CI	CH2CH2F	CH2CH2F	CH ₂ CH=CH ₂	CH2CHF2	CH ₂ CHF ₂	CHF ₂	CHF ₂	CH ₃	cH ₃	C ₂ H ₅	C ₃ H ₇ -n	CH ₂ CF ₃	CHF ₂	CHF ₂	cH ₃	£ F	CH ₃	C_2H_5	C_2H_5	C ₃ H ₇ -iso	C ₃ H ₇ -n	CH ₂ CHF ₂	CH ₃
45			μ ₂	I	r	I	I	I	r	I	I	I	I	r	I	I	I	r	I	I	I	I	I	I	I	I	CH ₃
			-K	ច	ö	ਹ	ប	ō	ច	ਹ	$\overline{0}$	ច	ប	ប	ប៊	ច	ច	ਹ	ប៊	ਹ	ਹ	ច	ប	ರ	ö	ರ	ច
50		Compound	No.	63	64	65	99	29	99	69	70	77	72	73	74	75	9/	7.1	78	42	80	81	82	83	84	85	86

		ō	×ı															•					
5		melting point	refractive index	$n_0^{20} = 1.6032$	48 - 53 °C	115 - 117 °C	$n_D^{20} = 1.6052$	$n_0^{20} = 1.5995$	52 - 55 °C	61 - 64 °C	135 - 143 °C	$n_D^{20} = 1.6040$	$n_D^{20} = 1.5803$	_	124 - 128 °C	103 - 113 °C	100 - 104 °C	50 - 55 °C	88 - 94 °C		7 +21 - 27		114 - 116 °C
10			٦,	r	I	I	I	I	I	I	r	I	I	I	r	I	I	I	I	=	C	:	r
			Re	I	I	I	I	I	2-CI	2-Cl	3-0	I	3-F	I	I	I	I	r	r	3	_	į	E
15																							
20																							
25	Table 7 (continued)		R ⁵	I	I	I	I	I	I	I	I	I	I	I	I	r	I	I	r	ב	=	:	I
30	Table 7 (R ⁴	со2сн3	CO ₂ C ₂ H ₅	со,сн3	CO ₂ C ₂ H ₅	сосн	COC2H5	COC3H7-n	COC₄H ₉ -n	COC₄H ₉ -tert) =o	-C-\\-\-Pi) =0	-C-⟨-⟩-CH3							
35			c	0	-	7	0	0	0	0	0	0	0	0	0	0		0	0	c	•	c	 D
40	*		Р3																cH ₃	Ę	<u>.</u>		ຮົ້
45			R ²	CH3	S. HJ	CH3	C_2H_5	n - C_3H_7	I	I	I	I	I	I	I	I.	I	I	I	ı	=	:	E
			<u>~</u>	ច	ប	ਹ	ប	ರ	ប	ប	ರ	u_	ц_	_	ਠ	ច	ប	ರ	ਹ	7	5	ē	3
50		Compound	No.																102	103	2	,	5

5		melting point or refractive index	144 - 145 °C	126 - 130 °C	100 - 103 °C	83 - 88 °C	98 - 101 °C	140 - 145 °C	121 - 131 °C	145 - 148 °C	167 - 176 °C	$n_D^{20} = 1.6080$	179 - 183 °C	126 - 135 °C '	169 - 172 °C	$n_D^{20} = 1.6824$	186 - 189 °C	mixture of crystal and oily substance
10		ζ.	エ	I	I	I	I	x	r	I	x	I	I	r	I	I	I	I
. 15		æ	I	r	Ţ	I	I	I	I	I	I	I	I	I	I	r	I	I
20		10																
	inued)	چ.	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
<i>25</i> <i>30</i>	Table 7 (continued)	χ.	[] 	COC ₆ H ₅	COCH2CH2CH2CI	coch2ch2cl	COCH2CH2CI	COC ₃ H ₇ -n	COC3H7-n		CONH ₂	CONHC ₂ H ₅	-C·NH	CONHCH2CH2CI	CSNH ₂	-C·NH	CONHC ₂ H ₅	CO ₂ C ₂ H ₅
35		c	0	0	0	0	0	₩-	7	0	0	0	0	0	0	0	7	0
40	•,	R³	٦.	CH ₃	снз	СН³	CH ₃	CH ₃	CH ₃	CH3	CH ₃	CH ₃	c _H 3	CH3	GF.	CH3	CH ₃	sec-C ₄ H ₉
45		R ²	I	I	I	I	r	I	I	I	r	r	I	ı	I	r	I	r
		æ	\overline{o}	ច	ច	ਹ	ಠ	ច	\overline{o}	ਹ	ច	\overline{o}	\overline{o}	ច	ប	ರ	ច	ō
50		Compound No.	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

EP 0 742 202 A2

5		melting point or refractive index	121 - 122.5 °C	$n_D^{20} = 1.6543$	$n_D^{20} = 1.6148$	$n_0^{20} = 1.5799$	$n_D^{20} = 1.6081$	144 - 146 °C	$n_D^{20} = 1.6061$	$n_D^{20} = 1.6195$	$n_D^{20} = 1.6084$	73 - 76 °C	$n_D^{20} = 1.6250$	n _D ° = 1.5939	n _D ²⁰ = 1.6139
10		R7	I	I	I	I	I	I	I	I	x	I.	I	I	I
. 15		ج م	r	Ι	r	Ι	I	I	I	I	3-F	2-F	I	r	r
20	(pən	ج د د	I	I	I	iso-C ₃ H ₇	I	I	I	I	r	I	CH ₂ C ₆ H ₅) D=0	Ę Ł
25	Table 7 (continued)		,	,	10		¢))C ₂ H ₅	cH ₂					
30	Table	₽ X	CONH	CONH	COCH2CO2C2H5	CO2C ₂ H ₅)=-0 -0-0-0H	CO ₂ C ₅ H ₁₁ -neo	CO2CH2CH(CH3)C2H5	CO2CH2C(CH3)=CH2	CO ₂ C ₂ H ₅	COC ₃ H ₇ -n			
35		ح	0	0	0	0	0	0	0	0	0	0	0	0	0
40	.	R ³	сн³	cH ₃	CH ₃	cH ₃	СН3	СН3	СН3	CH3	СН3	CH ₃	СН3	сн ³	ಕ್ಟ
45		R ²	I	I	I	I	I	I	I	x	I	I	I	I	I
		-α	ō	ច	ਹ	ਹ	\bar{o}	ច	ਠ	ច	ਹ	ਠ	ប៊	ច	ਹ
50		Compound No.	121	122	123	124	125	126	127	128	129	130	131	132	133

5			melting point or	refractive index	69.5 - 77.5 °C	147.5 - 154.5 °C	$n_D^{20} = 1.6233$	102 - 103 °C	$n_D^{20} = 1.5935$	$n_0^{20} = 1.5773$	$n_0^{20} = 1.5927$	93.5 - 101 °C	118 - 125.5 °C	159 - 161 °C	amorphous	133.5 - 136 °C	172.5 - 180.5 °C	$n_0^{20} = 1.6162$	$n_D^{20} = 1.5944$	2° 56 - 98	$n_0^{20} = 1.6282$	$n_D^{20} = 1.5914$		n ₀ = 1.5878
10				Α,	I	r	I	I	I	I	Ï	I	I	I	I	I	I	I	I	I	I	I		I
15				Re	I	I	I	I	I	I	I	I	I	I	I	I	r	I	I	I	I	I		I
20		(pani		R ⁵	I	I	I	I	I	COC ₃ H ₇ -n	·	I	I	r	I	GH ₃	I	I	I	r	I	I		I
25		Table 7 (continued)																						
30		Table		π4	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO2C2H5	CO ₂ C ₂ H ₅	tert-C4H9	CO ₂ CH ₃	CO ₂ C ₃ H ₇ -n	CO ₂ C ₃ H ₇ -iso	COCH2CN	CO ₂ C ₂ H ₅	c _H 3	СН3	. C _e H ₅	CO ₂ C ₃ H ₇ -n	CO ₂ C ₄ H ₉ -sec	сосносн	CO ₂ CH ₃	CO ₂ C ₄ H ₉ -iso	0=	O-2-
35				-	0	7	0	0	0	0	0	0	0	7	7	7		0	0	0	0	0		0
40	•		,	R	$(CH_2)_3F$	CH_2CF_3	CH=CH ₂	CH ₂ CI	CH ₃	CH ₃	C_2H_5	C_2H_5	c _H 3	CH ³	CH ₃	снз	снз	C_2H_5	C_2H_5	C_2H_5	CH=CH ₂	C_2H_5		C2H5
45			(Α ₂	I	I	I	I	I	I	I	I	I	r	I	I	r	I	r	I	I	I		I
			•	2	ਹ	ັວ	ប	ਹ	ប	\bar{c}	ਹ	ರ	ರ	ğ	ប	ซ	ਹ	Ŗ	ប	ប	ប	ប		ਹ
50			Compound	No	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151		152

EP 0 742 202 A2

5			melting point or	refractive index	63 - 66.5 °C	$n_D^{20} = 1.5843$	$n_{\rm D}^{20} = 1.5756$	$n_{\rm D}^{20} = 1.5681$	$n_D^{20} = 1.6051$	$n_D^{20} = 1.5931$	$n_D^{20} = 1.5694$	$n_D^{20} = 1.5956$	$n_D^{20} = 1.5850$	109 - 114,5 °C	$n_D^{20} = 1.5901$	$n_D^{20} = 1.6231$	$n_D^{20} = 1.5811$	70 - 72 °C	$n_D^{20} = 1.6141$	74 - 75 °C
10			,	,X	I	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I
15			•	å.	I	I	I	I	I	I	I	I	I	I	I	I	Ι	x	r	I
20	4	nued)	ų	₂	CH ₃	r	COC ₂ H _s	COC ₃ H ₇ -n	I	C_2H_5	C ₃ H ₅ -iso	C ₃ H ₅ -iso	CO ₂ C ₂ H ₅	I	I	I	I	I	I	I
25	1	rabie / (continued)				_								_						
30	ŀ	Labie	4	Α.	ς, Σ		CO ₂ C ₂ H ₅	CO ₂ C ₃ H ₇ -n	CO ₂ C ₂ H ₅	COCH2OCH3)= °	CO ₂ C ₄ H ₉ -sec	CO ₂ C ₂ H ₅	CO2CH2Si(CH3)3	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C ₂ H ₅			
35				4	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40	•		e d	ž	ည် <u>ီ</u>	C_2H_5	cH ₃	C_2H_5	CH ₂ F	cH ₃	C ₂ H ₅	cH ₃	с г	CH,	cH ₃	C_2H_5	C_2H_5	CH2OC2H5	сн2осн3	CH ₂ Si(CH ₃) ₃
45			ć	¥	I	I	I	I	I	I	I	I	I	I	r	I	r	I	I	I
			ī	¥	ਹ	ច	ਹ	ប	ច	ਹ	ਹ	ă	ิ	ਠ	ರ	ā	\bar{c}	ច	ō	ប
50			Compound	No.	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168

5		melting point or	refractive index	$n_{\rm D}^{20} = 1.6336$	$n_D^{20} = 1.5702$	$n_D^{20} = 1.6133$	$n_D^{20} = 1.6018$	156.5 - 169 °C	101.5 - 107 °C	$n_{\rm D}^{20} = 1.5681$	163 - 168.5 °C	131 - 135 °C	$n_0^{20} = 1.6021$	117 - 120.5 °C	$n_D^{20} = 1.5828$	$n_D^{20} = 1.5770$	$n_D^{20} = 1.5822$	$n_D^{20} = 1.5870$	n _D = 1.5834
10			Α,	I	r	r	I	I	I	I	I	I	I	I	I	I	I	I	I
			Re	I	I	r	I	I	I	I	I	I	I	I	I	I	I	I	I
15					3	\sim													
20	(penu		R ⁵	r	CO2CH2SI(CH3) -C-0-0-	-CO ₂ C ₃ H ₇ -n	CO ₂ CH ₃	CO2CH2CF3	CO ₂ C ₃ H ₇ -n	со2сн3	CO ₂ C ₂ H ₅	CO(CH ₂) ₅ Br)=Q	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	CO ₂ C ₃ H ₇ -n	CO ₂ C ₂ H ₅
25	Table 7 (continued)			-£															
30	Table		R4	сосносносн	I	I	I	I	I	I	I	I	II.	I	n-C₄H ₉	COC₄H₅-n	C_2H_5	C ₂ H ₅	C ₂ H _s
35			-	0	0	0	0	-	-		- -		0	0	0	0	0	0	-
40			R ³	ç F	c _H	CH3	n-C ₃ H ₇	C_2H_5	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	C ₂ H ₅	CH ₃	CH3	CH ₃	снз	C_2H_5	C ₂ H ₅	CH ₃
45			R ²	I	I	I	I	I	r	I	I	I	I	r	I	I	I	I	I
			2	ਠ	ប	\overline{o}	ਹ	ō	ਠ	õ	ä	Б	ប	ਹ	ਹ	\overline{o}	ਹ	ä	ច
50		Compound	No	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184

5		melting point or	refractive index	118 - 123 °C	$n_{\rm D}^{20} = 1.5962$	$n_D^{20} = 1.5944$	$n_D^{20} = 1.5837$	30 - 38 °C	$n_D^{20} = 1.6021$	$n_D^{20} = 1.5922$	$n_D^{20} = 1.5930$	$n_D^{20} = 1.5622$	$n_D^{20} = 1.5852$	$n_D^{20} = 1.5854$	$n_D^{20} = 1.6182$	58 - 62 °C	$n_0^{20} = 1.6020$	$n_D^{20} = 1.5950$	$n_D^{20} = 1.5880$	$n_D^{20} = 1.5852$	$n_D^{20} = 1.5858$	$n_D^{20} = 1.5728$
10	-		Α,	I	I	I	I	I	I	r	I	I	I	I	I	I	I	I	I	I	I	I
15			R	I	I	I	I	r	I	I	I	I	r	r	I	I	I	I	I	I	I	I
20	(pən	-	R ⁵	COCO ₂ C ₂ H ₅	CH2CH=CH2	сн₂с≅сн	CH2CH2F	C_2H_S	CH3	C ₂ H ₅	СН3	CH ₃	C ₂ H ₅	C ₂ H ₅	сН³	снз	C ₂ H ₅	C ₂ H _s	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅
25	Table 7 (continued)																					
зо	Table		R ⁴	I	CO ₂ C ₂ H ₅	со2сн3	со2сн3	CO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅	C ₂ H ₅	CO ₂ C ₂ H ₅	со2сн3	CO ₂ C ₂ H ₅									
35			u	0	0	0	0	0	0	0	-	2	-	7	-	7	0	-	7	0	-	0
40	**		R ³	CH ₃	cH ₃	СН3	cH ₃	cH ₃	C ₂ H ₅	C ₂ H ₅	C_2H_5	C ₂ H ₅	C ₂ H ₅	C_2H_5	C_2H_5	C_2H_5	CH ₃	CH3				
45			R ²	I	I	I	I	I	r	I	I	I	I	I	I	I	r	I	I	I	r	r
			<u></u>	ប	ਹ	ប	ប	ច	ਹ	ਹ	ច	ਠ	ច	$\overline{\mathbf{o}}$	ਹ	ਹ	ğ	ğ	<u>8</u>	ਹ	ਠ	ប
50		Compound	No.	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203

5			melting point or	refractive index	$n_{\rm D}^{20} = 1.5783$	$n_D^{20} = 1.5749$	amorphous	$n_{\rm D}^{20} = 1.6528$	$n_D^{20} = 1.5944$	$n_0^{20} = 1.5763$	$n_D^{20} = 1.5977$	$n_D^{20} = 1.5990$	$n_0^{20} = 1.5890$	$n_D^{20} = 1.5980$	$n_{\rm D}^{20} = 1.6140^{'}$	$n_D^{20} = 1.5808$	$n_0^{20} = 1.6308$
10				R7	I	I	I	I	I	I	I	I	I	I	r	I	I
15				R	I	I	I	I	I	I	I	I	I	I	I	I	I
20		inued)		R5	C ₂ H ₅	(CH ₂) ₅ CH ₃	C ₂ H ₅	I	I	I	CH ₂ CN	COC ₆ H ₅	COC,Hs	COC ₆ H ₅	C_2H_5	C ₂ H ₅	сосн
25		Table 7 (continued)															
30		Table		₽₩	CO ₂ C ₄ H ₉ -iso	CO ₂ C ₂ H ₅	CO ₂ CH ₂ CF ₃	COC ₃ H ₇ -iso	CO ₂ C ₄ H ₉ -n	CO ₂ C ₄ H ₉ -Iso	CO ₂ C ₂ H ₅	COCH ₃	COC ₃ H ₇ -n	COC ₆ H ₅			
35				_	0	0	0	0	-	-	0		₩.	2	0	7	0
40	~			R³	CH ₃	cH ₃	CH ₃	CH3	CH ₃	C ₂ H ₅	cH ₃	C_2H_5	C_2H_5	C_2H_5	CH ₃	C_2H_5	CH ₃
45				R ²	I	I	I	I	I	r	I	I	I	r	I	I	I
					ರ												ច
50			Compound	No.	204	205	206	207	208	209	210	211	212	213	214	215	216

Synthesis of Intermediates

Synthesis Example 8

5

10

To an acetonitrile solution (200 ml) of 4-bromomethyl-4'-fluorobenzophenone (20 g), an aqueous 15% sodium methylmercaptan solution (60 ml) was added and the mixture was heated for 6 hours with refluxing. After the reaction mixture
was restored to room temperature, water (500 ml) and toluene (300 ml) were added. The organic layer was separated,
which was then successively washed with an aqueous 2N sodium hydroxide solution and water, and dried over anhydrous magnesium sulfate. After distilling off the solvent, the crude product was purified by silica gel column chromatography (developing solvent n-hexane:ethyl acetate = 9:1) to obtain 4-fluoro-4'-methylmercaptomethylbenzophenone (17

n_D²⁰ 1.6375

Synthesis Example 9

25

35

30

To an ether solution (30 ml) of 4-bromoflurorobenzene (1.75 g), 1.6 M n-butyllithium hexane solution (6.3 ml) was added at -78 °C, and the mixture was stirred for an hour at the same temperature. An ether solution (10 ml) of 4-methylmercaptomethylbenzonitrile (1.63 g) was dropwise added thereto at -78 °C, and the mixture was stirred for 16 hours while restoring the mixture gradually to room temperature. To the reaction mixture, an aqueous 6 N hydrochloric acid was added and stirred for an hour at room temperature, and ether (20 ml) was added. Then the organic layer was separated, and washed with water, followed by drying over anhydrous magnesium sulfate. After distilling off the solvent, the obtained crude product was purified by silica gel column chromatography (developing solvent, n-hexane : ethyl acetate = 9 : 1) to obtain 4-fluoro-4'-methylmercaptomethylbenzophenone (1.12 g). n_0^{20} 1.6375

Synthesis Example 10

50

45

55

S-(4-(4-chlorobenzoyl)benzyl)thiouronium bromide (3.3 g) and potassium carbonate (1.5 g) were dissolved in dimethyl-formamide (20 ml). A methanol solution (10 ml) of potassium hydroxide (1.0 g) was added and stirred at room temper-

ature for 30 minutes. To the reaction mixture, water (100 ml) and toluene (100 ml) were added. The organic layer was separated, and washed with water and an aqueous saturated sodium chloride solution, followed by drying over anhydrous magnesium sulfate. After distilling off the solvent, the crude product was purified by silica gel column chromatography (developing solvent: ethyl acetaten:hexane = 1:9) to obtain 4-chloro-4'-ethylmercaptomethylbenzophenone (1.3 q).

melting point: 34 - 35 °C

4-chloro-4'-difluoromethylmercaptomethylbenzophenone (0.8 g) was obtained in the same manner as in Synthesis Example 10 by using bromodifluoromethane (3.9 g) instead of ethyl iodide.

melting point: 60 - 62 °C

4-chloro-4'-trifluoromethylmercaptomethylbenzophenone (0.4 g) was obtained in the same manner as in Synthesis Example 10 by using trifluoromethyl iodide (5.9 g) instead of ethyl iodide. melting point: 78 - 79°C

Synthesis Example 11 (Synthesis of starting material for Synthesis Example 10)

15

20

5

An acetone solution (500 ml) of 4-bromomethyl-4'-chlorobenzophenone (31 g) and thiourea (10 g) was heated for 30 minutes with refluxing. The precipitated crystals were then collected by filtration and washed with acetone to obtain S-(4-(4-chlorobenzoyl)benzyl)thiouronium bromide (33 g). melting point: 76 - 78°C

Synthesis Example 12

30

40

To a tetrahydrofuran solution (30 ml) of lithium diisopropylamide which was prepared from a 1.6 M n-butyllithium hexane solution (12.5 ml) and diisopropylamine (2.1 g), a tetrahydrofuran solution (10 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (2.8 g) was added at -78°C, and the mixture was stirred for 30 minutes at the same temperature. Ethyl iodide (3.0 g) was subsequently added thereto at -78°C, and the mixture was stirred for 6 hours while restoring the mixture gradually to room temperature. After completing the reaction, the reaction mixture was washed with aqueous 5% ammonium chloride solution and aqueous saturated sodium chloride solution, and dried over anhydrous magnesium sulfate. After distilling off the solvent, the obtained crude product was purified by silica gel column chromatography (developing solvent: n-hexane:ethyl acetate = 4:1) to obtain 4-chloro-4'-(1-methylmercaptopropyl)benzophenone (0.3 g) as oily substance.

¹H-NMR (90 MHz, CDCl₃) (0.93 3H t) (1.88 3H s) (1.96 2H m) (3.63 1H t) (7.27-7.80 8H m)

Synthesis Example 13

5

10

To a pyridine solution (30 ml) of 4-(4-chlorobenzolyl)benzylthiocyanate (1.5 g) and benzylthiocyanate (1.5 g), zinc powder (0.4 g) was added and stirred at room temperature for 24 hours under trifluoromethyl iodide atmosphere. Then toluene (50 ml) was added and zink powder was filtered off. The filtrate was washed with 2N HCl aq. (30 ml tree times) and dried over anhydrous magnesium sulfate. After the solvent was evaporated the residue was purified by means of column chromatography (n-hexane: ethylacetate = 6:1). Then 4-chloro-4'-trifluoromethylmercaptobenzophenone (0.5 g) was obtained.

melting point: 78 -79°C

Synthesis Example 14

25

20

30

A mixture of 4-chloro-4'-(2-chloroethylmercaptomethyl)benzophenone (4.9 g) and 1,8-diaza-bicyclo[5.4.0]undec-7-ene (4.3 g) in 100ml of toluene was stirred for 3 hours at 80 °C. After that, the mixture was washed with aqueous 2N hydrochloric acid solution and water, followed by drying over anhydrous sodium-sulfate. The solvent was distilled off under reduced pressure to obtain 4-chloro-4'-vinylmercaptomethylbenzophenone (4.3 g). n_D^{20} 1.6363

Synthesis Example 15

40

45

50

To an acetic acid solution (30 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (8.3 g), aqueous 30% hydrogen peroxide solution (3.5 ml) was added, and the mixture was stirred for 2 hours while keeping at 10°C. To the reaction solution, water (200 ml) and toluene (200 ml) were added, and then the organic layer was separated, and washed successively with water, an aqueous sodium bicarbonate solution and an aqueous saturated sodium chloride solution, followed by drying over anhydrous magnesium sulfate. After distilling off the solvent, the crude product was purified by silicagel column chromatography (developing solvent: acetone:n-hexane = 50:50) to obtain 4-chloro-4'-methylsulfinyl-methylbenzophenone (5.3 g).

melting point: 125 -128°C

Synthesis Example 16

5

10

4-Chloro-4'-methylsulfinylmethylbenzophenone (2.9 g) and m-chloroperbenzoic acid (2.5 g) were dissolved in dichloromethane, and the mixture was stirred for 12 hours at 0°C. After the precipitated crystals were filtered off, the filtrate
was successively washed with aquous sodium bicarbonate solution, aqueous 5% sodium thiosulfate solution and water,
and dried over anhydrous magnesium sulfate. After distilling off the solvent, the crude product was purified by silica gel
column chromatography (developing solvent: ethyl acetate:n-hexane = 1.5) to obtain 4-chloro-4'-methylsulfonylmethylbenzophenone (1.8 g).

20 melting point: 173 - 174°C

Synthesis Example 17

25

30

- 35 To an acetic acid solution (70 ml) of 4-chloro-4'-methylmercaptomethylbenzophenone (8.3 g), aqueous 30% hydrogen peroxide solution (7 ml) was added at room temperature, and the mixture was stirred for 6 hours at 70°C. The reaction mixture was poured into ice-water, and the precipitated crystals was collected by filtration, and washed with an aqueous sodium bicarbonate solution and water. The crystals was then air-dried to obtain 4-chloro-4'-methylsulfonylmethylbenzophenone (4.3 g).
- melting point: 173 174°C

Reference Example 1 (Synthesis of starting materials for Synthesis Example 8)

45

50

A carbon tetrachloride solution (200 ml) of 4-fluoro-4'-methylbenzophenone (16 g), N-bromosuccinimide (14.2 g) and 2,2'-azodi-isobutyronitrile (0.1 g) was heated for 16 hours with refluxing. After the mixture was cooled to a room temperature, the precipitates were collected by filtration, and the solvent was distilled off to obtain 4-bromomethyl-4'-fluorobenzophenone (20 g).

melting point: 73 - 75°C

Reference Example 2 (Synthesis of starting material for Reference Example 1)

F CH,

10

5

Into a toluene suspension (200 ml) of aluminum chloride (26 g), a toluene solution (50 ml) of p-fluorobenzoyl chloride (16 g) was dropwise added at a room temperature. Subsequently, the mixture was stirred for 20 hours at a room temperature, and then carefully poured into ice-water. Toluene (200 ml) was added thereto, and then the organic layer was separated, and washed successively with aqueous 2N hydrochloric acid solution, water and aqueous saturated sodium chloride solution, followed by drying over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 4-fluoro-4'-methylbenzophenone (16 g). melting point: 97 - 98°C

20 Reference Example 3 (Synthesis of starting material for Synthesis Example 9)

NC CH₂-S-CH

25

To an acetonitrile solution (500 ml) of 4-cyanobenzyl bromide (50 g), 15% methyl mercaptan sodium salt (120 ml) was added at a room temperature and heated for 6 hours with refluxing. After cooling to a room temperature, water (1 l) and toluene (1 l) was added thereto. The organic layer was separated and washed successively with an aqueous 2N sodium hydroxide solution sulfate. After distilling off the solvent, 4-methylmercaptomethylbenzonitrile (38 g) was obtained.

The following Table 8 shows the compounds synthesized in the above Synthesis Examples 8 to 17 together with compounds synthesized in the same manner as those in the Synthesis Examples 8 to 17.

40

45

50

Table 8

P C R

5

10					· ·
·	R^1	R^6	R ⁷	A	Melting Point or Refrective Index
15	Br	Н	Н	CH ₂ SC(=NH)NH ₂ ·HBr	225 - 231 °C
	Cl	Н	Н	CH(CH ₃)SC(=NH)NH ₂ ·HBr	158 - 159 °C
	Cl	H	H	CH ₂ SC(=NH)NH ₂ ·HBr	76 - 78 °C
20	Cl	Н	2-C1	CH ₂ SC(=NH)NH ₂ ·HBr CH(CH ₃)SC(=NH)NH ₂ ·HBr CH ₂ CC(=NH)NH ₂ ·HBr CH ₂ SC(=NH)NH ₂ ·HBr CH ₂ SC(S)OC ₂ H ₅ CH ₂ S(CS)OC ₂ H ₅ CH ₂ S(CO)CH ₃ CH ₂ SC ₂ H ₅ CH ₂ SC ₂ H ₅ CH ₂ SC ₂ H ₅ CH ₂ SC ₃ H ₇ -iso CH ₂ SC ₄ S CH ₂ SC ₄ S CH ₂ SC ₄ S CH ₂ SC ₅ S CH ₂ SC ₅ S CH ₂ SC ₆ S CH ₂ SC ₇ S CH	110 - 114 °C
	Cl	H	3-Cl	CH ₂ SC(=NH)NH ₂ ·HBr	198 - 201 °C
	I	Н	H	CH ₂ SC(=NH)NH ₂ ·HBr	196 - 210 °C
25	Cl	Н	H	CH ₂ SCN	149 - 150 °C
	Cl	Н	H	CH ₂ S(CS)OC ₂ H ₅	62 - 68 °C
	Cl	Н	H	CH ₂ S(CO)CH ₃	98 - 99 °C
	Br	H	H	CH ₂ SC ₂ H ₅	46 - 48 °C
30	Cl	H	H	CH(CH ₃)SCH ₃	n ²⁰ 1.6198
	Cl	Н	Н	CH ₂ SC ₂ H ₅	34 - 35 °C
35	Cl	H	Н	CH ₂ SC ₃ H ₇ -iso	n_D^{20} 1.6320
	Cl	Н	Н	CH ₂ SC ₃ H ₇ -n	n _D ²⁰ 1.6211
	Cl	Н	Н	CH ₂ SCF ₃	78 - 79 °C
40	CI	Н	H	CH ₂ SCH ₂ C≡CH	80 - 81 °C
	Cl	H	H	CH ₂ SCH ₂ CF ₃	77 - 78 °C
	Cl	Н	Н	CH2SCH=CH2	n ²⁰ 1.6363
45	CI	Н	Н	CH ₂ SCH ₂ CH=CH ₂	n _D ²⁰ 1.6368
	Cl	Н	Н	CH ₂ SCH ₂ CH ₂ Cl	65 - 67 °C
	Cl	H	Н	CH ₂ SCH ₂ CH ₂ F	44 - 45 °C
50	Cl	Н	3-Br	CH ₂ SCH ₃	n_D^{20} 1.6502
	Cl	Н	3-CH ₃	CH ₂ SCH ₃	n ²⁰ 1.6345

Table 8 (continued)

5	R ¹	R ⁶	R ⁷	Α	Melting Point or Refrective Index
10	CI	Н	2-CH ₃	CH ₂ SCH ₃	$n_D^{20} = 1.6324$
	Cl	Н	H	CH ₂ SCHF	n ₀ ²⁰ 1.6237
	Cl	Н	Н	CH ₂ SCHF ₂	60 - 62 °C
15	C1	H	H	$CH_2(SO_2)CH_3$	173 - 174 °C
	Cl	H	H	CH ₂ (SO)CH ₃	125 - 128 °C
	Cl -	2-C1	Н	CH ₂ SCH ₃	n ²⁰ 1.6369
20	Cl	3-C1	Н	CH ₂ SCH ₃	66 - 67 °C
	F	Н	Н	CH ₂ SCH ₃	n_0^{20} 1.6375
25	F	3-F	H	CH ₂ SCH ₃	n _D ²⁰ 1.6306
	I	Н	Н	CH ₂ SCH ₃	89 - 91 °C
	Cl	Н	Н	CH ₂ SCH ₂ CN	87.5 - 88 °C
30	Cl	Н	H	CH ₂ SCH ₂ CHF ₂	59 - 60.5 °C
	Cl	Н	H	CH ₂ SCH ₂ CH ₂ CH ₂ CI	n_D^{20} 1.6113
	Br	Н	H	CH ₂ SCH ₂ CF ₃	79.5 - 81.5 °C
35	Br	Н	H	CH ₂ SCH ₂ CHF ₂	62 - 64 °C
	Cl	H	H	CH ₂ SCH ₂ CH ₂ CH ₂ F	39 - 40.5 °C
	Cl	H	H	$CH_2SCH_2Si(CH_3)_3$	95 - 100 °C

Biological Test Examples

Preparation of test solutions

Solvent: 3 parts by weight of xylol

Emulsifier: 1 part by weight of polyoxyethylene alkyl phenyl ether

To produce a suitable preparation of active compound, 1 part by weight of active compound was mixed with the stated amount of solvent containing the stated amount of emulsifier, and the mixture was diluted with water to the prescribed concentration to prepare test solutions.

55

40

Test Example 1 (Test against Spodoptera litura larvae)

Testing procedure

Leaves of cabbage (Brassica oleracea) were dipped into the solution of the active compound at the prescribed concentration. After air-drying the solution, the treated leaves were placed in a petridish, and ten third-instar larvae of common cutworm (*Spodoptera litura*) were released. The dish was then placed at an incubation chamber of 25°C. After 7 days, the number of dead larvae was examined to calculate mortality in %. The test was conducted with 2 replications, and the mortality in % is shown in their average.

Results

10

20

Compound Nos. 8, 12, 16, 34, 37, 43, 48, 50, 54, 57, 60, 63, 74, 83, 92, 106, 171, 121, 125, 132, 139, 140, 141, 142, 147, 148, 149, 151, 152, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 170, 171, 172, 173, 174, 175 and 176 exhibited 100 % of mortality at the concentration of 200 ppm, and compound Nos. 1, 5, 22, 29, 33, 40, 47, 49, 68, 75, 79, 87, 100, 111, 113, 116, 123, 130, 133, 135, 136, 137, 143, 144, 145, 150, 154, 156 and 169 exhibited 100 % of mortality at the concentration of 100 ppm.

Test Example 2 (Test against Aulacophora femoralis)

Testing procedure

Leaves of cucumber (*Cucumis sativus*) were dipped into the solution of the active compound at the prescribed concentration. After air-drying the solution, the treated leaves were placed in a Petridish, and ten second-instar larvae of cucurbit leaf beetle (*Aulacophora femoralis*) were released. The dish was then placed at an incubation chamber of 25°C. After 7 days, the number of dead larvae was examined to calculate mortality in %. The test was conducted with 2 replications, and the mortality in % is shown in their average.

Results

30

Compound Nos. 3, 7, 15, 18, 23, 25, 31, 36, 39, 44, 51, 58, 59, 61, 65, 73, 77, 78, 84, 85, 91, 93, 96, 98, 101, 103, 109, 114, 115, 119, 120, 126, 129, 131, 133, 135, 136, 140, 145, 148, 150, 152, 154, 156, 163, 167, 169, 170 and 172 exhibited 100 % of mortality at the concentration of 200 ppm.

35 Test Example 3 (Test against Plutella xylostella larvae resistant to benzoylureas)

Testing procedure

Leaves of cabbage (Brassica oleracea) were dipped into the solution of the active compound at the prescribed concentration. After air-drying the solution, the treated leaves were placed in a petridish, and ten second-instar larvae of
diamondback moth (*Plutella xylostella*) resistant to benzoylureas were released. The dish was then placed at an incubation chamber of 25°C. After 7 days, the number of dead larvae was examined to calculate mortality in %. The test
was conducted with 2 replications, and the mortality in % is shown in their average.

45 Results

50

Compound Nos. 2, 11, 15, 17, 20, 26, 28, 30, 35, 41, 45, 53, 56, 62, 69, 71, 81, 86, 88, 90, 97, 99, 102, 104, 107, 127, 134, 139, 142, 147, 149, 152, 154, 156, 159, 167 and 168 exhibited 100 % of mortality at the concentration of 200 ppm.

Test Example 4 (Test against Cnaphalocrocis medinalis)

Testing procedure

The solution of the active compound at the prescribed concentration were spread on 3.5-leaf stage of rice. After air-drying the solution, the treated leaves were cut and were placed in a Petridish, and ten third-instar larvae of rice leaf-roller (*Cnaphalocrocis medinalis*) were released. The dish was then placed at an incubation chamber of 25°C. After 7 days, the number of dead larvae was examined to calculate mortality in %. The test was conducted with 2 replications, and the mortality in % is shown in their average.

Results

5

10

20

25

30

50

55

Compound Nos. 4, 9, 10, 13, 24, 27, 32, 42, 46, 52, 55, 64, 67, 70, 72, 76, 82, 89, 94, 95, 105, 108, 110, 112, 124, 128, 140, 148, 151, 160, 163 and 165 exhibited 100 % of mortality at the concentration of 50 ppm.

Test Example 5 (Test against Diabrotica balteata)

Preparation of test formulation

carrier: 7 parts by weight of Kaolin emulsifier: 1 part by weight of detergent

For the seed treatment a certain amount of active ingredient is solved acetone and mixed into a the stated amount of carrier containing the stated amount of emulsifier.

For seed coating 200 mg of the formulation are dispersed with 0.2 ml of water within a plastic pot. 10 g of maize are added to the dispersion and mixed thoroughly on rotary shaker for 2 minutes.

Testing procedure

After drying of the seed coating five treated/untreated seedcernels were added into 300 ml of standardized wet soil and kept at a temperature of 20 °C. Two replications are prepared for each preparation.

After two days each pot is infested with 20 second-instar-larvae of *Diabrotica balteata*, seven days after infestation the number of emerged plants per pot is counted.

The efficacy is calculated to 100 % Abbot, if all plants emerged and to 0 % Abbot, if no plant emerged.

Results

Compound Nos. 8, 39, 70 and 95 exhibited 100 % of mortality at the 0.1 g of the active ingredient per 10 g seed-cernels.

Claims

1. Compounds of the formula:

wherein

R¹ is halogen,

 R^2 is hydrogen or C_{1-4} alkyl,

R³ is cyano, optionally substituted C₁₋₄ alkyl, C₂₋₄ alkenyl or C₃₋₄ alkynyl, C₁₋₄ alkyl-carbonyl or C₁₋₄ alkoxy-thiocarbonyl,

is hydrogen, phenyl, optionally substituted C₁₋₈ alkyl, optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₈ alkenyl, -CO-R⁸, -CO-O-R⁹ or

$$-\frac{Z}{C} \cdot N \cdot R^{10}$$

5

10

15

20

is hydrogen, formyl, phenyl, optionally substituted C_{1-8} alkyl, optionally substituted C_{2-8} alkenyl, optionally substituted C_{1-8} alkyl-carbonyl, optionally substituted C_{1-6} alkyl-oxalyl, optionally substituted C_{1-8} alkoxy-carbonyl, optionally substituted C_{1-8} alkoxy-oxalyl, optionally substituted C_{2-8} alkenyl-carbonyl or optionally substituted C_{2-8} alkenyl-carbonyl or optionally substituted benzoyl,

R⁶ is hydrogen or halogen,

 R^7 is hydrogen, halogen or C_{1-2} alkyl,

is 0, 1 or 2, provided that n is 0 when R^3 is cyano, C_{1-4} alkyl-carbonyl or C_{1-4} alkoxy-thiocarbonyl,

is a single bond of Anti form or of Syn form,

is optionally substituted C_{1-8} alkyl, optionally substituted C_{2-8} alkenyl, optionally substituted phenyl, optionally substituted C_{3-8} cycloalkyl, optionally substituted C_{1-8} alkyl-carbonyl or optionally substituted C_{1-8} alkoxy-carbonyl, or hydrogen,

is optionally substituted C_{1-8} alkyl, optionally substituted C_{3-8} cycloalkyl, optionally substituted C_{2-8} alkenyl or optionally substituted C_{3-8} alkynyl,

R¹⁰ is hydrogen or C₁₋₄ alkyl,

 R^{11} is hydrogen, optionally substituted C_{1-4} alkyl or optionally substituted phenyl and,

Z is oxygen or sulfur.

25

R9

2. Process for the preparation of compounds of formula (I) according to claim 1, characterized in that

(a) in the case where R⁵ is hydrogen: compounds of the formula (II)

30

$$\mathbb{R}^{6} \stackrel{\text{II}}{\underset{\text{R}^{2}}{\bigvee}} \mathbb{C} \stackrel{\text{CH-S(O)}_{n-R^{3}}}{\underset{\text{R}^{2}}{\bigvee}}$$
(II)

40

35

wherein R¹, R², R³, R⁶, R⁷ and n are defined as in claim 1, are reacted with compounds of the formula (III)

45

$$R^4$$

$$\begin{cases}
N \\
N \\
NH_2
\end{cases}$$
(III)

50

wherein R4 is defined as in claim 1;

in the presence of an inert solvent, and, if appropriate, in the presence of an acid catalyst, or

(b) in the case where R5 is hydrogen and R4 is

$$-C-N$$

and R¹¹ is not hydrogen, then R¹¹ is replaced by R¹², then R¹² is optionally substituted C_{1.4} alkyl or optionally substituted phenyl:

compounds of the formula (IV)

5

10

15

20

25

30

35

40

45

50

55

wherein R1, R2, R3, R6, R7 and n are defined as above, are reacted with compound of the formula (V)

wherein R12 is optionally substituted C1-4 alkyl or optionally substituted phenyl, in the presence of an inert solvent,

(c) in the case where R4 is -CO-R8 or -CO-O-R9, provided that R8 is not hydrogen, then R8 or -O-R9 is replaced by R13, the aforementioned compounds of the formula (IV) are reacted with compounds of the formula (VI)

$$\begin{array}{c}
0\\
\text{Pal}
\end{array}$$
(VI)

wherein hal is chlorine or bromine and R13 is R8 or -O-R9, in the presence of an inert solvent, and if appropriate in the presence of an acid binder,

(d) in the case where R⁵ is not hydrogen, then R⁵ is replaced by R¹⁴: compounds of the formula (VII)

wherein R^1 , R^2 , R^3 , R^4 , R^6 , R^7 and n have the same meaning as mentioned above, are reacted with compounds of the formula (VIII)

5

wherein hal and R^{14} have the same meaning as mentioned above, in the presence of an inert solvent, and if appropriate in the presence of an acid binder,

or

(e) in the case where n is 1: compounds the formula (IX)

15

10

$$\begin{array}{c}
R^{5} \\
N \\
R^{6}
\end{array}$$

$$\begin{array}{c}
R^{6} \\
R \\
\end{array}$$

$$\begin{array}{c}
R^{7} \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
CH \\
R^{2}
\end{array}$$

20

25

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 have the same meaning as mentioned above, are oxidized in the presence of an inert solvent,

0

(f): in the case where n is 2: compounds of the formula (X)

30

35

40

wherein R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ have the same meanings as mentioned above and q is 0 or 1, are oxidized in the presence of an inert solvent.

3. Compounds of formula (I) according to claim 1, wherein

R¹ is halogen,

R² is hydrogen or C₁₋₃ alkyl,

50

is cyano, C_{1-4} alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, methoxy, ethoxy and trimethylsilyl or is C_{2-3} alkenyl, propargyl, methyl-carbonyl, methoxy-thiocarbonyl or ethoxy-thiocarbonyl,

 R^4 is hydrogen, $C_{1.4}$ alkyl, $C_{2.4}$ alkenyl, phenyl, or is benzyl, -CO- R^8 , -CO-O- R^9 or

$$\frac{Z}{C} \cdot N \cdot R^{10}$$

is hydrogen, formyl, phenyl, $C_{1.6}$ alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, $C_{1.4}$ alkoxy, $C_{1.4}$ alkylthio, hydroxycarbonyl, $C_{1.4}$ alkoxy-carbonyl, phenyl, which is substituted by halogen and methoxyphenyl or is $C_{2.6}$ alkenyl, $C_{3.6}$ alkyl-carbonyl, $C_{1.6}$ halogenalkyl-carbonyl, $C_{1.4}$ alkoxy- $C_{1.6}$ alkyl-carbonyl, $C_{1.6}$ alkyl-carbonyl which may be substituted by one or more than one substituent selected from the group consisting of $C_{3.6}$ cycloalkyl and $C_{1.4}$ alkoxy or is $C_{1.6}$ alkoxy-oxalyl, $C_{3.6}$ cycloalkyl-carbonyl which may be substituted by $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl-carbonyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, nitro, cyano, $C_{1.4}$ alkoxy and $C_{1.4}$ alkylthio,

R⁶ is hydrogen or halogen,

5

20

35

45

50

R⁷ is hydrogen or halogen or C₁₋₂ alkyl,

n is 0, 1 or 2, provided that n is 0 when R³ is cyano, methyl-carbonyl, methoxy-thiocarbonyl or ethoxy-thiocarbonyl,

is a single bond of Anti form or of Syn form,

- is C₁₋₆ alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ alkoxy-carbonyl and phenoxy or is C₂₋₆ alkenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen and phenyl, or is phenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, nitro, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy and C₁₋₄ alkythio, or is C₃₋₆ cycloalkyl which may be substituted by C₁₋₄ alkyl, or is C₁₋₆ alkyl-carbonyl or C₁₋₆ alkoxy-carbonyl, or hydrogen,
- 30 R^9 is C_{1-6} alkyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, phenyl 4-nitrophenyl, trimethylsilyl and C_{3-6} cycloalkyl, or is C_{3-6} cycloalkyl, or C_{2-6} alkenyl which may be substituted by phenyl or is C_{3-6} alkynyl,

R¹⁰ is hydrogen or C₁₋₄ alkyl,

- R¹¹ is hydrogen, C₁₋₄ alkyl which may be substituted by halogen or is phenyl which may be substituted by one or more than one substituent selected from the group consisting of halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy and
 - Z is oxygen or sulfur.
- 4. Compounds of formula (I) according to claim 1, wherein

R¹ is fluorine, chlorine, bromine or iodine,

R² is hydrogen, methyl, ethyl or n-propyl,

is cyano, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, cyanomethyl, fluoromethyl, chloromethyl, difluoromethyl, trifluoromethyl, 2-fluroroethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3,3-tetrafluoropropyl, methoxymethyl, ehoxymethyl, trimethylsilylmethyl, vinyl, allyl, propargyl, methyl-carbonyl or ethoxy-thiocarbonyl,

R⁴ is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, allyl, phenyl, benzyl, -CO-R⁸, -CO-O-R⁹ or

$$-C \cdot N \cdot R^{10}$$

is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, methoxymethyl, ethoxymethyl, methylthiomethyl, methylthioethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, difluoromethyl, 2-chloroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, cyanomethyl, cyanomethyl, vinyl, allyl, propargyl, phenyl, benzoyl, cinnamoyl, benzyl, 4-chlorobenzoyl, 4-methoxyben-

zoyl, formyl, methylcarbonyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, 2.2,2-tri-fluoroethylcarbonyl, 5-bromopentylcarbonyl, methoxymethylcarbonyl, methyloxalyl, ethyloxalyl, propyloxalyl, isopropyloxalyl, n-butyl-oxalyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, propoxycarbonyl, butoxycarbonyl, methoxyoxalyl, ethoxyoxalyl, propoxyoxalyl, butoxyoxalyl, cyclopropylcarbonyl, 1-methylcyclopropylcarbonyl, cyclopropylmethoxycarbonyl or 2-methoxyethoxycarbonyl, hydroxycarbonylethyl,

R⁶ is hydrogen, fluorine or chlorine, is hydrogen, bromine or methyl,

n is 0, 1 or 2, provided that n is 0 when R³ is methyl-carbonyl or ethoxy-thiocarbonyl,

is a single bond of Anti form or of Syn form,

is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, cyanomethyl, 2-chloroethyl, 3-chloropropyl, 4-chlorobutyl, methoxymethyl, 2-methoxyethyl, phenoxymethyl, ethoxycarbonylmethyl, vinyl, isopropenyl, 1-propenyl, 2,3,3-trifluoro-2-propenyl, phenyl, 4-chlorophenyl, 4-methylphenyl, 4-methoxyphenyl, styryl, cyclopropyl, cyclopentyl, cyclohexyl, 1-methylcyclopropyl, methylcarbonyl, ethylcarbonyl, propylcarbonyl, methoxycarbonyl, ethoxycarbonyl or propyoxcarbonyl, or hydrogen,

is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, neo-pentyl, 2-methyl-butyl, n-hexyl, trimethylsilylmethyl, allyl, cyclopentyl, cyclopexyl, 2-methyl-2-propenyl, propargyl, 2-chloroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, cyclopropylmethyl, cyclohexylmethyl, benzyl or 4-nitrobenzyl

20 R¹⁰ is hydrogen or methyl,

5

10

15

R¹¹ is hydrogen, methyl, ethyl, 2-chloroethyl, phenyl, 2-chlorophenyl, 2-methoxyphenyl or 4-trifluoromethoxyphenyl, and

Z is oxygen or sulfur.

- Pesticidal agents which comprise at least one compound of the formula (i) as claimed in claim 1.
 - 6. The use of compounds of the formula (I) as claimed in claim 1 for combating pests.
- 7. A method of combating pests, wherein compounds of the formula (I) as claimed in claim 1 are allowed to act on pests and/or their environment.
 - 8. A process for the preparation of pesticides which comprises mixing compounds of the formula (I) as claimed in claim 1 with extenders and/or surfactants.
- 35 9. Compounds of the formula (XXIX):

$$R^{6}$$
 R^{7}
 $CH-S(O)_{n}-X$
 R^{2}

wherein

n

40

45

50

55

R¹ is halogen,

R² is hydrogen or C₁₋₄ alkyl,

R⁶ is hydrogen or halogen,

R⁷ is hydrogen, halogen or C₁₋₂ alkyl,

is 0, 1 or 2,

X is cyano, optionally substituted C_{1-4} alkyl, C_{2-4} alkenyl, C_{3-4} alkynyl, C_{1-4} alkyl-carbonyl, C_{1-4} alkoxy-thiocarbonyl or carboxamidine and their salts, provided that when X is cyano, C_{1-4} alkyl-carbonyl C_{1-4} alkoxy-thiocarbonyl or carboxamidine and their salts then n is 0.

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 19.03.1997 Bulletin 1997/12

(43) Date of publication A2: 13.11.1996 Bulletin 1996/46

(21) Application number: 96106956.4

(22) Date of filing: 03.05.1996

(51) Int. Cl.⁶: **C07C 323/48**, C07C 317/28, C07C 323/52, C07C 337/04, C07F 7/10, A01N 33/26, C07C 323/22, C07C 335/32, C07C 317/24, C07C 331/04, C07C 329/16

(84) Designated Contracting States: AT.BE CH DE DK ES FR GB GR IT LI NL PT

(30) Priority: 12.05.1995 JP 137482/95 15.02.1996 JP 50744/96

(71) Applicant: NIHON BAYER AGROCHEM K.K. Tokyo 108 (JP)

(72) Inventors:

 Kitagawa, Yoshinori Moka-shi, Tochigi (JP)

Wada, Katsuaki
 Oyama-shi, Tochigi (JP)

Kyo, Yoshiko
 Oyama-shi, Tochigi (JP)

Otsu, Yuichi
 Oyama-shi, Tochigi (JP)

Hattori, Yumi
 Yuki-shi, Ibaraki (JP)

(11)

Obinata, Toru
 Oyama-shi, Tochigi (JP)

Abe, Takahisa
 Oyama-shi, Tochigi (JP)

 Shibuya, Katsuhiko Minamikawachi-machi (JP)

Andersch, Wolfram, Dr.
 51469 Bergisch Gladbach (DE)

(74) Representative: Linkenheil, Dieter et al Bayer AG Konzernverwaltung RP Patente Konzern 51368 Leverkusen (DE)

(54) Benzophenone hydrazone derivatives as insecticides

(57) Summary Of The Invention

Novel benzophenonehydrazone derivatives represented by the formula (I):

$$\begin{array}{c}
R^{5} \\
N \\
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{7} \\
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{7}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{2}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{2}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
R^{2}
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
R^{2}
\end{array}$$

wherein, R^1 is halogen; R^2 is hydrogen or C_{1-4} alkyl; R^3 is cyano, optically substituted C_{1-4} alkyl, C_{2-4} alkenyl, C_{3-4} alkyl-nyl, C_{1-4} alkyl-carbonyl or C_{1-4} alkoxy-thiocarbonyl; R^4 is hydrogen, phenyl, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-8} alkenyl, -CO-O-R⁹ or

 R^5 is hydrogen, formyl, phenyl, optionally substituted $C_{1.8}$ alkyl, optionally substituted $C_{2.8}$ alkenyl, optionally substituted $C_{3.8}$ alkynyl, optionally substituted $C_{1.8}$ alkyl-carbonyl, optionally substituted $C_{1.8}$ alkoxy-carbonyl, optionally substituted $C_{1.8}$ alkoxy-carbonyl, optionally substituted $C_{1.8}$ alkoxy-carbonyl, optionally substituted $C_{2.8}$ alkenyl-carbonyl or optionally substituted benzoyl; R^6 is hydrogen or halogen; R^7 is hydrogen, halogen or $C_{1.2}$ alkyl-carbonyl or $C_{1.4}$ alkoxy-thiocarbonyl; n is 0, 1 or 2, provided that n is 0 when R^3 is cyano, $C_{1.4}$ alkyl-carbonyl or $C_{1.4}$ alkoxy-thiocarbonyl, is a single bond of Anti form or of Syn form.

The benzophenonehydrazone derivatives of the formula (I) have excellent insecticidal activities.

EUROPEAN SEARCH REPORT

Application Number EP 96 10 6956

	DOCUMENTS CONS							
Category	Citation of document with of relevant p	indication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)				
D,X	EP 0 355 832 A (SUM February 1990 * claims *	4ITOMO CHEMICAL CO) 28	2,5-8	C07C323/48 C07C317/28 C07C323/52 C07C337/04				
X, D	EP 0 003 913 A (BOO 1979 * claims *	OTS CO LTD) 5 September	2,5-8	C07F7/10 A01N33/26 C07C323/22 C07C335/32				
Δ, Σ	EP 0 566 534 A (CIE 1993 * claims *	BA GEIGY AG) 20 October	2,5-8	C07C331/24 C07C331/04				
D	& JP 06 025 134 A							
1	EP 0 581 725 A (CIE 1994 * claims *	BA GEIGY AG) 2 February	2,5-8					
	& JP 06 184 079 A							
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)				
				C07C				
			_	***************************************				
	The appearance of the second to the	and the second s	4	·				
	The present search report has b	Date of completion of the search	1	Promiser				
	THE HAGUE	21 January 1997	Van	Geyt, J				
X : parti Y : parti 40cu	ATEGORY OF CITED DOCUME cularly relevant if taken alone cularly relevant if combined with an ment of the same category	ple underlying the ocument, but publi date in the application for other reasons	invention ished on, or					
O : bon-	nological background written disclosure mediate document	*****************************	& : member of the same patent family,					

EPO FORM 1503 03.52 (PO4C01)