glmer in R and glimmix in SAS

- 1. Compliance in Pet-Covid project
- 1.1 Laplace Approximation (default method in R)

R code and result

```
m <- glmer(Compliance ~ MostAttach + time +(1|workerId), data = alldata, family = "binomial")
Random effects:
 Groups
           Name
                        Variance Std.Dev.
 workerId (Intercept) 94.29
                                 9.71
Number of obs: 1164, groups: workerId, 498
Fixed effects:
               Estimate Std. Error z value Pr(>|z|)
                 -6.8722
                             0.8305
                                      -8.275 < 2e-16 ***
(Intercept)
MostAttachCat
                 -1.2829
                             0.5851
                                      -2.193
                                              0.02833 *
                                       2.509
time2
                 0.8226
                             0.3279
                                              0.01211 *
                                       2.906
 time3
                 0.9795
                             0.3370
                                              0.00366 **
```

SAS code and result

```
proc glimmix data=set1 method=laplace;
class workerId MostAttach time(ref='1') Compliance(ref='0');
model Compliance = MostAttach time /s dist=binary link=logit;
random intercept/subject=workerId;
run;
```

Covariance Parameter Estimates						
Cov Parm Subject Estimate Standard Error						
Intercept	workerld	94.5486	27.0308			

Solutions for Fixed Effects							
Effect	MostAttach	time	Estimate	Standard Error	DF	t Value	Pr > t
Intercept			-6.8793	0.8343	497	-8.25	<.0001
MostAttach	"Cat"		-1.2814	0.5853	663	-2.19	0.0289
MostAttach	"Dog"		0	-			
time		2	0.8237	0.3283	663	2.51	0.0123
time		3	0.9805	0.3374	663	2.91	0.0038
time		1	0				

1.2 Adaptive Quadrature Method (Common method used in SAS)

```
m <- glmer(Compliance ~ MostAttach + time +(1|workerId), data = alldata, family = "binomial",nAGQ = 7)</pre>
```

```
Random effects:
                      Variance Std.Dev.
 Groups
          Name
 workerId (Intercept) 10.36
                               3.219
Number of obs: 1164, groups: workerId, 498
Fixed effects:
              Estimate Std. Error z value Pr(>|z|)
                                    -5.852 4.86e-09 ***
(Intercept)
               -1.7163
                            0.2933
                            0.4178
                                    -4.156 3.25e-05 ***
MostAttachCat
               -1.7361
                0.3912
time2
                            0.2539
                                     1.541
                                             0.1234
time3
                0.5077
                            0.2640
                                     1.923
                                             0.0545 .
```

proc glimmix data=set1 method=quad(qpoints=7);
class workerId MostAttach time(ref='1') Compliance(ref='0');
model Compliance = MostAttach time /s dist=binary link=logit;
random intercept/subject=workerId;
run;

Covariance Parameter Estimates					
Cov Parm	Subject	Standard Error			
Intercept	workerld	10.3621	1.9484		

Solutions for Fixed Effects							
Effect	MostAttach time Estimate Standard Error DF t Value						
Intercept			-1.7163	0.2933	497	-5.85	<.0001
MostAttach	"Cat"		-1.7361	0.4178	663	-4.16	<.0001
MostAttach	"Dog"		0				
time		2	0.3912	0.2539	663	1.54	0.1239
time		3	0.5077	0.2640	663	1.92	0.0549
time		1	0				

2. Simulation data with only subject effect

Here is my simulation process

```
rm(list = ls())
library(locfit)
library(lme4)
library(dplyr)
set.seed(1)
### data size
total_cattle <- 800</pre>
# fix and random effect
var_subject <- 3.29</pre>
PLC <- -0.3759
TIL <- -1.547269
# design 1
sim_1 <- data.frame(subject=c(1:total_cattle))</pre>
# animals are randomly allocated to receive trts
sim_1$trt <-sample(rep(1:2,each=total_cattle/2),replace = F)</pre>
sim_1$subject_effect=rnorm(total_cattle,0,sqrt(var_subject))
sim_1 <- sim_1 %>%
 mutate(trt_effect = ifelse(trt==1,PLC,TIL)) %>% # added fixed effect column
 mutate(added_effect = trt_effect+subject_effect) %>% # added all effect
 mutate(risk = expit(added_effect)) # get the inverse of the logistic link function
sim_1$y <- rbinom(n=total_cattle, size = 1, prob = sim_1$risk)</pre>
```

2.1 Laplace Approximation

```
sim_1$trt <- as.factor(sim_1$trt)
sim_1$subject <- as.factor(sim_1$subject)
sim_1$y <- as.factor(sim_1$y)
m <- glmer(y ~ trt+(1|subject:trt), data=sim_1, family = "binomial")</pre>
Random effects:
```

```
Random effects:
Groups Name Variance Std.Dev.
subject:trt (Intercept) 1.915e-09 4.377e-05
Number of obs: 800, groups: subject:trt, 800

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3125 0.1012 -3.087 0.00202 **
trt2 -0.6073 0.1500 -4.047 5.18e-05 ***
```

```
proc glimmix data=set1 method=laplace;
class subject trt(ref='1') y(ref='0');
model y = trt /s dist=binary link=logit;
random intercept /subject = subject(trt);
run;
```

Covariance Parameter Estimates						
Cov Parm	ov Parm Subject Estimate Error					
Intercept	subject(trt)	3.501E-6	0.2511			

Solutions for Fixed Effects							
Effect	trt	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept		-0.3125	0.1031	798	-3.03	0.0025	
trt	2	-0.6073	0.1540	798	-3.94	<.0001	
trt	1	0					

2.2 Adaptive Quadrature Method

```
m <- glmer(y ~ trt+(1|subject:trt), data=sim_1, family = "binomial",nAGQ = 7)</pre>
```

```
Random effects:
Groups Name Variance Std.Dev.
subject:trt (Intercept) 3.331e-07 0.0005772
Number of obs: 800, groups: subject:trt, 800

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3125 0.1013 -3.085 0.00203 **
trt2 -0.6073 0.1502 -4.043 5.27e-05 ***
```

```
proc glimmix data=set1 method=quad(qpoints=7);
class subject trt(ref='1') y(ref='0');
model y = trt /s dist=binary link=logit;
random intercept /subject = subject(trt);
run;
```

Covariance Parameter Estimates					
Cov Parm	arm Subject Estimate Erro				
Intercept	subject(trt)	0.3323	30.1047		

Solutions for Fixed Effects							
Effect trt Estimate Standard Error DF t Value Pr >							
Intercept		-0.3366	2.0454	798	-0.16	0.8693	
trt	2	-0.6506	3.7242	798	-0.17	0.8614	
trt	1	0					