AGE GROUP 8

Problem	Answer	Solution				
		Solution				
	-2	$\sqrt{(1-\sqrt{2})^2}:(1-\sqrt{2})+\sqrt{(\sqrt{3}-1)^2}:(1-\sqrt{3})=$				
1		$= 1 - \sqrt{2} : (1 - \sqrt{2}) + \sqrt{3} - 1 : (1 - \sqrt{3}) = -1 + (-1) = -2.$				
2	34	$x^{2} + 6x + 1 = 0 \Rightarrow x + 6 + \frac{1}{x} = 0 \Rightarrow x + \frac{1}{x} = -6$				
	34	$\Rightarrow (x + \frac{1}{x})^2 = 36 \implies x^2 + \frac{1}{x^2} = 34.$				
		$C_1^5 + 2 \times C_2^5 + 3 \times C_3^5 + 4 \times C_4^5 + 5 \times C_5^5 =$				
3	80	$= \frac{5!}{4! \times 1!} + 2 \times \frac{5!}{3! \times 2!} + 3 \times \frac{5!}{2! \times 3!} + 4 \times \frac{5!}{1! \times 4!} + 5$				
		$\times \frac{5!}{0! \times 5!} =$				
		= 5 + 20 + 30 + 20 + 5 = 80.				
		Ot $21 + p = 10 + q = 4 + r \implies 2 \le p < q < r$.				
	34					
4		Тогава числата q и r са нечетни и $10 + q$, и $4 + r$ са нечетни числа.				
		Ако и p е нечетно число, тогава 21 + p е четно число. Но тогава				
		равенствата				
		21 + p = 10 + q = 4 + r не са изпълнени.				
		Тогава $p = 2 \implies q = 13$, $r = 19 \implies p + q + r = 2 + 13 + 19 = 34$.				
	72	Броят на топките на всеки е:				
		$\frac{n^2 + 4n + 7}{n + 6} = n - 2 + \frac{19}{n + 6}$				
_		което е цяло число. Това е възможно, ако $n+6$ е или 1, или 19, тогава $n=$				
5		13.				
		$\frac{n^2 + 4n + 7}{n + 6} = 13 - 2 + \frac{19}{13 + 6} = 11 + 1 = 12.$				
		Всяко момиче и всяко момче има по 12 топки. Търсеният брой е 6 × 12 =				
		72.				
	1	OT				
6		$a \times (1+\sqrt{3})^2 + b \times (1+\sqrt{3}) + 2 = 0 \implies (4a+b+2) + (2a+b)\sqrt{3} = 0$ $ 4a+b+2 = 0$				
		$\Rightarrow \begin{vmatrix} 4a+b+2=0\\2a+b=0 \Rightarrow a=-1, b=2 \Rightarrow a+b=1.$				

	Ti.	
		Нека $A = x - 3 + x - \pi + x - 4 $.
		Ako $x \le 3 \implies A = -(x-3) - (x-\pi) - (x-4) = -3x + 7 + \pi \ge$
		$-2+\pi>1.$
		Ako $3 \le x \le \pi \implies A = (x-3) - (x-\pi) - (x-4) = -x + 1 + \pi \ge$
7	1	1;
	5.5	Ako $\pi \le x \le 4 \implies A = (x-3) + (x-\pi) - (x-4) = -x + 1 - \pi \ge$
		1;
		AKO $x \ge 4 \implies A = (x-3) + (x-\pi) + (x-4) = 3x - 7 - \pi \ge 5 -$
		$\pi > 1$.
		Най-малката стойност на A е 1 и се постига при $x = \pi$.
		Квадратното уравнение е или
8	10	$ax^2 + 2nx + c = 0$ или $ax^2 + (2n+1)x + c = 0$
		Тогава $D = (2n)^2 - 4ac$ или $D = (2n+1)^2 - 4ac$, т.е. при делението на
		D на 4 се получава остатък 0 или 1.
		Сред числата само 2000, 2001, 2004, 2005, 2008, 2009, 2012, 2013, 2016,
		2017 при деление на 4 дават остатък 0 или 1. Те са 10.
		Нека числата са х и у. Тогава
	28 или 64	$\frac{1}{x} + \frac{1}{y} = \frac{1}{7} \Rightarrow 7x + 7y = xy \implies x(y - 7) = 7y \Rightarrow x = \frac{7y}{y - 7} = 7 + \frac{49}{y - 7}.$
		Достигаме до възможностите
		$y - 7 = \pm 1; \ \pm 7; \pm 49 \Longrightarrow y = 8; 6; 14; 56.$
9		Aко $y = 8 \implies x = 56 \implies x + y = 64$;
		Ако $y = 6 \Longrightarrow x = -56$, невъзможно;
		Aко $y = 14 \Longrightarrow x = 14 \Longrightarrow x + y = 28;$
		Aко $y = 56 \implies x = 8 \implies x + y = 64$.
		Сборовете са или 28, или 64.

		За да има решение даденото уравнение е необходимо $a-2 \ge 0 \Leftrightarrow a \ge 2$.
		Нека $a = 2$. Тогава уравнението е $ x - 1 - 2 = 0$ и има две решения
		(-1) и 3.
		Hека $a > 2$.
		Получаваме
		$ x-1 -2 = a-2 \iff x-1 -2 = a-2$ или $ x-1 -2 = -a+2$
10	2	$\Leftrightarrow x-1 = a \text{ или } x-1 = -a+4$
		Уравнението $ x - 1 = a$ при $a > 2$ винаги има две решения.
		Тогава $ x-1 = -a+4$ не трябва да има решения, т.е. $-a+4 < 0 \Longrightarrow$
		a > 4.
		Получаваме, че уравнението има две решения, ако
		$a \in \{2\} \cup (4; \infty)$
		Най-малката стойност, за която уравнението има две решения е $a=2$.
	126	Нека по-малката височина е h , тогава по-голямата е $h+2\Longrightarrow$
11		$21h = 18 \times (h+2) \Rightarrow h = 12 \Rightarrow S = 126 \text{ cm}^2.$
	1,6	Получава се триъгълник OAB , като координатите на точките са $O(0,0)$, A
12	1,0	(4/5, 0), В (0,4). Лицето на триъгълника е 1,6.
		Четириъгълниците <i>AFHE</i> , <i>FBDH</i> , <i>EHDC</i> са вписани в окръжност, защото
	6	сборът от 2 срещуположни ъгъла е 180 градуса;
13		Четириъгълник <i>ABDE</i> е вписан в окръжност с център средата на страната
		AB и радиус $\frac{1}{2}AB$.
		Четириъгълник <i>BCEF</i> е вписан в окръжност с център средата на страната
		BC и радиус $\frac{1}{2}BC$.
		Четириъгълник <i>ACDF</i> е вписан в окръжност с център средата на страната
		AC и радиус $\frac{1}{2}AC$.

		Окръжностите, върху които лежат 4 от дадените 7 точки $(A, B, C, D, E, F$ и			
		H) са 6.			
14	$\sqrt{5}$ $AB = x_1 - x_2 = \sqrt{(x_1 - x_2)^2} = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \sqrt{5}$				
		Нека a, b и c са двата катета и хипотенузата на триъгълника.			
		Тогава от			
15	60	$r = \frac{a+b-c}{2} = 3$ и $R = \frac{c}{2} = 8,5$ \Longrightarrow			
		$p = \frac{a+b+c}{2} = 20 \implies S = pr = 60.$			
		Разделяме числата на групи:			
		1, 2, 3,, 10, 11			
	56	12, 13,, 21, 22;			
		23, 24,, 32, 33;			
16					
		89, 90,, 98, 99.			
		Избирам по 11 числа от първата, третата, петата, седмата и деветата			
		група, общо 55.			
		56- то избрано ще е вече в една от групите – втора, четвърта, шеста или			
		осма. Това означава, че вече ще има две числа с разлика 11.			
17	3	От 2020 = $4 \times 5 \times 101$, следва че най-малкото число е $2^{100} \times 3^4 \times 5^3$.			
•,		Броят на нулите е 3.			
	$n \geq 3$	Тъй, като искаме даденото неравенство да бъде изпълнено за всяко x , y и			
10		z , то можем да положим $x = y = z = 1$. Следователно $n \ge 3$. При $n \ge 3$ имаме, че			
18					
		$n(x^{2} + y^{2} + z^{2}) - (x + y + z)^{2} = (n - 3)(x^{2} + y^{2} + z^{2}) + 3(x^{2} + y^{2} + z^{2})$ $z^{2} - (x + y + z)^{2} = (n - 3)(x^{2} + y^{2} + z^{2}) \ge 0.$			
19	625 и 376	Нека $n = \overline{abc}$.			

		$n^2 - n = \overline{abc} - \overline{abc} = 1000.A \Longrightarrow 1000$ дели $n(n-1)$.		
		Тъй като n и n -1 са взаимно прости, тогава или 8 дели n и 125 дели n - 1 ,		
		или 125 дели <i>n</i> и 8 дели <i>n</i> - 1 .		
		От това, че n е трицифрено число и 125 дели $n \implies$		
		n = 125, 250, 375, 500, 625, 750, 875.		
		За тези стойности на n трябва 8 да дели n - 1 . Получаваме първата		
		възможна стойност $n = 625$.		
От това, че n е трицифрено число и 125 дели или n -1 \Longrightarrow				
n = 126,251, 376, 501, 626, 751 и 876.				
а тези стойности на n трябва 8 да дели n .				
Проверяваме: $n = 376$				
		Търсените числа са 625 и 376.		
		$625^2 = 390625, \ 376^2 = 141376.$		
		От		
	7	$\sqrt{a^2 - 6a + 18} + \sqrt{b^2 - 8b + 20} = \sqrt{(a-3)^2 + 9} + \sqrt{(b-4)^2 + 4}$		
20		$\geq \sqrt{9} + \sqrt{4} = 5$		
		$\mu \Rightarrow a = 3, b = 4 \Rightarrow a + b = 7.$		

Age					
group	5	6	7	8	9
Problem					
1	1	-25	4	-2	23
2	$\frac{2}{9}$	7 and 8	100	34	100
3	8	43.75	10	80	100√2
4	101.15	$-\frac{5}{6}$	110	34	5
5	5	29	8	72	7
6	70 or 98	-27	9	1	2001
7	172	41	1	1	1
8	44	674	28 or 64	10	8
9	1	18	18	28 or 64	4
10	9	70 or 98	11	2	28 or 64
11	63	56	4 or 5	126	3/7
12	3 or 4	2019	72	1.6	$\frac{1/4}{3\sqrt{2} + 2\sqrt{3}}$
13	5	2	$1111\frac{1}{9}$	6	$\frac{7\sqrt{2}}{2}$
14	1, 2, 4, 8, 16	2	90	$\sqrt{5}$	2.4
15	178	20	30	60	M (3;2)
16	18.15	1, 2, 3 and 4	56	56	20
17	75	18	402	3	3
18	16	16	2	$n \geq 3$	56
19	31	5	$n \geq 3$	625 and 376	625 and 376
20	7	1, 3, 9, 27, 81	4995	7	5