CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 8 SETTEMBRE 2023

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Scrivere la più corta forma proposizionale che sia logicamente equivalente a $(p \to p) \to q$.

Esercizio 2. Siano α , β , γ e δ le relazioni binarie definite in $\mathcal{P}(\mathbb{Z})$ da: $\forall x, y \in \mathcal{P}(\mathbb{Z})$...

- $x \alpha y \iff x \cup \mathbb{N} = y \cup \mathbb{N}$;
- $x \beta y \iff (\exists \min x \land \exists \min y)$ [i minimi sono qui riferiti all'ordinamento usuale in \mathbb{Z}];
- $x \gamma y \iff$ esiste un'applicazione biettiva da x a y;
- $x \delta y \iff (x \neq y \Rightarrow x = y)$.

Per ciascuna di queste relazioni, si stabilisca se è o non è una relazione di equivalenza e, nel caso lo sia, si determini la classe di equivalenza di \varnothing rispetto ad essa.

Esercizio 3. Per ciascuno dei seguenti diagrammi, si individui, se possibile, un sottoinsieme X di \mathbb{N} tale che il diagramma in questione rappresenti X ordinato dalla divisibilità in \mathbb{N} ; stabilendo anche se questo insieme ordinato è un reticolo e se è un sottoreticolo di $(\mathbb{N}, |)$.

Esercizio 4. Sia S l'insieme delle applicazioni da \mathbb{Z} a \mathbb{Z} . Si consideri in S l'operazione binaria * definita da questa condizione: per ogni $f, g \in S$,

$$f * g : n \in \mathbb{Z} \longmapsto f(n) + g(n) + 1 \in \mathbb{Z}.$$

- (i) *è commutativa? È associativa?
- (ii) L'insieme delle applicazioni iniettive da \mathbb{Z} a \mathbb{Z} è una parte chiusa in (S,*)? E quella delle applicazioni suriettive da \mathbb{Z} a \mathbb{Z} ? E quella delle applicazioni costanti da \mathbb{Z} a \mathbb{Z} ?
- (iii) Decidere se (S,*) ammette elemento neutro. Nel caso, determinarlo e rispondere alle due domande che seguono:
 - (a) l'applicazione costante $c : n \in \mathbb{Z} \mapsto 3 \in \mathbb{Z}$ è simmetrizzabile in (S, *)? Nel caso, qual è il suo simmetrico?
 - (b) Determinare l'insieme degli elementi simmetrizzabili di (S, *).
- (iv) Che tipo di struttura algebrica è (S, *)?

Esercizio 5. Sia f il polinomio $x^5 + 4x^4 - 4x - 2 \in \mathbb{Z}[x]$ e, per ogni intero positivo n, sia $f_n = x^5 + \bar{4}x^4 - \bar{4}x - \bar{2} \in \mathbb{Z}_n[x]$.

- (i) f è irriducibile in $\mathbb{Q}[x]$?
- (ii) 2f è irriducibile in $\mathbb{Q}[x]$?
- (iii) Dando per noto che f(3) è un multiplo di 7, scrivere f_7 come prodotto di polinomi irriducibili in $\mathbb{Z}_7[x]$.
- (iv) Elencare i numeri naturali h tali che f_7 abbia, in $\mathbb{Z}_7[x]$, (almeno) un divisore di grado h.
- (v) Individuare, se possibile, un associato g di f_{47} in $\mathbb{Z}_{47}[x]$ tale che $g(\bar{0}) = \bar{5}$.