Lecture 8 : Duality in Convex Optimization

October 15, 2025

Today's Agenda: Convex Duality

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i: X \subseteq \mathbb{R}^n \to \mathbb{R}$ (real-valued), **convex**
- Equality constraints Ax = b can be included in X

Today's Agenda: Convex Duality

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$ (1)
 $x \in X$.

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i: X \subseteq \mathbb{R}^n \to \mathbb{R}$ (real-valued), **convex**
- Equality constraints Ax = b can be included in X
- Many developments deal with the "interior" of X

Definition: Interior

The **interior** of a set X is the set of all points $x \in X$ so that:

$$\exists r > 0 : B(x,r) := \{y : ||y - x|| \le r\} \subseteq X$$

Today's Agenda: Convex Duality

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$ (1)
 $x \in X$.

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i: X \subseteq \mathbb{R}^n \to \mathbb{R}$ (real-valued), **convex**
- Equality constraints Ax = b can be included in X
- Many developments deal with the "interior" of X

Definition: Interior

The **interior** of a set X is the set of all points $x \in X$ so that:

$$\exists r > 0 : B(x,r) := \{y : ||y - x|| \le r\} \subseteq X$$

What is the interior of a set X that is **not** full-dimensional?

Relative Interior

• Recall: Affine hull of X is $aff(X) := \{\theta_1 x_1 + \dots + \theta_k x_k : x_i \in X, \sum_{i=1}^k \theta_i = 1\}$

Relative Interior

• Recall: Affine hull of X is $aff(X) := \{\theta_1 x_1 + \dots + \theta_k x_k : x_i \in X, \sum_{i=1}^k \theta_i = 1\}$

Definition Relative Interior

The **relative interior** of a set X is:

$$\operatorname{relint}(X) := \big\{ x \in X \, : \, \exists \, r > 0 \text{ so that } B(x,r) \cap \operatorname{aff}(X) \subseteq X \big\}. \tag{2}$$

What is the relative interior of the following sets?

- $\{(x,y) \in \mathbb{R}^2 \mid (x,y) \in [0,1]^2\}$
- $\{(x,y) \in \mathbb{R}^2 \mid x+y=1, x \geq 0, y \geq 0\}$
- $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $x \in X.$

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i: X \subseteq \mathbb{R}^n \to \mathbb{R}$ (real-valued), **convex**
- Equality constraints Ax = b can be included in X
- Assume relint(X) $\neq \emptyset$
- Assume that (\mathcal{P}) has an optimal solution x^* , optimal value $p^* = f_0(x^*)$
- Core questions:
 - 1. For x feasible for (\mathcal{P}) , how to quantify the optimality gap $f_0(x) p^*$?
 - 2. How to certify that x^* is **optimal** in (\mathcal{P}) ?

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $x \in X.$

• To construct lower bounds for (\mathcal{P}) , define the Lagrangian function: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $x \in X.$

• To construct lower bounds for (\mathcal{P}) , define the Lagrangian function: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

• By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $x \in X.$

• To construct lower bounds for (\mathcal{P}) , define the Lagrangian function: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

- By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})
- For a lower bound on p^* , minimize $\mathcal{L}(x, \lambda)$ over $x \in X$ to get:

$$g(\lambda) := \inf_{x \in X} \mathcal{L}(x, \lambda).$$

Dual Problem

$$(\mathcal{D})$$
 sup $g(\lambda)$.

Q: Is the dual (\mathcal{D}) a convex optimization problem?

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $x \in X.$

• To construct lower bounds for (\mathcal{P}) , define the Lagrangian function: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

- By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})
- For a lower bound on p^* , minimize $\mathcal{L}(x, \lambda)$ over $x \in X$ to get:

$$g(\lambda) := \inf_{x \in X} \mathcal{L}(x, \lambda).$$

Dual Problem

$$(\mathcal{D}) \quad \sup_{\lambda > 0} g(\lambda).$$

Q: Is the dual (\mathcal{D}) a convex optimization problem?

Primal-Dual Pair

$$(\mathcal{P}) p^* := \inf_{x \in X} f_0(x)$$
 $(\mathcal{D}) d^* := \sup_{\lambda \ge 0} g(\lambda)$ $f_i(x) \le 0, i = 1, \dots, m$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

What do feasible points in (\mathcal{P}) correspond to? Where is p^* ? How to express the Lagrangian $\mathcal{L}(x, \lambda)$ using the t, u variables?

$$(\mathcal{P}) \ p^{\star} := \inf_{x \in X} \ f_0(x)$$

$$(\mathcal{D}) \quad d^{\star} := \sup_{\lambda \geq 0} \ g(\lambda)$$

$$f_i(x) \leq 0, \ i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

 $\mathcal{L}(x, \lambda)$ is the same as $t + \lambda \cdot u$.

$$(\mathcal{P}) p^* := \inf_{x \in X} f_0(x)$$
 $(\mathcal{D}) d^* := \sup_{\lambda \geq 0} g(\lambda)$ $f_i(x) \leq 0, i = 1, \dots, m$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

For
$$\lambda \geq 0$$
, we have $g(\lambda) = \inf_{x \in X} (f_0(x) + \lambda f_1(x)) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda \cdot u)$
What is the value of $g(\lambda_1)$ in this figure?

$$(\mathcal{P}) p^{\star} := \inf_{x \in X} f_0(x)$$
 $(\mathcal{D}) d^{\star} := \sup_{\lambda \geq 0} g(\lambda)$ $f_i(x) \leq 0, i = 1, \dots, m$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

The optimal pairs (u, t) yield a supporting hyperplane for \mathcal{G} Intersection with t = 0 is value of $g(\lambda_1)$

$$(\mathcal{P}) \ p^{\star} := \inf_{x \in X} \ f_0(x)$$

$$(\mathcal{D}) \quad d^{\star} := \sup_{\lambda \geq 0} \ g(\lambda)$$

$$f_i(x) \leq 0, \ i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

What is the value of $\max_{\lambda \geq 0} g(\lambda)$?

Primal-Dual Pair

$$(\mathcal{P}) p^{\star} := \inf_{x \in X} f_0(x) \qquad (\mathcal{D}) \quad d^{\star} := \sup_{\lambda \ge 0} g(\lambda)$$
$$f_i(x) \le 0, \ i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., m = 1
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$

Here, strong duality does not hold: $d^* < p^*$. But the set \mathcal{G} is not convex!

Non-zero duality gap

Let $X = \{(x, y) \mid y \ge 1\}$ and consider the problem:

$$\begin{array}{l}
\text{minimize } e^{-x} \\
(x,y) \in X
\end{array}$$

$$x^2/y \le 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g, d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

Conditions Leading to Strong Duality

Primal Problem

$$(\mathcal{P}) \ \mathsf{minimize}_x \quad f_0(x) \\ f_i(x) \leq 0, \quad i = 1, \dots, m \\ x \in X.$$

Conditions Leading to Strong Duality

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$
 $x \in X.$

Slater Condition

The functions $f_1, \ldots, f_m: X \subseteq \mathbb{R}^n \to \mathbb{R}$ satisfy the Slater condition on X if there exists $x \in \operatorname{relint}(X)$ such that

$$f_j(x) < 0, \quad j = 1, \ldots, m.$$

Conditions Leading to Strong Duality

Primal Problem

(
$$\mathcal{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$
 $x \in X.$

Slater Condition

The functions $f_1, \ldots, f_m : X \subseteq \mathbb{R}^n \to \mathbb{R}$ satisfy the Slater condition on X if there exists $x \in \operatorname{relint}(X)$ such that

$$f_i(x) < 0, \quad j = 1, \ldots, m.$$

- A point x that is **strictly feasible**
- If all $f_i(x)$ are affine, we do not need this (i.e., feasibility is enough)
- If some f_i are affine, we only require $f_i(x) < 0$ for the non-linear f_i

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

Geometric intuition for proof:

• Recall $\mathcal{G} := \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$ (above, m = 1)

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

- Recall $\mathcal{G} := \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, \ t = f_0(x), \ u = f_1(x)\}$ (above, m = 1)
- Same p^* if we replace $\mathcal G$ with $\mathcal A=\{(u,t)\in\mathbb R^{m+1}:\exists x\in\mathbb R^n,\ t\geq f_0(x),\ u\geq f_1(x)\}$

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

- Same p^* if we replace \mathcal{G} with $\mathcal{A} = \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, t \geq f_0(x), u \geq f_1(x)\}$
- Is A a convex set?

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

- Define $\mathcal{B} := \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}$
- Claim. $A \cap B = \emptyset$

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• The Separating Hyperplane Theorem will give us the optimal λ^* and $p^* = d^*$

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

The Slater point will guarantee that the hyperplane is not vertical

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

Define the convex set

$$\mathcal{A} = \{(u, t) \in \mathbb{R}^m \times \mathbb{R} : \exists x \in X,$$

$$t \ge f_0(x), u_i \ge f_i(x), i = 1, \dots, m\}.$$

- Define the **convex** set $\mathcal{B} = \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}.$
- $A \cap B = \emptyset$.

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

Define the convex set

$$\mathcal{A} = \{(u, t) \in \mathbb{R}^m \times \mathbb{R} : \exists x \in X,$$

$$t \ge f_0(x), u_i \ge f_i(x), i = 1, \dots, m\}.$$

- Define the **convex** set $\mathcal{B} = \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}$.
- $A \cap B = \emptyset$.
- (Non-strict) Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \ b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^{\mathsf{T}} u + \mu t \geq b, \ \forall (u, t) \in A \\ (3) & \lambda^{\mathsf{T}} u + \mu t \leq b, \ \forall (u, t) \in B. \end{cases}$$

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \ b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^{\mathsf{T}} u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^{\mathsf{T}} u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

• (2) implies $\lambda \geq 0$ and $\mu \geq 0$. Otherwise, $\inf_{(u,t)\in\mathcal{A}}(\lambda^{\mathsf{T}}u + \mu t) = -\infty$ so $\not\geq b$.

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \ b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^{\mathsf{T}} u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^{\mathsf{T}} u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

- (2) implies $\lambda \geq 0$ and $\mu \geq 0$. Otherwise, $\inf_{(u,t)\in\mathcal{A}}(\lambda^{\mathsf{T}}u+\mu t)=-\infty$ so $\not\geq b$.
- (3) simplifies to $\mu t \leq b$ for all $t < p^*$, so $\mu p^* \leq b$.

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \ b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^{\mathsf{T}} u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^{\mathsf{T}} u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

- (2) implies $\lambda \geq 0$ and $\mu \geq 0$. Otherwise, $\inf_{(u,t)\in\mathcal{A}}(\lambda^\mathsf{T} u + \mu t) = -\infty$ so $\not\geq b$.
- (3) simplifies to $\mu t \leq b$ for all $t < p^*$, so $\mu p^* \leq b$.
- Recap: We found $\lambda \geq 0, \mu \geq 0$:

$$\mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \mu f_{0}(x) \geq b \geq \mu p^{*}, \forall x \in X$$

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_0(x) \ge b \ge \mu p^*, \, \forall \, x \in X$$

• Case 1. $\mu > 0$ (non-vertical hyper-plane)

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_0(x) \ge b \ge \mu p^*, \, \forall \, x \in X$$

- Case 1. $\mu > 0$ (non-vertical hyper-plane)
- Divide (4) by μ to get: $\mathcal{L}(x, \lambda/\mu) \geq p^*, \forall x \in X$.
- This implies $g(\lambda/\mu) := \inf_{x \in X} \mathcal{L}(x, \lambda/\mu) \ge p^*$.

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \ldots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_0(x) \ge b \ge \mu p^*, \ \forall x \in X$$

- Divide (4) by μ to get: $\mathcal{L}(x, \lambda/\mu) \geq p^*, \forall x \in X$.
- This implies $g(\lambda/\mu) := \inf_{x \in X} \mathcal{L}(x, \lambda/\mu) \ge p^*$.

• Strong duality holds: $p^* = d^*$.

Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_0(x) \ge b \ge \mu p^*, \forall x \in X$$

- Case 2. $\mu = 0$ (vertical hyperplane)
- $\mu = 0$ so (4) implies $\sum_{i=1}^{m} \lambda_i f_i(x) \ge 0, \forall x \in X$

Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \to \mathbb{R}$ convex functions on X satisfying the Slater condition on X. Then, $p^* = d^*$ and the dual attains its optimal value.

• We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \mathcal{L}(x,\lambda) := \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_0(x) \ge b \ge \mu p^*, \, \forall \, x \in X$$

•
$$\mu = 0$$
 so (4) implies $\sum_{i=1}^{m} \lambda_i f_i(x) \ge 0, \forall x \in X$

- This together with $\lambda \geq 0$ implies that $\lambda = 0$
- Contradicts that $(\lambda, \mu) \neq 0$.

Explicit Equality Constraints

• In applications, useful to make the **equality constraints explicit**:

minimize_{$$x \in X$$} $f_0(x)$
subject to $f_i(x) \le 0$, $i = 1, ..., m$,
 $Ax = b$.

where $f_i, i = 0, ..., m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p.

Explicit Equality Constraints

• In applications, useful to make the **equality constraints explicit**:

minimize
$$_{x \in X} f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m,$
 $Ax = b.$

where $f_i, i = 0, ..., m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p.

• With $\nu \in \mathbb{R}^p$ denoting Lagrange multipliers for Ax = b, Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^{\mathsf{T}} (Ax - b),$$

Explicit Equality Constraints

• In applications, useful to make the **equality constraints explicit**:

$$\begin{aligned} & \text{minimize}_{x \in X} \ f_0(x) \\ & \text{subject to} \ f_i(x) \leq 0, \quad i = 1, \dots, m, \\ & Ax = b. \end{aligned}$$

where $f_i, i = 0, ..., m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p.

• With $\nu \in \mathbb{R}^p$ denoting Lagrange multipliers for Ax = b, Lagrangian is:

$$\mathcal{L}(x, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(x) + \sum_{i=1}^m \boldsymbol{\lambda}_i f_i(x) + \boldsymbol{\nu}^{\mathsf{T}} (Ax - b),$$

• With $g(\lambda, \nu) := \inf_{x \in X} \mathcal{L}(x, \lambda, \nu)$, the dual problem becomes:

maximize_{$$\lambda,\nu$$} $g(\lambda,\nu)$ subject to $\lambda \geq 0$.

No sign constraints on ν !

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$, $\tilde{b} \in \mathbb{R}^p$ has rank p

$$\min_{z} \{ \|z - y\|_{2}^{2} : Az = \tilde{b} \}$$

• Change of variables x := z - y and with $b := \tilde{b} - Ay$,

$$\min_{x} \{ \|x\|_{2}^{2} : Ax = b \}$$

What is the optimal value p*?

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ is full rank p < n. $\tilde{b} \in \mathbb{R}^p$.

$$\min_{z} \{ \|z - y\|_{2}^{2} : Az = \tilde{b} \}$$

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^{\mathsf{T}}Qx + q^{\mathsf{T}}x$$

What is the optimal value p*?

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2} x^{\mathsf{T}} Q x + q^{\mathsf{T}} x$$

What is the optimal value p*?

$$\nabla_x f(x) = 0 \Leftrightarrow Qx = -q$$

$$p^{\star} = egin{cases} -rac{1}{2}q^{\mathsf{T}}Q^{\dagger}q & ext{if } Q\succeq 0 ext{ and } q\in \mathcal{R}(Q) \ -\infty & ext{otherwise}. \end{cases}$$

- Q^{\dagger} is the (Moore-Penrose) pseudo-inverse of Q
- For A with singular value decomposition $A = U\Sigma V^{\mathsf{T}}$, $A^{\dagger} := V\Sigma^{-1}U^{\mathsf{T}}$
- Equals $(A^{T}A)^{-1}A^{T}$ if rank(A) = n and $A^{T}(AA^{T})^{-1}$ if rank(A) = m

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $Q = Q^{T}$.

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $Q = Q^{T}$.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

$$\min \frac{1}{2} x^{\mathsf{T}} Q_0 x + c^{\mathsf{T}} x$$

$$x^{\mathsf{T}} Q_i x + q_i^{\mathsf{T}} x + b_i \le 0, i = 1, \dots, m$$

$$Ax = b$$

where Q_i , i = 0, ..., m are **symmetric** matrices.

Convex if $Q_0 \succeq 0$, $Q_i \succeq 0$. Gurobi can now handle **non-convex** QCQPs!

Two Problems to Warm Up

QP with Inequality Constraint

$$\underset{x}{\text{minimize}} \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
A x \le b$$

where $Q \succ 0$ is a **positive definite** matrix.

QCQP

minimize
$$\frac{1}{2}x^TQ_0x + q_0^Tx + r_0$$

subject to $\frac{1}{2}x^TQ_ix + q_i^Tx + r_i \le 0$, $i = 1, \dots, m$,

where $Q_0 \succ 0$ and $Q_i \succeq 0$

• What is the Lagrangian? What is the dual? Does Slater Condition hold?

A Non-Convex QCQP

A Special Non-Convex QCQP

For $A = A^{\mathsf{T}}$ and $A \not\succeq 0$, consider:

minimize
$$x^T A x + 2b^T x$$

 $x^T x \le 1$

• Lagrangian is:

$$\mathcal{L}(x,\lambda) = x^{\mathsf{T}} A x + 2b^{\mathsf{T}} x + \lambda (x^{\mathsf{T}} x - 1) = x^{\mathsf{T}} (A + \lambda I) x + 2b^{\mathsf{T}} x - \lambda,$$

$$g(\lambda) = \begin{cases} -b^{\mathsf{T}} (A + \lambda I)^{\dagger} b - \lambda & A + \lambda I \succeq 0, \ b \in \mathcal{R}(A + \lambda I), \\ -\infty & \text{otherwise,} \end{cases}$$

where M^{\dagger} is the (Moore-Penrose) pseudo-inverse of M

• The dual problem is

$$\begin{aligned} & \mathsf{maximize}_{\lambda \geq 0} & - b^\mathsf{T} (A + \lambda I)^\dagger b - \lambda \\ & \mathsf{subject to} & A + \lambda I \succeq 0, \ b \in \mathcal{R} (A + \lambda I) \end{aligned}$$

Readily solved because it can be expressed as

$$\mathsf{maximize} \Big\{ - \sum_{i=1}^n \frac{(q_i^\mathsf{T} b)^2}{\lambda_i + \lambda} - \lambda \ : \ \lambda \ge -\lambda_{\mathsf{min}}(A) \Big\}$$

where λ_i, q_i are eigen-decomposition of A and $(q_i^T b)^2/0 := 0$ if $q_i^T b = 0$ and ∞ otherwise.

A Non-Convex QCQP

A Special Non-Convex QCQP

For $A = A^{T}$ and $A \not\succeq 0$, consider:

minimize
$$x^{T}Ax + 2b^{T}x$$

 $x^{T}x \le 1$

- Slater condition trivially satisfied!
- We actually have **zero duality gap**, $p^* = d^*$!
- A more general result: strong duality for any quadratic optimization problem with two constraints $\ell \leq x^TQx \leq u$ if Q and A are simultaneously diagonalizable