PM3200 series

Power meters User manual

DOCA0006EN-03 04/2014

Contents

	Contents	3
	Safety information Important information Please note	8
	Notices FCC Part 15 notice	9
	About the book. Document scope	10 10
1	Safety precautions	11
2	Overview	13
	Meter overview	
	Physical Description	14 14
3	Installation	17
	Safety Precautions	17
	Dimensions PM3200 / PM3210PM3250 / PM3255	18
	DIN rail mounting and dismounting Mounting to a DIN rail Removing from a DIN rail	1 9
	Input, output and communications wiring	20
	Power system wiring	22 23
	Control power wiring	25
4	Functions	27
	Power Meter Characteristics	
	Real-Time Measuring	
	Minimum/Maximum Values Demand Readings	
	Energy Readings	
	Power Quality Analysis Values	
	Other Characteristics	

	Alarms Overview	
	Alarms Configuration	
	View Alarm Status on the display	
	Alarm Activity and History	
	Using an Alarm to Control a Digital Output	
	Input/output capabilities	
	Multi-tariff	
	DI Control Mode (PM3255)	
	Communication Control Mode (PM3250, PM3255)	
	Real-time clock (RTC) Control Mode	36
	Data Logging (PM3255)	37
	Flex Log (Power Demand Log)	
	Flex Log (KWH_KVAH/KWH_KVARH/KVARH_KVAH)	37
	Special Notes for Flex Log	
	Energy Log	38
_		
5	Meter operation	. 41
	Introduction	41
	General display	41
	Status information	42
	Configuration mode	42
	Modifying parameters	
	Clock setting	
	Configuration mode menu trees	
	Display mode	50
	Enter the display mode	
	Display mode menu tree for PM3200	
	Display mode menu tree for PM3210	
	Display mode menu tree for PM3250	
	Display mode menu tree for PM3255	
	Full Screen mode	55
	Enter the Full Screen mode	
	Full Screen mode menu tree for PM3200	
	Full Screen mode menu tree for PM3210/ PM3250/ PM3255	
c	Communication via Madhua DC 405	5 7
6	Communication via Modbus RS-485	
	Modbus communications overview	
	Modbus communications settings	
	Signaling of Communication Activity	58
	Modbus Functions	58
	Function List	58
	Table Format	59
	Command Interface	60
	Description	60
	Command Request	60
	Command List	61
	Modbus Register Table	66
	Register List	
	Read Device Identification	81
	Register List	
7	Specifications	. 83

PM3200 series user manual Contents

	Electrical characteristics	.83
	Mechanical characteristics	.84
	Environmental characteristics	.85
	EMC (electromagnetic compatibility)	.85
	Safety and standards	.85
	Modbus RS-485 communications	.85
	Real-time clock	.86
8	Maintenance and Troubleshooting	87
	Password Recovery	.87
	Language Download	.87
	Troubleshooting	.87
9	Power, energy and power factor	89
	Power (PQS)	.89
	Power and the PQ coordinate system Power flow	
	Energy delivered (imported) / energy received (exported)	.90
	Power factor (PF)	90 90
	Power factor register format	.93

Contents PM3200 series user manual

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2014 Schneider Electric. All rights reserved.

Safety information

Important information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, **will** result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, **can** result in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury. The safety alert symbol shall not be used with this signal word.

Please note

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

Notices

FCC Part 15 notice

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This Class B digital apparatus complies with Canadian ICES-003.

About the book

Document scope

This manual is intended for use by designers, system builders and maintenance technicians with an understanding of electrical distribution systems and monitoring devices.

Validity note

The power meters are used to measure electrical parameters of an installation or a part of an installation.

This function meets the requirements for:

- · installation monitoring,
- · alarming on consumption drifts,
- · consumption monitoring,
- · evaluation of energy items (cost, accounting, and so on),
- · logging of historical consumption,
- · identifying harmonic disturbances.

This function also satisfies the power-saving incentives implemented by many countries.

Related documents

Title of documentation	Reference number
Power Meters Installation sheet: PM3200 / PM3210 (Chinese, English, French, German, Italian, Portuguese, Russian, Spanish)	S1B46605
Power Meters Installation sheet: PM3200 / PM3210 (Czech, Danish, Dutch, Finnish, Hungarian, Norwegian, Polish, Swedish)	S1B62913
Power Meters Installation sheet: PM3250 / PM3255 (Chinese, English, French, German, Italian, Portuguese, Russian, Spanish)	S1B46607
Power Meters Installation sheet: PM3250 / PM3255 (Czech, Danish, Dutch, Finnish, Hungarian, Norwegian, Polish, Swedish)	S1B62914

You can download these technical publications and other technical information from www.schneider-electric.com.

PM3200 series user manual Safety precautions

Chapter 1 Safety precautions

Installation, wiring, testing and service must be performed in accordance with all local and national electrical codes.

Carefully read and follow the safety precautions outlined below.

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA or applicable local standards.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- · Always use a properly rated voltage sensing device to confirm power is off.
- Before performing visual inspections, tests, or maintenance on this equipment, disconnect all sources of electric power. Assume that all circuits are live until they have been completely de-energized, tested and tagged. Pay particular attention to the design of the power system. Consider all power supply sources, particularly the potential for backfeed.
- · Do not exceed the device's ratings for maximum limits.
- · Replace all devices, doors and covers before turning on power to this equipment.
- · Never short the secondary of a voltage transformer (VT).
- Never open circuit a current transformer (CT).
- · Always use grounded external CTs for current inputs.

Failure to follow these instructions will result in death or serious injury.

A WARNING

UNINTENDED OPERATION

Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

Failure to follow these instructions can result in death, serious injury or equipment damage.

WARNING

INACCURATE DATA RESULTS

- Do not rely solely on data displayed on the front panel or in software to determine
 if the device is functioning correctly or meeting all applicable standards and
 compliances.
- Do not use data displayed on the front panel or in software as a substitute for proper workplace practices or equipment maintenance.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Safety precautions PM3200 series user manual

PM3200 series user manual Overview

Chapter 2 Overview

What is in this chapter?

Meter overview	_
Physical Description	14
All meters: meter sealing points	14
PM3200 / PM3210	14
PM3250 / PM3255	15

Meter overview

The power meters provide accurate 3-phase electrical parameters monitoring.

The offer is composed of 4 commercial references described below.

Functions

The product functions of power meters provide the various measurement capabilities required to monitor an electrical installation such as current, voltage, power, power factor, frequency, and energy.

The key features are:

- electrical parameters monitoring such as I, In, U, V, PQS, E, PF, Hz,
- power/current demand, peak demand,
- time-stamped alarms,
- · minimum/maximum values for many parameters,
- · management of up to 4 tariffs,
- · up to 2 digital inputs and 2 digital outputs,
- Modbus communication.

Main Characteristics

Function	PM3200	PM3210	PM3250	PM3255
Measurement inputs through CTs (1 A, 5 A)	V	√	√	√
Measurement inputs through VTs	√	V	V	√
Four quadrant energy measurements	√	V	V	√
Electrical measurements (I, In, V, PQS, PF, Hz)	√	V	V	√
THD current and voltage	-	V	V	√
Current, power demand, present	√	V	V	√
Current, power demand, peak	-	V	V	√
Minimum/maximum of instantaneous values	√	V	V	√
Power demand logs	-	-	-	√
Energy consumption log (day, week, month)	-	-	-	√
Multi-tariff (internal clock)	4	4	4	4
Multi-tariff (external control by DI)	-	=	-	4
Multi-tariff (external control by communication)	-	=.	4	4
Measurement display	√	√	V	V

Overview PM3200 series user manual

Function	PM3200	PM3210	PM3250	PM3255
Digital inputs/Digital outputs	-	0/1	-	2/2
Alarms with time stamping	_	5	5	15
Modbus communication	_	-	√	√
Width (18 mm module in DIN Rail mounting)	5	5	5	5

Physical Description

All meters: meter sealing points

All meters have sealing covers and three sealing points to help prevent access to inputs, outputs, current, and voltage connections.

PM3200 / PM3210

The various features of the listed power meters are shown in the diagram below:

PM3200 series user manual Overview

PM3250 / PM3255

The various features of the listed power meters are shown in the diagram below:

Overview PM3200 series user manual

PM3200 series user manual Installation

Chapter 3 Installation

What is in this chapter?

Safety Precautions	17
Dimensions	18
DIN rail mounting and dismounting	19
Input, output and communications wiring	20
Power system wiring Wiring single-phase systems with CTs Three-phase systems with CTs Three-phase systems with CTs and VTs	22 23
Control power wiring	25

Safety Precautions

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA or applicable local standards.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Replace all devices, doors and covers before turning on power to this equipment.
- Do not exceed the device's ratings for maximum limits.
- Never short the secondary of a voltage transformer (VT).
- · Never open circuit a current transformer (CT).
- · Always use grounded external CTs for current inputs.

Failure to follow these instructions will result in death or serious injury.

- 1. Turn off all power supplying this device before working on it.
- 2. Always use a properly rated voltage sensing device to confirm that all power is off.

Installation PM3200 series user manual

Dimensions

PM3200 / PM3210

PM3250 / PM3255

PM3200 series user manual Installation

DIN rail mounting and dismounting

Mounting to a DIN rail

1. Position the 2 upper slots on the rear of the power meter on the DIN rail.

2. Press the device against the DIN rail until the locking mechanism engages. The device is now attached to the rail.

NOTE: Do not tilt the meter after installation.

Removing from a DIN rail

1. Using a flat screwdriver (≤ 6.5 mm / 0.25 in), lower the locking mechanism to release the device.

Installation PM3200 series user manual

2. Lift the device up to free it from the DIN rail.

Input, output and communications wiring

The diagrams on the following pages illustrate the connection of the meter inputs, outputs and Modbus communications port.

A WARNING

HAZARD OF UNINTENDED OPERATION

- Do not use the meter for critical control or protections applications where human or equipment safety relies on the operation of the control circuit.
- Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted.

Failure to follow these instructions can result in death, serious injury or equipment damage.

PM3210 pulse output

- · The pulse output is compatible with S0 format.
- The pulse output on the PM3210 indicates the primary consumption with consideration of transformer ratios.

PM3200 series user manual Installation

You can directly connect the pulse output on the PM3210 to a 24 V DC (< 30 V DC) input on a Zelio or Twido PLC.

 For other concentrators, if V DC/Rin > 15 mA, add a resistor where: Radd = (V DC/0.01) - Rin Ω.

PM3250 / PM3255 DI, DO and Modbus

- The digital outputs of PM3255 are polarity independent.
- The digital inputs and outputs of PM3255 are electrically independent.

Power system wiring

Voltage input protection

The meter's voltage inputs must be wired to fuses/breakers and a disconnect switch. If using a voltage transformer (VT), both primary and secondary sides of the VT must be wired to fuses/breakers and disconnect switches.

- Clearly label the device's disconnect circuit mechanism and install it within easy reach of the operator.
- The fuses / circuit breakers must be rated for the installation voltage and sized for the available fault current.
- Fuse for neutral terminal is required if the source neutral connection is not grounded.

Current input protection

For all connected current inputs, use a CT shorting block to short-circuit the secondary leads of the CTs before removing the current input connections to the meter.

NOTE: Ground any unused current inputs.

Installation PM3200 series user manual

Wiring single-phase systems with CTs

- 250 mA fuses and disconnect switch
- Shorting block

PM3200 series user manual Installation

Three-phase systems with CTs

- 250 mA fuses and disconnect switch
- Shorting block
- indicates wiring for a balanced system

Installation PM3200 series user manual

Three-phase systems with CTs and VTs

- 250 mA fuses and disconnect switch
- Shorting block
- O VT primary fuses and disconnect switch
- indicates wiring for a balanced system

PM3200 series user manual Installation

Control power wiring

250 mA fuses

- L1 and L2 are non-polarized. If using an AC power supply with neutral, connect neutral to the meter's L2 terminal.
- Always use a fuse on L1. Fuse L2 when connecting an ungrounded neutral to the control power.
- If using a control power transformer, fuse both primary and secondary sides of the transformer.
- The fuses / circuit breakers must be rated for the installation voltage and sized for the available fault current.

Installation PM3200 series user manual

PM3200 series user manual Functions

Chapter 4 Functions

What is in this chapter?

Power Meter Characteristics	27
Real-Time Measuring	
Minimum/Maximum Values	
Demand Readings	28
Energy Readings	30
Power Quality Analysis Values	30
Other Characteristics	31
Alarms	31
Overview	31
Alarms Configuration	32
View Alarm Status on the display	33
Alarm Activity and History	33
Using an Alarm to Control a Digital Output	33
Input/output capabilities	34
Multi-tariff	35
DI Control Mode (PM3255)	
Communication Control Mode (PM3250, PM3255)	36
Real-time clock (RTC) Control Mode	
Data Logging (PM3255)	37
Flex Log (Power Demand Log)	
Flex Log (KWH KVAH/KWH KVARH/KVARH KVAH)	
Special Notes for Flex Log	
Energy Log	38

Power Meter Characteristics

The power meter measures currents and voltages and reports real-time RMS values for all 3-phases and neutral. In addition, the power meter calculates power factor, real power, reactive power, and more.

The following sections list the metering characteristics of the power meter.

Real-Time Measuring

The following table lists the metering characteristics of the power meter for the real-time measurement:

Characteristics	Description
Current	Per phase, neutral, and average of 3 phases
Voltage	L-L, L-N, and average of 3 phases
Frequency	4070 Hz
Active power	Total and per phase (signed)
Reactive power	Total and per phase (signed)
Apparent power	Total and per phase
	Total and per phase
Power factor (True)	0.000 to 1 (signed) by display
	0.000 to 2 (signed) by communications

Functions PM3200 series user manual

Characteristics	Description
Tangent phi (Reactive factor)	Total
Current unbalance	Per phase, most unbalanced of 3 phases
Voltage unbalance	L-L, most unbalanced of 3 phases L-N, most unbalanced of 3 phases

Minimum/Maximum Values

When any one-second real-time reading reaches its highest or lowest value, the power meter saves the minimum and maximum values in its nonvolatile memory.

From the power meter display, you can:

- · view all min./max. values since the last reset and the reset date and time.
- reset min./max. values.

All running min./max. values are arithmetic minimum and maximum values. For example, the minimum phase A-N voltage is the lowest value in the range from 0 to 1 MV that has occurred since last reset of the min./max. values.

The power meter provides time stamping for 6 minimum/maximum values.

The following table lists the minimum and maximum values stored in the power meter:

Characteristics	Description
	Per phase, neutral, and average ¹
Current	Minimum: lowest of 3 phases ²
	Maximum: highest of 3 phases ²
Voltage	L-L and L-N per phase and average
Frequency	-
Active power	Per phase ¹ and total
Reactive power	Per phase ¹ and total
Apparent power	Per phase ¹ and total
Power factor	Per phase ¹ and total
Tangent phi (Reactive factor)	Total ¹
THD current (PM3210, PM3250, and	Maximum: Per phase, neutral, and highest of 3 phase ²
PM3255)	Minimum: Per phase ¹ and neutral ¹
THD voltage (PM3210, PM3250, and PM3255)	L-L and L-N per phase ¹
	Maximum: Highest of 3 phases ²
	Minimum: Lowest of 3 phases ²

Available only by communications

Demand Readings

The power meter provides various demand readings.

Characteristics	Description	
Current	Per phase, neutral, and average ¹	
Active, reactive, apparent power	Total	
Peak Demand Values (PM3210, PM3250, and PM3255)		
Current	Per phase, neutral, and average ¹	
Active, reactive, apparent power	Total	

Available only by communications

Available only on the display

PM3200 series user manual Functions

Demand Calculation Methods

Power demand is the energy accumulated during a specified period divided by the length of the period. Current demand is calculated using arithmetical integration of the current RMS values during a time period, divided by the length of the period. How the power meter performs this calculation depends on the selected method. To be compatible with electric utility billing practices, the power meter provides block interval power/current demand calculations.

For block interval demand calculations, you select a block of time (interval) that the power meter uses for the demand calculation and the mode the meter uses to handle the interval. 2 different modes are possible:

- Fixed block Select an interval from 1 to 60 minutes (in 1 minute increments). The
 power meter calculates and updates the demand at the end of each interval.
- Sliding block Select an interval from 1 to 60 minutes (in 1 minute increments). For demand intervals less than 15 minutes, the value is updated every 15 seconds. For demand intervals of 15 minutes and greater, the demand value is updated every 60 seconds. The power meter displays the demand value for the last completed interval.

The following figures illustrate the 2 ways to calculate demand power using the block method. For illustration purposes, the interval is set to 15 minutes.

Peak Demand

In nonvolatile memory, the power meter maintains a maximum operating demand value called peak demand. The peak is the highest value (absolute value) for each of these readings since the last reset.

You can reset peak demand values from the power meter display. You should reset peak demand after changes to basic power meter setup such as CT ratio or power system configuration.

Functions PM3200 series user manual

Energy Readings

The power meter calculates and stores total and partial energy values for active, reactive, and apparent energy.

You can view energy values from the display. The resolution of the energy value automatically changes from kWh to MWh (kVAh to MVARh).

The energy values automatically resets to 0 when it reaches the limit of 1 x 10^6 MWh, 1 x 10^6 MVAh, or 1 x 10^6 MVARh. Manual reset of total energy is not allowed. You can reset the partial energy values including partial energy import, energy by tariff, and phase energy manually using the display.

Energy values can be reported over communications as 64-bit signed integers. The units are always Wh, VARh, or VAh.

The following table lists the energy readings from the power meter:

Characteristics	Description	
Energy values (import)		
	Total and per phase, partial, by tariff	
Active energy	0 to 1 x 10 ¹² Wh	
	Auto reset to 0 in case of over limit	
	Total and per phase, partial	
Reactive energy	0 to 1 x 10 ¹² VARh	
	Auto reset to 0 in case of over limit	
	Total and per phase, partial	
Apparent energy	0 to 1 x 10 ¹² VAh	
	Auto reset to 0 in case of over limit	
Energy values (export)		
	Total	
Active energy	0 to 1 x 10 ¹² Wh	
	Auto reset to 0 in case of over limit	
	Total	
Reactive energy	0 to 1 x 10 ¹² VARh	
	Auto reset to 0 in case of over limit	
	Total	
Apparent energy	0 to 1 x 10 ¹² VAh	
	Auto reset to 0 in case of over limit	

Power Quality Analysis Values

The power quality analysis values use the following abbreviations:

- HC (Harmonic Content) = $\sqrt{(H_i^2 + H_i^2 + H_i^2 + \cdots)}$
- H1 = Fundamental Content
- THD (Total Harmonic Distortion) = HC/H1 X 100%

THD provides a measure of the total distortion present in a waveform. THD is the ratio of harmonic content to the fundamental and provides a general indication of the quality of a waveform. THD is calculated for both voltage and current.

The following table lists the power quality values of the power meter

PM3200 series user manual Functions

Power quality values (PM3210, PM3250, and PM3255)		
Characteristics Description		
	Per phase current and per phase voltage (L-L and L-N)	
THD	Most distorted of 3 phases	
	Average of 3 phases ¹	

¹ Available only by communications

Other Characteristics

The following table lists other characteristics of the power meter:

Characteristics	Description	
Reset		
Epart	Per phase, partial, by tariff energy values	
Minimum and maximum values	-	
Peak demand values	-	
Local or remote setup		
Distribution system type	 Three-phase 3-wire or 4-wire with 1, 2, or 3 CTs, Single-phase 2-wire or 3-wire with 1 or 2 CTs, with or without VTs 	
Current transformers rating	Primary 5 to 32,767 A Secondary 5 A, 1 A	
Voltage transformers rating	Primary 1,000,000 Vmax Secondary 100, 110, 115, 120	
Current demand calculation method	1 to 60 minutes	
Power demand calculation method	1 to 60 minutes	

Alarms

Overview

The power meter provides setpoint-driven alarms. The alarms include:

Alarms	PM3210, PM3250	PM3255
Standard alarms		
Over Current, Phase	V	V
Under Current, Phase	-	V
Over Voltage, L-L	-	V
Under Voltage, L-L	√	V
Over Voltage, L-N	-	V
Under Voltage, L-N	V	V
Over Power, Total Active	√	V
Over Power, Total Reactive	_	V
Over Power, Total Apparent	V	V

Functions PM3200 series user manual

Leading Power Factor, Total	-	V
Lagging Power Factor, Total	-	V
Over Demand, Total Active Power, Present	_	V
Over Demand, Total Apparent Power, Present	_	V
Over THD-U, Phase	_	V
Under Power, Total Active	√	V
Over THD-I, Phase	_	V
Over THD-V, Phase	_	√
Customized Alarms		
Over Energy, Total Active	_	V

Alarms Configuration

For the standard alarms, you must configure the following features by using the display or communication:

- · Pickup setpoint
- Trigger delay (Pickup/Dropout delay)
- · Dropout setpoint (Deviation percentage from pickup setpoint)

Among the standard alarms, dropout setpoint and trigger delay are common features of all the alarms. Pickup setpoint is identical for each alarm.

For more information on how the meter handles the setpoint-driven alarms, refer to the figure below.

For the Over Energy alarm, you also need to configure the method, which refers to the energy accumulation and detection period.

PM3200 series user manual Functions

The 3 options are:

 Day method: the energy accumulation starts at 8:03 A.M. every day and clears up at 8:03 A.M. the next day.

- Week method: the energy accumulation starts at 8:03 A.M. every Sunday and clears up at 8:03 A.M. the next Sunday.
- Month method: the energy accumulation starts at 8:03 A.M. on the first day of the month and clears up at 8:03 A.M. on the first day of the next month.

When the accumulated energy pickup setpoint and time delay are satisfied, the alarm is active. When the accumulated energy dropout setpoint and time delay are satisfied, the alarm is inactive.

View Alarm Status on the display

The alarm status summary page includes the following items:

- Tot Enable: displays total number of the alarms enabled by the user in the alarm configuration.
- Tot Active: displays total number of the active alarms. One active alarm with several
 entries is considered as one. For example, over current at phase 1 creates the first
 entry, over current at phase 2 creates the second entry, but the total number of the
 active alarms is one.
- Output: refers to the association with digital output (DO).

The alarm level 2 page lists the number of entries of the active and logged alarms.

The logged alarm entries include the active alarms and the historic alarms. One alarm that has occurred several times can create several active or logged entries.

The alarm level 3 page lists the detailed information of each active/log entry.

NOTE: When an active alarm is not present and you enter the log entry list, the meter considers this to mean that you have acknowledged all the logged alarms.

Alarm Activity and History

The active alarm list holds 20 entries at a time. The list works as a circular buffer, replacing the oldest entries with the newest entries. The information in the active alarm list is volatile. When the power meter resets, this list is reinitialized.

The alarm history log holds 20 entries of alarms that have disappeared. The log also works as a circular buffer. This information is nonvolatile.

Using an Alarm to Control a Digital Output

You can associate a digital output with an alarm. See "Input/output capabilities" on page 34 for more information.

Functions PM3200 series user manual

Input/output capabilities

WARNING

HAZARD OF UNINTENDED OPERATION

- Do not use the meter for critical control or protections applications where human or equipment safety relies on the operation of the control circuit.
- Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Digital Inputs (PM3255)

The power meter can accept 2 digital inputs designated as DI1 and DI2.

The digital inputs have 4 operating modes:

- Normal Input Status: use for simple ON/OFF digital inputs. The digital inputs can be OF or SD signals of a circuit breaker.
- Multi-tariff Control: you can control the tariff either through communications, the
 internal clock or by 1 or 2 tariff inputs. Tariff control through the tariff inputs is
 performed by applying a proper combination of ON or OFF signal to the inputs.
 Each combination of ON or OFF signal results in the power meter registering the
 energy in a particular tariff register. Refer to the table below for input coding.
- Input Metering: you can configure the meter in input metering modes to collect the
 pulses for WAGES application. To activate this function, set the input metering
 pulse frequency (pulse/unit). The meter counts the number of pulses and calculates
 the number of units. Pulse width or pulse stop less than 10 milliseconds is invalid for
 pulse counting.
- Energy Reset: energy reset function resets partial energy, energy by tariff, and energy by phase. Reset is activated by an ON signal lasting for over 10 milliseconds.

The following table describes the input coding in binary format:

Input voltage	Active tariff	
Meter with 4 tariffs:		
DI1/DI2 = OFF/OFF	Tariff 1 active	
DI1/DI2 = OFF/ON	Tariff 2 active	
DI1/DI2 = ON/OFF	Tariff 3 active	
DI1/DI2 = ON/ON	Tariff 4 active	
Meter with 2 tariffs (always associated with DI1, and DI2 can be left floating or configured as other mode):		
DI1 = OFF	Tariff 1 active	
DI1 = ON	Tariff 2 active	

Pulse Output (PM3210)

Pulse output is used for active energy pulse output only. You can configure the pulse frequency (pulse/kWh) and the pulse width. The minimum pulse width is 50 ms. The pulse stop is equal or longer than the pulse width. The pulse output indicates the

PM3200 series user manual Functions

primary energy consumption considering transformer ratios. You should set a proper value of pulse frequency and pulse width to avoid pulse missing due to over-counting.

Digital Outputs (PM3255)

The power meter has 2 solid-state relay outputs (DO1 and DO2). The relay outputs have 4 operation modes:

- Alarm: the output is controlled by the power meter in response to an alarm condition. The output turns On (relay closed) when at least one alarm is active. The output turns Off (relay open) when the alarm is deactivated.
- Energy Output: you can use DO1 only for active energy pulse output and DO2 only for reactive energy pulse output. You can configure the pulse frequency (pulse/kWh or pulse/kVARh) and the pulse width.
- · Disable: the digital output function is disabled.
- External: the output is controlled by the power meter in response to a command 21000.

Multi-tariff

The power meter provides multi-tariff energy accumulation. It supports up to 4 tariffs.

The tariff switching has the following 3 kinds of control modes:

- · Digital input
- Communication
- Internal real-time clock (RTC)

You can configure the control mode by using the display (all the 3 modes) or by using communication (not for RTC).

Command number 2060 is used to configure the control mode by communication. See "Communication via Modbus RS-485" on page 57 for more details.

The following table presents the rules to change multi-tariff control mode by Modbus command:

From	То
Disable	Communication
Disable	Digital input
RTC	Communication
Communication	Disable

Functions PM3200 series user manual

DI Control Mode (PM3255)

In the DI control mode, the tariff switching is triggered by the change in input status of DI. See "Digital Inputs (PM3255)" on page 34 for more details.

NOTE: If you change DI mode to other operation modes (normal input status, input metering, or energy reset) while multi-tariff control mode is in DI control mode, the multi-tariff function is automatically disabled.

NOTE: If you change multi-tariff control mode to other control modes (communication or internal RTC) while DI is configured for multi-tariff function, the DI operation mode automatically changes to normal input status.

Communication Control Mode (PM3250, PM3255)

In the communication control mode, the tariff switching is triggered by command number 2008. See "Communication via Modbus RS-485" on page 57 for more details.

Real-time clock (RTC) Control Mode

In RTC control mode, the tariff switching is triggered by the real-time clock.

You can configure RTC control mode by using the display. The configuration includes the selection of schedule mode and the setup of 1 or 2 schedulers depending on the schedule modes.

The 2 schedule modes for RTC trigger are:

- Day mode: weekdays and weekend share the same peak and peak-off duration and only 1 scheduler should be set.
- Week mode: the tariff management of weekdays and weekends are controlled separately, and 2 schedulers should be set.

A scheduler supports a maximum of 4 time segments (Ta, Tb, Tc, and Td) for maximum 4 tariffs (T1, T2, T3, and T4). You can assign Ta, Tb, Tc, or Td to any tariff if any adjacent time segment has a different tariff. A valid scheduler always starts from Ta segment, and skipping time segments is not allowed.

PM3200 series user manual Functions

In the setup of a schedule, you should define the tariff switching time for each target tariff. In the application, when the set switching time is reached, the tariff switches automatically.

Data Logging (PM3255)

The power meter provides energy logs. It also has a flexible log where you can select the type of values that get logged. It stores all these logs in the nonvolatile memory of the power meter. Flex log and energy day log can be read as a log file. The 3 types of energy log can be read as registers.

The following table lists the maximum number of entries of each log:

Log Type	Max. Entries Stored
Flex log (power demand log)	4608
Flex log (KWH_KVAH)	1557
Flex log (KWH_KVARH)	1557
Flex log (KVARH_KVAH)	1557
Energy log (daily)	45
Energy log (weekly)	30
Energy log (monthly)	13

NOTE: Only 1 type of flex log is available at the same time.

Flex Log (Power Demand Log)

Total active power demand values are logged. You must use the display to configure the power demand log by enabling the function and selecting the log interval. The interval options include 10 minutes, 15 minutes, 20 minutes, 30 minutes, and 60 minutes. The maximum number of power demand log entries is 4608, which is equivalent to maximum 32 days for 10 minutes log interval or maximum 192 days for 60 minutes log interval. Each entry includes log time (4 registers) and log data (2 registers). The total number of registers is 4608*6 = 27648.

The demand log entry structure is shown in the following table:

Log Entry	Log date / time	Demand value
Log Liiti y	4 registers	2 registers

NOTE: The demand log file is circular. If the number of log days exceeds the maximum, it overwrites the log data of the oldest day. The overwriting unit is day, not entry. This means if overwriting happens, it erases the entire log of the oldest day along with the oldest entry.

Flex Log (KWH_KVAH/KWH_KVARH/KVARH_KVAH)

Total apparent/reactive/active energy (KWH_KVAH/KWH_KVARH/KVARH_KVAH) values are logged. You must use the display to configure the log by enabling the function and selecting the log interval. The interval options include 10 minutes, 15 minutes, 20 minutes, 30 minutes, and 60 minutes. The maximum number of log entries is 1557, which is equivalent to maximum 10 days for 10 minutes log interval or maximum 60 days for 60 minutes log interval. Each entry includes log time (4 registers),

Functions PM3200 series user manual

log data1 (4 registers), and log data2 (4 registers). The total number of registers is 1557*12 = 18684.

The log entry is shown in the following table:

Log Type	Log Date/Time	Log Value1	Log Value2
KWH_KVAH	4 Registers	4 registers (KWH)	4 registers (KVAH)
KWH_KVARH	4 registers	4 registers (KWH)	4 registers (KVARH)
KVARH_KVAH	4 registers	4 registers (KVARH)	4 registers (KVAH)

NOTE: The log file is circular. If the number of entries exceeds the maximum, it overwrites the log data of first entry.

Special Notes for Flex Log

- If date/time is not set by the user after date/time resets due to previous power interruption or the inoperable internal clock (diagnosis code #205 or #207 is reported), new entries are not generated in the demand log.
- If you change date/time, all demand log entries with log date/time after the new date/time are erased.
- For example, some entries were logged in October 20, 2012. If you change the date
 of the meter to October 19, 2012 by mistake, the entries of October 20, 2012 are
 erased.
- If you change the log interval option, the flex log system is reset and all logged entries are erased.
- If you select KWH_KVAH/KWH_KVARH/KVARH, the log interval is available in the same interface. However, if you select the power demand log, the power demand log interval is available in the Setup/Demand interface.

Energy Log

The meter also has the log for accumulated active energy.

The energy log entry structure is shown in the following table:

Log Entry	Log date / time	Energy value
Log Entry	4 registers	4 registers

The 3 log types are:

- Day: the log interval is 1 day. The logging occurs at 8:03 A.M. every day and the
 accumulated active energy for the previous 24 hours is logged.
- Week: the log interval is 1 week. The logging occurs at 8:03 A.M. every Sunday and the accumulated active energy for the previous week is logged.
- Month: the log interval is 1 month. The logging occurs at 8:03 A.M. on the first day
 of each month and the accumulated active energy for the previous month is logged.

You must use the display to configure the energy log. The day log, week log, and month log are enabled or disabled together during the configuration. However, the energy accumulation always starts from the fixed log time instead of the time of log enabled.

You can access day log, week log, and month log by reading the registers.

PM3200 series user manual Functions

Special Notes for Energy Log

If the date/time is not set by the user after the date/time resets due to previous
power interruption, energy keeps accumulating. After the date/time is set and the
log time is reached, all the accumulated energy is written into the log.

- If you reset the date, the log entries with log date after the reset date are not erased.
- When the log time is reached, the meter checks the enable/disable status of the energy log. The meter logs the accumulated energy if the status is enabled and discards if the status is disabled. The accumulated energy resets to 0.
- The energy log is circular. If the number of the log entries exceeds the maximum, the oldest log entries are overwritten.

Functions PM3200 series user manual

Chapter 5

Meter operation

What is in this chapter?

Introduction	41
General display	41
Status information	42
Configuration mode	42
Modifying parameters	
Clock setting	
Configuration mode menu trees	
Display mode	50
Enter the display mode	
Display mode menu tree for PM3200	
Display mode menu tree for PM3210	52
Display mode menu tree for PM3250	53
Display mode menu tree for PM3255	54
Full Screen mode	55
Enter the Full Screen mode	
Full Screen mode menu tree for PM3200	
Full Screen mode menu tree for PM3210/ PM3250/ PM3255	56

Introduction

The power meter features a front panel with signaling LEDs, a graphic display, and contextual menu buttons for accessing the information required to operate the power meter and modify parameter settings.

The Navigation menu allows you to display, configure, and reset parameters.

General display

The general display of the power meters is shown in the following picture:

Status information

The display and the LED on the power meters indicate the device current status.

LED Indicator Description	
5000 flashes / kWh	
⊗ OFF	Off/ no counting
Flashing	On, with counting
⊗: ON	Over counting due to wrong configuration or overload

The backlight and diagnosis/alarm icon indicate the device status.

Configuration mode

Settings for all power meters

The following settings can be configured in configuration mode:

Function	PM3200	PM3210	PM3250	PM3255
Wiring	√	V	√	√
CT and VT Ratio	√	√	√	√
Nominal frequency	√	√	√	√
Date/Time	√	√	√	√
Multi-tariffs	√	√	√	√
Demand	√	√	√	√
Log	-	_	_	√
Digital Outputs	-	_	_	√
Digital Inputs	-	-	-	√
Pulse Output	-	√	-	_
Communication	-	_	√	√
Password (High and Low)	√	√	√	√
Alarms	-	V	√	√

Function	PM3200	PM3210	PM3250	PM3255
Front panel display	√	V	√	√
Language	√	V	√	√

The default factory settings are listed in the following table:

Function	Factory settings
Wiring	3PH4W; VT Direction connection; 3 CTs on I1, I2, and I3
CT Ratio	CT Secondary = 5 A; CT Primary = 5 A
VT Ratio	NA
Nominal frequency	50 Hz
Nominal phase order	A-B-C
Date/Time	1-Jan-2000/00:00:00
Multi-tariffs	Disable
Demand	Method: sliding block; Interval: 15 minutes
Power demand log	Disable
Energy log	Disable
Digital outputs	Disable
Digital inputs	Input status
Pulse output	100 pulse/kWh, pulse width: 100 millisecond
Communication	Baud Rate = 19 200; Parity = EVEN; Address = 1
Password	High: 0010; Low: 0000
Alarms	Disable
Front panel display LCD	Backlight: 4; Contrast: 5
Front panel display mode	Full screen: Enable; Auto scroll: Disable
Language	English

Enter the configuration mode

The diagram below illustrates the various elements for operating the power meters:

or Selection button to change or select parameter values

OK Confirmation button

ESC Cancellation button

To enter the configuration mode, hold OK and ESC for 2 seconds.

The following figures describe in details the configuration navigation, see "Modifying parameters" on page 44 to change the default selection.

Modifying parameters

There are two methods for modifying a parameter, depending on the type of parameter:

- selecting a value in a list (for example, selecting 1PH2W L-N from a list of available power systems), or
- modifying a numerical value, digit by digit (for example, entering a value for the date, time or VT primary).

NOTE: Before you modify any parameters, ensure that you are familiar with the display functionality and navigation structure of your device in configuration mode.

Selecting the value in a list

To select a value in a list:

- 1. Use the or o button to scroll through the parameter values until you reach the desired value.
- 2. Press ok to confirm the new parameter value.

Modifying the numerical value

When you modify a numerical value, the digit on the far right side is selected by default (except for Date/Time). The parameters listed below are the only ones for which you set a numerical value:

- Date
- Time
- · Voltage Transformer (VT) Primary
- · Current Transformer (CT) Primary
- Password
- Modbus address of the power meter
- Pickup Setpoint
- · Dropout Setpoint
- · Time delay/Interval duration

To modify a numerical value:

- 1. Use the or button to modify the selected digit.
- 2. Press OK to confirm the new parameter value and to shift to the next digit. Modify the next digit, if needed, or press OK.
- 3. Continue to move through the digits until you reach the last digit then press again to confirm the new parameter value.

NOTE: If you enter an invalid setting and press OK, the cursor stays in the field for that parameter until you enter a valid value.

Canceling an entry

To cancel the current parameter entry, press the ESC button. The screen reverts to the previous display.

Clock setting

You must reset the time to account for any time change (for example, to switch the time from standard time to daylight savings time).

The power meter automatically displays the screen to set Date and Time when the power is interrupted for longer than 5 minutes.

The power meter retains the date and time settings before the interruption.

Setting

To set the date and time, see "Modifying the numerical value" on page 44.

Date/time format

The date is displayed in the format: DD-MMM-YYYY.

The time is displayed using the 24-hour clock in the format: hh:mm:ss.

Clock setting menu

The following diagram illustrates how to set the clock when you initially power up the device or after a power failure. To set the clock during normal operation, see the configuration mode menu tree for your device.

Configuration mode menu trees

Configuration mode menu tree for PM3200

Configuration mode menu tree for PM3210

Configuration mode menu tree for PM3250

Configuration mode menu tree for PM3255

Display mode

Enter the display mode

If Full Screen mode is enabled, press any key to switch from Full Screen mode to Display mode.

If Full Screen mode is disabled, press [ESC] to switch from Configuration mode (Setup page) to Display mode.

Display mode menu tree for PM3200

Display mode menu tree for PM3210

Display mode menu tree for PM3250

Display mode menu tree for PM3255

Full Screen mode

The main title and the sub menu in full screen mode are hidden and the values are expanded to full screen. The following screen illustrates an example of full screen page:

Full screen mode is enabled by default. You can modify full screen enable/disable information, auto scroll enable/disable, and auto scroll interval.

Full Screen	Auto Scroll	Auto Scroll Interval	Description
Enable	Disable	Any value	Fixed summary page at full screen mode.
Enable	Enable	Any value	Auto scrolling pages at full screen mode. The interval between any 2 scrolling pages is the value specified.
Disable	-	_	Full screen mode disabled.

Enter the Full Screen mode

If Full Screen mode is enabled, press [ESC] to switch from Configuration mode (Setup page) to Full Screen mode.

Display mode automatically switches to full screen mode if five minutes passes without a key press.

Full Screen mode menu tree for PM3200

Full Screen mode menu tree for PM3210/ PM3250/ PM3255

Chapter 6 Communication via Modbus RS-485

What is in this chapter?

Modbus communications overview	57
Modbus communications settings	
Signaling of Communication Activity	
Modbus Functions	58
Function List	58
Table Format	59
Command Interface	60
Description	60
Command Request	
Command List	61
Modbus Register Table	66
Register List	
Read Device Identification	82
Register List	82

Modbus communications overview

Modbus RTU protocol is available on the PM3250 and PM3255. The information in this section assumes that you have an advanced understanding of Modbus communications, your communications network and the power system that your meter is connected to.

Modbus communications settings

Before communicating with the device using Modbus protocol, use the HMI to configure the following settings:

Parameters	Authorized Values	Default Value	
Baud rate	9600 Baud19 200 Baud38 400 Baud	19 200 Baud	
Parity	Odd Even None NOTE: number of stop bit = 1	Even	
Address	1–247	1	

Signaling of Communication Activity

The yellow communication LED indicates the status of communication between the meter and the master as follows:

If	Then
the LED is flashing	communication with the device has been correctly established.
the LED is off	there is no active communication between the master and the slave.

Modbus Functions

Function List

Introduction

There are 3 different ways of using the Modbus communication:

- by sending commands using the command interface (see "Command Interface" on page 60).
- by reading the Modbus registers (see "Modbus Register Table" on page 66).
- by reading the Device Identification (see "Read Device Identification" on page 81).

Description

The table below describes the three supported Modbus functions:

Function	on Code	Function Name			
Decimal	Hexadecimal	- Function Name			
3	0x03	Read Holding Registers			
16	0x10	Write Multiple Registers			
43/14 0x2B/0x0E		Read Device Identification			

For example:

- · To read different parameters from the power meter, use the function 3 (Read).
- To change the tariff, use the function 16 (Write) to send a command to the power meter.

Table Format

Register tables have the following columns:

Register Address Action (R/W/WC) Size	Type Units	Range	Description
---------------------------------------	------------	-------	-------------

- Register Address: Modbus address of register encoded in the Modbus frame, in decimal (dec)
- · Action: The read/write/write by command property of the register
- Size: The data size in Int16
- Type: The encoding data type
- Units: The unit of the register value
- Range: The permitted values for this variable, usually a subset of what the format allows
- Description: Provides information about the register and the values that apply

Unit Table

The following data types appear in the Modbus register list:

Туре	Description	Range		
UInt16	16-bit unsigned integer	0–65535		
Int16	16-bit signed integer	-32768-+32767		
UInt32	32-bit unsigned integer	0–4 294 967 295		
Int64	64 bit unsigned integer	0–18 446 744 073 709 551 615		
UTF8	8-bit field	multibyte character encoding for Unicode		
Float32	32-bit value	Standard representation IEEE for floating number (with single precision)		
Bitmap	-	-		
DATETIME	See below	-		

DATETIME format:

Word		Bits														
word	ord 15 14 13 12 11 10 9 8 7 6 5 4							3	2	1	0					
1	Reserved	(0)	l.	•	•	•			R4 (0)	Year (0–127)					
2	0				Month (1	–12)			WD (0)			Day (1	–31)			
3	SU (0)	0		Hour (0-	-23)				iV	0	Minute	e (0–59)				
4	Millisecond	d (0–59999)														
R4 :	-					Reserve	d Bit									
Year:						7 bits: (year from 2000)										
Month:						4 bits										
Day:						5 bits										
Hour :						5 bits										
Minute:						6 bits										
Millisecond	d :					2 octets										
WD (day of	f the week) :	k): 1-7: Sunday to Saturday														
SU (summe	U (summer time): Bit to 0 if this parameter is not used.															
iV (validity	of received	data) :				Bit to 0 if	f this par	ameter	is not valid	or not us	ed.					

Command Interface

Description

The command interface allows you to configure the power meter by sending specific command requests using Modbus function 16.

Command Request

The following table describes a Modbus command request:

Slave	Function Code		CRC		
Number	Function Code	Register Address	Command Description	CRC	
1–247	16 (W)	5250 (up to 5374)	The command is made of a command number and a set of parameters. See the detailed description of each command in the command list. NOTE: All the reserved parameters can be considered as any value, e.g. 0.	Checking	

The following table describes a command block:

Register Address	Content	Size (Int16)	Data (example)
5250	Command Number		2008 (Set Tariff)
5251	(Reserved)	1	0
			4 (Tariff=4)
5252–5374	Parameter		NOTE: Command number 2008 supports only one parameter with the size of 1.

Command Result

The command result can be obtained by reading registers 5375 and 5376.

The following table describes the command result:

Register Address	Content	Size (Int16)	Data (example)	
5375	Requested Command Number	1	2008 (Set Tariff)	
5376	Result ¹	1	0 (Valid Operation)	

- 1 List of Command Result codes:
- 0 = Valid Operation
- 3000 = Invalid Command
 3001 = Invalid Representation
- 3001 = Invalid Parameter 3002 = Invalid Number of Parameters
- 3007 = Operation Not Performed

Command List

Set Date/Time

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	-	_	(Reserved)
	W	1	UInt16	_	2000–2099	Year
	W	1	UInt16	_	1–12	Month
1003	W	1	UInt16	_	1–31	Day
1003	W	1	UInt16	_	0–23	Hour
	W	1	UInt16	_	0–59	Minute
	W	1	UInt16	_	0–59	Second
	W	1	UInt16	_	-	(Reserved)

Set Wiring

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
						Power System Configuration
						0 = 1PH2W L-N
						1 = 1PH2W L-L
	W	1	UInt16	-	0, 1, 2, 3, 11, 13	2 = 1PH3W L-L-N
						3 = 3PH3W
						11 = 3PH4W
						13 = 1PH4W L-N
	W	1	UInt16	Hz	50, 60	Nominal Frequency
	W	2	Float32	_		(Reserved)
	W	2	Float32	_	-	(Reserved)
	W	2	Float32	_	-	(Reserved)
2000	W	1	UInt16	_		(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	2	Float32	V	VT Secondary-1000000.0	VT Primary
	W	1	UInt16	V	100, 110, 115, 120	VT Secondary
	W	1	UInt16	_	1, 2, 3	Number of CTs
	W	1	UInt16	А	1–32767	CT Primary
	W	1	UInt16	А	1, 5	CT Secondary
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	-	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
						VT Connection type:
	14/		111-440		0.4.0	0 = Direct Connect
	W	1	UInt16	-	0, 1, 2	1 = Delta (2 VTs)
						2 = Wye (3 VTs)

Demand System Setup

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
						Demand method:
2002	W	1	UInt16	_	1, 2	1 = Timed interval sliding block
						2 = Timed interval fixed block
	W	1	UInt16	min	10, 15, 20, 30, 60	Demand interval duration
	W	1	UInt16	_	_	(Reserved)

Set Pulse Output (PM3255)

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	_	(Reserved)
	W	1	UInt16	-	_	(Reserved)
						Pulse Output
	W	1	UInt16	_	0, 1	0 = DO1 Disable
						1 = DO1 Enable
	w	2	Float32	pulse/kWh	0.01, 0.1, 1, 10, 100, 500	Active Energy Pulse Frequency
2003	W	1	UInt16	-	-	(Reserved)
	144	4	111.140		0.0	0 = DO2 Disable
	W	1	UInt16	_	0, 2	2 = DO2 Enable
	W	2	Float32	pulse/kVARh	0.01, 0.1, 1, 10, 100, 500	Reactive Energy Pulse Frequency
	W	1	UInt16	-	-	(Reserved)
	W	1	UInt16	-	_	(Reserved)
	W	2	Float32	-	_	(Reserved)
	W	1	UInt16	-	_	(Reserved)
2038	W	1	UInt16	-	_	(Reserved)
	W	1	UInt16	ms	50, 100, 200, 300	Energy Pulse Duration

Set Tariff

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	-	(Reserved)
						Multi-tariff mode:
						0 = Disable Multi-tariff
2060	w	1	UInt16		0–3	1 = Use COM as Tariff Control (maximum 4 tariffs)
	VV	1	Omero	_		2 = Use DI1 as Tariff Control (2 tariffs)
						3 = Use 2 Digital inputs as Tariff Control (4 tariffs)
						4 = Use RTC as Tariff Control (maximum 4 tariffs)
	W	1	UInt16	_	_	(Reserved)
						Tariff ¹
2008						1 = T1
2006	W	1	UInt16	_	1–4	2 = T2
						3 = T3
						4 = T4

 $[\]begin{tabular}{ll} 1 & Only if Multi-Tariff is controlled by communications. \end{tabular}$

Reset All Minimum/Maximum

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
2009	W	1	UInt16	-	-	(Reserved)

Reset All Peak Demands

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
2015	W	1	UInt16	-	_	(Reserved)

Set Digital Input as Partial Energy Reset (PM3255)

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	-	-	(Reserved)
	w	1	UInt16	-	0, 1, 2, 3	Digital Input to Associate:
6017						0 = None
0017						1 = DI1
						2 = DI2
						3 = DI1 and DI2

Input Metering Setup (PM3255)

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	1, 2	Input Metering Channel
	W	20	UTF8	_	string size ≤ 40	Label
	W	2	Float32	_	1–10000	Pulse Weight
6014	W	1	UInt16	_	_	(Reserved)
						Digital Input Association:
	w	1	UInt16		Input Metering Channel 1: 0, 1	0 = None
	VV 1		Ollicio	_	Input Metering Channel 2: 0, 2	1 = DI1
						2 = DI2

Alarm Setup

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
7000	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	(1) (2)	Alarm ID
	W	1	UInt16	-	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	0, 1	0 = Disable 1 = Enable
	w	2	Float32	-	(3) (4) (5) (6) (7)	Pickup Setpoint
	W	2	UInt32	-	-	(Reserved)
	W	2	Float32	_	-	(Reserved)
	W	2	UInt32	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	4	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	-	(Reserved)
	W	1	UInt16	_	=	(Reserved)
	W	2	Float32	_	0.0–99.0	Dropout Setpoint
	W	2	UInt32	_	0–99999	Trip Time Delay
20000	w	1	Bitmap	-	0, 1, 2, 3	PM3250: Reserved PM3255: Digital Output to Associate: 0 = None 1 = DO1 2 = DO2 3 = DO1 and DO2
20001	W	1	UInt16	-	-	(Reserved)
			(3) Alarm ID 1, 2	2, 5, 6, 7, 8, 2, 5, 6, 7, 8, 0, 16, 30: –	9, 10, 11, 12, 13, 16, 19, 28, 30, 31, 32, 41 11, 19: 0.0–9999999.0 9999999.0–9999999.0	
			(6) Alarm ID 28,			

⁽⁷⁾ Alarm ID 41: 0-999999999

Communications Setup

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	_	(Reserved)
	W	1	UInt16	_	_	(Reserved)
	W	1	UInt16	_	_	(Reserved)
	W	1	UInt16	_	1–247	Address
	W	1	UInt16	-	0, 1, 2	Baud Rate
						0 = 9600
5000						1 = 19 200
						2 = 38 400
						Parity
	w	1	UInt16	_	0, 1, 2	0 = Even
	VV	'	Ollicio	_	0, 1, 2	1 = Odd
						2 = None
	W	1	UInt16	_	_	(Reserved)

Reset Partial Energy Counters

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
2020	W	1	UInt16	-	-	(Reserved)

Reset Input Metering Counter (PM3255)

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
2023	W	1	UInt16	-	_	(Reserved)

Set External Control from Digital Output (PM3255)

Command Number	Action (R/W)	Size	Туре	Unit	Range	Description
	W	1	UInt16	_	_	(Reserved)
						Digital Output ID
	W	1	UInt16	_	1, 2	1 = DO1
21000						2 = DO2
	W	1	UInt16	-		Digital Output Status
						0 = Open
						1 = Close

Modbus Register Table

Register List

System

Register	Action	(R/W/WC)	Size	Туре	Units	Description
Address	PM3250	PM3255	Size	туре	Units	Description
30	R	R	20	UTF8	_	Meter Name
50	R	R	20	UTF8	_	Meter Model
70	R	R	20	UTF8	_	Manufacturer
130	R	R	2	UInt32	-	Serial Number
132	R	R	4	Date/Time	-	Date of Manufacture
136	R	R	5	UTF8	-	Hardware Revision
1637	R	R	1	UInt16	-	Present Firmware Version (DLF format): X.Y.ZTT
1701	R	R	1	UInt16	-	Present Language Version (DLF format): X.Y.ZTT
						Date/Time
						Reg. 1845: Year 0-99 (year from 2000 to 2099)
1845–1848	R/WC	R/WC	1 X 4	UInt16	-	Reg. 1846: Month (b11:b8), Weekday (b7:b5), Day (b4:b0)
						Reg. 1847: Hour (b12:b8) and Minute (b5:b0)
						Reg. 1848: Millisecond

Meter Setup and Status

Register	Action	(R/W/WC)	C:	T	Unita	December 1
Address	PM3250	PM3255	Size	Туре	Units	Description
2004	R	R	2	UInt32	Second	Meter Operation Timer Status
2014	R	R	1	UInt16	-	Number of Phases
2015	R	R	1	UInt16	-	Number of Wires
						Power System Configuration:
						0 = 1PH2W L-N
						1 = 1PH2W L–L
2016	R/WC	R/WC	1	UInt16	_	2 = 1PH3W L–L with N
						3 = 3PH3W
						11 = 3PH4W
						13 = 1PH4W multi-L with N
2017	R/WC	R/WC	1	UInt16	Hz	Nominal Frequency
						Nominal Phase Order:
2024	R/WC	R/WC	1	UInt16	_	0 = A-B-C
						1 = C-B-A
2025	R	R	1	UInt16	_	Number VTs
2026	R/WC	R/WC	2	Float32	V	VT Primary
2028	R/WC	R/WC	1	UInt16	V	VT Secondary
2029	R/WC	R/WC	1	UInt16	_	Number CTs
2030	R/WC	R/WC	1	UInt16	А	CT Primary
2031	R/WC	R/WC	1	UInt16	А	CT Secondary
						VT Connection Type:
0000	DAMO	DAMO		111-440		0 = Direct Connect
2036	R/WC	R/WC	1	UInt16	-	1 = 3PH3W (2 VTs)
						2 = 3PH4W (3 VTs)

Energy Pulse Output Setup

Register	Action	Action (R/W/WC)		Type	11%	Benediction
Address	PM3250	PM3255	Size	Туре	Units	Description
Energy Output F	Pulses (Global Sett	ings)				
2129	_	R/WC	1	UInt16	Millisecond	Energy Pulse Duration
Active Energy F	ulse Output Chanr	nel				
						Digital Output Association:
2131	-	R/WC	1	UInt16	_	0 = Disable
						1 = DO1 enable for active energy pulse output
2132	_	R/WC	2	Float32	pulse/kWh	Active Energy Pulse Frequency
Reactive Energy	y Pulse Output Cha	annel				
						Digital Output Association:
2135	_	R/WC	1	UInt16	_	0 = Disable
						1 = DO2 enable for reactive energy pulse output
2136	_	R/WC	2	Float32	pulse/kVARh	Reactive Energy Pulse Frequency

Command Interface

Register	Action (R/W/WC)		Size	Type	Units	Description
Address	PM3250	PM3255	Size	Туре	Units	Description
5250	R/W	R/W	1	UInt16	_	Requested Command
5252	R/W	R/W	1	UInt16	-	Command Parameter 001
5374	R/W	R/W	1	UInt16	-	Command Parameter 123
5375	R	R	1	UInt16	_	Command Status
5376	R	R	1	UInt16	-	Command Result codes: 0 = Valid Operation 3000 = Invalid Command 3001 = Invalid Parameter 3002 = Invalid Number of Parameters 3007 = Operation Not Performed
5377	R	R	1	UInt16	_	Command Data 001
5499	R	R	1	UInt16	_	Command Data 123

Communications

Register	Action (R/W/WC)		Si=o	Toma	Unita	.
Address	PM3250	PM3255	Size	Туре	Units	Description
6500	R	R	1	UInt16 –		Protocol
0300	IX.	K			_	0 = Modbus
6501	R/WC	R/WC	1	UInt16		Address
		R/WC		111-140		Baud Rate:
6502	R/WC		4			0 = 9600
0502	R/WC	R/VVC	'	UInt16	_	1 = 19 200
						2 = 38 400
						Parity:
6503	R/WC	R/WC	4	Lillatt C		0 = Even
6503	R/WC	R/WC	1	UInt16	_	1 = Odd
						2 = None

Input Metering Setup

Register	Action (R/W/WC)		6:	_		2
Address	PM3250	PM3255	PM3255	Туре	Units	Description
Input Metering	Channel 01	•	- L			
7032	_	R/WC	20	UTF8	-	Label
7052	_	R/WC	2	Float32	pulse/unit	Pulse Frequency
						Digital Input Association:
7055	_	R/WC	1	UInt16	_	0 = DI1 disable for input metering
						1 = DI1 enable for input metering
Input Metering	Channel 02					
7056	_	R/WC	20	UTF8	-	Label
7076	_	R/WC	2	Float32	pulse/unit	Pulse Frequency
						Digital Input Association:
7079	-	R/WC	1	UInt16	_	0 = DI2 disable for input metering
						2 = DI2 enable for input metering

Digital Inputs

Register	Action (Action (R/W/WC)		Туре	Units	Description
Address	PM3250	PM3255	Size	Туре	Units	Description
						Digital Input 1 Control Mode:
						0 = Normal (Input Status)
7274	_	R	1	UInt16	_	2 = Multi-tariff Control
						3 = Input Metering
						5 = Energy Reset (Partial Energy, Energy by Tariff, Phase Energy)
7298	-	R	1	UInt16	-	Digital Input 2 Control Mode
						Digital Input Status:
						0 = Relay-Open
8905	_	R	2	Bitmap	-	1 = Relay-Closed
						Bit 1 = DI1 status
						Bit 2 = DI2 status

Digital Outputs

Register	Action (R/W/WC)		Size	Туре	Units	Decariotics
Address	PM3250	PM3255	Size	Туре	Onits	Description
						Digital Output 1 Control Mode Status:
9673		R	1	UInt16	_	2 = Alarm
9073	_	K		Onitio		3 = Energy
						0xFFFF = Disable
9681	_	R	1	UInt16	-	Digital Output 2 Control Mode Status
		R	1	Bitmap	-	Digital Output Status:
						0 = Relay-Open
9667	_					1 = Relay-Closed
						Bit 1 = DO1 status
						Bit 2 = DO2 status

Basic Meter Data

Current, voltage, power, power factor and frequency

Register	Action (Action (R/W/WC)		_					
Address	PM3250	PM3255	Size	Туре	Units	Description			
Current			•						
3000	R	R	2	Float32	A	I1: phase 1 current			
3002	R	R	2	Float32	A	I2: phase 2 current			
3004	R	R	2	Float32	A	I3: phase 3 current			
3006	R	R	2	Float32	A	In: Neutral current			
3010	R	R	2	Float32	A	Current Avg			
Voltage									
3020	R	R	2	Float32	V	Voltage L1-L2			
3022	R	R	2	Float32	V	Voltage L2-L3			
3024	R	R	2	Float32	V	Voltage L3-L1			
3026	R	R	2	Float32	V	Voltage L-L Avg			
3028	R	R	2	Float32	V	Voltage L1-N			
3030	R	R	2	Float32	V	Voltage L2-N			
3032	R	R	2	Float32	V	Voltage L3-N			
3036	R	R	2	Float32	V	Voltage L-N Avg			
Power									
3054	R	R	2	Float32	kW	Active Power Phase 1			
3056	R	R	2	Float32	kW	Active Power Phase 2			
3058	R	R	2	Float32	kW	Active Power Phase 3			
3060	R	R	2	Float32	kW	Total Active Power			
3062	R	R	2	Float32	kVAR	Reactive Power Phase 1			
3064	R	R	2	Float32	kVAR	Reactive Power Phase 2			
3066	R	R	2	Float32	kVAR	Reactive Power Phase 3			
3068	R	R	2	Float32	kVAR	Total Reactive Power			
3070	R	R	2	Float32	kVA	Apparent Power Phase 1			
3072	R	R	2	Float32	kVA	Apparent Power Phase 2			
3074	R	R	2	Float32	kVA	Apparent Power Phase 3			
3076	R	R	2	Float32	kVA	Total Apparent Power			
Power Factor	•	•		•	•				
3078	R	R	2	Float32	-	Power Factor Phase 1 (Complex format)			
3080	R	R	2	Float32	_	Power Factor Phase 2 (Complex format)			
3082	R	R	2	Float32	_	Power Factor Phase 3 (Complex format)			
						Power Factor Total:			
						-2 <pf<-1: 2,="" active="" capacitive<="" negative,="" power="" quad="" td=""></pf<-1:>			
3084	R	R	2	Float32	_	-1 <pf<0: 3,="" active="" inductive<="" negative,="" power="" quad="" td=""></pf<0:>			
						0 <pf<1: 1,="" active="" inductive<="" positive,="" power="" quad="" td=""></pf<1:>			
						1 <pf<2: 4,="" active="" capacitive<="" positive,="" power="" quad="" td=""></pf<2:>			
Current Unbala	nce								
3012	R	R	2	Float32	%	Current Unbalance I1			
3014	R	R	2	Float32	%	Current Unbalance I2			
3016	R	R	2	Float32	%	Current Unbalance I3			
3018	R	R	2	Float32	%	Current Unbalance Worst			
Voltage Unbala	ince								
3038	R	R	2	Float32	%	Voltage Unbalance L1-L2			
3040	R	R	2	Float32	%	Voltage Unbalance L2-L3			
3042	R	R	2	Float32	%	Voltage Unbalance L3-L1			
3044	R	R	2	Float32	%	Voltage Unbalance L-L Worst			
3046	R	R	2	Float32	%	Voltage Unbalance L1-N			
3048	R	R	2	Float32	%	Voltage Unbalance L2-N			

Register	Action (R/W/WC)		C:	True	Unita	2		
Address	PM3250	PM3255	Size	Туре	Units	Description		
3050	R	R	2	Float32	%	Voltage Unbalance L3-N		
3052	R	R	2	Float32	%	Voltage Unbalance L-N Worst		
Tangent Phi (R	Tangent Phi (Reactive Factor)							
3108	R	R	2	Float32	_	Tangent Phi, Total		
Frequency								
3110	R	R	2	Float32	Hz	Frequency		
Temperature	Temperature							
3132	R	R	2	Float32	°C	Temperature		

Energy, energy by tariff and input metering

Most energy values are available in both signed 64-bit integer and 32-bit floating point format.

	Resets and active tariff information								
Register Address	Action (R/W/WC)	0:	Tumo		Decembring			
	PM3250	PM3255	Size	Туре	Units	Description			
Energy Reset (I	Energy Reset (Partial Energy, Energy by Tariff, Phase Energy)								
3252	R	R	4	Date/Time	_	Energy Reset Date/Time			
Energy by Tarif	f Import								
4191	R/WC	R/WC	1	UInt16	_	Active Tariff (Only modifiable in case of COM Control Mode Enabled): 0 = multi-tariff disabled 1-4 = rate 1 to rate 4			
Input Metering	input Metering								
3554	_	R	4	Date/Time	_	Input Metering Accumulation Reset Date/Time			

	Energy values – 64-bit integer								
Register	Action (Action (R/W/WC)		Туре	Units	Description			
Address	PM3250	PM3255	Size	Туре	Offics	Description			
Total Energy			•	1	•				
3204	R	R	4	Int64	Wh	Total Active Energy Import			
3208	R	R	4	Int64	Wh	Total Active Energy Export			
3220	R	R	4	Int64	VARh	Total Reactive Energy Import			
3224	R	R	4	Int64	VARh	Total Reactive Energy Export			
3236	R	R	4	Int64	VAh	Total Apparent Energy Import			
3240	R	R	4	Int64	VAh	Total Apparent Energy Export			
Energy Reset (Energy Reset (Partial Energy, Energy by Tariff, Phase Energy)								
3252	R	R	4	Date/Time	_	Energy Reset Date/Time			
Partial Energy	Import								
3256	R	R	4	Int64	Wh	Partial Active Energy Import			
3272	R	R	4	Int64	VARh	Partial Reactive Energy Import			
3288	R	R	4	Int64	VAh	Partial Apparent Energy Import			
Phase Energy	Import								
3518	R	R	4	Int64	Wh	Active Energy Import Phase 1			
3522	R	R	4	Int64	Wh	Active Energy Import Phase 2			
3526	R	R	4	Int64	Wh	Active Energy Import Phase 3			
3530	R	R	4	Int64	VARh	Reactive Energy Import Phase 1			
3534	R	R	4	Int64	VARh	Reactive Energy Import Phase 2			
3538	R	R	4	Int64	VARh	Reactive Energy Import Phase 3			
3542	R	R	4	Int64	VAh	Apparent Energy Import Phase 1			

	Energy values – 64-bit integer								
Register	Action (R/W/WC)	0:	_	Linita	Description			
Address	PM3250	PM3255	Size	Туре	Units	Description			
3546	R	R	4	Int64	VAh	Apparent Energy Import Phase 2			
3550	R	R	4	Int64	VAh	Apparent Energy Import Phase 3			
Energy by Tarif	Energy by Tariff Import								
4196	R	R	4	Int64	Wh	Rate 1 Active Energy Import			
4200	R	R	4	Int64	Wh	Rate 2 Active Energy Import			
4204	R	R	4	Int64	Wh	Rate 3 Active Energy Import			
4208	R	R	4	Int64	Wh	Rate 4 Active Energy Import			
Input Metering									
3554	_	R	4	Date/Time	_	Input Metering Accumulation Reset Date/Time			
3558	_	R	4	Int64	Unit	Input Metering Accumulation Channel 01			
3562	_	R	4	Int64	Unit	Input Metering Accumulation Channel 02			

	Energy values – 32-bit floating point									
Register	Action	(R/W/WC)	Size	Туре	Units	Description				
Address	PM3250	PM3255	0.20	1,700	Omis	Description				
Total Energy	1	1		1	1	,				
45166	R	R	2	Float32	Wh	Total Active Energy Import				
45168	R	R	2	Float32	Wh	Total Active Energy Export				
45170	R	R	2	Float32	VARh	Total Reactive Energy Import				
45172	R	R	2	Float32	VARh	Total Reactive Energy Export				
45174	R	R	2	Float32	VAh	Total Apparent Energy Import				
45176	R	R	2	Float32	VAh	Total Apparent Energy Export				
Partial Energy	Import	•				•				
45178	R	R	2	Float32	Wh	Partial Active Energy Import				
45180	R	R	2	Float32	VARh	Partial Reactive Energy Import				
45182	R	R	2	Float32	VAh	Partial Apparent Energy Import				
Phase Energy	Import	•	•		1					
45184	R	R	2	Float32	Wh	Active Energy Import Phase 1				
45186	R	R	2	Float32	Wh	Active Energy Import Phase 2				
45188	R	R	2	Float32	Wh	Active Energy Import Phase 3				
45190	R	R	2	Float32	VARh	Reactive Energy Import Phase 1				
45192	R	R	2	Float32	VARh	Reactive Energy Import Phase 2				
45194	R	R	2	Float32	VARh	Reactive Energy Import Phase 3				
45196	R	R	2	Float32	VAh	Apparent Energy Import Phase 1				
45198	R	R	2	Float32	VAh	Apparent Energy Import Phase 2				
45200	R	R	2	Float32	VAh	Apparent Energy Import Phase 3				
Energy by Tari	ff Import	•				•				
45206	R	R	2	Float32	Wh	Rate 1 Active Energy Import				
45208	R	R	2	Float32	Wh	Rate 2 Active Energy Import				
45210	R	R	2	Float32	Wh	Rate 3 Active Energy Import				
45212	R	R	2	Float32	Wh	Rate 4 Active Energy Import				
Input Metering	•	•	•	•	•	•				
45202	_	R	2	Float32	Unit	Input Metering Accumulation Channel 01				
45204	_	R	2	Float32	Unit	Input Metering Accumulation Channel 02				

Demand

Register Address	Action (R/W/WC)		0:	_			
	PM3250	PM3255	Size	Туре	Units	Description	
Demand Syster	n (Global)	•	•	-	•		
						Demand Method:	
3701	R/WC	R/WC	1	UInt16	_	1 = Timed Interval Sliding Block	
ı						2 = Timed Interval Fixed Block	
3702	R/WC	R/WC	1	UInt16	Minute	Demand Interval Duration	
3706	R	R	4	Date/Time	_	Demand Peak Reset Date/Time	
Power/Current Demand							
3766	R	R	2	Float32	kW	Active Power Present Demand	
3770	R	R	2	Float32	kW	Active Power Peak Demand	
3772	R	R	4	Date/Time	_	Active Power Peak Demand Date/Time	
3782	R	R	2	Float32	kVAR	Reactive Power Present Demand	
3786	R	R	2	Float32	kVAR	Reactive Power Peak Demand	
3788	R	R	4	Date/Time	-	Reactive Power Peak Demand Date/Time	
3798	R	R	2	Float32	kVA	Apparent Power Present Demand	
3802	R	R	2	Float32	kVA	Apparent Power Peak Demand	
3804	R	R	4	Date/Time	-	Apparent Power Peak Demand Date/Time	
3814	R	R	2	Float32	A	Current I1 Present Demand	
3818	R	R	2	Float32	A	Current I1 Peak Demand	
3820	R	R	4	Date/Time	_	Current I1 Peak Demand Date/Time	
3830	R	R	2	Float32	A	Current I2 Present Demand	
3834	R	R	2	Float32	A	Current I2 Peak Demand	
3836	R	R	4	Date/Time	_	Current I2 Peak Demand Date/Time	
3846	R	R	2	Float32	A	Current I3 Present Demand	
3850	R	R	2	Float32	A	Current I3 Peak Demand	
3852	R	R	4	Date/Time	_	Current I3 Peak Demand Date/Time	
3862	R	R	2	Float32	А	Current In Present Demand	
3866	R	R	2	Float32	А	Current In Peak Demand	
3868	R	R	4	Date/Time	_	Current In Peak Demand Date/Time	
3878	R	R	2	Float32	А	Current Avg Present Demand	
3882	R	R	2	Float32	А	Current Avg Peak Demand	
3884	R	R	4	Date/Time	_	Current Avg Peak Demand Date/Time	

MinMax Reset

Register Address	Action (R/W/WC)		Size	Туре	Units	Description
	PM3250	PM3255	Size	туре	Offics	Description
27214	R	R	4	Date/Time	ı	Minimum/Maximum Reset Date/Time

Minimum Values

Register	Action (R/W/WC)		_		
Address	PM3250	PM3255	Size	Туре	Units	Description
Current				ı		<u>I</u>
27218	R	R	2	Float32	А	Minimum Current I1
27220	R	R	2	Float32	Α	Minimum Current I2
27222	R	R	2	Float32	Α	Minimum Current I3
27224	R	R	2	Float32	Α	Minimum Current N
27228	R	R	2	Float32	Α	Minimum Current Avg
Voltage	•	•			•	
27238	R	R	2	Float32	V	Minimum Voltage L1-L2
27240	R	R	2	Float32	V	Minimum Voltage L2-L3
27242	R	R	2	Float32	V	Minimum Voltage L3-L1
27244	R	R	2	Float32	V	Minimum Voltage L-L Avg
27246	R	R	2	Float32	V	Minimum Voltage L1-N
27248	R	R	2	Float32	V	Minimum Voltage L2-N
27250	R	R	2	Float32	V	Minimum Voltage L3-N
27254	R	R	2	Float32	V	Minimum Voltage L-N Avg
Power	•	•	•	•	•	
27272	R	R	2	Float32	kW	Minimum Active Power Phase 1
27274	R	R	2	Float32	kW	Minimum Active Power Phase 2
27276	R	R	2	Float32	kW	Minimum Active Power Phase 3
27278	R	R	2	Float32	kW	Minimum Active Power Total
27280	R	R	2	Float32	kVAR	Minimum Reactive Power Phase 1
27282	R	R	2	Float32	kVAR	Minimum Reactive Power Phase 2
27284	R	R	2	Float32	kVAR	Minimum Reactive Power Phase 3
27286	R	R	2	Float32	kVAR	Minimum Reactive Power Total
27288	R	R	2	Float32	kVA	Minimum Apparent Power Phase 1
27290	R	R	2	Float32	kVA	Minimum Apparent Power Phase 2
27292	R	R	2	Float32	kVA	Minimum Apparent Power Phase 3
27294	R	R	2	Float32	kVA	Minimum Apparent Power Total
Power Factor			•			
27306	R	R	2	4Q FP PF	_	Minimum Power Factor Phase 1
27308	R	R	2	4Q FP PF	_	Minimum Power Factor Phase 2
27310	R	R	2	4Q FP PF	_	Minimum Power Factor Phase 3
27312	R	R	2	4Q FP PF	_	Minimum Power Factor Total
Tangent Phi (Re	eactive Factor)		•			
27336	R	R	2	Float32	_	Minimum Tangent Phi, Total
Total Harmonic	Distortion, Current					
27338	R	R	2	Float32	%	Minimum THD Current I1
27340	R	R	2	Float32	%	Minimum THD Current I2
27342	R	R	2	Float32	%	Minimum THD Current I3
27344	R	R	2	Float32	%	Minimum THD Current N
Total Harmonic	Distortion, Voltage					
27360	R	R	2	Float32	%	Minimum THD Voltage L1-L2
27362	R	R	2	Float32	%	Minimum THD Voltage L2-L3
27364	R	R	2	Float32	%	Minimum THD Voltage L3-L1
27366	R	R	2	Float32	%	Minimum THD Voltage L-L Avg
27368	R	R	2	Float32	%	Minimum THD Voltage L1-N
27370	R	R	2	Float32	%	Minimum THD Voltage L2-N
27372	R	R	2	Float32	%	Minimum THD Voltage L3-N
27376	R	R	2	Float32	%	Minimum THD Voltage L-N Avg
Frequency	•	•	•	•	•	
27616	R	R	2	Float32	Hz	Minimum Frequency

Maximum Values

Register	Action (Action (R/W/WC)		_						
Address	PM3250	PM3255	Size	Туре	Units	Description				
Current		1								
27694	R	R	2	Float32	А	Maximum Current I1				
27696	R	R	2	Float32	Α	Maximum Current I2				
27698	R	R	2	Float32	Α	Maximum Current I3				
27700	R	R	2	Float32	Α	Maximum Current N				
27704	R	R	2	Float32	A	Maximum Current Avg				
Voltage	√oltage									
27714	R	R	2	Float32	V	Maximum Voltage L1-L2				
27716	R	R	2	Float32	V	Maximum Voltage L2-L3				
27718	R	R	2	Float32	V	Maximum Voltage L3-L1				
27720	R	R	2	Float32	V	Maximum Voltage L-L Avg				
27722	R	R	2	Float32	V	Maximum Voltage L1-N				
27724	R	R	2	Float32	V	Maximum Voltage L2-N				
27726	R	R	2	Float32	V	Maximum Voltage L3-N				
27730	R	R	2	Float32	V	Maximum Voltage L-N Avg				
Power										
27748	R	R	2	Float32	kW	Maximum Active Power Phase 1				
27750	R	R	2	Float32	kW	Maximum Active Power Phase 2				
27752	R	R	2	Float32	kW	Maximum Active Power Phase 3				
27754	R	R	2	Float32	kW	Maximum Active Power Total				
27756	R	R	2	Float32	kVAR	Maximum Reactive Power Phase 1				
27758	R	R	2	Float32	kVAR	Maximum Reactive Power Phase 2				
27760	R	R	2	Float32	kVAR	Maximum Reactive Power Phase 3				
27762	R	R	2	Float32	kVAR	Maximum Reactive Power Total				
27764	R	R	2	Float32	kVA	Maximum Apparent Power Phase 1				
27766	R	R	2	Float32	kVA	Maximum Apparent Power Phase 2				
27768	R	R	2	Float32	kVA	Maximum Apparent Power Phase 3				
27770	R	R	2	Float32	kVA	Maximum Apparent Power Total				
Power Factor										
27782	R	R	2	4Q FP PF	_	Maximum Power Factor Phase 1				
27784	R	R	2	4Q FP PF	_	Maximum Power Factor Phase 2				
27786	R	R	2	4Q FP PF	_	Maximum Power Factor Phase 3				
27788	R	R	2	4Q FP PF		Maximum Power Factor Total				
Tangent Phi (Re	eactive Factor)									
27812	R	R	2	Float32	_	Maximum Tangent Phi, Total				
Total Harmonic	Distortion, Current									
27814	R	R	2	Float32	%	Maximum THD Current I1				
27816	R	R	2	Float32	%	Maximum THD Current I2				
27818	R	R	2	Float32	%	Maximum THD Current I3				
27820	R	R	2	Float32	%	Maximum THD Current N				
	Distortion, Voltage	1		1		1				
27836	R	R	2	Float32	%	Maximum THD Voltage L1-L2				
27838	R	R	2	Float32	%	Maximum THD Voltage L2-L3				
27840	R	R	2	Float32	%	Maximum THD Voltage L3-L1				
27842	R	R	2	Float32	%	Maximum THD Voltage L-L				
27844	R	R	2	Float32	%	Maximum THD Voltage L1-N				
27846	R	R	2	Float32	%	Maximum THD Voltage L2-N				
27848	R	R	2	Float32	%	Maximum THD Voltage L3-N				
27852	R	R	2	Float32	%	Maximum THD Voltage L-N				
Frequency		_	_		_					
28092	R	R	2	Float32	Hz	Maximum Frequency				

MinMax with Time Stamp

Register	Action (R/W/WC)		Sizo	Type	11-26-	Paradiation .
Address	PM3250	PM3255	Size	Туре	Units	Description
45130	R	R	4	Date/Time	-	Minimum Current of I1,I2,I3 - Date/Time
45134	R	R	2	Float32	Α	Minimum Current of I1,I2,I3 - Value
45136	R	R	4	Date/Time	_	Minimum Power Factor Total - Date/Time
45140	R	R	2	Float32	_	Minimum Power Factor Total - Value
45142	R	R	4	Date/Time	_	Maximum Current of I1,I2,I3 - Date/Time
45146	R	R	2	Float32	Α	Maximum Current of I1,I2,I3 - Value
45148	R	R	4	Date/Time	_	Maximum Active Power Total - Date/Time
45152	R	R	2	Float32	kW	Maximum Active Power Total - Value
45154	R	R	4	Date/Time	_	Maximum Apparent Power Total - Date/Time
45158	R	R	2	Float32	kVA	Maximum Apparent Power Total - Value
45160	R	R	4	Date/Time	_	Maximum Power Factor Total - Date/Time
45164	R	R	2	Float32	_	Maximum Power Factor Total - Value

Power Quality

Register	Action (R/W/WC)		Size	Туре	Units	Description
Address	PM3250	PM3255	Size Type	туре	Office	Description
45100	R	R	2	Float32	%	THD Current I1
45102	R	R	2	Float32	%	THD Current I2
45104	R	R	2	Float32	%	THD Current I3
45106	R	R	2	Float32	%	THD Current Neutral
45108	R	R	2	Float32	%	THD Phase Current Worst
45110	R	R	2	Float32	%	THD Voltage L1-L2
45112	R	R	2	Float32	%	THD Voltage L2-L3
45114	R	R	2	Float32	%	THD Voltage L3-L1
45116	R	R	2	Float32	%	THD Voltage L-L Avg
45118	R	R	2	Float32	%	THD Voltage L-L Worst
45120	R	R	2	Float32	%	THD Voltage L1-N
45122	R	R	2	Float32	%	THD Voltage L2-N
45124	R	R	2	Float32	%	THD Voltage L3-N
45126	R	R	2	Float32	%	THD Voltage L-N Avg
45128	R	R	2	Float32	%	THD Voltage L-N Worst

Alarms

Register Address	Action (R/W/WC)		Size	Туре	Heita	Parasitation.				
	PM3250	PM3255	Size	туре	Units	Description				
Alarm Status	Alarm Status									
Activated Alarm	Bitmaps									
						0 = Alarm is inactive				
11021	R	R	1	Bitmap	-	1 = Alarm is active				
						BitN = Alarm ID N (1-16)				
11022	R	R	1	Bitmap	-	BitN = Alarm ID N (17-32)				
11023	R	R	1	Ditmon		BitN = Alarm ID N (33-40)				
11023	K	K		Bitmap	_	BitN fixed to 0				
11004	R R 1 Bitmap –		BitN = Alarm ID N (41-56)							
11024		K	[]	віттар	_	BitN fixed to 0 for PM3250				
Enabled Alarm	Bitmaps	•	•		•	•				

Register	Action (R/W/WC)					
Address	PM3250	PM3255	Size	Туре	Units	Description
						0 = Alarm is disabled
11040	R	R	1	Bitmap	_	1 = Alarm is enabled
						BitN = Alarm ID N (1-16)
11041	R	R	1	Bitmap	_	BitN = Alarm ID N (17-32)
11042	R	R	1	Bitmap		BitN = Alarm ID N (33-40)
11042	IX.		'	Бішар		BitN fixed to 0
11043	R	R	1	Bitmap	_	BitN = Alarm ID N (41-56)
Unacknowledge	ed Alarm Bitmaps					BitN fixed to 0 for PM3250
- Chack to the age						0 = Historic alarms are acknowledged by the user
11078	R	R	1	Bitmap	_	1 = Historic alarms are unacknowledged by the user
				Jamap		BitN = Alarm ID N (1-16)
11079	R	R	1	Bitmap	_	BitN = Alarm ID N (17-32)
			 	- Silinap		BitN = Alarm ID N (33-40)
11080	R	R	1	Bitmap	-	BitN fixed to 0
						BitN = Alarm ID N (41-56)
11081	R	R	1	Bitmap	_	BitN fixed to 0 for PM3250
Alarm Event Q)ueue					Did timed to a for 1 Mezeo
						Size of Event Queue:
11113	R	R	1	UInt16	_	fixed as 20
11114	R	R	1	UInt16	_	Number of entries in Event Queue
11115	R	R	1	UInt16	_	Entry number of Most Recent Event
Entry 001	1,,	1.,	1.	0		
11116	R	R	1	UInt16		Entry Number
11117	R	R	4	Date/Time	_	Date/Time
			<u> </u>	2 4.67 1 1110		Record Type:
11121	R	R	1	UInt16	_	0xFF10 = UInt16
				J		0xFF40 = Float32
						Register Number or Event Code:
11122	R	R	1	UInt16	_	Primary Event: Modbus Address of the Unit
				J		Secondary Event: Event Code
						Value:
11123	R	R	4	UInt16	_	Primary Event: Alarm Attributes Register Address.
						Secondary Event: Worst value of source registers.
11127	R	R	1	UInt16	_	Sequence Number
Entry 020		1				
11344	R	R	1	UInt16	_	Entry Number
11345	R	R	4	Date/Time	_	Date/Time
11349	R	R	1	UInt16	_	Record Type
11350	R	R	1	UInt16	_	Register Number or Event Code
11351	R	R	4	UInt16	_	Value
11355	R	R	1	UInt16	_	Sequence Number
Alarm History	l .	11.7	1 -	1		T 4
12316	R	R	1	UInt16		Size of History Log
12317	R	R	1	UInt16		Number of entries in History Log
12318	R	R	1	UInt16		Entry number of most Recent Event
Entry 001	1	1: `	1.	13		
12319	R	R	1	UInt16	1_	Entry Number
12320	R	R	4	Date/Time	<u> </u>	Date/Time
12020	1	13	-	Date/ Tille	=	Record Type:
12324	R	R	1	UInt16	_	0xFF10 = UInt16
12027	``		[Silitio		0xFF40 = Float32
	1	I				om . To TroubE

Register	Action (R/W/WC)					
Address	PM3250	PM3255	Size	Туре	Units	Description
						Register Number or Event Code:
12325	R	R	1	UInt16	_	Primary Event: Modbus Address of the Unit
						Secondary Event: Event Code
						Value:
12326	R	R	4	UInt16	-	Primary Event: Alarm Attributes Register Address
10000		-	_	111.140		Secondary Event: Worst value of source registers
12330	R	R	1	UInt16	-	Sequence Number
Entry 020	In	T _D	14	Turado	1	Fata Nasahan
12547 12548	R R	R R	1	UInt16		Entry Number
12548	R	R	1	Date/Time UInt16		Date/Time
12553	R	R	1			Record Type
12554	R	R	4	UInt16 UInt16		Register Number or Event Code Value
12558	R	R	1	UInt16		1 1 1
	rms - Standard	K	1	Ollicio		Sequence Number
Over Current, F						Alarm ID = 1
14005	R/WC	R/WC	2	Float32	Α	Pickup Setpoint
14007	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14007	R/VVC	R/WC	2	OIIII32	Second	Dropout Setpoint
14009	R/WC	R/WC	2	Float32	%	Deviation percentage from pickup setpoint
						Dropout Time Delay
14011	R/WC	R/WC	2	UInt32	Second	Same as pickup time delay
						Digital Outputs to Associate:
						0 = Unassociated
14013	R/WC	R/WC	1	Bitmap	_	1 = Associated
11010	1000	10110		Бинар		Bit0 = DO1 association
						Bit1 = DO2 association
Under Current,	Phase			<u> </u>	!	Alarm ID = 2
14025	_	R/WC	2	Float32	А	Pickup Setpoint
14027	_	R/WC	2	UInt32	Second	Pickup Time Delay
14029	_	R/WC	2	Float32	%	Dropout Setpoint
14031	_	R/WC	2	UInt32	Second	Dropout Time Delay
14033	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Voltage, L	-L	-!		*		Alarm ID = 5
14085	_	R/WC	2	Float32	V	Pickup Setpoint
14087	_	R/WC	2	UInt32	Second	Pickup Time Delay
14089	-	R/WC	2	Float32	%	Dropout Setpoint
14091	_	R/WC	2	UInt32	Second	Dropout Time Delay
14093	_	R/WC	1	Bitmap	i -	Digital Outputs to Associate
Under Voltage,	L-L	-	*	•	•	Alarm ID = 6
14105	R/WC	R/WC	2	Float32	V	Pickup Setpoint
14107	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14109	R/WC	R/WC	2	Float32	%	Dropout Setpoint
14111	R/WC	R/WC	2	UInt32	Second	Dropout Time Delay
14113	R/WC	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Voltage, L	-N					Alarm ID = 7
14125		R/WC	2	Float32	V	Pickup Setpoint
14127	_	R/WC	2	UInt32	Second	Pickup Time Delay
14129	-	R/WC	2	Float32	%	Dropout Setpoint
14131	-	R/WC	2	UInt32	Second	Dropout Time Delay
14133	-	R/WC	1	Bitmap	-	Digital Outputs to Associate
Under Voltage,	L-N	•		-	•	Alarm ID = 8
14145	R/WC	R/WC	2	Float32	V	Pickup Setpoint

Register	Action (R/W/WC)				
Address	PM3250	PM3255	Size	Туре	Units	Description
14147	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14149	R/WC	R/WC	2	Float32	%	Dropout Setpoint
14151	R/WC	R/WC	2	UInt32	Second	Dropout Time Delay
14153	R/WC	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Power, To	tal Active		1	-	ı	Alarm ID = 9
14165	R/WC	R/WC	2	Float32	kW	Pickup Setpoint
14167	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14169	R/WC	R/WC	2	Float32	%	Dropout Setpoint
14171	R/WC	R/WC	2	UInt32	Second	Dropout Time Delay
14173	R/WC	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Power, To	tal Reactive	•	11	1	II.	Alarm ID = 10
14185	_	R/WC	2	Float32	kVAR	Pickup Setpoint
14187	_	R/WC	2	UInt32	Second	Pickup Time Delay
14189	_	R/WC	2	Float32	%	Dropout Setpoint
14191	_	R/WC	2	UInt32	Second	Dropout Time Delay
14193	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Power, To	tal Apparent			-	•	Alarm ID = 11
14205	R/WC	R/WC	2	Float32	kVA	Pickup Setpoint
14207	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14209	R/WC	R/WC	2	Float32	%	Dropout Setpoint
14211	R/WC	R/WC	2	UInt32	Second	Dropout Time Delay
14213	R/WC	R/WC	1	Bitmap	_	Digital Outputs to Associate
Leading Power	Factor, Total		1	1		Alarm ID = 12
14225	_	R/WC	2	Float32	_	Pickup Setpoint
14227	_	R/WC	2	UInt32	Second	Pickup Time Delay
14229	_	R/WC	2	Float32	%	Dropout Setpoint
14231	_	R/WC	2	UInt32	Second	Dropout Time Delay
14233	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Lagging Power	Factor, Total		1	1		Alarm ID = 13
14245	_	R/WC	2	Float32	_	Pickup Setpoint
14247	_	R/WC	2	UInt32	Second	Pickup Time Delay
14249	_	R/WC	2	Float32	%	Dropout Setpoint
14251	_	R/WC	2	UInt32	Second	Dropout Time Delay
14253	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Demand,	Total Active Power,	Present	1	1		Alarm ID = 16
14305	_	R/WC	2	Float32	kW	Pickup Setpoint
14307	_	R/WC	2	UInt32	Second	Pickup Time Delay
14309	_	R/WC	2	Float32	%	Dropout Setpoint
14311	_	R/WC	2	UInt32	Second	Dropout Time Delay
14313	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over Demand,	Total Apparent Pow	er, Present		-	•	Alarm ID = 22
14425	_	R/WC	2	Float32	kVA	Pickup Setpoint
14427	_	R/WC	2	UInt32	Second	Pickup Time Delay
14429	_	R/WC	2	Float32	%	Dropout Setpoint
14431	_	R/WC	2	UInt32	Second	Dropout Time Delay
14433	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over THD-U, Ph	nase		•	•	•	Alarm ID = 28
14545	_	R/WC	2	Float32	%	Pickup Setpoint
14547	_	R/WC	2	UInt32	Second	Pickup Time Delay
14549	_	R/WC	2	Float32	%	Dropout Setpoint
14551	-	R/WC	2	UInt32	Second	Dropout Time Delay
14553	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Under Power, T	otal Active		1	· ·	1	Alarm ID = 30
	*					

Register	Action (R/W/WC)		0:	T	11-26-	Barantotta.
Address	PM3250	PM3255	Size	Туре	Units	Description
14825	R/WC	R/WC	2	Float32	kW	Pickup Setpoint
14827	R/WC	R/WC	2	UInt32	Second	Pickup Time Delay
14829	R/WC	R/WC	2	Float32	%	Dropout Setpoint
14831	R/WC	R/WC	2	UInt32	Second	Dropout Time Delay
14833	R/WC	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over THD-I, Ph	ase					Alarm ID = 31
14865	-	_	2	Float32	%	Pickup Setpoint
14867	-	R/WC	2	UInt32	Second	Pickup Time Delay
14869	-	R/WC	2	Float32	%	Dropout Setpoint
14871	_	R/WC	2	UInt32	Second	Dropout Time Delay
14873	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
Over THD-V, Pl	hase			•		Alarm ID = 32
14905	_	R/WC	2	Float32	%	Pickup Setpoint
14907	_	R/WC	2	UInt32	Second	Pickup Time Delay
14909	_	R/WC	2	Float32	%	Dropout Setpoint
14911	-	R/WC	2	UInt32	Second	Dropout Time Delay
14913	_	R/WC	1	Bitmap	_	Digital Outputs to Associate
1-Second Aları	ms - Custom			•		
Over Energy, To	otal Active					Alarm ID = 41
						Source Register:
14942		R/WC	2	UInt16		ENERGY_LOG_DAY_REALTIME_VALUE: 41504
14942	_	R/WC	2	UIIILIO	_	ENERGY_LOG_WEEK_REALTIME_VALUE: 41874
						ENERGY_LOG_MONTH_REALTIME_VALUE: 42043
14945	-	R/WC	2	Float32	Wh	Pickup Setpoint
14947	-	R/WC	2	UInt32	Second	Pickup Time Delay
14949	_	R/WC	2	Float32	%	Dropout Setpoint
14951	-	R/WC	2	UInt32	Second	Dropout Time Delay
14953	_	R/WC	1	Bitmap	-	Digital Outputs to Associate

Energy Log

Register	Action (R/W/WC)		- Size	T	Unita	December 1					
Address	PM3250	PM3255	Size	Туре	Units	Description					
Energy Log - Day	nergy Log - Day										
						Enable/Disable:					
45600	_	R	1	UInt16	-	0x0000 = Disable					
						0xFFFF = Enable					
45601	_	R	1	UInt16	-	Maximum Entry Number					
45602	_	R	1	UInt16	-	Current Entry Number					
45603	-	R	1	UInt16	-	Latest Entry ID					
45604	-	R	1	UInt16	-	Oldest Entry ID					
45605	-	R	4	Int64	Wh	Real-time Value of Current Day					
45609	-	R	4	Date/Time	-	Entry 001 Date/Time					
45613	-	R	4	Int64	Wh	Entry 001 Value					
45961	-	R	4	Date/Time	=-	Entry 045 Date/Time					
45965	_	R	4	Int64	Wh	Entry 045 Value					
Energy Log - We	ek				•						
						Enable/Disable:					
45969	_	R	1	UInt16	-	0x0000 = Disable					
						0xFFFF = Enable					
45970	_	R	1	UInt16	-	Maximum Entry Number					
45971	-	R	1	UInt16	_	Current Entry Number					

Register	Action (R/W/WC)		Size	Туре	11-14-	Description
Address	PM3250	PM3255	Size	Туре	Units	Description
45972	_	R	1	UInt16	_	Latest Entry ID
45973	-	R	1	UInt16	-	Oldest Entry ID
45974	_	R	4	Int64	Wh	Real-time Value of Current Day
45978	-	R	4	Date/Time	_	Entry 001 Date/Time
45982	-	R	4	Int64	Wh	Entry 001 Value
46130	-	R	4	Date/Time	_	Entry 020 Date/Time
46134	-	R	4	Int64	Wh	Entry 020 Value
Energy Log - Mo	nth					
						Enable/Disable:
46138	_	R	1	UInt16	_	0x0000 = Disable
						0xFFFF = Enable
46139	_	R	1	UInt16	_	Maximum Entry Number
46140	_	R	1	UInt16	_	Current Entry Number
46141	_	R	1	UInt16	_	Latest Entry ID
46142	-	R	1	UInt16	_	Oldest Entry ID
46143	-	R	4	Int64	Wh	Real-time Value of Current Day
46147	_	R	4	Date/Time	-	Entry 001 Date/Time
46151	_	R	4	Int64	Wh	Entry 001 Value
46243	_	R	4	Date/Time	-	Entry 013 Date/Time
46247	_	R	4	Int64	Wh	Entry 013 Value

Flex Log

Register	Action (R/W/WC)		Size	Туре	Units	Description
Address	PM3250	PM3255	Size	Туре	Ullits	Description
						Flex Method:
		R		UInt16	_	0 = Disable
45500	_		1			1 = Peak Demand Log
45500						2 = KWH_KVAH
						3 = KWH_KVARH
						4 = KVARH_KVAH
45501	-	R	1	UInt16	Minute	Flex Log Interval Duration

Read Device Identification

Register List

Read Device Identification

The power meter supports the Basic Device Identification with the mandatory objects:

- VendorName
- ProductCode
- · Revision Number

ObjectID	Object Name/Description	Object Length	Object Value	Note
0x00	VendorName	16	SchneiderElectric	_
0x01	ProductCode		METSEPM3200 METSEPM3210 METSEPM3250 METSEPM3255	The ProductCode is identical to the catalog number of each reference
0x02	MajorMinorRevision	04		Equivalent to X.Y in register 1637

The Read Device ID code 01 and 04 are supported:

- 01 = request to get the basic device identification (stream access)
- 04 = request to get one specific identification objective (individual access)

The Modbus request and response are compliant with "Chapter 6.20 43 / 14 (0x2B / 0x0E) Read Device Identification" of Modbus Application Protocol Specification.

PM3200 series user manual Specifications

Chapter 7 Specifications

Electrical characteristics

	IEC61557-12	x/5 A CTs: PMD/Sx/K55/0.5	
	12001337-12	x/1 A CTs: IEC61557-12 PMD/Sx/K55/1	
	Current	x/5 A CTs: ±0.3%, 0.5 – 6 A	
	Curent	x/1 A CTs: ±0.5%, 0.1 – 1.2 A	
	Voltage	±0.3%, 50 – 330 V L-N or 80 – 570 V L-L	
		x/5 A CTs: ±0.005, 0.5 A – 6 A	
	Power factor	x/1A CTs: 0.1 – 1.2 A	
Measurement accuracy		0.5 L – 0.8 C	
	Active/Apparent power	x/5 A CTs: Class 0.5	
	Active/Apparent power	x/1 A CTs: Class 1	
	Reactive power	Class 2	
	Frequency	45 – 65 Hz ±0.05%	
	A still a sure sure	x/5 A CTs: IEC62053-22 Class 0.5s	
	Active energy	x/1 A CTs: IEC62053-21 Class 1	
	Reactive energy	IEC62053-23 Class 2	
	Magazirad valtaga	Wye: 60 – 277 V L-N, 100 – 480 V L-L ± 20%	
	Measured voltage	Delta: 100 – 480 V L-L ± 20%	
	Overload	332 V L-N or 575 V L-L	
	Frequency	50 / 60 Hz ±10%	
	Minimum wire temperature rating required	90 °C (194 °F)	
Voltage inputs	Impedance	3 ΜΩ	
	Burden	0.2 VA	
	Measurement category	III	
	Wire	2.5 mm ² (14 AWG)	
	Wire strip length	8 mm (0.31 in)	
	Torque	0.5 N·m (4.4 in·lb)	
	Naminal aurrent	1 A or 5 A	
	Nominal current	Requires x/5A or x/1A current transformers	
	Measured current	20 mA – 6 A	
	Withstand	10 A continuous, 20 A at 10 sec/hr	
Command immode	Impedance	< 1 mΩ	
Current inputs	Burden	< 0.036 VA at 6 A	
	Minimum wire temperature rating required	90 °C (194 °F)	
	Wire	6 mm ² (10 AWG)	
	Wire strip length	8 mm (0.31 in)	
	Torque	0.8 N·m (7.0 in·lb)	
		1	

Specifications PM3200 series user manual

		AC: 100 – 277 V L-N, 173 – 480 V L-L ±20%		
	Operating range	DC: 100 – 300 V		
	Frequency	45 – 65 Hz		
		AC: 5 VA		
Control power	Burden	DC: 3 W		
	Wire	6 mm ² (10 AWG)		
	Wire strip length	8 mm (0.31 in)		
	Torque	0.8 N·m (7.0 in·lb)		
	Installation category	III		
	Number	2		
	Туре	Solid-state relay		
	Load voltage	5 – 40 V DC		
	Maximum load current	50 mA		
Digital output (PM3255)	Output resistance	50 Ω maximum		
	Isolation	3.75 kV		
	Wire	1.5 mm ² (16 AWG)		
	Wire strip length	6 mm (0.23 in)		
	Torque	0.5 N·m (4.4 in·lb)		
	Number	1		
	_	Opto-coupler output for remote transfer		
	Туре	IEC62053-31 compatible (S0 format output)		
	Pulses / kWh	Configurable		
	Voltage	5 – 30 V DC		
Pulse output (PM3210)	Current	1 – 15 mA		
	Pulse width	Configurable, 50 ms minimum		
	Isolation	3.75 kV		
	Wire	2.5 mm ² (14 AWG)		
	Wire strip length	6 mm (0.23 in)		
	Torque	0.5 N·m (4.4 in·lb)		
	Number	2		
	Туре	Type 1 opto-coupler inputs		
	Type	IEC 61131-2 compatible		
	Maximum input	Voltage: 40 V DC		
	Maximum input	Current: 4 mA		
Digital input (PM3255)	OFF state	0 – 5 V DC		
Digital Iliput (FW3233)	ON state	11 – 40 V DC		
	Nominal voltage	24 V DC		
	Isolation	3.75 kV		
	Wire	1.5 mm ² (16 AWG)		
	Wire strip length	6 mm (0.23 in)		
	Torque	0.5 N·m (4.4 in·lb)		

Mechanical characteristics

Weight		0.26 kg (0.57 lb)		
IP degree of protection	Front panel	IP40		
ne degree of protection	Meter body	IP20		
Display dimensions		43 x 34.6 mm (1.7 x 1.3 in)		
Display resolution		128 x 96		
Display data update rate		1 second		
Energy pulsing LED		5000 flashes / kWh without consideration of transformer ratios		

PM3200 series user manual Specifications

Environmental characteristics

Operating temperature	-25 to +55 °C (-13 to +131 °F) (K55)	
Storage temperature	-40 to +85 °C (-40 to +185 °F) (K55)	
Humidity rating	5 to 95% RH non-condensing at 50 °C (122 °F)	
Pollution degree	2	
Altitude	< 2000 m (6561 ft)	
Location	Not suitable for wet locations	
Location	Indoor use only	

EMC (electromagnetic compatibility)

Electrostatic discharge	Level IV (IEC61000-4-2)
Immunity to radiated fields	Level III (IEC61000-4-3)
Immunity to fast transients	Level IV (IEC61000-4-4)
Immunity to surge	Level IV (IEC61000-4-5)
Conducted immunity	Level III (IEC61000-4-6)
Immunity to power frequency magnetic fields	0.5 mT (IEC61000-4-8)
Conducted and radiated emissions	Class B (EN55022)

Safety and standards

Safety	CE as per IEC61010-1	
Dratastiva alasa	II	
Protective class	Double insulated for user accessible parts	
	IEC61557-12, EN61557-12	
Standard compliance	IEC61010-1, UL61010-1	
Standard compliance	IEC62053-11, IEC62053-21, IEC62053-22, IEC62053-23	
	EN50470-1, EN50470-3	

Modbus RS-485 communications

	Number of ports	1	
	Parity	Even, Odd, None	
Madhua DC 405	Baud rate	9600, 19200, 38400	
Modbus RS-485 (PM3250 / PM3255)	Isolation	4 kV, double insulation	
(1 1413230 / 1 1413233)	Wire	2.5 mm ² (14 AWG)	
	Wire strip length	7 mm (0.28 in)	
	Torque	0.5 N·m (4.4 in·lb)	

Specifications PM3200 series user manual

Real-time clock

Туре	Quartz crystal based
Clock drift	< 2.5 s/day (30 ppm) at 25 °C (77 °F)
Backup time	> 5 minutes

Chapter 8 Maintenance and Troubleshooting

What is in this chapter?	
Password Recovery	87
Language Download	87
Troubleshooting	87

Password Recovery

If you forget your password, contact Technical Support.

Language Download

You can download new language files onto the power meter over communications using DLF3000 software, available as a free download from se.com.

Troubleshooting

This meter does not contain any user-serviceable parts. If the meter requires service, contact your local sales representative.

NOTICE

RISK OF DAMAGE TO THE ENERGY METER

- · Do not open the energy meter case.
- · Do not attempt to repair any components of the energy meter.

Failure to follow these instructions can result in equipment damage.

Do not open the power meter. Opening the power meter voids the warranty.

The combination of the backlight and the symbol ! helps you to troubleshoot the power meter. Refer to "Status information" on page 42 for more details.

If the combination of the backlight and the symbol ! indicates an active diagnosis, refer to "Meter operation" on page 41 to get the diagnostic code. If the diagnostic code persists after following the instructions below, please contact Technical Support.

Diagnostic Code	PM3200	PM3210	PM3250	PM3255	Description	Possible Solution
_	√	√	√	√	LCD display is not visible.	Check and adjust LCD contrast/backlight settings.
_	√	√	\checkmark	√	Push buttons do not function.	Restart the power meter by power off and power on again.
101, 102	ما	ما	al	ما	Metering stops due to internal error.	Enter the Configuration mode and
101, 102	V	V	V	V	Total energy consumption is displayed.	implement Reset Config.

Diagnostic Code	PM3200	PM3210	PM3250	PM3255	Description	Possible Solution
					Metering continues.	
201	\checkmark	\checkmark	$\sqrt{}$	√	Mismatch between frequency settings and frequency measurements.	Correct frequency settings according to the nominal frequency of the network.
					Metering continues.	Correct wiring settings according to wiring
202	V	V	√	V	Mismatch between wiring settings and wiring inputs.	inputs.
203	1	1	1	1	Metering continues.	Check wire connections or correct wiring
203	٧	٧	V	٧	Phase sequence reverses.	settings.
	,			,	Metering continues.	
205	√	V	V	√	Date and time have been reset due to loss of power.	Set Date and Time.
					Metering continues.	Check the energy pulse output settings and
206	_	V	_	V	Pulse is missing due to overload on energy pulse output.	correct if needed.
207	2	2	2	٦/	Metering continues.	Restart the power meter by power off and
201	٧	٧	v	٧	Abnormal internal clock function.	power on again.

Chapter 9 Power, energy and power factor

NOTE: The descriptions in this section assume that you are an electrical energy consumer, not a supplier.

What is in this chapter?

Power (PQS)	89
Power and the PQ coordinate system	89
Power flow	
Energy delivered (imported) / energy received (exported)	90
Power factor (PF)	90
True PF and displacement PF	90
PF lead / lag convention	90
PF sign convention	92
Power factor register format	93

Power (PQS)

A typical AC electrical system load has both resistive and reactive (inductive or capacitive) components. Resistive loads consume real power (P) and reactive loads consume reactive power (Q).

Apparent power (S) is the vector sum of real power (P) and reactive power (Q):

$$S = \sqrt{P^2 + Q^2}$$

Real power is measured in watts (W or kW), reactive power is measured in vars (VAR or kVAR) and apparent power is measured in volt-amps (VA or kVA).

Power and the PQ coordinate system

The meter uses the values of real power (P) and reactive power (Q) on the PQ coordinate system to calculate apparent power.

Power flow

Positive power flow P(+) and Q(+) means power is flowing from the power source towards the load. Negative power flow P(-) and Q(-) means power is flowing from the load towards the power source.

Energy delivered (imported) / energy received (exported)

The meter interprets energy delivered (imported) or received (exported) according to the direction of real power (P) flow.

Energy delivered (imported) means positive real power flow (+P) and energy received (exported) means negative real power flow (-P).

Quadrant	Real (P) power flow	ower flow Energy delivered (imported) or received (exported)	
Quadrant 1	Positive (+)	Energy delivered (imported)	
Quadrant 2	Negative (-)	Energy received (exported)	
Quadrant 3	Negative (-)	Energy received (exported)	
Quadrant 4	Positive (+)	Energy delivered (imported)	

Power factor (PF)

Power factor (PF) is the ratio of real power (P) to apparent power (S), and is a number between 0 and 1.

$$PF = \frac{P}{S}$$

An ideal, purely resistive load has no reactive components, so its power factor is one (PF = 1, or unity power factor). A purely inductive or capacitive load no resistive components, so its power factor is zero (PF = 0).

True PF and displacement PF

The meter supports true power factor and displacement power factor values:

- · True power factor includes harmonic content.
- Displacement power factor only considers the fundamental frequency.

PF lead / lag convention

The meter correlates leading power factor (PF lead) or lagging power factor (PF lag) with whether the current waveform is leading or lagging the voltage waveform.

Current phase shift from voltage

For purely resistive loads the current waveform is in phase with the voltage waveform. For capacitive loads, current leads voltage. For inductive loads, current lags voltage.

Current lead / lag and load type

Power and PF lead / lag

PF lead / lag summary

Quadrant	Current phase shift	Load type	PF lead / lag
Quadrant 1	Current lags voltage	Inductive	PF lag
Quadrant 2	Current leads voltage	Capacitive	PF lead
Quadrant 3	Current lags voltage	Inductive	PF lag
Quadrant 4	Current leads voltage	Capacitive	PF lead

PF sign convention

The meter shows positive or negative power factor according to IEC standards.

PF sign in IEC mode

The meter correlates power factor sign (PF sign) with the direction of real power (P) flow.

- For positive real power (+P), the PF sign is positive (+).
- For negative real power (-P), the PF sign is negative (-).

Power factor register format

Each power factor value (PF value) occupies one floating point register for power factor (PF register). The meter performs a simple algorithm to the PF value then stores it in the PF register. The meter and software interpret the PF register for all reporting or data entry fields according to the following diagram:

PF value is calculated from the PF register value using the following formulas:

Quadrant	PF range	PF register range	PF formula	
Quadrant 1	0 to +1	0 to +1	PF value = PF register value	
Quadrant 2	-1 to 0	-1 to 0	PF value = PF register value	
Quadrant 3	0 to -1	-2 to -1	PF value = (-2) - (PF register value)	
Quadrant 4	+1 to 0	+1 to +2	PF value = (+2) - (PF register value)	

Related topics

 See "Communication via Modbus RS-485" on page 57 for information on the meter's Modbus registers.

Schneider Electric

35, rue Joseph Monier CS30323 F - 92506 Rueil Malmaison Cedex www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

© 2014 Schneider Electric. All rights reserved.

DOCA0006EN-03 - 04/2014