POWERED BY Dialog

Publication Number: 09-046596 (JP 9046596 A), February 14, 1997

Inventors:

TAKAHASHI HIDEKAZU

Applicants

• CANON INC (A Japanese Company or Corporation), JP (Japan)

Application Number: 07-197471 (JP 95197471), August 02, 1995

International Class (IPC Edition 6):

- H04N-005/335
- H01L-027/146

JAPIO Class:

- 44.6 (COMMUNICATION--- Television)
- 29.4 (PRECISION INSTRUMENTS--- Business Machines)
- 42.2 (ELECTRONICS--- Solid State Components)
- 44.7 (COMMUNICATION--- Facsimile)

JAPIO Keywords:

• R097 (ELECTRONIC MATERIALS--- Metal Oxide Semiconductors, MOS)

Abstract:

PROBLEM TO BE SOLVED: To reduce a CMOS sensor by connecting plural photoelectric conversion areas to an FD are formed to several pixel each via a MOS transistor(TR) switch.

SOLUTION: The image pickup device is provided with a photoelectric conversion section 1 of a photoelectric conversion element, a photo gate 2, a transfer switch MOS TR 3, a reset MOS TR 4, a source follower MOS TR 5, a horizontal selection switch MOS TR 6, a source follower load MOS TR 7, dark output, bright output transfer MOS TRs 8,9, dark output/bright output storage capacitors CTN, CTS 10, 11, a horizontal transfer MOS TR 12, a horizontal output line reset MOS TR 13, a differential amplifier TR 14, a horizontal scanning circuit 15 and a vertical scanning circuit 16. Thus, an FD (floating diffusion) region and a source follower amplifier having been provided to each pixel in a conventional image pickup device are formed to several pixels each and plural photoelectric conversion regions are connected to the FD region via a MOS TR switch.

JAPIO

© 2005 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5431796

http://toolkit.dialog.com/intranet/cgi/present?STYLE=1360084482&PRESENT=DB=347,AN=543... 5/18/2005

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平9-46596

(43)公開日 平成9年(1997)2月14日

(51) Int. Cl. 6 識別記号 庁内整理番号 FΙ 技術表示箇所 H 0 4 N 5/335 H04N 5/335 E Р HO1L 27/146 H01L 27/14 Α 審査請求 未請求 請求項の数8 OL(全9頁) (21)出願番号 特願平7-197471 (71)出願人 000001007 キヤノン株式会社 (22)出願日 平成7年(1995)8月2日 東京都大田区下丸子3丁目30番2号 (72)発明者 髙橋 秀和 東京都大田区下丸子3丁目30番2号 キヤノ ン株式会社内 (74)代理人 弁理士 山下 穣平

(54) 【発明の名称】固体撮像装置と画像撮像装置

(57)【要約】

【課題】 CMOSセンサの縮少化と、画素信号加算を 画素部で行ない、さらに加算、非加算を任意に行える多 機能センサを実現することを課題とする。

【解決手段】 光電変換素子で発生した電荷を転送スイ ッチを介してフローティングディフュージョン部へ完全 転送させ、そのフローティングディフュージョン部の電 位変化をソースフォロワアンプで外部へ出力する固体撮 像装置において、1つの上記フローティングディフュー ジョン部に数個の上記光電変換素子を転送スイッチを介 して接続し、上記ソースフォロワアンプを数画素に1組 形成することを特徴とする。また、上記光電変換素子が MOSトランジスタゲートとゲート下の空乏層からなる ことを特徴とする。

20

【特許請求の範囲】

【請求項1】 光電変換素子で発生した電荷を転送スイッチを介してフローティングディフュージョン部へ完全 転送させ、そのフローティングディフュージョン部の電 位変化をソースフォロワアンプで外部へ出力する固体撮 像装置において、

1つの前記フローティングディフュージョン部に数個の 前記光電変換素子を転送スイッチを介して接続し、前記 ソースフォロワアンプを数画素に1組形成することを特 徴とする固体撮像装置。

【請求項2】 請求項1に記載の固体撮像装置おいて、 前記光電変換素子がMOSトランジスタゲートとゲート 下の空乏層からなることを特徴とする固体撮像装置。

【請求項3】 請求項2に記載の固体撮像装置おいて、 前記光電変換素子のMOSトランジスタゲートを周辺回 路のMOSトランジスタと同一工程で作製したことを特 徴とする固体撮像装置。

【請求項4】 請求項1に記載の固体撮像装置おいて、前記光電変換素子がpn接合フォトダイオードであることを特徴とする固体撮像装置。

【請求項5】 請求項1に記載の固体撮像装置おいて、 複数の前記光電変換素子の電荷を同時又は別に前記フロ ーティングディフュージョン部へ転送できることを特徴 とする固体撮像装置。

【請求項6】 請求項1に記載の固体撮像装置を複数個並べて画像信号出力を得ることを特徴とする画像撮像装置。

【請求項7】 請求項6に記載の画像撮像装置おいて、 前記フローティングディフュージョン部に少なくとも2 つの前記光電変換素子の電荷を加算することを特徴とす 30 る画像撮像装置。

【請求項8】 請求項6に記載の画像撮像装置おいて、 前記光電変換素子の読み出しにインターリーブ走査によるODD及びEVENと同期して補色モザイクパターン からの画像信号を得ることを特徴とする画像撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像信号を得る画像撮像装置に関し、特にCMOSプロセスコンパチブル XYアドレス型増幅型固体撮像装置に関するものである。

[0002]

【従来の技術】従来、固体撮像素子としては、光電変換は光電変換部1においては発生しない。FD部21に電子が転送されると電子の数に応じてFD部21の電位がを有し、光キャリアの移動方式でFET型とCCD型と分けられる。この固体撮像素子は太陽電池、イメージカメラ、複写機、ファクシミリなど種々な方面に使用され、技術的にも変換効率や集積密度の改良改善が図られている。このような増幅型固体撮像装置の1つに、CMのSプロセスコンパチブルのセンサ(以後CMOSセン 50 は光電変換部1においては発生しない。FD部21に電子が転送されると電子の数に応じてFD部21の電位が変化する。その電位変化をソースフォロワ動作でソースフォロワアンプMOSトランジスタ5のソースを介して外部の水平選択スイッチMOSトランジスタ6へ出力することにより、線型性の良い光電変換特性を得ることができる。FD部21において、リセットによるkTCノイズが発生するが、これは光キャリア転送前の暗出力を

サと略す)がある。このタイプのセンサはIEEETR ANSACTIONS ON ELECTRON DE VICE, VOL41, PP452 \sim 453, 1994などの文献で発表されている。図11にCMOSセンサの回路構成図(B)及び断面図(A)を示す。また、図11(C)は光電変換部の光子 $h\nu$ の蓄積中の電荷の状態図を、図11(D)は光子 $h\nu$ の蓄積後の電荷の状態図を示す。

【0003】図11(A)(B)において、1は光電変 換部、2はMOSトランジスタによるフォトゲート、3 は転送スイッチMOSトランジスタ、4はリセット用M OSトランジスタ、5はソースフォロワアンプMOSト ランジスタ、6は水平選択スイッチMOSトランジスタ、7はソースフォロワ負荷MOSトランジスタ、8は 暗出力転送MOSトランジスタ、9は明出力転送MOS トランジスタ、10は暗出力蓄積容量、11は明出力蓄 積容量で有る。

【0004】また、17はP型ウェル、18はゲート酸化膜、19は一層目ポリSi、20は二層目ポリSi、21はn⁺フローティングディフュージョン領域(FD)である。本センサの特徴の1つはフルCMOSトランジスタ・プロセスコンパチブルであり、画素部のMOSトランジスタと周辺回路のMOSトランジスタを同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できるということが挙げられる。

【0005】次に動作方法を簡単に述べる。先ず、フォトゲート2の下に空乏層を拡げるため制御パルス ϕ PGに正の電圧を印加する。FD部21は蓄積中、ブルーミング防止のため制御パルス ϕ Rをハイにして電源VDDに固定しておく。光子 $h\nu$ が照射されフォトゲート2下でキャリアが発生すると、フォトゲート2下の空乏層中に電子が蓄積されていき、正孔はP型ウェル17を通して排出される。

【0006】光電変換部1、P型ウェル17とFD部21の間には転送MOSトランジスタ3によるエネルギー障壁が形成されているため、光電荷蓄積中は電子はフォトゲート2下に存在する(図11(C))。読み出し状態になると転送MOSトランジスタ3下の障壁をなくし、フォトゲート2下の電子をFD部21へ完全に転送させる様に制御パルスφPG、制御パルスφTXを設定する(図11(D))。完全転送であるため、残像やノイズは光電変換部1においては発生しない。FD部21に電子が転送されると電子の数に応じてFD部21の電位が変化する。その電位変化をソースフォロワ動作でソースフォロワアンプMOSトランジスタ5のソースを介して外部の水平選択スイッチMOSトランジスタ6へ出力することにより、線型性の良い光電変換特性を得ることができる。FD部21において、リセットによるkTCノイズが発生するが、これは光キャリア転送前の暗出力を

サンプリングして蓄積しておき、明出力との差を取れば 除去できる。従ってこのCMOSセンサは低ノイズで高 S/N信号が特徴となる。又、完全非破壊読み出しであ るため多機能化が実現できる。更にXYアドレス方式に よる高歩留り、低消費電力というメリットもある。

[0007]

【発明が解決しようとする課題】しかしながら、上記従 来例では、各画素にフォトゲートが1つ、MOSトラン ジスタが4つ、水平駆動線が4本あるため、CCDタイ プのセンサと比較して画素の縮少化が難しく、又、開口 率も小さくなってしまうといった欠点があった。

【0008】又、TV走査を行うための光電変換信号の 加算も周辺回路で行うため、動作速度が遅速になってし まうといった欠点もあった。

【0009】本発明に係る第1の目的はCMOSセンサ の縮少化を実現することであり、第2の目的は画素信号 加算を画素部で行うことを実現し、さらに加算、非加算 を任意に行える多機能センサを実現することである。

[0010]

【課題を解決するための手段】本発明は、上記目的を達 20 成するためになされたもので、従来各画素毎に設けてい たFD領域とソースフォロワアンプを数画素に1個形成 し、そのFD領域に複数の光電変換領域をMOSトラン ジスタスイッチを介して接続させたことを特徴とする。

【0011】この構成によりソースフォロワのMOSト ランジスタアンプ、水平線選択用MOSトランジスタ、 リセット用MOSトランジスタを数画素周期に1組設け ればよいので、従来より各画素に占める素子数、配線数 を減らせるので微細化が可能となる。

【0012】又、FD部への転送MOSトランジスタの 30 タイミングで、2画素の信号電荷の加算、非加算が簡単 に行えるので、色差線順次駆動、全画素独立出力駆動等 の様々な駆動方式に対応できる。

【0013】さらに、固体撮像装置おいて、光電変換素 子がMOSトランジスタゲートとゲート下の空乏層から なることを特徴とする。また、上記光電変換素子のMO Sトランジスタゲートを周辺回路のMOSトランジスタ と同一工程で作製したことを特徴とする。また、上記光 電変換素子がPn接合フォトダイオードであることを特 時又は別に前記フローティングディフュージョン部へ転 送できることを特徴とする。また上記固体撮像装置を複 数個並べて画像信号出力を得る画像撮像装置を特徴とす る。かかる構成により、多彩な画像信号を得ることがで きる。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を、各 実施例とともに図面を参照しつつ詳細に説明する。

【0015】(第1実施例)図1に、本発明による第1 実施例の概略的回路構成図を示す。同図において、2列 50

×4行画素の2次元エリアセンサを示したものである が、実際は、本センサを拡大して、1920列×108 0行等と画素数を多くして、解像度を高めている。

【0016】図1において、1はMOSトランジスタゲ ートとゲート下の空乏層からなる光電変換素子の光電変 換部、2はフォトゲート、3は転送スイッチMOSトラ ンジスタ、4はリセット用MOSトランジスタ、5はソ ースフォロワアンプMOSトランジスタ、6は水平選択 スイッチMOSトランジスタ、7はソースフォロワの負 荷MOSトランジスタ、8は暗出力転送MOSトランジ スタ、9は明出力転送MOSトランジスタ、10は暗出 力蓄積容量CTN、11は明出力蓄積容量CTS、12は水 平転送MOSトランジスタ、13は水平出力線リセット MOSトランジスタ、14は差動出力アンプ、15は水 平走査回路、16は垂直走査回路である。

【0017】図2に画素部の断面図を示す。同図におい て、17はP型ウェル、18はゲート酸化膜、19は一 層目ポリSi、20は二層目ポリSi、21はn+フロ ーティングディフュージョン部 (FD) である。21の FDは別の転送MOSトランジスタを介して別の光電変 換部と接続される。同図において、2つの転送MOSト ランジスタ3のドレインとFD部21を共通化して微細 化とFD部21の容量低減による感度向上を図っている が、A1配線でFD部21を接続しても良い。

【0018】次に、図3のタイミングチャートを用いて 動作を説明する。このタイミングチャートは全画素独立 出力の場合である。

【0019】まず垂直走査回路16からのタイミング出 力によって、制御パルスøLをハイとして垂直出力線を リセットする。また制御パルス o RO, o PGOO, o PGe 0をハイとし、リセット用MOSトランジスタ4をオン とし、フォトゲート2の一層目ポリSi19をハイとし ておく。時刻T0において、制御パルスゅS0をハイと し、選択スイッチMOSトランジスタ6をオンさせ、第 1, 第2ラインの画素部を選択する。次に制御パルスφ R0をロウとし、FD部21のリセットを止め、FD部 21をフローティング状態とし、ソースフォロワアンプ MOSトランジスタ5のゲート・ソース間をスルーとし た後、時刻T1において制御パルスøTNをハイとし、F 徴とする。さらに、複数の上記光電変換素子の電荷を同 40 D部21の暗電圧をソースフォロワ動作で蓄積容量CTN 10に出力させる。

> 【0020】次に、第1ラインの画素の光電変換出力を 行うため、第1ラインの制御パルスφTX00をハイとし て転送スイッチMOSトランジスタ3を導通した後、時 刻T2 において制御パルスoPG00をローとして下げ る。この時フォトゲート2の下に拡がっていたポテンシ ャル井戸を上げて、光発生キャリアをFD部21に完全 転送させるような電圧関係が好ましい。従って完全転送 が可能であれば制御パルスøTXはパルスではなくある 固定電位でもかまわない。

6

【0021】時刻T2でフォトダイオードの光電変換部 1からの電荷がFD部21に転送されることにより、F D部21の電位が光に応じて変化することになる。この 時ソースフォロワアンプMOSトランジスタ5がフロー ティング状態であるので、FD部21の電位を時刻T3 において制御パルス ø T。をハイとして蓄積容量 Crs 1 1に出力する。この時点で第1ラインの画素の暗出力と 光出力はそれぞれ蓄積容量CTN 10とCTS 11に蓄積さ れおり、時刻T4の制御パルスøHCを一時ハイとして 水平出力線リセットMOSトランジスタ13を導通して 10 水平出力線をリセットし、水平転送期間において水平走 査回路15の走査タイミング信号により水平出力線に画 素の暗出力と光出力を出力される。この時、蓄積容量C TN10とCTs11の差動増幅器14によって、差動出力 VOUTを取れば、画素のランダムノイズ、固定パターン ノイズを除去したS/Nの良い信号が得られる。また画 素30-12、30-22の光電荷は画素30-11、 30-21と同時に夫々の蓄積容量C_{TN}10とC_{TS}11 に蓄積されるが、その読み出しは水平走査回路15から のタイミングパルスを1画素分遅らして水平出力線に読 20 み出して差動増幅器14から出力される。

【0022】本実施例では、差動出力VOUTをチップ内で行う構成を示しているが、チップ内に含めず、外部で従来のCDS(Correlated Double Sampling:相関二重サンプリング)回路を用いても同様の効果が得られる。

【0023】蓄積容量Crs11に明出力を出力した後、 制御パルスφR0をハイとしてリセット用MOSトラン ジスタ4を導通しFD部21を電源VDDにリセットす る。第1ラインの水平転送が終了した後、第2ラインの 読み出しを行う。第2ラインの読み出しは、制御パルス φTXe0,制御パルスφPGe0を同様に駆動させ、制御 パルス o TN、 o TSに夫々ハイパルスを供給して、蓄積 容量CTN10とCTS11に夫々光電荷を蓄積し、暗出力 及び明出力を取り出す。以上の駆動により、第1,第2 ラインの読み出しが夫々独立に行える。この後、垂直走 査回路を走査させ、同様に第2n+1, 第2n+2 (n =1, 2, …)の読み出しを行えば全画素独立出力が行 える。即ち、n=1の場合は、まず制御パルスφS1を ハイとし、次に次にφR1をローとし、続いて制御パル スφTN、φTX01をハイとし、制御パルスφPG01を ロー、制御パルス o TSをハイ、制御パルス o HCを一 時ハイとして画素30-31,30-32の画素信号を 読み出す。続いて、制御パルスφTXel, φPGel及び 上記と同様に制御パルスを印加して、画素30-41、 30-42の画素信号を読み出す。

【0024】本実施例において、1画素に1組のソースフォロワを設けずに、2画素に1組のソースフォロワを設けたことにより、ソースフォロワアンプMOSトランジスタ5、選択スイッチMOSトランジスタ6、リセットMOSトランジスタ4を従来の半分にすることができ 50

る。これにより、画素の光電変換部の開口率が向上し、 画素の集積化による微細化が実現できる。又、FD部2 1を2画素で共有化させることにより、ソースフォロワ アンプMOSトランジスタ5のゲート部分の容量を増や さず済むため、感度の低下を防ぐことができる。

【0025】本発明の別の特徴として、2画素以上の信 号をFD部21において加算することによりS/Nを向 上させることも挙げられる。これは、回路は全く変えず に印加パルスのタイミングのみの変更で実現できる。上 下2画素信号の加算の場合のタイミングチャートを図4 に示す。非加算モードの図3では制御パルスøTX00と 制御パルスφTXeO,制御パルスφPGOOと制御パルス φPGe0のタイミングを1画素分ずらしていたが、加算 の場合は同じタイミングである。即ち画素30-11と 画素30-21とから同時に読み出すために、まず制御 パルス o TNをハイとして垂直出力線からノイズ成分を 読み出し、制御パルスφTX00と制御パルスφTXe0 を、及び制御パルスφPG00と制御パルスφPGe0を、 夫々同時にハイ、ローとして、FD部21に転送する。 これにより、同時刻に上下2つの光電変換部1の信号を FD部21で加算することが可能となる。従って、図3 のタイミングによる2つのタイミングを準備しておけ ば、例えば明るい時には高解像度撮像を、一方図4のタ イミングによる同時読み出しのタイミングによって、例 えば暗い時には高感度撮像を行うことが1つのセンサで 可能となる。

【0026】上記実施例においては、FD部21に2つの光電変換部を接続した例を示したが、この光電変換部を3,4個等と複数個であっても良い。そうすることで、例えばCMOSプロセスによる短工程で、高感度の固体撮像装置、高密度の装置等と活用幅の広い装置を提供できる。

【0027】本実施例において画素部30の各MOSトランジスタは全てn型で構成して製造工程を簡単化しているが、p型のサブストレートにn型ウェルを用いて全てPMOSトランジスタで構成するのも当然可能であり、この逆の構成でもよい。

【0028】(第2実施例)図5に本発明による第2実施例の概略回路図を示す。本実施例において、色差線順次駆動ができる様に転送スイッチ22を設けたことを特徴とする。第1実施例では第1ラインと第2ラインの加算、第3ラインと第4ラインの加算が行えるが、第2ラインと第3ラインの加算は行えない。本実施例においては転送スイッチ22があるため、第2と第3ラインの加算が可能となった。

【0029】第2と第3ラインの加算の場合、第1ラインの読み出しは図3のタイミングでT0~T4と進み、その後第2ラインを読み出す際に、制御パルスφTXe0と制御パルスφTX01,制御パルスφPGe0と制御パルスφPGe1を同時にハイ、ローとし、制御パルスφFも制

40

御パルスφ T Xe0と同時にハイとし、他の制御パルスも同様に供給して、画素30-21と画素30-31の画素信号を蓄積容量11に蓄積し、ノイズ成分をキャンセルして画素信号出力VOUTを得ることができる。その後画素30-22と画素30-32の画素信号を蓄積容量11に蓄積して画素信号出力VOUTを得ることができる。、続けて第3ラインと第4ラインとも同様な制御パルスを供給印加して、画素30-31と画素30-41の画素信号を、及び画素30-32と画素30-42の画素信号を順次読み出すことができる。

【0030】従って、図5の回路構成チップ上に、図6のような補色モザイク型フィルタを形成すれば、NTSC方式の走査によれば、ODD(奇数)フィールドでは例えば第1ラインと第2ラインの和としてC、+Mェ、Y。+Gの出力と、例えば第3ラインと第4ラインの和としてC、+G、Y。+Mェの出力を順に得ることができ、EVEN(偶数)フィールドにおいても、例えば第2ラインと第3ラインの和としてC、+Mェ、Y。+Gの出力と、例えば第3ラインと第4ラインC、+G、Y。+Mェの出力を順に得ることができ、インターレス走20 査のTV走査(NTSC、HD)におけるI軸(オレンジ・シアン系)とQ軸(緑・マゼンタ系)の2つの搬送色信号を容易に生成すること等が可能となる。

【0031】又、本実施例においても、駆動タイミングの供給タイミングを変更すれば、全画素の独立出力が可能であるのは当然である。即ち、制御パルスφFを常時ローとすれば、転送スイッチ22の動作をオフして、図3に示すタイミングによって時系列に従って各画素の出力毎に読み出すことができる。

【0032】従って、本実施例によれば、1ラインずれ 30 た画素の和信号を出力することが可能となってTV走査に対応するばかりでなく、図3及び図4に示すタイミングで各画素毎に時系列に独立して読み出したり、2画素の和信号を読み出したりできるので、撮像環境に応じて多彩な撮像ができる。

【0033】本実施例において、特に色差線順次駆動 (インターレース、色信号加算出力)方式を行えば、第 1実施例で必要であった、メモリ、外部加算回路が不必 要となり、従来のCCD用の信号処理回路がそのまま使 用できるため、コスト、実装の面で有利となる。

【0034】(第3実施例)図7に本発明による第3実施例の概念回路図を示す。本実施例においては、画素信号の加算をする際に、図4に示すタイミングによるFD部での加算のみでなく、光電変換部で加算できるスイッチMOSトランジスタ23を設けたことを特徴とする。

【0035】図7において、各制御パルスのタイミングは第2実施例と同様であり、第1ラインを読み出して、次に第2、第3ラインの読み出しにおいても、制御パルスφFも制御パルスφTXe0と同時にハイとし、画素30-21の光電変換部1の電荷と画素30-31の光電 50

変換部1の電荷とがスイッチMOSトランジスタ23を 導通することで加算され、画素30-21の転送MOS トランジスタ3を導通してソースフォロワMOSトラン ジスタ5、選択スイッチMOSトランジスタ6を介して 蓄積容量11に転送される。

【0036】こうして、図6に示す補色モザイク型フィルタを形成すれば、第2実施例と同様に、ODD(奇数)フィールドでは例えば第1ラインと第2ラインの和として C_y+M_g , Y $_e+G$ の出力と、例えば第3ラインと第4ラインの和として C_y+G , Y $_e+M_g$ の出力を順に得ることができ、EVEN(偶数)フィールドにおいても、例えば第2ラインと第3ラインの和として C_y+M_g , Y $_e+G$ の出力と、例えば第3ラインと第4ライン00、00、01、01、02 の出力を順に得ることができる。

【0037】従って、インターレス駆動において、OD DフィールドではFD部で加算を行い、EVENフィールドでは画素部で片方の電荷をもう片方の井戸へ転送加算して、FD部へ出力させる。もちろんEVENフィールド、ODDフィールドで逆でも良い。本実施例において、FD部容量を増やすことなく、TV走査が可能となる。また、各制御パルスのタイミングを種々変更することで、第2実施例と同様に、多彩な画像信号を得ることができる。さらに、本実施例においても、第2実施例都同様に、色差線順次駆動を行なうことにより、従来の信号処理回路をそのまま使用できるメリットが出てくる。【0038】(第4実施例)図8に本発明による第4実

施例の概念回路図を示す。本実施例においては、光電変換部にフォトゲートを用いず、pnフォトダイオード24を用いたことを特徴とする。図9に画素の断面図を示す。同図において、25はn層であり完全空乏化できる濃度である。制御パルスφTXにより発生した電荷をFD部へ完全転送させる。本実施例の場合も制御パルスφTXにより信号の加算、非加算を行うことができる。

【0039】図8、図9の動作を説明する。まず制御パルスφRをハイとしてFD部21を電源VDDにリセットし、制御パルスφSをハイとして暗出力を蓄積容量10に蓄積し、次に制御パルスφTX00をハイとして、pnフォトダイオード24に蓄積された光電荷をソースフォロワMOSトランジスタ5、選択スイッチMOSトランジスタ6を介して蓄積容量11に転送して、ノイズ成分を差動増幅器14によってキャンセルし、画像信号VOUTを出力する。また、図4によるタイミングに相当する制御パルスを供給することで、2つのpnフォトダイオード24に電荷を加算して読み出すことができる。

【0040】また、スイッチM0Sトランジスタを追加することで、第2実施例及び第3実施例と同様に、インターレス走査に効率の良い画像出力を得ることができる。

【0041】(第5実施例)図10に本発明による第5

(6)

g

実施例の画素断面図を示す。同図において、26は表面 P⁺層であり、n層25と光電変換部を構成し、埋込み型フォトダイオードで画素を形成したことを特徴とする。この構造により表面で発生する暗電流を抑制することができる。図9と比較して効率の良い高い光電荷を得ることができるので、S/Nの高い高品質の画像信号を得ることができる。

【0042】図10に示す構造の画素は、図8のpnフォトダイオード24の代わりに設ける、第4実施例と同様な各制御パルスのタイミングによって、同様な画像出 10力を得ることができる。

[0043]

【発明の効果】以上説明したように、本発明によれば、素子数を減らした高開口率、微細化可能なCMOSトランジスタ型センサが実現できるため、収率アップによる高歩留り、低コスト、パッケージ小型化、光学系システム小型化という効果がある。

【0044】又、画素信号の加算、非加算を駆動方法の みで実現できるため、従来のXYアドレス機能を含め て、様々な動作方法に対応できるという効果もある。

【図面の簡単な説明】

【図1】本発明による第1実施例の概略的回路構成図である。

【図2】本発明による第1実施例の画素断面図である。

【図3】本発明による第1実施例のタイミングチャート(1)である。

【図4】本発明による第1実施例のタイミングチャート

(2)である。 【図5】 大窓明による第0字状態の短聴め同胞様式図5

【図5】本発明による第2実施例の概略的回路構成図で ある。

【図6】本発明による第2実施例のオンチップカラーフィルタ図である。

【図7】本発明による第3実施例の概略的回路構成図である。

【図8】本発明による第4実施例の概略的回路構成図である。

10

【図9】本発明による第4実施例の画素断面図である。 【図10】本発明による第5実施例の画素断面図である。

【図11】従来の固体撮像装置の概略回路構成図である。

【符号の説明】

- 1 光電変換部
- 0 2 フォトゲート
 - 3 転送スイッチMOSトランジスタ
 - 4 リセットMOSトランジスタ
 - 5 ソースフォロワアンプ
 - 6 水平線選択スイッチMOSトランジスタ
 - 7 ソースフォロワ負荷MOSトランジスタ
 - 8 暗出力転送MOSトランジスタ
 - 9 明出力転送MOSトランジスタ
 - 10 暗出力蓄積容量
 - 11 明出力蓄積容量
- 20 12 水平転送MOSトランジスタ
 - 13 水平出力線リセットMOSトランジスタ
 - 14 差動アンプ
 - 15 水平走查回路
 - 16 垂直走查回路
 - 17 Pウェル
 - 18 ゲート酸化膜
 - 19 一層目ポリSi
 - 20 二層目ポリSi
 - 21 n⁺ フローティングディフュージョン
- 30 22 転送スイッチMOSトランジスタ
 - 23 加算スイッチMOSトランジスタ
 - 24 アnフォトダイオード
 - 25 n型層
 - 26 表面P+層

【図6】

Ye

G

Ye

Ma

Су

Mq

Cy

G

【図9】

【図10】

【図2】

【図5】

【図7】

【図8】

【図11】

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第3区分 【発行日】平成11年(1999)10月29日

【公開番号】特開平9-46596

【公開日】平成9年(1997)2月14日

【年通号数】公開特許公報9-466

【出願番号】特願平7-197471

【国際特許分類第6版】

H04N 5/335

H01L 27/146

[FI]

H04N 5/335

E

Р

H01L 27/14

Α

【手続補正書】

【提出日】平成10年12月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 光電変換素子で発生した電荷を転送スイッチを介してフローティングディフュージョン部へ転送させ、そのフローティングディフュージョン部の電位変化をソースフォロワアンプで外部へ出力する固体撮像装置において、

1つの前記フローティングディフュージョン部に数個の 前記光電変換素子を転送スイッチを介して接続し、前記 ソースフォロワアンプを数画素に1組形成することを特 徴とする固体撮像装置。

【請求項2】 請求項1に記載の固体撮像装置おいて、 前記光電変換素子がMOSトランジスタゲートとゲート 下の空乏層からなることを特徴とする固体撮像装置。

【請求項3】 請求項2に記載の固体撮像装置おいて、前記光電変換素子のMOSトランジスタゲートを周辺回路のMOSトランジスタと同一工程で作製したことを特徴とする固体撮像装置。

【請求項4】 請求項1に記載の固体撮像装置おいて、 前記光電変換素子がpn接合フォトダイオードであるこ とを特徴とする固体撮像装置。

【請求項5】 請求項1に記載の固体撮像装置おいて、 複数の前記光電変換素子の電荷を同時又は別に前記フロ ーティングディフュージョン部へ転送できることを特徴 とする固体撮像装置。

【請求項6】 請求項1に記載の固体撮像装置を複数個 並べて画像信号出力を得ることを特徴とする画像撮像装 置。

【請求項7】 請求項6に記載の画像撮像装置おいて、前記フローティングディフュージョン部に少なくとも2つの前記光電変換素子の電荷を加算することを特徴とする画像撮像装置。

【請求項8】 請求項6に記載の画像撮像装置おいて、前記光電変換素子の読み出しにインターリーブ走査によるODD及びEVENと同期して補色モザイクパターンからの画像信号を得ることを特徴とする画像撮像装置。 【請求項9】 行方向及び列方向に配列された複数の光亀変換索子で発生した電荷を転送スイッチを介してフローティングディフュージョン部へ転送させ、そのフローティングディフュージョン部の電位変化を選択スイッチによって選択的にソースフォロワアンプで外部へ出力する固体撮像装置において、

1つの前記フローティングディフュージョン部に数個の 前記光電変換素子を転送スイッチを介して接続し、前記 ソースフォロワアンプと前記選択スイッチを数画素に1 組形成し、前記行方向の複数の前記選択スイッチは共通 の信号線によって制御されることを特徴とする固体撮像 装置。

【請求項10】 光電変換素子で発生した電荷を転送ス イッチを介してフローティングディフュージョン部へ転 送させ、そのフローティングディフュージョン部の電位 変化をソースフォロワアンプで垂直出力線へ出力する固 体撮像装置において、

1つの前記フローティングディフュージョン部に数個の 前記光電変換素子を転送スイッチを介して接続し、前記 ソースフォロワアンプを数画素に1組形成され、暗出力 信号を蓄積する蓄積手段と明出力信号を蓄積する蓄積手 段を前記垂直出力線に設け、前記蓄積手段からのそれぞ れの信号を差分する差分手段を水平出力線に設けたこと を特徴とする固体撮像装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0013

【補正方法】変更

【補正内容】

【0013】さらに、固体撮像装置おいて、光電変換素 子がMOSトランジスタゲートとゲート下の空乏層から なることを特徴とする。また、上記光電変換素子のMO Sトランジスタゲートを周辺回路のMOSトランジスタ と同一工程で作製したことを特徴とする。また、上記光 電変換素子がPn接合フォトダイオードであることを特 徴とする。さらに、複数の上記光電変換素子の電荷を同 時又は別に前記フローティングディフュージョン部へ転 送できることを特徴とする。また上記固体撮像装置を複 数個並べて画像信号出力を得る画像撮像装置を特徴とす る。かかる構成により、多彩な画像信号を得ることがで きる。 また、本発明は、行方向及び列方向に配列された 複数の光亀変換索子で発生した電荷を転送スイッチを介 してフローティングディフュージョン部へ転送させ、そ のフローティングディフュージョン部の電位変化を選択 スイッチによって選択的にソースフォロワアンプで外部

<u>へ出力する固体撮像装置において、1つの前記フローテ</u> <u>ィングディフュージョン部に数個の前記光電変換素子を</u> 転送スイッチを介して接続し、前記ソースフォロワアン プと前記選択スイッチを数画素に1組形成し、前記行方 向の複数の前記選択スイッチは共通の信号線によって制 御されることを特徴とする。かかる構成により、各画素 に占める素子数や配線数を削減でき、パッケージの小型 化を実現できる。また、本発明は、光電変換素子で発生 した電荷を転送スイッチを介してフローティングディフ <u>ュージョン部へ転送させ、そのフローティングディフュ</u> <u>ージョン部の電位変化をソースフォロワアンプで垂直出</u> 力線へ出力する固体撮像装置において、1つの前記フロ <u>ーティングディフュージョン部に数個の前記光電変換素</u> 子を転送スイッチを介して接続し、前記ソースフォロワ アンプを数画素に1組形成され、暗出力信号を蓄積する 蓄積手段と明出力信号を蓄積する蓄積手段を前記垂直出 力線に設け、前記蓄積手段からのそれぞれの信号を差分 する差分手段を水平出力線に設けたことを特徴とする。 かかる構成により、暗出力信号と明出力信号とを相殺し て、センサの小型化と高S/Nの画像信号を得ることが できる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.