Homework 3

Georgie Moore

26/11/2021

Population and sample (10 points) In this homework we will start to explore the relationship between left-right ideology and demographics. The specific population that we are interested in are voting age citizens in Austria. Please manipulate the ESS 2018 dataset such that the sample you are using to compute statistics are useful for generating predictions about the population. Save the new data. How many observations do you have?

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
##
  The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(dbplyr)
##
## Attaching package: 'dbplyr'
## The following objects are masked from 'package:dplyr':
##
##
       ident, sql
library(dtplyr)
library(tinytex)
library(haven)
# Followed tutorial from ROpenSci by Jorge Cimentada.
library(essurvey)
library(tidyverse)
## -- Attaching packages ----
                                          ----- tidyverse 1.3.1 --
```

```
v purrr 0.3.4
## v ggplot2 3.3.3
## v tibble 3.1.0
                    v stringr 1.4.0
## v tidyr
                     v forcats 0.5.1
            1.1.3
            1.4.0
## v readr
## -- Conflicts -----
                                         ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dbplyr::ident() masks dplyr::ident()
## x dplyr::lag()
                    masks stats::lag()
## x dbplyr::sql()
                    masks dplyr::sql()
set_email("a12016033@unet.univie.ac.at")
# Most of the questions in the ESS use likert-type scales which means that the possible answers to any
show_countries()
  [1] "Albania"
                             "Austria"
                                                  "Belgium"
   [4] "Bulgaria"
                             "Croatia"
                                                  "Cyprus"
## [7] "Czechia"
                             "Denmark"
                                                  "Estonia"
                             "France"
                                                  "Germany"
## [10] "Finland"
## [13] "Greece"
                             "Hungary"
                                                  "Iceland"
## [16] "Ireland"
                             "Israel"
                                                  "Italy"
## [19] "Kosovo"
                            "Latvia"
                                                  "Lithuania"
## [22] "Luxembourg"
                            "Montenegro"
                                                  "Netherlands"
                                                  "Portugal"
## [25] "Norway"
                             "Poland"
## [28] "Romania"
                             "Russian Federation" "Serbia"
## [31] "Slovakia"
                            "Slovenia"
                                                  "Spain"
## [34] "Sweden"
                             "Switzerland"
                                                  "Turkey"
## [37] "Ukraine"
                             "United Kingdom"
au_runds <- show_country_rounds("Austria")</pre>
au_runds
## [1] 1 2 3 4 5 7 8 9
library(foreign)
# POPULATION AND SAMPLE (10 POINTS)
# Manipulate the ESS 2018 dataset such that the sample is useful for generating predictions about the p
# Using this information, demonstrate specific rounds with import_country.
austria <-
  import_country(
   country = "Austria",
    rounds = 1:5
```

Downloading ESS1

```
##
## Downloading ESS2
     1
                                                                                      1
##
## Downloading ESS3
##
                                                                                      1
## Downloading ESS4
##
## Downloading ESS5
##
# Error message: ESS round 6 not available for Austria
# Then avoiding round 6 try loading from 7 until 9.
austria <-
  import_country(
   country = "Austria",
   rounds = 7:9
## Downloading ESS7
##
                                                                                      1
## Downloading ESS8
     1
                                                                                      1
##
## Downloading ESS9
##
## Warning: Round 8 for Austria was read with the 'foreign' package rather than with the 'haven' package
## Please report any issues at https://github.com/ropensci/essurvey/issues
## Warning: Round 9 for Austria was read with the 'foreign' package rather than with the 'haven' packa
## Please report any issues at https://github.com/ropensci/essurvey/issues
# Another way to produce the same result would be to download all rounds for a country automatically.
import_all_cntrounds("Austria")
```

```
## Downloading ESS1
## |
## Downloading ESS2
## |
## Downloading ESS3
## |
## Downloading ESS4
## |
## Downloading ESS4
## |
## Downloading ESS5
## |
## Downloading ESS5
```

```
8 ESS1e06 6
                       1 6.6
                                  01.12.2018 AT
                                                      10 3 [Mor~
                                                                      2 [0,5~ 4 [Mor~
                                  01.12.2018 AT
                                                      12 2 [0,5~
                                                                      2 [0,5~ 1 [Les~
## 9 ESS1e06 6
                       1 6.6
## 10 ESS1e06 6
                       1 6.6
                                  01.12.2018 AT
                                                      14 7 [Mor~
                                                                      3 [Mor~ 0 [No ~
## # ... with 2,247 more rows, and 557 more variables: rdpol <dbl+lbl>,
       nwsptot <dbl+lbl>, nwsppol <dbl+lbl>, netuse <dbl+lbl>, ppltrst <dbl+lbl>,
       pplfair <dbl+lbl>, pplhlp <dbl+lbl>, polintr <dbl+lbl>, polcmpl <dbl+lbl>,
## #
       polactiv <dbl+lbl>, poldcs <dbl+lbl>, pltcare <dbl+lbl>, pltinvt <dbl+lbl>,
## #
       trstprl <dbl+lbl>, trstlgl <dbl+lbl>, trstplc <dbl+lbl>, trstplt <dbl+lbl>,
       trstep <dbl+lbl>, trstun <dbl+lbl>, vote <dbl+lbl>, prtvtat <dbl+lbl>,
## #
## #
       prtvtbe <dbl+lbl>, prtvtch <dbl+lbl>, prtvtcz <dbl+lbl>, ...
##
## [[2]]
## # A tibble: 2,256 x 604
                                              idno cntry
##
      name
                essround edition proddate
                                                              tvtot
                                                                       tvpol
                                                                                rdtot
##
                   <dbl> <chr>
                                             <dbl> <chr> <dbl+lbl> <dbl+lb> <dbl+lb>
      <chr>
                                  <chr>
##
    1 ESS2e03_6
                       2 3.6
                                  01.12.2018
                                                 1 AT
                                                          3 [More ~ 2 [0,5 ~ 0 [No t~
                                                         7 [More ~ 2 [0,5 ~ 3 [More~
##
    2 ESS2e03_6
                       2 3.6
                                  01.12.2018
                                                 2 AT
##
    3 ESS2e03 6
                       2 3.6
                                  01.12.2018
                                                 3 AT
                                                          6 [More ~ 2 [0,5 ~ 1 [Less~
                       2 3.6
                                                 5 AT
                                                         3 [More ~ 1 [Less~ 2 [0,5 ~
##
   4 ESS2e03_6
                                  01.12.2018
##
    5 ESS2e03 6
                       2 3.6
                                 01.12.2018
                                                 7 AT
                                                         2 [0,5 h~ 1 [Less~ 1 [Less~
##
   6 ESS2e03_6
                       2 3.6
                                 01.12.2018
                                                 8 AT
                                                         2 [0,5 h~ 1 [Less~ 0 [No t~
   7 ESS2e03 6
                       2 3.6
                                                 9 AT
                                                         7 [More ~ 1 [Less~ 0 [No t~
##
                                  01.12.2018
                                                         1 [Less ~ 1 [Less~ 7 [More~
                       2 3.6
##
    8 ESS2e03_6
                                 01.12.2018
                                                13 AT
                                                         7 [More ~ 2 [0,5 ~ 7 [More~
                       2 3.6
                                                18 AT
##
    9 ESS2e03 6
                                  01.12.2018
                                                          4 [More ~ 0 [No t~ 7 [More~
## 10 ESS2e03 6
                       2 3.6
                                  01.12.2018
                                                20 AT
## # ... with 2,246 more rows, and 595 more variables: rdpol <dbl+lbl>,
       nwsptot <dbl+lbl>, nwsppol <dbl+lbl>, netuse <dbl+lbl>, ppltrst <dbl+lbl>,
## #
       pplfair <dbl+lbl>, pplhlp <dbl+lbl>, polintr <dbl+lbl>, polcmpl <dbl+lbl>,
       poldcs <dbl+lbl>, trstprl <dbl+lbl>, trstlgl <dbl+lbl>, trstplc <dbl+lbl>,
## #
       trstplt <dbl+lbl>, trstprt <dbl+lbl>, trstep <dbl+lbl>, trstun <dbl+lbl>,
## #
       vote <dbl+lbl>, prtvtat <dbl+lbl>, prtvtabe <dbl+lbl>, prtvtch <dbl+lbl>,
## #
       prtvtcz <dbl+lbl>, prtvade1 <dbl+lbl>, prtvade2 <dbl+lbl>, ...
##
## [[3]]
## # A tibble: 2,405 x 519
##
      name
                essround edition proddate
                                              idno cntry
                                                              tvtot
                                                                       tvpol
                                                                                rdtot
##
      <chr>>
                   <dbl> <chr>
                                  <chr>
                                             <dbl> <chr> <dbl+lbl> <dbl+lb> <dbl+lb>
##
    1 ESS3e03_7
                       3 3.7
                                  01.12.2018
                                                 3 AT
                                                         5 [More ~ 1 [Less~ 7 [More~
                       3 3.7
                                  01.12.2018
                                                 6 AT
                                                         3 [More ~ 1 [Less~ 2 [0,5 ~
##
    2 ESS3e03 7
##
                                                 8 AT
                                                          1 [Less ~ 1 [Less~ 7 [More~
    3 ESS3e03_7
                       3 3.7
                                  01.12.2018
                                                         4 [More ~ 1 [Less~ 7 [More~
   4 ESS3e03 7
                       3 3.7
                                  01.12.2018
                                                 9 AT
   5 ESS3e03 7
                       3 3.7
                                  01.12.2018
                                                          6 [More ~ 2 [0,5 ~ 6 [More~
##
                                                11 AT
                                                         7 [More ~ 2 [0,5 ~ 7 [More~
##
    6 ESS3e03 7
                       3 3.7
                                  01.12.2018
                                                12 AT
##
   7 ESS3e03_7
                       3 3.7
                                                         1 [Less ~ 1 [Less~ 7 [More~
                                  01.12.2018
                                                14 AT
                                                         7 [More ~ 2 [0,5 ~ 3 [More~
##
    8 ESS3e03_7
                       3 3.7
                                  01.12.2018
                                                15 AT
                                                         3 [More ~ 1 [Less~ 7 [More~
    9 ESS3e03_7
                       3 3.7
                                  01.12.2018
                                                17 AT
##
## 10 ESS3e03 7
                       3 3.7
                                  01.12.2018
                                                18 AT
                                                         7 [More ~ 3 [More~ 0 [No t~
## # ... with 2,395 more rows, and 510 more variables: rdpol <dbl+lbl>,
       nwsptot <dbl+lbl>, nwsppol <dbl+lbl>, netuse <dbl+lbl>, ppltrst <dbl+lbl>,
## #
       pplfair <dbl+lbl>, pplhlp <dbl+lbl>, polintr <dbl+lbl>, polcmpl <dbl+lbl>,
## #
       poldcs <dbl+lbl>, trstprl <dbl+lbl>, trstlgl <dbl+lbl>, trstplc <dbl+lbl>,
## #
       trstplt <dbl+lbl>, trstprt <dbl+lbl>, trstep <dbl+lbl>, trstun <dbl+lbl>,
## #
       vote <dbl+lbl>, prtvtaat <dbl+lbl>, prtvtabe <dbl+lbl>, prtvtbg <dbl+lbl>,
## #
       prtvtach <dbl+lbl>, prtvtcy <dbl+lbl>, prtvbde1 <dbl+lbl>, ...
```

```
##
## [[4]]
## # A tibble: 2,255 x 673
                  essround edition proddate idno cntry
                                                           tvtot
                                                                        tvpol
                                                                                rdtot
##
      <chr>>
                     <dbl> <chr>
                                    <chr>
                                             <dbl> <chr> <dbl+1>
                                                                    <dbl+1b1> <db1+1>
##
                                    01.12.2~
                                                 2 AT
                                                         2 [0,5~
                                                                      1 [Les~ 2 [0,5~
   1 ESS4ATeO1 3
                         4 1.3
                                    01.12.2~
    2 ESS4ATe01 3
                         4 1.3
                                                 3 AT
                                                         7 [Mor~
                                                                      1 [Les~ 4 [Mor~
                                    01.12.2~
                                                                      1 [Les~ 7 [Mor~
##
    3 ESS4ATeO1 3
                         4 1.3
                                                 5 AT
                                                         6 [Mor~
##
   4 ESS4ATeO1 3
                         4 1.3
                                    01.12.2~
                                                 9 AT
                                                         0 [No ~ NA(a) [Not~ 2 [0,5~
##
  5 ESS4ATeO1_3
                         4 1.3
                                    01.12.2~
                                                12 AT
                                                         2 [0,5~
                                                                      1 [Les~ 5 [Mor~
   6 ESS4ATe01_3
                         4 1.3
                                    01.12.2~
                                                15 AT
                                                         6 [Mor~
                                                                      2 [0,5~ 2 [0,5~
                         4 1.3
                                    01.12.2~
                                                17 AT
                                                         7 [Mor~
                                                                      5 [Mor~ 2 [0,5~
##
   7 ESS4ATe01_3
##
   8 ESS4ATe01 3
                         4 1.3
                                    01.12.2~
                                                18 AT
                                                         5 [Mor~
                                                                      2 [0,5~ 5 [Mor~
  9 ESS4ATeO1_3
                         4 1.3
                                    01.12.2~
                                                20 AT
                                                         7 [Mor~
                                                                      2 [0,5~ 5 [Mor~
## 10 ESS4ATeO1_3
                         4 1.3
                                    01.12.2~
                                                23 AT
                                                         3 [Mor~
                                                                      2 [0,5~ 0 [No ~
## # ... with 2,245 more rows, and 664 more variables: rdpol <dbl+lbl>,
       nwsptot <dbl+lbl>, nwsppol <dbl+lbl>, netuse <dbl+lbl>, ppltrst <dbl+lbl>,
       pplfair <dbl+lbl>, pplhlp <dbl+lbl>, polintr <dbl+lbl>, polcmpl <dbl+lbl>,
       poldcs <dbl+lbl>, trstprl <dbl+lbl>, trstlgl <dbl+lbl>, trstplc <dbl+lbl>,
## #
       trstplt <dbl+lbl>, trstprt <dbl+lbl>, trstep <dbl+lbl>, trstun <dbl+lbl>,
## #
       vote <dbl+lbl>, prtvtaat <dbl+lbl>, prtvtbbe <dbl+lbl>, prtvtabg <dbl+lbl>,
       prtvtbch <dbl+lbl>, prtvtcy <dbl+lbl>, prtvtacz <dbl+lbl>, ...
##
## [[5]]
## # A tibble: 2,259 x 686
      name
             essround edition proddate idno cntry
                                                      tvtot
                                                              tvpol
                                                                       rdtot
##
                <dbl> <chr>
                                        <dbl> <chr> <dbl+l> <dbl+l> <dbl+l> <dbl+lb>
      <chr>
                              <chr>>
                                                    4 [Mor~ 2 [0,5~ 3 [Mor~
##
   1 ESS5A~
                    5 1.1
                              09.02.2~
                                            1 AT
                                                                              0 [No ~
##
   2 ESS5A~
                    5 1.1
                              09.02.2~
                                                    3 [Mor~ 1 [Les~ 3 [Mor~
                                            4 AT
   3 ESS5A~
                    5 1.1
                              09.02.2~
                                            5 AT
                                                    6 [Mor~ 3 [Mor~ 0 [No ~ 66 [Not~
                                                    4 [Mor~ 0 [No ~ 3 [Mor~
##
   4 ESS5A~
                    5 1.1
                              09.02.2~
                                            7 AT
##
    5 ESS5A~
                    5 1.1
                              09.02.2~
                                            8 AT
                                                    5 [Mor~ 0 [No ~ 4 [Mor~
##
    6 ESS5A~
                    5 1.1
                              09.02.2~
                                           10 AT
                                                    4 [Mor~ 1 [Les~ 3 [Mor~
   7 ESS5A~
                              09.02.2~
                                                    1 [Les~ 1 [Les~ 1 [Les~
##
                    5 1.1
                                           11 AT
                                                                              1 [Les~
##
   8 ESS5A~
                    5 1.1
                              09.02.2~
                                           13 AT
                                                    5 [Mor~ 2 [0,5~ 4 [Mor~
                                                                              1 [Les~
## 9 ESS5A~
                    5 1.1
                              09.02.2~
                                                    5 [Mor~ 2 [0,5~ 2 [0,5~
                                           14 AT
                                                                             1 [Les~
## 10 ESS5A~
                    5 1.1
                              09.02.2~
                                           16 AT
                                                    1 [Les~ 1 [Les~ 2 [0,5~
## # ... with 2,249 more rows, and 676 more variables: nwsptot <dbl+lbl>,
       nwsppol <dbl+lbl>, netuse <dbl+lbl>, ppltrst <dbl+lbl>, pplfair <dbl+lbl>,
       pplhlp <dbl+lbl>, polintr <dbl+lbl>, trstprl <dbl+lbl>, trstlgl <dbl+lbl>,
## #
       trstplc <dbl+lbl>, trstplt <dbl+lbl>, trstprt <dbl+lbl>, trstep <dbl+lbl>,
       trstun <dbl+lbl>, vote <dbl+lbl>, prtvtaat <dbl+lbl>, prtvtcbe <dbl+lbl>,
## #
       prtvtbbg <dbl+lbl>, prtvtcch <dbl+lbl>, prtvthr <dbl+lbl>,
## #
       prtvtcy <dbl+lbl>, prtvtbcz <dbl+lbl>, prtvcde1 <dbl+lbl>, ...
##
## [[6]]
## # A tibble: 1,795 x 601
             essround edition proddate idno cntry
                                                      tvtot
                                                               tvpol ppltrst pplfair
      <chr>
                <dbl> <chr>
                              <chr>
                                        <dbl> <chr> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <
                    7 2.2
##
    1 ESS7e~
                              01.12.2~
                                            1 AT
                                                    4 [Mor~ 1 [Les~ 7 [7]
                                                                              7 [7]
##
                    7 2.2
                              01.12.2~
                                                    7 [Mor~ 3 [Mor~ 5 [5]
                                                                              5 [5]
    2 ESS7e~
                                            2 AT
                                                    6 [Mor~ 2 [0,5~ 6 [6]
##
  3 ESS7e~
                    7 2.2
                              01.12.2~
                                            3 AT
                                                                              8 [8]
##
  4 ESS7e~
                    7 2.2
                              01.12.2~
                                            4 AT
                                                    3 [Mor~ 1 [Les~ 5 [5]
                                                                              3 [3]
## 5 ESS7e~
                    7 2.2
                              01.12.2~
                                            5 AT
                                                    2 [0,5~ 2 [0,5~ 3 [3]
                                                                              7 [7]
```

```
## 6 ESS7e~
                    7 2.2
                              01.12.2~
                                           6 AT
                                                    2 [0,5~ 2 [0,5~ 0 [You~ 10 [Mos~
## 7 ESS7e~
                    7 2.2
                              01.12.2~
                                           7 AT
                                                    7 [Mor~ 5 [Mor~ 5 [5]
                                                                             6 [6]
## 8 ESS7e~
                    7 2.2
                                                    3 [Mor~ 1 [Les~ 5 [5]
                              01.12.2~
                                           13 AT
                                                                             7 [7]
## 9 ESS7e~
                    7 2.2
                                                    4 [Mor~ 1 [Les~ 9 [9]
                                                                             6 [6]
                              01.12.2~
                                           14 AT
## 10 ESS7e~
                    7 2.2
                              01.12.2~
                                           21 AT
                                                    5 [Mor~ 2 [0,5~ 5 [5]
                                                                             4 [4]
## # ... with 1,785 more rows, and 591 more variables: pplhlp <dbl+lbl>,
       polintr <dbl+lbl>, psppsgv <dbl+lbl>, actrolg <dbl+lbl>, psppipl <dbl+lbl>,
       cptppol <dbl+lbl>, ptcpplt <dbl+lbl>, etapapl <dbl+lbl>, trstprl <dbl+lbl>,
       trstlgl <dbl+lbl>, trstplc <dbl+lbl>, trstplt <dbl+lbl>, trstprt <dbl+lbl>,
## #
## #
       trstep <dbl+lbl>, trstun <dbl+lbl>, vote <dbl+lbl>, prtvtbat <dbl+lbl>,
       prtvtcbe <dbl+lbl>, prtvtech <dbl+lbl>, prtvtdcz <dbl+lbl>,
       prtvede1 <dbl+lbl>, prtvede2 <dbl+lbl>, prtvtcdk <dbl+lbl>, ...
## #
##
## [[7]]
## # A tibble: 2,010 x 535
##
             essround edition proddate idno cntry nwspol netusoft netustm ppltrst
                                       <int> <chr> <int> <fct>
##
      <chr>
                <int> <chr>
                              <chr>>
                                                                       <int> <fct>
##
   1 ESS8e~
                    8 2.2
                              10.12.2~
                                           1 AT
                                                       120 Most days
                                                                         180 8
## 2 ESS8e~
                    8 2.2
                              10.12.2~
                                           2 AT
                                                                         120 6
                                                       120 Every day
## 3 ESS8e~
                    8 2.2
                              10.12.2~
                                           4 AT
                                                        30 Only occ~
                                                                          NA 5
## 4 ESS8e~
                    8 2.2
                              10.12.2~
                                           6 AT
                                                        30 Every day
                                                                         120 6
## 5 ESS8e~
                    8 2.2
                                          10 AT
                                                        30 Every day
                              10.12.2~
                                                                         180 5
## 6 ESS8e~
                    8 2.2
                                          11 AT
                              10.12.2~
                                                        60 Every day
                                                                         120 3
   7 ESS8e~
                    8 2.2
##
                              10.12.2~
                                          12 AT
                                                        15 Only occ~
                                                                          NA 7
## 8 ESS8e~
                    8 2.2
                              10.12.2~
                                          13 AT
                                                        45 Most days
                                                                          30 7
## 9 ESS8e~
                    8 2.2
                              10.12.2~
                                           14 AT
                                                        10 Every day
                                                                         120 9
## 10 ESS8e~
                    8 2.2
                              10.12.2~
                                          15 AT
                                                        60 Most days
                                                                         120 5
## # ... with 2,000 more rows, and 525 more variables: pplfair <fct>,
       pplhlp <fct>, polintr <fct>, psppsgva <fct>, actrolga <fct>,
       psppipla <fct>, cptppola <fct>, trstprl <fct>, trstlgl <fct>,
## #
       trstplc <fct>, trstplt <fct>, trstprt <fct>, trstep <fct>, trstun <fct>,
## #
       vote <fct>, prtvtbat <fct>, prtvtcbe <fct>, prtvtfch <fct>, prtvtdcz <fct>,
       prtvede1 <fct>, prtvede2 <fct>, prtvtfee <fct>, prtvtdes <fct>,
## #
       prtvtdfi <fct>, prtvtcfr <fct>, prtvtbgb <fct>, prtvtehu <fct>, ...
##
## [[8]]
## # A tibble: 2,499 x 572
##
             essround edition proddate idno cntry nwspol netusoft netustm ppltrst
      name
##
      <chr>
                <int> <chr>
                              <chr>>
                                        <int> <chr> <int> <fct>
                                                                       <int> <fct>
## 1 ESS9e~
                              17.02.2~
                                                        60 Every day
                    9 3.1
                                          27 AT
                                                                         180 2
## 2 ESS9e~
                    9 3.1
                              17.02.2~
                                         137 AT
                                                        10 Every day
                                                                          20 7
## 3 ESS9e~
                    9 3.1
                              17.02.2~
                                         194 AT
                                                        60 Most days
                                                                         180 5
## 4 ESS9e~
                    9 3.1
                              17.02.2~
                                         208 AT
                                                        45 Every day
                                                                         120 3
## 5 ESS9e~
                    9 3.1
                              17.02.2~
                                         220 AT
                                                                          NA 5
                                                        30 Never
  6 ESS9e~
                    9 3.1
                              17.02.2~
                                          254 AT
                                                        45 Only occ~
                                                                          NA 8
## 7 ESS9e~
                    9 3.1
                              17.02.2~
                                          290 AT
                                                        60 Never
                                                                          NA 6
## 8 ESS9e~
                    9 3.1
                              17.02.2~
                                          301 AT
                                                        30 Never
                                                                          NA 7
## 9 ESS9e~
                              17.02.2~
                    9 3.1
                                          305 AT
                                                        30 Every day
                                                                         120 2
## 10 ESS9e~
                    9 3.1
                              17.02.2~
                                         400 AT
                                                        25 Most days
                                                                         360 7
## # ... with 2,489 more rows, and 562 more variables: pplfair <fct>,
       pplhlp <fct>, polintr <fct>, psppsgva <fct>, actrolga <fct>,
      psppipla <fct>, cptppola <fct>, trstprl <fct>, trstlgl <fct>,
## #
      trstplc <fct>, trstplt <fct>, trstprt <fct>, trstep <fct>, trstun <fct>,
      vote <fct>, prtvtcat <fct>, prtvtdbe <fct>, prtvtdbg <fct>, prtvtgch <fct>,
```

```
prtvtbcy <fct>, prtvtecz <fct>, prtvede1 <fct>, prtvede2 <fct>,
## #
       prtvtddk <fct>, prtvtgee <fct>, prtvtees <fct>, prtvtdfi <fct>, ...
# ESS datasets flag missing values differently between questions. For example,
# questions with possible answers ranging from 0 through 5 have missing categories
# such as "Don't know" and "Refusal" coded as 7 and 8 and 9.
# For questions with possible answers ranging from 0 through 10 missing values are coded as 77, 88 and
# Must recognise importance of these categories before applying record_missings
?recode_missings
# i.e. recode_missings(ess_data, missing_codes)
#Result: "Data from the European Social Survey is always accompanied by a script that recodes the categorial
# "The European Social Survey now provides these values recoded automatically in Stata data files. Thes
# Count all observations in 'austria':
library(dplyr)
typeof(austria) # Returned as class "list".
## [1] "list"
length(austria) # Count number of list elements in a list.
## [1] 3
nrow(austria) # NULL
## NULL
ncol(austria) # NULL
## NULL
# Try this as discovered completing sample mean
austria_sample.n <- length(austria)</pre>
 print(austria_sample.n)
## [1] 3
# No, it is still the way it was before, 3.
# Attempt different method as struggling with finding a way to count the observations
library(haven)
ESS9e03_1 <- read_sav("ESS9e03_1.sav")
View(ESS9e03 1)
typeof (ESS9e03_1)
```

```
## [1] "list"
```

```
# Interesting that this is also "list'
set.seed(5)
# Find number of observations regarding austria using loaded file instead of through original method
austria_data <- ESS9e03_1 %>%
  filter(cntry == "AT")
# The specific population that I am interested in here are voting age citizens in Austria.
austria_voters <- austria_data %>%
  filter(agea > 15)
# So the number of observations for the sample austrian_voters is 2483 obs. of 572 variables.
table(austria_voters$agea)
##
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
## 27 12 13 10 13 16 28 22 38 28 48 30 41 38 28 24 38 27 32 26 37 45 44 48 36 39
## 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## 38 32 41 31 38 30 54 62 56 45 56 46 51 49 48 43 48 37 50 38 44 48 30 42 26 46
## 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## 40 41 45 32 37 31 35 35 34 36 47 28 24 13 14 19 7 14 14 5
```

Disposable income (30 points) Find the variable netinum which measures monthly income from payed work, pensions, and social benefits AFTER tax deductions. The variable is based on survey questions G11a, G11b, and G11c, which you can find on page 77-85 of the codebook: See script. • Describe in a few sentences how the variable was measured (question wording, answer options, range, unit, measurement scale) (10 pt): The variable is based on three survey questions (G11a, G11b, G11c), "G11a And what is your usual weekly /monthly/annual net pay after tax and compulsory deduction?,"G11b What is your usual weekly, monthly, annual net income from pensions after tax and compulsory deductions"?,"G11c What is your usual weekly/monthly/annual net income from social benefits and/or grants after tax and compulsory deductions?" The wording suggests that researchers wished to gather data for the purposes of measuring income disparity as well as differences and similarities. It is interesting to not that each country's representatives can choose whether to include weekly, monthly or annual amounts. As we are dealing with a numerical variable, it is quantitative and continuous type of data, and is measured on an "ratio scale". Disposable income could also be adapted as part of an ordinal measurement scale if there were categories with varying values, such as between 10,000-25,000 EUROS. As a result of this measurement scale it is possible to do examples of the following statistical procedures such as ANOVA, regression, correlation and t-tests. • Calculate the 95 % confidence interval for the mean (10 pt) This indicates that at the 95% confidence interval, the true mean of monthly income after tax deductions in Austria is likely to be between 1765.277 and 2102.072 EUROS. However, there is a 5% chance that it will not be. The One Sample t-test estimates a mean of x, 1931.422. • Calculate the 90 % confidence interval for the mean (10 pt) This indicates that the 90% confidence interval, the true mean of monthly income after tax deductions in Austria is likely to fall between 1792.293 and 2074.056 EUROS. Similarly, the One Sample t-test estimates a mean of x, 1933.174 which agrees as it is the same sample from which the calculations have been made.

For both CI questions I also tried to use the linear regression method as a shortcut from this tutorial: ("https://bookdown.org/logan_kelly/r_practice/p09.html#directions-8") but I could not get it to work and it then changed CI percentages which I did not understand.

Find the variable 'netinum':

austria_monthly_income <- austria_voters\$netinum
print(austria_monthly_income)</pre>

Labels:

value label
666666666 Not applicable
777777777 Refusal
88888888 Don't know
999999999 No answer

table(austria_monthly_income)

##	austria_monthly_income												
##	150	250	300	330	350	360	375	400	420	425	440	459	460
##	1	2	2	1	2	1	1	15	3	1	1	1	2
##	465	477	485	500	520	530	540	550	560	590	600	620	630
##	1	1	1	7	2	2	1	1	2	2	8	1	1
##	635	640	645	650	653	660	670	680	700	708	720	727	748
##	1	4	1	6	1	1	1	2	17	1	3	1	1
##	750	760	775	780	787	790	800	820	830	834	838	840	843
##	9	1	1	4	1	1	24	4	6	1	1	6	1
##	850	855	860	863	869	870	875	880	890	891	900	905	920
##	15	1	5	1	1	12	1	2	7	1	37	1	4
##	925	930	931	935	939	940	945	950	960	967	970	978	979
##	1	4	1	1	1	1	1	11	3	1	5	1	1
##	980	990	998	1000	1009	1011	1020	1030	1033	1037	1038	1049	1050
##	7	1	3	30	1	1	3	2	1	1	1	1	18
##	1060	1070	1071	1072	1080	1087	1090	1097	1100	1104	1111	1120	1130
##	1 1140	2 1150	1 1165	1 1167	4 1170	1 1180	1 1190	1 1200	54 1212	1	1 1230	2 1240	2 1246
##	3	130	1	1	2	3	3	72	1212	1220 2	1230	4	1240
##	1247	1248	1250	1251	1255	1256	1260	1263	1266	1270	1277	1279	1280
##	1	1240	13	1	1	1	2	1	1	6	1	2	7
##	1282	1288	1290	1298	1300	1305	1310	1317	1320	1322	1324	1330	1342
##	1	1	5	1	69	1	1	2	9	1	1	2	1
##	1344	1345	1350	1353	1359	1360	1361	1370	1376	1378	1380	1385	1387
##	1	3	22	1	1	3	1	2	1	1	4	1	1
##	1389	1390	1400	1409	1412	1420	1430	1432	1440	1450	1458	1460	1461
##	1	4	52	1	2	1	2	1	1	17	1	4	1
##	1466	1470	1480	1482	1490	1492	1500	1510	1514	1518	1520	1522	1530
##	1	1	4	1	2	1	93	4	1	1	2	1	2
##	1537	1540	1550	1560	1570	1580	1600	1610	1615	1620	1630	1640	1647
##	1	5	8	5	1	4	60	1	1	2	1	2	1
##	1650	1670	1680	1682	1690	1699	1700	1720	1730	1745	1747	1750	1754
##	8	3	3	1	1	1	55	1	1	1	1	13	1
##	1760	1768	1780	1790	1796	1799	1800	1810	1826	1828	1850	1855	1860
##	6 1867	1 1870	5 1872	2 1889	1 1890	1 1899	115 1900	1 1908	1 1920	1 1930	15 1950	1 1951	1060
##	1	1670	1072	1009	3	1099	48	1900	1920	1930	1950	1951	1960 2
##	1970	1980	1986	1990	1995	2000		2050	2080	2100	2110	2130	2148
##		2		1330		79	2020			45		1	1
##	2150	2160	2180	2200	2220		2240		2260	2300	2330	2335	2350
##	1	1		61		1		2		26		1	2
##	2360	2377	2380	2390	2399	2400	2410	2450	2500	2530	2560	2600	2650
##	1	1		1	1	24		1		1		14	1
##	2670	2700	2800	2823	2890		2970	3000	3080	3100	3200	3300	3400
##	1	16	13	1	1	7	1	21	1	8	3	5	3
##	3446	3500	3600	3700	3800	3900	4000	4300	4350	4500	4900	5000	5400

```
5
                                            2
                                                  1
                  1
                        1
                               1
                                                        1
## 6000 10000 14000 17000 18000 20000 21000 23000 25000 26000 30000 32500 40000
                                                  1
## 42000 45000 48000 50000 55000 70000
             1
                   1
                         1
                               1
# Calculating a Confidence Interval using t-distribution, which is how much uncertainty there is with a
# Method one for 95%CI:
austria_monthly_income <- austria_voters$netinum</pre>
  sample.mean <-</pre>
   mean(austria_monthly_income, na.rm = TRUE)
    \#sample.mean = 1933.174
 print(sample.mean)
## [1] 1933.174
# Now find the number of values in a dataset.
sample.n <- length(austria_monthly_income)</pre>
 print(sample.n) # 2483L
## [1] 2483
# Standard deviation which describes how spread out the data is. It is a measure of how far each obse
  sample.sd <- sd(austria_monthly_income, na.rm = TRUE)</pre>
 print(sample.sd)
## [1] 3612.706
# 3612.706
# Use sample standard deviation in order to estimate the standard error of the mean.
  sample.se <- sample.sd/sqrt(sample.n)</pre>
  print(sample.se) # 72.50104
## [1] 72.50104
# Calculate the t-scores
  alpha = 0.05
  degrees.freedom = sample.n-1 # for t-distribution.
  # Number of standard errors above or below the mean in order to be within the confidence interval.
  t.score = qt(p=alpha/2, df=degrees.freedom, lower.tail = FALSE) # Upper tail
  print(t.score) # 1.96092
## [1] 1.96092
# So the result shows that we need to be approximately 2 standard errors above and below the mean in or
# Calculate the 95 \% confidence interval for the mean
margin.error = t.score * sample.se
print(margin.error)
```

```
## [1] 142.1688
# 141.1688
lower.bound <- sample.mean - margin.error</pre>
print(lower.bound) # 1791.005
## [1] 1791.005
upper.bound <- sample.mean + margin.error</pre>
print(upper.bound) # 2075.343
## [1] 2075.343
print(c(lower.bound,upper.bound))
## [1] 1791.005 2075.343
#Results: 1791.005 2075.343
# The 95% confidence interval is between 1791.005 and 2075.343
# Method 2 95%CI:
t.test(austria_monthly_income, conf.level = 0.95)
##
## One Sample t-test
##
## data: austria_monthly_income
## t = 22.582, df = 1780, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 1765.277 2101.072
## sample estimates:
## mean of x
## 1933.174
# One Sample t-test
# data: austria_monthly_income
# t = 22.598, df = 1783, p-value < 2.2e-16
\# alternative hypothesis: true mean is not equal to 0
# 95 percent confidence interval:
# 1763.793 2099.050
# sample estimates:
# mean of x
# 1931.422
```

The 95% confidence interval is between 1763.793 and 2099.050 according to method 2.

The 90% confidence interval (using method 2)

t.test(austria_monthly_income, conf.level = 0.90)

```
##
## One Sample t-test
##
## data: austria_monthly_income
## t = 22.582, df = 1780, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 90 percent confidence interval:
## 1792.293 2074.056
## sample estimates:
## mean of x
## 1933.174

# Mean 1933.174
# The mean income falls between 1792.293 2074.056.</pre>
```

Gender (30 points) Find the variable gndr, which measures the respondents gender. page 46-47 of the codebook. The variable is based on question F2 on • Describe in a few sentences how the variable was measured (question wording, answer options, range, unit, measurement scale) (10 pt) The variable is based on the survey question (F2) which gathers details about the respondent and other household members, the reference to sex refers to information regarding the members. The wording suggests that researchers wished to gather data for the purposes of assessing the make up of the household. This includes information regarding the name, sex, year and relationship that these members have to the respondent. As we are dealing with a qualitative variable, particularly, sex, it measured as a nominal variable.

• Calculate the 95 % confidence interval for the proportion of women (10 pt) Results: 0.5194139 0.5589976 1-sample proportions test with continuity correction

data: 1339 out of 1144 + 1339, null probability 0.5 X-squared = 15.157, df = 1, p-value = 9.891e-05 alternative hypothesis: true p is not equal to 0.5 95 percent confidence interval: 0.5194139 0.5589976 sample estimates: p 0.539267

• Calculate the 90 % confidence interval for the proportion of women (10 pt) Results: 0.5225777 0.5558698

1-sample proportions test with continuity correction

data: 1339 out of 1144 + 1339, null probability 0.5 X-squared = 15.157, df = 1, p-value = 9.891e-05 alternative hypothesis: true p is not equal to 0.5 90 percent confidence interval: $0.5225777 \ 0.5558698$ sample estimates: p 0.539267

In R, prop.test() can be used when your sample siye is large (n>30). It uses a normal approximation to the binomial distribution. By using a proportion test, it is possible to examine what proportion of voting age women make up the total of Austrian voters. We can compare our observed ration (males:females) of 88:103 (where 13 is the greatest common factor and then divide both by 13, 1144/13=88 and 1339/13=103) to the theoretical (or expected) ratio say of equality, 1:1.

austria gender

1 2

1144 1339

In our examples here, the p-value is greater than the usual alpha of 0.05 which suggests that there is no difference in the sample from the expected ratio of 1:1.

```
austria_gender <- austria_voters$gndr
print(austria_gender)</pre>
```

```
<labelled<double>[2483]>: Gender
##
   ##
  ##
  ##
##
  ##
  ##
##
  [297] 2 2 1 1 2 1 2 2 1 1 1 1 1
                  2 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 2
##
  ##
                                   2 2 1 2 1 2 1 1
  [371] 1 1 2 2 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1
##
##
  [408] 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 2 2 2 1
  [445] \ 1\ 2\ 1\ 1\ 1\ 1\ 1\ 2\ 1\ 2\ 1\ 2\ 2\ 1\ 1\ 1\ 1\ 1\ 2\ 1\ 2\ 1\ 1\ 1\ 2\ 2\ 2\ 1\ 1\ 1\ 1\ 2\ 1\ 1
##
##
  [482] \ 2\ 1\ 2\ 1\ 2\ 2\ 2\ 1\ 2\ 1\ 1\ 1\ 2\ 2\ 2\ 1\ 2\ 1\ 1\ 2\ 2\ 1\ 1\ 2\ 2\ 1\ 1\ 2\ 2\ 2\ 1\ 1\ 2\ 2\ 2
##
  ##
  [593] 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 1 1 2 1 1
##
##
  ##
  ##
##
  ##
  ##
  [852] 2 2 1 1 1 2 1 2 1 1 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 1
                                 2 1 1 1 2 2 1 2 1 2
##
  [889] 2 2 1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 2
##
##
  [926] \ 1\ 2\ 1\ 2\ 1\ 1\ 2\ 1\ 1\ 2\ 2\ 2\ 2\ 1\ 1\ 1\ 2\ 1\ 1\ 2\ 2\ 1\ 1\ 2\ 2\ 1\ 1\ 2\ 1\ 1\ 1
 [963] \ 2\ 2\ 1\ 1\ 2\ 2\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 2\ 1\ 2\ 1\ 2\ 1\ 1\ 1\ 1\ 1\ 2\ 2\ 1\ 2\ 2\ 2\ 1\ 1
## [1000] 2 2 2 2 1 1 1 1 1 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 1 2
 ## [1148] 2 2 2 2 2 1 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1
                            2 1 1 2
                                1 2
                                  1 1 2 1 1 2 2 2 2
## [1185] 2 2 2 1 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1
## [1259] 2 2 1 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1
## [1296] 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 2 2 1 2 2 2 2 1 1 1 1 1
## [1333] 1 1 2 1 1 2 2 1 2 1 1 1 1 1 1 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 1 2 1 1 1 1 1 1 2
## [1407] 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2
```

```
## [1518] 1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 1 2 1 1 2 2 2 2 2 1
## [1629] 2 1 1 2 2 2 2 1 1 1 2 1 2 1 2 2 1 1 1 2 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 1 2 2
## [1666] 1 1 1 1 1 2 2 2 1 1 2 1 2 1 1 1 1 2 1 2 1 1 2 2 2 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2
## [1703] 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 1 1 2 1 1 2 2 2 1 1 1 2
## [1740] 2 1 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 1 1 1 2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 1 1 1
## [1814] 1 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2
## [1888] 2 1 2 1 1 1 2 2 2 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 1
## [1925] 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 1 1 2 1 2 2 2 2 2 1
## [1962] 1 1 1 2 1 2 2 2 1 1 1 2 2 2 1 2 2 1 1 1 2 2 2 1 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 1 1
## [2036] 1 2 1 2 1 2 2 2 1 1 1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 2 1 1 2 2 1 2 1 2
## [2110] 2 2 1 1 1 1 1 2 2 2 1 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1
## [2147] 1 2 2 1 2 2 2 1 2 2 1 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 2 2 2 2 2 1 2 2 1 1 1 2 1 2
## [2221] 2 2 1 2 1 1 2 2 1 2 2 2 2 1 2 2 2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2
## [2258] 2 2 2 2 1 1 1 2 1 2 1 2 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2
## [2332] 1 2 2 1 2 2 2 1 2 2 2 1 1 1 1 1 2 2 1 2 1 2 1 2 1 2 2 2 1 1 2 2 2 1 2 1
## [2369] 1 1 2 2 1 2 2 2 1 2 1 1 1 2 1 2 1 2 2 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 1
## [2406] 2 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 2 1 2
## [2480] 2 1 1 2
##
## Labels:
##
  value
         label
##
          Male
     1
##
     2
         Female
##
     9 No answer
# Describe variable:
# As referred to in the cookbook and in the following code:
# Values
      Categories
# 1
      Male
# 2
      Female
# 3
      No answer
table(austria gender)
## austria_gender
  1
## 1144 1339
# austria_gender
# 1 2
```

```
# 1144 1339
str(austria gender)
##
   dbl+lbl [1:2483] 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, ...
##
   @ label
                   : chr "Gender"
   @ format.spss : chr "F1.0"
##
## @ display_width: int 6
##
   @ labels
                   : Named num [1:3] 1 2 9
##
     ..- attr(*, "names")= chr [1:3] "Male" "Female" "No answer"
view(austria_gender)
# Calculate the 95% confidence interval for the proportion of women.
prop.test(x=1339, n=1144 + 1339, conf.level =0.95, alternative = 'two.sided')
##
##
   1-sample proportions test with continuity correction
##
## data: 1339 out of 1144 + 1339, null probability 0.5
## X-squared = 15.157, df = 1, p-value = 9.891e-05
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
  0.5194139 0.5589976
## sample estimates:
##
          р
## 0.539267
# Calculate the 90% confidence interval for the proportion of women.
prop.test(x=1339, n=1144 + 1339, conf.level =0.90, alternative = 'two.sided')
##
##
   1-sample proportions test with continuity correction
##
## data: 1339 out of 1144 + 1339, null probability 0.5
## X-squared = 15.157, df = 1, p-value = 9.891e-05
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
  0.5225777 0.5558698
## sample estimates:
##
          p
## 0.539267
```

Produce a scatterplot (30 point) Find the variable Irscale which measured the ideological self-placement of respondents. The variable is based on survey question B26, which you can find on page 11 of the codebook. This will be your dependent variable (y-axis). • Create a scatterplot of net income and ideology (remember to label axes) (10 pt) • To your existing scatterplot, add colors or shapes to the points according to their value of the gender variable (remember to label legend) (10 pt) • Interpret the plot (10 pt) In the scatterplot ideological neutrality (value 5) has a relationship to those with a higher income compared to those with little or no ideological self-identification (value 0) or those with a very high ideological self-identification (value 10). There are some male respondents with an income in the range of 40-70K, however, these are mostly

located within the upper middle range between 5 and 8. However, there is a noticeable difference between those who self-identify as highly and not as ideological. There is evidence that participants with a lower "ideology value" simultaneously have very high income. However, it is shown that there are no Austrian respondents with a "very high ideology value (above 8)" and a higher income which tails to the right of the x-axis. Overall, those respondents with who have lower ideological self- identification (>5) have on average higher incomes than people with greater ideological sympathies (<5).

This is the dependent variable (y-axis) austria_voters\$lrscale

```
## [2329] 5 7 4 5 7
                               0
                                  0
                                     5
                                        6
                                           5 5
                                                 6
                                                   4
                                                          5
## [2353]
         5 6
                3 5 NA
                         2
                            4
                               5
                                  4
                                     6
                                        3
                                           5
                                              6
                                                 5
                                                    4
                                                       2
                                                          0
                                                            7
                                                                2 5
                                                                      5 5 NA
                5 8
## [2377]
          5
            7
                     5 NA
                            5
                               7
                                  5
                                     5
                                        6
                                           3
                                              5
                                                 5
                                                    0
                                                       6
                                                          5
                                                                4 NA
## [2401]
                               5 5 5 2 5 3 5 6 NA NA
          6 5 5 6 10
                         5
                            6
                                                                2
                                                                      3
                                                                        5
                                                                           8
                                                                              3
                                                             8
## [2425]
          6
             3
                4 NA
                      7
                         5
                            5
                               6
                                  3
                                     6 5
                                          1 NA
                                                 3
                                                    6
                                                       5
                                                          7 NA
                                                                5
                                                                   8
                                                                      5
                                                                         5
                                 5 5 NA 10 2 5 6 7
## [2449] 5
            7
                   4 10
                         8
                            5 5
                                                         3
                                                            5 10
               7
## [2473]
          5
             3 6 4
                         6
                            5
                               5
                                  5 NA
##
## Labels:
##
   value
              label
##
       0
               Left
##
       1
                  1
                  2
##
       2
       3
##
                  3
##
       4
                  4
##
       5
                  5
##
       6
                  6
       7
                  7
##
##
       8
                  8
##
       9
                  9
##
      10
              Right
##
      77
            Refusal
##
      88 Don't know
##
         No answer
summary(austria_voters$lrscale)
##
                                                     NA's
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
    0.000
            4.000
                    5.000
                            4.803
                                    6.000 10.000
                                                      224
austrian_gender_new <- austria_voters %>%
 mutate(gndr = case_when(
   gndr == 1 ~ "Male",
   gndr == 2 ~ "Female"
 ))
ggplot(data = austrian_gender_new, mapping = aes (x=netinum, y=lrscale, color = gndr)) +
 geom_point() +
 labs(Titel = "Scatterplot", x = "Net Income", y= "Ideology")
## Don't know how to automatically pick scale for object of type haven_labelled/vctrs_vctr/double. Defa
```

Don't know how to automatically pick scale for object of type haven_labelled/vctrs_vctr/double. Defa

Warning: Removed 832 rows containing missing values (geom_point).


```
# Zoom into a specified area
ggplot(austrian_gender_new, aes(netinum, lrscale, color = gndr)) +
  geom_point() +
  xlim(40000, 80000)
```

Don't know how to automatically pick scale for object of type haven_labelled/vctrs_vctr/double. Defa
Warning: Removed 2476 rows containing missing values (geom_point).

ylim (5.0, 8.75)

<ScaleContinuousPosition>

Range:

Limits: 5 -- 8.75