Number Theoretic Transform (NTT)

January 21, 2025

Recap on Interpolation

Distributed Lab

- ## zkdl-camp.github.io
- github.com/ZKDL-Camp

Plan

Recap on Interpolation

- 1 Recap on Interpolation
 - Polynomial Interpolation is a Universal Encoder
 - Motivation for NTT
- 2 Roots of Unity
 - Multiplicative Subgroup of Finite Fields
 - Barycentric Interpolation
- 3 Number Theoretic Transform
 - Three Gadgets
 - Polynomial vs NTT Domain
- 4 Details
 - Why NTT takes quasilinear complexity?

Recap on Interpolation

Polynomial Interpolation

Notice

Recap on Interpolation

0000

All the previous protocols use the idea that polynomials are universal data encoders.

Number Theoretic Transform

Polynomial Interpolation

Notice

Recap on Interpolation

All the previous protocols use the idea that polynomials are universal data encoders. We can encode any set of scalars $(a_0,\ldots,a_{N-1})\in\mathbb{F}^N$ using interpolation:

$$p(x_j) = a_j, \quad j = 0, \dots, N-1, \quad \{x_j\}_{j \in [N]}$$
 are fixed

Figure: Polynomial Interpolation as a universal encoder.

Example

In Groth16, we used interpolation of 3n polynomials:

$$L_{j}(i) = \ell_{i,j}, \quad R_{j}(i) = r_{i,j}, \quad O_{j}(i) = o_{i,j},$$

where $\ell_{i,j}$, $r_{i,j}$, $o_{i,j}$ are the elements of constraint matrices L, R, O(left, right, and output).

Polynomial Interpolation

Example

Recap on Interpolation

In Groth16, we used interpolation of 3n polynomials:

$$L_{j}(i) = \ell_{i,j}, \quad R_{j}(i) = r_{i,j}, \quad O_{j}(i) = o_{i,j},$$

where $\ell_{i,j}$, $r_{i,j}$, $o_{i,j}$ are the elements of constraint matrices L, R, O(left, right, and output).

However, in PlonK we have witnessed $a(\omega^{j}) = A_{i}$ where A_{i} are the elements of the left trace vector A.

Question

What the heck is this ω ? Why do we need it? How it helps?

$$a(1) = 2 \quad b(1) = 3 \quad c(1) = 6$$

$$a(\omega) = 6 \quad b(\omega) = 3 \quad c(\omega) = 9$$

$$a(\omega^{2}) = 9 \quad b(\omega^{2}) = 0 \quad c(\omega^{2}) = 8$$

$$\downarrow \qquad \qquad \downarrow$$

$$a(x) \qquad b(x) \qquad c(x)$$

Recall

Recap on Interpolation

The interpolation formula in given by:

$$p(x) = \sum_{i=0}^{N-1} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{N-1} \frac{x - x_j}{x_i - x_j}$$

Recall

Recap on Interpolation

The interpolation formula in given by:

$$p(x) = \sum_{i=0}^{N-1} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{N-1} \frac{x - x_j}{x_i - x_j}$$

Question

What is the naive complexity of this interpolation implementation?

Recall

Recap on Interpolation

The interpolation formula in given by:

$$p(x) = \sum_{i=0}^{N-1} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{N-1} \frac{x - x_j}{x_i - x_j}$$

Question

What is the naive complexity of this interpolation implementation?

Observation

Through careful choice of $\{x_i\}_{i\in[N]}$, we can reduce the complexity of interpolation, multiplication, or other complex operations to $\mathcal{O}(N \log N)$.

Recall

The interpolation formula in given by:

$$p(x) = \sum_{i=0}^{N-1} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{N-1} \frac{x - x_j}{x_i - x_j}$$

Question

What is the naive complexity of this interpolation implementation?

Observation

Through careful choice of $\{x_j\}_{j\in[N]}$, we can reduce the complexity of interpolation, multiplication, or other complex operations to $\mathcal{O}(N\log N)$. **Spoiler:** we will use the *n*th roots of unity domain $\Omega = \{\omega^j\}_{j\in[N]}$. Let us see why it helps.

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Question

Recap on Interpolation

Does (\mathbb{F}_p, \times) form a group?

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Number Theoretic Transform

Question

Does (\mathbb{F}_p, \times) form a group?

No, since 0 does not have an inverse. But, if we consider $(\mathbb{F}_p \setminus \{0\}, \times)$, we do have a group structure!

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Question

Recap on Interpolation

Does (\mathbb{F}_p, \times) form a group?

No, since 0 does not have an inverse. But, if we consider $(\mathbb{F}_p \setminus \{0\}, \times)$, we do have a group structure!

Definition

A multiplicative group of a finite field \mathbb{F} , denoted as \mathbb{F}^{\times} , is a multiplicative group ($\mathbb{F} \setminus \{0\}, \times$).

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Question

Recap on Interpolation

Does (\mathbb{F}_p, \times) form a group?

No, since 0 does not have an inverse. But, if we consider $(\mathbb{F}_p \setminus \{0\}, \times)$, we do have a group structure!

Definition

A multiplicative group of a finite field \mathbb{F} , denoted as \mathbb{F}^{\times} , is a multiplicative group ($\mathbb{F} \setminus \{0\}, \times$).

Number of Elements

The number of elements in \mathbb{F}_p^{\times} is p-1.

Theorem

Recap on Interpolation

Multiplicative group of a finite field \mathbb{F}_p^{\times} is **cyclic**. The generators ω of this group are called primitive roots.

Theorem

Recap on Interpolation

Multiplicative group of a finite field \mathbb{F}_p^{\times} is **cyclic**. The generators ω of this group are called primitive roots.

Example

 $\omega = 3$ is the primitive root of \mathbb{F}_7 . Indeed,

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$.

Clearly, $\langle \omega \rangle = \mathbb{F}_7^{\times}$.

Theorem

Recap on Interpolation

Multiplicative group of a finite field \mathbb{F}_p^{\times} is **cyclic**. The generators ω of this group are called **primitive roots**.

Example

 $\omega = 3$ is the primitive root of \mathbb{F}_7 . Indeed,

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$.

Clearly, $\langle \omega \rangle = \mathbb{F}_7^{\times}$.

The set \mathbb{F}_{p}^{\times} is not useful on its own. However, we can consider the following set, called *r*-th roots of unity:

$$\Omega_r = \{ \omega \in \mathbb{F}_p^{\times} \mid \omega^r = 1 \} \subset \mathbb{F}_p^{\times}.$$

Theorem

Multiplicative group of a finite field \mathbb{F}_p^{\times} is **cyclic**. The generators ω of this group are called **primitive roots**.

Example

 $\omega = 3$ is the primitive root of \mathbb{F}_7 . Indeed,

Roots of Unity

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$.

Clearly, $\langle \omega \rangle = \mathbb{F}_7^{\times}$.

The set \mathbb{F}_{p}^{\times} is not useful on its own. However, we can consider the following set, called *r*-th roots of unity:

$$\Omega_r = \{ \omega \in \mathbb{F}_p^{\times} \mid \omega^r = 1 \} \subset \mathbb{F}_p^{\times}.$$

Question. When such cyclic group exists?

Recap on Interpolation

Theorem (Lagrange Theorem)

If $\mathbb{H} \leq \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $ord(\mathbb{H}) \mid ord(\mathbb{G})$.

Recap on Interpolation

Theorem (Lagrange Theorem)

If $\mathbb{H} \leq \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $ord(\mathbb{H}) \mid ord(\mathbb{G})$.

Corollary

If Ω_r is a subgroup of \mathbb{F}_p^{\times} , then $r \mid (p-1)$.

Recap on Interpolation

Theorem (Lagrange Theorem)

If $\mathbb{H} \leq \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $\operatorname{ord}(\mathbb{H}) \mid \operatorname{ord}(\mathbb{G})$.

Corollary

If Ω_r is a subgroup of \mathbb{F}_p^{\times} , then $r \mid (p-1)$.

Some other Notes

Moreover, one might prove in the opposite direction:

• If $r \mid (p-1)$, then there exists a subgroup $\Omega_r \leq \mathbb{F}_p^{\times}$.

Recap on Interpolation

Theorem (Lagrange Theorem)

If $\mathbb{H} \leq \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $\operatorname{ord}(\mathbb{H}) \mid \operatorname{ord}(\mathbb{G})$.

Corollary

If Ω_r is a subgroup of \mathbb{F}_p^{\times} , then $r \mid (p-1)$.

Some other Notes

Moreover, one might prove in the opposite direction:

- If $r \mid (p-1)$, then there exists a subgroup $\Omega_r \leq \mathbb{F}_p^{\times}$.
- Its generator is given by $\omega = g^{(p-1)/r}$ where $\langle g \rangle = \mathbb{F}_p^{\times}$.

Recap on Interpolation

Theorem (Lagrange Theorem)

If $\mathbb{H} < \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $ord(\mathbb{H}) \mid ord(\mathbb{G})$.

Corollary

If Ω_r is a subgroup of \mathbb{F}_p^{\times} , then $r \mid (p-1)$.

Some other Notes

Moreover, one might prove in the opposite direction:

- If $r \mid (p-1)$, then there exists a subgroup $\Omega_r \leq \mathbb{F}_p^{\times}$.
- Its generator is given by $\omega = g^{(p-1)/r}$ where $\langle g \rangle = \mathbb{F}_p^{\times}$.

Yet another note

Typically, we would need r to be the power of two. We will see why in the NTT section.

Complex Analysis Interpretation

Recap on Interpolation

Figure: Visualization of the roots of unity $\Omega_5 = \{z \in \mathbb{C} : z^5 = 1\}$.

On the complex plane, the generator of the *r*-th roots of unity Ω_r is given by $\zeta_r = e^{2\pi i/r}$. In a finite field, we do not have such a luxury.

Definition

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Definition

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

Definition

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

The interesting question is: what is the vanishing polynomial of the r-th roots of unity Ω_r ? For simplicity, assume c = 1.

Definition

Recap on Interpolation

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

The interesting question is: what is the vanishing polynomial of the r-th roots of unity Ω_r ? For simplicity, assume c=1.

Lemma

The vanishing polynomial of Ω_r is $z_{\Omega}(x) = x^r - 1$.

Definition

Recap on Interpolation

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

The interesting question is: what is the vanishing polynomial of the r-th roots of unity Ω_r ? For simplicity, assume c=1.

Lemma

The vanishing polynomial of Ω_r is $z_{\Omega}(x) = x^r - 1$.

Proof Idea. Since for any $\zeta \in \Omega_r$ we have $\zeta^r = 1$, or, equivalently, $\zeta^{r} - 1 = 0.$

Definition

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

The interesting question is: what is the vanishing polynomial of the r-th roots of unity Ω_r ? For simplicity, assume c=1.

Lemma

The vanishing polynomial of Ω_r is $z_{\Omega}(x) = x^r - 1$.

Proof Idea. Since for any $\zeta \in \Omega_r$ we have $\zeta^r = 1$, or, equivalently, $\zeta^r - 1 = 0$. Thus, any $\zeta \in \Omega_r$ is a root of $z_{\Omega}(x) = x^r - 1$.

Vanishing Polynomial over \mathbb{R}

Figure: Vanishing polynomial p(x) = (x - 1)(x - 2)(x - 4) of $D = \{1, 2, 4\}$

Number Theoretic Transform

Barycentric Interpolation

Now, let us come back to the interpolation problem $p(x_j) = a_j$ for $j \in [N]$. Introduce $\gamma(x) = \prod_{j=0}^{N-1} (x - x_j)$.

Barycentric Interpolation

Now, let us come back to the interpolation problem $p(x_i) = a_i$ for $j \in [N]$. Introduce $\gamma(x) = \prod_{i=0}^{N-1} (x - x_i)$.

Proposition

Recap on Interpolation

The Lagrange basis polynomial ℓ_i can be rewritten as:

$$\ell_j(x) = \gamma(x) \cdot \frac{w_j}{x - x_j}, \quad w_j = \frac{1}{\sum_{k=0, k \neq j}^{N-1} (x_j - x_k)}.$$

Barycentric Interpolation

Now, let us come back to the interpolation problem $p(x_j) = a_j$ for $j \in [N]$. Introduce $\gamma(x) = \prod_{i=0}^{N-1} (x - x_j)$.

Proposition

Recap on Interpolation

The Lagrange basis polynomial ℓ_i can be rewritten as:

$$\ell_j(x) = \gamma(x) \cdot \frac{w_j}{x - x_j}, \quad w_j = \frac{1}{\sum_{k=0, k \neq j}^{N-1} (x_j - x_k)}.$$

Let us substitute it into the interpolation formula:

$$p(x) = \sum_{i=0}^{N-1} a_i \ell_j(x) = \sum_{i=0}^{N-1} a_i \gamma(x) \frac{w_j}{x - x_j}$$

Barycentric Interpolation

Now, let us come back to the interpolation problem $p(x_j) = a_j$ for $j \in [N]$. Introduce $\gamma(x) = \prod_{i=0}^{N-1} (x - x_j)$.

Proposition

Recap on Interpolation

The Lagrange basis polynomial ℓ_i can be rewritten as:

$$\ell_j(x) = \gamma(x) \cdot \frac{w_j}{x - x_j}, \quad w_j = \frac{1}{\sum_{k=0, k \neq j}^{N-1} (x_j - x_k)}.$$

Let us substitute it into the interpolation formula:

$$p(x) = \sum_{j=0}^{N-1} a_j \ell_j(x) = \sum_{j=0}^{N-1} a_j \gamma(x) \frac{w_j}{x - x_j} = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j.$$

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Proposition

Recap on Interpolation

• Computing $\{w_j\}_{j\in[N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Proposition

Recap on Interpolation

- Computing $\{w_j\}_{j\in[N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.
- Both $\gamma(x)$ and sum requires $\mathcal{O}(N)$ operations.

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Proposition

Recap on Interpolation

- Computing $\{w_i\}_{i\in[N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.
- Both $\gamma(x)$ and sum requires $\mathcal{O}(N)$ operations.

But what happens if instead of x_i , we use $\omega^j \in \Omega_N$?

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Proposition

Recap on Interpolation

- Computing $\{w_j\}_{j\in[N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.
- Both $\gamma(x)$ and sum requires $\mathcal{O}(N)$ operations.

But what happens if instead of x_i , we use $\omega^j \in \Omega_N$?

$$p(x) = \frac{x^N - 1}{N} \sum_{j \in [N]} \frac{\omega^j}{x - \omega^j} a_j$$

Barycentric Formula: $p(x) = \gamma(x) \sum_{i=0}^{N-1} \frac{w_j}{x - x_j} a_j$

Proposition

Recap on Interpolation

- Computing $\{w_j\}_{j\in[N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.
- Both $\gamma(x)$ and sum requires $\mathcal{O}(N)$ operations.

But what happens if instead of x_i , we use $\omega^j \in \Omega_N$?

$$p(x) = \frac{x^N - 1}{N} \sum_{j \in [N]} \frac{\omega^j}{x - \omega^j} a_j$$

Takeaway: We can interpolate+evaluate in $\mathcal{O}(N)$ operations.

Number Theoretic Transform

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you *know* polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you know polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

This means either of two (typically):

• You know the polynomial coefficients p_0, \ldots, p_{N-1} .

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you *know* polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

This means either of two (typically):

- You know the polynomial coefficients p_0, \ldots, p_{N-1} .
- You know the polynomial values at some points $\{(x_i, a_i)\}_{i \in [N]}$.

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you know polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

This means either of two (typically):

- You know the polynomial coefficients p_0, \ldots, p_{N-1} .
- You know the polynomial values at some points $\{(x_i, a_i)\}_{i \in [N]}$.

Definition (NTT)

Suppose $p(x) = \sum_{i=0}^{N-1} p_i x^i$. The Number Theoretic Transform (NTT) of p is defined as evaluations of p at the N-th roots of unity:

Recap on Interpolation

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you *know* polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

This means either of two (typically):

- You know the polynomial coefficients p_0, \ldots, p_{N-1} .
- You know the polynomial values at some points $\{(x_i, a_i)\}_{i \in [N]}$.

Definition (NTT)

Suppose $p(x) = \sum_{i=0}^{N-1} p_i x^i$. The Number Theoretic Transform (NTT) of p is defined as evaluations of p at the N-th roots of unity:

$$\mathsf{NTT}(p) = \left(p(\omega^0), p(\omega^1), \dots, p(\omega^{N-1})\right).$$

Recap on Interpolation

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Recap on Interpolation

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property

Recap on Interpolation

Suppose m(x) = p(x)q(x) is the product of p and q. Then,

$$\hat{\pmb{m}} = \hat{\pmb{p}} \odot \hat{\pmb{q}}$$

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property

Suppose m(x) = p(x)q(x) is the product of p and q. Then,

$$\hat{\pmb{m}} = \hat{\pmb{p}} \odot \hat{\pmb{q}}$$

Speaking more formally, NTT : $(\mathbb{F}^{(\leq N)}[X], \times) \to (\mathbb{F}^N, \odot)$ is a homomorphism between a set of polynomials of degree up to N and their NTT domain. With certain appropriate technicalities, NTT can be extended to the isomorphism (namely, use $\mathbb{F}[X]/(X^N-1)$).

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property

Suppose m(x) = p(x)q(x) is the product of p and q. Then,

$$\hat{\pmb{m}} = \hat{\pmb{p}} \odot \hat{\pmb{q}}$$

Speaking more formally, NTT : $(\mathbb{F}^{(\leq N)}[X], \times) \to (\mathbb{F}^N, \odot)$ is a homomorphism between a set of polynomials of degree up to N and their NTT domain. With certain appropriate technicalities, NTT can be extended to the isomorphism (namely, use $\mathbb{F}[X]/(X^N-1)$).

Why?

Recap on Interpolation

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property

Suppose m(x) = p(x)q(x) is the product of p and q. Then,

$$\hat{\pmb{m}} = \hat{\pmb{p}} \odot \hat{\pmb{q}}$$

Speaking more formally, NTT : $(\mathbb{F}^{(\leq N)}[X], \times) \to (\mathbb{F}^N, \odot)$ is a homomorphism between a set of polynomials of degree up to N and their NTT domain. With certain appropriate technicalities, NTT can be extended to the isomorphism (namely, use $\mathbb{F}[X]/(X^N-1)$).

Why?Well...
$$m(\omega^j) = p(\omega^j)q(\omega^j)$$
 :/

Final Ingredient: Inverse NTT

Recap on Interpolation

Now, can we restore the polynomial m(x) from its NTT \hat{m} ?

Final Ingredient: Inverse NTT

Now, can we restore the polynomial m(x) from its NTT \hat{m} ?Of course!

Definition

Recap on Interpolation

Inverse NTT The Inverse Number Theoretic Transform (INTT) is a function that restores the polynomial m(x) from its evaluations \hat{m} :

$$\mathsf{INTT}(\hat{m}) = (m_0, m_1, \ldots, m_{N-1})$$

Final Ingredient: Inverse NTT

Now, can we restore the polynomial m(x) from its NTT \hat{m} ?Of course!

Definition

Recap on Interpolation

Inverse NTT The Inverse Number Theoretic Transform (INTT) is a function that restores the polynomial m(x) from its evaluations \hat{m} :

$$INTT(\hat{m}) = (m_0, m_1, \dots, m_{N-1})$$

In its essence, we solve the interpolation problem:

$$m(\omega^j) = \hat{m}_j, \quad j \in [N],$$
 Goal: find coefficients m_0, \ldots, m_{N-1}

Recap on Interpolation

Polynomial Space $\mathbb{F}^{(\leq N)}[x]$

$$m = p \cdot q$$

Recap on Interpolation

Polynomial Space $\mathbb{F}^{(\leq N)}[x]$

$$p, q \longrightarrow m = p \cdot q$$

Polynomial Space $\mathbb{F}^{(\leq N)}[x]$

$$p, q \xrightarrow{\mathcal{O}(N^2)} m = p \cdot q$$

NTT Space

Polynomial Space $\mathbb{F}^{(\leq N)}[x]$

$$p, q \xrightarrow{\mathcal{O}(N^2)} m = p \cdot q$$

$$\hat{p}, \hat{q}$$
 $\hat{m} = \hat{p} \odot \hat{q}$

NTT Space

Polynomial Space $\mathbb{F}^{(\leq N)}[x]$

NTT Space

Illustration

Figure: Illustration of the FFT Algorithm. Taken from "The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever?"

Details

Note

Recap on Interpolation

For NTT to work, we will impose two requirements on our setup:

1. The field \mathbb{F}_p should have 2^k -roots of unity for sufficiently many k. In other words, $p = p' \cdot 2^m + 1$ with small $p' \in \mathbb{N}$.

Note

Recap on Interpolation

For NTT to work, we will impose two requirements on our setup:

- 1. The field \mathbb{F}_p should have 2^k -roots of unity for sufficiently many k. In other words, $p = p' \cdot 2^m + 1$ with small $p' \in \mathbb{N}$.
- 2. The polynomial order is $N=2^k$. Not a strict requirement, since we can always pad the polynomial with zeros.

Note

Recap on Interpolation

For NTT to work, we will impose two requirements on our setup:

- 1. The field \mathbb{F}_p should have 2^k -roots of unity for sufficiently many k. In other words, $p = p' \cdot 2^m + 1$ with small $p' \in \mathbb{N}$.
- 2. The polynomial order is $N=2^k$. Not a strict requirement, since we can always pad the polynomial with zeros.

Example

• BabyBear prime $p = 15 \cdot 2^{27} + 1$ is NTT-friendly: the order of multiplicative group is $15 \cdot 2^{27}$, so $2^k \mid 15 \cdot 2^{27}$ for all $k \leq 27$.

Note

Recap on Interpolation

For NTT to work, we will impose two requirements on our setup:

- 1. The field \mathbb{F}_p should have 2^k -roots of unity for sufficiently many k. In other words, $p = p' \cdot 2^m + 1$ with small $p' \in \mathbb{N}$.
- 2. The polynomial order is $N=2^k$. Not a strict requirement, since we can always pad the polynomial with zeros.

Example

- BabyBear prime $p = 15 \cdot 2^{27} + 1$ is NTT-friendly: the order of multiplicative group is $15 \cdot 2^{27}$, so $2^k \mid 15 \cdot 2^{27}$ for all k < 27.
- Mersenne prime $p = 2^{31} 1$ is not NTT-friendly: the order of multiplicative group is $2^{31} - 2 = 2 \times (2^{30} - 1)$.

Recap on Interpolation

Why NTT takes quasilinear complexity?

Recall that we need to evaluate N expressions:

$$p(\omega^j) = \sum_{i=0}^{N-1} p_i(\omega^j)^i = \sum_{i=0}^{N-1} p_i \omega^{ij}, \quad j \in [N].$$

Recap on Interpolation

Why NTT takes quasilinear complexity?

Recall that we need to evaluate N expressions:

$$p(\omega^j) = \sum_{i=0}^{N-1} p_i(\omega^j)^i = \sum_{i=0}^{N-1} p_i\omega^{ij}, \quad j \in [N].$$

Naive Complexity: $\mathcal{O}(N^2)$ operations. We need N evaluations, each of which requires N multiplications.

Recap on Interpolation

Why NTT takes quasilinear complexity?

Recall that we need to evaluate N expressions:

$$p(\omega^j) = \sum_{i=0}^{N-1} p_i(\omega^j)^i = \sum_{i=0}^{N-1} p_i \omega^{ij}, \quad j \in [N].$$

Naive Complexity: $\mathcal{O}(N^2)$ operations. We need N evaluations, each of which requires N multiplications.

$$p(\omega^{j}) = \sum_{i=0}^{2^{r}-1} p_{i}\omega^{ij} = \sum_{i=0}^{2^{r-1}-1} p_{2i}\omega^{2ij} + \sum_{i=0}^{2^{r-1}-1} p_{2i+1}\omega^{j(2i+1)}$$
$$= \sum_{i=0}^{2^{r-1}-1} p_{2i}(\omega^{2j})^{i} + \omega^{j} \sum_{i=0}^{2^{r-1}-1} p_{2i+1}(\omega^{2j})^{i}.$$

Recap on Interpolation

Denote
$$p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i}x^i$$
 and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1}x^i$.
Then, $p(\omega^j) = p_E(\omega^{2j}) + \omega^j p_O(\omega^{2j})$.

Recap on Interpolation

Denote
$$p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i}x^i$$
 and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1}x^i$.
Then, $p(\omega^j) = p_E(\omega^{2j}) + \omega^j p_O(\omega^{2j})$.

Fact #1

We need only N/2 evaluations from Ω of p_F and p_Q . Note that:

$$p(\omega^{j+N/2}) = p_E(\omega^{2j}) + \omega^j \omega^{N/2} p_O(\omega^{2j}).$$

Recap on Interpolation

Denote $p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i} x^i$ and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1} x^i$. Then, $p(\omega^j) = p_F(\omega^{2j}) + \omega^j p_O(\omega^{2j}).$

Fact #1

We need only N/2 evaluations from Ω of p_F and p_Q . Note that:

$$p(\omega^{j+N/2}) = p_E(\omega^{2j}) + \omega^j \omega^{N/2} p_O(\omega^{2j}).$$

Fact #2

• We need to evaluate two N/2-degree polynomials.

Denote $p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i} x^i$ and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1} x^i$. Then, $p(\omega^j) = p_F(\omega^{2j}) + \omega^j p_O(\omega^{2j}).$

Fact #1

We need only N/2 evaluations from Ω of p_F and p_Q . Note that:

$$p(\omega^{j+N/2}) = p_E(\omega^{2j}) + \omega^j \omega^{N/2} p_O(\omega^{2j}).$$

Fact #2

- We need to evaluate two N/2-degree polynomials.
- We need to evaluate them at N/2 points.

Recap on Interpolation

Denote $p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i}x^i$ and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1}x^i$. Then, $p(\omega^j) = p_E(\omega^{2j}) + \omega^j p_O(\omega^{2j})$.

Fact #1

We need only N/2 evaluations from Ω of p_E and p_O . Note that:

$$p(\omega^{j+N/2}) = p_E(\omega^{2j}) + \omega^j \omega^{N/2} p_O(\omega^{2j}).$$

Fact #2

- We need to evaluate two N/2-degree polynomials.
- We need to evaluate them at N/2 points. Thus, we shrink the problem size by half at each step.

Algorithm Summarized

```
Algorithm 1: Number Theoretic Transform (NTT)
   Input: Polynomial p(x) = \sum_{i=0}^{N-1} p_i x^i
   Output Vector of evaluations NTT(\boldsymbol{p},\omega) at \Omega = \{\omega\}_{i\in[N]}
1 if N=1 then
        Return : (p_0)
2 end
3 H \leftarrow N/2 /* Compute the domain half-size
                                                                                       */
4 p_F \leftarrow (p_0, p_2, \dots, p_{N-2}) /* Find even-indexed coefficients
5 \boldsymbol{p}_O \leftarrow (p_1, p_3, \dots, p_{N-1}) /* Find odd-indexed coefficients
                                                                                       */
6 \mathbf{y}_F \leftarrow \mathsf{NTT}(\mathbf{p}_F, \omega^2) /* Compute NTT for even polynomial via
       \frac{N}{2}th primitive root \omega^2
                                                                                       */
7 \mathbf{y}_O \leftarrow \mathsf{NTT}(\mathbf{p}_O, \omega^2) /* Compute NTT for odd polynomial via
       \frac{N}{2}th primitive root \omega^2
                                                                                       */
   Return: (y_0, \dots, y_{N-1}) with y_i = y_{E, i \mod H} + \omega^j y_{O, i \mod H}
```

Inverse NTT

Recap on Interpolation

Theorem

The Inverse NTT can be computed in the same way as NTT, but with the inverse primitive root ω^{-1} :

$$p_j = \frac{1}{N} \sum_{i=0}^{N-1} \omega^{-ij} \hat{p}_i$$

Thus, its complexity is also $\mathcal{O}(N \log N)$.

Inverse NTT

Recap on Interpolation

Theorem

The Inverse NTT can be computed in the same way as NTT, but with the inverse primitive root ω^{-1} :

$$p_j = \frac{1}{N} \sum_{i=0}^{N-1} \omega^{-ij} \hat{p}_i$$

Thus, its complexity is also $\mathcal{O}(N \log N)$.

Conclusion

To compute m(x) = p(x)q(x), simply use the following:

$$m(x) = INTT(NTT(p) \odot NTT(q))$$

The total complexity remains $\mathcal{O}(N \log N)$.

Thank you for your attention

zkdl-camp.github.io
 github.com/ZKDL-Camp

