Universidad de Costa Rica

Escuela de Ciencias de la Computación e Informática

MA1006 - Introducción al Análisis Numérico

Profesor

Mario De León Urbina

Prueba Corta 1

Estudiantes

Marco Ferraro Rodríguez **B82957** José Pablo Mora Villalobos **B85326** Lucía Sanahuja Vindas **B36401** Juan Valverde Campos **B47200**

Problema 1

a)
$$F(\beta, t, -U, U) = F(10, 2, -2, 1)$$

- $\beta = 10$
- \bullet t = 2
- $\bullet \quad L = -U = -2$
- U = 2

Primero establecemos la cantidad de elementos mediante la cardinalidad:

$$cardF(\beta, t, L, U) = 2(\beta - 1)\beta^{t-1}(U - L + 1) + 1 = 2(10 - 1)10^{2-1}(2 - (-2) + 1)$$

= **901**

Ahora hacemos el cálculo de x_{min} y x_{max} :

$$x_{min} = \beta^L = 10^{-2} = 0.01$$

$$x_{max} = (1 - \beta^{-t})(\beta^{U+1}) = (1 - 10^{-2}) * (10^{2+1}) = 990$$

b) La respuesta a esta pregunta está en el archivo *Quiz1.mlx*.

Problema 2

Representar $(32995)_{10}$ en notación flotante de precisión doble

Paso 1: Obtener número a forma binaria		
Número	Forma Binaria	
32995	1000 0000 1110 0011	

Paso 2: Se procede a normalizar el número			
obtenido			
Número Binaria	Número Normalizado		
1000 0000 1110 0011	1, 000 0000 1110 0011 x 10 ¹⁵		

Paso 3: Determinar el			
exponente sesgado			
Sumatoria	Resultado		
15 + 1023	1038		

Paso 4. Obtener el exponente			
sesgado en binario (11 bits)			
Número	Forma Binaria		
1038	0100 0000 1110		

Paso 5: Se procede a obtener la mantisa			
normalizada (53 bits)			
Mantisa Normalizada	000 0000 1110 0011 0		

Paso 6: Determinar el			
signo del número (1 bit)			
Signo	Valor S		
+	0		

	Paso 7: Se obtiene el número en IEEE con			
	precisión doble			
S	Exponente Sesgado	Mantisa Normalizada		
0	100 0000 1110	000 0000 1110 0011 0		
1	11	52		

Problema 3

a) Se sabe que la fórmula de velocidad está dada por:

$$v = \frac{mg}{k} \left(1 - e^{\frac{-k}{m} \cdot t} \right)$$

Para este ejercicio nos dan unos valores previamente definidos, dónde:

$$v = 40 m/s$$

$$m = 68.1 kg$$

$$t = 10 s$$

$$g = 9.8 m/s^{2}$$

Ahora, si queremos montar una ecuación no lineal f(k) reemplazamos estas igualdades en la primera ecuación:

$$40 = \frac{68.1 \cdot 9.8}{k} \left(1 - e^{\frac{-k}{68.1} \cdot 10} \right)$$

$$f(k) = \frac{68.1 \cdot 9.8}{k} \left(1 - e^{\frac{-k}{68.1} \cdot 10} \right) - 40 = 0$$

La gráfica de la función de f(k)es la siguiente:

b) Para usar el algoritmo de bisección necesitamos un intervalo donde la función sea continua y $f(a) \cdot f(b) < 0$. Basado en la gráfica de la función, esto se cumple para el intervalo [14,15].

A continuación, se muestran las primeras tres iteraciones del método de bisección. La respuesta final se obtuvo utilizando MATLAB. Esta respuesta se puede encontrar en el archivo adjunto *Quiz1.mlx*.

Iteración 0:

$$a = 14 \Rightarrow f(a) = 1.5687$$

$$b = 15 \Rightarrow f(b) = -0.4248$$

$$w = \frac{15 + 14}{2} = 14.5 \Rightarrow f(w) = 0,5523$$

$$e = |b - a| = |15 - 14| = 1 > 0.005$$

Iteración 1:

$$a = 14.5 \Rightarrow f(a) = 0,5523$$

$$b = 15 \Rightarrow f(b) = -0.4248$$

$$w = \frac{15 + 14.5}{2} = 14.75 \Rightarrow f(w) = 0.0589$$

$$e = |b - a| = |15 - 14.75| = 0.5 > 0.005$$

Iteración 2:

$$a = 14.75 \Rightarrow f(a) = 0,0589$$

$$b = 15 \Rightarrow f(b) = -0.4248$$

$$w = \frac{15 + 14.75}{2} = 14.875 \Rightarrow f(w) = -0.0629$$

$$e = |b - a| = |15 - 14.75| = 0.25 > 0.005$$

Resultados obtenidos mediante MATLAB (el código está adjunto en el archivo *Quiz1.mlx*):

>> biseccion	T2(f, 14,	15, 0.005,	100);		
Iter	a	b	x	f(x)	error
1.0000	14.0000	15.0000	14.5000	0.5523	1.0000
2.0000	14.5000	15.0000	14.7500	0.0590	0.5000
3.0000	14.7500	15.0000	14.8750	-0.1841	0.2500
4.0000	14.7500	14.8750	14.8125	-0.0629	0.1250
5.0000	14.7500	14.8125	14.7812	-0.0020	0.0625
6.0000	14.7500	14.7812	14.7656	0.0284	0.0312
7.0000	14.7656	14.7812	14.7734	0.0132	0.0156
8.0000	14.7734	14.7812	14.7773	0.0056	0.0078
9.0000	14.7773	14.7812	14.7793	0.0018	0.0039

Con el método de la bisección, se obtiene que el coeficiente de arrastre k, converge a 14.7793 para f(k) = 0 en la iteración 9, con una tolerancia del 0.5%.