Лекция 1.Повторение школьного курса.

Векторы на плоскости..

Определение. Фиксированным вектором называется отрезок AB если указано, какая из точек A или B является его началом, а какая концом. Если A — начало, а B — конец, то фиксированный вектор обозначается \overrightarrow{AB} .

Определение. Длиной фиксированного вектора \overrightarrow{AB} называется длина отрезка AB.

Определение. Фиксированные векторы \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются, сонаправленными, если $\overrightarrow{AB}||\overrightarrow{A_1B_1}|$ и лучи \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ сонаправлены .

Определение. Два фиксированных вектора \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются равными, если они сонаправлены и имеют одинаковую длину. Пишем $\overrightarrow{AB} = \overrightarrow{A_1B_1}$. Очевидно, $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow$ они совмещаются параллельным переносом.

Для отношения "=" на множестве фиксированных векторов плоскости верны следующие свойства:

- $\mathbf{1}.\overrightarrow{AB} = \overrightarrow{AB}$.
- **2.** $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow \overrightarrow{A_1B_1} = \overrightarrow{AB}$,
- **3.** $(\overrightarrow{AB} = \overrightarrow{A_1B_1} \cap \overrightarrow{A_1B_1} = \overrightarrow{AB}) \Rightarrow \overrightarrow{AB} = \overrightarrow{A_2B_2}$.

Следовательно, отношение "=" является отношением эквивалентности, и множество фиксированных векторов плоскости распадается на классы эквивалентных друг другу фиксированных векторов плоскости, непересекающиеся между собой.

Определение. Вектором \vec{a} называется класс равных между собой фиксированных векторов плоскости. Длина вектора \vec{a} обозначается $|\vec{a}|$.

Если вектор \vec{a} задается фиксированным вектором \vec{AB} , то пишем $\vec{a} = \vec{AB}$, и говорим, что \vec{AB} есть вектор \vec{a} , отложенный из точки A.

Предложение. Для вектороа \vec{a} и точки A существует и притом единственная точка B, такая , что $\vec{a} = \overrightarrow{AB}$.

Доказательство.

Определение. Вектор, имеющий нулевую длину, называется *нулевым* и обозначается $\vec{\mathbf{o}}$. Вектор, длина которого равна 1, называется *единичным*.

Определение. Векторы \vec{a} и \vec{b} называются сонаправленными (противоположно направленными), если задающие их фиксированные векторы сонаправлены (противоположно направлены). Пишем $\vec{a} \uparrow \uparrow \vec{b}$ ($\vec{a} \uparrow \downarrow \vec{b}$). Два вектора, направления которых совпадают или противоположны,

называются коллинеарными. Пишем $\vec{\mathbf{a}} \parallel \vec{\mathbf{b}}$. Считается, что $\vec{\mathbf{o}}$ коллинеарен каждому вектору. Три и более векторов, параллельных одной плоскости называются компланарными.

Определение. Определение суммы двух векторов по правилу треугольника.

Теорема. Данное определение операции сложения корректно.

Доказательство.

Теорема.

 $\forall \vec{a}, \vec{b}, \vec{c}$ верно:

$$\mathbf{1.} \ \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{a}};$$

2.
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$
;

$$3. \overrightarrow{a} + \overrightarrow{o} = \overrightarrow{a}$$
.

4. $\exists ! \ \vec{\mathbf{x}} : \vec{\mathbf{a}} + \vec{\mathbf{x}} = \vec{\mathbf{o}}$. Такой вектор называется противоположным к $\vec{\mathbf{a}}$ и обозначается $-\overrightarrow{a}$.

Доказательство

Определение. Определение суммы двух векторов по правилу параллелограмма.

Определение. Разностью двух векторов \vec{a} и \vec{b} называется такой вектор $\vec{\mathbf{d}}$, что $\vec{\mathbf{b}} + \vec{\mathbf{d}} = \vec{\mathbf{a}}$. Пишем $\vec{\mathbf{d}} = \vec{\mathbf{a}} - \vec{\mathbf{b}}$.

Теорема. Разность векторов существует и определяется однозначно.

Доказательство.

Определение. Произведением вектора \vec{a} на число λ называется такой вектор $\vec{\mathbf{b}}$, что

1.
$$\vec{a} \uparrow \uparrow \vec{b}$$
, если $\lambda > 0$, и $\vec{a} \uparrow \downarrow \vec{b}$, если $\lambda < 0$;

$$2.|\vec{\mathbf{b}}| = |\lambda| \cdot |\vec{\mathbf{a}}|.$$

Пишем $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Теорема.

1.
$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$
; 3. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;

3.
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$

2.
$$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$$
;

4.
$$1 \cdot \overrightarrow{a} = \overrightarrow{a}$$
.

3. ненулевые векторы \vec{a} и \vec{b} коллинеарны \Leftrightarrow существует такое число λ , что $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Доказательство.

Определение. Пусть \vec{a} и \vec{b} – два ненулевых вектора. Отложим их из одной точки $O: \vec{\mathbf{a}} = \overrightarrow{OA}, \vec{\mathbf{b}} = \overrightarrow{OB}$. Тогда углом между векторами $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется угол между лучами OA и OB, т.е. $\alpha = \angle AOB$. Пишем

$$\alpha = \angle (\vec{a}, \vec{b}).$$

Определение. Скалярным произведением двух векторов \vec{a} и \vec{b} называется *число*

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}). \tag{1}$$

Число $\vec{\mathbf{a}}^2 = \vec{\mathbf{a}} \cdot \vec{\mathbf{a}}$ называется скалярным квадратом вектора $\vec{\mathbf{a}}$.

Теорема. Скалярный квадрат $\vec{a}^2 = \vec{a} \cdot \vec{a}$ вектора равен квадрату его длины $|\vec{a}|^2$.

2. Для того, чтобы ненулевые векторы \vec{a} и \vec{b} были перпендикулярны необходимо и достаточно, чтобы их скалярное произведение было равно нулю ($\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$).

Доказательство.

Теорема.

- 1. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$:
- 2. $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$;
- 3. $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$:
- **4.** $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} \ge 0$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = 0 \Leftrightarrow \vec{\mathbf{a}} = \vec{\mathbf{o}}$

Доказательство.

Замечание.

$$\cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) / (|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|). \tag{2}$$

Скалярное произведение обозначается также, как: $(\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема. Пусть $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ - неколлинеарные векторы на плоскости. Для любого вектора $\vec{\mathbf{c}}$ существуют такие числа x_1, x_2 , что

$$\vec{\mathbf{c}} = x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}, \qquad (3)$$

причём x_1, x_2 определены однозначно.

Доказательство.

Представление вектора \vec{c} в виде (3) называется разложением по базису, состоящему из векторов $\{\vec{a}, \vec{b}\}$. Числа x_1, x_2 называются координатами вектора. В этом случае записывают так $\vec{c} = (x_1, x_2)$.

Определение. Базис $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ называется ортонормированным, если

$$|\overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}}| = 1 \text{ M } \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = 0.$$

Выберем произвольную точку O на плоскости, которую назовём началом координат. Прямые l_1 , l_2 вместе с выбранными на них фиксированными векторами $\overrightarrow{OA} = \overrightarrow{\mathbf{a}}$, $\overrightarrow{OB} = \overrightarrow{\mathbf{b}}$ называются координатными

осями. Координатные оси вместе с ортонормированным базисом $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ и точкой O называются ∂ екартовой системой координат. Векторы $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ в этом случае принято обозначать $\{\mathbf{i}, \mathbf{j}\}$ и называть базисными ортами.

Пусть C - произвольная точка на плоскости. Вектор $\vec{\mathbf{c}} = \overrightarrow{OC}$ называется paduyc-вектором_точки C в данной системе координат. Координаты (x, y) вектора $\vec{\mathbf{c}}$, где $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j}$ называются координатами точки C в данной системе координат и записываются в виде C(x,y).

Пусть произвольный вектор $\vec{\mathbf{c}}$ в декартовой СК имеет координаты (x, y), т.е. $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j}$.

Теорема.

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{i}} = |\vec{\mathbf{c}}| |\vec{\mathbf{i}}| \cos \angle (\vec{\mathbf{c}}, \vec{\mathbf{i}}) = |\vec{\mathbf{c}}| \cos \angle (\vec{\mathbf{i}}, \vec{\mathbf{c}}) = x,$$

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{j}} = |\vec{\mathbf{c}}| |\vec{\mathbf{j}}| \cos \angle (\vec{\mathbf{c}}, \vec{\mathbf{j}}) = |\vec{\mathbf{c}}| \cos \angle (\vec{\mathbf{j}}, \vec{\mathbf{c}}) = y.$$

Пусть $\alpha = \angle (\mathbf{i}, \mathbf{c})$, $\beta = \angle (\mathbf{j}, \mathbf{c})$. Тогда величины $\cos \alpha$ и $\cos \beta$ называются направляющими косинусами вектора \mathbf{c} .

Доказательство.

Теорема. Пусть
$$\vec{\mathbf{c}} = (x_1, x_2)$$
, $\vec{\mathbf{d}} = (y_1, y_2)$. Тогда
$$\vec{\mathbf{c}} + \vec{\mathbf{d}} = (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}) + (y_1 \vec{\mathbf{a}} + y_2 \vec{\mathbf{b}}) = (x_1 + y_1) \vec{\mathbf{a}} + (x_2 + y_2) \vec{\mathbf{b}}.$$

$$\lambda \vec{\mathbf{c}} = \lambda (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}) = (\lambda x_1) \vec{\mathbf{a}} + (\lambda x_2) \vec{\mathbf{b}}.$$

Доказательство.

Пусть известны координаты точек $P(x_1, x_2)$, $Q(y_1, y_2)$, a $\overrightarrow{\mathbf{d}} = \overrightarrow{PQ}$.

Теорема. $\overrightarrow{\mathbf{d}} = \overrightarrow{\mathbf{q}} - \overrightarrow{\mathbf{p}}$, где $\overrightarrow{\mathbf{p}} = (x_1, x_2)$,

 $\vec{\mathbf{q}} = (y_1, y_2)$, Значит, $\vec{\mathbf{d}} = (y_1 - x_1, y_2 - x_2)$.

Теорема. В произвольном треугогльнике *АВС*

$$BC^2 = AB^2 + AC^2 - 2 AB AC \cos A$$
.

Доказательство.

Теорема.

Расстояние между точками $P(x_1, x_2)$, $Q(y_1, y_2)$ на декартовой плоскости равно $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Доказательство.

Теорема. Пусть $\vec{\mathbf{c}} = (x_1, x_2)$, $\vec{\mathbf{d}} = (y_1, y_2)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$. Тогда

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{d}} = x_1 y_1 + x_2 y_2.$$

Доказательство.

Следствие. Пусть $\vec{\mathbf{c}} = (x_1, x_2)$, $\vec{\mathbf{d}} = (y_1, y_2)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$.

Тогда

$$\cos \angle (\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}) = \frac{x_1 y_1 + x_2 y_2}{\sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}}.$$

Доказательство.

Следствие.Пусть $\vec{\mathbf{c}} = (x_1, x_2)$, $\vec{\mathbf{d}} = (y_1, y_2)$ ненулевые векторы. Тогда они ортогональны если и только если $x_1y_1 + x_2y_2 = 0$.

Доказательство.

Теорема. Если координаты концов отрезка AB суть $A(x_1, y_1)$, $B(x_2, y_2)$, то координаты точки C(x, y), которая делит этот отрезок в отношении $\lambda_1:\lambda_2$ равны

$$x = \frac{\lambda_2 x_1 + \lambda_1 x_2}{\lambda_1 + \lambda_2}, \quad y = \frac{\lambda_2 y_1 + \lambda_1 y_2}{\lambda_1 + \lambda_2}.$$

Доказательство.

Примеры (проекция вектора на ось).

Лекция 2. Прямая на плоскости.

Определение. Уравнением (неявным) кривой на декартовой плоскости называется уравнение

$$\varphi(x,y) = 0 \tag{1}$$

если для любой точки M на кривой $M \in \gamma$ её координаты удовлетворяют уравнению (1) и наоборот, всякая пара (x, y) чисел, удовлетворяющих (1), соответствует точке M(x, y) на кривой .

Если уравнение (1) можно записать в виде

$$y=f(x)$$

то говорят, что уравнение в явном виде.

Если уравнение кривой задано в виде

$$\begin{cases} x = \varphi(t), \\ y = \psi(t). \end{cases}$$
 (2)

где t вещественное число, то говорят что кривая задана в параметрическом виде. Удобно считать параметр t временем, тогда (2) описывает закон перемещения материальной точки по плоскости.

Примеры.

Прямая l на плоскости однозначно определяется или

а) точкой $A_0 \in l$ и ненулевым вектором $\vec{\mathbf{a}} \mid \mid l$; тогда можем написать, что

$$l = \{M \mid \overrightarrow{A_0 M} \mid \overrightarrow{\mathbf{a}}\}; \quad (3), \quad \text{или}$$

б) точкой $A_0 \in l$ и ненулевым вектором $\vec{\mathbf{n}} \perp l$; тогда

$$l = \{M \mid \overrightarrow{A_0 M} \perp \overrightarrow{\mathbf{n}}\}; (4),$$
или

в) двумя точками $A_{\mathrm{o}}, A_{\mathrm{1}} \in l$.

Вектор $\vec{\mathbf{a}} \mid \mid l$ называется направляющим вектором прямой, а вектор $\vec{\mathbf{n}} \perp l$ называется вектором нормали к прямой.

Теорема.

1. Уравнение прямой l, проходящей через точку $A_o(x_o, y_o)$, и имеющей направляющий вектор $\vec{\mathbf{a}}(a_1, a_2)$, имеет вид

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2},\tag{3}$$

канонического уравнения прямой, или параметрического уравнения:

$$\begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, t \in \mathbf{R}, \end{cases}$$
 (4)

2. Прямая, проходящая через две точки $A_{\rm o}(x_{\rm o},\,y_{\rm o})$ и $A_{\rm I}(x_{\rm I},\,y_{\rm I})$, задается уравнением

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0},\tag{5}$$

3. Прямая, проходящая через точку $A_o(x_o, y_o)$, и имеющая вектор нормали $\vec{\mathbf{n}}(A, B)$, задается в декартовой системе координат уравнением

$$A(x - x_0) + B(y - y_0) = 0. (6)$$

4. Прямая, отсекающая на координатных осях отрезки длины $a \neq 0, b \neq 0$, задается уравнением

$$\frac{x}{a} + \frac{y}{b} = 1 \tag{7}$$

(уравнение прямой в отрезках).

Доказательство.

Следствие. Любая прямая на плоскости может быть задана общим уравнением прямой

$$Ax + By + Cz = 0, (8)$$

где (A,B) - координаты вектора нормали к прямой.

Примеры.

Уравнение прямой вида

$$y = kx + b \tag{9}$$

называется уравнением с угловым коэффициентом k.

Теорема. В предыдущих обозначениях чило k равно тангенсу угла наклона прямой, а число b - *ордината точки* пересечения прямой и оси ординат.

Доказательство.

Теорема.

Если прямые на плоскости заданы уравнениями с угловым коэффициентом

$$l_1$$
: $y = k_1 x + q_1$, l_2 : $y = k_2 x + q_2$,

Примеры.

Определение. Будем говорить, что общее уравнение прямой

$$Ax + By + C = 0 , \qquad (10)$$

имеет нормальный вид, если $A^2+B^2=1$.

Если уравнение (10) не имеет нормальный вид, то его можно привести к этому виду, разделив на $\sqrt{A^2+B^2}$:

Теорема . Пусть прямая l определяется уравнением (14) в нормальной форме. Тогда расстояние от точки $M(x_0, y_0)$ до прямой вычисляется по формуле

$$h = |Ax_0 + By_0 + C| . (11)$$

Доказательство.

Следствие. Если прямая определяется общим уравнением вида (10), то

$$h = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$
.

Следствие. Если пара параллельных прямых заданы уравнениями

$$l_2$$
: $Ax + By + C_2 = 0$

 l_1 : $Ax+By+C_1=0$ l_2 : $Ax+By+C_2=0$, то расстояние между прямыми

равно

$$h = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}$$

Доказательство.

Примеры.

Лекция 3. Кривые второго порядка на плоскости.

Эллипс.

Определение. Эллипсом называется множество точек плоскости, таких что: существуют такие точки F_1 , F_2 , называемые фокусами, что сумма расстояний от произвольной точки M эллипса до F_1 и от M до F_2 есть величина постоянная:

$$|MF_1| + |MF_2| = 2a,$$
 (1)
и $2a > 2c = |F_1F_2|.$

Найдём уравнение эллипса в декартовых координатах. Точку O(0,0)поместим в середину отрезка F_1F_2 , так, что $Ox^{\uparrow\uparrow}OF_1$. Тогда ось Oyопределится однозначно. Фокусы будут иметь координаты $F_1(c,0), F_2(-c,$ 0).

Пусть M(x, y) — произвольная точка эллипса. Тогда

$$|MF_1| = \sqrt{(x-c)^2 + y^2}$$
, $|MF_2| = \sqrt{(x+c)^2 + y^2}$.

Из (1) имеем

$$\sqrt{(x-c)^2+y^2}=2a-\sqrt{(x+c)^2+y^2}$$
.

Возведем обе части равенства в квадрат и сократим одинаковые слагаемые:

$$x^{2}-2xc+c^{2}+y^{2}=4a^{2}-4a\sqrt{(x+c)^{2}+y^{2}}+x^{2}+2xc+c^{2}+y^{2}.$$

$$4xc=4a^{2}-4a\sqrt{(x+c)^{2}+y^{2}} \iff a\sqrt{(x+c)^{2}+y^{2}}=a^{2}+xc.$$

Еще раз возводим в квадрат, сокращаем и группируем:

$$a^{2}(x^{2} + 2xc + c^{2} + y^{2}) = a^{4} + 2a^{2}xc + x^{2}c^{2},$$

$$x^{2}(a^{2} - c^{2}) + a^{2}y^{2} = a^{2}(a^{2} - c^{2}).$$

Согласно определению a < c; поэтому можем обозначить $b^2 = a^2 - c^2$, и разделив на a^2b^2 , окончательно получаем

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ . \tag{2}$$

Мы доказали, что координаты произвольной точки эллипса удовлетворяют уравнению (2). Необходимо еще доказать обратное: если координаты точки M(x, y) удовлетворяют (2), то выполнено (1).

Из (2) выразим $y^2 = b^2(1 - \frac{x^2}{a^2})$ и подставим в выражение для MF_1 , учитывая при этом обозначение $b^2 = a^2 - c^2$:

$$|MF_1| = \sqrt{(x-c)^2 + y^2} = \dots = |a - \frac{cx}{a}|.$$

Аналогично получаем, что $|MF_2| = |a + \frac{cx}{a}|$. Из (2) следует, что $|x| \le a$ (иначе уже первое слагаемое будет больше 1), а по определению, $a < c \implies$ оба выражения под модулем неотрицательны. Поэтому

$$|MF_1| + |MF_2| = a - \frac{cx}{a} + a + \frac{cx}{a} = 2a.$$

Уравнение (2) называется каноническим уравнением эллипса.

<u>Геометрические свойства эллипса.</u>

- **1.** Из (2) следует, что $|x| \le a$, $|y| \le b$. Значит, эллипс целиком содержится в прямоугольнике, определяемыми этим неравенствами.
- **2.** Координатные оси пересекают эллипс в точках $A_1(a,0)$, $A_2(-a,0)$, $B_1(0,b)$, $B_2(0,-b)$, которые называются его вершинами. Отрезки A_1A_2 и B_1B_2 называются большим и малым диаметрами эллипса, а вместе главными диаметрами. Числа a и b называются большой и малой полуосями.

- 3. Координатные оси являются осями симметрии эллипса, а начало координат – центром симметрии.
 - 4. Эллипс получается из окружности

$$\gamma': X^2 + Y^2 = a^2$$
 (**)

в результате равномерного ее сжатия вдоль оси O_{Y} с коэффициентом k =a/b.

5. Параметрические уравнения эллипса имеют вид:

$$\begin{cases} x = a \cos t, \\ y = b \sin t, t \in \mathbf{R}. \end{cases}$$

Определение. Эксцентриситет ε эллипса, заданного уравнением (1) определяется равенством $\varepsilon = \frac{c}{a}$.

Определение. Директрисы эллипса определяются уравнениями δ_1 : $x = \frac{a^2}{c}$, δ_2 : $x = \frac{a^2}{c}$.

$$\delta_1: x = \frac{a^2}{c}, \quad \delta_2: x = \frac{a^2}{c}.$$

Это пара прямых параллельных оси ординат.

Теорема. Для произвольной точки эллипса M отношение расстояний до фокуса и до соответствующей директрисы есть величина постоянная и равная эксцентриситету эллипса:

$$\frac{\rho(M,\delta_i)}{\rho(M,F_i)} = \varepsilon$$
, $i = 1,2$.

Доказательство.

Гипербола. Определение. Гиперболой называется множество точек плоскости, таких, что: существуют точки F_1 , F_2 , называемые фокусами, что модуль разности расстояний от произвольной точки M гиперболы до F_1 и от M до F_2 есть величина постоянная:

$$||MF_1| - |MF_2|| = 2a,$$
 (3)

т.е. независящая от выбора точки $M \in \gamma$, и $2a < 2c = |F_1F_2|$.

Составим уравнение гиперболы в декартовых координатах. Точку O(0,0) поместим в середину отрезка F_1F_2 , так, что $Ox \uparrow \uparrow \overrightarrow{OF}_1$. Тогда ось Oy определится однозначно. Фокусы имеют координаты $F_1(c,0)$, $F_2(-c,0)$.

Пусть M(x, y) – любая точка гиперболы. Тогда

$$|MF_1| = \sqrt{(x-c)^2 + y^2},$$

 $|MF_2| = \sqrt{(x+c)^2 + y^2}.$

Согласно определению (3) имеем $\sqrt{(x-c)^2 + y^2} = \pm 2a + \sqrt{(x+c)^2 + y^2}$.

Совершаем такие же преобразования, что и для эллипса и результате имеем уравнение

$$x^{2}(c^{2}-a^{2})-a^{2}y^{2}=a^{2}(c^{2}-a^{2}).$$

Т.к. a < c то можно обозначить $b^2 = c^2 - a^2$, и получаем

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ . \tag{4}$$

Мы доказали, что координаты произвольной точки гиперболы удовлетворяют (4). Необходимо еще доказать обратное: если координаты точки M(x,y) удовлетворяют (4), то выполнено (3). Из (4) выразим $y^2 = b^2(\frac{x^2}{a^2}-1)$ и подставим в выражение для $|MF_1|$, учитывая при этом обозначение $b^2 = c^2 - a^2$. Точно так же, как и для эллипса получим

$$|MF_1| = \left| a - \frac{cx}{a} \right|, \qquad |MF_2| = \left| a + \frac{cx}{a} \right|. \qquad (**)$$

Из (4) вытекает, что $x^2 = a^2(1 + \frac{y^2}{b^2}) \implies |x| \ge a$, и по определению c > a. Значит, второе слагаемое в формулах (**) по модулю больше первого и при $x \ge a$ получаем

$$|MF_1| = \frac{cx}{a} - a,$$
 $|MF_2| = a + \frac{cx}{a},$

а при $x \le -a$ получаем

$$|MF_1| = a - \frac{cx}{a}$$
, $|MF_2| = -a - \frac{cx}{a}$.

В обоих случаях выполняется (3).

Уравнение (4) называется каноническим уравнением гиперболы.

Геометрические свойства гиперболы.

1. Вся гипербола содержится в области, определяемой неравенствами

$$|x| \ge a$$
, $|x| > \frac{a}{b}|y|$

- **2.** Ось Ox пересекает гиперболу в точках $A_1(a, 0)$, $A_2(-a, 0)$, которые называются вершинами гиперболы. Числа a и b называются полуосями гиперболы – действительной и мнимой.
- 3. Координатные оси являются осями симметрии гиперболы, а начало координат – центром симметрии.
- **4.** Прямые l_1 : $y = \frac{b}{a} x$ и l_2 : $y = -\frac{b}{a} x$ называются *асимптотами гиперболы*. Асимптоты можно задать одним уравнением $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 0$.
 - 5. Параметрические уравнения гиперболы

$$\begin{cases} x = \pm a \operatorname{ch} t, \\ y = b \operatorname{sh} t, t \in \mathbf{R}. \end{cases}$$
или
$$\begin{cases} x = a(t+1/t), \\ y = b(t-1/t), t \in \mathbf{R} \setminus \{0\}. \end{cases}$$

Определение. Эксцентриситет ε гиперболы, заданной уравнением (4) определяется равенством $\varepsilon = \frac{c}{a}$.

Определение. Директрисы гиперболы определяются уравнениями δ_1 : $x = \frac{a^2}{c}$, δ_2 : $x = \frac{a^2}{c}$.

$$\delta_1: x = \frac{a^2}{c}, \quad \delta_2: x = \frac{a^2}{c}.$$

Это пара прямых параллельных оси ординат.

Теорема. Для произвольной точки гиперболы M отношение расстояний до фокуса F_i и до соответствующей директрисы δ_i есть величина постоянная и равная эксцентриситету эллипса:

$$\frac{\rho(M,\delta_i)}{\rho(M,F_i)} = \varepsilon$$
, $i = 1,2$.

Доказательство.

Парабола.

Определение. Параболой называется геометрическое место точек равноудалённых от заданной прямой (директрисы параболы) и от заданной точки (фокуса параболы), не лежащей на директрисе.

Если фокус поместить в точку F(p/2, 0), а директрису задать уравнением x=-p/2, то уравнение параболы примет вид

$$y^2 = 2px. (5)$$

Очевидно, что параметр p в уравнении (5) равен расстоянию от фокуса параболы до её директрисы.

Уравнение (5) называется каноническим уравнением параболы.

Геометрические свойства параболы.

- **1.** Точки параболы принадлежат полуплоскости $x \ge 0$.
- **2.** Ось Ox является осью симметрии параболы.
- **3.** Координатные оси пересекают параболу в точке O, которая называется *вершиной параболы*.

Оптические свойства эллипса и параболы.

Теорема. Луч света, исходящий из одного фокуса эллипса, после отражения от эллипса, проходит через второй его фокус.

Доказательство.

Теорема. Луч, исходящий из фокуса параболы, отразившись от параболы, движется параллельно ее оси. Наоборот, луч, приходящий параллельно оси параболы, отразившись проходит через фокус параболы

Доказательство..

Классификация кривых второго порядка.

Определение. Кривой второго порядка называется геометрическое место точек, координаты которых удовлетворяют уравнению

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{1}x + 2a_{2}y + c = 0, (6)$$

в котором хотя бы один из коэффициентов a_{11} , a_{12} , a_{22} отличен от нуля. **Теорема**. Для любой кривой Γ второго порядка существует такое движение декартовой системы координат, в результате которого уравнение кривой Γ совпадает с одним из таковых в следующей таблице :

Эллипс	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Мнимый эллипс	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
Гипербола	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
Пара пересекающихся прямых	$a^2x^2 - b^2y^2 = 0$

Точка	$a^2x^2 + b^2y^2 = 0$
Парабола	$y^2 = 2px,$
Пара параллельных прямых $x^2 = a^2$	
Пара мнимых параллельных	
прямых	$x^2 = -a^2$
Пара совпадающих пр	оямых $x^2 = 0$

Доказательство.

Примеры.

Лекции 4-5. Векторы в пространстве.

Определение. Фиксированным вектором называется отрезок AB если указано, какая из точек A или B является его началом, а какая концом. Если A — начало, а B — конец, то фиксированный вектор обозначается \overrightarrow{AB} .

Определение. Длиной фиксированного вектора \overrightarrow{AB} называется длина отрезка AB.

Определение. Фиксированные векторы \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются, сонаправленными, если $\overrightarrow{AB}||\overrightarrow{A_1B_1}$ и лучи \overrightarrow{AB} и A_1B_1 сонаправлены .

Определение. Два фиксированных вектора \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются равными, если они сонаправлены и имеют одинаковую длину. Пишем $\overrightarrow{AB} = \overrightarrow{A_1B_1}$. Очевидно, $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow$ они совмещаются параллельным переносом.

Для отношения "=" на множестве фиксированных векторов пространства верны следующие свойства:

- $\mathbf{1.}\overrightarrow{AB} = \overrightarrow{AB}$,
- 2. $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow \overrightarrow{A_1B_1} = \overrightarrow{AB}$,
- **3.** $(\overrightarrow{AB} = \overrightarrow{A_1B_1} \cap \overrightarrow{A_1B_1} = \overrightarrow{AB}) \Rightarrow \overrightarrow{AB} = \overrightarrow{A_2B_2}$.

Следовательно, отношение "=" является отношением эквивалентности, и множество фиксированных векторов пространства распадается на классы эквивалентных друг другу фиксированных векторов пространства, непересекающиеся между собой.

Определение. Вектором \vec{a} называется класс равных между собой фиксированных векторов пространства. Длина вектора \vec{a} обозначается $|\vec{a}|$.

Если вектор \vec{a} задается фиксированным вектором \vec{AB} , то пишем $\vec{a} = \vec{AB}$, и говорим, что \vec{AB} есть вектор \vec{a} , отложенный из точки A.

Предложение. Для вектороа \vec{a} и точки A существует и притом единственная точка B, такая , что $\vec{a} = \overrightarrow{AB}$.

Доказательство.

Определение. Вектор, имеющий нулевую длину, называется *нулевым* и обозначается $\vec{\mathbf{o}}$. Вектор, длина которого равна 1, называется *единичным*.

Определение. Векторы \vec{a} и \vec{b} называются *сонаправленными* (противоположно направленными), если задающие их фиксированные векторы сонаправлены (противоположно направлены). Пишем $\vec{a} \uparrow \uparrow \vec{b}$ ($\vec{a} \uparrow \downarrow \vec{b}$). Два вектора, направления которых совпадают или противоположны, называются коллинеарными. Пишем $\vec{a} \mid \mid \vec{b}$. Считается, что \vec{o} коллинеарен каждому вектору. Три и более векторов, параллельных одной плоскости называются *компланарными*.

Определение. Определение суммы двух векторов по правилу треугольника.

Теорема. Данное определение операции сложения корректно.

Доказательство.

Теорема.

 $\forall \vec{a}, \vec{b}, \vec{c}$ верно:

$$\mathbf{1.}\ \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}};$$

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
;

$$3. \vec{a} + \vec{o} = \vec{a}.$$

4. \exists ! $\vec{\mathbf{x}}$: $\vec{\mathbf{a}} + \vec{\mathbf{x}} = \vec{\mathbf{o}}$. Такой вектор называется *противоположным* к $\vec{\mathbf{a}}$ и обозначается $-\vec{\mathbf{a}}$.

Доказательство

Определение. Определение суммы двух векторов по правилу параллелограмма.

Определение. <u>Разностью двух векторов</u> $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется такой вектор $\vec{\mathbf{d}}$, что $\vec{\mathbf{b}} + \vec{\mathbf{d}} = \vec{\mathbf{a}}$. Пишем $\vec{\mathbf{d}} = \vec{\mathbf{a}} - \vec{\mathbf{b}}$.

Теорема. Разность векторов существует и определяется однозначно.

Доказательство.

Определение. <u>Произведением вектора</u> \vec{a} <u>на число</u> λ называется такой вектор $\vec{\mathbf{b}}$, что

1. $\vec{a} \uparrow \uparrow \vec{b}$, если $\lambda > 0$, и $\vec{a} \uparrow \downarrow \vec{b}$, если $\lambda < 0$;

 $2.|\overrightarrow{\mathbf{b}}| = |\lambda| \cdot |\overrightarrow{\mathbf{a}}|.$

Пишем $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Теорема.

1. $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$; 3. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;

2. $\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$;

4. $1 \cdot \overrightarrow{a} = \overrightarrow{a}$.

3. ненулевые векторы $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ коллинеарны \Leftrightarrow существует такое число λ , что $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Доказательство.

Определение. Пусть \vec{a} и \vec{b} – два ненулевых вектора. Отложим их из одной точки $O: \vec{\mathbf{a}} = \overrightarrow{OA}, \vec{\mathbf{b}} = \overrightarrow{OB}$. Тогда углом между векторами $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется угол между лучами OA и OB, т.е. $\alpha = \angle AOB$. Пишем

$$\alpha = \angle (\vec{a}, \vec{b}).$$

Определение. Скалярным произведением двух векторов $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется число

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}). \tag{1}$$

Число $\vec{a}^2 = \vec{a} \cdot \vec{a}$ называется скалярным квадратом вектора \vec{a} .

Теорема. Скалярный квадрат $\vec{a}^2 = \vec{a} \cdot \vec{a}$ вектора равен квадрату его длины $|\overrightarrow{\mathbf{a}}|^2$.

2. Для того, чтобы ненулевые векторы \vec{a} и \vec{b} были перпендикулярны необходимо и достаточно, чтобы их скалярное произведение было равно нулю ($\vec{\mathbf{a}} \perp \vec{\mathbf{b}} \iff \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$).

Доказательство.

Теорема.

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
;

2.
$$(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b});$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c};$$

4.
$$\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} \ge 0$$
, и $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = 0 \Leftrightarrow \vec{\mathbf{a}} = \vec{\mathbf{o}}$

Доказательство.

Замечание.

$$\cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}) = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}.$$
 (2)

Скалярное произведение обозначается также, как: $(\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема. Пусть $\vec{\bf a}$, $\vec{\bf b}$ и $\vec{\bf e}$ - некомпланарные векторы в пространстве. Для любого вектора $\vec{\bf c}$ существуют такие числа x_1, x_2, x_3

$$\vec{\mathbf{c}} = x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}} + x_3 \vec{\mathbf{e}}$$
 (3)

причём x_1, x_2, x_3 определены однозначно.

Доказательство.

Представление вектора $\vec{\mathbf{c}}$ в виде (3) называется разложением по базису, состоящему из векторов $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$. Числа x_1, x_2, x_3 называются координатами вектора. В этом случае записывают так $\vec{\mathbf{c}} = (x_1, x_2, x_3)$.

Определение. Базис $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$ называется ортонормированным, если $|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = |\vec{\mathbf{e}}| = 1$ и все векторы попарно ортогональны.

Выберем произвольную точку O в пространстве, которую назовём началом координат. Прямые l_1 , l_2 , l_3 вместе с выбранными на них фиксированными векторами $\overrightarrow{OA} = \vec{\mathbf{a}}$, $\overrightarrow{OB} = \vec{\mathbf{b}}$, $\overrightarrow{OE} = \vec{\mathbf{e}}$ называются координатными осями. Координатные оси вместе с ортонормированным базисом $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$ и точкой O называются декартовой системой координат. Векторы $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{e}}\}$ в этом случае принято обозначать $\{\vec{\mathbf{i}}, \mathbf{j}, \mathbf{k}\}$ и называть базисными ортами.

Пусть C - произвольная точка в пространстве . Вектор $\vec{\mathbf{c}}$ = \overrightarrow{OC} называется paduyc-вектором_точки C в данной системе координат. Координаты (x, y, z) вектора $\vec{\mathbf{c}}$, где $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ называются координатами точки точки C в данной системе координат и записываются в виде C(x, y, z).

Пусть произвольный вектор $\vec{\mathbf{c}}$ в декартовой СК имеет координаты (x, y, z), т.е. $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

Теорема.

$$\vec{\mathbf{c}} \cdot \mathbf{i} = |\vec{\mathbf{c}}| |\mathbf{i}| \cos \angle (\vec{\mathbf{c}}, \mathbf{i}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{i}, \vec{\mathbf{c}}) = x,$$

$$\vec{\mathbf{c}} \cdot \mathbf{j} = |\vec{\mathbf{c}}| |\mathbf{j}| \cos \angle (\vec{\mathbf{c}}, \mathbf{j}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{j}, \vec{\mathbf{c}}) = y,$$

$$\vec{\mathbf{c}} \cdot \mathbf{k} = |\vec{\mathbf{c}}| |\mathbf{k}| \cos \angle (\vec{\mathbf{c}}, \mathbf{k}) = |\vec{\mathbf{c}}| \cos \angle (\mathbf{k}, \vec{\mathbf{c}}) = z.$$

Пусть $\alpha = \angle(\mathbf{i}, \mathbf{c})$, $\beta = \angle(\mathbf{j}, \mathbf{c})$, $\gamma = \angle(\mathbf{k}, \mathbf{c})$ Тогда величины $\cos \alpha$, $\cos \beta$ и $\cos \gamma$ называются направляющими косинусами вектора \mathbf{c} .

Доказательство.

Теорема. Пусть $\vec{\mathbf{c}} = (x_1, x_2, x_3), \ \vec{\mathbf{d}} = (y_1, y_2, y_3)$. Тогда

$$\vec{\mathbf{c}} + \vec{\mathbf{d}} = (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}} + x_3 \vec{\mathbf{e}}) + (y_1 \vec{\mathbf{a}} + y_2 \vec{\mathbf{b}} + y_3 \vec{\mathbf{e}}) = (x_1 + y_1) \vec{\mathbf{a}} + (x_2 + y_2) \vec{\mathbf{b}} + (x_3 + y_3) \vec{\mathbf{e}}.$$

$$\lambda \vec{\mathbf{c}} = \lambda (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}} + x_3 \vec{\mathbf{e}}) = (\lambda x_1) \vec{\mathbf{a}} + (\lambda x_2) \vec{\mathbf{b}} + \lambda x_3 \vec{\mathbf{e}}.$$

Доказательство.

Пусть известны координаты точек $P(x_1, x_2, x_3), Q(y_1, y_2, y_3), \mathbf{d} = \overrightarrow{\mathbf{d}} = \overrightarrow{PQ}.$

Теорема. $\vec{\mathbf{d}} = \vec{\mathbf{q}} - \vec{\mathbf{p}}$, где $\vec{\mathbf{p}} = (x_1, x_2, x_3)$, $\vec{\mathbf{q}} = (y_1, y_2, y_3)$, Значит, $\vec{\mathbf{d}} = (y_1 - x_1, y_2 - x_2, y_3 - x_3)$.

Доказательство.

Теорема.

Расстояние между точками $P(x_1, x_2, x_3), Q(y_1, y_2, y_3)$ в пространстве равно $PQ = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2}$. Доказательство.

Теорема. Пусть $\vec{\mathbf{c}} = (x_1, x_2, x_3)$, $\vec{\mathbf{d}} = (y_1, y_2, y_3)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$. Тогла

$$\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{d}} = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Доказательство.

Следствие. Пусть $\vec{\mathbf{c}} = (x_1, x_2, x_3)$, $\vec{\mathbf{d}} = (y_1, y_2, y_3)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$.

Тогда

$$\cos \angle (\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}) = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$
 (4)

Доказательство.

Векторное и смешанное произведение векторов.

Определение. <u>Векторным произведением двух векторов</u> \vec{a} и \vec{b} называется такой <u>вектор</u> \vec{c} , что

- 1. $\vec{c}\perp\vec{a}$, $\vec{c}\perp\vec{b}$;
- 2. $(\vec{a}, \vec{b}, \vec{c})$ правая тройка;
- 3. $|\vec{\mathbf{c}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема (свойства векторного произведения.).

Свойства векторного произведения.

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
,

2.
$$(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}),$$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
.

Доказательство.

Теорема. Векторное произведение двух векторов, заданных в декартовой *системе координат* своими координатами $\vec{\mathbf{a}}(a_1, a_2, a_3)$ и $\vec{\mathbf{b}}(b_1, b_2, b_3)$, вычисляется по формуле:

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} =$$

$$= (a_1b_2 - a_2b_1)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_2b_3 - a_3b_2)\mathbf{k} .$$
(5)

Доказательство.

Примеры.

Определение. Смешанным произведением трех векторов \vec{a} , \vec{b} , \vec{c} называется число $(\vec{a} \times \vec{b}) \cdot \vec{c}$. Оно обозначается $\vec{a} \cdot \vec{b} \cdot \vec{c}$, $\vec{a} \, \vec{b} \, \vec{c}$ или $(\vec{a}, \vec{b}, \vec{c})$.

Теорема. Модуль смешанного произведения трех векторов \vec{a} , \vec{b} , \vec{c} численно равен объему параллелепипеда построенного на направленных отрезках \vec{OA} , \vec{OB} , \vec{OC} , представляющих эти векторы, отложенные из одной точки.

Доказательство.

Теорема.

Свойства смешанного произведения.

1.
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c});$$

2.
$$\vec{a} \vec{b} \vec{c} = \vec{c} \vec{a} \vec{b} = \vec{b} \vec{c} \vec{a}$$
.

3.
$$\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} = -\overrightarrow{b} \overrightarrow{a} \overrightarrow{c} = -\overrightarrow{a} \overrightarrow{c} \overrightarrow{b} = -\overrightarrow{c} \overrightarrow{b} \overrightarrow{a}$$
.

4.
$$(\lambda \vec{a})\vec{b}\vec{c} = \vec{a}(\lambda \vec{b})\vec{c} = \vec{a}\vec{b}(\lambda \vec{c}) = \lambda(\vec{a}\vec{b}\vec{c}).$$

5.
$$(\vec{a} + \vec{b})\vec{c}\vec{d} = \vec{a}\vec{c}\vec{d} + \vec{b}\vec{c}\vec{d}$$
.

Доказательство.

Примеры.

Лекции 6-7. Уравнение плоскости и прямой в пространстве.

Теорема. Плоскость Π , проходящая через точку $A_o(x_o, y_o, z_o)$, перпендикулярно вектору $\vec{\mathbf{n}}(A, B, C)$, задается в декартовой системе координат уравнением

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$
 (6)

2. Плоскость Π , проходящая через точку $A_{o}(x_{o}, y_{o}, z_{o})$, параллельно двум неколлинеарным векторам $\vec{\mathbf{a}} \ u \ \vec{\mathbf{b}}$ задается уравнением

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0.$$
 (7)

3. Плоскость Π , проходящая через три точки $A_o(x_0, y_0, z_0)$, $A_1(x_1, y_1, z_1)$, $A_2(x_2, y_2, z_2)$, не лежащие на одной прямой задается уравнением

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$
 (8)

4. Плоскость Π , отсекающая на координатных осях ненулевые отрезки a, b, c задается уравнением

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{9}$$

Доказательство.

Следствие. Всякая плоскость П может быть задана уравнением

$$Ax + By + Cz + D = 0, (10)$$

Вектор \vec{n} =(A,B,C) ортогонален плоскости Π .

Доказательство.

Определение. Уравнение плоскости

$$Ax + By + Cz + D = 0,$$

имеет нормальную форму, если $A^2+B^2+C^2=1$. Это эквивалентно тому, что вектор $\vec{\mathbf{n}}=(A,B,C)$ –имеет единичную длину.

Если уравнение не имеет нормальной формы, оно приводится к ней делением на $\gamma = \sqrt{A^2 + B^2 + C^2}$.

Теорема. Пусть плоскость π определяется уравнением (10) θ нормальной форме. Тогда расстояние от *точки* $M(x_1, y_1, z_1)$ до прямой вычисляется по формуле

$$h = |Ax_1 + By_1 + Cz_1 + D|. (11)$$

Доказательство.

Следствие. Для произвольной плоскости с уравнением (10),

$$h = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (12)

Пусть две плоскости в пространстве заданы общими уравнениями:

$$\pi_1$$
: $A_1x + B_1y + C_1z + D_1 = 0$,
 π_2 : $A_2x + B_2y + C_2z + D_2 = 0$.

Тогда мы сразу можем сделать вывод, что $\vec{\mathbf{n}}_1$ =(A_1, B_1, C_1) и $\vec{\mathbf{n}}_2$ =(A_2, B_2, C_2) – это векторы нормали к π_1 и π_2 .

Теорема. Угол между плоскостями π_1 и π_2 может быть найден по

формуле

$$\cos \alpha = \frac{|\vec{\mathbf{n}}_1 \cdot \vec{\mathbf{n}}_2|}{|\vec{\mathbf{n}}_1| |\vec{\mathbf{n}}_2|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_1^2}}. (13)$$

Если $\cos \alpha = 1$, то плоскости параллельны.

Доказательство.

Теорема. Расстояние между двумя параллельными плоскостями

$$Ax + By + Cz + D_1 = 0$$
 и $Ax + By + Cz + D_2 = 0$ равно $\rho = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$. (14)

Доказательство.

Примеры.

Теорема.

а). Прямая l, проходящая через точку $A(x_0, y_0, z_0)$, параллельно вектору \vec{a} = (a_1, a_2, a_3) задается *каноническим* уравнением

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3},\tag{15}$$

или параметрическими уравнениями

$$\begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t, \ t \in \mathbf{R}, \end{cases}$$
 (16)

в векторном виде: $\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{a}}, t \in \mathbf{R}$, где $\vec{\mathbf{r}}_0 = \overrightarrow{\mathbf{OA}} - paduyc$ -вектор точки A.

б). Прямая, проходящая через две точки $A(x_0, y_0, z_0)$ $u(A_1(x_1, y_1, z_1),$ задается уравнением

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0},\tag{17}$$

в). Прямая, проходящая через точку $A(x_0, y_0, z_0)$, перпендикулярно двум векторам нормали $\vec{\mathbf{n}}_1 = (A_1, B_1, C_1)$ u $\vec{\mathbf{n}}_2 = (A_2, B_2, C_2)$ задается в декартовой системе координат системой уравнений

$$\begin{cases}
A_1(x - x_0) + B_1(y - y_0) + C_1(z - z_0) = 0, \\
A_2(x - x_0) + B_2(y - y_0) + C_2(z - z_0) = 0.
\end{cases}$$
(18)

Доказательство. Примеры.

Если плоскость π задана общим уравнением, а прямая l – каноническим уравнением:

$$\pi: Ax + By + Cz + D = 0$$
, $l: \frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$.

то можем заметить, что $\overrightarrow{\mathbf{n}} = (A, B, C)$ —вектор нормали к плоскости π , $\overrightarrow{\mathbf{a}} = (a_1, a_2, a_3)$ — направляющий вектор прямой l и точка $A_o(x_o, y_o, z_o) \in l$.

Теорема. а).
$$l \in \pi \iff \begin{cases} Aa_1 + Ba_2 + Ca_3 = 0, \\ Ax_0 + By_0 + Cz_0 + D = 0, \end{cases}$$
 (19)

б).
$$l | | \pi \ u \ l \notin \pi \iff \begin{cases} Aa_1 + Ba_2 + Ca_3 = 0, \\ Ax_0 + By_0 + Cz_0 + D \neq 0, \end{cases}$$
 (21)

B).
$$l \perp \pi \iff \frac{A}{a_1} = \frac{B}{a_2} = \frac{C}{a_3}$$
. (23)

г). Угол между l u π вычисляется по формуле

$$\sin \alpha = \frac{|\vec{\mathbf{n}} \cdot \vec{\mathbf{a}}|}{|\vec{\mathbf{n}}| |\vec{\mathbf{a}}|} = \frac{|Aa_1 + Ba_2 + Ca_3|}{\sqrt{A^2 + B^2 + C^2} \sqrt{a_1^2 + a_2^2 + a_3^2}}$$
(24)

Доказательство.

Примеры.

Пара скрещивающихся прямых имеют единственный общий перпендикуляр. Его длина называется расстоянием между прямыми.

Если две прямые заданы своими каноническими уравнениями:

$$l_0$$
: $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$, l_1 : $\frac{x - x_1}{b_1} = \frac{y - y_1}{b_2} = \frac{z - z_1}{b_3}$. (35)

то $\vec{\mathbf{a}}$ = $(a_1, a_2, a_3) \mid\mid l_o$, $\vec{\mathbf{b}}$ = $(b_1, b_2, b_3) \mid\mid l_1, A_o(x_o, y_o, z_o) \in l_o$, $A_1(x_1, y_1, z_1) \in l_1$. Определим матрицу

$$\mathbf{A} = \begin{bmatrix} x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} ,$$

и пусть $\Delta = \det \mathbf{A}$.

Теорема. а). Угол между l u π вычисляется по формуле

$$\cos \alpha = \frac{|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|}{|\overrightarrow{\mathbf{a}}| |\overrightarrow{\mathbf{b}}|} = \frac{|a_1b_1 + a_2b_2 + a_3b_3|}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}.$$
 (36)

- **б).** Прямые l_0 *u* l_1 скрещиваются $\Leftrightarrow \Delta \neq 0$.
- **в).** Прямые l_0 и l_1 пересекаются $\Leftrightarrow \Delta = 0$ и $\vec{\mathbf{a}}$ не коллинеарен $\vec{\mathbf{b}}$.
- **Γ).** $l_0 \mid \mid l_1 \Leftrightarrow \text{rank } \mathbf{A} = 2 \text{ M } \vec{\mathbf{a}} \mid \mid \vec{\mathbf{b}}.$
- д). $l_0 = l_1 \Leftrightarrow \operatorname{rank} \mathbf{A} = 1$.

Доказательство.

Примеры.

Теорема. Пусть две прямые l_0 u l_1 в пространстве заданы своими каноническими уравнениями (35). Тогда

а). если $l_0 | | l_1$, то расстояние между $l_0 u l_1$ находится по формуле

$$h = \frac{|\overrightarrow{A_0 A_1} \times \overrightarrow{\mathbf{a}}|}{|\overrightarrow{\mathbf{a}}|} , \qquad (37)$$

б). если $l_{\rm o}\,u\,\,l_{\rm l}$ скрещиваются, то расстояние между ними находится по формуле

$$h = \frac{|\overrightarrow{A_0 A_1} \cdot \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}.$$

Доказательство.

Примеры.

Лекция 8-9.

Поверхности второго порядка.

Эллипсоид.

Определение. Эллипсоидом называется поверхность Ф, имеющая каноническое уравнение вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \tag{1}$$

В сечениях плоскостями z=h получаем кривую

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2} \tag{*}$$

Если $|h| \neq c$, то обозначим $a'^2 = a^2 |1 - \frac{h^2}{c^2}|$, $b'^2 = b^2 |1 - \frac{h^2}{c^2}|$.

При |h| < c получаем эллипсы $\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1$, полуоси которых a' и b' достигают максимального значения a и b при b = 0.

При |h| > c получаем мнимые эллипсы $\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = -1$ (Ø). А при $h = \pm c$ из (*) получаем уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, которое задает только одну из точек $C_1(0,0,c)$ или $C_2(0,0,-c)$.

Аналогично, для сечений плоскостями x = h, или y = h.

Геометрические свойства эллипсоида.

- **1.** Из (1) получаем, что $|x| \le a$, $|y| \le b$, $|z| \le c$.Т.е., весь эллипсоид содержится в параллелепипеде, который определяется этими неравенствами.
- **2.** Координатные оси пересекают эллипсоид в точках $A_1(a,0,0)$, $A_2(-a,0,0)$, $B_1(0,b,0)$, $B_2(0,-b,0)$, $C_1(0,0,c)$, $C_2(0,0,-c)$, которые называются вершинами эллипсоида.
- ${f 3.}$ Координатные оси являются осями симметрии эллипсоида, координатные плоскости плоскостями симметрии, начало координат O центром симметрии.
- **4.** При a=b эллипсоид будет поверхностью вращения вокруг Oz. Действительно, в этом случае его уравнение можно переписать так:

$$\frac{(\sqrt{x^2+y^2})^2}{a^2} + \frac{z^2}{c^2} = 1.$$

При a = b = c эллипсоид будет сферой:

$$x^2 + y^2 + z^2 = a^2 (**).$$

(1) может быть получен из сферы (**) в результате равномерного сжатия по взаимно перпендикулярным направлениям. Действительно, если в (**) сделать замену координат x=x', $y=\frac{a}{b}y'$, $z=\frac{a}{c}z'$, то получим уравнение (1).

Однополостной и двуполостной гиперболоиды.

Определение. Однополостным и двуполостным гиперболоидами называются поверхности, имеющие канонические уравнения соответственно вида

$$\Phi_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \qquad (2) \qquad \Phi_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1. \qquad (3)$$

В сечениях плоскостями z = h получаем соответственно кривые

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}$$
Обозначим
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{h^2}{c^2} \quad (*)$$

$$a'^2 = a^2(1 + \frac{h^2}{c^2}), \ b'^2 = b^2(1 + \frac{h^2}{c^2});$$
 $a'^2 = a^2|-1 + \frac{h^2}{c^2}|, \ b'^2 = b^2|-1 + \frac{h^2}{c^2}|,$

при любом h получаем эллипсы

при $\mid h \mid > c$ получаем эллипсы

$$\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = 1$$

В сечениях плоскостями y=h получаем соответственно кривые

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{h^2}{b^2}$$
 (**)

Обозначим соответственн

$$a'^2 = a^2 |1 - \frac{h^2}{h^2}|, c'^2 = c^2 |1 - \frac{h^2}{h^2}|$$

и при $h \neq \pm b$ получаем гиперболы,

$$\frac{x^2}{a'^2} + \frac{z^2}{c'^2} = \pm 1,$$

а при $h = \pm b_{\gamma}$ (**) превращается в уравнение $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$, которое задает

пару пересекающихся прямых.

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = -1 - \frac{h^2}{c^2}$$

$$a'^2 = a^2 \left| 1 - \frac{h^2}{h^2} \right|, \ c'^2 = c^2 \left| 1 - \frac{h^2}{h^2} \right|$$
 $a'^2 = a^2 \left(1 + \frac{h^2}{h^2} \right), \ c'^2 = c^2 \left(1 + \frac{h^2}{h^2} \right).$

и при любом h получаем гиперболы

$$-\frac{x^2}{a'^2} + \frac{z^2}{c'^2} = 1.$$

Аналогично, в сечениях Φ_2 плоскостями y = h получаем только гиперболы, а в сечениях Φ_1 – гиперболы или пары прямых при $h=\pm a$.

Прочие геометрические свойства гиперболоидов.

- а). Точно так же, как и для эллипсоида доказывается, что координатные оси являются осями симметрии гиперболоидов, координатные плоскости – плоскостями симметрии, а точка O – центром симметрии.
 - **б).** Пусть $\Phi_{\rm o}$ конус, заданный уравнением

$$\Phi_0$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$. (4)

Пусть $M_0(x, y, z_0) \in \Phi_0$, $M_1(x, y, z_1) \in \Phi_1$, $M_2(x, y, z_2) \in \Phi_2$ – три точки с одинаковыми координатами x и y, лежащие на конусе и на гиперболоидах. Тогда

$$z_0^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right), \quad z_1^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right), \quad z_2^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1\right) \implies$$

 $|z_1|^2 |<|z_0|^2 |<|z_2|^2|$, а значит, Φ_1 лежит снаружи конуса Φ_0 , а Φ_2 – внутри. Кроме того, из тех же равенств следует $z_0^2 - z_1^2 = z_2^2 - z_0^2 = c^2 \implies$

$$M_{\rm o}M_{\rm 1} = |z_{\rm o} - z_{\rm 1}| = \frac{1}{|z_{\rm o} + z_{\rm 1}|} \to 0$$
 и $M_{\rm 2}M_{\rm o} = |z_{\rm 2} - z_{\rm o}| = \frac{1}{|z_{\rm 1} + z_{\rm o}|} \to 0$,

когда точки M_0 , M_1 , M_2 уходят на бесконечность. Значит, оба гиперболоида асимптотически приближаются к конусу.

Теорема. Через каждую точку однополостного гиперболоида проходит ровно 2 прямые, целиком лежащие на гиперболоиде. **Доказательство.**

Эллиптический и гиперболический параболоиды

Определение. <u>Эллиптическим и гиперболическим параболоидами</u> называются поверхности, имеющие канонические уравнения соответственно вида

$$\Phi_3$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ (5) Φ_4 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$. (6)

В сечениях плоскостями z = h получаем соответственно кривые

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2h \qquad \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 2h \qquad (*)$$

Обозначим $a'^2 = 2|h|a^2, b'^2 = 2|h|b^2$.

При h > 0 получаем эллипсы

$$\frac{x^2}{{a'}^2} + \frac{y^2}{{b'}^2} = 1,$$

полуоси которых возрастают при возрастании h, а при h<0 получаем мнимые эллипсы

$$\frac{x^2}{a'^2} + \frac{y^2}{b'^2} = -1.$$

При $h \neq 0$ получаем гиперболы

$$\frac{x^2}{a'^2} - \frac{y^2}{b'^2} = \pm 1,$$

(см. на рисунке γ_4), а при h=0 из (*) получаем уравнение, которое задает пару пересекающихся прямых

$$\frac{x^2}{a'^2} - \frac{y^2}{b'^2} = 0.$$

В сечениях плоскостями y = h получаем для обеих поверхностей параболы

$$x^2 = 2a^2(z - \frac{h^2}{2b^2}).$$
 $x^2 = 2a^2(z + \frac{h^2}{2b^2}).$

Аналогично, в сечениях параболоидов плоскостями x = h получаем параболы.

Прочие геометрические свойства гиперболоидов.

- **а).** Из уравнения (5) получаем, что $z \ge 0$, т.е. Φ_3 целиком находится в полупространстве, которое определяется этим неравенством.
- **б).** Координатные оси пересекают оба параболоида только в точке O(0, 0, 0), которая называется вершиной.

в). Ось Oz является осью симметрии параболоидов, а координатные плоскости Oxz и Oyz – плоскостями симметрии. Других симметрий у параболоидов нет.

Теорема. Через каждую точку гиперболического параболоида проходит ровно 2 прямые, целиком лежащие на параболоиде. **Доказательство.**

Цилиндрические поверхности.

Определение. Назовём *цилиндрической* поверхность, через каждую точку которой проходит прямая, лежащая на поверхности, пересекающая некоторую пространственную кривую (*направляющую*)и параллельная некоторой фиксированной прямой на поверхности(образующей).

Если выбрать декартову систему координат так, чтобы ось Oz была параллельна образующим поверхности Φ , а направляющую γ' спроецировать в плоскость Oxy, то получим некоторую кривую γ . Если теперь мы возьмем γ в качестве направляющей, то получим ту же поверхность Φ . Поэтому будем с самого начала считать, что направляющей служит кривая γ , лежащая в плоскости Oxy. Пусть

$$\varphi(x,y) = 0 \qquad (1)$$

ее уравнение в плоскости Oxy (в пространстве она задается системой из двух уравнений: $\varphi(x, y) = 0$ и z = 0). Пусть M(x, y, z) — произвольная точка поверхности Φ . Тогда ее проекция на плоскость Oxy будет точка $M_o(x, y, 0)$; и эта точка должна принадлежать кривой γ . Поэтому ее координаты удовлетворяют (1). Но тогда этому уравнению будут удовлетворять и координаты точки M_o : ведь координаты x и y у этих точек одинаковы, а z в уравнение не входит.

Обратно, пусть координаты точки M(x,y,z) удовлетворяют (1). Тогда этому же уравнению удовлетворяют и координаты точки $M_o(x,y,0)$, а т.к. $M_o \in Oxy$, то $M_o \in \gamma$. При этом, M и M_o лежат на одной прямой, параллельной оси $Oz \implies M \in \Phi$.

Итак, мы установили, что (1) и есть уравнение поверхности Φ , т.е. уравнение цилиндрической поверхности совпадает с уравнением ее направляющей кривой γ в плоскости Оху, если образующие параллельны оси Оz.

Примеры

Теорема. Если поверхность второго порядка цилиндрическая, то она имеет тип одной из поверхностей следующей таблицы:

1. Эллиптический цилиндр
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2. Мнимый эллиптический цилиндр (∅)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
3. Гиперболический цилиндр	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
4. Параболический цилиндр	$y^2 = 2px$
5. Пара пересекающихся плоскостей	$a^2x^2 - b^2y^2 = 0$
6. Пара мнимых плоскостей, которые пересекаются по действительной прямой	$a^2x^2 + b^2y^2 = 0$
7. Пара параллельных плоскостей	$x^2 = a^2$
8. Пара совпадающих плоскостей	$x^2=0$
9. Пара мнимых параллельных плоскостей (Ø)	$x^2 = -a^2$

Конические поверхности.

Определение. Конической называется поверхность, составленная из множества всех прямых (образующих), проходящих через каждую точку некоторой кривой (*направляющей*), и через некоторую точку O (*вершину*).

Теорема. Направляющая конической поверхности Ф второго порядка имеет вид

$$\begin{cases} \varphi(x,y) = 0, \\ z = c, c \in \mathbf{R} \end{cases}$$

Где $\varphi(x, y)$ – многочлен 2 степени.

Теорема.

Существуют 4 типа конических поверхностей:
1. Конус
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

- **2.** Пара пересекающихся плоскостей $a^2x^2 b^2y^2 = 0$.
- **3.** Пара мнимых пересекающихся плоскостей $a^2x^2 + b^2y^2 = 0$.
- **4.** Пара совпадающих плоскостей $x^2=0$.

Доказательство.

Примеры.

Лекция 10. Классификация поверхностей второго порядка.

Теорема.

Для любой поверхности второго порядка Φ существует такое движение поверхности, в результате которого уравнение поверхности Φ совпадёт с

одним из перечисленных в следующей таблице.

Es morra
Её каноническое
уравнение
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z,$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z,$
$a^2 - \overline{b^2} = 2z,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$
x^2 y^2
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1,$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0,$
$\overline{a^2} + \overline{b^2} = 0,$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0,$
$x^2 = 2py$
$x^2 = a^2$
$x^2 = 0$
$x^2 = -a^2$

Доказательство. Примеры.

Лекция 11.

Назовём точками евклидова пространства ${\it R}^n$ множество строк вида $(x_1,x_2,...,x_n)$, где все $x_i\in {\it R}$, $\forall i\in {\it N}$. Каждая такая строка соответствует точке пространства. В случае n=2 и 3 это определение совпдает с определением евклидовой плоскости и 3-х мерного пространства с декартовой системой координат. Определим векторы в ${\it R}^n$ как направленные отрезки \overrightarrow{AB} , где $A,B\in {\it R}^n$ точки. Назовём координатами вектора $\overrightarrow{AB}=(y_1-x_1,...,y_n-x_n)$ разность координат точек $A(x_1,...,x_n)$ и $B(y_1,...,y_n)$. Назовём векторы равными, если равны их координаты. Векторы также будем считать принадлежащими ${\it R}^n$ и различать их с точками. Между векторами естественным образом определяются операции сложения и вычитания и умножения на число по аналогии со случаями n=2 и 3.

Определение. Назовём скалярным произведением векторов $\vec{a}=(x_1,\dots,x_n)$ и $\vec{b}=(y_1,\dots,y_n)$ число $\vec{a}\cdot\vec{b}=x_1y_1+\dots+x_ny_n$. Назовём модулем вектора (или его длиной) число $|\vec{a}|=\sqrt{\vec{a}\cdot\vec{a}}=\sqrt{x_1^2+x_2^2+\dots+x_n^2}$.

Легко проверить, что для так определённого скалярного произведения все известные свойства скалярного произведения выполняются:

а)
$$|\vec{a}| \ge 0$$
, и, если $|\vec{a}| = 0$, то $\vec{a} = \vec{0}$;

б)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
; в) $(\gamma \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\gamma \vec{b}) = \gamma (\vec{a} \cdot \vec{b})$;

B)
$$\vec{a} \cdot (\vec{c} + \vec{b}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b}$$
.

Теорема (неравенство Коши-Буняковского). Для любых $ec{a}$, $ec{b}$ \in $extbf{\emph{R}}^{ extbf{\emph{n}}}$ выполняется неравенство

$$\vec{a} \cdot \vec{b} \le |\vec{a}| \cdot |\vec{b}|.$$

Доказательство.

Теорема (неравенство треугольника). Для любых $\vec{a}, \vec{b} \in \pmb{R^n}$ выполняется неравенство

$$\left| \vec{a} + \vec{b} \right| \le \left| \vec{a} \right| + \left| \vec{b} \right|.$$

Доказательство.

Определение. Определим расстояние между точками $X(x_1, ..., x_n)$ и $Y(y_1, ..., y_n)$ в пространстве \mathbf{R}^n ,как модуль (или длину) вектора \overrightarrow{XY} :

$$\rho(X,Y) = |X - Y| = |\overrightarrow{XY}| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

(Здесь приведены обозначения, которые мы дальше будем использовать).

Определение. *Открытым (замкнутым) шаром U_r(X) в \mathbf{R}^n радиуса r называется множество точек X(x_1, ..., x_n) \in \mathbf{R}^n, чьи координаты удовлетворяют неравенству:*

$$|X - X_0|^2 = (x_1 - x_{01})^2 + \dots + (x_n - x_{on})^2 < r^2$$
 ($\leq r^2$).

Точка $X_0(x_{01},...,x_{01})$ называется центром шара $U_r(X_0)$.

Определение. *Открытым параллелепипедом* **в** \mathbb{R}^n называется множество точек $X(x_1, ..., x_n) \in \mathbb{R}^n$, чьи координаты удовлетворяют неравенствам:

 $|x_1-a_1|<arepsilon_1,\dots,|x_n-a_n|<arepsilon_n$. Если $\,arepsilon_1=arepsilon_2=\dots=arepsilon_n=arepsilon\,$, то параллелепипед называется n — мерным кубом со стороной 2arepsilon.

Замкнутый параллелепипед определяется аналогично замкнутому шару.

Определение. Назовём n- мерной $\varepsilon-$ окрестностью точки $X\in \mathbf{R}^n$ открытый шар $U_\varepsilon(X)$ с центром в точке $X\in \mathbf{R}^n$.

Определение. Назовём окрестностью U(X) точки $X \in \mathbb{R}^n$ любое множество в \mathbb{R}^n , содержащее открытый шар $U_{\varepsilon}(X) \subset U(X)$ для некоторого $\varepsilon > 0$.

Определение. Будем говорить, что последовательность $\{X_k\}_{k=1,2,\dots}$ точек в \mathbf{R}^n сходится к точке $X_0 \in \mathbf{R}^n$ и писать $\lim_{k \to \infty} X_k = X_0$, если

$$\forall_{U(X_0)} \exists_{n_{U(X_0)} \in \mathbb{N}} : \forall_{m > n_{U(X_0)}} \Rightarrow X_m \in U(X_0).$$

Это определение также эквивалентно следующему:

точка X_0 есть предел последовательности $\{X_n\}$, если вне любой окрестности точки X_0 содержится лишь конечное число членов последовательности.

Теорема. Если существует предел последовательности, то он единственный.

Доказательство.

Будем говорить, что последовательность **сходится**, если она имеет конечный предел.

Примеры.

Определение. Последовательность $\{X_k\}$ называется ограниченной, если $\exists M \in \mathbf{R} : \forall k \in \mathbf{N} \Rightarrow |X_k| < M$.

Теорема. Если последовательность сходится, то она ограничена.

Доказательство.

Теорема (Больцано – Вейерштрасс). Из всякой ограниченной последовательности $\{X_k\}$ можно выделить подпоследовательность $\{X_{k_l}\}$, сходящуюся к некоторому конечному числу.

Доказательство.

Определение. Пусть $\{X_{k_l}\}$ некоторая сходящаяся подпоследовательность последовательности $\{X_k\}$. Точка $A=\lim_{l\to\infty}X_{k_l}$ называется **предельной точкой последовательности** $\{X_k\}$.

Задача. Пусть $\{A_m\}$ произвольная последовательность точек в \mathbf{R}^n . Построить последовательность $\{X_k\}$ точек в \mathbf{R}^n , множество предельных точек которой совпадает с множеством значений последовательности $\{A_m\}$.

Определение. Последовательность $\{X_k\}$ называется **последовательностью Коши** или **фундаментальной последовательностью**, если

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N}: \forall l, m \in \mathbb{N}, l > n_{\varepsilon}, m > n_{\varepsilon} \Rightarrow |X_m - X_l| < \varepsilon.$$

Теорема (критерий Коши). Последовательность $\{X_k\}$ является фундаментальной если и только если существует предел $A \in {\it I\!\!R}^n$ последовательности, $A = \lim_{k \to \infty} X_k$.

Доказательство.

Лекция 12.

Множествами в этой лекции будем называть подмножества пространства ${\it R}^{n}$.

Определение. Множество $G \subset \mathbb{R}^n$ называется открытым, если для любой точки $X \in G$ существует окрестность U(X) точки X, целиком лежащая в $G, U(X) \subset G$.

Примеры. Пространство R^n , открытый шар $U_{\varepsilon}(X)$, открытый параллелепипед – являются открытыми множествами.

Определение. Множество $G \subset \mathbb{R}^n$ называется замкнутым, если его дополнение CG в \mathbb{R}^n , $CG = \mathbb{R}^n \backslash G$ — открытое множество.

Примеры. Пространство R^n , замкнутый шар $U_{\varepsilon}(X)$, замкнутый параллелепипед, отрезок и окружность на плоскости, пустое множество \emptyset – являются замкнутыми множествами.

Замечание. Множества \mathbb{R}^n и \emptyset - являются открытыми и замкнутыми одновременно.

Определение. Точка X называется внутренней точкой множества G, если существует ε - окрестность $U_{\varepsilon}(X)$ точки X, целиком лежащая в G, $U_{\varepsilon}(X) \subset G$.

Множество внутренних точек множества G обозначается G^0 и, очевидно, является открытым множеством.

Замечание. Открытое множество можно определить, как множество, для которого $G = G^0$.

Определение. Точка X называется граничной точкой множества G, если любая окрестность U(X) точки X содержит как точки множества G, так и точки дополнения множества G в R^n , то есть $G \cap U(X) \neq \emptyset$, $CG \cap U(X) \neq \emptyset$.

Множество **всех** граничных точек множества G называется границей G и обозначается ΓG . Граничные точки могут принадлежать или не принадлежать множеству G.

Теорема. ΓG - замкнутое множество.

Доказательство.

Замечание. Если $G \subset \mathbf{R}^n$, то $\mathbf{R}^n = G^0 \cup \Gamma G \cup C G^0$, причём множества G^0 , ΓG и $C G^0$ попарно не пересекаются.

Определение. Замыканием множества G называется наименьшее замкнутое множество, обозначаемое \bar{G} , содержащее множество G.

Теорема. $\bar{G} = G \cup \Gamma G$.

Доказательство.

Следствие. Множество замкнуто, если оно содержит все свои граничные точки.

Теорема. Множество G замкнуто если и только если для любой сходящейся к точке X_0 последовательности $\{X_k\}$ точек, целиком содержащейся в G, точка X_0 также принадлежит G.

Доказательство.

Замечание. Последняя теорема даёт нам альтернативное определение замкнутого множества:

Определение. Множество G называется замкнутым, если для любой сходящейся к точке X_0 последовательности $\{X_k\}$ точек, целиком содержащейся в G, точка X_0 также принадлежит G.

Примеры.

Задача. Доказать, что:

- а) объединение любого числа открытых множеств есть открытое множество;
- б) пересечение конечного числа открытых множеств есть открытое множество;
- в) пересечение любого числа замкнутых множеств есть замкнутое множество;
- г) объединение конечного числа замкнутых множеств есть замкнутое множество;

Определение. Открытым покрытием множества G называется совокупность открытых множеств $\Phi = \{W_{\alpha}\}_{\alpha \in I}$, (здесь W_{α} - открытое множество, I- множество индексов), такая, что $G \subset \bigcup_{\alpha \in I} W_{\alpha}$. Покрытие Φ называется конечным, если множество I - конечно.

Определение. Множество $G \subset \mathbb{R}^n$ называется ограниченным, если $\exists M > 0 : \forall X \in G \Rightarrow |X| < M$.

Теорема. Пусть $\Phi = \{W_{\alpha}\}_{\alpha \in I}$ есть открытое покрытие ограниченного замкнутого множества $G \subset \mathbf{R}^n$, тогда существует конечное подмножество I_0 множества I, $I_0 \subset I$, такое, что $\Phi_0 = \{W_{\alpha}\}_{\alpha \in I_0}$ также является открытым покрытием множества G. (Или, что то же самое, из любого открытого покрытия ограниченного замкнутого множества можно выбрать конечное подпокрытие).

Лемма. . Пусть $\Phi = \{W_{\alpha}\}_{\alpha \in I}$ есть открытое покрытие ограниченного замкнутого множества $G \subset R^n$, тогда существует число $\varepsilon_{\Phi} > 0$, зависящее от покрытия Φ , такое, что для любой точки $X \in G$ существует элемент покрытия W_{α_X} , зависящий от X, такой, что $U_{\varepsilon_{\Phi}}(X) \subset W_{\alpha_X}$. (т.е. для любой точки X открытая ε_{Φ} -окрестность точки X содержится в некотором элементе W_{α_X} покрытия Φ).

Доказательство леммы.

Доказательство теоремы.

Определение. Множество $G \subset \mathbb{R}^n$ называется компактным, если из всякого его открытого покрытия можно выбрать конечное подпокрытие.

В силу последнего определения доказанную теорему можно сформулировать так:

Теорема. Всякое ограниченное замкнутое множество в ${\it R}^n$ компактно.

Примеры.

Лекция 13.

Пусть $f\colon \pmb{R^n}\to \pmb{R}$ числовая функция переменной $X=(x_1,x_2,\dots,x_n)$, которую будем записывать как $f(X)=f(x_1,x_2,\dots,x_n)$.

Определение предела (по Гейне). Будем говорить, что функция $f(X)=f(x_1,x_2,...,x_n)$ имеет предел равный числу $A\in \pmb{R^n}$ при значении переменной $X=(x_1,x_2,...,x_n)$ стремящемуся к $X_0=(x_{01},x_{02},...,x_{0n})$, если f(X) определена в некоторой проколотой окрестности $\dot{U}(X_0)$ точки X_0 и для любой последовательности $\{X_k\}$ точек из окрестности $\dot{U}(X_0)$, сходящейся к X_0 , последовательность $\{f(X_k)\}$ сходится к числу A. Или

$$A=\lim_{\mathrm{X} o \mathrm{X}_0} f(X) \underset{\mathrm{по}}{\overset{}{\hookrightarrow}} \mathrm{Y}\{X_k\}, X_k \in \dot{U}(X_0), \lim_{k o \infty} X_k = X_0 \Rightarrow \lim_{k o \infty} f(X_k) = A$$
 .

Определение предела (по Коши). Пусть функция f(X) определена в некоторой окрестности конечной точки X_0 за исключением, может быть, самой точки X_0 . Число A называется пределом функции f(X) в точке X_0 если для любого $\varepsilon>0$ существует такое $\delta_{\varepsilon}>0$, зависящее от ε , что для всех X, для которых выполняется неравенство $\left|X-X_0\right|<\delta_{\varepsilon}\Rightarrow \left|f(X)-A\right|<\varepsilon$. Или кратко:

$$\begin{split} A = & \lim_{X \to X_0} f(X) \underset{\text{по Коши}}{\longleftrightarrow} \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \colon \forall X, 0 < |X - X_0| < \delta_{\varepsilon} \Rightarrow \\ |f(X) - A| < \varepsilon \ . \end{split}$$

Теорема. Определения предела по Гейне и по Коши эквивалентны.

Доказательство.

Рассмотрим некоторую функцию f(X) определенную в некоторой окрестности $\dot{U}(X_0)$ конечной точки X_0 за исключением, может быть, самой точки X_0 . Пусть $\vec{\theta}=(\theta_1,\theta_2,...,\theta_n)$ единичный вектор, $|\vec{\theta}|=1$, тогда точки

вида $X_0+t\vec{\theta}=(x_{01}+t\theta_1,...,x_{0n}+t\theta_n)$, где t>0 , образуют луч, выходящий из точки X_0 в направлении вектора $\vec{\theta}$. Пределом функции f(X) по направлению $\vec{\theta}$ называется предел функции $F(t)=f(x_{01}+t\theta_1,...,x_{0n}+t\theta_n)$, если он существует

$$\lim_{t\to 0} F(t) = \lim_{t\to 0} f(X_0 + t\vec{\theta}).$$

Пример. a) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 + y^3}{x^2 + y^2} = 0$,

- б) $\lim_{y\to 0} \frac{x^2-y^2}{x^2+y^2}$ не существует, т.к. пределы по направлениям различны.
- в) $\lim_{y\to 0} \frac{x^2y}{x^4+y^2}$ не существует, хотя существуют равные пределы по направлениям.

Определение. Будем писать $\lim_{X \to X_0} f(X) = \infty$ если f(X) определена в некоторой проколотой окрестности $\dot{U}(X_0)$ и $\forall R > 0 \exists \delta_R > 0$: $\forall X \in \dot{U}(X_0), 0 < |X - X_0| < \delta_R \Rightarrow |f(X)| > R$.

Определение. Будем писать $\lim_{X\to\infty} f(X) = A$, если $\forall \varepsilon > 0 \exists R_{\varepsilon} > 0$: $\forall X, |X| > R_{\varepsilon} \Rightarrow |f(X) - A| < \varepsilon$.

Теорема. Пусть $A=\lim_{X \to X_0} f(X)$, $B=\lim_{X \to X_0} g(X)$ конечные пределы. Тогда

а)
$$\lim_{X\to X_0} \left(\alpha f(X) + \beta g(X)\right) = \alpha A + \beta B$$
, где $\alpha,\beta\in R$;

6)
$$\lim_{X \to X_0} f(X)g(X) = AB;$$

в)
$$\lim_{X \to X_0} \frac{f(X)}{g(X)} = \frac{A}{B}$$
, если $B \neq 0$.

Доказательство.

Теорема. Если $A=\lim_{X\to X_0}f(X)$, где A —конечное число, то $\exists \ \dot{U}(X_0), M>0$: $\forall X\in \dot{U}(X_0)\Rightarrow |f(X)|< M$.

Доказательство.

Теорема. Если $A=\lim_{X\to X_0}f(X)$, где $A\neq 0$, то $\exists \ \dot{U}(X_0)\colon \forall X\in \dot{U}(X_0)\Rightarrow |f(X)|>\frac{|A|}{2}$. Если при этом A>0, то $f(X)>\frac{A}{2}$, если A<0, то $f(X)<\frac{A}{2}$.

Доказательство.

Непрерывные функции.

Функция f(X) называется непрерывной в точке $X_0 \in G \subset \mathbf{R}^n$, если она определена в некоторой окрестности $U(X_0)$ и $\lim_{X \to X_0} f(X) = f(X_0)$.

Если определить приращение функции, соответствующее приращению аргумента $\Delta X = (\Delta x_1, \Delta x_2, ..., \Delta x_n)$, как $\Delta f(X) = f(X + \Delta X) - f(X)$, то данное определение эквивалентно равенству $\lim_{\substack{\Delta X \to \vec{0} \\ X + \Delta X \in G}} \Delta f(X_0) = 0$.

На языке " $\varepsilon - \delta$ ": $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$: $\forall X \in G, 0 < |X - X_0| < \delta_{\varepsilon} \Rightarrow |f(X) - f(X_0)| < \varepsilon$.

Для непрерывных функций свойство $\lim_{X\to X_0} f(X) = f(\lim_{X\to X_0} X)$ показывает, что знаки предела и функции перестановочны или - «можно переходить к пределу под знаком непрерывной функции».

Теорема. Пусть f(X) и g(X) непрерывные в точке функции X_0 функции. Тогда $\alpha f(X) + \beta g(X)$, f(X) g(X), (f(X))/(g(X)) при $g(X_0) \neq 0$ непрерывны.

Доказательство.

Теорема. Пусть g(X) непрерывна в точке X_0 , $g(X_0)=a$, функция f(t) непрерывна в точке a, тогда сложная функция $\Phi(X)=f(g(X))$ непрерывна в точке x_0 .

Доказательство.

Примеры непрерывных функций.

Теорема. а) Если f(X) непрерывна в точке A, то она ограничена в некоторой окрестности U(A);

б) Если f(X) непрерывна в точке A и $f(A) \neq 0$, то существует окрестность U(A) точки A, в которой $f(X) > \frac{f(A)}{2} > 0$, если f(A) > 0 и $f(X) < \frac{f(A)}{2} < 0$, если f(A) < 0, для любого $X \in U(A)$.

Доказательство.

Определение. Функция называется непрерывной на множестве G, если она непрерывна в каждой точке множества G.

Теорема. Если функция непрерывна на ограниченном, замкнутом множестве $G \subset \mathbb{R}^n$, то она ограничена.

Доказательство.

Теорема (Вейерштрасс). Если функция f(X) непрерывна на ограниченном, замкнутом множестве $G \subset \mathbf{R}^n$, то существует точка $C \in G$, такая, что $f(C) = \min_{X \in G} f(X)$ и, существует точка $D \in G$, такая, что $f(D) = \max_{X \in G} f(X)$.

Доказательство.

Определение. Непрерывной кривой в \mathbb{R}^n называется образ отображения

$$\Gamma: [a,b] \to \mathbb{R}^n$$
, $\Gamma(t) = (\varphi_1(t), \varphi_2(t), \dots, \varphi_n(t))$,

задаваемого непрерывными на отрезке [a,b] функциями $\{\varphi_i(t)\}$.

Определение. Множество $G \subset \mathbb{R}^n$ называется связным, если любые две его точки можно соединить непрерывной кривой, целиком лежащей в множестве G.

Теорема. Если функция f(X) непрерывна на ограниченном, замкнутом, связном множестве $G \subset \mathbf{R}^n$, $a = \min_{X \in G} f(X)$, $b = \max_{X \in G} f(X)$, то для любого значения $c \in [a,b]$ существует $C \in G$, такая, что f(C) = c.

Доказательство.

Примеры.

Определение. Функция f(X) называется равномерно непрерывной на множестве $M \subset \mathbf{R}^n$, если $\forall \varepsilon > 0 \ \exists \delta_\varepsilon > 0 \colon \forall X', X^{''} \in M, \left| X' - X^{''} \right| < \delta_\varepsilon \Rightarrow \left| f(X') - f(X^{''}) \right| < \varepsilon$.

Теорема (Кантор). Пусть $M \subset \mathbb{R}^n$ компактное множество, f(X) непрерывная на M функция, тогда f(X) равномерно нерерывна на M.

Доказательство.

Следствие. Функция, непрерывная на ограниченном замкнутом множестве, равномерно непрерывна на нём.

Примеры.

Лекция 14.

Обозначим $\Delta X_i = (0,...,0,\Delta x_i,0,...,0)$ и назовём приращением функции f(X) по -той переменной величину $\Delta_i f(X) = f(X + \Delta X_i) - f(X)$.

Определение. Частной производной по переменной x_i в точке X называется предел $f'_{x_i} = \frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{\Delta_i f(X)}{\Delta x_i}$, если он существует.

Частную производную функции можно рассматривать, как производную функции одной переменной x_i , когда все остальные переменные фиксированы.

Рисунок.

Примеры.

Частные производные $\left\{\frac{\partial f}{\partial x_i}\right\}$ можно рассматривать, как функции на тех подмножествах в \mathbf{R}^n , где они определены. И можно, в свою очередь, рассмотреть частные производные этих функций $\frac{\partial^2 f(X)}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, которые назовём вторыми частными производными функции f(X).

Пример. Для n=2 имеются две частные производные 2-го порядка $\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \text{ и } \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \text{ по переменным } x \text{ и } y \text{ и две «смешанные»}$ производные второго порядка $\frac{\partial^2 f(X)}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \text{ и } \frac{\partial^2 f(X)}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \text{ .}$

Определение. Смешанной частной производной n -того порядка назовём частную производную от производной (n-1)—го порядка.

Пример.
$$\frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x \partial y} \right) = \frac{\partial^3 f}{\partial y \partial x \partial y} , \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y \partial x} \right) = \frac{\partial^3 f}{\partial y^2 \partial x}.$$

Пример.

Возникает вопрос, будут ли равны частные производные, взятые по одним и тем же переменным одинаковое число раз, но в разном порядке, как в примере выше? Ответ даётся следующей теоремой:

Теорема (о смешанных производных).

Пусть функция f(X)=f(x,y) определена вместе со своими производными $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x\partial y}$, $\frac{\partial^2 f}{\partial y\partial x}$ в некоторой окрестности точки X_0 и пусть функции $\frac{\partial^2 f}{\partial x\partial y}$ и $\frac{\partial^2 f}{\partial y\partial x}$ непрерывны в точке X_0 . Тогда

$$\frac{\partial^2 f(X_0)}{\partial x \partial y} = \frac{\partial^2 f(X_0)}{\partial y \partial x}. \quad (*)$$

Доказательство.

Замечание. Если вторые частные производные разрывны в точке, то равенство неверно. Пример – для функции

$$f(x,y) = \begin{cases} 0, \text{ при } (x,y) = (0,0); \\ \frac{x^2y}{x^2+y^2} & \text{при } (x,y) \neq (0,0). \end{cases}$$

в точке $X_0=0\,$ равенство (*) неверно, т.к. вторые производные разрывны.

Замечание. Эта теорема легко распространяется на любые смешанные производные, отличающиеся лишь порядком дифференцирования.

Например
$$\frac{\partial^3 f}{\partial y \partial x \partial y} = \frac{\partial^3 f}{\partial y^2 \partial x}$$
.

Определение. Пусть $\vec{\delta}=(\delta_1,...,\delta_n)$ единичный вектор $|\vec{\delta}|=1$, производной функции f(X) по направлению $\vec{\delta}$ в точке $X\in \pmb{R}^n$ называется правая производная по t функции $F(t)=f(x_1+t\delta_1,...,x_n+t\delta_1)$ в точке t=0 и обозначается $\frac{\partial f(X)}{\partial \vec{\delta}}=F'_+(0)$.

Замечание. Частные производные 1-го порядка функции совпадают с производными функции по направлению соответствующих базисных ортов.

Теорема. Если функция f(X) имеет в точке X_0 все непрерывные частные производные первого порядка, то приращение функции в точке X_0 соответствующее приращению аргумента $\Delta X = (\Delta x_1, \dots, \Delta x_n)$ можно записать в виде $\Delta f(X_0) = \frac{\partial f}{\partial x_1}(X_0)\Delta x_1 + \dots + \frac{\partial f}{\partial x_n}(X_0)\Delta x_n + o(\Delta \rho)$, где $\Delta \rho = |\Delta X| = \sqrt{\Delta x_1^2 + \dots + \Delta x_n^2}$.

Доказательство.

Определение. Функция называется дифференцируемой в точке X_0 , если приращение функции в точке X_0 соответствующее приращению аргумента $\Delta X = (\Delta x_1, \dots, \Delta x_n)$ можно записать в виде $\Delta f(X_0) = A_1 \Delta x_1 + \dots + A_n \Delta x_n + o(\Delta \rho)$, где $\Delta \rho = |\Delta X| = \sqrt{\Delta x_1^2 + \dots + \Delta x_n^2}$, $A_i \in \mathbf{R}^n$ для всех i.

Теорема. Для того, чтобы функция была дифференцируема в точке, необходимо, чтобы она имела в этой точке частные производные первого порядка и достаточно, чтобы эти производные были непрерывны в точке.

Доказательство.

Примеры.

Определение. Главная линейная часть приращения дифференцируемой функции f(X) называется дифференциалом функции и обозначается, как $df(X) = \frac{\partial f}{\partial x_1}(X)\Delta x_1 + \dots + \frac{\partial f}{\partial x_n}(X)\Delta x_n = \frac{\partial f}{\partial x_1}(X)dx_1 + \dots + \frac{\partial f}{\partial x_n}(X)dx_n.$

Замечание. Последнее равенство верно в силу $\Delta x_i = dx_i$.

Касательная плоскость. Геометрический смысл дифференциала.

Рассмотрим поверхность, заданную уравнением z=f(x,y) в ${\it R}^3$. Кривые на поверхности, заданные уравнениями $x=x_0$ и $y=y_0$ обе проходят через точку $X_0=(x_0,y_0,f(x_0,y_0))$ и, если существуют частные производные $\frac{\partial f(X_0)}{\partial x}$, $\frac{\partial f(X_0)}{\partial y}$,

то касательные к этим кривым в точке X_0 задаются уравнениями:

$$\begin{cases} x = x_0 \\ z = f(X_0) + \frac{\partial f(X_0)}{\partial y} (y - y_0) \end{cases}$$

$$\begin{cases} y = y_0 \\ z = f(X_0) + \frac{\partial f(X_0)}{\partial x} (x - x_0) \end{cases}$$

Касательная плоскость к поверхности, если таковая существует, должна содержать обе эти прямые, откуда немедленно получаем уравнение касательной плоскости:

$$Z - z_0 = \frac{\partial f(X_0)}{\partial x}(x - x_0) + \frac{\partial f(X_0)}{\partial y}(y - y_0)$$
, где $z_0 = f(X_0)$. (**)

Если функции $\frac{\partial f(X)}{\partial x}$, $\frac{\partial f(X)}{\partial y}$ непрерывны в окрестности точки (x_0,y_0) , то расстояние между точкой поверхности $P\big(x,y,f(x,y)\big)$ и точкой касательной плоскости Q(x,y,Z), с теми же координатами (x,y) равно:

$$PQ = f(x,y) - rac{\partial f(X_0)}{\partial x}(x-x_0) + rac{\partial f(X_0)}{\partial y}(y-y_0) = o(
ho)$$
, где $ho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$, и мы видим, что это расстояние есть $o(
ho) = PQ \underset{
ho o 0}{\longrightarrow} 0$.

Рисунок.

Лекция 15.

Теорема.

Пусть функция f(X) дифференцируема в точке $X=(x_1,x_2,\dots,x_n)\in \pmb{R^n}$, а функции $x_i=\varphi_i(t)$ дифференцируемы в точке t, тогда производная функции $F(t)=f(\varphi_1(t),\dots,\varphi_n(t)$) равна

$$F'(t) = \frac{\partial f(X(t))}{\partial x_1} \varphi_1'(t) + \dots + \frac{\partial f(X(t))}{\partial x_n} \varphi_n'(t) = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}.$$

Доказательство.

Теорема. Если в предыдущих обозначениях $x_i = \varphi_i(t_1, ..., t_m)$ функции от m переменных , то

$$\frac{\partial f(\varphi_1(t_1,\dots,t_m),\dots,\varphi_n(t_1,\dots,t_m))}{\partial t_i} = \sum_{k=1}^n \frac{\partial f}{\partial x_k} \frac{dx_k}{dt_i} \,.$$

Доказательство.

Примеры.

Теорема. Если f(X) дифференцируема в точке $X=(x_1,x_2,...,x_n)\in \pmb{R^n}$, то для неё имеет смысл производная по направлению любого единичного вектора $\vec{\theta}=(\theta_1,\theta_2,...,\theta_n), |\vec{\theta}|=1$ и

$$\frac{\partial f}{\partial \vec{\theta}} = \frac{\partial f}{\partial x_1} \theta_1 + \dots + \frac{\partial f}{\partial x_n} \theta_n .$$

Доказательство.

Замечание. Если функция имеет производную по любому направлению, то она может быть не дифференцируемой. Пример.

Замечание. Если $\vec{\theta}=(\cos\alpha_1,...,\cos\alpha_n)$ где $\{\alpha_i\}$ – углы между вектором $\vec{\theta}$ и осями OX_i , то предыдущая формула имеет вид

$$\frac{\partial f}{\partial \vec{\theta}} = \frac{\partial f}{\partial x_1} \cos \alpha_1 + \dots + \frac{\partial f}{\partial x_n} \cos \alpha_n . \tag{*}$$

Определение. Градиентом функции f(X) в точке $X=(x_1,x_2,...,x_n)\in \pmb{R^n}$ называется вектор $\overrightarrow{grad}\ f(X)=(\frac{\partial f(X)}{\partial x_1},...,\frac{\partial f(X)}{\partial x_n}).$

Примеры.

Следствие. Производная по направлению вектора $\vec{\theta}$ от функции f(X) равна скалярному произведению вектора $\overline{grad} \ f(\vec{X})$ на вектор $\vec{\theta}$:

$$\frac{\partial f}{\partial \vec{\theta}} = \left(\overrightarrow{grad} \ f(X), \vec{\theta} \right) = grad_{\vec{\theta}} \ f(X).$$

Следствие. $\frac{\partial f}{\partial \vec{\theta}} \leq |\overrightarrow{grad} f(\vec{X})|$

Свойства вектора $\overrightarrow{grad} \ f(\overrightarrow{X})$:

- 1) Его длина равна максимальному значению производной $\frac{\partial f}{\partial \vec{\theta}}$ по направлению функции f(X);
- 2) Если он ненулевой, то направлен в сторону максимального возрастания функции f(X);
- 3) Он перпендикулярен гиперповерхности уровня f(X) = c (будет доказано позднее).

Примеры.

Дифференциалы.

Рассмотрим функцию $U = f(X) = f(x_1, x_2, ..., x_n)$ независимых переменных $\{x_i\}$. Дифференциал функции f(X) равен

$$dU = \sum_{k=1}^{n} \frac{\partial U}{\partial x_k} dx_k$$

И зависит, вообще говоря, от $\{x_i\}$ и от $\{dx_i\}$.

Теорема. Пусть U(X) и W(X) функции, имеющие непрерывные частные производные 1-го порядка в точке X, тогда:

1)
$$d(\alpha U + \beta W) = \alpha dU + \beta dW$$
;

$$2) \ d(UW) = UdW + WdU;$$

3)
$$d\left(\frac{U}{W}\right) = \frac{WdU - UdW}{W^2}$$
 , если только $W(X) \neq 0$.

Доказательство.

Определение. Дифференциалом -го порядка функции U(X) называется $d^n U(X) = d \big(d^{n-1} U(X) \big).$

Примеры. a) $d^2U=\sum_{k=1}^n\sum_{l=1}^n\frac{\partial^2U}{\partial x_k\partial x_l}dx_kdx_l$. При вычислении полагаем $d(dx_i)=0$.

6)
$$d^k U(X) = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^k U(X)$$

доказывается по индукции.

Теорема. Дифференциал k-го порядка функции U(X), где $X=(x_1,x_2,...,x_n)$ независимые переменные, равен

$$d^k U(X) = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^k U(X).$$

Доказательство.

Если теперь $W(u_1, ..., u_m)$ функция зависимых переменных, и

$$u_j = u_j(x_1, x_2, ..., x_n)$$
, то

$$dW = \sum_{i=1}^{m} \frac{\partial W}{\partial u_i} du_i = \sum_{i=1}^{m} \frac{\partial W}{\partial u_i} \left(\sum_{j=1}^{n} \frac{\partial u_i}{\partial x_j} dx_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} \frac{\partial W}{\partial u_i} \frac{\partial u_i}{\partial x_j} \right) dx_j = \sum_{j=1}^{n} \frac{\partial W}{\partial x_j} dx_j,$$

и мы видим, что формула для 1-го дифференциала осталась прежней. Это свойство инвариантности 1-го дифференциала.

Но уже для второго дифференциала имеем:

$$d^2W = d(dW) = d\left(\sum_{i=1}^m \frac{\partial W}{\partial u_i} du_i\right) = \sum_{j=1}^m \sum_{i=1}^m \frac{\partial^2 W}{\partial u_i \partial u_i} du_j du_i + \sum_{i=1}^m \frac{\partial W}{\partial u_i} d^2u_i,$$

и видим, что в отличие от случая независимых переменных, появилось второе ненулевое слагаемое.

Лекция 16.

Пусть функция f(X) определена и непрерывна вместе со всеми своими частными производными вплоть до -го порядка включительно в некоторой окрестности $U_{\varepsilon}(X_0)$ точки $X_0(x_{01},...,x_{0n})$, точка $X_0+\Delta X\in U_{\varepsilon}(X_0)$, где $\Delta X=(\Delta x_1,...,\Delta x_n), \ \Delta f(X_0)=f(X_0+\Delta X)-f(X_0).$

Теорема (Тейлора). В вышеприведённых обозначениях

$$\Delta f(X_0) = \frac{df(X_0)}{1!} + \frac{d^2 f(X_0)}{2!} + \dots + \frac{d^{k-1} f(X_0)}{(k-1)!} + \frac{d^k f(X_0 + \theta \Delta X)}{k!} ,$$

для некоторого $\theta \in (0,1)$.

Замечание. Здесь
$$d^k f(X) = (\frac{\partial}{\partial x_1} \Delta x_1 + \dots + \frac{\partial}{\partial x_n} \Delta x_n)^k f(X)$$
.

Доказательство. Рассмотрим функцию $F(t) = f(X_0 + t\Delta X)\,$ для $t\in [0,1]$, тогда, применив формулу Маклорена к F(t)

при
$$\Delta t=1$$
 имеем $\Delta f(X_0)=F(1)-F(0)=\sum_{l=0}^{k-1}\frac{F^{(l)}(0)}{l!}+\frac{F^{(k)}(\theta)}{k!}$, где $\theta\in(0,1)$. Вычисление производных функции $F(t)$ даёт следующий результат

$$F^{(l)}(t) = d^l f(X_0 + t\Delta X) = \left(\frac{\partial}{\partial x_1} \Delta x_1 + \dots + \frac{\partial}{\partial x_n} \Delta x_n\right)^k f(X_0 + t\Delta X)$$

(доказывается по индукции), откуда немедленно получаем утверждение теоремы.

Следствие. Для $\kappa = 2$ формула Тейлора имеет вид:

$$\Delta f(X_0) = df(X_0) + \frac{d^2 f(X_0 + \theta \Delta X)}{2!}$$
 (*)

Примеры.

Пусть на области (открытое, связное множество) $G\subseteq R^n$ задана функция f(X). Точка $X_0\in G$ называется **точкой локального экстремума** функции f(X), если существует окрестность $U(X_0)$ точки X_0 , такая, что для любой точки $X\in U(X_0)$, выполняется неравенство $f(X)\geq f(X_0)$ для **локального минимума** или $f(X)\leq f(X_0)$ для **локального максимума**.

Теорема. Пусть $X_0 \in G$ точка локального экстремума для f(X). Тогда, если существуют первые частные производные функции в f(X) точке X_0 , то все они равны нулю $\frac{\partial f(X_0)}{\partial x_i} = 0$, $i = 0,1,\ldots,n$.

Доказательство.

Определение. Точка, в которой выполнены условия $\frac{\partial f(X_0)}{\partial x_i} = 0, i = 0, 1, ..., n$, называется *стационарной точкой* для функции f(X).

Следствие. Если функция f(X) дифференцируема в точке X_0 и имеет локальный экстремум в X_0 , то:

a)
$$d f(X_0) = 0$$
, $\overrightarrow{grad f(X_0)} = 0$;

б)
$$\Delta \, f(X_0) = \frac{d^2 f(X_0 + \theta \Delta X)}{2!} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(X_0 + \theta \Delta X)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j$$
, если $f(X)$ имеет непрерывные вторые частные производные в точке X_0 .

Определение. Точка, в которой выполнены условия $\frac{\partial f(X_0)}{\partial x_i} = 0, i = 0, 1, ..., n,$ называется *стационарной точкой* для функции f(X).

Достаточные условия экстремума.

Пусть f(X) имеет непрерывные вторые частные производные в стационарной точке X_0 , тогда

$$\Delta f(X_0) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(X_0 + \theta \Delta X)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} + \varepsilon_{ij} \Delta x_i \Delta x_j = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j + \frac{\rho^2}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{ij} \frac{\Delta x_i}{\rho} \frac{\Delta x_j}{\rho} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j + \frac{\rho^2}{2} \alpha(\Delta X),$$

где
$$\alpha(\Delta X) \leq \varepsilon n^2 \to 0$$
 при $\rho = |\Delta X| = \sqrt{\Delta x_1^2 + \dots + \Delta x_n^2} \to 0$, $\varepsilon = \max \varepsilon_{ij}$.

Итак, для стационарной точки X_0 , имеем $\Delta f(X_0) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \, \Delta x_i \Delta x_j + \frac{\rho^2}{2} \, \alpha(\Delta X)$, где $\{a_{ij}\} = \left\{\frac{\partial^2 f(X_0)}{\partial x_i \partial x_j}\right\}$ —матрица *квадратичной формы*, называемой **гессианом**, а $\alpha(\Delta X) \to 0$ при $|\Delta X| \to 0$. По знаку этой квадратичной формы можно узнать знак приращения $\Delta f(X_0)$. Верна следующая

Теорема.

- а) Если квадратичная форма $\sum_{i=1}^n \sum_{j=1}^n a_{ij} \Delta x_i \Delta x_j$ строго **положительно определена**, т.е. её значение строго >0 для всех $\Delta X \neq \vec{0}$, то точка X_0 локальный минимум;
- б) Если квадратичная форма $\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}\,\Delta x_i\Delta x_j$ строго **отрицательно определена**, т.е. её значение строго <0 для всех $\Delta X\neq \vec{0}$, то точка X_0 локальный максимум;
- в) Если квадратичная форма $\sum_{i=1}^n \sum_{j=1}^n a_{ij} \Delta x_i \Delta x_j$ положительно полуопределена, т.е. её значение ≥ 0 для всех $\Delta X \neq \vec{0}$, или отрицательно полуопределена, т.е. её значение ≤ 0 для всех $\Delta X \neq \vec{0}$, то вопрос о локальном экстремуме остаётся открытым и требуется дополнительное исследование;
- г) если форма **неопределена** по знаку, т.е. принимает как положительные, так и отрицательные значения, то локальный экстремум в точке X_0 отсутствует.

Доказательство.

Вопрос о знаке квадратичной формы решается при помощи известного **критерия Сильвестера**.

Лекция 17.

Теорема (о неявной функции). Пусть уравнение

$$f(x_1, \dots, x_n, y) = 0, \tag{*}$$

для которого точка $(X_0, y_0) \in \mathbf{R}^{n+1}$ является решением, обладает следующими свойствами:

а) функция $f(x_1, ..., x_n, y)$ непрерывна вместе со **всеми** своими частными производными первого порядка в некоторой окрестности $U(X_0, y_0) \subset \mathbf{R}^{n+1}$ точки (X_0, y_0) ;

6)
$$\frac{\partial f(X_0, y_0)}{\partial y} \neq 0$$
.

Пусть, кроме того, М \subset R^{n+1} - множество точек, удовлетворяющих уравнению (*), тогда для любого $\varepsilon>0$ существует параллелепипед $\varDelta=\{|x_k-x_{0k}|<\delta, k=1,2,\ldots,n;|y-y_0|< b<\varepsilon\}$, такой, что множество М \cap \varDelta описывается непрерывно дифференцируемой функцией

$$y=arphi(x_1,...,x_n)$$
, при $|x_k-x_{0k}|<\delta$, $k=1,2,...,n$, причём $rac{\partial arphi}{\partial x_k}=-rac{rac{\partial f}{\partial x_k}}{rac{\partial f}{\partial y}}$.

Доказательство.

Примеры.

Следствие. Пусть гиперповерхность $S \subset R^n$ задана уравнением $F(x_1, ..., x_n) = 0$, точка $X_0(x_{01}, ..., x_{0n}) \in S$ и не все частные производные $\frac{\partial F(X_0)}{\partial x_k}$ равны нулю одновременно, тогда в точке X_0 существует касательная гиперплоскость к поверхности S, задаваемая уравнением

$$\frac{\partial F(X_0)}{\partial x_1}(x_1 - x_{01}) + \dots + \frac{\partial F(X_0)}{\partial x_n}(x_n - x_{0n}) = 0.$$

Доказательство.

Список литературы.

- 1. Бугров Я.С., Никольский С.М. "Высшая математика. В 3 томах. Том 3. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. - М.: Наука.
- 2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М.: Наука, Главная редакция физикоматематической литературы, 1988, 432 с.
- 3. Бугров Я. С., Никольский С. М. Высшая математика. Дифференциальное и интегральное исчисление. М.: Наука, Главная редакция физикоматематической литературы, 1988, 432 с.
- 4. 2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1. СПб.: Лань, 2016. 608 с.
- 5. 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2. СПб.: Лань, 2016. 800 с.
- 6. 4. Кудрявцев Л.Д. Краткий курс математического анализа. Т.1. Дифференциальное и интегральное исчисления функций одной переменной. — М.: ФИЗМАТЛИТ, 2015. – 444 с.
- 7. Кудрявцев Л.Д. Краткий курс математического анализа. Т.2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ. — М.: ФИЗМАТЛИТ, 2003. – 424 с.
- 8. Сборник задач по математике для втузов: [в 4 ч.] / Под ред. А. В. Ефимова; А. С. Поспелова. М.: ФИЗМАТЛИТ, 2004. Ч. 1. 288 с.
- 9. Сборник задач по математике для втузов; под ред. А. В. Ефимова, А. С. Поспелова. Ч. 2. М.: ФИЗМАТЛИТ, 2009. 432 с.