Outli	1e															
Rind	7															
Fiel	А															
Poli	Noa	1,01	Ring	3												

```
Reap on group
    Group is a set & with a operation + (G+)
    Satisfies
 (1) closure: Y 9, h = Eq.
 (2) identify: \(\frac{1}{2}\) O \(\infty\) = \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2
  (3) inverse: 3 g E E, 3 (-g) E G, S-E B+ (-g) = (-9) + g=0
   (4) associativey: Y g, N, K & & , (g+h)+K = g+(h+k)
  quong to 2) (+, I) : p.3
   Ring is a sit R with two operations +, * (R, +, *)
   satisfies
(1) (R, t) is a commutative group
 (2) With respect to *:
                   (a) 3 usque multiplieurue idention, 1 ER Sit 1* 1=10x1=1
                   (b) * is associative
 (3) +, * are distributive: Y a, b, CER
                    (0+6)*C = (0*C) + (6*C)
E-9: (I,t,*) is a ring, (In, t, *) is a ring
   ( can do addition, substration, multiplication, but not
      division)
```

FIRLD A set F with two operations t, * satisfy (1) (F,+) is a commutative goup (2) (7)303 x) is a commerción group. (3) Distaurille E-a: IR, Q, C are infinite field Fp= Zp where p is prine is a tarte tipld (can do additor, subtartin, militipliation, division) Recap: Zp = Zp 303 has multiplicative inverse. (Zp" *) is a goup Questions: 01: Are there finite tiplds of arbitrary number of elements? 02: How to construct finite fields?

Theorems												
	Any	fente	-Sield	has	Pd	eleme	75	Chri	us ba	NRD.		
2	The	e exist	r a f	icite	fied	to b	E Pd	elin	2709			
			ed soi									
3	All	fente	tield	76	Size	Pd	V.E	(SOMO	chvic			
Pole	Noc	nial Ri	NC)									
2		- 2	2 + 5) \	1							
7	(×)	7	x 2+ 2	- de	050 €							
		000 (10										

Polynomial over Field F Let F be a field. FTXJ = 3 Cd x 4 + Cd-1 x 4-1 + ... + Co, C; E F } E-g= In F2[x] (x+1) C F2 [x] $(x^2+x)\in F_3$ [x] $1 + \times G + = \times + G \times +$ = \times^2+ (\in \mathbb{F}_3 (\times) $(\times 4)$ $(\times_3 + \times) = \times_3 + \times_3 + \times$ FIX) is not a field but a ring.

FIXI is not a field but a ring.

Just like ring of integers, we an add, sub-back,

multiply but not division.

Cockept of Frime concept of irreducible $f(x) \in F[x]$ integer & such that Fi Fi skinshbani Zi Z Phas non trivial divisors (1, p) has no proper factors other than it sat and a constant. ES, 2, 3, 5, 7, E.g: OUR F5[x] X+1 is irreductale $x^2-1=(x-1)(x+1)$ is not irreducible FIX) (fox) is a feed iff In is a field iff n is a prime. fix) is irreducible. All nontero polynamial in Al nonzero elements in Ip 21" (x) where f(x) 15 Where p is prime has my (tip) cotive merse Irreducible has multiplicated PZIRVÍ 2 transfe by End (Cot)/[x29] Ip has pelements Whre f(x) is irreducible IFP = Z/(P) over fors and of degree d.

(Fp[x]/(for)) 30g,*) is wellic. (2021, x) is coclic (Zp,+) is which (TFDX) /(fcx) , +) is cyclic ?