OpenTURNS cheat sheet

This OpenTURNS v1.17 cheat sheet provides a quick overview of all the programming interface. For full documentation, please read the doc. A beginner may be interested in the Quick start guides.

This cheat sheet follows the steps of the ABC method.

Figure 1: The ABC method

Step A: define the study

Class / Method
import openturs as ot
ot.Point(dimension)
ot.Sample(size, dimension)
ot.SymbolicFunction(["x0",
[x1], ["1 + x0 + x1])
ot.PythonFunction(number_of_inputs,
number_of_outputs, g)
ot.MemoizeFunction(myfunction)

Purpose	Class / Method
Normal	ot.Normal(mu, sigma)
Uniform	ot.Uniform(a, b)
Multivariate distribution with	<pre>ot.ComposedDistribution((X0,</pre>
independent copula	X1, X2))
Input random vector	<pre>ot.RandomVector(inputDistribution)</pre>
Output random vector	ot.CompositeRandomVector(g,
	inputRandomVector)
Generate observations	<pre>randomVector.getSample(sample_size)</pre>
Get sample size	<pre>sample.getSize()</pre>
Get sample dimension	sample.getDimension()
Compute sample mean	outputSample.computeMean()
Compute sample standard deviation	outputSample.computeStandardDeviation

Step B : quantification of the sources of uncertainties

Purpose	Class / Method
Import OpenTURNS	import openturs as ot
Fit a Normal	<pre>ot.NormalFactory().build(sample)</pre>
Fit a Beta	<pre>ot.BetaFactory().build(sample)</pre>
Fit an histogram	<pre>ot.HistogramFactory().build(sample)</pre>
Fit a kernel density estimator	<pre>ot.KernelSmoothing().build(sample)</pre>
Draw QQ-plot	ot.VisualTest.DrawQQplot(sample,
	distribution)
Kolmogorov-Smirnov test (known	ot.FittingTest.Kolmogorov(sample,
parameters)	distribution)
Kolmogorov-Smirnov test (unknown	ot.FittingTest.Lilliefors(sample,
parameters)	factory)
BIC criteria	ot.FittingTest.BIC(sample,
	distribution)

Step C : push forward the uncertainties

Purpose	Class / Method
Taylor expansion	ot.TaylorExpansionMoments(output_random_vector)
Estimate mean	ot.ExpectationSimulationAlgorithm(output_random_vector)
Estimate $P(Y > s)$	sample.computeEmpiricalCDF(s,
,	True)
Create the event $(Y > s)$	<pre>ot.ThresholdEvent(output_random_vector,</pre>
,	ot.Greater(), s)
Create a Monte-Carlo experiment	ot.MonteCarloExperiment()

Purpose	Class / Method
Estimate a probability	<pre>ot.ProbabilitySimulationAlgorithm(myEvent, experiment)</pre>

Step C': sensitivity analysis

Purpose	Class / Method	
Perform linear regression	ot.LinearLeastSquares(sampleX,	-
	sampleY)	
Standardized regression coefficients	ot.CorrelationAnalysis_SignedSRC	C(sampleX,
	sampleY)	
Draw indices	ot.SobolIndicesAlgorithm.DrawCon	rrelationCoefficients(SRC
	input_names, "SRC	
	coefficients")	
Estimate Sobol' indices with given n	<pre>ot.SobolIndicesExperiment(X,</pre>	
	size)	
Estimate Sobol' indices	estimator =	
	ot.SaltelliSensitivityAlgorithm(()

Step B': calibration

Purpose	Class / Method
Create the parametric model	ot.ParametricFunction(g,
	<pre>calibratedIndices, thetaPrior)</pre>
Linear least squares	ot.LinearLeastSquaresCalibration(parametric_g,
	<pre>input_sample, output_sample,</pre>
	thetaPrior, "SVD")
Non linear least squares	$\verb ot.NonLinearLeastSquaresCalibration(parametric_g,$
	<pre>input_sample, output_sample,</pre>
	thetaPrior)
Linear gaussian	ot.GaussianLinearCalibration(parametric_g,
	<pre>input_sample, output_sample,</pre>
	thetaPrior, theta_sigma,
	<pre>output_covariance)</pre>
Non linear gaussian	$\verb ot.GaussianNonLinearCalibration(parametric_g, \\$
	<pre>input_sample, output_sample,</pre>
	thetaPrior, theta_sigma,
	<pre>output_covariance)</pre>
Bayesian calibration	$\verb ot.RandomWalkMetropolisHastings(prior, \\$
	conditional, model, x_obs,
	<pre>y_obs, initialState, proposal)</pre>

Metamodel

Purpose	Class / Method
TODO	TODO

Design of experiments

Purpose	Class / Method
TODO	TODO

More resources

Resource	Link
Forum	https://openturns.discourse.group
Chat	https://gitter.im/openturns/community
Modules	https://github.com/openturns/openturns/wiki/Modules
Install	http://openturns.github.io/openturns/master/install.html
Bugs	https://github.com/openturns/openturns/issues
Events	https://github.com/openturns/openturns/wiki/OpenTURNS-events
Bibliography	https://github.com/openturns/openturns/wiki/Bibliography
Bib resources	Bibtex file
Presentations	https://github.com/openturns/presentation