- Dane są następujące reguły gry losowej: losujemy jedną kartę
 z pełnej talii (bez jokerów) i sprawdzamy wynik:
 - wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną w wysokości 1 PLN
 - wylosowanie karty w kolorze czarnym (trefl lub pik) oznacza przegraną w wysokości 1 PLN

Zapisać loterię opisującą grę.

Czy gra jest sprawiedliwa?

- Dane są następujące reguły dwuosobowej gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:
 - wylosowanie karty w kolorze karo oznacza wygraną w wysokości 30 PLN
 - wylosowanie karty w innym kolorze (kier, trefl lub pik) oznacza przegraną 10 PLN

Zapisać loterię opisującą grę.

Czy gra jest sprawiedliwa?

- Dane są następujące reguły gry losowej: obstawiamy liczbę całkowitą z przedziału od 1 do 36 a następnie losujemy liczbę całkowitą z przedziału od 0 do 36
 - wylosowanie liczby obstawionej oznacza wygraną 35 PLN
 - wylosowanie innej liczby oznacza przegraną 1 PLN

Zapisać loterię opisującą grę.

Czy gra jest sprawiedliwa?

 Dana jest macierz wypłat gry macierzowej (gdzie dodatnia wartość w macierzy oznacza wygraną gracza G1)

	G2-1	G2-2	G2-3	G2-4
G1-1	+4	-1	0	-3
G1-2	0	– 5	+5	+4
G1-3	-1	+3	-4	0

Jaką strategię gry powinien wybrać gracz G1 (zgodnie z zasadą minimalizacji maksymalnych strat)? Jaką strategię gry powinien wybrać gracz G2 (zgodnie z zasadą minimalizacji maksymalnych strat)?

 Dana jest macierz wypłat gry macierzowej (gdzie dodatnia wartość w macierzy oznacza wygraną gracza G1)

	G2-1	G2-2	G2-3	G2-4
G1-1	+4	-1	0	-3
G1-2	0	– 5	+5	+4
G1-3	-1	+3	-4	0

Czy istnieje strategia właściwa tej gry?

 Dana jest macierz wypłat gry macierzowej (gdzie dodatnia wartość w macierzy oznacza wygraną gracza G1)

	G2-1	G2-2	G2-3	G2-4
G1-1	+4	-1	-3	-3
G1-2	+1	+2	0	+4
G1-3	-1	+3	-4	+7

Jaką strategię gry powinien wybrać gracz G1 (zgodnie z zasadą minimalizacji maksymalnych strat)? Jaką strategię gry powinien wybrać gracz G2 (zgodnie z zasadą minimalizacji maksymalnych strat)?

 Dana jest macierz wypłat gry macierzowej (gdzie dodatnia wartość w macierzy oznacza wygraną gracza G1)

	G2-1	G2-2	G2-3	G2-4
G1-1	+4	-1	-3	-3
G1-2	+1	+2	0	+4
G1-3	– 1	+3	-4	+7

Czy istnieje strategia właściwa tej gry?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium Walda?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium optymistycznym?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium Hurwicza (przy α = 0.75)?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium Laplace'a?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium Bayes'a?

– Dana jest macierz wypłat (w mln zł) gry macierzowej, w której graczem wierszowym jest pewna firma, a jej decyzją wielkość wyprodukowanego systemu (duży, średni, mały), a graczem kolumnowym jest rynek, który (jak z grubsza zakładamy) może zareagować na trzy sposoby (pozytywnie, obojętnie, negatywnie), przy czym prawdopodobieństwa wystąpień tych reakcji są następujące: 0.2, 0.5 and 0.3

	pozytywnie	obojętnie	negatywnie
duży	+4.50	-0.50	-1.50
średni	+1.00	+0.50	-0.25
mały	+0.25	+0.10	+0.05

Jaka jest strategia optymalna firmy zgodnie z kryterium Savage'a?

– Dane są: wagi kryteriów k_i : k_1 = 0.25, k_2 = 0.50, k_3 = 0.75, użyteczności cząstkowe u_i wariantu a na kryteriach: $u_1(a)$ = 0.50, $u_2(a)$ = 0.25, $u_3(a)$ = 1.0 oraz współczynnik skalujący K = –0.8. Obliczyć użyteczność globalną U(a) wariantu a.

– Dane są: wagi kryteriów k_i : k_1 = 0.50 oraz k_2 = 0.75. Dobrać wartość współczynnika skalującego K gwarantującego U([1, 1]) = 1

Dane są: kryterium typu zysk o dziedzinie [1000,2000], loteria
 L(2000,1/2,1000) oraz będący jej równoważnikiem pewnik 1625.
 Znaleźć użyteczność pewnika.

- Dane są: kryterium g_i typu zysk, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym pewnikiem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(2000, ½, 1000)
 - $1500 \rightarrow L(2000, \frac{1}{2}, 1000)$
 - 1750 ? L(2000, ½, 1000)
 - $1750 \leftarrow L(2000, \frac{1}{2}, 1000)$
 - 1625 ? L(2000, ½, 1000)
 - $1625 \approx L(2000, \frac{1}{2}, 1000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu strata, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym pewnikiem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(1000, ½, 2000)
 - $1500 \leftarrow L(1000, \frac{1}{2}, 2000)$
 - 1750 ? L(1000, ½, 2000)
 - $1750 \leftarrow L(1000, \frac{1}{2}, 2000)$
 - 1875 ? L(1000, ½, 2000)
 - $1875 \approx L(1000, \frac{1}{2}, 2000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu zysk, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym pewnikiem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(2000, ½, 1000)
 - $1500 \leftarrow L(2000, \frac{1}{2}, 1000)$
 - 1250 ? L(2000, ½, 1000)
 - $1250 \rightarrow L(2000, \frac{1}{2}, 1000)$
 - 1375 ? L(2000, ½, 1000)
 - $1375 \approx L(2000, \frac{1}{2}, 1000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu strata, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym pewnikiem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(1000, ½, 2000)
 - $1500 \rightarrow L(1000, \frac{1}{2}, 2000)$
 - 1250 ? L(1000, ½, 2000)
 - $1250 \rightarrow L(1000, \frac{1}{2}, 2000)$
 - 1125 ? L(1000, ½, 2000)
 - 1125 \approx L(1000, $\frac{1}{2}$, 2000)

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu zysk, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym prawdopodobieństwem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(2000, 1/2, 1000)
 - $1500 \leftarrow L(2000, 1/2, 1000)$
 - 1500 ? L(2000, 3/4, 1000)
 - $1500 \rightarrow L(2000, 3/4, 1000)$
 - 1500 ? L(2000, 5/8, 1000)
 - $1500 \approx L(2000, 5/8, 1000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu strata, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym prawdopodobieństwem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(1000, 1/2, 2000)
 - $1500 \leftarrow L(1000, 1/2, 2000)$
 - 1500 ? L(1000, 3/4, 2000)
 - $1500 \rightarrow L(1000, 3/4, 2000)$
 - 1500 ? L(1000, 5/8, 2000)
 - $1500 \approx L(1000, 5/8, 2000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu zysk, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym prawdopodobieństwem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(2000, 1/2, 1000)
 - $1500 \rightarrow L(2000, 1/2, 1000)$
 - 1500 ? L(2000, 1/4, 1000)
 - $1500 \rightarrow L(2000, 1/4, 1000)$
 - 1500 ? L(2000, 1/8, 1000)
 - $1500 \approx L(2000, 1/8, 1000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

- Dane są: kryterium g_i typu strata, o dziedzinie [1000, 2000], oraz przebieg procedury dialogowej (wersja ze zmiennym prawdopodobieństwem), w ramach której zadano/otrzymano następujące pytania/odpowiedzi (po czym zakończono dialog):
 - 1500 ? L(1000, 1/2, 2000)
 - $1500 \leftarrow L(1000, 1/2, 2000)$
 - 1500 ? L(1000, 3/4, 2000)
 - $1500 \leftarrow L(1000, 3/4, 2000)$
 - 1500 ? L(1000, 7/8, 2000)
 - $1500 \approx L(1000, 7/8, 2000)$

- uwaga: w zapisie pytań/odpowiedzi zastosowano oznaczenia:
 - "→" preferowana prawa strona
 - "←" preferowana lewa strona
 - " ≈" brak wyraźnej preferencji

• UTA

– Dane są: wagi kryteriów w_i : w_1 = 0.25, w_2 = 0.50, w_3 = 0.25, oraz użyteczności cząstkowe u_i wariantu a na kryteriach: $u_1(a)$ = 0.50, $u_2(a)$ = 0.25, $u_3(a)$ = 1.00. Obliczyć użyteczność globalną U(a) wariantu a.

UTA

- uwaga: UTA pomija poniższy problem, przechodząc od razu do ustalania rankingu wszystkich wariantów
- Dane są: wagi kryteriów w_i : w_1 = 0.25, w_2 = 0.50, w_3 = 0.25, oraz użyteczności cząstkowe u_i wariantów a, b, c i d na tych kryteriach:
 - $u_1(a) = 0.50$, $u_2(a) = 0.25$, $u_3(a) = 0.00$,
 - $u_1(b) = 1.00$, $u_2(b) = 0.25$, $u_3(b) = 0.50$,
 - $u_1(c) = 0.25$, $u_2(c) = 0.25$, $u_3(c) = 1.00$,
 - $u_1(d) = 0.50$, $u_2(d) = 0.50$, $u_3(d) = 0.50$.

Stwierdzić, które z relacji ze zbioru {P, I, R} zachodzą dla (wszystkich) par wariantów

UTA

- Dane są: wagi kryteriów w_i : w_1 = 0.25, w_2 = 0.50, w_3 = 0.25, oraz użyteczności cząstkowe u_i wariantów a, b, c i d na tych kryteriach:
 - $u_1(a) = 0.50$, $u_2(a) = 0.25$, $u_3(a) = 0.00$,
 - $u_1(b) = 1.00$, $u_2(b) = 0.25$, $u_3(b) = 0.50$,
 - $u_1(c) = 0.25$, $u_2(c) = 0.25$, $u_3(c) = 1.00$,
 - $u_1(d) = 0.50$, $u_2(d) = 0.50$, $u_3(d) = 0.50$.

Stworzyć ranking wariantów a, b, c i d.

UTA

- Dane są: wagi kryteriów w_i: w₁ = 0.25, w₂ = 0.50, w₃ = 0.25, oraz użyteczności cząstkowe u_i wariantów a, b i c na tych kryteriach:
 - $u_1(a) = 0.50$, $u_2(a) = 0.25$, $u_3(a) = 1.00$,
 - $u_1(b) = 1.00$, $u_2(b) = 0.50$, $u_3(b) = 0.50$,
 - $u_1(c) = 0.75$, $u_2(c) = 0.25$, $u_3(c) = 0.00$,

Czy można tak dobrać:

- użyteczność u₃(c) wariantu c, aby zachodziło: c P a?
- użyteczność u₃(c) wariantu c, aby zachodziło: a I c?
- użyteczność u₃(c) wariantu c, aby zachodziło: c P b?
- użyteczność u₃(c) wariantu c, aby zachodziło: b l c?

Electre Is / Electre TRI

– Dane są: wagi k_i kryteriów: k_1 = 2, k_2 = 5, k_3 = 1 oraz współczynniki $c_i(a,b)$ na kryteriach: $c_1(a,b)$ = 0.5, $c_2(a,b)$ = 0.0, $c_3(a,b)$ = 1.0. Obliczyć współczynnik C(a,b). Czy możliwe jest obliczenie współczynnika C(b,a) na podstawie tych samych danych?

– Dane są: wagi k_i kryteriów: $k_1 = 2$, $k_2 = 5$, $k_3 = 1$ oraz współczynniki $d_i(a,b)$ na kryteriach: $d_1(a,b) = 0$, $d_2(a,b) = 0$, $d_3(a,b) = 1$. Obliczyć współczynnik D(a,b). Czy dane k_i są potrzebne do tych obliczeń? Czy możliwe jest obliczenie współczynnika D(b,a) na podstawie tych samych danych?

Electre TRI

– Dane są: C(a,b) = 0.5 oraz d_i(a,b) na kryteriach: d₁(a,b) = 0.1, d₂(a,b) = 0.0, d₃(a,b) = 0.75. Obliczyć współczynnik σ (a,b). Czy dane k_i są potrzebne do tych obliczeń? Czy możliwe jest obliczenie współczynnika σ (b,a) na podstawie tych samych danych?

Dane są: dla trzech kryteriów: g₁+, g₂+ i g₃-

• współczynniki
$$k_i$$
: $k_1 = 2$, $k_2 = 5$, $k_3 = 1$

• współczynniki
$$q_i : q_1 = 0.1, q_2 = 10, q_3 = 1$$

• współczynniki
$$p_i$$
: $p_1 = 0.5$, $p_2 = 20$, $p_3 = 5$

• współczynniki
$$v_1 : v_1 = 5, v_2 = 120, v_3 = 25$$

Obliczyć współczynniki c_i(a,b) oraz c_i(b,a) dla wariantów:

- war.\kryt. g_1 g_2 g_3
 - a 3 50 3
- b 3 55 6

Electre TRI

- Dane są: dla trzech kryteriów: g₁+, g₂+ i g₃-
 - współczynniki k_i : $k_1 = 2$, $k_2 = 5$, $k_3 = 1$
 - współczynniki q_i : $q_1 = 0.1$, $q_2 = 10$, $q_3 = 1$
 - współczynniki p_i : $p_1 = 0.5$, $p_2 = 20$, $p_3 = 5$
 - współczynniki $v_1 : v_1 = 5, v_2 = 120, v_3 = 25$

Obliczyć współczynniki c_i(a,b) oraz c_i(b,a) dla wariantów:

war.\kryt. g₁ g₂ g₃
a 3 200 13
b 3 300 16

- uwaga: Electre Is pomija poniższy problem, przechodząc od razu do ustalania zbioru najbardziej interesujących wariantów
- Dla danej macierzy współczynników S(a,b) stwierdzić, które z relacji ze zbioru {P, I, R} zachodzą dla (wszystkich) par wariantów

	а	b	С	d
а	1	0	1	1
b	1	1	1	1
С	0	0	1	0
d	1	0	0	1

 Dana jest macierz współczynników S(a,b). Narysować odpowiedni graf skierowany i wyznaczyć jądro tego grafu.

	а	b	С	d
а	1	0	1	1
b	1	1	1	1
С	0	0	1	0
d	0	0	0	1

 Dana jest macierz współczynników S(a,b). Narysować odpowiedni graf skierowany, przekształcić go do postaci acyklicznej i wyznaczyć jądro tego grafu.

	а	b	С	d
а	1	0	1	1
b	1	1	1	1
С	0	0	1	0
d	1	0	0	1

Electre TRI

Uzupełnić tabelę przydziałami wariantów do klas

	b ₁	b ₂	b ₃	Pes	Opt
а	>	>	\		
b	>	>	>		
С	<	<	<		
d	>	I	<		
е	>	>	R		
f	R	R	<		
g	R	R	R		

Electre TRI

Uzupełnić tabelę relacjami wariant-profil

	b ₁	b ₂	b ₃	Pes	Opt
а				C ₁	C ₄
b				C_3	C ₄
С				C ₁	C_2
d				C ₂	C_3
е				C ₄	C ₄
f				C ₁	C_3
g				C ₃	C ₃

– czy istnieją rozwiązania niejednoznaczne/nieunikalne?