

DIGITAL COMMUNICATION

Dr. Sanjeev G.

Department of Electronics and Communication Engg

Problems

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

Original and Quantized Signal

Quantization Error

Problem 1

Let X be uniform over the range -10 to 10. If it is required that $\sigma_Q^2 < 0.2$. What Is the minimum N required?

Solution: By default, we consider mid-rise quantizer

Given:
$$\int \sigma_{q}^{2} < 0.2$$

$$\frac{\Delta^{2}}{12} < 0.2$$

$$\Delta < \sqrt{2.4}$$

$$\Delta < 1.549$$

$$\Delta = \frac{2A}{3N} < 1.549.$$

$$\frac{2X(10)}{3N} < 1.549$$

$$2^{N} > \frac{20}{1.549}$$

$$N > \log_2(\frac{20}{1.549})$$
 $N > 3.69$
 $N > 4$

Problem 2

Let X be uniform over between [-A, A]. Find the SNR for N-bit quantization, assuming that N is large.

Solution:

$$SNR = \frac{(2A)^2}{\sqrt{3^2/12}}$$

$$SNR = \frac{4A^2}{\Delta^2}$$

$$w \cdot k \cdot t \cdot \Delta = \frac{2A}{2N}$$

.. SNR =
$$\frac{4A^2}{4A^2/2^{2N}}$$

SNR_{dB} =
$$10 \log_{10} \left(\frac{D \times^2}{D_0^2} \right)$$
.
= $10 \log_{10} \left(2^{2N} \right)$.

Problem 3

Let $X \sim \mathcal{N}(0, \sigma_X^2)$. Find the SNR for N-bit quantization.

Solution:

Problem 3

Let $X \sim \mathcal{N}(0, \sigma_X^2)$. Find the SNR for N-bit quantization.

Solution:

w. k. t. for Gaussian distribution
$$f_{x}(x) = \sqrt{\frac{1}{3\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

here
$$M = 0$$
.
 $f_{X}(x) = \frac{1}{\sqrt{2\pi}\sigma^{2}} e^{-\frac{x^{2}}{2\sigma^{2}}}$

SNR dB = 6N-7,269

Problem 4

Let $x(n) = A\cos(2\pi f_0 n)$. Find the SNR for N-bit quantization.

Solution: Note that the signal x(n) is deterministic

$$P_x = \frac{A^2}{8}$$

Observations

From the above problems, we can conclude the following

- The SQNR (SNR) depends on the PDF of input signal x(n)
- Typically, $SNR_{dB} = 6N + c$, which is an incrementally linear function of N with a slope of 6 dB/bit
- This means that for every additional bit added to represent the quantized signal, we get an improvement of 6 dB in SNR
- When an additional bit is added, the number of levels doubles, and the width size reduces by half, resulting in a smaller quantization error
- In other words, for every additional bit added, σ_Q^2 decreases by a factor of 4 (Note that $10 \times \log_{10} 4 \approx 6$ dB)

THANK YOU

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

sanjeevg@pes.edu

+91 80 2672 1983 Extn 838