北京工业大学 2012——2013 学年第 Ⅱ 学期 "概率论与数理统计"课程(工)考试试卷

考试说明: 考试闭卷; 可使用文曲星除外的计算器。

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:

注:本试卷共 6 页,满分100分;考试时必须使用卷后附加的统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号		二(1)	二(2)	二(3)	二(4)	二(5)	总成绩
满分	30	14	14	14	14	14	
得分							

一、填空题(每空2分,共30分)

- 1. 设 A, B 为事件, P(A) = 0.4, $P(A \cup B) = 0.6$ 。 当 $A \ni B$ 互不相容时, $P(B) = ______$; 当 $A \ni B$ 相互独立时, $P(B) = ______$ 。
- 2. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} a + be^{-0.5x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 其中 a = b 为常数,则

a = _______ , *b* = ______ 。

- 3. 设随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=1\}=P\{X=2\}$,则 $\lambda=$ _______, E(X)= ______。
- 4. 设随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(3, 3^2)$, $X_2 \sim N(1, 2^2)$ 。令 $X = X_1 2X_2$,则 $EX = _$ _____, $Var(X) = _$ ____。进一步,记 $\Phi(x)$ 为标准正态分布的分布函数,且 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$,则 $P\{-4 < X < 11\} = _$ ____。
- 5. 设 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

二、解答题(每小题 14 分, 共 70 分)

注: 每题要有解题过程, 无解题过程不能得分

- 1. 根据世界卫生组织数据,我国居民肺癌患病率为38.46人/10万人。另外根据我国《居民营养与健康状况调查》结果,居民吸烟率为31%,而根据医学研究发现,吸烟者患肺癌的概率是不吸烟者的10.8倍。
 - (1). 求不吸烟者患肺癌的概率与吸烟者患肺癌的概率各是多少;
 - (2). 随机抽取一位居民做检查后,发现其患有肺癌。求这个居民是吸烟者的概率。

- 2. 设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1-|x|, & x \in (-1, 1) \\ 0, & 其他. \end{cases}$ 令 $Y = X^2$, 求:
 - (1). Y 的概率密度函数 $f_Y(y)$; (2). $P\{0.25 < Y < 1.96\}$; (3). E(Y) 和 Var(Y)。

3. 设二维随机变量(X, Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} c \cdot e^{-y}, & 0 \le x \le y < \infty, \\ 0, & 其他. \end{cases}$$

(1). 求常数 A;

- (2). 求X和Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (3). 问 *X* 和 *Y* 是否独立? 为什么? (4). 求 *E*(*Y*)。

4. 若 X_1, X_2, \dots, X_n (n > 2) 为抽自总体 X 的随机样本,总体 X 有概率密度函数

$$f_{X}(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1; \\ 0 & 其他. \end{cases}$$

其中 $\theta > -1$ 为待估参数,求 θ 的矩估计 $\hat{\theta}$ 与极大似然估计 θ^* 。

- 5. 设学生某次考试成绩服从正态分布 $N(\mu, \sigma^2)$,现从该总体中随机抽取 25 位的考试成绩, 算得样本均值为 76. 5,标准差为 9. 5 分。问在显著性水平 0. 05 下,从样本看,
 - (1). 是否接受" $\mu = 75$ "的假设?
 - (2). 是否接受" $\sigma = 10$ "的假设?

附 t分布与 χ^2 分布表

$t_{24}(0.025) = 2.0639$	$t_{24}(0.05) = 1.7109$	$t_{25}(0.025) = 2.0595$	$t_{25}(0.05) = 1.7081$
$\chi_{24}^2(0.025) = 39.364$	$\chi_{24}^2(0.05) = 36.415$	$\chi_{25}^2(0.025) = 40.646$	$\chi^2_{25}(0.05) = 37.652$
$\chi_{24}^2(0.975) = 12.401$	$\chi_{24}^2(0.95) = 13.848$	$\chi^2_{25}(0.975) = 13.120$	$\chi_{25}^2(0.95) = 14.611$

	早	楇	纸	
姓名:		-	学号:	