

115 lines (78 loc) · 4.31 KB

Comparación entre Apache Spark y Hadoop

1. Investigación de la Arquitectura

Apache Spark

- Componentes clave:
 - Driver: Coordina el trabajo de la aplicación Spark, planificando y distribuyendo tareas entre los Executors.
 - Cluster Manager: Administra los recursos del clúster. Puede ser Spark Standalone, YARN o Mesos.
 - **Executors**: Ejecutan las tareas asignadas por el Driver y almacenan los datos en caché si es necesario.
- · Procesamiento:
 - RDDs (Resilient Distributed Datasets): Unidad básica de datos en Spark;
 son tolerantes a fallos y distribuidos.
 - DataFrames: Estructuras más optimizadas y orientadas a columnas para análisis de datos, con soporte para optimización de consultas (Catalyst Optimizer).

Hadoop

- Componentes clave:
 - **HDFS**: Sistema de almacenamiento distribuido. Los datos se dividen en bloques y se replican entre nodos.

- NameNode: Responsable de gestionar el sistema de archivos y la ubicación de los datos.
- DataNode: Almacena los bloques de datos y responde a solicitudes del NameNode.

TareaLayla / clase_01 / practica_a_solucion.md

↑ Top

■ TaskTracker: Ejecuta las tareas individuales y reporta al JobTracker.

2. Comparación de Rendimiento

Tiempo de Procesamiento

 Spark supera a Hadoop en tareas como el conteo de palabras debido al procesamiento en memoria, mientras que Hadoop requiere múltiples lecturas/escrituras en disco.

Manejo de Datos: Memoria vs. Disco

- Spark:
 - Utiliza procesamiento en memoria (RAM) para acelerar las tareas.
 - Permite almacenamiento intermedio en disco si la memoria es insuficiente.
- Hadoop:
 - Procesa directamente desde y hacia el disco, lo que genera mayor latencia.

3. Capacidades y Funcionalidades

Apache Spark

- Procesamiento en tiempo real: Spark Streaming para datos en tiempo real.
- Machine Learning: MLlib, una biblioteca para aprendizaje automático distribuido.
- Análisis gráfico: GraphX para el análisis de grafos.

Hadoop

- Ecosistema robusto: Integración con herramientas como:
 - Hive: Consultas SQL sobre HDFS.
 - Pig: Lenguaje de alto nivel para procesamiento de datos.

- HBase: Base de datos NoSQL sobre HDFS.
- Procesamiento por lotes: Ideal para tareas de gran volumen donde la latencia no es crítica.

4. Casos de Uso

Apache Spark

- 1. **Procesamiento de datos en tiempo real**: Monitorización de transacciones financieras.
- 2. **Análisis de grandes volúmenes de datos**: Predicción de tendencias de mercado.

Hadoop

- 1. Almacenamiento y procesamiento de grandes datos históricos.
- 2. **Generación de informes y análisis por lotes** en sectores como banca y telecomunicaciones.

5. Ventajas y Desventajas

Apache Spark

- Ventajas:
 - Alta velocidad gracias al procesamiento en memoria.
 - Versatilidad para manejar flujos en tiempo real y análisis avanzados.
- Desventajas:
 - o Consumo elevado de memoria.
 - o Curva de aprendizaje más pronunciada para principiantes.

Hadoop

- Ventajas:
 - Escalabilidad y robustez de HDFS.
 - Ecosistema maduro con amplia documentación.
- Desventajas:
 - o Latencia alta debido al procesamiento basado en disco.
 - Menor flexibilidad para tareas en tiempo real.

6. Informe de Resultados

Diagrama Comparativo de Arquitectura

Representa con diagramas cómo Spark y Hadoop gestionan el procesamiento distribuido.

Tabla Comparativa de Rendimiento y Funcionalidades

Aspecto	Apache Spark	Hadoop MapReduce
Procesamiento	En memoria	Basado en disco
Velocidad	Alta	Moderada
Capacidades adicionales	Streaming, MLlib, GraphX	Hive, Pig, HBase
Casos de uso típicos	Tiempo real, análisis	Almacenamiento histórico

Conclusión

- Apache Spark: Ideal para flujos en tiempo real y tareas con requisitos de velocidad.
- Hadoop: Recomendado para almacenamiento masivo y procesamiento por lotes.