

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2024

PRÁCTICA 5 - Teoría de Conjuntos

1. Escribir los siguientes conjuntos por extensión.

a)
$$\{1+(-1)^n:n\in\mathbb{N}\}.$$

b)
$$\{y/y = t^2, t \in \mathbb{N}, t \le 5\}$$

c)
$$\{n^3 + n^2 : n \in \{0, 1, 2, 3, 4\}\}$$

d)
$$\{1/(n^2+n) : n \in \mathbb{N}, n \text{ impar } , n \le 11\}$$
 h) $\{z \in \mathbb{R}/\sqrt{z} \in \mathbb{N}, z^2 \le 25\}$

e)
$$\{n \in \mathbb{N}, /-4 \le n \le 8, n = 2k+1, k \in \mathbb{Z}\}$$

f)
$$\{u \in \mathbb{Z}/0 < u < 9, u + 1 < 7\}$$

g)
$$\{n+1/n: n \in \{1,2,3,5,7\}\}$$

h)
$$\{z \in \mathbb{R}/\sqrt{z} \in \mathbb{N}, z^2 < 25\}$$

Además, observar si hay relaciones entre los mismos. ¿ Qué se deduce en cuanto a la forma de definir un conjunto? Intentar otras formas de definir los conjuntos de (a), (b) y (c).

- 2. Escribir los siguientes conjuntos por comprensión usando lenguaje simbólico:
 - a) El conjunto de los números racionales positivos cuyos denominadores son mayores que los numeradores.
 - b) El conjunto de los divisores de 20.
 - c) El conjunto de los números pares múltiplos de 3.
 - d) El conjunto de los números reales cuyas raíces cuadradas son menores a 1.
 - e) {3}
- 3. Indicar en cada caso cuáles afirmaciones son verdaderas y cuáles falsas, justificando la respuesta.

a)
$$A = \{\mathbb{N}, \mathbb{Z}, -4\}$$

1)
$$-4 \in \mathbb{N}$$

4)
$$\mathbb{Z} \in A$$

7)
$$6 \in \mathbb{N}$$

10)
$$-8 \in \mathbb{N}$$

2)
$$-4 \in \mathbb{Z}$$

3) $-4 \in A$

5)
$$\mathbb{N} \in A$$

8)
$$6 \in \mathbb{Z}$$

9) $6 \in A$

$$10) - 8 \in \mathbb{N}$$

$$11) - 8 \in \mathbb{Z}$$

$$12) 8 \in \mathbb{A}$$

6)
$$\mathbb{N} \in \mathbb{Z}$$

$$0)$$
 6 < 1

12)
$$8 \in A$$

b)
$$B = \{1, 2, 3, 4, \{5\}\}$$

1)
$$2 \in \{1, 2\}$$

3)
$$\{1,2\} \in E$$

7)
$$4 \notin B$$

1)
$$2 \in \{1, 2\}$$
 3) $\{1, 2\} \in B$ 5) $1 \notin B$ 7) $4 \notin B$ 9) $\{3, 4\} \in B$ 2) $2 \in B$ 4) $3 \in B$ 6) $5 \in B$ 8) $5 \in \{5\}$ 10) $\{3\} \in B$

$$2)$$
 $2 \in B$

4)
$$3 \in E$$

6)
$$5 \in B$$

8)
$$5 \in \{5\}$$

10)
$$\{3\} \in E$$

- 4. Dar un ejemplo de tres conjuntos W, X, Y tales que $W \in X, X \in Y$ pero $W \notin Y$. ¿Qué puede decirse de la afirmación $W \in X \land X \in Y \Rightarrow W \in Y$?
- 5. Dado $A = \{1, \{1\}, 2\}$, determinar cuáles de las siguientes proposiciones son verdaderas, justificando la respuesta.

a)
$$\mathbb{N}$$
 es un universo para A . d) $\{1\} \subseteq A$.

$$d)$$
 $\{1\} \subset A$

g)
$$\{2\} \subseteq A$$
.

b)
$$1 \in A$$
.

e)
$$\{\{1\}\} \subset A$$
.

h)
$$\{\{2\}\}\subseteq A$$
.

c)
$$\{1\} \in A$$
.

$$f) \{2\} \in A.$$

i)
$$\{\{1,2\}\}\subset A$$
.

- 6. Dados $V = \{a, b\}$, $X = \{d, b\}$, $Z = \{a, d, e\}$, $W = \{a, b, d, e\}$ y $Y = \{d, e\}$, determinar cuáles de las siguientes proposiciones son verdaderas, justificando la respuesta.

- a) $V \subset W$ c) $V \subset Z$ e) $Y \not\supseteq X$ g) $Y \supseteq W$ i) $X \subseteq W$ b) $Y \not\subseteq V$ d) $Y \subseteq W$ f) $Z \supset Y$ h) $V \not\subseteq Z$ j) $X \subseteq Z$

- 7. Determinar cuáles de las siguientes proposiciones son verdaderas, justificando la respuesta.
 - a) $\emptyset \in \emptyset$.

- b) $\emptyset \subset \emptyset$. c) $\emptyset \subseteq \emptyset$. d) $\emptyset \in \{\emptyset\}$. e) $\emptyset \subset \{\emptyset\}$. f) $\emptyset \subseteq \{\emptyset\}$.
- 8. Sean $A, B, C, D, E \subset \mathbb{Z}$, $A = \{2n : n \in \mathbb{Z}\}$, $B = \{3n : n \in \mathbb{Z}\}$, $C = \{4n : n \in \mathbb{Z}\}$, $D = \{6n : n \in \mathbb{Z}\}\$ y $E = \{8n : n \in \mathbb{Z}\}$. Determinar cuáles de las siguientes proposiciones son verdaderas y cuáles falsas, justificando adecuadamente la respuesta.
 - a) $E \subseteq C \subseteq A$
- c) $B \subseteq D$

e) $D \subseteq A$

- b) $A \subseteq C \subseteq E$
- d) $D \subseteq B$
- 9. Para los conjuntos $A, B, C \subseteq U$ demostrar la verdad o falsedad (con un contraejemplo) de lo siguiente: Si $A \subseteq B$ y $B \nsubseteq C$, entonces $A \nsubseteq C$.
- 10. En cada caso, analizar si los conjuntos dados son iguales.
 - a) $\{5,6,7\}$ y $\{5,\{6\},7\}$
 - b) $\{n \in \mathbb{N}/n \text{ es par}\}\$ y $\{n \in \mathbb{N}/n = p+q, p,q \in \mathbb{N}, p,q \text{ impares}\}\$
 - c) $\{2,5\}$ y $\{\{2,5\}\}$
- 11. Sean A, B y C conjuntos. Demostrar que:
 - a) Si $A \subset B$ y $B \subseteq C$, entonces $A \subset C$.
 - b) Si $A \subseteq B$ y $B \subset C$, entonces $A \subset C$.
- 12. Dar ejemplos de conjuntos que verifiquen las condiciones indicadas en cada caso:
 - a) $A \subseteq B$, $B \subseteq C$, $D \subseteq C$, $A \not\subseteq D$
 - b) $A\subseteq B$, $B\in C$, $C\subseteq D$
 - c) $A \in B$, $B \not\subseteq C$, $A \in C$
 - d) $A \in B$, $B \nsubseteq C$, $A \notin C$
- 13. Dado $E = \{1, \{2\}, \{3, 4\}, 5, \{6, 7\}\}$ decir cuáles de las siguientes afirmaciones son verdaderas, justificando la respuesta.
 - a) $1 \in E$

e) $\{5\}\subset E$

i) $\exists x \in E/\{x\} \in E$

b) $\{2\} \in E$

- $f) \{3,4\} \in P(E)$
- $i) \ \forall x \in E, \{x\} \notin P(E)$

- c) $\{1\} \in P(E)$
- g) $\{6,7\}\subseteq E$

 $k) \exists x \in E/\{x\} \nsubseteq E$

- d) $\{1\}\subseteq P(E)$
- h) $\{6,7\}\subset P(E)$
- 1) $\exists x \in E/\{x\} \not\subset P(E)$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2024

- 14. Sean $A, B, C, D, E \subset \mathbb{Z}$, $A = \{2n : n \in \mathbb{Z}\}$, $B = \{3n : n \in \mathbb{Z}\}$, $C = \{4n : n \in \mathbb{Z}\}$, $D = \{6n : n \in \mathbb{Z}\}\$ y $E = \{8n : n \in \mathbb{Z}\}\$. Determinar cada uno de los siguientes conjuntos:
 - a) $C \cap E$

c) $A \cap B$

e) \overline{A}

b) $B \cup D$

d) $B \cap D$

- f) $A \cap E$
- 15. Para $U=\{1,2,3,4,5,6,7,8,9,10\}$, sean $A=\{1,2,3,4,5\}$, $B=\{1,2,4,8\}$, $C=\{1,2,3,5,7\}$ y $D = \{2, 4, 6, 8\}$. Representar los conjuntos en un diagrama de Venn y determinar:
 - a) $(A \cup B) \cap C$
- d) $\overline{C \cap D}$

g) (B-C)-D

- b) $A \cup (B \cap C)$

c) $\overline{C} \cup \overline{D}$

- d) $C \cap D$ g) (B C) D

 e) $(A \cup B) C$ h) B (C D)

 f) $(A \cup (B C))$ i) $(A \cup B) (C \cap D)$.
- 16. Escribir en forma simbólica los siguientes conjuntos representados mediantes los diagramas de Venn:

- 17. En una comisión de primer año en la FCEIA de 100 estudiantes se tiene que:
 - 32 aprobaron el primer parcial de análisis, 38 aprobaron el primer parcial de programación, 50 aprobaron el primer parcial de álgebra, 20 aprobaron el primer parcial de análisis y el de programación, 18 aprobaron el primer parcial de análisis y el de álgebra, 25 aprobaron el primer parcial de programación y el de álgebra, 15 aprobaron los tres parciales.
 - ¿Cuántos estudiantes no aprobaron ninguna de las 3 materias? Recordarles que aún hay esperanzas, existen los recuperatorios!

- 18. Calcular cuantos números naturales menores o iguales a 1000 existen que no sean múltiplos ni de 3, ni de 5, ni de 7.
- 19. Construir, si es posible conjuntos A, B, C, D que cumplan las siguientes condiciones. En caso de no ser posible justifique por qué no lo es:
 - a) $B \subseteq A$, $A \cap D \neq \emptyset$, $C \cap D \neq \emptyset$, $C \cap A = \emptyset$, $B \cap D = \emptyset$.
 - b) $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $C \cap A \neq \emptyset$, $A \subseteq D$, $D \cap C = \emptyset$.
- 20. Dados dos conjuntos A y B cualesquiera, demostrar que las siguientes proposiciones son equivalentes:
 - a) $A \subseteq B$
 - b) $A \cup B = B$
 - c) $A \cap B = A$.
- 21. Sea A un subconjunto del conjunto universal U. Demostrar las siguientes propiedades:
 - a) $A \cup A = A$
- b) $A \cap A = A$ c) $A \cap \emptyset = \emptyset$
- d) $A \cup U = U$.
- 22. Determinar qué relación existe entre $P(A \cup B)$ con $P(A) \cup P(B)$ y entre $P(A \cap B)$ con $P(A) \cap P(B)$.
- 23. Dados dos conjuntos A y B se define la diferencia simétrica entre A y B al conjunto

$$A \triangle B = (A \cup B) - (A \cap B)$$

a) Dados los siguientes subconjuntos de números enteros:

$$A = \{z \in \mathbb{Z} : |z| \ge 1\}, \quad B = \{z \in \mathbb{Z} : |z| \le 2\}, \quad C = \{z \in \mathbb{Z} : z = 3k, k \in \mathbb{Z}\}$$

determinar:

1) $A \triangle B$

- 3) $B \triangle C$
- 5) $(\overline{A} \cap C) \triangle (B \cap C)$

2) $A \triangle C$

- 4) $(A \cap B) \triangle C$
- 6) $A \triangle \overline{C}$
- b) Dados A y B subconjuntos de un conjunto universal U, demostrar las siguientes propiedades de la diferencia simétrica:
 - 1) $A \triangle B = B \triangle A$

3) $A \triangle U = \overline{A}$

- 2) $A \triangle \emptyset = A$
- 24. Demostrar las siguientes proposiciones, justificando en cada paso la propiedad de la teoría de conjuntos aplicada.
 - a) $(A B) C \subseteq A (B C)$.
 - b) $A = (A \cap B) \cup (A B)$.
 - c) $\overline{A-B} = \overline{A} \cup B$.
 - d) $\overline{(A \cup B) \cap C} \cup \overline{B} = B \cap C$.
 - e) $\overline{A \triangle B} = \overline{A} \triangle B = A \triangle \overline{B}$.
 - $(A \cap B) \cup [B \cap ((C \cap D) \cup (C \cap \overline{D}))] = B \cap (A \cup C).$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2024

- 25. Para cada $n \in \mathbb{N}$ sea $B_n = \{n+1, n+2, n+3, \cdots\}$. Determinar:

- a) $\bigcup_{n=1}^8 B_n$, b) $\bigcap_{n=1}^{11} B_n$, c) $\bigcup_{n=1}^\infty B_n$, d) $\bigcap_{n=1}^m B_n$, $m \in \mathbb{N}$ fijo. con
- 26. Sea $U=\mathbb{R}$. Para cada $n\in\mathbb{N}$, sea $A_n=[-2n,3n]$. Determinar:
 - a) A_3
- c) $A_3 A_4$ e) $\bigcup_{n=1}^{7} A_n$ d) $A_3 \triangle A_4$ f) $\bigcap_{n=1}^{7} A_n$
- $g) \bigcup_{n=1}^{\infty} A_n$ $h) \bigcap_{n=1}^{\infty} A_n.$

b) A₄

- 27. Dado un universo U y un conjunto de índices I, para cada $i \in I$ sea $B_i \subset U$. Demostrar que para cada $A \subseteq U$ se verifican:
 - a) $A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$
- b) $A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} (A \cup B_i)$
- 28. Sea I un conjunto cualquiera de índices y $\{A_i\}_{i\in I}\subset U$ una familia de conjuntos. Probar que
 - a) $A_j \subseteq B$ para cada $j \in I$ si y sólo si $\bigcup_{i \in I} A_i \subseteq B$
 - b) $\bigcap_{i \in I} A_i \subseteq A_j$ para cada $j \in I$
 - c) $B\subseteq A_j$ para cada $j\in I$ si y sólo si $B\subseteq \bigcap_{i\in I}A_i$