Кольца и поля

Чтобы подступиться к группам начнём сначала с полей и колец — они наиболее похожи на обычные числа по своей структуре. Дадим сначала определения:

 $\Gamma pynnoй\ G$ называется множество G с заданной на нём операцией «умножения» $\cdot: G \times G \to G$, удовлетворяющей следующим аксиомам:

І. Существует нейтральный элемент 1, такой, что

$$1 \cdot q = q \cdot 1 = q, \ \forall q \in G,$$

II. Для любого элемента группы существует обратный, т. е.

$$\forall g \in G \ \exists g^{-1} \in G \ : \ g \cdot g^{-1} = g^{-1} \cdot g = 1,$$

III. Справедлива ассоциатоивность:

$$a(bc) = (ab)c.$$

Множество, удовлетворяющее только пункту **III.** определения группы называется *полу-группой*.

Полугруппа с нейтральным элементом называется моноидом.

Кольцом R (коммутативным ассоциативным с единицей) называется множество с двумя операциями «+» и «-», такими, что относительно сложения R — абелева группа, а относительно умножения R — моноид, причём справедлива дистрибутивность: $a \cdot (b+c) = a \cdot b + a \cdot c$, $(b+c) \cdot a = b \cdot a + c \cdot a$.

Телом T называется кольцо, каждый ненулевой элемент которого обратим по умножению. Поле F — коммутативное тело. Примеры колец: целые числа \mathbb{Z} , остатки \mathbb{Z}_n , многочлены $\mathbb{R}[x]$.

Примеры полей: рациональные (\mathbb{Q}), действительные (\mathbb{R}) и комплексные (\mathbb{C}) числа, остатки по простому модулю (см. задачу 3), рациональные функции $\mathbb{Q}(x) = \left\{ \frac{P(x)}{Q(x)} | \ P, Q \in \mathbb{Q}[x], \ Q \neq 0 \right\}$.

- **1.** Докажите, что в любом кольце $0 \cdot x = x \cdot 0 = 0$ для любого x.
- **2.** Докажите, что кольцо остатков \mathbb{Z}_n является полем тогда и только тогда, когда n простое.
- **3.** Какие элементы обратимы в кольцах \mathbb{Z}_4 , \mathbb{Z}_6 , \mathbb{Z}_n ? Найдите делители нуля.

Будем через $R[\sqrt{d}]$, где R кольцо и $d \in R$, обозначать множество формальных выражений $\{a+b\sqrt{d}|\ a,b\in R\}$ с «обычными» сложением и умножением. Можно проверить, что $R[\sqrt{d}]$ — это кольцо. Например, $\mathbb{R}[\sqrt{-1}]=\mathbb{C}$ — поле комплексных чисел.

- 4. Найдите все обратимые элементы кольца гауссовых чисел $\mathbb{Z}[\sqrt{-1}]$.
- **5.** Докажите, что в поле \mathbb{Z}_p верно «правило двоечника»: $(a+b)^p = a^p + b^p$.
- **6.** Найдите все такие d, что $\mathbb{Q}[\sqrt{d}]$ поле.
- 7. Решите в \mathbb{Z}_p уравнение $x^2 = 1$, вычислите произведение всех ненулевых элементов поля \mathbb{Z}_p и докажите теорему Вильсона: если p простое, то (p-1)! + 1 делится на p.