

16.682 - Prototyping Avionics Spring 2006

Lecture 2

February 13, 2006

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS Alvar Saenz-Otero

Outline

- **Voltage and Current**
- 4 basic "component laws"
- 2 basic "network laws"
- **Resistors**
- **Capacitors**
- **Inductors**

Voltage & Current

- Any electronic project depends at the most basic level on:
 - Voltage
 - The electric potential difference between two points
 - Like "potential energy" of physics
 - Current
 - The flow of electricity through components and wires
 - Like "kinetic energy" of physics
- There are many ways people think about current and voltage, most involve a fluid like water, here is an example:

Components

- The most basic components of an electronic circuit are:
 - Resistor
 - Resistance is an inherent property of all materials
 - Conductive materials have small resistance, non-conductive high resistance
 - Wire is an approximately 0Ω resistor
 - Purely a passive element
 - Like the "slope" of the mountain
 - Capacitor
 - Stores energy: as current flows in the capacitor charges in voltage, as current flows out it discharges
 - · Like a small intermediate "lake" in the mountain
 - Inductor
 - Stores energy: as voltage is applied, it makes current flow faster, as voltage goes down the current slows
 - Like a local "increase in gravity" in the mountain

Inductor (L)

Units and Common Values

Description	Units	Symbol	Typical Values
Voltage	Volts	V	1mV→10kV
Current	Ampere	Α	1μA→10A
Resistance	Ohms	Ω	$1m\Omega \rightarrow M\Omega$
Capacitance	Farad	F	1μF→1mF
Inductance	Henry	Н	1mH→1H

Component Laws

- The most basic "laws" for these components are:
 - Resistor

$$V = IR \leftrightarrow I \quad \frac{V}{R} \leftrightarrow R = \frac{V}{R}$$

$$P = IV \leftrightarrow P \quad I^{2}R \leftrightarrow P = \frac{V^{2}}{R}$$

- Capacitor

$$i = C \frac{dv}{dt}$$

Inductor

$$v = L \frac{di}{dt}$$

- Capacitors and Inductors are "dual" or each other
 - What one does with voltage, the other does with current

Network Laws

- A circuit is full of nodes_{and} loops
 - The Kirchkoff Voltage Law (KVL) and Current Law (KCL) tell you how to figure out the voltage and current in a circuit

$$\sum_{L} v_{l} = 0$$

The sum of all voltages around a loop must be 0

Note: at least one voltage must be negative (the +/- signs are backwards)!

The sum of all currents into a node must be 0

$$i_1 + i_2 + i_3 + i_4 = 0$$

Note: at least one current must be negative (flow opposite of the arrow)!

Supplies

- To make circuit analysis possible, we use models of voltage and current supplies:
 - Voltage supplies provide constant voltage and any necessary current
 - Current flows out of the positive side, through the circuit, and back into the negative side of a supply

Basic Circuits

- Node analysis: KCL
 - $-i_0 = i_R + i_C$ $i_0 = \frac{v}{R} + C\frac{dv}{dt}$ $v + RC \frac{dv}{dt} = i_0 R$

- Resistor/Capacitor circuits will always have a time constant of RC!
- Actual response depends on input current
 - Example: i₀= step function

$$V = I_0 R \left(1 - e^{-\frac{t}{RC}} \right)$$
time constant!

ZIR and **ZSR**

Solving circuits with inductors/capacitors is easiest if you use super-position to add the

- The behavior which depends only on the "state" of the capacitor/inductor at time zero, without any change in the input
- Zero State Response
 - The behavior which depends only on the response of the capacitor/inductor due to a change in the input

ZIR:

$$t < 0$$
, $v = I_0 R$

$$t > 0, i = C \frac{dv}{dt} \rightarrow v + RC \frac{dv}{dt} = 0$$

$$\rightarrow v = I_0 R \cdot e^{-\frac{t}{RC}}$$

ZSR:

$$t < 0, v = 0$$

$$t > 0, i = C \frac{dv}{dt} \rightarrow v + RC \frac{dv}{dt} = 0$$

$$\rightarrow v = I_1 R \left(1 - e^{-\frac{t}{RC}} \right)$$

Useful Clue

- From v = iR
 - What happens with unconnected ends of components?

- Because i=0 then v across are 0
 - $V_R = V$
 - V_c=V it is not floating!
 - V_L=V