INTEGRALE

by RÉMY

1.1 Einführung - Stammfunktionen

Definition

Sei f eine Funktion, die über einem Intervall $I \in \mathbb{R}$ definiert ist. Man nennt jede Funktion F, die auf I differenzierbar ist, für die gilt F'(x) = f(x), $\forall x \in I$ eine *Stammfunktion* von f.

Ist F irgendeine Stammfunktion von f, dann ist auch F(x) + C (mit konstantem C) eine Stammfunktion, denn beim Ableiten fällt C als konstanter Summand weg. Jede Funktion hat also unendlich viele Stammfunktionen, die sich aber nur um einen konstanten Summanden unterscheiden.

Theorem

Jede auf I stetige Funktion besitzt eine Stammfunktion über I.

1.2 Bestimmte Integrale

Definition

Sei f eine auf einem Intervall I stetige Funktion und zwei reelle Zahlen $a,b\in I$. Die reelle Zahl, dargestellt durch $\int_a^b f(t)dt$ und gegeben durch F(b)-F(a), mit F als beliebige Stammfunktion von f, wird bestimmtes Integral von a bis b von f genannt. Eine weitere Darstellungsmöglichkeit des bestimmten Integrals sieht folgendermaßen aus:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} U_n = \lim_{n \to \infty} s_n$$

$$= \lim_{n \to \infty} O_n = \lim_{n \to \infty} S_n$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=1}^{n} f\left(\frac{b - a}{n} \cdot k\right)$$

 S_n und O_n bezeichnen die Obersumme, wohingegen s_n und U_n die Untersumme bezeichnen.

Bemerkung:

Der Hauptunterschied zwischen einem bestimmten und einem unbestimmten Integral ist die Existenz (bestimmtes Integral) bzw. das Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

Bei einem bestimmten Integral ist die Lösung ein Flächeinhalt, also ein einfacher Zahlenwert.

Bei einem unbestimmten Integral erhält man als Lösung eine (wie soeben eingeführte) Stammfunktion.

Bemerkung:

a und b bezeichnen jeweils die untere und obere Grenze des zu berechnenden Integrals. Sie bezeichnen anschaulich die x-Werte, zwischen denen die Fläche berechnet wird. Tatsächlich ist die geometrische Interpretation von $\int_a^b f(t)dt$ die Fläche zwischen dem Schaubild der Funktion und der x_1 -Achse, die durch die Geraden x=a und x=b begrenzt wird.

Theorem

Für eine auf einem Intervall I stetige Funktion f und einer reellen Zahl $a \in I$ gilt: Die Funktion, die über I definiert ist durch $x \mapsto \int_a^x f(t)dt$, ist die Stammfunktion von f, die bei a gleich 0 ist.

Aus diesen Sätzen stellt sich der **Hauptsatz der Differenzial- und Integralrechnung** zusammen. Wir beschränken uns in diesem Kapitel auf die Integralrechnung, da die Differentialrechnung bereits in Kapitel **??** behandelt wird.

Bemerkung:

Man beobachtet hier eine Erweiterung der NEW-Regel (siehe ??, NEW-Regel):

N = Nullstellen

 $\mathsf{E} = \mathsf{Extremstellen}$

W = Wendestellen

1.3 Sätze über Integrale

Theorem

$$\int_a^b f(x)dx = -\int_b^a f(x)dx \qquad \text{Invertieren der Intergrationsgrenzen}$$

$$\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx \qquad \text{Summenregel}$$

$$\int_a^b r*f(x)dx = r*\int_a^b f(x)dx \qquad \text{Linearität}$$

$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx \qquad \text{Abschnittweise Integration}$$

Beweis - Invertieren der Intergrationsgrenzen

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(x)dx$$

Beweis - Summenregel

$$\int_{a}^{b} f(x) + g(x)dx = [F(x) + G(x)]_{a}^{b} = F(b) + G(b) - (F(a) + G(b)) = F(b) - F(a) + G(b) - G(b)$$

$$= \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Beweis - Linearität

$$\int_{a}^{b} r * f(x) dx = [r * F(x)]_{a}^{b} = r * F(b) - r * F(a) = r * (F(a) - F(b)) = r * \int_{a}^{b} f(x) dx$$

Beweis - Abschnittweise Integration

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = F(a) - F(b) - (F(b) - F(c)) = F(c) - F(a) = \int_{a}^{c} f(x)dx$$

Theorem

Sei eine in [a;b] stetige Funktion f. Wenn für $m,M\in\mathbb{R}$ gilt: $m\leq f(t)\leq M\ \forall t\in[a;b]$, dann gilt:

$$m(b-a) \le \int_a^b f(t)dt \le M(b-a)$$

Reweis

Es reicht, $m \le f(t) \le M$ als Ungleichung zwischen a und b zu integrieren.

Bemerkung:

Eine Konsequenz davon ist, dass falls $|f(t)| \le M \ \forall t \in [a;b]$, dann gilt:

$$\left| \int_{a}^{b} f(t)dt \right| \le M(|b-a|)$$

Außerdem:

Definition

Für eine auf [a;b] stetige Funktion f mit $a \neq b$ gilt: Der Mittelwert von f auf [a;b] ist gegeben durch

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

1.4 Integrationsregeln und -techniken

1.4.1 Potenzregel

Hoffentlich einleuchtend und selbstverständlich:

Theorem

$$\forall n \in \mathbb{Z} \setminus \{-1\} : \int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

Bemerkung:

Die einzige Ausnahme stellt der Fall n = -1 dar:

Theorem

$$\int \frac{1}{x} dx = \ln(|x|) + C$$

Eine Konsequenz dessen ist:

Theorem

$$\int \frac{a}{bx+c}dx = \frac{a}{b}\ln(|bx+c|) + C$$

Beweis

$$\left(\frac{a}{b}\ln(|bx+c|)\right)' = \frac{a}{b} \cdot \frac{1}{bx+c} \cdot b = \frac{a}{bx+c}$$

1.4.2 Partielle Integration

Theorem

Seien u und v zwei stetig differenzierbare Funktionen auf dem Intervall I. Dann gilt:

$$\int u(x)'v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

Beweis

$$(u(x) * v(x))' = u'(x)v(x) + u(x)v'(x)$$

$$\Rightarrow \int (u(x) * v(x))' dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Leftrightarrow u(x) * v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Leftrightarrow \int u(x)v'(x)dx = u(x) * v(x) - \int u'(x)v(x)dx$$

Beispiel:

$$\int x \sin(x) dx \qquad \text{Mit } u(x) = x; \ u'(x) = 1; \ v(x) = \sin(x); \ v'(x) = -\cos(x)$$

$$= \int x (-\cos(x))' dx$$

$$= -x \cos(x) - \int -\cos(x) * 1 dx$$

$$= -x \cos(x) + \int \cos(x) dx$$

$$= -x \cos(x) + \sin(x)$$

1.4.3 Substitution

Theorem

Sei f eine auf [a;b] stetige funktion und g eine auf diesem Intervall differenzierbare Funktion mit stetiger Ableitung g'. Wenn die Verkettung $f \circ g$ existiert, gilt:

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(z) dz$$

Eine abgespeckte Variante dieses Theorems, genannt lineare Substitution ist gegeben durch:

Theorem

Für ein Funktion f mit einer Stammfunktion F und $r \neq 0$ gilt:

$$\int_{a}^{b} f(rx+s)dx = \frac{1}{r} [F(rx+s)]_{a}^{b} + C$$

Beispiel:

Zu berechnen:

$$\int_0^4 \frac{x\sqrt{x}}{1 + x^2\sqrt{x}} dx$$

Substitution:

$$\begin{split} g(x) &= x^2 \sqrt{x} \quad \text{(alternativ: } g(x) = x^2 \sqrt{x} + 1) \\ &\frac{dg}{dx} = (x^2 \sqrt{x})' \\ &= \frac{5}{2} \cdot x \sqrt{x} \\ \left(\Leftrightarrow dx = \frac{2}{5x \sqrt{x}} dg \Rightarrow \int_0^4 \frac{x \sqrt{x}}{1 + x^2 \sqrt{x}} dx = \int_{g(0)}^{g(4)} \frac{x \sqrt{x}}{1 + g} \cdot \frac{2}{5x \sqrt{x}} dg \right) \end{split}$$

Berechnung des Integrals:

$$\begin{split} \int_0^4 \frac{x\sqrt{x}}{1+x^2\sqrt{x}} dx &= \int_0^4 f(g(x)) \cdot g'(x) dx \\ &= \int_{g(0)}^{g(4)} \frac{2}{5} \cdot \frac{1}{1+z} dz \\ &= \frac{2}{5} \cdot \int_{0^2 \cdot \sqrt{0}}^{4^2 \cdot \sqrt{4}} \frac{1}{1+z} dz \\ &= \frac{2}{5} \cdot \left[\ln(|1+z|) \right]_0^{32} \\ &= \frac{2}{5} \cdot \ln(33) \end{split}$$

1.4.4 Substitution der Integrationsvariablen

Theorem

Sei f eine auf [a;b] stetige funktion und g eine auf diesem Intervall differenzierbare und umkehrbare Funktion mit stetiger Ableitungsfunktion g'. Wenn die verkettung $f \circ g$ esxistiert, gilt:

$$\int_a^b f(x)dx = \int_{\bar{q}(a)}^{\bar{g}(b)} f(g(t)) * g'(t)dt$$

1.4.5 Integrale von *e*-Funktionen

Theorem

Für
$$f(x) = e^{l(x)}$$
 mit $l(x) = ax + b$ gilt: $F(x) = \frac{1}{a}e^{l(x)}$

Beweis

Man bilde F'(x).

1.4.6 Integrale von $\ln()$ -Funktionen

Es handelt sich hierbei streng genommen auch um eine Substitution:

Theorem

Für $x \in \mathbb{R}^+$ ist F eine Stammfunktion zur Funktion $f(x) = \ln(x)$ mit $F(x) = x \ln(x) - x$

Beweis

Der Beweis erfolgt über partielle Integration und wird dem Schüler als Übung überlassen.

1.4.7 Integrale von (un)geraden Funktionen

Theorem

Sei f eine auf einem Intervall I stetige und auf 0 zentrierte Funktion. Wenn f gerade ist, gilt $\forall a \in \mathbb{R}$: $\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt, \text{ und wenn } f \text{ ungerade ist: } \int_{-a}^{a} f(t)dt = 0$

Beweis

Sei die Funktion $\varphi(x)=\int_{-x}^x f(t)dt=F(x)-F(-x)$ mit F, einer Stammfunktion von f. Also ist φ auf I=[-x;x] differenzierbar und $\varphi'(x)=F'(x)-F'(-x)=f(x)+f(-x)$.

- Wenn f auf I ungerade ist, gilt: $f(x) = -f(-x) \Rightarrow \varphi'(x) = 0$ und somit konstant. Deshalb gilt $\varphi(x) = \varphi'(x) = 0$ auf I, was $\int_{-a}^{a} f(t)dt = 0$ beweist.
- Wenn f gerade ist, gilt: $f(x) = f(-x) \Rightarrow \varphi'(x) = 2f(x)$. Also gilt für $\varphi(x) = \int_0^x 2f(t)dt$, einer Stammfunktion von 2f(x), $\varphi(0) = 0$, was $\int_{-a}^a f(t)dt = 2\int_0^a f(t)dt$ beweist.

1.4.8 Integrale von periodischen Funktionen

Theorem

Für jede in \mathbb{R} stetige und periodische Funktion f gilt:

$$\int_a^{a+T} f(x) dx$$
 ist unabhängig von a und $\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$

Beweis

1.5 Flächen und Volumen mit Integralen berechnen

1.5.1 Fläche zwischen einer Funktion und der x_1 -Achse

Definition

Für die auf dem Intervall [a;b] (also stückweise) stetige Funktion f mit Nullstellen und $x_1,x_2,...,x_n$ mit $a \le x_1 \le x_2 \le ... \le x_n \le b$ ist der Flächeninhalt A zwischen dem Graphen von f und der x_1 -Achse im Intervall [a;b] gegeben durch:

$$A = \left| \int_a^{x_1} f(x)dx \right| + \left| \int_{x_1}^{x_2} f(x)dx \right| + \dots + \left| \int_{x_{n-1}}^{x_n} f(x)dx \right| + \left| \int_{x_n}^b f(x)dx \right|$$
$$= \left| \int_a^b f(x)dx \right|$$

Bildhaft sieht das folgendermaßen aus:

$$\begin{split} \frac{C}{C} &= A + B \\ &= |\int_{a}^{x_1} f(x) dx| + |\int_{x_1}^{b} f(x) dx| \end{split}$$

$$C = A + B$$

$$= \int_{a}^{x_1} f(x)dx + \int_{x_1}^{b} f(x)dx$$

$$= \int_{a}^{b} f(x)dx$$

Beispiel:

$$f(x) = x^2 - 2x^3; x \in \mathbb{R}$$

notwendige und hinreichende Bedingung für Nullstellen: f(x) = 0

$$\Leftrightarrow x^{2}(1-2x) = 0$$

$$\stackrel{SdN}{\Leftrightarrow} \begin{cases} x^{2} = 0 \\ 1-2x = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} = 0 \\ x_{2} = \frac{1}{2} \end{cases}$$

Also gilt:

$$\begin{split} A_{-1}^1 &= \left| \int_{-1}^0 x^2 - 2x^3 dx \right| + \left| \int_{0}^{0.5} x^2 - 2x^3 dx \right| + \left| \int_{0.5}^1 x^2 - 2x^3 dx \right| \\ &= \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{-1}^0 \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0}^{0.5} \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0.5}^1 \right| \\ &= \left| 0 - \left(-\frac{1}{3} - \frac{1}{2} \right) \right| + \left| \frac{1}{24} - \frac{1}{32} - 0 \right| + \left| \frac{1}{3} - \frac{1}{2} - \left(\frac{1}{24} - \frac{1}{32} \right) \right| \\ &= 1 + \frac{1}{12} - \frac{1}{16} \\ &= \frac{49}{48} \, \mathrm{FE} \end{split}$$

GTR-Tipp:

Mit $Y_1 = f(x)$ und $Y_2 = abs(Y_1)$ bzw. $Y_2 = |Y_1|$ (zu finden in MATH > NUM oder über F2, also ALPHA+WINDOW) lässt sich die Fläche berechnen über MATH > MATH mit der Option fnInt. Hierzu wählt man Y_2 aus und gibt a und b an.

1.5.2 Fläche zwischen zwei Funktionen

Theorem

Für zwei auf [a;b] stetige Funktionen f und g gilt: Die Fläche zwischen ihren Schaubildern C_f und C_g ist gegeben durch: $\int_a^b (g(x) - f(x)) dx.$

1.5.3 Volumenangaben mittels Integralen

Theorem

Man betrachtet einen Körper, der durch zwei parallele Ebenen mit den Gleichungen $x_3=a$ und $x_3=b$ begrenzt wird. Für alle $a\leq z\leq b$ nennt man P_z die zur x_1 -Achse orthogonale Fläche mit der Seite z und S(z) die Fläche des Schnitts des Körpers durch P_z . Ist S stetig, so ist ist das Volumen V des Körpers gegeben durch:

$$V = \int_{a}^{b} S(z)dz$$

Bemerkung:

Analog zur Unterteilung einer Fläche in kleine Balken, kann man ein Volumen in kleine Scheiben unterteilen.

Bemerkung:

Dieses Theorem nehmen wir hin, ohne es zu beweisen, uns geht es ohnehin um die Schlussfolgerungen, die wir daraus ziehen können:

Theorem

Ein Körper, der durch die Rotation der Kurve von f um die x_1 -Achse entsteht, hat ein Volumen von $\pi \int_{-b}^{b} f^2(z)dz$.

Tatsächlich ist die Fläche eines zur x_3 -Achse parallelen Querschnitts die der Scheibe mit Radius f(z).

Uneigentliche Integrale 1.6

Definition

Ist die Funktion f auf $[a; +\infty)$ stetig und existiert der Grenzwert $\lim_{Z \to \infty} \int_a^Z f(x) dx$, so heißt dieser Grenzwert und dieser wert uneigentliches Integral von f über $[a; +\infty)$.

Schreibweise: $\int_{a}^{+\infty} f(x)dx$

Analog dazu spricht man von einem uneigentlichen Integral für $\int_{a}^{b} f(x)dx$

$$f(x) = \frac{-3}{x^3}$$

$$A(z) = \int_z^{-2} \frac{-3}{x^3} dx = \left[\frac{3}{2}x^{-2}\right]_z^{-2} = \frac{3}{8} - \frac{3}{2}z^{-2}$$

$$\lim_{z \to -\infty} \frac{3}{8} - \frac{3}{2}z^{-2} = \frac{3}{8}$$

 \Rightarrow Das uneigentliche Integral hat den Wert $\frac{3}{8}$.

Beispiel:

$$\begin{split} &\frac{-\cos\varphi(x)}{f(x)} = \frac{1}{\sqrt{x}} \\ &A(z) = \int_z 1^Z \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_1^Z = 2\sqrt{Z} - 2 \\ &\lim_{Z \to \infty} 2\sqrt{Z} - 2 \stackrel{\rightarrow}{Z} \stackrel{\rightarrow}{\to} \infty \\ &\Rightarrow \text{Das uneigentliche Integral existiert nicht.} \end{split}$$

Definition

Ist die Funktion f auf (a;b] stetig und existiert der Grenzwert $\lim_{Z \to a} \int_Z^b f(x) dx$, so heißt dieser Grenzwert uneigentliches Integral von f über (a; b].

Schreibweise: $\int_{a}^{b} f(x)dx$

Analog dazu spricht man von einem uneigentlichen Integral für $\int^a f(x)dx$

Bemerkung:

Diese Berechnung ergibt nur dann Sinn, wenn bei a eine Definitionslücke vorliegt.

1.7 Merkenswerte Integrale

Hier eine (möglicherweise unvollständige) rückblickende Liste mit Integralen, die insbesondere zum Abitur beherrscht werden sollten.

Diese sollten ohne weitere Rechtfertigung oder Beweis verwendet werden dürfen. (Diese Angabe ist ohne Gewähr)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \frac{1}{x} dx = \ln(|x|) + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$\int \frac{u'(x)}{u(x)} dx = \ln(|u(x)|) + C$$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

▲ Definitionsmengen sind zu beachten.