GABARITO - TRABALHO 2

(Valor: 10 pontos Envio até às 23:30 de 26/10/2020)

1. Considerando os conjuntos

$$A = \{x \in \mathbb{Z} : \sim [x \le -2 \lor x > 3]\}, B = \{x \in \mathbb{N} : \sim [-1 < x \le 3 \longrightarrow x = 5]\} \in C = \{x \in \mathbb{Z} : (x < -2 \lor x \ge 2) \longrightarrow x > 1\}.$$
 Determinar $F = (B \cap C) \triangle (A \cup B)$.

Solução: Vamos determinar cada um dos conjuntos.

(i) Note que
$$\sim [x \le -2 \lor x > 3] \equiv x > -2 \land x \le 3$$
. Assim, $A = \{-1, 0, 1, 2, 3\}$

(ii) Note que
$$\sim [-1 < x \le 3 \longrightarrow x = 5] \equiv -1 < x \le 3 \land x \ne 5$$
. Assim, $B = \{1, 2, 3\}$

(iii) Note que
$$(x < -2 \lor x \ge 2) \longrightarrow x > 1 \equiv (x \ge -2 \land x < 2) \lor x > 1$$
. Assim, $C = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, \ldots\}$

Logo,
$$A \cup B = A$$
 e $B \cap C = B$, pois $B \subset A \subset C$.

De onde,
$$F = (B \cap C) \triangle (A \cup B) = B \triangle A = (A \cup B) - (A \cap B) = A - B = \{-1, 0\}.$$

Portanto, $F = \{-1, 0\}.$

2. Mostrar, usando elementos, que:

(a)
$$(A \cup B^c) \cap (B \cup A^c) = (A \cap B) \cup (A \cup B)^c$$

(b)
$$\mathcal{P}[(A \cap B) \cup C)] = \mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C)$$

Solução:

(a) Devemos mostrar duas inclusões:
$$(A \cup B^c) \cap (B \cup A^c) \subset (A \cap B) \cup (A \cup B)^c$$
 e $(A \cap B) \cup (A \cup B)^c \subset (A \cup B^c) \cap (B \cup A^c)$

(i) Mostremos que
$$(A \cup B^c) \cap (B \cup A^c) \subset (A \cap B) \cup (A \cup B)^c$$

Seja
$$x \in (A \cup B^c) \cap (B \cup A^c)$$
, então $x \in (A \cup B^c)$ e $x \in (B \cup A^c)$.

Segue daqui, $(x \in A \text{ ou } x \in B^c)$ e $(x \in B \text{ ou } x \in A^c)$. Aplicando distributividade e absorção obtemos $(x \in A \text{ e } x \in B)$ ou $(x \in B^c \text{ e } x \in A^c)$. Logo, $x \in (A \cap B)$ ou $x \in (B^c \cap A^c)$. Pela lei de Morgan, temos $x \in (A \cap B)$ ou $x \in (A \cup B)^c$.

Portanto, $x \in (A \cap B) \cup (A \cup B)^c$.

(ii) Mostremos que $(A \cap B) \cup (A \cup B)^c \subset (A \cup B^c) \cap (B \cup A^c)$

Seja $x \in (A \cap B) \cup (A \cup B)^c$, então $x \in (A \cap B)$ ou $x \in (A \cup B)^c$. Aplicando a lei de Morgan, $x \in (A \cap B)$ ou $x \in (B^c \cap A^c)$. Logo, $(x \in A \in x \in B)$ ou $(x \in B^c \in x \in A^c)$. Aplicando distributividade e absorção, temos $(x \in A \text{ ou } x \in B^c) \text{ e}(x \in B \text{ ou } x \in A^c)$. De onde, $x \in (A \cup B^c)$ e $x \in (B \cup A^c)$.

Portanto, $x \in (A \cup B^c) \cap (B \cup A^c)$

- (b) Devemos mostrar as inclusões $\mathcal{P}[(A \cap B) \cup C)] \subset \mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C)$ e $\mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C) \subset \mathcal{P}[(A \cap B) \cup C)]$.
 - (i) Mostremos que $\mathcal{P}[(A\cap B)\cup C)]\subset \mathcal{P}(A\cup C)\cap \mathcal{P}(B\cup C)$ Seja $X\in \mathcal{P}[(A\cap B)\cup C)]$, então $X\subset [(A\cap B)\cup C)]$. Aplicando distributividade, temos $X\subset (A\cup C)\cap (B\cup C)$. Logo, $X\subset (A\cup C)$ e $X\subset (B\cup C)$. Isto nos diz, $X\in \mathcal{P}(A\cup C)$ e $X\in \mathcal{P}(B\cup C)$.

Portanto, $X \in \mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C)$.

- (ii) Mostremos que $\mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C) \subset \mathcal{P}[(A \cap B) \cup C)]$ Seja $X \in \mathcal{P}(A \cup C) \cap \mathcal{P}(B \cup C)$, então $X \in \mathcal{P}(A \cup C)$ e $X \in \mathcal{P}(B \cup C)$. Logo, $X \subset (A \cup C)$ e $X \subset (B \cup C)$. Daqui, $X \subset (A \cup C) \cap (B \cup C)$. Isto é, $X \subset [(A \cap B) \cup C)]$. Portanto, $X \in \mathcal{P}[(A \cap B) \cup C)]$.
- 3. Considerando $A \subset B$ e $D \subset E$. Pede-se:
 - (a) Representar geometricamente $\mathcal{C}_B^A \times \mathcal{C}_E^D$
 - (b) Representar geometricamente $C_{B\times E}^{A\times D}$
 - (c) Mostrar que $\mathcal{C}_B^A \times \mathcal{C}_E^D \subset \mathcal{C}_{B \times E}^{A \times D}$

Solução: As representações solicitadas em a) e b) aparecem na figura a seguir:

c) Queremos mostrar que $\mathcal{C}_B^A \times \mathcal{C}_E^D \subset \mathcal{C}_{B \times E}^{A \times D}$

Seja $(x,y) \in \mathcal{C}_B^A \times \mathcal{C}_E^D$, então $x \in \mathcal{C}_B^A$ e $y \in \mathcal{C}_E^D$. Logo, por definição de complementar, temos $x \in B$ e $x \notin A$ e $y \in E$ e $y \notin D$. Associando, obtemos $(x \in B \text{ e } y \in E)$ e $(x \notin A \text{ e } y \notin D)$.

Note que se $x \notin A$ e $y \notin D$, então $(x, y) \notin A \times D$.

Assim, $(x \in B \text{ e } y \in E) \text{ e } (x \notin A \text{ e } y \notin D)$, temos $(x,y) \in B \times E \text{ e } (x,y) \notin A \times D$. De onde, $(x,y) \in \mathcal{C}_{B \times E}^{A \times D}$.

4. Se A, B, C, D são conjuntos tais que $C \subset A^c, A \subset B^c$, e $C \cup D = D$. Simplificar

$$[(A^c \cup B^c) \cap (C^c \cup D^c)] \cup [([(C \cup B) \cap A] \cup C^c) \cap B]$$

Solução: Note que:

- (a) De $C \subset A^c$ concluímos que $C \cap A = \emptyset$, $A \subset C^c$ e $A \cup C^c = C^c$;
- (b) De $A \subset B^c$ concluímos que $A \cap B = \emptyset$ e $B \subset A^c$;
- (c) De $C \cup D = D$, concluímos que $C \subset D$ e $C \cap D = C$.

A partir destas conclusões, vamos simplificar por partes:

(i) Primeiro $[(A^c \cup B^c) \cap (C^c \cup D^c)]$

Como
$$(A^c \cup B^c) = (A \cap B)^c = U, (C^c \cup D^c) = (C \cap D)^c = C^c.$$

Resulta, $[(A^c \cup B^c) \cap (C^c \cup D^c)] = C^c$

(ii) Segundo ($[(C \cup B) \cap A] \cup C^c$) $\cap B$

Aplicando a propriedade distributiva e associativa e, considerando que $C \cup C^c = U$, temos $([(C \cup B) \cap A] \cup C^c) \cap B = [(C \cup B \cup C^c) \cap (A \cup C^c)] \cap B = (A \cup C^c) \cap B = B \cap C^c$

Assim, de (i) e (ii), aplicando absorção, temos:

$$[(A^c \cup B^c) \cap (C^c \cup D^c)] \cup [([(C \cup B) \cap A] \cup C^c) \cap B] = C^c \cup (B \cap C^c) = C^c$$

- 5. Ao todo são 92 pessoas entre Matemáticos (M), Físicos (F) e Engenheiros (E). Considerando as informações a seguir e sabendo que uma pessoa pode formar-se em mais de uma profissão.
 - I. São M e F apenas, 15 pessoas.
 - II. São M e E apenas, 12 pessoas.
 - II. São E e F apenas, 7 pessoas.
 - IV. Dentre aqueles que se formaram em apenas uma dessas profissões, há quatro físicos a mais que matemáticos, e quatro engenheiros a mais que físicos.
 - V. Os que se formaram em apenas uma profissão, ao todo, são quatro a menos do que aqueles que se formaram nas três profissões.

Pede-se:

- (a) Determinar o número de pessoas que se formaram em exatamente duas profissões.
- (b) Determinar o número total de matemáticos, físicos e engenheiros.

Solução: A partir das informações do enunciado, montamos a figura a seguir:

Além disso, pela informação V, temos: (a-4) + a + (a+4) = x-4. De onde, x = 3a+4. Como, ao todo são 92 pessoas, temos: (a-4) + a + (a+4) + 15 + 12 + 7 + (3a+4) = 92. De onde, 6a = 54. E, daqui a = 9.

Assim,

- (a) O número de pessoas que se formam em exatamente duas profissões é: 15 + 12 + 7 = 34.
- (b) O número total de matemáticos é: a 4 + 15 + 12 + x = 27 + 4a = 27 + 36 = 63.
- O número de total de físicos é: 15 + 7 + a + x = 22 + 4a + 4 = 26 + 36 = 62
- O número total de engenheiros é: 12 + 7 + x + a + 4 = 27 + 4a = 27 + 36 = 63