

Matrix Assignment - Conic

T.Sai Raghavendra(FWC22087)

2

CONTENTS

I Problem

II Solution

III Figure

I. PROBLEM

If the line x-1=0 is the directrix of the parabola to $y^2 - kx + 8 = 0$ then find one of the values of k is

$$a)\frac{1}{8}$$
 $b)4$ $c)\frac{1}{4}$ $d)8$

II. SOLUTION

Given line, x-1 = 0 we know that the vector equation of the line is

$$\mathbf{n}^{\mathsf{T}}x = c$$

Compare the given line with the vector equation

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1$$

By comparing we get,

$$n = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $c = 1$

From $y^2 - kx + 8 = 0$

We know that the equation of a conic with directrix $\mathbf{n}^{\top}x=c$, eccentricity e and focus F is given by

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}x + f = 0$$

Compare the given parabola with equation of conic we get,

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{u} = \begin{pmatrix} \frac{-k}{2} \\ 0 \end{pmatrix} \mathbf{f} = 8$$

If we can find vector $'\mathbf{u}'$ just by comparing the $'\mathbf{u}'$ vector we can obtain the \mathbf{k} value

To find u we have,

$$\mathbf{u} = ce^2 \mathbf{n} - ||\mathbf{n}||^2 \mathbf{F} \tag{1}$$

1

To find Focus F in equation(1) we have,

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2 \tag{2}$$

By substituting the values of f,c,e,n we get,

$$||\mathbf{F}||^2 = 9$$
$$||\mathbf{F}||^2 = \mathbf{F}^\top \mathbf{F}$$

After comparing the conic equation with parabola we know that the y co-ordinate of \mathbf{u} is zero(0) such that,

 $||\mathbf{F}||^2$ can be written in two cases as y co-ordinate is zero..,

case 1:
$$\begin{pmatrix} -3 & 0 \end{pmatrix} \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$

case 2: $\begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$

From case 1: The F is $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$

By substituing all the values of c,e,n,F in equation(1) we get,

$$\mathbf{u} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
we got, $\mathbf{k} = -8$

From case 2: The **F** is $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$

By substituing all the values of c,e,n,F in equation(1) we get,

$$\mathbf{u} = \begin{pmatrix} -2\\0 \end{pmatrix}$$
 we got, $k = 4$

III. FIGURE

IV. CodeLink

https://github.com/Sairaghavendra36/Fwc-2022/blob/main/Matrix/Conic/Conic.py

Execute the code by using the command **python3 line.py**