

Universitatea Tehnică din Cluj-Napoca Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Proiect SCIA

Student: Rad Amalia-Maria

Specializare: Electronică Aplicată, anul 3

Îndrumător proiect: PhD Student Vladu Eduard

Profesor curs: Conf.Dr.Ing. Neag Marius

Cuprins

1. Specificații de proiectare	3
1.1 Etajul 1- AI reacție pasivă de curent	3
1.2 Etajul 2-Low Pass 3 AO V-V	4
1.3 Etajul 3- AO inversor cu switch-uri in calea de semnal, conexiune in paralel	5
1.4 Etajul 4- Redresor de precizie	6
1.5 AO	6
2.Dimensionarea circuitului	7
2.1. Dimensionare AI cu reacție pasivă de curent	7
2.2 Dimensionare filtru KHN	8
2.3 Dimensionare PGA-Switch-uri in calea de semnal, conexiune în paralel	9
2.4 Dimensionare Redresor Dubla Alternanta	11
3.Simulari	14
3.1. Simulari pentru primul etaj	14
3.2. Simulări pentru al doilea etaj	22
3.3 Simulări pentru al treilea etaj	28
3.4 Simulări pentru al patrulea etaj	37
4. Toate etajele	40
4.1 Schema de principiu	40
4.2 Simulări	41
4.2.1 Analiza DC	41
4.2.2 Analiza AC	42
4.2.3 Analiza Transient	43
5. Concluzii	44
5.1. Etajul 1	44
5.2. Etajul 2	44
5.3. Etajul 3	45
5.4. Etaiul 4	45

1. Specificații de proiectare

1.1 Etajul 1- AI reacție pasivă de curent

Sursă semnal

->tesniune diferențială

Amplitudine minimă(pentru câștig maxim PGA): 6.73E-02

Amplitudine maximă(pentru câștig minim PGA):2,68E-01

Unitate măsură: V-diferențial

Câștig liniar: 10

Tip etaj 1-10

1.2 Etajul 2-Low Pass 3 AO V-V

KHN

|H0| câștig liniar în banda de trecere: 1

$$Rin_{min} = 2E + 03$$

$$Banda = 2E + 03$$

$$Q = 1.73$$

1.3 Etajul 3- AO inversor cu switch-uri in calea de semnal, conexiune in paralel Tip etaj: 1

Câștig minim[dB]=7

Rezoluție(pas minim)[dB]=3

Număr pași:5

Câștig maxim[dB]=19

 $Rin_{min} = 4E + 03$

1.4 Etajul 4- Redresor de precizie

Tip etaj-7

|Câștig| linear: 1

1.5 AO

Tip AO: ADA4627

Tensiuni de alimentare: ±15*V*

2. Dimensionarea circuitului

2.1. Dimensionare AI cu reacție pasivă de curent

$$V^+ = V^-(1)$$

$$\frac{VCC-V^{-}}{R_2} = I_{C1} (2)$$

$$\frac{VCC-V^+}{R_1} = Ic2 (3)$$

Din (1),(2) și (3)=>
$$I_{C1} = I_{C2} => V_{BE1} = V_{BE2}$$

$$V_{BE1} = V_B - V_X (1')$$

$$V_{BE2} = V_A - V_Y (2')$$

$$V_{BE1} = V_{BE2} (3')$$

Din (1'),(2') si (3') =>
$$V_A - V_B = V_Y - V_X$$

$$I_{RG} = \frac{V_{OUT} - V_{REF}}{R_{Ea} + R_{Eb} + R_{C}} (1")$$

$$I_{RG} = \frac{V_Y - V_X}{R_G} (2")$$

Din (1") si (2") =>
$$V_{OUT} = (V_A - V_B) * (1 + 2 * \frac{R_F}{R_G}) + V_{REF}$$

$$A_V = \frac{V_{OUT}}{V_{ID}} = \frac{V_{OUT}}{V_A - V_B} = 1 + 2 * \frac{R_F}{R_G}$$

$$A_V = 10 => 9 = 2 * \frac{R_F}{R_G} => \frac{R_F}{R_G} = 4.5$$

 $R_F = 20.25 k (valoare\ standrdizata)$

 $R_G = 4.5k$ (valoare standardizata)

2.2 Dimensionare filtru KHN

Setam
$$R_1 = R_2 = \dots = R_7 = R = > H_0 = 1; \omega_0 = \frac{1}{R\sqrt{C_1C_2}}; Q = \frac{2}{3}\sqrt{\frac{C1}{C2}}$$

$$C_1 = \frac{3Q}{2\omega 0R}$$

$$C_2 = \frac{2}{3Q\omega 0R}$$

f0 [Hz]	w0[rad/sec]	Q	H0[V/V]
2,00E+03	1,26E+04	1,73E+00	1,00E+00
	varianta 1		
	C1[F]	set C2[F]	set R[ohm]
	1,03E-07	1,53E-08	2,00E+03

2.3 Dimensionare PGA-Switch-uri in calea de semnal, conexiune în paralel

AO-inversor=>
$$A_v = -\frac{R_F}{R_G}$$

$$A_{minim} = 7dB$$

$$A_{maxim} = 19 dB$$

 $Pas\ minim\ (rezolutie) = 3dB$

Numar pasi: 5

$$Rin_{min} = 4k\Omega$$

$$A_v = \{7,10,13,16,19\}[dB]$$

Formula de transformare din dB in liniar:

$$A_{lin} = 10^{\frac{AdB}{20}}$$

$$Pentru A = 7dB => A = 2.23 V/_V$$

$$Pentru A = 10dB => A = 3.16 V/_V$$

$$Pentru A = 13dB => A = 4.5 V/V$$

$$Pentru A = 16dB => A = 6.3 V/V$$

$$Pentru A = 19dB => A = 8.9 V/V$$

$$A_V = \{2.23; 3.16; 4.5; 6.3; 8.9\}^V/_V$$

1.

$$SW_1 - ON, SW_2, SW_3, SW_4, SW_5 - OFF$$

$$R_{IN} = R_G => R_G = 4E + 03$$

Lucram in modul=>
$$|A| = \frac{R_F}{R_G}$$

$$2.23 = \frac{R_F}{4} = > R_F = 8.92k\Omega$$

2.

$$SW_2 - ON, SW_1, SW_3, SW_4, SW_5 - OFF$$

$$R_{IN} = R_G => R_G = 4E + 03$$

Lucram in modul=>
$$|A| = \frac{R_F}{R_G}$$

$$3.16 = \frac{R_F}{4} = > R_F = 12.64k\Omega$$

3.

$$SW_3 - ON, SW_1, SW_2, SW_4, SW_5 - OFF$$

$$R_{IN} = R_G => R_G = 4E + 03$$

Lucram in modul=>
$$|A| = \frac{R_F}{R_G}$$

$$4.5 = \frac{R_F}{4} = > R_F = 18k\Omega$$

4.

$$SW_4 - ON, SW_1, SW_2, SW_3, SW_5 - OFF$$

$$R_{IN} = R_G => R_G = 4E + 03$$

Lucram in modul=>
$$|A| = \frac{R_F}{R_G}$$

$$6.3 = \frac{R_F}{4} = R_F = 25.2k\Omega$$

5.

$$SW_5 - ON, SW_1, SW_2, SW_3, SW_4 - OFF$$

$$R_{IN} = R_G = > R_G = 4E + 03$$

Lucram in modul=>
$$|A| = \frac{R_F}{R_G}$$

$$8.9 = \frac{R_F}{4} = > R_F = 35.6k\Omega$$

2.4 Dimensionare Redresor Dubla Alternanta

Cazul 1

Presupunem ca D_1 si $D_2 - OFF$

$$V_{IN} \downarrow V_{SS}$$

$$V_1^+ \downarrow V_{SS}$$

$$V_1^- = 0$$

$$Deoarece V_2^- = V_2^+ = 0$$

Din ecuatiile de mai sus =>

$$V_1^+ < V_1^- => V_{OA} \downarrow V_{SS} => D_1 - ON \text{ si } D_2 - OFF$$

Avem reactie negativa in jurul lui AO1 prin D_1

$$V_1^- = V_1^+ = V_{IN}$$

$$i_{R1} = i_{R2} = \frac{V_{IN}}{R_1}$$

$$V_2^- = V_2^+ = 0$$

$$V_{OUT} = 0 - i_{R2} * R_2 = V_{OUT} = -\frac{R_2}{R_1} * V_{IN}$$

$$i_{D1} = i_{R1} = \frac{V_{IN}}{R_1}$$

$$D_1 - ON <=> i_{D1} > 0$$

Din ultimele doua ecuatii => $V_{IN} < 0$

$$=>V_{OUT}=-\frac{R_2}{R_1}*V_{IN},V_{IN}<0$$

Cazul 2

Presupunem ca D_1 si $D_2 - OFF$

$$V_{IN} \uparrow V_{DD}$$

$$V_1^+ \uparrow V_{DD}$$

$$V_1^- = 0$$

Deoarece
$$V_2^- = V_2^+ = 0$$

Din ecuatiile de mai sus =>

$$V_1^+ > V_1^- => V_{OA} \uparrow V_{DD} => D_1 - OFF \ si \ D_2 - ON$$

Avem reactie negativ in jurul AO1 prin R_1 si D_2

$$V_1^- = V_1^+ = V_{IN}(1)$$

$$i_{R1} = 0 (2)$$

(∄ ochi de circuit)

$$V_2^+ = V_2^-$$
 (3)

Din 1,2,3 =>
$$V_2^- = V_{IN}$$
 (4)

$$i_{R2}=0 (5)$$

(∄ ochi de circuit)

Din 4 si 5
$$\Rightarrow$$
 $V_{OUT} = V_{IN}$

$$i_{D2} = i_{R3} = -\frac{V_{IN}}{R3}$$
 (6)

$$D_2 - ON \le i_{D2} > 0$$
 (7)

Din 6 si 7 =>
$$V_{IN} > 0$$

$=> V_{OUT} = V_{IN}, V_{IN} > 0$

$$V_{OUT} = \begin{cases} V_{IN}, & V_{IN} > 0 \\ -\frac{R_2}{R_1} * V_{IN}, & V_{IN} < 0 \end{cases}$$

Egalam
$$\frac{R_2}{R_1} = 1 \Rightarrow R_1 = R_2 = R$$

Aleg $R=20k\Omega$

Aleg
$$R_3 = 1k\Omega$$

$$V_{OA} = V_{IN} - V_D, \ V_{IN} > 0 \ (1)$$

$$V_{OA} = -V_{IN} + V_D, \quad V_{IN} < 0 \ (2)$$

Tensiunea de saturatie pentru ADA4627: $V_{OA} = 5V \; (datasheet)$

$$V_D = 0.6V$$

Din (1) =>
$$5V = V_{IN} - 0.6V$$

$$=>V_{IN}=5+0.6$$

$$=>V_{IN}=5.6V$$

$$Din (2) => 5V = -V_{IN} + 0.6V$$

$$=>V_{IN}=5-0.6$$

$$=>V_{IN}=4.4V$$

3.Simulari

3.1. Simulari pentru primul etaj

1.Analiza DCOP

PSF

--- Operating Point ---

V(n002): 10.1756 voltage 10.1754 V(n001):voltage -15 voltage V(-vcc): V(vcc): 15 voltage V(out): -0.000855788 voltage -0.6519 **V(vx):** voltage V(vref): 0 voltage **V(vy):** -0.651901 voltage 0 V(vb): voltage 0 V(va): voltage 0 V(n003): voltage V(in): 0 voltage

Compensare/ajustare nivel DC la iesire:

Pentru compensarea nivelului DC la iesirea din circuit am setat toate sursele 0 si am observant valorea tensiunii de iesire in acest caz:

V(out): -0.000855788 voltage

2.Analiza AC

Castigul la joasa frecventa

 $A_{dB} \approx 20 dB$

$$A_{lin} = 10^{\frac{A_{dB}}{20}} \approx 10$$

Banda > banda filtru(2k)

CMRR

Tipic pentru ADA4627=116dB

PSRR

Tipic pentru ADA4627:112dB

3. Analiza Transient

SR

$$SR = \frac{24,079429V}{100,58617us} = 0,23 \left[\frac{V}{us} \right]$$

SR calculat:

$$SR = \frac{\Delta Vout}{\Delta t} = A_1 * V_{INmax} * sin2\pi f_0 t = 268mV * 2\pi * 2k = 3366V * Hz = 3366V/s$$

SR=0.003366V/us

et et	aj1		×
Cursor	1 V(out)	
Horz:	1ms	Vert:	447.71517µV
Cursor	2 V(out)	
Horz:	876.28866µs	Vert:	2.6731678V
Diff (Co	ursor2 - Cursor1)		
Horz:	-123.71134µs	Vert:	2.6727201V
Freq:	8.0833333KHz	Slope:	-21604.5

$V_{OUT} \approx 2.6V$

Partial Harmonic Distortion: 0.014094% Total Harmonic Distortion: 0.045455%

Tensiunea de iesire pentru A=67.3V este:

Cursor	1 V(out)	
Horz:	1.25ms	Vert:	-1.1429515mV
Cursor	_		
	V(out)	
Horz:	877.08333µs	Vert:	670.79505mV
Diff (Cu	ursor2 - Cursor1)		
Horz:	-372.91667µs	Vert:	671.93801mV
Freq:	2.6815642KHz	Slope:	-1801.84

$V_{OUT} \approx 671 mV$

Partial Harmonic Distortion: 0.032009% Total Harmonic Distortion: 0.054935%

3.2. Simulări pentru al doilea etaj

1.Analiza DCOP

* C:\Users\amali\Desktop\SCIA PROIECT\ETAJ2\etaj2.asc

--- Operating Point ---

V(vcc):	15	voltage
V(-vcc):	-15	voltage
V(n001):	-0.000438468	voltage
V(in):	0	voltage
V(n002):	-0.000292343	voltage
V(n003):	-0.000292312	voltage
V(n005):	-0.000292308	voltage
V(n004):	-0.000292339	voltage
<pre>V(vout_lpf):</pre>	-0.00102309	voltage
V(n006):	-0.000146155	voltage

2.Analiza AC

Câștigul la frecvența f0

|H0| câștig liniar în banda de trecere: 1=> aproximativ 0dB

🕶 etaj	j2			\times
Cursor 1		/(vout_lpf)		
Freq:	1Hz	Mag:	-65.330374µdB	0
		Phase:	179.98347°	0
	G	roup Delay:	45.91372µs	0
Cursor 2)			

$$A_{lin}=10^{\frac{A_{dB}}{20}}\approx 1$$

3. Analiza Transient

1. Pentru amplitudinea semnalului de intrare = 2.6V

 $V_{pp} \approx 8.6V = > V_{OUT} = 4.3V$

Partial Harmonic Distortion: 0.030287% Total Harmonic Distortion: 0.055094%

2. Pentru amplitudinea semnalului de intrare = 671mV

etaj2		×
Cursor 1 V(vout	_lpf)	
Horz: 748.45361µs	Vert:	-1.1026945V
Cursor 2	lef)	
V(vout	_ipr)	
Horz: 1.0020619ms	Vert:	1.1383742V
Diff (Cursor2 - Cursor1)		
Horz: 253.60825µs	Vert:	2.2410687V
Freq: 3.9430894KHz	Slope:	8836.73

 $V_{pp} \approx 2.24V \Longrightarrow V_{OUT} = 1.12V$

Partial Harmonic Distortion: 0.032959%

Total Harmonic Distortion: 0.057758%

3.3 Simulări pentru al treilea etaj

1.Analiza DCOP


```
Cursor 1
                    V(out)
Horz:
            -15V
                            Vert:
                                    12.798846V
Cursor 2
                    V(out)
Horz:
             15V
                            Vert:
                                    -13.235173V
Diff (Cursor2 - Cursor1)
             30V
Horz:
                            Vert:
                                    -26.034019V
                          Slope:
                                     -0.867801
```

* C:\Users\amali\Desktop\SCIA PROIECT\ETAJ3\etaj3.asc

--- Operating Point ---

15	voltage
	_
-0.000292297	voltage
0	voltage
-0.000945126	voltage
-0.000292885	voltage
15	voltage
0	voltage
-15	voltage
0	voltage
0.225658	voltage
0.229747	voltage
0.232586	voltage
0.234704	voltage
	-0.000945126 -0.000292885 15 0 0 0 0 -15 0 0.225658 0.229747 0.232586

2.Analiza AC

Trepte de câștig și banda(>banda filtru-2k)

SW1-ON

SW2-ON

SW3-ON

SW4-ON

SW5-ON

3. Analiza Transient

Pentru câștig maxim si ampltudine minimă

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	2.000e+3	5.983e-1	1.000e+0
2	4.000e+3	3.346e-5	5.591e-5
3	6.000e+3	9.562e-5	1.598e-4
4	8.000e+3	6.388e-5	1.068e-4
5	1.000e+4	1.197e-5	2.001e-5
6	1.200e+4	1.734e-5	2.898e-5
7	1.400e+4	8.414e-6	1.406e-5
8	1.600e+4	1.368e-5	2.286e-5
9	1.800e+4	1.851e-5	3.094e-5
10	2.000e+4	3.596e-5	6.010e-5

Partial Harmonic Distortion: 0.021585% Total Harmonic Distortion: 0.044867%

Pentru câștig minim și amplitudine maximă

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	2.000e+3	5.974e-1	1.000e+0
2	4.000e+3	3.344e-5	5.597e-5
3	6.000e+3	8.967e-5	1.501e-4
4	8.000e+3	6.000e-5	1.004e-4
5	1.000e+4	1.032e-5	1.728e-5
6	1.200e+4	8.334e-6	1.395e-5
7	1.400e+4	6.821e-6	1.142e-5
8	1.600e+4	5.385e-6	9.014e-6
9	1.800e+4	1.994e-5	3.337e-5
10	2.000e+4	3.021e-5	5.056e-5

Partial Harmonic Distortion: 0.020030% Total Harmonic Distortion: 0.043852%

3.4 Simulări pentru al patrulea etaj

1. Analiza DCOP

* C:\Users\amali\Desktop\SCIA PROIECT\ETAJ4\etaj4.asc

--- Operating Point ---

V(n004):voltage V(n001): -0.000292311 voltage -15 V(vss): voltage ∀(vdd): 15 voltage V(voa1): -0.000555374 voltage V(n003): -1.56722e-08 voltage V(n002): -0.000292328 voltage -0.000292655 V(vout): voltage

2.Analia AC

$$A_{lin} = 10^{\frac{A_{dB}}{20}} \approx 1,10815$$

3. Analiza Transient

$V_{IN} = 5.6V$

$V_{IN} = 20V$

4. Toate etajele

4.1 Schema de principiu

4.2 Simulări

4.2.1 Analiza DC

4.2.2 Analiza AC

4.2.3 Analiza Transient

5. Concluzii

5.1. Etajul 1

ETAJUL 1			
Analiza AC			
		SPECIFICAŢII	MĂSURĂTORI
	câștig [V/V]	10	10
	Banda>banda filtru [Hz]	2k	3.98M
	CMRR [dB]	116	121
	PSRR [dB]	112	104
Analiza Tranisent			
		SPECIFICAŢII	MĂSURĂTORI
	fara distorsiuni la fin_max pt ampl_in*castig	SR<1	0.23 [V/us]
		THD<1	0.045455%

5.2. Etajul 2

	SPECIFICAŢII	MĂSURĂTORI
[H0]	1	1
Banda [Hz]	2k	2.93k
	SPECIFICAŢII	MĂSURĂTORI
torsiuni la fin_max/10 pt ampl_in*castig	THD<1	0.055094%
		Banda [Hz] 2k SPECIFICAŢII

5.3. Etajul 3

<i>J</i>			
ETAJUL 3			
Analiza AC			
		SPECIFICAŢII	MĂSURĂTORI
	Av1 [dB]	7	6.973
	Av2 [dB]	10	9.999
	Av3 [dB]	13	13,06
	Av4 [dB]	16	15.989
	Av5 [dB]	19	18.989
	D A A D	2.005.02	2.205.05
	Banda Av1> Banda filtru	2,00E+03	2,38E+06
	Banda Av2> Banda filtru	2,00E+03	1,99E+06
	Banda Av3> Banda filtru	2,00E+03	1,64E+06
	Banda Av4> Banda filtru	2,00E+03	1,34E+06
	Banda Av5> Banda filtru	2,00E+03	1,11E+06
Analiza Tranisent			
Ananza Tranisent		CDECIFICATII	MAKCUPATORI
		SPECIFICAŢII	MĂSURĂTORI
	Câștig minim și amplitudine maximă	THD<1	0,04%
	Câștig maxim și amplitudine minimă	THD<1	0,04%

5.4. Etajul 4

ETAJUL 4			
Analiza AC			
Ananza AC		SPECIFICAŢII	MĂSURĂTORI
	Câștig [V/V]	1	1,10815