MetaAdvDet: Towards Robust Detection of Evolving Adversarial Attacks

Chen Ma¹, Chenxu Zhao², Hailin Shi², Li Chen¹, Junhai Yong¹, Dan Zeng³

- ¹ School of Software, Tsinghua University, Beijing, China
- ² JD AI research ³ Shanghai University

Motivations

The shortcomings of existing approaches for detecting the evolving adversarial attacks:

- ◆ Labeled samples of new attacks are insufficient and expensive.
- New attacks evolve much faster than the high-cost data collection.
- ◆ The small scale of data leads to the few-shot learning problem → MetaAdvDet is proposed.

Learning from the few-shot tasks

Proposed Benchmark

Benchmark	Test Protocols		
Datasets	CIFAR-10, MNIST and FashionMNIST		
Cross-Adversary	Train Adversary	Test Adversary	
Benchmark	FGSM, MI-FGSM, BIM,	EAD, semantic,	
(simulate the situation	PGD, C&W, JSMA,	DeepFool, Spatial	
of evolving attacks)	SPSA, VAT,	Transformation,	
	MaxConfidence	NewtonFool	
Cross-Domain	Train Domain	Test Domain	
Benchmark	MNIST	FashionMNIST	
	FashionMNIST	MNIST	
Cross-Architecture	Train Architecture	Test Architecture	
Benchmark	ResNet-10	ResNet-18	
(evaluate the detection		ResNet-10	
of adversarial examples	Conv-4	ResNet-10	
with new architecture)	ResNet-10	Conv-4	

Train Domain	Test Domain	Method	F1 score	
			1-shot	5-shot
AdvMNIST	AdvFashionMNIST	DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.698 0.748 0.664 0.799	0.813 0.811 0.808 0.870
AdvFashionMNIST	AdvMNIST	DNN (balanced) NeuralFP [8] TransformDet [45] MetaAdvDet (ours)	0.950 0.775 0.934 0.956	0.977 0.836 0.940 0.981

Results of cross-domain benchmark

The learned ${\mathcal M}$ can detect new attacks with limited examples ${\mathcal M}$

MetaAdvDet is equipped with a double-network framework \mathcal{M} and \mathcal{T} . \mathcal{T} focuses on learning from individual tasks. After a couple of iterations, \mathcal{T} converges and computes the gradient Gi which are accumulated by \mathcal{M} to update \mathcal{M} 's parameters for achieving the fast adaption capability in detecting new attacks.

Results

Dataset	Method	F1 score	
		1-shot	5-shot
AdvCIFAR	DNN	0.495	0.639
	DNN (balanced)	0.536	0.643
	NeuralFP [8]	0.698	0.700
	TransformDet [45]	0.662	0.697
	MetaAdvDet (ours)	0.685	0.791
AdvMNIST	DNN	0.812	0.852
	DNN (balanced)	0.797	0.808
	NeuralFP [8]	0.780	0.906
	TransformDet [45]	0.840	0.904
	MetaAdvDet (ours)	0.987	0.993
AdvFashionMNIST	DNN	0.782	0.885
	DNN (balanced)	0.744	0.850
	NeuralFP [8]	0.798	0.817
	TransformDet [45]	0.712	0.879
	MetaAdvDet (ours)	0.848	0.944

Results of cross-adversary benchmark

Dataset	Method	I-FGSM Attack C&W Attack			
		1-shot	5-shot	1-shot	5-shot
CIFAR-10	DNN (balanced)	0.466	0.537	0.459	0.527
	TransformDet [45]	0.593	0.728	0.443	0.502
	MetaAdvDet (ours)	0.553	0.633	0.548	0.607
MNIST	DNN (balanced)	0.857	0.956	0.814	0.913
	TransformDet [45]	0.864	0.952	0.775	0.893
	MetaAdvDet (ours)	0.968	0.994	0.920	0.990
FashionMNIST	DNN (balanced)	0.745	0.890	0.726	0.853
	TransformDet [45]	0.837	0.920	0.747	0.853
	MetaAdvDet (ours)	0.849	0.963	0.882	0.967

Results of white-box attack benchmark