3.4.1 Диа- и парамагнетики

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Измерение магнитной восприимчивости диа- и парамагнитного образцов.

1.2 В работе используется

Электромагнит, весы, милливеберметр, регулируемый источник постоянного тока, образцы.

2 Работа

2.1 Подготовка

Для начала снимем зависимость магнитного потока Φ , пронизывающего милливеберметр от тока I:

I, amp	B, mT
0,3	99
0,6	185,3
0,91	288,6
1,20	372,5
1,5	463
1,81	545
2,2	653,7
2,6	735,2
3,02	806,9

Рис. 1: График B(I)

Результаты апроксимации уравнением вида y = kx + b:

$$k=(266.7\pm42.2)\frac{mT}{amp}$$

$$b = (8.2 \pm 7.1)mT$$

Запишем параметры образцов:

	d, cm	m, g
Al	1,00	25,2
Cu	1,00	83,3
Gr	1,00	11,

Убедившись, что весы арретированы приступим к работе.

2.2 Измерения.

Будем измерять силу, действующую на образец в магнитном поле. Подвесим образец к весам, включим электромагнит и будем записывать показания. Результаты занесем в таблицу:

	Cu	Al	Gr
B^2, T^2	$\Delta m, mg$		
0.010	-1	0	7
0.034	-2	1	17
0.083	-4	4	25
0.139	-6	9	29
0.214	-8	14	30
0.297	-11	19	27
0.427	-15	28	16
0.541	-19	36	0
0.651	-24	46	-21

Получим значение силы, действующей со стороны магнитного поля на образцы в ходе эксперимента:

	Cu	Al	Gr
B^2, T^2	F, uN		
0.010	-9.8	0	68.6
0.034	-19.6	9.8	166.6
0.083	-39.2	429.2	245
0.139	-58.8	88.2	284.2
0.214	-78.4	137.2	294
0.297	-107.8	186.2	264.6
0.427	-147	274.4	156.8
0.541	-186.2	352.8	0
0.651	-235.2	250.8	-205.8

2.3 Обработка экспериментальных данных.

Построим графики зависимости $|F|(B^2)$:

Рис. 2: $|F|(B^2)$ для Си

Результаты апроксимации уравнением вида y = kx + b:

$$k = (338.2 \pm 10.9) \frac{uN}{T^2}$$

$$b = (-13.3 \pm 2.36)uN$$

Из формулы

$$F \simeq \chi \frac{B_0^2}{2\mu_0} S$$

Вычислим значение удельной магнитной восприимчивости χ^m для Меди:

$$\chi^m = \frac{2\mu_0 F}{B_0^2 S \rho}$$

Взяв значение $\mu_0=4\pi\cdot 10^{-7}H/m,\, \rho_{Cu}=8940kg/m^3$ и учтя, что медный стержень выталкивался из магнита получим:

$$\chi_{Cu}^m = (-1.2 \pm 0.04) \cdot 10^{-9} m^3 / kg$$

Это значение отличается от табличного $(\chi^m_{Cu}=-0.086\cdot 10^{-9}m^3/kg)$ больше чем на погрешность измерения, однако всё ещё довольно близко. Это

может быть связано c неидеальность образца или тем что не была учтена погрешность измерения весов.

Рис. 3: $|F|(B^2)$ для Al

Результаты апроксимации уравнением вида y = kx + b:

$$k = (692.2 \pm 5.9) \frac{mN}{T^2}$$

$$b = (7.96 \pm 1.3) mN$$

Из формулы

$$F \simeq \chi \frac{B_0^2}{2\mu_0} S$$

Вычислим значение удельной магнитной восприимчивости χ^m для алюминия:

$$\chi^m = \frac{2\mu_0 F}{B_0^2 S \rho}$$

Взяв значение $\mu_0=4\pi\cdot 10^{-7}H/m;$ $\rho_{Cu}=2700kg/m^3$ и учтя, что алюминиевый стержень втягивался в магнит получим:

Разделим на плотность ($ho_{Cu}=2700kg/m^3$) и получим удельное значение:

$$\chi_{Al}^{m} = (+8.2 \pm 0.07) \cdot 10^{-6} m^{3}/kg$$

Это значение отличается от табличного ($\chi_{Cu}=+0.61\cdot 10^{-9}m^3/kg$) на 2 погрешности. Эту разницу можно объяснить неидеальностью образца и тем, что не была учтена погрешность измерения весов.

Рис. 4: $|F|(B^2)$ для Gr

Результаты апроксимации уравнением вида $y = ax^2 + bx + c$:

$$a = (-3057.56) \frac{uN}{T^4}$$

$$b = (1478.02) \frac{uN}{T^2}$$

$$c = (108.282)uN$$

Поведедние же графита не поддаётся той же линейной апроксимаии и в неплохо описывается многочленом второй степени.

3 Выводы

- 1. Были вычислены значения удельной магнитной восприимчивости для меди и алюминия. Полученные значения отличаются от табличных больше чем хотелось бы. Это монжо объяснить тем, что не была учтена погрешность даваемая весами. Однако данные всё ещё довольно точны и по ним можно сказать (по знаку χ^m), что медь относится к классу диамагнетиков, а алюминий к классу парамагнетиков.
- 2. Было также обнаружено, что Графит ведёт себя координально другим образом относительно меди и алюминия. Сила действующая на него зависит квадратично от B^2 . Что может свидетельствовать о том, что графит является не совсем обычным диа- или парамагнетиком. Возможно он обладает некоторыми феромагнитными свойствами.