

基于 FPGA 的数字系统设计

实验报告

实验名称: LAB6:算数逻辑单元实验报告与资源分

析报告

任课教师:沈沛意老师

学号姓名:

提交日期:

一、 实验介绍

本实验将完成图 6.19 中算术逻辑单元 ALU 的 RTL 描述。

二、 实验目标

学习使用 case 语句描述 ALU 的结构;

验证逻辑结构;

为计数器项目创建一个子模块;

为输出数据的比较做准备。

三、 实验过程与步骤

本实验包含三个主要的部分: 创建一个新的 ISE 工程; 创建 COMP 的行为描述代码; 使用 case 描述语句;估计输出的期望值以用于后面输出的比较。

- 1. 启动 ISE 创建一个新的工程 LAB6 过程不再赘述
- 2. 使用 case 描述语句

创建 ALU 模块的实体:

- (1)选择菜单栏中的 Project→New Source。
- (2)在 Select Source Type 窗口中,选择左侧的 VHDL Module,在右侧 File Name 栏中填入文件名 ALU。

- (3)单击 Next 按钮,进入 Define Module 窗口。
- (4)在 Define Module 窗口中输入表 6.2 所示的输入/输出端口定义,单击 Next 按钮,确认模块信息后,单击 Finish 按钮完成模块的配置

端口名称	位 宽	के क
-14 -13 -14		方向
A	4 bit	in
s Multiple 3 Synthesis	4 bit	IA TIN
C_IN	1 bit	in
OP_CODE	4 bit	in
CLK	1 bit	in
EN	1 bit	in
Y	4 bit	out

完成模块的结构体描述:

(1) 用 case 语句描述如表 6.3 所示的 ALU 的功能语句

OP_CODE				CARRY_IN	T- 00 11 -1 (1-16)	
S3	S2	SI	S0	C_IN	操作	功能
0	0	0	0	0	Y<=A	传输A
0	0	0	0	1	Y<=A+1	递增 CHYDIA
0	0	0	1	0	Y<=A+B	加和
0	0	0	1	1	Y<=A+B+1	带进位的加和
0	0	1	0	0	Y<=A+(not B)	与补码相加
0	0	1	0	1	Y<=A+(not B)+1	MINE THE POPULATION
0	0	1	1	0	Y<=A-1	递减
0	0	1	1	1	Y<=A	传输 A
0	1	0	0	0	Y<=A and B	与
0	1	0	1	0	Y<=A or B	或
0	1	1	0	0	Y<=A xor B	导政
0	1	1	1	0	Y<=not A	反码
1	0	0	0	0	Y<=0	传输 0

(2) 计算可能的输出结果。计算在给定的一些输入时,输出应该是什

么。以下表格中的数据将被用于描述语句的功能验证。

A_IN	B_IN	OP_CODE	C_IN	EXP_OUT
0001	0001	0000	0	0001(A)
0001	0001	0000	1	0010(A+1)
0001	0001	0001	0	0010(A+B)

0001	0001	0001	1	0011(A+B+1)
0010	0001	0010	0	0000 (A+ not B)
0010	0001	0010	1	0001 (A-B)
0010	0010	0011	0	0001(A-1)
0010	0001	0011	1	0010(A)
0011	0001	0100	0	0001(与)
0011	0001	0101	0	0011 (或)
0101	0110	0110	0	0011 (异或)
0101	0110	0111	0	1010 (反码)
0101	0110	1000	0	0000 (传输 0)
0101	0110	0111	1	X (不合法输出)

语法检查:

在 Sources 窗口选中 ALU.VHD,在 Processes 窗口中展开 Synthesis, 并双击 Check Syntax.

四、实验总结

在本实验中,我们用 case 语句创建了计数器工程中的 ALU 模块,并为验证后续实验中的设计模块做好了准备。

在后续的模块中,将从 MEM 模块中读出用于计算的数据和期望的输出结果,将用于计算的输入数据传入 ALU 中进行计算,计算的结果传输到 CMP 的输入接口。在 CMP 中,将 ALU 计算的结果和 MEM 模块中读出的期望结果进行比较,最后给出比较结果。

五、 实验结果及分析

前仿波形:

后仿波形:

\$ 1 ₹ 1	Msgs																
-	4'h5	4'h0	(4h1			(4'h2				/ 4'h3		(4h5					
	4'h6	4'h0	(4h1					(4'h2	(4h1			(4'h6					
/alu_tb/C_IN	1							٦									
	4'h7	4'h0		(4h1		/4'h2		4'h3		(4'h4	(4'h5	4'h6	(4h7	4'h8	(4h7		
/alu_tb/CLK	0																
/alu_tb/EN	0				\Box			\mathcal{L}			\Box	$ olimits_{-} oli$	\Box		Γ		
■-◆ /alu_tb/Y	4'h4	4'h0				(4h2	<u>4'h</u> 1	. (4'h))	4'hX	4'h)	4'h3		(4'h8	4'h4		

```
六、 实验代码
ALU.vhd:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
-- 定义 ALU 实体
entity ALU is
   Port (
             : in STD LOGIC VECTOR (3 downto 0); -- 输入 A, 4 位
              : in STD_LOGIC_VECTOR (3 downto 0); -- 输入 B, 4 位
       C IN
              : in STD LOGIC;
                                                -- 进位输入
       OP_CODE: in STD_LOGIC_VECTOR (3 downto 0); -- 操作码, 4 位
       CLK
              : in STD LOGIC;
                                                -- 时钟信号
                                                -- 使能信号(高电
       EN
              : in STD LOGIC;
平有效)
       Y
             : out STD LOGIC VECTOR (3 downto 0) -- 输出结果, 4 位
end ALU;
```

architecture RTL of ALU is

-- 定义内部信号, 将操作码和进位输入合并为 5 位信号

```
-- 高 4 位为 OP CODE, 最低位为 C IN, 用于扩展操作选择
 signal OP_CODE_CI: STD_LOGIC_VECTOR(4 downto 0);
begin
 -- 合并操作码和进位输入, 生成 5 位控制信号
 OP CODE CI <= OP CODE & C IN;
 -- 同步过程(仅在时钟上升沿触发)
 PROCESS(CLK)
 begin
   if rising edge(CLK) then -- 检测时钟上升沿
    if EN = '1' then
                    -- 使能信号有效时执行操作
      case OP CODE CI is -- 根据合并后的操作码选择操作
        -- 以下为不同操作码对应的功能:
        when "00000" => Y <= A;
                           -- 直接輸出 A(无操作)
        when "00001" => Y <= A + 1; -- A 自增 1 (INC 操作)
        when "00010" => Y <= A + B;
                                   -- A 加 B (ADD)
        when "00011" => Y <= A + B + 1; -- A 加 B 加进位 (ADD with
Carry)
        when "00100" => Y <= A + not B; -- A 加 B 的反码 (相当于 A -
B-1
        when "00101" => Y <= A + not B + 1; -- A 加 B 的反码加 1 (相当于 A
- B)
        when "00110" => Y <= A - 1; -- A 自减 1 (DEC 操作)
        when "00111" => Y <= A;
                                   -- 保留,与"00000"重复
```

when "01000" => Y <= A and B; -- 按位与 (AND)

```
when "01010" => Y <= A or B; -- 接位或(OR)
when "01100" => Y <= A xor B; -- 接位异或(XOR)
when "01110" => Y <= not A; -- A 取反(NOT 操作)
when "10000" => Y <= (others=>'0');-- 输出清零
when others => Y <= (others=>'X');--
end case;
end if;
end if;
end process;
end architecture RTL;
```

七、 资源分析报告与最高工作频率分析

(一)资源分析报告:

Device utilization summary:

Device Utilization Summary										
Logic Utilization	Vsed	Available	Utilization	Note(s)						
Number of 4 input LUTs	56	3,840	1%							
Number of occupied Slices	28	1,920	1%							
Number of Slices containing only related logic	28	28	100%							
Number of Slices containing unrelated logic	0	28	0%							
Total Number of 4 input LUTs	56	3,840	1%							
Number of bonded <u>IOBs</u>	19	141	13%							
IOB Flip Flops	4									
Number of BUFGMUXs	1	8	12%							
Average Fanout of Non-Clock Nets	3.62									

关键指标解读

低 LUT 与 Slice 利用率

当前 ALU 设计仅占用 1%的 LUT 和 Slice 资源,表明其算术逻辑功能较为简单,未涉及复杂运算(如乘法、移位)或状态机控制。

高 IOB 利用率 (13%)

I/O 端口占用 19 个, 主要来自以下接口:

输入: A[3:0], B[3:0], OP_CODE[3:0], CLK, EN, C_IN (总计 11 输入)

输出: Y[3:0](4输出)

(二) 时序报告与相应最高工作频率计算:

Release 14.7 Trace (nt64)

Copyright (c) 1995-2013 Xilinx, Inc. All rights reserved.

 $D:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\unwrapped\trce.exe-intstyle is e-v\ 3-s$

-n 3 -fastpaths -xml ALU.twx ALU.ncd -o ALU.twr ALU.pcf

Design file: ALU.ncd

Physical constraint file: ALU.pcf

Device,package,speed: xc3s200,pq208,-5 (PRODUCTION 1.39 2013-

10-13)

Report level: verbose report

Environment Variable Effect

NONE No environment variables were set

INFO:Timing:2698 - No timing constraints found, doing default enumeration.

INFO:Timing:3412 - To improve timing, see the Timing Closure User Guide (UG612).

 $\ensuremath{\mathsf{INFO}}\xspace$: To get complete path coverage, use the unconstrained paths

option. All paths that are not constrained will be reported in the unconstrained paths section(s) of the report.

INFO:Timing:3339 - The clock-to-out numbers in this timing report are based on

a 50 Ohm transmission line loading model. For the details of this model,

and for more information on accounting for different loading conditions, please see the device datasheet.

INFO:Timing:3390 - This architecture does not support a default System Jitter

value, please add SYSTEM_JITTER constraint to the UCF to modify the Clock

Uncertainty calculation.

INFO:Timing:3389 - This architecture does not support 'Discrete Jitter' and 'Phase Error' calculations, these terms will be zero in the Clock Uncertainty calculation. Please make appropriate modification to SYSTEM_JITTER to account for the unsupported Discrete Jitter and Phase

Error.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock CLK

Source		Setup to Max	dge) Internal Clock(s) Phase	Clock
A<0>		6.720(R)	++ -0.944(R) CLK_BUFGP	1
0.000 A<1>	ı	6 160(D)		1
A<1> 0.000	I	6.169(R)	-0.982(R) CLK_BUFGP	
A<2>		6.358(R)	-0.625(R) CLK_BUFGP	1
0.000	1	4.5.61 (D)	0.(70/P)\GLIV. DIJEGP	
A<3>		4.561(R)	-0.678(R) CLK_BUFGP	
B<0>		7.489(R)	-0.875(R) CLK_BUFGP	
0.000			. // _	·
B<1>		6.957(R)	-1.062(R) CLK_BUFGP	
0.000 B<2>		5.861(R)	-1.519(R) CLK BUFGP	1
0.000	'	()1	(// _	ļ
B<3>		5.762(R)	-1.957(R) CLK_BUFGP	
0.000 C IN	1	6.901(R)	-0.254(R) CLK BUFGP	ı
0.000	I	0.701(10)	-0.234(R) CLR_DOTGI	I
ĖN		1.013(R)	0.748(R) CLK_BUFGP	
0.000		# (04 (D))	4.2.50(D)\G\V. D\V.DQ	
OP_CODE 0.000	(<0>	5.631(R)	-1.358(R) CLK_BUFGP	
OP CODE	E<1>	5.855(R)	-0.688(R) CLK BUFGP	1
0.000	•	× 71		·
OP_CODE	E<2>	4.025(R)	-0.399(R) CLK_BUFGP	
0.000 OP_CODE	3<3>	3 395(R)	0.090(R) CLK_BUFGP	1
0.000	7.52	3.373(R)	0.070(R) CLR_DOTGI	I
Clock CLk	K to Pad	+	+ +	
Destination		(edge) PAD Interr	Clock nal Clock(s) Phase	

Y<0> | 6.404(R)|CLK_BUFGP | 0.000| Y<1> | 6.404(R)|CLK_BUFGP | 0.000| Y<2> | 6.404(R)|CLK_BUFGP | 0.000| Y<3> | 6.404(R)|CLK_BUFGP | 0.000|

Analysis completed Tue May 27 16:50:22 2025

Trace Settings:

Trace Settings

Peak Memory Usage: 4505 MB

根据时序报告中的关键路径数据:

最大时钟到输出延迟(Clock-to-Pad): **6.404ns** (Y<0> 到 PAD 的上升沿

延迟)

建立时间 (Setup Time): 6.720ns (A<0> 到 CLK 的建立时间)

最高工作频率计算(理论极限频率):

$$F_{
m max} = rac{1}{T_{
m cycle}}, \quad
ot \sharp \oplus T_{
m cycle} \geq T_{
m co_max} + T_{
m setup}$$

代入数值

Tcycle=6.404ns+6.720ns=13.124ns

Fmax≈76.2MHz

该 ALU 的最高工作频率约为 76.2 MHz