Upshot. A matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in \text{Col}(A)$.

Proposition

A matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution for any \mathbf{b} if and only if A has a pivot position in every row.

In such case $Col(A) = \mathbb{R}^m$, where m is the number of rows of A.

Recall: A vector equation

$$x_1\mathbf{v}_1 + \ldots + x_n\mathbf{v}_n = \mathbf{b}$$

has only one solution for each $\mathbf{b} \in \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ if and only if the homogenous equation

$$x_1\mathbf{v}_1 + \ldots + x_n\mathbf{v}_n = \mathbf{0}$$

has only the trivial solution $x_1 = 0, ..., x_n = 0$.

Definition

If A is a matrix then the set of solution of the homogenous equation

$$A\mathbf{x} = \mathbf{0}$$

is called the *null space* of A and it is denoted Nul(A).

Upshot. A matrix equation $A\mathbf{x} = \mathbf{b}$ has only one solution for each $\mathbf{b} \in \text{Col}(A)$ if and only if $\text{Nul}(A) = \{\mathbf{0}\}$.

Example. Find the null space of the matrix

$$A = \left[\begin{array}{cc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array} \right]$$

Proposition

 $\operatorname{Nul}(A) = \{0\}$ if and only if the matrix A has a pivot position in every column.

Example. Find the null space of the matrix

$$A = \begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ 5 & 2 & -5 & 5 & 3 \end{bmatrix}$$

Note

If A is an $m \times n$ matrix then Nul(A) can be always described as a span of some vectors in \mathbb{R}^n .

Recall:

- 1) We can multiply vectors by matrices.
- 2) Matrix equation: Ax = b

Col(A) = (span of column vectors of A)

Nul(A) = (set of solutions of Ax = 0)