ELEC 533: Homework 3

Due on: Please check the Course Timetable

Professor Behnaam Aazhang MWF 11:00 AM - 11:50 AM

Problem 1

a) Suppose that X and Y are jointly continuous. Show that

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy, \forall x \in \mathbb{R}.$$

b) Suppose that X and Y are each continuous. Are they jointly continuous? Give a proof or counterexample.

Problem 2

Prove the following:

- a) $F_{XY}(a, b)$ is nondecreasing (in a and b).
- b) $\lim_{a\to\infty} F_{XY}(a,b) = F_Y(b)$.
- c) Jointly continuous random variables X and Y are independent if and only if

$$f_{XY}(x,y) = f_X(x)f_Y(y).$$

Problem 3

- a) Show that $-1 \le \rho(X, Y) \le 1$.
- b) Show that jointly Gaussian random variables are independent if and only if $\rho(X,Y)=0$.

Problem 4

Suppose X and Y are uniformly and independently distributed random variables on (0,1). Is Z = XY also uniformly distributed? If not, what is its density?