Data Preprocessing

Data preprocessing

The aim is to construct a full $n \times P$ data matrix with units on the rows and variables on the columns.

Obstacles : real-life data may be inconsistent, noisy and incomplete.

- Inconsistency : e.g. duplications, out-of-range values ;
- ► Noise : e.g. low quality sensors or sources ;
- Incompleteness : non response, lost analysis units .

Data preprocessing activities:

- 1. summarization
- 2. cleansing (imputation, noise reduction, detection of aberrant units)
- 3. transformation (integration, normalization, discretization)
- 4. reduction (aggregation, variable selection, dimension reduction)

Data preprocessing

Nature of variables (or features or attributes)

- Qualitative
 - Ordinal (e.g. income level : low, medium, high)
 - Nominal (binary, categorical e.g. eye color)
- Quantitative
 - Discrete (e.g. counts)
 - Continue (e.g. income)

Other kinds of (important) data types: documents, web pages, source codes, multimedia streams, ...

[Ex.] Classify the following variables from a household's survey:

- 1. Family name
- 2. Marital status
- 3. Server workload (e.g. in flops)
- 4. Number of cars
- 5. Date

1. Data summarization

a. Univariate distributions (summary measures)

Central tendency measures

- Mean : $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Median : splits the data roughly in two equal parts
- ► Mode : the most frequent value
- Quantiles : Q_1 ; Q_2 (=median); Q_3

Dispersion measures

- Variance : $s_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$
- Standard deviation $s_X = \sqrt{s_X^2}$
- Interquartile range : $IQR = Q_3 Q_1$
- ▶ Range : $X_{\text{max}} X_{\text{min}}$

Shape measures

- Skewness (symmetry) coefficient. $SC = \frac{1}{n} \frac{\sum_{i=1}^{n} (X_i \hat{X})^3}{s^3}$
- ► Kurtosis coefficient : how flat a distribution is. $KC = \frac{1}{n} \frac{\sum_{i=1}^{n} (X_i \hat{X})^4}{s^4} 3$

1. Data summarization

a. Univariate distributions (Graphical displays) Histogram

Boxplot

1. Data summarization

a. Bivariate distributions

(Cross) covariance
between the variables X
and Y

$$s_{X,Y} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

 Correlation coefficient measures only linear relationships

$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y}$$

We have that $|r_{X,Y}| \leq 1$ (prove it!)

Scatter plot

2. Data cleansing

a. Missing values

- ► A missing value occurs when an attribute is not recorded for a unit (they are usually coded, i.e. 999, NA)
- Many reasons : nonresponse, error, mistake.
- It may concern all the attributes of the unit or some of them.
- Missing values can reveal important information about the data ==> they can false the whole DM analysis.

Golden rule : all the efforts must be done during the data acquisition.

				Copy Paste		Quit
	row.names	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	13	4.8	3	1.4	0.1	setosa
2	10	4.9	3.1	1,5	0.1	setosa
3	107	4.9	2,5	4.5	1.7	
4	147	6.3	2.5	5	1.9	virginica
5	75	6.4	2.9	4.3	1.3	versicolor
6	2	4.9	3	1.4	0.2	setosa
7	138	6.4	3,1	5,5	1,8	virginica
8	34	5.5	NA	1.4	0,2	setosa
9	96	5.7	3	4.2	1.2	versicolor
10	113	6.8	3	5.5	NA	virginica

2. Data cleansing

a. Missing values (elimination & imputation)

However, one sometimes eliminates from the analysis the units with missing values or imputes them, i.e. fills them up with artificial values.

- ▶ If the missing values are completely at random and a very low fraction of *n* :
 - hot deck imputation (very bad idea!)
 - list-wise elimination
- More complex imputation schemes include :
 - mean / median value imputation for a quantitative attribute
 - mode imputation for a qualitative attribute
 - regression imputation

Also, you may rely on robust algorithms that will work even with NA.

cncc, 340							
gents	ASSESSED AND ASSESSED	anna Erus a a pama	************	Copy Pa	ste	Qu	
	row.names	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
1	13	4.8	3	1.4	0.1	setosa	
		4.9	3.1	1.5	0.1	setosa	
2	10	4.7			0.1		
3	107	4.9	2.5	4.5	1.7	00000	
3	107	4.9	2.5	4.5	1.7	virginica	
3	107	4.9 6.3	2.5 2.5	4.5 5	1.7 1.9	virginica	
3 4 5	107 147 75	4.9 6.3 6.4	2.5 2.5 2.9	4.5 5 4.3	1.7 1.9 1.3	virginica versicolo setosa	
3 4 5 6	107 147 75 2	4.9 6.3 6.4 4.9	2.5 2.5 2.9 3	4.5 5 4.3 1.4	1.7 1.9 1.3 0.2	virginica versicolo	
3 4 5 6 7	107 147 75 2 138	4.9 6.3 6.4 4.9 6.4	2.5 2.5 2.9 3	4.5 5 4.3 1.4 5.5	1.7 1.9 1.3 0.2	virginica versicolo setosa virginica	

2. Data cleansing

b. Noisy data

- Noise can be seen as unstructured (randomly) unwanted data
- ► Can be due to low quality technology in acquisition or transmission (i.e. cheap microphones or cables).
- Noise may difficult data mining (or fake it)

Noise can be reduced using smoothing filters or thresholding.

2. Data cleansing

c. Outliers & Influential units

- An outlier is an unit that have a different probability structure from the pack. It may be due to measurement error or heavy-tailed distributions (i.e. high kurtosis).
- ► An unit is influential if its deletion noticeably alters the result of the analysis.

2. Data cleansing

c. Outliers & Influential units

Detection of outliers using graphical tools

A frequently used rule-of-the thumb is to assume that observations laying outside $Q_2 \pm 1.5 \times IQR$ are outliers (be very careful with this kind of rule).

3. Data transformation

Why would someone choose to transform the data?

- ➤ Some techniques may need to transform the data in order to make it dimensionless, e.g. correlation coefficient, or to rend some hypothesis more reasonable (e.g. log for stabilize variance)
- Sometimes we are interest on categories instead of numerical scales (e.g. low, mid, high income instead of actual nominal income)
- Some techniques can not handle categorical values with more than two categories (i.e. binary variables)
- ► The target variables were not recorded but you have a proxy
- De-noising (check section 2.c)
- Aggregation : in order to change resolution of data

3. Data transformation

Data normalization

Min-Max normalization

If x is the original attribute we compute a new attribute x* by computing

$$x^* = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

- Linear transformation
- ▶ Maps data from the original range $[x_{min}, x_{max}]$ to [0, 1]

z—score normalization

If x is the original attribute we compute a new attribute z_x by computing

$$z_{x} = \frac{x - \overline{x}}{s_{x}}$$

- Associated to the normalization of a normal random variable
- We use it implicitly when we compute correlations.
- ► The z—score normalizes an attribute to have zero mean

4. Data reduction

Reduction can be performed by

- selecting instances (i.e. rows of the data matrix)
- selecting features/attributes (i.e. columns of the data matrix)
- combining instances : e.g. data aggregation
- combining features : e.g. PCA (coming soon!)

				Сору Ра	ste	Quit
	row₊names	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	13	4.8	3	1.4	0.1	setosa
2	10	4.9	3.1	1.5	0.1	setosa
3	107	4.9	2.5	4.5	1.7	
4	147	6.3	2,5	5	1.9	virginica
5	75	6.4	2.9	4.3	1.3	versicolor
6	2	4.9	3	1.4	0.2	setosa
7	138	6.4	3.1	5.5	1.8	virginica
8	34	5.5	NA	1.4	0.2	setosa
9	96	5.7	3	4.2	1,2	versicolor
10	113	6.8	3	5.5	NA	virginica

The reduction may be wanted to reduce the computational time of some algorithms.

