Avalanche: The Power of Metastable Consensus

Team Rocket[†] t-rocket@protonmail.com

Revision: 11/05/2018 16:51:49 UTC

Abstract

This paper introduces a new family of leaderless Byzantine fault tolerance protocols, built around a metastable mechanism. These protocols provide a strong probabilistic safety guarantee in the presence of Byzantine adversaries, while their concurrent nature enables them to achieve high throughput and scalability. Unlike blockchains that rely on proof-of-work, they are quiescent and green. Unlike traditional consensus protocols having leader nodes that process O(n) information (in terms of number of bits exchanged), no node processes more than O(k) for some security parameter k.

The paper describes the protocol family, instantiates it in three separate protocols, analyzes their guarantees, and describes how they can be used to construct the core of an internet-scale electronic payment system. The system is evaluated in a large scale deployment. Experiments demonstrate that the system can achieve high throughput (3400 tps), provide low confirmation latency (1.35 sec), and scale well compared to existing systems that deliver similar functionality. For our implementation and setup, the bottleneck of the system is in transaction verification.

1 Introduction

Achieving agreement among a set of distributed hosts lies at the core of countless applications, ranging from Internet-scale services that serve billions of people [10, 26] to cryptocurrencies worth billions of dollars [1]. To date, there have been two main families of solutions to this problem. Traditional consensus protocols rely on all-to-all communication to ensure that all correct nodes reach the same decisions with absolute certainty. Because they require quadratic communication overhead and accurate knowledge of membership, they have been difficult to scale to large numbers of participants.

On the other hand, Nakamoto consensus protocols [6, 21, 22, 30, 37–40, 46–48] have become popular with the rise of Bitcoin. These protocols provide a probabilistic safety guarantee: Nakamoto consensus decisions may revert with some probability ε . A protocol parameter allows this probability to be rendered arbitrarily small, enabling high-value financial systems to be constructed on this foundation. This family is a natural fit for open, permissionless settings where any node can join the system at any time. Yet, these protocols are costly,

wasteful, and limited in performance. By construction, they cannot quiesce: their security relies on constant participation by miners, even when there are no decisions to be made. Bitcoin currently consumes around 63.49 TWh/year [18], about twice as all of Denmark [12]. Moreover, these protocols suffer from an inherent scalability bottleneck that is difficult to overcome through simple reparameterization (see [14] for more details).

This paper introduces a new family of consensus protocols. Inspired by gossip algorithms, this family gains its safety through a deliberately metastable mechanism. Specifically, the system operates by repeatedly sampling the network at random, and steering correct nodes towards the same outcome. Analysis shows that this metastable mechanism is powerful: it can move a large network to an irreversible state quickly.

Similar to Nakamoto consensus, this new protocol family provides a probabilistic safety guarantee, using a tunable security parameter that can render the possibility of a consensus failure arbitrarily small. Unlike Nakamoto consensus, the protocols are green, quiescent and efficient; they do not rely on proof-of-work [20] and do not consume energy when there are no decisions to be made. The efficiency of the protocols stems from two sources: each node requires communication overheads ranging from $O(k \log n)$ to O(k) for some small security parameter k (whereas leader-based consensus protocols have one or more nodes that require O(n) communication), and the protocols establish only a partial order among dependent transactions.

This combination of the best features of traditional and Nakamoto consensus involves one significant tradeoff: liveness for conflicting transactions. Specifically, the new family guarantees liveness only for virtuous transactions, i.e. those issued by correct clients and thus guaranteed not to conflict with other transactions. In a cryptocurrency setting, cryptographic signatures enforce that only a key owner is able to create a transaction that spends a particular coin. Since correct clients follow the protocol as prescribed, they are guaranteed both safety and liveness. In contrast, the protocols do not guarantee liveness for rogue transactions, submitted by Byzantine clients, which conflict with one another. Such decisions may stall in the network, but have no safety impact on virtuous transactions. We show that this is a sensible tradeoff, and that resulting system is sufficient for building complex payment systems.

 $^{^{\}dagger}$ 0x 8a5d 2d32 e68b c500 36e4 d086 0446 17fe 4a0a 0296 b274 999b a568 ea92 da46 d533

Overall, this paper makes one significant contribution: a brand new family of consensus protocols, based on randomized sampling and metastable decision. The protocols provide a strong probabilistic safety guarantee, and a guarantee of liveness for correct clients.

The next section provides the intuition behind the new protocols, followed by their full specification, Section 3.4 briefly discusses typical attack vectors and their possible defense, Section 3 provides methodology used by our formal analysis of safety and liveness in Appendix A, Section 4 describes a Bitcoin-like payment system and evaluates the system, Section 5 presents related work, and finally, Section 6 summarizes our contributions.

2 Approach

We start with a non-Byzantine protocol, Slush, and progressively build up Snowflake, Snowball and Avalanche, all based on the same common metastable mechanism. Slush, Snowflake, and Snowball are single-decree binary consensus protocols of increasing robustness—Avalanche extends Snowball into a full cryptocurrency solution; other extensions for other applications are certainly possible. We provide full specifications for the protocols in this section, and defer the analysis to the next section, and present formal proofs in the appendix.

Overall, this protocol family achieves its properties by humbly cheating in three different ways. First, taking inspiration from Bitcoin, we adopt a safety guarantee that is probabilistic. This probabilistic guarantee is indistinguishable from traditional safety guarantees in practice, since appropriately small choices of ε can render consensus failure practically infeasible, less frequent than CPU miscomputations or hash collisions. Second, instead of a single replicated state machine (RSM) model, where the system determines a sequence of totally-ordered transactions T_0, T_1, T_2, \dots issued by any client, we adopt a parallel consensus model, where each client interacts independently with its own RSMs and optionally transfers ownership of its RSM to another client. The system establishes only a partial order between dependent transactions. Finally, for Avalanche, we provide no liveness guarantee for misbehaving clients, but ensure that well-behaved clients will eventually be serviced. These techniques, in conjunction, enable the system to implement a useful Bitcoin-like cryptocurrency, with drastically better performance and scalability. Because Snowball provides a liveness guarantee, and because all three protocols provide a strong safety guarantee, it is possible to build other applications involving large-scale probabilistic consensus. We focus on a cryptocurrency application because of many challenges it poses.

2.1 Model, Goals, Threat Model

We assume a collection of nodes, \mathcal{N} , composed of correct nodes \mathcal{C} and Byzantine nodes \mathcal{B} , where $n = |\mathcal{N}|$. We adopt

what is commonly known as Bitcoin's unspent transaction output (UTXO) model. In this model, clients are authenticated and issue cryptographically signed transactions that fully consume an existing UTXO and issue new UTXOs. Unlike nodes, clients do not participate in the decision process, but only supply transactions to the nodes running the consensus protocol. Two transactions conflict if they consume the same UTXO and yield different outputs. Correct clients never issue conflicting transactions, nor is it possible for Byzantine clients to forge conflicts with transactions issued by correct clients. However, Byzantine clients can issue multiple transactions that conflict with one another, and correct clients can only consume one of those transactions. The goal of our family of consensus protocols, then, is to accept a set of non-conflicting transactions in the presence of Byzantine behavior. Each client can be considered a replicated state machine whose transitions are defined by a totally ordered list of accepted transactions.

Our family of protocols provide the following guarantees with high probability (whp):

P1. Safety. No two correct nodes will accept conflicting transactions.

P2. Liveness. Any transaction issued by a correct client (aka virtuous transaction) will eventually be accepted by every correct node.

Instead of unconditional agreement, our approach guarantees that safety will be upheld with probability $1 - \varepsilon$, where the choice of the security parameter ε is under the control of the system designer and applications.

We assume a powerful adaptive adversary capable of observing the internal state and communications of every node in the network, but not capable of interfering with communication between correct nodes. Our analysis assumes a synchronous network, while our deployment and evaluation is performed in a partially synchronous setting. We conjecture that our results hold in partially synchronous networks, but the proof is left to future work. We do not assume that all members of the network are known to all participants, but rather may temporarily have some discrepancies in network view. We assume a safe bootstrapping system, similar to that of Bitcoin, that enables a node to connect with sufficiently many correct nodes to acquire a statistically unbiased view of the network. We do not assume a PKI. We make standard cryptographic assumptions related to public key signatures and hash functions.

2.2 Slush: Introducing Metastability

The core of our approach is a single-decree consensus protocol, inspired by epidemic or gossip protocols. The simplest metastable protocol, Slush, is the foundation of this family, shown in Figure 1. Slush is *not* tolerant to Byzantine faults, but serves as an illustration for the BFT protocols that follow. For ease of exposition, we will describe the operation of Slush using a decision between two conflicting colors, red

```
1: procedure on Query (v, col')
         if col = \bot then col := col'
2:
 3:
         RESPOND(v, col)
 4: procedure SLUSHLOOP(u, col_0 \in \{R, B, \bot\})
 5:
         col := col_0 // initialize with a color
 6:
         for r \in \{1 ... m\} do
             // if \perp, skip until onQuery sets the color
 7:
              if col = \bot then continue
 8:
             // randomly sample from the known nodes
9:
10:
              \mathcal{K} := \text{SAMPLE}(\mathcal{N} \setminus u, k)
              P := [QUERY(v, col) \text{ for } v \in \mathcal{K}]
11:
12:
              for col' \in \{R, B\} do
                  if P.\text{count}(\text{col}') \geq \alpha \cdot k then
13:
                       col := col'
14:
15:
         ACCEPT(col)
```

Figure 1: Slush protocol. Timeouts elided for readability.

and blue.

In Slush, a node starts out initially in an uncolored state. Upon receiving a transaction from a client, an uncolored node updates its own color to the one carried in the transaction and initiates a query. To perform a query, a node picks a small, constant sized (k) sample of the network uniformly at random, and sends a query message. Upon receiving a query, an uncolored node adopts the color in the query, responds with that color, and initiates its own query, whereas a colored node simply responds with its current color. If k responses are not received within a time bound, the node picks an additional sample from the remaining nodes uniformly at random and queries them until it collects all responses. Once the querying node collects k responses, it checks if a fraction $\geq \alpha k$ are for the same color, where $\alpha > 0.5$ is a protocol parameter. If the αk threshold is met and the sampled color differs from the node's own color, the node flips to that color. It then goes back to the query step, and initiates a subsequent round of query, for a total of m rounds. Finally, the node decides the color it ended up with at time m.

This simple protocol has some curious properties. First, it is almost memoryless: a node retains no state between rounds other than its current color, and in particular maintains no history of interactions with other peers. Second, unlike traditional consensus protocols that query every participant, every round involves sampling just a small, constant-sized slice of the network at random. Third, even if the network starts in the metastable state of a 50/50 red-blue split, random perturbations in sampling will cause one color to gain a slight edge and repeated samplings afterwards will build upon and amplify that imbalance. Finally, if m is chosen high enough, Slush ensures that all nodes will be colored identically whp. Each node has a constant, predictable communication overhead per round, and m grows logarithmically with n.

The Slush protocol does not provide a strong safety guarantee in the presence of Byzantine nodes. In particular, if the correct nodes develop a preference for one color, a Byzantine adversary can attempt to flip nodes to the opposite so as to

```
1: procedure SNOWFLAKELOOP(u, \operatorname{col}_0 \in \{R, B, \bot\})
          col := col_0, cnt := 0
          while undecided do
 3:
               if col = \bot then continue
 4:
               \mathcal{K} := \text{Sample}(\mathcal{N} \backslash u, k)
 5:
               P := [QUERY(v, col) \quad for \ v \in \mathcal{K}]
 6:
 7:
               for col' \in \{R, B\} do
 8:
                    if P.\text{count}(\text{col}') \geq \alpha \cdot k then
 9.
                         if col' \neq col then
10:
                              col := col', cnt := 0
11:
                              if ++cnt > \beta then ACCEPT(col)
12:
```

Figure 2: Snowflake.

keep the network in balance, preventing a decision. We address this in our first BFT protocol that introduces more state storage at the nodes.

2.3 Snowflake: BFT

Snowflake augments Slush with a single counter that captures the strength of a node's conviction in its current color. This per-node counter stores how many consecutive samples of the network by that node have all yielded the same color. A node accepts the current color when its counter exceeds β , another security parameter. Figure 2 shows the amended protocol, which includes the following modifications:

- 1. Each node maintains a counter *cnt*;
- 2. Upon every color change, the node resets cnt to 0;
- 3. Upon every successful query that yields $\geq \alpha k$ responses for the same color as the node, the node increments cnt.

When the protocol is correctly parameterized for a given threshold of Byzantine nodes and a desired ε -guarantee, it can ensure both safety (P1) and liveness (P2). As we later show, there exists a phase-shift point after which correct nodes are more likely to tend towards a decision than a bivalent state. Further, there exists a point-of-no-return after which a decision is inevitable. The Byzantine nodes lose control past the phase shift, and the correct nodes begin to commit past the point-of-no-return, to adopt the same color, whp.

2.4 Snowball: Adding Confidence

Snowflake's notion of state is ephemeral: the counter gets reset with every color flip. While, theoretically, the protocol is able to make strong guarantees with minimal state, we will now improve the protocol to make it harder to attack by incorporating a more permanent notion of belief. Snowball augments Snowflake with *confidence counters* that capture the number of queries that have yielded a threshold result for their corresponding color (Figure 3). A node decides if it gets β consecutive chits for a color. However, it only changes preference based on the total accrued confidence. The differences between Snowflake and Snowball are as follows:

- 1. Upon every successful query, the node increments its confidence counter for that color.
- 2. A node switches colors when the confidence in its current

```
1: procedure SNOWBALLLOOP(u, \operatorname{col}_0 \in \{R, B, \bot\})
          col := col_0, lastcol := col_0, cnt := 0
 2:
          d[\mathtt{R}]\coloneqq 0, d[\mathtt{B}]\coloneqq 0
3:
          while undecided do
 4:
               if col = \bot then continue
 5:
               \mathcal{K} := \text{Sample}(\mathcal{N} \backslash u, k)
 6:
 7:
               P := [QUERY(v, col) \text{ for } v \in \mathcal{K}]
               for col' \in \{R, B\} do
 8:
 9:
                    if P.\text{count}(\text{col}') \geq \alpha \cdot k then
10:
                         d[col']++
11:
                         if d[col'] > d[col] then
                              col := col'
12:
                         if col' \neq lastcol then
13:
                              lastcol := col', cnt := 0
14.
15:
                         else
                              if ++cnt > \beta then ACCEPT(col)
16:
```

Figure 3: Snowball.

```
1: procedure avalancheLoop
           while true do
 2:
                 find T that satisfies T \in \mathcal{T} \wedge T \notin \mathcal{Q}
3:
                 \mathcal{K} := \text{Sample}(\mathcal{N} \backslash u, k)
 4:
                 P := \sum_{v \in \mathcal{K}} \text{Query}(v, T)
 5:
                 if P \ge \alpha \cdot k then
 6:
 7:
                      c_T := 1
                      // update the preference for ancestors
 8:
                      for T' \in \mathcal{T} : T' \stackrel{*}{\leftarrow} T do
 9:
10:
                            if d(T') > d(\mathcal{P}_{T'}.pref) then
                                 \mathcal{P}_{T'}.\mathsf{pref} := T'
11:
                            if T' \neq \mathcal{P}_{T'}.last then
12:
                                  \mathcal{P}_{T'}.last := T', \mathcal{P}_{T'}.cnt := 0
13:
                            else
14:
                                  ++\mathcal{P}_{T'}.cnt
15:
                // otherwise, c_T remains 0 forever
16:
17:
                 Q := Q \cup \{T\} // mark T as queried
```

Figure 4: Avalanche: the main loop.

color becomes lower than the confidence value of the new color.

Snowball is not only harder to attack than Snowflake, but is more easily generalized to multi-decree protocols.

2.5 Avalanche: Adding a DAG

Avalanche, our final protocol, extends Snowball to a multidecree protocol that maintains a dynamic append-only Directed Acyclic Graph (DAG) of all known transactions. The DAG has a single sink that is the *genesis vertex*. Maintaining a DAG provides two significant benefits. First, it improves efficiency, because a single vote on a DAG vertex implicitly votes for all transactions on the path to the genesis vertex. Second, it also improves security, because the DAG intertwines the fate of transactions, similar to the Bitcoin blockchain. This renders past decisions difficult to undo without the approval of correct nodes.

When a client creates a transaction, it names one or more *parents*, which are included inseparably in the transaction and

```
1: procedure init
           \mathcal{T} \coloneqq \emptyset // the set of known transactions
           Q := \emptyset // the set of queried transactions
     procedure on Generate Tx(data)
           edges := \{T' \leftarrow T : T' \in PARENTSELECTION(\mathcal{T})\}
           T := Tx(data, edges)
 6:
 7:
          onReceiveTx(T)
     procedure onReceiveTx(T)
 8:
          if T \notin \mathcal{T} then
 9:
10:
                if \mathcal{P}_T = \emptyset then
11:
                     \mathcal{P}_T := \{T\}, \mathcal{P}_T.\mathsf{pref} := T
                     \mathcal{P}_T.last := T, \mathcal{P}_T.cnt := 0
12:
                else \mathcal{P}_T := \mathcal{P}_T \cup \{T\}
13:
                \mathcal{T} := \mathcal{T} \cup \{T\}, c_T := 0.
14:
```

Figure 5: Avalanche: transaction generation.

form the edges of the DAG. The parent-child relationships encoded in the DAG may, but do not need to, correspond to application-specific dependencies; for instance, a child transaction need not spend or have any relationship with the funds received in the parent transaction. We use the term *ancestor set* to refer to all transactions reachable via parent edges back in history, and *progeny* to refer to all children transactions and their offspring.

The central challenge in the maintenance of the DAG is to choose among *conflicting transactions*. The notion of conflict is application-defined and transitive, forming an equivalence relation. In our cryptocurrency application, transactions that spend the same funds (*double-spends*) conflict, and form a *conflict set* (shaded regions in Figure 7), out of which only a single one can be accepted. Note that the conflict set of a virtuous transaction is always a singleton.

Avalanche embodies a Snowball instance for each conflict set. Whereas Snowball uses repeated queries and multiple counters to capture the amount of confidence built in conflicting transactions (colors), Avalanche takes advantage of the DAG structure and uses a transaction's progeny. Specifically, when a transaction T is queried, all transactions reachable from T by following the DAG edges are implicitly part of the query. A node will only respond positively to the query if T and its entire ancestry are currently the preferred option in their respective conflict sets. If more than a threshold of responders vote positively, the transaction is said to collect a chit. Nodes then compute their confidence as the total number of chits in the progeny of that transaction. They query a transaction just once and rely on new vertices and possible chits, added to the progeny, to build up their confidence. Ties are broken by an initial preference for first-seen transactions. Note that chits are decoupled from the DAG structure, making the protocol immune to attacks where the attacker generates large, padded subgraphs.

```
1: function isPreferred(T)
2: return T = \mathcal{P}_T.pref
3: function isStronglyPreferred(T)
4: return \forall T' \in \mathcal{T}, T' \stackrel{*}{\leftarrow} T: isPreferred(T')
5: function isAccepted(T)
6: return ((\forall T' \in \mathcal{T}, T' \leftarrow T : \text{isAccepted}(T'))
\land |\mathcal{P}_T| = 1 \land d(T) > \beta_1) // safe early commitment \lor (\mathcal{P}_T.\text{cnt} > \beta_2) // consecutive counter
7: procedure onQuery(j, T)
8: onReceiveTx(T)
```

Figure 6: Avalanche: voting and decision primitives.

RESPOND(j, ISSTRONGLYPREFERRED(T))

2.6 Avalanche: Specification

Each correct node u keeps track of all transactions it has learned about in set \mathcal{T}_u , partitioned into mutually exclusive conflict sets $\mathcal{P}_T, T \in \mathcal{T}_u$. Since conflicts are transitive, if T_i and T_j are conflicting, then they belong to the same conflict set, i.e. $\mathcal{P}_{T_i} = \mathcal{P}_{T_j}$. It's worth noting this relation may sound counter-intuitive: conflicting transitions have the *equivalence*, because they are equivocations spending the *same* funds.

We write $T' \leftarrow T$ if T has a parent edge to transaction T', The " $\stackrel{*}{\leftarrow}$ "-relation is its reflexive transitive closure, indicating a path from T to T'. DAGs built by different nodes are guaranteed to be compatible. Specifically, if $T' \leftarrow T$, then every node in the system that has T will also have T' and the same relation $T' \leftarrow T$; and conversely, if $T' \not \smile T$, then no nodes will end up with $T' \leftarrow T$.

Each node u can compute a confidence value, $d_u(T)$, from the progeny as follows:

$$d_u(T) = \sum_{T' \in \mathcal{T}_u, T \stackrel{*}{\leftarrow} T'} c_{uT'}$$

where $c_{uT'}$ stands for the chit value of T' for node u. Each transaction initially has a chit value of 0 before the node gets the query results. If the node collects a threshold of αk yesvotes after the query, the value $c_{uT'}$ is set to 1, otherwise remains 0 forever. Therefore, a chit value reflects the result from the one-time query of its associated transaction and becomes immutable afterwards, while d(T) can increase as the DAG grows by collecting more chits in its progeny. Because $c_T \in \{0,1\}$, confidence values are monotonic.

In addition, node u maintains its own local list of known nodes $\mathcal{N}_u \subseteq \mathcal{N}$ that comprise the system. For simplicity, we assume for now $\mathcal{N}_u = \mathcal{N}$, and elide subscript u in contexts without ambiguity.

Each node implements an event-driven state machine, centered around a query that serves both to solicit votes on each transaction and to notify other nodes of the existence of newly discovered transactions. In particular, when node u discov-

Figure 7: Example of (chit, confidence) values. Darker boxes indicate transactions with higher confidence values. At most one transaction in each shaded region will be accepted.

ers a transaction T through a query, it starts a one-time query process by sampling k random peers and sending a message to them, after T is delivered via onReceiveTx.

Node u answers a query by checking whether each T' such that $T' \stackrel{*}{\leftarrow} T$ is currently preferred among competing transactions $\forall T'' \in \mathcal{P}_{T'}$. If every single ancestor T' fulfills this criterion, the transaction is said to be *strongly preferred*, and receives a yes-vote (1). A failure of this criterion at any T' yields a no-vote (0). When u accumulates k responses, it checks whether there are αk yes-votes for T, and if so grants the chit (chit value $c_T := 1$) for T. The above process will yield a labeling of the DAG with a chit value and associated confidence for each transaction T.

Figure 7 illustrates a sample DAG built by Avalanche. Similar to Snowball, sampling in Avalanche will create a positive feedback for the preference of a single transaction in its conflict set. For example, because T_2 has larger confidence than T_3 , its descendants are more likely collect chits in the future compared to T_3 .

Similar to Bitcoin, Avalanche leaves determining the acceptance point of a transaction to the application. An application supplies an ISACCEPTED predicate that can take into account the value at risk in the transaction and the chances of a decision being reverted to determine when to decide.

Committing a transaction can be performed through a safe early commitment. For virtuous transactions, T is accepted when it is the only transaction in its conflict set and has a confidence greater than threshold β_1 . As in Snowball, T can also be accepted after a β_2 number of consecutive successful queries. If a virtuous transaction fails to get accepted due to a liveness problem with parents, it could be accepted if reissued with different parents.

Figure 5 shows how Avalanche performs parent selection and entangles transactions. Because transactions that consume and generate the same UTXO do not conflict with each other, any transaction can be reissued with different parents.

Figure 4 illustrates the protocol main loop executed by each node. In each iteration, the node attempts to select a transac-

tion T that has not yet been queried. If no such transaction exists, the loop will stall until a new transaction is added to \mathcal{T} . It then selects k peers and queries those peers. If more than αk of those peers return a positive response, the chit value is set to 1. After that, it updates the preferred transaction of each conflict set of the transactions in its ancestry. Next, T is added to the set $\mathcal Q$ so it will never be queried again by the node. The code that selects additional peers if some of the k peers are unresponsive is omitted for simplicity.

Figure 6 shows what happens when a node receives a query for transaction T from peer j. First it adds T to \mathcal{T} , unless it already has it. Then it determines if T is currently strongly preferred. If so, the node returns a positive response to peer j. Otherwise, it returns a negative response. Notice that in the pseudocode, we assume when a node knows T, it also recursively knows the entire ancestry of T. This can be achieved by postponing the delivery of T until its entire ancestry is recursively fetched. In practice, an additional gossip process that disseminates transactions is used in parallel, but is not shown in pseudocode for simplicity.

3 Analysis

Due to space limits, we move the full safety analysis to Appendix A. There, we show that under certain independent and distinct assumptions, the Avalanche family of consensus protocols provide properties P1 (safety) and P2 (liveness) with probability $1-\varepsilon$, where ε is a security parameter that can be set according to the needs of the system designer. In this section, we summarize the methodology used for our analysis and provide some insight into our core results.

3.1 Safety

Analyzing the protocols introduced in this paper requires complex stochastic techniques to reason about the state of the network in aggregate.

Scheduler, Network, and Adversary. We analyze the protocols through the view of a global scheduler. Like Bitcoin and other blockchain protocols based on gossip dissemination, we assume that gossip spreads to all correct nodes within a known time bound. In other words, we assume a synchronous communication network, where the system makes progress in rounds, and where at the beginning of each round the system scheduler chooses a single correct node u uniformly at random. Node u will sample and update its state by the end of the round. The Byzantine adversary will be aware of the identity of u. Furthermore, the adversary has full knowledge of the internal state of all nodes in the network at all times, and is able to fully update the state of all nodes under its control immediately after u chooses its neighbor sample set. In essence, the adversary is only constrained by an inability to directly update the state of correct nodes.

System Dynamics. We can think of the network as a set of nodes either colored red or blue. Each new round will update

the state of one of the nodes, either changing its color, or increasing its confidence in its current color. The dynamics of the system resemble those of epidemic networks, where nodes update their state based on the state of their neighbors, using a function chosen over some probability distribution. It would be infeasible to keep track of all possible execution paths, since at every round, the possible number of branching executions is equal to the number of possible correct nodes times all possible k-sample choices of outcomes that the node may sample. Furthermore, the difficulty of this task is greatly amplified due to the Byzantine adversary, whose optimal attack strategy is chosen over an unknown function, possibly itself nondeterministic.

The simplification that allows us to analyze this system is to obviate the need to keep track of all of the execution paths, as well as all possible adversarial strategies, and rather focus entirely on a single state of interest, without regards to how we achieve this state. More specifically, the core extractable insight of our analysis is in identifying the *irreversibility* state of the system, the state upon which so many correct nodes have usurped either red or blue that reverting back to the minority color is highly unlikely.

Slush We model the Slush protocol is through a birth-death Markov process with two absorbing states, where either all nodes are red or all nodes are blue. In our construction, all states (excluding absorbing states) are transient, meaning that there is a nonzero probability of never returning to that state. Our analysis shows that the Slush protocol reaches, in finite time, an absorbing state with non-zero probability. Furthermore, the probability of convergence to one of the two colors can be precisely measured using only a local round counter. In fact, Slush converges to a decision in close to logarithmic steps whp.

Snowflake For Snowflake, we relax the assumption that all nodes are correct and assume that some fraction of nodes are adversarial. An important insight is that there exists an irreversible state, or *point of no return*, after which the system will converge to an absorbing state whp. Furthermore a correct node only decides when the system is beyond the point of no return. Composing these two guarantees together, the probability of a safety violation is strictly less than ϵ , which can be configured as desired. Unsurprisingly, there is an inherent tension between safety and liveness, but suitable parameters can be found that are practical. Larger values of k obtain higher levels of security for correct nodes, at the expense of slower convergence.

Snowball Snowball is an improvement over Snowflake, where random perturbations in network samples are reduced by introducing a partial form of history, which we refer to as confidence. Modeling Snowball with a Markov chain is difficult because of a state space explosion problem. In particular, it is not sufficient to simply keep track of color preferences of each correct node, the analysis must also maintain informa-

tion about their confidence. To make analysis possible, we structure the mathematical foundations via a game of balls and urns, where each urn represents one of the correct nodes, and the ball count correspond to confidences in either color. Using this model, the analysis applies various tail inequalities to prove that the safety guarantees of Snowball are strictly stronger than those of Snowflake. In particular, once the system has reached the point of no return, the probability of reverting is strictly lower than in Snowflake.

Avalanche Lastly, the safety guarantees of Snowball can be mapped to those of Avalanche, which is a concrete instantiation of Snowball using a directed acyclic graph to amortize cost. We note that the structure of the Avalanche DAG itself does not correspond to votes, which is a subtle difference between other consensus protocols that make usage of a DAG. The DAG is merely a performance optimization, and is itself entirely orthogonal to the consensus process.

3.2 Liveness

Snowflake & Snowball. Both protocols make use of a counter to keep track of consecutive majority support. Since the adversary is unable to forge a conflict for a virtuous transaction, initially, all correct nodes will have color red or \bot . A Byzantine node cannot respond to any query with any answer other than red since it is unable to forge conflicts and \bot is not allowed by protocol. Therefore, the only misbehavior for the Byzantine node is refusing to answer. Since the correct node will re-sample if the query times out, by expected convergence in Equation 5 of Appendix A, all correct nodes will terminate with the unanimous red value within a finite number of rounds whp.

Avalanche. Avalanche introduces a DAG structure that entangles the fate of unrelated conflict sets, each of which is a single-decree instance. This entanglement embodies a tension: attaching a virtuous transaction to undecided parents helps propel transactions towards a decision, while it puts transactions at risk of suffering liveness failures when parents turn out to be rogue. We can resolve this tension and provide a liveness guarantee with the aid of two mechanisms.

First we adopt an adaptive parent selection strategy, where transactions are attached at the live edge of the DAG, and are retried with new parents closer to the genesis vertex. This procedure is guaranteed to terminate with uncontested, decided parents, ensuring that a transaction cannot suffer liveness failure due to contested, rogue transactions. A secondary mechanism ensures that virtuous transactions with decided ancestry will receive sufficient chits. Correct nodes examine the DAG for virtuous transactions that lack sufficient progeny and emit nop transactions to help increase their confidence. With these two mechanisms in place, it is easy to see that, at worst, Avalanche will degenerate into separate instances of Snowball, and thus provide the same liveness guarantee for virtuous transactions.

3.3 Additional Insights

Two interesting insights arise from our analysis. First, the protocols discussed in this work lead to both safety and liveness guarantees whose underlying function is smooth, rather than a step function. In many other consensus protocols, safety is guaranteed with up to a fixed threshold number (e.g. 1/3) of adversarial nodes, beyond which no guarantees are provided. In our protocols, the guarantees degrade gracefully with an adversarial percentage beyond the preestablished bound. For example, optimal system parameters can be chosen to tolerate precisely 1/5 adversarial presence with failure probability ϵ . However, if the system faces an adversarial presence greater than 1/5, then the probability of failure degrades to slightly above ϵ , rather than immediately to 1. Second, these protocols externalize the safety and liveness tradeoffs. The system designer may choose to guarantee safety even under catastrophic events, such as an adversarial presence beyond 1/2, at the expense of liveness. This presents a powerful knob not available in classical or Nakamoto-based consensus protocols.

3.4 Attack Vectors

There are a multitude of attack vectors against consensus protocols. We consider the two most important ones.

Sybil Attacks Consensus protocols provide their guarantees based on assumptions that only a fraction of participants are adversarial. These bounds could be violated if the network is naively left open to arbitrary participants. In particular, a Sybil attack [19], wherein a large number of identities are generated by an adversary, could be used to exceed the adversarial bound.

A long line of work, including PBFT [11], treats the Sybil problem separately from consensus, and rightfully so, as Sybil control mechanisms are distinct from the underlying, more complex agreement protocol¹. Nakamoto consensus, for instance, uses proof-of-work [4] to limit Sybils, which requires miners to continuously stake a hardware investment. Other protocols, discussed in Section 5, rely on proof-of-stake or proof-of-authority. The consensus protocols presented in this paper can adopt any Sybil control mechanism, although proof-of-stake is most aligned with their quiescent operation. The full design of a cryptocurrency incorporating staking, unstaking and minting mechanism is beyond the scope of this paper, whose focus is on the core consensus protocol.

Flooding Attacks Flooding/spam attacks are a problem for any distributed system. Without a protection mechanism, an attacker can generate large numbers of transactions and flood the DAG, consuming storage. There are a multitude of techniques to deter such attacks, including network-layer protections, proof-of-authority, or economic mechanisms. In Avalanche, we use transaction fees, making such attacks

¹This is not to imply that every consensus protocol can be coupled/decoupled with every Sybil control mechanism.

costly even if the attacker is sending money back to addresses under its control.

3.5 Communication Complexity

Since liveness is not guaranteed for rogue transactions, we focus our message complexity analysis solely for the case of virtuous transactions. For the case of virtuous transactions, Snowflake and Snowball are both guaranteed to terminate after $O(kn\log n)$ messages. This follows from the well-known results related to epidemic algorithms [17], and is confirmed by Table 1 in Appendix A.

Communication complexity for Avalanche is more subtle. Let the DAG induced by Avalanche have an expected branching factor of p, corresponding to the width of the DAG, and determined by the parent selection algorithm. Given the β decision threshold, a transaction that has just reached the point of decision will have an associated progeny \mathcal{Y} . Let m be the expected depth of \mathcal{Y} . If we were to let the Avalanche network make progress and then freeze the DAG at a depth y, then it will have roughly py vertices/transactions, of which p(y-m) are decided in expectation. Only pm recent transactions would lack the progeny required for a decision. For each node, each query requires k samples, and therefore the total message cost per transaction is in expectation (pky)/(p(y-m)) = ky/(y-m). Since m is a constant determined by the undecided region of the DAG as the system constantly makes progress, message complexity per node is O(k), while the total complexity is O(kn).

4 Implementation and Evaluation

We have fully ported Bitcoin transactions to Avalanche, and implemented a bare-bones payment system. In this section, we first sketch how the implementation can support the value transfer primitive at the center of cryptocurrencies and then examine its throughput, scalability, and latency through a large scale deployment on Amazon AWS, and finally, provide a comparison to known results from other systems.

Deploying a full cryptocurrency involves bootstrapping, minting, staking, unstaking, and inflation control. While we have solutions for these issues, their full discussion is beyond the scope of this paper.

UTXO Transactions. In addition to the DAG structure in Avalanche, a UTXO graph that captures spending dependency is used to realize the ledger for the payment system. To avoid ambiguity, we denote the transactions that encode the data for money transfer *transactions*, while we call the transactions ($T \in \mathcal{T}$) in Avalanche's DAG *vertices*.

We inherit the transaction and address mechanisms from Bitcoin. At their simplest, transactions consist of multiple inputs and outputs, with corresponding redeem scripts. Addresses are identified by the hash of their public keys, and signatures are generated by corresponding private keys. The full scripting language is used to ensure that a redeem script is authenticated to spend a UTXO. UTXOs are fully consumed

Figure 8: The underlying logical DAG structure used by Avalanche. The tiny squares with shades are dummy vertices which just help form the DAG topology for the purpose of clarity, and can be replaced by direct edges. The rounded gray regions are the conflict sets.

by a valid transaction, and may generate new UTXOs spendable by named recipients. Multi-input transactions consume multiple UTXOs, and in Avalanche, may appear in multiple conflict sets. To account for these correctly, we represent transaction-input pairs (e.g. In_{a1}) as Avalanche vertices. The conflict relation of transaction-input pairs are transitive because of each pair only spends one unspent output. Then, we use the conjunction of is Accepted for all inputs of a transaction to ensure that no transaction will be accepted unless all its inputs are accepted (Figure 8). Following this idea, we finally implement the DAG of transaction-input pairs such that multiple transactions can be batched together per query. **Optimizations** We implement some optimizations to help the system scale. First, we use *lazy updates* to the DAG, because the recursive definition for confidence may otherwise require a costly DAG traversal. We maintain the current d(T)value for each active vertex on the DAG, and update it only when a descendant vertex gets a chit. Since the search path can be pruned at accepted vertices, the cost for an update is constant if the rejected vertices have limited number of descendants and the undecided region of the DAG stays at constant size. Second, the conflict set could be very large in practice, because a rogue client can generate a large volume of conflicting transactions. Instead of keeping a container data structure for each conflict set, we create a mapping from each UTXO to the preferred transaction that stands as the representative for the entire conflict set. This enables a node to quickly determine future conflicts, and the appropriate response to queries. Finally, we speed up the query process by terminating early as soon as the αk threshold is met, without waiting for k responses.

4.1 Setup

We conduct our experiments on Amazon EC2 by running from hundreds (125) to thousands (2000) of virtual machine instances. We use c5.large instances, each of which simulates an individual node. AWS provides bandwidth of up to 2 Gbps, though the Avalanche protocol utilizes at most around

100 Mbps.

Our implementation supports two versions of transactions: one is the customized UTXO format, while the other uses the code directly from Bitcoin 0.16. Both supported formats use secp256k1 crypto library from bitcoin and provide the same address format for wallets. All experiments use the customized format except for the geo-replication, where results for both are given.

We simulate a constant flow of new transactions from users by creating separate client processes, each of which maintains separated wallets, generates transactions with new recipient addresses and sends the requests to Avalanche nodes. We use several such client processes to max out the capacity of our system. The number of recipients for each transaction is tuned to achieve average transaction sizes of around 250 bytes (1–2 inputs/outputs per transaction on average and a stable UTXO size), the current average transaction size of Bitcoin. To utilize the network efficiently, we batch up to 40 transactions during a query, but maintain confidence values at individual transaction granularity.

All reported metrics reflect end-to-end measurements taken from the perspective of all clients. That is, clients examine the total number of confirmed transactions per second for throughput, and, for each transaction, subtract the initiation timestamp from the confirmation timestamp for latency. Each throughput experiment is repeated for 5 times and standard deviation is indicated in each figure. As for security parameters, we pick k=10, $\alpha=0.8$, $\beta_1=11$, $\beta_2=150$, which yields an MTTF of ~ 10^{24} years.

4.2 Throughput

We first measure the throughput of the system by saturating it with transactions and examining the rate at which transactions are confirmed in the steady state. For this experiment, we first run Avalanche on 125 nodes with 10 client processes, each of which maintains 400 outstanding transactions at any given time.

As shown by the first group of bars in Figure 9, the system achieves 6851 transactions per second (tps) for a batch size of 20 and above 7002 tps for a batch size of 40. Our system is saturated by a small batch size comparing to other blockchains with known performance: Bitcoin batches several thousands of transactions per block, Algorand [23] uses 2–10 Mbyte blocks, i.e., 8.4–41.9K tx/batch and Conflux [33] uses 4 Mbyte blocks, i.e., 16.8K tx/batch. These systems are relatively slow in making a single decision, and thus require a very large batch (block) size for better performance. Achieving high throughput with small batch size implies low latency, as we will show later.

4.3 Scalability

To examine how the system scales in terms of the number of nodes participating in Avalanche consensus, we run experiments with identical settings and vary the number of nodes

Figure 9: Throughput vs. network size. Each pair of bars is produced with batch size of 20 and 40, from left to right.

Figure 10: Throughput for batch size of 40, with (left) and without (right) signature verification.

from 125 up to 2000.

Figure 9 shows that overall throughput degrades about 1.34% to 6909 tps when the network grows by a factor of 16 to n=2000. This degradation is minor compared to the fluctuation in performance of repeated runs. Note that the x-axis is logarithmic.

Avalanche acquires its scalability from three sources: first, maintaining a partial order that captures only the spending relations allows for more concurrency than a classical BFT replicated log that linearizes all transactions; second, the lack of a leader naturally avoids bottlenecks; finally, the number of messages each node has to handle per decision is O(k) and does not grow as the network scales up.

4.4 Cryptography Bottleneck

We next examine where bottlenecks lie in our current implementation. The purple bar on the right of each group in Figure 10 shows the throughput of Avalanche with signature verification disabled. Throughputs get approximately 2.6x higher, compared to the blue bar on the left. This reveals that cryptographic verification overhead is the current bottleneck of our system implementation. This bottleneck can be addressed by offloading transaction verification to a GPU. Even without such optimization, 7K tps is far in excess of extant blockchains.

Figure 11: Transaction latency distribution for n=2000. The x-axis is the transaction latency in log-scaled seconds, while the y-axis is the portion of transactions that fall into the confirmation time (normalized to 1). Histogram of all transaction latencies for a client is shown on the left with 100 bins, while its CDF is on the right.

4.5 Latency

The latency of a transaction is the time spent from the moment of its submission until it is confirmed as accepted. Figure 11 tallies the latency distribution histogram using the same setup as for the throughput measurements with 2000 nodes. The x-axis is the time in seconds while the y-axis is the portion of transactions that are finalized within the corresponding time period. This figure also outlines the Cumulative Distribution Function (CDF) by accumulating the number of finalized transaction over time.

This experiment shows that most transactions are confirmed within approximately 0.3 seconds. The most common latencies are around 206 ms and variance is low, indicating that nodes converge on the final value as a group around the same time. The second vertical line shows the maximum latency we observe, which is around 0.4 seconds.

Figure 12 shows transaction latencies for different numbers of nodes. The horizontal edges of boxes represent minimum, first quartile, median, third quartile and maximum latency respectively, from bottom to top. Crucially, the experimental data show that median latency is more-or-less independent of network size.

4.6 Misbehaving Clients

We next examine how rogue transactions issued by misbehaving clients that double spend unspent outputs can affect latency for virtuous transactions created by honest clients. We adopt a strategy to simulate misbehaving clients where a fraction (from 0% to 25%) of the pending transactions conflict with some existing ones. The client processes achieve this by designating some double spending transaction flows among all simulated pending transactions and sending the conflicting transactions to different nodes. We use the same setup with n=1000 as in the previous experiments, and only measure throughput and latency of confirmed transactions.

Avalanche's latency is only slightly affected by misbehaving clients, as shown in Figure 13. Surprisingly, maximum

Figure 12: Transaction latency vs. network size. "b" indicates batch size and "raw" is the run without signature verification.

Figure 13: Latency vs. ratio of rogue transactions.

latencies drop slightly when the percentage of rogue transactions increases. This behavior occurs because, with the introduction of rogue transactions, the overall *effective* throughput is reduced and thus alleviates system load. This is confirmed by Figure 14, which shows that throughput (of virtuous transactions) decreases with the ratio of rogue transactions. Further, the reduction in throughput appears proportional to the number of misbehaving clients, that is, there is no leverage provided to the attackers.

4.7 Geo-replication

Next experiment shows the system in an emulated georeplicated scenario, patterned after the same scenario in prior work [23]. We selected 20 major cities that appear to be near substantial numbers of reachable Bitcoin nodes, according to [7]. The cities cover North America, Europe, West Asia, East Asia, Oceania, and also cover the top 10 countries with the highest number of reachable nodes. We use the latency and jittering matrix crawled from [50] and emulate network

Figure 14: Throughput vs. ratio of rogue transactions.

Figure 15: Latency histogram/CDF for n = 2000 in 20 cities.

packet latency in the Linux kernel using tc and netem. 2000 nodes are distributed evenly to each city, with no additional network latency emulated between nodes within the same city. Like Algorand's evaluation, we also cap our bandwidth per process to 20 Mbps to simulate internet-scale settings where there are many commodity network links. We assign a client process to each city, maintaining 400 outstanding transactions per city at any moment.

In this scenario, Avalanche achieves an average throughput of 3401 tps, with a standard deviation of 39 tps. As shown in Figure 15, the median transaction latency is 1.35 seconds, with a maximum latency of 4.25 seconds. We also support native Bitcoin code for transactions; in this case, the throughput is 3530 tps, with $\sigma=92$ tps.

4.8 Comparison to Other Systems

Though there are seemingly abundant blockchain or cryptocurrency protocols, most of them only present a sketch of their protocols and do not offer practical implementation or evaluation results. Moreover, among those who do provide results, most are not evaluated in realistic, large-scale (hundreds to thousands of full nodes participating in consensus) settings.

Therefore, we choose Algorand and Conflux for our comparison. Algorand, Conflux, and Avalanche are all fundamentally different in their design. Algorand's committeescale consensus algorithm falls into the classical BFT consensus category, and Conflux extends Nakamoto consensus by a DAG structure to facilitate higher throughput, while Avalanche belongs to a new protocol family based on metasta-

bility. Additionally, we use Bitcoin [37] as a baseline.

Both Algorand and Avalanche evaluations use a decision network of size 2000 on EC2. Our evaluation picked shared c5.1arge instances, while Algorand used m4.2xlarge. These two platforms are very similar except for a slight CPU clock speed edge for c5.1arge, which goes largely unused because our process only consumes 30% in these experiments. The security parameters chosen in our experiments guarantee a safety violation probability below 10^{-9} in the presence of 20% Byzantine nodes, while Algorand's evaluation guarantees a violation probability below 5×10^{-9} with 20% Byzantine nodes.

Neither Algorand nor Conflux evaluations take into account the overhead of cryptographic verification. Their evaluations use blocks that carry megabytes of dummy data and present the throughput in MB/hour or GB/hour unit. So we use the average size of a Bitcoin transaction (and also our transaction), 250 bytes, to derive their throughputs. In contrast, our experiments carry real transactions and fully take all cryptographic overhead into account.

The throughput is 3-7 tps for Bitcoin, 874 tps for Algorand (with 10 Mbyte blocks), 3355 tps for Conflux (in the paper it claims 3.84x Algorand's throughput under the same settings).

In contrast, Avalanche achieves over 3400 tps consistently on up to 2000 nodes without committee or proof-of-work. As for latency, a transaction is confirmed after 10–60 minutes in Bitcoin, around 50 seconds in Algorand, 7.6–13.8 minutes in Conflux, and 1.35 seconds in Avalanche.

Avalanche performs much better than Algorand in both throughput and latency because Algorand uses a verifiable random function to elect committees, and maintains a totally-ordered log while Avalanche establishes only a partial order. Algorand is leader-based and performs consensus by committee, while Avalanche is leader-less.

Avalanche has similar throughput to Conflux, but its latency is 337–613x better. Conflux also uses a DAG structure to amortize the cost for consensus and increase the throughput, however, it is still rooted in Nakamoto consensus (PoW), making it unable to have instant confirmation compared to Avalanche.

In a blockchain system, one can usually improve throughput at the cost of latency through batching. The real bottleneck of the performance is the number of decisions the system can make per second, and this is fundamentally limited by either Byzantine Agreement (BA^*) in Algorand and Nakamoto consensus in Conflux.

5 Related Work

Bitcoin [37] is a cryptocurrency that uses a blockchain based on proof-of-work (PoW) to maintain a ledger of UTXO transactions. While techniques based on proof-of-work [4, 20], and even cryptocurrencies with minting based on proof-of-work [42, 49], have been explored before, Bitcoin was the first to incorporate PoW into its consensus process. Unlike

more traditional BFT protocols, Bitcoin has a probabilistic safety guarantee and assumes honest majority computational power rather than a known membership, which in turn has enabled an internet-scale permissionless protocol. While permissionless and resilient to adversaries, Bitcoin suffers from low throughput (~3 tps) and high latency (~5.6 hours for a network with 20% Byzantine presence and 2^{-32} security guarantee). Furthermore, PoW requires a substantial amount of computational power that is consumed only for the purpose of maintaining safety.

Countless cryptocurrencies use PoW [4, 20] to maintain a distributed ledger. Like Bitcoin, they suffer from inherent scalability bottlenecks. Several proposals for protocols exist that try to better utilize the effort made by PoW. Bitcoin-NG [21] and the permissionless version of Thunderella [40] use Nakamoto-like consensus to elect a leader that dictates writing of the replicated log for a relatively long time so as to provide higher throughput. Moreover, Thunderella provides an optimistic bound that, with 3/4 honest computational power and an honest elected leader, allows transactions to be confirmed rapidly. ByzCoin [30] periodically selects a small set of participants and then runs a PBFT-like protocol within the selected nodes.

Protocols based on Byzantine agreement [32,41] typically make use of quorums and require precise knowledge of membership. PBFT [11], a well-known representative, requires a quadratic number of message exchanges in order to reach agreement. The Q/U protocol [2] and HQ replication [13] use a quorum-based approach to optimize for contention-free cases of operation to achieve consensus in only a single round of communication. However, although these protocols improve on performance, they degrade very poorly under contention. Zyzzyva [31] couples BFT with speculative execution to improve the failure-free operation case. Past work in permissioned BFT systems typically requires at least 3b+1 replicas. CheapBFT [28] leverages trusted hardware components to construct a protocol that uses b+1 replicas.

Other work attempts to introduce new protocols under redefinitions and relaxations of the BFT model. Large-scale BFT [43] modifies PBFT to allow for arbitrary choice of number of replicas and failure threshold, providing a probabilistic guarantee of liveness for some failure ratio but protecting safety with high probability. In another form of relaxation. Zeno [45] introduces a BFT state machine replication protocol that trades consistency for high availability. More specifically, Zeno guarantees eventual consistency rather than linearizability, meaning that participants can be inconsistent but eventually agree once the network stabilizes. By providing an even weaker consistency guarantee, namely fork-join-causal consistency, Depot [34] describes a protocol that guarantees safety under 2b+1 replicas.

NOW [24] uses sub-quorums to drive smaller instances of consensus. The insight of this paper is that small, logarithmic-sized quorums can be extracted from a poten-

tially large set of nodes in the network, allowing smaller instances of consensus protocols to be run in parallel.

Snow White [15] and Ouroboros [29] are some of the earliest provably secure PoS protocols. Ouroboros uses a secure multiparty coin-flipping protocol to produce randomness for leader election. The follow-up protocol, Ouroboros Praos [16] provides safety in the presence of fully adaptive adversaries.

HoneyBadger [36] provides good liveness in a network with heterogeneous latencies. Tendermint [8, 9] rotates the leader for each block and has been demonstrated with as many as 64 nodes. Ripple [44] has low latency by utilizing collectively-trusted sub-networks in a large network. The Ripple company provides a slow-changing default list of trusted nodes, which renders the system essentially centralized. In the synchronous and authenticated setting, the protocol in [3] achieves constant-3-round commit in expectation, at the cost of quadratic message complexity. Stellar [35] uses Federated Byzantine Agreement in which quorum slices enable heterogeneous trust for different nodes. Safety is guaranteed when transactions can be transitively connected by trusted quorum slices. Algorand [23] uses a verifiable random function to select a committee of nodes that participate in a novel Byzantine consensus protocol.

Some protocols use a Directed Acyclic Graph (DAG) structure instead of a linear chain to achieve consensus [5, 6, 46–48]. Instead of choosing the longest chain as in Bitcoin, GHOST [47] uses a more efficient chain selection rule that allows transactions not on the main chain to be taken into consideration, increasing efficiency. SPECTRE [46] uses transactions on the DAG to vote recursively with PoW to achieve consensus, followed up by PHANTOM [48] that achieves a linear order among all blocks. Like PHANTOM, Conflux also finalizes a linear order of transactions by PoW in a DAG structure, with better resistance to liveness attack [33]. Similar to Thunderella, Meshcash [6] combines a slow PoWbased protocol with a fast consensus protocol that allows a high block rate regardless of network latency, offering fast confirmation time. Hashgraph [5] is a leader-less protocol that builds a DAG via randomized gossip. It requires full membership knowledge at all times, and it is a PBFT-variant that requires quadratic messages in expectation.

6 Conclusion

This paper introduced a novel family of consensus protocols, coupled with the appropriate mathematical tools for analyzing them. These protocols are highly efficient and robust, combining the best features of classical and Nakamoto-style consensus. They scale well, achieve high throughput and quick finality, work without precise membership knowledge, and degrade gracefully under catastrophic adversarial attacks.

There is much work to do to improve this line of research. Chief among these is relaxing the synchrony assumption in this initial paper. We believe strong guarantees are possible even under asynchrony, but the details remain to be worked out. Another improvement would be to characterize the system's guarantees under an adversary whose powers are realistically limited, whereupon performance would improve even further. Overall, we hope that the protocols and analysis techniques presented here add to the arsenal of the distributed system developers and provide a foundation for new lightweight and scalable mechanisms.

References

- [1] Crypto-currency market capitalizations. https://coinmarketcap.com. Accessed: 2017-02.
- [2] ABD-EL-MALEK, M., GANGER, G. R., GOODSON, G. R., REITER, M. K., AND WYLIE, J. J. Fault-scalable byzantine fault-tolerant services. In *ACM SIGOPS Operating Systems Review* (2005), vol. 39, ACM, pp. 59–74.
- [3] ABRAHAM, I., DEVADAS, S., DOLEV, D., NAYAK, K., AND REN, L. Efficient synchronous byzantine consensus. *arXiv preprint arXiv:1704.02397* (2017).
- [4] ASPNES, J., JACKSON, C., AND KRISHNAMURTHY, A. Exposing computationally-challenged byzantine impostors. Tech. rep., Technical Report YALEU/DCS/TR-1332, Yale University Department of Computer Science, 2005.
- [5] BAIRD, L. Hashgraph consensus: fair, fast, byzantine fault tolerance. Tech. rep., Swirlds Tech Report, 2016.
- [6] BENTOV, I., HUBÁCEK, P., MORAN, T., AND NADLER, A. Tortoise and Hares Consensus: the Meshcash framework for incentive-compatible, scalable cryptocurrencies. *IACR Cryptology ePrint Archive* 2017 (2017), 300.
- [7] BITNODES. Global Bitcoin nodes distribution. https://bitnodes.earn.com/. Accessed: 2018-04.
- [8] Buchman, E. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, 2016.
- [9] BUCHMAN, E., KWON, J., AND MILOSEVIC, Z. The latest gossip on bft consensus, 2018.
- [10] Burrows, M. The chubby lock service for loosely-coupled distributed systems. In 7th Symposium on Operating Systems Design and Implementation (OSDI'06), November 6-8, Seattle, WA, USA (2006), pp. 335–350.
- [11] Castro, M., and Liskov, B. Practical byzantine fault tolerance. In *Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999* (1999), pp. 173–186.

- [12] CENTRAL INTELLIGENCE AGENCY. The world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/da.html. Accessed: 2018-04.
- [13] COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R., AND SHRIRA, L. Hq replication: A hybrid quorum protocol for byzantine fault tolerance. In *Proceedings of the 7th symposium on Operating systems design and implementation* (2006), USENIX Association, pp. 177–190
- [14] CROMAN, K., DECKER, C., EYAL, I., GENCER, A. E., JUELS, A., KOSBA, A. E., MILLER, A., SAXENA, P., SHI, E., SIRER, E. G., SONG, D., AND WATTENHOFER, R. On scaling decentralized blockchains - (a position paper). In Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN, VOT-ING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers (2016), pp. 106–125.
- [15] DAIAN, P., PASS, R., AND SHI, E. Snow white: Provably secure proofs of stake. Cryptology ePrint Archive, Report 2016/919, 2016. https://eprint.iacr.org/2016/919.
- [16] DAVID, B., GAZI, P., KIAYIAS, A., AND RUSSELL, A. Ouroboros Praos: An adaptively-secure, semisynchronous proof-of-stake blockchain. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II (2018), pp. 66–98.
- [17] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON, J., SHENKER, S., STURGIS, H., SWINEHART, D., AND TERRY, D. Epidemic algorithms for replicated database maintenance. In *Proceedings of the sixth annual ACM Symposium on Principles of distributed computing* (1987), ACM, pp. 1–12.
- [18] DIGICONOMIST. Bitcoin energy consumption index. https://digiconomist.net/bitcoin-energy-consumption. Accessed: 2018-04.
- [19] DOUCEUR, J. R. The sybil attack. In *International Workshop on Peer-to-Peer Systems* (2002), Springer, pp. 251–260.
- [20] DWORK, C., AND NAOR, M. Pricing via processing or combatting junk mail. In Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings (1992), pp. 139–147.
- [21] EYAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE, R. Bitcoin-NG: A scalable blockchain protocol.

- In 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-18, 2016 (2016), pp. 45–59.
- [22] GARAY, J. A., KIAYIAS, A., AND LEONARDOS, N. The Bitcoin Backbone Protocol: Analysis and applications. In Advances in Cryptology EUROCRYPT 2015 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II (2015), pp. 281–310.
- [23] GILAD, Y., HEMO, R., MICALI, S., VLACHOS, G., AND ZELDOVICH, N. Algorand: Scaling byzantine agreements for cryptocurrencies. In *Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017* (2017), pp. 51–68.
- [24] GUERRAOUI, R., HUC, F., AND KERMARREC, A.-M. Highly dynamic distributed computing with byzantine failures. In *Proceedings of the 2013 ACM symposium on Principles of distributed computing* (2013), ACM, pp. 176–183.
- [25] Hoeffding, W. Probability inequalities for sums of bounded random variables. *Journal of the American statistical association* 58, 301 (1963), 13–30.
- [26] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. Zookeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX Annual Technical Conference, Boston, MA, USA, June 23-25, 2010 (2010).
- [27] JOHANSEN, H. D., VAN RENESSE, R., VIGFUSSON, Y., AND JOHANSEN, D. Fireflies: A secure and scalable membership and gossip service. *ACM Trans. Comput. Syst.* 33, 2 (2015), 5:1–5:32.
- [28] Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S. V., Schröder-Preikschat, W., and Stengel, K. Cheapbft: resource-efficient byzantine fault tolerance. In *Proceedings of the 7th ACM european conference on Computer Systems* (2012), ACM, pp. 295–308.
- [29] Kiayias, A., Russell, A., David, B., and Oliynykov, R. Ouroboros: A provably secure proof-of-stake blockchain protocol. In *Advances in Cryptology CRYPTO 2017 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I* (2017), pp. 357–388.
- [30] Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., and Ford, B. Enhancing Bitcoin security and performance with strong consistency via collective signing. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. (2016), pp. 279–296.

- [31] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. L. Zyzzyva: Speculative byzantine fault tolerance. *ACM Trans. Comput. Syst.* 27, 4 (2009), 7:1–7:39.
- [32] LAMPORT, L., SHOSTAK, R. E., AND PEASE, M. C. The byzantine generals problem. *ACM Trans. Program. Lang. Syst.* 4, 3 (1982), 382–401.
- [33] LI, C., LI, P., XU, W., LONG, F., AND YAO, A. C. Scaling nakamoto consensus to thousands of transactions per second. *CoRR abs/1805.03870* (2018).
- [34] Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., and Walfish, M. Depot: Cloud storage with minimal trust. *ACM Transactions on Computer Systems (TOCS)* 29, 4 (2011), 12.
- [35] Mazieres, D. The Stellar consensus protocol: A federated model for internet-level consensus. *Stellar Development Foundation* (2015).
- [36] MILLER, A., XIA, Y., CROMAN, K., SHI, E., AND SONG, D. The Honey Badger of BFT protocols. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016* (2016), pp. 31–42.
- [37] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system, 2008.
- [38] Pass, R., Seeman, L., and Shelat, A. Analysis of the blockchain protocol in asynchronous networks. In Advances in Cryptology EUROCRYPT 2017 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 May 4, 2017, Proceedings, Part II (2017), pp. 643–673.
- [39] Pass, R., and Shi, E. Fruitchains: A fair blockchain. *IACR Cryptology ePrint Archive 2016* (2016), 916.
- [40] Pass, R., and Shi, E. Thunderella: Blockchains with optimistic instant confirmation. In *Advances in Cryptology EUROCRYPT 2018 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 May 3, 2018 Proceedings, Part II (2018)*, pp. 3–33.
- [41] Pease, M. C., Shostak, R. E., and Lamport, L. Reaching agreement in the presence of faults. *J. ACM* 27, 2 (1980), 228–234.
- [42] RIVEST, R., AND SHAMIR, A. Payword and micromint: Two simple micropayment schemes. In *Security protocols* (1997), Springer, pp. 69–87.

- [43] Rodrigues, R., Kouznetsov, P., and Bhattacharjee, B. Large-scale byzantine fault tolerance: Safe but not always live. In *Proceedings of the 3rd Workshop on Hot Topics in System Dependability* (2007).
- [44] Schwartz, D., Youngs, N., Britto, A., et al. The Ripple protocol consensus algorithm. *Ripple Labs Inc White Paper 5* (2014).
- [45] SINGH, A., FONSECA, P., KUZNETSOV, P., RODRIGUES, R., AND MANIATIS, P. Zeno: Eventually consistent byzantine-fault tolerance. In *Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA* (2009), pp. 169–184.
- [46] SOMPOLINSKY, Y., LEWENBERG, Y., AND ZOHAR, A. SPECTRE: A fast and scalable cryptocurrency protocol. *IACR Cryptology ePrint Archive 2016* (2016), 1159.
- [47] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-rate transaction processing in Bitcoin. In *Financial Cryptography and Data Security, San Juan, Puerto Rico, January* 26-30, 2015, Revised Selected Papers (2015), pp. 507–527.
- [48] Sompolinsky, Y., and Zohar, A. PHANTOM: A scalable blockdag protocol. *IACR Cryptology ePrint Archive 2018* (2018), 104.
- [49] VISHNUMURTHY, V., CHANDRAKUMAR, S., AND SIRER, E. G. Karma: A secure economic framework for peer-to-peer resource sharing. In *Workshop on Economics of Peer-to-peer Systems* (2003), vol. 35.
- [50] WonderNetwork. Global ping statistics: Ping times between wondernetwork servers. https://wondernetwork.com/pings. Accessed: 2018-04.

A Analysis

In this appendix, we analyze Slush, Snowflake, Snowball, and Avalanche.

Network Model We assume a synchronous communication network, where at each time step t, a global scheduler chooses a single correct node uniformly at random.

Preliminaries Let $c = |\mathcal{C}|$ and $b = |\mathcal{B}|$; let $u \in \mathcal{C}$ be any correct node; let $k \in \mathbb{N}_+$; and let $\alpha \in \mathbb{R} = (1/2, 1]$. We let R ("red") and B ("blue") represent two generic conflicting choices. Without loss of generality, we focus our attention on counts of R, i.e. the total number of nodes that prefer R.

Each network query of k peers corresponds to a sample without replacement out of a network of n nodes, also referred to as a hypergeometric sample. We let the random variable $\mathcal{H}^k_{\mathcal{N},x} \to [0,k]$ denote the resulting counts of R (ranging from 0 to k), where x is the total count of R in the population. The probability that the query achieves the required threshold of αk or more votes is given by:

$$P(\mathcal{H}_{\mathcal{N},x}^{k} \ge \alpha k) = \sum_{j=\alpha k}^{k} \frac{\binom{x}{j} \binom{n-x}{k-j}}{\binom{n}{k}} \tag{1}$$

Tail Bound We can reduce some of the complexity in Equation 1 by introducing a bound on the hypergeometric distribution induced by $\mathcal{H}^k_{\mathcal{C},x}$. Let p=x/c be the ratio of support for R in the population. The expectation of $\mathcal{H}^k_{\mathcal{C},x}$ is exactly kp. Then, the probability that $\mathcal{H}^k_{\mathcal{C},x}$ will deviate from the mean by more than some small constant ψ is given by the Hoeffding tail bound [25], as follows,

$$P(\mathcal{H}_{\mathcal{C},x}^k \le (p-\psi)k) \le e^{-k\mathcal{D}(p-\psi,p)} \tag{2}$$

where $\mathcal{D}(p-\psi,p)$ is the Kullback-Leibler divergence, measured as

$$\mathcal{D}(a,b) = a \log \frac{a}{b} + (1-a) \log \frac{1-a}{1-b}$$
 (3)

A.1 Analysis of Slush

Slush operates in a non-Byzantine setting; that is, $\mathcal{B}=\varnothing$ and thus $\mathcal{C}=\mathcal{N}$ and c=n. In this section, we will show that (R1) Slush converges to a state where all nodes agree on the same color in finite time almost surely (i.e. with probability 1); (R2) provide a closed-form expression for speed towards convergence; and (R3) characterize the minimum number of steps per node required to reach agreement with probability $\geq 1-\varepsilon$.

The procedural version of Slush in Figure 1 made use of a parameter m, the number of rounds that a node executes Slush queries. To derive this parameter, we transform the protocol execution from a procedural and concurrent version to one carried out by a scheduler, shown in Figure 16. What we ultimately want to extract is the total number of rounds ϕ

```
1: initialize u.\operatorname{col} \in \{\mathtt{R},\mathtt{B}\} for all u \in \mathcal{N}

2: for t = 1 to \phi do

3: u := \operatorname{sample}(\mathcal{N}, 1)

4: \mathcal{K} := \operatorname{sample}(\mathcal{N} \setminus u, k)

5: P := [v.\operatorname{col} \ \mathbf{for} \ v \in \mathcal{K}]

6: \mathbf{for} \ \operatorname{col}' \in \{\mathtt{R},\mathtt{B}\} \ \mathbf{do}

7: \mathbf{if} \ P.\operatorname{count}(\operatorname{col}') \geq \alpha \cdot k \ \mathbf{then}

8: u.\operatorname{col} := \operatorname{col}'
```

Figure 16: Slush run by a global scheduler.

that the scheduler will need to execute in order to guarantee that the entire network is the same color, whp.

We analyze the system mainly using standard Markov chain techniques. Let $\mathbf{X}=\{X_1,X_2,\ldots X_\phi\}$ be a discrete-time Markov chain. Let $s_i,\ i\in[0,c]$, represent a state in this Markov chain, where the count of R is i and the count of B is c-i. Let M be the transition probability matrix for the Markov chain. Let $q(s_i)=M(s_i,s_{i-1}),$ $p(s_i)=M(s_i,s_{i+1}),$ and $r(s_i)=M(s_i,s_i),$ where $p(s_0)=q(s_0)=p(s_c)=q(s_c)=0.$ This is a birth-death process where the number of states is c and the two endpoints, s_0 and s_c , are absorbing states, where all nodes are red and blue, respectively.

To extract concrete values, we apply the following probabilities to $q(s_i)$ and $p(s_i)$, which capture the probability of picking a red node and successfully sampling for blue, and vice versa.

$$p(s_i) = \frac{c - i}{c} P(\mathcal{H}_{C,i}^k \ge \alpha k)$$
$$q(s_i) = \frac{i}{c} P(\mathcal{H}_{C,c-i}^k \ge \alpha k)$$

Lemma 1 (R1). Slush reaches an absorbing state in finite time almost surely.

Proof. Let s_i be a starting state where $i \leq c - \alpha k$. All such states s_i then have a non-zero probability of reaching absorbing state s_0 for all time-steps $t \geq i$. States where $i > c - \alpha$ have no possible threshold majority for B, and all timesteps $t \leq i$ do not allow enough transitions to ever reach s_0 . Under these conditions, the probability of absorption is strictly > 0, and therefore Slush converges in finite steps. \square

Lemma 2 (R2). *Expected Rounds to Deciding* B. Let U_{s_i} be a random variable that expresses the number of steps to reach s_0 from state s_i . Let

$$\mathscr{Y}_{c}(h) = \sum_{l=s_{h}}^{s_{c}-1} \prod_{j=s_{1}}^{l} \frac{q(j)}{p(j)}$$
 (4)

Then,

$$\mathbb{E}[U_{s_i}] = \mathbb{E}[U_{s_1}] \sum_{l=s_0}^{s_{i-1}} \prod_{j=s_1}^{l} \frac{q(j)}{p(j)}$$

$$- \sum_{l=s_0}^{s_{i-1}} \sum_{j=s_1}^{l} \frac{1}{p(j)} \prod_{v=j}^{l} \frac{q(v+1)}{p(v+1)}$$
(5)

where

$$\mathbb{E}[U_{s_1}] = \mathscr{Y}_c(0)^{-1} \sum_{l=s_1}^{s_{c-1}} \sum_{j=s_1}^{l} \frac{1}{p(j)} \prod_{v=j}^{l} \frac{q(v+1)}{p(v+1)}$$
 (6)

Proof. The expected time to absorption in s_0 can be modeled using the following recurrence equation:

$$\mathbb{E}[U_{s_i}] = q(s_i)\mathbb{E}[U_{s_{i-1}}] + p(s_i)\mathbb{E}[U_{s_{i+1}}] + r(s_i)\mathbb{E}[U_{s_i}]$$
 (7)

for $i \in [1, c-1]$, with boundary condition $\mathbb{E}[U_{s_0}] = 0$. Solving for the recurrence relation yields the result. \square

Table 1: Expected number of per-node-iterations to convergence starting at worst-case (equal) $\mathcal C$ network split, in the case of $k=10,\,\alpha=0.8$. Standard deviation for all samples is ≤ 2.5 . Computed via a Monte Carlo simulation.

Table 1 shows the latency (i.e. number of timesteps per-node) to reach the B deciding state starting from the metastable 50/50 split, in other words, value $\mathbb{E}[U_{s_{c/2}}]/c$. As the network size c doubles, expected convergence grows only linearly.

Finally, to demonstrate R3, we need to compute the first timestep of the Markov chain M that yields a probability of $\leq \varepsilon$ for all transient states. This computation has no simple closed-form approximation, therefore we must iteratively raise the transition probability matrix M until the first timestep t that achieves probability $\leq \varepsilon$ for all states s_i where $s_{\alpha k} < s_i < s_{c-\alpha k}$.

The next two additional results provide some useful intuition to the underlying stochastic processes of Slush and subsequent protocols. The probability of a single successful query as a function of the total number of R-supporting nodes in the network is shown in Figure 18. This probability decreases rapidly as the value of k increases. The network topples over faster if the value of k is smaller due to the larger amount of random query perturbance. Indeed, for Slush, k=1 is optimal. Later we will see that for the Byzantine case, we will need a larger value for k.

Figure 17 shows the divergence of the probabilities of successful samples over various network splits. When the network is evenly split, the probabilities are equal for either color, but very rapidly diverge as the network becomes less balanced.

A.2 Safety Analysis of Snowflake

Snowflake, whose pseudocode is shown in Figure 19, is similar to Slush, but has three key differences. First, the sampled set of nodes includes Byzantine nodes. Second, each node

Figure 17: Probability of successful samples vs. network splits.

Figure 18: Probability of a single successful majority-red sample with varying k, $\alpha = 0.8$, and successes ranging from half the network to full-support.

also keeps track of the total number of consecutive times it has sampled a majority of the same color. We also introduce a function called \mathcal{A} , the adversarial strategy, that takes as parameters the entire space of correct nodes as well as the chosen node u at time t, and as a side-effect, modifies the set of nodes \mathcal{B} to some arbitrary configuration of colors.

The birth-death chain that models Snowflake, shown below, is nearly identical to that of Slush, with the added presence of Byzantine nodes.

$$p(s_i) = \frac{c - i}{c} P(\mathcal{H}_{\mathcal{N}, i}^k \ge \alpha k),$$

$$q(s_i) = \frac{i}{c} P(\mathcal{H}_{\mathcal{N}, c - i + b}^k \ge \alpha k)$$

In Slush, the metastable state of the network was a 50/50 split at Markov state $s_{c/2}$. In Snowflake, Byzantine nodes have the ability to compensate for deviations from $s_{c/2}$ up to a threshold proportional to their size in the network. Let the Markov chain state $s_{ps} > s_{c/2}$ be the state after which the probability of entering the R-absorbing state becomes greater than the probability of entering the B-absorbing state given the entire weight of the Byzantine nodes. Symmetrically, there exists a phase shift point for B as well. All states between these two phase-shift points are Byzantine controlled, whereas all other states are metastable.

In this section, we analyze the two conditions that ensure the safety of Snowflake. The first condition (C1) requires

```
1: initialize \forall u, u.\text{col},
 2: initialize \forall u, u.cnt := 0
 3: for t = 1 to \phi do
             u := \text{sample}(\mathcal{C}, 1)
             \mathcal{A}(u,\mathcal{C})
 5:
             \mathcal{K} := \text{Sample}(\mathcal{N} \backslash u, k)
 6:
             P := [v.\operatorname{col} \ \mathbf{for} \ v \in \mathcal{K}]
 7:
             for col' \in \{R, B\} do
 8:
 9:
                    if P.\text{count}(\text{col}') \geq \alpha \cdot k then
                           if col' \neq u.col then
10:
                                 u.\operatorname{col} := \operatorname{col}', u.\operatorname{cnt} := 0
11:
12:
                           else
13:
                                 ++u.cnt
```

Figure 19: Snowflake run by a global scheduler.

demonstrating that that there exists a point of no return $s_{ps+\Delta}$ after which the maximum probability under full Byzantine activity of bringing the system back to the phase-shift point is less than ε .

The second condition (C2) requires the construction of a mechanism to ensure that a process can only commit to a color if the system is beyond the minimal point of no return, whp. As we show later, satisfying these two conditions is necessary and sufficient to guarantee safety of Snowflake whp.

Properties of Sampling Parameter k. Before constructing and analyzing the two conditions that satisfy the safety of Snowflake, we introduce some important observations of the sample size k. The first observation of interest is that the hypergeometric distribution approximates the binomial distribution for large-enough network sizes. If x is a constant fraction of network size n, then:

$$\lim_{n \to \infty} P(\mathcal{H}_{\mathcal{N},(xn)}^k \ge \alpha k) = \sum_{j=\alpha k}^k \binom{k}{j} x^k (1-x)^{k-j}$$
 (8)

This dictates that for large enough network sizes, the probability of success for any single sample becomes a function dependent only on the values of k and α , unaffected by further increases of network size. The result has consequences for the scalability of Snowflake and subsequent protocols. For sufficiently large and fixed k, the security of the system will be approximately equal for all network sizes n > k.

We now examine how the phase shift point behaves with increasing k. Whereas k=1 is optimal for Slush (i.e. the network topples the fastest when k=1), we see that Snowflake's safety is maximally displaced from its ideal position for k=1, reducing the number of feasible solutions. Luckily, small increases in k have an exponential effect on s_{ps} , creating a larger set of feasible solutions. More formally:

Lemma 3. s_{ps} approaches $s_{n/2}$ exponentially fast as k approaches n, and at k = n, $s_{ps} = s_{n/2}$.

Proof. At s_{ps} , the ratio $p(s_i)/q(s_i)$ is equal to 1, by definition. Substituting the solution i=c/2+b/2 into this

equation yields the result at k=n. Computing the differential in s_{ps} between any chosen k and k+1 yields the exponential trend.

Satisfiability of Safety Criteria Let ε be a system security parameter of value $\leq 2^{-32}$, typically referred to as *negligible* probability.

We now formalize and analyze the safety condition C1. We refer to all states s_i that satisfy condition C1 as *states of feasible solutions*. For the system to guarantee safety, there must exist some state $s_{c/2+\Delta}>s_{c/2+b}>s_{ps}$ that implies ε -irreversibility in the birth-death chain. In other words, once the system reaches this state, then it reverts back with only negligible probability, under *any* Byzantine strategy. Figure 20 summarizes the region of interest. Our goal is to determine values for tunable system parameters to achieve this condition, given target network size n, maximum Byzantine component b, and security parameter ε , fixed by the system designer.

Figure 20: Representation of the space of feasible solutions. Outside the phase-shift point, the network builds a bias towards one end. At the Δ point, this bias is ε -irreversible.

To ensure C1, we must find Δ such that the following condition holds:

$$\exists \Delta, \text{ where } s_{c/2+\Delta} > s_{ps}, \ s.t. \ \forall t \le \phi :$$

$$\varepsilon \ge (V_c[s_{c/2+\Delta}, s_{ps}])^t \tag{9}$$

where V_c is the $(c+1)^2$ probability transition matrix for the system. In probability theory terminology, the statement above computes the t-step hitting probability, where the starting state is $s_{c/2+\Delta}$ and the hitting state is s_{ps} . Satisfying this first constraint, that is, moving the ensemble of nodes to a decision, is not sufficient. The nodes have to be able to assure themselves that they can safely decide, which means they must ensure condition C2. While there are multiple ways of constructing the predicate that ensures this condition, the one we adopt in Snowflake involves β consecutive successful queries, such that $P(\text{isAccepted} \mid s_i \leq s_{c/2+\Delta}) \leq \varepsilon$. To achieve this threshold probability of failure for C2, we solve for the smallest β that meets inequality $P(\mathcal{G}(p, \phi/c) \geq \beta) \leq \varepsilon$ where $p = P(\mathcal{H}_{N_i}^k \geq \alpha k)$ and $\mathcal{G}(p, \phi/c)$ is a random variable which counts the largest number of consecutive same-color successes for a run over ϕ/c trials. Solving for the minimum i vields β .

The task of the system designer, finally, is to derive values for α and β , given desired n, b, k, ε . Choice of α immediately

follows from b and is (n-b)/n, the maximum allowable size to tolerate $\leq b$ Byzantine nodes. Solving for Δ with a closed form expression would be ideal but unfortunately is difficult, hence we employ a numerical, iterative search. Since k and β are mutually dependent, a system designer will typically fix one and search for the other. Because β is a tunable parameter whose consideration is primarily latency vs. security, a designer can fix it at a desired value and search for a corresponding k. Since low k are desirable, we perform this by starting at k=1, and successively evaluating larger values of k until a feasible solution is found. Depending on k and the chosen k such a solution may not exist. If so, this will be apparent during system design.

We finalize our analysis by formally composing C1 and C2:

Theorem 4. If C1 and C2 are satisfied under appropriately chosen system parameters, then the probability that two nodes u and v decide on R and B respectively is strictly $< \varepsilon$ over all timesteps $0 \le t \le \phi$.

Proof. The proof follows in a straightforward manner from the core guarantees that C1 and C2 provide. Without loss of generality, suppose a single node u decides R at time $t < \phi$, and suppose that the network is at state s_j at the time of decision. By construction, is Accepted will return true with probability no greater than ε for all network states $s_i < s_{c/2+\Delta}$. Therefore, since u decided, it must be the case that $s_j > s_{c/2+\Delta}$, whp. Lastly, since the system will only revert back to a state with a majority of B nodes with negligible probability once it is past $s_{c/2+\Delta}$, the probability that a node v decides on B is strictly $< \varepsilon$.

For illustration purposes, we examine a network with $n=2000,\ \alpha=0.8,\ \varepsilon\leq 2^{-32},$ and throughput of 10000tps. If we allow this system to run for ~4,000 years (which corresponds to $\phi=10^{15}$), we choose β such that the probability of a node committing at state $s_{c/2+\Delta-1}$ is $<\varepsilon$. A safety failure then occurs when both a node commits R and the system reverts to B. Figure 21 shows the probability of failure and the corresponding β for different choices of k.

Note that a larger choice of the α parameter dictates a larger space of feasible solutions, which implies a larger tolerance of Byzantine presence. If the system designer chooses to allow a larger presence of Byzantine nodes, she may achieve this goal at the cost of liveness.

A.3 Safety Analysis of Snowball

In this section, we will demonstrate that Snowball provides strictly better safety than Snowflake. The key difference in protocol mechanics between Snowflake and Snowball is that correct nodes now monotonically increase their confidence in R and B. This limits the effect of random perturbations, as well as the impact of the Byzantine adversary.

To intuitively understand the behavioral differences between Snowball and its predecessor, we illustrate with an

Figure 21: β and failure probability p_f vs. k values (x-axis), with $n=2000, \alpha=0.8$.

example, accompanied by some concrete numerical values. Suppose a network of size n where b=(1/5)n, $\alpha=(4/5)k$ (i.e. the maximum allowable threshold to tolerate the (1/5)n presence of Byzantine nodes), and where k is chosen large enough to admit a feasible solution. Suppose that the network swings to state $s_{c/2+\Delta}$, such that correct nodes have a non-negligible probability of deciding on R, and suppose, for the sake of simplicity, that Δ is chosen as the highest possible value, specifically $c/2+\Delta+b=\alpha n=(4/5)n$, the upper-threshold set up by the system designer.

In this configuration, at least (4/5)n-b = (3/5)n (correct) nodes prefer R. These nodes perceive network support for R of at most (4/5)n if the Byzantine nodes choose to also vote for R, and at least (3/5)n if the Byzantine nodes choose to withhold support for R. Conversely, the rest of the (1/5)n(correct) nodes that may prefer B perceive network support for B of at least (1/5)n and at most (2/5)n, depending on the Byzantine strategy. Regardless of Byzantine strategy, however, all correct nodes that prefer R will have an expected growth of the R confidence to be strictly greater than the B confidence for the nodes that prefer B. This is because network support for R is at least (3/5)n, which is greater than the maximum network support for B of (2/5)n. Therefore, once the network swings to the minimum required state, the expected growth of the R-confidence will be greater than that of B-confidence, for all correct nodes and for all Byzantine

In the previous section, we provided the two conditions necessary for guaranteeing the safety of Snowflake. The second condition, C2, remains identical in Snowball, and therefore does not need to be modified and re-analyzed. Conversely, condition C1 (i.e. showing that the network is irreversible whp) needs to be re-analyzed. In this section, using the same intuition provided in the example above, we formally show how Snowball achieves irreversibility under strictly higher probability than in Snowflake.

Security of Snowball. Figure 22 illustrates the scheduler-based version of Snowball. In Snowball, a node u prefers \mathbb{R} if $u.d[\mathbb{R}] > u.d[\mathbb{B}]$, and vice versa. At the start of the protocol, these preferences are initialized to $\langle 0, 0 \rangle$. This is in contrast

to Snowflake, where nodes prefer a color based only on the latest successful sample. We can model the protocol with a Markov chain similar to that of Snowflake, and derive the parameters and feasibility for the protocol.

```
1: initialize \forall u, u.col
 2: initialize \forall u, u.lastcol
 3: initialize \forall u, u.cnt := 0
 4: initialize \forall u, \forall col' \in \{R, B\}, u.d[col'] := 0
 5: for t = 1 to \phi do
            u := \text{sample}(\mathcal{C}, 1)
 6:
 7:
            \mathcal{A}(u,\mathcal{C})
            \mathcal{K} \coloneqq \text{sample}(\mathcal{N} \backslash u, k)
 8:
            P := [v.\operatorname{col} \ \mathbf{for} \ v \in \mathcal{K}]
 9:
           for c' \in \{R, B\} do
10:
11:
                 if P.\text{count}(\text{col}') \geq \alpha \cdot k then
                        u.d[col']++
12:
                        if u.d[col'] > u.d[col] then
13:
                             u.\operatorname{col} := \operatorname{col}'
14:
                       if col' \neq u.lastcol then
15:
                             u.lastcol := col', u.cnt := 0
16:
17:
                       else
18:
                              ++u.cnt
```

Figure 22: Snowball run by a global scheduler.

We fix a Δ such that, under the Markovian construction of Snowflake, if the system reaches $s_{c/2+\Delta}$, then whp it does not revert. We show that this choice of Δ provides an even stronger guarantee once the network switches protocol to Snowball. Without loss of generality, we cluster the correct nodes into two groups, and represent each group through two nodes u and v, where u represents the set of correct nodes that prefer red and v those that prefer blue. Lastly, let the state of the system be initialized at $s_{c/2+\Delta}$.

The best possible confidence-configuration that the Byzantine nodes can attempt to force correct nodes into is where all R-preferring nodes, represented by u, are forced to maintain nearly equal confidence between the two colors, and where all of the B-preferring nodes, represented by v, gain as much confidence as possible for B.

Let u.d[R] = u.d[B] + 1, corresponding to the minimal viable color difference for the red-preferring nodes, and let $v.d[B] - v.d[R] = \kappa$ be the difference for the blue-preferring nodes. While $\kappa \geq 0$, then the expectation of preference growths at time t are:

$$\begin{split} & \mathbb{E}[u.d^{t}[\mathbf{R}]] = \mathbb{E}[u.d^{t-1}[\mathbf{R}]] + \left(\frac{1}{2} + \frac{\Delta}{c}\right) P(\mathcal{H}^{k}_{\mathcal{N},c/2+\Delta+b} \geq \alpha k) \\ & \mathbb{E}[u.d^{t}[\mathbf{B}]] = \mathbb{E}[u.d^{t-1}[\mathbf{B}]] + \left(\frac{1}{2} + \frac{\Delta}{c}\right) P(\mathcal{H}^{k}_{\mathcal{N},c/2-\Delta+b} \geq \alpha k) \\ & \mathbb{E}[v.d^{t}[\mathbf{R}]] = \mathbb{E}[v.d^{t-1}[\mathbf{R}]] + \left(\frac{1}{2} - \frac{\Delta}{c}\right) P(\mathcal{H}^{k}_{\mathcal{N},c/2+\Delta} \geq \alpha k) \\ & \mathbb{E}[v.d^{t}[\mathbf{B}]] = \mathbb{E}[v.d^{t-1}[\mathbf{B}]] + \left(\frac{1}{2} - \frac{\Delta}{c}\right) P(\mathcal{H}^{k}_{\mathcal{N},c/2-\Delta+b} \geq \alpha k) \end{split}$$

Note that we are implicitly using an indicator function when

adding up the probability of success to the expected confidence growth, where the expected value of the indicator value is exactly the probability of success of a sample. Substituting for Hoeffding's tail bound, we get the rate at which κ decreases per time-step to be

$$r = \left(\left(\frac{1}{2} - \frac{\Delta}{c} \right) e^{-k\alpha \log\left(\alpha / \frac{c/2 - \Delta + b}{c + b}\right)} e^{-k(1 - \alpha)\log\left((1 - \alpha) / \left(1 - \frac{c/2 - \Delta + b}{c + b}\right)\right)} \right)$$

$$-\left(\left(\frac{1}{2} - \frac{\Delta}{c} \right) e^{-k\alpha \log\left(\alpha / \frac{c/2 + \Delta + b}{c + b}\right)} e^{-k(1 - \alpha)\log\left((1 - \alpha) / \left(1 - \frac{c/2 + \Delta + b}{c + b}\right)\right)} \right)$$

$$(11)$$

Upon reaching $\kappa=-1$, the blue-preferring nodes will have flipped to red. From then on, all correct nodes are red, and the confidence of red grows significantly faster than that of blue. We now show that the rate of growth of R will always be larger than the rate of growth of B, over all correct nodes.

Letting $X(u.d^t[\mathtt{R}])$ be a random variable that outputs the confidence of red for u at timestep t, and letting $\bar{X}(u.d^t[\mathtt{R}]) = X(u.d^t[\mathtt{R}]) + \cdots + X(u.d^t[\mathtt{R}])$, we apply Hoeffding's concentration inequality to get that $P(\bar{X}(u.d^t[\mathtt{R}]) - \mathbb{E}[\bar{X}(u.d^t[\mathtt{R}])] \geq l) \leq e^{-2l^2t}$. At time t, the expected confidence of red for u is

$$u.d^{0}[\mathbb{R}] + t\left(\frac{1}{2} + \frac{\Delta}{c}\right)\left(\frac{\frac{c}{2} + \Delta + b}{c + b}\right) \tag{12}$$

And conversely the expected confidence of blue for u is

$$u.d^{0}[B] + t\left(\frac{1}{2} + \frac{\Delta}{c}\right)\left(\frac{\frac{c}{2} - \Delta + b}{c + b}\right) \tag{13}$$

Then, the probability that the expected value of red confidence is close to the expected value of the blue confidence is

$$e^{-2t^3(1/2+\Delta/c)^2(2\Delta/(c+b))^2}$$
 (14)

Solving for t that leads to such probability being negligible leads to:

$$t = \left(\frac{\log(\varepsilon)}{-2 \cdot (1/2 + \Delta/c)^2 (2\Delta/(c+b))^2}\right)^{1/3} \tag{15}$$

Therefore, at only a small number of timesteps $t,\,u$ has a red-confidence centered around its mean, with probability ε close to the mean of the blue-confidence. An identical analysis follows for v. In other words, after a small number of time-steps, the red-confidence of u grows large enough such that the probability of this value being close to that of the blue-confidence is negligible. Further timesteps amplify this distance and further decrease the probability of the two confidences being close. We conclude our result with the following Theorem:

Theorem 5. Over all viable network parameters n, b, and for all appropriately chosen system parameters k and α , the probability of violating safety in Snowball is strictly less than the probability of violating safety in Snowflake.

Proof. Under the construction of Snowball in comparison to Snowflake, we see that safety criterion C2 remains the same. In other words, the consecutive-successes decision predicate has the same guarantees. On the other hand, the probabilistic guarantees of C1 change, meaning that the reversibility probabilities of the system are different. However, as we determined in Equation 15, over a few timesteps u's confidence difference between R and B grows large enough to guarantee that this confidence difference will revert back with only negligible probability. As time progresses, the probability of being close decreases poly-exponentially, as shown in Equation 14. The same results follow for v, but inversely, meaning that the means get closer to each other rather than deviate. This continues until v flips color.

Snowball has strictly stronger security guarantees than Snowflake, which implies that appropriately chosen parameters chosen for Snowflake automatically apply for Snowball. Using the same techniques as before, the system designer chooses appropriate k and β values that ensure the desired ε safety guarantees.

A.4 Safety Analysis of Avalanche

The key difference between Avalanche and Snowball is that in Avalanche, queries on the DAG on transaction T_i are used to implicitly query the entire ancestry of T_i . In particular, a transaction T_i is preferred by u if and only if all ancestors are also preferred. Suppose that T_i and T_j are in the same conflict set. We can now infer two things. First, we can consider the entire ancestry of T_i and T_j as a single decision instance of Snowball, where the ancestry of T_i can be considered to be the R decision, and the ancestry of T_j can be considered to be the B decision. Second, since T_i must be preferred if a child of T_i is to be preferred, then we can collapse the progeny of T_i into a single urn which repeatedly adds confidence to R whenever a child of T_i gets a chit. Consequently, Avalanche maps to an instance of Snowball, with the previously shown safety properties.

We note, however, since a decision on a virtuous transaction is dependent on its parents, Avalanche's liveness guarantees do not mirror that of Snowball. We address this in the next two sub-sections.

A.5 Safe Early Commitment

As we reasoned previously, each conflict set in Avalanche can be viewed as an instance of Snowball, where each progeny instance iteratively votes for the entire path of the ancestry. This feature provides various benefits; however, it also can lead to some virtuous transactions that depend on a rogue transaction to suffer the fate of the latter. In particular, rogue transactions

can interject in-between virtuous transactions and reduce the ability of the virtuous transactions to ever reach the required is Accepted predicate. As a thought experiment, suppose that a transaction T_i names a set of parent transactions that are all decided, as per local view. If T_i is sampled over a large enough set of successful queries without discovering any conflicts, then, since by assumption the entire ancestry of T_i is decided, it must imply that at least $c/2 + \Delta$ correct nodes also vote for T_i , achieving irreversibility.

To then statistically measure the assuredness that T_i has been accepted by a large percentage of correct nodes without any conflicts, we make use of a one-way birth process, where a birth occurs when a new correct node discovers the conflict of T_i . Necessarily, deaths cannot exist in this model, because a conflicting transaction cannot be unseen once a correct node discovers it. Let t=0 be the time when T_j , which conflicts with T_i , is introduced to a single correct node u. Let s_x , for x=1 to c, be the state where the number of correct nodes that know about T_j is x, and let $p(s_x)$ be the probability of birth at state s_x . Then, we have:

$$p(s_x) = \frac{c - x}{c} \left(1 - \frac{\binom{n - x}{k}}{\binom{n}{k}} \right) \tag{16}$$

Solving for the expected time to reach the final birth state provides a lower bound to the β_1 parameter in the Is Accepted fast-decision branch. The table below shows an example of the analysis for n=2000, $\alpha=0.8$, and various k, where $\varepsilon\ll 10^{-9}$, and where β is the minimum required size of $d(T_i)$. Overall, a very small number of iterations are sufficient for

the safe early commitment predicate.

A.6 Churn and View Updates

Any realistic system needs to accommodate the departure and arrival of nodes. Up to now, we simplified our analysis by assuming a precise knowledge of network membership. We now demonstrate that Avalanche nodes can admit a well-characterized amount of churn, by showing how to pick parameters such that Avalanche nodes can differ in their view of the network and still safely make decisions.

Consider a network whose operation is divided into epochs of length τ , and a view update from epoch t to t+1 during which γ nodes join the network and $\bar{\gamma}$ nodes depart. Under our static construction, the state space s of the network had a key parameter Δ^t at time t, induced by c^t, b^t, n^t and the chosen security parameters. This can, at worst, impact the network by adding γ nodes of color B, and remove $\bar{\gamma}$ nodes of color R. At time t+1, $n^{t+1}=n^t+\gamma-\bar{\gamma}$, while b^{t+1} and c^{t+1} will be modified by an amount $\leq \gamma-\bar{\gamma}$, and thus induce a new Δ^{t+1} for the chosen security parameters. This new Δ^{t+1} has to be chosen such that $P(s_{c^{t+1}/2+\Delta^{t+1}-\gamma}\to s_{ps})\leq \varepsilon$,

to ensure that the system will converge under the previous pessimal assumptions. The system designer can easily do this by picking an upper bound on $\gamma, \bar{\gamma}$.

The final step in assuring the correctness of a view change is to account for a mix of nodes that straddle the τ boundary. We would like the network to avoid an unsafe state no matter which nodes are using the old and the new views. The easiest way to do this is to determine Δ^t and Δ^{t+1} for desired bounds on $\gamma, \bar{\gamma}$, and then to use the conservative value Δ^{t+1} during epoch t. In essence, this ensures that no commitments are made in state space s^t unless they conservatively fulfill the safety criteria in state space s^{t+1} . As a result, there is no possibility of a node deciding red at time t, the network going through an epoch change and finding itself to the left of the new point of no return Δ^{t+1} .

This approach trades off some of the feasibility space, to add the ability to accommodate $\gamma, \bar{\gamma}$ node churn per epoch. Overall, if τ is in excess of the time required for a decision (on the order of minutes to hours), and nodes are loosely synchronized, they can add or drop up to $\gamma, \bar{\gamma}$ nodes in each epoch using the conservative process described above. We leave the precise method of determining the next view to a subsequent paper, and instead rely on a membership oracle that acts as a sequencer and γ -rate-limiter, using technologies like Fireflies [27].