MA 102 (Mathematics II) Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 7 March 07, 2016

Vector fields, Line integrals, Double integrals, Green's Theorem

- (1) Determine which of the following vector fields F in \mathbb{R}^2 is conservative and find a scalar potential when it exists.
 - (a) $F(x,y) = (\cos(xy) xy\sin(xy), x^2\sin(xy)).$
 - (b) F(x,y) = (xy, xy).
- (2) Let $S = \mathbb{R}^2 \setminus \{(0,0)\}$. Let $F(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}) =: (P(x,y), Q(x,y))$. Show that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ on S while F is not a gradient of a scalar field on S.
- (3) Evaluate the line integral $\int_{\Gamma} F \bullet d\mathbf{r}$ of the vector field F given below.
 - (a) $F(x,y) := (x^2 + 2xy, y^2 2xy)$ from (-1,1) to (1,1) along $y = x^2$.
 - (b) $F(x,y) := (x^2 y^2, x y)$ and $\Gamma : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the counterclockwise direction.
- (4) Evaluate the line integral $\int_{\Gamma} \frac{(x+y)dx (x-y)dy}{x^2 + y^2}$ along $\Gamma : x^2 + y^2 = a^2$ traversed once in the counter clockwise direction.
- (5) Evaluate the line integral $\int_{\Gamma} \frac{x^2ydx x^3dy}{(x^2 + y^2)^2}$, where Γ is the square with vertices $(\pm 1, \pm 1)$ oriented in the counterclockwise direction.
- (6) Evaluate the line integral $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, where Γ is the square with vertices (1,0), (0,1), (-1,0) and (0,-1) oriented in the counterclockwise direction.
- (7) Evaluate the double integral $\iint_R f(x,y) dxdy$ for f and R given below.
 - (a) f(x,y) := (1-x) and R is square $[0,1] \times [0,1]$.
 - (b) $f(x,y) := x^2 + y^2$ and $R = [-1,1] \times [0,1]$.
 - (c) $f(x,y) := x^2 + y$ and R is the square $[0,1] \times [0,1]$.
 - (d) $f(x,y) := \sin(x+y)$ and R is the square $[0,\pi] \times [0,\pi]$.
- (8) Find the volume of the solid enclosed between the graph of $f(x,y) = x^2 + y^2$ and the planes x = 0, x = 3, y = -1, y = 1.
- (9) Verify Green's theorem in each of the following cases:
 - (a) $f(x,y) := -xy^2$; $g(x,y) := x^2y$; the region R is given by $x \ge 0, 0 \le y \le 1 x^2$.
 - (b) f(x,y) := 2xy; $g(x,y) := e^x + x^2$; the region R is the triangle with vertices (0,0), (1,0) and (1,1).
- (10) Evaluate $\int_{\Gamma} (y^2 dx + x dy)$ using Green's theorem, where Γ is boundary of R and
 - (a) R is the square with vertices (0,0), (0,2), (2,2), (2,0).
 - (b) R is the square with vertices $(\pm 1, \pm 1)$.
 - (c) R is the disc of radius 2 and center (0,0).