Intégrales généralisées

(trois semaines)

(du lundi 16 janvier au vendredi 3 février 2023)

1 Révisions sur l'intégration

Exercice 1

Sans intégration par parties ni changement de variable, calculer les intégrales suivantes :

1.
$$\int_0^2 3t e^{-t^2} dt$$

2.
$$\int_0^1 \frac{x+1}{x^2+2x+2} \, \mathrm{d}x$$

3.
$$\int_0^1 \frac{2x+1}{(x^2+x+1)^2} \, \mathrm{d}x$$

4.
$$\int_{1}^{e} \frac{\ln(x)}{x} \, \mathrm{d}x$$

$$5. \int_{e}^{e^2} \frac{1}{x \ln(x)} \, \mathrm{d}x$$

6.
$$\int_0^1 \frac{\arctan(x)}{1+x^2} \, \mathrm{d}x$$

Exercice 2

En utilisant des intégrations par parties, calculer calculer les intégrales suivantes :

$$1. \int_0^{\pi/2} x \cos\left(\frac{x}{2}\right) \, \mathrm{d}x$$

$$2. \int_0^1 (2x+3)e^{2x} \, \mathrm{d}x$$

$$3. \int_1^e \frac{\ln(x)}{x^2} \, \mathrm{d}x$$

4.
$$\int_0^1 \ln\left(x + \sqrt{x^2 + 1}\right) dx$$

Exercice 3

- 1. Via le changement de variable $x = \ln(t)$, déterminer $\int_1^e \frac{dt}{t(1+\ln^2(t))}$.
- 2. Via le changement de variable $t = \sqrt{x}$, déterminer $\int_0^1 \frac{1}{1 + \sqrt{x}} dx$.
- 3. Déterminer $\int_0^1 e^{\sqrt{x}} dx$.

Exercice 4

Soit $\alpha \in \mathbb{R}$.

- 1. Pour tout x > 0, on définit $I(x) = \int_1^x \frac{1}{t^{\alpha}} dt$
 - (a) Calculer I(x) en fonction de x et α .
 - (b) Discuter en fonction de α l'existence de $\lim_{x\to +\infty}I(x)$. Quand la limite existe, donner sa valeur.
 - (c) (Bonus) Utiliser ce résultat pour démontrer un théorème sur la nature de la série $\sum \frac{1}{n^{\alpha}}$.
- 2. Pour tout x>0, on définit $J(x)=\int_{r}^{1}\frac{1}{t^{\alpha}}\,\mathrm{d}t$
 - (a) Calculer J(x) en fonction de x et α .
 - (b) Discuter en fonction de α l'existence de $\lim_{x\to 0} J(x)$. Quand la limite existe, donner sa valeur.

2 Intégrales généralisées

Exercice 5

Déterminer la nature des intégrales suivantes où $(\alpha, \beta) \in \mathbb{R}^2$:

$$1. \int_0^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \cdot$$

$$2. \int_{1}^{+\infty} \left(e - \left(1 + \frac{1}{t} \right)^{t} \right) dt.$$

3.
$$\int_0^1 \ln(t) dt \text{ puis } \int_0^{+\infty} \frac{\ln(t)}{e^t} dt.$$

4.
$$\int_0^{+\infty} e^{-t} dt \text{ puis } \int_0^{+\infty} \sin(t)e^{-t} dt.$$

$$5. \int_0^{1/2} \frac{\mathrm{d}t}{\ln(t)}.$$

6.
$$\int_0^{+\infty} \frac{t^{\beta}}{1+t^{\alpha}} dt.$$

7.
$$\int_{1}^{+\infty} e^{-\sqrt{t^2-t}} dt$$
.

Exercice 6

Soit l'intégrale impropre $\int_0^{+\infty} \frac{\mathrm{d}t}{\left(e^t - 1\right)^{\alpha}}$ où $\alpha \in \mathbb{R}$.

- 1. Déterminer la nature de $\int_0^1 \frac{dt}{(e^t 1)^{\alpha}}$ en fonction de α .
- 2. Déterminer la nature de $\int_1^{+\infty} e^{-\alpha t} dt$ en fonction de α .
- 3. En déduire la nature de $\int_1^{+\infty} \frac{\mathrm{d}t}{\left(e^t 1\right)^{\alpha}}$ en fonction de α .
- 4. Conclure quant à la nature de $\int_0^{+\infty} \frac{\mathrm{d}t}{\left(e^t 1\right)^{\alpha}}$ en fonction de α .

Exercice 7

- 1. Montrer que l'intégrale $\int_0^1 \ln(x) dx$ est convergente.
- 2. En déduire la nature de l'intégrale $\int_0^1 \frac{\ln(x)}{1+x^2} dx$.
- 3. Soit $\alpha \in]0,1[$. Montrer par un changement de variable que

$$\int_{\alpha}^{1} \frac{\ln(x)}{1+x^{2}} dx = -\int_{1}^{\frac{1}{\alpha}} \frac{\ln(x)}{1+x^{2}} dx.$$

En déduire que l'intégrale $\int_{1}^{+\infty} \frac{\ln(x)}{1+x^2} dx$ converge.

4. Calculer $\int_0^{+\infty} \frac{\ln(x)}{1+x^2} dx$.

Exercice 8

Notons $I = \int_0^{+\infty} \frac{\ln(1+t^2)}{t^2} dt$.

- 1. a. Pour quelles valeurs de $\alpha \in \mathbb{R}$ a-t-on $\frac{\ln(1+t^2)}{t^2} = o\left(\frac{1}{t^{\alpha}}\right)$ quand $t \to +\infty$?
 - b. Montrer que I converge.
- 2. Notons pour tout $\varepsilon \in \mathbb{R}_+^*$ et tout $x \in \mathbb{R}_+^*$, $F_{\varepsilon}(x) = \int_{\varepsilon}^x \frac{\ln(1+t^2)}{t^2} dt$.
 - a. Soit $(\varepsilon, x) \in (\mathbb{R}_+^*)^2$. Calculer $F_{\varepsilon}(x)$ via une intégration par parties en fonction de x et ε .
 - b. En déduire pour tout $x \in \mathbb{R}_+^*$, $\int_0^x \frac{\ln(1+t^2)}{t^2} dt$ en fonction de x.
 - c. En déduire la valeur de I.

Exercice 9

Soient
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$
 et $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ où $(\alpha,x,y) \in \mathbb{R}^3$.

- 1. Étudier la nature de $\Gamma(\alpha)$ en fonction de α .
- 2. Former une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$.
- 3. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 4. Étudier la nature de $\beta(x,y)$ en fonction de x et y.
- 5. Montrer que $\beta(x,y) = \beta(y,x)$.

Exercice 10

Soient
$$(n,p) \in \mathbb{N}^2$$
, $I_{n,p} = \int_0^1 x^n \ln^p(x) dx$ et $J_{n,p} = \int_0^{+\infty} e^{-nt} t^p dt$.

- 1. Déterminer la nature des intégrales $I_{n,p}$ en fonction de n et p.
- 2. Via une intégration par parties, déterminer $I_{n,p}$ en fonction de $I_{n,p-1}$.
- 3. En déduire, pour tout $(n,p) \in \mathbb{N}^2$, $I_{n,p}$ en fonction de n et p.
- 4. Déterminer la nature de $J_{0,p}$ puis des intégrales $J_{n,p}$ en fonction de n et p.
- 5. Via le changement de variable $t = -\ln(x)$, déterminer $I_{n,p}$ en fonction de $J_{n+1,p}$.

Exercice 11

Considérons
$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$$
 et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

- 1. Montrer (rigoureusement) que $\ln \left(\sin(x) \right) \sim \ln(x)$.
- 2. Montrer que I converge et, via le changement de variable $u = \frac{\pi}{2} x$, que I = J.
- 3. Montrer, via le changement de variable u=2x, que $I=\int_0^{\frac{\pi}{2}} \ln \left(\sin(2x)\right) \mathrm{d}x$.
- 4. Via la relation $\sin(2x) = 2\sin(x)\cos(x)$, en déduire la valeur de I.

Exercice 12

- 1. Soit $f(x) = \frac{\sin(x)}{x^{\frac{3}{2}}}$.
 - a. Étudier la nature de $\int_1^{+\infty} f(x) dx$.
 - b. Montrer, via une intégration par parties, que $\int_1^{+\infty} \frac{\cos(x)}{\sqrt{x}} dx$ converge.
 - c. Par une démarche similaire, montrer que $\int_1^{+\infty} \frac{\cos(2x)}{x} dx$ est convergente.
- 2. Quelle est la nature de $\int_1^{+\infty} \frac{\cos^2(x)}{x} dx$?

- 3. Posons $g(x) = \frac{\cos(x)}{\sqrt{x}}$ et $h(x) = \frac{\cos(x)}{\sqrt{x}} + \frac{\cos^2(x)}{x}$.
 - a. Quelle est la nature de $\int_1^{+\infty} h(x) dx$?
 - b. Montrer que $g(x) \underset{x \to +\infty}{\sim} h(x)$.
 - c. $\int_{1}^{+\infty} g(x) dx$ et $\int_{1}^{+\infty} h(x) dx$ sont-elles de même nature?

Expliquer pourquoi le critère de comparaison ne s'applique pas.

Exercice 13

Le but de l'exercice est de calculer l'intégrale $I = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^2}$.

- 1. Montrer que I est une intégrale impropre convergente.
- 2. Via une intégration par parties, montrer que $\int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$.
- 3. En déduire la valeur de I.
- 4. Retrouver la valeur de I via le changement de variable u = 1/x.

Exercice 14

Soient $a \in \mathbb{R}$ et f continue sur $[a, +\infty[$ telle que $\int_a^{+\infty} f(x) dx$ converge.

Le but de cet exercice est de montrer que l'on n'a pas nécessairement $\lim_{t\to\infty} f=0$ et f bornée au voisinage de $+\infty$.

- 1. Montrer que si $\lim_{+\infty} f$ existe, alors $\lim_{+\infty} f = 0$.
- 2. Via le changement de variable $u = x^2$, puis une intégration par parties, montrer que $\int_1^{+\infty} \cos(x^2) dx$ converge.
- 3. Via le changement de variable $u = x^3$, puis une intégration par parties, montrer que $\int_1^{+\infty} x \cos(x^3) dx$ converge.