Exercise #2 – Analysis of orientation & direction selectivity in V1 cells

- Load the data file 'SpikesX10U12D.mat. After the loading, you should see a structure array with the same name SpikesX10U12D in your workspace.
- This data represents an experiment using full field visual stimuli of moving periodic oriented gratings with the following features:
 - ∘ 12 directions of grating movement evenly spaced on the circle ($\Delta\theta$ = 30°).
 - o 200 repetitions (1.28 seconds duration) for each stimulus.
- The structure array contains simultaneous *in vivo* extra cellular recordings from 10 units (neurons) in the primary visual cortex (V1) of a monkey. It was recorded using a 10x10 electrode array that is permanently implanted in the monkey's V1. The given dataset is a chosen subset of all units extracted by a spike sorting procedure performed on the full 10x10 electrode recordings.
- The structure array itself has 3 dimensions (units, directions, repetition) and a single field (TimeList). Each TimeList cell/field contains a vector of spike events representing the activity of the chosen unit during the recorded repetition of the chosen direction
- Use **SpikesX10U12D**(i,j,k). **TimeList** to access each vector.

1. PSTH calculations and display

- Methodological remark: for understanding of the PSTH procedure refer to the previous Class exercise and its complementary slides.
- Create a 4 dimensional array for the PSTH data (i.e., with dimensions for the unit, the stimulus direction, the repetitions and the time bin of the PSTH.
- Use histogram or histcounts (fromer hist, histc) to convert each TimeList into time binned vector.

Neural data-analysis Workshop

- The duration of the time bin should be a parameter which is set at beginning, you should play with it until you are satisfied with the resulted figure.
- Choose a representative unit and display the 12 PSTH signals (for the 12 stimulus directions) on the same figure;
- Use waterfall (t, d, Rate) to plot 3D graph, where t is the time bin vector, d is the direction vector (in deg.) and Rate is a 2 dimensional subset of the previously calculated PSTH. In other words, Rate is function of t & d, hence in this case x & y are the arguments t & d, respectively while z is the resultant Rate.
- "A picture is worth a thousand words" below is an example of the above command on unit 4 of the given dataset:

2. Orientation and direction tuning

- Note: To understand the fitting procedure and the von-Mises angular distribution function refer to the lesson slides.
- For the purpose of this task, we shall use the spike counts of each **TimeList** in the given array and ignore the temporal dimension of the recordings.

- To estimate the conditional response and its error, use the **mean** and the **std** (standard deviation) functions over the different repetitions. e.g.:
- For each unit, fit the mean response to a von-Mises angular distribution and plot the fitted curve on the appropriate figure panel.
- Note, that units 4 and 5 are direction selective while the remaining units which tend to orientation selectivity.

Fit the following function for each case:

```
% direction selective:
VM_drct(x) = A * exp (k * cos (x - PO) );
% orientation selective:
VM_ornt(x) = A * exp (k * cos (2*(x- PO)) );
% A, k & PO are fitted for independent variable x
```

- In both functions A, k and PO are the fitted coefficients. x is the independent variable.
- Here are the tuning curves of the first 5 units:

• For the required display use the **subplot**, **plot** and **errorbar** commands, e.g.:

```
figure ('Color', 'w', 'Units', 'centimeters', 'Position', [0 0 25 10]); hold on;
for unit_idx = 1:10
    subplot (2,5, unit_idx); hold on; % create subplot on the main figure
    % plot the experimental data:
    errorbar (d, ResponseM, ResponseSD, 'o');
    % plot the fitted curve :
    plot (x_vec, A.A * exp (A.k * cos (x_vec - A.PO)), 'r');
```

• Use vector dx to plot the fitted curve (i.e the function with the fitted coefficients), dx is should be defined in radians:

```
dx = 0:0.01:2*pi;
```

- Methodological remarks:
 - Use the help & doc command to learn about the fit function and try to execute the example given in the slides.
 - Use zeros or nan to allocate memory
 - Note that the default trigonometric function accepts radians as input.
 - o The vector **Directions** is defined in radians as:

$$rad = deg*pi/180;$$

O You can use rad2deg & deg2rad to convert radians to degrees and vice versa.

3. Exercise deliverable

Deliverable should include the MATLAB code you used and two figures like the ones presented above (with 10 units in the second figure). Submit a report according to the guidelines, summarizing your work.