

I SEMESTER 2023 - 2024 COURSE HANDOUT

Date:11-08-2023

In addition to part I (General Handout for all courses appended to the timetable), this portion gives further specific details regarding the course.

Course No.: BITS F386

Course Title: Introduction to Quantum Information and Computation

Instructor-in-charge: T S L Radhika

Scope & Objective of the course: This course is an elementary introduction to a new and frontier multidisciplinary field of quantum computation and quantum information. This subject is of common interest to physics, computer science, mathematics, and engineering students. It introduces the concept of information in a physical sense and how quantum physics becomes important in its realization. The course introduces the basic ideas of quantum mechanics relevant to the presentation of information in terms of qubits and how this information can be processed (computed) and transmitted.

Text Book: Quantum Computation and Quantum Information, M A Nielsen and I L Chuang, CAMBRIDGE, 2013.

Reference Books:

- 1. Principles of Quantum Computation and Information, V.1, Benenti, Casati and Strini, World Scientific, 2004.
- 2. Online lecture notes by Mark Oskin: https://homes.cs.washington.edu/~oskin/quantum-notes.pdf
- 3. Online lecture notes by John Preskill: http://www.theory.caltech.edu/people/preskill/ph229/

Course Plan:

Lecture Number	Lecture Objectives Topics to be covered		Chapter in the
Number			Text Book
1-3	To learn the concepts of	Fundamental concepts,	1.1, 1.2, 1.6,
	Quantum Computing	Quantum bits, Quantum	
		information	
4-10	To study the pre-requisites and	Quantum computation, Linear	1.3 (1.3.1-
	fundamentals of Quantum	algebra, Postulates of	1.3.3), 2.1,
	Mechanics	Quantum Mechanics	2.2

11-17		Quantum Gates: single qubit, multiple qubit gates, Controlled	
		gates, Universal Gates,	,,
	To understand Quantum circuits	Measurement, Bell states.	
18-23		Quantum Teleportation,	1.3.7, 1.4
		Quantum parallelism, Deutsch's	
		algorithm, Deutsch-Jozsa	
	To learn Quantum Algorithms	algorithm	
24-28	To study Quantum Fourier	Quantum Fourier Transform	Ch 5
	Transform	and its Applications	
29-32		Shor's Algorithm, Grover's	Oskin,
	To learn Quantum algorithms	Algorithm	Lecture
	(contd.)		Notes
33-36	To understand Quantum noise,	Quantum operations, Error	8.2, 8.3, 10.1,
	Error correction	correction, Coding	10.3, 10.4
37-40	To study Quantum		
	Cryptography	Quantum Cryptography	12.6

Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date, Time	Remarks
No.	Component		(%)		
1	Assignment -1		10	Take Home	Open Book
2	Assignment -2		10	Take Home	Open Book
3	Project and Viva		15		Open Book
				11/10 - 4.00 -	
3	Mid-Sem		30	5.30PM	
					Closed Book
4	Comprehensive		35	13/12 AN	Closed Book

Chamber consultation hour: To be announced in the class.

Make-up Policy: Make-up will be given only for genuine cases, and prior permission must be obtained from the I/C.

Notices: The notices concerning this course will be displayed on the CMS only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester, and no type of academic dishonesty is acceptable.

Instructor-in-Charge BITS F386

