PRÁCTICA 6: REDES

- 1. En las siguientes redes escriba los flujos faltantes sobre las aristas de modo que el resultado sea un flujo en la red dada.
 - \blacksquare Red 1

■ Red 2

 \blacksquare Red 3

Práctica 6

2. La siguiente gráfica representa una red de bombeo en la que el petróleo de tres pozos, w_1 , w_2 y w_3 , se entrega a tres refinerIas, A, B y C. Las capacidades de los sistemas intermedios aparecen sobre las aristas. Los vertices b, c, d, e y f representan estaciones de bombeo intermedias. Modele este sistema como una red.

- 3. Modele el sistema del ejercicio 2 como una red, suponiendo que el pozo w_1 puede bombear a lo más 2 unidades, el pozo w_2 a lo sumo 4 unidades, y el pozo w_3 como máximo 7 unidades.
- 4. Modele el sistema del ejercicio 3 como una red, suponiendo, además de las limitaciones sobre los pozos, que la ciudad A necesita 4 unidades, que B necesita 3 unidades, y que C necesita 4 unidades.
- 5. Modele el sistema del ejercicio 4 como una red, suponiendo, además de las restricciones sobre los pozos y las necesidades de las ciudades, que la estación intermedia d puede bombear a lo sumo 6 unidades.
- 6. Existen dos rutas de la ciudad A a la ciudad D. Una ruta pasa por la ciudad B y la otra por la ciudad C. Durante el periodo de 7 : 00 a 8 : 00 a.m., los tiempos promedio de recorrido son:
 - *A* a *B* (30 minutos)
 - $A \ a \ C \ (15 \ minutos)$
 - \blacksquare B a D (15 minutos)
 - C a D (15 minutos)

Las capacidades máximas de estas rutas son

Práctica 6 Página 2

- $A \ a \ B \ (1000 \ vehículos)$
- $A \ a \ C \ (3000 \ vehículos)$
- \blacksquare B a D (4000 vehículos)
- C a D (2000 vehículos)

Represente como una red el flujo de tráfico de A a D durante el periodo de 7:00 a 8:00 a.m.

7. En el siguiente sistema, queremos maximizar el flujo de a a z. Las capacidades aparecen sobre las aristas. El flujo entre dos vertices, ninguno de los cuales sea a o z, puede tener cualquier dirección. Modele este sistema como una red.

8. ¿Cuál es el máximo número de aristas que puede tener una red?

Práctica 6 Página 3