Recurrent Neural Network Grammers

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, Noah A. Smith

導入

Recurrent Neural Network Grammers (RNNGs)

- ▶ 文の確率的生成モデル
 - ▶ 単語や句の入れ子的・階層的構造を陽に表現
- ▶ 問題:構文解析,文生成
- ▶ 動機: Sequential な Recurrent Neural Networks (RNNs) は 自然言語の潜在的な入れ子構造を考慮できていない
- ▶ 構成要素
 - ▶ 構文解析または文生成のアルゴリズム
 - ▶ NN による生成モデル

RNNG の形式的な定義

 $RNNG := (N, \Sigma, \Theta)$

 $\left\{egin{aligned} N: 非終端記号の有限集合 \ \Sigma: 終端記号の有限集合 <math>(N \cup \Sigma = \emptyset) \ \Theta: \ NN \ O$ パラメータ

構文解析のアルゴリズム

$$f: X \to Y$$

 x:終端記号(単語)の列(入力)

 y:構文木(出力)

 S:スタック

 B:入力バッファ

▶ スタックの要素:終端記号, open または closed な非終端記号

▶ 入力バッファの要素:終端記号

▶ 初期状態

$$S = \emptyset$$
$$B = [T_1, \dots, T_n]$$

構文解析のアルゴリズム

- ▶ 遷移の制約
 - ▶ n: スタック内の open な非終端記号の数

遷移	制約
NT(X)	$B \neq \emptyset \land n < 100$
SHIFT	$B \neq \emptyset \land n \geq 1$
	スタック内の一番上の要素が
REDUCE	OP 0.1 0.31 1/2 110 PD 2 4 0.4
	$\land (n \ge 2 \lor B = \emptyset)$

構文解析のアルゴリズム

$Stack_t$	\mathbf{Buffer}_t	Open NTs $_t$	Action	$Stack_{t+1}$	Buffer $_{t+1}$	Open NTs $_{t+1}$
S	B	n	NT(X)	S (X	B	n+1
S	$x \mid B$	n	SHIFT	S x	B	n
$S \mid (X \mid \tau_1 \mid \ldots \mid \tau_\ell)$	B	n	REDUCE	$S \mid (X \tau_1 \ldots \tau_\ell)$	B	n-1

Input: The hungry cat meows.

	Stack	Buffer	Action
0		The hungry cat meows .	NT(S)
1	(S	The hungry cat meows .	NT(NP)
2	(S (NP	The hungry cat meows .	SHIFT
3	$(S \mid (NP \mid The))$	hungry cat meows .	SHIFT
4	$(S \mid (NP \mid The \mid hungry))$	cat meows .	SHIFT
5	(S (NP The hungry cat	meows .	REDUCE
6	(S (NP The hungry cat)	meows .	NT(VP)
7	(S (NP The hungry cat) (VP	meows .	SHIFT
8	(S (NP The hungry cat) (VP meows		REDUCE
9	(S (NP The hungry cat) (VP meows)		SHIFT
10	(S (NP The hungry cat) (VP meows) .		REDUCE
11	$(S\ (NP\ \textit{The hungry cat})\ (VP\ \textit{meows})\ .)$		

文生成のアルゴリズム

 y:終端記号(単語)の列(出力)

 S:スタック

 T:出力バッファ

- ▶ スタックの要素:終端記号, open または closed な非終端記号
- ▶ 出力バッファの要素:終端記号
- ▶ 初期状態

$$S = \emptyset$$

$$T = \emptyset$$

- ▶ 遷移の制約
 - ▶ *n*: スタック内の open な非終端記号の数

遷移	制約
GEN(X)	$n \ge 1$
REDUCE	スタック内の一番上の要素が open な非終端記号でない ^ n > 1

文生成のアルゴリズム

$Stack_t$	$Terms_t$	Open NTs_t	Action	$Stack_{t+1}$	$Terms_{t+1}$	Open NTs $_{t+1}$
S	T	n	NT(X)	S (X	T	n+1
S	T	n	GEN(x)	$S \mid x$	$T \mid x$	n
$S \mid (X \mid \tau_1 \mid \ldots \mid \tau_\ell)$	T	n	REDUCE	$S \mid (X \tau_1 \ldots \tau_\ell)$	T	n-1

	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(The)
3	(S (NP <i>The</i>	The	GEN(hungry)
4	(S (NP The hungry	The hungry	GEN(cat)
5	(S (NP The hungry cat	The hungry cat	REDUCE
6	(S (NP The hungry cat)	The hungry cat	NT(VP)
7	(S (NP The hungry cat) (VP	The hungry cat	GEN(meows)
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	GEN(.)
10	(S (NP The hungry cat) (VP meows) .	The hungry cat meows .	REDUCE
11	(S (NP The hungry cat) (VP meows) .)	The hungry cat meows .	

生成モデル

- ▶ 最大化: *p*(*X*, *Y*; Θ)
- ▶ 単語列 (x) と構文木 (y) の結合確率

$$p(x,y) = \prod_{t=1}^{|a(x,y)|} p(a_t|a_{< t})$$

$$= \prod_{t=1}^{|a(x,y)|} \frac{\exp r_{a_t}^T u_t + b_{a_t}}{\sum_{a' \in A_G(T_t, S_t, n_t)} \exp r_{a'}^T u_t + b_{a'}}$$

 $\left\{egin{aligned} u_t : アルゴリズムの状態を表す埋め込み \\ r_a : 各遷移の埋め込み(パラメータ) \\ b_a : 各遷移のバイアス(パラメータ) \end{aligned}
ight.$

生成モデル

▶ *u_t*: アルゴリズムの状態を表す埋め込み

$$u_t = \tanh(W[o_t; s_t; h_t] + c)$$

 $\left\{egin{aligned} o_t:$ 出力バッファの状態を表す埋め込み $s_t:$ スタックの状態を表す埋め込み $h_t:$ 遷移歴を表す埋め込みW,c: パラメータ

生成モデル

Chris Dyer et al.

生成モデル

- ► Syntactic Composition Function
 - ► REDUCE 時に要素の埋め込みからその非終端記号の埋め込みを生成

識別モデル

▶ 出力バッファ Tを入力バッファ Bに置き換えて学習

実験設定

Table 1: Corpus statistics.

	PTB-train	PTB-test	CTB-train	CTB-test
Sequences	39,831	2,416	50,734	348
Tokens	950,012	56,684	1,184,532	8,008
Types	23,815	6,823	31,358	1,637
UNK-Types	49	42	1	1

Penn Treebank での F 値

Table 2: Parsing results on PTB §23 (D=discriminative, G=generative, S=semisupervised).

Model	type	$\mathbf{F_1}$
Henderson (2004)	D	89.4
Socher et al. (2013a)	D	90.4
Zhu et al. (2013)	D	90.4
Vinyals et al. (2015) – WSJ only	D	90.5
Petrov and Klein (2007)	G	90.1
Bod (2003)	G	90.7
Shindo et al. (2012) – single	G	91.1
Shindo et al. (2012) – ensemble	G	92.4
Zhu et al. (2013)	S	91.3
McClosky et al. (2006)	S	92.1
Vinyals et al. (2015) – single	S	92.5
Vinyals et al. (2015) – ensemble	S	92.8
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})$	D	89.8
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})$	G	92.4

Penn Chinese Treebank での F 値

Table 3: Parsing results on CTB 5.1.

Model	type	$\mathbf{F_1}$
Zhu et al. (2013)	D	82.6
Wang et al. (2015)	D	83.2
Huang and Harper (2009)	D	84.2
Charniak (2000)	G	80.8
Bikel (2004)	G	80.6
Petrov and Klein (2007)	G	83.3
Zhu et al. (2013)	S	85.6
Wang and Xue (2014)	S	86.3
Wang et al. (2015)	S	86.6
Discriminative, $q(\boldsymbol{y} \mid \boldsymbol{x})$	D	80.7
Generative, $\hat{p}(\boldsymbol{y} \mid \boldsymbol{x})$	G	82.7

言語モデルの perplexity

Table 4: Language model perplexity results.

Model	test ppl (PTB)	test ppl (CTB)
IKN 5-gram	169.3	255.2
LSTM LM	113.4	207.3
RNNG	102.4	171.9

まとめ

- ▶ RNN の重みによって定義される"文法"を提案
- ▶ 遷移ベースの構文解析・文生成アルゴリズムで学習
- ▶ 生成モデルと識別モデルの2種類
 - ▶ 生成モデル:言語モデル,構文解析
 - ▶ 識別モデル:構文解析
- ▶ 特徴量の設計や Treebank データの変換が要らない

感想

- ▶ 構文解析はよく知らなかったので勉強になった
- ▶ SyntaxNet の論文等も読みたくなった