PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C10L 1/14, 10/02, 10/00

A1

(11) International Publication Number:

WO 98/17745

-

(43) International Publication Date:

30 April 1998 (30.04.98)

(21) International Application Number:

PCT/GB97/02763

(22) International Filing Date:

20 October 1997 (20.10.97)

(30) Priority Data:

9621753.4

18 October 1996 (18.10.96)

GB

(71)(72) Applicants and Inventors: HAZEL, Clifford, James [GB/GB]; Keveral Mill, Hessenford, Cornwall PL11 3HW (GB). WILLIAMSON, Ian, Vernon [GB/GB]; Sunningdale, 11 Kingston Hill, Cheadle SK8 1JS (GB).

(74) Agent: SHAW, Laurence; Laurence Shaw & Associates, Metropolitan House, 5th floor, 1 Hagley Road, Birmingham B16 8TG (GB). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FUEL COMPOSITION

(57) Abstract

A fuel composition for a combustion engine that is treated with a hybrid molecule that is balanced into a polymer by ethoxylation, the result being a commercially viable fuel that is delivered to the point of combustion in the best possible condition with least resistance. The preferred blend of polymer has 50 % by weight of ethoxylated alcohol with a ratio of 3:1 ethoxylate to C11 alcohol and 25 % of each of a fatty acid super diethanolamine with a ratio of 1:1 and a 7:1 ratio ethoxylate to C14 chain fatty acid, blended at phase inversion tension (55 to 58 °C).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŬ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Gennany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		
	•				- -		
						_	

WO 98/17745 PCT/GB97/02763

FUEL COMPOSITION

The invention relates to a fuel composition and in particular to such a liquid composition to be burned in an engine such as an internal combustion engine, e.g. a petrol or Diesel engine or any engines designed to perform with liquid fuels.

It is well known that liquid fuels when burned in an internal combustion engine can give rise to pollution and other undesired side effects. Numerous proposals have been advanced to reduce these side effects and enhance efficiency, e.g. miles per gallon. It has been realised that surfactants can play a useful role in this context but so far as we are aware none has satisfied the modern commercial criteria. It is one object of this invention to meet the need.

In one aspect the invention proves a fuel composition including a fuel miscible additive selected to solubilise the fuel and the additive and any water present to form a clear homogenous composition.

The preferred additive of this invention is a non-ionic surfactant and preferably a blend of surfactants. It is a preferred feature of this invention that the surfactants be selected by their nature and concentration that the additive (as well as any water or other non-fuel liquid present) be solubilised within the fuel. For this purpose it is convenient to have regard to the hydrophilic-lipophilic (HLB) of the surfactant, the value being calculated according to the expression

HLB = mol.wt of hydrophilic chain x 20total mol. wt

The values will depend on the length of the hydrophilic chain, typically an ethoxylate chain. The length of the chain will increase the extent of solubilisation because of a greater ability to solubilise.

Normally a blend of surfactants is preferred, preferably by selecting one appropriate to the fuel, say 10 to 18 for hydrocarbon fuel, most preferably 13. In the case of an alcohol the HLB value of the surfactant is between 3 and 7, most preferably about 4. But the addition of surfactants normally create ratios of 1:1 or high volume emulsions or 5:1 ratios when the solubalisation is required at 1:100.

The invention has the ability to unify the HLB requirements of any liquid fuel which in turn allows for one dose to be used in any fuel from C5 carbon chains up. The benefit being the amount of treatment directly related to the co-solvency ability (as per enclosed charts). The charts show three different combinations of additive allowing a cost comparison to performance requirement.

The monolayer aspect of the invention requires the concentration of the additive to be very low, typically of the order of 0.5 - 1:1000, preferably about 1:1000, most preferably 1:1200 there appears to be no technical or economic benefit in adding more unless a co-solvent dual action is required, when the priority will be dosage against performance.

The additive preferably comprises of the following:

- an oil soluble ethoxylated alcohol
- a super diethanolamide
- a 7 chain ethoxylated fatty acid

The three ingredients must be added as per fuel and molecule production process.

Preferably the ethoxylate of the fatty acid makes up about 25% by volume of the additive and further preferably the alcohol ethoxylate comprises 50% by volume of the additive.

An additive of the invention may be added to a hydrocarbon fuel, e.g. Diesel or petrol or alcohol which may or may not be contaminated with water. The invention is seen to particularly good effect when added to synthetic fuels based on low fraction oils.

In another aspect the invention provides a fuel composition comprising a light weight fraction and including an additive miscible with the fuel selected to solubilise the fuel and the additive and any water present to form a clear homogenous composition.

The presence of the additive of the invention ensures that the fuel composition forms a consistent stable homogenous composition and creates a monolayer simultenously a result of which leads to a better more complete burn which reduces pollution and increases miles per gallon.

As a result a blended fuel, particularly alcohol based, is able to combust more precisely with a cooler charge to reduce the iron-formates present from the aldehyde peracids and peroxide reactions normally attributable to engine degredation.

In another aspect the invention provides a method of forming a stable composition comprising adding the three specified ingredients, e.g. as an additive as defined to a fuel in a volume ratio of about 0.5-1:1000. Preferably the addition ratio is about 1:1000, most preferably about 1:1200.

A method of running an engine adapted to use a alcohol-based fuel, comprising adding to the fuel a miscible additive selected to solubilise the fuel and the additive so eliminating the deposit of by-products formed during the combustion of the fuel.

Fuel Production Process

- 1. Check water contamination by Karl Fischer and estimate volume of H₂O in enduser tank.
- 2. Select from Stabiliser Charts the correct formula taking into consideration costs and treatment ratios.
- 3. When percentage of stabiliser is assessed blend necessary components as per chart and dose accordingly blending the molecule into the fuel and not mixing it.

Molecule Production Process

- 1. After correct selection of Super Amide blend at P.I.T. (Phase Inverse Tension) (55-58°C) the Alcohol, the Ethylene Oxide.
- 2. Blend 1 with the *Super Amide chosen at P.I.T.
- 3. Blend Fatty Acid with Ethylene Oxide and blend with 2 at P.I.T.
- 4. Resulting in a total blend of Alcohol Ethoxylate. Which must at least be 50% of the total weight of the molecule with equal parts of Super Amide and Fatty Acid Ethoxylate to achieve 100%.*
- * Although a 50/25/25 blend in theory may not be the correct balance for a polymer, margins have to be taken into consideration for alien components such as Free Amines, Free PEG's, Free Esters and Isomers which are all present during this process. The molecular weight of the two tails invariably balance at this procedure.

Although the example stock solution is suitable for minimal water contamination problems the preferred alcohol ethoxylate will be straight chained primary linear and 3 mols of EO per.mol of alcohol as the precision in calculation is much more precise and the absorbant powers of the micelle is increased with the extra additions of ethoxylates. The primary and linear alcohol must be a minimum of 80% w/w as the balance of predominantly isomers are considered a contaminant and not helpfull to the ethoxylation process.

The diethonanolimide should be a super amide which is identifyable as having a ratio of 1:1 fatty acid to diethanolamine as the 2:1 ratio contain 10% free amine esters and the nature of process allows this contamination which is not helpfull to the balancing of the polymer.

^{*} Super Amide MUST be blended with either Fatty Acid Ethoxylate or Alcohol Ethoxylate.

WO 98/17745 PCT/GB97/02763

4

The fatty acid is preferrably a C14 acid and is not manufactured by polyethylene glycol method as the free PEGS inhibit the ethoxylation process and upset the HLB balance.

In order that the invention may be well understood it will now be described by way of illustration only with reference to the following example.

Example I

oil soluble primary alcohol ethoxylate (mean 2.75mols ethylene oxide; mol alcohol) available as NEODOL 91/2.5, predominatley C₉-C₁₁; mol.wt about 270

1 litre

lauric diethanolamide

500 ml

a fatty acid with 7 ethoxylates per mol of fatty acid (available as ATLAS G5507) mol.wt about 506

500 ml

The stock was heated to 55 to 58°C as per the diagram to form a 2 litre stock solution.

Different used vehicles, having Diesel and petrol engines, were tested at a local Ministry of Transport test house. The fuel tank of each was filled, and the vehicle driven for about 112 Km at an average speed of 96 Kph. A dose of the stock solution was added to the tank of each vehicle in a volume ratio of 1:1000. Visual inspection showed that a clear homogeneous solution was formed. The tank was refilled and the vehicle then driven again over the same journey. The MOT test was repeated.

The results showed a decrease in fuel consumption ranging from 11 to 20%, the greater savings being obtained in the case of the larger sized engines.

The tests showed the following reductions in emissions:

Petrol Engine

CO reduced by a mean 80% hydrocarbon reduced by a mean 40% Diesel engine

Diesel smoke reduction by a mean 50%

Example II

A Mercedes M111 basic test engine was cleaned and prepared for testing to record any changes in reference gasoline without additive and with additive at a treatment rate of 1:1000.

The standard methods of measurement were used in accordance with NAMAS specifications, particular interest was paid to LAMBDA as the leaning/richening of the engine would not encourage comparable results. LAMBDA was set at 1=0.05

The basic test was started and the engine was run hot and then dropped from 4,500 r.p.m. WOT to 1,800 r.p.m. PT stopping at different conditions to enable comparisions. LAMBDA performed at 1=0.05. At the end of the first test the head was cleaned and once again the test was repeated with additive at 1:1,000. CO₂ was reduced on average by 14.08% at 2,500 rpm PT and 20.64% Maximum.

Example III

A Bench Test was carried out under controlled laboratory conditions to ascertain Fuel Consumption and Emission Performance at 1,800 r.p.m. and 2,500 r.p.m. part throttle and also measuring Power Curve and Torque Curve Performance, using RF83 reference European non-additised fuel, with all measurements recorded to NAMAS Criteria. The engine was a MERCEDES 2 liter M111 Bench Engine suitable for unleaded fuel, fitted with a Catalytic Converter. (All figures quoted are on measurements prior to Catalytic Converter). The results showed CO reduced on average by 11.3% at 2,500 r.p.m. PT and 14.34% Maximum.

Example IV

A test was carried out to measure any reduction in Nox as Nox is directly related to combustionability and is a hazard that is impossible to negate in engines as Air/Fuel Ratio will always contain Nitrogen. The results showed that Nox reduced on average by 38.2% at 2,500 r.p.m. PT and 39% Maximum.

There are three ways to reduce Nox:

- a) The less air the less nitrogen
- b) The lower the temperature of the charge the less Nox
- c) The better the delivery of fuel the less Nox

Attached are graphs showing the beneficial effect of adding the additive of the invention.

<u>Power Curve</u> shows a power curve measuring within repeatability the same power with less fuel and less air which reduces CO2 and Nox.

<u>Torque Curve</u> shows a torque curve measuring within repeatability the same power with less fuel and less air which reduces CO2 and Nox.

Co-Solvency Tests

Examples

A specific variety of fuels from premium grade gasoline, industry standard diesel and various alcohol blended fuels were selected and from each 100 ml were transferred to each of twelve 200 ml measuring cylinders for reference to the phase separation caused by saturation of water to the polymer. The optimal being two titrations previous to the phase.

Example 1.

Fuel	No	Water Content	Additive	Comments
Gasoline	1	0%	0%	Clear Liquid
Gasoline	2	10%	0%	Phase separation
Gasoline	3	10%	10%	Clear Liquid
Gasoline	4	10%	9%	Clear Liquid
Gasoline	5	10%	8%	Clear Liquid
Gasoline	6	10%	7%	Clear Liquid
Gasoline	Ż	10%	6%	Clear Liquid
Gasoline	8	10%	5%	Clear Liquid
Gasoline	9	10%	4%	Phase Separation
Gasoline	10	10%	3%	Phase Separation
Gasoline	11	10%	2%	Phase Separation
Gasoline	12	10%	1%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 2. - Gasohol
Consisting of 90% regular unleaded gasoline with 10% denatured ethanol

Fuel	No	Water Content	Additive	Comments
Gasobol	1	0%	0%	Clear Liquid
Gasobol	2	10%	0%	Phase separation
Gasohol	3	10%	10%	Clear Liquid
Gasohol	4 ′	10%	9%	Clear Liquid
Gasohol	5	10%	8%	Clear Liquid
Gasohoi	6	10%	7%	Clear Liquid
Gasohol	7	10%	6%	Clear Liquid
Gasohol	8	10%	5%	Clear Liquid
Gasohol	9	10%	4%	Clear Liquid
Gasohol	10	10%	3%	Phase Separation
Gasobol	11	10%	2%	Phase Separation
Gasohoi	12	10%	1%	Phase Separation

Example 3.	-	Diesel		
Fuel	No	Water Content	Additive	Comments
Diesel	1	0%	0%	Clear Liquid
Diesel	2	10%	0%	Phase separation
Diesel	3	10%	10%	Clear Liquid
Diesel	4	10%	9%	Clear Liquid
Diesel	5	10%	8%	Clear Liquid
Diesel	6	10%	7%	Phase Separation
Diesel	7	10%	6%	Phase Separation
Diesel	8	10%	5%	Phase Separation
Diesel	9	10%	4%	Phase Separation
Diesel	10	10%	3%	Phase Separation
Diesel	11	10%	2%	Phase Separation
Diesel	12	10%	1%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 4. - Alternative Gasoline
Consisting of Alcohol and a blend of hydro carbons the majority percentage being alcohol

Fuel	No	Water Content	Additive	Comments
Alt Gas	1	0%	0%	Clear Liquid
Alt Gas	2 .	10%	0%	Phase separation
Alt Gas	3	10%	10%	Clear Liquid
Alt Gas	4	10%	9%	Clear Liquid
Alt Gas	5	10%	8%	Clear Liquid
Alt Gas	6	10%	7%	Clear Liquid
Alt Gas	7	10%	6%	Clear Liquid
Alt Gas	8	10%	5%	Clear Liquid
Alt Gas	9	10%	4%	Clear Liquid
Alt Gas	10	10%	3%	Clear Liquid
Alt Gas	11	10%	2%	Phase Separation
Alt Gas	12	10%	1%	Phase Separation

Example 5.

Fuel	No	Water Content	Additive	Comments
Gasoline	1	0%	0 %	Clear Liquid
Gasoline	2	5%	0 %	Phase separation
Gasoline	3	5%	5 %	Clear Liquid
Gasoline	4	5%	4.5%	Clear Liquid
Gasoline	5	5%	4 %	Clear Liquid
Gasoline	6	5%	3.5%	Clear Liquid
Gasoline	7	5%	3 %	Clear Liquid
Gasoline	8	5%	2.5%	Clear Liquid
Gasoline	9	5%	2 %	Phase Separation
Gasoline	10	5%	1.5%	Phase Separation
Gasoline	11	5%	1 %	Phase Separation
Gasoline	12	5%	0.5%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 6. - Gasohol
Consisting of 90% regular unleaded gasoline with 10% denatured ethanol

Fuel	No	Water Content	Additive	Comments
Gasohol	1	0%	0 %	Clear Liquid
Gasohol	2	5%	0 %	Phase separation
Gasohol	3	5%	5 %	Clear Liquid
Gasohol	4	5%	4.5%	Clear Liquid
Gasohol	5	5%	4 %	Clear Liquid
Gasobol	6	5%	3.5%	Clear Liquid
Gasohol	. 7	5%	3 %	Clear Liquid
Gasohol	8	5%	2.5%	Clear Liquid
Gasohol	´ 9	5%	2 %	Clear Liquid
Gasobol	10	5%	1.5%	Phase Separation
Gasohol	11	5%	1 %	Phase Separation
Gasohol	12	5%	0.5%	Phase Separation

Example 7.	-	Diesel		
Fuel	No	Water Content	Additive	Comments
Diesel	1	0%	0 %	Clear Liquid
Diesel	2	5%	0 %	Phase separation
Diesel	3	5%	5 %	Clear Liquid
Diesel	4	5%	4.5%	Clear Liquid
Diesel	5	5%	4 %	Clear Liquid
Diesel	6	5%	3.5%	Phase Separation
Diesel	7	5%	3 %	Phase Separation
Diesel	8	5%	2.5%	Phase Separation
Diesel	9	5%	2 %	Phase Separation
Diesel	10	5%	1.5%	Phase Separation
Diesel	11	5%	1 %	Phase Separation
Diesel	12	5%	0.5%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 8. - Alternative Gasoline
Consisting of Alcohol and a blend of hydro carbons the majority percentage being alcohol

Fuel	No	Water Content	Additive	Comments
Alt Gas	1	0%	0 %	Clear Liquid
Alt Gas	2	5%	0 %	Phase separation
Alt Gas	3	5%	5 %	Clear Liquid
Alt Gas	4	5%	4.5%	Clear Liquid
Alt Gas	5	5%	4 %	Clear Liquid
Alt Gas	6	5%	3.5%	Clear Liquid
Alt Gas	7	5%	3 %	Clear Liquid
Alt Gas	8	5%	2.5%	Clear Liquid
Alt Gas	9	5%	2 %	Clear Liquid
Alt Gas	10	5%	1.5%	Clear Liquid
Alt Gas	11	5%	1 %	Phase Separation
Alt Gas	12	5%	0.5%	Phase Separation

To record the visual aspects of phase separation for the one percent water and 0.1 percent titrations it was decided to scale up the volumes tenfold to enable accurate readings, therefore 1 litre of each fuel was transferred to each of twelve 2 litre measuring cylinders.

Example 9.

Fuei	No	Water Content	Additive	Comments
Gasoline	1	0%	0%	Clear Liquid
Gasoline	2	1%	0%	Phase separation
Gasoline	3	1%	1 %	Clear Liquid
Gasoline	4	1%	0.9%	Clear Liquid
Gasoline	5	1%	0.8%	Clear Liquid
Gasoline	6	1%	0.7%	Clear Liquid
Gasoline	7	1%	0.6%	Clear Liquid
Gasoline	8	1%	0.5%	Phase Separation
Gasoline	9	1%	0.4%	Phase Separation
Gasoline	10	1%	0.3%	Phase Separation
Gasoline	11	1%	0.2%	Phase Separation
Gasoline	12	1%	0.1%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 10. - Gasohol
Consisting of 90% regular unleaded gasoline with 10% denatured ethanol

Fuel	No	Water Content	Additive	Comments
Gasohol	1	0%	0%	Clear Liquid
Gasohol	2	1%	0%	Phase separation
Gasohol	3	1%	1 %	Clear Liquid
Gasohol	4	1%	0.9%	Clear Liquid
Gasohol	5	1%	0.8%	Clear Liquid
Gasobol	6	1%	0.7%	Clear Liquid
Gasohol	7	1%	0.6%	Clear Liquid
Gasobol	:8	1%	0.5%	Clear Liquid
Gasohol	[;] 9	1%	0.4%	Phase Separation
Gasohol	10	1%	0.3%	Phase Separation
Gasohol	11	1%	0.2%	Phase Separation
Gasohol	12	1%	0.1%	Phase Separation

Example 11.	-	Diesel		
Fuel	No	Water Content	Additive	Comments
Diesel	1	0%	0%	Clear Liquid
Diesel	2	1%	0%	Phase separation
Diesel	3	1%	1 %	Clear Liquid
Diesel	4	1%	0.9%	Clear Liquid
Diesel	5	1%	0.8%	Clear Liquid
Diesel	6	1%	0.7%	Phase Separation
Diesel	7	1%	0.6%	Phase Separation
Diesel	8	1%	0.5%	Phase Separation
Diesel	9	1%	0.4%	Phase Separation
Diesel	10	1%	0.3%	Phase Separation
Diesel	11	1%	0.2%	Phase Separation
Diesel	12	1%	0.1%	Phase Separation

After the introduction of each titration the solution was gently stirred for twenty seconds. The resultant effect was left for ten minutes to settle before visible results were recorded.

Example 12. - Alternative Gasoline
Consisting of Alcohol and a blend of hydro carbons the majority percentage being alcohol

Fuel	No	Water Content	Additive	Comments
Alt Gas	1	0%	0%	Clear Liquid
Alt Gas	2	1%	0%	Phase separation
Alt Gas	3	1%	1 %	Clear Liquid
Alt Gas	4	1%	0.9%	Clear Liquid
Alt Gas	5	1%	0.8%	Clear Liquid
Alt Gas	6	1%	0.7%	Clear Liquid
Alt Gas	7	1%	0.6%	Clear Liquid
Alt Gas	8	1%	0.5%	Clear Liquid
Alt Gas	9	1%	0.4%	Clear Liquid
Alt Gas	10	1%	0.3%	Clear Liquid
Alt Gas	11	1%	0.2%	Phase Separation
Alt Gas	12	1%	0.1%	Phase Separation

TESTING - USA

Testing exhaust emissions using indoline fuel with a treatment of an additive known to be a major component for stabilising fuel.

Introduction

With the phase out of leaded fuel it has become imperative to allow the maximum combustion from the available fuel to maximise performance and minimise pollution by burning as much fuel as possible completely. The tests set out to compare results of treated and un-treated fuel were performed under extreme controls and indoline was used as the carbon balance of this fuel is much more repeatable than un-leaded gasoline.

Experimental Details

The vehicle used was a 1993 California certified Mercury Cougar with 26,333 Miles on the odometer. This vehicle is equipped with a 3.8 litre engine with an SFI fuel system and has an inertia weight of 38,875 lbs. this vehicle was supplied by the test laboratories at Roush Laboratiries, Los Angeles, California and was prepared by them for the test.

A chassis dynamometer similar to a Clayton Water Break model was used in accordance with Federal Test Procedure CFR40 also known as the LA4 test.

Firstly the vehicle was pre-conditioned with indoline and this sequence follows these steps:-

- 1/ Drain and fill the tank to 40% capacity with indoline.
- 2/ Disconnect the vehicles battery to eliminate and mis-reading by a fuel computer.
- 3/ Drive vehicle for a period of 10 miles on the dynamometer in the specified controlled conditions and allow to soak for a minimum of 12 hours to a maximum of 24 hours.

Specified control conditions:-

The test of additised fuel against base fuel was run with base fuel first.

The soak time from pre-condition to test was 15 hours, the soak temperature was 76° F and the barometer H.g. was 29.85.

Additised control conditions:-

The additised test did not take place until another pre-conditioning test was complete.

The soak time from pre-condition to test was 20.5 hours, the soak temperature was 76° F and the barometer H.g. was 29.82.

As the results of interest were potential reduction in Hydrocarbon and Carbon Monoxide emissions a flame ionization detection system was used after collecting the diluted exhaust gases in Tedlar Bags these background bags were analysed within 1 hour of testing so as not to lose any sensitive constituents necessary for a total HC count.

As a more complete combustion was expected the CO detection was in accordance with the LA4 - CVS11 test as per recommendations from the California Air Resources Board.

Test Criteria:-

The pre-conditioning consisted of a LA4 test drive lasting 505 seconds plus 873 seconds.

The base fuel test consisted of a cold start for 505 seconds, a cold transient for 873 seconds, a soak for 10 minutes and a hot transient for 505 seconds. Total time = 1883 seconds.

The additised fuel test consisted of a cold start for 505 seconds, a cold transient for 873 seconds, a soak for 10 minutes and a hot transient for 505 seconds. Total time = 1883 seconds.

Results and Discussion:-

	<u>HC</u> Base Fuel	HC Additised	CO Base Fuel	CO Additised
ВА	G 1 53•228	47•832	212•617	160•591
BAG	G 2 0•641	0•549	24•888	22•699
BAG	G 3 4•356	2•842	39•765	14•449
		All figures in	n ppm's	
1	ERAGE % PROVEMENT	<u>HC</u> 27•1	<u>CO</u> 39•0	-

As can be seen a reduction in Hydrocarbons and Carbon Monoxide was achieved. Although this was encouraging the fact that the control conditions did not allow for any ambient temperature activities proved the theory that by creating a Monolayer enables the fuel to be delivered in a better condition with less resistance.

The major improvements were on BAG 3. This confirms that the hot transient phase of the test did allow for some temperature difference to enable a co-solvent reaction as well.

The encouragement of these results led us to continue testing but be more precise with the measurements and create a fuel tank as per normal ambient conditions.

The venue for this was the Associated Octel Co. Milton Keynes, England.

TESTING - UK

Generating more miles per gallon of an unleaded reference gasoline additised with a fuel component at a treatment ratio of 1:1,000. The fuel component is a major contributing factor to the stabilisation of fuel. The reduction in CO₂ proved the measurement of fuel consumed by weight to be in accordance with our claims.

Introduction

With the phase out of leaded fuel it has become imperative to allow the maximum combustion from the available fuel to maximise performance and minimise pollution by burning as much fuel as possible completely. The tests set out to compare results of treated and un-treated fuel were performed under controls and reference RF-O8 gasoline was used on a Mercedes M111 bench test engine these results were achieved prior to catalytic converter.

Experimental Details

The engine used was a Mercedes M111 and was supplied by the test laboratories at the Associated Octel Co. and details were recorded to N.A.M.A.S. standards.

Firstly the vehicle was pre-conditioned with base fuel and these steps were followed:-

- 1/ Prepare 55 litre drum of RFO8 gasoline and leave external to test shop as per simulation of regular fuel tank.
- 2/ Clean and polish head of engine and run base test programme from full throttle 4,500 rpm down to idle.

After the base run additise the fuel at 1:1,000 and prepare and test as for base fuel.

Specified control conditions:-

The test of additised fuel against base fuel was run with base fuel first.

Additised control conditions:-

The additised test did not take place until another pre-conditioning test was complete.

As the results of interest were potential reduction in Hydrocarbon and Carbon Monoxide emissions a flame ionization detection system was used after collecting the diluted exhaust gases in Tedlar Bags these background bags were analysed within 1 hour of testing so as not to lose any sensitive constituents necessary for a total HC count.

As a more complete combustion was expected the CO detection was in accordance with the N.A.M.A.S. recommendations.

Fuel consumption was measured by weighted control which was fed by the simulated fuel tank and was accurate to 100 ml's.

The results shown are for testing at 2,500 rpm in August 1995 and at a complete retest in November 1995 the results shown are at 1,800 rpm using RF83 fuel which is of a tighter specification than RF08.

RESULTS DATA (MERCEDES MIII Bench Test)

MAXIMUM RESULTS

		<u>Units - g</u>	/Kwh		
1 900 BBM BT	<u>CO</u>	CO ₂	<u>HC</u>	<u>No</u> x	<u>BSFC</u>
1,800 RPM P.T. Base Fuel	48•7	1620•36	9•20	10-11	550-01
2,500 RPM P.T. Base Fuel	41-3	1221•6	5•4	12•99 *	403•78
1,800 RPM P.T. Additised Fuel	33•01	1179•74	7•02	5•91	381-91
2,500 RPM P.T. Additised Fuel	36-12	1012•6	5•53	8•096 *	337•4
				* Denotes	WOT

		<u>Units -</u>	g/h		
1,800 RPM P.T.	<u>CO</u>	CO ₂	<u>HC</u>	<u>No</u> x	MFC
Base Fuel	218•5	7225•2	41•03	45•05	2453
2,500 RPM P.T. Base Fuel	450•3	14267•9	63•15	349•6	4716
1,800 RPM P.T. Additised Fuel	147•18	5262•8	31•22	26•31	1703•72
2,500 RPM P.T. Additised Fuel	416•2	11668•6	63•76	137•26	3888

WO 98/17745 PCT/GB97/02763

19
RESULTS DATA (MERCEDES MIII Bench Test)

AVERAGE RESULTS

		<u>Units - s</u>	z/Kwh		
1 900 PDM DT	CO	CO₂	<u>HC</u>	<u>No</u> x	<u>BSFC</u>
1,800 RPM P.T. Base Fuel	48•1	1565•8	8•81	9-15	527•5
1,800 RPM P.T. Additised Fuel	37•2	1285•3	7• 81	7•14	423•59
2,500 RPM P.T. Base Fuel	40•2	1154•9	5•465	13•045	384•74
2,500 RPM P.T. Additised Fuel	36•13	1012•6	4•91	8-10	337•46

		<u>Units -</u>	g/h		
1 000 DDM D T	<u>CO</u>	CO₂	<u>HC</u>	No.	MFC
1,800 RPM P.T. Base Fuel	214•53	6967•81	39•20	40•72	2347•38
1,800 RPM P.T. Additised Fuel	165•54	5719•59	34•75	31•77	1884•58
2,500 RPM P.T. Base Fuel	462•98	13300•98	62•94	150-24	4431•05
2,500 RPM P.T. Additised Fuel	415•99	11661•61	56•09	93•24	3885•84

TESTING - UK Diesel

Due to the success the above results we took a diesel vehicle at random and used a dosage of 1:1,000 for a before and after smoke test.

The results are extremely encouraging and once again confirm the two aspects of the invention with the treatment ratio at 1:1,000 the predominant force is monolayer construction.

The two graphs show overall percentage black smoke reduction of 66% and using a smoke unit conversion chart the particulate matter reduction equals 71.7%.

DIESEL TEST

Vehicle:

FORD "Fiesta" Diesel

Test:

As per M.O.T. Standards

Criteria:

Exhaust Emissions Diesel, Pass Below 2.5m⁻¹(k)

Method:

Pre - Condition (Oil Temperature Check)

Fast Idle Test Nº 1

Fast Idle Test № 2

Fast Idle Test № 3

Fast Idle Test Nº 4

Idle up to Governor "Cuts In" then reading is taken. Computer

decides how many readings necessary prior to averaging "k".

CLAIMS

- 1. A fuel composition comprising in combination fuel and a minor proportion of each of a fatty acid diethanolamide, an alcohol ethoxylate and an ethoxylate of a fatty acid, the degree of ethoxylation being selected so that a long term stable fuel composition is formed.
- 2. A fuel according to Claim 1, where the minor proportions create an additive in the form of a hybrid molecule which is balanced by ethoxylation (a polymer).
- 3. A fuel according to Claim 1 or 2, wherein the additive is present in a weight ratio of about 1:1000.
- 4. A fuel according to Claim 1 or 2, wherein the additive is a non-ionic surfactant.
- 5. A fuel according to any preceding Claim, wherein the additive has an HLB value of about 8.
- 6. A fuel according to Claim 4 or 5, wherein the fuel is an alcohol and the additive has an HLB value of about 8.
- 7. A fuel according to all previous Claims, wherein the ethoxylate of the fatty acid makes up about 25% by volume of the additive.
- 8. A fuel according to all previous Claims, wherein the alcohol ethoxylate comprises 50% by volume of the additive.
- 9. A fuel according to any preceding Claim wherein the ingredients of the additive composition are present in a total ratio of about 0.5 to 1:1,000 by volume.
- 10. A fuel according to Claim 9, wherein the ratio is about 1:1000.
- 11. A fuel according to Claim 10, wherein the ratio is about 1:1200.
- 12. A fuel composition according to Claim 1 or 2, comprising a light weight fraction and including an additive as described in Claim 2, miscible with the fuel selected to soluibilise the fuel and the additive and any water present to form a clear homogenous composition.
- 13. A fuel according to Claim 12, wherein the light fraction is an oil such as gasoline.

- 14. A fuel according to Claim 12, wherein the light fraction is alcohol.
- 15. A fuel according to Claim 12, wherein the light fraction is C5 to C15 carbon chain.
- 16. A fuel according to Claim 12, wherein the light fraction is a C10 to C20 carbon chain.
- 17. A fuel according to Claim 12, wherein the light fraction is a C5 to C20.
- 18. A fuel according to Claim 12, wherein the light fraction is an aromatic hydrocarbon.
- 19. A fuel according to Claim 12, wherein the fraction is a C10 to C25 carbon chain.
- 20. A fuel according to Claim 12, wherein the light fraction is C15 to C30 carbon chain.
- 21. A fuel according to Claim 12, wherein the light fraction is C5 to C30 carbon chain.
- 22. A fuel according to Claim 12, wherein the light fraction is a co-solvent.
- 23. A method according to Claim 1 or 2, of running an engine adapted to use a alcohol-based fuel, comprising adding to the fuel a miscible additive selected to solubilise the fuel and the additive so eliminating the deposit of by-products formed during the combustion of the fuel.
- 24. A method according to Claim 23, when a by-product is iron-formate.
- 25. A method according to Claim 23, when a by-product is aldehydes.
- 26. A method according to Claim 23, when a by-product is per-acids.
- 27. A method according to Claim 23, when a by-product is per-oxides.
- 28. A method according to Claim 12, when combusted in an engine the by-product is reduced and that by-product is carbon monoxide.
- 29. A method according to Claim 12, when a by-product is reduced and that by-product is hydrocarbon.

- 30. A method according to Claim 12, when a by-product is reduced and that by-product is NOx.
- 31. A method according to Claim 30, when a by-product is reduced and that by-product is CO₂.
- 32. A method according to Claim 31, when a by-product is reduced and that by-product is exhaust emissions.
- 33. Is a fuel according to Claim 1, 2 or 12, wherein the fuel is Diesel.
- 34. Is a fuel according to Claim 33, wherein the fuel is Diesel and alcohol.
- 35. Is a fuel according to Claim 33, wherein the fuel is Diesel and kerosene.
- 36. Is a fuel according to Claim 33, wherein the fuel is Diesel and a C5 to C40 carbon chain.
- 37. Is a fuel according to Claim 33, wherein the fuel is Diesel and a lighter fraction.
- 38. Is a fuel according to Claim 33, wherein the fuel is Diesel and a co-solvent.
- 39. Is a fuel according to Claim 3, where the additive is present in a weight ratio of 1:100.
- 40. Is a fuel according to Claim 3, where the additive is present in a weight ratio of 1:200.
- 41. Is a fuel according to Claim 3 where the additive is present in a weight ratio of 1:300.
- 42. Is a fuel according to Claim 3, where the additive is present in a weight ratio of 1:400.
- 43. Is a fuel according to Claim 3, where the additive is present in a weight ratio of 1:500.
- 44. Is a fuel according to Claim 3, where the additive is present in a weight ratio of 1:500 to 1:1000.
- 45. Is a fuel according to Claim 3, where the additive is present in a weight ratio not to induce MAC. (Maximum Additive Concentration)

Stabiliser Chart (Di)

Stabiliser Chart (Tri)

TORQUE CURVE

POWER CURVE

C.A.R.B. LA4 TEST

5/9

Comparison Results on "Mercedes M111"

Maximum Benefit - 1,800 r.p.m. PT

Maximum Benefit - 2,500 r.p.m. PT

Comparison Results on "Mercedes M111"

Average Benefit - 1,800 r.p.m. PT

Average Benefit - 2,500 r.p.m. PT

Comparison Smoke Test on "Ford Diesel 1.8 Engine"

"Smoke" Conversion to Total Particulate Matter (Mass Concentration - g/m³)

Particulate Smoke Conversion Chart

9/9

INTERNATIONAL SEARCH REPORT

Inte...utional Application No

PCT/GB 97/02763 CLASSIFICATION OF SUBJECT MATTER PC 6 C10L1/14 C10L C10L10/02 C10L10/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C10L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X GB 2 217 229 A (ENERSOLVE CHEMICAL COMP. 1,2,12, ET AL.) 25 October 1989 33-35, 38.49-54 see page 5, paragraph 5 - page 6. paragraph 3 FR 2 403 381 A (COMPAGNIE D'EXPLOITATION Α 1-55 DES PRODUITS INDUSTRIELS) 13 April 1979 see the whole document GB 738 749 A (ESSO) 19 October 1955 Α 1 see page 3, line 66 - line 102 EP 0 012 292 A (BAYER) 25 June 1980 Α 1-55 see the whole document -/--Х Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or Involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 5 February 1998 18/02/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

1

De La Morinerie, B

International Application No PCT/GB 97/02763

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	/02/63				
ategory ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
AT 337 333 A (MOHNHAUPT DIETRICH IN BASSINS) 27 June 1977 see the whole document	<u> </u>	1-55			
US 4 110 283 A (CAPELLE) 29 August 1978 see the whole document		1			
·					
	AT 337 333 A (MOHNHAUPT DIETRICH IN BASSINS) 27 June 1977 see the whole document	AT 337 333 A (MOHNHAUPT DIETRICH IN BASSINS) 27 June 1977 see the whole document			

INTERNATIONAL SEARCH REPORT

0

Information on patent family members

International Application No PCT/GB 97/02763

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 2217229 A	25-10-89	NONE	
FR 2403381 A	13-04-79	NONE	
GB 738749 A		NONE	
EP 12292 A	25-06-80	DE 2854437 A AT 589 T AU 5392679 A BR 7908184 A CA 1137314 A DD 147683 A JP 55082190 A US 4295859 A ZA 7906800 A	26-06-80 15-02-82 19-06-80 22-07-80 14-12-82 15-04-81 20-06-80 20-10-81 31-12-80
AT 337333 A	27-06-77	NONE	
US 4110283 A	29-08-78	NONE	

. •