Logică EXAMEN - 20.01.2021

Rândul 1

Subjectul 1. Fie formula $A = (z \rightarrow x) \land (x \rightarrow y)$.

- a) Să se întocmească tabelul de adevăr.
- b) Să se aducă A la FND și FNC.

Subiectul 2. a) Enuntați definiția și teorema de caracterizare a funcțiilor injective.

- b) Să se arate că dacă $f:A\to B$ este funcție injectivă, atunci $f(X_1\setminus X_2)=f(X_1)\setminus f(X_2)$, pentru orice $X_1,X_2\subset A$.
 - c) Să se determine toate retractele funcției injective $f: A \to B$, unde $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d, e\}$ și

χ	1	2	3	4
f(x)	d	a	b	e

Subiectul 3. a) Mulțime ordonată, total ordonată, funcție crescătoare (3 definiții).

b) Fie (A, \leq) și (B, \leq) mulțimi ordonate și $f: A \to B$ funcție bijectivă și crescătoare. Să se arate că dacă A este total ordonată, atunci f^{-1} este crescătoare și B este total ordonată.

Subiectul 4. a) Operații cu numere cardinale (3 definiții).

b) Să se arate că $\mathfrak{c} = 2^{\aleph_0}$.

Logic EXAM -20.01.2021

Row 1

Question 1. Consider the formula $A = (z \rightarrow x) \land (x \rightarrow y)$.

- a) Write down the truth table.
- b) Put A into a DNF and into a CNF.

Question 2. a) State the definition and the characterization theorem of injective functions.

- b) Prove that if $f: A \to B$ is injective, then $f(X_1 \setminus X_2) = f(X_1) \setminus f(X_2)$, for all $X_1, X_2 \subseteq A$.
- c) Find all the retractions of the injective function $f: A \to B$, where $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d, e\}$ and

x	1	2	3	4
f(x)	d	a	b	e

Question 3. a) Ordered set, totaly ordered set, increasing function (3 definitions).

b) Let (A, \leq) and (B, \leq) be ordered sets and let $f: A \to B$ be a bijective increasing function. Prove that if A is totaly ordered, then f^{-1} is increasing and B is totaly ordered.

Question 4. a) Operations with cardinal numbers (3 definitions).

b) Prove that $\mathfrak{c} = 2^{\aleph_0}$.