Álgebra Linear

Gleberson Antunes

15 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Álgebra Linear, das Provas de Admissão ao Mestrado em Matemática na UFBA. As resoluções são despretensiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Sumário				
1	Prova de Seleção para o Mestrado em Matemática 2015.2			2
2	Prova de Seleção para o Mestrado em Matemática 2016.1			7
3	Prova de Seleção para o Mestrado em Matemática 2016.2			12
4	Prova de Seleção para o Mestrado em Matemática 2017.1			16
5	Prova de Seleção para o Mestrado em Matemática 2017.2			27
6	Prova de Seleção para o Mestrado em Matemática 2018.1			33
7	Prova de Seleção para o Mestrado em Matemática 2018.2			40
8	Prova de Seleção para o Mestrado em Matemática 2019.1			46
9	Prova de Seleção para o Mestrado em Matemática 2023.2			52

1 Prova de Seleção para o Mestrado em Matemática 2015.2

25 de Agosto de 2023

Exercício 1. Mostre que dois espaços vetoriais com dimensões (finitas) diferentes não podem ser isomorfos.

Demonstração. Sejam V e W \mathbb{K} -espaços vetoriais. Suponhamos então que dim V< dim W. Se fosse verdade que V e W são isomorfos, então existiria uma aplicação $T:V\longrightarrow W$ bijetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim W,$$

o que é um absurdo, pois dim $V < \dim W$. Logo V e W não podem ser isomorfos.

Exercício 2. Sejam E e F espaços vetoriais, $L:E\longrightarrow F$ transformação linear e N(L) seu núcleo. Mostre que

$$L \text{ \'e injetora } \Leftrightarrow N(L) = \{\vec{0}\},\$$

onde $\vec{0}$ é o vetor nulo de E.

Demonstração.

 \Rightarrow Suponhamos L injetiva. Seja $v \in E$ tal que L(v) = 0. Então

$$L(v) = L(0)$$

2

$$\Rightarrow v = 0,$$

como queríamos.

 \Leftarrow (Por contraposição) Suponhamos que L não é injetiva. Então existem $v, w \in E$ distintos, tais que L(v) = L(w). Segue da linearidade de L que

$$L(v) = L(w)$$

$$\Rightarrow L(v) - L(w) = L(v - w) = 0$$

$$\Rightarrow v - w \in N(L).$$

Como v e w são distintos, temos que $v-w\neq 0$. Logo, $N(L)\neq \{\overrightarrow{0}\}$.

Exercício 3. Ache a transformação linear $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que

 $N(L) \ = \ [(1,0,1,0),(-1,0,0,1)] \ {\rm e} \ I(L) \ = \ [(1,-1,0,2),(0,1,-1,0)],$

onde N(L) é o núcleo de L e I(L) é a imagem de L.

Demonstração. Consideremos a base

$$\alpha = \{(1,0,1,0), (-1,0,0,1), (0,1,0,0), (0,0,1,0)\},\$$

de \mathbb{R}^4 . Pondo

$$L(1,0,1,0) = (0,0,0,0)$$

$$L(-1,0,0,1) = (0,0,0,0)$$

$$L(0,1,0,0) = (1,-1,0,2)$$

$$L(0,0,1,0)\ =\ (0,1,-1,0)$$

e escrevendo um vetor arbitrário $(x,y,z,t) \in \mathbb{R}^4$ como

$$(x,y,z,w) \ = \ (x+t)(1,0,1,0) + (t)(-1,0,0,1) + (y)(0,1,0,0) + (z-x-t)(0,0,1,0),$$

obtemos a transformação linear

$$L(x, y, z, t) = (0, y, z - x - t, 0),$$

que satisfaz o enunciado.

Exercício 4. Seja T a aplicação linear com domínio P_2 (o conjunto dos polinômios reais de grau menor ou igual a 2) e contra-domínio \mathbb{R} definida por $T(p) = \int_0^1 p(t)dt$. Determine a matriz de T com respeito às bases $\{x^2, x, 1\}$ de P_2 e $\{1\}$ de \mathbb{R} .

Demonstração. Sejam $\alpha = \{x^2, x, 1\}$ e $\beta = \{1\}$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

$$T(x) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}.$$

$$T(1) = \int_{0}^{1} x^{2} dx = x \Big|_{0}^{1} = 1.$$

Logo

$$[T]^{\alpha}_{\beta} = \left[\frac{1}{3}, \frac{1}{2}, 1\right].$$

Exercício 5. Seja R a rotação de \mathbb{R}^3 ao redor do eixo z, no sentido anti-horário, com centro na origem e ângulo $\pi/2$. Ou seja, R associa a cada ponto $P=(x,y,z)\in\mathbb{R}^3$ um ponto Q=(-y,x,z). Encontre o polinômio característico de R em relação a uma base de \mathbb{R}^3 e, a partir dele, determine os autovalores e autovetores de R (caso eles não existam, justifique sua conclusão com base nos cálculos feitos). Interprete geometricamente o resultado que você obteve.

Demonstração. Seja α a base canônica de \mathbb{R}^3 . Então

$$[R]_{\alpha} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Segue daí que

$$p_R(\lambda) = \det \begin{vmatrix} -\lambda & -1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = \lambda^2 (1 - \lambda) + 1 - \lambda = (\lambda^2 + 1)(1 - \lambda).$$

Ou seja, os autovalores de R são: $\lambda_1=1, \lambda_2=i, \lambda_3=-i.$

Para $\lambda_1 = 1$ temos que

$$\begin{bmatrix} -1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow -x - y = 0$$
$$x - y = 0$$

Logo devemos ter x=y=0e, por exemplo, z=1. Então, o autoespaço associado a $\lambda_1=1$ é gerado por [(0,0,1)].

Para $\lambda_2 = i$ temos que

$$\begin{bmatrix} -i & -1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 1-i \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow x-iy=0$$
$$(1-i)z=0$$

Logo devemos ter x=i,y=1 e z=0. Então, o autoespaço associado a $\lambda_2=i$ é gerado por [(i,1,0)].

Para $\lambda_3 = -i$ temos que

$$\begin{bmatrix} i & -1 & 0 \\ 1 & i & 0 \\ 0 & 0 & 1+i \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow x+iy=0$$

$$(1+i)z=0$$

Logo devemos ter x=1,y=i,z=0. Então, o autoespaço associado a $\lambda_3=-i$ é gerado por [(1,i,0)].

2 Prova de Seleção para o Mestrado em Matemática 2016.1

26 de Agosto de 2023

Exercício 1. Mostre que dois espaços vetoriais com dimensões (finitas) diferentes não podem ser isomorfos.

Demonstração. Sejam V e W \mathbb{K} -espaços vetoriais. Suponhamos então que dim V < dim W. Se fosse verdade que V e W são isomorfos, então existiria uma aplicação $T:V\longrightarrow W$ bijetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim W,$$

o que é um absurdo, pois dim $V < \dim W.$ Logo V e W não podem ser isomorfos.

Exercício 2. Sejam V e U espaços vetoriais e $T:V\longrightarrow U$ uma transformação linear, de núcleo W, e sejam $v\in V,\,u\in U$ tais que T(v)=u. Seja v+W a classe

lateral $v + W = \{v + w : w \in W\}$. Mostre que $v + W = \{x \in V : T(x) = u\}$.

Demonstração. Seja $v' \in v + W.$ Então existe $w' \in W$ tal que v' = v + w'. Segue daí que

$$T(v') = T(v + w') = T(v) + T(w') = u + 0 = u.$$

Seja $x \in V$ tal que T(x) = u. Então $x = v + (x - v) \in v + W$, uma vez que

$$T(x-v) \ = \ T(x) \ - \ T(v) \ = \ u \ - \ u \ = \ 0.$$

Exercício 3. Ache a transformação linear $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que

$$N(L) = [(1,0,1,0), (-1,0,0,1)] e I(L) = [(1,-1,0,2), (0,1,-1,0)],$$

onde N(L) é o núcleo de L e I(L) é a imagem de L.

Demonstração. Consideremos a base

$$\alpha = \{(1,0,1,0), (-1,0,0,1), (0,1,0,0), (0,0,1,0)\},\$$

de \mathbb{R}^4 . Pondo

$$L(1,0,1,0) \ = \ (0,0,0,0)$$

$$L(-1,0,0,1) = (0,0,0,0)$$

$$L(0,1,0,0) = (1,-1,0,2)$$

$$L(0,0,1,0) = (0,1,-1,0)$$

e escrevendo um vetor arbitrário $(x,y,z,t) \in \mathbb{R}^4$ como

$$(x, y, z, w) = (x+t)(1, 0, 1, 0) + (t)(-1, 0, 0, 1) + (y)(0, 1, 0, 0) + (z-x-t)(0, 0, 1, 0),$$

obtemos a transformação linear

$$L(x, y, z, t) = (0, y, z - x - t, 0),$$

que satisfaz o enunciado.

Exercício 4. Seja T a aplicação linear com domínio P_2 (o conjunto dos polinômios reais de grau menor ou igual a 2) e contra-domínio \mathbb{R} definida por $T(p) = \int_0^1 p(t)dt$. Determine a matriz de T com respeito às bases $\{x^2, x, 1\}$ de P_2 e $\{1\}$ de \mathbb{R} .

Demonstração. Sejam $\alpha = \{x^2, x, 1\}$ e $\beta = \{1\}$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

$$T(x) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}.$$

$$T(1) = \int_{0}^{1} x^{2} dx = x \Big|_{0}^{1} = 1.$$

Logo

$$[T]^{\alpha}_{\beta} = \left[\frac{1}{3}, \frac{1}{2}, 1\right].$$

Lema 1. Sejam V um \mathbb{K} -espaço vetorial com produto interno e $T:V\longrightarrow V$ um operador linear unitário. Então os autovalores de T possuem módulo igual a 1.

Demonstração. Sendo T um operador unitário, então $T^*=T^{-1}$ e, além disso, T preserva produto interno. Ou seja, para todo $v\in V$ temos que

$$\langle T(v), T(v) \rangle \ = \ \langle v, T * T(v) \rangle \ = \ \langle v, v \rangle.$$

Seja $\lambda \in \mathbb{K}$ um autovalor de Te $u \in V$ um autovetor de Tassociado a $\lambda.$ Então

$$|\lambda|^2 \langle v, v \rangle = \langle T(v), T(v) \rangle = \langle v, v \rangle.$$

 $\Rightarrow |\lambda| = 1.$

Exercício 5. Sejam n um inteiro positivo e $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma transformação linear que é uma isometria, i.e, ||T(x) - T(y)|| = ||x - y|| para quaisquer $x, y \in \mathbb{R}^n$.

- (a) Mostre que, se n for ímpar, então existe um subespaço vetorial não-trivial que é tal que: ou todos os pontos desse subespaço são fixados por T; ou todos os pontos desse subespaço são levados por T em seus opostos.
- (b) O mesmo vale para dimensões pares? Justifique cuidadosamente a sua resposta, provando-a, se for positiva ou apresentando contra-exemplo, se for negativa.

Demonstração. Sabemos que um operador $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ satisfaz ||T(x) - T(y)|| = ||x - y|| para quaisquer $x, y \in \mathbb{R}^n$ se, e somente se, é um operador unitário.

(a) Seja $p_T(\lambda)$ o polinômio característico do operador T. Sendo $gr(p_T(\lambda)) = n$ ímpar, então $p_T(\lambda)$ admite pelo menos uma raiz real, uma vez que seus coeficientes são reais e as raízes complexas nesse caso ocorrem aos pares (se $a + bi \in \mathbb{C}$ é raiz de $p_T(\lambda)$ então a - bi também será).

O Lema 1 nos garante que o módulo dessas raízes, que são exatamente os autovalores de T, é igual a 1. Seja λ_{α} uma raiz real de $p_T(\lambda)$. Então ou $\lambda_{\alpha} = 1$ ou $\lambda_{\alpha} = -1$. Assim, o autoespaço associado a λ_{α} é tal que todos os seus pontos são fixados por T ou são levados nos seus opostos.

(b) Falso. Considere o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, dado por T(x,y) = (y,-x). Com respeito a base canônica α temos que

$$[T]_{\alpha} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Notemos que esse operador é unitário pois o módulo de cada um dos vetores coluna é igual a 1. Porém

$$p_T(\lambda) = \begin{bmatrix} -\lambda & 1 \\ -1 & -\lambda \end{bmatrix} = \lambda^2 + 1,$$

não possui solução real.

3 Prova de Seleção para o Mestrado em Matemática 2016.2

26 de Agosto de 2023

Exercício 1. Escreva a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ cujo núcleo seja a reta y = x e a imagem seja a reta y = 2x.

Demonstração. Considere a base $\alpha = \{(1,1),(1,0)\}$. Então, dado qualquer vetor $(x,y) \in \mathbb{R}^2$, temos que

$$(x,y) = y(1,1) + (x-y)(1,0).$$

Pondo T(1,1)=(0,0) e T(1,0)=(2,1), a transformação linear

$$T \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (2x - 2y, x - y),$$

satisfaz o enunciado.

Exercício 2. Seja \mathbb{V} os espaço vetorial das funções de \mathbb{R} em \mathbb{R} e considere $\mathbb{W}_1 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = f(-x)\}$ e $\mathbb{W}_2 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = -f(-x)\}$.

- (a) Mostre que \mathbb{W}_1 e \mathbb{W}_2 são subespaços vetoriais de $\mathbb{V}.$
- (b) Mostre que $W_1 \oplus W_2$.

Demonstração.

- (a) Óbvio.
- (b) Seja $f \in \mathbb{V}$. Então

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{h(x)}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{g(x)}}.$$

Note que

$$h(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(x) + f(-x)}{2} = h(x),$$

ou seja, h(x) é uma função par. De forma semelhante, temos que

$$g(-x) = \frac{f(-x) - f(-(-x))}{2} = \frac{f(-x) - f(x)}{2} = -\left(\frac{f(x) - f(-x)}{2}\right) = -g(x),$$

ou seja, g(x) é uma função ímpar. Logo f é soma de uma função par com uma função ímpar.

Exercício 3. Sejam E, F espaços vetoriais de mesma dimensão finita n. Mostre que uma transformação linear $T: E \longrightarrow F$ é injetiva se, e somente se, é sobrejetiva. A afirmação contínua verdadeira em espaços de dimensão infinita? Se verdadeira prove e se falsa dê um contraexemplo.

Demonstração.

(a)

 \Rightarrow Suponhamos Tinjetiva. Sabemos então que $N(T)=\{0\}.$ Segue do **Teorema do Núcleo e da Imagem** que

$$\dim E = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim F,$$

ou seja, T é sobrejetiva.

 \Leftarrow Suponhamos Tsobrejetiva. Então Im(T)=F. Segue do Teorema do Núcleo e da Imagem que

$$\dim E = \dim N(T) + \dim Im(T)$$

$$\dim E = \dim N(T) + \dim F$$

$$\Rightarrow \dim E - \dim F = \dim N(T) = 0,$$

ou seja, T é injetiva.

(b) Provamos no **item b do Exercício 5** que \mathbb{R} é um \mathbb{Q} -espaço vetorial de dimensão infinita. Evidentemente, \mathbb{R}^2 é também um \mathbb{Q} -espaço vetorial de dimensão infinita. Considere a transformação linear

$$T\colon \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto x.$$

Essa transformação linear é sobrejetiva mas não é injetiva.

Exercício 4. Mostre que se $v_1, ..., v_n$ são autovetores distintos de uma transformação linear associados a autovalores distindos $\lambda_1, ..., \lambda_n$, então $v_1, ..., v_n$ são linearmente independentes.

Demonstração. Encontra-se em: https://math.stackexchange.com/questions/29371/ how-to-prove-that-eigenvectors-from-different-eigenvalues-are-linearly-independe> (Não consegui resolver essa.)

Exercício 5.

(a) Mostre que dois espaços vetoriais de mesma dimensão (finita) são isomorfos. Conclua que todo \mathbb{Q} -espaço vetorial de dimensão n é isomoformo a \mathbb{Q}^n .

(b) Mostre que $\dim_{\mathbb{Q}} \mathbb{R}$ é infinita.

Demonstração.

(a) Sejam V e W \mathbb{K} -espaços vetoriais de mesma dimensão n finita, $\alpha = \{v_1, ..., v_n\}$ uma base de V e $\beta = \{w_1, ..., w_n\}$ uma base de W. Pondo $T(v_i) = w_i$, para cada $1 \le i \le n$, obteremos uma transformação linear injetiva. Pelo **Exercício 3** essa transformação é sobrejetiva e, portanto, é um isomorfismo. Logo V e W são isomorfos.

Seja V um \mathbb{Q} -espaço vetorial de dimensão n. Como \mathbb{Q}^n é um \mathbb{Q} -espaço vetorial de dimensão n, basta tomarmos uma base α de V e uma base β de \mathbb{Q}^n e definir uma transformação linear injetiva, como definimos anteriormente.

(b) Basta notar que o conjunto

$$\alpha = \{e^n : n \in \mathbb{N}\},\$$

formado por todas as potências de e é LI e é infinito. Tal fato pode ser verifcado notando que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$, da por $f(x) = e^x$ é monótona crescente.

4 Prova de Seleção para o Mestrado em Matemática 2017.1

08 de Novembro de 2023

Exercício 1. Seja T um operador linear em \mathbb{K}^2 . Prove que ou T tem um vetor cíclico ou é um múltiplo escalar do operador identidade.

Demonstração.

1. Suponhamos que T não é um múltiplo escalar do operador identidade.

Seja $v \in \mathbb{K}^2$ não nulo e que não é autovetor de T. Então, para todo $\alpha \in \mathbb{K}$, temos que $T(v) \neq \alpha v$. Logo $T(v) \notin \langle v \rangle$. Assim $\{v, T(v)\}$ é um conjunto L.I. Portanto é uma base de \mathbb{K}^2 . Desse modo v é um vetor cíclico de T.

2. Suponhamos que T não admite um vetor cíclico.

Então, para todo $v \in \mathbb{K}^2$ não nulo, temos que o conjunto $\{v, T(v)\}$ não é uma base de \mathbb{K}^2 . Logo todo vetor $v \in \mathbb{K}^2$ não nulo é autovetor de T.

- 3. Se existir $\alpha \in V$ tal que $T(v) = \alpha v$ para todo $v \in \mathbb{K}^2$, então $T = \alpha I$.
- 4. Suponhamos que T admite dois autovalores α e β distintos. Existem $v, w \in \mathbb{K}$ não nulos tais que $T(v) = \alpha v$ e $T(w) = \beta w$. Como $v + w \neq 0$, então $T(v + w) = \psi(v + w)$ para algum $\psi \in \mathbb{K}$, o que é absurdo.

Logo T é um múltiplo do operador identidade.

Exercício 2. Determine todas as possíveis formas de Jordan de uma matriz de ordem 3 com entradas complexas. Se A e B são duas matrizes de ordem n > 3 com entradas complexas que possuem o mesmo polinômio característico e mínimo então A e B são semelhantes?

Demonstração. Sejam $A \in M_3(\mathbb{C})$ e $p_A(\lambda)$ o polinômio característico de A. Existem então $\alpha, \beta, \psi \in \mathbb{C}$ tais que $p_A(\lambda) = (\lambda - \alpha)(\lambda - \beta)(\lambda - \psi)$. Considere as seguintes possibilidades:

1.
$$\alpha = \beta = \psi$$
.

Nesse caso, o polinômio minimal poderá ser $\lambda - \alpha$ ou $(\lambda - \alpha)^2$ ou $(\lambda - \alpha)^3$. Sendo assim, as possíveis formas canônicas de Jordan são

$$\begin{vmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{vmatrix}, \quad \begin{vmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 0 & 0 & \alpha \end{vmatrix} \quad e \quad \begin{vmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 0 & 1 & \alpha \end{vmatrix}$$

2.
$$\alpha = \beta \ e \ \alpha \neq \psi$$
.

Nesse caso, o polinômio minimal poderá ser $(\lambda - \alpha)(\lambda - \beta)$ ou $(\lambda - \alpha)^2(\lambda - \beta)$. Sendo assim, as possíveis formas canônicas de Jordan são

3. Autovalores distintos.

Nesse caso o polinômio minimal será $(\lambda - \alpha)(\lambda - \beta)(\lambda - \psi)$. Logo a forma canônica de Jordan será dada por

$$\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \psi \end{bmatrix}$$

Qualquer outro caso é equivalente a 2.

4. Sabemos que duas matrizes são semelhantes se, e somente se, possuem o mesmo posto. Considere as matrizes

Note que $p_A(\lambda) = p_B(\lambda) = \lambda^4$ e $m_A(\lambda) = m_B(\lambda) = \lambda^2$. Porém o posto de A é 1 e o posto de B é 2. Logo essas matrizes não podem ser semelhantes.

Exercício 3. Seja V um \mathbb{K} -espaço vetorial de dimensão finita munido de um produto interno e $P:V\longrightarrow V$ uma projeção tal que $V=W\oplus U$ em que W=Im(P) e U=Nuc(P). Mostre que P é um operador autoadjunto se, e somente se, P é uma projeção ortogonal, ou seja, W e U são complementos ortogonais.

Demonstração. Seja $P:V\longrightarrow V$ uma projeção. Então $P^2=P$.

 \Rightarrow Suponhamos que P seja autoadjunto. Então $P=P^*$. Queremos mostrar que $U^\perp=W$. Sejam $w\in W$ e $u\in U$ arbitrários. Existe $z\in V$ tal que w=Pz. Note que

$$\langle w, u \rangle = \langle Pz, u \rangle$$

$$= \langle z, P^*u \rangle$$

$$= \langle z, Pu \rangle$$

$$= \langle z, 0 \rangle$$

$$= 0.$$

Logo $w \in U^{\perp}$. Por outro lado, seja $w \in U^{\perp}$. Sabemos que

$$V = W \oplus U = U^{\perp} \oplus U.$$

Se w=0, então $w\in W\cap U=U^{\perp}\cap U$. Se $w\neq 0$, então $w\notin U$. Logo $w\in W$. Sendo assim

$$U^{\perp} = W$$
.

Desse modo W e U são complementos ortogonais.

 \Leftarrow Suponhamos que P é uma projeção ortogonal. Para todos $v, v' \in V$ existem únicos $u, u' \in U$ e $w, w' \in W$ tais que v = u + w e v' = u' + w'. Note que

$$\langle P(v), v' \rangle \ = \ \langle P(u+w), u'+w' \rangle = \langle P(u'), u'+w' \rangle + \langle P(w), u'+w' \rangle = \langle w, u' \rangle + \langle w, w' \rangle = \langle w, w' \rangle.$$

$$\langle v, P(v') \rangle \ = \ \langle u+w, P(u'+w') \rangle = \langle u+w, P(u') \rangle + \langle u+w, P(w') \rangle = \langle u, w' \rangle + \langle w, w' \rangle = \langle w, w' \rangle.$$

Logo

$$\langle P(v), v' \rangle = \langle v, P(v') \rangle.$$

Desse modo, P é autoadjunto.

Exercício 4. Seja V um \mathbb{C} -espaço vetorial munido de um produto interno. Mostre que se $\langle T(v), v \rangle = 0$ para todo $v \in V$ então T é o operador nulo. Isso continua válido se V é um \mathbb{R} -espaço vetorial?

Demonstração. Encontra-se em: Why does the fact that "T(v) is orthogonal to v for all v implies T is the zero operator" break down for real inner product spaces?

Exercício 5. Seja V um \mathbb{R} -espaço vetorial de dimensão finita munido de um produto interno. Mostre que a correspondência $F:V\longrightarrow V^*$ que associa a cada $v\in V$ o funcional linear $F(v)=f_v$ tal que $f_v(w)=\langle w,v\rangle$ para todo $w\in V$ é um isomorfismo. Se V é um \mathbb{C} -espaço vetorial de dimensão finita a correspondência ainda é biunívoca? Justifique.

Demonstração. Seja $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Como dim $V < \infty$, então $V \cong V^*$. Além disso, sabemos que **um operador linear** $T: V \longrightarrow V$ é isomorfismo $\Leftrightarrow T$ injetivo \Leftrightarrow **T** é sobrejetivo. Consideremos então a aplicação

$$F: V \longrightarrow V^*$$

$$v \longmapsto f_v.$$

1. F é uma transformação linear.

Sejam $u, v \in V$ e $\alpha \in \mathbb{K}$. Então

$$F(u + \alpha v) = f_{u + \alpha v}.$$

Sabemos que duas funções são iguais se, e somente se, possuem o mesmo domínio, o mesmo contradomínio e a mesma lei de formação. Provaremos então que $f_{u+\alpha v} = f_u + \alpha f_v$. Para todo $w \in V$ temos que

$$f_{u+\alpha v}(w) = \langle u + \alpha v, w \rangle$$

$$= \langle u, w \rangle + \alpha \langle v, w \rangle$$

$$= f_u(w) + \alpha f_v(w)$$

$$\Rightarrow f_{u+\alpha v} = f_u + \alpha f_v$$

$$\Rightarrow F(u + \alpha v) = F(u) + \alpha F(v).$$

Logo F é uma transformação linear.

2. F é um isomorfismo.

É suficiente mostrar que F é uma aplicação injetiva. Sejam $u, v \in V$ tais que

$$F(u) = F(v).$$

Para todo $w \in V$ temos que

$$f_u(w) = f_v(w)$$

$$\Leftrightarrow \langle u, w \rangle = \langle v, w \rangle \text{ (para todo } w \in V)$$

$$\Leftrightarrow \langle u - v, w \rangle = 0 \text{ (para todo } w \in V)$$

$$\Rightarrow u - v = 0$$

$$\Rightarrow u = v.$$

Logo F é injetiva e, portanto, é um isomorfismo.

Exercício 6. Considere \mathbb{R}^3 com o produto interno canônico e $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ um operador cuja matriz na base canônica é:

$$\begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

Mostre que T é diagonalizável. Encontre uma base ortonormal $\beta \subset \mathbb{R}^3$ formada por autovetores. Escreve a matriz associada a T na base β .

Demonstração. Facilmente verificamos que a matriz em questão é simétrica. Logo o operador em questão é autoadjunto. Portanto é diagonalizável pelo **Teorema Espectral**. Note que

$$p_T(\lambda) = \det \begin{vmatrix} 4 - \lambda & 2 & 2 \\ 2 & 4 - \lambda & 2 \\ 2 & 2 & 4 - \lambda \end{vmatrix}$$

= $\lambda^3 + 12\lambda^2 - 36\lambda + 32$
= $-(\lambda - 2)^2(\lambda - 8)$.

Logo os autovalores de T são 2 e 8.

1. $\lambda = 2$

Considere o sistema

$$2x + 2y + 2z = 0$$

$$2x + 2y + 2z = 0$$

$$2x + 2y + 2z = 0$$

Pondo x=-y-z, teremos que o auto-espaço associado ao autovalor $\lambda=2$ é o subespaço $\langle (-1,1,0), (-1,0,1) \rangle$.

2. $\lambda = 8$

Considere o sistema

$$-4x + 2y + 2z = 0$$

$$2x - 4y + 2z = 0$$

$$2x + 2y - 4z = 0$$

Encontramos como solução x=y=z=1. Logo o autoespaço associado ao autovalor $\lambda=8$ é o subespaço $\langle (1,1,1)\rangle$.

Via Gram-Schimdt obtemos o vetor

$$(-1,0,1) - \frac{\langle (-1,1,0), (-1,0,1) \rangle}{\langle (-1,1,0), (-1,1,0) \rangle} (-1,1,0) = (-1/2, -1/2, 1).$$

Logo

$$\beta = \left\{ \frac{(-1,1,0)}{||(-1/2,-1/2,1)||}, \frac{(-1/2,-1/2,1)}{||(-1/2,-1/2,1)||}, \frac{(1,1,1)}{||(1,1,1)||} \right\},\,$$

é uma base ortonormal de V formada por autovetores de T.

Lema 1. Sejam V um operador linear e $T:V\longrightarrow V$ um operador autoadjunto. Se $\lambda_1,...,\lambda_m$ são autovalores de T dois a dois distintos então os autovetores $v_1,...,v_m$ associados a esses autovetores são ortogonais.

Demonstração. Sejam λ_i e λ_j autovalores distintos. Então $\lambda_i - \lambda_j \neq 0$. Note que

$$(\lambda_{i} - \lambda_{j})\langle v_{i}, v_{j} \rangle = \lambda_{i} \langle v_{i}, v_{j} \rangle - \lambda_{j} \langle v_{i}, v_{j} \rangle$$

$$= \langle \lambda_{i} v_{i}, v_{j} \rangle - \langle v_{i}, \lambda_{j} v_{j} \rangle$$

$$= \langle T v_{i}, v_{j} \rangle - \langle v_{i}, T v_{j} \rangle$$

$$= \langle T v_{i}, v_{j} \rangle - \langle T v_{i}, v_{j} \rangle \quad \text{(pois T \'e autoadjunto)}$$

$$= 0$$

$$\Rightarrow \langle v_{i}, v_{j} \rangle = 0.$$

Exercício 7 Seja $T:V\longrightarrow V$ um operador autoadjunto num \mathbb{R} -espaço vetorial de dimensão 2, munido de produto interno. Mostre que existe uma base ortonormal $\{v_1,v_2\}\subset V$ formada por autovetores de T.

Demonstração. Seja $\{e_1,e_2\}$ a base canônica do $\mathbb{R}^2.$ Então

$$[T]_{\alpha} = \begin{bmatrix} \alpha & \beta \\ \beta & \psi \end{bmatrix},$$

onde $\alpha, \beta, \psi \in \mathbb{R}$. Temos então que

$$p_T(\lambda) = \lambda^2 - (\alpha + \psi)\lambda + \alpha\psi - \beta^2.$$

Note que $\Delta = (\alpha + \psi)^2 - 4(\alpha \psi - \beta^2) = (\alpha - \psi)^2 + 4\beta^2 \ge 0.$

1. $\Delta = 0$.

Se $\Delta=0$, então $\beta=0$ e $\alpha=\psi$. Logo $T=\alpha I$. Sendo assim, todo vetor não nulo é um autovetor de T. Portanto, V admite uma base ortonormal formada por autovetores de T.

2. $\Delta > 0$.

Se $\Delta > 0$, então p_T admite duas raízes reais distintas λ_1 e λ_2 . Desse modo, existem $v_1, v_2 \in V$ não nulos e distintos (e que podemos supor unitários) tais que $Tv_1 = \lambda_1 v_1$ e $Tv_2 = \lambda_2 v_2$. Segue do **Lema 1** que v_1 e v_2 são ortogonais. Segue daí que V admite uma base ortonormal formada por autovetores de T.

Exercício 8. Seja V um espaço vetorial de dimensão finita munido de um produto interno e $T:V\longrightarrow V$ um operador linear idempotente, ou seja, $T^2=T$. Prove que T é autoadjunto se, e somente se, $TT^*=T^*T$.

Demonstração. Como $T^2=T$, então o polinômio $p(\lambda)=\lambda^2-\lambda$ anula T. Logo os autovalores de T só podem ser 0 ou 1.

 \Rightarrow Suponhamos que Tseja autoadjunto. Então $T=T^*.$ Logo

$$TT^* = T^2 = T^*T.$$

 \Leftarrow Suponhamos que $TT^* = T^*T$. Então T é um operador normal. Como os autovalores de T só podem ser 0 ou 1, temos que T é diagonalizável. Como T é normal, existe uma matriz unitária U tal que $T = U^*DU$, onde D é uma matriz diagonal. Além disso, $D^* = D$, pois os autovalores de T são números reais. Segue daí que

$$T^* = (U^*DU)^* = U^*D^*U = U^*DU = T.$$

Logo T é autoadjunto.

Exercício 9. Seja A uma matriz $n \times n$ com entradas reais tal que $A^2 + I = 0$. Prove que n é par e se n=2k então A é semelhante sobre $\mathbb R$ a uma matriz em blocos da forma

$$\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

em que I é a matriz identidade de ordem k.

Demonstração.

1. $n \in par$.

Suponhamos que n é impar. Note que $A^2 = -I$ nos garante que

$$det(A^{2}) = det(A) \cdot det(A)$$

$$= det(-I)$$

$$= (-1)^{n}$$

$$= -1,$$

o que é absurdo, uma vez que $\det(A^2) > 0$. Logo n deve ser par.

2. A é semelhante sobre $\mathbb R$ a uma matriz em blocos da forma $\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$.

Encontra-se em Let A be an $n \times n$ matrix with real entries such that $A^2 + I = 0$ then n is even.

Exercício 10. Seja V um espaço vetorial munido de um produto interno. Mostre que se $T:V\longrightarrow V$ é uma função que preserva produto interno, ou seja, $\langle T(v),T(w)\rangle=\langle v,w\rangle$ para todo $v,w\in V$ então T é um operador linear injetivo.

Demonstração. Sejam $v,w\in V$ tais que T(v)=T(w). Então, para todo $u\in V$ temos que

$$\langle T(v) - T(w), T(u) \rangle = \langle v - w, u \rangle = 0$$

 $\Rightarrow v - w = 0$
 $\Rightarrow v = w$.

Logo T é um operador linear injetivo.

5 Prova de Seleção para o Mestrado em Matemática 2017.2

24 de Outubro de 2023

Exercício 1. Seja V um espaço vetorial (plano) de \mathbb{R}^3 formado pelos vetores v=(x,y,z) tais que x-2y+4z=0. Obtenha uma base $\{v_1,v_2,v_3\}\subset\mathbb{R}^3$ tal que $v_1,v_2\in\mathbb{R}^3$.

Demonstração. Pondo x = 2y - 4z temos que

$$(x, y, z) \in V \iff (x, y, z) = (2y - 4z, y, z)$$
 (é da forma)

$$\Rightarrow (2y - 4z, y, z) = (2y, y, 0) + (-4z, 0, z)$$

$$= y(2, 1, 0) + z(-4, 0, 1)$$

$$\Rightarrow [(2, 1, 0), (-4, 0, 1)]$$

$$= V.$$

Considere agora o vetor (0,0,1). Então

$$\{(2,1,0),(-4,0,1),(0,0,1)\}$$

é um base de \mathbb{R}^3 que satisfaz o enunciado.

Exercício 2. Sejam E, F espaços vetoriais de mesma dimensão finita n. Mostre que uma transformação linear $T: E \longrightarrow F$ é injetiva se, e somente se, é sobrejetiva. A afirmação continua verdadeira em espaços de dimensão infinita? Se verdadeira prove e se falsa dê um contraexemplo.

Demonstração.

 \Rightarrow Suponhamos T injetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim \operatorname{Ker} T + \dim \operatorname{Im}(T)$$

$$n = 0 + \dim \operatorname{Im}(T)$$

$$\Rightarrow \dim \operatorname{Im}(T) = n.$$

Logo T é sobrejetiva.

 \Leftarrow Suponhamos T sobrejetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim \operatorname{Ker} T + \dim \operatorname{Im}(T)$$

$$n = \dim \operatorname{Ker} T + n$$

$$\Rightarrow \dim \operatorname{Ker} T = 0.$$

Logo T é injetiva.

Não é válida em espaços vetoriais de dimensão infinita. Considere os \mathbb{Q} -espaços vetoriais \mathbb{R} e \mathbb{R}^{∞} . Considere também a transformação linear

$$T \colon \mathbb{R} \longrightarrow \mathbb{R}^{\infty}$$

$$x \longmapsto (x, 0, 0, ..., 0, ...).$$

Note que T é injetiva mas não é sobrejetiva.

Exercício 3. Uma matriz quadrada $a = [a_{ij}]$ chama-se simétrica (respectivamente antissimétrica) quando $a_{ij} = a_{ji}$ (respectivamente $a_{ij} = -a_{ji}$ para todo i e para todo j. Prove que o conjunto S das matrizes simétricas e o conjunto A das matrizes antissimétricas $n \times n$ são subespaços vetoriais de $M_n(\mathbb{K})$ e tem-se $M_n(\mathbb{K}) = S \oplus A$.

Demonstração. Facilmente verificamos que S e A são subespaço vetoriais de $M_n(\mathbb{K})$ com $S \cap A = \{0\}$. Seja $X \in M_n(\mathbb{K})$. Note que

$$X = \frac{1}{2}(X + X^t) + \frac{1}{2}(X - X^t).$$

Note que

$$(X + X^t)^t = X^t + X \in S.$$

De forma semelhante temos que

$$(X - X^t)^t = X^t - X = -(X - X^t) \in A.$$

Logo $M_n(\mathbb{K}) = S \oplus A$.

Exercício 4. Se os vetores $v_1, v_2, ..., v_m$ de um espaço vetorial V geram um subespaço de dimensão r, prove que o conjunto dos vetores $(\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$ tais que $\alpha_1 v_1 + + \alpha_m v_m = 0$ é um subespaço vetorial de \mathbb{R}^m de dimensão m - r.

Demonstração. Seja S' o conjunto dos vetores $(\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$ tais que $\alpha_1 v_1 + + \alpha_m v_m = 0$.

1. $0 \in S'$.

De fato, temos que

$$0 \cdot v_1 + \dots + 0 \cdot v_m = 0.$$

2. Se $(\alpha_1,...,\alpha_m), (\alpha_{1'},...,\alpha_{m'}) \in S'$ então $(\alpha_1,...,\alpha_m) + (\alpha_{1'},...,\alpha_{m'}) \in S'$. De fato, note que

$$(\alpha_1 + \alpha_{1'}v_1 + \dots + (\alpha_m + \alpha_{m'})v_m = \alpha_1v_1 + \dots + \alpha_mv_m + \alpha_{1'}v_1 + \dots + \alpha_{m'}v_m$$
$$= 0 + 0$$
$$= 0.$$

3. Se $\alpha \in \mathbb{K}$ e $(\alpha_1, ..., \alpha_m) \in S'$, então $\alpha \cdot (\alpha_1, ..., \alpha_m) \in S'$.

$$\alpha \cdot \alpha_1 v_1 + \dots + \alpha \cdot \alpha_m v_m = \alpha(\alpha_1 v_1 + \dots + \alpha_m v_m)$$
$$= \alpha \cdot 0$$
$$= 0.$$

Logo S é um subespaço vetorial de \mathbb{R}^m como queríamos mostrar.

Sejam então S o subespaço gerado pelos vetores $v_1, v_2, ..., v_m$ e S' o subespaço vetorial gerado pelos vetores $(\alpha_1, ..., \alpha_m) \in \mathbb{R}^m$ tais que $\alpha_1 v_1 + + \alpha_m v_m = 0$. Seja

$$\mathcal{D} = \{v_1, ..., v_r\},\$$

uma base de S. Se r=m então

$$\alpha_1 \cdot v_1 + \dots + \alpha_m \cdot v_m = 0$$

$$\Rightarrow \alpha_1 = \dots = \alpha_m = 0.$$

Logo $S' = \{0\}$ é o subespaço trivial. Portanto dim S' = m - r = 0. Suponhamos então que r < m. Então os vetores

$$\{v_{r+1},...,v_m\}$$

podem ser escritos como combinação linear da base $\mathcal{D} = \{v_1, ..., v_r\}$. Como cada combinação linear **é única**, existem m-r vetores em S' tais que

$$\alpha_{1(r+1)} \cdot v_1 + \ldots + \alpha_{r(r+1)} \cdot v_{rm} + 0 \cdot v_{r+2} + \ldots + 0 \cdot v_m \ = \ v_{r+1}.$$

:

$$\alpha_{1m} \cdot v_1 + \ldots + \alpha_{rm} \cdot v_r + 0 \cdot v_{r+1} + \ldots + 0 \cdot v_{m-1} = v_m.$$

Logo

$$\{(\alpha_{1(r+1)},...,\alpha_{m(r+1)},-1,...,0),...,(\alpha_{1m},...,\alpha_{rm},0,...,-1)\},\$$

é uma base de S'. Portanto dim S' = m - r.

Teorema 1. Seja A uma matriz e $p_T(\lambda) = (\lambda - \lambda_1)^{\alpha_1} \cdot ... \cdot (\lambda - \lambda_m)^{\alpha_m}$ o seu polinômio característico. Então A será diagonalizável se, e somente se, o polinômio minimal é da forma $m_T(\lambda) = (\lambda - \lambda_1) \cdot ... \cdot (\lambda - \lambda_m)$.

Demonstração. Encontra-se em https://encurtador.com.br/uyzCN, Teorema 1.

Exercício 5. A transformação linear T em \mathbb{R}^2 definida por $T(x_1, x_2) = (x_1, 0)$ é tal que $T^2 = T$. Prove que se S é uma transformação linear tal que $S^2 = S$ então S = 0, S = I em que I é a identidade ou existe uma base ordenada \mathcal{B} tal que $[S(x_1, x_2)]_{\mathcal{B}} = [(x_1, 0)]_{\mathcal{B}}$.

Demonstração. Se S=0 ou S=I então $S^2=S.$ Suponhamos então que $S\neq 0$ e $S\neq I$ e consideremos o polinômio

$$p(\lambda) = \lambda(\lambda - 1).$$

Como $S \neq 0$, então S não se anula em $q(\lambda) = \lambda$. Como $S \neq I$, então S não se anula em $r(\lambda) = \lambda - 1$. Como

$$p(S) = S(S - I)$$
$$= S^{2} - S$$
$$= 0,$$

teremos que p é o **polinômio minimal** de S. Segue daí que S é diagonalizável, pelo **Teorema 1**. Desse modo, existe uma base $\mathcal B$ formada por autovetores de S, tal que que

$$[S]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Consequentemente $[S(x_1, x_2)]_{\mathcal{B}} = [(x_1, 0)]_{\mathcal{B}}$.

6 Prova de Seleção para o Mestrado em Matemática 2018.1

20 de Outubro de 2023

Exercício 1. Seja V o espaço das funções polinomiais de \mathbb{R} em \mathbb{R} . Considere o operador linear $D:V\longrightarrow V$ dado por D(p)=p', onde p' denota a derivada da função p, para toda $p\in V$.

- (a) Encontre o núcleo e a imagem de D.
- (b) D tem inversa à direita?

Demonstração.

(a) Seja $p \in V$. Então

$$D(p) = 0$$

$$\Leftrightarrow p \in \mathbb{R}$$

$$\Rightarrow Ker(D) = \mathbb{R}.$$

Provaremos agora que D é sobrejetiva.

Seja
$$p=\sum\limits_{i=0}^n~a_ix^i\in V$$
arbitrário. Tome $q=\sum\limits_{i=1}^{n+1}~\frac{a_{i-1}x^i}{i}\in V$. Então

$$D\bigg(\sum_{i=1}^{n+1}\frac{a_{i-1}x^i}{i}\bigg) \ = \ \sum_{i=1}^{n+1}D\bigg(\frac{a_{i-1}x^i}{i}\bigg) \ = \ \sum_{i=0}^n \ a_ix^i \ = \ p.$$

Logo D é uma aplicação sobrejetiva. Portanto Im(D) = V.

(b) Sabemos que uma função admite inversa à direita se, e somente se, é sobrejetiva. Como D é uma aplicação sobrejetiva, temos que D admite inversa à direita.

Exercício 2. Seja V um espaço vetorial de dimensão finita n sobre um corpo F. Dada uma base ordenada $\mathcal{B} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ de V, considere o único operador linear sobre V tal que

$$T(\alpha_j) = a_{j+1}$$
, para $j = 1, 2, ..., n - 1$ e $T(\alpha_n) = 0$.

- (a) Qual é a matriz de T com relação a \mathcal{B} ?
- (b) Prove que $T^n = 0$, mas $T^{n-1} \neq 0$.

Demonstração.

(a) Note que

$$T(\alpha_{1}) = 0 \cdot \alpha_{1} + 1 \cdot \alpha_{2} + 0 \cdot \alpha_{3} + \dots + 0 \cdot \alpha_{n}.$$

$$T(\alpha_{2}) = 0 \cdot \alpha_{1} + 0 \cdot \alpha_{2} + 1 \cdot \alpha_{3} + \dots + 0 \cdot \alpha_{n}.$$
...
...
...
$$T(\alpha_{n-1}) = 0 \cdot \alpha_{1} + 0 \cdot \alpha_{2} + 0 \cdot \alpha_{3} + \dots + 0 \cdot \alpha_{n-1} + 1 \cdot \alpha_{n}.$$

$$T(\alpha_{n}) = 0 \cdot \alpha_{1} + 0 \cdot \alpha_{2} + 0 \cdot \alpha_{3} + \dots + 0 \cdot \alpha_{n-1} + 0 \cdot \alpha_{n}.$$

Logo

(b) Notemos que

$$p_T(\lambda) = det \begin{vmatrix} \lambda & 0 & \dots & 0 & 0 \\ 1 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \lambda \end{vmatrix}$$

$$= \lambda^n.$$

Segue do Teorema de Cayley-Hamilton que

$$p_T(T) = (T)^n$$
$$= T^n$$
$$= 0,$$

como queríamos mostrar. Por definição, temos que

$$T^{n-1} = \underbrace{T \circ T \circ \dots \circ T}_{\text{n-1 vezes}}.$$

Sendo assim

$$T^{n-1}(\alpha) = (T \circ T \circ \dots \circ T)(\alpha_1)$$
$$= T(T^{n-2}(\alpha_1))$$
$$= T(\alpha_{n-1})$$
$$= \alpha_n.$$

Logo $T^{n-1} \neq 0$.

Exercício 3. Seja V o espaço vetorial das funções polinomiais de \mathbb{R} em \mathbb{R} , de grau menor ou igual a 2. Sejam a_1 , a_2 e a_3 números reais distintos. Considere a função $L_i: V \longrightarrow \mathbb{R}$, dada por $L_i(p) = p(a_i)$, para todo $p \in V$, onde i = 1, 2, 3.

- (a) Prove que $L_1.L_2$ e L_3 são funcionais lineares linearmente independentes.
- (b) Encontre a base de V cuja base dual é $\{L_1, L_2, L_3\}$.

 $\label{eq:linear_com_br} Demonstração. \ \, Solução \,\, adaptada \,\, de < https://encurtador.com.br/pqFL1> \, e < https://encurtador.com.br/pqFL1> \, e < https://encurtador.com.br/nouwz>.$

(a) Sejam $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tais que

$$\sum_{i=1}^{3} \alpha_i \cdot L_i = 0.$$

Então, para todo $p \in V$, temos que

$$\sum_{i=1}^{3} \alpha_i \cdot L_i(p) = 0.$$

Considere os pontos $\{(a_1,0),(a_2,1),(a_3,1)\}$. Conseguimos determinar um polinômio p_1 de grau 2, via **Polinômios de Lagrange**, que passa por esses três pontos.

Prosseguindo dessa forma obtemos polinômios p_2 e p_3 de grau dois que passam pelos pontos $\{(a_1, 1), (a_2, 0), (a_3, 1)\}$ e $\{(a_1, 1), (a_2, 1), (a_3, 0)\}$, respectivamente.

Note que

$$\sum_{i=1}^{3} \alpha_i \cdot L_i(p_1) = \alpha_2 + \alpha_3 = 0$$

$$\sum_{i=1}^{3} \alpha_i \cdot L_i(p_2) = \alpha_1 + \alpha_3 = 0$$

$$\sum_{i=1}^{3} \alpha_i \cdot L_i(p_3) = \alpha_1 + \alpha_2 = 0,$$

o que implica que $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

(b) Não consegui essa.

.

Exercício 4. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ um operador linear. Prove que

$$T^2 - tr(T)T + det(T)I = 0,$$

onde I é a transformação identidade.

Demonstração. Seja α uma base de \mathbb{R}^2 e

$$[T]_{\alpha} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

a matriz de T com respeito a base α . Note que

$$P_{T}(\lambda) = det \begin{vmatrix} a - \lambda & c \\ b & d - \lambda \end{vmatrix}$$
$$= \lambda^{2} - \underbrace{(a+d)}_{tr(T)} \lambda + \underbrace{ad - bc}_{det(T)}.$$

Segue do Teorema de Cayley - Hamilton que

$$P_T(T) = (T)^2 - (a+d)T + (ad - bc)I.$$

$$= T^2 - tr(T)T + det(T)I$$

$$= 0,$$

como queríamos mostrar.

Exercício 5. Considere o conjunto dos números reais \mathbb{R} como espaço vetorial sobre o corpo \mathbb{Q} dos números racionais, com as operações usuais. Sejam \mathbb{P} o conjunto dos números primos e

$$S = \{log(p) ; p \in \mathbb{P} e p > 1\},\$$

onde log é a função logaritmo natural. Prove que S é linearmente independente. Conclua que \mathbb{R} possui dimensão infinita sobre \mathbb{Q} , justificando cuidadosamente.

Demonstração. Sejam $p_1,...,p_n\in\mathbb{P}$ e $\alpha_1,...,\alpha_n\in\mathbb{Q}$ tais que

$$\sum_{i=1}^{n} \alpha_i \cdot \log(p_i) = 0.$$

Sem perda de generalidade, suponhamos que os α_i são todos inteiros (**uma vez** que se tomarmos α como sendo o mdc dos denominadores de α_i , teríamos $\alpha \cdot \alpha_i \in \mathbb{Z}$ e $\alpha \cdot \sum_{i=1}^n \alpha_i \cdot \log(p_i) = 0$).

Então

$$\sum_{i=1}^{n} \alpha_{i} \cdot \log(p_{i}) = \sum_{i=1}^{n} \log(p_{i}^{\alpha_{i}}) = 0$$

$$\Rightarrow \log\left(\prod p_{i}^{\alpha_{i}}\right) = 0$$

$$\Rightarrow \prod p_{i}^{\alpha_{i}} = 1$$

$$\Rightarrow \alpha_{i} = 0,$$

para todo $1 \leq i \leq n$, por conta da unicidade na decomposição de fatores primos. Desse modo S é um conjunto L.I e infinito. Sendo assim, $\mathbb R$ possui dimensão infinita sobre $\mathbb Q$.

7 Prova de Seleção para o Mestrado em Matemática 2018.2

21 de Outubro de 2023

Exercício 1. Sejam V e W espaços vetoriais de dimensões quaisquer (finitas ou infinitas) sobre o mesmo corpo \mathbb{K} . Demonstre que existe uma transformação linear injetora $T:V\longrightarrow W$ se, e somente se, dim $V\leq \dim W$.

Demonstração.

 \Rightarrow Sejam $T:V\longrightarrow W$ injetora e α uma base de V. Suponhamos que

$$\dim W < \dim W$$

.

Como T é injetora, então T leva conjuntos L.I em conjuntos L.I. Sendo assim, $T(\alpha)$ é uma subconjunto L.I de W. Notemos então que

$$\dim V = \dim < T(\alpha) > .$$

Mas isso é um absurdo, pois $< T(\alpha) >$ é um subespaço vetorial de W e todo subespaço vetorial de W deve possuir dimensão menor ou igual a dimensão de W.

 \Leftarrow Sejam V e W espaços vetoriais. Sejam α e β bases desses espaços vetoriais, respectivamente. Suponhamos que

$$\dim\,V\ \leq\ \dim\,W.$$

Então

$$|\alpha| \leq |\beta|$$
.

Sendo assim, existe uma função $f:\alpha\longrightarrow\beta$ injetiva. Podemos então estender essa função f para uma transformação linear T injetiva da seguinte maneira. Escrevamos um vetor $v=\sum\limits_{i=1}^n \ a_i\cdot\alpha_i$ como uma combinação linear dos elementos de α . Então

$$T(v) = \sum_{i=1}^{n} a_i \cdot f(a_i).$$

é uma transformação linear injetiva.

Exercício 2. Sejam V e W espaços vetoriais sobre o mesmo corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear. Prove que, para todo subespaço U de V e para todo $v\in V,\, Tv\in T(U)$ se, e somente se, existe $u\in \mathrm{Ker}\ T$ tal que $v+u\in U$.

Demonstração.

 \Rightarrow Sejam U um subespaço vetorial de V e $v \in V$ tais que $T(v) \in T(U)$. Por definição

$$T(U) = \{T(u) ; u \in U\}.$$

Sendo assim, existe $u \in U$ tal que

$$T(u) = T(v)$$

$$\Leftrightarrow T(u) - T(v) = T(u - v) = 0$$

$$\Rightarrow u - v \in \text{Ker } T.$$

Note então que $v + (u - v) = u \in U$.

 \Leftarrow Sejam Uum subespaço vetorial de Ve $v \in V$ tais que $v+u \in U,$ para algum $u \in \mathrm{Ker}\ T.$ Então

$$T(v+u) = T(v) + T(u)$$

$$= T(v) + T(u)^{0}$$

$$= T(v)$$

$$\in T(U).$$

Exercício 3. Sejam \mathbb{K} um corpo e $P(\mathbb{K})$ o \mathbb{K} -espaço vetorial dos polinômio em um uma indeterminada com coeficientes em \mathbb{K} . Demonstre que o operador de derivação $D: P(\mathbb{K}) \longrightarrow P(\mathbb{K})$ é linear e é sobrejetor mas não injetor.

Demonstração.

1. D é linear.

Sejam
$$p=\sum\limits_{i=0}^{n}~a_{i}x^{i},q=\sum\limits_{i=0}^{m}~b_{j}x^{j}\in P(\mathbb{K})$$
e $\alpha\in\mathbb{K}$. Então

$$D\left(\alpha \cdot p + q\right) = D\left(\sum_{i=0}^{n} \alpha \cdot a_{i}x^{i} + \sum_{i=0}^{m} b_{j}x^{j}\right)$$

$$= \sum_{i=0}^{n} \alpha \cdot a_{i} \cdot i \cdot x^{i-1} + \sum_{i=0}^{m} b_{j} \cdot j \cdot x^{j-1}$$

$$= \alpha \cdot \sum_{i=0}^{n} a_{i} \cdot i \cdot x^{i-1} + \sum_{i=0}^{m} b_{j} \cdot j \cdot x^{j-1}$$

$$= \alpha \cdot D(p) + D(q).$$

2. D é sobrejetor.

Seja
$$p = \sum_{i=0}^{n} a_i x^i \in P(\mathbb{K})$$
 arbitrário. Tome $q = \sum_{i=1}^{n+1} \frac{a_{i-1} x^i}{i} \in P(\mathbb{K})$. Então

$$D\left(\sum_{i=1}^{n+1} \frac{a_{i-1}x^i}{i}\right) = \sum_{i=1}^{n+1} D\left(\frac{a_{i-1}x^i}{i}\right) = \sum_{i=0}^n a_i x^i = p.$$

Logo D é uma aplicação sobrejetiva.

3. D não é injetor.

Note que

$$D(1) = D(2) = 0,$$

 $com 1 \neq 2$.

Teorema 1. Seja A uma matriz e $p_T(\lambda) = (\lambda - \lambda_1)^{\alpha_1} \cdot ... \cdot (\lambda - \lambda_m)^{\alpha_m}$ o seu polinômio característico. Então A será diagonalizável se, e somente se, o polinômio minimal é da forma $m_T(\lambda) = (\lambda - \lambda_1) \cdot ... \cdot (\lambda - \lambda_m)$.

Demonstração. Encontra-se em https://encurtador.com.br/uyzCN, Teorema 1.

Exercício 4. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a transformação linear definida por:

$$T(x, y, z) = (x, -x + 2y - z, -2x + 2y - z).$$

Determine a matriz A associada a T na base canônica de \mathbb{R}^3 , verifique de A é diagonalizável e determine uma matriz de diagonalização P.

Demonstração. Seja α a base canônica do \mathbb{R}^3 . Então

$$[A]_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & -1 \\ -2 & 2 & -1 \end{bmatrix}$$

Seja

$$p_T(\lambda) = \det \begin{vmatrix} 1 - \lambda & 0 & 0 \\ -1 & 2 - \lambda & -1 \\ -2 & 2 & -1 - \lambda \end{vmatrix}$$
$$= -\lambda(\lambda - 1)^2.$$

Note que

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & -1 \\ -2 & 2 & -1 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & -1 \\ -2 & 2 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & -1 \\ -2 & 2 & -1 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & -1 \\ -2 & 2 & -2 \end{bmatrix} \end{pmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Logo A é diagonalizável, pelo **Teorema 1.** Tomando $\lambda=1$ obtemos o sistema linear

$$-x + y - z = 0$$
$$-2x + 2y - 2z = 0$$

Tomando x = y - z encontramos

$$(y-z, -y+z+2y-z, -2y+2z+2y-z) = (y-z, y, z)$$

= $y(1, 1, 0) + z(-1, 0, 1)$

Logo o auto-espaço associado a $\lambda = 1$ é [(1, 1, 0), (-1, 0, 1)]. Note que

$$T(0,1,2) = 0 \cdot (0,1,2) = 0.$$

Sendo assim, o auto-espaço associado a $\lambda = 0$ é [(0,1,2)]. Desse modo,

$$[P]_{\alpha} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

é uma triz de diagonalização.

Exercício 5. Sejam W o subespaço de \mathbb{R}^3 gerado pelos vetores (2, -1, 1) e (-3, 0, 1), e seja · o produtor interno no espaço \mathbb{R}^3 definido por

$$(a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = \sum_{i=1}^{3} (i+1)a_ib_i.$$

Encontre o complemento ortogonal W^{\perp} de W neste produto interno e uma base ortonormal de W^{\perp} .

Demonstração. Considere o vetor (6, 20, 9). Note que

$$(6,20,9) \cdot (2,-1,1) = 2 \cdot 6 \cdot 2 + 3 \cdot 20 \cdot (-1) + 4 \cdot 9$$
$$= 24 - 60 + 36$$
$$= 0.$$

e

$$(6,20,9) \cdot (-3,0,1) = 2 \cdot 6 \cdot (-3) + 3 \cdot 20 \cdot 0 + 4 \cdot 9$$
$$= -36 + 36$$
$$= 0.$$

Logo
$$W^{\perp} = \left[\frac{(6, 20, 9)}{||(6, 20, 9)||} \right].$$

8 Prova de Seleção para o Mestrado em Matemática 2019.1

10 de Novembro de 2023

Exercício 1. Sejam E um espaço vetorial de dimensão finita n e F um subespaço vetorial de E de dimensão m. Denotamos por E^* o espaço dua de E. Por definição, o **anulador** de F, denotado por F° , é o conjunto

$$\{f \in E^* \mid f(u) = 0, \text{ para todo } u \in F\}.$$

Mostre que F° é um subespaço vetorial de E^{*} e calcule sua dimensão.

Demonstração. Trivial.

Exercício 2. Sejam $n \ge 1$ um número natural, a um número real, $\omega = (\omega_1, ..., \omega_n)$ um vetor de \mathbb{C}^n e $A = A(a, \omega_1, ..., \omega_n)$ a matriz complexa definida por

$$A = \begin{bmatrix} a - |w_1|^2 & -\overline{w_1}w_2 & \dots & -\overline{w_1}w_n \\ -\overline{w_2}w_1 & a - |w_2|^2 & \dots & -\overline{w_2}w_n \\ \vdots & \vdots & \ddots & \vdots \\ -\overline{w_n}w_1 & -\overline{w_n}w_2 & \dots & a - |w_n|^2 \end{bmatrix}$$

(dado $z \in \mathbb{C}$, denotamos |z| o seu módulo e por \overline{z} o seu conjugado). Calcule o determinante de A.

Demonstração. Encontra-se em: Determinant of a complex matrice.

Exercício 3. Seja $n \geq 1$ um número natural e a um número real. Denotamos por $\mathbb{P}_n[X]$ o espaço vetorial dos polinômios em uma indeterminada com coeficientes em \mathbb{R} de grau $\leq n$. Determine a matriz A da aplicação linear $T_a: \mathbb{P}_n[X] \longrightarrow P_n[X]$, $P(X) \longrightarrow P(X+a)$ em relação à base $\{1, X, X^2, ..., X^n\}$. Calcule os autovalores de A.

Demonstração. Consideremos a base $\{1, X, X^2, ..., X^n\}$. Note que

$$T(X^{n}) = (X+a)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{n-k} a^{k}$$

$$T(X^{n-1}) = (X+a)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} X^{n-1-k} a^{k}$$

$$\vdots$$

$$T(X^{3}) = X^{3} + 3aX^{2} + 3a^{2}X + a^{3}$$

$$T(X^{2}) = X^{2} + 2aX + a^{2}$$

$$T(X) = X + a$$

$$T(1) = 1 + a.$$

Logo

$$[T] = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ \vdots & 1 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 & \vdots & \vdots \\ \vdots & \vdots & \ddots & 3a & 1 & 0 & \vdots \\ \vdots & \vdots & \ddots & 3a^2 & 2a & 1 & 0 \\ a^n & a^{n-1} & \dots & a^3 & a^2 & a & 1+a \end{bmatrix}$$

Note que [T] é uma matriz triangular inferior. Logo $p_T(\lambda) = (\lambda - 1)^{n-1}(\lambda - [1 + a])$. Desse modo os autovalores de T são 1 e 1 + a.

Exercício 4. Seja $J: E \longrightarrow E$ uma transformação linear de um espaço vetorial real E de dimensão finita n satisfazendo $J \circ J = -I$, I sendo o operador identidade de E. Mostre que n é par e que existe uma família de vetores $e_1, ..., e_k, k = n/2$ de E, tal que que $\{e_1, ..., e_k, J(e_1), ..., J(e_k)\}$ seja uma base de E.

Demonstração.

1. $n \in par$.

Sabemos que se A^2 é um operador inversível, então A é também inversível. Suponhamos que n seja ímpar. Então $J^2=-I$ implica que

$$\det J^2 = \det J \cdot \det J$$

$$= \det -I$$

$$= (-1)^n$$

$$= -1,$$

o que é absurdo, uma vez que det J é um número real. Logo n deve ser par.

2. Existe uma família de vetores $e_1, ..., e_k, k = n/2$ de E, tal que que $\{e_1, ..., e_k, J(e_1), ..., J(e_k)\}$ seja uma base de E.

Seja $\{e_1,...,e_k,e_{k+1},...,e_n\}$ uma base de E. Como det $J\neq 0$, o operador J é inversível. Portanto J é injetivo.

3. Não existe $\alpha \in \mathbb{R} - \{0\}$ tal que $J(e_i) = \alpha e_i$.

Suponhamos que existe $\alpha \in \mathbb{R}$ tal que $J(e_i) = \alpha e_i$. Então

$$J(e_i) = \alpha e_i$$

$$\Rightarrow J^2(e_i) = -e_i = \alpha^2 e_i$$

$$\Rightarrow -1 = \alpha^2,$$

o que é absurdo. Logo $J(e_i) \neq \alpha e_i$.

Como J é injetivo, temos que $J(e_i) \neq J(e_j)$ para $i \neq j$ e o conjunto $\{J(e_1), ..., J(e_k)\}$ é L.I. Considere agora o conjunto

$$\{e_1, ..., e_k, J(e_1), ..., J(e_k)\},\$$

Sejam $\alpha_1,...,\alpha_k,\alpha_{k+1},...,\alpha_n\in\mathbb{R}$ tais que

$$\alpha_{1}e_{1} + \dots + \alpha_{k}e_{k} + \alpha_{k+1}J(e_{1}) + \dots + \alpha_{n}J(e_{k}) = 0$$

$$\Rightarrow J(\alpha_{1}e_{1} + \dots + \alpha_{k}e_{k} + \alpha_{k+1}J(e_{1}) + \dots + \alpha_{n}J(e_{k})) = 0$$

$$\Leftrightarrow \alpha_{1}J(e_{1}) + \dots + \alpha_{k}J(e_{k}) - \alpha_{k+1}e_{1} - \dots - \alpha_{n}e_{k} = 0$$

$$\Rightarrow \alpha_{1}(e_{1} - J(e_{1})) + \dots + \alpha_{k}(e_{k} - J(e_{k})) + \alpha_{k+1}(J(e_{1}) - e_{1}) + \dots + \alpha_{n}(J(e_{k}) + e_{k}) = 0$$

$$\Rightarrow \alpha_{1} = \dots = \alpha_{k} = \dots = \alpha_{n} = 0.$$

Logo o conjunto $\{e_1,...,e_k,J(e_1),...,J(e_k)\}$ é L.I. Como dim E=n, temos que esse conjunto é uma base de E.

Exercício 5. Seja A a matriz real definida por

$$\begin{bmatrix} 3 & -2 \\ 1 & -3 \end{bmatrix}.$$

Calcule A^{2018} .

Demonstração. Temos que

$$p_T(\lambda) = \det \begin{vmatrix} 3 - \lambda & -2 \\ 1 & -3 - \lambda \end{vmatrix}$$
$$= -9 - 3\lambda + 3\lambda + \lambda^2 + 2$$
$$= \lambda^2 - 7$$
$$= (\lambda - \sqrt{7})(\lambda + \sqrt{7}).$$

1. $\lambda = \sqrt{7}$.

Considere o sistema

$$(3 - \sqrt{7})x - 2y = 0$$
$$x - (3 + \sqrt{7})y = 0$$

Tomemos
$$y=\frac{(3-\sqrt{7})x}{2}$$
. Então
$$x-(3+\sqrt{7})y \iff x-(3+\sqrt{7})\frac{(3-\sqrt{7})x}{2}$$

$$\Leftrightarrow x-\frac{(9-7)x}{2} = 0$$

$$\Leftrightarrow x-x = 0.$$

Logo o vetor $\left(1, \frac{(3-\sqrt{7})}{2}\right)$ é um autovetor de A associado a $\lambda = \sqrt{7}$.

$$2. \ \lambda = -\sqrt{7}.$$

Considere o sistema

$$(3 + \sqrt{7})x - 2y = 0$$
$$x - (3 - \sqrt{7})y = 0$$

Tomemos
$$y = \frac{(3+\sqrt{7})x}{2}$$
. Então

$$x - (3 - \sqrt{7})y \iff x - (3 + \sqrt{7})\frac{(3 + \sqrt{7})x}{2}$$
$$\iff x - \frac{(9 - 7)x}{2} = 0$$
$$\iff x - x = 0.$$

Logo o vetor $\left(1, \frac{(3+\sqrt{7})}{2}\right)$ é um autovetor de A associado a $\lambda = -\sqrt{7}$. Desse modo

$$\begin{bmatrix} 3 & -2 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \frac{3-\sqrt{7}}{2} & \frac{3+\sqrt{7}}{2} \end{bmatrix} \begin{bmatrix} \sqrt{7} & 0 \\ 0 & -\sqrt{7} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \frac{3-\sqrt{7}}{2} & \frac{3+\sqrt{7}}{2} \end{bmatrix}^{-1}.$$

Segue daí que

$$\begin{bmatrix} 3 & -2 \\ 1 & -3 \end{bmatrix}^{2018} = \begin{bmatrix} 1 & 1 \\ \frac{3-\sqrt{7}}{2} & \frac{3+\sqrt{7}}{2} \end{bmatrix} \begin{bmatrix} \sqrt{7} & 0 \\ 0 & -\sqrt{7} \end{bmatrix}^{2018} \begin{bmatrix} 1 & 1 \\ \frac{3-\sqrt{7}}{2} & \frac{3+\sqrt{7}}{2} \end{bmatrix}^{-1}.$$

9 Prova de Seleção para o Mestrado em Matemática 2023.2

25 de Outubro de 2023

Parte I

Nas questões a seguir, assinale a(s) alternativa(s) corretamente com verdadeiro (V) ou falso (F).

Exercício 1. Seja V o espaço vetorial real de todos os polinômios com coeficientes reais de grau no máximo n (incluindo o polinômio nulo), na indeterminada t. Consideremos o operador linear $T:V\longrightarrow V$ definido por T(p)=p' (derivada de p), para todo $p\in V$.

- (a) 0 é o único autovalor de T.
- (b) T é injetivo.
- (c) T é sobrejetivo.
- (d) T é diagonalizável.
- (e) O polinômio característico de T é x^{n+1} .

Demonstração.

(a) Verdadeiro. Suponhamos que Tadmita um autovalor $\alpha\in\mathbb{R}$ não nulo. Então existe um polinômio $p\in V$ não nulo, tal que

$$T(p) = \alpha \cdot p$$
.

Como o grau de p é no máximo n, teremos que sua (n+1)-ésima derivada deverá ser igual a 0. Isso contradiz o fato de α ser um autovalor de T, uma vez que

$$T^{n+1}(p) = \alpha^{n+1} \cdot p.$$

Logo o único autovalor de T é 0.

(b) Falso. Note que

$$T(1) = T(0),$$

com $1 \neq 0$.

(c)Falso. Note que não existe $p \in V$ tal que

$$T(p) = x^n.$$

(e) Verdadeiro. Trivial.

Exercício 2. Seja V o espaço vetorial real de todas as matrizes reais $n \times n$. Consideremos o operador linear $T: V \longrightarrow V$, definido por $T(A) = A^t$ (transposta de A), para todo $A \in V$, e seja A_T a matriz associada a T na base canônica.

- (a) 1 e 1 são os únicos autovalores de T.
- (b) O autoespaço associado a 1 tem dimensão $\frac{n(n+1)}{2}.$
- (c) O autoespaço associado a 1 tem dimensão $\frac{n(n-1)}{2}.$
- (d) $\det(A_T) \in \{-1, 1\}.$
- (e) Ker $T \neq \{0\}$.

Demonstração.

(a) Verdadeiro.

- (b) Verdadeiro.
- (c) Verdadeiro.
- (d) Verdadeiro. Note que a matriz associada a T na base canônica consiste na permutação das colunas da matriz identidade I_{n^2} . Como permutar as colunas de uma matriz quadrada altera apenas o sinal do determinante, teremos que $\det(A_T) \in \{-1, 1\}$.
- (e) Falso. Como $det(A_T) \in \{-1, 1\}$, teremos que o operador T é inversível. Sendo assim, T é injetivo e, portanto, Ker $T = \{0\}$.

Exercício 3. Seja V um espaço vetorial real de dimensão n munido de um produto escalar $\langle \cdot, \cdot \rangle$ e sejam $S_1 = \{v_1, ..., v_n\}$ uma base de V e $S_2 = \{w_1, ..., w_n\}$ um sistema de n vetores distintos de V. Adicionalmente, sejam A e B dois operadores lineares em V tais que $\langle Au, A_u \rangle = \langle B_u, B_u \rangle$, para todo $u \in V$.

- (a) As hipóteses dadas implicam que $\langle A_u, A_v \rangle = \langle B_u, B_v \rangle$, para todo $u, v \in V$.
- (b) Não existe um operador ortogonal $C:V\longrightarrow V$ tal que A=CB.
- (c) Existe, e não é único, um operador linear $F:V\longrightarrow V$ tal que $F(v_i)=w_i$ para todo i=1,2,...,n.
- (d) Existe um automorfismo $G: V \longrightarrow V$ tal que $G(S_1) = S_2$ se, e somente se, S_2 é linearmente independente.
- (e) Se S_2 é linearmente independente e $\langle v_i, v_j \rangle = \langle w_i, w_j \rangle$, para todo i, j = 1, ..., n. Então existe um automorfismo ortogonal $H: V \longrightarrow V$ tal que $Hv_i = w_i$, para todo i = 1, ..., n.

Demonstração.

(a) Verdadeiro. Sejam $u, v \in V$. Consideremos então o vetor $u - v \in V$. Note que

$$\langle A(u-v), A(u-v) \rangle = \langle B(u-v), B(u-v) \rangle \text{ (por hipótese)}$$

$$\Leftrightarrow \langle A(u), A(u) \rangle - 2\langle A(u), A(v) \rangle + \langle A(v), A(v) \rangle = \langle B(u), B(u) \rangle - 2\langle B(u), B(v) \rangle + \langle B(v), B(v) \rangle$$

$$\Rightarrow \langle A(u), A(u) \rangle - 2\langle A(u), A(v) \rangle + \langle A(v), A(v) \rangle = \langle A(u), A(u) \rangle - 2\langle B(u), B(v) \rangle + \langle A(v), A(v) \rangle$$

$$\Rightarrow -2\langle A(u), A(v) \rangle = -2\langle B(u), B(v) \rangle$$

$$\Rightarrow \langle A(u), A(v) \rangle = \langle B(u), B(v) \rangle,$$

para todos $u, v \in V$.

- (b) Falso. Suponhamos que os operadores A e B são iguais. Então $A = I \cdot B$, onde I é o operador identidade. Como sabemos, I é um operador ortognal.
- (c) Falso. O operador linear F existe e é único.
- (d) Falso.
- \Rightarrow Suponhamos que existe um automorfismo $G:V\longrightarrow V$ tal que $G(S_1)=S_2$. Como G é injetiva, então G leva vetores L.I em vetores L.I. Como S_1 é uma base de V e, portanto, é um conjunto L.I, então $G(S_1)=S_2$ é um conjunto L.I. \Leftarrow Suponhamos que S_2 é um conjunto L.I. Facilmente podemos definir uma transformação linear $G:V\longrightarrow V$ tal que $G(S_1)=S_2$. Basta associar a cada vetor $v_i\in S_1$ o vetor $G(v_i)=w_i\in S_2$. Essa transformação linear será injetiva. Portanto será sobrejetiva. Consequentemente G será um automorfismo.
- (e) Verdadeiro.

Parte II

Resolver as seguintes questões, justificando por extenso cada resposta.

Exercício 4. Considere a função

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (3z, 2y - x, -y)$

e as bases

$$B = \{(2,0,0), (-1,-1,0), (1,1,1)\}$$
 e $B' = \{(1,1,1), (0,1,1), (0,0,1)\}$

para o domínio e contradomínio respectivamente.

- (a) Verifique que T é uma transformação linear.
- (b) Determine a matriz A associada a T respeito às bases B e B'.
- (c) Determine Ker T e Im T. Em particular, determinar uma base e a dimensão para cada um desses espaços.
- (d) Estude a injetividade e a sobrejetividade de T.

Demonstração.

1.
$$T(0,0,0) = (0,0,0)$$
.

De fato

$$T(0,0,0) = (3 \cdot 0, 2 \cdot 0 - 0, -0) = (0,0,0).$$

2. Se $u, v \in \mathbb{R}^3$ e $\lambda \in \mathbb{K}$. Então $T(\lambda \cdot u + v) = \lambda \cdot T(u) + T(v)$.

Sejam
$$(x, y, z), (x', y', z') \in \mathbb{R}^3$$
 e $\lambda \in \mathbb{K}$. Então

$$T(\lambda x + x', \lambda y + y', \lambda z + z') = (3 \cdot (\lambda z + z'), 2 \cdot (\lambda y + y') - (\lambda x + x'), -(\lambda y + y'))$$

$$= (3\lambda z, 2\lambda y - \lambda x, -\lambda y) + (3z', 2y' - x', -y')$$

$$= \lambda \cdot (3z, 2y - x, -y) + (3z', 2y' - x', -y')$$

$$= T(x, y, z) + T(x', y', z').$$

Logo T é uma transformação linear.

(b)

$$[A]_{B'}^{B} = \begin{bmatrix} 0 & 0 & 3 \\ -2 & -1 & -2 \\ 2 & 2 & -2 \end{bmatrix}.$$

(c) Note que

$$3z = 0$$

$$T(x, y, z) = 0 \Leftrightarrow 2y - x = 0 \Rightarrow x = y = z = 0.$$

$$-y = 0$$

Desse modo T é injetiva. Consequentemente, dim Ker T=0. Segue do **Teorema** do **Núcleo e da Imagem** que dim Im(T)=3. Sendo assim

$$A = \{0\}$$
 e $B' = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\},$

são bases do Núcleo e da Imagem de T, respectivamente.

(d) Verificamos pelo item c que T é uma bijeção. Portanto T é injetiva e sobrejetiva.

Exercício 5. Demonstre a seguinte afirmação:

Seja A uma matriz superiormente triangular de ordem n. Então o operador linear de \mathbb{R}^n definido por A é um automorfismo se e somente se todos os elementos da diagonal principal de A são não nulos.

Demonstração. Sabemos que o determinante de uma matriz triangular é o produto dos elementos da diagonal principal. Sendo assim

A automorfismo \Leftrightarrow det $A \neq 0$.

- ⇔ Produto dos elementos da diagonal principal é diferente de zero.
- \Leftrightarrow Cada elemento da diagonal principal de A é não nulo.