A2 - Assignment

John Akujobi

4) Determine the single-precision and doubleprecision machine representation of the following decimal numbers:

```
a. 1.0, -1.0
```

Single Precision (32-bit)

For +1.0:

Normalized form:

 $1.0=1.0\times201.0=1.0$ \times 2^01.0=1.0×20

Sign bit: 0

• Exponent: 0+127=1270+127=1270+127=127 →\to→ in 8-bit binary: 01111111

Eraction: Since the significand is exactly 10, the

• Fraction: Since the significand is exactly 1.0, the fractional part is all zeros (23 zeros).

Hexadecimal: 0x3F800000

For -1.0:

• The only difference is the sign bit.

• Sign bit: 1

• Exponent: 127127127 (same as above)

Fraction: All zeros

Hexadecimal: 0xBF800000

Double Precision (64-bit)

For +1.0

Normalized form:

```
1.0=1.0\times2^0
```

Sign bit: 0

• Exponent: 0 + 1023 = 1023 in 11-bit binary:

011111111111

• Fraction: 52 zeros

Combined bit pattern:

Hexadecimal: 0x3FF0000000000000

For -1.0:

• Sign bit: 1

• Exponent: 0 + 1023 = 1023 in 11-bit binary:

011111111111

Fraction: 52 zeros

Combined bit pattern:

Hexadecimal: 0xBFF0000000000000

b. +0.0, -0.0

I went and read about the IEEE-754 which governs the machine representation of number. I found out that it makes a distinction between +0 and -0 even though arithmetically they compare equal.

Single Precision (32-bit)

For +0.0:

Sign bit: 0

• Exponent: All zeros: 00000000

Fraction: All zeros (23 bits)

Hexadecimal: 0x00000000

For -0.0:

• Sign bit: 1

Exponent: 00000000

Fraction: All zeros

Hexadecimal: 0x80000000

Double Precision (64-bit)

For +0.0:

• Sign bit: 0

Exponent: 11 zerosFraction: 52 zeros

Combined bit pattern:

• Hexadecimal: 0x0000000000000000

For -0.0:

• Sign bit: 1

Exponent: 11 zerosFraction: 52 zeros

Combined bit pattern:

• Hexadecimal: 0x8000000000000000

$\mathbf{c.} - 9876.54321$

Converting the Number to binary

Converting the larger digits (64)

 $\bullet \ \ 9876_{10} = 0010011010010100_2 = 1*2^{14}$

Converting the fraction to binary

- $0.54321 * 2^{10}10 \approx 556_{10} \approx 001000101100_2$
- The fraction conversion actually seems to go on forever and does not absolve to a perfect conversion
- So this is just an approximation

Binary

 $1.0011010010100100101110_2{\times}2^{13}$

Determine Exponent Field

	Single Precision	Double Precision
Sign	1	1
Exponent	13 + 127 = 140	14+ 1023 = 1036

	Single Precision	Double Precision
Exp	10001100	1000001100
Fraction	0011010010100100101100	0000 0001 0111 1100 0000 0000 0000 000
Bin	0 10001100 00110100101001000101100	0 10000001100 0011 0100 1010 0100 0101 1000 0111 1110 0111 1100 0000 0110 1110
Hex	461A522C	40C34A4587E7C06E

Single Precision

Binary = 0 10001100 00110100101001000101100

Hex = 461A522C

Double Precision

Binary = 0 10000001100 0011 0100 1010 0100 0101 1000 0111 1110 0111 1100 0000 0110

1110

Hex = 40C34A4587E7C06E

f. 64.37109375

Converting the Number to binary

Converting the larger digits (64)

 $\bullet \ \ \, 64_{10}=01000000_2=1*2^6$

Converting the fraction to binary

- $0.37109375 = 2^{-8} + 2^{-7} + 2^{-6} + 2^{-5} + 2^{-4} + 2^{-3} + 2^{-3} = 0.01011111$ or
- $0.37109375 * 2^8 = 95$
- $95_{10} == 010111111$
- So $0.37109375_{10} == 0.01011111_2 == 01011111_2 * 2^{-8}$

Binary

01000000.01011111

Table i used for conversion

0.5	0.1	2^{-1}
0.25	0.01	-2
0.125	0.001	-3
0.0625	0.0001	-4
0.03125	0.00001	-5
0.015 625	0.000001	-6
0.007 812 5	0.0000001	-7
0.003 906 25	0.0000001	-8
0.001 953 125	0.00000001	-9

Determine Exponent Field

	Single Precision	Double Precision
Sign	0	0
Exponent	6 + 127 = 133	6+ 1023 = 1029
Exp	10000101	1000000101
Fraction	0000001011111000000000	0000 0001 0111 1100 0000 0000 0000 0000 0000 0000 0000 0000
Bin	0 10000101 00000001011111000000000	0 1000000101 0000 0001 0111 1100 0000 0000 0000 0000 0000 0000 0000 0000
Hex	4280BE00	4050BE000000000

Single Precision

Binary = 0 10000101 00000001011111000000000

Hex = 4280BE00

Double Precision

Binary = 0 10000000101 0000 0001 0111 1100 0000 0000 0000 0000 0000 0000 0000

0000

Hex = 405017C0000000000

Results from python script

Here is the link to my code

jakujobi/ Scientific_Computation

Scientific_Computation/Assignment/A2 - Assignment/A2

Contribute to jakujobi/Scientific_Computation development by creating an account on GitHub.

github.com

```
Value: +1.0 (1.0)
Single Precision (32-bit):
Hex:
      0x3f800000
 Fields: Sign = 0 Exponent = 127 Fraction = 0
Double Precision (64-bit):
 Hex:
      0x3ff00000000000000
 Fields: Sign = 0 Exponent = 1023 Fraction = 0
______
Value: -1.0 (-1.0)
Single Precision (32-bit):
Hex: 0xbf800000
 Fields: Sign = 1 Exponent = 127 Fraction = 0
Double Precision (64-bit):
 Hex: 0xbff000000000000
 Fields: Sign = 1 Exponent = 1023 Fraction = 0
Value: +0.0 (0.0)
Single Precision (32-bit):
 Hex:
      0 \times 0
 Fields: Sign = 0 Exponent = 0 Fraction = 0
Double Precision (64-bit):
 Hex:
      0 \times 0
 Fields: Sign = 0 Exponent = 0 Fraction = 0
Value: -0.0 (-0.0)
Single Precision (32-bit):
```

```
Hex: 0x80000000
 Fields: Sign = 1 Exponent = 0 Fraction = 0
Double Precision (64-bit):
 Fields: Sign = 1 Exponent = 0 Fraction = 0
Value: -9876.54321 (-9876.54321)
Single Precision (32-bit):
 Binary: 1100011000011010010100100101100
 Hex: 0xc61a522c
 Fields: Sign = 1 Exponent = 140 Fraction = 1724972
Double Precision (64-bit):
 Hex: 0xc0c34a4587e7c06e
 Fields: Sign = 1 Exponent = 1036 Fraction = 926087423443054
Value: 64.37109375 (64.37109375)
Single Precision (32-bit):
 Binary: 01000010100000001011111000000000
 Hex: 0x4280be00
 Fields: Sign = 0 Exponent = 133 Fraction = 48640
Double Precision (64-bit):
 Hex: 0x405017c000000000
 Fields: Sign = 0 Exponent = 1029 Fraction = 26113401159680
```

16. Consider a computer that operates in base β and carries n digits in the mantissa of its floating-point number system. Show that the rounding of a real number x to the nearest machine number \tilde{x} involves a relative error of at most $\frac{1}{2}\beta^{1-n}$

Floating-Point Representation

- According to our textbook, a normalized number is written as $x=d_0.\,d_1d_2\cdots d_{n-1} imes eta^e$, where $d_{0
 eq 0}$ and $1\leq d_0.d_1\cdots d_n-1<eta 1\leq d_0.\,d_1\cdots d_{n-1}<eta.$
- For a fixed exponent e, the machine numbers are evenly spaced by $\Delta=eta^{e-n+1}.$

Rounding and Relative Error

Rounding Process:

Rounding x to the nearest machine number \tilde{x} gives an absolute error of at most $|x-\tilde{x}|\leq \frac{1}{2}\Delta=\frac{1}{2}\beta^{e-n+1}$.

Relative Error Bound:

Since x is normalized, $x = m \times \beta^e$ with m \geq 1.

• so, $|x| \ge \beta^e$. Dividing the absolute error by |x| yields:

$$rac{|x- ilde{x}|}{|x|} \leq rac{rac{1}{2}eta^{e-n+1}}{eta^e} = rac{1}{2}eta^{1-n}$$

This shows that rounding x to the nearest machine number introduces a relative error of at most

$$\frac{1}{2}\beta^{1-n}$$

Note

I wrote 2 scripts for these question, especially as Dr. Kimn values the skill to use programming to solve computational problems.

They are both in python, and i have saved the results from one of them in a text file.