Druhé cvičení

1. Dané jsou matice
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix},$$

(a) Určete: A^T, B^T .

(b) Určete: $A + B, A^T + B, 3 \cdot A + (-2) \cdot B$.

(c) Určete: AB, BA.

2. Jsou dány matice
$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}.$$
 Vypočtěte součiny AC a BC .

Obecně: Jak vypadají v porovnání s původní maticí C výsledky násobení AC a BC?

Výsledky: $AC = \begin{pmatrix} 5 & 10 \\ 5 & 6 \\ 3 & 4 \end{pmatrix}$ (první řádek C se zpětinásobil, druhý řádek se vyměnil se třetím), $BC = \begin{pmatrix} 1 & 2 \\ 0 & -2 \\ 5 & 6 \end{pmatrix}$ (od druhého řádku B se odečetl trojnásobek prvního).

3. Vypočítejte CD, kde C je z předchozího příkladu a $D=\begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$

Obecně: Jak vypadá v porovnání s původní maticí C výsledek násobení CD? A co DC?

Výsledky: $CD = \begin{pmatrix} 0 & 2 \\ -2 & 4 \\ -4 & 6 \end{pmatrix}$ (první sloupec výsledku vznikl jako minus dvojnásobek prvního sloupec C plus druhý sloupec C; druhý sloupec výsledku je stejný jako druhý sloupec C), součin DC nelze vypočítat.

4. Vypočítejte mocniny matic:

a)
$$\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}^3$$
, b) $\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}^4$, c) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^2$, d) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^3$.

$$\text{V\'{y}sledky: a)} \, \begin{pmatrix} 62 & 63 \\ 63 & 62 \end{pmatrix}, \, \text{b)} \, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \, \text{c)} \, \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \, \text{d)} \, \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

5. * Vypočítejte
$$n-\text{tou } (n \in \mathbb{N})$$
 mocninu matice:
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

6. Na množině reálných čísel řešte soustavy rovnic:

1

 $\text{V\'{y}sledky: a)} \left[\frac{1}{3}, \frac{8}{3}, -2 \right], \text{ b) nem\'{a} \'{r}e\'{e}sn\'{i}, c) \\ \left\{ [-t, 1, t]; t \in \mathbb{R} \right\}, \text{ d)} \left[\frac{4}{7}, 0, \frac{1}{7} \right], \text{ e)} \\ \left\{ \left[\frac{7-t}{5}, \frac{1-3t}{5}, t \right]; t \in \mathbb{R} \right\}, \text{ d)} \left[\frac{4}{7}, 0, \frac{1}{7} \right], \text{ e)} \left\{ \left[\frac{7-t}{5}, \frac{1-3t}{5}, t \right]; t \in \mathbb{R} \right\}, \text{ d)} \right\}$ f) $\left\{ \left[\frac{3-t}{3}, \frac{-t}{3}, t \right] ; t \in \mathbb{R} \right\}$.

7. Na množině reálných čísel řešte soustavy rovnic s parametrem $c \in \mathbb{R}$:

$$(x) + cy + 4z = 2$$
 $(x) + cy + 4z = c$
 $(x) + y + cz = 9$ $(x) + 2y + 3z = 3c - 1$
 $(x) + y + cz = 4$ $(x) + y + z = 2c$

prostě klasicky vypočítám, dostane dolů ve zlomku dám jako podmínku

na konec vypočítám všechny podmínky jako zvlášť. matice

Výsledky: a) pro $c \in \{-2, 2\}$ soustava nemá řešení, pro $c \in \mathbb{R} \setminus \{-2, 2\}$ je řešení $\left[-5, \frac{7(c-8)}{c^2}, \frac{7(2c-1)}{c^2}\right]$, b) pro c=5 soustava nemá řešení, pro c=2 je řešení $\{[7-t,t,-3];t\in\mathbb{R}\}$, pro $c\in\mathbb{R}\setminus\{2,5\}$ je řešení $\{[7-t,t,-3];t\in\mathbb{R}\}$, pro $c\in\mathbb{R}\setminus\{2,5\}$ je řešení $\{[7-t,t,-3];t\in\mathbb{R}\}$, pro $f\in\mathbb{R}$ $\left\lceil \frac{3c+2}{5-c}, \frac{7c-1}{5-c}, \frac{2c^2+1}{c-5} \right\rceil, \text{c) pro } c = 1 \text{ je řešení } \{[3-t,-1,t]; t \in \mathbb{R}\}, \text{pro } c \in \mathbb{R} \setminus \{1\} \text{ je řešení } [0,-c,3c], \text{d} \right)$ pro c=1 je řešení $\{[-t,t,t];t\in\mathbb{R}\}$, pro c=2 je řešení $\{[-2t,2t,t];t\in\mathbb{R}\}$, pro $c\in\mathbb{R}\setminus\{1,2\}$ je řešení [0,0,0], e) pro c=1 soustava nemá řešení, pro $c\in\mathbb{R}\setminus\{1\}$ je řešení $\left[\frac{3c}{c-1},-5c,\frac{8c^2-11c}{c-1}\right]$, f) pro $c\in\mathbb{R}\setminus\{1\}$ $\{-1,3\}$ soustava nemá řešení, pro $c \in \mathbb{R} \setminus \{-1,3\}$ je řešení $\left[\frac{-3c(c+2)}{8(c-3)(c+1)}, \frac{3c^2}{4(c-3)(c+1)}, \frac{c^2(c-2)}{8(c-3)(c+1)}\right]$.

8. Jsou dány matice

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -2 \\ -1 & 5 \\ 2 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

Najděte všechny matice X, pro které platí

a)
$$AX=B$$
, b) $XA=C$, c) $XA=C^T$
Výsledky: a) $\begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$, b) $\begin{pmatrix} 1-3t & -t & t \end{pmatrix}$, $t\in\mathbb{R}$, c) matice neexistuje

9. Najděte průsečnici rovin ρ_1, ρ_2 a napište alespoň dva různé body, které na této průsečnici leží.

$$\rho_1: 2x - y + 5z - 3 = 0$$
 $\rho_2: 3x - y + 2z + 1 = 0$

Výsledky: průsečnice: x = 3t - 4, y = 11t - 11, z = t, body: např.: [-4, -11, 0], [-1, 0, 1].

10. Na množině reálných čísel najděte řešení soustavy rovnic

Výsledky: $\{[s - 3t + 6, s, -3, 4 + 2t, t]; s, t \in \mathbb{R}\}$.

11. * Je dána matice

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 5 \end{pmatrix}.$$

Najděte všechny matice B,které s maticí Akomutují, tzn. pro které platí AB=BA.

Dříve, než začněte počítat, pokuste se několik takových matic uhodnout. Pak se přesvědčte, že uhodnuté matice jsou skutečně speciálním případem obecného řešení.