Shortest Path Algorithms

- Shortest Path
- Single-source Shortest Path (SSSP)
- Edge Relaxation
- Dijkstra's Algorithm
- Tracing Dijkstra's Algorithm
- Analysis of Dijkstra's Algorithm

COMP2521 20T2 ♦ Shortest Path [0/10]

cgi.cse.unsw.edu.au/~cs2521/20T2/lecs/shortest-path/slides.html

1/13

>>

Shortest Path

Path = sequence of edges in graph G

• $p = (v_0, v_1, weight_1), (v_1, v_2, weight_2), ..., (v_{m-1}, v_m, weight_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

- a simple path p(s,t) where s = first(p), t = last(p)
- no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Applications: navigation, routing in data networks, ...

COMP2521 20T2 \$ Shortest Path [1/10]

❖ ... Shortest Path

Some variations on shortest path (SP) ...

Source-target SP problem

shortest path from source vertex s to target vertex t

Single-source SP problem

 set of shortest paths from source vertex s to all other vertices

All-pairs SP problems

set of shortest paths between all pairs of vertices s and

COMP2521 20T2 \$\times \text{Shortest Path } [2/10]

<< \ \ \ >>

Single-source Shortest Path (SSSP)

Shortest paths from s to all other vertices

- **dist**[] *V*-indexed array of cost of shortest path from *s*
- **pred**[] *V*-indexed array of predecessor in shortest path from *s*

Example:

	0	1	2	3	4
dist	0	0.3	0.7	1.1	inf
pred	-	0	0	2	-
				,	_

Shortest paths from s=0

Shortest paths from s=4

COMP2521 20T2 ♦ Shortest Path [3/10]

<< \ \ \ >>

Edge Relaxation

Assume: dist[] and pred[] as above

• but containing data for shortest paths *discovered so far*

If we have ...

- **dist[v]** is length of shortest known path from s to v
- dist[w] is length of shortest known path from s to w
- edge (v,w,weight)

Relaxation updates data for w if we find a shorter path from s to w:

if dist[v]+weight < dist[w] then
 update dist[w]←dist[v]+weight and pred[w]←v

COMP2521 20T2 \$\times \text{Shortest Path [4/10]}

COMP2521 20T2 ♦ Shortest Path [5/10]

Dijkstra's Algorithm

One approach to solving single-source shortest path ...

```
dist[] // array of cost of shortest path from s
pred[] // array of predecessor in shortest path from s
        // vertices whose shortest path from s is unknown
vSet
dijkstraSSSP(G, source):
   Input graph G, source node
   initialise all dist[] to ∞
   dist[source]=0
   initialise all pred[] to -1
   vSet=all vertices of G
   while vSet ≠ Ø do
      find v \in vSet with minimum dist[v]
      for each (v,w,weight) ∈ edges(G) do
         relax along (v,w,weight)
      end for
      vSet=vSet \ {v}
   end while
```

COMP2521 20T2 ♦ Shortest Path [6/10]

<< / >>>

Tracing Dijkstra's Algorithm

How Dijkstra's algorithm runs when source = 0:

Initially

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	inf	inf	inf	inf	inf
pred	-	-	-	-	-	-

First iteration, v=0

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	inf	int
pred	-	0	0	0	-	-

while vSet not empty do
 find v in vSet
 with min dist[v]
 for each (v,w,weight) in E do
 relax along (v,w,weight)
 end for
 vSet = vSet \ {v}
end while

Second Iteration, v=3

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	inf	22
pred	-	0	0	0	-	3

Third iteration, v=2

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	inf	12
pred	-	2	0	0	-	2

Fourth iteration, v=5

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-	2	0	0	5	2

(3)

while vSet not empty do
 find v in vSet
 with min dist[v]
 for each (v,w,weight) in E do
 relax along (v,w,weight)
 end for
 vSet = vSet \ {v}
end while

Fifth iteration, v=1

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	•	2	0	0	1	2

Sixth iteration,

v=4	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-	2	0	0	1	2

Completed, vSet is empty

COMP2521 20T2 \$\times \text{Shortest Path } [7/10]

Analysis of Dijkstra's Algorithm

Why Dijkstra's algorithm is correct ...

Hypothesis:

- (a) for visited s, dist[s] is shortest distance from source
- (b) for unvisited *t*, dist[*t*] is shortest distance from source *via visited nodes*

Ultimately, all nodes are visited, so ...

• ∀ v, dist[v] is shortest distance from source

COMP2521 20T2 \$\times \text{Shortest Path [8/10]}

<< \\ \ >>

... Analysis of Dijkstra's Algorithm

Proof:

Base case: no visited nodes, dist[source]=0, $dist[s]=\infty$ for all other nodes

Induction step:

- 1. If *s* is unvisited node with minimum *dist[s]*, then *dist[s]* is shortest distance from source to *s*:
 - if ∃ shorter path via only visited nodes, then dist[s] would have been updated when processing the predecessor of s on this path
 - if ∃ shorter path via an unvisited node u, then dist[u]
 dist[s], which is impossible if s has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes t after processing s:
 - ∘ if ∃ shorter path via *s* we would have just updated *dist[t]*
 - if ∃ shorter path without s we would have found it previously

COMP2521 20T2 \$\times \text{Shortest Path } [9/10]

<

... Analysis of Dijkstra's Algorithm

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find s ∈ vSet with minimum dist[s]"

- 1. try all $\mathbf{s} \in \mathbf{vSet} \Rightarrow \mathbf{cost} = O(V) \Rightarrow \mathbf{overall} \ \mathbf{cost} = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - can improve overall cost to O(E + V·log V)

COMP2521 20T2 \$\times \text{Shortest Path } [10/10]

Produced: 5 Jul 2020