PROGRAMAÇÃO DINÂMICA - SUBSET SUM

Prof. Daniel Kikuti

Universidade Estadual de Maringá

2 de outubro de 2014

Elementos de programação dinâmica

Subestrutura ótima

Um subproblema exibe **subestrutura ótima** se uma solução ótima para um problema contém dentro dela soluções ótimas para subproblemas.

Problemas sobrepostos

Quando um algoritmo recursivo reexamina o mesmo problema repetidas vezes, dizemos que o problema de otimização tem **subproblemas sobrepostos**.

Definição do algoritmo

Computar o valor da solução ótima usando tabelas.

Subset sum (soma de subconjunto)

O problema

Dados números naturais p_1, p_2, \ldots, p_n e *sum*, decidir se existe um subconjunto X de $\{1, 2, \ldots, n\}$ tal que:

$$\sum_{i\in X}p_i=sum.$$

O problema admite duas soluções: sim e não.

Exemplos

- $P = \{30, 80, 30, 20, 40\}$ e sum = 80.
- $P = \{3, 1, 4, 12, 5, 7\}$ e sum = 9.
- $P = \{1, 2, 3\}$ e sum = 9.

Se n = 0, o problema tem solução sim se e somente se sum = 0.

Subset sum (soma de subconjunto)

O problema

Dados números naturais p_1, p_2, \ldots, p_n e *sum*, decidir se existe um subconjunto X de $\{1, 2, \ldots, n\}$ tal que:

$$\sum_{i\in X}p_i=sum.$$

O problema admite duas soluções: **sim** e **não**.

Exemplos

- $P = \{30, 80, 30, 20, 40\}$ e sum = 80. **Sim**. $\{2\}$ ou $\{1, 3, 4\}$.
- $P = \{3, 1, 4, 12, 5, 7\}$ e sum = 9. Sim. $\{3, 5\}$.
- ▶ $P = \{1, 2, 3\}$ e sum = 9. **Não**.

Se n = 0, o problema tem solução sim se e somente se sum = 0.

Estrutura recursiva

Seja (p_1, \ldots, p_n, sum) uma instância do problema. Considere o último elemento n do conjunto de números. Existem duas possibilidades:

- ▶ $n \notin X$: X é solução da subinstância $(p_1, \ldots, p_{n-1}, sum)$;
- ▶ $n \in X$: $X \{n\}$ é solução da subinstância $(p_1, \dots, p_{n-1}, sum p_n)$.

Definição da recorrência

$$Opt(n, sum) = \left\{ egin{array}{ll} Opt(n-1, sum) & n
otin X \ Opt(n-1, sum-p_n) & n
otin X \end{array}
ight.$$

Algoritmo recursivo – Força bruta

```
SUBSET-SUM-REC (P, n, sum)

1 if n == 0

2 if sum == 0 return TRUE

3 else return FALSE

4 else

5 s = SUBSET-SUM-REC (P, n-1, sum)

6 if s == FALSE e P[n] <= sum

7 s = SUBSET-SUM-REC (P, n-1, sum-P[n])

8 return s
```

Exercício - Analise o pior caso.

Algoritmo recursivo – Força bruta

```
SUBSET-SUM-REC (P, n, sum)

1 if n == 0

2 if sum == 0 return TRUE

3 else return FALSE

4 else

5 s = SUBSET-SUM-REC (P, n-1, sum)

6 if s == FALSE e P[n] <= sum

7 s = SUBSET-SUM-REC (P, n-1, sum-P[n])

8 return s
```

Exercício - Analise o pior caso.

Recorrência $T(n) = 2T(n-1) + \Theta(1)$. O algoritmo examina todos os 2^n subconjuntos de $\{1, \ldots, n\}$.

Sobreposição de problemas

Identificando sobreposições

Exercício. Desenhe a árvore de rerrência para a instância $P = \{4, 2, 1, 3\}$ e sum = 5. Observe que a pilha de recursão nunca tem mais que n elementos.

Sobreposição de problemas

Identificando sobreposições

Exercício. Desenhe a árvore de rerrência para a instância $P = \{4, 2, 1, 3\}$ e sum = 5. Observe que a pilha de recursão nunca tem mais que n elementos.

Definindo a estrutura memo

- ightharpoonup memo será uma tabela de dimensões $n \times sum$.
- ▶ Inicialmente o valor de cada célula de memo é −1.
- ▶ memo[i][k] é a solução (TRUE, FALSE) da instância (p_1, \ldots, p_i, k) do problema.

$$memo[i][k] = \begin{cases} memo[i-1][k] & \text{se } p_i > k \\ memo[i-1][k] \lor memo[i-1][k-p_i] & \text{se } p_i \le k \end{cases}$$

Algoritmo recursivo – memoizado

```
SUBSET-SUM-MEMO (P, n, sum)
1  if memo[n][sum] ≠ -1 return memo[n][sum]
2  else if n == 0
3    if sum == 0 memo[n][sum] = TRUE
4    else memo[n][sum] = FALSE
5  else memo[n][sum] = SUBSET-SUM-MEMO (P, n-1, sum)
6    if memo[n][sum] == FALSE e P[n] <= sum
7    memo[n][sum] = SUBSET-SUM-MEMO (P, n-1, sum-P[n])
8  return memo[n][sum]</pre>
```

Algoritmo iterativo

```
SUBSET-SUM-ITERATIVO (P, n, sum)
 memo[0][0] = TRUE
2 for k = 1 to n
    memo[0][k] = FALSE
4 for i = 1 to n
5
     for k = 0 to sum
        s = memo[i-1][k];
6
        if s == FALSE e P[n] <= sum
           s = memo[i-1][k-P[i]]
8
        memo[i][k] = s
10 return memo[n][sum]
```

Análise do algoritmo

- O consumo de tempo é proporcional ao tamanho da tabela memo.
- ▶ O algoritmo consome $\Theta(n * sum)$ unidades de tempo.
- Este algoritmo NÃO é polinomial.
- Se considerarmos a instância do problema P = 4, 2, 1, 3 e sum = 5, mas agora supondo que seus valores são multiplicados por um valor k, o algoritmo iria consumir k vezes mais tempo para a nova instância.