LOOP-, WHILE-, und GOTO-Berechenbarkeit

Berechenbarkeit und Komplexität

LOOP-Programme I

Programmiersprache LOOP zur Berechnung von Funktionen $\mathbb{N}^k \to \mathbb{N}$:

Variablen: $\underline{x_0}, \underline{x_1}, \dots$ Konstanten: $0, 1, 2, \dots$ Trennsymbole: ; , $\underline{:=}$

Operationen: +, _

Schlüsselwörter: LOOP, DO, END

LOOP-Programme I

Programmiersprache LOOP zur Berechnung von Funktionen $\mathbb{N}^k \to \mathbb{N}$:

Variablen: $x_0, x_1, \dots \in \mathcal{N}$

 $Konstanten: \ 0, 1, 2, \dots$

Trennsymbole: ; , :=

Operationen: +, -

Schlüsselwörter: LOOP, DO, END

Eingabe: $x_1, ..., x_k$ (alle anderen Variablen $x_i = 0$)
Berechnungsergebnis: Wert von x_0 am Programmende

LOOP-Programme I

Programmiersprache LOOP zur Berechnung von Funktionen $\mathbb{N}^k \to \mathbb{N}$:

Variablen: x_0, x_1, \dots $\in \mathbb{N}$ Eingabe: x_1, \dots, x_k (alle anderen Variablen $x_i = 0$)

Konstanten: $0, 1, 2, \ldots$ Berechnungsergebnis: Wert von x_0 am Programmende

Trennsymbole: ; , := Operationen: +, -

Schlüsselwörter: LOOP, DO, END

	Syntax	Semantik	_
ŀ	$x_i := x_j + c$	Addition	X2:= X1+5
	$(x_i, x_j \text{ Variablen, } c \in \mathbb{N})$		
	$x_i := x_j - c$	Modifizierte Subtraktion	x2:= x1-5
	$(x_i,x_j$ Variablen, $c\in\mathbb{N})$	$\max\{x_j-c,0\}$	
ı	$P_1; P_2$	Sequenz	
	$(P_1, P_2 \text{ LOOP Programme})$	erst P_1 , dann P_2	
1	LOOP x _i DO P END	Schleife	
ı	$(x_i \text{ Variable, } P \text{ LOOP Programm})$	#Durchläufe = Wert von x_i vor der	Anweisung!

LOOP-Programme II

Simulation anderer Rechenoperationen durch LOOP-Programme:

$x_i := x_j$	$x_i := x_j + 0$
$x_i := c$	$x_i := \underline{x_j} + c$ (für ein x_j mit $x_j = 0$)
IF $x_i = 0$ THEN P END	$x_i := 1;$ $LOOP \times_i DO \times_j := 0 END;$ $LOOP \times_j DO P END$
$x_0 := x_1 + x_2$	$x_0 := x_1;$ LOOP x_2 DO $x_0 := x_0 + 1$ END

LOOP-Programme II

Simulation anderer Rechenoperationen durch LOOP-Programme:

	$x_i := x_j$	$x_i := x_j + 0$
*	$x_i := c$	$x_i := x_j + c$ (für ein x_j mit $x_j = 0$)
		$x_j := 1;$
	IF $x_i = 0$ THEN P END	LOOP x_i DO $x_j := 0$ END;
		LOOP x_j DO $\stackrel{\circ}{P}$ END
•	$x_0 := x_1 + x_2$	$x_0 := x_1;$
	$\lambda_0 := \lambda_1 + \lambda_2$	LOOP x_2 DO $x_0 := x_0 + 1$ END

Analog: Multiplikation, ganzzahlige Division, Modulo.

$$\times_{\underline{l}} := \times_{i} \cdot \times_{\underline{j}}$$

LOOP-Programme II

Simulation anderer Rechenoperationen durch LOOP-Programme:

$x_i := x_j$	$x_i := x_j + 0$
$x_i := c$	$x_i := x_j + c$ (für ein x_j mit $x_j = 0$)
	$x_j := 1;$
IF $x_i = 0$ THEN P END	LOOP x_i DO $x_j := 0$ END;
	LOOP x_j DO $\stackrel{\circ}{P}$ END
$x_0 := x_1 + x_2$	$x_0 := x_1;$
~0 ·— ~1 + ~2	LOOP x_2 DO $x_0 := x_0 + 1$ END

Analog: Multiplikation, ganzzahlige Division, Modulo.

Frage: Wie sehen LOOP-Programme für div & mod aus?

WHILE-Programme

LOOP-Programme + WHILE-Schleifen

 $WHILE-Programme \stackrel{\circ}{=} LOOP-Programme + WHILE-Schleifen$

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

 $WHILE\text{-}Programme \triangleq LOOP\text{-}Programme + WHILE\text{-}Schleifen$

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

wenn ein allwissendes Oraliel

Eine Funktion $\underline{f}: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $\underline{n_1, \ldots, n_k, m} \in \mathbb{N}$ gilt $f(\underline{n_1, \ldots, n_k}) = m \iff P$ hält bei Eingabe $\underline{n_1, \ldots, n_k}$ mit Berechnungsergebnis $\underline{x_0} = m$

 $WHILE-Programme \triangleq LOOP-Programme + WHILE-Schleifen$

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff P$ hält bei Eingabe n_1, \ldots, n_k mit Berechnungsergebnis $x_0 = m$

Beobachtung: LOOP-Programme berechnen nur totale Funktionen.

WHILE-Programme \(\heta\) LOOP-Programme \(+\) WHILE-Schleifen

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff P$ hält bei Eingabe n_1, \ldots, n_k mit Berechnungsergebnis $x_0 = m$

Beobachtung: LOOP-Programme berechnen nur totale Funktionen.

Leitfrage: alle totalen intuitiv berechenbaren Funktionen über N LOOP-berechenbar?

WHILE-Programme \(\hat{=}\) LOOP-Programme + WHILE-Schleifen

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff P$ hält bei Eingabe n_1, \ldots, n_k mit Berechnungsergebnis $x_0 = m$

Beobachtung: LOOP-Programme berechnen nur totale Funktionen.

Leitfrage: alle totalen intuitiv berechenbaren Funktionen über $\mathbb N$ LOOP-berechenbar?

Zentraler Ansatz nachfolgend: Simulation.

WHILE-Programme $\stackrel{.}{=}$ LOOP-Programme + WHILE-Schleifen

Syntax	Semantik
WHILE $x_i \neq 0$ DO P END	While Schleife
$(x_i \text{ Variable, } P \text{ WHILE Programm})$	wiederhole P bis $x_i = 0$; x_i darf durch P modifiziert werden!

Berechnungsergebnis: Wert von x_0 am Programmende (falls Programm terminiert).

Definition (LOOP-/WHILE-Berechenbarkeit)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar bzw. WHILE-berechenbar wenn es ein LOOP- bzw. WHILE-Programm P gibt, das f berechnet, d.h. für alle $n_1, \ldots, n_k, m \in \mathbb{N}$ gilt $f(n_1, \ldots, n_k) = m \iff P$ hält bei Eingabe n_1, \ldots, n_k mit Berechnungsergebnis $x_0 = m$

Beobachtung: LOOP-Programme berechnen nur totale Funktionen.

Leitfrage: alle totalen intuitiv berechenbaren Funktionen über $\mathbb N$ LOOP-berechenbar?

Zentraler Ansatz nachfolgend: **Simulation**.

Frage: Wie kann eine LOOP Schleife durch eine WHILE Schleife simuliert werden?

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Annahme: M(P) hat nous reichend viele "Bânder (fûr jede Variable ein eigenes Bound)

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1:
$$P = \underline{x_i} := \underline{x_j \pm c}$$
 \sim klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

1. X; had X; kopieren Inhalt v. Bond jauf Band: kopieren 2. c mal Inhvenentierer auf Band i laufen lossen

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1: $P = x_i := x_i \pm c$ \sim klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

Fall 2: $P = P_1, P_2$ \sim Hintereinanderschaltung von $M(P_1)$ und $M(P_2)$

Identifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$.

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1: $P = x_i := x_i \pm c$ \rightarrow klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

Fall 2: $P = P_1$; P_2 \rightarrow Hintereinanderschaltung von $M(P_1)$ und $M(P_2)$

Identifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$.

Fall 3: $P = \text{WHILE } x_i \neq 0 \text{ DO } P_1 \text{ END}$ $\sim \text{Erweiterung von } M(P_1)$

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1: $P = x_i := x_i \pm c$ \rightarrow klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

Fall 2: $P = P_1$; P_2 \rightarrow Hintereinanderschaltung von $M(P_1)$ und $M(P_2)$

Identifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$.

Fall 3: $P = WHILE x_i \neq 0 DO P_1 END$

1. neuer Startzustand z_0^{\prime} , der prüft ob $\underline{x_i \neq 0}$ ja \sim Wechsel in Startzustand von M_1 .

 $\mbox{nein} \sim \mbox{Stoppe in einem neuen Endzustand}.$

Theorem

Jede WHILE-berechenbare Funktionen ist Turing-berechenbar.

Beweis (Skizze)

Bauen TM M(P) durch Induktion über die "Termstruktur" eines WHILE-Programms P:

Fall 1:
$$P = x_i := x_i \pm c$$
 \rightarrow klar Turing-berechenbar (vgl. Binärzahl-Inkrementierer)

Fall 2:
$$P = P_1$$
; P_2 \rightarrow Hintereinanderschaltung von $M(P_1)$ und $M(P_2)$ dentifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$

Identifiziere Endzustände von $M(P_1)$ mit Startzustand von $M(P_2)$.

Fall 3:
$$P = WHILE x_i \neq 0 DO P_1 END$$

 \sim Erweiterung von $M(P_1)$

- 1. neuer Startzustand z_0' , der prüft ob $x_i \neq 0$
 - $ja \sim Wechsel in Startzustand von <math>M_1$.
 - $\mathsf{nein} \leadsto \mathsf{Stoppe} \ \mathsf{in} \ \mathsf{einem} \ \mathsf{neuen} \ \mathsf{Endzustand}.$
- 2. Identifiziere Endzustände von M_1 mit z'_0 .

Quelle: pixabay.com/en/mountain-goats-jumping-leaping-1156056/

GOTO-Programme

Marken und Anweisungen:

$$P = \underbrace{M_1 : A_1}_{M_2 : A_2;};$$

 $M_k: A_k$

Konvention: Nicht benutzte Marken weglassen!

GOTO-Programme

Marken und Anweisungen:

$$P = M_1 : A_1;$$

$$M_2 : A_2;$$

$$\vdots$$

$$M_{\ell} : A_{\ell}$$

 $M_k: A_k$

Konvention: Nicht benutzte Marken weglassen!

Syntax: Mögliche Anweisungen A_i :

- $ightharpoonup x_i := x_j \pm c$
- ightharpoonup GOTO M_i
- ▶ IF $x_i = c$ THEN GOTO M_i

Semantik klar!

GOTO-Programme

Marken und Anweisungen:

$$P = M_1 : A_1;$$

 $M_2 : A_2;$
 \vdots

 $M_k: A_k$

Konvention: Nicht benutzte Marken weglassen!

Definition

GOTO-Berechenbarkeit analog zu

WHILE-Berechenbarkeit.

Syntax: Mögliche Anweisungen A_i :

- $\triangleright x_i := x_j \pm c$
- ightharpoonup GOTO M_i
- ▶ IF $x_i = c$ THEN GOTO M_i

Semantik klar!

GOTO-Programme $\hat{=}$ Marken und Anweisungen:

$$P = M_1 : A_1;$$

 $M_2 : A_2;$
:

 $M_k:A_k$

Konvention: Nicht benutzte Marken weglassen!

Syntax: Mögliche Anweisungen A_i :

- $ightharpoonup x_i := x_i \pm c$
- ightharpoonup GOTO M_i
- ▶ IF $x_i = c$ THEN GOTO M_i

Semantik klar!

Definition

GOTO-Berechenbarkeit analog zu

WHILE-Berechenbarkeit.

Theorem

Jede WHILE-berechenbare Funktion ist GOTO-berechenbar.

GOTO-Programme

Marken und Anweisungen:

$$P = M_1 : A_1;$$

 $M_2 : A_2;$
:

 $M_{\nu}:A_{\nu}$

Konvention: Nicht benutzte Marken weglassen!

Syntax: Mögliche Anweisungen A_i :

- $\triangleright x_i := x_i \pm c$
- ► GOTO Mi
- ▶ IF $x_i = c$ THEN GOTO M_i

Semantik klar!

Definition

GOTO-Berechenbarkeit analog zu WHII F-Berechenbarkeit.

Theorem

Jede WHILE-berechenbare Funktion ist GOTO-berechenbar.

Beweis (simuliere WHILE $x_i \neq 0$ DO P END)

$$M_1: \mathbf{IF} \ \underline{x_i} = 0 \ \mathbf{THEN} \ \mathbf{GOTO} \ \underline{M_2};$$

$$H_4$$
: GOTO M_1 ; M_2 : $X_1 := 0$

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

vadiste springmarke

Beweis

 $P = M_1 : A_1; ...; M_k : A_k$ ein GOTO-Programm; ungenutzte Variable x_N

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis

 $P = M_1 : A_1; ...; M_k : A_k$ ein GOTO-Programm; ungenutzte Variable x_N

 \sim WHILE-Programm P_W unter Benutzung des **IF-THEN**-Konstrukts:

 $*x_{N} := 1$:

WHILE $x_N \neq 0$ DO

IF $x_N = 1$ THEN A'_1 END;

IF $x_N = 2$ THEN A_2' END;

IF $x_N = k$ THEN A'_k END;

IF $x_N = k + 1$ THEN $x_N := 0$ END

END

IF X = OTHEN

frage Usedeger Sie sich, dass IF x=c THEN LOOP ber.

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis

```
P = M_1 : A_1; \dots; M_k : A_k ein GOTO-Programm; ungenutzte Variable x_N
```

 \sim WHILE-Programm P_W unter Benutzung des **IF-THEN**-Konstrukts:

```
x_N := 1;
```

WHILE
$$x_{N} \neq 0$$
 DO

IF $x_N = 1$ THEN A'_1 END;

IF $x_N = 2$ THEN A_2' END;

. .

 $A_2 = 2$ THEN $A_2 = 1$

IF $x_N = k$ THEN A'_k END;

IF $x_N = k + 1$ THEN $x_N := 0$ END

IF $x_N = k + 1$ THEN $x_N := 0$ END

END

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis

```
P = M_1 : A_1; ...; M_k : A_k ein GOTO-Programm; ungenutzte Variable x_N
```

 \longrightarrow WHILE-Programm P_W unter Benutzung des **IF-THEN**-Konstrukts:

```
x_N := 1;
```

WHILE
$$x_{N} \neq 0$$
 DO

IF $x_N = 1$ THEN A'_1 END;

IF $x_N = 2$ THEN A_2' END;

. .

 $1 \times N = 2$ THEN A_2 END

IF $x_N = k$ THEN A'_k END;

 $11 \times N = K$ THEN A_k END,

 $|\mathbf{IF} \ \mathsf{x}_{\mathsf{N}} = \mathsf{k} + 1 \ \mathbf{THEN} \ \mathsf{x}_{\mathsf{N}} := 0 \ \mathbf{END}$

END

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis

```
P = M_1 : A_1; ...; M_k : A_k ein GOTO-Programm; ungenutzte Variable x_N \rightarrow WHILE-Programm P_W unter Benutzung des IF-THEN-Konstrukts:
```

$$x_N := 1;$$

WHILE
$$x_N \neq 0$$
 DO
IF $x_N = 1$ THEN A'_1 END;

IF
$$x_N = 2$$
 THEN A_2' END;

. . .

IF
$$x_N = k$$
 THEN A'_k END;

IF
$$x_N = k + 1$$
 THEN $x_N := 0$ END

END

GOTO-Anweisung
$$A_i o ext{WHILE-Anweisung } A_i'$$
 $x_j := x_i \pm c$
 $x_j := x_i \pm c;$
 $x_N := x_N + 1;$
GOTO M_j
 $x_N := x_N + 1;$
IF $x_j = c$ THEN GOTO $x_N := x_N + 1;$
IF $x_j = c$ THEN $x_N := x_N + 1;$

Theorem

Jede GOTO-berechenbare Funktion ist WHILE-berechenbar.

Beweis

```
P = M_1 : A_1; ...; M_k : A_k ein GOTO-Programm; ungenutzte Variable x_N
```

 \sim WHILE-Programm P_W unter Benutzung des **IF-THEN**-Konstrukts:

$$egin{array}{l} x_{\mathcal{N}} := 1; \ \mathbf{WHILE} \ x_{\mathcal{N}}
eq 0 \ \mathbf{DO} \end{array}$$

IF
$$x_N = 1$$
 THEN A'_1 END;

IF
$$x_N = k$$
 THEN A'_k END:

IF
$$x_N = k + 1$$
 THEN $x_N := 0$ END

END

$$x_j := x_i \pm c$$
 \Rightarrow $x_j := x_i \pm c;$ $x_N := x_N + 1$

GOTO M_j \Rightarrow $x_N := j$

IF $x_j = c$ THEN GOTO M_n \Rightarrow $x_N := x_N + 1;$

IF $x_i = c$ THEN $x_N := n$

GOTO-Anweisung $A_i \sim WHILE$ -Anweisung A'_i

Bemerkung: Nur eine einzige WHILE-Schleife im Programm!

WHILE berechen box

Theorem

Jede Turing-berechenbare Funktion ist GOTO-berechenbar.

Theorem

Jede Turing-berechenbare Funktion ist GOTO-berechenbar.

Beweis (Skizze)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{\square, 1, 2, ..., m-1\}, Z = \{z_1, ..., z_k\}$ eine DTM.

Idee: Darstellen der Konfiguration $\alpha z_{\ell} \beta$ als drei Zahlen (wobei $\Box = 0$):

$$x_1 = x = [\alpha]_m \sim$$
 linker Bandinhalt

$$x_2 = y = [\underline{rev}(\beta)]_m \rightsquigarrow rechter Bandinhalt$$

$$x_3 = z = \ell \rightsquigarrow \mathsf{Zust}$$
andsnummer

$$x = [122.]_3 = 52$$

 $y = [121122]_3 = 449$

Theorem

Jede Turing-berechenbare Funktion ist GOTO-berechenbar.

Beweis (Skizze)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{\square, 1, 2, ..., m-1\}$, $Z = \{z_1, ..., z_k\}$ eine DTM.

Idee: Darstellen der Konfiguration $\alpha z_{\ell} \beta$ als drei Zahlen (wobei $\Box = 0$):

 $x_1 = x = [\alpha]_m \sim \text{linker Bandinhalt}$

 $x_2 = y = [rev(\beta)]_m \sim rechter Bandinhalt$

 $x_3 = z = \ell \sim \text{Zustandsnummer}$

Das GOTO-Programm hat nun folgende Gestalt:

Phase 1: "Erzeugung von x, y, z aus der Startkonfiguration" (LOOP-berechenbar)

Phase 2: "Simulation von M" \nearrow

Phase 3: "Rückübersetzung von \underline{y} in Ausgabe x_0 " (LOOP-berechenbar)

Beweis (Fortsetzung)

Zu zeigen: GOTO-Programm für Phase 2 ("Simulation von M").

$$M_2 : x_4 := y \text{ MOD } m;$$

Beweis (Fortsetzung)

```
Zu zeigen: GOTO-Programm für Phase 2 ("Simulation von M").
  M_2: X_4:= V \text{ MOD } m:
  IF z=1 AND x_4=0 THEN GOTO M_{(1,0)};
  IF z=1 AND x_4=1 THEN GOTO M_{(1,1)};
  IF z = k AND x_4 = m - 1 THEN GOTO M_{(k,m-1)};
\rightarrow M_{(1,0)}: Simulation von \delta(z_1, \Box); GOTO M_2;
  M_{(1,1)}: Simulation von \delta(z_1,1); GOTO M_2;
```

 $M_{(k,m-1)}$: Simulation von $\delta(z_k, m-1)$; **GOTO** M_2 ;

Beweis (Fortsetzung)


```
Zu zeigen: GOTO-Programm für Phase 2 ("Simulation von M").
                                                                                 Simulation von \delta
  M_2: x_4:=y \text{ MOD } m;
                                                          y= 112 K1
                                                                                 \delta(\mathbf{z}_{\ell},i)=(\mathbf{z}_{i},k,L)
  IF z = 1 AND x_4 = 0 THEN GOTO M_{(1.0)}; x = 12.7
  IF z = 1 AND x_4 = 1 THEN GOTO M_{(1,1)};
                                                                              \mathcal{T} z := i:
                                                                                 y := y \, \mathbf{DIV} \, m;
  IF z = k AND x_4 = m - 1 THEN GOTO M_{(k,m-1)};
                                                                                 y := y \cdot m + (x \text{ MOD } m);
  M_{(1,0)}: Simulation von \delta(z_1, \square); GOTO M_2;
                                                                                 x := x \, \mathbf{DIV} \, m
  M_{(1,1)}: Simulation von \delta(z_1,1); GOTO M_2;
                                                                                 z_i \in E \sim \mathbf{GOTO} Phase 3
  M_{(k,m-1)}: Simulation von \delta(z_k, m-1); GOTO M_2;
```

Beweis (Fortsetzung)

```
Zu zeigen: GOTO-Programm für Phase 2 ("Simulation von M").
```

```
M_2: X_4:= V \text{ MOD } m:
IF z = 1 AND x_4 = 0 THEN GOTO M_{(1,0)};
```

IF z = 1 AND $x_4 = 1$ THEN GOTO $M_{(1,1)}$;

IF
$$z = k$$
 AND $x_4 = m - 1$ THEN GOTO $M_{(k,m-1)}$;

```
M_{(1.0)}: Simulation von \delta(z_1, \Box); GOTO M_2;
```

$$M_{(1,1)}$$
: Simulation von $\delta(z_1,1)$; **GOTO** M_2 ;

$$M_{(k,m-1)}$$
: Simulation von $\delta(z_k, m-1)$; **GOTO** M_2 ;

Simulation von δ

$$\delta(\mathbf{z}_{\ell},i)=(\mathbf{z}_{j},k,L)$$

$$z := j$$
;

$$y := y \ \mathbf{DIV} \ m;$$

$$:= y \cdot m + k;$$

$$y := y \text{ DIV } m;$$

 $y := y \cdot m + k;$
 $y := y \cdot m + (x \text{ MOD } m);$

$$x := x \, \mathbf{DIV} \, n$$

$$z_j \in E \sim \text{GOTO Phase 3}$$
 $\delta(z_\ell, i) = \bot$

$$\delta(\mathbf{z}_{\ell},i) =$$

→ Endlosschleife

Fazit dieses Kapitels:

WHILE-Berechenbarkeit \equiv GOTO-Berechenbarkeit \equiv Turing-Berechenbarkeit.

Berechenbarkeit und Komplexität