

B6-Brücke

7. Dezember 2021

Emily Antosch 2519935

LISTINGS

┰	1	1 4		•	1	•
Iγ	าคว	${ m lts}{ m v}$	pr	2010	hn	10
	1110	\mathbf{n}	CIZ		,1111	LD.

Abbildungsverzeichnis					
1 Einführung					
2 Vorbereitung					
Abbildungsverzeichnis 1 Aufbau der B6-Brücke	4				
Listings					

1 Einführung

In diesem Versuch wollen wir uns mit der netzgeführten B6-Brücke beschäftigen. Dabei wollen wir sowohl eine ohmsche als auch eine ohmsch-induktive Last untersuchen und unsere Ergebnisse mit verschiedenen Messgeräten festhalten.

2 Vorbereitung

Wir wollen uns zunächst über den Aufbau der B6-Brücke klar werden:

Abbildung 1: Aufbau der B6-Brücke

Zusätzlich wollen wir uns im Vorfeld überlegen, inwieweit wir sicherstellen können, dass die vorgegebenen Werte eingehalten werden können. Mit $U_S=26V$ und $I_{d,max}=2A$ können wir nun bei maximaler Aussteuerung der Schaltung, also bei $\alpha=0^{\circ}$, die maximale Spannung

$$U_{i\alpha} = \frac{3 \cdot \sqrt{2}}{\pi} \cdot U_L \cdot \cos(0^\circ) = \frac{3 \cdot \sqrt{2}}{\pi} \cdot 26V = 60.816V$$

berechnen. Um nun eine ohmsche Last zu berechnen, die die Schaltung in diesen Werten beschränkt rechnen wir

$$R_L = \frac{U_{i\alpha}}{I_{d,max}} = \frac{60,816V}{2A} = 30.4\Omega$$

