CHAPTER 2 Data Representation

Kinds Of Data

- Transmit bers
 - Assetters
 - Strlingigned
- Other Signed

 - RealsGraphicsFixed-Point
 - Images
 Floating-Point
 - = Wideo-Coded Decimal
 - Audio

Numbers Are Different!

- Computers use binary numbers (0's and 1's).
 - Requires more digits to represent the same magnitude.
- Computers store and process numbers using a fixed number of digits ("fixed-precision").
- Computers represent signed numbers using 2's complement instead of the more natural (for humans) "sign-plus-magnitude" representation.

Positional Number Systems

- Numeric values are represented by a sequence of digit symbols.
- Symbols represent numeric values.
 - Symbols are not limited to '0'-'9'!
- Each symbol's contribution to the total value of the number is *weighted* according to its position in the sequence.

Polynomial Evaluation

Whole Numbers (Radix = 10):

$$1234_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$

With Fractional Part (Radix = 10):

$$36.72_{10} = 3 \times 10^{1} + 6 \times 10^{0} + 7 \times 10^{-1} + 2 \times 10^{-2}$$

General Case (Radix = R):

$$(S_1S_0.S_{-1}S_{-2})_R =$$

 $S_1 \times R^1 + S_0 \times R^0 + S_{-1} \times R^{-1} + S_{-2} \times R^{-2}$

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

Converting Radix R to Decimal

$$36.72_8 = 3 \times 8^1 + 6 \times 8^0 + 7 \times 8^{-1} + 2 \times 8^{-2}$$

= 24 + 6 + 0.875 + 0.03125
= 30.90625₁₀

Important: Polynomial evaluation doesn't work if you try to convert in the *other* direction — I.e., from decimal to something else! Why?

Binary to Decimal Conversion

Converting <u>to decimal</u>, so we can use polynomial evaluation:

$$= 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3}$$

$$+ 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 128 + 32 + 16 + 4 + 1$$

$$= 181_{10}$$

Variation on Polynomial Evaluation for converting fractional values

Example: Convert 0.437₈ to decimal:

$$=48^{-1}+308^{-2}+708^{-3}$$

Multiple divisions

Adding long decimal fractions

= 400.125 + 300.015625 + 700.001953125

Alternative approach:

$$= (408^2 + 308^1 + 708^0) / 8^3$$

$$= (4 \Box 64 + 3 \Box 8 + 7 \Box 1) / 512$$

Problems: $N_R \rightarrow N_{10}$

430101₂

.430101₂

3B.**7**A₁₆

F130 D₁₆

10₃

.10,

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

 Converting <u>to binary</u> – can't use polynomial evaluation!

- Whole part and fractional parts must be handled separately!
 - Whole part: Use repeated division.
 - Fractional part: Use repeated multiplication.
 - Combine results when finished.

(Whole Part: Repeated Division)

- Divide by target radix (2 in this case)
- Remainders become digits in the new representation (0 <= digit < R)
- Digits produced in right to left order.
- Quotient is used as next dividend.
- Stop when the quotient becomes zero, but use the corresponding remainder.

(Whole Part: Repeated Division)

```
97 ÷ 2 \rightarrow quotient = 48, remainder = 1 (LSB)

48 ÷ 2 \rightarrow quotient = 24, remainder = 0.

24 ÷ 2 \rightarrow quotient = 12, remainder = 0.

12 ÷ 2 \rightarrow quotient = 6, remainder = 0.

6 ÷ 2 \rightarrow quotient = 3, remainder = 0.

3 ÷ 2 \rightarrow quotient = 1, remainder = 1.

1 ÷ 2 \rightarrow quotient = 0 (Stop) remainder = 1 (MSB)
```

Result = $1 \ 1 \ 0 \ 0 \ 0 \ 1_2$

(Fractional Part: Repeated Multiplication)

- Multiply by target radix (2 in this case)
- Whole part of product becomes digit in the new representation (0 <= digit < R)
- Digits produced in left to right order.
- Fractional part of product is used as next multiplicand.
- Stop when the fractional part becomes zero (sometimes it won't).

(Fractional Part: Repeated Multiplication)

```
.1 \times 2 \rightarrow 0.2 (fractional part = .2, whole part = 0)
```

$$.2 \times 2 \rightarrow 0.4$$
 (fractional part = .4, whole part = 0)

$$.4 \times 2 \rightarrow 0.8$$
 (fractional part = .8, whole part = 0)

$$.8 \times 2 \rightarrow 1.6$$
 (fractional part = .6, whole part = 1)

$$.6 \times 2 \rightarrow 1.2$$
 (fractional part = .2, whole part = 1)

```
Result = .0001100110011_{2}..... (How much should we keep?)
```

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

$.1_{10} = .0001100110011....$

How much should we keep? Mathematician's Answer:

Use the proper notation:

.00011

Scientist's Answer:

Preserve significant digits and round:

 $.1 \rightarrow 1$ part out of 10

3 binary digits = 1 out of 8 \rightarrow need 4 \rightarrow .0001

Round: 5th digit = 1, thus **.0010**

Engineer's Answer:

Depends on #bits in the variable (8, 16, 32, 64)

Moral

- Some fractional numbers have an exact representation in one number system, but not in another! E.g., 1/3rd has no exact representation in decimal, but does in base 3!
- What about 1/10th when represented in binary?
- Can these representation errors accumulate?
- What does this imply about equality comparisons of real numbers?

Problems: $N_{10} \rightarrow N_R$

$$27_{10} \rightarrow N_8$$

$$.27_{10} \rightarrow N_8$$

$$27_{10} \rightarrow N_{56}$$

$$.27_{10} \rightarrow N_{56}$$

$$1/3_{10} \rightarrow N_3$$

Counting

- Principle is the same regardless of radix.
 - Add 1 to the least significant digit.
 - If the result is less than R, write it down and copy all the remaining digits on the left.
 - Otherwise, write down zero and add 1 to the next digit position, etc.

Counting in Binary

Dec	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Note the pattern!

- LSB (bit 0) toggles on every count.
- Bit 1 toggles on every *other* count.
- Bit 2 toggles on every *fourth* count.
- Etc....

Hexadecimal Numbers (Radix = 16)

- The *number* of digit symbols is determined by the radix (e.g., 16)
- The *value* of the digit symbols range from 0 to 15 (0 to R-1).
- The symbols are 0-9 followed by A-F.
- Conversion between binary and hex is trivial!
- Use as a shorthand for binary (significantly fewer digits are required for same magnitude).

Memorize This!

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hex	Binary
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Binary/Hex Conversions

Hex digits are in one-to-one correspondence with groups of four binary digits:

```
0011 1010 0101 0110 . 1110 0010 1111 1000
3 A 5 6 . E 2 F 8
```

- Conversion is a simple table lookup!
- Zero-fill on left and right ends to complete the groups!
- Works because 16 = 2⁴ (power relationship)

Problems: $N_{R1} \rightarrow N_{R2}$, where R1=R2^k

EAOE
$$\Omega_{1}^{1}$$
 N_{2}^{2} N_{16}^{2} $11.01011_{2} \rightarrow N_{16}^{2}$ N_{16}^{2} N_{16}^{2}

 $10.220. \rightarrow N_{a}$

Question:

 Do you trust the used car salesman that tells you that the 1966 Mustang he wants to sell you has only the 13,000 miles that it's odometer shows?

- If not, what has happened?
- Why?

Representation Rollover

- Consequence of fixed precision.
- Computers use fixed precision!
- Digits are lost on the left-hand end.
- Remaining digits are still correct.
- Rollover while counting . . .

```
Up: "999999" \rightarrow "000000" (R<sup>n</sup>-1 \rightarrow 0)
```

Down: "000000" → "999999" (0 → Rⁿ-1)

Rollover in Unsigned Binary

- Consider an 8-bit byte used to represent an unsigned integer:
 - Range: $00000000 \rightarrow 1111111111 (0 \rightarrow 255_{10})$
 - Incrementing a value of 255 should yield 256,
 but this exceeds the range.
 - Decrementing a value of 0 should yield −1, but this exceeds the range.
 - Exceeding the range is known as overflow.

Surprise! Rollover is <u>not</u> synonymous with overflow!

- Rollover describes a pattern sequence behavior.
- Overflow describes an arithmetic behavior.
- Whether or not rollover causes overflow depends on how the patterns are interpreted as numeric values!
 - E.g., In signed two's complement representation, 11111111 → 00000000 corresponds to counting from minus one to zero.

Two Interpretations

unsigned signed
$$167_{10}$$
 \leftarrow 10100111_2 \rightarrow -89_{10}

- Signed vs. unsigned is a matter of interpretation; thus a single bit pattern can represent two different values.
- Allowing both interpretations is useful:

Some data (e.g., count, age) can never be negative, and having a greater range is useful.

Why Not Sign+Magnitude?

$$+2_{10} = 0010$$
 $+(-7_{10}) = \pm 1111$
 $????$
 $111 > 010$:
 111
 -010
 101

Complicates addition:

- To add, first check the signs. If they agree, then add the magnitudes and use the same sign; else subtract the smaller from the larger and use the sign of the larger.
- How do you determine which is smaller/larger?

Complicates comparators:

- Two zeroes!

2000, Daniel W. Lewis. All Rights Reserved.

Use sign of 111: 1101

Why 2's Complement?

$$+2_{10} = 0010$$
 $+(-7_{10}) = \pm 1001$
 1011
 $= -5_{10}$

Unsigned:
 $2_{10} = 0010$
 $+(9_{10}) = \pm 1001$
 1011

- 1. Just as easy to determine sign as in sign+magnitude.
- 2. Almost as easy to change the sign of a number.
- 3. Addition can proceed w/out worrying about which operand is larger.
- 4. A single zero!
- 5. One hardware adder works for both signed and unsigned operands.

Changing the Sign

Sign+Magnitude:

$$+5 = 0101$$
Change 1 bit
 $-5 = 1101$

2's Complement:

$$+5 = 0101$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$

$$1010$$

$$-1 Increment$$

$$-5 = 1011$$

Easier Hand Method

Step 2: Copy the inverse of the remaining bits.

Step 1: Copy the bits from right to left, through and including the first 1.

Representation Width

Be Careful! You must be sure to pad the original value out to the full representation width <u>before</u> applying the

algorithm!

Apply algorithm

Expand to 8-bits

Wrong: $+25 = 11001 \rightarrow 00111 \rightarrow 00000111 = +7$

Right: $+25 = 11001 \rightarrow 00011001 \rightarrow 11100111 = -25$

If positive: Add leading 0's

If negative: Add leading 1's

Apply algorithm

Converting 2's complement numbers to decimal – Approach #1

If MSB is 0, the number is positive.

→ convert as if it were unsigned.

If MSB is 1, the number is negative.

- 1. Apply 2's comp. alg. to find bit pattern of the corresponding positive magnitude
- 2. Convert the bit pattern to decimal.
- 3. Put a minus sign in front.

Converting 2's complement numbers to decimal – Approach #1

Example: $10110010_2 = ?_{10}$

- 1. $10110010_2 \rightarrow -01001110_2$
- 2. $01001110_2 = 64 + 8 + 4 + 2 = 78_{10}$
- 3. Answer: -78₁₀

Converting 2's complement numbers to decimal – Approach #2

Use polynomial evaluation, but make the contribution of the MSB be negative:

Example: $10110010_2 = ?_{10}$

$$= -128 + 32 + 16 + 2 = -78_{10}$$

2's Complement Anomaly!

```
-128 = 1000\ 0000\ (8\ bits)
```

+128?

What does this imply about using method #1 for converting a negative 2's comp. number to decimal?

Step 1: Invert all bits → 0111 11

Step 2: Increment → 1000 0000

Result is negative! Why?

(Note: The right-to-left method yields same result)

Range of Unsigned Integers

Each of 'n' bits can have one of two values.

Total # of patterns of n bits =
$$2 \times 2 \times 2 \times 2$$

'n' 2's
$$= 2^{n}$$

If n-bits are used to represent an unsigned integer value:

Range: 0 to 2ⁿ-1 (2ⁿ different values)

Problems: Unsigned Range

- Base 2, 6 digits
- Base 3, 6 digits
- Base 8, 6 digits
- Base 16, 6 digits

Range of Signed Binary Integers

- Half of the 2ⁿ patterns will be used for positive values, and half for negative.
- Half is 2ⁿ⁻¹.
- Positive Range: 0 to 2ⁿ⁻¹-1 (2ⁿ⁻¹ patterns)
- Negative Range: -2ⁿ⁻¹ to -1 (2ⁿ⁻¹ patterns)
- 8-Bits (n = 8): -2^7 (-128) to $+2^7$ -1 (+127)

Problem: 2's Comp Range

- 5 bits
- 10 bits
- 16 bits

Decimal Addition Table

Carry-In = 0

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

Carry-In = 1

	_	_				_				_
+	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0	1
2	3	4	5	6	7	8	9	0	1	2
3	4	5	6	7	8	9	0	1	2	3
4	5	6	7	8	9	0	1	2	3	4
5	6	7	8	9	0	1	2	3	4	5
6	7	8	9	0	1	2	3	4	5	6
7	8	9	0	1	2	3	4	5	6	7
8	9	0	1	2	3	4	5	6	7	8
9	0	1	2	3	4	5	6	7	8	9

Green: Carry-Out = 0

Yellow: Carry-Out = 1

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

Decimal Addition Using Table

Binary Addition & Carries

\mathbf{C}_{in}	X	Y	n	Cout	S
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	2	1	0
1	0	0	1	0	1
1	0	1	2	1	0
1	1	0	2	1	0
1	1	1	3	1	1

$$C_{in} = Carry-in$$

$$C_{out} = Carry-out$$

$$S = Sum digit$$

Column "n" is simply the sum of C_{in}, X and Y.

Columns C_{out} & S are simply the binary representation of n.

Binary Addition Using Table

Binary Subtraction & Borrows

\mathbf{B}_{in}	X	- Y	n	Bout	D
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	2	1	0
1	1	0	0	0	0
1	1	1	1	1	1

Bin = Borrow-In
Bout = Borrow-Out
D = Difference digit

Most people find this table to be less intuitive than the one for addition, and thus difficult to memorize.

Binary Subtraction & Borrows

-B _{in}	X	- Y	n	B _{out}	D
0	0	0	0	0	0
0	0	-1	-1	1	1
0	+1	0	+1	0	1
0	+1	-1	0	0	0
-1	0	0	-1	1	1
-1	0	-1	-2	1	0
-1	+1	0	0	0	0
-1	+1	-1	-1	1	1

Think of the contribution of X to the difference as positive, and that of Y and B_{in} as negative.

Column "n" is simply the sum of their contributions to the result.

Columns B_{out} & D are simply the 2's compl. representation of n.

Unsigned Overflow

Signed Overflow

Overflow is impossible
 when adding (subtracting) numbers that have different (same) signs.

 Overflow occurs when the magnitude of the result extends into the sign bit position:

 $011111111 \rightarrow (0)10000000$

This is not rollover!

Signed Overflow

$$-120_{10}$$
 \rightarrow 10001000_{2}

$$-17_{10}$$
 $+11101111_{2}$
sum: -137_{10} 101110111_{2}

$$01110111_{2}$$
 (keep 8 bits)
$$(+119_{10})$$
 wrong

Note: $119 - 2^8 = 119 - 256 = -137$

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

Detecting Overflow

Unsigned:

Carry-out of MSB when incrementing or adding.

Borrow-out of MSB when decrementing or subtracting.

Signed (2's complement):

Impossible when adding numbers of different signs.

Impossible when subtracting numbers of same sign.

Human Method: Sign of result seems incorrect.

Computer Method: Carries/Borrows in/out of MSB differ.

Problems: Overflow

<u>Unsigned (4 bits)</u>

2's comp. (4 bits)

Comparing Integers

Which is Greater: 1001 or 0011?

Borrow Out	Relationship
0	X≥Y
1	X < Y

Floating-Point Reals

Three components:

Single-precision Floating-point Representation

```
Exp+127
           Significand
       2.000 0 10000000
1.000 0 01111111
       0.750 0 01111110
       0.500 0 01111110
       0.000
  0 0000000
       -0.500 1 01111110
       -0.750 1 01111110
       -1.000 1 01111111
-2.000 1 10000000
```

Representation of Characters

Representation Interpretation

O0100100

ASCII
Code

Character Constants in C

 To distinguish a character that is used as data from an identifier that consists of only one character long:

x is an identifier.

'x' is a character constant.

The value of 'x' is the ASCII code of the character x.

Character Escapes

 A way to represent characters that do not have a corresponding graphic symbol.

Escape Character			Character Constant
\b	Backspace	'\b'	
\ t	Horizontal Tab	'\t'	
\n	Linefeed	'\n'	
\r	Carriage return	' \r'	

See Table 2-9 in the text for others.

Representation of Strings

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.

String Constants in C

Character string

C string constant

COEN 20 is "fun"!

"COEN 20 is \"fun\"!"

Binary Coded Decimal (BCD)

Packed (2 digits per byte):

Unpacked (1 digit per byte):

Copyright © 2000, Daniel W. Lewis. All Rights Reserved.