Financial Computing

1807730

March 2023

1 Task 1: OpenMP

- Code to produce the power iteration times can be found in 1_matrix_1.c and executed using gcc -fopenmp -09 1_matrix_1.c -lm; ./1_matrix_1. It will produce the following table in the command line.
- 2. Below is the table showing the power iteration times:

Type	N	t1	t2	t4	t8	t16
Time	256	0.003s	0.003s	0.002s	0.001s	0.002s
Speed-Up	256	0.000s	-0.001s	-0.001s	-0.002s	-0.001s
Time	512	0.004s	0.003s	0.002s	0.001s	0.002s
Speed-Up	512	0.000s	-0.002s	-0.002s	-0.003s	-0.002s
Time	1024	0.012s	0.011s	0.004s	0.002s	0.003s
Speed-Up	1024	0.000s	-0.005s	-0.008s	-0.009s	-0.009s
Time	2048	0.042s	0.021s	0.011s	0.006s	0.004s
Speed-Up	2048	0.000s	-0.018s	-0.028s	-0.032s	-0.034s
Time	4096	0.151s	0.091s	0.060 s	0.024s	0.015s
Speed-Up	4096	0.000s	-0.050s	-0.085s	-0.110s	-0.119s

- 3. Code to produce the matrix setup times can be found in 1_matrix_2.c and executed using gcc -fopenmp -09 1_matrix_2.c -lm; ./1_matrix_2. It will produce the following table in the command line.
- 4. Below is the table showing the matrix setup times:

Type	N	t1	t2	t4	t8	t16
Time	256	0.005s	0.006s	0.003s	0.002s	0.001s
Speed-Up	256	0.000s	-0.001s	-0.003s	-0.004s	-0.004s
Time	512	0.019s	0.014s	0.005s	0.004s	0.002s
Speed-Up	512	0.000s	-0.009s	-0.014s	-0.012s	-0.015s
Time	1024	0.073s	0.037 s	0.018s	0.015s	0.012s
Speed-Up	1024	0.000s	-0.032s	-0.049s	-0.055s	-0.064s
Time	2048	0.288s	0.145s	0.101s	0.040 s	0.026s
Speed-Up	2048	0.000s	-0.136s	-0.214s	-0.241s	-0.259s
Time	4096	1.159s	0.614s	0.305s	0.164s	0.111s
Speed-Up	4096	0.000s	-0.618s	-0.862s	-1.010s	-1.091s

5. Given that the code performs the power iteration algorithm in approximately a tenth of a second with 8 threads and N=4096, you can most likely increase N to 2^{15} before you begin to see a significant reduction in speed.

2 Task 2: MPI

- Code to produce the power iteration times on the same computer can be found in 2_matrix_1.c and executed using mpicc -lm -o 2_matrix_1 2_matrix_1.c; mpirun -np [Threads] ./2_matrix_1 [N].
- 2. You can also produce the table for all pairs of values specified by running the shell script computer_power_iteration_time.sh. This can be done by running chmod +x computer_power_iteration_time.sh;
 - ./computer_power_iteration_time.sh. Note that you will need to compile the C code first in order to run the shell executable.
- 3. Below is the power iteration times for the same computer:

Type	N	1	2	4	8
Time	256	0.007297	0.004496	0.003713	0.004512
Speed-Up	256	0.0	0.002801	0.003584	0.002785
Time	512	0.023250	0.012960	0.008197	0.006651
Speed-Up	512	0.0	0.010290	0.015053	0.016599
Time	1024	0.087499	0.045088	0.024844	0.015395
Speed-Up	1024	0.0	0.042411	0.062655	0.072104
Time	2048	0.341891	0.205784	0.089401	0.051577
Speed-Up	2048	0.0	0.136107	0.252490	0.290314
Time	4096	1.405218	0.784595	0.359617	0.217117
Speed-Up	4096	0.0	0.620623	1.045601	1.188101

- 4. Code to produce the matrix setup times on the same computer can be found in 2_matrix_1.c and executed using mpicc -lm -o 2_matrix_1 2_matrix_1.c; mpirun -np [Threads] ./2_matrix_1 [N].
- 5. You can also produce the table for all pairs of values specified by running the shell script computer_matrix_setup_time.sh. This can be done by running chmod +x computer_matrix_setup_time.sh;
 - ./computer_matrix_setup_time.sh. Note that you will need to compile the C code first in order to run the shell executable.
- 6. The table of matrix setup times on the same computer can be found below.

Type	N	1	2	4	8
Time	256	0.008043	0.006836	0.006582	0.009191
Speed-Up	256	0.0	0.001207	0.001461	-0.001148
Time	512	0.025244	0.025736	0.025522	0.028384
Speed-Up	512	0.0	-0.000492	-0.000278	-0.003140
Time	1024	0.097401	0.099294	0.099154	0.109109
Speed-Up	1024	0.0	-0.001893	-0.001753	-0.011708
Time	2048	0.394899	0.397619	0.395751	0.427632
Speed-Up	2048	0.0	-0.002720	-0.000852	-0.032733
Time	4096	1.600617	1.650263	1.624059	1.783719
Speed-Up	4096	0.0	-0.049646	-0.023442	-0.183102

- 7. We decided to use MPI on the matrix multiplication since this dominates the execution time over anything else. This involved allocating to each process the indices of the rows they would be focusing on and gathering all the data back together after the execution of each block.
- 8. Code to produce the power iteration times on different computers can be found in 2_matrix_1.c and executed using mpicc -lm -o 2_matrix_1 2_matrix_1.c; mpirun -H [Computers] ./2_matrix_1 [N].
- 9. You can also produce the table for all pairs of values specified by running the shell script dist_power_iteration_time.sh. This can be done by running chmod +x dist_power_iteration_time.sh;
 - ./dist_power_iteration_time.sh. Note that you will need to compile the C code first in order to run the shell executable.
- 10. The table of power iteration times on different computers can be found below.

Type	N	1	2	4	8
Time	256	0.009405	0.008852	0.010641	0.026535
Speed-Up	256	0.0	0.000553	-0.001236	-0.017130
Time	512	0.023115	0.017017	0.019677	0.021045
Speed-Up	512	0.0	0.006098	0.003438	0.002070
Time	1024	0.087276	0.050421	0.051443	0.046599
Speed-Up	1024	0.0	0.036855	0.035833	0.040677
Time	2048	0.358191	0.178964	0.101727	0.072677
Speed-Up	2048	0.0	0.179227	0.256464	0.285514
Time	4096	1.485508	0.814531	0.400118	0.240462
Speed-Up	4096	0.0	0.670977	1.085390	1.245046

- 11. Code to produce the matrix setup times on different computers can be found in 2_matrix_1.c and executed using mpicc -lm -o 2_matrix_1 2_matrix_1.c; mpirun -H [Computers] ./2_matrix_1 [N].
- 12. You can also produce the table for all pairs of values specified by running the shell script dist_matrix_setup_time.sh. This can be done by running

chmod +x dist_matrix_setup_time.sh;

- ./dist_matrix_setup_time.sh. Note that you will need to compile the C code first in order to run the shell executable.
- 13. The table of the matrix setup times on different computers can be found below

Type	N	1	2	4	8
Time	256	0.006411	0.006387	0.006285	0.006268
Speedup	256	0.0	0.000024	0.000126	0.000143
Time	512	0.025236	0.024671	0.025373	0.024936
Speedup	512	0.0	0.000565	-0.000137	0.000300
Time	1024	0.097689	0.097518	0.097009	0.096958
Speedup	1024	0.0	0.000171	0.000680	0.000731
Time	2048	0.386132	0.388187	0.381994	0.382912
Speedup	2048	0.0	-0.002055	0.004138	0.003220
Time	4096	1.526926	1.527217	1.530152	1.526418
Speedup	4096	0.0	-0.000291	-0.003226	0.000508

14. As N increases, the time taken to execute power iteration algorithm increases with a constant number of threads / processes. As the number of threads / processes increases, the time taken decreases with a constant N. The time for the algorithm is lower when running the code on the same computer due to the communication time between different machines. This also means that the effect of adding extra processes is limited compared to using the same machine.