Class 3

Sec.1.2. Measure

X set, α σ -algebra on X

Def. $u: \mathbf{a} \to [0, \infty]$ is a measure if

- (1) $u(\phi)=0$;
- (2) *u* is countably additive:

$$u(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} u(E_n)$$
 for $E_n \in \boldsymbol{\alpha}, E_i \cap E_j = \phi$ for $i \neq j$

Def. additive: $u(E \cup F) = u(E) + u(F)$ for $E, F \in \alpha, E \cap F = \phi$

finitely additive: $u(E_1 \cup ... \cup E_n) = u(E_1) + ... + u(E_n)$ for $E_1, ..., E_n \in \boldsymbol{a}, E_i \cap E_j = \phi$ for $i \neq j$ subadditive: $u(E \cup F) \le u(E) + u(F) \quad \forall E, F \in \mathbf{a}$

finitely subadditive: $u(\bigcup_{i=1}^{n} E_i) \le \bigcup_{i=1}^{n} u(E_i) \ \forall E_1, \dots, E_n \in \boldsymbol{a}$

countably subadditive: $u(\bigcup_{i=1}^{\infty} E_i) \le \bigcup_{i=1}^{\infty} u(E_i) \ \forall E_1, \dots, E_n \in \boldsymbol{a}$

u finite measure if $u(X) < \infty$

u finite measure if $u(X) < \infty$ $u \text{ } \sigma\text{-finite measure if } \exists \left\{ E_n \right\} \subseteq \mathbf{a} \text{ } \ni u(E_n) < \infty \quad \forall n \& X = \bigcup_{n \in \mathbb{N}} E_n$

Properties for u measure on a:

(1)
$$E_1, ..., E_n \in \mathbf{a}, E_i \cap E_j \neq \emptyset$$
 for $i \neq j \Rightarrow u(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n u(E_i)$ (finitely additive)

Pf: Let
$$E_{n+1} = E_{n+2} = ... = \phi$$

(2)
$$E, F \in \boldsymbol{a}, E \subseteq F \Rightarrow u(E) \leq u(F)$$
.

Pf:
$$F = E \cup (F \setminus E)$$
, disj.

$$(1) \Rightarrow u(F) = u(E) + u(F \setminus E).$$
$$\Rightarrow u(E) \le u(F)$$

(3)
$$E, F \in \boldsymbol{a}, E \subseteq F, u(E) < \infty \Rightarrow u(F \setminus E) = u(F) - u(E).$$

Note: If $u(E) = \infty$, then $u(F) = \infty \implies u(F) - u(E)$ meaningless.

$$(4) E, F \in \mathbf{\alpha} \Rightarrow u(E \cap F) + u(E \cup F) = u(E) + u(F) \text{ (Ex.1,2,3)}$$

⇒ additives & ubadditive

Pf:
$$E \cup F = E \cup (F \setminus E)$$
, disj.
 $\Rightarrow u(E \cup F) = u(E) + u(F \setminus E)$.

(1)
$$u(E \cap F) < \infty$$
: $u(F \setminus E) = u(F \setminus (E \cap F))$
 $\parallel \leftarrow \text{by}(3)$
 $u(F) - u(E \cap F)$
(2) $u(E \cap F) = \infty$: $\therefore u(E \cup F) = \infty \text{ by } (2)$
 $\therefore \text{LHS} = \infty = \text{RHS}$

$$(5) \ E_n \in \pmb{a} \Rightarrow u(\bigcap_n E_n \) \leq \sum_n u(E_n). \quad \text{(countably subadditive)}$$

$$(\Rightarrow \text{finitely subadditive, subadditive)}$$

$$\text{Pf: } F_1 = E_1, F_2 = E_2 \setminus E_1, F_3 = E_3 \setminus (E_1 \cup E_2), \dots$$

$$\Rightarrow F_n \subseteq E_n \ \forall_n \ \& \ \bigcup_n F_n = \bigcup_n E_n, \ \left\{F_n\right\} \text{ mutually disjoint.}$$

$$\therefore u(\bigcup_n E_n) = u(\bigcup_n F_n) = \sum_n u(F_n) \leq \sum_n u(E_n).$$

(6) $E_n \in \boldsymbol{\alpha} \& E_n \uparrow \Rightarrow \lim u(E_n) = u(\lim E_n).$

Pf: $\lim_{n \to \infty} E_n = \bigcup_{n \to \infty} E_n$

 $(7) \ E_n \in \boldsymbol{\alpha} \ \& \ E_n \downarrow \ , \ u(E_{n_0}) < \infty \ \text{ for some } n_0 \Longrightarrow \lim u(E_n) = u(\lim E_n).$

Pf: E_1 $\lim E_n = \bigcap_n E_n$

Consider
$$E_{n_0}$$
 as universal set

Note: $u(E_{n_0}) < \infty$ essential (cf. Ex.1.2.6)

(8) $E_n \in \boldsymbol{a} \Rightarrow u(\underline{\lim} E_n) \leq \underline{\lim} u(E_n)$.

Pf:
$$u(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}E_n) = \lim_{k} u(\bigcap_{n=k}^{\infty}E_n) \leq \underline{\lim}_{k} u(E_k).$$

Note: This says $E \mapsto u(E)$ is lower semiconti.

$$(9) E_n \in \boldsymbol{a}, \ u(\underset{n}{\cup} E_n) < \infty \Longrightarrow u(\overline{\lim} E_n) \ge \overline{\lim} \ u(E_n).$$

Pf:
$$u(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n) = \lim_{k} u(\bigcup_{n=k}^{\infty} E_n) \ge \overline{\lim_{k}} u(E_k).$$

$$\text{by (7) & } u(\bigcup_{n=1}^{\infty} E_n) < \infty.$$
Note: $E \mapsto v(E)$ is upper semiconti, if u finite

Note: $E \mapsto u(E)$ is upper semiconti. if u finite.

(10)
$$E_n \in \boldsymbol{a}$$
, $\lim E_n$ exists & $u(\bigcup_n E_n) < \infty \Rightarrow u(\lim E_n) = \lim u(E_n)$.

(i.e., u is conti. if u finite $\mathbf{a} \to [0,\infty]$)

Pf.
$$\overline{\lim} u(E_n) \le u(\overline{\lim} E_n) = u(\underline{\lim} E_n) \le \underline{\lim} u(E_n) \le \overline{\lim} u(E_n)$$

 $\Rightarrow u(\lim E_n) = \lim u(E_n).$

Homework: Ex.1.2.5 & 1.2.6

Sec.1.3. Outer Measure

Motivation: Constructing Lebesgue measure;

convering sets by union of intervals & taking inf. \Rightarrow gives outer measure. Then measure.

Def. u^* : $\wp(X) \to [0, \infty]$ is outer measure if

- (1) $u^*(\phi)=0$;
- (2) u^* countably subadditive;
- (3) $E, F \in \wp(X), E \subseteq F \Rightarrow u^*(E) \le u^*(F).$

Outer measure → measure

Def. u^* outer measure on $\wp(X)$, $E \in \wp(X)$

E is
$$u^*$$
-measurable if $u^*(A) = u^*(A \cap E) + u^*(A \setminus E) \quad \forall A \subseteq X$ (" \leq " always true)

