Travail d'étude et de recherche sur la modélisation et la prédiction de survie des individus face au naufrage du Titanic

Mulapi Tita Ketsia

Université de Rouen Normandie contact@ketsiamulapi.com

January 17, 2022

Sommaire

- Introduction
 - Introduction
- Phase de prétraitement des données
 - Ingénierie des caractéristques, éxploration et compréhension
- 3 Les aglorithmes pour la modélisation et la classification des données
- L'explicabilité des modèles
 - Skater
 - Shape
- 5 Résultats et conclusion

Introduction

Le naufrage du Titanic a mis fin au paquebot qui devait relier Southampton à New York. Il se déroule dans la nuit du 14(22H) au 15 avril 1912 dans l'océan Atlantique Nord. (Wikipédia)

Ce travail, est principalement axé sur la prédiciton des survies des individus présents au moment des faits. Nous avons eu l'occasion de comprendre ce qui font ces individus à l'aide de leurs caractéristiques dont; le rang social, l'age, le sexe, etc. qui ont su avoir un impact sur la probabilité de survie.

Dans la suite, 3 parties sont abordées, lesquelles seront suivies des résultats qui précède la conclusion, il s'agit notamment de :

- Exploration et compréhension des données
- Approche de résolution Forte
- Approche Faible pour l'explicabilité

Prétraitement : des données brutes aux prêtes à utiliser

also lands on face Data Const.																
<class 'pandas.core.frame.dataframe'=""> RangeIndex: 418 entries, 0 to 417</class>					Survived	Passengerld	Pclass	Age	Sex_F	Sex_M	SibSp	Parch	Fare	Embarked_C	Embarked_Q	Embar
Data #	columns (tot Column	al 11 columns): Non-Null Count	Dtype	count	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.000000	889.0
				mean	0.382452	446.000000	2.311586	29.278403	0.350956	0.649044	0.524184	0.382452	32.096681	0.188976	0.086614	0.7
0	PassengerId Pclass	418 non-null 418 non-null	int64 int64	std	0.486260	256.998173	0.834700	14.199591	0.477538	0.477538	1.103705	0.806761	49.697504	0.391710	0.281427	0.4
2	Name	418 non-null	object	min	0.000000	1.000000	1.000000	0.420000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
4	Sex Age	332 non-null	object float64	25%	0.000000	224.000000	2.000000	20.000000	0.000000	0.000000	0.000000	0.000000	7.895800	0.000000	0.000000	0.0
5	SibSp Parch	418 non-null 418 non-null	int64 int64													
7	Ticket	418 non-null	object	50%	0.000000	446.000000	3.000000	28.000000	0.000000	1.000000	0.000000	0.000000	14.454200	0.000000	0.000000	1.0
8	Fare Cabin	417 non-null 91 non-null	float64 object	75%	1.000000	668.000000	3.000000	37.000000	1.000000	1.000000	1.000000	0.000000	31.000000	0.000000	0.000000	1.0
10	Embarked	418 non-null	object	max	1.000000	891.000000	3.000000	80.000000	1.000000	1.000000	8.000000	6.000000	512.329200	1.000000	1.000000	1.0
dtypes: float64(2), int64(4), object(5) memory usage: 36.0+ KB																
	Tau Cabin	x de valeurs manqua	intes pour chaqi	ue variat	ole du datafr	ame df	17.5 15.6 12.5 10.0 7.5 1.0 2.5		engerid	900 400 300 200		Survived		500 600 500 200	Polass	
	Age -				_	_		zéo aó			03 03		is is	100 125 150		2.75 3.00
	Embarked -					_	50	11.7	Age	- 60		Ship		700	Parch	
	Fare						40			538				500		
						-	30	- UU		40				400		
	Ticket -					-	30		101	20				200		
	Parch -					-	×		in the	300				300		
	SbSp -					-	9	20 20 30	e 5 6 5	80	0 1 2	1 1 1 1	+ 17	0 1	1 1 1	1
	Sex -					-	** []		face	_						
	Name -					-	20									
	Pclass -					-	200									
	Survived -					-	150									
Pe	ssengerid -					-	30	20 200	30 40	580						

Les aglorithmes pour la modélisation et la classification des données

Une synthèse de notre expérinece sur les algorithmes utilisés

Nom	Objectif-Modèle	Observation
Decision Tree Regressor	Prediction	Inférence sur les ages
Xgboost	Classification	sur apprentissage
Random Forest Classifier	Classification	Satisfait
Decision Tree Classifier	Classification	Satisfait
SVM	Classification	3 SVC
Logistic Regression	Classification	Pas si bon que ça
Multi Layer Perceptron	Classification	Pas bien configuré
Gaussian	Classification	Pas adapté
SGDR	Classification	Pas bien configuré
KNN	Classification	Pas adapté

Table: Les algorithmes

Les aglorithmes pour la modélisation et la classification des données

L'optimisation de notre SVM (type-SVC) et la prédiction des âges.

```
# Tuning hyper-parameters for precision
                                                                                                                      XI01 <= 698.5
Best parameters set found on development set:
                                                                                                                      mse = 168,518
                                                                                                                      samples = 51
{'C': 10, 'kernel': 'linear'}
                                                                                                                      value = 45.539
Grid scores on development set:
0.546 (+/-0.273) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
                                                                                                                     X[6] <= 28.275
0.637 (+/-0.212) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
                                                                                                                      mse = 88 91
0.522 (+/-0.216) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
                                                                                                                      samples = 12
0.636 (+/-0.292) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'
                                                                                                                      value = 36 583
0.572 (+/-0.319) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.544 (+/-0.145) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'
0.563 (+/-0.333) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.605 (+/-0.183) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
                                                                                                       X[6] <= 15.465
                                                                                                                                              X[0] <= 865.5
0.774 (+/-0.038) for {'C': 1, 'kernel': 'linear'}
                                                                                                       mse = 40.109
                                                                                                                                               mse = 18.5
0.803 (+/-0.081) for {'C': 10, 'kernel': 'linear'}
                                                                                                        samples = 8
                                                                                                                                               samples = 4
0.801 (+/-0.066) for {'C': 100, 'kernel': 'linear'}
                                                                                                       value = 41 875
                                                                                                                                              value = 26.0
0.793 (+/-0.069) for {'C': 1000, 'kernel': 'linear'}
# Tuning hyper-parameters for recall
                                                                              = 848.0
                                                                                                       XI01 <= 752.5
                                                                                                                                               XI31 <= 0.5
                                                                                                                                                                          X[7] <= 0.5
Best parameters set found on development set:
                                                                              = 6,889
                                                                                                        mse = 34.0
                                                                                                                                               mse = 0.25
                                                                                                                                                                          mse = 12.25
                                                                              des = 3
                                                                                                        samples = 5
                                                                                                                                               samples = 2
                                                                                                                                                                          samples = 2
{'C': 10, 'kernel': 'linear'}
                                                                              = 36.667
                                                                                                        value = 45.0
                                                                                                                                              value = 29.5
                                                                                                                                                                          value = 22.5
Grid scores on development set:
0.486 (+/-0.071) for {'C': 1, 'qamma': 0.001, 'kernel': 'rbf'}
                                                                                             X[0] <= 705.0
                                                                                                                  X[3] <= 0.5
0.563 (+/-0.118) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
                                                                              = 0.0
                                                                                                                                      mse = 0.0
                                                                                                                                                        mse = 0.0
                                                                                                                                                                           mse = 0.0
                                                                                             mse = 12.25
                                                                                                                  mse = 1.556
0.485 (+/-0.065) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
                                                                              sles = 1
                                                                                                                                     samples = 1
                                                                                                                                                        samples = 1
                                                                                                                                                                          samples = 1
0.512 (+/-0.028) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
                                                                                             samples = 2
                                                                                                                  samples = 3
                                                                              y = 33.0
                                                                                                                                     value = 30.0
                                                                                                                                                       value = 29.0
                                                                                                                                                                          value = 19.0
0.473 (+/-0.079) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
                                                                                             value = 38.5
                                                                                                                 value = 49 333
0.526 (+/-0.140) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.467 (+/-0.090) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.546 (+/-0.116) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.762 (+/-0.045) for {'C': 1, 'kernel': 'linear'}
                                                                                                                X[0] <= 830.0
                                                                                                                                                                            X[0] <= 107
                                                                              se = 0.0
                                                                                                                                     mse = 0.0
                                                                                               mse = 0.0
0.774 (+/-0.036) for {'C': 10, 'kernel': 'linear'}
                                                                                                                 mse = 0.25
                                                                                                                                                                            mse = 222.0
                                                                              nples = 1
                                                                                              samples = 1
                                                                                                                                    samples = 1
0.768 (+/-0.034) for {'C': 100, 'kernel': 'linear'}
                                                                                                                 samples = 2
                                                                                                                                                                            samples = 1
                                                                              ne = 35.0
                                                                                              value = 42.0
                                                                                                                                    value = 51.0
0.774 (+/-0.035) for {'C': 1000, 'kernel': 'linear'}
                                                                                                                 value = 48.5
                                                                                                                                                                            value = 37.
                                                                                                                         4 D > 4 A > 4 B > 4
```

boîtes noires : les informations cachées avec Skater

Basées sur un RandomForest(1,3,4,5) et un Xgboost(2).

boîtes noires : les informations cachées avec Shape

Dans l'ordre : Xgboost(1,2,3), Regression Logistique(4,5)

Résultat et conclusion

Résumé

Au temre de ce travail nous avons su prédire si un individu a survécu ou pas. La méthodologie employée commence par une phase de prétraitement, suivit du choix des modèles dont les explications ont été renforcées en faisant de l'explicabilité tout juste avant de prédire les résultat lors de la soumission sur kaggle. De ce fait, nous avons réalisé le meilleur score de 77.272% à l'aide d'un RandomForest, ce qui nous a emmené à la 8222e position comme vous pouvez le voir dans les fichiers LeaderBoard et Top5.

