Tema 3

Subsistema de memoria en sistemas empotrados

Subsistema de memoria en sistemas empotrados. (3-11 horas)

3.1 Espacio de memoria

- 3.2 Memoria Cache
- 3.3 Memoria principal
- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.1 Espacio de memoria

- El objetivo de organizar la memoria de un ordenador como una jerarquía de memorias es aprovechar el principio de localidad.
- Consideración: las memorias más rápidas son las más caras por bit y por tanto suelen ser más pequeñas.

Tabla: Tiempos de acceso y precios de las distintas tecnologías de memoria más comunes (año 2009).

Tecnología	Tiempo de acceso típico	€ por MB
SRAM	1 ns	20 €
SDRAM	5 ns	0,01 €
Disco magnético	8.500.000 ns	0,0001 €

Objetivo: mucha memoria + tecnología barata + alta velocidad

Jerarquía de memoria

Figura: Estructura básica de la jerarquía de memoria.

Subsistema de memoria en sistemas empotrados. (3-11 horas)

- 3.1 Espacio de memoria
- 3.2 Memoria Cache
- 3.3 Memoria principal
- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.2 Memoria Cache

Correspondencia directa

Cada dirección de memoria se corresponde con una única posible posición en la caché

posición en caché = (dirección de bloque en memoria)MODULO (nº de posiciones de la caché)

Bloques (líneas) monopalabra (bloque = 1 palabra)

posición en caché = (dirección de palabra en memoria)MODULO (nº de posiciones de la caché)

Cache directa de bloques monopalabra

- Ejemplo: caché de correspondencia directa con 8 posiciones.
 Memoria principal de 32 palabras.
- Una palabra de dirección X se lleva a caché a la posición X
 MOD 8: los 3 (log₂8) bits de menor peso servirán de índice de la caché.

 Bit de validez: indica si una posición de caché contiene datos válidos.

 Continuando con el ejemplo de la memoria principal de 32 palabras y la caché de 8 palabras:

Tabla: Secuencia de ocho peticiones de acceso a memoria a una caché de correspondencia directa de 8 posiciones de un byte cada una.

Peticiones	Dir) ₁₀	Dir) ₂	Posición caché	Etiqueta caché	Acierto o Fallo
1°	22	10110	110	10	Fallo
2°	26	11010	010	11	Fallo
3°	22	10110	110	10	Acierto
40	26	11010	010	11	Acierto
5°	16	10000	000	10	Fallo
6°	4	00100	100	00	Fallo
7°	16	10000	000	10	Acierto
80	18	10010	010	10	Fallo

Tabla: Detalles de los contenidos de una caché durante ocho peticiones de palabras después de cada petición que provoca fallo de caché (1/3).

Índice	V	Etiqueta	Dato	Índice	V	Etiqueta	Dato
000	N			000	Ν		
001	N			001	Ν		
010	N			010	Ν		
011	N			011	Ν		
100	N			100	Ν		
101	N			101	Ν		
110	N			110	S	10	M(10110)
111	N			111	Ν		
a) Estad	a) Estado inicial de la caché después de			b) Después de tratar el fallo de la dire			
arrancar				ción de	mem	oria (10110))

Tabla: Detalles de los contenidos de una caché durante ocho peticiones de palabras después de cada petición que provoca fallo de caché (2/3).

Índice	٧	Etiqueta	Dato		Índice	٧	Etiqueta	Dato
000	N				000	S	10	M(10000)
001	N				001	N		
010	S	11	M(11010)		010	S	11	M(11010)
011	N				011	N		
100	N				100	N		
101	N				101	N		
110	S	10	M(10110)		110	S	10	M(10110)
111	N				111	N		
c) Desp	c) Después de tratar el fallo de la direc-			d) Después de tratar el fallo de la dire				fallo de la direc-
ción de	mem	oria (11010))		ción de	mem	noria (10000))

Tabla: Detalles de los contenidos de una caché durante ocho peticiones de palabras después de cada petición que provoca fallo de caché (3/3).

Índice	٧	Etiqueta	Dato		Índice	٧	Etiqueta	Dato
000	S	10	M(10000)		000	S	10	M(10000)
001	Ν				001	N		
010	S	11	M(11010)		010	S	10	M(10010)
011	N				011	N		
100	S	00	M(00100)		100	S	00	M(00100)
101	N				101	N		
110	S	10	M(10110)		110	S	10	M(10110)
111	N				111	N		
e) Desp	e) Después de tratar el fallo de la direc-			f) Después de tratar el fallo de la direcci			lo de la dirección	
ción de	mem	oria (00100)			de mem	oria	(10010)	

Tamaño total de una caché (en bits) = n° de posiciones \times (n° bits control + tamaño etiqueta + tamaño bloque)

donde, para una caché de correspondencia directa con bloques monopalabra:

- Tamaño bloque = (n^o de palabras por bloque) × (n^o de bits por palabra) = 1 × (n^o de bits por palabra).
- Tamaño etiqueta = (tamaño dirección) (nº bits para índice) -(nº bits para el desplazamiento de byte).
- N^{Ω} bits para índice = \log_2 (n^{Ω} de posiciones).
- N^{Ω} bits para el desplazamiento de byte = \log_2 (n^{Ω} de bytes por palabra).

- Tamaño total de una caché, según el ejemplo:
 - Nº bits para desplazamiento de byte = log₂ (4) =
 2 bits.
 - N^{Ω} bits para índice = $\log_2(2^{10}) = 10$ bits.
 - Tamaño etiqueta = (32 10 2) = 20 bits.
 - Tamaño bloque = 1×32 bits.
- Por lo tanto:

$$N^{\Omega}$$
 total de bits = $2^{10} \times (1 + 20 + 32) = 54272$ bits = 6784 bytes.

Correspondencia directa con bloques multipalabra Tras un fallo, se traerá a caché la palabra buscada y un grupo de palabras adyacentes a ella y que, por tanto, tendrán una alta probabilidad de ser referenciadas en breve.

- Posición en caché = (dirección de bloque en memoria) MODULO (número de bloques de la caché)
- Dirección de bloque en memoria = (dirección de palabra en memoria) DIV (número de palabras por bloque)

Correspondencia directa con bloques multipalabra

Dir. de bloque	Dir. de palabra	Dir. de byte	Byte de memoria
		0000000	
	00000	0000001	
		0000010	
0000		0000011	
0000	00001	0000100	
		0000101	
		0000110	
		0000111	
		0001000	
	00010	0001001	
	00010	0001010	
0001		0001011	
0001		0001100	
	00011	0001101	
	00011	0001110	
		0001111	

- direcciones de 7 bits,
- palabras de 4 bytes (32 bits)
- bloques de 2 palabras
- (64 bits).

Figura: Memoria caché de 64 KB con bloques de cuatro palabras y palabras de 32 bits.

	Dirección o	lel dato solicitado por el proce	esador
		32 bits	
	Desplazamiento de byte		
	30 b	2 bits	
Direc	ción de bloque	Desplazamiento de palabra	Desplazamiento de byte
	28 bits	2bits	2 bits
Etiqueta Posición en caché Desplazamien		Desplazamiento de palabra	Desplazamiento de byte
16 bits	12 bits	2bits	2 bits

Memoria cache asociativa por conjuntos

Figura: Cuatro posibilidades para una caché con capacidad para 8 bloques.

Dir. bloque		Pos cachó	Acierto o fallo	Contenido de la caché				
Base 10	Base 2	Pos. caché	o fallo	Pos 0	Pos 1	Pos 2	Pos 3	

Dir. b	•	Pos. cache	Acierto	Contenido de la caché				
Base 10	Base 2		o fallo	Pos 0	Pos 1	Pos 2	Pos 3	
0	0000	00	Fallo	M[0]				
8	1000	00	Fallo	M[8]				

Dir. b	oque	Pos cachó	Acierto	Contenido de la caché				
Base 10	Base 2	Pos. caché	o fallo	Pos 0	Pos 1	Pos 2	Pos 3	
0	0000	00	Fallo	M[0]				
8	1000	00	Fallo	M[8]				
0	0000	00	Fallo	M[0]				

Dir. b	loque	Pos. caché	Acierto			de la ca	ché
Base 10	Base 2	ros. cacile	o fallo	Pos 0	Pos 1	Pos 2	Pos 3
0	0000	00	Fallo	M[0]			
8	1000	00	Fallo	M[8]			
0	0000	00	Fallo	M[0]			
6	0110	10	Fallo	M[0]		M[6]	

Dir. b	oque	Pos. caché	Acierto	Contenido de la caché			
Base 10	Base 2	ros. cache	o fallo	Pos 0	Pos 1	Pos 2	Pos 3
0	0000	00	Fallo	M[0]			
8	1000	00	Fallo	M[8]			
0	0000	00	Fallo	M[0]			
6	0110	10	Fallo	M[0]		M[6]	
8	1000	00	Fallo	M[8]		M[6]	

Tabla: Evolución del contenido de una memoria caché asociativa con 2 conjuntos de 2 bloques.

Dir. b	loque	Pos. caché	Acierto	Con	tenido	de la caché		
Base 10	Base 2	Pos. cache	o fallo	Conjunto 0		Conjunto 1		

Tabla: Evolución del contenido de una memoria caché asociativa con 2 conjuntos de 2 bloques.

Dir. b	loque	Pos. caché	Acierto	Con	tenido	de la ca	aché
Base 10	Base 2	ros. cacile	o fallo	Conjunto 0		Conjunto 1	
0	0000	0	Fallo	M[0]			

Dir. b	loque	Pos. caché	Acierto	Con	tenido (de la ca	aché
Base 10	Base 2	ros. cacile	o fallo	Conjunto 0		Conjunto 1	
0	0000	0	Fallo	M[0]			
8	1000	0	Fallo	M[0]	M[8]		

Dir. b	loque	Pos. caché	Acierto	Con	tenido (de la caché		
Base 10	Base 2	ros. cacile	o fallo	Conjunto 0		Conjunto 1		
0	0000	0	Fallo	M[0]				
8	1000	0	Fallo	M[0]	M[8]			
0	0000	0	Acierto	M[0]	M[8]			

Dir. b	oque	Pos. caché	Acierto	Con	tenido (de la ca	aché
Base 10	Base 2	Fos. cacile	o fallo	Conjunto 0		Conjunto 1	
0	0000	0	Fallo	M[0]			
8	1000	0	Fallo	M[0]	M[8]		
0	0000	0	Acierto	M[0]	M[8]		
6	0110	0	Fallo	M[0]	M[6]		

Dir. b	oque	Pos. caché	Acierto	Contenido de la caché			
Base 10	Base 2	ros. cacile	o fallo	Conjunto 0		Conjunto 1	
0	0000	0	Fallo	M[0]			
8	1000	0	Fallo	M[0]	M[8]		
0	0000	0	Acierto	M[0]	M[8]		
6	0110	0	Fallo	M[0]	M[6]		
8	1000	0	Fallo	M[8]	M[6]		

Tabla: Evolución del contenido de una memoria caché totalmente asociativa.

Dir. b	loque	Acierto	Contenido de la caché			aché
Base 10	Base 2	o fallo	Conjunto único)

Dir. b	loque	Acierto			aché	
Base 10	Base 2	o fallo	Conjunto único			
0	0000	Fallo	M[0]			

•		Acierto	Contenido de la caché				
Base 10	Base 2	o fallo	Conjunto único				
0	0000	Fallo	M[0]				
8	1000	Fallo	M[0]	M[8]			

Dir. bl	Dir. bloque		Contenido de la caché			
Base 10	Base 2	o fallo	Conjunto único			
0	0000	Fallo	M[0]			
8	1000	Fallo	M[0]	M[8]		
0	0000	Acierto	M[0]	M[8]		

Dir. bl	oque	Acierto	Con	Contenido de la caché				
Base 10	Base 2	o fallo	Conjunto único					
0	0000	Fallo	M[0]					
8	1000	Fallo	M[0]	M[8]				
0	0000	Acierto	M[0]	M[8]				
6	0110	Fallo	M[0]	M[8]	M[6]			

Dir. b	loque	Acierto	Contenido de la caché				
Base 10	Base 2	o fallo	Conjunto único				
0	0000	Fallo	M[0]				
8	1000	Fallo	M[0]	M[8]			
0	0000	Acierto	M[0]	M[8]			
6	0110	Fallo	M[0]	M[8]	M[6]		
8	1000	Acierto	M[0]	M[8]	M[6]		

Construcción de una caché 4asociativa

- Aumentar la asociatividad requiere más comparadores, así como
- más bits para las etiquetas de lo bloques de caché.
- Ejemplo: caché de 4096 (212) bloques monopalabra. Direcciones
- de 32 bits

	Nº Conjuntos	Nº bits para	Nº total de bits para
		una etiqueta	etiquetas
Corresp. directa	4096 (2 ¹²)	30 - 12 = 18	4096 x 18 = 72 Kb
2-asociativa	2048 (211)	30 - 11 = 19	4096 x 19 = 76 Kb
4–asociativa	1024 (2 ¹⁰)	30 - 10 = 20	4096 x 20 = 80 Kb
Total. asociativa	1	30	4096 x 30 = 120 Kb

Subsistema de memoria en sistemas empotrados. (3-11 horas)

- 3.1 Espacio de memoria
- 3.2 Memoria Cache

3.3 Memoria principal

- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.3 Memoria Principal

Formada por tres componentes

- El Cl de memoria
- El bus de direcciones
- El bus de datos
- •El Cl de memoria está formado por
 - El array bidimensional de celdas de memoria (memoria física)
 - El decodificador de direcciones
 - El interfaz de datos

3.3 Memoria Principal

- El Cl de memoria se conecta a la tarjeta empotrada a través de una variedad de empaquetamientos dependiendo del tipo de memoria:
 - DIP Dual inline packages (un CI)
 - SIMM Single in –line memory modules
 - DIMM Dual in-line memory modules

Los SIMM y los DIMM son minimódulos (PCBs) que contienen varios CIs de memoria El número de pines puede variar (30, 72, 168, etc.)

3.3 Memoria principal

DIP SIMM

Zócalo tipo SIMM

Memoria Primaria

- La memoria primaria y secundaria puede dividirse en 2 grupos:
 - Memoria no volátil
 - ROM, Flash
 - NVRAM (Non Volatil RAM)
 - Memoria auxiliar
 - Memoria volátil
 - RAM (acceso aleatorio)

NVRAM es una RAM CMOS de bajo consumo conectada a una bateria de litio + un controlador, o bien una RAM CMOS + EEPROM que se actualiza con un pulse de retención (cuando se va a apagar la alimentación)

Memoria Sólo lectura (ROM)

- Se usa para guardar datos de forma permanente (software de arranque)
- Tipos:
 - Mask ROM (MROM) Los bits de datos se programan de forma permanente en un microchip en la fábrica. Suelen ser de tecnología MOS o bipolar
 - One-time Programmable ROM (OTP ROM) Puede programarse fuera de fábrica mediante un programador de ROM. Utiliza tecnología bipolar. Es como una EPROM que no se puede borrar
 - Erasable Programmable ROM (EPROM) puede borrarse varias veces usando onda corta o luz ultravioleta. Tecnología MOS + puerta flotante
 - Electrically Erasable Programmable ROM (EEPROM) Se pueden borrar sin usar dispositivos especiales (desde el dispositivo empotrado).
 Se escribe y borra en bytes. Usan tecnología NMOS + puerta flotante
 - Flash variación de la EEPROM que puede borrarse y escribirse en bloques o sectores (grupos de 64Kbytes). Por tanto puede borrarse eléctricamente en el propio dispositivo empotrado. Usa tecnología CMOs Suelen usarse para reemplazar discos en PDAs, cámaras, teléfonos, etc).

Flash

- Puede utilizarse para:
 - Almacenar el sistema de arranque
 - Almacenar el Sistema Operativo
 - Almacenar aplicaciones e imágenes de librerías
 - Almacenar ficheros

Se diferencian tecnológicamente de los discos en que los sectores son de **64kbytes** en lugar de **512bytes** y que un sector hay que borrarlo antes de escribirlo. El tiempo de vida viene limitado por el número de veces que un sector se borra.

Hay 2 tipos de dispositivos:

- 1.- Los chips de flash (tecnología NAND o NOR) que suelen llevar un "Common flash interface"
- 2.- Los **Discos flash** para almacenamiento masivo que pueden ser basados en ATA (interfaz de disco estándar IDE) y Flash Lineales (basados en NAND pero con capacidad de arranque gracias a una boot ROM que se reconoce como extensión de la BIOS)

Memoria de acceso aleatorio (RAM)

Normalmente es la llamada Memoria Principal. Es volátil. Puede ser estática (SRAM) o dinámica (DRAM)

SRAM

Usada en pequeñas cantidades (Cache)

Diagrama de tiempos SRAM

Memoria DRAM

Diagrama de tiempos DRAM (L)

Diagrama de tiempos DRAM (E)

Hay un controlador encargado del refresco Es más lenta y más barata. Se usa en grandes cantidades

Memoria Síncrona

- Es la memoria externa de mayor rendimiento. Son baratas pq la industria de computadores personales usa esta memoria en módulos DIMM estándar.
- Hay dos tipos:
 - -SDRAM
 - DDR-SDRAM

SDRAM

- Las lecturas y las escrituras se sincronizan con el reloj del procesador.
- Necesita refresco.
- Frecuencias 100MHz-133MHz (532 Mbytes/s)

Datos
Dir
DM(1:0)
CLK
SCKE
RAS
CAS
WE

Latencia de CAS es el retardo en ciclos de reloj desde que se da un comando de lectura hasta que el dato está listo. Suele ser de 2-3 ciclos

El proceso de preparar la SDRAM (RAS) puede llevar varios ciclos de reloj, pero una vez la fila está activa se puede leer completa a una dato por ciclo (burst)

Double Data Rate (DDR)

- Permite acceso síncrono en ambos flancos de reloj, por lo cual proporciona doble ancho de banda. Requiere su propio controlador.
- A 400MHz incrementa el ancho de banda a 3.2 Gbytes/s (2.5v)
- DDR2 ofrece hasta 6.4 Gbytes/s a 1.8v

Subsistema de memoria en sistemas empotrados. (3-11 horas)

- 3.1 Espacio de memoria
- 3.2 Memoria Cache
- 3.3 Memoria principal
- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.4 Memoria auxiliar

- Sirve para almacenar grandes cantidades de datos durante grandes periodos o indefinidamente
 - Cintas magnéticas (acceso secuencial)
 - Discos duros formados por varios platos o discos de metal cubiertos de un material magnético. Pueden tener múltiples cabezas soportadas por un brazo. En cada pista los datos se leen secuencialmente
 - Compact Disc: no son magnéticos sino ópticos y se leen con láser. Son de 1 escritura salvo que lleven material óptico y magnético (se leen y escriben con láseres manipulados y campos magnéticos).

Memoria auxiliar

- Discos IDE (Integrated Drive Electronics)
 - El controlador de disco se integra directamente en el propio disco, en lugar de en la tarjeta empotrada
 - El interfaz ATA especifica el modo en que los comandos se pasan al controlador del disco duro, se interpretan y procesan.
 - Método de acceso:
 - CHS Cilindro-Head-Sector
 - LBA Logical Block Addressing (Cada sector tiene un número de identificación)
 - Modos de acceso:
 - E/S programada: el procesador planifica, arranca y completa un ciclo de proceso de datos
 - DMA Transferencia disco-memoria sin intervención del procesador

Memoria auxiliar

- Otros interfaces de disco duro:
 - SATA: Serial ATA serializa el interfaz de datos paralelo del ATA. Utiliza señalización diferencial a velocidades de varios cientos de MB/s
 - SCSI (Small Computer System Interface) Mejor rendimiento que el ATA pero más complejo y caro.
 Permite la expansión a mayor número de dispositivos.
 - Microdrive: es un disco duro en miniatura de tecnología magnética.
 - USB/Firewire son discos ATA paralelos con un terminal USB 2.0 o Firewire (IEEE 1394)

Subsistema de memoria en sistemas empotrados, (3+1 horas)

- 3.1 Espacio de memoria
- 3.2 Memoria Cache
- 3.3 Memoria principal
- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.5 Acceso Directo a memoria

- Son controladores que se encargan de realizar las transferencias entre la memoria externa/interna y los periféricos o almacenamiento auxiliar sin intervención del procesador.
- Éste se encarga de configurar el controlador de DMA durante la inicialización.
- Al terminar, el controlador produce una interrupción.
- Puede realizar transferencias entre los distintos tipos de memoria
- Periféricos que necesitan DMA: video, audio, interfaces de red

3.5 Acceso Directo a Memoria

- Cada controlador de DMA puede tener varios canales con una prioridad programable. Arbitraje por prioridades
- Existen un conjunto de FIFOs que actúan de buffer
- Una transferencia DMA implica
 - Fuente
 - Destino
 - N⁰ bloques a transferir X_count
 - Nº bytes para incrementar el puntero de dirección después de mover un elemento X_Modify
 - Para transferencias en 2D (con lazos anidados) Y_Count, Y_Modify
- Dos tipos de configuraciones: modo registro y modo descriptor

3.5 Acceso Directo a Memoria

- Modo registro Existen 2 submodos: autobuffer y stop.
 - Autobuffer: Flujo de datos continuo
 cuando se completa la transferencia de un bloque el
 registro de control automáticamente se carga con los
 valores originales y el proceso comienza de nuevo.
 - Stop: cuando termina se para y espera a la siguiente transferencia

Acceso Directo a Memoria

- Ej. Una aplicación opera con 512 muestras de audio, y el codec envía los nuevos datos a la frecuencia de audio. Si se dispone de un doble-buffer para que mientras la DMA opera con uno, el procesador opera con el otro, qué técnica es la más apropiada: el autobuffer
 - Xcount=512
 - Ycount=2
 - Xmodify=4
 - Ymodify=1

Interrupción

3.5 Acceso Directo a Memoria

- Modo descriptor Permite encadenar varias secuencias de DMA. Hays 2 submodos: array y lista
- Modo Array

Start_Addr [15:0] Start_Addr[31:16] DMA_Config X_Count X_Modify Y_Count Y_Modify

Descriptor bloque 1

Descriptor bloque 2

Acceso Directo a Memoria

Modo lista

Se puede hacer un bucle

Next_Desc

Start_Addr [15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Count

Y_Modify

Next_Desc

Start_Addr [15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Count

Y_Modify

Next_Desc

Start_Addr [15:0]

Start_Addr[31:16]

DMA_Config

X_Count

X_Modify

Y_Count

Y_Modify

Subsistema de memoria en sistemas empotrados. (3-11 horas)

- 3.1 Espacio de memoria
- 3.2 Memoria Cache
- 3.3 Memoria principal
- 3.4 Memoria auxiliar o de almacenamiento
- 3.5 Acceso directo a memoria
- 3.6 Rendimiento y memoria

3.6 Rendimiento y memoria

- Una de las medidas más comunes de rendimiento del procesador es el ancho de banda (throughput). Este puede verse negativamente afectado por la memoria principal si la DRAM utilizada es más lenta que el procesador.
- Soluciones para mejorar el rendimiento:
 - Arquitectura tipo Harvard
 - Usar DRAMs que utilicen señales de bus integradas, para disminuir el tiempo de arbitraje
 - Utilizar una jerarquía de memoria (caches)
 - Utilizar DMA