	Math 71 Homework 6
	,
3 목	D division reng, Z(D) center. Z(D) is subring cutaining
	1. Show inverses exist in Z(D): Let a = 0 in Z(D)
	$\forall r \in D$, $ar^{-1} = r^{-1}a$: $(ar^{-1})^{-1} = (r^{-1}a)^{-1}$
	ra-1 = a-1 r .: a-1 & Z(D).
231	Let q = a + bi + cy + dk & Z(H) qi = iq
	ai-b-ck+dj=ai-b+ck-dj : $c=d=0$
	g = a+bi Cundu gj=1g : b=0
	: Z(H) = R = H.
231	$x^2 - 1 = 0$: $(x - 1)(x + 1) = 0$
231	(a) $x+0$ $x^{M}=0$: $x x^{M-1}=0$. : x is zero divisor
	(c) $(1+x)(1-x+x^2\pm x^{m-1})=1$
l,	(d) U unit with inverse V. X sulpotent with xM = 0.
:	$(u+x)(v-v^2x+v^3x^2\pm v^{m}x^{m-1})=1$
231	First $x = -x$: $x + x = (x + x)^2$
	$2X = (2x)^2 = 4x^2 = 4x$: $2x = 0$
,	x = -x. how
	$a+b = (a+b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b$
	ab = -ba = ba.
146	Ps
146 7 141 30	$M = 2^3 \cdot 3 \cdot 7$ $N_7 = 1,8$ Semple emplies $N_7 \neq 1$.: $N_7 = 8$
	I 8 cyclic groups of order 7 whose intersection in fet
	: There are 48 elements of order 7
238	€) ⇒ (\(\int a_n \pi^n\)(\(\int b_n \pi^n\) = 1 for some \(\int b_n \pi^n\) formal power socies
	(fps) :: $a_0b_0 + (a_0b_1 + a_1b_0) \times + = 1$: $a_0b_0 = 1$
	← Given \(\bar{a}_0 = a_0'\) Want to find fps \(\begin{array}{c} b_n \times^n \) such that
#	(Zanx")(Zbnx") = 1. Defere bo, b, inductively

	$a_0b_0 = 1$ so $b_0 = \overline{a_0}$ $a_0b_1 + a_1b_0 = 0$ so $b_1 = \overline{a_0}(-a_1b_0)$
	ete.
238	B ⇒ Given two fps Zan xn, Zbn xn whose product is
	zero. assume both non-zero and write them as
	anx + aget xuti + with an +0 and by xm + bout xm+1+-
	with by +0. : (Zan XM) (Zbn XM) = an by xn+m+ =0
	: anby = 0 : qn = 0 or by = 0 contradiction
247	Suppose 4:27 - 37 com. 4(2)=3k for samek
	$\varphi(4) = \varphi(2+2) = \varphi(x) + \varphi(x) = 3k + 3k = 6k$
	4(4) = 4(2.2) = 4(2)4(2) = 9 k2 not equal
쐗	I two unts in Z[x]: and -1
	I infinitely many unit in Q[x]: Q*
248 4	Suppose 4: I -> B30 inventory and 4(1) = k
	4 in reng homo. (> 4(1) 4(1) = 4(1) (> k2 = k mol 30
	k = 0, 1, 6, 10, 15, 16, 21, 25
248	
	$a+bi \iff \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$
ı	1