TECHNISCHE MECHANIK

KOORDINATEN

Freiheitsgrach System: f = n - bSume FG alle Körper Anzahl Birdugen

L. storrer Körper hat FG 6

Kartesische Koordinaten:

Zylinder koordinaten:

Umrechnung Kortesisch -> Zylinderkond.

$$x = \rho \cdot \cos \varrho$$
 $\rho = \sqrt{x^2 + y^2}$
 $y = \rho \cdot \sin \varrho$ $\varrho = \arctan(\frac{y}{x})$
 $z = z$ $z = z$

Einheitsvektoren:

Winkelsumme Vieleck: (n-2). 180°

Unrednung Grad
$$\leftrightarrow$$
 Bogenmass
$$\alpha^{\circ} = \frac{4}{17} \cdot 180^{\circ}$$

$$4 = \frac{\alpha^{\circ}}{180^{\circ}} \cdot 17$$

Kleinwinkelapproximation:

TRIGONOHETRIE

	0°	30°	45°	60°	90°
sin	0	12	12/2	<u>কি</u>	1
Cos	1	<u>13</u> 2	<u>হি</u>	12	0
ton	0	<u>ন্তি</u> ও	1	13	undef.

Einheitsvektoren: |e| = 1

$$\frac{e}{30^{\circ}} \qquad e = \begin{pmatrix} \frac{13}{2} \\ \frac{1/2}{0} \end{pmatrix}$$

$$e = \begin{pmatrix} \frac{12}{2} \\ \frac{12}{2} \\ 0 \end{pmatrix}$$

$$e = \begin{pmatrix} \frac{12}{2} \\ \frac{12}{2} \\ 0 \end{pmatrix}$$

$$e = \begin{pmatrix} \frac{1}{2} \\ \frac{12}{2} \\ 0 \end{pmatrix}$$

Komponenten aus Betrag berechnen:

$$\frac{|V| = \alpha}{\cos(\alpha) \cdot \alpha} \sin(\alpha) \cdot \alpha \rightarrow V = \begin{pmatrix} \pm \cos(\alpha) \cdot \alpha \\ \pm \sin(\alpha) \cdot \alpha \end{pmatrix}$$

Trigonometrische Identitäten

Kosinussatz:
$$Q^2 = b^2 + C^2 - 2bc \cos \varphi$$

 $\sin = \frac{GK}{HV}$, $\cos = \frac{AK}{HV}$, $\tan = \frac{\sin - GK}{\cos - AK}$

Gleichseiliges Dreieck:

STARRE KÖRPER

Satz der projizierten Geschwindigkeiten:

Die Projektionen Vp', Va' der Geschwindigkeich von zwei beliebigen Punkten Pund Q eines starren Körpers auf ihre Verbindungsgerade sind gleich:

SdpG VP, Q erfüllt -> storre Bowegung

- (1) Translation falls Up = V YP
- (2) Rotation (feste Rotationsachse)

Ebene Bewegung

- a) alle Geschwindigkeiten // Ebene E
- b) alle Punkte auf Normalen zu E gleiches V
 - 1. Translation: alle V parallel
 - 2. Rotation: M Schnittpunkt der Senkrechten zu Vp, Va -> Vu = 0

Satz vom Momentanzentrum

Bei der Rotation steht die Geschwindigkeit Vp des Punktes P senkrecht auf der Verbindungsgeraden durch P und das Momontonzentrums M:

$$V_{\rho} = \omega_{\mu\rho}$$
 ($\omega = Rotationsschnelligkeit$)

Komponentenweise (20):

Polbahn

Polbahn hingt un Bezugssystem ab:

M feste Polbahn: festes Bezugssystem, z.B. Wood-Boden

bewegliche Pollahn: bewegender storrer Körper als Grundlage

KINEHATIK

Räumliche Bewegungen

Eine Kreiselung (ein Punkt des Körpers bleibt fixiert) ist momentan eine Rotation:

Die Gerade durch O in Richtung w heisst Momentanachse.

Starrkörperformel

Kinemale von P { Vp, w}

Invarianten

$$I_2 = 0$$
 and $I_1 \neq 0 \rightarrow \text{Rotation}(\text{Kraiseling})$

Berechnung Zentralachsentranslation Vw

$$ew = \underline{W} \cdot \frac{1}{|\underline{w}|}$$
 (Einheitsvelter in Richting over Zentralactuse)

Projektion irogeneiner Geschw. and Zentralachse

Punkt auf Zentralachse bestimmen:

- Punkt B wenn miglich als O wählen
- -> Zusatzbedingung in foz einsetzen -> auflösen (resp. eine Koordinate frei Wählbar)

KRAFTE UND MOMENTE

Begriffe

Kontakt kräfte: Actio & Reactio im Berührungspunkt Fernkräfte: Actio & Reactio aut Verbindungsgerade

Aussere Kraft: Keactio ausserhalb betrachtetes System Innere Kraft: Reactio greifi innerhalb System and La heben sich wegen Realtionsprinzip auf

$$[Kraft] = N = \frac{m \cdot kg}{s^2}$$
; [Moment] = N·m

Hebelarm:
$$H_0 = \pm d \cdot F = |r_{op}| \cdot |F| \cdot \sin(a)$$

$$d_p^9 = |\underline{\Gamma_{PQ}} \times \underline{e_q}|$$

Go irgendein Punkt auf Gerade

<u>Leistung</u>

$$\mathcal{P} = \underline{F} \cdot \underline{V}_{p} \qquad [\mathcal{P}] = W = \frac{J}{S} = \frac{m^{2}k_{9}}{S^{3}}$$

Reine Rotation: P = Mo. w

leistungslos: P=0 ⇔ F I v

STATIK

Kräftegruppe {Fi} = {F1, F2,..., FN}

Resultierende R = \$ Fi

Resultierendes Homent Mo = \(\sum_{i=1}^{N} \(\Gamma_i \times \) (mit Bezugspunkt)

Gesamtleistung:
$$P = R \cdot V_B + M_B \cdot W$$

Statische Äquivalenz: $P(\{F_i\}) = P(\{G_i\})$ \forall Starrkörperbewegungen

Zwei Kräftegruppen sind genow dann Statisch äquivalent, wenn ihre Resultierenden und ihre

resultierenden Homente gleich sind. (Einzelne Kraft Vektoriell gleich + gleiche Wirkugslinie)

Transformationsregel

Dyname

Dyname der KG bez. Punkt 0 {R, Mo}

Keduktion einer KG ← Berechnung Dyname

Invarianten: $I_1 = R$, $I_2 = R \cdot M_0$

- Hullsystem: I1 = 0 ∧ Mo = 0 - Kraftepaar: I1 = 0 ∧ Mo ≠ 0

- Einzelkraft: $I_1 \neq 0 \land I_2 = 0$ - Schraube: $I_1 \neq 0 \land I_2 \neq 0$

<u> Parallele Kräftegruppe</u>

N = ZF: · C: ⇒ M = Nxe (R=0)

Kräftemittelpunkt $C = \frac{1}{R} \sum F_i \cdot \Gamma_i$ (R ≠ 0)

Kräfte und Hassenmittelpunkt

G. Cc = ZG; Ci (Surme aus Teilkörpern)

 $\Gamma_{c} = \frac{1}{m} \iiint \Gamma \, dm$ (homogene Körper V,A,L)

Dreieck: $C_x = \frac{X_1 + X_2 + X_3}{3}$, $C_y = \frac{Y_1 + Y_2 + Y_3}{3}$

 $\|K: C_{x} = 0, C_{y} = \frac{4}{37}R \| VK: C_{x} = \frac{4}{37}R, C_{y} = \frac{4}{37}R$

<u>Prinzip der virtuellen Leistungen</u>

Ein System befindet sich genau dann in einer Ruhelage, wenn die virtuelle Gesantleistung der inneren \mathcal{J} ausseren Kräfte bei jedem $\{\tilde{V}_0, \tilde{W}\}$ verschwindet. $\tilde{\mathcal{J}} = \tilde{\mathcal{J}}^{(n)} + \tilde{\mathcal{J}}^{(n)} = 0 \ \forall \{\tilde{v}\}$

Hauptsatz der Statik

Ruhelage, wenn äussere Kräfte im Gleichgewicht R = Q und $H_0 = Q$

Statische Bestimmtheit

statisch unbestimmt: $\Gamma \angle \Omega$ (klemmend) Lo Grad: (∩-r)-fach

kinematisch unbestimmt: N< T < M

> zulässige momentone Bug. zustände möglich

Statisch Destimmt: $\Gamma = \Gamma$

4 night kinematisch unbestimmt

+ nicht statisch unbestimmt

Keibungsfreie Bindungen

Auflager (einseitig) Auflager	P	N > 0	Einspannung	P P	M P A
(einseitig) Loslager Auflager (beidseitig)	\$\frac{r}{\sqrt{2}}	N>0 P N N N N N N N N N N	Faden / Seil	P	S>0
Loslager Auflager (beidseitig) Kurzes Querlager	\frac{\frac}\fint}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\f	N P	Pendelstütze (Modellannahme: äussere Kräfte nur in den Gelenken)	P	S P
Loslager Gelenk Festlager	PO	B A A	Parallelführung Langes Querlager,	P P	M A
Gelenk	<i>P P P P P P P P P P</i>	B P A	Schiebehülse		P_M
Gelenk (zwei gelenkig verbundene Balken)	P	P. A	Längs- und kurzes Querlager	<u>P</u>	$ \begin{array}{c c} A \\ P & N > 0 \end{array} $

Stabkraft bestimmen (Pendelstütze)

- 1) Stab enffernen (Skizze) 4 an beiden Knoten Zugskraft einführen
- 2) Bew.zustand des Mechanismus bestimmen
- 3) PdvL formulieren → Summe Leistungen = 0
- 4) nach Stabkraft auflösen: しらら>0: Zugstab S < 0: Druckstab

Analytische Statik

- 1) freischneiden, Kräfte einführen
 - Gewichtskräfte greifen im Schwerpunkt an
 - Seil-& Stabkräfte als Zugkraft
 - Reiburgskräfte gegen Bew. richtung
 - Normalkräfte senkrecht zur Berührungsebene
- 2) zwecksmässiges Koordinatensystem wählen
- 3) Gleichgewichlsbedingungen formulieren Ly allenfalls System weiter auftrennen→Schnittkräfte
- 4) LGS auflösen und Resultate diskutieren
 - Seil ist gespannt, Zugkraft: S>O Körper kippt nicht, lel = 1/2

 - Körper hebt nicht ab: N>O

Bedingungen Standfestigkeit (Ruhe)

- 1. Vicht abheben : NEO 1e1: 6/2 2. Nicht kippen '
- IFRI = Mo· [N] 3. Wicht gleiten:

<u>Kippen</u>

- punktförmiges, ebenes Auflager LoN:>0 far (= {1, ..., Arrahl Auflager}
- nicht punktförmig → Normalkraft dichte → Einzelkraft N mit unbek. Angriffspunkt

Der Angriffspunkt der Einzelkraft N muss innerhalb der Standfläche liegen, sonst kippt er. Konvexe Itülle der kippt er. Berührungsfläche

1e1 4 1/2

<u>Keibung</u>

(VB = 0)

- 40 Haftreibungskoeffizient
- Ma Gleitreibungskoeffizient
- juz Rollwiderstandslänge

Haftreibung: IFI = Mo. INI

(vB = 0) |E| = μ. · |Ŋ| Gleitreibung:

 $F = -\mu_4 \cdot |N| \cdot \frac{V_B}{|V_B|}$ V_B = relative Geschwindigkeit

Rollwiderstand: Mg = 12. N (w = 0)

Ideal rau: No=∞, N2=0 => keine Verlustlastung

DYNAMIK

Beschleunigung

Kortesisch: $\underline{a} = \ddot{x}\underline{e}_{x} + \ddot{y}\underline{e}_{y} + \ddot{z}\underline{e}_{z}$ Zylinder: $\underline{a} = (\ddot{p} - p\dot{\ell}^{2})\underline{e}_{p} + (p\ddot{\ell} + 2\dot{p}\dot{\ell})\underline{e}_{\ell} + \ddot{z}\underline{e}_{z}$ Polar: $\underline{a} = (\ddot{r} - r\dot{\ell}^{2})\underline{e}_{r} + (r\ddot{\ell} + 2\dot{r}\dot{\ell})\underline{e}_{\ell}\underline{e}_{z}$ Ly Kreisbewegung $\underline{a} = -r \cdot \dot{\ell}^{2}\underline{e}_{r} + r\ddot{\ell}\underline{e}_{\ell}\underline{e}_{z}$ Ly $r\dot{\ell}^{2} = \frac{V^{2}}{r^{2}}$

Trägheilskräfte und PdvL

Spezifische Masse/Dichte: $p = \frac{dm}{dV}$ Trägheitskraftdichte: $f^{(t)} = -pa$ Trägheitskraft: $dF^{(t)} = f^{(t)} \cdot dV = -adm$ Lifiktive Kräfte - Verletzen Reaktionsprinzip

$$\tilde{\mathcal{P}}^{(i)} + \tilde{\mathcal{P}}^{(a)} + \tilde{\mathcal{P}}^{(+)} = 0 \quad \forall \{\tilde{v}\}$$

Inertialsystem: V = konst. → Q = O Masselos modellierte Teilsysteme

Ly keinen Beitrag an DC+) Ly mit Methoden der Statik rechnen

Newtonsches Bewegungsgesetz

Massenpunkt: - evt. Rolationen/DeformierCarkeiten des Körpers uninteressont - Rotationen/DeformierCarkeiten haben keinen Einfluss auf Resultierende

Trägheitskraft am Massenpunkt

Newtonsches Bewegungsgesetz:

$$\mathbf{w} \cdot \bar{\mathbf{o}} = \bar{\mathbf{g}}$$

Impuls $\rho = my \sim \frac{d}{dt}(my) = \dot{\rho} = \underline{R}$

Bewegungsdifferentialgleichungen

$$\ddot{\chi} = k \qquad \chi(t) = \frac{k}{2}t^2 + At + B$$

$$\ddot{\chi} + \omega^2 \chi = 0 \qquad \chi(t) = A \cdot \cos(\omega t) + B \cdot \sin(\omega t)$$

$$\ddot{\chi} + \omega^2 \chi = k \qquad \chi(t) = A \cdot \cos(\omega t) + B \cdot \sin(\omega t) + \frac{k}{\omega^2}$$

$$\ddot{\chi} - \lambda^2 \chi = 0 \qquad \chi(t) = A \cdot e^{\lambda t} + B e^{-\lambda t}$$

W= Kreisfrequenz, A,B = Amplitude T = 2m/w = Periode

Freiheitsgrad

f = N-6

N: # Lage koordinaten
b: # kinematische Relationen

⇒ das System hat f-Bew. Diffgleichungen

Kinematische Relation: Abhängigkeit versch. Koord.

L, z.B. Rollbedingung: x= r· e= r·ω

Federkraft (pro Feder +1 Freiheitsgrad)

 $|F_c| = C \cdot X$ C = Feder konstanteLas Zugkraft X = Auslenkung

Dämpfer: Fo = - 1, x

Dynamikprobleme lösen

- 1) Hodellbildung, mat. System abgrenzen
- 2) SK sinnvoll freischneiden
- 3) Bindungskräfte,-momente und Lasten in allgemeiner Lage einführen
- 4) Freiheitsgrad f bestimmen
- 5) Für jeden Körper sinnuolles KOS wählen
- 6) Kinematische Relationen aufstellen
- 7) Diff. gleichungen aufstellen
- 8) Bindungskräfte bestimmen und Bug. gleichungen auf Anzahl Freiheitsgrade reduzieren
- 9) Anfangsbedingungen formulieren

Massen mittelpunktsatz

Impulssatz

Impuls
$$b: \overline{b} = \iiint_{B} \overline{v} \, qw$$

Elastischer Stoss:
$$\frac{1}{2}$$
 Mava² + $\frac{1}{2}$ Ma va²

Drallsatz

Starre Rotation um Punkt O.

DS bezäglich Massenmittelpunkt:

Umrednamasformed zw. inertialem Punkt O und Massenmittelpunkt C:

-Punkt A muss inertial sein (d.h. keine Beschlenigen), ausser es handell sich um den Massenmittelpunkt

Massenträgheitsmoment

Ip: gibt an wie "schwer" es ist, den körper um P zu drehen

$$I_p = \int \int r^2 dr$$
 $dr = \frac{11}{L} dx$

$$dm = \frac{m}{L} dx$$

Mathematisches Pendel

$$W = \sqrt{\frac{2g}{L}}$$

Bew. diff. gleichung:
$$\ddot{\ell} + \frac{9}{4} \cdot \sin \ell = 0$$

Physikalisches Pendel

$$\omega = \sqrt{\frac{39}{2k}}$$

MMS: -ton:
$$m_{\frac{1}{2}}^{\frac{1}{2}} \ddot{\mathcal{C}} = -mg \sin \mathcal{C} + F \mathcal{C}$$

-rod: $-m_{\frac{1}{2}}^{\frac{1}{2}} \dot{\mathcal{C}}^{2} = mg \cos \mathcal{C} - F \mathcal{C}$

Bug.diff.gleidning:
$$\dot{\mathcal{Q}}_{+}^{+} \frac{g_{a}}{2i} \sin \mathcal{Q} = 0$$

Trägheitsmomente einfacher Körper

Massenpunkt mit Abstand R:
$$I = mR^2$$

Stabmitte, Querachse:
$$T = \frac{mV^2}{12}$$

Stabende, Querochse:
$$I = \frac{mV^2}{3}$$

Rolle, Mittelpunkt:
$$I = \frac{mR^2}{2}$$

Abstand Punkt-Gerade

1 P beliebiger Punkt auf Gerade