Связь потребительских требований и функциональных свойств продукта

Как же получается, что интерфейс одного программного продукта более дружелюбен, чем у другого? Что мешает производителю создать предельную степень удовлетворения ценностей потребителя? А заодно и эффективность, комфортность взаимодействия, легкость обучения, престижность владения и прочее. Что делает одни продукты удобнее, комфортнее для потребителя, чем остальные?

Потребительские характеристики удовлетворяются продуктами за счет наличия у них определенных физических свойств. Добавка определенного количества соли в кашу делает ее вкусной для потребителя. Если потребитель хочет, чтобы удобство нахождения в кинотеатре было повышено, то разработчик в ответ на это делает сиденья более широкими и упругими,

Каким должен быть ваш продукт, чтобы потребитель определил его как удобный? Или как престижный?

Постройте схему, позволяющую связать потребительскую ценность со свойствами продукта.

Покажите для своего продукта связь потребительских ценностей и их обеспечивающих физических характеристик.

Покажите, за счет каких характеристик вашего продукта достигается реализация им потребительских ценностей.

Предел развития характеристик продукта

Развитие каждого потребительского параметра лимитируется материальным принципом, на котором основано его получение.

Так, частицы геля желатина из примера с предыдущей страницы не могут быть меньше определенного размера. Значит и достигаемая с их помощью потребительская характеристика продукта тоже будет развиваться не выше определенного уровня.

Понимание этого может позволить обосновать преимущество нового (возможно еще не существующего в реальности) продукта над уже имеющимися конкурентами.

Рассмотрите возможность продемонстрировать достоинство ваше-го продукта через наличие у него более высокого потенциала развития ключевых потребительских характеристик, чем у конкурентов.

Обоснуйте заявленные различия.

Бенчмаркинг

Бенчмаркинг — процедура многофакторного сравнения сложных систем с целью выявления лидирующей системы. Обычно для анализа и сравнения принимаются системы с одинаковыми главными функциями (системы — конкуренты).

В таблицу для сравнения можно вносить не только системы, реально существующие на рынке, но и находящиеся в стадии разработки, описанные в патентах и других литературных источниках, т.е. условно существующие. Во всяком случае именно таким скорее всего будет ваш продукт.

Классическая процедура проведения бенчмаркинга:

- 1. Определение совокупности ключевых ценностных параметров, по которым будет проводиться сравнение
- 2. Ранжирование ключевых ценностных параметров
- 3. Определение конкурирующих продуктов
- 4. Сведение фактических данных о конкурирующих продуктах в таблицу
- 5. Построение шкалы для каждого из параметров.
- 6. Перевод фактических данных в баллы
- 7. Выявление значимости с учетом рангов параметра (перемножение балла на значимость параметра)
- 8. Суммирование баллов для каждого из конкурентов и выявление лидирующих продуктов

Пример построения промежуточной таблицы бенчмаркинга для сбора данных.

# ТЕ	РЕМИТИТЕ	ДИАПАЗОН СКОРОСТЕЙ ЛИНИЙ, FPM	ДИАПАЗОН ВЯЗКОСТИ, СР	РАВНОМЕРНОСТЬ ПОКРЫТИЯ, %	ТОЛЩИНА ПОКРЫТИЯ, М	
1.1 K	ран-консоль	350 - 5.000	500 - 40.000	10	10 - 750	
1.2 B	lanket	10 – 2.000	500 - 10.000	10	50 – 250	
Ж	(есткий вал	8 400	100 - 50.000	10	26 - 750	
L.4 H:	авесной мост	10 - 2.000	500 – 1.500	10	50 – 250	
1.5 И	нверсный поток	10 - 1.000	50 – 1.000	10	4 - 80	
1.6 Bo	оздушный заслон	40 – 400	1-500	5	0.1 - 200	
1. 7 Air	blade squeegee mode	125 - 2.000	5 – 500	5	10 – 50	

Пример построения итоговой таблицы.

#	КРИТЕРИИ ЭФФЕКТИВНОСТИ	скорость линии	вязкость покрытия	РАВНО- МЕРНОСТЬ ПОКРЫТИЯ	АНИШИЛОТ ROLD	СТОИМОСТЬ КОНЕЧНОГО ПРОДУКТА	ПРОСТОТА ПЕРЕНАС- ТРОЙКИ	TOTAL
860	овой козфілиципнт	9	8	8	6	10	2	
1.1	Кран-консоль	10	5	4	8	8	6	302
1.2	Blanket	4	4	4	1	8	6	171
1.3	Жесткий вал	2	6	4	5	8	6	220
1.4	Навесной мост	8	3	4	1	8	6	226
1.5	Инверсный поток	4	3	4	10	8	5	242
1.6	Воздушный заслон	2	3	6	10	8	3	236
1.7	Точка доступа	8	3	6	8	8	3	278