27 gennaio 2012

Compito AA

- 1) Dato un sistema di equazioni lineari Ax = b, con A = (mxn), m < n e rango m, dare la definizione di soluzione di base.
- 2) Dimostrare che la regione ammissibile di un Programma Lineare, se non è vuota, è un insieme convesso.
- 3) Con il metodo delle due fasi, trovare una soluzione ammissibile, se esiste, del sistema:

$$\begin{cases} 2x + y + z = 4 \\ x + 4y - 2z = 9 \end{cases}$$

4) Risolvere per via geometrica il seguente problema ponendo k=-2:

max (kx+y)

$$y - x \le 3$$

 $y + x \le 9$
 $3y + x \ge 9$
 $x, y \ge 0$

- 5) Si discuta come varia la soluzione ottima del problema di cui al quesito precedente al variare del parametro k.
- 6) Risolvere il problema duale del problema del quesito 4.

27 gennaio 2012

Compito AB

- 1) Definire il rango di una matrice e indicarne l'utilizzo nella risoluzione di sistemi di equazioni lineari.
- 2) Dimostrare che se \underline{x} è una soluzione di base ammissibile del sistema $\underline{A}\underline{x}=\underline{b}$ dei vincoli in un problema di PL in forma standard, ad essa corrisponde un vertice della regione ammissibile.
- 3) Data la definizione di matrice inversa, risolvere, ricorrendo alla stessa, il sistema seguente:

$$\begin{cases} 3x + y - z = 1 \\ 2x - y + z = 0 \\ y + 2z = 2 \end{cases}$$

4) Risolvere per via geometrica il seguente problema ponendo k=-1 :

$$\begin{aligned} \text{Max (kx+y)} & & 3y-x \leq 9 \\ & y+3x \leq 13 \\ & 2y-x \geq -2 \\ & 2y+3x \geq 6 \\ & x, \ y \geq 0 \end{aligned}$$

- 5) Si discuta come varia la soluzione ottima del problema di cui al quesito precedente al variare del parametro k.
- 6) Risolvere il problema duale del problema del quesito 4.

27 gennaio 2012

Compito AC

- 1) Dare la definizione e fornire un esempio di vettori linearmente indipendenti.
- 2) Dimostrare che se \underline{x} è una soluzione di base ammissibile del sistema $\underline{A}\underline{x}=\underline{b}$ dei vincoli in un problema di PL in forma standard, ad essa corrisponde un vertice della regione ammissibile.
- 3) Illustrare motivazione e procedura del metodo delle due fasi nella risoluzione di n problema di programmazione lineare.
- 4) Risolvere per via geometrica il seguente problema ponendo k=10 :

Max
$$(2x+3y)$$

 $y \le 4$
 $y + x \le 6$
 $y +2x \le k$
 $x, y \ge 0$

- 5) Si discuta come varia la soluzione ottima del problema di cui al quesito precedente al variare del parametro k.
- 6) Risolvere il problema duale del problema del quesito 4.

14 maggio 2012

Compito AD

- 1) Indicare per quali valori del parametro *k* i vettori (3 1 *k*), (2 2 4), (5 -1 4) sono linearmente dipendenti.
- 2) Dimostrare la convessità della regione ammissibile di un Programma Lineare.
- 3) Dimostrare che se \underline{x}° ed \underline{y}° sono soluzioni ammissibili per due PL tra loro duali, rispettivamente di massimo e di minimo, allora si verifica $\underline{cx}^{\circ} \leq \underline{y}^{\circ}\underline{b}$.
- 4) Risolvere per via geometrica il seguente problema ponendo k=10 :

- 5) Dire per quali valori del parametro k la soluzione ottima del problema di cui al quesito precedente è degenere.
- 6) Risolvere, facendo ricorso alle condizioni di complementarità, il problema duale del problema del quesito 4.

14 maggio 2012

Compito AE

1) Dire, giustificando la risposta, quante sono le soluzioni di base del sistema seguente:

$$\begin{cases} 2x + 3y - 4w + 5t = 1\\ x + y - 2w + 2t + 2z = -2\\ -x + 4y + 2w + 3t = -5 \end{cases}$$

- 2) Dimostrare che a vincoli di eguaglianza in un problema di PL primale, corrispondono variabili libere nel duale.
- 3) Illustrare i concetti di problema di Programmazione Lineare con infinite soluzione e PL con soluzione ottima 'infinito'.
- 4) Risolvere per via geometrica il seguente problema ponendo k=1/2 :

$$\begin{array}{c} \text{max k(x-2y)} \\ y-x \leq 3 \\ y \leq 6 \\ y-2x+8 \geq 0 \\ 5y^{3}2x \\ x, y \geq 0 \end{array}$$

- 5) Si discuta come varia la soluzione ottima del problema di cui al quesito precedente al variare del parametro k.
- 6) Risolvere, facendo ricorso alle condizioni di complementarità, il problema duale del problema del quesito 4.

31 maggio 2012

Compito AF

1) Individuare due soluzioni di base del sistema seguente:

$$\begin{cases} x + 2y - w + 4t + 3z = 1 \\ 2x + y - 2w + t + 3z = 2 \\ -x + w - z = 3 \end{cases}$$

- 2) Illustrare il metodo di penalizzazione per individuare una soluzione ammissibile iniziale nel metodo del simplesso.
- 3) Indicare, giustificando al risposta, le caratteristiche (proprietà) del problema duale nel caso in cui il primale abbia regione ammissibile illimitata e ottimo non finito.
- 4) Risolvere per via geometrica il seguente problema ponendo k=1/4:

max
$$(2x - y)$$

y - kx ≤ 5
y + 2x ≥ 4
y + x ≥ 3
y - x + 1³ 0
x, y ≥ 0

5) Individuare, nel problema di cui al numero precedente, per quali valori di k la soluzione ottima non esiste e per quali invece è degenere.

6) Risolvere, facendo ricorso alle condizioni di complementarità, il problema duale del problema del quesito 4 (ponendo k=1/4).

Ricerca Operativa

11 settembre 2012

Compito AG

1) Trovare una soluzione di base del sistema seguente:

$$\begin{cases} 2x - 4y + w = 1 \\ x - 2y = 2 \\ -x + 2y + w + z = 3 \end{cases}$$

- 2) Illustrare il metodo delle due fasi indicando:
 - quando si applica;
 - qual è il problema ausiliario da risolvere;
 - quali indicazioni dà la soluzione del problema ausiliario.
- 3) Scrivere un problema di trasporto con: due origini P_1 e P_2 che producono, rispettivamente, 3 e 4 unità di un bene; tre destinazioni, M_1 , M_2 ed M_3 aventi domande, rispettive, 2, 3 e 2 unità; tabella dei costi di spedizione:

4) Risolvere per via geometrica il seguente problema ponendo k=1/2:

max
$$(2x + 3 y)$$

y - kx \le 5
y + x \le 11
x \le 8
y - x + 7³ 0
x, y \ge 0

5) Individuare, nel problema di cui al numero precedente, per quali valori di k la soluzione ottima è degenere.

6)	Risolvere, facendo ricorso alle condizioni di complementarità, il problema duale del problema del quesito 4 (ponendo k=1/2).