National Institute of Technology Tiruchirappalli Department of Mathematics

July 2023 Session - B.Tech IInd Year (CSE) - A-section Probability and Operations Research - MAIR31 - Assessment-I

Date: 07.09.2023 Duration: 1 Hour Max. marks: 20

Attempt all the five questions.

1. A city hospital has the following minimal daily requirements for nurses:

period	Clock time (24 hour day)	Minimum no of nurses required
1	6 a.m 10 a.m.	8
2	10 a.m 2 p.m.	16
3	2 p.m 6 p.m.	20
4	6 p.m 10 p.m.	14
5	10 p.m 2 a.m.	24
6	2 a.m 6 a.m.	8

Period 1 follows immediately after period 6. Nurses report to the hospital at the beginning of each period and work for 8 consecutive hours. The hospital wants to determine the number of nurses to report at each period so that the total number of nurses who have to report for duty in a day is minimum. Formulate the problem as a linear programming problem (LPP).

2. Solve the following LPP by the simplex method.

Maximize $z = -x_1 + 3x_2 - 3x_3$ subject to

$$3x_1 - x_2 + x_3 \leq 7$$

$$-x_1 + 2x_2 \leq 6$$

$$-4x_1 + 3x_2 + 8x_3 \leq 10$$

$$x_1, x_2, x_3 \geq 0.$$

3. Consider the primal problem

Maximize $z = 2x_1 + 7x_2 + 4x_3$ subject to

$$x_1 + x_2 + x_3 \leq 10$$

$$3x_1 + 3x_2 + 2x_3 \leq 10$$

$$x_1, x_2, x_3 \geq 0.$$

Using duality, show that the optimal value of z for the primal problem cannot exceed 25.

[P.T.O]

[8]

[3]

4. Consider the following LPP:

[5]

Maximize $z = 25x_1 + 20x_2$ subject to

$$3x_1 + 4x_2 \le 70$$

$$8x_1 + 5x_2 \le 150$$

$$x_2 \le 20$$

$$x_1, x_2 \ge 0.$$

The optimal simplex tableau for the standard form of the above LPP (with slack variables s_1, s_2, s_3) is given below:

		25	20	0	0	0
Basic Variables	x_{B_j}	x_1	x_2	s_1	s_2	83
x_2	6.4706	0	1	0.47	-0.18	0
x_1	14.7059	1	0	-0.29	0.24	0
s_3	13.5294	0	0	-0.47	0.18	1
(z_i-c_i) :		0	0	2.06	2.35	0
	$egin{array}{c} x_2 \ x_1 \end{array}$	x_2 6.4706 x_1 14.7059 x_3 13.5294	Basic Variables x_{B_j} x_1 x_2 6.4706 0 x_1 14.7059 1 s_3 13.5294 0	Basic Variables x_{B_j} x_1 x_2 x_2 6.4706 0 1 x_1 14.7059 1 0 s_3 13.5294 0 0	Basic Variables x_{B_j} x_1 x_2 s_1 x_2 6.4706 0 1 0.47 x_1 14.7059 1 0 -0.29 s_3 13.5294 0 0 -0.47	Basic Variables x_{B_j} x_1 x_2 s_1 s_2 x_2 6.4706 0 1 0.47 -0.18 x_1 14.7059 1 0 -0.29 0.24 s_3 13.5294 0 0 -0.47 0.18

Using sensitivity analysis, find an optimum solution if

(a)
$$b = (70, 150, 20)^T$$
 is changed to $\tilde{b} = (80, 120, 20)^T$.

(b)
$$b = (70, 150, 20)^T$$
 is changed to $\hat{b} = (100, 60, 3)^T$.

5. (a) Define basic feasible solution of a LPP.

(b) Consider the problem of maximizing $z = 2x_1 + 3x_2 - 4x_3 + x_4$ subject to

$$x_1 + x_2 + x_3 = 2$$

$$x_1 - x_2 + x_3 = 2$$

$$2x_1 + 3x_2 + 2x_3 - x_4 = 0$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Prove or disprove that (1,0,1,4) is a basic feasible solution.