$$\Psi = \left(\frac{2}{L}\right)^{3} \sin \frac{n_{1}\pi x}{L} \sin \frac{n_{2}\pi 5}{L} \sin \frac{n_{3}\pi 2}{L} e^{-i \xi_{n_{1}n_{2}n_{3}} t/\xi_{n}}$$

$$\begin{bmatrix} - & \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \end{bmatrix}$$

Table 8.3 The Spherical Harmonics $Y_{\ell}^{m_{\ell}}(\theta, \phi)$

$$\begin{split} Y_0^0 &= \frac{1}{2\sqrt{\pi}} \\ Y_1^0 &= \frac{1}{2}\sqrt{\frac{3}{\pi}} \cdot \cos\theta \\ Y_1^{\pm 1} &= \pm \frac{1}{2}\sqrt{\frac{3}{2\pi}} \cdot \sin\theta \cdot e^{\pm i\phi} \\ Y_2^0 &= \frac{1}{4}\sqrt{\frac{5}{\pi}} \cdot (3\cos^2\theta - 1) \\ Y_2^{\pm 1} &= \pm \frac{1}{2}\sqrt{\frac{15}{2\pi}} \cdot \sin\theta \cdot \cos\theta \cdot e^{\pm i\phi} \\ Y_2^{\pm 2} &= \frac{1}{4}\sqrt{\frac{15}{2\pi}} \cdot \sin^2\theta \cdot e^{\pm 2i\phi} \\ Y_3^0 &= \frac{1}{4}\sqrt{\frac{7}{\pi}} \cdot (5\cos^3\theta - 3\cos\theta) \\ Y_3^{\pm 1} &= \pm \frac{1}{8}\sqrt{\frac{21}{\pi}} \cdot \sin\theta \cdot (5\cos^2\theta - 1) \cdot e^{\pm i\phi} \\ Y_3^{\pm 2} &= \frac{1}{4}\sqrt{\frac{105}{2\pi}} \cdot \sin^2\theta \cdot \cos\theta \cdot e^{\pm 2i\phi} \\ Y_3^{\pm 3} &= \pm \frac{1}{8}\sqrt{\frac{35}{2\pi}} \cdot \sin^3\theta \cdot e^{\pm 3i\phi} \end{split}$$

Table 8.2 Some
Associated
Legendre
Polynomials
$$P_{\ell}^{m_{\ell}}(\cos \theta)$$

$$P_0^0 = 1$$

$$P_1^0 = 2 \cos \theta$$

$$P_1^1 = \sin \theta$$

$$P_2^0 = 4(3 \cos^2 \theta - 1)$$

$$P_2^1 = 4 \sin \theta \cos \theta$$

$$P_2^2 = \sin^2 \theta$$

$$P_3^0 = 24(5 \cos^3 \theta - 3 \cos \theta)$$

$$P_3^1 = 6 \sin \theta (5 \cos^2 \theta - 1)$$

$$P_3^2 = 6 \sin^2 \theta \cos \theta$$

$$P_3^3 = \sin^3 \theta$$

$$L = \sqrt{\ell(\ell+1)}$$
 to

Atomic Shells and Subhells			
Shell Symbol	l	Shell Symbol	
K	0	S	
L	1	þ	
M	2	d	
N	3	f	
O	4	g	
P	5	$\stackrel{\smile}{h}$	
	Shell Symbol K L M	Shell Symbol ℓ K 0 L 1 M 2 N 3 O 4	

$$E_n = \frac{\kappa e^2}{2a} \left(\frac{7^2}{v^2} \right) \qquad n = 1, 2, 3 \dots$$

Table 8.4 The Radial Wavefunctions $R_{n\ell}(r)$ of Hydrogen-like Atoms for n=1, 2, and 3

n	ℓ	$R_{n\ell}(r)$
1	0	$\left(rac{Z}{a_0} ight)^{3/2} 2e^{-Zr/a_0}$
2	0	$\left(rac{Z}{2a_0} ight)^{3/2} \left(2 - rac{Zr}{a_0} ight) e^{-Zr/2a_0}$
2	1	$\left(\frac{Z}{2a_0}\right)^{3/2} \frac{Zr}{\sqrt{3} a_0} e^{-Zr/2a_0}$
3	0	$\left(\frac{Z}{3a_0}\right)^{3/2} 2 \left[1 - \frac{2Zr}{3a_0} + \frac{2}{27} \left(\frac{Zr}{a_0}\right)^2\right] e^{-Zr/3a_0}$
3	1	$\left(\frac{Z}{3a_0}\right)^{3/2} \frac{4\sqrt{2}}{3} \frac{Zr}{a_0} \left(1 - \frac{Zr}{6a_0}\right) e^{-Zr/3a_0}$
3	2	$\left(\frac{Z}{3a_0}\right)^{3/2} \frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$

Selection Rules:

$$P(O, \emptyset) = \left| \mathcal{D}_{\ell}^{m\ell}(O, \emptyset) \right|^{2}$$

$$\int_{0}^{\infty} P(t) = 1$$

$$\begin{array}{c}
P_{\text{ns}} = 4\pi r^{2} \left| \frac{V}{V} (r) \right|^{2} \\
P_{\text{ns}} = 4\pi r^{2} \left| \frac{V}{V} (r) \right|^{2}
\end{array}$$