Assignment 3

Vibhavasu Pasumarti - EP20BTECH11015

Download all python codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/code/Assignment%203.py

and latex-tikz codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/Assignment%203.pdf

1 GATE 2015 (EE PAPER 01 NEW 2), Q 27 (ELECTRICAL ENGG SECTION)

Two players A, and B alternately keep rolling a fair dice. The person to get a six first wins the game. Given that player A starts the game, the probability that A wins the game is:

2 SOLUTION

- Given the die is fair.
- So, for any given throw by A or B: The probability of getting $6 = \frac{1}{6} = p$ (say)

 The probability of NOT getting $6 = \frac{5}{6} = q$

(say)

Constraint: A starts the game and A should win. ⇒ Until A wins, both A and B cannot win.

State	Corresponding description
1	A and B both lose.
2	A loses and B wins.
3	WINNER

Table 1: State description table

Corresponding Markov chain is:

Definition 2.1. 2 and 3 are ABSORBING states.

Transition/Stochastic matrix is: T

(From)
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & q^2 & qp & p \\ 2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{vmatrix} = T$$

Theorem 2.1. Every transition matrix can be partitioned as $\left(\begin{array}{c|c} Q & R \\ \hline O & J \end{array}\right)$

where Q arise from transition probabilities between non-absorbing states

R arises from Transition probability from nonabsorbing state to absorbing state.

O = Null matrix, J = Identity matrix

 T^k approaches \overline{T} as k increases. \overline{T} is the limiting matrix and $\overline{T} = \begin{pmatrix} O & NR \\ O & J \end{pmatrix}$

where N is the fundamental matrix. $N = (I - Q)^{-1}$

Theorem 2.2.

The matrix D = NR gives the probability of ending up in the absorbing states (2 and 3) when the chain starts from a non-absorbent state 1.

$$T = \begin{pmatrix} q^2 & qp & p \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Q = (q^2), P = (qp \quad p), O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1)

$$N = \left(1 - q^2\right)^{-1} = \left(\frac{1}{1 - q^2}\right) \tag{2}$$

$$D = NP = \left(\frac{qp}{1 - q^2} \quad \frac{p}{1 - q^2}\right) \tag{3}$$

OPTION D is correct