代数

JoJo

jojoid@duck.com

目录

1	集合论	3
2	初等数论	3
	2.1 自然数	3
	2.2 整数	3
	2.3 线性丢番图方程	4
3	初探范畴论	6
	3.1 范畴与态射	6
	3.2 泛性质	7
4	初探群论	. 12
	4.1 群	. 12
	4.2 阶	. 12
	4.3 群的例子	. 13
	4.3.1 对称群	. 13
	4.3.2 二面体群	. 13
	4.3.3 循环群	. 13
	4.4 群范畴 Grp	. 14
	4.5 交换群范畴 Ab	. 15
	4.6 群同态	. 16
	4.6.1 例子	. 16
	4.6.2 同态与阶	. 17
	4.6.3 群同构	. 17
	4.6.4 交换群的同态	. 17
	4.7 自由群	. 18
	4.7.1 泛性质	. 18
	4.7.2 具体构造	. 18
	4.7.3 自由交换群	. 20
	4.8 子群	. 22
	4.8.1 定义和例子	. 22
	4.8.2 单态射	. 25
	4.9 商群	. 26
	4.9.1 商群	. 26
	4.9.2 陪集	. 27
	4.9.3 正规子群	. 29
	4.9.4 以正规子群为模的商群	. 29

1集合论

定理 1.1 设~是 A 上的一个等价关系, $f: A \to B$ 是一个函数,满足 $\forall a, a' \in A$. $a \sim a' \Rightarrow f(a) = f(a')$. 那么 f 能分解为:

$$A \xrightarrow{\pi} (A/\sim) \xrightarrow{\tilde{f}} \operatorname{im} f \xrightarrow{i} B$$

其中第 1 个满射定义为 $\pi(a) \coloneqq [a]$,第 2 个双射定义为 $\tilde{f}([a]) \coloneqq f(a)$,第 3 个单射 i 定义为包含映射.

2 初等数论

2.1 自然数

定义 2.1 Peano 公理

- $1.0 \in \mathbb{N}$
- 2. $\operatorname{suc}: \mathbb{N} \to \mathbb{N}_+$
- 3. suc 是单射
- $4. \ \forall N \subset \mathbb{N}. \ 0 \in N \land (\forall n \in N. \ \operatorname{suc}(n) \in N) \Rightarrow N = \mathbb{N}.$

定理 2.1 强归纳法

 $\forall N \subset \mathbb{N}. \ 0 \in N \land (\forall n \in \mathbb{N}. \ \{0,...,n\} \subset N \Rightarrow \mathrm{suc}(n) \in N) \Rightarrow N = \mathbb{N}.$

命题 2.1 存在无限多的质数.

2.2 整数

定义 2.2 同余

设 $n \in \mathbb{Z}_{\perp}$. 定义 \mathbb{Z} 上的二元关系

$$\underline{\ } \equiv \underline{\ } \pmod{n} : \mathbb{Z} \times \mathbb{Z} \to \mathbf{Propo}, (a,b) \mapsto n \mid (a-b)$$

命题 2.2 给定正整数 n, $a \equiv 1 \pmod{n}$ 是等价关系.

定义 2.3 设 $n \in \mathbb{N}_+$. 定义函数

$$\left[_ \right]_n : \mathbb{Z} \to \mathbb{Z}/(_ \equiv _ \pmod{n}), a \mapsto \left[a \right]_n \coloneqq \text{\$ \text{$\upmath{$\phi$}}$} \ \{ b \in \mathbb{Z} \mid b \equiv a \pmod{n} \}.$$

定义集合

$$\mathbb{Z}/n\mathbb{Z}\coloneqq\mathbb{Z}/(_\equiv_\left(\operatorname{mod}n\right))=\left\{ \left[0\right]_{n},...,\left[n-1\right]_{n}\right\} .$$

定义 $\mathbb{Z}/n\mathbb{Z}$ 上的加法

$$+: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, \left(\left[a\right]_n, \left[b\right]_n\right) \mapsto \left[a\right]_n + \left[b\right]_n \coloneqq \left[a+b\right]_n.$$

命題 2.3 $\forall a, b \in \mathbb{Z}$. $a \equiv a' \pmod{n} \land b \equiv b' \pmod{n} \Rightarrow (a+b) \equiv (a+b)' \pmod{n}$.

命题 2.4 $\forall a, b \in \mathbb{Z}. \ a \equiv b \pmod{n} \Leftrightarrow [a]_n = [b]_n.$

推论 **2.1**
$$\forall a, a', b, b' \in \mathbb{Z}$$
. $[a]_n = [a']_n \wedge [b]_n = [b']_n \Rightarrow [a]_n + [b]_n = [a']_n + [b']_n$.

定义 2.4 模运算

定义二元函数

$$_\operatorname{mod}_: \mathbb{Z} \times \mathbb{Z}_+ \to \mathbb{Z}, (a, n) \mapsto a \operatorname{mod} n \coloneqq r,$$

其中 r 是唯一使得

$$[r]_n = [a]_n \land r \in \{0, ..., n-1\}$$

成立的整数.

命题 **2.5** $\forall n \in \mathbb{Z}_+$. $0 \mod n = 0$

定义 2.5 欧儿里得算法(求最高公因子(highest common factor))

let hcf(a : Int, b : Int_pos) :=
 if a mod b = 0
 b
 else
 hcf(b, a mod b)

命题 $2.6 \quad \forall b \in \mathbb{Z}_+. \text{ hcf } (0,b) = b$

定理 2.2

$$\forall a \in \mathbb{Z}, b \in \mathbb{Z}_+ \ \exists x, y \in \mathbb{Z}. \ xa + yb = \mathrm{hcf}\ (a, b)$$

2.3 线性丢番图方程

推论 2.2 Bézout 定理

 $\forall a,c \in \mathbb{Z}, b \in \mathbb{Z}_+. \ (\exists x,y \in \mathbb{Z}. \ ax + by = c) \Leftrightarrow \mathrm{hcf} \ (a,b) \mid c$

引理 2.1 $\forall p \in \mathbb{P}, a, b \in \mathbb{Z}. \ p \mid ab \Rightarrow p \mid a \lor p \mid b$

定理 2.3 算术基本定理

 $\forall n \in \mathbb{Z}_{\geq 2}$. n 能唯一地表示成质数的乘积(不考虑顺序).

命题 2.7 $\forall m \in \mathbb{Z}, n \in \mathbb{Z}_+$. hcf $(m,n) \cdot \text{lcm } (m,n) = |mn|$,其中 lcm 是最低公倍数(lowest common multiple).

3 初探范畴论

3.1 范畴与态射

定义 3.1 一个**范畴** \mathcal{C} 系指以下资料:

- 1. 集合 $Obi(\mathcal{C})$, 其元素称作 \mathcal{C} 的**对象**;
- 2. 对于每对对象 $A \rightarrow B$, 给定一个集合 $A \rightarrow B$, 其元素称作 C 的**态射**, 满足:

$$\forall A,B,C,D \in \mathrm{Obj}(\mathcal{C}). \ \neg (A=C \land B=D) \Rightarrow (A \to B) \cap (C \to D) = \emptyset;$$

- 3. 对于每个对象 A, 给定一个态射 $1_A: A \to A$, 称为 A 到自身的恒等态射;
- 4. 对于任意 $A, B, C \in \mathrm{Obj}(\mathcal{C})$, 给定态射间的**合成映射**

$$(A \to B) \times (B \to C) \to (A \to C), (f, g) \mapsto g \circ f$$

满足:

- (i) $\forall f: A \to B, g: B \to C, h: C \to D. (h \circ g) \circ f = h \circ (g \circ f),$
 - (ii) $\forall A,B \in \mathrm{Obj}(\mathcal{C}), f:A \rightarrow B.\ f \circ 1_A = f = 1_B \circ f.$

定义 3.2 对于任意范畴 C, 其**反范畴** C^{op} 定义如下:

- 1. $\mathrm{Obj}(\mathcal{C}^{op}) := \mathrm{Obj}(\mathcal{C});$
- 2. $\forall A, B \in \text{Obj}(\mathcal{C}^{op}). A \to B := (B \to A)_{\mathcal{C}};$
- 3. $\forall f: A \to B, g: B \to C. g \circ f := (f \circ g)_{\mathcal{C}}$.

定义 3.3 称 C' 是 C 的子范畴, 如果

- 1. $Obj(\mathcal{C}') \subset Obj(\mathcal{C});$
- 2. $\forall A, B \in \text{Obj}(\mathcal{C}')$. $A \to B \subset (A \to B)_{\mathcal{C}}$;
- 3. $\forall f: A \to B, g: B \to C. \ g \circ f := (g \circ f)_{\mathcal{O}};$
- 4. 恒等态射同 C.

如果 $\forall A, B \in \text{Obj}(\mathcal{C}')$. $A \to B = (A \to B)_{\mathcal{C}}$, 则称 $\mathcal{C}' \not\in \mathcal{C}$ 的**全子范畴**.

定义 3.4 对于态射 $f: A \to B$,若存在 $g: B \to A$ 使得 $g \circ f = 1_A$, $f \circ g = 1_B$,则称 f 是同构(或称可逆,写作 $f: A \overset{\sim}{\to} B$),而 g 则称为 f 的逆.

命题 3.1 态射 f 有左逆 g_1 和右逆 $g_2 \Rightarrow f$ 有唯一的逆 $f^{-1} = g_1 = g_2$.

命题 3.2 每个恒等态射都是同构,且是自己的逆.

命题 3.3 f 是同构 $\Rightarrow f^{-1}$ 是同构 $\wedge (f^{-1})^{-1} = f$.

命题 3.4 $f: A \to B, g: B \to A$ 是两个同构 $\Rightarrow g \circ f$ 是同构 $\land (g \circ f)^{-1} = f^{-1} \circ g^{-1}$

定义 3.5 若一个范畴 C 中的所有态射都可逆,则称之为群胚.

定义 3.6 设 A, B 是范畴 C 中的对象, $f: A \to B$ 为态射.

- 1. f 是**单态射**, : $\Leftrightarrow \forall X \in \mathcal{C}, g, h : X \to A. g \neq h \Rightarrow f \circ g \neq f \circ h$ (即满足左消去律);
- 2. f 是满态射, : $\Leftrightarrow \forall X \in \mathcal{C}, g, h : B \to X$. $g \neq h \Rightarrow g \circ f \neq h \circ f$ (即满足右消去律).

命题 3.5 f 左 (右) 可逆 \Rightarrow f 是单 (满) 态射.

命题 3.6 单(满)态射的合成是单(满)态射.

3.2 泛性质

定义 3.7 范畴 C 中的对象 A 称为**始对象**,如果对所有对象 X,集合 $A \to X$ 是单点集. 类似的,称 A 为**终对象**,如果对所有对象 X,集合 $X \to A$ 是单点集. 若 A 是始对象或终对象,则称之为**端对象**. 若 A 既是始对象又是终对象,则称之为**零对象**.

命题 3.7 设 A, A' 为 C 的始对象,则存在唯一的同构 $A \xrightarrow{\sim} A'$.同样的性质对终对象也成立.

命题 3.8 设 A 为 C 的始对象, $B \in C$.则 $A \simeq B \Leftrightarrow B \not\in C$ 的始对象. 同样的性质对终对象也成立.

定义 3.8 设 \mathcal{C} 中有零对象,记作 0. 对任意 $X,Y \in \mathcal{C}$ 定义零态射 $0: X \to Y$ 为 $X \to 0 \to Y$ 的合成

命题 3.9 零态射从左右合成任何态射仍是零态射.

命题 3.10 零态射的定义无关零对象的选取: 若 0,0' 都是零对象,则出入 0,0' 的箭头都是唯一的,即下图交换

定义 3.9 设 C 是一个范畴, * 是 C 的终对象.

定义 ℃:

 $\mathrm{Obj}(\mathcal{C}^*) \coloneqq \{f: * \to X \mid X \in \mathcal{C}\}\,\text{,}$

 $\forall f: * \rightarrow X, g: * \rightarrow Y. \ f \rightarrow g \coloneqq \{\sigma: X \rightarrow Y \mid \sigma \circ f = g\}.$

 C^* 的对象称为**有点对象**.

定义 3.10 一个构造满足一个泛性质:⇔它能被视为一个范畴的端对象.

定义 3.11 Set/~

设~是集合 A 上的一个等价关系. 定义范畴 \mathbf{Set}/\sim :

$$\mathrm{Obj}(\mathbf{Set}/\sim) \coloneqq \left\{ (X,\varphi) \mid X \in \mathrm{Obj}(\mathbf{Set}) \text{, } \varphi : (A \to X)_{\mathbf{Set}} \text{, } \forall a,b \in A. \ a \sim b \Rightarrow \varphi(a) = \varphi(b) \right\} \text{,}$$

$$(X_1,\varphi_1) \to (X_2,\varphi_2) \coloneqq \left\{\sigma: (X_1 \to X_2)_{\mathbf{Set}} \mid \sigma \circ \varphi_1 = \varphi_2\right\}.$$

命题 3.12 设 $\pi:A\to A/{\sim}, x\mapsto [x]$. 则 $(A/{\sim},\pi)$ 是 $\mathbf{Set}/{\sim}$ 的始对象,如下图:

定义 3.12 设 $A, B \in \mathcal{C}. A$ 和 B 的 $A \times B$ (若存在则) 定义如下

定义 3.13 余积

命题 3.13 设 \mathcal{C} 是一个范畴, $G \times G$ 和 $H \times H$ 是 \mathcal{C} 中的积.则有

命题 3.14 设 \mathcal{C} 是一个范畴, $G \times G, H \times H, K \times K$ 是 \mathcal{C} 中的积, 且有态射 $G \overset{\varphi}{\to} H \overset{\psi}{\to} K$. 则 $(\psi \circ \varphi) \times (\psi \circ \varphi) = (\psi \times \psi) \circ (\varphi \times \varphi)$.

4 初探群论

4.1 群

笑话 4.1 一个群是一个只有一个对象的群胚.

定义 4.1 设 G 是一个非空集合, $\cdot: G \times G \to G$.

 (G,\cdot) 是一个群: \Leftrightarrow

- 1. 结合律: $\forall g, h, k \in G$. $(g \cdot h) \cdot k = g \cdot (h \cdot k)$;
- 2. 存在幺元: $\exists e \in G \ \forall g \in G.\ g \cdot e = g = e \cdot g$;
- 3. 所有元素皆可逆: $\forall g \in G \exists h \in G. \ g \cdot h = e = h \cdot g.$

命题 4.1 一个群的幺元是唯一的.

命题 4.2 一个元素的逆是唯一的.

命题 4.3 消去律: $\forall g, h, k \in G. \ g \neq h \Rightarrow g \cdot k \neq h \cdot k \wedge k \cdot g \neq k \cdot h.$

命题 **4.4** $\forall g, h \in G. (g \cdot h)^{-1} = h^{-1} \cdot g^{-1}.$

定义 4.2 一个群是**交换**的: $\Leftrightarrow \forall g, h \in G. \ g \cdot h = h \cdot g$

4.2 阶

定义 4.3 群 G 的基数 |G| 称为它的M.

例子 4.1

命题 4.5 所有小于等于 4 阶的群都是交换的.

定义 4.4 群 G 的元素 g 有有限阶: $\Leftrightarrow \exists n \in \mathbb{N}. \ g^n = e.$

在此情况下, g 的阶 $|g| := \min\{n \in \mathbb{N}_+ \mid g^n = e\}$.

若 g 沒有有限阶,则记为 $|g| = \infty$.

命题 4.6 如果 $g^n = e$, 则 |g| 是 n 的一个因子 (即 n 是 |g| 的一个倍数).

命题 4.7 $\forall g \in G. |g| \leq |G|.$

命题 4.8 $g \in G$ 有有限阶 \Rightarrow $\forall m \in \mathbb{N}.$ g^m 有有限阶 \land $|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m} = |g| \frac{1}{\operatorname{hcf}(m, |g|)}$.

命题 4.9 $g \cdot h = h \cdot g \Rightarrow |g \cdot h|$ 整除 lcm(|g|, |h|).

命题 4.10 $(\forall g \in G. |g| = 2) \Rightarrow G$ 是交换的.

命题 4.11 $\forall g, h \in G. |g \cdot h| = |h \cdot g|.$

命题 4.12 $g \cdot h = h \cdot g \wedge |g|$ 和 |h| 互质 $\Rightarrow |g \cdot h| = |g| \cdot |h|$.

命题 4.13 设 G 是一个交换群, $g \in G$ 有有限阶且 $\forall h \in G$. h 有有限阶 $\Rightarrow |h| \leq |g|$. 则 $\forall h \in G$. h 有有限阶 $\Rightarrow |h|$ 整除 |g|.

4.3 群的例子

4.3.1 对称群

定义 4.5 设 $A \in \mathbf{Set}$. A 的对称群 S_A 定义为群 $(\mathrm{Aut}_{\mathbf{Set}}(A), \circ)$.

命题 4.14 $|S_n| = n!$.

命题 4.15 $|S_0| = |S_1| = 1.$

命题 $4.16 \quad \forall n \geq 3. S_n$ 是非交换的.

命题 4.17 $\forall d \in \{0,...,n\} \exists \sigma \in S_n. |\sigma| = d.$

命题 4.18 $\forall n \in \mathbb{N}_+ \exists \sigma \in S_{\mathbb{N}}. \ |\sigma| = n.$

4.3.2 二面体群

定义 4.6 一个对称是一个保持结构的变换.

定义 4.7 一个正 n 边形有 2n 个不同的对称: n 个旋转对称和 n 个反射对称. 相应的旋转和反射组成了二面体群 D_{2n} .

4.3.3 循环群

定义 4.8 一个群 G 是循环的: $\Leftrightarrow \exists a \in G \ \forall b \in G \ \exists m \in \mathbb{Z}$ 使得 b 可以表示为 a^m , 即 $G = \{a^m \mid m \in \mathbb{Z}\}$. 其中 a 被称为 G 的一个生成元.

命题 4.19 设 G 是 n 阶循环群,a 是 G 的一个生成元. 则 $G = \{a^0 = e, a, a^2, ..., a^{n-1}\}$.

定义 4.9 无限循环群

称群 G 是**无限循环群**当且仅当 $G \cong (\mathbb{Z}, +)$.

显然无限循环群也是循环群.

命题 4.20 设 G 是一个 n 阶群. 则 G 是循环的 ⇔ $\exists g \in G$. |g| = n.

命题 4.21 \mathbb{Z} 和 $\mathbb{Z}/n\mathbb{Z}$ 都是循环群,它们的生成元分别是 1 和 $[1]_n$.

命题 4.22 $\forall m \in \mathbb{Z}, n \in \mathbb{Z}_+. |[m]_n| = \frac{n}{\ker(m,n)}.$

推论 4.1 $\forall m \in \mathbb{Z}, n \in \mathbb{Z}_+$. $[m]_n$ 生成 $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow \mathrm{hcf}(m,n) = 1$.

定义 4.10 整数模 n 乘法群

$$\left(\mathbb{Z}/n\mathbb{Z}\right)^* \coloneqq \left\{ \left[m\right]_n \in \mathbb{Z}/n\mathbb{Z} \mid \left[m\right]_n$$
生成 $\mathbb{Z}/n\mathbb{Z} \right\}$,

 $\cdot: \left(\mathbb{Z}/n\mathbb{Z}\right)^* \times \left(\mathbb{Z}/n\mathbb{Z}\right)^* \to \left(\mathbb{Z}/n\mathbb{Z}\right)^*, \left(\left[a\right]_n, \left[b\right]_n\right) \mapsto \left[a\right]_n \cdot \left[b\right]_n \coloneqq \left[\operatorname{ab}\right]_n.$

引理 4.1 $\forall a,a',b,b'\in\mathbb{Z}.\ \left[a\right]_n=\left[a'\right]_n\wedge \left[b\right]_n=\left[b'\right]_n\Rightarrow \left[a\right]_n\cdot \left[b\right]_n=\left[a'\right]_n\cdot \left[b'\right]_n.$

命题 4.23 $((\mathbb{Z}/n\mathbb{Z})^*, \cdot)$ 是群.

4.4 群范畴 Grp

定义 4.11 集合函数 $\varphi: G \to H$ 是一个群同态: \Leftrightarrow

图

交换, 即 $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

定义 4.12 群范畴 Grp

$$Obj(\mathbf{Grp}) := \{ 所有群 \},$$

 $\forall G, H \in \mathrm{Obj}(\mathbf{Grp}). \ G \rightarrow H \coloneqq \big\{ \mathbb{A} \ G \ \mathfrak{A} \ H \ \mathrm{opp} \ \mathbb{A} \big\}.$

定义 4.13 设 $G \in \mathbf{Grp}$. 定义函数 $\iota_G : G \to G, g \mapsto g^{-1}$.

命题 4.24 设 $\varphi:G\to H$ 是一个群同态. 则

1. $\varphi(e_G) = e_H$;

2. 图

交换.

命题 4.25 平凡群 {e} 是 Grp 的零对象.

定义 4.14 给定群 G 和 H,它们的**直积** $G \times H$ 系如下资料:

1. 下层集合: 集合 G 和 H 的积 $G \times H$;

2. 二元运算: $\cdot: (G \times H) \times (G \times H) \rightarrow G \times H, (g_1,h_1) \cdot (g_2,h_2) \coloneqq (g_1g_2,h_1h_2).$

命题 4.26 一个直积是一个群,且自然投影

$$G \longleftarrow^{\pi_G} G \times H \stackrel{\pi_H}{\longrightarrow} H$$

是群同态.

命题 4.27 群 G 和 H 的直积 $G \times H$ 是范畴 Grp 中的积.

4.5 交换群范畴 **A**b

定义 4.15 交换群范畴 Ab

$$\mathrm{Obj}(\mathbf{Ab}) \coloneqq \{G \in \mathrm{Obj}(\mathbf{Grp}) \mid G \ \mathbb{Z}$$
交换的 $\}$,
$$\forall G, H \in \mathrm{Obj}(\mathbf{Ab}), G \to H \coloneqq (G \to H)_{\mathbf{Grp}}.$$

命题 4.28 平凡群是 Ab 的零对象.

命题 4.29 群 G 和 H 的直积 $G \times H$ 同时是范畴 Ab 中的积和余积.

定义 4.16 作为余积时,群 G 和 H 的直积 $G \times H$ 被称为它们的**直和**,并记为 $G \oplus H$,如下图所示

其中,

$$i_G:G\to G\oplus H, g\mapsto (g,e_H),$$

$$i_H: H \to G \oplus H, h \mapsto (e_G, h).$$

4.6 群同态

4.6.1 例子

定义 4.17 设 G 和 H 是群. 定义**平凡态射** $\sigma:G\to H,g\mapsto e_H$. 显然,平凡态射一定存在.

定义 4.18 设 \mathcal{C} 是一个范畴, $A \in \mathcal{C}$. 群 G 在 A 上的一个 作用 是一个群同态 $\sigma: G \to \operatorname{Aut}_{\mathcal{C}}(A)$.

例子 4.2 设 a,b,c 是某个正三角形的三个顶点. 我们知道 $S_3 = \operatorname{Aut}_{\mathbf{Set}}\{a,b,c\}$,且有群同态 $\sigma:D_{2\cdot3}\to S_3$. 我们称"群 $D_{2\cdot3}$ 作用于正三角形的顶点".

定义 4.19 设 G 是一个群,g 是 G 的一个元素. 定义**指数映射** $\varepsilon_g: \mathbb{Z} \to G, m \mapsto g^m$.

命题 4.30 $\varepsilon_q(a+b) = \varepsilon_q(a) \cdot \varepsilon_q(b)$, 也就是说, 指数映射 ε_q 是一个群同态.

命题 4.31 设 $a \in \mathbb{Z}$. 则指数映射 $\varepsilon_a : \mathbb{Z} \to \langle a \rangle, m \mapsto a^m$ 是一个群同构.

定义 4.20 给定正整数 n,定义群同态

$$\pi_n: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, a \mapsto \varepsilon_{\left[1\right]_n}(a) = a{\left[1\right]_n} = \left[a\right]_n.$$

命题 4.32 $m\mid n\Rightarrow$ 存在一个群同态 $\pi^n_m:\mathbb{Z}/n\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$ 使得图

交换, 即 $\pi_m^n([a]_n) = [a]_m$.

4.6.2 同态与阶

命题 4.33 设 $\varphi:G\to H$ 为一个群同态, $g\in G$ 是一个有有限阶的元素. 则 $|\varphi(g)|$ 整除 |g|.

4.6.3 群同构

定义 4.21 一个群同构 $\varphi: G \to H$ 是 Grp 中的一个同构.

命题 4.34 设 $\varphi:G\to H$ 为一个群同态. 则 φ 是一个群同构 $\Leftrightarrow \varphi$ 是一个双射.

命题 4.35 设 $\varphi: G \to H$ 是一个群同构.则

1. $\forall g \in G$. $|\varphi(g)| = |g|$;

2. G 是交换的 ⇔ H 是交换的.

命题 4.36 n 阶循环群 $\cong (\mathbb{Z}/n\mathbb{Z}, +)$; 无限循环群 $\cong (\mathbb{Z}, +)$.

命题 4.37 群($\mathbb{Z},+$) $\not\simeq$ 群($\mathbb{Q},+$).

命题 4.38 函数 $\exp: (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot), x \mapsto e^x$ 是群同构.

命题 4.39 $\mathbb{A}(\mathbb{Q},+) \not\simeq \mathbb{A}(\mathbb{Q}_{>0},\cdot).$

4.6.4 交换群的同态

命题 4.40 设 G 和 H 是两个交换群,定义二元函数

$$+: \left(G \to H\right)_{\mathbf{Ab}} \times \left(G \to H\right)_{\mathbf{Ab}} \to \left(G \to H\right)_{\mathbf{Set}},$$

$$(\varphi, \psi) \mapsto \varphi + \psi, (\varphi + \psi)(g) := \varphi(g) + \psi(g).$$

则 $(G \to H)_{\mathbf{Ab}}$ 对 + 封闭, 且 $((G \to H)_{\mathbf{Ab}}, +) \in \mathbf{Ab}$.

命题 4.41 设 A 是一个集合,H 是一个交换群.则 $\left((A \to H)_{\mathbf{Set}}, +\right) \in \mathbf{Ab}$.

命题 4.42 设 G 是一个群.则

- 1. 函数 $g \mapsto g^{-1}: G \to G$ 是一个群同构 $\Leftrightarrow G$ 是交换的;
- 2. 函数 $g \mapsto g^2 : G \to G$ 是一个群同态 $\Leftrightarrow G$ 是交换的.

命题 4.43 交换群经过群同态输出的像是交换群.

4.7 自由群

4.7.1 泛性质

定义 4.22 自由群

给定集合S, 定义范畴 \mathcal{F}_S :

$$\mathrm{Obj}(\mathcal{F}_S) \coloneqq \left\{ (G,\iota) \ | \ G \in \mathrm{Obj}(\mathbf{Grp}), \iota : (S \to G)_{\mathbf{Set}} \right\},$$

$$(G_1,\iota_1) \to (G_2,\iota_2) \coloneqq \Big\{ \varphi : \left(G_1 \to G_2\right)_{\mathbf{Grp}} \mid \varphi \circ \iota_1 = \iota_2 \Big\}.$$

集合S上的自由群 $\mathbf{F}(\mathbf{S})$ 定义为 \mathcal{F}_S 中的始对象(如果存在的话;后面我们会证明它一定存在)

命题 4.44 给定集合 S 和平凡群 $\{e\}$,则 $\{e\}$ 是范畴 \mathcal{F}_S 的终对象.

4.7.2 具体构造

定义 4.23 对于任何集合 S, 如果我们把它的元素当作字符,则可称其为一个字符集.

定义 4.24 对于任何字符 a,定义其**逆字符**为字符 a^{-1} .

一个字符集S的所有字符的逆字符的集合记为 S^{-1} .

定义 4.25 一个字符集 S 上的所有字符串的集合定义如下

- 1. 如果 $S = \emptyset$, 则 $S^* := \{ 空字符串 \};$
- 2. 如果 S 非空,则 $S^* := \{ 空字符串 \} \cup \{ a_1 ... a_n \mid n \in \mathbb{N}_+, a_i \in S \}.$

约定 4.1 1. 对于任何字符 a,我们可以把 $(a^{-1})^{-1}$ **化简**为 a;

- 2. 对于任何字符串 x, 其中形如 aa^{-1} 或 $a^{-1}a$ 的部分都能**化简**为空字符串;
- 3. 我们不区分字符以及字符串的化简前后的形式.

定义 4.26 自由群

设 S 是一个字符集, $T = S \cup S^{-1}$.

定义 T* 上的乘法:

$$\cdot:T^* imes T^* o T^*, (x,y)\mapsto xy$$
 ,

即字符串连接.

显然, (T^*, \cdot) 构成一个群结构(乘法符合结合律;有幺元,即空字符串;每个字符串都有逆元),称该群为集合 S 生成的自由群.

命题 4.45 设 S 是一个集合, F_S 是它生成的自由群,函数 $\iota: S \to F_S$, ' $a' \mapsto$ "a". 则 (F_S, ι) 满足 S 上的自由群的泛性质.

命题 4.46 F(∅) 是平凡群.

4.7.3 自由交换群

定义 4.27 自由交换群

给定集合 S, 定义范畴 \mathcal{F}_{S}^{Ab} :

$$\mathrm{Obj}\big(\mathcal{F}_S^{\mathbf{Ab}}\big)\coloneqq \left\{(G,\iota)\ |\ G\in \mathrm{Obj}(\mathbf{Ab}),\iota:(S\to G)_{\mathbf{Set}}\right\}\text{,}$$

$$(G_1,\iota_1) \to (G_2,\iota_2) \coloneqq \left\{ \varphi : \left(G_1 \to G_2\right)_{\mathbf{Ab}} \mid \varphi \circ \iota_1 = \iota_2 \right\}.$$

集合 S 上的自由交换群 $F^{Ab}(S)$ 定义为 \mathcal{F}_S^{Ab} 中的始对象 (如果存在的话;后面我们会证明它一定存在).

定义 4.28 **Z**^{⊕n}

设 $n \in \mathbb{N}$. 定义 $\mathbb{Z}^{\oplus n}$

1. $\mathbb{Z}^{\oplus 0}$:= {空元组}, 令其为平凡群;

2. 如果 n>0,则 $\mathbb{Z}^{\oplus n}:=\underbrace{\mathbb{Z}\oplus ...\oplus \mathbb{Z}}_{n,k}$,并定义其上二元运算 $+:\mathbb{Z}^{\oplus n}\times\mathbb{Z}^{\oplus n}\to$

 $\mathbb{Z}^{\oplus n}, (x_1,...,x_n) + (y_1,...,y_n) \coloneqq (x_1+y_1,...,x_n+y_n).$

显然,这构成一个群.

命题 4.48 1. 设函数 $\iota:\emptyset\to\mathbb{Z}^{\oplus 0}$. 则 $(\mathbb{Z}^{\oplus 0},\iota)$ 满足 \emptyset 上的自由交换群的泛性质.

2. 设 $n \in \mathbb{N}_{+}$, $S = \{1, ..., n\}$, 函数 $\iota : S \to \mathbb{Z}^{\oplus n}, i \mapsto \left(0, ..., 0, \underbrace{1}_{\hat{\mathbf{x}} \text{ i } \acute{\mathbf{t}}}, 0, ..., 0\right)$. 则 $(\mathbb{Z}^{\oplus n}, \iota)$ 满足

S上的自由交换群的泛性质.

定义 4.29 H^{⊕S}

设S是一个集合,(H,+)是一个交换群.

$$oldsymbol{H}^{\oplus oldsymbol{S}} \coloneqq \left\{ lpha : \left(S
ightarrow H
ight)_{\mathbf{Set}} \mid \left\{ s \in S \mid lpha(s)
eq e_H
ight\}$$
 是有限集 $\right\}$

显然 $(H^{\oplus S}, +)$ 是交换群.

命题 4.49 设 S 是一个集合,函数 $\iota: S \to \mathbb{Z}^{\oplus S}, \iota(s) := (x \in S) \mapsto \begin{cases} 1, x = s \\ 0, x \neq s \end{cases}$. 则 $\left(\mathbb{Z}^{\oplus S}, \iota\right)$ 满足 S 上的自由交换群的泛性质.

4.8 子群

4.8.1 定义和例子

定义 4.30 子群

设 (G,\cdot) 和 (H,\cdot) 是群,且它们的下层集合间有关系 $H\subset G$.

 (H, \bullet) 是 (G, \cdot) 的一个子群: \Leftrightarrow 包含函数 $i: H \hookrightarrow G$ 是一个群同态.

命题 4.50 设 (G, \cdot) 是一个群,H 是 G 的一个非空子集. 则 (H, \cdot) 是 (G, \cdot) 的一个子群当且 仅当满足以下条件:

- 1. H 对·封闭, 即 $\forall a, b \in H. a \cdot b \in H \land b \cdot a \in H$;
- $2. \ \forall a \in H. \ a^{-1} \in H.$

引理 4.2 如果 $\{H_{\alpha}\}_{\alpha\in A}$ 是群 G 的一族子群,则 $\bigcap_{\alpha\in A}H_{\alpha}$ 是 G 的一个子群.

引理 4.3 设 $\varphi:G\to G'$ 是一个群同态,H' 是 G' 的一个子群. 则 $\varphi^{-1}(H')$ 是 G 的一个子群.

定义 4.31 核

群同态 $\varphi: G \to G'$ 的**核**定义为:

 $\ker \varphi \coloneqq \varphi^{-1}(e_{G'}).$

命题 4.51 设 $\varphi: G \to G'$ 是一个群同态. 那么

- $1. \ker \varphi$ 是 G 的一个子群.
- 2. 对于 G' 的任何子群 H' , $\varphi^{-1}(H')$ 是 G 的一个子群.
- 3. 对于 G 的任何子群 H, $\varphi(H)$ 是 G' 的一个子群.

命题 4.52 设 $\varphi: G \to G'$ 是一个群同态. 定义一个范畴 \mathcal{C} :

$$\mathrm{Obj}(\mathcal{C}) \coloneqq \left\{ (K, \alpha) \mid K \in \mathrm{Obj}(\mathbf{Grp}) \text{, } \alpha : (K \to G)_{\mathbf{Grp}} \text{, } \alpha(K) \subset \ker \varphi \right\} \text{,}$$

$$(K,\alpha) \to (L,\beta) \coloneqq \Big\{ \gamma : (K \to L)_{\mathbf{Grp}} \ | \ \alpha = \beta \circ \gamma \Big\}.$$

设 $i: \ker \varphi \to G$ 是包含映射.

则 $(\ker \varphi, i)$ 是范畴 \mathcal{C} 的终对象,如下图:

定义 4.32 生成子群

第1种定义:

如果 A 是群 G 的一个子集, $i:A\to G$ 是包含映射, $(F(A),\iota)$ 满足 A 上的自由群的泛性质,那么我们有一个唯一的群同态 $\varphi:F(A)\to G$ 使得下图交换

我们称 $\varphi(F(A))$ 为群 G 中由子集 A 生成的子群, 记为 $\langle A \rangle$.

第2种定义:

定义 $\langle A \rangle$ 的元素为具有以下形式的对象:

$$a_1 a_2 ... a_3$$
,

其中每个 a_i 是A中的元素,或A中的元素的逆,或G的幺元.

第3种定义:

$$\langle A \rangle \coloneqq \bigcap \{G \text{ 的包含 } A \text{ 的子群}\}.$$

命题 4.53 设 A 是交换群 G 的一个子集, $i:A\to G$ 是包含映射, $(F(A),\iota_1)$ 和 $\left(F^{\mathbf{Ab}}(A),\iota_2\right)$ 分别是范畴 \mathcal{F}_A 和 $\mathcal{F}_A^{\mathbf{Ab}}$ 的始对象, $\varphi_1:(F(A),\iota_1)\to(G,i)$, $\varphi_2:\left(F^{\mathbf{Ab}}(A),\iota_2\right)\to(G,i)$, $\varphi_3:(F(A),\iota_1)\to\left(F^{\mathbf{Ab}}(A),\iota_2\right)$. 那么我们有

$$\varphi_2\circ\varphi_3=\varphi_1.$$

命题 4.54 设 A 是交换群 G 的一个子集, $i: A \to G$ 是包含映射, $(F^{\mathbf{Ab}}(A), \iota)$ 是范畴 $\mathcal{F}_A^{\mathbf{Ab}}$ 的始对象,下图交换:

那么, $\varphi(F^{Ab}(A))$ 是群 G 中由子集 A 生成的子群.

定义 4.33 称一个群 G 是有限生成的,当且仅当存在有限子集 $A \subset G$ 使得 $G = \langle A \rangle$.

命题 4.55 对于任意循环群 G,都存在 $g \in G$ 使得 $G = \langle g \rangle$.

命题 4.56 设 G 是一个群. 则以下 2 个命题等价:

- 1. G是有限生成的.
- 2. 存在满群同态 $F(\{1,...,n\}) \to G (n \ge 0)$.

命题 4.57 设 G 是一个交换群. 则以下 3 个命题等价:

- 1. G是有限生成的.
- 2. 存在满群同态 $F(\{1,...,n\}) \to G (n \ge 0)$.
- 3. 存在满群同态 $F^{Ab}(\{1,...,n\}) \to G (n \ge 0)$.

命题 4.58 设 $A = \{'1', ..., 'n'\}$ ($n \ge 0$), G 是一个群且 $|G| \ge n$, $\varphi : F(A) \to G$ 是一个满群 同态. 那么 $|\varphi(\{"1", ..., "n"\})|$ 不一定等于 n.

命题 4.59 设 $A = \{1,...,n\}$ ($n \ge 0$), G 是一个交换群且 $|G| \ge n$, $\varphi: F^{\mathbf{Ab}}(A) \to G$ 是一个满群同态. 那么 $|\varphi(\{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)\})|$ 不一定等于 n.

定义 4.34 设 $d \in \mathbb{Z}$. 我们定义

 $d\mathbb{Z} := \{ m \in \mathbb{Z} \mid m \notin d \text{ 的整数倍} \}.$

命题 4.60 设 G 是 $(\mathbb{Z},+)$ 的一个子群. 那么存在 $d \in \mathbb{Z}$ 使得 $G = d\mathbb{Z}$.

命题 4.61

- 1. n 阶循环群 $\cong (\mathbb{Z}/n\mathbb{Z}, +);$
- $2. F(\{*\}) \cong$ 无限循环群 $\cong (\mathbb{Z}, +)$ 的所有非平凡子群.
- 3. 从 n 阶循环群到无限循环群的群同态有且只有平凡同态.

命题 $4.62 | F(\{*\})$ 的任何子群都是自由群.

命题 4.63 设 G 是某个 n 阶循环群的一个子群. 那么存在 n 的因子 d,使得 G 是由 $[d]_n$ 生成的 n/d 阶循环群.

命题 4.64 如果 d_1, d_2 都整除 n, 且 d_1 整除 d_2 , 那么 $\langle [d_1]_n \rangle \supset \langle [d_2]_n \rangle$.

例子 4.4 上个命题中的整除关系和包含关系分别构成了一个**格**结构,且这两个格是同构的.以 12 阶循环群为例,我们有下图所示的格:

命题 4.65 设 G 是一个群, $g \in G$. 则指数映射 $\varepsilon_q : \mathbb{Z} \to G$ 的像是一个循环群.

4.8.2 单态射

命题 4.66 设 $\varphi: (G \to G')_{\mathbf{Grp}}$. 则以下命题等价:

- $1.\varphi$ 是单态射;
- 2. $\ker \varphi = \{e_G\};$
- 3. φ 是单射.

命题 4.67 设 $\varphi: (G \to G')_{Grp}$. 则 φ 是单态射 $\Rightarrow \varphi$ 有左逆.

4.9 商群

4.9.1 商群

定义 4.35 兼容

设 $G \in \mathbf{Grp}$, ~是G上的一个等价关系.

如果该关系满足:

$$\forall a,a' \in G. \ (a \mathop{\sim} a') \Rightarrow \forall g \in G. \ (ga \mathop{\sim} ga') \land (ag \mathop{\sim} a'g) \text{,}$$

那么我们称在群G中,等价关系~兼容于群结构.

定义 4.36 商群

设 $G \in \mathbf{Grp}$, ~是G上的一个兼容的等价关系.

那么我们可以定义二元运算•: $(G/\sim) \times (G/\sim) \to (G/\sim)$,

$$[a] \bullet [b] := [ab].$$

显然这使得 (G/\sim) 成为一个群. 我们称群 (G/\sim) 是群 G 关于等价关系 \sim 的**商**群.

定义 4.37 Grp/~

设 $G \in \mathbf{Grp}$, ~是G上的一个兼容的等价关系.

定义范畴 Grp/~:

 $\mathrm{Obj}(\mathbf{Grp}/\sim) \coloneqq \left\{ (G',\varphi) \mid G' \in \mathrm{Obj}(\mathbf{Grp}) \text{, } \varphi : \left(G \to G'\right)_{\mathbf{Grp}} \text{, } \forall a,b \in G. \ a \sim b \Rightarrow \varphi(a) = \varphi(b) \right\}$

$$(G_1,\varphi_1) \to (G_2,\varphi_2) \coloneqq \Big\{ \sigma : \left(G_1 \to G_2\right)_{\mathbf{Grp}} \mid \sigma \circ \varphi_1 = \varphi_2 \Big\}.$$

命题 4.68 设 $G \in \mathbf{Grp}$, ~是 G 上的一个兼容的等价关系, $\pi: G \to G/{\sim}, x \mapsto [x]$.

则 $(G/\sim,\pi)$ 是 Grp/\sim 的始对象,如下图:

命题 4.69 给定集合 A, 设 $(F(A), \iota_1)$ 和 $(F^{Ab}(A), \iota_2)$ 分别是范畴 \mathcal{F}_A 和 \mathcal{F}_A^{Ab} 的始对象. 定义 F(A) 上的一个等价关系:

$$\sim : F(A) \times F(A) \to \mathbf{Propo},$$

 $a \sim b$: ⇔ 字符串 a 和 b 中的字符种类和数量相同, 唯一可能的不同是字符的顺序.

则我们有:

- $1. \sim$ 兼容于 F(A) 的群结构.
- 2. 存在同构 $\alpha: F^{\mathbf{Ab}}(A) \xrightarrow{\sim} F(A)/\sim$ 使得下图交换:

4.9.2 陪集

定义 4.38 左陪集,右陪集

设 $H \subset G$ 是群 G 的一个子群, $a \in G$. 我们称集合 aH 为 H 在 G 中的一个左陪集, 称集合 Ha 为 H 在 G 中的一个右陪集.

命题 4.70 设 \sim_L 是群 G 上的一个等价关系,满足:

$$\forall a,b \in G. \ a \sim_L b \Rightarrow \forall g \in G. \ ga \sim_L gb.$$

那么我们有:

- $1.[e_G]$ 是 G 的一个子群.
- $2. (a \sim_L b) \Leftrightarrow (a^{-1}b \in [e_G]) \Leftrightarrow (a[e_G] = b[e_G]).$

命题 4.71 设 \sim_R 是群 G 上的一个等价关系,满足:

$$\forall a,b \in G. \ a \sim_R b \Rightarrow \forall g \in G. \ ag \sim_R bg.$$

那么我们有:

- $1.[e_G]$ 是 G 的一个子群.
- $2. \; (a \,{\scriptstyle \sim_R} \, b) \Leftrightarrow \left(ab^{-1} \in [e_G]\right) \Leftrightarrow ([e_G]a = [e_G]b).$

命题 4.72 设 $H \subset G$ 是群 G 的一个子群. 定义群 G 上的一个二元关系

$$\sim_L : G \times G \to \mathbf{Propo},$$

$$a \sim_L b :\Leftrightarrow a^{-1}b \in H.$$

那么我们有:

- 1.~ 是一个等价关系.
- $2. H = [e_G].$
- 3. $\forall a, b \in G$. $a \sim_L b \Rightarrow \forall g \in G$. $ga \sim_L gb$.

命题 4.73 设 $H \subset G$ 是群 G 的一个子群. 定义群 G 上的一个二元关系

$$\sim_R: G \times G \to \mathbf{Propo},$$

$$a \sim_R b :\Leftrightarrow ab^{-1} \in H$$
.

那么我们有:

- $1. \sim_R$ 是一个等价关系.
- $2. H = [e_G].$
- 3. $\forall a, b \in G$. $a \sim_R b \Rightarrow \forall g \in G$. $ag \sim_R bg$.

命题 4.74 设 G 是一个群. 那么我们可以在

群G的所有子群H的集合

和

群 G 上所有满足 $\forall a,b \in G$. $a \sim_L b \Rightarrow \forall g \in G$. $ga \sim_L gb$ 的等价关系 \sim_L 的集合 之间建立一对互逆映射:

命题 4.75 设 G 是一个群. 那么我们可以在

群G的所有子群H的集合

和

群 G 上所有满足 $\forall a,b \in G$. $a \sim_R b \Rightarrow \forall g \in G$. $ag \sim_R bg$ 的等价关系 \sim_R 的集合 之间建立一对互逆映射:

命题 4.76 设 \sim_L 和 \sim_R 是群 G 上的两个等价关系,分别满足

$$\forall a, b \in G. \ a \sim_L b \Rightarrow \forall g \in G. \ ga \sim_L gb$$

和

$$\forall a, b \in G. \ a \sim_R b \Rightarrow \forall g \in G. \ ag \sim_R bg.$$

那么我们有:

$$[e_G]_{\sim_L} = [e_G]_{\sim_R}.$$

命题 4.77 设 \sim_L 是群 G 上的一个等价关系,满足:

$$\forall a,b \in G. \ a \sim_L b \Rightarrow \forall g \in G. \ ga \sim_L gb.$$

那么我们有:

$$G/{\sim_L} = \{g[e_G] \mid g \in G\}.$$

命题 4.78 设 \sim_R 是群 G 上的一个等价关系,满足:

$$\forall a,b \in G. \ a \sim_R b \Rightarrow \forall g \in G. \ ag \sim_R bg.$$

那么我们有:

$$G/{\sim_R} = \{[e_G]g \mid g \in G\}.$$

4.9.3 正规子群

定义 4.39 正规子群

称群G的一个子群N是正规的,当且仅当

$$\forall g \in G. \ gNg^{-1} \subset N.$$

命题 4.79 交换群的任何子群都是正规的.

引理 4.4 设 $\varphi: (G \to G')_{\mathbf{Grp}}$. 则 $\ker \varphi \not \in G$ 的正规子群.

4.9.4 以正规子群为模的商群

命题 4.80 设 H 是群 G 的一个子群.

由前述,我们可以定义两个等价关系 $a\sim_L b:\Leftrightarrow a^{-1}b\in H$ 和 $a\sim_R b:\Leftrightarrow ab^{-1}\in H$.

并且我们有两个商群:

$$G/_{L} = \{gH \mid g \in G\}, \ G/_{R} = \{Hg \mid g \in G\}.$$

那么我们有如下结论:

$$(\forall g \in G. gH = Hg) \Leftrightarrow H$$
 是正规的.

定义 4.40 设 H 是群 G 的一个正规子群.

那么我们有一个等价关系:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

 $\Leftrightarrow ab^{-1} \in H.$

进而我们有对应的商群:

$$G/\!\!\sim = \{gH \mid g \in G\} = \{Hg \mid g \in G\}.$$

我们称 G/\sim 为 G 以 H 为模的商群,记为 G/H.

命题 4.81 商群 G/H 满足:

1. (aH)(bH) = (ab)H.

2. $e_{G/H} = H$.

定义 4.41 设 H 是群 G 的一个正规子群. 定义范畴 Grp/H:

$$\mathrm{Obj}(\mathbf{Grp}/H) \coloneqq \left\{ (G',\varphi) \mid G' \in \mathrm{Obj}(\mathbf{Grp}) \text{, } \varphi \in \left(G \to G'\right)_{\mathbf{Grp}} \text{, } \forall g \in G. \ H \subset \ker \varphi \right\} \text{,}$$

$$(G_1,\varphi_1) \to (G_2,\varphi_2) \coloneqq \Big\{ \sigma : (G_1 \to G_2)_{\mathbf{Grp}} \mid \sigma \circ \varphi_1 = \varphi_2 \Big\}.$$

定理 4.1 $(G/H,\pi)$ 是 Grp/H 的始对象:

