HOUSE PRICE PREDICTION USING RANDOM FOREST ALGORITHM AND PERSONALISED HOUSE RECOMMENDATION WITH ANALYTICAL HEIRARCHY PROCESS METHODOLOGY

Sairam Kumaran & Binny Kaur

Odette School of Business, University of Windsor

Abstract

House price prediction and personalized house recommendation are important tasks in the real estate industry, aiding both buyers and sellers in making informed decision. Many real estate firms have long made decisions based on a combination of intuition and traditional, retrospective data. Today a host of new variables make it possible to paint more vivid pictures of location's future risk and opportunities (Mckinsey, 2018).

MagicBricks is a Real Estate company in Canada. Company's online platform provides deep coverage of the real estate market and property trends in major cities of Canada. The platform provides users insights on Tax planning and home loans. The company is expanding its business in Windsor city. Company recently acquired 110 new properties and will the predicting the price of those properties. As analysts at the company MagicBricks, we will be further working for a client to select their dream home. As the client is looking to make the purchase of house. We will be providing them with through consultation first with the price prediction and further knowing their preferences or subjective criteria's we will narrow down the options of houses that will best suit their requirement.

Introduction

Real Estate valuation is process to determine the market price of the property. From data driven decision making to enhanced risk management, increased efficiency, improved customer service, optimal resource allocation, predictive maintenance and sustainable practices, Artificial Intelligence algorithms such as Random Forest transforms how real estate projects are planned and executed. There are various factors that influence the valuation of a property. (LinkedIn, 2023). Some of the factors include location, size, condition, amenities, and recent sales of comparable properties in the area. Our data set specific to the area of study includes total of 546 properties with attributes price, lot size, bedrooms, bathrooms, stories, driveway, recreation, full base, gas heating, air conditioner and garage.

Method/Process

Descriptive Analysis of Data

As observed from summary statistics of data, housing prices in the City of Windsor, ranges between 25000 and 190000, with an average of 68120. The distribution of sales price is shown below, which indicates a higher frequency of the houses valued at 50000 and it quickly decreases after 65000. Some outliers were also observed where the houses were valued at a higher price than 150000. As the data is from the year 2016, it felt right to improvise the values by multiplying with 10.

Visualizing different attributes spread across entire property data.

Determining the correlation between lot size and price variables.

Forecasting the price of houses

Random Forest is a supervised machine learning algorithm that is constructed on decision tress algorithm. It can produce reasonable prediction without hyper-parameter tuning. It can effectively handle both numerical and categorical features. It has the capabilities to handle missing values and outliers, which contributes to its robustness.

We used 436 properties as training set and 110 properties as training set. The calculated model score accuracy is 82%. Please refer to Python workbook for code and statistics.

This study aims to build a predictive model for house prices in the city of Windsor, employing Random Forest Regression. The dataset includes features such as price, lot size, bedrooms, bathrooms, stories, driveway, recreation, full basement, gas heating, air conditioning, garage, and client preference. The following steps outline the process of building the prediction model.

Data Collection and Preprocessing:

- Gather real estate data for the city of Windsor, including relevant features and target variable (house prices).
- Check for missing values, outliers, and data inconsistencies.
- Perform data cleaning and imputation as needed.
- Encode categorical variables (e.g., driveway, recreation, full basement) into numerical representations.

Exploratory Data Analysis (EDA):

- Conduct a comprehensive analysis of the dataset to identify patterns and correlations between variables.
- Visualize the distribution of house prices and other features.
- Evaluate the impact of different features on house prices using scatter plots, histograms, and correlation matrices.

Feature Engineering:

- Create new features if relevant to enhance the prediction model's performance.
- Select the most informative features based on correlation analysis and domain knowledge.

Data Splitting:

- Divide the dataset into training and testing sets to evaluate the model's generalization performance accurately.
- Utilize a common ratio, such as 80/20, for the split.

Random Forest Regression Model:

- Implement the Random Forest Regression algorithm, a powerful ensemble learning technique, to predict house prices.
- Fine-tune hyperparameters, including the number of trees and maximum depth, using techniques like cross-validation to optimize the model's performance.

Model Training and Evaluation:

- Train the Random Forest Regression model using the training dataset.
- Evaluate the model's performance on the testing dataset using metrics such as Mean Squared Error (MSE), R-squared (R2), and Mean Absolute Error (MAE).

Model Interpretation:

- Analyze the importance of different features in the prediction process.
- Visualize feature importance using plots, such as bar charts or heatmaps.

Prediction and Recommendation:

- Utilize the final trained model to predict house prices for newly acquired properties in the city of Windsor.
- Present the predictions along with confidence intervals for clients' consideration.

Through the systematic implementation of these steps, the built Random Forest Regression model will provide valuable insights into house prices in Windsor, supporting MagicBricks in making informed decisions and empowering clients with accurate real estate predictions.

Client's requirement: MagicBrick's client wanted a house which costed no more than 900,000 and is a one-story house. Out the 110 properties only 5 properties qualified this requirement.

Personalized Home Recommendation

All 5 properties have different attributes. It is important to understand what attributes carried more weight or preference for our client. Selecting one best property out of 5 evolves multicriteria driven decision making. Hence, we will be using Analytical Hierarchy Process to achieve this goal.

AHP Process: Analytical Hierarchy Process is multi criteria driven process invented by Thomas L. Satty in 1970s. It is structured methodology that works through pairwise comparison of

qualitative and quantitative evaluation criteria and uses the priority scales driven by expert judgement for comparison of intangible factors in the evaluation criteria.

Following steps outline the procedure we used AHP to reach our goal to select the best home for our client.

- 1. Determine the criteria (and sub-criteria) if any to evaluate.
- 2. Develop the decision hierarchy with the decision goal (find a best home) at the top, various alternatives (Property 1-5) at the bottom and various evaluation criteria (Price, bedrooms, bathroom, etc.) in the middle.
- 3. Perform the analysis.
 - Perform pairwise comparison of the alternatives (Property 1 -5) based on their strengths in meeting the evaluation criteria and determine priorities among them.
 - Perform pairwise comparison of the criteria(Price, bedrooms, bathroom, etc.) and sub-criteria's (size of bedroom, garage etc.) based on their importance in achieving the goal of the decision-making and determine priorities among them.
- 4. Synthesize the priorities from steps 2 and 3 to find the overall priority for each of the alternatives and assign a rank to each of the alternatives on the basis of its overall priority.
- 5. Make a decision by selecting the highest ranking alternative.

Proposed AHP Model

Analysis

To perform the analysis of strength of various alternatives we gave a survey form to the client to rate each alternative with respect to each other on scale of 1 to 9. We used Saaty' Scale to determine the importance of each rating.

The Fundamental Scale for Pairwise Comparisons							
Intensity of Importance	Definition	Explanation					
1	Equal importance	Two elements contribute equally to the objective					
3	Moderate importance	Experience and judgment slightly favor one element over another					
5	Strong importance	Experience and judgment strongly favor one element over another					
7	Very strong importance	One element is favored very strongly over another; its dominance is demonstrated in practice					
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation					
Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities							

Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities 1.1, 1.2, 1.3, etc. can be used for elements that are very close in importance.

Consistency Ratio

The Analytical Hierarchy Process (AHP) utilizes the consistency ratio (CR) to assess the reliability of pairwise comparisons made by decision-makers. The CR is calculated using the following formulas:

Consistency Index (CI): CI = $(\lambda_{max} - n) / (n - 1)$

(where λ_{max} is the principal eigenvalue of the pairwise comparison matrix, and n is the number of elements being compared)

Random Index (RI): Pre-determined values based on the number of elements being compared.

$$CR = (CI) / (RI)$$

If CR exceeds a predefined threshold (typically 0.10), it indicates inconsistency in judgments, requiring a reassessment to ensure more dependable and accurate decision-making. Consistency in AHP is critical for producing robust and reliable results, guiding decision-makers to make well-informed choices based on consistent priorities.

Synthesis and Ranking

We used Python libraries to solve our problem statement. Please refer to Python Workbook for detailed code. Here, we are explaining each step of AHP process with result snippets from our Python Workbook.

Goal: To select the ideal home for our client out of 5 alternative properties.

Step 1. Defining criteria and sub-criteria.

Criteria	Sub-Criteria
Price	None
Bathrooms	None

	Number of Bedrooms		
Bedrooms	Size of Bedrooms		
	Closet Space		
Size	Living Space		
Size	Garden Area		
	Driveway		
Amenities	Garage		
Amenities	Air Conditioning		
	Gas Heat		

Step 2. Normalized Pairwise comparison of criteria & sub-criteria and priority eigen values.

	Price	Size	Bedrooms	Bathrooms	Ammenities
CRITERIAS					
Price	1.000000	0.333333	3	0.500000	0.250000
Size	3.000000	1.000000	5	0.500000	0.333333
Bedrooms	0.333333	0.200000	1	0.250000	0.166667
Bathrooms	2.000000	2.000000	4	1.000000	0.500000
Ammenities	4.000000	3.000000	6	2.000000	1.000000

NORMALIZED	CRITERIA	MATRIX						
	Price	Size	Bedrooms	Bathrooms	Ammenities			
CRITERIAS								
Price	0.096774	0.051020	0.157895	0.117647	0.111111			
Size	0.290323	0.153061	0.263158	0.117647	0.148148			
Bedrooms	0.032258	0.030612	0.052632	0.058824	0.074074			
Bathrooms	0.193548	0.306122	0.210526	0.235294	0.222222			
Ammenities	0.387097	0.459184	0.315789	0.470588	0.44444			
	priority index							
CRITERIAS								
Price	0.1068	390						
Size	0.1944	467						
Bedrooms	0.0496	680						
Bathrooms	0.233	543						
Ammenities	0.415	421						
CRITERIA W	-							

Step 3: Compute the consistency ratio of the normalized matrix to ensure consistency.

The Consistency Index is: 0.048 The Consistency Ratio is: 0.043

The model is consistent

Step 4: Calculate the global weights of the criteria and sub-criteria as per the local weights.

	CRITERIAS	RELATIVE_WEIGHT	FACTORS	LOCAL_WEIGHT	GLOBAL_WEIGHT
0	Price	0.106890	None		0.106890
1	Size	0.194467	Living Space	0.857143	0.166700
2	Size	0.194467	Garden Size	0.142857	0.027800
3	Bedrooms	0.049680	Number of Bedrooms	0.264811	0.013200
4	Bedrooms	0.049680	Size_of_bedroom	0.655545	0.032600
5	Bedrooms	0.049680	Closet Space	0.079644	0.004000
6	Bathrooms	0.233543	None		0.233543
7	Ammenities	0.415421	Driveway	0.268605	0.111600
8	Ammenities	0.415421	Garage	0.559981	0.232600
9	Ammenities	0.415421	Air Conditioning	0.096862	0.040200
10	Ammenities	0.415421	Gas Heat	0.074552	0.031000

Step 5: Normalized Pairwise comparison of alternatives with respect to criteria and subcriteria and priority eigen values.

	Pro	perty 1	Pro	peprty 2	Pı	roperty 3	P	roperty 4	P	roperty 5
Living_Space										
Property 1		1	0	.500000		0.250000		0.500000		1
Proeprty 2		2	1	.000000	(0.500000		0.250000		2
Property 3		4	2	.000000		1.000000		2.000000		4
Property 4		2	4	.000000		0.500000	П	1.000000		1
Property 5		1	0	.500000	_	0.250000		1.000000		1
1	Prop	erty 1	Proe	eprty 2	Pro	perty 3	Pr	operty 4	Pr	operty 5
Garden_Size										
Property 1		1	0.5	500000	0	.333333	_	0.250000	(0.333333
Proeprty 2		2		000000		.500000		0.250000		1.000000
Property 3		3	_			.000000		2.000000		.000000
Property 4		4		00000		.500000	_	1.000000	_	2.000000
		3		00000		.250000		0.500000		1.000000
Property 5										
Property 1 Proeprty 2 Property 3 Property 4 Property 5 NO_of_bedrooms										
Property	y 1		1	0.2000	00	0.25000	00	0.500000)	0.500000
Proeprty	, 2		5	1.0000	00	0.50000	00	1.000000	0	2.000000
Property	<i>y</i> 3		4	2.0000	00	1.00000	00	3.000000)	2.000000
Property	/ 4		2	1.0000	00	0.33333	33	1.000000	0	4.000000
Property	5		2	0.5000	00	0.50000	00	0.250000)	1.000000
		Proper	ty 1	Proeprt	y 2	Property	3	Property 4	F	Property 5
Size_of_bed	room									
Prope	rty 1		1	0.2500	000	0.16666	67	0.250000		0.500000
Proep	rty 2		4	1.0000	000	0.33333	33	0.200000		3.000000
Prope	rty 3		6	3.0000	000	1.00000	00	2.000000		3.000000
Prope	rty 4		4	5.0000	000	0.50000	00	1.000000		4.000000
Prope	rty 5		2	0.3333	333	0.33333	33	0.250000		1.000000

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Closet_Size

Property 1	1	0.500000	0.250000	1.000000	1
Proeprty 2	2	1.000000	0.333333	0.333333	3
Property 3	4	3.000000	1.000000	2.000000	3
Property 4	1	3.000000	0.500000	1.000000	4
Property 5	1	0.333333	0.333333	0.250000	1

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Driveway					
Property 1	1	0.250000	0.166667	0.333333	1
Proeprty 2	4	1.000000	0.200000	1.000000	1
Property 3	6	5.000000	1.000000	5.000000	4
Property 4	3	1.000000	0.200000	1.000000	2
Property 5	1	1.000000	0.250000	0.500000	1

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Garage					
Property 1	1	0.333333	0.250000	0.333333	0.333333
Proeprty 2	3	1.000000	0.500000	1.000000	4.000000
Property 3	4	2.000000	1.000000	1.000000	2.000000
Property 4	3	1.000000	1.000000	1.000000	1.000000
Property 5	3	0.250000	0.500000	1.000000	1.000000

Property 1 Proeprty 2 Property 3 Property 4 Property 5

AIR_CONDITIONING

Property 1	1	0.200000	0.333333	0.200000	0.500000
Proeprty 2	5	1.000000	0.333333	0.500000	3.000000
Property 3	3	3.000000	1.000000	2.000000	2.000000
Property 4	5	2.000000	0.500000	1.000000	3.000000
Property 5	2	0.333333	0.500000	0.333333	1.000000

	Property 1	Proeprty 2	Property 3	Property 4	Property 5
Gas_Heat					
Property 1	1	1	0.250000	0.250000	1
Proeprty 2	1	1	0.250000	0.333333	1
Property 3	4	4	1.000000	3.000000	4
Property 4	4	3	0.333333	1.000000	3
Property 5	1	1	0.250000	0.333333	1
	Property 1	Proeprty 2	Property 3	Property 4	Property 5
Price					
Property 1	1.000000	0.500000	2.000000	2	0.500000
Proeprty 2	2.000000	1.000000	1.000000	1	0.333333
Property 3	0.500000	1.000000	1.000000	2	0.333333
Property 4	0.500000	1.000000	0.500000	1	0.250000
Property 5	2.000000	3.000000	3.000000	4	1.000000
	Property 1	Proeprty 2	Property 3	Property 4	Property 5
bathrooms					
Property 1	1	1.000000	1.000000	1.000000	1
Proeprty 2	1	1.000000	1.000000	1.000000	2
Property 3	1	1.000000	1.000000	2.000000	2
Property 4		1.000000	0.500000	1.000000	2
oporty 4	1	1.000000	0.00000		
Property 5	1	0.500000	0.500000	0.500000	1

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Living_Space					
Property 1	0.100000	0.062500	0.100000	0.105263	0.111111
Proeprty 2	0.200000	0.125000	0.200000	0.052632	0.22222
Property 3	0.400000	0.250000	0.400000	0.421053	0.444444
Property 4	0.200000	0.500000	0.200000	0.210526	0.111111
Property 5	0.100000	0.062500	0.100000	0.210526	0.111111

priority index

Living_Space					
Property 1	0.095775				
Proeprty 2	0.159971				
Property 3	0.383099				
Property 4	0.244327				
Property 5	0.116827				

SUB CRITERIA WISE LIVING SPACE ALTERNATIVES PRIORITY EIGEN VECTOR

Property 1 Proeprty 2 Property 3 Property 4 Property 5

^-				
Ga	ra	en	- 5	ize

Property 1	0.076923	0.058824	0.129032	0.062500	0.040000
Proeprty 2	0.153846	0.117647	0.193548	0.062500	0.120000
Property 3	0.230769	0.235294	0.387097	0.500000	0.480000
Property 4	0.307692	0.470588	0.193548	0.250000	0.240000
Property 5	0.230769	0.117647	0.096774	0.125000	0.120000

priority index

Garden_Size

Property 1	0.073456
Proeprty 2	0.129508
Property 3	0.366632
Property 4	0.292366
Property 5	0.138038

SUB CRITERIA WISE GARDEN SIZE ALTERNATIVES PRIORITY EIGEN VECTOR

NORMALIZED CRITERIA MATRIX

Property 1 Proeprty 2 Property 3 Property 4 Property 5

NO_of_	bedrooms
--------	----------

Property 1	0.071429	0.042553	0.096774	0.086957	0.052632
Proeprty 2	0.357143	0.212766	0.193548	0.173913	0.210526
Property 3	0.285714	0.425532	0.387097	0.521739	0.210526
Property 4	0.142857	0.212766	0.129032	0.173913	0.421053
Property 5	0.142857	0.106383	0.193548	0.043478	0.105263

priority index

NO_of_bedrooms

0.070069
0.229579
0.366122
0.215924
0.118306

SUB CRITERIA WISE NO OF BEDROOMS ALTERNATIVES PRIORITY EIGEN VECTOR

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Size_	_of_	_bed	room
-------	------	------	------

Property 1	0.058824	0.026087	0.071429	0.067568	0.043478
Proeprty 2	0.235294	0.104348	0.142857	0.054054	0.260870
Property 3	0.352941	0.313043	0.428571	0.540541	0.260870
Property 4	0.235294	0.521739	0.214286	0.270270	0.347826
Property 5	0.117647	0.034783	0.142857	0.067568	0.086957

priority index

Size_of_bedroom

Property 1	0.053477
Proeprty 2	0.159485
Property 3	0.379193
Property 4	0.317883
Property 5	0.089962

SUB CRITERIA WISE SIZE OF BEDROOMS ALTERNATIVES PRIORITY EIGEN VECTOR

NORMALIZED CRITERIA MATRIX

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Closet_Size

Property 1	0.111111	0.063830	0.103448	0.218182	0.083333
Proeprty 2	0.222222	0.127660	0.137931	0.072727	0.250000
Property 3	0.444444	0.382979	0.413793	0.436364	0.250000
Property 4	0.111111	0.382979	0.206897	0.218182	0.333333
Property 5	0.111111	0.042553	0.137931	0.054545	0.083333

priority index

Closet_Size

Property 1	0.115981
Proeprty 2	0.162108
Property 3	0.385516
Property 4	0.250500
Property 5	0.085895

SUB CRITERIA WISE CLOSET SIZE ALTERNATIVES PRIORITY EIGEN VECTOR

Driveway					
Property 1	0.066667	0.030303	0.091743	0.042553	0.111111
Proeprty 2	0.266667	0.121212	0.110092	0.127660	0.111111
Property 3	0.400000	0.606061	0.550459	0.638298	0.444444
Property 4	0.200000	0.121212	0.110092	0.127660	0.22222
Property 5	0.066667	0.121212	0.137615	0.063830	0.111111

priority index

Driveway		
Property 1	0.068475	
Proeprty 2	0.147348	
Property 3	0.527852	
Property 4	0.156237	
Property 5	0.100087	

SUB CRITERIA WISE DRIVEWAY ALTERNATIVES PRIORITY EIGEN VECTOR

NORMALIZED CRITERIA MATRIX

Property 1 Proeprty 2 Property 3 Property 4 Property	Property 1	Proeprty 2	Property 3	Property 4	Property 5
--	------------	------------	------------	------------	------------

Garage					
Property 1	0.071429	0.072727	0.076923	0.076923	0.040000
Proeprty 2	0.214286	0.218182	0.153846	0.230769	0.480000
Property 3	0.285714	0.436364	0.307692	0.230769	0.240000
Property 4	0.214286	0.218182	0.307692	0.230769	0.120000
Property 5	0.214286	0.054545	0.153846	0.230769	0.120000

priority index

Garage	
Property 1	0.067600
Proeprty 2	0.259417
Property 3	0.300108
Property 4	0.218186
Property 5	0.154689

SUB CRITERIA WISE GARAGE ALTERNATIVES PRIORITY EIGEN VECTOR

Property 1 Proeprty 2 Property 3 Property 4 Property 5

AIR_CONDITIONING

Property 1	0.062500	0.030612	0.125000	0.049587	0.052632
Proeprty 2	0.312500	0.153061	0.125000	0.123967	0.315789
Property 3	0.187500	0.459184	0.375000	0.495868	0.210526
Property 4	0.312500	0.306122	0.187500	0.247934	0.315789
Property 5	0.125000	0.051020	0.187500	0.082645	0.105263

priority index

AIR_CONDITIONING

Property 1	0.064066
Proeprty 2	0.206064
Property 3	0.345616
Property 4	0.273969
Property 5	0.110286

SUB CRITERIA WISE AIR CONDITIONING ALTERNATIVES PRIORITY EIGEN VECTOR

NORMALIZED CRITERIA MATRIX

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Gas_Heat					
Property 1	0.090909	0.100000	0.120000	0.050847	0.100000
Proeprty 2	0.090909	0.100000	0.120000	0.067797	0.100000
Property 3	0.363636	0.400000	0.480000	0.610170	0.400000
Property 4	0.363636	0.300000	0.160000	0.203390	0.300000
Property 5	0.090909	0.100000	0.120000	0.067797	0.100000

priority index

Gas	Heat

Property 1	0.092351
Proeprty 2	0.095741
Property 3	0.450761
Property 4	0.265405
Property 5	0.095741

SUB CRITERIA WISE GAS HEAT ALTERNATIVES PRIORITY EIGEN VECTOR

Property 1 Proeprty 2 Property 3 Property 4 Property 5

Price

Property 1	0.166667	0.076923	0.266667	0.200000	0.206897
Proeprty 2	0.333333	0.153846	0.133333	0.100000	0.137931
Property 3	0.083333	0.153846	0.133333	0.200000	0.137931
Property 4	0.083333	0.153846	0.066667	0.100000	0.103448
Property 5	0.333333	0.461538	0.400000	0.400000	0.413793

priority index

Price

Property 1	0.183431		
Proeprty 2	0.171689		
Property 3	0.141689		
Property 4	0.101459		
Property 5	0.401733		

CRITERIA WISE PRICE ALTERNATIVES PRIORITY EIGEN VECTOR

	Property 1	Proeprty 2	Property 3	Property 4	Property 5
bathrooms					

Property 1	0.200000	0.222222	0.250000	0.181818	0.125000
Proeprty 2	0.200000	0.222222	0.250000	0.181818	0.250000
Property 3	0.200000	0.222222	0.250000	0.363636	0.250000
Property 4	0.200000	0.222222	0.125000	0.181818	0.250000
Property 5	0.200000	0.111111	0.125000	0.090909	0.125000

priority index

bathrooms	oms	thro	ba
-----------	-----	------	----

Property 1	0.195808
Proeprty 2	0.220808
Property 3	0.257172
Property 4	0.195808
Property 5	0.130404

CRITERIA WISE BATHROOMS ALTERNATIVES PRIORITY EIGEN VECTOR

Step 6: Calculating the sum of the global weights of the different alternatives present in the evoked set.

CRITERIAS SUB CRITERIAS GLOBAL LW_Property1 LW_Property2 LW_Property3 LW_Property4 LW_Property5 GW_Property1 GW_Property2 GW_Property3 GW_Property4 GW_Property5 None 0.106890 0.183431 0.141689 0.101459 0.401733 0.019600 0.018400 0.015100 0.010800 0.042900 Price Size Living Space 0.166700 0.095775 0.159971 0.116827 0.016000 0.026700 0.063900 0.040700 0.019500 0.292366 2 Size Garden Size 0.027800 0.073456 0.129508 0.138038 0.002000 0.003600 0.010200 0.008100 0.003800 Number of 0.013200 0.070069 0.229579 0.118306 0.000900 0.003000 0.004800 0.002900 0.001600 3 Bedrooms Bedrooms 4 Bedrooms Size_of_bedroom 0.032600 0.053477 0.159485 0.317883 0.089962 0.001700 0.005200 0.012400 0.010400 0.002900 Closet Space 0.004000 0.115981 0.162108 0.085895 0.000500 0.000600 0.001500 0.001000 0.000300 5 Bedrooms 6 Bathrooms None 0.233543 0.195808 0.220808 0.257172 0.195808 0.130404 0.045700 0.051600 0.060100 0.045700 0.030500 Driveway 0.111600 0.068475 0.147348 0.527852 0.007600 0.016400 0.058900 7 Ammenities 0.156237 0.100087 0.017400 0.011200 8 Ammenities Garage 0.232600 0.067600 0.259417 0.300108 0.015700 0.060300 0.069800 0.050800 0.036000 9 Ammenities Air Conditioning 0.040200 0.273969 0.004400 0.064066 0.110286 0.002600 0.008300 0.013900 0.011000 10 Ammenities Gas Heat 0.031000 0.092351 0.095741 0.450761 0.265405 0.095741 0.002900 0.003000 0.014000 0.008200 0.003000

Step 7: Assign rank to each alternative based upon the priority level.

FINAL RANKING OF THE PROPERTIES

	Property_ID	Eigen Value	Priority_Percent	Rank
2	Property 3	0.324600	32.46 %	1
3	Property 4	0.207000	20.7 %	2
1	Property 2	0.197100	19.71 %	3
4	Property 5	0.156100	15.61 %	4
0	Property 1	0.115200	11.52 %	5

Step 8: As per our decision, Property 3 is best out of 5 other alternatives.

Conclusion: To summarize, the conjunction of random forest algorithm and analytical hierarchy method have been beneficial to address this company case. Whether it is predicting house price accurately or offering personalized house recommendation, this combined approach has unleashed the true potential of real estate analytics.

References

- Mbaabu, O. (2020, Dec 11). Introduction to Random Forest in Machine Learning. https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/
- Ramirez-Rios, D. (2016, Nov 7). Hypothesis Testing: Sales Prices of Houses in the City of Windsor.
 https://rstudio-pubs-static.s3.amazonaws.com/225821 e7925e3ee76b4b3abeb5d0d2ef83f932.html
- Singh, H. (2016). Project Management Analytics: A data driven approach to making rational and effective project decisions. Pearson Education, Inc.
- Asaftei, G. Doshi, S. Means, J. & Sanghvi, A. (2018, Oct 8). Getting ahead of the market: How big data is transforming real estate. Mckinsey. https://www.mckinsey.com/industries/real-estate/our-insights/getting-ahead-of-the-market-how-big-data-is-transforming-real-estate
- Wappnet Systems Pvt. Ltd. (2023, Jun 16). Leveraging AI for Real Estate Project Management: Unlocking Key Benefits. LinkedIn.
 https://www.linkedin.com/pulse/leveraging-ai-real-estate-project-management-unlocking/?trk=pulse-article
- Mir, M. (2020, Jul 21). House Prices Prediction Using Deep Learning(Keras-Regression vs Multiple Linear Regression)
 https://towardsdatascience.com/house-prices-prediction-using-deep-learning-dea265cc3154
- Fang, Y., Li, T., & Zhao, H. S. (2022 Feb 22). Random Forest model for the house price forecasting. https://doi.org/10.1109/iccrd54409.2022.9730190