

<110> GUEGLER, Karl et al

<120> ISOLATED HUMAN TRANSPORTER PROTEINS,
NUCLEIC ACID MOLECULES ENCODING HUMAN TRANSPORTER PROTEINS,
AND USES THEREOF

<130> CL001010

<140> 09/776,705

<141> 2001-02-06

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1822

<212> DNA

<213> Human

<400> 1

ccattccaaa caagtcagga aagcctgcac aggactggat aaataattaa gaacagagt 60
ttctgaacat caacacacaag tggagaacc ttaagctgaa ggtacagtat attatttaca 120
ctgaaggggc ttgtgtgtt acaagaaagc gctgacagct caaatggatc ccatggaact 180
gagaatgtc aacatcgaaac cagatgtga gagcagcagt ggagaaagt 240
ctacatcagg ataggaaattt cagaaaaggc agcaatgagc agtcaatttg ctaatgaaga 300
cactgaaatgtc cagaaattcc tgacaaatgg atttttgggg aaaaagaagc tggcagatta 360
tgctgtatgaa caccatccccg gaaccacttc ctggaaatg tcttcattta acctgagtaa 420
tgccatcatg ggcagtggga tcctgggctt gtcctatgcc atggcctaca caggggtcat 480
acttttata atcatgctgc ttgctgtggc aatattatca ctgtatttcg ttcacccctt 540
attaaaaaca gccaaggaaag gaggttctt gatttatgaa aaatttaggaa aaaaggcatt 600
tggatggccg gaaaaatgtc gagctttgt ttccattaca atgcagaaca ttggagcaat 660
gtcaagctac ctctttatca ttaaatatga actacctgaa gtaatcagag cattcatggg 720
acttgaagaa aatactggag aatgttacccat caatggcaac tacccatca tatttgtgtc 780
tgttggaaattt attttccac ttgcgttcc taaaaattta ggttatctt gctataccag 840
tggattttctt cttacctgca tgggttttt tggtagtgc tggatttaca agaaattcca 900
aataccctgc cctctacccgt ttttggatca cagtgttggaa aatctgtcat tcaacaacac 960
gcttccaaatg catgtggtaa ttttccaa caactctgag agtctgtatg tgaacttcat 1020
gatggattac acccaccgca atcctgcagg gctggatgaa aaccaggcca agggctctct 1080
tcatgacagt ggagtagaat atgaagctca tagtgtatgac aagtgtgaac ccaaataactt 1140
tgttattcaac tcccgacgg cctatgcaat tcctatccat gtatttgctt ttgtatgcca 1200
ccctgaggc tttccatctt acatgttactt taaatgttccg tcccgagaa aaatgcaaac 1260
ggtgtcaat atttccatca cggggatgtt tgcgtatgtac ctgcttgcgg ccctcttgg 1320
ttacctaacc ttctatggag aagtgttca tgaattactt catgcctaca gcaaagtgtt 1380
tacatttagac atccctcttc tcattgttgc cctggcagtc cttgtggcag taacacaaac 1440
tgtgcccatt gtccttcc caattgttac atcagtgtatc acactgttta ttcccaaaacg 1500
acccttcagc tggatacgtt atttccatgt tgcagctgtt cttattgcac ttaataatgt 1560
tctggcattc ttgtgtccaa ctataaaata catcttcggaa ttcattgggg cttcttgc 1620
caactatgtt atttttatcc ttccagcgtt tttttatctt aaacttgcac agaaagaaac 1680
tttttaggtca ccccaaaaagg tcggggctt aattttcattt gttgttggaa tattttcat 1740
gattggaaatgtc atggcactca ttataattgtt ctggattttt gatccctcaa attccaagca 1800
tcactaacac aaggaaaaat ac 1822

<210> 2

<211> 547
<212> PRT
<213> Human

<400> 2
Met Asp Pro Met Glu Leu Arg Asn Val Asn Ile Glu Pro Asp Asp Glu
1 5 10 15
Ser Ser Ser Gly Glu Ser Ala Pro Asp Ser Tyr Ile Arg Ile Gly Asn
20 25 30
Ser Glu Lys Ala Ala Met Ser Ser Gln Phe Ala Asn Glu Asp Thr Glu
35 40 45
Ser Gln Lys Phe Leu Thr Asn Gly Phe Leu Gly Lys Lys Lys Leu Ala
50 55 60
Asp Tyr Ala Asp Glu His His Pro Gly Thr Thr Ser Phe Gly Met Ser
65 70 75 80
Ser Phe Asn Leu Ser Asn Ala Ile Met Gly Ser Gly Ile Leu Gly Leu
85 90 95
Ser Tyr Ala Met Ala Tyr Thr Gly Val Ile Leu Phe Ile Ile Met Leu
100 105 110
Leu Ala Val Ala Ile Leu Ser Leu Tyr Ser Val His Leu Leu Leu Lys
115 120 125
Thr Ala Lys Glu Gly Gly Ser Leu Ile Tyr Glu Lys Leu Gly Glu Lys
130 135 140
Ala Phe Gly Trp Pro Gly Lys Ile Gly Ala Phe Val Ser Ile Thr Met
145 150 155 160
Gln Asn Ile Gly Ala Met Ser Ser Tyr Leu Phe Ile Ile Lys Tyr Glu
165 170 175
Leu Pro Glu Val Ile Arg Ala Phe Met Gly Leu Glu Glu Asn Thr Gly
180 185 190
Glu Trp Tyr Leu Asn Gly Asn Tyr Leu Ile Ile Phe Val Ser Val Gly
195 200 205
Ile Ile Leu Pro Leu Ser Leu Leu Lys Asn Leu Gly Tyr Leu Gly Tyr
210 215 220
Thr Ser Gly Phe Ser Leu Thr Cys Met Val Phe Phe Val Ser Val Val
225 230 235 240
Ile Tyr Lys Lys Phe Gln Ile Pro Cys Pro Leu Pro Val Leu Asp His
245 250 255
Ser Val Gly Asn Leu Ser Phe Asn Asn Thr Leu Pro Met His Val Val
260 265 270
Met Leu Pro Asn Asn Ser Glu Ser Ser Asp Val Asn Phe Met Met Asp
275 280 285
Tyr Thr His Arg Asn Pro Ala Gly Leu Asp Glu Asn Gln Ala Lys Gly
290 295 300
Ser Leu His Asp Ser Gly Val Glu Tyr Glu Ala His Ser Asp Asp Lys
305 310 315 320
Cys Glu Pro Lys Tyr Phe Val Phe Asn Ser Arg Thr Ala Tyr Ala Ile
325 330 335
Pro Ile Leu Val Phe Ala Phe Val Cys His Pro Glu Val Leu Pro Ile
340 345 350
Tyr Ser Glu Leu Lys Asp Arg Ser Arg Arg Lys Met Gln Thr Val Ser
355 360 365
Asn Ile Ser Ile Thr Gly Met Leu Val Met Tyr Leu Leu Ala Ala Leu
370 375 380
Phe Gly Tyr Leu Thr Phe Tyr Gly Glu Val Glu Asp Glu Leu Leu His
385 390 395 400
Ala Tyr Ser Lys Val Tyr Thr Leu Asp Ile Pro Leu Leu Met Val Arg
405 410 415

Leu Ala Val Leu Val Ala Val Thr Gln Thr Val Pro Ile Val Leu Phe
 420 425 430
 Pro Ile Arg Thr Ser Val Ile Thr Leu Leu Phe Pro Lys Arg Pro Phe
 435 440 445
 Ser Trp Ile Arg His Phe Leu Ile Ala Ala Val Leu Ile Ala Leu Asn
 450 455 460
 Asn Val Leu Val Ile Leu Val Pro Thr Ile Lys Tyr Ile Phe Gly Phe
 465 470 475 480
 Ile Gly Ala Ser Ser Ala Thr Met Leu Ile Phe Ile Leu Pro Ala Val
 485 490 495
 Phe Tyr Leu Lys Leu Val Lys Glu Thr Phe Arg Ser Pro Gln Lys
 500 505 510
 Val Gly Ala Leu Ile Phe Leu Val Val Gly Ile Phe Phe Met Ile Gly
 515 520 525
 Ser Met Ala Leu Ile Ile Ile Asp Trp Ile Tyr Asp Pro Pro Asn Ser
 530 535 540
 Lys His His
 545

<210> 3
 <211> 32373
 <212> DNA
 <213> Human

<400> 3
 agcttagcaa tatggatcaa gaggtccaa acctgattaa taaaagttc aggagtaaac 60
 aaaggggaaag aaatagttt tttaaatagt agaactttt ttatTTTtag aaaatgtgtc 120
 ttctatagaa gaaagacaag cctttgatt gggccgtctg catgctgagt atgatgaatt 180
 ttaaaagcga ctcacatcta gtcacgtcgat gatgaaagga taaggataaa aattctgaaa 240
 tcctcagaaa accatcgata aattatctat aaagaataaa gagccagact catcaataga 300
 agctagaaga gagaagttc ttcaatattc tgaaggaaaa tgcttctgaa tctagaattc 360
 aaacaattaa caaagttaa aggcaaaata aagaattttc caacatgaag caactcgaa 420
 attctattta cagacatagg ctcattgtgt gaaaaaagttt attcaaggca ttatTTTtagc 480
 ataatgc当地 ataaactgaa gaaagaagat agaatgccgt tcaagaaact agcagctgag 540
 caagactcgagg aggttggagg aggaagccat tcagaatgag aaagagcata gaaaatttgc 600
 tttcaaagtt ttggtaatat agaatttat ttcacttatt atgttgtca atacaccact 660
 ttgtcttag ggcatactat ttatacagtg ataatactgt aattgtctgt tattggttt 720
 ccatgttag aaacaaccta caggcaagtt atgacacttg tttcacagaa caagatgaaa 780
 atattatgat tctcaaattt taaaagtatt ttattaacta aaataattag gagtgttagga 840
 gaaggaagga aagaaagaaa aagtatgcta atgtccttat ttttatggg taaccagtct 900
 aaaatcgta aaccaagtca aaaaagctt agtgaattat tcagatctag aatggctaac 960
 tttaagtaac aagctaaaaa cagaaaccgt caatagttt tgctgctggg aagtgagact 1020
 ggtactgtgt gaagaatgag gaaaacctt gtactcattt agtgagttc tttttttttt 1080
 cttttaccca tatgcatttc ttacttctat tctctcttag cttaaacctt gcttcttttc 1140
 atctttatg tatatacatt taggctgcct tatattata atagttcat ttttggccct 1200
 cctgcttaaa acactgtgt ctatTTTTTaaattctgag aactgcttcc tttatTTCTA 1260
 gacaattctc tgccattatc tctttctgtt ttgtctcacc ctgtctcac aattctctat 1320
 attggaatga ctatcagtgt atattgaac ttgttaattt tattttttcc ccattccctct 1380
 taacttctta ttgttatttt tctttttta atctcttcatt gctataattt gagtgatttc 1440
 cacagatctg tctttcaatt ttataagtct tccttcagct gagttttttt aaatttcaat 1500
 gattctattt ttttctttt ttaagaattt ccttttttg actctttttg caacagcctg 1560
 ttctcctttt atattcctt ataatgtttt tattctgtga aagttattctt cttatTTGAA 1620
 atgtttctt tcaaaatgtc tttttttta ttaatttaat gtaaaagtcc cttttaaattt 1680
 gctttgttat ttgttagttcc ttagatgtga attttatcat ttcttgcact tactggcact 1740
 cttgctagtg agttccatg tgtttctat atgttttga atttgaggat gtgaactttt 1800
 ctcaagtgtg agttgcctt caaaaaagta ctgccccatggc actgggttgtt ggaggtattc 1860