上級ミクロ経済学 消費者理論 図解補足ノート

石原章史

財務省 財政経済理論研修 2020

無差別曲線: n = 2の例

- $ightharpoonup u(x) = \bar{u}^i$ を満たす $x = (x_1, x_2)$ の曲線
- ightharpoonup uが増加関数: $\bar{u}^1 < \bar{u}^2 < \bar{u}^3$

限界代替率: n=2 の例

▶ (第1.2.3 節と同様の手順より)
$$v'(x_1) = -\frac{\partial u(x)/\partial x_1}{\partial u(x)/\partial x_2}$$

限界代替率の逓減: n = 2の例

▶ 効用関数が厳密な準凹: 無差別曲線が (0 に向かって) 凸

2.2 需要関数

予算制約: n = 2 の例

▶ 斜線部 予算集合

効用最大化問題の解: n = 2 の例

▶ 予算制約線と無差別曲線が接する

2.3 間接効用

顕示選好: n = 2 の例

- ▶ 価格 $p^1 = (p_1^1, p_2)$ の時の効用最大化
- ▶ x¹ が選択される

2.3 間接効用

顕示選好: n = 2 の例

- $ightharpoonup p^1 \implies p^0 \equiv (p_1^0, p_2) (p_1^0 < p_1^1)$
- ightharpoons x^1 は価格 p^0 の下で選択できるが、実際選ばれるのは x^0

3.1 支出最小化問題

効用最大化と支出最小化: n = 2の例

▶ 斜線部 実行可能集合

効用最大化

支出最小化

準備: n = 2の例

- ▶ 2財 (n = 2) における
 - ▶ 効用最大化 (マーシャルの需要関数); と
 - ▶ 支出最小化 (補償需要関数)
- ▶ 価格が $p^0 \equiv (p_1^0, p_2)$ から $p^1 \equiv (p_1^1, p_2)(p_1^1 < p_1^0)$ への変化を考える
- ▶ 財 1 の需要関数 $(x_1(p,y) \ \ \ \ x_1^h(p,\bar{u}))$ はどのように変化するか

効用最大化と (マーシャルの) 需要関数): n=2の例

支出最小化と補償需要関数: n = 2の例

- ト $\bar{u} = v(p^0, y) \mathcal{O}$ 下
 - ▶ 上図: 支出最小化
 - ► 下図: 補償需要 関数
- ▶ 双対性より

$$x^{h}(p^{0}, \bar{u})$$

$$=x^{h}(p^{0}, \nu(p^{0}, y))$$

$$=x(p^{0}, y)$$

スルツキー分解: n=2の例

- $ightharpoonup rac{\partial x_1(\mathsf{p},y)}{\partial p_1}$: 価格 p_1 の (微小な) 変化に対する x_1 の変化
- ▶ Total Effect: p_1^0 から p_1^1 の変化に対して x_1 の変化

スルツキー分解: n=2の例

- $ightharpoonup rac{\partial x_1^h(\mathsf{p}, \bar{u})}{\partial p_1}$: 価格 p_1 の変化に対する x_1^h の変化
- ▶ 代替効果: ū が保たれるように所得を (仮想的に) 補償

33スルツキー方程式

スルツキー分解: n=2の例

- ► $-x_1(p,y)\frac{\partial x_1(p,y)}{\partial y}$: 残りの x_1 の変化
 ► 所得効果: (仮想的な) 所得の変化による変化

準備

- ▶ 財iの価格変化を考える:
 - $ightharpoonup p^0 = (p_0^0, \dots, p_n^0)$
 - $ightharpoonup p^1 = (p_1^0, \dots, p_{i-1}^0, p_i^1, p_{i+1}^0, \dots, p_n^0)$
 - ▶ $(ただ \cup p_i^0 < p_i^1)$
- ▶ 以下、簡略化のため $x_i(p_1^0, ..., p_{i-1}^0, p_i, p_{i+1}^0, ..., p_n^0, y)$ を $x_i(p_i, y)$ と表記する $(x_i^h(p_i, \bar{u})$ も同様)

補償変分

- ▶ 斜線部: 補償変分 $(CV = e(p^1, \bar{u}^0) e(p^0, \bar{u}^0))$
- ▶ 等価変分 (EV)、消費者余剰変分 (△CS) も同様

正常材の場合

- ▶ 双対性より $x_i^h(p_i^k, \bar{u}^k) = x_i(p_i^k, y)$ (k = 0, 1)
- ▶ 需要曲線より補償需要の傾きの方が緩い(軸に注意)

下級材の場合

- ▶ 双対性より $x_i^h(p_i^k, \bar{u}^k) = x_i(p_i^k, y)$ (k = 0, 1)
- ▶ 需要曲線より補償需要の傾きの方がきつい(軸に注意)