

第三章: 树

图论: 道路与回路 哈密顿道路与回路

定理1: 若简单图 $G(n \ge 3)$ 的任意两结点 v_i 与 v_j 之间恒有 $d(v_i) + d(v_j) \ge n - 1$,则简单图 G 中存在 H 道路。

推论1: 若简单图 $G(n \ge 3)$ 的任意两结点 v_i 与 v_j 都满足 $d(v_i) + d(v_j) \ge n$,则图 G 中存在 H 回路。

推论2: 若简单图 $G(n \ge 3)$ 的任一结点的度大于等于 n/2, 则 G 中存在 H 回路。

引理1: 若简单图 $G(n \ge 3)$ 有不相邻结点 v_i 与 v_j 满足 $d(v_i) + d(v_j) \ge n$,则 G 存在 H 回路当且仅当

 $G+(v_i,v_i)$ 有H 回路。

引理 2: 简单图 G 的闭合图是唯一的。

引理3: 若简单图有 H 回路当且仅当 C(G) 有 H 回路。

推论3: 若 $C(G)=K_n$,则 G 有 H 回路。

定理2:设 G 是哈密顿图,则对任意的非空点集 $V_1 \subset V(G)$,图 $G-V_1$ 中的连通支数不大于 $|V_1|$ 。

定理2推论: 奇数个结点构成的二分不是哈密顿图。

推论4. 设 G 是哈密顿半图,则对任意的非空点集 $V_1 \subset V(G)$,图 $G - V_1$ 中的连通支数不大于 $|V_1| + 1$ 。

图论: 树 哈密顿图知识点

图论: 树 世界杯16强对阵表

生物类群关系图

图论: 树

图论研究的树

图论研究的树

- ✓ 树状图是一种数据结构,它是由 n ($n \ge 1$) 个结点组成一个具有层次 关系的集合。
- ✓ 树状图被称为树(tree)是因为图形的通常画法像一棵树,一般是倒过来的(即树根在上,树叶在下)。
- ✓ 树结构例子
 - □ 化学: 化合物结构
 - □ 计算机科学技术: 二叉搜索树等
 - □ 生物学: 进化树等
 - □ 信息管理: 目录系统

树的定义

- \checkmark 树:不含回路的连通图,用 T 表示
 - □ 树必不含多重边和自环,故是简单图
 - □ 边称为树枝
 - □ 度为 1 的结点称为树叶(leaf)或悬挂点
 - □ 度大于等于 2 的结点称为分叉点
- ✓ 林:不含回路的图
 - □ 林可能不是连通的
 - □ 林的每个连通支都是树

图论: 树

割边

✓ 定义: 若 G' = G - e 比 G 的连通支数多,则称 e 是 G 的割边.

□ 删去 e = (u,v), 则 u,v 分属于不同的连通支

割边

✓ 定理 1: 在图 G 中, e = (u,v) 是割边当且仅当 e 不属于任何回路

证明: 若 e 属于某回路,则 G' = G - e 中仍有从 u 到 v 的道路,故 u, v 属于同一连通支,与 e 是割边矛盾

若 e = (u,v) 不是割边,则 G' = G - e 中与的连通支数一样,故 u,v 属于同一连通支,有从 u 到 v 的道路,连通 e 即构成回路,矛盾

✓ 显然,树中的边都是割边

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (1) T连通且无回路
 - (2) T 的任意两结点间有唯一道路
 - (3) T 有 n-1 条边且无回路
 - (4) T 连通且有 n-1 条边
 - (5) T 连通且每条边都是割边(极小连通)
 - (6) T 无回路,但任意增加一边后恰有一个回路(极大无回)
- □ 树是边数最少的连通图,也是边数最多的无回路图
- □ 满足连通, 无回路, 有 n-1条边之任意两条者是树

证明: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (1)$

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (1) T连通且无回路;
 - (2) T 的任意两结点间有唯一道路。

证明: (1) (2) 证明?

树 T 是连通的, T 中任意两结点 u 和 v 间存在路径。

如果两结点u和v间有存在的路径不唯一,则树T中必然会有回路。

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (2) T 的任意两结点间有唯一道路。
 - (3) *T* 有 *n*-1 条边且无回路;
 - 证明: (2) (3) 证明?

任意两结点间存在唯一道路,可知图 T 中无回路。

证明 T 中边数 m=n-1。

当 n=2 时,命题成立。

设当 $n \le k$ 时,命题成立,即 T 中的边数为 m = k - 1。

当 n=k+1 时,任选 T 中的一条边 e , T-e 有两个连通分支,其中结点数为 n_1 和 n_2 。 其中的边数分别为 n_1-1 和 n_2-1 。 所以当 n=k+1 时, $m=n_1-1+n_2-1+1=n-1$ 。

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (3) *T* 有 *n*−1 条边且无回路;
 - (4) *T* 连通且有 *n*-1 条边;
- 证明: (3) (4) 证明?

证明 T 连通: 假设 T 中存在 s 个连通分支,每个连通分支都是树,所以 T 中的边 m 有

$$m = m_1 + m_2 + ... + m_s$$

= $n_1 - 1 + n_2 - 1 + ... + n_s - 1$
= $n - s$

所以可知 s=1, 即 T 是连通的。

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (4) *T* 连通且有 *n*-1 条边;
 - (5) T 连通且每条边都是割边(极小连通);

证明: (4) → (5) 证明?

证明极小连通,即 T 中任何一条边都是割边。 任选 T 中的一条边 e, T-e 中有 n-2 条边,肯定不连通, 因此 e 是割边。

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (5) T 连通且每条边都是割边(极小连通);
 - (6) T 无回路, 但任意增加一边后恰有一个回路(极大无回);

证明: (5) (6) 证明?

T 是极小连通, T 中不存在回路,且任意两结点 u 和 v 间存在唯一路径 Γ 。 则有 $\Gamma+(u,v)$ 是唯一回路。

树的等价定义

- ✓ 定理 2: 设 T 是结点数 $n \ge 2$ 的树,则下列性质互相等价
 - (6) T 无回路, 但任意增加一边后恰有一个回路(极大无回);
 - (1) T连通且无回路;

证明: (6) (1) 证明?

证明T连通。

T 中任意两结点 u 和 v , $\Gamma+(u,v)$ 有唯一回路 C 。

令 $C - (u,v) = \Gamma$,则有 Γ 是两结点 u 和 v 间存在唯一路径。

所以可知 T 连通。

树的其它性质

- ✓ 设树 T 的结点数 $n \ge 2$, 则 T 中必有树叶
 - (1) 证法 1: 若各结点度都 ≥ 2 ,则总度数 $\geq 2n \neq 2m = 2(n-1)$,矛盾;
 - (2) 证法 2: 考虑从任一结点 v 出发沿边前进,走过的边不重复,则必止步于某树叶。
- ✓ 设树 T 的结点数 $n \ge 2$,则 T 中至少有两个树叶 同上面证法 2,考虑从一树叶出发前进,必止步于另一个树叶。
- ✓ 若林F有n个结点和k个连通支,则F有 $\underline{n-k}$ 条边。

支撑树

 \checkmark 定义: 如果 T 是图 G 的支撑子图,而且是树,则称 T 是 G 的支撑树或生成树

图 G 的支撑树?

图论: 树

支撑树 ✓ 图 G 有支撑树当且仅当 G 是连通的

推论: 图 G 为 n 结点 m 条边的无向连通图,则 $m \ge n-1$

✓ 若图 G 本身不是树,则其支撑树不唯一

图 G 的支撑树?

支撑树 \checkmark 余树: 图 G 删掉 T 中各边后的子图

✓ 记为 $\overline{T} = G - T$

余树不一定是树

二叉树

- ✓ 设T是有向树,若T中存在负度为0的结点 ν_0 ,其余结点负度为1,则称T是以 ν_0 为根的外向树,或称根树
- ✓ 除树叶外,其余结点的正度最多为 2 的外向树称为二叉树; 如果它们的正度都是 2, 称为完全二叉树。

二叉树? 完全二叉树?

图论: 树

二叉树

- \checkmark 赋权二叉树: 赋予树叶 v_i 一个正实数 w_i
 - □ 从根 v_0 到树叶 v_i 的路径 $P(v_0,v_i)$ 的长度 l_i :即该路径所含边数
 - \Box T 的加权路径总长度 WPL: $\Sigma_i l_i w_i$

WPL?

38 47 36

二叉树

✓ 最小二叉树: 若给定树叶数目及其权值,可以构造许多赋权二叉树, 其中必存在 WPL 最小的二叉树, 这样的树称为最优二叉树(最小二叉树)

最优二叉树?

38 47 36

二叉树

✓ Huffman 算法: 给定 n 个带权树叶,构造最优二叉树 (称为 Huffman 树)

- (1) 对 n 个权值排序,得到 $w_{i_1} \le w_{i_2} \le ... \le w_{i_n}$.
- (2) 计算 $W_i = W_{i_1} + W_{i_2}$

作为中间结点 v_i 的权; v_i 的左子结点是 v_{i_1} ,右子结点是 v_{i_2} 。

在权序列中删去 W_{i_1} 和 W_{i_2} ,加入 W_{i_3}

 $n \leftarrow n-1$, 若 n=1, 结束; 否则转 (1)

算法的计算复杂度主要取决于步骤 (1), n 个权值的第一次排序需要进行 $n\log n$)次比较。总共进行 n-2次迭代,算法的计算 复杂性性是 $O(n\log n)$ 。

二叉树

✓ Huffman算法:

Huffman算法:

自底向上构造

WPL?

<u>34</u>

图论: 树

二叉树

✓ 例1: 权序列为 (5,14,22,12,10) 的Huffman数

二叉树

✓ 例2: Huffman编码

a 的编码为:00

b 的编码为:01

c 的编码为:100

d 的编码为:1010

e 的编码为:1011

f 的编码为:11

二叉树

- ✓ 定理: 由 Huffman 算法得到的二叉树是最优二叉树 书58页
 - □ 权最小的树叶离根最远
 - □ 权最小的树叶必有兄弟