

INTRODUCCIÓN A LA PROBABILIDAD Y LA ESTADÍSTICA

Observación

Universo

Muestra

Variable aleatoria

Medida: Resume las observaciones de un conjunto

Ejemplos:

- Promedio
- Mediana
- Desvío estándar

Estadística Descriptiva

Conozco el universo y quiero las medidas que lo resumen

Inferencia Estadística

Conozco la muestra y quiero las medidas que resumen el universo

Estadística Descriptiva

Medidas de Posición

Medidas de Dispersión

Variable Aleatoria

Tiradas	Cincos
10	1
20	1
30	3
40	5
80	18
160	34
1000	160
2000	330
10000	1670

Promedio

• ¿Qué es?

• ¿Cómo calcularlo?

• ¿Para qué sirve?

Mediana

• ¿Qué es?

• ¿Cómo calcularla?

$$M_e = egin{aligned} X_{(rac{n+1}{2})}, & ext{se "n" \'e impar} \ X_{(rac{n}{2})} + X_{(rac{n}{2}+1)} \ \hline 2, & ext{se "n" \'e par} \end{aligned}$$

Desvío Estándar

• ¿Qué es?

¿Cómo calcularlo?

$$s = \sqrt{\frac{\sum_{i=1}^{N} (Xi - \bar{X})^{2}}{N - 1}}$$

Histograma

Tiradas	Cincos	
10	1	
20	1	
30	3 5	
40	5	
80	18	
160	34	
1000	160	
2000	330	
10000	1670	

Histogramas

• Más datos veo mejor

Histogramas

• Más divisiones veo peor

Histogramas -> Distribuciones

- La cantidad de datos crece
- La cantidad de divisiones también

Distribuciones discretas

Uniforme

Binomial

Distribuciones continuas

Normal

Log Normal

Inferencia estadística

• ¿Qué es?

- Conocemos una muestra
- Queremos saber algo del universo

- Conozco las alturas de 100 argentinos
- Quiero conocer el promedio de la altura de todos los argentinos

• Conozco las alturas de 100 argentinos

• Quiero conocer el promedio de la altura de todo los argentinos

• Conozco las alturas de 100 argentinos

• Quiero conocer el promedio de la altura de todos los argentinos

• Conozco las alturas de 100 argentinos

cuenta?

- Conozco las alturas de 100 argentinos
- Quiero conocer el promedio de la altura de todos los argentinos

• Media1: 168.3

• Media 2: 174.7

• Media 3: 177.8

• Media 4: 174.4

• Media 5: 176.5

- Quiero conocer el promedio de la altura de todos o argentinos

 Media1: 168.3

 Aedia 2: 174.7

 edia 3: 1778

 - Media 4:
 - Media 5: 176.5

- Conozco las alturas de 100 argentinos
- Quiero conocer el promedio de la altura de Goos los argentinos
 Media1: 168.3
 Media 2: 174.7
 Media 3: 177.8
 Media 4: 174.6

- Media 4: 174.
- Media 5: 176.5

Distribución de las medias muestrales

Histogram of ha

Distribución de las medias muestrales

¿Qué aprendemos?

- La media del universo debe estar en la zona de 175
- Sería raro que estuviera por debajo de 170
- Sería raro que estuviera por arriba de 180
- ¿Cuán raro?
- P(menor que 170) = 2.48%
- P(mayor que 180) = 2.15%

 Existe algo más del 95% de probabilidades de que la media universal esté entre 170 y 180

Estimadores

- Sirven para calcular medidas del universo desde los datos de la muestra
- Siempre pagan el precio de la incertidumbre

- Pueden ser sesgados o no sesgados:
 - Media de la muestra: estimador no sesgado de la media del universo
 - Desvío estándar de la muestra: estimador sesgado del desvío estándar del universo

Estimador no sesgado del desvío estándar:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (Xi - \bar{X})^2}{N-1}}$$

Intervalo de confianza

- Es el conjunto de números donde existe una probabilidad definida de encontrar la medida del universo.
- Esa probabilidad definida se conoce como nivel de confianza

Test de Hipótesis

Tabla 1. Decisiones en la prueba de hipôtesis Verdad en la población

• ¿En que consiste?

.06

,05

,04

.03

,02

,01

Zona de

rechazo

 $\alpha/2$

Resultado de la prueba de hipótesis Rechazar hipótesis nula

No rechazar hipótesis nula Hipótesis
nula falsa

Potencia
1-β

Error tipo I

1-α

Zona de rechazo α/2

+distr.bino				
Ejemplo dado				
Cara	Veces que salió	alfa	1-alfa	
1	170	0,6307	0,3693	
2	235	1,0000	0,0000	
3	163	0,3975	0,6025	
4	105	0,0000	1,0000	
5	168	0,5654	0,4346	
6	159	0,2735	0,7265	
	1000			

Mecanismo del test de hipótesis

- Identificar las hipótesis nula y alternativa
- Identificar el nivel de confianza
- ¿Test de medias, proporciones o desvíos?
- Calcular la variable normalizada
- ¿Es un test a una o dos colas?
- Calcular la zona de aceptación

Tenemos una pizzería en internet.

Tenemos dudas por el color del fondo:

- Rojo
- Amarillo

Se hizo un experimento:

A los que se conectaron en:

- Segundo par: fondo rojo
- Segundo impar: fondo amarillo

Datos obtenidos:

Fondo	Casos	Pedidos	Monto	Desvío estándar
Rojo	1.215	350	351.500	332
Amarillo	1.195	365	340.000	352

Hipótesis nula:

El ticket promedio es el mismo

Hipótesis alternativa:

El ticket promedio es distinto

Calculo de la variable normalizada:

X medio:351.500/350

Y medio:340.000/365

S1:332

S2:352

N1:350

N2:365

$$T_{n_1+n_2-2} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Da aproximadamente 2.84

Nivel de confianza:

95%

Test de medias con distinto desvío estándar desconocido:

$$T_{n_1+n_2-2} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Es un test a dos colas:

Porque el monto medio de la venta con fondo rojo puede ser tanto mayor como menor que con fondo amarillo:

Calculo la zona de aceptación

Es un test a dos colas:

Porque el monto medio de la venta con fento rojo puede ser tanto mayor como menor que con fondo amarillo:

Calculo la zona de aceptación

Es un test a dos colas:

Porque el monto medio de la venta con fordo rojo puede ser tanto mayor como menor que con fondo amarillo.

Calculo la zona de aceptión

Caso	Variable normalizada	
Comparar medias con el mismo desvío estándar previamente conocido	$z = \frac{\bar{x} - \bar{y}}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	
Comparar medias con el mismo desvío estándar pero desconocido	$T_{n_1+n_2-2} = \frac{\bar{x} - \bar{y}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	
Comparar medias con distinto desvío estándar previamente conocido	$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	
Comparar medias con distinto desvío estándar pero desconocidos	$T_{n_1+n_2-2} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	
Comparar proporciones	$z = \frac{\frac{x_1}{n_1} + \frac{x_2}{n_2}}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	
Comparar varianzas	$F = \frac{s_1^2}{s_2^2}$	

Test de hipótesis de práctica

- Se sospecha que dos máquinas llenadoras de garrafas trabajan en forma distinta
- Tome los datos que están en el archivo DatosGarrafas.xlsx en el campus virtual.
- Diseñe un test de hipótesis que discuta si el llenado medio del equipo 1 es igual al del equipo 2 con un nivel de confianza del 90%
- Ejecute ese test para los 10, 20 y 50 primeros casos. ¿Qué conclusión obtiene en cada caso?
- Diseñe un test de hipótesis que discuta si el desvío estándar del llenador 1 es el mismo que el del llenador 2 para los 100 casos.

MUCHAS GRACIAS

