GROUPES

Structure de groupe

Solution 1

1. Soient (x, y) et (x', y') dans G. Comme $x, x' \in \mathbb{R}^*$, $xx' \in \mathbb{R}^*$ et il est évident que $xy' + y \in \mathbb{R}$. Donc $(x, y) * (x', y') \in G$. Soient (x, y), (x', y') et (x'', y'') dans G. On voit facilement que :

$$((x,y)*(x',y'))*(x'',y'') = (x,y)*((x',y')*(x'',y''))$$
$$= (xx'x'',xx'y'' + xy' + y)$$

2. G possède un élément neutre à savoir (1,0). Soit $(x,y) \in G$ et cherchons $(x',y') \in G$ tel que (x,y)*(x',y') = (1,0). Ceci équivaut à résoudre

$$\begin{cases} xx' = 1 \\ xy' + y = 0 \end{cases} \iff \begin{cases} x' = \frac{1}{x} \\ y' = -\frac{y}{x} \end{cases} \text{ car } x \neq 0$$

Donc (x, y) admet pour inverse à droite $\left(\frac{1}{x}, -\frac{y}{x}\right)$. On vérifie facilement que c'est aussi l'inverse à gauche, donc l'inverse. En conclusion, (G, *) est bien un groupe. On voit qu'il n'est pas commutatif car (1, 1) * (2, 2) = (2, 4) et (2, 2) * (1, 1) = (2, 3).

3. A partir des premières valeurs de n, on conjecture $(x,y)^{*n}=(x^n,y+yx+\cdots+yx^{n-1})$.

Initialisation : La formule est clairement vraie pour n = 0.

Hérédité: On suppose $(x, y)^{*n} = (x^n, y + yx + \dots + yx^{n-1})$ pour un certain n. Alors

$$(x,y)^{*(n+1)} = (x,y) * (x,y)^{*n}$$

= $(x,y) * (x^n, y + yx + \dots + yx^{n-1})$
= $(x^{n+1}, y + yx + \dots + yx^n)$

On conclut par récurrence.

En outre, en utilisant la somme des termes d'une suite géométrique, on a :

$$(x,y)^{*n} = \begin{cases} \left(x^n, y \cdot \frac{1-x^n}{1-x}\right) & \text{si } x \neq 1\\ (x,ny) & \text{sinon} \end{cases}$$

Solution 2

1. Soient $x, y \in G$. Comme th induit une bijection de \mathbb{R} sur]-1,1[, il existe $a,b \in \mathbb{R}$ tels que x= th a et y= th b. Alors x*y= th $(a+b) \in]-1,1[$.

Soient maintenant $x, y, z \in G$. De la même façon, il existe $a, b, c \in \mathbb{R}$ tels que $x = \operatorname{th} a$, $y = \operatorname{th} b$ et $z = \operatorname{th} c$. On voit alors facilement que

$$(x * y) * z = x * (y * z) = th(a + b + c)$$

En conclusion, * est une loi interne associative sur G.

2. Il est clair que 0 est l'élément neutre de (G, *) et que tout x ∈ G admet −x pour inverse. G est donc un groupe. L'expression de x * y est symétrique en x et y : le groupe est donc commutatif.

3. Soit $x \in G$ et $a \in \mathbb{R}$ tel que x = th a. On a donc $x^{*n} = \text{th}(na)$.

Or $a = \operatorname{argth} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. Par conséquent,

$$th(na) = \frac{\left(\frac{1+x}{1-x}\right)^{\frac{n}{2}} - \left(\frac{1+x}{1-x}\right)^{-\frac{n}{2}}}{\left(\frac{1+x}{1-x}\right)^{\frac{n}{2}} + \left(\frac{1+x}{1-x}\right)^{-\frac{n}{2}}} = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$$

1

Remarque. On a en fait montré que th était un morphisme de $(\mathbb{R}, +)$ sur (G, *).

Solution 3

On remarque que pour tout $x \in G$, $x^{-1} = x$. Soient $x, y \in G$. On a donc $(xy)^{-1} = xy$. Mais on a aussi $(xy)^{-1} = y^{-1}x^{-1} = yx$. Par conséquent, yx = xy. Ceci étant valable pour tous $x, y \in G$, G est commutatif.

Solution 4

Pour tout $a \in \mathbb{R}$, a * 0 = 0 * a = a donc 0 est élément neutre. Mais pour tout $a \in \mathbb{R}$, $(-1) * a = -1 \neq 0$ donc -1 n'admet pas d'inverse pour la loi *. $(\mathbb{R}, *)$ n'est donc pas un groupe.

Solution 5

Associativité:

Soient $x, y, z \in H$.

$$x.(y.z) = f(f^{-1}(x) * f^{-1}(y.z))$$

$$= f(f^{-1}(x) * (f^{-1}(y) * f^{-1}(z)))$$

$$= f((f^{-1}(x) * f^{-1}(y)) * f^{-1}(z)) \text{ par associativit\'e de } *$$

$$= f(f^{-1}(x.y) * f^{-1}(z))$$

$$= (x.y).z$$

Elément neutre :

Notons *e* l'élément neutre de (G, *). Pour tout $x \in H$

$$f(e).x = f(e * f^{-1}(x)) = f(f^{-1}(x)) = x$$

 $x.f(e) = f(f^{-1}(x).e) = f(f^{-1}(x)) = x$

Donc (H, .) admet un élément neutre, à savoir f(e).

Inversibilité:

Soit $x \in H$.

$$x.f\left(\left(f^{-1}(x)\right)^{-1}\right) = f\left(f^{-1}(x) * \left(f^{-1}(x)\right)^{-1}\right) = f(e)$$

$$f\left(\left(f^{-1}(x)\right)^{-1}\right).x = f\left(\left(f^{-1}(x)\right)^{-1} * f^{-1}(x)\right) = f(e)$$

Ainsi tout élément x de G est inversible (d'inverse $(f^{-1}(x))^{-1}$).

Remarque. On a des résultats similaires pour les anneaux et les corps. La bijection f permet de «transporter» la structure de G sur H.

Solution 6

Associativité:

Soient $x', y', z' \in H$. Comme f est surjective, x', y', z' admmettent des antécédents x, y, z par f dans G.

$$x'.(y'.z') = f(x).(f(y).f(z))$$

$$= f(x).f(y*z)$$

$$= f(x*(y*z))$$

$$= f((x*y)*z) \text{par associativit\'e de } *$$

$$= f(x*y).f(z)$$

$$= (f(x).f(y)).f(z)$$

$$= (x'.y').z'$$

Elément neutre :

Notons e l'élément neutre de G. Soit $x' \in G$. Comme f est surjective, x' admet un antécédent x par f dans G

$$x'.f(e) = f(x).f(e) = f(x*e) = f(x) = x'$$

 $f(e).x' = f(e).f(x) = f(e*x) = f(x) = x'$

Ainsi (H, .) admet un élément neutre, à savoir f(e).

Inversibilité:

Soit $x' \in G$. Comme f est surjective, x' admet un antécédent x par f dans G.

$$x'.f(x^{-1}) = f(x).f(x^{-1}) = f(x * x^{-1}) = f(e)$$

 $f(x^{-1}).x' = f(x^{-1}).f(x) = f(x^{-1} * x) = f(e)$

Ainsi tout élément de G est inversible.

Puisque G et H sont des groupes, f est un morphisme de groupes.

Remarque. On a des résultats pour les anneaux et les corps. La surjection f permet de «transporter» la structure de G sur H.

Solution 7

Notons e l'élément neutre de G.

Pour tout $x \in G$, $x = e^{-1}xe$ donc $x \sim x$. Ainsi \sim est réflexive.

Soit $(x, y) \in G^2$ tel que $x \sim y$. Il existe donc $g \in G$ tel que $y = g^{-1}xg$. Mais alors $x = gyg^{-1} = (g^{-1})^{-1}x(g^{-1})$ donc $y \sim y$. Ainsi \sim est symétrique.

Soit $(x, y, z) \in G^3$ tel que $x \sim y$ et $y \sim z$. Il existe donc $(g, h) \in G^2$ tel que $y = g^{-1}xg$ et $z = h^{-1}yh$. Mais alors $z = h^{-1}g^{-1}xgh = (gh)^{-1}x(gh)$ donc $x \sim z$. Ainsi \sim est transitive.

Finalement, \sim est bien une relation d'équivalence.

Solution 8

On notera e l'élément neutre de G.

Relation \sim :

Réflexivité Pour tout $x \in G$, $x = e^{-1}xe$ et $e \in H$ car H est un sous-groupe de G donc $x \sim x$.

Symétrie Soit $(x, y) \in G^2$ tel que $x \sim y$. Il existe donc $h \in H$ tel que $y = h^{-1}xh$. Alors $x = hyh^{-1} = (h^{-1})^{-1}yh^{-1}$ et $h^{-1} \in H$ car H est un sous-groupe de G donc $y \sim x$.

Transitivité Soit $(x, y, z) \in G^3$ tel que $x \sim y$ et $y \sim z$. Il existe donc $(h, k) \in H^2$ tel que $y = h^{-1}xh$ et $z = k^{-1}yk$. Donc $z = k^{-1}h^{-1}xhk = (hk)^{-1}(hk)$ et $hk \in H$ car H est un sous-groupe de G donc $x \sim z$.

Relation \sim_g :

Réflexivité Pour tout $x \in G$, x = ex et $e \in H$ car H est un sous-groupe de G donc $x \sim_g x$.

Symétrie Soit $(x, y) \in G^2$ tel que $x \sim_g y$. Il existe donc $h \in H$ tel que y = hx. Alors $x = h^{-1}y$ et $h^{-1} \in H$ car H est un sous-groupe de G donc $y \sim_g x$.

Transitivité Soit $(x, y, z) \in G^3$ tel que $x \sim_g y$ et $y \sim_g z$. Il existe donc $(h, k) \in H^2$ tel que y = hx et z = ky. Donc z = khx et $kh \in H$ car H est un sous-groupe de G donc $x \sim_g z$.

Relation \sim_d :

Réflexivité Pour tout $x \in G$, x = xe et $e \in H$ car H est un sous-groupe de G donc $x \sim_d x$.

Symétrie Soit $(x, y) \in G^2$ tel que $x \sim_d y$. Il existe donc $h \in H$ tel que y = xh. Alors $x = yh^{-1}$ et $h^{-1} \in H$ car H est un sous-groupe de G donc $y \sim_d x$.

Transitivité Soit $(x, y, z) \in G^3$ tel que $x \sim_d y$ et $y \sim_d z$. Il existe donc $(h, k) \in H^2$ tel que y = xh et z = yk. Donc z = xhk et $hk \in H$ car H est un sous-groupe de G donc $x \sim_d z$.

Solution 9

1. On sait que th est strictement croissante et continue sur \mathbb{R} . De plus, $\lim_{-\infty} th = -1$ et $\lim_{+\infty} th = 1$. Donc th induit une bijection de \mathbb{R} sur G.

2. Soit $(a,b) \in \mathbb{R}^2$.

$$\frac{\operatorname{th}(a) + \operatorname{th}(b)}{1 + \operatorname{th}(a) \operatorname{th}(b)} = \frac{\frac{\operatorname{sh} a}{\operatorname{ch} a} + \frac{\operatorname{sh} b}{\operatorname{ch} b}}{1 + \frac{\operatorname{sh} a}{\operatorname{ch} a} \cdot \frac{\operatorname{sh} b}{\operatorname{ch} b}}$$

$$= \frac{\operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a}{\operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b}$$

$$= \frac{(e^a - e^{-a})(e^b + e^{-b}) + (e^b - e^{-b})(e^a + e^{-a})}{(e^a + e^{-a})(e^b + e^{-b}) + (e^b - e^{-b})(e^a - e^{-a})}$$

$$= \frac{e^{a+b} - e^{-(a+b)}}{e^{a+b} + e^{-(a+b)}} = \operatorname{th}(a+b)$$

3. Vérifions que \star est une loi interne sur G. Soit $(x, y) \in G^2$. Par surjectivité de th sur G, il existe $(a, b) \in \mathbb{R}^2$ tel que x = th a et y = th b. Alors $x \star y = \text{th}(a + b) \in G$.

La loi ★ est clairement commutative.

Vérifions que ★ est associative. Soit $(x, y, z) \in G^3$. Comme précédemment, il existe $(a, b, c) \in \mathbb{R}^3$ tel que (x, y, z) = (th a, th b, th c). Alors

$$(x \star y) \star z = \operatorname{th}(a+b) \star \operatorname{th} c = \operatorname{th}(a+b+c) = \operatorname{th} a \star \operatorname{th}(b+c) = x \star (y \star z)$$

Pour tout $x \in G$, $0 \star x = x \star 0 = x$ et $0 \in G$ donc 0 est neutre pour \star .

Enfin, pour tout $x \in G$, $x \star (-x) = (-x) \star x = 0$ et $-x \in G$ donc tout élément de G est inversible pour la loi \star .

Tout ceci prouve que (G, \star) est un groupe commutatif.

4. Tout d'abord $x^{\star 0} = 0 = \frac{(1+x)^0 - (1-x)^0}{(1+x)^0 + (1-x)^0}$. Supposons que $x^{\star n} = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$ pour un certain $n \in \mathbb{N}$. Alors

$$x^{\star(n+1)} = x \star x^{\star n}$$

$$= \frac{x + x^{\star n}}{1 + x \cdot x^{\star n}}$$

$$= \frac{x + \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}}{1 + x \cdot \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}}$$

$$= \frac{x(1+x)^n + x(1-x)^n + (1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n + x(1+x)^n - x(1-x)^n}$$

$$= \frac{(1+x)(1+x)^n - (1-x)(1-x)^n}{(1+x)(1+x)^n + (1-x)(1-x)^n}$$

$$= \frac{(1+x)^{n+1} - (1-x)^{n+1}}{(1+x)^{n+1} + (1-x)^{n+1}}$$

Par récurrence, l'égalité de l'énoncé est vraie pour tout $n \in \mathbb{N}$. Enfin, si $n \in \mathbb{Z}_+$, en utilisant le fait que $-n \in \mathbb{N}$,

$$x^{*n} = (x^{*-1})^{*(-n)} = (-x)^{*(-n)}$$

$$= \frac{(1+(-x))^{-n} - (1-(-x))^{-n}}{(1+(-x))^{-n} + (1-(-x))^{-n}}$$

$$= \frac{\frac{1}{(1-x)^n} - \frac{1}{(1+x)^n}}{\frac{1}{(1-x)^n} + \frac{1}{(1+x)^n}}$$

$$= \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$$

Sous-groupes

Solution 10

Tout d'abord, S(x) est bien une partie de S(E).

Ensuite, $Id_E \in S(x)$ puisque $Id_E(x) = x$.

Enfin, soient $\sigma, \sigma' \in S(x)$. Montrons que $\sigma^{-1} \circ \sigma' \in S(x)$. On a $\sigma^{-1} \circ \sigma'(x) = \sigma^{-1}(x)$ car $\sigma'(x) = x$. Or $\sigma(x) = x$ donc, en composant par σ^{-1} , $\sigma^{-1}(x) = x$. Donc $\sigma^{-1} \circ \sigma'(x) = x$ et $\sigma^{-1} \circ \sigma' \in S(x)$.

S(x) est bien un sous-groupe de $(S(E), \circ)$.

Remarque. S(x) est appelé le stabilisateur de x.

Solution 11

- Notons e l'élément neutre de G. Comme H et K sont des sous-groupes de G, ils contiennent tous deux l'élément neutre e. Donc e ∈ H ∩ K.
 - Soit $h, k \in H \cap K$. Comme H est un sous-groupe de G, $h^{-1}k \in H$. De même, $h^{-1}k \in K$. Par conséquent, $h^{-1}k \in H \cap K$. En conclusion, $H \cap K$ est un sous-groupe de G.
- 2. Si $H \subset K$ ou $K \subset H$, on a $H \cup K = K$ ou $H \cup K = H$. Donc $H \cup K$ est bien un sous-groupe de G. Réciproquement, supposons que $H \cup K$ est un sous-groupe de G. Supposons de plus que $H \not\subset K$ et montrons que $K \subset H$. Comme $H \not\subset K$, il existe $h_0 \in H \setminus K$. Soit maintenant $k \in K$. Comme $h_0, k \in H \cup K$ et que $H \cup K$ est un sous-groupe de G, $h_0k \in H \cup K$. On ne peut avoir $h_0k \in K$ car sinon $h_0 = (h_0k)k^{-1} \in K$, ce qui n'est pas. Donc $h_0k \in H$. Or $k = h_0^{-1}(h_0k) \in H$. Ceci étant vrai pour tout élément k de K, on a donc $K \subset H$.

Solution 12

Notons e l'élément neutre de G.

- Tout d'abord, pour tout $x \in G$, ex = xe = x donc $e \in Z(G)$.
- Soient $(a, b) \in Z(G)^2$ et $x \in G$. Alors

$$(ab)x = a(bx)$$
 par associativité
 $= a(xb)$ car $b \in Z(G)$
 $= (ax)b$ par associativité
 $= (xa)b$ car $a \in Z(G)$
 $= x(ab)$ par associativité

Ainsi $ab \in Z(G)$ de sorte que Z(G) est stable par produit.

• Soient $a \in Z(G)$ et $x \in G$. Alors ax = xa, puis $a^{-1}ax = a^{-1}xa$ i.e. $x = a^{-1}xa$. Enfin $xa^{-1} = a^{-1}xaa^{-1} = a^{-1}x$ de sorte que $a^{-1} \in Z(G)$. Z(G) est donc stable par inversion.

Ainsi Z(G) est un sous-groupe de G.

Solution 13

- **1.** Il suffit de chosir $n = \left\lfloor \frac{\beta}{\alpha} \right\rfloor$.
- **2.** Comme $G \neq \{0\}$ et $0 \in G$, G contient un élément non nul a. Si a > 0, $G \cap \mathbb{R}_+^*$ est non vide. Sinon, G étant un groupe, $-a \in G$ et à nouveau $G \cap \mathbb{R}_+^*$ est non vide.

De plus, $G \cap \mathbb{R}_+^*$ est minorée par 0. Ainsi $G \cap \mathbb{R}_+^*$ admet une borne inférieure.

- 3. a. Comme $a = \inf G \cap \mathbb{R}_+^*$ et que a > 0, il existe $x \in G \cap \mathbb{R}_+^*$ tel que $a \le x < a + a = 2a$. Comme on a supposé $a \notin G$, on a en fait a < x < 2a. Puisque x a > 0, il existe $y \in G \cap \mathbb{R}_+^*$ tel que $a \le y < a + (x a) = x$. A nouveau $a \notin G$ donc a < y < x < 2a. Les réels x et y sont bien deux éléments distincts de $a \in G$.
 - **b.** Comme a < y < x < 2a, 0 < x y < a. Comme G est un sous-groupe de \mathbb{R} , $y x \in G$. On a donc $y x \in G \cap \mathbb{R}_+^*$ et y x < a, ce qui contredit le fait que $a = \inf G \cap \mathbb{R}_+^*$. On a donc $a \in G$.
 - **c.** Comme G est un sous-groupe de \mathbb{R} , $na \in G$ pour tout $n \in \mathbb{Z}$. On a donc $a\mathbb{Z} \subset G$.

- **d.** D'après la question 1, il existe $n \in \mathbb{Z}$ tel que $na \le z < (n+1)a$. Comme z et a sont des éléments du sous-groupe G, z na est également un élément de G. Or $0 \le z na < a$ et $a = \inf G \cap \mathbb{R}_+^*$. On a donc nécessairement z na = 0 i.e. z = na.
- **e.** Les deux questions précédentes montrent que $G \subset a\mathbb{Z}$. Par double inclusion, $G = a\mathbb{Z}$.
- **4. a.** Comme inf $G \cap \mathbb{R}_+^* = 0$, il existe $\varepsilon' \in G \cap \mathbb{R}_+^*$ tel que $0 < \varepsilon' < \varepsilon$. D'après la question **1**, il existe $n \in \mathbb{Z}$ tel que $n\varepsilon' \le t < (n+1)\varepsilon'$. Posons $g = n\varepsilon'$. $g \in G$ puisque $\varepsilon' \in G$. De plus, $0 \le t g < \varepsilon' < \varepsilon$ donc $|g t| < \varepsilon$.
 - **b.** On a prouvé que pour tout élément t de \mathbb{R} et tout $\varepsilon > 0$, il existe un élément de G dans $]t \varepsilon, t + \varepsilon[$: ceci signifie que G est dense dans \mathbb{R} .

Solution 14

Notons e l'élément neutre de G.

Pour tout $x \in G$, x = xe et $e \in H$ car H est un sous-groupe de G donc $x \sim x$. Ainsi \sim est réflexive.

Soit $(x, y) \in G^2$ tel que $x \sim y$. Il existe donc $h \in H$ tel que y = xh. Mais alors $x = yh^{-1}$ et $h^{-1} \in H$ car H est un sous-groupe de G donc $y \sim y$. Ainsi \sim est symétrique.

Soit $(x, y, z) \in G^3$ tel que $x \sim y$ et $y \sim z$. Il existe donc $(h, k) \in H^2$ tel que y = xh et z = yk. Mais alors z = xhk et $hk \in H$ car H est un sous-groupe de G donc $x \sim z$. Ainsi \sim est transitive.

Finalement, \sim est bien une relation d'équivalence.

REMARQUE. On montrerait de la même manière que la relation binaire ~ définie par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists h \in H, \ y = hx$$

est également une relation d'équivalence.

Solution 15

- 1. On rappelle que $S(\mathbb{C})$ désigne l'ensemble des bijections de \mathbb{C} dans \mathbb{C} . On va montrer que G est un sous-groupe de $S(\mathbb{C})$.
 - Montrons que $G \subset S(\mathbb{C})$. Soit $f \in G$. Il existe donc $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On montre alors que f est bijective en vérifiant que $z \mapsto \frac{1}{a}(z b)$ est sa bijection réciproque.
 - Clairement, $Id_{\mathbb{C}} \in G$, puisque $Id_{\mathbb{C}}$ est par exemple la translation de vecteur nul ou une rotation d'angle nul (et de centre quelconque).
 - Montrons que G est stable par composition. Soit $(f,g) \in G^2$. Il existe donc $(a,b,c,d) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b et g(z) = cz + d pour tout $z \in \mathbb{C}$. Alors $g \circ f(z) = caz + cb + d$ pour tout $z \in \mathbb{C}$. $g \circ f$ est bien une translation ou une similitude directe puisque $ca \neq 0$.
 - Montrons que G est stable par inversion. Soit $f \in G$. Il existe donc $(a,b) \in \mathbb{C}^* \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On a montré précédemment que $f^{-1}(z) = \frac{1}{a}z \frac{b}{a}$ pour tout $z \in \mathbb{C}$. Ceci montre que f^{-1} est bien une translation ou une similitude directe puisque $\frac{1}{a} \neq 0$.

On a donc montré que G était un sous-groupe de S(C) et donc un groupe.

- A nouveau, Id_C ∈ H, puisque Id_C est par exemple la translation de vecteur nul ou une rotation d'angle nul (et de centre quelconque).
 - Montrons que H est stable par composition. Soit $(f,g) \in H^2$. Il existe donc $(a,b,c,d) \in \mathbb{U} \times \mathbb{C} \times \mathbb{U} \times \mathbb{C}$ tel que f(z) = az + b et g(z) = cz + d pour tout $z \in \mathbb{C}$. Alors $g \circ f(z) = caz + cb + d$ pour tout $z \in \mathbb{C}$. $g \circ f$ est bien une translation ou une rotation puisque $ca \in \mathbb{U}$.
 - Montrons que H est stable par inversion. Soit $f \in H$. Il existe donc $(a,b) \in \mathbb{U} \times \mathbb{C}$ tel que f(z) = az + b pour tout $z \in \mathbb{C}$. On a montré précédemment que $f^{-1}(z) = \frac{1}{a}z \frac{b}{a}$ pour tout $z \in \mathbb{C}$. Ceci montre que f^{-1} est bien une translation ou une rotation puisque $ca \in \mathbb{U}$.

On a donc montré que H était un sous-groupe de G.

Morphismes

Solution 16

- 1. $\mathbb{U} \subset \mathbb{C}^* \text{ car } |0| = 0 \neq 1.$
 - $1 \in \mathbb{U} \text{ car } |1| = 1.$
 - Soit $(z_1, z_2) \in \mathbb{U}^2$. Alors $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{1}{1} = 1$ donc $\frac{z_1}{z_2} \in \mathbb{U}$.

 \mathbb{U} est donc un sous-groupe de (\mathbb{C}^*, \times) .

- 2. $\mathbb{U}_n \subset \mathbb{C}^*$ car pour $0^n = 0 \neq 1$.
 - $1 \in \mathbb{U}_n \operatorname{car} 1^n = 1$.
 - Soit $(z_1, z_2) \in \mathbb{U}_n^2$. Alors $\left(\frac{z_1}{z_2}\right)^n = \frac{z_1^n}{z_2^n} = \frac{1}{1} = 1$ donc $\frac{z_1}{z_2} \in \mathbb{U}_n$.

 \mathbb{U}_n est donc un sous-groupe de (\mathbb{C}^*, \times) .

- **3.** a. Soit $(z_1, z_2) \in (\mathbb{C}^*)^2$. Alors $f(z_1 z_2) = (z_1 z_2)^n = z_1^n z_2^n = f(z_1) f(z_2)$. f est donc un endomorphisme de (\mathbb{C}^*, \times) .
 - **b.** Ker $f = \{z \in \mathbb{C}^*, z^n = 1\} = \mathbb{U}_n$. Le noyau de f étant un sous-groupe du groupe de départ, \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) .
 - **c.** Si n = 1, $f = \text{Id}_{\mathbb{C}^*}$ donc f est injectif. Sinon, card Ker $f = \text{card } \mathbb{U}_n = n > 1$ donc Ker $f \neq \{1\}$. Ainsi f n'est pas injectif.
 - **d.** Tout nombre complexe non nul admet une racine $n^{\text{ème}}$ non nulle (il en admet même n) donc Im $f = \mathbb{C}^*$ et f est surjectif.
- **4.** a. Soit $(\theta_1, \theta_2) \in \mathbb{R}^2$. Alors $g(\theta_1 + \theta_2) = e^{i(\theta_1 + \theta_2)} = e^{i\theta_1}e^{i\theta_2} = g(\theta_1)g(\theta_2)$. g est donc un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{C}^*, \times) .
 - **b.** Ker $g = 2\pi \mathbb{Z} \neq \{0\}$ donc g n'est pas injectif.
 - **c.** Im $g = \{e^{i\theta}, \theta \in \mathbb{R}\} = \mathbb{U}$. L'image de g étant un sous-groupe du groupe d'arrivée, \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) .
 - **d.** Im $g = \mathbb{U} \neq \mathbb{C}^*$ donc g n'est pas surjectif.
- **5. a.** Soit $(z_1, z_2) \in (\mathbb{C}^*)^2$. Alors $h(z_1 z_2) = |z_1 z_2| = |z_1||z_2| = h(z_1)h(z_2)$. h est donc un morphisme de (\mathbb{C}^*, \times) dans (\mathbb{R}^*, \times) .
 - **b.** Ker $h = \{z \in \mathbb{C}^*, |z| = 1\} = \mathbb{U}$. Le noyau de h étant un sous-groupe du groupe de départ, \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) .
 - **c.** Ker $h = \mathbb{U} \neq \{1\}$ donc h n'est pas injectif.
 - **d.** Im $h = \mathbb{R}_+^* \neq \mathbb{R}^*$ donc h n'est pas surjectif.

Solution 17

Il est clair que les homothéties sont bien des endomorphismes de $(\mathbb{R}, +)$.

Soit maintenant f est un endomorphisme de $(\mathbb{R}, +)$. On a donc pour tous $x, y \in \mathbb{R}$, f(x + y) = f(x) + f(y). On montre par récurrence que f(nx) = nf(x) pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$ puis pour tout $n \in \mathbb{Z}$ en passant à l'opposé. Soit maintenant r un rationnel. Il existe donc deux entiers p et q avec $q \ne 0$ tels que $r = \frac{p}{a}$. On a d'une part

$$f(p) = f(qr) = qf(r)$$

et d'autre part

$$f(p) = pf(1)$$

Donc f(r) = rf(1). Posons donc $\lambda = f(1)$. Soit maintenant $x \in \mathbb{R}$. On sait que x est limite d'une suite de rationnels (r_n) . Or f étant continue sur \mathbb{R} et donc en x, la suite $(f(r_n))$ tend vers f(x). Or $f(r_n) = \lambda r_n$ pour tout $n \in \mathbb{N}$. Par passage à la limite, on a donc $f(x) = \lambda x$.

Solution 18

1. Il suffit de vérifier que pour tout $p, q \in \mathbb{Z}$, $f_n(p+q) = f_n(p)f_n(q)$.

- **2.** On vérifie que pour tout $p \in \mathbb{Z}$, $|f_n(p)| = 1$.
- 3. f_n est injective si et seulement si Ker $f_n = \{0\}$. Il est donc équivalent de montrer que Ker $f_n \neq \{0\}$ si et seulement si $\alpha \in \mathbb{Q}$. Si $\alpha \in \mathbb{Q}$, alors il existe $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tels que $\alpha = \frac{a}{b}$. On vérifie alors que $f_n(b) = 1$ i.e. $b \in \text{Ker } f_n$ et donc Ker $f_n \neq \{0\}$. Si Ker $f \neq \{0\}$, il existe $b \in \text{Ker } f$ tel que $b \neq 0$. On a alors f(b) = 1 i.e. $2\pi nb\alpha \equiv 0[2\pi]$ ou encore $nb\alpha \equiv 0[1]$. Autrement dit, $nb\alpha$ est entier, ce qui signifie que α est rationnel.
- **4.** a. On vérifie que pour tout $p \in \mathbb{Z}$, $f_1(p)^s = 1$ donc Im $f_1 \subset \mathbb{U}_s$.
 - **b.** Comme $r \wedge s = 1$, il existe $u, v \in \mathbb{Z}$ tels que ur + vs = 1. On en déduit que $f_1(u) = e^{\frac{2i\pi}{s}} \in \operatorname{Im} f_1$. Comme $\operatorname{Im} f_1$ est un sous-groupe $\operatorname{de}(\mathbb{C}^*, \times), \left(e^{\frac{2ik\pi}{s}}\right) \in \operatorname{Im} f_1$ pour tout $k \in \mathbb{Z}$. Ainsi $\mathbb{U}_s \in \operatorname{Im} f_1$.
 - **c.** On vérifie que pour tout $k \in \mathbb{Z}$, $f_1(sk) = 1$ donc $s\mathbb{Z} \subset \operatorname{Ker} f_1$. Soit $p \in \operatorname{Ker} f_1$. On a donc $\frac{pr}{s} \in \mathbb{Z}$. Ainsi s divise pr et puisque $s \wedge r = 1$, s divise p. D'où $\operatorname{Ker} f_1 \subset \mathbb{Z}$.
- **5. a.** $n \wedge s$ divise s donc m est entier.
 - b. Tout diviseur commun de n et s est un diviseur commun de nr et s.
 Soit d un diviseur commun de nr et s. Un diviseur commun de d et s est a fortiori un diviseur commun de r et s et ne peut donc être égal qu'à ±1. Ceci prouve que d ∧ r = 1. D'après le théorème de Gauss, d divise n. Ainsi d est un diviseur commun de nr et s.

Finalement, $n \wedge s = nr \wedge s$.

- **c.** On vérifie que pour tout $p \in \mathbb{Z}$, $f_n(p)^m = 1$ car $n \wedge s$ divise n. On a donc Im $f_n \subset \mathbb{U}_m$.
- **d.** Comme $nr \wedge s = n \wedge s$, il existe $u, v \in \mathbb{Z}$ tels que $unr + vs = n \wedge s$. On en déduit que $f_n(u) = e^{\frac{2i\pi}{m}} \in \text{Im } f_n$. Comme $\text{Im } f_n$ est un sous-groupe de $(\mathbb{C}^*, \times), \left(e^{\frac{2ik\pi}{m}}\right) \in \text{Im } f_n$ pour tout $k \in \mathbb{Z}$. Ainsi $\mathbb{U}_m \in \text{Im } f_n$.
- **e.** On vérifie que pour tout $k \in \mathbb{Z}$, $f_n(mk) = 1$ car $n \wedge s$ divise n. Ainsi $m\mathbb{Z} \subset \operatorname{Ker} f_n$. Soit $p \in \operatorname{Ker} f_n$. Ainsi $\frac{npr}{s} \in \mathbb{Z}$ et puisque $s \wedge r = 1$, s divise np. Par conséquent, $m = \frac{s}{n \wedge s}$ divise $\frac{n}{n \wedge s}p$. Comme $\frac{s}{n \wedge s} \wedge \frac{n}{n \wedge s} = 1$, m divise p. Ainsi $\operatorname{Ker} f_n \subset m\mathbb{Z}$.

Solution 19

Soit f un morphisme de $(GL_n(\mathbb{R}), \times)$ dans $(\mathbb{Z}/m\mathbb{Z}, +)$. On note $D_i(\lambda) = I_n + (\lambda - 1)E_{ii}$ pour $1 \le i \le n$ et $\lambda \in \mathbb{R}^*$ les matrices de dilatations. On note $T_{ij}(\lambda) = I_n + \lambda E_{ij}$ pour $1 \le i \ne j \le n$ et $\lambda \in \mathbb{R}$ les matrices de transvection.

On rappelle que la multiplication d'une matrice de $\mathcal{M}_n(\mathbb{R})$ à gauche par $T_{ij}(\lambda)$ correspond à l'opération sur les lignes $L_i \leftarrow L_i + \lambda L_j$ et la multiplication d'une matrice de $\mathcal{M}_n(\mathbb{R})$ à droite par $T_{ij}(\lambda)$ correspond à l'opération sur les lignes $C_j \leftarrow C_j + \lambda C_i$.

Enfin, on peut échanger les lignes L_i et L_j «au signe près» en effectuant à la suite les opérations $L_i \leftarrow L_i + L_j$, $L_j \leftarrow L_j - L_i$, $L_i \leftarrow L_i + L_j$, autrement dit en multipliant à gauche par $T_{ij}(1)T_{ji}(-1)T_{ij}(1)$. La ligne L_i sera transformée en la ligne L_j et la ligne L_j sera transformée en la ligne $-L_i$.

Montrons par récurrence sur n via l'algorithme du pivot de Gauss que pour toute matrice $A \in GL_n(\mathbb{R})$, il existe $M, N \in GL_n(\mathbb{R})$ telles que $MAN = D_n(\det A)$ avec M et N des produits de matrice de transvection.

Si n = 1, il n'y a rien à faire.

Supposons que la propriété à vérifier soit vraie à un certain rang $n-1 \ge 1$. Soit $A \in GL_n(\mathbb{R})$. La première colonne de A étant non nulle, il existe $i \in [1, n]$ tel que $a_{i,1} \ne 0$.

- S'il existe $i \in [2, n]$ tel que $a_{i,2} \neq 0$, l'opération $L_1 \leftarrow L_1 + \frac{1 a_{1,1}}{a_{i,1}} L_i$ permet de placer un 1 en position (1, 1).
- Si pour tout i ∈ [[2, n]], on a a_{i,2} = 0, l'échange des lignes L₁ et L₂ «au signe près» permet de se ramener au cas précédent.

Il est alors aisé d'annuler tous les coefficients de la première ligne et la première colonne (hormis le 1 en position (1,1)) à l'aide d'opérations sur les lignes et les colonnes. Autrement dit, il existe deux matrices M' et N' qui sont des produits de matrice de transvection telles que

$$M'AN' = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$
. Il suffit alors d'appliquer l'hypothèse de récurrence à A'.

Remarque. On a en fait montré que $SL_n(\mathbb{R})$ est engendré par les matrices de transvection et que $GL_n(\mathbb{R})$ est engendré par les matrices de transvection et les matrices de dilatation.

Puisque $T_{ij}(\lambda) = T_{ij}\left(\frac{\lambda}{m}\right)^m$, on a $f\left(T_{ij}(\lambda)\right) = 0$. On en déduit que pour tout $A \in GL_n(\mathbb{R})$, $f(A) = f(D_n(\det A))$. Si m est impair, pour tout $\lambda \in \mathbb{R}^*$, $D_n(\lambda) = D_n\left(\sqrt[m]{\lambda}\right)^m$ donc $f(A) = \bar{0}$ pour tout $A \in GL_n(\mathbb{R})$. f est donc le morphisme trivial.

Si m est pair, pour tout $\lambda \in \mathbb{R}_+^*$, $D_n(\lambda) = D_n \binom{n}{\sqrt{\lambda}}^m$ donc $f(A) = \bar{0}$ pour tout $A \in GL_n^+(\mathbb{R})$. De plus, si $\lambda \in \mathbb{R}_-^*$, $D_n(\lambda) = D_n(-1)D_n(-\lambda)$. Ainsi, pour tout $A \in GL_n^-(\mathbb{R})$, $f(A) = f(D_n(-1))$. Or $D_n(-1)^2 = I_n$ donc $f(D_n(-1)) = \bar{0}$ ou $f(D_n(-1)) = \bar{p}$ où m = 2p. f est donc soit le morphisme trivial, soit le morphisme valant $\bar{0}$ sur $GL_n^+(\mathbb{R})$ et \bar{p} sur $GL_n^-(\mathbb{R})$.

Solution 20

1. On a pour tous $x, y \in G$,

$$\varphi(x)\varphi(y) = axa^{-1}aya^{-1} = axya^{-1} = \varphi_a(xy).$$

Ainsi φ_a est bien un endomorphisme de G.

Pour $x, y \in G$,

$$y = \varphi_a(x) \iff y = axa^{-1} \iff a^{-1}ya = x \iff x = \varphi_{a^{-1}}(y)$$

Ainsi va_a est bien bijectif : c'est un automorphisme de G. On a en fait aussi prouvé que $\varphi_a^{-1} = \varphi_{a-1}$.

2. Comme pour tout $a \in G$, φ_a est bijectif, $\mathfrak{F}(G) \subset \operatorname{Aut}(G)$. On a $\operatorname{Id}_G = \varphi_e \in \mathfrak{F}(G)$.

De plus, on vérifie que pour $a, b \in G$, $\varphi_a \circ \varphi_b = \varphi_{ab} \in \mathfrak{F}(G)$.

Enfin, on a vu à la question précédente que pour $a \in G$, $\varphi_a^{-1} = \varphi_{a^{-1}} \in \mathfrak{F}(G)$.

Par conséquent, $\mathfrak{F}(G)$ est un sous-groupe de (Aut(G), \circ).

3. On a montré à la question précédente que $\varphi_a \circ \varphi_b = \varphi_{ab}$ i.e. $\varphi(a) \circ \varphi(b) = \varphi(ab)$. Ainsi φ est un morphisme de groupes.

Solution 21

Si f est un automorphisme, c'est en particulier un morphisme. Donc pour tous $a, b \in G$, f(ab) = f(a)f(b) i.e.

$$(ab)^{-1} = a^{-1}b^{-1} \iff (ab)^{-1} = (ba)^{-1} \iff ab = ba$$

Ainsi G est commutatif.

Réciproquement si G est commutatif, le raisonnement inverse nous montre que f est un morphisme. De plus, $f \circ f = \mathrm{Id}_{G}$, donc f est bijectif (d'application réciproque lui-même). f est bien un automorphisme.

Solution 22

Soit $r \in \mathbb{Q}$. Montrons que f(r) = 0. Soit $n \in \mathbb{N}^*$. On a

$$f(r) = f\left(n\frac{r}{n}\right) = nf\left(\frac{r}{n}\right)$$

Or f(r), n et $f\left(\frac{r}{n}\right)$ sont des entiers. Donc f(r) est divisible par n.

Ainsi f(r) est divisible par tout entier $n \in \mathbb{N}^*$. On a forcément f(r) = 0. En conclusion, le seul morphisme de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$ est le morphisme nul.

Ordre et générateurs

Solution 23

Suppospons G fini. Alors l'ensemble de ses parties est également fini. A fortiori, l'ensemble de ses sous-groupes est fini.

Supposons que l'ensemble des sous-groupes de G est fini. Montrons d'abord que tout élément de G est d'ordre fini. Soit $x \in G$. Si x n'est pas d'ordre fini, alors les sous-groupes $\langle x^k \rangle$ pour $k \in \mathbb{N}$ sont distincts et en nombre infini, ce qui contredit l'hypothèse de départ. De plus, $G = \bigcup \langle x \rangle$. Mais les sous-groupes $\langle x \rangle$ sont en nombre fini par hypothèse et sont tous finis car tout $x \in G$ est d'ordre fini. Par conséquent, $x \in G$ G est fini.

Solution 24

Soit G un groupe cyclique d'ordre n et g un de ses générateurs. On note e l'élément neutre de G. Soit également H un sous-groupe de G. Si $H = \{e\}$, H est bien cyclique. Sinon, on peut noter p le plus petit entier naturel non nul tel que $g^p \in H$. On va montrer que H est le sous-groupe engendré par g^p . Ce sera donc un sous-groupe cyclique. Puisque $g^p \in H$, le sous-groupe engendré par g^p est bien inclus dans H. Soit maintenant $h \in H$. Puisque g engrendre G, il existe $g \in \mathbb{N}^*$ tel que g engrendre G, il existe g engrendre G, il e

Solution 25

Soient g un générateur de G et d un diviseur de n. Posons $k = \frac{n}{d}$. On va montrer que le sous-groupe G est l'unique sous-groupe de G d'ordre G.

Montrons tout d'abord que H est bien d'ordre d. L'ordre de H est l'ordre de g^k : il s'agit donc de montrer que l'ordre p de g^k vaut bien d. Puisque $(g^k)^d = g^n = e$, p divise d. Si on avait p < d, alors $g^n = g^{kp} = e$ et kp < kd = n, ce qui contredit que g est un générateur de G. Ainsi p = d.

Montrons maintenant que H est bien l'unique sous-groupe de G d'ordre d. Soit K un sous-groupe de G d'ordre d. Puisque K et H sont tous deux d'ordre d, il suffit de montrer que K \subset H. Soit $x \in$ K. Il existe alors un entier p tel que $g^p = x$. Puisque K est d'ordre d, $g^{pd} = k^d = e$. Ainsi n = kd divise pd puis k divise p. Il existe donc un entier q tel que p = kq. Mais alors $x = g^p = g^{kq} = (g^k)^q \in$ H. Ainsi K \subset H puis K = H par égalité des ordres de K et H.

Solution 26

Remarquons déjà que G est commutatif. En effet, si $(x, y) \in G^2$, alors $(xy)^2 = e$ où e est le neutre. Ainsi xyxy = e puis en multipliant par yx à droite, xy = yx.

Comme G est fini, il admet une partie génératrice minimale $\{g_1, \dots, g_r\}$. On montre alors que l'application $\begin{cases} (\mathbb{Z}/2\mathbb{Z})^r & \longrightarrow & G \\ (\bar{\epsilon}_1, \dots, \bar{\epsilon}_r) & \longmapsto & g_1^{\epsilon_1} \cdots g_r^{\epsilon_r} \end{cases}$ est un isomorphisme de groupes. On en déduit que $|G| = |(\mathbb{Z}/2\mathbb{Z})^r| = 2^r$.

Solution 27

Soit G un groupe d'ordre *p* premier. Soit *x* un élément non neutre de G. L'ordre de *x* divise donc *p*. Comme *p* est premier, l'ordre de *x* vaut 1 ou *p*. Mais *x* n'est pas neutre donc son ordre ne vaut pas 1. Ainsi l'ordre de *x* est *p* et G est cyclique.

Solution 28

Tout d'abord, comme x et y commutent, $(xy)^{pq} = x^{pq}y^{pq} = (x^p)^qy^q$ = e où e est le neutre de G. Ainsi l'ordre d de xy divise pq. Par ailleurs, $(xy)^d = e$ i.e. $x^d = y^{-d}$ et $y^d = x^{-d}$. Ainsi $x^{dq} = y^{dp} = e$ puis p divise dq et q divise dp. Comme p et q sont premiers entre eux, p divise d et q divise d d'après le lemme de Gauss. Mais en utilisant à nouveau le fait que p et q sont premiers entre eux, pq divise d. Finalement, d = pq.

Solution 29

Notons H le sous-groupe de G engendré par E. Nous allons montrer que E = H. Montrons d'abord que tout élément de H peut s'écrire comme produit d'éléments distincts de E. Remarquons que si x = ab avec $a, b \in E$, x = ba' avec $a' = b^{-1}ab \in E$ car a' est un conjugué de a donc de même ordre que a. Soit $x \in H$, x s'écrit $x_1x_2 \dots x_n$ (l'écriture de x ne comporte pas d'inverses car l'inverse d'un élément d'ordre fini est aussi d'ordre fini) où n est le nombre minimal d'éléments de E avec lesquels on peut écrire a. Supposons que cette écriture comporte deux éléments identiques i.e. il existe i < j tels que $x_i = x_j = a$. En répétant la méthode décrite précédemment, $x = x_1 \dots x_i x_j x'_{i+1} \dots x'_{j-1} x_{j+1} \dots x_n$ où les x'_k appartiennent aussi à E. Mais $x_i x_j = a^2$ qui est aussi d'ordre fini et x s'écrit avec n-1 éléments de E, ce qui contredit la minimalité de n. Notons r = |E|, l'écriture de longueur minimale de tout élément de H ne comporte qu'au plus r éléments tous distincts donc $|H| \le r!$. En particulier, H est d'ordre fini donc tous ses éléments sont d'ordre fini. Ainsi $H \subset E$. Comme on a évidemment $E \subset H$, c'est que E = H et E est un sous-groupe de E.

Solution 30

Pour $x \in G$, on note $\langle x \rangle$ le sous-groupe de G engendré par x. Remarquons que $\langle x \rangle$ est d'ordre fini, sinon il serait isomorphe à $(\mathbb{Z}, +)$ qui possède un nombre infini de sous-groupes.

Comme G possède un nombre fini de sous-groupes, les sous-groupes de la forme $\langle x \rangle$ sont en nombre fini : on les notera $\langle x_1 \rangle, \dots, \langle x_n \rangle$. Ainsi,

$$\mathbf{G}=\bigcup_{x\in\mathbf{G}}\langle x\rangle=\bigcup_{i=1}^n\langle x_i\rangle. \text{ Comme les }\langle x_i\rangle \text{ sont tous d'ordre fini, } \mathbf{G} \text{ est fini.}$$

Solution 31

Supposons que $(\mathbb{Z}^2, +)$ soit monogène. Notons alors (a, b) un générateurs. Il existe notamment $(p, q) \in \mathbb{Z}^2$ tel que (1, 0) = p(a, b) = (pa, pb) et (0, 1) = q(a, b) = (qa, qb). Comme pa = 1, $p \neq 0$. Or pb = 0 donc b = 0. Ceci contredit le fait que qb = 1. Le groupe $(\mathbb{Z}^2, +)$ n'est donc pas monogène.

Solution 32

On notera respectivement \overline{k} et \tilde{k} les classes respectives d'un entier k dans $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z}$.

Supposons que $m \wedge n = 1$. Comme $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z}$ sont cycliques, on peut s'en donner des générateurs respectifs a et b. Notons d l'ordre de (a,b). On sait déjà que d divise mn. De plus $d(a,b) = (da,db) = (\overline{0},\widetilde{0})$. Comme $da = \overline{0}$, m divise d. De même, $db = \widetilde{0}$ donc n divise d. Comme $m \wedge n = 1$, mn divise d puis d = mn. Or $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ est d'ordre mn donc il est cyclique.

Réciproquement, supposons que $((\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}), +)$ est cyclique. Soit (a, b) un générateur. Comme $m \vee n$ est un multiple de m et n, $(m \vee n)a = \overline{0}$ et $(m \vee n)b = \overline{0}$. Ainsi $(m \vee n)(a, b) = (\overline{0}, \overline{0})$. On en déduit que l'ordre de (a, b), à savoir mn divise $m \vee n$. Comme $mn = (m \vee n)(m \wedge n), m \wedge n$ divise 1 i.e. $m \wedge n = 1$.

Solution 33

- 1. La signature est un morphisme de groupes de S_n dans $\{-1,1\}$. A_n est donc un sous-groupe de S_n en tant que noyau de la signature.
- 2. Tout élément de S_n peut s'écrire comme une composée de transpositions. La signature valant -1 en les transpositions, tout élément de A_n peut s'écrire comme une composée d'un nombre pair de transpositions. Quitte à regrouper ces transpositions deux par deux, il suffit de montrer qu'une composée de deux transpositions peut toujours s'écrire comme une composée de 3-cycles. Soient τ₁ et τ₂ deux transpositions.
 - Si $\tau_1=\tau_2$, alors $\tau_1\circ\tau_2=$ Id peut s'écrire comme une composée de 0 transposition.
 - Si $\tau_1 = (i, j)$ et $\tau_2 = (j, k)$ où i, j, k sont distincts deux à deux, alors $\tau_1 \circ \tau_2 = (i, j, k)$.
 - Si $\tau_1 = (i, j)$ et $\tau_2 = (k, l)$ où i, j, k, l sont distincts deux à deux, alors $\tau_1 \circ \tau_2 = (i, j, k) \circ (j, k, l)$.

Solution 34

- **1.** $d\overline{k} = \overline{0}$ donc $\overline{dk} = \overline{0}$ puis *n* divise *kd*.
- 2. Dans la suite, on posera $n' = \frac{n}{n \wedge k}$ et $k' = \frac{k}{n \wedge k}$. On remarque déjà que n' et k' sont deux entiers. Alors

$$n'\overline{k} = \overline{n'k} = \overline{k'n} = \overline{0}$$

donc d divise n'.

3. Comme n divise kd, n' divise k'd. Or k' et n' sont premiers entre eux donc n' divise d d'après le lemme de Gauss. Comme d divise également n', d = n'.

Solution 35

- **1.** Puisque $x^{kd} = (x^k)^d = e$, l'ordre de x, à savoir n divise kd.
- **2.** Dans la suite, on posera $n' = \frac{n}{n \wedge k}$ et $k' = \frac{k}{n \wedge k}$. On remarque déjà que n' et k' sont deux entiers. Alors

$$(x^k)^{n'} = x^{n'k} = x^{nk'} = (x^n)^{k'} = e$$

donc d divise n'.

3. Comme n divise kd, n' divise k'd. Or k' et n' sont premiers entre eux donc n' divise d d'après le lemme de Gauss. Comme d divise également n', d = n'.