Examen du 31 janvier 2012-8H00

durée : 3 heures

Exercice 1:

Soit t > 0. Pour tout $f \in C_0([0, +\infty[$ on pose

$$P_t f(x) = \frac{x}{x+t} f(x+t) + \int_x^\infty \frac{t}{(y+t)^2} f(y+t) dy$$
$$= \frac{x}{x+t} f(x+t) + \int_{x+t}^\infty \frac{t}{y^2} f(y) dy$$

1) Montrer que pour tout t > 0, P_t définit une contraction de $C_0([0, +\infty[)$ (i.e. que P_t définit une application linéaire de $C_0([0, +\infty[)$ dans lui-même telle que $||P_t f||_{\infty} \le ||f||_{\infty}$, pour tout $f \in C_0([0, +\infty[))$.

On admet qu'alors, pour tout t > 0, P_t est donné par une probabilité de transition (cf preuve de la Proposition 4.5).

Posons $P_0 = Id$ l'identité de $C_0([0, +\infty[)$.

- 2) Montrer que pour tout s, t > 0 et toute fonction $f \in C_0([0, +\infty[), positive, P_s(P_t f) = P_{s+t} f.$
- 3) Montrer que $(P_t)_{t\geq 0}$ est un semi-groupe de Feller sur $C_0([0,+\infty[)$.

Soit $S = \{ f \in C^{\infty}([0, +\infty[) : \sup_{x \geq 0} x^k | f^{(m)}(x)| < \infty, \forall k, m \in \mathbb{N} \}, \text{ l'espace de Schwartz (sur } [0, +\infty[).$

4) Montrer que pour toute fonction $f \in \mathcal{S}$, tout $x \geq 0$ et tout t > 0, on a

$$P_t f(x) - f(x) = t \left(\int_0^1 f'(x + tu) du + \int_{x+t}^{+\infty} \frac{f'(y)}{y} dy \right).$$

On note A le générateur infinitésimal associé à $(P_t)_{t\geq 0}$.

- 5) Soit $f \in \mathcal{S}$ nulle au voisinage de 0. Montrer que $f \in \mathcal{D}_A$ et que $Af(x) = f'(x) + \int_x^{+\infty} \frac{f'(u)}{u} du$, pour tout $x \in [0, +\infty[$.
- 6) (Difficile) Soit $f \in C_0([0, +\infty[)$ dérivable telle que $f' \in C_0([0, +\infty[)]$ et $\int_0^{+\infty} \frac{|f'(u)|}{u} du < \infty$. Montrer que $f \in \mathcal{D}_A$ et que Af est donné comme au 5).

Exercice 2:

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et (S, \mathcal{S}) un espace mesuré. Soit N une mesure de Poisson sur $\Omega \times \mathcal{S}$ d'intensité μ , σ -finie, sur \mathcal{S} .

1) Montrer directement (sans reprendre le calcul du cours) que pour toute fonction f mesurable positive sur S,

$$\mathbb{E}(\mathrm{e}^{-N(f)}) = \exp\left(\int_{S} (\mathrm{e}^{-f(x)} - 1)\mu(dx)\right). \tag{1}$$

On commencera par le cas d'une fonction étagée.

Soit $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ un espace de probabilité et \tilde{N} une mesure aléatoire sur $\tilde{\Omega} \times S$ vérifiant (1) pour toute f mesurable positive sur S (avec bien sûr $\tilde{\mathbb{E}}$ à la place de \mathbb{E}).

- 2a) Montrer que pour toute famille $(A_n)_{n\in\mathbb{N}}$ d'ensembles disjoints de \mathcal{S} , tel que $\mu(A_n) < \infty$ pour tout $n \in \mathbb{N}$, la suite $(N(\cdot, A_n))$ est une suite de variables indépendantes dont on déterminera la loi.
- 2b) Montrer que \tilde{N} est une mesure de Poisson et préciser son intensité.
- 3) Soit f une fonction mesurable sur S (non nécessairement positive), telle que $\int_S \min(1,|f|)(x)\mu(dx)$. Montrer que les variables N(f) et $\tilde{N}(f)$ sont bien définies et ont même loi.
- 4) Montrer que si f est mesurable sur S, négative et telle que $\int_S e^{-f(x)} \mu(dx) < \infty$ alors (1) reste vraie.
- 5) Montrer que si f est mesurable sur S, de signe quelconque et telle que $\int_S e^{f^-(x)} \mu(dx) < \infty$ alors (1) reste vraie. On rappelle que $f^+ = \max(0, f)$, $f^- = \max(0, -f)$ et qu'alors $f = f^+ f^-$.
- 6) Montrer que si $(X_t)_{t\geq 0}$ est un processus de Lévy réel alors, pour tout $t\geq 0$, $\sum_{0\leq s\leq t}|\Delta X_s|^2<\infty$ \mathbb{P} -p.s.

On rappelle la version suivante du lemme de Fatou : soit (Y_n) une suite de variables aléatoires positives sur $(\Omega, \mathcal{F}, \mathbb{P})$ convergeant \mathbb{P} -p.s. vers Y. On a $\mathbb{E}(Y) \leq \sup_{m \geq n} \mathbb{E}(Y_m)$, pour tout $n \in \mathbb{N}$.

Exercice 3:

Soit $(X_t)_{t\geq 0}$ un processus de Lévy réel càd-làg sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et N la mesure de Poisson associée, i.e. $N(\omega, [0, t] \times A) = \sum_{0 \leq s \leq t} \mathbf{1}_A(\Delta X_s(\omega))$, pour tous $\omega \in \Omega$, $t \geq 0$ et $A \in \mathcal{B}(\mathbb{R} - \{0\})$. On définit la mesures aléatoire N_t sur $\Omega \times \mathcal{B}(\mathbb{R})$ par $N_t(\omega, A) = N(\omega, [0, t] \times A)$.

Posons pour tous $t \geq 0$, $n \in \mathbb{N}^*$,

$$Y_t^{(n)} = \int_{\{1/n < |x| \le 1\}} x(N_t(\cdot, dx) - t\mu(dx)),$$

où μ est la mesure σ -finie sur $\mathcal{B}(\mathbb{R} - \{0\})$, donnée par $\mu(A) = \mathbb{E}(N_1(A))$, pour tout $A \in \mathcal{B}(\mathbb{R} - \{0\})$.

1) Montrer que pour tout $t \geq 0$, $(Y_t^{(n)})$ converge dans L^2 , disons vers Y_t , et admet une sous-suite convergeant \mathbb{P} -p.s. vers Y_t .

2) Montrer que, pour tout $\alpha \in \mathbb{R}$,

$$\mathbb{E}(e^{\alpha Y_t^{(n)}}) = \exp\left(t \int_{\{1/n < |x| \le 1\}} (e^{\alpha x} - 1 - \alpha x) \mu(dx)\right).$$

- 3) Montrer que $\mathbb{E}(e^{\alpha Y_t}) < \infty$.
- 4) Soit Z_1 et Z_2 des variables aléatoires indépendantes sur Ω . Soit $\delta > 0$. Montrer que $\mathbb{E}(|Z_1 + Z_2|^{\delta}) < \infty$ si et seulement si $\mathbb{E}(|Z_1|^{\delta}) < \infty$ et $\mathbb{E}(|Z_2|^{\delta}) < \infty$.
- 5) Montrer que pour tout $\delta > 0$, $\mathbb{E}(|X_1|^{\delta}) < \infty$ si et seulement si pour tout $t \geq 0$, $\mathbb{E}(|X_t|^{\delta}) < \infty$.
- 6) Montrer que pour tout $\delta > 0$, $X_1 \in L^{\delta}(\Omega)$ si et seulement si $\int_{\{|x|>1\}} x N_1(\cdot, dx) \in L^{\delta}(\Omega)$. (On pourra utiliser la formule de Lévy-Ito).
- 7) Soit $(\Gamma_t)_{t\geq 0}$ un processus de Poisson et $(W_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes positives, indépendantes de $(\Gamma_t)_{t\geq 0}$. On considère le processus de Poisson composé donné par $H_t = \sum_{1\leq n\leq \Gamma_t} W_n$, pour tout $t\geq 0$. Montrer que pour tout $\delta>0$, $\mathbb{E}(H_1^\delta)<\infty$ si et seulement si $\mathbb{E}(W_1^\delta)<\infty$.
- 8) Montrer que pour tout $\delta > 0$, $\mathbb{E}(|X_1|^{\delta}) < \infty$ si et seulement si $\int_{\{|x|>1\}} |x|^{\delta} \mu(dx) < \infty$.