Clasificación y Extracción de Cadenas Biológicas en C++

Autor: Jayan Michael Caceres Cuba

16 de mayo de 2025

1. Introducción

Este informe describe el funcionamiento de dos funciones escritas en C++ diseñadas para trabajar con cadenas que representan secuencias biológicas: ADN, ARN o proteínas. El objetivo es clasificar dichas cadenas y, en caso de tratarse de una proteína, extraer los nombres completos de los aminoácidos.

2. Clasificación de cadenas

La función clasificarCadena permite identificar si una cadena representa una secuencia de ADN, ARN o una proteína, comparando los caracteres presentes con conjuntos predefinidos.

Código fuente

```
TipoCadena clasificarCadena(const std::string& cadena) {
       std::unordered_set<char> adn = { 'A', 'C', 'G', 'T' };
2
       std::unordered_set<char> arn = { 'A', 'C', 'G', 'U' };
3
       std::unordered_set<char> aminoacidos = { 'A', 'C', 'D',
                                                                 'E', 'F', 'G', 'H',
4
                                                 'I', 'K', 'L', 'M', 'N', 'P', 'Q',
5
                                                 'R', 'S', 'T', 'V', 'W', 'Y' };
6
7
       std::unordered_set<char> caracteres;
8
9
       for (char c : cadena) {
           if (std::isalpha(c))
10
               caracteres.insert(std::toupper(c));
11
12
13
       if (std::all_of(caracteres.begin(), caracteres.end(), [&](char c) { return adn.
14
           count(c); }))
           return TipoCadena::ADN;
15
16
       if (std::all_of(caracteres.begin(), caracteres.end(), [&](char c) { return arn.
17
           count(c); }))
           return TipoCadena::ARN;
18
19
       if (std::all_of(caracteres.begin(), caracteres.end(), [&](char c) { return
20
           aminoacidos.count(c); }))
           return TipoCadena::PROTEINA;
21
22
       return TipoCadena::DESCONOCIDA;
23
```

Listing 1: Función clasificarCadena

3. Extracción de aminoácidos

La función extraerAminoacidos convierte una cadena con letras correspondientes a aminoácidos en sus respectivos nombres completos.

Código fuente

```
std::vector<std::string> extraerAminoacidos(const std::string& cadena) {
       std::unordered_map<char, std::string> mapa = {
2
                              {'C', "Ciste na"}, {'D', "Aspartato"}, {'E', "Glutamato"},
           {'A', "Alanina"},
3
           {'F', "Fenilalanina"}, {'G', "Glicina"}, {'H', "Histidina"}, {'I', "Isoleucina"
4
           {'K', "Lisina"},
                               {'L', "Leucina"}, {'M', "Metionina"}, {'N', "Asparagina"
5
               },
           {'P', "Prolina"}, {'Q', "Glutamina"}, {'R', "Arginina"}, {'S', "Serina"},
6
                               {'V', "Valina"},
                                                  {'W', "Tript fano"}, {'Y', "Tirosina"}
7
           {'T', "Treonina"},
       };
8
9
       std::vector<std::string> resultado;
10
11
       for (char c : cadena) {
12
           c = std::toupper(c);
           if (mapa.count(c))
13
               resultado.push_back(mapa[c]);
14
15
       return resultado;
16
17
```

Listing 2: Función extraerAminoacidos

4. Pruebas unitarias

Para verificar el correcto funcionamiento de las funciones, se utilizaron pruebas unitarias mediante Google Test. A continuación se muestran las pruebas que validan la función clasificarCadena:

```
TEST (ClasificacionTest, EsADN) {
1
       EXPECT_EQ(clasificarCadena("ACGT"), TipoCadena::ADN);
2
3
4
   TEST (ClasificacionTest, EsARN) {
5
       EXPECT_EQ(clasificarCadena("ACGU"), TipoCadena::ARN);
6
   }
7
8
   TEST (ClasificacionTest, EsProteina) {
9
       EXPECT_EQ(clasificarCadena("ACDEFGHIKLMNPQRSTVWY"), TipoCadena::PROTEINA);
10
11
12
   TEST (ClasificacionTest, EsDesconocida) {
13
       EXPECT_EQ(clasificarCadena("XYZ123"), TipoCadena::DESCONOCIDA);
14
```

Listing 3: Pruebas unitarias con Google Test

Explicación

• Se comprueba que cadenas como .^ACGT" sean reconocidas como ADN.

- .^ACGU.^{es} identificada correctamente como ARN.
- Una secuencia de todos los aminoácidos estándar se clasifica como proteína.
- Una cadena con caracteres inválidos o no biológicos se clasifica como desconocida.

5. Conclusión

Las funciones implementadas permiten identificar de forma confiable el tipo de cadena biológica que se analiza, y en el caso de proteínas, extraer sus componentes en forma legible. Las pruebas unitarias confirman su funcionamiento y robustez.