Techniki inteligencji obliczeniowej – zadanie 3

Mateusz Broncel 246999

Wybrana metoda:

Metoda, która została wybrana w celu porównania wyników powstałych z jej implementacji w porównaniu do wyników algorytmu genetycznego to Symulowane wyżarzanie.

Metoda ta należy do algorytmów heurystycznych. Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego *temperaturą*, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Metodę zaimplementowano "na odwrót", to znaczy największe prawdopodobieństwo zaakceptowania gorszego osobnika było przy temperaturze bardzo niskiej.

Wzór na prawdopodobieństwo zaakceptowania gorszego osobnika jakiego użyto podczas badań metody to: $\frac{|\Delta Energii*mnożnik|}{temperatura}$ < random(0,1), gdzie mnożnik to dodatkowo wprowadzona zmienna mająca na celu ulepszyć uzyskiwane rozwiązania, z powodu niewielkich zmian w energii osobnika po przeprowadzonej mutacji

Badanie porównujące wpływ wielkości temperatury maksymalnej na wyniki

Cel:

Celem badania będzie porównanie wielkości temperatury maksymalnej na uzyskane wartości funkcji przystosowania

Stałe:

Mnożnik energii: 5

Zmienna:

• Temperatura maksymalna

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Wielkość temperatury maksymalnej	best	worst	avg
100	29.3	76.75	58.44
500	17.45	42.25	29.08
1000	15.95	38.3	28.77
5000	10.95	51.15	22.34
10000	12.65	46.85	24.225

Wnioski:

Badania zostało przeprowadzone 10 razy dla każdej temperatury maksymalnej. Można zauważyć, że wraz ze wzrostem temperatury maksymalnej mamy do czynienia z poprawiającymi się wynikami, ma to sens, ponieważ zwiększa to dostępną przestrzeń przeszukiwanych rozwiązań. Jednak zwiększenie temperatury do 10000 nie przyniosło kolejnych ulepszeń wyników, może mieć to związek ze zbyt małą wartością mnożnika w stosunku do dobranej temperatury maksymalnej.

Badanie porównujące wpływ wielkości zastosowanego mnożnika na wyniki

Cel:

Celem badania będzie porównanie wielkości zastosowanego mnożnika na uzyskane wartości funkcji przystosowania

Stałe:

• Temperatura maksymalna: 5000

Zmienna:

• Mnożnik energii

Tabela porównująca uzyskane wyniki przystosowania:

Zmienna	Algorytm genetyczny		
Wielkość mnożnika	best	worst	avg
1	16.75	45.6	28.08
2	15.35	33.8	23.21
3	18.05	34.85	26.09
4	10.95	30.05	19.81
5	10.95	51.15	22.34
6	11.65	30.09	22.50
7	9.35	34.6	20.94
8	13	27.05	19.11
9	14.75	44.1	24.76
10	11.35	34.25	20.46

Wnioski:

Badanie zostało przeprowadzone 10 razy dla każdej wielkości mnożnika. Można zauważyć, że wielkość mnożnika ma wpływ na jakość rozwiązania i jego optymalna wielkość mieści się gdzieś pomiędzy 7 a 8.

Porównanie wyników z algorytmem genetycznym

Cel:

Celem porównania będzie zestawienie wyników otrzymanych stosując do tego samego zadania algorytm genetyczny oraz algorytm symulowanego wyżarzania.

Stałe zastosowane dla algorytmu genetycznego:

Rozmiar populacji: 100Liczba pokoleń: 100

Prawdopodobieństwo krzyżowania: 0.6Prawdopodobieństwo mutacji: 0.6

Zmienne:

• Liczba punktów krzyżowania

• Operator selekcji

Wielkość elity

Tabela porównująca uzyskane wyniki przystosowania posortowana po najlepszym rozwiązaniu:

Zmienna	Algorytm genetyczny	
Rodzaj algorytmu	best	avg
Gen (turniej)	8.95	11.104
SW (mnożnik=7)	9.35	20.94
Gen (turniej, elitarna, elita=10)	10.2	12.21
Gen (turniej, elitarna, elita=0)	10.25	12.33
SW (mnożnik=4)	10.95	19.81
SW (mnożnik=5)	10.95	22.34
Gen (ruletka)	11.15	22.84
SW (mnożnik=10)	11.35	20.46
SW (mnożnik=6)	11.65	22.50
Gen (ruletka, krzyż równomierne)	12.5	19.12
Gen (turniej, elitarna, elita=25)	12.89	15.7
SW (mnożnik=8)	13	19.11
Gen (turniej, elitarna, elita=50)	13.92	16.2
SW (mnożnik=9)	14.75	24.76

SW (mnożnik=2)	15.35	23.21
SW (mnożnik=1)	16.75	28.08
SW (mnożnik=3)	18.05	26.09
Gen (ruletka, krzyż	18.4	29.44
wielopunktowe=5)		
Gen (ruletka, krzyż	19.7	30.26
jednopunktowe)		

Wnioski:

Z powyższego porównania widać, że zastosowane metody dają zbliżone do siebie wyniki, jednak algorytm genetyczny wykorzystujący operator turnieju daje najlepsze wyniki. Widzimy jednak, że symulowane wyżarzanie daje wyniki często lepsze od operatora ruletki zmodyfikowanego o różne rodzaje krzyżowania. Prawdopodobnie powodem, dla którego algorytm genetyczny radzi sobie najlepiej z problemem jest fakt, że oprócz mutacji, która zastosowana jest również w algorytmie symulowanego wyżarzania, korzysta on również z dodatkowych modulatorów takich jak krzyżowania, które pozwala szybciej zbiegać do lepszych rozwiązań.