Fonctions génératrices

Cours	
1	Définition
2	Propriétés, régularité
3	Fonction génératrice et somme
4	Annexe : Dérivabilité et espérance
Exercic Exe	ces ercices et résultats classiques à connaître
	Identité de Wald
	ercices du CCINP
Exe	ercices
Pet	tits problèmes d'entrainement

Sauf mention contraire, (Ω, \mathcal{A}, P) est un espace probabilisé.

On s'intéresse dans ce chapitre uniquement aux variables aléatoires qui sont à valeurs dans \mathbb{N} . Typiquement, celles qui apparaissent dans des situations de comptage.

1 Définition

Lemme. Soit X une variable aléatoire à valeurs dans $\mathbb N.$ La série entière :

$$\sum_{n \ge 0} P(X = n)t^n$$

converge normalement sur [-1,1] (et même DF(0,1) si on considère la variable complexe), et son rayon de convergence satisfait : $R_X \ge 1$.

Définition. Soit X une variable aléatoire à valeurs dans \mathbb{N} . On définit la fonction génératrice de X par :

$$G_X: t \mapsto \sum_{n \geqslant 0} P(X=n)t^n$$

Remarque. $G_X(1) = 1$ et $G_X(t) = E(t^X)$ par la formule de transfert.

Proposition. La loi d'une variable aléatoire à valeurs dans N est caractérisée par sa fonction génératrice.

Fonctions génératrices des lois usuelles.

- Si $X \sim \mathcal{U}([1, n])$, alors $G_X(t) = \frac{1}{n}(t + t^2 + \dots + t^n)$.
- Si $X \sim \mathcal{B}(p)$, alors $G_X(t) = pt + (1-p)$.
- Si $X \sim \mathcal{B}(n, p)$, alors $G_X(t) = (pt + (1 p))^n$.
- Si $X \sim \mathcal{G}(p)$, alors $G_X(t) = \frac{pt}{1 (1 p)t}$.
- Si $X \sim \mathcal{P}(\lambda)$, alors $G_X(t) = e^{\lambda(t-1)}$.

2 Propriétés, régularité

<u>Proposition.</u> On conserve les notations précédentes. G_X est continue sur [-1,1] (et même sur DF(O,1) si on considère la variable complexe).

Proposition. On conserve les notations précédentes.

X admet une espérance finie si et seulement si G_X est dérivable en 1 (à gauche).

Dans ce cas :

$$E(X) = G_X'(1)$$

Proposition. On conserve les notations précédentes.

 \overline{X} admet une variance si et seulement si G_X est deux fois dérivable en 1 (à gauche).

Dans ce cas:

$$G_X''(1) = E(X(X-1))$$

 $\textbf{Remarque.} \ \ \textit{De cette \'egalit\'e, il faut savoir retrouver rapidement l'expression de la variance \`a l'aide de $G:$$

$$V(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

Exemple. Retrouver par les fonctions génératrices espérance et variance des lois usuelles.

2/7 http://mpi.lamartin.fr **2024-2025**

Fonction génératrice et somme

Proposition. Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} . Si X et Y sont indépendantes, alors pour tout $t \in]-1,1[$:

$$G_{X+Y}(t) = G_X(t) G_Y(t)$$

où $G_X(t)G_Y(t)$ est le produit de Cauchy des deux séries entières.

Exemple. Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs λ et μ . Alors:

$$X + Y \sim \mathscr{P}(\lambda + \mu)$$

Proposition. Soit X_1, X_2, \ldots, X_n des variables aléatoires à valeurs dans \mathbb{N} . Si elles sont indépendantes, alors pour tout $t \in]-1,1[$:

$$G_{X_1+X_2+\cdots+X_n}(t) = G_{X_1}(t) G_{X_2}(t) \ldots G_{X_n}(t)$$

Annexe : Dérivabilité et espérance

Soit $E(X) < +\infty$, G_X est dérivable Proposition. en 1.

Preuve. On suppose X d'espérance finie. Notons, pour $t \in [0,1]$, $f_n(t) = P(X = n)t^n$. On applique le théorème de classe C^1 des séries de fonctions :

- $\sum f_n$ converge simplement sur [0,1]
- les f_n sont de classe \mathcal{C}^1 sur [0,1] et $f_n'(t)=nP(X=n)t^{n-1}$
- Pour tout $t \in [0,1], |f'_n(t)| \leq nP(X=n)$ est une majoration indépendante de t par le terme général d'une série convergente, puisqu'on a supposé $E(X) < +\infty$, donc $\sum f_n'$ converge normalement, donc uniformément, sur [0, 1].

Par suite, G_X est dérivable sur [0,1], et, pour tout $t \in [0,1]$, $G'_X(t) = \sum_{n=1}^{+\infty} nP(X = n)t^{n-1}$. En particulier, $G'_X(1) =$

$$\sum_{n=1}^{+\infty} nP(X=n) = E(X).$$

Proposition. Si G_X est dérivable en 1, alors E(X) < $+\infty$.

Preuve. On suppose G_X dérivable en 1. Elle l'est donc sur [0,1], et pour $t\in [0,1[,\,G_X'(t)=\sum_{n=1}^{+\infty}nP(X=n)t^n.$ (On n'est pas sûr de pouvoir dériver terme à terme en 1).

Vérifions que G_X' est majorée sur [0,1[.

On suppose par l'absurde que ce n'est pas le cas. On remarque que G_X' est croissante sur [0,1[, et donc, par limite monotone:

$$G_X'(t) \xrightarrow[t \leq 1]{} +\infty$$

La continuité de G_X étant assurée en 1, le théorème limite de la dérivée s'applique, et on déduit que G_X n'est pas dérivable en 1, mais que son graphe présente une demi-tangente verticale.

Cela contredit l'hypothèse, c'est donc qu'il existe M tel que $\forall t \in [0, 1[, G'_X(t) \leqslant M]$.

Fixons $N \in \mathbb{N}$. On a, pour tout $t \in [0,1[$:

$$\begin{split} \sum_{n=1}^N nP(X=n)t^{n-1} \leqslant \sum_{n=1}^{+\infty} nP(X=n)t^{n-1} \\ &\text{en ajoutant des termes} \geqslant 0 \\ &= G_X'(t) \\ \leqslant M \end{split}$$

On a donc, en passant à la limite pour $t \stackrel{<}{>} 1$:

$$\sum_{n=1}^{N} nP(X=n) \leqslant M$$

La suite des sommes partielle de la série à termes positifs $\sum nP(X=n)$ est donc majorée par M, c'est que la série converge. On a montré que $E(X) < +\infty$.

Exercices et résultats classiques à connaître

Identité de Wald

85.1

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant toutes la même loi que X, à valeurs dans \mathbb{N}^* . Soit N une autre variable aléatoire à valeurs dans \mathbb{N} , indépendante des X_i . On s'intéresse à :

$$S = X_1 + X_2 + \dots + X_N$$

On note qu'ici le nombre de termes dans la somme est la variable aléatoire N.

- (a) Qu'est-il raisonnable de conjecturer quant à la valeur de E(S)?
- (b) Justifier que S est une variable aléatoire à valeurs dans $\mathbb{N}.$
- (c) Montrer que, pour $t \in [-1, 1]$:

$$G_S(t) = G_N(G_X(t))$$

(d) On suppose que N et X sont d'espérance finie. Établir :

$$E(S) = E(N)E(X)$$

(e) On lance une pièce honnête. Tant que l'on obtient « pile », on lance un dé et on avance son pion du nombre de cases correspondantes. De combien de case avance le pion en moyenne?

4/7 http://mpi.lamartin.fr 2024-2025

85.2

Exercices du CCINP

GNP 96

Soit X une variable aléatoire à valeurs dans \mathbb{N} , de loi de probabilité donnée par : $\forall n \in \mathbb{N}, P(X = n) = p_n$.

La fonction génératrice de X est notée G_X et elle est définie par :

$$G_X(t) = E[t^X] = \sum_{n=0}^{+\infty} p_n t^n$$

- 1. Prouver que l'intervalle]-1, 1[est inclus dans l'ensemble de définition $de G_X$.
- 2. Soit X_1 et X_2 deux variables aléatoires indépendantes à valeurs dans \mathbb{N} . On pose $S = X_1 + X_2$.

Démontrer que $\forall t \in]-1,1[,G_S(t)=G_{X_1}(t)G_{X_2}(t):$

- (a) en utilisant le produit de Cauchy de deux séries entières :
- (b) en utilisant uniquement la définition de la fonction génératrice.

Remarque: on admettra, pour la question suivante, que ce résultat est généralisable à n variables aléatoires indépendantes à valeurs dans \mathbb{N} .

3. Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1 et une boule numérotée 2.

Soit $n \in \mathbb{N}^*$. On effectue n tirages successifs, avec remise, d'une boule dans ce sac.

On note S_n la somme des numéros tirés.

Soit $t \in]-1, 1[$.

Déterminer $G_{S_n}(t)$ puis en déduire la loi de S_n .

85.3

GNP 103.1

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

1. (a) Soit $(\lambda_1, \lambda_2) \in (]0, +\infty[)^2$. Soit X_1 et X_2 deux variables aléatoires définies sur (Ω, \mathcal{A}, P) . On suppose que X_1 et X_2 sont indépendantes et suivent des lois de Poisson, de paramètres respectifs λ_1 et λ_2 . Déterminer la loi de $X_1 + X_2$.

GNP 110

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

- 1. Soit X une variable aléatoire définie sur (Ω, \mathcal{A}, P) et à valeurs dans N. On considère la série entière $\sum t^n P(X=n)$ de variable réelle t. On note R_X son rayon de convergence.
 - (a) Prouver que $R_X \geqslant 1$.

On pose $G_X(t) = \sum_{n=0}^{+\infty} t^n P(X=n)$ et on note D_{G_X} l'ensemble de définition de G_X . Justifier que $[-1,1] \subset D_{G_{\mathbf{Y}}}$.

Pour tout réel t fixé de [-1,1], exprimer $G_X(t)$ sous forme d'une espérance.

- (b) Soit $k \in \mathbb{N}$. Exprimer, en justifiant la réponse, P(X = k) en fonction de $G_X^{(k)}(0)$.
- 2. (a) On suppose que X suit une loi de Poisson de paramètre λ . Déterminer D_{G_X} et, pour tout $t \in D_{G_X}$, calculer $G_X(t)$.
 - (b) Soit X et Y deux variables aléatoires définies sur un même espace probabilisé, indépendantes et suivant des lois de Poisson de paramètres respectifs λ_1 et λ_2 . Déterminer, en utilisant les questions précédentes, la loi de X+Y.

Exercices

85.5

Soit X_1, \ldots, X_m des v.a. indépendantes, de même loi géométrique $\mathscr{G}(p)$ où $p \in [0, 1]$. On définit $Y = X_1 + \cdots + X_m$.

- (a) Déterminer la fonction génératrice de Y.
- (b) En déduire la loi de Y.

(c) Calculer l'espérance et la variance de Y.

85.6

Lors d'une compétition de saut en hauteur, un athlète tente de franchir des barres successives numérotées $1, 2, \ldots, n, \ldots$ Il n'a droit qu'à un seul essai par barre. On suppose les sauts indépendants, et que la probabilité de réussite du n-ième saut est $\frac{1}{n}$.

- (a) On note X la variable aléatoire égale au numéro du dernier saut réussi. Calculer la loi de X.
- (b) Déterminer la fonction génératrice de X.
- (c) Montrer que X^2 est d'espérance finie et calculer E(X) et V(X).

85.7

Un poule pond N œufs, où N suit une loi de Poisson de paramètre λ . Chaque œuf éclot avec une probabilité p, et les éclosions sont des événements indépendants. On note K la variable aléatoire donnant le nombre de poussins. Calculer la fonction génératrice de K, puis reconnaître la loi de K.

85.8

On lance une infinité de fois une pièce ayant une probabilité $p \in]0,1[$ de donner pile, les lancers étant indépendants. On note N la nombre de lancer nécessaires pour obtenir le premier pile. On lancer ensuite N fois la même pièce, et on note X le nombre de pile obtenus.

- (a) Déterminer la loi de N, puis la loi de X.
- (b) Calculer la fonction génératrice de X.
- (c) En déduire E(X) et V(X).

85.9

Soit X une v.a. suivant la loi $\mathscr{U}(\llbracket 1, N \rrbracket)$ avec $N \in \mathbb{N}^*$.

- (a) Donner la fonction génératrice de X.
- (b) En déduire l'espérance et la variance de X.

Petits problèmes d'entrainement

85.10

On considère une expérience aléatoire ayant une probabilité p de réussir de q=1-p d'échouer définissant une suite de variables de Bernoulli indépendantes $(X_n)_{n\geqslant 1}$.

Pour $m \in \mathbb{N}^*$, on note S_m la variable aléatoire déterminant le nombre d'essais jusqu'à l'obtention de m succès :

$$S_m = k \iff X_1 + \dots + X_k = m \text{ et } X_1 + \dots + X_{k-1} < m$$

- (a) Déterminer la loi et la fonction génératrice de S_1 .
- (b) Même question avec $S_m S_{m-1}$ pour $m \ge 2$.
- (c) Déterminer la fonction génératrice de S_m puis la loi de S_m .

85.11

On considère une expérience aléatoire ayant la probabilité p>0 de réussir et 1-p d'échouer.

On répète l'expérience indépendamment jusqu'à obtention de m succès et on note X le nombre d'essais nécessaires à l'obtention de ces m succès.

- (a) Reconnaître la loi de X lorsque m=1.
- (b) Déterminer la loi de X dans le cas général $m \in \mathbb{N}^*$.
- (c) Exprimer le développement en série entière de

$$t \mapsto \frac{1}{(1-t)^m}$$

(d) Déterminer la fonction génératrice de X et en déduire l'espérance de X.

85.12

Soit n un entier et X une variable aléatoire à valeurs naturelles dont la loi est donnée par :

$$P(X = k) = a \binom{n+k}{k} p^k \text{ avec } a > 0 \text{ et } p \in]0,1[$$

Utiliser une fonction génératrice pour calculer espérance et variance de X.

85.13

- (a) Quelles sont les racines réelles du polynôme $1 + X + \cdots + X^{10}$?
- (b) Utiliser les fonctions génératrices pour montrer qu'il est impossible de truquer deux dés à 6 faces de façon à ce que, lors d'un lancer, la somme des deux dés suive la loi $\mathcal{U}([2,12])$.

85.14

On considère une famille $(X_{n,p})_{n,p\in\mathbb{N}}$ de variables aléatoires indépendnates de même loi X, à valeurs dans \mathbb{N} , et $(Z_n)_{n\in\mathbb{N}}$ la suite de variables aléatoires définie par récurrence par :

$$Z_0 = 1$$
 et $Z_{n+1} = \sum_{j=1}^{Z_n} X_{j,n+1} \ \forall n \in \mathbb{N}$

Concrètement, $(Z_n)_n$ modélise l'évolution d'une population dont, à chaque instant n, les individus meurent en donnant naissance, de manière indépendanteà à des enfants dont le nombre suit la loi X.

On note φ la fonction génératrice de X, et on suppose que X admet une espérance finie que l'on note m=E(X), et on suppose aussi que P(X=0)+P(X=1)<1.

- (a) Montrer que φ est strictement croissante, dérivable, et que φ' est strictement croissante, sur [0,1].
- (b) Pour $n \in \mathbb{N}$, on note φ_n la fonction génératrice définie sur [0,1] de Z_n . Montrer que $\varphi_{n+1} = \varphi_n \circ \varphi$. En déduire $E(Z_n)$.
- (c) Soit T la variable aléatoire représentant le plus petit entier n (ou $+\infty$ si cet entier n'existe pas) tel que $Z_n = 0$ (extinction de la population). Montrer que $P(T < +\infty)$ est le plus petit point fixe de φ .
- (d) Montrer que la population s'éteint presque sûrement si et seulement si $m \leq 1$.