

图 1: 次数与值的关系, $\lambda = 0.85, N = 200$, 舍弃前 100 次迭代

计算物理第 9 次作业第 16 题

1 题目重述

以 $x_{n+1} = \lambda \sin(\pi x_n)$ 为迭代方程进行迭代:

- (1) 画出系统状态随着参数 λ 的变化图,要求在图中体现出定值状态、倍周期分叉与混沌状态;
- (2) 列出各个倍周期分叉处的 λ 值,求相应的 Feigenbaum 常数。

搜索步长限制,此处只能求出 3 个 Feigenbaum 常数与 5 个 λ 值。求出更多的分裂周期在这种计算精度下是难以达到的

2 题目分析

2.1 第一间

由题意可得: 本题的核心为

$$x_{n+1} = \lambda \sin \pi x_n \tag{1}$$

迭代的形式在实现上是简单的,重点在于结果的分析。对于若得到一系列结果,可进行频数统计,获得多个离散的峰值点;但本作业使用的是更直接的方法:

若以迭代次数为一轴,次数 n 对应的 x_n 为另一轴,并舍弃掉最开始达到周期态前的弛豫过程,可得如图一的图像:

图 2: Feigenbaum 图, $\lambda=0.85, n=200$, 步长 0.001, 舍弃前 100 次迭代

可以发现,图像清晰地呈出条带状图样,若将上图的两轴对换后将多个 λ 处的图按 λ 的顺序组合起来,即可得到常用的 Feigenbaum 图:由此图可以清晰地得到相关的状态的定性表述。

2.2 第二问

对于参数使得产生了周期不为 0 的循环,若要求出循环周期长,最自然的方法就是使用 FFT 算法,将得到的 x_n-n 的关系进行变换,将会得到如图三图样:分析可得,图中最低的非零分量出现在 500 处。此处 $k=4,f_{min}=500,N=2000$ 。最低非零频率分量、周期的与数组长度之间的关系 $f_{min}k=N$ 是容易证明的:只需知道最小正周期对应着最小的频率,同时对频率由有关系 $f=\frac{N}{2}$ 。

据此,我们可提出一种方法: $f_{min}k = N$,即有 $k = \frac{N}{f_{min}}$,可由数组的频域特征直接得出周期。

值得注意的是,在实际操作中,除了整周期和各次谐波对应的频率分量外,其他处的分量并非严格为0,即需要手动依据经验选择过滤标准,使得正确的频率可被选中。好在远离混沌点时这类工作一般是容易的。

3 结果

如图 4,第一张图即为 Feigenbaum 图,与上文是同一张,可以清晰地观察到定值状态、倍周期分叉与混沌状态。

第二张图为程序输出, 其中 n 对应的 λ 为 n 周期分裂为 2n 周期时的 λ 值。计算出的 Feigenbaum 波动较大, 但平均值与标准值 $\delta=4.669$ 相对误差小于百分之 3, 可以认为具有较好的精度。

图 3: 将 x_n 进行 FFT 并取模的结果, $\lambda=0.85, N=2000$,舍弃前 100 次迭代

参考文献

[1] 丁泽军. 计算物理讲义 [M]

图 4: 程序运行结果