A fact about fields

Observation. $\{0\}$ is a field, with algebraic operations $0 \cdot 0 = 0 = 0 + 0$.

Proposition

If F is a field with more than one element, then $0 \neq 1$.

Proof. Find $x \in F$ different from 0. Then $0 = x \cdot 0 \neq x \cdot 1 = 1$, hence $0 \neq 1$.

Order

Definition: A relation \leq on a set S is called linear (total) order if:

- (01) Totality: for $a, b \in S$, either $a \leq b$, or $b \leq a$.
- (O2) Antisymmetry: if $a \le b$ and $b \le a$, then a = b.
- (O3) Transitivity: if $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.

We write a < b if $a \le b$, $a \ne b$.

Definition: A field F is called ordered if it is equipped with linear order \leq s.t.:

- (O4) If $a, b, c \in F$, and $a \leq b$, then $a + c \leq b + c$.
- (05) If $a, b, c \in F$, $a \leq b$, and $c \geq 0$, then $ac \leq bc$.

Examples of ordered fields. (\mathbb{Q}, \leqslant) , (\mathbb{R}, \leqslant) .

 \mathbb{C} is a field, but cannot be equipped with a linear order.

Properties of ordered fields

Theorem (Theorem 3.2 – p. 16 of text)

Suppose F is an ordered field, $a, b, c \in F$. Then:

- If $a \leqslant b$, then $-b \leqslant -a$.
- **1** If $a \leqslant b$, and $c \leqslant 0$, then $bc \leqslant ac$.
- $0 \leqslant a^2 \text{ (for all } a \in F).$
- 0 < 1.
- If 0 < a, then $0 < a^{-1}$.
- **1** If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Proof of (iii). $b \ge 0$, hence, by (O5), $0 \cdot b \le ab$. But, $0 \cdot b = 0$.

Fact. \mathbb{C} is not an ordered field.

Proof. $\mathbb C$ is a field. Suppose, for the sake of contradiction, that \leqslant determines a linear order on $\mathbb C$. Recall: $\iota^2=-1$, where $\iota=\sqrt{-1}$. Then -1>0, hence 1=-(-1)<-0=0. However, 1>0.

Absolute value

Definition (Absolute value - Def. 3.3, p. 17)

Suppose F is an ordered field, $a \in F$. Define

absolute value
$$|a| = \begin{cases} a & a \geqslant 0 \\ -a & a < 0 \end{cases}$$
.

Meaning: distance between 0 and a (imagine the real line).

Note: |a| = |-a|.

Definition (Distance - Def. 3.4, p. 17)

Suppose F is an ordered field, $a, b \in F$. Define the distance between a and b as dist(a, b) = |a - b|.

Note: dist(a, b) = dist(b, a).

Properties of absolute value

Theorem (Theorem 3.5, p. 17)

Suppose F is an ordered field, $a, b \in F$.

- **1** $|a| \ge 0$.
- |ab| = |a| |b|.
- $|a+b| \le |a| + |b|$ [sometimes called Triangle Inequality].

Corollary (Triangle inequality - Cor. 3.6, p. 18)

For $a, b, c \in F$, $dist(a, c) \leq dist(a, b) + dist(b, c)$.

Proof.
$$dist(a, c) = |a - c| = |(a - b) + (b - c)| \le |a - b| + |b - c|$$

= $dist(a, b) + dist(b, c)$.

Geometric meaning of the triangle inequality

Corollary (Triangle inequality – Cor. 3.6, p. 18)

For $a, b, c \in F$, $dist(a, c) \leq dist(a, b) + dist(b, c)$.

In a triangle, the length of one side cannot exceed the total length of the other two.

Proof: $|a + b| \le |a| + |b|$. $a \le |a|$ and $b \le |b|$, so $a + b \le |a| + |b|$.

Similarly,
$$(-a) + (-b) \le |-a| + |-b| = |a| + |b|$$
.

But
$$(-a) + (-b) = -(a+b)$$
, hence $-(a+b) \le |a| + |b|$.

$$|a+b|$$
 equals either $a+b$ or $-(a+b)$, hence $|a+b| \le |a|+|b|$.

Section 4: Upper bound, maximum, etc.

Definition

Suppose $S \subset \mathbb{R}$, $S \neq \emptyset$.

- x is an upper bound for S if $x \ge s \ \forall s \in S$.
- *S* is bounded above if it has an upper bound.
- x is the maximum of S (max S) if x is an upper bound, and $x \in S$.
- Lower bound, minimum are defined similarly.
- *S* is bounded if it is bounded both above and below.

Observation. max S is unique. If $x, y \in S$ are upper bounds for S, then x = y. Indeed, then $x \leqslant y$, and $y \leqslant x$, so x = y.

Examples. 1. $A = \{1, 3, 5, 7, 11\}$. max A = 11. x is an upper bound for A iff $x \ge 11$. min A = 1. x is a lower bound for A iff $x \le 1$.

Every finite set has max and min. For infinite sets, things are different.

2. $B = (-\infty, 0)$ is not bounded below. x is an upper bound for B iff $x \ge 0$. B has no maximum. 0 is the least (smallest) upper bound.

Completeness axiom (p. 23)

Axiom (Completeness axiom)

If $S \subset \mathbb{R}$ is non-empty and bounded above, then it has (unique) least upper bound, or supremum, denoted by $\sup S$.

We are not constructing $\mathbb R$ in this course; rather, we are describing properties of $\mathbb R$.

Remark. The supremum is unique. Indeed, aiming at a contradiction, suppose x, y are different least upper bounds for $S \le determines$ a linear order on \mathbb{R} (any two elements are comparable), hence either x < y, or y < x. If x < y, then y is not a least upper bound. Similarly, if y < x, then x is not a least upper bound. Either way, a contradiction!

Notation (Section 5). If $S \neq \emptyset$ is not bounded above, we let $\sup S = \infty$.

Completeness makes real numbers special

There are many ordered fields, \mathbb{R} , \mathbb{Q} , ...

Completeness fails for \mathbb{Q} . Let $S = \{r \in \mathbb{Q} : r > 0, r^2 < 2\}$ (in other words, $S = \{r \in \mathbb{Q} : 0 < r < \sqrt{2}\}$). Then no $u \in \mathbb{Q}$ can be the supremum of S.

- If $u < \sqrt{2}$, then (by denseness of rationals, to be discussed) $\exists v \in (u, \sqrt{2}) \cap \mathbb{Q}$, so $v \in S$; so u is not an upper bound.
- If $u > \sqrt{2}$, then (by denseness of rationals again) $\exists v \in (\sqrt{2}, u) \cap \mathbb{Q}$, so v is an upper bound on S; so u is not the least upper bound.

Theorem (Characterization of reals)

The set of reals is the unique complete ordered field.

Consequences of completeness axiom

Proposition (Definition 4.3 + Corollary 4.5)

If $S \subset \mathbb{R}$ is non-empty and bounded below, then it has (unique) greatest lower bound, or infimum, denoted by inf S.

Notation. If $S \neq \emptyset$ is not bounded below, we let $\inf S = -\infty$.

Proposition (Archimedean Property – p 25)

If $a, b \in \mathbb{R}$, a > 0, b > 0, then $\exists n \in \mathbb{N}$ s.t. na > b.

Corollary

For x > 0, $\exists m, k \in \mathbb{N}$ s.t. $\frac{1}{k} < x < m$.

Proof. (1) Use Archimedean Property with a = x, b = 1. Find $k \in \mathbb{N}$ s.t. $kx > 1 \Leftrightarrow x > \frac{1}{k}$.

(2) Use Archimedean Property with a=1, b=x. Find $m \in \mathbb{N}$ s.t. m>x.

Proof of Archimedean Property

Lemma

 \mathbb{N} is not bounded above.

Proof. Suppose, for the sake of contradiction, that \mathbb{N} is bounded above. Let $x = \sup \mathbb{N}$. x - 1 is not an upper bound for \mathbb{N} , hence $\exists n \in \mathbb{N}$ with n > x - 1. Then $x < n + 1 \in \mathbb{N}$, contradiction!

Proof of Archimedean Property. To arrive at a contradiction, suppose Archimedean Property fails: there exist a, b > 0 so that $na \le b \ \forall \ n \in \mathbb{N}$. Then $n \le a^{-1}b \ \forall \ n \in \mathbb{N}$. IOW $a^{-1}b$ is an upper bound for \mathbb{N} , which does not exist!

Denseness of \mathbb{Q} (Theorem 4.7)

Theorem (Denseness of \mathbb{Q})

 \mathbb{Q} is dense in \mathbb{R} – in other words, if $a,b\in\mathbb{R}$, a< b, then $\exists r\in\mathbb{Q}\cap(a,b)$.

Remark

In fact, (a,b) contains infinitely many rational points. Indeed, find $r_1 \in (a,b) \cap \mathbb{Q}$. Find an interval $(a_1,b_1) \subset (a,b) \setminus \{r_1\}$. Find $r_2 \in (a_1,b_1) \cap \mathbb{Q}$, and an interval $(a_2,b_2) \subset (a_1,b_1) \setminus \{r_2\}$. Proceeding further in the same manner, we find distinct rational numbers $r_1, r_2, \ldots \in (a,b)$.

Denseness of \mathbb{Q} (Theorem 4.7)

Theorem (Denseness of \mathbb{Q})

 \mathbb{Q} is dense in \mathbb{R} – in other words, if $a,b\in\mathbb{R}$, a< b, then $\exists r\in\mathbb{Q}\cap(a,b)$.

Lemma. If $x, y \in \mathbb{R}$, y - x > 1, then $(x, y) \cap \mathbb{Z} \neq \emptyset$.

Proof of Lemma. Need to find $m \in \mathbb{Z}$, x < m < y. Use Archimedean property to pick $k \in \mathbb{N}$ with k > |x| + |y|.

Then $S = \{n \in \mathbb{Z} : |n| \le k, n > x\}$ is a non-empty (since $k \in S$) finite set, hence it has a minimum m. This m works for us. Indeed, m > x. Want: m < y. If $m \ge y$, then $k \ge m > m - 1 \ge y - 1 > x$, so $m - 1 \in S$, which contradicts the minimality of m.

Proof of denseness of \mathbb{Q} . Need to show that, if $a, b \in \mathbb{R}$, a < b, then $(a, b) \cap \mathbb{Q} \neq \emptyset$.

Use Arcimedean Property to find $n \in \mathbb{N}$ s.t. n(b-a) > 1.

Then nb - na > 1, hence, by Lemma, $\exists m \in \mathbb{Z} \cap (na, nb)$.

Conclude: $\frac{m}{n} \in (a, b)$.