Trabajo Práctico 4,5 - Polinomios

Santiago

- 1. Sean $p, q, r \in \mathbb{K}[x]$, probar que:
 - (a) Si $p|q \neq p|r$ entonces p|(mq+nr) para todo $m, n \in \mathbb{K}[x]$.

Como $p|q \neq p|r$

$$\rightarrow q = pa \quad \text{y} \quad r = pb \qquad a, b \in \mathbb{K}[x]$$

Entonces, dado $m, n \in \mathbb{K}[x]$

$$mq = mpa$$
 y $nr = npb$

Al sumar las dos igualdades

$$mq + nr = mpa + npb$$

Sacando factor común

$$mq + nr = p(ma + nb)$$

Por lo tanto

$$p|(mq+nr)$$

(b) Si p|q y p|q + r entonces p|r.

$$\begin{aligned} p|q \wedge p|q + r &\rightarrow q = pa \wedge q + r = pb \\ &\rightarrow q + r - q = pb - pa \\ &\rightarrow r = p(b-a) \\ &\rightarrow p|r \end{aligned}$$

(c) Si p|q y gr(p) = gr(q) entonces existe $k \in \mathbb{K}$ tal que p = kq.

Primero, tenemos que q = pk. Y como gr(p) = gr(q) ya que $gr(q) = gr(p) + gr(k) \to gr(k) = 0 \to k \in \mathbb{K}$

- 2. Determinar si los siguientes conjuntos de polinomios son subespacios de $\mathbb{K}[x]$.
 - (a) $\mathbb{K}^{(n)}[x] = \{ p \in \mathbb{K}[x] : gr(p) \le n \} \cup \{0\}.$
 - i. El polinomio nulo pertenece al conjunto.
 - ii. Sean $a, b \in \mathbb{K}^{(n)}[x] \to gr(a+b) \le max\{gr(a), gr(b)\} \le n \to a+b \in \mathbb{K}^{(n)}[x]$
 - iii. Sean $a \in \mathbb{K}^{(n)}[x], \lambda \in \mathbb{K} \to gr(\lambda a) = gr(\lambda) + gr(a) \le n \to \lambda a \in \mathbb{K}^{(n)}[x]$

Por lo tanto, $\mathbb{K}^{(n)}[x]$ es un subespacio.

(b) $\{p \in \mathbb{K}[x] : gr(p) = n\} \cup \{0\}.$

Supongamos $a=x^3+x^2$ y $b=-x^3\to a+b=x^2$, el cual no forma parte del conjunto. Con lo cual, no es subespacio.

(c) $\{p \in \mathbb{K}[x] : gr(p) \text{ es impar}\} \cup \{0\}.$

El mismo contraejemplo del inciso anterior funciona en este caso.

3. Raíces de polinomios de grado dos. Sea $p(x) = x^2 + bx + c \in \mathbb{R}[x]$. Probar que

$$p(x) = (x - \lambda_1)(x - \lambda_2)$$
 para $\lambda_1, \lambda_2 \in \mathbb{R}$,

si y sólo si $b^2 \ge 4c$.

- \Rightarrow Las raíces de p son: $\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 4c}}{2}$. Para que $\lambda_{1,2} \in \mathbb{R} \to b^2 \ge 4c$
- \Leftarrow Si $b^2 \ge 4c \to \text{llamando } \lambda_1 \text{ y } \lambda_2 \text{ a las raíces de } p \text{ tenemos que } p(x) = (x - \lambda_1)(x - \lambda_2) \quad \lambda_1, \lambda_2 \in \mathbb{R}$
- 4. Probar que en $\mathbb{R}[x]$ no existen polinomios no nulos tales que $p^2 + q^2 = 0$. Ocurre lo mismo en $\mathbb{C}[x]$?

Sean
$$p(x) = a_n x^n + \dots + a_0$$
 y $q(x) = b_m x^m + \dots + b_0$ con $a_n \neq 0, b_m \neq 0$. Entonces,

$$p^{2}(x) = a_{n}^{2}x^{2n} + \dots + a_{0}^{2}$$
 y $q^{2}(x) = b_{m}^{2}x^{2m} + \dots + b_{0}^{2}$

Para que la suma sea 0, necesito que todos coeficientes de $p^2(x)$ sean los opuestos de $q^2(x)$. Sin embargo, como $a_n \neq b_m \neq 0 \rightarrow a_n^2 + b_m^2 \neq 0$ ya que $a_n, b_m \in \mathbb{R}$.

Diferente es el caso de los complejos: si p(x)=1 y $q(x)=i \rightarrow p^2(x)+q^2(x)=1^2+i^2=0$.

5. Sean $p(x) = 2x^3 - 3x^2 + 1$ y $q(x) = 2x^2 + 4x - 1$, mostrar que no existen c y r en $\mathbb{Z}[x]$ tales que p = cq + r y gr(r) < gr(q). ¿Qué se puede decir de la exitencia del algoritmo de división en $\mathbb{Z}[x]$?

La división arroja el siguiente resultado

guiente resultado
$$\frac{2x^3 - 3x^2}{-2x^3 - 4x^2 + x} + 1 = (2x^2 + 4x - 1)(x - \frac{7}{2}) + 15x - \frac{5}{2}$$

$$\frac{-7x^2 + x + 1}{-7x^2 + 14x - \frac{7}{2}}$$

$$15x - \frac{5}{2}$$

En donde se ve que ni c ni r pertenecen a $\mathbb{Z}[x]$. Por lo tanto, el algoritmo de la división no aplica.

6. Hallar el m.c.d. entre los siguientes polinomios de $\mathbb{R}[x]$.

(a)
$$p(x) = x^5 - 4x^4 - 3x + 1$$
 y $q(x) = 3x^2 + 2x + 1$.

El máximo común divisor es el generador mónico $d \in \mathbb{K}[x]$ del ideal

$$M = \{(x^5 - 4x^4 - 3x + 1)f + (3x^2 + 2x + 1)g \quad f, g \in \mathbb{K}[x]\}$$

Por el Corolario 3.19, sabemos que d divide a p(x) y q(x). Al factorizar los polinomios, estos no comparten ninguna raíz, por ende

$$mcd(p,q) = 1$$

(b)
$$p(x) = x^4 - 2x^3 + 1$$
 y $q(x) = x^2 - x + 2$.

En este caso sucede lo mismo.

(c)
$$p(x) = 2x^3 - 4x^2 + x - 1$$
 y $q(x) = x^3 - x^2 + 2x$.

En este caso también.

- 7. Decir cuáles de los siguientes conjuntos son ideales:
 - (a) $\{p \in \mathbb{K}[x] : gr(p) \ge 2\} \subset \mathbb{K}[x]$.

Como el polinomio nulo no pertenece al conjunto, éste no es un subespacio, entonces no es un ideal.

(b)
$$\{p(x^2 + 4) \in \mathbb{R}[x] : p \in \mathbb{R}[x]\} \subset \mathbb{R}[x].$$

Primero me fijo si es subespacio. Si al conjunto lo llamo M

i.
$$0 \in M$$
 ya que $0 = 0(x^2 + 4), 0 \in \mathbb{R}[x]$

ii. Sea
$$m_1, m_2 \in M \to m_1 + m_2 = p_1(x^2 + 4) + p_2(x^2 + 4) \quad p_1, p_2 \in \mathbb{R}[x] \to m_1 + m_2 = (p_1 + p_2)(x^2 + 4) \quad p_1 + p_2 \in \mathbb{R}[x] \to m_1 + m_2 \in M$$

iii. Sea
$$\lambda \in \mathbb{R}, m \in M \to \lambda m = \lambda p(x^2 + 4) \to \lambda m \in M$$

Por lo tanto, M es subespacio.

Ahora, sea $m \in M, f \in \mathbb{R}[x], mf = p(x^2 + 4)f = pf(x^2 + 4) \in M$. Por ende, M es un ideal.

(c) $p\mathbb{K}[x] \subset \mathbb{K}[x]$, para $p \in \mathbb{K}[x]$.

Es el ideal principal generado por p. Está en la teoría.

(d) Dado $\alpha \in \mathbb{K}, \{p \in \mathbb{K}[x] : p(\alpha) = 0\} \subset \mathbb{K}[x].$

Primero me fijo si es subespacio. Si al conjunto lo llamo M

- i. $0 \in M$ ya que $0(\alpha) = 0$
- ii. Sea $m_1, m_2 \in M \to (m_1 + m_2)(\alpha) = m_1(\alpha) + m_2(\alpha) = 0 + 0 = 0 \to m_1 + m_2 \in M$
- iii. Sea $\lambda \in \mathbb{R}, m \in M \to (\lambda m)(\alpha) = \lambda m(\alpha) = \alpha 0 = 0 \to \lambda m \in M$

Por ende, M es subespacio.

Sea $f \in \mathbb{K}[x], (fp)(\alpha) = f(\alpha)p(\alpha) = f(\alpha)0 = 0 \to fp \in M$. Por lo tanto, M es un ideal.

8. En el álgebra de polinomios con coeficientes reales $\mathbb{R}[x]$, consideremos el ideal $M = (x-1)\mathbb{R}[x] + (x^2-1)\mathbb{R}[x]$. Mostrar que $M = (x-1)\mathbb{R}[x]$.

¿Cambia algo si reemplazamos al cuerpo \mathbb{R} por otr cuerpo arbitrario \mathbb{K} ?

Considerando de entrada al cuerpo \mathbb{K} , tenemos que $x-1=(x-1)1+(x^2-1)0 \to M=(x-1)\mathbb{K}[x]$

- 9. Hallar el generador mónico de los siguientes ideales de $\mathbb{R}[x]$.
 - (a) $M = \{ p \in \mathbb{R}[x] : p(1) = p(2) = 0 \}.$

$$d = (x-1)(x-2) = x^2 - 3x + 2$$

(b) $M = \{ p \in \mathbb{R}[x] : (x - \pi)|p \}.$

$$d = x - \pi$$

(c) $M = \{ p \in \mathbb{R}[x] : p \text{ es divisible por } x^2 + 4 \text{ y } x^4 - 16 \}.$

$$d = (x^4 + 4)(x^4 - 16) = x^8 - 12x^4 - 64$$

- 10. Sea $p(x) = 1 + x + x^2 + x^3$.
 - (a) Calcular p(A) para

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

$$p(A) = I + A + A^2 + A^3 = \begin{pmatrix} 9 & -12 \\ -12 & 21 \end{pmatrix}$$

(b) Probar que A y p(A) conmutan.

$$Ap(A) = p(A)A = \begin{pmatrix} 21 & -33 \\ -33 & 54 \end{pmatrix}$$

- 11. Sean $T \in L(\mathbb{R}^3)$ dada por T(x, y, z) = (-x, -z, 2y) y $p(x) = x^2 + 3 \in \mathbb{R}[x]$.
 - (a) Hallar p(T) y calcular (pT)(1,0,-1).

$$[T]_{\mathcal{E}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix} \to p([T_{\mathcal{E}}]) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \to (pT)(1, 0, -1) = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}$$

(b) Probar que $p(T) \in L(\mathbb{R}^3)$.

p(T)(x,y,z)=(4x,y,z). A partir de acá es fácil comprobar que $p(T)\in \overline{L(\mathbb{R}^3)}$

(c) Escribir la representación matricial de p(T) en la base canónica de $\mathbb{R}^3.$

$$[p(T)]_E = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(d) Probar que $[p(T)]_{\mathcal{E}} = p([T]_{\mathcal{E}})$.

Ya se mostró.