Complejidad y optimización Reducciones desde Vertex Cover

Facultad de Ingeniería. Universidad del Valle

Mayo de 2019

Contenido

- 1 El problema del Máximo Clique
 - Definición
 - Demostración que Máximo Clique es NPC

- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Contenido

- 1 El problema del Máximo Clique
 - Definición
 - Demostración que Máximo Clique es NPC

- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Máximo Clique

Definición

Una instancia es un grafo G = (V, E) y un entero $j \leq V$

Pregunta

 $_i$ El grafo contiene un clique de j vértices, donde cada subconjunto de V de tamaño j donde cada par de vértices está conectado entre ellos?

Máximo Clique

Definición

Ejemplo, el siguiente grafo contiene un clique de tamaño 5.

Máximo Clique

¿Máximo clique es NP?

Este problema es NP debido a que se deben enumerar todos los conjuntos de tamaño 0 hasta tamaño j y verificar que cada vértice en cada subconjunto está conectado con los otros. La complejidad de la enumeración es $O(2^{|v|})$ y la complejidad de la verificación de la conexión de los vértices es polinomial.

Introducción

Vamos a realizar la verificación realizando una reducción de Vertex Cover(VC) a Máximo clique.

Importante

 $VC \leq_p M$ áximo Clique

Procedimiento de reducción

Se toma un grafo y se encuentra su Vertex Cover. Al eliminar los vértices del cover, los vértices restantes forman un conjunto independiente, es decir vértices que no están conectados con ninguna arista.

Azul: Vertex cover, Rojo: conjunto independiente

Como se puede observar los problemas de Vertex Cover y Conjunto independiente son equivalentes.

Procedimiento de reducción

Si se observa el más pequeño vertex cover de un grafo, es su máximo conjunto independiente. De acuerdo a esto el problema de encontrar el conjunto independiente de un grafo es NP Completo.

Procedimiento de reducción

En un conjunto independiente, no hay aristas. En un clique hay siempre una arista entre cada par de vértices, entonces estos grafos son **complementarios**. Entonces para transformar de conjunto independiente a clique sólo basta con crear las aristas faltantes.

Procedimiento de reducción

$$G = \frac{2}{\log(\log n)}$$

¿Porque la reducción funciona?

1) Vertex cover y conjunto independiente son problemas análogos/complementarios

2) Calcular en Grafo completo tiene costo polinomial

3) Debe relacionarse el CI y clique en G con los de G', si corresponden significa que bay un Clique de tamño k en G

¿Sabemos que VC es NPC? Si, lo demostramos con dolor ¡CI en NPC? Sí, porque es análogo a VC ¿Porque Clique es NPC? Porque calcular G' tiene costo polinomial Se analiza la relación de CI en G y CI en G'

Demostración reducción

Si VC es un vertex cover en G, entonces V - VC es un clique en G'. Si C es un clique G, $V_{\tau}C$ es un vertex cover en G'

Contenido

- 1 El problema del Máximo Clique
 - Definición
 - Demostración que Máximo Clique es NPC

- 2 El problema de partición entera (Subset Sum)
 - Introducción
 - ¿Subset Sum es NPC?

Partición entera

Definición

Una instancia es un conjunto cd ${\it S}$ enteros y un entero objetivo ${\it t}$

Pregunta

¿Existe un subconjunto de S cuya suma se exactamente t?

Partición entera

Ejemplo

$$S = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}, T = 3754$$

Su solución es:

$$S_s = \{1, 16, 256, 1040, 1093, 1284\}$$

Porque
$$1 + 16 + 256 + 1040 + 1093 + 1284 = 3654$$

Partición entera

¿Partición entera es NP?

Partición entera es un problema NP, debido a que es realizar todas las enumeraciones de S y comprobar su suma, si este conjunto tiene tamaño n, es necesario realizar 2^n enumeraciones.

Introducción

Vamos a realizar la verificación realizando una reducción de Vertex Cover(VC) a Subset Sum.

Importante

$$VC \leq_p \mathsf{Subset} \mathsf{Sum}$$

Procedimiento

Para este problema, se va trabajar en la representación de grafos llamada matriz de incidencia.

Procedimiento

De la matriz de incidencia de un grafo se analiza lo siguiente:

- ¿Cuantos 1 tiene cada columna?. Exactamente dos debido a que representa una arista
- L'Cuantos 1 tiene cada fila?. Depende del grado de cada vértice

Procedimiento

En el procedimiento de reducción desde VC, se van a crear |V| + |E| números desde G(V, E)

- Para cada vertice (fila) calcular $x_i = 4^{|E|} + \sum_{j=0}^{|E|-1} b[i,j]4^j$, por ejemplo para la fila de A tenemos 11110 entonces tenemos $4^5 + 4^4 + 4^3 + 4^2 + 4^1 + 0 * 4^0$
- **2** Para cada arista (columna) será $y_j = 4^j$
- 3 El entero objetivo t se calcula así: $x_i = k4^{|E|} + \sum_{j=0}^{|E|-1} 2*4^j$, donde k es el tamaño del cover. Si se observa este representa la suma de escoger todas las aristas (2 vértices por arista).

Procedimiento

Para calcular el valor tomamos los valores calculados de cada vértice que está en el cover, los sumamos y adicionamos uno o más y_i esta suma debe dar exactamente t.

Ejemplo

Para el caso anterior k = 2 y el cover es el conjunto $\{A, C\}$.

- **1** Calculando el objetivo: $t = 2 * 4^5 + \sum_{j=0}^{4} 2 * 4^j = 2730$
- **2** Calculamos $x_A = 11110 = 1364$
- 3 Calculamos $x_C = 00011 = 1029$
- 4 Si realizamos la suma obtenemos $x_A + x_C = 2393$
- 5 Si se le suman los pesos de las aristas y_0, y_2, y_3, y_4 , la suma da $2393 + 4^0 + 4^2 + 4^3 + 4^4 = 2730$

Demostración

- Cualquier solución de S contiene exactamente k vértices/números.
- 2 La base mínima de trabajo es 3 debido a que la suma de los 1 no presenta acarreo (un valor que pasa de una columna a otra)
- \blacksquare En la reducción t representa el peso total (suma) de las aristas
- 4 Al escoger una cobertura (conjunto de vértices) su suma con una o más aristas debe dar exactamente t, es decir está cubierto.

Preguntas

