# **Object Detection**

Quang-Vinh Dinh Ph.D. in Computer Science

### **\*** Intersection Over Union (IOU)

$$IoU = \frac{B_p \cap B_{gt}}{B_p \cup B_{gt}}$$

$$IoU = \frac{area\ of\ overlap}{area\ of\ union} = \frac{}{}$$

True Positive (TP): A correct detection.

Detection with IOU ≥ *threshold* 

**False Positive (FP)**: A wrong detection.

Detection with IOU < threshold

False Negative (FN): A ground truth not detected

**True Negative (TN)**: Does not apply.

threshold: depending on the metric, usually set to 50%, 75% or 95%.

#### **Confusion Matrix**



- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.

https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.html

# Type I error (false positive)



# Type II error (false negative)



The Essential Guide to Effect Sizes

#### **Confusion matrix**

| n=165         | Predicted:<br>NO | Predicted:<br>YES |
|---------------|------------------|-------------------|
| Actual:       | EO               | 10                |
| NO<br>Actual: | 50               | 10                |
| YES           | 5                | 100               |

There are two possible predicted classes: "yes" and "no".

"yes"  $\rightarrow$  have the disease,

"no"  $\rightarrow$  don't have the disease.

#### **Confusion matrix**

| n=165          | Predicted:<br>NO | Predicted:<br>YES |
|----------------|------------------|-------------------|
| Actual:<br>NO  | 50               | 10                |
| Actual:<br>YES | 5                | 100               |

**True positives (TP):** We predicted yes, and they do have the disease.

**True negatives (TN):** We predicted no, and they don't have the disease.

**False positives (FP):** We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")

**False negatives (FN):** We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

#### \* Precision

**Ability** of a model to identify only the relevant objects

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{all\ detections}$$

#### \* Recall

**❖** Ability of a model to find all the relevant cases (all ground truth bounding boxes)

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{all\ ground\ truths}$$



#### **Confusion matrix**

|         | Predicted: | Predicted: |     |
|---------|------------|------------|-----|
| n=165   | NO         | YES        |     |
| Actual: |            |            |     |
| NO      | TN = 50    | FP = 10    | 60  |
| Actual: |            |            |     |
| YES     | FN = 5     | TP = 100   | 105 |
|         |            |            |     |
|         | 55         | 110        |     |

**Recall:** When it's actually yes, how often does it predict yes? TP/actual yes = 100/105 = 0.95

**Precision:** When it predicts yes, how often is it correct? TP/predicted yes = 100/110 = 0.91

### **Example**

precision = TP/(all predictions) = 2/3;
recall = TP / (all positive ground truth) = 2/5

Recall values increase as we go down the prediction ranking, but precision has a zigzag pattern.

| Rank | Correct? | Precision | Recall |
|------|----------|-----------|--------|
| 1    | True     | 1.0       | 0.2    |
| 2    | True     | 1.0       | 0.4    |
| 3    | False    | 0.67      | 0.4    |
| 4    | False    | 0.5       | 0.4    |
| 5    | False    | 0.4       | 0.4    |
| 6    | True     | 0.5       | 0.6    |
| 7    | True     | 0.57      | 0.8    |
| 8    | False    | 0.5       | 0.8    |
| 9    | False    | 0.44      | 0.8    |
| 10   | True     | 0.5       | 1.0    |

### **Example**



AI VIETNAM AI Insight Course

# **Object Detection Metrics**

### **Example**

**Smooth out the zigzag pattern** 



AI VIETNAM AI Insight Course

# **Object Detection Metrics**

### **Example**

**Smooth out the zigzag pattern** 



### **Example**

#### \* Pascal VOC2008

$$AP = \frac{1}{11} \sum_{r \in \{0.0, \dots, 1.0\}} AP_r$$
$$= \frac{1}{11} \sum_{r \in \{0.0, \dots, 1.0\}} p_{interp}(r)$$



#### **\*** Motivation



Multiple Bounding Boxes



Final Bounding Boxes

https://pjreddie.com/darknet/yolov1/

- **Confidence score**
- **❖ IoU**



https://www.analyticsvidhya.com/blog/2020/08/selecting-the-right-bounding-box-using-non-max-suppression-with-implementation/



#### **Procedure**

Select the bounding box with the highest confidence score

Remove all the other boxes with high overlap



#### **Procedure**

**Step 1:** Select the box with highest objectiveness score

**Step 2:** Then, compare the overlap (intersection over union) of this box with other boxes

**Step 3:** Remove the bounding boxes with overlap (intersection over union) >50%

**Step 4:** Then, move to the next highest objectiveness score

**Step 5:** Finally, repeat steps 2-4



Step 1: Selecting Bounding box with highest score



Step 3: Delete Bounding box with high overlap



Step 5: Final Output



### **20** categories

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Year 2021

### **20 categories**



Year 2021

#### **Example**



```
⊟<annotation>
     <folder>VOC2007</folder>
     <filename>000001.jpg</filename>
     <source>
        <database>The VOC2007 Database
        <annotation>PASCAL VOC2007</annotation>
        
        <flickrid>341012865</flickrid>
    </source>
     <owner>
        <flickrid>Fried Camels</flickrid>
        <name>Jinky the Fruit Bat</name>
     </owner>
     <size>
        <width>353</width>
        <height>500</height>
        <depth>3</depth>
     </size>
     <segmented>0</segmented>
     <object>
        <name>dog</name>
        <pose>Left</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <br/>bndbox>
            <xmin>48</xmin>
            <ymin>240
            <xmax>195
            <ymax>371
        </bndbox>
     </object>
     <object>
        <name>person</name>
        <pose>Left</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
         <br/>bndbox>
            <xmin>8</xmin>
            <ymin>12
            <xmax>352
            <ymax>498
        </bndbox>
     </object>
</annotation>
```

# **XML File Processing**

#### **ElementTree**

```
<?xml version="1.0"?>
⊟<data>
     <country name="Liechtenstein">
         <rank>1</rank>
         <year>2008</year>
         <qdppc>141100</qdppc>
         <neighbor name="Austria" direction="E"/>
         <neighbor name="Switzerland" direction="W"/>
     </country>
     <country name="Singapore">
         <rank>4</rank>
         <year>2011
         <qdppc>59900</qdppc>
         <neighbor name="Malaysia" direction="N"/>
     </country>
     <country name="Panama">
         <rank>68</rank>
         <year>2011
         <qdppc>13600</pdppc>
         <neighbor name="Costa Rica" direction="W"/>
         <neighbor name="Colombia" direction="E"/>
     </country>
 </data>
```

```
import xml.etree.ElementTree as ET
tree = ET.parse('country_data.xml')
root = tree.getroot()

for neighbor in root.iter('neighbor'):
    print(neighbor.attrib)

{'name': 'Austria', 'direction': 'E'}
{'name': 'Switzerland', 'direction': 'W'}
{'name': 'Malaysia', 'direction': 'N'}
{'name': 'Costa Rica', 'direction': 'W'}
{'name': 'Colombia', 'direction': 'E'}
```

# **XML File Processing**

#### **ElementTree**

```
<?xml version="1.0"?>
⊟<data>
     <country name="Liechtenstein">
         <rank>1</rank>
         <year>2008
         <qdppc>141100</pdppc>
         <neighbor name="Austria" direction="E"/>
         <neighbor name="Switzerland" direction="W"/>
     </country>
     <country name="Singapore">
         <rank>4</rank>
         <year>2011
         <gdppc>59900</pdppc>
         <neighbor name="Malaysia" direction="N"/>
     </country>
     <country name="Panama">
         <rank>68</rank>
         <year>2011
         <qdppc>13600</qdppc>
         <neighbor name="Costa Rica" direction="W"/>
         <neighbor name="Colombia" direction="E"/>
     </country>
 </data>
```

```
for neighbor in root.iter('neighbor'):
        print(neighbor.attrib['name'])
Austria
Switzerland
Malaysia
Costa Rica
Colombia
    for rank in root.iter('rank'):
        print(rank.text)
4
68
    for country in root.iter('country'):
        rank = country.find('rank').text
        print(rank)
68
```

### Data Processing

'aeroplane': 0

'bicycle': 1

'bird': 2

'boat': 3

'bottle': 4

'bus': 5

'car': 6

'cat': 7

'chair': 8

'cow': 9

'diningtable': 10

'dog': 11

'horse': 12

'motorbike': 13

'person': 14

'pottedplant': 15

'sheep': 16

'sofa': 17

'train': 18

'tv/monitor': 19

### Data Processing







#### **Statistics**



|             | train         |         | val           |         | trainval      |         |
|-------------|---------------|---------|---------------|---------|---------------|---------|
|             | <b>Images</b> | Objects | <b>Images</b> | Objects | <b>Images</b> | Objects |
| Aeroplane   | 112           | 151     | 126           | 155     | 238           | 306     |
| Bicycle     | 116           | 176     | 127           | 177     | 243           | 353     |
| Bird        | 180           | 243     | 150           | 243     | 330           | 486     |
| Boat        | 81            | 140     | 100           | 150     | 181           | 290     |
| Bottle      | 139           | 253     | 105           | 252     | 244           | 505     |
| Bus         | 97            | 115     | 89            | 114     | 186           | 229     |
| Car         | 376           | 625     | 337           | 625     | 713           | 1250    |
| Cat         | 163           | 186     | 174           | 190     | 337           | 376     |
| Chair       | 224           | 400     | 221           | 398     | 445           | 798     |
| Cow         | 69            | 136     | 72            | 123     | 141           | 259     |
| Diningtable | 97            | 103     | 103           | 112     | 200           | 215     |
| Dog         | 203           | 253     | 218           | 257     | 421           | 510     |
| Horse       | 139           | 182     | 148           | 180     | 287           | 362     |
| Motorbike   | 120           | 167     | 125           | 172     | 245           | 339     |
| Person      | 1025          | 2358    | 983           | 2332    | 2008          | 4690    |
| Pottedplant | 133           | 248     | 112           | 266     | 245           | 514     |
| Sheep       | 48            | 130     | 48            | 127     | 96            | 257     |
| Sofa        | 111           | 124     | 118           | 124     | 229           | 248     |
| Train       | 127           | 145     | 134           | 152     | 261           | 297     |
| Tvmonitor   | 128           | 166     | 128           | 158     | 256           | 324     |
| Total       | 2501          | 6301    | 2510          | 6307    | 5011          | 12608   |

### **\*** Data Processing

```
import matplotlib.pyplot as plt
    import cv2
    import numpy as np
    # read an image
    image = cv2.imread('VOCdevkit/VOC2007/JPEGImages/000026.jpg')
    image = cv2.cvtColor(image, cv2.COLOR BGR2RGB)
    print(image.shape)
    # draw bounding boxes
    color = (255, 0, 0)
    thickness = 2
    image = cv2.rectangle(image, (90,125), (337,212), color, thickness)
14
    # plot image
   fig = plt.figure()
    plt.imshow(image/255.0)
(333, 500, 3)
```



VOC2007Dataset.ipynb

### **\*** Data Processing

```
VOCdevkit/VOC2007/JPEGImages/000153.jpg 237,147,358,191,6
VOCdevkit/VOC2007/JPEGImages/000154.jpg 59,76,367,266,3
VOCdevkit/VOC2007/JPEGImages/000159.jpg 234,48,286,124,14 1,16,498,333,6
VOCdevkit/VOC2007/JPEGImages/000161.jpg 104,34,446,390,6 68,195,121,288,6
VOCdevkit/VOC2007/JPEGImages/000162.jpg 306,227,380,299,19 196,143,309,369,14
VOCdevkit/VOC2007/JPEGImages/000163.jpg 52,22,308,328,14 26,108,456,396,13
VOCdevkit/VOC2007/JPEGImages/000164.jpg 114,154,369,348,13 292,49,446,370,14
VOCdevkit/VOC2007/JPEGImages/000171.jpg 1,290,128,407,11 94,21,375,491,14
VOCdevkit/VOC2007/JPEGImages/000173.jpg 106,64,270,297,14 109,64,288,464,12
VOCdevkit/VOC2007/JPEGImages/000174.jpg 143,5,426,333,14
VOCdevkit/VOC2007/JPEGImages/000187.jpg 1,95,240,336,19
VOCdevkit/VOC2007/JPEGImages/000189.jpg 65,39,459,346,2
VOCdevkit/VOC2007/JPEGImages/000192.jpg 116,64,356,375,14
VOCdevkit/VOC2007/JPEGImages/000193.jpg 80,4,500,375,14 1,29,227,375,14
VOCdevkit/VOC2007/JPEGImages/000194.jpg 86,36,239,224,12 115,19,203,136,14 279,77,298,132,14
VOCdevkit/VOC2007/JPEGImages/000198.jpg 160,134,286,239,18
```

VOC2007Dataset-v1.ipynb



**The input image is divided into an S x S grid of cells** 



**Each grid cell predicts B bounding boxes as well as C class probabilities.** 



### **The bounding box prediction has 5 components:** (x, y, w, h, confidence)

The (x, y) coordinates represent the center of the box, relative to the grid cell location.

These coordinates are normalized to fall between 0 and 1. The (w, h) box dimensions are also normalized to [0, 1], relative to the image size.



#### **\*** Network output



The network only predicts one set of class probabilities per cell, regardless of the number of boxes B. That makes S x S x C class probabilities in total.

$$S*S*(B*5+C)$$
 tensor

### **Network output**



#### **❖** Network architecture

http://localhost:8888/notebooks/Yolov1\_architecture.ipynb



#### **\*** Loss function

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

1 obj is defined as follows:

1, If an object is present in grid cell i and the jth bounding box predictor is "responsible" for that prediction

0, otherwise

(x, y) are the predicted bounding box position and  $(\hat{x}, \hat{y})$  hat are the actual position from the training data.

#### **Loss function**

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2$$

Our error metric should reflect that small deviations in large boxes matter less than in small boxes. To partially address this we predict the square root of the bounding box width and height instead of the width and height directly.

#### **Loss function**

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{noobj} (C_i - \hat{C}_i)^2$$

The loss associated with the confidence score for each bounding box predictor.

C is the confidence score and  $\hat{C}$  is the intersection over union of the predicted bounding box with the ground truth.

1 obj is equal to one when there is an object in the cell, and 0 otherwise.

1 noobj is the opposite.

#### **\*** Loss function

$$\sum_{i=0}^{S^2} \mathbb{1}_i^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2$$

A normal sum-squared error for classification, except for the 1 obj term.

This term is used because so we don't penalize classification error when no object is present on the cell

#### **\*** Loss function

$$egin{aligned} \lambda \mathbf{coord} \sum_{i=0}^{S^2} \sum_{j=0}^B 1_{ij}^{obj} ig[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 ig] \ + \lambda \mathbf{coord} \sum_{i=0}^{S^2} \sum_{j=0}^B 1_{ij}^{obj} ig[ (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 ig] \ + \sum_{i=0}^{S^2} \sum_{j=0}^B 1_{ij}^{obj} ig( C_i - \hat{C}_i ig)^2 \ + \lambda noobj \sum_{i=0}^{S^2} \sum_{j=0}^B 1_{ij}^{noobj} ig( C_i - \hat{C}_i ig)^2 \ + \sum_{i=0}^{S^2} 1_i^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2 \end{aligned}$$

#### **Anchor box**

Multiple objects of various shapes within the same neighborhood

YOLO's Anchor box requires users to predefine two hyperparameters:

- (1) The number of anchor boxs
- (2) Their shapes



#### **Anchor box**

The more anchor boxes, the more objects YOLO can detect in a close neighborhood with the cost of more parameters in deep learning model.



#### **Anchor box**

- An anchor box specializes small tall rectangle bounding box
- Another anchor box specializes large flat rectangle bounding box



### **\*** Improvement

|                      | YOLO |          |          |      |      |          |          |          | YOLOv2   |
|----------------------|------|----------|----------|------|------|----------|----------|----------|----------|
| batch norm?          |      | <b>√</b> | <b>√</b> | ✓    | ✓    | <b>√</b> | <b>√</b> | ✓        | <b>√</b> |
| hi-res classifier?   |      |          | 1        | ✓    | ✓    | 1        | 1        | <b>\</b> | <b>√</b> |
| convolutional?       |      |          |          | 1    | ✓    | 1        | 1        | ✓        | <b>√</b> |
| anchor boxes?        |      |          |          | ✓    | 1    |          |          |          |          |
| new network?         |      |          |          |      | ✓    | <b>\</b> | ✓        | ✓        | <b>√</b> |
| dimension priors?    |      |          |          |      |      | 1        | 1        | 1        | <b>√</b> |
| location prediction? |      |          |          |      |      | 1        | ✓        | 1        | <b>√</b> |
| passthrough?         |      |          |          |      |      |          | 1        | <b>√</b> | <b>√</b> |
| multi-scale?         |      |          |          |      |      |          |          | ✓        | <b>√</b> |
| hi-res detector?     |      |          |          |      |      |          |          |          | <b>√</b> |
| VOC2007 mAP          | 63.4 | 65.8     | 69.5     | 69.2 | 69.6 | 74.4     | 75.4     | 76.8     | 78.6     |

#### **Priors**



#### **\*** Yolov2 architecture



### **\*** Improvement

|                      | YOLO |          |          |      |      |          |          |      | YOLOv2   |
|----------------------|------|----------|----------|------|------|----------|----------|------|----------|
| batch norm?          |      | <b>√</b> | <b>√</b> | ✓    | ✓    | <b>√</b> | <b>√</b> | ✓    | <b>√</b> |
| hi-res classifier?   |      |          | 1        | ✓    | ✓    | 1        | 1        | 1    | <b>√</b> |
| convolutional?       |      |          |          | 1    | ✓    | 1        | 1        | ✓    | <b>√</b> |
| anchor boxes?        |      |          |          | ✓    | ✓    |          |          |      |          |
| new network?         |      |          |          |      | ✓    | ✓        | ✓        | ✓    | <b>√</b> |
| dimension priors?    |      |          |          |      |      | 1        | 1        | 1    | <b>√</b> |
| location prediction? |      |          |          |      |      | 1        | ✓        | 1    | ✓        |
| passthrough?         |      |          |          |      |      |          | 1        | ✓    | <b>√</b> |
| multi-scale?         |      |          |          |      |      |          |          | ✓    | ✓        |
| hi-res detector?     |      |          |          |      |      |          |          |      | <b>√</b> |
| VOC2007 mAP          | 63.4 | 65.8     | 69.5     | 69.2 | 69.6 | 74.4     | 75.4     | 76.8 | 78.6     |

