Tarea Acciones de Grupo

Maira Florez y Tomás Galeano

Sea X un G-conjunto:

a). Muestre que para cada $g\in G$ la función $\sigma_g:X o X$ definida por $\sigma_g(x)=gx$ para $x\in X$ es una permutación en X.

Recordando que por definición,

Una permutación de un conjunto A es una función biyectiva $\phi:A o A$.

Por otro lado, si X es un G-conjunto es porque existe una función

$$arphi:G imes X o X \ (g,x)\mapsto gx$$

Que además cumple que

1.
$$ex = x, \forall x \in X$$
.

2.
$$(g_1g_2)x=g_1(g_2x)$$
, $\forall g_1,g_2\in G$ y $\forall x\in X$.

Tenemos que comprobar que σ_g es biyectivo para todo $g \in G.$

• Inyectividad: Sean $x,y\in X$ tales que $\sigma_g(x)=\sigma_g(y)$ para algún $g\in G$. Sabemos que G es un grupo por lo que $g^{-1}\in G$ y así $\sigma_{g^{-1}}$ es también una función bien definida. Evaluando $\sigma_g(x)$ en $\sigma_{g^{-1}}$ tenemos que

$$egin{aligned} x &= ex \ &= (g^{-1}g)x \ &= g^{-1}(gx) \ &= \sigma_{g^{-1}}(\sigma_g(x)) \ &= \sigma_{g^{-1}}(\sigma_g(y)) \ &= g^{-1}(gy) \ &= (g^{-1}g)y \ &= ey \ &= y \end{aligned}$$

Y por tanto x = y.

• Sobreyectividad: Sea un elemento $z\in X$, nuevamente usando la existencia y buena fundación de $\sigma_{g^{-1}}$ para todo $g\in G$, sabemos que $\sigma_{g^{-1}}(z)\in G$, así, y usando la definición de σ_g , tenemos que

$$egin{aligned} \sigma_g(\sigma_{g^{-1}}(z)) &= \sigma_g(g^{-1}z) \ &= g(g^{-1}z) \ &= (gg^{-1})z \ &= ez \ &= z \end{aligned}$$

Así, tenemos que para todo elemento de X existe una preimagen por σ_q .

Por estos dos puntos, σ_g es una biyección sobre X para todo $g \in G$ y por tanto una permutación.

b). Pruebe que la aplicación definida por $\phi:G o S_X$ definida por $\phi(g)=\sigma_g$ es un homomorfismo tal que $\phi(g)(x)=\sigma_g(x)$ para todo $x\in X$.

Sean g_1 y g_2 en G, veamos que $\phi(g_1\cdot g_2)=\phi(g_1)\circ\phi(g_2)$. Para esto, debemos ver que $\sigma_{g_1\cdot g_2}(x)=(\sigma_{g_1}\circ\sigma_{g_2})(x)$, para todo $x\in X$. Tenemos que:

$$egin{aligned} \sigma_{g_1 \cdot g_2}(x) &= (g_1 \cdot g_2)(x) \ &= g_1(g_2 x) \ &= g_1(\sigma_{g_2}(x) \ &= \sigma_{g_1}(\sigma_{g_2}(x)) \ &= (\sigma_{g_1} \circ \sigma_{g_2})(x) \end{aligned}$$

Por tanto ϕ es un homomorfismo.