TELEFUNKEN Semiconductors

Silicon Z-Diodes

Features

- Glass passivated junction
- Hermetically sealed package
- Clamping time in picoseconds

Applications

Medium power voltage regulators and medium power transient suppression circuits

Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Power dissipation	l=10mm, T _L =25°C		P_{V}	3.25	W
	T _{amb} =25°C		P_{V}	1.3	W
Repetitive peak reverse power dissipation			P_{ZRM}	10	W
Non repetitive peak surge power dissipation	$t_p = 100 \mu s, T_j = 25 ^{\circ} C$		P _{ZSM}	600	W
Junction temperature			Tj	175	°C
Storage temperature range			T _{stg}	<i>−</i> 65+175	°C

Maximum Thermal Resistance

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient	1=10mm, T _L =constant	R_{thJA}	46	K/W
	on PC board with spacing 25mm	R_{thJA}	100	K/W

Characteristics

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Туре	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F =0.5A		V_{F}			1.2	V

Characteristics when used as voltage regultor diodes, $T_j = 25^{\circ} \text{C}$

Туре		$V_{\rm Z}$		r _z	•	ı		t I _Z		at V _R
BZT03C		V	,	2		%/		mA	μΑ	
B2103C	Min.	Тур.	Max.	Тур.	Max.	Min.	Max.		Max.	
6V2	5.8	6.2	6.6	1	2	0	0.07	100	1500	4.7
6V8	6.4	6.8	7.2	1	2	0	0.07	100	1000	5.1
7V5	7.0	7.5	7.9	1	2	0	0.07	100	750	5.6
8V2	7.7	8.2	8.7	1	2	0.03	0.08	100	600	6.2
9V1	8.5	9.1	9.6	2	4	0.03	0.08	50	20	6.8
10	9.4	10	10.6	2	4	0.05	0.09	50	10	7.5
11	10.4	10	11.6	4	7	0.05	0.10	50	4	8.2
12	11.4	12	12.7	4	7	0.05	0.10	50	3	9.1
13	12.4	13	14.1	5	10	0.05	0.10	50	2	10
15	13.8	15	15.6	5	10	0.05	0.10	50	1	11
16	15.3	16	17.1	6	15	0.06	0.11	25	1	12
18	16.8	18	19.1	6	15	0.06	0.11	25	1	13
20	18.8	20	21.2	6	15	0.06	0.11	25	1	15
22	20.8	22	23.3	6	15	0.06	0.11	25	1	16
24	22.8	24	25.6	7	15	0.06	0.11	25	1	18
27	25.1	27	28.9	7	15	0.06	0.11	25	1	20
30	28	30	32	8	15	0.06	0.11	25	1	22
33	31	33	35	8	15	0.06	0.11	25	1	24
36	34	36	38	21	40	0.06	0.11	10	1	27
39	37	39	41	21	40	0.06	0.11	10	1	30
43	40	43	46	24	45	0.07	0.12	10	1	33
47	44	47	50	24	45	0.07	0.12	10	1	36
51	48	51	54	25	60	0.07	0.12	10	1	39
56	52	56	60	25	60	0.07	0.12	10	1	43
62	58	62	66	25	80	0.08	0.13	10	1	47
68	64	68	72	25	80	0.08	0.13	10	1	51
75	70	75	79	30	100	0.08	0.13	10	1	56
82	77	82	87	30	100	0.08	0.13	10	1	62
91	85	91	96	60	200	0.09	0.13	5	1	68
100	94	100	106	60	200	0.09	0.13	5	1	75
110	104	110	116	80	250	0.09	0.13	5	1	82
120	114	120	127	80	250	0.09	0.13	5	1	91
130	124	130	141	110	300	0.09	0.13	5	1	100
150	138	150	156	130	300	0.09	0.13	5	1	110

TEMIC

TELEFUNKEN Semiconductors

BZT03C...

Туре		$V_{\rm Z}$		r _z	_{zj} ar	d TK	VZ 8	ıt I _Z	I _R a	t V _R
DITTO 2 C	V		Ω		%/K		mA	μΑ		
BZT03C	Min.	Тур.	Max.	Тур.	Max.	Min.	Max.		Max.	
160	153	160	171	150	350	0.09	0.13	5	1	120
180	168	180	191	180	400	0.09	0.13	5	1	130
200	188	200	212	200	500	0.09	0.13	5	1	150
220	208	220	233	350	750	0.09	0.13	2	1	160
240	228	240	256	400	850	0.09	0.13	2	1	180
270	251	270	289	450	1000	0.09	0.13	2	1	200

Characteristics when used as transient suppressor diodes, $T_j = 25^{\circ} \text{C}$

Type	Clam	nping	Stand-off			
	$V_{(CL)R}$ 1) a	I_{RSM}	I _R a	$V_R^{(2)}$		
BZT03C	V	A	μΑ	V		
	Max.		Max.			
6V2	9.3	34.0	3000	5.1		
6V8	10.2	31.0	2000	5.6		
7V5	11.3	26.5	1500	6.2		
8V2	12.3	24.4	1200	6.8		
9V1	13.3	22.7	50	7.5		
10	14.8	20.3	20	8.2		
11	15.7	19.1	5	9.1		
12	17.0	17.7	5	10		
13	18.9	15.9	5	11		
15	20.9	14.4	5	12		
16	22.9	13.1	5	13		
18	25.6	11.7	5	15		
20	28.4	10.6	5	16		
22	31.0	9.7	5	18		
24	33.8	8.9	5	20		
27	38.1	7.9	5	22		
30	42.2	7.1	5	24		
33	46.2	6.5	5	27		
36	50.1	6.0	5	30		
39	54.1	5.5	5	33		
43	60.7	4.9	5	36		
47	65.5	4.6	5	39		
51	70.8	4.2	5	43		
56	78.6	3.8	5	47		
62	86.5	3.5	5	51		
68	94.4	3.2	5	56		
75	103.5	2.9	5	62		
82	114	2.6	5	68		
91	126	2.4	5	75		
100	139	2.2	5	82		
110	152	2.0	5	91		
120	167	1.8	5	100		
130	185	1.6	5	110		
150	204	1.5	5	120		
160	224	1.3	5	130		

TELEFUNKEN Semiconductors

Type	Clam	ping	Stand-off		
	$V_{(CL)R}$ 1) a	t I _{RSM}	I _R at	$V_R^{(2)}$	
BZT03C	V	A	μΑ	V	
	Max.		Max.		
180	249	1.2	5	150	
200	276	1.1	5	160	
220	305	1.0	5	180	
240	336	0.9	5	200	
270	380	0.8	5	220	

1) 10/1000 exp. falling pulse $t_p = 1000$ μs down to 50% 2) Stand-off voltage = recon **Typical Characteristics** ($T_j = 25$ °C unless otherwise specified)

Figure 1: Epoxy glass hard tissue, board thickness 1.5 mm, $R_{thJA} \leq 100 \text{ K/W}$

Figure 3: Forward Current vs. Forward Voltage

Figure 2: Total Power Dissipation vs. Ambient Temperature

Figure 4: Non Repetitive Surge Power Dissipation vs. Pulse Length

²⁾ Stand-off voltage = recommended supply voltage

TEMIC

Dimensions in mm

TELEFUNKEN Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423