Design-Connectivity-Maher-2019

Maher Yann Alain April 2019

Introduction 1

A faire par Maher

Definitions

Let $n \in \mathbb{N}, n \geq 2$.

Let Σ be an alphabet, $|\Sigma| \ge 2$. (We are especially interested in the case $\Sigma = \{A, U, G, C\}$).

Let \mathcal{F} be the set of forbidden motifs.

Let $\mathcal{L}_{\mathcal{F},n}$ be the set of words in Σ^n that do not contain any motif in \mathcal{F} .

Let $\mathcal{L}_{\mathcal{F}}$ be the set of words in Σ^* that do not contain any motif in \mathcal{F} .

Let H(w, w') be the Hamming distance between two words w, w' in Σ^n .

Let $m(\mathcal{F}) \stackrel{\text{def}}{=} max_{fin\mathcal{F}}|f|$.

We assume that $n \ge m(\mathcal{F})$. (Otherwise some forbidden motifs would never be problematic).

Hence any forbidden motif f in \mathcal{F} of length $l < m(\mathcal{F})$ is equivalent to the set: $\bigcup_{i=0}^{n-l} \sum_{i=0}^{i} \sum_{j=0}^{n-l-i} f(x_j)$ of forbidden motifs, all of legnth m(F). Thus we define $\widetilde{\mathcal{F}}$ the set of forbidden motifs - all of length $m(\mathcal{F})$ - equivalent to \mathcal{F} .

General problem

Input: $n \ge 2$, \mathcal{F} a set of forbidden motifs, $\delta : \mathcal{L}_{\mathcal{F},n} \to \mathcal{L}_{\mathcal{F},n}$ a neighborhood function on $\mathcal{L}_{\mathcal{F},n}$ Question: The graph $G = (\mathcal{L}_{\mathcal{F},n}, \delta)$ is strongly connected.

2 Results

With the k-Hamming neighborhood

Definition 1. Given $k \in \mathbb{N}^*$, we define δ_k the k-Hamming neighborhood as follows:

$$\forall w \in \mathcal{L}_{\mathcal{F},n}, \delta_k(w) = \{ w' \in \mathcal{L}_{\mathcal{F}} \mid H(w, w') \leq k \}.$$

With k = n, any $w \in \mathcal{L}_{\mathcal{F},n}$ can be changed into any other $w' \in \mathcal{L}_{\mathcal{F},n}$ in one step. Hence $G = (\mathcal{L}_{\mathcal{F},n}, \delta_n)$ is always strongly connected. Thus with the k-Hamming neighborhood a variant of the general problem can be considered:

General problem with the k-Hamming neighborhood

Input: $n \ge 2$, \mathcal{F} a set of forbidden motifs

Question: the minimal $k \in \mathbb{N}^*$ such that the graph $G_{\mathcal{F},n,k} \stackrel{\text{def}}{=} (\mathcal{L}_{\mathcal{F},n}, \delta_k)$ is strongly connected.

Remark 2. Since δ_k is symmetric for any $1 \le k \le n$, $G_{\mathcal{F},n,k}$ is connected iff it is strongly connected. Thus we will use "connected" and "strongly connected" interchangeably when considering k-Hamming neighborhoods.

2.1.1 One motif

Consider the case where \mathcal{F} contains a single motif: $\mathcal{F} = \{f\}$. Then k = 1 is sufficient to guarantee strong connectivity.

Result 3. $\forall f \in \Sigma^+, G_{\{f\},n,1}$ is strongly connected.

Proof. Let w and w' be two words in $\mathcal{L}_{\{f\}}$ (of length n).

As $f \neq \epsilon$, f can be written letter by letter as follows: $f = f_1...f_{|f|}$.

Since $|\Sigma| \ge 2$, let $a \in \Sigma$ such that $a \ne f_1$.

We show that there is a path from w to a^n .

To do so, from left to right we replace each letter in w by a (or keep it the same if already an a).

Formally, from $w = w_1...w_n$ we define the sequence $(u_i)_{0 \le i \le n}$ of intermediate words:

$$\forall 0 \le i \le n, u_i = a^i w_{i+1} ... w_n.$$

Then:

- $\forall 0 \le i \le n-1, H(u_i, u_{i+1}) \le 1$,
- for every i in [1..n] we must prove that u_i is in $\mathcal{L}_{\{f\}}$. By contradiction, suppose that f appears in a u_i . Let j be the position in u_i of the leftmost letter of this occurrence of f.
 - if $j \le i$: then the leftmost letter of f would be a, which is not by definition of a.
 - if j > i: then this occurrence of f would be a factor of w, which it cannot be since $w \in \mathcal{L}_{\{f\}}$.

Contradiction. Hence every u_i is in $\mathcal{L}_{\{f\}}$.

This proves that there is a path from w to a^n with δ_1 as the neighborhood function.

The same can be done to obtain a path from w' to a^n .

Finally, since δ_1 is symmetric this gives a path from w to w' and vice-versa.

In addition to show that $G = (\mathcal{L}_{\{f\}}, \delta_1)$ is strongly connected, this proof gives us 2n as an upper bound to the diameter of G.

Remark 4. We could have tried to prove Result 1 by induction on H(w, w') instead. But it is unclear to what extent such an induction would be feasible (at least for now). Consider the following example with $\Sigma = \{A, U\}$:

$$\mathcal{F} = \{AUA\}, u = AAAA, v = AUUA.$$

There is no way to replace one non-extremal A of u with U without getting an occurrence of AUA. Hence there is no path from u to v in G with decreasing Hamming distance, even though u and v are connected according to Result 1. The same idea gives counter-examples of arbitrary Hamming distance:

$$\forall i \in \mathbb{N}^*, i \geq 2, with: \mathcal{F} = \{AUA\}, u_i = A^{i+2}, v_i = AU^iA,$$

then:
$$H(u_i, v_i) = i$$
.

These examples heavily rely on the fact that $|\Sigma| = 2$. There might be a way to get around this issue when $|\Sigma| \geq 3$ and find paths with non-increasing Hamming distance, but this would have to be looked at.

Yann: Another possible direction is to choose another candidate for an intermediate word, *i.e.* instead of showing connectivity as

$$w \leftrightarrow A^n \leftrightarrow w'$$

find u(w, w'), depending on w and w' such that

$$w \leftrightarrow u(w, w') \leftrightarrow w'$$

Idea. Give an arbitrary order on the letters in Σ and take as the representative of each connected component their smallest element w.r.t the lexical order?

2.1.2 Two or more motifs

The idea from the proof of Result 1 could be used again to treat the cases when there is an available letter to do the same trick.

Result 5. Let F be the set of forbidden motifs.

- If there exists $a \in \Sigma$ such that: $\forall f \in \mathcal{F}, f[1] \neq a$,, then $G = (\mathcal{L}_{\mathcal{F},n}, \delta_1)$ is strongly connected.
- Same result if there exists $a \in \Sigma$ such that: $\forall f \in \mathcal{F}, f[|f|] \neq a$.

This tells us that we need at least $|\Sigma|$ forbidden motifs to obtain a disconnected graph with δ_1 . Indeed if there are less than $|\Sigma|$ motifs, then we know that at least one letter is not the first letter of any forbidden motif.

Corollary 6. If $|\mathcal{F}| < |\Sigma|$, then $G_{\mathcal{F},n,1}$ is strongly connected.

An example with $|\Sigma|$ words that gives a disconnected graph with δ_1 is the following:

$$with: \Sigma = \{a_1, a_2, ..., a_k\}, let: \mathcal{F} = \{a_1, a_2, a_2, a_3, ..., a_k\}.$$

Then the only two allowed words are a_1^n and a_2^n , and there is no way to go from one word to the other.

Case
$$k = n - 1, |\Sigma| = 2$$

Result 7. If k = n - 1 and $|\Sigma| = 2$, then: u and v are disconnected in $G = (\mathcal{L}_{\mathcal{F},n}, \delta_{n-1})$ iff:

- u is the opposite word of v in Σ^n ,
- $\mathcal{L}_{\mathcal{F},n} = \{u,v\}.$

Proof. (\Leftarrow) As u and v are opposite, H(u,v) = n. Hence u and v are not neighbors and they are the only elements in G.

 (\Rightarrow)

- With $|\Sigma| = 2$ the only word in Σ^n at Hamming distance greater than n-1 from u is its opposite word.
- By contradiction: if any other word w were in $\mathcal{L}_{\mathcal{F},n}$, then w would be a δ_{n-1} -neighbor of both u and v, and thus u and v would be connected.

Then the only possible disconnected graph here is with two nodes that are opposite sequences, which is very restrictive. This makes for a simple example to study the impact of \mathcal{F} on the strong connectivity of $G_{\mathcal{F},n,n-1}$.

Proposition 8. If P_1 and P_2 are in $\mathcal{L}_{\mathcal{F},|P_1|}$ and disconnected in $G_{\mathcal{F},|P_1|,k}$ (for some $k \in [1..|P_1|]$), then: $\forall (S_1, S_2)$ couple of words of the same length: $(P_1S_1 \text{ and } P_2S_2 \text{ are in } \mathcal{L}_{\mathcal{F},|P_1|}) \Rightarrow (P_1S_1 \text{ and } P_2S_2 \text{ are disconnected in } G_{\mathcal{F},|P_1S_1|,k})$.

In other words, if we find two words P_1, P_2 that are disconnected in $G_{\mathcal{F},i,k}$ for some $i \in \mathbb{N}^*$, then any couple of words P_1S_1, P_2S_2 in $G_{\mathcal{F},j,k}$ (for some j > i) that have them as their prefixes are disconnected as well.

Proof. Let P_1 and P_2 be two words in $\mathcal{L}_{\mathcal{F},|P_1|}$ that are disconnected in $G_{\mathcal{F},|P_1|,k}$. By contradiction: if there exist S_1 , S_2 such that P_1S_1 and P_2S_2 are connected in $G_{\mathcal{F},|P_1S_1|,k}$, then there is a path $(P_1S_1 = u_0) \to u_1 \to [\ldots] \to u_i \to (u_{i+1} = P_2S_2)$ in $G_{\mathcal{F},|P_1S_1|,k}$. We know then that: $\forall 0 \leq j \leq i, H(u_j, u_{j+1}) \leq k$. For $0 \leq j \leq i+1$ let P'_j be the prefix of length $|P_1|$ in u_j . Since we take the prefixes, we still have: $\forall 0 \leq j \leq i, H(P'_j, P'_{j+1}) \leq k$. Hence $(P_1 = P'_0) \to P'_1 \to [\ldots] \to P'_i \to (P'_{i+1} = P_2)$ is a valid path in $G_{\mathcal{F},|P_1|,k}$.

Hence P_1 and P_2 would be connected in $G_{\mathcal{F},|P_1|,k}$.

Contradiction.

Idea. Use a De Bruijn graph to know when a word is a prefix of arbitrary long allowed words. See Remark 11. .

2.2 De Bruijn graphs

2.2.1 Properties

Definition 9. Given \mathcal{F} , we define $\mathcal{DB}_{\mathcal{F}}$ the De Bruijn graph of \mathcal{F} the following way:

- Vertices: $C\widetilde{\mathcal{F}}$ the allowed substrings of length $m(\mathcal{F})$.
- Edges: if $u \in \Sigma^{m(\mathcal{F})-1}$, if $a, b \in \Sigma$, then: there is an edge from au to ub iff au and ub are both in $C\widetilde{\mathcal{F}}$.

Proposition 10. Let $w = w_1...w_n$ be a word of length n. Then:

$$w \in \mathcal{L}_{\mathcal{F},n} \text{ iff } w_1...w_{m(F)} \to w_2...w_{m(F)+1} \to [\ldots] \to w_{n-m(F)+1}...w_n \text{ is a valid path in } \mathcal{DB}_{\mathcal{F}}.$$

Proof. w is an allowed word iff every factor of length $m(\mathcal{F})$ in w is allowed.

Remark 11. There are arbitrarily long allowed words iff there is a cycle in $\mathcal{DB}_{\mathcal{F}}$.

Result 12. Let
$$u_1 \to [...] \to u_i$$
 be a path in $\mathcal{DB}_{\mathcal{F}}$ $(i \ge 3)$. If u_i is a neighbor of u_1 , then $(u_2, [...], u_{i-1})$ is a cycle in $\mathcal{DB}_{\mathcal{F}}$.

In other words: if there is a shortcut to a path in $\mathcal{DB}_{\mathcal{F}}$, then the intermediate elements form a cycle.

Proof. Since u_i is a neighbor of u_1 in $\mathcal{DB}_{\mathcal{F}}$, we can write: $u_1 = av$ and $u_i = vb$ for some $v \in \Sigma^{m(\mathcal{F})-1}$ and $a, b \in \Sigma$.

```
But then we know as well that: u_2 = vc and u_{i-1} = dv for some a, b \in \Sigma.
Hence u_2 is a neighbor of u_{i-1} and (u_2, [...], u_{i-1}) forms a cycle in \mathcal{DB}_{\mathcal{F}}.
```

Idea. How to interpret Hamming edits with paths in $\mathcal{DB}_{\mathcal{F}}$?

Definition 13. We define $\mathcal{DB}_{\mathcal{F},n}$ the graph obtained by removing all the connected components in $\mathcal{DB}_{\mathcal{F}}$ that do not encode any word of length n.

The goal of this notion is to only keep the meaningful part in $\mathcal{DB}_{\mathcal{F}}$ that generates the allowed words of length n. This is the same as removing all the connected components that have no path of length $\geq n - m(\mathcal{F})$.

Remark 14. For any $n \ge m(\mathcal{F})$, $\mathcal{DB}_{\mathcal{F}}$ and $\mathcal{DB}_{\mathcal{F},n}$ have exactly the same paths of length $n - m(\mathcal{F})$.

Lemma 15. If we follow the same sequence of letters $a_1, a_2, [...], a_j$ from two distinct sequences u, v in $\mathcal{DB}_{\mathcal{F}}$, if $j \geq m(\mathcal{F})$, then the two subsequent paths have merged at some index $i \leq m(\mathcal{F})$.

Proof. After $m(\mathcal{F})$ steps the resulting word is $a_1...a_{m(\mathcal{F})}$ in both paths, so the paths merged either at index $m(\mathcal{F})$ or at a smaller index.

2.2.2 Applications

Back to the case k = n - 1, $|\Sigma| = 2$

Result 16. With $|\Sigma| = 2$ (for instance $\Sigma = \{A, C\}$): $G_{\mathcal{F},n,n-1}$ is disconnected iff $\mathcal{DB}_{\mathcal{F},n}$ is either:

- (i) A...AQ, C...CQ
- (ii) $ACA... \leftrightarrow CAC...$
- (iii) two "opposite" paths of length $n-m(\mathcal{F})$ with no connection: $u_1 \to [\ldots] \to u_{n-m(\mathcal{F})+1}$, $\overline{u_1} \to [\ldots] \to u_{n-m(\mathcal{F})+1}$, where $\overline{u_i}$ is the opposite word of u_i .

Proof. (\Leftarrow) All the three cases for $\mathcal{DB}_{\mathcal{F},n}$ imply that there are exactly two paths of length $n - m(\mathcal{F})$ in $\mathcal{DB}_{\mathcal{F}}$. By *Proposition* 10., we deduce that there are only two words in $\mathcal{L}_{\mathcal{F},n}$ and they are opposite, which by *Result* 7. means that $G_{\mathcal{F},n,n-1}$ is disconnected.

(\Rightarrow) We know from Result 7. that the only way to have $G_{\mathcal{F},n,n-1}$ disconnected is to have exactly two vertices and that they are opposite to each other. Using Proposition 9., this means that we must exactly have two paths of length $n - m(\mathcal{F})$ in $\mathcal{DB}_{\mathcal{F}}$.

Now we show that $\mathcal{DB}_{\mathcal{F},n}$ can only be of one the three proposed forms.

- If there is a 1-cycle in $\mathcal{DB}_{\mathcal{F},n}$: then this 1-cycle is either A...A \bigcirc or C...C \bigcirc . In any case the other one must be included as well in order to include the path for the opposite word. There are already two paths of length $n-m(\mathcal{F})$ in the graph [A...A \bigcirc , C...C \bigcirc] and appending any element to these components would add another path of length $n-m(\mathcal{F})$, which we do not want. Thus the only graph $\mathcal{DB}_{\mathcal{F},n}$ that can have a 1-cycle is [A...A \bigcirc , C...C \bigcirc], which is case (i).
- If there is a 2-cycle in $\mathcal{DB}_{\mathcal{F},n}$: then this 2-cycle can only be ACA... \leftrightarrow CAC..., which already encodes two words of length n. Again, appending any element to this component would add another allowed word of length n, so the only graph $\mathcal{DB}_{\mathcal{F},n}$ that can have a 2-cycle is [ACA... \leftrightarrow CAC...], which is case (ii).
- If there is a (3+)-cycle in $\mathcal{DB}_{\mathcal{F},n}$: then there would be at least three allowed words of length n (we obtain them by starting from a different element of the cycle as the prefix and by going through the cycle). Since we only want two allowed words of length n, $\mathcal{DB}_{\mathcal{F},n}$ cannot have a (3+)-cycle.
- If there is no cycle in $\mathcal{DB}_{\mathcal{F},n}$: TODO

2.3 Algorithmic aspects