

FINANZAS CORPORATIVAS I

Lic. FLAVIO MAGLIONE

UNIDAD 5 – VALUACION

BIBLIOGRAFIA

PRINCIPIOS DE FINANZAS CORPORATIVAS. Brealey y Myers, 2010. Caps. 5 y 20 (20.1 y 20.2)

FLUJOS DE FONDOS Y TASAS DE DESCUENTO

► El VALOR depende de los flujos futuros de fondos que la inversión genere y de la tasa de descuento correspondiente.

$$VAN = Inv_0 + \frac{FC_1}{(1+i)^1} + \frac{FC_2}{(1+i)^2} + \dots + \frac{FC_n}{(1+i)^n}$$

FORMULAS DE VALOR ACTUAL

▶ Dependen del crecimiento que se espera tengan los flujos a descontar en el futuro.

$$VA = \frac{FC_1}{i} \times \left[1 - \frac{1}{(1+i)^n}\right]$$
 Si n tiende a infinito

$$VA = \frac{FC_1}{(1+i)} + \frac{FC_1 * (1+g)}{(1+i)^2} + \frac{FC_1 * (1+g)^2}{(1+i)^3} + \dots + \frac{FC_1 * (1+g)^{n-1}}{(1+i)^n}$$

Multiplicando por $\frac{(1+g)}{(1+i)}$ ambos lados de la ecuación, queda: $VA * \frac{(1+g)}{(1+i)} = \frac{FC_1 * (1+g)}{(1+i)^2} + \frac{FC_1 * (1+g)^2}{(1+i)^3} + \dots + \frac{FC_1 * (1+g)^n}{(1+i)^{n+1}}$

Restando 1 a 2, resulta:

$$VA * \frac{(1+g)}{(1+i)} - VA = \frac{FC_1 * (1+g)^n}{(1+i)^{n+1}} - \frac{FC_1}{(1+i)} \longrightarrow VA * \left[\frac{(1+g)}{(1+i)} - 1 \right] = \frac{FC_1}{(1+i)} * \left[\frac{(1+g)^n}{(1+i)^n} - 1 \right]$$

$$VA * \left[\frac{(g-i)}{(1+i)} \right] = \frac{FC_1}{(1+i)} * \left[\frac{(1+g)^n}{(1+i)^n} - 1 \right] \qquad \longrightarrow VA = \frac{FC_1}{(g-i)} * \left[\frac{(1+g)^n}{(1+i)^n} - 1 \right] \qquad \text{Si g} \neq i$$

$$VA = \frac{FC_1}{(g-i)} * \lim_{n \to \infty} \left[\left(\frac{(1+g)}{(1+i)} \right)^n - 1 \right] \qquad \text{Si g < i} \qquad VA = \frac{FC_1}{g-i} * (0-1) \longrightarrow$$

FORMULAS DE VALOR ACTUAL

Si g_{EXT} es constante y menor que i, el VA de la 1ra. etapa se puede calcular por diferencia de perpetuidades

$$VA_{1} = \frac{FC_{1}}{i - g_{EXT}} - \frac{FC_{1}}{i - g_{EXT}} * \frac{(1+g)^{t}}{(1+i)^{t}} = \frac{FC_{1}}{i - g_{EXT}} * \left[1 - \frac{(1+g)^{t}}{(1+i)^{t}}\right]$$

$$VA = \frac{FC_1}{i - g_{EXT}} * \left[1 - \frac{(1 + g_{EXT})^t}{(1 + i)^t}\right] + \frac{FC_{t+1}}{i - g_{EST}} * \frac{1}{(1 + i)^t}$$
 FC con CRECIMIENTO EN 2 ETAPAS Si g es constante y menor que i

FLUJOS DE CAJA

Para valuar el EQUITY se deben descontar los flujos de fondos que los ACCIONISTAS recibirán en el futuro. Hay dos posibilidades:

DIVIDENDOS

FCFE: FREE CASH FLOW to EQUITY

 $FCFE = FCA - FCD = R. \ Neto + I + Depreciaciones - (ANC_1 - ANC_0) - Depreciaciones - \Delta \ CTN - I + \Delta \ Deuda Financiera$

Para valuar LA EMPRESA se deben descontar los flujos de fondos que ésta genere el futuro.

FCFF: FREE CASH FLOW to FIRM

	s/Deuda	c/Deuda
Amortiz.	400	400
EBIT	1.200	1.200
Intereses	0	-400
EBT	1.200	800
Tax 40%	480	320
R. Neto	720	480
FEO		

VALUACION POR FLUJOS DESCONTADOS

▶ Los modelos de valuación dependen de cuál sea el flujo que se descuente

	Sin Crecim.	Crecim. Estable	Crecimiento en 2 etapas
DDM (Dividend Discount Model)	$E = \frac{Div_1}{k_E}$	$E = \frac{Div_1}{k_E - g}$	$E = \frac{Div_1}{(1+k_E)} + \dots + \frac{Div_t}{(1+k_E)^t} + \frac{Div_{t+1}}{(k_e - g_{est.}) * (1+k_e)^t}$
FCFE (Free Cash Flow to Equity)	$E = \frac{FCFE_1}{k_E}$	$E = \frac{FCFE_1}{k_E - g}$	$E = \frac{FCFE_1}{(1+k_E)} + \dots + \frac{FCFE_t}{(1+k_E)^t} + \frac{FCFE_{t+1}}{(k_e - g_{est.}) * (1+k_e)^t}$
FCFF (Free Cash Flow to Firm)	$V = \frac{FCFF_1}{WACC}$	$V = \frac{FCFF_1}{WACC - g}$	$V = \frac{FCFF_1}{(1 + WACC)} + \dots + \frac{FCFF_t}{(1 + WACC)^t} + \frac{FCFF_{t+1}}{(WACC - g_{est.}) * (1 + WACC)^t}$

TASA DE CRECIMIENTO

La tasa de crecimiento (g) de los flujos futuros de fondos se puede estimar de acuerdo a la retención de utilidades.

		Año 2016	Año 2017	Año 2017	Año 2018	
PATRIMONIO NETO		10.000		10.360		
EBIT	20,00%		2.000		2.072	
INTERESES			-		-	
EBT			2.000		2.072	
IMPUESTOS	40%		800		829	
RESULTADO NETO			1.200		1.243	
UTILIDAD RETENIDA	30%		360		373	
						·
DIVIDENDOS			840		870	

VAOC

► El Valor Actual de las Oportunidades de Crecimiento dependerá de si las inversiones tienen VAN positivo.

ke	0,10
tru	0,30
ROE	0,12
g	0,036
BPA 1	\$12

$$P_0 = \frac{Div_1}{k_E - g} = \frac{BPA_1 * (1 - tru)}{k_E - g} = \frac{12 * (1 - 0, 3)}{0, 10 - 0, 036} = \$131, 25$$

VAOC

► El Valor Actual de las Oportunidades de Crecimiento como VAN de la reinversión de utilidades.

POLITICA DE DIVIDENDOS

▶ Como un subproducto de las decisiones de inversión y financiación.

