near the normal line P as opposed to a range of the reflection light R₃ in which the user has to look up at the display device 83 from a lower direction making it more difficult to see it. Therefore, for convenience of the users, it is desirable to secure a wide viewing angle while enhancing reflectance in the direction in which the reflection angle is smaller than reflection light.

Please rewrite the paragraph beginning on page 9, line 23 and ending on page 10, line 5 as follows:

(Amended) If each of the concave portions is arranged apart from each other, an opening between each of the concave portions becomes a flat surface, thus increasing the flat surface reflection, and therefore, it would become harder to obtain sufficient diffuse reflection within a limited pixel range. Thus, it is preferable that each of the concave portions is arranged adjacent to each other. Moreover, if the concave portions were arranged regularly, the moiré pattern would generate. Therefore, it is preferable to arrange them randomly.

Please rewrite the paragraph on page 13, lines 12-23 as follows:

(Amended) In addition, each of the concave portions is desirably formed randomly with depth in a range of 0.1 μm to 3 μm . In a case where the depth is less than 0.1 μm , regular reflection becomes too strong. In a case where the depth exceeds 3 μm , surfaces of convex portions cannot be filled with a smoothing film when concave portions are evened out in a later process, and it becomes impossible to obtain desirable reflection property. If the depth is set to a certain depth for all the concave portions, interference color of light would generate due to regularity, and a problem of coloring of the reflection light would occur.

Please rewrite the paragraph on page 15, lines 7-13 as follows:

(Amended) The liquid crystal display device of the present invention is provided with a wide viewing angle and suitable directionality. Therefore, when it is incorporated in certain devices such as a notebook personal computer, a game machine and a cellular phone, it is possible to obtain sufficient brightness in the viewing angle which users typically view the device.

Please rewrite the paragraph on page 19, lines 22-27 as follows:

(Amended) In the reflector in Embodiment 1 of the present invention, each of the concave portions is formed in non-spherical shape having a single minimal point. Therefore, a reflection angle of light changes smoothly so that reflection light does not produce glare in a particular viewing angle.

Please rewrite the paragraph on page 22, lines 19-24 as follows:

(Amended) Moreover, the transparent electrodes 16 and 23 interposing the liquid crystal layer 30 therebetween are formed in stripe pattern on a surface which cross perpendicular to each other so as to form a simple matrix display device in which intersecting areas of the stripes are pixel thereof.

Please rewrite the paragraph beginning on page 28, line 20 and ending on page 29, line 8 as follows:

(Amended) The reflector having the above-described composition can be formed as follows though not limited thereto. First, as shown in FIG. 10A, a mold base material 37 of a flat plate having a flat surface made of a brass, a stainless steel, a tool steel or the like, for example, is fixed on a table of a rolling device. Then, the surface of the mold base material 37 is pressed by a diamond indenter 38 whose tip is in the particular shape corresponding to the concave portions 34 shown in FIG. 9. The diamond indenter 38 is moved up and down and pressed against the mold base material 37 while the mold base material 37 is moved in a horizontal direction. By repeating this operation for a number of times, the plurality of concave portions 37a with different depths and different pitches are formed on the surface of the mold base material 37, thus obtaining a mold 39 for forming a reflector shown in FIG. 10B.

Please rewrite the paragraph beginning on page 35, line 15 and ending on page 36, line 1 as follows:

(Amended) As shown in FIG. 14, the reflection type liquid crystal display device includes a pair of substrate, a display side glass substrate 53 and a back-side glass substrate 54 with a thickness of 0.7 mm, for example, and a liquid crystal layer 55 interposed therebetween. A phase plate 56 made of polycarbonate resin, polyarylate resin or the like is provided on a top surface of the display side glass substrate 53. A first polarizing plate 57 is provided on a top surface side of the