Open system Interconnection (OSI) PRACTICE PROBLEMS BASED ON CSMA / CD AND BACK OFF ALGORITHM

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

October 18, 2020

Problem-01

- Q1 After the kth consecutive collision, each colliding station waits for a random time chosen from the interval-
 - \bigcirc (0 to 2^k) x RTT
 - (0 to $2^{k}-1$) x RTT
 - $(0 \text{ to } 2^k-1) \times \text{Maximum Propagation delay}$
 - (0 to 2^k -1) x Maximum Propagation delay
- Q2 In a CSMA / CD network running at 1 Gbps over 1 km cable with no repeaters, the signal speed in the cable is 200000 km/sec. What is minimum frame size?
 - **Solution-** Given-Bandwidth = 1 Gbps, Distance = 1 km, Speed = 200000 km/sec

- Calculating Propagation Delay:-
- ullet Propagation delay (Tp) = Distance / Propagation speed
 - = 1 km / (200000 km/sec)
 - $= 0.5 \times 10^{-5} \text{ sec}$
- Calculating Minimum Frame Size:-
 - Minimum frame size= $2 \times \text{Propagation delay} \times \text{Bandwidth}$ = $2 \times 5 \times 10^{-6} \text{sec } \times 10^{9} \text{ bits per sec}$
- Q3 A 2 km long broadcast LAN has 10^7 bps bandwidth and uses CSMA / CD. The signal travels along the wire at 2×10^8 m/sec. What is the minimum packet size that can be used on this network?
 - **1** 50 B
 - **2** 100 B
 - **3** 200 B
 - None of the above

- Solution- Given-Distance = 2 km, Bandwidth = 10^7 bps Speed = 2×10^8 m/sec
- Calculating Propagation Delay
 - Propagation delay (Tp)= Distance / Propagation speed
 - $\bullet = 2x \ 10^3 \ m \ / \ (2 \times 10^8 \ m/sec)$
- Calculating Minimum Frame Size
 - Minimum frame size = $2 \times \text{Propagation delay} \times \text{Bandwidth}$ = $2 \times 10^{-5} \text{ sec} \times 10^7 \text{ bits per sec}$

- Q4 A and B are the only two stations on Ethernet. Each has a steady queue of frames to send. Both A and B attempts to transmit a frame, collide and A wins first back off race. At the end of this successful transmission by A, both A and B attempt to transmit and collide. The probability that A wins the second back off race is.
 - **0**.5
 - **0.625**
 - **3** 0.75
 - **4** 1.0
 - Solution-According to question, we have-
 - 1st Transmission Attempt-
 - Both the stations A and B attempts to transmit a frame.
 - A collision occurs.
 - Back Off Algorithm runs.
 - Station A wins and successfully transmits its 1st data packet.

- 2nd Transmission Attempt-
 - Station A attempts to transmit its 2nd data packet.
 - Station B attempts to retransmit its 1st data packet.
 - A collision occurs.
- Now,
- We have been asked the probability of station A to transmit its 2nd data packet successfully after 2nd collision.
- After the 2nd collision occurs
- At Station A-
 - 2nd data packet of station A undergoes collision for the 1st time.
 - So, collision number for the 2nd data packet of station A = 1.
 - Now, station A randomly chooses a number from the range [0,21-1] = [0,1].
 - Then, station A waits for back off time and then attempts to retransmit its data packet.

October 18, 2020

At Station B-

- 1st data packet of station B undergoes collision for the 2nd time.
- So, collision number for the 1st data packet of station B = 2.
- Now, station B randomly chooses a number from the range $[0,2^2-1] = [0,3]$.
- Then, station B waits for back off time and then attempts to retransmit its data packet.
- Following 8 cases are possible-

Station A	Station B	Remark
0	0	Collision
0	1	A wins
0	2	A wins
0	3	A wins
1	0	B wins
1	1	Collision
1	2	A wins
1	3	A wins

• From here, Probability of A winning the 2nd back off race = 5 / 8 0.625.

Q5 Suppose nodes A and B are on same 10 Mbps Ethernet segment and the propagation delay between two nodes is 225 bit times. Suppose A and B send frames at t=0, the frames collide then at what time, they finish transmitting a jam signal. Assume a 48 bit jam signal.

Solution-

Propagation delay (Tp) = 225 bit times

- = 225 bit / 10 Mbps
- $= 22.5 \times 10-6 \text{ sec}$
- = 22.5 μ sec

• At t = 0,

- Nodes A and B start transmitting their frame.
- Since both the stations start simultaneously, so collision occurs at the mid way.
- Time after which collision occurs = Half of propagation delay.
- So, time after which collision occurs = 22.5 sec / 2 = 11.25 μ sec.

• At t = 11.25 sec.

- ullet After collision occurs at t=11.25 sec, collided signals start travelling back.
- Collided signals reach the respective nodes after time = Half of propagation delay
- \bullet Collided signals reach the respective nodes after time =22.5~sec~/~2=11.25~sec.
- Thus, at t = 22.5 sec, collided signals reach the respective nodes.

- At t = 22.5 sec,
 - As soon as nodes discover the collision, they immediately release the jam signal.
 - Time taken to finish transmitting the jam signal = 48 bit time = 48 bits/ 10 Mbps = 4.8 sec.
- Thus,
 - Time at which the jam signal is completely transmitted
 - = 22.5 sec + 4.8 sec
 - = 27.3 sec or 273 bit times

- Q6 Suppose nodes A and B are attached to opposite ends of the cable with propagation delay of $12.5 \, \text{ms}$. Both nodes attempt to transmit at $t{=}0$. Frames collide and after first collision, A draws $k{=}0$ and B draws $k{=}1$ in the exponential back off protocol. Ignore the jam signal. At what time (in seconds), is As packet completely delivered at B if bandwidth of the link is $10 \, \text{Mbps}$ and packet size is $1000 \, \text{bits}$.
 - Solution- Given-Propagation delay = 12.5 ms, Bandwidth = 10 Mbps, Packet size = 1000 bits
 - Time At Which Collision Occurs-
 - Collision occurs at the mid way after time = Half of Propagation delay
 - = 12.5 ms / 2
 - = 6.25 ms

Thus, collision occurs at time t = 6.25 ms.

Time At Which Collision is Discovered-

- Collision is discovered in the time it takes the collided signals to reach the nodes = Half of Propagation delay
 - = 12.5 ms / 2
 - = 6.25 ms

Thus, collision is discovered at time t = 6.25 ms + 6.25 ms = 12.5 ms.

Scene After Collision-

- After the collision is discovered,
- Both the nodes wait for some random back off time.
- A chooses k=0 and then waits for back off time $= 0 \times 25 \text{ ms} = 0 \text{ ms}$.
- B chooses k=1 and then waits for back off time $= 1 \times 25$ ms = 25 ms.
- From here, A begins retransmission immediately while B waits for 25 ms

Waiting Time For A-

- After winning the back off race, node A gets the authority to retransmit immediately.
- But node A does not retransmit immediately.
- It waits for the channel to clear from the last bit aborted by it on discovering the collision.
- Time taken by the last bit to get off the channel = Propagation delay = 12.5 ms.
- ullet So, node A waits for time = 12.5 ms and then starts the retransmission.
- \bullet Thus, node A starts the retransmission at time t = 12.5 ms + 12.5 ms = 25 ms.

• Time Taken in Delivering Packet To Node B-

- ullet Time taken to deliver the packet to node B = Transmission delay + Propagation delay
 - = (1000 bits / 10 Mbps) + 12.5 ms
 - = 100 s + 12.5 ms
 - = 0.1 ms + 12.5 ms
 - = 12.6 ms
- ullet Thus, At time t = 25 ms + 12.6 ms = 37.6 ms, the packet is delivered to node B.
- Q7 The network consists of 4 hosts distributed as shown below-

- Assume this network uses CSMA / CD and signal travels with a speed of 3×10^5 km/sec. If sender sends at 1 Mbps, what could be the minimum size of the packet?
 - **1** 600 bits
 - 400 bits
 - 6000 bits
 - 4 1500 bits

Solution-

- CSMA / CD is a Access Control Method.
- It is used to provide the access to stations to a broadcast link.
- In the given network, all the links are point to point.
- So, there is actually no need of implementing CSMA / CD.
- Stations can transmit whenever they want to transmit.
- In CSMA / CD, The condition to detect collision is-Packet size >= 2 x (distance / speed) x Bandwidth

- To solve the question,
 - We assume that a packet of same length has to be used in the entire network.
 - To get the minimum length of the packet, what distance we should choose?
 - To get the minimum length of the packet, we should choose the minimum distance.
 - But, then collision would be detected only in the links having distance less than or equal to that minimum distance.
 - For the links, having distance greater than the minimum distance, collision would not be detected.
 - So, we choose the maximum distance so that collision can be detected in all the links of the network.
- So, we use the values-
 - ${\sf Distance} = 90~{\sf km},~{\sf Speed} = 3\times 10^5~{\sf km/sec},~{\sf Bandwidth} = 1~{\sf Mbps}$
 - Substituting these values, we get-Minimum size of data packet = $2 \times (90 \text{ km} / 3 \times 105 \text{ km per sec}) \times 100 \times 10$

Thank You

