

Utility Vector Logic

DS481 April 24, 2009 **Product Specification**

Introduction

The Utility Vector Logic core takes two vector operands and bit wise applies a logic function to generate a single vector result. This core is intended as glue logic between peripherals.

Figure 1: Utility Vector Logic in a System

Features

The vector logic has the following features:

- Configurable size of the vectors
- Configurable logical operation on vectors.

LogiCORE™ IP Facts			
Core Specifics			
Supported Device Family	See EDK Supported Device Families.		
Version of Core	util_vector_logic	v1.00a	
Res	Resources Used		
	Min	Max	
Slices	1	16 ⁽¹⁾	
LUTs	1	32 ⁽¹⁾	
FFs	0	0	
Block RAMs	0	0	
Provided with Core			
Documentation	Product Specification		
Design File Formats	VHDL		
Design Tool Requirements			
Xilinx Implementation Tools			
Verification	See <u>Tools</u> for re	equirements.	
Simulation			
Synthesis			
Support			
Support provided by Xilinx, Inc.			

^{1.} For C_SIZE=32. The count increases with C_SIZE

© 2003-2009 Xilinx, Inc., XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Utility Vector Logic Parameters

Table 1: Utility Vector Logic Parameters

Parameter	Description	Туре
C_OPERATION	The vector operation to perform. The supported operations are: "and", "or", "xor", "not"	String
C_SIZE	The size of the vectors. Notice that the width of Op1, Op2 and Res must be equal. The minimum value of this parameter is 1.	Integer

Allowable Parameter Combinations

There are no restrictions on allowed parameter combinations for this core.

Utility Vector Logic I/O Signals

Table 2: Summary of vector logic I/O

Signal	Interface	I/O	Description
Op1	None	I	Operand 1 vector [0 : C_SIZE-1]
Op2	None	I	Operand 2 vector [0 : C_SIZE-1]. Unused when C_OPERATION = "not"
Res	None	0	Result vector [0 : C_SIZE-1]

Parameter-Port Dependencies

Table 3: Port and parameter dependencies

Name	Affects	Depends Relationship Description			
	Design Parameters				
C_SIZE	Op1	0 to C_SIZE-1	Scale width of input bus		
C_SIZE	Op2	0 to C_SIZE-1	Scale width of input bus		
C_SIZE	Res	0 to C_SIZE-1	Scale width of output bus		
Port Signals					
Op1		C_SIZE	Scale width of input bus		
Op2		C_SIZE	Scale width of input bus		
Res		C_SIZE	Scale width of output bus		

Utility Vector Logic Register Descriptions

There are no registers in this core.

Utility Vector Logic Interrupt Descriptions

There are no interrupts associated with this core.

Utility Vector Logic Block Diagram

All functions except "not":

Figure 2: Utility Vector Logic Block Diagram

Design Implementation

Design Tools

The Utility Vector Logic design is handwritten.

Xilinx XST is the synthesis tool used for synthesizing the Utility Vector Logic.

Target Technology

See EDK Supported Device Families for the intended target technology.

Device Utilization and Performance Benchmarks

Table 4: Utility Vector Logic Resource Utilization

Parameter value		Device Resources		
C_OPERATION	C_SIZE	Slices	Slice Flip-Flops	4-input LUTs
"and"	8	4	0	8
"xor"	12	6	0	12

There are no performance benchmarks available.

Specification Exceptions

Not applicable.

Reference Documents

None.

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Revision History

Date	Version	Revision
03/28/03	1.0	Revision History added to document.
12/19/03	1.1	Added LogiCORE Facts table. Reformatted to current Xilinx template.
7/15/04	1.2	Minor corrections and updates.
8/17/04	1.3	Updated for EDK 6.3. Updated trademarks and supported device family listing.
9/22/04	1.4	Updated to use new data sheet template.
4/24/09	1.5	Replaced references to supported device families and tool names with hyperlink to PDF file.

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.