Public Health Sciences 310 Epidemiologic Methods

Lectures 13 Data Collection Instruments and Field Operations

February 15, 2024

Brian C.-H. Chiu

How Research Works

Source: Hulley, 2007

14-STEP Program for Epidemiology Studies

- Define questions/hypotheses based on current literature
- Choose appropriate study design
- Define groups for comparison
- Define exposure and outcome variables
- Define extraneous variables to be measured
- Calculate sample size
- Develop/choose measurement instruments
- Develop protocol and train staff
- Recruit subjects, collect data, quality control procedures
- Process data
- Analyze data using appropriate statistical methods
- Determine if valid statistical association (assess <u>chance</u>, <u>confounding</u>, <u>interactions</u> and/or <u>bias</u>)
- Judge if association is causal
- Disseminating the results

Methods of exposure measurement

Measurement method	Data		Time		Type of exposure	
	Subjective	Objective	Present	Past	Personal attribute	Environmental exposure
Personal/phone interview	+		+	+	+	+
Self-administered questionnaire	+		+	+	+	+
Diary	+		+		+	+
Reference to records		+	+	+	+	+
Physical or chemical measurements on subject		+	+	?	+	+
Physical or chemical measurements of environment		+	+	+		+

Data Collection

- Questionnaires (most common method)
 - Major administration methods:
 - Mailed questionnaire
 - Telephone interview
 - In-person interview
 - Computer-assisted interview (CATI or CAPI)
 - Combinations
- Physical Examinations
- Biospecimen Collection

New instrument: should assess validity (accuracy) vs reliability (precision)

Assessing Validity

- Continuous variables
 - Scatter plots
 - Regression
 - Comparison of means
 - Analysis of variance
- Categorical variables
 - Percent agreement
 - Sensitivity/Specificity
 - Positive/Negative Predictive Value
 - Kappa statistic

Assessing Reliability

- Test-retest, inter-rater agreement, replicate samples
- Continuous variables
 - Scatter plots
 - Regression
 - Coefficient of variation
 - Intraclass correlation coefficient
- Categorical variables
 - Percent agreement
 - Kappa statistic

Percent Agreement

 The number of concordant observations divided by the total.

$$PA = \frac{(a+d)}{(a+b+c+d)} \times 100$$

Kappa Statistic

- Measures whether agreement exceeds chance for categorical variables
- K = (Po Pe) / (1- Pe)

Interpretation of Kappa

	Poor	Slight	Fair	Moderate	Substantial	Almost perfect
Kappa	0.0	.20	.40	.60	.80	1.0

Kappa	<u>Agreement</u>
< 0	Less than chance agreement
0.01 - 0.20	Slight agreement
0.21 - 0.40	Fair agreement
0.41 - 0.60	Moderate agreement
0.61 - 0.80	Substantial agreement
0.81 - 0.99	Almost perfect agreement

Viera AJ and Garrett JM. 2005

Kappa Set Up

Observation 1

n 2		Test +	Test -	Total
atio	Test +	15	5	20
erv	Test -	10	70	80
Obser	Total	25	75	100

Observed agreement
$$(P_o) = \frac{15+70}{100} = 0.85$$

Expected agreement
$$(P_e) = \left[\left(\frac{25}{100} \right) \times \left(\frac{20}{100} \right) + \left[\left(\frac{75}{100} \right) \times \left(\frac{80}{100} \right) \right] = 0.65$$

Kappa,
$$k = \frac{(P_o - P_e)}{(1 - P_e)} = \frac{(0.85 - 0.65)}{(1 - 0.65)} = 0.57$$

Field Operations

- Prepare the instrument for use in the field
- Pretest and pilot test the instrument
- Develop protocol
- Recruit and train staff
- Purchase equipment
- Identify and recruit subjects
- Administer the instrument and collect biological samples
- Manage the data

Ensuring Good Data Quality

- Ensure adequate training, retraining, and supervision of field workers
- Check samples of data-collection forms to assess their completeness and accuracy
- Assess interviewer's performance regularly by watching/listening to interview
- Assess reliability of the data obtained in the two interviews
- Tabulate the most important variables by interviewer to assess inter-interviewer variability
- Re-interview a random sample of subjects