федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет безопасности информационных технологий

Дисциплина:

«Теория информационной безопасности и методология защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 Экспертные оценки

Выполнил:

Студент гр. N3253

Пастухова А.А.

Проверил:

Якимова С.А.

Санкт-Петербург 2022г.

Цель: изучить материалы об экспертных оценках в области информационной безопасности, составить три ситуации разных типов и привести решение к ним.

Ход работы:

Задача 1 (непосредственная оценка)

- 1) Создание автоматизированной системы управления входами сотрудников на предприятие по карточным пропускам.
- 2) Анкета
 - а) Есть ли необходимость в установке МЭ?
 - b) Нужно ли использовать маршрутизаторы с блокируемыми портами для предотвращения доступа неавторизованных устройств к АСУ?
 - с) Стоит ли ограничивать права для разных пользователей?
 - d) Нужно ли совершать регулярную перезагрузку рабочей станции для защиты от вирусов (раз в месяц)?
 - е) Достаточно ли проводить резервное копирование данных один раз в сутки?
- 3) Веса вопросов для оценки

$$w1 = 0.9 \text{ } w2 = 0.8 \text{ } w3 = 0.5 \text{ } w4 = 0.8 \text{ } w5 = 0.7$$

4) Выбран метод непосредственной оценки, потому что нужно определить наиболее существенные факторы, на которые следует обратить внимание в первую очередь.

Экспертная оценка в диапазоне 1-10, наибольший приоритет 10

Факторы	a	b	С	d	e
19	3	7	9	5	8
29	4	6	8	3	9

5) Я использую коэффициент конкордации Кендалла, для того чтобы выявить согласованность мнений экспертов по нескольким факторам.

$$W = \frac{12S}{m^2(n^3 - n)} \tag{1}$$

где

т - число экспертов в группе,

n - число факторов,

5 - сумма квадратов разностей рангов (отклонений от среднего).

Матрица рангов

Факторы / Эксперты	1	2	Сумма рангов	d	d ²
x ₁	3	4	7	-5.4	29.16
x ₂	7	6	13	0.6	0.36
X3	9	8	17	4.6	21.16
X ₄	5	3	8	-4.4	19.36
X ₅	8	9	17	4.6	21.16
Σ	32	30	62		91.2

$$m = 2$$
, $n = 5$, $S = 91.2$

$$W = \frac{12 \cdot 91.2}{2^2 (5^3 - 5)} = 2.28$$

Результат больше 0,6, что свидетельствует о сильной согласованности экспертов.

6) Вычислим приоритетность решения задач с учетом весов вопросов в анкете, умножая среднюю экспертную оценку на вес фактора.

$$a - 7/2 * 0.9 = 3.15$$

$$b - 13/2 * 0.8 = 5.2$$

$$c - 17/2 * 0,5 = 4,25$$

$$d - 8/2 * 0.8 = 3.2$$

$$e - 17/2 * 0,7 = 5,95$$

Как можно заметить, чем больше результат, важнее является рассматриваемый фактор. Поэтому сначала e, b затем c, d, a.

Задача 2 (ранжирование)

- 1) Произошла атака на сайт интернет-магазина.
- 2) Анкета
 - а) Были затронуты все ресурсы сайта?
 - b) Высоки ли шансы, что в сеть утекли личные данные покупателей?
 - с) Стоит ли платить злоумышленникам, чтобы вернуть доступ к некоторым данным или они не существенно важны?
 - d) Можно ли вернуться к предыдущей версии, используя резервную копию?
 - е) Находится ли система в безопасности сейчас?
- 3) Важность вопросов для оценки w1 = 0.9 w2 = 0.7 w3 = 0.5 w4 = 0.8 w5 = 1.0
- 4) Выбран метод ранжирования, так как нужно определить приоритетную угрозу (фактор). По шкале от 1 до 5, наивысший ранг 1.

ранг фактора	a	b	С	d	e
Э1	4	2	1	3	5
Э2	3	2	1	4	5
Э3	1	3	2	4	5
Сумма	8	7	4	11	15

5) Рассчитываем коэффициент Кендалла для вычисления согласованности мнений трех экспертов.

$$W = \frac{12S}{m^2(n^3 - n)} \tag{1}$$

где

m - число экспертов в группе,

n - число факторов,

5 - сумма квадратов разностей рангов (отклонений от среднего).

$$m = 3$$
, $n = 5$, $S = 70$

Факторы / Эксперты	1	2	3	Сумма рангов	d	d ²
x ₁	4	3	1	8	-1	1
Х2	2	2	3	7	-2	4
Х3	1	1	2	4	-5	25
X ₄	3	4	4	11	2	4
X ₅	5	5	5	15	6	36
Σ	15	15	15	45		70

$$W = \frac{12 \cdot 70}{3^2 (5^3 - 5)} = 0.778$$

Коэффициент гласит о высокой степени согласованности мнений экспертов.

6) Далее вычислим итоговый ранг с учетом весов факторов:

$$a - 1/0.9 * 8 = 8.88$$

$$b - 1/0,7 * 7 = 10,0$$

$$c - 1/0,5 * 4 = 8$$

$$d - 1/0,8 * 11 = 13,75$$

$$e - 1/1,0 * 15 = 15$$

Чем выше получившийся ранг, тем важнее рассматриваемый фактор. Видим, что перво приоритетной задачей является проверка системы на безопасность и отсутствие утечек информации, а затем уже пытаться восстановить прежнюю версию по резервным копиям и тд.

Задача 3 (метод последовательных сравнений)

- 1) Создание собственной платежной системы, действующей для ограниченного числа пользователей.
- 2) Анкета
 - а) Будет ли работать такая система без перебоев в течение долгого времени?
 - b) Смогут ли создатели приложения поддерживать конфиденциальность данных всех клиентов?
 - с) Какова вероятность, что злоумышленники могут взломать систему?
 - d) Возможно ли, что данных пользователей утекут в сеть?
 - е) Как быстро авторы исправят ошибки, в случае утечки данных?
- 3) Веса вопросов

$$w1 = 0.9 \text{ } w2 = 1.0 \text{ } w3 = 0.9 \text{ } w4 = 0.7 \text{ } w5 = 0.8$$

4) Выбран метод последовательных сравнений, для того чтобы выявить порядок наиболее приоритетных угроз/ситуаций.

Оценки экспертов по шкале от 1 до 10, где 10 - наивысший приоритет:

						
Факторы	a	b	c	d	e	
Э1	10	7	5	6	4	
Э2	9	6	7	5	3	

5) Последовательное сравнение представляет собой комплексную процедуру измерения, включающую как ранжирование, так и непосредственную оценку.

На основе выставленных баллов двух экспертов выполним сравнение целей и корректировку первоначальных оценок. Затем вычислим веса целей, при этом сумма всех весов должна равняться 1.

Вес фактора: $V_i = (31+32)/sum(все оценки)$

Факторы	a	b	С	d	e
V	0,34	0,22	0,21	0,19	0,21

Я использую коэффициент конкордации, для того чтобы выявить согласованность мнений экспертов по нескольким факторам.

$$m = 2$$
, $n = 5$, $S = 75.2$

$$W = \frac{12 \cdot 75.2}{2^2 (5^3 - 5)} = 1.88$$

 $2^2(5^3-5)$ говорит о наличии высокой степени согласованности мнений экспертов.

6) Вычислим приоритетность решения задач с учетом весов вопросов в анкете, умножая вес фактора экспертной оценки на значимость фактора. Чем выше полученный результат, тем важнее фактор.

$$a - 0.34 * 0.9 = 0.306$$

$$b - 0.22 * 1.0 = 0.22$$

$$c - 0.21 * 0.9 = 0.189$$

$$d - 0.19 * 0.7 = 0.133$$

$$e - 0.21 * 0.8 = 0.168$$

Получаем последовательность ситуаций: a,b,c,e,d. Значит первостепенной угрозой является бесперебойная работа системы в течение долгого времени.

Вывод: производить экспертную оценку не так сложно, как могло показаться на первый взгляд, достаточно изучить ситуацию и выбрать подходящий метод, а дальше лишь использовать известные оценочные формы.