

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

3Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

JANUARY 16, 2022

ΘΟΔΩΡΗΣ ΑΡΑΠΗΣ - EL18028

Άσκηση 1

1.Η διαδικασία της εκπαίδευσης παρουσιάζεται στον ακόλουθο πίνακα:

Εποχή	y_k	x_k	$w_k^T x_k$	$y_k - f(w_k^T x_k)$	$\int \beta \left(y_k - f(w_k^T x_k) \right) x_k$	w_{k+1} (βάρη)
1	1	(1,0,-1,4)	-2	1	(0.2, 0, 0.2, 0.8)	(1.2, 1, -1.2, -0.2)
	0	(1,4,0,-1)	5.4	-1	(-0.2, -0.8, 0, 0.2)	(1, 0.2, -1.2, 0)
	1	(1, 2, 2, -1)	-1	1	(0.2, 0.4, 0.4, -0.2)	(1.2, 0.6, -0.8, -0.2)
	0	(1, 3, -1, 0)	3.8	-1	(0.2, -0.6, 0.2, 0)	(1, 0, -0.6, -0.2)
	1	(1, -2, 1, -3)	1	0	0	(1, 0, -0.6, -0.2)
	0	(1,0,-2,-1)	2.4	-1	(-0.2, 0, 0.4, 0.2)	(0.8, 0, -0.2, 0)
2	1	(1,0,-1,4)	1	0	0	(0.8, 0, -0.2, 0)
	0	(1,4,0,-1)	0.8	-1	(-0.2, -0.8, 0, 0.2)	(0.6, -0.8, -0.2, 0.2)
	1	(1, 2, 2, -1)	-1.6	1	(0.2, 0.4, 0.4, -0.2)	(0.8, -0.4, 0.2, 0)
	0	(1,3,-1,0)	-0.6	0	0	(0.8, -0.4, 0.2, 0)
	1	(1, -2, 1, -3)	1.8	0	0	(0.8, -0.4, 0.2, 0)
	0	(1,0,-2,-1)	0.6	-1	(-0.2, 0, 0.4, 0.2)	(0.6, -0.4, 0.6, 0.2)
3	1	(1,0,-1,4)	0.8	0	0	(0.6, -0.4, 0.6, 0.2)
	0	(1,4,0,-1)	-1.2	0	0	(0.6, -0.4, 0.6, 0.2)
	1	(1,2,2,-1)	0.2	0	0	(0.6, -0.4, 0.6, 0.2)
	0	(1,3,-1,0)	-1.2	0	0	(0.6, -0.4, 0.6, 0.2)
	1	(1, -2, 1, -3)	1.4	0	0	(0.6, -0.4, 0.6, 0.2)
	0	(1,0,-2,-1)	-0.8	0	0	(0.6, -0.4, 0.6, 0.2)

2.

Δίνεται το διάνυσμα: x = (1, -1, 2, 2)

Έχουμε από πριν: $w_{final} = (0.6, -0.4, 0.6, 0.2)$

$$w_{final}^T x = 0.6 \cdot 1 + 0.4 \cdot 1 + 0.6 \cdot 2 + 0.2 \cdot 2 = 2.6$$

Άρα θα ταξινομηθεί στην κλάση B.

Άσκηση 2

Σημεία	Κλάση	Ευκλείδεια απόσταση από το $(-1,2,2)$	Ταξινομητής πλησιέστερου γείτονα	Ταξινομητής 3 πλησιέστερων γειτόνων
(0, -1, 4)	В	$\sqrt{14}$	В	В
(4,0,-1)	Α	$\sqrt{38}$		
(2,2,-1)	В	$\sqrt{18}$		В
(3, -1, 0)	Α	√29		
(-2, 1, -3)	В	$\sqrt{27}$		
(0, -2, -1)	Α	$\sqrt{26}$		A

Συνεπώς, σύμφωνα με τα δεδομένα του παραπάνω πίνακα, και οι δύο ταξινομητές θα ταξινομούσαν το διάνυσμα (-1,2,2) στην κλάση B.

Άσκηση 3

1.

Γνωρίζουμε ότι στην συγκεκριμένη χώρα το 51% των ενηλίκων είναι άντρες. Επομένως η πρότερη πιθανότητα ο ενήλικας που επιλέξαμε να είναι άντρας θα είναι προφανώς: Pr(άντρας) = 0.51

2.

Ισχύει ότι

$$Pr(άντρας) = 0.51$$

$$Pr(γυναίκα) = 1 - Pr(άντρας) = 0.49$$

$$Pr(καπνιστής | άντρας) = 0.095$$

$$Pr(καπνιστής | γυναίκα) = 0.017$$

Από τον κανόνα του Bayes έχουμε:

$$Pr(\dot{\alpha}\nu\tau\rho\alpha\varsigma|\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma) = \frac{Pr(\dot{\alpha}\nu\tau\rho\alpha\varsigma) \cdot Pr(\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma|\dot{\alpha}\nu\tau\rho\alpha\varsigma)}{Pr(\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma)}$$

Για τις πιθανότητες του δεύτερου μέλους ισχύει:

$$Pr(\kappa \alpha \pi \nu \iota \sigma \tau \dot{\eta} \varsigma) =$$

 $Pr(\kappa \alpha \pi \nu \iota \sigma \tau \dot{\eta} \varsigma \cap \dot{\alpha} \nu \tau \rho \alpha \varsigma) + Pr(\kappa \alpha \pi \nu \iota \sigma \tau \dot{\eta} \varsigma \cap \gamma \nu \nu \alpha \dot{\kappa} \alpha) = \\ Pr(\dot{\alpha} \nu \tau \rho \alpha \varsigma) \cdot Pr(\kappa \alpha \pi \nu \iota \sigma \tau \dot{\eta} \varsigma | \dot{\alpha} \nu \tau \rho \alpha \varsigma) + Pr(\gamma \nu \nu \alpha \dot{\kappa} \alpha) \cdot Pr(\kappa \alpha \pi \nu \iota \sigma \tau \dot{\eta} \varsigma | \gamma \nu \nu \alpha \dot{\kappa} \alpha) = \\ 0.51 \cdot 0.095 + 0.49 \cdot 0.017 = 0.05678$

Οπότε:

$$Pr(\alpha v \tau \rho \alpha \varsigma | \kappa \alpha \pi v \iota \sigma \tau \dot{\eta} \varsigma) = \frac{0.51 \cdot 0.095}{0.05678} \Longrightarrow$$

$$Pr(άντρας | καπνιστής) = 0.853293413$$

Άσκηση 4

Δίνεται ο ασαφής κανόνας:

αν η X είναι A_1 και η Y είναι σχετικά A_2 , τότε η Z είναι B

Συνεπώς το
$$\langle X,Y,Z\rangle$$
 είναι R : $R(x,y,z)=J_{min}\left(i\left(A_1(x),h\left(A_2(y)\right)\right),B(z)\right)$

θεωρούμε ότι: σχετικά $\longrightarrow h(a) = \sqrt{a}$, οπότε:

$$h(A_2) = 1/y_1 + 0.3/y_2$$

θα έχουμε:

$$\begin{split} J_{min}\left(i\left(A_{1}(x),h(A_{2}(y))\right),B(z)\right) &= min\left(i\left(A_{1}(x),h(A_{2}(y))\right),B(z)\right) = \\ &0.2/x_{1},y_{1},z_{1}+0.2/x_{1},y_{1},z_{2}+0.3/x_{1},y_{2},z_{1}+0.3/x_{1},y_{2},z_{2}\\ &+0.7/x_{2},y_{1},z_{1}+1/x_{2},y_{1},z_{2}+0.3/x_{2},y_{2},z_{1}+0.3/x_{2},y_{2},z_{2}\\ &+0.7/x_{3},y_{1},z_{1}+0.8/x_{3},y_{1},z_{2}+0.3/x_{3},y_{2},z_{1}\\ &+0.3/x_{3},y_{2},z_{2} \end{split}$$

Για τιμές εισόδου $X \longrightarrow x_2, Y \longrightarrow y_1$, το σύστημα δίνει έξοδο:

$$T(p) = 0.7/z_1 + 1/z_2$$