

Símbolo

Característica V-I

 I_D corriente por el diodo

 V_D tensión entre terminales del diodo

 I_s corriente de saturación

q carga del electrón

Ecuación

k constante de Boltzmann

n coeficiente de emisión (2 para Si)

T temperatura de la unión (Kelvin)

1910-1989

$$V_D = V_{AK} = V_A - V_K$$

Tensión entre el ánodo y cátodo

 I_D

Corriente de ánodo a cátodo

c) jc Antón

Propiedades

☐ Conduce en un solo sentido

La corriente solo circula de ánodo a cátodo

 \Box $V_D > 0$ región directa

 \Box V_D < 0 región inversa

Símbolo

 V_D

3º aproximación

Modelos

I_D Diodo Símbolo V-I real REGION DIRECTA V_D CORRIENTE DE FUGA V_D CODO = 0.7VREGION INVERSA Modelos Fuente de tensión + resistencia Fuente de tensión Circuito abierto Cortocircuito I_D I_D I_D I_D Fuente de tensión I_D Fuente de tensión cortocircuito Resistencia Vγ Vγ V_D V_D V_D Circuito abierto Circuito abierto Circuito abierto 3º aproximación 2º aproximación V-I ideal (c) jc Antón

Modelo ideal

$$V_D = V_{AK} = V_A - V_K \;\;\;$$
 Tensión entre ánodo y cátodo $I_D \;\;$ Corriente de ánodo a cátodo

Modelo ideal

Análisis de circuitos con diodos

- ☐ Formulamos una hipótesis sobre el estado de conducción del diodo, elegimos entre que el diodo conduzca o que no conduzca.
- ☐ Sustituimos el diodo por el modelo correspondiente a nuestra elección y resolvemos el circuito resultante.
- ☐ Comprobamos que no existan contradicciones.

Modelo ideal

Análisis de circuitos con diodos

PASOS (Hipótesis: diodo conduce)

1º Partimos como hipótesis que el diodo conduce, se comporta como un CORTOCIRCUITO

2º Sustituimos el diodo por su modelo de cortocircuito e indicamos el sentido de la corriente, de ánodo a cátodo, sobre el cortocircuito.

3º Resolvemos el circuito resultante.

4º Verificamos que se cumple la condición del modelo de cortocircuito: la corriente por el cortocircuito debe tener la dirección indicada en el paso 2 (I_D>0). Si es así, la hipótesis es correcta, el diodo conduce.

Si se contradice la condición del modelo al resolver el circuito, la hipótesis es incorrecta.

Modelo ideal

Análisis de circuitos con diodos

PASOS (Hipótesis: diodo no conduce)

2º Sustituimos el diodo por su modelo de circuito abierto e indicamos sobre él la tensión V_D colocado el + en el terminal del ánodo y el – en el terminal del cátodo.

Modelo circuito abierto

3º Resolvemos el circuito resultante

4º Verificamos que se cumpla la condición del modelo de circuito abierto: la tensión según las referencias del paso 2 debe ser negativa (V_D < 0). Si es así, la hipótesis es correcta, el diodo no conduce. Está polarizado en inversa, V_D < 0.

Si se contradice la condición del modelo al resolver el circuito, la hipótesis es incorrecta.

Modelo ideal

Ejemplo 1

Hipótesis: el diodo conduce

 $-V + V_R = 0$

modelo cortocircuito

$$-V + I_D R = 0$$

se cumple la condición $I_D = \frac{V}{R} > 0$

LTK

condición

 I_D

Supongo esta zona de trabajo

 V_D

Solución:
$$\begin{cases} I_D = \frac{V}{F} \\ V_D = 0 \end{cases}$$

Modelo ideal

Ejemplo 1

Hipótesis: el diodo conduce

 $-V + V_R = 0$

 $-V + I_D R = 0$

se cumple la condición
$$I_D = \frac{V}{R} > 0$$

Hipótesis correcta

Solución:
$$\begin{cases} I_D = \frac{V}{R} \\ V_D = 0 \end{cases}$$

LTK

¿Qué ocurre si empiezo por la otra hipótesis?

Modelo ideal

modelo circuito abierto

Hipótesis: el diodo no conduce

Contradicción

Ánodo Cátodo

R

$$-V + V_R + V_D = 0 \qquad \text{LTK}$$

$$-V + 0 + V_D = 0$$

$$V_D = V > 0$$

Hipótesis incorrecta, el modelo no vale

 V_D

condición

Supongo esta zona

de trabajo

Modelo ideal

Ejemplo 2

Hipótesis: el diodo no conduce

modelo circuito abierto

$$-V + V_R - V_D = 0$$
 LTK
 $-V + (-I_D R) - V_D = 0$ $I_D = 0$
 $-V + 0 - V_D = 0$

$$V_D = -V < 0$$

Hipótesis correcta

$$\int I_D = 0$$
 Solución: $\int V_D = -V$

Supongo esta zona

de trabajo

condición

(c) jc Antón

 V_D

Modelo ideal

Ejemplo 2

Hipótesis: el diodo no conduce

 V_D

 I_D

(-V, 0)

$$\int I_D = 0$$
 Solución: $\int V_D = -V$

Punto de

funcionamiento

$$-V + (-I_D R) - V_D = 0$$
 $I_D = 0$

LTK

$$-V + 0 -V_D = 0$$

 $-V + \overline{V_R} - V_D = 0$

se cumple la condición
$$V_D=-V<0$$

Modelo ideal

Ejemplo 3

Determine el punto de operación de los diodos

Hipótesis	D1	D2
1	No conduce	No conduce
2	No conduce	Conduce
3	Conduce	No conduce
4	Conduce	Conduce

Modelo ideal

Ejemplo 3

Hipótesis	D1	D2
1	No conduce Modelo circuito abierto	No conduce Modelo circuito abierto

LCK 4

$$I_{D1} + I_{D2} - I_R = 0$$

$$0 + 0 - I_R = 0 \implies I_R = 0$$

$$V_R = I_R R = 0$$
 Ley de Ohm

LTK 2
$$-20 + V_{D1} + V_{R} = 0$$

$$-20 + V_{D1} + 0 = 0$$

$$V_{D1} = 20 > 0$$

NO se cumple la condición

condición

Hipótesis incorrecta, ya no sigo con esa combinación

Modelo ideal

Ejemplo 3

 I_{D1}

 V_A

20 V

Hipótesis	D1	D2
2	No conduce Modelo circuito abierto	Conduce Modelo cortocircuito

$$-20 + V_{D1} + 30 = 0$$

$$V_{D1} = -10 < 0$$
 se cumple la condición para D1

$$-V_R + 30 = 0$$
$$-(I_{D2}R) + 30 = 0$$

$$I_{D2} = I_R$$

Hipótesis correcta $V_{D1} = -10$

$$D1 = \begin{cases} I_{D1} = 0 \text{ A} \\ I_{D1} = 0 \text{ A} \end{cases}$$

$$D2 \quad \begin{vmatrix} V_{D2} = 0 \ V \\ I_{D2} = \frac{30}{R} A \end{vmatrix}$$

 V_R

 V_{D2}

 V_{B}

30V

$$I_{D2} = \frac{30}{R} > 0$$

se cumple la condición para D2

Modelo 2º aproximación

Ejemplo 4

Hipótesis: el diodo conduce

R

Datos. $V_{\gamma} = 0.7 \text{ V}$ $R = 1 \Omega$

 I_D

Punto de funcionamiento

(0,719,3)

 V_D

RECTIFICADORES

RECTIFICADORES

$$V_{medio} = 0$$

Entrada

Pasa de una señal alterna con valor medio nulo a una señal con valor medio no nulo

RECTIFICADOR de MEDIA ONDA

$$V_{medio} = \frac{V_{medio}}{T_{medio}}$$

$$V_{medio} = \frac{1}{T} \int_{0}^{T} f(t)dt$$

Pasa de una señal alterna con valor medio nulo a una señal con valor medio no nulo

RECTIFICADORES

RECTIFICADOR de MEDIA ONDA

$$V_{medio} = 0$$

$$V_{medio} = \frac{V_p}{\pi}$$

$$V_{medio} = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{T} \int_0^{T/2} V_p \sin \omega t \, dt = \frac{V_p}{T} \left[-\frac{1}{\omega} \cos \omega t \right]_0^{T/2} = \frac{V_p}{T\omega} 2 = \frac{V_p}{\pi}$$

RECTIFICADOR DE ONDA COMPLETA

Semiciclo positivo

RL

RL

RL

Tensión en R_L

Tensión en $R_{\scriptscriptstyle L}$

$$V_{medio} = \frac{2V_p}{\pi}$$

RECTIFICADOR DE ONDA COMPLETA

Semiciclo positivo

 R_L

Semiciclo negativo

 v_{R_L}

Tensión en R_L

Tensión en R_L

 v_{R_L}

$$V_{medio} = \frac{2V_p}{\pi}$$

RECTIFICADOR DE ONDA COMPLETA

+

FILTRO POR CONDENSADOR

Aplicaciones

Fuente Lineal

Si cambia R_L cambia la tensión, excepto que R_s cambie.

R_s disipa el doble de potencia que la carga.

SOLUCIÓN

33%

de eficiencia

Fuente Conmutada

Si está abierto no hay corriente, si está cerrado la tensión es nula P=V*I es cero en todos los casos

Tensión de salida

Tensión media

Se cierra durante T/3

Regulo la salida modificando el tiempo que está cerrado el interruptor durante el periodo

Vo

LIMITADORES

Circuito limitador de doble polaridad

PUERTAS LÓGICAS

Símbolo

Modelo

Fuente de tensión

V-I real

Modelo

Fuente de tensión

Símbolo

Cortocircuito

Modelo

Fuente de tensión

Circuito abierto

Modelo ideal

$A \xrightarrow{V_D} K$

Ejemplo

Hipótesis:

conduce en zona zener

se cumple la condición

$$I_z = \frac{V - V_z}{R} = 3 mA > 0$$

Hipótesis correcta

condición

$$\int_{\text{respecto V}_{\text{D}}\,\text{e I}_{\text{D}}}^{I_{D}} = -I_{z} = -3 \ mA$$

$$V_{D} = -V_{z} = -3 \ V$$

Modelo ideal

Ejemplo

Hipótesis:

conduce en zona zener

$$I_z = \frac{V - V_z}{R} = 3 \ mA > 0$$

condición

Solución:

$$\int_{D} I_{D} = -I_{z} = -3 mA$$

$$V_{D} = -V_{z} = -3 V$$

 $-V + I_z R + V_z = 0$

APLICACIONES

Reguladores de tensión

Si cambia V o se carga el circuito, la tensión de salida cambia, No regula

La fuente puede variar y la tensión de salida se mantiene a 3 V Si V(R_L/(R_L+R)) > 3 V La carga puede variar y la tensión de salida se mantiene a 3 V Si R_L > 1 K

Protección en la entrada de circuitos

NO se necesitan fuentes de tensión. El límite se fija por la tensión zener de los diodos

Modelo ideal

Ejercicio 1

Determine el punto de operación del diodo

Modelo ideal

Hipótesis	D1
1	conduce

Ejercicio 1

Determine el punto de operación del diodo

Modelo ideal

Hipótesis	D1
1	conduce

Ejercicio 1

Determine el punto de operación del diodo

Solución:

condición

$$I_D = \frac{V}{R_1} = 10 \ mA$$

$$V_D = 0 \ V$$

LCK
$$I_{R_1} = I_{R_2} + I_D$$
 $I_{R_1} = 0 + I_D$ $I_{R_2} = \frac{0}{R_2}$ $I_{R_1} = I_D$

LTK
$$\frac{2}{V_D} = 0$$

$$-V + V_{R_1} = 0 \qquad V_D = 0$$

$$-V + I_{R_1}R_1 = 0$$

$$-V + I_DR_1 = 0$$

$$I_D = \frac{V}{R_1} > \mathbf{0}$$

se cumple la condición

Hipótesis correcta

Modelo ideal

Hipótesis	D1
1	conduce

Ejercicio 1

Determine el punto de operación del diodo

Solución:

$$I_D = \frac{V}{R_1} = 10 \ mA$$
$$V_D = 0 \ V$$

condición

Modelo ideal

Ejercicio 2

Determine el punto de operación del diodo

Modelo ideal

Hipótesis Dz 1 Conduce en inversa

Ejercicio 2

4 V

LTK
$$-V + V_{R_1} + V_Z = 0$$

$$-V + I_{R_1}R_1 + V_Z = 0$$

$$I_{R_1} = \frac{4-3}{R_1} = 1 \, mA$$

Ohm
$$I_{R_2} = \frac{V_z}{R_2} = 3 mA$$

LCK
$$\frac{3}{I_{R_1}} = I_{R_2} + I_Z$$
 $I_Z = I_{R_1} - I_{R_2} = -2 \text{ mA} < 0$

Modelo ideal

Hipótesis Dz 1 Conduce en inversa

Ejercicio 2

4 V

Hipótesis incorrecta

NO se cumple la condición I_Z debería ser positiva !!!!

condición

Ohm
$$I_{R_2} = \frac{V_z}{R_2} = 3 \, mA$$

LCK 3 Contradicción
$$I_{R_1} = I_{R_2} + I_Z$$
 $I_Z = I_{R_1} - I_{R_2} = -2 mA < 0$

Modelo ideal

Hipótesis Dz 2 No conduce

Ejercicio 2

Hipótesis Dz No conduce

Modelo ideal

Ejercicio 2

Determine el punto de operación del diodo

condición

LTK $-V + V_{R_1} + V_{R_2} = 0$ $-V + I_{R_1}R_1 + I_{R_1}R_2 = 0$ $I_{R_1} = I_{R_2} = \frac{V}{(R_1 + R_2)} = 2 \, mA$ $V_{R_2} = I_{R_2} R_2 = 2 \text{ V}$

LTK
$$-V_{R_2} - V_D = 0$$

$$V_D = -V_{R_2} = -2 V$$

Solución: $V_D = -2 \text{ V}$

Hipótesis correcta

$$I_D = 0 A$$

se cumple la condición -3 < -2 < 0

Hipótesis Dz

2 No conduce

Modelo ideal

Ejercicio 2

Determine el punto de operación del diodo

Solución:

Modelo ideal

Hipótesis	Dz	
2	No conduce	o C

Más sencillo ...

$$V_{R_2} = 4\frac{1}{2}\frac{k}{k} = 2V$$

$$V_D = -V_{R_2} = -2 V$$

Hipótesis correcta

se cumple la condición

$$-3 V < -2 V < 0 V$$

Solución:
$$V_D = -2 V$$

$$I_D = 0 A$$

- 1. Un diodo ideal se comporta en directa como ...
 - (a) Un cortocircuito
 - (b) Un circuito abierto
 - (c) Una resistencia
 - (d) Ninguna de la anteriores
- 2. Un diodo ideal se comporta en inversa como ...
 - (a) Un cortocircuito
 - (b) Un circuito abierto
 - (c) Una resistencia
 - (d) Ninguna de la anteriores
- 3. En la segunda aproximación, el diodo en directa se modela por
 - (a) Un circuito abierto
 - (b) Un circuito cerrado
 - (c) Una fuente de corriente
 - (d) Ninguna de las anteriores
- 4. La tensión de codo del diodo es aproximadamente igual a la
 - (a) Tensión aplicada en inversa
 - (b) Tensión de ruptura en inversa
 - (c) Barrera de potencial que debe superarse en directa
 - (d) Tensión aplicada en directa con corrientes altas
 - (e) Ninguna de las anteriores
- 5. Si un diodo es ideal, la curva VI en polarización directa es:
 - (a) Una recta horizontal
 - (b) Una recta a 45º
 - (c) Una recta vertical
 - (d) Una recta horizontal ligeramente inclinada
 - (e) Ninguna de las anteriores

- 6. Si la frecuencia de entrada es 50Hz, la frecuencia de salida de un rectificador de media onda es:
 - (a) 25 Hz
 - (b) 200 Hz
 - (c) 100 Hz
 - (d) 50 Hz
 - (e) Ninguna de las anteriores
- 7. Si la frecuencia de entrada es 50Hz, la frecuencia de salida de un rectificador de onda completa es:
 - (a) 25 Hz
 - (b) 200 Hz
 - (c) 100 Hz
 - (d) 50 Hz
 - (e) Ninguna de las anteriores
- 8. ¿Qué describe mejor el comportamiento de un diodo Zener en su región de ruptura?
 - (a) Un diodo rectificador
 - (b) Un diodo que trabaja en zona directa
 - (c) Dispositivo de corriente constante
 - (d) Dispositivo de tensión constante
 - (e) Divisor de tensión
- 9. Un diodo Zener ...
 - (a) Es un diodo que funciona habitualmente en directa
 - (b) Un diodo con tensión de codo muy baja
 - (c) Mantiene una diferencia de potencial constante en la zona de ruptura
 - (d) Es una batería
 - (e) Ninguna de las anteriores
- 10. Si la resistencia de carga se incrementa en un regulador con Zener, la corriente por el Zener...
 - (a) Se hace nula
 - (b) Se mantiene constante
 - (c) aumenta
 - (d) disminuye
 - (e) Ninguna de las anteriores

- 11. Si la tensión de entrada se incrementa en un regulador Zener, ¿qué corriente se mantiene aproximadamente constante?
 - (a) La corriente por el Zener
 - (b) La corriente por la carga
 - (c) La corriente entregada por la fuente
 - (d) Ninguna de las anteriores
- 12. El condensador de filtro de una fuente de alimentación se utiliza para...
 - (a) Obtener una tensión casi continua
 - (b) Reducir las interferencias
 - (c) Aumentar la corriente
 - (d) Ninguna de las anteriores
- 13. A la salida de un rectificador de puente completo se obtiene una tensión prácticamente continua
 - (a) verdadero
 - (b) falso
- 14. El modelo del diodo ideal en inversa es
 - (a) Una resistencia
 - (b) Un circuito abierto
 - (c) Una fuente de corriente
 - (d) Un cortocircuito
 - (e) Ninguna de las anteriores
- 15. Al rectificar con un medio puente una seña alterna se obtiene
 - (a) Una señal alterna de mayor amplitud
 - (b) Una señal continua
 - (c) Una señal de valor medio no nulo
 - (d) Una señal de valor medio nulo
 - (e) Ninguna de las anteriores

- 16. Los diodos que puede utilizarse para proteger la entrada de un circuito son:
 - (a) Solo los Zener
 - (b) Solo diodos rectificadores
 - (c) Ambos tipos
 - (d) Solo si se combinan los dos tipos
 - (e) Ninguna de las anteriores
- 17. En un rectificador de puente completo los 4 diodos siempre están conduciendo
 - (a) verdadero
 - (b) falso
- 18. La tercera aproximación del diodo considera la tensión de codo y una resistencia en directa
 - (a) verdadero
 - (b) falso
- 19. Un diodo ideal no soporta una tensión en directa mayor que cero
 - (a) verdadero
 - (b) falso
- 20. Un diodo real en directa puede soportar cualquier corriente
 - (a) verdadero
 - (b) falso

- 1. Un diodo ideal se comporta en directa como ...
 - (a) Un cortocircuito
 - (b) Un circuito abierto
 - (c) Una resistencia
 - (d) Ninguna de la anteriores
- 2. Un diodo ideal se comporta en inversa como ...
 - (a) Un cortocircuito
 - (b) Un circuito abierto
 - (c) Una resistencia
 - (d) Ninguna de la anteriores
- 3. En la segunda aproximación, el diodo en directa se modela por
 - (a) Un circuito abierto
 - (b) Un circuito cerrado
 - (c) Una fuente de corriente
 - (d) Ninguna de las anteriores
- 4. La tensión de codo del diodo es aproximadamente igual a la
 - (a) Tensión aplicada en inversa
 - (b) Tensión de ruptura en inversa
 - (c) Barrera de potencial que debe superarse en directa
 - (d) Tensión aplicada en directa con corrientes altas
 - (e) Ninguna de las anteriores
- 5. Si un diodo es ideal, la curva VI en polarización directa es:
 - (a) Una recta horizontal
 - (b) Una recta a 45º
 - (c) Una recta vertical
 - (d) Una recta horizontal ligeramente inclinada
 - (e) Ninguna de las anteriores

- 6. Si la frecuencia de entrada es 50Hz, la frecuencia de salida de un rectificador de media onda es:
 - (a) 25 Hz
 - (b) 200 Hz
 - (c) 100 Hz
 - (d) 50 Hz
 - (e) Ninguna de las anteriores
- 7. Si la frecuencia de entrada es 50Hz, la frecuencia de salida de un rectificador de onda completa es:
 - (a) 25 Hz
 - (b) 200 Hz
 - (c) 100 H;
 - (d) 50 Hz
 - (e) Ninguna de las anteriores
- 8. ¿Qué describe mejor el comportamiento de un diodo Zener en su región de ruptura?
 - (a) Un diodo rectificador
 - (b) Un diodo que trabaja en zona directa
 - (c) Dispositivo de corriente constante
 - (d) Dispositivo de tensión constante
 - (e) Divisor de tensión
- 9. Un diodo Zener ...
 - (a) Es un diodo que funciona habitualmente en directa
 - (b) Un diodo con tensión de codo muy baja
 - (c) Mantiene una diferencia de potencial constante en la zona de ruptura
 - (d) Es una batería
 - (e) Ninguna de las anteriores
- 10. Si la resistencia de carga se incrementa en un regulador con Zener, la corriente por el Zener...
 - (a) Se hace nula
 - (b) Se mantiene constante
 - (c) aumenta
 - (d) disminuye
 - (e) Ninguna de las anteriores

- 11. Si la tensión de entrada se incrementa en un regulador Zener, ¿qué corriente se mantiene aproximadamente constante?
 - (a) La corriente por el Zener
 - (b) La corriente por la carga
 - (c) La corriente entregada por la fuente
 - (d) Ninguna de las anteriores
- 12. El condensador de filtro de una fuente de alimentación se utiliza para...
 - (a) Obtener una tensión casi continua
 - (b) Reducir las interferencias
 - (c) Aumentar la corriente
 - (d) Ninguna de las anteriores
- 13. A la salida de un rectificador de puente completo ya se obtiene una tensión prácticamente continua
 - (a) verdadero
 - (b) falso
- 14. El modelo del diodo ideal en inversa es
 - (a) Una resistencia
 - (b) Un circuito abierto
 - (c) Una fuente de corriente
 - (d) Un cortocircuito
 - (e) Ninguna de las anteriores
- 15. Al rectificar con un medio puente una seña alterna se obtiene
 - (a) Una señal alterna de mayor amplitud
 - (b) Una señal continua
 - (c) Una señal de valor medio no nulo
 - (d) Una señal de valor medio nulo
 - (e) Ninguna de las anteriores

- 16. Los diodos que pueden utilizarse para proteger la entrada de un circuito son:
 - (a) Solo los Zener
 - (b) Solo diodos rectificadores
 - (c) Ambos tipo
 - (d) Solo si se combinan los dos tipos
 - (e) Ninguna de las anteriores
- 17. En un rectificador de puente completo los 4 diodos siempre están conduciendo
 - (a) verdadero
 - (b) falso
- 18. La tercera aproximación del diodo considera la tensión de codo y una resistencia en directa
 - (a) verdadero
 - (b) falso
- 19. Un diodo ideal no soporta una tensión en directa mayor que cero
 - (a) verdadero
 - (b) falso
- 20. Un diodo real en directa puede soportar cualquier corriente
 - (a) verdadero
 - (b) falso