《离散数学》期末考试题(D)参考答案

一、1.32, 0, 30.

2.
$$\forall x (G(x) \rightarrow F(x)) \land \exists x (F(x) \land \neg G(x))$$
.

 $3.\emptyset$, X, X.

4. 3.

5.*n* 为奇数, 3, *n* ≤ 4.

- \equiv , 1(C); 2(B); 3(D); 4(D); 5(A).
- \equiv , $1(\sqrt{})$; $2(\sqrt{})$; $3(\times)$; $4(\times)$; $5(\sqrt{})$.
- 四、证 $A-B=B \Leftrightarrow A=B=\emptyset$.
- (⇐)显然.
- (⇒)因为 $A B = A \cap \overline{B}$,根据 A B = B 得 $(A \cap \overline{B}) \cap B = B \cap B$,于是 $B = \emptyset$,进而 $A = \emptyset$.

五、**解** 由于 R 和 S 是对称的,所以 $R^{-1} = R$, $S^{-1} = S$.

(仁)因为 $R \circ S = S \circ R$,两边取逆得 $(R \circ S)^{-1} = (S \circ R)^{-1}$,而

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1} = R \circ S$$
.

所以 $(R \circ S)^{-1} = R \circ S$, 因此 $R \circ S$ 是对称关系.

(⇒)由于 $R\circ S$ 对称,所以 $(R\circ S)^{-1}=R\circ S$.而 $(R\circ S)^{-1}=S^{-1}\circ R^{-1}=S\circ R$,因而 $R\circ S=S\circ R$.

六、解 (1)等值演算法

A 的主合取范式:

$$A = (\neg r \lor (q \to p)) \to (p \to (q \lor r))$$

$$= (\neg r \lor (\neg q \lor p)) \rightarrow (\neg p \lor (q \lor r))$$

$$= \neg(\neg r \lor (\neg q \lor p)) \lor (\neg p \lor q \lor r)$$

- $= (r \land q \land \neg p) \lor (\neg p \lor q \lor r)$
- $= \neg p \lor q \lor r$ (由吸收律得到).

于是, A 的主析取范式为

$$A = (\neg r \lor (q \to p)) \to (p \to (q \lor r))$$

$$= (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor$$

$$(p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r).$$

(2)真值表法

命题公式 $A = (\neg r \lor (q \to p)) \to (p \to (q \lor r))$ 的真值表如下:

p, q, r	$(\neg r \lor (q \to p))$	$p \rightarrow (q \lor r)$	A
1, 1, 1	1	1	1
1, 1, 0	1	1	1
1, 0, 1	1	1	1
1, 0, 0	1	0	0
0, 1, 1	0	1	1
0, 1, 0	1	1	1
0, 0, 1	1	1	1
0, 0, 0	1	1	1

由表可知,
$$A = (\neg r \lor (q \to p)) \to (p \to (q \lor r))$$
的主合取范式为

$$A = \neg p \lor q \lor r$$
.

A 的主析取范式为

$$A = (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land r).$$

七、证(反证) 假设 G 中不含圈. 设 G 有 $k(k \ge 1)$ 个连通分支 $G_1, G_2, ..., G_k$,其节点个数分别为 $n_1, n_2, ..., n_k$, 其边数分别为 $m_1, m_2, ..., m_k$. 这时, G_i 为树, 根据树的基本性质有 $m_i = n_i - 1 \ i (1 \le i \le k)$. 进而 $m = \sum_{i=1}^k m_i = \sum_{i=1}^k (n_i - 1) = n - k < n$,与已知 $m \ge n$ 矛盾. 证 毕.

八、**解** 令
$$g(k) = f(2^k) = f(n)$$
,于是原递归关系变为

$$\begin{cases} g(k) = 2g(k-1) + b2^k \\ g(0) = c \end{cases}.$$

利用递归法,有

$$g(k) = 2[2g(k-2) + b \cdot 2^{k-1}] + b2^{k}$$

$$= 2^{2}g(k-2) + 2b \cdot 2^{k}$$

$$= 2^{2}[2g(k-3) + b \cdot 2^{k-2}] + 2b \cdot 2^{k}$$

$$= 2^{3}g(k-3) + 3b \cdot 2^{k} = \cdots$$

$$= 2^{k} g(0) + kb \cdot 2^{k}$$

$$= 2^{k} (c + bk)$$

$$= n(c + b \ln n),$$

因此,有 $f(n) = n(c + b \ln n)$,其中 b, c 为常数且 $n = 2^k$, k 为正整数.

.