

DONORS

$$R = 0$$
 $R = 0$
 $R =$

FIGURE 1

BRIDGES

1. Polyene Examples

2. Fused Thiophene Examples

3. Monothiophene Examples

ACCEPTORS

$$O \downarrow O \downarrow O \downarrow O \downarrow CN$$
 $CF_3 CN F CN$

L.R. Dalton et al.

UOFW117403

2). Polyene Donor + dithiophene + Polyene Acceptor

3). Polyene Donor + tri-thiophene bridge + Polyene Acceptor

4). polyene Donor + thiophene + Polyene Acceptor

HO
$$S_{i}$$
 S_{i} S

HORES

HO N S S S F C NC
$$F_3$$
C NC F_3 C NC F_3 C F_4 C F_5

L.R. Dalton et al. UOFW117403

PHORES

FIGURE 3

J. Chem. Soc. Perk. Trans. 1 1997, 22, 3465 Heterocycles 1994, 38(1), 143 J. Organomet. Chem. 1973, 50, C12 Pure Appl. Chem. 1980, 52, 669 Tet. Lett. 1981, 22, 4449

FIGURE 4

Docket No.:

L.R. Dalton et al. UOFW117403

The first of the f

1) Br₂ 2) 2 equiv. nBuLi

1) 1 equiv. R⁵MgX Ni(acac)₂

2) 1 equiv. R⁶MgX Ni(acac)₂

1a) 2 equiv. nBuLi b) 2 equiv DMF 2) donor Wittig couling

acceptor coupling

OHC

- J. Org. Chem. 1971, 36(12), 1645 J. Chem. Soc. Perk. Trans. 2 1992, 5, 765 J. Mater. Chem. 1999, 9(9), 2227

FIGURE 5

J. Am. Chem. Soc. 2001, 123(19), 4643 Chem. Mater. 1996, 8(11), 2659 J. Chem. Soc. Perkins Trans. I 1997, 1957

Docket No.:

FIGURE 11

Docket No.:

PERPOLARIZABLE ORGANIC CHROMO L.R. Dalton et al. UOFW117403 Docket No.:

FIGURE 13

RES

Inven. Docket No.:

K tert-butoxide 18-crown-6 CH_2Cl_2 11 cat. TEA, piperidine

FIGURE 14

PERPOLARIZABLE ORGANIC CHROMO
L.R. Dalton et al.
0.: UOFW117403

RES

PHORES

L.R. Dalton et al. UOFW117403

Docket No.:

FIGURE 17

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

prontors: t No.: L.R. Dalton et al. UOFW117403

s. chromophore loading

tle: HYPERPOLARIZABLE ORGANIC CHRO htors: L.R. Dalton et al.

Docket No.:

UOFW117403

$$F_3CO_2S$$
 SO_2CF_3
 F_3CO_2S
 SO_2CF_3

OH

KOH/
$$H_2O$$
/Benzene O F_3CO_2S SO $_2CF_3$ NC F_3CO_2S SO $_2CF_3$ SO $_2CF_3$

FIGURE 19

Docket No.:

$$F_3CO_2S$$

Time: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

L.R. Dalton et al.

tors:

UOFW117403

SCANNED, # /

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

PHORES

Title: HYPERPOLARIZABLE ORGANIC CHROPHORES L.R. Dalton et al.
UOFW117403

Docker No.:

L:R. Dalton et al.
No.: UOFW117403

THF 18

THF 32 CHCl₃

кон BrCF₂CF₂Br DMF 100°C CH₃CN CBr₄ PPh₃ 16

QCF₂CF₂Br KOH K₂CO₃ acetone CBr₄ PPh₃ THF BrCF₂OF₂Br DMSO OH ¹⁰⁰C CH₃CN CBr₄ PPh₃ 19 20 21 -23

PHORES

Docket No.:

BrCF₂CF₂O кон кон BrCF₂CF₂Br **30** 29 ОН Zn CH₃CN CBr₄ PPh₃ 31 32

HORES

L.R. Dalton et al.

UOFW117403

Docket No.:

FIGURE 36

In rs:
Docket No.:

L.R. Dalton et al. UOFW117403

- (i) NBS, DMF, RT;(ii) acetic anhydride, 60° C; (iii) (CH₂O)n, 45% HBr/HOAc, HOAc, 50° C;
- (iv) P(OEt)₃, DMF, 120°C.

(i) 11, KOtBu, THF, 0°C; (ii) K₂CO₃, CH₃OH, H₂O, RT; (iii) (CH₃)₃CSi(CH₃)₂Cl, imidazole, DMF, 50°C; (iv) a. nBu-Li, THF, -78°C; b. DMF, RT; (v) a. 4, KOtBu, THF, 0°C; b. K₂CO₃, CH₃OH, H₂O, RT; c. (CH₃)₃CSi(CH₃)₂Cl, imidazole, DMF, 50°C.

TBDMSO

FIGURE 40

15(a, b)

R 14a: OTBDMS 15a: H

Large Angle Laser Beam Scanner

EO waveguide prism introduces a small deflection angle to initialize the beam scanning. The half-circle 2-D photonic crystal region is imbedded into the waveguide, so that the deflection angle is "amplified" as the light pass through the crystal region. 3D scanning can also be provided if a 3-D structure is built

Title HYPERPOLARIZABLE ORGANIC CHROM FORES
In Control of the Contr

Mach Zehnder Modulator

Birefringent Modulator

Directional Coupler

Title: HYPERPOLARIZABLE ORGANIC CHROMO Doc. UOFW117403

$$I_{AC}$$
 (out) = $I_1 + I_2 + 2(I_1I_2)^{1/2}\sin(\rho V_0\sin(\omega t))$

$$\rho = 2\pi r_{33}n^3LV_0/T\lambda$$

Comparison of key features of simple devices

Mach Zehnder <u>Interferometer</u>

Birefringent **Modulator**

Directional <u>Coupler</u>

r_{eff}

 r_{33}

 $r_{33} - r_{13}$

 r_{33}

 $V_{\pi} V_{\pi MZ}$

 $1.5 V_{\pi MZ}$

 $1.73~V_{\pi MZ}$

Mod. P_{MZ}

 $2.75 P_{MZ}$

3 P_{MZ}

Power

NaOEt **EtOH** PPh₃Br

UOFW117403

TBDMSO OTBDMS

tBuLi

THE

TBDMSO.

OPHORES

e: HYPERPOLARIZABLE ORGANIC CHROntors: L.R. Dalton et al. ket No.: UOFW117403 entors:
Docket No.:

$$F_3$$
C C

HYPERPOLARIZABLE ORGANIC CHROPHORES ors: L.R. Dalton et al. t No.: UOFW117403

Docket No.:

FIGURE 48

c