PROJECT SAIC

ISTRATE ANDREEA MARIA
GROUP:2331
YEAR: III

Theme

This project presents 4 stages, the first one is a non-inverting amplifier with a single ended voltage, the second stage contains a low pass Sallen Key circuit, the third stage has a circuit with a PGA with RG parallel and switches and the last stage represents a full wave rectifier with two op-amps. The op-amp I used for the project is ADA4077 which has a max supply of -/+20V.

STAGE 1 -Non-inverting amplifier

A non-inverting amplifier circuit with a single-ended voltage source uses an operational amplifier (op-amp) to amplify an input voltage, providing an output voltage that is in-phase with the input. The input voltage is connected to the non-inverting terminal of the op-amp, while a feedback resistor network is used to determine the amplification factor, allowing the circuit to produce a scaled version of the input. The requirements for this project were

STAGE 2 - Low pass Sallen-Key

A Sallen-Key filter is a type of active filter circuit commonly used in electronics to implement low-pass and high-pass filters. It typically consists of an operational amplifier (op-amp) configured in a specific arrangement with resistors and capacitors to achieve the desired frequency response. The Sallen-Key topology is known for its simplicity and versatility, making it a popular choice for designing second-order filters in various electronic applications. The gain for the circuit is 1 and Rin min is 2k ohms.

STAGE 3 - PGA RG paralel

A PGA (Programmable Gain Amplifier) RG parallel circuit involves the use of parallel resistors (RG) in a configuration that enables programmable gain settings for the amplifier. By changing the combination of resistors in parallel, the circuit allows for flexible adjustment of the gain, making it suitable for applications where variable amplification is required, such as in instrumentation and communication systems.

STAGE 4 -Full wave rectifier

A precision full-wave rectifier is a circuit designed to rectify both the positive and negative halves of an AC signal accurately, providing a full-wave rectified output with minimal voltage drop. One common implementation of a precision full-wave rectifier is based on an operational amplifier (op-amp) and diodes.

Sizing

STAGE 1

$$\begin{split} A_V &= \frac{R_2}{R1 + R_{C-EQ}}; R_{C1} < < R1; R_{C2} < < RC2 \\ R_{C-EQ} &= RC1 \quad (R_{C2} + a \cdot P \quad (1-a) \cdot P) \end{split}$$

Assume: $a = 0.49; P = 10k; R_{C2} = 10k; RC1 = 1k; R_2 = 100k$

$$(0.49 \cdot 10k) \quad (1 - 0.49) * 10k = \frac{4.9k \cdot 5.1k}{4.9k + 5.1k} = 2.499 = R_{C-EQ} = 925$$

$$A_v = 18 = > \frac{R_2}{R_1 + R_{C-EQ}} = 17 = > R_1 = 4.957k$$

$$R_3 = R_2$$
 $R_1 = > R_3 = 4.722K$

	LPF Sallen Ke	ey .	$H_0 = A_{DC}$	$=1; \omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}; Q = \frac{\sqrt{R_1 R_2}}{R_1 + R_2} \sqrt{\frac{C_1}{C_2}} = \frac{1}{2}$
f0 [Hz]	w0[rad/sec]	Q	H0[V/V]	
7,00E+03	4,40E+04	7,07E-01	1,00E+00	
	varianta 1			20 0 1
	C1[F]	set C2[F]	set R1 = R2[ohm]	$C_1 = \frac{2Q}{\omega_0 R}; C_2 = \frac{C_1}{4Q^2} = \frac{1}{2Q\omega_0 R}$
	8,04E-09	4,02E-09	4,00E+03	$C_1 - \omega_0 R$, $C_2 - 4Q^2 - 2Q\omega_0 R$
	varianta 2			
	C1[F]	set C2[F]	R1 = R2[ohm]	C_1 C_2 C_3 C_4 C_5
	2,00E-10	1,00E-10	1,61E+05	$C_{1} = \frac{2Q}{\omega_{0}R}; C_{2} = \frac{C_{1}}{4Q^{2}} = \frac{1}{2Q\omega_{0}R}$
				$\omega_0 \Lambda$ 40 20 $\omega_0 \Lambda$

$$Avv = 1 + \frac{R_f}{R_g}; R_f = 10k$$

$$20dB = 10V = R_G = \frac{10k}{9} = 1.1k = R_{g1}$$

$$18dB = 7.94V = R_G = \frac{10k}{96.94} = 1.4k = R_{g2}$$

$$16dB = 6.03V = R_G = \frac{10k}{5.03} = 1.9k = R_{g3}$$

$$14dB = 5.01V = R_G = \frac{10k}{4.01} = 2.5k = R_{g4}$$

$$12dB = 3.98V = R_G = \frac{10k}{2.98} = 3.35k = R_{g5}$$

$$V_{out} = V_{in}; V_{in} < 0$$

$$V_{out} = -V_{in}; V_{in} > 0$$

$$R_1 = R_2 = 10k$$

$$R_3 = \frac{R}{2} = 5k$$

Characterization

STAGE 1

Gain=18

AC analysis

DCOP

Cursor	1:			
	V(v	/out_etaj1	1)	
Freq:	286.63317KHz	Mag:	22.013373dB	0
Phase:			-54.946107°	
Group Delay:			373.50022ns	

Bandwidth

Transient analysis

Operating Bias Poi		
V(vin)	20	voltage
V(n001)	16.9755	voltage
V(n002)	13.9509	voltage
V(vout_etaj2)	12.6228	voltage
V(vcc)	15	voltage
V(vee)	-15	voltage
I(C2)	5.60827e-20	device_current
I(C1)	-3.4995e-20	device_current
I(R1)	-0.000756136	device_current
I(R2)	-0.000756136	device_current
I(V1)	-0.000756136	device current
I(V2)	0.000356084	device current
I(V3)	0.000356109	device current
Ix(u1:1)	0.000756136	subckt_current
Ix(u1:2)	-0.000756137	subckt_current
Ix(u1:3)	-0.000356109	subckt_current
Ix(u1:4)	0.000356083	subckt_current
Ix(u1:5)	0.000756137	subckt current
	1110700207	5 4 2 5 11 5 1 C 11 C

H0=1

AC analysis

DCOP

Cursor	1:			
V(vout_etaj2)				
Freq:	7.0322536KHz	Mag:	-3.0629764dB	0
Phase:			-90.624985°	
Group Delay:			32.064737µs	

Bandwidth

Transient analysis

	Point Solution:	•
V(n002)	8.9152	voltage
V(vout_etaj3)	-13.9978	voltage
V(vcc)	15	voltage
V(vee)	-15	voltage
V(vin)	20	voltage
V(n005)	8.9152	voltage
V(n006)	8.9152	voltage
V(s1)	0	voltage
V(s2)	15	voltage
V(n003)	8.9152	voltage
V(n001)	0.00809736	voltage
V(n007)	8.9152	voltage
V(n004)	8.9152	voltage
I(Rf)	-0.0022913	device_current
I(Rg3)	1.78304e-11	device_current
I(Rg4)	1.78304e-11	device_current
I(Rg1)	1.78304e-11	device_current
I(Rgn)	0.00809736	device_current
I(Rg5)	1.78304e-11	device_current
I(Rg2)	1.78304e-11	device_current
I(Sw2)	1.78304e-11	device_current
I(Sw1)	1.78304e-11	device_current
I(Swn1)	1.78304e-11	device_current
I(Swn2)	0.00809736	device_current
I(Sw3)	1.78304e-11	device_current
I(Swn3)	1.78304e-11	device_current
I(V1)	-0.0103887	device_current
I(V2)	0.00189132	device_current
I(V3)	0.00189129	device_current
I(V4)	0	device_current
I(V5)	0	device_current
Ix(u1:1)	0.0103887	subckt_current
Ix(u1:2)	-0.0103887	subckt_current
Ix(u1:3)	-0.00189129	subckt_current
Ix(u1:4)	0.00189132	subckt_current
Ix(u1:5)	0.0022913	subckt_current

GAIN

,

Cursor	1:			
	V(v	out_etaj3	3)	
Freq:	452.94349KHz	Mag:	17.28669dB	•
		Phase:	-48.918494°	
	Group	Delay:	209.57824ns	

DCOP

20dB

Cursor	1:			
	V(1	out_etaj3/	3)	
Freq:	624.73828KHz	Mag:	15.127871dB	0
		Phase:	-53.373709°	
	Group	Delay:	163.5204ns	

14dB

Cursor				
	V(\	out_etaj3/	3)	
Freq:	1.6677907MHz	Mag:	9.0720639dB	0
		Phase:	-73.527448°	
	Group	Delay:	101.97618ns	

18dB

V(vout_etaj3)					
13.076252dB					
-55.330084°					
136.06577ns					
g: e:					

12dB 16dB

Transient Analysis

Operating Bias	Point	Solution:	
V(n002)		-10.7283	voltage
<pre>V(vout_etaj4)</pre>		-14.039	voltage
V(vcc)		15	voltage
V(vee)		-15	voltage
V(n004)		-13.7556	voltage
V(n001)		16.6033	voltage
V(n003)		-13.9369	voltage
V(vin)		20	voltage
I(D1)		-3.17e-05	device_current
I(D2)		0.00515321	device_current
I(R2)		0.000331071	device_current
I(R1)		0.00273316	device_current
I(R3)		-0.00275112	device_current
I(V1)		-0.00276486	device_current
I(V2)		0.00471603	device_current
I(V3)		0.00471597	device_current
Ix(u1:1)		-0.00240209	subckt_current
Ix(u1:2)		0.00240209	subckt_current
Ix(u1:3)		6.89311e-05	subckt_current
Ix(u1:4)		-6.89029e-05	subckt_current
Ix(u1:5)		0.000331071	subckt_current
Ix(u2:1)		0.00276486	subckt_current
Ix(u2:2)		-0.00276486	subckt_current
Ix(u2:3)		-0.00478491	subckt_current
Ix(u2:4)		0.00478494	subckt_current
Ix(u2:5)		0.00518491	subckt_current

DCOP

AC analysis

Verification and characterization of the analog interface

CONCLUSION

Stage	1	2	3	4
Gain (measured)	17,99	1	20,1-18,2-15,9-13, 9-12,02	1
Gain (specified)	18	1	20-18-16-14-12	1
BW (measured)	187kHz	7,03kHz	452-624-826kHz-1 -1.66MHz	-
BW (specified)	-	7kHz	-	-

The initial three stages of the circuit demonstrate commendable performance, exhibiting the specified gains as anticipated. However, upon scrutinizing the output from the final stage, discrepancies and errors become apparent, necessitating a thorough examination and potential refinement to ensure consistent and reliable operation across all stages of the circuit.