## Písemná práce: exponenciální funkce

| Jméno: | Třípa.  | DATELIA. |
|--------|---------|----------|
| JMENO: | I RIDA: | DATUM:   |

.....

2. [1 b.] Stručně vysvětlete, proč klademe na hodnotu základu exponenciální funkce omezení.

.....

3. [2 b.] Vyberte funkční předpis odpovídající grafu funkce f níže.



$$\Box f: y = \left(\frac{1}{2}\right)^{x-1} + 1$$

1. [1 b.] Napište definici exponenciální funkce.

$$\Box f: y = \left(\frac{1}{2}\right)^{x+1} - 1$$

$$\Box \ f : y = 2^{x-1} + 1$$

$$\Box \ f: y = 2^{x+1} - 1$$

- 4. [6 b.] Mějme reálnou funkci  $g: y = -2^{x-2} + \frac{1}{2}$ , kde  $D_g = (-4, 3)$ .
  - (A) [4 b.] Nakreslete graf funkce g.
  - (B) [1 b.] Určete obor hodnot  $H_g$ .
  - (C) [1 b.] Určete průsečík grafu g s osou x a y.



5. [4 b. – **bonusová úloha**] Mějme reálnou funkci  $h: y = \left(\frac{a+1}{a^2-1}\right)^x$ . Určete, pro jaké hodnoty parametru  $a \in \mathbb{R}$  je funkce h klesající. Uveďte celý postup řešení.

## Vzorové řešení

- 1. Nechť  $a\in\mathbb{R}^+\setminus\{1\}$ . Exponenciální funkcí i základu a se nazývá funkce f daná rovnicí  $y=a^x$ , jejím definičním oborem je  $D(f)=\mathbb{R}.$
- 2. Pro a=1 je  $y=1^x=1$  pro každé  $x\in\mathbb{R}$ , tj. funkce je konstantní, proto tento případ u exponenciální funkce vylučujeme. Pokud by základ byl záporný, např. mějme funkci  $f(x)=(-2)^x$ . Když za x dosadíme  $\frac{1}{2}$ , dostaneme  $y=(-2)^{\frac{1}{2}}=\sqrt{-2}$ . My ale víme, že odmocnina ze záporného čísla v  $\mathbb{R}$  neexistuje. Funkce by tak nebyla definovaná na celém  $\mathbb{R}$ .
- 3.  $f: y = \left(\frac{1}{2}\right)^{x+1} 1$
- 4. Graf:



$$H_g = \left(-\frac{31}{64}, \frac{-3}{2}\right)$$

$$P_x = \begin{bmatrix} 1, 0 \end{bmatrix}$$

$$P_y = \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}$$

5. Funkce hmá být klesající, tj.  $0<\frac{a+1}{a^2-1}<1.$  Každou z nerovností vyšetříme zvlášť:

$$0 < \frac{a+1}{a^2 - 1}$$
$$0 < \frac{1}{a-1} ; \ a \neq -1$$
$$a \in (1, \infty).$$

Druhá nerovnost:

$$\frac{a+1}{a^2-1} < 1$$

$$0 < 1 - \frac{a+1}{a^2-1}$$

$$0 < \frac{a^2-a-2}{a^2-1}$$

$$0 < \frac{(a-2)(a+1)}{(a-1)(a+1)}$$

|     | $(-\infty,1)$ | (1,2) | $(2,\infty)$ |
|-----|---------------|-------|--------------|
| a-1 | -             | +     | +            |
| a-2 | -             | -     | +            |
|     | +             | -     | +            |
|     |               | •     | '            |

Tj.  $a \in \mathbb{R} \setminus ((1,2) \cup \{-1\})$ . Parametr a tedy náleží průniku  $(\mathbb{R} \setminus ((1,2) \cup \{-1\})) \cap (1,\infty) = (2,\infty)$ .