

Team Heron: Yasmine El Mezouari, Mehdi Mamas,

Lizzy Tubbs and Youssef Chekkori

Date: December 11th, 2024

Table of contents

01

02

03

04

Intro

Features

Demo

Design

Principles

05

06

07

08

UML Diagram

Teamwork
Insights

Acknowledgements

Questions

Ol

Context of our project

Target Audience

 Beginners and hobbyist interested in amateur HAM radio transmission involving CW message communication.

Goal

 Provide an engaging simulator that supports a smooth learning and practice of HAM communication skills, especially for very beginners.

Our Educational HAM Radio Simulator

- Simple and <u>intuitive</u> software that facilitates HAM radio communication training with <u>no</u> <u>equipment purchase necessary</u>.
 Anyone can chose to start learning with no financial hassle.
- No license required to start, only motivation!

 Besides allowing <u>realistic</u> HAM radio communication. Our software also proposes personalized <u>training</u> to support CW learning across multiple levels.

02 Key Features

What we bring to the table

Live HAM Radio

- Quick CW transmission and peer-to-peer communication with other users from different computers
- Users can access the translation of the message they entered
- Morse code input (straight key/paddle simulation).

Scenario Builder

Practice CW

- CW can be **practiced** at different levels with our software
- User can choose to either translate english to CW or listen to message and type it in CW
- Softwares gives **feedback** (Correct or false) to user
- Control speed of practice CW audio
- Users can create, save and open "Scenarios" to play that are entirely customizable.
- User can choose to add Al Bots that operate on specific frequencies just like actual humans would and "send" messages relating to the scenario description.

03 Demo

Let's show off our cool software!

04 Design Principles

Design Principles

Single Responsibility Principle

- Each class is focused on it's own specific responsibility
- Dividing responsibility makes the codebase modular and easier to maintain
- Examples
 - TonePlayer: manages sound playback
 - MorseTranslator: translates cw into text
 - MorseHandler: manages user input and state transitions

Design Principles

Open/Closed Principle

- Extensible format
 - Easily add new callbacks
 - Expand cw dictionary without altering core logic
- Upgrade software without requiring major changes to existing code

05 UML Diagram

06 Teamwork Insights

- Collaboration: distributed work load is always more manageable than individual work.
- Communication and visualization: everyone understands concepts differently, so communicating about how to move forward prevents confusion when deadlines approach.
- Agile development: having a working version of a software to expand and develop is better than waiting to release a perfect version.
- Push frequently!

08 Conclusion

Concluding and Q&A session

User Engagement

Our simulator allows
beginners to practice
HAM radio skills
effectively

CW Proficiency

Tailored to provide CW learning and improving

No equipment necessary

Get started and improve with no complicated hardware

Scenario Building

Users can create and completely customize a "scenario" to play using Al bots.

