PolynomialRegression (1)

August 19, 2022

```
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     from sklearn.metrics import mean_absolute_error, mean_squared_error
[2]: data = pd.read_csv('Advertising.csv',index_col=0)
     data.head()
[2]:
          TV radio newspaper sales
     1 230.1
               37.8
                           69.2
                                  22.1
     2
        44.5
               39.3
                           45.1
                                  10.4
        17.2
               45.9
                           69.3
                                   9.3
     3
     4 151.5
               41.3
                           58.5
                                  18.5
     5 180.8
               10.8
                           58.4
                                  12.9
[3]: data.columns
[3]: Index(['TV', 'radio', 'newspaper', 'sales'], dtype='object')
[4]: data.shape
[4]: (200, 4)
[5]: fig, axs = plt.subplots(1, 3)
     data.plot(kind='scatter', x='TV', y='sales', ax=axs[0], figsize=(16,8))
     data.plot(kind='scatter', x='radio', y='sales', ax=axs[1])
     data.plot(kind='scatter', x='newspaper', y='sales', ax=axs[2]);
```


[6]: sns.heatmap(data.corr(), annot = True);


```
[7]: features = data[['TV', 'newspaper', 'radio']]
target = data[['sales']].values
```

Convert Features to Polynomial features

```
[8]: from sklearn.preprocessing import PolynomialFeatures
      features_poly = PolynomialFeatures(degree=2)
      TV_poly = features_poly.fit_transform(features[['TV']])
      newspaper_poly = features_poly.fit_transform(features[['newspaper']])
      radio_poly=features_poly.fit_transform(features[['radio']])
 [9]: poly_features = pd.concat([pd.DataFrame(TV_poly),pd.
       →DataFrame(newspaper_poly),pd.DataFrame(radio_poly)], axis = 1)
[10]: poly_features
                                                                       2
[10]:
                                                       0
             0
                                   0
                                                             1
           1.0
                230.1 52946.01
                                 1.0
                                      69.2
                                            4788.64
                                                     1.0
                                                          37.8
                                                                 1428.84
      1
           1.0
                 44.5
                        1980.25
                                 1.0
                                      45.1
                                            2034.01
                                                     1.0
                                                          39.3
                                                                 1544.49
                                      69.3
                                                          45.9
      2
           1.0
                 17.2
                                            4802.49
                         295.84 1.0
                                                     1.0
                                                                2106.81
      3
           1.0 151.5 22952.25 1.0
                                      58.5
                                            3422.25
                                                     1.0
                                                          41.3
                                                                 1705.69
      4
           1.0 180.8 32688.64 1.0
                                      58.4
                                            3410.56 1.0
                                                          10.8
                                                                  116.64
                                      ... ...
                 38.2
                        1459.24 1.0
                                                           3.7
      195
          1.0
                                      13.8
                                             190.44
                                                    1.0
                                                                  13.69
      196
          1.0
                94.2
                        8873.64 1.0
                                       8.1
                                              65.61
                                                     1.0
                                                            4.9
                                                                  24.01
      197 1.0 177.0 31329.00 1.0
                                       6.4
                                              40.96
                                                     1.0
                                                           9.3
                                                                  86.49
      198
          1.0 283.6 80428.96 1.0 66.2 4382.44
                                                     1.0 42.0
                                                                1764.00
      199
          1.0 232.1 53870.41
                                       8.7
                                 1.0
                                              75.69
                                                     1.0
                                                           8.6
                                                                  73.96
      [200 rows x 9 columns]
[11]: from sklearn.model_selection import train_test_split
[12]: X_train, X_test, y_train, y_test = train_test_split(poly_features, target,__
       \rightarrowrandom_state = 6)
[13]: print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
     (150, 9)
     (50, 9)
     (150, 1)
     (50, 1)
[14]: from sklearn.linear_model import LinearRegression
[15]: my_model = LinearRegression()
      my_model.fit(X_train, y_train)
```

[15]: LinearRegression() Prediction and Evaluation on Train Data [16]: preds_train = my_model.predict(X_train) print('MAE : ', mean_absolute_error(y_train, preds_train)) print('MSE : ', mean_squared_error(y_train, preds_train)) print('R2 Score : ', my_model.score(X_train, y_train)) MAE: 1.202893489619854 MSE: 2.488776665854576 R2 Score: 0.9139135358655949 Prediction and Evaluation on Test Data [17]: | preds = my_model.predict(X_test) print('MAE : ', mean_absolute_error(y_test, preds)) print('MSE : ', mean_squared_error(y_test, preds)) print('R2 score : ', my_model.score(X_test, y_test)) MAE: 0.9912741510674818 MSE: 1.5270219257565474 R2 score: 0.9293009924314467 [20]: #For Degree 3 from sklearn.preprocessing import PolynomialFeatures poly_feature1=PolynomialFeatures(degree=3) TV_poly1=poly_feature1.fit_transform(features[['TV']]) NP_poly1=poly_feature1.fit_transform(features[['newspaper']]) radio_poly1=poly_feature1.fit_transform(features[['radio']]) Fetaure_transformed=pd.concat([pd.DataFrame(TV_poly1),pd.DataFrame(NP_poly1),pd. →DataFrame(radio_poly1)],axis=1) x_train1,x_test1,y_train1,y_test1=train_test_split(Fetaure_transformed,target,random_state=6) lr1=LinearRegression() lr1.fit(x_train1,y_train1) pred1 = lr1.predict(x_test1) print('MAE : ', mean_absolute_error(y_test1, pred1)) print('MSE : ', mean_squared_error(y_test1, pred1)) print('R2 score : ', lr1.score(x_test1, y_test1))

```
[22]: #For Degree 100
from sklearn.preprocessing import PolynomialFeatures
poly_feature2=PolynomialFeatures(degree=100)
TV_poly2=poly_feature2.fit_transform(features[['TV']])
```

MAE : 1.0118905313835787 MSE : 1.6566344481057027 R2 score : 0.9233001115377409

```
print(TV_poly2)
NP_poly2=poly_feature2.fit_transform(features[['newspaper']])
radio_poly2=poly_feature2.fit_transform(features[['radio']])
Fetaure_transformed2=pd.concat([pd.DataFrame(TV_poly2),pd.
 →DataFrame(NP_poly2),pd.DataFrame(radio_poly2)],axis=1)
x train2,x test2,y train2,y test2=train test split(Fetaure transformed2,target,random state=6)
lr2=LinearRegression()
lr2.fit(x_train2,y_train2)
pred2 = lr2.predict(x_test2)
print('MAE : ', mean_absolute_error(y_test2, pred2))
print('MSE : ', mean_squared_error(y_test2, pred2))
print('R2 score : ', lr2.score(x_test2, y_test2))
[[1.00000000e+000 2.30100000e+002 5.29460100e+004 ... 2.93649070e+231
  6.75686510e+233 1.55475466e+236]
 [1.00000000e+000 4.45000000e+001 1.98025000e+003 ... 3.46163343e+161
  1.54042688e+163 6.85489960e+164]
 [1.00000000e+000 1.72000000e+001 2.95840000e+002 ... 1.20722382e+121
  2.07642497e+122 3.57145096e+123]
 [1.00000000e+000 1.77000000e+002 3.13290000e+004 ... 2.00161296e+220
 3.54285493e+222 6.27085323e+224]
 [1.00000000e+000 2.83600000e+002 8.04289600e+004 ... 2.31851654e+240
  6.57531290e+242 1.86475874e+245]
 [1.00000000e+000 2.32100000e+002 5.38704100e+004 ... 6.85746761e+231
  1.59161823e+234 3.69414591e+236]]
MAE : 3.6754203555320073
MSE: 20.17402020773462
R2 score: 0.06597070854228848
```