1. In which OSL layer the Wi-Fi standard/protocol fits..

The Wi-Fi standard/protocol fits primarily in the **Data Link** Layer includes MAC (Media Access Control) and Logical Link Control (LLC) sublayers. Defines how devices access the medium, frame formats, and addressing.

It also works at **Physical layer** which defines radio frequencies, signal modulation, transmission rates (e.g., 2.4 GHz, 5 GHz bands, OFDM, etc.)

2. Can you share the Wi-Fi devices that you are using day to day life, share that device's wireless capability/properties after connecting to network. Match your device to corresponding Wi-Fi Generations based on properties

```
Microsoft Windows [Version 10.0.22631.5126]
(c) Microsoft Corporation. All rights reserved.
C:\Users\kirthivasan>netsh wlan show interfaces
There is 1 interface on the system:
      Name
                                     : MediaTek Wi-Fi 6 MT7921 Wireless LAN Card
: 4dc68313-fb9e-42ac-9ea8-fe8b745bbaa3
: 34:6f:24:92:b0:dd
     Description
     GUID
      Physical address
                                     : Primary
: connected
: KV
      Interface type
     State
SSID
      BSSID
                                      : 66:cf:80:22:5c:96
                                     : Infrastructure
: 802.11ac
: WPA2-Personal
     Network type
     Radio type
Authentication
     Cipher
                                        CCMP
                                      : Profile
     Connection mode
                                       5 GHz
36
     Band
      Channel
      Receive rate (Mbps)
                                      : 866.7
      Transmit rate (Mbps)
                                      : 866.7
                                        82%
      Signal
     Profile
                                        ΚV
```

```
C:\Users\kirthivasan>netsh wlan show interfaces
There is 1 interface on the system:
                             : MediaTek Wi-Fi 6 MT7921 Wireless LAN Card
    Description
                             : 4dc68313-fb9e-42ac-9ea8-fe8b745bbaa3
    GUID
                             : 34:6f:24:92:b0:dd
    Physical address
                             : Primary
: connected
    Interface type
    State
    SSTD
                             : SONA-WIFT
    BSSID
                             : b0:1f:8c:29:6b:30
    Network type
                               Infrastructure
    Radio type
                               802.11ac
    Authentication
                             : Open
    Cipher
                             : None
    Connection mode
                               Profile
                               5 GHz
    Channel
                               36
    Receive rate (Mbps)
Transmit rate (Mbps)
                             : 650
                             : 650
     Signal
    Profile
                               SONA-WIFI
                             : Not available
    Hosted network status
```

3. BSS and ESS

BSS

A BSS is the basic building block of a Wi-Fi network. It consists of One Access Point (AP)

All client devices connected to that AP (laptops, phones, etc.)

Identified by a **BSSID** (MAC address of the AP)

ESS

An **ESS** is a **collection of multiple BSSs** that are interconnected to form a larger network.

It consists of Multiple Access Points (APs) with the same SSID

All APs in an ESS share the same SSID but have different BSSIDs

4. what are the basic functionalities of Wi-Fi Access point

1. Wireless Signal Broadcasting

The AP broadcasts a **Wi-Fi signal** using radio frequencies (usually **2.4 GHz** and/or **5 GHz**).

2. Bridging Wired and Wireless Networks

It connects to a wired LAN via Ethernet and extends that network wirelessly.

3 . Handling Device Connections

Manages multiple simultaneous connections from wireless devices.

Assigns IP addresses (sometimes through a built-in DHCP server).

4 . Routing & Internet Sharing

Some APs are built into wireless routers that handle:

- Network Address Translation (NAT)
- Routing between networks
- Firewall functions
- Sharing a single internet connection with multiple users
- 5. Data Transmission and Reception

Converts these packets between wireless format (802.11) and Ethernet (802.3) format.

${\bf 5}$. Difference between Bridge mode and Repeater mode

Feature	Bridge Mode	Repeater Mode
Function	Connects two networks	Extends Wi-Fi coverage
Network Type	Creates a single network by linking two different networks	Works within the same network
Performance	High-speed direct connection	Signal loss due to rebroadcasting
Use Case	Office networks, connecting distant locations	Expanding Wi-Fi range in homes/offices
Latency	Lower latency	Higher latency due to signal retransmission

6. what are the differences between 802.11a and 802.11b.

Feature	802.11a	802.11b
Frequency Band	5 GHz	2.4 GHz
Maximum Speed	54 Mbps	11 Mbps
Range	Shorter (~35m indoors)	Longer (~38m indoors)
Interference	Less interference (fewer devices on 5 GHz)	More interference (due to other 2.4 GHz devices)
Adoption	Used in businesses and enterprises	More common in homes and public networks
Wall Penetration	Weaker (high-frequency signals)	Stronger (low-frequency signals)
Availability	Less common today	Phased out, replaced by newer standards
Use Cases	High-speed applications, enterprise Wi-Fi	Low-cost, long-range Wi-Fi for homes

7. Configure your modem/hotspot to operate only in 2.4Ghz and connect your laptop/Wi-Fi device and capture the capability/properties in your Wi-Fi device. Repeat the same in 5Ghz and tabulate all the differences you observed during this

2.4 GHz

5 GHz

Feature/Aspect	2.4 GHz Band	5 GHz Band
Speed	Lower speeds compared to 5 GHz	Higher speeds suitable for HD streaming and gaming
Range	Longer range with better wall penetration	Shorter range; signal drops quickly with distance and obstacles
Interference	More interference from devices like microwaves and Bluetooth	Minimal interference, resulting in a more stable connection
Latency	Slightly higher, making it less ideal for real-time apps	Lower latency, ideal for smooth real-time applications
Stability Over Distance	More stable at longer distances	Less stable as distance from the router increases
Suitability	Better for general browsing and long-distance connectivity	Better for high-bandwidth tasks like streaming, gaming in close proximity

8. What is the difference between IEEE and WFA.

IEEE (Institute of Electrical and Electronics Engineers)

- Function: Develops and standardizes Wi-Fi protocols under the IEEE 802.11 family.
- Focus: Technical and engineering aspects of wireless networking.
- Responsibilities:
 - Defines Wi-Fi standards like 802.11a/b/g/n/ac/ax.
 - o Specifies how devices communicate wirelessly at the hardware level.
 - o Ensures interoperability and efficiency in wireless networks.
- Example: IEEE created 802.11ax (Wi-Fi 6) as the next-generation wireless standard.

WFA (Wi-Fi Alliance)

- Function: Certifies Wi-Fi products to ensure compatibility and branding.
- Focus: Consumer-facing validation, interoperability, and marketing.
- Responsibilities:
 - Tests devices to confirm they meet IEEE 802.11 standards.
 - Issues the Wi-Fi Certified logo for compliant devices.
 - Develops additional features like Wi-Fi Direct, Wi-Fi Protected Access (WPA), and Wi-Fi Easy Connect.

9. List down the type of Wi-Fi internet connectivity backhaul, share your home/college's wireless internet connectivity backhaul name and its properties

• Fiber Optic Backhaul

- Uses fiber-optic cables for high-speed and low-latency internet.
- o Provides speeds up to 10 Gbps or more.
- o Ideal for high-demand networks like data centers, ISPs, and enterprises.

• Ethernet Backhaul

- Uses wired Ethernet connections to link access points and routers.
- More stable and reliable than wireless backhaul.
- o Common in home and office networks for Gigabit speeds.

Wireless Backhaul

- o Uses radio signals (microwave, millimeter-wave, or Wi-Fi) for backhaul.
- Can be point-to-point (P2P) or point-to-multipoint (P2MP).
- Used in rural areas, city-wide Wi-Fi, and ISP tower connections.

Cellular Backhaul (4G/5G)

- o Uses mobile networks to provide internet to Wi-Fi routers.
- Works in remote locations where fiber or Ethernet is unavailable.
- Speed depends on the LTE/5G network and signal strength.

10. List down the Wi-Fi topologies and use cases of each one

• Infrastructure Mode

- Uses an Access Point (AP) as a central hub for devices to connect.
- o Devices communicate through the AP rather than directly with each other.
- o Use Cases: Home Wi-Fi, office networks, public hotspots, campus Wi-Fi.

• Ad-Hoc Mode (Peer-to-Peer)

- Devices connect directly without an access point.
- o Creates a temporary, decentralized network.
- o Use Cases: File sharing, gaming (LAN parties), emergency communication.

Mesh Network

- Multiple APs work together, automatically routing data for optimal performance.
- o Provides seamless coverage across large areas.
- o Use Cases: Smart homes, enterprise Wi-Fi, city-wide networks.

Wi-Fi Direct

- o Enables device-to-device communication without an AP.
- Uses WPS (Wi-Fi Protected Setup) for quick pairing.
- o Use Cases: Wireless printing, file sharing, smart TV casting.

Hotspot (Tethering Mode)

- o A mobile device shares its internet connection over Wi-Fi.
- o Acts as a mini Wi-Fi router for other devices.
- o Use Cases: Mobile internet sharing, travel connectivity, remote work.