遥感影像几何纠正编程

一 实习目的

- 1. 掌握遥感图像几何纠正的原理和方法;
- 2. 掌握检验纠正结果的方法。

二 实习数据

参考影像: wuce.tif

控制点坐标见下表:

点名	X 坐标	Y坐标	说明
kc1	378726.36	534063.76	控制点位置
kc2	379116.64	534031.25	除 kc3(白色
kc3	379153.40	534210.20	点)外均为
kc4	378837.81	533738.74	红色点指示
kc5	379107.4	533716.0	地方的明显
kc6	378941.4	534196.4	点
kc7	379092.4	533853.1	
kc8	378777.6	534071.0	

控制点的位置及点号: 见图像 wuce_point. tif 所示

三 编程要求

校正方法: 采用 2 次多项式变换, 纠正过程采用间接法, 重采样采用双线性内插法。编程实现相对配准和绝对配准两种方法:

- 1. 相对配准:在"待纠正影像"和"参考影像"上选择若干同名点,进行图像一图像间的多项式纠正。
- 2. 绝对配准:将"待纠正影像"按照"实测控制点"的坐标进行多项式纠正,输出纠正后的影像。
- 3. 思考同名点或控制点的分布对纠正精度的影响,适当调整同名点或控制点, 看看纠正精度是否提高。进一步分析纠正精度的影响因素有哪些?
- **4.**编程语言不限,编译及运行程序,输出纠正参数以及纠正后的影像,评定纠正后的内、外符合精度。