L'Algebrario

dispense del corso di Aritmetica

Gabriel Antonio Videtta

A.A. 2022/2023

Premessa

TODO

Indice

1	Introduzione alla teoria degli anelli	7
	1.1 Definizione e prime proprietà	7
	1.2 Omomorfismi di anelli e ideali	9
	1.3 Quoziente per un ideale e primo teorema d'isomorfismo	11
2	Anelli euclidei, PID e UFD	14
	2.1 Prime proprietà	14
	2.2 Irriducibili e prime definizioni	15
	2.3 PID e MCD	16
	2.4 L'algoritmo di Euclide	18
	2.5 UFD e fattorizzazione	20
3	Esempi notevoli di anelli euclidei	23
	3.1 I numeri interi: \mathbb{Z}	23
	3.2 I campi: \mathbb{K}	
	3.3 I polinomi di un campo: $\mathbb{K}[x]$	
	3.4 Gli interi di Gauss: $\mathbb{Z}[i]$	
	3.5 Gli interi di Eisenstein: $\mathbb{Z}[\omega]$	25
4	Irriducibili e corollari di aritmetica in $\mathbb{Z}[i]$	28
	4.1 Il teorema di Natale di Fermat e gli irriducibili in $\mathbb{Z}[i]$	
	4.2 L'identità di Brahmagupta-Fibonacci	30
5	Irriducibilità in $\mathbb{Z}[x]$ e in $\mathbb{Q}[x]$	33
	5.1 Criterio di Eisenstein e proiezione in $\mathbb{Z}_p[x]$	33
	5.2 Alcuni irriducibili di $\mathbb{Z}_2[x]$	35
	5.3 Teorema delle radici razionali e lemma di Gauss	36
6	I polinomi di un campo: $\mathbb{K}[x]$	40
	6.1 Elementi preliminari	40
	6.2 Sottogruppi moltiplicativi finiti di \mathbb{K}	
	6.3 Il quoziente $\mathbb{K}[x]/(f(x))$	42
7	Estensioni algebriche di $\mathbb K$	46
	7.1 Morfismi di valutazione, elementi algebrici e trascendenti	46
	7.2 Teorema delle torri ed estensioni algebriche	49
8	Campi di spezzamento	55
9	Teorema fondamentale dell'Algebra e radici reali in $\mathbb{Q}[x]$	57
10	Teoremi rilevanti sui campi finiti	59
	10.1 Campo di spezzamento di un irriducibile in \mathbb{F}_p	59
	10.2 L'inclusione $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ e il polinomio $x^{p^n} - x$	60
11	Riferimenti bibliografici	64

§1 Introduzione alla teoria degli anelli

§1.1 Definizione e prime proprietà

Definizione 1.1. Si definisce **anello**^a una struttura algebrica costruita su un insieme A e due operazioni binarie + e \cdot ^b avente le seguenti proprietà:

- (A, +) è un gruppo abeliano, alla cui identità, detta identità additiva, ci si riferisce con il simbolo 0,
- $\forall a, b, c \in A, (ab)c = a(bc),$
- $\forall a, b, c \in A, (a+b)c = ac + bc,$
- $\forall a, b, c \in A, \ a(b+c) = ab + ac,$
- $\exists 1 \in A \mid \forall a \in A, 1a = a = a1$, e tale 1 viene detto identità moltiplicativa.

^aIn realtà, si parla in questo caso di anello con unità, in cui vale l'assioma di esistenza di un'identità moltiplicativa. In queste dispense si identificherà con "anello" solamente un anello con unità.
^bD'ora in avanti il punto verrà omesso.

Come accade per i gruppi, gli anelli soddisfano alcune proprietà algebriche particolari, tra le quali si citano le più importanti:

Proposizione 1.2

 $\forall a \in A, 0a = 0 = a0.$

Dimostrazione. $0a = (0+0)a = 0a + 0a \implies 0a = 0$. Analogamente $a0 = a(0+0) = a0 + a0 \implies a0 = 0$.

Proposizione 1.3

 $\forall a \in A, -(-a) = a.$

Dimostrazione. $-(-a) - a = 0 \land a - a = 0 \implies -(-a) = a$, per la proprietà di unicità dell'inverso in un gruppo¹.

Proposizione 1.4

a(-b) = (-a)b = -(ab).

Dimostrazione. $a(-b) + ab = a(b-b) = a0 = 0 \implies a(-b) = -(ab)$, per la proprietà di unicità dell'inverso in un gruppo. Analogamente $(-a)b + ab = (a-a)b = 0b = 0 \implies (-a)b = -(ab)$.

Corollario 1.5

(-1)a = a(-1) = -a.

¹In questo caso, il gruppo additivo dell'anello.

Proposizione 1.6

$$(-a)(-b) = ab.$$

Dimostrazione.
$$(-a)(-b) = -(a(-b)) = -(-(ab)) = ab$$
, per la Proposizione 1.4.

Si enuncia invece adesso la nozione di **sottoanello**, in tutto e per tutto analoga a quella di *sottogruppo*.

Definizione 1.7. Si definisce sottoanello rispetto all'anello A un anello B avente le seguenti proprietà:

- $B \subseteq A$,
- $0, 1 \in B$,
- $\forall a, b \in B, a + b \in B \land ab \in B$.

Definizione 1.8. Un sottoanello B rispetto ad A si dice **proprio** se $B \neq A$.

Definizione 1.9. Un anello si dice **commutativo** se $\forall a, b \in A, ab = ba$.

Esempio 1.10

Un facile esempio di anello commutativo è $\mathbb{Z}/n\mathbb{Z}$.

Definizione 1.11. Un elemento a di un anello A si dice **invertibile** se $\exists b \in A \mid ab = ba = 1$.

Definizione 1.12. Dato un anello A, si definisce A^* come l'insieme degli elementi invertibili di A, che a sua volta forma un *gruppo moltiplicativo*.

Definizione 1.13. Un anello A si dice **corpo** se $\forall a \neq 0 \in A$, $\exists b \in A \mid ab = ba = 1$, ossia se $A \setminus \{0\} = A^*$.

Esempio 1.14

L'esempio più rilevante di corpo è quello dei $quaternioni \mathbb{H}$, definiti nel seguente modo:

$$\mathbb{H} = \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \},\$$

dove:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$$
, $\mathbf{i}\mathbf{j} = \mathbf{k}$, $\mathbf{j}\mathbf{k} = \mathbf{i}$, $\mathbf{k}\mathbf{i} = \mathbf{j}$.

Infatti ogni elemento non nullo di H possiede un inverso moltiplicativo:

$$(a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k})^{-1} = \frac{a-b\mathbf{i}-c\mathbf{j}-d\mathbf{k}}{a^2+b^2+c^2+d^2},$$

mentre la moltiplicazione non è commutativa.

Definizione 1.15. Un anello commutativo che è anche un corpo si dice campo.

Esempio 1.16

Alcuni campi, tra i più importanti, sono \mathbb{Q} , \mathbb{R} , \mathbb{C} e $\mathbb{Z}/p\mathbb{Z}$ con p primo.

Definizione 1.17. Un elemento $a \neq 0$ appartenente a un anello A si dice **divisore di zero** se $\exists b \neq 0 \in A \mid ab = 0$ o ba = 0.

Esempio 1.18

2 è un divisore di zero in $\mathbb{Z}/6\mathbb{Z}$, infatti $2 \cdot 3 \equiv 0 \pmod{6}$.

Definizione 1.19. Un anello commutativo in cui non sono presenti divisori di zero si dice **dominio d'integrità**, o più semplicemente *dominio*.

Proposizione 1.20 (Legge di annullamento del prodotto)

Sia D un dominio. Allora $ab = 0 \implies a = 0 \lor b = 0$.

Dimostrazione. Siano $a, b \in D \mid ab = 0$. Se a = 0, la condizione è soddisfatta. Se invece $a \neq 0$, b deve essere per forza nullo, altrimenti si sarebbe trovato un divisore di 0, e D non sarebbe un dominio, f.

Esempio 1.21

L'anello dei polinomi su un campo, $\mathbb{K}[x]$, è un dominio.

§1.2 Omomorfismi di anelli e ideali

Definizione 1.22. Un omomorfismo di anelli^a è una mappa $\phi: A \to B$ – con $A \in B$ anelli – soddisfacente alcune particolari proprietà:

- ϕ è un omomorfismo di gruppi rispetto all'addizione di A e di B, ossia $\forall a, b \in A$, $\phi(a+b) = \phi(a) + \phi(b)$,
- $\phi(ab) = \phi(a)\phi(b)$,
- $\phi(1_A) = 1_B$.

Definizione 1.23. Se $\phi:A\to B$ è un omomorfismo iniettivo, si dice che ϕ è un monomorfismo.

Definizione 1.24. Se $\phi:A\to B$ è un omomorfismo suriettivo, si dice che ϕ è un epimorfismo.

 $[^]a\mathrm{La}$ specificazione "di anelli" è d'ora in avanti omessa.

Definizione 1.25. Se $\phi:A\to B$ è un omomorfismo bigettivo^a, si dice che ϕ è un isomorfismo.

 $^a\mathrm{Ovvero}$ se è sia un monomorfismo che un epimorfismo.

Prima di enunciare l'analogo del *Primo teorema d'isomorfismo* dei gruppi in relazione agli anelli, si rifletta su un esempio di omomorfismo:

Esempio 1.26

Sia $\phi: \mathbb{Z} \to \mathbb{Z}, k \mapsto 2k$ un omomorfismo. Esso è un monomorfismo, infatti $\phi(x) = \phi(y) \implies 2x = 2y \implies x = y$. Pertanto $\ker \phi = \{0\}$. Sebbene $\ker \phi < \mathbb{Z}$, esso non è un sottoanello^a.

^aInfatti 1 \notin Ker ϕ .

Dunque, con lo scopo di definire meglio le proprietà di un *kernel*, così come si introdotto il concetto di *sottogruppo normale* per i gruppi, si introduce ora il concetto di **ideale**.

Definizione 1.27. Si definisce ideale rispetto all'anello A un insieme I avente le seguenti proprietà:

- $I \leq A$,
- $\forall a \in A, \forall b \in I, ab \in I \in ba \in I$.

Esempio 1.28

Sia I l'insieme dei polinomi di $\mathbb{R}[x]$ tali che 2 ne sia radice. Esso altro non è che un ideale, infatti $0 \in I \land \forall f(x), g(x) \in I, (f+g)(2) = 0$ (i.e. $I < \mathbb{R}[x]$) e $\forall f(x) \in A, g(x) \in I, (fg)(2) = 0$.

Proposizione 1.29

Sia I un ideale di A. $1 \in I \implies I = A$.

Dimostrazione. Per le proprietà dell'ideale $I, \forall a \in A, a1 = a \in I \implies A \subseteq I$. Dal momento che anche $I \subseteq A$, si deduce che I = A.

Proposizione 1.30

Sia $\phi: A \to B$ un omomorfismo. Ker ϕ è allora un ideale di A.

Dimostrazione. Poiché ϕ è anche un omomorfismo tra gruppi, si deduce che Ker $\phi \leq A$. Inoltre $\forall a \in A, \forall b \in \text{Ker } \phi, \phi(ab) = \phi(a)\phi(b) = \phi(a)0 = 0 \implies ab \in I$.

Proposizione 1.31

Sia $\phi: A \to B$ un omomorfismo. Imm ϕ è allora un sottoanello di B.

Dimostrazione. Chiaramente $0, 1 \in \operatorname{Imm} \phi$, dal momento che $\phi(0) = 0$, $\phi(1) = 1$. Inoltre, dalla teoria dei gruppi, si ricorda anche che $\operatorname{Imm} \phi \leq B$. Infine, $\forall \phi(a), \phi(b) \in \operatorname{Imm} \phi$, $\phi(a)\phi(b) = \phi(ab) \in \operatorname{Imm} \phi$.

Definizione 1.32. Si definisce con la notazione (a) l'ideale *bilatero* generato da a in A, ossia:

$$(a) = \{ba \mid b \in A\} \cup \{ab \mid b \in A\}.$$

Definizione 1.33. Si dice che un ideale I è principale o **monogenerato**, quando $\exists a \in I \mid I = (a)$.

Esempio 1.34

In relazione all'*Esempio 1.28*, l'ideale I è monogenerato^a. In particolare, I=(x-2).

^aNon è un caso: $\mathbb{R}[x]$, in quanto anello euclideo, si dimostra essere un PID (*principal ideal domain*), ossia un dominio che ammette *solo* ideali monogenerati.

§1.3 Quoziente per un ideale e primo teorema d'isomorfismo

Si definisce invece adesso il concetto di **anello quoziente**, in modo completamente analogo a quello di *gruppo quoziente*:

Definizione 1.35. Sia A un anello e I un suo ideale, si definisce A/I l'anello ottenuto quozientando A per I. Gli elementi di tale anello sono le classi di equivalenza di \sim (i.e. gli elementi di A/\sim), dove $\forall a,b\in A,a\sim b\iff a-b\in I$. Tali classi di equivalenza vengono indicate come a+I, dove a è un rappresentante della classe. L'anello è così dotato di due operazioni:

- $\forall a, b \in A, (a+I) + (b+I) = (a+b) + I,$
- $\forall a, b \in A, (a+I)(b+I) = ab+I.$

Osservazione. L'addizione di A/I è ben definita, dal momento che $I \subseteq A$, in quanto sottogruppo di un gruppo abeliano.

Osservazione. Anche la moltiplicazione di A/I è ben definita. Siano $a \sim a', b \sim b'$ quattro elementi di A tali che $a = a' + i_1$ e $b = b' + i_2$ con $i_1, i_2 \in I$. Allora $ab = (a' + i_1)(b' + i_2) = a'b' + \underbrace{i_1b' + i_2a' + i_1i_2}_{\in I} \implies ab \sim a'b'$.

Proposizione 1.36

$$A/\{0\} \cong A.$$

Dimostrazione. Sia $\pi: A \to A/\{0\}$, $a \mapsto a+\{0\}$ l'omomorfismo di proiezione al quoziente. Innanzitutto, $a \sim a' \iff a-a'=0 \iff a=a'$, per cui π è un monomorfismo (altrimenti si troverebbero due $a, b \mid a \neq b \land a \sim b$). Infine, π è un epimorfismo, dal momento che $\forall a + \{0\} \in A/\{0\}$, $\pi(a) = a + \{0\}$. Pertanto π è un isomorfismo.

Adesso è possibile enunciare il seguente fondamentale teorema:

Teorema 1.37 (*Primo teorema d'isomorfismo*)

Sia $\phi: A \to B$ un omomorfismo. $A/\operatorname{Ker} \phi \cong \operatorname{Imm} \phi$.

Dimostrazione. La dimostrazione procede in modo analogo a quanto visto per il teorema correlato in teoria dei gruppi.

Sia $\zeta: A/\operatorname{Ker} \phi \to \operatorname{Imm} \phi$, $a+\operatorname{Ker} \phi \mapsto \phi(a)$. Si verifica che ζ è un omomorfismo: essendolo già per i gruppi, è sufficiente verificare che $\zeta((a+I)(b+I)) = \zeta(ab+I) = \phi(ab) = \phi(a)\phi(b) = \zeta(a+I)\zeta(b+I)$.

 ζ è chiaramente anche un epimorfismo, dal momento che $\forall \phi(a) \in \text{Imm } \phi$, $\zeta(a + \text{Ker } \phi) = \phi(a)$. Inoltre, dal momento che $\zeta(a + \text{Ker } \phi) = 0 \iff \phi(a) = 0 \iff a + \text{Ker } \phi = \text{Ker } \phi$, ossia l'identità di $A/\text{Ker } \phi$, si deduce anche che ζ è un monomorfismo. Pertanto ζ è un isomorfismo.

Corollario 1.38

Sia $\phi: A \to B$ un monomorfismo. $A \cong \operatorname{Imm} \phi$.

Dimostrazione. Poiché ϕ è un monomorfismo, Ker $\phi = \{0\}$. Allora, per il *Primo teorema di isomorfismo*, $A/\{0\} \cong \operatorname{Imm} \phi$. Dalla *Proposizione 1.36*, si desume che $A \cong A/\{0\}$. Allora, per la proprietà transitiva degli isomorfismi, $A \cong \operatorname{Imm} \phi$.

§2 Anelli euclidei, PID e UFD

§2.1 Prime proprietà

Nel corso della storia della matematica, numerosi studiosi hanno tentato di generalizzare – o meglio, accomunare a più strutture algebriche – il concetto di divisione euclidea che era stato formulato per l'anello dei numeri interi \mathbb{Z} e, successivamente, per l'anello dei polinomi $\mathbb{K}[x]$. Lo sforzo di questi studiosi ad oggi è converso in un'unica definizione, quella di anello euclideo, di seguito presentata.

Definizione 2.1. Un anello euclideo è un dominio d'integrità D^a sul quale è definita una funzione g detta funzione grado o norma soddisfacente le seguenti proprietà:

- $g: D \setminus \{0\} \to \mathbb{N}$,
- $\forall a, b \in D \setminus \{0\}, g(a) \le g(ab),$
- $\bullet \ \forall \, a \in D, \, b \in D \setminus \{0\}, \, \exists \, q, \, r \in D \mid a = bq + r \text{ e } r = 0 \, \vee \, g(r) < g(q).$

Di seguito vengono presentate alcune definizioni, correlate alle proprietà immediate di un anello euclideo.

Definizione 2.2. Dato un anello euclideo E, siano $a \in E$ e $b \in E \setminus \{0\}$. Si dice che $b \mid a$, ossia che b divide a, se $\exists c \in E \mid a = bc$.

Osservazione. Si osserva che, per ogni anello euclideo E, qualsiasi $a \in E$ divide 0. Infatti, 0 = a0.

Proposizione 2.3

Dato un anello euclideo E, $a \mid b \land b \nmid a \implies g(a) < g(b)$.

Dimostrazione. Poiché $b \nmid a$, esistono q, r tali che a = bq + r, con g(r) < g(b). Dal momento però che $a \mid b$, $\exists c \mid b = ac$. Pertanto $a = ac + r \implies r = a(1 - c)$. Dacché $1 - c \neq 0$ – altrimenti r = 0, f –, così come $a \neq 0$, si deduce dalle proprietà della funzione grado che $g(a) \leq g(r)$. Combinando le due disuguaglianze, si ottiene la tesi: g(a) < g(b).

Proposizione 2.4

g(1) è il minimo di Immg, ossia il minimo grado assumibile da un elemento di un anello euclideo E.

Dimostrazione. Sia $a \in E \setminus \{0\}$, allora, per le proprietà della funzione grado, $g(1) \le g(1a) = g(a)$.

Teorema 2.5

Sia $a \in E \setminus \{0\}$, allora $a \in E^* \iff g(a) = g(1)$.

^aDifatti, nella letteratura inglese, si parla di *Euclidean domain* piuttosto che di anello.

Dimostrazione. Dividiamo la dimostrazione in due parti, ognuna corrispondente a una implicazione.

 (\Longrightarrow) Sia $a \in E^*$, allora $\exists b \in E^*$ tale che ab = 1. Poiché sia a che b sono diversi da 0, dalle proprietà della funzione grado si desume che $g(a) \leq g(ab) = g(1)$. Poiché, dalla *Proposizione 2.4*, g(1) è minimo, si conclude che g(a) = g(1).

(\Leftarrow) Sia $a \in E \setminus \{0\}$ con g(a) = g(1). Allora esistono q, r tali che 1 = aq + r. Vi sono due possibilità: che r sia 0, o che g(r) < g(a). Tuttavia, poiché g(a) = g(1), dalla *Proposizione 2.4* si desume che g(a) è minimo, e quindi che r è nullo. Si conclude quindi che aq = 1, e dunque che $a \in E^*$.

§2.2 Irriducibili e prime definizioni

Come accade nell'aritmetica dei numeri interi, anche in un dominio è possibile definire una nozione di *primo*. In un dominio possono essere tuttavia definiti due tipi di "primi", gli elementi *irriducibili* e gli elementi *primi*.

Definizione 2.6. In un dominio A, si dice che $a \in A \setminus A^*$ è **irriducibile** se $\exists b, c \mid a = bc \implies b \in A^*$ o $c \in A^*$.

Osservazione. Dalla definizione si escludono gli invertibili di A per permettere di definire meglio il concetto di fattorizzazione in seguito. Infatti, se li avessimo inclusi, avremmo che ogni dominio sarebbe a fattorizzazione non unica, dal momento che a=bc potrebbe essere scritto anche come a=1bc.

Definizione 2.7. Si dice che due elementi non nulli a, b appartenenti a un anello euclideo E sono **associati** se $a \mid b \in b \mid a$.

Proposizione 2.8

a e b sono associati $\iff \exists c \in E^* \mid a = bc$ e a, b entrambi non nulli.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\implies) Se a e b sono associati, allora $\exists\,d,\,e$ tali che a=bd e che b=ae. Combinando le due relazioni si ottiene:

$$a = aed \implies a(1 - ed) = 0.$$

Poiché a è diverso da zero, si ricava che ed = 1, ossia che $d, e \in E^*$, e quindi la tesi.

(\iff) Se a e b sono entrambi non nulli e $\exists c \in E^* \mid a = bc$, b chiaramente divide a. Inoltre, $a = bc \implies b = ac^{-1}$, e quindi anche a divide b. Pertanto a e b sono associati. \square

Proposizione 2.9

Siano $a \in b$ due associati in E. Allora $a \mid c \implies b \mid c$.

Dimostrazione. Poiché a e b sono associati, per la Proposizione 2.8, $\exists d \in E^*$ tale che a = db. Dal momento che $a \mid c$, $\exists \alpha \in E$ tale che $c = \alpha a$, quindi:

$$c = \alpha a = \alpha db$$

da cui la tesi. \Box

Proposizione 2.10

Siano $a \in b$ due associati in E. Allora (a) = (b).

Dimostrazione. Poiché a e b sono associati, $\exists d \in E^*$ tale che a = db. Si dimostra l'uguaglianza dei due insiemi.

Sia $\alpha = ak \in (a)$, allora $\alpha = dbk$ appartiene anche a (b), quindi $(a) \subseteq (b)$. Sia invece $\beta = bk \in (b)$, allora $\beta = d^{-1}ak$ appartiene anche a (a), da cui $(b) \subseteq (a)$. Dalla doppia inclusione si verifica la tesi, (a) = (b).

Definizione 2.11. In un dominio A, si dice che $a \in A \setminus A^*$ è **primo** se $a \mid bc \implies a \mid b \vee a \mid c$.

Proposizione 2.12

Se $a \in A$ è primo, allora a è anche irriducibile.

Dimostrazione. Si dimostra la tesi contronominalmente. Sia a non irriducibile. Se $a \in A^*$, allora a non può essere primo. Altrimenti a = bc con b, $c \in A \setminus A^*$.

Chiaramente $a \mid bc$, ossia sé stesso. Senza perdità di generalità, se $a \mid b$, dal momento che anche $b \mid a$, si dedurrebbe che a e b sono associati secondo la *Proposizione 2.8*. Tuttavia questo implicherebbe che $c \in A^*$, f.

§2.3 PID e MCD

Come accade per \mathbb{Z} , in ogni anello euclideo è possibile definire il concetto di *massimo* comun divisore, sebbene con qualche accortezza in più. Pertanto, ancor prima di definirlo, si enuncia la definizione di PID e si dimostra un teorema fondamentale degli anelli euclidei, che si ripresenterà in seguito come ingrediente fondamentale per la fondazione del concetto di MCD.

Definizione 2.13. Si dice che un dominio è un *principal ideal domain* $(PID)^a$ se ogni suo ideale è monogenerato.

 $^a \mbox{Ossia}$ un dominio a soli ideali principali, quindi monogenerati, proprio come da definizione.

Teorema 2.14

Sia E un anello euclideo. Allora E è un PID.

Dimostrazione. Sia I un ideale di E. Se I=(0), allora I è già monogenerato. Altrimenti si consideri l'insieme $g(I \setminus \{0\})$. Poiché $g(I \setminus \{0\}) \subseteq \mathbb{N}$, esso ammette un minimo per il principio del buon ordinamento.

Sia $m \in I$ un valore che assume tale minimo e sia $a \in I$. Poiché E è euclideo, $\exists q, r \mid a = mq + r$ con r = 0 o g(r) < g(m). Tuttavia, poiché $r = a - mg \in I$ e g(m) è minimo, necessariamente r = 0 – altrimenti r sarebbe ancor più minimo di m, f –, quindi $m \mid a, \forall a \in I$. Quindi $I \subseteq (m)$.

Dal momento che per le proprietà degli ideali $\forall a \in E, ma \in I$, si conclude che $(m) \subseteq I$. Quindi I = (m).

Adesso è possibile definire il concetto di massimo comun divisore, basandoci sul fatto che ogni anello euclideo è un PID.

Definizione 2.15. Sia D un dominio e siano $a, b \in D$. Si definisce massimo comun divisore (MCD) di a e b un generatore dell'ideale (a, b).

Osservazione. Questa definizione di MCD è una buona definizione dal momento che sicuramente esiste un generatore dell'ideale (a, b), dacché D è un PID.

Osservazione. Non si parla di un unico massimo comun divisore, dal momento che potrebbero esservi più generatori dell'ideale (a,b). Segue tuttavia che tutti questi generatori sono in realtà associati^a. Quando si scriverà MCD(a,b) s'intenderà quindi uno qualsiasi di questi associati.

"Infatti ogni generatore divide ogni altro elemento di un ideale, e così i vari generatori si dividono tra di loro. Pertanto sono associati.

Teorema 2.16 (Identità di Bézout)

Sia d un MCD di a e b. Allora $\exists \alpha, \beta$ tali che $d = \alpha a + \beta b$.

Dimostrazione. Il teorema segue dalla definizione di MCD come generatore dell'ideale (a,b). Infatti, poiché $d \in (a,b)$, esistono sicuramente, per definizione, α e β tali che $d = \alpha a + \beta b$.

Proposizione 2.17

Siano $a, b \in D$. Allora vale la seguente equivalenza:

$$d = \text{MCD}(a, b) \iff \begin{cases} d \mid a \wedge d \mid b \\ \forall c \text{ t.c. } c \mid a \wedge c \mid b, \ c \mid d \end{cases}$$

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Poiché d'è generatore dell'ideale (a,b), la prima proprietà segue banalmente.

Inoltre, per l'*Identità di Bézout*, $\exists \alpha$, β tali che $d = \alpha a + \beta b$. Allora, se $c \mid a \in c \mid b$, sicuramente esistono γ e δ tali che $a = \gamma c$ e $b = \delta c$. Pertanto si verifica la seconda proprietà, e quindi la tesi:

$$d = \alpha a + \beta b = \alpha \gamma c + \beta \delta c = c(\alpha \gamma + \beta \delta).$$

(\Leftarrow) Sia m = MCD(a, b). Dal momento che d divide sia a che b, d deve dividere, per l'implicazione scorsa, anche m. Per la seconda proprietà, m divide d a sua volta. Allora d è un associato di m, e quindi, dalla *Proposizione 2.10*, (m) = (d) = (a, b), da cui d = MCD(a, b).

Proposizione 2.18

Se $a \mid bc \in d = MCD(a, b) \in D^*$, allora $a \mid c$.

Dimostrazione. Per l'*Identità di Bézout* $\exists \alpha, \beta$ tali che $\alpha a + \beta b = d$. Allora, poiché $a \mid bc$, $\exists \gamma$ tale che $bc = a\gamma$. Si verifica quindi la tesi:

$$\alpha a + \beta b = d \implies \alpha ac + \beta bc = dc \implies ad^{-1}(\alpha c + \beta \gamma) = c.$$

Lemma 2.19

Se a è un irriducibile di un PID D, allora $\forall b \in D$, $(a,b) = D \lor (a,b) = (a)$, o equivalentemente $MCD(a,b) \in D^*$ o MCD(a,b) = a.

Dimostrazione. Dacché $MCD(a, b) \mid a$, le uniche opzioni, dal momento che a è irriducibile, sono che MCD(a, b) sia un invertibile o che sia un associato di a stesso.

Teorema 2.20

Se a è un irriducibile di un PID D, allora a è anche un primo.

Dimostrazione. Siano b e c tali che $a \mid bc$. Per il Lemma~2.19, MCD(a,b) può essere solo un associato di a o essere un invertibile. Se è un associato di a, allora, per la Proposizione~2.9, poiché MCD(a,b) divide b, anche a divide b. Altrimenti MCD $(a,b) \in D^*$, e quindi, per la Proposizione~2.18, $a \mid c$.

§2.4 L'algoritmo di Euclide

Per algoritmo di Euclide si intende un algoritmo che è in grado di produrre in un numero finito di passi un MCD tra due elementi a e b non entrambi nulli di un anello euclideo². L'algoritmo classico è di seguito presentato:

²Si richiede che l'anello sia euclideo e non soltanto che sia un PID, dal momento che l'algoritmo usufruisce delle proprietà della funzione grado.

dove $e \ e \ l'MCD$ ricercato e l'operazione mod restituisce un resto della divisione euclidea³.

Lemma 2.21

L'algoritmo di Euclide termina sempre in un numero finito di passi.

Dimostrazione. Se d è pari a 0, l'algoritmo termina immediatamente.

Altrimenti si può costruire una sequenza $(g(d_i))_{i\geq 1}$ dove d_i è il valore di d all'inizio di ogni i-esimo ciclo **while**. Ad ogni ciclo vi sono due casi: se d_i si annulla dopo l'operazione di mod, il ciclo si conclude al passo successivo, altrimenti, poiché d_i è un resto di una divisione euclidea, segue che $g(d_i) < g(d_{i-1})$, dove si pone $d_0 = \min(a, b)$.

Per il principio della discesa infinita, $(g(d_i))_{i\geq 1}$ non può essere una sequenza infinita, essendo strettamente decrescente. Quindi la sequenza è finita, e pertanto il ciclo **while** s'interrompe dopo un numero finito di passi.

```
Lemma 2.22 Sia r = a \mod b. Allora vale che (a,b) = (b,r).
```

Dimostrazione. Poiché $r = a \mod b$, $\exists q$ tale che a = qb + r. Siano k_1 e k_2 tali che $(k_1) = (a, b)$ e $(k_2) = (b, r)$. Dal momento che k_1 divide sia a che b, si ha che divide anche r. Siano α , β tali che $a = \alpha k_1$ e $b = \beta k_1$. Si verifica infatti che:

$$r = a - qb = \alpha k_1 - q\beta k_1 = k_1(\alpha - q\beta).$$

Poiché k_1 divide sia b che r, per le proprietà del MCD, k_1 divide anche k_2 . Analogamente, k_2 divide k_1 . Pertanto k_1 e k_2 sono associati, e dalla *Proposizione 2.10* generano quindi lo stesso ideale, da cui la tesi.

Teorema 2.23

L'algoritmo di Euclide restituisce sempre correttamente un MCD tra due elementi a e b non entrambi nulli in un numero finito di passi.

Dimostrazione. Per il Lemma 2.21, l'algoritmo sicuramente termina. Se d è pari a 0, allora l'algoritmo termina restituendo e. Il valore è corretto, dal momento che, senza perdità di generalità, se b è nullo, allora MCD(a, b) = a: infatti a divide sia sé stesso che

³Ossia $a \mod b$ restituisce un r tale che $\exists q \mid a = bq + r$ con r = 0 o g(r) < g(q).

0, e ogni divisore di a è sempre un divisore di 0.

Se invece d non è pari a 0, si scelga il d_n tale che $g(d_n)$ sia l'ultimo elemento della sequenza $(g(d_i))_{i\geq 1}$ definita nel Lemma 2.21. Per il Lemma 2.22, si ha la seguente uguaglianza:

$$(e_0, d_0) = (d_0, d_1) = \cdots = (d_n, 0) = (d_n).$$

Poiché quindi d_n è generatore di $(e_0, d_0) = (a, b), d_n = MCD(a, b).$

§2.5 UFD e fattorizzazione

Si enuncia ora la definizione fondamentale di UFD, sulla quale costruiremo un teorema fondamentale per gli anelli euclidei.

Definizione 2.24. Si dice che un dominio D è uno unique factorization domain $(\mathbf{UFD})^a$ se ogni $a \in D$ non nullo e non invertibile può essere scritto in forma unica come prodotto di irriducibili, a meno di associati.

^aOssia un dominio a fattorizzazione unica.

Lemma 2.25

Sia E un anello euclideo. Allora ogni elemento $a \in E$ non nullo e non invertibile può essere scritto come prodotto di irriducibili.

Dimostrazione. Si definisca A nel seguente modo:

$$A = \{g(a) \mid a \in E \setminus (E^* \cup \{0\}) \text{ non sia prodotto di irriducibili}\}.$$

Se $A \neq \emptyset$, allora, poiché $A \subseteq \mathbb{N}$, per il principio del buon ordinamento, esiste un $m \in E$ tale che g(m) sia minimo. Sicuramente m non è irriducibile – altrimenti $g(m) \notin A$, \mathcal{E} –, quindi m = ab con $a, b \in E \setminus E^*$.

Poiché $a \mid m$, ma $m \nmid a$ – altrimenti a e m sarebbero associati, e quindi b sarebbero invertibile –, si deduce che g(a) < g(m), e quindi che $g(a) \notin A$. Allora a può scriversi come prodotto di irriducibili. Analogamente anche b può scriversi come prodotto di irriducibili, e quindi m, che è il prodotto di a e b, è prodotto di irriducibili, f.

Quindi $A = \emptyset$, e ogni $a \in E$ non nullo e non invertibile è prodotto di irriducibili.

Teorema 2.26

Sia E un anello euclideo. Allora E è un UFD^a.

^aIn realtà questo teorema è un caso particolare di un teorema più generale: ogni PID è un UFD. Poiché la dimostrazione esula dalle intenzioni di queste dispense, si è preferito dimostrare il caso più familiare. Per la dimostrazione del teorema più generale si rimanda a [DM, pp. 124-126].

Dimostrazione. Innanzitutto, per il Lemma 2.25, ogni $a \in E$ non invertibile e non nullo ammette una fattorizzazione.

Sia allora $a \in E$ non invertibile e non nullo. Affinché E sia un UFD, deve verificarsi la seguente condizione: se $a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s \in E$, allora r = s ed esiste una permutazione $\sigma \in S_r$ tale per cui σ associ a ogni indice i di un p_i un indice j di un q_j in modo tale che p_i e q_j siano associati.

Si procede per induzione.

(passo base) Se r=1, allora a è irriducibile. Allora necessariamente s=1, altrimenti a sarebbe prodotto di irriducibili, e quindi contemporaneamente anche non irriducibile. Inoltre esiste la permutazione banale $e \in S_1$ che associa p_1 a q_1 .

(passo induttivo) Si assume che valga la tesi se a è prodotto di r-1 irriducibili. Si consideri p_1 : poiché p_1 divide a, p_1 divide anche $q_1q_2\cdots q_s$. Dal momento che E, in quanto anello euclideo, è anche un dominio, dal Teorema 2.20, p_1 è anche primo, e quindi $p_1 \mid q_1 \circ p_1 \mid q_2 \cdots q_s$.

Se $p_1 \nmid q_1$ si reitera il procedimento su $q_2 \cdots q_s$, trovando in un numero finito di passi un q_j tale per cui $p_1 \mid q_j$. Allora si procede la dimostrazione scambiando q_1 e q_j .

Poiché q_1 è irriducibile, p_1 e q_1 sono associati, ossia $q_1 = kp_1$ con $k \in E^*$. Allora $p_1 \cdots p_r = q_1 \cdots q_s = kp_1 \cdots q_s$, quindi, dal momento che $p_1 \neq 0$ ed E è un dominio:

$$p_1(p_2\cdots p_r - kq_2\cdots q_s) = 0 \implies p_2\cdots p_r = kq_2\cdots q_s.$$

Tuttavia il primo membro è un prodotto r-1 irriducibili, pertanto r=s ed esiste un $\sigma \in S_{r-1}$ che associa ad ogni irriducibile p_i un suo associato q_i . Allora si estende σ a S_r mappando p_1 a q_1 , verificando la tesi.

§3 Esempi notevoli di anelli euclidei

§3.1 I numeri interi: \mathbb{Z}

Senza ombra di dubbio l'esempio più importante di anello euclideo – nonché l'esempio da cui si è generalizzata proprio la stessa nozione di anello euclideo – è l'anello dei numeri interi.

In questo dominio la funzione grado è canonicamente il valore assoluto:

$$g: \mathbb{Z} \setminus \{0\} \to \mathbb{N}, k \mapsto |k|$$
.

Infatti, chiaramente $|a| \le |ab| \ \forall a, b \in \mathbb{Z} \setminus \{0\}$. Inoltre esistono – e sono anche unici, a meno di segno – $q, r \in \mathbb{Z} \mid a = bq + r$, con $r = 0 \lor |r| < |q|$.

Dal momento che così si verifica che \mathbb{Z} è un anello euclideo, il *Teorema fondamentale dell'aritmetica* è una conseguenza del *Teorema 2.26*.

§3.2 I campi: \mathbb{K}

Ogni campo \mathbb{K} è un anello euclideo, seppur banalmente. Infatti, eccetto proprio per 0, ogni elemento è "divisibile" per ogni altro elemento: siano $a, b \in \mathbb{K}$, allora $a = ab^{-1}b$.

Si definisce quindi la funzione grado come la funzione nulla:

$$g: \mathbb{K}^* \to \mathbb{N}, a \mapsto 0.$$

Chiaramente g soddisfa il primo assioma della funzione grado. Inoltre, poiché ogni elemento è "divisibile", il resto è sempre zero – non è pertanto necessario verificare nessun'altra proprietà.

§3.3 I polinomi di un campo: $\mathbb{K}[x]$

I polinomi di un campo \mathbb{K} formano un anello euclideo rilevante nello studio dell'algebra astratta. Come suggerisce la terminologia, la funzione grado in questo dominio coincide proprio con il grado del polinomio, ossia si definisce come:

$$g: \mathbb{K}[x] \setminus \{0\} \to \mathbb{N}, f(x) \mapsto \deg f.$$

Si verifica facilmente che $g(a(x)) \leq g(a(x)b(x)) \ \forall a(x), b(x) \in \mathbb{K}[x] \setminus \{0\}$, mentre la divisione euclidea – come negli interi – ci permette di concludere che effettivamente $\mathbb{K}[x]$ soddisfa tutti gli assiomi di un anello euclideo⁴.

Esempio 3.1

Sia $\alpha \in \mathbb{K}$ e sia $\varphi_{\alpha} : \mathbb{K}[x] \to \mathbb{K}$, $f(x) \mapsto f(\alpha)$ la sua valutazione polinomiale in $\mathbb{K}[x]$. φ_{α} è un omomorfismo, il cui nucleo è rappresentato dai polinomi in $\mathbb{K}[x]$ che hanno α come radice. Poiché $\mathbb{K}[x]$ è un PID, Ker φ deve essere monogenerato. $x - \alpha \in \operatorname{Ker} \varphi$ è irriducibile, e quindi è il generatore dell'ideale. Si desume così che $\operatorname{Ker} \varphi = (x - \alpha)$.

⁴Curiosamente i polinomi di $\mathbb{K}[x]$ e i campi \mathbb{K} sono gli unici anelli euclidei in cui resti e quozienti sono unici, includendo la scelta di segno (vd. [1]).

§3.4 Gli interi di Gauss: $\mathbb{Z}[i]$

Un importante esempio di anello euclideo è il dominio degli interi di Gauss $\mathbb{Z}[i]$, definito come:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$$

La funzione grado coincide in particolare con il quadrato del modulo di un numero complesso, ossia:

$$g(z): \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}, \ a+bi \mapsto |a+bi|^2.$$

Il vantaggio di quest'ultima definizione è l'enfasi sul collegamento tra la funzione grado di \mathbb{Z} e quella di $\mathbb{Z}[i]$. Infatti, se $a \in \mathbb{Z}$, il grado di a in \mathbb{Z} e in $\mathbb{Z}[i]$ sono uno il quadrato dell'altro. In particolare, è possibile ridefinire il grado di \mathbb{Z} proprio in modo tale da farlo coincidere con quello di $\mathbb{Z}[i]$.

Figura 1: Visualizzazione della divisione euclidea nel piano degli interi di Gauss.

Teorema 3.2

 $\mathbb{Z}[i]$ è un anello euclideo.

Dimostrazione. Si verifica la prima proprietà della funzione grado. Siano $a, b \in \mathbb{Z}[i] \setminus \{0\}$, allora $|a| \geq 1 \land |b| \geq 1$. Poiché $|ab| = |a| |b|^5$, si verifica facilmente che $|ab| \geq |a|$, ossia che $g(ab) \geq g(a)$.

Si verifica infine che esiste una divisione euclidea, ossia che $\forall a \in \mathbb{Z}[i], \forall b \in \mathbb{Z}[i] \setminus \{0\}, \exists q, r \in \mathbb{Z}[i] \mid a = bq + r \in r = 0 \lor g(r) < g(b)$. Come si visualizza facilmente nella Figura 1, tutti i multipli di b formano un piano con basi b e ib, dove sicuramente esiste un certo q tale che la distanza |r| = |a - bq| sia minima.

Se a è un multiplo di b, vale sicuramente che a=bq. Altrimenti dal momento che r è sicuramente inquadrato in uno dei tasselli del piano, vale sicuramente la seguente disuguaglianza, che lega il modulo di r alla diagonale di ogni quadrato:

$$|r| \le \frac{|b|}{\sqrt{2}}.$$

Pertanto vale la seconda e ultima proprietà della funzione grado:

$$|r| \le \frac{|b|}{\sqrt{2}} < |b| \implies |r|^2 < |b|^2 \implies g(r) < g(b).$$

§3.5 Gli interi di Eisenstein: $\mathbb{Z}[\omega]$

Sulla scia di $\mathbb{Z}[i]$ è possibile definire anche l'anello degli interi di Eisenstein, aggiungendo a \mathbb{Z} la prima radice cubica primitiva dell'unità in senso antiorario, ossia:

$$\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i.$$

In particolare, ω è una delle due radici dell'equazione $z^2 + z + 1 = 0$, dove invece l'altra radice altro non è che $\omega^2 = \overline{\omega}$.

Figura 2: Visualizzazione della divisione euclidea nel piano degli interi di Eisenstein.

La funzione grado in $\mathbb{Z}[\omega]$ deriva da quella di $\mathbb{Z}[i]$ e coincide ancora con il quadrato del modulo del numero complesso. Si definisce quindi:

$$g: \mathbb{Z}[\omega] \setminus \{0\}, \ a + b\omega \mapsto |a + b\omega|^2.$$

Sviluppando il modulo è possibile ottenere una formula più concreta:

$$|a+b\omega|^2 = \left| \left(a - \frac{b}{2} \right) + \frac{b\sqrt{3}}{2}i \right|^2 =$$

⁵Questa interessante proprietà del modulo è alla base dell'identità di Brahmagupta-Fibonacci: $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$.

$$= \left(a - \frac{b}{2}\right)^2 + \frac{3b^2}{4} = a^2 - ab + b^2.$$

Teorema 3.3

 $\mathbb{Z}[\omega]$ è un anello euclideo.

Dimostrazione. Sulla scia della dimostrazione presentata per $\mathbb{Z}[i]$, si verifica facilmente la prima proprietà della funzione grado. Siano $a, b \in \mathbb{Z}[\omega]$, allora $|a| \ge 1$ e $|b| \ge 1$. Poiché dalle proprietà dei numeri complessi vale ancora $|a| |b| \ge |a|$, la proprietà $g(ab) \ge g(a)$ è già verificata.

Si verifica infine la seconda e ultima proprietà della funzione grado. Come per $\mathbb{Z}[i]$, i multipli di $b \in \mathbb{Z}[\omega]$ sono visualizzati su un piano che ha per basi b e ωb (come in Figura 2), pertanto esiste sicuramente un q tale che la distanza |a-bq| sia minima.

Se a è multiplo di b, allora chiaramente a=bq. Altrimenti, a è certamente inquadrato in uno dei triangoli del piano, per cui vale la seguente disuguaglianza:

$$|r| \le \frac{\sqrt{3}}{2} |b|.$$

Dunque la tesi è verificata:

$$|r| \le \frac{\sqrt{3}}{2} |b| < |b| \implies |r|^2 < |b|^2 \implies g(r) < g(b).$$

§4 Irriducibili e corollari di aritmetica in $\mathbb{Z}[i]$

Come già dimostrato, $\mathbb{Z}[i]$ è un anello euclideo con la seguente funzione grado:

$$g: \mathbb{Z}[i] \setminus \{0\} \to \mathbb{Z}, \ a+bi \mapsto \|a+bi\|^2.$$

A partire da questo preconcetto è possibile dimostrare un teorema importante in aritmetica, il *Teorema di Natale di Fermat*, che discende direttamente come corollario di un teorema più generale riguardante $\mathbb{Z}[i]$.

§4.1 II teorema di Natale di Fermat e gli irriducibili in $\mathbb{Z}[i]$

Lemma 4.1

Sia p un numero primo riducibile in $\mathbb{Z}[i]$, allora p può essere scritto come somma di due quadrati in \mathbb{Z} .

Dimostrazione. Se p è riducibile in $\mathbb{Z}[i]$, allora esistono a+bi e c+di appartenenti a $\mathbb{Z}[i] \setminus \mathbb{Z}[i]^*$ tali che p = (a+bi)(c+di).

Impiegando le proprietà dell'operazione di coniugio si ottiene la seguente equazione:

$$\overline{p} = p = (a - bi)(c - di) \implies p^2 = p\overline{p} = (a^2 + b^2)(c^2 + d^2).$$

Dal momento che a + bi e c + di non sono invertibili, i valori della funzione grado calcolati in essi sono strettamente maggiori del valore assunto nell'unità, ovverosia:

$$a^2 + b^2 > 1$$
, $c^2 + d^2 > 1$.

Allora devono per forza valere le seguenti equazioni:

$$p = a^2 + b^2$$
, $p = c^2 + d^2$,

da cui la tesi.

Lemma 4.2

Sia p un numero primo tale che $p\equiv 1\pmod 4.$ Allora esiste un $x\in\mathbb{Z}$ tale che $p\mid x^2+1.$

Dimostrazione. Per il Teorema di Wilson, $(p-1)! \equiv -1 \pmod{p}$. Attraverso varie manipolazioni algebriche si ottiene:

$$-1 \equiv 1 \cdots \frac{p-1}{2} \cdot \frac{p+1}{2} \cdots (p-1) \equiv 1 \cdots \frac{p-1}{2} \left(-\frac{p-1}{2} \right) \cdots (-1) \equiv$$
$$\equiv (-1)^{\frac{p-1}{2}} \left(\left(\frac{p-1}{2} \right)! \right)^2 \equiv \left(\left(\frac{p-1}{2} \right)! \right)^2 \pmod{p},$$

da cui con $x = \left(\frac{p-1}{2}\right)!$ si verifica la tesi.

Teorema 4.3

Sia p un numero primo tale che $p \equiv 1 \pmod{4}$. Allora p è riducibile in $\mathbb{Z}[i]$.

Dimostrazione. Per il Lemma 4.2, si ha che esiste un $x \in \mathbb{Z}$ tale che $p \mid x^2 + 1$. Se p fosse irriducibile, dacché $\mathbb{Z}[i]$ è un PID in quanto euclideo, p sarebbe anche un primo di $\mathbb{Z}[i]$. Dal momento che $x^2 + 1 = (x + i)(x - i)$, p dovrebbe dividere almeno uno di questi due fattori.

Senza perdità di generalità, si ponga che $p \mid (x+i)$. Allora $\exists a+bi \in \mathbb{Z}[i] \mid x+i=(a+bi)p$. Uguagliando le parti immaginarie si ottiene bp=1, che non ammette soluzioni, f. Pertanto p è riducibile.

Corollario 4.4 (Teorema di Natale di Fermat)

Sia p un numero primo tale che $p \equiv 1 \pmod 4$. Allora p è somma di due quadrati in \mathbb{Z} .

Dimostrazione. Per il Teorema 4.3, p è riducibile in $\mathbb{Z}[i]$. In quanto riducibile in $\mathbb{Z}[i]$, per il Lemma 4.1, p è allora somma di due quadrati.

Teorema 4.5

Sia p un numero primo tale che $p \equiv -1 \pmod{4}$. Allora p è irriducibile in $\mathbb{Z}[i]$.

Dimostrazione. Se p fosse riducibile in $\mathbb{Z}[i]$, per il Teorema di Natale di Fermat esisterebbero a e b in \mathbb{Z} tali che $p=a^2+b^2$. Dal momento che p è dispari, possiamo supporre, senza perdità di generalità, che a sia pari e che b sia dispari. Pertanto $a^2 \equiv 0 \pmod{4}$ e $b^2 \equiv 1 \pmod{4}$, dacché sono uno pari e l'altro dispari⁶. Tuttavia la congruenza $a^2+b^2 \equiv 1 \equiv -1 \pmod{4}$ non è mai soddisfatta, f. Pertanto p può essere solo irriducibile.

Osservazione. Si osserva che 2 = (1+i)(1-i). Dal momento che $||1+i||^2 = ||1-i||^2 = 2 \neq 1$, si deduce che nessuno dei due fattori è invertibile. Pertanto 2 non è irriducibile.

Proposizione 4.6

Gli unici primi $p \in \mathbb{Z}$ irriducibili in $\mathbb{Z}[i]$ sono i primi p tali che $p \equiv -1 \pmod{4}$.

Dimostrazione. Per l'osservazione precedente, 2 non è irriducibile in $\mathbb{Z}[i]$, così come i primi congrui a 1 in modulo 4, per il Teorema~4.3. Al contrario i primi p congrui a -1 in modulo 4 sono irriducibili, per il Teorema~4.5, da cui la tesi.

Teorema 4.7

 $z \in \mathbb{Z}[i]$ è irriducibile se e solo se z è un associato di un $k \in \mathbb{Z}$ tale che $k \equiv -1 \pmod{4}$, o se $||z||^2$ è primo.

⁶Infatti, $0^2 \equiv 0 \pmod{4}$, $1^2 \equiv 1 \pmod{4}$, $2^2 \equiv 4 \equiv 0 \pmod{4}$, $3^2 \equiv 9 \equiv 1 \pmod{4}$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia $z \in \mathbb{Z}[i]$ irriducibile. Chiaramente $z \mid z\overline{z} = g(z)$. Dacché \mathbb{Z} è un UFD, g(z) può decomporsi in un prodotto di primi $q_1q_2\cdots q_n$. Dal momento che $\mathbb{Z}[i]$ è un PID, in quanto anello euclideo, z deve dividere uno dei primi della fattorizzazione di g(z). Si assuma che tale primo sia q_i . Allora esiste un $w \in \mathbb{Z}[i]$ tale che $q_i = wz$.

Se $w \in \mathbb{Z}[i]^*$, si deduce che z è un associato di q_i . Dal momento che z è irriducibile, q_i , che è suo associato, è a sua volta irriducibile. Allora, per la *Proposizione* 4.6, $q_i \equiv -1 \pmod{4}$.

Altrimenti, se w non è invertibile, si ha che g(w) > g(1), ossia che $||w||^2 > 1$. Inoltre in quanto irriducibile, anche z non è invertibile, e quindi $g(z) > g(1) \Longrightarrow ||z||^2 > 1$. Dalla proprietà moltiplicativa del modulo si ricava $q_i^2 = ||q_i||^2 = ||w||^2 ||z||^2$, da cui necessariamente consegue che:

$$||w||^2 = q_i, \quad ||z||^2 = q_i,$$

attraverso cui si verifica l'implicazione.

(\Leftarrow) Se $k \in \mathbb{Z}$ e $k \equiv -1 \pmod{4}$, per il *Teorema 4.5*, k è irriducibile. Allora in quanto suo associato, anche z è irriducibile.

Altrimenti, se $\|z\|^2$ è un primo p, si ponga z=ab con a e $b\in\mathbb{Z}[i]$. Per la proprietà moltiplicativa del modulo, $p=\|z\|^2=\|ab\|^2=\|a\|^2\|b\|^2$. Tuttavia questo implica che uno tra $\|a\|^2$ e $\|b\|^2$ sia pari a 1, ossia che uno tra a e b sia invertibile, dacché g(1)=1. Pertanto z è in ogni caso irriducibile.

Infine si enuncia un'ultima identità inerente all'aritmetica, ma strettamente collegata a $\mathbb{Z}[i]$.

§4.2 L'identità di Brahmagupta-Fibonacci

Proposizione 4.8 (Identità di Brahmagupta-Fibonacci)

Il prodotto di due somme di quadrati è ancora una somma di quadrati. In particolare:

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

Dimostrazione. La dimostrazione altro non è che una banale verifica algebrica. Ciononostante è possibile risalire a questa identità in via alternativa mediante l'uso del modulo dei numeri complessi.

Siano $z_1 = a + bi$, $z_2 = c + di \in \mathbb{C}$. Allora, per le proprietà del modulo dei numeri complessi:

$$||z_1|| \, ||z_2|| = ||z_1 z_2|| \,. \tag{1}$$

Computando il prodotto tra z_1 e z_2 si ottiene:

$$z_1 z_2 = (ac - bd) + (ad + bc)i,$$

da cui a sua volta si ricava:

$$||z_1 z_2|| = \sqrt{(ac - bd)^2 + (ad + bc)^2},$$

assieme a:

$$||z_1|| = \sqrt{a^2 + b^2}, \quad ||z_2|| = \sqrt{c^2 + d^2}.$$

Infine, da (1), elevando al quadrato, si deduce l'identità presentata:

$$\sqrt{a^2 + b^2} \sqrt{c^2 + d^2} = \sqrt{(ac - bd)^2 + (ad + bc)^2} \implies (a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

Esempio 4.9

Si consideri $65 = 5 \cdot 13$. Dal momento che sia 5 che 13 sono congrui a 1 in modulo 4, sappiamo già si possono scrivere entrambi come somme di due quadrati. Allora, dall'*Identità di Brahmagupta-Fibonacci*, anche 65 è somma di due quadrati.

Infatti
$$5 = 2^2 + 1^2$$
 e $13 = 3^2 + 2^2$. Pertanto $65 = 5 \cdot 13 = (2 \cdot 3 - 1 \cdot 2)^2 + (2 \cdot 2 + 1 \cdot 3)^2 = 4^2 + 7^2$

§5 Irriducibilità in $\mathbb{Z}[x]$ e in $\mathbb{Q}[x]$

§5.1 Criterio di Eisenstein e proiezione in $\mathbb{Z}_p[x]$

Prima di studiare le irriducibilità in \mathbb{Z} , si guarda alle irriducibilità nei vari campi finiti \mathbb{Z}_p , con p primo. Questo metodo presenta un vantaggio da non sottovalutare: in \mathbb{Z}_p per ogni grado n esiste un numero finito di polinomi monici⁷ – in particolare, p^n – e quindi per un polinomio di grado d è sufficiente controllare che questo non sia prodotto di tali polinomi monici per $1 \le n < d$.

In modo preliminare, si definisce un omomorfismo fondamentale.

Definizione 5.1. Sia il seguente l'omomorfismo di proiezione da \mathbb{Z} in \mathbb{Z}_p :

$$\hat{\pi}_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x], \ a_n x^n + \ldots + a_0 \mapsto [a_n]_p \, x^n + \ldots + [a_0]_p.$$

Osservazione. Si dimostra facilmente che $\hat{\pi}$ è un omomorfismo di anelli. Innanzitutto, $\hat{\pi}(1) = [1]_p$. Vale chiaramente la linearità:

$$\hat{\pi}_p(a_n x^n + \dots + a_0) + \hat{\pi}_p(b_n x^n + \dots + b_0) = [a_n]_p x^n + \dots + [b_n]_p x^n + \dots =$$

$$= [a_n + b_n]_p x^n + \dots = \hat{\pi}_p(a_n x^n + \dots + a_0 + b_n x^n + \dots + b_0).$$

Infine vale anche la moltiplicatività:

$$\hat{\pi}_{p}(a_{n}x^{n} + \dots + a_{0})\hat{\pi}_{p}(b_{n}x^{n} + \dots + b_{0}) = ([a_{n}]_{p}x^{n} + \dots)([b_{n}]_{p}x^{n} + \dots) =$$

$$= \sum_{i=0}^{n} \sum_{j+k=i} [a_{j}]_{p} [b_{k}]_{p} x^{i} = \sum_{i=0}^{n} \sum_{j+k=i} [a_{j}b_{k}]_{p} x^{i} = \hat{\pi}_{p} \left(\sum_{i=0}^{n} \sum_{j+k=i} a_{j}b_{k}x^{i} \right) =$$

$$= \hat{\pi}_{p} \left((a_{n}x^{n} + \dots + a_{0})(b_{n}x^{n} + \dots + b_{0}) \right).$$

Prima di enunciare un teorema che si rivelerà importante nel determinare l'irriducibilità di un polinomio in $\mathbb{Z}[x]$, si enuncia una definizione che verrà ripresa anche in seguito

Definizione 5.2. Un polinomio $a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ si dice **primitivo** se $MCD(a_n, \ldots, a_0) = 1$.

Teorema 5.3

Sia p un primo. Sia $f(x) = a_n x^n + \ldots \in \mathbb{Z}[x]$ primitivo. Se $p \nmid a_n$ e $\hat{\pi}_p(f(x))$ è irriducibile in $\mathbb{Z}_p[x]$, allora anche f(x) lo è in $\mathbb{Z}[x]$.

Dimostrazione. Si dimostra la tesi contronominalmente. Sia $f(x) = a_n x^n + \ldots \in \mathbb{Z}[x]$ primitivo e riducibile, con $p \nmid a_n$. Dal momento che f(x) è riducibile, esistono g(x), h(x) non invertibili tali che f(x) = g(x)h(x).

⁷Si prendono in considerazione solo i polinomi monici dal momento che vale l'equivalenza degli associati: se a divide b, allora tutti gli associati di a dividono b. \mathbb{Z}_p è infatti un campo, e quindi $\mathbb{Z}_p[x]$ è un anello euclideo.

Si dimostra che deg $g(x) \ge 1$. Se infatti fosse nullo, g(x) dovrebbe o essere uguale a ± 1 – assurdo, dal momento che q(x) non è invertibile, \mathcal{I} – o essere una costante non invertibile. Tuttavia, nell'ultimo caso, risulterebbe che f(x) non è primitivo, poiché g(x) dividerebbe ogni coefficiente del polinomio. Analogamente anche deg $h(x) \geq 1$.

Si consideri ora $\hat{\pi}_p(f(x)) = \hat{\pi}_p(g(x))\hat{\pi}_p(h(x))$. Dal momento che $p \nmid a_n$, il grado di f(x)rimane costante sotto l'operazione di omomorfismo, ossia deg $\hat{\pi}_p(f(x)) = \deg f(x)$.

Inoltre, poiché nessuno dei fattori di f(x) è nullo, deg $f(x) = \deg g(x) + \deg h(x)$. Da questa considerazione si deduce che anche i gradi di g(x) e h(x) non devono calare, altrimenti si avrebbe che $\deg \hat{\pi}_p(f(x)) < \deg f(x), \, f$. Allora $\deg \hat{\pi}_p(g(x)) = \deg g(x) \geq 1$, $\deg \hat{\pi}_p(h(x)) = \deg h(x) \ge 1.$

Poiché deg $\hat{\pi}_p(g(x))$ e deg $\hat{\pi}_p(h(x))$ sono dunque entrambi non nulli, $\hat{\pi}_p(g(x))$ e $\hat{\pi}_p(h(x))$ non sono invertibili⁸. Quindi f(x) è prodotto di non invertibili, ed è dunque riducibile.

Teorema 5.4 (Criterio di Eisenstein)

Sia p un primo. Sia $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ primitivo tale che:

- (1) $p \nmid a_n$, (2) $p \mid a_i, \forall i \neq n$, (3) $p^2 \nmid a_0$.

Allora f(x) è irriducibile in $\mathbb{Z}[x]$.

Dimostrazione. Si ponga f(x) riducibile e sia pertanto f(x) = g(x)h(x) con g(x) e h(x)non invertibili. Analogamente a come visto per il Teorema 5.3, si desume che deg g(x), $\deg h(x) \ge 1.$

Si applica l'omomorfismo di proiezione in $\mathbb{Z}_p[x]$:

$$\hat{\pi}_p(f(x)) = \underbrace{[a_n]_p}_{\neq 0} x_n,$$

da cui si deduce che deg $\hat{\pi}_p(f(x)) = \deg f(x)$.

Dal momento che $\hat{\pi}_p(f(x)) = \hat{\pi}_p(g(x))\hat{\pi}_p(h(x))$ e che $\mathbb{Z}_p[x]$, in quanto campo, è un dominio, necessariamente sia $\hat{\pi}_p(g(x))$ che $\hat{\pi}_p(h(x))$ sono dei monomi.

Inoltre, sempre in modo analogo a come visto per il Teorema 5.3, sia deg $\hat{\pi}_p(g(x))$ che $\deg \hat{\pi}_p(h(x))$ sono maggiori o uguali ad 1.

Combinando questo risultato col fatto che questi due fattori sono monomi, si desume che $\hat{\pi}_p(g(x))$ e $\hat{\pi}_p(h(x))$ sono monomi di grado positivo. Quindi p deve dividere entrambi i

 $^{^8\}mathrm{Si}$ ricorda che $\mathbb{Z}_p[x]$ è un anello euclideo. Pertanto, non avere lo stesso grado dell'unità equivale a non essere invertibili.

termini noti di g(x) e h(x), e in particolare p^2 deve dividere il loro prodotto, ossia a_0 . Tuttavia questo è un assurdo, f.

Osservazione. Si consideri $x^k - 2$, per $k \ge 1$. Per il *Criterio di Eisenstein*, considerando come primo p = 2, si verifica che $x^k - 2$ è sempre irriducibile. Pertanto, per ogni grado di un polinomio esiste almeno un irriducibile – a differenza di come invece avviene in $\mathbb{R}[x]$ o in $\mathbb{C}[x]$.

Teorema 5.5

Sia $f(x) \in \mathbb{Z}[x]$ primitivo e sia $a \in \mathbb{Z}$. Allora f(x) è irriducibile se e solo se f(x+a) è irriducibile.

Dimostrazione. Si dimostra una sola implicazione, dal momento che l'implicazione contraria consegue dalle stesse considerazioni poste studiando prima f(x + a) e poi f(x).

Sia f(x) = a(x)b(x) riducibile, con a(x), $b(x) \in \mathbb{Z}[x]$ non invertibili. Come già visto per il Teorema~5.3, $\deg a(x)$, $\deg b(x) \geq 1$.

Allora chiaramente f(x+a) = g(x+a)h(x+a), con $\deg g(x+a) = \deg g(x) \ge 1$, $\deg h(x+a) = \deg h(x) \ge 1$. Pertanto f(x+a) continua a essere riducibile, da cui la tesi.

Esempio 5.6

Si consideri $f(x)=x^{p-1}+\ldots+x^2+x+1\in\mathbb{Z}[x]$, dove tutti i coefficienti del polinomio sono 1. Si verifica che:

$$f(x+1) = \frac{(x+1)^p - 1}{x} = p + \binom{p}{2}x + \dots + x^{p-1}.$$

Allora, per il *Criterio di Eisenstein* con p, f(x+1) è irriducibile. Pertanto anche f(x) lo è.

§5.2 Alcuni irriducibili di $\mathbb{Z}_2[x]$

Tra tutti gli anelli $\mathbb{Z}_p[x]$, $\mathbb{Z}_2[x]$ ricopre sicuramente un ruolo fondamentale, dal momento che è il meno costoso computazionalmente da analizzare, dacché \mathbb{Z}_2 consta di soli due elementi. Pertanto si computano adesso gli irriducibili di $\mathbb{Z}_2[x]$ fino al quarto grado incluso, a meno di associati.

Sicuramente x e x+1 sono irriducibili, dal momento che sono di primo grado. I polinomi di secondo grado devono dunque essere prodotto di questi polinomi, e pertanto devono avere o 0 o 1 come radice: si verifica quindi che x^2+x+1 è l'unico polinomio di secondo grado irriducibile.

Per il terzo grado vale ancora lo stesso principio, per cui $x^3 + x^2 + 1$ e $x^3 + x + 1$ sono gli unici irriducibili di tale grado. Infine, per il quarto grado, i polinomi riducibili soddisfano una qualsiasi delle seguenti proprietà:

- 0 e 1 sono radici del polinomio,
- il polinomio è prodotto di due polinomi irriducibili di secondo grado.

Si escludono pertanto dagli irriducibili i polinomi non omogenei – che hanno sicuramente 0 come radice –, e i polinomi con 1 come radice, ossia $x^4 + x^3 + x + 1$, $x^4 + x^3 + x^2 + 1$, e $x^4 + x^2 + x + 1$. Si esclude anche $(x^2 + x + 1)^2 = x^4 + x^2 + 1$. Pertanto gli unici irriducibili di grado quattro sono $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$.

Tutti questi irriducibili sono raccolti nella seguente tabella:

- (grado 1) x, x + 1,
- (grado 2) $x^2 + x + 1$,
- (grado 3) $x^3 + x^2 + 1$, $x^3 + x + 1$,
- (grado 4) $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$.

Esempio 5.7

Il polinomio $51x^3 + 11x^2 + 1 \in \mathbb{Z}[x]$ è primitivo dal momento che MCD(51, 11, 1) = 1. Inoltre, poiché $\hat{\pi}_2(51x^3 + 11x^2 + 1) = x^3 + x + 1$ è irriducibile, si deduce che anche $51x^3 + 11x^2 + 1$ lo è per il *Teorema 5.3*.

§5.3 Teorema delle radici razionali e lemma di Gauss

Si enunciano in questa sezione i teoremi più importanti per lo studio dell'irriducibilità dei polinomi in $\mathbb{Q}[x]$ e in $\mathbb{Z}[x]$, a partire dai due teoremi più importanti: il classico *Teorema delle radici razionali* e il *Lemma di Gauss*, che si pone da ponte tra l'analisi dell'irriducibilità in $\mathbb{Z}[x]$ e quella in $\mathbb{Q}[x]$.

Teorema 5.8 (*Teorema delle radici razionali*)

Sia $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$. Abbia f(x) una radice razionale. Allora, detta tale radice $\frac{p}{a}$, già ridotta ai minimi termini, questa è tale che:

- (i.) $p \mid a_0$,
- (ii.) $q \mid a_n$.

Dimostrazione. Poiché $\frac{p}{q}$ è radice, $f\left(\frac{p}{q}\right)=0$, e quindi si ricava che:

$$a_n \left(\frac{p}{q}\right)^n + \ldots + a_0 = 0 \implies a_n p^n = -q(\ldots + a_0 q^{n-1}).$$

Quindi $q \mid a_n p^n$. Dal momento che MCD(p,q) = 1, si deduce che $q \mid a_n$.

Analogamente si ricava che:

$$a_0q^n = -p(a_np^{n-1} + \ldots).$$

Pertanto, per lo stesso motivo espresso in precedenza, $p \mid a_0$, da cui la tesi.

Teorema 5.9 (Lemma di Gauss)

Il prodotto di due polinomi primitivi in $\mathbb{Z}[x]$ è anch'esso primitivo.

Dimostrazione. Siano $g(x) = a_m x^m + \ldots + a_0$ e $h(x) = b^n x^n + \ldots + b_0$ due polinomi primitivi in $\mathbb{Z}[x]$. Si assuma che f(x) = g(x)h(x) non sia primitivo. Allora esiste un p primo che divide tutti i coefficienti di f(x).

Siano a_s e b_t i più piccoli coefficienti non divisibili da p dei rispettivi polinomi. Questi sicuramente esistono, altrimenti p dividerebbe tutti i coefficienti, e quindi o g(x) o h(x) non sarebbe primitivo, f.

Si consideri il coefficiente di x^{s+t} di f(x):

$$c_{s+t} = \sum_{j+k=s+t} a_j b_k = \underbrace{a_0 b_{s+t} + a_1 b_{s+t-1} + \dots}_{\equiv 0 \pmod p} + a_s b_t + \underbrace{a_{s+1} b_{t-1} + \dots}_{\equiv 0 \pmod p},$$

dal momento che $p \mid c_{s+t}$, si deduce che p deve dividere anche $a_s b_t$, ossia uno tra a_s e b_t , che è assurdo, f. Quindi f(x) è primitivo.

Teorema 5.10 (Secondo lemma di Gauss)

Sia $f(x) \in \mathbb{Z}[x]$. Allora f(x) è irriducibile in $\mathbb{Z}[x]$ se e solo se f(x) è irriducibile in $\mathbb{Q}[x]$ ed è primitivo.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Si dimostra l'implicazione contronominalmente, ossia mostrando che se f(x) non è primitivo o se è riducibile in $\mathbb{Q}[x]$, allora f(x) è riducibile in $\mathbb{Z}[x]$.

Se f(x) non è primitivo, allora f(x) è riducibile in $\mathbb{Z}[x]$. Sia quindi f(x) primitivo e riducibile in $\mathbb{Q}[x]$, con f(x) = g(x)h(x), g(x), $h(x) \in \mathbb{Q}[x] \setminus \mathbb{Q}[x]^*$.

Si descrivano g(x) e h(x) nel seguente modo:

$$g(x) = \frac{p_m}{q_m} x^m + \ldots + \frac{p_0}{q_0}, \quad MCD(p_i, q_i) = 1 \ \forall 0 \le i \le m,$$

$$h(x) = \frac{s_n}{t_n} x^n + \ldots + \frac{s_0}{t_0}, \quad MCD(s_i, t_i) = 1 \ \forall 0 \le i \le n.$$

Si definiscano inoltre le seguenti costanti:

$$\alpha = \frac{\operatorname{mcm}(q_m, \dots, q_0)}{\operatorname{MCD}(p_m, \dots, p_0)}, \quad \beta = \frac{\operatorname{mcm}(t_n, \dots, t_0)}{\operatorname{MCD}(s_n, \dots, s_0)}.$$

Si verifica che sia $\hat{g}(x) = \alpha g(x)$ che $\hat{h}(x) = \beta h(x)$ appartengono a $\mathbb{Z}[x]$ e che entrambi sono primitivi. Pertanto $\hat{g}(x)\hat{h}(x) \in \mathbb{Z}[x]$.

Si descriva f(x) nel seguente modo:

$$f(x) = a_k x^k + \dots + a_0$$
, $MCD(a_k, \dots, a_0) = 1$.

Sia $\alpha\beta=\frac{p}{q}$ con $\mathrm{MCD}(p,q)=1,$ allora:

$$\hat{g}(x)\hat{h}(x) = \alpha\beta f(x) = \frac{p}{q}(a_k x^k + \dots + a_0),$$

da cui, per far sì che $\hat{g}(x)\hat{h}(x)$ appartenga a $\mathbb{Z}[x]$, q deve necessariamente dividere tutti i coefficienti di f(x). Tuttavia f(x) è primitivo, e quindi $q = \pm 1$. Pertanto $\alpha\beta = \pm p \in \mathbb{Z}$.

Infine, per il Lemma di Gauss, $\alpha\beta f(x)$ è primitivo, da cui $\alpha\beta=\pm 1$. Quindi $f(x)=\pm \hat{g}(x)\hat{h}(x)$ è riducibile.

(\Leftarrow) Se f(x) è irriducibile in $\mathbb{Q}[x]$ ed è primitivo, sicuramente f(x) è irriducibile anche in $\mathbb{Z}[x]$. Infatti, se esiste una fattorizzazione in irriducibili in $\mathbb{Z}[x]$, essa non include alcuna costante moltiplicativa dal momento che f(x) è primitivo, e quindi esisterebbe una fattorizzazione in irriducibili anche in $\mathbb{Q}[x]$.

§6 I polinomi di un campo: $\mathbb{K}[x]$

§6.1 Elementi preliminari

Prima di procedere ad enunciare le proprietà più rilevanti dell'anello dei polinomi $\mathbb{K}[x]$, si ricorda che esso è un **anello euclideo** in cui la funzione grado coincide con il grado del polinomio, ossia $g = \deg$. Si enuncia ora invece la definizione di radice.

Definizione 6.1. Si dice che $\alpha \in \mathbb{K}$ è una radice del polinomio $f(x) \in \mathbb{K}[x]$ se $f(\alpha) = 0$.

Proposizione 6.2

Se $\alpha \in \mathbb{K}$ è una radice di $f(x) \in \mathbb{K}[x]$, allora $(x - \alpha)$ divide f(x).

Dimostrazione. Dal momento che $\mathbb{K}[x]$ è un anello euclideo, si può eseguire la divisione euclidea tra f(x) e $(x-\alpha)$, ossia esistono q(x), $r(x) \in \mathbb{K}[x]$ tali che $f(x) = q(x)(x-\alpha) + r(x)$ con deg $r(x) < \deg(x-\alpha)$ o con r(x) = 0.

Se $r(x) \neq 0$, poiché $\deg r(x) < \deg(x - \alpha)$, si deduce che $\deg r(x) = 0$, ossia che r(x) è un invertibile. In entrambi i casi, r(x) è comunque una costante. Pertanto, valutando il polinomio in α , si ricava:

$$0 = f(\alpha) = \underbrace{q(\alpha)(\alpha - \alpha)}_{=0} + r(\alpha),$$

da cui $r(\alpha) = 0$. Quindi $f(x) = q(x)(x - \alpha)$, e si verifica la tesi.

Teorema 6.3

Sia $f(x) \in \mathbb{K}[x]$ di grado n. Allora f(x) ha al più n radici.

Dimostrazione. Se n è nullo, allora f(x) è una costante non nulla, e quindi non ammette radici, in accordo alla tesi.

Sia allora $n \ge 1$. Se f(x) non ha radici in \mathbb{K} , allora la tesi è ancora soddisfatta. Altrimenti sia ζ_1 una radice di f(x). Si divida f(x) per $(x - \zeta_1)$ e se ne prende il quoziente $q_1(x)$, mentre si ignori il resto, che, per la *Proposizione* 6.2, è nullo.

Si reiteri il procedimento utilizzando $q_1(x)$ al posto di f(x) fino a quando il grado del quoziente non è nullo o il quoziente non ammette radici in \mathbb{K} , e si chiami quest'ultimo quoziente $\lambda(x)$. Infatti, poiché i gradi dei quozienti diminuiscono di 1 ad ogni iterazione, è garantito che l'algoritmo termini al più dopo n iterazioni.

In questo modo, numerando le radici, si può scrivere f(x) come:

$$f(x) = \alpha(x - \zeta_1)(x - \zeta_2) \cdots (x - \zeta_k)\lambda(x). \tag{2}$$

Si osserva che $x-\zeta_i$ è irriducibile $\forall 1 \leq i \leq k$. Se f(x) ammettesse un'altra fattorizzazione in cui compaia un fattore $x-\alpha$ con $\alpha \neq \zeta_i$ $\forall 1 \leq i \leq k$, allora f(x) ammetterebbe due fattorizzazioni in irriducibili, dacché $x-\alpha$ non sarebbe un associato di nessuno dei $x-\zeta_i$,

né tantomeno di un irriducibile $\lambda(x)$.

Se infatti $x - \alpha$ fosse un associato di un irriducibile $\lambda(x)$, $x - \alpha$ dividerebbe $\lambda(x)$, e quindi $\lambda(x)$ ammetterebbe α come radice. Se $\lambda(x)$ è una costante, questo è a priori assurdo, \mathcal{L} . Se invece $\lambda(x)$ non è una costante, il fatto che ammetta una radice contraddirebbe il funzionamento dell'algoritmo di fattorizzazione espresso in precedenza, \mathcal{L} . Quindi $x - \alpha$ non è associato di nessun irriducibile di $\lambda(x)$.

Allora il fatto che f(x) ammetta due fattorizzazioni in irriducibili è assurdo, dacché $\mathbb{K}[x]$ è un anello euclideo, e quindi un UFD, f. Quindi le radici sono esattamente $k \leq n$, da cui la tesi.

§6.2 Sottogruppi moltiplicativi finiti di K

Si illustra adesso un teorema che riguarda i sottogruppi moltiplicativi finiti di \mathbb{K} , da cui conseguirà, per esempio, che \mathbb{Z}_p^* è sempre ciclico, per qualsiasi p primo.

Lemma 6.4

Per ogni $n \in \mathbb{N}$ vale la seguente identità:

$$n = \sum_{d|n} \varphi(d).$$

Dimostrazione. Si consideri il gruppo ciclico \mathbb{Z}_n per $n \in \mathbb{N}$. Si osserva che $|\mathbb{Z}_n| = n$.

Si definisca X_d come l'insieme degli elementi di G di ordine d. Dal momento che ogni elemento appartiene a uno e uno solo di questi X_d , per ogni divisore d di n, allora si può partizionare G nel seguente modo:

$$G = \bigcup_{d|n} X_d.$$

Dal momento che \mathbb{Z}_n è ciclico, ogni X_d ha esattamente $\varphi(d)$ elementi, e dunque si deduce che:

$$n = |G| = \sum_{d|n} |X_d| = \sum_{d|n} \varphi(d),$$

ossia la tesi.

Teorema 6.5

Un sottogruppo moltiplicativo finito di un campo K è sempre ciclico.

Dimostrazione. Sia G un sottogruppo finito di un campo \mathbb{K} definito sulla sua operazione di moltiplicazione, e sia |G| = n.

Si definisca X_d come l'insieme degli elementi di G di ordine d. Dal momento che ogni elemento appartiene a uno e uno solo di questi X_d , per ogni divisore d di n, allora si può partizionare G nel seguente modo:

$$G = \bigcup_{d|n} X_d,$$

da cui:

$$n = |G| = \sum_{d|n} |X_d|. \tag{3}$$

Dal Lemma 6.4 e da (3), si ricava infine la seguente equazione:

$$\sum_{d|n} |X_d| = n = \sum_{d|n} \varphi(d). \tag{4}$$

Adesso vi sono due casi: o $|X_n| > 0$ o $|X_n| = 0$.

Nel primo caso si concluderebbe che esiste almeno un elemento in G di ordine n, e quindi che esiste un generatore con cui G è ciclico, ossia la tesi.

Nel secondo caso si dimostra un assurdo. Dal momento che $|X_n| = 0$, esiste sicuramente un divisore proprio d di n tale che $|X_d| > \varphi(d)$. Altrimenti, se $|X_d| \le \varphi(d)$ per ogni divisore d, si ricaverebbe la seguente disuguaglianza:

$$\sum_{\substack{d|n\\d\neq n}} |X_d| \leq \sum_{\substack{d|n\\d\neq n}} \varphi(d) \implies \sum_{\substack{d|n\\d\neq n}} |X_d| \stackrel{|X_n|=0}{=} \sum_{\substack{d|n\\d\neq n}} |X_d| \leq \sum_{\substack{d|n\\d\neq n}} \varphi(d) \stackrel{\varphi(n)\geq 1}{<} \sum_{\substack{d|n\\d\neq n}} \varphi(d).$$

Tuttavia questo è un assurdo, dal momento che per (4) deve valere l'uguaglianza, £.

Sia $g \in X_d$ e si consideri (g), il sottogruppo generato da g. Vale in particolare che |(g)| = d.

Si consideri adesso il polinomio $f(x) = x^d - 1 \in \mathbb{K}[x]$. Tutti e d gli elementi di (g) sono già soluzione di f(x). Tuttavia, poiché $|X_d| > \varphi(d)$, esiste sicuramente un elemento h in X_d che non appartiene a (g). Infatti se tutti gli elementi di X_d appartenessero a (g) vi sarebbero più di $\varphi(d)$ generatori, f.

Infine, poiché $h \in X_d$, anch'esso è soluzione di f(x). Questo è però un assurdo, poiché, per il Teorema 6.3, f(x) ammette al più d radici, mentre così ne avrebbe almeno d+1, ξ .

Quindi
$$|X_d| > 0$$
, e G è ciclico.

§6.3 II quoziente $\mathbb{K}[x]/(f(x))$

Nell'ambito dello studio delle radici di un polinomio, il quoziente $\mathbb{K}[x]/(f(x))$ gioca un ruolo fondamentale. Infatti, come vedremo in seguito, se f(x) è irriducibile, questo diventa un campo, e, soprattutto, ammette sempre una radice per f(x).

In realtà, il quoziente $\mathbb{K}[x]/(f(x))$ si comporta pressocché allo stesso modo dei più familiari $\mathbb{Z}/n\mathbb{Z}$. Infatti le principali regole dell'aritmetica modulare potrebbero essere estese anche a tale quoziente, senza particolari sacrifici.

Si enuncia adesso un teorema importante, che è equivalente – anche nella dimostrazione – all'analogo per i campi $\mathbb{Z}/p\mathbb{Z}$.

Teorema 6.6

 $\mathbb{K}[x]/(f(x))$ è un campo se e solo se f(x) è irriducibile.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia $f(x) \in \mathbb{K}[x]$ irriducibile. Affinché l'anello commutativo $\mathbb{K}[x]/(f(x))$ sia un campo è sufficiente dimostrare che ogni suo elemento non nullo ammette un inverso moltiplicativo.

Sia $\alpha(x)+(f(x))\in \mathbb{K}[x]/(f(x))$ non nullo. Allora $\alpha(x)$ non è divisibile da f(x), e pertanto $\mathrm{MCD}(\alpha(x),f(x))=1^9$.

Allora, per l'*Identità di Bézout*, esistono $\beta(x)$, $\lambda(x) \in \mathbb{K}[x]$ tali che:

$$\alpha(x)\beta(x) + \lambda(x)f(x) = 1.$$

Dacché $\alpha(x)\beta(x) - 1 \in (f(x))$, si deduce che $\alpha(x)\beta(x) + (f(x)) = 1 + (f(x))$, e quindi $\beta(x) + (f(x))$ è l'inverso moltiplicativo di $\alpha(x) + (f(x))$, da cui la dimostrazione dell'implicazione.

(\Leftarrow) Si dimostra l'implicazione contronominalmente. Sia $f(x) \in \mathbb{K}[x]$ riducibile. Allora esistono $\alpha(x)$ e $\beta(x)$ non invertibili tali che $f(x) = \alpha(x)\beta(x)$, da cui si ricava che:

$$[\alpha(x) + (f(x))][\beta(x) + (f(x))] = f(x) + (f(x)) = 0 + (f(x)),$$

ossia l'identità di $\mathbb{K}[x]/(f(x))$.

Tuttavia, se $\mathbb{K}[x]/(f(x))$ fosse un campo, e quindi un dominio, ciò non sarebbe ammissibile, dacché non potrebbero esservi divisori di zero. Quindi $\mathbb{K}[x]/(f(x))$ non è un campo.

Osservazione. Una notazione per indicare un elemento di $\mathbb{K}[x]/(f(x))$ alternativa e più sintetica di a+(f(x)) è \overline{a} , qualora sia noto nel contesto a quale f(x) si fa riferimento.

Proposizione 6.7

Nell'anello $\mathbb{K}[x]/(f(x))$ esiste sempre una radice di f(x), convertendo opportunamente i coefficienti da \mathbb{K} a $\mathbb{K}[x]/(f(x))$.

Dimostrazione. Sia $\overline{x} = x + (f(x)) \in \mathbb{K}[x]/(f(x))$ e si descriva f(x) come:

$$f(x) = a_n x^n + \ldots + a_0.$$

 $^{{}^9}$ Si ricorda che in un PID la nozione di massimo comun divisore (MCD) è più ambigua di quella di \mathbb{Z} . Infatti MCD(a,b) comprende tutti i generatori dell'ideale (a,b), e quindi tutti i suoi associati. Pertanto si dirà MCD(a,b) uno qualsiasi di questi associati, e nel nostro caso 1 è un buon valore, dacché l'MCD deve essere un associato di un'unità.

Allora, computando f(x) in \overline{x} e convertendone i coefficienti, si ricava che:

$$f(\overline{x}) = \overline{a_n} \, \overline{x}^n + \ldots + \overline{a_0} = \overline{a_n} \overline{x}^n + \ldots + \overline{a_0} = \overline{f(x)} = \overline{0}.$$

Quindi \overline{x} è una radice di f(x), da cui la tesi.

§7 Estensioni algebriche di K

§7.1 Morfismi di valutazione, elementi algebrici e trascendenti

Si definisce adesso il concetto di *omomorfismo di valutazione*, che impiegheremo successivamente nello studio dei quozienti $\mathbb{K}[x]/(f(x))$ e dei cosiddetti *elementi algebrici* (o trascendenti).

Definizione 7.1. Sia B un anello commutativo, e sia $A \subseteq B$ un suo sottoanello. Si definisce **omomorfismo di valutazione** di $\alpha \in B$ in A l'omomorfismo:

$$\varphi_{\alpha}: A[x] \to B, f(x) \mapsto f(\alpha).$$

Osservazione. L'omomorfismo di valutazione è effettivamente un omomorfismo di anelli. Innanzitutto $\varphi_{\alpha}(1) = 1$. Inoltre vale la linearità:

$$\varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = f(\alpha) + g(\alpha) = (f+g)(\alpha) = \varphi_{\alpha}((f+g)(x)) =$$

$$= \varphi_{\alpha}(f(x) + g(x)),$$

così come la moltiplicatività:

$$\varphi_{\alpha}(f(x))\varphi_{\alpha}(g(x)) \quad = \quad f(\alpha)g(\alpha) \quad = \quad (fg)(\alpha) \quad = \quad \varphi_{\alpha}((fg)(x)) \quad = \quad \varphi_{\alpha}(f(x)g(x)).$$

Si evidenziano adesso le principali proprietà di tale omomorfismo.

Proposizione 7.2

 $\operatorname{Imm} \varphi_{\alpha} = A[\alpha]$

Dimostrazione. Sicuramente Imm $\varphi_{\alpha} \subseteq A[\alpha]$, dacché ogni immagine di φ_{α} è una valutazione di un polinomio a coefficienti in A in α .

Sia dunque $a = a_n \alpha^n + \ldots + a_0 \in A[\alpha]$. Allora $\varphi_{\alpha}(a_n x^n + \ldots + a_0) = a$. Pertanto $a \in \text{Imm } \varphi_{\alpha}$, da cui $A[\alpha] \in \text{Imm } \varphi_{\alpha}$.

Poiché vale la doppia inclusione, si desume che $\operatorname{Imm} \varphi_{\alpha} = A[\alpha]$.

Prima di applicare il *Primo teorema d'isomorfismo*, si distinguono due importanti casi, sui quali si baseranno le definizioni di *elemento algebrico* e di *elemento trascendente*.

Definizione 7.3. Sia $\alpha \in B$. Se Ker $\varphi_{\alpha} = (0)$, allora si dice che α è un **elemento** trascendente di B su A.

Osservazione. Equivalentemente, se $\alpha \in B$ è trascendente su A, significa che non vi è alcun polinomio non nullo in A[x] che ha α come soluzione.

Esempio 7.4

Per esempio, il numero di Nepero-Eulero e è trascendente su $\mathbb{Q}[x]^a$. Quindi Ker $\varphi_e = (0)$, e dunque, dal *Primo teorema di isomorfismo*, vale che:

$$\mathbb{Q}[x] \cong \mathbb{Q}[x]/(0) \cong \mathbb{Q}[e].$$

Possiamo generalizzare questo esempio nel seguente teorema.

Teorema 7.5

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se $\alpha \in B$ è trascendente su A, allora vale la seguente relazione:

$$A[x] \cong A[\alpha].$$

Dimostrazione. Si consideri l'omomorfismo φ_{α} . Dacché α è trascendente, Ker $\varphi_{\alpha} = (0)$. Allora, combinando il *Primo teorema di isomorfismo* con la *Proposizione 7.2*, si ottiene proprio $A[x] \cong A[x]/(0) \cong A[\alpha]$, ossia la tesi.

Definizione 7.6. Sia $\alpha \in B$. Se Ker $\varphi_{\alpha} \neq (0)$, allora si dice che α è un **elemento algebrico** di B su A, mentre il generatore monico^a non nullo di Ker φ_{α} si dice **polinomio minimo** di α su A. Il grado di tale polinomio minimo è detto **grado di** α .

^aVi potrebbero essere infatti più generatori di Ker φ_{α} , sebbene tutti associati tra loro. L'attributo *monico* garantisce così l'unicità del polinomio minimo.

Osservazione. Equivalentemente, se $\alpha \in B$ è trascendente su A, significa che esiste un polinomio non nullo in A[x] che ha α come soluzione. In particolare, ogni polinomio in A[x] che ha α come soluzione è un multiplo del suo polinomio minimo su A.

Esempio 7.7

Sia $\alpha \in A$. Allora α è banalmente un elemento algebrico su A, il cui polinomio minimo è $x - \alpha$. Vale dunque che Ker $\varphi_{\alpha} = (x - \alpha)$, da cui, secondo il *Primo teorema di isomorfismo*, si ricava che:

$$A[x]/(x-\alpha) \cong A[\alpha] \cong A.$$

^aPer una dimostrazione di questo fatto, si guardi a [H, pp. 234-237]

Esempio 7.8

 $i \in \mathbb{C}$ è un elemento algebrico su \mathbb{R} . Infatti, si consideri φ_i : poiché i è soluzione di $x^2 + 1$, si ha che $x^2 + 1 \in \operatorname{Ker} \varphi_i$, che è quindi non vuoto.

Inoltre, dal momento che $x^2 + 1$ è irriducibile in $\mathbb{R}[x]$, esso è generatore di Ker φ_i . Inoltre, poiché monico, è anche il polinomio minimo di i su \mathbb{R} .

Allora, poiché dalla Proposizione 7.2 Imm $\varphi_i = \mathbb{R}[i]$, si deduce dal Primo teorema di isomorfismo che:

$$\mathbb{R}[x]/(x^2+1) \cong \mathbb{R}[i] \cong \mathbb{C}.$$

Ancora una volta possiamo generalizzare questo esempio con il seguente teorema.

Teorema 7.9

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se $\alpha \in B$ è algebrico su A, allora, detto f(x) il polinomio minimo di α , vale la seguente relazione:

$$A[x]/(f(x)) \cong A[\alpha].$$

Dimostrazione. Si consideri l'omomorfismo φ_{α} . Dacché Ker $\varphi_{\alpha} = (f(x))$ per definizione di polinomio minimo, combinando il *Primo teorema di isomorfismo* con la *Proposizione* 7.2, si ottiene proprio $A[x]/(f(x)) \cong A[\alpha]$, ossia la tesi.

Definizione 7.10. Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Allora, dato $\alpha \in B$, si definisce con la notazione $A(\alpha)$ il sottocampo di B che contiene A e α che sia minimale rispetto all'inclusione.

Osservazione. Le notazioni $\mathbb{K}(\alpha, \beta)$ e $\mathbb{K}(\alpha)(\beta)$ sono equivalenti.

Proposizione 7.11

Sia B un campo e sia $A\subseteq B$ un suo sottoanello. Se $\alpha\in B$ è algebrico su A, allora $A(\alpha)=A[\alpha].$

Dimostrazione. Se α è algebrico, allora Ker $\varphi_{\alpha} = (f(x)) \neq (0)$, dove $f(x) \in A[x]$ è irriducibile. Pertanto, per il Teorema 6.6, A[x]/(f(x)) è un campo.

Dunque dal *Teorema 7.9* si ricava che:

$$A[x]/(f(x)) \cong A[\alpha].$$

Pertanto $A[\alpha]$ è un campo. Dacché $A[\alpha] \subseteq A(\alpha)$ e $A(\alpha)$ è minimale rispetto all'inclusione, si deduce che $A[\alpha] = A(\alpha)$, ossia la tesi.

Osservazione. Il teorema che è stato appena enunciato non vale per gli elementi trascendenti. Infatti, $A[\alpha]$ sarebbe isomorfo a A[x], che non è un campo. Al contrario $A(\alpha)$ è un campo, per definizione.

Proposizione 7.12

Sia B un campo e sia $A \subseteq B$ un suo sottoanello. Se α , $\beta \in B$ sono algebrici su A e condividono lo stesso polinomio minimo, allora $A[\alpha] \cong A[\beta]$.

Dimostrazione. Sia f(x) il polinomio minimo di α e β . Dal Primo teorema di isomorfismo e dalla Proposizione 7.2 si desume che $A[x]/(f(x)) \cong A[\alpha]$. Analogamente si ricava che $A[x]/(f(x)) \cong A[\beta]$. Pertanto $A[\alpha] \cong A[\beta]$.

§7.2 Teorema delle torri ed estensioni algebriche

Definizione 7.13. Siano $A \subseteq B$ campi. Allora si denota come [B:A] la dimensione dello spazio vettoriale B costruito su A, ossia dim B_A . Tale dimensione è detta **grado** dell'estensione.

Teorema 7.14 (*Teorema delle torri algebriche*)

Siano $A \subseteq B \subseteq C$ campi. Allora:

$$[C:A] = [C:B][B:A].$$

Dimostrazione. Siano [C:B]=m e [B:A]=n. Sia $\mathcal{B}_C=(a_1,\ldots,a_m)$ una base di C su B, e sia $\mathcal{B}_B=(b_1,\ldots,b_n)$ una base di B su A.

Si dimostra che la seguente è una base di C su A:

$$\mathcal{B}_A \mathcal{B}_B = \{a_1 b_1, \dots, a_1 b_n, \dots, a_m b_n\}.$$

(i) $\mathcal{B}_C \mathcal{B}_B$ genera A su C.

Sia $c \in C$. Allora si può descrivere a nel seguente modo:

$$c = \sum_{i=1}^{m} \beta_i a_i$$
, con $\beta_i \in B$, $\forall 1 \le i \le m$.

A sua volta, allora, si può descrivere ogni β_i nel seguente modo:

$$\beta_i = \sum_{j=1}^n \gamma_j^{(i)} b_j, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall \ 1 \le j \le n.$$

Combinando le due equazioni, si verifica che $\mathcal{B}_C\mathcal{B}_B$ genera C su A:

$$c = \sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_j^{(i)} b_j a_i, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall 1 \le i \le m, \ 1 \le j \le n.$$

(ii) $\mathcal{B}_C \mathcal{B}_B$ è linearmente indipendente.

Si consideri l'equazione:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_j^{(i)} b_j a_i = 0, \quad \text{con } \gamma_j^{(i)} \in A, \ \forall 1 \le i \le m, \ 1 \le j \le n.$$

Poiché \mathcal{B}_C è linearmente indipendente, si deduce che:

$$\sum_{j=1}^{n} \gamma_j^{(i)} b_j = 0, \ \forall \ 1 \le i \le m.$$

Tuttavia, \mathcal{B}_B è a sua volta linearmente indipendente, e quindi $\gamma_j^{(i)} = 0, \forall i, j$. Dunque $\mathcal{B}_C \mathcal{B}_B$ è linearmente indipendente.

Dal momento che $\mathcal{B}_C\mathcal{B}_B$ è linearmente indipendente e genera C su A, consegue che essa sia una base di C su A. Quindi [C:A]=mn=[C:B][B:A], da cui la tesi.

Definizione 7.15. Siano $A \subseteq B$ campi. Se $[B:A] \neq \infty$, allora si dice che BA è un'estensione finita di A. Altrimenti si dice che B è un'estensione infinita di A.

Proposizione 7.16

Siano $A \subseteq B \subseteq C$ campi. Allora, se C è un'estensione finita di A, anche B lo è. Inoltre C è un'estensione finita di B.

Dimostrazione. Dal momento che B è un sottospazio dello spazio vettoriale C costruito su A, e questo ha dimensione finita, anche B su A ha dimensione finita. Quindi $[B:A] \neq \infty$, e B è dunque un'estensione finita di A.

Infine, dacché una base di C su A è un generatore finito di C su B, si deduce che $[C:B] \neq \infty$, e quindi che C è un'estensione finita di B.

Teorema 7.17

Siano $A \subseteq B$ campi. Allora $a \in B$ è algebrico su A se e solo se $[A(a):A] \neq \infty$, ossia solo se A(a) è un'estensione finita di A.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Se $a \in B$ è algebrico su A, allora dal Teorema 7.9 si ricava che:

$$A[x]/(f(x)) \cong A[a] \cong A(a).$$

Dacché A[x]/(f(x)) ha dimensione finita, anche A(a) ha dimensione finita, e quindi è un'estensione finita di A.

(\Leftarrow) Sia A(a) un'estensione finita di A e sia [A(a):A]=m. Allora $I=(1,a,a^2,\ldots,a^m)$ è linearmente dipendente, dal momento che contiene m+1 elementi. Quindi esiste una sequenza finita non nulla $(\alpha_i)_{i=0\to m}$ con elementi in A tale che:

$$\alpha_m a^m + \ldots + \alpha_2 a^2 + \alpha_1 a + \alpha_0 = 0.$$

Quindi a è soluzione del polinomio:

$$f(x) = \alpha_m x^m + \ldots + \alpha_2 x^2 + \alpha_1 x + \alpha_0 \in A[x],$$

pertanto a è algebrico su A, da cui la tesi.

Definizione 7.18. Siano $A \subseteq B$ campi. Allora si dice che B è un'**estensione algebrica** di A se ogni elemento di B è algebrico su A.

Proposizione 7.19

Siano $A\subseteq B$ campi. Se B è un'estensione finita di A, allora B è una sua estensione algebrica.

Dimostrazione. Sia $\alpha \in B$ e si consideri la catena di campi $A \subseteq A(\alpha) \subseteq B$. Dacché $[B:A] \neq \infty$, per la Proposizione 7.16 anche $[A(\alpha):A] \neq \infty$. Pertanto, dal Teorema 7.17, α è algebrico. Così tutti gli elementi di B sono algebrici in A, e dunque, per definizione, B è un'estensione algebrica di A.

Teorema 7.20

Siano $A \subseteq B$ campi e siano $\beta_1, \beta_2, \ldots, \beta_n$ elementi algebrici di B su A, con $n \ge 1$. Allora $[A(\beta_1, \beta_2, \ldots, \beta_n) : A] \ne \infty$.

Dimostrazione. Si procede applicando il principio di induzione su n.

(passo base) La tesi è verificata per il Teorema 7.17.

(passo induttivo) Per l'ipotesi induttiva, si sa che $[A(\beta_1, \beta_2, \dots, \beta_{n-1}) : A] \neq \infty$.

Poiché β_n è algebrico su A, sin da subito si osserva che $[A(\beta_n):A] \neq \infty$ per il Teorema~7.17. Sia allora f(x) il polinomio minimo di β_n appartenente a A[x]. Esso è un polinomio che ammette β_n come radice anche in $A(\beta_1, \beta_2, \ldots, \beta_{n-1})[x]$, e quindi $\operatorname{Ker} \varphi_{\beta_n} \neq (0)$ ammette un generatore p(x), che divide f(x). Si ottiene pertanto la seguente disuguaglianza:

$$[A(\beta_1, \beta_2, \dots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \dots, \beta_{n-1})] = \deg p(x) \le \deg f(x) = [A(\beta_n) : A].$$

Poiché $[A(\beta_n):A]$ è finito, anche $[A(\beta_1,\beta_2,\ldots,\beta_{n-1})(\beta_n):A(\beta_1,\beta_2,\ldots,\beta_{n-1})]$ lo è.

Combinando i due risultati, si ottiene con il Teorema delle torri algebriche che:

$$[A(\beta_1, \beta_2, \dots, \beta_n) : A] = [A(\beta_1, \beta_2, \dots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \dots, \beta_{n-1})] \cdot [A(\beta_1, \beta_2, \dots, \beta_{n-1}) : A] \neq \infty,$$

da cui la tesi.

Corollario 7.21

Siano $A\subseteq B$ campi e siano $\alpha,\ \beta\in B$ elementi algebrici su A. Allora $A(\alpha,\beta)$ è un'estensione algebrica.

Dimostrazione. Dal Teorema 7.20 si ricava che $[A(\alpha, \beta) : A] \neq \infty$. Quindi $A(\alpha, \beta)$ è un'estensione finita di A, ed in quanto tale, per la Proposizione 7.19, essa è algebrica. \square

Osservazione. Esistono estensioni algebriche che hanno grado infinito. Un esempio notevole è \mathcal{A} , l'insieme dei numeri algebrici di \mathbb{C} su \mathbb{Q} . Infatti, si ponga $[\mathcal{A}:\mathbb{Q}]=n-1\in\mathbb{N}$ e si consideri x^n-2 . Dal momento che per il *Criterio di Eisenstein* tale polinomio è irriducibile, si ricava che $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}]=n$.

Poiché $\sqrt[n]{2}$ è algebrico, si deduce che $\mathbb{Q}(\sqrt[n]{2}) \subseteq \mathcal{A}$, dal momento che per il *Corollario 7.21* ogni elemento di $\mathbb{Q}(\sqrt[n]{2})$ è algebrico su \mathbb{Q} . Tuttavia questo è un assurdo dal momento che $\mathbb{Q}(\sqrt[n]{2})$ ha dimensione maggiore di \mathcal{A} , di cui è sottospazio vettoriale.

Proposizione 7.22

Siano $A \subseteq B$ campi e sia $\alpha \in B$. Se $[A(\alpha) : A]$ è dispari, allora $A(\alpha^2) = A(\alpha)$.

Dimostrazione. Innanzitutto, si osserva che $A(\alpha^2) \subseteq A(\alpha)$, ossia che $A(\alpha)$ è un'estensione di $A(\alpha^2)$. Grazie a questa osservazione è possibile considerare il grado di $A(\alpha)$ su $A(\alpha^2)$, ossia $[A(\alpha):A(\alpha^2)]$. Poiché α è radice del polinomio $x^2 - \alpha^2$ in $A(\alpha^2)$, si deduce che tale grado è al più 2.

Si applichi il *Teorema delle torri algebriche* alla catena di estensioni $A \subseteq A(\alpha^2) \subseteq A(\alpha)$:

$$[A(\alpha):A] = \underbrace{[A(\alpha):A(\alpha^2)]}_{\leq 2} [A(\alpha^2):A].$$

Se $[A(\alpha):A(\alpha^2)]$ fosse 2, $[A(\alpha):A]$ sarebbe pari, f. Pertanto $[A(\alpha):A(\alpha^2)]=1$, da cui si ricava che $[A(\alpha):A]=[A(\alpha^2):A]$, ossia che $A(\alpha^2)$ ha la stessa dimensione di $A(\alpha)$ su A.

Dal momento che $A(\alpha^2)$ è un sottospazio vettoriale di $A(\alpha)$, avere la sua stessa dimensione equivale a coincidere con lo spazio stesso. Si conclude allora che $A(\alpha^2) = A(\alpha)$.

Osservazione. Si osserva che la *Proposizione 7.22* si può generalizzare facilmente ad un esponente n qualsiasi, finché sia data come ipotesi la non divisibilità di $[A(\alpha):A]$ per nessun numero primo minore o uguale di n.

Si può infatti considerare, per la dimostrazione generale, il polinomio $x^n - \alpha^n$, la cui esistenza implica che $[A(\alpha) : A(\alpha^n)]$ sia minore o uguale di n.

Teorema 7.23

Siano $A \subseteq B \subseteq C$ campi. Se B è un'estensione algebrica di A e C è un'estensione algebrica di B, allora C è un'estensione algebrica di A.

Dimostrazione. Per mostrare che C è un'estensione algebrica di A, verificheremo che ogni suo elemento è algebrico in A. Sia dunque $c \in C$.

Poiché per ipotesi c è algebrico su B, esiste un polinomio $f(x) \in B[x]$ tale che c ne sia radice. Sia f(x) il polinomio minimo di c su B, descritto come:

$$f(x) = b_0 + b_1 x + \ldots + b_n x^n, \quad n = [B(c) : B].$$

Dacché B è un'estensione algebrica di A, ogni coefficiente b_i di f(x) è algebrico su A, ossia $[A(b_i):A] \neq \infty$. Allora, per il Teorema 7.20, $[A(b_0,\ldots,b_n):A] \neq \infty$.

Anche $[A(c, b_0, \ldots, b_n) : A(b_0, \ldots, b_n)] \neq \infty$, dal momento che c è soluzione di $f(x) \in A(b_0, \ldots, b_n)[x]$.

Allora, per il Teorema delle torri algebriche, $[A(c,b_0,\ldots,b_n):A]=[A(c,b_0,\ldots,b_n):A(b_0,\ldots,b_n):A]\neq\infty$. Quindi $A(c,b_0,\ldots,b_n)$ è un'estensione finita di A.

Poiché $A \subseteq A(c) \subseteq A(c, b_0, \ldots, b_n)$ è una catena di estensione di campi, per la *Proposizione* 7.16, A(c) è un'estensione finita di A, ed in quanto tale, per la *Proposizione* 7.19, è anche algebrica. Quindi c è algebrico su A, da cui la tesi.

§8 Campi di spezzamento

Teorema 8.1

Sia A un campo, e sia $f(x) \in A[x]$. Allora esiste sempre un estensione di A in cui siano contenute tutte le radici di f(x).

Dimostrazione. Si dimostra il teorema applicando il principio di induzione sul grado di f(X).

 $(passo\ base)$ Sia $\deg f(x) = 0$. Allora A stesso è un campo in cui sono contenute tutte le radici, dacché esse non esistono.

(passo induttivo) Sia deg f(x) = n. Sia $f_1(x)$ un irriducibile di f(x) e sia $\gamma(x) \in A[x]$ tale che $f(x) = f_1(x)\gamma(x)$. Allora, per il Teorema 6.6 $A[x]/(f_1(x))$ è un campo, in cui, per la Proposizione 6.7, $f_1(x)$ ammette radice.

Poiché $\deg \gamma(x) < n$, per il passo induttivo esiste un campo C che estende $A[x]/(f_1(x))$ in cui risiedono tutte le sue radici. Dacché C contiene $A[x]/(f_1(x))$, sia le radici di $f_1(x)$ che di $\gamma(x)$ risiedono in C. Tuttavia queste sono tutte le radici di f(x), si conclude che C, che è un'estensione di $A[x]/(f_1(x))$, e quindi anche di A, è il campo ricercato. \Box

Pertanto ora è possibile enunciare la definizione di campo di spezzamento.

Definizione 8.2. Si definisce **campo di spezzamento** di un polinomio $f(x) \in A[x]$ un campo C con le seguenti caratteristiche:

- f(x) si fattorizza in C[x] come prodotto di irriducibili di primo grado (i.e. in C[x] risiedono tutte le radici di f(x)),
- Se B è un campo tale che $A \subseteq B \subsetneq C$, allora f(x) non si fattorizza in B[x] come prodotto di irriducibili di primo grado.

Osservazione. Per il *Teorema 8.1* esiste sempre un campo di spezzamento di un polinomio, dunque la definizione data è una buona definizione.

Osservazione. In generale i campi di spezzamento non sono uguali, sebbene siano tutti isomorfi tra loro a .

 $^a\mathrm{Per}$ la dimostrazione di questo risultato si rimanda a TODO

§9 Teorema fondamentale dell'Algebra e radici reali in $\mathbb{Q}[x]$

Si enuncia adesso il *Teorema fondamentale dell'Algebra*, senza tuttavia fornirne una dimostrazione¹⁰.

Teorema 9.1 (Teorema fondamentale dell'Algebra)

Un polinomio non costante $f(x) \in \mathbb{C}[x]$ ammette sempre almeno una radice in \mathbb{C} .

Corollario 9.2

Sia $f(x) \in \mathbb{C}[x]$ di grado $n \geq 1$. Allora f(x) ammette esattamente n radici, contate con la giusta molteplicità.

Dimostrazione. Sia ζ_1 una radice complessa di f(x), la cui esistenza è garantita dal Teorema fondamentale dell'Algebra. Si divida f(x) per $(x-\zeta_1)$ e se ne prende il quoziente $q_1(x)$, mentre si ignori il resto, che per la Proposizione 6.2, è nullo.

Si reiteri il procedimento utilizzando $q_1(x)$ al posto di f(x) fino a quando il grado del quoziente non è nullo, e si chiami infine questo quoziente di grado nullo α . Infatti, poiché i gradi dei quozienti diminuiscono di 1 ad ogni iterazione, è garantito che l'algoritmo termini esattamente dopo n iterazioni. Pertanto, f(x) a priori ha almeno n radici.

In questo modo, numerando le radici, si può scrivere f(x) come:

$$f(x) = \alpha(x - \zeta_1)(x - \zeta_2) \cdots (x - \zeta_n). \tag{5}$$

Dal momento che $x - \zeta_i$ è irriducibile $\forall 1 \leq i \leq n$ e dacché $\mathbb{K}[x]$, in quanto anello euclideo, è un UFD, si dimostra che (5) è l'unica fattorizzazione di f(x), a meno di associati. Pertanto f(x) ammette esattamente n radici.

¹⁰Per la dimostrazione si rimanda a [DM, pp. 142-143], avvisando della sua estrema tecnicità. Una dimostrazione a tema strettamente algebrico è dovuta invece al matematico francese Laplace (1749 – 1827), per la quale si rimanda a [2, pp. 120-122].

§10 Teoremi rilevanti sui campi finiti

§10.1 Campo di spezzamento di un irriducibile in \mathbb{F}_p

Teorema 10.1

Sia f(x) un polinomio irriducibile in \mathbb{F}_p e sia n il suo grado. Allora \mathbb{F}_{p^n} è il suo campo di spezzamento.

Dimostrazione. Dacché f(x) è irriducibile, $\mathbb{F}_p/((f(x))$ è un campo con p^n elementi, ed è quindi isomorfo a \mathbb{F}_{p^n} .

Sia $\alpha = x + (f(x))$ una radice di f(x) in \mathbb{F}_{p^n} . Dal momento che f(x) è irriducibile in \mathbb{F}_p , esso è il polinomio minimo di α . Tuttavia, poiché $\alpha \in \mathbb{F}_{p^n}$, α è anche radice di $x^{p^n} - x$. Pertanto si deduce che f(x) divide $x^{p^n} - x$.

Dunque, poiché $x^{p^n} - x$ in \mathbb{F}_{p^n} è prodotto di fattori lineari, tutte le radici di f(x) sono già in \mathbb{F}_{p^n} .

Inoltre, \mathbb{F}_{p^n} è il più piccolo sottocampo contenente α , dacché $\mathbb{F}_{p^n} \cong \mathbb{F}_p/(f(x)) \cong \mathbb{F}_p(\alpha)$. Quindi si deduce che \mathbb{F}_{p^n} è un campo di spezzamento per f(x), ossia la tesi. \square

Lemma 10.2

Sia f(x) un irriducibile di grado n su $\mathbb{F}_p[x]$ e sia α una sua radice in \mathbb{F}_{p^n} . Allora $f(\mathcal{F}^k(\alpha)) = 0, \forall k \geq 0$.

 ${}^a\mathcal{F}$ è l'omomorfismo di Frobenius, definito come $\mathcal{F}: \mathbb{F}_p \to \mathbb{F}_p, \, a \mapsto a^p.$

Dimostrazione. Sia $f(x) = a_n x^n + \ldots + a_0$ a coefficienti in \mathbb{F}_p . Si dimostra la tesi applicando il principio di induzione su k.

(passo base)
$$f(\mathcal{F}^0(\alpha)) = f(\alpha) = 0.$$

(passo induttivo) Per l'ipotesi induttiva, $f(\mathcal{F}^{k-1}(\alpha)) = 0$. Allora, si verifica algebricamente che:

$$f(\mathcal{F}^k(\alpha)) = a_n(\mathcal{F}^k(\alpha))^n + \ldots + a_0 = \mathcal{F}(a_n)\mathcal{F}((\mathcal{F}^{k-1}(\alpha))^n) + \ldots + \mathcal{F}(a_0) =$$
$$\mathcal{F}(f(\mathcal{F}^{k-1}(\alpha))) = \mathcal{F}(0) = 0,$$

dove si è usato che $\mathcal{F}(a_i) = a_i, \forall 0 \leq i \leq n$, dacché ogni elemento di \mathbb{F}_p è radice di $x^p - x$.

Teorema 10.3

Sia f(x) un irriducibile di grado n su $\mathbb{F}_p[x]$ e sia α una sua radice in \mathbb{F}_{p^n} . Allora vale la seguente fattorizzazione in \mathbb{F}_{p^n} :

$$f(x) = \prod_{i=0}^{n-1} \left(x - \alpha^{p^i} \right) = \prod_{i=0}^{n-1} \left(x - \mathcal{F}^i(\alpha) \right),$$

dove ogni fattore non è associato.

Dimostrazione. Si verifica innanzitutto che vale chiaramente che $\alpha^{p^i} = \mathcal{F}^i(\alpha)$. Dal momento che α è radice, allora ogni α^{p^i} lo è, per il Lemma 10.2.

Affinché tutti i fattori della moltiplicazione non siano associati è sufficiente dimostrare che n è il più piccolo esponente j per cui $\mathcal{F}^{j}(\alpha) = \alpha$. Infatti, siano $\mathcal{F}^{i}(\alpha) = \mathcal{F}^{j}(\alpha)$ con $0 \leq j < i < n$, allora, applicando più volte \mathcal{F} , si ricava che:

$$\mathcal{F}^n(\alpha) = \mathcal{F}^{j+n-i}(\alpha) \implies \mathcal{F}^{j+n-i}(\alpha) = \alpha,$$

che è assurdo, dacché $j < i < n \implies j + n - i < n, \pounds$.

Innanzitutto, si verifica che $\mathcal{F}^n(\alpha) = \alpha^{p^n} = \alpha$, dacché $\alpha \in \mathbb{F}_{p^n}$. Infine, sia t il più piccolo esponente j per cui $\mathcal{F}^j(\alpha) = \alpha$. Se j fosse minore di n, α sarebbe radice di $x^{p^t} - x$. Tuttavia questo è assurdo, dal momento che così α apparterrebbe a $\mathbb{F}_{p^t} \neq \mathbb{F}_{p^n}$, quando invece il più piccolo campo che lo contiene è $\mathbb{F}_p(\alpha) \cong \mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^n}$, f.

§10.2 L'inclusione $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ e il polinomio $x^{p^n} - x$

Lemma 10.4

Sia α una radice di $x^{p^d} - x$ con $d \mid n$. Allora α è anche una radice di $x^{p^n} - x$.

Dimostrazione. Sia $s \in \mathbb{N}$ tale che n = ds. Si verifica la tesi applicando il principio di induzione su $k \in \mathbb{N}$.

 $(passo\ base)$ Per ipotesi, $\alpha^{p^d} = \alpha$.

 $(passo\ induttivo)$ Per ipotesi induttiva, $\alpha^{p^{(k-1)d}} = \alpha$. Allora si ricava che:

$$\alpha^{p^{(k-1)d}} = \alpha \implies \alpha^{p^{kd}} = \alpha^{p^d} = \alpha.$$

In particolare, $\alpha^{p^n}=\alpha^{p^{ds}}=\alpha$, da cui la tesi.

Teorema 10.5

 $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ se e solo se $m \mid n$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Dal momento che $\mathbb{F}_{p^m}\subseteq\mathbb{F}_{p^n}$, si ricava la seguente catena di estensioni:

$$\mathbb{F}_p \subseteq \mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n},$$

dalla quale, applicando il Teorema delle Torri Algebriche, si desume la seguente equazione:

$$\underbrace{\left[\mathbb{F}_{p^n}:\mathbb{F}_p\right]}_{n}=\left[\mathbb{F}_{p^n}:\mathbb{F}_{p^m}\right]\underbrace{\left[\mathbb{F}_{p^m}:\mathbb{F}_p\right]}_{d},$$

e quindi che m divide n.

(\Leftarrow) Sia $m \mid n$. Si consideri $\alpha \in \mathbb{F}_{p^m}$. α è sicuramente radice di $x^{p^m} - x$, e poiché m divide n, è anche radice di $x^{p^n} - x$, per il Lemma 10.4. Allora α appartiene al campo di spezzamento di $x^{p^n} - x$ su \mathbb{F}_p , ossia \mathbb{F}_{p^n} . Pertanto $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$.

Corollario 10.6

 $\forall 1 \leq i \leq n$. Allora, detta m_i il grado di $g_i(x)$, il campo di spezzamento di f(x) è \mathbb{F}_{p^k} , dove $k = \text{mcm}(m_1, m_2, \dots, m_n)$.

Dimostrazione. Il campo di spezzamento di f(x) è il più piccolo campo rispetto all'inclusione che ne contenga tutte le radici, ossia il più piccolo campo che contenga $\mathbb{F}_{p^{m_1}}$, $\mathbb{F}_{p^{m_2}}$, ..., $\mathbb{F}_{p^{m_n}}$. Si dimostra che tale campo è proprio \mathbb{F}_{p^k} .

Innanzitutto \mathbb{F}_{p^k} , per il *Teorema 10.5*, contiene tutti i campi di spezzamento dei fattori irriducibili di f(x), dacché m_i divide $k \ \forall 1 \le i \le n$.

Sia supponga esista adesso un altro campo $\mathbb{F}_{p^t} \subseteq \mathbb{F}_{p^k}$ con tutte le radici. Sicuramente $t \mid k$, per il *Teorema 10.5*. Inoltre, dal momento che dovrebbe includere ogni campo $\mathbb{F}_{p^{m_i}}$, sempre per il *Teorema 10.5*, m_i divide $t \forall 1 \leq i \leq n$.

Allora t è un multiplo comune di tutti i m_i , e quindi k, in quanto minimo comune multiplo, lo divide. Si conclude allora che t = k, e quindi che \mathbb{F}_{p^k} è un campo di spezzamento di f(x).

Teorema 10.7

 $x^{p^n}-x$ è il prodotto di tutti i polinomi irriducibili in \mathbb{F}_p di grado divisore di n.

Dimostrazione. La proposizione è equivalente a affermare che ogni polinomio irriducibile in \mathbb{F}_p ha grado divisore di n se e solo se divide $x^{p^n} - x$. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia f(x) un polinomio irriducibile in \mathbb{F}_p di grado d, con $d \mid n$. Si consideri allora il campo $\mathbb{F}_{p^d} \cong \mathbb{F}_p/(f(x))$, e sia α una radice di f(x) in tale campo.

Per il Lemma 10.4 si verifica che α è anche una radice di $x^{p^n} - x$. Poiché f(x) è irriducibile, esso è il polinomio minimo di α , e quindi si deduce che f(x) divide $x^{p^n} - x$.

(\iff) Sia f(x) un polinomio irriducibile in \mathbb{F}_p di grado d che divide $x^{p^n}-x$. Si consideri allora il campo $\mathbb{F}_{p^d}\cong \mathbb{F}_p/(f(x))$, e sia α una radice di f(x) in tale campo. Allora $\mathbb{F}_{p^d}\cong \mathbb{F}_p(\alpha)$, dacché f(x), in quanto irriducibile, è il polinomio minimo di α .

Dacché f(x) divide $x^{p^n} - x$, α è anche una radice di $x^{p^n} - x$, e quindi che $\alpha \in \mathbb{F}_{p^n}$. Dal momento che chiaramente anche $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$, si deduce che $\mathbb{F}_{p^d} \cong \mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}$. Allora, per il Teorema~10.5,~d divide n.

§11 Riferimenti bibliografici

- [DM] P. Di Martino e R. Dvornicich. *Algebra*. Didattica e Ricerca. Manuali. Pisa University Press, 2013. ISBN: 9788867410958.
 - [H] I.N. Herstein. Algebra. Editori Riuniti University Press, 2010. ISBN: 9788864732107.
 - [1] M. A. Jodeit. «Uniqueness in the Division Algorithm». In: *The American Mathematical Monthly* 74.7 (1967), pp. 835–836. ISSN: 00029890, 19300972. URL: http://www.jstor.org/stable/2315810.
 - [2] R. Remmert. «The Fundamental Theorem of Algebra». In: Numbers. New York, NY: Springer New York, 1991, pp. 97–122. ISBN: 978-1-4612-1005-4. DOI: 10. 1007/978-1-4612-1005-4_5. URL: https://doi.org/10.1007/978-1-4612-1005-4_5.