

#### **AULA 1 - ALCÓOIS**

Por definição os álcoois são compostos orgânicos amplamente encontrados na natureza e se caracterizam pela presença de um ou mais grupos OH (hidroxilas ou oxidrilas) ligados sempre a carbonos saturados, ou seja, para ser considerado um álcool as hidroxilas têm de estar ligadas a átomos de carbonos que fazem somente simples ligações.

R-**OH** Estrutura geral de um álcool

#### Exemplos de Alguns Álcoois

H₃С-СН₂-ОН Álcool Alifático

Diálcool ou Diol Alifático

Álcool Cíclico

Álcool Aromático

#### <u>Atenção</u>

Nem todo composto orgânico que apresenta grupos hidroxilas (OH) podem ser considerados álcoois. Observe os seguintes exemplos abaixo:

H<sub>2</sub>C=CH

Não é álcool! É chamado enol, uma vez que a hidroxíla está conectada a carbono insaturado

Também não é álcool! É uma **fenol**, pois o OH está ligado ao anel benzênico

### Nomenclatura dos Álcoois

Segundo a IUPAC a nomenclatura dos álcoois é dada pela termina ol, tirada da própria palavra álcool. A cadeia carbônica deve ser a mais longa que contenha o carbono onde o OH está conectado. A numeração da cadeia é sempre feita o mais próximo da extremidade onde está a hidroxila.

H<sub>2</sub>C-OH

ĊНа

Metanol (Álcool Metílico)

Etanol (Álcool Etílico)

2-metil-propan-1-ol

Ciclopentanol

4-metil-pentan-2-ol

### Classificação dos Álcoois

Podem ser classificados:

Quanto ao número de Hidroxílas

- De acordo com a posição da hidroxila
  - Álcool primário: hidroxila ligada a carbono primário
  - Álcool secundário: hidroxila ligada a carbono secundário
  - Álcool terciário: hidroxila ligada a carbono terciário

#### **AULA 2 - ALDEÍDOS**

Classe de compostos orgânicos que possuem o grupo funcional representado abaixo:

Grupo aldoxila, metanoila ou formila

### Nomenclatura do Aldeídos

Segundo a IUPAC a nomenclatura dos aldeídos segue a terminação al. A cadeia principal é a mais longa que inclui o grupo -CHO, sendo a numeração feita partindo-se desse grupo.

O metanal possui cheiro característico e irritante além de ser bastante solúvel em água. Soluções aquosas deste composto são vendidas na concentração de 40% aproximadamente com o nome de "formol" ou "formalina". É utilizado como desinfetante, na conservação de peças anatômicas e cadáveres, na fabricação da baquelite (um plástico, polímero sintético) entre outros.

1

Por outro lado o etanal é responsável pela "ressaca" decorrente da ingestão em excesso de bebidas alcoólicas e também pela emissão dos automóveis movidos a etanol. É utilizado para a produção de ácido acético — componente da solução aquosa conhecida como vinagre.



#### Nomenclatura do Ácidos Carboxílicos

Sendo as regas da IUPAC os ácidos carboxílicos seguem a terminação OICO. A cadeia principal é a mais longa e inclui o carbono da carboxíla.

O ácido fórmico é encontrado em certas formigas vermelhas e é responsável pela sensação de ardência quando sofremos picadas.

O ácido acético é um líquido incolor de cheiro penetrante e sabor azedo. É ele o responsável pelo sabor do vinagre (acetum = vinagre). É produzido pela oxidação do etanol (álcool etílico) na presença do oxigênio do ar com auxílio de catalisadores químicos ou microorganismos como a Mycoderma aceti.

#### **AULA 3 - CETONAS**

As cetonas são reconhecidas pelo grupo funcional indicado abaixo:

#### Nomenclatura das Cetonas

As cetonas são denominas pela terminação ONA.

propan-2-ona

A propanona é conhecida como acetona comum. É um líquido incolor, muito volátil e inflamável, de odor agradável, solúvel em água e outros solventes orgânicos.

É utilizada como solvente de esmaltes, tintas e vernizes, na extração de óleos de sementes vegetais (oleaginosas) entre outros

A acetona é também formada em nosso organismo devido à decomposição incompleta de gorduras. Pode ser detectada em casos de infarto do miocárdio.

### **AULA 5 – DERIVADOS DE ÁCIDOS CARBOXÍLICOS**

Os ácidos carboxílicos podem derivar uma série de outros compostos importantes no estudo da química orgânica.

## Sais de ácidos carboxílicos

São compostos formados a partir da reação de neutralização entre um ácido carboxílico e uma base.

$$\begin{array}{c} R - C \bigcirc \bigcirc \\ \text{Metal} \bigoplus \\ \text{(ou NH4')} \end{array} \qquad \begin{array}{c} H_3C - C \bigcirc \\ \text{OH} \end{array} \qquad + \quad \text{NaOH} \qquad \begin{array}{c} \\ \\ \\ \\ \text{Acetato de Sódio} \end{array} \qquad + \quad H_2O$$

Os sabões são exemplos clássicos de sais de ácidos carboxílicos. São formados a partir da reação de um ácido

#### **AULA 4 – ÁCIDOS CARBOXÍLICOS**

Os ácidos carboxílicos (carboxilácidos) são compostos orgânicos reconhecidos pela presença da carboxíla como representado abaixo:

graxo (ácido carboxílico de cadeia longo) e uma base inorgânica forte, geralmente o NaOH ou o KOH.

#### <u>Anidridos</u>

Os anidridos são formados pela eliminação de uma molécula de água quando dois ácidos carboxílicos reagem entre si sob determinadas condições.

Ácido acético

$$H_3C-C$$
 $OH$ 
 $H_3C-C$ 
 $OH$ 
 $H_3C-C$ 
 $OH$ 
 $H_3C-C$ 
 $OH$ 
 $OH$ 

Considera-se um anidrido simétrico quando este é derivado de ácidos carboxílicos iguais entre si; anidridos mistos são aqueles formados pela junção de ácidos carboxílicos diferentes.

Anidridos cíclicos podem ser formados pela desidratação de diácidos carboxílicos.

#### Haletos de Ácido ou Haletos de Acila

Genericamente podemos considerar que um haleto de acila é formado pela substituição do grupo OH da carboxíla de um ácido por um halogênio, ou seja, um elemento da família 7A ou grupo 17.

## **AULA 6 – ÉTER**

A nomenclatura dos éteres pode ser feita de duas maneiras conforme o quadro abaixo:



#### Nomenclatura oficial IUPAC



#### Nomenclatura Usual





O éter comum foi utilizado como anestésico inalável no século XIX. Atualmente é usado como solvente apolar e também para extração de óleos, gorduras, essências e perfumes, de fontes animais ou vegetais.

#### **AULA 7 – ÉSTER**

São reconhecidos pela seguinte estrutura:

## Nomenclatura dos Ésteres

A nomenclatura dos ésteres é feita da seguinte forma:

Conta-se a quantidade de átomos de carbono até a C=O utilizando-se a terminação ato e o outro lado da cadeia carbônica utilizando-se a terminação ila.

| <br>ata a | 40 | ila |
|-----------|----|-----|



Os ésteres cíclicos são chamados de lactonas

Ésteres são muito utilizados como flavorizantes, ou seja, atribuem cheiro e sabor. São encontrados em balas, doces e sorvetes com sabores artificiais. Ésteres de cadeias maiores são encontrados em óleos e gorduras de origem animal ou vegetal, além de serem muitos importantes na produção de plásticos chamados de **poliésteres**.