第三幕 曲率

Wayne Zheng

2025年10月17日

目录

 1 平面曲线的曲率
 i

 2 三维空间的曲线
 ii

 3 曲面的主曲率
 ii

 4 测地线和测地曲率
 iii

1 平面曲线的曲率

不存在一维的内蕴曲率概念。几何与物理的联系:如果一个单位质量的滚珠在一段无摩擦的曲线上以单位速率运动,金属丝就会有一个垂直于切向的作用力作用在滚珠上,牛顿知道,这个力F的大小就是曲线的曲率 κ .

曲率最早由牛顿引入,描述曲线的"弯曲性"。更确切地说,曲率是切线关于弧长的转向率。如果 φ 是切线的变化角,则 $\kappa = d\varphi/ds$. 设 \mathbf{T} 和 \mathbf{N} 是曲线的单位切向量和指向曲率中心的单位法向量,则我们容易得到 $\delta \mathbf{T} \times \mathbf{N} \delta \varphi$,从而

$$\frac{d\mathbf{T}}{ds} \equiv \mathbf{T}' = \kappa \mathbf{N}.\tag{1}$$

也可以用法向量取代切向量,考虑法向量的转向率

$$\frac{d\mathbf{N}}{ds} \equiv \mathbf{N}' = -\kappa \mathbf{T}.\tag{2}$$

因为如果将考虑对象从曲线变成曲面,就不存在唯一的切向量了。换句话说,在平面内,切向量和法向量的转向速率都是曲率 κ ,其变化率的方向是相反的,平行于另一个向量。

一般地,牛顿发现质点在二维平面的运动曲线 [x(t),y(t)] 的曲率公式

$$\kappa = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\left(\dot{x} + \dot{y}^2\right)^{3/2}}.$$
(3)

上方的点是关于时间的导数。对于单位速率运动的质点, $|\mathbf{v}|^2 = \dot{x}^2 + \dot{y}^2 = 1$. 如果质点在 δt 时刻内走过了 $\delta \varphi$,此时 $\delta t = \delta s$. 则 \dot{y} 方向的增量为 $\delta \dot{y} \approx \ddot{y} \delta t = \ddot{y} \delta s$. 根据相似三角形,

$$\frac{\delta\varphi}{\ddot{y}\delta s} \asymp \frac{1}{\dot{x}}.$$

即

$$\kappa \equiv \frac{d\varphi}{ds} = \frac{\ddot{y}}{\dot{x}}.\tag{4}$$

利用三角形另一边的相似性质,容易得此时曲率的另一个表达式 $\kappa = -\ddot{x}/\dot{y}$.

2 三维空间的曲线

密切平面:在三维空间中扭曲的曲线,每个无限小的部分仍可以认为是在一个平面内的,这个平面称为密切平面(osculating plane)。密切平面可以看作是曲线在瞬时最贴合的平面。密切平面由两个(单位)向量切向量 \mathbf{T} 和主法向量 \mathbf{N} 张成。考虑沿着该曲线的质点运动,切向量 \mathbf{T} 描述的是曲线的瞬时速度方向,主法向量 \mathbf{N} 描述的是曲线的瞬时加速度方向,指向曲率中心。密切平面的法向量称为副法向量 \mathbf{B} . $(\mathbf{T},\mathbf{N},\mathbf{B})$ 组成了弗勒内(Frenet)框架。

设曲线是关于弧长 s 的函数,即 $\mathbf{r} = \mathbf{r}(s)$.则切向量定义为

$$\mathbf{T} = \frac{d\mathbf{r}}{ds}$$
.

密切平面的旋转速率称为挠率(torsion) τ ,也就是副法线绕 \mathbf{T} 的旋转速率,即

$$\mathbf{B}' = -\tau \mathbf{N}.\tag{5}$$

在三维空间中,主法线向量 \mathbf{N} 不仅在密切平面内旋转,还要沿着 \mathbf{B} 方向,绕着切向量 \mathbf{T} 旋转,因此综合起来,主法线的变化率为

$$\mathbf{N}' = -\kappa \mathbf{T} + \tau \mathbf{B}.\tag{6}$$

因此,三维空间中曲线的弗勒内-塞雷方程(Frenet-Serret formulas)总结如下:

$$\begin{pmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}. \tag{7}$$

3 曲面的主曲率

选取 p 点作为原点,法线方向为 z 轴,切平面为 x-y 平面,建立直角坐标系。可以用 z=f(x,y) 来表示曲面,在原点处 f(0,0)=0, $\partial_x f=\partial_y f=0$. 当 $x,y\to 0$ 时,我们可以展 开 $z\asymp ax^2+by^2+cxy+dx+ey$. 因为在原点 $\partial_x f=\partial_y f=0$,所以 $\partial_x f=2ax+cy+d\to 0$. 因此 d=e=0. 我们可以用非常靠近且平行于切面面的一个平面 z=k 来切开曲面,得到的截面曲线在原点附近可以表示为

$$z \approx ax^2 + by^2 + cxy \tag{8}$$

是一个二次齐次曲线。圆锥曲线都有两个相互垂直的对称轴,如果我们选取这两个轴作为x 轴和 y 轴,则可以消去交叉项,因为在反射变换下 $x \to -x, y \to y, f(x,y)$ 保持不变。因此,我们可以将截面曲线表示为

$$z \approx ax^2 + by^2. \tag{9}$$

根据二维空间中的曲线,我们知道分别沿着 x 轴和 y 轴的曲线可以表示为 $z \approx \frac{1}{2}\kappa_1 x^2$ 和 $z \approx \frac{1}{2}\kappa_2 y^2$,其中我们定义了 $\kappa_1 = \kappa(0), \kappa_2 = \kappa(\pi/2)$. 因此,

$$z \approx \frac{1}{2}\kappa_1 x^2 + \frac{1}{2}\kappa_2 y^2. \tag{10}$$

如果考虑任意角度的截面曲线,设该截面与 x 轴的夹角为 θ ,如果在切平面内沿着 θ 方向移动一小段距离 ϵ ,则 $x=\epsilon\cos\theta,y=\epsilon\sin\theta$,则

$$\kappa(\theta) \approx 2\left(\frac{z}{\epsilon^2}\right) \approx 2\left[\frac{\frac{1}{2}\kappa_1(\epsilon\cos\theta)^2 + \frac{1}{2}\kappa_2(\epsilon\sin\theta)^2}{\epsilon^2}\right] = \kappa_1\cos^2\theta + \kappa_2\sin^2\theta. \tag{11}$$

这就是欧拉曲率公式。

4 测地线和测地曲率

三维空间中,一般曲面内的一般曲线的曲率可以分为两个分量:在曲面内(对其中的居民可见)的称为测地曲率(geodesic curvature) κ_g ,在曲面外(对其中的居民不可见)的称为法曲率(normal curvature) κ_n . 如果密切平面垂直于曲面(的法向量),那么所有曲率都是法曲率 $\kappa = \kappa_n$, $\kappa_g = 0$. 地球表面的大圆就是这样。

如果质点以单位速率走过一条曲线,其加速度向量的方向指向曲率中心,长度就是曲率,因此可以将质点的加速度称为曲率向量(curvature vector) $\overrightarrow{\kappa} = \kappa \mathbf{N} \equiv \dot{\mathbf{T}}$.

设 \mathbf{T} 是曲线 \mathcal{C} 在点 p 处的单位切向量, \mathbf{n} 是法向量。 T_p 是曲面在点 p 处的切平面, \mathbf{n} 与 \mathbf{T} 张成法平面 Π_T . Π_T 与密切平面(副法向量 \mathbf{B})的夹角为 γ ,则测地曲率向量 $\overrightarrow{\kappa}_g$ 和 法曲率向量 $\overrightarrow{\kappa}_n$ 实际上就是 $\overrightarrow{\kappa}$ 在 T_p 和 Π_T 上的投影分量,即

$$\kappa_g = \kappa \cos \gamma, \quad \kappa_n = \kappa \sin \gamma.$$
(12)

默尼耶(Jean Baptiste Meusnier, 法国数学家、物理学家和工程师)在 1776 年就注意到: 曲面迫使其上面的所有曲线沿着法方向弯曲同等的量,从而给出默尼耶定理:

曲面上经过点 p、指向同一方向 T 的所有曲线都具有相同的法曲率 $\kappa_n(T)$,即曲面在 T 方向的法截线曲率。如果曲线在 p 点密切平面与曲面在 p 点的切平面成夹角 γ ,曲线在 p 点的曲率为 κ_{γ} ,则 κ_{γ} sin $\gamma = \kappa_n(T)$.

测地线是内蕴的"直线",其上每一点 $\kappa_g=0$. 也就是说:对于测地线上的每一点,曲面在该点的法向量 \mathbf{n}_p 一定位于该点的密切平面 Π_p 之内。换句话说,这些线对于曲面内的居民而言是真正的直线,因为他们无法得知法曲率 κ_n 的存在;对于曲面外的观察者而言,就是测地线。

下面我们考虑旋转曲面。一般旋转曲面的子午线一定是测地线。

我们先考虑球面,设半径为 R,假设一质点以单位速率沿着球面上的一大圆运动,大圆与赤道平面 Π 的夹角为 γ . 不妨设大圆平面与 Π 的交线是 y 轴,因为大圆过球心,所以大圆的平面方程为 Ax+By+Cz=0. 又因为大圆过 (0,R,0) 和 $(R\cos\gamma,0,R\sin\gamma)$ 点,从而得到平面方程为 $z=x\tan\gamma$. 带入到球面方程 $x^2+y^2+z^2=R^2$ 中,得到大圆的方程,也就是球与该平面的交线方程:

$$\frac{x^2}{R^2\cos^2\gamma} + \frac{y^2}{R^2} = 1,$$

用 (x,y) 坐标描述,即在 Π 上的投影。这是一个椭圆。