Co-design of Machine Learning Algorithms for Computer Vision and their Implementation on Reconfigurable Hardware

Qijing Jenny Huang, Zhen Dong

*NVIDIA, UC Berkeley

<u>jennyhuang@nvidia.com</u> zhendong@berkeley.edu

Outline

- Motivation
- Codesign for Image Classification
 - Synetgy DiracDeltaNet
- Codesign for Object Detection
 - Deformable Convolution
- Hardware-aware NAS
 - HAO

Embedded Computer Vision

Applications

CV Kernels/Tasks

Embedded Platforms

Robots

Drones

Autonomous Vehicles

Security cameras

Mobile phones

Image Classification

Object Detection

Semantic Segmentation

CPU

GPU

FPGA

ASIC

Field Programmable Gate Array (FPGA)

An integrated circuit designed to be reconfigurable after manufacturing

- Low power and energy consumption
- Latency-optimized
 - Good for low batch size inference
- Usually programmed using HW design abstraction
 - Additional timing information is required
 - High level synthesis (HLS) enables SW like abstraction
- More in EECS151

Goals for Ebedded CV

Accuracy

Efficiency

How to improve accuracy and efficiency?

Design better ConvNet

ConvNet Design

- CV community has evolved ConvNets for good accuracy efficiency has been less important
- Efficiency proxies have been FLOPs and model size, ignoring hardware friendliness

Parameter size: 552 MB

Computation: 15.8 GOPs/image

NasNet[2] model:

Parameter size: 5.3 MB

Computation: 1.28 GOPs/image

Hardware Design

- Most work only supports off-the-shelf network designs
- Most effort has focused on reducing precision and on pruning
- Often this throughput improvement comes at the expense of lower accuracy

Can we close this gap?

Design better ConvNet

Design better hardware

Motivation

- Why codesign algorithm and hardware?
 - Inefficient Model Designs many CV tasks use large inefficient models and operations solely optimized for accuracy
 - Limited Hardware Resources embedded devices have limited compute resources and strict energy and power budgets
 - Real-time Requirements accelerators must guarantee response within certain time constraints
- Goal: codesign algorithms and accelerators that satisfy embedded system constraints and fall on the pareto curve of the accuracy-latency tradeoff.

Outline

- Motivation
- Codesign for Image Classification
 - Synetgy DiracDeltaNet
- Codesign for Object Detection
 - Deformable Convolution
- Hardware-aware NAS
 - HAO

Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators on Embedded FPGAs

Yifan Yang^{1,2}, **Qijing Huang¹**, Bichen Wu¹, Tianjun Zhang¹, Liang Ma³, Giulio Gambardella⁴, Michaela Blott⁴, Luciano Lavagno³, Kees Vissers⁴, John Wawrzynek¹, and Kurt Keutzer¹

¹University of California, Berkeley, ²Tsinghua University, ³Politecnico di Torino, and ⁴Xilinx Research Labs

Codesign for Image Classification

- ConvNet Design
- Hardware Design
- Results

ConvNet Design Strategies

- Strategy 1: Use efficient models
- Strategy 2: Simplify operators
- Strategy 3: Quantize

Design better ConvNet

CNN Strategy 1: Use efficient models

- ShuffleNetV2-1.0x [1] as our starting point
- Compared to VGG16:
 - 65x fewer OPs
 - 48x fewer parameters
 - Near equal accuracy on ImageNet

	MACs	#Params	Тор-1 Асс
ShuffleNetV2-1.0x	146M	2.3M	69.4%
VGG16	15.3G	138M	71.5%

ShuffleNetV2 building blocks

CNN Strategy 2: Simplify operators

- Can we reduce the number of operator types?
- Can we make the operation more hw-friendly?

CNN Strategy 2: Simplify operators

• Can we replace 3x3 convolutions?

The Shift Operation

The shift operation moves a neighboring pixel to the center position

The Shift Operation

1x1 conv aggregates spatial information along the channel dimension

Replace 3 x 3 Conv

• 3x3 conv:

- Aggregates neighboring pixels
- Mixes channel info

- shift: Re-aligns pixels
- 1x1 conv: Mixes channel info

Replace 3 x 3 DW Conv

3x3 DW conv w/ stride 2:

- Aggregates neighboring pixels
- Downsamples

- shift: Re-aligns pixels
- 2x2 pooling w/ stride 2:
 Downsamples

Strategy 2: Concatenative Connection

- Concatenative skip connection
 - Achieve similar accuracy
 - Less CPU-FPGA data movement
 - Less on-chip synchronization and buffer
 - Quantization friendly

(a) Additive skip connection

(b) Concatenative skip connection

Strategy 2: Use hw-friendly operators

- 3x3 max-pooling -> 2x2 max-pooling
- Hw-friendly channel shuffle

(a) Transpose based channel shuffle

(b) Our channel shuffle

ShuffleNetV2 -> DiracDeltaNet

- Accuracy (full precision): 69.4%
- Operators involved:
 - 1x1 convolution
 - 3x3 convolution
 - 3x3 DW convolution
 - 3x3 max pooling
 - Channel split/shuffle/concat

- Accuracy (full precision): 69.7%
- Operators involved:
 - 1x1 convolution
 - 2x2 max pooling
 - Channel split/shuffle/shift/concat

CNN Strategy 3: Quantize

- Quantization has been mostly demonstrated on large networks. Is it effective on the small ones like DiracDeltaNet?
- We used existing quantization methods:
 - DoReFaNet [1] method for weights
 - Modified PACT [2] method for activations
- We achieved 4-bit weight and 4-bit activation precision with competitive accuracy

	Network	Pruning	Precision	Top-1 Acc
[3]	VGG16	Yes	8-8b	67.72%
Ours	DiracDeltaNet	No	4-4b	67.52%

^[2] Choi, J., Wang, Z., Venkataramani, S., I-Jen Chuang, P., Srinivasan, V. and Gopalakrishnan, K.PACT: Parameterized Clipping Activation for Quantized Neural Networks.

Codesign for Image Classification

- ConvNet Design
- Hardware Design
- Results

Hardware Design Strategies

- Strategy 1: Specialize conv engine
- Strategy 2: Use dataflow architecture
- Strategy 3: Merge layers

Design better hardware

HW Strategy 1: Specialize conv engine

- 1x1 Conv Unit:
 - Supports matrix-vector multiplication
 - 4-bit inputs
 - 4-bit weights
 - 17-bit partial sums
 - Buffers weights and partial sums on-chip
 - Performs 32 x 32 MACs per iteration
 - Each input gets reused output channel size times

- 1x1 conv
 - No line-buffer
- shift
 - 3x3 sliding window, II=1
- 2x2 max-pooling
 - 2x2 sliding window, II=2

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1

- 1x1 conv
 - No line-buffer
- shift
 - 3x3 sliding window, II=1
- 2x2 max-pooling
 - 2x2 sliding window, II=2

4	2	5	6	9
1	3	8	7	3
6	4/	2	8	1
4				

- 1x1 conv
 - No line-buffer
- shift
 - 3x3 sliding window, II=1
- 2x2 max-pooling
 - 2x2 sliding window, II=2

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1

- 1x1 conv
 - No line-buffer
- shift
 - 3x3 sliding window, II=1
- 2x2 max-pooling
 - 2x2 sliding window, II=2

- 1x1 conv
 - No line-buffer
- shift
 - 3x3 sliding window, II=1
- 2x2 max-pooling
 - 2x2 sliding window, II=2

Strategy 3: Merge layers

- Conversion unit includes:
 - Batch Norm
 - ReLU
 - Modified PACT
- It performs 17-bit to 4-bit conversion
- It is implemented with comparators

Synetgy Architecture Overview

- HW engine supports:
 - 1x1 conv
 - 2x2 max-pooling
 - shift
 - shuffle
- Layer-based design
- Implemented with Vivado HLS and PYNQ

Execution Model

DiracDeltaNet Block

DiracDeltaNet Block

Codesign for Image Classification

- ConvNet Design
- Hardware Design
- Results

Experimental Setup

- Avnet Ultra96 Board
- With Xilinx ZU3EG FPGA the second smallest device in the Ultrascale+ family

Comparison with Previous Work

- Equal top-1 accuracy
- 11.6x higher framerate
- 6.3x more power efficient

[1] Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y. and Yang, H. Software-Hardware Codesign for Efficient Neural Network Acceleration. IEEE Micro, 37 (2). 18-25. [2] Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song, S., Wang, Y. and Yang, H. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, 2016, 26-35.

[3] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S.B.K., Seo, J.S. and Cao, Y. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks, 2016, 16-25.

Outline

- Motivation
- Codesign for Image Classification
 - Synetgy DiracDeltaNet
- Codesign for Object Detection
 - Deformable Convolution
- Hardware-aware NAS
 - HAO

CoDeNet: Efficient Deployment of Input-Adaptive Object Detection on Embedded FPGAs

Qijing Huang*, Zhen Dong*, Dequan Wang*, Yizhao Gao †, Yaohui Cai ‡, Tian Li ‡, Bichen Wu, Kurt Keutzer, John Wawrzynek

University of California, Berkeley,

†University of Chinese Academy of Science

‡Peking University

Codesign for Objection Detection

- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Deformable Convolution

• **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations

- 1. Generate offsets
- 2. Sample from input feature map

Deformable Convolution

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations

Sampling Locations (in red) for Different Output Pixels (in green)

Deformable Convolution

- **Deformable Convolution** is an input-adaptive dynamic operation that samples inputs from variable spatial locations
- Its sampling locations vary with:
 - Different input images
 - Different output pixel locations
- It captures the spatial variance of objects with different:
 - Scales
 - Aspect Ratios
 - Rotation Angles
- Challenges:
 - Increased compute and memory requirements
 - Irregular input-dependent memory access patterns
 - Not friendly for dataflows that leverage the spatial reuse

Variable Receptive Fields

Codesign for Objection Detection

- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Algorithm Modification:

0. Original Deformable

Hardware Optimization:

- Preloads weights to on-chip buffer
- Loads input and offsets directly from DRAM

Algorithm Modification:

1. Depthwise Deformable

Accuracy 1(AP): **42.9**

Hardware Optimization:

Reduce the total MACs

Algorithm Modification:

2. Bounded Range

Accuracy 1(AP): **41.0**

Hardware Optimization:

 Buffers inputs in the on-chip line buffer to allow spatial reuse

↓ 1.9

Algorithm Modification:

Accuracy ¹(AP): **41.1**

Hardware Optimization:

Improves on-chip memory bandwidth

↑ 0.1

Operation Accuracy

Object Detection Accuracies

Operation	Depthwise	Bound	Square	VOC			COCO					
				AP	AP50	AP75	AP	AP50	AP75	APs	APm	APl
3 × 3				39.2	60.8	41.2	21.4	36.5	21.5	7.3	24.1	33.0
3×3	✓			39.1	60.9	40.9	19.8	34.3	19.7	6.3	22.6	31.5
5×5	✓			40.6	62.4	42.6	21.3	36.4	21.3	6.7	23.7	34.2
7×7	✓			41.9	63.8	43.8	21.7	37.2	21.5	6.9	24.0	35.2
9 × 9	✓			42.3	64.8	44.3						
deform	✓			42.9	64.4	45.7	23.0	38.4	23.3	6.9	24.4	37.8
deform	✓	✓		41.0	63.0	42.9	21.3	36.4	21.1	7.2	23.6	34.4
deform	✓	√	√	41.1	63.1	43.7	21.5	36.8	21.5	6.5	23.7	34.8

5x less compute

< 2 AP change

- 3x3 deformable conv is more efficient than large convolution kernels
- The codesigned deformable conv still achieves good accuracy
 - 1.8 AP difference on Pascal VoC and 1.5 AP difference on COCO

Operation Performance

Hardware Performance

Operation	Original	Deformable	Bound	Square	Without LLC		With LLC	
Operation	Original	Delormanie	(buffered)	(multi-ported)	Latency (ms)	GOPs	Latency (ms)	GOPs
	√				43.1	112.0	41.6	116.2
Full 3×3 Conv		✓		1.36x	59.0	81.8	42.7	113.1
		✓	✓	1.50%	43.4	111.5	41.8	115.5
		\checkmark	✓	✓	43.4	111.5	41.8	115.6
	√				1.9	9.7	2.0	9.6
Depthwise 3×3 Conv		\checkmark		9.76x	20.5	0.9	17.8	1.1
		\checkmark	✓	3.70X	3.0	6.2	3.4	5.5
		✓	✓	✓	2.1	9.2	2.3	8.2

1.36× and 9.76× speedup for full and depthwise deformable conv

Codesign for Objection Detection

- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Building Blocks

• Simple building blocks to reduce the hardware complexity

ShuffleNetV2 + CenterNet

 Anchor-free detection system to reduce the postprocessing overhead for Non Maximum Suppression (NMS)

^{*} Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. "Objects as points." arXiv preprint arXiv:1904.07850 (2019).

Detection Heads

(b) center heatmap (c) width & height

(d) local shift

- The center heatmap
- The object size
- The local offset 3.

Overall Accelerator Architecture

• **Dataflow** architecture for executing a subgraph of 1x1 conv and 3x3 dw deformable conv

Codesign for Objection Detection

- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Accuracy-Latency Tradeoff

- 4-bit weights, 8-bit activations
- Batch size 1
- On VOC dataset

Can we perform co-design to close this gap?

Design better ConvNet

Design better hardware

Can we replace the Conv operation?

Binary operation

 "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks" M Rastegari, et al. 2016 ECCV.

Look up tables

- "<u>Circuit-Based Intrinsic Methods to Detect Overfitting</u>." Chatterjee S, Mishchenko A. 2020 ICML.
- "LUTNet: Rethinking Inference in FPGA Soft Logic" Wang E, et al. 2019 FCCM.

Log number systems (LNS)

"<u>Low-Precision Training in Logarithmic Number System using Multiplicative</u>
 Weight Update" J Zhao, et al. Arxiv.

Outline

- Motivation
- Codesign for Image Classification
 - Synetgy DiracDeltaNet
- Codesign for Object Detection
 - Deformable Convolution
- Hardware-aware NAS
 - HAO

Thanks!