

Sistema de cultivo hidropónico interior Arduino

Proposto por Arsakeio High School of Patras

A Trainers Toolkit To Foster STEM Skills Using Microcontroller Applications

Sistema de cultivo hidropónico interior Arduino

Conteúdos

Objetivo Descrição Objetivos de aprendizagem Metodologias de aprendizagem Grupo Alvo Esquema de aprendizagem Solução Áreas Científicas cobertas Avaliação Bibliografia

Objetivo

Utilizar a agricultura hidropónica Interior no Arduíno, para explicar e ajudar os alunos a usar esta ferramenta educacional para um futuro sustentável.

Project No. 2019-1-RO01-KA202-063965

Descrição

- A compostagem e a agricultura hidropónica interna oferecem uma valiosa ferramenta de ensino interdisciplinar que abrange áreas do currículo com muitos resultados de aprendizagem.
- Um sistema Arduíno orientado para a implementação de práticas ecologicamente corretas incentiva os alunos a entender o que significa desenvolvimento sustentável e como todos nós, enquanto cidadãos globais, podemos contribuir.
- Dadas as preocupações de alimentar uma população humana crescente, num clima em mudança, os cientistas acreditam que a tecnologia hidropónica pode ser capaz de mitigar a escassez iminente de alimentos atendendo ao ODS 2 da ONU: "Acabar com a fome, alcançar a segurança alimentar e melhorar a nutrição e promover a agricultura sustentável".

Cultivo hidropónico interno Arduino

Descrição

- Passo 1: Criação de um sistema hidropónico simples com a ajuda de um técnico agrícola.
- O sistema de pharming interno do Arduíno consiste num microcontrolador, um relé, um sensor de temperatura, uma bomba e uma fonte de energia.
- Com estes componentes, podemos construir facilmente um sistema alimentado por Arduíno. Em combinação com a preparação de uma solução de nutrição vegetal, o sistema responde à plantação de sementes em perlita e sua colocação num ambiente protegido para crescimento primário.
- Desta forma mais simples, os alunos aprenderão como os microcontroladores podem ser usados na colocação de plantas no sistema hidropónico interno e na monitorização do seu crescimento.

Objetivos de aprendizagem

- Os alunos entendem os princípios básicos da agricultura interna
- Os alunos entendem o papel da monitorização do crescimento das plantas usando
 - sistema de medição arduino.

1			Indoor farming			
2			Monitoring of plants growth			
3			Species 1	Species 2	Species 3	Species 4
4	Date	Plant height				
5		pH of nutrition solution				
6		Temperature of nutrition solution				
7		Electrical conductivity of nutrition solution				
8		Day duration in hours				
9		Night duration in hours				
10		Notes		15		
11						

 Os alunos entendem como a eletrónica pode automatizar as atividades quotidianas num laboratório químico.

Metodologias de aprendizagem

 Conecta a aprendizagem na sala de aula ao mundo real, criando uma oportunidade de jardinagem sustentável para o futuro.

 O professor atribui grupos para medir os parâmetros hidropónicos internos (por exemplo, temperatura)

No final do projeto, o projeto apoia escolhas alimentares saudáveis.

Grupo Alvo

Alunos de escolas secundárias

Project No. 2019-1-RO01-KA202-063965

Esquema de aprendizagem

- Os alunos são divididos em grupos. Após os grupos conversarem cerca de 2 minutos, o líder de cada grupo anuncia suas opiniões sobre quais são as pressupostos iniciais - previsões sobre a necessidade de agricultura.
 - As medições de temperatura são feitas a partir do respetivo sistema de cultivo interno Arduíno.
 - Cada grupo é convidado a contar a temperatura das soluções de diferentes maneiras e compará-la com o valor esperado.
 - Defina temperatura como uma quantidade que serve para atingir o crescimento das plantas.

Solução

Um elemento particularmente importante deste curso é que ele transforma o laboratório escolar num laboratório de investigação do futuro, despertando assim o interesse do aluno que pode se tornar o investigador de amanhã.

Também enfatiza a relação ciência e tecnologia, pois a tecnologia é chamada para encontrar soluções, oferece oportunidades de economia significativa de água e elimina o uso de pesticidas, fertilizantes e herbicidas.

Solução

Os seguintes componentes são necessários para a preparação:

- Retransmissão
- Sensor de Humidade do Solo

- Bomba de água 12V com mangueira
- Fios de ligação
- fonte de alimentação 12V

Fonte: Store.arduino.cc

Solução

- <- Diagrama de fiação de todos os componentes do circuito.
- Podemos escrever facilmente o software para controlar o circuito, lendo o manual ou procurando um projeto pronto na Internet.

Source: Github

Áreas Científicas Cobertas

Project No. 2019-1-RO01-KA202-063965

Química / Tecnologia / Biologia

Avaliação

- A avaliação deve ser alcançada através do envolvimento dos alunos a longo prazo.
- Durante a discussão, os alunos podem ser informados sobre questões básicas.
- O aluno deve ser capaz de identificar as relações básicas entre as ciências físicas.
- Por fim, promove a ideia de interdisciplinaridade, uma vez que durante a implementação e finalização da mesma, os alunos lidam em paralelo com mais de um objeto cognitivo.

Bibliografia

- 1. Cornell Waste Management Institute
- 2. Kids Gardening: Classroom Hydroponics Lesson Plan
- 3. <u>University of Florida: Hydroponics in the Classroom</u>
- 4. United Nations: Sustainable Development Goals
- 5. Arduino UNO manual

Project No. 2019-1-RO01-KA202-063965