Geometria B (con soluzioni degli es. 3,4)

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018 6 luglio 2018

Lo studente che intende avvalersi del voto ottenuto alla prova intermedia svolga <u>solamente</u> gli esercizi n. 3 e n. 4. Il tempo a sua disposizione è di due ore.

Lo studente che non si avvale della prova intermedia svolga tutti e quattro gli esercizi. Il tempo a sua disposizione è di tre ore.

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia \mathbb{R} la retta reale, sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti di \mathbb{R} e sia η la topologia su \mathbb{R} avente come una base la seguente famiglia \mathcal{B} di sottoinsiemi:

$$\mathcal{B} := \{ [a, b) \in \mathcal{P}(\mathbb{R}) \mid a, b \in \mathbb{R}, a < b \}.$$

- (1a) Si dimostri che lo spazio topologico (\mathbb{R}, η) soddisfa il primo assioma di numerabilità ma non il secondo.
- (1b) Consideriamo su \mathbb{R} la relazione di equivalenza \mathcal{R} definita ponendo:

$$x\,\mathcal{R}\,y$$
se e soltanto se $x=y$ oppure se $x\leq 0$ e $y\leq 0.$

Indichiamo con $(\mathbb{R}/\mathfrak{R}, \eta')$ lo spazio topologico quoziente di (\mathbb{R}, η) modulo \mathfrak{R} e denotiamo con $\pi: (\mathbb{R}, \eta) \to (\mathbb{R}/\mathfrak{R}, \eta')$ l'applicazione di passaggio al quoziente. Si dica se π è una applicazione aperta.

(1c) Si dica se il sottoinsieme [0,1] di (\mathbb{R},η) è compatto.

Esercizio 2. Uno spazio topologico è detto localmente connesso se ogni suo punto ammette un sistema fondamentale di intorni connessi.

- (2a) Sia (X, τ) uno spazio topologico localmente connesso. Si dimostri che tutte le componenti connesse di (X, τ) sono aperte in (X, τ) .
- (2b) Sia (X, τ) uno spazio topologico con la seguente proprietà: per ogni $A \in \tau \setminus \{\emptyset\}$, tutte le componenti connesse del sottospazio topologico (A, τ_A) di (X, τ) sono aperte in (X, τ) . Si dimostri che (X, τ) è localmente connesso.
- (2c) Sia (X, τ) uno spazio topologico e sia $(X \times X, \xi)$ il prodotto topologico di (X, τ) con se stesso. Si dimostri che (X, τ) è localmente connesso se e soltanto se lo è $(X \times X, \xi)$.

Esercizio 3. Si consideri lo spazio topologico X_4 ottenuto identificando i quattro lati di un quadrato come in figura. I vertici sono tutti identificati nel punto P. Sia Y_4 lo spazio topologico ottenuto da X_4 togliendo un punto Q interno al quadrato. Siano X_5 e Y_5 definiti in modo analogo a partire da un pentagono.

(3a) Si calcolino i gruppi fondamentali di X_4 , X_5 , Y_4 e Y_5 .

(3b) Si stabilisca se tra tali spazi ci sono coppie di spazi omotopicamente equivalenti.

(3c) Si dica se X_4 o X_5 sono omotopicamente equivalenti a una superficie compatta.

SOLUZIONE: (3a) Per il calcolo di $\pi(X_4, P)$ si può applicare il teorema di Seifert-Van Kampen, scegliendo come aperti Y_4 e un (piccolo) disco centrato in Q. Y_4 si retrae con deformazione sul bordo del quadrato coi lati identificati, quindi è omotopicamente equivalente a S^1 , mentre il disco è contraibile. Sia x_0 un punto nell'intersezione del disco con Y_4 . Per il teorema $\pi(X_4, x_0)$ è generato da una classe $[\alpha]$ (con $\alpha = \overline{\gamma} * a * \gamma$ cammino ottenuto componendo a con un segmento γ congiungente P con x_0), con unica relazione $[\alpha]^4 = 1$. Dunque $\pi(X_4, x_0) \simeq \pi(X_4, P) \simeq \mathbb{Z}_4$, il gruppo ciclico con quattro elementi.

Analogamente, $\pi(X_5, P) \simeq \mathbb{Z}_5$. Inoltre, per quanto detto sopra $\pi(Y_4, P) \simeq \pi(Y_5, P) \simeq \pi(S^1, x_0) \simeq \mathbb{Z}$.

(3b) Spazi omotopicamente equivalenti hanno gruppi fondamentali isomorfi. Per il punto a), solo Y_4 e Y_5 sono omotopicamente equivalenti.

(3c) I gruppi fondamentali di X_4 e X_5 sono abeliani, ma non sono isomorfi agli abelianizzati dei gruppi fondamentali delle superfici compatte (solo quello di $U_2 = \mathbb{RP}^2$ è ciclico, ma di ordine 2), per cui i due spazi non sono omotopicamente equivalenti ad alcuna superficie compatta.

Esercizio 4. Sia $a \in \mathbb{C}$ con |a| < 1 e sia γ la circonferenza $\{z \in \mathbb{C} : |z| = 1\}$ percorsa in senso antiorario. Si consideri l'integrale di linea

$$I = \frac{1}{2\pi i} \int_{\gamma} \frac{z+a}{z-a} z^n \, dz.$$

(4a) Mostrare che I vale $2a^{n+1}$ per ogni intero $n \ge 0$.

(4b) Calcolare I per ogni intero n < 0.

SOLUZIONE: (4a) Essendo a interno a γ (e quindi $Ind_{\gamma}(a) = 1$), la formula integrale di Cauchy applicata alla funzione olomorfa $f(z) = (z + a)z^n$ fornisce il risultato: $I = f(a) = 2aa^n = 2a^{n+1}$ per ogni $n \ge 0$.

(4b) Sia m = -n > 0. La funzione $g(z) = (z + a)/(z^m(z - a))$, meromorfa su \mathbb{C} , ha un polo di ordine m in z = 0 se a = 0, mentre ha un polo semplice in a e un polo di ordine m in 0 se $a \neq 0$, e nessuna altra singolarità.

Se a = 0, $I = \text{Res}_0(1/z^m) = 1$ se m = 1 e I = 0 se m > 1.

Se $a \neq 0$, $I = \text{Res}_a(g) + \text{Res}_0(g)$. Si ha $\text{Res}_a(g) = (a+a)/a^m = 2/a^{m-1} = 2a^{n+1}$ poiché il polo è semplice. Inoltre se m = 1 si ha $\text{Res}_0(g) = (0+a)/(0-a) = -1$. Se invece m > 1, si ottiene

$$\operatorname{Res}_{0}(g) = \frac{1}{(m-1)!} \lim_{z \to 0} \left(\left(\frac{z+a}{z-a} \right)^{(m-1)} \right) = \frac{1}{(m-1)!} \lim_{z \to 0} \frac{2a(-1)^{m-1}(m-1)!}{(z-a)^{m}} = -\frac{2}{a^{m+1}} = -2a^{n+1}.$$

Dunque per n=-1 si ha I=2-1=1, mentre per $n\leq -2$ vale $I=2a^{n+1}-2a^{n+1}=0$.

Un modo alternativo per calcolare I nel caso m>1, che non richiede il calcolo delle derivate, consiste nel trovare il residuo all'infinito. Infatti si ha $I=-\operatorname{Res}_{\infty}(g)=0$ (la funzione $(-1/w^2)g(1/w)=-w^{m-2}(1+aw)/(1-aw)$ è olomorfa nell'intorno di 0 se m>1).