EN.530.663: Robot Motion Planning

Jin Seob Kim, Ph.D

Senior Lecturer, LCSR, ME dept., JHU

Spring 2024

- Incrementally "explores" free space (C_{free}) while searching for a path.
- Mimics a particle moving in a potential field'.
- Potential field in physics: attractive potential + repulsive potential
- Robot in C-space → a point ⇒ treated as a particle under the influence of an artificial potential function U(q).

Figure: Example of a potential field [https://ximera.osu.edu/mooculus]

Potential Field Method: Potential Function

Potential function: a differentiable real-valued function

$$U: \mathbb{R}^n \to \mathbb{R}: \mathbf{q} \in \mathbb{R}^n \mapsto U(\mathbf{q})$$

gradient:

$$abla U(\mathbf{q}) = egin{pmatrix} rac{\partial U}{\partial q_1} \\ \vdots \\ rac{\partial U}{\partial q_0} \end{pmatrix}$$

- direction: locally maximally increasing direction.
- In physics: conservative force

$$\mathbf{F} = -\nabla U$$

Potential Field Method: Potential Function

Now, artificial potential function

$$U: C_{free} \rightarrow \mathbb{R}: q \in C_{free} \mapsto U(q)$$

 $\rightarrow \mathbf{F}(q) = -\nabla U(q), \ q \in C_{free}$

F(q): force applied to the point.

- In physics, highly damped case (on inertial effect)
- Similar to the gradient descent optimization process
- \blacksquare The robot terminated the motion when it reaches a point q^* (critical point) where $\nabla U = \mathbf{0}$

Potential Field Method: Attractive Potential Function

$$U(q) = U_{att}(q) + U_{rep}(q)$$

Attractive potential function:

$$\begin{split} & U_{att}(q) \doteq \frac{1}{2} \zeta \left[\rho(q, q_G) \right]^2 \; , \; \zeta > 0 \\ & \text{if } q \in \mathbb{R}^n, \rho(q, q_G) = \|q - q_G\| \\ & \to \nabla U_{att}(q) = \frac{1}{2} \zeta \nabla \rho^2(q, q_G) = \zeta \rho(q, q_G) \nabla \rho(q, q_G) \\ & \therefore \nabla U_{att}(q) = \zeta(q - q_G) \end{split}$$

■ The farther away q is from q_G , the bigger the magnitude \rightarrow If initially too far away, it causes a numerical problem.

Potential Field Method: Attractive Potential Function

Conic and quadratic potential function

$$U_{att}(q) \doteq \left\{ egin{array}{ll} rac{1}{2} \zeta
ho^2(q,\,q_{\mathrm{G}}), &
ho(q,\,q_{\mathrm{G}}) \leq
ho_{\mathrm{G}}^* \\
ho_{\mathrm{G}}^* \zeta \,
ho(q,\,q_{\mathrm{G}}) - rac{1}{2} \zeta \left(
ho_{\mathrm{G}}^*
ight)^2, &
ho(q,\,q_{\mathrm{G}}) >
ho_{\mathrm{G}}^* \end{array}
ight.$$

where ρ_G^* : threshold distance from the goal.

■ Then, with $a \in \mathbb{R}^n$,

$$\nabla U_{att}(q) = \begin{cases} \zeta(q - q_G), & \rho(q, q_G) \le \rho_G^* \\ \frac{\rho_G^* \zeta(q - q_G)}{\rho(q, q_G)}, & \rho(q, q_G) > \rho_G^* \end{cases}$$

Potential Field Method: Repulsive Potential Function

- Keeps the robot away from an obstacle.
- When the robot is sufficiently away from C_{obs} , U does not affect the robot motion.

Figure: from cs.cum.edu

Potential Field Method: Repulsive Potential Function

Usually,

$$U_{rep}(q) \doteq \left\{ egin{array}{ll} rac{1}{2} \eta \, \left(rac{1}{
ho(q)} - rac{1}{Q^*}
ight)^2 \,, &
ho(q) \leq Q^* \ 0 \,, &
ho(q) > Q^* \end{array}
ight.$$

where $\eta > 0$, $\rho(q) = \min_{q' \in C_{obs}} \rho(q, q')$.

■ Then

$$abla U_{rep}(q) = \left\{ egin{array}{ll} \eta\left(rac{1}{Q^*} - rac{1}{
ho(q)}
ight)rac{1}{
ho^2(q)}
abla
ho(q)\,, &
ho(q) \leq Q^* \ 0\,, &
ho(q) > Q^* \end{array}
ight.$$

For convex obstacles

$$abla
ho(q) = rac{q-c}{
ho(q, c)}$$

where c: closest point on C_{obs} to q.

■ Multiple C_{obs} 's: $U_{rep}(q) = \sum_{i=1}^{N} U_{rep,i}(q)$

Potential Field Method: Algorithm

- Input: A means to compute the gradient $\nabla U(q)$ at q.
- Output: A sequence of points $\{q(0), q(1), q(2), \dots q(i), \dots\}$
- Algorithm:
 - $q(0) = q_1$
 - i = 0
 - while $\nabla U(q) \neq 0$, d0:
 - $q(i+1) = q(i) \alpha(i) \nabla U(q(i))$
 - i = i + 1
 - end

- Easy to implement.
- Mimics a particle moving in a potential field.
- Issue of being stuck in any of local minima.
- A major challenge: constructing C-space.
- Randomized Path Planner (RPP): follows the potential field method, and when stuck in local minima, it initializes random walks to escape local minima.
- Another:
 - Wave-front planner
 - Navigation function (only one minima)

Potential Field Approach for Rigid Bodies

- example: serial manipulator
- C-space: non-Euclidean.
- Here, treat "gradient" as "force" → establish a relation between a workspace force and a configuration space force.
- Let \mathbf{f} , \mathbf{u} be the forces in \mathcal{W} , C, respectively. $\Rightarrow J^{\top}\mathbf{f} = \mathbf{u}$ (J: Jacobian)
- Pick control points $\{\mathbf{r}_i\}$ on the robot in $\mathcal{W} \to$ "pin down the robot".
- Then potential function:

$$U(q) = \sum_{j=1}^{n} U_{alt,j}(q) + \sum_{i=1}^{n} \sum_{j=1}^{n} U_{rep,i,j}(q)$$

Potential Field Approach for Rigid Bodies

■ For each \mathbf{r}_i :

$$\begin{aligned} & \textit{U}_{\textit{att},j}(q) = \left\{ \begin{array}{l} \frac{1}{2}\zeta_{j}\,\rho^{2}(\textbf{r}_{j}(q),\,\textbf{r}_{j}(q_{G})), & \rho(\textbf{r}_{j}(q),\,\textbf{r}_{j}(q_{G})) \leq \rho_{G}^{*} \\ \rho_{G}^{*}\zeta_{j}\,\rho(\textbf{r}_{j}(q),\,\textbf{r}_{j}(q_{G})) - \frac{1}{2}\zeta_{j}\,\left(\rho_{G}^{*}\right)^{2}, & \text{otherwise} \end{array} \right. \\ & \textit{U}_{\textit{rep},i,j}(q) \doteq \left\{ \begin{array}{l} \frac{1}{2}\eta\,\left(\frac{1}{\rho_{i}(\textbf{r}_{j}(q))} - \frac{1}{Q^{*}}\right)^{2}, & \rho_{i}(\textbf{r}_{j}(q)) \leq Q_{j}^{*} \\ 0, & \text{otherwise} \end{array} \right. \end{aligned}$$

- ρ , ρ_i : distance in \mathcal{W} .
- $\rho_i(\mathbf{r}_i(q))$: shortest distance between \mathbf{r}_i and obstacle Q_i .
- Q_i^* : workspace influence distance.

Potential Field Approach for Rigid Bodies

The force:

$$\begin{aligned} \mathbf{u}(q) &= \sum_{j} \mathbf{u}_{att,j}(q) + \sum_{i} \sum_{j} \mathbf{u}_{rep,i,j}(q) \\ &= \sum_{j} J_{j}^{\top}(q) \mathbf{f}_{att,j}(q) + \sum_{i} \sum_{j} J_{j}^{\top}(q) \mathbf{f}_{rep,i,j}(q) \end{aligned}$$

- where $\mathbf{f}_{att,j}(q) = -\nabla_{\mathbf{r}} U_{att,j}$, $\mathbf{f}_{rep,i,j}(q) = -\nabla_{\mathbf{r}} U_{rep,i,j}$, $\dot{\mathbf{r}}_j = J_j(\mathbf{q})\dot{\mathbf{q}}$
- Then algorithm: q = u

Figure: from cs.cmu.edu

Potential Field Method: Example

Figure: An example of potential field method (planar, point robot case)