DEFINITION OF TRANSFER FACTORS IN STANDARD ENDOSCOPY: A SUMMARY

GRIFFIN WANG

Contents

1.	Introduction	1
2.	Review on L-groups	1
3.	Abstract Cohomological Formulations	2
4.	Story on G-side: a-data	3
5.	Story on Ğ-side: χ-data	6
6.	Endoscopic Groups and Transfer Factors	8
7.	Loose Ends	12
References		12

1. Introduction

In this short notes, I try to summarize the definition of transfer factors in standard endoscopy thoery in a way more clear for myself to read. The materials are mostly extracted from Langlands and Shelstad [2], and some are from Kottwitz [1]. There are some other results, well-known or folklore, that I didn't include a citation since they are more or less standard now (and I'm lazy).

I do try to write the definitions of α -data and χ -data in a more "symmetric" way and to emphasize the duality between them. For some technical parts, I also try to give an even more brief conceptual outline (see § 4.5 for example).

For anyone who is semi-newcomer to this subject like me, a clear and precise understanding of the functorial formulation of L-groups is necessary. This notes gives an account on this matter, assuming familiarity with the absolute theory regarding the *category* of reductive groups.

2. Review on L-Groups

2.1. Let F be a local or global field, and G a connected reductive group over F. For convenience, let $\bar{\mathsf{F}}$ be the *separable* closure of F, and $\Gamma_{\mathsf{F}} = \mathsf{Gal}(\bar{\mathsf{F}}/\mathsf{F})$, and suppose G is split over $\bar{\mathsf{F}}$. If F is local, let $|\cdot|_{\mathsf{F}}$ be a fixed absolute value of F. For example, we may choose the "usual" absolute value if $\mathsf{F} = \mathbb{R}$ or \mathbb{C} , and $|\pi|_{\mathsf{F}} = \mathsf{q}^{-1}$ for any uniformizer π of F and q is the order of the residue field of F.

For any two Borel pairs (T_1, B_1) and (T_2, B_2) of G over \overline{F} , any inner automorphism of G carrying (T_1, B_1) to (T_2, B_2) induces the same isomorphism $T_1 \to T_2$. So we have canonical isomorphisms on the associated based root datum

$$(\mathbb{X}(\mathsf{T}_1),\Delta(\mathsf{T}_1,\mathsf{B}_1),\check{\mathbb{X}}(\mathsf{T}_1),\check{\Delta}(\mathsf{T}_1,\mathsf{B}_1))\longrightarrow (\mathbb{X}(\mathsf{T}_2),\Delta(\mathsf{T}_2,\mathsf{B}_2),\check{\mathbb{X}}(\mathsf{T}_2),\check{\Delta}(\mathsf{T}_2,\mathsf{B}_2)).$$

Thus we obtain a diagram of based root data indexed by Borel pairs of G, on which Γ_F acts as automorphisms. One can thus form the limit of this diagram, represented by an abstract based root datum $(\mathbb{X}, \Delta, \check{\mathbb{X}}, \check{\Delta})$, on which Γ_F -acts. We shall call this the *canonical based root datum* of G, denoted

Date: July 20, 2020.

by $\Psi_0(G)$. The Weyl group together with its simple reflections attached to $\Psi_0(G)$ is denoted by $\Omega_0(G)$. Note that both $\Psi_0(G)$ and $\Omega_0(G)$ encodes the Γ_F -action.

More generally, if Γ is any group acting on G over F, then Γ acts on $\Psi_0(G)$ and $\Omega_0(G)$ as well.

2.2. Take the Γ_F -dual of $\Psi_0(G)$, because $\mathbb C$ is algebraically closed, we can obtain a $\mathbb C$ -reductive group \check{G} with a splitting $(\check{\mathbf T},\check{\mathbf B},\{X_{\check{\alpha}}\})$, on which Γ_F acts. The Weyl group $\Omega_{\check{\mathbf T}}$ of $\check{\mathbf T}$ in $\check{\mathbf G}$ may be identified with $\Omega_0(G)$, compatible with Γ_F -action.

The Weil group W_F acts on these objects via projection $W_F \to \Gamma_F$, and we can form L-group

$$^{L}G = \check{G} \rtimes W_{E}$$
.

- **2.3.** If G is quasi-split over F, fix an F-splitting $(T, B, \{X_\alpha\})$ of G. The resulting based root system is $(\mathbb{X}(T), \Delta(T, B), \check{\mathbb{X}}(T), \check{\Delta}(T, B))$ on which Γ_F acts, and in this case it may be identified with $\Psi_0(G)$. Let Ω_T be the Weyl group of (G, T), then Γ_F acts on Ω_T as well. We may also identify $\Omega_0(G)$ with Ω_T that is compatible with Γ_F -action.
- **2.4.** If a group Γ acts on a reductive group H over an algebraically closed field, say \mathbb{C} , the resulting Γ -action on $\Psi_0(H)$ induces a Γ -action on some splitting of H, hence also an(other) action of Γ on H. However, the two actions may not coincide, and the original Γ -action may not fix a splitting of H at all. Therefore we have the following definition.

Definition 2.1. Let H be a reductive group over \mathbb{C} , and Γ a group acting on H. Such action is called an L-action if it stabilizes a splitting.

The action of W_F on \check{G} in forming LG is thus an L-action by definition. Suppose we have a split extension

$$1 \longrightarrow \check{\mathsf{G}} \longrightarrow \mathscr{G} \longrightarrow W_{\mathsf{F}} \longrightarrow 1$$
,

then \mathscr{G} is not necessarily an L-group since W_F -action induced by a splitting of this extension may not be an L-action. Nonetheless, for a fixed Γ_F -splitting of $\check{\mathbf{G}}$, we may attach to this extension an L-action. Let $c\colon W_F\to \mathscr{G}$ be any splitting of this extension, then it induces map $W_F\to \operatorname{Aut}(\check{\mathbf{G}})$, hence $W_F\to \operatorname{Out}(\check{\mathbf{G}})$, the latter depending only on the extension but not c. Using a fixed Γ_F -splitting \mathbb{Spl} , we may identify $\operatorname{Out}(\check{\mathbf{G}})$ with the subgroup of $\operatorname{Aut}(\check{\mathbf{G}})$ that fixes \mathbb{Spl} . Therefore we obtain an L-action of W_F on $\check{\mathbf{G}}$. We will call this the L-action associated with \mathscr{G} and splitting \mathbb{Spl} . We shall use the earlier fixed splitting $(\check{\mathbf{T}},\check{\mathbf{B}},\{X_{\check{\mathbf{A}}}\})$ for \mathbb{Spl} .

3. Abstract Cohomological Formulations

3.1. Let X be a \mathbb{Z} -lattice, and $R \subset X$ a finite subset such that -R = R. A *gauge* p of R is a map $R \to \{\pm 1\}$ such that $\mathfrak{p}(-\alpha) = -\mathfrak{p}(\alpha)$ for all $\alpha \in R$.

For example, if $R \subset X = \mathbb{X}(T)$ be the root system for maximal torus $T \subset G$, and B a Borel containing T, then B determines a gauge p_B on R such that $p_B(\alpha) = 1$ if and only if α is a root of T in B.

- If $O \subset R$ be a subset such that $R = O \coprod -O$ is a disjoint union, then one can define gauge $\mathfrak{p}_O(\alpha) = 1$ if and only if $\alpha \in O$.
- **3.2.** Let $\Sigma = \Gamma \times \langle \varepsilon \rangle$ be a group acting on X and R such that ε acts as -1. In our applications we will have $\varepsilon^2 = 1$ so we will assume this as well, even though it's not required in many of the results

below. Then we define a product notation for any r-tuple $a = (a_1, \dots, a_r) \in \Sigma^r$

$$\prod_{\alpha:\alpha}^{p} = \prod_{\alpha:\alpha_{1},...,\alpha_{r}}^{p} := \prod_{\substack{\alpha \in R \\ p((\alpha_{1} \cdots \alpha_{s})^{-1}\alpha) = (-1)^{s+1} \\ 1 \le s \le r}}$$

Let k^x be a field and let Σ acts on k trivially, then it acts on $k^\times \otimes_{\mathbb{Z}} X$, and we denote $c \otimes \lambda$ by c^λ .

Lemma 3.1. The 2-cochain

$$t_{p}(\sigma,\tau) = \prod_{\alpha:1,\sigma,\tau}^{p} (-1)^{\alpha}$$

is a 2-cocycle $\Sigma^2 \to k^{\times} \otimes_{\mathbb{Z}} X$. Moreover, if q is another gauge, t_p/t_q is a coboundary.

3.3. If p is a gauge, then so is -p, and we define for a pair of gauge (p,q) and an r-tuple $a \in \Sigma^r$ another product

$$\prod_{\alpha:\alpha}^{p,q} = \prod_{\alpha:\alpha_1,\dots,\alpha_r}^{p,q} \coloneqq \prod_{\substack{\alpha\in R\\p((\alpha_1\cdots\alpha_s)^{-1}\alpha)=(-1)^{s+1}\\q((\alpha_1\cdots\alpha_s)^{-1}\alpha)=1\\1\leq s\leq r}}$$

Then if we define 1-cochain of Γ

$$s_{p/q}(\sigma) = \prod_{\alpha:1,\sigma}^{p,q} (-1)^{\alpha} \prod_{\alpha:1,\sigma}^{-q,p} (-1)^{\alpha},$$

then one can show that

$$\partial s_{p/q} = t_p/t_q$$

as cochains of Γ (not Σ).

4. Story on G-side: α-data

4.1. Let G be quasi-split and fix a splitting as before. Let U_{α} be the root groups of G such that $X_{\alpha} = U_{\alpha}(1)$. We can define

$$n: \Omega_{\mathbf{T}} \rtimes \Gamma_{\mathsf{F}} \longrightarrow N_{\mathbf{G}}(\mathbf{T}) \rtimes \Gamma_{\mathsf{F}}$$

$$w \rtimes \sigma \longmapsto n(w) \rtimes \sigma,$$

where n(w) is such that if $w = s_{\alpha_1} \cdots s_{\alpha_r}$ is a reduced expression, then

$$\begin{split} &n(w) = n(s_{\alpha_1}) \cdots n(s_{\alpha_r}), \\ &n(s_{\alpha}) \coloneqq U_{\alpha}(1) U_{-\alpha}(-1) U_{\alpha}(1), \\ &n(1) \coloneqq 1. \end{split}$$

One can show that $\mathfrak{n}(w)$ is independent of the reduced expression hence is well defined, and that $\mathfrak{n} \colon \Omega_T \to N_G(T)$ is Γ_F -equivariant. Therefore for $\theta \in \Omega_T \rtimes \Gamma_F$, $\mathfrak{n}(\theta)$ acts on T as θ , and

$$t(\theta_1,\theta_2) \coloneqq n(\theta_1)n(\theta_2)n(\theta_1\theta_2)^{-1}$$

is a 2-cocycle of $\Omega_{\mathbf{T}} \rtimes \Gamma_{\mathsf{F}}$ in $\mathbf{T}(\bar{\mathsf{F}})$.

Lemma 4.1. We have that

$$t(\theta_1,\theta_2) = t_{\mathfrak{p}_B}(\theta_1,\theta_2) = \prod_{\check{\alpha}:1,\theta_1,\theta_2}^{\mathfrak{p}_B} (-1)^{\check{\alpha}},$$

where p_B is the gauge determined by **B** on $\check{R}(G, T)$.

Note that the definition of t depends on root vectors X_{α} , while the right-hand side of the Lemma above doesn't.

4.2. The 2-cocycle t is in fact a coboundary when restricted to certain subgroup of $\Omega_T \rtimes \Gamma_F$, and a splitting can be found with the help of so called α -data. The abstract formulation is as follows. Retain notations in the subsection about Σ acting on X and R. Suppose Σ acts on \overline{k}/k such that ε still acts trivially (but not necessarily for Γ).

Definition 4.2. An α-datum is a Γ -equivariant map

$$a: R \longrightarrow \bar{k}^{\times}$$

 $\alpha \longmapsto a_{\alpha}$

such that $a_{-\alpha}=-a_{\alpha}$ (i.e. α is " ε -antivariant"). A b-datum is a Γ -equivariant map $b\colon R\to \bar k^x$ that is also ε -equivariant (hence Σ -equivariant).

Suppose a-data exists for Σ -action on R, and p a gauge of R, then we form 1-cochain of Γ

$$\mathfrak{u}_{\mathfrak{p}}(\sigma) \coloneqq \prod_{\alpha:1,\sigma}^{\mathfrak{p}} \mathfrak{a}_{\alpha}^{\alpha} \in \bar{k}^{\times} \otimes_{\mathbb{Z}} X.$$

Lemma 4.3. Viewing t_p as a 2-cocycle of Γ with value in $\bar{k}^{\times} \otimes_{\mathbb{Z}} X \supset k^{\times} \otimes_{\mathbb{Z}} X$, we have that

$$\partial u_p = t_p$$
.

Similarly, if b-data exists, we can form 1-cochain that is in fact a cocycle:

$$v_{\mathfrak{p}}(\sigma) := \prod_{\alpha:1,\sigma}^{\mathfrak{p}} b_{\alpha}^{\alpha} \in \bar{k}^{\times} \otimes_{\mathbb{Z}} X.$$

4.3. To emphasize the duality to χ -data later, here we use F instead of k. Let $\Gamma = \Gamma_F$. For $\alpha \in R$, let F_{α} be its splitting field, and $F_{\pm \alpha}$ be the splitting field of $\pm \alpha$. Let Γ_{α} and $\Gamma_{\pm \alpha}$ be their respective absolute Galois group. Then $[F_{\alpha}:F_{\pm \alpha}]$ is 1 if Γ_F -orbit of α doesn't contain $-\alpha$ or 2 otherwise.

Suppose we have α -data for Γ_F -action on R. Then we always have $\alpha_\alpha \in F_\alpha^\times$. If moreover $[F_\alpha:F_{\pm\alpha}]=2$, we must have that $\sigma(\alpha_\alpha)=-\alpha_\alpha$ for the unique non-trivial element $\sigma\in\Gamma_{\pm\alpha}/\Gamma_\alpha$. This means $\alpha_\alpha^2=-1$ viewed as elements of group $F_\alpha^\times/\operatorname{Nm}_{F_\alpha/F_{\pm\alpha}}(F_\alpha^\times)$.

4.4. Let $T \subset G$ be a maximal F-torus. Let $h \in G(\bar{F})$ be a chosen transporter from T to T, i.e. $Ad_h(T) = T$. Then $h^{-1}\sigma(h)$ acts on T by conjugation, hence $h^{-1}\sigma(h) \in N_G(T)$, whose image in Ω_T is denoted by $\omega_T(\sigma)$. Thus if we denote by σ_T the action of σ on T by transporting that on T to T using h, then $\sigma_T = \omega_T(\sigma) \rtimes \sigma \in \Omega_T \rtimes \Gamma_F$. Let Γ_T be the group generated by σ_T . Clearly σ_T depends only on the choice of $B = Ad_h(B)$, not h itself.

The action of $\Sigma = \Gamma_F \times \langle \varepsilon \rangle$ on $\check{R}(G,T) \subset \check{\mathbb{X}}(T)$ admits α -data, which transports to $\Gamma_T \times \langle \varepsilon \rangle$ -action on R(G,T). Let $\{\alpha_{\check{\alpha}}\}$ be an α -datum. We have gauge $\mathfrak{p} = \mathfrak{p}_B$ on $\check{R}(G,T)$, so we have

$$x_p(\sigma_T) = \prod_{\check{\alpha}: 1, \sigma_T}^p \alpha_{\check{\alpha}}^{\check{\alpha}},$$

whose coboundary is

$$t_{p}(\sigma_{T}, \tau_{T}) = n(\sigma_{T})n(\tau_{T})n(\sigma_{T}\tau_{T})^{-1}.$$

Since a_{α}^{-1} is also an a-datum, we also have that

$$\partial x_p^{-1} = t_p$$
.

Thus the map

$$\Gamma_{T} \longrightarrow N_{G}(T) \rtimes \Gamma_{F}$$

$$\sigma_{T} \longmapsto \chi_{\mathfrak{p}}(\sigma_{T})\mathfrak{n}(\sigma_{T})$$

is a homomorphism, hence induces 1-cocycle $\sigma_T \mapsto \chi_p(\sigma_T) \mathfrak{n}(\omega_T(\sigma)) \eqqcolon \mathfrak{m}(\sigma_T)$.

Transporting by $Ad_{h \times 1}$ inside $G \times \Gamma_F$, one has map

$$\begin{split} &\Gamma_F \longrightarrow N_G(T) \rtimes \Gamma_F \\ &\sigma \longmapsto h x_p(\sigma_T) n(\sigma_T) h^{-1} = h m(\sigma_T) \sigma(h)^{-1} \rtimes \sigma, \end{split}$$

whose image lies in $T \times \Gamma_F$. One thus obtains a 1-cocycle of Γ_F in T, whose cohomology class depends only possibly on $B = Ad_h(\mathbf{B})$, not h. In fact, a long computation would show it doesn't depend on B either. Call this cohomology class in $H^1(F,T)$ by λ_T .

4.5. Here we try to summarize the construction of λ_T using a-data more conceptually. To begin with, we have extension

$$1 \longrightarrow \mathbf{T} \longrightarrow N_{G}(\mathbf{T}) \rtimes \Gamma_{F} \longrightarrow \Omega_{\mathbf{T}} \rtimes \Gamma_{F} \longrightarrow 1. \tag{4.5.1}$$

The choice of a Γ_F -equivariant set-theoretic section $\mathfrak{n}: \Omega_T \to N_G(T)$ gives a set-theoretic section $n \times id$ of this extension, which in turn gives a 2-cocycle of $\Omega_T \times \Gamma_F$ in T. We still use n instead of $n \times id$ for convenience.

Given T, we choose B containing T, and $h \in G$ such that Int h maps (T, B) to (T, B). Then we obtain another splitting of $\Omega_T \rtimes \Gamma_F$ via map $\Gamma_F \to \Gamma_T$. Restricting the extension (4.5.1) to Γ_T , we have

where the square on the right is Cartesian. This extension of Γ_T is split, and a choice of an α -datum provides a splitting $x_p n$, whose composition with (set-theoretic) projection $N_T \to N_G(T)$ gives 1-cocycle m.

Transporting using Inth, one has split extension

$$1 \longrightarrow T \longrightarrow N_T \coloneqq hN_Th^{-1} \longrightarrow \Gamma_F \longrightarrow 1 ,$$

where in fact $N_T = T \rtimes \Gamma_F \subset N_G(T) \rtimes \Gamma_F$. The difference between the natural splitting $T \rtimes \Gamma_F$ and the splitting obtained using an α -datum gives a class $\lambda_T \in H^1(F,T)$. The effect of all the choices in the construction of λ_T as well as its various naturalities can be summarized as follows:

- it doesn't depend on h or B,
- (2) a change in splitting $(T, B, \{X_{\alpha}\})$ modifies λ_T by an element in the image of map

$$\operatorname{coker}[G(F) \to G_{\operatorname{AD}}(F)] \to \operatorname{H}^1(F,Z) \to \operatorname{H}^1(F,T),$$

- (3) a change in α -data resulting a b-datum by taking quotient of two α -data. Forming 1-cocycle ν_p using the same definition as x_p but with α -data replaced with b-data (so it is indeed a cocycle), then λ_T is modified by $\hbar\nu_p\hbar^{-1}$.
- (4) The construction of λ_T is compatible with conjugation of triples $(T, B, \{a_{\alpha}\})$.
- (5) Finally, if instead F is global, one can carry out the same construction for F, and for any place v of F, $\lambda_{v,T}$ is precisely the image of λ_T .

My guess: the class λ_T is the obstruction of lifting T to an F-splitting.

5. Story on
$$\check{\mathsf{G}}$$
-side: χ -data

5.1. On the dual side we have LG instead of $G \rtimes \Gamma_F$ and everything is dualized. In particular, we have the dual notion to α -data called χ -data. We don't need to assume G to be quasi-split, but we fix a splitting of \check{G} as before.

The abstract formulation of χ -data is as follows. Recall we have $\Sigma = \Gamma \times \langle \varepsilon \rangle$ -action on X and R. Unlike α -data, since arithmetic duality will be used, χ -data can only be formulated for $\Gamma = \Gamma_F$ where F a local or global field, as we shall assume so. Suppose the action of Γ on X is continuous with respect to the profinite topology on Γ and discrete topology on X. We use C_F to denote either the multiplicative group if F is local or the idele group if F is global. Let $\widehat{\bullet}$ denote Pontryagin dual.

Then for $\alpha \in R$, we have splitting fields $F_{\alpha} = F_{-\alpha}$ and $F_{\pm \alpha}$, Galois groups Γ_{α} , $\Gamma_{\pm \alpha}$, as well as groups C_{α} , $C_{\pm \alpha}$, etc. Note by continuity F_{α} is finite over F. Since F is local or global, we also have Weil groups W_F , $W_{\alpha} = W_{F_{\alpha}}$, and $W_{\pm \alpha} = W_{F_{\pm \alpha}}$. Then Γ acts on $\coprod_{\alpha \in O} \widehat{C_{\alpha}}$ for any Γ -stable subset $O \subset R$ by $\sigma(\chi_{\alpha}) = \chi_{\alpha} \circ \sigma^{-1}$ for any $\sigma \in \Gamma$.

Definition 5.1. A χ -datum is defined to be a Γ-equivariant map

$$\chi \colon R \longrightarrow \coprod_{\alpha \in R} \widehat{C_{\alpha}},$$

such that $\chi_{-\alpha} = \chi_{\alpha}^{-1}$, and χ_{α} is non-trivial on $C_{\pm \alpha}$. A ζ -datum is a map of the same definition as a χ -datum except that ζ_{α} is trivial on $C_{\pm \alpha}$.

Note that if $[F_{\alpha}:F_{\pm\alpha}]=2$, and let $\sigma\in\Gamma_{\pm\alpha}$ be a non-trivial representative of $\Gamma_{\pm\alpha}/\Gamma_{\alpha}$, then $\sigma(\alpha)=\sigma^{-1}(\alpha)=-\alpha$, and $\chi_{\alpha}^{-1}=\chi_{-\alpha}=\chi_{\sigma^{-1}(\alpha)}=\chi_{\alpha}\circ\sigma$. Thus χ_{α} must be trivial on $\mathrm{Nm}_{C_{\alpha}/C_{\pm\alpha}}(C_{\alpha})$, hence must be a extension of the quadratic quasi-character of $C_{\pm\alpha}$ associated with $F_{\alpha}/F_{\pm\alpha}$. In addition, we may regard χ_{α} as a character of W_{α} via Artin reciprocity.

5.2. Recall that for any gauge p on R we have a 2-cocycle t_p of Σ with value in $k^\times \otimes_{\mathbb{Z}} X$ where k^\times is any field. Let $k = \mathbb{C}$, then we obtain a 2-cocycle of Γ in $\mathbb{C}^\times \otimes_{\mathbb{Z}} X$. This cocycle is in general cohomologically non-trivial, but becomes cohomologically trivial if inflated to W_F . The splitting is given by any χ -datum. Suppose O is a Σ -orbit in R, and $\alpha \in O$ a fixed element. Since $[F_\alpha : F]$ is finite, we can choose a finite set of representatives of $W_{\pm\alpha}\backslash W_F$, denoted by w_1,\ldots,w_n , whose images σ_1,\ldots,σ_n is a set of representatives of $\Gamma_{\pm\alpha}\backslash \Gamma$. Then $O=\{\pm\sigma_i^{-1}\alpha \mid 1\leqslant i\leqslant n\}$. Define gauge p on O by declaring $p(\sigma_i^{-1}\alpha)=1$. We can then assemble p for all orbits O in R to obtain a gauge p on R.

Still fix α and O, we define contraction maps $u_i \colon W \to W_{\pm \alpha}$ for $1 \leqslant i \leqslant n$ by letting $u_i(w) = W_{\pm \alpha}$ to be the element such that

$$w_i w = u_i(w) w_j$$

for appropriate $1 \le j \le n$.

Choose representatives $v_0 \in W_\alpha$ and if $[F_\alpha : F_{\pm \alpha}] = 2$ an element $v_1 \in W_{\pm \alpha} - W_\alpha$. Define contraction $v : W_{\pm \alpha} \to W_\alpha$ by

$$\nu_0 u = \nu(u) \nu_j$$

for j = 0 or 1 as appropriate. Note if we choose v_0 in the center of W_{α} , then v is identity when restricted to W_{α} .

Define 1-cochains of W_F in $\mathbb{C}^{\times} \otimes_{\mathbb{Z}} X$ by

$$r_{O,p}(w) = \prod_{i=1}^n \chi_{\alpha}(\nu(u_i(w)))^{\sigma_i^{-1}\alpha},$$

and

$$r_p = \prod_{O \in R/\Sigma} r_{O,p}.$$

For any gauge q on R, we let

$$r_q = s_{q/p} r_p$$
.

Lemma 5.2. We have $\partial r_q = t_q$ as cocycles of W_F for any gauge q. Moreover, for a fixed χ -datum, all choices involved in constructing r_q only change it by a coboundary.

Similarly, we may replace χ -data with ζ -data and form 1-cocycles (not just cochains) c_p . Since c_p is already a cocycle, we don't need to define c_q hence we use $c=c_p$. Agian for a fixed ζ -datum, all choices made in the construction have no effect on the cohomology class of c.

5.3. Return to the concrete setting of reductive group G. Again T is a maximal F-torus of G. We have the fixed Γ_F -splitting $(\check{\mathbf{T}}, \check{\mathbf{B}}, \{X_{\check{\alpha}}\})$ of $\check{\mathsf{G}}$.

An embedding ξ : ${}^{L}T \rightarrow {}^{L}G$ is called *admissible* if

- (1) it induces isomorphism $\check{T} \to \check{T}$ that is the same as the one induced by some choice of Borel B containing T and \check{B} ,
- (2) it is a morphism of extensions

$$1 \longrightarrow \check{\mathsf{T}} \longrightarrow {}^{\mathsf{L}}\mathsf{T} \longrightarrow W_{\mathsf{F}} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel \qquad .$$

$$1 \longrightarrow \check{\mathsf{G}} \longrightarrow {}^{\mathsf{L}}\mathsf{G} \longrightarrow W_{\mathsf{F}} \longrightarrow 1$$

Note that $\check{T} \to \check{T}$ is *not* W_F -equivariant in general, and the \check{G} -conjugacy class of ξ is independent of B or (T, B). We will attach to each χ -datum for the Γ_F -action on R(G, T) an admissible embedding ξ : $^LT \to ^LG$, whose \check{G} conjugacy class is canonical.

To start we fix a Borel B containing T. Thus we can transfer the action of Γ_F on $\mathbb{X}(T)$ to an action on $\check{\mathbb{X}}(\check{\mathbf{T}})$, through $\Psi_0(G)$. Thus we obtain an embedding $\Gamma_F \to \Omega_{\check{\mathbf{T}}} \rtimes \Gamma_F$, hence a set-theoretic map $\omega_T \colon \Gamma_F \to \Omega_{\check{\mathbf{T}}}$ and we can inflate it to W_F . Let $W_T \subset \Omega_{\check{\mathbf{T}}} \rtimes W_F$ be the subgroup of elements $\omega_T(w) \rtimes w$ where $w \in W_F$. The construction $\mathfrak{n} \colon \Omega_T \to N_G(T)$ also makes sense on the dual side, so we have

$$\check{n}\colon \Omega_{\check{T}} \longrightarrow N_{\check{G}}(\check{T})$$

that is Γ_F -equivariant, hence also W_F -equivariant. Still use \check{n} to denote the map $\check{n} \times id \colon \Omega_{\check{T}} \rtimes W_F \to N_{\check{G}}(\check{T}) \rtimes W_F$.

Let $p = p_{\check{\mathbf{B}}}$ be the gauge on $\check{\mathsf{R}}(\check{\mathsf{G}},\check{\mathsf{T}})$ determined by $\check{\mathbf{B}}$. Then the cocycle of $\Omega_{\check{\mathsf{T}}} \rtimes W_{\mathsf{F}}$, with value in $\check{\mathsf{T}}(\mathbb{C})$

$$t_p(w_1, w_2) = \check{n}(w_1)\check{n}(w_2)\check{n}(w_1w_2)^{-1}$$

is a coboundary when restricted to W_T . A choice of a χ -datum $\{\chi_{\alpha}\}$ of Γ_F -action (hence W_F -action) on R(G, T) transports to a χ -datum of W_T -action on $\check{R}(\check{G},\check{T})$. Note $\{\chi_\alpha^{-1}\}$ is also a χ -datum, and we use it to form 1-cochain r_p^{-1} , so that $\partial r_p^{-1} = t_p$. Thus we obtain homomorphism

$$\xi \colon {}^{L}T \longrightarrow {}^{L}G$$

$$t \rtimes w \longmapsto t_{B,\check{\mathbf{p}}}r_{p}(w)\check{\mathbf{n}}(w),$$

where $t \mapsto t_{B,\check{B}}$ is the map induced by choice of B, and \check{B} .

5.4. To summarize the construction more simply: we are basically embedding the action of W_T on $\check{\mathbf{T}}$, which contains the same information as ${}^{L}\mathsf{T}$, into $N_{\check{\mathsf{G}}}(\check{\mathbf{T}}) \rtimes W_{\mathsf{F}} \subset {}^{L}\mathsf{G}$, an object formed using the "standard" (relative to a choice of splitting anyway) action of $W_{\rm F}$.

The effect of various choices and naturalities of ξ can be summarized as follows:

- (1) for fixed Γ_F -splitting, choice of B, and choice of χ -data, ξ is determined upto $\check{\mathbf{T}}$ -conjugacy,
- (2) change of Γ_F -splitting will change ξ by Int g for some $g \in \check{G}^{\Gamma_F}$, (3) change of B into B' = ν B ν^{-1} where $\nu \in N_G(T)$ will change ξ in the following way: Int ν acts on T hence on \check{T} , and thus on \check{T} using ξ . Call this action μ . Let $g \in N_{\check{G}}(\check{T})$ acts on \check{T} as μ , then ξ' obtained using B' is equal to Int $g^{-1} \circ \xi$.
- (4) change of χ -data results in a ζ -datum by taking quotient, then ξ is multiplied by the cocycle c obtained from that ζ -datum, i.e. $\xi'(t \times w) = c(w)\xi(t \times w)$,
- (5) if Int g transports $(T, \{\chi_{\alpha}\})$ to $(T', \{\chi'_{\alpha}\})$, then ξ' is simply the composition of ξ with canonical map $^{L}T' \rightarrow ^{L}T$ induced by Int g,
- (6) finally, if F is global, there are two ways to pass from global to local an admissible embedding attached to a global χ -datum: one is directly via map $W_{F_{\nu}} \to W_F$ for any place ν , and the other is by naturally induce a local χ -datum from the global one, and then attach a local admissible embedding to the χ -datum. One can show there is a choice of those auxiliary data on the way so that these two ways coincide.

6. Endoscopic Groups and Transfer Factors

6.1. Recall we have for an F-group G the L-group ^LG. Let G* a quasi-split inner form of G, and $\psi \colon G \to G^*$ a fixed inner twist. Then ψ induces isomorphism of L-groups

$${}^{L}\psi\colon {}^{L}G^{*}\longrightarrow {}^{L}G.$$

- **6.2.** An endoscopic datum is a quadruple (H, \mathcal{H}, s, ξ) where
 - (1) $s \in \check{G}$ is semisimple,
 - (2) H is quasi-split reductive over F, with L-group ^{L}H and a fixed Γ_{F} -splitting \mathbb{Spl} ,
 - (3) \mathcal{H} is a split extension of W_F by \check{H} , whose associated L-action (for Spl) is the same as the one for ^LH,
 - (4) $\xi: \mathcal{H} \to {}^L G$ is an L-embedding, i.e. a morphism of extensions

such that the isomorphic image of \check{H} is equal to $C_{\check{G}}(s)_0$ (the connected centralizer), and that Int $s \circ \xi = \mathfrak{a} \xi$, where \mathfrak{a} is a cohomologically trivial 1-cocycle of W_F in $Z(\check{G})$, inflated to \mathscr{H} .

In this notes \mathcal{H} will be limited to ^LH for simplicity. Maybe the general case will be added later.

6.3. Given G and endoscopic datum (H, \mathcal{H}, s, ξ) , one can construct a canonical map from the semisimple conjugacy classes of $H(\bar{F})$ to those of $G(\bar{F})$. Indeed, one chooses a Borel pair (T, B) in G and one $(\mathcal{T}, \mathcal{B})$ in \check{G} , which will identify the Weyl group $\Omega(G, T)$ with $\Omega(G, \mathcal{T})$, through $\Psi_0(G)$ and $\Psi_0(\check{G}) = \check{\Psi}_0(G)$ (without concerning Γ_F -action at this point).

Similarly for H we have (T_H, B_H) and $(\mathscr{T}_H, \mathscr{B}_H)$, and identification $\Omega(H, T_H) \simeq_{B_H, \mathscr{B}_H} \Omega(\check{H}, \mathscr{T}_H)$. The embedding $\xi \colon \check{H} \to \check{G}$ gives embedding $\xi \colon \check{H} \to \check{G}$. We can find $x \in \check{G}$ such that $\operatorname{Int} x \circ \xi$ maps \mathscr{T}_H isomorphically onto \mathscr{T} . Thus we have isomorphisms (depending on a lot of choices, and doesn't play with Γ_F in general)

$$\check{\mathsf{T}}_{\mathsf{H}} \stackrel{\sim}{\longrightarrow} \mathscr{T}_{\mathsf{H}} \stackrel{\sim}{\longrightarrow} \mathscr{T} \stackrel{\sim}{\longrightarrow} \check{\mathsf{T}},$$

and thus an isomorphism $T_H \stackrel{\sim}{\to} T$. On the other hand, $\operatorname{Int} x \circ \xi$ also embeds $\Omega(\check{H}, \mathscr{T}_H)$ into $\Omega(\check{G}, \mathscr{T})$, hence $\Omega(H, T_H)$ into $\Omega(G, T)$. Therefore we have a map

$$T_H/\Omega(H,T_H) \longrightarrow T/\Omega(G,T)$$
.

By a well-known result of Steinberg, it induces a map

$$\mathscr{A}_{H/G} \colon \operatorname{Cl}_{\operatorname{ss}}(H(\bar{\mathsf{F}})) \longrightarrow \operatorname{Cl}_{\operatorname{ss}}(G(\bar{\mathsf{F}})).$$

In the case $G = G^*$ and T_H is defined over F, we may in fact choose (T, B) (without affecting other choices) so that T, and $T_H \to T$ are both defined over F. In this case we call $T_H \to T$ admissible.

Since all choices made in constructing $\mathscr{A}_{H/G}$ can only be changed using inner automorphisms, we see $\mathscr{A}_{H/G}$ is canonical. In fact, $\mathscr{A}_{H/G}$ is defined over F, or equivalently Γ_F -equivariant. So if a class $[\gamma_H] \in Cl_{ss}(H(\overline{F}))$ is represented by $\gamma_H \in H(F)$, then $\mathscr{A}_{H/G}([\gamma_H]) = [\gamma]$ for some $\gamma \in G(F)$.

Definition 6.1. An element in either H(F) or G(F) is called *strongly regular semisimple* if its centralizer is a torus. An element $\gamma_H \in H(F)$ is called *(resp. strongly)* G-regular semisimple if it is semisimple, and $\mathscr{A}_{H/G}([\gamma_H])$ is a (resp. strongly) regular semisimple class.

A (strongly) G-regular semisimple element is necessarily (strongly) regular semisimple.

6.4. Let F be local. We will now describe the transfer factors for G and endoscopic datum $(H, {}^LH, s, \xi)$. From now on subscript \bullet_H denotes objects related to H, \bullet_G their counterparts related to G, and no subscript means those for G^* . Let G_{SC} be the simply-connected cover of G^* , and subscript \bullet_{SC} denotes liftings to G_{SC} of objects related to G^* .

Let $\gamma_H \in H(F)$ be strongly G-regular semisimple, and $\gamma_G \in G(F)$ strongly regular semisimple, and $\mathscr{A}_{H/G}([\gamma_H]) = [\gamma_G]$. Let $T_H = C_H(\gamma_H)$, and $T_H \to T \subset G^*$ an admissible embedding. Let γ be the image of γ_H in T. We fix a α -datum and a χ -datum for Γ_F -action on $R(G^*, T)$ (equivalently $\check{R}(G^*, T)$).

Without loss of generality, we may assume the choice of $(\mathscr{T},\mathscr{B})$ and $(\mathscr{T}_H,\mathscr{B}_H)$ in constructing embedding $T_H \to T$ is the same as the one that is part of a fixed Γ_F -splitting of \check{G} and \check{H} respectively. We may even assume ξ maps \mathscr{T}_H to \mathscr{T} and \mathscr{B}_H into \mathscr{B} . In this way we have $s \in \mathscr{T}$, whose image in \check{T} is denoted s_T . Since s is central in $\xi(\check{H})$, s_T depends only on $T_H \to T$ (in particular, independent of B_H) after the explicit choices made on the dual side.

The embedding $Z(\check{G}) \to \check{T}$ is canonical, thus allows us to define $\check{T}_{AD} = \check{T}/Z(\check{G})$, which is canonically isomorphic to the dual torus of T_{SC} . By definition, the image of s_T in \check{T}_{AD} is Γ -invariant, hence gives a well-defined element $s_T \in \pi_0(\check{T}_{AD}^{\Gamma_F})$.

6.5. Fix once and for all an F-splitting \mathbb{Spl} of G^* , which is also regarded as an F-splitting of G_{SC} . The first term in the transfer factor is

$$\Delta_{\rm I}(\gamma_{\rm H}, \gamma_{\rm G}) = \langle \lambda_{\rm T_{SC}}, \mathbf{s}_{\rm T} \rangle,$$

where $\lambda_{T_{SC}}$ is computed using SpI, and the pairing is Tate-Nakayama duality.

Lemma 6.2. For any two pairs (γ_H, γ_G) and (Γ'_H, γ'_G) , their quotient

$$\Delta_{I}(\gamma_{H},\gamma_{G},\gamma_{H}',\gamma_{G}') \coloneqq \Delta_{I}(\gamma_{H},\gamma_{G})/\Delta_{I}(\gamma_{H}',\gamma_{G}')$$

is independent of Spl.

6.6. It makes sense to regard $R(H, T_H)$ as a Γ_F -stable subset of $R(G^*, T)$ via (the construction of) admissible embedding $T_H \to T$. With this note, the second term is

$$\Delta_{II}(\gamma_H,\gamma_G) = \prod_{[\alpha] \in [R(G^*,T) - R(H,T_H)]/\Gamma_F} \chi_{\alpha}\left(\frac{\alpha(\gamma) - 1}{\alpha_{\alpha}}\right),$$

which can be verified to be well defined. We also define

$$\Delta_{II}(\gamma_H, \gamma_G, \gamma_H', \gamma_G') := \Delta_{II}(\gamma_H, \gamma_G) / \Delta_{II}(\gamma_H', \gamma_G').$$

6.7. For the third term we first deal with when $G=G^*$, and $\psi=id$. Then we can find $h\in G_{SC}$ such that $h\gamma_Gh^{-1}=\gamma$, and the cohomology class of cocycle $\nu\colon \sigma\mapsto h\sigma(h)^{-1}$ in $H^1(F,T_{SC})$ is independent of h. We use $inv(\gamma_H,\gamma_G)$ for this class. Then the first part of the third term is

$$\Delta_{\text{III}_1}(\gamma_H, \gamma_G) = \langle \text{inv}(\gamma_H, \gamma_G), \mathbf{s}_T \rangle^{-1},$$

and

$$\Delta_{\mathrm{III}_1}(\gamma_H,\gamma_G,\gamma_H',\gamma_G') \coloneqq \Delta_{\mathrm{III}_1}(\gamma_H,\gamma_G)/\Delta_{\mathrm{III}_1}(\gamma_H',\gamma_G').$$

In general case where G is not necessarily quasi-split, one cannot define Δ_{III_1} for a pair (γ_H, γ_G) only, and has to define the relative term to another pair (γ_H', γ_G') , as follows. Let $\mathfrak{u}(\sigma) \in G_{SC}$ be such that $\psi\sigma(\psi)^{-1} = \operatorname{Int}\mathfrak{u}(\sigma)$ for $\sigma \in \Gamma_F$, and find $h, h' \in G_{SC}$ such that

$$h\psi(\gamma_G)h^{-1} = \gamma,$$

$$h'\psi(\gamma'_G)h'^{-1} = \gamma',$$

and set

$$v(\sigma) = hu(\sigma)\sigma(h)^{-1},$$

$$v'(\sigma) = h'u(\sigma)\sigma(h')^{-1},$$

well-defined up to coboundaries. Since $\partial u = \partial v = \partial v'$, all of which taking values in Z_{SC} , if we let U to be the torus

$$T_{SC} \times T'_{SC} / \{(z, z^{-1}) \mid z \in Z_{SC}\},\$$

then (ν,ν'^{-1}) induces a well-defined class independent of $\mathfrak u,\mathfrak h$ and $\mathfrak h'$

inv
$$\left(\frac{\gamma_H, \gamma_G}{\gamma_H', \gamma_G'}\right) \in H^1(F, U)$$
.

Note that our notation here is the reciprocal of that in Langlands-Shelstad, because I want to be more consistent in notations with quasi-split case.

On the other hand, we have simply-connected cover \check{G}_{SC} of the derived group of \check{G} , and \mathscr{T}_{SC} the preimage of \mathscr{T} . Let $\widetilde{s} \in \mathscr{T}_{SC}$ be an element that has the same image as s in \mathscr{T}_{AD} , then the isomorphism $\mathscr{T} \to \check{T}$ constructed on the way of choosing an admissible embedding (again, choice

of B_H doesn't matter) induces an isomorphism $\mathscr{T}_{SC} \to \check{T}_{SC}$, where the latter is the dual torus of $T_{AD} = T/Z(G)$. The image of \widetilde{s} in \check{T}_{SC} is denoted by \widetilde{s}_T . Similarly we have $\widetilde{s}_T' \in \check{T}_{SC}'$. They both depends only on the admissible embeddings $T_H \to T$ and $T_H' \to T'$ (after fixing choices on the dual side at the beginning anyway).

The dual torus of U may be canonically identified with

$$\check{\mathsf{U}} \simeq \check{\mathsf{T}}_{SC} \times \check{\mathsf{T}}'_{SC} / \{(z,z) \mid z \in \mathsf{Z}(\check{\mathsf{G}}_{SC})\}.$$

Let s_U be the image of $(\widetilde{s}_T,\widetilde{s}_T')$ in \check{U} , then it is independent of choice of \widetilde{s} . Then s_U is also Γ_F -invariant, hence defines an element $\mathbf{s}_U \in \pi_0(\check{U}^{\Gamma_F})$. Then Tate-Nakayama duality enables us to define

$$\Delta_{\mathrm{III}_{1}}(\gamma_{H}, \gamma_{G}, \gamma_{H}', \gamma_{G}') = \left\langle \mathrm{inv}\left(\frac{\gamma_{H}, \gamma_{G}}{\gamma_{H}', \gamma_{G}'}\right), \mathbf{s}_{\mathrm{U}} \right\rangle^{-1}.$$

This is consistent with quasi-split case.

6.8. Continuing with the third term. It is the only part $\mathscr{H} = {}^L H$ will be used. Here we need to use the choice of B_H and B explicitly, and it has no effect on the end product. Such choices together with the χ -datum gives us admissible embeddings

$$\xi_{T_H} \colon {}^L T_H \longrightarrow {}^L H,$$

$$\xi_T \colon {}^L T \longrightarrow {}^L G.$$

Thus we obtain a 1-cocycle α : $W_F \to \mathscr{T}$ (with the W_F -action on $\check{\mathsf{T}}$ transported to \mathscr{T} via embedding ξ_T , instead of the "original" one), inflated to ${}^L\mathsf{T}$ such that

$$\xi\circ\xi_{T_H}=\alpha\xi_T.$$

Its class $\mathbf{a} \in H^1(W_F, \check{T})$ is independent of the choices of B_H , B, nor splittings on \check{H} or \check{G} . Then we define

$$\Delta_{\rm III_2}(\gamma_{\rm H},\gamma_{\rm G})=\langle {\bf a},\gamma\rangle,$$

where the pairing is the canonical isomorphism

$$H^1(W_F, \check{\mathsf{T}}) \simeq \mathrm{Hom}_{\mathrm{cont}}(\mathsf{T}(\mathsf{F}), \mathbb{C}^{\times}).$$

We also define as before

$$\Delta_{\mathrm{III}_2}(\gamma_H,\gamma_G,\gamma_H',\gamma_G') \coloneqq \Delta_{\mathrm{III}_2}(\gamma_H,\gamma_G)/\Delta_{\mathrm{III}_2}(\gamma_H',\gamma_G').$$

6.9. The final term of transfer factor is essentially just the discriminant function. For $\gamma \in T(F)$, we define

$$D_{G^*}(\gamma) = \prod_{\alpha \in R(G^*,T)} |\alpha(\gamma) - 1|_F^{\frac{1}{2}}.$$

Similarly we can define $D_H(\gamma_H)$. Then

$$\Delta_{\text{IV}}(\gamma_H,\gamma_G) = D_{G^*}(\gamma) D_H(\gamma_H)^{-1}.$$

Again we let

$$\Delta_{\mathrm{IV}}(\gamma_{\mathrm{H}}, \gamma_{\mathrm{G}}, \gamma_{\mathrm{H}}', \gamma_{\mathrm{G}}') \coloneqq \Delta_{\mathrm{IV}}(\gamma_{\mathrm{H}}, \gamma_{\mathrm{G}}) / \Delta_{\mathrm{IV}}(\gamma_{\mathrm{H}}', \gamma_{\mathrm{G}}').$$

6.10. Finally, we can define the relative transfer factor

$$\Delta(\gamma_H,\gamma_G,\gamma_H',\gamma_G') \coloneqq (\Delta_I \Delta_{III_1} \Delta_{III_2} \Delta_{IV})(\gamma_H,\gamma_G,\gamma_H',\gamma_G').$$

If G is quasi-split, then we define the absolute transfer factor

$$\Delta(\gamma_H,\gamma_G) = \Delta_0(\gamma_H,\gamma_G) \coloneqq (\Delta_I \Delta_{II} \Delta_{III_1} \Delta_{III_2} \Delta_{IV})(\gamma_H,\gamma_G).$$

In general we have to fix a pair (γ_H', γ_G') and define $\Delta(\gamma_H', \gamma_G')$ arbitrarily (but nonzero), then define $\Delta(\gamma_H, \gamma_G) = \Delta(\gamma_H, \gamma_G, \gamma_H', \gamma_G') \Delta(\gamma_H', \gamma_G')$.

Theorem 6.3. The transfer factor $\Delta(\gamma_H, \gamma_G)$ is independent of choice of admissible embedding $T_H \to T$, α -data, or χ -data.

7. LOOSE ENDS

I didn't include all the properties of transfer factors, how they patch together globally, or how they extend to non-strongly G-regular elements.

References

- [1] Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190. MR1687096
- [2] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR909227