Computational Fluid Dynamics and Heat Transfer (ME 415), Autumn 2014

Assignment 1: Heat Conduction - I (10% Weight)

Due Date: 18th September 2015

Please submit a report on the assignment in the following manner:

- 1. Please write the algorithm (i.e. steps followed)
- 2. Provide grid details and the implemented boundary conditions
- 3. Results (Plots/data values at specific grid point(s))
- 4. Please do not use any in-built function, otherwise marks will be deducted
- 5. Please submit the code in softcopy ((if a generalized code is used, please mention for what problem which part of the code is used). Submission of results and documentation are in hardcopy.

DO NOT COPY FROM OTHERS. IF FOUND MARKS WILL NOT BE GIVEN.

Problems:

Note: Use TDMA for solving the following questions. Please develop TDMA which can be used in all problems.

- 1. In a large 5 cm thick brass plate of k = 111 W/m.K, heat is generated uniformly at a rate of 2×10^4 W/m³. One side of the plate is insulated while the other side is exposed to an environment at 25 °C with a heat transfer coefficient of 44 W/m²K. Using <u>Finite Volume</u> Method (FVM) and Finite Difference Method (FDM), find the followings:
 - a. Find the temperature distribution of the wall for grid sizes of $\Delta x = 0.01$, 0.001 and 0.0001.
 - b. Compare the results with the analytical solution.
 - c. Estimate the overall energy balance for these grid sizes $\Delta x = 0.01$, 0.001 and 0.0001.

(15+35)

- 2. A large industrial furnace is supported on a column of clay bricks which is of length L=1.5 m in x-direction by H=3 m in y-direction. The installation during the steady- state process is such that the column is subjected to following boundary conditions: (i) y=0, T=300 °C, (ii) x=0, T=30 °C, (iii) y=H, T=400 °C and (iv) x=L, T=30 °C. Choose a uniform grid size of 0.05 m in both directions. Use <u>FVM</u> for this problem.
 - a. Plot the temperature contours as the output. Please provide values of some isotherms.

(15+35)

Total: 100 (Formulation (hardcopy) + Code)