TC4007UBP/UBF

TC4007UBP/TC4007UBF DUAL COMPLEMENTARY PAIR PLUS INVERTER

TC4007UBP/UBF contains three elements of P-channel enhancement type MOS FET and three elements of N-channel enhancement type MOS FET. One pair of P-channel and N-channel functions as inverter and remaining two pairs provide the respective outputs of source and drain separately. Depending on how connections are made, the versatile applications such as inverter, waveform shaping circuits, NAND(NOR) gatys, linear amplifiers, clocked gates, transmission gates and high fan-out buffers are easily obtainable.

DIP14(3D14A-P) 14 MFP14(F14GB-P)

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS}-0.5 \sim V_{SS}+20$	v
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
Output Voltage*	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Ambient Temperature Range	TA	-40 ~ 85	°C
Storage Temperature Range	T _{stg}	-65 ∼150	°C
Lead Temp./Time	T _{sol}	260°C • 10 sec	

* Applicable for Dp, D $_{
m N}$, Sp, S $_{
m N}$ and OUT terminals.

LOGIC DIAGRAM

PIN ASSIGMENT

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	v_{DD}		3	-	18	V
Input Voltage	VIN		0	-	v_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (VSS=0V)

CHARACTERISTIC		SYM-	TEST CONDITION	VDD	-40°C		25°C			85°C		UNIT
CHARACI	EKISTIC	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
High-Level Output Voltage	V _{OH}	I _{OUT} < 1 \(\mathre{1} \)	5	4.95	_	4.95	5.00	-	4.95	-	V	
			10	9.95	-	9.95	10.00	-	9.95	-		
		V _{IN} =V _{SS}	15	14.95	-	14.95	15.00		14.95			
				5	-	0.05	-	0.00	0.05	-	0.05	
Low-Level Output Voltage	VOL	$ IOUT < 1\mu A$	10	-	0.05	-	0.00	0.05	-	0.05		
oucput v	ortage		VIN=VDD	15	-	0.05		0.00	0.05	-	0.05	
,			V _{OH} =4.6V	5	-0.61	-	-0.51	-1.0	-	-0.42	-	
			V _{OH} =2.5V	5	-2.5	_	-2.1	-4.0	-	-1.7	-	. mA
Output l	ligh	Іон	V _{OH} =9.5V	10	-i.5	-	-1.3	-2.2	-	-1.1	-	
Current			V _{OH} =13.5V	15	-4.0	_	-3.4	-9.0	-	-2.8	-	
			V _{IN} =V _{SS}								_	
	-	IOL	VOL=0.4V	5	0.61	-	0.51	1.5	-	0.42	-	
Output I	Low		V _{OL} =0.5V	10	1.5	-	1.3	3.8	-	1.1	_	
Current			VOL=1.5V	15	4.0	-	3.4	15.0	-	2.8	-	
			$v_{\rm IN}=v_{\rm DD}$									
			V _{OUT} =0.5V	5	4.0	-	4.0	3.0	-	4.0	_	
Input H	igh	VIH	V _{OUT} =1.0V	10	8.0	-	8.0	6.5	-	8.0	-	
Voltage			V _{OUT} =1.5V	15	12.0	_	12.0	9.5	-	12.0	-	
			I _{OUT} < 1µA									v
			VOUT=4.5V	5	-	1.0	-	3.0	1.0	-	1.0	
Input Low Voltage	VIL	V _{OUT} =9.0V	10	-	2.0	-	3.5	2.0	-	2.0	1	
		V _{OUT} =13.5V	15	-	3.0	-	5.5	3.0	-	3.0		
		IOUT < 1#A										
Input Current	"H" Leve	IIH	V _{IH} =18V	18	_	0.1	_	10-5	0.1	_	1.0	μA
	"L" Leve	IIIL	V _{IL} =0V	18		-0.1		-10-5	-0.1		-1.0	
				5	-	0.25	-	0.001	0.25	-	7.5	
,	nt Device	IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	0.5	-	0.001	0.5	-	15	μA
Current			*	15	_	1.0	_	0.002	1.0		30	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, v_{SS} =0V, c_L =50pF, INVERTER)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
0			5	_	80	180	
Output Transition Time (Low to High)	tTLH		10	-	50	90	ļ
0 /			15	_	40	70	ns
Output Transition Time			5	-	80	150	115
(High to Low)	t _{THL}		10	-	50	80	
			15		40	60	
Propagation Delay			5	_	55	110	
Time (Low to High)	t _{pLH}		10	-	25	60	
			15		20	50	ns
Propagation Delay Time (High to Low)	t _{pHL}		5	-	40	110	113
			10	-	20	60	
			15	_	15	50	
Input Capacitance	CIN			-	5	7.5	pF

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TYPICAL APPLICATION

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.