

Lecture 8. Graph Pattern Mining

- Graph Pattern and Graph Pattern Mining
- Apriori-Based Graph Pattern Mining Methods
- gSpan: A Pattern-Growth-Based Method
- CloseGraph: Mining Closed Graph Patterns
- Graph Pattern Mining Application: Graph Indexing
- Mining Top-K Large Structural Patterns in a Massive Network

Frequent (Sub)Graph Patterns

- Given a labeled graph dataset D = $\{G_1, G_2, ..., G_n\}$, the supporting graph set of a subgraph g is $D_a = \{G_i \mid g \subseteq G_i, G_i \in D\}$.
 - \square support(g) = $|D_g|/|D|$
- □ A (sub)graph g is **frequent** if support(g) \geq min_sup
- Ex.: Chemical structures
- Alternative:
 - Mining frequent subgraph patterns from a single large graph or network

 $min_sup = 2$

Frequent Graph Patterns

Applications of Graph Pattern Mining

- Bioinformatics
 - Gene networks, protein interactions, metabolic pathways
- Chem-informatics: Mining chemical compound structures
- Social networks, web communities, tweets, ...
- Cell phone networks, computer networks, ...
- Web graphs, XML structures, semantic Web, information networks
- Software engineering: program execution flow analysis
- Building blocks for graph classification, clustering, compression, comparison, and correlation analysis
- Graph indexing and graph similarity search

Graph Pattern Mining Algorithms: Different Methodologies

- Generation of candidate subgraphs
 - Apriori vs. pattern growth (e.g., FSG vs. gSpan)
- Search order
 - Breadth vs. depth
- Elimination of duplicate subgraphs
 - Passive vs. active (e.g., gSpan (Yan&Han'02))
- Support calculation
 - Store embeddings (e.g., GASTON (Nijssen&Kok'04, FFSM (Huan, et al.'03), MoFa (Borgelt and Berthold ICDM'02))
- Order of pattern discovery
 - □ Path → tree → graph (e.g., GASTON (Nijssen&Kok'04)