## Name:

## Logistics

- The quiz is closed book, closed notes, and calculator free. No form of collaboration or help is allowed.
- The quiz is **45 minutes** long. This time includes downloading, working on, and submitting a quiz **in a PDF format via Gradescope**.
- The quiz will be available starting from **5:00 PM until midnight** on scheduled week day (Thursday).
- The quiz have **20 points** in total.
- There is no extension or quiz retake.
- Show your full work to receive a full credit on each problem.
- 1. (a) Reduce the equation  $x^2 y^2 + z^2 4x 2z = 0$  to the standard form.
  - (b) Classify the surface from the part (a).
  - (c) Sketch the surface from part (a).

(a) 
$$x^2 - y^2 + 2^2 - 4x - 32 = 0$$
  
 $(x^2 - 4x + 4) - y^2 + (2^2 - 32 + 4) - 4 - 1 = 0$   
 $(x - 3)^2 - y^2 + (2 - 1)^2 = 5$   
 $(x - 3)^2 + (2 - 1)^2 = 1 + y^2$ 

(b) This is the hyperboloid of one sheet along y-axis.  $\frac{(x-2)^2}{(x-1)^2} + \frac{(2-1)^2}{(x-1)^2} = 1 + \frac{y^2}{(x-1)^2}$ 

If 
$$y=0$$
! We have a circle with  $r=\sqrt{5}$ .

2. Find the limit of the given vector function



- 3. **[5 points]** For the given vector function  $r(t) = e^{2t} \mathbf{i} + e^{t} \mathbf{j}$  and t = 0 find:
  - (a) Tangent vector r'(t).
  - (b) Sketch the position vector r(t) and the tangent vector r'(t) for the given value of t.





4. [5 points] Evaluate the following integral

$$\int \left( te^{2t} \,\mathbf{i} + \frac{t}{1-t} \,\mathbf{j} + \frac{1}{\sqrt{1-t^2}} \,\mathbf{k} \right) dt$$

= 
$$\frac{1}{2}i\int t d(e^{2t}) - i\int \frac{1-t-1}{1-t} dt + k \cdot \arcsin t =$$

= 
$$\pm i \left(t \cdot e^{\lambda t} - \int e^{\lambda t} dt\right) - i \int \left(1 - \frac{1}{1 - t}\right) dt + \kappa \arcsin t =$$

$$+ \angle c_{1}, c_{2}, c_{3} = \angle \frac{t e^{2t} - e^{2t}}{2} + c_{1}, -t - \ln|1 - t| + c_{2}, arcsint + c_{3}$$