Random models and probabilities

A *model* is a (simplified) map of reality.

Observing quantities from a model is achieved by performing an *experiment*.

Deterministic model: Identical outcome if experiment is repeated

Random model: Outcomes might be different if the experiment is

repeated

Components of a random model:

outcome: ω

sample space: set Ω consisting of all possible values that ω can attain

event: subset $B \subset \Omega$

probability: probability of an event is denoted by $P(B) \in \mathbb{R}$

Basic properties of probabilities

Axioms of probability:

- 1. $P(B) \geq 0$ for any $B \subset \Omega$
- 2. $P(\Omega) = 1$
- 3. If B and C are disjoint events (i.e., $B \cap C = \emptyset$), then

$$P(B \cup C) = P(B) + P(C)$$

Conclusions:

- 1. $P(B) \leq 1$ for any $B \subset \Omega$
- 2. $P(\bar{B}) = 1 P(B)$ for any $B \subset \Omega$ $(\bar{B} := \Omega \setminus B)$
- 3. $P(B \cup C) = P(B) + P(C) P(B \cap C)$ for all $B, C \subset \Omega$

Conditional probability

Assume C is an event with P(C) > 0. Then, the conditional probability of B given C is defined as

$$P(B \mid C) := \frac{P(B \cap C)}{P(C)}$$

Example: Suppose that a fair die is rolled once. Let C := number is less or equal to 3, B := number is odd. Then,

$$P(B) = P(\{1,3,5\}) = 1/2,$$

 $P(C) = P(\{1,2,3\}) = 1/2,$
 $P(B \cap C) = P(\{1,3\}) = 2/6$
 $\Rightarrow P(B \mid C) = \frac{2/6}{1/2} = \frac{2}{3} \neq P(B)$

Conditional probabilities: Penetrances

Suppose that the susceptibility to a certain disease depends on the genotype at one diallelic locus with alleles D and d. Then, the *penetrances* of the disease are the conditional probabilities that an individual is affected given the genotype:

$$f_{DD} := P(\text{``affected''} \mid DD)$$
 $f_{Dd} := P(\text{``affected''} \mid Dd)$
 $f_{dd} := P(\text{``affected''} \mid dd)$

 $f_{DD}=f_{Dd}=1$, $f_{dd}=0$: fully penetrant dominant mode of inheritance $f_{DD}=1$, $f_{Dd}=f_{dd}=0$: fully penetrant recessive mode of inheritance

Independent events

Two events *B* and *C* are *independent* if

$$P(B \cap C) = P(B) \cdot P(C).$$

For B with P(B) > 0, this is equivalent to

$$P(C) = P(C \mid B) = \frac{P(B \cap C)}{P(B)},$$

i.e., the probability of C equals the conditional probability of C given B. In other words, B and C are independent if the occurrence of B does not influence the occurrence of C and vice versa.

Hardy-Weinberg equilibrium

Example (Hardy-Weinberg equilibrium):

Consider a locus with alleles A_1, \ldots, A_s . Let $p_j := P(A_j)$ denote the population frequency of allele A_j . Further, let g_{ij} denote the probability that a randomly chosen individual possesses genotype A_iA_j . Under the assumption that the alleles inherited by the mother (ma) and father (fa) are independent, it follows that

$$g_{ii} = P((ma = A_i) \cap (fa = A_i)) = p_i^2,$$

 $g_{ij} = P((ma = A_i) \cap (fa = A_j)) + P((ma = A_j) \cap (fa = A_i))$
 $= 2p_i p_j.$

If the genotype probabilities satisfy these formulae, we have Hardy-Weinberg equilibrium.

Law of total probability

Let C_1,\ldots,C_k be a disjoint decomposition of the sample space Ω (i.e., $C_i\cap C_j=\emptyset$ for $i\neq j$ and $\bigcup_{j=1}^k C_j=\Omega$). Then, for every event B,

$$P(B) = P(B \cap (\bigcup_{j=1}^{k} C_j))$$

$$= P(\bigcup_{j=1}^{k} (B \cap C_j))$$

$$= \sum_{j=1}^{k} P(B \cap C_j)$$

$$= \sum_{j=1}^{k} P(B \mid C_j) \cdot P(C_j)$$

Example: Prevalence under HWE

Consider a diallelic disease locus with alleles D and d. Let p denote the frequency of allele D. Let f_{DD} , f_{Dd} , and f_{dd} denote the penetrances of the disease. Let C_{DD} , C_{Dd} , and C_{dd} denote the event that a randomly picked individual has genotype DD, Dd, and dd, respectively. Then,

$$K_P := P(\text{``affected''}) = P(\text{``affected''} \mid C_{DD}) \cdot P(C_{DD})$$

$$+P(\text{``affected''} \mid C_{Dd}) \cdot P(C_{Dd})$$

$$+P(\text{``affected''} \mid C_{dd}) \cdot P(C_{dd})$$

$$= f_{DD} \cdot p^2 + f_{Dd} \cdot 2p(1-p) + f_{dd} \cdot (1-p)^2$$

Bayes' Theorem

Let C_1, \ldots, C_k be a disjoint decomposition of the sample space Ω . Then, for any event B, and for $i = 1, \ldots, k$

$$P(C_i \mid B) = \frac{P(B \mid C_i) \cdot P(C_i)}{P(B)} = \frac{P(B \mid C_i) \cdot P(C_i)}{\sum_{j=1}^k P(B \mid C_j) \cdot P(C_j)}$$

Example: Genotype distribution in affecteds

With the notation of the previous example, it follows that

$$P(C_{DD} \mid \text{``affected''}) = \frac{f_{DD} \cdot p^2}{K_P}$$
 $P(C_{Dd} \mid \text{``affected''}) = \frac{f_{Dd} \cdot 2p(1-p)}{K_P}$
 $P(C_{dd} \mid \text{``affected''}) = \frac{f_{dd} \cdot (1-p)^2}{K_P}$

Exercise:

Show that the genotype distribution in affected individuals is in

Hardy-Weinberg equilibrium if and only if $f_{Dd} = \sqrt{f_{DD} \cdot f_{dd}}$.

Random variable

A random variable (r.v.) X is a function of the outcome ω in a random experiment. X represents that part of the outcome which can be observed or the part which is of current interest.

Examples:

1. Rolling a die once:

 $X := \text{number of the die } (X \in \{1, \dots, 6\})$

- 2. Rolling a die ten times:
 - X := number of throws resulting in a "6" ($X \in \{0, ..., 10\}$)
 - $X := \text{sum of all ten throws } (X \in \{10, ..., 60\})$
- 3. X := Genotype of an individual at some diallelic locus $(X \in \{DD, Dd, dd\})$

Discrete random variable

A random variable X is *discrete* if the set of possible values x_i is countable, i.e., can be arranged in a (possibly infinite) sequence x_1, x_2, \ldots

Suppose the random variable X is discrete. The *probability function* is defined by

$$x_i \to P(X = x_i)$$
 for $i = 1, 2, ...$

Example: Binomial distribution

A sequence of n random experiments is conducted. In each single experiment, only two different outcomes are possible: "success" or "failure". Let $p \in [0,1]$ denote the probability of "success" in a single experiment. Further, assume that the outcome of one single experiment is not influenced by the outcomes of all other single experiments. Let X denote the total number of successes in n experiments. Then, $X \in \{0, \dots, n\}$ and

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 for $k = 0, ..., n$.

This equation gives the probability function of the binomial distribution Bin(n, p).

Continuous random variable

A random variable X is *continuous* if a function $x \to f_X(x)$ exists such that

$$P(b < X \le c) = \int_b^c f_X(x) dx \text{ for all } b, c \in \mathbb{R} \text{ with } b < c.$$

 $f_X(x)$ is the probability density function of X.

Example (Uniform distribution):

Let $b, c \in \mathbb{R}$ and b < c. The random variable X is said to have a uniform distribution on the interval [b, c] if its probability density function is given by

$$f_X(x) = \begin{cases} 0 & \text{for } x < b \\ 1/(c-b) & \text{for } b \le x \le c \\ 0 & \text{for } x > c \end{cases}$$

Notation: $X \sim U(b, c)$

Example: Normal distribution

The random variable X is said to have a *normal distribution* if its probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \text{ for } x \in \mathbb{R}.$$

Notation: $X \sim N(\mu, \sigma^2)$

Special case: $\mu = 0$, $\sigma = 1 \Rightarrow$ standard normal distribution N(0, 1)

Example: χ^2 distribution

The random variable X is said to have a χ^2 distribution if its probability density function is given by

$$f_X(x) = \frac{1}{2^{n/2} \cdot \Gamma(n/2)} x^{n/2-1} \exp(-x/2) \text{ for } x > 0.$$

Notation: $X \sim \chi_n^2$

Distribution function

The *cumulative distribution function* (cdf) of a real-valued random variable X is defined as

$$F_X(x) = P(X \le x), x \in \mathbb{R}.$$

Special cases:

• discrete r.v.:
$$F_X(x) = \sum_{y \le x} P(X = y)$$

• continuous r.v.:
$$F_X(x) = \int_{-\infty}^x f_X(y) \ dy$$

Quantile

Let $\alpha \in (0, 1)$. The α -quantile of the distribution of a continuous random variable X is defined as that number x_{α} with $F_X(x_{\alpha}) = \alpha$.

Example: Distribution function of N(0,1) and $x_{0.9} = 1.28155$

Conditional distribution

Suppose that X and Y are random variables, $x \in \mathbb{R}$ and P(X = x) > 0.

• If *Y* is discrete, then

$$y \to P(Y = y \mid X = x) := \frac{P((Y = y) \cap (X = x))}{P(X = x)}$$

is the conditional probability function of Y given X = x.

• If Y is continuous and if there is a function $y \to f_{Y|X}(y \mid x)$ such that

$$P(b < Y \le c \mid X = x) := \frac{P(b < Y \le c \cap X = x)}{P(X = x)}$$

$$= \int_{b}^{c} f_{Y|X}(y \mid x) \, dy \text{ for all } b < c,$$

then $f_{Y|X}(y \mid x)$ is the conditional density function of Y given X = x.

Independent random variables

Let X and Y be two random variables with distribution function F_X and F_Y , respectively. Let

$$F_{(X,Y)}(x,y) := P((X \le x) \cap (Y \le y))$$

denote the distribution function of the joint distribution of (X, Y). Then, X and Y are *independent* if

$$F_{(X,Y)}(x,y) = F_X(x) \cdot F_Y(y)$$
 for all $x, y \in \mathbb{R}$.

Example

Consider a diallelic marker locus with alleles "1" and "2". Let p denote the population frequency of allele "1". Now, consider the following pedigree:

What is the probability of observing these marker genotypes in a family with two parents and two children, i.e.,

$$P((G_1 = (1,1)) \cap (G_2 = (1,2)) \cap (G_3 = (1,1)) \cap (G_4 = (1,2))) = ?$$

Example (continued)

Step 1:

$$P((G_1 = (1,1)) \cap (G_2 = (1,2)) \cap (G_3 = (1,1)) \cap (G_4 = (1,2)))$$

$$= P(G_1 = (1,1)) \cdot P(G_2 = (1,2) \mid G_1 = (1,1))$$

$$\cdot P(G_3 = (1,1) \mid (G_1 = (1,1)) \cap (G_2 = (1,2)))$$

$$\cdot P(G_4 = (1,2) \mid (G_1 = (1,1)) \cap (G_2 = (1,2)) \cap (G_3 = (1,1)))$$

Step 2:

random mating
$$\Rightarrow P(G_2 = (1,2) \mid G_1 = (1,1)) = P(G_2 = (1,2))$$

Step 3:

given parental genotypes, the genotypes of the children are independent

$$\Rightarrow P(G_4 = (1,2) \mid (G_1 = (1,1)) \cap (G_2 = (1,2)) \cap (G_3 = (1,1)))$$
$$= P(G_4 = (1,2) \mid (G_1 = (1,1)) \cap (G_2 = (1,2)))$$

Example (continued)

Step 4:

given parental genotypes, the genotype of the child is determined by Mendelian segregation

$$\Rightarrow P(G_3 = (1,1) \mid (G_1 = (1,1)) \cap (G_2 = (1,2))) = 0.5,$$

$$P(G_4 = (1,2) \mid (G_1 = (1,1)) \cap (G_2 = (1,2))) = 0.5$$

Step 5:

assuming HWE in the parental generation

$$\Rightarrow P(G_1 = (1,1)) = p^2 \text{ and } P(G_2 = (1,2)) = 2 \cdot p \cdot (1-p)$$

Step 1-5:

$$P((G_1 = (1,1)) \cap (G_2 = (1,2)) \cap (G_3 = (1,1)) \cap (G_4 = (1,2)))$$
$$= p^2 \cdot 2 \cdot p \cdot (1-p) \cdot 1/2 \cdot 1/2 = p^3 \cdot (1-p)/2$$

Expectation of a random variable

The *expected value* of a random variable *X* is defined as

•
$$E(X) := \sum_{i} x_i \cdot P(X = x_i)$$
, if X is discrete

•
$$E(X) := \int_{-\infty}^{\infty} x \cdot f_X(x) \ dx$$
, if X is continuous

Examples:

1.
$$X \sim \text{Bin}(n, p)$$
: $E(X) = \sum_{i=0}^{n} i \cdot {n \choose i} \cdot p^i \cdot (1-p)^{n-i} = n \cdot p$

2.
$$X \sim U(b,c)$$
: $E(X) = \int_b^c x \cdot \frac{1}{c-b} dx = \frac{1}{c-b} \cdot \left[\frac{x^2}{2} \right]_{x=b}^{x=c} = \frac{c+b}{2}$

3.
$$X \sim N(\mu, \sigma^2)$$
: $E(X) = \mu$

Variance of a random variable

The *variance* of a random variable X is $Var(X) := E[(X - E(X))^2]$, i.e.,

•
$$Var(X) := \sum_{i} (x_i - E(X))^2 \cdot P(X = x_i)$$
, if X is discrete

•
$$Var(X) := \int_{-\infty}^{\infty} (x - E(X))^2 \cdot f_X(x) dx$$
, if X is continuous

Examples:

1. $X \sim Bin(n, p)$:

$$Var(X) = \sum_{i=0}^{n} (i - n \cdot p)^{2} \cdot {n \choose i} \cdot p^{i} \cdot (1 - p)^{n-i} = n \cdot p \cdot (1 - p)$$

2.
$$X \sim U(b,c)$$
: $Var(X) = \int_b^c \left(x - \frac{b+c}{2}\right)^2 \cdot \frac{1}{c-b} dx = \frac{(c-b)^2}{12}$

3.
$$X \sim N(\mu, \sigma^2)$$
: $Var(X) = \sigma^2$

Covariance and correlation coefficient

The *covariance* between two random variables X and Y is given by

$$Cov(X,Y) := E[(X - E(X)) \cdot (Y - E(Y))],$$

and the *correlation coefficient* between X and Y is defined as

$$\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}.$$

Example: Covariance and correlation coefficient

Plots of 100 pairs (X, Y), when both X and $Y \sim N(0, 1)$

Independence and correlation

Two random variables X and Y are said to be *uncorrelated* if

$$Cov(X, Y) = 0.$$

If X and Y are independent, then X and Y are uncorrelated. The converse is generally not true, i.e.,

X and Y uncorrelated $\Rightarrow X$ and Y independent.

However, if X and Y both have a normal distribution and are uncorrelated, then X and Y are independent.

Example: Dependence and uncorrelation

Exercise:

Assume that $P((X = -1) \cap (Y = 0)) = P((X = 0) \cap (Y = 1)) =$

$$P((X = 0) \cap (Y = -1)) = P((X = 1) \cap (Y = 0)) = 1/4.$$

Show that (i) X and Y are uncorrelated, but (ii) X and Y are dependent.

(Hint: For
$$(ii)$$
, show that $F_{(X,Y)}(-1,-1) \neq F_X(-1) \cdot F_Y(-1)$.)

Properties of E(X), Var(X), Cov(X), and $\rho(X)$

Let X and Y be random variables and $b, c, d, e \in \mathbb{R}$. Then,

- $E(bX + c) = b \cdot E(X) + c$
- $Var(bX + c) = b^2 \cdot Var(X)$
- $Cov(bX + c, dY + e) = b \cdot d \cdot Cov(X, Y)$
- if b, d > 0, then $\rho(bX + c, dY + e) = \rho(X, Y)$
- $\rho(X,Y) \in [-1,1]$ and
 - $\star \rho(X,Y) = 1$ if and only if Y = bX + c for some b > 0
 - $\star \rho(X,Y) = -1$ if and only if Y = bX + c for some b < 0

Example: Standardizing a random variable

Let X be a random variable with Var(X) > 0. Let

$$Z := \frac{X - \mathrm{E}(X)}{\sqrt{\mathrm{Var}X}}.$$

Then, Z is called the *standardized random variable* corresponding to X.

Since

$$Z = \underbrace{\frac{1}{\sqrt{\operatorname{Var} X}}}_{=:b} \cdot X - \underbrace{\frac{\operatorname{E}(X)}{\sqrt{\operatorname{Var} X}}}_{=:c},$$

it follows that $E(Z) = b \cdot E(X) - c = 0$ and $Var(Z) = b^2 \cdot Var(X) = 1$.

Expected value and variance for sums of r.v.'s

Let X, Y, Z, and W be random variables. Then,

$$E(X + Y) = E(X) + E(Y),$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y),$$

$$Cov(X + Y, Z + W) = Cov(X, Z) + Cov(X, W) + Cov(Y, Z) + Cov(Y, W)$$

If X and Y are uncorrelated, then

$$Var(X + Y) = Var(X) + Var(Y)$$

Example: Two rules for variance and covariance

Let X and Y be random variables. Then,

$$Var(X) = E[(X - E(X))^{2}] = E[X^{2} - 2 \cdot X \cdot E(X) + [E(X)]^{2}]$$

$$= E(X^{2}) - E[2 \cdot X \cdot E(X)] + [E(X)]^{2}$$

$$= E(X^{2}) - 2 \cdot [E(X)]^{2} + [E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

$$Cov(X, Y) = E[(X - E(X)) \cdot (Y - E(Y))]$$

$$= E[X \cdot Y - X \cdot E(Y) - E(X) \cdot Y + E(X) \cdot E(Y)]$$

$$= E(X \cdot Y) - E(X) \cdot E(Y)$$