浙江大学 2017 - 2018 学年春夏学期

《 量子力学 I 》课程期末考试试卷

课程号: __06120991__, 开课学院: __物理学系____

考试试卷: A 卷 √、B 卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√),允许带_计算器_入场

考试日期: 2018 年 6 月 28 日, 考试时间: 90 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:				*号:_				
题序		1	三	四	五	六	总 分	
得分								
评卷人								

可能会用到的物理常数:

电子电荷 e=1.602×10⁻¹⁹C

普朗克常量 $h = 6.63 \times 10^{-34}$ Js

Rydberg 常数 $R = 1.097 \times 10^7 \text{m}^{-1}$

- 一. (20 分)一个质量为m的粒子在一维宽度为a的无限深方势阱: $V(x) = \{ 0, 0 \le x \le a, + 运动,求(1)基态的位置期望值(x); (2)基态的位置方差<math>\sigma_x$;
- (3) 第n个本征态的波函数在空间 $0 \le x \le a$ 中除了x = 0和x = a之外有几个零点?
- 二. (20 分) 一维谐振子势 $V = \frac{1}{2}m\omega^2x^2$: 利用公式 $a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}}$ ($\mp ip + m\omega x$) 计算: (1) 谐振子势能在第n个激发态的期望值 $\langle V \rangle$; (2) 动能在第n个激发态的期望值 $\langle T \rangle$ 。
- 三. (20 分) Gauss 波包的位置空间波函数为 $\psi(\mathbf{x}) = \frac{1}{\sqrt{\pi a}} e^{-\frac{\mathbf{x}^2}{2a^2}}$, (1) 求方差 $\sigma_{\mathbf{x}}$;
- (2) 写出其动量空间波函数; (3) 求方差 σ_{p} 。

四. $(20\, \beta)$ 自旋与观测量: (1) 写出自旋算符的 Pauli 矩阵 σ_x , σ_y , σ_z ; (2) 已知一个状态在 σ_z 表象中可以用 $\frac{1}{\sqrt{2}}\binom{1}{1}$ 表示,问在这个态中观测 σ_x 得到的可能值是什么,其几率分别是多少? (3) 在 (2) 中的态中观测 σ_z 可能得到什么值,其几率分别是多少?

五. $(10\, \rm f)$ 写出 J_x , J_y , J_z 的对易关系,已知 $J_\pm=J_x\pm iJ_y$,利用以上对易关系证明 $J_zJ_\pm=J_\pm(J_z\pm \hbar)$ 。

六. (10 分)全同粒子:两个全同粒子自旋S = 1/2,自旋向上的态用 $|\uparrow\rangle$ 表示,自旋向下的态用 $|\downarrow\rangle$ 表示,如果它们的空间波函数是交换对称的,(1)总自旋可能是多少? (2)写出自旋部分的波函数。