

WHAT IS CLAIMED IS:

1. A polarizing element comprising a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.
2. The polarizing element according to claim 1, wherein the reflective polarizing plate is selected from the group consisting of a linearly-polarized light separation plate, a circularly-polarized light separation plate, and a combination of a circularly-polarized light separation plate and a retardation plate.
3. The polarizing element according to claim 2, wherein the circularly-polarized light separation plate comprises a cholesteric liquid crystal layer.
4. The polarizing element according to claim 3, wherein the cholesteric liquid crystal layer is a liquid crystal polymer layer that is Granjean-oriented on a transparent polymer substrate via an orientation film.
5. The polarizing element according to claim 4, wherein the cholesteric liquid crystal layer has a superimposed structure of cholesteric liquid crystal layers different from each other in a helical pitch of the Granjean orientation.
6. The polarizing element according to claim 2, wherein the retardation plate is a quarter wavelength plate.
7. The polarizing element according to claim 2, wherein the light-diffusion pressure-sensitive adhesive layer is interposed between the circularly-polarized light separation plate and the retardation plate.
8. The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.
9. The polarizing element according to claim 8, wherein the polymer is an

acrylic polymer having a weight average molecular weight of at least 100,000.

10. The polarizing element according to claim 8, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μm to 20 μm are selected from inorganic particles and organic particles.

11. The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.

12. A liquid crystal display having a polarizing element comprising a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and also a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.

13. A method of manufacturing a polarizing element, wherein the polarizing element comprises a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.

14. The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.

15. The method according to claim 13, wherein the reflective polarizing plate is selected from the group consisting of a linearly-polarized light separation plate, a circularly-polarized light separation plate, and a combination of a circularly-polarized light separation plate and a retardation plate.

16. The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.

17. The method according to claim 16, wherein the polymer is an acrylic

SEARCHED INDEXED
SERIALIZED FILED

Sub
A

polymer having a weight average molecular weight of at least 100,000.

18. The method according to claim 16, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μm to 20 μm are selected from inorganic particles and organic particles.

add a^5

卷之三