

Statistique des risques extrêmes

Nicolas Jeannelle

Direction des Risques – Risques Financiers Confédération Nationale du Crédit Mutuel

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - **☐** Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

Introduction

Historique & Réglementation

- Histoire simplifiée de la réglementation financière
 - **☐** Une histoire jalonnée de crises financières...
 - ... engendrant des réglementations...
 - ... inspirées de travaux indépendants.

Introduction

Thèmes abordés & Compétences sollicitées

- Statistique inférentielle
 - Estimation paramétrique / non paramétrique
 - Tests statistiques d'adéquation
- Outils statistiques usuels
 - Bootstrap
 - Méthodes de Monte Carlo
- Théorie des valeurs extrêmes
 - Maxima par blocs
 - Distribution des excès
- **■** Séries temporelles
 - Modèle GARCH
- Apprentissage et utilisation de Python
- > Evaluation : Projet, Rédaction d'un rapport, Programmation

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - **☐** Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - **☐** Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

La VaR, une mesure synthétique du risque de marché

•		que de marché : risque de pertes des portefeuilles suite à olution des prix de marché Marché des instruments de base (actions, obligations, devises) Marché des produits dérivés (options, contrats à terme)				
	Dépendance du portefeuille à de nombreux facteurs de risque :					
		Paramètres de marché explicites (ex : cours de marché)				
		Paramètres de marché implicites (ex : volatilité)				
		Paramètres intrinsèques du contrat (ex : maturité d'une option)				
		Corrélation au sein du portefeuille				
		000				
■ Un premier outil de gestion du risque : la sensibilité						
		Permet de mesurer la variation de la valeur d'un portefeuille relativement à un facteur de risque				
		Les « grecques » permettent de mesurer la sensibilité d'un produit financier par rapport à des paramètres de marché (Delta, Vega)				
		Mais mesure locale, trop spécifique et potentiellement non extrême du risque encouru sur le portefeuille				

La VaR, une mesure synthétique du risque de marché

- On dispose d'un historique de valeurs du portefeuille : p_t , $t \in [1, T + h]$
- \blacksquare On raisonne en termes de rendements sur un horizon h:

$$r_{t|t+h} = \ln \frac{p_{t+h}}{p_t} pprox \frac{p_{t+h} - p_t}{p_t}$$

- On obtient une distribution des rendements
- Le risque va être estimé à partir de cette distribution, en faisant comme hypothèses :
 - Les rendements sont indépendants
 - Les rendements sont identiquement distribués selon une variable aléatoire R
 - R est définie par sa fonction de répartition F

La VaR, une mesure synthétique du risque de marché

- *Définition*: La Value-at-Risk est définie comme la perte potentielle maximale que peut subir un portefeuille pour un <u>niveau de confiance donné</u> sur un <u>horizon fixé</u>.
 - Si la VaR d'un portefeuille est de 1MEUR pour un seuil de confiance de 99% à horizon 1jour, cela signifie qu'il y a 1 chance sur 100 pour qu'une perte subie soit supérieure à 1MEUR sur un jour.
 - Un niveau de 99% sur un horizon 1jour, suppose qu'une perte exceptionnelle supérieure à la VaR n'arrive que 2 à 3 fois par an (1 an = 251 jours ouvrés).
- *Mathématiquement* : Soit *F* la f.d.r de la variable aléatoire *R* des rendements de périodicité *h* du portefeuille. La VaR de niveau de confiance α à horizon d'investissement *h* est alors définie par

$$VaR_h(\alpha) = F^{-1}(1-\alpha)$$
ou encore
$$\mathbb{P}[R \le VaR_h(\alpha)] = 1-\alpha$$

Distribution de P&L $1-\alpha$ Perte $VaR_h(\alpha)$ Gain

Rmq: la distribution n'est pas toujours centrée en 0.

Remarque : on adopte ici une vision rentabilité où R est la distribution des rendements et $VaR_h(\alpha) = F^{-1}(1-\alpha)$. On pourrait adopter une vision risque où P = -R est la distribution des pertes et dans ce cas $VaR_h(\alpha) = G^{-1}(\alpha)$ avec G la f.d.r de P.

La VaR, une mesure synthétique du risque de marché

- Mesure fonction de 3 paramètres :
 - \Box Le niveau de confiance α
 - Plus α est élevé, plus la VaR est élevée
 - Des niveaux trop extrêmes entrainent une mesure de faible qualité décorrelée de la réalité
 Un niveau de 99,99% à horizon 1 jour conduirait à un dépassement tous les 10000 jours, soit 40 ans.
 - ☐ L'horizon temporel *h*
 - Plus l'horizon est élevé, plus la VaR est élevée
 - Il doit être cohérent avec la profondeur d'historique disponible
 - \Box La distribution de pertes F
 - > Comment l'estimer ?
- **Changement d'horizon temporel** : $h o h imes \delta$
 - Méthode du Scaling

$$VaR_{h\times\delta}(\alpha) = \sqrt{\delta}\times VaR_h(\alpha)$$

- Provient du fait que les rendements sont supposés iid
- Méthode peu rigoureuse
- ightharpoonup Construction d'une distribution de rentabilité à horizon $h imes \delta$ par Méthode de Monte Carlo
 - 1. Simulation de trajectoires de rentabilités sur $h \times \delta$ à partir de notre connaissance à horizon h
 - **2.** Estimation du quantile de niveau $1-\alpha$

La VaR, une mesure synthétique du risque de marché

La volatilité comme mesure de risque?

$$\sigma(R) = \sqrt{\mathbb{E}\left[\left(R - \mathbb{E}(R)\right)^2\right]}$$

- Toutes les rentabilités sont prises en compte
 - Positives ou non
 - Extrêmes ou non
- Appréhender le risque par la volatilité (moment d'ordre 2) suppose que les moments d'ordre supérieur n'ont pas besoin d'être pris en compte :
 - Le skewness (moment centré réduit d'ordre 3), représentant l'asymétrie de la distribution
 - Le kurtosis (moment centré réduit d'ordre 4), représentant l'aplatissement de la distribution
- C'est une mesure de dispersion, pas une mesure de risque

Définition: Une mesure de risque cohérente ρ sur l'espace \mathcal{L} se caractérise par

			<u> </u>	<u>v ak</u>
	Normalité :	ho(0)=0	\checkmark	\checkmark
>	Homogénéité :	si $\lambda \geq 0$, $\mathbf{Z} \in \mathcal{L}$ alors $ ho(\lambda \mathbf{Z}) = \lambda ho(\mathbf{Z})$	\checkmark	\checkmark
	Invariance par translation :	si $a\in\mathbb{R}$ alors $ ho(Z+a)= ho(Z)-a$	×	\checkmark
>	Monotonie:	si $Z_1 \leq Z_2$ alors $ ho(Z_1) \geq ho(Z_2)$	×	\checkmark
	Sous-additivité:	si $Z_1, Z_2 \in \mathcal{L}$ alors $\rho(Z_1 + Z_2) \leq \rho(Z_1) + \rho(Z_2)$	×	×

■ *Illustration*: 2 produits indépendants de probabilité de défaut respective de 4%, et VaR de niveau 5%

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - **□** Fondements de la VaR
 - **■** Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

La VaR Historique

■ *Principe*: Estimation de la distribution des rendements R par la fonction de répartition empirique du vecteur d'observations $(r_{1|1+h}, ..., r_{T|T+h})$

$$\widehat{F}_n(x) = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{\{r_{T|T+h} \le x\}}$$

Définition: La VaR historique de niveau α correspond au quantile de niveau $1-\alpha$ de cette fonction de répartition empirique

$$\widehat{VaR}_h(\alpha) = \widehat{F}_n^{-1}(1-\alpha)$$

Calcul: On l'évalue à partir des statistiques d'ordre du vecteur des rendements

$$\min_{t} r_{T|T+h} = r_{(1)} \le r_{(2)} \le \cdots \le r_{(T)} = \max_{t} r_{T|T+h}$$

En posant $t_{\alpha} = T \times (1 - \alpha)$, et $[t_{\alpha}]$ l'entier inférieur le plus proche de t_{α} alors

- lacksquare Au sens strict $ar{V}aar{R}_h(lpha)=r_{(\lfloor t_lpha
 floor)}$
- $oxed{\Box}$ Par interpolation linéaire $\widehat{VaR}_h(lpha) = r_{(\lfloor t_lpha
 floor)} + (t_lpha \lfloor t_lpha
 floor) imes ig(r_{(\lfloor t_lpha
 floor + 1)} r_{(\lfloor t_lpha
 floor)}ig)$
- + Pas d'hypothèses de modèle, rapide à mettre en place
- Trop dépendant des données, peu robuste dans le temps, calcul peu précis si peu d'historique, simpliste

La VaR Bootstrap

- *Principe* : Obtenir une distribution de la VaR historique par réplication de l'échantillon des rendements observés $(r_{1|1+h}, ..., r_{T|T+h})$
- Mise en œuvre
 - i. Choix d'un nombre de réplications B
 - ii. Construire B échantillons bootstrap obtenus via tirage avec remise dans l'échantillon initial

$$\left(r_{1|1+h}^{(b)}, \dots, r_{T|T+h}^{(b)}\right), \qquad b \in \llbracket 1, B
rbracket$$

iii. Calcul de la VaR historique pour chaque échantillon

$$\widehat{VaR}_h^{(b)}(\alpha) = \widehat{F}_n^{-1}^{(b)}(1-\alpha)$$

- iv. Distribution de VaR historique
- **Définition**: La VaR bootstrap de niveau α correspond à la moyenne des VaR historiques de cette distribution

$$\widehat{VaR}_h(\alpha) = \frac{1}{B} \sum_{b=1}^{B} \widehat{VaR}_h^{(b)}(\alpha)$$

- + Pas d'hypothèses de modèle, réduit le biais d'échantillon, permet d'obtenir une distribution de la VaR
- Trop dépendant des données, peu robuste dans le temps

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

La VaR gaussienne

■ *Principe* : Il est très commun de supposer la normalité de la distribution des rendements $(r_{1|1+h}, ..., r_{T|T+h})$. On émet alors l'hypothèse que $R \sim \mathcal{N}(\mu, \sigma^2)$ et on a

$$\mathbb{P}[R \leq VaR_h(\alpha)] = \mathbb{P}\left[\frac{R-\mu}{\sigma} \leq \frac{VaR_h(\alpha)-\mu}{\sigma}\right] = \phi\left(\frac{VaR_h(\alpha)-\mu}{\sigma}\right) = 1-\alpha$$

Définition: En supposant que la rentabilité du portefeuille suit une loi normale, $R \sim \mathcal{N}(\mu, \sigma^2)$, la VaR gaussienne de niveau α se définit par

$$VaR_h(\alpha) = \mu + \sigma\phi^{-1}(1-\alpha)$$

Calcul: On estime les paramètres de la loi à partir de l'échantillon

$$\widehat{\mu} = \mu(r_{1|1+h}, ..., r_{T|T+h})$$
 et $\widehat{\sigma} = \sigma(r_{1|1+h}, ..., r_{T|T+h})$

Et on obtient simplement $\widehat{VaR}_h(\alpha) = \widehat{\mu} + \widehat{\sigma}\phi^{-1}(1-\alpha)$

- + Rapide à mettre en place, simplicité de l'écriture de la VaR, hypothèse récurrente
- Distribution symétrique à queues fines
 - Distribution plus générique

La loi de Student

- *Rappel*: Loi introduite pour la première fois dans l'estimation de l'intervalle de confiance lorsque la variance est inconnue.
- *Définition* : Soient $U \sim \mathcal{N}(0, 1)$ et $V \sim \chi^2(\nu)$ alors

$$T = \frac{U}{\sqrt{V/\nu}} \sim \mathcal{T}_{\nu}$$

de densité

$$f_{\nu}(x) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{x^2}{\nu}\right]^{-\frac{\nu+1}{2}}$$

■ Caractéristiques

- lacksquare L'espérance de T vaut lacksquare 0 définie pour v>1
 - La variance de T vaut $\frac{v}{v-2}$ définie pour v>2
 - Le skewness de T vaut 0 définie pour v > 3
 - Le kurtosis de T vaut $\frac{3(\nu-2)}{\nu-4}$ définie pour $\nu>4$
- lacksquare Lorsque $u o\infty$, $T o\mathcal{N}(0,1)$
- Loi centrée et symétrique

 Mais non réduite, avec une épaisseur des queues de distribution <u>dépendante de ν</u>

La loi de Student généralisée

- *Principe* : Généralisation de la loi de Student
- **Définition** : Soient $T \sim \mathcal{T}_{\nu}$ et $\mu \in \mathbb{R}$, $\sigma > 0$ alors

$$T_g = \mu + \sigma \sqrt{\frac{\nu - 2}{\nu}}T$$

suit une loi de Student généralisée, que l'on note $T_g \sim \mathcal{T}_{\mu,\sigma,\nu}$, de densité

$$f_{\mu,\sigma,\nu}(x) = \frac{1}{\sigma\sqrt{(\nu-2)\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{1}{\nu-2} \left(\frac{x-\mu}{\sigma}\right)^2\right]^{-\frac{\nu+1}{2}}$$

■ Caractéristiques

L'espérance de T_g vaut μ La variance de T_g vaut σ^2 Le skewness de T_g vaut σ Le kurtosis de σ vaut σ

- Lorsque $u o\infty$, $T_{g} o\mathcal{N}ig(\mu,\sigma^{2}ig)$
- Avec $\mu=0,\;
 u=
 u,\;\; \pmb{\sigma}=\sqrt{
 u/(
 u-2)}$, $\pmb{T_g}{\sim}\pmb{\mathcal{T}_v}$

- + Distribution flexible, Formule de *F*
- Distribution symétrique

La loi Skew Student

- *Principe*: Intégrer un paramètre d'asymétrie afin d'améliorer l'ajustement
- **Définition**: Soient $T_{g,1}$, $T_{g,2}$ deux variables aléatoires indépendantes de loi $\mathcal{T}_{0,1,\nu}$ et $\gamma \in \mathbb{R}$ alors

$$Z = \mu + \frac{\sigma}{\sqrt{1 + \gamma^2}} (\gamma |T_{g,1}| + T_{g,2})$$

suit une loi skew Student, que l'on note $Z{\sim}\mathcal{ST}_{\mu,\sigma,\gamma,\nu}$, de densité

$$f_{\mu,\sigma,\gamma,\nu}(x) = 2f_{\mu,\sigma,\nu}(x)F_{\nu+1}\left(\gamma\frac{x-\mu}{\sigma}\sqrt{\frac{\nu+1}{\left(\frac{x-\mu}{\sigma}\right)^2+\nu}}\right)$$

Caractéristiques

- $ightharpoonup \gamma > 0$ correspond à un skewness positif
 - $\gamma < 0$ correspond à un skewness négatif
 - $\gamma = 0$ correspond à une loi de Student généralisée
- + Distribution asymétrique, flexibilité du paramétrage
- Pas de formule analytique de F, possibilité d'overfitting

Calculs des VaR

■ Démarche Générale

- i. Choix d'un horizon h et d'un seuil de confiance α
- ii. Choix d'une distribution de probabilité $F_{ heta}$
- iii. Estimation des paramètres de loi $\widehat{ heta}$
 - a. Méthode du maximum de vraisemblance
 - b. Méthode des moments
- iv. Validation de l'adéquation aux données
 - a. Validation ex-ante
 - b. Validation ex-post
- v. Détermination de la VaR : $VaR_h(lpha) = F_{\widehat{ heta}}^{-1}(1-lpha)$

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

Protocoles d'évaluation

- *Principe* : Une étape importante dans la mesure du risque de marché est l'évaluation de l'indicateur de risque. Des protocoles appropriés sont donc nécessaires pour évaluer la mesure.
- *Mise en œuvre* : On dispose de deux méthodes d'évaluation :
 - Une méthode <u>ex-ante</u> qui consiste à étudier l'ajustement des distributions estimées aux données
 - Concerne les modèles paramétriques
 - Considérations graphiques
 - Tests statistiques d'adéquation
 - Une méthode <u>ex-post</u> basée sur des backtests
 - Concerne tout modèle
 - Partition des données en apprentissage / test
 - Calcul de la VaR sur l'échantillon d'apprentissage
 - Calcul du nombre d'<u>exceptions</u> sur l'échantillon de backtest (nombre de rentabilités inférieures à la VaR)
 - Confrontation du pourcentage d'exceptions et de leur probabilité théorique d'occurrence $1-\alpha$

Méthode ex-ante

- *Principe*: Les méthodes ex-ante permettent de s'assurer de la qualité du modèle paramétrique établi. On utilise pour cela des critères graphiques (plutôt subjectifs) et des tests statistiques d'adéquation (plutôt objectifs)
- **■** Critères graphiques : On peut citer :
 - ☐ Ajustement graphique global des densités empiriques et théoriques
 - Ajustement graphique des queues de distribution de ces même densités
 - Examen du QQ-plot
 - Outil graphique confrontant quantiles empiriques et théoriques
 - Pour un échantillon de taille n, le QQ-plot représente les couples

$$\left\{ \left(F_{\widehat{\theta}}^{-1}\left(\frac{k}{n+1}\right); r_{(k)}\right), \qquad k \in \llbracket 1, n \rrbracket \right\}$$

- Comparaison d'un couple de points à niveau de quantile égal
- Une adéquation parfaite est caractérisée par une représentation linéaire du QQ-plot

Méthode ex-ante

Méthode ex-ante

- *Tests statistiques d'adéquation* : Consistent à évaluer s'il est statistiquement probable que les données observées soient issues de la distribution paramétrique estimée.
- *Intuition* : Plus les fonctions de répartition empirique et théorique sont semblables, Plus il est probable que l'échantillon provienne de cette loi paramétrique.
- *Principe* : La notion de similitude peut se voir en termes de distance entre deux distributions. La variété des tests provient de la diversité des mesures de distances :
 - ☐ Mesure locale : Test de Kolmogorov Smirnov (KS)

$$\Delta_n = \max_{x} \left| \widehat{F}_n(x) - F_{\widehat{\theta}}(x) \right|$$

■ Mesure globale :

$$\Delta_n = \int \omega(x) \cdot \left(\widehat{F}_n(x) - F_{\widehat{\theta}}(x)\right)^2 dx$$

- ho $\omega(x)=1$ correspond au **Test de Cramér-von-Mises (CvM)**
- \blacktriangleright $\omega(x) = \left[F_{\widehat{\theta}}(x) \left(1 F_{\widehat{\theta}}(x) \right) \right]^{-1}$ correspond au **Test d'Anderson-Darling (AD)**
- $\boldsymbol{\omega}(x) = \begin{cases} [1 F_{\widehat{\boldsymbol{\theta}}}(x)]^{-2} \\ [F_{\widehat{\boldsymbol{\theta}}}(x)]^{-2} \end{cases}$ correspond au **Test d'Anderson-Darling modifié (ADup)**

Méthode ex-ante

■ Mise en œuvre du test d'hypothèse :

i. Confrontation des deux hypothèses :

 H_0 : Les données proviennent de la loi paramétrique estimée H_1 : Les données n'en proviennent pas

- ii. Calcul de la distance choisie Δ_n
- iii. Estimation de la p-value associée à Δ_n sous hypothèse H_0
 - \triangleright La loi de Δ_n est connue
 - Calcul direct de la p-value
 - Valeur généralement tabulée dans un logiciel pour les tests avec des lois paramétriques usuelles
 - \triangleright La loi de Δ_n est inconnue
 - **Estimation indirecte de la p-value**
 - \triangleright Construction de la distribution de Δ_n par méthode de Monte Carlo
 - **1.** Simulation de N_{MC} échantillons de même taille n
 - **2.** Calcul de Δ_n pour chaque échantillon créé
- iv. Comparaison de la p-value calculée à un seuil de confiance $lpha_{test}$
- v. Rejet de l'hypothèse H_0 si la p-value est inférieure α_{test}

Introduction

- I. Value-at-Risk: Fondements et modélisation
 - Fondements de la VaR
 - Méthodes non-paramétriques
 - Méthodes paramétriques
 - Evaluation de la mesure de risque
 - Mesures de risque dérivées
- II. Value-at-Risk par modélisation des extrêmes
- III. Value-at-Risk dynamique

5. Mesures de risque dérivées

■ Inconvénients de la VaR

- Non sous-additive
- ☐ Ne renseigne pas sur le profil de risque au-delà du quantile

- Même valeur de VaR à 95%
- Profil de risque bleu à support fini
- Profil de risque rouge à <u>queue épaisse</u> et support infini
- Même évaluation du risque des deux portefeuilles mais profils de risque extrêmement différents

Autres mesures de risque

☐ Tail Value-at-Risk (TVaR):

$$TVaR_h(\alpha) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_h(\alpha) d\alpha$$

☐ Conditional Tail Expectation (CTE):

$$CTE_h(\alpha) = \mathbb{E}[X|X < VaR_h(\alpha)]$$

■ Expected Shortfall (ES):

$$ES_h(\alpha) = \mathbb{E}[X - VaR_h(\alpha)|X < VaR_h(\alpha)]$$

■ Propriétés :

1.
$$TVaR_h(\alpha) = VaR_h(\alpha) + \frac{1}{1-\alpha}ES_h(\alpha)$$

2. $CTE_h(\alpha)$ et $TVaR_h(\alpha)$ coïncident lorsque la fonction de répartition est connue