Assignment 1 Report

Assignment 1

1. Data Loading and Preparation: [1 mark]

Use the dataset available at this Kaggle link:

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database.

Ensure the dataset is properly split into features (X) and target (y).

Perform feature scaling using 'StandardScaler' to normalize the features for better performance of the logistic regression model.

2. Model Implementation: [2 marks]

Split the dataset into training and testing sets (e.g., 80% training, 20% testing) using train_test_split. Implement the Logistic Regression classifier using 'sklearn.linear_model.LogisticRegression'. Train the Logistic Regression model on the training set. 3. Evaluation: [1.5 marks]

Evaluate the model's performance on the test set using accuracy, precision, recall, and F1-score. Present a classification report and a confusion matrix for the results. 4. Submission Requirements: [0.5 mark]

Submit the Python code implementing the solution. Provide a brief report (300-500 words) explaining your approach, the preprocessing steps, feature scaling importance, and the results obtained.

Solution Approach

Data Preparation

- 1. All necessary Python libraries numpy and pandas are imported
- 2. Using pd from pandas library, the diabetes dataset is loaded.
- 3. The dataset is splitted into features (X) and target (y). Features are number of pregnancies, Glucose level, BP, Insulin, BMI, SkinThickness, DiabetesPedigreeFunction, Age and the target is Outcome. Outcome 1 (Diabetic) and 0 (Non-diabetic).
- 4. The sklearn libraries is used Logistic Regression Model. Use StandardScaler for feature normalization.

about:srcdoc Page 1 of 6

```
import numpy as np
import pandas as pd

df = pd.read_csv('diabetes.csv')
df.head()
```

Out[2]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPed
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	

Data Presentation

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

```
In [4]: df.describe(include = 'all').T
```

about:srcdoc Page 2 of 6

Out[4]:		count	mean	std	min	25%	50
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.000
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.000
	BloodPressur	768.0	69.105469	19.355807	0.000	62.00000	72.000
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.000
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.500
	ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.000
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.37:
	Age	768.0	33.240885	11.760232	21.000	24.00000	29.000
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.000

In [4]: df.corr()

Out	[1]	
out	[-1	

	Pregnancies	Glucose	BloodPressure	SkinThickness	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-(
Glucose	0.129459	1.000000	0.152590	0.057328	
BloodPressure	0.141282	0.152590	1.000000	0.207371	(
SkinThickness	-0.081672	0.057328	0.207371	1.000000	(
Insulin	-0.073535	0.331357	0.088933	0.436783	
ВМІ	0.017683	0.221071	0.281805	0.392573	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	
Age	0.544341	0.263514	0.239528	-0.113970	-
Outcome	0.221898	0.466581	0.065068	0.074752	1

Split the Data Frame into Features and Target

```
In [5]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

X = df.drop(columns=['Outcome']) # features
y = df['Outcome'] #Target
X.head()
```

about:srcdoc Page 3 of 6

:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPed
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	

Applying StandardScalar

Out [5]

- 1. StandardScalar is applied to normalize the features (X). The standardization rescales the data so that mean = 0 and standard deviation = 1. Standardization is useful for algorithms that are sensitive to the scale of the data, except logistic regression, it is applicable for k-means clustering, or SVMs.
- 2. fit_transform It has two operations fit(X) and transform(X). fit(X) Here the scaler learns the mean and standard deviation of each feature (column) in the dataset (X). The transform(X) applies the learned transformation to the data X and returns a scaled feature.

```
In [6]:
       scaler = StandardScaler()
       X = scaler.fit_transform(X)
       print(X)
       print(X.shape)
      [[ 0.63994726  0.84832379  0.14964075  ...  0.20401277  0.46849198
        1.4259954
       [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
        -0.19067191]
       -0.10558415
       [ 0.3429808
                   -0.275759661
       [-0.84488505 \quad 0.1597866 \quad -0.47073225 \quad \dots \quad -0.24020459 \quad -0.37110101
         1.17073215]
       [-0.84488505 - 0.8730192 \quad 0.04624525 \dots -0.20212881 -0.47378505
        -0.87137393]]
      (768, 8)
```

Implementation of Training Algorithm

Steps:

1. The dataset is splitted into training and testing sets (e.g., 80% training, 20%

about:srcdoc Page 4 of 6

testing) using train_test_split.

- 2. The Logistic Regression classifier is created using 'sklearn.linear_model.LogisticRegression'
- 3. The Logistic Regression model is trained on the training set.

```
In [7]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression

# Divide the dataset into train and test sets (80% train, 20% test)
    X_tr,X_te,y_tr,y_te = train_test_split(X, y, test_size=0.2)

# Create and train logistic regression classifier
    diabetic_classifier_lr = LogisticRegression()
    diabetic_classifier_lr.fit(X_tr, y_tr)

Out[7]:    LogisticRegression()
```

Model Performance Report

```
In [8]: from sklearn.metrics import accuracy_score, precision_score, recall_score
        # Make predictions on the test dataset
        y_pred = diabetic_classifier_lr.predict(X_te)
        # Evaluate model performance
        accuracy_dia = accuracy_score(y_te, y_pred)
        precision_dia = precision_score(y_te, y_pred, zero_division=1)
        recall_dia = recall_score(y_te, y_pred, zero_division=1)
        f1_dia = f1_score(y_te, y_pred, zero_division=1)
        # Create confusion matrix and classification report
        conf_matrix_dia = confusion_matrix(y_te, y_pred)
        class report dia = classification report(y te, y pred)
        # Output the results
        print(f"Accuracy: {accuracy_dia}")
        print(f"Precision: {precision_dia}")
        print(f"Recall: {recall_dia}")
        print(f"F1 Score: {f1_dia}")
        print("Confusion Matrix:")
        print(conf matrix dia)
        print("Classification Report:")
        print(class_report_dia)
```

about:srcdoc Page 5 of 6

Confusion Matrix:

[[94 11] [24 25]]

Classification Report:

	precision	recall	f1-score	support
0	0.80	0.90	0.84	105
1	0.69	0.51	0.59	49
accuracy			0.77	154
macro avg	0.75	0.70	0.72	154
weighted avg	0.76	0.77	0.76	154

Discussions on results:

- 1. Accuracy = 0.8181 or 81.81 which is pretty good is detecting correctly the diabetic cases.
- 2. Precision = 0.6046 or 60.46% for class1 (diabetic). It means when the model predicts a person is diabetic, it's correct 60.5% of the time, which is okay.
- 3. Recall = 0.7027 or 70.27% for calss1 (diabetic). It implies when the model can correctly identify 70.27% diabetic. Recall is better than precision means that model does not miss many real postive cases (false negative).
- 4. f1 Score = 0.65 => this is harmonic mean of Precion and Recall. This is okay, but it can be improved.
- 5. Confusion Matrix: Class 0 (non-diabetic): 100 true negatives, 17 false positives and Class 1 (diabetic): 26 true positives, 11 false negatives.

Overall: support -The number of true instances for each class. macro avg - The unweighted average of precision, recall, and f1-score across all classes. weighted avg - A weighted average of the precision, recall, and f1-score

In Summary the model shows good accuracy, it wrongly idetifies quite few diabetic (false positive) and misses few diabetic cases. This Logistic regression classifier can be improved with other ML model or Deep Learning Model

In []:

about:srcdoc Page 6 of 6