Project (Supervised Machine Learning)

HR Analytics - Job changing prediction

```
In [133]:
#importing the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
In [134]:
# call csv file and convert it to dataframe using Pandas function
In [135]:
df=pd.read_csv("aug_train.csv")
In [136]:
# .head() will give the first 5 rows of the dataset by default
df.head()
Out[136]:
   enrollee id
                 city_development_index gender relevent_experience enrolled_university education_level major_discipline experience company_s
                                                          Has relevent
0
         8949 city_103
                                     0.920
                                              Male
                                                                          no_enrollment
                                                                                             Graduate
                                                                                                              STEM
                                                                                                                           >20
                                                           experience
                                                           No relevent
       29725
              city_40
                                     0.776
                                              Male
                                                                          no_enrollment
                                                                                             Graduate
                                                                                                              STEM
                                                                                                                            15
                                                                                                                                       50
                                                           experience
                                                           No relevent
2
        11561 city_21
                                     0.624
                                              NaN
                                                                         Full time course
                                                                                             Graduate
                                                                                                              STEM
                                                           experience
                                                           No relevent
                                     0.789
                                              NaN
       33241 city_115
                                                                                             Graduate Business Degree
                                                           experience
                                                          Has relevent
         666 city_162
                                     0.767
                                              Male
                                                                          no_enrollment
                                                                                              Masters
                                                                                                              STEM
                                                           experience
In [137]:
# dtypes will tell the data types of each column
df.dtypes
Out[137]:
enrollee_id
                              int64
city
                             object
city_development_index
                            float64
gender
                             object
relevent experience
                             object
enrolled_university
                             object
education_level
                             object
major_discipline
                             obiect
experience
                             object
company_size
                             object
company_type
                             object
last_new_job
                             object
training_hours
                              int64
                            float64
target
dtype: object
```

```
In [138]:
# .info() will give basic info about the dataset
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
#
    Column
                           Non-Null Count Dtype
a
    enrollee_id
                           19158 non-null int64
1
    city
                            19158 non-null
2
    city_development_index 19158 non-null float64
3
    gender
                            14650 non-null object
    relevent_experience
                            19158 non-null object
5
    enrolled_university
                            18772 non-null
    education_level
                           18698 non-null object
    major_discipline
                            16345 non-null object
    experience
                           19093 non-null object
    company_size
                            13220 non-null object
                           13018 non-null object
10 company_type
11 last_new_job
                            18735 non-null object
12 training_hours
                           19158 non-null int64
                            19158 non-null float64
13 target
dtypes: float64(2), int64(2), object(10)
memory usage: 2.0+ MB
In [139]:
# .shape will give number of rows and columns respectively
df.shape
Out[139]:
(19158, 14)
Data cleaning & EDA process
In [140]:
# Using other pandas Functions like .isnull().sum(), .value_counts()
# Find out messy or Null values.
```

```
4
In [141]:
# isnull().sum() gives the count of null values present in each column
df.isnull().sum()
Out[141]:
enrollee_id
                             0
city
                             0
city_development_index
                             0
                          4508
relevent_experience
enrolled_university
education_level
major_discipline
                           2813
experience
                            65
company size
                          5938
company_type
                          6140
last new job
                           423
training_hours
                             0
                             0
target
dtype: int64
```

```
In [142]:
# value_counts() returns object containing counts of unique values
df['enrollee_id'].value_counts()
•
Out[142]:
8949
10660
        1
30726
        1
18507
        1
31273
        1
        ..
11547
32067
        1
14356
        1
18051
        1
23834
        1
Name: enrollee_id, Length: 19158, dtype: int64
In [143]:
# column 'enrollee_id' contains all unique values so, drop that column
del df["enrollee_id"]
In [144]:
df['city'].value_counts()
Out[144]:
city_103
            4355
            2702
city_21
            1533
city_16
city_114
city_160
            1336
            845
city_129
city_111
               3
city_121
               3
city_140
               1
city_171
               1
Name: city, Length: 123, dtype: int64
In [145]:
df['city_development_index'].value_counts()
Out[145]:
0.920
         5200
0.624
         2702
0.910
         1533
0.926
         1336
0.698
         683
          4
0.649
0.807
            4
0.781
0.625
0.664
Name: city_development_index, Length: 93, dtype: int64
In [146]:
# column 'gender' contains 23% null values and it is categorical data so, fill it by mode
df['gender'].value_counts()
4
Out[146]:
Male
          13221
           1238
Female
Other
           191
Name: gender, dtype: int64
In [147]:
df.gender.replace(np.nan,'Male',inplace=True)
```

```
In [148]:
df['gender'].value_counts()
Out[148]:
Male
          17729
          1238
Female
Other
           191
Name: gender, dtype: int64
In [149]:
df['relevent_experience'].value_counts()
Out[149]:
Has relevent experience
                           13792
No relevent experience
                            5366
Name: relevent_experience, dtype: int64
In [150]:
df['enrolled_university'].value_counts()
Out[150]:
no_enrollment
                    13817
Full time course
                    3757
Part time course
                     1198
Name: enrolled_university, dtype: int64
In [151]:
df['education_level'].value_counts()
Out[151]:
Graduate
                  11598
Masters
                   4361
High School
                   2017
                    414
Primary School
                    308
Name: education_level, dtype: int64
In [152]:
# column 'major_discipline' contains 18% null values and it is categorical data so, fill it by mode
df['major_discipline'].value_counts()
4
Out[152]:
STEM
                   14492
Humanities
                     669
                     381
Business Degree
                     327
                     253
Arts
                     223
No Major
Name: major_discipline, dtype: int64
In [153]:
df.major_discipline.replace(np.nan,'STEM',inplace=True)
In [154]:
df['major_discipline'].value_counts()
Out[154]:
STEM
                   17305
Humanities
                     669
Other
                     381
Business Degree
                     327
                     253
No Major
                     223
Name: major_discipline, dtype: int64
```

```
In [155]:
df['experience'].value_counts()
Out[155]:
>20
       3286
       1430
4
       1403
3
       1354
6
       1216
2
       1127
       1028
10
        985
9
        980
8
        802
15
        686
11
        664
14
        586
1
        549
<1
        522
16
        508
12
        494
13
        399
17
        342
19
        304
18
        280
20
        148
Name: experience, dtype: int64
In [156]:
# column 'company_size' contains 29% null values and it is categorical data so, fill it by mode
df['company_size'].value_counts()
•
Out[156]:
50-99
             3083
100-500
             2571
10000+
             2019
             1471
10/49
1000-4999
             1328
<10
             1308
500-999
              877
5000-9999
              563
Name: company_size, dtype: int64
In [157]:
df.company_size.replace(np.nan,'50-99',inplace=True)
In [158]:
df['company_size'].value_counts()
Out[158]:
50-99
             9021
100-500
             2571
10000+
             2019
10/49
             1471
1000-4999
             1328
             1308
<10
500-999
              877
5000-9999
              563
Name: company_size, dtype: int64
In [159]:
# column 'company_type' contains 29% null values and it is categorical data so, fill it by mode
df['company_type'].value_counts()
4
Out[159]:
Pvt Ltd
                       9817
Funded Startun
                       1001
Public Sector
                        955
Early Stage Startup
                         603
NGO
                        521
Other
                        121
Name: company_type, dtype: int64
```

```
In [160]:
df.company_type.replace(np.nan,'Pvt Ltd',inplace=True)
In [161]:
df['company_type'].value_counts()
Out[161]:
Pvt Ltd
                       15957
Funded Startup
                        1001
                         955
Public Sector
                         603
Early Stage Startup
NGO
                         521
0ther
                         121
Name: company_type, dtype: int64
In [162]:
df['last_new_job'].value_counts()
Out[162]:
         8040
1
>4
         3290
2
         2900
         2452
never
         1029
         1024
Name: last_new_job, dtype: int64
In [163]:
df['training_hours'].value_counts()
Out[163]:
28
       329
12
       292
18
       291
22
       282
50
       279
266
        6
234
         5
272
        5
286
        5
Name: training_hours, Length: 241, dtype: int64
In [164]:
df['target'].value_counts()
Out[164]:
0.0
      14381
       4777
Name: target, dtype: int64
In [165]:
df.isnull().sum()
Out[165]:
                            0
city
city_development_index
                            0
                            0
gender
relevent experience
                            0
enrolled_university
                          386
education_level
                          460
                            0
major_discipline
experience
                           65
company_size
                            0
company_type
                            0
last_new_job
                          423
training_hours
                            0
                            0
target
dtype: int64
# remaining columns contain less than 3% null values so, drop that using dropna function
df.dropna(inplace=True)
4
```

```
In [167]:

df.isnull().sum()
```

Out[167]:

```
city
                           0
city_development_index
                           0
                           0
gender
                           0
0
relevent_experience
enrolled_university
                           0
education_level
major_discipline
experience
                           0
company_size
                           0
company_type
                           0
last_new_job
                           0
training_hours
                           0
target
```

In [168]:

dtype: int64

df.shape

Out[168]:

(18014, 13)

In [169]:

```
# plot heatmap to find null values present in the dataframe
sns.heatmap(df.isnull())
```

Out[169]:

<AxesSubplot:>

split data into numerical column and categorical column

```
In [170]:
```

```
numcol=[]
for i in df.dtypes.index:
   if df.dtypes[i]!='object':
       numcol.append(i)
numcol
```

Out[170]:

```
['city_development_index', 'training_hours', 'target']
```

```
In [171]:
len(numcol)
Out[171]:
3
In [172]:
catcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]=='object':
         catcol.append(i)
catcol
Out[172]:
['city',
  'gender'
 'relevent_experience',
 'enrolled_university',
 'education_level',
 'major_discipline',
 'experience',
'company_size',
 'company_type',
 'last_new_job']
In [173]:
\hbox{\it\# Using OrdinalEncoder convert our categorical columns into numerical column}
In [174]:
from sklearn.preprocessing import OrdinalEncoder
oe=OrdinalEncoder()
df[catcol]=oe.fit_transform(df[catcol])
In [175]:
numcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]!='object':
        numcol.append(i)
numcol
Out[175]:
['city',
 'city_development_index',
 'gender',
'relevent_experience',
 'enrolled_university',
 'education_level',
 'major_discipline',
 'experience',
'company_size',
 'company_type',
 'last_new_job',
 'training_hours',
 'target']
In [176]:
len(numcol)
Out[176]:
13
In [177]:
# Plot Boxplot for numerical columns to find outliers present
```

In [178]:

```
plt.figure()
plotn=1
for i in numcol:
    if plotn<=13:
        ax=plt.subplot(7,2,plotn)
        sns.boxplot(df[i])
        plt.xlabel(i,fontsize=14)
        plotn=plotn+1
        plt.show()</pre>
```


city_development_index

In [180]:

from scipy.stats import zscore
z=abs(zscore(features))

In [181]:

z

Out[181]:

	city_development_index	gender	major_discipline	company_type	training_hours
0	0.722878	0.211859	0.302358	0.397819	0.488663
1	0.456367	0.211859	0.302358	0.397819	0.305505
2	1.701127	0.211859	0.302358	0.397819	0.293920
4	0.530070	0.211859	0.302358	2.667981	0.954882
5	0.554638	0.211859	0.302358	0.397819	0.688471
19153	0.378931	0.211859	2.795276	0.397819	0.388759
19154	0.722878	0.211859	0.302358	0.397819	0.222252
19155	0.722878	0.211859	0.302358	0.397819	0.355457
19156	0.243448	0.211859	0.302358	0.397819	0.527030

In [182]:

len(numcol)

Out[182]:

13

In [183]:

df

Out[183]:

	city	city_development_index	gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	compa
0	5.0	0.920	1.0	0.0	2.0	0.0	5.0	21.0	4.0	
1	77.0	0.776	1.0	1.0	2.0	0.0	5.0	6.0	4.0	
2	64.0	0.624	1.0	1.0	0.0	0.0	5.0	15.0	4.0	
4	50.0	0.767	1.0	0.0	2.0	2.0	5.0	21.0	4.0	
5	57.0	0.764	1.0	0.0	1.0	0.0	5.0	2.0	4.0	
19153	55.0	0.878	1.0	1.0	2.0	0.0	2.0	5.0	4.0	
19154	5.0	0.920	1.0	0.0	2.0	0.0	5.0	5.0	4.0	
19155	5.0	0.920	1.0	0.0	2.0	0.0	5.0	21.0	4.0	
19156	94.0	0.802	1.0	0.0	2.0	1.0	5.0	20.0	5.0	
19157	95.0	0.855	1.0	1.0	2.0	4.0	5.0	11.0	4.0	

18014 rows × 13 columns

In [184]:

newdf=df[(z<3).all(axis=1)]
newdf</pre>

Out[184]:

	city	city_development_index	gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	compa
0	5.0	0.920	1.0	0.0	2.0	0.0	5.0	21.0	4.0	
1	77.0	0.776	1.0	1.0	2.0	0.0	5.0	6.0	4.0	
2	64.0	0.624	1.0	1.0	0.0	0.0	5.0	15.0	4.0	
4	50.0	0.767	1.0	0.0	2.0	2.0	5.0	21.0	4.0	
5	57.0	0.764	1.0	0.0	1.0	0.0	5.0	2.0	4.0	
19153	55.0	0.878	1.0	1.0	2.0	0.0	2.0	5.0	4.0	
19154	5.0	0.920	1.0	0.0	2.0	0.0	5.0	5.0	4.0	
19155	5.0	0.920	1.0	0.0	2.0	0.0	5.0	21.0	4.0	
19156	94.0	0.802	1.0	0.0	2.0	1.0	5.0	20.0	5.0	
19157	95.0	0.855	1.0	1.0	2.0	4.0	5.0	11.0	4.0	

15241 rows × 13 columns

In [185]:

```
plt.figure(figsize=(18,30),facecolor='pink')
plotn=1
for i in numcol:
    if plotn<=13:
        ax=plt.subplot(7,2,plotn)
        sns.distplot(df[i])
        plt.xlabel(i,fontsize=14)
        plotn=plotn+1</pre>
```


In [186]:

```
# find the skewness present in each column
newdf.skew()
```

Out[186]:

0.392934 city city_development_index -1.009967 0.000000 gender relevent_experience 1.053978 enrolled_university -1.269671 ${\tt education_level}$ 1.141437 major_discipline -4.240788 experience -0.506145 company_size -0.133202 company_type -2.884169 last_new_job 0.506748 training_hours 1.265576 1.183469 target dtype: float64

In [187]:

```
# by plotting heatmap find the corelation of target and features
plt.figure(figsize=(15,10))
sns.heatmap(newdf.corr(),annot=True)
```

Out[187]:

<AxesSubplot:>

In [188]:

-1.269671

1.141437

dtype: float64

 ${\tt enrolled_university}$

education_level

In [189]:

```
# using PowerTransformer remove the skewness from the columns

ske=['city_development_index','relevent_experience','enrolled_university','education_level','major_discipline','company_type','training_hoffom sklearn.preprocessing import PowerTransformer
pt=PowerTransformer(method='yeo-johnson')
newdf[ske]=pt.fit_transform(newdf[ske].values)
```

In [190]:

newdf.skew()

Out[190]:

city city_development_index gender relevent_experience enrolled_university education_level major_discipline experience company_size company_type last_new_job training_hours	0.392934 -0.578227 0.000000 1.053978 -1.119472 0.526783 -3.533052 -0.506145 -0.133202 -2.140145 0.506748 -0.038330
3	-0.038330 1.183469
dtype: float64	05.05

In [191]:

```
plt.figure(figsize=(15,10))
sns.heatmap(newdf.corr(),annot=True)
```

Out[191]:

<AxesSubplot:>

In [192]:

```
# split our features and target in x and y respectively
x = newdf.iloc[:,:-1]
x
```

Out[192]:

	city	city_development_index	gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	compa
0	5.0	0.824465	1.0	-0.603400	0.593154	-0.783349	0.263427	21.0	4.0	(
1	77.0	-0.896247	1.0	1.657274	0.593154	-0.783349	0.263427	6.0	4.0	(
2	64.0	-1.539893	1.0	1.657274	-1.790745	-0.783349	0.263427	15.0	4.0	(
4	50.0	-0.957226	1.0	-0.603400	0.593154	1.355215	0.263427	21.0	4.0	-2
5	57.0	-0.976701	1.0	-0.603400	-1.257944	-0.783349	0.263427	2.0	4.0	(

9153	55.0	0.141141	1.0	1.657274	0.593154	-0.783349	-3.799967	5.0	4.0	(
9154	5.0	0.824465	1.0	-0.603400	0.593154	-0.783349	0.263427	5.0	4.0	(
9155	5.0	0.824465	1.0	-0.603400	0.593154	-0.783349	0.263427	21.0	4.0	(
9156	94.0	-0.696705	1.0	-0.603400	0.593154	0.936905	0.263427	20.0	5.0	(
9157	95.0	-0.159486	1.0	1.657274	0.593154	1.617743	0.263427	11.0	4.0	(

```
In [193]:
y = newdf.iloc[:,-1]
Out[193]:
0
          1.0
1
          0.0
2
          0.0
          0.0
5
          1.0
19153
          1.0
19154
          1.0
19155
          0.0
19156
          0.0
19157
          0.0
Name: target, Length: 15241, dtype: float64
In [194]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
xscaled=sc.fit_transform(x)
xscaled
Out[194]:
array([[-1.1093143 , 0.8244648 , 0.
                                                   , ..., 0.3974375 ,
        -0.93128936, -0.24866313],
[ 0.92006722, -0.89624695,  0.
                                                   , ..., 0.3974375 ,
        1.14011509, 0.0426654 ],
[ 0.55365111, -1.53989266, 0.
1.6579662 , 0.72532224],
                                                   , ..., 0.3974375
        [-1.1093143 , 0.8244648 , 0. 0.62226398, -0.03105416], [ 1.39922674, -0.69670461, 0.
                                                   , ..., 0.3974375 ,
                                                   , ..., 0.3974375 ,
         -0.41343825, 0.92780978],
        [ 1.4274126 , -0.15948638, 0. -0.93128936, 1.29442076]])
                                                   , ..., 0.3974375 ,
In [195]:
# split the data for training and testing
In [196]:
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(xscaled,y,test_size=0.30,random_state=1)
In [197]:
from sklearn.metrics import classification_report,accuracy_score
In [198]:
def mymodel(model):
    model.fit(xtrain,ytrain)
    ypred=model.predict(xtest)
    train=model.score(xtrain,ytrain)
    test=model.score(xtest,ytest)
    print(f"Training Accuracy : {train}\nTesting Accuracy : {test}")
    print(classification_report(ytest,ypred))
    return model
```

Apply LogisticRegression() and find out accuracy

from sklearn.linear_model import LogisticRegression

```
In [199]:
lr=mymodel(LogisticRegression())
Training Accuracy : 0.7695913010873641
Testing Accuracy : 0.76186310955609
               precision
                            recall f1-score
                                                 support
                    0.78
                               0.95
         0.0
                                          0.86
                                                     3428
         1.0
                    0.57
                               0.20
                                          0.30
                                                     1145
    accuracy
                                          0.76
                                                     4573
   macro avg
                    0.68
                               0.57
                                          0.58
                                                     4573
weighted avg
                    0.73
                               0.76
                                          0.72
                                                     4573
In [200]:
lr=LogisticRegression()
lr.fit(xtrain,ytrain)
ypred=lr.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
In [201]:
{\bf from} \  \, {\bf sklearn.model\_selection} \  \, {\bf import} \  \, {\bf cross\_val\_score}
ac=ac
print(ac)
cv_score=(cross_val_score(lr,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)
#Difference of R2 score minus CV score
{\tt difference=ac-cv\_score}
print("\n R2 Score - Cross Validation score is",difference)
0.76186310955609
 Cross validation Score: 0.7647792959956752
```

Apply KNeighborsClassifier and find out accuracy

R2 Score - Cross Validation score is -0.0029161864395851333

In [202]:

from sklearn.neighbors import KNeighborsClassifier

In [203]:

knn=mymodel(KNeighborsClassifier(n neighbors=5))

Training Accuracy: 0.8189913760779902
Testing Accuracy: 0.7430570741307676

restring Accui	acy . 0.7436	13/6/4136/	070	
	precision	recall	f1-score	support
0.0	0.80	0.87	0.84	3428
1.0	0.48	0.35	0.41	1145
accuracy			0.74	4573
macro avg	0.64	0.61	0.62	4573
weighted avg	0.72	0.74	0.73	4573

In [204]:

```
knn=KNeighborsClassifier()
knn.fit(xtrain,ytrain)
ypred=knn.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

```
In [205]:
ac=ac
print(ac)
cv_score=(cross_val_score(knn,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)
#Difference of R2 score minus CV score
{\tt difference=ac-cv\_score}
print("\n R2 Score - Cross Validation score is", difference)
0.7430570741307676
 Cross validation Score: 0.7489004828397762
 R2 Score - Cross Validation score is -0.0058434087090085685
Apply DecisionTreeClassifier and find out accuracy
In [206]:
from sklearn.tree import DecisionTreeClassifier
dtc = mymodel(DecisionTreeClassifier())
Training Accuracy : 0.9970003749531309
Testing Accuracy : 0.7074130767548655
              precision
                          recall f1-score
                                               support
         0.0
                   0.81
                             0.80
                                        0.80
                                                  3428
         1.0
                   0.42
                             0.44
                                        0.43
                                                  1145
                                        0.71
                                                  4573
    accuracy
   macro avg
                   0.61
                             0.62
                                        0.62
                                                  4573
weighted avg
                   0.71
                             0.71
                                        0.71
                                                  4573
In [208]:
dtc=DecisionTreeClassifier()
dtc.fit(xtrain,ytrain)
ypred=dtc.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
In [209]:
ac=ac
print(ac)
cv_score=(cross_val_score(dtc,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)
#Difference of R2 score minus CV score
difference=ac-cv score
```

```
print("\n R2 Score - Cross Validation score is", difference)
```

```
0.7041329542969604
```

```
Cross validation Score: 0.7044156726227523
```

R2 Score - Cross Validation score is -0.0002827183257918531

Apply SVM algorithm and find out Accuracy

```
In [210]:
```

```
from sklearn.svm import LinearSVC
from sklearn.svm import SVC

# Hard margin
linsvc=mymodel(LinearSVC(random_state=1))
```

```
Training Accuracy : 0.7679977502812149
Testing Accuracy : 0.7616444347255631
             precision
                          recall f1-score
                                              support
         0.0
                  0.77
                            0.96
                                       0.86
                                                 3428
         1.0
                  0.59
                            0.15
                                       0.24
                                                 1145
                                       0.76
                                                 4573
   accuracy
                  0.68
                            0.56
                                       0.55
                                                 4573
   macro avg
```

0.76

0.70

4573

0.73

In [211]:

weighted avg

```
linsvc=LinearSVC()
linsvc.fit(xtrain,ytrain)
ypred=dtc.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

In [212]:

```
ac=ac
print(ac)
cv_score=(cross_val_score(linsvc,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score

difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7041329542969604

Cross validation Score: 0.6258202852964141

R2 Score - Cross Validation score is 0.07831266900054634

In [213]:

```
# soft margin
linSVC=mymodel(LinearSVC(random_state=1,C=0.8))
```

Training Accuracy : 0.7679977502812149 Testing Accuracy : 0.7616444347255631

	precision	recall	f1-score	support
0.0	0.77	0.96	0.86	3428
1.0	0.59	0.15	0.24	1145
accuracy			0.76	4573
macro avg weighted avg	0.68 0.73	0.56 0.76	0.55 0.70	4573 4573

In [214]:

```
linSVC=LinearSVC(random_state=1,C=0.8)
linSVC.fit(xtrain,ytrain)
ypred=dtc.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

In [215]:

```
ac=ac
print(ac)
cv_score=(cross_val_score(linSVC,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score

difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7041329542969604

Cross validation Score: 0.6460790035715853

R2 Score - Cross Validation score is 0.058053950725375114

Apply all Naive Bayes algorithm to find Accuracy

MultinomialNB,BernoulliNB,GaussianNB

```
In [216]:
from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB
4
In [217]:
bnb=mymodel(BernoulliNB())
Training Accuracy : 0.7559055118110236
Testing Accuracy : 0.7502733435381588
              precision
                            recall f1-score
                                                support
         0.0
                    0.78
                              0.92
                                         0.85
                                                    3428
                    0.50
                              0.23
                                                   1145
         1.0
                                         0.31
                                         0.75
                                                   4573
    accuracy
                    0.64
                              0.58
                                                   4573
                                         0.58
   macro avg
weighted avg
                    0.71
                              0.75
                                         0.71
                                                   4573
In [218]:
bnb.fit(xtrain,ytrain)
ypred=bnb.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
In [219]:
ac=ac
print(ac)
cv_score=(cross_val_score(bnb,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)
#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
0.7502733435381588
 Cross validation Score: 0.7498197851539465
 R2 Score - Cross Validation score is 0.00045355838421223815
In [220]:
gnb=mymodel(GaussianNB())
Training Accuracy : 0.7488751406074241
Testing Accuracy : 0.7502733435381588
              precision
                            recall f1-score
                                                support
         0.0
                    0.82
                              0 86
                                         0.84
                                                   3428
         1.0
                    0.50
                              0.43
                                         0.46
                                                   1145
    accuracy
                                         0.75
                                                   4573
   macro avg
                    0.66
                              0.64
                                         0.65
                                                   4573
weighted avg
                    0.74
                              0.75
                                         0.74
                                                   4573
In [221]:
gnb.fit(xtrain,ytrain)
ypred=gnb.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

```
In [222]:
ac=ac
print(ac)
cv_score=(cross_val_score(gnb,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7502733435381588

Cross validation Score: 0.7466701573339738

R2 Score - Cross Validation score is 0.0036031862041849827

Apply all Boosting algorithms to find Accuracy

 $Gradient Boosting Classifier\ , XGB Classifier\ , Ada Boost Classifier$

In [223]:

```
from sklearn.ensemble import GradientBoostingClassifier
gbr=mymodel(GradientBoostingClassifier(n_estimators=2))
```

```
Training Accuracy: 0.7567491563554556
Testing Accuracy : 0.7496173190465777
             precision
                          recall f1-score
                                             support
                   0.75
                             1.00
         0.0
                                       0.86
                                                 3428
        1.0
                   0.00
                             0.00
                                       0.00
                                                 1145
                                       0.75
                                                 4573
   accuracy
                   0.37
                             0.50
                                       0.43
                                                 4573
  macro avg
                   0.56
                             0.75
                                                 4573
weighted avg
                                       0.64
```

In [224]:

```
gbr.fit(xtrain,ytrain)
ypred=gbr.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

In [225]:

```
ac=ac
print(ac)
cv_score=(cross_val_score(gbr,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7496173190465777

Cross validation Score: 0.7546092733816603

R2 Score - Cross Validation score is -0.0049919543350825935

In [226]:

```
from xgboost import XGBClassifier
xgb=mymodel(XGBClassifier(random_state=1,reg_alpha=1))
```

```
Training Accuracy : 0.8872328458942632
Testing Accuracy : 0.7692980537940083
```

	precision	recall	t1-score	support
0.0	0.82	0.89	0.85	3428
1.0	0.55	0.40	0.46	1145
accuracy			0.77	4573
macro avg	0.69	0.65	0.66	4573
weighted avg	0.75	0.77	0.76	4573

```
In [227]:
```

```
xgb.fit(xtrain,ytrain)
ypred=xgb.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

```
In [228]:
```

```
ac=ac
print(ac)
cv_score=(cross_val_score(xgb,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score
difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7692980537940083

Cross validation Score: 0.7747519301969839

R2 Score - Cross Validation score is -0.005453876402975566

In [229]:

```
from sklearn.ensemble import AdaBoostClassifier
adb=mymodel(AdaBoostClassifier(random_state=1))
```

Training Accuracy : 0.7818710161229846 Testing Accuracy : 0.7817625191340477

	precision	recall	f1-score	support
0.0	0.81	0.93	0.86	3428
1.0	0.62	0.33	0.43	1145
accuracy			0.78	4573
macro avg	0.71	0.63	0.65	4573
weighted avg	0.76	0.78	0.76	4573

In [230]:

```
adb.fit(xtrain,ytrain)
ypred=adb.predict(xtest)
ac=accuracy_score(ytest,ypred)
cr=classification_report(ytest,ypred)
```

In [231]:

```
ac=ac
print(ac)
cv_score=(cross_val_score(adb,x,y,cv=5).mean())
print("\n Cross validation Score:",cv_score)

#Difference of R2 score minus CV score

difference=ac-cv_score
print("\n R2 Score - Cross Validation score is", difference)
```

0.7817625191340477

```
Cross validation Score: 0.7795420210059836
```

R2 Score - Cross Validation score is 0.00222049812806413

In [232]:

```
067,0.7067,0.7067,0.7502,0.7502,0.7496,0.7692,0.7817], 'CV Score': [0.7647,0.7489,0.7058,0.6961,0.6460,0.7498,0.7466,0.7546,0.7747,0.7795]}
```

```
In [233]:
D=pd.DataFrame(d)
Out[233]:
   Accuracy CV Score
      0.7618
                0.7647
      0.7430
                0.7489
2
      0.7067
                0.7058
 3
      0.7067
                0.6961
 4
      0.7067
                0.6460
                0.7498
      0.7502
 5
      0.7502
                0.7466
      0.7496
                0.7546
      0.7692
                0.7747
      0.7817
                0.7795
In [234]:
D['Difference']=(D['Accuracy']-D['CV Score'])
In [235]:
D
Out[235]:
    Accuracy CV Score Difference
0
      0.7618
                0.7647
                          -0.0029
      0.7430
                0.7489
                          -0.0059
 2
      0.7067
                0.7058
                          0.0009
 3
      0.7067
                0.6961
                          0.0106
      0.7067
                0.6460
                          0.0607
 5
      0.7502
                0.7498
                          0.0004
                0.7466
                          0.0036
      0.7502
 6
      0.7496
                0.7546
                          -0.0050
                0.7747
 8
      0.7692
                          -0.0055
      0.7817
                0.7795
                          0.0022
 9
Here we got less difference in KNeighborsClassifier i.e.-0.0059
So Moving towards hyperparameter Tunning of KNeighborsClassifier
In [236]:
\textbf{from} \  \, \textbf{sklearn.neighbors} \  \, \textbf{import} \  \, \textbf{KNeighborsClassifier}
\label{from:model_selection} \textbf{import} \ \texttt{GridSearchCV}
In [237]:
In [238]:
gs = GridSearchCV(KNeighborsClassifier(), grid_params, verbose = 1, cv=3, n_jobs = -1)
4
In [239]:
gs.fit(xtrain,ytrain)
print(gs.best_estimator_)
Fitting 3 folds for each of 36 candidates, totalling 108 fits KNeighborsClassifier(metric='manhattan', n_neighbors=15)
```

localhost:8888/notebooks/Project ML.ipynb

```
In [240]:
gs.best_score_
Out[240]:
0.7639670041244845
In [241]:
ypred=gs.predict(xtest)
print(ypred)
[0. 0. 0. ... 1. 0. 0.]
In [242]:
from sklearn.metrics import accuracy_score
print(accuracy_score(ytest, ypred), ": is the accuracy score")
0.759457686420293 : is the accuracy score
In [243]:
from sklearn.model_selection import cross_val_score
ac=accuracy_score(ytest,ypred)
print(ac)
cv_score=(cross_val_score(gs,x,y,cv=3).mean())
print("\n Cross validation Score:",cv_score)
#Difference of R2 score minus CV score
{\tt difference=ac-cv\_score}
print("\n R2 Score - Cross Validation score is", difference)
0.759457686420293
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Fitting 3 folds for each of 36 candidates, totalling 108 fits
 Cross validation Score: 0.7655669492799327
 R2 Score - Cross Validation score is -0.0061092628596397525
In [244]:
print('Model accuracy: ',np.mean(scores))
```

Model accuracy: 0.7635323831487283