

WHAT IS CLAIMED IS:

1. A display comprising:

a light source; and

5 an applied voltage control part controlling a voltage applied to a display pixel in response to an ON- or OFF-state of said light source, wherein

said applied voltage control part includes a control circuit detecting said ON- or OFF-state of said light source and outputting either at least either white reference voltage data or black reference voltage data corresponding to said ON-state of said light source or at least either white reference voltage data or black reference voltage data corresponding to said OFF-state of 15 said light source on the basis of said ON- or OFF-state of said light source.

2. The display according to claim 1, wherein

said control circuit includes:

20 a memory storing at least either said white reference voltage data or said black reference voltage corresponding to said ON-state of said light source and at least either said white reference voltage data or said black reference voltage data corresponding to said OFF-state of said light source, and

a selection circuit detecting said ON- or OFF-state
of said light source and selecting either at least either
said white reference voltage data or said black reference
voltage corresponding to said ON-state of said light
5 source or at least either said white reference voltage
data or said black reference voltage data corresponding to
said OFF-state of said light source on the basis of said
ON- or OFF-state of said light source.

10 3. The display according to claim 1, wherein
said white reference voltage data and said black
reference voltage data are digital data,

said display further comprising a reference voltage
digital-to-analog conversion circuit converting at least
15 either said white reference voltage data or said black
reference voltage corresponding to said ON-state of said
light source and at least either said white reference
voltage data or said black reference voltage data
corresponding to said OFF-state of said light source from
20 digital signals to analog signals.

4. The display according to claim 1, wherein
video data supplied to said display is digital data,
said display further comprising a video data digital-
25 to-analog conversion circuit converting said video data

from a digital signal to an analog signal on the basis of either at least either said white reference voltage data or said black reference voltage data corresponding to said ON-state of said light source or at least either said
5 white reference voltage data or said black reference voltage data corresponding to said OFF-state of said light source.

5. The display according to claim 4, wherein
10 said video data digital-to-analog conversion circuit converts said video data from said digital signal to said analog signal on the basis of both of said white reference voltage data and said black reference voltage data.

15 6. The display according to claim 1, wherein
video data supplied to said display is digital data,
said display further comprising a video data digital-
to-analog conversion circuit converting said video data
from a digital signal to an analog signal before
20 correcting said video data on the basis of either at least
either said white reference voltage data or said black
reference voltage corresponding to said ON-state of said
light source or at least either said white reference
voltage data or said black reference voltage data
25 corresponding to said OFF-state of said light source.

7. The display according to claim 6, wherein
said video data digital-to-analog conversion circuit
converts said video data from said digital signal to said
5 analog signal on the basis of both of said white reference
voltage data and said black reference voltage data.

8. The display according to claim 1, further
comprising a transmission region and a reflection region,
10 for displaying with at least said transmission region
when said light source is in said ON-state while
displaying with said reflection region when said light
source is in said OFF-state, and
applying a transmission voltage to said display pixel
15 with said applied voltage control part when said light
source is in said ON-state while applying a reflection
voltage to said display pixel with said applied voltage
control part when said light source is in said OFF-state.

20 9. The display according to claim 1, wherein
said applied voltage control part controls said
voltage applied to said display pixel in response to said
ON- or OFF-state of said light source so that brightness-
gradation characteristics in said ON-state of said light
25 source and brightness-gradation characteristics in said

OFF-state of said light source are substantially identical to each other.

10. A display comprising:

5 a light source; and

an applied voltage control part controlling a voltage applied to a display pixel in response to an ON- or OFF-state of said light source, wherein

 said applied voltage control part includes:

10 a memory storing at least either white reference voltage data or black reference voltage data corresponding to said ON-state of said light source and at least either white reference voltage data or black reference voltage data corresponding to said OFF-state of said light source,

15 and

 a selection circuit detecting said ON- or OFF-state of said light source and selecting at least either at least either said white reference voltage data or said black reference voltage data corresponding to said ON-state of said light source or at least either said white reference voltage data or said black reference voltage data corresponding to said OFF-state of said light source on the basis of said ON- or OFF-state of said light source.

25 11. The display according to claim 10, wherein

said white reference voltage data and said black
reference voltage data are digital data,

 said display further comprising a reference voltage
digital-to-analog conversion circuit converting at least
5 either said white reference voltage digital data or said
black reference voltage digital data corresponding to said
ON-state of said light source and at least either said
white reference voltage digital data or said black
reference voltage digital data corresponding to said OFF-
10 state of said light source from digital signals to analog
signals.

12. The display according to claim 10, wherein
video data supplied to said display is digital data,
15 said display further comprising a video data digital-
to-analog conversion circuit converting said video data
from a digital signal to an analog signal on the basis of
either at least either said white reference voltage data
or said black reference voltage corresponding to said ON-
20 state of said light source or at least either said white
reference voltage data or said black reference voltage
data corresponding to said OFF-state of said light source.

13. The display according to claim 12, wherein
25 said video data digital-to-analog conversion circuit

converts said video data from said digital signal to said analog signal on the basis of both of said white reference voltage data and said black reference voltage data.

5 14. The display according to claim 10, wherein
 video data supplied to said display is digital data,
 said display further comprising a video data digital-
to-analog conversion circuit converting said video data
from a digital signal to an analog signal before
10 correcting said video data on the basis of either at least
either said white reference voltage data or said black
reference voltage corresponding to said ON-state of said
light source or at least either said white reference
voltage data or said black reference voltage data
15 corresponding to said OFF-state of said light source.

15 15. The display according to claim 14, wherein
 said video data digital-to-analog conversion circuit
converts said video data from said digital signal to said
20 analog signal on the basis of both of said white reference
voltage data and said black reference voltage data.

25 16. The display according to claim 10, further
comprising a transmission region and a reflection region,
for displaying with at least said transmission region

when said light source is in said ON-state while displaying with said reflection region when said light source is in said OFF-state, and

5 applying a transmission voltage to said display pixel with said applied voltage control part when said light source is in said ON-state while applying a reflection voltage to said display pixel with said applied voltage control part when said light source is in said OFF-state.

10 17. The display according to claim 10, wherein
said applied voltage control part controls said
voltage applied to said display pixel in response to said
ON- or OFF-state of said light source so that brightness-
gradation characteristics in said ON-state of said light
15 source and brightness-gradation characteristics in said
OFF-state of said light source are substantially identical
to each other.

18. A display comprising:

20 a light source; and
an applied voltage control part controlling a voltage
applied to a display pixel in response to an ON- or OFF-
state of said light source, wherein
said applied voltage control circuit includes a gamma
25 correction circuit detecting said ON- or OFF-state of said

light source and gamma-correcting video data on the basis of either gamma correction data corresponding to said ON-state of said light source or gamma correction data corresponding to said OFF-state of said light source.

5

19. The display according to claim 18, wherein
said gamma correction circuit includes:

a storage part storing said gamma correction data corresponding to said ON-state of said light source and
10 said gamma correction data corresponding to said OFF-state of said light source,

a selection circuit detecting said ON- or OFF-state of said light source and selecting either said gamma correction data corresponding to said ON-state of said light source or said gamma correction data corresponding to said OFF-state of said light source on the basis of
15 said ON- or OFF-state of said light source, and

a data processing circuit gamma-correcting said video data on the basis of either said gamma correction data corresponding to said ON-state of said light source or
20 said gamma correction data corresponding to said OFF-state of said light source.

20. The display according to claim 18, wherein
25 said gamma correction data are digital data,

said display further comprising a digital-to-analog conversion circuit converting said video data gamma-corrected with said gamma correction digital data from a digital signal to an analog signal.

5

 21. The display according to claim 18, further comprising a transmission region and a reflection region, for displaying with at least said transmission region when said light source is in said ON-state while displaying with said reflection region when said light source is in said OFF-state, and

 applying a transmission voltage to said display pixel with said applied voltage control part when said light source is in said ON-state while applying a reflection voltage to said display pixel with said applied voltage control part when said light source is in said OFF-state.

 22. The display according to claim 18, wherein said applied voltage control part controls said voltage applied to said display pixel in response to said ON- or OFF-state of said light source so that brightness-gradation characteristics in said ON-state of said light source and brightness-gradation characteristics in said OFF-state of said light source are substantially identical to each other.

23. A method of controlling a display, comprising
steps of:

detecting an ON- or OFF-state of a light source
5 having different bright-gradation characteristics; and
controlling a voltage applied to a display pixel in
response to said ON- or OFF-state of said light source.

24. The method of controlling a display according to
10 claim 23, wherein

said step of controlling said voltage applied to said
display pixel includes a step of controlling said voltage
applied to said display pixel in response to said ON- or
OFF-state of said light source so that brightness-
15 gradation characteristics in said ON-state of said light
source and brightness-gradation characteristics in said
OFF-state of said light source are substantially identical
to each other.