手征微扰场论

王旭

2021年9月11日

目录

1	有效	效量子力学															2			
	1	1D 散射										2								
		1.1	利用	δ函数:	来模仿	方势	讲 .										 			2
2	手征	拉氏量																		3

1 有效量子力学 2

1 有效量子力学

该章主要参考 [1]。当我们在描述低能理论时,我们不需要知道其在高能区的表现。代价就是需要引入大量参数,而这些参数只能由实验给出。在考察有效量子场论前,我们先看看有效量子力学。

1 1D 散射

考虑量子力学中的一维散射问题,假设有一方势阱,其函数为

$$V(x) = \begin{cases} -\frac{\alpha^2}{2m\Delta} & 0 \le x \le \Delta \\ 0 & 其余情况 \end{cases}$$
 (1.1)

其中m为粒子质量, Δ 为势阱宽度, $\frac{\alpha^2}{2m\Delta^2}$ 为势阱深度。可以通过计算薛定谔方程得到反射系数R为

$$R = \left[\frac{4\kappa^2 k^2 csc^2(\kappa \Delta)}{(k^2 - \kappa^2)} + 1 \right]^{-1}$$
 (1.2)

其中

$$k = \sqrt{2mE}, \ \kappa = \sqrt{k^2 + \frac{\alpha^2}{\Delta^2}}$$
 (1.3)

在低能时,我们可以按照 k 展开反射系数,

$$R = -\frac{4}{\alpha^2 \sin^2 \alpha} \Delta^2 k^2 + \mathcal{O}(\Delta^4 k^4) \tag{1.4}$$

可以看到当 $k \to 0$ 时, $R \to 1$,称这种相互作用为相关相互作用。

1.1 利用 δ 函数来模仿方势阱

考虑此时有一 δ 势阱,

$$V(x) = -\frac{g}{2m\Delta}\delta(x) \tag{1.5}$$

此处引入 Δ 来保证 g 时无量纲的。依旧通过薛定谔方程可以计算得出反射系数为,

$$R = \left[1 + \frac{4k^2\Delta^2}{q^2}\right]^{-1} = 1 - \frac{4k^2\Delta^2}{q^2} + \mathcal{O}(k^4)$$
 (1.6)

在低能情况下,与(1.4)比较可得,

$$g = \alpha sin\alpha \tag{1.7}$$

称为"匹配条件"。

2 手征拉氏量 3

2 手征拉氏量

该章主要参考 [2]

参考文献

- [1] David B Kaplan. lectures on effective field theory". arXiv preprint nuclth/0510023, 5, 5.
- [2] Stefan Scherer and Matthias R Schindler. A primer for chiral perturbation theory, volume 830. Springer Science & Business Media, 2011.