Поглощение светового излучения

Студент группы Б20-101 Холод Данила

Проблематика и актуальность

- 1. Одно из самых главных преимуществ это чистота и дешевизна производства. В отличие от угольных и бензиновых двигателей такой способ не имеет влияния на окружающую среду
- 2. Небольшая площадь установок. В сравнении с солнечными панелями, занимающими огромные пространства, суспензия занимает относительно немного места.
- 3. Отсутствие опасности. Этот способ абсолютно безопасен, так как в нем отсутствуют радиоактивные или взрывчатые вещества.

Основные понятия

Теория Ми

Теория Ми используется для частиц размером, сравнимым со спектром длин волн, обычно применяя значение параметра дифракции равный X. Однако его вычисление довольно велико и включает в себя комбинацию функций Бесселя заданных в виде коэффициентов Ми a_n и b_n

Сечение экстинкции

$$C_{ext} = \frac{2 \cdot \pi}{k^2} \sum_{n=1}^{\infty} (2n+1) Re(a_n + b_n)$$
 (1)

$$k = \frac{2\pi n_f}{\lambda}$$
 – волновое число (2)

Функции Бесселя

Это понятие используется для вычисления коэффициенты a_n и b_n Функции Бесселя - семейство функций, являющихся каноническими решениями дифференциальных уравнений.

Коэффициент экстинкции

$$\sigma_p = \frac{6 \cdot f_v}{\pi \cdot d^3} \cdot C_{ext}$$
 - коэффициент экстинкции частиц (3) $\sigma_f = \frac{4 \cdot \pi \cdot k_f}{\lambda}$ - коэффициент экстинкции жидкости (4) $\sigma_{nf} = \sigma_p + (1 - f_v) \cdot \sigma_f$ - коэффициент экстинкции (5) f_v - концентрация частиц наножидкости (%) d - размер частиц (м)

Закон Бугерта-Ламберта-Бера

$$I = I_0 e^{-\sigma_{nf}x}$$
 (6)

λ - длина волны (м)

I – интенсивность $\left(\frac{BT}{M^2*HM}\right)$

х – глубина слоя жидкость (м)

Плотность теплового потока

$$q = \int_{\lambda \min}^{\lambda \max} I * d\lambda = \sum_{i=1}^{N-1} \frac{I(\lambda_i) + I(\lambda_{i+1})}{2} (\lambda_{i+1} - \lambda_i) (8)$$

Ход работы

- 1. Изучение теории
 - Поглощение и рассеяние света малыми частицами // К. Борен и Д. Хафман
 - Optical properties of nanofluids considering particle size distribution: Experimental and theoretical investigations // Dengwei Jing, Dongxing Song
 - Activated carbon dispersion as absorber for solar water evaporation: Aparametric analysis // Sai Kiran Hota,
 Gerardo Diaz
- 2. Изучение библиотек в Python для работы с таблицами, графиками и математическими формулами
 - Openpyxl
 Pandas
 Для работы с таблицами Excel
 - Matplotlib Для работы с графиками
 - Sympy
 Cmath
 Для работы с математическими формулами
 Numpy
- 3. Реализация формул
- 4. Сравнение с экспериментальными данными

Реализация формул

```
# Extinction cross section

def extinction(l, n_p, k_p, n_f, k_f, d):
    s = 0
    for i in range(1, n_max(n_f, l, d) + 1):
        s += (2 * i + 1) * (a(i, m(n_p, k_p, n_f, k_f), x(n_f, l, d)) + b(i, m(n_p, k_p, n_f, k_f), x(n_f, l, d))).real
    return 2 * pi * s / (k(n_f, l) * k(n_f, l))
```

Сечение экстинкции – формула (1)

```
# relative refractive index
def m(np, kp, nf, kf):
     return (n_p + k_p * j) / (n_f + k_f * j)
# wave number
def k(n_f, l):
    return 2 * pi * n_f / l
# the parameter of diffraction
def x(\underline{n}, \underline{f}, \underline{l}, \underline{d}):
    return d * pi * n_f / l
```

$$m=rac{n_p+k_p}{n_f+k_f}$$
 - комплексный показатель преломления $k=rac{2\pi n_f}{\lambda}$ - волновое число $x=rac{\pi\cdot d\cdot n_f}{\lambda}$ - коэффициент дифракции

Алгоритм программы

- 1) Ввод данных модели, состоящий из
- Состав наножидкости:
- Оптические свойства
- Спектральный состав
- Узловые точки глубины слоя наножидкости

```
wl_water = []
n_water = []
k_water = []
excel('Water.xlsx', wl_water, n_water, k_water)
wl_graphite = []
n_graphite = []
k_graphite = []
excel('Graphite.xlsx', wl_graphite, n_graphite, k_graphite)
print('Input volume fraction')
f_v = float(input())
print('Input the particle diameter, m')
d = float(input())
depth = [float(i) for i in input().split()]
```

Алгоритм программы

2) Расчет по теоретическим формулам

```
C_ext = [] # Extinction cross section
sigma_p = [] # Extinction of particles
sigma_f = [] # Extinction of liquid
ext = [] # Nanofluid extinction
for i in range(len(wl)):
    l = wl[i] * 10e-9 # Wavelength
    n_p = np.interp(wl[i] * 10e-3, wl_graphite, n_graphite)
    k_p = np.interp(wl[i] * 10e-3, wl_graphite, k_graphite)
    n_f = np.interp(wl[i] * 10e-3, wl_water, n_water)
    k_f = np.interp(wl[i] * 10e-3, wl_water, k_water)
    C = extinction(l, n_p, k_p, n_f, k_f, d)
    C_ext.append(C)
    sigma_p.append(6 * f_v * C / (pi * (d ** 3)))
    sigma_f.append(4 * pi * k_f / l)
    ext.append(6 * f_v * C / (pi * (d ** 3)) + (1 - f_v) * 4 * pi * k_f / l)
q = []
for i in range(len(depth)):
    for j in range(len(wl) - 1):
        a = (I_0[j] * exp(-ext[j] * depth[i]) + I_0[j + 1] * exp(-ext[j + 1] * depth[i])) / 2 # The trapezoid procedure
        sum += a * (wl[j + 1] - wl[j])
    q.append(sum)
```

Алгоритм программы

3) Вывод результатов в таблицу Excel

Wavelength, nm	Extinction cross section, m^2	Extinction of particles, m^-1	Extinction of liquid, m^-1	Nanofluid extinction, m^-1	Depth, m	Thermal flow density, W*m^-2
119,5	4,69034E-18	3359,211914	102,1609039	3461,066406	0,01	1,85533E-09
120,5	4,69007E-18	3359,016602	136,5380554	3495,14502	0,0105	1,35218E-09
121,5	4,68966E-18	3358,724121	201,6643982	3559,783691	0,011	9,85864E-10
122,5	4,68927E-18	3358,445801	265,727417	3623,375977	0,0115	7,18959E-10
123,5	4,68891E-18	3358,185547	328,7530518	3685,952148	0,012	5,24393E-10
124,5	4,6884E-18	3357,820313	390,7661743	3747,414063	0,0125	3,82516E-10
125,5	4,68739E-18	3357,098633	451,7910767	3807,53418	0,013	2,79041E-10
126,5	4,68647E-18	3356,43457	511,8511353	3866,75	0,0135	2,03564E-10
127,5	4,68567E-18	3355,862793	570,9689941	3925,119141	0,014	1,48506E-10
128,5	4,68498E-18	3355,368652	629,1668701	3982,647949	0,0145	1,08342E-10
129,5	4,68423E-18	3354,82959	686,4658203	4039,236328	0,015	7,90402E-11
130,5	4,68228E-18	3353,433594	742,8867188	4094,091797	0,0155	5,7664E-11
131,5	4,68048E-18	3352,14502	798,4493408	4148,199219	0,016	4,2069E-11
132,5	4,67882E-18	3350,961914	853,173584	4201,576172	0,0165	3,06917E-11
133,5	4,67728E-18	3349,85791	907,0778809	4254,214844	0,017	2,23913E-11

- Зависимость коэффициента экстинкции наножидкости от длины волны
- Интегральная по всем длинам волн плотность теплового потока в зависимости от глубины прохождения излучения в наножидкости
 - 4) Построение графиков
- Спектр экстинкции наножидкости во всем диапазоне длин волн падающего излучения
- График зависимости плотности теплового потока от глубины слоя наножидкости

График зависимости плотности теплового потока от глубины слоя наножидкости при концентрации о.1 % и диаметре частиц 20 нм

График зависимости плотности теплового потока от глубины слоя наножидкости при концентрации 0.3 % и диаметре частиц 20 нм

График зависимости плотности теплового потока от глубины слоя наножидкости при концентрации 0.003 % и диаметре частиц 20 нм

Концентрация $0.1\,\%$ Диаметр 20 нм

Концентрация 0.3 % Диаметр 20 нм Концентрация 0.003 % Диаметр 20 нм

Глубина (м)	Плотность теплового потока $(\mathrm{Bt}*\mathrm{M}^{-2})$
0,01	4,49396E-09
0,0105	3,41401E-09
0,011	2,59652E-09
0,0115	1,97628E-09
0,012	1,50495E-09
0,0125	1,14642E-09
0,013	8,73493E-10
0,0135	6,65641E-10
0,014	5,07299E-10
0,0145	3,86649E-10
0,015	2,94705E-10
0,0155	2,24632E-10
0,016	1,71224E-10
0,0165	1,30516E-10
0,017	9,94865E-11

диамстр 20 нм					
Глубина (м)	Плотность теплового потока $(\mathrm{Bt}*\mathrm{M}^{-2})$				
0,01	3,14396E-08				
0,0105	2,53686E-08				
0,011	2,0622E-08				
0,0115	1,68623E-08				
0,012	1,3852E-08				
0,0125	1,14202E-08				
0,013	9,44169E-09				
0,0135	7,82284E-09				
0,014	6,49235E-09				
0,0145	5,39502E-09				
0,015	4,48755E-09				
0,0155	3,73551E-09				
0,016	3,11127E-09				
0,0165	2,59248E-09				
0,017	2,16092E-09				

диаметр 20 нм					
Глубина (м)	Плотность теплового потока $(B_{\mathrm{T}}*\mathrm{M}^{-2})$				
0,01	1,85533E-09				
0,0105	1,35218E-09				
0,011	9,85864E-10				
0,0115	7,18959E-10				
0,012	5,24393E-10				
0,0125	3,82516E-10				
0,013	2,79041E-10				
0,0135	2,03564E-10				
0,014	1,48506E-10				
0,0145	1,08342E-10				
0,015	7,90402E-11				
0,0155	5,7664E-11				
0,016	4,2069E-11				
0,0165	3,06917E-11				
0,017	2,23913E-11				

Спектр экстинкции наножидкости при концентрации о.1 % и диаметре частиц 20 нм

Спектр экстинкции наножидкости при концентрации о.3 % и диаметре частиц 20 нм

Спектр экстинкции наножидкости при концентрации 0.003 % и диаметре частиц 20 нм

Заключение

Дальнейшие планы

- Составление интерфейса
- Учет распределения частиц по размеру
 - Оптимизация вычислений

Исходный код и вводные данные: https://github.com/DanilaKholod/Nanofluids