Содержание

1	Пос	становка задачи	1			
2	Методы					
	2.1	IB	2			
	2.2	momentum exchange	2			
3	июј	І Ь	2			
	3.1	Параметры моделирования	2			
	3.2	Результаты	3			
		3.2.1 Сравнение с аналитической формулой	3			
		3.2.2 Сравнение методов	4			
4	дек	абрь	4			
	4.1	Параметры моделирования	4			
	4.2	Результаты	F			

1 Постановка задачи

Задача расчета силы F давления текущей жидкости на неподвижный шар эквивалентна определению силы сопротивления, испытываемую движущимся в жидкости шаром. Формула Стокса дает значение силы сопротивления шара в бесконечной жидкости

$$F = 6\pi R\eta u.$$

Уточненная формула Стокса $F = 6\pi \eta u R (1 + \frac{3Ru}{8\nu})$

Сила сопротивления для круглой капли с вязкостью η' в жидкости с вязкостью η

$$F = 2\pi u \eta R \frac{2\eta + 3\eta'}{4(\eta + \eta')}$$

Т.к. невозможно моделировать бесконечную область, рассмотрим следующую задачу: неподвижный шар помещен в расчетную область,

Рис. 1: Набросок задачи

которая является параллелепипедом. Входящий поток имеет скорость $inlet\ velocity$ вдоль оси X, на правой стенке скорость равна скорости входящяего потока, по оси Y и Z периодические граничные условия.

2 Методы

2.1 IB

2.2 momentum exchange

3 июль

3.1 Параметры моделирования

 $R \in \{0.5, 0.75, 1\}$ в обезразмеренных единицах. В решеточных единицах $R \in \{12, 16, 24\}$. Скорость входящего потока в решеточных единицах измерения $inlet\ velocity = 0.001968$. Число Рейнольдса Re = 0.08. Вязкость ν в решеточных величинах 0.5904. Характеристическая длина для всех расчетных областей равна 24.

Плотность сферы равна плотности жидкости $\rho_{sphere} = \rho_{fluid} = 1$. Центр сферы расположен в ly/2, ly/2, ly/2. Разрешение решетки 25 узлов на единицу длины, N=24 подотрезка.

Номер расчетной области	lx	ly	lz		
Ι	18	9	9		
II	18	5	5		
III	14	14	14		

3.2 Результаты

3.2.1 Сравнение с аналитической формулой

На Рис.2 показана сила сопротивления, рассчитанная методом IB-LBM. Сначала сила принимает значения порядка 10, затем медленно убывает. Для сравнения с формулой Стокса значением силы сопротивления считается последнее по времени.

Рис. 2: Сила сопротивления, рассчитанная IB-LBM, в зависимости от времени.

На Рис.3 показаны результаты моделирования для разных расчетных областей. Чем меньше объем области, тем дальше расчетные значения от аналитических.

Рис. 3: Сила сопротивления в зависимости от размера расчетной области

3.2.2 Сравнение методов

На Рис.4 показаны значения силы сопротивления для куба lx=ly=lz=14. Оба метода дают очень близкие результаты. При этом расчет IB-LBM более затратный вычислительно, но позволяет моделировать движущиеся границы. Уточненная формула Стокса $F=6\pi\eta u R(1+\frac{3Ru}{8\nu})$ близка к обычной формуле Стокса, но выше и поэтому ближе к расчетным значениям.

4 декабрь

4.1 Параметры моделирования

 $R \in \{0.5, 0.6, 0.7, 0.8, 0.9, 1\}$ в обезразмеренных единицах. В решеточных единицах $R \in \{12, 14.4, 16.8, 19.2, 21.6, 24\}$. Скорость входящего потока в решеточных единицах измерения $inlet\ velocity$ = 0.001968. Число Рейнольдса Re = 0.08. Вязкость ν в решеточных величинах 0.5904. Характеристическая длина для всех расчетных

Рис. 4:

областей равна 24. Плотность сферы равна плотности жидкости $\rho_{sphere} = \rho_{fluid} = 1.$

Расчетная область куб и сфера помещена в его центр. Линейные размер куба меняется 8,10,12 в обезразмеренных величинах, в решеточных $8\cdot 24=192,10\cdot 24=240,12\cdot 24=288.$

4.2 Результаты

Для разных размеров куба получаются слишком похожие значения 5. И не наблюдается приближения к аналитической формуле с увеличением области 6. Возможно, объем куба меняется слишком незначительно, либо какая-то другая причина и моделирование проведено неверно.

Литература

Рис. 5:

Рис. 6: Сила сопротивления в зависимости от размера расчетной области