## In the Claims

- 1. (currently amended) A flame retardant composition which comprises
  - (a) a thermoplastic polymeric substrate[[,]]and
  - (b) a mixture of
  - (i) a hydroxylamine ester having a structural element of formula (I) or formula (I') or a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')

$$N = O$$

$$X \qquad (I)[[,]]$$

$$N = O$$

$$X \qquad (I)[[,]]$$

# wherein

X is hydrogen,  $C_1$ - $C_{36}$ alkyl,  $C_2$ - $C_{36}$ alkenyl,  $C_2$ - $C_{18}$ alkinyl,  $C_6$ - $C_{10}$ aryl, -O- $C_1$ - $C_{18}$ alkyl, -O- $C_6$ - $C_{10}$ aryl, -NH- $C_1$ - $C_{18}$ alkyl, -NH- $C_6$ - $C_{10}$ aryl, -N( $C_1$ - $C_6$ alkyl)<sub>2</sub>;

X' is a direct bond or  $C_1$ - $C_{36}$ alkylene,  $C_2$ - $C_{36}$ alkenylene,  $C_2$ - $C_{36}$ alkinylene,

-( $C_1$ - $C_6$ alkylene)-phenylene-( $C_1$ - $C_6$ alkylene)- or a group from a dimer acid;

 $G_1$ ,  $G_2$ ,  $G_3$  and  $G_4$  are independently alkyl of 1 to 4 carbon atoms, or  $G_1$  and  $G_2$  together and  $G_3$  and  $G_4$  together, or  $G_1$  and  $G_2$  together or  $G_3$  and  $G_4$  together are pentamethylene;

 $G_{5}$  and  $G_{6}$  are independently hydrogen or  $C_{1}\text{-}C_{4}$  alkyl; and

 $R_1$  is  $C_1$ - $C_{12}$ alkyl,  $C_5$ - $C_7$ cycloalkyl,  $C_7$ - $C_9$ aralkyl,  $C_2$ - $C_{18}$ alkanoyl,  $C_3$ - $C_5$ alkenoyl or benzoyl;

and

- (ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon <u>orand</u> antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.
- 2. (currently amended) A composition according to claim 1 wherein the hydroxylamine ester is of formula (Ia) or (I'a)

$$R_{20}$$
  $N-O$   $X$  (Ia)[[,]]  $R_{30}$   $N-O$   $X'$   $O-N$   $R_{30}$  (I'a)

wherein

X is hydrogen,  $C_1$ - $C_{36}$ alkyl,  $C_2$ - $C_{36}$ alkenyl,  $C_2$ - $C_{18}$ alkinyl,  $C_6$ - $C_{10}$ aryl, -O- $C_1$ - $C_{18}$ alkyl, -O- $C_6$ - $C_{10}$ aryl, -NH- $C_1$ - $C_{18}$ alkyl, -NH- $C_6$ - $C_{10}$ aryl, -N( $C_1$ - $C_6$ alkyl)<sub>2</sub>;

X' is a direct bond or  $C_1$ - $C_{36}$ alkylene,  $C_3$ - $C_{36}$ alkenylene,  $C_3$ - $C_{36}$ alkinylene, -( $C_1$ - $C_6$ alkylene)-phenyl-( $C_1$ - $C_6$ alkylene) or a group from a dimer acid;

 $R_{20}$  and  $R_{30}$  independently are unsubstituted  $C_1$ - $C_{18}$ alkyl,  $C_2$ - $C_{18}$ alkenyl,  $C_2$ - $C_{18}$ alkinyl or with halogen, CN,  $NO_2$  or - $COOR_{40}$  substituted or with O or  $NR_{40}$  interrupted  $C_1$ - $C_{18}$ alkyl,  $C_2$ - $C_{18}$ alkenyl or  $C_2$ - $C_{18}$ alkinyl; and

 $R_{40}$  is H, phenyl or  $C_1$ - $C_{18}$ alkyl; or

 $R_{20}$  and  $R_{30}$  together with the nitrogen atom to which they are bound form a 5 or 6 membered ring which may be interrupted by a nitrogen or oxygen atom and which may be substituted by one or more  $C_1$ - $C_6$ alkyl groups, carboxyl groups,  $C_1$ - $C_{18}$ alkoxy groups[[,]] or  $C_1$ - $C_{18}$ alkanoyloxy groups.

3. (original) A composition according to claim 1 wherein the structural element of formula (I) is of formula (Ib)

$$O = \begin{pmatrix} X & G_1 & G_2 & G_6 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein \* denotes a bond and the other substituents are as defined in claim 1.

**4.** (currently amended) A composition according to claim 3 wherein the hydroxylamine ester is of formula A, B or C[[.]]

#### wherein

 $G_1$ ,  $G_2$ ,  $G_3$  and  $G_4$  are methyl or  $G_1$  and  $G_3$  are methyl and  $G_2$  and  $G_4$  are ethyl or  $G_1$  and  $G_2$  are methyl and  $G_3$  and  $G_4$  are ethyl;

G₅ and G₆ are independently hydrogen or methyl;

m is 1;

R is hydrogen,  $C_1$ - $C_{18}$ alkyl which is uninterrupted or  $C_2$ - $C_{18}$ alkyl which is interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an  $\alpha$ , $\beta$ -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ<sub>12</sub> groups, in which Z<sub>12</sub> is H, C<sub>1</sub>-C<sub>20</sub>alkyl, C<sub>3</sub>-C<sub>12</sub>alkenyl, C<sub>5</sub>-C<sub>7</sub>cycloalkyl, phenyl or benzyl; or

R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

p is 1;

 $R_1$  is  $C_1$ - $C_{12}$ alkyl,  $C_5$ - $C_7$ cycloalkyl,  $C_7$ - $C_8$ aralkyl,  $C_2$ - $C_{18}$ alkanoyl,  $C_3$ - $C_5$ alkenoyl or benzoyl;  $R_2$  is  $C_1$ - $C_{18}$ alkyl,  $C_5$ - $C_7$ cycloalkyl,  $C_2$ - $C_8$ alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula - $CH_2CH(OH)$ -Z or of the formula -CO-Z- or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

n is 1,

R<sub>3</sub> is C<sub>2</sub>-C<sub>8</sub>alkylene or hydroxyalkylene or C<sub>4</sub>-C<sub>36</sub>acyloxyalkylene and

X is hydrogen, C<sub>1</sub>-C<sub>36</sub>alkyl or C<sub>6</sub>-C<sub>10</sub>aryl.

**5.** (currently amended) A composition according to claim 4 wherein the hydroxylamine ester is of formula A or C:

 $G_1$ ,  $G_2$ ,  $G_3$  and  $G_4$  are methyl or  $G_1$  and  $G_3$  are methyl and  $G_2$  and  $G_4$  are ethyl;

G<sub>5</sub> and G<sub>6</sub> are independently hydrogen or methyl;

m is 1:

R is hydrogen,  $C_1$ - $C_{18}$ alkyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an  $\alpha,\beta$ -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

n is 1;

 $R_3$  is  $C_2$ - $C_8$ alkylene or hydroxyalkylene or  $C_4$ - $C_{36}$ acyloxyalkylene and X is hydrogen,  $C_1$ - $C_{36}$ alkyl or  $C_6$ - $C_{10}$ aryl.

**6.** (currently amended) A composition according to claim 1 wherein the hydroxylamineester is an oligomer or polymer obtainedable by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a compound of formula A1 or B1 or by reacting a disocyanate with a compound of formula A1

$$G_1$$
  $G_2$   $G_6$   $G_5$   $G_6$   $G_7$   $G_7$   $G_8$   $G_8$ 

wherein the substituents G<sub>1</sub>, G<sub>2</sub>, G<sub>3</sub>, G<sub>4</sub>, G<sub>5</sub>, G<sub>6</sub> and R<sub>1</sub> are as defined in claim 1[[6]].

**7. (original)** A composition according to claim **1** wherein the hydroxylamine ester is present in an amount of from 0.1 to 15 weight-% based on the weight of the polymer.

- **8.** (currently amended) A composition according to claim 1 wherein the polymer substrate is <u>a resin</u> selected from the group of resins consisting of the polyolefins, the thermoplastic olefins[[,]] <u>and</u> styrenic polymers <u>orand</u> copolymers.
- **9.** (currently amended) A composition according to claim 8 wherein the polymer substrate is polypropylene, polyethylene, thermoplastic olefin (TPO), polystrene, ABS, high impact polystyrene, expandable polystyrene (EPS) <u>orand</u> extrusion foamed polystyrene.
- **10.** (currently amended) A composition according to claim **1** wherein the flame retardant compound component (ii) is selected from the group consisting of

```
tetraphenyl resorcinol diphosphite, (FYROLFLEX® RDP)
chloroalkyl phosphate esters, (ANTIBLAZE® AB-100 or FYROL® FR-2)
polybrominated diphenyl oxide, (DE-60F)
decabromodiphenyl oxide (DBDOP),
antimony trioxide (Sb<sub>2</sub>O<sub>3</sub>),
antimony pentoxide (Sb<sub>2</sub>O<sub>5</sub>),
tris[3-bromo-2,2-(bromomethyl)propyl] phosphate-(PB 370®),
triphenyl phosphate,
bis(2,3-dibromopropyl ether) of bisphenol A-(PE68),
ammonium polyphosphate (APP)-or-(HOSTAFLAM® AP750),
resorcinol diphosphate oligomer (RDP),
brominated epoxy resin,
tetrabromobisphenol A-bis-(allyl ether),
hexabromocyclododecane,
dibromocyclohexane,
tribromophenol-cyanurate, (Dead Sea® FR-245)
ethylene-bis(tetrabromophthalimide) (BT93),
bis(hexachlorocyclopentadieno)cyclooctane-(DECLORANE PLUS®),
calcium sulfate.
```

chlorinated paraffins,
magnesium carbonate,
melamine phosphates,
melamine pyrophosphates,
molybdenum trioxide,
zinc oxide,
1,2-bis(tribromophenoxy)ethane (FF680),
tetrabromo-bisphenol A (SAYTEX® RB100),
Saytex® BC-56HS, (Albemarle)
magnesium hydroxide,
alumina trihydrate,
zinc borate, and
ethylenediamine diphosphate (EDAP)[[.]] and
Oligomeric diisopropyl benzene.

- **11.** (currently amended) A composition according to claim **10** wherein the flame retardant compound—(ii) is tris[3-bromo-2,2-(bromomethyl)propyl] phosphate—(PB370), hexabromo-cyclododecane, tetrabromobisphenol A-bis-(allyl ether), dibromocyclohexane <u>orand</u> Saytex BC-56HS (Albemarle).
- **12.** (currently amended) A composition according to claim 1 wherein the flame retardant compoundcomponent (ii) is present in an amount of from 0.1 to 30 weight-% based on the weight of the polymer.
- **13.** (original) A composition according to claim 1 wherein the ratio by weight between component (i) and (ii) is from 10:1 to 1:100.
- **14. (original)** A composition according to claim **1**, which additionally contains an organic peroxide and/or another radical generator.

- **15. (original)** A composition according to claim **1** which additionally contains a further additive selected from the group consisting of a UV absorber, a sterically hindered amine, a phenolic antioxidant, a phosphite or phosphonite and a benzofuranone or an indolinone.
- **16.** (currently amended) A method of making a thermoplastic polymer flame retarding by incorporating into the thermoplastic polymer

a mixture of

(i) a hydroxylamine ester having a structural element of formula (I) or formula (I') or-with a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')

wherein

X is hydrogen,  $C_1$ - $C_{36}$ alkyl,  $C_2$ - $C_{36}$ alkenyl,  $C_2$ - $C_{18}$ alkinyl,  $C_6$ - $C_{10}$ aryl, -O- $C_1$ - $C_{18}$ alkyl, -O- $C_6$ - $C_{10}$ aryl,

-NH-C<sub>1</sub>-C<sub>18</sub>alkyl, -NH-C<sub>6</sub>-C<sub>10</sub>aryl, -N(C<sub>1</sub>-C<sub>6</sub>alkyl)<sub>2</sub>;

X' is a direct bond or C<sub>1</sub>-C<sub>36</sub>alkylene, C<sub>2</sub>-C<sub>36</sub>alkenylene, C<sub>2</sub>-C<sub>36</sub>alkinylene,

-(C<sub>1</sub>-C<sub>6</sub>alkylene)-phenylene-(C<sub>1</sub>-C<sub>6</sub>alkylene)- or a group from a dimer acid;

 $G_1$ ,  $G_2$ ,  $G_3$  and  $G_4$  are independently alkyl of 1 to 4 carbon atoms, or  $G_1$  and  $G_2$  together and  $G_3$  and  $G_4$  together, or  $G_1$  and  $G_2$  together or  $G_3$  and  $G_4$  together are pentamethylene;

G<sub>5</sub> and G<sub>6</sub> are independently hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl; and

R<sub>1</sub> is C<sub>1</sub>-C<sub>12</sub>alkyl, C<sub>5</sub>-C<sub>7</sub>cycloalkyl, C<sub>7</sub>-C<sub>8</sub>aralkyl, C<sub>2</sub>-C<sub>18</sub>alkanoyl, C<sub>3</sub>-C<sub>5</sub>alkenoyl or benzoyl; and

(ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon <u>orand</u> antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.

# 17. (currently amended) A [[F]]flame retardant mixture comprising

- (i) a hydroxylamine ester having a structural element of formula (I) or formula (I') or with a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')
- (ii)

$$N-O$$
 $X$ 
 $O-N$ 
 $(I')$ 

### wherein

 $X is \ hydrogen, \ C_1-C_{36}alkyl, \ C_2-C_{36}alkenyl, \ C_2-C_{18}alkinyl, \ C_6-C_{10}aryl, \ -O-C_1-C_{18}alkyl, \ -O-C_6-C_{10}aryl, \ -O-C_{10}aryl, \$ 

-NH- $C_1$ - $C_{18}$ alkyl, -NH- $C_6$ - $C_{10}$ aryl, -N( $C_1$ - $C_6$ alkyl)<sub>2</sub>;

X' is a direct bond or C<sub>1</sub>-C<sub>36</sub>alkylene, C<sub>2</sub>-C<sub>36</sub>alkenylene, C<sub>2</sub>-C<sub>36</sub>alkinylene,

-(C<sub>1</sub>-C<sub>6</sub>alkylene)-phenylene-(C<sub>1</sub>-C<sub>6</sub>alkylene) or a group from a dimer acid;

 $G_1$ ,  $G_2$ ,  $G_3$  and  $G_4$  are independently alkyl of 1 to 4 carbon atoms, or  $G_1$  and  $G_2$  together and  $G_3$  and  $G_4$  together, or  $G_1$  and  $G_2$  together or  $G_3$  and  $G_4$  together are pentamethylene;  $G_5$  and  $G_6$  are independently hydrogen or  $C_1$ - $C_4$  alkyl; and  $C_5$ - $C_7$ - $C_8$ - $C_7$ - $C_8$ - $C_7$ - $C_8$ - $C_7$ - $C_8$ - $C_8$ - $C_7$ - $C_8$ -

(ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon <u>orand</u> antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.

18. (canceled)

19. (canceled)