E0 298 | Linear Algebra and Its Applications Assignment 1

Deadline: 11:30 AM, 29 August, 2023 Max mark: 20

- 1. Let $(\mathbb{F}, +, *)$ be a field and let $a, b, c \in \mathbb{F}$. Show that
 - 1. $a+b=a+c \Rightarrow b=c$
 - 2. a * b = a * c, $a \neq 0 \Rightarrow b = c$
 - 3. (-a)*(-b) = ab
 - 4. a * 0 = 0
- 2. Let $n \ge 2$ be an integer and $X_n = \{0, 1, \dots, n-1\}$. Define the following operations on X_n :

$$\forall a, b \in X_n : a \oplus b = a + b \pmod{n}, a \otimes b = ab \pmod{n}.$$

- (a) Verify if (X_n, \oplus, \otimes) is a field when n is prime.
- (b) Let $(\mathbb{F}, +, *)$ be a field. If $a, b \in \mathbb{F}$ and a * b = 0, then show that either a = 0 or b = 0. (1)

(4)

(3)

(3)

- (c) Using (b), show that (X_n, \oplus, \otimes) is not a field when n is not prime. (3)
- 3. Let $(\mathbb{V}, +, \cdot)$ be a vector space over a field $(\mathbb{F}, +, *)$. Let $0_{\mathbb{F}}$ and $1_{\mathbb{F}}$ be the identity elements of \mathbb{F} and $0_{\mathbb{V}}$ be the identity element of \mathbb{V} . Verify that
 - 1. $\forall v \in \mathbb{V} : 0_{\mathbb{F}} \cdot v = 0$
 - 2. $\forall a \in \mathbb{F} : a \cdot 0_{\mathbb{V}} = 0_{\mathbb{V}}$
 - 3. $\forall v \in \mathbb{V} : (-1_{\mathbb{F}}) \cdot v = -v$
- 4. Recall the definition of a vector space from the lecture notes, which consists of 8 axioms. Show that the commutativity axiom (u + v = v + u) is not an independent axiom by deducing it from the other axioms.
- 5. Let \mathbb{V} be a vector space over \mathbb{R} . Let X be a nonempty subset of \mathbb{V} with the property that (4)

$$\forall u, v \in X, \forall t \in \mathbb{R} : tu + (1-t)v \in X.$$

Prove that there exists $x_0 \in X$ and a subspace $\mathbb{U} \subseteq \mathbb{V}$ such that

$$X = \{x_0 + u : u \in \mathbb{U}\}.$$
