Machine Learning Project

In this project, I have used Linear Regression Machine Learning model for the Avocado prices Dataset from kaggle website.

Problem Statement

It is a well-known fact that Millennial LOVE Avocado Toast. It's also a well-known fact that all Millennial live in their parents basements. Clearly, they aren't buying home because they are buying too much Avocado Toast! But maybe there's hope, if a Millennial could find with cheap avocados, they could live out the Millennial American Dream.

ML Methodology

Linear Regression is the methodology used for training and testing the dataset.

Linear Regression is a method of modelling a target value based on independent predictors. This method is mostly used for forecasting and finding out cause and effect relationship between variables. Linear Regression techniques mostly differ based on the number of independent variables and the type of relationship between the independent and dependent variables.

Dataset Description

Some relevant columns in the dataset

- Date The date of the observation
- Average Price the average price of a single avocado
- type conventional or organic
- year the year
- Region the city or region of the observation
- Total Volume Total number of avocados sold
- 4046 Total number of avocados with PLU 4046 sold
- 4225 Total number of avocados with PLU 4225 sold
- 4770 Total number of avocados with PLU 4770 sold
- Total Bags
- Small Bags
- Large Bags
- XLarge Bags

Pre-Processing

Pre-processing refers to the transformations applied to our **data** before feeding it to the algorithm.

1.% matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.model selection import train test split

from sklearn.metrics import mean_squared_error

2.df=pd.read_csv('f:\\avocado.csv') df.describe()

3.df.head()
4.df.isnull().any()

4.df.isnull().any **5.**df.shape

Building, training and evaluation of all ML models

In[1].train,test=train_test_split(df,test_size=0.20,random_state=0) train.head()

In[2]. X_train=train[['Small Bags','Large Bags','XLarge Bags']]

```
y_train=train.AveragePrice
```

In[3]. X_test=test[['Small Bags','Large Bags','XLarge Bags']]

y_test=test.AveragePrice

In[4]. print(X_train.shape)

print(X_test.shape)

print(y_train.shape)

print(y_test.shape)


```
In[5].model=LinearRegression()
```

model.fit(X_train,y_train)

In[6]. y_pred=model.predict(X_test)

In[7]. model.coef_

In[8]. model.intercept_

In[9]. print(y_test[0:5])

In[10]. print(y_pred[0:5])

In[11]. print('Predicted average price: ',model.predict([[3000,6000,2500]]))

In[12]. print(y_test.shape,y_pred.shape)

- **In[13].** print('Accuracy of training set: %.3f' %(model.score(X_train,y_train)))
- **In[14].** print('Accuracy of test set: %.3f' %(model.score(X_test,y_test)))
- **In[15].** mse=mean_squared_error(y_test,y_pred)

print('Mean Squared Error: %.3f' %mse)

In[16]. y_pred=y_pred.round()
y_test=y_test.astype(float).round()

In[17]. plt.scatter(y_test,y_pred,color='green',linewidth=3)
plt.xlabel('Avocado price')
plt.ylabel('Predicted Avocado Price')
plt.title('Avocado price prediction using Linear Regression')
plt.show()

Conclusion

Here, Avocado Price is predicted with 'Small Bags' ,'Large Bags' ,'XLarge Bags' using Linear Regression. So, a Millennial could find cheap avocados and they could live out the Millennial American Dream.