[Aula 07] Linguagem regular: Gramática regular

Prof. João F. Mari joaof.mari@ufv.br

[AULA 07] LR - Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

ROTEIRO

- Gramática regular (ER)
- Gramáticas lineares
- Equivalência das gramáticas lineares
- Gramática linear Linguagem gerada
- [EX] Gramática regular: linguagem a(ba)*
- [EX] Gramática regular: linguagem (a + b)*(aa+bb)
- [Obs.] Gramática linear à esquerda e linear à direita
- Gramática regular → Linguagem regular
- Construção de AFNE a partir de uma GR
- Construção de uma GR a partir de um AFD

Gramática regular (ER)

- Formalismo gramática:
 - Permite definir tanto linguagens regulares como n\u00e3o regulares.
- Gramática regular:
 - Restrições nas regras de produção.
 - Existe mais de uma forma de restringir as regras de produção:
 - Gramáticas lineares.

Prof. João Fernando Mari (joaof.mari@ufv.br)

g

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Gramáticas lineares

$$G = (V, T, P, S)$$

- Gramática Linear à Direita (GLD):
 - $-A \rightarrow wB \text{ ou } A \rightarrow w$
- Gramática Linear à Esquerda (GLE):
 - $-A \rightarrow Bw \text{ ou } A \rightarrow w$
- Gramática Linear Unitária à Direita (GLUD):
 - Como na gramática linear à direita e:
 - $| w | \le 1$
- Gramática Linear Unitária à Esquerda (GLUE):
 - Como na gramática linear à esquerda e:
 - $| w | \le 1$

Gramáticas lineares

- Lado direito de uma produção:
 - Possui no máximo uma variável
 - Sempre antecede (linear à esquerda) ou sucede (linear à direita)...
 - qualquer subpalavra (eventualmente vazia) de terminais.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Equivalência das gramáticas lineares

- Seja L uma linguagem:
 - L é gerada por uma GLD sse
 - L é gerada por uma GLE sse
 - L é gerada por uma GLUD sse
 - L é gerada por uma GLUE.
- As diversas formas das gramáticas lineares são formalismos equivalentes.

Uma gramática regular é uma gramática linear.

Gramática regular – Linguagem gerada

• G = (V, T, P, S) é uma gramática.

L(G) ou GERA(G) é tal que:

$$- L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

5

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Gramática regular: linguagem a(ba)*

• Gramática linear à direita:

$$- G = ({S, A}, {a, b}, P, S)$$

- $S \rightarrow aA$
- A \rightarrow baA | ϵ

Gramática linear unitária à direita:

$$-G = (\{S, A, B\}, \{a, b\}, P, S)$$

- $S \rightarrow aA$
- A \rightarrow bB | ϵ
- $B \rightarrow aA$

Gramática linear à esquerda:

$$- G = (\{ S \}, \{ a, b \}, P, S)$$

S → Sba | a

 Gramática linear unitária à esquerda:

$$-G = (\{S, A\}, \{a, b\}, P, S)$$

- $S \rightarrow Aa \mid a$
- $A \rightarrow Sb$

[EX] Gramática regular: linguagem (a + b)*(aa+bb)

- Linear à Direita:
 - G = ({ S, A }, { a, b }, P, S), e P é tal que
 - $S \rightarrow aS \mid bS \mid A$
 - A → aa | bb
- Linear à Esquerda:
 - G = ({ S, A }, { a, b }, P, S), e P é tal que
 - S → Aaa | Abb
 - A \rightarrow Aa | Ab | ϵ

Prof. João Fernando Mari (joaof.mari@ufv.br)

c

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

[Obs.] Gramática linear à esquerda e linear à direita

- Suponha | w | ≥ 1 e produções simultaneamente do tipo:
 - $-A \rightarrow wB$ (direita) e
 - $-A \rightarrow Bw$ (esquerda)
- A linguagem gerada:
 - Poderá não ser regular;
 - Consequentemente, não é uma gramática regular.
- **[EX]** É possível desenvolver uma gramática, com produções lineares à direita e à esquerda, que gera:
 - $\{ a^n b^n \mid n \in \mathbb{N} \}$

Gramática regular -> Linguagem regular

- Se L é gerada por uma gramática regular,
 - Então L é linguagem regular.
- Prova (por indução):
 - Dado uma GLUD G é possível construir um AFNε M tal que: ACEITA(M) = GERA(G)
 - M simula as derivações de G.
- Demonstração de que ACEITA(M) = GERA(r):
 - Indução no número de derivações.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Gramática regular -> Linguagem regular

- Suponha G = (V, T, P, S) uma GLUD. Seja o AFNE
- $M = (\Sigma, Q, \delta, q_0, F)$
 - $-\Sigma = T$
 - $-Q = V \cup \{q_f\}$ (suponha $q_f \notin V$)

$$- F = \{ q_f \}$$

$$-q_0 = S$$

$$A \rightarrow \epsilon$$
 $\delta(A, \epsilon) = q_f$
 $A \rightarrow a$ $\delta(A, a) = q_f$
 $A \rightarrow B$ $\delta(A, \epsilon) = B$
 $A \rightarrow aB$ $\delta(A, a) = B$

$$\delta(A, a) = B$$

Construção de AFNE a partir de uma GR

- G = ({ S, A, B }, { a, b }, P, S)
 - $-S \rightarrow aA$
 - $-A \rightarrow bB \mid \epsilon$
 - $-B \rightarrow aA$
- M = ({ a, b }, { S, A, B, q_f }, δ , S, { q_f })

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagem regular -> gramática regular

- Se L é linguagem regular, então:
 - Existe uma gramática regular G que gera L.
- Prova (por indução):
 - L é linguagem regular pois:
 - Existe um AFD M = $(\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L

Construção de uma GR a partir de um AFD

- Dado um AFD M = $(\Sigma, Q, \delta, q_0, F)$ tal que:
 - ACEITA(M) = L
- Seja a gramática regular:
 - -G = (V, T, P, S)
 - V = Q U { S }

(suponha S ∉ Q)

- T = Σ
- suponha q_i , $q_k \in Q$, $q_f \in F$ e a $\in \Sigma$

Transição	Produção
:=	$S \rightarrow q_0$
-	$q_f \rightarrow \epsilon$
$\delta(q_i, a) = q_k$	$q_i \rightarrow aq_k$

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Construção de uma GR a partir de um AFD

• M = ({ a, b, c }, { q_0 , q_1 , q_2 }, δ , q_0 , { q_0 , q_1 , q_2 })

Transição	Produção
	$S \rightarrow q_0$
-	$q_0 \rightarrow \epsilon$
=	$q_1 \rightarrow \epsilon$
-	$q_2 \rightarrow \epsilon$
$\delta(q_0, a) = q_0$	$q_0 \rightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \rightarrow bq_1$
$\delta(q_1,b)=q_1$	$q_1 \rightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \rightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \rightarrow cq_2$

• $G = (\{q_0, q_1, q_2, S\}, \{a, b, c\}, P, S)$

Formalismos Regulares - Equivalência

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 07] LR – Gramática regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 3.
 - + Slides disponibilizados pelo autor do livro.

[FIM]

- FIM:
 - [AULA 07] LINGUAGENS REGULARES Gramática regular
- Próxima aula:
 - [AULA 08] Propriedades das linguagens regulares –
 Bombeamento para linguagens regulares

Prof. João Fernando Mari (joaof.mari@ufv.br)