

# Design of an SSVEP-based speller

EMD -EEG



Arianna LURASCHI Elisa VASTA Javier QUIRANT Hatem BENMECHICHE

## **Summary**



# 01

# Part I: Neuro Engineering

#### A. State of the art

- a. Brain-Computer Interface (BCI)
- b. SSVEP-based spellers
- c. EEG Analysis & extraction methods

#### **B.** Speller Conception

- a. Characteristics
- b. Baseline Study

#### C. Limitations

- a. Technical limitations
- b. Ethical & legal aspects

# **Summary**



# 02

# Part II: Signal Processing

- A. Material & methods
  - a. Database
  - b. Feature extraction techniques
    - 1. EMD-FFT
    - 2. EMD-CCA
- B. Results
- C. Conclusion

# Part I NeuroEngineering

Brain-Computer Interface (BCI)

A brain-computer interface (BCI) is **a computer-based system that acquires brain signals, analyzes them**, and translates them into commands that are relayed to an output device to carry out a desired action.

**NCBI** definition

Prediction of cognitive status

Improved quality of life

**Invasive or non invasive** 

EcoG, NRIS

fMRI, EEG, MEG



SSVEP speller definition



BCI speller associates the recorded EEG signal to the letters visually chosen by the patient for building words

frequency

Recorded EEG frequency

**Steady State Visually Evoked Potentials** (SSVEPs) are EEG signal responses to visual stimulation at specific frequencies.

SSVEP-based speller: scheme



SSVEP-based speller: Taxonomy



SSVEP-based speller: examples



O5 Pointer selection one-phase



05 Direct character selection multi-phase

#### Common feature extraction methods

Selection of the best combination of electrodes and parameters



# Power Spectrum Density Analysis (PSDA)

#### Based on:

- The detection of a periodic pattern with the same frequency of the stimuli.
- The magnitude of the SSVEP periodic pattern.

#### Canonical Correlation Analysis (CCA)

#### Based on:

- The detection of a periodic pattern with the same frequency of the stimuli.
- The correlation between the brain signal and the stimulus frequency.

# Empirical Mode Decomposition (EMD)

#### Based on:

- Decomposition of EEG signal into a finite and small number of components (IMFs).
- Choice of IMFs that correspond to the frequency bands used in the SSVEP.

#### EMD - based methods for SSVEP speller

It calculates the **Power Spectral Density (PSD)** of IMF and finds the maximum values of it and perform a decision for the selection of the class.

It measures the linear association between the IMFs and a "Fourier series" of simulated stimulus using its autocorrelation and crosscorrelation.

It recognizes the stimulus frequency by measuring the **synchronisation** between the EEG signals and the reference signal.

It classifies the frequencies with an algorithm able to split a complex decision-making process into a collection of simpler decisions

EMD - PSDA EMD - CCA EMD - MSI EMD - Decision Tree

# **B. Speller Conception**

Characteristics



Different frequencies
→ higher spelling speed



Processing during the blanks



Simple to use & low computational cost



Simple and more accurate qualification

# **B. Speller Conception**

# Baseline study

A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces ; Tsinghua BCI lab ; Yijun Wang

35 subjects x 6 blocks x 40 runs

#### **Stimulation**

- 5 x 8 Matrix.
- 40 Characters.
- 40 Frequencies : 8 15.6 Hz.

| 8.0Hz | 9.0Hz         | 10.0Hz      | 11.0Hz         | 12.0Hz | $\begin{array}{c} 13.0 Hz \\ 0.5\pi \end{array}$ | 14.0Hz      | 15.0Hz         |
|-------|---------------|-------------|----------------|--------|--------------------------------------------------|-------------|----------------|
| 0     | 0.5π          | π           | 1.5π           | 0      |                                                  | π           | 1.5π           |
| 8.2Hz | 9.2Hz         | 10.2Hz      | 11.2Hz         | 12.2Hz | $_{\pi}^{13.2 Hz}$                               | 14.2Hz      | 15.2Hz         |
| 0.5π  | π             | 1.5π        | 0              | 0.5π   |                                                  | 1.5π        | 0              |
| 8.4Hz | 9.4Hz         | 10.4Hz      | 11.4Hz         | 12.4Hz | 13.4Hz                                           | 14.4Hz      | 15.4Hz         |
| π     | 1.5π          | 0           | 0.5π           | π      | 1.5π                                             | 0           | 0.5π           |
| 8.6Hz | 9.6Hz         | 10.6Hz      | 11.6Hz         | 12.6Hz | 13.6Hz                                           | 14.6Hz      | 15.6Hz         |
| 1.5π  | 0             | 0.5π        | π              | 1.5π   | 0                                                | 0.5π        | π              |
| 8.8Hz | 9.8Hz<br>0.5π | 10.8Hz<br>π | 11.8Hz<br>1.5π | 12.8Hz | 13.8Hz<br>0.5π                                   | 14.8Hz<br>π | 15.8Hz<br>1.5π |

#### **Experimental design**

- 6 blocks x 40 characters x 6s
- 0,5s of target
- 5s of identification
- 0,5s of blank



#### **Acquisition**

- 64 electrodes, 10 20 setup
- Reference : Cz electrode
- Sampling: 1000Hz.
- Bandwidth: 0.5Hz 200Hz.
- Notch filter: 50 Hz



#### **C. Limitations**

Technical limitations

#### **Ocular fatigue**

Gaze and ocular concentration provoque fatigue in the subject

#### **Visual latency**

Low temporal precision due to interference with spontaneous signals

#### **Ocular impairment**

Not applicable for patients with ocular issues



#### **Communication speed**

Only detects a few letters per minute, which is inconvenient for realistic applications

#### Signal to Noise Ratio

Peaks of interest coexist with random noise signals

#### **Information Transfer Rates**

SSVEP ITR are lower than other techniques (P300, EcoG)

#### **C. Limitations**

Ethical & legal aspects

#### **Humanity**

Fusion of human and machine.

#### **Informed consent**

The subjects should are aware of all the possible implications of BCI before consenting to use it.



#### Personhood

Possibility of a sense of self changing.

#### "Right to brain privacy"

Privacy legislation to regulate the information gathered in BCI use.

#### **Privacy**

Possibility of extracting private information from people's brains and using it without their knowledge or consent.

# Part II

Signal Processing

#### Database

A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces ; Tsinghua BCI lab ; Yijun Wang

35 subjects x 6 blocks x 40 runs

#### **Stimulation**

- 5 x 8 Matrix.
- 40 Characters.
- 40 Frequencies : 8 15.6 Hz.



#### **Experimental design**

- 6 blocks x 40 characters x 6s
- 0,5s of target
- 5s of identification
- 0,5s of blank



#### **Acquisition**

- 64 electrodes, 10 20 setup
- Reference : Cz electrode
- Sampling: 1000Hz.
- Bandwidth: 0.5Hz 200Hz.
- Notch filter: 50 Hz



Feature extraction methods

#### **Epochs**

Flickering stimuli: 5s Processing: 0.5s b&a stimuli



The **EMD** decomposes the EEG signal into Intrinsic Mode Functions (IMFs).



EMD-FFT



IMFs 2+3 and IMFs 2+3-4+5 Most representative: same bandwidth as stimuli (8-45Hz)

EMD-FFT





The frequency of the first peak corresponds to the stimulus frequency, whereas the other peaks are the harmonics.

#### **Parametrization:**

Frequency of the first peak in the FFT of the combined IMFs

Threshold for the first peak: 70% of the maximum peak

#### **Classification:**

Comparing the frequency of the first peak with the frequency of stimuli.

Selecting the closest frequency.





# **B.** Results

| EMD-FFT      | Single run | Averaged |
|--------------|------------|----------|
| IMFs 2+3     | 24.17%     | 78.12%   |
| IMFs 2+3-4-5 | 24.9%      | 82.29%   |
| EMD-CCA      | 57.15%     | _        |

#### **B.** Results





# C. Conclusions and future perspectives



Complex signal, it needs propper preprocessing

01

#### **Subject Variability**

Big differences between different individuals



#### **FFT**

Looking only to the FFT peaks is not enough



#### **Poor accuracy**

The accuracy remains low, but similar to literature



#### **Word prediction**

Built-in dictionary can be implemented to improve spelling speed





# Thank you for your attention

Any doubts?

# **Bibliography**

- D. Steyrl, R. J. Kobler, and G. R. Müller-Putz, 'On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing', *J. Biomed. Sci. Eng.*, vol. 09, no. 08, pp. 393–398, 2016, doi: 10.4236/jbise.2016.98034.
- B. Sorger, J. Reithler, B. Dahmen, and R. Goebel, 'A Real-Time fMRI-Based Spelling Device Immediately Enabling Robust Motor-Independent Communication', *Curr. Biol.*, vol. 22, no. 14, pp. 1333–1338, Jul. 2012, doi: 10.1016/j.cub.2012.05.022.
- [3] S. He *et al.*, 'EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer', *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 28, no. 2, pp. 519–530, Feb. 2020, doi: 10.1109/TNSRE.2019.2961309.
- [4] R. Abiri, S. Borhani, E. W. Sellers, Y. Jiang, and X. Zhao, 'A comprehensive review of EEG-based brain–computer interface paradigms', *J. Neural Eng.*, vol. 16, no. 1, p. 011001, Feb. 2019, doi: 10.1088/1741-2552/aaf12e.
- [5] A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, and I. Volosyak, 'Brain-Computer Interface Spellers: A Review', *Brain Sci.*, vol. 8, no. 4, p. 57, Mar. 2018, doi: 10.3390/brainsci8040057.
- [6] E. Yin, T. Zeyl, R. Saab, T. Chau, D. Hu, and Z. Zhou, 'A Hybrid Brain–Computer Interface Based on the Fusion of P300 and SSVEP Scores', *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 23, no. 4, pp. 693–701, Jul. 2015, doi: 10.1109/TNSRE.2015.2403270.
- [7] I. Volosyak, H. Cecotti, D. Valbuena, and A. Graser, 'Evaluation of the Bremen SSVEP based BCI in real world conditions', in 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, Jun. 2009, pp. 322–331. doi: 10.1109/ICORR.2009.5209543.
- [8] I. A. Ansari and R. Singla, 'BCI: an optimised speller using SSVEP', Int. J. Biomed. Eng. Technol., vol. 22, no. 1, p. 31, 2016, doi: 10.1504/IJBET.2016.078988.
- [9] I. Volosyak, F. Gembler, and P. Stawicki, 'Age-related differences in SSVEP-based BCI performance', *Neurocomputing*, vol. 250, pp. 57–64, Aug. 2017, doi: 10.1016/j.neucom.2016.08.121.
- [10] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, and S. Gao, 'High-speed spelling with a noninvasive brain–computer interface', *Proc. Natl. Acad. Sci.*, vol. 112, no. 44, pp. E6058–E6067, Nov. 2015, doi: 10.1073/pnas.1508080112.
- [11] I. Volosyak, 'SSVEP-based Bremen–BCI interface—boosting information transfer rates', J. Neural Eng., vol. 8, no. 3, p. 036020, Jun. 2011, doi: 10.1088/1741-2560/8/3/036020.
- I. Volosyak, A. Moor, and A. Gräser, 'A Dictionary-Driven SSVEP Speller with a Modified Graphical User Interface', in *Advances in Computational Intelligence*, vol. 6691, J. Cabestany, I. Rojas, and G. Joya, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 353–361. doi: 10.1007/978-3-642-21501-8 44.
- [13] A. Vilic, T. W. Kjaer, C. E. Thomsen, S. Puthusserypady, and H. B. D. Sorensen, 'DTU BCI speller: An SSVEP-based spelling system with dictionary support', in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Jul. 2013, pp. 2212–2215. doi: 10.1109/EMBC.2013.6609975.
- [14] H. Nezamfar, S. S. Mohseni Salehi, M. Moghadamfalahi, and D. Erdogmus, 'FlashType \$^{\text{TM}}}\$: A Context-Aware c-VEP-Based BCI Typing Interface Using EEG Signals', *IEEE J. Sel. Top. Signal Process.*, vol. 10, no. 5, pp. 932–941, Aug. 2016, doi: 10.1109/JSTSP.2016.2552140.

# **Bibliography**

- [15] Q. Wei, H. Gong, and Z. Lu, 'Grouping modulation with different codes for improving performance in cVEP-based brain-computer interfaces', *Electron. Lett.*, vol. 53, no. 4, pp. 214–216, Feb. 2017, doi: 10.1049/el.2016.4006.
- [16] M. Nakanishi, Y. Wang, X. Chen, Y.-T. Wang, X. Gao, and T.-P. Jung, 'Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis', *IEEE Trans. Biomed. Eng.*, vol. 65, no. 1, pp. 104–112, Jan. 2018, doi: 10.1109/TBME.2017.2694818.
- [17] Yijun Wang, Ruiping Wang, Xiaorong Gao, Bo Hong, and Shangkai Gao, 'A practical VEP-based brain-computer interface', *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 14, no. 2, pp. 234–240, Jun. 2006, doi: 10.1109/TNSRE.2006.875576.
- [18] R. M. G. Tello, S. M. T. Muller, T. Bastos-Filho, and A. Ferreira, 'A comparison of techniques and technologies for SSVEP classification', in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), Salvador, Brazil, May 2014, pp. 1–6. doi: 10.1109/BRC.2014.6880956.
- [19] Ruimin Wang, W. Wu, K. Iramina, and Sheng Ge, 'The combination of CCA and PSDA detection methods in a SSVEP-BCI system', in *Proceeding of the 11th World Congress on Intelligent Control and Automation*, Shenyang, China, Jun. 2014, pp. 2424–2427. doi: 10.1109/WCICA.2014.7053101.
- [20] Y. Zhang, L. Dong, R. Zhang, D. Yao, Y. Zhang, and P. Xu, 'An Efficient Frequency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI', Comput. Math. Methods Med., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/908719.
- [21] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, 'Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis', *Int. J. Neural Syst.*, vol. 24, no. 04, p. 1450013, Jun. 2014, doi: 10.1142/S0129065714500130.
- [22] R. M. G. Tello, S. M. T. Muller, T. Bastos-Filho, and A. Ferreira, 'Comparison of new techniques based on EMD for control of a SSVEP-BCI', in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, Jun. 2014, pp. 992–997. doi: 10.1109/ISIE.2014.6864747.
- [23] M. Hassan, S. Boudaoud, J. Terrien, B. Karlsson, and C. Marque, 'Combination of Canonical Correlation Analysis and Empirical Mode Decomposition Applied to Denoising the Labor Electrohysterogram', *IEEE Trans. Biomed. Eng.*, vol. 58, no. 9, pp. 2441–2447, Sep. 2011, doi: 10.1109/TBME.2011.2151861.
- S. Sadeghi and A. Maleki, 'The empirical mode decomposition-decision tree method to recognize the steady-state visual evoked potentials with wide frequency range', *J. Med. Signals Sens.*, vol. 8, no. 4, p. 225, 2018, doi: 10.4103/jmss.JMSS 20 18.
- [25] Y. Wang, X. Chen, X. Gao, and S. Gao, 'A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces', *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 25, no. 10, pp. 1746–1752, Oct. 2017, doi: 10.1109/TNSRE.2016.2627556.
- [26] D. H. Brainard, 'The Psychophysics Toolbox', Spat. Vis., vol. 10, no. 4, pp. 433–436, 1997, doi: 10.1163/156856897X00357.
- [27] X. Chen, Z. Chen, S. Gao, and X. Gao, 'A high-ITR SSVEP-based BCI speller', Brain-Comput. Interfaces, vol. 1, no. 3–4, pp. 181–191, Oct. 2014, doi: 10.1080/2326263X.2014.944469.