05. Avaliação de Modelos

IC 22/23

ISEC - Cpereira

Metodologias

- Treino/Teste
 - Para <u>avaliação de modelos supervisionados</u>, segue-se habitualmente a seguinte metodologia:
 - Dividimos o conjunto de dados em dois conjuntos: conjunto de treino e conjunto de teste;
 - construímos um modelo no conjunto de treino, avaliamos no conjunto de teste, calculando a percentagem de amostras classificadas corretamente;
 - A avaliação no conjunto de teste permite medir a capacidade de generalização do modelo para dados novos, <u>nunca antes vistos</u>.
 - Não estamos interessados em quão bem o nosso modelo se ajusta ao conjunto de treino, mas sim em quão bem ele pode fazer previsões para dados que não foram observados durante o treino.

Metodologias

Cross-Validation – Validação cruzada

- Método estatístico mais fiável e completo do que usar apenas uma divisão em treino e teste.
 - » Os dados são divididos em pastas e vários modelos são treinados.
 - » A versão mais comum é a validação cruzada de k-fold, onde k define o número de pastas, definido pelo utilizador, usualmente um valor entre 5 e 10.
 - exemplo para k=5 [1]:

Metodologias

Vantagens

- Cada amostra estará presente no conjunto de treino e também em uma das pastas para validação.
 - Assim, o modelo deve generalizar para todas as amostras no conjunto de dados, para que todas as métricas de validação cruzada (e a média) sejam elevadas.
- Utilizamos todos dados de forma mais eficaz (todos são usados para treino, não apenas uma fração como na divisão treino/validação/teste).
- Fornece informações sobre como o modelo é sensível à seleção do conjunto de dados de treino.

Desvantagens

- Aumento do custo computacional treinamos k modelos, em vez de um único modelo.
- Não devolve propriamente um modelo específico, já treinado para posterior "deployment".

Metodologias

• ...

- "Stratified cross-validation"

 Dividimos os dados de forma a que as proporções entre as classes sejam as mesmas em cada pasta e em todo o conjunto de dados. Exemplo [1]:

Metodologias

• ...

Outras Variantes

- Leave-one-out
 - Caso especial de validação cruzada em que o número de pastas é igual ao número de amostras no conjunto de dados.
 - O algoritmo de aprendizagem é aplicado uma vez por cada instância, usando todas as outras instâncias como um conjunto de treino e a instância selecionada como teste.
 - » Trata-se de uma situação limite de cross-validation.

Metodologias

• ...

ShuffleSplit

- Seleciona aleatoriamente conjunto de treino e teste durante cada iteração. Cada divisão contém "train_size" amostras para treino "test_size" amostras (conjuntos disjuntos) para o teste. Esta divisão é repetida "n_iter" vezes.
 - » Exemplo [1], para train_size=5, test_size=2, and n_iter=4:

Metodologias

• ...

GroupKFold

- Aplicada quando existem grupos altamente relacionados.
 - » Por exemplo um sistema para reconhecer emoções (classe) a partir de fotografias, com 100 pessoas, onde cada pessoa é capturada várias vezes, mostrando várias emoções. Pretende-se que a mesma pessoa não conste no treino e teste [1].

Ajuste de híper-parâmetros

- Pesquisa em Grelha Grid Search
 - Como ajustar os parâmetros de configuração do modelo (híper-parâmetros)?
 - Tentar todas as combinações possíveis dos parâmetros de interesse.
 - Exemplo de uma "grid" para um classificador SVC [1]:

Ajuste de híper-parâmetros

```
# naive grid search implementation
– Código [1]
                                from sklearn.svm import SVC
                               X_train, X_test, y_train, y_test = train_test_split(
                                iris.data, iris.target, random_state=0)
print("Size of training set: {} size of test set: {}".format(
    X_train.shape[0], X_test.shape[0]))
                                best_score = 0
                                for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
                                     for C in [0.001, 0.01, 0.1, 1, 10, 100]:
                                        # for each combination of parameters, train an SVC
svm = SVC(gamma=gamma, C=C)
                                        svm.fit(X_train, y_train)
                                         # evaluate the SVC on the test set
                                         score = svm.score(X_test, y_test)
                                         # if we got a better score, store the score and parameters
                                         if score > best_score:
                                             best_score = score
                                             best_parameters = {'C': C, 'gamma': gamma}
                                print("Best score: {:.2f}".format(best_score))
                                print("Best parameters: {}".format(best_parameters))
```

Ajuste de híper-parâmetros

٠..

- Deve-se manter o conjunto de teste completamente isolado do treino - usado apenas para a avaliação final.
 - Todas as eventuais escolhas feitas com base na performance para o conjunto de teste "fará verter" informação para o modelo, o que não deve acontecer!

 Podemos igualmente usar a validação cruzada para avaliar o desempenho de cada combinação de parâmetros.

Ajuste de híper-parâmetros

• ...

• Code [1]

```
for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
        # for each combination of parameters,
        # train an SVC
        svm = SVC(gamma=gamma, C=C)
        # perform cross-validation
        scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)
        # compute mean cross-validation accuracy
        score = np.mean(scores)
        # if we got a better score, store the score and parameters
        if score > best_score:
            best_score = score
            best_parameters = {'C': C, 'gamma': gamma}
    # rebuild a model on the combined training and validation set
    svm = SVC(**best_parameters)
    svm.fit(X_trainval, y_trainval)
```

Ajuste de híper-parâmetros

• ...

- O scikit-learn fornece a classe GridSearchCV
 - depois de encontrar o melhor conjunto de híper-parâmetros usando cross-validation, treina novamente o modelo para todo o conjunto de treino [1]:

Ajuste de híper-parâmetros

•

• Code [3]

- Consideremos problemas de Classificação Binária
 - Conjuntos de dados não balanceados
 - Uma das duas classes é muito mais frequente que a outra.
 - Este acontecimento é bastante comum no mudo real.
 Exemplos (spam filter, intrusion detection, diagnosis, ...)
 - Neste caso a "accuracy" taxa de acerto será uma boa métrica?
 - Se 99% dos dados for da classe positiva, uma taxa de acerto de 99% pode não significar qualquer aprendizagem.

Métricas de Avaliação

•

– Matriz de Confusão

			Predicted values		
			Positive	Negative	Totals
	Actual Values	Positive	TP	FN	P = (TP + FN) = Actual Total Positives
		Negative	FP	TN	N = (FP + TN) = Actual Total Negatives
		Totals	Predicted Total Positives	Predicted Total Negatives	

• Taxa de acerto:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• ...

- Existem várias outras formas de resumir a matriz de confusão, sendo as mais comuns as métricas de "precisão" e "recall".
 - Precisão
 - » Mede quantas das amostras previstas como positivas são realmente positivas.
 - usada como uma métrica de desempenho quando o objetivo é limitar o número de falsos positivos

$$Precision = \frac{TP}{TP + FP}$$

Métricas de Avaliação

٠..

- Recall (sensitivity ou True Positive Rate)
 - mede quantas das amostras positivas são "capturadas" pelas previsões positivas.
 - Usada quando precisamos de identificar todas as amostras positivas; ou seja, quando é importante evitar falsos negativos.

$$Recall = \frac{TP}{TP + FN}$$

- » Considere um problema de diagnóstico medico. Qual a melhor métrica para avaliação de desempenho?
- Existe um "trade-off" entre otimizar "recall" e otimizar a "precisão"!

• ...

• f-score

- Uma forma de resumir o trade-off entre precisão e recall é a medidad "f-score" ou "f-measure", que representa a média harmónica entre as duas métricas
 - » Como tem em consideração a precisão e a recall, é mais adequada do que apenas a precisão para conjuntos de dados não balanceados

$$F = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Métricas de Avaliação

• ...

- Exemplo [2]:

• ...

- Considerar a "incerteza" na predição
 - a maioria dos classificadores fornece uma função de decisão ou um método de previsão de probabilidade para avaliar os graus de certeza sobre as previsões.
 - Como padrão, o "threshold" de 0,5 significa que se o modelo tiver mais de 50% de "certeza" de que um ponto é da classe positiva, ele será classificado como tal.
 - Aumentar este limite significa que o modelo precisa estar mais confiante para tomar uma decisão positiva.
 - Alterar o limite que é usado para tomar uma decisão de classificação é uma forma de ajustar o compromisso entre precisão e recall para um determinado classificador

Métricas de Avaliação

• ...

 Este exemplo representa alguns dígitos posicionados da pontuação (probability_score) mais baixa à esquerda até a pontuação mais alta à direita [2]:

- Curva de Precisão-Recall
 - Definir um ponto de operação por exemplo colocar como requisito um classificador com 90% de recall.
 - sklearn.metrics
 - » O threshold de zero é valor por defeito para a função de decisão do classificador.
 - » Qual a precisão para um recall de 90%?

from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(
 y_test, svc.decision_function(X_test))

Métricas de Avaliação

• ...

- Curva de ROC Receiver operating characteristics e AUC
 - Compromisso entre false positive rate (FPR) e true positive rate (TPR) – recall
 - » A curva ideal é próxima do canto superior esquerdo recall elevado mantendo um "false positive rate" baixo [1]:

$$FPR = \frac{FP}{FP + TN}$$

• ...

- Métricas para problemas "Multiclasse"
 - Digits dataset [1]

```
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target, random_state=0)
lr = LogisticRegression().fit(X_train, y_train)
pred = lr.predict(X_test)
print("Accuracy: {:.3f}".format(accuracy_score(y_test, pred)))
print("Confusion matrix:\n()".format(confusion_matrix(y_test, pred)))

Out[63]:

Accuracy: 0.953
Confusion matrix:
[[37 0 0 0 0 0 0 0 0 0 0]
[ 0 39 0 0 0 0 2 0 2 0]
[ 0 0 41 3 0 0 0 0 0 0]
[ 0 0 0 1 43 0 0 0 0 0 0]
[ 0 0 0 1 43 0 0 0 0 0 0]
[ 0 0 0 0 38 0 0 0 0 0]
[ 0 1 0 0 0 47 0 0 0 0]
[ 0 1 0 0 0 0 0 52 0 0 0]
[ 0 1 0 0 0 0 0 52 0 0 0]
[ 0 1 0 1 0 1 0 0 47 0 0 0]
[ 0 3 1 0 0 0 0 0 0 33 1]
[ 0 0 0 0 1 0 1 0 0 45 0 0]
```

Métricas de Avaliação

• ...

	Lassi	fication_rep	ort(y_tes	t, pred))	
Out[65]:					
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	37
	1	0.89	0.91	0.90	43
	2	0.95	0.93	0.94	44
	3	0.90	0.96	0.92	45
	4	0.97	1.00	0.99	38
	5	0.98	0.98	0.98	48
	6	0.96	1.00	0.98	52
	7	1.00	0.94	0.97	48
	8	0.93	0.90	0.91	48
	9	0.96	0.94	0.95	47

• ...

- Versão multiclasse de "f-score":
 - calcular o "f-score" por classe, com essa classe sendo a classe positiva e as outras classes constituindo as classes negativas.
 Em seguida, essas pontuações por classe são combinadas usando uma das seguintes estratégias:
 - » "macro" averaging a média das pontuações por classe.
 - » "weighted" averaging a média das pontuações por classe ponderada pelo seu suporte.
 - » "micro" averaging calcula o número total de falsos positivos, falsos negativos e verdadeiros positivos em todas as classes

Referências

- [1] Müller, A. C., & Guido, S. (2016). *Introduction to machine learning with Python: a guide for data scientists*. " O'Reilly Media, Inc.".
- [2] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.
- [3] https://scikit-learn.org