Clase 19

IIC 1253

Prof. Pedro Bahamondes

Outline

Introducción

Notación asintótica

Epílogo

Objetivos de la clase

- Conocer definiciones de notación asintótica
- □ Demostrar propiedades clásicas de notación asintótica

Complejidad de algoritmos

Ya vimos cómo determinar cuando un algoritmo era correcto.

- Esto no nos asegura que el algoritmo sea útil en la práctica.
- Necesitamos estimar su tiempo de ejecución.
 - En función del tamaño del input.
 - Independiente de: lenguaje, compilador, hardware...

Lo que nos interesa entonces no es el tiempo *exacto* de ejecución de un algoritmo, sino que su comportamiento a medida que crece el input.

Introduciremos notación que nos permitirá hablar de esto.

Complejidad de algoritmos

Vamos a ocupar funciones de dominio natural (\mathbb{N}) y recorrido real positivo (\mathbb{R}^+).

- El dominio será el tamaño del input de un algoritmo.
- El recorrido será el tiempo necesario para ejecutar el algoritmo.

Outline

Introducción

Notación asintótica

Epílogo

Sea $f: \mathbb{N} \to \mathbb{R}^+$.

Definición

$$\mathcal{O}(f) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad (g(n) \le c \cdot f(n))\}$$

Diremos que $g \in \mathcal{O}(f)$ es a lo más de orden f o que es $\mathcal{O}(f)$.

Si $g \in \mathcal{O}(f)$, entonces "g crece más lento o igual que f"

Usaremos indistintamente $\mathcal{O}(f(n))$ para referirnos a $\mathcal{O}(f)$ por simplicidad.

Sea $f: \mathbb{N} \to \mathbb{R}^+$.

Definición

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad (g(n) \ge c \cdot f(n))\}$$

Diremos que $g \in \Omega(f)$ es al menos de orden f o que es $\Omega(f)$.

Si $g \in \Omega(f)$, entonces "g crece más rápido o igual que f"

Usaremos indistintamente $\Omega(f(n))$ para referirnos a $\Omega(f)$ por simplicidad.

Sea $f: \mathbb{N} \to \mathbb{R}^+$.

Definición

$$\Theta(f) = \mathcal{O}(f) \cap \Omega(f)$$

Diremos que $g \in \Theta(f)$ es exactamente de orden f o que es $\Theta(f)$.

Si $g \in \Theta(f)$, entonces "g crece igual que f"

Ejercicio

Demuestre que $g \in \Theta(f)$ si y sólo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $\forall n \geq n_0: c \cdot f(n) \leq g(n) \leq d \cdot f(n)$.

Ejercicio

Demuestre que $g \in \Theta(f)$ si y sólo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $\forall n \geq n_0: c \cdot f(n) \leq g(n) \leq d \cdot f(n)$.

```
g \in \Theta(f)
\Leftrightarrow g \in \mathcal{O}(f) \land g \in \Omega(f)
\Leftrightarrow \exists d \in \mathbb{R}^+ \quad \exists n_1 \in \mathbb{N} \quad \forall n \ge n_1 \quad (g(n) \le d \cdot f(n))
\land \exists c \in \mathbb{R}^+ \quad \exists n_2 \in \mathbb{N} \quad \forall n \ge n_2 \quad (g(n) \ge c \cdot f(n))
Tomamos \ n_0 = max\{n_1, n_2\}
\Leftrightarrow \exists c \in \mathbb{R}^+ \quad \exists d \in \mathbb{R}^+ \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad (c \cdot f(n) \le g(n) \le d \cdot f(n))
```

Ejercicios

Demuestre que:

- 1. $f(n) = 60n^2 \text{ es } \Theta(n^2)$.
- 2. $f(n) = 60n^2 + 5n + 1 \text{ es } \Theta(n^2)$.

Ejercicios

Demuestre que:

- 1. $f(n) = 60n^2$ es $\Theta(n^2)$.
- 2. $f(n) = 60n^2 + 5n + 1 \text{ es } \Theta(n^2)$.

¿Qué podemos concluir de estos dos ejemplos?

- Las constantes no influyen.
- En funciones polinomiales, el mayor exponente "manda".

Solución: Apuntes Jorge Pérez, Sección 3.1.2, páginas 102 y 103.

Ejercicio

Demuestre que $f(n) = \log_2(n)$ es $\Theta(\log_3(n))$.

Ejercicio

Demuestre que $f(n) = \log_2(n)$ es $\Theta(\log_3(n))$.

¿Qué podemos concluir de este ejemplo?

■ Nos podemos independizar de la base del logaritmo.

Solución: Apuntes Jorge Pérez, Sección 3.1.2, página 103.

Podemos formalizar las conclusiones anteriores:

Teorema

Si
$$f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$$
, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Teorema

Si $f(n) = \log_a(n)$ con a > 1, entonces para todo b > 1 se cumple que f es $\Theta(\log_b(n))$.

Ejercicio (propuesto ★)

Demuestre los teoremas.

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Es conveniente expresar f(n) como $\sum_{i=0}^{k} a_i n^i$.

Notemos que $\forall x \in \mathbb{R}, x \leq |x|$, por lo que $f(n) \leq \sum_{i=0}^{k} |a_i| n^i$.

Ahora, $\forall n \geq 1$ se cumple que $n^i \geq n^{i-1}$, y luego $f(n) \leq \left(\sum_{i=0}^k |a_i|\right) n^k$.

Tomamos entonces $n_0 = 1$ y $c = \sum_{i=0}^{k} |a_i|$, con lo que $f \in \mathcal{O}(n^k)$.

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Para demostrar que $f \in \Omega(n^k)$, debemos encontrar c y n_0 tales que

$$\forall n \geq n_0, c \cdot n^k \leq \sum_{i=0}^k a_i n^i$$
 (1)

Notemos que $\lim_{n\to +\infty} \frac{f(n)}{n^k} = a_k$, y luego asintóticamente tendremos que $c \le a_k$. Vamos a elegir un c que sea menor que a_k y luego encontraremos el valor de n_0 desde el cual se cumple (1).

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Tomemos $c = \frac{a_k}{2}$:

$$\frac{a_k}{2} \cdot n^k \le \sum_{i=0}^k a_i n^i$$

$$\le a_k \cdot n^k + \sum_{i=0}^{k-1} a_i n^i$$

$$\le \frac{a_k}{2} \cdot n^k + \frac{a_k}{2} \cdot n^k + \sum_{i=0}^{k-1} a_i n^i$$

$$\Rightarrow \frac{a_k}{2} \cdot n^k \ge -\sum_{i=0}^{k-1} a_i n^i$$

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Podemos relajar la condición:

$$\frac{a_k}{2} \cdot n^k \ge \sum_{i=0}^{k-1} |a_i| n^i$$
 Dividimos por n^{k-1}
$$\frac{a_k}{2} \cdot n \ge \sum_{i=0}^{k-1} |a_i| n^{i-(k-1)}$$
 Como $n^{i-(k-1)} \le 1$, relajamos de nuevo
$$\frac{a_k}{2} \cdot n \ge \sum_{i=0}^{k-1} |a_i|$$

$$n \ge \frac{2}{a_k} \sum_{i=0}^{k-1} |a_i|$$

Teorema

Si $f(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + \ldots + a_2 \cdot n^2 + a_1 \cdot n + a_0$, con $a_i \in \mathbb{R}$ y $a_k > 0$, entonces $f \in \Theta(n^k)$.

Tomamos entonces $n_0 = \frac{2}{a_k} \sum_{i=0}^{k-1} |a_i|$, con lo que $f \in \Omega(n^k)$, y por lo tanto $f \in \Theta(n^k)$.

Teorema

Si $f(n) = \log_a(n)$ con a > 1, entonces para todo b > 1 se cumple que f es $\Theta(\log_b(n))$.

Sean $x = \log_a(n)$ e $y = \log_b(n)$. Esto es equivalente a que $a^x = n$ y $b^y = n$, y por lo tanto $a^x = b^y$. Aplicando \log_a a ambos lados, obtenemos que $x = \log_a(b^y)$, y por propiedad de logaritmo se tiene que $x = y \cdot \log_a(b)$. Reemplazando de vuelta $x \in y$, tenemos que $\log_a(n) = \log_b(n) \cdot \log_a(b)$, y por lo tanto para todo $n \ge 1$:

$$\log_a(n) \le \log_a(b) \cdot \log_b(n)$$
$$\wedge \log_a(n) \ge \log_a(b) \cdot \log_b(n)$$

Tomamos entonces $n_0 = 1$ y $c = \log_a(b)$ y tenemos que

$$\forall n \ge n_0 \log_a(n) \le c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in \mathcal{O}(\log_b(n))$$
$$\forall n \ge n_0 \log_a(n) \ge c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in \Omega(\log_b(n))$$

de donde concluimos que $\log_a(n) \in \Theta(\log_b(n))$.

Las funciones más usadas para los órdenes de notación asintótica tienen nombres típicos:

Notación	Nombre
Θ(1)	Constante
$\Theta(\log n)$	Logarítmico
$\Theta(n)$	Lineal
$\Theta(n \log n)$	$n \log n$
$\Theta(n^2)$	Cuadrático
$\Theta(n^3)$	Cúbico
$\Theta(n^k)$	Polinomial
$\Theta(m^n)$	Exponencial
$\Theta(n!)$	Factorial

con $k \ge 0, m \ge 2$.

Outline

Introducción

Notación asintótica

Epílogo

Objetivos de la clase

- □ Conocer definiciones de notación asintótica
- Demostrar propiedades clásicas de notación asintótica