

Contents

1	$\mathbf{Est}_{\mathbf{i}}$	adística Descriptiva
	1.1	Introducción
2	Mu	estreo
	2.1	Modelos estadísticos
	2.2	Estadísticos muestrales
	2.3	Momentos
	2.4	Resultados de convergencias
	2.5	Estadísticos ordenados
	2.6	Ejercicios
3	Rec	lucción de Datos
	3.1	Teorema de Factorización de Fisher
	3.2	Ejemplos de Factorización de Fisher
	3.3	Estadístico minimal suficiente
	3.4	Teorema de caracterización de estadísticos minimales suficientes
	3.5	Familia exponencial k-paramétrica
	3.6	Estadísticos Ancilarios y Completos
	3.7	Principios de reducción de datos
	3.8	Ejercicios
4	Esti	imación Puntual Paramétrica
	4.1	Estimadores Bayesianos
	4.2	Criterios de comparación de estimadores 53

1 Estadística Descriptiva

1.1 Introducción

El Cálculo de Probabilidades proporciona una Teoría Matemática que permite analizar las propiedades de los Experimentos Aleatorios

"La velocidad del movimiento caótico de las moléculas de un gas sigue una distribución normal de parámetros..."

"La vida de un determinado tipo de componente eléctrica tiene distribución exponencial de media..."

Construir un Espacio Probabilístico que sirva de Modelo Estadístico asociado a una determinada Variable Aleatoria real para la Deducción de Consecuencias

Para tratar de averiguar si una moneda está trucada no hay mejor procedimiento que lanzarla un buen número de veces y verificar si estadísticamente los resultados obtenidos confirman o invalidan la hipótesis p=0.5, siendo p la probabilidad de cara. Desde el Cálculo de Probabilidades sólo se podrá actuar en función del parámetro p sin alcanzar soluciones numéricas

Disponer de un Conjunto de Observaciones del fenómeno considerado (en lugar de un espacio probabilístico totalmente especificado) hace abandonar los dominios del Cálculo de Probabilidades para introducirse en el terreno de la Estadística Matemática o Inferencia Estadística, cuya finalidad es obtener información sobre la Ley de Probabilidad de dicho fenómeno a partir del Análisis e Interpretación de las observaciones recolectadas

Estadística Descriptiva o Análisis de Datos: Recolección de la Información y su Tratamiento Numérico

Métodos Estadísticos e Inferencia Estadística: Conjunto de Técnicas que utilizan la Información para construir Modelos Matemáticos en situaciones prácticas de incertidumbre y Análisis e Interpretación de las observaciones como método para obtener conclusiones sobre la Ley de Probabilidad del fenómeno en estudio

Inferencia Frecuentista e Inferencia Bayesiana

Modelos Estadísticos Paramétricos y No Paramétricos

Estimación Puntual: Pronóstico de un determinado parámetro de la distribución mediante un único valor numérico

Etimación por Intervalo: Intervalo numérico de valores en el que se pueda afirmar razonablemente que varía el parámetro en cuestión

Contraste de Hipótesis: Corroborar o Invalidar una determinada afirmación acerca de la distribución del fenómeno estudiado.

Concepto de Población y Muestra Aleatoria

2 Muestreo

2.1 Modelos estadísticos

Definición 2.1.1 [Modelo Estadístico]

Sea $(\omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad asociado a un experimento aleatorio \mathcal{E} , una variable aleatoria observable $X : \omega \to \mathbb{R}$ y su espacio medible asociado (χ, \mathcal{B}) .

Un modelo estadístico es una terna (χ, \mathcal{B}, F) , donde:

- χ es el espacio donde la variable aleatoria X toma valores.
- \mathcal{B} es la σ -álgebra asociada a χ . Generalmente se toma que $\mathcal{B} = \mathcal{B}(\mathbb{R})$.
- ullet F es el conjunto de todas las posibles funciones de distribución que podemos considerar sobre \mathcal{B} .

Definición 2.1.2 [Modelo Estadístico Paramétrico]

Un modelo estadístico paramétrico es, al igual que el anteior, una terna (χ, \mathcal{B}, F) , pero en este caso F depende de un parámetro θ desconocido.

Se define $F = \{F_{\theta} : \theta \in \Theta\}$, donde Θ es el espacio paramétrico, es decir, el conjunto de todos los posibles valores que puede tomar θ para que F_{θ} sea una función de distribución. De forma general se tiene que $\theta \in \Theta \subseteq \mathbb{R}^k$.

Además se tienen dos enfoques según cómo se tome el comportamiento de θ :

- Enfoque frecuentista: θ es un valor fijo pero desconocido.
- Enfoque bayesiano: θ es una variable aleatoria.

Ejemplo

- 1. Sea X una variable aleatoria con distribución $N(\theta,1)$, donde θ es un parámetro desconocido. Entonces, el modelo estadístico asociado a este experimento es $(\mathbb{R}, \mathcal{B}, F_{\theta}, \theta)$, donde $F_{\theta}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x-\theta)^2}$. En este caso $\Theta = \mathbb{R}$.
- 2. Sea X-variable aleatoria con distribución Bernouilli, de parámetro θ . Entonces en este caso, el modelo estadístico asociado es $(\{0,1\}, \mathcal{B}, F_{\theta}, \theta)$, donde $F_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}$. En este caso $\Theta = [0,1]$.

Definición 2.1.3 [Muestra aleatoria simple]

Sea (X_1, \ldots, X_n) un conjunto de variables aleatorias independientes e idénticamente distribuidas (i.i.d.) entonces a dicho conjunto se le conoce como **muestra aleatoria simple** de tamaño n.

Por tanto tenemos que el modelo estadístico asociado es una terna (χ, \mathcal{B}, F) , donde:

- $\bullet \ \chi = \mathbb{R}^n.$
- $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$.
- $F = \{F_{\theta}^n : \theta \in \Theta\}$, donde Θ es el espacio paramétrico, donde:

$$F_{\theta}^{n}(x_1,\ldots,x_n) = \prod_{i=1}^{n} F_{\theta}(x_i)$$

Definición 2.1.4 [Función de Distibución Empírica]

Sea (X_1, \ldots, X_n) m.a.s. $(n) \sim X$ y denotemos por $(X_{(1)}, \ldots, X_{(n)})$ a la muestra ordenada de menor a mayor. $\forall x \in \mathbb{R}$ fijo definimos la función distribución empírica como la variable aleatoria

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i)$$

Observemos que

$$F_n(x) = \begin{cases} 0 & \text{si } x < X_{(1)} \\ \frac{k}{n} & \text{si } X_{(k)} < x < X_{(k+1)}, k = 1, \dots, n-1 \\ 1 & \text{si } x \ge X_{(n)} \end{cases}$$

Dada una realización particular de la muestra (x_1, \ldots, x_n) , $F_n(x)$ es una función de distribución asociada a una variable aleatoria discreta que toma valores $(x_{(1)}, \ldots, x_{(n)})$ con función de masa $(\frac{1}{n}, \ldots, \frac{1}{n})$

Ejemplo

Supongamos que tenemos una muestra aleatoria ordenada de tamaño n=5:

$$x_{(1)} = 2, x_{(2)} = 3, x_{(3)} = 5, x_{(4)} = 7x_{(5)} = 9.$$

Entones, por como se define la FDE $F_n(x) = \frac{1}{5} \sum_{i=1}^5 I_{(-\infty,x]}(X_i)$, tenemos que:

$$F_n(x) = \begin{cases} 0 & \text{si } x \ge 2\\ \frac{1}{5} & \text{si } 2 \ge x < 3\\ \frac{2}{5} & \text{si } 3 \ge x < 5\\ \frac{3}{5} & \text{si } 5 \ge x < 7\\ \frac{4}{5} & \text{si } 7 \ge x < 9\\ 1 & \text{si } x \ge 9 \end{cases}$$

De manera que cada vez que x alcanza un valor de la muestra, la función de distribución empírica aumenta en $\frac{1}{n} = 0, 2$.

Proposición 2.1.1 [Propiedades de la Función de Distribución Empírica]

Sea una muestra aleatoria $X_1, X_2, ..., X_n$ de una variable aleatoria X con función de distribución F(x). Definimos la función de distribución empírica como:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} \chi_{(-\infty,x]}(X_i)$$

donde $\chi_{(-\infty,x]}(X_i)$ es la función indicadora que toma el valor 1 si $X_i \leq x$ y 0 en caso contrario.

1. Interpretación probabilística: La función indicadora $\chi_{(-\infty,x]}(X_i)$ sigue una distribución Bernoulli con parámetro F(x), es decir:

$$\chi_{(-\infty,x]}(X_i) \sim Bernoulli(F(x))$$

Por tanto también podemos afirmar que:

$$\chi_{(-\infty,x]}(X_i) \sim Bin(1,F(x))$$

Además, la suma de estas variables sigue una distribución binomial:

$$\sum_{i=1}^{n} \chi_{(-\infty,x]}(X_i) \sim Bin(n, F(x))$$

2. Esperanza y varianza: Para un valor fijo de x, se cumple que:

$$E[F_n(x)] = F(x)$$

lo que indica que $F_n(x)$ es un estimador insesgado de F(x). La varianza está dada por:

$$V[F_n(x)] = \frac{F(x)(1 - F(x))}{n} \underset{n \to \infty}{\longrightarrow} 0$$

- 3. Convergencia:
 - (a) Convergencia casi segura:

$$F_n(x) \xrightarrow[n \to \infty]{c.s.} F(x)$$

(b) Convergencia en distribución: Se cumple la normalidad asintótica:

$$\frac{F_n(x) - F(x)}{\sqrt{\frac{F(x)(1 - F(x))}{n}}} \xrightarrow[n \to \infty]{d} N(0, 1)$$

4. Intervalo de confianza para F(x): Dada una realización particular de la muestra (x_1, \ldots, x_n) , se puede construir un intervalo de confianza asintótico para F(x) de nivel $1 - \alpha$:

$$IC_{1-\alpha}(F(x)) = \left(F_n(x) - \frac{z_{\alpha/2}}{2\sqrt{n}}, F_n(x) + \frac{z_{\alpha/2}}{2\sqrt{n}}\right)$$

donde $z_{\alpha/2}$ es el cuantil de la distribución normal estándar.

Teorema 2.1.1 [de Glivenko-Cantelli]

Sea (X_1, \ldots, X_n) m.a.s. $(n) \sim X$ con función de distribución empírica $F_n(x)$ y sea F(x) la función de distribución de X, es decir, de la población total. Entonces se cumple que:

$$\lim_{n \to \infty} P(w : \operatorname{Sup}_x |F_n(x) - F(x)| < \epsilon) = 1, \ \forall \epsilon > 0$$

Es decir,
$$||F_n - F||_{\infty} = \operatorname{Sup}_x |F_n(x) - F(x)| \xrightarrow[n \to \infty]{c.s.} 0$$

Demostración. Para simplicidad, consideremos el caso de una variable aleatoria continua X. Fijemos $-\infty = x_0 < x_1 < \cdots < x_{m-1} < x_m = \infty$ tal que

$$F(x_j) - F(x_{j-1}) = \frac{1}{m}$$
 para $j = 1, \dots, m$.

Ahora, para todo $x \in \mathbb{R}$, existe $j \in \{1, \dots, m\}$ tal que $x \in [x_{j-1}, x_j]$.

$$F_n(x) - F(x) \le F_n(x_j) - F(x_j) + \frac{1}{m},$$

$$F_n(x) - F(x) \ge F_n(x_{j-1}) - F(x_{j-1}) - \frac{1}{m}.$$

Por lo tanto,

$$||F_n - F||_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \le \max_{j \in \{1, \dots, m\}} |F_n(x_j) - F(x_j)| + \frac{1}{m}.$$

Dado que

$$\max_{j \in \{1, ..., m\}} |F_n(x_j) - F(x_j)| \to 0$$
 c.s.

por la ley fuerte de los grandes números, podemos garantizar que para cualquier $\varepsilon > 0$ y cualquier entero m tal que $1/m < \varepsilon$, podemos encontrar N tal que para todo $n \ge N$,

$$\max_{j \in \{1, \dots, m\}} |F_n(x_j) - F(x_j)| \le \varepsilon - 1/m \quad \text{c.s.}$$

Combinando con el resultado anterior, esto implica además que

$$||F_n - F||_{\infty} \le \varepsilon$$
 c.s.,

lo que es la definición de convergencia casi segura.

Corolario 2.1.1

El Teorema de Glivenko-Cantelli permite realizar una técnica estadística denominda **método de susti**tución (Plug-In) la cual se basa en la sustitución de parámetros desconocidos por sus estimaciones sobre una muestra. Por ejemplo:

- 1. Se puede estimar la media poblacional μ por la media muestral $\bar{X} = \int x \partial F_n(x) = \frac{1}{n} \sum_{i=1}^n x_i$.
- 2. Se puede estimar la varianza poblacional σ^2 por la varianza muestral $S^2 = \int (x \bar{x}) dF_n(x) = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 = \sigma_n^2$.

2.2 Estadísticos muestrales

Definición 2.2.1 [Estadístico muestral]

Sea $(X_1, ..., X_n)$ m.a.s. $(n) \sim X$ y sea $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ medible (integrable), bien definida y no dependiente de parámetros desconocidos, se le llama **estadístico muestral**

Ejemplo

Desacamos los siguientes estadísticos muestrales:

1. Media muestral $T(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$

- 2. Cuasivarianza muestral $T(X_1, \dots, X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2 = S_n^2$
- 3. $T(X_1, ..., X_n) = (\bar{X}, S_n^2)$

2.3 Momentos

Sea $(X_1, \dots X_n)$ m.a.s.(n) de X, $\mu = E[X]$ y $\sigma = \sqrt{V(X)}$.

Definición 2.3.1 [Momento Muestral]

Se define el momento muestral de orden k respecto al origen como

$$a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

y el momento muestral de orden k respecto a la media como

$$b_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^k$$

Observación 2.3.1

- El momento muestral de orden 1 respecto al origen es la media muestral $(a_1 = \bar{X})$.
- El momento muestral de orden 2 respecto a la media es la varianza muestral $(b_2 = \sigma_n^2)$.

Definición 2.3.2 [Momento Poblacional]

Se define el momento poblacional de orden k respecto al origen como

$$\alpha_k = E\left[X^k\right]$$

y el momento poblacional de orden k respecto a la media como

$$\beta_k = E\left[(X - \mu)^k \right]$$

Observación 2.3.2

- El momento poblacional de orden 1 respecto al origen es la media poblacional ($\alpha_1 = \mu$).
- El momento poblacional de orden 2 respecto a la media es la varianza poblacional ($\beta_2 = \sigma^2$).

Proposición 2.3.1 [Propiedades asintóticas de los momentos muestrales]

Sea (X_1, \ldots, X_n) m.a.s.(n) de $X \sim N(\mu, \sigma)$, entonces se cumple que:

1. Momentos muestrales respecto al origen:

(a)
$$a_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow[n \to \infty]{c.s.} \alpha_k = E\left[X^k\right]$$

(b)
$$\bar{X} \xrightarrow[n \to \infty]{c.s.} \mu$$
 (Ley Fuerte de Kintchine, $\mu < \infty$)

2. Momentos muestrales respecto a la esperanza/media:

(a)
$$b_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k \xrightarrow[n \to \infty]{c.s.} \beta_k = E\left[(X - \mu)^k \right]$$
(b)
$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \xrightarrow[n \to \infty]{c.s.} \sigma^2$$

(c)
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \xrightarrow[n \to \infty]{c.s.} \sigma^2$$

Propiedades asintóticas de los momentos muestrales

$$\sqrt{n} \frac{a_k - \alpha_k}{\sqrt{a_{2k} - a_k^2}} \xrightarrow[n \to \infty]{d} Z \sim N(0, 1)$$

$$\sqrt{n} \frac{\bar{X} - \mu}{\sigma} \xrightarrow[n \to \infty]{d} Z \sim N(0, 1), \quad \sigma = \sqrt{E[X^2] - \mu^2}$$

(Teorema Central del Límite de Levy-Lindeberg, $\mu<\infty,\sigma<\infty)$

$$\sqrt{n} \frac{b_k - \beta_k}{\sqrt{\beta_{2k} - \beta_k^2 - 2k\beta_{k-1}\beta_{k+1} + k^2\beta_{k-1}^2\beta_2}} \xrightarrow[n \to \infty]{} Z \sim N(0, 1)$$

$$\sqrt{n} \frac{\sigma_n^2 - \sigma^2}{\sqrt{\beta_4^4 - \sigma^4}} \xrightarrow[n \to \infty]{} Z \sim N(0, 1)$$

2.4 Resultados de convergencias

Teorema 2.4.1 [de Slutsky]

$$Si \ X_n \xrightarrow[n \to \infty]{d} X \ y \ Y_n \xrightarrow[n \to \infty]{P} a \ entonces$$

1.
$$Y_n X_n \xrightarrow[n \to \infty]{d} aX$$

2.
$$X_n + Y_n \xrightarrow[n \to \infty]{d} X + a$$

3.
$$\frac{X_n}{Y_n} \xrightarrow[n \to \infty]{d} \text{ siempre que } a \neq 0$$

Lema 2.4.1

Si $\{a_n\}$ es una sucesión de constantes con $\lim_{n\to\infty} a_n = +\infty$ y a es un número fijo tal que

$$a_n (X_n - a) \xrightarrow[n \to \infty]{d} X$$

entonces para cualquier función $g: \mathbb{R} \to \mathbb{R}$ con derivada continua y no nula en a se tiene que $a_n (g(X_n) - g(a)) \xrightarrow[n \to \infty]{d} g'(a) X$

Ejemplo

Sea $(X_1, \dots X_n)$ m.a.s. (n) de $X \sim N(\mu, \sigma)$, se pide calcular la distribución de la media muestral: Tenemos que $\varphi_X(t) = e^{it\mu - \frac{1}{2}t^2\sigma^2} \implies$

$$E\left[e^{\bar{X}}\right] = \varphi_{\bar{X}}(t) = E\left[e^{it\frac{1}{n}\sum_{i=1}^{n}X_{i}}\right] = \varphi_{\sum_{i=1}^{n}X_{i}}\left(\frac{t}{n}\right) = \left(\varphi_{X}\left(\frac{t}{n}\right)\right)^{n} = e^{it\mu - \frac{1}{2}\frac{\sigma^{2}}{n}t^{2}}.$$

Por lo tanto $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria simple de una variable aleatoria $X \sim N(0, \sigma)$. La función de densidad de X es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}x^2}$$

Calculemos la distribución de $a_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$

Definimos la variable estandarizada:

$$Z_i = \frac{X_i}{\sigma} \sim N(0, 1).$$

Entonces, la suma de los cuadrados sigue una distribución chi-cuadrado:

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2.$$

La distribución chi-cuadrado con n grados de libertad es un caso particular de la distribución Gamma:

$$\chi_n^2 \sim \text{Gamma}\left(a = \frac{1}{2}, p = \frac{n}{2}\right).$$

Donde: - $a = \frac{1}{2}$ es el **parámetro de forma**. - $p = \frac{n}{2}$ es el **parámetro de escala**. La función de densidad de la suma de cuadrados es:

$$f_{\sum_{i=1}^n Z_i^2}(y) = \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2-1} e^{-y/2}.$$

Como $X_i^2 = \sigma^2 Z_i^2$, al tomar la media muestral obtenemos:

$$a_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 = \sigma^2 \frac{1}{n} \sum_{i=1}^n Z_i^2.$$

Sustituyendo la distribución Gamma de la suma de Z_i^2 , se tiene:

$$a_2 \sim \text{Gamma}\left(a = \frac{n}{2\sigma^2}, p = \frac{n}{2}\right).$$

Para muestras grandes, usando el **Teorema Central del Límite**, la variable estandarizada:

$$\sigma^2 \sqrt{\frac{n}{2\sigma^2}} (a_2 - \sigma^2)$$

converge en distribución a una normal estándar:

$$N(0,1)$$
.

Este resultado es fundamental en inferencia estadística, ya que muestra que la varianza muestral puede aproximarse por una normal para muestras grandes.

Lema 2.4.2

 $Si\ Y \sim \text{Gamma}(a,p),\ entonces\ T = 2aY \sim \text{Gamma}\left(\frac{1}{2},p\right).$

Demostración. Sabemos que la función de densidad de probabilidad de una variable aleatoria Y que sigue una distribución Gamma con parámetros a y p es:

$$f_Y(y) = \frac{a^p}{\Gamma(p)} e^{-ay} y^{p-1}, \quad y \ge 0.$$

Ahora, definimos la variable T como T = 2aY, lo que implica que $Y = \frac{1}{2a}T$. Usamos el cambio de variable para encontrar la función de densidad de probabilidad de T. El jacobiano de este cambio es:

$$J = \left| \frac{dY}{dT} \right| = \frac{1}{2a}.$$

Por lo tanto, la función de densidad de probabilidad de T se obtiene sustituyendo en la fórmula general para el cambio de variable:

$$f_T(t) = f_Y\left(\frac{1}{2a}t\right) \cdot \frac{1}{2a}.$$

Sustituyendo la expresión de $f_Y(y)$, obtenemos:

$$f_T(t) = \frac{a^p}{\Gamma(p)} e^{-a\left(\frac{1}{2a}t\right)} \left(\frac{1}{2a}t\right)^{p-1} \cdot \frac{1}{2a}.$$

Simplificando, tenemos:

$$f_T(t) = \frac{\left(\frac{1}{2}\right)^p}{\Gamma(p)} e^{-\frac{1}{2}t} t^{p-1}, \quad t \ge 0.$$

Esta es precisamente la función de densidad de una distribución Gamma con parámetros $(\frac{1}{2}, p)$, lo que demuestra que $T \sim \text{Gamma}(\frac{1}{2}, p)$.

Ejemplo

Sea (X_1, \ldots, X_n) una m.a.s.(n) de $X \sim N(0, \sigma)$. Entonces, la función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

Se pide calcular la distribución de

$$a_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

Tipificando las variables aleatorias X_i como:

$$Z_i = \frac{X_i}{\sigma} \sim N(0, 1),$$

se tiene que

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2 \equiv \text{Gamma}\left(a = \frac{1}{2}, p = \frac{n}{2}\right)$$

La función de densidad de esta suma es:

$$f_{\sum_{i=1}^{n} Z_{i}^{2}}(y) = \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} e^{-\frac{y}{2}} y^{\frac{n}{2} - 1}$$

Dado que

$$a_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 = \frac{\sigma^2}{n} \sum_{i=1}^n Z_i^2,$$

definimos el cambio de variable

$$J = \frac{n}{\sigma^2}.$$

Por lo tanto, la función de densidad de a_2 es:

$$f_{a_2}(t) = f_{\sum_{i=1}^n Z_i^2} \left(\frac{n}{\sigma^2} t \right) \frac{n}{\sigma^2} = \frac{\left(\frac{n}{2\sigma^2} \right)^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} \right)} e^{-\frac{n}{2\sigma^2} t} t^{\frac{n}{2} - 1}.$$

Por lo tanto,

$$a_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \sim \text{Gamma}\left(a = \frac{2\sigma^2}{n}, p = \frac{n}{2}\right).$$

Finalmente, bajo el límite

$$\sigma^2 \sqrt{\frac{n}{2}} \left(a_2 - \sigma^2 \right) \xrightarrow{d} N(0, 1)$$
 cuando $n \to \infty$.

Teorema 2.4.2 [de Fisher]

Sea (X_1, \ldots, X_n) una m.a.s. (n) de $X \sim N(\mu, \sigma)$, con μ y σ desconocidos. Se cumple que:

1. La media muestral y la varianza muestral:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

son variables aleatorias independientes.

2. Sus distribuciones son:

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right),$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

3. La siguiente variable aleatoria sique una distribución t de Student:

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}.$$

Demostración.

1.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 y $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ son independientes $\iff X_i - \bar{X}$ y \bar{X} son independientes

 \implies Veamos la independencia a través de la covarianza: $Cov(X_i - \bar{X}, \bar{X}) = 0$?

$$Cov(X_{i} - \bar{X}, \bar{X}) = E[(X_{i} - \bar{X})\bar{X}] - E[X_{i} - \bar{X}]E[\bar{X}] = E[(X_{i} - \bar{X}\bar{X})] - (E[X_{i}] - E[\bar{X}])E[\bar{X}] =$$

$$= E[(X_{i} - \bar{X})\bar{X}] - (\mu - \mu)\mu = E[X_{i} \cdot \bar{X}] - E[\bar{X}^{2}] = E[X_{i} \cdot \bar{X}] - (V[X] + E[\bar{X}]^{2}) = E[X_{i} \cdot \bar{X}] - (\frac{\sigma^{2}}{n} + \mu^{2}) =$$

$$= E[\frac{1}{n}X_{1} \cdot X_{i} + \dots + \frac{1}{n}X_{i}^{2} + \dots + \frac{1}{n}X_{n} \cdot X_{i}] - (\frac{\sigma^{2}}{n} - \mu^{2}) =$$

$$= \frac{1}{n}(E[X_{1}X_{i}] + \dots + E[X_{n}X_{i}]) + \frac{1}{n}E[X_{i}^{2}] - (\frac{\sigma^{2}}{n} + \mu^{2}) =$$

$$= \frac{n-1}{n}(\mu^{2}) + \frac{1}{n}(\sigma^{2} + \mu^{2}) - (\frac{\sigma^{2}}{n} + \mu^{2}) =$$

$$= \frac{n-1}{n}\mu^{2} + \frac{\mu^{2}}{n} - \mu^{2} + \frac{\sigma^{2}}{n} - \frac{\sigma^{2}}{n} = 0 \implies$$

$$Cov(X_{i} - \bar{X}, \bar{X}) = 0 \implies \text{son independientes}$$

.

2. Denotemos por

$$S_{n+1}^2 = \frac{1}{n} \sum_{i=1}^{n+1} (X_i - \bar{X}_{n+1})^2.$$

Demostremos que:

$$nS_{n+1}^2 = (n-1)S_n^2 + (X_{n+1} - \bar{X}_n)^2 \frac{n}{n+1}.$$

Desarrollando la expresión:

$$nS_{n+1}^{2} = \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2}$$

$$= \sum_{i=1}^{n} ((X_{i} - \bar{X}_{n}) + (\bar{X}_{n} - \bar{X}_{n+1}))^{2} + (X_{n+1} - \bar{X}_{n+1})^{2}$$

$$= (n-1)S_{n}^{2} + n(\bar{X}_{n} - \bar{X}_{n+1})^{2} + (X_{n+1} - \bar{X}_{n+1})^{2}$$

$$+ \sum_{i=1}^{n} 2(X_{i} - \bar{X}_{n})(\bar{X}_{n} - \bar{X}_{n+1}).$$

Como $\sum_{i=1}^{n} (X_i - \bar{X}_n) = 0$, el término cruzado se anula y obtenemos:

$$nS_{n+1}^2 = (n-1)S_n^2 + n\left(\bar{X}_n - \bar{X}_{n+1}\right)^2 + \left(X_{n+1} - \bar{X}_{n+1}\right)^2.$$

En este último paso, se desarrollan los cuadrados y se aplica la definición de la media muestral:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \quad \Longrightarrow \quad n\bar{X}_n = \sum_{i=1}^n X_i.$$

Ahora, utilizando la relación:

$$\bar{X}_{n+1} = \frac{n\bar{X}_n + X_{n+1}}{n+1} \implies X_{n+1} - \bar{X}_{n+1} = \frac{(n+1)X_{n+1} - n\bar{X}_n - X_{n+1}}{n+1},$$

obtenemos:

$$nS_{n+1}^2 = (n-1)S_n^2 + (X_{n+1} - \bar{X}_n)^2 \frac{n}{(n+1)^2} + (X_{n+1} - \bar{X}_n)^2 \frac{n^2}{(n+1)^2}$$
$$= (n-1)S_n^2 + (X_{n+1} - \bar{X}_n)^2 \frac{n}{n+1}.$$

Así, hemos obtenido el resultado deseado.

Distribución de la razón estandarizada: Ahora veamos que:

$$\left(\frac{X_{n+1} - \bar{X}_n}{\sigma\sqrt{\frac{n+1}{n}}}\right)^2 \sim \chi_1^2.$$

Usamos las siguientes propiedades:

$$X_{n+1} \sim N(\mu, \sigma),$$

$$\bar{X}_n \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right),$$

$$X_{n+1} - \bar{X}_n \sim N\left(0, \sigma\sqrt{\frac{n+1}{n}}\right).$$

En este desarrollo se ha usado que en las distribuciones normales, se restan las medias y se suman las varianzas. Por lo tanto, la variable estandarizada es:

$$\left(\frac{X_{n+1} - \bar{X}_n}{\sigma\sqrt{\frac{n+1}{n}}}\right) \sim N(0,1) \sim \chi_1^2.$$

Prueba por inducción: Consideremos el caso base, con n = 2:

$$\begin{split} \frac{S_2^2}{\sigma^2} &= \frac{1}{\sigma^2} \left((X_1 - \bar{X}_2)^2 + (X_2 - \bar{X}_2)^2 \right) \\ &= \frac{1}{\sigma^2} \left(\left(X_1 - \frac{X_1 + X_2}{2} \right)^2 + \left(X_2 - \frac{X_1 + X_2}{2} \right)^2 \right) \\ &= \frac{1}{\sigma^2} \left(\frac{1}{4} (X_1 - X_2)^2 + \frac{1}{4} (X_2 - X_1)^2 \right) \\ &= \frac{1}{\sigma^2} \frac{1}{2} (X_2 - \bar{X}_1)^2. \end{split}$$

Como hemos demostrado antes,

$$\left(\frac{X_2 - \bar{X_1}}{\sigma\sqrt{2}}\right)^2 \sim \chi_1^2.$$

Hipótesis de inducción: Para n - 1 supongamos que

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Aplicando la fórmula demostrada:

$$\frac{nS_{n+1}^2}{\sigma^2} = \frac{(n-1)S_n^2}{\sigma^2} + \left(\frac{X_{n+1} - \bar{X}_n}{\sigma\sqrt{\frac{n+1}{n}}}\right)^2.$$

Como los dos términos a la derecha son independientes, y

$$\frac{X_{n+1} - \bar{X}_n}{\sigma \sqrt{\frac{n+1}{n}}} \sim \chi_1^2,$$

obtenemos la suma de dos variables chi-cuadrado:

$$\chi_{n-1}^2 + \chi_1^2 \sim \chi_n^2.$$

Conclusión: Por inducción, se ha demostrado que

$$\frac{nS_{n+1}^2}{\sigma^2} \sim \chi_n^2.$$

3. Se deduce de los anteriores

Definición 2.4.1 [Distribución t de Student]

Dadas las v.a. independientes X, X_1, \ldots, X_n con distribución N(0,1) la v.a.

$$T_n = X / \sqrt{\frac{1}{n} \sum_{i=1}^n X_i^2}$$

tiene una distribución T_n de Student con n grados de libertad. De forma equivalente, una v.a. T_n tiene esta distribución, cuando su función de densidad es

$$f_{T_n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n}\,\Gamma\left(\frac{1}{2}\right)\,\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad t \in \mathbb{R}.\tag{1}$$

Es fácil establecer que la media de la distribución T_n es 0 y que la varianza es $V[T_n] = \frac{n}{n-2}$ si n > 2.

Corolario 2.4.1

Para m.a.s. de tamaño n de una población $N(\mu, \sigma)$, la distribución de la variable

$$T_{n-1} = \frac{\overline{X} - \mu}{S} \sqrt{n}$$

 $con S^2$ la cuasivarianza muestral, es una distribución de Student con n - 1 grados de libertad.

Demostración. La variable $\frac{\overline{X} - \mu}{\sigma} \sqrt{n}$ tiene distribución N(0,1) y la variable $(n-1)\frac{S^2}{\sigma^2}$ tiene distribución χ^2_{n-1} como por el teorema de Fisher, ambas son independientes, se sigue el resultado.

Definición 2.4.2 [Distribución F de Snedecor]

Dadas las m.a.s. $(X_1,...,X_m)$ de una población N(0,1) e $(Y_1,...,Y_n)$ de una población N(0,1), si ambas muestras son independientes, la v.a.

$$F_{m,n} = \frac{\frac{1}{m} \sum_{i=1}^{m} X_i^2}{\frac{1}{n} \sum_{i=1}^{n} Y_i^2}$$

tiene una distribución F de Snedecor con (m,n) grados de libertad, o de forma equivalente, una v.a. tiene esta distribución cuando su función de densidad es

$$f(x) = \frac{\left(\frac{m}{n}\right)^{\frac{m}{2}} \Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, \quad para \ x > 0.$$

Distribuciones relacionadas con la distribución F de Snedecor:

- Si $X \sim F_{m,n}$ entonces $Y = \lim_{n \to \infty} mX$ tiene una distribución chi cuadrada χ_m^2 .
- Si $X \sim \chi_m^2$ y $Y \sim \chi_n^2$ son independientes entonces $\frac{X/m}{Y/n} \sim F_{m,n}$.

- Si $X \sim \text{Beta}\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$ entonces $\frac{\beta X}{\alpha(1-X)} \sim F_{\alpha,\beta}$.
- Si $X \sim F_{m,n}$ entonces $X^{-1} \sim F_{n,m}$.
- Si $X \sim t_{(n)}$ (Distribución t
 de Student) entonces $X^2 \sim F_{1,n}$.
- Si $X \sim \Gamma(\alpha_1, \beta_1)$ y $Y \sim \Gamma(\alpha_2, \beta_2)$ son independientes entonces

$$\frac{\alpha_2 \beta_1 X}{\alpha_1 \beta_2 Y} \sim F_{2\alpha_1, 2\alpha_2}.$$

2.5 Estadísticos ordenados

Definición 2.5.1 [Estadísticos ordenados]

Sea (X_1, \ldots, X_n) una m.a.s. (n) de X. Podemos ordenar los valore de menor a mayor. A éstos se les llama estadísticos ordenados y se denotan por $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$. Sus funciones de ditribución y densidad son:

$$F_{X_{(n)}}(x) = F(x)^n \implies f_{X_{(n)}}(x) = \frac{\partial}{\partial x} (F(x)^n) = nF(x)^{n-1} f(x)$$

$$F_{X_{(1)}}(x) = 1 - (1 - F(x))^n \implies f_{X_{(1)}}(x) = \frac{\partial}{\partial x} (1 - (1 - F(x))^n) = n(1 - F(x))^{n-1} f(x)$$

$$F_{X_{(r)}}(x) = P\left(\sum_{i=1}^n I_{(-\infty,x]}(X_i) \ge r\right) = P(\operatorname{Bin}(n, F(x)) \ge r) = \sum_{j=r}^n \binom{n}{j} F(x)^j (1 - F(x))^{n-j} \implies f_{X_{(r)}}(x) = \binom{n}{r} rF(x)^{r-1} (1 - F(x))^{n-r} f(x)$$

$$f_{X_{(r)},X_{(s)}}(x,y) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} F(x)^{r-1} (F(y) - F(x))^{s-r-1} (1 - F(y))^{n-s} f(x) f(y)$$

$$f_{X_{(1)},\dots,X_{(n)}}(y_1,\dots,y_n) = n! \prod_{i=1}^n f(y_i) \text{ si } y_1 < \dots < y_n$$

Ejemplo

Sea X_1, X_2, \dots, X_n una muestra aleatoria simple de una distribución uniforme en (0, 1), es decir:

$$X_1, X_2, \dots, X_n \stackrel{i.i.d}{\sim} U(0,1)$$

La función de distribución acumulada de una variable uniforme en (0,1) es:

$$F(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$

Ordenando la muestra de menor a mayor, los estadísticos ordenados se denotan como $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. Se quiere encontrar la función de densidad de estos valores ordenados. Para el máximo, $X_{(n)}$, se tiene que su función de distribución es:

$$P(X_{(n)} \le x) = P(X_1 \le x, X_2 \le x, \dots, X_n \le x)$$

Dado que los datos son independientes, esto se factoriza como:

$$P(X_{(n)} \le x) = F(x)^n = x^n, \quad 0 < x < 1$$

Derivando se obtiene la función de densidad:

$$f_{X_{(n)}}(x) = \frac{d}{dx}x^n = nx^{n-1}, \quad 0 < x < 1$$

Es decir, $X_{(n)} \sim Beta(n, 1)$.

Para el mínimo, $X_{(1)}$, la función de distribución se obtiene como:

$$P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - P(X_1 > x, X_2 > x, \dots, X_n > x)$$

Por independencia,

$$P(X_1 > x, X_2 > x, ..., X_n > x) = (1 - F(x))^n = (1 - x)^n$$

Por lo que,

$$P(X_{(1)} \le x) = 1 - (1 - x)^n, \quad 0 < x < 1$$

Derivando se obtiene la densidad:

$$f_{X_{(1)}}(x) = n(1-x)^{n-1}, \quad 0 < x < 1$$

De manera general, para el r-ésimo estadístico ordenado, su densidad es:

$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!}x^{r-1}(1-x)^{n-r}, \quad 0 < x < 1$$

lo que implica que $X_{(r)} \sim Beta(r, n-r+1)$.

La densidad conjunta del mínimo y el máximo de la muestra es:

$$f_{X_{(1)},X_{(n)}}(x,y) = n(n-1)(y-x)^{n-2}, \quad 0 < x < y < 1$$

Esto muestra cómo la distribución de los estadísticos ordenados sigue distribuciones beta en función de la posición del orden estadístico dentro de la muestra.

Con lo obtenido, calculemos la ditribución del rango muestral: $R = X_{(n)} - X_{(1)}$: Sea el cambio de variable

$$R = X_{(n)} - X_{(1)} H = \frac{X_{(n)} + X_{(1)}}{2}$$
$$X_{(n)} = H + \frac{R}{2} X_{(1)} = H - \frac{R}{2}$$

Dado que estamos intentando calcular un cambio de variable aleatoria, necesitamos calcular el jacobiano de la transformación. En este caso, el jacobiano es:

$$J = \begin{vmatrix} \frac{\partial X_{(1)}}{\partial H} & \frac{\partial X_{(1)}}{\partial R} \\ \frac{\partial X_{(n)}}{\partial H} & \frac{\partial X_{(n)}}{\partial R} \end{vmatrix} = \begin{vmatrix} 1 & -\frac{1}{2} \\ 1 & \frac{1}{2} \end{vmatrix} = 1.$$

Además, dado que $X_{(i)}$ son variables aleatorias uniformes en (0,1), tenemos que:

$$0 < X_{(1)} = H - \frac{R}{2} < 1 \quad 0 < X_{(n)} = H + \frac{R}{2} < 1 \implies \frac{R}{2} < H < 1 - \frac{R}{2}$$

Entonces por el Teorema de la Transformación de Variables, la densidad conjunta de R y H es:

$$g_{(R,H)}(r,h) = f_{(X_{(1)},X_{(n)})}\left(h - \frac{r}{2}, h + \frac{r}{2}\right) = 1 - n(n-1)r^{n-2}$$

Para obtener la densidad de R, se integra la densidad conjunta respecto a H:

$$f_R(r) = \int_0^1 g_{(R,H)}(r,h)dh = \int_0^1 1 - n(n-1)r^{n-2}dh = h - n(n-1)r^{n-2}h\Big|_0^1 = 1 - n(n-1)r^{n-2}$$

Entonces, la densidad de R es:

$$f_R(r) = 1 - n(n-1)r^{n-2} \sim Beta(n-1,2)$$

Ejemplo

Sea (X_1, \ldots, X_n) una muestra aleatoria simple (m.a.s.) de tamaño n de una variable aleatoria X, cuya función de distribución es

$$F(x) = P(X \le x).$$

Se desea calcular la distribución de las variables

$$U = F(X)$$
 y $U_R = F(X_{(r)})$.

Para la variable U, tenemos:

$$G_U(u) = P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)).$$

Utilizando la propiedad de la función de distribución inversa, se obtiene:

$$F(F^{-1}(u)) = u, \quad 0 < u < 1.$$

Por lo tanto,

$$U = F(X) \sim U(0, 1).$$

Ahora, para la distribución de U_R :

$$G_{U_R}(u) = P(U_R \le u) = P(F(X_{(r)}) \le u) = P(X_{(r)} \le F^{-1}(u)).$$

Esto es equivalente a la función de distribución del estadístico ordenado:

$$F_{X_{(r)}}\left(F^{-1}(u)\right) = \sum_{j=r}^{n} \binom{n}{j} F\left(F^{-1}(u)\right)^{j} \left(1 - F\left(F^{-1}(u)\right)\right)^{n-j}.$$

Reescribiendo en términos de u:

$$G_{U_R}(u) = \sum_{j=r}^{n} \binom{n}{j} u^j (1-u)^{n-j}.$$

Por lo tanto, el estadístico ordenado de orden r asociado a la muestra aleatoria sigue la distribución

$$U_R = F\left(X_{(r)}\right),\,$$

donde la población original U = F(X) sigue una distribución uniforme en el intervalo (0,1).

2.6 Ejercicios

Ejercicio 2.1. Sea X una población de $Bernouilli(p=\frac{1}{2})$ y se consideran todas las m.a.s. posibles de tamaño 3. Para cada muestra calcúlese $\bar{X}, s^2, \mu y S^2$ y determínese sus distribuciones en el muestreo.

Solución:

Muestras	\bar{X}	s^2	Р
(0,0,0)	0	0	1/8
(0,0,1)	1/3	1/3	1/8
(0,1,0)	1/3	1/3	1/8
(0,1,1)	2/3	1/3	1/8
(1,0,0)	1/3	1/3	1/8
(1,0,1)	2/3	1/3	1/8
(1,1,0)	2/3	1/3	1/8
(1,1,1)	1	0	1/8

Distribución de \bar{X} y s^2 :

Ejercicio 2.2. De una población con media μ desconocida y varianza 1, se toma una m.a.s. de tamaño n. ¿Cuál debe ser éste para que la media muestral diste en valor absoluto de la media de la población menos que 0,5, con una probabilidad mayor o igual que 0,95?

Solución:

El enunciado nos pide es averiguar la n suficiente para que se cumpla que $P(|\bar{X} - \mu| < 0.5) \ge 0.95 \iff P(-0.5 < \bar{X} - \mu < 0.5) \ge 0.95.$

Sabemos que $\vec{X} \sim N(\mu, \frac{1}{n})$. Por lo que para solucionarlo, haremos uso de la Desigualdad de Chebushev, la cual afirma que:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2} \quad \forall k > 0$$

Aplicando la desigualdad a nuestro caso, obtenemos que k=0.5 y $\sigma=\frac{1}{\sqrt{n}}$. Por lo que:

$$P(|\bar{X} - \mu| \le 0'5) \ge 0'95 \iff P(|\bar{X} - \mu| > 0'5) \le 0'05 \implies \begin{cases} \frac{1}{k^2} = 0'05 \\ \frac{k}{\sqrt{n}} = 0, 5 \end{cases} \implies n \ge 80$$

Ejercicio 2.3. Dada una m.a.s. de tamaño n, calcúlese la distribución de la media muestral \bar{X} cuando la población es:

- 1. Bernouilli
- 2. Gamma
- 3. Exponencial

Solución:

1. **Bernouilli:** Si $X \sim Bernouilli(p) \Longrightarrow \sum_{i=1}^{n} X_i = S_n \sim Bin(n,p) \Longrightarrow \bar{X} = \frac{S_n}{n} \Longrightarrow P(\bar{X} = w) = P(S_n = nw) = \binom{n}{nw} p^{nw} (1-p)^{n(1-w)}$

2. **Gamma:** Si
$$X \sim Gamma(a,b) \implies \varphi_X(t) = (1 - \frac{it}{a})^{-b} \implies \varphi_{S_n}(t) = E[e^{i \cdot \frac{t}{n} \sum_{i=1}^n X_i}] = E[e^{i \cdot \frac{t}{n} X_n}] = [\varphi(\frac{t}{n})]^n = (1 - \frac{it}{an})^{-nb} \implies \bar{X} \sim Gamma(na, nb)$$

3. **Exponencial:** Es un caso particular del apartado anterior dado que $X \sim Exponencial(\theta) = Gamma(\theta, 1) \implies \bar{x} \sim Gamma(n\theta, n).$

Ejercicio 2.4. Dada una sucesion $\{X_n\}$ de variables aleatorias independientes con distribución N(0,1) y un entero positivo k se define:

$$F_{k,m} = \left(\frac{1}{k} \sum_{i=1}^{k} X_i^2\right) / \left(\frac{1}{m} \sum_{i=k+1}^{k+m} X_i^2\right)$$

Pruébese que

$$F_{k,m} \xrightarrow[m \to \infty]{\mathcal{L}} \frac{1}{k}X$$

donde $X \sim \chi_k^2$.

Solución: Por las propiedades de las distribuciones normales, tenemos que:

$$X_i \sim N(0,1) \implies X_i^2 \sim \chi_1^2 \implies \sum_{i=1}^n X_i^2 \sim \chi_n^2$$

De esta manera podemos ver los sumandos como el calculo de la media muestral:

$$\bar{X} = \frac{1}{m} \sum_{i=k+1}^{k+m} \chi_1^2 \implies$$

Por la Ley Fuerte de los Grandes Números tenemos que

$$\bar{X} \xrightarrow[m \to \infty]{\mathcal{L}} E[\chi_1^2] = 1$$

Finalmente como el segundo sumatorio $\sum_{i=1}^k X_i^2$ se mantiene constante(pues sólo se está modificando k) tenemos que, por el Teorema de Slutsky,

$$F_{k,m} \xrightarrow[m \to \infty]{\mathcal{L}} \frac{1}{k} \chi_k^2$$

Ejercicio 2.5. Demuéstrese que para una m.a.s. de tamaño n tales que

$$P(X = x_i) = p_i \forall i \in \mathbb{N}$$

se cumple que la distribución del estadístico ordenado $X_{(k)}$ es discreta y viene dada por:

$$P(X_{(k)} \le x_i) = \sum_{j=k}^{n} \binom{n}{j} (F(x_j))^j (1 - F(x_j))^{n-j}$$

$$P(X_{(k)} = x_i) = \sum_{i=k}^{n} \binom{n}{j} [(F(x_j))^j (1 - F(x_i))^{n-j} - F(x_{i-1})^j (1 - F(x_{i-1}))^{n-j}]$$

20

Solución: Sea una m.a.s. $(X_1, X_2, ..., X_n)$. Sea entonces el conjunto de variables aleatorias

$$I_{j} = \begin{cases} 1, & \text{si } X_{j} \leq x \\ 0, & \text{si } X_{j} > x \end{cases} \implies I_{j} \sim Bernouilli$$

con una probabilidad $P(I_j=1)=P(X_j\leq x)=F_j(x)$

Al ser variables aleatorias independientes con distirbución Bernouilli, se cumple que

$$\sum_{j=1}^{n} I_j = S \sim Bin(n, F(x))$$

Nos piden calcular que $P(X_{(k)} \leq x_i)$, lo cual es equivalente a que nos pregunten la probabilidad de que haya al menos k valores menores o iguales a x_i : $P(S \geq k)$. Por lo que podemos escribir:

$$P(S \ge k) = P(X_{(k)} \le x_i) = \sum_{j=k}^{n} \binom{n}{j} (F(X_i))^j (1 - F(X_i))^{n-j}$$

Finalmente, nos queda sólo calcular la probabilidad de que $P(X_{(k)} = x_i)$ pero esto es igual a hacer:

$$P(X_{(k)} = x_i) = P(X_{(k)} \le x_i) - P(X_{(k)} \le x_{i-1})$$

3 Reducción de Datos

Definición 3.0.1 [Estadístico suficiente]

Sea $(\Omega, \mathcal{A}, \mathcal{P})$ el espacio probabilístico asociado a un experimento aleatorio \mathcal{E} , una variable aleatoria observable $X: \Omega \longrightarrow \mathbb{R}$ y su modelo estadístico asociado $(\chi, \mathcal{B}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}^{\ell}}, \mathcal{B} = \mathcal{B}(\mathbb{R}), \ y(X_1, \cdots X_n)$ m.a.s. $(n) \sim X$

 $T: \mathbb{R}^n \to \mathbb{R}^m$ es un estadístico suficiente para θ cuando $\forall (x_1, \ldots, x_n) \in \Omega$ se cumple que:

$$P(X_1 = x_1, \dots, X_n = x_n | T = t)$$
 no depende de θ $\forall t \in \mathbb{R}^m$

Ejemplo

Sabiendo que $X \sim Bin(1, \theta)$, veamos si se cumple que el estadístico $T = \sum_{i=1}^{n} X_i$ es suficiente para θ Tenemos que:

$$X_i \sim Bin(1, \theta) \implies T = \sum_{i=1}^n X_i \sim Bin(n, \theta)$$

Para saber si un estadístico es suficiente necesitamos además la funcion de distribucion de la muestra, que en este caso:

$$X_i \sim Bin(1, \theta) \equiv Bernoulli(\theta)$$

$$\implies P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{n - \sum_{i=1}^n x_$$

Para ver si es suficiente, necesitamos calcular la probabilidad condicionada de la muestra dado el estadístico, que en este caso es:

$$P(X_1 = x_1, \dots, X_n = x_n | \sum_{i=1}^n X_i = t) = \frac{P(X_1 = x_1, \dots, X_n = x_n)}{P(\sum_{i=1}^n X_i = t)} = \frac{\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}} = \frac{1}{\binom{n}{t}}$$

3.1 Teorema de Factorización de Fisher

Teorema 3.1.1 [de Factorización de Fisher (Caracterización de estadísticos suficientes])

 $T = T(X_1, \dots, X_n) : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es un estadístico suficiente para θ sí y sólo sí existen funciones reales positivas $h : \mathbb{R}^n \longrightarrow \mathbb{R}$ y $g_{\theta} : \mathbb{R}^m \longrightarrow \mathbb{R}$ tales que $f_{\theta}(x_1, \dots, x_n) = h(x_1, \dots, x_n) g_{\theta}(T(x_1, \dots, x_n))$, donde $f_{\theta}(x_1, \dots, x_n)$ es la función de densidad o de masa de la muestra

Demostración. Esta demostración se desarrolla tomando el caso en el que X sea una v.a. discreta.

• (\Rightarrow): Supongamos que T es suficiente, entonces como la distribución de la muestra condicionada al estadístico no depende de θ , podemos escribir:

$$f_{\theta}(x_1, \dots, x_n | t) = \frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(t)}$$
es independiente de θ

$$\implies f_{\theta}(x_1,\ldots,x_n) = f_{\theta}(t) \cdot f_{\theta}(x_1,\ldots,x_n|t) \implies$$

Simplemente tomamos $h(x_1, \ldots, x_n) = f_{\theta}(t)$ y $g_{\theta}(t) = f_{\theta}(x_1, \ldots, x_n|t)$

• (\Leftarrow): Supongamos que $f_{\theta}(x_1,\ldots,x_n)=h(x_1,\ldots,x_n)\cdot g_{\theta}(T(x_1,\ldots,x_n))$, entonces:

$$f_{\theta}(x, \dots, x_n | t = T(x_1, \dots, x_n)) = \frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(t)} = \frac{f_{\theta}(x_1, \dots, x_n)}{\sum_{(y_1, \dots, y_m): T(y_1, \dots, y_n) = t} f_{\theta}(y_1, \dots, y_n)} = \frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(t)} = \frac{f_{\theta}(x_1, \dots, x_$$

$$= \frac{h(x_1, \dots, x_n) \cdot g_{\theta}(t)}{\sum_{(y_1, \dots, y_m) : T(y_1, \dots, y_n) = t} h(y_1, \dots, y_n) \cdot g_{\theta}(t)} = \frac{h(x_1, \dots, x_n)}{\sum_{(y_1, \dots, y_m) : T(y_1, \dots, y_n) = t} h(y_1, \dots, y_n)}$$

La cual es una expresión no dependiente de θ , por lo que T es suficiente.

Proposición 3.1.1

Si T es suficiente para θ y S es una biyección, entonces S(T) es suficiente para θ

Proposición 3.1.2

Si T es suficiente para θ y S es una función medible (en estadística-integrable), entonces S(T) es suficiente para θ

Proposición 3.1.3

Ssea X variable aleatoria, con σ y δ parámetros, entonces si T_1 es suficiente para σ y T_2 es suficiente para $\delta \iff T = (T_1, T_2)$ es suficiente para (σ, δ)

3.2 Ejemplos de Factorización de Fisher

Ejemplo

Veamos si θ es un parámetro suficiente para el ejemplo anterior, utilizando la Factorización de Fisher. Como $X \sim \text{Bin}(1, \theta) \equiv \text{Bernoulli}(\theta)$, tenemos que la función de verosimilitud es:

$$f_{\theta}(x_1,\ldots,x_n) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} \cdot I_{\{0,1\}}(x_i),$$

donde $I_{\{0,1\}}(x_i)$ es la función indicadora que asegura que $x_i \in \{0,1\}$. Esto se puede escribir como:

$$f_{\theta}(x_1,\ldots,x_n) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} \prod_{i=1}^n I_{\{0,1\}}(x_i).$$

Por lo que tomando $h(x_1, \ldots, x_n) = \prod_{i=1}^n I_{\{0,1\}}(x_i)$ y $g_{\theta}(T(x_1, \ldots, x_n)) = \theta^t (1-\theta)^{n-t}$, tenemos que $T = \sum_{i=1}^n X_i$ es un estadístico suficiente para θ .

Ejemplo

Sea $X \sim Poisson(\theta)$ veamos si el estadístico $T = \sum_{i=1}^{n} X_i$ es suficiente para θ Calculemos primero la función de densidad asociada a la muestra:

$$X_i \sim Poisson(\theta) \implies f_{x_i}(x_i) = \frac{e^{-\theta}\theta^{x_i}}{x_i!} \implies f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n \frac{e^{-\theta}\theta^{x_i}}{x_i!} = e^{-n\theta}\theta^{\sum_{i=1}^n x_i} \prod_{i=1}^n \frac{1}{x_i!}$$

Por lo que tomando $h(x_1,\ldots,x_n)=\prod_{i=1}^n\frac{1}{x_i!}$ y $g_\theta(T(x_1,\ldots,x_n))=e^{-n\theta}\theta^t$ demostramos que $T(x_1,\ldots,x_n)=\sum_{i=1}^n$ es un estadístico suficiente para θ

Ejemplo

Supongamos que tenemos un estadístico T suficiente para el parámetro θ y una biyección S, demostremos que S(T) también es suficiente para θ

Por el Teorema de Caracterización de Fisher tenemos que:

$$f_{\theta}(x_1,\ldots,x_n) = h(x_1,\ldots,x_n) \cdot g_{\theta}(T(x_1,\ldots,x_n))$$

para alguna función h y g_{θ}

$$\iff f_{\theta}(x_1, \dots, x_n) = h(x_1, \dots, x_n) \cdot g_{\theta}(S^{-1}(S(T(x_1, \dots, x_n))))$$

$$\iff f_{\theta}(x_1,\ldots,x_n) = h(x_1,\ldots,x_n) \cdot g'_{\theta}(S(T(x_1,\ldots,x_n))) \implies$$

Entones por el Teorema de Caracterización de Fisher, S(T) es suficiente para θ

Ejemplo

Veamos si $T = \bar{X} = \sum_{i=1}^n X_i$ es suficiente para μ si $X \sim N(\mu, \sigma_0)$ con σ_0 conocida:

$$X_i \sim N(\mu, \sigma_0) \implies f_{\mu}(x) = \frac{1}{\sigma_0 \sqrt{2\pi}} e^{-\frac{1}{2\sigma_0^2}(x-\mu)^2}$$

$$\implies T = \bar{X} \implies f_{\mu}(x_1, \dots, x_n) = \prod_{i=1}^{n} \frac{1}{\sigma_0 \sqrt{2\pi}} e^{-\frac{1}{2\sigma_0^2} (x_i - \mu)^2} = \left(\frac{1}{\sigma_0 \sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^{n} (x_i - \mu)^2}$$

$$\Longrightarrow$$
 Tomando $h(x_1,\ldots,x_n)=\left(\frac{1}{\sigma_0\sqrt{2\pi}}\right)^n$ y $g_{\mu}(T(x_1,\ldots,x_n))=e^{-\frac{1}{2\sigma_0^2}\sum_{i=1}^n(x_i-\mu)^2}$, tenemos que $T=\bar{X}=\sum_{i=1}^n X_i$ es suficiente para μ

Ejemplo

Sea el estadístico $T = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$ suficiente para $\theta = (\mu, \sigma)$ si $X \sim N(\mu, \sigma)$ con μ y σ desconocidas. Veamos si (\bar{X}, S_n^2) también es suficiente para θ :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad S_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2 \right) \implies$$

Sea la biyección $S: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $S(x,y) = \left(\frac{1}{n}x, \frac{1}{n-1}\left(y - \frac{1}{n}x^2\right)\right) \implies$

$$S(T = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)) = \left(\frac{1}{n} \sum_{i=1}^{n} X_i, \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - \bar{X}^2\right) = (\bar{X}, S_n^2)$$

Entonces por el Teorema de Caracterización de Fisher, (\bar{X}, S_n^2) es suficiente para θ

Ejemplo

Si $X \sim U(0,\theta)$, veamos si el estadístico $T = (X_{(1)}, X_{(n)})$ es suficiente para θ :

$$X \sim U(0,\theta) \implies f_{\theta}(x) = \frac{1}{\theta} \cdot I_{(0,\theta)}(x) \implies f_{\theta}(x_1,\dots,x_n) = \prod_{i=1}^n \frac{1}{\theta} \cdot I_{(0,\theta)}(x_i) = \frac{1}{\theta^n} \cdot I_{(0,\theta)}(X_{(1)}) \cdot I_{(0,\theta)}(X_{(n)})$$

$$\implies$$
 Tomando $h(x_1,\ldots,x_n)=1$ y $g_\theta(T(x_1,\ldots,X_n))=\frac{1}{\theta^n}I_{(0,\theta)}(X_{(1)})\cdot I_{(0,\theta)}(X_{(n)})$

Ejemplo

Si $X \sim U(0, \theta)$, veamos si el estadístico $T = X_{(n)}$ es suficiente para θ :

$$X \sim U(0,\theta) \implies f_{\theta}(x) = \frac{1}{\theta} \cdot I_{(0,\theta)}(x) \implies f_{\theta}(x_1,\dots,x_n) = \prod_{i=1}^n \frac{1}{\theta} \cdot I_{(0,\theta)}(x_i) = \frac{1}{\theta^n} \cdot I_{(0,\theta)}(X_{(n)})$$

$$\implies \text{Tomando } h(x_1,\dots,x_n) = 1 \text{ y } g_{\theta}(T(x_1,\dots,X_n)) = \frac{1}{\theta^n} I_{(0,\theta)}(X_{(n)})$$

Ejemplo

Si $X \sim U\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)$, veamos si el estadístico $T = (X_{(1)}, X_{(n)})$ es suficiente para θ :

$$X \sim U(-\frac{\theta}{2}, \frac{\theta}{2}) \implies f_{\theta}(x) = \frac{1}{\theta} \cdot I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(x)$$

$$\implies f_{\theta}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} \frac{1}{\theta} \cdot I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(x_{i}) = \frac{1}{\theta^{n}} \cdot I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(X_{(1)}) \cdot I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(X_{(n)})$$

$$\implies \text{Tomando } h(x_{1}, \dots, x_{n}) = 1 \text{ y } g_{\theta}(T(x_{1}, \dots, X_{n})) = \frac{1}{\theta^{n}} I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(X_{(1)}) \cdot I_{\left(-\frac{\theta}{2}, \frac{\theta}{2}\right)}(X_{(n)})$$

3.3 Estadístico minimal suficiente

Definición 3.3.1 [Órbita]

Dado un estadístico $T = T(X_1, \dots, X_n)$, se define $A_t = \{(x_1, \dots, x_n) \in \chi^n : T(x_1, \dots, x_n) = t\}$ cómo la órbita de t = 5

Ejemplo

Dado un m.a.s. de tamaño n = 3, definimos el rango muestral como $T(x_1, x_2, x_3) = (x_{max}, x_{min})$ Si por ejemplo tomamos el resultado t = 5 definimos la órbita de t = 5 al conjunto $A_5 = \{(x_1, \ldots, x_n) \in \mathbb{R}^3 : \max(x_1, x_2, x_3) - \min(x_1, x_2, x_3) = 5\}$ cuyos elementos podrían ser por ejemplo:

- $(2,3,7) \in A_5 \quad (7-2=5)$
- $(10, 12, 15) \in A_5 \quad (15 10 = 5)$
- $(-1, 4, -5) \notin A_5$ $(4 (-6) = 10 \neq 5)$

Definición 3.3.2 [Partición Inducida]

Dado un estadístico $T=T\left(X_{1},\cdots X_{n}\right)$, se define $K_{T}=\left\{ A_{t}:t\in\mathbb{R}^{m}\right\}$ cómo la partición inducida por T

Ejemplo

Sea una muestra aleatoria simple de tamaño n=2 tal que el espacio muestral de cada una de las variables aleatorias es $\chi = \{1,2,3\}$ y definimos el estadístico $T(x_1,x_2) = (x_1 + x_2)$ Entonces, podemos deinir algunas órbitas de T:

- $A_2 = \{(1,1), (2,0), (0,2)\}$
- $A_3 = \{(1,2),(2,1)\}$

- $A_4 = \{(2,2)\}$
- $A_5 = \{(3,2),(2,3)\}$
- ...

Así, una partición inducida por T sería $K_T = \{A_2, A_3, A_4, A_5, ...\}$

Proposición 3.3.1

Se dice que K_T es suficiente sí y sólo si T es suficiente

Proposición 3.3.2

Dado dos estadísticos $T = T(X_1, ..., X_n)$ y $S = S(X_1, ..., X_n)$, se dice que \mathcal{K}_S es una subpartición de \mathcal{K}_T si y solo si:

$$\forall B \in \mathcal{K}_S, \ \exists A \in \mathcal{K}_T \ tal \ que \ B \subset A.$$

En este caso, se dice que K_T es una partición menos fina que K_S .

Definición 3.3.3 [Estadístico Minimal Suficiente]

Un estadístico T es minimal suficiente si su partición asociada es suficiente y es la menos fina \equiv más gruesa entre todos los estadísticos.

$$\begin{cases} \textit{M\'{a}s fina} \implies \textit{M\'{a}s clases} \implies \textit{M\'{a}s detallada} \\ \textit{M\'{a}s gruesa} \implies \textit{Menos clases} \implies \textit{Agrupa m\'{a}s elementos} \end{cases}$$

Alternativamente, lo podemos definir como que dado un estadístico suficiente T, se dice minimal suficiente cuando $\forall T'$ suficiente, $\exists \varphi : \mathbb{R}^n \to \mathbb{R}^n$ medible (integrable) tal que $T' = \varphi(T)$

Demostración. Demostración de la equivalencia de las definiciones:

- (\Rightarrow): Sea S sufficiente, si $S(x_1,\ldots,x_n)=S(y_1,\ldots,y_n)=s\Longrightarrow (x_1,\ldots,x_n), (y_1,\ldots,y_n)\in B_s(\text{\'orbita de }S)\Longrightarrow \exists A_t\in K_T: B_s\subset A_t\Longrightarrow T(x_1,\ldots,x_n)=T(y_1,\ldots,y_n)=t\Longrightarrow \exists \psi: \psi(S)=T\ y\ T$ es sufficiente.
- (\Leftarrow): Sea S suficiente y $\psi: \psi(S) = T \implies T$ es suficiente y si $S(x_1, \ldots, x_n) = S(y_1, \ldots, y_n) = s \implies T(x_1, \ldots, x_n) = \psi(S(x_1, \ldots, x_n)) = \psi(S) = \psi(S(y_1, \ldots, y_n)) = T(y_1, \ldots, y_n) \implies B_s \subset A_{\psi(S)} \implies K_S$ es una subpartición de K_T .

3.4 Teorema de caracterización de estadísticos minimales suficientes

Definición 3.4.1 [Relación de equivalencia minimal suficiente]

Sean (x_1, \ldots, x_n) $y(y_1, \ldots, y_n)$ muestras, definimos la relación de equivalencia minimal suficiente como:

$$(x_1,\ldots,x_n)R(y_1,\ldots,y_n) \iff \frac{f_{\theta}(x_1,\ldots,x_n)}{f_{\theta}(y_1,\ldots,y_n)} \text{ es independiente de } \theta$$

Esta definición lo que trata de indicar es que ambas muestras del mismo suceso, aportan la misma información sobre el parámetro θ .

Teorema 3.4.1 [Teorema de caracterización de estadísticos minimales (Lehmann-Scheffé])

A cada clase de equivalencia anterior le asignamos un valor t y definimos un estadístico $T = T(X_1, \ldots, X_n)$ tal que $\frac{f_{\theta}(x_1, \ldots, x_n)}{f_{\theta}(y_1, \ldots, y_n)}$ es independiete de θ cuando $T(x_1, \ldots, x_n) = T(y_1, \ldots, y_n) = t$. Entonces, T es minimal suficiente para θ .

Demostración. Supongamos la suficiencia de ${\cal T}$ para demostrar su minimalidad:

Sea $S = S(X_1, \ldots, X_n)$ sufficiente y $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in B_S \implies$

$$\frac{f_{\theta}(x_1,\ldots,x_n)}{f_{\theta}(y_1,\ldots,y_n)} = \frac{h(x_1,\ldots,x_n)g_{\theta}(s)}{h(y_1,\ldots,y_n)g_{\theta}(s)} = \frac{h(x_1,\ldots,x_n)}{h(y_1,\ldots,y_n)} \text{ independiente de } \theta$$

 $\implies \exists t: (x_1,\ldots,x_n), (y_1,\ldots,y_n) \in A_t \implies K_S$ es una subpartición de K_T .

Ahora demostremos la suficiencia de T en el caso discreto:

Si $T(x_1,\ldots,x_n)=t$,

$$f_{\theta}(x_1, \dots, x_n | t) = \frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(t)} = \frac{f_{\theta}(x_1, \dots, x_n)}{\sum_{(y_1, \dots, y_n) : T(y_1, \dots, y_n) = t} f_{\theta}(y_1, \dots, y_n)} = \frac{1}{\sum_{(y_1, \dots, y_n) \in At} \frac{f_{\theta}(y_1, \dots, y_n)}{f_{\theta}(x_1, \dots, x_n)}}$$

que es independiente de $\theta \implies T$ es suficiente.

Ejemplo

Veamos si el estadístico $T = \sum_{i=1}^n X_i$ es minimal suficiente para θ si $X \sim Bin(1,\theta)$

$$X \sim Bin(1,\theta) \equiv Bernoulli(\theta) \implies f_{\theta}(x) = \theta^{x}(1-\theta)^{1-x} \cdot I_{\{0,1\}}(x) \implies$$

$$\implies f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} \cdot I_{\{0,1\}}(x_i) = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \cdot \prod_{i=1}^n I_{\{0,1\}}(x_i)$$

 \implies Sean dos muestas m.a.s. de tamaño $= n, (x_1, \dots, x_n)$ y (y_1, \dots, y_n) , entonces:

$$\frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(y_1, \dots, y_n)} = \left(\frac{\theta}{1 - \theta}\right)^{\sum_{i=1}^n x_i - \sum_{i=1}^n y_i} \text{ es independiente de } \theta \text{ si } \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

Observación 3.4.1

Recordemos que $\forall T'$ suficiente $\exists \varphi : \varphi(T) = T'$, por lo que T es minimal suficiente

Ejemplo

Sea
$$f_{\theta}(x) = e^{-(x+\theta)} \cdot I_{(\theta,\infty)}(x)$$

$$\implies f_{\theta}(x_1, \dots, x_n) = e^{-\sum_{i=1}^n (x_i + \theta)} \cdot I_{(\theta, \infty)}(x_1) \cdot \dots \cdot I_{(\theta, \infty)}(x_n) = e^{-\sum_{i=1}^n x_i} e^{-n\theta} \cdot I_{(\theta, \infty)}(x_{(1)})$$

Entonces, por el Teorema de Factorización de Fisher, tenemos que:

$$f_{\theta}(x_1, \dots, x_n) = h(x_1, \dots, x_n) \cdot g_{\theta}(T(x_1, \dots, x_n)) \implies \begin{cases} h(x_1, \dots, x_n) = e^{-\sum_{i=1}^n x_i} \\ g_{\theta}(T(x_1, \dots, x_n)) = e^{-n\theta} \cdot I_{(\theta, \infty)}(x_{(1)}) \end{cases}$$

Ahora sean dos muestras m.a.s. de tamaño $n, (x_1, \ldots, x_n)$ y (y_1, \ldots, y_n) , entonces, tenemos que ver qué expresión hace que el cociente de las funciones de densidad sea independiente de θ :

$$\frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(y_1, \dots, y_n)} = \frac{e^{-\sum_{i=1}^n x_i} e^{-n\theta} \cdot I_{(\theta, \infty)}(x_{(1)})}{e^{-\sum_{i=1}^n y_i} e^{-n\theta} \cdot I_{(\theta, \infty)}(y_{(1)})} = \frac{e^{-\sum_{i=1}^n x_i} \cdot I_{(\theta, \infty)}(x_{(1)})}{e^{-\sum_{i=1}^n y_i} \cdot I_{(\theta, \infty)}(y_{(1)})}$$

 \implies esta expresión es independiente de $\theta \iff X_{(1)} = Y_{(1)} \implies$

 \implies el estadístico $T=X_{(1)}$ es minimal suficiente para θ

3.5 Familia exponencial k-paramétrica

Definición 3.5.1 [Familia exponencial k-paramétrica]

Una distribución X pertence a la familia exponencial k-paramétrica si su función de densidad o de masa, se puede expresar como:

$$f_{\theta}(x) = c(\theta) \cdot h(x) \cdot e^{\sum_{j=1}^{k} q_j(\theta) T_j(x)}$$

donde:

- $c(\theta)$ es una función sólo de θ
- h(x) es una función sólo de x
- $q_i(\theta)$ son funciones de θ , conocidas como parámetros naturales
- $T_i(x)$ son funciones de x llamadas <u>estadísticos naturales</u>
- k es el número de parámetros de la familia
- θ es el parámetro de la familia

Esto implica a su vez, que si tenemos una m.a.s., la función de densidad conjunta se puede expresar como:

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta(x_i)} = (c(\theta))^n \prod_{i=1}^n h(x_i) e^{\sum_{j=1}^k q_j(\theta) T_j(x_i)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n q_j(\theta) (\sum_{i=1}^n T_j(x_i))} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n T_j(x_j)} = (c(\theta))^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^n$$

Teorema 3.5.1

Sean $\theta_1, \ldots, \theta_k \in \Theta \subset \mathbb{R}^{\ell}$ tales que los vectores $c_r = (q_1(\theta_r), \ldots, q_k(\theta_r)), r = 1, \ldots, k$ son linealmente independientes, entonces el estadístico natural suficiente de la familia exponencial k-paramétrica es minimal

Demostración. Sean dos muestras $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, entonces:

$$\frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(y_1, \dots, y_n)} = \frac{c(\theta)^n \cdot h(x_1, \dots, x_n) \cdot e^{\sum_{j=1}^k q_j(\theta) \sum_{i=1}^n T_j(x_i)}}{c(\theta)^n \cdot h(y_1, \dots, y_n) \cdot e^{\sum_{j=1}^k q_j(\theta) \sum_{i=1}^n T_j(y_i)}} = \frac{h(x_1, \dots, x_n)}{h(y_1, \dots, y_n)} \cdot e^{\sum_{j=1}^k q_j(\theta) \left(\sum_{i=1}^n [T_j(x_i) - T_j(y_i)]\right)}$$

Lo cual es una expresión independiente de $\theta \iff$

$$\iff \sum_{j=1}^{k} q_j(\theta) \left(\sum_{i=1}^{n} [T_j(x_i) - T_j(y_i)] \right) = 0 \iff \sum_{i=1}^{n} [T_j(x_i) - T_j(y_i)] = 0, \ \forall j = 1, \dots, k$$

Lo cual implica que el sistema homogéneo $\sum_{i=1}^{n} [T_j(x_i) - T_j(y_i)] = 0$, $\forall j = 1, ..., k$ sólo admite la solución $T_j(x_i) - T_j(y_i) = 0$, $\forall j = 1, ..., k \implies (T_1(x_1), ..., T_k(x_n))$ es minimal

Ejemplo

Veamos si el estadístico $T = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$ es minimal suficiente para $\theta = (\mu, \sigma)$ si $X \sim N(\mu, \sigma)$ con μ y σ desconocidas.

Una distribución perteneciente a la familia 2-paramétrica exponencial es de la forma:

$$f_{\theta}(x) = c(\theta)h(x)e^{q_1(\theta)T_1(x) + q_2(\theta)T_2(x)} \implies$$

$$\implies X \sim N(\mu, \sigma) \implies f_{\theta}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \implies f_{\theta}(x_1, \dots, x_n) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2} e^{\frac{\mu}{\sigma^2}\sum_{i=1}^n x_i} \implies$$

$$\begin{cases} c(\theta) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \\ h(x) = 1 \\ q_1(\theta) = -\frac{1}{2\sigma^2} \\ q_2(\theta) = \frac{\mu}{\sigma^2} \\ T_1(x) = \sum_{i=1}^n X_i^2 \\ T_2(x) = \sum_{i=1}^n X_i^2 \end{cases}$$

La distribución normal pertence a la familia exponencial 2-paramétrica. Ahora veamos si el estadístico T es minimal suficiente:

Si tomamos como vectores paramétricos $\theta_1=(0,1)$ y $\theta_2=(1,1)$, entonces los vectores $c_1=(q_1(\theta_1),q_2(\theta_1))=(0,-\frac{1}{2})$ y $c_2=(q_1(\theta_2),q_2(\theta_2))=(1,-\frac{1}{2})$ son linealmente independientes $\Longrightarrow T$ es minimal suficiente

Ahora veamos si el estadístico $T=(\bar{X},S_n^2)$ también es minimal suficiente:

Sabemos que:

$$S_n^2 = \frac{n}{n-1} \left(\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right)$$

 \implies Sea la transformación $S: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $S(x,y) = \left(\frac{1}{n}x, \frac{1}{n-1}\left(y - \frac{1}{n}x^2\right)\right) \implies$ Analicemos la transformación inversa:

$$W = nF$$
, $Z = \frac{n-1}{n}G + nF^2$

$$J = \begin{vmatrix} n & 0 \\ 2nF & \frac{n-1}{n} \end{vmatrix} = n - 1 \neq 0 \text{ si } n \geq 2$$

Por lo que cómo S es una biyección, y T es minimal suficiente, entonces la imagen de T por S también es minimal suficiente $S(T) = (\bar{X}, S_n^2)$

Proposición 3.5.1

En las familias k-paramétricas exponenciales, es decir, aquellas de la forma:

$$f_{\theta}(x) = c(\theta)h(x)e^{q(\theta)T(x)}$$

El estadístico T(x) es suficiente.

3.6 Estadísticos Ancilarios y Completos

Definición 3.6.1

Un estadístico $U(X_1, \ldots, X_n)$ es ancilario para θ si su distribución en la muestra es independiente de θ

Ejemplo

Sea una población que sigue una distribucion normal $N(\theta.\sigma_0)$ con σ_0 conocida, tomemos una m.a.s. de tamaño n tal que $U(X_1,\ldots,X_n)=X_1-X-2\sim N(0,\sqrt{2\sigma_0})$ que no depende de θ por lo que U es un estadístico ancilario para θ .

Definición 3.6.2

La familia $\mathcal{P} = \{f_{\theta}(x_1, \dots, x_n) : \theta \in \Theta \subset \mathbb{R}^{\updownarrow}\}\$ es completa si para cualquier función real $g(X_1, \dots, x_n)$ tal que $E_{\theta}[g(X_1, \dots, X_n)] = 0$, $\forall \theta \in \Theta \implies g(X_1, \dots, X_n) \stackrel{c.s.}{=} 0$

Ejemplo

Veamos si la familia de distribuciones $Bin(n, \theta)$ es completa: Sea $Y \sim Bin(n, \theta)$, entonces:

$$E_{\theta}[h(Y)] = \sum_{i=1}^{n} h(i) \binom{n}{i} \theta^{i} (1-\theta)^{n-i} = (1-\theta)^{n} \sum_{i=1}^{n} h(i) \binom{n}{i} \left(\frac{\theta}{1-\theta}\right)^{i} = 0, \ \forall \theta \in (0,1)$$

Si definimos la variable $x = \frac{\theta}{1-\theta} \implies$

$$\sum_{i=1}^{n} h(i) \binom{n}{i} x^{i} = 0 \text{ es un polinomio de grado } n \text{ en } x \implies h(i) = 0, \ \forall i = 1, \dots, n \implies h(Y) \stackrel{c.s.}{=} 0$$

Por lo que la familia de distribuciones $Bin(n,\theta)$ es completa

Ejemplo

Veamos si la familia de distribuciones $N(0,\theta)$ es completa:

Sea $Y \sim N(0, \theta)$, entonces: Si tomamos la función real identidad, definida por g(Y) = Y, entonces:

$$E_{\theta}[g(Y)] = E_{\theta}[Y] = 0, \ \forall \theta > 0, \ \text{pero } g(Y) = Y \text{ no es idénticamente nula c.s.}$$

Por lo que la familia de distribuciones $N(0,\theta)$ no es completa

Ejemplo

Sea X una variable aleatoria discreta $D_x = \{1, 2, 3\}$ comprobemos si X es completa: Tenemos que:

$$P_{\theta}(X=1) = \theta - 3$$

 $P_{\theta}(X=1) = \theta - 3$ $P_{\theta}(X=2) = 2\theta - 1$ Tomemos el estadístico $T_1(x_1,\ldots,x_n)=x_1$ y comprobemos si es completo:

$$P_{\theta}(X=3) = 3 - 3\theta$$

Saea φ función real que actúa sobre el soporte D_x , entonces:

$$E_{\theta}[\varphi(T_1)] = \varphi(1) \cdot P(X = 1) + \varphi(2) \cdot P(X = 2) + \varphi(3) \cdot P(X = 3) =$$

$$= \varphi(1)(\theta - 3) + \varphi(2)(2\theta - 1) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(1) + \varphi(2) + 3\varphi(3) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(1) + \varphi(2) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(1) + \varphi(2) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(3) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(3) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - 3\varphi(3) + \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(2) - 3\varphi(3)) - \varphi(3)(3 - 3\theta) = \theta(\varphi(1) + 2\varphi(3) - 2\varphi(3)) - \varphi(3)(3 - 3\varphi(3)) - \varphi(3)(3$$

Pero este sistema de ecuaciones es un sistema compatible indeterminado, por lo que no tiene una única solución y por tanto no tiene porqué cumplirse que $\varphi(T_1) = 0$ c.s. $\implies T_1$ no es completo.

Ejemplo

Sea X una variable aleatoria discreta $D_x = \{1, 2, 3\}$ comprobemos si X es completa: Tenemos que:

$$\begin{cases} P_{\theta}(X=1) = \theta^2 + \theta \\ P_{\theta}(X=2) = 1 - 2\theta^2 \\ P_{\theta}(X=3) = \theta^2 - \theta \end{cases} \Longrightarrow$$

$$E_{\theta}[\varphi(T)] = \varphi(1) \cdot P(X = 1) + \varphi(2) \cdot P(X = 2) + \varphi(3) \cdot P(X = 3) =$$

$$= \varphi(1)(\theta^2 + \theta) + \varphi(2)(1 - 2\theta^2) + \varphi(3)(\theta^2 - \theta) = \theta^2(\varphi(1) - 2\varphi(2) + \varphi(3)) + \theta(\varphi(1) - \varphi(3)) + \varphi(2) = 0$$

Lo cual se trata de un polinomio de grado 2 en θ por lo que podría tener solución:

$$\begin{cases} \varphi(1) - 2\varphi(2) + \varphi(3) = 0\\ \varphi(1) - \varphi(3) = 0\\ \varphi(2) = 0 \end{cases}$$

$$\implies \varphi(1) = \varphi(3) = \varphi(2) = 0 \implies \varphi(T) = 0 \text{ c.s.} \implies T \text{ es completo}$$

Ejemplo

ea X una variable aleatoria discreta con dominio $D_X = \{0\} \cup \mathbb{N}$. Queremos comprobar si X es completa. Los valores de probabilidad vienen dados por:

$$P(X = -1) = \theta$$
, $P(X = x) = \theta^{x} (1 - \theta)^{2}$, $\forall x \in \mathbb{N}$

Por definición, verificamos si $E[\varphi(X)] = 0$ implica $\varphi(X) = 0$ para toda función medible. Calculamos la esperanza:

$$E[\varphi(X)] = \varphi(-1)P(X = -1) + \sum_{k=0}^{+\infty} \varphi(k)P(X = k)$$

$$= \varphi(-1)\theta + \sum_{k=0}^{+\infty} \varphi(k)\theta^k (1-\theta)^2$$

Factorizando:

$$E[\varphi(X)] = \varphi(-1)\theta + (1-\theta)^2 \sum_{k=0}^{+\infty} \varphi(k)\theta^k = 0$$

Para todo θ , lo que nos lleva a estudiar la ecuación funcional:

$$\varphi(-1)\theta + (1-\theta)^2 \sum_{k=0}^{+\infty} \varphi(k)\theta^k = 0, \quad \forall \theta$$

Esta ecuación es un **polinomio en θ **. Para que se cumpla para todo θ , cada coeficiente debe anularse individualmente. Analizando los coeficientes del desarrollo en serie de potencias:

1. **Coeficiente de θ^{-1} **: No hay términos de este tipo, por lo que no impone restricciones. 2. **Coeficiente de θ^{0} **:

$$(1-\theta)^2 \varphi(0) = 0 \implies \varphi(0) = 0$$

3. **Coeficiente de θ^{1**} :

$$\varphi(-1) + (1-\theta)^2 \varphi(1) = 0$$

Evaluando en $\theta = 1$:

$$\varphi(-1) + 0 = 0 \implies \varphi(-1) = 0$$

4. **Para $k \ge 1$, los coeficientes del polinomio también deben anularse:**

$$\varphi(k) = 0, \quad \forall k \in \mathbb{N}$$

Por lo tanto, se concluye que **la única solución posible es la trivial**:

$$\varphi(k) = 0, \quad \forall k \in D_X$$

Conclusión: La variable aleatoria X es **completa**.

Definición 3.6.3

Un estadístico T (no necesariamente suficiente) se dice completo, cuando:

$$\forall g\text{-medible}(integrable) \ tal \ que \ E_{\theta}[\varphi(t)] = 0 \implies g(t) \stackrel{c.s.}{=} 0$$

Es decir, Se dice que un estadístico es completo si no existe función $g(x_1, ..., x_n)$ tal que $E_{\theta}[g(T)] = 0$ a menos rque $g(X) \stackrel{c.s.}{=} 0$

Alternativamente, también se puede decir, que el estadístico es completo si y solo sí su distribución en el muestreo es una familia de distribuciones de probabilidad completa

Ejemplo

Dado que cada $X_i \sim \text{Bin}(1, \theta)$, la suma

$$T = \sum_{i=1}^{n} X_i$$

sigue una distribución binomial con parámetros n y θ :

$$T \sim \text{Bin}(n, \theta)$$
.

Para demostrar que T es un estadístico completo, consideremos una función g(T) tal que:

$$E_{\theta}[g(T)] = 0, \quad \forall \theta \in (0, 1).$$

Calculando la esperanza,

$$E_{\theta}[g(T)] = \sum_{i=0}^{n} g(i) \binom{n}{i} \theta^{i} (1-\theta)^{n-i}.$$

Factorizando $(1 - \theta)^n$:

$$E_{\theta}[g(T)] = (1 - \theta)^n \sum_{i=0}^n g(i) \binom{n}{i} \left(\frac{\theta}{1 - \theta}\right)^i.$$

Definiendo $x = \frac{\theta}{1-\theta}$, obtenemos:

$$\sum_{i=0}^{n} g(i) \binom{n}{i} x^{i} = 0, \quad \forall x \in (0, \infty).$$

Dado que el lado izquierdo es un polinomio de grado n en x que se anula para todo x, por el **teorema** fundamental del álgebra, los coeficientes del polinomio deben ser todos cero:

$$g(i)\binom{n}{i} = 0, \quad \forall i = 0, \dots, n.$$

Como los coeficientes binomiales $\binom{n}{i}$ son distintos de cero, se sigue que:

$$g(i) = 0, \quad \forall i.$$

Por lo tanto, g(T) = 0 casi seguramente, lo que implica que T es un estadístico completo

Proposición 3.6.1

Si T_1 y T_2 son estadísticos completos, entonces (T_1, T_2) también es completo

Ejemplo

Veamos si dado $X \sim N(\theta, \theta)$ el estadístico $T = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$ es completo: Por las propiedades de las esperanzas tenemos que:

$$\sum_{i=1}^{n} E[X_i] = n\theta, \sum_{i=1}^{n} E[X_i^2] = n(E[X_i^2]) = n(\theta + \theta^2)$$

Sea $h(t) = (2(\sum_{i=1}^{n} X_i)^2 - (n+1)\sum_{i=1}^{n} X_i^2)$, entonces:

$$E_{\theta}[h(T)] = 2E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] - (n+1)E\left[\sum_{i=1}^{n} X_i^2\right] = 2E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] - (n+1)\sum_{i=1}^{n} E\left[X_i^2\right]$$

Recordemos que $Var(Y) = E[Y^2] - (E[Y])^2$, entonces:

$$E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] = Var\left(\sum_{i=1}^{n} X_{i}\right) + \left(E\left[\sum_{i=1}^{n} X_{i}\right]\right)^{2} = n\theta^{2} + n^{2}\theta^{2} = n\theta^{2}(n+1)$$

$$E[X_i^2] = Var(X_i) + (E[X_i])^2 = \theta^2 + \theta^2 = 2\theta^2 \implies E_{\theta}[\sum_{i=1}^n X_i^2] = 2n\theta^2$$

$$\implies E_{\theta}[h(T)] = 2n\theta^2(n+1) - (n+1)2n\theta^2 \implies E_{\theta}[h(T)] = 0, \ \forall \theta \in \Theta$$

Pero $h(T) = 2(\sum_{i=1}^n X_i)^2 - (n+1)\sum_{i=1}^n X_i^2 \neq 0$ por lo que T no es completo

Observación 3.6.1

Recordemos que:

- Suficiencia: Tiene toda la información sobre el parámetro θ pero puede tener información de más.
- Completitud: No tiene información de más, pero puede no tener toda la información necesaria.
- Minimalidad: Tiene toda la información necesaria y no tiene información de más.

Teorema 3.6.1 [Teorema de Bahadur]

Un estadístico $T = T(X_1, ..., X_n)$ es suficiente y completo \implies es minimal suficiente.

Demostración. Por hipótesis del ejercicio sabemos que el estadístio T es suficiente y completo. Además, supongamos que tenemos otro estadístico S suficiente y definamos un tercero H = E[T|S].

Observación 3.6.2

Recordemos la propiedad de las esperanzas, <u>propiedad de la torre de la expectativa</u> o <u>propiedad de la iteración de la esperanza que dice que:</u>

$$E[E[T|\mathcal{G}]] = E[T]$$

Donde \mathcal{G} es una σ -álgebra.

No obstante, dado que mayormente se trabaja con estadísticos, podemos denotar:

$$E[E[T|S]] = E[T]$$

Donde S denota en realidad $\sigma(S)$ -álgebra (la menor de todas las generadas por S, en particular).

Definamos ahora, el estadístico L dado por $L = E[H|T] \implies$

$$\begin{cases} H = E[T|S] \implies E[H] = E[E[T|S]] = E[T] \\ L = E[H|T] \implies E[L] = E[E[H|T]] = E[H] \end{cases} \implies E[L] = E[H] = E[T]$$

Sea la función real g(T) = T - E[H|T], entonces, intentemos calcular su esperanza:

$$E[g(T)] = E[T - E[H|T]] = E[T] - E[E[H|T]] = E[T] - E[H] = E[T] - E[T] = 0$$

Entonces, por la completitud de T, ésto implica que:

$$q(T) \stackrel{c.s.}{=} 0 \implies T = E[H|T]$$

Esto nos dice que tras intentar estimar T a través de H = (T|S), volvemos a obtener T, por lo que contiene toda la información necesaria y no tiene información de más, por lo que es minimal suficiente.

Observación 3.6.3

El recíproco no se cumple, veamos un contraejemplo:

Sean $X \sim N(\mu, \sigma_X^2)$ e $Y \sim N(\mu, \sigma_Y^2)$ y tomemos el estadístico $T = (\bar{X}, \bar{Y}, S_X^2, S_Y^2)$ Veamos que el estadístico es minimal suficiente para $\theta = (\mu, \sigma_X^2, \sigma_Y^2)$, pero no es completo:

Por el Teorema de Caracterización de los estadísticos minimales, tenemos que:

$$\frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(y_1, \dots, y_n)} = \frac{\left(\frac{1}{\sigma_X \sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2} \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^2}}{\left(\frac{1}{\sigma_Y \sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2} \sum_{i=1}^n \left(\frac{y_i - \mu}{\sigma}\right)^2}} = \left(\frac{\sigma_Y}{\sigma_X}\right)^n \cdot e^{-\frac{1}{2\sigma_X^2} \sum_{i=1}^n (x_i - \mu)^2 + \frac{1}{2\sigma_Y^2} \sum_{i=1}^n (y_i - \mu)^2} = \frac{\sigma_Y}{\sigma_X}$$

Sabiendo que $(x_i - \mu)^2 = (x_i^2 + \mu^2 - 2x_i\mu) \implies \sum (x_i - \mu)^2 = \sum x_i^2 + \sum \mu^2 - \sum 2x_i\mu = \sum x_i^2 + n\mu^2 - 2n\mu\bar{X}$ Ahora, desarrollemos $\sum x_i^2$:

$$\begin{cases} S^2 = \frac{1}{n} \sum (x_i - \bar{X})^2 \\ \bar{X} = \frac{1}{n} \sum x_i \end{cases} \implies \begin{cases} \sum x_i^2 = n(S_X^2 + \bar{X}^2) \\ \sum y_i^2 = n(S_Y^2 + \bar{Y}^2) \end{cases} \implies \\ \implies \begin{cases} n(S_X^2 + \bar{X}^2) + n\mu^2 - 2n\mu\bar{X} \\ n(S_Y^2 + \bar{Y}^2) + n\mu^2 - 2n\mu\bar{Y} \end{cases} \implies \begin{cases} n(S_X^2 + \bar{X}^2 + \mu^2 - 2\mu\bar{X}) \\ n(S_Y^2 + \bar{Y}^2 + \mu^2 - 2\mu\bar{Y}) \end{cases}$$

$$\frac{f_{\theta}(\vec{x})}{f_{\theta}(\vec{y})} = \left(\frac{\sigma_Y}{\sigma_X}\right)^n \cdot e^{-\frac{n}{2\sigma_X^2}(S_X^2 + \bar{X}^2 + \mu^2 - 2\mu\bar{X}) + \frac{n}{2\sigma_Y^2}(S_Y^2 + \bar{Y}^2 + \mu^2 - 2\mu\bar{Y})}$$

Pero esta expresión no depude de θ si y solo si $\bar{X} = \bar{Y}, S_X^2 = S_Y^2$ por lo que el estadístico T es minimal suficiente.

No obstante, si tomamos la función g(x,y) = x - y, entonces:

$$E[g(T)] = E[\bar{X} - \bar{Y}] = E[\bar{X}] - E[\bar{Y}] = \mu - \mu = 0$$

Sin embargo,

$$g(T) = \bar{X} - \bar{Y} \neq 0$$
 c.s.

Por lo que el estadístico T no es completo

Teorema 3.6.2

El estadístico natural $(\sum_{i=1}^n T_1(X_i), \dots \sum_{i=1}^n T_k(X_i))$ de la familia exponencial k-paramétrica, $\{f_{\theta}(x) = c(\theta)h(x)e^{\sum_{j=1}^k q_j(\theta)T_j(x)}\}_{\theta\in\Theta\subset\mathbb{R}^{\rceil}}$, es completo si la imagen de la aplicación $q=(q_1(\theta),\dots,q_k(\theta)):\Theta\to\mathbb{R}^k$ contiene un rectángulo abierto de \mathbb{R}^k no trivial.

Ejemplo

Recordando el ejemplo anterior en el que probabamos que la familia de distribuciones $N(\theta, \theta)$ no era completa, podemos ver que la imagen de la aplicación $q = \left(\frac{1}{\theta}, -\frac{1}{2\theta^2}\right)$ no contiene ningún rectángulo abierto de \mathbb{R}^2 :

$$q_2(\theta) = -\frac{1}{2}q_1(\theta)^2, \ \forall \theta > 0$$

Lo cual es una rama de parábola, y por lo tanto no contiene ningún abierto de \mathbb{R}^2

Ejemplo

Sea
$$X \sim Bernoulli(\theta) \implies P(X = x) = \theta^x (1 - \theta)^{1 - x} \implies$$

Sea una m.a.s. de tamaño
$$n \implies P(\vec{X} = \vec{x}) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i} = \left(\frac{\theta}{1 - \theta}\right)^{\sum x_i} \cdot (1 - \theta)^n = 0$$

En este caso, la distribución no tiene exponencial, pero se puede refactrizar para obtenerlo: Recordemos que $a^b = e^{b \cdot ln(a)}$, entonces, aplicando ésto aquí obtenemos que:

$$= e^{\sum x_i \cdot ln(\frac{\theta}{1-\theta})} \cdot (1-\theta)^n$$

En donde tenemos por la forma general de las familias exponenciales k-paramétricas, que es de la forma:

- $T(\vec{x}) = \sum x_i$
- $q(\theta) = ln(\frac{\theta}{1-\theta})$
- $c(\theta) = (1 \theta)^n$
- $h(\vec{x}) = 1$

Entonces, podemos obtener que como (X_1, \dots, X_n) pertenece a la familia exponencial k-paramétrica, obtenemos que su estadístico natural $(T(\vec{x}) = \sum x_i)$ es suficiente. Y como

$$g(\theta) = \frac{\theta}{1-\theta} \neq 0 \implies$$
 el estadístico natural $\sum x_i$ es minimal

Ya que un vector de una dimensión es siempre linealmente independiente si y sólo si no es nulo. Por último, veamos que el estadístico natural es completo:

Para ello aplicaremos el teorema anterior y para ello analizaremos el conjunto imagen de $q(\theta)$:

$$Im(q(\theta)) = \{ln(\frac{\theta}{1-\theta}) : \theta \in \Theta = (0,1)\}$$
 ya que se trata de una distribución Bernoulli

Por último dado que la función tiene una gráfica así:

La imagen coincide con los números reales R por lo que contiene un conjunto abierto no trivial y por tanto el estadístico natural $\sum x_i$ es completo.

Ahora veamos otro ejemplo en el que no se puede provocar la perteniencia a la familia exponencial:

Ejemplo

Sea
$$X \sim U(\theta, 7\theta) \implies f_{\theta}(x) = \frac{1}{6\theta} \cdot I_{(\theta, 7\theta)}(x) \implies$$

$$f_{\theta}(\vec{x}) = \left(\frac{1}{6\theta}\right)^n \cdot I_{(\theta,7\theta)}(x_{(1)}) \cdot I_{(\theta,7\theta)}(x_{(n)})$$

Entonces por el Teorema de Factorización de Fisher, tenemos que el estadístico $T(\vec{x}) = (x_{(1)}, x_{(n)})$ es suficiente.

Observación 3.6.4

Como la función indicadora depende de θ , entonces la distribución no pertenece a la familia exponencial

Recordemos además densidad functiones de de los máximos

Recordemos además cuáles son las funciones de densidad de los máximos y lo mínimos (aunque en la práctica real hace falta demostrarlo siempre):
$$\begin{cases} f_{\theta}(x_{(n)}) = n(F_X(x))^{n-1} \cdot f_X(x) \\ f_{\theta}(x_{(1)}) = n(1 - F_X(x))^{n-1} \cdot f_X(x) \end{cases} \implies \text{Saquemos primero la esperanza del máximo:}$$

$$E_{\theta}[x_{(n)}] = \int_{\theta}^{7\theta} x \cdot n \left(\frac{x-\theta}{6\theta}\right)^{n-1} \cdot \frac{1}{6\theta} dx =$$

Para calcularla introduzcamos el cambio de variable, para usar la regla de la multipicación:

$$\begin{cases} x = u \\ dv = f_{\theta}(x_{(n)}) \end{cases} \implies$$

$$= \left[x \cdot \left(\frac{x-\theta}{6\theta}\right)^n\right]_{x=\theta}^{7\theta} - \int_{\theta}^{7\theta} \left(\frac{x-\theta}{6\theta}\right)^n dx = 7\theta - \int_{y=0}^{y=1} y^n \cdot 6\theta dy = 7\theta - 6\theta \cdot \frac{1}{n+1} = \theta \frac{7n+1}{n+1}\theta$$

Ahora, realicemoslo para el mínimo:

$$E[x_{(1)}] = \int_{\theta}^{7\theta} x \cdot n \left(1 - \frac{x - \theta}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7\theta - x}{6\theta}\right)^{n - 1} \cdot \frac{1}{6\theta} dx = \int_{\theta}^{7\theta} x \cdot n \left(\frac{7$$

Al igual que antes introduzcamos un cambio de variable para calcularla:

$$=\left[x\cdot\left(1-\frac{x-\theta}{6\theta}\right)^n\right]_{x=\theta}^{7\theta}-\int_{\theta}^{7\theta}\left(\frac{7\theta-x}{6\theta}\right)^ndx=-\theta-\int_{1}^{0}y^n(-6\theta)dy=-\theta-6\theta\left[\frac{y^{n+1}}{n+1}\right]_{0}^{1}=-\theta-6\theta\frac{1}{n+1}$$

HAY QUE TERMINAR ESTE EJEMPLO

Teorema 3.6.3 [Teorema de Basu]

Si $T = T(X_1, ..., X_n)$ es un estadístico suficiente y completo y $U = U(X_1, ..., X_n)$ es un estadístico ancilario, entonces T y U son independientes

Demostración. Sea la muestra (x_1, \ldots, x_n) , un parámetro θ y sea un estadístico T suficiente, entonces por definición tenemos que:

$$f(\vec{x}|T=t)$$
es indendiente de $\theta \implies$

$$f(U=u|T=t) = \sum_{\vec{x}: U(\vec{x})=u} f(\vec{x}|T=t)$$
 es independiente de θ

Aplicando las propiedades de los condicionales, tenemos que:

$$f_{\theta}(u) = f_{\theta}(t) f_{\theta}(u|t)$$
 pero como U es ancilario y T es completo, entonces: $\implies f(u) = f_{\theta}(t) f(u|t)$

Tomemos la función h(t) = f(u|t) - f(u), entonces:

$$E[h(T)] = E[f(u|T) - f(u)] = E[f(u|T)] - E[f(u)] = \int f(u|t)f(t)dt - \int f(u)f(t)dt = f(u) - f(u) = 0$$

Entones como T es completo, tenemos que h(T)=0 c.s. $\implies f(u|t)=f(u)$

$$f(u|t) = \frac{f(u,t)}{f(t)} \iff f(t,u) = f(u)f(t) \implies U \text{ y } T \text{ son independientes}$$

Ejemplo

Sea $X \sim U(0,\theta)$, veamos que $X_{(n)}$ y $\frac{X_{(1)}}{X_{(n)}}$ son independientes:

$$X \sim U(0,\theta) \implies f_{\theta}(x) = \frac{1}{\theta} \cdot I_{(0,\theta)}(x) \implies F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(X_1 \le x, \dots, X_n \le x) =$$

$$= P(X_1 \le x) \cdot \dots \cdot P(X_n \le x) = (F(x))^n = \left(\frac{x}{\theta}\right)^n \implies f_{\theta}(x) = n\left(\frac{x}{\theta}\right)^{n-1} \cdot \frac{1}{\theta} = \frac{n}{\theta^n} x^{n-1}$$

Dado que por el Teorema de Factorización de Fisher, esta distribución es suficiente, consideraremos que $X_{(n)}$ es el estadístico suficiente y completo.

Veamos ahora la función de densidad de $\frac{X_{(1)}}{X_{(n)}}$, para ello calculemos la función de densidad de $X_{(1)}$:

$$F_{X_{(1)}}(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - P(X_1 > x, \dots, X_n > x) =$$

$$= 1 - P(X_1 > x) \cdot \dots \cdot P(X_n > x) = 1 - (1 - F(x))^n = 1 - \left(1 - \frac{x}{\theta}\right)^n \implies f_{\theta}(x) = n\left(1 - \frac{x}{\theta}\right)^{n-1} \cdot \frac{1}{\theta} = \frac{n}{\theta^n} (\theta - x)^{n-1}$$

38

Ejemplo

Sea una m.a.s. de tamaño n de una población $X \sim N(\theta, \sigma)$ se tiene que:

$$\bar{X} \sim N(\mu, \frac{\sigma}{n})$$
 ya que
$$\begin{cases} E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}n\theta = \theta \\ Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) = \frac{1}{n^{2}}n\sigma = \frac{\sigma}{n} \end{cases}$$

Y como se trata de una distribución perteneciente a la familia exponencial 2-paramétrica, entonces \bar{X} es suficiente. Queda demostrar que sea completo, para ello, consideremos la función de densidad de \bar{X} :

$$\bar{X} \sim N(\mu, \frac{\sigma}{n}) \implies f_{\theta}(x) = \sqrt{\frac{n}{2\pi\sigma}} e^{-\frac{n}{2\sigma}(x-\theta)^2}$$

La completitud se da por definición. No obstante es una integral demasiado dificil de calcular, por lo que se puede deducir que \bar{X} es completo. Por el Teorema de Fisher sabemos que:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \implies S^2 \sim \frac{\sigma^2}{n-1}\chi^2(n-1) \implies S^2 \text{ es un estadístico ancilario } \Longrightarrow$$

Por el teorema de Basu, \bar{X} y S^2 son independientes

3.7 Principios de reducción de datos

Teorema 3.7.1 [Principio de verosimilitud]

Dada una m.a.s. consideramos que la distribución de la muestra es una función de θ y no de la muestra en sí, es decir, $L(\theta|x_1,\ldots,x_n)=f(x_1,\ldots,x_n|\theta)$

Proposición 3.7.1

Sean dos muestras $X = (x_1, ..., x_n)$ e $Y = (y_1, ..., y_m)$, si $\exists c(x, y)$ tal que $L_1(\theta|x) = c(x, y)L_2(\theta|y)$, entonces la evidencia estadística que suministran ambas muestras es idéntica. Es decir, $Ev(E_1, \vec{x}) = Ev(E_2, \vec{y})$

Ejemplo

Sea un modelo $Binomial(n, \theta)$ la evidencia que se obtiene del mismo, sobre θ , cuando se observan t éxitos en n repeticiones, es la misma que la obtenida por un modelo $Binomialnegativo(t, \theta)$, siempre que se suponga que se han realizado n repeticiones hasta obtener t éxitos.

En el primer caso tenemos que:
$$f(t|\theta) = \binom{n}{t} \theta^t (1-\theta)^{n-t}$$

y en el segundo caso:
$$g(n \text{ repeticiones hasta obtener t } \acute{\text{exitos}}|\theta) = \binom{n-1}{t-1} \theta^t (1-\theta)^{n-t}$$

Por tanto, se puede aplicar el principio de verosimilitud, tomando la constante $c(t, n) = \frac{n}{t}$. Es decir, si para estimar la probabilidad con la que sale cara una moneda, se tira ésta n veces, y es t el numero de cara s que se han presentado (modelo binomial), se obtiene la misma evidencia para θ , que si se repite el experimento hasta observar t caras y para ello ha habido que realizar n repeticiones (modelo binomial negativo)

Proposición 3.7.2 [Principio de suficiencia]

En un experimento $E = (\chi, \theta, \mathcal{P} = \{f(\vec{x}|\theta) : \theta \in \Theta\})$, si $T = T(\vec{X})$ es un estadístico suficiente para θ y se tiene que $T(\vec{x}) = T(\vec{y})$, entonces las dos muetras \vec{x} e \vec{y} suministran la misma evidencia estadística, es decir, $Ev(E, \vec{x}) = Ev(E, \vec{y})$

Ejemplo

En un experimento consistente en la repetición de n pruebas de Bernoulli, la evidencia estadística que se obtiene de dos puntos muestrales con el mismo número de éxitos es la misma.

Proposición 3.7.3 [Principio de condicionalidad]

El principio de condicionalidad dice que si un mecanismo aleatorio no depende del valor a determinar θ , no proporciona evidencia sobre él. Es decir, si $T = T(\vec{X})$ es un estadístico suficiente para θ y $T(\vec{x}) = T(\vec{y})$, entonces las dos muestras \vec{x} e \vec{y} suministran la misma evidencia estadística, es decir, $Ev(E, \vec{x}) = Ev(E, \vec{y})$

Ejemplo

Dados dos experimentos $E_1 = (\chi^n, f_1(\vec{x}|\theta))_{\theta \in \Theta \subset \mathbb{R}^\ell}$ y $E_2 = (\chi^m, f_2(\vec{y}|\theta))_{\theta \in \Theta \subset \mathbb{R}^\ell}$ y el lanzamiento de una moneda al aire representado por la v.a. J tal que $P(J=1) = P(J=2) = \frac{1}{2}$, si $E = (\chi^n \cup \chi^m \times \{1,2\}, f(\vec{x},j|\theta))_{\theta \in \Theta \subset \mathbb{R}^\ell}$ es el experimento mixto representado por la v.a. (Z,J) tal que $Z = \begin{cases} X & \text{si } J = 1 \\ Y & \text{si } J = 2 \end{cases}$, entonces $Ev(E,(\vec{x},1)) = Ev(E_1,\vec{x})$ y $Ev(E,(\vec{y},1)) = Ev(E_2,\vec{y})$

Teorema 3.7.2 [Teorema de Birnbaum]

El principio de verosimilitud es equivalente a los principios de suficiencia y condicionalidad.

3.8 Ejercicios

Ejercicio 2.1. Sea X muestra de una población $N(0,\sigma)$, ¿Es T(X) = |X| un estadístico suficiente?

Solución: Recordemos la definición de estadístico suficiente por definición: Dado un estadístico T en este caso T(X) = |X| y una muestra \vec{x} se dice que T es suficiente si $f_{\theta}(\vec{X} = \vec{x}|T = t)$ Empecemos definiendo la distribución que sigue el estadístico T:

$$P(|X| \le a) = P(-a \le X \le a) = P(X \le a) - P(X \le -a) = F(a) - F(-a) = 2F(a) = 2\int_0^a f_X(x)dx$$

$$\implies f_{|X|}(x) = 2f_X(x) = 2 \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \implies \text{Si } X \sim N(0,\sigma) \implies f_{|X|}(x) = \frac{\sqrt{2}}{\sigma\sqrt{\pi}} \cdot e^{-\frac{x^2}{2\sigma^2}}$$

Entonces veamos el cociente de las dos funciones de densidad:

$$P(X = x | T = t) = \frac{f_{\sigma}(x)}{f_{\sigma}(t)} = \frac{\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2\sigma^2}}}{\frac{\sqrt{2}}{\sigma\sqrt{\pi}} \cdot e^{-\frac{x^2}{2\sigma^2}}} = \frac{1}{2}$$

Lo cual no depende del parámetro σ y por tanto por definición, el estadístico es suficiente.

Ejercicio 2.2. Encuentra un estadístico suficiente para una m.a.s. de tamaño n de cada una de las siguientes poblaciones:

- 1. Beta (α, β) : $\alpha > 0, \beta > 0$
- 2. Gamma(a, p) : a > 0, p > 0

3.
$$p_{N_1N_2}(x) = \frac{1}{N_2 - N_1} \cdot I_{N_1 + 1, N_1 + 2, \dots, N_2}(x) : N_1 < N_2$$

4.
$$f_{\theta}(x) = e^{-x+\theta} \cdot I_{\theta,\infty}(x)$$

5.
$$f_{\mu,\sigma}(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(\ln(x-\mu))^2} \cdot I_{0,\infty}$$

6.
$$p_{\theta,p}(x) = (1-p)p^{x-\theta} \cdot I_{\theta,\theta+1,\dots}(x)$$

Solución:

1. Sea $X \sim Beta(\alpha, \beta) \implies$

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} \implies f_{\alpha,\beta}(x_1,\ldots,x_n)(x) = \prod_{i=1}^n f_{\alpha,\beta}(x_i) = \frac{(\prod_{i=1}^n x_i)^{\alpha-1}(\prod_{i=1}^n (1-x))^{\beta-1}}{B(\alpha,\beta)^n}$$

Entonces por el Teorema de Factorización de Fisher, tenemos que

$$f_{\theta}(x) = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (\prod_{i=1}^{n} x_i, \prod_{i=1}^{n} (1 - x_i))$$

2. Sea $X \sim Gamma(\alpha, \beta) \implies$

$$f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \cdot e^{-x\beta} \implies f_{\alpha,\beta}(x_1,\ldots,x_n) = \prod_{i=1}^n f_{\alpha,\beta}(x_i) = \frac{\beta^{n\alpha}}{\Gamma(\alpha)} (\prod_{i=1}^n x_i)^{\alpha-1} \cdot e^{-\beta \sum_{i=1}^n x_i}$$

Entonces por el Teorema de Factorización de Fisher:

$$f_{\theta} = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (T_1(\vec{x}), T_2(\vec{x})) = (\sum_{i=1}^n x_i, \prod_{i=1}^n x_i)$$

3. Sea $X \sim \text{Uniforme Discreta}(N_1, N_2) \implies$

$$f_{(N_1,N_2)}(x) = \frac{1}{N_2 - N_1} \cdot I_{N_1 + 1, N_1 + 2\dots, N_2}(x) \implies f_{(N_1,N_2)}(x_1, \dots, x_n) = \prod_{i=1}^n f_{(N_1,N_2)}(x_i) = \frac{1}{(N_2 - N_1)^n} \cdot I_{\{N_1 + 1, N_1 + 2, \dots, +\infty\}}(x_{(1)}) \cdot I_{\{-\infty, \dots, N_2 - 1, N_2\}}(x_{(n)})$$

Por el Teorema de Factorización de Fisher, tenemos que:

$$f_{\theta}(x) = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (x_{(1)}, x_{(n)})$$

4. Sea una variable aleatoria con función de densidad $f_{\theta}(x) = e^{-x+\theta} \cdot I_{\theta,\infty}(x) \implies$

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i) = \prod_{i=1}^n e^{-x_i + \theta} \cdot I_{\theta, \infty}(x_i) = e^{-\sum_{i=1}^n x_i + n\theta} \cdot I_{\theta, \infty}(x_{(1)})$$

Por el Teorema de Factorización de Fisher, tenemos que:

$$f_{\theta}(x) = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (x_{(1)})$$

5. Sea una varible aleatoria X cuya función de densidad es:

$$f_{(\mu,\sigma)}(x) = \frac{1}{x\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2\sigma^2}(\ln(x)-\mu)^2} \cdot I_{0,\infty}(x) \implies f_{(\mu,\sigma)}(\vec{x}) = \prod_{i=1}^n \frac{1}{x_i} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2\sigma}\sum_{i=1}^n (\ln(x_i)-\mu)^2}$$

Desarrollando el cuadrado: $(ln(x_i) - \mu)^2 = ln^2(x_i) - 2\mu ln(x_i) + \mu^2$ y conociendo que la forma general de las funciones de densidad de las familias exponenciales 2-paramétricas es:

$$f_{(\mu,\sigma)}(x) = c(\mu,\sigma) \cdot h(x) \cdot e^{q_1(\mu,\sigma)T_1(x) + q_2(\mu,\sigma)T_2(x)} \implies f_{(\mu,\sigma)}(\vec{x}) = c(\mu,\sigma)^n \cdot h(\vec{x}) \cdot e^{q_1(\mu,\sigma)\sum T_1(x_i) + q_2(\mu,\sigma)\sum T_2(x_i)}$$

Podemos ver que $T_1(\vec{x}) = \sum_{i=1}^n \ln(x_i)$ y $T_2(\vec{x}) = \sum_{i=1}^n \ln^2(x_i)$

Observación 3.8.1

Esta distribución en particular se la conoce como log-normal o distribucion de Tinaut y surge de tomar una distribución normal $N(\mu, \sigma)$ y aplicarle la función logarítmica, es decir: $Y = ln(X) \sim N(\mu, \sigma)$

6. Sea una variable aleatoria X cuya función de densidad es:

$$f_{(\theta,p)}(x) = (1-p)p^{x-\theta} \cdot I_{\theta,\theta+1,\dots}(x) \implies f_{(\theta,p)}(\vec{x}) = (1-p)^n \cdot p^{\sum_{i=1}^n x_i - n\theta} \cdot I_{\theta,\theta+1,\dots}(x_{(1)})$$

Entonces por el Teorema de Factorización de Fisher, tenemos que:

$$f_{\theta}(x) = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (\sum_{i=1}^{n} x_i, x_{(1)})$$

Ejercicio 2.3. Sea una m.a.s. de tamaño n de una población con función de distribución $X \sim Uniforme(\theta, 4\theta)$ pruébese que $(X_{(1)}, X_{(n)})$ es un estadístico suficiente para θ pero no es completo.

Solución:

$$X \sim U(\theta, 4\theta) \implies f_{\theta}(x) = \frac{1}{3\theta} \cdot I_{(\theta, 4\theta)}(x) \implies f_{\theta}(x_1, \dots, x_n) = \frac{1}{(3\theta)^n} \cdot I_{(\theta, 4\theta)}(x_{(1)}) \cdot I_{(\theta, 4\theta)}(x_{(n)})$$

Entonces, por el Teorema de Factorización de Fisher, tenemos que: $f_{\theta}(x) = h(x) \cdot g_{\theta}(T(x)) \implies T(\vec{x}) = (x_{(1)}, x_{(n)})$ Ahora veamos que el estadístico no es completo: Para ello tenemos que sacar cuales son las distribuciones del mínimo y el máximo:

1.

$$f_{\theta}(x_{(n)}) = n(F(x))^{n-1} \cdot f_{\theta}(x_{(n)}) = n\left(\frac{x-\theta}{3\theta}\right)^{n-1} \cdot \frac{1}{3\theta} = \frac{n}{3\theta^n}(x-\theta)^{n-1} \implies$$

$$E[T_1] = \int_{\theta}^{4\theta} x \cdot n\left(\frac{x-\theta}{3\theta}\right)^{n-1} \cdot \frac{1}{3\theta} dx = \left[x \cdot \left(\frac{x-\theta}{3\theta}\right)^n\right]_{\theta}^{4\theta} - \int_{\theta}^{4\theta} \left(\frac{x-\theta}{3\theta}\right)^n dx = 4\theta - 3\theta \int_0^1 y^n dy =$$

$$= 4\theta - 3\theta \frac{1}{n+1} = \theta \frac{4n+1}{n+1}$$

2.

$$f_{\theta}(x_{(1)}) = n(1 - F(x))^{n-1} \cdot f_{\theta}(x) = n\left(1 - \frac{x - \theta}{3\theta}\right)^{n-1} \cdot \frac{1}{3\theta} = \frac{n}{3\theta^n} (4\theta - x)^{n-1} \implies$$

$$E[T_2] = \int_{\theta}^{4\theta} x \cdot n\left(1 - \frac{x - \theta}{3\theta}\right)^{n-1} \cdot \frac{1}{3\theta} dx = \left[x \cdot -\left(1 - \frac{x - \theta}{3\theta}\right)^n\right]_{\theta}^{4\theta} - \int_{\theta}^{4\theta} \left(\frac{4\theta - x}{3\theta}\right)^n dx =$$

$$= \theta - 3\theta \int_0^1 y^n dy = \theta - 3\theta \frac{1}{n+1} = \theta \frac{4n+1}{n+1}$$

Ejercicio 2.4. Sea una m.a.s. de una población que sigue una variable aleatoria X con función de densidad:

$$f_{\theta}(x) = e^{-(x-\theta)} \cdot I_{(\theta,+\infty)}(x)$$

- 1. Pruébese que $T(\vec{X}) = X_{(1)}$ es un estadístico suficiente y completo para θ
- 2. Mediante el Teorema de Basu, pruébese que $X_{(1)}$ y S^2 son independientes.

Solución: Antes de comenzar con la resolución del problema, calculemos la función de densidad de la muestra:

$$f_{\theta}(\vec{x}) = e^{-\sum_{i=1}^{n} x_i + n\theta} \cdot I_{\theta, +\infty}(x_{(1)})$$

1. Para demostrar la suficiencia usaremos el Teorema de Factorización de Fisher con: $f_{\theta}(\vec{x}) = h(\vec{x}) \cdot g_{\theta}(T(\vec{x})) = e^{-\sum_{i=1}^{n} x_i + n\theta} \cdot I_{\theta,+\infty}(x_{(1)})$ y $T(\vec{x}) = (x_{(1)}, \sum x_i)$ Ahora veamos la completitud: Sea una función real g(x) que cumpla que:

$$E[g(x_{(1)})] = 0 = \int_{\theta}^{+\infty} g(x) f_{\theta}(x) dx = \int_{\theta}^{+\infty} g(x) e^{-x+\theta} dx$$

Si tomamos cómo función $H(x) = \int_{t>0}^{+\infty} e^{-y}$ sabemos que dicha función es positiva en todo su dominio, por lo que la únia manera de que la integral anterior sea nula es que g(x) = 0 c.s. \implies el estadístico es completo.

2. El Teorema de Basu, nos dice que si T es un estadístico suficiente y completo y U es un estadístico ancilario, entonces T y U son independientes. En este caso, sabemos que $X_{(1)}$ es completo y suficiente, y por el Teorema de Basu, sabemos que $X_{(1)}$ y S^2 son independientes. Entonces debemos comprobar que S^2 es ancilario:

$$f_{\theta} = e^{-(x-\theta)} \implies X \sim Exponencial(1) + \theta \implies S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 =$$

$$= \frac{1}{n-1} \sum_{i=1}^n (X_i - \theta + \theta - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \theta - (\bar{X} - \theta)^2) = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \bar{Z})^2 \implies$$

$$\implies Z \sim Exponencial(1) \text{ no depende de } \theta \implies S^2 \text{ es ancilario}$$

Por tanto por el Teorema de Basu, ambos estadísticos son independientes.

Ejercicio 2.5. Sea una población que sigue una variable aleatoria X con fucniones de masa:

$$P_{\theta}(X=-1) = \theta$$
 $P_{\theta}(X=x) = (1-\theta)^2 \cdot \theta^x \cdot I_{0 \cup \mathbb{N}}(x)$

Con $\theta \in (0,1)$ y el tamaño de la muestra n=1 ¿El estadístico X es completo?

Solución:

$$E[X] = \sum_{i=0}^{+\infty} P(X=i) \cdot i = -1 \cdot P(X=-1) + \sum_{i=1}^{+\infty} P_{\theta}(X=i) \cdot i = -1 \cdot \theta + \sum_{i=1}^{n} (1-\theta)^{2} \cdot i\theta^{i} =$$

$$= -\theta + (1-\theta) \sum_{i=1}^{n} i\theta^{i} = -\theta + (1-\theta)t'(x) \text{ donde } t(x) = \sum_{i=1}^{\infty} \theta^{i} = \frac{\theta}{1-\theta} \implies t'(x) = \frac{1}{(1-\theta)^{2}}$$

$$\implies E[X] = -\theta + (1-\theta)^{2}\theta(\frac{1}{(1-\theta)^{2}}) = -\theta + \theta = 0$$

43

Entonces, como E[X] = 0, X no es completo.

Ejercicio 2.6. Sea m.a.s. de tamaño n de una población $N(\alpha\sigma,\sigma):\alpha\in\mathbb{R}$ veamos si el estadístico $T(\vec{X})=(\sum_{i=1}^n X_i,\sum_{i=1}^n X_i^2)$ es suficiente y completo para σ .

Solución:

$$X \sim N(\alpha \sigma, \sigma) \implies f_{\sigma}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \alpha \sigma)^2}{2\sigma^2}} \implies f_{\sigma}(\vec{x}) = \prod_{i=1}^{n} f_{\sigma}(x_i) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \alpha \sigma)^2}$$

Entonces descomoponiendo: $(x_i - \alpha \sigma)^2 = x_i^2 + \alpha^2 \sigma^2 - 2\alpha \sigma x_i \implies$

$$f_{\sigma}(\vec{x}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2 + \frac{\alpha}{\sigma}\sum_{i=1}^n x_i - \frac{n\alpha^2}{2}}$$

Entonces por el Teorema de Factorización de Fisher, tenemos que el estadístico $T(\vec{x}) = (\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2)$ es suficiente.

Ahora veamos si es completo:

$$E\left[\sum_{i=1}^{n} X_i\right] = n\alpha\sigma \quad E\left[\sum_{i=1}^{n} X_i^2\right] = n\sigma^2 + n\alpha^2\sigma^2 = (1 + n\alpha^2)n\sigma^2$$

Pero la función

$$g(\vec{T}) = \frac{1}{1 + n\alpha^2} \left(\sum_{i=1}^n X_i \right)^2 - \frac{1}{1 + \alpha^2} \sum_{i=1}^n X_i^2 \implies E[g(\vec{T})] = 0$$

Pero la función no es nula en casi todo punto, por lo que no es completo.

Ejercicio 2.7. Sea una población con variable aleatoria $X \sim Uniforme(\theta, \theta + 1)$ y una m.a.s. de tamaño n de dicha población. Entonces,

- 1. Encuentra un estadístico suficiente para θ
- 2. Comprueba si el recorrido muestral $R = X_{(n)} X_{(1)}$ es un estadístico ancilario
- 3. Si la función de de distribución sufriera un desplazamiento de $F_{\theta}(x) = F(x \theta)$ Comprueba si se conserva la propiedad del apartado anterior

Solución: 1

- 1. $X \sim Uniforme(\theta, \theta + 1) \implies f_{\theta}(x) = \frac{1}{\theta + 1 \theta} \cdot I_{(\theta, \theta + 1)} = 1 \cdot I_{(\theta, \theta + 1)}(x) \implies f_{\theta}(\vec{x}) = I_{(\theta, \theta + 1)}(x(1)) \cdot I_{(\theta, \theta + 1)}(x_{(n)}) \implies \text{por el Teorema de Factorización de Fisher, el estadístico } T(\vec{x}) = (x_{(1)}, x_{(n)}) \text{ es suficiente.}$
- 2. Calculemos las funciones de distribución del máximo y el mínimo:

$$f_{\theta}(x_{(n)}) = n(F(x))^{n-1} \cdot f_{\theta}(x_{(n)}) = n\left(\frac{x-\theta}{1}\right)^{n-1} \cdot 1 = n(x-\theta)^{n-1}$$

$$f_{\theta}(x_{(1)}) = n(1 - F(x))^{n-1} \cdot f_{\theta}(x_{(1)}) = n\left(1 - \frac{x - \theta}{1}\right)^{n-1} \cdot 1 = n(\theta + 1 - x)^{n-1} \implies$$

Cuando intentamos calcular la probabilidad $P(R \leq r)$ estamos calculando la probabilidad de que el máximo y el mínimo estén a menos de una distancia r, entonces:

$$P(R \le r) = \int_{\theta}^{\theta+1} f_{X_{(n)}}(x) \cdot P(x - X_{(1)} \le r) dx$$

Intuitivamente, esta expresión nos dice la probabilidad de que un punto x del intervalo sea el máximo por la probabilidad de que la distancia de ese número menos el mínimo esté a una distancia menor que $r \implies$

$$P(R \le r) = \int_{\theta}^{\theta+1} n(x-\theta)^{n-1} \cdot P(x-X_{(1)} \le r) dx = \int_{\theta}^{\theta+1} n(x-\theta)^{n-1} \cdot P(X_{(1)} \ge x-r) dx =$$

$$= \int_{\theta}^{\theta+1} n(x-\theta)^{n-1} \cdot (1-P(X_{(1)} \le x-r)) dx = \int_{\theta}^{\theta+1} n(x-\theta)^{n-1} \cdot (\theta+1-x+r)^n dx =$$

$$= \int_{0}^{1} ny^{n-1} \cdot (1+r-y)^n dy$$

Donde $y = x - \theta$ y $r = r - \theta$ y dado que es una expresión que no depende de θ llegamos a que el estadístico es ancilario.

• Si tenemos en cuenta el caso general del desplazamiento en una distribución uniforme:

$$F_{\theta}(x) = F(x - \theta) \implies P : \theta(r) = P(X_{(n)} - X_{(1)} \le r) \implies$$

Si hacemos el cambio de varibale $Z_i = X_i - \theta$ obtenemos que $Z_{(n)} - Z_{(1)} = X_{(n)} - X_{(1)}$ y por tanto, el recorrido muestral sigue siendo un estadístico ancilario.

Ejercicio 2.8. Dada una m.a.s. de tamaño n de una población donde se sigue la siguiente función de densidad:

$$f_{\theta}(x) = \frac{2x}{\theta^2} \cdot I_{(0,\theta)}(x)$$

Entonces:

- 1. Comprueba si $T(\vec{X}) = (X_{(n)}, \prod_{i=1}^{n} X_i)$ es suficiente para θ y si además es minimal.
- 2. Comprueba también si $T_2(\vec{x}) = X_{(n)}$ es un estadístico completo.

Solución:

1.

$$f_{\theta}(x) = \frac{2x}{\theta^2} \cdot I_{(0,\theta)}(x) \implies f_{\theta}(\vec{x}) = \prod_{i=1}^n f_{\theta}(x_i) = \frac{2^n}{\theta^{2n}} \cdot \prod_{i=1}^n x_i \cdot I_{(0,\theta)}(x_{(n)})$$

Entonces por el Teorema de Factorización de Fisher, el estadístico $T(\vec{x}) = (X_{(n)}, \prod_{i=1}^{n} X_i)$ es suficiente. Para comprobar si es minimal, veamos que:

Dadas dos muestras \vec{x} y \vec{y} \Longrightarrow

$$\frac{f_{\theta}(\vec{x})}{f_{\theta}(\vec{y})} = \frac{\frac{2^n}{\theta^{2n}} \cdot \prod_{i=1}^n x_i \cdot I_{(0,\theta)}(x_{(n)})}{\frac{2^n}{\theta^{2n}} \cdot \prod_{i=1}^n y_i \cdot I_{(0,\theta)}(y_{(n)})} = \frac{\prod_{i=1}^n x_i \cdot I_{(0,\theta)}(x_{(n)})}{\prod_{i=1}^n y_i \cdot I_{(0,\theta)}(y_{(n)})}$$

Entonces, el cociente no depende de $\theta \iff T(\vec{x}) = T(\vec{y})$ por lo que el estadístico es minimal.

2. Comprobemos que el estadístico $T_2(\vec{x}) = X_{(n)}$ es completo: Cómo es un máximo la función de densidad sigue una fórmula:

$$f_{X_{(n)}} = n(F(x))^{n-1} \cdot f_X(x) = n\left(\frac{x^2}{\theta^2}\right)^{n-1} \cdot \frac{2x}{\theta^2} = 2n\left(\frac{x^{2n-1}}{\theta^{2n}}\right)$$

Entonces, para una función real g(x) queremos ver si que $E[g(X_{(n)})] = 0$ implica que g(x) = 0 c.s.

$$E[g(X_{(n)})] = \int_0^\theta g(x) 2n \left(\frac{x^{2n-1}}{\theta^{2n}}\right) dx = \frac{2n}{\theta^{2n}} \int_0^\theta g(x) \cdot x^{2n-1} dx = 0 \implies$$

Aplicando la Regla de Leibniz para derivadas de integrales:

$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(x,\theta) dx = f(b(\theta),\theta) \cdot \frac{d}{d\theta} (b(\theta)) - f(a(\theta),\theta) \cdot \frac{d}{d\theta} (a(\theta)) + \int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(\theta,x) dx$$

En nuestro caso, podemos sustituir usando:

•
$$f(x,\theta) = g(x) \cdot x^{2n-1}$$

•
$$b(\theta) = \theta$$

•
$$a(\theta) = 0$$

Entones tenemos que:

$$\frac{d}{d\theta} \int_0^\theta g(x) \cdot x^{2n-1} dx = g(\theta) \cdot \theta^{2n-1} - g(0) \cdot 0^{2n-1} + \int_0^\theta \frac{\partial}{\partial \theta} (g(x) \cdot x^{2n-1}) dx =$$

$$= g(\theta) \cdot \theta^{2n-1} = 0 \implies g(\theta) = 0 \implies g(x) = 0 \text{ c.s.}$$

Entones el estadístico $T_2(\vec{x}) = X_{(n)}$ es completo.

4 Estimación Puntual Paramétrica

Definición 4.0.1 [Estimador]

Sea $(\Omega, \mathcal{A}, \mathcal{P})$ el espacio probabilístico asociado a un experimento aleatorio \mathcal{E} , una variable aleatoria observable $X: \Omega \longrightarrow \mathbb{R}$ y su modelo estadístico asociado $(\chi, \mathcal{B}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}^{\ell}}, \mathcal{B} = \mathcal{B}(\mathbb{R}), y (X_1, \cdots X_n)$ m.a.s. $(n) \sim X$

Un estimador del parámetro θ es un estadístico $T = T(X_1, \dots X_n) : \chi^n \longrightarrow \Theta$ que se utiliza para determinar el valor desconocido θ

Definición 4.0.2 [Estimador centrado o insesgado]

Dado un estimador $T = T(X_1, ... X_n) : \chi^n \to \Theta$ se dice que es centrado para θ cuando $E_{\theta}[T] = \theta$. Se dice asintóticamente insesgado o centrado cuando $\lim_{n\to\infty} E_{\theta}[T] = \theta$

Definición 4.0.3 [Sesgo]

Se llama sesgo de un estimador a la diferencia $b(T, \theta) = E_{\theta}[T] - \theta$

Ejemplo

Veamos que el estadístico $T = (\bar{X}, S^2)$ es un estimador centrado de $\theta = (\mu, \sigma^2)$:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n} X_i\right] = \frac{1}{n}\sum_{i=1}^{n} E[X_i] = \frac{1}{n}\sum_{i=1}^{n} \mu = \mu$$

$$E[S^2] = E\left[\frac{1}{n-1}\sum_{i=1}^{n} (X_i - \bar{X})^2\right] = \frac{1}{n-1}\sum_{i=1}^{n} E[(X_i - \bar{X})^2] = \frac{1}{n-1}\sum_{i=1}^{n} \sigma^2 = \sigma^2$$

Ejemplo

Demuestra que el estadístico $\sigma_n^2 = b_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ es un estimador centrado de $h(\theta) = \frac{n-1}{n} \sigma^2$ y $b(\sigma_n^2, \sigma^2) = -\frac{\sigma^2}{n}$

$$E[\sigma_n^2] = E\left[\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X})^2\right] = \frac{1}{n}\sum_{i=1}^n E[(X_i - \bar{X})^2] =$$

$$= \frac{1}{n}\sum_{i=1}^n E[X_i^2 - 2X_i\bar{X} + \bar{X}^2] = \frac{1}{n}\sum_{i=1}^n E[X_i^2] - 2E[X_i\bar{X}] + E[\bar{X}^2] =$$

$$= \frac{1}{n}\sum_{i=1}^n E[X_i]^2 - \frac{2}{n}\sum_{i=1}^n E[X_i\bar{X}] + \frac{1}{n}\sum_{i=1}^n E[\bar{X}^2] =$$

Sabemos que: $\begin{cases} Var(\bar{X}) = E[\bar{X}^2] - E[\bar{X}]^2 \iff \frac{\sigma^2}{n} = E[\bar{X}^2] - \mu^2 \iff E[\bar{X}^2] = \frac{\sigma^2}{n} + \mu^2 \\ Var(X_i) = E[X_i^2] - E[X_i]^2 \iff \sigma^2 = E[X_i^2] - \mu^2 \iff E[X_i^2] = \sigma^2 + \mu^2 \end{cases}$ $= \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) - \frac{2}{n}\sum_{i=1}^{n}E[X_i\bar{X}] = \frac{1}{n}n(\sigma^2 + \mu^2) + \frac{1}{n}n(\frac{\sigma^2}{n} + \mu^2) + \frac{1}{$

Ahora desarrollemos el término que falta:

$$E[X_i\bar{X}] = E[X_i\frac{1}{n}\sum_{j=1}^n X_j] = \frac{1}{n}\sum_{j=1}^n E[X_iX_j] = \frac{1}{n}\sum_{j=1,j\neq i}^n E[X_iX_j] + \frac{1}{n}E[X_i^2] = \frac{1}{n}\sum_{j=1,j\neq i}^n E[X_iX_j] = \frac{1}{n}\sum_{j=1,j\neq$$

$$\begin{split} &=\frac{1}{n}\sum_{j=1 \neq i}^{n} E[X_{i}]E[X_{j}] + \frac{1}{n}E[X_{i}^{2}] = \frac{1}{n}(n-1)\mu^{2} + \frac{1}{n}(\sigma^{2} + \mu^{2}) = \mu^{2} + \frac{\sigma^{2}}{n} \\ \Longrightarrow &= 2\mu^{2} + \sigma^{2}(1 + \frac{1}{n}) - \frac{2}{n}\left(\sum_{i=1}^{n} \mu^{2} + \frac{\sigma^{2}}{n}\right) = 2\mu^{2} + \sigma^{2}(1 + \frac{1}{n}) - 2(\mu^{2} + \frac{\sigma^{2}}{n}) = \sigma^{2}(1 - \frac{1}{n}) \implies \\ &\Longrightarrow E[\sigma_{n}^{2}] = \sigma^{2}(1 - \frac{1}{n}) = h(\theta) \text{ y } b(\sigma_{n}^{2}, \sigma^{2}) = E[\sigma_{n}^{2}] - \sigma^{2} = -\frac{\sigma^{2}}{n} \\ &\Longrightarrow E[\sigma_{n}^{2}] = \sigma^{2}\left(1 - \frac{1}{n}\right) = h(\theta) \text{ y } b(\sigma_{n}^{2}, \sigma^{2}) = E[\sigma_{n}^{2}] - \sigma^{2} = -\frac{\sigma^{2}}{n} \end{split}$$

Observación 4.0.1

- Puede ocurrir que no exista un estimador centrado de θ
- Si T es un estimador centrado para θ , en general h(T) no tiene por qué ser centrado para $h(\theta)$
- A pesar de que exista un estimador centrado para θ , puede ser que no tenga sentido

Ejemplo

Sea una m.a.s. de tamaño n=1 de una población que sigue una distribución $Bin(1,\theta)$ demostrar que $T(X)=X^2$ no es un estimador centrado de θ^2 :

$$X \sim Bin(1,\theta) \equiv Bernouilli(\theta) \implies X^2 \sim Bernouilli(\theta) \implies E[X^2] = \theta \neq \theta^2$$

Ejemplo

Sea una m.a.s. de tamaño n=1 de una población que sigue una distribución $Bin(1,\theta)$ demostrar que no existe un estimador centrado de θ^2 :

Sea g estadístico tal que $E[g(X)] = \theta^2 \implies$ NO LO SÉ HACER

Ejemplo

Sea una m.a.s. de tamaño n=1 que sigue una distribución $X \sim Poisson(\theta)$ demuestra que $T(X)=(-2)^x$ es un estimador centrado para $h(\theta)=e^{-3\theta}$, pero $Var_{\theta}(T)=e^{4\theta}-e^{-6\theta}\to\infty$ no es un estimador de $h(\theta)$:

$$X \sim Poisson(\theta) \implies f_{\theta}(x) = \frac{e^{-\theta}\theta^{x}}{x!} \implies E[T] = E[(-2)^{x}] = \sum_{x=0}^{+\infty} (-2)^{x} \frac{e^{-\theta}\theta^{x}}{x!} = \sum_{x=0}^{+\infty} \frac{(-2\theta)^{x}}{x!} e^{-\theta} = e^$$

$$Var_{\theta}(T) = E[T^{2}] - E[T]^{2} = E[(-2)^{2x}] - e^{-6\theta} = \sum_{x=0}^{n} (-2)^{2x} \frac{e^{-\theta} \theta^{x}}{x!} - e^{-6\theta} = \sum_{x=0}^{n} \frac{(4\theta)^{x}}{x!} e^{-\theta} - e^{-6\theta} = e^{-\theta} e^{4\theta} - e^{-6\theta} = e^{3\theta} - e^{-6\theta} \to \infty$$

Este procedimiento ha demostrador que T(X) es centrado para $h(\theta)$, pero su varianza es demasiado grande (infinita) por lo que no es adecuado para la estimación.

Ejemplo

Sea $(T_j)_{j\in\mathbb{N}}$ sucesión de estimadores centrados para θ , entonces $\bar{T}_k = \frac{1}{k} \sum_{j=1}^k T_j$ es un estimador centrado para θ :

$$E[\bar{T}_k] = E[\frac{1}{k} \sum_{j=1}^k T_j] = \frac{1}{k} \sum_{j=1}^k E[T_j] = \frac{1}{k} \sum_{j=1}^k \theta = \theta$$

Definición 4.0.4 [Estimadores consistentes]

Una sucesión de estimadores $T_n = T(X_1, ..., X_n)$ es una sucesión de estimadores tales que $\forall \theta \in \Theta, E_{\theta}[T_n] \xrightarrow[n \to \infty]{} \theta$ y $V_{\theta}(T_n) \xrightarrow[n \to \infty]{} 0$, entonces T_n es consistente para θ

Proposición 4.0.1

 $Si\ T_n = T(X_1, \dots, X_n)$ es una sucesión de estimadores tales que $\forall \theta \in \Theta, E_{\theta}[T_n] \xrightarrow[n \to \infty]{} \theta, V_{\theta}(T_n) \xrightarrow[n \to \infty]{} 0,$ entonces T_n es consistente para θ

Demostración.
$$E_{\theta}\left[\left(T_{n}-\theta\right)^{2}\right] = V_{\theta}\left(T_{n}\right) + b\left(T_{n},\theta\right)^{2} \underset{n\to\infty}{\longrightarrow} 0, \forall \theta \in \Theta \text{ entonces } T_{n} \xrightarrow[n\to\infty]{\text{m.c.}} \theta, \forall \theta \in \Theta$$

Ejemplo

El estimador $a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ es un estimdor consistente pra el mometo poblacional con respecto al origen de orden k, es decir, es estimador del parámetro $\theta = \alpha_k$.

Ejemplo

Sea una m.a.s. de tamaño n de una población de $Bernouilli(\theta)$ comprobemos que el estimador $T_n = \frac{1}{n+2} \left(\sum_{i=1}^n X_i + 1 \right)$ es un estimador consistente para θ :

$$\lim_{n \to \infty} E[T_n] = \lim_{n \to \infty} E\left[\frac{1}{n+2} \sum_{i=1}^n X_i + 1\right] = \lim_{n \to \infty} \frac{1}{n+2} \sum_{i=1}^n (E[X_i] + 1) = \lim_{n \to \infty} \frac{n\theta + 1}{n+2} = \theta$$

$$\lim_{n \to \infty} V[T_n] = \lim_{n \to \infty} V\left[\frac{1}{n+2} \sum_{i=1}^n X_i + 1\right] = \lim_{n \to \infty} \frac{1}{(n+2)^2} \sum_{i=1}^n V[X_i] = \lim_{n \to \infty} \frac{n\theta(1-\theta)}{(n+2)^2} = 0$$

4.1 Estimadores Bayesianos

Definición 4.1.1 [Estimadores Bayesianos]

El enfoque bayesiano trata a los parámetros de las distribuciones como variables aleatorias con su propia función de distribución, a diferencia de considerar que toma valores fijos desconocidos. Para desarrollar este punto de vista, se asigna una distribución a θ llamada distribución inicial o a priori $\pi(\theta)$ y se actualiza esta distribución con la información de la muestra para obtener la distribución final o a posteriori $\pi(\theta|x_1,\ldots,x_n)$

$$\pi \left(\theta \mid x_1, \dots, x_n\right) = \frac{\pi(\theta) f\left(x_1, \dots, x_n \mid \theta\right)}{m\left(x_1, \dots, x_n\right)}$$

donde m es la distribución predictiva, dada por

$$m(x_1, \dots, x_n) = \int_{\Theta} \pi(\theta) f(x_1, \dots, x_n | \theta) d\theta$$

Observación 4.1.1

Antes de tomar la muestra, la información sobre θ viene dada por $\pi(\theta)$ y tras la experimentación se debe utilizar $\pi(\theta \mid x_1, \dots, x_n)$. El estimador bayesiano de θ es toda la distribución final y por extensión cualquier medida de centralización correspondiente a esta distribución

Ejemplo

Sea una m.a.s. de tamaño n de una población $Bin(1,\theta)$ y con $\theta \sim U(0,1)$ entonces $\pi(\theta|x_1,\ldots,x_n) \sim Beta\left(\sum_{i=1}^n x_i + 1, n - \sum_{i=1}^n x_i + 1\right)$

$$\theta \sim U(0,1) \implies \pi(\theta) \frac{1}{1-0} = 1$$

$$X \sim Bin(1,\theta) \equiv Bernouilli(\theta) \implies f(x|\theta) = \theta^x (1-\theta)^{1-x} \implies$$

$$\implies f(x_1, \dots, x_n|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i}$$

$$m(x_1, \dots, x_n) = \int_0^1 \pi(\theta) f(x_1, \dots, x_n|\theta) d\theta = \int_0^1 \theta^S (1-\theta)^{n-S} d\theta = B(S+1n-S+1) \implies$$

$$\pi(\theta|x_1, \dots, x_n) = \frac{1 \cdot \theta^S (1-\theta)^{n-S}}{B(S+1, n-S+1)} \implies \pi(\theta|x_1, \dots, x_n) \sim Beta(S+1, n-S+1)$$

Ahora teniendo en cuenta que $U(0,1) \equiv Beta(1,1)$, podemos generalizar el resultado anterior para cualquier distribución inicial $\pi(\theta) \sim Beta(\alpha,\beta)$

$$\theta \sim Beta(\alpha, \beta) \implies \pi(\theta) = \frac{\theta^{\alpha - 1}(1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

$$m(x_1, \dots, x_n) = \int_0^1 \pi(\theta) f(x_1, \dots, x_n | \theta) d\theta = \int_0^1 \frac{\theta^{\alpha - 1}(1 - \theta)^{\beta - 1}\theta^S(1 - \theta)^{n - S}}{B(\alpha, \beta)} d\theta =$$

$$= \frac{B(\alpha + S, \beta + n - S)}{B(\alpha, \beta)} = \frac{\Gamma(\alpha + S)\Gamma(\beta + n - S)}{\Gamma(\alpha + \beta + n)} \implies \pi(\theta | x_1, \dots, x_n) \sim Beta(\alpha + S, \beta + n - S)$$

En este caso se dice que la familia de distribuciones iniciales $Beta(\alpha, \beta)$ es conjugada de la familia de distribuciones de probabilidad $X \sim Bin(1, \theta)$

Observación 4.1.2

Además, tenemos que
$$E[\theta|x_1,\ldots,x_n] = \frac{\sum_{i=1}^n x_i + \alpha}{n+\alpha+\beta} = \frac{n}{n+\alpha+\beta} \bar{x} + \frac{\alpha+\beta}{n+\alpha+\beta} \frac{\alpha}{\alpha+\beta}$$

Ejemplo

Sea una m.a.s. de tamaño n de una población $N(\mu, \sigma)$ y con $\mu \sim N(\mu_0, \sigma_0)$ y σ conocida entonces $\pi(\mu|x_1, \ldots, x_n) \sim N(\mu_1, \sigma_1)$:

$$\mu \sim N(\mu_0, \sigma_0) \implies \pi(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}}$$

$$X \sim N(\mu, \sigma) \implies f(x|\mu) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \implies f(x_1, \dots, x_n|\mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} =$$

$$= \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}}$$

$$\pi(\theta|x_1, \dots, x_n) = \frac{\frac{1}{\sqrt{2\pi}\sigma_0}}{\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}\sigma_0}} e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \cdot \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}} =$$

$$= \frac{e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \cdot e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}}}{\int_{\mathbb{R}} e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \cdot e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}} d\mu} = \frac{e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \cdot e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}} e^{-\frac{\sum_{i=1}^n x_i^2 - n\mu^2 + 2\mu \sum_{i=1}^n x_i}{2\sigma^2}}}{\int_{\mathbb{R}} e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \cdot e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}} d\mu} = \frac{e^{-\frac{\mu^2 - \mu_0^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{\sum_{i=1}^n x_i^2 - n\mu^2 + 2\mu \sum_{i=1}^n x_i}{2\sigma^2}} d\mu}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{\sum_{i=1}^n x_i^2 - n\mu^2 + 2\mu \sum_{i=1}^n x_i}{2\sigma^2}} d\mu} = \frac{e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} = \frac{e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} = \frac{e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu} = \frac{e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu} = \frac{e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}} d\mu}{\int_{\mathbb{R}} e^{-\frac{\mu^2 + 2\mu\mu_0}{2\sigma^2}} \cdot e^{-\frac{\mu^2 + 2\mu\bar{X}n}{2\sigma^2}} d\mu}} d\mu}$$

Sabiendo que, dada una normal $N(E, \sqrt{V})$ se da que: $\int_{-\infty}^{+\infty} e^{-\frac{1}{2V}\theta^2 + \frac{E}{V}\theta} d\theta = \sqrt{2\pi V} \cdot e^{\frac{1}{2}\frac{E^2}{V}}$, entonces:

$$\begin{cases} \frac{1}{V} = \frac{1}{\sigma_0^2} + \frac{1}{\frac{\sigma^2}{2}} \\ \frac{E}{V} = \frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}}{\frac{\bar{X}}{\sigma^2}} \end{cases}$$

$$= \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{\sqrt{2\pi\left(\frac{1}{\sigma_0^2} + \frac{1}{\frac{\sigma^2}{n}}\right)} \cdot e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}}{\frac{\sigma^2}{n}}\right)^2}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{\sqrt{2\pi\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)} \cdot e^{\frac{1}{2}\left(\frac{\mu_0^2}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{1}{2}\left(\frac{\mu_0^2}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}}}{\sqrt{2\pi\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)} \cdot e^{\frac{1}{2}\left(\frac{\mu_0^2}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}} = \frac{e^{\frac{-\mu^2 + 2\mu\mu_0}{2\sigma_0^2}} \cdot e^{\frac{-n\mu^2 + 2\mu\bar{X}n}{2\sigma^2}}}{e^{\frac{1}{2}\left(\frac{\mu_0}{\sigma_0^2} + \frac{\bar{X}^2}{\frac{\sigma^2}{n}}\right)}}$$

NO ESTÁ TERMINADO

Definición 4.1.2 [Estadístico suficiente bayesiano]

 $T = T(X_1, ..., X_n)$ es un estadístico suficiente bayesiano para θ para la familia $\mathcal{P} = \{f(\vec{x}|\theta) : \theta \in \Theta\}$ si cualquiera que sea la distribución inicial $\pi(\theta)$, se tiene que la distribución final dada por la muestra y por el valor del estadístico son la misma. Es decir:

$$\pi(\theta|x_1,\ldots,x_n) = \pi(\theta|t) : t = T(x_1,\ldots,x_n)$$

Teorema 4.1.1 [Versión bayesiana del Teorema de Factorización de Fisher]

 $T = T(X_1, ..., X_n)$ es un estadístico suficiente para θ si y sólo si T es un estadístico suficiente bayesiano para θ respecto a $\pi(\theta)$, cualquiera que sea la distribución inicial $\pi(\theta)$

Demostración.

$$\Rightarrow \pi(\theta|x_1, \dots, x_n) = \frac{\pi(\theta)f(x_1, \dots, x_n|\theta)}{m(x_1, \dots, x_n)} = \frac{\pi(\theta)g(t|\theta)f(x_1, \dots, x_n|t, \theta)}{m(x_1, \dots, x_n)} = \frac{\pi(\theta)g(t|\theta)}{\int_{\Theta} \pi(\theta)g(t|\theta)d\theta} = \pi(\theta|t)$$

$$\Rightarrow f(x_1, \dots, x_n|\theta) = \frac{\pi(\theta|x_1, \dots, x_n)m(x_1, \dots, x_n)}{\pi(\theta)} = \frac{\pi(\theta|t)}{\pi(\theta)}m(x_1, \dots, x_n)$$

Definición 4.1.3 [Error cuadrático medio]

Dado un estimador $T(X_1, ..., X_n)$ de θ , se denomina error cuadrático medio ECM a la expresión en función de θ :

$$ECM_T(\theta) = E_{\theta}[(T - \theta)^2]$$

Conceptualmente, el error cuadrático medio es una medida que indica qué tn cerca está un estadístico del parámetro verdadero que se intenta estimar.

Proposición 4.1.1

Dado un estimador $T(X_1, \ldots, X_n)$ de θ , se tiene que:

$$ECM_T(\theta) = V_{\theta}(T) + b(T, \theta)^2$$

Demostración.

$$ECM_T(\theta) = E_{\theta}[(T - \theta)^2] = E_{\theta}[T^2 - 2T\theta + \theta^2] = E_{\theta}[T^2] - 2\theta E_{\theta}[T] + \theta^2 = V_{\theta}(T) + b(T, \theta)^2$$

Observación 4.1.3

El sesgo mide qué tanto se desvía, en promedio, el estimador del valor verdadero del parámetro. La varianza del estimador mide cómo varían las estimaciones (del estimador) si tomamos diferentes muestras.

Es decir, responden a las preguntas de ¿Apunta al lugar correcto? y ¿Qué tan dispersas están las estimaciones? respectivamente.

Ejemplo

Dada una m.a.s. de tamaño n de una población $X \sim Bernouilli(\theta)$ el error cuadrático medio del estimador bayesiano \bar{X} :

$$E_{\theta}[(T-\theta)^{2}] = E_{\theta}[(\bar{X}-\theta)^{2}] = E_{\theta}[\bar{X}^{2} - 2\bar{X}\theta + \theta^{2}] = E_{\theta}[\bar{X}^{2}] - 2\theta E_{\theta}[\bar{X}] + \theta^{2} =$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} E_{\theta}[X_{i}^{2}] - 2\theta \frac{1}{n} \sum_{i=1}^{n} E_{\theta}[X_{i}] + \theta^{2} = \frac{1}{n^{2}} n(\theta^{2} + \theta(1-\theta)) - 2\theta^{2} + \theta^{2} = \frac{\theta(1-\theta)}{n} = \frac{\theta}{n} - \frac{\theta^{2}}{n} = \frac{\theta(1-\theta)}{n}$$

Ejemplo

Dada una m.a.s. de tamaño n de una población $X \sim N(\mu, \sigma)$, se sab quelos estimadores centrados de ambos paráetros son \bar{X} para μ y S^2 para σ^2 , respectivamente. Y sus errores cuadráticos medios

son:

$$ECM_{\bar{X}}(\mu) = Var[\bar{X}] = \frac{\sigma^2}{n}$$
 $ECM_{S^2}(\sigma^2) = Var[S^2] = \frac{2\sigma^4}{n-1}$

Sea $b_2 = \sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ otro estimador centrado para σ^2 , calculemos su varianza y sesgo: Gracias al cálculo realizado en un ejemplo anterior tenemos que $b(\sigma_n^2, \sigma) = -\frac{\sigma^2}{n}$, por lo que sólo queda calcular la varianza, la cual es de la forma

$$V_{\theta}(\sigma_n^2) = \frac{2\sigma^4}{n} \implies ECM_{\sigma_n^2}(\sigma^2) = V_{\theta}(\sigma_n^2) + b(\sigma_n^2, \sigma)^2 = \frac{2\sigma^4}{n} - \frac{\sigma^4}{n^2} = \frac{2n-1}{n^2}\sigma^4 < \frac{2\sigma^4}{n-1} = ECM_{S^2}(\sigma^2)$$

Por lo que se puede concluir que S^2 es un estimador más eficiente que σ_n^2 para σ^2 A pesar de que matemáticamente se parezcan mas, la corrección para mejorar la eficiencia se la conoce como corrección de Bessel.

Observación 4.1.4

En general, si T_1 y T_2 son dos estimadores de θ y $ECM_{T_1}(\theta) < ECM_{T_2}(\theta)$, entonces T_1 es un estimador más eficiente que T_2 para θ

4.2 Criterios de comparación de estimadores

Definición 4.2.1 [Pérdida final esperada]

Dado un estimador $T(X_1, ..., X_n)$, la distribución inicial $\pi(\theta)$ y la función de pérdida $\mathcal{L}(\theta, t)$ donde t son los valores que toma el estimador, se define la Pérdida Final Esperada o PFE o el riesgo a posteriori como:

$$PFE_T = E[\mathcal{L}(t,\theta)|X_1 = x_1, \dots, X_n = x_n] = \int_{\Theta} \mathcal{L}(\theta,t)\pi(\theta|x_1, \dots, x_n)d\theta$$

Proposición 4.2.1

Puede darse que existan varias funciones de pérdida, veamos las más comunes:

- 1. Si $\mathcal{L}(\theta,t) = (\theta-t)^2$ entonces $PFE(t) = V(\theta|x_1,\ldots,x_n) + b(T,\theta)^2$ y la pérdida final esperada se minimimia en $t^* = E[\theta|x_1,\ldots,x_n]$
- 2. $Si \mathcal{L}(\theta,t) = |\theta-t|$ entonces $PFE(t) = E[|\theta-t||x_1,\ldots,x_n]$ y la pérdida final esperada se minimiza en la mediana de la distribución final (estimador bayesiano)

Demostración. 1. Si $\mathcal{L}(\theta, t) = (\theta - t)^2 \implies$

$$PFE_T = E[(\theta - t)^2 | x_1, \dots, x_n] = E[((\theta - E[\theta | x_1, \dots, x_n]) + (E[\theta | x_1, \dots, x_n] - t))^2 | x_1, \dots, x_n]$$

Si expandimos el cuadrado:

$$(\theta - E[\theta|x_1, \dots, x_n])^2 + 2(\theta - E[\theta|x_1, \dots, x_n])(E[\theta|x_1, \dots, x_n] - t) + (E[\theta|x_1, \dots, x_n] - t)^2 \implies$$

Calculemos cada una de las esperanzas por separado:

$$E[(\theta - E[\theta|x_1, \dots, x_n])^2|x_1, \dots, x_n] = V(\theta|x_1, \dots, x_n)$$

 $E[(\theta-E[\theta|x_1,\ldots x_n]|x_1,\ldots,x_n)]=0 \text{ por propiedades de la esperanza condicional}$ $E[(E[\theta|x_1,\ldots,x_n]-t)^2|x_1,\ldots,x_n]=(E[\theta|x_1,\ldots,x_n]-t)^2 \text{ dada una muestra, se vuelve una constante}$ Por lo que se puede concluir que $PFE_T=V(\theta|x_1,\ldots,x_n)+(E[\theta|x_1,\ldots,x_n]-t)^2$ y se minimiza en $t^*=E[\theta|x_1,\ldots,x_n]$

2. Si $\mathcal{L}(\theta, t) = |\theta - t| \implies$

$$PFE_T = E[|\theta - t||x_1, \dots, x_n] = \int_{\Theta} |\theta - t|F(\theta|x)d\theta \implies$$

Dividiendo la integral entre los valores positivos y los negativos de θ , nos queda que la integral es la suma de:

$$\int_{-\infty}^{t} (t - \theta) f(\theta|x) d\theta + \int_{t}^{+\infty} (\theta - t) f(\theta|x) d\theta$$

Si derivamos con respecto a t y obtenemos 0 podemos ver un posible punto máximo o mínimo de la función:

$$\frac{d}{dt}PFE_T = \frac{d}{dt} \int_{-\infty}^t (t - \theta)f(\theta|x)d\theta + \frac{d}{dt} \int_t^{+\infty} (\theta - t)f(\theta|x)d\theta =$$

$$= \int_{-\infty}^t f(\theta|x)d\theta - \int_t^{+\infty} f(\theta|x)d\theta = 0 \iff$$

 $F_X(t)=1-F_X(t)\iff F_X(t)=rac{1}{2}\implies t^*=$ mediana de la distribución final

Ejemplo

EJEMPLO DE LA PÉRDIDA FINAL ESPERADA

Definición 4.2.2 [Estimador centrado uniformemente de mínima varianza]

 $T^* = T^*(X_1, \ldots, X_n)$ es un estimador centrado uniformemente de mínima varianza para θ si y sólo si $E_{\theta}[T^*] = \theta$ y para cualquier otro estimador $T = T(X_1, \ldots, X_n)$ con $E_{\theta}[T] = \theta$, se tiene que $V_{\theta}(T^*) \leq V_{\theta}(T)$, $\forall \theta \in \Theta$

Proposición 4.2.2

Si existe un estimador centrado uniformemente de mínima varianza para θ , entonces es único c.s.

Demostración. Sean T_1 y T_2 dos estimadores centrados uniformemente de mínima varianza para θ , demostremos que entones $T_1 \stackrel{c.s.}{\equiv} T_2$. Sea $T = \frac{T_1 + T_2}{2} \implies E_{\theta}[T] = \theta$

$$V_{\theta}(T) = V_{\theta}(\frac{T_1 + T_2}{2}) = \frac{1}{4}(V_{\theta}(T_1) + V_{\theta}(T_2) + 2Cov_{\theta}(T_1, T_2)) = \frac{V_{\theta}(T_1)}{2} + \frac{Cov(T_1, T_2)}{2}$$

Sabemos que la correlación de dos variables aleatorias está acotada por 1, entonces:

$$\rho_{\theta}(T_1, T_2) = \frac{Cov(T_1, T_2)}{\sqrt{V_{\theta}(T_1)V_{\theta}(T_2)}} \le 1 \iff Cov(T_1, T_2) \le V_{\theta}(T_1) \implies$$

$$\implies V_{\theta}(T) \le V_{\theta}(T_1)$$

Pero además como T_1 es un estimador centrado uniformemente de mínima varianza, ningún otro estimador centrado puede tener un avarianza más pequeña: $V_{\theta}(T) \leq V_{\theta}(T_1)$ Por lo tanto $V_{\theta}(T) = V_{\theta}(T_1) = Cov_{\theta}(T_1, T_2) = V_{\theta}(T_2) \implies \rho_{\theta}(T_1, T_2) = 1 \implies \exists a, b : T_1 = aT_2 + b \iff E[T_1] = aE[T_2] + b \iff \theta = a\theta + b \iff a = 1, b = 0 \implies T_1 \stackrel{c.s.}{\equiv} T_2$

Ejemplo

Sea una m.a.s. de tamaño n de una población $X \sim N(\mu, \sigma^2)$ vamos a trabajar con la familia de estimadores $T_k = \{k \cdot S_n^2\}$. Calculemos cuál es el menor error cuadrático medio. Y tomemos como función del estimador $d(\theta) = \theta^2$

$$ECM_{T_k}(\theta) = V_{\theta}(T_k) + b(T_k, \theta)^2 \implies$$

$$\begin{cases} b(T_k, \theta) = E_{\theta}[T_k] - d(\theta) = \frac{k\theta^2}{n} \cdot E_{\theta}[\frac{n}{\theta^2} S_n^2] = \frac{k\theta^2}{n} \cdot E_{\theta}[\chi_n] - \theta^2 = \frac{k\theta^2}{n} \cdot n - \theta^2 = k\theta^2 - \theta = (k-1)\theta^2 \\ V_{\theta}(T_k) = V_{\theta}[k \cdot S_n^2] = \frac{k^2\theta^4}{n^2} V_{\theta}[\frac{n}{\theta^2} S_n^2] = \frac{k^2\theta^4}{n^2} V_{\theta}[\chi_n^2] = \theta^4 \cdot \frac{k^2}{n^2} \cdot 2n = \frac{2\theta^4 k^2}{n} \end{cases}$$

$$\implies ECM_{T_k}(\theta) = \frac{2\theta^4 k^2}{n} + (k-1)^2 \theta^4 = \theta^4 \left(\frac{2k^2}{n} + (k-1)^2\right)$$

Para encontrar el valor de k que minimiza el error cuadrático medio, derivamos con respecto a k e igualamos a 0:

$$\frac{d}{dk}ECM_{T_k}(\theta) = 0 \iff \frac{d}{dk}\left(\theta^4\left(\frac{2k^2}{n} + (k-1)^2\right)\right) = 0 \iff \theta^4\left(\frac{4k}{n} + 2(k-1)\right) = 0 \iff$$

$$\iff \frac{4k}{n} + 2(k-1) = 0 \iff 4k + 2n(k-1) = 0 \iff 4k + 2nk - 2n = 0 \iff 4k + 2nk = 2n \iff$$

$$\iff k(4+2n) = 2n \iff k = \frac{2n}{4+2n} = \frac{n}{2+n}$$

Por lo que el estimador que minimiza el error cuadrático medio es $T_{\frac{n}{2+n}} = \frac{n}{2+n} S_n^2$

Teorema 4.2.1

El estimador centrado uniformemente de mínima varianza es función simétrica de las observaciones

Ejemplo

Sea una m.a.s. de tamaño n=2, entonces el estimador $T_1=\frac{X_1}{X_2}$ no puede ser un estimador centrado uniformemente de mínima varianza, ya que si lo fuera, entonces para el nuevo estimador $T_2=\frac{X_2}{X_1}$ se tendría que $E_{\theta}[T_2]=E_{\theta}[T_1]$ y $V_{\theta}(T_2)=V_{\theta}(T_1)$ con lo que el estimador $T=\frac{T_1+T_2}{2}=\frac{X_1^2+X_2^2}{X_1X_2}$ sería tal que $V_{\theta} < V_{\theta}(T_1)$, lo cual es una contradicción

Observación 4.2.1

En general si tienes un estimador T que no es simétrico, puedes promediar sobre todas las permutaciones posibles para crear un nuevo estimador \bar{T} :

$$\bar{T} = \frac{1}{n!} \sum_{i=1}^{n!} T_i$$

Este nuevo estimador es simétrico respecto a las observaciones y $V_{\theta}(\bar{T}) \leq V_{\theta}(T_j) \forall j$ donde se cumple que $V_{\theta}(\bar{T}) < V_{\theta}(T_j)$ si T_j no es un estimador simétrico. Además, se cumple que $E_{\theta}[\bar{T}] = E_{\theta}[T]$

Teorema 4.2.2 [Teorema de caracterización del ECUMV]

Sea $T_1 = T_1(X_1, ..., X_n)$ un estimador centrado para θ $(E_{\theta}[T_1] = \theta)$ y $V_{\theta}(T_1) < \infty$ entonces T_1 est el ECUMV para θ si y sólo si para cualquier otro estimador $T_2 = T_2(X_1, ..., X_n)$ con $E_{\theta}[T_2] = 0$ y $V_{\theta}(T_2) < \infty$ se tiene que $E_{\theta}[T_1T_2] = 0$

Corolario 4.2.1

Si $T_1 = T_2(X_1, ..., X_n)$ y $T_2 = T_2(X_1, ..., X_n)$ son ECUMV para $h_1(\theta)$ y $h_2(\theta)$ respectivemente, entonces $b_1T_1 + b_2T_2$ es el ECUMV para $b_1h_1(\theta) + b_2h_2(\theta)$

Teorema 4.2.3 [Teorema de Rao-Blackwell]

Si $T = T(X_1, ..., X_n)$ es un estimador centrado para θ con $V_{\theta}(T) < \infty$ y $S(X_1, ..., X_n)$ es un estadístico suficiente, entonces g(S) = E[T|S] es un estimador centrado para θ con $V_{\theta}(g(S)) \leq V_{\theta}(T)$

Demostración. Si S es una estadística suficiente para el parámetro θ , entonces $E[T \mid S]$ no depende de θ . Por las propiedades de la esperanza condicionada, se tiene que:

$$E_{\theta}[g(S)] = E_{\theta}[E[T \mid S]] = E_{\theta}[T] = \theta$$

Ahora, considerando la varianza de T:

$$V_{\theta}(T) = E_{\theta}[(T - \theta)^{2}] = E_{\theta}[(T - g(S) + g(S) - \theta)^{2}]$$

Expandiendo el cuadrado y usando la linealidad de la esperanza:

$$V_{\theta}(T) = E_{\theta}[(T - g(S))^{2}] + E_{\theta}[(g(S) - \theta)^{2}] + 2E_{\theta}[(T - g(S))(g(S) - \theta)]$$

El último término se anula debido a la siguiente propiedad de la esperanza condicionada:

$$E_{\theta}[(T - g(S))(g(S) - \theta)] = \iint (t - g(s))(g(s) - \theta)dF_{\theta}(t, s)$$

Descomponiendo en términos de la distribución condicional:

$$= \int (g(s) - \theta) \left(\int (t - g(s)) dF(t \mid s) \right) dF_{\theta}(s) = 0$$

Ya que $E[T \mid S] = g(S)$, la esperanza condicional centrada es cero. Por lo tanto,

$$V_{\theta}(T) = V_{\theta}(g(S)) + E_{\theta}[(T - g(S))^{2}] \ge V_{\theta}(g(S))$$

donde se alcanza la igualdad si y solo si T = g(S) casi seguramente.

Teorema 4.2.4 [Teorema de Lehmann-Schefeé]

Si $S(X_1, ..., S_n)$ es un estadístico suficiente y completo para θ y $T = T(X_1, ..., X_n)$ es un estimador centrado para θ tal que T = h(S), entonces T es ECUMV para θ

$$Demostración. \begin{cases} S \text{ suficiente} \\ T \text{ centrado} \end{cases} \implies g(S) = E[T|S] \text{ es centrado para } \theta \text{ y } V_{\theta}(g(S)) \leq V_{\theta}(T)$$

Además, se tiene que para cualquier otro estimador T_1 centrado para θ , $g_1(S) = E[T_1|S]$ es centrado para θ y $V_{\theta}(g_1(S)) \leq V_{\theta}(T_1)$

Por lo tanto al ser T completo y $E_{\theta}[g(S) - g_1(S)] = \theta - \theta = 0$ se tiene que $g(S) \stackrel{c.s.}{=} g_1(S)$. En particular, para $T_1 = T = h(S)$, $g_1(S) = E[h(S)|S] = h(S) = T$ y $V_{\theta}(T) \leq V_{\theta}(T_1)$, cualquiera que sea T_1 centrado para θ

Ejemplo

Sean una m.a.s. de tamaño n de una población con $X \sim Bin(1,\theta)$ y un estadístico $T = \sum_{i=1}^{n} X_i$, comprueba que es suficiente y completo y además, si $h(T) = \bar{X}$, comprueba entonces que h(T) es el ECUMV para θ :

Veamos primero que $T = \sum_{i=1}^{n} X_i$ es suficiente y completo para θ :

$$X \sim Bin(1,\theta) \equiv Bernouilli(\theta) \implies f_{\theta}(x) = \theta^{x}(1-\theta)^{1-x} \implies f_{\theta}(x_{1},\ldots,x_{n}) = \theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}$$

Entones por el Teorema de Factorización de Fisher, tenemos que T es suficiente para θ . Veamos ahora su completitud:

$$X \sim Bin(1,\theta) \implies T \sim Bin(n,\theta) \implies$$

Sea g función real tal que: $E_{\theta}[g(T)] = 0, \forall \theta \in [0, 1]$, entonces:

$$E_{\theta}[g(T)] = \sum_{t=0}^{n} g(t) \binom{n}{t} \theta^{t} (1-\theta)^{n-t} = 0, \forall \theta \in [0,1] \iff$$

$$\iff (1-\theta)^{n} \cdot \sum_{t=1}^{n} g(t) \binom{n}{t} \left(\frac{\theta}{1-\theta}\right)^{t} = 0 \iff$$

$$\iff \sum_{t=0}^{n} g(t) \binom{n}{t} x^{t} = 0, \forall x \in \mathbb{R} \iff g(t) = 0, \forall t \in \{0,\dots,n\}$$

ya que los coeficientes binomiales son no nulos.

Por último queda ver que S es un estadístico centrado para θ , i.e. $E_{\theta}[h(S)] = \theta$ y $V_{\theta}(h(S)) < \infty$:

$$E_{\theta}[h(T)] = E_{\theta}[\bar{X}] = \frac{1}{n} \cdot \sum_{i=1}^{n} E_{\theta}[X_i] = \frac{1}{n} \cdot n\theta = \theta$$

$$V_{\theta}(h(T)) = V_{\theta}(\bar{X}) = \frac{1}{n^2} \cdot \sum_{i=1}^{n} V_{\theta}(X_i) = \frac{1}{n^2} \cdot n\theta(1-\theta) = \frac{\theta(1-\theta)}{n} < \infty$$

Por lo tanto, $T = n\bar{X}$ es el ECUMV para θ

Ejemplo

Sea una m.a.s. de tamaño n de una población con distribución $Poisson(\theta)$ y dado un estadistico $d(\theta) = e^{-2\theta}$. Encuentra el ECUMV para $d(\theta)$:

Ejemplo

Sea una m.a.s. de tamaño n de una población que sigue una distribución $Poisson(\theta)$, tenemos que encontrar el ECUMV para θ :

Si tomamos el estadístico $S = \sum_{i=1}^{n} X_i$, para poder aplicar el Teorema de Lehmann-Scheffé necesitamos ver que el estadístico sea completo y suficiente:

Veamos primero que S es suficiente para θ :

$$X \sim Poisson(\theta) \implies f_{\theta}(x) = \frac{e^{-\theta}\theta^x}{x!} \implies f_{\theta}(x_1, \dots, x_n) = \frac{e^{-n\theta}\theta^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!}$$

Entonces, por el Teorema de Factorización de Fisher, tenemos que S es suficiente para θ . Veamos ahora su completitud:

Siguiendo con lo anterior:

$$f_{\theta}(x_1, \dots, x_n) = \frac{e^{-n\theta} \theta^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} = \frac{e^{-n\theta} e^{\ln(\theta) \sum x_i}}{\prod_{i=1}^n x_i!} \implies \begin{cases} c(\theta)^n = e^{-n\theta} \\ \prod_{i=1}^n h(x_i) = \prod_{i=1}^n x_i! \\ q_1(\theta) = \ln(\theta) \\ T_1(\vec{x}) = \sum_{i=1}^n x_i \end{cases}$$

Entonces, debemos ver que $ln(\theta)$ contiene un abierto $(0, +\infty) \subset \mathbb{R}$, por lo tanto s es completo para θ . Además, tomando el estadístico $T = \frac{1}{n} \sum_{i=1}^{n} x_i$ tenemos que:

$$E[T] = \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} \cdot n\theta = \theta \implies \text{T es centrado para } \theta \implies$$

Tomando la función $h(x) = \frac{1}{n} \cdot x$ tenemos que:

$$h(S) = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{S}{n} \implies$$

Por el Teorema de Lehmann-Scheffé, T = h(S) es el ECUMV para θ .

Si en lugar de haber tomado $d(\theta) = \theta$ hubieramos querido el estimador centrado uniformemente de mínima varianza para $d(\theta) = e^{-\theta}$ HAY QUE INSERTAR LO DE DIEGO

Ejemplo

Sea una m.a.s. de tamaño n de una población que sigue una distribución exponencial con parámetro θ , queremos encontrar el estimador centrado uniformemente de mínima varianza para $d(\theta) = \theta$.

$$X \sim Exponencial(\theta) \implies f(x|\theta) = \theta e^{-\theta x} \implies f(x_1, \dots, x_n|\theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i}$$

Por el Teorema de Factorización de Fisher, $S = \sum_{i=1}^{n} X_i$ es suficiente para θ . Veamos ahora su completitud:

Como se sigue una distribución exponencial, podemos ver que pertenece a una familia exponencial uniparamétrica:

$$f(x_1, \dots, x_n | \theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i} \implies \begin{cases} c(\theta)^n = \theta^n \\ h(\vec{x}) = 1 \\ q_1(\theta) = -\theta \\ T_1(\vec{x}) = \sum_{i=1}^n x_i \end{cases}$$

Por lo que evidentemente en la imagen de la función $q_1(\theta) = -\theta$ tiene un abierto en su imagen por lo que el estadístico S es completo para θ .

Por último, sabemos que $\bar{X} = \frac{S}{n} \implies E[\bar{X}] = \frac{1}{\theta} \implies \bar{X}$ es centrado para $\frac{1}{\theta}$ y por el Teorema de Lehmann-Scheffé, \bar{X} es el ECUMV para $\frac{1}{\theta}$.

Pero nosotros lo que queríamos es un estimador centrado para θ . Por lo que puede parecer intuitivo pensar que el estadístico que podría estar centrado para θ es $\frac{1}{\bar{\chi}}$:

$$E[\frac{1}{\bar{X}}] = n \cdot E[\frac{1}{S}] = n \cdot E[\frac{1}{\sum_{i=1}^{n} X_i}] = n \cdot \frac{n-1}{\theta} \implies S' = \frac{n(n-1)}{\sum_{i=1}^{n} X_i}$$

Por lo que S' es el ECUMV para θ

Ejemplo

Sea una m.a.s. de tamaño n de una población que sigue una distribución $Bernouilli(\theta)$, busquemos cual es el estimador centrado uniformemente de mínima varianza para $d_1(\theta) = \theta$ y para $d_2(\theta) = \theta(1 - \theta)$:

$$X \sim Bernouilli(\theta) \implies f(x|\theta) = \theta^x (1-\theta)^{1-x} \implies f(x_1, \dots, x_n|\theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i}$$

Por el Teorema de Factorización de Fisher, $S = \sum_{i=1}^{n} X_i$ es suficiente para θ . Veamos ahora su completitud:

$$f(x_1, \dots, x_n | \theta) = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} = (1 - \theta)^n \cdot e^{\sum x_i \cdot \ln(\frac{\theta}{1 - \theta})} \implies \begin{cases} c(\theta)^n = (1 - \theta)^n \\ h(\vec{x}) = 1 \\ q_1(\theta) = \ln(\frac{\theta}{1 - \theta}) \\ T_1(\vec{x}) = \sum_{i=1}^n x_i \end{cases}$$

Por lo que evidentemente en la imagen de la función $q_1(\theta) = ln(\frac{\theta}{1-\theta})$ tiene un abierto en su imagen por lo que el estadístico $S = \sum_{i=1}^{n} X_i$ es completo para θ .

1. Primero veamos el caso para $d_1(\theta) = \theta$: Sabemos que

Cota para la varianza de un estimador

Consideremos $X \approx (\chi, \beta_{\chi}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}}$ modelo estadístico uniparamétrico contínuo (o discreto) y sea ($X_1, \dots X_n$) muestra de $\{F_{\theta}, \theta \in \Theta\}$ siendo $f_{\theta}(x_1, \dots, x_n)$ su función de densidad (o de masa). Supongamos que se verifican las siguientes condiciones de regularidad:

- (1) Θ es un intervalo abierto de \mathbb{R}
- (2) Sop $(f_{\theta}) = \{(x_1, \dots, x_n) \in \chi^n : f_{\theta}(x_1, \dots, x_n) > 0\}$ no depende de θ
 - $\forall (x_1, \dots, x_n) \in \chi^n \ y \ \forall \theta \in \Theta, \exists \frac{\partial}{\partial \theta} f_{\theta} (x_1, \dots, x_n)$ (-) $\int_{\chi^n} \frac{\partial}{\partial \theta} f_{\theta} (x_1, \dots, x_n) dx_1 \dots dx_n = 0$ (0) $I_n(\theta) = E \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta} (x_1, \dots, x_n) \right)^2 \right] < \infty \text{(cantidad de información de Fisher)}$

Cota para la varianza de un estimador

(continuación) Teorema (Cota de Fréchet-Cramér-Rao) Si $T=T(X_1,\cdots,X_n)$ es un estadístico unidimensional tal que $E_{\theta}\left[T^2\right]<\infty, E_{\theta}[T]=d(\theta)$ y $d'(\theta)=\int_{\chi^n}T\left(x_1,\cdots,x_n\right)\frac{\partial}{\partial\theta}f_{\theta}\left(x_1,\cdots,x_n\right)dx_1\cdots dx_n$, entonces $d'(\theta)^2\leq V_{\theta}(T)I_n(\theta), \forall \theta\in\Theta$, con igualdad si y solo si existe una función $k(\theta)$ tal que

$$P_{\theta}\left((x_1,\dots,x_n)\in x^n:T\left(x_1,\dots,x_n\right)=d(\theta)+k(\theta)\frac{\partial}{\partial\theta}f_{\theta}\left(x_1,\dots,x_n\right)\right)=1,\forall\theta\in\theta$$

Demostración $\exists d'(\theta)$ puesto que

$$d'(\theta) = \int_{\chi^n} T(x_1, \cdots, x_n) \frac{\partial}{\partial \theta} \log \left(f_{\theta}(x_1, \cdots, x_n) \right) f_{\theta}(x_1, \cdots, x_n) dx_1 \cdots dx_n = E_{\theta} \left[T \frac{\partial}{\partial \theta} \log f_{\theta} \right]$$

$$\left| d'(\theta) \right| \leq E_{\theta} \left[\left| T \frac{\partial}{\partial \theta} \log f_{\theta} \right| \right] \leq \sqrt{E_{\theta}[T^2] E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta} \right)^2 \right]} < \infty \text{ (designal dad de Cauchy-Swartz)}$$

Cota para la varianza de un estimador (continuación)

Además, $E_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta} \left(x_1, \cdots, x_n \right) \right] = 0$ y por lo tanto, $V_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta} \left(x_1, \cdots, x_n \right) \right] = E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta} \left(x_1, \cdots, x_n \right) \right)^2 \right] = I_n(\theta)$ En efecto, $0 = \int_{x^n} \frac{\partial}{\partial \theta} f_{\theta} \left(x_1, \cdots, x_n \right) dx_1 \cdots dx_n = \int_{x^n} \frac{\partial}{\partial \theta} \log \left(f_{\theta} \left(x_1, \cdots, x_n \right) \right) f_{\theta} \left(x_1, \cdots, x_n \right) dx_1 \cdots dx_n$

$$= E_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta} \left(x_1, \cdots, x_n \right) \right]$$

Entonces, $\operatorname{Cov}_{\theta} \left[T, \frac{\partial}{\partial \theta} \log f_{\theta} \right] = E \left[T \frac{\partial}{\partial \theta} \log f_{\theta} \right] = d'(\theta)$, y como $\rho_{\theta}^{2} \left(T, \frac{\partial}{\partial \theta} \log f_{\theta} \right) = \frac{d'(\theta)^{2}}{V_{\theta}(T)V_{\theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta} \right)} \leq 1$, se tiene que

 $d'(\theta)^2 \leq V_{\theta}(T)I_n(\theta)$, con igualdad si y sólo si $\rho_{\theta}^2 \left(T, \frac{\partial}{\partial \theta} \log f_{\theta}\right) = 1$, es decir, si y sólo si $T \stackrel{\text{c.s.}}{=} a + b \frac{\partial}{\partial \theta} \log f_{\theta}$, es decir, si y sólo si existe una función $k(\theta)$ tal que $P_{\theta} \left(T = d(\theta) + k(\theta) \frac{\partial}{\partial \theta} f_{\theta}\right) = 1$

Cota para la varianza de un estimador (continuación)

En efecto, si $T \stackrel{\text{c.s.}}{=} a + b \frac{\partial}{\partial \theta} \log f_{\theta}$, entonces $d(\theta) = E_{\theta}[T] = ay$

$$d'(\theta) = E_{\theta} \left[T \frac{\partial}{\partial \theta} \log f_{\theta} \right] = E_{\theta} \left[a \frac{\partial}{\partial \theta} \log f_{\theta} + b \left(\frac{\partial}{\partial \theta} \log f_{\theta} \right)^{2} \right] = b I_{n}(\theta),$$

$$y b = \frac{d'(\theta)}{l_n(\theta)} = k(\theta)$$

Proposición 2 Bajo las suposiciones anteriores, si T es un estadístico tal que $E_{\theta}[T] = d(\theta)$ y $V_{\theta}(T) = \frac{d'(\theta)^2}{l_n(\theta)}$, entonces T es ECUMV para d (θ)

Proposición 3 Bajo las suposiciones anteriores, si ($X_1, \dots X_n$) es m.a.s. (n) de $\{F_\theta, \theta \in \Theta\}$, entonces $I_n(\theta) = nI_1(\theta)$ Indicación: $f_\theta(x_1, \dots x_n) = \prod_{i=1}^n f_\theta(x_i)$

Cota para la varianza de un estimador (continuación)

Proposición 4 Bajo las suposiciones anteriores, si la distribución de X pertenece a la familia exponencial uniparamétrica, es decir, $f_{\theta}(x) = c(\theta)h(x)e^{q_1(\theta)T_1(x)}$, con $q'_1(\theta)$ no nula, entonces el estadístico $\frac{1}{n}\sum_{i=1}^n T_1\left(X_i\right)$ alcanza la cota de FCR para $d(\theta) = -\frac{c'(\theta)}{c(\theta)q'_1(\theta)}$

Demostración

$$\begin{split} f_{\theta}\left(x_{1},\ldots,x_{n}\right) &= c(\theta)^{n} \prod_{i=1}^{n} h\left(x_{i}\right) e^{q_{1}(\theta) \sum_{i=1}^{n} T_{1}\left(x_{i}\right)} \\ \frac{\partial}{\partial \theta} \log f_{\theta} &= n \frac{c'(\theta)}{c(\theta)} + q'_{1}(\theta) \sum_{i=1}^{n} T_{1}\left(x_{i}\right) \\ \frac{1}{n} \sum_{i=1}^{n} T_{1}\left(x_{i}\right) &= a(\theta) + b(\theta) \frac{\partial}{\partial \theta} \log f_{\theta}, a(\theta) = -\frac{c'(\theta)}{c(\theta)q'_{1}(\theta)}, b(\theta) = \frac{1}{nq'_{1}(\theta)} \\ \frac{1}{n} \sum_{i=1}^{n} T_{1}\left(x_{i}\right) \text{ es centrado para } d(\theta) = -\frac{c'(\theta)}{c(\theta)q'_{1}(\theta)} \text{ y alcanza la cota} \end{split}$$

Cota para la varianza de un estimador (continuación)

Ejercicio Si $X \sim \text{Bin}(1, \theta), T = \bar{X}$ alcanza la cota de FCR para $d(\theta) = \theta$

Ejercicio Si se cumplen las condiciones de regularidad y además

$$(1) \ \forall (x_1, \cdots, x_n) \in \chi^n y \forall \theta \in \Theta, \exists \frac{\partial^2}{\partial \theta^2} f_{\theta}(x_1, \cdots, x_n)$$

$$(2) \int_{\mathcal{N}^n} \frac{\partial^2}{\partial \theta^2} f_{\theta}(x_1, \cdots, x_n) dx_1 \cdots dx_n = 0$$

Entonces,
$$I_n(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(x_1, \dots, x_n)\right]$$

Indicación:
$$\frac{\partial}{\partial \theta} \log f_{\theta}(x_1, \dots, x_n) = \frac{\partial}{\partial \theta} f_{\theta}(x_1, \dots, x_n) \frac{1}{f_{\theta}(x_1, \dots, x_n)}$$

Cota para la varianza de un estimador

(continuación)

Estimadores eficientes

Diremos que un estimador es eficiente para $d(\theta)$ si es centrado para $d(\theta)$ y su varianza alcanza la cota de FCR

En general, se llama eficiencia de un estimador centrado de $d(\theta)$ a

$$ef(T, d(\theta)) = \frac{d'(\theta)^2}{I_n(\theta)V_{\theta}(T)} \le 1$$

Métodos de construcción de estimadores

Método de los momentos

Este método consiste en elegir como estimador de un momento poblacional su momento muestral asociado, es decir

- (1) El estimador por el método de los momentos del momento poblacional respecto al origen de orden k, $\alpha_k = E\left[X^k\right]$, es $a_k = \frac{1}{n}\sum_{i=1}^n X_i^k$
- (2) El estimador por el método de los momentos del momento poblacional respecto a la media de orden k,

$$\beta_k = E\left[(X - \alpha_1)^k \right], \text{ es } b_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

Ejercicio Si $X \sim \text{Gamma}(a, p)$, calcular un estimador por el método de los momentos de $\theta = (a, p)$ basado en una m.a.s. (n)

61

Métodos de construcción de estimadores

(continuación)

Método de máxima verosimilitud

Supongamos que una urna contiene 6 bolas entre blancas y negras, no todas del mismo color, pero se ignora cuantas hay de cada uno. Para tratar de adivinar la composición de la urna se permiten dos extracciones con reemplazamiento de la misma y resultó que ninguna de ellas fue blanca. Dar una estimación de la probabilidad θ de que una bola extraída aleatoriamente de dicha urna sea blanca

$$\theta \in \Theta = \left\{ \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6} \right\}$$

 $T = X_1 + X_2 \equiv n^{\circ}$ de blancas en las dos extracciones C.R. de la urna $\sim \text{Bin}(2,\theta)$ y $f_{\theta}(t) = {2 \choose t} \theta^t (1-\theta)^{2-t}$, t = t0, 1, 2

Métodos de construcción de estimadores

(continuación)

	,	2/6	,	,	,
$f_{\theta}(0) = (1 - \theta)^2$	0.694	0.444	0.25	0.111	0.027

Por lo tanto, la estimación $\hat{\theta}(0) = \frac{1}{6}$ y el estimador

$$\hat{\theta} = \hat{\theta}(T) = \begin{cases} 1/6 & \text{si} \quad T = 0\\ 1/2 & \text{si} \quad T = 1\\ 5/6 & \text{si} \quad T = 2 \end{cases}$$

es el estimador de máxima verosimilitud (EMV)

Métodos de construcción de estimadores

(continuación) Sea $(X_1, \dots X_n)$ una muestra con $f_{\theta}(x_1, \dots, x_n) = f(x_1, \dots, x_n \mid \theta)$ función de densidad (o de masa), $\theta \in \Theta \subset \mathbb{R}^{\ell}$ Denotemos por $L(\theta \mid x_1, \dots, x_n) = f(x_1, \dots, x_n \mid \theta)$ a la función de verosimilitud de la muestra Un estimador $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ se denomina estimador de máxima verosimilitud (EMV) de θ , sí y sólo sí

$$(1) \ \theta (x_1, \cdots, x_n) \in \Theta, \forall (x_1, \cdots, x_n) \in \chi^n$$

(1)
$$\hat{\theta}(x_1, \dots, x_n) \in \Theta, \forall (x_1, \dots, x_n) \in \chi^n$$

(2) $L(\hat{\theta} \mid x_1, \dots, x_n) = \sup_{\theta \in \Theta} L(\theta \mid x_1, \dots, x_n), \forall (x_1, \dots, x_n) \in \chi^n$

o equivalentemente, sí y sólo sí

(1)
$$\theta(x_1, \dots, x_n) \in \Theta, \forall (x_1, \dots, x_n) \in \chi^n$$

(1)
$$\hat{\theta}(x_1, \dots, x_n) \in \Theta, \forall (x_1, \dots, x_n) \in \chi^n$$

(2) $\log L(\hat{\theta} \mid x_1, \dots, x_n) = \sup_{\theta \in \Theta} \log L(\theta \mid x_1, \dots, x_n), \forall (x_1, \dots, x_n) \in \chi^n$

Métodos de construcción de estimadores (continuación)

Si f_{θ} es una función derivable respecto a θ en el interior del espacio paramétrico Θ , la forma usual de determinar el estimador de máxima verosimilitud es examinar primero los máximos relativos de f_{θ} , para compararlos después, con los valores sobre la frontera de Θ . Ello conduce a resolver las ecuaciones de verosimilitud:

$$\frac{\partial}{\partial \theta_{i}} \log L \left(\theta \mid x_{1}, \cdots, x_{n} \right) = 0, j = 1, \cdots, \ell$$

Métodos de construcción de estimadores

(continuación)

Observaciones

- (1) EI EMV $\hat{\theta}$ no tiene por qué existir
- (2) El EMV $\hat{\theta}$ no tiene por qué ser único
- (3) El EMV $\hat{\theta}$ no tiene por qué ser centrado
- (4) El EMV $\hat{\theta}$ no tiene por qué ser suficiente, pero si $S = S(X_1, \dots, X_n)$ es suficiente para θ , entonces $\hat{\theta} = \hat{\theta}(S)$
- (5) Invariancia: Si $\hat{\theta}$ es el EMV de θ , entonces $h(\hat{\theta})$ es el EMV de $h(\theta)$
- (6) Bajo ciertas condiciones de regularidad, si $(X_1, \dots X_n)$ es m.a.s. (n) y $\theta \in \mathbb{R}$, entonces $\sqrt{n}(\hat{\theta} \hat{\theta})$
- θ) $d_{n\to\infty}N\left(0,\frac{1}{\sqrt{l_1(\theta)}}\right)$ y por lo tanto, $\hat{\theta}$ es asintóticamente insesgado para θ y asintóticamente eficiente