Kategorija 2 - datum 15.5.2016

Zadaci za republičko takmičenje iz programiranja srednjih stručnih škola

Početak takmičenja 11 časova, završetak takmičenja 15 časova

- 1. **Roboti.** U računarskoj igri "Roboti", igrač pokušava da pobegne poludelim robotima. Robota je proizvoljno mnogo, a igrač samo jedan, ali kretanje robota je vrlo predvidivo, što igrač može iskoristiti. Igra se odvija na tabli T×S, a sastoji se od ponavljanja sledećih pet koraka:
- Igrač se pomera u nekom od osam smerova (vodoravno levo ili desno, uspravno gore ili dole, četiri dijagonalna smera) ili ostaje na mestu.
- Ukoliko se igrač pomeri na polje na kome se nalazi robot, igri je kraj i igrač gubi.
- Svaki robot se pomera u jednom od osam smerova, na polje najbliže igraču. Tačnije, robot pokušava što više smanjiti vrednost izraza |r1-r2| + |s1-s2|, gde je (r1, s1) pozicija igrača, a (r2, s2) pozicija robota.
- Ukoliko neki robot uđe na polje na kome se nalazi igrač, igri je kraj i igrač gubi.
- Ukoliko na neko polje uđe dva ili više robota, nastaje velika eksplozija i svi roboti na tom polju nestaju.

Zadati su početni položaj igrača, raspored robota na tabli i potezi igrača. Ukoliko igrač napravi sve poteze i preživi, potrebno je ispisati završno stanje na tabli nakon svih njegovih poteza. U suprotnom, potrebno je odrediti koliko je poteza uspeo napraviti.

Ulazni podaci:

- U prvom redu ulaza nalaze se dva prirodna broja T i S (1 ≤ T ≤ 100, 1 ≤ S ≤ 100), broj vrsta i broj kolona na tabli.
- Sledećih T redova sadrži po S znakova te opisuje stanje na tabli: znak '.' označava prazno polje, 'R' polje na kojem se nalazi robot, a 'I' polje na kome se nalazi igrač.
- Zadnji red sadrži (spojene) poteze igrača u vidu niza od najviše 100

znakova. Svaki potez je jedna cifra od 1 do 9. Cifra 5 predstavlja ostajanje na mestu, a ostale cifre pomeraje u osam smerova:

Ulazni niz poteza biće takav da igrač nikad ne izađe sa table. Ulazni podaci se unose sa tastature i zadaci se rešavaju u konzolnom modu.

Izlazni podaci:

- Ukoliko igrač napravi sve zadate poteze i preživi, potrebno je ispisati stanje table u istom formatu kao na ulazu. U suprotnom, potrebno je ispisati "kraj X" (bez navodnika), gde je X broj poteza koje je igrač napravio.

Primeri:

ulaz	ulaz	ulaz
4 5	9 10	12 8
I		I
	R	
.R.R.		
	R	******
6	RI	
10 B	R	RR
izlaz		RR
	R	RR
.I	R	
.RR	5558888	
	izlaz	R
		66445394444162
	I	W1992110
	R	izlaz
		1-00001 44
	*******	kraj 11

Pojašnjenje drugog primera: nakon prvog poteza (u kome igrač ostaje na mestu), sva tri robota s levog dela table ulaze na isto polje pa nestaju. Nakon trećeg poteza dva robota s desnog dela table nestaju, a robot s donjeg dela table nastavlja pratiti igrača kad se ovaj počne kretati ka gore.

2. **Pesma**. Među mladim informatičarima je vrlo popularna igra veštine, mudrosti i strpljenja poznata pod nazivom "pogodi pesmu". Voditelj igre pušta pesmu tako da je svi igrači čuju, a cilj igrača je da što pre odredi naslov pesme.

Mirko možda baš i nije neki informatičar, ali mu u pogađanju pesama nema premca. Mirko uvek pogodi pesmu u trenutku u kojem je **barem pola** od ukupnog broja reči iz naslova pesme izgovoreno u tekstu pesme. Sve reči u naslovu pesme će biti jedinstvene (tj. nijedna se neće javljati dva ili više puta).

Napisati program koji će za zadati naslov i tekst pesme odrediti nakon koje reči u tekstu će Mirko pogoditi naslov.

Ulazni podaci:

- U prvom redu ulaza nalazi se prirodni broj N, 1 ≤ N ≤ 50, broj reči u naslovu pesme.
- Svaki od sledećih N redova sadrži po jednu reč iz naslova pesme.
- U sledećem redu nalazi se prirodni broj M, 1 ≤ M ≤ 10 000, broj reči u tekstu pesme.
- Svaki od sledećih M redova sadrži po jednu reč iz teksta pesme.

Sve reči u naslovu i tekstu mogu sadržati isključivo mala slova engleske abecede, a nijedna reč neće biti duža od 15 znakova.

Napomena: ulazni podaci će biti takvi da će rešenje uvek postojati, tj. da će Mirko pogoditi naslov pesme. Ulazni podaci se unose sa tastature i zadaci se rešavaju u konzolnom modu.

Izlazni podaci:

U prvom i jedinom redu nalazi se broj reči u tekstu nakon kojih će Mirko pogoditi naslov pesme.

Primer:

Ulaz	Izlaz	Objašnjenje
3 sedam gladnih patuljaka 7 sedam dana sedam noci sedam	6	U naslovu pesme postoje tri reči. Posle šeste reči u tekstu pesme izgovoreno je više od pola od broja reči u naslovu, tačnije izgovorene su reči: "sedam" i "gladnih".
gladnih godina		

3. **Platforma**. Dizajnira se novi nivo za novu platformsku video igricu. Pozicije platformi su već odabrane. Suprotno popularnom mišljenju, platforme ne mogu stajati u vazduhu, već ih je potrebno podupreti stubovima. Konkretno, svaki od dva kraja svake platforme mora biti podupret stubom koji stoji na podu ili na drugoj platformi.

Zadati su položaji platformi u koordinatnom sistemu kao na slici 1. Položaj svake platforme određen je visinom na kojoj se nalazi, te početnom i krajnjom koordinatom u vodoravnom smeru. Svaki stub je udaljen tačno pola jedinice od kraja platforme, kao na slici 2.

Odredite **ukupnu dužinu stubova** koje je potrebno postaviti. Na slici 1 dat je primer nivoa sa tri platforme. Najniža se nalazi na visini 1, sledeća na visini 3, a treća na visini 5. Na slici 2. se vidi da je ukupna dužina stubova potrebnih za podupiranje svih platformi jednaka 14.

Ulazni podaci:

- U prvom redu ulaza nalazi se prirodni broj N, 1 ≤ N ≤ 100, broj platformi.
- Svaki od sledećih N redova sadrži položaj jedne platforme i označen je trima koordinatama Y, X_1 i X_2 . Prvi od tri broja je visina platforme, a druga dva vodoravne koordinate. Sve koordinate će biti prirodni brojevi manji od 10000 i važi $X_2 > X_1 + 1$ (tj. dužina svake platforme će biti barem dva). Ulazni podaci biće takvi da ne dolazi do preklapanja platformi. Ulazni podaci se unose sa tastature i zadaci se rešavaju u konzolnom modu.

Izlazni podaci:

- U prvom i jedinom redu ispisuje se prirodni broj, ukupna dužina stubova potrebnih za podupiranje svih platformi.

Primer:

Ulaz	Izlaz	Objašnjenje
3 1 5 10	14	Primer nivoa sa tri platforme. Ukupna
3 1 5 5 3 7		dužina stubova je 14.