Reg. No.:

Name :

MID TERM EXAMINATIONS - November-December 2022

Programme	:	B.Tech.[BAI]	Semester	:	Interim 2022-23
Course Title /Code	:	Convex Optimization/ CSA3002	Slot	:	C21+C22+C23
Time	:	1½ hours	Max. Marks	:	50

Answer all the Questions

Q.No.	Sub. Sec.	Question Description	Marks
1		Discover optimal solution for the following Linear Programming Problem using the graphical method. Minimize $Z=20x_1+10x_2$ subject to the constraints (i) $x_1+2x_2\leq 40$, (ii) $2x_1+x_2\geq 20$, (iii) $4x_1+3x_2\geq 36$ and $x_1,x_2\geq 0$	10
2		Simplify the following convex optimization problem choosing Simplex Method. Maximize $Z=x_1+x_2$ subject to $x_1+2x_2\leq 8\\ 3x_1+2x_2\leq 12\\ \text{and }x_1,x_2\geq 0$	10
3	(a)	Test for convexity of hyperplane and halfspace.	5
	(b)	We know that the image of hyperplanes and halfspaces under the perspective function $P(x, t) = x/t$, with $dom\ P = R^n \times R_{++}$. For the convex sets such as Hyperplane $C = \{(v, t) \mid f^T v + gt = h\}$ (with f and g not both zero) and Halfspace $C = \{(v, t) \mid f^T v + gt \leq h\}$ (with f and g not both zero), give a simple description of $P(C) = \{v/t \mid (v, t) \in C, \ t > 0\}$.	5
4		Inspect the operations such as pointwise maximum/supremum, composition of scalar/vector functions and minimization which preserve convexity of convex functions. Test for the convexity with respect to generalized inequalities.	10
5		Categorize between constrained and unconstrained minimization problems. Analyze the gradient descent algorithm to showcase the working of it with an example.	10