MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy a hiba jelzése mellett az egyes részpontszámokat is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **elté- rő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 11. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 12. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **ésszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 13. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

írásbeli vizsga 1512 3 / 17 2015. május 5.

Figyelem! Az útmutató elején olvasható **Fontos tudnivalók** című rész lényegesen megváltozott. Kérjük, hogy a javítás megkezdése előtt figyelmesen tanulmányozza!

I.

1. a)		
$\cos^2 x = 1 - \sin^2 x$ helyettesítése.	1 pont	
Nullára rendezve: $\sin^2 x + \sin x = 0$.	1 pont	
Szorzattá alakítás után: $\sin x \cdot (\sin x + 1) = 0$.	1 pont	A sin x-ben másodfokú egyenlet megoldóképleté- nek helyes felírása.
$\sin x = 0$ pontosan akkor, ha $x = k \cdot \pi$, $k \in \mathbb{Z}$.	1 pont*	
$\sin x = -1$ pontosan akkor, ha $x = \frac{3\pi}{2} + l \cdot 2\pi$, $l \in \mathbb{Z}$.	1 pont*	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra hivatkozással.	1 pont	A behelyettesítés elfogadható egy 2π hosszúságú perióduson belül is.
Összesen:	6 pont	

Megjegyzés:

Ha a vizsgázó a következő hibák közül egyet követ el, akkor a *-gal jelölt 2 pontból 1 pontot, ha egynél többet hibázik, akkor 0 pontot kapjon: a periódusokat lehagyja; fokban oldja meg az egyenletet; fokban és radiánban (vegyesen) dolgozik; sehol nem említi, hogy $k \in \mathbb{Z}$.

1. b)		
Ha $x \ge 0$, akkor $ x = x$.	1 pont	
Ekkor $0 = 2x + 1$, ahonnan $x = -\frac{1}{2}$,	1 pont	
de ez $x \ge 0$ miatt nem megoldás.	1 pont	Ez a pont jár, ha a vizsgá- zó behelyettesítéssel szűri ki a hamis gyököt.
$\operatorname{Ha} x < 0, \operatorname{akkor} x = -x,$	1 pont	
és az egyenlet: $ 2x = 2x + 1$.	1 pont	
(Mivel $x < 0$, ezért) $-2x = 2x + 1$, azaz $x = -\frac{1}{4}$.	1 pont	
Ellenőrzés behelyettesítéssel vagy (az <i>x</i> < 0 feltétel teljesülésének említése mellett) ekvivalens átalakításokra hivatkozással.	1 pont	
Összesen:	7 pont	

Megjegyzés: Grafikus megoldás esetén az $x \mapsto |x-|x||$ ábrázolása $(x \mapsto -2x, ha \ x \le 0 \text{ és } x \mapsto 0, ha \ x > 0)$ 4 pont, az $x \mapsto 2x + 1$ ábrázolása 1 pont. Metszéspont leolvasása 1 pont. Ellenőrzés behelyettesítéssel 1 pont.

2. a) első megoldás		
A képernyő oldalainak hosszát (cm-ben) jelölje 16x és 9x.	1 pont	
40 col = 101,6 cm	1 pont	
(A Pitagorasz-tétel szerint:) $(16x)^2 + (9x)^2 = 101,6^2$.	1 pont	
$337x^2 = 10\ 322,56$	1 pont	
Ebből (mivel $x > 0$) $x \approx 5,535$ (cm).	1 pont	
A képernyő oldalainak hossza tehát $(16x \approx) 88,6 \text{ cm és } (9x \approx) 49,8 \text{ cm.}$	1 pont	
Összesen:	6 pont	

2. a) második megoldás		
A képernyő oldalainak hosszát (col-ban) jelölje 16x és 9x.	1 pont	
(A Pitagorasz-tétel szerint:) $(16x)^2 + (9x)^2 = 40^2$.	1 pont	
$337x^2 = 1600$	1 pont	
Ebből (mivel $x > 0$) $x \approx 2,179$ (col).	1 pont	
A képernyő oldalainak hossza tehát $(16x \approx) 34,863$ (col) és $(9x \approx) 19,610$ (col),	1 pont	
azaz 88,6 cm és 49,8 cm.	1 pont	
Összesen:	6 pont	

Megjegyzés: Más, ésszerű és helyes kerekítésekkel kapott részeredményekből származó (egy tizedesjegyre helyesen kerekített) válasz is elfogadható. Ha a vizsgázó válaszában nem kerekít, vagy rosszul kerekít, akkor ezért összesen 1 pontot veszítsen.

2. b) első megoldás		
Az első képernyő területe a második területének 1,69-szerese.	1 pont	
A két (téglalap alakú) képernyő hasonló, ezért	1 pont	
a területük aránya a hasonlóságuk arányának négyzetével egyenlő.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A képernyők hasonlóságának (és így átlóik hosszának) aránya $\sqrt{1,69} = 1,3$.	1 pont	
Az első képernyő átlója 30%-kal nagyobb, mint a másodiké.	1 pont	
Összesen:	5 pont	

2. b) második megoldás Az első képernyő oldalainak hossza 16x, illetve 9x, a	1 pont	
másodiké pedig 16 y és 9 y ($x > 0$ és $y > 0$). Az első képernyő területe 144 x^2 , a másodiké pedig	1 pont	
$144y^2$, tehát $144x^2 = 1,69 \cdot 144y^2$. Ebből $x = 1,3y$.	1 pont	
Az első képernyő átlójának hossza $\sqrt{256x^2 + 81x^2} = x \cdot \sqrt{337}$, a másodiké pedig $\sqrt{256y^2 + 81y^2} = y \cdot \sqrt{337}$.	1 pont	A két képernyő hasonló, ezért az átlóik aránya megegyezik egy megfelelő oldalpárjuk arányával, ami $\frac{x}{y}$ =1,3.
Mivel $x = 1,3y$, az első képernyő átlója 30%-kal nagyobb, mint a másodiké.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a feladatot úgy oldja meg, hogy a két képernyő területének konkrét értékeket ad, és nem említi, hogy ez nem megy az általánosság rovására, akkor legfeljebb 3 pontot kaphat.

3. a)		
A kerekített bevételek összege 7·120 = 840 (millió Ft).	1 pont	
A medián 120 millió forint, és két 120 millió forintos árbevétel volt, ezért legfeljebb három 120 millió forintnál kisebb bevétel lehet.	1 pont	Ha a vizsgázó (indoklás
Mivel a módusz 100 millió forint, ezért három 100 millió forintos árbevétel volt.	1 pont	nélkül) helyesen felsorol- ja a kerekített bevételeket, akkor ezért ebből a
A 160 millió Ft-os árbevétel figyelembevételével a hetedik árbevétel (840 – 3·100 – 2·120 – 160 =) = 140 millió forintnak adódik.	1 pont	3 pontból 1 pont jár.
A (kerekített) bevételek szórása: $\sqrt{\frac{3 \cdot (100 - 120)^2 + 2 \cdot (120 - 120)^2 + (140 - 120)^2 + (160 - 120)^2}{7}} \approx$	1 pont	Ez a 2 pont akkor is jár, ha a vizsgázó nem részle- tezi a számolás menetét,
≈ 21,4 millió (Ft).	1 pont	de számológéppel szá- molva jó eredményt kap.
Összesen:	6 pont	

3. b) első megoldás		
A rendes eladási ár árengedmény nélkül	1 pont	
(54 + 9 =) 63 millió Ft lett volna.	- P	
Tehát az eladott áru beszerzési értéke		
$\frac{63}{1,8} = 35 \text{ millió Ft,}$	2 pont	
$\frac{1.8}{1.8}$ = 33 minort,	_	
az árnyereség pedig (54 – 35 =) 19 millió Ft volt.	1 pont	
Összesen:	4 pont	

3. b) második megoldás		
A rendes eladási ár a beszerzési érték $\frac{9}{5}$ -szöröse, a kedvezményes eladási ár pedig a $\frac{9}{10}$ -szerese.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A rendes eladási árnak $\frac{5}{9}$ része a beszerzési érték, ezért a rendes eladási árból befolyt összeg $\frac{4}{9}$ része (ár)nyereség;	1 pont	
a kedvezményes eladási árnak $\frac{10}{9}$ -szerese a kedvezményesen eladott áru beszerzési értéke, ezért a kedvezményes eladásból befolyt összeg $\frac{1}{9}$ része (ár)veszteség.	1 pont	
Az árnyereség $\left(\frac{4}{9} \cdot 45 - \frac{1}{9} \cdot 9 = \right)$ 19 millió Ft volt.	1 pont	
Összesen:	4 pont	

3. b) harmadik megoldás		
A nem akciós időszakban eladott áru után 45 millió		
forint árbevétel keletkezett, az áru beszerzési értéke	1 nont	
$\left(\frac{45}{1,8}\right) = 25$ millió forint volt.	1 pont	
A 9 milliós árbevételhez $\left(\frac{9}{0.9}\right) = 10$ millió forint be-	1 pont	
szerzési érték tartozik.		
A beszerzési érték összesen 35 millió forint,	1 pont	
az árnyereség pedig (54 – 35 =) 19 millió forint volt.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó csak 10 000 forintos beszerzési értékű termékekkel dolgozik, és nem említi, hogy ez nem megy az általánosság rovására, akkor emiatt 1 pontot veszítsen.

3. c)		
Megmaradt 1 darab M-es, 2 darab L-es és 4 darab XL-es zakó.	1 pont	
Ezek lehetséges sorrendjeinek száma $\frac{7!}{2! \cdot 4!}$ =	1 pont	$\binom{7}{2} \cdot \binom{5}{4}$
= 105.	1 pont	
Összesen:	3 pont	

4. a) első megoldás		
$ AB = \sqrt{324 + 36} = \sqrt{360}$ $ AC = \sqrt{676 + 64} = \sqrt{740}$ $ BC = \sqrt{64 + 4} = \sqrt{68}$	2 pont	Egy hiba esetén 1 pont jár, két hiba esetén nem jár pont.
Koszinusztétellel: $740 = 360 + 68 - 2 \cdot \sqrt{360} \cdot \sqrt{68} \cdot \cos \beta$	2 pont	
$\cos \beta = \frac{-312}{2 \cdot \sqrt{360} \cdot \sqrt{68}} \approx -0.9971$	1 pont	
β≈ 175,6°	1 pont	
Összesen:	6 pont	

4. a) második megoldás		
$\overrightarrow{BA}(-18;6)$, $\overrightarrow{BC}(8;-2)$.	1 pont	
$ \overrightarrow{BA} = \sqrt{360}$ és $ \overrightarrow{BC} = \sqrt{68}$.	1 pont	
A $\overrightarrow{BA} \cdot \overrightarrow{BC}$ skaláris szorzatot írjuk fel kétféleképpen: $(-18) \cdot 8 + 6 \cdot (-2) = \sqrt{360} \cdot \sqrt{68} \cdot \cos \beta$.	2 pont	
$\cos \beta = \frac{-156}{\sqrt{360} \cdot \sqrt{68}} \approx -0.9971$	1 pont	
$\beta \approx 175,6^{\circ}$	1 pont	
Összesen:	6 pont	

4. b)		
Az ABC háromszög két (tetszőlegesen választott) oldalfelező merőlegesének metszéspontját kell megkeresnünk (ez a háromszög körülírt körének középpontja).	1 pont	Ez a pont jár egy erre a gondolatra utaló jó ábrá- ért is.
F_{AB} (-7; 7) és $\mathbf{n}_{f_{AB}} = \overrightarrow{AB}$ (18; -6).	1 pont	
Az AB szakasz felezőmerőlegesének egyenlete: $3x - y = -28$.	1 pont	
$F_{BC}(6;3)$ és $\mathbf{n}_{f_{BC}} = \overrightarrow{BC}(8;-2)$.	1 pont	$F_{AC}(-3; 6) \acute{e}s$ $\mathbf{n}_{f_{AC}} = \overrightarrow{AC}(26; -8).$
A <i>BC</i> szakasz felezőmerőlegesének egyenlete: $4x - y = 21$.	1 pont	Az AC szakasz felezőme- rőlegesének egyenlete: 13x - 4y = -63.
A két egyenes egyenletéből alkotott egyenletrendszer megoldása: $x = 49$ és $y = 175$.	2 pont	
Tehát <i>K</i> (49; 175).	1 pont	
Összesen:	8 pont	

II.

1 pont	
1 pont	
1 pont	
3 pont	
	1 pont 1 pont

5. b)		
(A kérdéses területet integrálással számítjuk ki.) Az $f(x) = g(x)$ egyenlet megoldásai adják az integrálás határait.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A $2x+1=x^2-2$ egyenlet megoldásai –1, illetve 3.	1 pont	
Mivel a $[-1; 3]$ zárt intervallumon $f(x) \ge g(x)$ (a metszéspontok első koordinátái által meghatározott intervallumon a g grafikonja egy "felfelé nyíló" parabolaív, amely "felett" van az f grafikonja),	1 pont	Ez a pont jár egy megfe- lelő ábráért is. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
ezért a kérdéses terület $\int_{-1}^{3} (f(x) - g(x)) dx$.	1 pont	
$\int_{-1}^{3} (f(x) - g(x)) dx = \int_{-1}^{3} ((2x+1) - (x^2 - 2)) dx =$ $\int_{-1}^{3} (-x^2 + 2x + 3) dx =$	1 pont	$= \int f(x) dx - \int g(x) dx$
$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^3 =$	1 pont*	$\int_{-1}^{3} (2x+1)dx = \left[x^{2} + x\right]_{-1}^{3} = 12$ $= 12$ $\int_{-1}^{3} (x^{2} - 2)dx = \left[\frac{x^{3}}{3} - 2x\right]_{-1}^{3} = \frac{4}{3}$
$=9 - \left(-\frac{5}{3}\right) = \frac{32}{3} (\approx 10,67)$	1 pont	
Összesen:	7 pont	

Megjegyzés: A *-gal jelölt pont akkor is jár, ha a vizsgázó a határozott integrál értékét számológéppel helyesen határozza meg.

5. c)		
(A $h(x)$ függvény a megadott intervallumon differenciálható.)		
$h'(x) = \left(\frac{g(x)}{f(x)}\right)' = \left(\frac{x^2 - 2}{2x + 1}\right)' = \frac{2x(2x + 1) - (x^2 - 2) \cdot 2}{(2x + 1)^2} =$	2 pont	
$=\frac{2x^2+2x+4}{(2x+1)^2}=$	1 pont	
$=\frac{2(x+0.5)^2+3.5}{(2x+1)^2}$	1 pont	A $2x^2 + 2x + 4 = 0$ egyen- let diszkriminánsa nega- tív (-28), továbbá a $2x^2 + 2x + 4$ polinom fő- együtthatója pozitív, ezért a polinom minden helyet- tesítési értéke pozitív
A tört számlálója és nevezője is pozitív (a <i>h</i> értelmezési tartományán), így a tört értéke is pozitív.	1 pont	
Tehát a függvény valóban szigorúan monoton növekvő.	1 pont	
Összesen:	6 pont	1

Megjegyzés: Ha a vizsgázó függvény helyett csak sorozatra igazolja a monoton növekedést, akkor ezért nem jár pont.

6. a)		
A 4 hibás és 6 ép tojás a sárga tojástartóba $ \binom{4}{4} \cdot \binom{16}{6} (= 8008)$ -féleképpen kerülhet.	1 pont*	
Az összes eset száma: $\binom{20}{10}$ (= 184 756).	1 pont*	
Annak a valószínűsége, hogy mind a 4 hibás tojás a sárga dobozba kerül: $p = \frac{\binom{4}{4} \cdot \binom{16}{6}}{\binom{20}{10}} (\approx 0,0433).$	1 pont*	
(Mivel a 4 hibás tojás a fehér tojástartóba is kerülhet, ezért) a kérdéses valószínűség ennek kétszerese,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
azaz közelítőleg 0,087.	1 pont	
Osszesen:	5 pont	

Megjegyzések:

- 1. A*-gal jelölt 3 pontot akkor is megkaphatja a vizsgázó, ha annak a valószínűségét, hogy (például) a sárga tojástartóba kerülő mind a 10 tojás ép (és így mind a 4 hibás tojás a fehér tartóba kerül), a $\frac{16}{20} \cdot \frac{15}{19} \cdot ... \cdot \frac{7}{11}$ szorzattal számítja ki.
- 2. Ha a vizsgázó rossz modellt használ (binomiális eloszlással számol), akkor erre a részre nem kaphat pontot.

6. b) első megoldás		
Annak a valószínűsége, hogy egy tojás ép: 0,98.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy Csenge nem talál törött tojást a dobozban: $0.98^{10} (\approx 0.817)$.	1 pont	
Annak a valószínűsége, hogy Csenge egy darab törött tojást talál a dobozban: $\binom{10}{1} \cdot 0,98^9 \cdot 0,02 \ (\approx 0,167).$	1 pont	
Így a kérdéses valószínűség: $p = 1 - 0.98^{10} - 10 \cdot 0.98^{9} \cdot 0.02 \approx$	1 pont	
≈ 0,016.	1 pont	
Összesen:	5 pont	

6. b) második megoldás		
Annak a valószínűsége, hogy egy tojás ép: 0,98.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy Csenge 2 darab törött tojást talál a dobozban: $P(2) = {10 \choose 2} \cdot 0.98^8 \cdot 0.02^2 (\approx 0.0153).$	1 pont	
Annak a valószínűsége, hogy Csenge 3 darab törött tojást talál a dobozban: $P(3) = {10 \choose 3} \cdot 0.98^7 \cdot 0.02^3 (\approx 0.0008).$	1 pont	
A <i>P</i> (4), <i>P</i> (5),, <i>P</i> (10) valószínűségek, és ezek öszszege is már elhanyagolhatóan kicsi,	1 pont	
így a kérdéses valószínűség megközelítőleg $P(2) + P(3) \approx 0.016$.	1 pont	
Összesen:	5 pont	

6. c) első megoldás		
Jelölje A , illetve B azt az eseményt, hogy a kiválasztott tojás az A , illetve a B beszállítótól származik, E pedig azt az eseményt, hogy a kiválasztott tojás első osztályú. Ezekkel a jelölésekkel meghatározandó a $P(A E)$ valószínűség.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A feltételes valószínűség definíciója szerint $P(A \mid E) = \frac{P(AE)}{P(E)}.$	1 pont	
Annak valószínűsége, hogy az A beszállítótól választottunk tojást, és az első osztályú: $P(AE) (= P(E \mid A) \cdot P(A)) = 0,6 \cdot 0,6 (= 0,36).$	1 pont	
Annak valószínűsége, hogy a B beszállítótól választottunk tojást, és az első osztályú: $P(BE) (= P(E \mid B) \cdot P(B)) = 0.3 \cdot 0.4 (= 0.12).$	1 pont	
Annak valószínűsége, hogy a kiválasztott tojás első osztályú, az előző két valószínűség összege: $P(E) = 0.6 \cdot 0.6 + 0.4 \cdot 0.3 (= 0.48)$.	1 pont	
Tehát $P(A E) = \frac{0.36}{0.48} = 0.75$.	1 pont	
Összesen:	6 pont	

6. c) második megoldás		
Az <i>A</i> beszállítótól származó első osztályú tojások száma az összesnek 36%-a.	1 pont	
a <i>B</i> beszállítótól származó első osztályú tojások száma az összesnek 12%-a.	1 pont	
Az összes beszállított tojásnak a 48%-a első osztályú.	1 pont	
Az első osztályú tojások $\left(\frac{0.36}{0.48} \cdot 100\% = \right)$ 75%-a	2 pont	
származik az A beszállítótól.		
A kérdezett valószínűség tehát 0,75.	1 pont	
Összesen:	6 pont	

Megjegyzés: A megoldás teljes értékű akkor is, ha a vizsgázó egy konkrét eset végigszámolása útján jut helyes eredményre, és utal arra, hogy a kapott valószínűség csupán az eloszlástól és nem az önkényesen választott darabszámtól függ.

Például:1000 beszállított tojás közül (1 pont) 600 darab származik az A beszállítótól, és ezek között 360 darab első osztályú van (1 pont), 400 darab származik a B beszállítótól, és ezek között 120 darab első osztályú van (1 pont). Az összes tojás között tehát 480 első osztályú (1 pont), ezeknek a 75%-a (azaz 360 darab) származik az A beszállítótól. A kérdezett valószínűség tehát (360:480 =) 0,75 (1 pont). A kiszámított arányok nem függnek a konkrét darabszámtól, ezért az eredmény bármely esetben ugyanennyi (1 pont).

7. a)		
A havi törlesztés összege (Ft-ban):		
$t_{72} = 1.6 \cdot 10^6 \cdot \frac{1.02^{72} \cdot 0.02}{1.02^{72} - 1} (\approx 42 \ 123).$	2 pont	
A 72 hónap alatt összesen $72 \cdot t_{72} \approx 3032856$ forin-	1 pont	
tot fizetünk vissza,	1 point	
ami ezer forintra kerekítve 3 033 000 Ft.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	4 pont	

7. b)		
(Azt a legkisebb <i>n</i> pozitív egész számot keressük,		
amelyre) $2 \cdot 10^6 \cdot \frac{1,02^n \cdot 0,02}{1,02^n - 1} \le 60000$.	2 pont	
(Mivel $1,02^n - 1 > 0$, ezért)	1 nont	
$0.02 \cdot 1.02^{n} \le 0.03 \cdot (1.02^{n} - 1).$	1 pont	
$3 \le 1,02^n$	1 pont	
Az 1,02 alapú logaritmusfüggvény szigorúan monoton növekedő,	1 pont	A 10-es alapú logarit- musfüggvény szigorúan monoton növekedő,
ezért $n \ge \log_{1,02} 3$.	1 pont	ezért $\lg 3 \leq \lg 1,02^n$, vagyis $\lg 3 \leq n \cdot \lg 1,02$.
(A logaritmus azonosságát használva:)		lg 1,02 > 0 miatt
$n \ge \frac{\lg 3}{\lg 1,02} \approx 55,48$	1 pont	$n \ge \frac{\lg 3}{\lg 1,02} \approx 55,48,$
Tehát a törlesztőrészletek száma legalább 56 (azaz legalább 56 hónapos futamidőt kell választanunk).	1 pont	
Összesen:	8 pont	

Megjegyzés: A 8 pont akkor is jár, ha a vizsgázó egyenletet ír fel egyenlőtlenség helyett, azt jól megoldja, és helyes következtetésre jut a törlesztőrészletek minimális számát illetően.

7. c)		
A megadott számokkal		п
$t_n = H \cdot (q-1) \cdot \frac{q^n}{q^n - 1} = 40000 \cdot \frac{1,02^n}{1,02^n - 1}$	1 pont	$t_n = H \cdot (q-1) \cdot \frac{q^n}{q^n - 1} =$
Egyszerűsítés után: $t_n = 40000 \cdot \frac{1}{1 - \frac{1}{1,02^n}}$.	1 pont	$= H \cdot (q-1) \cdot \frac{1}{1 - \frac{1}{q^n}}$
Mivel $\lim_{n \to \infty} \frac{1}{1,02^n} = \lim_{n \to \infty} \left(\frac{1}{1,02}\right)^n = 0$,	1 pont	Mivel $q > 1$, így $\lim_{n \to \infty} \frac{1}{q^n} = 0.$
ezért $\lim_{n \to \infty} t_n = 40000 \cdot \frac{1}{1 - 0} = 40000$.	1 pont	$\lim_{n \to \infty} t_n = H(q - 1) = 40000$
Összes	en: 4 pont	

Megjegyzés: A vizsgázó 3 pontot kapjon az alábbi megoldásáért.

 $\label{eq:megallapitja} \textit{Megállapítja (tanult ismeretként), hogy a } \{q^n\} \textit{ sorozat határértéke plusz végtelen (1 pont)}.$

Kijelenti, hogy "az $\frac{a}{a-1}$ tört értéke az 1-hez tart, ha a számlálója a végtelenhez tart" (de ezt az állítását nem támasztja alá további érveléssel) (1 pont).

Fentiek alapján megállapítja, hogy a $\{t_n\}$ sorozat határértéke H(q-1), ami 40 000 (1 pont).

8. a)		
Legyen a négyszög legkisebb szöge α fok, a sorozat differenciája pedig d fok ($d \ge 0$). Ekkor a négyszög szögei (valamilyen sorrendben) α , $\alpha + d$, $\alpha + 2d$ és $\alpha + 3d$ fok nagyságúak.	1 pont	
A négyszög belső szögeinek összege 360°, ezért $4\alpha + 6d = 360$,	1 pont	
$vagyis 2\alpha + 3d = 180.$	1 pont	
$2\alpha + 3d = (\alpha + d) + (\alpha + 2d)$, ami azt jelenti, hogy a négyszög két-két szögének összege 180°.	1 pont	
Ha a két szög szomszédos, akkor a négyszög trapéz,	1 pont	
ha pedig szemközti, akkor húrnégyszög. Tehát az állítást igazoltuk.	1 pont	
Összesen:	6 pont	

8. b)		
A megfordítás: Ha egy négyszög trapéz vagy húr- négyszög, akkor a szögei (valamilyen sorrendben) egy számtani sorozat szomszédos tagjai.	1 pont	
A megfordítás hamis.	1 pont	
Egy megfelelő ellenpélda.	1 pont	Például: egy trapéz, amelynek szögei 50°, 70°, 110° és 130° nagyságúak.
Összesen:	3 pont	

8. c) első megoldás		
A négy kiválasztott pálcikából pontosan akkor ké-		Ez a pont akkor is jár, ha
szíthető érintőnégyszög, ha a két-két szemközti pál-	1 pont	ez a gondolat csak a meg-
cika hosszának összege egyenlő.		oldásból derül ki.
Először válasszuk ki a legrövidebb pálcikát, amely-		
nek a hossza a cm, a (konvex négyszögben) vele	1 pont	
szemben elhelyezni kívánt pálcika hossza pedig	1 pont	
legyen c cm.		
A készlet négy pálcikájából pontosan akkor építhető	1 pont	
24 cm kerületű érintőnégyszög, ha $a + c = 12$ (cm).	1 pont	
A 12-t hatféleképpen lehet két pozitív egész szám		
összegére felbontani:	1 pont	
1 + 11 = 2 + 10 = 3 + 9 = 4 + 8 = 5 + 7 = 6 + 6.		
Ha $a = 1$, akkor $c = 11$, a másik két pálcika hosszá-		
nak megválasztására pedig 6 különböző lehetőség	1 nont	
van (1 és 11, vagy 2 és 10, vagy 3 és 9, vagy 4 és 8,	1 pont	
vagy 5 és 7, vagy 6 és 6 cm).		
Hasonlóan továbbhaladva kapjuk, hogy ha $a = 2$, ak-		
kor 5, ha $a = 3$, akkor 4, ha $a = 4$, akkor 3, ha $a = 5$,	1 pont	
akkor 2, és végül, ha $a = 6$, akkor 1 lehetőség van.		
Az összes különböző lehetőségek száma tehát	1 nont	
(6+5+4+3+2+1=)21.	1 pont	
Összesen:	7 pont	

8. c) második megoldás		
A négy kiválasztott pálcikából pontosan akkor ké-		Ez a pont akkor is jár, ha
szíthető érintőnégyszög, ha a két-két szemközti pál-	1 pont	ez a gondolat csak a meg-
cika hosszának összege egyenlő.		oldásból derül ki.
A készlet négy pálcikájából tehát pontosan akkor építhető 24 cm kerületű érintőnégyszög, ha a négyszögben egymással szemben elhelyezkedő két-két oldal (centiméterben mért) hossza az (1; 11), (2; 10), (3; 9), (4; 8), (5; 7), (6; 6) számpárok valamelyike.	2 pont	
Annyiféleképpen választható ki négy megfelelő pálcika a készletből, ahányféleképpen a hat számpárból kettő – sorrendre való tekintet nélkül – kiválasztható úgy, hogy egy számpárt kétszer is választhatunk.	1 pont	
Ez a szám 6 különböző objektum másodosztályú ismétléses kombinációinak számával egyezik meg.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az összes különböző lehetőségek száma tehát $ \binom{6+2-1}{2} = \binom{7}{2} = $	1 pont	
= 21.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó <u>szisztematikusan</u> felsorolja a 21 különböző lehetőséget, akkor ezért teljes pontszámot kapjon.

9. a) első megoldás		
Ha a kocka éle a , a gömb sugara pedig r , akkor $6a^2 = 4r^2\pi$.	1 pont	
Ebből $r = \sqrt{\frac{3}{2\pi}} a$.	1 pont	$a = \sqrt{\frac{2\pi}{3}}r$
A gömb térfogata $\frac{4\pi}{3} \cdot \left(\sqrt{\frac{3}{2\pi}}a\right)^3 =$	1 pont	$V_{kocka} = \sqrt{\frac{8\pi^3}{27}}r^3.$
$= \sqrt{\frac{6}{\pi}} \cdot a^3 \text{ (ahol } a^3 \text{ a kocka térfogata)}.$	1 pont	(Mivel a gömb térfogata $\frac{4\pi}{3}r^3$, így) azt kell belátni, hogy $\frac{4\pi}{3} > \sqrt{\frac{8\pi^3}{27}}$.
Mivel $\sqrt{\frac{6}{\pi}} > 1$,	1 pont	Ezzel ekvivalens $2 > \frac{\pi}{3}$, ami igaz.
ezért a gömb térfogata valóban nagyobb a kocka térfogatánál.	1 pont	
Összesen:	6 pont	

9. a) második megoldás		
Ha a két test felszíne egyaránt A, akkor		
$V_{\text{kocka}}^2 = \frac{A^3}{6^3},$	2 pont	
$V_{\text{g\"{o}mb}}^2 = \frac{A^3}{36\pi}$	2 pont	
Mivel $36\pi < 6^3$,	1 pont	
ezért a gömb térfogata valóban nagyobb a kocka tér-	1 pont	
fogatánál.	1 point	
Összesen:	6 pont	

Megjegyzések:

- 1. Ha a vizsgázó egy konkrét felszínű gömb és a vele megegyező felszínű kocka térfogatát hasonlítja össze, akkor ezért legfeljebb 2 pontot kaphat.
- 2. A vizsgázó teljes pontszámot kap, ha ismerteti a vonatkozó izoperimetrikus problémát vagy annak egy szűkített változatát (például: adott felszínű konvex testek között a gömb térfogata a legnagyobb), majd ennek speciális eseteként bizonyítottnak tekinti az állítást.

9. b)		
Az összeolvasztással kapott kocka térfogata $p^3 + q^3$,	1 mont	
ezért élének hossza $\sqrt[3]{p^3 + q^3}$,	1 pont	
felszíne tehát $6 \cdot \left(\sqrt[3]{p^3 + q^3}\right)^2$, ami valóban	1 pont	
$6 \cdot \sqrt[3]{(p^3 + q^3)^2}$ -nel egyenlő.	1 pont	
Összesen:	2 pont	

9. c)		
A bizonyítandó állítás: $6 \cdot \sqrt[3]{(p^3 + q^3)^2} < 6 \cdot (p^2 + q^2)$	1 pont	
Mindkét oldalt 6-tal osztva és köbre emelve (az x^3 függvény szigorú monotonitása miatt): $(p^3 + q^3)^2 < (p^2 + q^2)^3$.	1 pont	
Elvégezve a hatványozásokat: $p^6 + 2p^3q^3 + q^6 < p^6 + 3p^4q^2 + 3p^2q^4 + q^6$.	2 pont	
Rendezve és a pozitív p^2q^2 szorzattal osztva: $0 < 3p^2 + 3q^2 - 2pq$.	1 pont*	
$0 < 2p^2 + 2q^2 + (p - q)^2,$	1 pont*	$0 < 3(p-q)^2 + 4pq$,
ez pedig mindig igaz (hiszen a jobb oldalon két pozi- tív és egy nemnegatív szám összege áll).	1 pont*	ez pedig mindig igaz (hi- szen a jobb oldalon egy nemnegatív és egy pozitív szám összege áll).
Mivel minden átalakítás ekvivalens volt, ezért a bizonyítandó állítás is igaz.	1 pont	
Összesen:	8 pont	

Megjegyzések:

1. Ha a vizsgázó egy konkrét (p; q) esetén ellenőrzi az állítás teljesülését, akkor ezért 1 pontot kaphat.

2. A *-gal jelölt 3 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

2. 11 -gai jetoti 3 pontot a kovetkezo gonaotatmeneteri is megkaphatja a vizsgazo.		
(Rendezve és a pozitív p^3q^3 szorzattal osztva:)		
$2 < 3\left(\frac{p}{q} + \frac{q}{p}\right)$	l pont	
ez pedig mindig igaz (hiszen egy pozitív számnak és reciprokának az összege legalább 2).	2 pont	