Apartment Rental Prediction System

Dr. Ivan S. Zapreev

2020-01-09

Contents

Introduction		2
Dataset overview	 	2
Project goal	 	3
Execution plan	 	3
Data wrangling		3
Data cleaning & enriching	 	4
Removing N/A values	 	4
Filtering outliers	 	9
Fixing inconsistencies		13
Restructuring data	 	13
Wrangled data set		14
Splitting data	 	15
Data analysis		16
Possible timing effects	 	16
Flat offers per date		16
Flat counts per location per date		17
Average totalRent per date		18
Possible location effects		19
Average totalRent per location		19
Average totalRent per location flat count		20
Min/Max totalRent per location flat count		21
Predictor's correlation		23
Principle Component Analysis		24
Data analysis summary		24
Data effects:		24
Dimension reduction:		24
Modeling approach		25
Modeling code snippets	 	26
Results		28
Used hardware		28
Modeling results		29
Linear Regression – 1m		29
Generalized Linear Model – glm		29
K-Nearest Neighbors – knn		29
Random Forest - Rborist		29
Support Vector Machines - svmLinear		29
Generalized Additive Model – gamLoess	 	29

Results summary	2 9
Conclusions Future work	29 29
Appendix A: The complete list of data set columns	2 9
Appendix B: Data set column descriptions	30

Introduction

In this report we shall address building of an apartment rental price prediction system. The latter will be based on the 'Apartment rental offers in Germany' dataset available from:

https://www.kaggle.com/corrieaar/apartment-rental-offers-in-germany.

To reach our goal, we will use supervised machine learning techniques studied within the "PH125.8x Data Science: Machine Learning" course (a part of the broader HarvardX Data Science Professional certification program). The prediction system will be therefore based on (linear) statistical models trained on the subset of the 'Apartment rental offers in Germany' dataset.

The remainder of this section first present the data set, then defines the goal of this project more concretely, and finally identifies the main steps to be taken to reach the goal.

Dataset overview

As stated on the webpage of the 'Apartment rental offers in Germany' dataset, it contains 198,379 rental offers scraped from the Germany's biggest real estate online platform β ImmobilienScout24.

The data set consists of a single CSV file: $immo_data.csv$ which only contains offers for rental properties. The data features important rental property attributes, such as the living area size, the rent (both base rent as well as total rent), the location, type of energy, and etc. The date column present in the data set defines the time of scraping, which was done on three distinct dates: 2018-09-22, 2019-05-10 and 2019-10-08.

The complete list of data set columns is extensive¹ and thus in this study we will use the following subset:

```
[1] "hasKitchen"
                                  "heatingType"
                                                            "balcony"
                                  "garden"
                                                            "cellar"
       "lift"
    [7] "noParkSpaces"
                                  "livingSpace"
                                                            "typeOfFlat"
## [10]
        "noRooms"
                                  "floor"
                                                            "numberOfFloors"
                                  "newlyConst"
   Г137
        "condition"
                                                            "interiorQual"
                                  "energyEfficiencyClass"
  [16] "yearConstructed"
                                                           "regio1"
                                  "regio3"
   [19] "regio2"
                                                            "baseRent"
   [22] "electricityBasePrice"
                                  "heatingCosts"
                                                            "serviceCharge"
   [25] "totalRent"
                                  "date"
```

This sub-selection reduces the number of considered data set columns² from 48 to 26 and is motivated by the personal preferences of the report's author and has no scientifically proven motivation. On the contrary, this column selection shall be seen as a part of problem statement. In other words, the task is to build an accurate³ rental price prediction model based on the predictors from this set of columns.

The additional data preparation steps will be described in the "Data wrangling" section of this document.

¹Please consider reading "Appendix A" for the complete list of the data set columns.

²Please consider reading "Appendix B" for the column descriptions.

³Please consider reading the "Project goal" section for an exact goal formulation.

Project goal

The goal of this project is to build a apartment rental-price prediction system for German cities. The model is to be trained and validated using the data from 'Apartment rental offers in Germany' dataset. The data is therefore to be split into a modeling and validation sets which will be defined in the "Data wrangling" section.

The system evaluation will be done using the Residual Mean Squared error (RMSE) which, similarly to a standard deviation, can be interpreted as: the typical error we make when predicting a rent price. In other words, RMSE will indicate an approximate amount of Euros we are on average off in our rental price predictions.

Definition: (RMSE)

Let r_o be the true rental price for an offer o, N_o be the number of offers, and \hat{r}_o be our prediction, then:

$$RMSE = \sqrt{\sum_{m=1}^{N_o} (r_o - \hat{r}_o)^2}$$

The definition above trivially translates into the following R function:

```
RMSE <- function(true_ratings, predicted_ratings){
    sqrt(mean((true_ratings - predicted_ratings)^2))
}</pre>
```

The ultimate goal of the project is to provide a statistical model, solely based on the modeling set, that on the validation set will be able to predict apartment rental prices with RMSE \leq TARGET_RMSE = 50. The way achieve that goal will be explained in the "Modeling approach" section of this document.

Execution plan

Let us now briefly outline the main steps to be performed to reach the previously formalized project goal:

- 1. Prepare the data see the "Data wrangling" section:
 - Select, clean, and reshape relevant data; split it into training and validation sets; and etc.
- 2. Analyze the dataset see the "Dataset analysis" section:
 - Perform data exploration and visualization; summarize insights on the data.
- 3. **Describe the modeling approach** see the "Modeling approach" section:
 - Consider the insights of the data analysis; suggest the way obtain a prediction model.
- 4. **Present modeling results** see the "Results" section:
 - Train the model(s); evaluate the model(s); analyze the results.
- 5. Provide concluding remarks see the "Conclusions" section:
 - Summarize the results; mention any approach limitations; outline possible future improvements.

Data wrangling

In this section we present cleaning, enriching, and restructuring the raw data taken from the 'Apartment rental offers in Germany' dataset.

This section will be organized as follows: First we explain how we cleaned the data and solved some of its inconsistencies, by enriching the data. Then we identify some structural changes done to the data. Further, we provide a summary of the wrangled data set. In the end, we explain how we split the entire data set into the validation and modeling sub-sets⁴.

⁴The latter will also be split into the training and testing set for the sake of model cross-validation.

Data cleaning & enriching

Let us note that the number of data entries in the original data set is equal to 198332. This data is however not ready to be worked with as it is very dirty. It contains multiple N/A values; is inconsistent — has mismatching row values, e.g. floor = 10 and typeOfFlat = "roof_storey"; and has multiple outliers in numerical/integer columns.

The rest of the section is organized as follows: First, we explain cleaning of N/A values. Second, we discuss stripping of the data from the outliers. Third, we outline filtering out and correcting some of the data inconsistencies.

Removing N/A values

Consider for example the next table summarizing the number of N/A values per data set column:

##	# 1	A tibble: 26 x 3				
##		`Column name`	`N/A	count`	`N/A	percent`
##		<chr></chr>		<int></int>		<dbl></dbl>
##	1	electricityBasePrice		151158		76.2
##	2	${\tt energyEfficiencyClass}$		143316		72.3
##	3	heatingCosts		135154		68.2
##	4	noParkSpaces		130405		65.8
##	5	interiorQual		83002		41.8
##	6	numberOfFloors		71792		36.2
##	7	condition		50318		25.4
##	8	yearConstructed		42293		21.3
##	9	floor		37612		19.0
##	10	heatingType		32605		16.4
##	11	totalRent		29762		15.0
##	12	typeOfFlat		27572		13.9
##	13	serviceCharge		5110		2.58
##	14	hasKitchen		1		0
##	15	lift		1		0
##	16	garden		1		0
##	17	cellar		1		0
##	18	livingSpace		1		0
##	19	noRooms		1		0
##	20	regio2		1		0
##	21	regio3		1		0
##	22	baseRent		1		0
##	23	date		1		0
		balcony		0		0
##	25	newlyConst		0		0
##	26	regio1		0		0

As one can see, about $\frac{1}{2}$ of the columns has 2.5–80% N/A^s, whereas the other half has (almost) no N/A^s.

Cleaning the data from N/A values will be explained in the next steps:

- 1. We begin with the totalRent column as this is the value that we want to predict;
- 2. We proceed with the columns with the marginal (< 1%) of N/A values;
- 3. We cover the remaining columns in the descending order of the number of N/A values.

The first steps

The totalRent column contains data that we want to predict. Therefore, the rows with totalRent == N/A are useless to us and shall be removed. Unfortunately, this will reduce the data set by 15.01%. There are also 13 columns with a marginal (0 to 1) number of N/A values. The latter can be seamlessly removed as even if all of these N/A appear in different rows, we will remove at most 13 entries which is just 0.0066% of data.

The main columns

Let us consider the columns one by one. Note that, some modifications we will do to the data to remove the N/A values may introduce bias. To for test that we would need a clean data set with no N/A values initially present and then to use such a data set for the trained model(s) validation. Due to the lack of time this will not be done in the case study.

Column: electricityBasePrice - 76.2% N/A values

We will set the electricity base price for the N/A values to zero. The motivation is that, since the number of N/A values is almost 80% and no other zero values are present:

```
x <- arog_data$selected_data %>% filter(!is.na(electricityBasePrice))
sum(x$electricityBasePrice == 0)
```

```
## [1] 0
```

it is likely that the N/A values were used to determine the fact that there is no electricity base price.

Column: energyEfficiencyClass - 72.3% N/A values

The energy efficiency factor levels are:

```
levels(arog_data$selected_data$energyEfficiencyClass)
```

```
## [1] "A" "A_PLUS" "B" "C" ## [5] "D" "E" "F" "G" ## [9] "H" "NO INFORMATION"
```

So we shall naturally set all the N/A energy efficiency levels to "NO_INFORMATION".

Column: heatingCosts - 68.2% N/A values

We will set the heating costs for the N/A values to zero as there are already 1989 zero-valued heating cost entries. It is unlikely that there are non-heated accommodations in Germany so we assume that the 0 values, the same as N/A^s mean - "unknown".

Column: noParkSpaces - 65.8% N/A values

We will set the number of parking places for the N/A values to zero as there is already 2850 zero-valued entries. By this step we assume that, N/A is interpreted as "not applicable" or "no are available".

Column: interiorQual - 38.8% N/A values

The interior quality factor levels are:

```
levels(arog_data$selected_data$interiorQual)
```

```
## [1] "luxury" "normal" "simple" "sophisticated"
```

So we shall introduce a new level for the N/A values, called "unknown".

Column: numberOfFloors - 36.2% N/A values

terraced flat

half basement

loft

Setting the N/A values for the floors shall be agreed with the apartment type, if we gather some number of floors statistics for each available apartment type we get the following:

numberOfFloors Count Standard error Maximum typeOfFlat Average Minimum apartment 66844 999 3.9 6.6 0 18450 3.1 6.7 800 roof storey ground_floor 12802 3 8.9 0 999 4979 2.9 0 43 maisonette 1.5 4284 0 301 other 3.6 5 7.3 0 raised_ground_floor 2779 3.4 370 penthouse 2011 3.7 2.2 0 33

3

2.7

3

1760

598

542

Table 1: Type of flat vs. number of floors statistics

From where we conclude that the data we have is very polluted. Clearly, one can not expect apartments with 99 floors and alike. See also on the large average (all +/- around 3 floors) and the huge standard error values. If we visualize the results (filtering out 1662 flats with more than 10 floors), we see that:

apartment ground_floor half basement loft 10000 1000 100 10 maisonette other penthouse raised_ground_floor 10000 -1000 count 100 10 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 roof_storey terraced_flat 10000 -1000 -100 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

The distribution of number of floors per flat type

1.5

1.1

1.5

14

7

15

0

0

0

the data seems to be approximately normally distributed (except for the apartment type) with the mean values within 2.5 - 4.0 range. This makes us believe that this data is too much biased and polluted. So we will not rely on this column in our analysis.

The number of floors

Column: condition - 25.4% N/A values

The condition factor levels are:

So we shall introduce a new level for the N/A values, called "unknown".

Column: yearConstructed - 21.3% N/A values

There is no good default to replace the N/A values here. Yet, it is a significant amount of data which we do not want to exclude. Therefore drop this column from the analysis and just use the newlyConst flag column.

Column: floor - 19.0% N/A values

We could assign some floor values based on the flat types:

For example, we could consider assigning:

- half_basement set floor to be the average half-basement floor value
- ground_floor set floor = 0
- raised_ground_floor set floor to be the average raised ground floor value

but, let us look at the floor values (filtering out 10 flats with floor > 100), for these flat types:

The distribution of floors per flat type

From the data above we see that we shall not only correct the \mathbb{N}/\mathbb{A} values but set all of the floor values for the considered flat types as follows:

- half_basement set floor = -1
- ground_floor set floor = 0
- raised_ground_floor set floor = 0

If we do that then there will still be 20049 (10.1% of data) N/A floor values for the flat types for which we can not give any exact value. So we will just assign those to the mean floor value in the category.

Column: heatingType - 16.4% N/A values

The heating type factor levels are:

```
## [1] "central_heating" "combined_heat_and_power_plant"
## [3] "district_heating" "electric_heating"
## [5] "floor_heating" "gas_heating"
## [7] "heat_pump" "night_storage_heater"
## [9] "oil_heating" "self_contained_central_heating"
## [11] "solar_heating" "stove_heating"
## [13] "wood_pellet_heating"
```

So we shall introduce a new level for the N/A, and "H" values, called "unknown".

Column: typeOfFlat - 13.9% N/A values

The type of flat factor levels are:

So we shall introduce a new level for the N/A values, called "unknown". Note that, we do not use the pre-defined level "other" here as we interpret it as known flat type which is just not on the list of available choices.

Column serviceCharge - 2.58% N/A values

We will set the service charges for the N/A values to zero. The motivation is that, there are:

```
x <- arog_data$selected_data %>% filter(!is.na(serviceCharge))
sum(x$serviceCharge == 0)
```

```
## [1] 2496
```

zero values present, so we interpret the N/A values as defining the fact of no additional service charges.

Filtering outliers

In this section we only considered the numeric/integer columns of the data set. The initial set of outliers per column is obtained using:

```
boxplot.stats(.)$out
```

However, not all of the obtained outlier values are the true outliers. It may be that some flats do stand out as examples of extraordinary property, and not due to owner input errors. This is why, for each of the column, the identified outliers are analyzed and it is then decided on how much of them is to be removed.

Column: noRooms

The noRooms column has 6038 outliers, see the plot:

We shall remove all the rows with noRooms outside the interval [1, 20].

Column: noParkSpaces

The noParkSpaces column has 10416 outliers, see the plot:

All flats

We shall remove all the rows with noParkSpaces outside the interval [0, 200].

Column: livingSpace

The livingSpace has 8830 outliers, see the plot:

We shall remove all the rows with livingSpace outside the interval [1, 1000].

Column: baseRent

The baseRent has 10953 outliers, see the plot:

We shall remove all the rows with baseRent outside the interval [100, 3×10^4].

Column: electricityBasePrice

The electricityBasePrice has 4048 outliers, see the plot:

We shall remove all the rows with electricityBasePrice outside the interval [0, 100].

Column: heatingCosts

The heatingCosts has 4765 outliers, see the plot:

We shall remove all the rows with heatingCosts outside the interval [0, 3000].

Column: serviceCharge

The serviceCharge has 6557 outliers, see the plot:

We shall remove all the rows with serviceCharge outside the interval [10, 10⁴].

Column: totalRent

The totalRent has 9366 outliers, see the plot:

We shall remove all the rows with totalRent outside the interval $[10, 10^5]$.

Fixing inconsistencies

In addition to the data alternations done above we have also done the following:

- Re-setting the number of floors:
 - half_basement -floor = -1
 - $ground_floor floor = 0$
 - raised_ground_floor -floor =0
- Filter out flats:
 - Other than "half_basement", "other", and "unknown"; but with floor < 0
 - With zero totalRent values (207 entries)
- Fix wrong and convert scraping dates:
 - "Sep18" changes into ymd("2018-09-22")⁵
 - "May19" changes into ymd("2019-05-10")
 - "Oct19" changes into ymd("2019-10-08")
- Made sure that the integer-valued ("floor", "noParkSpaces", "noRooms") columns are rounded.

There may be more inconsistencies present in the data, for example we expect that:

```
totalRent = baseRent + electricityBasePrice + heatingCosts + serviceCharge
```

which may not be the case. Unfortunately due to the lack of time these were not analyzed further and thus may potentially influence the "accuracy" of the trained statistical model.

Restructuring data

There data set at hand does not have any complex structure. However, because we want to be able to do predictions per city and avoid cities with the same names within different lands and regions we shall combine the regio columns into a new single one, as follows:

⁵The ymd(.) function is provided by the lubridate package.

```
clean_arog_data <- clean_arog_data %>%
  unite("location", c("regio1", "regio2", "regio3"), remove=FALSE) %>%
  select(-regio1, -regio2, -regio3)
```

The resulting columns have values constructed according to the following pattern:

```
location = regio1 + "_" + regio2 + "_" + regio3
```

For example:

```
arog_data$wrangled_data$location[1:5]
```

```
## [1] Nordrhein_Westfalen_Essen_Karnap
## [2] Nordrhein_Westfalen_Steinfurt_Kreis_Emsdetten
## [3] Nordrhein_Westfalen_Bottrop_Lehmkuhle
## [4] Sachsen_Anhalt_Salzlandkreis_Schönebeck_Elbe
## [5] Sachsen_Chemnitz_Bernsdorf
## 8087 Levels: Baden_Württemberg_Alb_Donau_Kreis_Allmendingen ...
```

In addition we have rounded and turned into integer columns all the integer-valued columns of the data set:

```
c("floor", "noParkSpaces", "noRooms")
```

Wrangled data set

Let us now summarize the resulting clean data:

##	# 1	A tibble: 22 x 3			
##		`Column name`	`N/A	count`	`N/A percent`
##		<chr></chr>		<int></int>	<dbl></dbl>
##	1	hasKitchen		0	0
##	2	heatingType		0	0
##	3	balcony		0	0
##	4	lift		0	0
##	5	garden		0	0
##	6	cellar		0	0
##	7	noParkSpaces		0	0
##	8	livingSpace		0	0
##	9	typeOfFlat		0	0
##	10	noRooms		0	0
##	11	floor		0	0
##	12	condition		0	0
##	13	newlyConst		0	0
##	14	interiorQual		0	0
##	15	energyEfficiencyClass		0	0
##	16	location		0	0
##	17	baseRent		0	0
##	18	electricityBasePrice		0	0
##	19	heatingCosts		0	0
##	20	serviceCharge		0	0
		totalRent		0	0
##	22	date		0	0

As one can notice, the dat set size has been reduced from 198332 to 162742. The major reason for that is excluding the rows with the N/A values of the totalRent column. Let us recall that the number of such raws

was 15.01% of the data set, e.g. 29770 rows. It now remains to notice that 198332 - 29770 = 168562 > 162742. The remaining delta of 5820 rows ($\approx 2.9\%$ of data) is explained by cleaning the floor/typeOfFlat columns, filtering-out outliers, and etc.

The data has been cleaned but we can expect that there is some noise in the data which we have not addressed. We might get more data-quality insights when we perform data analysis in the subsequent sections.

Splitting data

To facilitate supervised learning, the wrangled data is split into the modeling, 90% of data, and validation, 10% of data, sets. The former will be used for training statistical model(s) and the latter for the model(s) validation. Note that, for the sake of subsequent cross validation during modeling part, we further split the modeling set into the training, 80% thereof, and testing, 20% thereof, sets.

We split the data in the following steps:

1. The data is randomly split into to parts according to the specified ratio:

- 2. The test_index rows are the candidates for the testing/validation set rows
- 3. The factorized column values of the testing/validation set are considered:

: Factor w/ 8087 levels ..."

- 4. The rows with the values not present in the testing/modeling set are dropped
- 5. The testing/modeling set consists of rows absent in the testing/validation set

The procedure above ensures that the testing/validation set can always be evaluated on a model trained on the testing/modeling set. For more details, see the create_arog_data and split_train_test_sets functions located in the apartment_rental_project.R script.

The resulting set sizes are as follows:

[6] " \$ location

```
modeling - 146660 rows, 90.1% of data
training - 117820 rows, 80.3% of modeling set
testing - 28840 rows, 19.7% of modeling set
validation - 16082 rows, 9.9% of data
```

As expected, due to returning testing/validation set rows to the testing/modeling set for consistency, the desired set ratios are biased. The validation set size is almost as prescribed (10% of data), but the testing set size is affected more significantly⁶. Yet, we see no issue as the testing set is still > 10% of the modeling set, which should be enough for performing cross validation.

⁶The requested testing set size was 20% of the modeling set.

Data analysis

In this section we shall use data visualization and other techniques to investigate the properties of the data we could use to build the prediction model. In the remainder of the section we shall address:

- 1. Possible timing effects
- 2. Possible location effects
- 3. Predictor's correlation
- 4. Principle component analysis

Eventually, we shall conclude the section with a short summary of our findings.

Possible timing effects

Let us consider any possible effects introduced by the scraping date. In essence, the goal of this section is to understand whether:

- 1. We shall keep the data scraped on different date distinct, and have the date column as a predictor, or
- 2. We could consider the combined statistics for all the data ignoring the date field as a predictor

We answer this question based on the analysis of "Flat offers per date", "Flat counts per location per date", and "Average totalRent per date"

Flat offers per date

Let us consider the number of flat offers per location per data scraping date:

Offer counts per location per date

Various locations

The number of flats listed by location seems to follow the same pattern on all of the three data scraping dates.

It seems like we may ignore the date column and consider the joint statistics. To have more solid grounds for that, let us investigate the flat counts per location per date.

Flat counts per location per date

The distribution of flat counts per location indicates that there are a lot of locations with just one flat. However, there are also a few locations with a "large" (> 100) number of flat offers.

Distribution of location flat counts

The median numbers of flats per location are equal for all the dates:

```
## # A tibble: 3 x 2
## date median
## <date> <dbl>
## 1 2018-09-22 3
## 2 2019-05-10 3
## 3 2019-10-08 3
```

The average numbers of flats per location for the last two scrapes are equal, and for the first one is somewhat smaller:

```
## # A tibble: 3 x 2
## date average
## 2018-09-22 7
## 2 2019-05-10 10
## 3 2019-10-08 10
```

Overall, the number of flats per location seems to be stable from one date to another:

It seems like we may ignore the date column and consider the joint statistics. To have more solid grounds for that, let us investigate the average totalRent per date.

Average totalRent per date

Let us plot the totalRent per date:

As we see the data seems to be distributed similarly, moreover the does not seem to be any trend in average totalRent per date, as computed with geom_smooth(method="lm"):

There does not seem to be any global⁷ timing effect in totalRent related to the scraping date. Please note that in the plot above, for better visualization, we took a 5000 sub-sample of the data and limited the y axis range by [100, 10^4]. The latter did not influence the "lm" computed trend.

Conclusion: We can ignore the date column and consider the joint statistics for all the dates.

Possible location effects

Let us consider any possible effects introduced by the location. In essence, the goal of this section is to understand whether:

- 1. The totalRent values are location dependent
 - Suggests using the location column as a predictor
- 2. The offered flat counts per location:
 - 1. Have influence on the number of totalRent value outliers
 - Suggests using Regularization in statistical modeling
 - 2. Are correlated with the totalRent values
 - Facilitates using the location column as a predictor

We answer this question based on the analysis of "Average totalRent per location", "Min/Max totalRent per location flat count", and "Average totalRent per location flat count".

Average totalRent per location

Let us consider the variability of the totalRent, for several randomly chosen locations, with > 100 offers:

⁷There may be some location specific timing effects, but we do not consider them due to the lack of time.

Selected locations

Elberfeld Friedrichshain Neustadt Nordvorstadt Plagwitz Spandau

Conclusion: Locations differ quite significantly in their totalRent - this is a location effect.

Average totalRent per location flat count

3000 -

300 -

Total rent values

Let us plot the totalRent per location flat count, ordered by the count. Also to show the trend we will use ggplot with geom_smooth(method = 'gam').

Please note that in the plot above, for better visualization, we took a 1.5×10^4 sub-sample of the data and limited the y axis range by [100, 10^4]. The latter did not influence the "gam" computed trend.

Conclusion: There is a trend in that the places with more flat offers have on-average lower totalRent values - this is a number of offers effect.

Min/Max totalRent per location flat count

Let us the maximum and minimum totalRent values relative to the flat count per location. In other words, each location has a number of flats offered. If we now combine the flat offers per location into a single totally ordered flat-offers range, we can plot how many locations there are with that many orders. Or we can plot the totalRent values offered in locations with the same number of flats. The latter will help us to see if the extreme totalRent values, like 300 top and 300 bottom priced flats are more likely to be encountered in locations with lower or larger number of flat offers.

If we indicate top and bottom priced flats on the plot then we can observe:

that it seems that [12 $^{\circ}$] the top/bottom priced rentals are, almost uniformly, spread all over the *flat-offers* range. [$^{\circ}$ 12]: Please note that in this plot, for better visualization, we took a 1.5×10^4 sub-sample of the data.

To get a better view on data, considering top and total totalRent counts versus the flat-offers range:

Considering bottom and total totalRent counts versus the *flat-offers range*:

The total count is computed as the sum of offers in the locations with the same number of offers. Effectively it is equal to "number of offers in location" \times "number of locations with this number of offers". This explains almost line-like behavior of the "Total #offers" plots. The irregularities are caused by having more than one location with the given number of flat offers (mind the log10 scale of the x and y axis).

The number of bottom outliers is \approx uniform across the *flat-offers range*. The number of top outliers looks somewhat biased to be larger for locations with more offers. Let us plot the outliers to total ratio:

The plot above has, even though contains quite some "noise" for 50-200 flats per location, indicates the common trend of having proportionally less outliers in locations with more rental offers.

Conclusion 1: It is less likely to have a cheap rentals in locations with large number of offers. **Conclusion 2:** It is less likely to have an expensive rentals in locations with a larger number of offers.

Predictor's correlation

In this case-study we have selected 21 potential predictors:

```
[1] "hasKitchen"
                                  "heatingType"
                                                            "balcony"
##
    [4]
        "lift"
                                  "garden"
                                                            "cellar"
    [7] "noParkSpaces"
                                  "livingSpace"
                                                            "typeOfFlat"
   [10] "noRooms"
                                  "floor"
                                                            "condition"
   [13]
        "newlyConst"
                                  "interiorQual"
                                                            "energyEfficiencyClass"
   [16] "location"
                                  "baseRent"
                                                            "electricityBasePrice"
##
                                  "serviceCharge"
   [19] "heatingCosts"
                                                            "date"
```

As we have discussed in the timing effects section the date column seems to be eligible for exclusion. However, to give this a more formal ground and also to reduce the number of predictors even further let us consider the correlation matrix of the training data columns:

```
#First create the predictors matrix, from the wrangled data
predictors_mtx <- arog_data$wrangled_data %>%
    select(-totalRent) %>%
    data.matrix(.)

#Next compute the correlations matrix and round off the values
corr_mtx <- predictors_mtx %>%
    cor(.) %>% round(., 3)
```

When visualized, we see that there is quite a few predictors with strong correlation:

Predictor idx

For instance, heatingType (idx: 2) is strongly correlated with garden (idx: 5), typeOfFlat (idx: 9), condition (idx: 12), interiorQual (idx: 14), electricityBasePrice (idx: 18), and date (idx: 21).

Having highly correlated columns implies that we could use less predictors to build a statistical model without loosing much accuracy.

Principle Component Analysis

As motivated by the correlation analysis above, here we will use the Principle Component Analysis (PCA) to see if we have a distance preserving transformation of our data that gives us a new feature-space basis in which most of the data variability is explained by fewer predictors:

```
#Run the PCA analysis
pca_result <- prcomp(predictors_mtx)
#Report the summary
summary(pca_result)</pre>
```

```
## Importance of components:
##
                                PC1
                                          PC2
                                                    PC3
                                                             PC4
                                                                      PC5
                                                                               PC6
## Standard deviation
                          2101.8878 459.05602 148.70605 68.76676 41.45316 19.46240
## Proportion of Variance
                             0.9485
                                      0.04524
                                                0.00475
                                                         0.00102
                                                                  0.00037
## Cumulative Proportion
                             0.9485
                                      0.99371
                                                0.99846
                                                         0.99947
                                                                  0.99984
##
                               PC7 PC8
                                          PC9
                                              PC10 PC11 PC12 PC13 PC14
## Standard deviation
                          16.96046 4.49 3.968 3.475 3.463 2.446 2.242 1.343 0.6259
## Proportion of Variance
                          0.00006 0.00 0.000 0.000 0.000 0.000 0.000 0.000
                           0.99998 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## Cumulative Proportion
##
                           PC16
                                  PC17
                                         PC18
                                                PC19
                                                       PC20
                                                              PC21
                          0.502 0.4409 0.4353 0.3871 0.3665 0.2265
## Standard deviation
## Proportion of Variance 0.000 0.0000 0.0000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.000 1.0000 1.0000 1.0000 1.0000 1.0000
```

As one can see from the PCA summary above, according to Cumulative Proportion of Variance, it shall suffice to use the first two principle components (PC1, and PC2) to explain $\approx 99.3\%$ of the data.

Data analysis summary

In the "Data analysis" section we have analyzed our data with respect to possible timing, and location effects. In addition, to reduce the number of predictors we've performed predictor's correlation and principle component analysis. The findings of this section can be summarized as follows.

Data effects:

In case we are to build our own statistical model, as opposed using one of the already available via the cared package of R, we should:

- 1. The timing effect is not confirmed:
 - We can ignore the date column and consider the joint statistics for all the dates.
- 2. The location effects are confirmed:
 - The strong correlation of location with totalRent has to be taken into account⁸

Dimension reduction:

Due to a high correlation of multiple predictors we can significantly reduce the dimensionality of the feature space. It suffices to use the first two/six principle components to explain $\approx 99.3/99.99\%$ of the data.

⁸This includes the discovered correlation from the flat counts per location as the flat offers per location do not very much with time.

Modeling approach

To begin, let us recall the project's goal and one important data observation gained:

- Goal: Build a prediction model for the totalRent values with an RMSE score ≤ 50;
- Data: About 99.3% data variability is in the first two principle components;

Let us make a scatter plot of PC1 vs PC2 indicating the corresponding totalRent values with color:

Here, for better visualization, we:

- Take a 5000 sub-sample of data;
- Limit the PC2 range by $[70,10^4]$;
- Linearly shift both PC1 and PC2 to the positive half-space;
- Use log10 scale for both PC1 and PC2;

From the plot above, there is a clear clasterization of the totalRent values. However, its structure is intricate and is not likely to be captured, with desired accuracy, with a simple (linear) regression models. Thus, instead of creating a new Bayesian model, we shall attempt using the existing ones that can be trained via the caret package of R. Given that the totalRent column is numeric, we will consider the following models⁹:

- "lm" Linear Regression
- "glm" Generalized Linear Model
- "knn" k-Nearest Neighbor Classification
- "Rborist" Random Forest¹⁰
- "svmLinear" Support Vector Machines with Linear Kernel
- "gamLoess" Generalized Additive Model using LOESS

The algorithms above will be run with the default parameters, unless tuning grid parameters are required. Therefore we will consider the entire modeling set, as any cross-validation will be done within the train(.) method of the caret package. Last but not least, we will only use the first two principle components of the available predictors data. Any models that will fail to be trained within (GLOBAL_METHOD_TIME_OUT_SECONDS = 3600) seconds will be discarded from the further use. Any additional model training parameters, if required, will be presented in the "Results" section of this report.

⁹For more information see also the list of caret's Available Models.

 $^{^{10}\}mathrm{This}$ is a high-performance implementation of a random forest model "rf"

Modeling code snippets

To further clarify our approach, below we provide some of the code used for model training and evaluation. First, we present the main utility functions. Next, we show their use in a single *model-train-evaluate* sequence.

As for PCA analysis, we convert our data into a numerical-data matrix using the next function:

To get the selected PC predictors matrix from the numerical-data matrix we use:

```
#-----
# This function takes:
 pca_result - the PCA analysis results
    data_mtx - the data matrix
   num_pc - the number of PC to consider, defaults to NUM_PC_TO_CONSIDER
# and transforms the data_mtx into the PC matrix by:
  1. Zero-centering the data_mtx columns
  2. Applying pca result$rotation matrix
  3. Selecting num_pc first columns
# The resulting matrix is returned "as-is"
#-----
prepare_pc_predictors <- function(pca_result, data_mtx, num_pc = NUM_PC_TO_CONSIDER) {</pre>
 #Zero-center the columns
 cent_pred_mtx <- sweep(data_mtx, 2, colMeans(data_mtx))</pre>
 #Rotate to move to the new basis
 rot_pred_mtx <- cent_pred_mtx %*% pca_result$rotation</pre>
 #Only return the required principle component columns
 return(rot_pred_mtx[,1:num_pc])
```

The model training is be with the next function, mind the time-out handling:

```
#------
# This function allows to train a model specified by the method
# data_mtx - the numeric-valued predictors data matrix
# exp_res - the expected results vector for the predictors
# method - the method to be used
# The training will be done with a time-out defined by the
# GLOBAL_METHOD_TIME_OUT_SECONDS
# The result is the list with the following elements:
```

```
method - the method used
#
     start_time - the time the training started
     success - the success indicating flag
#
#
    end_time - the time the training finished, if success == TRUE
     fit_model - the fit model, if success == TRUE
train_model <- function(data_mtx, exp_res, method, ...) {</pre>
  #Remove the fit model global if it exists
  ifrm(fit model)
  #Initialize new empty training results list
  train_res <- list(method = method)</pre>
  #Train the model, with a time-out
  withTimeout({
    #Record the start time
    train_res <- append(train_res, list(start_time = Sys.time()))</pre>
    try({
      #Fit the model from data
      fit_model <- train(data_mtx, exp_res, method = method, ...)</pre>
      #Record the end time and the result
      train_res <- append(train_res, list(end_time = Sys.time(),</pre>
                                            fit_model = fit_model))
   })
  },
  timeout = GLOBAL_METHOD_TIME_OUT_SECONDS, onTimeout = "silent")
  #Mark the success flag
  train_res <- append(train_res, list(success = exists("fit_model")))</pre>
  #Remove the fit model global if it exists
  ifrm(fit_model)
  #Return the result
 return(train_res)
```

The model validation is done by the next function:

With the functions above t complete *model-train-evaluate* sequence for a KNN look as follows:

```
#Get the modeling and validation data
model_set <- arog_data$modeling_data</pre>
valid_set <- arog_data$validation_data</pre>
#Compute the data matrixes for the data sets
model mtx <- prepare data matrix(model set)</pre>
valid_mtx <- prepare_data_matrix(valid_set)</pre>
#Perform the PCA analysis on the modeling matrix
pca_result <- prcomp(model_mtx)</pre>
#Prepare the predictors for the modeling and validation sets
model_pc_mtx <- prepare_pc_predictors(pca_result, model_mtx)</pre>
valid_pc_mtx <- prepare_pc_predictors(pca_result, valid_mtx)</pre>
#Train and validate the KNN model
rbt_train_res <- train_model(model_pc_mtx, model_set$totalRent, "knn",
                              tuneGrid = data.frame(k = seq(13, 18, 1)))
rbt_mdl_res <- evaluate_model(rbt_train_res, valid_pc_mtx, valid_set$totalRent)
rbt_mdl_res$rmse
```

For more details, see the supplied apartment_rental_project.R modeling script.

Results

Used hardware

The experiments were run on the following hardware at hand:

Model Name: MacBook Pro
Model Identifier: MacBookPro11,4
Processor Name: Intel Core i7
Processor Speed: 2,2 GHz
Number of Processors: 1
Total Number of Cores: 4
L2 Cache (per Core): 256 KB
L3 Cache: 6 MB

Memory: 16 GB

Boot ROM Version: 194.0.0.0.0 SMC Version (system): 2.29f24

Modeling results

Linear Regression - 1m

Generalized Linear Model - glm

K-Nearest Neighbors - knn

Random Forest - Rborist

Support Vector Machines - svmLinear

Generalized Additive Model - gamLoess

Results summary

Conclusions

Future work

Check for introducing any bias by data wrangling. Use model ensembles. Use more principle components. Factor the totalRent and use e.g. knn3.

Appendix A: The complete list of data set columns

Hereby we present the complete list of columns from the original 'Apartment rental offers in Germany' dataset:

```
[1] "regio1"
                                    "serviceCharge"
##
    [3] "heatingType"
                                    "telekomTvOffer"
    [5] "telekomHybridUploadSpeed"
                                    "newlyConst"
##
   [7] "balcony"
##
                                    "electricityBasePrice"
   [9] "picturecount"
                                    "pricetrend"
## [11] "telekomUploadSpeed"
                                    "totalRent"
## [13] "yearConstructed"
                                    "electricityKwhPrice"
## [15] "scoutId"
                                    "noParkSpaces"
                                    "hasKitchen"
## [17] "firingTypes"
                                    "cellar"
## [19]
        "geo bln"
## [21] "yearConstructedRange"
                                    "baseRent"
## [23] "houseNumber"
                                    "livingSpace"
## [25] "geo_krs"
                                    "condition"
## [27] "interiorQual"
                                    "petsAllowed"
                                    "lift"
## [29] "streetPlain"
## [31] "baseRentRange"
                                    "typeOfFlat"
## [33] "geo_plz"
                                    "noRooms"
## [35] "thermalChar"
                                    "floor"
```

```
## [37] "numberOfFloors" "noRoomsRange"

## [39] "garden" "livingSpaceRange"

## [41] "regio2" "regio3"

## [43] "description" "facilities"

## [45] "heatingCosts" "energyEfficiencyClass"

## [47] "lastRefurbish" "date"
```

Appendix B: Data set column descriptions

Here is the list of the initially considered data set columns with the descriptions thereof:

- 1. hasKitchen has a kitchen
- 2. balcony does the object have a balcony
- 3. cellar has a cellar
- 4. lift is elevator available
- 5. floor which floor is the flat on
- 6. garden has a garden
- 7. noParkSpaces number of parking spaces
- 8. livingSpace living space in sqm
- 9. condition condition of the flat
- 10. interiorQual interior quality
- 11. regio1 Bundesland
- 12. regio2 District or Kreis, same as geo krs
- 13. regio3 City/town
- 14. noRooms number of rooms
- 15. numberOfFloors number of floors in the building
- 16. typeOfFlat type of flat
- 17. yearConstructed construction year
- 18. newlyConst is the building newly constructed
- 19. heatingType Type of heating
- $20. \ {\tt energyEfficiencyClass-energy\ efficiency\ class}$
- 21. heatingCosts monthly heating costs in €
- 22. serviceCharge auxiliary costs such as electricity or Internet in €
- 23. electricityBasePrice monthly base price for electricity in €
- 24. baseRent base rent without electricity and heating
- 25. totalRent total rent (usually a sum of base rent, service charge and heating cost)
- 26. date time of scraping