

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по дисциплине «Моделирование»

Тема Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ

Студент Зайцева А. А.
Группа ИУ7-62Б
Оценка (баллы)
Преподаватель Градов В. М.
преподаватель градов в. м.

1 Задание

Цель работы.

Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутты).

Исходные данные.

ОДУ 1.1, не имеющее аналитического решения:

$$\begin{cases} u'(x) = u^2 + x^2 \\ u(0) = 0. \end{cases}$$
 (1.1)

Результат работы программы.

- 1. Таблица, содержащая значения аргумента с заданным шагом в интервале [0, xmax] и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала xmax выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.
 - 2. График функции в диапазоне [-хтах, хтах].

2 | Теоретическая часть

Обыкновенное дифференциальное уравнение (ОДУ) n-ого порядка имеет вид 2.1:

$$F(x, u', u'', ..., u^{(n)} = 0). (2.1)$$

Задача Коши состоит в нахождении решения дифференциального уравнения, удовлетворяющего начальным условиям 2.2:

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = \eta \end{cases}$$
 (2.2)

Рассмотрим методы решения этой задачи.

2.1 Метод Пикара

Метод Пикара является приближенно-аналитическим. Идея состоит в том, чтобы заменить дифференциальное уравнение интегральным 2.3:.

$$y^{s}(x) = \eta + \int_{\xi}^{x} f(t, y^{s-1}(t))dt$$
 (2.3)

$$y^{(0)} = \eta \tag{2.4}$$

Для данного в задании ОДУ 1.1:

$$y^{(1)} = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (2.5)

$$y^{(2)} = 0 + \int_0^x \left[\left(t^2 + \frac{t^3}{3} \right)^2 \right] dt = \frac{x^3}{3} + \frac{x^7}{63}$$
 (2.6)

$$y^{(3)} = 0 + \int_0^x \left[t^2 + \left(\frac{t^7}{63} + \frac{t^3}{3} \right)^2 \right] dt =$$

$$\frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$
(2.7)

$$y^{(4)} = 0 + \int_0^x \left[t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535} \right)^2 \right] dt =$$

$$= \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} +$$

$$+ \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876903905}$$
(2.8)

2.2 Метод Эйлера

Метод Эйлера – это явный (численный) метод первого порядка точности, использующий формулу 2.9:

$$y_{n+1} = y_n + h * f(x_n, y_n). (2.9)$$

2.3 Метод Рунге-Кутты

Метод Ругнге-Кутты – это явный (численный) метод второго порядка точности, использующий формулу 2.10:

$$y_{n+1} = y_n + h * [(1 - \alpha)k_1 + \alpha * k_2],$$
 (2.10)
где $k_1 = f(x_n, y_n), \ k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1), \ \alpha = 1$ или $\frac{1}{2}$

3 Исходный код алгоритмов

```
class UDESolver:
      def __init__(self, x_start, y_start, x_max, step, f, f_derivatives)
         if (x \text{ start} < x \text{ max}) != (\text{step} > 0):
           raise ValueError('Ошибка вшаге')
       self.x start = x start
       self y_start = y start
       self.x max = x max
      self.step = step
      self.f = f
10
       self.f derivatives = f derivatives
1.1
       self.cmp func = lambda x1, x2: x1 < x2 + EPS
12
13
      def reverse move (self):
14
         self.step *=-1
15
         self.x max *=-1
         self.cmp func = lambda x1, x2: x1 > x2 - EPS
17
18
      def x range(self):
19
         result = []
        x = self.x_start
21
         while self.cmp func(x, self.x max):
22
           result.append(x)
23
           x += self.step
24
         return result
25
26
        def solve euler (self):
         result = ||
28
        x, y = self.x start, self.y start
29
30
         while self.cmp func(x, self.x max):
31
           result.append(y)
32
33
           y = y + self.step * self.f(x, y)
           x += self.step
35
36
         return result
37
38
      def solve runge kutta(self):
39
        a = 0.5
40
         result = []
41
        x, y = self.x start, self.y start
43
        while self.cmp func(x, self.x max):
```

```
result.append(y)
45
46
           k1 = self.f(x, y)
47
           k2 = self.f(x + self.step / (2 * a), y + self.step * k1 / (2 * a)
48
              a ) )
           y += self.step * ((1 - a) * k1 + a * k2)
49
           x += self.step
50
51
         return result
52
53
      def solve picar(self, approx):
54
         func = self f derivatives [approx -1]
55
56
         result = []
57
        x, y = self.x start, self.y start
58
59
         while self.cmp_func(x, self.x_max):
60
           result append(y)
           x += self.step
62
           y = func(x)
63
64
         return result
66
67
    def function(x, u):
68
      return x * x + u * u
69
70
71
    def fd1(x):
72
      return pow(x, 3) / 3
73
74
75
    def fd2(x):
76
      return fd1(x) + pow(x, 7) / 63
77
78
79
    def fd3(x):
80
      return fd2(x) + 2 * pow(x, 11) / 2079 + pow(x, 15) / 59535
81
82
83
    def fd4(x):
84
      return (fd2(x) + 2 * pow(x, 11) / 2079 + 13 * pow(x, 15) / 218295 +
85
      82 * pow(x, 19) / 37328445 + 662 * pow(x, 23) / 10438212015 +
86
      4 * pow(x, 27) / 3341878155 + pow(x, 31) / 109876903905)
```

4 Результат работы программы

Исходные данные: $h=10^{-4}$, xmax=1, x0=0, y0=0, округление при выводе - до 2 знака после запятой, шаг вывода=0.01.

На рисунке 4 приведен график функции в диапазоне [-1;1].

Ниже приведена таблица с полученными данными (хтах увеличен до 1.23 для выполнения последующих заданий).

1	Х	Euler	Runge—Kutta	Picard, 1	Picard, 2	Picard, 3	Picard, 4
2							
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.01	0.00	0.00	0.00	0.00	0.00	0.00
5	0.02	0.00	0.00	0.00	0.00	0.00	0.00
6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
9	0.06	0.00	0.00	0.00	0.00	0.00	0.00
10	0.07	0.00	0.00	0.00	0.00	0.00	0.00
11	0.08	0.00	0.00	0.00	0.00	0.00	0.00
12	0.09	0.00	0.00	0.00	0.00	0.00	0.00

, ,	0.10	0.00	0.00	0.00	0.00	0.00	0.00
13	0.10	0.00	0.00	0.00	0.00	0.00	0.00
14	0.11	0.00	0.00	0.00	0.00	0.00	0.00
15	0.12	0.00	0.00	0.00	0.00	0.00	0.00
16	0.13	0.00	0.00	0.00	0.00	0.00	0.00
17							
18	0.15	0.00	0.00	0.00	0.00	0.00	0.00
19	0.16	0.00	0.00	0.00	0.00	0.00	0.00
20	0.17	0.00	0.00	0.00	0.00	0.00	0.00
21	0.18	0.00	0.00	0.00	0.00	0.00	0.00
22	0.19	0.00	0.00	0.00	0.00	0.00	0.00
23	0.20	0.00	0.00	0.00	0.00	0.00	0.00
24	0.21	0.00	0.00	0.00	0.00	0.00	0.00
25	0.22	0.00	0.00	0.00	0.00	0.00	0.00
26	0.23	0.00	0.00	0.00	0.00	0.00	0.00
27	0.24	0.00	0.00 0.01	$0.00 \\ 0.01$	0.00 0.01	0.00 0.01	0.00
28	0.25 0.26	$0.01 \\ 0.01$	0.01	0.01	0.01	0.01	0.01
29							
30	0.27	0.01	0.01	0.01	0.01	0.01	0.01
31	0.28 0.29	$0.01 \\ 0.01$	0.01 0.01	$0.01 \\ 0.01$	0.01 0.01	0.01	0.01 0.01
32	0.29	0.01	0.01	0.01	0.01	0.01 0.01	0.01
33	0.30	0.01	0.01	0.01	0.01	0.01	0.01
34	0.31	0.01	0.01	0.01	0.01	0.01	0.01
35	0.32	0.01	0.01	0.01	0.01	0.01	
36	0.33	0.01	0.01	0.01	0.01	0.01	0.01
37	0.34	0.01	0.01	0.01	0.01	0.01	0.01
38	0.36	0.01	0.02	0.01	0.02	0.01	0.01
39	0.30	0.02	0.02	0.02	0.02	0.02	0.02
40	0.37	0.02	0.02	0.02	0.02	0.02	0.02
41	0.39	0.02	0.02	0.02	0.02	0.02	0.02
42	0.40	0.02	0.02	0.02	0.02	0.02	0.02
44	0.41	0.02	0.02	0.02	0.02	0.02	0.02
45	0.42	0.02	0.02	0.02	0.02	0.02	0.02
46	0.43	0.03	0.03	0.03	0.03	0.03	0.03
47	0.44	0.03	0.03	0.03	0.03	0.03	0.03
48	0.45	0.03	0.03	0.03	0.03	0.03	0.03
49	0.46	0.03	0.03	0.03	0.03	0.03	0.03
50	0.47	0.03	0.03	0.03	0.03	0.03	0.03
51	0.48	0.04	0.04	0.04	0.04	0.04	0.04
52	0.49	0.04	0.04	0.04	0.04	0.04	0.04
53	0.50	0.04	0.04	0.04	0.04	0.04	0.04
54	0.51	0.04	0.04	0.04	0.04	0.04	0.04
55	0.52	0.05	0.05	0.05	0.05	0.05	0.05
56	0.53	0.05	0.05	0.05	0.05	0.05	0.05
57	0.54	0.05	0.05	0.05	0.05	0.05	0.05
58	0.55	0.06	0.06	0.06	0.06	0.06	0.06
59	0.56	0.06	0.06	0.06	0.06	0.06	0.06
60	0.57	0.06	0.06	0.06	0.06	0.06	0.06
1							,

	0.58	0.07	0.07	0.07	0.07	0.07	0.07
61	0.59	0.07	0.07	0.07	0.07	0.07	0.07
62	0.59	0.07	0.07	0.07	0.07	0.07	0.07
63	0.61	0.07	0.07	0.07	0.08	0.07	0.07
64	0.62	0.08	0.08	0.08	0.08	0.08	0.08
65		0.08	0.08	0.08	0.08		
66	0.63					0.08	0.08
67	0.64	0.09	0.09	0.09	0.09	0.09	0.09
68	0.65	0.09 0.10	0.09	0.09	0.09 0.10	0.09 0.10	0.09
69	0.66		0.10	0.10			0.10
70	0.67	0.10	0.10	0.10	0.10	0.10	0.10
71	0.68	0.11	0.11	0.10	0.11	0.11	0.11
72	0.69	0.11	0.11	0.11	0.11	0.11	0.11
73	0.70	0.12	0.12	0.11	0.12	0.12	0.12
74	0.71	0.12 0.13	0.12 0.13	0.12	0.12	0.12 0.13	0.12
75	0.72	0.13	0.13	0.12 0.13	0.13 0.13	0.13	0.13 0.13
76	0.73 0.74	0.13	0.13	0.13	0.13	0.13	0.13
77	0.74	0.14	0.14	0.14	0.14	0.14	0.14
78	0.75	0.14	0.14	0.14	0.15	0.14	0.14
79	0.77	0.15	0.15	0.15	0.15	0.15	0.15
80	0.78	0.16	0.16	0.16	0.16	0.16	0.16
82	0.79	0.17	0.17	0.16	0.17	0.17	0.17
83	0.80	0.17	0.17	0.17	0.17	0.17	0.17
84	0 81	0.18	0.18	0.18	0.18	0.18	0.18
85	0.82	0.19	0.19	0.18	0.19	0.19	0.19
86	0.83	0.19	0.20	0.19	0.19	0.20	0.20
87	0.84	0.20	0.20	0.20	0.20	0.20	0.20
88	0.85	0.21	0.21	0.20	0.21	0.21	0.21
89	0.86	0.22	0.22	0.21	0.22	0.22	0.22
90	0.87	0.23	0.23	0.22	0.23	0.23	0.23
91	0.88	0.23	0.23	0.23	0.23	0.23	0.23
92	0.89	0.24	0.24	0.23	0.24	0.24	0.24
93	0.90	0.25	0.25	0.24	0.25	0.25	0.25
94	0.91	0.26	0.26	0.25	0.26	0.26	0.26
95	0.92	0.27	0.27	0.26	0.27	0.27	0.27
96	0.93	0.28	0.28	0.27	0.28	0.28	0.28
97	0.94	0.29	0.29	0.28	0.29	0.29	0.29
98	0.95	0.30	0.30	0.29	0.30	0.30	0.30
99	0.96	0.31	0.31	0.29	0.31	0.31	0.31
100	0.97	0.32	0.32	0.30	0.32	0.32	0.32
101	0.98	0.33	0.33	0.31	0.33	0.33	0.33
102	0.99	0.34	0.34	0.32	0.34	0.34	0.34
103	1.00	0.35	0.35	0.33	0.35	0.35	0.35
104	1.01	0.36	0.36	0.34	0.36	0.36	0.36
105	1.02	0.37	0.37	0.35	0.37	0.37	0.37
106	1.03	0.39	0.39	0.36	0.38	0.39	0.39
107	1.04	0.40	0.40	0.37	0.40	0.40	0.40
108	1.05	0.41	0.41	0.39	0 . 4 1	0.41	0.41

							1
109	1.06	0.42	0.42	0.40	0.42	0.42	0.42
110	1.07	0.44	0.44	0.41	0.43	0.44	0.44
111	1.08	0.45	0.45	0.42	0.45	0.45	0.45
112	1.09	0.46	0.46	0.43	0.46	0.46	0.46
113	1.10	0.48	0.48	0.44	0.47	0.48	0.48
114	1.11	0.49	0.49	0.46	0.49	0.49	0.49
115	1.12	0.51	0.51	0.47	0.50	0.51	0.51
116	1.13	0.52	0.52	0.48	0.52	0.52	0.52
117	1.14	0.54	0.54	0.49	0.53	0.54	0.54
118	1.15	0.55	0.55	0.51	0.55	0.55	0.55
119	1.16	0.57	0.57	0.52	0.57	0.57	0.57
120	1.17	0.59	0.59	0.53	0.58	0.59	0.59
121	1.18	0.60	0.60	0.55	0.60	0.60	0.60
122	1.19	0.62	0.62	0.56	0.62	0.62	0.62
123	1.20	0.64	0.64	0.58	0.63	0.64	0.64
124	1.21	0.66	0.66	0.59	0.65	0.66	0.66
125	1.22	0.68	0.68	0.61	0.67	0.68	0.68
126	1.23	0.70	0.70	0.62	0.69	0.70	0.70
127	1 24	0.72	0.72	0.64	0.71	0.72	0.72
128	1.25	0.74	0.74	0.65	0.73	0.74	0.74
129	1.26	0.76	0.76	0.67	0.75	0.76	0.76
130	1.27	0.78	0.78	0.68	0.77	0.78	0.78
131	1.28	0.81	0.81	0.70	0.79	0.80	0.81
132	1.29	0.83	0.83	0.72	0.81	0.83	0.83
133	1.30	0.85	0.85	0.73	0.83	0.85	0.85
134	1.31	0.88	0.88	0.75	0.85	0.87	0.88
135	1.32	0.90	0.90	0.77	0.88	0.90	0.90
136	1.33	0.93	0.93	0.78	0.90	0.92	0.93
137	1.34	0.96	0.96	0.80	0.93	0.95	0.95
138	1.35	0.98	0.98	0.82	0.95	0.98	0.98
139	1.36	1.01	1.01	0.84	0.98	1.01	1.01
140	1.37	1.04	1.04	0.86	1.00	1.03	1.04
141	1.38	1.07	1.07	0.88	1.03	1.06	1.07
142	1.39	1.10	1.10	0.90	1.05	1.09	1.10
143	1.40	1.13	1.13	0.91	1.08	1.12	1.13
144	1.41	1.17	1.17	0.93	1.11	1.16	1.16
145	1.42	1.20	1.20	0.95	1.14	1.19	1.20
146	1.43	1.23	1.24	0.97	1.17	1.22	1.23
_							

5 Ответы на вопросы

1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

i-е приближение Пикара можно считать решением уравнения до тех пор, пока совпадают результаты для i-го и (i+1)-го приближений до второго знака после запятой.

Основываясь на таблице результатов:

- 1-ое приближение можно считать решением на отрезке [0, 0.84];
- 2-ое приближение можно считать решением на отрезке [0, 1.19];
- 3-ое приближение можно считать решением на отрезке [0, 1.41];
- для определения промежутка, на котором 4-ое приближение можно считать решением, необходимо использовать 5-ое приближение, которое в данной работе не рассматривалось.

Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

2. Путем уменьшения шага. Если получен правильный результат, то при уменьшении шага значение результата меняется незначительно.

Рассмотрим, например, значение функции при х=1.

По Эйлеру:

- при шаге= 10^{-1} y=0.29,
- при шаге= 10^{-2} y=0.34,
- при шаге= 10^{-3} y=0.35,
- при шаге= 10^{-4} y=0.35.

По Рунге-Кутта:

- при шаге= 10^{-1} v=0.35,
- при шаге= 10^{-2} y=0.35.

Таким образом, правильным ответом является у=0.35, причем при вычислении по Рунге-Кутта можно остановиться на шаге 10^{-1} , при вычислении по Эйлеру – на шаге 10^{-3}

- 3. Каково значение решения уравнения в точке x=2, т.е. привести значение $\mathbf{u}(2)$
 - 3. Примерное значение функции при x = 2.

$$u(2) \approx 317.57\tag{5.1}$$