

QUANTUM DISCOVERY

PASQAL neutral atom arrays

PASQAL www.pasqal.com office@pasqal.com 7 rue Léonard de Vinci 91300 Massy France

Building the register

Example (2D):

```
!pip install pulser
from pulser import Register

# Coordinates in micrometers
qubits = {'q0': (-2, 0), 'q1': (0, 2),
  'q2': (0, 0), 'q3': (0, -2), 'q4': (2, 0)}
reg = Register(qubits)
reg.draw()
```


Two-level transitions

Available channels

Available channels	Raman transition	Rydberg transition	
Addressing 1 atom	'raman_local'	'rydberg_local'	; ;
Addressing all the atoms	'raman_global'	'rydberg_global'	

Pulse parameters

A pulse is defined as the modulation of a signal's amplitude, detuning and phase over a finite duration:

- $\Omega(t)$: Rabi frequency (i.e. amplitude) at instant t
- $\delta(t) = \omega(t) \omega_{ge}$: detuning at instant t
- ϕ : phase
- au: pulse duration

Drive Hamiltonian

At a single-qubit level, an atomic transition is described by the drive Hamiltonian:

$$H^D(t) = \frac{\hbar}{2}\, {\bf \Omega} \cdot \boldsymbol{\sigma}$$

- Pauli vector: $\sigma = (X, Y, Z)^T$
- Rotation vector:

$$\mathbf{\Omega}(t) = (\Omega(t)\cos(\phi), -\Omega(t)\sin(\phi), -\delta(t))^T$$

• Angular velocity: $\Omega_{eff} = |\Omega| = \sqrt{\Omega^2 + \delta^2}$

Interacting qubits

Rydberg states

Interacting qubits

Ising Hamiltonian

Taking into account the dipole-dipole interaction, the Hamiltonian of the atomic register writes:

$$\mathcal{H}^{gr}(t) = \sum_i \left(H_i^D(t) + \underbrace{\sum_{j < i} \frac{C_6}{(R_{ij})^6} \hat{n}_i \hat{n}_j}_{\text{dipole-dipole interaction}} \right)$$

- \hat{n}_i : projector onto the Rydberg state for the *i*-th atom
- R_{ij} : interatomic distance in between atoms \emph{i} and \emph{j}
- C_6 : a constant depending on the specific Rydberg level

Interacting qubits

Blockade effect

Figure B1 | The Rydberg blockade. a: The ground and Rydberg states $|g\rangle$ and $|r\rangle$ are coupled by a resonant laser with Rabi frequency Ω . b: For two atoms separated by a distance $R < R_{\rm b}$, the collective ground state $|gg\rangle$ is coupled only to $|\psi_{+}\rangle = (|gr\rangle + |rg\rangle)/\sqrt{2}$, but not to $|rr\rangle$, which is shifted out of resonance by the van der Waals interaction. c: In a large ensemble of atoms, e.g. a regular array with spacing a, an atom excited in $|r\rangle$ (red dot) prevents the excitation of all the atoms contained in a sphere of radius $R_{\rm b}$.

Conclusion

- → Neutral atoms trapped in optical tweezers have emerged as a powerful platform for quantum information processing
- → Registers of neutral atoms are reconfigurable from one run of the experiment to another
- → One can play with the amplitude, the detuning and the phase of pulses sent to the atoms to implement quantum information processing tasks with selected energy levels
- → In Raman and Rydberg transitions, the ground state is taken as the zero state, and the excited state as the one state
- → The blockade effect prevents exciting two atoms in a Rydberg state when those atoms are close to each other
- → Atoms in a register can be controlled either locally (sequentially) or globally (simultaneously)

