# 1 Logistic regression function

## 1.1 Preprocessing and Hyperparameters

### Feature Scaling

I normalized the features, and the results were really so awful that I can know the test score would be very bad without submitting it to Kaggle. Therefore, I didn't do feature scaling on my features.

#### • Delete Features

| # of deleted features | Public test score |  |
|-----------------------|-------------------|--|
| 16                    | 0.91333           |  |
| 5                     | 0.93000           |  |
| 1                     | 0.93333           |  |
| 0                     | 0.93333           |  |

Performance on different number of features

I have deleted the feature whose zeros are more than {80%,90%,95%} in datasets. The number of deleted features are {16,5,1}, however, none of them improve the public test score. So I also didn't delete any features on my datasets.

#### Hyperparameters

| Learning rate | 1e-1    |  |
|---------------|---------|--|
| Epsilon*      | 1e-8    |  |
| Beta1*        | 0.9     |  |
| Beta2*        | 0.999   |  |
| iteration     | 18000   |  |
| W dim         | (57, 1) |  |

Hyper parameters

### 1.2 Training

• Objective function and the Loss function code

def sigmoid(self, z): #define the sigmoid function

<sup>\*:</sup> Hyperparameters in Adam optimizer

```
return 1/(1+np.exp(-z/100))

def cross_entropy(self): #define the cross entropy loss

z = np.dot(self.x, self.w) + self.b

loss = 0

for i in range(self.y.shape[0]):

if self.y[i][0] != self.sigmoid(z)[i][0]:

loss += (-(self.y[i][0]*np.log(self.sigmoid(z)[i][0]))

+ (1-self.y[i][0])*np.log(1-self.sigmoid(z)[i][0])))

return loss"
```

### Optimizer

I use Adam as my optimizer, the following pseudo code is showed below

```
for j in range(self.iteration):

z = np.dot(self.x, self.w) + self.b
grad_w = np.reshape(-np.sum((self.y -
self.sigmoid(z))*self.x, axis=0), [self.feat_dim, 1]) +
self.lamda*self.w
grad_b = -np.sum(self.y - self.sigmoid(z))
if(j>0):

lr_t = self.learning_rate * np.sqrt(1-self.beta2**j)/(1-
self.beta1**j)

m_t_w = self.beta1*m_t_w + (1-self.beta1) * grad_w
v_t_w = self.beta2*v_t_w + (1-self.beta2) * (grad_w**2)
m_t_b = self.beta1*m_t_b + (1-self.beta1) * grad_b
v_t_b = self.beta2*v_t_b + (1-self.beta2) * (grad_b**2)
self.w -= lr_t * m_t_w/(np.sqrt(v_t_w) + self.epsilon)
self.b -= lr_t * m_t_b/(np.sqrt(v_t_b) + self.epsilon) ""
```

## Additional process

After 18000 iterations, I delete the training sets whose cross entropy loss is bigger than 1 and then train another 18000 iterations so that to decrease the noise.

#### 1.3 Public Test score and Discussion

Different lambda values

| λ value | Public Test Score |
|---------|-------------------|
| 1       | 0.92000           |
| 1e-3    | 0.93000           |
| 1e-5    | 0.93333           |
| 0       | 0.93333           |

From the public test score, we can see if  $\lambda$  is bigger, the score is lower, which is out of my expectation. I think maybe the test datasets is similar to training set, so it didn't need regularization to avoid overfitting.

# 2 Support Vector Machine (linear SVM)

2.1 Preprocessing and Hyperparameters

| Learning rate                       | 1e-3             |
|-------------------------------------|------------------|
| Epsilon, Beta1, Beta2, W dim        | Same as Logistic |
| $C \left(=\frac{1}{\lambda}\right)$ | 1000             |

Hyperparameters of Linear SVM

Because the output of linear SVM is -1 or 1, therefore, I change all the 0 labels in datasetes to -1.

## 2.2 Training

#### Margin-based loss for classification

SVM loss or hinge loss  $L_{\Delta}(y, f(\mathbf{x}, \omega)) = \max(|\Delta - yf(\mathbf{x}, \omega)|, 0)$ Minimization of slack variables  $\xi_i = \Delta - y_i f(\mathbf{x}_i, \omega)$ 



svm loss

 Objective function and the Loss function code "def loss(self):

z = np.dot(self.x, self.w) + self.b # loss formula
loss = 0
for i in range(self.y.shape[0]):

```
loss += self.C*max(0, 1-self.y[i]*z[i])
loss += (1/2)*sum((self.w)**2)
return loss
def svm_func(self):
   z = np.dot(self.x, self.w) + self.b
   return z
```

### Optimizer and output

I use Adam as optimizer in Linear SVM. For the output, if np.dot(self.x, self.w) >= 0, then output 1, else output zero.

#### 2.3 Public Test score and Discussion

| Model                    | Public Score | Private Score |
|--------------------------|--------------|---------------|
| Logistic regression best | 0.93677      | 0.92667       |
| Linear SVM best          | 0.92677      | 0.92333       |

We can see that Logistic is a little bit better than linear SVN in this task. However, because the dimension of features is small (less than 1000) and the size of training examples is intermediate (10-10000), Gaussian kernel SVM model will be a more appropriate model then logistic regression or linear SVM.