

16. ii. 183 j

TEXAS INSTRUMENTS

TMS 9929A

EUROPEAN LINE FORMAT

VIDEO DISPLAY PROCESSOR

PRELIMINARY DATA

TABLE.....OF.....CONTENTS

Page	1	Brief Introduction
Page	2	Typical Interconnect Diagram (VDP/CPU/VRAM)
Page	3	Pin Outs: 9900 CPU; 9918/9928/9929 VDP; 4027/4116 VRAM
Page	4	Signal Waveforms 9929
Page	5	Vertical Line Assignment 9929
Page	6	Vertical Timing 9929
Page	7	Horizontal Timing 9929
Page	8 .	Output Stage 9929
Page	9	Output Voltage Variations 9929
Page	10	Outputs R-Y, B-Y, and Y as Percentage
		of Black-White Swing (Typical)

INTRODUCTION

This Preliminary Specification of the TMS9929 is to be considered as an "ADD ON" to the basic TMS9918 specification. The TMS9929 is effectively identical to the TMS9918 functionally and only has the color video section that is different.

The TMS9918 provides a composite color video signal output that if driven by a suitable amplifier can go directly into any color video monitor. The color burst frequency is the VDP oscillator input frequency divided by three. External video mixing with an external reference source can also be achieved by inputting this external source directly into the TMS9918.

In the TMS9929 the color and luminance/sync information is provided on three pins rather than a single pin in the form of two color difference signals and one luminance signal with all the vertical and horizontal timing included. So we have R-Y, B-Y, and Y respectively. The two color difference signals are used then by an external quadrature modulator video encoder. It is outside the Video Display Processor that the composite color video signal is generated into a PAL or Secam compatible TV signal. The external video mixing is also done outside and it is the TMS9929 to decide when this mode is entered. This, is achieved by a special level distinction made by the R-Y and B-Y VDP outputs. When external video is entered these two outputs go to the equivalent of the sync percentage level of the black-white swing in the luminance output, ie— the color difference outputs are normally swinging between the luminace black-white voltage | Evels and it is only in the external video mode that these outputs go to the reserved " sync " level.

Phase locking of the VDP to the external PAL burst frequency is desirable if inter-hum or crawl effects want to be minimized. The TMS9929 oscillator clock must still, however, be maintained within its prescribed limits of oscillator operation. CPUCLK signal is no longer available in the European TMS9929.

11.116 VRANY	PIN NAMES	-	OATA OUT DESCRIPTION		S Chip refect		VCC 15 V Bower Tupply	Author spend of the Oct.			Van 1	0 2 1 CAS	D 11 C M	NAS 4 (11,1,5) 13 A6		16K×1		A1. 7. 10 A5.	00 00 NCC					N3AG		Von 16 Vcc .			W 3	FASS 4 4 4027 13 3
9918-9928-9929				INS OUTH ITST PROBRAM	99/29	HALL NIGHT HALL MIGHT	пинай прапи	NI I IVIX II II II II XIVII XIVII IIII	0111 CAS 1/2 = 1.1/1 XIALP IN	1 407 1/3	1 ANS na 37" GTLK	1 111 1/2 1/2 1/2 (VII) (8.7	NI NISTISSI WAY THE REFISSING THE	1 AND WH SAM VEF P	וווים		1. GUH 1107 11111 M/H 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	אטטונ ייונ צוויו אוטא	500 - 11c 110 MSU "	1 SID 183	1 118 1185 8111 181	07) 000	CD 1111 25/11 170		6114 1150 5111	HHHHHHHHHHHHH		
0066				TAS 9500 PIN ASSIGNMENTS	1-Q1	WAIT 3 CHIENCE	- Ç-	י ווסרסא פי ביי	H.			H		₩		. : HJ	10 * T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		₩ C 1 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1			10 H	£ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	# : } } ? ?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H.	Ω	MITTED 22 COLUMNICATION COLUMN	

- 51N - 51N - 500 - 500 - 700 - 700 - 700 - 700

NSAG

4××4

~

14027

NSAG

VERTICAL LINE AS., GNMENT EURO-VDP 9928

		Dian cic.	50 (FOR 313 Limit)				
NAME	тор вопрев	ACTIVE AREA	BOTTOM BORDER -51	VERTICAL FRONT BLANKING 3	YERTICAL SYNC	VERTICAL BACK BLANKING 13	1 INF TOTAL 314
LOCATION	INE 001-052	INE 053-244	INE 245-295	INE 296-298	INE 299-301	INE 302-314	

THE VERTICAL TO HORIZONTAL ASPECT RATIO WILL BE

VERT: HORIZONTAL = 192:256 or 3:4

ALL OTHER VERTICAL LINES AND HORIZONTAL COUNTS ARE USED FOR BLANKING, BORDER OR SYNC, 4

PREPARED BY

DADI D LICOPATANINI

MODE OF OPERATION IS NON-INTERLACED

ONE LINE DURATION

* 465 NSEC DURATION PULSE

9928 PAL/SECAM VER' CAL TIMING

PREPARED BY; CARLO HERRMANN

- -

o o	5.5	4.00	2.84	2.30	3.92	2.84	3.38	2.30	y	4.00	2.92	3.38	2.30	1.76	1.08	1.08	
. 110°C	4.5	2.32	1.45	1.06	2.23	1.45	1.84	1.06		2.32	1.50	1.84	1.06	1.26	62.	.82	•
									- 3		100	2009 2009 1009 1009					
3 ₀ 0	4.5 5.5	2.35 4.04	1.47 2.85	1.07 2.30	2.29 3.96	1.47 2.85	1.88 3.40	1:07 2.30	. 13	2.35 4.04	1.53 2.93	1.88 3.40	1.07 2.30	1.28 1.74	.82 1.11.	.82 1.11	OUTDIT VOLTAGES 0000
		. (117)	(87)	(73)	(115)	(87)	(101)	(73)		(117)	(88)	(101)	(73)		•		THETHO
VBB = -3v Always TEMPERATURE (JUNCTION)	POWER SUPPLY (VOLTS)	WIITE (1	BLACK (SYNC .	MAX (1) NIW	MONOCHROME (1	EXT. VID. (1	MAX (1) NIN	MONOCHROME (1	EXT. VID. (Y - SWING (WHITE-SYNC)			
VBB = -3v Always TEMPERATURE (JUN	POWER SUPP	4.0	⊁			>	<u>ال</u> اء				>	- - -		Y - SWING	R-Y SWING	B-Y SWING	

9928/9929 signal amplitudes as percentage of black-white amplitude swing

COLOR CODE	COLOR	<u>Y</u>		R-Y	В-Ү
F	WHITE	1.00		.47	.47
E .	GRAY	.8		.47	.47
D	MAGENTA	.53		.73	.67
C .	GREEN 3	.47		.13	.23
В	YELLOW 1	.8		\$.57	.17 ~
Α	YELLOW 2	.73		,B. 5-7	.07
9 .	RED 1	.67		.93	.27
8 -	RED 2	.53	F. A	.93	.27
7	CYAN	.73	4.7	0.0	.7
6	RED 3	.47		.83	.3
5	BLUE 1	.53		.43	.93
4.	BLUE 2	.4-		.4	1.00
3	GREEN 1	.67 -		.17	.27
2	GREEN 2	.53		.07	.2
1	BLACK/BLNK	0.0		.47	.47
0	TRANSPAR.			F	
SYNC	NONE	46		.47 28A	.47 ZEA
BURST	NONE	0.0		.73 / .47	.2 .10
EXT.VIDEO	NONE	0.0		4647	9647

Prepared by: Carlo Herrmann

Ext.: 82-3520; MS:5713

Lubbock

TMS 9918 Electrical Specifications

6.1 Absolute maximum rating over operating free-air temperature range (unless otherwise noted)*.

Supply Voltage, Vcc (See note 1))	-0.3V to 20V
All Input and Output Voltages	•	-0.3V to 20V
Continuous Power Dissipation		1.81
Operating Free-Air Temperature	Range	0°C to 55°C
Storage Temperature Range		-55°C to 150°C

^{*} Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-conditions for extended periods may affect device reliability.

Note 1: Unless otherwise noted, all voltages are with respect to Vss.

.2 Recommended Operation Conditions

Supply Voltage, V _{CC}	MIN NOW WAX	STINU
	4.75 5.0 5.25	V
Supply Voltage, VSS =	0	. v
High Level Input Voltage, VIH All pins except reset	2.2	V
Low level Input Voltage, VIL All Pins	0.8	.v .
High level Input Voltage Reset, VIHR	. 3.0	- <u>-</u> y
Sync Level Input Voltage Reset, VIHS	10.0	V
Operating Free-Air Temperature	0 55	OC

6.3 Electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted).

באר אוארדים פי יי	of few spices as behaviors		e i u i i jesti	* 2 m - 1.	
PARAMETERS	TEST CONDITIONS	MIN	TYP*	MAX	UNITS
I: Input Leakage Current	V _i =0V to V _{cc}		· Dasti	4 123	9.000
Io Tristate Leakage Currer	All other pins=OV		•	<u>+</u> 10	uA .
Io Tristate Leakage Currer DO - D7	$v_{i}=0$ V to v_{cc}	100			in the
VOH High Level Output	T 1100 - 1		ico ben	<u>+</u> 100	.uA
Voltage -	I _{oh} = -400 uA	2.4	dee i		V
	The second second				•
VOL Low Level Output Voltage For CPU Data	I _{OL} =1.2 mA	94	1 bled a	de a timb	ALKUA .
				-4	V
VOLM Low Level Output Voltage For DRAM I/F	$I_{OL} = 800 uA$		1111111111		·m1234
	• • •			-4	٧.
Vous High Level Output Voltage for RAS, CAS				96	
WRITE		2.7		v = 10	. ν
" w Video Voltage Level of					.,
White	V _{cc} =5V		3.2		ν
VyB Video Voltage Level of			. 75	List Control	RIVERS.
Black (blank)	V _{ce} =5V		2.3		y
Vys Video Voltage Level of					
Sync	v _{cc} =5v	- m	1.9		. V
VVBA Video Voltage Peak to			154		program
. Peak of Burst	V _{cc} =5V		•5		. γ.
Vyp Video Range (White-Black)		•5			ν
Icc Supply Current	TA = 25 ⁰ C				
From V _{cc}	312		200	250	mA
C _i Input Capacitance	$F = 1MH_Z$				
	unmeasured pins at	V _{ss}		10	pf .
D _O -D ₇ Data I/O Capacitance	$F = 1MH_Z$		eranos, a	est.	(5)
	unmeasured pins at	V _{ss}		20	pf
Co Output Capacitance	$F = 1MH_Z$	ala mire	2 (45)		
	unneasured pins at	v_{ss}		20	pf

All typical values are 'at $T_a = 25^{\circ}C$ and nominal voltages.

Timing requirements over recommended supply voltage range and operating free-air temperature range.

recease competature range,			
CPU - VDP Interface		Constitution and Constitution of	
Parameters	MIN	TYP MAX	UNITS
tasal Address set up time before CSR low	0		NS
taswi Address set up time before CSW low	50	ı	 NS
tAHWL Address hold time after CSW low	. 50 ~		NS
tCSWW CSW pulse width, low	220		NS
tDSWH Data set up time before CSW high	. 50		ж
torcm Chip select high requesting memory access until next chip select low	8		uS
tDHWH Data hold time after CSW high	50		NS ·
tCACV Chip select high not request memory access until next chip select low	3		uS
tAHRH Address hold time after CSR high	0	red plant egal for pears fores	. אצ
VDP - VRAM Interface			
tot Memory read or write cycle time	372		NS
t _a (C) Data access time from CAS		150	ns
ta(R) Data access time from RAS		200	_ NS
t _{su} (DATA) Input data set up time before CAS low	100	- Prince Space Server	NS
th (DATA) Input data hold time after CAS low	٥.		NS

6.5 Switching Characteristics over full range of recommended operating conditions.

Parameters :	TEST COND MIN	XAM TYP	UNITS
CPU - VDP Interface		• 12.1	dans in
tDARL Data access time from CSR	C _L =300pf	400	NS
tDHRH Data hold time from CSR high	C _L =300pf 0	300	. из
CPU-Clock ÷3 Output Clock		3.58	MHZ
GROM-Clock ÷24 Output Clock		447.5	KEZ
VDP - VRAM Interface		IE quere and	
tw(CH) Pulse width, column address strobe high	150	est sin ares in III	NS
tw(CL) Pulse width, column	-927		
address strobe low	150		ЖS
tw(RH) Pulse width, row address strobe high	120	ened pien en C	NS
tw(RL) Pulse width, row address strobe low	200	e i glardy boxfi	·NS
$t_w(W)$ Write pulse width low	150	n) Lim enit	- NS
t _{su} (AC) .Column address set up time	-20	ariod jedra v sa desder za količk svijizanskih dad	'ns
t _{su} (AR) Row address set up	10	salos vatvi gyieć doja postak	NS
t _{su} (D) Data set up time	-15	3 36 Hold V23	
		a com jeulet valvi	ИS
t _{su} (rd) Read command set up Ti	.пе -50	oprin	NS
t _{su} (WCH) Write command set up time before CAS high	75		NS

(Switching Characteristics, continued)

Parameter	<u>TES</u>	T COND	MIN	TYP	XAM	
t _{su} (WRH)	Write command set up time before RAS high	227.384	75		A 1611	NS
tn(ACL)	Column address hold time after CAS low	4,000	60	entil	niery mai	ЖS
t _h (AR)	Row address hold time		20			. NS
t _h (ARL)	Column address hold time after RAS low		95 _	200		NS
th(DCL)	Data hold time after RAS low		240		e Livi	NS
th(DRL)	Data hold time after RAS low		280	ca jesti. ed elk es		NS
t _h (DWL) .	Data hold time after w low	•	145			NS
th(rd)	Read command hold time		- 25			NS
t _h (WCL)	Write command hold time after CAS low		245			. พร
torri D	elay time, column address strobe high to row address strobe low		100			ns
tCLRH D	elay time, column address strobe low to			Tes son		
talch . D	row address strobe hig elay time, row address strobe low to column		150			ХЗ
	address strobe low		35			NS

