Machine Learning

What is Machine Learning?

Machine Learning systems take inputs (data) to make useful predictions and decisions about previously unseen pieces of data.

Machine learning is a specific field of Al where a system learns to find patterns in examples in order to make predictions.

Computers learning how to do a task without being explicitly programmed to do so.

Machine Learning systems might:

- Label or classify data
- Predict numerical values
- Cluster similar pieces of data together
- Infer association patterns in data
- Create complex outputs

"Machine Learning: Why or Why not?"

Read a couple of news articles involving applications of ML.

- 1. Would a traditional programming solution be more efficient?
- 1. Could a human perform the same task in less time?
- I. What are the benefits of a Machine Learning model in these instances?

Machine Learning

Supervised

Model is trained on labeled data

stop_sign_1

stop_sign_2

Unsupervised

Model learns patterns from unlabelled data.

See it in action!

Supervised learning

Image label verification

Unsupervised learning

Semantic Similarity

Loss

Classification

Categorizing data into predefined classes or categories based on their features.

Process of Classification:

- Data preparation: Collect and label dataset.
- Feature extraction: Extract relevant features.
- Training: Train classification algorithm.
- **Evaluation: Assess model performance.**
- Prediction: Predict class labels for new instances.

Linear Regression

- Predicts continuous values.
- Uses linear decision boundary.
- Assumes linear relationship.
- Simple and interpretable.
- Limited for binary classification tasks.

K-Nearest Neighbors(KNN)

- Proximity-based classification.
- Nonlinear decision boundaries.
- Requires optimal k selection.
- Simple and interpretable.
- Effective for small to medium-sized datasets.

Random Forest

- Ensemble of decision trees.
- Reduces overfitting.
- Handles high-dimensional data.
- Provides feature importance.
- Robust to missing data and outliers.

Regression

A statistical technique used to predict continuous numerical values based on the relationship between a dependent variable and one or more independent variables.

Process of Regression:

- Data preparation: Collect and preprocess dataset.
- Model selection: Choose regression algorithm.
- Training: Fit model to training data.
- Evaluation: Assess model performance.
- Prediction: Make predictions on new data instances.

Logistic Regression

- Predicts binary outcomes.
- Estimates probabilities.
- Assumes linear relationship.
- Interpretable coefficients.
- Requires feature scaling.

K-Nearest Neighbors(KNN)

- Uses nearby neighbors for prediction.
- Handles nonlinearity.
- Sensitive to choice of neighbors (k).
- Simple and interpretable.
- Good for small to medium-sized datasets.

Random Forest

- Ensemble of decision trees.
- Reduces overfitting.
- Handles high-dimensional data.
- Provides feature importance.
- Robust to missing data and outliers.

