

Markscheme

November 2022

Chemistry

Higher level

Paper 2

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject Details: Chemistry higher level Paper 2 Markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[90 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- **5.** An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- **14.** Do **not** penalize candidates for errors in units **or** significant figures, **unless** it is specifically referred to in the "Notes" column.
- **15.** If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	Questi	on	Answers	Notes	Total
1.	(a)				1
1.	(b)		«Brønsted-Lowry» acid <i>AND</i> can donate a proton/H ⁺ <i>OR</i> «Brønsted-Lowry» acid <i>AND</i> cannot accept proton/H ⁺ ✓		1
1.	(c)	(i)	«pH = − log (1.07 × 10 ⁻⁵) =» 4.97 √		1
1.	(c)	(ii)	$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(aq) + H_2O(l)$ \textit{OR} $NH_4NO_3(aq) + NaOH(aq) \rightarrow NH_3(aq) + H_2O(l) + NaNO_3(aq) \checkmark$	Accept NH ₄ OH instead of NH ₃ + H ₂ O.	1
1.	(c)	(iii)	«n(NH ₄ NO ₃) = 0.20 mol dm ⁻³ × 0.02000 dm ³ =» 0.0040 «mol NH ₄ NO ₃ » ✓ «[NH ₃] at equivalence point = $\frac{0.0040 \ mol}{0.04000 \ dm^3}$ =» 0.10 «mol dm ⁻³ » ✓ « $K_b = 10^{\text{-pKb}} = 10^{\text{-4.75}} = 1.8 \times 10^{\text{-5}}$ » «[OH^-] = $\sqrt{K_b[NH_3]} = \sqrt{1.8 \times 10^{-5}(0.10)}$ =» 0.0013 «mol dm ⁻³ » ✓ «pOH = $-\log(0.0013) = 2.89$ » «pH = 14.00 $-$ pOH =» 11.11 ✓	Award [4] for correct final answer. Accept a range of 11.11 – 11.14.	4

C	Question		Answers	Notes	Total
1.	(c)	(v)	no AND the end point is not in the sharp part of the curve OR no AND the equivalence point does not fall within the end-point/pH range of the indicator OR no AND there is a large difference in volume between end point and equivalence point OR no AND no sharp rise in pH «near equivalence point» ✓		1
1.	(d)	(i)	$q = mc\Delta T = 25.32 \text{ g} \times 4.18 \text{ J g}^{-1}\text{K}^{-1} \times (25.2^{\circ}\text{C} - 0.8^{\circ}\text{C}) = 2580 \text{ s}^{-1}\text{M}^{-1}$ √	Do not accept a negative value.	1
1.	(d)	(ii)	«2.58 × 10 ³ J × $\frac{1 kJ}{1000 J}$ × $\frac{1 mol}{25.69 kJ}$ =» 0.100 «mol» ✓ «0.100 mol × 80.06 g mol ⁻¹ =» 8.01 «g» ✓	Award [2] for the correct final answer. Accept range of 8.0 – 8.1 g. If 3.11 x 10 ³ J used then answer is 9.69 g.	2

Q	uestic	on	Answers	Notes	Total
1.	(d)	(iii)	«fractional / % uncertainty in $\Delta T = \frac{0.4}{24.4} / 0.02 / 2 \text{«%»}$ ✓ «fractional / % uncertainty in $m = \frac{0.01}{25.32} / 0.0004 / 0.04 \text{«%»}$	Award [3] for correct final answer. Accept range of 0.1 $g - 0.2$ «g». If 6.55 g used then the answer is 0.1	
			fractional / % uncertainty in m is much smaller than uncertainty in $\Delta T \checkmark$ «2% x 8.01 g =» 0.2 «g» \checkmark	«g».	3
1.	(d)	(iv)	«% error = $\left \frac{9.50 g - 8.01 g}{9.50 g} \right \times 100 \% = $ ≈ 15.7«%» ✓	Accept range 14.7 – 15.8«%». If 6.55 g used then answer is 31.1«%».	1
1.	(d)	(v)	$\text{«}\Delta S^{\circ} = 259.8 J mol^{-1} K^{-1} - 151.1 J mol^{-1} K^{-1} = \text{»} 108.7 \text{«J mol}^{-1} \text{K}^{-1} \text{»} \checkmark$		1
1.	(d)	(vi)	« $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 25.69 kJ mol^{-1} - 298 K \left(108.7 J mol^{-1} K^{-1} \times \frac{1 kJ}{1000 J}\right) =$ − 6.70 «kJ mol ⁻¹ » ✓	If 102.3 J mol ⁻¹ K ⁻¹⁻ is used then answer is –4.80 kJ mol ⁻¹ .	1
1.	(d)	(vii)	$«\Delta G^{\circ} = -RT \ln K »$	Award [2] for correct final answer.	
				If –7.84 kJ is used then answer is 23.7.	
			«InK =» 2.71 √		2
			$\ll K = e^{2.71} = $ » 15.0 \checkmark		

C	Question		Answers	Notes	Total
1.	(d)	(viii)	product/right/solution/NH₄NO₃(aq) is favoured <i>AND K</i> >1 ✓	Accept K large. Accept other valid ways of justifying equilibrium position such as ΔG<0/spontaneous/ΔH<0 AND ΔS>0.	1
1.	(e)		Anode: $H_2O(I) \rightarrow 1/2O_2(g) + 2H^+(aq) + 2e^-$ ✓ Cathode: $H^+(aq) + e^- \rightarrow 1/2H_2(g)$ ✓	Do not accept other equations.	2
1.	(f)	(i)	$NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(l) \checkmark$		1
1.	(f)	(ii)	«5.00 g ÷ 80.06 g mol ⁻¹ =» 0.0625 mol «NH ₄ NO ₃ » ✓ «1:1 mol ratio» «0.0625 $mol N_2 O \times \frac{22.7 \ dm^3}{mol}$ =» 1.42 «dm³» ✓	Award [2] for correct final answer. Accept range 1.36 – 1.43 «dm³». Accept calculations based on PV=nRT.	2

C	Question		Answers	Notes	Total
1.	(f)	(iii)	2 x − 285.8 «kJ mol ⁻¹ » ✓ «1mol (82 kJ mol ⁻¹) + 2mol (− 285.8 kJ mol ⁻¹) − 1mol (− 366 kJ mol ⁻¹) =» −124 «kJ» ✓	Award [2] for correct final answer.	2
1.	(f)	(iv)	Entropy change: positive AND formation of gas «and liquid from solid» ✓ Gibbs free energy change: negative AND increase in entropy/ΔS positive AND exothermic reaction/ΔH negative ✓		2

C	Question		Answers	Notes	Total
1.	(f)	(v)	Alternative 1 Lewis structure: + - N N N N N N N N N N N N N N N N N N	Notes -2 + + N-N=O Accept Formal charges are not needed for M1. Allow ECF for both formal charge and shape. Only award M3 if the shape corresponds to that expected for the Lewis structure given.	Total 3
			+/1+/+1 on central N atom <i>AND</i> -/1-/-1 on other N atom ✓ Shape: linear ✓		

C	Questi	on	Answers	Notes	Total
2.	(a)		CI N1		1
2.	(b)		nine/9 ✓		1
2.	(c)		seven/7 ✓		1
2.	(d)		«bond in ring is» shorter <i>AND</i> more electrons are shared OR «bond in ring is» shorter <i>AND</i> partial double/multiple bonding/bond order 1.5 ✓		1

Q	uestic	on	Answers	Notes	Total
2.	(e)	(i)	H ₂ N N primary amine/-NH ₂ ✓ rest of structure ✓	Do not penalize using "N1".	2
2.	(e)	(ii)	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{1}3d^{10} / 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{1}$ \textit{OR} $[Ar]4s^{1}3d^{10} / [Ar]3d^{10}4s^{1} \checkmark$		1
2.	(e)	(iii)	E _a (with catalyst) E _a (no catalyst) Kinetic energy both E _a values marked AND left one labelled catalysed ✓		1
2.	(e)	(iv)	increases rate AND there is a greater area under the curve past activation energy OR increases rate AND greater proportion of/more molecules have «kinetic» $E \ge E_a$ «(cat) than E_a (uncat)» \checkmark	Do not award a mark for general statements about catalysts such as "provides alternative pathway" or "lowers E _a ".	1

C	Question		Answers	Notes	Total
3.	(a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ <i>OR</i> [Ar]3d ⁶ ✓		1
3.	(b)		$\frac{(63 \times 69) + (65 \times 31)}{100}$ OR $65x + (1 - x)63 = 63.62 \text{ AND } x = 0.31/31\text{«%» AND } 1 - x = 0.69/69\text{«%»} \checkmark$		1

C	Question	Answers	Notes	Total
3.	(c)	Cu ²⁺ AND fewer shielding electrons/less electron-electron repulsion «from same nuclear charge»		
		OR		
		Cu ²⁺ AND larger effective nuclear charge		
		OR		
		Cu ²⁺ AND more energy required to remove electron from positive ion than neutral parent atom		1
		OR		
		Cu ²⁺ AND smaller radius		
		OR		
		Cu ²⁺ AND electron is being lost from a lower energy/inner/3d orbital ✓		

C	uestion	Answers	Notes	Total
3.	(d)	Alternative 1	Award [2] for correct final answer.	2
3.	(e)	«iron atoms have 4» unpaired electrons ✓ aligns with a magnetic field/paramagnetic OR has a magnetic moment OR ferromagnetic ✓	For M1 accept diagrams showing unpaired electrons.	2

l l			

C	uesti	on	Answers	Notes	Total
3.	(f)	(i)	all 4 species correctly labelled ✓ arrow showing electron flow from anode to cathode in the external circuit ✓	Accept any soluble salt of copper(II) for Cu ²⁺ and any soluble salt of iron(II) for Fe ²⁺ . Do not apply ECF for M2.	2
3.	(f)	(ii)	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-} \checkmark$	Accept equilibrium arrow. Do not award ECF for $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$.	1
3.	(f)	(iii)	«keep» each half-cell/electrolyte «electrically» neutral ✓	Accept balance charges/ions. Accept allow ion flow «between cells».	1

Q	uestic	on	Answers	Notes	Total
3.	(f)	(iv)	NO₃⁻ to anode/Fe/left ✓	Accept other specific anions in addition to nitrate for M1.	
			K⁺ «and Fe²+» to cathode/Cu/right √	Award [1 max] for "anions/negative ions to anode AND cations/positive ions to cathode".	2
3.	(f)	(v)	$\&E^{\Theta} = + 0.34 \text{ V} - (-0.45 \text{ V}) = + 0.79 $		1
3.	(f)	(vi)		Accept answers in the range 150 – 153.	
			« ΔG^{Θ} = − $nF E^{\Theta}$ = − 2 mol x (9.65 x10 ⁴ C mol ⁻¹) x (0.79 V) x =» −152 «kJ» \checkmark		1

C	uestic	on	Answers	Notes	Total
4.	(a)	(i)	Structure: H C C C H H H ester functional group rest of structure Empirical Formula: C ₃ H ₅ O	Accept condensed/skeletal formula.	3
4.	(a)	(ii)	dilute adds «excess» water OR water is a product ✓ shift left AND decreases yield ✓		2

Q	Question		Answers	Notes	Total
4.	(a)	(iii)	A has hydrogen bonding/bonds «and dipole-dipole and London/dispersion forces» AND B has dipole-dipole «and London/dispersion forces»		
			OR		
			A has hydrogen bonding/bonds <i>AND</i> B does not ✓		
					2
			intermolecular forces are weaker in B		
			OR		
			hydrogen bonding/bonds stronger «than dipole-dipole» ✓		
4.	(b)				
			brown/orange/red/yellow to colourless ✓	Do not accept clear for colourless.	1

Q	uestio	n	Answers	Notes	Total
5.	(a)			Award [2] for correct final answer. Accept 0.063 «mol».	2
5.	(b)		$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$ OR $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ AND $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(aq)$ OR $SO_2(g) + \frac{1}{2}O_2(g) + H_2O(l) \rightarrow H_2SO_4(aq)$	Accept ionized forms of acids.	1
5.	(c)		OR S	Do not penalise missing formal charges.	1

C	Question		Answers	Notes	Total
5.	(d)		Any two of: depth/volume «of solution» ✓ colour/darkness/thickness/size/background of mark ✓ intensity of lighting in the lab ✓	Accept same size flask. Accept position of observation/person observing. Accept same equipment/apparatus. Do not accept catalyst/particle size/pressure/time.	2 max
5.	(e)		Any two of: remove sulfur from coal ✓ add lime during combustion ✓ not allow sulfur oxides to be released into the environment ✓ reduce proportion/percentage of energy/power produced by «the combustion of» coal ✓	Accept any valid method to wash coal and remove sulfur content for M1. Accept any valid combustion/post-combustion method to remove sulfur oxides. Accept any suggestion that would reduce the amount of coal that is burnt or would reduce the damage caused. Do not accept answers that only reduce production of SO ₂ /CO ₂ from other fuels. Accept "improve efficiency of energy production from coal". Accept "use coal of lower sulfur content" OR "cleaner coal".	2 max

Q	uestic	on	Answers	Notes	Total
6.	(a)		Rate CN' CN' CN' CN' CN' CN' CN'		2
6.	(b)		S _N 2 AND S _N 2 «mechanism» occurs with inversion of configuration OR S _N 2 AND S _N 1 «mechanism» would create a racemic mixture ✓	Accept appropriate diagrams.	1
6.	(c)		polarimeter ✓		1
6.	(d)		aprotic <i>AND</i> polar ✓		1

C	Question	Answers	Notes	Total
6.	(e)	slower <i>AND</i> C-Cl bond is stronger «than C-Br»		
		OR		1
		slower <i>AND</i> Br/Br⁻ is a better leaving group ✓		
6.	(f)	arrow from C-Br bond to Br ✓ transition state representing the partially formed and partially broken bonds ✓ If S _N 1 was selected in 6 (b): □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		3

Q	Question		Answers	Notes	Total
6.	(g)	(i)	Number of signals: 4 ✓ Ratio of areas: 3:1:2:3 ✓	Accept ratio of areas in any order.	2
6.	(g)	(ii)	Splitting pattern of the signal of the hydrogen atoms in circle A : doublet ✓ Splitting pattern of the signal of the hydrogen atoms in circle B : triplet ✓		2