

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-144892

(43)公開日 平成11年(1999)5月28日

(51)Int.Cl.⁶

H 05 H 1/46

C 23 C 16/50

H 01 L 21/205

識別記号

F I

H 05 H 1/46

A

C 23 C 16/50

H 01 L 21/205

審査請求 未請求 請求項の数13 書面 (全 8 頁)

(21)出願番号

特願平9-363082

(22)出願日

平成9年(1997)11月12日

(71)出願人 598003690

田中 栄

茨城県猿島郡五霞町原宿台1-5-5

(72)発明者 田中 栄

茨城県猿島郡五霞町原宿台1-5-5

(54)【発明の名称】 プラズマ装置

(57)【要約】

【目的】 液晶表示装置に用いられている薄膜トランジスタ素子を形成するプラズマCVD装置を大型化するときに問題となる、成膜の不均一性、薄膜トランジスタ界面のイオンダメージ、高速成膜による絶縁膜中の固定電荷の増大などを低減し、超大型アクティブマトリックス液晶表示装置の量産を実現する。

【構成】 ガラス基板に対向する放電電極が複数の電極から構成されており、それぞれの電極は、互いに極性の異なる高周波電圧を印加され横方向の放電を生じるように配置されている。反応ガスは、電極と電極のあいだから放出される。横電界の放電プラズマ中に放出されたガスは、プラズマ反応を生じた後ガラス基板側の方向に拡散し、ガラス基板に堆積する。

【特許請求の範囲】

【請求項1】ガラス基板をのせるステージと前記ステージに水平に対向している放電電極から構成されているプラズマ発生装置において、前記放電電極が、複数の電極から構成されており、それぞれの電極は互いに極性の異なる高周波電圧を印加されステージに対して水平な横電界を形成し、横方向の放電が生じることを特徴とするプラズマ発生装置。

【請求項2】特許請求の範囲第1項において、分離されている放電電極と放電電極のあいだに穴かスリットをもうけ、ここから反応ガスを反応チャンバー内におくりこむ構造を特徴とするプラズマ発生装置。

【請求項3】特許請求の範囲第2項において、それぞれに分離されている複数の放電電極を交互に連結し2群にわけて、2相の高周波電圧を印加して横放電させることを特徴とするプラズマ発生装置。

【請求項4】特許請求の範囲第2項において、それぞれに分離されている複数の放電電極を交互に連結し3群にわけて、3相の高周波電圧を印加して横放電させることを特徴とするプラズマ発生装置。

【請求項5】特許請求の範囲第2項において、複数の別々の電極を電気的に連結してガラス基板に対して縦放電させたり、2つ以上の電極群に分離させ横方向放電を生じさせたりして、ステージに対して放電モードを切り換えることが可能なプラズマ発生装置。

【請求項6】特許請求の範囲第2項において、複数の放電電極が電極を固定している絶縁体の中にうめこまれており電極と電極のあいだの穴から、反応ガスを反応チャンバー中におくりこむ構造を特徴とするプラズマ発生装置。

【請求項7】ガラス基板をのせるステージと、前記ステージに水平に対向している放電電極から構成されるプラズマ発生装置において、前記放電電極がハニカム形状となっており、このハニカム電極に高周波電圧を印加しステージに対して垂直な方向に電界を発生させ、縦方向の放電が生じることを特徴とするプラズマ発生装置。

【請求項8】特許請求の範囲第7項において、ハニカム電極の穴には、反応ガス放出口があり、この反応ガス放出口から反応ガスを反応チャンバー中におくりこむ構造を特徴とするプラズマ発生装置。

【請求項9】特許請求の範囲第7項においてハニカム電極の開口部の径よりもハニカム電極の穴の深さの方が大きいことを特徴とするプラズマ発生装置。

【請求項10】特許請求の範囲第2項において、ガラス基板をのせているステージにプラスまたは、マイナスのDC電圧を印加したり、DCバイアス電圧のかかった高周波電圧を印加することができることを特徴とするプラズマ発生装置。

【請求項11】ガラス基板をのせるステージの表面がハニカム形状となっており、ガラス基板を持ち上げるリフ

ターのピンがハニカムの穴から出てきてガラス基板さえる機構を特徴とするステージ。

【請求項12】特許請求の範囲第1項、第7項に用いられる放電電極材料がマグネシウムか、マグネシウムを主体とする合金、または、アルミニウムか、アルミニウムを主体とする合金であることを特徴とするプラズマ発生装置。

【請求項13】特許請求の範囲第7項において、ハニカム放電電極と同じ形状のハニカムシールド電極を絶縁スペーサーではりあわせた構造のプラズマ発生装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】アクティブマトリックス液晶パネルを製造するときに使用するプラズマCVD装置やドライエッチング装置、プラズマアッティング装置に関するもので特に超大型基板に適用可能である。そのほかに本発明は、Siウェーハーを用いるLSIプロセスにも同様に適用可能である。

【0002】

【従来の技術】ガラス基板をのせるステージと、そのステージに水平に対向して放電電極を配置している。放電電極は一体化しており電極の表面に多数の穴をあけその穴から反応ガスを放出し放電させる。ガラス基板と放電電極の空間は通常20mm以上あいている。

【0003】

【発明が解決しようとする課題】従来の平行平板型一体化放電電極構造のプラズマ発生装置で放電ガス圧力を高くしていくとパツツエンの法則により放電電極とステージの空間を小さくしていくないと放電開始電圧と放電維持電圧が非常に高くなってしまう。放電開始電圧が高くなると、放電がはじまる時に、ステージの上にガラス基板側に放電ダメージを与えやすくなり、薄膜アモルファス・トランジスタ素子の特性をいちじるしく低下させてしまう。さらに従来の平行平板型一体化放電電極構造のプラズマ発生装置では、ガラス基板の大型化にともない放電電極を大型化していくとガラス基板に均一にアモルファスSi薄膜を堆積していくことがむずかしくなり、放電ガス圧力を低くする方向で均一堆積を実現している。放電ガス圧力が低くなると堆積速度も低くなりスループットが低下するという問題が発生します。放電ガス圧力を低くするとプラズマ中のイオンの平均自由行程の距離が長くなりイオンの運動エネルギーが大きくなりガラス基板にダメージを与えるので膜質が悪化する傾向にある。堆積速度を向上させるために放電の高周波の周波数を大きくする方法も可能であるが大型基板に用いる場合電源のコストが大きくなり装置の設計もむずかしくなる。さらに放電パワーを大きくすると従来の場合ガスの放出口でアーキング現象が発生し、放電電極が破壊される問題も多発していた。

【0004】本発明のプラズマ発生装置は、上記の課題

を解決するもので、その目的とするところは、ガラス基板を大型化するときに問題となる成膜の不均一性、薄膜トランジスタの界面のイオンダメージ、高速成膜による絶縁膜中の固定電荷の増大などを低減することで、薄膜トランジスタの特性を向上し、超大型ガラス基板を用いた超大型液晶表示装置を実現することにある。

【0005】

【課題を解決するための手段】前記從来の課題を解決し、その目的を達成するために次の手段をとる。

【手段1】ガラス基板をのせるステージと前記ステージに水平に対向している放電電極から構成されるプラズマ発生装置において、前記放電電極を複数の電極から構成し、それぞれの電極には、互いに極性の異なる高周波電圧を印加し、ステージに対して水平な横電界を発生させ、横方向の放電が生じるようにした。

【0006】【手段2】手段1において、分離されている放電電極と放電電極のあいだに、穴か、スリットをもうけ、この部分から反応ガスを反応チャンバー内におくりこむようにした。

【0007】【手段3】手段2において、それぞれ分離されている複数の放電電極を交互に連結し2群にわけて、それぞれの群に位相の異なる2相の高周波電圧を印加して、ステージに対して水平な方向に放電させた。

【0008】【手段4】手段2において、それぞれ分離されている複数の放電電極を交互に連結し3群にわけて、それぞれの群に位相の異なる3相の高周波電圧を印加して、ステージに対して水平な方向に放電させた。

【0009】【手段5】手段2において、それぞれ分離されている複数の放電電極をすべて電気的に連結させ同相の高周波電圧を印加して、ステージに対して垂直方向の縦放電を発生させたり、電気的に2つ以上の電極群に分離してステージに対して水平方向の横放電を発生したりして、ステージに対して放電モードを切り換えることが可能ないようにした。

【0010】【手段6】手段2において、複数に分離されている放電電極が電極を固定している絶縁体の中に入めこまれており、電極と電極のあいだの穴やスリットから反応ガスを反応チャンバー内におくりこむ構造とした。

【0011】【手段7】ガラス基板をのせるステージと、前記ステージに水平に対向している放電電極から構成されるプラズマ発生装置において、前記放電電極がハニカム形状となっており、このハニカム電極に高周波電圧を印加し、ステージに対して垂直な方向に電界を発生させ、縦方向の放電が生じるようにした。

【0012】【手段8】手段7において、ハニカム電極の穴のおくに、反応ガス放出口があり、この反応ガス放出口から反応ガスを反応チャンバー内におくりこむ構造とした。

【0013】【手段9】手段7において、ハニカム電極 50

の開口部の径よりもハニカム電極の穴の深さの方が大きい構造とした。(電極の表面積を大きくした。)

【0014】【手段10】手段2において、ガラス基板をのせているステージにプラスまたはマイナスのDC電圧を印加したり、DCバイアス電圧のかかった高周波電圧を印加することができるようとした。

【0015】【手段11】ガラス基板をのせるステージの表面がハニカム形状となっており、ガラス基板を持ち上げるリフターのピンがハニカムの穴から出てきてガラス基板をささえられるようにした。

【0016】【手段12】手段1、手段7に用いられる放電電極材料にマグネシウムか、マグネシウムを主体とする合金、または、アルミニウムか、アルミニウムを主体とする合金を用いた。

【0017】【手段13】手段7において、ハニカム放電電極と同じ形状のハニカムシールド電極を絶縁スペーサーをかいしてはりあわせた構造とした。

【0018】

【作用】放電電極を複数に分割し、それぞれに位相の異なる高周波電圧を印加することでステージに水平方向の放電を生じさせる。この横方向放電の場合にはステージの上のガラス基板には、イオンや電子がふりそそぐことがないので放電ダメージが激減する。薄膜トランジスタの特性を最も支配するゲート絶縁膜と半導体層の界面を形成する時に界面に放電ダメージを得えないようにすることが重要である。ゲート電極が下部にありゲート絶縁膜を堆積してから半導体層(ノンドープa-Si層)を堆積する逆スタガー型薄膜トランジスタが主流になっているのも、この界面形成時の放電ダメージが小さくできるからである。半導体層を堆積する時の放電パワー密度はゲート絶縁膜を堆積する時の放電パワー密度よりも1/4~1/10程度小さい。放電パワー密度を小さくすることで界面にダメージを得えないようにしているだ。従来の平行平板型のプラズマCVD装置では、放電電極とガラス基板の間にガラス基板と垂直方向に電界を印加させ縦方向に放電を生じさせていた。このタイプのプラズマCVD装置では、放電パワー密度を小さくしても、原理的に放電ダメージをなくすことは不可能である。そのため放電ダメージを低減するためにはイオンの平均自由行程を小さくする必要があり、放電ガス圧力はできるだけ高い方が良い。しかし放電ガス圧が高いと放電開始電圧が高くなり、放電が開始する瞬間に、界面にダメージを得てしまう。さらに放電ガス圧が高いと放電電極のエッジ部分に放電がかたよってしまい均一な膜厚と膜質を得ることができなくなる。

【0019】本発明の横方向放電を用いると放電電極と放電電極の空間を10mm以下にすることができるのでガス圧力を高くしても放電開始圧は高くならないし、放電の不均一性も生じない。ガス圧力を小さくしても横方向放電なので原理的に放電ダメージをガラス基板に得え

ることがない。放電条件の範囲が非常に広くなるので薄膜トランジスタの特性を悪化させることなくダストの発生しない高速堆積条件を見つけることが可能である。

【0020】ガラス基板がメートルサイズほどの大きさになっての放電電極の重量も問題になってしまいます。従来のPCVDの放電電極の板厚は20mm以上もあり電極の交換も非常に大変です。本発明のハニカム電極は、重量を従来の1/3~1/4に低減できます。コストも従来の1/3程度まで低減可能です。従来の平行平板電極よりも穴の深さを深くできるので放電表面積を拡大できます。これにより放電電極付近の電位降下を低減できるのでプラズマ反応が放電電極側に集中するのを防止できる。そのために従来の電極よりもダストやパーティクルの発生を低減できる。異常放電がなくなる。

【0021】スループットと向上させ生産性をあげるために高周波電圧の周波数を従来の2倍、3倍にあげる方法が提案されているが、ガラス基板が大きくなればなるほど、電極の容量が大きくなり電極の表面抵抗も大きくなるので装置設計が非常にむずかしくなってくる。本発明の場合、横方向放電ではプラズマダメージが低減可能なので逆に大型化の場合には、放電周波数をさげる方向での検討が可能である。放電周波数をさげた場合、高周波電源の設計も簡単になり、PCVD装置の放電の安定性も向上する。

【0022】従来の平行平板型のプラズマ装置ではガラス基板をのせたステージの電位を変化させても放電電極とステージの間に縦方向放電が生じているために、ガラス基板の表面電位をコントロールすることはできなかつたが本発明のプラズマ発生装置では、放電は、複数に分離された放電電極と放電電極の間で生じるためにガラス基板をのせたステージの電位を変化させることでガラス基板表面の電位をコントロールすることが可能となる。これにより絶縁膜を堆積する時に膜中にとりこまれる固定電荷の極性と固定電荷の数をコントロールすることができるようになるので絶縁膜の膜質を大幅に改善することができる。膜の応力のコントロールもしやすくなるので歩留りも向上することができる。

【0023】

【実施例】【実施例1】図1、図3、図4、図5、図7、図8、図9、図10、図22、図23は、本発明のガラス基板に対して水平方向に横放電させるための放電電極の断面図と、平面図である。2群に分離されている放電電極の断面は三角形や台形、半円形、T字形などいろいろな形状のものが考えられる。材質はアルミニウムかアルミニウムの合金を用いて表面を陽極酸化処理している。これらの放電極は反応ガス放出口の穴のあいた絶縁板に固定されており、図2のように2群の電極に高周波電圧を印加して横方向放電を発生させる。

【0024】放電電極を図17のように3群に分離させ、それぞれに120度の位相のずれた三相高周波電圧

を印加することができる。印加電圧波形は、サイン波形だけでなく図18にあるように矩形の波形でも良い。図19にあるように変調のかかったサイン波形でも矩形波でも良い。

【0025】図7や図8には、放電電極を固定している絶縁板の裏側に放電がまわりこまないようにシールド板▲20▼や多孔質ガス拡散シールド電極▲21▼を設置している。図10ではガスの放出口の部分に強い電界がかからないようにガス放出口に近い放電電極の一部を円形にけずりとっています。図23は、反応ガス放出口を放電電極からとうざけた構造になっています。

【0026】図6は、放電電極を絶縁板中にうめこんだ構造になっています。この構造では、反応チャンバーの内面をすべてセラミックでおおうことができるので、堆積膜のはがれが生じにくくなります。

【0027】【実施例2】図12、図14、図16、図24、図26、図27は、本発明のハニカム放電電極を用いたプラズマ発生装置の断面図とハニカム放電電極の平面図である。従来のプラズマ発生装置は、図11にあるように板厚が25mm以上あるアルミ合金を陽極酸化したものを使っていた。メートルサイズの放電電極を、従来の構造で造る場合重量が非常に重くなり、メンテナンスの時に問題となっていた。さらに従来の場合ドリルによる1個1個の穴あけ加工なので製作コストも非常に高価なものになっていた。本発明のハニカム電極を用いれば重量を従来の1/3~1/4に低減でき、コストも大幅で低減可能となる。図15、図16、図26のようにハニカム放電電極の近くにアース電極を設置することで、反応ガス圧力を高くしても安定した放電を放電電極全面に均一に持続できる。図16の場合絶縁スペーサー▲17▼のガス放出口④の部分に放電が集中し狭く放電が生じる。▲17▼は耐熱性セラミックなので溶解しない。ハニカム電極の表面積は従来の放電電極よりも大きいので陰極降下電圧も小さくなり電極の発熱も小さくなる。ハニカムの開口径▲a▼を電子の平均自由行程よりも小さくし穴の深さ▲b▼を▲a▼よりも大きくすることでハニカム電極の穴の中の電子密度を上げることができる。ハニカム電極の材質をマグネシウムやマグネシウム合金の酸化物にすることで、電子密度をさらに向上することが可能となる。このことにより反応ガスのイオン化やラジカル形成をいちじるしく増大させることができるようにになる。堆積の場合には堆積速度を向上することができ、ドライエッチングの場合には、エッチング速度を向上できる。アッシングの場合には、アッシングの速度を早くすることができる。

【0028】本発明のハニカム電極は、マグネシウム合金を使用する場合チクソモールディング法を用いて射出成形することが可能である。この場合にはコストをいちじるしく低下できる。ハニカムステージの製造にもチクソモールディング法を用いることができる。軽く、肉厚

を薄くでき、精度を向上できるので大面積のハニカム板を作るには適した製造方法である。

【0029】〔実施例3〕図20、図21が本発明のハニカム構造のステージの平面図と断面図である。ガラス基板との接触面積が小さいので、ガラス基板を持ち上げる時の静電気の発生が非常にすくなくなります。ガラス基板が大きくなってしまっても、ガラス基板のエッジ部分を持つてもちあげる必要がありません。ガラス基板のたわみの一番すくなくなる点にリフターのピンを設置することができるようになるので、ガラス基板の破壊などが生じなくなります。ガラス基板に応力がかからなくなるので、ガラス基板に形成された配線の断線も発生しなくなります。リフターピンの穴を利用してN₂ガスを流してガラス基板の真空吸着をやぶることが可能となります。ガラス基板が大きくなればなるほどいろいろな効果が期待できるハニカム形状のステージは、真空装置のステージ用だけでなく、大気中で使用されるホットプレートなどの加熱乾燥装置のステージ用としても利用可能である。

【0030】

【発明の効果】本発明の横方向放電電極方式のプラズマCVD装置を用いることで界面ダメージのすくないすぐれた特性の薄膜トランジスタを形成することができる。電子移動度の向上により液晶パネルに利用する場合薄膜トランジスタのW/Lを小さく設計できるので、開口率を向上でき明るい液晶パネルを作ることができる。さらにW/Lを小さくできることは画素電極電位のゲート電極による影響を小さくできるので残像の問題を低減することができる。

【0031】さらに横放電型プラズマCVD装置を用いて絶縁膜を堆積する場合、ガラス基板のプラズマ電位を自由にコントロールできるので絶縁膜中の固定電荷量を低減することができる。これにより薄膜トランジスタ特性の信頼性を大幅に向上することができる。

【0032】本発明の横方向放電装置はプラズマCVD装置だけでなくプラズマドライエッティング装置、プラズマアッキング装置などにも適用可能であり、ガラス基板だけでなくSi単結晶基板にも用いることができ、応用範囲の非常に広い装置である。

【0033】本発明のハニカム放電電極を用いることで超大型ガラス基板用のプラズマ装置のメンテナンス作業がしやすくなり、放電電極のコストを低減することができる。ハニカム放電電極の近くにアース電極を設置することで放電ガス圧力を高くしても電極全体に放電がひろがるので、高速堆積を実現でき、界面ダメージも低減できる。これにより生産性が向上する。

【0034】本発明のハニカムステージを用いることで超大型ガラス基板のリフトアップ時に静電気の発生が大幅に低減できガラス基板の破損が減少する。ガラス基板の歪曲がいちばん小さくなる部分にリフターピンを設置

10

20

30

40

50

することができるハニカムステージの材質はアルミニウム合金でもマグネシウム合金でもよい。ステンレス系の合金でもよい。セラミックスの絶縁物でもよい。本発明ではハニカム形状を特色としているがストライプ状の形状でも効果は同じである。ハニカム形状では真空吸着の機能をもたせやすいが、ストライプ状では真空吸着の機能をもたせにくいのでスロットタイプの形状に変えるとよい。ストライプ形状の方がチクソモールド法を用いて作る場合作りやすく大幅なコストダウンが可能となる。

【図面の簡単な説明】

【図1】 本発明の横方向放電電極を採用したプラズマ発生装置の断面構造図。(三角形)

【図2】 本発明の横方向放電電極への高周波電圧の印加図

【図3】 本発明の横方向放電電極の断面図。(台形)

【図4】 本発明の横方向放電電極の断面図。(半円形)

【図5】 本発明の横方向放電電極の断面図。(T字形)

【図6】 本発明のうめこみ型横方向放電電極の断面図。

【図7】 本発明の横方向放電電極の断面図。(三角形)

【図8】 本発明の横方向放電電極の断面図。(三角形)

【図9】 本発明の横方向放電電極の平面図。

【図10】 本発明の横方向放電電極の平面図。

【図11】 従来の縦方向放電電極を採用したプラズマ発生装置の断面構造図。

【図12】 本発明のハニカム放電電極を採用したプラズマ発生装置の断面構造図。

【図13】 本発明の縦方向放電電極の平面図。

【図14】 本発明のハニカム放電電極の平面図。

【図15】 本発明の縦方向放電電極を採用したプラズマ発生装置の断面構造図。

【図16】 本発明のハニカム放電電極を採用した縦方向プラズマ発生装置の断面構造図。

【図17】 本発明の横方向放電電極への高周波電圧の印加図。

【図18】 本発明の横方向放電電極へ印加するパルス電圧波形。

【図19】 本発明の横方向放電電極へ印加する変調高周波電圧波形。

【図20】 本発明のハニカムステージの平面図。

【図21】 本発明のハニカムステージの断面図。

【図22】 本発明の横方向放電電極の平面図。

【図23】 本発明の横方向放電電極を採用したプラズマ発生装置の断面構造図。

【図24】 本発明のハニカム放電電極を採用した縦方

向プラズマ発生装置の断面構造図。

【図25】 本発明のハニカム放電電極の平面図。

【図26】 本発明のハニカム放電電極を採用した縦方向プラズマ発生装置の断面構造図。

【図27】 本発明のハニカム放電電極の平面図。

【符号の説明】

- 1 奇数群放電電極
- 2 偶数群放電電極
- 3 放電電極固定絶縁板
- 4 反応ガス注入口
- 5 反応ガス均一拡散板
- 6 ガラス基板（またはSiウェハー）
- 7 ガラス基板加熱ステージ
- 8 ガラス基板固定板
- 9 反応ガス排気口
- 10 高周波交流電源
- 11 断面が台形の放電電極
- 12 断面が半円形の放電電極
- 13 断面がT型の放電電極
- 14 固定絶縁板の内部にうめこまれた放電電極

* 15 穴のあいた一体型放電電極

16 ハニカム型放電電極

17 絶縁スペーサー

18 穴のあいた一体型アース電極

19 穴のあいた一体型放電電極

20 シールド電極

21 多孔質ガス拡散シールド電極

22 高周波三相交流電源

a ハニカム電極の開口部の径

10 b ハニカム電極の穴の深さ

23 奇数群放電電極電圧波形

24 偶数群放電電極電圧波形

25 ハニカムステージ

26 リフターピン

c 電極板と電極板の距離

d 電極板の深さ

h 電極板の先端からガラス基板までの距離

27 シールドハニカム電極

28 放電電極ホルダー

29 ハニカムアース電極

* 20

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図22】

【図21】

【図17】

【図18】

【図19】

【図23】

【図24】

【図25】

【図26】

【図27】

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-144892
 (43)Date of publication of application : 28.05.1999

(51)Int.Cl.

H05H 1/46
 C23C 16/50
 H01L 21/205

(21)Application number : 09-363082

(71)Applicant : TANAKA SAKAE

(22)Date of filing : 12.11.1997

(72)Inventor : TANAKA SAKAE

(54) PLASMA DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce unevenness in large size film formation, ion damage, increase of fixed charge in an insulating film, and the like by impressing high-frequency voltage different in polarity each other with a discharge electrode comprising plural electrodes facing horizontally to a substrate stage so as to generate discharge laterally.

SOLUTION: A glass substrate 6 is mounted on a substrate heating stage 7 to be fitted via a substrate fixing plate 8. A discharge electrode with plural electrodes 1, 2 fixed to an insulating plate 3 is arranged facing in parallel to the stage 7. The electrodes 1, 2 are preferably composed of Mg, Al, or their alloy, and have a cross-sectional shape of triangle, trapezoid, semicircle, T-shape, or the like. In this plasma generator, reaction gas fed from an injection port 4 drilled to the insulating plate 3 in the intermediate position between the electrodes 1, 2 through a homogeneously diffusing plate 5 is introduced into a chamber. Two- or three-phase high-frequency voltage is impressed thereafter, and lateral-directional discharge is generated between the odd group electrode 1 and the even group electrode 2 as mutually different electrodes to form the reaction gas into plasma.

CLAIMS

[Claim(s)]

[Claim 1]In a plasma generator which comprises a discharge electrode which has countered at a level with a stage which carries a glass substrate, and said stage, A plasma generator, wherein said discharge electrode comprises two or more electrodes, polar different high frequency voltage is mutually impressed to each electrode, it forms a level transverse electric field to a stage and lateral discharge arises.

[Claim 2]A plasma generator characterized by structure which provides a hole or a slit in the 1st paragraph of a range of an application for patent between a discharge electrode and a discharge electrode which are separated, sends reactant gas in a reaction chamber and is crowded from here.

[Claim 3]a claim -- a plasma generator it is alike, respectively, connecting two or more discharge electrodes separated by turns in the 2nd paragraph, dividing into two groups, impressing high frequency voltage of two phases and carrying out horizontal discharge

[Claim 4]a claim -- a plasma generator it is alike, respectively, connecting two or more discharge electrodes separated by turns in the 2nd paragraph, dividing into three groups, impressing high frequency voltage of a three phase circuit, and carrying out horizontal discharge.

[Claim 5]A plasma generator which vertical discharge is carried out to a glass substrate, or it is made to separate into two or more electrode groups, and transverse direction discharge is produced [two or more separate electrodes are connected electrically,] in the 2nd paragraph of a range of an application for patent, and can switch discharge mode to a stage.

[Claim 6]A plasma generator characterized by structure which has been buried and crowded in the 2nd paragraph of a range of an application for patent in an insulator with which two or more discharge electrodes are fixing an electrode, sends reactant gas into a reaction chamber and is crowded from a hole between electrodes.

[Claim 7]In a plasma generator which comprises a discharge electrode which has countered at a level with a stage which carries a glass substrate, and said stage, A plasma generator, wherein said discharge electrode serves as honeycomb shape, and it impresses high frequency voltage to this honeycomb electrode, it generates an electric field in the vertical direction to a stage and discharge of a lengthwise direction arises.

[Claim 8]A plasma generator characterized by structure which a reactant gas

injection hole is located in a hole of a honeycomb electrode, and sends reactant gas into a reaction chamber and is crowded from this reactant gas injection hole in the 7th paragraph of a range of an application for patent.

[Claim 9]A plasma generator characterized by the depth of a hole of a honeycomb electrode being larger than a path of an opening of a honeycomb electrode in the 7th paragraph of a range of an application for patent.

[Claim 10]A plasma generator being able to impress DC voltage of plus or minus to a stage which has carried a glass substrate in the 2nd paragraph of a range of an application for patent, or being able to impress high frequency voltage which DC-bias voltage required.

[Claim 11]A stage which the surface of a stage on which a glass substrate is put serves as honeycomb shape, and a pin of a lifter which lifts a glass substrate comes out from a hole of a honeycomb, and is characterized by glass substrate support *****.

[Claim 12]A plasma generator being an alloy which makes a subject an alloy in which a discharge electrode material used for the 1st paragraph of a range of an application for patent and the 7th paragraph makes magnesium and magnesium a subject or aluminum, and aluminum.

[Claim 13]A plasma generator of structure which pasted together a honeycomb screening electrode of the same shape as a honeycomb discharge electrode with an insulating spacer in the 7th paragraph of a range of an application for patent.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application]It can be related with the plasma CVD device, dry etching system, and plasma ashing device which are used when manufacturing an active-matrix liquid crystal panel, and this invention can be applied to . especially applicable to a super-large sized substrate, and others also like the LSI process of using a Si wafer.

[0002]

[Description of the Prior Art]The stage which carries a glass substrate, and its stage were countered, and the discharge electrode is arranged. The discharge electrode was unified, many holes were made on the surface of the electrode, and the space of . glass substrate and the discharge electrode which make reactant gas emit and

discharge from the hole has usually opened not less than 20 mm.

[0003]

[Problem(s) to be Solved by the Invention] If discharge-gas-pressure power is made high with the plasma generator of the conventional parallel plate type unification discharge electrode structure and space of a discharge electrode and a stage will not be made small by the principle of PATTEN, firing potential and maintaining-a-discharge voltage will become very high. If firing potential becomes high, when discharge will start, on a stage, it becomes easy to give a discharge damage to the glass substrate side, and the characteristic of a thin film amorphous transistor element will be reduced remarkably. In the plasma generator of the further conventional parallel plate type unification discharge electrode structure, when the discharge electrode was enlarged with enlargement of a glass substrate, it became difficult to deposit an amorphous Si thin film on a glass substrate uniformly, and uniform deposition is realized towards making discharge-gas-pressure power low. If discharge-gas-pressure power becomes low, the rate of sedimentation will also become low and the problem that a throughput falls will occur. Since the distance of the mean free path of the ion in plasma will become long, the kinetic energy of ion will become large and a damage will be given to a glass substrate if discharge-gas-pressure power is made low, it is in the tendency for membranous quality to deteriorate. When the method of enlarging frequency of the high frequency of discharge is also possible in order to raise the rate of sedimentation, but using for a large sized substrate, the cost of a power supply becomes large and the design of a device also becomes difficult. When discharge power was furthermore enlarged, in the conventional case, the arcing phenomenon occurred in the injection hole of gas, and the problems by which a discharge electrode is destroyed were also occurring frequently.

[0004] The place which the plasma generator of this invention solves the above-mentioned technical problem, and is made into the purpose, By reducing increase etc. of the heterogeneity of the membrane formation which poses a problem, the ion damage of the interface of a thin film transistor, and the fixed electric charge in the insulator layer by high speed film formation, when enlarging a glass substrate. The characteristic of a thin film transistor is improved and it is in the thing which used the super-large sized glass substrate and for which a large-sized liquid crystal display is overly realized.

[0005]

[Means for Solving the Problem] Said conventional technical problem is solved, and the

following means are taken in order to attain the purpose.

[Means 1] In a plasma generator which comprises a discharge electrode which has countered at a level with a stage which carries a glass substrate, and said stage, Said discharge electrode is constituted from two or more electrodes, polar different high frequency voltage is mutually impressed to each electrode, a level transverse electric field is generated to a stage, and it was made for lateral discharge to arise.

[0006][Means 2] A hole and a slit was provided between ** of a discharge electrode and a discharge electrode which are separated, and reactant gas is sent in a reaction chamber and it was made to be crowded from this portion in the means 1.

[0007][Means 3] Two or more discharge electrodes separated, respectively were connected by turns, it divided into two groups, high frequency voltage of two phases from which a phase differs in each group was impressed, and it was made to discharge in the level direction to a stage in the means 2.

[0008][Means 4] Two or more discharge electrodes separated, respectively were connected by turns, it divided into three groups, high frequency voltage of a three phase circuit from which a phase differs in each group was impressed, and it was made to discharge in the level direction to a stage in the means 2.

[0009][Means 5] Make two or more discharge electrodes of all separated, respectively connect electrically in the means 2, and high frequency voltage in phase is impressed, Vertical vertical discharge was generated to a stage, or it separated into two or more electrode groups electrically, generating **** of the horizontal horizontal discharge was carried out to a stage, and it carried out as [be / switching discharge mode to a stage / possible].

[0010][Means 6] In the means 2, a discharge electrode divided into plurality buries and is full in an insulator which is fixing an electrode, and it was considered as structure which sends reactant gas in a reaction chamber and is crowded from a hole and a slit between electrodes.

[0011][Means 7] In a plasma generator which comprises a discharge electrode which has countered at a level with a stage which carries a glass substrate, and said stage, Said discharge electrode serves as honeycomb shape, high frequency voltage is impressed to this honeycomb electrode, an electric field is generated in the vertical direction to a stage, and it was made for discharge of a lengthwise direction to arise.

[0012][Means 8] In the means 7, a reactant gas injection hole is for a hole of a honeycomb electrode to set, and it was considered as structure which sends reactant gas in a reaction chamber and is crowded from this reactant gas injection hole.

[0013][Means 9] In the means 7, it was considered as structure where the depth of a

hole of a honeycomb electrode is larger than a path of an opening of a honeycomb electrode. (Surface area of an electrode was enlarged.)

[0014][Means 10] DC voltage of plus or minus could be impressed to a stage which has carried a glass substrate, and it enabled it to impress high frequency voltage which DC-bias voltage required in the means 2.

[0015][Means 11] The surface of a stage on which a glass substrate is put had become honeycomb shape, and a pin of a lifter which lifts a glass substrate comes out from a hole of a honeycomb, and supported a glass substrate.

[0016][Means 12] An alloy which makes a subject an alloy which makes magnesium and magnesium a subject or aluminum, and aluminum was used for a discharge electrode material used for the means 1 and the means 7.

[0017][Means 13] In the means 7, it was considered as structure which pasted together a honeycomb screening electrode of the same shape as a honeycomb discharge electrode through an insulating spacer.

[0018]

[Function]A discharge electrode is divided into plurality and discharge horizontal to a stage is produced by impressing the high frequency voltage from which a phase differs in each. In this transverse direction discharge, to the glass substrate on a stage. the time of forming the interface of the gate dielectric film which governs most the characteristic of . thin film transistor that a discharge damage decreases sharply since ion and an electron fall and it does not pour, and a semiconductor layer -- an interface -- a discharge damage -- **** -- there is nothing -- making -- things are important. After a gate electrode is in the lower part and deposits gate dielectric film, the reverse stagger type thin film transistor which deposits a semiconductor layer (non-doped a-Si layer) is in use because the discharge damage at the time of this interface formation is made small. When depositing a semiconductor layer, discharge power density is lower than discharge power density when depositing gate dielectric film by four to about [per /] 1/10. making discharge power density small -- an interface -- a damage -- **** -- ** which there is not and is making. A glass substrate and a perpendicular direction are made to impress an electric field between a discharge electrode and a glass substrate, and the lengthwise direction is made to produce discharge in a conventional parallel plate type plasma CVD device. Even if it makes discharge power density small in this type of plasma CVD device, it is impossible to lose a discharge damage theoretically. Therefore, in order to reduce a discharge damage, it is necessary to make the mean free path of ion small, and the higher possible one of discharge-gas-pressure power is good. however, the moment

firing potential will become high if discharge gas pressure is high, and discharge begins -- an interface -- a damage -- ***. When discharge gas pressure is still higher, discharge inclines toward the edge part of a discharge electrode, and it becomes impossible to obtain uniform thickness and membranous quality.

[0019] Since the space of a discharge electrode and a discharge electrode can be 10 mm or less if transverse direction discharge of this invention is used, even if it makes gas pressure high, discharge-starting pressure does not become high and does not produce the heterogeneity of discharge, either. Since it is transverse direction discharge even if it makes gas pressure small, a discharge damage cannot be theoretically obtained to a glass substrate. It is possible to find the high-speed deposition conditions which dust does not generate, without worsening the characteristic of a thin film transistor, since the range of a discharging condition becomes very large.

[0020] The weight of the discharge electrode in which a glass substrate becomes a size like meter size also becomes a problem. There is board thickness of the discharge electrode of the conventional PCVD not less than 20 mm, and exchange of an electrode is also dramatically serious. The honeycomb electrode of this invention can reduce weight to conventional 1 / 3 - 1/4. Cost can also be reduced to about [conventional] 1/3. Since the depth of a hole can be made deeper than the conventional parallel plate electrodes, discharge surface area is expandable. Since the potential drop near a discharge electrode can be reduced by this, a plasma reaction can be prevented from concentrating on the discharge electrode side. Therefore, generating of dust or particle can be reduced rather than the conventional electrode. Abnormal discharge is lost.

[0021] In order to make it improve with a throughput and to raise productivity, the method of raising the frequency of high frequency voltage twice over the past and 3 times is proposed, but as a glass substrate becomes large, since the capacity of an electrode becomes large and the surface resistance of an electrode also becomes large, a device design becomes very more difficult. In the case of this invention, since a plasma damage can be reduced in transverse direction discharge, in enlargement, examination in the direction which lowers discharge frequency is conversely possible. When discharge frequency is lowered, the design of an RF generator also becomes easy and stability's of discharge of a PCVD device improves.

[0022] Since lengthwise direction discharge has arisen between the discharge electrode and the stage even if it changes the potential of the stage which carried the glass substrate in the conventional parallel plate type plasma device, Although surface

potential of the glass substrate was not able to be controlled, in the plasma generator of this invention. Since it produces between the discharge electrode and discharge electrode which were divided into plurality, discharge becomes possible [controlling the potential on the surface of a glass substrate by changing the potential of the stage which carried the glass substrate]. Since the polarity of the fixed electric charge taken in into a film and the number of fixed electric charges can be controlled when this deposits an insulator layer, the membranous quality of an insulator layer is substantially improvable. Since it becomes easy to carry out control of membranous stress, the yield can also improve.

[0023]

[Example][Example 1] Drawing 1, drawing 3, drawing 4, drawing 5, drawing 7, drawing 8, drawing 9, drawing 10, drawing 22, and drawing 23 are a sectional view of the discharge electrode for carrying out horizontal discharge horizontally to the glass substrate of this invention, and a top view. The section of the discharge electrode divided into two groups can consider the thing of various shape, such as a triangle, a trapezoid and semicircular shapes, and T type. Construction material is carrying out anodizing of the surface using the alloy of aluminum or aluminum. It is being fixed to the electric insulating plate with which the hole of the reactant gas injection hole opened, and these discharge electrodes impress high frequency voltage to the electrode of two groups like drawing 2, and generate transverse direction discharge.

[0024]A discharge electrode can be made to be able to divide into three groups like drawing 17, and the three phase high frequency voltage from which the phase of 120 degrees shifted to each can be impressed. As shown not only in a sine wave form but in drawing 18, a rectangular waveform may be sufficient as an impressed-electromotive-force waveform. The sine wave form which required abnormal conditions as shown in drawing 19, or a square wave may be sufficient.

[0025]It is the shield plate 20 so that discharge may not have the surroundings top in the back side of the electric insulating plate which is fixing the discharge electrode to drawing 7 or drawing 8. ***** gas diffusion screening electrode 21 It is installing. In drawing 10, some discharge electrodes near a gas emission opening are circularly shaved off so that an electric field strong against the portion of the injection hole of gas may not be built. Drawing 23 has **** beam structure from the discharge electrode in the reactant gas injection hole.

[0026]Drawing 6 has structure which buried the discharge electrode in the electric insulating plate, and was crowded. In this structure, since all the inner surfaces of a reaction chamber can be covered with ceramics, it becomes difficult to produce

peeling of a deposited film.

[0027][Example 2] Drawing 12, drawing 14, drawing 16, drawing 24, drawing 26, and drawing 27 are the sectional views of a plasma generator and the top views of a honeycomb discharge electrode which used the honeycomb discharge electrode of this invention. What anodized the aluminum containing alloy which has not less than 25 mm of board thickness as shown in drawing 11 was being used for the conventional plasma generator. When the discharge electrode of meter size was built with the conventional structure, weight became very heavy and had become a problem at the time of a maintenance. Since it was one-piece one drilling process by a drill in the further conventional case, the manufacturing cost also became very expensive. By installing a ground electrode near the honeycomb discharge electrode like drawing 15 which is that it is large and that can reduce weight to conventional 1 / 3 - 1/4 if the honeycomb electrode of this invention is used, and cost can also be reduced, drawing 16, and drawing 26. The discharge stable even if it made reagent-gas-pressure power high is uniformly maintainable all over a discharge electrode. In the case of drawing 16, it is the insulating spacer 17. Discharge concentrates on the portion of ** gas emission opening **, and straitness ***** arises. 17Since it is ***** ceramics, it does not dissolve. Since the surface area of a honeycomb electrode is larger than the conventional discharge electrode, cathode drop voltage also becomes small and generation of heat of an electrode also becomes small. The opening diameter a of a honeycomb It is made smaller than an electronic mean free path, and is depth [of a hole] b. aThe electron density in the hole of a honeycomb electrode can be raised by enlarging a twist. . it becomes possible by using construction material of a honeycomb electrode as the oxide of magnesium or a Magnesium alloy to act as Kougami of the electron density further -- ionization and radical formation of reactant gas can be remarkably increased now by this. In deposition, the rate of sedimentation can be improved, and an etch rate can be improved when it is dry etching. In the case of ashing, speed of ashing can be carried out early.

[0028]The honeycomb electrode of this invention can carry out injection molding using the CHIKUSO molding method, when using a Magnesium alloy. In this case, cost can be fallen remarkably. The CHIKUSO molding method can be used also for manufacture of a honeycomb stage. Since it is light, thickness can be made thin and accuracy can be improved, it is a manufacturing method suitable for making the honeycomb board of a large area.

[0029][Example 3] Drawing 20 and drawing 21 are the top views and sectional views of a stage of this invention. [of honeycomb structure] since the touch area with a glass

substrate is small, generating of static electricity when lifting a glass substrate becomes empty dramatically -- there is nothing and it ends. Even if a glass substrate becomes large, it is not necessary to raise with the edge part of a glass substrate. Since the pin of a lifter can be installed now in the lost point as for which the deflection of a glass substrate becomes empty most, destruction of a glass substrate, etc. stop arising. Since stress stops applying to a glass substrate, it stops also generating an open circuit of the wiring formed in the glass substrate. N₂ gas is passed using the hole of a lifter pin, and bush ***** becomes possible about the vacuum absorption of a glass substrate. The stage of the honeycomb shape which can expect effects more nearly various as a glass substrate becomes large is available also as an object for the stages of stoving devices, such as not only the object for the stages of vacuum devices but a hot plate used in the atmosphere.

[0030]

[Effect of the Invention]The thin film transistor of the outstanding characteristic as for which an interface damage becomes empty and which is not can be formed by using the plasma CVD device of the transverse direction discharge electrode method of this invention. Since W/L of a thin film transistor can be small designed when using for a liquid crystal panel by improvement in electron mobility, a numerical aperture can be improved and a bright liquid crystal panel can be made. Since influence by the gate electrode of picture element electrode potential can be made small, that W/L can furthermore be made small can reduce the problem of an afterimage.

[0031]When depositing an insulator layer using a horizontal discharge type plasma CVD device furthermore, since the plasma potential of a glass substrate is freely controllable, the amount of fixed electric charges in an insulator layer can be reduced. Thereby, it can act as Kougami of the reliability of the thin film transistor characteristic substantially.

[0032]The transverse direction discharge device of this invention can be applied not only to a plasma CVD device but to a plasma dry etching system, a plasma ashing device, etc., can be used not only for a glass substrate but for a Si single crystal substrate, and is a very large device of an application range.

[0033]It becomes easy to carry out maintenance work of the plasma device for super-large sized glass substrates by using the honeycomb discharge electrode of this invention, and it becomes possible to reduce the cost of a discharge electrode.. which can realize high-speed deposition and can also reduce an interface damage since discharge spreads in the whole electrode even if it makes discharge-gas-pressure power high by installing a ground electrode near the

honeycomb discharge electrode -- thereby, productivity improves.

[0034] Generating of static electricity can decrease substantially by using the honeycomb stage of this invention at the time of the lift rise of a super-large sized glass substrate, and breakage of a glass substrate decreases. Since distortion of a glass substrate is able to install a lifter pin in the portion which becomes the smallest, the alloy of a . stainless steel system as which an aluminum alloy or a Magnesium alloy may be sufficient may be sufficient as the construction material of . honeycomb stage on which an open circuit of the circuit pattern on a glass substrate also decreases sharply. The insulating material of ceramics may be sufficient. Although honeycomb shape is made into the special feature in this invention, the effect is the same also in the shape of stripe shape. Although it is easy to give the function of vacuum absorption in honeycomb shape, since it is hard to give the function of vacuum absorption in stripe shape, it is good to change into slot type shape. A large cost cut is attained that it is easy to make when the direction of stripe shape makes using the CHIKUSO mold method.