```
In [1]: import numpy as np import pandas as pd
```

Out[19]:

	acct_id	region
0	1	New York
1	2	Dallas
2	3	Los Angeles
3	4	Chicago
4	5	Philadelphia
100168	99996	Chicago
100169	99997	New York
100170	99998	San Diego
100171	99999	Chicago
100172	100000	Dallas

100173 rows × 2 columns

Out[2]:

	acct_id	FICO
0	1	768
1	2	850
2	3	677
3	4	843
4	5	796
100008	99996	NaN
100009	99997	NaN
100010	99998	NaN
100011	99999	SSS
100012	100000	NaN

100013 rows × 2 columns

```
In [3]: df_fico.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100013 entries, 0 to 100012
        Data columns (total 2 columns):
         #
             Column
                       Non-Null Count
                                         Dtype
             acct id 100013 non-null int64
         1
              FICO
                       70398 non-null
                                         object
        dtypes: int64(1), object(1)
        memory usage: 1.5+ MB
In [4]: df_fico['FICO'].value_counts().index.values.tolist()
Out[4]: ['850',
          '836',
         '845',
          '828',
         '841',
         '820',
         '839',
          '842',
          '838',
         '834',
         '837',
         '830',
          '827',
          '835',
         '844',
         '840',
         '831',
          '811',
          '849',
          10221
In [5]: ## Finding Duplicates
        duplicate_indices = df_fico[df_fico['acct_id'].duplicated()].index.values.t
In [6]: duplicate indices
Out[6]: [140,
         190,
         192,
         194,
         196,
         30506,
         30508,
         30510,
         30512,
         30514,
         30516,
         30518,
         305201
```

all duplicates have the same values, so we can drop them

```
In [7]: |# df fico deduplicated = df fico.drop duplicates(subset=['acct id'])
         # df fico deduplicated.shape
         # sorted(df fico deduplicated['FICO'].value counts().index.values)
 In [8]: ### Missing values
         missing indices = df fico[df fico['FICO'].isna()==True].index.values.tolist
         missing_indices
 Out[8]: [10,
          17,
          40,
          42,
          43,
          45,
          46,
          47,
          56,
          58,
          63,
          64,
          68,
          84,
          91,
          103,
          106,
          113,
          119.
 In [9]: # Find error values
         error indices = df fico[(df fico['FICO']=='AA')|(df fico['FICO']=='SSS')].i
In [10]: # Total error indices =
         all error indices = sorted(list(set(error indices).union(set(duplicate indi
In [11]: len(all error indices)
Out[11]: 29627
 In [ ]: def apply missing(df):
             for index, row in df.iterrows():
                 if index in all error indices:
                     df.at[index, 'FICO'] = "Missing"
             return df
 In [ ]: df_result = apply_missing(df_fico.copy())
 In [ ]: df_result.to_csv("q1_1.csv", index=False)
```

Part 1.2

Out[130]:

	acct_id	FICO
139	140	752
140	140	752
189	189	745
190	189	745
191	190	828
192	190	828
193	191	752
194	191	752
195	192	850
196	192	850
30505	30501	773
30506	30501	773
30508	30502	798
30507	30502	798
30509	30503	820
30510	30503	820
30511	30504	NaN
30512	30504	NaN
30513	30505	820
30514	30505	820
30515	30506	NaN
30516	30506	NaN
30517	30507	NaN
30518	30507	NaN
30519	30508	850
30520	30508	850

```
In [131]: df_fico_deduplicated = df_fico.drop_duplicates(subset=['acct_id'])
df_fico_deduplicated = df_fico_deduplicated.reset_index(drop=True)
```

```
df_fico_deduplicated['acct_id']
In [132]:
Out[132]: 0
                          1
                          2
           1
           2
                          3
           3
                          4
                          5
           99995
                      99996
           99996
                      99997
           99997
                      99998
           99998
                      99999
           99999
                     100000
           Name: acct_id, Length: 100000, dtype: int64
In [133]: df_fico_deduplicated
Out[133]:
                  acct_id FICO
               0
                      1
                          768
                      2
               1
                          850
               2
                      3
                          677
                      4
                          843
               3
               4
                      5
                          796
            99995
                   99996
                         NaN
            99996
                   99997
                         NaN
                   99998
            99997
                         NaN
            99998
                   99999
                         SSS
                  100000
            99999
                         NaN
           100000 rows × 2 columns
In [134]: df_fico_deduplicated['acct_id'].isna().sum()
Out[134]: 0
           df region deduplicated = df region.drop duplicates(subset=['acct id'])
In [135]:
           df region deduplicated = df region deduplicated.reset index(drop=True)
In [136]: # df region[df region['acct id'].isin(df region['acct id'][df region['acct
```

```
In [137]: df_region_deduplicated
```

Out[137]:

	acct_id	region
0	1	New York
1	2	Dallas
2	3	Los Angeles
3	4	Chicago
4	5	Philadelphia
		•••
99995	99996	Chicago
99996	99997	New York
99997	99998	San Diego
99998	99999	Chicago
99999	100000	Dallas

100000 rows × 2 columns

```
In [140]: df_region_deduplicated['acct_id'].isin(df_fico_deduplicated['acct_id'])
Out[140]: 0
                    True
          1
                    True
          2
                    True
           3
                    True
                    True
                    . . .
          99995
                    True
          99996
                    True
          99997
                    True
          99998
                    True
          99999
                    True
          Name: acct_id, Length: 100000, dtype: bool
In [141]: result = pd.merge(df_fico_deduplicated, df_region_deduplicated, how="left")
In [142]: result
```

Out[142]:

	acct_id	FICO	region
0	1	768	New York
1	2	850	Dallas
2	3	677	Los Angeles
3	4	843	Chicago
4	5	796	Philadelphia
99995	99996	NaN	Chicago
99996	99997	NaN	New York
99997	99998	NaN	San Diego
99998	99999	SSS	Chicago
99999	100000	NaN	Dallas

100000 rows × 3 columns

```
In [144]: res_temp2 = res_temp[(res_temp['FICO']!='AA')]
          res temp3 = res temp2[(res temp2['FICO']!='SSS')]
          print(res_temp2.shape, res_temp.shape)
           (70387, 3) (70388, 3)
In [145]: res_temp3['FICO'] = res_temp3['FICO'].astype('int64')
           /var/folders/qb/wmdrw3xx75vd1jpzfxx7n_mh0000gn/T/ipykernel_64677/12649617
           30.py:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-do
          cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (http
           s://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returni
          ng-a-view-versus-a-copy)
             res_temp3['FICO'] = res_temp3['FICO'].astype('int64')
In [146]: comp = (res_temp3.groupby(['region'], as_index=False)['FICO'].mean())
In [148]: comp['FICO'] = comp['FICO'].astype(int)
In [149]:
          comp
Out[149]:
                 region FICO
                Charlotte
                        785
           0
           1
                Chicago
                        785
                  Dallas
                        783
           2
                        786
           3
                Houston
           4 Los Angeles
                        789
               New York
                        785
           6 Philadelphia
                        785
                Phoenix
                        788
           8 San Antonio
                        784
               San Diego
                        784
  In [ ]:
```

```
In [150]: def fill_avg_region_fico(df, comp):
    for index, row in df.iterrows():
        try:
        if df.at[index, 'FICO'].isnumeric:
            df.at[index, 'FICO'] = int(df.at[index, 'FICO'])
        else:
            reg = df.at[index, 'region']
            df.at[index, 'FICO'] = comp[comp['region']==reg]['FICO'].va
        except:
            reg = df.at[index, 'region']
            df.at[index, 'FICO'] = comp[comp['region']==reg]['FICO'].values
        return df
```

In [151]: result

Out[151]:

	acct_id	FICO	region
0	1	768	New York
1	2	850	Dallas
2	3	677	Los Angeles
3	4	843	Chicago
4	5	796	Philadelphia
99995	99996	NaN	Chicago
99996	99997	NaN	New York
99997	99998	NaN	San Diego
99998	99999	SSS	Chicago
99999	100000	NaN	Dallas

100000 rows × 3 columns

```
In [152]: final1 = fill_avg_region_fico(result.copy(), comp)
final1
```

Out[152]:

	acct_id	FICO	region
0	1	768	New York
1	2	850	Dallas
2	3	677	Los Angeles
3	4	843	Chicago
4	5	796	Philadelphia
99995	99996	785	Chicago
99996	99997	785	New York
99997	99998	784	San Diego
99998	99999	785	Chicago
99999	100000	783	Dallas

100000 rows × 3 columns

```
In [159]: final1['FICO'] = final1['FICO'].astype(int)
In [160]: final1.to_csv("q1_3.csv", index=False)
```

```
In [161]: final1['FICO'].hist()
```

Out[161]: <AxesSubplot: >


```
In [162]: final1['FICO'].dtype
Out[162]: dtype('int64')
```

```
In [168]: pd.qcut(final1['FICO'], q=5, labels=['A', 'B', 'C', 'D', 'E'])
Out[168]: 0
                    В
                    Е
          1
          2
                    Α
          3
                    Е
                    D
          99995
                    В
          99996
                    В
          99997
                    В
          99998
                    В
          99999
                    В
          Name: FICO, Length: 100000, dtype: category
          Categories (5, object): ['A' < 'B' < 'C' < 'D' < 'E']
In [171]: pd.qcut(final1['FICO'], q=5)
                      (758.0, 785.0]
Out[171]: 0
                      (836.0, 850.0]
          1
                    (419.999, 758.0]
          2
          3
                      (836.0, 850.0]
                      (791.0, 836.0]
          99995
                      (758.0, 785.0]
                      (758.0, 785.0]
          99996
          99997
                      (758.0, 785.0]
                      (758.0, 785.0]
          99998
                      (758.0, 785.0]
          99999
          Name: FICO, Length: 100000, dtype: category
          Categories (5, interval[float64, right]): [(419.999, 758.0] < (758.0, 78
          [5.0] < (785.0, 791.0] < (791.0, 836.0] < (836.0, 850.0]]
In [172]: final1['cut'] = pd.qcut(final1['FICO'], q=5)
          final1['cut_bucket'] = pd.qcut(final1['FICO'], q=5, labels=['A', 'B', 'C',
```

```
In [173]: final1
```

Out[173]:

	acct_id	FICO	region	cut	cut_bucket
0	1	768	New York	(758.0, 785.0]	В
1	2	850	Dallas	(836.0, 850.0]	Е
2	3	677	Los Angeles	(419.999, 758.0]	Α
3	4	843	Chicago	(836.0, 850.0]	Е
4	5	796	Philadelphia	(791.0, 836.0]	D

99995	99996	785	Chicago	(758.0, 785.0]	В
99996	99997	785	New York	(758.0, 785.0]	В
99997	99998	784	San Diego	(758.0, 785.0]	В
99998	99999	785	Chicago	(758.0, 785.0]	В
99999	100000	783	Dallas	(758.0, 785.0]	В

100000 rows × 5 columns

```
In [212]: ans = {}
          keys = sorted(final1['cut'].value_counts().index.tolist())
          values = sorted(final1['cut'].value counts().values.tolist())
          final1['cut'].value_counts()
Out[212]: (758.0, 785.0]
                                29137
           (791.0, 836.0]
                                20646
           (419.999, 758.0]
                                20233
           (836.0, 850.0]
                                19226
           (785.0, 791.0]
                                10758
          Name: cut, dtype: int64
In [213]: |ans = \{str(k):int(v) \text{ for } k,v \text{ in } zip(keys, values)\}
In [214]: | sorted(final1['cut'].value_counts().index)
Out[214]: [Interval(419.999, 758.0, closed='right'),
            Interval(758.0, 785.0, closed='right'),
            Interval(785.0, 791.0, closed='right'),
            Interval(791.0, 836.0, closed='right'),
            Interval(836.0, 850.0, closed='right')]
```

```
In [215]: ans
Out[215]: {'(419.999, 758.0]': 10758,
            '(758.0, 785.0]': 19226,
            '(785.0, 791.0]': 20233,
            '(791.0, 836.0]': 20646,
            '(836.0, 850.0]': 29137}
In [198]:
          import matplotlib.pyplot as plt
           %matplotlib inline
In [216]: plt.bar(list(ans.keys()), ans.values(), color='g')
Out[216]: <BarContainer object of 5 artists>
            30000 -
            25000 -
            20000 -
            15000 -
            10000 -
             5000
                   (419.999, 758.0]58.0, 785.0]785.0, 791.0]791.0, 836.0]836.0, 850.0]
```