Тамарин Вячеслав

19 января 2020 г.

Оглавление

1	Оби	цая топология 5			
	1.1	Метри	ческие пространства		
1.2 To		Топол	огические пространства		
	1.3	Внутр	енность, замыкание, граница		
		1.3.1	Внутренность множества. Внутренние точки		
		1.3.2	Замыкание, граница, точки прикосновения		
		1.3.3	Изолированные и предельные точки		
	1.4	Подпр	остранства		
1.5		Сравнение топологий			
	1.6		[.] опологии		
	1.7	Произ	ведение топологических пространств		
		1.7.1	Произведение параметризуемых метрических пространств		
		1.7.2	Тихоновская топология		
	1.8	Непре	рывность		
		1.8.1	Непрерывность в метрических пространствах		
		1.8.2	Липшицевы отображения		
		1.8.3	Композиция непрерывных отображений		
		1.8.4	Еще о непрерывности. Предел отображения		
		1.8.5	Непрерывность и пространства		
		1.8.6	Отображения в произведение		
		1.8.7	Отображения из произведения		
	1.9	Фунда	ментальные покрытия		
	1.10	-	морфизм		
			мы		
			Аксиомы счетности		
			Сеперабельность		
			Аксиомы отделимости		
	1.12		ОСТЬ		
			Связные множества		
			Связность при отображении		
			Компоненты связности		
	1.13		ная связность		
			Компоненты линейной связности		
		1.13.2	Линейная связность и связность		
			Локальная линейная связность		
	1.14		иктность		
	_		Компактность в \mathbb{R}^n		
			Центрированные семейства		
			Непрерывные отображения компактов		

ОГЛАВЛЕНИЕ 4

	1.14.4 Вложения компактов	36
	1.14.5 Лемма Лебега	36
	1.14.6 Равномерная непрерывность	37
	1.14.7 Теорема Тихонова	38
	1.14.8 Локальная компактность	38
	1.14.9 Одноточечная компактификация	38
1.15	Полные метрические пространства	38
1.16	Предел последовательности	38
1.17	Полные пространства	39
	1.17.1 Теорема о вложенных шарах	40
	1.17.2 Теорема Бэра	40
	1.17.3 Пополнение	41
1.18	Компактность метрических пространств	42
	1.18.1 Секвенциальная компактность	42
	1.18.2 Вполне ограниченные множества	43
	1.18.3 Компактность и счетная база	44
	1.18.4 Обобщение	44
1.19	Факторизация	45
	1.19.1 Каноническая проекция на факторпространство	45
	1.19.2 Стягивание множества в точку	46
	1.19.3 Несвязное объединение	46
	1.19.4 Приклеивание по отображению	46
1.20	Многообразия	
	1.20.1 Классификация многообразий	49
	1.20.2 Сферы	49
	1.20.3 Классификация поверхностей	49
	1.20.4 Эйлерова характеристика	50

Глава 1

Общая топология

1.1 Метрические пространства

Def 1. Метрическое пространство — пара (X,d), где X — множество (точек), а $d: X \times X \to \mathbb{R}_+$ — расстояние, такая что $\forall x,y,z \in X$:

- 1. d(x,y) = 0 тогда и только тогда, когда x = y
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) + d(y,z) \ge d(x,z)$

Note. Вместо буквы d используют $\rho(x,y)$ или |xy|.

Property (Неравенство многоугольника).

$$\forall x_1, \dots x_n \in X : \sum_{i=1}^{n-1} d(x_i, x_{i+1}) \geqslant d(x_1, x_n).$$

Exs.

1. Прямая ℝ,

$$d(x,y) = |x - y|$$

2. Плоскость $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\},\$

$$d((x,y),(u,v)) = \sqrt{(x-u)^2 + (y-v)^2}$$

3. $\mathbb{R}^n = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_n = \{(x_1, \ldots, x_n) \mid x_i \in \mathbb{R}\},\$

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

4. Подпространство.

Пусть X=(X,d) — метрическое пространство. $Y\subset X,\; (Y,d\!\!\upharpoonright_{Y\times Y})$ — подпространство.

5. Единичная метрика.

$$X$$
 любое множество, $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$

6. Нестандартные метрики на плоскости:

$$d_1((x,y),(u,v)) = |x-u| + |y-v|$$

$$d_{\infty}((x,y),(u,v)) = \max\{|x-u|,|y-v|\}$$

7. Расстояние в графе

Def 2. X — метрическое пространство, $x \in X, r > 0$.

Открытый шар с центром в x и радиусом r

$$B_r(x) = B(x,r) = \{ y \in X \mid d(x,y) < r \}.$$

Замкнутый шар с центром в точке x и радиусом r

$$\overline{B}_r(x) = B[x, r] = \{ y \in X \mid d(x, y) \leqslant r \}.$$

Сфера с центром в точке x и радиусом r

$$S_r(x) = \{ y \in X \mid d(x, y) = r \}.$$

Exs.

1.
$$X = \mathbb{R}, B_r(x) = (x - r, x + r)$$

2.
$$X = \mathbb{R}^2$$

3.
$$X = (\mathbb{R}^2, d_1)$$

4.
$$X=(\mathbb{R}^2,d_\infty)$$

Рис. 1.1: Второй, третий и четвертый примеры

Def 3. Множество $A \subset X$ открыто, если $\forall x \in A \exists r > 0 : B_r(x) \subset A$.

Exs.

1. Квадрат без границы на плоскости открыт, а квадрат с границей — нет.

- 2. Интервалы в \mathbb{R} : \mathbb{R} , (a,b), $(a,+\infty)$, $(-\infty,b)$ открыты, остальные нет.
- $3.\ X$ с единичной метрикой все множества открыты.
- 4. Ø всегда открыто
- 5. Все пространство тоже всегда открыто

Note. Открытость — относительное свойство, зависит от пространства.

Ex. [0,1) не открыто на прямой, но открыто на $[0,+\infty)$

Theorem 1. Открытые шары открыты.

Theorem 2. Объединение любого набора открытых множеств открыто.

Доказательство. $\{A_i\}_{i\in I}$ — семейство открытых множеств. Рассмотрим

$$A = \bigcup_{i \in I} A_i.$$

Пусть $x \in A$. Тогда $\exists i \in I: x \in A_i$. Так как A_i открыто, $\exists r > 0: B_r(x) \subset A_i \Longrightarrow B_r(x) \subset A$. Следовательно, A открыто.

Theorem 3. Пересечение любого конечного набора открытых множеств открыто.

Доказательство. Докажем для двух. Пусть A, B открыты. Рассмотрим $x \in A \cap B$.

$$\exists r_1 > 0 : B_{r_1} \subset A$$

$$\exists r_2 > 0 : B_{r_2} \subset B$$

$$\Longrightarrow B_{\min(r_1, r_2)} \subset A \cap B.$$

Practice. Открытые множества на прямой представимы в виде дизъюнктного объединения открытых интервалов, причем не более чем счетного числа.

1.2 Топологические пространства

Def 4. X — любое множество.

Топологическая структура (топология) на множестве X — множество $\Omega \subset 2^X$ такая, что:

- 1. $\emptyset, X \in \Omega$
- 2. Объединение любого набора множеств из Ω принадлежит Ω

$$\forall \{A_i\}_{i\in I} \in \Omega: \ \bigcup_{i\in I} \{A_i\} \in \Omega$$

3. Пересечение конечного числа принадлежащих Ω множеств тоже принадлежит Ω :

$$\forall A_1, \dots A_n \in \Omega : \bigcap_{i \in [1,n]} \in \Omega.$$

Топологическое пространство — $(X,\Omega), X$ — множество, Ω — топологическая структура, элементы Ω — открытые множества данного топологического пространства.

Exs.

- 1. Метрические пространства (топология задана метрикой)
- 2. Дискретная топология $\Omega = 2^X$
- 3. Антидискретная топология $\Omega = \{\varnothing, X\}$

Def 5. Топологическое пространство (X,Ω) метризуемо, если существует метрика на X, задающая топологию Ω .

Def 6. X — топологическое пространство. Множество $A\subset X$ называется **замкнутым**, если $X\backslash A\in\Omega$.

Exs.

- 1. $X = \mathbb{R}$. [a, b], $[a, +\infty)$, $(-\infty, b]$, \mathbb{R} замкнуты.
- 2. Дискретное пространство все множества замкнуты.
- 3. Антидискретное пространство замкнуты только \varnothing и X.

Practice. Замкнутые шары замкнуты.

Theorem 4.

- 1. \varnothing , X замкнуты
- 2. Пересечение любых наборов замкнутых множеств замкнуто
- 3. Конечное объединение замкнутых множеств замкнуто

Property. (X,Ω) — топологическое пространство, A открыто, B замкнуто.

- 1. $A \setminus B$ открыто
- $2. B \setminus A$ замкнуто

1.3 Внутренность, замыкание, граница

Designation. (X,Ω) — топологическое пространство, $A \subset X$.

1.3.1 Внутренность множества. Внутренние точки

Def 7. Внутренность множества A ($Int A, A^{\circ}$) — объединение всех открытых множеств, содержащихся в A.

Property.

- 1. Int A наибольшее по включению открытое множество, содержащееся в A.
- 2. A открыто тогда и только тогда, когда A = IntA.

Def 8. Окрестность точки $x \in X$ — любое открытое множество, содержащее x.

Def 9. Точка $x \in A$ называется внутренней точкой множества A, если существует окрестность $U \ni x$ такая, что $U \subset A$.

Theorem 5. Внутренность множества — множество внутренних точек.

Corollary. A открыто тогда и только тогда, когда все его точки внутренние.

1.3.2 Замыкание, граница, точки прикосновения

Def 10. Замыкание множества A (ClA, \overline{A}) — пересечение всех замкнутых множеств, содержащих A.

Property.

- 1. ClA наименьшее по включению замкнутое множество, содержащее A.
- 2. A замкнуто тогда и только тогда, когда $\mathrm{Cl} A = A.$
- 3. $\operatorname{Cl}(X \setminus A) = X \setminus \operatorname{Int} A$ $\operatorname{Int}(X \setminus A) = X \setminus \operatorname{Cl} A$

Def 11. Граница множества A (FrA, ∂A) это Cl $A \setminus \text{Int} A$.

Property.

1. FrA замкнуто.

- 2. $\operatorname{Fr} A = \operatorname{Fr}(X \setminus A)$
- 3. А замкнуто тогда и только тогда, когда ${\rm Fr} A \subset A$.
- 4. А открыто тогда и только тогда, когда $A \cap \operatorname{Fr} A = \emptyset$.
- 5. $ClA = IntA \sqcup FrA$

Statement. $X = \text{Int} A \sqcup Int X \setminus A \sqcup \text{Fr} A$

Def 12. Точка $x \in X$ называется точкой прикосновения, если для любой окрестности $U \ni x : U \cap A \neq \emptyset$.

Theorem 6. Замыкание множества A — множество всех точек прикосновения.

Доказательство. Перейдем к дополнениям.

$$X \setminus \operatorname{Cl} A \stackrel{?}{=} \{x \in X \mid x - \text{не точка прикосновения}\}.$$

$$\operatorname{Int}(X \setminus A) \stackrel{?}{=} \{x \in X \mid \exists \text{ окрестность } U \ni x, \ U \cap A = \emptyset\}.$$

 $U\cap A=\varnothing\Longleftrightarrow U\subset X\setminus A\Longleftrightarrow x$ — внутренняя точка $X\setminus A$.

1.3.3 Изолированные и предельные точки

Def 13. Точка $x \in X$ называется внешней точкой множества A, если x — внутренняя точка $X \setminus A$. Внешность A — внутренность $X \setminus A$.

Def 14. $x \in X$ — изолированная точка множества A, если для существует окрестность $U \ni x : A \cap U = \{x\}$.

Def 15. $x \in X$ — предельная точка множества A, если для любой окрестности $U \ni x : (A \cap U) \setminus \{x\} \neq \emptyset$.

Property.

- 1. $ClA = \{usonuposahhue moчкu\} \sqcup \{npedenuhue moчкu\}$
- 2. А замкнуто тогда и только тогда, когда А содержит все свои предельные точки.

Practice.

- 1. $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$
- 2. $Int(A \cup B)$ не всегда равно $Int(A) \cup Int(B)$
- 3. $Cl(A \cup B) = Cl(A) \cup Cl(B)$
- 4. $Cl(A \cap B)$ не всегда равно $Cl(A) \cap Cl(B)$

1.4 Подпространства

Designation. $X = (X, \Omega)$ — топологическое пространство, $Y, Z \subset X$.

Def 16. Индуцирванная (относительная) топология на $Y - \Omega_Y = \{Y \cap U \mid U \in \Omega\}$. Y с такой топологией называется подпространством X: (Y, Ω_Y) — подпространство X.

Theorem 7. Ω_Y — топология на Y.

Доказательство. Просто проверяем определение.

Theorem 8. Определение согласовано с метрическим. Если X=(X,d) — метрическое пространство, Ω — топология, заданная метрикой d, то Ω_Y — топология, заданная $d \upharpoonright_{Y \times Y}$.

Доказательство.

Тогда $\forall x \in A \ \exists r > 0 : B_r^Y(x) \subset A \Longrightarrow A$ открыто относительно $d \upharpoonright_{Y \times Y}$.

$$U := \bigcup_{x \in A} B_r^X(x) \in \Omega.$$

$$Y \cap U = \bigcup_{x \in A} (Y \cap B_r^X(x)) = \bigcup_{x \in A} B_r^Y(x) = A \Longrightarrow A \in \Omega_Y$$

Theorem 9. $\{B \mid B \text{ замкнуто относительно } \Omega_Y\} = \{A \cap Y \mid A \text{ замкнуто относительно } \Omega\}$

Доказательство. $B \subset Y$ замкнуто в $Y \Longleftrightarrow Y \setminus B \in \Omega_Y \Longleftrightarrow \exists U \in \Omega : Y \setminus B = Y \cap U \Longleftrightarrow \exists U \in \Omega : B = Y \cap (X \setminus U)$ — замкнуто в X.

Property. $A \subset Y$

- 1. Если A открыто в X, то A открыто в Y.
- 2. Если Y открыто в X, то

$$A \in \Omega_V \Longrightarrow A \in \Omega.$$

- $3. \;\; Ecлu \; A \; замкнуто \; в \; X, \; mo \; A \; замкнуто \; в \; Y.$
- 4. Если Y замкнуто в X, то

A замкнуто в $Y \Longrightarrow A$ замкнуто в X.

Practice. $A \subset Y$

- 1. $Cl_Y A = ClA \cap Y$
- 2. $Int_Y A$ не всегда равно $Int A \cap Y$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

1.5 Сравнение топологий

Designation. X — множество, $\Omega_1, \Omega_2 \subset 2^X$ — топологические структуры.

Def 17. Если $\Omega_1 \subset \Omega_2$, то Ω_1 слабее (грубее), чем Ω_2 , а Ω_2 сильнее (тоньше), чем Ω_1 .

Theorem 10. X — множество, d_1, d_2 — метрики на X. d_1, d_2 задают топологии Ω_1, Ω_2 . Тогда эквивалентны:

- Ω_1 сильнее Ω_2
- B любом шаре метрики d_2 содержится шар метрики d_1 с тем же центром.

Доказательство.

 \Longrightarrow По определению первое утверждение равносильно тому, что $\Omega_2 \subset \Omega_2 \Longleftrightarrow \forall A \in \Omega_2 : A \in \Omega_1$. Пусть B(x) — открытый шар в метрике d_2 .

$$B(x) \in \Omega_2 \Longrightarrow B(x) \in \Omega_1 \Longrightarrow x$$
 — внутренняя точка X .

Следовательно, существует шар метрики d_1 , содержащий B(x).

$$A \in \Omega_2$$

 $\forall x \in A : \exists B$ — открытый шар в метрике $d_2 \Longrightarrow \exists B' \subset B$ — открытый в метрике d_1 .

Corollary. d_1, d_2 — метрики на X.

$$\exists c > 0 : d_2 \leqslant cd_1 \quad (\forall x, y \in X : d_2(x, y) = cd_1(x, y)).$$

Тогда d_2 слабее d_1 (Ω_2 слабее Ω_1).

Доказательство. $d_2 \leqslant cd_1 \Longrightarrow B_{\frac{r}{c}}^{d_1}(x) \subset B_r^{d_2}(x)$. Выполнено второе условие теоремы 10. Значит, d_2 слабее d_1 .

Def 18. d_1 и d_2 называются **липшицево эквивалентными**, если $\exists c_1, c_2 > 0 : c_1 d_2 \leqslant d_1 \leqslant c_2 d_2$.

Corollary. Липшициво эквивалентные метрики задают одинаковые топологии.

Ex.
$$\mathbb{R}^n$$
, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$

$$d_2(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
$$d_{\infty}(x,y) = \max_{i} \{|x_i - y_i|\}$$

Метрики d_1, d_2, d_∞ задают одинаковые топологии так как:

$$d_{\infty} \leqslant d_2 \leqslant \sqrt{n} d_{\infty}$$
$$d_{\infty} \leqslant d_1 \leqslant n d_{\infty}$$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

1.6 База топологии

Designation. X — множество, Ω — топология на X.

Def 19. $\Sigma \subset \Omega$ — база топологии Ω , если $\forall A \in \Omega$ представляется в виде объединения элементов Σ .

Ех. В метрическом пространстве базой будет множество всех открытых шаров.

Ex. На \mathbb{R}^1 — открытые интервалы с рациональными концами.

Statement. $\Sigma - \delta a s a \Omega \mod u \mod m$ только тогда, когда

$$\forall U \in \Omega \ \forall x \in U \ \exists V \in \Sigma : x \in V \subset U.$$

Theorem 11. X — множество, $\Sigma \subset 2^X$. Следующие утверждения эквивалентны:

- 1. Существует такая топология, что Σ база Ω
- $2. \ \forall A,B \in \Sigma: A \cap B \ \ npedcmaвимы в виде объединения элементов <math>\Sigma$
- $u\ X\ npedcmaвимо\ в\ виде\ объединения\ элементов\ \Sigma.$

Доказательство.

 $1 \Longrightarrow 2$ Очевидно.

 $2 \Longrightarrow 1$ Пусть

 $\Omega = \{$ объединение любых наборов элементов $\Sigma \}.$

Аксиомы из определения топологии выполняются, следовательно, Ω — топология на X.

Def 20. $\Lambda \subset \Omega$ — предбаза Ω , если Ω является наименьшей по включению топологией, содержащей Λ .

Theorem 12. Для любого $\Lambda \subset 2^X$ существует топология Ω такая, что Λ — ее предбаза. Ваза Ω — все возможные конечные пересечения элементов Λ и все пространство.

Def 21. $X = (X, \Omega)$ — топологическое пространство, $x \in X$. $\Sigma_x \subset \Omega$ — набор открытых множеств, содержащих x.

 Σ_x — база окрестности x, если

 \forall окрестности $U \ni x : \exists$ окрестность $V \in \Sigma_x : x \in V \subset U$.

Ех. Шары с центром в точке являются базой окрестности в ней.

1.7 Произведение топологических пространств

Def 22. X, Y - топологические пространства.

Топология произведения на $X \times Y$ – топология, база которой равна

$$\{A \times B \mid A \subset X, B \subset Y - \text{ открыты.}\}.$$

 $X \times Y$ с такой топологией – произведение X и Y.

Theorem 13. Определение 22 корректно.

Доказательство. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

Рис. 1.2: Пересечение

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

Theorem 14. $A \cap X$ – замкнуто, $B \cap Y$ – замкнуто. Тогда $A \times B$ – замкнуто в $X \times Y$.

Доказательство. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$ открыто в Y, а $X\setminus A$ открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в $X\times Y$.

Practice. Для любых $A \subset X$, $B \subset Y$:

- 1. $\operatorname{Int}(A \times B) = \operatorname{Int}(A) \times \operatorname{Int}(B)$
- 2. $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3. $A \times B$ как произведение подпространств равно $A \times B$ как подпространство произведения.

ГЛАВА 1. ОБШАЯ ТОПОЛОГИЯ

1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой. d_X, d_Y - метрики.

Theorem 15.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на $X \times Y$. Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика. Очевидно, что $d((x,y),(x',y'))=0 \iff d_X(x,x')=d_Y(y,y')=0 \iff x=y \land x'=y'$. Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geqslant} d(p, p'') \stackrel{\text{HYO}}{=} d_X(x, x'').$$

 $d_X(x, x') + d_X(x', x'') \geqslant d_X(x, x'').$

2.
$$\Omega_d \subset \Omega_{X \times Y}$$

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество, которое мы представили через базовые множества X и Y.

3. $\Omega_{X\times Y}\subset\Omega_d$ Рассмотрим $W\in\Omega_{X\times Y}$.

Рис. 1.3: Произведение метрических пространств

$$\exists A\subset X,\ B\subset Y$$
- открытые, $(x,y)\in A imes B\subset W.$
$$\exists r_1>0: B^X_{r_1}(x)\subset A.$$

$$\exists r_2>0: B^Y_{r_2}(y)\subset B.$$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

Теперь возьмем $r = \min(r_1, r_2)$

$$B_r^{X\times Y}((x,y))=B_r^X(x)\times B_r^Y(y)\subset A\times B\subset W.$$

Statement. Согласование метрик:

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$

$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leqslant} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y''))$$

$$\sqrt{(a+b)^2 + (c+d)^2} \stackrel{!!}{\leqslant} \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

 $\begin{array}{c} y'' \\ y' \\ y \\ x \\ x' \\ \end{array}$

Рис. 1.4: Неравенство треугольника

1.7.2 Тихоновская топология

Designation.

- $X = \prod_{i \in I} X_i$ произведение множеств или пространств.
- $p_i: X \to X_i$ координатная проекция.
- Ω_i топология на X_i .

Def 23 (Тихоновская топология). Пусть $\{X_i, \Omega_i\}_{i \in I}$ – семейство топологических пространств. Тихоновская топология на $X = \prod X_i$ – топология с предбазой

$$\left\{p_i^{-1}(U) \mid i \in I, \ U \in \Omega_i\right\}.$$

Рис. 1.5: Тихоновская топология

Tasks.

- 1. Счетное произведение метризуемых метризуемо. Сначала можно разобраться с отрезком $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$.
- 2. Канторовское множество $\approx \{0,1\}^{\mathbb{N}}$

1.8 Непрерывность

X,Y - топологические пространства, Ω_1,Ω_2 - топологии, $f:X\to Y$.

Def 24. f – непрерывна, если $\forall U \subset \Omega_Y: f^{-1}(U) \in \Omega_X$.

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Exs.

- 1. Тождественное отображение непрерывно. $id_X: X \to X$
- 2. Константа тоже непрерывна. $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно, $\forall f: X \to Y$ непрерывно.

4. Если Y - антидискретно, $\forall f: X \to Y$ - непрерывно.

Def 25. $f: X \to Y, x_0 \in Y$ f непрерывна в точке x_0 , если

 \forall окрестности $U \ni y_0 = f(x_0) \exists$ окрестность $V \ni x_0 : f(V) \subset U$.

Theorem 16. f - непрерывна тогда и только тогда, когда $\forall x_0 \in X : f$ - непрерывна в точке x_0 .

Доказательство.

 $\implies y_0 \in U$.

$$\begin{cases} f^{-1}(U) \text{ открыт} & V \coloneqq f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{cases}.$$

 \sqsubseteq $U \subset Y$ открыто, хотим доказать, что $f^{-1}(U)$ открыто. Достаточно доказать, что $\forall x \in f^{-1}(U)$ внутренняя.

$$\exists V\ni x: f(V)\subset U\Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x — внутренняя точка $f^{-1}(U)$.

1.8.1 Непрерывность в метрических пространствах

Theorem 17. X,Y - метрические пространства. $f:X\to Y,\ x\in X.$

Tогда f — непрерывна в точка x тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (\forall x' \in X, \ d(x, x') < \delta \Longrightarrow d(f(x), f(x')) < \varepsilon).$$

Доказательство.

Так как f – непрерывна в точке x, существует окрестность $V \ni x : f(v) \subset B_{\varepsilon}(f(x))$. Так как V открыто, $\exists \delta > 0 : B_{\delta} \subset V$.

Рассмотрим $U \ni f(x)$. Тогда $\exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset U :$ $\exists \delta > 0 : f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$. Можем взять $V := B_{\delta}(x)$.

1.8.2 Липшицевы отображения

Def 26. X, Y – метрические пространства.

 $f: X \to Y$ — липшицево, если $\exists c > 0 \ \forall x, x' \in X: d_Y(f(x), f(x')) \leqslant cd_X(x, x')$.

Designation. c — константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Доказательство. Рассмотрим $\delta = \frac{\varepsilon}{c}$.

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \leqslant C\delta = \varepsilon.$$

Ex. X – метрика, $x0 \in X$. $f: X \to \mathbb{R}$, $f(x) = d(x, x_0)$

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task. $A \subset X$

$$f(x) = \operatorname{dist}(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

Ех. $d: X \times X \to \mathbb{R}$ – непрерывна.

1.8.3 Композиция непрерывных отображений

Рис. 1.6: Композиция отображений

Theorem 18. X,Y,Z — топологические пространства. $f: X \to Y, g: Y \to Z, g \circ f: X \to Z$. f непрерывно в X, g непрерывно в f(X). Тогда $g \circ f$ непрерывно в X.

Note. $(g \circ f)(x) = g(f(x))$. Несложно проверить равенство $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$.

Доказательство. Используя то, что $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$, понимаем, что если A открыто в Z, то его прообраз в $Y - g^{-1}(A)$ открыт, а прообраз $g^{-1}(A)$ в X открыт в X.

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

Theorem 19. $f: X \to Y$ непрерывно тогда и только тогда, когда прообраз замкнутого замкнут.

 $\mathbf{Ex.}\ f:X o Y$ непрерывно тогда и только тогда, когда

$$\forall A \subset X : f(ClA) \subset Clf(A),$$

что равносильно

$$\forall A \subset X : f(\operatorname{Int} A) \subset \operatorname{Int} f(A).$$

1.8.4 Предел отображения

Def 27. Предел отображения $f: X \setminus x_0 \to Y$ в точке x_0 равен $y_0 \in Y$ при $x \to x_0$, если $\hat{f}: X \to Y$, определенная равенством

$$\begin{cases} f(x) & x \neq x_0 \\ y_0 & x = x_0 \end{cases},$$

непрерывна в точке x_0 .

Ex. Непрерывность в $\pm \infty$: $\hat{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$, окрестности $\pm \infty$ — лучи, окрестности остальных — как раньше.

1.8.5 Непрерывность и пространства

Theorem 20. $Y \subset X$. Включение in : $Y \to X$, in $(y) = y \quad \forall y \in Y$ непрерывно.

Theorem 21. $f: X \to Z, Y \subset X$. Если f непрерывно, то $f \upharpoonright_Y$ непрерывно.

Доказательство. $f|_Y = f \circ \text{in}$ — композиция непрерывных непрерывна.

Theorem 22. $Y \subset Z, \ f: X \to Y. \ f$ непрерывно тогда и только тогда, когда $\hat{f} = \operatorname{in}_{Y \to Z} \circ f$ непрерывно.

Доказательство.

 $1 \Longrightarrow 2$ Композиция непрерывных непрерывна.

 $2 \Longrightarrow 1$ Рассмотрим открытое в Y множество A.

$$A = Y \cap U$$
, где U открыто в Z

$$f^{-1}(A) = \hat{f}^{-1}(A) = \hat{f}^{-1}(U).$$

 $\hat{f}^{-1}(U)$ открыто в X. Следовательно, f непрерывно.

1.8.6 Отображения в произведение

Def 28 (Общий вид отображений в произведение). Любое отображение $f: Z \to X \times Y$ имеет вид $f = (f_1, f_2): f(z) = (f_1(z), f_2(z)) \quad \forall z \in Z. \ f_1: Z \to X \ и \ f_2: Z \to Y -$ компоненты. В обратную сторону: любая пара f_1, f_2 задаем $f: Z \to X \times Y$.

Def 29. Пусть $f: X \to \prod_{i \in I} X_i$. Его компоненты — композиции с проекциями:

$$f_i = p_i \circ f, \ f_i : Z \to X_i \quad \forall i \in I.$$

Theorem 23. $X = \prod X_i$ (тихоновское произведение). Z — топологическое пространство, $f: Z \to X$, $f_i = p_i \circ f$ — компоненты отображения. f непрерывно тогда и только тогда, когда f_i непрерывно для всех i.

Доказательство.

 $\boxed{1 \Longrightarrow 2} f_i = p_i \circ f$ — композиция непрерывных непрерывна.

 $2 \Longrightarrow 1$ Проверим, что все прообразы предбазы открыты (из этого будет следовать, что и прообразы всех открытых открыты). Пусть U из предбазы.

$$U = p_i^{-1}(V_i), \quad i \in I \land V_i \in \Omega_i.$$

$$f^{-1}(U) = f^{-1}(p_i^{-1}(V_i)) = (p_i \circ f)^{-1}(V_i) = f_i^{-1}(V_i).$$

А $f_i^{-1}(V_i)$ открыто, так как f_i непрерывно.

1.8.7 Отображения из произведения

Designation. $f: X \times Y \to Z, \ f(x,y) \in Z \qquad \forall x \in X, y \in Y.$

Ex. $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & x = y = 0 \end{cases}.$$

По x, по y непрерывно, потому что просто $|f_y(x)| \le 1$. Но при $x = y \ne 0$, f(a, a) = 1, при x = y = 0, f(0, 0) = 0, следовательно, непрерывности нет.

Theorem 24.
$$f(x,y) = x + y$$

$$\begin{cases} f(x,y) = x + y \\ f(x,y) = x - y \\ f(x,y) = xy \end{cases} henpepuehu us $\mathbb{R} \times \mathbb{R} \in \mathbb{R}$.$$

 \mathcal{A} оказательство. Снабдим $\mathbb{R} imes\mathbb{R}$ стандартной метрикой. Проверим непрерывность в точке $(x_0,y_0)\in\mathbb{R}^2$.

1. Сумма.

$$\forall \varepsilon > 0 \ \exists \delta = \frac{\varepsilon}{2} : ((x, y) \in B_{\delta}(x_0, y_0) \Longrightarrow |x - x_0| < \delta \land |y - y_0| < \delta).$$

Тогда

$$|f(x,y) - f(x_0,y_0)| = |(x+y) - x_0 - y_0| \le |x - x_0| + |y - y_0| < 2\delta < \varepsilon.$$

- 2. Разность. Аналогично.
- 3. Произведение.

$$\forall \varepsilon > 0 \ \exists \delta = \min \left\{ \frac{\varepsilon}{2M+1}, 1 \right\}, \quad M = \max\{|x_0|, |y_0|\}.$$

Если (x,y) лежит в шаре B_{δ} , то $x=x_{0}+a,\ y=y_{0}+b,$

$$f(x,y) = (x_0 + a)(y_0 + b) = x_0y_0 + ay_0 + by_0 + ab.$$

Тогда (используем, что $\delta \leqslant 1$)

$$|f(x,y) - f(x_0,y_0)| = |ay_0 + bx_0 + ab| < \delta M + \delta M + \delta^2 \le (2M+1)\delta \le \varepsilon.$$

Corollary. Пусть X — топологическое пространство. Если $f:X\to\mathbb{R},\ g:X\to\mathbb{R}$ непрерывны, то f+g, f-g, fg тоже непрерывны.

Доказательство. Рассмотрим $F:X\to\mathbb{R}\times\mathbb{R}:F(x)=(f(x),g(x))$. F непрерывно по теореме 23. Тогда f + g, f - g, fg — композиции F и суммы, разности, произведения соответственно.

Corollary. X — топологическое пространство. Если $f:X\to\mathbb{R},\ g:X\to\mathbb{R}$, то $\frac{f}{g}$ непрерывна на области определения, то есть $\{x \in X \mid g(x) \neq 0\}$.

 \mathcal{A} оказательство. $g |_{\{x \in X \mid g(x) \neq 0\}}$ непрерывна. Функция $\varphi : \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ \varphi(t) = \frac{1}{t}$ непрерывна. Тогда

$$\frac{1}{g} = \varphi \circ g \!\!\upharpoonright_{\{g \neq 0\}}$$
 тоже непрерывно.

Следовательно,

$$\frac{f}{q} = f \cdot \frac{1}{q}$$
 непрерывно.

Corollary. Любая функция от n переменных, состоящая из элементарных операций, непрерывна на области определения.

Practice. X — топологическое пространство. $f,g:X\to\mathbb{R}$ — непрерывные функции. Тогда $\max\{f,g\}$ и $\min\{f, g\}$ тоже непрерывны.

ГЛАВА 1. ОБШАЯ ТОПОЛОГИЯ

1.9 Фундаментальные покрытия

Def 30. X — топологическое пространство. **Покрытие** X — Любое семейство подмножеств A_i :

$$\bigcup_{i \in I} A_i = X.$$

Покрытие $\{A_i\}$ называется **открытым**, если $\forall i \in I : A_i$ открыто.

Покрытие $\{A_i\}$ называется **замкнутым**, если $\forall i \in I : A_i$ замкнуто.

Покрытие $\{A_i\}$ называется **конечным**, если I конечно.

Покрытие $\{A_i\}$ называется **локально конечным**, если $\forall a \in X \exists$ окрестность $U \ni x : \{i \mid U \cap A_i \neq \varnothing\}$ конечно.

Def 31. Покрытие $\{A_i\}_{i\in I}$ называется фундаментальным, если

 $\forall U \subset X : (\forall i \in I : U \cap A_i \text{ открыто в } A_i \Longrightarrow U \text{ открыто в} X).$

Theorem 25. $\{A_i\}_{i\in I}$ — фундаментальное покрытие. $f: X \to Y$. Если $\forall i \in I: f \upharpoonright_{A_i}$ непрерывно, то f непрерывно.

 \mathcal{A} оказательство. Для любого отрытого $U \subset Y$ и любого $i \in I$: $(f \upharpoonright_{A_i})^{-1}(U)$ открыто в A_i .

$$(f \upharpoonright_{A_i})^{-1}(U) = f^{-1}(U) \cap A_i.$$

Так как покрытие фундаментальное, из последнего утверждения следует, что $f^{-1}(U)$ открыто в X. \square

Theorem 26. Следующие виды покрытий фундаментальны:

- 1. открытые покрытия
- 2. конечные замкнутые покрытия
- 3. локально конечные замкнутые покрытия

Доказательство.

1. Все A_i открыты. $U \subset X$.

 $\forall i \in I : U \cap A_i$ открыто в $A_i \Longrightarrow U \cap A_i$ открыто в X.

$$U = \bigcup_{i \in I} (U \cap A_i)$$
 открыто в X .

2. $A_1, \ldots A_n$ замкнуто. $U \subset X$ Перейдем к дополнению. Докажем, что $V = X \setminus U$ замкнуто в X. $A_i \cap V$ замкнуто в A_i , следовательно, $A_i \cap V$ замкнуто в X.

$$V = \bigcup_{i=1}^n (V \cap A_i)$$
 замкнуто в X .

Тогда $X \setminus V = U$ открыто в X.

3. Локально конечно $\Longrightarrow V_x$ пересекаются с конечным числом A_i . Применим второй пункт, получим, что пересечение с U открыто в X. По первому пункту U открыто в X.

1.10 Гомеоморфизм

Designation. X, Y — топологические пространства.

Def 32. Гомеоморфизм между X и Y — непрерывное биективное отображение $f: X \to Y$ такое, что $f^{-1}: Y \to X$ тоже непрерывно.

Def 33. X и Y гомеоморфны, если существует гомеоморфизм между ними.

Designation. X и Y гомеоморфны: $X \cong Y$ или $X \simeq Y$.

Property.

- 1. Тождественное отображение гомеоморфизм.
- 2. Если f гомеоморфизм, то f^{-1} гомеоморфизм.
- 3. Композиция гомеоморфизмов гомеоморфизм.

Theorem 27. Гомеоморфность — отношение эквивалентности.

Note.

- 1. Гомеоморфизм задает биекцию между открытыми множествами в X и Y.
- 2. С топологической точки зрения гомеоморфные пространства неотличимы.

Note. Топологическая эквивалентность — гомеоморфность.

Note. Про гомеоморфные пространства говорят, что у них одинаковый тип.

Пример непрерывной биекции, не являющейся гомеоморфизмом

Пусть $f:[0,2\pi)\to S^1$ такое что:

$$f(t) = (\cos t, \sin t).$$

f – биекция между $[0,2\pi)$ и S^1 , f – непрерывно, но f^{-1} разрывно в точке (1,0).

Примеры гомеоморфных пространств

Statement.

- $\forall a, b, c, d : [a, b] \cong [c, d]$
- $\bullet \ \forall a, b, c, d: (a, b) \cong (c, d)$
- $\forall a, b, c, d : [a, b) \cong [c, d) \cong (c, d]$
- $\forall a, b : (a, +\infty) \cong (b, +\infty) \cong (-\infty, a)$
- $\forall a, b : [a, +\infty) \cong [b, +\infty) \cong (-\infty, a]$
- $(0,1) \cong \mathbb{R}$
- $[0,1) \cong [0,+\infty)$

Theorem 28. Открытый шар в \mathbb{R}^n гомеоморфен \mathbb{R}^n

Доказательство.

$$f(\vec{x}) = \begin{cases} \frac{\vec{x}}{|\vec{x}|} \operatorname{tg} |\vec{x}| & x \neq 0 \\ 0 & x = 0 \end{cases}.$$

Designation.

 D^n — замкнутый единичный шар в \mathbb{R}^n

 S^n — единичная сфера в \mathbb{R}^{n+1}

Theorem 29. $S^n \setminus \{moч\kappa a\} \cong \mathbb{R}^n$

Рис. 1.7: Для n=1

Practice.

- 1. Квадрат с границей гомеоморфен D^2
- 2. $D^m \times D^n \cong D^{n+m}$

1.11. AKCИОМЫ 26

1.11 Аксиомы

1.11.1 Аксиомы счетности

Def 34. $X=(X,\Omega)$. База в точке $x\in X$ – такое множество $\Sigma_x\subset\Omega$, что:

- 1. $\forall V \in \Sigma_x : x \in V$
- 2. $\forall U \ni x \; \exists V \in \Sigma_x : V \subset U$

Designation. Счетное множество — не более, чем счетное.

Def 35. Пространство X удовлетворяет первой аксиоме счетности (1AC), если для любой точки $x \in X$ существует счетная база в этой точке.

Def 36. Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

Theorem 30. $2AC \Rightarrow 1AC$

Доказательство. Пусть Σ – база топологии, $x \in X$. Пусть

$$\Sigma_x = \{ U \in \Sigma \mid x \in U \}.$$

Тогда Σ_x — база в точке.

Theorem 31. Все метрические пространства удовлетворяют второй аксиоме счетности.

Statement. \mathbb{R} имеет счетную базу.

Theorem 32. Если X и Y имеют счетную базу, то $X \times Y$ тоже имеет счетную базу.

Theorem 33. Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary. \mathbb{R}^n имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

Def 37. Топологические свойство — наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС - наследственные свойства.

1.11. АКСИОМЫ 27

Theorem 34. Линделёф $Ecnu\ X$ удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Доказательство. Пусть Λ – множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия. Λ – счетное покрытие.

Каждому $U \in A$ сопоставим V из исходного покрытия, для которого $U \subset V$.

Все такие V образуют искомое счетное покрытие.

1.11.2 Сеперабельность

Def 38. Всюду плотное множество – множество, замыканние которого есть все пространство.

Def 39. Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

 $\mathbf{E}\mathbf{x}$. \mathbb{Q} всюду плотно в \mathbb{R}

Def 40. Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

Property. X, Y – сепарабельны $\Longrightarrow X \times Y$ тоже.

Note. Сепарабельность – не наследственное свойство.

Theorem 35.

- Счетная база \Longrightarrow сепарабельность.
- Для метризуемых пространств сеперабельность ⇒ счетная база

1.11.3 Аксиомы отделимости

Def 41. X обладает свойтсвом T_1 , если для любой различных точек $x,y \in X$ существует такое открытое U, что $x \notin U \land y \notin U$.

Другое название: T_1 -пространство.

Theorem 36. $T_1 \iff$ любая точка является замкнутым множеством.

Def 42. X – хаусдорфово, если для любых $x,y\in X$ существуют окрестности $U\ni x\wedge V\ni y:\ U\cap V=\varnothing$. Другое название: T_2 -пространство.

Designation. про такие окрестности U, V говорят, что они отделяют x и y друг от друга.

Note. Все метрические пространства хаусдорфовы.

1.12. CBЯЗНОСТЬ 28

Theorem 37. X хаусдорфово \iff "диагональ" $\Delta := \{(x,x) \mid x \in X\}$ замкнута в $X \times X$

 \mathbf{Def} 43. X – регулярно, если

- обладает T_1
- \forall замкнутого $A \subset X \ \forall x \in X \setminus A \ \exists$ открытые $U,V:A \subset U \land x \in V \land U \cap V = \varnothing$ Другое название T_3 -пространство.

 $Note~(\Pi$ ереформулировка определения T_3). X регулярно тогда и только тогда, когда обладает свойством T_1 и

 $\forall x \in X, \forall$ окрестности $U \ni x \exists$ окрестность $V \ni x : \operatorname{Cl}(V) \subset U$.

Def 44. X – нормально, если

- обладает T₁
- $\forall A, B \in X (A \cap B = \emptyset)$ \exists открытые $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название T_4 -пространство.

 $Note~(\Pi$ ереформулировка определения $T_4).~X$ нормально тогда и только тогда, когда обладает свойством T_1 и

 $\forall x \in X, \ \forall$ замкнутого $A \subset X$ и \forall открытого $U \supset A \exists$ открытое $V: A \subset V \land \mathrm{Cl}(V) \subset U$.

Statement. $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$

Practice. Свойства $T_1 - T_3$ наследуются подпространствами и произведениям. Нормальность не наследственная.

Def 45. Все метрические пространства нормальны.

Доказательство. Хороший метод.

$$f: X \to Y$$

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Она корректна, непрерывна, и принимает значение ноль на A и единице B.

Lemma (Урысон). X – нормально, $A, B \subset X$ – замкнуты, $A \cap B = \emptyset$. Тогда существует непрерывна функция $f: X \to [0,1]: f \upharpoonright_A = 0 \land f \upharpoonright_B = 1$

1.12 Связность

Designation. X — топологическое пространство.

1.12. СВЯЗНОСТЬ 29

Def 46 (Связное топологическое пространство).

X связно, если:

его нельзя разбить на два непустых открытых множества;

его нельзя разбить на два непустых замкнутых множества;

не существует открыто-замкнутых множеств, кроме \varnothing и X;

не существует сюрьективного непрерывного отображения $f: X \to 0, 1$.

Exs.

- Антидискретное пространство связно
- Дискретное пространство из хотя бы двух точек несвязно
- ℝ \ 0 несвязно
- $[0,1] \cup [2,3]$ несвязно
- 🔘 несвязно

1.12.1 Связные множества

Def 47. Связное множество — подмножество топологического пространства, которое связано как топологическое пространство с индуцированной топологий.

Practice.

- Множество $A \subset X$ несвязно тогда и только тогда, когда оно разбивается на такие непустые B и C, что $ClA \cap C = \emptyset \wedge ClC \cap B = \emptyset$.
- Множество A в метрическом пространстве X несвязно тогда и только тогда, когда существуют открытые $U,V:\ U\cap V=\varnothing \land U\cap A\neq\varnothing \land V\cap A\neq\varnothing$.
- Предыдущее свойство неверно в общей топологии.

Property. Любое открытое содержится в некоторой компоненте связности.

Связные множества на прямой

Statement. Ompesok [0,1] связен.

Theorem 38. Для $X \subset \mathbb{R}$ следующие утверждения эквивалентны:

- 1. X cвязно
- $2. \ X выпукло (то есть вместе с любыми двумя точками содержит весь отрезок между ними)$
- 3. X интервал, точка или пустое множество

1.12. СВЯЗНОСТЬ 30

1.12.2 Связность при отображении

Theorem 39. X — связно, $f: X \to Y$ непрерывно. Тогда множество f(x) связно.

Theorem 40. X связно, $f: X \to \mathbb{R}$ непрерывно, $a, b \in f(X)$. Тогда f(x) содержит все числа между a u b.

 ${\it Доказательство}.$ По теореме 39 f(x) связно. Тогда по определению f(x) выпукло, значит содержит [a,b].

1.12.3 Компоненты связности

Def 48. Компонента связности топологического пространства X — максимальное по включению связное множество в X.

Exs.

- 1. $[0,1] \cup [2,3]$ две компоненты связности [0,1] и [2,3].
- 2. Компоненты связности \mathbb{Q} отдельные точки.

Lemma (Об объединении связных множеств). Пусть $\{A_i\}_{i\in I}$ — семейство связных множеств, каждые два из которых имеют непустое пересечение. Тогда $A := \bigcup_{i\in I} A_i$ тоже связно.

Доказательство. Пусть A разбивается на непустые открытые U и V.

$$\exists i, j \in I : U \cap A_i \neq \emptyset \land V \cap A_j \neq \emptyset.$$

Так как A_i связно, $A_i \subset U$. Аналогично $A_j \subset V$. Следовательно, $A_i \cap A_j = \emptyset$. Противоречие.

Theorem 41. Пространство разбивается на компоненты связности. То есть:

- каждая точка содержится в некоторой компоненте связности;
- различные компоненты связности не пересекаются.

Доказательство.

- 1. Каждая точка принадлежит некоторой компоненте связности. Рассмотрим $x \in X$. Пусть A — объединение всех связных множеств, содержащих x. Такие есть, так как множество $\{x\}$ связно. По лемме 1.12.3 полученное множество связно, значит это компонента связности.
- 2. Различные компоненты связности не пересекаются. Пусть A, B различные компоненты связности и $A \cap B \neq \emptyset$. По лемме 1.12.3 $A \cup B$ тоже связно, но A и B были максимальными по включению. Значит $A \cup B = A = B$. Противоречие.

Lemma. Замыкание связного множества связно.

Theorem 42. Компоненты связности замкнуты.

Доказательство. Следует из леммы 1.12.3.

Note. компоненты связности не всегда открыты. Например, в \mathbb{Q} .

Corollary. Пространство несвязно тогда и только тогда, когда есть хотя бы две компоненты связности.

Corollary. Две точки принадлежат одной компоненте связности тогда и только тогда, когда существует связное множество, содержащее их.

1.13 Линейная связность

Designation. X — топологическое пространство.

Def 49. Путь в X — непрерывное отображение $\alpha:[0,1]\to X$. Точки $\alpha(0)$ и $\alpha(1)$ — концы пути (или начало и конец). Путь α соединяет $\alpha(0)$ и $\alpha(1)$.

 ${f Def 50.}\ X$ линейно связно, если для любых двух точек существует соединяющий их путь.

 $\mathbf{E}\mathbf{x}$.

$$\forall p, q \in \mathbb{R}^n \ \exists \ \alpha(t) = (1 - t)p + tq.$$

Theorem 43. Если X линейно связно, $f: X \to Y$ непрерывно, то f(X) линейно связно.

 $extit{Доказательство}$. Если lpha — путь, соединяющий $x,y\in X$, то $f\circ lpha$ соединяет f(x) в f(X).

Lemma. Соединимость путем — отношение эквивалентности на множестве точек.

Доказательство.

Рефлексивность: $\forall x \in X \exists \alpha(t) = x$

Симметричность: $\forall x, y \in X : (\exists \alpha : \alpha(0) = x \land \alpha(1) = y) \rightarrow \exists \overline{\alpha} = \alpha(1-t))$

Транзитивность: если α идет из x в y, а β из x в z, построим путь γ , идущий из x в z:

$$\gamma(t) = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}) \\ \beta(2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}.$$

1.13.1 Компоненты линейной связности

Def 51. Компонента линейной связности — класс эквивалентности отношения соединимости путем.

Def 52 (переформулировка). Компонента линейной связности — максимальные по включению линейно связные множества.

1.13.2 Линейная связность и связность

Theorem 44. Если X линейно связно, то оно связно.

Corollary. Компоненты линейной связности лежат в компонентах связности.

Ех (Связность не влечет линейную связность). Рассмотрим множество

$$\left\{ \left(x,\cos\frac{1}{x}\right) \;\middle|\; x>0 \right\} \cup \left\{ (0,0) \right\}.$$

Оно связно, но не линейно связно.

Доказательство.

1. Связность

График линейно связен, значит он связен, а (0,0) — его предельная точка. X — замыкание графика в X, следовательно, X — связно.

2. (0,0) не соединяется путем с другими точками Пусть α — путь с началом в (0,0). Рассмотрим $T=\{t\in[0,1]\mid\alpha(t)=(0,0)\}$. T замкнуто, так как это прообраз замкнутого.

Докажем, что T открыто в [0,1]. Рассмотрим $t_0 \in T$. Так как α непрерывно $\exists \delta > 0 : \forall t \in (t_0 - \delta, t_0 + \delta) : |\alpha(t)| < 1$. Предположим, что $\exists t_1 \in (t_0 - \delta, t_0 + \delta) : \alpha(t_1) \neq (0,0)$. Пусть f(t) — первая координата $\alpha(t)$. Тогда $f(t_1) > 0$. По непрерывности

$$\exists t_2 \in [t_0, t_1] : f(t_2) = \frac{1}{2\pi n}, \quad n \in \mathbb{N}.$$

Следовательно, $\alpha(t_2) = (f(t_2), \cos f(t_2)) = (\frac{1}{2\pi n}, 1)$. Получаем $|\alpha(t_2)| > 1$. Противоречие.

Значит, T — открыто-замкнутое множество на отрезке, а так как отрезок связен, T=[0,1]. Тогда, α — постоянный путь в точке (0,0).

1.13.3 Локальная линейная связность

Def 53. Пространство X локально линейно связно, если для любой точки $x \in X$ и любой окрестности $U \ni x$ существует линейно связная окрестность $V \ni x : V \subset U$.

Ех. Любое открытое множество на плоскости локально линейно связано.

Theorem 45. В локально линейно связном пространстве компоненты линейной связности открыты u совпадают c компонентами связности.

- Доказательство. 1. Открытость компонент связности следует из того, что у каждой точки есть линейно связная окрестность, которая содержится в компоненте, а значит, точка каждая точка внутренняя.
 - 2. Компоненты линейной связности совпадают с компонентами связности так как пространство разбито на открытые связные множества $\{U_i\}$, а тогда любое связное множество A содержится в одном из U_i (так как $A \cap U_i$ и $A \setminus U_i$ открыты в A). Значит это компоненты связности.

1.14. KOMIIAKTHOCTЬ

Негомеоморфность интервалов и окружности

Theorem 46. Интервалы $[0,1], [0,+\infty), \mathbb{R}, S^1$ попарно негомеоморфны.

Theorem 47. \mathbb{R}^2 не гомеоморфна никакому интервалу и S^1

Доказательство.

• В интервалах и окружности существуют конечные множества с несвязными дополнениями.

• Дополнение любого конечного множества \mathbb{R}^2 связно.

1.14 Компактность

Designation. X — топологическое пространство.

Def 54. X компактно, если у любого открытого покрытия есть конечное подпокрытие.

Designation. X - компакт.

Exs.

- 1. Все конечные пространства компактны
- 2. Все ахти дискретные пространства пространства компактны
- 3. Бесконечное дискретное пространство некомпактно
- 4. R некомпактно

Def 55. Компактное множество — множество, компактное как подпространство.

Note. $A \subset X$. Под покрытием можно понимать одно и двух:

- Набор множеств $V_i \subset A$, открытых в $A, \bigcup V_i = A$
- Набор множеств $U_i \subset X$, открытых в $X, A \subset \bigcup U_i$

Practice. Объединение двух компактных множеств компактно.

Theorem 48 (лемма Гейне-Бореля). Отрезок [0,1] компактен.

Доказательство. Пусть $l_0 = [0,1], \{U_i\}$ — открытые множества в $\mathbb{R}, l_0 \subset \bigcup U_i$. Докажем, что l_0 покрывается конечным числом U_i . Предположим противное.

Разделим отрезок пополам и возьмем ту, которая не покрывается конечным числом U_i . Обозначим ее l_1 .

Продолжим последовательность вложенных отрезков далее: $l_0 \supset l_1 \supset l_2 \ldots$, длина уменьшается вдвое. Тогда они имеют одну общую точку x_0 . Она лежит в каком-то U_{i_0} . С некоторого n этот U_{i_0} содержит l_n . Следовательно, l_n покрывается конечным набором U_i . Противоречие.

1.14. KOMПAKTHOCTЬ

Theorem 49. Если X компактно и $A \subset X$ замкнуто, то A компактно.

Доказательство. Рассмотрим $\{U_i\}$ — покрытие A открытыми в X множествами. Добавим в него $X \setminus A$, получим покрытие X, выберем конечное подпокрытие и уберем $X \setminus A$. Это конечное покрытие A некоторыми множествами из $\{U_i\}$.

Theorem 50. Ecnu X, Y компактны, то $X \times Y$ компактно.

Доказательство.

1. Достаточно проверить определение компакта только для покрытий элементами базы. Рассмотрим покрытие $X \times Y$ открытыми $U_i \times V_i$, где $U_i \subset X$, $V_i \subset Y$.

Рис. 1.8: Покрытие и гомеокопия

- 2. Для всех $x \in X$ рассмотрим гомеокопию (вертикальный слой) $F_x \coloneqq \{x\}Y$. $F_x \cong Y$, тогда F_x компактно, следовательно, F_x покрывается конечным набором "прямоугольников" $U_{i_1}^x \times V_{i_1}^x, \dots, U_{i_n}^x \times V_{i_n}^x$.
- 3. $U^x = U^x_{i_1} \cap \ldots \cap U^x_{i_n}$ пересечение проекций "прямоугольников" на X. $U^x \times Y$ покрывается теми же "прямоугольниками".
- 4. Получили окрестности U^x для всех точке $x \in X$. Выберем из $\{U^x\}_{x \in X}$ конечное подпокрытие. Теперь мы можем объединим соответствующие "прямоугольники" и получим конечное покрытие $X \times Y$.

1.14. KOMΠAKTHOCTЬ 35

Theorem 51. Если X хаусдорфово и $A \subset X$ компактно, то A замкнуто в X.

Доказательство. Докажем, что

 $\forall x \in X \setminus A \exists \text{ окрестность } U \ni x : U \subset X \setminus A.$

Так как X хаусдорфово

 $\forall a \in A, x \in X \exists$ окрестности $U_a \ni a, V_a \ni x : U_a \cap V_a = \emptyset.$

Выберем из $\{U_a\}$ конечное подпокрытие $A: U_{a_1}, \dots, U_{a_n}$. $\bigcap_{i=1}^n V_{a_i}$ — окрестность x, не пересекающая A. \square

Theorem 52. Если X компактно и хаусдорфово, то оно нормально.

Доказательство.

1. Регулярность. Пусть A замкнуто, $x \notin A$. Построим $\{U_{a_i}\}$ и $\{V_{a_i}\}$ как в доказательстве теоремы 51.

$$U \coloneqq \bigcup U_{a_i}, \ V \coloneqq \bigcap V_{a_i}.$$

U и V — открытые множества, $U \supset A, V \ni x, U \cap V = \emptyset$.

2. Теперь выведем нормальность. Пусть A, B замкнуты и $A \cap B = \emptyset$. Так как X регулярно

 $\forall a \in A$ и замкнутого $B \subset X \exists$ окрестности $U_a \ni a, \ V_a \supset B : U_a \cap V_a$.

Теперь рассмотрим конечное подпокрытие A из $\{U_{a_i}\}: U_{a_1}, \ldots, U_{a_n}$. Аналогично получим открытые $U \coloneqq \bigcup U_{a_i} \supset A$ и $V \coloneqq \bigcap V_{a_i} \supset B, \ U \cap V = \varnothing$. Доказали, что X нормально.

1.14.1 Компактность в \mathbb{R}^n

Designation. X — метрическое пространство.

Def 56. Множество $A \subset X$ ограничено, если оно содержится в некотором шаре.

Def 57. Диаметр множества A:

$$diam(A) = \sup\{d(x, y) \mid x, y \in A\}.$$

Property. A ограничено тогда и только тогда, когда $\operatorname{diam}(A) < \infty$.

Corollary. Свойство ограниченности не зависит от объемлющего пространства.

Theorem 53. Компактное метрическое пространство ограничено.

Corollary. Компактное множество в метрическом пространстве замкнуто и ограничено.

1.14. KOMПAKTHOCTЬ 36

Theorem 54. Множество в \mathbb{R}^n компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство.

По прошлому следствию 1.14.1.

1.14.2 Центрированные семейства

Designation. Здесь I обозначает не более чем счетное множество.

Def 58. Набор множеств называется центрированным, если любой его конечный поднабор имеет непустое пересечение.

Theorem 55. X компактно тогда и только тогда, когда любой центрированный набор замкнутых множеств имеет непустое пересечение.

Доказательство.

 \Longrightarrow От противного. Пусть $\{A_i\}$ — центрированный набор замкнутых множеств в X и $\bigcap A_i = \varnothing$. Тогда дополнения $X \setminus A_i$ образуют открытое покрытие. Выберем из него конечное подпокрытие.

Соответствующие A_i имеют пустое пересечение. Противоречие.

 \Longrightarrow Рассмотрим покрытие $\{A_i\}_{i\in I}$. Выберем в нем конечный набор множеств $A_1,\ldots A_n$. Если нет точки, которая не принадлежит ни одному из $A_{1...n}$, это конечное подпокрытие. Иначе пересечение дополнений $\bigcup_{i=1}^n A_i \neq \varnothing$. Значит $\{X \setminus A_i\}_{i\in I}$ — центрированный набор. По условию теоремы он имеет непустое пересечение. Значит $\{A_i\}_{i\in I}$ не покрытие. Противоречие.

Corollary. Пусть X — произвольное топологическое пространство, $\{A_i\}_{i\in I}$ — центрированный набор замкнутых множеств в X, хотя бы одно из которых компактно. Тогда $\bigcap_{i\in I} A_i \neq \emptyset$.

Доказательство. Не умоляя общности A_0 компактно. По теореме 55 (возьмем $X = A_0$) $\{A_i \cap A_0\}_{i \in I}$ имеет непустое пересечение.

Theorem 56. Пусть $\{A_i\}_{i\in I}$ — набор непустых замкнутых множеств, линейно упорядоченный по включению, и хотя бы одно из них компактно. Тогда $\bigcap_{i\in I} A_i \neq \varnothing$.

Note. Теорема 56 обычно применяется к последовательностям вложенных компактов:

$$A_1 \supset A_2 \supset \dots$$

1.14. KOMПAKTHOCTЬ

1.14.3 Непрерывные отображения компактов

Theorem 57. Пусть X компактно, $f: X \to Y$ непрерывно. Тогда множество f(X) компактно.

Доказательство. Пусть $\{U_i\}$ — открытое покрытие f(X). Тогда $\{V_i \mid V_i = f^{-1}(U_i)\}$ — открытое покрытие X. Выберем в нем конечное подпокрытие V_{i_1}, \ldots, V_{i_n} . Тогда U_{i_1}, \ldots, U_{i_n} — конечное подпокрытие f(X). Следовательно, X компактно.

Theorem 58. Пусть X компактно, $f: X \to \mathbb{R}$ непрерывно. Тогда f(X) имеет максимум и минимум.

Доказательство. f(X) компактно, следовательно, f(x) замкнуто и ограничено, а тогда f(X) содержит свои супремум и инфимум.

Theorem 59. Пусть X компактно, Y хаусдорфово, $f: X \to Y$ — непрерывная бикеция. Тогда f — гомеоморфизм.

Доказательство. f непрерывно \iff прообразы замкнутых множеств замкнуты. f^{-1} непрерывно \iff f-образы замкнутых множеств замкнуты.

Если $A\subset X$ замкнуто, A компактно, так как является замкнутым подмножеством компакта. Тогда f(A) компактно, потому что это непрерывный образ компакта. А компакт в хаусдорфовом пространстве замкнут. \square

1.14.4 Вложения компактов

Def 59. $f: X \to Y$ — вложение, если f — гомеоморфизм меду X и f(X).

Corollary. Пусть X компактно, Y хаусдорфово, $f:X\to Y$ — непрерывная инъекция. Тогда f — вложение.

1.14.5 Лемма Лебега

Theorem 60 (Лемма Лебега). X — компактное метрическое пространство. $\{U_i\}$ — его открытое покрытие. Тогда существует такое r > 0, что любой шар радиуса r целиком содержится в одном из U_i .

Def 60. Число r называется числом Лебега данного покрытия.

Доказательство.

$$\forall x \in X \ \exists r_x > 0, \ U_i \in \{U_i\}: \ B_{r_x}(x) \subset U_i.$$

Заметим, что $\left\{B_{\frac{r_x}{2}}\right\}_{x\in X}$ — тоже покрытие. Выберем конечное покрытие.

Проверим, что подойдет минимальный из радиусов этих шаров в качестве числа Лебега.

$$\forall y \in X \ \exists x \in X : y \in B_{\frac{r_x}{2}}(x).$$

$$r \leqslant \frac{r_x}{2}$$
, $\overline{xy} + \overline{yz} < r + \frac{r_x}{2} < r_x$.

Следовательно, $B_r(y) \subset B_{\frac{r_x}{2}}(y) \subset B_{r_x}(x) \subset U_i$.

1.14. KOMПАКТНОСТЬ 38

Рис. 1.9: Лемма Лебега

Corollary. Пусть X — компактное метрическое пространство, Y — топологическое пространство, $f: X \to Y$ непрерывно, $\{U_i\}$ — открытое покрытие Y. Тогда $\exists r > 0: \forall x \in X \ f(B_r(x))$ содержится в одном из U_i .

Доказательство. Применим лемму Лебега к покрытию $\{f^{-1}(U_i)\}$.

1.14.6 Равномерная непрерывность

Def 61. Отображение $f: X \to Y$ равномерно непрерывно, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall a, x' \in X \ (d(x, x') < \delta \Longrightarrow d(f(x), f(x')) < \varepsilon.$$

Theorem 61. Если X компактно, то любое непрерывное $f: X \to Y$ равномерно непрерывно.

Доказательство. Применим следствие 1.14.5 из леммы Лебега к f и покрытию Y шарами радиуса $\frac{\delta}{2}$ \square

1.14.7 Теорема Тихонова

Theorem 62 (Тихонов, без доказательства). Пусть $\{X_i\}$ — произвольное семейство компактных топологических пространств. Тогда тихоновское произведение $\prod_{i \in I} X_i$ тоже компактно.

1.14.8 Локальная компактность

Designation. X — топологическое пространство.

Def 62. X локально компактно, если $\forall x \in X \exists$ окрестность $U \ni x$: ClU компактно.

Ex. \mathbb{R}^n локально компактно.

Practice. Если X локально компактно и хаусдорфово, то X регулярно.

1.14.9 Одноточечная компактификация

Designation. X — хаусдорфово топологическое пространство.

Def 63. Одноточечная компактификация X — топологическое пространство \widehat{X} :

- $\widehat{X} = X \cup \{\infty\}, \qquad \infty \notin X$
- $U \subset \widehat{X} \wedge \infty \not\in U$ открыто в \widehat{X} тогда и только тогда, когда U открыто в X
- $U \subset \widehat{X} \wedge \infty \in U$ открыто в \widehat{X} тогда и только тогда, когда $X \setminus U$ компактно

Statement. Определение 63 корректно, то есть указанные открытые множества образуют топологию на $X \cup \{\infty\}$.

Practice.

- 1. \widehat{X} компактно
- 2. \widehat{X} хаусдорфово тогда и только тогда, когда X локально компактно
- $3. \ \widehat{\mathbb{R}} \cong S^1$
- $4. \ \widehat{\mathbb{R}^n} \cong S^n$

1.15 Полные метрические пространства

1.16 Предел последовательности

Designation. X — топологическое пространство.

Def 64. Точка $x \in X$ — предел последовательности $\{x_n\} \subset X$, если

 \forall окрестности $U \ni x \exists N \in \mathbb{N} : x_n \in U \quad \forall n > N.$

Синонимы: x_n стремится к x или x_n сходится к x

Designation. $x_n \to x \text{ if } x = \lim x_n$

Property.

- 1. $x_n = x \operatorname{cxodumcs} \kappa x$
- $2. \ x_n \to x \Longrightarrow$ любая подпоследовательность тоже сходится к x
- 3. Если X хаусдорфово, то предел единственный

4. В метрическом пространстве X = (X, d),

$$x_n \to x \iff d(x, x_n) \to 0.$$

5. Замкнутое множество содержит все пределы содержащихся в нем последовательностей.

$$\forall$$
 замкнутого $A \subset X : (\{x_n\} \subset A, x_n \to x \Longrightarrow x \in A).$

6. В метрическом пространстве X (или в пространстве со счетной базой) верно обратное: если $A \subset X$ содержит все пределы содержащихся в нем последовательностей, то A замкнуто.

1.17 Полные пространства

Designation. X = (X, d) — метрическое пространство.

Def 65. $\{x_n\}$ — фундаментальная последовательность, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n, k > N \ d(x_n, x_k) < \varepsilon$$

или

$$d(x_n, x_k) \to 0, \quad n, k \to \infty.$$

Синонимы: $\{x_n\}$ — последовательность Коши, $\{x_n\}$ сходится в себе.

Def 66. X полно, если любая фундаментальная последовательность имеет предел.

Property.

- 1. Если последовательность сходится, то она фундаментальна.
- 2. Фундаментальная последовательность ограничена.
- 3. Если последовательность фундаментальна и имеет сходящуюся подпоследовательность, то она сходится.

Note. Полнота — не топологическое свойство!

Exs.

- 1. \mathbb{R} полно (критерий сходимости Коши)
- 2. $\mathbb{R}\setminus\{0\}$ не полно (если $x_n\to 0,\ x_n\neq 0$, она фундаментальна, но не имеет предела в $\mathbb{R}\setminus\{0\}$)
- 3. [0,1] полно
- 4. (0,1) неполно

Theorem 63. \mathbb{R}^n *полно.*

Доказательство. Пусть $\{x\}$ — последовательность в \mathbb{R}^n , $x_k = (x_k^1, \dots, x_k^n)$. Предположим, что $\{x_k\}$ фундаментальна в \mathbb{R}^n . Тогда $\forall i \in [1, n]: \{x_k^i\}$ — тоже фундаментальна. Значит координатные последовательности имеют пределы x^1, \dots, x^n . Следовательно, $x_k \to x \coloneqq (x^1, \dots, x^n)$.

Theorem 64. Если X полно и $Y \subset X$ замкнуто, то Y полно.

Practice. Если множество в метрическом пространстве полно, то оно замкнуто.

Practice. Множество в \mathbb{R}^n полно тогда и только тогда, когда оно замкнуто.

1.17.1 Теорема о вложенных шарах

Theorem 65 ("о вложенных шарах"). Пусть

- X полное метрическое пространство
- ullet A_1,A_2,\ldots непустые замкнутые множества в X
- $A_1 \supset A_2 \supset \dots$
- $\operatorname{diam}(A_n) \to 0$

 $Tor\partial a \cap A_i \neq \emptyset.$

Доказательство. Для всех A_n выберем точку x_0 . Так как $\operatorname{diam}(A_n) \to 0$, $\{x_n\}$ фундаментальна, следовательно, имеет предел x, который принадлежит X, так как X полно.

$$\forall n \geqslant k : x_n \in A_k \Longrightarrow x \in A_k.$$

Тогда $x \in \bigcap A_i \Longrightarrow \bigcup A_i \neq \varnothing$.

1.17.2 Теорема Бэра

Def 67. X — топологическое пространство. Множество $A \subset X$ нигде не плотно, если:

 $IntClA = \emptyset$

или

 $X \setminus A$ содержит всюду плотное множество

или

любое открытое $U\subset X$ содержит открытое $V\subset U$ такое, что $V\cap A=\varnothing$.

 $\mathbf{Ex.}\ f = f(x_1, \dots x_n)$ — ненулевой многочлен степени n над \mathbb{R} . Тогда $f^{-1}(0)$ нигде не плотно в \mathbb{R}^n .

Ex. Канторово множество нигде не плотно в \mathbb{R} .

Theorem 66 (Бэр). Полное метрическое пространство нельзя покрыть счетным набором нигде не nлотных множеств.

Доказательство. Пусть A_1, A_2, \ldots нигде не плотные множества. Пусть $B_0 = \overline{B}_{r_0}(x_0)$.

 A_1 нигде не плотно, следовательно, открытый шар $B_{r_0}(x_0)$ содержит открытое множество $U_1:\ U_1\cap A_1=\emptyset$.

 U_1 содержит открытый шар, который содержит $B_1 = \overline{B}_{r_1}(x_1), \ r_1 \leqslant 1.$

Построили замкнутый шар $B_1 \subset B_0$, $B_1 \cap A_1 = \emptyset$. Аналогично построим последовательность $B_0 \supset B_1 \supset B_2 \supset \ldots$, где радиус $r_i \leqslant \frac{1}{i}$ и $B_i \cap A_i = \emptyset$.

По теореме 65 о вложенных шарах существует точка $x \in \bigcap B_i$. Тогда $x \notin \bigcup A_i \Longrightarrow \bigcup A_i \neq X$.

Corollary. Полное метрическое пространство без изолированных точек несчетно.

Theorem 67 (усиление теоремы Бэра). Пусть X — полное метрическое пространство, A — объединение счетного набора нигде не плотных множеств. Тогда $Int A = \varnothing$.

1.17.3 Пополнение

Def 68. Пусть X — метрическое пространство. Пополнение X — такое метрическое пространство \overline{X} , что

- \bullet \overline{X} полно
- $X \subset \overline{X}$ как подпространство, то есть $d_X = d_{\overline{X}}$
- \bullet X всюду плотно в \overline{X}

Theorem 68 (без доказательства). У любого метрического пространства есть пополнение.

1.18 Компактность метрических пространств

1.18.1 Секвенциальная компактность

Def 69. X секвенциально компактно, если у любой последовательности существует сходящаяся подпоследовательность.

Theorem 69. X компактно, $S \subset X$ — бесконечное множество. Тогда существует такая точка $x \in X$, что любая окрестность $U \ni x$ содержит бесконечно много точек S.

Доказательство. От противного. Пусть $\forall x \in X \; \exists \;$ окрестность $U_x: |U_x \cap S| < \infty$. Выберем из $\{U_x\}$ конечное подпокрытие $U_{x_1}, U_{x_2}, \dots, U_{x_n}$.

$$S = (S \cap U_{x_1}) \cup \ldots \cup (S \cap U_{x_n}.$$

Каждое из $S \cap U_{x_i}$ конечно, следовательно, S конечно. Противоречие.

Theorem 70. Если X — компактное метрическое пространство, то X секвенциально компактно.

Доказательство. Пусть $\{x_n\}$ — последовательность в X. Докажем, что есть сходящаяся подпоследовательность.

1. В $\{x_n\}$ конечное число различных точек. Выберем постоянную подпоследовательность.

2. В $\{x_n\}$ бесконечное число различных точек. По теореме 69 существует точка $x\in X$, в любой окрестности которой бесконечно много членов последовательности. Построим подпоследовательность $y_k=x_{n_k}: n_k>n_{k-1}\wedge y_k\in B_{\frac{1}{L}}(x)$ $k=1,2,\ldots$

Она сходится к x.

Theorem 71. X — топологическое пространство. Если X удовлетворяет первой аксиоме счетности, то X секвенциально компактно.

Доказательство. Пусть $\{x_n\}$ — последовательность в X. Докажем, что есть сходящаяся подпоследовательность.

- 1. В $\{x_n\}$ конечное число различных точек. Выберем постоянную подпоследовательность.
- 2. В $\{x_n\}$ бесконечное число различных точек. По теореме 69 существует точка $x \in X$, в любой окрестности которой бесконечно много членов последовательности.

Пусть U_1,U_2,\ldots счетная база в точке x. Рассмотрим такие вложенные окрестности $V_1\supset V_2\supset\ldots$:

$$V_k = U_1 \cap U_2 \cap \ldots \cap U_k.$$

Построим подпоследовательность $y_k = x_{n_k}$: $n_k > n_{k-1} \land y_k \in V_k$ k = 1, 2, ...

Oна сходится к x.

1.18.2 Вполне ограниченные множества

Designation. X = (X, d) — метрическое пространство.

Def 70. Пусть $\varepsilon > 0$. Множество $S \subset X - \varepsilon$ -сеть в X, если

$$\forall x \in X \ \exists s \in S : d(x,s) < \varepsilon.$$

Def 71. X вполне ограничено, если для любого ε существует конечная ε -сеть.

Practice. Множество $X \subset \mathbb{R}^n$ вполне ограничено тогда и только тогда, когда оно ограничено.

Theorem 72. Если метрическое пространство X компактно, то оно вполне ограничено.

Theorem 73. Если метрическое пространство X секвенциально компактно, то оно вполне ограничено.

Доказательство. Пусть для $\varepsilon > 0$ нет конечной ε -сети. Построим последовательность x_1, x_2, \ldots

 x_1 — любая точка

 x_2 — такая точка, что $d(x_1, x_2) \geqslant \varepsilon$

ГЛАВА 1. ОБШАЯ ТОПОЛОГИЯ

. . .

 x_n — такая точка, что $d(x_i,x_n)\geqslant arepsilon$ $orall i\in [1,\dots,n-1]$

. . .

Такая $\{x_n\}$ не может быть иметь сходящейся подпоследовательности, так как все попарные расстояния не менее ε . Противоречие.

Theorem 74. Если метрическое пространство X секвенциально компактно, то оно полно.

Доказательство. Пусть $\{x_n\}$ — фундаментальная последовательность. По секвенциальности у нее есть сходящаяся подпоследовательность. Так как $\{x_n\}$ фундаментальна, она тоже сходится к тому же пределу.

Theorem 75. Если X полно и вполне ограничено, то X компактно.

Доказательство. Пусть существует открытое покрытие $\{U_i\}$, у которого нет конечного подпокрытия. Пусть S_1 — конечная 1-сеть. Все пространство покрыто конечным числом шаров радиуса 1 (пусть замкнутых) с центрами в S_1 . Значит, хотя бы один из них не покрывается конечным числом U_i .

Пусть это A_1 .

Теперь рассмотрим конечную $\frac{1}{2}$ -сеть S_2 и пересечения

$$A_1 \cap \overline{B}_{\frac{1}{2}}, \quad s \in S_2.$$

Они покрывают A_1 , следовательно, одно из них не покрывается конечным набором U_i . Обозначим его A_2 . Аналогично строим последовательность замкнутых множеств $A_1 \supset A_2 \supset \ldots$, где A_n не покрывается конечным набором $\{U_i\}$.

$$A_n = A_{n-1} \cap \overline{B}_{\frac{1}{n}}(s)$$
, где $s \in S_n$ — конечная $\frac{1}{n}$ -сеть.

Тогда $\operatorname{diam} A_n \leqslant \frac{2}{n} \to 0$. По теореме о вложенных шарах $\exists x \in \bigcap A_n$.

$$\exists U_i: x \in U_i \Longrightarrow \exists \varepsilon > 0: B_{\varepsilon}(x) \subset U_i.$$

Далее

$$\exists N \in \mathbb{N} \ \forall n > N : A_n \subset B_{\varepsilon}(x) \subset U_i.$$

To есть A_n покрывается одним U_i . Противоречие.

Theorem 76 (Три определения компактности). X — метрическое пространство. Следующие свойства равносильны:

- 1. X компактно
- 2. Х секвенциально компактно
- 3. X полное и вполне ограниченное

Доказательство.

- $1 \Longrightarrow 2$ Уже доказано (см. теорему 70)
- $2 \Longrightarrow 3$ Уже доказано (см. теоремы 73 и 74)
- $3 \Longrightarrow 1$ Уже доказано (см. теорему 75)

1.18.3 Компактность и счетная база

Theorem 77. Если X вполне ограничено, то оно имеет счетную базу топологии.

Доказательство. Объединим конечные ε -сети для $\varepsilon = 1, \frac{1}{2}, \frac{1}{3}, \dots$ Получим счетное всюду плотное множество. Тогда X сепарабельно, значит X имеет счетную базу (так как X — метрическое пространство). \square

Theorem 78. Если X метризуемо и компактно, то X имеет счетную базу топологии.

1.18.4 Обобщение

Theorem 79. X имеет счетную базу топологии. Тогда X компактно тогда и только тогда, когда X секвенциально компактно.

Доказательство.

- Буже доказано (см. 70)
- Рассмотрим открытое покрытие. По теореме Линеделёфа, из него можно выбрать счетное подпокрытие: U_1, U_2, U_3, \dots

Пусть нет конечного подпокрытия. Рассмотрим конечные поднаборы $U_1, U_2, U_3, \dots, U_n$. Никто из них не покрывает X, следовательно,

$$\forall n \in N \ \exists x_n \in X \setminus (U_1 \cup \ldots \cup U_n).$$

По секвенциальной компактности можем выбрать из $\{x_n\}$ сходящуюся подпоследовательность $\{y_k\}$. Пусть $y_k \to y$.

Так как $\{U_i\}$ — покрытие, $\exists j: y \in U_j$. Но с некоторого момента $y \notin U_j$, так как в каждом U_n только конечное число членов последовательности.

Значит это не предел!

1.19 Факторизация

Def 72. Пусть X — топологическое пространство, \sim — отношение эквивалентности на нем как множестве точек.

Факторпространство X/\sim — множество классов эквивалентности с такой топологией:

ullet множество U открыто в $X/\sim\iff\bigcup_{u\in U}u$ открыто в X.

Эта топология называется фактортопологией.

Note. Элементы факторпространства — классы эквивалентности — подмножества X.

1.19.1 Каноническая проекция на факторпространство

Designation. Здесь и далее X — топологическое пространство, \sim — отношение эквивалентности на X.

Def 73. Каноническая проекция X на X/\sim или отображение факторизации — отображение

$$p: X \to X/\sim$$

сопоставляющее каждой точке $x \in X$ ее класс эквивалентности:

$$p(x) = [x] := \{ y \in X : y \sim x \}.$$

Theorem 80. *Каноническая проекция непрерывна.*

Note (Переформулировка определения). $A \subset X/\sim$ открыто тогда и только тогда, когда $p^{-1}(A)$ открыто в X.

Note. Фактортопология — наибольшая топология, для которой каноническая проекция непрерывна.

Property. Следующие свойства наследуются факторпространством:

- Связность
- Линейная связность
- Компактность
- Сепарабельность

1.19.2 Стягивание множества в точку

Def 74. Пусть $A \subset X$. Введем отношение эквивалентности \sim на X:

$$x \sim y \iff x = y \lor (x \in A \land y \in A).$$

Факторпространство обозначается X/A, операция называется стягиванием в точку. Полученные классы эквивалентности — A и одноточечные.

Ex. $D^n/S^{n-1} \cong S^n$ (доказано позже в теореме 84)

1.19.3 Несвязное объединение

Def 75. Пусть X, Y — топологические пространства. Их несвязное объединение — дизъюнктное объединение $X \sqcup Y$ с такой топологий: A открыто в $X \sqcup Y \iff A \cap X$ открыто в X и $A \cap Y$ открыто в Y.

Note. Аналогично определяется несвязное объединение топологических пространств $\{X_i\}_{i\in I}$.

Practice. Все компоненты связности X открыты тогда и только тогда, когда X — несвязное объединение своих компонент связности.

1.19.4 Приклеивание по отображению

Designation. X, Y — топологические пространства, $A \subset X$. $f: A \to Y$ — непрерывное отображение.

Def 76. \sim — наименьшее отношение эквивалентности на $X \sqcup Y$, такое что

$$\forall a \in A : a \sim f(a).$$

Факторпространство $(X\sqcup Y)/\sim$ обозначается $X\sqcup_f Y$. Операция называется приклеиванием X к Y по f.

Ех. Пусть x_0, y_0 — точки в $X, Y, A = \{x_0\}, f(x_{00} = y_0)$. Результат склеивания — **букет** (X, x_0) и (Y, y_0) .

Ex. Склеим в квадрате \overrightarrow{ABCD} стороны \overrightarrow{AB} и \overrightarrow{DC} по аффинной биекции между ними, сохраняющей отученное направление. Получим цилиндр $S^1 \times [0,1]$.

 \overrightarrow{Ex} . Если склеить \overrightarrow{AB} и \overrightarrow{CD} , получилась лента Мебиуса.

Def 77. Пусть X – топологическое пространство. Γ – подгруппа группы $\mathrm{Homeo}(X)$ – группы $\mathrm{всеx}$ гомеоморфизмов из X в себя.

Введем отношение эквивалентности \sim на X :

$$a \sim b \Longleftrightarrow \exists g \in \Gamma : g(a) = b.$$

Designation. Факторпространство X/\sim обозначается X/Γ или $\Gamma\backslash X$

 $\mathbf{Ex.}\ \mathbb{R}/\mathbb{Z}\cong S^1$, где \mathbb{Z} действует на \mathbb{R} параллельными переносами.

Theorem 81. Пусть $p: X \to X/\!\sim -$ каноническая проекция. $f: X \to Y$ переводит эквивалентные точки в равные:

$$\forall x, y \in X : x \sim y \Longrightarrow f(x) = f(y).$$

Tог ∂a

- 1. $\exists \overline{f}: X/\sim \to Y: f = \overline{f} \circ p$.
- 2. \overline{f} непрерывно тогда и только тогда, когда f непрерывно.

Доказательство.

- Определим $\overline{f}([x]) = f(x)$ для всех $x \in X$
- \bullet \Longrightarrow По непрерывности композиции, если \overline{f} непрерывна, то f тоже.
- Е В обратную сторону по определению фактортопологии. (проверим определение непрерывности)

Theorem 82 (Склеивание концов отрезка). $[0,1]/\{1,0\} \cong S^1$

Доказательство. Рассмотрим $f:[0,1]\to S^1$.

$$f(x) = (\cos 2\pi x, \sin 2\pi x).$$

Это отображение пропускается через факторпространство $[0,1]/\{0,1\} \to S^1$. Соответствующее $\overline{f}:[0,1]/\{0,1\} \to S^1$ — биекция. По теореме 81 \overline{f} непрерывно. $[0,1]/\{0,1\}$ — компактно, S^t — хаусдорфово, следовательно, \overline{f} — гомеоморфизм.

Theorem 83. X – замкнуто, Y – хаусдорфово. $f: X \to Y$ – непрерывно и сюрьективно. Тогда

$$X/\sim \cong Y$$
,

 $rde \sim onpedeляется условием$

$$x \sim y \iff f(x) = f(y).$$

Theorem 84. $D^n/S^{n-1} \cong S^n$

Доказательство. Вместо D^n возьмем B – замкнутый шар радиуса π с центром в $0 \in \mathbb{R}^n$. По прошлой теореме 83 достаточно построить сюрьективный гомеоморфизм $f: B \to S^n$, отображающий край шара в одну точку, а в остальном инъективен. Сойдет такое:

$$f(x) = \begin{cases} \left(\frac{x}{|x|}\sin|x|,\cos|x|\right) & x \neq 0_{\mathbb{R}^n} \\ (0_{\mathbb{R}_{n-1}}, 1) & x = 0_{\mathbb{R}^n} \end{cases}$$

1.20 Многообразия

Designation. Здесь и далее $n \in \mathbb{N} \cup \{0\}$

Def 78. n-мерное многообразие — хаусдорфово топологическое пространство со счетной базой, обладающее свойством локальной евклидовости: у любой точки $x \in M$ есть окрестность, гомеоморфная \mathbb{R}^n .

Число n — размерность многообразия.

Theorem 85. При $m \neq n$ никакие непустые открытые подмножества \mathbb{R}^n и \mathbb{R}^m не гомеоморфны.

Corollary. Многообразие размерности n не гомеоморфно многообразию размерности m.

Ех. 0-мерные многообразия – не более чем счетные дискретные пространства.

 $\mathbf{Ex.}$ Любое открытое подмножество \mathbb{R}^n или любого многообразия – многообразие той же размерности.

Ех. Сфера $S^n - n$ -мерное многообразие

Ex. Проективное пространство $\mathbb{RP}^n = S^n/\{id, -id\}$ – многообразие

Practice. В диске D^n склеим противоположные точки границы. Полученное пространство гомеоморфно \mathbb{RP}^n .

Def 79. *n*-мерное многообразие с краем – хаусдорфово пространство M со счетной базой и такое, что у каждой точки есть окрестность, гомеоморфная либо \mathbb{R}^n , либо $\mathbb{R}^n_+ := [0, +\infty) \times \mathbb{R}^{n-1}$.

Множество точек, у которых нет окрестностей первого вида, называются **краем** M и обозначаются ∂M .

Def 80. Поверхность – двумерное многообразие.

Ех. D^n — многообразие с краем, S^{n-1} — его край.

Theorem 86. \mathbb{R}^n_+ не гомеоморфно никакому открытому подмножеству в \mathbb{R}^n .

Склеивание поверхности их квадрата Три варианта склейки сторон квадрата:

- 1. Обе пары сторон без переворота $(aba^{-1}b^{-1})$ тор $S^1 \times S^1$.
- 2. Одна пара с переворотом $(abab^{-1})$ бутылка Клейна.
- 3. Обе пары с переворотом (abab) проективная плоскость \mathbb{RP}^2 .

Theorem 87.

- Пусть дан правильный 2n угольник (D^2 с границей разбитой на части), стороны которого разбиты на пары и ориентированы. Склеим каждую пару сторон по естественному отображению с учетом ориентации. Тогда получится двумерное многообразие (поверхность).
- Пусть в m-угольнике некоторые 2n сторон (2n < m) которого разбиты на пары, ориентированы и склеены аналогично. Тогда получится двумерное многообразие с краем.

Note. Можно брать и несколько многоугольников и склеивать из между собой.

1.20.1 Классификация многообразий

Note. Любое многообразие локально линейно связно. Следовательно, компоненты линейной связности совпадают с компонентами связности и открыты. Будем исследовать только связные многообразия.

 ${f Theorem~88}$ (без доказательства). Пусть M – непустое связное 1-мерное многообразие. Тогда

- 1. M компактно, без края $\Longrightarrow M \cong S^1$
- 2. M некомпактно, без края $\Longrightarrow M \cong \mathbb{R}$
- 3. M компактно, $\partial M \neq \varnothing \Longrightarrow M \cong [0,1]$
- 4. M некомпактно, $\partial M \neq \emptyset \Longrightarrow M \cong [0, +\infty)$

Corollary. Компактное 1-мерное многообразие без края — несвязное объединение конечного набора окружностей.

1.20.2 Сферы

Def 81. Пусть $p \in \mathbb{N}$. Сфера с p ручками строится так: берем сферу S^2 , вырезаем p не пересекающихся дырок (внутренностей D^2). Далее берем p торов с такими же дырками и приклеиваем по дыркам торы к сфере.

Def 82. Сфера с пленками – аналогично, только приклеиваем ленты Мебиуса.

Practice. Сфера с одной пленкой – \mathbb{RP}^2 , сфера с двумя пленками – бутылка Клейна.

1.20.3 Классификация поверхностей

Statement. Поверхность — связное двумерное многообразие.

Theorem 89.

- Компактная поверхность без края гомеоморфна сфере или сфере с ручками или сфере с пленками.
- Поверхности разного типа, сферы с разным числом ручек, сферы с разным числом пленок попарно не гомеоморфны.
- Компактная поверхность с краем гомеоморфна одному из этих цилиндров с несколькими дырками.

Поверхности с разным числом дырок негомеоморфны.

Note. Число дырок равно числу компонент края.

1.20.4 Эйлерова характеристика

Def 83. Пусть M — компактная поверхность, разбитая вложенныам связным графом на областидиски (замыкание области гомеоморфно диску, граница — цикл в графе). Эйлерова характеристика M — целое число:

$$\chi(M) = V - E + F$$
.

Theorem 90. Эйлерова характеристика — топологический инвариант и не зависит от разбиения.

Exs.

- $\chi(S^2) = 2$
- $\chi(T^2) = 0$
- χ (бутылки Клейна) = 0
- При вырезании дырки χ уменьшается на 1
- χ (сферы с n дырками) = $2 n, \chi$ (тора с дыркой) = -1
- $\chi(A \cap B) = \chi(A) + \chi(B) \chi(A \cup B)$

- χ (сферы с р ручками) = 2-2p
- χ (сферы с q пленками) = 2-q