Caleb Logemanr James Rossmanith

Introducti

Denvatio

Convectio

Numerical Result

Travelling Wayes

C----

Reference:

Discontinuous Galerkin Method for Solving Thin Film Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

May 8, 2019

Overview

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Convection Diffusion

Numerical Resul Travelling Waves

Conclusion

- 1 Introduction
- 2 Derivation
- 3 Method
 - Convection
 - Diffusion
- 4 Numerical Results
 - Travelling Waves
- 5 Conclusion

Motivation

Caleb Logemann, James Rossmanith

Introduction

Denvatio

Convection

Numerical Result

Conclusion

5.6

Aircraft Icing

Runback

■ Industrial Coating

Model Equations

Caleb Logemann James Rossmanith

Introducti

Derivation

Convectio

Numerical Result

Travelling Travel

Reference

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \sigma + \mathbf{g}$$

$$\partial_t h_s + (u, v)^T \cdot \nabla h_s = w$$

$$\partial_t h_b + (u, v)^T \cdot \nabla h_b = w$$

- Lubrication or reduced Reynolds number approximation
- Thin-Film Equation 1D with q as fluid height.

$$q_t + (f(x,t)q^2 - g(x,t)q^3)_x = -(h(x,t)q^3q_{xxx})_x$$

Operator Splitting

Caleb Logemann James Rossmanith

Introduction

Method

Convect

Numerical Result

Travelling Waves

Reference

Simplified Model

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$$
 $(0, T) \times \Omega$

Operator Splitting

$$q_t + (q^2 - q^3)_x = 0$$
$$q_t + (q^3 u_{xxx})_x = 0$$

Strang Splitting $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

 Δt step of Diffusion

$$q_t + (q^3 u_{xxx})_x = 0$$

 $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

Convection

Caleb Logemann James Rossmanith

Introducti

Derivation

Method Convection

Diffusion

Numerical Result

Travelling vvaves

Conclusion

Reference

Convection Equation

$$q_t + f(q)_x = 0$$
 $(0, T) \times \Omega$
 $f(q) = q^2 - q^3$

Weak Form Find q such that

$$\int_{\Omega} (q_t v - f(q)v_x) \, \mathrm{d}x + \left. \hat{f} v \right|_{\partial\Omega} = 0$$

for all test functions v

Notation

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Resul

Travelling Waves

Reference:

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logemani James Rossmanith

Introduct

Derivatio

Metho

Convection

Numerical Results

Reference

$$\begin{split} \int_{I_j} Q_t v \, \mathrm{d}x &= \int_{I_j} f(Q) v_x \, \mathrm{d}x \\ &- \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right) \end{split}$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{1}{2} \big(f \big(Q_{j+1/2}^- \big) + f \big(Q_{j+1/2}^+ \big) \big) + \frac{1}{2} \max_q \big\{ \big| f'(q) \big| \big\} \big(Q_{j+1/2}^- - Q_{j+1/2}^+ \big)$$

 Solve this system of ODEs with any Explicit Strong Stability Preserving (SSP) Runge-Kutta Method.

Explicit SSP Runge Kutta Methods

Caleb Logemann James Rossmanith

Introduct

Derivation

Method

Convection Diffusion

Numerical Result Travelling Waves

Conclusion

References

Forward Euler

$$q^{n+1} = q^n + \Delta t L(q^n)$$

■ Second Order

$$egin{aligned} q^\star &= q^n + \Delta t \mathcal{L}(q^n) \ q^{n+1} &= rac{1}{2}(q^n + q^\star) + rac{1}{2}\Delta t \mathcal{L}(q^\star) \end{aligned}$$

Diffusion

Caleb Logemann James Rossmanith

Introducti

Derivation

Convection

Diffusion

Numerical Resul

Travelling Waves

Conclusion

Reference

Diffusion Equation

$$q_t = -(q^3 q_{xxx})_x \qquad (0, T) \times \Omega$$

• Linearize operator at $t = t^n$, let $f(x) = q^3(t = t^n, x)$

$$q_t = -(f(x)q_{xxx})_x \qquad (0, T) \times \Omega$$

Local Discontinuous Galerkin

Caleb Logemanr James Rossmanith

Introduct

Derivation

Convection

Diffusion

Numerical Results Travelling Waves

Travelling Waves

Conclusion

Reference

Find
$$Q(t,x), R(x), S(x), U(x)$$
 such that for all $t \in (0,T)$
 $Q(t,\cdot), R, S, U \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$

$$\int_{I_j} Rv \, dx = -\int_{I_j} Qv_x \, dx + \left(\hat{Q}_{j+1/2} v_{j+1/2}^- - \hat{Q}_{j-1/2} v_{j-1/2}^+ \right)$$

$$\int_{I_j} Sw \, dx = -\int_{I_j} Rw_x \, dx + \left(\hat{R}_{j+1/2} w_{j+1/2}^- - \hat{R}_{j-1/2} w_{j-1/2}^+ \right)$$

$$\int_{I_j} Uy \, dx = \int_{I_j} S_x fy \, dx - \left(S_{j+1/2}^- f_{j+1/2}^- y_{j+1/2}^- - S_{j-1/2}^+ f_{j-1/2}^+ y_{j-1/2}^+ \right)$$

$$+ \left(\hat{S}_{j+1/2} \hat{f}_{j+1/2} y_{j+1/2}^- - \hat{S}_{j-1/2} \hat{f}_{j-1/2} y_{j-1/2}^+ \right)$$

$$\int_{I_j} Q_t z \, dx = -\int_{I_j} Uz_x \, dx + \left(\hat{U}_{j+1/2} z_{j+1/2}^- - \hat{U}_{j-1/2} z_{j-1/2}^+ \right)$$

for all $I_j \in \Omega$ and all $v, w, y, z \in V_h$.

Numerical Fluxes

Caleb Logemanr James Rossmanith

Introducti

Derivation

ivietno

Diffusion

Numerical Res

Travelling Mayor

$$\begin{split} \hat{f}_{j+1/2} &= \frac{1}{2} \Big(f_{j+1/2}^+ + f_{j+1/2}^- \Big) \\ \hat{Q}_{j+1/2} &= Q_{j+1/2}^+ \\ \hat{R}_{j+1/2} &= R_{j+1/2}^- \\ \hat{S}_{j+1/2} &= S_{j+1/2}^+ \\ \hat{U}_{j+1/2} &= U_{j+1/2}^- \end{split}$$

LDG Complications

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convectio

Diffusion

Travelling Waves

D-f----

Explicit time step scales with h⁴

- Implicit System is difficult to solve efficiently
 - GMRES iterations scale with size of system
 - Preconditioned GMRES

$$P = A_0^{-1}$$

$$PAx = Pb$$

Geometric Multigrid fails to converge

Finite Difference Approach

Caleb Logemann James Rossmanith

Introduct

Derivatio

Method Convection Diffusion

Numerical Result

Travelling Waves

Reference

- Let cell centers, x_i , form finite difference grid.
- Finite difference space, \mathbb{R}^N .
- $Q_{DG} \in V_h \rightarrow Q_{FD} \in \mathbb{R}^N$

$$(Q_{FD})_i = \frac{1}{h} \int_{K_i} Q_{DG} \, \mathrm{d}x$$

 $lacksquare Q_{FD} \in \mathbb{R}^N o Q_{DG} \in V_h$

$$egin{aligned} Q_{DG}|_K &\in P^1(K) \ rac{1}{h} \int_{K_i} Q_{DG} \, \mathrm{d}x &= (Q_{FD})_i \ \partial_x Q_{DG}|_{K_i} &= rac{(Q_{FD})_{i+1} - (Q_{FD})_{i-1}}{2h} \end{aligned}$$

Finite Difference Approximation

Caleb Logemann James Rossmanith

Introducti

Derivation

Method Convection Diffusion

Numerical Result

Travelling Waves

Reference

■ First derivative approximation

$$(-(f(x)q_{xxx})_x)_i \approx -\frac{q_{i+1/2}^3(q_{xxx})_{i+1/2} - q_{i-1/2}^3(q_{xxx})_{i-1/2}}{h}$$

■ Third derivative approximation

$$(q_{xxx})_{i+1/2} \approx \frac{-Q_{i-1} + 3Q_i - 3Q_{i+1} + Q_{i+2}}{h^3}$$

■ Value of Q^3 at boundary

$$q_{i+1/2}^3 = \left(\frac{Q_i + Q_{i+1}}{2}\right)^3$$

Implicit L-Stable Runge Kutta

Diffusion

Backward Euler

$$q^{n+1} = q^n + \Delta t L(q^{n+1})$$

2nd Order

$$q^* = q^n + \frac{1}{4}\Delta t(L(q^n) + L(q^*))$$

 $3q^{n+1} = 4q^* - q^n + \Delta t L(q^{n+1})$

Nonlinear Solvers

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Convection Diffusion

-

Travelling vvaves

Conclusion

Reference

Picard Iteration

$$L(q) = A(f \approx q^3)q$$
$$q_0^{n+1} = q^n$$

$$q_{m+1}^{n+1} = q^n + \Delta t A(q_m^{n+1}) q_{m+1}^{n+1}$$

$$q_{m+1}^{\star} = q^{n} + \frac{1}{4} \Delta t \left(L(q^{n}) + A(q_{m}^{\star}) q_{m+1}^{\star} \right)$$

$$8q^{n+1} = 4q^{\star} - q^{n} + \Delta t \Delta (q^{n+1}) q^{n+1}$$

$$3q_{m+1}^{n+1} = 4q^{\star} - q^{n} + \Delta t A(q_{m}^{n+1})q_{m+1}^{n+1}$$

Newton's Method

$$q_{m+1}^{n+1} = q_m^{n+1} - J(q_m^{n+1})^{-1} F(q_m^{n+1})$$
 $F(q) = q - q^n - \Delta t L(q)$
 $J(q) = I - \Delta t L'(q)$

Manufactured Solution

Caleb Logeman James Rossmanith

Introduction

Derivation

Convection

Numerical Results

C---!--!-

Conclusio

References

$q_t = -(q^3 q_{xxx})_x + s(x, t)$ $q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$

Backward Euler 1 Iteration 2 Iterations Ν error order order error 100 0.0131 0.0053 200 0.0064 1.0264 0.0026 1.0466 400 0.0033 0.96 0.0013 0.9704 800 0.0016 1.0069 0.0007 1.0134

Manufactured Solution

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Travelling Waves

Conclusion

Reference

$q_t = -(q^3 q_{xxx})_x + s(x, t)$ $q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$

2nd Order IRK								
		1 Iteration		2 Iterations		3 Iterations		
	I	error	order	error	order	error	order	
50 100 200 400)	0.0075 0.0041 0.0020 0.0010	 0.8601 1.0391 0.9652	0.00047 0.00012 0.0000312 0.0000082		0.0004901 0.0001209 0.0000305 0.0000078		

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Travelling Wav

. . . .

References

$q_t = -(q^3 q_{xxx})_x + s(x, t)$ $q(x, t) = \frac{2}{10} e^{-10t} e^{-300(x - \frac{1}{2})^2} + \frac{1}{10}$

Backward Fuler 1 Iteration 2 Iterations Ν order order error error 0.0097 100 0.0933 0.0050 0.0421 200 0.95 1.1494 3.756 -6.48400 0.0027 0.87 -2.14800 33.21 -13.516.51

Manufactured Solution with Newton's Method

Caleb Logemann James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Travelling Waves

$$q_t = -(q^3 q_{xxx})_x + s(x, t)$$

$$q(x, t) = \frac{2}{10} e^{-10t} e^{-300(x - \frac{1}{2})^2} + \frac{1}{10}$$

Backward Euler						
Ν	error	order				
50	0.0280	_				
100	0.0153	0.8765				
200	0.0080	0.9249				
400	5.5e75	-258				

Hyperbolic Wave Structure

Caleb Logemann James Rossmanith

Introduction

Derivatio

Method Convectio

Numerical Result

Travelling Waves

.

References

Conservation Law

$$q_t + f(q)_{\mathsf{x}} = 0$$

Riemann Problem Initial Data

$$q(x,0) = \begin{cases} q_l & x < d \\ q_r & x > d \end{cases}$$

■ Rankine-Hugoniot Condition

$$s = \frac{f(q_l) - f(q_r)}{q_l - q_r}$$

Convex Flux Function

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Diffusion

Numerical Result

Travelling Waves

Conclusion

Reference

■ Shock Wave

$$f'(q_l) > s > f'(q_r)$$

■ Rarefaction

$$f'(q_l) < s < f'(q_r)$$

Nonconvex Flux Function

Caleb Logemann James Rossmanith

Introduction

Derivation

Method Convection

Numerical Result

Travelling Waves

. . . .

Nonconvex Flux Function

Caleb Logemann James Rossmanith

Introduction

Derivation

Method Convection

Numerical Result

Travelling Waves

. . . .

Compressive Shock

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Diffusion

Numerical Result

Travelling Waves

Conclusion

Rarefaction-Compressive Shock

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convectio

Numerical Resu

Travelling Waves

.....

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Diffusion

Numerical Result

Travelling Waves

Conclusion

40

x - st

60

80

100

0.15 -0.10 -0.05 -

20

 $q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$ $q_t = 0.1$ $q_l = 0.3$

Caleb Logemanr James Rossmanith

Introduction

Denvacion

Convection

Numerical Result

Travelling Waves

Conclusion

$$q_r = 0.1$$
 $q_l = 0.3323$ $q(x,0) = (-\tanh(x-50)+1)\frac{q_l-q_r}{2}+q_r$

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Travelling Waves

$$q_r = 0.1 \qquad q_l = 0.3323 \qquad q_m = 0.6$$

$$q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x - 50) + \frac{q_m + q_l}{2} & x < 55 \\ -\frac{q_m - q_r}{2} \tanh(x - 60) + \frac{q_m + q_r}{2} + q_r & x > 55 \end{cases}$$

Caleb Logemann, James Rossmanith

miroducti

Derivation

Method

Convectio

Numerical Result

Travelling Waves

Reference:

$$q_r = 0.1 q_l = 0.3323 q_m = 0.6$$

$$q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x - 50) + \frac{q_m + q_l}{2} & x < 60 \\ -\frac{q_m - q_r}{2} \tanh(x - 70) + \frac{q_m + q_r}{2} & x > 60 \end{cases}$$

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convection

Numerical Result

Travelling Waves

$$q_r = 0.1$$
 $q_l = 0.4$ $q(x,0) = (-\tanh(x-50)+1) \frac{q_l-q_r}{2} + q_r$

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convection

Numerical Results

Travelling Waves

$$q_r = 0.1$$
 $q_l = 0.8$ $q(x,0) = (-\tanh(x-1100)+1) \frac{q_l-q_r}{2} + q_r$

Conclusion

Caleb Logemanr James Rossmanith

Introduction

Derivatio

Convection

Numerical Resul

Conclusion

Conclusion

Reference

Observations

Nonlinear Hyper Diffusion has subtle instabilities

Future Work

- Hybridized Discontinuous Galerkin Method
- Higher Order Convergence
 - Higher order finite difference approximations
 - More accurate transition from finite difference to discontinuous Galerkin
 - Runge Kutta IMEX
- Space and time dependent coefficients

Bibliography

Caleb Logemann James Rossmanith

Introducti

Method Convection

Numerical Resul

Conclusion

- [1] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: *J. Comp. Phys.* 227.15 (2008), pp. 7246–7263.
- [2] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [3] Tim G Myers. "Thin films with high surface tension". In: *SIAM review* 40.3 (1998), pp. 441–462.
- [4] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95_03918.html.
- [5] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.