Práctica 7 de álgebra 1

Comunidad algebraica

última compilacion: 05/07/2024

Un poco de teoría

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$\cdot : \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$
$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos q y $R \in \mathbb{K}[X]$ tal que $f = q \cdot g + R$ con gr(R) < gr(f) o R = 0
- α es raíz de $f \iff X \alpha \mid f \iff f = q \cdot (X \alpha)$
- *Máximo común divisor:* Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.
 - -(f:g) | f y (f:g) | g
 - $-f = (f:g) \cdot k_f y g = (f:g) \cdot k_g \operatorname{con} k_f y k_g \operatorname{en} \mathbb{K}[X]$
 - Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples:

Sea $f \in \mathbb{K}[x]$ no nulo, y sea $\alpha \in \mathbb{K}$. Se dice que:

- $-\alpha$ es raíz múltiple de $f \Leftrightarrow f = (x-\alpha)^2 q$ para algún $q \in \mathbb{K}[X]$
- $-\alpha$ es raíz simple de $f \Leftrightarrow x \alpha \mid f$ en $\mathbb{K}[X]$, pero $(X \alpha)^2 \not\mid f$ en $\mathbb{K}[X] \Leftrightarrow f = (X \alpha)q$ para algún $q \in \overline{\mathbb{K}[X]}$ tal que $q(\alpha) \neq 0$.
- Sea $m \in \mathbb{N}_0$. Se dice que α es raíz de multiplicidad (exactamente) m de f, y se nota mult $(\alpha; f) = m \iff (X \alpha)^m \mid f$, pero $(x \alpha)^{m+1} \not\mid f$. O equivalentemente, $f = (X - \alpha)^m q$ con $q \in \mathbb{K}[X]$, pero $q(\alpha) \neq 0$
- Sea $f ∈ \mathbb{K}[X]$ no nulo mult(α; f) ≤ gr(f):
- Sean $f, g \in \mathbb{K}[X]$ no ambos nulos, y $\alpha \in \mathbb{K} \Rightarrow f(\alpha) = f(\alpha) = 0 \Leftrightarrow (f:g)(\alpha) = 0$
- Vale que α es raíz múltiple de $f \iff f(\alpha) = 0$ y $f'(\alpha) = 0 \iff \alpha$ es raíz de $(f:f'), X \alpha \mid (f:f')$

$$- \operatorname{mult}(\alpha, f) = m \iff f(\alpha) = 0 \text{ y } \operatorname{mult}(\alpha; f') = m - 1$$

$$- \operatorname{mult}(\alpha; f) = m \iff \begin{cases} \operatorname{mult}(\alpha; f) \ge m \\ \operatorname{mult}(\alpha; f) = m \end{cases} \begin{cases} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)}(\alpha) = 0 \\ \operatorname{mult}(\alpha; f) = m \end{cases}$$

 $Cantidad\ de\ ra\'ices:$

-

Ejercicios de la guía:

- 1. Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:
 - i) $(4X^6 2X^5 + 3X^2 2X + 7)^{77}$
 - ii) $(-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$,
 - iii) $(-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$
 - i) coeficiente principal: 4⁷⁷ $grado: 6 \cdot 77$
 - ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28
 - iii) coeficiente principal: $\underbrace{(-3X^5+X^4-X+5)^4}_f + \underbrace{-81X^{20}+19X^{19}}_g$ Cuando sumo me queda: $\operatorname{cp}(f^4)-\operatorname{cp}(g)=(-3)^4-81=0\Rightarrow gr(f^4+g)<20$ \to Calculo el $\operatorname{cp}(f^4+g)$ con $\operatorname{gr}(f^4+g)=19$.

buro $a \ f:$ $\frac{\text{para usar}}{\text{fórmula de } f \cdot g} (-3X^5 + X^4 - X + 5)^4 = (-3X^5 + 1X^4 - X + 5)^2 \cdot (-3X^5 + X^4 - X + 5)^2$ $f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente}$ $\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{me interesa solo}} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\bigstar}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\bigstar}{=} 2 \cdot a_9 \cdot b_{10}$

$$\begin{cases} \sum_{k=0}^{\infty} \binom{i+j=k}{i+j=k} & \text{if } j \text{ is all } i \text{ if } j \text{ if } j$$

$$\begin{cases} cp(f^4) = 2 \cdot (-6) \cdot (9) = -108 \\ cp(g) = 19 \end{cases} \rightarrow \boxed{cp(f^4 + g) = -89}$$

★¹: Sabemos que el gr $(f^4) = 20 \Rightarrow \text{gr}(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{\begin{array}{c} i = 10, j = 9 \\ \lor \\ i = 9, j = 10 \end{array}\right\}$

 \star^2 : porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.

★³: Idem ★¹ para el polinomio f grado: 19

2. Hacer!

3. Hacer!

4. Hallar el cociente y el resto de la división de f por g en los casos

i)
$$f = 5X^4 + 2X^3 - X + 4$$
 y $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = 4X^4 + X^3 - 4$$
 y $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$,

iii)
$$f = X^n - 1$$
 y $g = X - 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

Resultado válido para $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$

ii)
$$\begin{array}{c|c}
4X^4 + X^3 & -4 & 2X^2 + 1 \\
-4X^4 & -2X^2 & 2X^2 + \frac{1}{2}X - 1
\end{array}$$

$$-X^3 - 2X^2 - \frac{1}{2}X - 4 - 2X^2 - \frac{1}{2}X - 4 - 2X^2 - \frac{1}{2}X - 3$$

Resultado válido para
$$\mathbb{Q}[X]$$
, $\mathbb{R}[X]$, $\mathbb{C}[X]$
En $\mathbb{Z}/p\mathbb{Z} \to 4X^4 + X^3 - 4 = (2X^2 + 1) \cdot \underbrace{(2X^2 + 4X + 6)}_{g[X]} + \underbrace{(3X + 4)}_{x[X]}$

iii) Después de hacer un par iteraciones en la división asoma la idea de que:

$$X^n-1=(X-1)\cdot\sum_{j=0}^{n-1}X^j+\underbrace{0}_{r[X]},$$
 (que es la geométrica con $X\neq 1$)

Inducción: Quiero probar que $p(n): X^n-1=(X-1)\cdot \sum\limits_{j=0}^{n-1} X^j \ \forall n\in \mathbb{N}$

Caso base:
$$p(\mathbf{1}): X^{\mathbf{1}} - 1 = (X - 1) \underbrace{\sum_{j=0}^{\mathbf{1}-1} X^j}_{X^0 = 1} \Rightarrow p(\mathbf{1})$$
 es Verdadero \checkmark

Paso inductivo:

$$p(k): X^{k} - 1 = (X - 1) \cdot \sum_{j=0}^{k-1} X^{j} \text{ es Verdadera} \stackrel{?}{\Rightarrow} p(k+1): X^{k+1} - 1 = (X - 1) \cdot \sum_{j=0}^{k} X^{j} \text{ es Verdadera}$$

$$(X-1) \cdot \sum_{j=0}^{k} X^{j} = (X-1) \cdot (\sum_{j=0}^{k-1} X^{j} + X^{k}) = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + (X-1) \cdot X^{k} = X^{k} - 1 + X^{k+1} - X^{k} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot X^{k}}_{$$

$$X^{k+1}-1$$

Dado que p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción también será verdadera p(n) $\forall n \in \mathbb{N}$

5. Hacer!

- **6.** <u>Definición</u>: Sea K un cuerpo y sea $h \in \mathbb{K}[X]$ un polinomio no nulo. Dados $f, g \in \mathbb{K}[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g(h)$.
 - i) Probar que $\equiv (h)$ es una relación de equivalencia en $\mathbb{K}[X]$.
 - ii) Probar que si $f_1 \equiv g_1$ (h) y $f_2 \equiv g_2$ (h) entonces $f_1 + f_2 \equiv g_1 + g_2$ (h) y $f_1 \cdot f_2 \equiv g_1 \cdot g_2$ (h).
 - iii) Probar que si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$.
 - iv) Probar que r es el resto de la división de f por h si y solo si $f \equiv r$ (h) y r = 0 o gr(r) < gr(h).

- i) uff... Para probar que esto es una relación de equivalencia pruebo que sea reflexiva, simétrica y transitiva,
 - reflexiva: Es f congruente a f módulo h? $f \equiv f(h) \iff h \mid f - f = 0 \iff h \mid 0 \quad \checkmark$
 - sim'etrica: Si $f \equiv g$ (h) $\iff g \equiv f$ (h) $f \equiv g$ (h) $\iff h \mid f g \iff h \mid -(g f) \iff h \mid g f \iff g \equiv f$ (h) \checkmark
 - transitiva: Si $\begin{cases} f \equiv g(h) \\ g \equiv p(h) \end{cases} \Leftrightarrow f \equiv p(h)$.

$$\left\{ \begin{array}{ll} h \mid f - g & \xrightarrow{F_1 + F_2} \\ h \mid g - p & \xrightarrow{F_2} \end{array} \right. \left. \left\{ \begin{array}{ll} h \mid f - g \\ h \mid f - p \end{array} \right. \rightarrow f \equiv p \left. \left(h \right) \right. \right. \checkmark$$

Cumple condiciones para ser una relación de equivalencias en $\mathbb{K}[X]$

ii) Si
$$\begin{cases} f_1 \equiv g_1(h) \\ f_2 \equiv g_2(h) \end{cases}$$

$$f_1 \equiv g_1(h) \iff h \mid f_1 - g_1 \Rightarrow h \mid f_2 \cdot (f_1 - g_1) \iff f_1 \cdot f_2 \equiv g_1 \cdot f_2(h) \iff f_1 \cdot f_2 \equiv g_1 \cdot g_2(h)$$

iii) Inducción: Quiero probar p(n): Si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$. Caso base: $p(1): f^1 \equiv g^1(h) \stackrel{\star}{\star}^2$ Verdadera \checkmark

 $\textit{Paso inductivo: } p(k): \underbrace{f^k \equiv g^k \; (h)}_{HI} \; \text{es verdadera} \stackrel{?}{\Rightarrow} p(k+1): f^{k+1} \equiv g^{k+1} \; (h) \; \text{¿También lo es?}$

$$f^{k} \equiv g^{k} (h) \iff h \mid f^{k} - g^{k} \Rightarrow h \mid f \cdot (f^{k} - g^{k}) \iff f^{k+1} \equiv f \cdot g^{k} (h) \iff f^{k+1} \equiv g^{k+1} (h) \quad \checkmark$$

Finalmente p(1), p(k), p(k+1) resultaron verdaderas y por el principio de inducción p(n) es verdaderas $\forall n \in \mathbb{N}$

- iv) Hacer!
- 7. Hallar el resto de la división de f por g para:

i)
$$f = X^{353} - X - 1$$
 y $g = X^{31} - 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = X^{1000} + X^{40} + X^{20} + 1$$
 y $g = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

iii)
$$f = X^{200} - 3X^{101} + 2$$
, y $g = X^{100} - X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

iv)
$$f = X^{3016} + 2X^{1833} - X^{174} + X^{137} + 2X^4 - X^3 + 1$$
, y $g = X^4 + X^3 + X^2 + X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ (Sugerencia ver **4.** iii))).

i)
$$g \mid g \iff X^{31} - 2 \equiv 0 \ (X^{31} - 2) \iff X^{31} \equiv 2 \ (g)$$

$$f = X^{353} - X - 1 = (\underbrace{X^{31}}_{\stackrel{(g)}{\equiv} 2})^{11} X^{12} - X - 1 \stackrel{(g)}{\equiv} 2^{11} X^{12} - X - 1 \rightarrow \boxed{r_g(f) = 2^{11} X^{12} - 1}$$

iii)
$$g \mid g \iff X^{100} - X + 1 \equiv 0 \ (X^{100} - X + 1) \iff X^{100} \equiv X - 1 \ (g)$$

 $f = X^{200} - 3X^{101} + 2 = (X^{100})^2 - 3X^{100}X + 2 \stackrel{(g)}{\equiv} (X - 1)^2 - 3(X - 1)X + 2$
 $\rightarrow r_g(f) = (X - 1)^2 - 3(X - 1)X + 2$

iv) Usando la sugerencia: Del ejercicio **4.** iii) sale que
$$X^n - 1 = (X - 1) \cdot \sum_{k=0}^{n-1} X^k$$

$$\frac{n=5}{\text{para el } g} X^5 - 1 = (X - 1) \underbrace{(X^4 + X^3 + X^2 + X + 1)}_{g} \iff X^5 \equiv \underbrace{1}_{r_g(X^5)} (g) \checkmark$$

$$f = (X^5)^{603}X + 2(X^5)^{366}X^3 - (X^5)^{34}X^4 + (X^5)^{27}X^2 + 2X^4 - X^3 + 1$$

$$f \equiv \underbrace{X + 2X^3 - X^4 + X^2 + 2X^4 - X^3 + 1}_{=X^4 + X^3 + X^2 + X + 1 = g} (g) \iff f \equiv 0 (g)$$

8. Hacer!

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1, g = X^5 - 2X^4 + 2X^2 - 3X + 1,$$

$$\begin{array}{c} \frac{\text{Euclides}}{\text{escribo a }f} & (f:g) = (g:3X^3 - 55X^2 + X + 1) \\ \frac{\text{escribo a }f}{\text{en función de }g} & f = (X+1) \cdot g + 3X^3 - 55X^2 + X + 1 \\ \hline X^4 - X^3 - X^2 + 1 & 3X^3 - 5X^2 + X + 1 \\ -X^4 + \frac{5}{3}X^3 - \frac{1}{3}X^2 - \frac{1}{3}X & \frac{1}{3}X + \frac{2}{9} \\ \hline -\frac{2}{3}X^3 - \frac{4}{3}X^2 - \frac{1}{3}X + 1 \\ -\frac{2}{3}X^3 + \frac{10}{9}X^2 - \frac{2}{9}X - \frac{2}{9} \\ \hline -\frac{2}{9}X^2 - \frac{5}{9}X + \frac{7}{9} \\ \hline 3X^3 - 5X^2 + X + 1 & -\frac{2}{9}X^2 - \frac{5}{9}X + \frac{7}{9} \\ -\frac{27}{2}X + \frac{225}{4} & -\frac{25}{2}X^2 + \frac{23}{2}X + 1 \\ \hline -\frac{25}{2}X^2 + \frac{23}{2}X + 1 \\ \hline -\frac{25}{2}X^2 + \frac{125}{2}X - \frac{175}{4} \\ \hline -\frac{171}{4}X - \frac{171}{4} \\ \hline -\frac{2}{9}X^2 - \frac{5}{9}X + \frac{7}{9} & \frac{171}{4}X - \frac{171}{4} \\ \hline -\frac{2}{9}X^2 - \frac{2}{9}X & -\frac{7}{9}X + \frac{7}{9} \\ \hline -\frac{7}{9}X + \frac{7}{9} & -\frac{7}{9}X - \frac{7}{9} \\ \hline 0 & 0 \end{array}$$

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X-1$

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X^2 + 1$

El MCD escrito como combinación polinomial de f y $g \rightarrow X^2 + 1 = f \cdot 1 + g \cdot (-X^3)$

$$iii) \xrightarrow{\text{Haciendo}}$$

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = (X^{5} - 2X^{4} + 2X^{2} - 3X + 1) \cdot 2X + (X^{4} + 2X + 1)$$

$$X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = (X^{4} + 2X + 1) \cdot (X - 2) + 3$$

$$X^{4} + 2X + 1 = 3 \cdot (\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}) + 0$$
El MCD será el último resto no nulo y mónico $\rightarrow (f : g) = 1$

El MCD escrito como combinación polinomial de f y $g \to 1 = \frac{1}{3}g \cdot (2X^2 - 4X + 1) - \frac{1}{3}f \cdot (X - 2)$

10. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por

Sea $P \in \mathbb{K}[X] \Rightarrow el \ resto \ de \ dividir \ a \ P \ por \ X - a \ es \ P(a)$.

$$f(X) = q(X) \cdot \underbrace{X^3 - 2X^2 - X + 2}_{g(X)} + r(X), \text{ con } g(X) = (X - 2) \cdot (X - 1) \cdot (X + 1)$$
 y $r(X) = a^2 + bX + c, \text{ ya}$

$$que el gr(r) < gr(g) \xrightarrow{\text{evaluar}} \begin{cases}
f(1) = -2 = q(1) \cdot g(1) + r(1) = -2 \\
f(2) = 1 = q(2) \cdot g(2) + r(2) = 1 \\
f(-1) = 0 = q(-1) \cdot g(-1) + r(-1) = 0
\end{cases}$$

$$\begin{cases}
r(1) = a + b + c = -2 \\
r(2) = 4a + 2b + c = 1 \\
r(-1) = a - b + c = 0
\end{cases}$$

$$\begin{pmatrix}
1 & 1 & 1 & | -2 \\
4 & 2 & 1 & | 1 \\
1 & -1 & 1 & | 0
\end{pmatrix}$$

$$\rightarrow \begin{cases}
r(1) = a + b + c = -2 \\
r(2) = 4a + 2b + c = 1 \\
r(-1) = a - b + c = 0
\end{cases}$$

11. Sea $n \in \mathbb{N}$, $n \geq 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1$ por $X^3 - X$ en $\mathbb{Q}[X]$.

$$\begin{cases} f(X) = X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1 \\ g(X) = X \cdot (X - 1) \cdot (X + 1) \end{cases} \Rightarrow f = q(X) \cdot g(X) + r(X) \text{ con } \operatorname{gr}(\underline{aX^2 + bX + c}) \leq 2$$

$$\begin{cases} f(0) = q(0) \cdot \underline{g(0)} + r(0) = 1 \\ f(1) = q(1) \cdot \underline{g(1)} + r(1) = 3 \\ f(-1) = q(-1) \cdot \underline{g(-1)} + r(-1) = 1 + 3(-1)^{n+1} + 3(-1)^n - 5 - 2 + 1 = \begin{cases} 2 & n \text{ impar } \\ 1 & n \text{ par } \end{cases} \end{cases}$$

$$\xrightarrow{\text{sistema de ecuaciones de } r(X) \end{cases} \begin{cases} r(0) = c = 1 \\ r(1) = a + b + 1 = 3 \Rightarrow a + b = 2 \\ r(-1) = a - b + 1 = \begin{cases} 2 \Rightarrow a - b = 1 & n \text{ impar } \\ 1 \Rightarrow a - b = 0 & n \text{ par } \end{cases} \end{cases}$$

$$\begin{cases} \frac{n}{\text{impar}} \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & \frac{1}{2} \end{pmatrix} \Rightarrow r_{impar}(X) = \frac{3}{2}X^2 + \frac{1}{2}X + 1 \end{cases} \checkmark$$

$$\begin{cases} \frac{n}{\text{par}} \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow r_{par}(X) = X^2 + X + 1 \end{cases} \checkmark$$

12. Hallar la forma binomial de cada una de las raíces complejas del polinomio $f(X) = X^6 + X^3 - 2$.

Primera raíz: $f(\alpha_1 = 1) = 0 \rightarrow f(X) = q(X) \cdot (X - 1)$. Busco q(X) con algoritmo de división.

El cociente $q(X) = X^5 + X^4 + X^3 + 2X^2 + 2X + 2$ se puede factorizar en grupos como $q(X) = (X^2 + X + 1) \cdot (X^3 + 2)$. Entonces las 5 raíces que me faltan para tener las 6 que debe tener $f \in \mathbb{C}[X]$ salen de esos dos polinomios.

$$X^{2} + X + 1 = 0 \Rightarrow \begin{cases} \alpha_{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \\ \alpha_{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} \end{cases}$$

$$X^{3} + 2 = 0 \xrightarrow{\text{exponencial}} \begin{cases} r^{3} = 2 \rightarrow r = \sqrt[3]{2} \\ 3\theta = \pi + 2k\pi \rightarrow \theta = \frac{\pi}{3} + \frac{2k\pi}{3} \text{ con } k = 0, 1, 2. \end{cases} \end{cases} \rightarrow \begin{cases} \alpha_{4} = \sqrt[3]{2}e^{i\frac{\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} + i\frac{\sqrt{3}}{2}) \\ \alpha_{5} = \sqrt[3]{2}e^{i\pi} = -\sqrt[3]{2} \\ \alpha_{6} = \sqrt[3]{2}e^{i\frac{5\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2}) \end{cases}$$

13. Sea $w = e^{\frac{2\pi}{7}i}$. Probar que $w + w^2 + w^4$ es raíz del polinomio $X^2 + X + 2$

Voy a usar que si
$$w \in G_7 \Rightarrow \sum_{j=0}^6 w^j = 0 \quad (w \neq 1)$$

Si $f(X) = X^2 + X + 2$ y $w + w^2 + w^4$ es raíz $\Rightarrow f(w + w^2 + w^4) = 0$
 $(w + w^2 + w^4)^2 + w + w^2 + w^4 + 2 = \underbrace{w^8}_{=w} + 2w^6 + 2w^5 + 2w^4 + 2w^3 + 2w^2 + w + 2 = 2 \cdot \sum_{j=0}^6 w^j = 0 \quad \checkmark$

14.

- i) Probar que si $w = e^{\frac{2\pi}{5}i} \in G_5$, entonces $X^2 + X 1 = [X (w + w^{-1})] \cdot [X (w^2 + w^{-2})]$.
- ii) Calcula, justificando cuidadosamente, el valor exacto de $\cos(\frac{2\pi}{5})$.

i) Voy a usar que si
$$w \in G_5 \Rightarrow \begin{cases} \sum_{j=0}^4 w^j = 0 & (w \neq 1) \star^2 \\ w^k = w^{r_5(k)} \star^1 \end{cases}$$

$$X^{2} + X - 1 = [X - (w + w^{-1})] \cdot [X - (w^{2} + w^{-2})] = X^{2} - (w^{2} + w^{-2})X - (w + w^{-1})X + \underbrace{(w + w^{-1})(w^{2} + w^{-2})}_{\bigstar^{1}} = X^{2} - X\underbrace{(w^{2} + w^{-2} + w + w^{-1})}_{\bigstar^{1}} + \underbrace{w + w^{2} + w^{3} + w^{4}}_{\bigstar^{2}} = X^{2} - X\underbrace{(w + w^{2} + w^{3} + w^{4})}_{\bigstar^{2}} + -1 + \underbrace{1 + w + w^{2} + w^{3} + w^{4}}_{=0} = X^{2} - X\underbrace{(w + w^{2} + w^{3} + w^{4})}_{\bigstar^{2}} + -1 + \underbrace{1 + w + w^{2} + w^{3} + w^{4}}_{=0} = X^{2} - X\underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + -1 + \underbrace{1 + w + w^{2} + w^{3} + w^{4}}_{=0} = X^{2} - X\underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + -1 + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + -1 + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + -1 + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + -1 + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} + \underbrace{(w +$$

ii) Calculando las raíces a mano de
$$X^2+X-1 \to \left\{ \begin{array}{l} \frac{-1+\sqrt{5}}{2} \\ y \\ \frac{-1-\sqrt{5}}{2} \end{array} \right.$$

Pero del resultado del inciso i) tengo que:

Pero del resultado del inciso i) tengo que :
$$w = e^{i\frac{2\pi}{5}} \xrightarrow{\text{sé que una raíz dada} \atop \text{la factorización es}} w + w^{-1} = w + \overline{w} = 2\text{Re}(w) = 2 \cdot \underbrace{\cos(\frac{2\pi}{5})}_{\cos\theta \geq 0, \theta \in [0, 2\pi]} = \frac{-1+\sqrt{5}}{2}$$

$$\rightarrow \boxed{\cos(\frac{2\pi}{5}) = \frac{-1 + \sqrt{5}}{4}} \quad \checkmark$$

15.

- i) Sean $f, g \in \mathbb{C}[X]$ y sea $a \in \mathbb{C}$. Probar que a es raíz de f y g si y sólo sí a es raíz de (f : g).
- ii) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz en común con $X^4 + 3X^3 - 3X + 1$.

i) Hacer!

ii) Busco el
$$(f:g)$$
:
$$X^{4} + 3X - 2 = (X^{4} + 3X^{3} - 3X + 1) \cdot 1 + (-3X^{3} + 6X - 3)$$

$$X^{4} + 3X^{3} - 3X + 1 = (-3X^{3} + 6X - 3) \cdot (-\frac{1}{3}X - 1) + (2X^{2} + 2X - 2)$$

$$-3X^{3} + 6X - 3 = (2X^{2} + 2X - 2) \cdot (-\frac{3}{2}X + \frac{3}{2}) + 0$$

$$(f:g) = X^{2} + X - 1 \xrightarrow{\text{raíces}} \begin{cases} \alpha_{1} = \frac{1 + \sqrt{5}}{2} \\ \alpha_{2} = \frac{1 - \sqrt{5}}{2} \end{cases}$$

$$X^{4} + 3X - 2 = (X^{2} + X - 1) \cdot (X^{2} - X + 2) + 0$$

16. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$,

ii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$,

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$$

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$.

i) $f = X^5 - 2X^3 + X$, a = 1,

Todos casos de factoreo:

$$f = X^5 - 2X^3 + X = X(X^4 - 2X^2 + 1) = X(X^2 - 1)^2 = X(X - 1)^2(X + 1)^2 =$$
La multiplicidad de $a = 1$ como raíz es 2.

ii) $f = X^6 - 3X^4 + 4$, a = i,

Si a = i es raíz, entonces -i también lo es en un polinomio $\mathbb{R}[X]$

$$f = (X^2 + 1)(X^4 - 4X^2 + 4) = (X^2 + 1)(X^2 - 2)^2 = (X^2 + 1)(X - \sqrt{2})^2(X + \sqrt{2})^2 = (X - i)^1(X + i)(X - \sqrt{2})^2(X + \sqrt{2})^2 = (X - i)^1(X + i)(X - \sqrt{2})^2(X + \sqrt{2})^2 = (X - i)^1(X - i)(X - i)(X$$

La multiplicidad de a = i como raíz de f es 1.

- iii) $f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a=2,$ $f = (X-2)^3((X+2) + (X+1)) = (X-2)^3(2X+3)$ La multiplicidad de a=2 como raíz de f es 3.
- iv) $f = (X-2)^2(X^2-4) 4(X-2)^3$, a = 2, $f = (X-2)^2(X^2-4) 4(X-2)^3 = (X-2)^2(X-2)(X+2) 4(X-2)^3 = (X-2)^3(X+2-4) = (X-2)^4$ [La multiplicidad de a = 2 como raíz de f es 4.]

17. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} - (n+1)X^n + a$ tiene solo raíces simples en \mathbb{C} .

$$f = nX^{n+1} - (n+1)X^n + a$$

$$\xrightarrow{\text{derivo}} f' = n(n+1)X^n - n(n+1)X^{n-1} \iff f' = n(n+1)X^{n-1}(X-1)$$

$$f'(\alpha) = 0 \Leftrightarrow \begin{cases} n > 1 \Rightarrow f'(\alpha = 1) = 0 & \text{y} \quad f'(\alpha = 0) = 0 \\ n = 1 \Rightarrow f'(\alpha = 1) = 0 & \text{*} \end{cases}$$

Para que las raíces α , de f no sean simples, es necesario que $f'(\alpha)=0$. Por lo tanto, estudio solo los valores de raíces encontrados para la derivada. Si f ha de tener raíces dobles, estás deberían ser $\alpha=1$ o $\alpha=0$. Entonces:

$$\begin{cases} f(\alpha = 1) = a - 1 \Rightarrow f(1) \neq 0 \ \forall n \in \mathbb{N} \Leftrightarrow a \neq 1 \\ f(\alpha = 0) = a \Rightarrow f(0) \neq 0 \Leftrightarrow a \neq 0 \end{cases}$$

Si $a=0 \wedge n \stackrel{\bigstar^1}{=} 1 \Rightarrow f$ tiene solo una raíz simple en 0.

Si $a \neq 1 \Rightarrow f$ tiene solo raíces simples $\forall n \in \mathbb{N}$.

Si $a \neq 0 \land n > 1 \Rightarrow f$ tiene solo raíces simples.

seguramente hay una mejor forma de expresar la respuesta.

- 18. Controlar y Pasar
- 19. Controlar y Pasar
- **20.** Hacer!
- 21. Pasar
- 22. Hacer!

24.	Hacer!				
25 .	Hacer!				
26.	Hacer!				
27.	Hacer!				
28.	Hacer!				
29.	Hacer!				
30.	Hacer!				
31.	Hacer!				

32.	Hacer!		
	Hacer!		
34.	Hacer!		
35.	Hacer!		
36.	Hacer!		
37.	Hacer!		
38.	Hacer!		
39.	Hacer!		

Ejercicios extras:

1.

a) Hallar todos los posibles $\mathbf{c} \in \mathbb{R}$, $\mathbf{c} > 0$ tales que:

$$f = X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + \mathbf{c}$$

tenga una raíz de argumento $\frac{3\pi}{2}$

- b) Para cada valor de **c** hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene al menos una raíz doble.
- Voy a usar que: $\star^1 \begin{cases} (-i)^2 = -1 \\ (-i)^3 = i \\ (-i)^4 = 1 \\ (-i)^5 = -i \end{cases}$

$$f(r(-i)) = (r(-i))^{6} - 4(r(-i))^{5} - (r(-i))^{4} + 4^{3} + 4(r(-i))^{2} + 48(r(-i)) + \mathbf{c} = \begin{cases} \operatorname{Re} : -r^{6} - r^{4} - 4r^{2} + \mathbf{c} = 0 \Rightarrow \mathbf{c} = r^{6} + r^{4} + 4r^{2} \\ \operatorname{Im} : r(4r^{4} - 4r^{2} - 48) = 0 \xrightarrow{\text{bicuadrática}} r^{2} = y \text{ y } r \in \mathbb{R}_{>0} \end{cases} r^{2} = 3$$

Por lo tanto si_**c** = $r^6 + r^4 + 4r^2 = (r^2)^3 + (r^2)^2 + 4r^2 \Rightarrow \boxed{\mathbf{c} = 48}$ con raíces $\pm \sqrt{3}i$ dado que $f \in \mathbb{Q}[X]$

b) Debe ocurrir que $(X - \sqrt{3}i)(X + \sqrt{3}i) = X^2 + 3$ $\begin{array}{r}
-4X^{5} \\
-4X^{5} - 4X^{4} \\
-4X^{5} - 4X^{4} + 4X^{3} \\
4X^{5} + 12X^{3} \\
-4X^{4} + 16X^{3} + 4X^{2} \\
4X^{4} + 12X^{2} \\
\hline
16X^{3} + 16X^{2} + 48X \\
-16X^{3} - 48X \\
\hline
16X^{2} + 48 \\
-16X^{2} - 48 \\
\hline
0
\end{array}$

 $f = (X^2 + 3)\underbrace{(X^4 - 4X^3 - 4X^2 + 16X + 16)}_q$ como f tiene al menos una raíz doble puedo ver las

raíces de la derivada de q:

$$q' = (4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0 \xrightarrow{\text{Posibles rafces, Gauss :}(\\ \pm 1, \pm 2, \pm 4)} q'(1) = 0, \text{ pero } g(1) \neq 0 \Rightarrow f(1) \neq 0$$

$$\begin{array}{c} \xrightarrow{\text{divido para} \\ \text{bajar grado}} & X^3 - 3X^2 - 2X + 4 \ | \ X - 1 \\ - X^3 + X^2 & | \ | \ X^2 - 2X - 4 \\ \hline & - 2X^2 - 2X \\ \hline & - 4X + 4 \\ \hline & 4X - 4 \\ \hline & 0 \\ \\ y' = 4(X-1)\underbrace{(X^2 - 2X - 4)}_{\text{busco raices}} \xrightarrow{\text{de } h} X^2 - 2X - 4 = 0 \iff \alpha_{1,2} = 1 \pm \sqrt{5} \\ h = (X - (1 + \sqrt{5})) \cdot (X - (1 - \sqrt{5}) = X^2 - 2X - 4 \text{ Para calcular que } f(\alpha_1) = g(\alpha_1) = 0 \text{ y comprobar que es una raíz doble, puedo hacer:} \\ & X^4 - 4X^3 - 4X^2 + 16X + 16 \\ \hline & X^2 - 2X - 4 \\ \hline & -2X^3 + 16X \\ \hline & -2X^3 + 16X \\ \hline & -2X^3 + 16X \\ \hline & -2X^3 - 4X^2 - 8X \\ \hline & -4X^2 + 8X + 16 \\ \hline & 4X^2 - 8X - 16 \\ \hline & 0 \\ \hline \end{array}$$

 $h^2 = (X^2 - 2X - 4)^2 \rightarrow$ no la vi venir

factorizaciones.

$$\begin{cases}
\mathbb{Q}[X] \to f = (X^2 + 3)(X^2 + 3)(X^2 - 2X - 4)^2 \\
\mathbb{R}[X] \to f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X^2 - 2X - 4)^2 \\
\mathbb{C}[X] \to f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X - 3i)^2(X + 3i)^2
\end{cases}$$

- 3. Hallar todos los polinomios mónicos $f \in \mathbb{Q}[X]$ de grado mínimo que cumplan simultáneamente las siguientes condiciones:
 - i) $1 \sqrt{2}$ es raíz de f;
 - ii) $X(X-2)^2 \mid (f:f');$
 - iii) $(f: X^3 1) \neq 1$;

iv)
$$f(-1) = 27$$
;

i) Como $f \in \mathbb{Q}[X]$ si $\alpha_1 = 1 - \sqrt{2}$ es raíz entonces $\alpha_2 = 1 + \sqrt{2}$ para que no haya coeficientes irracionales en el polinomio.

$$(X - (1 - \sqrt{2})) \cdot (X - (1 + \sqrt{2})) = X^2 - 2X - 1$$

Por lo tanto $X^2 - 2X - 1$ será un factor de $f \in \mathbb{Q}[X]$.

- ii) Si $X(X-2)^2 \mid (f:f') \Rightarrow \begin{cases} \alpha_3 = 0 \text{ raı́z simple de } f' \Rightarrow \text{ raı́z doble de } f \\ \alpha_4 = 2 \text{ raı́z simple de } f' \Rightarrow \text{ raı́z doble de } f \end{cases}$ Por lo tanto $X^2(X-2)^3$ serán factores de f.
- iii) Si $(f: X^3 1) \neq 1$ quiere decir que por lo menos alguna de las 3 raíces de: $X^3 1 = (X 1) \cdot (X (-\frac{1}{2} + \frac{\sqrt{3}}{2})) \cdot (X (-\frac{1}{2} \frac{\sqrt{3}}{2}))$ tiene que aparecer en la factorización de f. Pero parecido al item i) si tengo una raíz compleja, también necesito el conjugado complejo, para que no me queden coeficientes de f en complejos, $X^3 1 = (X 1) \cdot (X^2 + X + 1)$, me quedaría con el factor de menor grado si eso no rompe otras condiciones.

Por lo tanto (X-1) o (X^2+X+1) aparecerá en la factorización de f.

iv) f(-1) = 27. Hasta el momento:

$$\begin{cases} f_1 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X^2 + X + 1) \to f_1(-1) = 2 \cdot (-27) \cdot 1 \cdot 1 = -54 \\ f_2 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X - 1) \to f_2(-1) = 2 \cdot (-27) \cdot 1 \cdot (-2) = 108 \end{cases}$$

, ninguno cumple la condición iv).

Para encontrar un polinomio que cumpla lo pedido tomaría el f_2 que tiene menor grado de los dos y lo multiplicaría por $(X-\frac{3}{4})$ de manera que $f=(X^2-2X-1)\cdot X^2\cdot (X-2)^3\cdot (X-1)\cdot (X-\frac{3}{4}) \to \boxed{f(-1)=27}$ así cumpliendo todas las condiciones.

4. Factorizar como producto de polinomios irreducibles en $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$ al polinomio

$$f = X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15$$

sabiendo $(f: X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15) \neq 1$

$$X^{5} + 2X^{4} - 7X^{3} - 7X^{2} + 10X - 15 = (X^{4} - X^{3} + 6X^{2} - 5X + 5) \cdot (X + 3) + (-10X^{3} - 20X^{2} + 20X^{2} +$$