Московский Государственный Технический Университет им. Н.Э. Баумана

Отчет по лабораторной работе №3 по курсу Технологии Машинного Обучения

Выполнила:
Костян Алина
ИУ5-53
Проверил:
Гапанюк Ю.Е.

Код и результаты выполнения

Выбираем набор данных. В качестве набора данных возьму набор данных в котором описаны все пассажиры Титаника.

1. Подключим библиотеки:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
%matplotlib inline
sns.set(style="ticks")
```

2. Подключаем набор данных

```
data = pd.read_csv('train.csv', sep=",")
```

3. Описание датасета:

Типы данных колонок

data.dtypes int64 PassengerId int64 Survived Pclass int64 Name object object Sex float64 Age int64 SibSp int64 Parch object Ticket Fare float64 Cabin object object Embarked dtype: object

Проверим были ли пропущены значения в каких-нибудь колонках

data.isnull()	.sum()	
PassengerId	0	
Survived	0	
Pclass	0	
Name	0	
Sex	0	
Age	177	
SibSp	0	
Parch	0	
Ticket	0	
Fare	0	
Cabin	687	
Embarked	2	
dtype: int64		

Размер датасета

```
total_count = data.shape[0]
print(f'Bcero crpoκ: {total_count}')

(891, 12)
Bcero crpoκ: 891
```

data.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

4. Обработка пропущенных данных:

1.1.1. Удаление колонок содержащих пустые значения

1.1.2. Удаление строк содержащих пустые значения

```
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)

data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)

((891, 12), (891, 9))
((891, 12), (183, 12))
```

1.1.2. Заполнение всех пропушенных значений нулями, что некорректно для категориальных значений

```
data_new_3 = data.fillna(0)
data_new_3.head()
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	0	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	0	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	0	S

1.2.1. Обработка пропусков в числовых данных

Выберем числовые колонки с пропущенными значениями

Колонка Аде, количество пропусков 177 - 19.87%

Oпределим функцию для импьютации в которую strategies=['mean', 'median', 'most_frequent']

т.е. нашими стратегиями будут:

- Среднее значение
- Медиана
- Наиболее часто встречающаяся величина

def test_num_impute(strat):
 # Onpedeanew cpamezuwo
 imp_num = SimpleImputer(strategy=strat)
 data_num_imp = imp_num.fit_transform(data_num_age)
 return data_num_imp[mask_missing_values_only]

1.2.2. Обработка пропусков в категориальных данных

Колонка Embarked, количество пропусков 2 - 0.22%

Выберем категорильные колонки с пропущенными значениями

```
| Cat_temp_data( 'Cabin'].unique()
| array([sam, 'G8', 'G13', 'E46', 'G6', 'C103', 'B36', 'A6', 'C23', 'E31', 'A35', 'D31', 'B30', 'C23', 'B38', 'C103', 'E31', 'A55', 'D31', 'B30', 'C25', 'B38', 'C10', 'B36', 'C10', 'B38', 'B30', 'C37', 'B31', 'A55', 'D31', 'B31', 'B
```

5. Замена категориальных данных на числовые:

2.1 Label encoding - кодирование целыми значениями

```
le = LabelEncoder()
   cat_enc_le = le.fit_transform(cat_enc['Cabin'])
cat enc['Cabin'].unique()
16,
29,
                                                                                                       17,
30,
                                                                                                             18,
31,
                                                                                                                  19,
32,
                                                                                                                        20,
                                                                                                                             21,
34,
                                                                                                                                        23,
36,
                                                                                                                                   22,
                                                                                                                                                   25,
                                                                                                                                                   38,
                                                                                                                                   35,
                                                                                                   42,
                                                                                                        43,
                                                                                                              44,
                                                                                                                   45,
                                                                                                                        46,
                                                                                                                              47,
                                                                                                                                   48,
                                                                                                                                        49,
                                                                                                                                                   51,
                                                                                   52, 53, 54, 55,
65, 66, 67, 68,
                                                                                                        56,
69,
                                                                                       79, 80, 81, 82, 83, 84, 85,
                                                                                                                             86,
                                                                                                                                   87.
                                                                                                                                        88.
                                                                                                                                              89,
                                                                                                                                                   90,
                                                                                  91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
                                                                                  117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146])
```

2.2. One-hot encoding - Кодирование наборами бинарных значений

```
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['Cabin']])

cat_enc.shape
(891, 1)

cat_enc_ohe.shape
(891, 147)
```

6. Масштабирование данных

4.1. МіпМах - масштабирование

7. Нормализация

