1 Ура!!! Новый листик на зачёт.

- 1. Пусть G группа.
 - (а) Пусть $a_1, \ldots, a_n \in G$, $[a_i, a_j] = 1$ для всех $1 \le i < j \le n$ и $\langle a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \rangle \cap \langle a_i \rangle = \{1\}$ для всех $1 \le i \le n$. Пусть порядок a_i равен r_i для всех $1 \le i \le n$. Чему может быть равен порядок $a_1 \ldots a_n$?
 - (b) Пусть $a, b, c \in G$ попарно коммутируют и $\langle a \rangle \cap \langle b \rangle = \langle a \rangle \cap \langle c \rangle = \langle b \rangle \cap \langle c \rangle = \{1\}$. Пусть порядок a равен r, порядок b равен s, а порядок c равен t. Чему может быть равен порядок abc?
 - (c) Пусть $a, b \in G$ таковы, что $\langle a \rangle \cap \langle b \rangle = \{1\}$ и $a^{-1}ba = b^k$. Пусть порядок a равен r, а порядок b равен s. Чему может быть равен порядок ab?
- 2. Пусть G группа. Для целого $n \geq 2$ определим отображение $\phi_n: G \to G$ формулой $\phi_n(g) = g^n$.
 - (a) Докажите, что ϕ_2 эндомоморфизм тогда и только тогда, когда группа G абелева. Покажите, что, если G конечная абелева группа, то ϕ_2 автоморфизм тогда и только тогда, когда $2 \nmid |G|$.
 - (b) Пусть G бесконечная абелева группа. Докажите, что ϕ_2 инъективен тогда и только тогда, когда в G нет элементов порядка два. Приведите пример, когда ϕ_2 инъективен, но не сюръективен, и пример, когда ϕ_2 сюръективен, но не инъективен. Приведите пример бесконечной группы, для которой ϕ_2 является автоморфизмом.
 - (c) Пусть $n \ge 3$ некоторое целое число. Покажите, что, если ϕ_n , ϕ_{n+1} и ϕ_{n+2} эндоморфизмы, то G абелева.
 - (d) Пусть $n \ge 3$ некоторое целое число. Докажите, что существует неабелева группа G такая, что ϕ_n и ϕ_{n+1} эндоморфизмы.
- 3. (a) Докажите, что в S_5 есть 6 подгрупп порядка 5. Обозначим их через H_1, \ldots, H_6 . Докажите, что отображение $\phi: S_5 \to S_6$, которое переводит $\sigma \in S_5$ в такую перестановку $\phi_{\sigma} \in S_6$, что $\sigma H_i \sigma^{-1} = H_{\phi_{\sigma}(i)}$, является мономорфизмом. Кроме того, для любых $1 \le i < j \le 6$ существует $\sigma \in S_5$ такая, что $\phi_{\sigma}(i) = j$.
 - (b) Докажите, что все подгруппы S_6 , получаемые алгоритмом первого пункта при разной нумерации подгрупп порядка 5 в S_5 сопряжены. Докажите, что количество этих подгрупп равно шести и они не содержат транспозиций.
 - (c) Теперь пусть G_1, \ldots, G_6 это все подгруппы S_6 , изоморфные S_5 , которые получаются алгоритмом, описанном в первом пункте. Докажите, что отображение $\psi: S_6 \to S_6$, которое переводит $\sigma \in S_6$ в такую перестановку $\psi_{\sigma} \in S_6$, что $\sigma G_i \sigma^{-1} = G_{\psi_{\sigma}(i)}$, является автоморфизмом.
 - (d) Докажите, что автоморфизм S_6 , полученный в предыдущем пункте, не является внутренним. Выведите из этого, что $\operatorname{Aut}(S_6)/\operatorname{Inn}(S_6) \cong \mathbb{Z}/2\mathbb{Z}$ и $|\operatorname{Aut}(S_6)| = 1440$.
- 4. Пусть H, K подгруппы группы G. Двойным смежным классов G по H, K называется множество вида HgK, где g некоторый элемент грппы G.

- (a) Докажите, что G является дизъюнктным объединением своих двойных смежных классов по H,K, то есть отношение $H \sim_K$, заданное условием $g_H \sim_K h$ тогда и только тогда, когда $h \in HgK$ является отношением эквивалентности.
- (b) Пусть $|G| < \infty$. Докажите, что HgK является объединением нескольких правых смежных классов G по H. Докажите, что количество эти смежных классов равно индексу $(g^{-1}Hg) \cap K$ в K. Выведите отсюда, что, если Ha_1K, \ldots, Ha_mK все различные двойные смежные классы G по H,K, то $|G| = |H||K|\sum_{i=1}^m \frac{1}{|a_i^{-1}Ha_i\cap K|}$.
- (c) Пусть $|G| < \infty$ и Hx_1, \dots, Hx_k все различные правые смежные классы G по H. Докажите, что количество таких $1 \le i \le k$, что $\frac{|K|}{|a_i^{-1}Ha_i\cap K|} = t$ делится на t.
- (d) Пусть $|G| < \infty$. Верно ли, что все двойные смежные классы G по H, K имеют одинаковое количество элементов? Верно ли, что количество элементов в любом двойном смежном классе G по H, K делит |G|?
- 5. (а) Пусть G неабелева группа. Докажите, что ${\rm Inn}(G)$ не может быть циклической группой.
 - (b) Докажите, что не существует группы G с группой автоморфизмов изоморфной \mathbb{Z} или $\mathbb{Z}/n\mathbb{Z}$ с нечётным n>2.
 - (c) Пусть в в группе K есть элемент $a \neq 1$ такой, что для любого $b \in K \setminus \{1\}$ существует целое n, удовлетворяющее равенству $b^n = a$. Докажите, что не существует группы G с $Inn(G) \cong K$.
- 6. Для группы G обозначим через $\pi_G: G \to G/[G,G]$ естественную проекцию.
 - (а) Докажите, что для любого гомоморфизма $f:G_1\to G_2$ существует единственный гомоморфизм $[f]:G_1/[G_1,G_1]\to G_2/[G_2,G_2]$ такой, что $[f]\pi_{G_1}=\pi_{G_2}f$.
 - (b) Докажите, что $[id_G]=id_{G/[G,G]}$ и для гомоморфизмов $f_1:G_1\to G_2$ и $f_2:G_2\to G_3$ выполнено $[f_2\circ f_1]=[f_2]\circ [f_1].$
 - (c) Можно ли сопоставить каждой паре групп G_1, G_2 и гомоморфизму $f: G_1 \to G_2$ гомоморфизм $Z(f): Z(G_1) \to Z(G_2)$ таким образом, чтобы для любой группы G было выполнено $Z(id_G) = id_{Z(G)}$ и для любых трёх групп G_1, G_2, G_3 и гомоморфизмов $f_1: G_1 \to G_2$ и $f_2: G_2 \to G_3$ выполнялось равенство $Z(f_2 \circ f_1) = Z(f_2) \circ Z(f_1)$?