Algebra Autumn 2023 Frank Sottile 27 November 2023

Thirteenth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Monday 4 December:

- 68. Let \mathbb{F} be a field. Show that the subring $\mathbb{F}[[x]][x^{-1}]$ of the quotient field of $\mathbb{F}[[x]]$ is a field. This is the field of formal Laurent series in x.
- 69. The *nth cyclotomic polynomial* is

$$f_n := (x^n - 1)/(x - 1) = x^{n-1} + \dots + 1 \in \mathbb{Z}[x].$$

Use Eisenstein's criterion to show that if p is prime, then $f_p(x+1)$ is irreducible, and deduce that f_p is irreducible.

- 70. If c_0, c_1, \ldots, c_n are distinct elements of an integral domain D, and d_0, \ldots, d_n are elements of D, then there is at most one polynomial $f \in D[x]$ of degree n such that $f(c_i) = d_i$ for each $i = 0, \ldots, n$.
- 71. Show that for any ring R and R-module M, $\operatorname{Hom}_R(R,M) \simeq (M,+,0)$, as abelian groups.
- 72. Let R be a ring and A be an abelian group. For $r \in R$ and $f \in \operatorname{Hom}_{\mathbb{Z}}(R,A)$, define $r.f \colon R \to A$ by (r.f)(x) = f(xr) for $x \in R$. Show that this gives $\operatorname{Hom}_{\mathbb{Z}}(R,A)$ the structure of an R-module. (Part of this problem is showing that $r.f \in \operatorname{Hom}_{\mathbb{Z}}(R,A)$.)
- 73. Let R be a ring and A, B, M, and N be R-modules. Let $f \in \operatorname{Hom}_R(A, M)$ and $g \in \operatorname{Hom}_R(N, B)$. For $\varphi \in \operatorname{Hom}_R(M, N)$, define $f^*(\varphi) := \varphi \circ f$ and $g_*(\varphi) := g \circ \varphi$. Show that these give homomorphisms of abelian groups,

$$f^* \colon \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(A,N)$$
 and $g_* \colon \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,B)$.

Show that $f \mapsto f^*$ is a homomorphism of abelian groups $\operatorname{Hom}_R(A,M) \to \operatorname{Hom}_Z(\operatorname{Hom}_R(M,N),\operatorname{Hom}_R(A,N))$.

- 74. Let M be an R-module. Show that $\operatorname{Hom}_R(M,M)$ is a ring whose product is the composition of functions. It is called the $\operatorname{endomorphism\ ring}$ of M, written $\operatorname{End}(M)$.
 - Show that M is a left $\operatorname{End}(M)$ -module under the action by elements $f \in \operatorname{End}(M)$ defined by f.m = f(m), for $m \in M$.
- 75. An R-module M is simple if its only submodules are 0 and M. Prove that every simple R-module is cyclic. Prove Schur's Lemma, that if M is simple and $M \neq 0$, then End(M) is a division ring.