Assignment 6 of MATH 2003

ZHANG Huakang/DB92760

November 16, 2020

1

1.1

Let $\delta = min\{\frac{1}{2}, \frac{\epsilon}{2}\}$ and when $|x-2| < \delta$, we have

$$|x-2| < \delta < \frac{1}{2}$$

$$-\frac{1}{2} < x - 2 < \frac{1}{2}$$

$$\frac{1}{2} < x - 1 < \frac{3}{2}$$

$$|\frac{1}{1-x} + 1| = |\frac{2-x}{1-x}|$$

$$= |\frac{x-2}{x-1}|$$

$$< 2(x-2)$$

$$< 2\delta$$

By the definition, we know:

$$\lim_{x \to 2} \frac{1}{1 - x} = -1$$

 $\leq \epsilon$

Let $\delta = \epsilon$, for $|x - 0| < \delta$, we have

$$|x| < \delta$$

$$|\frac{xx}{x}| < \delta$$

$$|\frac{x^2}{|x|}| < \delta$$

$$|\frac{x^2}{|x|} - 0| < \epsilon$$

By the definition, we know:

$$\lim_{x \to 0} \frac{x^2}{|x|} = 0$$

$\mathbf{2}$

f is not continuous

Proof. Without loss of generality, for any rational number $x_0 \in \mathbb{R}$, we can find a sequence (a_n) that converges to x_n such that $\forall a \in (a_n)$, a is a irrational. We can get a sequence $(f(a_n))$ where

$$f(a_n) = x(1+x)$$

Therefore, $(f(a_n))$ is converges to $x_0(1+x_0)$ when $f(x_0)=x_0(1-x_0)$. Thus, f is not continuous.

3

Proof. For any $x_0 \in [a, b]$, if

$$\inf_{a \le t \le x_0} f(t) = f(x_0)$$

because f(x) is continuous, $\lim_{x\to x_0} f(x) = f(x_0)$ and $\forall x\in [a,x_0],\ f(x)\geq f(x_0)$. Thus

$$\lim_{x \to x_0} \inf_{a \le t \le x_0} f(t) = f(x_0)$$

 $\quad \text{If} \quad$

$$\inf_{a \le t \le x_0} f(t) = f(b)$$

where $b \in [a, x_0)$ which means that

$$\lim_{x \to x_0} \inf_{a \le t \le x} f(t) = f(b)$$

Therefore, $\forall x_0 \in [a, b]$,

$$m(x_0) = \inf_{a \le t \le x_0} f(t) = \lim_{x \to x_0} \inf_{a \le t \le x} f(t)$$

which means that m(x) is continuous.

4

 $M = \{\frac{1}{2} \pm \frac{n}{2n+1} : n \in \mathbb{N}\} = \{1 - \frac{1}{4n+2}, \frac{1}{4n+2} : n \in \mathbb{N}\}$. For every $\delta > 0$, when

$$n > \frac{1 - 2\delta}{4\delta} \Rightarrow \delta > \frac{1}{4n + 2}$$

which means

$$|\frac{1}{4n+2} - 0| < \delta$$

 \mathbf{or}

$$|1 - \frac{1}{4n+2} - 1| < \delta$$

By the definition, 1 and 0 are cluster point of M

5

Proof. By the definition,

$$f_2(x) := f(x)$$

for every $x \in J$ f has limit at c, i.e. for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$ where L is the limit of f(x). Because $c \in J$, then $|f_2(x) - L| < \epsilon$ which means that f_2 also has a limit at c

Example

Let f(x) = sgn(x) and $J = (0, +\infty)$. We can get that $\lim_{x\to 0}$ do not exists but $\lim_{x\to 0} f_2(x) = 1$

6

Proof. We can get

$$f(0) = f(0+0) = 2f(0)$$

which means that

$$f(0) = 0$$

Given that

$$\lim_{r\to 0} = L$$

i.e., $\forall \epsilon > 0, \exists \delta > 0, |x - 0| < \delta \rightarrow |f(x) - L| < \epsilon$. When $x \rightarrow 0$,

$$|f(x) - L| = |f(0) - L| < \epsilon$$

i.e., $|-L|=|L|<\epsilon.$ Because $\epsilon>0$ is arbitrary number. Thus L=0

Proof. For any $c \in \mathbb{R}$,

$$f(x) = f(x - c) + f(c)$$

Thus,

$$\lim_{x \to c} f(x) = \lim_{x \to c} f(x - c) + f(c)$$
$$= \lim_{x \to 0} f(x) + f(c)$$
$$= f(c)$$

Therefore, f has limit at every $c \in \mathbb{R}$

7

Let

$$\lim_{x \to c} f(x) = L$$

which means that for any $\epsilon > 0 \in \mathbb{R}$, there exists $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

$$|f(x) - L| < \epsilon$$

$$L - \epsilon < f(x) < L + \epsilon$$

$$0 < |f(x)| < \min\{|L + \epsilon|, |L - \epsilon|\} \le |L + \epsilon|$$

i.e.,

$$0 < |f(x)| < |L + \epsilon|$$
$$-|L| < |f(x)| - |L| < |L + \epsilon| - |L|$$

$$0 < ||f(x)| - |L|| < \min\{||L| + \epsilon| - |L|, |-|L||\}$$

i.e.,

$$0 < ||f(x)| - |L|| < \min\{||L| + \epsilon| - |L|, |L|\}$$

Because $\epsilon > 0$, then $|L| + \epsilon| - |L| = \epsilon$

$$0 < ||f(x)| - |L|| < min\{||L| + \epsilon| - |L|, |L|\} \le \epsilon$$

i.e.,

$$0 < ||f(x)| - |L|| < \epsilon$$
$$0 < ||f(x)| - |\lim_{x \to c} f(x)|| < \epsilon$$

which means that

$$\lim_{x\to 1} |f|(x) = |\lim_{x\to c} f(x)|$$

8

Let

$$\lim_{x \to c} f(x) = L$$

which means that for any $\epsilon>0\in\mathbb{R}$, there exists $\delta>0$ such that if $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon$.

$$\begin{split} |f(x)-L| < \epsilon \\ L - \epsilon < f(x) < L + \epsilon \\ \sqrt{L - \epsilon} < \sqrt{f(x)} < \sqrt{L + \epsilon} \\ \sqrt{L - \epsilon} - \sqrt{L} < \sqrt{f(x)} - \sqrt{L} < \sqrt{L + \epsilon} - \sqrt{L} \\ |\sqrt{f(x)} - \sqrt{L}| < \min\{|\sqrt{L + \epsilon} - \sqrt{L}|, |\sqrt{L - \epsilon} - \sqrt{L}|\} \\ < |\sqrt{L + \epsilon} - \sqrt{L}| \end{split}$$

i.e.,

$$|\sqrt{f(x)} - \sqrt{L}| < |\sqrt{L + \epsilon} - \sqrt{L}|$$

We have $f:(0,\infty)\to (0,\infty)$ where $f(\epsilon)=|\sqrt{L}-\epsilon|-\sqrt{L}$ is surjective. Then $f(\epsilon)$ is a arbitrary number because ϵ is a arbitrary number. Therefore,

$$\lim_{x \to c} \sqrt{f(x)} = \sqrt{\lim_{x \to c} f(x)}$$

9

Let c = 0, f(x) = sgn(x) and g(x) = -sgn(x). Then,

$$(f+g)(x) = 0$$

and

$$(f \cdot g)(x) = -1$$

when $x \neq 0$

$$(f \cdot g)(0) = 0$$

Therefore

$$\lim_{x \to 0} (f+g)(x) = 0$$

$$\lim_{x \to 0} (f \cdot g)(x) = -1$$

10

10.1

Proof. Let (δ_n) be a sequence such that $\delta_n > 0$ and $\delta_n > \delta_{n+1}$ for all $n \in \mathbb{N}$. Thus $\lim \delta_n$ must exist by monotone convergence theorem. And it is easy to know that $\{x: |x-x_0| < \delta_{n+1}\} \subseteq \{x: |x-x_0| < \delta_n\}$. We can get

$$M_f(x_0, \delta_n) - m_f(x_0, \delta_n) \ge M_f(x_0, \delta_{n+1}) - m_f(x_0, \delta_{n+1})$$

which means that the sequence $(M_f(x_0, \delta_n) - m_f(x_0, \delta_n))$ is monotone sequence. And $M_f(x_0, \delta_n) > m_f(x_0, \delta_n)$, i.e., $(M_f(x_0, \delta_n) - m_f(x_0, \delta_n)) > 0$ We can get $\lim (M_f(x_0, \delta_n) - m_f(x_0, \delta_n))$ must exists by monotone convergence theorem. \square

10.2

if part

Proof. \Box