

Caroline Arnold

6th Workshop on Coupling Technologies Toulouse, 20.01.2023

Machine Learning (ML) in Earth System Models

Typical scenarios

- Sub-grid processes, e.g., cloud microphysics, atmospheric chemistry, ...
 - Described by parameterizations
 - Neglected due to computational effort
- Machine learning (ML) algorithm emulates sub-grid process
- Can provide more accurate process description

Machine Learning

A very brief overview

- Statistical algorithms that learn from data
- Most relevant: neural networks

- Training a ML model
 - Optimize for a given metric ("loss function") – accuracy, mean squared error, …
 - Adjust model parameters w, b to best fit the training dataset
 - Save model for later use

Machine Learning for cloud microphysics in ICON-NWP

Example for "learning" a scheme

- Clouds and rain represented by water content and droplet concentration ("2moment-scheme")
- Updates by bulk-moment scheme

- ML training data: super-droplet scheme
- → more accurate, less assumptions

Machine Learning

"Offline" and "online" model evaluation

- How does the ML model generalize to unseen data?
- → Evaluation on test dataset
- Report metrics and publish

- But in reality ...
 - ML model applied in ESM time loop
 - New conditions encountered
 - Interaction with the ESM

Good "offline" performance does not necessarily imply good "online" performance!

Bridge to integrate ML model in ICON

Quick and flexible "online" tests

flexible

Allow for iterative development of ML model

ML-developerfriendly

Limit changes to ESM code

performant

 Runtime overhead should not limit development

accelerated

 Use ML specialised hardware (GPU) if possible

ICON program flow

ML model for warm rain microphysics

ICON time loop

parameterizations

cloud microphysics

two moment scheme

- Replace only warm rain processes by call to ML model (neural network)
- Call for every grid cell and vertical level
- ICON grid corresponds to ML batch processed at once
- Send / receive: 2 moments each for cloud
 + rain → 4 numbers

warm rain processes

Neural network

ICON – Python bridge 1

"Embedded" Python using C Foreign Function Interface (CFFI)

- CFFI compiles Python code to dynamic library
- linked to ICON at compile time
- Py interpreter initialized at ICON runtime
- Executes frozen Py code locally

- Data transfer:
 - Memory address transmitted
 - Read from / write to buffer
- Beware of column-major (F) / row-major
 (C) order! → swap dimensions

ICON – Python bridge 2

Using Yet Another Coupler (YAC)

- Can we use existing coupling tools to run the ML model in ICON?
- Use the Python bindings for YAC and the new coupling setup in ICON
- No interpolation
- We currently need one exchange field for each vertical level
- → Demo case only for a simple scenario

MPI Communicator splitting

Test scenario: warm bubble

Comparing different ICON – Python bridges

- Torus grid (20 x 44 cells with PBCs)
- 70 vertical levels (atmosphere)
- Focus on formation of one cloud
- High resolution
- High temperature to prohibit ice formation and focus on warm rain processes
- Suitable for testing the ML model
 - Time step: 20 seconds
 - Simulation time: 2 hours (360 steps)

Applying the ML model

Warm bubble scenario

- Compare the vertically integrated rain rate
- ML model trained on super-droplet scheme to replace bulk-moment scheme
- Cooperation with climate scientists to verify sanity
- We can exchange the ML model easily

Computational performance

Bubble scenario

- 880 horizontal cells, 70 vertical levels
- YAC bridge very much under development
- "Fortran" applies bulk moment scheme
- Overhead caused by
 - Application of ML model (< 1ms)
 - Data exchange

ICON – Python bridge

Qualitative comparison

 Allow for iterative development **Embedded Python** YAC flexible of ML model ML-developer-**Embedded Python** YAC Limit changes to ESM code friendly Runtime overhead should not **Embedded Python** YAC performant limit development Use ML specialised hardware accelerated YAC **Embedded Python** (GPU) if possible

Future use case: streaming training data

Attach any Python code via YAC

- ML models require large amounts of realistic training data
- Iterative training process
 - Receive current ICON time loop data
 - Advance ML model training by one "epoch"
- → Realistic training data
- → Reduced need for data storage
- → Reduced time for data loading in ML training

Summary

- ML models are becoming increasingly popular for Earth System modeling
- Important to move quickly to "online" tests coupling ML model to ESM
- Demonstrated in the warm bubble scenario
 - Embedded Python
 - YAC
- Major challenge: bridging the communities of Machine Learning and Earth System Modeling

Thank you for your attention!

Questions?

- Contact: Caroline Arnold, <u>arnold@dkrz.de</u>
- We are hiring ©

Acknowledgments
hereon
David Greenberg

MPI-M Ann-Kristin Naumann Sebastian Rast

DKRZ
Tobias Weigel
Moritz Hanke
Nils-Arne Dreier

Shivani Sharma

Summary

- ML models are becoming increasingly popular for Earth System modeling
- Important to move quickly to "online" tests coupling ML model to ESM
- Demonstrated in the warm bubble scenario
 - Embedded Python
 - YAC
- Major challenge: bridging the communities of Machine Learning and Earth System Modeling

