

CPSC 340 – Tutorial 5

Michael Liu mfliu@students.cs.ubc.ca

Template from Lironne Kurzman Some slides from Nam Hee Kim

University of British Columbia

November 1st, 2021

Agenda

- Multi-class classification
- Kernel Trick

Motivation

- · Our linear classifiers only work for binary classification
 - E.g. "important" vs "not important" emails
 - E.g. "cat" vs "no cat" in picture
- We would like to build a classifier that works for k>2 classes
 - E.g. "cat" vs "dog" vs "bird" in picture

Notation Review

- X is an $n \times d$ matrix of **training examples**
- y is an $n \times 1$ vector of **training labels**
- x_i is a $d \times 1$ vector of **feature values** for example i
- y_i is a scalar in the range [1, k], where there are k classes
- W is a $k \times d$ matrix of **weights** for each classifier $1 \le c \le k$
- w_c is a $d \times 1$ vector of **weights** for the classifier for class c
 - Can also be written as w_{y_i} where $y_i = c$

One-vs-all Linear Classification

- Idea: Independently train a linear classifier for each class c
 - Each classifier predicts how likely x_i is in class c
 - E.g. Classifier 1: x_i is probably not a dog Classifier 2: x_i is probably not a cat Classifier 3: x_i is probably a bird One-vs-all classifier: Predict x_i is a bird
 - At test time, use argmax to find "best class" for example \widetilde{x}_i
- Problem: classifiers may operate with different scales
 - How do we compare $w_c^T x_i$ with $w_c^T x_i$?

Multi-class SVM

- Goal: Every classifier outputs a value on the same scale
 - ullet \otimes Now we must train all k classifiers together
 - ⊗ W is no longer a simple vector
 - © It performs better than one-vs-all linear classification
 - © We only need to implement it once
- We want to make $w_{y_i}^T x_i$ larger than $w_c^T x_i$ for all $c \neq y_i$

Multi-class SVM Loss

$$\sum_{c \neq y_i} \max \{0, 1 - w_{y_i}^T x_i + w_c^T x_i\}$$

- This is the loss for a **single** example x_i
 - · To get the loss over all examples, we can take the sum or average
- The 1 term avoid degeneracy (see binary SVM loss)
- The $-w_{y_i}^T x_i$ term **rewards** large values for the correct class
- The $w_c^T x_i$ term **penalizes** large values for incorrect classes

Motivation

- We've already learned about linear models
 - Easy to train
 - Easy to test
- We've already learned about change of basis
 - Training and testing are simple (just use linear model)
 - · Creating Z matrix is easy, but can take a long time
 - $O(d^p)$ values for **each** example

Motivation as a Picture

https://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

"Other" Normal Equations

Assume L2-regularized least squares objective with basis Z:

$$f(v)=rac{1}{2}||Zv-Y||^2+rac{\lambda}{2}||v||^2$$

Normal equations to find minimum v:

$$v = (Z^TZ + \lambda I)^{-1}Z^TY$$

Other normal equations to find minimum v:

$$v = Z^T (ZZ^T + \lambda I)^{-1} Y$$

Making Predictions

• If we want to make predictions \hat{y} for test data \tilde{X} by forming \tilde{Z} using "other normal" equations:

$$egin{aligned} \hat{y} &= ilde{Z}v \ & ilde{K} & ilde{K} \ &= ilde{Z}Z^T (ilde{Z}Z^T + \lambda I)^{-1}Y \ &= ilde{K}(K + \lambda I)^{-1}Y \end{aligned}$$

• Efficiently compute K and \tilde{K} even though forming Z and \tilde{Z} is intractable.

Kernel Functions

• Kernel function does not calculate Z explicitly. Returns similarity between transformed points Z_i, Z_j :

$$K(X_i,X_j)=Z_i^TZ_j$$

using only untransformed points X_i, X_j .

Example Kernels

Linear Kernel:

$$K(X_i,X_j)=Z_i^TZ_j=X_i^TX_j$$

• Degree P polynomial Kernel:

$$K(X_i,X_j)=Z_i^TZ_j=(1+X_i^TX_j)^P$$

• Gaussian RBF Kernel:

$$K(X_i,X_j)=Z_i^TZ_j=\exp(-rac{||X_i-X_j||^2}{2\sigma^2})$$