More on Gibbs Energy $2NO_2(g) \rightarrow N_2O_4(g)$ • What do you predict for the sign of ΔS? • ΔS° = −175.8 J/K.mol • $\Delta H^{\circ} = -57.2 \text{ kJ/mol}$ What is ∆G°? A. - 4.8 kJ/mol B. 5.2 x 10⁴ kJ/mol C. 4.8 kJ/mol D. -29 kJ/mol $2NO_2(g) \rightarrow N_2O_4(g)$ • What do you predict for the sign of ΔS? • $\Delta S^{\circ} = -175.8 \text{ J/K.mol}$ • $\Delta H^{\circ} = -57.2 \text{ kJ/mol}$ What is ∆G°? ΔG°= ΔH° –TΔS° • = -57.2 kJ/mol - 298K(-175.8 J/K.mol x 1kJ/ 1000J) • = -4.8 kJ/mol

At what temperature will the reaction • When ΔG°= 0	
When ∆G =0	
The system is at equilibrium	
 – (for example a phase change) So ΔG = ΔH – TΔS becomes 	
• 0 = ΔH – ΤΔS	
 ΔH = TΔS For water boiling ΔH° = 40.65 kJ/mol 	
• What is ΔS°?	
• ΔS° = 109 J/K.mol	
$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$	
This is a combustion reaction: what do you	
predict the sign of enthalpy change will ΔH be? A. +	
B. – C. 0	
D. Don't know	
What about ΔS? ΔG?	

 ΔH is –, ΔS is +, and ΔG is – (at all temperatures)

This reaction is always favorable!

$$6 CO_2(g) + 6 H_2O(g) \rightarrow C_6H_{12}O_6(s) + 6 O_2(g)$$

 ΔH is +, ΔS is –, and ΔG is + (at all temperatures)

This reaction is NEVER favorable! But it happens – (how?)

"captured energy" + $6 CO_2(g) + 6 H_2O(g)$

As we will see next semester, the	
Calculating ΔH°, ΔS°, and ΔG° from standard thermodynamic formation data. • There are tables of these values that can be used to calculate overall changes for a reaction • ΔH° _f (standard heat of formation) – Enthalpy change when a substance is formed from its elements in their standard states. • For any reaction • ΔH° _f =ΣΔH° _f products – Σ ΔH° _f reactants	
6 $CO_2(g)$ + 6 $H_2O(g)$ → $C_6H_{12}O_6(s)$ + 6 $O_2(g)$ • ΔH°_{f} for: • $CO_2(g)$ = -394 kJ/mol • $H_2O(g)$ = -242 kJ/mol • $C_6H_{12}O_6(s)$ = -1271 kJ/mol • $O_2(g)$ = 0 kJ/mol (element in its standard state)	

Third Law of Thermodynamics • The entropy of a perfect crystal at 0K is 0 • This allows us to calculate actual entropies of materials (as opposed to changes in entropy) • S° H₂O(I) = 69.9 J/K.mol, H₂O(g) = 189 J/K.mol • And • ΔS°_r =ΣS° products – ΣS° reactants