RECEPTIVE FIELDS

11.2.2020

PROBLEM SET 5

- * is posted!
- * due in ~three weeks (11/20)

VISUAL EXPERIMENT

- * suppose we've placed an electrode into primary visual cortex (V1) to record spikes from a single neuron
- * we can choose what visual stimuli to display, and know where our subject is fixating

* how do we figure out what this neuron is doing?

Video of Hubel & Wiesel experiment:

https://www.youtube.com/watch?v=8VdFf3egwfg

VISUAL EXPERIMENT

- * each neuron in V1 has a receptive field
 - * this is the region of visual space where stimuli cause the neuron to fire

an example 날

fixation point

RECEPTIVE FIELDS

- * the same idea applies to other sensory neurons
 - * in somatosensory cortex, each neuron has a receptive field localized somewhere on the body (e.g. the top of the left pinky finger)
 - * in auditory cortex, each neuron has
 (typically) a spectral receptive field,
 meaning it only responds to certain
 frequencies of sound

RECEPTIVE FIELDS

- * this leads to a more general definition of a receptive field:
 - * a receptive field is the part of a "sensory space" that can elicit neural responses when stimulated
- * so what is a "sensory space"? how is it different from, e.g., visual space?

VISUAL SENSORY SPACE

* what are some other visual "features" that are important components of the visual sensory space?

VISUAL SENSORY SPACE

- * suppose we choose some other dimension of visual sensory space, like orientation
- * we can measure the response of a V1 neuron to each orientation of a stimulus
- * this gives us an "orientation tuning curve"

VISUAL EXPERIMENT

VISUAL SENSORY SPACE

- * now it's getting a bit complicated. neurons in V1 have:
 - * a visual receptive field
 - * an orientation tuning curve
 - * ocular dominance
 - * "simple" or "complex" behavior (response to moving stimuli)

- * we can summarize all of these properties as a *function*
- * suppose that Y is the firing rate of our neuron & X is the stimulus
- * we can relate the two through a function, f(X) = Y,
 - where f is a function that predicts the response of the neuron to any stimulus

- * we can think of this function as a more general version of the "receptive field" of our neuron
- * what is the form of this function?
- * how do we parameterize the stimulus?

- * we can assume that the function f is determined by a set of parameters p
- * these parameters could describe, e.g., the location of the visual receptive field, the orientation selectivity, and so on
- * estimating the parameters from a set of (stimulus, response) pairs is called system identification

- * the simplest form that this function could take is *linear*
- * this means that the response Y is a linear function of the stimulus features
 - * $Y = \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ...$
- * we will write this form of model using matrix multiplication notation: Y=Xβ

LINEAR MODELS

$$Y = X\beta$$
image pixels

X1, Y=0.7

X2, Y=0.3

X3, Y=0.0

LINEAR MODELS

LINEAR MODELS

Retinal ganglion cell responses

- * suppose we have a bunch of (X,Y) pairs (i.e. the response of the neuron to many images)
- * how do we figure out what β is?

- * one way is spike-triggered average (STA)
- * in STA, we assume that each stimulus either elicited a spike or did not (responses are 1 or 0)
- * then we take the average of all the stimuli that elicited a spike

Spike-triggered average (STA)

- * this method is really bad unless we designed our experiment specifically to use STA
- * because it doesn't account for correlations among the stimulus channels

* e.g. imagine this is the data:

```
* Y = [1,1,0,1,0]

X_1 = [1,1,0,1,0]

X_2 = [1,0,0,1,0]
```

- * STA would say that beta₁=1, and beta₂=0.66
- * but a simpler explanation would be that beta₂=0, since X_1 already explains everything about Y

* the solution? regression!

END