CS 687 2023 Midsem

Due: March 3, 2025, 12 noon

- 1. Suppose $f: \Sigma^* \to \Sigma^*$ is one-to-one (i.e. an injective function) and is partial computable. Show that f^{-1} is partial computable i.e. there is a Turing machine $M: \Sigma^* \to \Sigma^*$ such that for for every $y \in \text{range}(f)$, M(y) halts and outputs the a value x such that f(x) = y. [10]
- 2. Consider a string x with $K(x) \ge |x| c$. Let y be an arbitrary string. Show that $|x| + K(y|x) \le K(x,y) + O(1)$. (In words: if you condition on an incompressible string, the symmetry of information inequality is much simpler.) [10]
- 3. Suppose, for every k > 1, you can obtain the first k bits of Chaitin's Omega (described in Question 7 of Homework 1). Using this, define an algorithm to decide whether any program $p \in P$ of length < k halts, where P is the prefix-free set of programs. [10]
- 4. Show that for every pair of strings x and y, we have $C(x,y) \le C(x) + C(y) + \log C(x) + \log C(y) + O(1)$. [10]