1015 Numerical Mathematics (April 2019)

Inhalt

Week 1-2: Base 2, 8 and 16	2
Week 3: Modulo	4
Week 4: Sequences	5
Week 5: Series	5
Week 6: Transformations	6
Week 7: Triangles	7
Week 8: sin, cos, tan	8
Week 9: Trigonomic Functions	9
Week 10: Coordinate systems	11
Week 11: Exponential functions	11
Week 12: Logarithms	11
Week 13-14: Limits and differentiation	12
Week 15: Vectors and matrices	13
Week 16: Inverting matrices, cross product of vectors	13
Week 17: Linear transformation and matrices	14
Week 18: Affine transformation in homogeneous coordinates	15
Week 19: Combinatorics and probability	16
Week 20: Conditional probability	17

Week 1-2: Base 2, 8 and 16

- Place value for digits:
 - 0 110110₂ = 1*2⁵ + 1*2⁴ + 0*2³ + 1*2² + 1*2¹ + 0*2⁰ = 32+16+4+2 = 54₁₀
 - 0 $111111_2 = 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 32+16+8+4+2+1 = 63_{10}$
 - \circ 111111₂ = 1000000₂ 1₁₀
- Decimals to binary: $193_{10} = 1100001_2$
 - o 193/2 = 96 + 1
 - \circ 96/2 = 48 + 0
 - \circ 48/2 = 24 + 0
 - \circ 24/2 = 12 + 0
 - \circ 12/2 = 6 + 0
 - \circ 6/2 = 3 + 0
 - \circ 3/2 = 2 + 1
 - \circ 1/2 = 0 + 1

	1024	512	256	128	64	32	16	8	4	2	1
199	0	0	0	1	1	0	0	0	1	1	1
313	0	0	1	0	0	1	1	1	0	0	1
488	0	0	1	1	1	1	0	1	0	0	0
1025	1	0	0	0	0	0	0	0	0	0	1

- Place value for fractional numbers
 - o . = fractional point

Binary	8	4	2	1	1/2	1/4	1/8	Decimal
1101.101	1	1	0	1.	1	0	1	13 5/8

Decimal	256	128	64	32	16	8	4	2	1	1/2	1/4	1/8	Binary
271.25	1	0	0	0	0	1	1	1	1.	0	1		10001111.01
0.75									0.	1	1		0.11

- 0.25₁₀ in binary: 0.01
 - \circ 0.25 x 2 = 0.5
 - \circ 0.5 x 2 = 1.0 <- stop
- 0.75_{10} in binary: 0.11
 - o 0.75 x 2 = 1.5
 - \circ 0.5 x 2 = 1.0 <- stop
- Rational and irrational numbers
 - o 0.117 -> 117 / 1000
- Rational decimals to binary
 - 0 1/6 < 1
 - 0 \circ 1/6 x 2 = 1/3 < 1 0
 - \circ 1/3 x 2 = 2/3 < 1 0 repeat
 - \circ 2/3 x 2 = 4/3 > 1 1 repeat
 - \circ 1/3 x 2 = 2/3 < 1
 - \circ 1/6 = 0.001

Total conversion:

296 (10->2)	296 (10->8)	296 (10->16)
296/2 = 148+ 0	296/8 = 37+ 0	296/16 = 18+ 8
148/2 = 74+ 0	37/8 = 4+ 5	18/16 = 1+ 2
74/2 = 37+ 0	4/8 = 0+ 4	1/16 = 0+ 1
37/2 = 18+ 1		
18/2 = 9+ 0	100 101 000	1 0010 1000
9/2 = 4+ 1	100 4	1 1
4/2 = 2+ 0	101 5	0010 2
2/2 = 1+ 0	000 0	1000 8
1/2 = 0+ 1		
1 0010 1000	450	128

Arithmetic in binary

Addition

Digit 1	(27)		1	1	0	1	1
Digit 2	(11)			1	0	1	1
Carry over			1		1	1	
Result	(38)	1	0	0	1	1	0

Digit 1	(22)		1	0	1	1	0
Digit 2	(15)			1	1	1	1
Carry over			1	1	1		
Result	(37)	1	0	0	1	0	1

Multiplication

Digit 1	(7)				1	1	1
Digit 2	(5)				1	0	1
					1	1	1
	+			0	0	0	
	+		1	1	1		
Carry over			1	1			
Result	(35)	1	0	0	0	1	1

Week 3: Modulo

- alb
 - o a divides b if there is an integer c that b=ac (a != 0)
 - o then a is a divisor of b and b is a multiple of a
 - o if 0 < a < b, a is a proper divisor of b
- trivial divisor of n is a divisor that equals n or 1; else nontrivial divisor
- integer values
 - o if a|b and a|c, then a|(b+c); 3|6 and 3|18, then a|(18+6)
 - o if a|b, then a|bc for any integer c
 - o if a|b and b|c, then a|c; 3|6 and 6|12, then 3|12
- Prime
 - A positive integer n greater than 1 is called **prime**, if its only divisors are n and 1.
 - o If n is an integer >= 1, then there is a prime p such that n
 - O Given any real number X>=1, there exists a prime between x and 2x
 - o If n is an integer >= 2, then there are no primes between n!+2 and n!+n
- Composites
 - o A positive integer n that is greater than 1 and is not prime is called **composite**
 - If n is a composite, then n has a prime divisor p such that p <= sqrt(n)

Theory of Congruences

- Modulo
 - Let a be an integer and n a positive integer greater than 1; r is the remainder of "a mod n";
 e.g. 35 mod 12 = 11
 - o "r is equal to a reduced modulo n"
 - "a is congruent to b modulo n" ($a \equiv b \pmod{n}$) if n is a divsor of a-b or if $n \mid (a-b)$

Modular addition: $(A + B) \mod X = A \mod X + B \mod X$

Additive identity: $A + B \equiv A \mod C$

■ $1 + X \equiv 0 \mod 5$

Additive inverse: $A + B \equiv 0 \mod C$

■ $-23 + B \equiv 0 \mod 5$; B = 2

Modular multiplication: (A * B) mod X = A mod X * B mod X

- $(159 * 943) \mod 5 = 159 \mod 5 * 943 \mod 5 = 4 \mod 5 * 3 \mod 5 = 12 \mod 5 \equiv 2$
- $(-569 * -662) \mod 10 = 376 678 \mod 10 = 1 \mod 10 * 8 \mod 10 \equiv 8$
- $206^9 \pmod{13} \equiv ???$

 $206 \pmod{13} \equiv 11$

 $206^2 \pmod{13} = 11^2 \pmod{13} = 121 \pmod{13} \equiv 4$

 $206^4 \pmod{13} = 4^2 \pmod{13} = 16 \pmod{13} = 3$

 $206^9 \pmod{13} = 206^{4*} + 206^{4*} + 206 \pmod{13} = 3*3*11 \pmod{13} = 99 \pmod{13} \equiv 8$

Multiplicative inverse: A * B \equiv 1 (mod X)

- $3 * 5 \equiv 1 \mod 7$
- $4 * 2 \equiv 1 \mod 7$
- Must not be co-prime, e.g. $2 * B \equiv \text{mod } 8 (2 \text{ and } 8 (2*2*2*2))$ are co-prime)

Week 4: Sequences

Arithmetic progressions:

Geometric progressions

Week 5: Series

Arithmetic Series starting with i=0

Series with i⁰

$$\sum_{i=0}^{n} 3 = 3 * n$$
 $\sum_{i=0}^{10} 3 = 3 * 10 = 30$

Series with i1

$$\sum_{i=0}^{n} 3i = 3 * \frac{n(n+1)}{2} \qquad \qquad \sum_{i=0}^{10} 3i = 3 * \frac{10(10+1)}{2} = \frac{3}{2} * 110 = 165$$

Series with i²

$$\sum_{i=0}^{n} 3i^2 = 3 * \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=0}^{10} 3i^2 = 3 * \frac{10(10+1)(2*10+1)}{6} = \frac{1}{2} * 110 * 21 = 1155$$

Series with compounds

$$\sum_{i=0}^{n} 3i^2 + 5i + 7 = \sum_{i=0}^{n} 3i^2 + \sum_{i=0}^{n} 5i + \sum_{i=0}^{n} 7$$

$$\sum_{i=0}^{n} 3i^2 + 5i + 7 = 3 * \frac{n(n+1)(2n+1)}{6} + 5 * \frac{n(n+1)}{2} + 7 * n$$

Arithmetic Series not starting with i=0

$$\sum_{i=10}^{n=20} 4i = \sum_{i=0}^{n=20} 4i - \sum_{i=0}^{n=9} 4i = 4 * \frac{20(20+1)}{2} - 4 * \frac{9(9+1)}{2} = 840 - 180 = 660$$

Geometric series

$$\sum_{i=1}^{n} a * b^{i-1} = a * \sum_{i=1}^{n} b^{i-1} = a * \frac{b^{i} - 1}{b - 1}$$

$$\sum_{i=1}^{5} 0.1 * -\frac{1}{2}^{i} = 0.1 * \sum_{i=1}^{5} -\frac{1}{2}^{i} = 0.1 * \frac{-\frac{1}{2}^{i} - 1}{-\frac{1}{2} - 1} = 0.06875$$

Week 6: Transformations

Intervals:

Exclusive: (5, 8): {6, 7}
Inclusive: [5, 8]: {5, 6, 7, 8}
Mixed: [5, 8): {5, 6, 7}

Translations:

Shift in y-direction (+2): $y=x^{2}+2$ y=x2 -> Shift in y-direction (-2): $y=x^2$ $y=x^{2}-2$ -> Shift in x-direction (+2): $y=x^2$ $y=(x-2)^2$ -> Shift in x-direction (-2): y=x2 $y=(x+2)^2$ ->

Stretch in y-direction(*1/2): $y=(x^2)/2$ y=x+2-> Stretch in y-direction(*2): $y=2(x^{2})$ y=x+2-> Stretch in x-direction(*1/2): $y=x^2$ $y=(2x)^{2}$ -> Stretch in x-direction(*2): y=3x+ $y=(x/2)^2$ ->

https://www.mathsisfun.com/sets/function-transformations.html

Week 7: Triangles

Angles

 Acute: biggest angle <90° ■ Obtuse: biggest angle >90° ■ Right: biggest angle = 90°

Degree to radians

 $1^{\circ} = \frac{1^{\circ}}{180^{\circ}} \pi \ rad = 0.0174 \ rad$ $18^{\circ} = \frac{18^{\circ}}{180^{\circ}} \pi \ rad = \frac{1}{10} \pi \ rad = 0.314 \ rad$ $180^{\circ} = \frac{180^{\circ}}{180^{\circ}} \pi \ rad = \pi \ rad = 3.141 \ rad$ $360^{\circ} = \frac{360^{\circ}}{180^{\circ}} \pi \ rad = 2\pi \ rad = 6.283 \ rad$

Degree to radians

• $1 \, rad = 1 * \frac{180^{\circ}}{\pi} = 57.296^{\circ}$ • $\pi \, rad = \pi \frac{180^{\circ}}{\pi} = 180^{\circ}$ • $2\pi \, rad = 2\pi \frac{180^{\circ}}{\pi} = 360^{\circ}$ • $\frac{5}{6}\pi \, rad = \frac{5}{6}\pi * \frac{180^{\circ}}{\pi} = \frac{5}{1} * \frac{30^{\circ}}{1} = 150^{\circ}$ • $\frac{20}{9}\pi \, rad = \frac{20}{9}\pi * \frac{180^{\circ}}{\pi} = \frac{20}{1} * \frac{20^{\circ}}{1} = 400^{\circ}$

Squareroots / surds

■ $\sqrt{9} = 3$ ■ $\sqrt{n * m} = \sqrt{n} * \sqrt{m}$: $\sqrt{20} = \sqrt{2 * 2 * 5} = \sqrt{2} * \sqrt{2} * \sqrt{5} = 2\sqrt{5} = \sqrt{2}$

 $\frac{\sqrt{54}}{\sqrt{6}} = \sqrt{\frac{54}{6}} = \sqrt{9} = 3 \quad \text{OR} \qquad \frac{\sqrt{54}}{\sqrt{6}} = \frac{\sqrt{6*9}}{\sqrt{6}} = \frac{\sqrt{6}*\sqrt{9}}{\sqrt{6}} = \sqrt{9} = 3$

7

• $n\sqrt{x} + m\sqrt{x} = (n+m)\sqrt{x}$: $4\sqrt{5} + 7\sqrt{5} = 11\sqrt{5}$

 $\sqrt{18} - \sqrt{2} = 3\sqrt{2} - \sqrt{2} = 2\sqrt{2}$

 $3(\sqrt{4} + \sqrt{5}) = 3\sqrt{4} + 3\sqrt{5} = \sqrt{9*4} + \sqrt{9*5} = \sqrt{36} + \sqrt{45} = 6 + 3\sqrt{5}$

 $2\sqrt{2} * 5\sqrt{10} = \sqrt{4 * 2} * \sqrt{25 * 10} = \sqrt{8} * \sqrt{250} = \sqrt{2000} = 10\sqrt{20} = 20\sqrt{5}$

Week 8: sin, cos, tan

Right triangles:

Any triangle:

Sine rule: $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$ Cosine rule: $c^2 = a^2 + b^2 - 2 * a * b * \cos(C)$

Amplitude: half distance between maximum and minimum values

8

y=a*sin(bx+c); amplitude = |a|

Period: Horizontal spread of a full cycle

- y=a*sin(bx+c); period = |2pi/b|
- y=a*sin(bx+c); amplitude = |a|

Phase: Horizontal shift

y=a*sin(bx+c); period = c

Week 9: Trigonomic Functions

Sinus

θ	0 "	30°	60°	90°	120°	150°	180
$\sin \theta$	0	0.5	0.8660	1	0.8660	0.5	0
θ	210°	240°	270°	300°	330°	360°	
$\sin \theta$	-0.5	-0.8660	-1	-0.8660	-0.5	0	

Cosinus

θ	0.0	30°	60°	90°	120°	150°	180
cos θ	1	0.8660	0.5	0	-0.5	-0.8660	-1
θ	210°	240°	270 °	300°	330°	360°	
$\cos \theta$	-0.8660	-0.5	0	0.5	0.8660	1	

Tangens

Trigonometrical identities: The following equations are true for all angles:

- $\sin^2 A + \cos^2 A = 1$

Angle associated with coordinates

- (-3,2): Quadrant II, 180° tan(2/3) = 146.31°
- (-3,-2): Quadrant III, 180° + tan(2/3) = 183.69°

Unit circle

- x=4/5 -> y= +/- (3/5)
- angle: -240° -> 240°-180°=60°, x=cos60°=0.5, y=sin60°=0.87

Week 10: Coordinate systems

Polar to Cartesian

- Quadrant I: P(radius *cos(angle), radius*sin(angle))
- Quadrant II: P(-radius *cos(angle), radius*sin(angle))
- Quadrant III: P(-radius *cos(angle), -radius*sin(angle))
- Quadrant IV: P(radius *cos(angle), -radius*sin(angle))
- P(11, 36.4°): x=11*cos36.4°=8.85, y=11*sin36.4°=6.53

Cartesian to Polar

- P(radius, angle)
- angle = tan(y/x)
- radius = $(x^2 + y^2)^{0.5}$
- P(3,8): theta=tan(8/3)=69.44°, r= $(3^2 + 8^2)^{0.5}$ =8.54, P(8.54, 69.44°)
- P(-4,7): II, theta = $180 \tan(7/4) = 119.75^\circ$, $r = (4^2 + 7^2)^{0.5} = 8.06$, P(8.06, 119.75°)

Week 11: Exponential functions

- a^x ... a: base, x: power (or index)
- $n^2 * n^4 = n^{2+4} = n^6$
- $(n^2)^3 = n^{2*3} = n^6$

Week 12: Logarithms

- y = a^x equivalent to: log_ay=x
- log A + log B = log AB
- $\log A \log B = \log A/B$
- log 1 = 0
- $n \log A = \log A^n$
- $log_a x = -log_{ya} x$
- Calculator: $\log_n m = \log n / \log m$: $\log_{16} 2 = \log 16 / \log 2 = 4$

Week 13-14: Limits and differentiation

Limits

$$\lim_{n\to\infty} n = \infty$$

$$\lim_{n \to \infty} \frac{n+1}{n} = \frac{n}{n} = 1$$

$$\lim_{n \to \infty} \frac{2^n}{10^{n-1}} = 0$$

Differentiation

 $f'(x) = \frac{1}{n}x^{n-1}$ $f(x) = x^n$ Power rule:

•
$$f(x) = 2x^3$$
, $f'^{(x)} = \frac{2}{3}x^{3-1} = \frac{2}{3}x^2$

$$f'(x) = \sqrt{x} = x^{\frac{1}{2}}$$

$$f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

•
$$f(x) = \frac{1}{x^2} = x^{-2}$$
 $f'(x) = -\frac{1}{2}x^{-2-1} = -\frac{1}{2x^3}$

Multiplication rule: f(x) = u * v f'(x) = u'v + uv'

•
$$f(x) = (x^2 - 3x)(4x - 1) = uv$$
 $f'(x) = (2x - 3)(4x - 1) + 4(x^2 - 3x)$

 $f'(x) = \frac{u'v - uv'}{v^2}$ Division rule: $f(x) = \frac{u}{x}$

$$f(x) = \frac{x^2 - 3x}{4x - 1} = \frac{u}{v}$$

$$f'(x) = \frac{(2x - 1)(4x - 1) - 4(x^2 - 3x)}{(4x - 1)^2}$$

f'(x) = g'(h(x)) * h'(x)Chain rule: f(x) = g(h(x))

•
$$f(x) = g(h(x)) = (x^3 + 12x^2)^2$$
 $g(x) = x^2, h(x) = x^3 + 12x^2$

•
$$f'(x) = g'(h(x)) * h'(x) = 2(x^3 + 12x^2) * (3x^2 + 24x)$$

Trigonometric functions:

$$f(x) = \sin(x) \qquad f'(x) = \cos(x)$$

$$f(x) = \cos(x) \qquad f'(x) = -\sin(x)$$

$$f(x) = \sin(x)$$

$$f(x) = \cos(x)$$

$$f'(x) = -\sin(x)$$

$$f'(x) = \frac{\sin(x)}{\cos(x)}$$

$$f'(x) = \frac{1}{\cos^2(x)}$$

$$f(x) = \sin(x^2) \qquad f'(x) = 2x \cos(x^2)$$

•
$$f(x) = \sin(x^2)$$
 $f'(x) = 2x \cos(x^2)$
• $f(x) = x^2 \sin(x)$ $f'^{(x)} = 2x \sin(x) + x^2 \cos(x)$
• $f(x) = \sin(x)\cos(x)$ $f'^{(x)} = \cos(x)^2 - \sin(x)^2$

•
$$f(x) = \sin(x)\cos(x)$$
 $f'^{(x)} = \cos(x)^2 - \sin(x)^2$

Exponential functions:

$$f(x) = \ln(x)$$

$$f'(x) = \frac{1}{x}$$

$$f(x) = \ln(x^2 - 2x) = \ln(x) + \ln(x - 2)$$

$$f'(x) = \frac{1}{x} + \frac{1}{x - 2} = \frac{2(x - 1)}{x(x - 2)}$$

$$f(x) = \ln(x^2 - 2x) = \ln(x) + \ln(x - 2) \qquad f'(x) = \frac{1}{x} + \frac{1}{x - 2} = \frac{2(x - 1)}{x(x - 2)}$$

$$f(x) = \log 3(x)$$

$$f'(x) = \frac{1}{x \ln 3}$$

$$f'(x) = e^{x}$$

$$f'(x) = e^{x}$$

•
$$f(x) = e^x$$
 $f'(x) = e^x$
• $f(x) = e^{x^2 - 4x + 1}$ $f'(x) = (2x - 4)e^{x^2 - 4x + 1}$

$$f(x) = 0.1^{x} = (e^{\ln(0.1)})^{x}$$

$$f'(x) = \ln(0.1) \cdot 0.1^{x}$$

•
$$f(x) = \frac{2^x}{3^{x-2}} = 9\left(\frac{2}{3}\right)^x$$
 $f'(x) = 9\ln\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)^x$

Extreme points

 $f''^{(x)} < 0$
 $f''^{(x)} > 0$ $f^{\prime\prime}(x) < 0$ $f'^{(x)} = 0$ Maxima: $f'^{(x)} = 0$ Minima:

Week 15: Vectors and matrices

Vectors

 $\vec{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\overrightarrow{AB} = B - A = \binom{2}{2} - \binom{1}{1} = \binom{1}{1}$

 $\bullet \quad \overrightarrow{AB} + A = B - A + A = B$

• Magnitude $|\vec{a}|$ of $\vec{a} = \binom{3}{2}$: $|\vec{a}| = \sqrt{3^2 + 2^2} = \sqrt{13}$

Dot product: $u * v = {u_1 \choose u_2} * {v_1 \choose v_2} = u_1 * v_1 + u_2 * v_2$

 $\binom{1}{2} * \binom{3}{4} = 1 * 3 + 2 * 4 = 3 + 8 = 11$

Angle between two vectors: $cos(\theta) = \frac{u * v}{|u| * |v|}$

• $u = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 5 \\ 13 \end{pmatrix}$

 $\cos(\theta) = \frac{\frac{6*5+3*13}{6*5+3*13}}{\frac{66^2+3^2*\sqrt{5^2+13^2}}{\sqrt{5^2+13^2}}} = \frac{\frac{(30+39)}{\sqrt{36+9}*\sqrt{25+1}}}{\frac{69}{\sqrt{45}*\sqrt{194}}}, \theta = 42^\circ$

Matrices

• 2 by 3: $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

■ Transposed matrix: $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

Identity matrices: $Id_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $Id_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Addition: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix}$

 $\circ \quad {\rm X}_1 by \ {\rm X}_2, {\rm Y}_1 by \ {\rm Y}_2, {\rm multiplication \ possible \ if \ X}_1 = \ {\rm Y}_2$

 $(u_1 \quad u_2 \quad u_3 \quad u_4) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = (u_1 * v_1 + u_2 * v_2 + u_3 * v_3 + u_4 * v_4)$

 $(3 -3 -1 4) \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = (3 * 1 + (-3) * 2 + (-1) * (-1) + 4 * 5) = (18)$

 $\circ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} = \begin{pmatrix} aA + bD + cG & aB + bE + cH & aC + bF + cI \\ dA + eD + fG & dB + eE + fH & dC + eF + fI \\ gA + hD + iG & gB + hE + iH & gC + hF + iI \end{pmatrix}$ $\circ \begin{pmatrix} -3 & 3 & 6 \\ 2 & -1 & 5 \\ -5 & -2 & 4 \end{pmatrix} \begin{pmatrix} -1 & 3 & -2 \\ 1 & 4 & -5 \\ 6 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 42 & 21 & 27 \\ 27 & 17 & 31 \\ 27 & -11 & 44 \end{pmatrix}$

Determinants 2x2

• $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

•
$$det \begin{pmatrix} -1 & 3 \\ 4 & 5 \end{pmatrix} = -1 * 5 - 3 * 4 = -5 - 12 = -17$$

■ The determinant of a 2x2 matrix is zero when one row is a multiple of the other row

•
$$det \begin{pmatrix} -2 & 4 \\ 3 & -6 \end{pmatrix} = -2 * (-6) - 3 * 4 = 12 - 12 = 0$$

Determinants 3x3

• (- + -

$$M = \begin{pmatrix} -1 & 3 & 3 \\ 5 & 3 & -6 \\ 3 & 4 & -3 \end{pmatrix}$$

$$\bullet \det(M) = (+1) * (-1) \det \begin{pmatrix} 3 & -6 \\ 4 & -3 \end{pmatrix} + (-1) * 3 \det \begin{pmatrix} 5 & -6 \\ 3 & -3 \end{pmatrix} + (+1) * 3 \det \begin{pmatrix} 5 & 3 \\ 3 & 4 \end{pmatrix}$$

Week 16: Inverting matrices, cross product of vectors

Inversion of matrices

- 1. Check dimensions: must be the same
- 2. Calculate determinant (if 0, it is not invertible)
- 3. Calculate determinants of smaller matrices obtained by removing one row and one column
- 4. Transpose co-factor matrix
- 5. Divide adjoint matrix by determinant https://arndt-bruenner.de/mathe/scripts/inversematrix.htm

$$1. \quad M = \begin{pmatrix} 4 & -3 \\ 3 & 5 \end{pmatrix} : 2x2$$

2.
$$det(M) = 4 * 5 - (-3) + 3 = 20 + 9 = 29$$

3.
$$\frac{1}{29} \begin{pmatrix} 5 & 3 \\ -3 & 4 \end{pmatrix}$$
:

Cross product of vectors

•
$$x = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, y = \begin{pmatrix} d \\ e \\ f \end{pmatrix}, x x y = \begin{pmatrix} bg - cf \\ ce - ag \\ af - be \end{pmatrix}$$
 a b c a b c a b c a b g

$$a = \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}, b = \begin{pmatrix} -6 \\ -6 \\ 2 \end{pmatrix}, axb = \begin{pmatrix} 3 * 2 - (-1 * (-6)) \\ -1 * (-6) - 3 * 2 \\ 3 * (-6) - 3 * (-6) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Multiplication of matrices and vectors

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1a + 2b + 3c \\ 1d + 2e + 3f \\ 1g + 2h + 3i \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1a+2b+3c \\ 1d+2e+3f \\ 1g+2h+3i \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1*2+0*3+0*4 \\ -1*2+1*3+0*4 \\ 0*2+1*3+2*4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 11 \end{pmatrix}$$

Week 17: Linear transformation and matrices

Scaling

• No scaling: $Id_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

• $2x \text{ in } x \text{ (dilation): } Id_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

 $2x \text{ in y (dilation): } Id_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$

• $\frac{1}{2}$ x in x (dilation): $Id_2 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$

Reflection

No reflection: $Id_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection on y-axis: $M = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection on x-axis: $M = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$

Reflection on x-axis: $M = \begin{pmatrix} \cos 60^{\circ} & \sin 60^{\circ} \\ \sin 60^{\circ} & -\cos 60^{\circ} \end{pmatrix}$

Rotation

• No rotation: $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

• Anticlockwise by 90°: $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{pmatrix}$

• Anticlockwise by 30°: $M = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{pmatrix}$

Combinations

2x dilation in x, 3x dilation in y, rotation on y-axis: $M = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$

2x dilation in x, 3x dilation in y, rotation by 180°: $M = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix}$

Homogeneous coordinates

$$M = {2 \choose 3} => M = {2 \choose 3}$$

$$M = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \implies M = \begin{pmatrix} \frac{2}{4} \\ \frac{3}{4} \\ \frac{4}{4} \end{pmatrix} \implies M = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{4} \\ \frac{3}{4} \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} => M = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Translations

Translation 2 in x and 3 in y direction: $M = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 2 & 3 \end{pmatrix}$

15

Week 18: Affine transformation in homogeneous coordinates

Homogeneous coordinates

$$M = \begin{pmatrix} 4 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} => M = \begin{pmatrix} 4 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ dilation with scaling 4x x and 1/2x y direction.}$$

$$M^{-1} = \begin{pmatrix} \frac{1}{4} & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} => M = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ rotation } 90^{\circ} \text{ anticlockwise}$$

•
$$P^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, rotation 90° clockwise

Combining translations and linear transformations

$$M = \begin{pmatrix} 2 & 0 & -1 \\ 0 & \frac{1}{3} & 5 \\ 0 & 0 & 1 \end{pmatrix}, \text{ translation by } {\begin{pmatrix} -1 \\ 5 \end{pmatrix}}, \text{ dilation x: 2, y: 1/3}$$

$$M^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 1\\ 0 & 3 & -5\\ 0 & 5 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \text{ rotation } 90^{\circ} \text{ anticlockwise, translation by } \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Solving equations using matrices

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} x - y = 1 \\ 2x + y = 3 \end{pmatrix}$$

Week 19: Combinatorics and probability

Permutations (ordered combinations)

- Permutation of n objects is n!
 - X, Y, Z: XYZ, XZY, YXZ, YZX, ZXY, ZYX (3! = 6)
- Select m of n objects: $\frac{n!}{(n-m)!}$

0 4 of 6:
$$\frac{6!}{(6-4)!} = \frac{6!}{2!} = 6 * 5 * 4 * 3 = 360$$

- Distinct combinations of TOTTENHAM:
 - 9 letters: 3*T, 1*O, 1*E, 1*N, 1*H, 1*A, 1*M
- - 6 letters: 1*L, 2*O, 2*N, 1*D
 - $\frac{6!}{2!2!} = 180$

Combinations: Sets of objects (order does not matter)

- $^nC_m = \frac{n!}{m!(n-m)!}$
- 3 cards out of 52: ${}^{52}C_3 = \frac{52!}{3!(52-3)!} = \frac{52!}{3!(49)!} = \frac{52*51*50*49!}{1*2*3+49!} = 25*17*52 = 22 100$ 2 of 5 and 3 of 10: ${}^{15}C_2 * {}^{10}C_3 = \frac{15!}{2!13!} * \frac{10!}{3!7!} = \frac{14*15}{2!} * \frac{(8*9*10)}{3!} = 105*120$

Independent events:

- Having 1 Heads from coin toss: $\frac{1}{2}$
- Having 2 Heads from two coin tosses: $\frac{1}{2^2} = \frac{1}{4}$

Probability of mutually exclusive events

- Two mutually exclusive events: $P(A \cup B) = P(A) + P(B)$...or: \cup
- Two not mutually exclusive events: $P(A \cup B) = P(A) + P(B) P(A \cap B)$... and: \cap
 - O Draw King (A) or Spades (B): $\frac{4}{52} + \frac{13}{52} \frac{1}{52} = \frac{4}{13}$

The complement of an event: P(A') = 1 - P(A)

- 15 C cakes, 10 V cakes:
 - Chance of not getting a C cake: $P(A') = 1 P(A) = 1 \frac{15}{25} = \frac{10}{25}$

17

Week 20: Conditional probability

Conditional probability

$$P(A \cap B) = P(A|B) * P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Mean and standard deviations

Mean:

sum of values divided by number of values

2.4, 3.4, 5.1, 6.7, 3.0, 2.2, 3.3, 3.5 ... mean = 3.7

Median:

o central value (or mean of two central values)

2.2, 2.4, 3.0, 3.3, 3.4, 3.5, 5.1, 6.7 ... median = 3.35

Mode: most common value

Standard deviation:

 $\circ \quad \text{Mean squared distance: } s = \sqrt{(\frac{\sum_{i=1}^{N}(x_i - \bar{x})^2}{N-1})}$

o 2.2, 2.4, 3.0, 3.3, 3.4, 3.5, 5.1, 6.7 ... median $s = \sqrt{(\frac{\sum_{i=1}^{N} (x_i - 3.7)^2}{N-1})} = \sqrt{(\frac{15.68}{7})} = 1.497$