

LM2904, LM2904A

Low-power dual operational amplifier

Features

- Internally frequency-compensated
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/amplifier, essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{CC+} -1.5 V)

Description

This circuit consists of two independent, high gain, internally frequency-compensated operational amplifiers designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5 V which is used in logic systems and easily provides the required interface electronics without requiring any additional power supply.

In the linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

Contents LM2904, LM2904A

Contents

1	Sche	ematic diagram
2	Abse	olute maximum ratings and operating conditions4
3	Elec	trical characteristics6
	3.1	Typical single-supply applications
4	Mac	omodel 13
5	Pack	age information
	5.1	DIP8 package information
	5.2	SO-8 package information
	5.3	DFN8 2 x 2 package mechanical data 17
	5.4	TSSOP8 package information
	5.5	MiniSO-8 package information
6	Orde	ering information
7	Revi	sion history

LM2904, LM2904A Schematic diagram

1 Schematic diagram

Figure 1. Schematic diagram (1/2 LM2904)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±16 or 32	V
V _{id}	Differential input voltage ⁽²⁾	±32	V
V _{in}	Input voltage	-0.3 to 32	V
	Output short-circuit duration (3)	Infinite	s
I _{in}	Input current ⁽⁴⁾ : V _{in} driven negative	5 mA in DC or 50 mA in AC (duty cycle = 10%, T = 1s)	mA
	Input current ⁽⁵⁾ : V _{in} driven positive above AMR value	0.4	
T _{oper}	Operating free-air temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	°C
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁶⁾ SO-8 TSSOP8 DIP8 MiniSO-8 DFN8 2x2	125 120 85 190 57	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁶⁾ SO-8 TSSOP8 DIP8 MiniSO-8	40 37 41 39	°C/W
	HBM: human body model ⁽⁷⁾	300	V
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.5	kV

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- Short-circuits from the output to V_{CC} can cause excessive heating if V_{cc+} > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of V_{CC}.
 Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
- 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Opamps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V.
- 5. The junction base/substrate of the input PNP transistor polarized in reverse must be protected by a resistor in series with the inputs to limit the input current to 400 μ A max (R = (Vin-32 V)/400 μ A).
- 6. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- 7. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
 device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
 while the other pins are floating.
- 9. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

4/24 Doc ID 2471 Rev 14

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 30	V
V _{icm}	Common mode input voltage range	0 to V _{CC+} - 1.5	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 3. $V_{CC+} = 5 \text{ V}, V_{CC-} = \text{ground}, V_O = 1.4 \text{ V}, T_{amb} = 25^{\circ} \text{ C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage $^{(1)}$ $T_{amb} = 25^{\circ} \text{ C LM2904}$ $T_{amb} = 25^{\circ} \text{ C LM2904A}$ $T_{min} \leq T_{amb} \leq T_{max} \text{ LM2904}$ $T_{min} \leq T_{amb} \leq T_{max} \text{ LM2904A}$		2 1	7 2 9 4	mV
DV _{io}	Input offset voltage drift		7	30	μV/°C
I _{io}	Input offset current $T_{amb} = 25^{\circ} C$ $T_{min} \le T_{amb} \le T_{max}$		2	30 40	nA
DI _{io}	Input offset current drift		10	300	pA/°C
l _{ib}	Input bias current $^{(2)}$ $T_{amb} = 25^{\circ} C$ $T_{min} \le T_{amb} \le T_{max}$		20	150 200	nA
A _{vd}	Large signal voltage gain $\begin{split} &V_{CC+}=+15 \text{ V, } R_L=2 \text{ k}\Omega \text{ V}_o=1.4 \text{ V to } 11.4 \text{ V} \\ &T_{amb}=25^{\circ} \text{ C} \\ &T_{min} \leq T_{amb} \leq T_{max} \end{split}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio ($R_S \le 10 \text{ k}\Omega$) $T_{amb} = 25^{\circ} \text{ C}$ $T_{min} \le T_{amb} \le T_{max}$	65 65	100		dB
Icc	Supply current, all amp, no load $T_{amb} = 25^{\circ}\text{C}, \ V_{CC+} = +5 \ \text{V}$ $T_{min} \leq T_{amb} \leq T_{max}, \ V_{CC+} = +30 \ \text{V}$		0.7	1.2 2	mA
V _{icm}	Input common mode voltage range (V_{CC+} = +30 V) ⁽³⁾ $T_{amb} = 25^{\circ} C$ $T_{min} \le T_{amb} \le T_{max}$	0		V _{CC+} -1.5 V _{CC+} -2	V
CMR	Common-mode rejection ratio ($R_S = 10 \text{ k}\Omega$) $T_{amb} = 25^{\circ} \text{ C}$ $T_{min} \le T_{amb} \le T_{max}$	70 60	85		dB
I _{source}	Output short-circuit current $V_{CC+} = +15 \text{ V}, V_o = +2 \text{ V}, V_{id} = +1 \text{ V}$	20	40	60	mA
I _{sink}	Output sink current $V_O = 2 \text{ V}, V_{CC+} = +5 \text{ V}$ $V_O = +0.2 \text{ V}, V_{CC+} = +15 \text{ V}$	10 12	20 50		mΑ μΑ
V _{OH}	High level output voltage (V_{CC+} = + 30 V) T_{amb} = +25° C, R_L = 2 k Ω $T_{min} \le T_{amb} \le T_{max}$ T_{amb} = +25° C, R_L = 10 k Ω $T_{min} \le T_{amb} \le T_{max}$	26 26 27 27	27 28		٧

Table 3. $V_{CC+} = 5 \text{ V}, V_{CC-} = \text{ground}, V_O = 1.4 \text{ V}, T_{amb} = 25^{\circ} \text{ C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{OL}	Low level output voltage ($R_L = 10 \text{ k}\Omega$) $T_{amb} = +25^{\circ} \text{ C}$ $T_{min} \leq T_{amb} \leq T_{max}$		5	20 20	mV
SR	Slew rate $\begin{split} &V_{CC+}=15 \text{ V, } V_{in}=0.5 \text{ to } 3 \text{ V, } R_L=2 \text{ k}\Omega C_L=&100 \text{ pF,} \\ &\text{unity gain} \\ &T_{min}\leq &T_{amb}\leq &T_{max} \end{split}$	0.3 0.2	0.6		V/µs
GBP	Gain bandwidth product f = 100 kHz $V_{CC+} = 30 \text{ V}, V_{in} = 10 \text{ mV}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}$	0.7	1.1		MHz
THD	Total harmonic distortion $f = 1 \text{ kHz, } A_V = 20 \text{ dB, } R_L = 2 \text{ k}\Omega, V_o = 2 \text{ V}_{pp}, \\ C_L = 100 \text{ pF, } V_{CC+} = 30 \text{ V}$		0.02		%
e _n	Equivalent input noise voltage $f = 1 \text{ kHz}, R_S = 100 \Omega, V_{CC+} = 30 \text{ V}$		55		nV/√Hz
V _{O1} /V _{O2}	Channel separation ⁽⁴⁾ 1 kHz ≤ f ≤ 20 kHz		120		dB

^{1.} $V_O = 1.4 \text{ V}, \, R_S = 0 \, \Omega, \, 5 \, \text{V} < V_{CC+} < 30 \, \text{V}, \, 0 \, \text{V} < V_{ic} < V_{CC+} - 1.5 \, \text{V}.$

^{2.} The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.

^{3.} The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} -1.5 V, but either or both inputs can go to +32 V without damage.

^{4.} Due to the proximity of external components, ensure that the stray capacitance does not cause coupling between these external parts. This can typically be detected at higher frequencies because this type of capacitance increases.

Figure 2. Open-loop frequency response

Figure 3. Large signal frequency response

Figure 4. Voltage follower large signal response

Figure 5. Current sinking output characteristics

Figure 6. Voltage follower small signal response

Figure 7. Current sourcing output characteristics

8/24 Doc ID 2471 Rev 14

Figure 8. Input current versus temperature

Figure 9. Current limiting

Figure 10. Input voltage range

Figure 11. Supply current

Figure 12. Voltage gain

Figure 13. Input current versus supply voltage

Figure 14. Gain bandwidth product

vidth product Figure 15. Power supply rejection ratio

Figure 16. Common-mode rejection ratio

Figure 17. Phase margin vs capacitive load

3.1 Typical single-supply applications

Figure 18. AC coupled inverting amplifier

Figure 19. AC coupled non-inverting amplifier

Figure 20. Non-inverting DC gain

Figure 21. DC summing amplifier

Figure 22. High input Z, DC differential amplifier

Figure 23. Using symmetrical amplifiers to reduce input current

Figure 24. Low drift peak detector

Figure 25. Active bandpass filter

LM2904, LM2904A Macromodel

4 Macromodel

An accurate macromodel of the LM2904 is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the LM2904 operational amplifier. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

Package information LM2904, LM2904A

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

LM2904, LM2904A Package information

5.1 DIP8 package information

Figure 26. DIP8 package mechanical drawing

Table 4. DIP8 package mechanical data

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			5.33			0.210		
A1	0.38			0.015				
A2	2.92	3.30	4.95	0.115	0.130	0.195		
b	0.36	0.46	0.56	0.014	0.018	0.022		
b2	1.14	1.52	1.78	0.045	0.060	0.070		
С	0.20	0.25	0.36	0.008	0.010	0.014		
D	9.02	9.27	10.16	0.355	0.365	0.400		
Е	7.62	7.87	8.26	0.300	0.310	0.325		
E1	6.10	6.35	7.11	0.240	0.250	0.280		
е		2.54			0.100			
eA		7.62			0.300			
eB			10.92			0.430		
L	2.92	3.30	3.81	0.115	0.130	0.150		

Package information LM2904, LM2904A

5.2 SO-8 package information

Figure 27. SO-8 package mechanical drawing

Table 5. SO-8 package mechanical data

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.75			0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25			0.049				
b	0.28		0.48	0.011		0.019		
С	0.17		0.23	0.007		0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
E	5.80	6.00	6.20	0.228	0.236	0.244		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
е		1.27			0.050			
h	0.25		0.50	0.010		0.020		
L	0.40		1.27	0.016		0.050		
L1		1.04			0.040			
k	1°		8°	1°		8°		
CCC			0.10			0.004		

LM2904, LM2904A **Package information**

5.3 DFN8 2 x 2 mm package mechanical data

Figure 28. DFN8 2 x 2 mm package mechanical drawing

Table 6. DFN8 2 x 2 mm package mechanical data (pitch 0.5 mm)

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.51	0.55	0.60	0.020	0.022	0.024		
A1			0.05			0.002		
A3		0.15			0.006			
b	0.18	0.25	0.30	0.007	0.010	0.012		
D	1.85	2.00	2.15	0.073	0.079	0.085		
D2	1.45	1.60	1.70	0.057	0.063	0.067		
E	1.85	2.00	2.15	0.073	0.079	0.085		
E2	0.75	0.90	1.00	0.030	0.035	0.039		
е		0.50			0.020			
L			0.50			0.020		
ddd			0.08			0.003		

Package information LM2904, LM2904A

0.45 mm 0.30 mm 0.30 mm

Figure 29. DFN8 2 x 2 mm footprint recommendation

5.4 TSSOP8 package information

Figure 30. TSSOP8 package mechanical drawing

Table 7. TSSOP8 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.20			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.008		
D	2.90	3.00	3.10	0.114	0.118	0.122		
E	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.0256			
k	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1			0.039			
aaa			0.10			0.004		

Package information LM2904, LM2904A

5.5 MiniSO-8 package information

Figure 31. MiniSO-8 package mechanical drawing

Table 8. MiniSO-8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
Е	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0°		8°	0°		8°	
ccc			0.10			0.004	

6 Ordering information

Table 9. Order codes

Order code	Temperature range	Package	Packing	Marking
LM2904N		DIP8	Tube	LM2904N
LM2904D/DT		SO-8	Tube or tape & reel	2904
LM2904PT		TSSOP8 (thin shrink outline package)	Tape & reel	2904
LM2904ST		MiniSO-8	Tape & reel	K403
LM2904Q2T	-40° C to +125° C	DFN8 2 x 2	Tape & reel	K1Y
LM2904YDT ⁽¹⁾		SO-8	Tana 9 raal	2904Y
LM2904AYDT ⁽¹⁾		(automotive grade level)	Tape & reel	2904AY
LM2904YPT ⁽²⁾		TSSOP8	Topo 9 rool	2904Y
LM2904AYPT ⁽²⁾		(automotive grade level)	Tape & reel	2904AY
LM2904YST ⁽¹⁾		MiniSO-8 (automotive grade level)	Tape & reel	K409

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

Revision history LM2904, LM2904A

7 Revision history

Table 10. Document revision history

Date	Revision	Changes
02-Jan-2002	1	Initial release.
20-Jun-2005	2	PPAP references inserted in the datasheet, see <i>Table 9 on page 21</i> . ESD protection inserted in <i>Table 1 on page 4</i> .
10-Oct-2005	3	PPAP part numbers added in table Table 9 on page 21.
12-Dec-2005	4	Pin connections identification added on cover page figure. Thermal resistance junction to case information added see <i>Table 1 on page 4</i> .
01-Feb-2006	5	Maximum junction temperature parameter added in Table 1 on page 4.
02-May-2006	6	Minimum slew rate parameter in temperature Table 3 on page 6.
13-Jul-2006	7	Modified ESD values and added explanation on V _{CC} , V _{id} in <i>Table 1 on page 4</i> . Added macromodel information.
28-Feb-2007	8	Modified ESD/HBM values in <i>Table 1 on page 4</i> . Updated MiniSO-8 package information. Added note relative to automotive grade level part numbers in <i>Table 9 on page 21</i> .
18-Jun-2007	9	Power dissipation value corrected in <i>Table 1: Absolute maximum ratings</i> . <i>Table 2: Operating conditions</i> added. Equivalent input noise voltage parameter added in <i>Table 3</i> . Electrical characteristics curves updated. <i>Figure 17: Phase margin vs capacitive load</i> added. <i>Section 5: Package information</i> updated.
18-Dec-2007 10		Removed power dissipation parameter from <i>Table 1: Absolute maximum ratings</i> . Removed V _{opp} from electrical characteristics in <i>Table 3</i> . Corrected MiniSO-8 package mechanical data in <i>Section 5.5: MiniSO-8 package information</i> .
08-Apr-2008	11	Added table of contents. Corrected the scale of <i>Figure 5</i> (mA not μA). Corrected SO-8 package information.
02-Jun-2009	12	Added input current information in <i>Table 1: Absolute maximum ratings</i> . Added L1 parameters in <i>Table 5: SO-8 package mechanical data</i> . Added new order codes, LM2904AYD/DT, LM2904AYPT and LM2904AYST in <i>Table 9: Order codes</i> .

LM2904, LM2904A Revision history

Table 10. Document revision history (continued)

Date	Revision	Changes
13-Apr-2010	13	Added LM2904A on cover page. Corrected footnote (5) in <i>Table 1: Absolute maximum ratings</i> . Removed order code LM2904AYST from <i>Table 9: Order codes</i> .
24-Jan-2012	14	Removed macromodel from <i>Chapter 4</i> (now available on <i>www.st.com</i>). Added DFN8 2 x 2 mm package information in <i>Chapter 5</i> and related order codes in <i>Chapter 6</i> . Removed LM2904YD and LM2904AYD order codes from <i>Table 9</i> . Changed note for LM2904YST order code in <i>Table 9</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

24/24 Doc ID 2471 Rev 14

