1st-year PhD Report

Orestis Melkonian July 16, 2020

Introduction

Motivation

- Smart contract vulnerabilities lead to dramatic monetary losses (cf. DAO attack)
- Hence the need to make sure contract behaviour is provably correct/safe
- Chains are immutable → need to provide guarantees statically
- · Formal verification to the rescue!
- Relatively few mechanised results thus far

Research Questions

- · A mechanisation of the soundness of the BitML compiler
 - Encoded in constructive type theory
 - · Mechanised in the Agda proof assistant
 - EXTRA: Hope to distil general principles for the mechanisation of compilation correctness proofs across application domains
- A theoretical basis for conducting meta-theory of UTxO-based blockchain models
 - Relative expressiveness of the (E)UTxO accounting model
 - Allow reasoning about smart contracts and verifying their properties

METHODOLOGY

MSc in Utrecht

MSc Thesis

- · Under the supervision of
 - Wouter Swierstra (Utrecht University)
 - Manuel Chakravarty (IOHK)
- Two objects of study:
 - The Bitcoin Modelling Language (BitML) and its compilation to Bitcoin transactions
 - 2. The Extended UTxO Model, as designed for the Cardano blockchain

UTXO [2018-2019]

UTXO [2018-2019]

$\begin{array}{c} \mathsf{MSc} \\ \mathsf{UTxO} \xrightarrow{+ \ datum \ values} & \mathsf{EUTxO} \xrightarrow{+ \ multi-currency} & \mathsf{EUTxO}_{ma} \\ & \approx & \approx \\ & \mathsf{CEMs} & \mathsf{Traced CEMs} \end{array}$

UTXO [2018-2019]

TyDe @ ICFP: Formal investigation of the Extended UTxO model

MSc

CEMs

Traced CEMs

PhD in Edinburgh

WTSC @ FC: The Extended UTXO Model

ISoLA: Native Custom Tokens in the Extended UTXO Model

BITML [JUL 2020]

BITML [JUL 2020]

Future Directions

BITML

- Translating symbolic to computational runs
- Prove computational soundness: the compiler preserves coherence

UTxO

- Smart Contract Verification
 - Temporal/branching-time logics (LTL, CTL, CTL*, etc...)
- Further Meta-theory
 - · Coalgebraic approach to bisimulation
 - Coinductive proof techniques

Confluence

BitML → EUTxO

- BitML's semantics can be directly encoded as a CEM
- May lead to simpler soundness proof
- · Allows comparison with Marlowe
 - which is implemented on top of EUTxO, in a similar fashion)

Discussion

- Coherence of topic (UTxO versus BitML)
 - where to focus on?
 - · which research path seems the most promising?
 - is it worthy material for a PhD dissertation?

Discussion

- Coherence of topic (UTxO versus BitML)
 - where to focus on?
 - · which research path seems the most promising?
 - · is it worthy material for a PhD dissertation?
- Collaboration versus lonesomeness
 - · work so far done in collab. with the Plutus team
 - · in antithesis with the inherent nature of a PhD

Discussion

- Coherence of topic (UTxO versus BitML)
 - where to focus on?
 - which research path seems the most promising?
 - is it worthy material for a PhD dissertation?
- Collaboration versus lonesomeness
 - · work so far done in collab. with the Plutus team
 - · in antithesis with the inherent nature of a PhD
- Future directions
 - do they sound interesting and worthy to explore?
 - other comments/suggestions?