

Lecture 3 Relational Database Design Theory (part 2)

关系数据库设计理论 (第2部分)

Outline

Relation Decomposition

Third Normal Form

Multivalued Dependencies

Outline

Relation Decomposition

Third Normal Form

Multivalued Dependencies

Decomposition: The Good, Bad and Ugly

- "good" decomposition?
 - Before decomposition: Anomalies
 - After decomposition: No anomalies
- Bad or ugly decomposition ?
- Three properties
 - Elimination of Anomalies
 - Recoverability of Information
 - Preservation of Dependencies

Recovering Information from a Decomposition

Lossless Join 无损连接

– Why not decompose relation R into a set of relations whose schemas is a pair of R's attribute?

Answer

- The data in the decomposed relations might not allow us to join the relations of the decomposition and get the instance of *R* back.
- If we do get R back, then we say the decomposition has a lossless join.

The conclusion

- If we decompose a relation according to Algorithm 3.20, then original relation can be recovered exactly by the natural join.
 - For any sets of attributes *X*, *Y* and *Z*
 - If $Y \rightarrow Z$ holds in R, whose attributes are $X \cup Y \cup Z$
 - Then $R = \pi_{X \cup Y}(R) \bowtie \pi_{Y \cup Z}(R)$

Example

Is it possible that x is a bogus tuple? That is, could (a, b, e) not be a tuple of R?

- -R(A, B, C)
- $-B \rightarrow C$ is a BCNF violation
- $-R_1(A, B) = \pi_{A,B}(R)$ and $R_2(B, C) = \pi_{B,C}(R)$
- − Let *t* and *v* be two tuples of *R*
 - t=(a, b, c) and v=(d, b, e)
 - u=(a, b), project t onto $R_1(A, B)$
 - w=(b, e), project v onto $R_2(B, C)$
 - Join u and w, get x=(a, b, e)

Example

Is it possible that *x* is a bogus tuple? That is, could (*a*, *b*, *e*) not be a tuple of *R*?

- The answer is "no"
 - Since we assume $B \rightarrow C$ for relation R
 - t=(a, b, c) and v=(d, b, e)
 - t and v agree in their B components, they also agree on their C components
 - That means c=e
 - Thus, (a, b, e) is really (a, b, c); that is, x=t

Another example

$$-R(A, B, C)$$

- Neither $B \rightarrow A$ nor $B \rightarrow C$ holds

$$R_1 = \pi_{A,B}(R)$$
 $R_2 = \pi_{B,C}(R)$

$$\begin{array}{c|cc}
A & B \\
\hline
1 & 2 \\
\hline
4 & 2 \\
\end{array}$$

$$\begin{array}{c|cc}
B & C \\
\hline
2 & 3 \\
\hline
2 & 5 \\
\end{array}$$

$$R_3 = R_1 \bowtie R_2$$

A	B	C
1	2	3
1	2	5
4	2	3
4	2	5

- A more general situation
 - Relation R
 - Relations with sets of attributes $S_1, S_2, ..., S_k$
 - − A given set of FD's F that hold in R

Question:

• Is it true that if we project *R* onto the relations of the decomposition, then we can recover *R* by taking the natural join of all these relations?

$$\pi_{S_1}(R) \bowtie \pi_{S_2}(R) \bowtie \cdots \bowtie \pi_{S_k}(R) = R$$

Three important things

- 1. The natural joins is associative and commutative
 - The result is the set of tuples t such that
 - for all i = 1, 2, ..., k
 - t projected onto the set of S_i is a tuple in $\pi_{S_i}(R)$

- Three important things
 - 2. Any tuple *t* in *R* is surely in

$$\pi_{S_1}(R) \bowtie \pi_{S_2}(R) \bowtie \cdots \bowtie \pi_{S_k}(R)$$

- The reason is that the projection of t onto S_i is surely in $\pi_{S_i}(R)$ for each i,
- and therefore by our first point above, t is in the result of the join.

- Three important things
 - 3. As a consequence,

$$\pi_{S_1}(R) \bowtie \pi_{S_2}(R) \bowtie \cdots \bowtie \pi_{S_k}(R) = R$$

when the FD's in F hold for R if and only if

• every tuple in the join is also in *R*.

The membership test is all we need to verify that the decomposition has a lossless join.

- The chase test
 - An organized way to see whether a tuple t in

$$\pi_{S_1}(R) \bowtie \pi_{S_2}(R) \bowtie \cdots \bowtie \pi_{S_k}(R)$$

can be proved also to be a tuple in R

• using the FD's in F

The chase test

- − If *t* is in the join
- Then there must be tuples in R, say $t_1, t_2, ..., t_k$,
- Such that t is the join of the projections of each t_i onto the set of attributes S_i , for i=1, 2, ..., k.

- $-t_i$ agrees with t on the attributes of S_i
- $-t_i$ has unknown values in its components not in S_i

- Relation R(A, B, C, D)
- Decomposed into $S_1 = \{A, D\}, S_2 = \{A, C\}, S_3 = \{B, C, D\}$
- Tableau (图例) for this decomposition

A	B	C	D
a	b_1	c_1	d
a	b_2	c	d_2
a_3	b	c	d

Our goal

- Is to use the given set of FD's F to prove that t is really in R.
- We "chase" the tableau by applying the FD's in F to equate symbols in the tableau whenever we can.
- If we discover that one of the rows is actually the same as t
- Then we have proved that any tuple t in the join of the projections was actually a tuple of R.

$$- FD's = \{A \rightarrow B, B \rightarrow C, CD \rightarrow A\}$$

A	B	C	D	$A{\longrightarrow}B$	A	B	C	D
a	b_1	$ c_1 $	d		a	$ b_1 $	c_1	d
a	b_2	c	d_2			$ b_1 $		
a_3	b	c	d		a_3	b	c	d

$$- \text{FD's} = \{A \rightarrow B, B \rightarrow C, CD \rightarrow A\}$$

\boldsymbol{A}	B	C	D	$B{\rightarrow}C$	A	B	C	D
		c_1	+		a	\boldsymbol{b}_1	c	d
	i	c	 			b_1	_	
	t	C	_		a_3	b	c	d

$$- \text{FD's} = \{A \rightarrow B, B \rightarrow C, CD \rightarrow A\}$$

A	B	C	D
a	b_1	C	d
а	b_1	c	d_2
a_3	b	c	d

A	B	C	D
a	b_1	C	d
a	b_1	C	d_2
a	b	C	d
	-	•	•

$$t=(a, b, c, d)$$

- Relation R(A, B, C, D)
- $FD's = \{B \rightarrow AD\}$
- Decomposed into $S_1 = \{A, B\}, S_2 = \{B, C\}, S_3 = \{C, D\}$

A	B	C	D	$B \rightarrow AD$
а	b	c_1	d_1	N
a_2	b	c	d_2	
a_3	b_3	c	d	

- Relation R(A, B, C, D)
- $FD's = \{B \rightarrow AD\}$
- Decomposed into $S_1 = \{A, B\}, S_2 = \{B, C\}, S_3 = \{C, D\}$

A	B	C	D	$B \rightarrow AD$	A	B	C	D
а	b	$ c_1 $	d_1	N	a	b	c_1	d_1
$\overline{a_2}$	b	c	d_2			1	c	
$\overline{a_3}$	b_3	c	d		$\overline{a_3}$	b_3	c	d

No more changes can be made.

Example

There is no row that is fully unsubscripted.

- Relation R(A, B, C, D)
- $FD's = \{B \rightarrow AD\}$

Thus, this decomposition does not have a lossless join.

- Decomposed into $S_1 = \{A, B\}, S_2 = \{B, C\}, S_3 = \{C, D\}$

A	B	C	D	$B \rightarrow AD$	\boldsymbol{A}	B	C	D
a	b	$ c_1 $	d_1		a	b	c_1	d_1
$\overline{a_2}$	b	c	d_2		a	b	C	d_1
$\overline{a_3}$	b_3	c	d		$\overline{a_3}$	b_3	c	d

No more changes can be made. There is no row that is fully unsubscripted.

Example

- Relation R(A, B, C, D)
- $FD's = \{B \rightarrow AD\}$

Thus, this decomposition does not have a lossless join.

- Decomposed into $S_1 = \{A, B\}, S_2 = \{B, C\}, S_3 = \{C, D\}$

A	B	C	D	A	B	В	C	 \boldsymbol{C}	D
a	b	c_1	d_1	а	$b \bowtie$	b	c_1	c_1	d_1
a	b	c	$ d_1 $	a_3	b_3	b	c	C	d_1
a_3	b_3	c	d			b_3	C	c	d

No more changes can be made.

There is no row that is fully unsubscripted.

Example

A	B	C	D
a	b	c_1	d_1
a	b	c	d_1
$\overline{a_3}$	b_3	c	d

Thus, this decomposition does not have a lossless join.

		'					
A	B	В	C	_	\boldsymbol{C}	D	
a	$b\bowtie$	b	c_1	\bowtie	c_1	d_1	Ξ
a_3	b_3	b	c	_	C	d_1	
		b_3	c	_	c	d	

A	B	C	D
a	b	c_1	d_1
a	b	C	d_1
a	b	C	d
a_3	b_3	C	d_1
a_3	b_3	C	d

- In some cases
 - It is not possible to decompose a relation into BCNF relations
 - that have both the lossless-join and dependency-preservation

- We need to make a tradeoff between preserving dependencies and BNCF
- Relation Bookings(title, theater, city)
 - title, the name of a movie
 - theater, the name of a theater where the movie is being shown
 - city, the city where the theater is located

- We need to make a tradeoff between preserving dependencies and BNCF
- Relation Bookings(title, theater, city)
 theater → city
 title city → theater
 Keys?

Example

 We need to make a tradeoff between preserving dependencies and BNCF

```
Relation Bookings(title, theater, city)
theater → city
title city → theater
Keys:
{title, city}
{theater, title}
BCNF violation?
```

Example

 We need to make a tradeoff between preserving dependencies and BNCF

```
Relation Bookings(title, theater, city)
theater → city BCNF violation!
title city → theater
Keys:
{title, city}
{theater, title}
```

Example

 We need to make a tradeoff between preserving dependencies and BNCF

```
Relation Bookings(title, theater, city)
theater → city BCNF violation!
title city → theater
Decomposition:
{theater, city}
{theater, title}
```

Example

- We need to make a tradeoff between preserving dependencies and BNCF
- Relation Bookings(title, theater, city)

```
theater \rightarrow city
title city \rightarrow theater
```

Decomposition:

```
{theater, city}
{theater, title}
```

theater	city
Guild	Menlo Park
Park	Menlo Park
theater	title
theater Guild	<i>title</i> Antz

Example

Relation Bookings(title, theater, city)

theater \rightarrow city title city \rightarrow theater theatercitytheater → citysatisfyGuildMenlo ParkParkMenlo Park

Decomposition:

{theater, city}

{theater, title}

theater	title
Guild	Antz
Park	Antz

title city \rightarrow theater $\begin{array}{c} \text{Violate} \end{array}$

theater	city	title
Guild	Menlo Park	Antz
Park	Menlo Park	Antz

Outline

Relation Decomposition

Third Normal Form

Multivalued Dependencies

Third Normal Form 第三范式

Definition

- A relation R is in third normal form (3NF) if:
 - Whenever $A_1A_2...A_n \rightarrow B_1B_2...B_m$ is a nontrivial FD,
 - either $\{A_1, A_2, ..., A_n\}$ is a superkey,
 - or those of $B_1, B_2, ..., B_m$ that are not among the A's,
 - are each a member of some key (not necessarily the same key)

Third Normal Form

• Prime 主属性

 An attribute that is a member of some key is said to be prime.

3NF

- For each nontrivial FD,
 - either the left side is a superkey,
 - or the right side consists of prime attributes only.

First Normal Form

第一范式

1NF

- All attribute values in a relation R are atomic (cannot be decomposed into smaller pieces)
- A relation R must have a key, then R is in 1NF

"原子、有键"

姓名	课号列表
张三	数据库、操作系统、编译原理
李四	数据库、操作系统

姓名课号张三操作系统张三编译原理李四数据库李四操作系统

课号列表 不是原子属性不符合第一范式

2NF

- − A 1NF relation R is in 2NF if and only if
- all its non-prime attributes are functionally dependent on the whole of every keys
 (rather than just a part of them)
- "无部分函数依赖"
- Note:
 - When a 1NF relation has no composite keys, the relation is automatically in 2NF.

Example

The redundancy makes the table vulnerable to update anomalies.
 Employees' Skills

Employee	<u>Skill</u>	Current Work Location	
Jones	Typing	114 Main Street	
Jones	Shorthand	114 Main Street	
Jones	Whittling	114 Main Street	
Bravo	Light Cleaning	73 Industrial Way	
Ellis	Alchemy	73 Industrial Way	
Ellis	Flying	73 Industrial Way	
Harrison	Light Cleaning	73 Industrial Way	

Example

Neither of these tables suffers from update anomalies.

Employees

Employee	Current Work Location
Jones	114 Main Street
Bravo	73 Industrial Way
Ellis	73 Industrial Way
Harrison	73 Industrial Way

Employees' Skills

Employee	<u>Skill</u>
Jones	Typing
Jones	Shorthand
Jones	Whittling
Bravo	Light Cleaning
Ellis	Alchemy
Ellis	Flying
Harrison	Light Cleaning

Example

– 2NF and the primary key

Electric Toothbrush Models

Manufacturer	Model	Model Full Name	Manufacturer Country
Forte	X-Prime	Forte X-Prime	Italy
Forte	Ultraclean	Forte Ultraclean	Italy
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZBrush	USA
Kobayashi	ST-60	Kobayashi ST-60	Japan
Hoch	Toothmaster	Hoch Toothmaster	Germany
Hoch	X-Prime	Hoch X-Prime	Germany

Example

– 2NF and the primary key

Electric Toothbrush Manufacturers

Manufacturer	Manufacturer Country
Forte	Italy
Dent-o-Fresh	USA
Kobayashi	Japan
Hoch	Germany

Electric Toothbrush Models

Manufacturer	Model	Model Full Name
Forte	X-Prime	Forte X-Prime
Forte	Ultraclean	Forte Ultraclean
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZBrush
Kobayashi	ST-60	Kobayashi ST-60
Hoch	Toothmaster	Hoch Toothmaster
Hoch	X-Prime	Hoch X-Prime

Example

Not all 2NF tables are free from update anomalies.

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

Third Normal Form 第三范式

- 3NF (Codd's definition)
 - Relation R is in 2NF
 - Every non-prime attribute of R is non-transitively dependent on every key of R.

"无传递依赖"

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Player Dates of Birth

<u>Player</u>	Date of Birth
Chip Masterson	14 March 1977
Al Fredrickson	21 July 1975
Bob Albertson	28 September 1968

[C. Zaniolo. A New Normal Form for the Design of Relational Database Schemata. ACM Transactions on Database Systems 7(3), 1982.]

Third Normal Form 第三范式

- 3NF (Zaniolo's definition)
 - A relation is in 3NF if and only if,
 - for each of its FD's $X \rightarrow A$, at least one of the following conditions holds:
 - X contains A (i.e., $X \rightarrow A$ is a trivial FD), or
 - X is a superkey, or
 - A—X, the set difference between A and X is a prime attribute (i.e., A - X is contained within a key)

Third Normal Form 第三范式

Derivation of Zaniolo's conditions

- Let $X \rightarrow A$ be a nontrivial FD
- and let A be a non-key attribute.
- Also let Y be a key of R. Then $Y \rightarrow X$.
- Therefore A is not transitively dependent on Y if and only if $X \rightarrow Y$, that is, if and only if X is a superkey.

Witness

I promise to tell

the truth,

the whole truth and

nothing but the truth,

so help me God.

Nothing but the key

- 1NF: the key
 - Requiring existence of "the key"
- 2NF: the whole key
 - Requiring the non-prime attributes be dependent on "the whole key"
- 3NF: nothing but the key
 - Requiring the non-prime attributes be dependent on "nothing but the key"

A Memorable Summary

Non-prime attributes depend on

```
the key,
```

the whole key, and

nothing but the key,

so help me Codd.

- How we decompose a relation R into a set of relations such that:
 - a) The relations of the decomposition are all in 3NF.
 - − b) The decomposition has a lossless join.
 - c) The decomposition has the dependencypreservation property.

Algorithm 3.26

Input: A relation *R* and a set *F* of FD's that hold for *R*.

Output: A decomposition of *R* into a collection of relations, each of which is in 3NF. The decomposition has the lossless-join and dependency-preservation properties.

Method: Perform the following steps:

- 1. Find a minimal basis for *F*, say *G*.
- 2. For each FD $X \rightarrow A$ in G, use XA as the schema of one of the relations in the decomposition.
- 3. If none of the sets of relations from Step 2 is a superkey for R, add another relation whose schema is a key for R.

Example

```
-R(A, B, C, D, E)
-FD's = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}
```

Answer

- The given FD's are their own minimal basis (p103-104)

```
-S_1(A, B, C), S_2(B, C), S_3(A, D) (drop S_2)
```

 $-S_1(A, B, C), S_3(A, D)$

Example

```
-R(A, B, C, D, E)
-FD's = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}
```

Answer

- The given FD's are their own minimal basis
- $-S_1(A, B, C), S_3(A, D)$
- Keys: $\{A, B, E\}$ and $\{A, C, E\}$
- The final decomposition of R: $S_1(A, B, C)$, $S_3(A, D)$, $S_4(A, B, E)$

Why the 3NF Synthesis Algorithm Works

We need to show three things

1. Lossless Join

- Start with a relation of the decomposition whose set of attributes *K* is a superkey.
- Consider the sequence of FD's that are used in Algorithm 3.7 to expand K to become K^+ . Since K is a superkey, we know K^+ is all the attributes.
- The same sequence of FD applications on the tableau cause the subscripted symbols in the row corresponding to *K* to be equated to unsubscripted symbols in the same order as the attribute were added to the closure.
- Thus, the chase test concludes that the decomposition is lossless.

Why the 3NF Synthesis Algorithm Works

- We need to show three things
 - 2. Dependency Preservation
 - Each FD of the minimal basis has all its attributes in some relation of the decomposition.
 - Thus, each dependency can be checked in the decomposed relations.

Why the 3NF Synthesis Algorithm Works

We need to show three things

3. Third Normal Form

• If we have to add a relation whose schema is a key, then this relation is surely in 3NF.

(All attributes of this relation are prime.)

• For the relations whose schemas are derived from the FD's of a minimal basis, the proof that they are in 3NF is beyond the scope of our course.

(The argument involves showing that a 3NF violation implies that the basis is not minimal.)

Outline

Relation Decomposition

Third Normal Form

Multivalued Dependencies

Multivalued Dependencies

- Multivalued Dependency 多值依赖
 - An assertion that two attributes or sets of attributes are independent of one another

A generalization of a functional dependency

Attribute Independence

name	street	city	title	year
C. Fisher	123 Maple St.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
C. Fisher	123 Maple St.	Hollywood	Empire Strikes Back	1980
C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
C. Fisher	123 Maple St.	Hollywood	Return of the Jedi	1983
C. Fisher	5 Locust Ln.	Malibu	Return of the Jedi	1983

The only way to express the fact

- that addresses and movies are independent
- have each address appear with each movie

Obvious redundancy

When we repeat address and movie facts in all combinations

Definition

- A multivalued dependency (MVD) is a statement about some relation R that
- when you fix the values for one set of attributes,
- then the values in certain other attributes are independent of the values of all the other attributes in the relation

Definition

– More precisely, we say the MVD

$$A_1A_2...A_n \longrightarrow B_1B_2...B_m$$

- holds for a relation R if when we restrict ourselves to the tuples of R that have particular values for each of the attributes among the A's,
- then the set of values we find among the B's is independent of the set of values we find among the attributes of R that are not among the A's or B's.

Definition

- Still more precisely, we say this MVD holds if
- For each pair of tuples t and u of relation R that agree on all the A's, we can find in R some tuple v that agrees:
 - 1. With both t and u on the A's,
 - 2. With t on the B's, and
 - 3. With *u* on all attributes of *R* that are not among the *A*'s or *B*'s.

Definition

- As a consequence,
 - For any fixed values of the A's,
 - the associated values of the B's and
 - the other attributes appear in
 - all possible combinations in different tuples.

• How *v* relates to *t* and *u* when an MVD holds.

Example

- An MVD

name $\rightarrow \rightarrow$ street city

	name	street	city	title	year
t	C. Fisher	123 Maple St.	Hollywood	Star Wars	1977
u	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980

Example

- An MVD

name $\rightarrow \rightarrow$ street city

	пате	street	city	title	year
t	C. Fisher	123 Maple St.	Hollywood	Star Wars	1977
v	C. Fisher	123 Maple St.	Hollywood	Empire Strikes Back	1980
u	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980

Example

- An MVD

name $\rightarrow \rightarrow$ street city

	name	street	city	title	year
u	C. Fisher	123 Maple St.	Hollywood	Star Wars	1977
W	C. Fisher	5 Locust Ln.	Malibu	Star Wars	1977
ν	C. Fisher	123 Maple St.	Hollywood	Empire Strikes Back	1980
t	C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980

Formal definition

[Silberschatz. Database System Concepts (5th ed.). p. 295]

- Let R be a relation schema and $\alpha \subseteq R$ and $\beta \subseteq R$
- The multivalued dependency $\alpha \to \to \beta$ holds on R if, in any legal relation r(R), for all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that

Formal definition

- The multivalued dependency $\alpha \to \beta$ holds on R if, in any legal relation r(R), for all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{3}[\alpha]$$
 $t_{3}[\beta] = t_{1}[\beta]$
 $t_{3}[R - \beta] = t_{2}[R - \beta]$
 $t_{4}[\beta] = t_{2}[\beta]$
 $t_{4}[R - \beta] = t_{1}[R - \beta]$

In more simple words

- The above condition can be expressed as follows:
 - If we denote by (x, y, z) the tuple having values for
 - $\alpha, \beta, R \alpha \beta$ collectively equal to x, y, z, correspondingly, then whenever the tuples
 - (a, b, c) and (a, d, e) exist in r, the tuples
 - (a, b, e) and (a, d, c) should also exist in r.

Reasoning About MVD's

Trivial MVD's

```
- The MVD A_1A_2...A_n \rightarrow B_1B_2...B_m
holds in any relation if \{B_1, B_2, ..., B_m\} \subseteq \{A_1, A_2, ..., A_n\}
```

Reasoning About MVD's

Transitive Rule

$$-\operatorname{If} A_1 A_2 \dots A_n \longrightarrow B_1 B_2 \dots B_m \text{ and} B_1 B_2 \dots B_m \longrightarrow C_1 C_2 \dots C_k$$

– then so does

$$A_1A_2...A_n \longrightarrow C_1C_2...C_k$$

 MVD's do not obey the splitting part of the splitting/combining rule (p. 109)

Reasoning About MVD's

FD Promotion

- Every FD is a MVD. That is, if $A_1A_2...A_n \rightarrow B_1B_2...B_m$ then

$$A_1A_2...A_n \longrightarrow B_1B_2...B_m$$

- Why? (p. 109)

Reasoning About MVD's

Complementation Rule

- If $A_1A_2...A_n \rightarrow B_1B_2...B_m$ is an MVD for relation R, then R also satisfies

$$A_1A_2...A_n \longrightarrow C_1C_2...C_k$$

where the *C*'s are all attributes of *R* not among the *A*'s and *B*'s.

Reasoning About MVD's

More Trivial MVD's

– If all the attributes of relation R are

$${A_1, A_2, ..., A_n, B_1, B_2, ..., B_m}$$

then

$$A_1A_2...A_n \longrightarrow B_1B_2...B_m$$
 holds in R

Fourth Normal Form

- Fourth Normal Form 4NF 第四范式
 - A relation R is in fourth normal form (4NF) if whenever

$$A_1A_2...A_n \longrightarrow B_1B_2...B_m$$

is a nontrivial MVD, $\{A_1, A_2, ..., A_n\}$ is a superkey.

Fourth Normal Form

Example

```
name →→ street city
is a nontrivial MVD,
name by itself is not a superkey.
The only key is all the attributes.
```

Fourth Normal Form

Generalization

- 4NF is a generalization of BCNF
- Every FD is also a MVD
- Every BCNF violation is also a 4NF violation
- Every relation is in 4NF is therefore in BCNF

Algorithm 3.33: Decomposition into 4NF

(quite analogous to the BCNF decomposition algorithm)

INPUT: A relation R_0 with a set of functional and multivalued dependencies S_0 .

OUTPUT: A decomposition of R_0 into relations all of which are in 4NF. The decomposition has the lossless-join property.

METHOD: Do the following steps, with $R=R_0$ and $S=S_0$:

1. Find a 4NF violation in R, say $A_1A_2...A_n \rightarrow B_1B_2...B_m$, where $\{A_1, A_2, ..., A_n\}$ is not a superkey.

Not this MVD could be a true MVD in S, or it could be derived from the corresponding FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ in S, since every FD is an MVD

If there is none, return; R by itself is a suitable decomposition.

- **Algorithm 3.33**: Decomposition into 4NF
- **INPUT**: A relation R_0 with a set of functional and multivalued dependencies S_0 .
- **OUTPUT**: A decomposition of R_0 into relations all of which are in 4NF. The decomposition has the lossless-join property.
- **METHOD**: Do the following steps, with $R=R_0$ and $S=S_0$:
 - 2. If there is such a 4NF violation, break the schema for the relation *R* that has the 4NF violation into two schemas:
 - (a) R_1 , whose schema is A's and the B's.
 - (b) R_2 , whose schema is the A's and all attributes of R that are not among the A's or B's.

Algorithm 3.33: Decomposition into 4NF

INPUT: A relation R_0 with a set of functional and multivalued dependencies S_0 .

OUTPUT: A decomposition of R_0 into relations all of which are in 4NF. The decomposition has the lossless-join property.

METHOD: Do the following steps, with $R=R_0$ and $S=S_0$:

3. Find the FD's and MVD's that hold in R_1 and R_2 . (Section 3.7 explains how to do this task in general.) Recursively decompose R_1 and R_2 with respect to their projected dependencies.

Example

```
name →→ street city 4NF violation

{name, street, city} in 4NF

{name, title, year} in 4NF
```

- In each schema there are no nontrivial multivalued (or functional) dependencies,
- so they are in 4NF.

Relationships Among Normal Forms

Relationships Among Normal Forms

Properties of normal forms and their decompositions

Property	3NF	BCNF	4NF
Eliminates redundancy due to FD's	No	Yes	Yes
Eliminates redundancy due to MVD's	No	No	Yes
Preserves FD's	Yes	No	No
Preserves MVD's	No	No	No

...The End of This Lecture...