Métodos numéricos en fluidos – Instituto Balseiro – 2022

Práctica 2

- 1. Considere el método multipaso denominado Leap-Frog $(y_{n+1} = y_{n-1} + 2 h f(y_n, t_n))$. Responda a los siguientes items considerando la ecuación modelo $y' = \lambda y$.
 - a) Calcule el error de amplitud y fase para este método (considere la parte convergente del método).
 - b) Muestre que el método es inestable si $\lambda_r < 0$ ($\lambda_r = \Re(\lambda)$). Halle condiciones de estabilidad para el caso $\lambda_r = 0$.
- 2. Considere el método θ : $y_{n+1} = y_n + h[\theta f(y_{n+1}, t_{n+1}) + (1 \theta) f(y_n, t_n)]$ con $0 \le \theta \le 1$.
 - a) Calcule el error global del método en función del parámetro θ .
 - b) Realice el diagrama de estabilidad del método en función del parámetro θ (Ayuda: encuentre el conjunto de puntos que hace el módulo del factor de amplificación igual a 1 para $\theta < 1/2$). Note que para ciertos valores de θ el método es implícito y sin embargo en condicionalmente estable.
- 3. Para la siguiente versión del método Runge-Kutta de tercer orden (RK-3):

$$y_{n+1} = y_n + (k_1 + 4k_2 + k_3)/6,$$

$$k_1 = hf(y_n, t_n),$$

$$k_2 = hf(y_n + k_1/2, t_n + h/2),$$

$$k_3 = hf(y_n - k_1 + 2k_2, t_n + h),$$

responda a los siguientes puntos considerando la ecuación modelo $y' = \lambda y$.

- a) Muestre que el método es una aproximación de tercer orden.
- b) Calcule el máximo paso de tiempo que puede utilizarse para el caso de λ imaginario puro y para el caso de λ real negativo.
- c) Considere que se quiere avanzar una ODE hasta un determinado tiempo. ¿Que método usaría para obtener la solución en el menor tiempo posible si dispone de una implementación para RK-2, RK-3 y RK-4? Considere que sólo interesa el costo para evaluar la función en cuestión, no interesa la precisión y tiene el caso con λ imaginario y real negativo.
- 4. (Problema a entregar 29/9/2020) Considere la ecuación del péndulo simple:

$$\theta'' = -\frac{g}{l}\sin(\theta).$$

- a) Realizando experimentos numéricos determine el orden de convergencia global que se tiene para el error de fase $(\tan^{-1}(\theta'/\theta))$ y de amplitud $(1/2l^2\theta'^2 - ql\cos(\theta))$ para los siguientes métodos: La amplitud es la energía del péndulo. No es simplemente tita porque ahí está mezclado el
 - 1) Euler implícito.
 - 2) Crank-Nicolson (C-N).
 - 3) RK-4.
 - 4) Dos pasos de tiempo con C-N y un pasos de tiempo con Leap-Frog y así sucesivamente. ¿Cuál es la la razón para probar la implementación de este método?

error de amplitud y el error de fase.

Si no calculamos el período del péndulo con suficiente precisión, esto nos va a afectar a la solución. Ej, si calculamos el período con una precisión de 10^-3, no hay que esperar que el problema nos de una precisión de 10^-6.

Además, nosotros estudiamos estabilidad para el problema y' = iwy (ec. modelo). Vamos a tener que tener cuidado al analizar la estabilidad.

Para cada uno de los cuatro métodos anteriores compare con la tabla entregada en clase. **Ayuda:** note que éste no es el péndulo linealizado. Tome el periodo, por ejemplo, de la siguiente fuente sobre el péndulo simple con grandes oscilaciones: https://es.wikipedia.org/wiki/P%C3%A9ndulo_simple

b) Resuelva ahora el péndulo doble utilizando RK-4 y considerando $M_1 = M_2 = l_1 = l_2 = 1$ (puede revisar el documento **DoublePendulum.pdf**):

$$2\theta_1'' + \theta_2'' \cos(\theta_2 - \theta_1) = \theta_2'^2 \sin(\theta_2 - \theta_1) - 20\sin(\theta_1),$$

$$\theta_1'' \cos(\theta_2 - \theta_1) + \theta_2'' = -\theta_1'^2 \sin(\theta_2 - \theta_1) - 10\sin(\theta_2).$$

- 1) Asegúrese que su solución numérica coincide con la obtenida por la cátedra. Para la siguiente condición inicial $(\theta_1, \theta_2, \theta_1', \theta_2') = (\pi/2, \pi/2, 0, 0)$ obtenemos en $t = \pi$ el valor solución (1,708, 1,008, -1,278, -0,725).
- 2) Muestre que el sistema puede ser muy sensible a perturbaciones en las condiciones iniciales y por tanto muy difícil de predecir. Para esto estudie la solución numérica para las siguientes condiciones iniciales $(\pi/2, a, 0, 0)$. Con $a = \pi/2$, $a = 1,00001\pi/2$ y $a = 0,99999\pi/2$. ¿Es su solución independiente de Δt ?
- 3) Para una de las condiciones iniciales del punto anterior realice un gráfico que *ilumina* la posición de M_2 en el tiempo utilizando por ejemplo la función **comet** de Octave. ¿Es posible indentificar patrones de movimiento? Avance al menos hasta $t = 10\pi$.
- 4) Verifique si su método numérico conserva la energía mecánica del sistema. Si no es así, ¿con qué orden de convergencia la conserva?

Para calcular el error tengo que comparar con los valores exactos. Como no sé la solución exacta, tengo que arreglarmelas para comparar

Error de fase: lo calculo cada un período. De modo que inicialmente como tita = tita0 y tita' = 0. Luego de un período ocurre exactamente lo mismo y así sucesivamente. De modo que el error es axactamente tan^-1(tita'/tita) siempre que lo evalúe cada un período.

La amplitud es la energía/m y la energía/m exacta se conserva, de modo que la amplitud exacta es m*g*h/m = g*l*cos(tita0) ¿Cómo esto no es exactamente el error de amplitud sino en la energía, se debería obtener aún así el resultado de la tabla entregada?

Se puede elegir cualquier relación entre I y g ¿Se está considerando g = 10?