Numerical Analysis: homework 02

Due on Tuesday, March 14, 2017

102061149 Fu-En Wang

1 Introduction

To solve such an equation:

$$Ax = b \tag{1}$$

where A is $n \times n$ given nonsingular matrix and b is a given vector, while x is a vector to solve. Although Gaussian Elimination is an easy method for this problem, everytime when we adjust b, we have to re-calculate it again, which will be time-consuming. As a result, LU Decomposition provides a more flexible method to solve this problem.

1.1 LU Decomposition

Given a $n \times n$ matrix A, we can split it by:

$$A = L \times U \tag{2}$$

where L is lower-triangular matrix and U is upper-triangular matrix. And we can express L and U by this format:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ u_{21} & 1 & 0 \\ u_{31} & u_{32} & 1 \end{bmatrix}$$
 (3)

$$U = \begin{bmatrix} l_{11} & l_{12} & l_{13} \\ 0 & l_{22} & l_{23} \\ 0 & 0 & l_{33} \end{bmatrix}$$
 (4)

So

$$A = \begin{bmatrix} 1 & 0 & 0 \\ u_{21} & 1 & 0 \\ u_{31} & u_{32} & 1 \end{bmatrix} \times \begin{bmatrix} l_{11} & l_{12} & l_{13} \\ 0 & l_{22} & l_{23} \\ 0 & 0 & l_{33} \end{bmatrix}$$

After we find out L and U, we can express problem by

$$LUx = b$$

Let Y = Ux, then

$$LY = b$$

Y can be easily calculated, this is called **Forward Substitution**. After getting Y, the equation will be Ux = Y. x can be also easily calculated, this is called **Backward substitution**.

1.2 Error Calculation

Since the accuracy of our algorithm is quite important, I use **mean square error** to evaluate the performance:

$$Error = \sqrt{\frac{\sum_{i=1}^{n} (b'[i] - b[i])^2}{n}}$$
 (5)

where b is the given vector and b' is the multiplication of A and x' which is calculated by our algorithm.

2 C++ Implementation

2.1 LU Decomposition

```
MAT &luFact(MAT &m1) {
    for (int i=0; i<m1.m; i++) {
        for (int j=i+1; j < m1.m; j++) {
            m1[j][i] /= m1[i][i];
    }
    for (int j=i+1; j < m1.m; j++) {
            for (int k=i+1; k < m1.m; k++) {
                 m1[j][k] -= m1[j][i] * m1[i][k];
            }
}

return m1;
}</pre>
```

2.2 Forward Substitution

```
VEC fwdSubs(MAT &m1, VEC b) {
    VEC Y(b);
    for(int i=0; i < m1.m; i++) {
        for(int j=0; j < i; j++) {
            Y[i] -= m1[i][j] * Y[j];
        }
    }
    return Y;
}</pre>
```

2.3 Backward Substitution

```
VEC bckSubs(MAT &m1, VEC b) {
    VEC X(b);
    for(int i=m1.m-1; i >= 0; i--) {
        for(int j=m1.m-1; j > i; j--) {
            X[i] -= m1[i][j] * X[j];
        }
        X[i] /= m1[i][i];
    }
    return X;
```

3 Complexity

3.1 LU Decomposition

In the outer double for-loop, we do $\frac{n(n+1)}{2}$ times of one additional for-loop, so this is a $O(n^3)$ problem.

3.2 Forward/Backward substitution

The double for-loop do $\frac{n(n+1)}{2}$ times of calculation, so this is a $O(n^2)$ problem.

4 Discussion

4.1 Performance Evaluation

In this project, I use 5 numbers to indicate the accuracy and efficiency of our method.

- 1. **Error**(mean square error of the calculated result and answer)
- 2. Runtime(total execution time of program)
- 3. LU(total runtime consumed by LU Decomposition)
- 4. **FWD**(total runtime consumed by Forward Substitution)
- 5. BCK(total runtime consumed by Backward Substitution)

Table 1 shows detailed result of m3 to m10 execution result.

Table 1: Execution result of all matrix

	m3.dat	m4.dat	m5.dat	m6.dat	m7.dat	m8.dat	m9.dat	m10.dat
N	3	10	100	200	400	800	1600	3200
Error	0	3.50E-15	1.65E-11	1.78E-10	1.81E-09	2.23E-08	2.72E-07	2.70E-06
Runtime(s)	0.005	0.004	0.007	0.026	0.162	1.137	9.343	67.129
LU(s)	0	2.00E-06	0.00187	0.015341	0.130141	1.02409	8.895	65.4746
FWD(s)	1.00E-06	1.00E-06	4.10E-05	0.000121	0.000467	0.002353	0.007206	0.028792
BCK(s)	0	1.00E-06	2.90E-05	0.00012	0.000479	0.001957	0.007655	0.03202

4.2 Error vs N^3

Figure 1 shows that the mean square error will grow up as dimension increases.

Page 4 of 6

Figure 1: Error vs N^3

4.3 Runtime/LU vs N^3

As mentioned in Section 3, the complexity of the whole process of LU Decomposition is $O(n^3)$. As a result, when ploting Runtime/LU to N^3 , it shoule be a straight line. Figure 2 shows the result of Runtime and LU, respectively. Both of them match my expectation.

Figure 2: Runtime/LU vs N^3

4.4 Forward/Backward Substitution

As mentioned in Section 3, the complexity of Forward/Backward Substitution is $O(n^2)$. So the relation between n^2 and FWD/BCK will be a straight line. Figure 3 and Figure 4 show the experiment result, which

satisfy my opinion.

Figure 3: FWD vs N^2

Figure 4: BCK vs N^2

5 Advantage of LU Decomposition

In Section 3, we have already known the complexity of LU Decomposition is $O(n^3)$, which is same as Gaussian Elimination. But when solving Ax = b with a lot of b, we just need to do LU Decomposition once and then do Forward/Backward Substitution for different b, which complexity is $O(n^2)$. As a result, LU Decomposition will be much faster in such case.