Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 12. března 2023

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 7:

Měření Poissonovy konstanty vzduchu

 $T=21,1~^{\circ}\mathrm{C}$ $p=98.4970~\mathrm{kPa}$ $\varphi=47.4~\%$

1. Úkoly

1. Pomocí U trubice ocejchujte diferenciální tlakové čidlo měřící proud

$$p = p_0 + \rho g h \tag{1}$$

$$I = I_0 + c\Delta p \tag{2}$$

- 2. Měření poissonovy konstanty Clément-Desormesovou metodou. Natlakujte velkou nádobu, změřte U-trubicí a průmyslovým tlakovým čidlem tlak před (p1) a po expanzi (p2) a spočítejte Poissonovu konstantu z obou čidel.
- 3. Pro několik různých frekvencí určete vlnovou délku stojatého vlnění v Kundtově trubici. Pro každou frekvenci najděte všechny polohy maxim v trubici, vyneste je do grafu a stanovte vlnovou délku. Určete rychlost zvuku ve vzduchu a stanovte Poissonovu konstantu vzduchu včetně nejistoty měření.

1.1. Pomůcky

- Aparatura pro měření Clément Desormovou metodou
- Kundutova trubice
- frekvenční generátor
- svinovací metr

2. Teorie

2.1. Clément Desormova metoda

Poissonova konstant vystupuje v adiabatckém ději jako

$$pV^{\kappa} = konst. \tag{3}$$

Měření poissonovy konstanty přímo z tohoto vztahu by tedy vyžadovalo počkat na ustálení soustavy. To je ale velmi těžko realizovatelné, když adiabatický děj probíhá v tepelné izolaci.

Clément-Desormova je způsob, jak se tomuto problému vyhout. Děj se bude nejprve skládat z adiabatické expanze $(p_1, T_1) \implies (p_2, T_2)$. Otevřeme ventil natlakované nádoby a po vyrovnání tlaků, ale minimální výměně tepla ho zase rychle uzavřeme.

$$p_1^{\frac{1}{\kappa}-1}T_1 = p_2^{\frac{1}{\kappa}-1}T_2 \tag{4}$$

Vzduch v nádobě je teď ochlazený adiabatickou expanzí a následuje izochorický ohřev okolím.

$$\frac{p_2}{T_2} = \frac{p_3}{T_3} \tag{5}$$

,kde $T_3 = T_1$ je teplota okolí, p_2 tlak v laboratoři a p_3 tlak po ustanovení rovnováhy. Vyjádřením κ a dosazením (1) pro tlak měřený U trubicí dostáváme,

$$\kappa = \frac{\ln \frac{p_1}{p_0}}{\ln \frac{p_1}{p_3}} = \frac{\ln \frac{p_0 + \rho g h_1}{p_0}}{\ln \frac{p_0 + \rho g h_1}{p_0 + \rho g h_3}}.$$
 (6)

Taylorovým rozvojem,

$$\kappa = \frac{h_1}{h_1 - h_3} + \frac{1}{2} \frac{h_1 h_3 \rho g}{p_0 (h_1 - h_3)} \dots$$
 (7)

Je-li změna tlaku ve srovnání s atmosférickým tlakem dostatečně malá, pak

$$\kappa \approx \frac{h_1}{h_1 - h_3} \tag{8}$$

Přesto, že je tento vztah aproximativní, je jeho výhodou, že veličny, které zde vystupují pocházejí z jediného měřícího přístroje a absolutní chyby se můžou částečně pokrátit.

2.2. Kundutova trubice

Pro rychlost zvuku v ideálním plynu platí vztah

$$c = \sqrt{\kappa \frac{p}{\rho}},\tag{9}$$

kde pje tlak, ρ hustota vzduchu a κ poissonova konstatnta. Ze stavové rovnice pro ideální plyn ale taky

$$p = \frac{\rho RT}{M_{mol}}. (10)$$

Dosazení a vyjádřením c dostáváme

$$\lambda f = \sqrt{\kappa \frac{RT}{M_{mol}}},\tag{11}$$

kde λ je vlnová délka a f frekvence zvuku. Na generátoru sinusového signálu v Kundutově trubici nastavíme vhodnou frekvenci a zaznamenáváme polohy maximálních amplitud vlnění. Rozdíl každých dvou maxim je polovina vlnové délky.

3. Výsledky měření

3.1. Kalibrace diferenciálního čidla

Pro různé výšky vodního sloupce jsme odečetli proud protékající čidlem. Hodnoty lineárního fitu podle vztahu 2 jsou uvedeny v grafu 1.

Graf 1: závislost proudu protekájícího čidlem na výšce vodního sloupce

3.2. Clément Desormovou metodou

Graf 2: závislost rozdílu naměřených hodnot $h_1 - h_3$, na h_1

Graf 3: závislost rozdílu naměřených hodnot I_1-I_3 , na I_1-I_0

Podle Clément Desormovy metody jsme postupně nepřímo měřili tlak p_1 před adiabatickou expanzí a tlak p_3 po izochorickém ohřevu. Výslednou poissonovu konstantu zjistíme jako sklon fitu rozdílu $p_1 - p_0$ a $p_1 - p_3$.

metoda	κ
pomocí U trubice	(1.31 ± 0.04)
pomocí kalibrace	(1.32 ± 0.04)

Tabulka 1: Hodnoty spočítané z grafu 2 a 3 Použitím vztahu (8)

3.3. Kundutovou trubicí

Potřebujeme zjistit vzdálent realizace každých dvou amplitud vlnění odkud můžeme ze vztahu (11) vypočítat poissonovu konstantu. Volba frekvence je na nás, zkusíme provést měření pro 4 různé frekvence a porovnáme výsledky. Vypočtené hodnoty jsou uvedené v tabulce 2.

Potřebnou hustotu vzduchu jsme zjistili z online kalkulačky z odkazu [3]

f [kHz]	κ
1.56	(1.4 ± 0.2)
1.89	(1.4 ± 0.3)
3.41	(1.40 ± 0.03)
5.04	(1.39 ± 0.03)

Tabulka 2: Hodnoty spočítané z grafu 4

Graf 4: závislost n-tého maxima amplitudy vlnění na vzdálenosti

4. Závěr

Opravdová poissonova konstanta pro vzduch za laboratorních podmínek:

$$\kappa \approx 1.40 \tag{12}$$

Měření Clément Desormovou metodou nedopadlo nejlépe. Myslím, že jsem pokaždé zavřel ventil na nádobě moc brzo a tlaky se nestihli vyrovnat. Proto je naměřená hodnota menší než skutečná. Měření Kundutovou trubicí je na druhou stranu docela přesné. Je i vidět, že pro větší hodnoty frekvence klesá vlnová délka což zjednodušuje hledání maxima a vede k přesnějšímu měření.

Reference

- [1] Bochníček a kol. Fyzikální praktikum 1, návody k ulohám. Brno 2024.

 Dostupné z https://monoceros.physics.muni.cz/kof/vyuka/fp1_skripta.pdf.
- [2] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.
- [3] kalkulačka hustoty vzduchu https://www.omnicalculator.com/physics/air-density.