

Contents

1	Introduction
2	Linear Systems
3	Matrix Representation
3.1	Determinant of a Matrix
3.2	Transpose of a Matrix
3.3	Inverse of a Matrix
4	Gaussian Elimination
4.1	Steps:
4.2	Example
4.2.1	Step 1: Augmented Matrix
4.2.2 4.2.3	Step 2: Row Reduction
1.2.3	Step 3. Back Substitution
5	Gauss-Jordan Elimination
5.1	Steps:
5.2	Resulting Form:
6	Row Echelon Form (REF)
6.1	Example
6.2	Advantages
6.3	Visual Representation
6.4	Solving with Row Echelon Form (REF)
6.5	Final Answer:
7	Vector
8	Vector Space
9	Linear Transformation
10	Introduction to SVMs
11	Basis
12	Eigenvalues and Eigenvectors
13	Limit
14	Derivative

15	Partial Derivative	33
16	Gradient	35
17	Backpropagation	37
18	Newton, Hessian Method	39
19	Taylor Series, Taylor Theorem	41
20	Linearization	43
21	Optimization	45
22	Probability	47
23	Probability Distributions	49
24	Sample	51
25	Estimating	53
26	Hypothesis Testing	55

1. Introduction

Linear systems of equations form a core topic in linear algebra with widespread applications in mathematics, science, engineering, and technology. Solving linear systems efficiently is crucial, and among various techniques, *Gaussian elimination* is one of the most effective and widely used.

2. Linear Systems

A linear system of equations consists of multiple linear equations involving the same set of variables:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_1nx_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_2nx_n = b_2 \\ \vdots \\ a_{\text{m1}}x_1 + a_{\text{m2}}x_2 + \ldots + a_{\text{mn}}x_n = b_m \end{cases} \tag{2.1}$$

Where:

- a_{ij} are the coefficients, x_j are the unknowns, b_i are the constants.

3. Matrix Representation

A linear system can be written compactly in matrix form as:

$$A \cdot X = B \tag{3.1}$$

Where:

- $A: m \times n$ coefficient matrix
- $X: n \times 1$ unknown vector
- $B: m \times 1$ result vector

This representation is ideal for applying numerical methods.

3.1. **Determinant of a Matrix**

The determinant of a square matrix A, denoted $\det(A)$ or |A|, helps determine invertibility. For a 2×2 matrix:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \operatorname{ad} - \operatorname{bc} \tag{3.2}$$

Transpose of a Matrix 3.2.

The transpose of a matrix A, denoted A^T , swaps its rows and columns. Example:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \tag{3.3}$$

$$A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \tag{3.4}$$

Inverse of a Matrix 3.3.

A square matrix A has an inverse A^{-1} if:

$$A \cdot A^{-1} = I \tag{3.5}$$

- , where $det(A) \neq 0$
 - Methods to compute A^{-1} :
- Augmented matrix (row operations) Adjoint method: $A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$

4. Gaussian Elimination

A step-by-step method to reduce a matrix to upper triangular form:

4.1. Steps:

- 1. Form the augmented matrix: $[A \mid B]$
- 2. Forward elimination:
 - · Identify pivot elements along the main diagonal
 - Use row operations to zero out entries below each pivot
- 3. Back substitution:
 - Solve for variables starting from the last row upward

4.2. Example

Given the system:

$$\begin{cases} 2x + 3y - z &= 5\\ 4x + y + 2z &= 6\\ -2x + 5y + 3z = 7 \end{cases}$$

4.2.1. Step 1: Augmented Matrix

$$\begin{pmatrix}
2 & 3 & -1 & | & 5 \\
4 & 1 & 2 & | & 6 \\
-2 & 5 & 3 & | & 7
\end{pmatrix}$$

4.2.2. Step 2: Row Reduction

- Normalize the first row
- Eliminate entries below the pivot
- Repeat for next rows

4.2.3. Step 3: Back Substitution

Find values of z, then y, and finally x.

5. Gauss-Jordan Elimination

An extension of Gaussian Elimination that produces Reduced Row Echelon Form (RREF):

5.1. Steps:

- Form the augmented matrix $[A\mid B]$ Use row operations to form leading 1s (pivots)
- Zero out **both** above and below the pivot in each column

Resulting Form: 5.2.

$$\begin{pmatrix} 1 & 0 & 0 & | & x_1 \\ 0 & 1 & 0 & | & x_2 \\ 0 & 0 & 1 & | & x_3 \end{pmatrix}$$

6. Row Echelon Form (REF)

A matrix is in row echelon form if:

- All nonzero rows are above zero rows
- The leading entry (pivot) in each nonzero row is 1
- Each pivot is to the right of the one in the row above
- All entries below a pivot are 0

6.1. Example

$$\begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & 1 & 3 & | & -2 \\ 0 & 0 & 1 & | & 5 \end{pmatrix}$$

6.2. Advantages

- Simplifies solving linear systems
- Easy to implement algorithmically
- Helps identify inconsistent or dependent systems

6.3. Visual Representation

$$\begin{pmatrix} 1 & & & \\ 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Interpretation:

- · Zero row at the bottom
- Leading 1s at $A_{\{11\}}$ and $A_{\{22\}}$
- All entries below pivots are 0

6.4. Solving with Row Echelon Form (REF)

We are given the system:

$$\begin{cases} x+y+z &= 6\\ 2x+3y+7z=20\\ x+3y+4z &= 13 \end{cases}$$

Step 1: Write the Augmented Matrix

$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 2 & 3 & 7 & | & 20 \\ 1 & 3 & 4 & | & 13 \end{pmatrix}$$

Step 2: Row Reduction to Row Echelon Form

- · Keep Row 1 as is.
- Eliminate below the first pivot (Row 1, Col 1):

$$\begin{array}{l} R_2 \coloneqq R_2 - 2 \cdot R_1 \\ R_3 \coloneqq R_3 - R_1 \\ \text{New matrix:} \\ \begin{pmatrix} 1 & 1 & | & 6 \\ 0 & 1 & 5 & | & 8 \\ 0 & 2 & 3 & | & 7 \end{pmatrix} \end{array}$$

• Eliminate below the second pivot (Row 2, Col 2):

$$R_3 := R_3 - 2 \cdot R_2$$

Resulting Row Echelon Form:

$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 5 & | & 8 \\ 0 & 0 & -7 & | & -9 \end{pmatrix}$$
 Step 3: Back Substitution

From the last row:

$$-7z = -9 \to z = \frac{9}{7} \tag{6.1}$$

Second row:

$$y + 5z = 8 \rightarrow y = 8 - 5 \cdot \left(\frac{9}{7}\right) = \frac{11}{7}$$
 (6.2)

First row:

$$x+y+z=6 \to x=6-\frac{11}{7}-\frac{9}{7}=\frac{22}{7} \eqno(6.3)$$

Final Answer: 6.5.

$$x = \frac{22}{7}, y = \frac{11}{7}, z = \frac{9}{7} \tag{6.4}$$

7. Vector

18 Chapter 7. Vector

8. Vector Space

9. Linear Transformation

10. Introduction to SVMs

11. Basis

26 Chapter 11. Basis

12. Eigenvalues and Eigenvectors

13. Limit

30 Chapter 13. Limit

14. Derivative

15. Partial Derivative

16. Gradient

17. Backpropagation

18. Newton, Hessian Method

19. Taylor Series, Taylor Theorem

20. Linearization

21. Optimization

22. Probability

23. Probability Distributions

24. Sample

25. Estimating

26. Hypothesis Testing