V (V)	I (mA)	R (Ω)	P (W)	T (K)	T⁴ (K⁴)
0.1	29.3	3.41	0.0029	269.97	5.31E+09
0.2	47.0	4.26	0.0094	376.90	2.02E+10
0.3	58.2	5.15	0.0175	487.98	5.67E+10
0.4	72.0	5.56	0.0288	536.55	8.29E+10
0.5	81.0	6.17	0.0405	610.24	1.39E+11
0.6	87.3	6.87	0.0524	692.27	2.30E+11
0.7	95.0	7.37	0.0665	749.42	3.15E+11
0.8	102.4	7.81	0.0819	800.00	4.10E+11
0.9	106.4	8.46	0.0958	872.58	5.80E+11
1.0	117.5	8.51	0.1175	878.37	5.95E+11
1.1	125.5	8.76	0.1381	906.58	6.75E+11
1.2	128.6	9.33	0.1543	968.77	8.81E+11
1.3	136.5	9.52	0.1775	989.73	9.60E+11
1.4	142.6	9.82	0.1996	1021.53	1.09E+12
1.5	146.4	10.25	0.2196	1067.48	1.30E+12
2.0	174.4	11.47	0.3488	1196.20	2.05E+12
2.5	199.8	12.51	0.4995	1303.57	2.89E+12
3.0	222.4	13.49	0.6672	1401.88	3.86E+12
3.5	245.2	14.27	0.8582	1479.51	4.79E+12
4.0	264.2	15.14	1.0568	1563.81	5.98E+12
4.5	284.0	15.85	1.2780	1631.44	7.08E+12
5.0	303.8	16.46	1.5190	1689.56	8.15E+12
5.5	321.7	17.10	1.7694	1749.41	9.37E+12
6.0	338.7	17.71	2.0322	1806.72	1.07E+13
6.5	355.1	18.30	2.3082	1860.86	1.20E+13
7.0	372.3	18.80	2.6061	1906.09	1.32E+13
7.5	387.8	19.34	2.9085	1954.59	1.46E+13

V (V)	I (mA)	R (Ω)	P (W)	T (K)	T⁴ (K⁴)
0.1	29.3	(3.41±3.41)×10°	(2.93±2.93)×10 ⁻³	(2.70±4.43)×10 ²	(0.53±3.48)×10 ¹⁰
0.2	47.0	(4.26±2.13)×10°	(9.40±4.70)×10 ⁻³	(3.77±2.75)×10 ²	(2.02±5.88)×10 ¹⁰
0.3	58.2	(5.15±1.72)×10°	(1.75±0.58)×10 ⁻²	(4.88±2.24)×10 ²	(0.57±1.04)×10 ¹¹
0.4	72.0	(5.56±1.39)×10°	(2.88±0.72)×10 ⁻²	(5.37±1.87)×10 ²	(0.83±1.16)×10 ¹¹
0.5	81.0	(6.17±1.23)×10°	(4.05±0.81)×10 ⁻²	(6.10±1.72)×10 ²	(1.39±1.57)×10 ¹¹
0.6	87.3	(6.87±1.15)×10°	(5.24±0.87)×10 ⁻²	(6.92±1.66)×10 ²	(2.30±2.21)×10 ¹¹
0.7	95.0	(7.37±1.05)×10°	(6.65±0.95)×10 ⁻²	(7.49±1.60)×10 ²	(3.15±2.70)×10 ¹¹
0.8	102.4	(7.81±0.98)×10°	(8.19±1.02)×10 ⁻²	(8.00±0.00)×10 ²	(4.10±0.00)×10 ¹¹
0.9	106.4	(8.46±0.94)×10°	(9.58±1.06)×10 ⁻²	(8.73±1.58)×10 ²	(5.80±4.19)×10 ¹¹
1.0	117.5	(8.51±0.85)×10°	(1.17±0.12)×10 ⁻¹	(8.78±1.52)×10 ²	(5.95±4.11)×10 ¹¹
1.1	125.5	(8.76±0.80)×10°	(1.38±0.13)×10 ⁻¹	(9.07±1.50)×10 ²	(6.75±4.46)×10 ¹¹
1.2	128.6	(9.33±0.78)×10°	(1.54±0.13)×10 ⁻¹	(9.69±1.53)×10 ²	(8.81±5.56)×10 ¹¹
1.3	136.5	(9.52±0.73)×10°	(1.77±0.14)×10 ⁻¹	(9.90±1.52)×10 ²	(9.60±5.89)×10 ¹¹
1.4	142.6	(9.82±0.70)×10°	(2.00±0.14)×10 ⁻¹	(1.02±0.15)×10 ³	(1.09±0.65)×10 ¹²
1.5	146.4	(1.02±0.07)×10 ¹	(2.20±0.15)×10 ⁻¹	(1.07±0.16)×10 ³	(1.30±0.75)×10 ¹²
2.0	174.4	(1.15±0.06)×10 ¹	(3.49±0.17)×10 ⁻¹	(1.20±0.16)×10 ³	(2.05±1.10)×10 ¹²
2.5	199.8	(1.25±0.05)×10 ¹	(5.00±0.20)×10 ⁻¹	(1.30±0.17)×10 ³	(2.89±1.48)×10 ¹²
3.0	222.4	(1.35±0.04)×10 ¹	(6.67±0.22)×10 ⁻¹	(1.40±0.17)×10 ³	(3.86±1.92)×10 ¹²
3.5	245.2	(1.43±0.04)×10 ¹	(8.58±0.25)×10 ⁻¹	(1.48±0.18)×10 ³	(4.79±2.33)×10 ¹²
4.0	264.2	(1.51±0.04)×10 ¹	(1.06±0.03)×10°	(1.56±0.19)×10 ³	(5.98±2.85)×10 ¹²
4.5	284.0	(1.58±0.04)×10 ¹	(1.28±0.03)×10°	(1.63±0.19)×10 ³	(7.08±3.33)×10 ¹²
5.0	303.8	(1.65±0.03)×10 ¹	(1.52±0.03)×10°	(1.69±0.20)×10 ³	(8.15±3.79)×10 ¹²
5.5	321.7	(1.71±0.03)×10 ¹	(1.77±0.03)×10°	(1.75±0.20)×10 ³	(9.37±4.31)×10 ¹²
6.0	338.7	(1.77±0.03)×10 ¹	(2.03±0.03)×10°	(1.81±0.21)×10 ³	(1.07±0.49)×10 ¹³
6.5	355.1	(1.83±0.03)×10 ¹	(2.31±0.04)×10°	(1.86±0.21)×10 ³	(1.20±0.54)×10 ¹³
7.0	372.3	(1.88±0.03)×10 ¹	(2.61±0.04)×10°	(1.91±0.21)×10 ³	(1.32±0.59)×10 ¹³
7.5	387.8	(1.93±0.03)×10 ¹	(2.91±0.04)×10°	(1.95±0.22)×10 ³	(1.46±0.65)×10 ¹³


```
import numpy as np
from uncertainties import ufloat
from uncertainties import unumpy as unp
from scipy.optimize import curve_fit
file = np.loadtxt("Data.csv", delimiter = ",", skiprows=1, usecols=(0,1,4))
alpha = 5.21e-3
beta = 7.2e-7
TG = 800 # K
n = len(file)
Ta = [file[i,2] for i in range(n)]
V = [ufloat(file[i,0],0.1) for i in range(n)]
                                                       # V
I = [ufloat(file[i,1],0.1) for i in range(n)]
                                                       # mA
R = [(V[i]/I[i])*1000 \text{ for } i \text{ in } range(n)] \# ohm
P = [(V[i]*I[i])/1000 \text{ for } i \text{ in } range(n)]
R0 = R[7] / (1 + (alpha*TG) + (beta*TG*TG))
T = [(-1*alpha + unp.sqrt(alpha**2 - (4 * beta * (1 - (R[i]/R0)))))/(2*beta)) for i in range(n)]
T4 = [T[i]**4 \text{ for } i \text{ in } range(n)]
T4_{Ta4} = [T4[i] - Ta[i]**4 for i in range(n)]
def linear(x, p):
    return p * x
popt1, pcov1 = curve_fit(linear, [T4[i].n for i in range(n)], [P[i].n for i in range(n)])
popt2, pcov2 = curve_fit(linear, [T4_Ta4[i].n for i in range(n)], [P[i].n for i in range(n)])
# Error between slope of [P vs T^4] and [P vs (T^4-Ta^4)]
error = (popt2-popt1)/popt2 * 100
```