

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «Полупроводниковые диоды (часть 1)» по курсу «Основы электроники»

Студент: Талышева Олеся Николае	вна	
Группа: ИУ7-35Б		
Студент	подпись, дата	_ Талышева О. Н.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

Оглавление

Сокращения терминов, аббревиатуры	
Цель практикума	3
Номер варианта задания	
Эксперимент 1	4
Эксперимент 2	10
Эксперимент 3	12
Эксперимент 4	16

СОКРАЩЕНИЯ ТЕРМИНОВ, АББРЕВИАТУРЫ:

- ✓ ВАХ вольтамперная характеристика;
- ✓ ГТИ генератор тактовых импульсов;
- ✓ MSxx программная среда NI Multisim 10 или 12 версии;
- ✓ MCхх программная среда Multisim версии 7, 9 или 10;

ЦЕЛЬ ПРАКТИКУМА:

Получение и исследование статических и динамических характеристик германиевого кремниевого полупроводниковых диодов определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах Multisim И Mathcad полученным ПО данным, экспериментальных исследованиях, а также включение модели в базу компонентов.

НОМЕР ВАРИАНТА ЗАДАНИЯ:

* Variant 125

ЭКСПЕРИМЕНТ 1

Внесём в пользовательскую базу данных программы MULTISIM полупроводниковый диод в соответствии с вариантом 125:

Эксперимент 7

Для управления базами данных в Multisim используется менеджер баз данных, доступ к которому осуществляется через пункты меню Tools\Database\Database Manager. В диалоговом окне Database Manager перейти на закладку Family, в поле Family Tree выбрать User Database. Щелкнуть по экранной кнопке Add Family после чего отобразится диалоговое окно New Family Name, в котором можно указать имя нового семейства, где в будущем будут размещаться добавленные компоненты. Здесь же необходимо указать схемное обозначение элемента в окне Component RefDes – D (диод).

Далее, 1. Запустить мастер создания компонента – TOOLS/Component Wizard, который «по шагам» поможет ввести компонент в созданную базу данных.

2. После нажатия экранной кнопки Next появляется диалоговое окно, соответствующее второму шагу — здесь вводится информация о том, сколько выводов имеет компонент и какое исполнение компонента (один компонент или сборка компонентов):

3. Третий шаг по созданию компонента — это определение его графического представления на принципиальной схеме:

4. Четвёртый шаг – это определение параметров контактов компонента.

5. Следующий шаг - пятый, предполагает введение данных об электрической модели компонента.

6. На шестом шаге устанавливается связь между информационным символом (условным изображением) и электрической моделью.

7. На седьмом шаге осуществляется внесение подготовленного компонента в базу Multisim.

В результате проведённых операций в User database появится новый элемент – полупроводниковый диод D777I.

<u>ЭКСПЕРИМЕНТ 2: ИССЛЕДОВАНИЕ ВАХ</u> <u>ПОЛУПРОВОДНИКОВЫХ ДИОДОВ С ИСПОЛЬЗОВАНИЕМ</u> МУЛЬТИМЕТРОВ

1. Для заданного варианта диода собрали стенд моделирования, зафиксировали результат измерений тока и напряжения мультиметрами и сняли таблицу измерений тока через диод в зависимости напряжения на диоде.

а. прямая ветвь

b. обратная ветвь

- 2. По результатам измерения построили и представили в отчете графики для прямой и обратной ветви BAX своего варианта диода и сохранили результаты измерений в файле, указав путь.
- а. прямая ветвь

обратная ветвь

<u>ЭКСПЕРИМЕНТ</u> 3. ИССЛЕДОВАНИЕ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ С ИСПОЛЬЗОВАНИЕМ ОСЦИЛЛОГРАФА И ГЕНЕРАТОРА

Осциллограф (приложение 4 стр. 42), как прибор с очень высоким входным сопротивлением более 10Мом, прекрасно подходит для любых измерений.

1. Смоделировали схему:

2. Получили BAX на экране осциллографа, запустили Grapher View, используя кнопку Grapher на панели инструментов, в окне Grapher View сформировали выходной текстовый файл с данными расчёта:


```
-3.861208e-002
                 1.136376e-006
-3.839670e-002
                 1.136644e-006
-3.818132e-002
                 1.136912e-006
-3.796593e-002
                 1.137180e-006
-3.775055e-002
                 1.137448e-006
-3.753517e-002
                 1.137716e-006
-3.731978e-002
                 1.137984e-006
-3.710440e-002
                 1.138252e-006
-3.688902e-002
                 1.138520e-006
-3.667363e-002
                 1.138788e-006
-3.645825e-002
                 1.139056e-006
-3.624287e-002
                 1.139323e-006
-3.602749e-002
                 1.139591e-006
-3.581210e-002
                 1.139859e-006
-3.559672e-002
                 1.140127e-006
-3.538134e-002
                 1.140395e-006
-3.516595e-002
                 1.140663e-006
-3.495057e-002
                 1.140931e-006
-3.473519e-002
                 1.141199e-006
-3.451980e-002
                 1.141467e-006
-3.430442e-002
                 1.141735e-006
-3.408904e-002
                 1.142003e-006
                 1.142271e-006
-3.387366e-002
-3.365827e-002
                 1.142539e-006
-3.344289e-002
                 1.142807e-006
```

3. Использовали этот файл для передачи данных в MathCAD. Построили BAX в программе MCAD и рассчитали параметры модели (IS, Rb, n, Ft) методом Given Minerr:

VAX := READPRN("2.1vm")

		0	1
VAX =	0	-0.039	1.136·10-6
	1	-0.038	1.137·10-6
	2	-0.038	1.137·10-6
	3	-0.038	1.137·10-6
	4	-0.038	1.137·10-6
	5	-0.038	1.138·10-6
	6	-0.037	1.138·10-6
	7	-0.037	1.138·10-6
	8	-0.037	1.139·10-6
	9	-0.037	1.139·10-6
	10	-0.036	1.139·10-6
	11	-0.036	1.139·10-6
	12	-0.036	1.14·10-6
	13	-0.036	1.14·10-6
	14	-0.036	1.14·10-6
	15	-0.035	

$$\begin{array}{lll} \text{Id1} \coloneqq 0.62312 & \text{Ud1} \coloneqq 0.00103566 \\ \text{Id2} \coloneqq 0.64354 & \text{Ud2} \coloneqq 0.00212532 \\ \text{Id3} \coloneqq 0.58961 & \text{Ud3} \coloneqq 0.000340715 \\ \text{Id4} \coloneqq 0.56409 & \text{Ud4} \coloneqq 0.000158211 \\ \end{array}$$

$$Rb := \frac{(Ud1 - 2 \cdot Ud2 + Ud3)}{Id1} \qquad \qquad Rb = -4.613 \times 10^{-3}$$

NFt :=
$$\frac{[(3 \cdot Ud2 - 2 \cdot Ud1) - Ud3]}{ln(2)}$$
 NFt = 5.719 × 10⁻³

<u>ЭКСПЕРИМЕНТ 4. ИССЛЕДОВАНИЕ ВЫПРЯМИТЕЛЬНЫХ</u> СВОЙСТВ ДИОДА ПРИ ПОМОЩИ ОСЦИЛЛОГРАФА

1. Настроили осциллограф на измерение временной развертки сигнала генератора (клавиша Y/T): частота генератора 1 кГц, амплитуда 10В.

2. Собрали схему со своим диодом. Видно, что обратное напряжение не изменилось — диод имеет большое обратное сопротивление. Прямое напряжение на выбранном диоде 12 не превышает 642 мВ (канал А, диод полностью открыт).

В нагрузку проходит прямая волна тока и создает напряжение на нагрузочном резисторе.

Если параллельно нагрузочному резистору поставить накопительный конденсатор, среднее напряжение вырастет, как и полагается, в корень из 2 раз $(10*21/2 \sim 14.7)$ — , канал В. Получился однополупериодный выпрямитель.

