Practical exercise

Instructions

You will find a dataset prepared for you if you follow the link: **link_description**. Each student has their own dataset, identified by their student ID. The data is described below.

Submit your answers to the questions as a PDF file, through Aula Global (upload task).

Data description

There are sentences that are syntactically ambiguous while you are processing them. That is, while you're hearing/reading the sentence, you can be mislead to interpret it in a way that turns out to be wrong. This effect can be so strong that it may take you a couple of times hearing/reading them before you understand them. For instance, compare the two sentences in (1) and (2).

- 1. While the narrator read the story was dramatized by the troop of skilled actors.
- 2. While the narrator read(,) the story was dramatized by the troop of skilled actors

When reading (1) for the first time, the sentence may strike you as odd when you reach the bolded portion of the text. This effect should be less pronounced for (2), where the comma helps you interpret the sentence as intended. When reading (1), instead, you may be mislead into thinking that **the story** is the object of **the narrator read**; and not its complement. This kind of syntactic ambiguity is called NP/Z in the literature.

There are other types of syntactically ambiguous sentences. The sentences in (3) and (4) exemplify a so-called NP/S-type ambiguity.

- 3. The tourists saw the palace was being restored to its original condition.
- 4. The tourists saw (that) the palace was being restored to its original condition.

As (2) did for (1), the sentence in (4) shows a disambiguated version of (3). Both types of syntactic ambiguity, NP/Z and NP/S, are well studied in the literature. Comprehenders being confused by them gives us hints about how we process sentences and interpret sentences!

In experiments the difficulty of a sentence is often measured by how long it takes people to read them (in milliseconds.) Past literature suggests two things. First, it should take less time to read the unambiguous sentence (2) than the ambiguous one in (1); and the same for (4) over (3). Second, the difference between (3) and (4) should be smaller than that between (1) and (2). That is, processing NP/Z sentences should be harder than processing NP/S sentences, when compared to their unambiguous variants.

Your colleague has collected data from subjects that were asked to read sentences like (1) - (4). There were 5 different pairs of NP/Z and NP/S sentences, each pair consisted of an ambiguous and an unambiguous version of the sentence. For instance, (1) and (2) were one of the five pairs of sentences for the NP/Z case; and (3) and (4) for the NP/S case. 12 different subjects read each pair. Your colleague measured how long it took them to read the sentences (in milliseconds) and recorded it in a CSV file.

Here's how the data may look like:

##	3	2	Amb	523.6384	npz
##	4	2	Unamb	434.2710	npz
##	5	3	Amb	555.7576	npz
##	6	3	Unamb	492.4343	npz

The column sentence sentence.ID identifies which of the 5 sentence pairs the reading times are for. The column status shows whether the reading time is for the ambiguous (Amb) or unambiguous sentence of a pair. The column reading.time shows the reading time recorded (in milliseconds). The column type specifies whether this is a NP/S ambiguity (nps) or an NP/Z ambiguity (npz)

Questions

Help your colleague analze the data from her experiments!

Descriptive statistics (0.5 points each)

- 1. What is the mean reading time of ambiguous NP/Z sentences?
- 2. What is the standard deviation of reading times of ambiguous NP/Z sentences?
- 3. What is the mean reading time of unambiguous NP/Z sentences?
- 4. What is the standard deviation of reading times of unambiguous NP/Z sentences?
- 5. What is the mean reading time of ambiguous NP/S sentences?
- 6. What is the standard deviation of reading times of ambiguous NP/S sentences?
- 7. What is the mean reading time of unambiguous NP/S sentences?
- 8. What is the standard deviation of reading times of unambiguous NP/S sentences?

Inferential statistics (1 point each)

Using two regression models, using status as predictor and reading time as outcome, estimate

- 1. The difference between ambiguous and unambiguous NP/Z sentences (with standard error)
- 2. The difference between ambiguous and unambiguous NP/S sentences (with standard error)
- 3. Based on your answer to (1): Do you think there is evidence to suggest a difference between ambiguous and unambiguous NP/Z sentences? Why (not)?
- 4. Based on your answer to (2): Do you think there is evidence to suggest a difference between ambiguous and unambiguous NP/S sentences? Why (not)?
- 5. Compare how well the models you used for (1) and (2) explain the variance (R^2). Is the performance of the two models similar? Why do you think that this (not) the case?
- 6. Do your findings agree with the expectations from the literature? Explain why (not).

References

If you are interested in the real experiment that this exercise is based on, see Grodner et al. (2003): Against Repair-Based Reanalysis in Sentence Comprehension.