Adaptive Weighted Voting KNN: A Hybrid Clustering Method for Mixed Data

Marina Lin, Clinton Morimoto

Table of contents

01 02

INTRODUCTION DATASET

03 04

METHODOLOGY RESULTS

01 INTRODUCTION

Primary Problem & Motivation

Problem

Loan Approval

 Impacts individuals' access to funds and institutions' ability to manage risk

Previous Approaches

- Previous works experimented with different distance metrics:
 - Manhattan, Minkowski, Mahalanobis, Cosine, etc.
- Mixed weighting approaches with inversely proportional weights
 - Useful for imbalanced class labels

02 DATASET

Dataset Description, Preprocessing, Train/Test Split

Loan Classification Dataset

- Categorical and Numeric Types, 13 features
- Loan Approval Status; 1 = approved, 0 = rejected

Table 1: Dataset Features with Description and Type				
Column	Description	Туре		
person_age	Age of the person	Float		
person_gender	Gender of the person	Categorical		
person_education	Highest education level	Categorical		
person_income	Annual income	Float		
person_emp_exp	Years of employment experience	Integer		
person_home_ownership	Home ownership status (e.g., rent, own, mortgage)	Categorical		
loan_amnt	Loan amount requested	Float		
loan_intent	Purpose of the loan	Categorical		
loan_int_rate	Loan interest rate	Float		
loan_percent_income	Loan amount as a percentage of annual income	Float		
cb_person_cred_hist_length	Length of credit history in years	Float		
credit_score	Credit score of the person	Integer		
previous_loan_defaults_on_file	Indicator of previous loan defaults	Categorical		
loan_status	Loan approval status: 1 = approved; 0 = rejected	Integer		

Preprocessing

- 45000 Total Instances
- 10000 Instances that are approved loans, 35000 unapproved

After preprocessing with normalization and type conversion

- 9000 Total Instances
- 2022 Instances that are approved loans, 6978 unapproved

Train/Test Split: 80/20

03 METHODOLOGY

KNN, Mixed Data, Our extension

KNN Algorithm for Mixed Data

Three classes, $C=\{C_1, C_2, C_3\}$.

Points from each class are:

$$C_1 = (3,3,C,D)$$

$$C_2$$
=(6,6, A , B)

$$C_3 = (9,4,A,B)$$

KNN Algorithm for Mixed Data

Calculates distance with each point to find the class to which X_i = (5, 3, A, B) is assigned.

The distance about the numerical attribute of X_i and C_1 , C_2 , C_3 is

$$(3-5) \wedge 2 + (3-3) \wedge 2 = 4$$

$$(9-5)^2+(4-3)^2=17.$$

KNN Algorithm for Mixed Data

The distance about the categorical attribute of X_i and C_1 , C_2 , C_3 is

The total distance of X_i to C_1 , C_2 , C_3 is 6, 10, and 17, respectively.

Extension

Mahalanobis distance

Weighted Voting

Weight Minority Label Higher

- Accumulate weights for each class c among the k-nearest neighbors
- Assign the class with the highest accumulated weight

Pseudocode

Algorithm 1 Weighted Mixed K-Nearest Neighbors (WM-KNN)

- 1: **Input:** Training dataset with numerical and categorical features, test dataset, k neighbors
- 2: Output: Predicted labels for all test data points
- 3: **Step 1:** Calculate weights for each class in the training dataset:
 - Determine class counts using the training labels.
 - Assign a higher weight to the minority class (w = 2.0) and default weight to other classes (w = 1.0).
- 4: **Step 2:** For each test data point *x*:
 - Compute distances to all training points.
 - Identify the *k*-nearest neighbors based on the computed distances.
- 5: **Step 3:** Perform weighted voting to determine the predicted label:
 - Accumulate weights for each class c among the k-nearest neighbors:
 - · Assign the class with the highest accumulated weight.
- 6: Step 4: Repeat Steps 2-3 for all test data points.
- 7: **Step 5:** Evaluate the performance of the algorithm using multiple metrics.

04 RESULTS

Performance of our proposed algorithm.

Performance Metrics

k = 85

· Accuracy:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision:

$$Precision = \frac{TP}{TP + FP}$$

Recall:

$$Recall = \frac{TP}{TP + FN}$$

• F1-Score:

$$F1\text{-}Score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Mixed KNN w/Euclidean

Table 2: Comparison of Different KNN Variants on Testing Data

Metric	Euclidean	Euclidean Weighted	Mahalanobis	Mahalanobis Weighted
Accuracy (Test %)	86.28	82.72	86.22	88.94
Precision (Test, 0)	94.33	80.76	99.21	93.18
Precision (Test, 1)	58.72	89.43	41.77	74.44
Recall (Test, 0)	88.66	96.32	85.36	92.58
Recall (Test, 1)	75.16	57.59	93.92	76.13
F1-Score (Test, 0)	91.41	87.32	91.77	92.88
F1-Score (Test, 1)	65.93	69.62	57.82	75.28

1 = approved, 0 = rejected

Developed a new Hybrid KNN Clustering Method for Mixed Data

Mixing Two Techniques for improved performance

- Adaptive Weighted Voting
- 2. Mahalanobis Distance Metric

Improvement in Accuracy, F1-Score, and achieved good balance for other metrics

Thank you!