R (universal gas const.): $8.314472 \, {}^{j}/_{K} \cdot mol \, 1 \, \mathrm{m}^{3} = 1000 \, \mathrm{l}$

1 atm = 101.325 Pa

 $1 \text{ MPa} = 1 \text{ N/mm}^2 = 10 \text{ bar}$

 N_{a} (Avogadro const.): $6.022141 \cdot 10^{23}$

1 amu = $1.66054 \cdot 10^{-24}$ g

 $1 e^{-} = 1.602 \cdot 10^{-19} C$

 $1 \text{ Å} = 10^{-10} \text{ m}$

Molecule: Group of atoms bonded together

Compound: Substance made of two or more different kinds of elements **Mixture**: Two or more Substances, where each substance can be separated

CH₄: molecular formula

: structural formula perspective drawing, ball-stick-model,

space filling model

Atom Radius: 1-5 Å **Nucleus Radius**: ca. 10⁻⁴ Å Nucleus Density: 10¹⁴ g/cm³

12₆C 12: mass number 6: atomic number C: elemental symbol mass number = protons + neutrons atomic number = protons or electrons

1 amu (atomic mass unit) = 1/12 weight of ${}^{12}{}_{6}$ C = $1.66054 \cdot 10^{-24}$ g = 1 proton = 1 neutron

Alkali metals: 1A Li, Na, K, ... Alkaline earth metals: 2A Be, Mg, Ca, ...

Chalcogenes: 6A O, S, Se, ... Halogenes: 7A F, Cl, Br, ...

Noble gases (or rare gases): 8A He, Ne, Ar, ...

Combination Reactions: A + B -> C Decomposition Reactions: C -> A + B

1 mole = number of atoms in 12 g of ¹²C molar mass = mass in grams/mol of a substance = atomic weight

Ideal Gas equation: PV = nRT P: Pressure V: Volume n: number of moles R: Gas Const. T: Temp.

Molar mass of a gas: M = d*R*T/P M: gram/mol d: mass/volume

Molecular speed: KE (kin. energ.) = $\frac{1}{2}$ m $(u_{rms})^2$ $u_{rms} = (3*R*T/M)^{1/2}$ (avg. Molecule speed)

Van der Waals eq.: $\left(P + \frac{n^2 a}{V^2}\right)(v - nb) = nRT$ (use when above 10 atm)

Plum Pudding model Thomson model

Rutherford model electrons orbit nucleus Bohr model: with orbit jumps

Principal quantum number (n): Shell 1, 2, 3, ...

Angular momentum quantum number (I): s, p, d, f (n-1 for a Shell n) magnetic quantum number (m): 1 for s, 3 for p, 5 for d, 7 for f.

spin quantum number (s): ½ or -½

s orbitals: 1s, 2s, 3s

s orbitals 2 e⁻ p orbitals 6 e⁻ d orbitals 14 e⁻

5p

ш

Effective nuclear charge: $Z_{eff} = Z - S$ Z: nuclear charge S: screening constant = nr. core electrons (not shell)

lonic bond: e.g. Salt (Na+ Cl-) **covalent bond**: e.g. Water (H_2O) **metallic bond**: e.g. Fe Δ EN (electronegativity) > 1.7 Δ EN < 1.7

Energetics of ionic bounding:

Force between 2 charges: $F = \frac{q_1q_2}{4\pi\varepsilon_0 r^2}$ Latice enthalpy: $E_c = \frac{-q_1q_2}{4\pi\varepsilon_0 r} \cdot N_A[E_c]$ $N_A = 6.022141*10^{23} \text{ mol}^{-1}$ Ladung e⁻,p⁺ = 1.602*10⁻¹⁹ C ε_0 =8.85418*10⁻¹² C²/(Nm²)

Dipole moment μ : $\mu = Q^*r$ (2 charges Q at distance r) (quantifies bond polarity)

Formal Charge: (number of usual valence electrons) - (number of valence electrons in bond) when multiple Lewis structures are possible choose the one with least formal charge.

Bond order: ½ (bonding e⁻ - antibonding e⁻) describes stability of bonding (use above scheme)

singe bond->order 1, double bond->order 2, triple bond->order 3

Paramagnetic: a Molecule has 1+ unpaired electrons (is attracted to magnetic field)

Diamagnetic: a Molecule has no unpaired electrons (is weakly repelled by a magnetic field)

Open System: heat and matter can enter/leave

Closed System: heat can enter/leave, but matter remains constant.

Isolated System: heat and matter remain const.

 $\mathbf{1}^{\text{st}}$ law of thermodynamics: $\Delta E = \mathbf{q} + \mathbf{w}$ ΔE : Internal energy \mathbf{q} : gain of heat in system \mathbf{w} : work put into system

Pressure-Volume work: $w = -P^*\Delta V$ P: Pressure (Const.) ΔV : Change in Volume

Isothermal expansion of gas: $w = -nRT \ln(V_2/V_1)$

Enthalpy: H = E + PV when P Const. -> $\Delta H = q_P = \Delta E + P\Delta V$

Endothermic process: absorbs heat from the surroundings ($\Delta H > 0$) **Exothermic process**: releases heat to the surroundings ($\Delta H < 0$)

Specific heat capacity: C_s = heat capacity for 1g Molar heat capacity: C_m heat capacity for 1 mol

 $q = C_s * m * \Delta T$ m: grams of substance ΔT : temperature change q: heat transferred

Enthalpy of formation: ΔH°_f Enthalpy per mol needed to form a substance (sources: C_(Graphite), O₂, H₂)

Spontaneity: spontaneous behaviour is not reversible.

Reversibility: a reversible system is one that changes direction with an infinitesimal condition change

Entropy: $\Delta S = q_{rev}/T$ q_{rev} : heat transferred reversibly ($\Delta S=0$: reversible, $\Delta S>0$: irreversible, $\Delta S<0$: no reaction)

 $\Delta S_{tot} = \Delta S_{sys} + \Delta S_{surr} \qquad \Delta S_{sys} = \Sigma \ \Delta S_{products} - \Sigma \ \Delta S_{reactants} \qquad \Delta S_{surr} = -\Delta H/T$

Isothermal expansion of gas: $\Delta S = nR \ln(V_2/V_1)$

 $\mathbf{2}^{\text{nd}}$ law of thermodynamics: ΔS is positive for irreversible, and 0 for reversible processes. Entropy increases.

3rd law of thermodynamics: ΔS of a perfect cristal at 0°K is exactly equal to zero

Gibbs free energy: $\Delta G = \Delta H - T\Delta S$ ΔG must be negative for a process to be spontaneous

 $\Delta G = \Delta G^0 + RT \ln(Q)$ ΔG^0 : standard molar Gibbs energy Q: reacion quotient (= K_{eq} at equilibrium)

Rates of Reaction: for aA + bB -> cC + dD $rate = -\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$ [rate]=mol/s

Rate laws: rate = $k[A]^m[B]^n$ k: rate coefficient (\neq eq. const. K_{eq}) m,n: reaction orders

Reaction order: sum of orders of all components in the rate law (e.g. m+n)

Rate law for elementary reactions: Molecularity = Reaction order A->...: k[A] = A+A->...: $k[A]^2 = A+B->...$: k[A][B]Molecularity: Number of molecules that participate as reactants in an elementary reaction (uni-, bi-molecular) **Zero-order reaction:** rate = k $[A]_t = kt + [A]_0$

Q10 rule: Temperature increase of 10°K -> reaction rate increase of 2-3x

Activation Energy E_a: Energy needed to start reaction. "rate" is proportional to E_a (not proportional to ΔE)

Maxwell-Bolzmann: $f = e^{-E_a/RT}$ f: fraction of molecules with energy > E_a

Arrhenius equation: $k = Ae^{-E_a}/RT$ k: rate coefficient A: Frequency factor.

Elementary reactions: reactions that occur in a single step.

Catalyst: provides a new mechanism witch has lower E_a or assists in orienting reactants to increase A.

Equilibrium constant: $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ aA + bB <-> cC + dD (for concentrations)

concentration of solids and pure liquids (e.g. water) are constant and have no effect on K. if K > 1: equilibrium favors products (right); if K < 1 equilibrium favors reactants (left)

 $K_p = \frac{P_C^c P_D^d}{P_A^a P_B^b}$ $K_p = K_c (RT)^{\Delta n}$ Δn : mol prod. – react. of gas (for partial pressures)

Le Chatelier's Principle: A system will shift its equilibrium so as to counteract the disturbance (change in T, P, n)

Acid: proton (H⁺, p⁺) donor (e.g. HCl) **Base**: proton acceptor (e.g. F⁻) **amphiprotic**: acid and base (e.g. H₂O)

Conjugate base: dissociated form of an acid (acid + H⁺)
Conjugate acid: associated form of a base (base - H⁺)

Water auto-ionisation: $K_w = [H_3O^+][OH^-] = 10^{-14}$ (at 25°C)

 $pH = -log[H_3O^+] = -log[H^+]$ acidic solution: pH < 7 basic solution: pH > 7

 $pOH = -log[OH^{-}]$ $pH + pOH = pK_w = 14$

Dissociation constant: $K_a = [H_3O^+][A^-]/[HA]$ $pK_a = -log(K_a)$

larger K_a -> smaller pK_a -> stronger acid

Buffer equation: $pK_a = pH - log([base] / [acid])$

Phase diagram:

P (atm) solid condensation gas deposition TRIPLE POINT

Intermolecular forces:

dispersion forces: (weak) temporary polarization. Bigger molecule -> stronger force dipole-dipole force: Δ EN (electronegativity) > 0.5. Greater Δ EN -> stronger force

hydrogen bonding force: (strong) -X···H-X with X: N, O or F

Solubility product: $K_{sp} = [A^+][B^-]$ $AB_{(s)} < -> A^+_{(aq)} + B^-_{(aq)}$ (Salt)

Molarity (M): mole/liter Molality (m): mole/kilogram mole fraction (X_A): mole of A/total mole parts per billion (ppb): mass of A/total mass * 10⁹ parts ber million (ppm): mass of A/total mass * 10⁶ mass percentage (% of A): mass of A/total mass * 100

Osmosis: π =(n/V)RT=MRT π : osmotic pressure M:Molarity

Raoult's law: $P_A = X_A P_A^\circ$ P_A: partial vapour pressure of A X_A : % mol of A in vapour P_A° : pressure if 100% A

Depression of freezing point: $\Delta T_f = K_f mi$ ΔT_f : change in freezing point K_f : cryoscopic const. mi: mol/kg solved

Colloids: very fine particles in solvents (e.g. Fog, Milk, Smoke, ...)

Oxidation: loss of electrons Reduction: gain of electrons

Oxidation number (ON):

 O^2 , N^2 , ... ON = 0 Na^+ , Ca^{2+} , ... ON = charge 1A metals ON = 1 2A metals ON = 2 O (exept with F) ON = -2 H (exept salt) ON = +1 else -1

F ON = -1 Cl (exept with F,O) ON = -1

Balance Redox reaction:

1) assign ONs 2) write half cell reactions (red & ox.) 3) balance halfcells (first non-O-H, then O, H, then e)

4) combine halfcells (balance nr. of e^{-1}) 5) cancel anything appearing twice H_2OH^+

Voltaic cell: use energy of tranfering e⁻ in redox reaction to creat electric current.

Batteries: simple voltaic cells, made to give steady power output.

fuel cells: fuel and oxidant are fed continouusly.

Anode: (-) high potential, source of e⁻ (ox.) **Cathode**: (+) low potential, dest. of e⁻ (red.)

Standard cell potentials: $E^0_{cell} = E^0_{red}$ (cathode) - E^0_{red} (anode) E^0_{cell} : standard cell voltage E^0_{red} : standard cell potential

Non-standard cell potentials: $E_{cell} = E^0_{cell} - \frac{RT}{nF} \ln(Q)$ $\frac{RT}{F} \approx 0.0592$

E_{cell}: cell voltage n: nr of electrons transferred Q: reaction quotient (K at eq.)

Gibbs energy in e transfer: $\Delta G = -nFE$ n: nr of transfered e F: Faraday const. E: voltage