

Loan Portfolio Risk using ML

By Marcos Dominguez, Data Scientist

Why ML?

How banks benefit as the end-user...

Automation

- Efficiency
- Minimize errors

Accuracy

- Prevent defaults
- Reduce loan loss risk

Cutting-Edge

- Outperform competitors
- Increase portfolio

Prediction pipeline in a nutshell...

Loan Portfolio

Size

~100k loans

Features

770 anonymized, numerical columns

. ._ .

Loan loss: 0-100%

Methodology

Results

Performance Metrics

Classification

- Recall: 0.94
- Precision: 0.29
- ROC AUC: 0.92

Regression

- $R^2: 0.73$
- MAE: 0.29

Actuals vs Predicted

Risky Loans

Actual Predicted

9,783 loans

6,388 loans

9.25% of portfolio

6.06% of portfolio

Loan Loss

Actual Predicted

Avg: 8.62% Min: 1.0% Max: 100.00% Avg: 1.65% Min: 0.43% Max: 34.50%

Probability Density Functions: Actual vs Predicted

^{*}Standardized using log_{10}

Research differences in distributions...

^{*}Standardized using log_{10}

Acknowledgements

Thank you!

Questions? Contact me:

md.ghsd@gmail.com

github.com/mdominguez2010

Appendix

1. Model Confusion Matrix

