MA 503: Homework 7

Dane Johnson

September 30, 2020

Problem 9 Show that if E is a measurable set that each translate E + y, $y \in \mathbb{R}$, of E is also measurable.

Lemma 9A Let $D \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then $(D+x)^c = D^c + x$.

Proof: Let $a \in (D+x)^c$. Then $a \notin D+x$ and so $a \neq d+x$ for any $d \in D$. This means that $a-x \neq d$ for any $d \in D$ and so $a-x \notin D$. Thus $a-x \in D^c$ and so $a \in D^c+x$.

Let $a \in D^c + x$. Then $a = \tilde{d} + x$ for some $\tilde{d} \in D^c$. Thus $a - x = \tilde{d} \in D^c$. Then $a - x \neq d$ for any $d \in D$ which means also $a \neq d + x$ for any $d \in D$. Then it cannot be the case that $a \in D + x$, so $a \in (D + x)^c$.

Lemma 9B Let $C, D \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then $(C \cap D) - x = (C - x) \cap (D - x)$.

Proof: Let $a \in (C \cap D) - x$. Then a = b - x for some $b \in C \cap D$ and so a = b - x for some b such that $b \in C$ and $b \in D$. Thus $a = b - x \in C - x$ and $a = b - x \in D - x$. Therefore, $a \in (C - x) \cap (D - x)$.

Let $a \in (C-x) \cap (D-x)$. Then $a \in C-x$ and $a \in D-x$. Therefore, a = c-x for some $c \in C$ and a = d-x for some $d \in D$. But since c-x = d-x, c = d and so $c = d \in C \cap D$. Thus a = c-x for some $c \in C \cap D$ and therefore $a \in (C \cap D) - x$.

Now let E be a measurable set, $A \subset \mathbb{R}$, and $y \in \mathbb{R}$.

```
\begin{split} m^*[A\cap(E+y)] + m^*[A\cap(E+y)^c] &= m^*[A\cap(E+y)] + m^*[A\cap(E^c+y)] \quad \text{(Lemma 9A)} \\ &= m^*[(A\cap(E+y)) - y] + m^*[(A\cap(E^c+y) - y] \quad \text{(Problem 7)} \\ &= m^*[(A-y)\cap(E+y-y)] + m^*[(A-y)\cap(E^c+y-y)] \quad \text{(Lemma 9B)} \\ &= m^*[(A-y)\cap(E+0)] + m^*[(A-y)\cap(E^c+0)] \\ &= m^*[(A-y)\cap E] + m^*[(A-y)\cap E^c] \\ &= m^*(A-y) \quad \text{(Since $E$ is measurable)} \\ &= m^*(A) \quad \text{(Problem 7)} \; . \end{split}
```

Since A and y were arbitrary, we have shown that for any translate E + y of E, that $m^*(A) = m^*(A \cap (E + y)) + m^*(A \cap (E + y)^c)$ for any set A. Therefore, E + y is measurable.

Alternative Proof

Let $\{I_n\}$ be any cover of E by open intervals. Then $\{I_n+y\}$ is a cover of (E+y) by open intervals since if $x \in E+y$ then $x-y \in E$ so $x-y \in I_n$ for some interval in $\{I_n\}$. Thus $x \in I_n+y$. Also, for any interval $I_n = (a_n, b_n)$, $l(I_n) = b_n - a_n = (b_n+y) - (a_n+y) = l(I_n+y)$. Since $A \cap E \subset E$ and $A \cap (E+y) \subset E+y$, any cover $\{I_n\}$ of E by open intervals will be a cover of $A \cap E$ and since the corresponding cover $\{I_n+y\}$ contains E+y, $A \cap (E+y) \subset \bigcup (I_n+y)$. This means that the values of the sums in the set $\{\sum l(I_n) : (A \cap E) \subset \bigcup I_n\}$ are the same as the values of the sums in the set $\{\sum l(I_n+y) : (A \cap (E+y)) \subset \bigcup (I_n+y)\}$. Therefore, $m^*(A \cap E) = m^*(A \cap (E+y))$. Similarly, $m^*(A \cap E^c) = m^*(A \cap (E+y)^c) = m^*(A \cap (E^c+y))$ (Lemma 9A). By Problem 7, m^* is translation invariant and since E is measurable we have:

 $m^*(A \cap (E+y)) + m^*(A \cap (E+y)^c) = m^*(A \cap E) + m^*(A \cap E^c) = m^*(A)$.

Since A and y were arbitrary this shows that if E is measurable, E + y is measurable.