[그룹빅데이터스쿨] 데이터 분석 in 모빌리티 산업

※ 부제: HDAT-DA 인증대비반

2024.09.25 ~ 09.27

Day 1

01 파이썬 기본 문법 – 데이터 편

학습목표: 파이썬 기본 문법에 대해서 익힌다.

01 큰 그림

- 파이썬 기본 문법 공부
 - 크게 2가지!
 - 명령을 내릴 대상(데이터, 객체)에 관해서
 - 대상에 어떻게 명령을 내릴지

02 파이썬의 데이터

• 명령을 내릴 대상

• 객체(object)라 함

• 처음 공부할 때는 익숙하지 않은 용어는 배제하고 직관적으로 '데이터 ' 라 고 하자!

02 파이썬의 데이터

- 총 4가지를 공부 함
 - 기본 데이터 타입들
 - 변수
 - 각 데이터 타입이 가지고 있는 기능이나 속성
 - 자료구조

03 기본 데이터 타입 - 숫자 데이터 타입

- 정수, 실수
- (복소수 등 더 다양한 데이터 타입이 있지만 처음부터 굳이 그런것들을 모두 알 필요가 없다)
- 쉽다! => 그냥 엑셀이나 계산기 사용하 듯이 사용하면 됨
- 데이터 생성 : 키보드의 숫자키를 입력
- 연산: 사칙연산(우리가 알고 있는)

3.0

3.0

3.0 + 4.0

7.0

03 기본 데이터 타입 - 문자 데이터 타입

- 문자열이라고 부름
- 처음 공부할 때 실수가 가장 많이 나오는 곳이니 정확히 학습!
- 생성: '', "" 안에 들어가면 무조건 문자열

```
'python'
```

```
'python'
```

```
"파이썬"
```

```
'파이썬'
```

```
':)'
```

03 기본 데이터 타입 - 문자 데이터 타입

- 문자열
- 연산 : 더하기 하나만 정의되어 있음
 - 문자열 + 문자열 => 합쳐진 새로운 문자열 생성

```
'파이썬' + ' ' + '안녕!'
```

"파이썬 안녕!"

03 기본 데이터 타입 - 문자 데이터 타입

- 문자열
- 숫자와 연산?! => 기본적으로 다른 데이터 타입과 연산 X
- 예외: 정수 곱하기 => 정수만큼 문자의 바보

```
'3' + 4
                                                '파이썬파이썬파이썬'
                                         Traceback (most recent call last)
TypeError
Cell In[10], line 1
----> 1 '3' + 4
TypeError: can only concatenate str (not "int") to str
```

'파이썬' * 3

'파이썬파이썬파이썬'

04 기본 데이터 타입 - bool 데이터 타입

- True, False
- 참과 거짓을 나타냄

- 대소문자 주의
- 파이썬에서 True는 정수 1, False는 정수 0과 같음

False

05 기본 데이터 타입 - None 타입

• 데이터가 없음을 명시적으로 나타냄

None

• 지금까지 배운 기본 데이터만으로는 생성한 데이터를 재사용할 수가 없음

• 그래서 변수라는 개념이 필요!

• 변수(varable)은 데이터를 재사용하기 위해서 데이터에 이름을 붙인 것

• 이름이 있어야 우리는 그 데이터를 호출(call)할 수 있고, 그 데이터를 호출 할 수 있어야 명령을 내릴 수 있음

• 항상 데이터를 생성 했으면 변수부터 만들어 주자!

• 데이터는 생성하는 데 변수를 안 만드는 실수를 정말 많이 함

```
3 + 4
```

7

```
var = 3 + 4
```

• 데이터를 변수에 할당하기

• 변수명은 길어도 좋은 길고 어떤 데이터가 할당이 되어 있는지 명확히 알 수 있게 만들자

• 변수명 잘 만드는 것이 능력!

• 여러 단어를 조합할 시 띄어쓰기는 쓸 수 없고 파이썬은 보통 _로 연결 ex) data + number => data_number

07 데이터의 기능 및 속성

• 파이썬의 데이터는 눈에 보이는 값만 있는 것이 아니라 **데이터 타입에 따라** 고유한 기능 및 속성이 있다.

• 문자열은 문자열 만의 기능이나 속성, 숫자는 숫자 데이터만의 기능이나 속 성…

• A라는 데이터 타입은 A만의 기능이나 속성값이 있음

07 데이터의 기능 및 속성

• .(dot) 연산자를 이용해서 꺼내 쓴다

주피터 노트북에서 'tab' 버튼을 누르면 자동으로 어떤 속성이나 기능을 꺼내서 사용할 수 있는지 알려 줌

07 데이터의 기능 및 속성

• 내용물은 같은 3 이지만 어떤 데이터 타입으로 사용하느냐에 따라 사용할 수 있는 기능이나 속성이 다르다!

• 어떤 기능이나 속성이 있는지 공부하는 것이 아니라 그때, 그때 검색해서 사용!

08 자료구조

- 데이터는 한번에 하나씩 생성되거나 사용되는 것이 아니라 한번에 여러 개 가 생성되거나 사용된다.
- 예: A회사 주식의 1주일 종가를 가지고 데이터 분석을 한다고 가정해 보자.
- 1주일이면 영업일이 5일이고 종가 데이터는 5개가 생성된다 => 변수 5개 필요
- 일년으로 확장하면?! => 대략 영업일이 250일, 데이터가 250개 => 변수 250개 필요?!

08 자료구조

• 한번에 여러 개의 데이터를 효율적으로 묶어서 관리하는 도구가 필요

• 이것이 자료구조!

• 파이썬을 더 많이 사용하면 정말 다양한 자료구조를 만나게 됨

• 일단 파이썬의 기본 자료구조만 살펴봐도 충분하다.

08 자료구조

• 파이썬 기본 자료구조

• 리스트, 딕셔너리, 튜플, 셋

• 모두 중요하지만 일단 처음 공부할 때는 리스트, 딕셔너리에 집중

• 이 둘은 정말 자주 사용되므로 정확히 공부하자!

09 리스트(List)

- 파이썬의 대표적인 순서있는 자료구조
- 생성 : []
- 데이터 꺼내기 : 순서(번호, 인덱스)

```
ex_list = ['떡복이', '라면', '돈까스', '짜장면']
ex_list[2]
'돈까스'
ex_list[0]
```

'떡복이'

• 프로그래밍에서 순서는 일반적으로 0부터 시작

• 음수도 가능

09 리스트(List)

- 범위로 가져오기(슬라이싱) : 순서있는 자료구조 이기 때문에 범위로도 가져올 수 있음
- []안에 ':' (콜론)을 사용하면 슬라이싱을 사용한 다는 의미
- ':'을 기준으로 앞에는 시작, 뒤에는 끝나는 번호
- 숫자 범위를 사용할 때는 앞에는 포함, 뒤에는 불 포함
- 앞에를 비우면 처음부터, 뒤에를 비우면 마지막 까지

```
ex_list[ 0 : 3]
['떡복이', '라면', '돈까스']
ex_list[ 2 : 4]
['돈까스', '짜장면']
ex_list[ : 2 ]
```

['떡복이', '라면']

09 리스트(List)

- 리스트의 기능들 => 여러가지 있음 🙂
- 앞에서도 말했듯이 공부할 필요 없음!
- 그때 그때 검색하거나 ChatGPT에게 물어봐서 사용
- append 하나만 써보고 넘어가자
 append는 굉장히 특이한 기능인데 무엇이 특이한지 수업시간에 배운 것을 다시 생각해 보자


```
ex_list.append('새로운 메뉴')

ex_list

['떡복이', '라면', '돈까스', '짜장면', '새로운 메뉴']
```

10 딕셔너리(Dictionary)

• 마찬가지로 여러 데이터를 묶어 놓은 개념인데 데이터끼리 '순서'라는 개념이 없음

• 대신 데이터마다 '키(key)'라는 개념을 통하여 서로 구분하고 접근 함

• 생성 : { }

• 데이터 꺼내기 : 키값

```
ex_dict = {'math':90, 'eng':100, 'kor':92}
ex_dict['math']
```

10 딕셔너리(Dictionary)

• 슬라이싱 => 순서가 없으므로 딕셔너리에서는 슬라이싱 x

• 데이터 추가하기

dict[추가하고 싶은 키] = 추가하고 싶은 데이터

```
ex_dict['music'] = 100

ex_dict

ex_dict

{'math': 90, 'eng': 100, 'kor': 92, 'music': 100}
```

02 파이썬 기본 문법 - 명령 내리기 편

학습목표: 파이썬 기본 문법에 대해서 익힌다.

11 파이썬 데이터에 명령 내리기

• 대상(데이터)에 명령을 내려서 일을 시켜 보자!

- 크게 3가지
 - 여사
 - 함수
 - 제어문(반복문, 조건문)

11 파이썬 데이터에 명령 내리기

- 대상(데이터)에 명령을 내려서 일을 시켜 보자!
- 크게 3가지
 - 연간 데이터 타입마다 다르므로 그때, 그때 공부
 - 함수
 - 제어문(반복문, 조건문)

• 기능, 동작

• 파이썬 함수는 이름만 쓰면 동작하지 않음

• 이런 함수가 존재한다고 값으로 나옴(데이터, 객체)

print

```
<function print(*args, sep=' ', end='\n', file=None, flush=False)>
```

• 함수() <= 동작버튼

• ()가 있어야 동작함

```
print

<function print(*args, sep=' ', end='\n', file=None, flush=False)>

print( 3, 4, 5 )

3 4 5
```

• ()

• 동작 버튼

• 필요에 따라 인풋(매개변수라 함)들의 입구가 됨

• 인풋을 정해진 규칙에 맞게 잘 넣어야 동작함

```
sum(1, 2, 3)
TypeError
Cell In[39], line 1
---> 1 sum(1, 2, 3)
TypeError: sum() takes a
sum([1, 2, 3])
```

• 함수의 '시그니처'를 잘 확인하자!

• 공부하거나 외울 필요 없음

• 그때, 그때 검색해서 사용! (자주 사용하는 것은 자연스레 외워짐)

sum?

Signature: sum(iterable, /, start=0)

• 함수의 인풋을 정확히 입력하였다면

• 결과값(정확히 리턴값)을 확인!

• 이 함수를 사용했을 때 결과 값이 있는지 없는지 명확하게 확인하자!

```
print( 6 )
6

sum([1, 2, 3])
```

13 반복문

• DRY: Do not Repeat Yourself

• 반복적인 작업을 컴퓨터에게 시켜야지 우리가 하고 있으면 안된다!

• 똑같은 '패턴 ' 의 코드가 1번 이상 반복되면 반복문으로 바꿔주자!

• 파이썬에는 for문과 while문 2가지 반복문이 있다.

13 반복문

• DRY: Do not Repeat Yourself

• 반복적인 작업을 컴퓨터에게 시켜야지 우리가 하고 있으면 안된다!

• 똑같은 '패턴 ' 의 코드가 1번 이상 반복되면 반복문으로 바꿔주자!

• 파이썬에는 for문과 while문 2가지 반복문이 있다.

• 순서있는 자료구조에서 데이터를 순차적으로 가져와 같은 작업을 반복

for 변수 in 순서있는 자료구조♡ → 반복할 코드

• 순서있는 자료구조에서 데이터를 순차적으로 가져와 같은 작업을 반복

```
var = '철수'
print(var + '입니다')
var = '수현'
print(var + '입니다')
var = '민재'
print(var + '입니다')
철수입니다
수현입니다
민재입니다
```


• 파이썬 for문은 리스트와 궁합이 좋다!

• 리스트가 주어지면 이 리스트를 가지고 for문을 사용해 보자

```
num_list = [10, 11, 12, 13, 7, 8, 9]

for num in num_list:
    print(num)

10
11
12
13
7
8
9
```

• 자주 사용하는 for문 패턴

```
num_list = [10, 11, 12, 13, 7, 8, 9]
result = 0
for num in num_list:
    result = result + num
```

- for문을 사용하기 전에 for문 돌면서 계산될 결과를 저장하기 위해 result라는 변수를 초기화
- result = result + num 연산. 여기서 오른쪽에서 왼쪽으로 해석해야 함 (더하고 다시 덮어쓰고!)
- 계속 반복되면 result 에 num_list의 값들이 모두 더해지게 됨
- 헷갈리는 사람들은 result 가 어떻게 변하는지 순차적으로 종이에 써보자!

- range(시작, 끝) 함수
- 정수로 이루어진 리스트를 만들어 줌(정확히 리스트는 아님)
- for문 사용시 정수로 이루어진 리스트가 필요할 경우가 많은데 range를 이용하면 쉽게 만들어서 사용 가능

15 while문

• 조건이 '참 ' 일 동안만 반복

15 while문

• 조건이 '참 ' 일 동안만 반복

15 while문

- while 문 vs for 문
- 둘 다 같은 작업을 할 수 있다.
- 반복의 범위가 정해진 경우 => for문
- 반복의 범위가 정해지지 않고 바뀔 경우 => while문

```
var = 1
while var < 10:
    print(var)
    var = var + 1

1
2
3
4</pre>
```

5

6

8

9

• 조건에 따라 실행되는 코드를 나누어 줌

• 무조건 **if로 시작**하기 때문에 if문이라고도 함

if 조건:

조건이 참일 시 실행되는 코드

- if 문 하나만 썼을 시 경우의 수는 2개
- 참이라 실행이 되거나
- 참이 아니라 아무것도 실행이 안되고 다음 코드로 넘어 감

```
data = 5
if data < 10:
    print('data < 10')

data < 10

data = 15
if data < 10:</pre>
```

print('data < 10')</pre>

- if 문 하나만 썼을 시 경우의 수는 2개
- 참이라 실행이 되거나
- 참이 아니라 아무것도 실행이 안되고 다음 코드로 넘어 감

```
data = 5
if data < 10:
    print('data < 10')

data < 10

data = 15
if data < 10:
    print('data < 10')

결과 없음
```

• if 문에서 참이 아니면 이어서 다른 조건을 체크 가능

위에서 아래로 순차적으로 체크한다. 하나의 결과가 나오면 해당 조건문은 종료 됨.

• else => 맨 마지막에서 여집합일 경우 실행

else:

위의 조건 빼고 나머지 경우

위에서 아래로 순차적으로 체크한다. 하나의 결과가 나오면 해당 조건문은 종료 됨.

03 파이썬 기본 문법 - 함수, 모듈

학습목표: 파이썬 기본 문법에 대해서 익힌다.

17 함수

• 함수를 사용하는 이유

• 코드를 재사용하기 위해서 코드에 이름을 붙여 줌!

- 함수를 단순히 복사 붙여 넣기하여 사용시 꼭 발생하는 문제점
 - ▶ 변수명 중복
 - ▶ 변수명 통일 안됨

17 함수

• 함수 정의문 문법

아직 값이 확정되지 않은 변수들 함수 호출 시 입력해 주어야 함

def 함수이름(<mark>매개변수들</mark>): 재사용하고 싶은 코드 return 데이터

> 함수 사용 후 가지고 와서 사용할 값

17 함수

- 많이들 하는 착각!
- 함수를 정의하는 것은 설계도를 만드는 것 뿐이지 코드를 동작 시킨 것은 아님!
- 정의한 함수를 호출해야 그때서야 코드가 동작 함!

함수 정의! 코드가 동작한 것이 아님

```
def get_average( number_list ):
    result = 0
    for number in number_list:
        result = result + number
    avg = result / len(number_list)
    return avg
```

```
get_average([3, 2, 1, 4])
2.5
```

```
함수 호출!
number_list=[3, 2, 1, 4]가 되어
함수 내부의 코드가 동작함
```

18 모듈

• 함수를 모아 놓은 도구 상자

(사실 함수 말고 다른 것도 있지만 처음 공부할 때는 함수를 모아 놓았다고 생각해도 무방하다.)

- import 모듈
 - 특정 모듈을 통째로 가져 옴
 - 매번 코드에 '모듈.함수'와 같이 그때, 그때 꺼내서 사용
- from 모듈 import 함수
 - 특정 모듈에서 특정 함수 하나를 콕 찝어서 가져옴
 - 사용 시 함수 이름만 호출하면 됨

18 모듈

import random

random.randrange(1, 11)

10

random 모듈 통째로 가져옴 randrange 함수 사용시 매번 random.randrange라고 꺼내야 함 from random import randrange

randrange(1, 11)

random 모듈에서 randrange 함수 하나만 꺼내옴. randrange 함수를 가져 온 개념이니 함수만 단독 사용가능

04 파이썬과 ChatGPT

학습목표: ChatGPT를 이용하여 파이썬을 활용한다.

19 ChatGPT의 일반적인 활용법

- 구체적으로
 - 문제를 명확하게
 - 작게 세분화하여 부분 => 전체 정복

- 문맥 제공
 - 롤(role) 지정
 - 관점이나 배경지식 제공
- 반복적으로
 - 솔루션을 점차 발전 시켜 간다는 느낌으로

• 구체적으로

• 문제를 작게 세분화 하자! (가장 중요)

• 문맥 제공

• 앞 뒤 코드(정보)를 제공

• 가장 좋은 방법은 함수의 형태로

• 문맥 제공

• 앞 뒤 코드(정보)를 제공

• 가장 좋은 방법은 함수의 형태로

• 반복적으로

• ChatGPT 생성 코드를 실행해 보고 계속해서 조정해 나간다 (이것은 신탁이 아니다! 믿을 것이 아니라 계속 의심해 봐야 함. 대졸 신입 인턴과 일하는 느낌)

• 반복적으로

• 코드를 그대로 올려서 에러나 잘못된 부분 체크

• 코드에 주석달기

• 복잡한 코드를 풀어서 작성

05 파이썬과 데이터분석 입문

학습목표 : 파이썬 데이터 분석의 기본을 익힌다.

21 Python 데이터 분석 3형제

- Pandas
 - ✔데이터 분석에 적합한 새로운 자료구조 2개

- Numpy
 - ✓ 선형대수 연산

- Matpolib(+seaborn)
 - ✔데이터 시각화

22 Pandas - Series

- pandas => 새로운 자료구조 2개 제공
 (list, dict은 데이터 분석에는 적합하지 않음 <= 왜 그런지 고민해 보자)
- Series
- DataFrame

22 Pandas - Series

• 1차원 자료구조

- 구성요소 2개
 - index
 - values
- 순서 있음

• 데이터 꺼내기

• 인덱스

• 순서(경고가 나올 수 있지만 현시점에서는 무시)

• 슬라이싱

```
math_sr['A']
```

90

```
math_sr[0]
```

90

```
math_sr[ : 3 ]
```

A 90

B 92

C 91

dtype: int64

• 시리즈의 기능들

• 무수히 많음 => 그때, 그때 검색해서 사용

• 예시 : 정렬하기 (sort_values)

```
math_sr.sort_values()
     88
     89
     90
     91
     92
dtype: int64
```

math_sr.sort_values(ascending=False)

```
В
     92
     91
     90
     89
     88
dtype: int64
```

- 필터링
 - 조건에 맞는 데이터만 가져오기
- series[조건]
- series[(조건1)&(조건2)]
- series[(조건1) | (조건2)]

```
math_sr[ math_sr > 90 ]
```

B 92
C 91
dtype: int64

조건은 꼭 컬럼(열, 시리즈)를 기준으로!!!!

22 Pandas - Series

• 시리즈의 연산1

• 같은 인덱스의 데이터끼리 알아서 맞춰서 연산 됨

• 집합적 연산

• 굉장히 강력한 기능이다!

math_sr		eng_	eng_sr	
Α	90	А	88	
В	92	В	89	
С	91	С	90	
D	89	D	92	
E	88	Е	89	
dtype: int64		dtvr	oe: int64	

math_sr + eng_sr

A 178
B 181
C 181
D 181
E 177
dtype: int64

• 오른쪽 예제는 각 시리즈의 데이터가 숫자이기 때문에 사칙연산이 가능

22 Pandas - Series

- 시리즈의 연산2
- 시리즈와 값 하나 연산
- 시리즈의 모든 값이 개별적으로 값 하나와 연산 됨

```
math_sr + 100
```

A 190

B 192

C 191

D 189

E 188

dtype: int64

• 2차원 자료구조

• 구성요소 3개 : columns, indexs, values

• 순서 있음 (기본적으로 행방향)

- 데이터 꺼내기
- 기본적으로 column 기준
- 컬럼 하나 => 열 한줄 = Series
- 컬럼 여러 개 => 2차원 = DataFrame

```
grade_df['math']

A 90
B 92
C 91
D 89
E 88
Name: math, dtype: int64
```

grade_df[[ˈ	'math',	'kor']]

	math	kor
Α	90	90
В	92	91
C	91	89
D	89	90
Ε	88	91

• 데이터 꺼내기

• 인덱스 기준으로 가져오기 => .loc[인덱스]

```
grade_df.loc['A']

math 90
kor 90
eng 88
Name: A, dtype: int64
```

<pre>grade_df.loc[['A', 'C']]</pre>					
	math	kor	eng		
Α	90	90	88		
С	91	89	90		

• 데이터 꺼내기

• 순서를 기준으로 가져오기 => .iloc[행순서]

```
math 90
kor 90
eng 88
Name: A, dtype: int64
```

91

grade_df.iloc[[0, 2]]

89

90

• 슬라이싱

• .iloc[행시작:행마지막+1 , 열시작: 열마지막+1]

- DataFrame의 기능들
- 무수히 많음 => 그때, 그때 검색해서 사용
- 예시 : 정렬하기 (sort_values)
- 이제 어떤 컬럼을 기준으로 할 것인지 입력!!

	math	kor	eng
В	92	91	89
E	88	91	89
Α	90	90	88
D	89	90	92
С	91	89	90

- 필터링
 - 조건에 맞는 데이터만 가져오기
- dataframe[조건]
- dataframe[(조건1)&(조건2)]
- dataframe[(조건1) | (조건2)]

```
grade_df[ (grade_df['kor']>=90) & (grade_df['eng']>=90) ]

math kor eng

D 89 90 92
```


• 컬럼(속성) 추가하기

• dataframe의 속성을 이용하여 새로운 속성을 계산하고 이를 추가하기

```
지리즈의 연산 => 시리즈

grade_df['tota' rade_df['math'] + grade_df['eng'] + grade_df['kor']

total이란 컬럼 만들고 저장
grade_df['total'] 컬럼 => 시리즈 컬럼 => 시리즈

A 268
```

B 272 C 270 D 271 E 268

Name: total, dtype: int64

06 파이썬과 데이터 시각화

학습목표: 파이썬을 이용하여 적절한 데이터 시각화를 수행한다.

데이터 시각화 기본

```
import matplotlib.pyplot as plt
# 그래프 생성
plt.figure(figsize=(10, 6)) # 그래프 크기 지정
plt.plot(x, y, label='sin(x)', color='blue', linestyle='-', linewidth=2, marker='o', markerfacecolor='red', markersize=8)
# 제목 및 라벨 추가
plt.title('Sine Wave Plot', fontsize=18, fontweight='bold', color='navy')
plt.xlabel('X axis', fontsize=14, color='green')
plt.ylabel('Y axis', fontsize=14, color='green')
# 범례 표시
plt.legend()
# 그리드 추가
plt.grid(True)
# 축의 범위 지정
plt.xlim(0, 10)
plt.ylim(-1.5, 1.5)
# 주석 추가
plt.annotate('Start Point', xy=(0, 0), xytext=(1, -0.7),
            arrowprops=dict(facecolor='black', shrink=0.05))
# 축의 배경 색상 변경
ax = plt.gca() # 현재 축 가져오기
ax.set_facecolor('lightgray') # 배경 색상 설정
# 틱 라벨 설정
plt.xticks(ticks=np.arange(0, 11, 1), labels=[f'{i} pi' for i in range(11)])
plt.yticks(color='blue')
# 플롯 표시
plt.show()
```

일일이 다 코드로 넣어줘야 함!

24 데이터 시각화 기본

• 기본 폼과 몇 가지 자주 사용하는 코드만 공부

• 더욱 이뻐지게 하는 옵션들은 chatGPT를 이용!

```
      plt.figure()
      시작, 그림 크기 등을 조정

      선, 막대 그래프 등 그래프 그리는 코드

      plt.show()
      마침표, 모든 옵션이 여기서 반영되고 끝남
```

25 데이터 시각화의 목적

• 우리는 왜 데이터 시각화를 하는가?!

• 우리 스스로 데이터를 이해하기 위해서!

1.4

1.7

1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 단순 숫자의 나열 1.5 이해할 수 없음 1.6 1.4 1.1 1.2 1.5 1.3 1.4 1.7 1.5 1.7 1.5 1.0

시각화를 해보면 어떤 분포(특징)을 가지고 있는지 단번에 이해 됨

25 데이터 시각화의 목적

• 데이터 타입에 따른 적절한 시각화가 필요!

• 데이터 타입은 단순하게 딱 2가지만 생각해 보자.

연속된 숫	자데이터	카테고리	의 데이터
0	22.0	0	man
1	38.0	1	woman
		2	woman
2	26.0	3	woman
3	35.0	4	man
4	35.0		
	• • •	886	man
886	27.0	887	woman
887	19.0		
888	NaN	888	woman
889	26.0	889	man
890	32.0	890	man

• 연속된 숫자 데이터

• 히스토그램 => 데이터의 분포를 본다

• 히스토그램은 연속된 숫자 데이터를 동일 구간으로 n개 나누어서 그 구간 안에 데이터가 몇 개가 있는지 막대그래프로 보여준다.

이를 통하여 숫자 데이터가 어디에 몰려있는지, 어떻게 퍼져 있는지 등을 알수 있다.

• 연속된 숫자 데이터

• 히스토그램 => 데이터의 분포를 본다

• 연속된 숫자 데이터

• 카테고리 데이터

• countplot => 카테고리별 데이터의 개수를 본다

• seaborn의 countplot을 이용하면 카테고리별로 데이터의 개수를 막대그 래프로 비교를 해 준다.

• 카테고리 데이터

```
import seaborn as snsplt.figure()sns.countplot( data=데이터프레임 x=카테고리 데이터 컬럼명 )plt.show()seaborn은 df를 통째로 넣고 그 중에서 시각화 할 컬럼을 고르는 구조
```

• 카테고리 데이터

• 카테고리 * 연속된 숫자 데이터

• boxplot, violinplot => 카테고리별 연속된 숫자 데이터의 분포를 본다

• 카테고리 * 연속된 숫자 데이터

```
plt.figure()
sns.boxplot( data=데이터프레임, x=카테고리 데이터 컬럼명, y=연속된숫자 데이터 컬럼명 )
plt.show()
```

• 연속된 숫자 데이터 * 연속된 숫자 데이터

• scatter=> 산포도. 두 데이터가 만나는 지점에 표시를 하여 두 데이터가 어떻게 퍼져있는지 살펴본다

• 연속된 숫자 데이터 * 연속된 숫자 데이터

```
plt.figure()
plt.scatter(x=x축에 들어갈 1차원 데이터, y=y축에 들어갈 1차원 데이터)
plt.show()
```

학습목표: ChatGPT를 활용하여 데이터 분석을 수행한다.

• 데이터 분석이란 데이터에 숨겨진 패턴과 인사이트를 추론해내는 과정이다. 파이썬과 ChatGPT는 추론해내는 과정에서 사용하는 도구(tool)일 뿐이지 본질은 아님!

파이	썬
----	---

Ch	a	t(5	P.

ID	NAME	CLASS	MARK	GENDER
1	John Deo	Four	75	female
2	Max Ruin	Three	85	male
3	Arnold	Three	55	male
4	Krish Star	Four	60	female
5	John Mike	Four	60	female
6	Alex John	Four	55	male
7	My John Rob	Five	78	male
8	Asruid	Five	85	male
9	Tes Qry	Six	78	male
10	Big John	Four	55	female

• 파이썬 => table등을 조정할 수 있는 tool

• ChatGPT => 파이썬, table을 조정할 수 있는 tool (meta tool)

• 본질은 앞의 파이썬 + ChatGPT와 다를것이 없음

• 데이터 분석에서 추가적인 Tip

• 문맥 전달 => 내가 지금 분석하는 table의 형태를 알려줘야 함

dtypes를 이용하여 컬럼명과 컬럼 별 데이터 타입을 전달

titanic df.dtypes

survived int64 pclass int64 object sex float64 age sibsp int64 parch int64 fare float64 embarked object class category who object bool adult male deck category embark_town object alive object bool alone

• 데이터 분석에서 추가적인 Tip

• 데이터 시각화는 뼈대만 만들고 나머지 꾸미는 것은 ChatGPT에게! (뼈대는 건드리지 말고 꾸미는 코드만 추가해 달라 한다)

08 머신러닝과 파이썬 기초

학습목표 : 머신러닝의 기초에 대해서 학습한다.

28 머신러닝의 직관

x, y축 어디에 점이 찍히는지 알아내야 한다고 가정해 보자

28 머신러닝의 직관

- 머신러닝의 예측이라는 것은 주어진 데이터를 일반화하는 것과 같다.
- 주어진 데이터에서 어떤 규칙을 찾아내고 이를 일반화하여 새로운 데이터에 적용하여 결과값을 얻는 것이다.

28 머신러닝 vs 딥러닝

28 머신러닝 모델의 종류

- 지도학습(Supervised Learning)
 - 훈련데이터(train data set)에 타깃(target)또는 레이블(label)이라고 불리는 정답이 포함된 학습방 식
 - 훈련이 끝나면 정답이 포함되지 않은 새로운 데이터 셋(test data set)을 사용하여 정답을 예측
- 비지도학습(Unsupervised Learning)
 - 훈련데이터(train data set)가 타깃(target)또는 레이블(label)이라고 불리는 정답이 포함하지 않음
 - 훈련데이터에 별다른 가이드라인이 없어 기계학습모델이 스스로 학습하여 결과를 만듦(=> 이 결과 가 무엇인지 해석의 문제가 존재)

28 머신러닝 모델의 종류

- 지도학습(Supervised Learning)
 - 분류 (classification) 어떤 집단에 속하는 지 판별해 내는 것
 - 정답이 카테고리 데이터
 - 회귀 (regression) 주어진 값에 대한 결과값을 예측하는 것
 - 정답이 연속된 숫자 데이터

29 파이썬으로 머신러닝 실습하기 - scikit-learn

- 파이썬 머신러닝 모듈인 사이킷런(scikit-learn)을 이용한다.
- 매우 잘 만들어진 모듈로 어떤 머신러닝 모델을 사용하든지 구조가 같다!
- 모델 생성(모델 객체를 만든다. 이 때 만들어진 모델은 아직 데이터에 독립적인 순수한 백지같은 모델)
- 데이터에 훈련(모든 모델에는 fit 함수가 있어서 이를 이용하여 모델을 데이터에 훈련 시킨다)
- 예측 및 검증(fit함수를 이용하여 특정 데이터를 가지고 훈련된 모델은 predict 함수를 이용하여 예측하거 나 score 함수를 이용하여 검증할 수 있다)

29 파이썬으로 머신러닝 실습하기 - scikit-learn

모듈 설명

sklearn.datasets	내장된 예제 데이터 세트
sklearn.preprocessing	다양한 데이터 전처리 기능 제공 (변환, 정규화, 스케일링 등)
sklearn.feature_selection	특징(feature)를 선택할 수 있는 기능 제공
sklearn.feature_extraction	특징(feature) 추출에 사용
sklearn.decomposition	차원 축소 관련 알고리즘 지원 (PCA, NMF, Truncated SVD 등)
sklearn.model_selection	교차 검증을 위해 데이터를 학습/테스트용으로 분리, 최적 파라미터를 추출하는 API 제공 (GridSearch 등)
sklearn.metrics	분류, 회귀, 클러스터링, Pairwise에 대한 다양한 성능 측정 방법 제공 (Accuracy, Precision, Recall, ROC-AUC, RMSE 등)
sklearn.pipeline	특징 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 묶어서 실행할 수 있는 유틸리티 제공
sklearn.linear_model	선형 회귀, 릿지(Ridge), 라쏘(Lasso), 로지스틱 회귀 등 회귀 관련 알고리즘과 SGD(Stochastic Gradient Descent) 알고리즘 제공
sklearn.svm	서포트 벡터 머신 알고리즘 제공
sklearn.neighbors	최근접 이웃 알고리즘 제공 (k-NN 등)
sklearn.naive_bayes	나이브 베이즈 알고리즘 제공 (가우시안 NB, 다항 분포 NB 등)
sklearn.tree	의사 결정 트리 알고리즘 제공
sklearn.ensemble	앙상블 알고리즘 제공 (Random Forest, AdaBoost, GradientBoost 등)
sklearn.cluster	비지도 클러스터링 알고리즘 제공 (k-Means, 계층형 클러스터링, DBSCAN 등)

Day 2

09 분류모델

학습목표 : 머신러닝 분류모델에 대해서 학습한다

30 KNN 모델

- 분류하고자 하는 샘플에 대한 k개의 근접한 이웃(가장 가까운 데이터)을 찾음
- 다수결 투표 방식으로 분류 레이블을 할당함

30 KNN 모델 장점

- 이해하기 쉬움: KNN은 매우 직관적인 모델로, 새로운 데이터 포인트에 대한 예측을 이해하고 설명하기가 비교적 쉬움
- 훈련 단계가 필요 없음: KNN은 훈련 데이터를 직접 사용하기 때문에 별도의 훈련 과정이 필요 없음. 이를 '게으른 학습기(lazy learner)' 라고 함
- 비선형 데이터에도 효과적: KNN은 데이터의 분포에 대한 가정이 없기 때문에 비선형 데이터에도 잘 작동

30 KNN 모델 단점

- 규모가 큰 데이터셋에 비효율적: KNN은 예측을 위해 전체 데이터셋을 검색하므로 데이터셋의 크기가 클수록 계산 비용이 크게 증가
- 차원의 저주: 차원이 높아질수록 각 차원에서의 데이터 포인트 간 거리가 증가하여, KNN의 성능이 저하될 수 있음 (feature 개수 컨트롤 중요!)
- 이상치에 민감: KNN은 이웃 데이터 포인트에 크게 의존하기 때문에, 이상치(outlier)가 포함된 데이터셋 에서는 성능이 저하될 수 있음
- 특성의 스케일에 민감: 서로 다른 스케일을 가진 특성이 존재하면, 거리 계산에 영향을 미쳐 결과적으로 모델의 성능에 부정적인 영향을 줄 수 있음

30 KNN 모델 주의점

- 스케일링: 모든 특성이 동일한 스케일을 가지도록 정규화나 표준화를 수행해야 함
- 불필요한 특성 제거: 관련성이 낮은 특성은 모델의 성능을 저하시킬 수 있으므로 주의 깊게 선택하거나 제 거
- 차원 축소: 데이터의 차원이 매우 높은 경우 차원 축소 기법을 적용하여 차원의 저주를 완화할 수 있음

- 결정트리는 매우 쉽고, 스케일링이나 정규화 등 사전 데이터 가공의 영향이 적음
- 예측 성능을 향상시키기 위해 복잡한 규칙 구조를 가져야 하고 이로 인한 과적합이 발생, 예측 성능 떨어 질수도 있음

- 복잡하고 엄격한 학습 규칙으로 인한 과적합 사례
- 결정트리의 max depth를 제한하거나, 말단 노드의 데이터 수를 완화하는 방식으로 해결

- 지니 불순도
- 주어진 데이터 집합의 불확실성을 측정
- 지니 불순도가 낮을수록 분할 후의 집합이 더 순수해진다는 의미

$$Gini = G_{(A)} = 1 - \sum_{i=1}^{N} (p_i)^2$$

• p는 특정 카테고리에 속할 확률, N은 카테고리의 갯수

• 여성 (5)
• 심성 (5)
• 심성 (5)

$$G = /- (\frac{5}{70})^2 - (\frac{5}{70})^2 = 0.5$$

$$G(48) = /- (5)^2 - (\frac{1}{70})^2 = 0.208$$

$$G(49) = /- (0)^2 - (4)^2 = 0$$

$$G(49) = \frac{6}{70} \times 0.208 + \frac{4}{70} \times 0 = 0.760$$

$$G(49) = \frac{6}{70} \times 0.208 + \frac{4}{70} \times 0 = 0.333$$

31 결정 트리 장점

- 이해와 해석이 쉬움: 결정 트리는 규칙 기반의 접근 방식을 사용하여 결과를 쉽게 이해하고 해석할 수 있음
- 데이터 전처리 요구가 적음: 결정 트리는 다른 많은 머신러닝 모델과 달리, 특성 스케일링이나 정규화가 필요하지 않음
- 비선형 관계 모델링 가능: 결정 트리는 데이터의 비선형 패턴을 포착할 수 있어 복잡한 데이터 구조를 모델링하는 데 유용
- 결측치 처리 용이: 결정 트리는 데이터 내의 결측치를 자체적으로 다룰 수 있는 기능을 가지고 있음

31 결정 트리 단점

- 과적합(Overfitting) 경향: 결정 트리는 훈련 데이터에 대해 너무 자세하게 학습하면서, 새로운 데이터에 대한 일반화 성능이 떨어질 수 있음
- 안정성 부족: 작은 데이터 변화에도 트리 구조가 크게 바뀔 수 있어, 모델의 예측이 불안정
- 균형 잡히지 않은 트리 생성: 일부 클래스가 다른 클래스보다 많은 경우 불균형한 트리가 만들어지고, 일 방적인 결정 경로가 형성될 수 있음

31 결정 트리 주의점

- 가지치기(Pruning) 사용: 과적합을 방지하기 위해 트리의 깊이나 리프 노드의 최소 데이터 수를 제한하는 가지치기 기법을 사용. 사이킷런에서는 max_depth, min_samples_split, min_samples_leaf 등의 매 개변수로 이를 조절할 수 있음
- 데이터 균형 조절: 불균형한 데이터셋에서는 모델의 성능이 저하될 수 있으므로, 적절한 샘플링 기법을 사용하여 균형을 맞춰주는 것이 좋음
- 앙상블 기법 고려: 단일 결정 트리의 불안정성과 과적합 문제를 완화하기 위해 랜덤 포레스트나 그래디언 트 부스팅 같은 앙상블 기법을 사용할 수 있음

32 앙상블 학습 (Ensemble Learning)

- 여러 개의 분류기를 생성하고 이를 결합하여 보다 정확한 최종 예측을 도출하는 기법
- 집단지성 느낌
- 크게 보팅(voting), 배깅(bagging), 부스팅(boosting)의 방법이 있음

32 앙상블 학습 (Ensemble Learning)

- 여러 개의 분류기를 생성하고 이를 결합하여 보다 정확한 최종 예측을 도출하는 기법
- 집단지성 느낌
- 크게 보팅(voting), 배깅(bagging), 부스팅(boosting)의 방법이 있음

32 앙상블 학습 (Ensemble Learning)

- 단일 모델의 약점을 다수의 모델로 보완
- 단일 모델로는 성능이 떨어질지는 모르나 다양한 모델을 섞어서 전체 성능의 향상을 도모
- 많은 경우 결정 트리 모델을 이용하여 앙상블 모델을 구성
- 결정 트리의 단점인 오버피팅 문제를 해결하며 장점인 직관적 분류 기준은 강화 됨

32 보팅과 배깅

- 여러 모델들의 투표를 통해 최종 예측 결과를 결정
- 보팅 => 서로 다른 분류 모델

32 하드보팅 & 소프트 보팅

- 하드보팅 => 다수결
- 소프트 보팅 => 각 라벨이 될 확률 평균
- 일반적으로 소프트 보팅의 성능이 더 우수하다고 알려져 있음

33 랜덤 포레스트

• 매 노드마다 사용할 피쳐를 랜덤하게 선택 => 노드에 사용할 피쳐들을 무차별하게 선택함으로 써 오버피팅의 문제를 피해가고 다양한 정보를 탐험 가능

33 랜덤 포레스트

• 부트스트랩

• 주어진 표본에서 복원추출하여 표본을 재추출

주어진 데이터 셋

1회차 → 3 6 1 3 2 1 2 2회차 → 3 3 4 3 5 2 7 3회차 → 1 5 3 4 1 2 6 4회차 → 7 3 5 7 7 1 1

5회차 →

resample을 통해 재구성한 데이터 셋

33 랜덤포레스트

- 샘플링을 여러 번 하지 못하는 현실에서 여러 번 추출할 수 있었을 샘플의 estimator값 분포가 어땠을지 논리적으로 추정할 수 있게 해준다
- 평균과 같이 잘 알려진 estimator들은 굳이 쓸 필요가 없지만 표본 median의 분포를 알고 싶다면?!
- 평균 이외의 estimator의 표준오차를 구하려면?!
- 부트스트래핑!!! => 연산력만 받쳐준다면. 요즘은 컴퓨터가 발달해서!

33 랜덤포레스트

• 랜덤 포레스트에서 부트스트래핑은 각 나무에 사용할 데이터를 똑같은 데이터가 아니라 부트스트래핑으로 재구성한다는 데 있다

33 랜덤포레스트

- 결국 랜덤 포레스트의 핵심은 다양성!
- 각 나무가 사용하는 feature와
- 각 나무에 사용되는 데이터 샘플을 다르게 함으로써
- 최대한 다양한(상관관계가 낮은) 나무를 많이 생성!

33 랜덤포레스트 장점

- 성능: 랜덤 포레스트는 일반적으로 결정 트리보다 높은 정확도를 제공. 여러 개의 결정 트리가 오버피팅의 영향을 상쇄하며, 다양한 데이터 샘플과 특성을 사용하여 학습하기 때문.
- 오버피팅 감소: 개별 결정 트리가 훈련 데이터에 과적합되는 경향이 있지만, 랜덤 포레스트는 여러 트리의 예측을 평균 내어 이 문제를 크게 줄임.
- 특성의 중요도 평가: 랜덤 포레스트는 각 특성의 중요도를 평가할 수 있어, 어떤 특성이 결과에 가장 큰 영향을 미치는지 이해하는 데 도움을 줌.
- 병렬 처리 용이: 각각의 트리는 독립적으로 학습되므로, 랜덤 포레스트는 병렬 처리를 통해 효율적으로 학습할 수 있음.

33 랜덤포레스트 단점

- 모델 해석의 어려움: 단일 결정 트리보다 해석하기 어려움. 수백 개의 트리로 구성되어 있기 때문.
- 훈련 시간: 큰 데이터셋에서는 많은 수의 트리를 생성하고 학습시키기 때문에 상대적으로 많은 계산 자원과 시간이 소요
- 메모리 사용: 많은 수의 트리를 저장해야 하기 때문에 상대적으로 많은 메모리를 사용

33 랜덤포레스트 주의점

- 트리의 수 설정: n_estimators 매개변수를 통해 트리의 수를 설정할 수 있는데, 트리 수가 많을수록 일반 적으로 모델의 성능은 향상되지만, 계산 비용과 시간도 증가. 적절한 균형을 찾는 것이 중요.
- 과적합 방지: 랜덤 포레스트는 자체적으로 과적합에 강하지만, 매우 노이즈가 많은 데이터셋에서는 여전 히 과적합이 발생할 수 있음. 적절한 매개변수 조정이 필요.
- 특성 선택: 모든 특성을 사용할 필요는 없으며, 불필요하거나 중복되는 특성은 제거하는 것이 좋음. 특히 특성의 수가 많을 경우, 랜덤 포레스트의 성능에 부정적인 영향을 미칠 수 있음

34 부스팅

- 여러 개의 모델이 순차적으로 학습을 수행 (랜덤 포레스트는 병렬적)
- 특이한 점은 앞에서 학습한 모델이 틀린 데이터에 더욱 가중치를 줘서 다음 모델이 이 부분을 더욱 집중하 게 함
- 계속해서 모델에 가중치를 부스팅하면서 학습을 진행하기에 부스팅 방식으로 불림

34 부스팅 장점

- 성능: XGBoost는 높은 예측 성능을 제공하며, 많은 머신러닝 경진대회에서 우승 모델로 자주 사용 됨.
- 스케일러빌리티와 속도: XGBoost는 병렬 처리와 분산 컴퓨팅을 지원하여 대용량 데이터셋을 빠르게 처리할 수 있음
- 정규화: 내장된 정규화는 과적합을 방지하는 데 도움
- 유연성: 다양한 손실 함수를 지원하며, 사용자 정의 손실 함수도 추가할 수 있음
- 결측치 자동 처리: XGBoost는 내부적으로 결측치를 처리할 수 있는 기능을 가지고 있어 별도의 전처리가 필요하지 않음

34 부스팅 단점

- 복잡성: 매개변수가 많아 조정이 까다롭고, 모델의 튜닝에 시간이 많이 소요될 수 있음
- 과적합: 매개변수가 잘못 설정되면 쉽게 과적합될 수 있음
- 해석의 어려움: 부스팅 트리 모델은 해석하기 어렵고, 결정 트리나 선형 모델처럼 직관적이지 않음

34 부스팅 주의점

- 매개변수 조정: learning_rate, max_depth, n_estimators, subsample, colsample_bytree 등의 매 개변수를 적절히 조정해야 함. 이들 각각은 학습 속도와 모델의 복잡성에 영향을 미치며, 잘못 설정하면 과적합이나 학습 부족이 발생할 수 있음
- 교차 검증 사용: 과적합을 피하기 위해 교차 검증을 사용하고, 다양한 데이터 분할에 대해 모델의 성능을 평가해야 함
- 성능 평가: 각 부스팅 스테이지 후 모델의 성능을 평가하고, 필요에 따라 조기 종료(early stopping)를 사용하여 더 이상의 성능향상이 없을 때 학습을 중단시키는 것이 좋음.

Day 3

10 회귀모델

학습목표 : 머신러닝 회귀모델에 대해서 학습한다

35 회귀분석

• 회귀분석(regression analysis)은 하나의 변수와 다른 여러 변수간의 인과관계를 밝히기 위한 통계적 기법

• 아마도 무언가를 예측할 때 가장 많이 사용되는 모델일 것이다.

• 특히나 이렇게 인과관계를 대놓고 탐구하는 모델은 드물다!

• 잘 익히자(응)

• 선형 회귀분석은 두 (혹은 더 많은) 변수 간의 인과관계를 선형적으로 근사한 모델이다

$$Y=F(x_1,x_2,...,x_n)$$

Dependent

Independent

- 종속변수 Y는 독립변수 xn의 함수이다.
- 선형회귀는 이 함수가 선형함수!

- 회귀 평가 지표
- MAE (Mean Absolute Error) 평균절대오차

$$MAE = \frac{\sum |y - \hat{y}|}{n}$$

- 회귀 평가 지표
- MSE (Mean Squared Error) 평균제곱오차

$$MSE = rac{\sum (y - \hat{y})^2}{n}$$

- 회귀 평가 지표
- RMSE (Root Mean Squared Error) 평균오차

$$RMSE = \sqrt{rac{\sum (y - \hat{y})^2}{n}}$$

- 회귀 평가 지표
- 보통 RMSE나 adjusted R-square를 이용
- 사이킷런에는 MAE, MSE, R2이 있다
- RMSE는 MSE가지고 직접 계산해야 함

- 지금까지 회귀분석을 살펴보면 주어진 데이터를 SSR를 최대한 작게 fitting하는 모델을 찾는 것에 목적을 두었다.
- 즉, 실제 값과 예측 값의 차이를 최소화하는 것만 고려
- 하지만 이렇게 되면 독립변수가 많으면 무조건 좋아지거나, 주어진 데이터에만 맞추기 위하여 회귀계수가 무분별하게 커지는 문제가 발생
- 즉, 오버피팅의 문제가 발생!

- 이러한 문제를 해결하기 위해…
- 기존의 규제 => RSS
- 규제항을 추가 => RSS + a * f(B)
- 여기서 B는 회귀계수, f는 회귀계수 벡터의 길이를 구하는 함수 (절대값을 쓰거나 제곱을 하거나)

- 규제항: RSS + a * f(B)
- 오차항 + 회귀계수 페널티
- 즉, 이제는 단순히 오차를 줄이는 것뿐만 아니라 회귀계수의 크기를 줄이거나 개수를 줄여야 함
- 여기서 a는 위의 규제항에서 회귀계수 페널티에 어느정도 영향력을 줄 것인지 조정하는 매개변수

- 규제항: RSS + a * f(B)
- 오차항 + 회귀계수 페널티
- a가 0이면 => 일반 회귀분석과 같아짐 (회귀계수에 대한 페널티가 없음)
- a가 매우 크면 => 회귀계수에 대한 페널티가 커져 거의 B를 0에 가깝게 학습
- (예측값이 target값의 평균 정도밖에 안 됨)
- 적절한 a를 선택 => 언더피팅과 오버피팅 조절

- 회귀계수에 대한 페널티를 회귀계수 벡터를 제곱하는 방식으로 구함
- 아래 규제를 최소화하는 회귀 모델을 Ridge Regression이라 한다

$$\sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$$

• 회귀계수에 대한 페널티를 회귀계수 벡터에 절대값을 취하는 방식으로 구함

• 아래 규제를 최소화하는 회귀 모델을 Lasso Regression이라 한다

$$\text{Minimize: } \sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}\beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j|$$

Figure 3.12: Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

- L1 규제와 L2 규제를 조합하여 규제함 (Lasso와 Ridge의 하이브리드 모델)
- 아래 규제를 최소화하는 회귀 모델을 Elastic-Net 이라 한다

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda_1 \sum_{j=1}^{p} \beta_j^2 + \lambda_2 \sum_{j=1}^{p} |\beta_j|$$

- L1 규제와 L2 규제를 조합하여 규제함 (Lasso와 Ridge의 하이브리드 모델)
- 아무리 ML 커뮤니티가 섞는 것을 좋아한다지만 이렇게 섞는다고 좋은가?!
- Elastic Net은 확실히 좋아진다!
- 가장 큰 장점은 다중공선성 문제에 강력!

- Elastic-Net 은 단순한 두 모델을 섞은 모델이 아니라 이렇게 두 규제를 동시에 사용함으로써 변수간 grouping effect라는 엄청난 이점을 제공하게 된다
- 변수간 상관관계가 큰 변수들을 하나로 그룹핑하여, 중요도가 높은 그룹은 회귀계수를 높게 주고 그렇지 않은 그룹은 회귀계수를 0으로 수렴 시킨다
- Lasso는 변수간 상관관계가 크다고 하면 그 중 하나를 랜덤하게 선택하고 나머지 변수의 회귀계수를 0으로 수렴시킴 => 정보 소멸
- 변수간 상관관계가 크더라도 중요하지 않은 변수들을 모두 버리면서 중요한 변수들만 잘 골라내어 중요도 와 상관관계에 따라 적합한 가중치를 적용할 수 있다.

- 릿지 회귀 (Ridge Regression)
- 언제 사용? 데이터의 모든 변수가 예측에 중요하다고 생각될 때 사용
- 릿지 회귀는 변수 선택을 하지 않고, 모든 변수의 계수를 축소하여 모델의 복잡성을 줄임
- 주로 변수 간의 다중공선성이 있을 때 유용하며, 변수들이 서로 관련이 있고 중요한 경우에 적합
- 기준: 변수가 많지만 제거하고 싶지 않고, 변수 간의 상관관계가 높을 때 선택
- 라쏘 회귀 (Lasso Regression)
- 언제 사용? 불필요하거나 중요하지 않은 변수를 데이터에서 제거하고 싶을 때 사용
- 라쏘 회귀는 일부 계수를 정확하게 0으로 만들어 해당 특성을 모델에서 제외
- 이는 모델의 해석을 용이하게 하며, 변수 선택의 효과를 가짐
- 기준: 변수가 많고, 그 중 일부만이 중요하다고 예상될 때 또는 변수 선택을 통해 모델의 복잡성을 줄이고 자 할 때 유용

- 릿지 회귀 (Ridge Regression)
- 언제 사용? 데이터의 모든 변수가 예측에 중요하다고 생각될 때 사용합니다. 릿지 회귀는 변수 선택을 하지 않고, 모든 변수의 계수를 축소하여 모델의 복잡성을 줄입니다. 주로 변수 간의 다중공선성이 있을 때 유용하며, 변수들이 서로 관련이 있고 중요한 경우에 적합합니다.
- 기준: 변수가 많지만 제거하고 싶지 않고, 변수 간의 상관관계가 높을 때 선택합니다.
- 라쏘 회귀 (Lasso Regression)
- 언제 사용? 불필요하거나 중요하지 않은 변수를 데이터에서 제거하고 싶을 때 사용합니다. 라쏘 회귀는 일부 계수를 정확하게 0으로 만들어 해당 특성을 모델에서 제외합니다. 이는 모델의 해석을 용이하게 하며, 변수 선택의 효과를 가집니다.
- 기준: 변수가 많고, 그 중 일부만이 중요하다고 예상될 때 또는 변수 선택을 통해 모델의 복잡성을 줄이고자 할 때 유용합니다.
- 엘라스틱넷 회귀 (ElasticNet Regression)
- 언제 사용? 릿지와 라쏘의 장점을 결합하고 싶을 때 사용합니다. 데이터에 많은 변수가 있으며, 이 중 일부는 완전히 제거하고 일부는 계수를 축소시키 고 싶을 때 적합합니다. 엘라스틱넷은 릿지와 라쏘 회귀의 중간 형태로, 두 정규화 기법의 장점을 동시에 활용할 수 있습니다.
- 기준: 변수들이 많고, 다중공선성 문제가 있으며, 변수 선택과 계수 축소가 동시에 필요할 때 선택합니다.
- 모델 선택 기준
- 변수의 수와 중요성: 변수가 많고 일부만 중요하다면 라쏘나 엘라스틱넷을 고려해보세요.
- 다중공선성의 유무: 변수들 간에 강한 상관관계가 있으면 릿지 또는 엘라스틱넷이 더 적합할 수 있습니다.
- 모델의 해석 필요성: 모델 해석을 중요시하고 변수의 영향을 명확히 파악하고 싶다면 라쏘가 좋을 수 있습니다.
- 성능과 정확성: 교차 검증을 통해 각 모델의 성능을 평가하여 가장 적합한 모델을 선택합니다.

- 엘라스틱넷 회귀 (ElasticNet Regression)
- 언제 사용? 릿지와 라쏘의 장점을 결합하고 싶을 때 사용
- 데이터에 많은 변수가 있으며, 이 중 일부는 완전히 제거하고 일부는 계수를 축소시키고 싶을 때 적합
- 엘라스틱넷은 릿지와 라쏘 회귀의 중간 형태로, 두 정규화 기법의 장점을 동시에 활용할 수 있음
- 기준: 변수들이 많고, 다중공선성 문제가 있으며, 변수 선택과 계수 축소가 동시에 필요할 때 선택

• 모델 선택 기준

- 변수의 수와 중요성: 변수가 많고 일부만 중요하다면 라쏘나 엘라스틱넷을 고려
- 다중공선성의 유무: 변수들 간에 강한 상관관계가 있으면 릿지 또는 엘라스틱넷이 더 적합할 수 있음
- 모델의 해석 필요성: 모델 해석을 중요시하고 변수의 영향을 명확히 파악하고 싶다면 라쏘가 좋을 수 있음
- 성능과 정확성: 교차 검증을 통해 각 모델의 성능을 평가하여 가장 적합한 모델을 선택

- 엘라스틱넷 회귀 (ElasticNet Regression)
- 언제 사용? 릿지와 라쏘의 장점을 결합하고 싶을 때 사용
- 데이터에 많은 변수가 있으며, 이 중 일부는 완전히 제거하고 일부는 계수를 축소시키고 싶을 때 적합
- 엘라스틱넷은 릿지와 라쏘 회귀의 중간 형태로, 두 정규화 기법의 장점을 동시에 활용할 수 있음
- 기준: 변수들이 많고, 다중공선성 문제가 있으며, 변수 선택과 계수 축소가 동시에 필요할 때 선택

• 모델 선택 기준

- 변수의 수와 중요성: 변수가 많고 일부만 중요하다면 라쏘나 엘라스틱넷을 고려
- 다중공선성의 유무: 변수들 간에 강한 상관관계가 있으면 릿지 또는 엘라스틱넷이 더 적합할 수 있음
- 모델의 해석 필요성: 모델 해석을 중요시하고 변수의 영향을 명확히 파악하고 싶다면 라쏘가 좋을 수 있음
- 성능과 정확성: 교차 검증을 통해 각 모델의 성능을 평가하여 가장 적합한 모델을 선택

END