Statistics

Week 9: Regression (Chapter 10)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Information

Guest lectures:

Tuesday 21 March, 2–3pm, TT21 (lecture time).

Thursday 23 March, 1–2pm, TT21 (recitation time).

Homework assignment 2 solutions are available on eDimension.

- Q5: it is not convincing to add up the powers of two one-sided tests; refer to the solution.
- Q6 (if using a CI): the CI is for σ , using s; then checking if σ_0 lies inside it. It is NOT using σ_0 , then checking if s lies inside it.
- Q8: there is no way to reduce the problem to testing the variance of *one* population, since we do not know σ_1 or σ_2 .

Outline

- 1 (Simple) linear regression
 - SSE, SST, SSR

2 Multiple (linear) regression

Introduction

Question: how can we construct a line of 'best fit' through some data points?

Set up: given n fixed x-coordinates x_i , and n corresponding y-coordinates y_i . A **regression line** is a linear model that describes their relationship.

x is called the predictor/explanatory/independent variable; y is called the response/ outcome /dependent variable.

We should first make a scatter plot from (x_i, y_i) to check if we have a linear relationship, and if there are outliers.

If a true regression line exists, given by $y = \beta_0 + \beta_1 x$, then we estimate β_0 and β_1 using the **least square** method.

This method is used partly due to mathematical convenience. We do not explore other methods here.

Probabilistic set up

To explain why the data values (x_i, y_i) do not lie perfectly on a straight line, we can think of y_i as the observed value of a random variable Y_i , where

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

and ϵ_i is the random error arising from measurement, variables other than x, etc.

It is common to assume that ϵ_i 's are iid *normal* with mean 0 and variance σ^2 . This assumption will be useful later when we construct confidence intervals.

An optimization problem

To minimize

$$Q = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2,$$

we compute $\frac{\partial Q}{\partial \beta_0}$ and $\frac{\partial Q}{\partial \beta_1}$ and set them both to 0.

Denoting the solutions of these equations by $\hat{\beta}_0$ and $\hat{\beta}_1$, we obtain

$$\hat{\beta}_0 n + \hat{\beta}_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i,$$

$$\hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i.$$

These two equations can be routinely solved.

Solution

Notation: let s_x , s_y be the sample standard deviations, let s_{xy} be the sample covariance (covariance.s in *Excel*),

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}).$$

Then we can write the solutions as:

$$\hat{\beta}_1 = \frac{s_{xy}}{s_x^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}.$$

The *least square line* is denoted by $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, and is an estimate of the true regression line $y = \beta_0 + \beta_1 x$.

The fitted values are given by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$; the *residuals* are $e_i := y_i - \hat{y}_i$.

Exercise

In the spreadsheet, find the least square line for the triple jump example using the formulas, and check it against *Excel's* trendline.

Some important terms

The sum of squared errors (SSE) is defined to be $\sum_i e_i^2$.

The sum of squares (total) (SST) is $\sum_i (y_i - \bar{y})^2 = (n-1)s_y^2$.

It can be shown that

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$= SSE + SSR.$$

SSR stands for sum of squares due to regression.

Coefficient of determination: $r^2 = SSR/SST = 1-SSE/SST$.

An unbiased estimator for σ^2 (of Y_i) is $s^2 = SSE/(n-2)$, also known as the **mean squared error (MSE)**.

r and r^2

 $r^2 \in [0,1]$ can be interpreted as how much of the variation in y can be accounted for by the regression model.

The **correlation coefficient**, $r \in [-1, 1]$, is given by

$$r = \frac{s_{xy}}{s_x \, s_y}.$$

Its sign corresponds to the slope of the least square line. $r=\pm 1$ if and only if there is a perfect fit; r=0 means no correlation.

Which least square line has larger *r* (or are they about the same)?

Residuals

Exercise

Compute r^2 for the triple jump example using the formula.

Can the least square line be used to predict the future?

A plot of the *residuals* e_i can be used to check the linearity assumption. For example, a plot which is parabolic in shape indicates the need for an x^2 term.

Rule of thumb: if $|e_i| > 2s$, then the corresponding value may be an outlier.

Example

Investigate the residual plot for the life expectancy data, using Data Analysis \rightarrow Regression.

Data transformation

If there is a non-linear relationship between x and y, sometimes linear regression can still be used after appropriately transforming the data.

For example, if we suspect $y=\alpha\,x^\beta$, then take log of both sides. Excel uses ln for natural log.

Exercises

- (1) What to do if we suspect $y = \alpha x^2 + \beta$? $y = \alpha e^{\beta x}$?
- (2) Interpolate a value in the spreadsheet.

Outline

(Simple) linear regressionSSE, SST, SSR

2 Multiple (linear) regression

Multiple regression, matrix form

When there are k independent variables, we can construct a least square regression model of the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

for the data values $(x_{i1}, x_{i2}, ..., x_{ik}, y_i)$, i = 1, 2, ..., n.

Geometrically, this can be a curve, a surface, etc.

Set things up using matrices:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}.$$

Question: what are X and y for the life expectancy example?

Solution

We need to minimize

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{y}^T \mathbf{y} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}.$$

This can be done by setting the *gradient* to $\mathbf{0}$, i. e. differentiate the right hand side with respect to each of the β_i 's, store the results as a column vector, then set it to the 0 vector.

After manipulation, and using the fact that $\mathbf{X}^T\mathbf{X}$ is symmetric, the result can be simplified to $-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\beta = \mathbf{0}$.

Denoting the solution by $\hat{\beta}$, we obtain

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

A more conceptual proof of this formula can be found in the Math2 Cohort 12 and Cohort 15 slides on projections.

Some properties of multiple regression

- SSE, SST and SSR are defined the same way.
- The formula SSR + SSE = SST still holds.
- $r^2 := SSR/SST$.
- r is now the non-negative square root of r^2 .
- For polynomial regression, just set the other independent variables as powers of the first one.
- Data transformation works the same way, e.g. for the model $y=\beta_0\,x_1^{\beta_1}\,x_2^{\beta_2}$, take log of both sides.

Multicollinearity

Beware if some of the independent variables are almost or exactly *linearly dependent*, e.g. income, saving and expenditure. This is sometimes manifested by high correlation between the variables.

If some columns of the matrix X are linearly dependent, then there exists a non-zero vector v such that Xv = 0, so $(X^TX)v = 0$.

This means $\mathbf{X}^T\mathbf{X}$ is not invertible, making $\hat{\beta}$ impossible to compute. Likewise, if the columns are nearly linearly dependent, then $\mathbf{X}^T\mathbf{X}$ is nearly singular, which causes numerical problems.

Solution: remove a variable that is linearly dependent on the others.