Tensorial Formulations for thin and thick plates Weak Formulation and Discretization Procedure

Andrea Brugnoli

May 21, 2019

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

The corresponding 1D models

Timoshenko beam

- Valid for thick beams
- Dimension of the PH model: 4
- Differential operator *J* of order 1

Euler-Bernoulli beam

- Valid for thin beams
- Dimension of the PH model: 2
- Differential operator J of order 2

$$oldsymbol{lpha} = \left[
ho v, \ I_{
ho} \omega_x, \ rac{\partial \phi_x}{\partial x}, \ rac{\partial w}{\partial x} - \phi_x
ight]^T \ oldsymbol{e} = \left[v, \ \omega_x, \ M_{xx}, \ T_x
ight]^T \ J = \left(egin{matrix} 0 & 0 & 0 & rac{\partial}{\partial x} \\ 0 & 0 & rac{\partial}{\partial x} & 1 \\ 0 & rac{\partial}{\partial x} & 0 & 0 \\ rac{\partial}{\partial x} & -1 & 0 & 0 \end{matrix}
ight)$$

$$\boldsymbol{\alpha} = [\rho v, \frac{\partial^2 w}{\partial x^2}]^T$$

$$\boldsymbol{e} = [v, M_{xx}]^T$$

$$\boldsymbol{J} = \begin{pmatrix} 0 & -\frac{\partial^2}{\partial x^2} \\ \frac{\partial^2}{\partial x^2} & 0 \end{pmatrix}$$

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Energy and co-energy variables

Linear momenta and curvature are taken as energy variables. Additional the shear strain are considered, leading to

$$\boldsymbol{\alpha} = \left(\rho h v, \ \rho \frac{h^3}{12} \omega_x, \ \rho \frac{h^3}{12} \omega_y, \ \kappa_{xx}, \ \kappa_{yy}, \ \kappa_{xy}, \ \gamma_{xz}, \ \gamma_{yz}\right)^T$$

where $v = \frac{\partial w}{\partial t}$, $\omega_x = \frac{\partial \psi_x}{\partial t}$, $\omega_y = \frac{\partial \psi_y}{\partial t}$. The Hamiltonian density is quadratic in the energy variables

$$\mathcal{H} = rac{1}{2}oldsymbol{lpha}^T egin{bmatrix} rac{1}{
ho h} & 0 & 0 & 0 & 0 \ 0 & rac{12}{
ho h^3} & 0 & 0 & 0 \ 0 & 0 & rac{12}{
ho h^3} & 0 & 0 \ 0 & 0 & 0 & oldsymbol{D}_b & 0 \ 0 & 0 & 0 & 0 & oldsymbol{D}_s \end{bmatrix} oldsymbol{lpha}$$

The variational derivative provides as co-energy variables

$$\mathbf{e} := rac{\delta H}{\delta oldsymbol{lpha}} = (v, \; \omega_x, \; \omega_y, \; M_{xx}, \; M_{yy}, \; M_{xy}, \; Q_x, \; Q_y)^T$$

Definition of J and boundary variables

The skew-adjoint operator relating energies and co-energies is found to be

$$J = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ 0 & 0 & 0 & \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 & 1 \\ 0 & \frac{\partial}{\partial x} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial}{\partial y} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 & 0 & 0 & 0 & 0 \\ \frac{\partial}{\partial x} & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{\partial}{\partial y} & 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \frac{\partial \alpha}{\partial t} = J\mathbf{e}.$$

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Main References

A. Brugnoli, D. Alazard, V. Budinger, and D. Matignon.

Port-hamiltonian formulation and symplectic discretization of plate models. Part I: Mindlin model for thick plates. arXiv preprint arXiv:1809.11131, 2018.

Under Review

A. Brugnoli, D. Alazard, V. Budinger, and D. Matignon.

Port-hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates. arXiv preprint arXiv:1809.11136, 2018.

Under Review

A scalar-vector-tensor formulation

The momenta and curvatures are of tensorial nature. In Cartesian coordinates

$$\mathbb{K} = \begin{bmatrix} \kappa_{xx} & \kappa_{xy} \\ \kappa_{xy} & \kappa_{yy} \end{bmatrix}, \qquad \mathbb{M} = \begin{bmatrix} M_{xx} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix},$$

where now κ_{xy} now is half the value of the one in the vectorial case. The curvatures tensor is the linear deformation tensor applied to the rotation vector $\boldsymbol{\theta} = (\psi_x, \psi_y)^T$

$$\mathbb{K} = \operatorname{Grad}(\boldsymbol{\theta}) = \frac{1}{2} \left(\nabla \otimes \boldsymbol{\theta} + \left(\nabla \otimes \boldsymbol{\theta} \right)^T \right),$$

where Grad is the symmetric gradient operator applied to a vector, which gives rise to a symmetric tensor.

The momenta are found by introducing a fourth order tensor \mathbb{D} , such that $\mathbb{M}_{ij} = \sum_{k,l} \mathbb{D}_{ijkl} \mathbb{K}_{kl}$, a linear relation between \mathbb{M} and \mathbb{K} .

Energy Variables

The energy variables are now distinguished with respect to their different nature

$$\alpha_w = \rho h \frac{\partial w}{\partial t}, \qquad \boldsymbol{\alpha}_{\theta} = \frac{\rho h^3}{12} \frac{\partial \boldsymbol{\theta}}{\partial t},$$

$$\mathbb{A}_{\kappa} = \mathbb{K}, \qquad \boldsymbol{\alpha}_{\epsilon_s} = \boldsymbol{\epsilon}_s.$$

The Hamiltonian is expressed as follows

$$H = \int_{\Omega} \frac{1}{2} \left\{ \rho h \left(\frac{\partial w}{\partial t} \right)^2 + \frac{\rho h^3}{12} \frac{\partial \boldsymbol{\theta}}{\partial t} \cdot \frac{\partial \boldsymbol{\theta}}{\partial t} + \mathbb{M} : \mathbb{K} + \boldsymbol{Q} \cdot \boldsymbol{\epsilon}_s \right\} d\Omega,$$

where $\mathbb{M} : \mathbb{K}$ denotes the tensor contraction operation.

The momenta \mathbb{M} depends linearly on \mathbb{K} , hence $\frac{1}{2}\mathbb{M} : \mathbb{K}$ is a quadratic form in \mathbb{K} .

Co-energy variables

The co-energy variables are found by computing the variational derivative of the Hamiltonian

$$e_w := \frac{\delta H}{\delta \alpha_w} = \frac{\partial w}{\partial t}, \qquad \boldsymbol{e}_{\theta} := \frac{\delta H}{\delta \boldsymbol{\alpha}_{\theta}} = \frac{\partial \boldsymbol{\theta}}{\partial t},$$

$$\mathbb{E}_{\kappa} := \frac{\delta H}{\delta \mathbb{A}_{\kappa}} = \mathbb{M}, \qquad \boldsymbol{e}_{\epsilon_s} := \frac{\delta H}{\delta \boldsymbol{\epsilon}_s} = \boldsymbol{Q}.$$

where now the ϵ_s and Q are the shear strain and stress respectively.

Proposition (see [1] for the proof)

The variational derivative of the Hamiltonian with respect to the curvatures tensor is the momenta tensor $\frac{\delta H}{\delta \mathbb{A}_{\kappa}} = \mathbb{M}$.

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Strong form and Interconnection structure

From div, the scalar divergence of a vector, we construct Div, the vector-valued divergence of a symmetric tensor, defined by

$$\varepsilon = \operatorname{Div}(\mathbb{E}) \quad \text{with } \varepsilon_i = \operatorname{div}(\mathbb{E}_{ji}) = \sum_{j=1}^n \frac{\partial \mathbb{E}_{ji}}{\partial x_j}.$$

The port-Hamiltonian system is expressed as follows

$$\begin{cases} \frac{\partial \alpha_w}{\partial t} &= \operatorname{div}(\boldsymbol{e}_{\epsilon_s}), \\ \frac{\partial \boldsymbol{\alpha}_{\theta}}{\partial t} &= \operatorname{Div}(\mathbb{E}_{\kappa}) + \boldsymbol{e}_{\epsilon_s}, \\ \frac{\partial \mathbb{A}_{\kappa}}{\partial t} &= \operatorname{Grad}(\boldsymbol{e}_{\theta}), \\ \frac{\partial \boldsymbol{\alpha}_{\epsilon_s}}{\partial t} &= \operatorname{grad}(\boldsymbol{e}_w) - \boldsymbol{e}_{\theta} \end{cases}.$$

If the variables are concatenated together, the formally skew-symmetric operator J can be highlighted

Strong form for the Mindlin plate

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_{\theta} \\ \mathbb{A}_{\kappa} \\ \boldsymbol{\alpha}_{\epsilon_s} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \operatorname{div} \\ 0 & 0 & \operatorname{Div} & \boldsymbol{I}_{2\times 2} \\ 0 & \operatorname{Grad} & 0 & 0 \\ \operatorname{grad} & -\boldsymbol{I}_{2\times 2} & 0 & 0 \end{bmatrix}}_{I} \begin{pmatrix} e_w \\ \boldsymbol{e}_{\theta} \\ \mathbb{E}_{\kappa} \\ \boldsymbol{e}_{\epsilon_s} \end{pmatrix},$$

where all zeros are intended as nullifying operators from the space of input variables to the space of output variables.

Theorem (See [1] for additional details)

The adjoint of the tensor divergence Div is -Grad, the opposite of the symmetric gradient.

Boundary Variables

Energy flow

Again the boundary values can be found by evaluating the time derivative of the Hamiltonian

$$\dot{H} = \int_{\Omega} \left\{ \frac{\partial \alpha_{w}}{\partial t} e_{w} + \frac{\partial \alpha_{\theta}}{\partial t} \cdot e_{\theta} + \frac{\partial \mathbb{A}_{\kappa}}{\partial t} : \mathbb{E}_{\kappa} + \frac{\partial \alpha_{\epsilon_{s}}}{\partial t} \cdot e_{\epsilon_{s}} \right\} d\Omega$$

$$= \int_{\Omega} \left\{ \operatorname{div}(e_{\epsilon_{s}}) e_{w} + [\operatorname{Div}(\mathbb{E}_{\kappa}) + e_{\epsilon_{s}}] \cdot e_{\theta} + \operatorname{Grad}(e_{\theta}) : \mathbb{E}_{\kappa} + (\operatorname{grad}(e_{w}) - e_{\theta}) \cdot e_{\epsilon_{s}} \right\} d\Omega$$

$$= \int_{\partial \Omega} \left\{ \underbrace{(\boldsymbol{n} \cdot \boldsymbol{e}_{\epsilon_{s}})}_{Q_{n}} e_{w} + (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \cdot e_{\theta} \right\} d\Omega,$$

$$= \int_{\partial \Omega} \left\{ Q_{n} e_{w} + (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \cdot (\omega_{n} \boldsymbol{n} + \omega_{s} \boldsymbol{s}) \right\} d\Omega,$$

$$= \int_{\partial \Omega} \left\{ Q_{n} e_{w} + \omega_{n} \underbrace{\boldsymbol{n}^{T} \mathbb{E}_{\kappa} \boldsymbol{n}}_{M_{nn}} + \omega_{s} \underbrace{\boldsymbol{s}^{T} \mathbb{E}_{\kappa} \boldsymbol{n}}_{M_{ns}} \right\} d\Omega,$$

$$= \int_{\Omega} \left\{ Q_{n} e_{w} + \omega_{n} \underbrace{\boldsymbol{n}^{T} \mathbb{E}_{\kappa} \boldsymbol{n}}_{M_{nn}} + \omega_{s} \underbrace{\boldsymbol{M}_{ns}}_{Ns} \right\} d\Omega.$$

Same result as in the vectorial case but with intrinsic operators.

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Weak Formulation

The first line is multiplied by v_w (multiplication by a scalar)

$$\int_{\Omega} v_w \frac{\partial \alpha_w}{\partial t} d\Omega = \int_{\Omega} v_w \operatorname{div}(\boldsymbol{e}_{\epsilon_s}) d\Omega,$$

the second and the fourth lines by v_{θ} , v_{ϵ_s} (scalar product of \mathbb{R}^2)

$$\int_{\Omega} \boldsymbol{v}_{\theta} \cdot \frac{\partial \boldsymbol{\alpha}_{\theta}}{\partial t} d\Omega = \int_{\Omega} \boldsymbol{v}_{\theta} \cdot (\operatorname{Div}(\mathbb{E}_{\kappa}) + \boldsymbol{e}_{\epsilon_{s}}) d\Omega,
\int_{\Omega} \boldsymbol{v}_{\epsilon_{s}} \cdot \frac{\partial \boldsymbol{\alpha}_{\epsilon_{s}}}{\partial t} d\Omega = \int_{\Omega} \boldsymbol{v}_{\epsilon_{s}} \cdot (\operatorname{grad}(\boldsymbol{e}_{w}) - \boldsymbol{e}_{\theta}) d\Omega,$$

the third one by V_{κ} (tensor contraction)

$$\int_{\Omega} \mathbb{V}_{\kappa} : \frac{\partial \mathbb{A}_{\kappa}}{\partial t} d\Omega = \int_{\Omega} \mathbb{V}_{\kappa} : \operatorname{Grad}(\boldsymbol{e}_{\theta}) d\Omega.$$

Choice I: Boundary control through forces and momenta

The first two line of the system in weak form are integrated by parts

$$\int_{\Omega} v_w \operatorname{div}(\boldsymbol{e}_{\epsilon_s}) d\Omega = \int_{\partial \Omega} v_w \underbrace{\boldsymbol{n} \cdot \boldsymbol{e}_{\epsilon_s}}_{Q_n} ds - \int_{\Omega} \operatorname{grad}(v_w) \cdot \boldsymbol{e}_{\epsilon_s} d\Omega,$$

$$\int_{\Omega} \boldsymbol{v}_{\theta} \cdot (\operatorname{Div}(\mathbb{E}_{\kappa}) + \boldsymbol{e}_{\epsilon_{s}}) \ d\Omega = \int_{\partial \Omega} \boldsymbol{v}_{\theta} \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \ ds - \int_{\Omega} \left\{ \operatorname{Grad}(\boldsymbol{v}_{\theta}) : \mathbb{E}_{\kappa} - \boldsymbol{v}_{\theta} \cdot \boldsymbol{e}_{\epsilon_{s}} \right\} \ d\Omega.$$

The usual additional manipulation is performed on the boundary term containing the momenta, so that the proper boundary values arise

$$\begin{split} \int_{\partial\Omega} \boldsymbol{v}_{\theta} \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \; \mathrm{d}s &= \int_{\partial\Omega} \left\{ \underbrace{(\boldsymbol{v}_{\theta} \cdot \boldsymbol{n})}_{v_{\omega_{n}}} \boldsymbol{n} + \underbrace{(\boldsymbol{v}_{\theta} \cdot \boldsymbol{s})}_{v_{\omega_{s}}} \boldsymbol{s} \right\} \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \; \mathrm{d}s \\ &= \int_{\partial\Omega} \left\{ v_{\omega_{n}} \boldsymbol{M}_{nn} + v_{\omega_{s}} \boldsymbol{M}_{ns} \right\} \; \mathrm{d}s. \end{split}$$

The final system exhibits as control inputs the boundary forces and momenta

Weak Form with forces and momenta as inputs

$$\begin{cases} \int_{\Omega} v_w \frac{\partial \alpha_w}{\partial t} d\Omega &= -\int_{\Omega} \operatorname{grad}(v_w) \cdot e_{\epsilon_s} d\Omega + \int_{\partial \Omega} v_w Q_n ds \\ \int_{\Omega} v_\theta \cdot \frac{\partial \alpha_\theta}{\partial t} d\Omega &= -\int_{\Omega} \left\{ \operatorname{Grad}(v_\theta) : \mathbb{E}_{\kappa} - v_\theta \cdot e_{\epsilon_s} \right\} d\Omega + \int_{\partial \Omega} \left\{ v_{\omega_n} M_{nn} + v_{\omega_s} M_{ns} \right\} ds \\ \int_{\Omega} \mathbb{V}_{\kappa} : \frac{\partial \mathbb{A}_{\kappa}}{\partial t} d\Omega &= \int_{\Omega} \mathbb{V}_{\kappa} : \operatorname{Grad}(e_\theta) d\Omega \\ \int_{\Omega} v_{\epsilon_s} \cdot \frac{\partial \alpha_{\epsilon_s}}{\partial t} d\Omega &= \int_{\Omega} v_{\epsilon_s} \cdot (\operatorname{grad}(e_w) - e_\theta) d\Omega \end{cases}$$

In this first case, the boundary controls u_{∂} and the corresponding output y_{∂} are

$$oldsymbol{u}_{\partial} = egin{pmatrix} Q_n \ M_{nn} \ M_{ns} \end{pmatrix}_{\partial\Omega} \quad , \qquad oldsymbol{y}_{\partial} = egin{pmatrix} e_w \ \omega_n \ \omega_s \end{pmatrix}_{\partial\Omega} \quad .$$

Choice II: Boundary control through kinematic variables

If instead the last two lines are integrated by parts

Weak Form with linear and rotational velocities as inputs

$$\begin{cases} \int_{\Omega} v_w \frac{\partial \alpha_w}{\partial t} \, d\Omega &= \int_{\Omega} v_w \mathrm{div}(\boldsymbol{e}_{\epsilon_s}) \, d\Omega \\ \int_{\Omega} v_\theta \cdot \frac{\partial \boldsymbol{\alpha}_\theta}{\partial t} \, d\Omega &= \int_{\Omega} v_\theta \cdot (\mathrm{Div}(\mathbb{E}_\kappa) + \boldsymbol{e}_{\epsilon_s}) \, d\Omega \\ \int_{\Omega} \mathbb{V}_\kappa : \frac{\partial \mathbb{A}_\kappa}{\partial t} \, d\Omega &= -\int_{\Omega} \mathrm{Div}(\mathbb{V}_\kappa) \cdot \boldsymbol{e}_\theta \, d\Omega + \int_{\partial \Omega} \left\{ v_{M_{nn}} \omega_n + v_{M_{ns}} \omega_s \right\} \, ds \\ \int_{\Omega} v_{\epsilon_s} \cdot \frac{\partial \boldsymbol{\alpha}_{\epsilon_s}}{\partial t} \, d\Omega &= -\int_{\Omega} \left\{ \mathrm{div}(v_{\epsilon_s}) \boldsymbol{e}_w + v_{\epsilon_s} \cdot \boldsymbol{e}_\theta \right\} \, d\Omega + \int_{\partial \Omega} v_{Q_n} \, \boldsymbol{e}_w \, ds \end{cases}$$

where $v_{M_{nn}} = \boldsymbol{n}^T \mathbb{V}_{\kappa} \boldsymbol{n}$, $v_{M_{ns}} = \boldsymbol{s}^T \mathbb{V}_{\kappa} \boldsymbol{n}$ and $v_{Q_n} = \boldsymbol{v}_{\epsilon_s} \cdot \boldsymbol{n}$. In this second case, the boundary controls $\boldsymbol{u}_{\partial}$ and corresponding output $\boldsymbol{y}_{\partial}$ are

$$oldsymbol{u}_{\partial} = egin{pmatrix} e_w \ \omega_n \ \omega_s \end{pmatrix}_{\partial\Omega}, \qquad oldsymbol{y}_{\partial} = egin{pmatrix} Q_n \ M_{nn} \ M_{ns} \end{pmatrix}_{\partial\Omega}.$$

Summary for the Mindlin Plate

Main points:

- variational derivative w.r.t. a tensor quantity;
- strong tensorial form;
- structure preserving weak formulation with different choices of the boundary inputs;
- only two choices for the boundary inputs were shown but others are possible.

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Energy and co-energy variables

This model is the 2D extension of the Bernoulli beam. It is logical to select as energy variable the linear momentum, together with the curvatures

$$\boldsymbol{\alpha} = (\mu v, \ \kappa_{xx}, \ \kappa_{yy}, \ \kappa_{xy})^T$$

where $v = \frac{\partial w}{\partial t}$. The Hamiltonian density is given by

$$\mathcal{H} = \frac{1}{2} \boldsymbol{\alpha}^T \begin{bmatrix} \frac{1}{\mu} & 0 \\ 0 & \boldsymbol{D} \end{bmatrix} \boldsymbol{\alpha}$$

So the variational derivative of the total Hamiltonian $H=\int_{\Omega}\mathcal{H}\ d\Omega$ provides as co-energy variables

$$\mathbf{e} := \frac{\delta H}{\delta \boldsymbol{\alpha}} = (v, M_{xx}, M_{yy}, M_{xy})^T$$

Definition of J and boundary variables

The skew-adjoint operator relating energies and co-energies is found to be

$$J = \begin{bmatrix} 0 & -\frac{\partial^2}{\partial x^2} & -\frac{\partial^2}{\partial y^2} & -\left(\frac{\partial^2}{\partial y \partial x} + \frac{\partial^2}{\partial x \partial y}\right) \\ \frac{\partial^2}{\partial x^2} & 0 & 0 & 0 \\ \frac{\partial^2}{\partial y^2} & 0 & 0 & 0 \\ \frac{\partial^2}{\partial y \partial x} + \frac{\partial^2}{\partial x \partial y} & 0 & 0 & 0 \end{bmatrix}, \qquad \frac{\partial \boldsymbol{\alpha}}{\partial t} = J\mathbf{e}.$$

From the Schwarz theorem for C^2 functions the mixed derivative could be be expressed as $2\frac{\partial^2}{\partial x\partial y}$, instead of $\frac{\partial^2}{\partial y\partial x} + \frac{\partial^2}{\partial x\partial y}$. However, in this way the symmetry intrinsically present in $\gamma_{xy} = -z\left(\frac{\partial^2 w}{\partial y\partial x} + \frac{\partial^2 w}{\partial x\partial y}\right)$ would be lost. The mixed derivative is here split to reestablish the symmetric nature of curvatures and momenta (that are of tensorial nature).

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

A scalar-tensor formulation

The momenta and curvatures are of tensorial nature. In Cartesian coordinates

$$\mathbb{K} = \begin{bmatrix} \kappa_{xx} & \kappa_{xy} \\ \kappa_{xy} & \kappa_{yy} \end{bmatrix}, \qquad \mathbb{M} = \begin{bmatrix} M_{xx} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix},$$

where now κ_{xy} now is half the value of the one in the vectorial case. The curvatures tensor is the linear deformation tensor applied to the rotation vector $\boldsymbol{\theta} = \operatorname{grad}(w)$

$$\mathbb{K} = \operatorname{Grad}(\boldsymbol{\theta}) = \operatorname{Grad}(\operatorname{grad}(w)).$$

The momenta are found by introducing a fourth order tensor \mathbb{D} , such that $\mathbb{M}_{ij} = \mathbb{D}_{ijkl} \mathbb{K}_{kl}$

For what concerns the choice of the energy variables a scalar and a tensor variable are grouped together

$$\alpha_w = \mu \frac{\partial w}{\partial t} \qquad \mathbb{A}_{\kappa} = \mathbb{K}$$

The Hamiltonian energy is written as

$$H = \int_{\Omega} \left\{ \frac{1}{2} \mu \left(\frac{\partial w}{\partial t} \right)^2 + \frac{1}{2} \mathbb{M} : \mathbb{K} \right\} d\Omega,$$

The co-energy variables are found by computing the variational derivative of the Hamiltonian

$$e_w := \frac{\delta H}{\delta \alpha_w} = \frac{\partial w}{\partial t}, \qquad \mathbb{E}_{\kappa} := \frac{\delta H}{\delta \mathbb{A}_{\kappa}} = \mathbb{M}.$$

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Interconnection structure

The formally skew-symmetric operator J can be highlighted

Strong form for the Kirchhoff plate

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \mathbb{A}_{\kappa} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & -\text{div} \circ \text{Div} \\ \text{Grad} \circ \text{grad} & 0 \end{bmatrix}}_{I} \begin{pmatrix} e_w \\ \mathbb{E}_{\kappa} \end{pmatrix}.$$

where all zeros are intended as nullifying operator from the space of input variables to the space of output variables.

Theorem (See [2] for additional details)

The adjoint of $\operatorname{div} \circ \operatorname{Div}$ is $\operatorname{Grad} \circ \operatorname{grad}$ (i.e. the Hessian operator)

Remark

The interconnection structure J now resembles that of the Bernoulli beam. The double divergence and the double gradient coincide, in dimension one, with the second derivative.

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Weak Formulation

The fist line is multiplied by v_w (scalar multiplication)

$$\int_{\Omega} v_w \frac{\partial \alpha_w}{\partial t} \ \mathrm{d}\Omega = \int_{\Omega} -v_w \operatorname{div}(\operatorname{Div}(\mathbb{E}_{\kappa})) \ \mathrm{d}\Omega,$$

the second line by \mathbb{V}_{κ} (tensor contraction)

$$\int_{\Omega} \mathbb{V}_{\kappa} : \frac{\partial \mathbb{A}_{\kappa}}{\partial t} \ d\Omega = \int_{\Omega} \mathbb{V}_{\kappa} : \operatorname{Grad}(\operatorname{grad}(e_{w})) \ d\Omega.$$

Now depending on which line is integrated by parts different boundary control term can be selected.

Choice I: Boundary control through forces and momenta

The first line has to be integrated by parts twice

$$\int_{\Omega} -v_w \operatorname{div}(\operatorname{Div}(\mathbb{E}_{\kappa})) \ d\Omega = \int_{\partial \Omega} \underbrace{-\boldsymbol{n} \cdot \operatorname{Div}(\mathbb{E}_{\kappa})}_{\Omega} v_w \ ds + \int_{\Omega} \operatorname{grad}(v_w) \cdot \operatorname{Div}(\mathbb{E}_{\kappa}) \ d\Omega$$

Applying again the integration by parts

$$\int_{\Omega} \operatorname{grad}(v_w) \cdot \operatorname{Div}(\mathbb{E}_{\kappa}) \ d\Omega = \int_{\partial \Omega} \operatorname{grad}(v_w) \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \ ds - \int_{\Omega} \operatorname{Grad}(\operatorname{grad}(v_w)) \cdot \mathbb{E}_{\kappa} \ d\Omega$$

The usual additional manipulation is performed on the boundary terms, so that the proper boundary values arise

$$\int_{\partial\Omega} \operatorname{grad}(v_w) \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \, ds = \int_{\partial\Omega} \left(\frac{\partial v_w}{\partial n} \boldsymbol{n} + \frac{\partial v_w}{\partial s} \boldsymbol{s} \right) \cdot (\boldsymbol{n} \cdot \mathbb{E}_{\kappa}) \, ds$$

$$= \int_{\partial\Omega} \left\{ \frac{\partial v_w}{\partial n} \, \underbrace{\boldsymbol{n}^T \mathbb{E}_{\kappa} \boldsymbol{n}}_{\boldsymbol{M}_{nn}} + \frac{\partial v_w}{\partial s} \, \underbrace{\boldsymbol{s}^T \mathbb{E}_{\kappa} \boldsymbol{n}}_{\boldsymbol{M}_{ns}} \right\} \, ds$$

$$= \sum_{\Gamma_i \subset \partial\Omega} \left[M_{ns} v_w \right]_{\partial\Gamma_i} + \int_{\partial\Omega} \left\{ \frac{\partial v_w}{\partial n} \, M_{nn} - v_w \, \frac{\partial M_{ns}}{\partial s} \right\} \, ds$$

Defining the effective shear stress as $\widetilde{Q}_n = Q_n - \frac{\partial M_{ns}}{\partial s}$ If the boundary is regular the final expression becomes

$$\int_{\Omega} v_w \frac{\partial \alpha_w}{\partial t} \ \mathrm{d}\Omega = -\int_{\Omega} \mathrm{Grad}(\mathrm{grad}(v_w)) : \mathbb{E}_{\kappa} \ \mathrm{d}\Omega + \int_{\partial \Omega} \left\{ \frac{\partial v_w}{\partial n} M_{nn} + v_w \ \widetilde{Q}_n \right\} \ \mathrm{d}s.$$

Weak form with forces and momenta as inputs

$$\begin{cases} \int_{\Omega} v_{w} \frac{\partial \alpha_{w}}{\partial t} \ d\Omega &= -\int_{\Omega} \operatorname{Grad}(\operatorname{grad}(v_{w})) : \mathbb{E}_{\kappa} \ d\Omega + \int_{\partial \Omega} \left\{ \frac{\partial v_{w}}{\partial n} M_{nn} + v_{w} \ \widetilde{Q}_{n} \right\} \ ds, \\ \int_{\Omega} \mathbb{V}_{\kappa} : \frac{\partial \mathbb{A}_{\kappa}}{\partial t} \ d\Omega &= \int_{\Omega} \mathbb{V}_{\kappa} : \operatorname{Grad}(\operatorname{grad}(e_{w})) \ d\Omega. \end{cases}$$

The control input u_{∂} and the corresponding conjugate outputs y_{∂} are

$$m{u}_{\!\partial} = egin{pmatrix} \widetilde{Q}_n \ M_{nn} \end{pmatrix}_{\partial\Omega}, \qquad m{y}_{\!\partial} = egin{pmatrix} rac{e_w}{\partial e_w} \ rac{\partial e_w}{\partial n} \end{pmatrix}_{\partial\Omega}.$$

Choice II: Boundary control through kinematic variables

The same procedure can be performed on the second line of the system

Weak form with linear and angular velocities as inputs

$$\begin{cases} \int_{\Omega} v_{w} \frac{\partial \alpha_{w}}{\partial t} d\Omega &= \int_{\Omega} -v_{w} \operatorname{div}(\operatorname{Div}(\mathbb{E}_{\kappa})) d\Omega, \\ \int_{\Omega} \mathbb{V}_{\kappa} : \frac{\partial \mathbb{A}_{\kappa}}{\partial t} d\Omega &= \int_{\Omega} \operatorname{div}(\operatorname{Div}(\mathbb{V}_{\kappa})) e_{w} d\Omega + \int_{\partial \Omega} \left\{ v_{M_{nn}} \frac{\partial e_{w}}{\partial n} + v_{\widetilde{Q}_{n}} e_{w} \right\} ds. \end{cases}$$

where
$$v_{M_{nn}} = \boldsymbol{n}^T \mathbb{V}_{\kappa} \boldsymbol{n}$$
 and $v_{\widetilde{Q}_n} = -\text{Div}(\mathbb{V}_{\kappa}) \cdot \boldsymbol{n} - \frac{\partial (\boldsymbol{s}^T \mathbb{V}_{\kappa} \boldsymbol{n})}{\partial s}$.

The control input u_{∂} are now the kinematic boundary conditions, the corresponding conjugate outputs y_{∂} are the dynamic boundary condition

$$oldsymbol{u}_{\partial} = egin{pmatrix} e_w \ rac{\partial e_w}{\partial oldsymbol{n}} \end{pmatrix}_{\partial\Omega}, \qquad oldsymbol{y}_{\partial} = egin{pmatrix} \widetilde{Q}_n \ M_{nn} \end{pmatrix}_{\partial\Omega}.$$

Summary for the Kirchhoff Plate

Main points:

- new distributed port-Hamiltonian system involving second order differential operator in space dimension 2 for *J*;
- strong tensorial form where $\operatorname{div} \circ \operatorname{Div} = (\operatorname{Grad} \circ \operatorname{grad})^*$;
- structure preserving weak formulation with different choices of the boundary inputs;
- only two choices for the boundary variables were shown but others are possible;

Other contribution (not presented here):

• definition of the underlying Stokes-Dirac structure for the vectorial formulation of the Kirchhoff plate [2].

Plan

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Main Reference

F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. A structure-preserving partitioned finite element method for the 2d wave equation.

In 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, pages 1–6, Valparaíso, CL, 2018.

http://oatao.univ-toulouse.fr/19965

General principles of the structure preserving discretization

The energy, co-energy and test functions of the same index are discretized by using the same bases:

$$\begin{split} \alpha_i^{ap} &:= \sum_{k=1}^{N_i} \phi_i^k(x,y) \alpha_i^k(t), \qquad e_i^{ap} := \sum_{k=1}^{N_i} \phi_i^k(x,y) e_i^k(t), \qquad v_i^{ap} := \sum_{k=1}^{N_i} \phi_i^k(x,y) v_i^k, \\ \alpha_i^{ap} &:= \phi_i(x,y)^T \alpha_i(t), \qquad e_i^{ap} := \phi_i(x,y)^T e_i(t), \qquad v_i^{ap} := \phi_i(x,y)^T v_i. \end{split}$$

The same procedure is applied for the boundary terms with a specific basis $\pmb{\psi}$

$$u_{\partial,i} \approx u_{\partial,i}^{ap} := \sum_{k=1}^{n_{\partial,i}} \psi_i^k(s) u_{\partial,i}^k(t) = \boldsymbol{\psi}_i(s)^T \boldsymbol{u}_{\partial,i}(t).$$

Remark

The functions $\psi_i(s)$ can be selected as the restriction of functions ϕ over the boundary $\psi(s) = \phi(x(s), y(s))$ or in other ways.

Plan

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Mindlin Plate: discretized operators

The formally skew-symmetric operator J is replaced with the following skew-symmetric matrix

$$J_d = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -D_{x,71}^T & -D_{y,81}^T \\ 0 & 0 & 0 & -D_{x,42}^T & 0 & -D_{y,62}^T & D_{0,27} & 0 \\ 0 & 0 & 0 & 0 & -D_{y,53}^T & -D_{x,63}^T & 0 & D_{0,38} \\ 0 & D_{x,42} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & D_{y,53} & 0 & 0 & 0 & 0 & 0 \\ 0 & D_{y,62} & D_{x,63} & 0 & 0 & 0 & 0 & 0 \\ D_{x,71} & -D_{0,27}^T & 0 & 0 & 0 & 0 & 0 & 0 \\ D_{y,81} & 0 & -D_{0,38}^T & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

As a consequence of the integration by parts, a control input is included in the finite-dimensional system. Matrix B is defined by

$$B = \begin{bmatrix} B_{11} & 0 & 0 \\ 0 & B_{22} & B_{23} \\ 0 & B_{32} & B_{33} \\ 0_{\nu_4 \times n_{\partial,1}} & 0_{\nu_4 \times n_{\partial,2}} & 0_{\nu_4 \times n_{\partial,3}} \end{bmatrix}.$$

Final discretized system

The final system is written as

$$M\dot{\boldsymbol{\alpha}} = J_d \, \boldsymbol{e} + B \, \boldsymbol{u}_{\partial},$$
$$\boldsymbol{y}_{\partial} = B^T \boldsymbol{e}$$

where

- $M = \text{Diag}[M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8]$ is a block diagonal matrix,
- α is simply the concatenation of the α_i (just like e)
- u_{∂} is the concatenation of the $u_{\partial,i}$ ($u_{\partial,1} = Q_n, u_{\partial,2} = M_{nn}$ and $u_{\partial,3} = M_{ns}$).

Plan

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Kirchhoff Plate: discretized operators

The discretized system is written as

$$\begin{pmatrix} M_1 \dot{\boldsymbol{\alpha}}_1 \\ M_2 \dot{\boldsymbol{\alpha}}_2 \\ M_3 \dot{\boldsymbol{\alpha}}_3 \\ M_4 \dot{\boldsymbol{\alpha}}_4 \end{pmatrix} = \begin{bmatrix} 0 & -D_{xx}^T & -D_{yy}^T & -2D_{xy}^T \\ D_{xx} & 0 & 0 & 0 \\ D_{yy} & 0 & 0 & 0 \\ 2D_{xy} & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \boldsymbol{e}_3 \\ \boldsymbol{e}_4 \end{pmatrix} + \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_{\partial,1} \\ \boldsymbol{u}_{\partial,2} \end{pmatrix},$$

where M_i are square matrices (of size $N_i \times N_i$), D_{xx} is an $N_2 \times N_1$ matrix, D_{yy} is an $N_3 \times N_1$ matrix, D_{xy} is an $N_4 \times N_1$ matrix, B_1 is an $N_1 \times N_{\partial,1}$ matrix and finally B_2 is an $N_2 \times N_{\partial,2}$ matrix. The collocated output are defined as

$$oldsymbol{y}_{\partial} = egin{bmatrix} B_1^T & 0 & 0 & 0 \ B_2^T & 0 & 0 & 0 \end{bmatrix} egin{pmatrix} oldsymbol{e}_1 \ oldsymbol{e}_2 \ oldsymbol{e}_3 \ oldsymbol{e}_4 \end{pmatrix}.$$

Plan

- 1 The 1D case: Euler-Bernoulli and Timoshenko beams
- 2 Vectorial PH formulation of the Mindlin plate (Macchelli et al. 2005)
- 3 Tensorial PH formulation of the Mindlin plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 4 Vectorial PH formulation of the Kirchhoff plate
- 5 Tensorial PH formulation of the Kirchhoff plate
 - Strong form
 - Weak Formulation with different choices of boundary inputs
- 6 Partition Finite Element method (PFEM) for Numerics
 - Mindlin Plate
 - Kirchhoff Plate
- General PFEM Variational Formulation and Numerical Results

Variational formulation using PFEM

The general variational form can be now stated:

- Energy variables belong to the mixed space $\alpha \in V_{\alpha} = V_{\alpha_1} \times \cdots \times V_{\alpha_n}$, where $\alpha_i \in V_{\alpha_i}$;
- Coenergy variables $e = Q\alpha$ where Q is a coercive symmetrical operator $Q: V_{\alpha} \to V_{\alpha}$;
- Test functions belong to the same space as $\alpha \ v \in V_{\alpha}$

General structure preserving weak form with known inputs

If the boundary input u_{∂} is known (i.e for the Mindlin plate free or clamped conditions) then

$$m\left(v, \frac{\partial \alpha}{\partial t}\right) = j(v, e) + b_{u_{\partial}}(v_{y_{\partial}}) \quad \forall v \in V$$

where m is the mass bilinear, symmetric and coercive form, j is the interconnection bilinear and antisymmetric form and b is a linear functional.

Dealing with algebraic constraints

If the boundary input vector is partly unknown then Lagrange multipliers and corresponding test function have to be introduced. Variables $\lambda_{u_{\partial}}, v_{u_{\partial}} \in V_{\lambda}$ defined over Γ_{λ} , the boundary subset where the input are unknown and the conjugated output are set to zero (e.g. clamped plate with a free side).

General structure preserving weak form with unknown inputs

$$\begin{cases}
m\left(v, \frac{\partial \alpha}{\partial t}\right) = j(v, e) + b(v_{y_{\partial}}, \lambda_{u_{\partial}}) \\
0 = c(v_{u_{\partial}}, e_{y_{\partial}})
\end{cases} \quad \forall v \in V, \ \forall v_{u_{\partial}} \in V_{\lambda}$$

where $v_{y_{\partial}} = \mathcal{B}_{y_{\partial}} v$ and $e_{y_{\partial}} = \mathcal{B}_{y_{\partial}} e$ (\mathcal{B} is the boundary variables operator). Now b is a bilinear form on spaces $V_{\alpha} \times V_{\lambda}$ and c is defined over $V_{\lambda} \times V_{\alpha}$ and is obtained from b by swapping variables and applying $\mathcal{B}_{y_{\partial}}$ on e instead of v.

Numerical Study of the Mindlin Plate

This PH system can be discretized using a FE software. These numerical results were obtained using Fenics. To compare the eigenvalues publications [4, 5, 6] were used:

R. Durán, L. Hervella-Nieto, E. Liberman, and J. Solomin. Approximation of the vibration modes of a plate by Reissner-Mindlin equations.

Mathematics of Computation of the American Mathematical Society, 68(228):1447–1463, 1999

D.J. Dawe and O.L. Roufaeil. Rayleigh-Ritz vibration analysis of Mindlin plates. *Journal of Sound and Vibration*, 69(3):345–359, 1980

H.C. Huang and E. Hinton. A nine node Lagrangian Mindlin plate element with enhanced shear interpolation.

Engineering Computations, 1(4):369–379, 1984

In the next tables these references will be denoted respectively by D-H, D-R, H-H. Our results are denoted by B-A.

Study case

Properties of the plate

- Square plate with $l_x = l_y = 1$;
- Young modulus $E = 70 \ GPa$;
- Density $\rho = 2000 \, kg/m^3$;
- Poisson modulus $\nu = 0.3$.

Boundary conditions considered

- All clamped CCCC ($w = 0, \omega_s = 0, \omega_n = 0$);
- Simply supported hard SSSS ($w = 0, \omega_s = 0$);
- Half clamped half simply supported SCSC;
- All clamped but one side free CCCF (F stands for free, i.e. $M_{nn} = 0$, $M_{ns} = 0$, $Q_n = 0$,).

Computational Complexity

A scalar viable discretized using n P^1 elements for each side gives rise to $(n+1) \times (n+1)$ dofs and one discretized using n P^2 elements contains $(2n+1) \times (2n+1)$ dofs. Hence since the system is of dimension 8:

- if 10 P^1 elements are used for each side the final system contains 968 states;
- if 10 P^2 elements are used for each side the final system contains 3528 states.

Benchmark variables

The variables are discretized by using Lagrange polynomials of order 1 (same order for each variable) or 2. Normalized eigenfrequency found in [5] are used as benchmark

$$\widehat{\omega}_{mn} = \omega_{mn}^h L \left(\frac{2(1+\nu)\rho}{E} \right)^{\frac{1}{2}}$$
 Final result independent on E, ρ ,

m and n being the numbers of half-waves occurring in the modes shapes in the x and y directions, respectively.

Colors used for comparing of the first 4 eigenvalues

- benchmark results;
- 1% error or less;
- up to 5% error;
- up to 15% error;
- spurious eigenvalue;

Eigenvalues for t/L = 0.1 using P^1

BCs	Mode	N:10(B-A)	$N:10({ m D-H})$	$N:20(ext{B-A})$	$N:20({ m D-H})$	H-H	D-R
CCCC	$\widehat{\omega}_{11}$	1.5999	1.5947	1.5917	1.5921	1.591	1.594
	$\widehat{\omega}_{21}$	3.0615	3.1181	3.0410	3.0595	3.039	3.046
	$\widehat{\omega}_{12}$	3.0615	3.1181	3.0410	3.0595	3.039	3.046
	$\widehat{\omega}_{22}$	4.3161	4.4477	4.2682	4.3106	4.263	4.285
	$\widehat{\omega}_{11}$	0.9324	0.9384	0.9324	0.9323	0.930	0.930
SSSS	$\widehat{\omega}_{21}$	2.2227	2.2893	2.2226	2.2366	2.219	2.219
ממממ	$\widehat{\omega}_{12}$	2.2227	2.2893	2.2226	2.2366	2.219	2.219
	$\widehat{\omega}_{22}$	3.4142	3.5657	3.3608	3.4450	3.405	3.406
	$\widehat{\omega}_{11}$	1.3111	1.3060	1.3013	1.3016	1.300	1.302
SCSC	$\widehat{\omega}_{21}$	2.4155	2.4664	2.3966	2.4120	2.394	2.398
3030	$\widehat{\omega}_{12}$	2.9082	2.9617	2.8871	2.9043	2.885	2.888
	$\widehat{\omega}_{22}$	3.8906	4.0126	3.8458	3.8830	3.839	3.852
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	1.0855	1.0812	1.0982	1.0848	1.081	1.089
	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7636	1.7759	1.7461	1.7525	1.744	1.758
	$\widehat{\omega}_{\frac{1}{2}2}^2$	2.6696	2.7413	2.6575	2.6787	2.657	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	3.2248	3.3186	3.1997	3.2282	3.197	3.216

Eigenvalues for t/L = 0.01 using P^1

BCs	Mode	$N:10(ext{B-A})$	N: 10(D-H)	N: 20 (B-A)	N: 20(D-H)	Н-Н	D-R
CCCC	$\widehat{\omega}_{11}$	0.1967	.1754	.1765	.1754	.1754	.1754
	$\widehat{\omega}_{21}$	0.4030	.3668	.3604	.3599	.3574	.3576
	$\widehat{\omega}_{12}$	0.4030	.3668	.3604	.3599	.3574	.3576
	$\widehat{\omega}_{22}$	0.6431	.5487	.5358	.5323	.5264	.5274
	$\widehat{\omega}_{11}$	0.1706	.0972	.1128	.0965	.0963	.0963
SSSS	$\widehat{\omega}_{21}$	0.3576	.2486	.2660	.2426	.2406	.2406
caaa	$\widehat{\omega}_{12}$	0.3576	.2486	.2660	.2426	.2406	.2406
	$\widehat{\omega}_{22}$	0.5803	.4035	.3865	.3893	.3847	.3848
	$\widehat{\omega}_{11}$	0.1864	.1417	.1487	.1413	.1411	.1411
SCSC	$\widehat{\omega}_{21}$	0.3649	.2748	.2829	.2688	.2668	.2668
BCBC	$\widehat{\omega}_{12}$	0.3987	.3474	.3485	.3402	.3377	.3377
	$\widehat{\omega}_{22}$	0.6075	.4814	.4933	.4657	.4604	.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1238	.1182	.1166	.1170	.1166	.1171
	$\widehat{\omega}_{\frac{3}{2}1}^2$	0.2207	.1977	.1954	.1956	.1949	.1951
	$\widehat{\omega}_{\frac{1}{2}2}^2$	0.3204	.3193	.3078	.3109	.3080	.3093
	$\widehat{\omega}_{\frac{5}{2}1}^2$	0.4144	.3874	.3751	.3771	.3736	.3740

Eigenvalues for t/L = 0.1 using P^2

BCs	Mode	N = 5 (B-A)	$N = 10 \; (B-A)$	Н-Н	D-R
CCCC	$\widehat{\omega}_{11}$	1.5976	1.5914	1.591	1.594
	$\widehat{\omega}_{21}$	3.0584	3.0405	3.039	3.046
	$\widehat{\omega}_{12}$	3.0677	3.0405	3.039	3.046
	$\widehat{\omega}_{22}$	4.3109	4.2662	4.263	4.285
	$\widehat{\omega}_{11}$	0.9304	0.9302	0.930	0.930
SSSS	$\widehat{\omega}_{21}$	2.2223	2.2194	2.219	2.219
	$\widehat{\omega}_{12}$	2.2224	2.2194	2.219	2.219
	$\widehat{\omega}_{22}$	3.4128	3.4061	3.405	3.406
	$\widehat{\omega}_{11}$	1.3053	1.3004	1.300	1.302
SCSC	$\widehat{\omega}_{21}$	2.4040	2.3946	2.394	2.398
SCSC	$\widehat{\omega}_{12}$	2.9060	2.8858	2.885	2.888
	$\widehat{\omega}_{22}$	3.8721	3.8415	3.839	3.852
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	1.0845	1.0797	1.081	1.089
	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7559	1.7425	1.744	1.758
	$\widehat{\omega}_{\frac{1}{2}2}^2$	2.6762	2.6547	2.657	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	3.2186	3.1954	3.197	3.216

Eigenvalues for t/L = 0.01 using P^2

BCs	Mode	N = 5 (B-A)	$N = 10 \; (B-A)$	Н-Н	D-R
CCCC	$\widehat{\omega}_{11}$	0.1872	0.1762	0.1754	0.1754
	$\widehat{\omega}_{21}$	0.3725	0.3598	0.3574	0.3576
	$\widehat{\omega}_{12}$	0.4055	0.3598	0.3574	0.3576
	$\widehat{\omega}_{22}$	0.6043	0.5335	0.5264	0.5274
	$\widehat{\omega}_{11}$	0.0963	0.0963	0.0963	0.0963
SSSS	$\widehat{\omega}_{21}$	0.2422	0.2406	0.2406	0.2406
ממממ	$\widehat{\omega}_{12}$	0.2430	0.2406	0.2406	0.2406
	$\widehat{\omega}_{22}$	0.3874	0.3848	0.3847	0.3848
	$\widehat{\omega}_{11}$	0.1492	0.1418	0.1411	0.1411
SCSC	$\widehat{\omega}_{21}$	0.2827	0.2683	0.2668	0.2668
	$\widehat{\omega}_{12}$	0.3608	0.3394	0.3377	0.3377
	$\widehat{\omega}_{22}$	0.4940	0.4654	0.4604	0.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1197	0.1169	0.1166	0.1171
	$\widehat{\omega}_{\frac{3}{2}1}^2$	0.2092	0.1960	0.1949	0.1951
	$\widehat{\omega}_{\frac{1}{2}2}^2$	0.3188	0.3089	0.3080	0.3093
	$\widehat{\omega}_{\frac{5}{2}1}^2$	0.3938	0.3757	0.3736	0.3740

Temporal Simulation

Consider a uniform specific load acting on a clamped plate at rest

$$\boldsymbol{f}(t) = \begin{cases} -1 \ m/s^2 \, \hat{\boldsymbol{z}} & t < 0.01 \ s \\ 0 & t > 0.01 \ s \end{cases}$$

Corresponding linear form: $l(v) = \int \rho h v_w f \, d\Omega$.

Parameters:

• Total simulation time: T = 0.05

• Time step: $dt = 6.85 \, 10^{-6} s$

• Integration in time: Stormer-Verlet

Simulation output $e_w = \frac{\partial w}{\partial t}$ (scale factor ×500, 100 frame per second)

- [1] A. Brugnoli, D. Alazard, V. Budinger, and D. Matignon. Port-hamiltonian formulation and symplectic discretization of plate models. Part I: Mindlin model for thick plates. arXiv preprint arXiv:1809.11131, 2018. Under Review.
- [2] A. Brugnoli, D. Alazard, V. Budinger, and D. Matignon. Port-hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates. arXiv preprint arXiv:1809.11136, 2018. Under Review.
- [3] F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. A structure-preserving partitioned finite element method for the 2d wave equation. In 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, pages 1–6, Valparaíso, CL, 2018. http://oatao.univ-toulouse.fr/19965.
- [4] R. Durán, L. Hervella-Nieto, E. Liberman, and J. Solomin. Approximation of the vibration modes of a plate by Reissner-Mindlin equations. *Mathematics of Computation of the* American Mathematical Society, 68(228):1447–1463, 1999.

- [5] D.J. Dawe and O.L. Roufaeil. Rayleigh-Ritz vibration analysis of Mindlin plates. *Journal of Sound and Vibration*, 69(3):345–359, 1980.
- [6] H.C. Huang and E. Hinton. A nine node Lagrangian Mindlin plate element with enhanced shear interpolation. *Engineering Computations*, 1(4):369–379, 1984.
- [7] A. Macchelli, C. Melchiorri, and L. Bassi. Port-based modelling and control of the Mindlin plate. In *Proceedings of the 44th IEEE Conference on Decision and Control*, pages 5989–5994, Dec 2005. https://doi.org/10.1109/CDC.2005.1583120.
- [8] A. Macchelli, A. J. van der Schaft, and C. Melchiorri. Port Hamiltonian formulation of infinite dimensional systems I. Modeling, volume 4, pages 3762 – 3767. 01 2005. https://doi.org/10.1109/CDC.2004.1429324.

- [9] M. Schöberl and K. Schlacher. Lagrangian and port-Hamiltonian formulation for distributed-parameter systems. In 8th Vienna International Conference on Mathematical Modelling, volume 48, pages 610 – 615, 2015. https://doi.org/10.1016/j.ifacol.2015.05.025.
- [10] M. Schöberl and A. Siuka. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. In 2013 European Control Conference (ECC), pages 548–553, July 2013. https://doi.org/10.23919/ECC.2013.6669137.
- [11] M. Grinfeld. *Mathematical Tools for Physicists*. 2nd edition, jan 2015.
- [12] Alessandro Macchelli and Claudio Melchiorri. Modeling and control of the Timoshenko beam. The distributed port hamiltonian approach. SIAM Journal on Control and Optimization, 43(2):743–767, 2004.

Thank you for your attention. Questions?