CS61065: Theory and Applications of Blockchain

Basic Crypto Primitives

Department of Computer Science and **Engineering**

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Sandip Chakraborty sandipc@cse.iitkgp.ac.in

What You'll Learn

- Basic cryptographic primitives behind the blockchain technology
 - Cryptographically Secure Hash Function
 - Digital Signature
- Hash Function: Used to connect the "blocks" in a "chain" in a tamper-proof way

• **Digital Signature:** Digitally sign the data so that no one can "deny" about their own activities. Also, others can check whether it is authentic.

Cryptographic Hash Functions

- Takes any arbitrarily sized string as input
 - Input M: The message
- Fixed size output (We use 256 bits in Blockchain)
 - Output H(M): We call this as the message digest
- Efficiently computable

Cryptographic Hash Function: Properties

Deterministic

Always yield identical hash value for identical input data

Collision-Free

If two messages are different, then their digests also differ

Hiding

Hide the original message; remember about the avalanche effect

Puzzle-friendly

• Given X and Y, find out k such that Y = H(X||k) - used to solve the mining puzzle in Bitcoin Proof of Work

Collision Free

• Hash functions are one-way; Given an x, it is easy to find H(x). However, given an H(x), no deterministic algorithm can find x

• It is difficult to find x and y, where $x \neq y$, but H(x) = H(y)

Note the phrase difficult to find, collision is not impossible

• Try with randomly chosen inputs to find out a collision – but it takes too long

Collision Free – How Do We Guarantee

• It may be relatively easy to find collision for some hash functions

- Birthday Paradox: Find the probability that in a set of n randomly chosen persons, some of them will have the same birthday
 - By *Pigeonhole Principle*, the probability reaches 1 when number of people reaches 366 (not a leap year) or 367 (a leap year)
 - 0.999 probability is reached with just ~70 people, and 0.5 probability is reached with only ~23 people

Collision Free – How Do We Guarantee

• Birthday paradox places an upper bound on collision resistance

- If a hash function produces N bits of output, an attacker need to compute only $2^{\frac{N}{2}}$ hash operations on a random input to find two matching outputs with probability > 0.98
- For a 256 bit hash function, the attacker needs to compute 2^{128} hash operations this is significantly time consuming
 - If every hash computation takes only 1 microsecond, it will need $\sim 10^{25}$ years

Hash as A Message Digest

• If we observe H(x) = H(y), it is safe to assume x = y

We need to remember just the hash value rather than the entire message — we call this as the message digest

- To check if two messages x and y are same, i.e., whether x=y, simply check if H(x)=H(y)
 - This is efficient because the size of the digest is significantly less than the size of the original messages

Hashing - Illustration

http://www.blockchain-basics.com/HashFunctions.html

Courtesy: Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher

Information Hiding through Hash

• Given an H(x), it is "computationally difficult" to find x

The difficulty depends on the size of the message digests

- Hiding helps to commit a value and then check it later
 - Compute the message digest and store it in a digest store commit
 - To check whether a message has been committed, match the message digest at the digest store

Message Commitment through Multiple Parties

 K_A is the public key of Alice – A public identity that only Alice can have

Puzzle Friendly

• Say M is chosen from a widely spread distribution; it is computationally difficult to compute k, such that Z = H(M||k), where M and Z are known a priori.

- A Search Puzzle (Used in Bitcoin Mining)
 - M and Z are given, k is the search solution
 - Note: It might be not exactly a particular value Z, but some properties that Z satisfies,
 i.e., Z could be a set of possible values
- Puzzle friendly property implies that random searching is the best strategy to solve the above puzzle

Hash Function – SHA256

• SHA256 is used in Bitcoin mining – to construct the Bitcoin blockchain

• Secure Hash Algorithm (SHA) that generates 256 bit message digest

• A part of SHA-2, a set of cryptographic hash functions designed by United States National Security Agency (NSA)

SHA256 Algorithm - Preprocessing

- Pad the message such that the message size is a multiple of 512
 - Suppose that the length of the message M is l; and $l \mod 512 \neq 0$
 - Append the bit "1" at the end of the message
 - Append k zero bits, where k is the smallest non-negative solution to the equation $l+1+k\equiv 448\ mod\ 512$
 - Append the 64-bit block which is equal to the number l written in binary
 - The total length gets divisible by 512
- Partition the message into N 512-bit blocks $M^{(1)}$, $M^{(2)}$,..., $M^{(N)}$
- Every 512 bit block is further divided into 32 bit sub-blocks $M_0^{(i)}$, $M_1^{(i)}$,..., $M_{15}^{(i)}$

SHA-256 Algorithm

• The message blocks are processed one at a time

• Start with a fix initial hash value $H^{(0)}$

• Sequentially compute $H^{(i)} = H^{(i-1)} + C_{M^{(i)}}(H^{(i-1)})$; C is the SHA-256 compression function and + means mod 2^{32} addition. $H^{(N)}$ is the hash of M.

SHA-256 Algorithm

Patterns of Hashing Data

- Independent hashing
- Repeated hashing
- Combined hashing
- Sequential hashing
- Hierarchical hashing

Courtesy: Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher

Types of Hashing

Independent hashing

Repeated hashing

Types of Hashing

Combined hashing

Sequential hashing

Types of Hashing

Hierarchical hashing

Hash Pointer

- A Cryptographic Hash Pointer (Often called Hash Reference) is a pointer to a location where
 - Some information is stored
 - Hash of the information is stored
- With the hash pointer, we can
 - Retrieve the information
 - Check that the information has not been modified (by computing the message digest and then matching the digest with the stored hash value)

Hash Pointer

Reminds you of a linked list??

Reference: Coursera course on Bitcoin and Cryptocurrency Technologies

Tamper Detection using Hash Pointer

Making Tampering a Hash Chain Computationally Challenging

Nonces for Solving a Hash Puzzle

Nonce	Text to Be Hashed	Output
0	Hello World! 0	4EE4B774
1	Hello World! I	3345B9A3
2	Hello World! 2	72040842
3	Hello World! 3	02307D5F
613	Hello World! 613	E861901E
614	Hello World! 614	00068A3C
615	Hello World! 615	5EB7483F

http://www.blockchain-basics.com/HashFunctions.html

Courtesy: Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher

Detect Tampering from Hash Pointers - Hashchain

Merkle Tree – Organization of Hash Pointers in a Tree

Blockchain as a Hashchain

Digital Signature

- A digital code, which can be included with an electronically transmitted document to verify
 - The content of the document is authenticated
 - The identity of the sender
 - Prevent non-repudiation sender will not be able to deny about the origin of the document

Purpose of Digital Signature

- Only the signing authority can sign a document, but everyone can verify the signature
- Signature is associated with the particular document
 - Signature of one document cannot be transferred to another document

Public Key Cryptography

Also known as asymmetrical cryptography or asymmetric key cryptography

- **Key:** A parameter that determines the functional output of a cryptography algorithm
 - Encryption: The key is used to convert a plain-text to a cypher-text; M' = E(M, k)
 - **Decryption:** The key is used to convert the cypher-text to the original plain text; M = D(M', k)

Public Key Cryptography

- Properties of a cryptographic key (you need to prevent it from being guessed)
 - Generate the key truly randomly so that the attacker cannot guess it
 - The key should be of sufficient length increasing the length makes the key difficult to guess
 - The key should contain sufficient entropy, all the bits in the key should be equally random

Public Key Cryptography

- Two keys are used
 - Private key: Only Alice has her private key
 - Public key: "Public" to everyone everyone knows Alice's public key

Public Key Encryption - RSA

 Named over (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman – inventors of the public key cryptosystem

- The encryption key is public and decryption key is kept secret (private key)
 - Anyone can encrypt the data
 - Only the intended receiver can decrypt the data

RSA Algorithm

- Four phases
 - Key generation
 - Key distribution
 - Encryption
 - Decryption

https://commons.wikimedia.org/

Public and Private Keys in RSA

• It is feasible to find three very large positive integers e, d and n; such that modular exponentiation for integers m ($0 \le m < n$):

$$(m^e)^d \equiv m \pmod{n}$$

- Even if you know e, n and m; it is extremely difficult to find d
- Note that

$$(m^e)^d \equiv m \pmod{n} = (m^d)^e \equiv m \pmod{n}$$

• (e, n) is used as the public key and (d, n) is used as the private key. m is the message that needs to be encrypted.

RSA Key Generation and Distribution

- Chose two distinct prime integer numbers p and q
 - p and q should be chosen at random to ensure tight security
- Compute $n=pq;\,n$ is used as the modulus, the length of n is called the key length
- Compute $\phi(n) = (p-1)(q-1)$ Euler totient function
- Choose an integer e such that $1 < e < \phi(n)$ and $\gcd\bigl(e,\phi(n)\bigr) = 1; e$ and $\phi(n)$ are co-prime
- Determine $d=e^{-1}(mod\ \phi(n)):d$ is the modular multiplicative inverse of $e(mod\ \phi(n))$ [Note $d.\ e=1(mod\ \phi(n))$]

RSA Encryption and Decryption

• Let m be the integer representation of a message M.

• Encryption with public key (e, n) $c \equiv m^e \pmod{n}$

• Decryption with private key (d, n) $m \equiv c^d \pmod{n} \equiv (m^e)^d \pmod{n}$

RSA Encryption and Decryption - Example

Key Selection

- Select 2 prime numbers: p=17, q=11
- Calculate n=pq=17×11=187
- Calculate $\phi(n)=(p-1)(q-1)=16\times 10=160$
- Select e such that e is relatively prime to $\phi(n)=160$ and less than $\phi(n)$; Let e=7
- Determine d such that d.e \equiv 1 mod 160 and d<160; Can determine d = 23 since $23 \times 7 = 161 = 1 \times 160 + 1$

Encryption of Plaintext M = 88

- C=88⁷ mod 187
- = $[(88^4 \mod 187) \times (88^2 \mod 187) \times (88^1 \mod 187)] \mod 187 = (88 \times 77 \times 132) \mod 187 = 11$

Decryption of Ciphertext C = 11

- M=11²³ mod 187
- =[$(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)$] mod 187
- = $(11\times121\times55\times33\times33)$ mod 187 = (79720245) mod 187 = 88

RSA Encryption and Decryption - Demo

• https://www.devglan.com/online-tools/rsa-encryption-decryption

Digital Signature using Public Key Cryptography

- Sign the message using the Private key
 - Only Alice can know her private key
- Verify the signature using the Public key
 - Everyone has Alice's public key and they can verify the signature

Reduce the Signature Size

• Use the message digest to sign, instead of the original message

Sign the message with her private key

$$S = E(H(M), K_{pri}^A)$$

Verify the signature using Alice's public key $H(M) = F(S, K^A)$

$$H(M) = E(S, K_{pub}^A)$$

Digital Signature in Blockchain

- Used to validate the origin of a transaction
 - Prevent non-repudiation
 - Alice cannot deny her own transactions
 - No one else can claim Alice's transaction as his/her own transaction
- Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA)
 - Based on elliptic curve cryptography
 - Supports good randomness in key generation

A Cryptocurrency using Hashchain and Digital Signatures

- Alice generates 10 coins
- Sign the transaction A:10 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Alice transfers 5 coins to Bob
- Sign the transaction A-B:5 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Maintain the economy
 - Generate new coins with time
 - Delete old coins with time
- A central authority like bank can create and destroy coins based on economic policies

Crucial Question: How can we distribute coin management (creation and destroy)

