Practice Problem Set #3

Biasing Techniques ENEL469: Analog Electronics

1. For the circuit shown below, determine I_B , I_C , I_E , V_{CB} and V_{CE} . Use the following characteristics: $\beta = 75$, $V_{BE(ON)} = 0.7$ V, $V_{CC} = 5$ V, $V_{CC} = 10$ k Ω , $V_{CC} = 10$ k Ω , $V_{CC} = 10$ k Ω .

2. Consider the following circuit where β = 75 and $|V_{BE(ON)}|$ = 0.7 V, V_{EE} = 5 V, V_1 = -1 V, V_2 = -5V, I_1 = 0.5 mA, R_B = 25 k Ω . Determine I_B , I_C , I_E , R_C , V_{CB} , V_{CE} , and power absorbed or delivered by the I_1 current source.

Dr. Anis Haque Page 1 of 4

3. The circuit shown below to be designed such that I_C = 0.8 mA and V_{CE} = 2 V for the case when R_E = 1 k Ω . Assume β = 80, $V_{BE(ON)}$ = 0.7 V, V_{CC} = 5 V and V_1 = 2 V. Find the value of R_C and R_B .

4. Consider the given circuit where β = 80 and $V_{BE(ON)}$ = 0.7V. Determine V_1 such that V_{CE} = 6 V. Use the following characteristics: R_C = 2.2 $k\Omega$, R_B =15 $k\Omega$, R_2 =100 $k\Omega$, V_{CC} = 12V, V_2 = -12V.

Note: The terminal where V_1 is measured is not open, but it is connected to other part of the circuit not shown here.

Dr. Anis Haque Page 2 of 4

5. The current gain of the transistor shown in the following circuit is 75 and $V_{CE(sat)}$ = 0.2 V. Given, V_{CC} = 5V, R_C = 5 k Ω , R_B = 50 k Ω , R_L = 10 k Ω . Determine V_0 for, a) V_1 = 0V and b) V_1 = 2 V.

6. In the circuit below, β = 100, V_{CC} = 10V, $V_{BE(ON)}$ = 0.7 V, R_1 = 56 k Ω , R_2 =12.2 k Ω , R_C = 2 k Ω , R_E = 400 Ω . Determine I_B , I_C , I_E , and V_{CE} .

Dr. Anis Haque Page 3 of 4

7. The circuit below shows multistage amplifier where β = 100 for each transistor and here the B-E junctions require 0.7 V to turn on. Given, V_{CC}= 5V, V₁= -5 V, R₁ = 100 kΩ, R₂ = 50 kΩ, R_{C1} = 5 kΩ, R_{E1} = 2kΩ, R_{C2} = 1.5 kΩ, R_{E2} = 2kΩ. Determine V_{CE2}.

Note: Do not ignore the base currents.

Dr. Anis Haque Page 4 of 4