Epidemiology: poster presentation assignment (group 7)

Boaz Baliejukia

2024-10-19

Loading packages

```
library(tidyverse)
library(knitr)
```

Let's upload the dataset

```
sample <- read.csv("Poster Presentation.csv")
head(sample, 15) %>%
  kable(align = "c")
```

id	sex	age	bmi_cat	bp_baseline	lost	bp_followup
6	0	52	2	0	0	0
9	0	39	2	0	0	0
13	0	30	3	1	NA	NA
15	0	50	1	0	0	0
18	0	60	1	0	0	0
19	0	37	1	0	0	0
23	1	51	2	0	0	0
24	0	39	1	0	0	1
30	0	50	2	0	0	0
32	1	58	2	0	1	NA
40	0	37	2	0	0	0
41	1	53	2	0	0	1
42	0	50	3	0	0	1
43	1	60	2	0	0	0
44	0	34	3	0	0	1

glimpse(sample)

We are now cleaning data

Let's recode variables

id	sex	age	bmi_cat	bp_baseline	lost	bp_followup
6	Male	52	Normal	No	No	No
9	Male	39	Normal	No	No	No
13	Male	30	Overweight	Yes	NA	NA
15	Male	50	Underweight	No	No	No
18	Male	60	Underweight	No	No	No
19	Male	37	Underweight	No	No	No
23	Female	51	Normal	No	No	No
24	Male	39	Underweight	No	No	Yes
30	Male	50	Normal	No	No	No
32	Female	58	Normal	No	Yes	NA

Let's get our population at risk and call it "cohort": adults without LBP at the beginning of the study (bp_baseline = No)

```
cohort <- sample[sample$bp_baseline == "No", ]
head(cohort, 10) %>%
kable(align = "c")
```

	id	sex	age	bmi_cat	bp_baseline	lost	bp_followup
1	6	Male	52	Normal	No	No	No
2	9	Male	39	Normal	No	No	No
4	15	Male	50	Underweight	No	No	No
5	18	Male	60	Underweight	No	No	No
6	19	Male	37	Underweight	No	No	No
7	23	Female	51	Normal	No	No	No
8	24	Male	39	Underweight	No	No	Yes
9	30	Male	50	Normal	No	No	No
10	32	Female	58	Normal	No	Yes	NA
11	40	Male	37	Normal	No	No	No

Table 1: Baseline characteristics according to BMI categories

```
cat <- cohort %>%
  group_by(bmi_cat) %>%
  summarise(
        count = n(),
        mean_age = mean(age, na.rm = TRUE),
        sd_age = sd(age, na.rm = TRUE),
        male_percentage = sum(sex == "Male") / n() * 100,
        female_percentage = sum(sex == "Female") / n() * 100
        )
cat %>%
  kable(align = "c")
```

bmi_cat	count	$mean_age$	$\operatorname{sd_age}$	$male_percentage$	female_percentage
Underweight	745	47.03490	12.56077	65.90604	34.09396
Normal	695	47.31223	12.68547	60.14388	39.85612
Overweight	532	47.75188	12.19145	63.53383	36.46617
Obesity	66	49.56061	12.92122	62.12121	37.87879

Figure 1: Barplot

Participants by BMI groups and gender at baseline

We're now splitting our cohort into 2 groups: exposed (obesity) and non-exposed

```
exposed <- cohort[cohort$bmi_cat =="Obesity", ]
non_exposed <- cohort[!cohort$bmi_cat =="Obesity", ]
nrow(exposed)
## [1] 66
nrow(non_exposed)
## [1] 1972</pre>
```

Baseline Demographic characteristics of participants:

```
demo_expo <- exposed %>%
    summarise(
        count = n(),
        mean_age = mean(age, na.rm = TRUE),
        sd_age = sd(age, na.rm = TRUE),
        male_percentage = sum(sex == "Male") / n() * 100,
        female_percentage = sum(sex == "Female") / n() * 100
)
demo_expo %>%
    kable(align = "c")
```

count	mean_age	sd_age	male_percentage	female_percentage
66	49.56061	12.92122	62.12121	37.87879

```
demo_non_expo <- non_exposed %>%
    summarise(
        count = n(),
        mean_age = mean(age, na.rm = TRUE),
        sd_age = sd(age, na.rm = TRUE),
        male_percentage = sum(sex == "Male") / n() * 100,
        female_percentage = sum(sex == "Female") / n() * 100
)
demo_non_expo %>%
    kable(align = "c")
```

count	mean_age	sd_age	$male_percentage$	female_percentage
1972	47.32606	12.50358	63.23529	36.76471

Result

Attrition bias (lost to follow up):

```
lost_expo <- sum(is.na(exposed$bp_followup))
lost_non_expo <- sum(is.na(non_exposed$bp_followup))

lost_expo

## [1] 4
lost_non_expo

## [1] 186</pre>
```

Let's create a 2x2 table

Considering : a = exposed with outcome b = exposed without outcome c = non-exposed without outcome d = non-exposed without outcome

```
a <- length(which(exposed$bp_followup == "Yes"))
b <- length(which(exposed$bp_followup == "No"))
c <- length(which(non_exposed$bp_followup == "Yes"))
d <- length(which(non_exposed$bp_followup == "No"))

a
## [1] 25
b
## [1] 37
c</pre>
```

```
d
```

```
## [1] 1161
```

We are now creating a 2x2 matrix:

```
table <- matrix(c(a, b, c, d), nrow = 2, byrow = TRUE)
table <- cbind(table, c(a + b, c + d))
colnames(table) <- c("Low back pain", "Without LBP", "Total")
rownames(table) <- c("Obesity", "Without Obesity")

table %>%
   kable(align = "c")
```

	Low back pain	Without LBP	Total
Obesity	25	37	62
Without Obesity	625	1161	1786

```
write.csv(table, "2x2table.csv")
```

Let's compute the Risk Ratio

Risk of outcome in exposed and non-exposed groups

```
lbp_expo <- a/(a+b)

lbp_expo

## [1] 0.4032258

lbp_non_exp <- c/(c+d)

lbp_non_exp
## [1] 0.349944</pre>
```

Risk Ratio

```
RR <- lbp_expo/lbp_non_exp
RR</pre>
```

[1] 1.152258

Figure 2: Barplot

Let's plot a bar graph showing incidence proportion of LBP by exposure groups:

Incidence of Low Back Pain by exposure groups (Obesi-

Table 2: Summary table

```
table1 <- data.frame(</pre>
  characteristics = c("Number of participants",
                                "Mean age",
                                "SD",
                                "Male", "M %",
                                "Female", "F %",
                                "Low Back Pain", "LBP %", "LBP M", "LBPM %", "LBP F", "LBPF %"),
  Exposed = c(nrow(exposed),
                       round(mean(exposed$age), 2), round(sd(exposed$age), 2),
                       length(which(exposed$sex == "Male")),
              round(length(which(exposed$sex == "Male")) / nrow(exposed) * 100, 2),
                       length(which(exposed$sex == "Female")),
              round(length(which(exposed$sex == "Female")) / nrow(exposed) * 100, 2),
                       a, round(a/nrow(exposed) * 100, 2),
              length(which(exposed$sex == "Male" & exposed$bp_followup == "Yes")),
              round(length(which(exposed$sex == "Male" & exposed$bp_followup == "Yes")) / a * 100, 2),
```

characteristics	Exposed	Non_exposed
Number of participants	66.00	1972.00
Mean age	49.56	47.33
SD	12.92	12.50
Male	41.00	1247.00
$\mathrm{M}~\%$	62.12	63.24
Female	25.00	725.00
F~%	37.88	36.76
Low Back Pain	25.00	625.00
LBP $\%$	37.88	31.69
LBP M	13.00	378.00
LBPM $\%$	52.00	60.48
$_{ m LBP~F}$	12.00	247.00
LBPF $\%$	48.00	39.52

```
write.csv(table1, "characteristics.csv", row.names = FALSE)
```

Table 3: age groups

Age_groups	Number_of_participants	Number_of_cases_LBP	Incidence_proportion
25-35	434	47	10.83
36-45	489	150	30.67
46-55	506	162	32.02
56-65	461	143	31.02
66-75	148	148	100.00

write.csv(table2, "agegroups.csv", row.names = FALSE)