1. Legyen A = [1..6] és legyenek $S_1, S_2 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ a következő programok:

$$S_{1} = \begin{cases} 1 \to <1, 4, 3 > & 1 \to <1, 2, 4 > & 2 \to <2, 2, \dots > \\ 2 \to <2, 1, 4, 6 > & 3 \to <3, 5, 1 > & 4 \to <4, 5, 3 > \\ 5 \to <5, 1, fail > & 6 \to <6, 3, 1, 5 > & \end{cases}$$

$$S_2 = \begin{cases} 1 \to <1, 3, 2 > & 1 \to <1, 2, 4 > & 2 \to <2, 6 > \\ 3 \to <3, 4 > & 4 \to <4, fail > & 4 \to <4, 5, 1 > \\ 5 \to <5 > & 6 \to <6, 4, 3, 2 > \end{cases}$$

- Határozd meg az $(S_1; S_2)$ szekvenciát.
- Legyenek $\pi_1, \pi_2 \in A \to \mathbb{L}$ logikai függvények, úgy hogy $\pi_1 = \{(1, igaz), (2, igaz), (4, igaz), (5, hamis), (6, hamis)\}$ és $\pi_2 = \{(1, igaz), (2, hamis), (3, igaz), (4, igaz), (5, hamis)\}$. Határozd meg a $(\pi_1: S_1, \pi_2: S_2)$ elágazást.
- 2. Legyen A állapotér és $S\subseteq A\times (\bar{A}\cup\{fail\})^{**}$ program tetszőlegesek. Hogy írható fel másképp az (S;SKIP) szekvencia?
- 3. Legyen A állapotér, $S_0 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ program és $\pi \in A \to \mathbb{L}$ logikai függvény tetszőlegesek. Jelölje DO a (π, S_0) ciklust. Igaz-e hogy $p(DO) \subseteq p(S_0)$?
- 4. Legyen A=[1..5], $S_0\subseteq A\times (\bar{A}\cup\{fail\})^{**}$ program, továbbá $\pi\colon A\to \mathbb{L}$ úgy hogy $\lceil\pi\rceil=\{1,2,3,4\}.$

$$S_0 = \begin{cases} 1 \to <1, 2, 4 > & 2 \to < 2 > & 3 \to <3, 4, 2 > \\ 3 \to <3, 5 > & 3 \to <3, 3, 3, \dots > & 4 \to <4, 5, 3, 4 > \\ 4 \to <4, 1, 3 > & 5 \to <5, 5, \dots > \end{cases}$$

Határozd meg a (π, S_0) ciklust.

- 5. Van-e olyan program, ami felírható szekvenciaként, ciklusként, illetve elágazásként is?
- 6. $A = (i:\mathbb{N}, n:\mathbb{N}).$ $S = (i := 1; DO(i \neq n, IF(2 \mid i \land i \leq 12 : i := i + 1, 2 \nmid i \lor (2 \mid i \land 12 \leq i < 20) : i := i + 3)))$

Rajzold fel S struktogramját és határozd meg mit rendel a $\{i:2,n:12\}$ és $\{i:1,n:13\}$ állapotokhoz.

7. Keressünk olyan S_1, \ldots, S_n programokat egy közös A alap-állapottér felett, továbbá $\pi_1, \ldots \pi_n \in A \to \mathbb{L}$ logikai függvényeket, úgy hogy $\mathcal{D}_{p(IF)} = A$ és $\mathcal{D}_{p(S)} = \emptyset$ teljesüljenek. IF a $(\pi_1:S_1, \ldots \pi_n:S_n)$ elágazást, S pedig az $S_1 \cup \ldots \cup S_n$ relációt jelöli.