INFORMÁTICA. INGENIERÍA DEL SOFTWARE

MODELOS OPERATIVOS DE GESTIÓN

Convocatoria de Febrero 2017 (06.02.2017)

Alumno	P1	P2	P3	P4

1.- (1,5 puntos) Explica brevemente la situación mostrada en la tabla y, si es necesario, cuál sería el paso siguiente para resolver el problema. Razona la respuesta.

Función objetivo: Max $x_1 - 5x_2 + x_3 - x_4$

	0	0	0	0	1	1	1	
	x_1	x_2	x_3	χ_4	x_{a_1}	x_{a_2}	x_{a_3}	
x_{a1}	-2	0	2	2	1	-4	0	0
x_2	3	1	2	1	0	3	0	2
x_{a3}	1	0	-3	-2	0	1	1	1
	-1	0	-1	0	0	-4	0	1

2.- (2 puntos) Una empresa de componentes informáticos puede comprar discos duros a tres proveedores y su objetivo es minimizar el coste total de la compra. Los proveedores disponen de 1000, 3000 y 1000 discos respectivamente. La empresa necesita los discos en tres cadenas de montaje sitas en tres localidades distintas. Dichas cadenas requieren 1500, 1000 y 2500 discos respectivamente. Los precios en cientos de euros por cada disco entregado a cada cadena son como siguen:

Proveedores\cadenas	C1	C2	C3
P1	4	7	2
P2	3	5	2
P3	9	11	10

Se pide:

- 1. Formular el problema como un problema de programación lineal entera.
- 2. Calcula una solución inicial generada mediante el método de Vogel, indicando los correspondientes valores de las variables básicas y no básicas, así como el coste total asociado a dicha solución.
- 3. Calcular la solución óptima a partir de la SBF (solución básica factible) anterior.
- 3.- (1,5 puntos) Un ayuntamiento quiere diseñar el modo de llevar el agua desde el depósito municipal D a 7 casas rurales, no necesariamente de forma directa, con el menor coste posible. Las posibles conducciones entre los depósitos y las casas con sus costes correspondientes, en unidades monetarias, vienen recogidas en la siguiente tabla:

	D	C 1	C2	C3	C4	C5	C6	C7
D	-	10	12	14	-	-	-	-
C1		-	-	-	3	-	-	-
C2			-	-	2	4	-	-
C3				-	-	3	-	-
C4					-	3	5	6
C5						-	7	5
C6							-	4
C7								-

Por ejemplo, realizar una conducción entre la casa 2 y la casa 5 tiene un coste de 4 unidades monetarias.

- Calcular todas las formas posibles de establecer las conexiones para que el coste total sea mínimo. Mostrar dichas soluciones y el valor del coste mínimo.
- b) Si en lugar de 7 casas tenemos 8 casas, ¿cuántas conducciones o conexiones se necesitarían? Razonar la respuesta.
- 4.- (2 puntos) Se considera un proyecto formado por 11 actividades. La tabla siguiente recoge dichas actividades, su duración en días y las relaciones de precedencia entre las mismas:

Actividad	Duración	Precedentes
A	2	1
В	2	1
C	6	A
D	T_{D}	A
Е	1	В
F	2	В
G	4	D,E
Н	T_{H}	D,E
I	2	F,H
J	2	G,I,C
K	3	F,H

- a) Elaborar un grafo PERT que represente a dicho proyecto.
- b) Sabiendo que las actividades críticas del proyecto son A, C, D, G, H, I y J
 - calcular la duración prevista del proyecto
 - los caminos críticos
 - Las duraciones de las actividades D y H.
- c) La holgura total de las actividades no críticas