Deep Learning - Theory and Practice

IE 643 Lecture 1

August 14, 2020.

- Credit Requirements
- 2 Audit Requirements
- Programming skills required
- 4 Study materials and References
- Teaching Assistants
- 6 Introduction
- Perceptron

Credit Requirements

• Course Project: 40%

- Topics will be floated soon selection to be done only from the list of topics floated.
- ► Team size: Limited to maximum of 3 members. (strict limit)
- ▶ 30% for mid-term evaluation, 70% for final evaluation.
- Typical activities in project: reading research papers, implementing algorithms, trying some improvements with ideas designed by the teams (or suggested by Instructor).
- ▶ More details will be provided soon.

Credit Requirements

- Mid-Term Exam: 20% (tentative)
- Quiz: 10%
 - Quizzes would be held during the live interaction time slots.
- Assignments (Theoretical, Programming): 10%
- Scribing, class participation, other activities: 10%
- Homework problems, practice questions will be provided regularly. (Will not be graded!)

Credit Requirements

Challenge Programming contests: 10%

- Problem description and solution requirements along with training and validation data sets will be posted.
- Students can form teams of maximum size 3.
- Teams can propose solutions based on the problem description and solution requirements.
- Submissions will be ranked based on their performance on private test data sets.
- Marks will be provided as percentiles.
- Students who provide top 3 best performing solutions for each programming contest would be given extra marks, and their ideas will deserve special mention during the course.

Audit Requirements

- Course Project must be executed to completion.
- Assignments must be solved and submitted.
- Pass marks in **Mid-term exam** ($\geq \frac{40}{100}$) (**Tentative**)
- Quizzes are optional and will not be considered for evaluation.
 - However auditing students are strongly encouraged to participate in quizzes.
- Auditing students are encouraged to participate in programming contests, but this is optional.
- Auditing students will **not** be given scribing activity.

Essential Programming Skills

- Knowledge of Python programming language is essential
- No special training for Python programming language will be provided
- You must learn Python on your own. Start now!
- However some practice codes will be given for those who wish to refresh their Python.

Request to participants

- If you are completely new to Python
- If you are a sophomore B.Tech (or) B.S. student
- If you have already credited a different Deep Learning course in IITB

Please de-register !!!

Materials for self-study and Reference Texts

Materials for self-study

Lecture slides, scribes and related research papers will be posted in Moodle.

Ref. Book-1

Deep Learning. Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book. https://www.deeplearningbook.org/

Ref. Book-2

Deep Learning with Python. François Chollet. Manning Publications. https://www.manning.com/books/deep-learning-with-python/

Reference Texts

Ref. Book-3

Linear Algebra and Learning from Data. Gilbert Strang.

Wellesley-Cambridge Press.

http://math.mit.edu/~gs/learningfromdata/

Web Resources

- https://towardsdatascience.com/
- https://medium.com/
- Code repository: https://github.com

Teaching Assistants for the course

- Kunal Apurva (kunalapurva@iitb.ac.in)
- Saurav Pathak (saurav.pathak@iitb.ac.in)
- Ritesh Dattu Takole (193190025@iitb.ac.in)
- Shubham Uttam (shubhamuttam@iitb.ac.in)
- Akash Saha (akashsaha@iitb.ac.in)

Deep Learning - Motivating Applications

Handwritten Character Recognition

Action Recognition

Machine Translation

Image Generation

Real time object Recognition

Click for video

Real time notes to music

Click for video

Biological Motivation

Population imaging of neural activity in awake behaving mice. K. D. Piatkevich et al. Nature, 574, pp. 413-117, 2019.

Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN

F. ROSENBLATT

Cornell Aeronautical Laboratory

Key Assumptions

- Stimuli which are similar will tend to form pathways to some sets of response cells.
- Stimuli which are dissimilar will tend to form pathways to different sets of response cells.
- Application of positive or negative reinforcements may facilitate or hinder the formation of connections.
- Similarity of stimuli is a dynamically evolving attribute.

