

Тема 3.

Модели нестационарных временных рядов

Родионова Л.А. 2019

Тема 3.1.

ARIMA(p, d, q) процессы. ТS и DS процессы.

3

Примеры нестационарных процессов

случайное блуждание $y_t = y_{t-1} + \varepsilon_t$

$$y_t = y_{t-1} + \varepsilon_t \rightarrow \Delta y_t = y_t - y_{t-1} = \varepsilon_t$$

Бокс и Дженкинс (1970-е г.г.) выделили класс нестационарных ВР

Нестационарные процессы

Опр. Ряд называется *интегрируемым* порядка d, если он и его первые (d-1) разности не является стационарными, а d-ая разность – стационарна и его автоковариационная функция удовлетворяет условию: $0 < \sum_{\tau} \gamma(\tau) < \infty$

Обозначение: у_т~I(d), d − порядок интегрируемости ряда.

Опр. Долгосрочная дисперсия – это сумма автоковариаций

$$H = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) = \gamma(0) + 2\sum_{\tau = 1}^{+\infty} \gamma(\tau)$$

- 1. H > 0 3. $\Delta^d y_t$ имеют $0 < H < \infty$ (*)
- $2. \quad 0 < \sum_{\tau} \gamma(\tau) < \infty$

- Долгосрочную дисперсию вычисляют для стационарных процессов.
- Вычислить Н для МА(1).

I(0), **I(1)**: примеры

Опр. Ряд называется *интегрируемым* порядка d, если он и его первые (d-1) разности не является стационарными, а d-ая разность — стационарна. O f o 3 h: $y_t \sim I(d)$

I(0)

- 1. Белый шум
- 2. МА-процессы
- 3. AR-процессы (некоторые)

I(2)
$$y_t = 2y_{t-1} - y_{t-2} + \varepsilon_t$$

I(1)

- 1. Случайное блуждание
- 2. AR-процессы (некоторые)

AR(2)
$$y_t = 1.5y_{t-1} + 0.5y_{t-2} + \varepsilon_t$$

Свойства интегрированных процессов

- 1. Если $y_t \sim I(d)$, $a \neq 0 \rightarrow (ay_t + b) \sim I(d)$
- 2. Если $y_t \sim I(0)$, $x_t \sim I(0) \rightarrow (y_t + x_t) \sim I(0)$
- 3. Если $y_t \sim I(0)$, $x_t \sim I(1) \rightarrow (y_t + x_t) \sim I(1)$

1 тип: процесс, приводимый к стационарному путем выделения линейного тренда – тренд-стационарный процесс (trend- stationary process (TSP)).

$$y_t = \alpha + \beta t + \varepsilon_t$$
.

Приводится к стационарному виду путем выделения в регрессию линейного тренда. Нестационарен из-за непостоянной средней.

2 тип: процесс, приводимый к стационарному путем взятия разности – разностно-стационарный процесс (difference-stationary process (DSP)). Ряды, имеющие ненулевой порядок интегрируемости.

$$y_t = y_{t-1} + \varepsilon_t.$$

Нестационарен из-за непостоянной дисперсии.

- тренд-стационарный $y_t = \alpha + \beta t + \varepsilon_t$
- О разностно-стационарных рядах говорят, что они содержат стохастический тренд

$$y_t = y_{t-1} + \varepsilon_t$$

$$y_t = y_{t-1} + \varepsilon_t = y_0 + \sum_{i=0}^t \varepsilon_{t-i} = y_0 + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \dots + \varepsilon_0,$$

$$\sum_{i=0}^{\infty} \mathcal{E}_{t-i} = \mathcal{E}_t + \mathcal{E}_{t-1} + \mathcal{E}_{t-2} + \dots - \text{стохастический тренд}$$

Долгосрочная дисперсия

$$H = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) = \gamma(0) + 2\sum_{\tau = 1}^{+\infty} \gamma(\tau)$$

$$\partial$$
ля $\Delta^d y_t$ $0 < H < \infty$ (*)

Условие (*) позволяют различать TS и DS

Приведение к стационарному виду

- Взятие разности: $\Delta y_t = D.y_t = y_t - y_{t-1}$

1: TS
$$\Delta y_t = y_t - y_{t-1} = (\alpha + \beta t + \varepsilon_t) - (\alpha + \beta (t-1) + \varepsilon_{t-1}) = \beta + \varepsilon_t - \varepsilon_{t-1}$$
,

2: DS
$$\Delta y_t = y_t - y_{t-1} = \alpha + \varepsilon_t$$
.

Последствия взятия разности для TS рядов: (1) приводит к модели ARMA с необратимой MA-частью: $\Delta y_t = \beta + (1 - L)\varepsilon_t$.

- Взятие разности:

1: TS
$$\Delta y_t = y_t - y_{t-1} = (\alpha + \beta t + \varepsilon_t) - (\alpha + \beta (t-1) + \varepsilon_{t-1}) = \beta + \varepsilon_t - \varepsilon_{t-1}$$
,

2: DS
$$\Delta y_t = y_t - y_{t-1} = \alpha + \varepsilon_t$$
.

- Долгосрочные дисперсии процессов:

$$H = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) = \gamma(0) + 2\sum_{\tau = 1}^{+\infty} \gamma(\tau)$$
 для $\Delta^d y_t$ $0 < H < \infty$ (*)

1: TS
$$V(\Delta y_t) = V(\beta + \varepsilon_t - \varepsilon_{t-1}) =$$

2: DS V(
$$\Delta y_t$$
)= V($\alpha + \varepsilon_t$) =

Приведение к стационарному виду

-Выделение тренда

Nelson C.R., Kang H. Pitfalls in the Use of Time as an Explanatory Variable in Regression // Journal of Business and Economic Statistics. January 1984. Vol. 2. P. 73–82.

- Проблема кажущихся трендов («spurious trends») DS 8 20 60 40 100 20 60 80 Fitted values - - Fitted values ····· Residuals ····· Residuals Остатки: Остатки: 2019

Проблема кажущихся трендов

Nelson C.R., Kang H. Pitfalls in the Use of Time as an Explanatory Variable in Regression // Journal of Business and Economic Statistics. January 1984. Vol. 2. P. 73–82 yr t

Source	SS	df		MS		Number of obs		100 416.35
Model Residual	3931.01823 925.282153			. 01823 165462			=	0.0000 0.8095
Total	4856. 30038	99	49.0)535392				3.0727
Y1	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ir	nterval]

					Lag		
reg Yd1t							
Source	SS	df	MS				= 100 = 121.23
Model Residual	1144.58815 925.282113		1144.58815 9.44165421		Prob > F = R-squared =	= 0.0000 = 0.5530	
Total	2069. 87026	99 20.9	9077804		Root MSE	= 3.0727	
Yd1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
t _cons	1172025 1.862015	.0106448 .6191836	-11.01 3.01	0.000 0.003	1383267 .6332655	0960783 3. 090765	

ARIMA(p, d, q) процесс

Опр. Нестационарные процессы, кот. путем взятия последовательных разностей приводятся к классу ARMA наз. процессами авторегрессии интегрированного скользящего среднего ARIMA(p,d,q) (AutoRegressive Integrated Moving Average - ARIMA(p,d,q) models), где

р – порядок авторегрессии,

d – порядок разностей (интеграции),

q – порядок скользящего среднего.

• ARIMA(p,0,q) = ARMA(p,q)

ARIMA(p, d, q) процесс

Опр. Процесс y_t называют *интегрированным* процессом авторегрессии скользящего среднего ARIMA(p,d,q)

(AutoRegressive Integrated Moving Average - ARIMA(p,d,q) models)

если у_t ~I(d) и
$$y_t \sim ARIMA(p,d,q)$$

$$\alpha_p(L)\Delta^d y_t = \theta_q(L)\varepsilon_t, \quad \varepsilon_t \sim WN(0,\sigma^2)$$

$$\alpha_p(L)(1-L)^d y_t = \theta_q(L)\varepsilon_t,$$

$$\alpha_p(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \dots - \alpha_p L^p,$$

$$\theta_q(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q.$$

ARIMA(p, d, q) процесс: частный случай

Пусть процесс

$$y_{t} = \alpha_{1}y_{t-1} + \alpha_{2}y_{t-2} + \ldots + \alpha_{p}y_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \ldots + \theta_{q}\varepsilon_{t-q}$$
 нестационарный.

После первой разности:

$$\Delta y_t = \alpha_1 \Delta y_{t-1} + \ldots + \alpha_p \Delta y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

Процесс стал стационарным $\rightarrow ARIMA(p,1,q)$

ARIMA(p,1,q) в операторном виде:

$$\alpha_p(L)\Delta y_t = \theta_q(L)\varepsilon_t$$

$$\alpha_p(L)(1-L)y_t = \theta_q(L)\varepsilon_t$$

3.2. Тесты на единичные корни

Родионова Л.А. 2019

Понятие единичного корня

• Единичный корень (unit root) – характеристика нестационарного процесса.

AR(p)
$$y_{t} = \alpha_{1} y_{t-1} + \alpha_{2} y_{t-2} + ... + \alpha_{p} y_{t-p} + \mathcal{E}_{t}$$

 $\alpha_{p}(L)y_{t} = \mathcal{E}_{t}, \quad \alpha_{p}(L) = (1 - \alpha_{1}L - \alpha_{2}L^{2} - \alpha_{3}L^{3} - ... - \alpha_{p}L^{p})$
 $\alpha(z) = 1 - \sum_{i=1}^{p} \alpha_{i} z^{i} = 0$

- $|z_i|=1$ процесс нестационарный
- Если k корней $|z_i|=1$, а остальные лежат вне ед.окружности, то по опр. это интегрированный процесс порядка k: I(k)

$$I(1): y_t = y_{t-1} + \varepsilon_t \to (1-L)y_t = \varepsilon_t$$

$$I(2): y_t = 2y_{t-1} - y_{t-2} + \varepsilon_t \to (1-L)(1-L)y_t = \varepsilon_t$$

Тесты на единичный корень

-Тест Дики-Фуллера (Dickey–Fuller test, DF-test)

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431.

David Alan Dickey (1945–)

Wayne Arthur Fuller (1931–)

Тест Филлипса-Перрона (Phillips-Perron test, PP-test)

Phillips, P. C. B.; Perron, P. (1988). "Testing for a Unit Root in Time Series Regression".

Biometrika 75 (2): 335-346.

-Тест Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Квятковского-Филлипса-Шмидта-Шина)

-Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P.; Shin, Y. (1992). "Testing the null hypothesis of stationarity against the alternative of a unit root". Journal of Econometrics 54 (1–3): 159–178.

Критерий Дики – Фуллера (Dickey–Fuller test, DF-test)

$$AR(1) \ y_t = a y_{t-1} + \varepsilon_t, \tag{1}$$

$$y_t = y_{t-1} + \varepsilon_t. \tag{2}$$

Идея проверки нестационарности: тестирование уравнения (1) на единичный корень (unit root)

$$H_0$$
: $a=1$

$$H_0$$
: $a=1$
 H_1 : $a<1$

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431.

Критерий Дики - Фуллера

Преобразование уравнения (1):

$$y_{t} = a y_{t-1} + \varepsilon_{t} \Leftrightarrow y_{t} - y_{t-1} = a y_{t-1} - y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = (a-1) y_{t-1} + \varepsilon_{t} \Leftrightarrow \Delta y_{t} = \beta y_{t-1} + \varepsilon_{t}.$$

$$H_{0}: \beta = 0$$

$$H_{1}: \beta < 0$$

- Если β =0, y_t обладает единичным корнем и является I(1), при условии, что Δy -стационарный. Если β <0, y стационарный: I(0).
- МНК ightarrowоценка коэффициента и ст. ошибки, вычисляют $t_{\text{набл.}}$

$$\hat{t}_{{\scriptscriptstyle HA}ar{\delta}{\scriptscriptstyle B.}} = \hat{ au} = rac{\widehat{eta}}{S(\widehat{eta})} \sim DF$$

Критерий Дики - Фуллера

Table A2.7 Dickey–Fuller critical values for different significance levels, α

Sample size T	0.01	0.025	0.05	0.10	
		τ			
25	-2.66	-2.26	-1.95	-1.60	
50	-2.62	-2.25	-1.95	-1.61	
100	-2.60	-2.24	-1.95	-1.61	
250	-2.58	-2.23	-1.95	-1.62	
500	-2.58	-2.23	-1.95	-1.62	Brooks 2014
∞	-2.58	-2.23	-1.95	-1.62	

Значения τ – метод Монте-Карло (см. Brooks)

$$t_{\text{набл}} = -14.976 < DF_{\kappa p} = -3.47$$

Вывод: Гипотеза о том, что ряд является нестационарным отвергается

Критерий Дики – Фуллера

Случай 2. наличие свободного члена: $y_t = \delta + a y_{t-1} + \varepsilon_t$,

$$y_{t} - y_{t-1} = \delta + a y_{t-1} - y_{t-1} + \varepsilon_{t}, \qquad y_{t} - y_{t-1} = \delta + y_{t-1}(a-1) + \varepsilon_{t},$$

$$\Delta y_{t} = \delta + \beta y_{t-1} + \varepsilon_{t}.$$

Случай 3. наличие детерминированного тренда:

$$\begin{aligned} y_t &= \delta + a y_{t-1} + \gamma t + \varepsilon_t, \\ y_t - y_{t-1} &= \delta + a y_{t-1} - y_{t-1} + \gamma t + \varepsilon_t, \\ \Delta y_t &= \delta + (a-1) y_{t-1} + \gamma t + \varepsilon_t, \\ \Delta y_t &= \delta + \beta y_{t-1} + \gamma t + \varepsilon_t. \end{aligned}$$

Критерий Дики – Фуллера

Table A2.7 Dickey–Fuller critical values for different significance levels, α

Sample size T	0.01	0.025	0.05	0.10
		τ		
25	-2.66	-2.26	-1.95	-1.60
50	-2.62	-2.25	-1.95	-1.61
100	-2.60	-2.24	-1.95	-1.61
250	-2.58	-2.23	-1.95	-1.62
500	-2.58	-2.23	-1.95	-1.62
∞	-2.58	-2.23	-1.95	-1.62
		τ_{μ}		
25	-3.75	-3.33	-3.00	-2.63
50	-3.58	-3.22	-2.93	-2.60
100	-3.51	-3.17	-2.89	-2.58
250	-3.46	-3.14	-2.88	-2.57
500	-3.44	-3.13	-2.87	-2.57
∞	-3.43	-3.12	-2.86	-2.57
		τ_{τ}		
25	-4.38	-3.95	-3.60	-3.24
50	-4.15	-3.80	-3.50	-3.18
100	-4.04	-3.73	-3.45	-3.15
250	-3.99	-3.69	-3.43	-3.13
500	-3.98	-3.68	-3.42	-3.13
∞	-3.96	-3.66	-3.41	-3.12

Source: Fuller (1976). Reprinted with the permission of John Wiley & Sons.

Результат Маккинона

MacKinnon approximate, 1991

Оценивание в Gretl

$$\Delta y_t = \mu_t + \varphi y_{t-1} + \sum_{i=1}^p y_i \Delta y_{t-i} + \epsilon_t.$$

$$\frac{\mu_t}{0} \\ \mu_0 \\ \mu_0 + \mu_1 t \\ \mu_0 + \mu_1 t + \mu_1 t^2$$

Brooks 2014

x2 – линейный тренд ($x2_t$ = $3+3t+\varepsilon_t$)

MacKinnon approximate p-value for Z(t) = 0.0000

Вывод: Ряд является тренд - стационарным

x3 – случайное блуждание ($x3_t = x3_{t-1} + \varepsilon_t$)

. dfuller x3

Dickey-Fuller test for unit root

Number of obs =

499

Test 1% Critical 5% Critical 10% Critical 5% tatistic Value Value Value

Z(t) -1.072 -3.440 -2.870 -2.570

MacKinnon approximate p-value for Z(t) = 0.7259

. dfuller x3, trend

Dickey-Fuller test for unit root

Number of obs =

499

Test 1% Critical 5% Critical 10% Critical 5tatistic Value Value Value Z(t) -2.689 -3.980 -3.420 -3.130

. dfuller D.x3

Dickey-Fuller test for unit root

Number of obs =

498

Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value

Z(t) -22.065 -3.440 -2.870 -2.570

MacKinnon approximate p-value for Z(t) = 0.0000

use http://www.stata-press.com/data/r13/air2

(TIMESLAB: Airline passengers)

dfuller air, lags(3) trend regress 150 lugmented Dickey-Fuller test for unit root

Number of obs 140

 Interpolated Dickey-Fuller 1% Critical 5% Critical 10% Critical Test Statistic Value Value Value Z(t) -6.936 -4.027 -3.445 -3.145

MacKinnon approximate p-value for Z(t) = 0.0000

D.air	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
air L1. LD. L2D. L3D. _trend _cons	5217089 .5572871 .095912 .14511 1.407534 44.49164	.0752195 .0799894 .0876692 .0879922 .2098378 7.78335	-6.94 6.97 1.09 1.65 6.71 5.72	0.000 0.000 0.276 0.101 0.000 0.000	67048 .399082 0774825 0289232 .9925118 29.09753	3729379 .7154923 .2693065 .3191433 1.822557

Критерий Дики - Фуллера: недостаток

AR(1)
$$x_t = 0.7x_{t-1} + \varepsilon_t$$

Dickey-Ful	ler test for unit r	Number of obs	= 499				
		——— Inte	Interpolated Dickey-Fuller				
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	value	Value	value			
Z(t)	-9.227	-3.440	-2.870	-2.570			
MacKinnon a	approximate p-value	for Z(t) = 0.00	00				
Dickey	-Fuller test for un	it root	Number of ob	s = 18			
		ті	nterpolated Dickey-F	uller ———			
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	Value	Value	Value			
Z(t)	-1.586	-3.750	-3.000	-2.630			
MacKin	non approximate p-va	alue for $Z(t) = 0$	4906				
. racitin	app. o.t.mace p tt						

Classifying hypothesis testing errors and correct conclusions

		Reality		
		H ₀ is true	H ₀ is false	
Result of test	Significant (reject H ₀) Insignificant (do not reject H ₀)	Type I error = α	\checkmark Type II error = β	

! DF-тест имеет малую мощность

Расширенный тест Дики – Фуллера для AR(p)

augmented Dickey-Fuller tests – ADF - tests

Общая стратегия: в регрессию включают лаговые разности, так что остаточный член соответствует белому шуму.

AR(2)
$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \varepsilon_t$$
, $a(z) = 1 - a_1 z - a_2 z^2 = 0$
 $\Pi y cmb z = 1 \rightarrow a(z) = 0$, $1 - a_1 1 - a_2 1^2 = 0 \iff 1 - a_1 - a_2 = 0$, $a_1 + a_2 = 1$.

ADF - tests: AR(2)

$$y_{t} - y_{t-1} = a_{1} y_{t-1} - y_{t-1} + \underline{a_{2} y_{t-2}} + \varepsilon_{t},$$

$$\Delta y_{t} = -y_{t-1} + a_{1} y_{t-1} + a_{2} y_{t-2} + \varepsilon_{t},$$

$$\Delta y_{t} = -y_{t-1} + a_{1} y_{t-1} + \underline{a_{2} y_{t-1}} - \underline{a_{2} y_{t-1}} + \underline{a_{2} y_{t-2}} + \varepsilon_{t},$$

$$\Delta y_{t} = (-1 + a_{1} + a_{2}) y_{t-1} + -\underline{a_{2} y_{t-1}} + \underline{a_{2} y_{t-2}} + \varepsilon_{t},$$

$$\Delta y_{t} = (-1 + a_{1} + a_{2}) y_{t-1} + -\underline{a_{2} \Delta y_{t-1}} + \varepsilon_{t}$$

$$\Delta y_{t} = \pi y_{t-1} - \underline{a_{2} \Delta y_{t-1}} + \varepsilon_{t}.$$

$$H_0: \pi = 0$$
 $\hat{t}_{\text{Haloh}} = \frac{\widehat{\pi}}{S(\widehat{\pi})} \sim ADF$

ADF - tests: AR(2)

. dfuller ar2 if t<25, regress lags(0) Dickey-Fuller test for unit root Number of obs 23 Interpolated Dickey-Fuller 1% Critical 10% Critical Test 5% Critical Statistic Value Value Value Z(t) -5.048-3.750-3.000-2.630MacKinnon approximate p-value for Z(t) = 0.0000[95% Conf. Interval] D.ar2 coef. Std. Err. t P>|t| ar2 -1.107058 . 219294 -5.050.000 -1.563105 -. 651011 L1. -. 2196067

.218435

dfuller ar2 if t<25, regress lags(2)

Augmented Dickey-Fuller test for unit root

-3.123

_cons

Z(t)

Augmented Dickey-Fuller test for unit root Number of obs

Количество лагов (k)?

Interpolated Dickey-Fuller 10% Critical 1% Critical 5% Critical Test value value Value Statistic Z(t) -2.592-3.750-3.000-2.630

22 1% Critical Test Statistic

 Interpolated Dickey-Fuller 5% Critical 10% Critical value value value -3.750-3.000-2.630

-.6738672

Number of obs

. 2346538

21

MacKinnon approximate p-value for Z(t) = 0.0249MacKinnon approximate p-value for Z(t) = 0.0946

[95% Conf. Interval]	P> t	t	Std. Err.	Coef.	D.ar2
-1.572191167524 698982 .2458918	0.018 0.328		. 3355591 . 2257198	8698574 2265451	ar2 L1. LD.
6445128 .3273738		-0.68	.2321728	1585695	_cons

]	D.ar2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
4 8	ar2 L1. LD. L2D.	-1.252461 .2134811 .4154777	.4010335 .3421837 .2458305	-3.12 0.62 1.69	0.006 0.541 0.109	-2.098567 5084635 1031794	4063537 . 9354257 . 9341347
-	_cons	19728	. 2316377	-0.85	0.406	6859927	. 2914327

-1.01

0.326

- -k-велико \rightarrow чрезмерное количество лагов \rightarrow снижение мощности критерия
- -k-мало→ искажение результатов теста

ADF – tests: обобщение

Для тестирования AR(p) на единичный корень оценивают коэффициенты уравнения

$$\Delta y_t = \pi y_{t-1} - c_2 \Delta y_{t-1} - \dots - c_p \Delta y_{t-p+1} + \varepsilon_t$$
.

$$H_0: \pi = 0$$
 $H_1: \pi < 0$

$$H_1: \pi < 0$$

$$\hat{t}_{\text{набл.}} = \frac{\widehat{\pi}}{S(\widehat{\pi})} \sim ADF$$

Тестирование высоких порядков интеграции

Tect KPSS

Tect Kwiatkowski–Phillips–Schmidt–Shin (KPSS)

Critical values

(Квятковского-Филлипса-Шмидта-Шина)

10%: 0.119

Н₀: стационарность (тренд-стационарность)

5%: 0.146

Н₁: наличие ед. корня

1%: 0.216

Основная идея: ВР разлагается на сумму детерминированного тренда + стохастический тренд (случайное блуждание)+ стац.остаточный член.

$$y_t = \{\mu + \beta t\} + x_t + u_t, x_t = x_{t-1} + \varepsilon_t, \varepsilon_t \sim WN(\sigma^2)$$

$$H_0: \sigma_{\varepsilon}^2 = 0, \quad H_1: \sigma_{\varepsilon}^2 > 0$$

$$KPSS = \sum_{t=1}^{T} \frac{S_t^2}{T^2 \hat{\lambda}^2}, \quad \hat{S}_t = \sum_{i=1}^{t} e_i - частичные суммы$$

$$\hat{\lambda}^2 = \sum_{m=1}^{m} \left(1 - \frac{|i|}{m+1}\right) \gamma_i$$
 — оценка долгосрочной дисперсии, $m \approx 4 \left(\frac{T}{100}\right)^{1/4}$

Тесты DF и KPSS

Tect KPSS H₀: стационарность (тренд-стационарность)

. kpss r1, auto notrend

KPSS test for r1

Automatic bandwidth selection (maxlag) = 1 Autocovariances weighted by Bartlett kernel

Critical values for HO: r1 is level stationary

10%: 0.347 5% : 0.463 2.5%: 0.574 1% : 0.739

Lag order Test statistic
1 .0702

Tect DF

Н₀: наличие единичного корня

. dfuller r1

Dickey-Fuller test for unit root

Number of obs =	
-----------------	--

	Test Statistic	1% Critical Value	erpolated Dickey-F 5% Critical Value	10% Critical Value	
Z(t)	-14.976	-3.477	-2.883	-2.573	

MacKinnon approximate p-value for Z(t) = 0.0000

199

Тест Филлипса-Перрона (Phillips-Perron test, PP-test)

Идея теста: модифицируется не уравнение, а тестовая статистика.

$$y_t = \{\alpha + \beta t\} + \rho y_{t-1} + u_t$$
. Ошибки могут быть автокоррелированны и гетероскедастичны

$$Z = T(\hat{\rho} - 1) - \hat{\lambda} \left(\frac{1}{T^2} \sum_{t=2}^{T} y_{t-1}^2 \right)^{-1},$$

 $\hat{\lambda}^2$ – оценка долгосрочной дисперсии ошибок

Асимптотическое распределение статистики совпадает с распределением в критерии Дики-Фуллера.

Phillips–Perron test : AR(2)

AR(2)

pperron ar2, regress

Phillips-Perron test for unit root

Number of obs = 499 Newey-West lags = 5

Interpolated Dickey-Fuller

	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(rho)	-594.046	-20.499	-14.000	-11.200
Z(t)	-20.427	-3.440	-2.870	-2.570

MacKinnon approximate p-value for Z(t) = 0.0000

ar2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ar2 L1.	.1656843	. 0443532	3.74	0.000	. 0785414	. 2528272
_cons	0151897	. 0545555	-0.28	0.781	1223774	.0919981

! РР-тест имеет более высокую мощность

Процедура Доладо: TSP или DSP

Проблема: определение принадлежности временного ряда к TSP и DSP модели. Включать тренды в модель или нет?

Доладо (Дженкинсон-Сосвилла-Ривьеро) (1990):

Dolado J.J., Jenkinson T. and Sosvilla-Rivero S. Cointegration and Unit Roots // Journal of Economic Survey. 1990. Vol. 4. P. 249–73.

многовариантная процедура проверки гипотезы единичного корня с использованием критерия Дики-Фуллера, последовательно перебирающую различные комбинации оцениваемой модели.

носко

Процедура Доладо (Дженкинсона-Сосвилла-Ривьеро)

DF-уравнение:

$$\Delta y_{t} = \alpha + (\rho - 1) y_{t-1} + \beta t + \sum_{i=1}^{p} \delta_{i} \Delta y_{t-1} + \varepsilon_{t}$$

- 1.Оценивается модель *с константой и трендом*. Выполняем DF-test. Если Но отвергается (ряд стационарный), то процедура останавливается.
- 2. Если Но не отвергается (ряд нестационарный), то проверяем значимость тренда. Если тренд значим, то у_t нестационарный.
- 3. Если тренд незначим, то выполняем DF-test *с константой и без тренда*. Если Но отвергается (ряд стационарный), то процедура останавливается.
- 4. Если Но не отвергается (ряд нестационарный), то проверяем значимость константы. Если константа значима, то y_t нестационарный.
- 5. Если константа незначима, то выполняем DF-test *без константы и тренда*. Если Но отвергается (ряд стационарный), то процедура останавливается, иначе ряд у –нестационарный.

Процедура Доладо: пример 1

DF-уравнение:

Dickey-Fuller test for unit root

Dickey-Fuller test for unit root

$$\Delta y_{t} = \alpha + (\rho - 1) y_{t-1} + \beta t + \sum_{i}^{p} \delta_{i} \Delta y_{t-1} + \varepsilon_{t}$$

Этап 1-2

	Test Statistic	1% Crit Val	ical	5% Cri	Dickey-Fuller tical 10 lue	% Critical Value
Z(t)	-0.571	-4	.042	-	3.451	-3.151
MacKinnon app	roximate p-va	lue for Z(t)	= 0.980	4		
D. Y1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Y1 L1. _trend _cons	0210462 0007995 2531047	.036833 .0090237 .2294226	-0.57 -0.09 -1.10	0.569 0.930 0.273	0941591 0187115 7085049	. 0520666 . 0171125 . 2022955
Dickey-Fuller	test for unit	t root		Numb	er of obs =	99

Этап 3-4

			Interpolated D				
	Test Statistic	1% Crit Val			tical 10 Ilue	% Critical Value	
Z(t)	-1.183	-3.511		-2.891		-2.580	
MacKinnon appr	roximate p-va	lue for Z(t)	= 0.680	7			
D. Y1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
Y1 L1.	0180801	.0152792	-1.18	0.240	0484051	. 0122449	
_cons	2661244	.1752787	-1.52	0.132	6140041	. 0817553	

Этап 5

		Test Statistic	1% Criti Valu	cal	5% Cri	Dickey-Fulle tical 1 lue	r ——— 0% Critical Value
Z(t)		0.032	-2.	600	=	1.950	-1.610
	D. Y1	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
	Y1 L1.	. 0002969	. 0093868	0.03	0.975	0183309	. 0189247

Процедура Доладо: пример 2

DF-уравнение:

$$\Delta y_{t} = \alpha + (\rho - 1) y_{t-1} + \beta t + \sum_{i=1}^{p} \delta_{i} \Delta y_{t-1} + \varepsilon_{t}$$

Этап 1-2

Dickey-Fuller test for unit root				Numb	er of obs	= 99
	Test Statistic	1% Crit Val	ical	. 5% Cri	Dickey-Full tical lue	er ———— 10% Critical Value
Z(t)	-9.039	-4	. 042	-:	3.451	-3.151
MacKinnon appr	oximate p-va	lue for Z(t)	= 0.000	0		
D.tr	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
tr L1. _trend _cons	9386519 1840256 0095596	.1038457 .0208036 .2178441	-9. 04 -8. 85 -0. 04	0.000 0.000 0.965	-1.144784 2253204 4419768	1427309

Различение TS и DS процессов с учетом структурных сдвигов

- -Процедура Перрона (1989, 1997)
- Тест Эндрюса-Зивота (1992)

Литература:

- -Краснопеева Н. А., Назруллаева Е. Ю. Моделирование влияния инвестиций в основной капитал на материальные затраты в отраслях промышленности США в 1958–2005 гг. // Экономический журнал ВШЭ [2014] Т. 18 № 1. С. 102–132 http://ej.hse.ru/2014-18-1/119907605.html
- Канторович Г.Г. Лекция №10 (Эк журнал ВШЭ)
- -Brooks C. (2014) c.365-269
- -Zivot E., Andrews D.W.K. (1992) Further Evidence on the Great Crash, the Oil-Price Shock, and the Unitroot Hypothesis. Journal of Business & Economic Statistics. American Statistical Association, vol. 10, no 3, pp. 251–270.
- Perron P. (1989) The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica, vol. 57, no 6, pp. 1361–1401.

Анализ структурных сдвигов

Различение TS и DS процессов с учетом структурных сдвигов

ADF-тест несостоятелен при структурных сдвигах: скачки могут трактоваться T_в – момент структурного сдвига как нестационарность (экзогенен), мгновенный скачок

- Процедура Перрона (1989)

Модель С.
$$H_0: y_t = \mu + \delta_1 DVTB_t + \delta_2 DVU_t + y_{t-1} + \mathcal{E}_t,$$
 $H_1: y_t = \mu + \beta t + \delta_2 DVU_t + \delta_3 DVT_t + \mathcal{E}_t,$ $DVTB_t = \begin{cases} 1, t = T_B + 1 \\ 0, uhave \end{cases}, DVT_t = \begin{cases} 0, t \leq T_B + 1 \\ t, uhave \end{cases}, DVU_t = \begin{cases} 0, t \leq T_B + 1 \\ 1, t > T_B \end{cases}$

Содержание процедуры:

- 1. Оценивание МНК y_t на детерминированные члены при $H_1 \rightarrow e_t$.
- 2. DF-test k остаткам e_t : $\Delta e_t = \rho e_{t-1} + \sum_{i=1}^k \alpha_i \Delta e_{t-i} + u_t$.
- 3. Критические значения отличаются от DF-распределения:

$$t_{\alpha}(\alpha, \lambda = T_B/T)$$

Различение TS и DS процессов с учетом структурных сдвигов

Тест Эндрюса-Зивота (1992) – расширение процедуры Перрона на случай эндогенного скачка

$$H_0: y_t = \mu + \alpha y_{t-1} + \varepsilon_t$$

$$H_{1}: y_{t} = \mu + \theta(DU)_{t} + \beta t + \gamma y_{t-1} + \delta(DT)_{t} \lambda + \sum_{i=1}^{k} c_{i} \Delta y_{t-i} + \varepsilon_{t}, \lambda = T_{B} / T$$

$$DU_{t} = \begin{cases} 1, t > T_{B} \\ 0, uhave \end{cases}, DT_{t} = \begin{cases} t - T_{B}, t > T_{B} \\ 0, uhave \end{cases}$$

Перебираются все значения *скачка* от t=2 до t=T-1 для кот. t-отношение для γ min.

Tect Clemente, Montanes, Reyes (1998) – на наличие двух структурных сдвигов

Clemente, J., Montanes, A., Reyes, M., 1998. Testing for a unit root in variables with a double change in the mean. Economics Letters 59, 175-182.

Zivot E., Andrews D.W.K. (1992) Further Evidence on the Great Crash, the Oil-Price Shock, and the Unitroot Hypothesis. Journal of Business & Economic Statistics. American Statistical Association, vol. 10, no 3, pp. 251–270.

Тест Эндрюса-Зивота

Dickey-Fuller test for unit root

Number of obs =

39

		Interpolated Dickey-Fuller				
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value		
Z(t)	-2.666	-3.655	-2.961	-2.613		

MacKinnon approximate p-value for Z(t) = 0.0801

zandrews sales, graph

Zivot-Andrews unit root test for sales

Allowing for break in intercept

Lag selection via TTest: lags of D.sales included = 1

Minimum t-statistic -7.817 at 1997q1 (obs 29)

critical values: 1%: -5.34 5%: -4.80 10%: -4.58

Clemente, Montanes, Reyes unit root tests with two structural breaks

Различение TS и DS процессов с учетом структурных сдвигов

Рис. 3. Динамика производительности труда, средней заработной платы и уровня безработицы, сглаженные на сезонность⁸

Таблица 2. Тесты на единичные корни с учета одного и двух структурных сдвигов

Переменные	на один	ws, Zivot (1992) структурный в уровнях	Тест Clemente, Montañés, Reyes (1998) на два структурных сдви- га		
	t- статистика	Даты структур- ных сдвигов	t- статистика	Даты структурных сдвигов	
Численность занятых	-3,597	2003q3	-3,646	2000q3, 2005q4	
Уровень безработицы	-3,371	2000q1	-3,124	1997q4, 2001q2	
Реальная заработная плата	-4,036	1998q3	-3,789	2002q4, 2006q4	
Оплата труда в ВВП на одного занятого	-4,334	1998q2	-3,167	2002q4, 2007q2	
Производительность труда	-3,382	2004q1	-3,063	2000q2, 2005q1	
ВВП	-4,029	2004q1	-3,027	2002q4, 2006q2	
Критическое значение (5%)	-4,80		-5,490	16 d	

48

3.3. Методология Бокса-Дженкинса

Родионова Л.А. 2019