Geometry of a Metric Space

Conference session O3 - Lecture 2

Alejandro Ucan

2025-02-12

Objectives of the Session

- Enter the favorite sets into a metric space.
- Define the notion of neighborhood in a metric space.
- Set the relationship between neighbourhoods and open assemblies in a metric space.
- Characterize the equivalence of metrics visually.

Motivation.

Suppose you have a set of store locations data and want to group them into regions to optimize logistics. What is an important piece in this problem?

Motivation

Algorithms like the *K-means* or *DBSCAN* require a notion of closeness between the points in order to be able to group them together. And this notion of closeness can be defined through a metric depending on the nature of our data.

How are the paths displayed on the plane depending on metric?

Predilected sets

Neighborhoods or Open Balls

Definition. Be sure to go (X,d) a metric space and be it p * X One point. The set

$$B_r(p) = = *-x * X : d(-x,p) * r*$$

it's called a **Open neighbourhood** or **Open ball** of p with radio r.

How neighborhoods look depending on the metric you choose, for example in \mathbb{R}^2 ?

Sphere

Definition. Be sure to go (X,d) a metric space and be it $p \, * \, X$ One point. The set

-
$$Yes._{r}(p) = = exttt{*-} x exttt{*-} X: d(exttt{--} x,p) = = r exttt{*-}$$

it's called a of p with radio r.

How these definitions are visualized in \mathbb{R}^2 ?

Visually how the metrics are compared in \mathbb{R}^2 ?

Analytically as the metrics are compared in \mathbb{R}^2