Задания 1

1 вариант задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

 $\frac{tg\frac{5\pi}{14}\cdot tg\frac{\pi}{7}}{\sqrt{2}\sin\frac{3\pi}{8}\cdot\cos\frac{3\pi}{8}}.$

Ответ:

Ответ: 2

2 вариант

1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

 $\frac{2\sqrt{2}\sin\frac{5\pi}{8}\cdot\cos\frac{5\pi}{8}}{3\pi}.$ Найдите значение выражения $tg\frac{3\pi}{10} \cdot tg\frac{\pi}{5}$

Ответ:

Ответ: -1

5 вариант

 3адания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Найдите значение выражения $\cfrac{8\sin\frac{11\pi}{12}\cdot\cos\frac{11\pi}{12}}{tg\frac{5\pi}{14}\cdot tg\frac{\pi}{7}}.$

Ответ:

Ответ: -2

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить
 Ответ на задание запишите в виде целого числа или конечной десятичной дроби. $\frac{2\sin\frac{7\pi}{8}\cdot\cos\frac{7\pi}{8}}{\sqrt{2}tg\frac{7\pi}{18}\cdot tg\frac{\pi}{9}}$ Найдите значение выражения Ответ: Ответ: -0.5 7 вариант

задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. $\sqrt{2} tg \frac{3\pi}{10} \cdot tg \frac{\pi}{5}$ Найдите значение выражения $\sin\frac{\pi}{8} \cdot \cos\frac{\pi}{8}$ Ответ: Ответ: 4 8 вариант 1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Найдите значение выражения

 $\frac{6\sin\frac{7\pi}{12}\cdot\cos\frac{7\pi}{12}}{tg\frac{5\pi}{14}\cdot tg\frac{\pi}{7}}.$

Ответ:

Ответ: -1.5

1 вариант

 3адания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F – середина ребра A_1B_1 , AB=4, $AD=\sqrt{5}$, $AA_1=2$,5. Найдите тангенс угла между прямыми CC_1 и DF.

Ответ:

Ответ: 1.2

2 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F – середина ребра A_1B_1 , AB=8, AD=4, $AA_1=2\sqrt{5}$. Найдите тангенс угла между прямыми BC и DF.

Ответ:

Ответ: 1.5

1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F — середина ребра A_1B_1 , AB=4, AD=5, $AA_1=2\sqrt{3}$. Найдите тангенс угла между прямыми BC и DF.

Ответ:

Ответ: 0.8

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F — середина ребра A_1B_1 , AB=6, AD=3, $AA_1=4\sqrt{2}$. Найдите тангенс угла между прямыми CC_1 и DF.

Ответ:

Ответ: 0.75

5 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F – середина ребра A_1B_1 , AB= 6, AD= 2 $\sqrt{2}$, $AA_1=$ 3. Найдите тангенс угла между прямыми AD и CF.

Ответ:

Ответ: 1.5

6 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F – середина ребра A_1B_1 , AB=6, $AD=\sqrt{7}$, $AA_1=2$,5. Найдите тангенс угла между прямыми DD_1 и CF.

Ответ:

Ответ: 1.6

7 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ точка F – середина ребра A_1B_1 , AB=4, AD=1,5, $AA_1=\sqrt{5}$. Найдите тангенс угла между прямыми AD и CF.

Ответ:

Ответ: 2

Задания 3

1 вариант

 3адания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В графе 54 ребра. Каждая вершина графа имеет или степень 7, или степень 4. Причём вершин степени 7 в два раза больше, чем вершин степени 4. Сколько вершин в этом графе?

2	вариант	
3a _L	ания:	

Вадания: L 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
3 графе 40 рёбер. Каждая вершина графа имеет или степень 3, или степень 8. Причём вершин степени 3 в четыре раза больше, чем вершин степени 8. Сколько вершин в этом графе?
Ответ:

3 вариант

Ответ: 10

4 вариант

В графе 60 рёбер. Каждая вершина графа имеет или степень 9, или степень 4. Причём вершин степени 9 в четыре раза больше, чем вершин степени 4. Сколько вершин в этом графе?

	_		
Ответ:			

Ответ: 15

Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
В графе 64 ребра. Каждая вершина графа имеет или степень 5, или степень 9. Причём вершин степени 5 в три раза меньше, чем вершин степени 9. Сколько вершин в этом графе?
Ответ:
Ответ: 16
6 вариант
Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
В графе 45 рёбер. Каждая вершина графа имеет или степень 2, или степень 8. Причём вершин степени 2
в два раза меньше, чем вершин степени 8. Сколько вершин в этом графе?
Ответ:
Olbeit.
Ответ: 15
7 вариант
Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Ответ на задание запишите в виде целого числа или конечной десятичной дроби. В графе 32 ребра. Каждая вершина графа имеет или степень 3, или степень 7. Причём вершин степени 3 в три раза больше, чем вершин степени 7. Сколько вершин в этом графе?
В графе 32 ребра. Каждая вершина графа имеет или степень 3, или степень 7. Причём вершин степени 3

3 вариант		
3адания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить		
Укажите, какое из утверждений верно.		
О Любые две плоскости имеют общую прямую, на которой лежат все общие точки этих плоскостей.		
 Для любых двух скрещивающихся прямых существует плоскость, которая проходит через одну из них и параллельна другой. 		
 Если плоскость параллельна одной из двух перпендикулярных прямых, то она перпендикулярна второй прямой. 		
Ответ: 2 4 вариант		
3адания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить		
Укажите, какое из утверждений верно.		
С Если в пространстве каждая из двух прямых перпендикулярна третьей прямой, то они параллельны.		
О Любая прямая, перпендикулярная двум прямым, лежащим в плоскости $α$, перпендикулярна плоскости $α$.		

 Если одна из двух параллельных плоскостей перпендикулярна третьей плоскости, то и вторая плоскость перпендикулярна этой плоскости.

Ответ: 3

Через любую точку пространства, не лежащую в данной плоскости, проходит бесконечно много.

плоскостей, перпендикулярных данной плоскости.

Задания 5

1 вариант

Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Найдите количество элементов множества $A \cap (B \cup C)$, где A – множество двузначных натуральных чисел, B – множество чисел, кратных числу 13, C – множество чисел, которые представимы в виде 18n+1, где $n \in \mathbb{Z}$.

Ответ: ______.

Ответ: 11

2 вариант

Ответ: 8

Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Найдите количество элементов множества $A\cap (B\cup C)$, где A — множество двузначных натуральных чисел, B — множество чисел, кратных числу 11 , C — множество чисел, которые представимы в виде $18n+1$, где $n\in \mathbb{Z}$.
Ответ:
Ответ: 13
6 вариант Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Найдите количество элементов множества $A\cap (B\cup C)$, где A — множество двузначных натуральных чисел, B — множество чисел, кратных числу 13, C — множество чисел, которые представимы в виде $16n+1$, где $n\in \mathbb{Z}$.
Ответ:
Ответ: 12
7 вариант
Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Найдите количество элементов множества $A\cap (B\cup C)$, где A — множество двузначных натуральных чисел, B — множество чисел, кратных числу 11 , C — множество чисел, которые представимы в виде $16n+1$, где $n\in \mathbb{Z}$.
Ответ:

Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Найдите количество элементов множества $A\cap (B\cup C)$, где A — множество двузначных натуральных чисел, B — множество чисел, кратных числу 13, C — множество чисел, которые представимы в виде $17n+1$, где $n\in \mathbb{Z}$.
Ответ:

Задания 6

1 вариант

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2\log_4(x^2 - 9) + \log_{0,5} \frac{x+3}{x-3} = 4$.

Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней.

Ответ: ______.

Ответ: 7

_	
зал	ания
Jup	CHIPIZI

задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $\log_{0,5} \frac{x-2}{x+2} + 2\log_4(x^2-4) = 4$.

Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней.

Ответ:

Ответ: -6

3 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2\log_4(x^2-4) - \log_{0,5}\frac{x-2}{x+2} = -4$.

Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней.

Ответ:

Ответ: 2.25

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2\log_4(x^2 - 4) + \log_{0,5} \frac{x+2}{x-2} = -2$.

Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней.

Ответ:

Ответ: 2.5

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить
 Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Решите уравнение $\log_{0,5} \frac{x+2}{x-2} - 2\log_4 (x^2-4) = 2$. Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней. Ответ: Ответ: -2.5 6 вариант Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Решите уравнение $\log_{0.5} \frac{x+3}{x-3} - 2\log_4 (x^2 - 9) = -4$. Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней. Ответ: Ответ: -7 7 вариант 1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Решите уравнение $\log_{0,5} \frac{x-3}{x+3} + 2\log_4 (x^2-9) = 2$. Если уравнение имеет больше одного корня, в ответ запишите сумму всех его корней.

Ответ: -5

Ответ:

Задания 7

і вариан і	
Задания:	
1 2 3 4 5 6 7 8 9 10 11 12 закончить	
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.	1

В правильной треугольной призме $ABCA_1B_1C_1$ найдите расстояние от точки A_1 до A_1 плоскости AB_1C_1 , если $AB = \sqrt{3}$, $AA_1 = 2$.

Ответ:

Ответ: 1.

2 вариант

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной треугольной призме $ABCA_1B_1C_1$ найдите расстояние от точки C до A_1 плоскости ABC_1 , если $AB = 2\sqrt{3}$, $AA_1 = 4$.

Ответ:

Ответ: 2.4

3 вариант

Задания:	
1 2 3 4 5 6 7 8 9 10 11 12 закончить	

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной треугольной призме $ABCA_1B_1C_1$ найдите расстояние от точки A_1 до A_1 плоскости AB_1C_1 , если AB=4, $AA_1=6$.

Ответ:

Ответ: 3

Ответ: 4.5

Ответ: -0.5

T
•

Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2^{x^2-3}-17\cdot 2^{0,5x^2-3,5}+1=0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Ответ:-5

3 вариант

задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $16^{x^2-1} - 65 \cdot 2^{2x^2-5} + 1 = 0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Ответ: -2.5

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2^{x^2-1}-17\cdot 2^{0,5x^2-2,5}+1=0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Ответ: -5

T

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2^{x^2-4}-33\cdot 2^{0,5x^2-4,5}+1=0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Ответ:-9

6 вариант

 3адания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $16^{x^2-0.5} - 33 \cdot 2^{2x^2-3} + 2 = 0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Ответ:-2

7 вариант

Задания:

1 2 3 4 5 6 7 <mark>8</mark> 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите уравнение $2^{x^2-1}-5\cdot 2^{0,5x^2-1,5}+1=0$.

Если уравнение имеет больше одного корня, в ответ запишите произведение корней.

Ответ:

Задания 9

1 вариант

Задания:

1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x) = \frac{k}{x+a}$ и g(x) = px+b, которые пересекаются в точках A(4;3) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ: 10

2 вариант

задания:

1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x) = \frac{k}{x+a}$ и g(x) = px+b, которые пересекаются в точках A(5;-2) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ:1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x) = \frac{k}{x-a}$ и g(x) = px+b, которые пересекаются в точках A(-1;-4) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ:13

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x) = \frac{k}{x+a}$ и g(x) = px+b, которые пересекаются в точках A(-1;-2) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ: 2.5

1 2 3 4 5 6 7 8 <mark>9</mark> 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x)=rac{k}{x-a}$ и g(x)=px+b, которые пересекаются в точках A(-4;-2) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ:-1.5

6 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x) = \frac{k}{x-a}$ и g(x) = px + b, которые пересекаются в точках A(-3;4) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

Ответ:-9

7 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x)=rac{k}{x+a}$ и g(x)=px+b, которые пересекаются в точках A(-1;2) и $B(x_B;y_B)$. Найдите x_B .

Ответ:

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

На рисунке изображены графики функций $f(x)=rac{k}{x-a}$ и g(x)=px+b, которые пересекаются в точках $A(2;\,1)$ и $B(x_B;\,y_B)$. Найдите x_B .

Ответ:

Ответ:-1.5

Задания 10

1 вариант

Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Стрелок при стрельбе попадает в большую мишень с вероятностью 0,7, а в мелкую – с вероятностью 0,5. Во сколько раз вероятность попасть одним выстрелом по большой мишени меньше вероятности попасть хотя бы один раз тремя выстрелами по мелкой мишени?

Ответ:

Ответ: 1.25

2 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Стрелок при стрельбе попадает в большую мишень с вероятностью 0,6, а в мелкую – с вероятностью 0,2. Во сколько раз вероятность попасть хотя бы один раз двумя выстрелами по мелкой мишени больше вероятности **не попасть** ни разу, стреляя два раза по большой мишени?

Ответ:

Ответ: 2.25

3 вариант 1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Стрелок при стрельбе попадает в большую мишень с вероятностью 0,4, а в мелкую – с вероятностью 0,2. Во сколько раз вероятность попасть одним выстрелом по большой мишени меньше вероятности попасть хотя бы один раз тремя выстрелами по мелкой мишени? Ответ: Ответ: 1.22 4 вариант 1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Стрелок при стрельбе попадает в большую мишень с вероятностью 0,2, а в мелкую - с вероятностью 0,1. Во сколько раз вероятность попасть хотя бы один раз двумя выстрелами по большой мишени меньше вероятности не попасть ни разу, стреляя два раза по мелкой мишени? Ответ: Ответ: 2.25 5 вариант 1 2 3 4 5 6 7 8 9 10 11 12 закончить Ответ на задание запишите в виде целого числа или конечной десятичной дроби. Стрелок при стрельбе попадает в большую мишень с вероятностью 0,5, а в мелкую - с вероятностью 0,1. Во сколько раз вероятность попасть хотя бы один раз двумя выстрелами по большой мишени меньше вероятности не попасть ни разу, стреляя два раза по мелкой мишени?

Ответ: 1.08

Ответ:

Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Стрелок при стрельбе попадает в большую мишень с вероятностью 0,8, а в мелкую – с вероятностью 0,6. Во сколько раз вероятность попасть одним выстрелом по большой мишени меньше вероятности попасть хотя бы один раз тремя выстрелами по мелкой мишени? Ответ:
Ответ:1.17
7 вариант задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Стрелок при стрельбе попадает в большую мишень с вероятностью 0,5, а в мелкую — с вероятностью 0,2. Во сколько раз вероятность попасть хотя бы один раз двумя выстрелами по мелкой мишени больше вероятности не попасть ни разу, стреляя два раза по большой мишени?
Ответ:
Ответ: 1.44
Задания 11
1 вариант Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Ответ:

Решите неравенство $\frac{x^3 - x^2 - 13x - 3}{11 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-50; 50].

2 вариант

Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 + 3x^2 - 27x + 7}{6 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-70; 70].

Ответ:

Ответ: 10

3 вариант

задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 - 7x^2 + 11x + 3}{8 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-60; 60].

Ответ:

Ответ:7

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 - 5x^2 + x + 7}{10 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-70; 70].

Ответ:

5 вариант

 3адания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 - 5x^2 - 3x + 3}{14 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-60; 60].

Ответ:

Ответ: 10

6 вариант

Задания:

1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 - 9x^2 + 21x - 5}{11 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-50; 50].

Ответ:

Ответ:9

7 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

Решите неравенство $\frac{x^3 + 7x^2 + 9x - 5}{10 - x} \ge 0.$

В ответ запишите количество целых решений неравенства на отрезке [-70; 70].

Ответ:

Ответ: 12

Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
Решите неравенство $\frac{x^3 - 5x^2 - 15x + 7}{12 - x} \ge 0.$
В ответ запишите количество целых решений неравенства на отрезке [-60; 60].
Ответ:
Ответ:8
Задания 12
1 вариант
Задания: 1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
В правильной пирамиде $SABCD$ с вершиной S ребро основания равно 2, а боковое ребро равно $\sqrt{11}$. Найдите косинус угла между плоскостями ASD и CSD .
Ответ:
Ответ: 0,63
2 вариант
1 2 3 4 5 6 7 8 9 10 11 12 закончить
Ответ на задание запишите в виде целого числа или конечной десятичной дроби.
В правильной пирамиде $SABCD$ с вершиной S ребро основания равно 2, а боковое ребро равно 3. Найдите косинус угла между плоскостями ASB и BSC .

Ответ: 0.55

3 вариант
Задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной пирамиде SABCD с вершиной S ребро основания равно 6, а боковое ребро равно 7. Найдите косинус угла между плоскостями BSC и CSD.

Ответ:

Ответ: 0.26

4 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной пирамиде SABCD с вершиной S ребро основания равно $2\sqrt{5}$, а боковое ребро равно 5. Найдите косинус угла между плоскостями ASD и ASB.

Ответ:

Ответ: 0.2

5 вариант

 Задания:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной пирамиде SABCD с вершиной S ребро основания равно 4, а боковое ребро равно 3. Найдите косинус угла между плоскостями ASB и BSC.

Ответ: ______.

Ответ: 0.77

^	_		_		
6	ва	p	иа	lΗ	Т

Задания:		
1 2 3 4 5	6 7 8 9 10	11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной пирамиде SABCD с вершиной S ребро основания равно 2, а боковое ребро равно $\sqrt{3}$. Найдите косинус угла между плоскостями BSC и CSD.

Ответ:

Ответ: 0.33

7 вариант _{Задания:}

задания:
1 2 3 4 5 6 7 8 9 10 11 12 закончить

Ответ на задание запишите в виде целого числа или конечной десятичной дроби.

В правильной пирамиде SABCD с вершиной S ребро основания равно 4, а боковое ребро равно $3\sqrt{6}$. Найдите косинус угла между плоскостями ASD и ASB.

Ответ:

Ответ: 0.41