STDS22-Assignment2

Vladimir Ivanov, Zamira Kholmatova

March 2022

Task

In a research program on human health risk from recreational contact with water contaminated with pathogenic microbiological material, the National Institute of Water and Atmosphere (NIWA) instituted a study to determine the quality of NZ stream water at a variety of catchment types. This study is documented in McBride et al. (2002) where n=116 one-liter water samples from sites identified as having a heavy environmental impact from birds (seagulls) and waterfowl. Out of these samples, x=17 samples contained Giardia cysts. Let θ denote the true probability that a one-liter water sample from this type of site contains Giardia cysts.

- 1. What is the conditional distribution of X, the number of samples containing Giardia cysts, given θ ?
- 2. Before the experiment, the NIWA scientists elicited that the expected value of θ is 0.2 with a standard deviation of 0.16. Determine the parameters α and β of a Beta prior distribution for θ with this prior mean and standard deviation. (Round α and β to the nearest integer).
- 3. Find the posterior distribution of θ and summarize it by its posterior mean and standard deviation.
- 4. Plot the prior, posterior and normalized likelihood.
- 5. Find the posterior probability that $\theta < 0.1$.
- 6. Find a central 95% posterior credible interval for θ .
- 7. Suppose that NIWA plans another study of $n^* = 50$ water samples as above. What is the posterior predictive probability that x = 5 of these contain Giardia cysts? Derive the formula for general n, x first.
 - (Hint: You will need to construct a density function of beta distribution, take an integral substituting needed values.)
- 8. Test the hypothesis:

 $H_0 : \theta \ge 0.2$ $H_1 : \theta < 0.2$

9. Test the same hypotheses in a Bayesian manner and interpret your results:

 $H_0 : \theta \ge 0.2$ $H_1 : \theta < 0.2$