DİZİLER, TOPLAMLAR VE MATRİSLER

DR. ZEYNEP BANU ÖZGER

- 1. Seriler
- 2. Yineleme Bağıntıları
- 3. Toplamlar
- 4. Matrisler

- Diziler; sıralı listeleri temsil etmek için kullanılan ayrık bir yapıdır.
- n elemanlı bir dizi için;
 - a_n notasyonu n. sıradaki elemanı gösterir.
 - $\{a_n\}$ ise n elemanlı bir diziyi temsil eder.
- Örnek;
 - $\{a_n\}$ dizisi $a_n = \frac{1}{n}$ şeklinde tanımlanmışsa,
 - Dizinin elemanları: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$... şeklindedir.

- $S=\{s_n\}$ olmak üzere;
 - $s_n \le s_{n+1} \to artan\ dizi(increasing)$
 - $s_n \ge s_{n+1} \to azalan \ dizidir(decreasing)$

- Geometrik İlerleme;
 - İlk terim (a) ve ortak oran (r) reel sayı olmak üzere;
 - $a, ar, ar^2, ..., ar^n$ şeklindeki dizilerdir.
 - f(x)=arx şeklinde temsil edilir.
 - Ör: $a_n = (\frac{1}{2})^n$ ve n= 0,1,2,3... ise
 - Dizinin elemanları: $\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8} ...\}$

DİZGİ-KATAR (STRING)

- Sonlu elemanlardan oluşan bir küme üzerinde tanımlı düzenli dizilere dizgi (string) de denir.
- Ör: X={a,b,c} ise
 - S=bbaccc X kümesinde tanımlı bir stringdir.
 - S=b²ac³ şeklinde de gösterilir.
 - |S|=6
 - $X^* = X$ kümesinde tanımlı, boş string (λ) dahil tüm alt stringler'dir
 - X⁺= X kümesinde tanımlı, boş stringi içermeyen tüm alt stringler'dir

•
$$X^+ = X^* - \lambda$$

- 2 stringin birleşimi (concatenation), bu 2 stringin arka arkaya eklenmesi ile oluşur.
 - Ör: S=bbaccc ve N = caaba ise SN=bbaccccaaba= $b^2ac^4a^2ba$ 'dır

SERILER

- Aritmetik İlerleme;
 - İlk terim (a) ve ortak fark (d) reel sayı olmak üzere;
 - a, a + d, a + 2d, ..., a + nd şeklindeki dizilerdir.
 - f(x)=dx+a şeklinde temsil edilir.
 - Aritmetik dizilerde ardışık 2 terim arasındaki fark aynıdır. Buna ortak fark denir ve d ile temsil edilir.
 - Ör: -1 + 4n ve n=0,1,2,3...
 - İse dizinin elemanları: {-1,3,7,11...}

YİNELEME BAĞINTILARI

- Yineleme bağıntısı; bir $\{a_n\}$ dizisinde her bir elemanın kendinden bir veya daha fazla elemana bağlı bir denklem olarak ifade edilmesidir.
- Ör: Bir $\{a_n\}$ dizisi için yinelemeli bağıntı $a_n=a_{n-1}+3$, n=1,2,3,... ve $a_0=2$ ise

•
$$a_1 = a_0 + 3 = 2 + 3 = 5$$

•
$$a_2 = a_1 + 3 = 5 + 3 = 8$$

•
$$a_3 = a_2 + 3 = 8 + 3 = 11 \dots$$

 Özyinelemeli olarak tanımlanmış bir dizinin başlangıç koşulları, yineleme ilişkisinin geçerli olduğu ilk terimden önceki terimleri belirtir.

YİNELEME BAĞINTILARI

Fibonacci Serisi:

- Başlangıç koşulları: $f_0 = 0 \ ve \ f_1 = 1 \$ olmak üzere her bir terimin kendisinden önceki ardışık 2 terimin toplamı şeklinde ifade edildiği dizidir.
- Yineleme bağıntısı ile tanımlandığında;

•
$$f_n = f_{n-1} + f_{n-2}$$

Faktöriyel:

- Başlangıç koşulu $a_1 = 1$ olmak üzere n!=n(n-1)(n-2)...1 şeklinde kendisinden önceki n tane sayının birbiri ile çarpılması sonucu elde edilir.
- Yineleme bağıntısı ile tanımlandığında;

•
$$a_n = n(a_{n-1})$$

YİNELEME BAĞINTILARI

- Yinelemeli bağıntıya göre
 - Dizinin her bir elemanının oluşturulması 1 iterasyondur.
 - Dizinin oluşturulma işlemi 1. elemandan n. Elemana doğruysa ileri değiştirme (forward substitution)
 - N. Elemandan 1. elemana doğruysa geri değiştirme (backward substitution) denir.

Örnek:

 $a_n = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \dots\}$ için yinelemeli bağıntı tanımlayın • $a_n = \frac{1}{2^n}$

• $a_n = \{1,3,5,7,9 \dots\}$ için yinelemeli bağıntı tanımlayın

•
$$a_n = a_{n-1} + 2$$

• $a_n = \{1, -1, 1, -1, 1, -1, ...\}$ için bir bağıntı tanımlayın

•
$$a_n = -a_{n-1}^{n-1} \text{ veya } -1^n$$

TOPLAMLAR

- Terimlerin toplamı:
- Sigma notasyonu

•
$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_n$$

- j=toplam işleminin indexi
- n=üst sınır
- m=alt sınır

• Örnek:
$$\sum_{i=1}^{5} 1 + n = (1 + 1) + (1 + 2) + (1 + 3) + (1 + 4) + (1 + 5)$$

=2+3+4+5+6=20

• Örnek:
$$\sum_{k=3}^{5} 3k = (3*3) + (3*4) + (3*5) = 9+12+15=36$$

Geometrik Seri

- Geometrik ilerlemenin terimlerin toplamında kullanılmasına geometrik seri denir.
- a ve r birer reel sayı ve r≠0 olmak üzere geometrik seri şöyle tanımlanır.

•
$$\sum_{j=0}^{n} ar^{j} \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1 \\ (n+1)a & \text{if } r = 1 \end{cases}$$

ÇİFT TOPLAM

- Toplam işleminin iç içe kullanılmasıdır.
- Örnek;

•
$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

• =
$$\sum_{i=1}^{4} (i + 2i + 3i)$$

• =
$$\sum_{i=1}^{4} 6i = 6 + 12 + 18 + 24 = 60$$

$$\sum_{k=1}^{n} a_k \pm b_k = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} c = nc$$

TOPLAM

Yaygın kullanılan bazı toplamlar

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Küme Elemanlarının Toplamı

- Toplama fonksiyonu
 - Bir fonksiyonun tüm değerlerini veya
 - Bir kümedeki tüm değerleri toplamak için de kullanılabilir.
- $\sum_{s \in S} f(s) \rightarrow S$ 'nin tüm elemanları için f(s) değerlerinin toplamını verir.

• Örnek:

•
$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6$$

- Matris; dikdörtgen şeklinde bir sayı dizisidir.
- m satır, n sütundan oluşan matrislere mxn matris denir.
- Satır ve sütun sayısı eşit olan matrislere kare matris denir.
- Örnek.

•
$$\begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 4 & 1 \end{bmatrix}$$
 (3 x 2) matris

- Sütun matris; tek sütundan oluşur. N satır sayısı olmak üzere (1 x n) boyutundadır.
- Matris eşitliği; 2 matrisin karşılıklı elemanları eşitse, bu iki matris eşit matrislerdir

Matrislerde Toplama ve Çıkarma

- A ve B aynı boyutta 2 matris olmak üzere;
 - A ve B matrislerinin toplamı, A ve B matrislerinin karşılıklı elemanlarının toplanması ile elde edilir.

•
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 + $\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ = $\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$

 A ve B matrislerinin farkı, A ve B matrislerinin karşılıklı elemanlarının birbirinden çıkarılması ile elde edilir.

•
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 - $\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ = $\begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & a_{13} - b_{13} \\ a_{21} - b_{21} & a_{22} - b_{22} & a_{23} - b_{23} \end{bmatrix}$

Matrislerde Çarpma

- A; m x k boyutunda bir matris ve B'de k x n boyutunda bir matris olmak üzere, A ve B matrislerinin çarpımı satır sayısı kadar sütunların çarpılması ile oluşur.
 - Çarpma yapılabilmesi için; 1. matrisin sütun sayısının 2. matrisin satır sayısına eşit olması gerekir.

•
$$\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} x \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2(3) + -1(5) & 2(-9) + -1(7) & 2(2) + -1(-6) \\ 3(3) + 4(5) & 3(-9) + 4(7) & 3(2) + 4(-6) \end{bmatrix} = \begin{bmatrix} 1 & -25 & 10 \\ 29 & 1 & -18 \end{bmatrix}$$

- Matris çarpma işleminde değişim kuralı yoktur.
 - Bu nedenle A*B≠B*A'dır

• m x k boyutunda bir matris ve k x n boyutunda bir matris çarpıldığında, sonuç m x n boyutunda olacaktır.

- n x n boyutunda bir matris olmak üzere;
 - Köşegen dışındaki tüm elemanlar 0
 - Köşegen=1 ise birim matristir.
 - *I_n* ile gösterilir.

1 0 0

• 0 1 0

0 0 1

•

Devrik (Transpose) ve Simetrik Matris

- Devrik matris; Bir matrisin satırları ile sütunlarının yer değiştirmesi ile oluşur.
 - A (m x n) boyutunda bir matris olmak üzere, A matrisinin transpozu (n x m) boyutundadır.
 - A^t, A' şeklinde gösterilir

- Simetrik Matris; Bir matris transpozu ile aynı ise simetriktir.
 - $A=A^t$

Matris Özellikleri

A ve B aynı boyutta 2 matris olmak üzere;

- A+B=B+A → Değişme kanunu
- A+(B+C)=(A+B)+C
- λ(A+B)=λA+λB (λ bir sabit)
- A, B ve C matrisleri toplama ve çarpma için uyumlu olmak kaydıyla;
 - A(B+C)=AB+AC
 - (A+B)C=AC+BC
 - A(BC)=(AB)C
 - $A^{T^T} = A$
 - $\bullet \quad (A+B)^T = A^T + B^T$
 - $(AB)^T = B^T + A^T$

Sıfır-Bir Matris

Bir matrisin tüm elemanları 0 veya 1 ise sıfır bir matris denir.

•
$$A \vee B$$
 $\begin{cases} 1 \text{ eğer } a_1 \text{ veya } b_1 = 1 \\ 0, \text{ diğer durumlarda} \end{cases}$ Katılma (join)

• $A \wedge B \begin{cases} 1 \text{ eğer } a_1 \text{ ve } b_1 = 1 \\ 0, \text{ diğer } \text{durumlarda} \end{cases}$ Karşılama (meet)

- A: m x k boyutunda bir sıfır bir matris ve B k x n boyutunda bir sıfır bir matris ise
 - A ve B matrislerinin çarpımına Boole Çarpımı denir.
 - A o B ile gösterilir.
 - $c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj})$
- Matris çarpımı işlemi gibidir;
 - Farklı olarak çarpım yerine 'and' toplam yerine de 'or' işlemi gelir.

- A bir kare ve sıfır-bir matris ve r pozitif bir tamsayı olmak üzere
 - A matrisinin r. boole kuvveti
 - A^r ile gösterilir.
 - A matrisinin r defa kendisi ile boole çarpımı yapılması sonucu elde edilir.
 - $A^0 = I_n$,
 - $A^r = A \circ A \circ A \dots A(r \operatorname{def} a)$

