

PROJECT SPECIFICATION

1-Hardware Requirements

- 1- Two microcontrollers connected via CAN bus
- 2- One Door sensor (D)
- 3- One Light switch (L)
- 4- One Speed sensor (S)
- 5- ECU 1 connected to D, S, and L, all input devices
- 6- Two lights, right (RL) and left (LL)
- 7- One buzzer (B)
- 8- ECU 2 connected to RL, LL, and B, all output devices

2-Software Requirements

- 1- ECU 1 will send status messages periodically to ECU 2 through the CAN protocol
- 2- Status messages will be sent using Basic Communication Module (BCM)
- 3- Door state message will be sent every 10ms to ECU 2
- 4- Light switch state message will be sent every 20ms to ECU 2
- 5- Speed state message will be sent every 5ms to ECU 2
- 6- Each ECU will have an OS and application SW components
- 7- If the door is opened while the car is moving → Buzzer ON, Lights OFF
- 8- If the door is opened while the car is stopped \rightarrow Buzzer OFF, Lights ON
- 9- If the door is closed while the lights were ON \rightarrow Lights are OFF after 3 seconds
- 10- If the car is moving and the light switch is pressed → Buzzer OFF, Lights ON
- 11- If the car is stopped and the light switch is pressed → Buzzer ON, Lights ON

3-Dynamic design analysis

For ECU 1:

- 1. Draw a state machine diagram for each ECU component
- 2. Draw a state machine diagram for the ECU operation
- 3. Draw the sequence diagram for the ECU
- 4. Calculate CPU load for the ECU

For ECU 2:

- 1. Draw a state machine diagram for each ECU component
- 2. Draw a state machine diagram for the ECU operation
- 3. Draw the sequence diagram for the ECU
- 4. Calculate CPU load for the ECU

Calculate bus load in your system: With what percentage of system bus was busy per 1 second

PROJECT Development

1-Hardware Design Block Diagram

HW DESIGN

2-State Machine Diagrams

FOR ECU 1

Each Component State Machine Diagrams

TaskName	Period	AProx Excution Time	Description
Light read status	5	5us	
Door read status	2	5us	
Speed read status	2	5us	
Can send light message	20 ms	2ms	
Can send Door message	10 ms	2ms	
Can send speed message	5 ms	2ms	
Hyper Period	20 ms		

Cpu load = (0.05*4) + (0.05*10) + (0.05*10) + (2*4) + (2*2) + (2*1) = 15.2 ms 15.2/20=76%

FOR ECU 2 Each Component State Machine Diagrams Start Initialize_Buzzer If the door is opened If the door is opened while car is Stopped while car is moving read Buzzer status Or Or if the car Moving and the light switch is pressed if the car stopped and the light switch is pressed blocked **Buzzer OFF** Buzzer ON **IDLE** Start Initialize_Light If the door is opened If the door is opened while car is stopped 5ms while car is Moving Or

read Light status

blocked

IDLE

Or

If the door is closed while the lights is on (Lights off after 3 sec)

Lights OFF

if the car stopped and the light switch is pressed

if the car Moving and the light switch is pressed

Lights ON

State machine for ECU2 Operation

TaskName	Period	AProx Excution Time	Description
Light read status	5	5us	
Buzzer read status	2	5us	
Alarm Task	2	5us	
Can Rec light message	20 ms	2ms	
Can Rec Door message	10 ms	2ms	
Can Rec speed message	5 ms	2ms	
Hyper Period	20 ms		

Cpu load (0.05*4) + (0.05*4) + (1*4) + (1*1) + (1*2) + (1*4) + (0.05*7) = 11.75 ms 11.75/20 = 85.75%

Bus load: We Assume a complete message takes one mille second to send. Total time of messages = 4+2+1 = 7ms / hyper period (20 ms)					
Bus load =7/20 =35% per second					