AWS – Well Architected Framework

By

Keshav Kummari

What is Well Architected Framework?

• The Well Architected Framework is a series of best practice recommendations and questions to ask when designing and developing cloud architectures.

• It consists of Five Pillars:

Operational Excellence

Evolve

Operational Excellence

"The ability to run and monitor systems to deliver business value and to continually improve supporting processes and procedures."

Design Principles

- · Perform operations as code
- · Annotate documentation
- · Make frequent, small, reversible changes
- · Refine operations procedures frequently
- · Anticipate failure
- · Learn from all operational failures

Best Practices

Prepare Drive Operational Excellence with Effective Preparation

Measure Success with the Achievement of Business and Customer Outcomes

Evolve Operations to Sustain Operational Excellence

Prepare

Key Services

OPERATIONS AS CODE

LOG COLLECTION AND MONITORING

Operate

Key Services

METRICS DASHBOARDS

INSIGHTS

Evolve

Key Services

ANALYZE LOG DATA

STRONG DEVOPS MODEL

Reliability

Reliability

"The ability to recover from failure and mitigate disruptions."

Design Principles

- · Test recovery procedures
- · Automatically recover from failure
- Scale horizontally
- Stop guessing capacity
- Automate change

Key Service

Best Practices

Foundations Limit Access, Isolate Resources, Safeguard Applications

Change Management Monitor AWS APIs, Automatically Scale, Monitor Key Metrics

Failure Management Disaster Recovery Strategy, Maintatin Backups

Foundations

Key Services

ACCESS CONTROL ISOLATED NETWORKS

SERVICE LIMITS

DDOS PROTECTION

Change Management

Key Services

CONTROL ACCESS

CONFIGURATION AWARENESS

AUDIT AWS APIS

DEMAND MANAGEMENT

Failure Management

Key Services

INFRASTRUCTURE AS CODE **DURABLE BACKUPS**

DURABLE ARCHIVES

RELIABLE KEY MANAGEMENT

Disaster Recovery Strategy

- RTO (Recovery Time Objective) How long to recover
- RPO (Recovery Point Objective) How much data is lost

Backup and Restore

Pilot Light

Low Capacity Standby Multi-Site Active-Active

Backup and Restore

Backup and Restore

- · Backup data to AWS or second region (S3, snapshots)
- · Have AMIs in recovery region
- · CloudFormation templates standing by
- · In Case of Disaster
 - Spin up Instances from AMIs (use templates)
 - · Restore backup data
 - Modify DNS to point to new instances
- RTO Time it takes to launch instances, restore data, update DNS
- RPO Data generated since last backup

Pilot Light

Pilot Light

- Cross Region Replication
 - RDS, DynamoDB, S3
- · Instances stopped
- · Smaller DB instance
- · In Case of Disaster
 - Start instances
 - Scale up DB, Promote to Primary
 - Modify DNS or use Route 53 Failover

Low Capacity Standby

Low Capacity Standby

- · Cross region replication
- · Similar to Pilot Light
- · Some capacity running 24/7
- · Continuous testing with trick traffic
- · Mulit-Master Option (Aurora)
- · In Case of Disaster
 - Scale up / Autoscale to full production capacity
 - Route 53 failover for DNS
- RTO time to scale
- · RPO replication lag only

Multi-Site Active Active

Multi-Site Active Active

- · Cross region replication or Multi-Master
- Full capacity running 24/7 in two regions
- · Mulit-Master Option (Aurora)
- · In Case of Disaster
 - Route 53 failover for DNS
- RTO time to fail over
- RPO replication lag only

Security

Security

"The ability to protect information, systems, and assets while delivering business value through risk assessments and mitigation strategies."

Design Principles

- · Implement a strong identity foundation
- Enable tracability
- · Apply security at every layer
- · Automate security
- · Protect data in transit and at rest
- Prepare for security events

Security is a Shared Responsibility

Shared Responsibility Model

Best Practices

Identity and Access Management Securely Control Access

Detective Controls

Real-time Monitoring, Access Logging

Infrastructure Protection

Isolated Private Networks

Data Protection

Limit Access, Use Encryption

Incident Response

Incident Response Team, Automate Response

Identity and Access Management

Key Services

ACCESS CONTROL CENTRALLY MANAGE ACCOUNTS

IDENTITY AUTHENTICATION LIMITED LIFE CREDENTIALS

Detective Controls

Key Services

API ACCESS LOGS

RESOURCE INVENTORY

LOGS METRIC FILTERS

THREAT DETECTION

Infrastructure Protection

Key Services

ISOLATED VIRTUAL **NETWORKS**

VULNERABILITY DETECTION

DDOS MITIGATION APPLICATION **FIREWALL**

AWS

KMS

KEY

Data Protection

Key Services

OBJECT **ENCRYPTION**

ENCRYPTION **BLOCK ENCRYPTION** MANAGEMENT

Incident Response

Key Services

INFRASTRUCTURE AS CODE

RESPONSE TEAM **AUTHORIZAITON**

Shared Security Responsibility Model

Security OF the Cloud

- AWS is responsible for the security of the global infrastructure and foundation services.
- Reduces the operational burden (on you) as AWS operates, manages, and controls the components from the host operating system and virtualization layer, down to the physical security of the facilities in which the services operate.

AWS Responsibilities

Facilities

Physical security of hardware Storage Decommissioning Network infrastructure

Virtualization infrastructure

Security IN the Cloud

- The customer (you) is responsible for the security of your virtual environment, data, and applications.
- Using AWS means you assume the responsibility and management of the guest operating system (including, updates and security patches), other associated applications software, as well as the configuration of the AWS-provided security group firewall.

Customer Responsibilities

Amazon Machine Images (AMIs)

Operating systems

Applications

Data-at-rest

Data stores

Credentials

Security Groups Policies and configuration

Firewalls Intrusion Detection
Data-in-transit Intrusion Prevention

Performance Efficiency

Performance Efficiency

"The ability to use computing resources efficiently to meet system requirements and to maintain that efficiency as demand changes and technologies evolve."

Design Principles

- · Democratize advanced technologies
- · Go global in minutes
- · Use serverless architectures
- · Experiment more often
- Mechanical sympathy

Best Practices

Selection Choosing the right instance and storage options

Review Re-evaluate when AWS announces new features and services

Monitoring Verify resources perform as expected

Tradeoffs Consider caching and read replicas

Key Services

COMPUTE

STORAGE

DATABASES

NETWORK

Review

AWS Blog and What's New

Monitoring

Key Services

METRICS, ALARMS, NOTIFICATIONS

AUTOMATED ACTIONS

Tradeoffs

Key Services

GLOBAL CACHING

REQUEST OFFLOADING

DATA MIGRATION

READ REPLICAS

Cost Optimization

Cost Optimization

"The ability to avoid or eliminate unneeded cost or suboptimal resources."

Design Principles

- · Adopt a consumption model
- · Measure overall efficiency
- · Stop spending money on data centers
- · Analyze and attribute expenditure
- · Use managed services

Best Practices

Cost-effective Resources Choosing the right instance and storage options

Matching Supply and Demand Scale according to load

Expenditure Awareness Use cost allocation tags

Optimizing Over Time Continually reevaluate

Cost-Effective Resources

Matched Supply and Demand

Key Services

Scale In when Demand Drops

Expenditure Awareness

Key Services

Notification when Costs Exceed Budget

Cost Allocation Tags

Optimizing Over Time

Optimizing Over Time

Key Services

Weekly Update Email

