SUITES - BAC S LIBAN 2013

On considère la suite (v_n) définie pour tout entier naturel n par $v_0 = 1$ et $v_{n+1} = \frac{9}{6 - v}$.

PARTIE A

A.1) C'est l'algorithme N° 3 qui convient. Le N° 1 n'affiche que v_n et et le N° 2 n'affiche que des 1.

A.2) D'après les valeurs données dans l'énoncé, on conjecture que (v_n) est croissante et convergente.

A.3)

A.3.a) On observe que $0 < v_0 = 1 < 3$ et que $0 < v_1 = 1, 8 < 3$.

Supposons que $0 \le v_n \le 3$ pour tout entier naturel n. Alors on peut écrire la série d'inégalités suivante :

$$0 < v_n < 3 \Rightarrow 0 > -v_n > -3 \Rightarrow 6 > 6 - v_n > 3 \Rightarrow \frac{2}{3} > \frac{6 - v_n}{9} > \frac{1}{3}$$

En remarquant que $\frac{6-v_n}{9} = \frac{1}{v}$, on a $\frac{2}{3} > \frac{1}{v} > \frac{1}{3}$, d'où l'on déduit que :

$$\frac{3}{2} < v_{n+1} < 3$$
. Comme $\frac{3}{2} > 0$, on peut écrire finalement que $0 < v_{n+1} < 3$.

Et par récurrence on a démontré que $0 < v_n < 3$ pour tout entier naturel n.

4.3.b)
$$v_{n+1} - v_n = \frac{9}{6 - v_n} - v_n = \frac{9 - 6v_n - v_n^2}{6 - v_n} = \frac{(3 - v_n)^2}{6 - v_n}.$$

Puisque $0 < v_n < 3$, alors $6 - v_n > 0$. Donc $v_{n+1} - v_n > 0$ pour tout entier naturel n, démontrant ainsi que (v_n) est monotone croissante.

4.3.c) (v_n) est monotone croissante et $0 < v_n < 3$ pour tout entier naturel n. Donc la suite est convergente et a une limite l telle que 0 < l < 3.

PARTIE B

On considère la suite (w_n) définie pour tout entier naturel n par $w_n = \frac{1}{v_n - 3}$.

B.1) Calculons w_{n+1} en fonction de w_n :

$$w_{n+1} = \frac{1}{v_{n+1} - 3} = \frac{1}{\frac{9}{500 - 3}} = \frac{-v_n + 6}{3(v_n - 3)}$$
. Calculons la différence $w_{n+1} - w_n$:

$$w_{n+1} - w_n = -\frac{-v_n + 6}{3(v_n - 3)} - \frac{1}{v_n - 3} = \frac{-v_n + 6 - 3}{3(v_n - 3)} = -\frac{v_n - 3}{3(v_n - 3)} = -\frac{1}{3}$$

Ce qui démontre que (w_n) est une suite arithmétique de raison $-\frac{1}{3}$.

B.2) On calcule que
$$w_1 = -\frac{1}{2}$$
 et on en déduit que $w_n = -\frac{1}{2} - \frac{1}{3}n = -\frac{2n+3}{6}$.

On a alors
$$\frac{1}{v_n - 3} = -\frac{2n + 3}{6}$$
 d'où l'on tire $v_n = -\frac{6}{2n + 3} + 3$

B.3) On en déduit facilement que la limite de (v_n) est égale à 3.