Parameterized Concept Weighting for Information Retrieval

Michael Bendersky

Joint Work with

W. Bruce Croft, UMass Amherst Donald Metzler, ISI USC David A. Smith, UMass Amherst

Université de Montréal, Sept. 2011

Talk Outline

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

SEARCH QUERY REPRESENTATION

things to do montreal this friday

► Ten Free Things to Do in Montreal - Montreal - About.com 🕡 🔍

montreal.about.com/.../montrealevents/.../10-Free-Things-to-Do-in-... - Cached

Who said budgeting has to pinch? In a city packed with parks and festivals for every season and reason, Montreal is swelling with free events, attractions, and ...

Montreal Guide - A Montreal Guide With Tips for Locals, Tourists and ...

montreal.about.com/ - Cached

1 day ago - Things to Do in Montreal: September 9 to September 11, 2011 ...

■ Show more results from about.com

100 Things To Do In Montreal | The 1000 Day Holiday 📝 🔍

moby.nzpunter.com/20090727-100-things-to-do-in-montreal/ - Cached

27 Jul 2009 – 100 **Things To Do In Montreal**. 27/7/2009. 01. Feel the Grab your bike and join the Critical Mass, last **Friday** of every month. 17h30 at Phillips ...

Search Engine

things to do montreal this friday

Who said budgeting has to pinch? In a city packed with parks and festivals for every season and reason, **Montreal** is swelling with free events, attractions, and ...

Montreal Guide - A Montreal Guide With Tips for Locals, Tourists and ...

Montreal about com/ - Cached

1 day ago - Things to Do in Montreal: September 9 to September 11, 2011 ...

■ Show more results from about.com

100 Things To Do In Montreal | The 1000 Day Holiday 🚮 🔍

moby.nzpunter.com/20090727-100-things-to-do-in-montreal/ - Cached

27 Jul 2009 – 100 **Things To Do In Montreal**. 27/7/2009. 01. Feel the Grab your bike and join the Critical Mass, last **Friday** of every month. 17h30 at Phillips ...

The Challenges of Query Representation

things to do montreal this friday

- The linguistic structure of the query is never explicitly observed
- Structure inference is hard
 - Short and ambiguous search query
 - Idiosyncratic grammar
 - No capitalization and punctuation
- Strict limit on inference time

The Challenges of Query Representation

things to do montreal this friday

- The linguistic structure of the query is never explicitly observed
- Structure inference is hard
 - Short and ambiguous search query
 - Idiosyncratic grammar
 - No capitalization and punctuation
- Strict limit on inference time

The Challenges of Query Representation

things to do montreal this friday

- The linguistic structure of the query is never explicitly observed
- Structure inference is hard
 - Short and ambiguous search query
 - Idiosyncratic grammar
 - No capitalization and punctuation
- Strict limit on inference time

Query Representations Spectrum

Too coarse

Too fine grained

Syntactic structure

Semantic/conceptual structure

$$\begin{bmatrix} PRES_7 & BE_6 & TYPE:STAR]_5 \\ DEF_3 & PropLITTLE]_4 \\ Sinuation & State \end{bmatrix}_2 \begin{bmatrix} PRES_7 & TYPE:STAR]_{13} \\ PRES_7 & PRES_7 \\ PRES_7 & P$$

Verbose queries in web search

(Experian Hitwise report, 2010)

- Growth of 5+ word queries since 2008 15%
- Total share of the query traffic -20%
- Emerging search modalities
 - Voice activated search
 - Search on mobile devices
- Q&A systems
- Enterprise & Academic Search

- Verbose queries in web search (Experian Hitwise report, 2010)
 - Growth of 5+ word queries since 2008 15%
 - Total share of the query traffic 20%
- Emerging search modalities
 - Voice activated search
 - Search on mobile devices
- Q&A systems
- Enterprise & Academic Search

- Verbose queries in web search (Experian Hitwise report, 2010)
 - Growth of 5+ word queries since 2008 15%
 - Total share of the query traffic -20%
- Emerging search modalities
 - Voice activated search
 - Search on mobile devices
- Q&A systems
- Enterprise & Academic Search

- Verbose queries in web search (Experian Hitwise report, 2010)
 - Growth of 5+ word queries since 2008 15%
 - Total share of the query traffic -20%
- Emerging search modalities
 - Voice activated search
 - Search on mobile devices
- Q&A systems
- Enterprise & Academic Search

Query Difficulty by Type

(Bendersky & Croft, 2009)

Words

volcano eruptions effect global temperature

Words

Phrases

volcano eruptions effect global temperature volcano eruptions global temperature

Words

volcano
eruptions
effect
global
temperature

Phrases

volcano eruptions global temperature

Expansion

ash climate earth lava

• • •

Words

Phrases

Expansion

volcano eruptions

effect global temperature volcano eruptions global temperature ash climate earth lava

. . .

Query Representation Process

27 Jul 2009 – 100 Things To Do In Montreal. 27/7/2009. 01. Feel the Grab your bike and join the Critical Mass. last Friday of every month. 17h30 at Phillips ...

Query Representation Process

Query Representations in IR: Unsupervised Term Weighting

- The majority of common **bag-of-words** models use unsupervised term weighting
 - BM25 (Robertson & Walker 1994)
 - Query Likelihood (Ponte & Croft 1998)
 - Divergence from Randomness (Amati & Van Rijsbergen 2002)

• **Inverse Document Frequency (***IDF***)** is a popular term weighting measure

$$IDF(t) = \log \frac{|D|}{|\{d: t \in d\}|}$$

Query Representations in IR: Supervised Term Weighting

- More recent work explores the importance of supervised term weighting
 - Going beyond *IDF*
- Focus on verbose queries
 - Regression Rank (Lease 2009)
 - Term Selection (Lee et al. 2009)
 - Term Necessity (Zhao & Callan 2010)

Query Representations in IR: Supervised Concept Weighting

- Focus on a specific concept type
 - Noun Phrases(Bendersky & Croft 2008)
 - Phrases & Proximities(Bendersky & Croft 2010, Shi & Nie 2010)
 - Term Spans (Svore et al. 2010)

Query Representations in IR: Supervised Expansion Weighting

 Most common query expansion approaches use unsupervised weighting

- Cao et al. (2008) use binary classification for expansion term weighting
 - No supervised weighting for explicit query concepts

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

PARAMETERIZED CONCEPT WEIGHTING

Concepts – Semantic Definition

An abstract idea or a mental symbol defined as a "unit of knowledge"

- General, non-operational definition
- Should be adapted based on the application domain

Concepts – Information Retrieval Definition

Any syntactic expression that can be matched within a document

- A broad definition that is able to capture a variety of linguistic phenomena
- Easy to use in retrieval models
- Practical generalization of the semantic definition

Concept Types

- T set of possible concept types
 - Query terms
 - Exact phrases
 - Proximity matches
 - Expansion terms from the corpus
 - Expansion terms from external sources

— ...

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Concept Types

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Concepts

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Matching Function

$$f(\kappa, D) = \log \frac{t f_{\kappa, D} + \mu \frac{t f_{\kappa, C}}{|C|}}{|D| + \mu}$$

Language Modeling Estimate with Dirichlet Smoothing (Zhai & Lafferty, 2001)

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Concept Weight

Estimating Concept Weights

$$sc(Q,D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa,D)$$
Option I

Tying the weights λ_{κ} for concepts of type T

All the concepts of the same type are equally important for expressing query intent

Estimating Concept Weights

$$sc(Q,D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa,D)$$
Option II

Separately estimating λ_{κ} for each concept κ

Infeasible – the number of possible concepts is exponential in the size of the vocabulary.

Estimating Concept Weights

$$sc(Q,D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa,D)$$
Option III

Parameterizing the weights λ_{κ}

Parameterize a concept of type T using a set of importance features Φ^T

Weight Parameterization

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Parameterized Weight

$$\lambda_{\kappa} = \sum_{\varphi \in \Phi^T} w_{\varphi} \varphi(\kappa)$$

Weight Parameterization

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Parameterized Weight

$$\lambda_{\kappa} = \sum_{\varphi \in \Phi^T} w_{\varphi} \varphi(\kappa)$$

Concept Importance Feature

Weight Parameterization

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\kappa \in T} \lambda_{\kappa} f(\kappa, D)$$

Feature Weight

Concept Importance Feature

Concept Importance Features

Feature	Description
GF(κ)	Frequency of concept κ in Google n-grams
WF(κ)	Frequency of concept k in Wikipedia titles
QF(κ)	Frequency of concept κ in a search log
CF(κ)	Frequency of concept κ in the collection
DF(κ)	Document frequency of concept κ
ΑΡ(κ)	A priori concept weight

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

Concept Types

$$sc(Q, D) = \sum_{\substack{T \in \mathcal{T} \\ \text{Concept} \\ \text{Types}}} \sum_{\substack{\varphi \in \Phi^T \\ \text{Features}}} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

$$sc(Q, D) = \sum_{\substack{T \in \mathcal{T} \\ \text{Concept} \\ \text{Types}}} \sum_{\substack{\kappa \in T \\ \text{Features}}} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

- Linear in $W = \{ w_{\varphi} \mid \varphi \in \Phi^T, T \in \mathcal{T} \}$
- Can be optimized using learning-to-rank techniques
 - Coordinate Ascent (Metzler & Croft, 2007)

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

EXPLICIT CONCEPT WEIGHTING

"Learning Concept Importance Using a Weighted Dependence Model" (Bendersky et. al, WSDM 2010)

volcano eruptions effect global temperature

Words

volcano eruptions effect global temperature

Exact Phrases

"volcano eruptions"
"eruptions effect"
"effect global"
"global temperature"

Proximity Matches

volcano...eruptions OR eruptions...volcano eruptions...effect OR effect...eruptions effect...global OR global...effect global...temperature OR temperature...global

Sequential Dependence (SD) (Metzler & Croft, 2007)

volcano...eruptions OR eruptions...volcano eruptions...effect OR effect...eruptions effect...global OR global...effect global...temperature OR temperature...global

Weighted Sequential Dependence (WSD) (Bendersky et. al, 2010)

Learning Concept Weights in WSD

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

- Initialize $W = \{ w_{\phi} \mid \phi \in \Phi^T, T \in \mathcal{T} \}$
- While improvement in MAP
 - − For each $\mathbf{w}_{\varphi} \in \mathbf{W}$
 - Line search for optimal value of \mathbf{w}_{φ}
 - At each search iteration test MAP

Learning Concept Weights in WSD

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

- Initialize $W = \{ w_{\varphi} \mid \varphi \in \Phi^{T}, T \in \mathcal{T} \}$
- While improvement in MAP
 - − For each $\mathbf{w}_{\mathbf{φ}} \in \mathbf{W}$
 - Line search for optimal value of \mathbf{w}_{φ}
 - At each search iteration test MAP

Comparison with Non-Parameterized Methods

	Query Terms	Exact Phrases	Proximity Matches
Query Likelihood (QL)	${\mathcal N}$		
Sequential Dependence (SD)	${\mathcal N}$	${\mathcal N}$	\mathcal{N}
Weighted Sequential Dependence (WSD)	P	P	P

Comparison with Non-Parameterized Methods

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

EXPANSION CONCEPT WEIGHTING

"Parameterized Concept Weighting in Verbose Queries" (Bendersky et. al, SIGIR 2011)

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} w_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

- Explicit Query Concepts
 - Terms
 - Exact Phrases
 - Proximity Matches
- Expansion Terms

$$sc(Q, D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} \mathbf{w}_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa, D)$$

$$\text{Linear in } \mathbf{W} = \{ \mathbf{w}_{\varphi} \mid \varphi \in \Phi^T, \mathbf{T} \in \mathcal{T} \}$$

$$sc(Q,D) = \sum_{T \in \mathcal{T}} \sum_{\varphi \in \Phi^T} \mathbf{w}_{\varphi} \sum_{\kappa \in T} \varphi(\kappa) f(\kappa,D)$$
 Explicit Query Concepts Linear in $\mathbf{W} = \{\mathbf{w}_{\varphi} \mid \varphi \in \Phi^T, \mathbf{T} \in \mathcal{T}\}$ Expansion Terms

- Standard ranking optimization considers only <u>explicit query concepts</u>
- *PQE* combines evidence from both <u>explicit</u> <u>query concepts</u> and <u>expansion terms</u>
- Explicit concept weights impact the choice of expansion concepts

Latent Concept Expansion (Metzler & Croft 2007)

"Camels in North America"

Explicit Concepts

weight	term
.8	camel
.8	north
.8	america
.2	"camel north"
.2	"north america"

Expansion with pseudo-relevance feedback

Expansion Terms

weight	term		
.0178	indians		
.0031	mexico		
.0028	new		
.0024	dress		
.0021	clothing		
•••	•••		

Latent Concept Expansion (Metzler & Croft 2007)

"Camels in North America"

Explicit Concepts

weight	term
.8	camel
.8	north
.8	america
.2	"camel north"
.2	"north america"

Expansion with pseudo-relevance feedback

Expansion Terms

weight	term
.0178	indians
.0031	mexico
.0028	new
.0024	dress
.0021	clothing

Mean Avg. Prec. 0.07

"Camels in North America"

Explicit Concepts

weight	term
.2591	camel
.1783	north
.1969	america
.0328	"camel north"
.0328	"north america"

Expansion with pseudo-relevance feedback

Expansion Terms

weight	term
.0314	bison
.0314	oil
.0306	nafta
.0305	fossil
.0269	expansion
• • •	•••

"Camels in North America"

Explicit Concepts

weight	term
.2591	camel
.1783	north
.1969	america
.0328	"camel north"
.0328	"north america"

Expansion with pseudo-relevance feedback

Mean Avg. Prec. 0.49

Expansion Terms

weight	term
.0314	bison
.0314	oil
.0306	nafta
.0305	fossil
.0269	expansion

Explicit Concepts

Comparison with Expansion & Weighting Methods

	Query Terms	Exact Phrases	Proximity Matches	Expansion Terms
Weighted Sequential Dependence (WSD)	${\cal P}$	${\cal P}$	\mathcal{P}	
Latent Concept Expansion (LCE)	\mathcal{N}	${\mathcal N}$	$\mathcal N$	${\mathcal N}$
Parameterized Query Expansion (PQE)	P	P	P	P

Comparison with Expansion & Weighting Methods

Number of Expansion Terms

Number of Expansion Terms

- 1. Search Query Representation
- 2. Parameterized Concept Weighting
- 3. Explicit Concept Weighting
- 4. Expansion Concept Weighting
- 5. Concept Weighting on Web Scale

CONCEPT WEIGHTING ON WEB SCALE

(Bendersky et. al, in submission)

Expansion & Weighting Challenges on Web Scale

- Large variance in web page quality
 - Noisy collection statistics
 - Noisy expansion terms
- Need for succinct queries
 - Minimal query expansion
- Efficient concept weighting & expansion

Expansion & Weighting Challenges on Web Scale

- Large variance in web page quality
 - Noisy collection statistics
 - Noisy expansion terms
- Need for succinct queries
 - Minimal query expansion
- Efficient concept weighting & expansion

Expansion & Weighting Challenges on Web Scale

- Large variance in web page quality
 - Noisy collection statistics
 - Noisy expansion terms
- Need for succinct queries
 - Minimal query expansion
- Efficient concept weighting & expansion

Expansion from the corpus

.145 tv

.112 er

.055 folge

.054 selbst

.034 show

. . . .

Expansion from Wikipedia

.145	tv
• 1 10	UV

.112 bisexual

.055 film

.054 season

.034 series

. . . .

ER TV show

Expans	ion	from
the corp	ous	

.145 tv

.112 er

.055 folge

.054 selbst

.034 show

. . . .

Expansion from Wikipedia

.145 tv

.112 bisexual

.055 film

.054 season

.034 series

. . . .

Expansion from anchor text

.177 show

.095 case

.025 appear

.019 spoiler

.008 1994

. . .

 \mathbf{w}_{ψ}^{-1}

$$\mathbf{w}_{\psi}^{2}$$

 $\mathbf{W}_{\mathbf{\Psi}}^{3}$

Multi-Source Expansion

Multi-Source Expansion

.085	season
.065	episode
.051	dr
.043	drama
.036	series
	• • • •

MAP = 38.31

Summary of External Sources

External Source	Description
Web Headings	Text in the <h*> tags in HTML mark-up</h*>
Anchor Text	Text in the <a> tag in HTML mark-up
Wikipedia Corpus	Wikipedia articles
Retrieval Corpus	Large web collection (ClueWeb)

Comparison with Parameterized Methods

Number of Expansion Terms

Number of Expansion Terms

Number of Expansion Terms

SUMMARY

Query Representation – Important Research Problem

Impacts billions of search queries

Query Representation – Important Research Problem

Improves understanding of user search behavior

Query Representation – Important Research Problem

Synthesis of ideas

Information Retrieval Natural Language Processing Machine Learning

Query Representation & Understanding Workshop

SIGIR 2010 Workshop

Query Representation and Understanding

Research

SIGIR 2011 Workshop

Query Representation and Understanding

http://ciir.cs.umass.edu/sigir2011/qru/

- Short research papers & invited talks
- SIGIR Forum publication
- New public dataset

Parameterized Concept Weighting

Novel information retrieval framework

• More realistic modeling of user intent compared to previous work

• Significant gains in effectiveness compared to current state-of-the-art IR models

Parameterized Concept Weighting

Novel information retrieval framework

 More realistic modeling of user intent compared to previous work

• Significant gains in effectiveness compared to current state-of-the-art IR models

Parameterized Concept Weighting

Novel information retrieval framework

• More realistic modeling of user intent compared to previous work

• Significant gains in effectiveness compared to current state-of-the-art IR models

More to Come...

- More complex query representations
- Integration with web-scale ranking systems
 - Scaling to hundreds/thousands features
- Applications in other domains
 - Q&A systems
 - Content Matching & Recommendation

More to Come...

- More complex query representations
- Integration with web-scale ranking systems
 - Scaling to hundreds/thousands features
- Applications in other domains
 - Q&A systems
 - Content Matching & Recommendation

More to Come...

- More complex query representations
- Integration with web-scale ranking systems
 - Scaling to hundreds/thousands features
- Applications in other domains
 - *Q&A* systems
 - Content Matching & Recommendation

THANK YOU!