In the agro-food supply chain, several technical challenges arise, which can be discussed in detail for a literature survey paper:

1. Data Quality and Traceability

- Data Fragmentation: Data across the supply chain is often fragmented, leading to a lack of unified visibility. Different stakeholders use diverse systems, creating issues in tracking and traceability.
- Data Integrity: Ensuring that the information is not altered during transmission is a major challenge, affecting food traceability.
- **Sensor Accuracy**: IoT devices used in agriculture for tracking environmental factors might suffer from accuracy issues, leading to poor-quality data collection.

2. Integration of IoT and Blockchain

- **Interoperability**: IoT devices need to seamlessly communicate with blockchain networks for traceability. Lack of standardized protocols across devices hinders integration.
- Scalability of Blockchain: Blockchain's inherent limitations in transaction speed and storage requirements can pose a problem when integrating high-frequency IoT data from agro-food supply chains.
- Data Latency: Real-time data processing from sensors and devices is necessary for proactive decisions, which can be challenging with blockchain's transaction validation times.

3. Cold Chain Management

- **Temperature Monitoring**: Technical limitations in continuous temperature monitoring during transit can lead to spoilage of perishable goods.
- **Energy Consumption**: IoT-based sensors require power, and maintaining the energy supply during transport is a technical constraint, especially in remote areas.

4. Information Asymmetry and Trust

- **Privacy-Preserving Data Sharing**: Data sharing among supply chain participants raises concerns about privacy. Methods like differential privacy and homomorphic encryption can be complex to implement.
- **Data Authentication**: Verifying the authenticity of data entries, especially for non-digital inputs like farm yields, is challenging in the absence of a robust verification mechanism.

5. Supply Chain Coordination

• **Decentralized Information Sharing**: Agro-food supply chains have multiple stakeholders, including farmers, transporters, retailers, etc. Enabling secure, decentralized information sharing while avoiding central points of failure is challenging.

• **Smart Contracts**: Developing and managing smart contracts for supply chain automation is technically demanding, especially considering the dynamic nature of agricultural conditions (e.g., weather changes affecting crop yield).

6. Scalability and System Performance

- **Throughput Constraints**: As the number of stakeholders and data transactions increase, the system's ability to handle high transaction volumes without significant delays is limited.
- **High Data Volume**: The agro-food supply chain generates massive amounts of data, from farm sensors to transportation. Processing and storing this data in real-time is a technical challenge.

7. Interoperability between Systems

- **Legacy Systems**: Many stakeholders still use traditional, paper-based systems or older software, which makes integration with modern digital solutions difficult.
- API Standardization: Creating standardized APIs for communication between different supply
 chain systems can be technically complicated, especially when dealing with diverse and siloed
 data.

8. Quality Control and Food Safety

- **Contaminant Detection**: Implementing automated systems for real-time detection of contaminants or adulterants in food products is challenging, often requiring advanced sensing and AI algorithms.
- **Spoilage Prediction**: Developing predictive models to assess food spoilage requires accurate, real-time data, which may not always be available.

9. Security and Cyber Risks

- **Cyber Attacks on IoT Devices**: IoT devices in agriculture are prone to vulnerabilities such as Distributed Denial of Service (DDoS) attacks, which can disrupt the supply chain.
- **Blockchain Security**: Blockchain networks can be susceptible to attacks like 51% attacks, posing risks to the integrity of the supply chain data.

10. Sustainability Concerns

- **Energy Consumption of Blockchain**: Consensus algorithms like Proof-of-Work consume significant amounts of energy, which is not suitable for a sustainable agro-food supply chain.
- **IoT Device Lifecycle**: Ensuring sustainability in the lifecycle of IoT devices, from production to disposal, is a technical issue that needs to be addressed.

11. Standards and Regulatory Compliance

• **Compliance with Diverse Standards**: Different countries or regions have varied regulatory requirements. Ensuring that the technology complies with all standards is complex.

• **Data Governance**: Establishing data governance frameworks that ensure compliance while allowing transparency is a major challenge in the agro-food supply chain.

12. Limited Connectivity in Rural Areas

- **Network Infrastructure**: Poor connectivity in rural areas where food production takes place can hinder the real-time collection of data and integration with digital supply chain systems.
- Edge Computing Limitations: While edge computing is used to process data locally, its integration with cloud systems for aggregated analysis can be technically difficult due to inconsistent network conditions.

Addressing these challenges requires a combination of technological advancements, infrastructure improvements, and stakeholder collaboration to enhance the efficiency and transparency of agro-food supply chains.