2)

$$tr\left[D_r^{-\frac{1}{2}}(P-\widehat{P})D_c^{-1}(P-\widehat{P})^tD_r^{-\frac{1}{2}}\right] = tr\left[\left(D_r^{-\frac{1}{2}}(P-\widehat{P})D_c^{-\frac{1}{2}}\right)\left(D_r^{-\frac{1}{2}}(P-\widehat{P})D_c^{-\frac{1}{2}}\right)^t\right]$$

By SVD, $D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} = U \Lambda V^t$.

By Eckart-Young Theorem, the best t-rank reduced matrix $D_r^{-\frac{1}{2}}\widehat{P}D_c^{-\frac{1}{2}}=U\Lambda_tV^t$, where the first t diagonal elements of Λ_t are same with those of Λ and other elements are zeros. Thus, $\widehat{P}=D_r^{\frac{1}{2}}U\Lambda_tV^tD_c^{\frac{1}{2}}$.

When t = 1, $D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} = \left(\frac{n_{ij}}{\sqrt{n_i}\sqrt{n_j}}\right)_{ij}$. Meanwhile we have $D_r^{-\frac{1}{2}} r = (\sqrt{\frac{n_{i+}}{n}})_i$ and $D_c^{-\frac{1}{2}} c = (\sqrt{\frac{n_{i+j}}{n}})_j$.

$$\left(D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} \right) \left(D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} \right)^t \left(D_r^{-\frac{1}{2}} r \right) = \left(\sum_{k,j} \frac{n_{ik}}{\sqrt{n_{i+}} n_{+k}} \frac{n_{jk}}{\sqrt{n_{j+}} n_{+k}} \sqrt{\frac{n_{j+}}{n}} \right)_i = \left(\sqrt{\frac{n_{i+}}{n}} \right)_i = D_r^{-\frac{1}{2}} r$$

$$\left(D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} \right)^t \left(D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} \right) \left(D_c^{-\frac{1}{2}} c \right) = \left(\sum_{k,i} \frac{n_{kj}}{\sqrt{n_{k+}} n_{+j}} \frac{n_{ki}}{\sqrt{n_{k+}} n_{+i}} \sqrt{\frac{n_{+i}}{n}} \right)_j = \left(\sqrt{\frac{n_{+j}}{n}} \right)_j = D_c^{-\frac{1}{2}} c$$

So we know $D_r^{-\frac{1}{2}}PD_c^{-\frac{1}{2}}$ have singular value $\lambda=1$. We denote $D_r^{-\frac{1}{2}}PD_c^{-\frac{1}{2}}$ as A and we know its element $\frac{n_{ij}}{\sqrt{n_{i+}n_{+j}}} \leq 1$. So $\lim_n (AA^t)^n = B$ and each row and column of B is either 1 or 0. If A had a singular value greater than 1, this would not happen. So $\lambda=1$ is the greatest singular value. Namely,

$$D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}} = (D_r^{-\frac{1}{2}} r | U_{n*(r-1)}) \begin{pmatrix} 1 & 0 \\ 0 & \Lambda' \end{pmatrix} (D_c^{-\frac{1}{2}} c | V_{n*(s-1)})^t$$

When rank $t=1,\, D_r^{-\frac{1}{2}}\widehat{P}D_c^{-\frac{1}{2}}=D_r^{-\frac{1}{2}}rc^tD_c^{-\frac{1}{2}}\Rightarrow \widehat{P}=rc^tD_c^{-\frac{1}{2}}$