3 forms of convexity in graphs & networks

Lovro Šubelj University of Ljubljana Faculty of Computer and Information Science joint work with

Tilen Marc
University of Ljubljana
Institute of Mathematics,
Physics and Mechanics

COSTNET '17

definitions of convexity

convex/non-convex real functions, sets in \mathbb{R}^2 & subgraphs

 $\mathsf{disconnected} \supseteq \mathsf{connected} \supseteq \mathsf{induced} \supseteq \mathsf{isometric} \supseteq \mathsf{convex} \ \mathsf{subgraphs}$

(sna) k-clubs & k-clans are convex k-cliques (def) subset S is convex if it induces convex subgraph (def) convex hull $\mathcal{H}(S)$ is smallest convex subset including S

expansion of convex subsets

grow subset S by one node & expand S to convex hull $\mathcal{H}(S)$

- $S = \{ \text{random node } i \}$
- until *S* contains *n* nodes:
 - 1. select $i \notin S$ by random edge
 - 2. expand $S = \mathcal{H}(S \cup \{i\})$

S quantifies (locally) tree-like/clique-like structure of graphs

convex expansion in graphs

s(t)= average fraction of nodes in S after t expansion steps s(t)=(t+1)/n in convex & $s(t)\gg (t+1)/n$ in non-convex graphs

s(t) quantifies (locally) **tree-like/clique-like** structure of graphs

convex expansion in networks

convex infrastructure and collaborations & non-convex food web

random graphs fail to reproduce convexity in empirical **networks** random graphs **convex** for $< \mathcal{O}(\ln n)$ & **non-convex** for $> \mathcal{O}(\ln^2 n)$ core-periphery networks have **convex** periphery & **non-convex** c-core

global measure c-convexity

$$X_c = 1 - \sum_{t=1}^{n-1} \sqrt[c]{\max(\Delta s(t) - 1/n, 0)}$$
 $X_c \ge X_c^{\mathrm{RW}} \ge X_c^{\mathrm{ER}}$

 X_c highlights tree-like/clique-like networks (cliques connected tree-like)

	X_1	X_1^{RW}	X_1^{ER}	X _{1.1}	$X_{1.1}^{\mathrm{RW}}$	$X_{1.1}^{\mathrm{ER}}$
Western US power grid*	0.95	0.32	0.24	0.91	0.10	0.01
European highways*	0.66	0.23	0.27	0.44	-0.02	0.06
Networks coauthorships	0.91	0.09	0.06	0.83	-0.05	-0.09
Oregon Internet map	0.68	0.36	0.06	0.53	0.20	-0.09
Caenorhabditis elegans	0.57	0.54	0.07	0.43	0.40	-0.13
US airports connections	0.43	0.24	0.00	0.30	0.16	-0.07
Scientometrics citations	0.24	0.16	0.02	0.04	0.00	-0.13
US election weblogs	0.17	0.12	0.00	0.06	0.04	-0.08
Little Rock food web	0.03	0.03	0.02	-0.06	-0.02	-0.02

 X_c measures **global** & **regional** (periphery) convexity in networks

local measure of convexity

$$L_c = 1 + \max\{ t \mid s(t) < (t+c+1)/n \}$$
 $L_1 \le L_1^{\mathrm{ER}} pprox \ln n / \ln \langle k \rangle$

L_c highlights locally tree-like/clique-like networks & random graphs

	L_t	L_t^{ER}	L_1	$L_1^{ m ER}$	$\ln n / \ln \langle k \rangle$
Western US power grid	14	9	6	9	8.66
European highways	16	7	7	7	7.54
Networks coauthorships	17	4	7	4	3.77
Oregon Internet map	3	4	3	4	4.40
Caenorhabditis elegans	2	5	2	5	5.79
US airports connections	2	3	2	3	2.38
Scientometrics citations	3	4	3	4	4.30
US election weblogs	2	2	2	2	2.15
Little Rock food web	2	2	2	2	1.59

 L_c measures **local** & **absolute** (tree/clique) convexity in networks

convexity in graphs & networks

c-convexity \neq standard measures & c-core \neq *k*-cores robustness, navigation, optimization, abstraction, comparison etc.

to be continued...

arXiv:1608.03402v3

Marc & Šubelj (2017) Convexity in complex networks, Network Science, pp. 27

Tilen Marc University of Ljubljana tilen.marc@imfm.si http://www.imfm.si Lovro Šubelj University of Ljubljana lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si

convex skeletons of networks

Lovro Šubelj University of Ljubljana

University of Ljubljana Faculty of Computer and Information Science

COSTNET '17

convexity under randomization

$$Xs = s - \sum_{t=1}^{sn-1} \sqrt[c]{\max(s\Delta s(t) - 1/n, 0)}$$
 $s = \text{fraction of nodes in LCC}$

Xs under degree-preserving/full randomization by edge rewiring

Xs very **sensitive** to **random perturbations** of network structure

convex skeletons of networks

convex skeleton = largest high-Xs subnetwork (every S is convex)

spanning tree & convex skeleton of network scientists coauthorships

convex skeleton is tree of cliques extracted by targeted edge removal

statistics of convex skeletons

$$\langle C \rangle = \frac{1}{n} \sum_{i} \frac{2t_{i}}{k_{i}(k_{i}-1)} \qquad \langle \sigma \rangle = \frac{2}{n(n-1)} \sum_{i < j} \sigma_{ij} \qquad Xs = \dots$$

statistics of convex skeletons & spanning trees of networks

	clustering $\langle C \rangle$		geo	geodesics $\langle \sigma \rangle$			convexity Xs		
	N	CS	ST	N	CS	ST	N	CS	ST
Jazz musicians	0.62	0.81	0.00	9.71	1.97	1.00	0.12	0.84	1.00
Network scientists	0.74	0.75	0.00	2.66	1.47	1.00	0.85	0.95	1.00
Computer scientists	0.48	0.54	0.00	4.08	1.42	1.00	0.64	0.95	1.00
Plasmodium falciparum	0.02	0.07	0.00	3.71	1.77	1.00	0.43	0.95	1.00
Saccharomyces cerevisiae	0.07	0.10	0.00	2.58	1.19	1.00	0.68	0.88	1.00
Caenorhabditis elegans	0.06	0.12	0.00	6.79	3.03	1.00	0.56	0.85	1.00
AS (January 1, 1998)	0.18	0.21	0.00	3.87	2.32	1.00	0.66	0.91	1.00
AS (January 1, 1999)	0.18	0.27	0.00	3.54	2.05	1.00	0.49	0.95	1.00
AS (January 1, 2000)	0.20	0.25	0.00	4.81	3.07	1.00	0.59	0.90	1.00
Little Rock Lake	0.32	0.69	0.00	22.13	4.32	1.00	0.02	0.82	1.00
Florida Bay (wet)	0.33	0.79	0.00	9.17	1.37	1.00	0.03	0.92	1.00
Florida Bay (dry)	0.33	0.82	0.00	9.37	1.65	1.00	0.03	0.93	1.00

convex skeleton is generalization of spanning tree retaining clustering

distributions of convex skeletons

distributions of convex skeletons & spanning trees of networks

convex skeletons retain distributions in contrast to spanning trees

convex skeletons of coauthorships

convex skeleton \sim network abstraction technique

convex skeleton of Slovenian computer scientists coauthorships

computer theory (\spadesuit) , information systems (\blacksquare) , intelligent systems (\blacktriangle) , programming technologies (\lozenge) & other (\bullet)

network backbones of coauthorships

convex skeleton ≫ high-betweenness & high-salience backbones properties of backbones of Slovenian computer scientists coauthorships

convex skeletons enhance properties in contrast to other backbones

convex skeletons of networks

convex skeleton ≫ backbones & **c-centrality** ≠ centralities abstraction, sampling, visualization, modeling, dynamics etc.

thank you!

arXiv:1709.00255v2

Šubelj (2017) Convex skeletons of complex networks, pp. 19

Lovro Šubelj University of Ljubljana

lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si