Spatial Autocorrelation of Areal Data

Positive spatial autocorrelation

- high values
 surrounded by nearby high values
- intermediate values surrounded by nearby intermediate values
- low values surrounded by nearby low values

} 0

2002 population

density

Negative spatial autocorrelation

- high values surrounded by nearby low values
- intermediate values surrounded by nearby intermediate values
- low values surrounded by

Source: Ron Briggs of UT Dallas

competition for space

Grocery store density

Spatial Weight Matrix

- Core concept in statistical analysis of areal data
- Two steps involved:
 - define which relationships between observations are to be given a nonzero weight, i.e., define spatial neighbors
 - assign weights to the neighbors

Making the neighbors and weights is not easy as

it seems to be

– Which states are near Texas?

Spatial Neighbors

Contiguity-based neighbors

- Zone i and j are neighbors if zone i is contiguity or adjacent to zone j
- But what constitutes contiguity?

Distance-based neighbors

- Zone i and j are neighbors if the distance between them are less than the threshold distance
- But what distance do we use?

Contiguity-based Spatial Neighbors

- Sharing a border or boundary
 - Rook: sharing a border
 - Queen: sharing a border <u>or</u> a point

Which use?

Example

Fig. 9.3. (a) Queen-style census tract contiguities, Syracuse; (b) Rook-style contiguity differences shown as thicker lines

Source: Bivand and Pebesma and Gomez-Rubio

Higher-Order Contiguity

Distance-based Neighbors

- How to measure distance between polygons?
- Distance metrics
 - 2D Cartesian distance (projected data)
 - 3D spherical distance/great-circle distance (lat/long data)
 - Haversine formula

```
Haversine a = \sin^2(\Delta \phi/2) + \cos(\phi_1).\cos(\phi_2).\sin^2(\Delta \lambda/2)
formula: c = 2.a \tan 2(\sqrt{a}, \sqrt{(1-a)})
d = R.c
```

Distance-based Neighbors

• k-nearest neighbors

Fig. 9.5. (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

Source: Bivand and Pebesma and Gomez-Rubio

Distance-based Neighbors

thresh-hold distance (buffer)

Fig. 9.6. (a) Neighbours within 1,158 m; (b) neighbours within 1,545 m; (c) neighbours within 2,317 m

Source: Bivand and Pebesma and Gomez-Rubio

A Simple Example for Rook case

- Matrix contains a:
 - 1 if share a border
 - 0 if do not share a border

Style of Spatial Weight Matrix

- Row
 - a weight of unity for each neighbor relationship
- Row standardization
 - Symmetry not guaranteed
 - can be interpreted as allowing the calculation of average values across neighbors
- General spatial weights based on distances

Row vs. Row standardization

Divide each number by the **row sum**

Total number of neighbors
--some have more than others

	A	В	С	D	E	F	Row Sum
Α	0	1	0	1	0	0	2
В	1	0	1	0	1	0	3
С	0	1	0	0	0	1	2
D	1	0	0	0	1	0	2
Ε	0	1	0	1	0	1	3
F	0	0	1	0	1	0	2

Row standardized --usually use this

	A	В	С	D	E	F	Row Sum
Α	0.0	0.5	0.0	0.5	0.0	0.0	1
В	0.3	0.0	0.3	0.0	0.3	0.0	1
С	0.0	0.5	0.0	0.0	0.0	0.5	1
D	0.5	0.0	0.0	0.0	0.5	0.0	1
E	0.0	0.3	0.0	0.3	0.0	0.3	1
F	0.0	0.0	0.5	0.0	0.5	0.0	1

General Spatial Weights Based on Distance

- Decay functions of distance
 - Most common choice is the inverse (reciprocal) of the distance between locations i and j $(w_{ij} = 1/d_{ij})$
 - Other functions also used
 - inverse of <u>squared</u> distance $(w_{ij} = 1/d_{ij}^2)$, or
 - negative exponential $(w_{ij} = e^{-d} \ or \ w_{ij} = e^{-d^2})$

Measure of Spatial Autocorrelation

Global Measures and Local Measures

Global Measures

- A single value which applies to the entire data set
 - The same pattern or process occurs over the entire geographic area
 - An average for the entire area

Local Measures

- A value calculated for <u>each</u> observation unit
 - Different patterns or processes may occur in different parts of the region
 - A unique number for each location
- Global measures usually can be decomposed into a combination of local measures

Global Measures and Local Measures

- Global Measures
 - Join Count
 - Moran's I, Getis-Ord's G
- Local Measures
 - Local Moran's I, Getis-Ord's G

Formula for Moran's I

$$I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{x}) (x_j - \overline{x})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}) \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Where:

 $\frac{N}{\overline{X}}$ is the number of observations (points or polygons) is the mean of the variable X_i is the variable value at a particular location X_i is the variable value at another location W_{ij} is a weight indexing location of i relative to j

Moran's I

• Expectation of Moran's I under no spatial autocorrelation

$$E(I) = -1/(N-1)$$

- Variance of Moran's is complex and exact equation is given at textbook d&G&L
- [-1, 1]

Moran's I and Correlation Coefficient

Correlation Coefficient [-1, 1]

- Relationship between <u>two</u> different variables

Moran's I [-1, 1]

- Spatial autocorrelation and often involves <u>one</u> (spatially indexed) variable only
- Correlation between observations of a spatial variable at location X and "spatial lag" of X formed by averaging all the observation at neighbors of X

$$\frac{\sum_{i=1}^{n} 1(y_i - \overline{y})(x_i - \overline{x})/n}{\sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2} \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

Correlation Coefficient

Note the similarity of the numerator (top) to the measures of spatial association discussed earlier if we view Yi as being the Xi for the neighboring polygon

(see next slide)

$$\frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(X_{i} - \overline{X})(X_{j} - \overline{X})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}) \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

Spatial auto-correlation

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_{i} - \overline{x})(x_{j} - \overline{x}) / \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}}$$

Source: Ron Briggs of UT Dallas

$$\frac{\sum_{i=1}^{n} 1(y_i - \overline{y})(x_i - \overline{x})/n}{\sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2} \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

Correlation Coefficient

Spatial weights

Yi is the Xi for the neighboring polygon

$$\frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{x}) (x_j - \overline{x})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}) \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Moran's I

Source: Ron Briggs of UT Dallas

Statistical Significance Tests for Moran's I

• Based on the normal frequency distribution with

$$Z = \frac{I - E(I)}{S_{error(I)}}$$

Where: I is the calculated value for Moran's I from the sample

E(I) is the expected value if random

S is the standard error

- Statistical significance test
 - Monte Carlo test, as we did for spatial pattern analysis
 - Permutation test
 - Non-parametric
 - Data-driven, no assumption of the data
 - Implemented in GeoDa

Moran Scatter Plots

We can draw a scatter diagram between these two variables (in standardized form): **X** and **lag-X** (or W_X)

The <u>slope</u> of this *regression line* is Moran's I

Moran Scatter Plots

Moran Scatterplot: Example

Moran's I for rate-based data

- Moran's I is often calculated for rates, such as crime rates (e.g. number of crimes per 1,000 population) or infant mortality rates (e.g. number of deaths per 1,000 births)
- An adjustment should be made, especially if the denominator in the rate (population or number of births) varies greatly (as it usually does)
- Adjustment is know as the *EB adjust*ment:
 - see Assuncao-Reis Empirical Bayes Standardization
 Statistics in Medicine, 1999
- GeoDA software includes an option for this adjustment

Hot Spots and Cold Spots

- What is a *hot spot*?
 - A place where <u>high</u> values
 cluster together
- What is a *cold spot*?
 - A place where <u>low</u> values
 cluster together

- Moran's I and Geary's C cannot distinguish them
 - They only indicate <u>clustering</u>
 - Cannot tell if these are hot spots, cold spots, or both

Getis-Ord General/Global G-Statistic

- The G statistic distinguishes between hot spots and cold spots. It identifies *spatial concentrations*.
 - G is relatively <u>large</u> if <u>high</u> values cluster together
 - G is relatively <u>low</u> if <u>low</u> values cluster together
- The General G statistic is interpreted relative to its expected value
 - The value for which there is no spatial association
 - G > (larger than) expected value → potential "hot spots"
 - G < (smaller than) expected value → potential "cold spots"
- A Z test statistic is used to test if the difference is statistically significant
- Calculation of G based on a *neighborhood distance* within which cluster is expected to occur

Getis, A. and Ord, J.K. (1992) *The analysis of spatial association by use of distance statistics* Geographical Analysis, 24(3) 189-206

Comments on General G

- General G will <u>not</u> show <u>negative</u> spatial autocorrelation
- Should only be calculated for ratio scale data
 - data with a "natural" zero such as crime rates, birth rates
- Although it was defined using a contiguity (0,1) weights matrix, any type of spatial weights matrix can be used
 - ArcGIS gives multiple options
- There are two global versions: G and G*
 - G does <u>not</u> include the value of X_i itself, only "neighborhood" values
 - G* includes X_i as well as "neighborhood" values
- Significance test on General G and G* follows the similar procedure as used for Moran's I

Local Measures of Spatial Autocorrelation

Local Indicators of Spatial Association (LISA)

- Local versions of Moran's I, Geary's C, and the Getis-Ord G statistic
- Moran's I is most commonly used, and the local version is often called Anselin's LISA, or just LISA

See:

Luc Anselin 1995 Local Indicators of Spatial Association-LISA Geographical Analysis 27: 93-115

Local Indicators of Spatial Association (LISA)

- The statistic is calculated for **each** areal unit in the data
- For each polygon, the index is calculated <u>based on neighboring</u> <u>polygons with which it shares a border</u>
- A measure is available for <u>each</u> polygon, these can be mapped to indicate how <u>spatial autocorrelation varies</u> over the study region
- Each index has an associated test statistic, we can also map which of the polygons has a <u>statistically significant relationship</u> with its neighbors, and show <u>type</u> of relationship

Example:

Calculating Anselin's LISA

• The local Moran statistic for areal unit i is:

$$I_i = z_i \sum_j w_{ij} z_j$$

where z_i is the original variable x_i in "standardized form"

$$z_i = \frac{x_i - x}{SD_x}$$

or it can be in "deviation form"

$$x_i - \overline{x}$$

and w_{ij} is the spatial weight

The summation \sum_{j}^{∞} is across each <u>row</u> i of the spatial weights matrix.

An example follows

Contiguit	y Matrix	1	2	3	4	5	6	7			
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum	Neighbors	Illiteracy
Anhui	1	0	1	1	1	1	1	0	5	65432	14.49
Zhejiang	2	1	0	1	1	0	0	1	4	7 4 3 1	9.36
Jiangxi	3	1	1	0	0	0	1	0	3	621	6.49
Jiangsu	4	1	1	0	0	0	0	1	3	7 2 1	8.05
Henan	5	1	0	0	0	0	1	0	2	6 1	7.36
Hubei	6	1	0	1	0	1	0	0	3	1 3 5	7.69
Shanghai	7	0	1	0	1	0	0	0	2	2 4	3.97

Contiguity Matrix and Row Standardized Spatial Weights Matrix

Contiguity	Matrix Code	1 Anhui	2 Zhejiang	3 Jiangxi	4 Jiangsu	5 Henan	6 Hubei	7 Shanghai	Sum
Anhui	1	0	1	1	1	1	1	0	5
Zhejiang	2	1	0	1	1	0	0	1	4
Jiangxi	3	1	1	0	0	0	1	0	3
Jiangsu	4	1	1	0	0	0	0	\bigcirc	3
Henan	5	1	0	0	0	0	1	0	2
Hubei	6	1	0	1	0	1	0	0	3
Shanghai	7	0	1	0	1	0	0	0	₂ (1/3)
Row Stand	dardized : Code	Spatial Weigh Anhui	its Matrix Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00	1
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25	1
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00	1
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33	1
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00	1
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00	1
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00	1

Source: Ron Briggs of UT Dallas

Calculating standardized (z) scores

Deviations from Mean	and z scores				$X_i - X$
	X	X-Xmean	X-Mean2	$z \sim Z_i$	$=\frac{1}{SD_{x}}$
Anhui	14.49	6.29	39.55	2.101	<i>3v</i>
Zhejiang	9.36	1.16	1.34	0.387	
Jiangxi	6.49	(1.71)	2.93	(0.572)	
Jiangsu	8.05	(0.15)	0.02	(0.051)	
Henan	7.36	(0.84)	0.71	(0.281)	
Hubei	7.69	(0.51)	0.26	(0.171)	
Shanghai	3.97	(4.23)	17.90	(1.414)	
Mean and Standard De	viation				
Sum	57.41	0.00	62.71		
Mean	57.41	/ 7 =	8.20		
Variance	62.71	/ 7 =	8.96		
SD	√ 8.96	=	2.99		20

Source: Ron Briggs of UT Dallas

Row Standardized Spatial Weights Matrix

Calculating LISA

	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00

Wij

Z-Scores for row Province and its potential neighbors

		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
	Zi							
Anhui	2.101	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Zhejiang	0.387	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangxi	(0.572)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangsu	(0.051)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Henan	(0.281)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Hubei	(0.171)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Shanghai	(1.414)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)

	$I_i = z_i \sum_{i} w_{ij} z_j$
· 'i	

Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication)

		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai -
	Zi							
Anhui	2.101	-	0.077	(0.114)	(0.010)	(0.056)	(0.034)	-
Zhejiang	0.387	0.525	-	(0.143)	(0.013)	-	-	(0.353)
Jiangxi	(0.572)	0.700	0.129	-	-	-	(0.057)	-
Jiangsu	(0.051)	0.700	0.129	-	-	-	-	(0.471)
Henan	(0.281)	1.050	-	-	-	-	(0.085)	-
Hubei	(0.171)	0.700	-	(0.191)	-	(0.094)	-	-
Shanghai	(1.414)	_	0.194	-	(0.025)	-	-	-

LISA ımWijZj Lisa from 0.000 GeoDA (0.137)-0.289 -0.248 0.006 0.016 0.005 0.772 -0.442 -0.379 0.358 -0.018 -0.016 0.965 -0.271 -0.233 0.416 -0.071 -0.061 -0.238 0.168 -0.204

Local Getis-Ord G and G* Statistics

Local Getis-Ord G

- It is the proportion of all x values in the study area accounted for by the neighbors of location *I*
- G* will include the self value

$$G_i(d) = \frac{\sum_{j} w_{ij} x_j}{\sum_{j} x_j}$$

G will be <u>high</u> where <u>high</u> values cluster G will be <u>low</u> where <u>low</u> values cluster Interpreted relative to expected value if randomly distributed.

$$E(G_i(d)) = \frac{\sum_{j} w_{ij}(d)}{n-1}$$

Bivariate LISA

- Moran's I is the correlation between X and Lag-X--the <u>same</u> variable but in nearby areas
 - Univariate Moran's I
- Bivariate Moran's I is a correlation between X and a different variable in nearby areas.

Moran Scatter Plot for GDI vs AL

Moran's I: 0.447162

Bivariate LISA and the Correlation Coefficie

- Correlation Coefficient is the relationship between two <u>different</u> variables in the <u>same</u> area
- Bivariate LISA is a correlation between two <u>different</u> variables in an area and in <u>nearby</u> areas.

Bivariate Moran Scatter Plot

Summary

- Spatial autocorrelation of areal data
- Spatial weight matrix
- Measures of spatial autocorrelation
- Global Measure
 - Moran's I/General G and G*
- Local
 - LISA: Moran's I/General G and G*
 - Bivariate LISA
 - Significance test

• End of this topic