OPTIMISATION NUMÉRIQUE

Département de Mathématiques Master Mathématiques

Optimisation Numérique

1 / 23

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE I

OPTIMALITÉ ET POINTS EXTRÊMES

THÉORÈME

Soit $X = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$. Si $X \ne \emptyset$ et y_1, \dots, y_p sont ses sommets. alors

$$X = conv(ext X) + X_{\infty},$$

où conv(ext X) est l'enveloppe convexe des points extrêmes de X et $X_{\infty} = \{d \in \mathbb{R}^n \mid x + td \in X, \forall t \geq 0, x \in X\}$ le cône asymptotique de X.

SOMMAIRE

- **1** OPTIMALITÉ ET POINTS EXTRÊMES
- Conditions d'Optimalité

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE II

OPTIMALITÉ ET POINTS EXTRÊMES

PREUVE

Soit $x \in X$ qui n'est pas un sommet et donc n'est pas une solution de base réalisable. Soit $J = \{j \in I \mid x_j > 0\}$. D'après ce qui précède, $J \neq \emptyset$ et la famille $(a_j)_{j \in J}$, où a_j est une colonne de A, est liée. Donc

Optimisation Numérique

$$\exists d_j \in \mathbb{R}, \, j \in J, \, \, ext{non tous nuls tels que} \, \sum_{j \in J} d_j a_j = 0.$$

En posant $d_j = 0$ lorsque $j \notin J$ on peut écrire Ad = 0 où $d = (d_1, d_2, \dots, d_n)^{\top} \in \mathbb{R}^n$. Il existe $t_1 > 0$ et $t_2 > 0$ tels que

$$x + t_1 d \ge 0$$
 et $x - t_2 d \ge 0$.

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE III

OPTIMALITÉ ET POINTS EXTRÊMES

On choisit $t_1 > 0$ et $t_2 > 0$ pour que les points y et z définis par leurs composantes yi et zi respectivement par

$$y_j = x_j + t_1 d_j \text{ si } j \in J \text{ et } y_j = 0 \text{ si } j \notin J,$$

$$z_i = x_i - t_2 d_i$$
 si $j \in J$ et $z_i = 0$ si $j \notin J$,

appartiennent à X. Puisque $A(x + t_1 d) = b$ et $A(x - t_2 d) = b$ pour tout t_1 et t_2 , il faut et il suffit donc que $x + t_1 d \ge 0$ et $x - t_2 d \ge 0$; c'est à dire

$$t_1 \leq -rac{x_j}{d_j}$$
 pour les j tels que $d_j < 0$, $t_2 \leq rac{x_j}{d_j}$ pour les j tels que $d_j > 0$.

Optimisation Numérique

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE V

OPTIMALITÉ ET POINTS EXTRÊMES

Si X n'est pas borné. Si t_1 ou t_2 ne peut pas être défini, alors $d \ge 0$ ou $d \le 0$ et $d \ne 0$. C'est à dire $d \in X_{\infty}$ et $d \ne 0$.

Supposons que d > 0. Donc il existe r > 0 tel que v := x - td > 0 et a une composante nulle. On a alors x = y + td et y a une composante nulle de plus que x. Si y est un sommet, on a le résultat. Sinon on procède de la même façon avec y jusqu'à obtenir un sommet de X plus une combinaison linéaire de directions de X_{∞} (qui est une direction de X_{∞}).

PROGRAMMATION LINÉAIRE IV

OPTIMALITÉ ET POINTS EXTRÊMES

Soit

$$t_1 = \min_{j \in J} \Big\{ - rac{x_j}{d_j} \mid d_j < 0 \Big\} \ ext{et} \ t_2 = \min_{j \in J} \Big\{ rac{x_j}{d_j} \mid d_j > 0 \Big\}.$$

Si X est borné, alors t_1 et t_2 sont bien définis (d va admettre une composante strictement positive et une autre strictement négative). On obtient donc

$$x = \alpha y + (1 - \alpha)z$$
 avec $\alpha = \frac{t_2}{t_1 + t_2}$.

A remarquer que y et z ont une composante nulle de plus que x. Si y et z sont des sommets, c'est le résultat voulu. Sinon on procède de la même façon pour y et z si l'un d'eux n'est pas un sommet. Le prcessus est fini puisque x a des composantes non nulles.

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE I

OPTIMALITÉ ET POINTS EXTRÊMES

THÉORÈME

Soit $X = \{x \in \mathbb{R}^n \mid Ax = b, x > 0\}$ un polyèdre et z une application linéaire. Si l'optimum de z est fini, alors il est atteint en un point extrême.

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE I

OPTIMALITÉ ET POINTS EXTRÊMES

PREUVE

Soit y_1, \ldots, y_p les sommets de X et soit $x \in X$ une solution optimale. Alors

$$\exists d \in \mathbb{R}^n, \ d \geq 0, \ Ad = 0, \ \exists \alpha_i \geq 0, \ \sum_{i=1}^p \alpha_i = 1 \ \textit{et} \ x = \sum_{i=1}^p \alpha_i y_i + d.$$

On a

$$c^{\mathsf{T}}x = \sum_{i=1}^{p} \alpha_i c^{\mathsf{T}} y_i + c^{\mathsf{T}} d.$$

Optimisation Numérique

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE III

OPTIMALITÉ ET POINTS EXTRÊMES

Soit
$$c^{\top}y_{i_0} = \min_{0 \leq i \leq p} c^{\top}y_i$$
. Alors

$$c^{\top}x = \sum_{i=1}^{p} \alpha_i c^{\top}y_i \ge c^{\top}y_{i_0} \sum_{i=1}^{p} \alpha_i = c^{\top}y_{i_0}.$$

D'où $c^{\top}x = c^{\top}y_{i_0}$ et y_{i_0} est un sommet minimum de z sur X.

PROGRAMMATION LINÉAIRE II

OPTIMALITÉ ET POINTS EXTRÊMES

On va montrer que $c^{\top}d = 0$. On a $x + td \in X$ pour tout $t \ge 0$ puisque d > 0 et Ad = 0. D'où si $c^{\top}d < 0$ alors $c^{\top}x + tc^{\top}d \longrightarrow -\infty$ quand $t \longrightarrow +\infty$ contredisant l'hypothèse. Si $c^{\top}d > 0$ alors

$$c^{\top}x = \sum_{i=1}^{p} \alpha_i c^{\top}y_i + c^{\top}d > \sum_{i=1}^{p} \alpha_i c^{\top}y_i = c^{\top}y \text{ où } y = \sum_{i=1}^{p} \alpha_i y_i.$$

Optimisation Numérique

Ce qui contredit l'optimalité de x. Donc $c^{\top}d = 0$.

<ロ > < 回 > < 回 > < 巨 > く 巨 > 三 の へ ()

Optimalité et Points Extrêmes

PROGRAMMATION LINÉAIRE I

OPTIMALITÉ ET POINTS EXTRÊMES

REMARQUE

Si l'optimum de z est atteint en plusieurs sommets, il est atteint en tout point combinaison convexe de ces points.

PROGRAMMATION LINÉAIRE I

CONDITIONS D'OPTIMALITÉ

Soit B une base, x_B , x_N , c_B et c_N les vecteurs définis précédemment. On définit le vecteur $\pi = (\pi_1, \dots, \pi_m)$, le vecteur des multiplicateurs du simplexe et le vecteur \bar{c}_N , le vecteur des coûts réduits, par

$$\pi = c_B^{\top} B^{-1}$$
 et $\bar{c}_N = c_N^{\top} - \pi N$.

THÉORÈME

Soit B une base réalisable non dégénérée (i.e. $B^{-1}b$ n'a pas de composantes nulles). Alors B est optimale, si et seulement si, $\bar{c}_N \ge 0$.

◆□▶◆□▶◆壹▶◆壹▶●

Optimisation Numérique

13 / 23

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE III

CONDITIONS D'OPTIMALITÉ

Puisque $x \in X$ alors $x_N \ge 0$. Et puisque $\bar{c}_N \ge 0$, alors

$$z(x) \geq c_B^{\top} B^{-1} b$$
.

Soit
$$x^* = \begin{pmatrix} x_B \\ 0_{\mathbb{R}^{n-m}} \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0_{\mathbb{R}^{n-m}} \end{pmatrix}$$
. Alors

$$z(x^*) = c_B^\top x_B + c_N^\top x_N = c_B^\top B^{-1} b \le z(x) \quad \forall x \in X$$

et x^* est solution de base optimale.

PROGRAMMATION LINÉAIRE II

CONDITIONS D'OPTIMALITÉ

PREUVE

Supposons que $\bar{c}_N \ge 0$ et montrons que B est une base optimale. Soit $x \in X$. Donc Ax = b et $x \ge 0$. En écrivant $Ax = Bx_B + Nx_N$ on obtient

$$x_B = B^{-1}b - B^{-1}Nx_N$$
.

On a

$$z(x) = c_B^{\top} x_B + c_N^{\top} x_N = c_B^{\top} B^{-1} b - c_B^{\top} B^{-1} N x_N + c_N^{\top} x_N = c_B^{\top} B^{-1} b + (c_N^{\top} - c_B^{\top} B^{-1} N) x_N = c_B^{\top} B^{-1} b + (c_N^{\top} - \pi N) x_N = c_B^{\top} B^{-1} b + \bar{c}_N x_N.$$

Optimisation Numérique

14/2

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE IV

CONDITIONS D'OPTIMALITÉ

Supposons maintenant que B est optimale et montrons que $\bar{c}_N \geq 0$. Par l'absurde supposons qu'il existe une composante \bar{c}_i de \bar{c}_N telle que $\bar{c}_i < 0$. Soit x^* une solution de base optimale associée à B. C'est à dire que $z(x) \geq z(x^*)$ pour tout $x \in X$ et $x^* = \begin{pmatrix} B^{-1}b \\ 0_{\mathbb{R}^{n-m}} \end{pmatrix}$. On va montrer qu'il existe $x \in X$ tel que $z(x) < z(x^*)$. Soit $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$, avec $x_N = \theta e_i$ où e_i est un vecteur de même dimension que x_N dont toutes les composantes sont nulles sauf la ième qui vaut 1. Choisissons θ de telle sorte que $x \in X$; c'est à dire Ax = b et $x \geq 0$. Il faut donc que $Bx_B + Nx_N = b$, $x_B \geq 0$ et $x_N \geq 0$.

PROGRAMMATION LINÉAIRE V

CONDITIONS D'OPTIMALITÉ

On a

$$X_B = B^{-1}b - B^{-1}NX_N = B^{-1}b - \theta B^{-1}Ne_i = B^{-1}b - \theta B^{-1}a_i$$

où ai est la ième colonne de N. On doit donc avoir

$$B^{-1}b - \theta B^{-1}a_i \ge 0 \text{ et } \theta \ge 0.$$

Puisque B est non dégénérée, $B^{-1}b > 0$. Il existe donc $\theta > 0$ tel que $B^{-1}b - \theta B^{-1}a_i > 0.$

Optimisation Numérique

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE VII

CONDITIONS D'OPTIMALITÉ

COROLLAIRE

Soit B_0 une base réalisable et x^0 la solution de base correspondante. S'il existe un indice i tel que $\bar{c}_i < 0$, alors

- soit l'optimum de z c'est $-\infty$.
- \circ soit il existe une autre base B_1 et une autre solution de base x^1 tel que $z(x^1) < z(x^0)$.

PROGRAMMATION LINÉAIRE VI

CONDITIONS D'OPTIMALITÉ

Pour x défini précédemment, on a

$$z(x) = c_B^{\top} x_B + c_N^{\top} x_N = c_B^{\top} B^{-1} b - c_B^{\top} B^{-1} N x_N + c_N^{\top} x_N = c_B^{\top} B^{-1} b + (c_N^{\top} - c_B^{\top} B^{-1} N) x_N = c_B^{\top} B^{-1} b + \theta (c_N^{\top} - \pi N) e_i = c_B^{\top} B^{-1} b + \bar{c}_N e_i = z(x^*) + \theta \bar{c}_i < z(x^*).$$

Ce qui est absurde. Par suite $\bar{c}_N \geq 0$.

Optimisation Numérique

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE VIII

CONDITIONS D'OPTIMALITÉ

PREUVE

Soit
$$x^0 = \begin{pmatrix} B_0^{-1}b \\ 0_{n-m} \end{pmatrix}$$
 la solution de base associée à B_0 et i tel que

$$ar{c}_i < 0$$
. Soit $x = \begin{pmatrix} x_{B_0} \\ x_{N_0} \end{pmatrix}$, avec $x_{N_0} = \theta e_i$ et $\theta > 0$. On a

$$Ax = b \Longrightarrow x_{B_0} = B_0^{-1}b - B_0^{-1}N_0x_{N_0} = B_0^{-1}b - \theta B_0^{-1}N_0e_i$$

$$\begin{split} z(x) &= c_{B_0}^\top x_{B_0} + c_{N_0}^\top x_{N_0} = c_{B_0}^\top B_0^{-1} b - c_{B_0}^\top B_0^{-1} N_0 x_{N_0} + c_{N_0}^\top x_{N_0} \\ &= c_{B_0}^\top B_0^{-1} b + (c_{N_0}^\top - c_{B_0}^\top B_0^{-1} N_0) x_{N_0} \\ &= c_{B_0}^\top B_0^{-1} b + \theta (c_{N_0}^\top - \pi N_0) e_i \\ &= c_{B_0}^\top B_0^{-1} b + \bar{c}_{N_0} e_i = z(x^0) + \theta \bar{c}_i. \end{split}$$

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE IX

CONDITIONS D'OPTIMALITÉ

Deux cas se présentent :

- toutes les composantes de $B_0^{-1}N_0e_i=B_0^{-1}a_i$ sont négatives ou nulles. Alors $x_{B_0}\geq 0$ pour tout $\theta\geq 0$. Puisque $z(x)=z(x^0)+\theta\bar{c}_i$ et $\bar{c}_i<0$ alors le minimum de z c'est $-\infty$,
- ② une composante de $B_0^{-1}a_i > 0$. Soit $x_{B_0}^j$ les composantes de x_{B_0} , \bar{b}_j les composantes de $B_0^{-1}b$ et \bar{a}_{ij} les composantes de $B_0^{-1}a_i$, pour j = 1, ..., m. Alors pour tout j = 1, ..., m,

$$x_{B_0}^j \geq 0 \iff \bar{b}_j - \theta \bar{a}_{ij} \geq 0.$$

Optimisation Numérique

21 / 23

Conditions d'Optimalité

PROGRAMMATION LINÉAIRE XI

CONDITIONS D'OPTIMALITÉ

REMARQUE

- Si deux indices vérifient $\theta = \bar{b}_{j_0}/\bar{a}_{ij_0} = \bar{b}_{j_1}/\bar{a}_{ij_1}$, alors la base B_1 va être dégénérée puisque $x_{j_1} = 0$, avec j_1 un indice de base, et donc B_1^{-1} b a au moins une composante nulle.
- Si B_0 était dégénérée, alors on aura $\theta = 0$ et le changement de base de B_0 à B_1 ne fait pas varier z; $z(x^0) = z(x^1)$.
- **⑤** Le corollaire précédent montre que si $\inf_{x \in X} z(x) > -\infty$, alors en partant d'une base B_0 réalisable et de la solution de base correspondante, on peut construire, en l'absence de dégénérescence, une suite de bases réalisables dont les solutions de bases correspondantes font diminuer z strictement. Après un nombre fini d'étapes on trouvera l'optimum.

Optimisation Numérique

4□ > 4Ē > 4Ē > 4Ē > ₹ 900

PROGRAMMATION LINÉAIRE X

CONDITIONS D'OPTIMALITÉ

Il faut donc que $\theta \leq \min_{1 \leq j \leq m} \Big\{ \frac{\bar{b}_j}{\bar{a}_{ij}} \mid \bar{a}_{ij} > 0 \Big\}.$

Conditions d'Optimalité

Pour ces valeurs de $\theta > 0$, le point x défini précédemment est meilleur pour z. Le meilleur point étant pour $\theta = \min_{1 \le j \le m} \left\{ \frac{\bar{b}_j}{\bar{a}_{ij}} \mid \bar{a}_{ij} > 0 \right\}$. Si $\theta = \bar{b}_{j_0}/\bar{a}_{ij_0}$, alors la j_0 eme composante de x est nulle puisque $x_{j_0} = b_{j_0} - \theta \bar{a}_{ij_0} = 0$ alors que $x_i = \theta > 0$. Le point $x^1 = x$ est alors une solution de base réalisable associée à la base B_1 obtenue en remplaçant dans la base B_0 la colonne a_{j_0} par la colonne a_{j_0} . Et d'après ce qui précède, $z(x^1) = z(x^0) + \theta \bar{c}_i < z(x^0)$.

Optimisation Numérique

22 / 23