

Universidade Federal do Rio de Janeiro

Programa de Engenharia Química - PEQ/COPPE

COQ 875 - Química Quântica de Moléculas e Sólidos | 2025.2

Lista 04 - DFT

Prof. Elvis Soares

PEQ. COPPE UFRJ

Data de Entrega: 14/8/25

 Derivadas Funcionais: Um dos primeiros modelos de DFT foi o modelo de Thomas-Fermi-Weisacker que consistia em escrever o funcional de energia eletrônica como sendo a soma

$$E[\rho] = E_{\mathrm{TF}}[\rho] + E_{\mathrm{W}}[\rho] + E_{\mathrm{H}}[\rho] + E_{\mathrm{X}}^{(LDA)}[\rho] + \int V_{\mathrm{ext}}(\boldsymbol{r})\rho(\boldsymbol{r}) \, d\boldsymbol{r},$$

com o funcional de Thomas-Fermi definido como

$$E_{\mathrm{TF}}[
ho] = C \int
ho^{5/3}(m{r}) \; \mathrm{d}m{r},$$

o funcional de Weisacker definido como

$$E_{\mathrm{W}}[\rho] = \frac{1}{8} \int \frac{(\nabla \rho(\boldsymbol{r}))^2}{\rho(\boldsymbol{r})} d\boldsymbol{r},$$

o funcional de Hartree definido como

$$E_{\rm H}[\rho] = \frac{1}{2} \iint \frac{\rho(\boldsymbol{r})\rho(\boldsymbol{r}')}{|\boldsymbol{r}-\boldsymbol{r}'|} \; \mathrm{d}\boldsymbol{r} \mathrm{d}\boldsymbol{r}',$$

e o termo de troca LDA dado por

$$E_{\mathbf{X}}^{(LDA)}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int \rho^{4/3}(\boldsymbol{r}) \, d\boldsymbol{r}$$

- (a) Determine a derivada do funcional de Thomas-Fermi $E_{\mathrm{TF}}[\rho].$
- (b) Determine a derivada do funcional de Weisacker $E_{\rm W}[\rho]$.
- (c) Determine a derivada do funcional de Hartree $E_{\rm H}[\rho]$.
- (d) Determine a derivada do funcional de troca LDA $E_{\rm X}^{(LDA)}[\rho]$.

2. **PySCF:** Usando como base o notebook **PySCF_DFT.ipynb** e a geometria da molécula de benzeno como dada na Tabela 1. Utilize o conjunto de base *cc-pVTZ* o método *RKS* com o funcional *B3LYP* nos cálculos.

Átomo	x (Å)	y (Å)	z (Å)
\overline{C}	0.000000	0.000000	0.000000
Η	0.509893	0.163495	0.940289
\mathbf{C}	-1.278900	-0.546346	-0.012204
Н	-1.764073	-0.808035	0.918910
\mathbf{C}	-1.933987	-0.756325	-1.220925
Н	-2.928987	-1.181466	-1.230364
\mathbf{C}	-1.310184	-0.419949	-2.417567
Н	-1.819779	-0.583307	-3.358036
\mathbf{C}	-0.031285	0.126400	-2.405432
Н	0.454062	0.388157	-3.336442
\mathbf{C}	0.623728	0.336345	-1.196676
Н	1.618724	0.761488	-1.187281

Tabela 1: Posição dos átomos da molécula de Benzeno.

- (a) Determine a energia total da molécula no estado fundamental.
- (b) Determine as energias dos orbitais HOMO (Highest Occupied Molecular Orbital) e LUMO (Lowest Unnoncupied Molecular Orbital). Qual a diferença de energia entre eles? Qual seria o comprimento de onda da luz incidente para dar exatamente essa energia? Em qual faixa do espectro eletromagnético está esse comprimento de onda?
- (c) Faça figuras dos orbitais HOMO e LUMO do item anterior usando o programa VESTA.