Lecture 2 Orthogonal Vectors and Matrices

Fang Zhu

February 17, 2023

1 Prerequisite

Before giving the solutions, I would like to prove some basic conclusions about this lecture

Lemma 1.1. Given an non-singular matrix A, then A^{-1} is unique

Proof. Suppose that we have two inverse matrices C and B w.r.t A. By the definition of inverse.

$$B = BI = B(AC) = (BA)C = IC = C$$

П

and hence we can conclude that B = C.

Lemma 1.2. Given an non-singular matrix $A \in \mathbb{R}^{m \times m}$, its hermitian conjugate A^* is also non-singular.

Proof.

$$\boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^{-1} = \boldsymbol{I},$$

We can apply the hermitian conjugate to both sides of the equation above:

$$A^*(A^{-1})^* = (A^{-1})^*A^* = I$$

Hence we can get that A^* is non-singular.

Lemma 1.3. Give a non-singular matrix A and its hermitian conjugate A^* , we have

$$(\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^*$$

Proof. By lemma 1.2, A^* is non-singular and it's clear that the inverse is $(A^{-1})^*$. However, we can get that $(A^*)^{-1}$ is also the inverse of A^* by definition. Futher, by lemma 1.1, we have

$$(\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^*$$

which is exactly what we need to prove.

Lemma 1.4. Given two pure imaginary number di, bi, then

$$(1-di)(1-bi) \neq 0.$$

Proof. LHS equals

$$1 - bd - (b+d)i, \tag{*}$$

if $(\star) = 0$, then we have

$$1 - bd = 0$$
$$b + d = 0,$$

which means that

$$-b^2 = 1,$$

since $b \in \mathbb{R}$, the equation above cannot be true, and hence $(1-di)(1-bi) \neq 0$. \square

2 Solutions

2.1 Exercise 2.1

Proof. Without loss of generality, we assume that A is upper-triangular. By the *ex.* 1.3, we can conclude that A^{-1} is also upper-triangular. It is clear that $A^* = A^{-1}$ since A is unitary. Then A^* is also an upper-triangular matrix, which is

$$\mathbf{A}_{i,j}^{\star} = \bar{a}_{ji} = a_{ij} = 0, \quad (\forall i > j),$$

Hence, the matrix \boldsymbol{A} is diagonal. The same follows if \boldsymbol{A} is lower-triangular. \square

2.2 Exercise 2.3(a)

Let x be an eigenvector of matrix A w.r.t. the eigenvalue λ , then

$$Ax = \lambda x$$

multiplying both sides by \boldsymbol{x}^{\star} , we get that

$$x^* A x = \lambda x^* x = \lambda ||x||^2, \tag{\spadesuit}$$

then

$$\lambda = \frac{\boldsymbol{x}^{\star} \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{\boldsymbol{x}^{\star} \boldsymbol{A}^{\star} \boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{(\boldsymbol{x}^{\star} \boldsymbol{A} \boldsymbol{x})^{\star}}{\|\boldsymbol{x}\|^2} = \bar{\lambda},$$

which means that λ is real.

2.3 Exercise 2.3(b)

Let x_1, x_2 be two eigenvectors of the hermitian matrix A. Denote λ_k the eigenvalue w.r.t $x_k (k = 1, 2)$, where $\lambda_1 \neq \lambda_2$, then

$$\lambda_2 \mathbf{x}_1^{\star} \mathbf{x}_2 = \mathbf{x}_1^{\star} \mathbf{A} \mathbf{x}_2,$$
$$\lambda_1 \mathbf{x}_2^{\star} \mathbf{x}_1 = \mathbf{x}_2^{\star} \mathbf{A} \mathbf{x}_1.$$

Note that A is hermitian, we can get that

$$\lambda_2 x_1^{\star} x_2 = x_1^{\star} A x_2 = x_1^{\star} A^{\star} x_2 = (x_2^{\star} A x_1)^{\star} = \lambda_1^{\star} x_1^{\star} x_2,$$

then

$$(\lambda_2 - \lambda_1^{\star}) \boldsymbol{x}_1^{\star} \boldsymbol{x}_2 = 0 \Rightarrow \boldsymbol{x}_1^{\star} \boldsymbol{x}_2 = 0,$$

which is exactly what we need to prove.

2.4 Exercise 2.4

Let λ be an eigenvalue of A, and x be the eigenvector w.r.t λ , then we have $Ax = \lambda x$ and $||Ax||_2^2 = ||\lambda x||$, which is

$$x^*A^*Ax = x^*\|\lambda^*\lambda\|x.$$

Since \boldsymbol{A} is unitary, then

$$x^{\star}A^{\star}Ax = x^{\star}Ix = x^{\star}\|\lambda\|_{2}^{2}x.$$

Furthermore,

$$x_1^2 + x_2^2 + \dots + x_n^2 = ||\lambda||_2^2 (x_1^2 + x_2^2 + \dots + x_n^2),$$

it follows that $\|\lambda\|_2^2 = 1$ since \boldsymbol{x} is non-zero vector.

2.5 Exercise 2.5(a)

Let x be an eigenvector of matrix S w.r.t. the eigenvalue λ , then

$$Sx = \lambda x$$
.

By the equation $ex. 2.3(\spadesuit)$, we have

$$\lambda = \frac{\boldsymbol{x}^{\star}\boldsymbol{S}\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{\boldsymbol{x}^{\star}(-\boldsymbol{S}^{\star})\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{-(\boldsymbol{x}^{\star}\boldsymbol{S}\boldsymbol{x})^{\star}}{\|\boldsymbol{x}\|^2} = -\bar{\lambda},$$

then we can get that $\lambda + \bar{\lambda} = 0$, which means that λ is purely imaginary.

2.6 Exercise 2.5(b)

Assume that λ is the eigenvalue of S, it follows that $1 - \lambda$ is the eigenvalue of 1 - S. Since λ is purely imagnary number, then by Lemma 2.1.4, we have

$$\det(1 - \mathbf{S}) = \prod_{i=1}^{n} (1 - \lambda_i) \neq 0,$$

where $\lambda_i, i \in \{1, 2, \dots, n\}$ are eigenvalues of S. Hence we can conclude that 1 - S is non-singular.

2.7 Exercise 2.5(c)

Assume that $\mathbf{Q} = (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})$, then we have

$$QQ^{\star} = (I - S)^{-1}(I + S)(I + S^{\star})\left((I + S)^{-1}\right)^{\star},$$

by Lemma 2.1.3, we can get that

$$QQ^* = (I - S)^{-1}(I + S)(I - S) ((I - S)^{-1})^*$$

$$= (I - S)^{-1}(I + S)(I - S)(I + S)^{-1}$$

$$= (I - S)^{-1}(I - S)(I + S)(I + S)^{-1}$$

$$= I$$

Hence, we can conclude that $(1 - S)^{-1}(1 - S)$ is unitary.

2.8 Exercise 2.6

Proof. If **A** is singular, there exists a vector $\mathbf{x} \in \mathbb{C} \setminus \{0\}$ such that

$$Ax = x + uv^*x = 0,$$

then $\boldsymbol{x}=-\boldsymbol{u}(\boldsymbol{v}^{\star}\boldsymbol{x})$ where $\boldsymbol{v}^{\star}\boldsymbol{u}$ is scalar. Let $\boldsymbol{x}=t\boldsymbol{u}(t\in\mathbb{R}),$ then we can get that

$$t\mathbf{u} + \mathbf{u}(\mathbf{v}^*t\mathbf{u}) = t\mathbf{u}(1 + \mathbf{v}^*\mathbf{u}) = 0,$$

It follows that $\mathbf{v}^*\mathbf{u} = -1$ since $\mathbf{x} = t\mathbf{u} \neq 0$. Assume that $\alpha = -1/(1 + \mathbf{v}^*\mathbf{u})$, then

$$(\boldsymbol{I} + \boldsymbol{u}\boldsymbol{v}^*)(\boldsymbol{I} + \alpha \boldsymbol{u}\boldsymbol{v}^*) = \boldsymbol{I}.$$

Note that we have shown that $v^*u = -1$ is a necessary condition of A is singular. For suffciency, we assume that $v^*u = -1$. Then for any $t \in \mathbb{C} \setminus \{0\}$, we have

$$\mathbf{A}\mathbf{u} = t\mathbf{u} + \mathbf{u}\mathbf{v}^{\star}t\mathbf{u} = t\mathbf{u} + t\mathbf{u}(\mathbf{v}^{\star}\mathbf{u}) = 0,$$

which implies that A is singular. Combined, we conclude that A is singular iff. $v^*u = -1$. In this case,

$$\operatorname{null}(\boldsymbol{A}) = \{t\boldsymbol{u}, t \in \mathbb{R}\},\$$

the linear subspace spanned by u.

2.9 Exercise 2.7

Proof. We can verify that \boldsymbol{H}_{k+1} is Hadamard matrix directly,

$$\begin{aligned} \boldsymbol{H}_{k+1}^T \boldsymbol{H}_{k+1} &= \left(\begin{array}{cc} \boldsymbol{H}_k^T & \boldsymbol{H}_k^T \\ \boldsymbol{H}_k^T & -\boldsymbol{H}_k^T \end{array} \right) \left(\begin{array}{cc} \boldsymbol{H}_k & \boldsymbol{H}_k \\ \boldsymbol{H}_k & -\boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} \boldsymbol{H}_k^T \boldsymbol{H}_k + \boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{H}_k^T \boldsymbol{H}_k - \boldsymbol{H}_k^T \boldsymbol{H}_k \\ \boldsymbol{H}_k^T \boldsymbol{H}_k - \boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{H}_k^T \boldsymbol{H}_k + \boldsymbol{H}_k^T \boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} 2\boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{0} \\ \boldsymbol{0} & 2\boldsymbol{H}_k^T \boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} 2c\boldsymbol{I}_k & \boldsymbol{0} \\ \boldsymbol{0} & 2c\boldsymbol{I}_k \end{array} \right) \\ &= 2c \cdot \boldsymbol{I}_{2k}. \end{aligned}$$

Then we can get that $\boldsymbol{H}_{k+1}^T = 2c\boldsymbol{H}_{k+1}^{-1}$. Note that the entries of \boldsymbol{H}_{k+1} are also all ± 1 by the recursion formula. Hence \boldsymbol{H}_{k+1} is also a Hadamard matrix. \square