25-01-2023 Shift-2

EE24BTECH11032- John Bobby

- 1) Let the function $f(x) = 2x^3 + (2p 7)x^2 + 3(2p 9)x 6$ have a maxima for some value of x < 0and a minima for some value of x > 0. Then, the set of all values of p is
 - a) $\left(\frac{9}{2},\infty\right)$
 - b) $(0, \frac{9}{2})$
 - c) $\left(-\infty, \frac{9}{2}\right)$ d) $\left(-\frac{9}{2}, \frac{9}{2}\right)$
- 2) Let z be a complex number such that $\left|\frac{z-2i}{z+i}\right| = 2, z \neq -i$. Then z lies on the circle of radius 2 and centre
 - a) (2,0)
 - b) (0,0)
 - c) (0,2)
 - d) (0, -2)
- 3) If the function

is continuous at
$$x = \frac{\pi}{2}$$
, then $9\lambda + 6log_e\mu + \mu^6 - e^{6\lambda}$ is equal to

- a) 11
- b) 8
- c) $2e^4 + 8$
- d) 10
- 4) Let $f(x) = 2x^n + \lambda, \lambda \in \mathbb{R}, n \in \mathbb{N}$, and f(4) = 133, f(5) = 255. Then the sum of all the positive integer divisors of (f(3) - f(2)) is
 - a) 61
 - b) 60
 - c) 58
 - d) 59
- 5) If the four points, whose position vectors are $3\hat{i} 4\hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} \hat{k}$ and $5\hat{i} 2\alpha\hat{j} + 4\hat{k}$ are coplanar, then α is equal to

 - a) $\frac{73}{17}$ b) $\frac{-107}{17}$ c) $\frac{-73}{17}$ d) $\frac{107}{17}$
- 6) Let $A = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix}$, where $i = \sqrt{-1}$. If $M = A^{T}BA$, then the inverse of the matrix $AM^{2023}A^{T}$ is a) $\begin{pmatrix} 1 & -2023i \\ 0 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 0 \\ -2023i & 1 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & 0 \\ 2023i & 1 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 2023i \\ 0 & 1 \end{pmatrix}$$

- 7) Let $\Delta, \nabla \in \{\land, \lor\}$ be such that $(p \to q) \Delta(p\nabla q)$ is a tautology. Then
 - a) $\Delta = \wedge, \nabla = \vee$
 - b) $\Delta = \vee, \nabla = \wedge$
 - c) $\Delta = \vee, \nabla = \vee$
 - d) $\Delta = \wedge, \nabla = \wedge$
- 8) The number of numbers, strictly between 5000 and 10000 can be formed using the digits 1, 3, 5, 7, 9 without repetition, is
 - a) 6
 - b) 12
 - c) 120
 - d) 72
- 9) The number of functions $f:\{1, 2, 3, 4\} \to \{a \in \mathbf{Z} : |a| \le 8\}$ satisfying $f(n) + \frac{1}{n} f(n+1) = 1, \forall n \in \{1, 2, 3\}$ is
 - a) 3
 - b) 4
 - c) 1
 - d) 2
- 10) The equations of two sides of a variable triangle are x = 0 and y = 3, and its third side is a tangent to the parabola $y^2 = 6x$. The locus of its circumcentre is:
 - a) $4y^2 18y 3x 18 = 0$
 - b) $4y^2 + 18y + 3x + 18 = 0$
 - c) $4y^2 18y + 3x + 18 = 0$
 - d) $4y^2 18y 3x + 18 = 0$
- 11) Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined by $f(x) = \log_{\sqrt{m}} \left\{ \sqrt{2} (\sin x \cos x) + m 2 \right\}$, for some m, such that the range of f is [0, 2]. Then the value of m is
 - a) 5
 - b) 3
 - c) 2
 - d) 4
- 12) Let A,B,C be 3 × 3 matrices such that A is symmetric and B and C are skew-symmetric. Consider the statements
 - $(S1)A^{13}B^{26} B^{26}A^{13}$ is symmetric
 - $(S2)A^{26}C^{13} C^{13}A^{26}$ is symmetric

Then,

- a) Only S2 is true
- b) Only S1 is true
- c) Both S1 and S2 are false
- d) Both S1 and S2 are true
- 13) Let y = y(t) be a solution of the differential equation $\frac{dy}{dt} + \alpha y = \gamma e^{-\beta t}$ Where, $\alpha > 0, \beta > 0$ and $\gamma > 0$. Then $\lim_{t \to \infty} y(t)$
 - a) is 0
 - b) does not exist
 - c) is 1
 - d) is -1

- 14) $\sum_{k=0}^{6} {}^{51-k}C_3$ is equal to a) ${}^{51}C_4 {}^{45}C_4$ b) ${}^{51}C_3 {}^{45}C_3$ c) ${}^{52}C_4 {}^{45}C_4$ d) ${}^{52}C_3 {}^{45}C_3$
- 15) The shortest distance between the lines x + 1 = 2y = -12z and x = y + 2 = 6z 6 is

 - a) 2
 b) 3
 c) 5/2
 d) 3/2