Exercise 2. Let $S_{\lambda} = \sum_{t=1}^{T} (y_t - g_t)^2 + \lambda \sum_{t=2}^{T-1} [(g_{t+1} - g_t) - (g_t - g_{t-1})]^2$ and let S be the value obtained when $\{g_t\}$ is a linear series. We know that

Name: HUNG HO

Email: hqdhftw@uchicago.edu

$$S_{\lambda} \ge \sum_{t=1}^{T} (y_t - g_t)^2 + \lambda \max_{t} \{ [(g_{t+1} - g_t) - (g_t - g_{t-1})]^2 \}$$

Also note that we can always obtain S from S_{λ} by setting $\{g_t\}$ to be a linear series. Hence $\min_{\{g_t\}} S_{\lambda} \leq S$. Thus, we deduce that

$$\sum_{t=1}^{T} (y_t - g_t)^2 + \lambda \max_{t} \{ [(g_{t+1} - g_t) - (g_t - g_{t-1})]^2 \le S.$$

Hence, $\lim_{\lambda \to \infty} [(g_{t+1} - g_t) - (g_t - g_{t-1})]^2 = 0$. Thus, when $\lambda \to \infty$, $(g_{t+1} - g_t) - (g_t - g_{t-1}) = 0$ for all t. This means that for all t, $g_{t+1} - g_t = \beta$, a constant. From this we deduce that $g_t = g_0 + \beta t$ for all t.