STUDY OF LH₂ FUELED SUBSONIC PASSENGER TRANSPORT ALCRAFT

by G. D. Brewer & R. E. Morris

FINAL REPORT

JANUARY 1976

(Mada-grant ary office or L42 sugles)
subjects to a mark of the (Lockson) - Lalitoidia
subject, bull-160. For (Lockson) - Lalitoidia
co.)

Prepared under Contract NAS1-12972 (MODIFICATION 4.)

for LANGLEY RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

by

1. REPORT NO. NASA CR-144935	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE	of LH ₂ Fueled Subsonic	5. REPORT DATE December, 1975 6. PERFORMING ORG CODE
G. D. Brewer and R. 9. PERFORMING ORGANIZATION LOCKHEED-CALIFORNIA COMP P.O. BOX 551 BURBANK, CALIFORNIA 91520	NAME AND ADDRESS	8. PERFORMING ORG REPORT NO. LR 27446 10. WORK UNIT NO. 11. CONTRACT OR GRANT NO. Modification No. 4,
NASA - Langley Resea Hampton, Virginia 23	NAS 1-12972 13. TYPE OF REPORT AND PERIOD COVERED Final Report July - Dec., 1975 14. SPONSORING AGENCY CODE	
16. ABSTRACT		M30
This extension using liquid hydroge to explore an expand capable of carrying 5,560 km (3000 n.mi. radius mission, were conventionally fuele order that comparison	of a previous study to investing as fuel in subsonic transported matrix of passenger aircraft 130 passengers 2,780 km (1500); and 400 passengers on a 9,2 designed parametrically. Both a versions were generated forms could be made. Aircraft in basis of weight, size, cost,	et aircraft, was performed ft sizes. Aircraft n.mi.); 200 passengers 265 km (5000 n.mi.) ch liquid hydrogen and each payload/range in a each mission category

17. KEY WORDS (SUGGESTED BY AUTHOR(S))

Hydrogen, subsonic, passenger

transport aircraft, Jet A,

cryogenic, insulation, energy

utilization

19. SECURITY CLASSIF.

(OF THIS REPORT)

Unclassified

18. DISTRIBUTION STATEMENT

18. DISTRIBUTION STATEMENT

20. SECURITY CLASSIF. (OF THIS PAGE)

Unclassified

21. NO. OF PAGES 22. PRICE*

FOREWORD

This is the final report of work performed as an addendum to a previously completed study of hydrogen fueled subsonic transport aircraft (Reference 1). This work was performed under Modification No. 4 of Contract NAS 1-12972 for NASA - Langley Research Center. The report is documentation of the substance of work performed during the period 20 June through 20 December, 1975.

The study was performed within the Advanced Design Division of the Science and Technology Organization at Lockheed - California Company, Burbank, California. G. Daniel Brewer was study manager and Robert E. Morris was project engineer. Other participants were

Dalton E. Sherwood	vehicle synthesis
E. L. Bragdon	propulsion
R. E. Skarshaug	propulsion
Samuel J. Smyth	design
R. N. Jensen	weights
R. J. Ptachick	flight controls
N. Shapiro	acoustics
J. Schulert	acoustics

Mr. Charles T. D'Aiutolo of the Aeronautical Systems Division at NASA-Langley Research Center was the technical monitor for the contract.

All computations were performed in U.S. Customary units and then converted to S.I. units.

TABLE OF CONTENTS

	Section		Page
- 1		FOREWORD	iii
1	he.	LIST OF FIGURES	ix
	ies.	LIST OF TABLES	хi
_		NOMENCLATURE	xiii
		SUMMARY	1
	ı	INTRODUCTION	5
	2	TECHNICAL APPROACH	8
	3	TECHNOLOGY MODIFICATIONS	12
_		3.1 Propulsion	12
-1		3.2 Hydrogen Tankage	13
_		3.3 Weight Allowances	17
7	4	SHORT RANGE AIRCRAFT	20
Ĺ		4.1 Design Requirements	20
•		4.2 Configuration Selection	20
1		4.3 LH ₂ Internal Tank Airplane (Aircraft No. 1)	23
_		4.3.1 Aspect Ratio Selection	23
]		4.3.2 Configuration Description	24
ž.		4.3.3 Vehicle Data	26
]	*.	4.4 LH, External Tank Airplane (Aircraft No. 2)	31
J	* *.	4.4.1 Aspect Ratio Selection	31
1		4.4.2 Configuration Description	31
		4.4.3 Vehicle Data	31

PRECEDING PAGE BLANK NOT FILMEN

a constitution of the second o

v

TABLE OF CONTENTS (Continued)

Section			Page
	4.5	Jet A Airplane (Aircraft No. 3)	35
		4.5.1 Aspect Ratio Selection	35
		4.5.2 Configuration Description	35
		4.5.3 Vehicle Data	35
	4.6	Comparison of Short Range Aircraft	35
		4.6.1 Noise	41
5	MEDI	UM RANGE AIRCRAFT	47
	5.1	Design Requirements	47
	5.2	Configuration Selection	47
	5.3	LH, Internal Tank Airplane (Aircraft No. 4)	47
		5.3.1 Aspect Ratio Selection	47
		5.3.2 Configuration Description	48
		5.3.3 Vehicle Data	53
	5.4	LH ₂ External Tank Airplane (Aircraft No. 5)	53
		5.4.1 Aspect Ratio Selection	53
		5.4.2 Configuration Description	53
		5.4.3 Vehicle Data	53
	5.5	Jet A Airplane (Aircraft No. 6)	53
		5.5.1 Aspect Ratio Selection	53
		5.5.2 Configuration Description	53
		5.5.3 Vehicle Data	53
	5.6	Comparison of Medium Range Aircraft	54
		5.6.1 Noise	65
6	LONG	RANGE AIRCRAFT	68
	6.1	Design Requirements	68
	6.2	Configuration Selection	68
	6.3	LH2 Internal Tank Airplane (Aircraft No. 7)	69
		6.3.1 Parametric Investigation	69
		6.3.2 Configuration Description	69
		6.3.3 Vehicle Data	79

TABLE OF CONTENTS (Continued)

Section		Page
	6.4 Jet A Airplane (Aircraft No. 8)	79
	6.4.1 Parametric Investigation	79
	6.4.2 Configuration Description	82
	6.4.3 Vehicle Data	84
	6.5 Comparison of Long Range Aircraft	84
	6.5.1 Noise	93
	6.6 Sensitivity Factors	95
7	RESEARCH AND DEVELOPMENT RECOMMENDATIONS	100
8	CONCLUSIONS AND RECOMMENDATIONS	103
	APPENDIX A	109
	REFERENCES	151

LIST OF FIGURES

	Figure		Page
~	1	Illustration of External and Internal Tank LH, Aircraft	6
	2	Installed Cruise SFC Versus Percent Maximum Rated Thrust 10,068 m (35,000 ft), Mach 0.85, Standard Day (LH, Fueled Engines)	16
	3	Results of Analysis of Hydrogen Tanks	18
-]	14	Candidate Configuration - Internal Tanks, Aft Mounted Engines	21
]	5	Candidate Configuration - External Tanks, Aft Mounted Ergines	22
	6	Aspect Ratio Selection - Aircraft No. 1	25
1	7	General Arrangement: Short Range, LH ₂ Internal Tank Transport	27
	8	Interior Arrangement: 130 Pax Aircraft	29
-1	o	Aspect Ratio Selection - Aircraft No. 2	32
_	10	General Arrangement: Short Range, LH ₂ External Tank Transport	33
1	11	Aspect Ratio Selection - Aircraft No. 3	3 6
}	12	General Arrangement: Short Range, Jet A Fuel Transport	37
1	13	DOC Versus Fuel Cost - 1500 n.mi., 130 Pax Aircraft	43
_l	14	90 EPNdB Contour Comparison - Short Range Aircraft	45
	15	General Arrangement: Medium Range, LH ₂ Internal Tank Transport	49
1	16	Interior Arrangement: 200 Pax Transport, LH ₂ Internal Tank	51
	17	General Arrangement: Medium Range, LH ₂ External Tank Transport	55
	18	Internal Arrangement: 200 Pax Transport, LH ₂ External Tank	57
	19	General Arrangement: Medium Range, Jet Fuel	59

LIST OF FIGURES (Continued)

	Page
DOC Versus Fuel Cost - 3000 n.mi., 200 Pax Aircraft	64
90 EPNdB Contour Comparison - Medium Range Aircraft	67
Effect of Aspect Ratio and Initial Cruise Altitude on Direct Operating Cost of the Long Range LH2 Aircraft	72
Effect of Initial Cruise Altitude on Performance and Cost of the Long Range LH ₂ Aircraft	73
General Arrangement: Long Range, Internal Tank LH, Transport	75
Interior Arrangement 400 Pax Transport, LH, Fuel	77
Aspect Ratio Selection for Long Range Jet A Aircraft	80
Recommended Field Length for the Long Range, Jet A Aircraft	81
General Arrangement: Long Range, Jet A Fuel Transport	85
	87
	94
	96
	101
	105
Growth Characteristics	106
	90 EFNdB Contour Comparison - Medium Range Aircraft Effect of Aspect Ratio and Initial Cruise Altitude on Direct Operating Cost of the Long Range LH ₂ Aircraft Effect of Initial Cruise Altitude on Performance and Cost of the Long Range LH ₂ Aircraft General Arrangement: Long Range, Internal Tank LH ₂ Transport Interior Arrangement 400 Pax Transport, LH ₂ Fuel Aspect Ratio Selection for Long Range Jet A Aircraft Recommended Field Length for the Long Range, Jet A Aircraft General Arrangement: Long Range, Jet A Fuel Transport Interior Arrangement 400 Pax Transport, Jet A Fuel DOC vs Fuel Cost - 5000 n.mi. radius, 400 Pax Aircraft 90 EPNdB Contour Comparison - Long Range Aircraft Technology Development Program Total Energy vs Design Mission Capability

LIST OF TABLES

0

,

.

, 4

.

d, x

Table		Page
I	Aircraft Designs Required	8
II	Basic Guidelines	10
III	Small Engine Design Point Data, Sea Level Static - Standard Day	14
IV	Small Engine Propulsion System Weight	15
V	Small Engine Nacelle Design Characteristics	15
VI	Passenger Service Equipment	19
VII	Comparison of Final Design Short Range Aircraft	39
VIII	Cost Comparison of Final Design Short Range Aircraft	42
IX	Noise Evaluation - Short Range Aircraft	1414
x	Comparison of Final Design Medium Range Aircraft	61
XI	Cost Comparison of Final Design Medium Range Aircraft	63
XII	Noise Evaluation - Medium Range Aircraft	66
XIII	Effect of Initial Cruise Altitude on LH2 Aircraft	70
VIX	Major Airport Runway Lengths and Reference Conditions	83
xv	Comparison of Final Design Long Range Aircraft	89
XVI	Cost Comparison of Final Design Long Range Aircraft	92
XVII	Noise Evaluation - Long Range Aircraft	95
XVIII	Sensitivity to Inert Weight Increase - Before Design Freeze - Aircraft No. 7	98
XIX	Sensitivity to Inert Weight Increase - Before Design Freeze - Aircraft No. 8	99

NOMENCLATURE

AR = Aspect Ratio

ATA = Air Transport Association

b = Wing Span

BPR = Bypass Ratio

Btu = British Thermal Unit

C_v = Velocity Coefficient

CPR = Compressor Pressure Ratio

DOC = Direct Operating Cost

DTAM = Deviation from std. ambient Temperature

FAR = Federal Air Regulation

F_N = Net Thrust

FPR = Fan Pressure Ratio

GH₂ = Gaseous Hydrogen

HP = High Pressure

Jet A = Conventicual Hydrocarbon Fuel

xiii

PRECEDING PAGE BLANE NOT FILLED

NOMENCLATURE (Continued)

KEAS = Knots Equivalent Airspeed

L/D = Lift-to-Drag Ratio

LH, = Liquid Hydrogen

LP = Low Pressure

M = Mach Number

MAC = Mean Aerodynamic Chord

OPR = Overall Pressure Ratio

Pax. = Passenger

Sw = Wing Reference Area

SFC = Specific Fuel Consumption

SLS = Sea Level Static

T/W = Thrust to Weight Ratio

TIT = Turbine Inlet Temperature

t Wing Thickness Ratio

v = Tail Volume Coefficient

Vapp = Landing Approach Velocity

Chapter Service

Section 2

NOMENCLATURE (Continued)

- Vo = Flight Velocity
- Vr = Takeoff Rotate Velocity
- V₂ = Takeoff Safety Speed
- Vs = Stall Velocity
- $W_a = \frac{\sqrt{\theta_T}}{\delta_{P_2}}$ = Engine Corrected Airflow
- W = Gross Weight
- W = Engine Pod Weight
- W/S = Wing Loading (weight/wing area)
- $^{E}P_{2}$ = Delta $P_{2} = P_{T_{2}}$ PSIA/14.7
- θ_{T_2} = Theta $T_2 = T_{T_2}$ $^{\circ}$ K/288.2

STUDY OF LH₂ FUELED SUBSONIC PASSENGER TRANSPORT AIRCRAFT

G. D. Brewer and R. E. Morris Lockheed-California Company

SU'MMARY

The work reported herein is supplemental to an original study performed for NASA - Langley Research Center in 1974 (Reference 1). In that study two different LH₂ passenger aircraft designs were established, one of which carried the fuel within the fuselage in tanks located both forward and aft of the passenger compartment; the other, in tanks mounted on short pylons above the wing at about midspan. Versions of these internal and external tank LH₂ airplane designs were configured to carry 400 passengers two different ranges: 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.).

The present study extended the scope of missions considered for the \mbox{LH}_2 fueled sircraft as follows:

130 passengers	2780 km	(1500 n.mi.)
200 passengers	5560 km	(3000 n.mi.)
400 passengers	9265 km	(5000 n.mi.) radius

As noted, the longer range mission was specified as a radius. The aircraft was designed to fly 9265 km, land, and return to point of origin without refueling, carrying full design payload both directions and providing for specified reserve fuel for both landings.

Both internal tank and external tank LH₂ designs were defined for the short and medium range missions. Only the internal tank concept was considered for the long range requirement. For all three missions, equivalent designs of conventionally fueled aircraft were identified to provide a basis for comparison and evaluation.

One of the objectives of the work was to determine if the external tark LH₂ design concept would begin to show design advantages, or at least design equivalence, with the internal tank concept at the low fuel load missions. It apparently does not. Even for the short range mission the external tank design was clearly not competitive. This stems from the dual, but imcompatible, needs to design the external tanks with a high fineness ratio for aerodynamic acceptability on the one hand, but with a low surface-to-volume ratio on the other to achieve low heat leak with minimum insulation thickness and weight. On small aircraft the external tanks account for an increasing percentage of total aircraft drag.

A summary of selected data for the preferred, internal tank LH₂ aircraft and for the corresponding Jet A fueled designs for all three of the subject missions is presented in the table on page 3.

One of the objectives of the study was to determine if a crossover point could be predicted, i.e., a design mission requiring such a small amount of Jet A fuel that an equivalent LH₂ fueled aircraft would offer no advantage. The short range mission of this study appears to be at or near that crossover point. The internal tank LH₂ aircraft and the corresponding Jet A design are virtual standoffs. Since the LH₂ aircraft designed for the longer range, larger payload missions do show advantage over corresponding aircraft, it is presumed that for a mission requiring even less energy than the short range mission of this study, the Jet A airplane would be preferred.

As in the previous study, the results show that use of LH₂ fuel provides significant advantages in long range aircraft. The more energy required to perform the mission, the greater the advantage to be gained by using a high energy fuel. The long range LH₂ aircraft of this study are lighter; require smaller wing area and shorter span but larger, longer fuselages; use smaller engines; can operate from shorter runways; and use 25 percent less energy to perform the mission. Further, the LH₂ airplane would cost less both to develop and to produce. A differential of \$1.00 more per GJ (\$1.05/10⁶ Btu) can be paid for LH₂, relative to a current price

		o.i. Ump					
		Short Range [130 Passengers] 2780 km		Medium Range 200 Passengers 5560 km		Long Range 400 Passengers 9265 km radius	
		LH ₂	Jet A	LH ₂	Jet A	LH ₂	Jet A
Gross Weight	kg	44,600	49,300	81,400	58,400	266,400	450,200
Total Fuel Wt.	kg	3,360	8,940	9,480	27,720	68,500	238,000
Operating Empty Wt.	kg	28,300	27,400	51,900	50,700	158,100	172,600
Thrust/Weight	N/kg	3.43	3.43	3.33	2.75	2.65	1.96
Number of Engines	•	2	2	4	4	4	4
Thrust per Engine	N	75,600	84,100	66,700	68,100	175,300	221,100
Wing Area	m ²	84.7	86.3	148.8	154.6	466	662
Spen	m	29.3	30.8	37.5	38.7	68.3	85.3
Fuselage Length	m	42.7	34.4	52.7	44.2	77.4	68.6
FAR T.O. Distance	m	2,410	2,430	1,640	2,432	2,106	3,650
Price per Aircraft	\$10 ⁶	7.85	7.51	13.95	13.33	38.90	40.0
Noise Sideline	EPNdB	86	86	86	86	94	93
Flyover	EPNdB	79	79	82	86	93	100
Energy Utilization	kJ Seet km	763	734	631	876	950	1,210

U.S. Customery Units

	U.S. Customary Units						
		Short Range [130 Passengers] 1500 n.mi.		Medium Range [200 Passengers] 3000 n.mi.		Long Range 400 Passengers 5000 n.mi, radius	
		LH ₂	Jet A	rH ⁵	Jet A	LH ₂	Jet A
Gross Weight	lb	98,300	108,700	179,500	216,900	587,400	992,500
Total Fuel Wt.	lb	7,400	19,700	20,900	61,100	150,900	524,000
Operating Empty Wt.	lb	62,300	60,400	114,500	111,800	348,500	380,500
Thrust/Weight	•	0.35	0.35	0.34	0.28	0.27	0.20
Number of Engines	•	2	2	4	4	4	4
Thrust per Engine	lb	17,000	18,900	15,000	15,300	39,400	49,600
Wing Area	ft ²	912	929	1,602	1,664	5.020	7,125
Spen	ft	96	101	123	127	224	280
Fuselage Length	ft	140	113	173	145	254	225
FAR T.O. Distance	ft	7,890	7,970	5,380	7,980	6,910	11,970
Price per Aircraft	\$10 ⁶	7.85	7.51	13.96	13.33	38.90	40.00
Noise Sideline	EPNdB	86	86	86	86	94	93
Fiyover	EPNdB	79	79	82	26	93	100
Energy Utilization	Stu Seet n.ml.	1,340	1,290	1,460	1,540	1,670	2,120

for Jet A, and still have equal direct operating cost. The LH₂ design is 6 EPNdB quieter in flyover noise, but slightly noisier in sideline and approach compared to the Jet A counterpart.

Advantages for the LH₂ aircraft not reassessed in this supplementary study, but which nevertheless pertain, are the significant reduction in noxious exhaust products reported in Reference 1, and the fact that aircraft designed for initial operation in 1990-1995 will have normal service life long after Jet A - type fuel is expected to become increasingly unavailable and expensive around the world.

INTRODUCTION

This work is an addendum to a study performed in 1974 for NASA-Langley Research Center to evaluate the feasibility, practicability, and desirability of using liquid hydrogen (LH₂) as fuel in subsonic transport aircraft.

NASA CR-132558 and 132559 (Reference 1), dated January 1975, are the Summary and Final reports, respectively, of the original study. That work involved investigation of both passenger and cargo type aircraft. The passenger vehicles were all capable of carrying 400 bassengers plus appropriate cargo for a total of 36,300 kg (88,000 lb) of payload. Aircraft designed for two ranges, 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.) and for cruise speeds of Mach 0.80, 0.85, and 0.90 were evaluated. In addition, aircraft capable of carrying 600 and 800 passengers were also investigated for both ranges but for only Mach 0.85 cruise speed. Cargo aircraft capable of carrying 56,700 kg (125,000 lb) and 113,400 kg (250,000 lb) were designed for ranges of 5560 km (3000 n.mi.) and 10,190 km (5500 n.mi.), respectively. All cargo aircraft were designed for Mach 0.85 cruise speed.

In the present study, the payload and range spectrum of the passenger aircraft was enlarged to involve aircraft of the following capability, all designed to cruise at Mach 0.85:

Snort range mission
Medium range mission
Long range mission

Passengers	Range				
	km	(n.mi.)			
130	2780	(1500)			
200	5560	(3000)			
400	9265 radius	(5000) radius			

For the short and medium range missions, LH₂ fueled aircraft using both internal and external tank design concepts illustrated by the artist's rendering in Figure 1, taken from Reference 1, were parametrically evaluated.

The long range mission was different in that the range requirement was stated as an unrefueled radius capability. The aircraft was intended to fly

Figure 1. Illus ration of External and Internal Tank LH2 Aircraft

9265 km (5000 n.mi.), land, and then return to the point of origin unrefueled with full payload and with full allowances for reserve fuel for both landings. For this mission, only the internal tank design of LH₂ fueled aircraft was investigated.

For all missions, as in the case of the original study, reference air-craft using conventional (Jet A) fuel were designed to the same guidelines and technology to provide a basis for valid comparison.

All aircraft incorporate such advanced technology concepts as are fore-cast to be available for designs which might be ready for initial operational use in 1990-1995.

Since the subject work is a "follow-on" to an earlier study and uses the basic LH₂ airplane design concepts developed and described in Reference 1, only revisions and modifications to the designs and the results derived therefrom are reported in full in this report. The reader interested in the background leading to derivation of the original airplane design concepts should refer to NASA CR-132559 (Reference 1).

2. TECHNICAL APPROACH

This investigation expanded the matrix of passenger aircraft missions which were studied under the original contract (Reference 1). The complete list of aircraft evaluated herein is shown in Table I.

As noted, the long range aircraft were designed to fly 9256 km (5000 n.mi.) carrying full allowance for reserve fuel (per ATA international definition), land, takeoff without refueling, fly 9265 km (5000 n.mi.) and land with final reseves calculated on the basis of the airplane weight at the end of cruise for the second leg.

TABLE I. AIRCRAFT DESIGNS REQUIRED

Aircraft	Passenger	Range			
Number	Load	km	(n.mi.)	Fuel	Configuration
Short Range		į			
ı	130	2780	(1500)	LH2	Internal Tank
2	130	2780	(1500)	LH	External Tank
3	130	2780	(1500)	Jet A	Conventional
Medium Range					
4	200	5560	(3000)	LH2	Internal Tank
5	200	5560	(3000)	LH ₂	External Tank
6	200	5560	(3000)	Jet A	Conventional
Long Range					
7	400	9265 radius	(5000) radius	LH ₂	Internal Tank
8	400	9265 radius	(5000) radius	Jet A	Conventional

Guidelines used in the present study were the same as those which served as a basis for the work in the original study (Reference 1) with the exception that the short and medium range aircraft used reserve fuel quantities as defined by the ATA for domestic flights. The long range aircraft continued to use the ATA international reserve definition. The same differences in basis for calculating direct operating costs applied; the short and medium range aircraft were treated as domestic flights per the 1967 ATA equations, while the long range aircraft were treated as international carriers. For convenience, Table II presents the complete list of updated guidelines which were used in the present study. It should be noted that the allowable runway length for the long range aircraft was extended to 3600 m (12,000 ft). The basis for this revision is discussed in Section 6.

The technical approach employed was essentially the same as that described in Reference 1 for the original study. Preliminary sizing and conceptual design studies established baseline sizes, weights, and configurations for each of the eight aircraft. The resulting preliminary configuration drawings were then used as a basis for assessment of

- stability and control requirements
- structural and weight relationships
- drag characteristics

1,

- propulsion requirements
- tank insulation requirements

as required for the various aircraft.

The results of these analyses, plus the preliminary sizing data, provided input to the ASSET (Advanced System Synthesis Evaluation Technique) computer program for parametric determination of preferred vehicle design characteristics. The performance capability, weight, and cost of aircraft designs derived for each of the specified set of requirements were determined by detail analysis of the carpet-type Autoplots produced from ASSET printout data. The criterion used as an ultimate basis for selecting

TABLE II. BASIC GUIDELINES

Fuel: Liquid Hydrogen (assumed available at airport for this study)

Initial Operational Capability: 1990-95

Advanced Aircraft Technologies:

- Supercritical aerodynamics
- Composite materials
- Active controls
- Terminal area features

Advanced Engines: Contractor-derived performance for both LH, and Jet A

fueled turbofans

Noise Goal: 5.18 km2 (2 mi2) area for 90 EPNdB contour (sum of

takeoff + approach)

Emission Limit Goals:

• Ground Idle CO 14 gm/kg fuel burned UHC 2 gm/kg fuel burned

• Takeoff Power NO 13 gm/kg fuel burned Smoke SAE 1179 Number 25

Landing and Takeoff: 32.2°C (90°F) day, 304.8 m (1000 ft) altitude.

2410 m (8000 ft) runway for short and medium range

aircraft.

3660 m (12,000 ft) runway for long range aircraft.

Fuel Reserves: ATA guidelines (Reference 2)

- Use domestic definition for short and medium range aircraft
- Use international definition for long range aircraft

Direct Operating Cost:

• Utilization: Short Range - 3300 hrs/yr Medium Range - 3600 hrs/yr

Long Range - 7000 hrs/yr

• 1967 ATA equations

international basis for long range aircraft.

domestic basis for short and medium range aircraft.

- 1973 Dollars
- 350 aircraft production base
- Baseline fuel costs

LH₂ = \$2.85/GJ (\$3/10⁶ Btu = 15.48¢/1b)

Jet A = $$1.90/GJ (2/10^6 \text{ Btu} = 24.8 \phi/\text{gal} = 3.68 \phi/\text{lb})$

preferred vehicle design characteristics was minimum direct operating cost (DOC). Final design three-view general and interior arrangement drawings of each of the eight aircraft were then made to reflect the results of the analysis. Noise levels for preferred LH₂ aircraft and the Jet A counterpart for each mission were then determined.

The characteristics of the eight aircraft were compared to the extent possible. Since this study was simply an evaluation of a matrix of aircraft designed to perform specified payload/range combinations, and was not planned specifically as a study to determine performance trands, there was little which could be concluded by comparing aircraft of the various missions. Comparisons were basically limited to evaluating internal tank versus external tank LH₂ designs within each of the three range categories, and then comparing the preferred LH₂ design with the corresponding Jet A airplane. The only exception to this was an opportunity to establish a three-point curve and thus provide a basis for comparison between range categories involving the 400 passenger aircraft. Aircraft from the long range mission of the present study were correlated with final design 400 passenger aircraft of the original study (Reference 1). In order to make this comparison valid the conventional oneway range capability of the aircraft from the current study were determined, as contrasted with their mission radius capability.

3. TECHNOLOGY MODIFICATIONS

3.1 Propulsion

The high bypass ratio turbofan engine data developed for the original LH₂ subscnic aircraft study (Reference 1) were based on predictions of component efficiencies and weight for advanced (1985-1990) state-of-the-art technology. The baseline engine size for that study was set at 155.7 kN (35,000 lb) for the sea level static (SLS) design point. This was achieved with a 1.51 fan pressure ratio (FPR) and a 35.0 overall pressure ratio (OPR). The engine data used was estimated to be scaleable to approximately 70 percent of the base engine size without changes in component efficiencies or overall cruise specific fuel consumption (SFC).

The same engine data were used in the present study, within limits of scale. For a description of the basis for deriviation of the point design engine cycle parameters, and for a tabulation of the engine design and performance characteristics, see Section 3.2, starting on Page 30, Reference 1.

In addition to the baseline engine, the current study required that engine data be developed for smaller aircraft which would otherwise require scaling the baseline engines to approximately 35-45 percent. Such scaling would obviously result in some degradation of component efficiencies and, therefore, overall engine performance. This is basically due to the effects of reducing the size of the high pressure (HP) module of the engine. Specifically, the problem is related to the ratio of the HP compressor and turbine blade tip clearances to the blade height becoming relatively large compared to the baseline engine size - thereby making the originally assumed HP rotor presssure ratios and component efficiencies very difficult to achieve.

Because of this size (efficiency) problem, a new baseline engine cycle was defined for the smaller aircraft. It was sized to produce 53.4 kN (12,000 lb) thrust (SLS) and has a more moderate overall pressure ratio of 25.0, achieved with the same 1.51 FPR and a 16.67 compressor pressure ratio (CPR). The average pressure rise per axial stage would be approximately the

same (1.37) as the large engine, however, only nine axial stages are required to achieve the lower compressor pressure ratio. The estimated polytropic efficiency for the design point HP compressor of such a configuration is 90 percent (decreased from 92 percent), and the estimated turbine adiabatic efficiency is 89.5 percent (decreased from 91 percent) to account for size effects at the lower design pressure ratio.

The small engine design point cycle characteristics are presented in Table III for both the LH₂ and Jet A fueled engines. Some weight and dimensional characteristics of a typical installation of the 53.4 kN (12,000 lb) thrust size engine are shown in Tables IV and V. Table IV presents the wing pod weight buildup and Table V defines the nacelle dimensions. Nacelle scaling, resulting from small engine thrust perturbations, are referenced to the 53.4 kN (12,000 lb) thrust size and scaled with the equations provided in Table V.

The reduction in overall engine pressure ratio from 35.0 to 25.0 results in a 4.5 percent increase in cruise specific fuel consumption (SFC) and the decrease in HP component efficiency increases the SFC an additional 1.5 percent. Therefore, the total cruise SFC increase for both the LH₂ and Jet A fueled engines is approximately 6 percent, relative to the large thrust engine. A typical cruise SFC comparison for the LH₂ fueled engines is shown in Figure 2. All rated power thrust levels were scaled directly by the thrust change.

3.2 Hydrogen Tankage

The wide range of sizes of aircraft investigated in this study necessitated a review of the work done on hydrogen tankage in the previous contract (Reference 1). In particular, the smaller aircraft were examined with regard to tank, insulation, and cover weights as the tanks (internal and external)

			regen Fuele.	STAT : - STANDARD DAY Jet A Fueled	
I. Base Size Engine					
••	Installed Net Thrust Installed S.F.C. Turbine Injet	53.4 kN 0.086 kg/hr/deN	(12,000 lb) (0.100 lb/hr/lb)	53.4 kN 0.292 kg/hr/dsN	(12,000 lb) (0.296 lb/hr/lb
	Temperature Bypes Retio	1416°C	(3040°R) 12.8	/416°C	(3040°R) 10.8
	Overall Pressure Ratio Jet Exhaust Velocity	254.5 m/sec	25.0 (836 ft/sec) (V) FRI & V) duct matched (# SLS)	254.5 m/s	25.0 (835 ft/sec)
11.	Fan Design				
	Stages Airflow - Wa $\sqrt{\theta_{T_2}}/\delta p_2$ Pressure Ratio Polytropic Efficiency	212 kg/sec	1 (468 lb/sea) 1.51 91%	212 kg/sec	1 (466 lb/sec) 1.51 91%
	Diameter Tip Velocity Fan Face Mach No. Hub/Tip Ratio	1.26 249 m/sec	(149.6 in.) (817 ft/sec) 0.56 0.36	1.26 m 249 m/sec	(149.6 in.) (817 ft/sec) 0.56 0.36
111.	Compressor Design Compressor Pressure Ratio		16.7		16.7
	Polytropic Efficiency Airflow	15.2 kg/sec	90.0% (33.4 lb/sec)	17.8 kg/sec	90.0% (39.3 lb/sec)
IV.	Combustor Efficiency Total Pressure Loss		100% 4.5%		100% 4.5%
V.	High Presure Turbina Presure Ratio		3.2		3.8
	Stages Adiabatic Efficier.sy Cooling Air		2 80.5% 0		2 88.5% 5%
VI.	Low Pressure Turbine Pressure Ratio		6.5		5.A
	Stages Adiabetic Efficiency Cooling Air		4 91% 0		4 91% 0
VII.	Nozele Design Configuration		Copiener, fixed convergent negzie		Some
	Performence - (Vel. Coef.) A. Prin wy C.		0.905		0.905
	B. Fan Cy		0.905		0.905
VIII.	Acoustic Treatment A. Inlet	Variable geometry Threat Mach = 0.1 and appressh, int	8 during takeoff }		Same
	8. Exhaust 1. Fan Dust	All treatment on engine and outer treated dust ring			Same
	2. Primary	Well treatment			Some
IX.	Nacelle Geometry Maximum Diameter Overall Length	1.26 m 4.22 m	(62 in.) (166 in.)		
	Inlet Highlight Dlemeter Inlet Threat Diameter	1.28 m	(51 in.)		Seme
	Cruise Threat Mach Number	"""	0.73		

TABLE IV. SMALL ENGINE PROPULSION SYSTEM WEIGHT

Base Thrust = 52.4 kN (12,000 fb) (SLS, Installed)

TIT = 1416°C (3040°R), OPR = 25.0

Fan Pressure Ratio = 1.51

Item	kg	lb
Bere Engine	839.2	1850
Accessories and Guar Box	74.8	165
Inlet, Variable Geometry	156.5	345
Mounting Brackets and Pylon Splitter Fairing	31.8	70
Nacelle	154.2	340
Gas Generator Cowl and Tail Pipe	79.4	175
Fan Duct Acoustic Ring	43.1	95
Thrust Reverser	97.5	215
Fotal Pod Weight (per Engine)	1476.5	3255

TABLE V. SMALL ENGINE NACELLE DESIGN CHARACTERISTICS

Base Thrus(= 53.4 kN (12,000 lb) (SLS, Installed)			
Fan Hub/Tip Ratio	= 0.36		
Fan Tip Diameter	= 1.26m (49.6 in.)		
Max Nacelle Diameter	= 1.58m (62.2 in.)		
Mex Nacelle Length	= 4.22m (186.1 in.)		
NACELLE SCALING DATA			
WT. POD - WT _{POD(REF}	(FNSLS (REF)) 1.07		
DIA DIA(REF)	FN _{SLS} 0.50		
LENGTH 'ENGTH _{(RE}	$(F) \left(\frac{F_{N_{SLS}}}{F_{N_{SLS}(REF)}}\right) 0.45$		

Installed Cruise SFC Versus Percent Maximum Rated Thrust 10,668 $\rm m$ (35,000 ft), Mach 0.85, Standard Day (IH $_2$ Fueled Engines) Figure 2.

1000

-

Ţ

-

16

became smaller. A preliminary analysis was made to examine trends based on the following assumptions:

- Range of gross weights: 45,360 to 181,440 kg (100,000 to 400,000 lb)
- 3780 km (1,500 n.mi.) range
- Constant fuel fractions

1

- External tank length-to-diameter ratio (1/d) = 6.5
- Constant wing loading of 527 kg/m² (108 lb/ft²)

It was further assumed that the percent boil-off remained constant. This required an increase in insulation thickness as the ratio of tank wetted area-to-volume increased since boil-off is approximately proportional to this ratio. Figure 3 shows the results of this investigation and indicates that:

- 1. The external tank has a higher ratio of wetted area-to-volume than the internal tank.
- 2. This results in the much higher ratio of insulation and cover weight fractions as indicated. (Note, tank weight not included).
- 3. The effect of the addition of the tank wetted areas on the aircraft L/D is shown at the top of the figure compared to a clean (no tank) configuration. The internal tank aircraft L/D decreases 4.1 percent while the external tank L/D reduction is 15.8 percent over the gross weight range from 45,360 to 181,440 kg (100,000 to 400,000 lb).

These results show that the insulation thickness and weight must be adjusted as the size of the tanks decreases. This was done in providing the input data to ASSET for the parametric aircraft study. The results also indicate that the external tank aircraft will suffer more severe weight and aerodynamic penalties relative to the internal tank design as the aircraft size is decreased.

3.3 Weight Allowences

The aircraft designs which were considered in the present study represent a wide range of passenger requirements. This necessitated adjustment of those items of equipment associated with providing services to passengers. The

Figure 3. Results of Analysis of Hydrogen Tanks

adjustment is basically a function of the number of passengers carried, and the design range. As previously defined, the short range aircraft carry 130 passengers 2780 km (1500 n.mi.), the medium range aircraft carry 200 passengers 5560 km (3000 n.mi.), and the long range aircraft carry 400 passengers 9265 km (5000 n.mi.) each way, out and back. Table VI shows values which were used for these items which required such adjustment.

There was also a small adjustment in the weight of escape slide/rafts as a result of the fact the LH₂ aircraft designed for the long range mission is double decked. Its conventionally fueled counterpart is not, all 400 passengers are carried on a single deck. Accordingly, as shown on the table, the weight of escape slide/rafts provided for the LH₂ airplane is 810 kg (1786 lb) while that for the Jet A design is 623 kg (1374 lb).

Other weight changes to the short range aircraft include addition of air stairs (2) and deletion of certain navigation and communication equipment not required for short, over-land flight.

TABLE VI. PASSENGER SERVICE EQUIPMENT

	Short Range	Medium Range	Long Range
Escape Slide/Rafts kg (lb)	160 (353)	203 (448)	810 (1786)-LH 623 (1374)-Jet A
Food Allowance/Pass. kg (lb)	3.74 (8.24)	4.65 (10.24)	6.91 (15.24)
Water Allowance/Pass.kg (lb)	0.73 (1.6)	0.91 (2.0)	1.42 (3.12)
Pass. Serv. Equip./ Pass. kg (lb)	0.95 (2.1)	1.27 (2.8)	1.81 (4.0)
Cargo Containers-Total kg (lb)	0.0	1470 (3240)	1960 (4320)
Serving Carts-Total kg (lb)	330 (726.)	494 (1090)	989 (2180)
No. of Cabin Attendents	4.0	5.0	8.0
No. of Lavatorie	3.0	4.0	7.0

4. SHORT RANGE AIRCRAFT

4.1 Design Requirements

The short range aircraft are designed to meet the following requirements and constraints:

- 2780 km (1500 nmi) design range
- 136 passengers plus baggage and cargo for a total payload of 12,970 kg (28,600 lb)
- Maximum FAR takeoff field length of 2438 m (8000 ft)
- Minimum initial cruise altitude of 10,360 m (34,000 ft)
- Reserve fuel per ATA domestic regulations.
- Maximum approach speed of 69.4 m/s (135 KEAS) for aircraft weight corresponding to end of design range

4.2 Configuration Selection

Because of the small size and range of the aircraft, extended over-water operation was not envisioned and a two-engined configuration was selected. This requires an engine-out second segment climb gradient of at least 2.4 percent during takeoff.

The short range two-engined aircraft, in contrast to the medium and long range version which were investigated in the original study (Reference 1), offered the most possibilities for variations in configuration. Some of the variations investigated were:

1. Aft mounted engines as shown in Figure 4 for the internal tank hydrogen fuel version and in Figure 5 for the external. This is a viable configuration for the internal tank aircraft but presents some aerodynamic, and structural dynamic problems in the external tank version.

Figure 4. Candidate Configuration - Internal Tanks, Aft Mounted Engines

 $S_W = 85 \text{ m}^2 (910 \text{ ft}^2)$ AR = 8 \(\lambda = .4 \)

b = 26m (85.5 ft)

T/W - .32 W/S = 488 kg/m² (100 lb/ft²)

L_{FUS} = 34m (113 ft) ∇_{HT} = .69 ∇_{VT} = .0858

Figure 5. Candidate Configuration - External Tanks, Aft Mountel Engines

- 2. A high-winged configuration with underwing mounted engines for both internal and external tanks. This configuration presented no advantage over the low wing aircraft and had the problem of landing gear location and storage and also vulnerability of the internal fuel tanks to a wheels-up landing due to having no heavy wing box for protection as is the case with low winged aircraft. Another disadvantage is the passenger cabin exposure to an engine burst due to absence of the wing box.
- 3. A version of the aft-engined internal tank hydrogen fuel aircraft in which all fuel is carried in a single aft tank was also considered. This arrangement has the advantage of placing all fuel and propulsion in a package aft of the passengers. The obvious disadvantage with this concept is the excessive c.g. travel, estimated at 75 percent of MAC. This requires a horizontal tail approximately twice as large as is the case when the fuel is located fore and aft. Other disadvantages are the exposure of the tank to damage, and structural weight penalties due to the cantilevered tank and tail junction.

The concept chosen for analysis was a conventional low-winged design with under-wing mounted engines as described in the following sections. This configuration allows for maximum flexibility in going from the internal to the external hydrogen tanks and is adaptable to the Jet A version as well. This insures a high degree of commonality between all the designs for comparison purposes.

4.3 LH₂ Internal Tank Airplane (Aircraft No. 1)

The parametric study was conducted using the ASSET vehicle synthesis program described in Section 4.3, Reference 1. In the previous study, a comprehensive investigation was made to determine the influence of wing geometry (thickness ratio, taper ratio, and sweep) on vehicle performance. Those characteristics found to be optimum for Mach 0.85 cruise were retained for this study. The primary consideration in the present work was selection of wing aspect ratio as described below.

4.3.1 Aspect Ratio Selection. - From a matrix of some 64 aircraft generated by the vehicle synthesis program, i.e., 16 aircraft for each of four candidate aspect ratios (8,10,12, and 14) one aircraft which met all the performance constraints was selected for each aspect ratio. The variation of the selection

criteria; DOC, gross weight, price, and block fuel for these point design aircraft is presented in Figure 6 as a function of aspect ratio. This figure indicates that if the selection criteria were minimum airplane purchase price and gross weight an aspect ration of 8 would be chosen. If minimum block fuel were desired, it would be 14. Since minimum DOC was specified as the ultimate selection criterion to be used in event of conflict, an aspect ratio of 10 was selected. Following this choice, all synthesis program input data was reviewed, revised where required, and the final point design aircraft was generated. This method of selecting the final configuration was used for each of the study aircraft.

Since two-engined aircraft are critical with regard to field length and climb gradient with one engine out, a subroutine of ASSET was used to determine the optimum takeoff flap setting and overspeed $({\rm V_2/V_S})$ ratio to meet these constraints with any given combination of thrust-to-weight, aspect ratio, and wing loading.

4.3.2 Configuration Description. .. A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 2280 km (1500 n.mi.), 130 passenger aircraft is shown in Figure 7. The passenger compartment is located in the central section of the fuselage. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the bottom areas. No provision was made for a passageway through or cround the forward tank to permit movement between flight station and passenger compartment. The flight station is provided with separate lavatory and galley facilities.

Passenger accommodations, shown in Figure 8, use 6 abreast seating and seat spacing of 0.8 m (34 in.). The arrangement provides doors, lavatory and galley facilities in accordance with requirements of FAR 25 and current wide-body standards. Air stairs are provided at both portside doors. All cargo is contained in the pressurized fuselage below the cabin floor where space is provided for cargo containers and for loose cargo. Further details of the design are as follows:

-

Figure 6. Aspect Ratio Selection - Aircraft No. 1

Wing: The wing has an aspect ratio of 10, thickness ratio of 10 percent and a sweep angle of 30°. The high lift devices include 15 percent leading edge slats and 35 percent double-slotted flaps, as shown. This high lift system is typical for all study configurations. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing gear: The landing gear consists of two two-wheel main gears mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear has two-wheels mounted on a strut which retracts forward under the pilot's compartment.

Hydrogen tank and systems: The hydrogen tank structural concept selected for purposes of this study is the integral type described in Reference 1, Section 3.1.2. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tank at both ends by low heat-leak boron-reinforced fiberglass tubes arranged in an interconnect truss structure. Eight inches of closed-cell plastic foam insulation e.g., Rohacel 41S, covers the tank, in accordance with the scaling relationship discussed in Section 3.2. The foam insulation is then wrapped by a vapor shield (Kapton) to prevent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth aerodynamic surface, and protection from physical damage.

The tank is thus generally protected from mechanical damage by the foam insulation and its fiberglass cover. Further special protection from foreign object damage and damage from aircraft maneuvers such as overrotation or tail scrape is provided on the bottom of the tank, as shown in Figure 7, by an energy absorbing, aluminum honeycomb structure supported from the tank bottom. Protection is also provided by this structure for plumbing, electrical, and control systems which would be routed adjacent to the tank.

The tank and mounting is designed for both inflight structural and fatigue loads (fail saife considerations) and to withstand the emergency crash load requirements of FAR 25 with full fuel load.

4.3.3 <u>Vehicle Date.</u> - All weight, performance, and cost data are presented in Section 4.6.

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M' (SQ FT)	84.68 (911.5)	8.73 (94)	8.36 (90)
ASPECT RATIO	10	4.5	1.6
SPAN M (FT)	23.11 (35.5)	6.28 (206)	3.66 (12.0)
ROOT CHORDM(IN)	4.49 (176.3)	2.14 (84 4)	3.52 (138.5)
TIP CHORD M (IN)	1.34 (52.88)	0.64 (25.3)	1.05 (41.5)
TAPER RATIO	0.3	03	0.3
MAC M (IN)	3.13 (125 64)	1.53 (60.1)	2.51 (98.7)
SWEEP RAL. (DEG)	2.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (%)	10	9	9
T/C TIP (%)	10	9	<u> </u>

DESIGN GROSS WT. - 44,563 KG. (98,257 LB.)

FOWER PLANT -/2, TURBOFANS

INSTALLED THE UST EA. 1- 75,383 N. (16, 343 LE)

PASSENGERS - 130

FUEL (LH2) - 3,463 KG. (7,634 LB.)

PANGE - 2,780 KM. (1,500 N.M.)

ORIGINAL PAGE IS OF POOR QUALITY

10.01 (32.8)

15.49(50.8)

12.52(139.5)

42.82 (140.5) -

ATERIAL FOR TANK PROTECTION

I DIM. IN METERS (FEET), OR NOTED NOTE:

Figure 7. General Arrangement: Short Range, LH₂ Internal Tank Transport

POLDOUT FRAME \$ 27

130 PAX, 6 A/B, .86 m (34 IN) SPACING

PRECEDING PAGE BLANK NOT FILMED

POLDOUP AD.

Figure 8. Interior Arrangement: 130 Pax Aircraft

4.4 LH₂ External Tank Airplane (Aircraft No. 2)

- 4.4.1 Aspect Ratio Selection. The procedure for selecting aircraft characteristics from the parametric matrix generated by use of ASSET is the same as that described in Section 4.3.1 for the internal tank configuration. Figure 9 shows the effect of the various selection criteria on choice of aspect ratio. Based on minimum DOC, an aspect ratio of 9.5 was selected for the final point design aircraft.
- 4.4.2 Configuration Description. The most obvious feature of the external tank LH₂ aircraft design shown in Figure 10 is of course the large wing-mounted tanks. Their physical size prevents mounting below the wing. To reduce drag to an acceptable level the tank is supported on a plyon with a height of approximately one-third the tank diameter. The tank is of integral construction covered with eight inches of closed-cell plastic foam insulation protected by a vapor proof barrier film and an external fiberglass reinforced composite cover.

The fuselage length of this aircraft has been reduced compared to the internal tank version by removal of the hydrogen fuel tanks. Six abreast seating is provided with a 0.86 m (34 in) seat pitch for 130 passengers. Cargo volume, lavatory, and galley facilities are equivalent to those on the internal tank aircraft.

The tank arrangement of this aircraft simplifies the fuel system arrangement since only one engine crossfeed line and refuel line are carried across the aircraft fuselage in the wing box.

Air stairs are provided at both entry doors on the left hand side of the aircraft.

4.4.3 <u>Vehicle Data.</u> - All weight, performance, and cost data for this aircreft are presented in Section 4.6.

Figure 9. Aspect Ratio Selection - Fireraft No. 2

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M' (SQ FT)	94.54 (1017.6)	15.16 (163.2)	12.89 (138.8)
ASPECT RATIO	9.5	4.5	1.6
SPAN M (FT)	29.97 (98.3)	8.26 (27.1)	4.54 (14.9)
ROOT CHORD M (IN)	4.51 (177.4)	2.82 (111.1)	4.37 (172.0)
TIP CHORD M (IN)	1.80 (71.0)	0.85 (33.3)	1.31 (51.6)
TAPER RATIO	0.4	0.3	0.3
MAC M (IN)	3.35 (131.5)	2.01 (79.2)	3.11 (122.6)
SWEEP RAD. (DEG)	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (%)	10	9	9
T/C TIP (%)	10	9	9

DESIGN GROSS WT. - 43,851 KG. (109,901 LB.)

POWER PLANT - (2) TURBOFANS INSTALLED THRUST (EA.) - 109.986 N. (24,727 LB.)

PASSENGERS - 130

FUEL (LH2) - 4,361 KG. (9,615 LB.)

RANGE - 2,780 KM. (1,500 N.M.)

SCALE: 140

0 .

I. DIN NOTE

Figur

FOLDOUR FRAME

I. DIM. IN METERS (FEET), OR NOTED NOTE:

Figure 10. General Arrangement:
Short Range, LH2
External Tank Transport

FOLDOUT FRANCE 33

4.5 Jet A Airplane (Aircraft No. 3)

- 4.5.1 Aspect Ratio Selection. Figure 11 shows the various selection criteria versus aspect ratio and indicates a choice of 11 to provide minimum DOC.
- 4.5.2 Configuration Description. The general arrangement of the Jet A fueled aircraft is shown in Figure 12. The fuselage and interior arrangement is the same as that of the external tank hydrogen aircraft described in Section 4.4. All fuel is contained in the wing box structure resulting in some load relief for this wing compared to the internal tank hydrogen design. Air stairs are provided on both left hand entry doors.
- 4.5.3 <u>Vehicle Data.</u> All weight, performance, and cost data for this aircraft are presented in Section 4.6.

4.6 Comparison of Short Range Aircraft

Table VII presents a summary of the characteristics of the three short range aircraft. These are the final point designs meeting all performance constraints and selected on the basis of minimum DOC. For convenience in comparing the designs, ratios of the more significant values are shown.

Comparison of the external to the internal tank LH₂ aircraft designs shows that in spite of the short range involved, and therefore a relatively small fuel load, the drag of the external tanks resulted in a lift/drag ratio 15 percent poorer for that aircraft design compared to the internal tank aircraft. This is due to the rapid increase of external tank wetted area (and weight) compared to the internal tank, as discussed in Section 3.2. The lower L/D in turn, requires more cruise thrust and results in use of larger engines.

Use of larger engines accounts for the shorter takeoff distance and the higher initial cruise altitude of the external tank design. However, the combination of lower L/D and larger engines causes a significant penalty in fuel weight, aircraft price, and DOC. These disadvantages led to selection of the

Figure 11. Aspect Ratio Selection - Aircraft No. 3

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M2 (SQ FT)	863(328.7)	12.3(132.1)	11.6(125.4)
ASPECT RATIO	//	4.5	1.6
SPAN M (FT)	30.81 (101.1)	7.43 (24.4)	4.32 (14.2)
ROOT CHORD M(IN)	4.31 (169.6)	254 (99.9)	4.14 (162 9)
TIP CHORD M (IN)	1.29 (50.9)	0.76 (30 0)	1.24 (48.3)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	3 07 (120.9)	1.81 (71.2)	2.35(116.1)
SWEEP RAD. (DEG)	0.524(30)	0.524(30)	0.524 (30)
T/C ROOT (%)	10	9	9
T/C TIP (%)	10	Э	9

DESIGN GROSS WT. - 49,287 KG. (108,657 LB.)

POWER PLANT - (2) TURBOFAINS

INSTALLED THRUST (EA) - 84,094 N. (18,906 LB.)

PASSENGERS - 130

FUEL (JET A) - 8,938 KG (19,704 LB.)

RANGE - 2,780 KM. (1,500 N.M.)

SECTION A -. SCALE: 1/40

SCALE-METE

SCALE - FEE

I. DIM. IN METERS (FE NOTE:

Figure 12. General Short Ra Fuel Tra

SECTION A.A SCALE: 40

SCALE-METERS

I. DIM. IN METERS (FEET), OR NOTED. NOTE:

Figure 12. General Arrangement:
Short Range, Jet A
Fuel Transport

TABLE VII. COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT

(S.I. UNITS)

(2780 km Range - 130 Pax. - Mach 0.85)

Payload = 12,973 kg

		Aircraft	Aircraft	Ratio	Aircraft	Ratio
		No. 1	No. 2	$\left(\frac{Ext}{Int}\right)$	No. 3	/ Jet A
		(Int LH ₂)	(Ext LH ₂)	\ Int /	(Jet A)	(Int LH ₂)
Grass Weight	kg	44,570	49,850	1.118	49,290	1.11
Total Fuel	kg	3,340	4,360	1,31	8,940	2,66
Block Fuel	kg	2,296	3,015	1,31	6,190	2.70
Operating Empty Wt	kg	28,260	32,520	1,15	27,380	0.97
Empty Wt	kg	26,290	30,520	1.16	25,460	0.97
Aspect Ratio	_	10	9.5	1	11	
Wing Area	m ²	85	94.5	1.11	86.3	1.02
Sweap	degrees	30	30	ĺ	30	
Spen	m	29.1	30.0	1.03	30.8	7.06
Fus, Length	m	42.5	34.4	0.81	34.4	0.81
L/D — Cruise		13.9	11.7	0.846	16.3	1.18
SFC - Cruise	kg hr /deN	0.215	0.215		0.629	2.93
Initial Cruise Altitude	W VO	10,970	11,580		12,190	j
Wing Loading	kg/m ²	526.3	527.3		571.2	1
Thrust/Weight	N/kg	3.38	4.41	1.3	3.41	1.0
No. Engines	- my	2	2		2	ļ
Thrust Per Engine	N	75,390	109,990	1.46	84,090	1.12
FAR T.O. Distance	m	2,403	1,420	0.59	2,429	1.02
FAR Ldg. Distance	m	1,746	1,753	ĺ	1,754	ĺ
2nd Seg Climb		0.0276	0.0683	2.11	0.0365	1.32
Grad. (Eng. Cus)						
Approach Speed	m/s	86	66		60	
Weight Fractions	percent					
Fuel		7.5	8.8		18.1	
Payload		29.1	26.0		26.3	<u> </u>
Structure		28.3	27.6	1	26.1	
Propulsion (Includes		12.8	17.6	1	9.2	
Fuel System)				l	-	!
Equipment and Operating Items		22.3	20.0		20.3	
Price	\$106	7.85	9.34	1.19	7.51	0.95
DOC	seat km	0.763 ¹	0.901	1.18	c.ese ²	0.90
Energy Utilization	kJ seat km	762	1001	1.32	733	0.96

¹DOC based on LH₂ cost = \$2.85/GJ

²DOC based on Jet A cost = \$1.90/GJ

Property of

TABLE VII. COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT

(U.S. CUSTOMARY UNITS)

(1500 n.mi. Range - 130 Pax. - Mech 0.85)

Payload = 28,600 lb

		Aircraft	Aircraft	Ratio	Aircraft	Ratio
		No. 1	No. 2	/Ext\	No. 3	/ Jet A
		(Int LH ₂)	(Ext H ₂)	Inc	(Jet A)	Int LH2
Grass Weight	lb	98,260	109,900	1.118	108,660	1.11
Total Fuel	ib	7,364	9,616	1.31	19,704	2.68
Block Fuel	lb	5,060	6,647	1.31	13,645	2.70
Operating Empty Wt	lb	62,290	71,690	1.15	60,350	0.97
Empty Wt	lb	57,970	67,270	1.16	56,130	0.97
Aspect Ratio		10	9.5		11	
Wing Area	ħŹ	911.5	1,018	1.12	928.7	1.02
Sweep	deg	30	30	ł	30	l _e
Spen	ft	95.5	98.3	1.03	101.1	1.06
Fus. Length	ft	139.5	113.0	0.81	113.ປ	0.81
L/D — Cruise		13.9	11.7	0.846	16.3	1.18
SFC — Cruise	ib br ib	0.211	0.211		0.61ఓ	2.93
Initial Cruise Altitude	ft	36,000	38,000		40,000	
Wing Loading	tb/ft ²	107.8	108.0	1	117.0	
Thrust/Weight	·	0.346	0.450	1.3	0.348	1.0
No. Engines		2	2		2	ļ
Thrust Per Engine	16	16,950	24,730	1.46	18,9 (0	1.12
FAR T.O. Distance	ft	7,885	4,* **0	0.59	7,970	1.02
FAR Ldg. Distance	ft	5,728	5,752		5,754	
2nd Sog Climb		0.0276	0.0583	2.11	0.0365	1.32
Grad. (En.). Out)						İ
Approach Freed	KEAS	136	135		135	1
Weight Fractions	percent					
Fuel		7.5	8.8		18.1	
Payload		29.1	26.0		26.3	
Structure		28.3	27.6		26.1	
Propulsion (Includes		12.8	17.6		9.2	
Fuel System)		1				
Equipment		22.3	20.0		20.3	
and Operating I tems						1
Price	\$10 ⁶	7.85	9.34	1.19	7.51	0.95
DOC	seet n.mi.	1.413 ¹	1.669	1.18	1.276 ²	0.90
Energy Utilization	Btu see: n.mi.	1,339	1,759	1.32	1,288	0.96

¹DOC besed on LH₂ cost = \$3/10⁶ Btu

 $^{^2}$ DOC based on Jet A cost = \$2/10 6 Bru = 24.8 /gal

internal tank design for comparison with the Jet A fueled airplane. For a description of the complete rationale leading to selection of internal tank over external tank designs, see Section 4.6 of the final report of the original study (Reference 1).

As might be expected from the low fuel fraction involved in this small payload, short-range mission, the advantage of using hydrogen fuel is largely mitigated by the penalties involved, i.e., tank, insulation wight, and drag increase due to more wetted area. The factor of 2.93 advantage in specific fuel consumption offered by the LH₂ fueled design, operating on the small fuel weight involved, is not sufficient to overcome the 18 percent disadvantage in L/D. Table VII shows almost equal empty weights for the internal tank LH₂ (Aircraft No. 1) and Jet A (Aircraft No. 3) designs and only an 11 percent higher gross weight for the Jet A fueled design. The purchase price of Aircraft No. 3 is lower by 4 percent and energy used in perfroming the mission is 1-wer by 4 percent.

Table VIII presents a breakdown of costs for the three aircraft. Note that DOC is calculated on the basis of the prescribed fuel costs. Figure 13 shows the DOC versus the fuel cost in \$/GJ (\$/10⁶ Btu) across the lower edge, and for Jet A fuel in ¢'gallon at the top. It indicates the high DOC of the external tank LH₂ and almost equal DOC's for the internal LH₂ and the Jet A aircraft for the same fuel price. In other words, for these aircraft LH₂ cannot cost more than Jet A for equal DOC's.

Selected pages of ASSET computer printouts for the internal tank LK_2 , external tank LH_2 , and Jet A point design aircraft are reproduced in Appendix A-1, A-2 and A-3, respectively.

4.6.1 <u>Noise.</u> - A comparison of noise generated by the two aircraft is presented numerically in Table IX and graphically in Figure 14. The analysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in Section 4.8.2 of the final report of the previous study (Reference 1).

TABLE VIII. COST COMPARISON OF FINAL DESIGN SHORT RANGE AIRCRAFT

2,780 km (1500 n.mi.) - 130 Pax. - M 0.85

		Aircraft No. 1 (Int. LH ₂)	Aircraft No. 2 (Ext. LH ₂)	Aircraft No. 3 (Jet A)
Development \$10 ⁶				
Airframe		21.62	27.47	23.68
Engine (Amortized in prod. cost)		° C	0	0
TOTAL		21.62	27.47	23.68
Production \$10 ⁶				
Airframe Cost	:	5.482	6.222	5.210
Engine (including R&D)		1.530	2.113	1.340
Avionics		0.220	0.220	0.220
R&D Amortization (Airframe)		0.618	0.785 ———	0.677
TOTAL Aircraft Price		7.850	9.340	7.507
Direct Operating Cost & km	$\left(\frac{\$}{\text{n.mi.}}\right)$			
Crew		0.228 (0.422)	0.227 (0.420)	0.228 (0.423)
Maintenance				
Airframe Labor (Including Burden)		0.072 (0.134)	0.078 (0.145)	0.070 (0.129)
Engine Labor (Including Burden)		0.029 (0.053)	0.035 (0.064)	0.045 (0.584)
Airframe Material		0.037 (0.069)	0.043 (0.079)	0.036 (0.067)
Engine Material		0.037 (0.069)	0.051 (0.095)	0.051 (0.095)
Fuel* and Oil $\frac{\$}{km}$	$\left(\frac{\$}{\text{n.mi.}}\right)$	0.296 (0.549)	0.389 (0.721)	0.185 (0.342)
Insurance	(· · · · · · · · · ·	ი.060 (0.111)	0.071 (0.132)	0.058 (0.107)
Depreciation		0.232 (0.430)	0.278 (0.514)	0.222 (0.412)
TOTAL DOC		0.992 (1.837)	$\overline{1.17}$ $\overline{(2.170)}$	0.896 (1.659)
TOTAL Unit DOC \$\frac{\phi}{\seat \text{km}} \frac{\phi}{\seat \text{seat n}}	.mi.)	0.763 (1.413)	0.901 (1.670)	0.689 (1.276)

*Fuel Cost:

Jet A = \$1.90/GJ ($\$2/10^6$ Btu = $24.8\phi/\text{gal}$ = $3.68\phi/\text{lb}$) LH₂ = \$2.85/GJ ($\$3/10^6$ Btu - $15.48\phi/\text{lb}$)

Figure 13. DOC Versus Fuel Cost - 1500 n.mi., 130 Pay Aircraft

TABLE IX. NOISE EVALUATION - SHORT RANGE AIRCRAFT

		<u> </u>	
	1		3
	2		2
	LH ₂	Je	et A
44,570	(98,260)	49,288 (108,6	560)
	79.2	7	9.2
	87.6	3	38.2
	85.5	3	35.7
	93.7	9	94.0
	91.1	90.3	
	98.8	9	9.1
	1		
km ²	st.mi. ²	<u>km</u> ²	st.mi. ²
8.03	3.10	7.56	2.92
6.32	2.44	5.36	2.07
14.35	5.54	12.92	4.99
1.92	0.74	1.94	0.75
.47	0.18	.36	0.14
2.39	0.92	2.30	0.89
	km ² 8.03 6.32 14.35 1.92 .47	LH ₂ 44,570 (98,260) 79.2 87.6 85.5 93.7 91.1 98.8 km ² st.mi. ² 8.03 3.10 6.32 2.44 14.35 5.54 1.92 0.74 .47 0.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Franchised Franchised

Programme of

Bases Charles

1 1

Figure 14. 90 EPNdB Contour Comparison - Short Range Aircraft

Noise limits which are listed in the table for comparison with the values calculated for the subject aircraft are calculated according to the recently published Notice of Proposed Rule Making (NPRM) (Reference 3) for revision of the FAR Part 36 noise certification requirements. The final format and limits of a revised FAR Part 36 will probably be rairly close to the NPRM.

The airplane takeoff performance conditions of 305 m (1000 ft) elevation runway, 32.2°C (90°F) day, are not consistent with the sea level, 25°C (77°F), reference conditions of FAR Part 36, or the proposed change thereto. This will tend to make some of the results conservative. The approach noise predictions, however, are probably slightly too low because airframe noise was not included.

The aircraft designed for the short range mission are essentially equal in noise characteristics. Both are significantly quieter than the limit noise calculated by the proposed standard; viz., 8.4 and 9 EPNdB quieter in flyover, 8.2 and 8.3 EPNdB quieter in sideline, and 7.7 and 8.8 EPNdB quieter in approach respectively, for the LH $_{2}$ and Jet A aircraft.

The LH_2 airplane is slightly noisier in approach for reasons explained in Reference 1. Compared to the Jet A design, it has smaller engines, lower L/D, and in approach it has approximately equal weight. Consequently, the LH_2 aircraft is required to operate its engines at more advanced throttle setting to maintain the 3 degree glide slope. This accounts for the fact Aircraft No. 1 has a slightly larger footprint area, for both the 80 and the 90 EPNdB contours. The area of the 90 EPNdB contour for the LH_2 airplane is 2.39 km² (0.92 mi²) vs 2.30 km² (0.89 mi²) for the Jet A design. These areas are the total of approach plus takeoff. They are less than half the noise goal specified in the study guidelines.

5. MEDIUM RANGE AIRCRAFT

5.1 Design Requirements

The medium range aircraft are designed to meet the following requirements and constraints:

- 5560 km (3000 n.mi.) design range
- 200 passengers plus baggage and cargo for a total payload of 19,960 kg (44,000 lb)
- Maximum FAR takeoff field length of 2438 m (8000 ft)
- Minimum initial cruise altitude of 10,360 km (34,000 ft)
- Reserve fuel per ATA domestic regulations
- Maximum approach speed of 69.4 m/s (135 KEAS) for aircraft weight corresponding to end of design range.

5.2 Configuration Selection

Based on the study of alternate configurations reported in Section 4.2 on Reference 1, the medium range configurations are low-winged aircraft of conventional appearance with four wing-mounted engines. This requires a minimum 2.7 percent gradient during the critical second segment climb with an engine out. The external tank LH₂ design (Aircraft No. 5) has tanks mounted above the wing at the inboard engine position. The internal tank LH₂ aircraft (No. 4) has tanks located fore and aft of the passenger compartment.

5.3 LH, Internal Tank Airplane (Aircraft No. 4)

5.3.1 Aspect Ratio Selection. - The method of generation of data for the parametric aircraft evaluation, and the basis for selection of an aspect ratio of 9.5 for minimum DOC, is the same as previously described for the short range aircraft in Section 4.3.

5.3.2 Configuration Description. - A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 5560 km (3000 n.mi.), 200 passenger aircraft is shown in Figure 15. Specific features of the design are as follows:

Fuselage: The passenger compartment is located in the central section of the fuselage. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the bottom areas. No provision was made for a passageway through or around the forward tank to permit movement between flight station and passenger compartment. The flight station is provided with special lavatory and galley facilities.

Passenger accommodations are shown in Figure 16 which illustrates the 10/90 percent class mix and seat spacing of 0.965 m (38 in.) and 0.86 m (34 in.), respectively, for first class and coach. Six abreast seating is used in first class and eight in coach. Provision for doors, lavatory, and galley facilities is in accordance with the requirements of FAR 25 and current widebody standards. Separate galleys are provided for first class and coach sections.

All cargo is contained in the pressurized fuselage below the cabin floor where space is provided for nine cargo containers plus additional space for loose cargo.

<u>Wing:</u> The wing has an aspect ratio of 9.5, thickness ratio of 10 percent and a sweep angle of 30°. The high lift devices include 15 percent leading edge slats and 35 percent doubleslotted flaps where shown. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing Gear: The main gear consists of two four-wheel bogies mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear is a forward retracting two-wheel strut arrangement.

Hydrogen Tank and Systems: The hydrogen tank structural concept is the integral type. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tank at each end by low heat-leak boron-reinforced fiberglass tubes arranged in an interconnect truss structure. Six-and-one-half inches of closed-cell plastic foam insulation, e.g., Rohacell 41S, covers the tank. This is wrapped by a vapor shield (Kapton) which is to prevent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth aerodynamic surface, and protection from physical damage.

CHARACTERISTICS !	WING	HORIZ, TAIL	VERT. TAIL
AREA M' (SQ FT)	148.8 (1602.3)	19.8 (212.9)	15.6 (167.7)
ASPECT RATIO	9.5	4.5	1.6
SPAN M (FT)	37.61 (123.A)	9.43 (31.0)	4.99 (16.4)
ROOT CHORD M(IN)	6.09 (239.7)	3.22 (126.8)	4.80 (188.8)
TIP CHORD M (IN)	1.83 (71.9)	0.97 (38.0)	1.44 (56.6)
TAPER RATIO	0.3	0.3	0.3
MAC V (IN)	4.34 (170.9)	2.30 (90.4)	3.42 (134.6)
SWEEP RAD (DEG	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (%)	10	9	8
T/C TIP (X)	10	9	9

DESIGN GROSS WT. - 81,403 KG. (179,459 LB.)

POWER PLANT - (2) TURBOFAN

INSTALLED THRUST (EA.) - 66,849 N. (15,029 LB.)

PASSENGERS - 200

FUEL LH, - 9,492 KG (20,924 LB.)

RANGE - 5,559 KM. (3,000 NM.)

OF POOR QUALITY

SECTION A-A

SECTION B-B

BOUP TEXTE

POLDOUR PRANT

General Medium F Internal

-

Figure 15. General Arrangement: Medium Range, LH2 Internal Tank Transport

FIRST CLASS: 20 PAX, .96 m (38 IN) SPACING COACH CLASS: 180 PAX, .86 m (34 IN) SPACING

L-LAVATORY

C-COATS

G-GALLEY

PRECEDING PAGE BLANK NOT FILMED

POLDOUZ FRANCE

Figure 16. Interior Arrangement: 200 Pax Transport, LH₂ Internal Tank

- 5.3.3 <u>Vehicle Data.</u> All weight, performance, and cost data are presented in Section 5.6.
 - 5.4 LH₂ External Tank Airplane (Aircraft No. 5)
- 5.4.1 Aspect Ratio Selection. The aspect ratio selected for this aircraft is 9.5 based on minimum DOC.
- 5.4.2 Configuration Description. The general arrangement of this airc aft design is shown in Figure 17. This configuration is similar to the short range external tank LH₂ aircraft described in Section 4.4.2, with the exception that this design has four engines. Also, since the ratio of tank wetted area to volume is more favorable, only 6.5 inches of tank insulation are required to restrict boil-off to the desired fraction. The seating arrangement is shown in Figure 18. A 10/90 percent first-to-coach class mix is used with a seat spacing of 0.965 m (38 in.) in first, and 0.86 m (34 in.) in coach class. Six abreast seating is used in first class and eight in coach. An under-floor galley is used in this configuration, with elevators as shown to provide access. Five lavatories and provision for overhead coat storage is also shown.
- 5.4.3 Vehicle Data. For performance, weight, and cost data see Section 5.6.
 - 5.5 Jet A Airplane (Aircraft No. 6)
- 5.5.1 Aspect Ratio Selection. The aspect ratio which provides minimum DOC for this aircraft is 9.75.
- 5.5.2 Configuration Description. The general arrangement is shown in Figure 19. The aircraft design is conventional with all fuel carried in the wing box. The fuselage size and arrangment is the same as that of the external tank LH₂ aircraft described in Section 5.4.2.
- 5.5.3 <u>Vehicle Data.</u> All weight, performance, and cost data is presented in Section 5.6.

5.6 Comparison of Medium Range Aircraft

Table X presents a summary of the characteristics of the three medium range, minimum DOC aircraft which meet the specified performance requirements.

Comparison of the external to the internal tank LH₂ aircraft shows that the internal tank version is superior in every significant respect. Aircraft No. 5 is 16 percent heavier in gross weight, 20 percent heavier in empty weight, costs 22 percent more in price and DOC, and uses 20 percent more fuel. Consequently the internal tank LH₂ design (Aircraft No. 4) was selected for comparison with the Jet A aircraft (Aircraft No. 6).

The comparison of the internal tank LH₂ aircraft and the corresponding Jet A fueled design for the medium range mission is also presented in Table X. The LH₂ fueled aircraft shows marginally superior characteristics compared to the Jet A design. It is considerably lighter in gross weight but slightly heavier in empty weight. The purchase price of the Jet A design is 4 percent less, but the LH₂ vehicle uses 5 percent less energy in performing the design missio

Table XI shows a cost comparison breakdown for the three aircraft indicating a slightly higher price for the internal LH $_2$ compared to Jet A. Note that the DOC values shown in the table reflect use of arbitrarily selected values of fuel costs. Figure 20 shows the DOC versus fuel cost in \$/GJ (\$/10 6 Btu.). Equivalent cost of Jet A fuel expressed in \$/gallon in shown at the top of the figure. The figure indicates the higher DOC of the external compared to the internal tank LH $_2$ aircraft and a slight advantage for the internal LH $_2$ compared to the Jet A design for equal fuel cost. Also shown is the average price paid by domestic truck airlines for Jet A fuel in September 1975 (28.6 \$\phi/\text{gallon}\$). At that price a differential of \$.133/GJ (\$0.14/10 6 Btu's) more could be paid for LH $_2$ and still maintain equal DOC's. This would increase slightly as the cost of Jet A increases.

Detailed ASSET computer printouts for aircraft No's. 4, 5, and 6 are shown in Appendix A-4, A-5 and A-6, respectively.

CHARACTERISTICS	WING	HORIZ. TAIL	VERT, TAIL
AREA ME (SQ FT)	174.2 (1874.7)	32.4 (349.2)	24.6 (264.6)
ASPECT RATIO	9.5	4.5	1.6
SPAN METERS(FT)	40.67 (133.4)	12.08 (39.6)	6.28 (20.6)
ROOT CHORD M (IN)	6.12 (240.8)	4.14 (162.8)	6.02 (237.1)
TIP CHORD M (IN)	2.45 96.3	1.24 48.8	1.81 71.1
TAPER RATIO	0.4	0.3	0.3
MAC METERS (IN)	4.54(178.9)	2.95 (116.0)	4.29 (169.0)
SWEEP RAD (DEG)	0.524 (30)	0.524(30)	0.524 (30)
T/C ROOT (%)	0	9	9
T/C TIP (%)	10	9	9

DESIGN GROSS WT. - 94,052 KG (207, 346 LB.)

POWER PLANT - 2 TURBOFAN

INSTALLED THRUST (EA.) - 99,141 N.(22,289 LB.)

PASSENGERS - 200

FUEL LH2 - 12,351 KG. (27,229 LB.)

HANGE - 5,559 KM. (3,000 N.M.)

PRECEDING PAGE BLANK NOT FILMED

FIRST CLASS 20 PAX 96 (38 IN) SPA COACH CLASS 180 PAX .86 M (34 IN) SPA

L-LAVATORY

C-COATS

S-SERVICE CARTS

E-ELEVATOR TO BELOW FLOOR KITCHEN

PRECEDING PAGE BLANK NOT FILMED

30.9 M (1014 FT)

IN) SPACING IN) SPACING

Figure 18. Internal Arrangement: 200 Pax Transport, LH2 External Tank

CHARACTERISTICS	WING	HORIZ. TAIL	VERT. TAIL
AREA M' (SQ FT)	154.5 (1663.5)	27.5 (296.3)	20.6 (221.6)
ASPECT RATIO	9.75	4.5	1.6
SPAN M (FT)	38.82 (127.4)	11.13 (36.5)	5.74 (18.8)
ROOT CHORD M (IN)	6.12 (241.1)	3.81 (149.9)	5.52 (217.3)
TIP CHORD M (IN)	1.84(72.3)	1.14 (45.0)	1.66 (65.2)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	4.73 (171.9)	2.71 (106.8)	3.93 (/54.9)
SWEEP RAD. (DEG)	0.524 (30)	0.524(30)	0.524(30)
T/C ROOT (T)	10	9_	9
T/C TIP (X)	10	9	3

DESIGN GROSS WT. - 98,396 KG. (216,923 LB.)

POWER PLANT - (2) TURBOFANS INSTALLED THRUST (EA.) - 68,023 N. (15,293 LB.)

PASSENGERS - 200

FUEL (JET A) - 27,731 KG. (61,136 LB.)

RANGE - 5,559 KM. (3,000 N.M.)

I. DIM. IN METERS (FEET), OR NOTED NOTE:

Figure 19. General Arrangement:
Medium Range, Jet Fuel

TABLE X. COMPARISON OF FINAL DESIGN MEDIUM RANGE AIRCRAFT (8.1. UNITS)

(5560 km RANGE - 200 PAX - Mach 0.85)

W_{pay} = 19,960 kg

		Aircraft	Aircraft	Ratio:	Aircraft	Ratio:
		No. 4	No. 5	(Ext.)	No. 6	(Jet A)
_		(Int. LH ₂)	(Ext. LH ₂)	(Int.)	(Jet A)	(int. LH2
Gross Wt	kg	81,400	94,050	1.16	98,400	1.21
Total Fuel	kg	9,490	12,350	1.30	27,730	2.92
Block Fuel	kg	7,724	10,000	1.29	22,710	2.94
Operating Empty Wt	kg	51,950	61,740	1.19	50,710	0.98
Enipty Wt	kg	47,420	57,050	1.20	46,270	0.98
Aspect Ratio	_	9.50	9.50		9.75	1
Wing Area	m ²	149	174	1.17	155	1.04
Sweep	deg	30	30		30	
Span	m	38	41	1.08	39	1.03
Fus Length	m	53	44	0.83	44	0.83
L/D — Cruise		13.8	12.3	0.89	15.3	1.11
SFC — Cruise	kg/deN	.215	.215		.627	2.92
Initial Cruise Altitude	m	10,670	11,580		10,360	
Wing Loading	kg/m ²	547	540	Ī	637	
Thrust/Weight	N/kg	3.28	4.21	1.28	2.76	0.84
No. Engines	_	4	4		4	
Thrust Per Engine	N	66,850	99,140	1.48	68,020	1.02
FAR T.O. Distance	m	1,640	1,290	0.79	2,430	1.48
FAR Ldg. Distance	m	1,760	1,755		1,757	
2nd Seg. Climb Gred.		0.094	0.146	1.56	0.066	0.70
(Eng out)			· · · · · · · · · · · · · · · · · · ·			i
Approach Speed	m/s	69	69		69	
Weight Fractions — Per	rcent					
Fuel		11.7	13.1		28.2	ļ
Payload		24.5	21.2		20.3	
Structure		31.0	30.7		27.5	1
Propulsion (Includes		12.5	17.2		7.1	
Fuel System)					1	1
Equipment and		20.3	17.8		16.9	
Operating Items						
Price	\$10 ⁶	13.95	17.07	1.22	13.33	0.98
DOC	seet km	0.7231	0.878 ¹	0.122	0.6502	0.90
Energy Utilization	kJ seet km	833	1,078	1.29	875	1.05

¹DOC based of LH₂ cost = \$2.85/GJ

²DOC based on Jet A cost = \$1.90/GJ

TABLE X. COMPARISON OF FINAL DESIGN MEDIUM: RANGE AIRCRAFT (U.S. CUSTOMARY UNITS)

(3000 n. mi. RANGE - 200 PAX - Mach 0.85)

W_{pey} = 44,000 lbs

		Aircraft	Aircraft	Ratio	Aircraft	Ratio
		No. 4	No. 5	(Ext.)	No. 6	(Jet A)
		(Int. LH ₂)	(Ext LH ₂)	(Int.)	(Jet A)	(int. LH
Grass Wt.	lb	179,460	207,350	1.16	216,920	1.21
Total Fuel	łb	20,920	27,230	1.30	61,140	2.92
B'ock Fuel	lb	17,030	22,040	1.29	50,080	2.94
Operating Empty Wt	lb	114,540	136,120	1.19	111,790	0.98
Empty Wt	lb	104.530	125,770	- 20	102,000	0.98
Aspect Ratio		9.50	9.50]	9.75	
Wing Area	ft ²	1,602	1,875	1.17	1,664	1.04
Sweep	dea	30	30		30	
Span	ft	123.4	133.5	1.08	127.4	1.03
Fus Length	ft	173.4	144.7	0.83	144.7	0.83
L/D - Cruise		13.8	12.3	0.89	15.3	1.11
SFC - Cruise	b /b	0.211	0.211		0.516	2.92
Initial Cruise Altitude	ft	35,000	38,000		34,000	
Ming Loading	lb/ft ²	112.0	110.6	ľ	130.4	
Thrust/Weight	,	0.336	0.430	1.28	0.282	0.84
No. Engines		4	4		4	
Thrust per Engine	lb	15,030	22,290	1.48	15,290	1.02
FAR T.O. Distance	ft	5,382	4,235	0.79	7,975	1.48
FAR Ldg. Distance	ft	5,779	5.757		5,763	
2nd Seg. Climb	••	0.094	0.146	1.55	0.066	0.70
Grad. (Eng out)		1				
Approach Speed	KEAS	135	135		135	
Neight Fractions — Perc	******		,,,,			
Fuel		11.7	13.1		28.2	
Payload		24.5	21.2		20.3	1
Structure .		31,0	30.7		27.4]
Propulsion (Includes		12.5	17.2		7.2	
Fuel System)						
Equipment and		20.3	17.8		16.9	
Operating Items						
Price Price	\$10 ⁶	13.95	17.07	1.22	13.33	0.96
DOC	seat n.mi	1.338	1.626 ¹	1.22	1.203 ²	0.90
Energy Utilization	Btu seet n.mi.	1,464	1,895	1.29	1,537	1.05

¹DOC based on LH₂ cost = \$3/10⁶ BTU = 15.48 ¢/ib

²DOC beend on Jet A cost = \$2/10⁶ Btu = 24.8¢/gal

TABLE XI. COST COMPARISON OF FINAL DESIGN MEDIUM RANGE AIRCRAFT

5560 km (3000 n.mi.) - 200 Pax - Mach 0.85

	Aircraft No. 4 (Int. LH ₂)		Aircraft No. 5 (Ext. LH ₂)		Aircraft No. 6 (Jet A)	
Development \$10 ⁶						
Airframe	36	52.24	46	59.40	39	0.66
Engine (Amortized : prod. cost)		0	_	0		0
TOTAL	36	2.24	46	9.40	39	0.66
Production \$10 ⁶						
Airframe Cost		9.880	1	1.674		9.561
Engine (Including R&D)		2.540		3.559		2.148
Avionics		0.500		0.500		0.500
R&D Amortization (Airframe)		1.035	1.341		1.116	
TOTAL Aircraft Price	1	3.955	17.074		13.325	
Direct Operating $\frac{\$}{km} \left(\frac{\$}{n.mi.}\right)$						
Crew	0.213	(0.395)	0.213	(0.395)	0.214	(0.396)
Maintenance						
Airframe Labor (Including Burden)	0.092	(0.170)	0.103	(0.191)	0.090	(0.167)
Engine Labor (Including Burden)	0.048	(0.089)	0.058	(0.107)	0.072	(0.134)
Airframe Material	0.053	(0.098)	0.063	(0.116)	0.032	(0.096)
Engine Material	0.054	(0.200)	0.076	(0.141)	0.069	(0.128)
Fuel* and Oil	0.499	(0.924)	0.645	(1.195)	0.339	(0.628)
Insurance	0.10	(0.185)	0.123	(0.227)	0.096	(0.177)
Depreciation	0.386	(0.714)	0.475	(0.879)	0.367	(0.679)
TOTAL DOC	1.445	(2.675)	1.756	(3.251)	1.299	(2.405)
TOTAL # (# Seat n.mi.)	0.723	(1.338)	0.878	(1.626)	0.650	(1.203)

*Fuel Cost:

Jet A = \$1.90/GJ ($$2/10^6$ Btu = $24.8 \phi/gal$ = $3.68 \phi/lb$) $IH_2 = $2.85/GJ$ ($$3/10^6$ Btu = $15.48 \phi/lb$)

Figure 29. DOC Versus Fuel Cost - 3000 n.mi., 200 Pax Aircraft

5.6.1 Noise. - A comparison of noise generated by the two aircraft is presented numerically in Table XII and graphically in Figure 21. The enalysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in section 4.8.2 of the final report of the previous study (Reference 1).

As noted in section 4.6.1, noise limits which are listed in the table for comparison with the values calculated for the subject aircraft are those according to the recently published Notice of Proposed Rule Making (Reference 3) for revision of the FAR Part 36 noise certification requirements.

The LH₂ aircraft designed for the medium range mission is appreciably quieter in flyover, but slightly noisier in sideline and during approach than its Jet A fueled counterpart. Both the significantly quieter than the limit noise calculated by the proposed standard. The differences are 15.2 and 12.2 EPNdB quieter in flyover, 12.2 and 13.1 EPNdB quieter in sideline, and 7.4 and 8.3 EPNdB quieter in approach, respectively, for the LH₂ and Jet A aircraft.

The LH₂ airplane is slightly noisier in approach for reasons explained in Reference 1 and reviewed in section 4.6.1. As shown in Table XII, the area of the 90 EPNdB contour for the LH₂ airplane is 3.21 km² (1.24 mi²) vs 3.75 km² (1.45 mi²) for the Jet A design. These areas are the total of approach plus takeoff. They are both less than the noise goal listed in the study guidelines, Table II.

TABLE XII. NOISE EVALUATION - MEDIUM RANGE AIRCRAFT

Airplane No.		4		6	
Number of Engines		14		6	
Fuel		LH ₂		Jet A	
Gross Weight - kg (lb)	81,403 (179,460)	98,395	(216,920)	
FAR 36 Flyover Level (EPNdB)		81.8		85.9	
Limit per NPRM 75-37		97.0		98.1	
FAR 36 Sideline Level		86.4		86.0	
Limit Por NPRM 75-37		98.6	99.1		
FAR 36 Approach Level (EPNdB)		93.1		92.8	
Limit Per NPRM 75-37		100.5		101.1	
Enclosed "Footprint" Contour Area					
	km ²	st.mi.2	km ²	st.mi.2	
80 EPNdB - Takeoff	10.33	3.99	12.48	4.82	
- Approach	8.08	3.12	7.85	3.03	
- Total	18.41	7.11	20.33	7.05	
90 EPNdB - Takeoff	2.41	0.93	3.00	1.16	
- Approach	.80	0.31	.75	0.29	
- Total	3.21	1.24	3.75	1.45	

HINDER OF THE PERSON OF THE PE

:

and the second s

; •

. :

.

. . .

Ī

The second secon

-

Figure 21. 90 EPNdB Contour Comparison - Medium Range Aircraft

LONG RANGE AIRCRAFT

6.1 Design Requirements

The long range aircraft are designed to provide the following performance and meet the specified constraints:

- 9265 km (5000 n.mi.) radius. With full payload and ATA international reserves for each segment, fly 9265 km, land, takeoff unrefueled, and fly another 9265 km segment.
- 400 passengers plus baggage and cargo for a total payload of 39,920 kg (88,000 lb)
- Maximum FAR takeoff field length of 3658 m (12,000 ft)
- Minimum initial cruise altitude of 10,360 m (34,000 ft)
- Maximum approach speed of 69.4 m/s (135 KEAS) at a landing weight equivalent to that at the end of the first 9265 km (5000 n.mi.) segment.

6.2 Configuration Selection

An external tank Li configuration was not evaluated for this long range missi .. be sise the work done in Reference 1 had confirmed that the high drag and weight penalties associated with this design concept would be noncompetitive.

Pesigns of the internal tank LH_2 and the Jet A aircraft are similar to the medium range aircraft described in Section 5.0 with the exception that the passenger cabin of the internal LH_2 aircraft is a two deck arrangement. It is described in a following section.

Both the long range LH₂ and Jet A aircraft have relatively high growth factors because of the high fuel fraction required for the very long, unrefueled flight. During the initial parametric investigation of these aircraft, the constraints imposed on each aircraft were examined to determine which were critical in sizing the aircraft. The results indicated that initial craise altitude was the principal design constraint for the LH₂

design, and that takeoff field length was most significant for the Jet A aircraft. Consequently, an investigation of the sensitivity of each aircraft to these parameters was made. Results are described below for the LH₂ aircraft and in Section 6.4.1 for the Jet A.

6.3 LH₂ Internal Tank Airplane (Aircraft No. 7)

6.3.1 Parametric Investigation. - Results of the study to determine the effect of initial cruise altitude on characteristics of aircraft No. 7 are shown in Table YIII. The data are plotted in Figures 22 and 23. Note that each airplane design listed in Table XIII represents the combination of wing loading (W/S) and thrust-to-weight ratio (T/W) which meets all design constraints, i.e., approach speed, 2nd segment climb gradient, and FAR takeoff field length, and achieves the specified initial cruise altitude. In Figure 22 these results are plotted to determine the minimum direct operating cost (DOC) for each aspect ratio. The locus of minima is indicated by the broken line. It shows that changing the initial cruise altitude of the long range hydrogen-fueled airplane from 10,360 m (34,000 ft) would not result in a significant decrease in DOC. Accordingly, this altitude was retained as a design constraint for the long range aircraft in this study. Also, as shown in Figure 22 the aspect ratio selected for this aircraft on the basis of minimum DOC is 10.

Following this initial investigation, corrections to the ASSET input were made as required due to the reduction of the actual gross weight over the preliminary estimates, and the final aircraft data was generated.

6.3.2 <u>Configuration Description</u>. - A general arrangement drawing of the LH₂ internal tank, Mach 0.85, 9265 km (5000 n.mi.) radius 400 passenger aircraft is shown in Figure 24.

Fuselage: At in the previous LH2 fueled aircraft the passenger compartment is located in the central section of the fuselage in a double deck arrangement. Liquid hydrogen fuel tanks are located fore and aft of the passenger compartment. They occupy the full available cross section of the fuselage, except for provision for protective, crushable structure around the bottom areas.

TABLE XIII. EFFECT OF INITIAL CRUISE ALTITUDE ON LH₂ AIRCRAFT (S.I. UNITS) (Aircraft No. 7)

Initial			Aspect Ratio				
Cruise Alt10 ³ m		8	9	10	12		
	W/S — kg/m ²	575	571	569	565		
	T/W — N/kg	0.33	0.32	0.31	0.29		
	DOC - geat km	.803	.784	.776	.788		
	W _G - kg	282,050	278,740	278,420	284,320		
	Cost - \$10 ⁶	41.63	41.56	41.8	43.3		
	FAR T.O. — m	1,646	1,670	1,707	1,798		
11.58	2nd Seg. Grad.	0.079	0.0823	0.085	0.085		
	V(Appr.) — m/s	69	69	68	69		
	W/S — kg/m ²	575	573	570	566		
	T/W - N/kg	0.31	0.30	0.29	0.27		
	DOC - geat km	.786	.772	.767	.777		
	W _G - kg Cost - 10 ⁶	277,510	275,290	275,93C	283,860		
	Cost - 10 ^b	40.53	40.54	40.96	42.7		
10.97	FAR T.O m	1,774	1,804	1,847	1,963		
	2nd Seg. Grad.	0.067	0.0715	0.073	0.073		
	V(Appr.) – m/s	69	69	69	<u>69</u>		
	W/S kg/m ²	576	574	571	568		
	T/W - N/kg	0.29	0.28	0.27	0.25		
	DOC - seat km	.776	.766	.761	.781		
	1 770 KV	274,880	273,970	274,750	285,630		
	Cost - \$10°	39.7	39.86	40.28	42.42		
10.36	FAR T.O. — m	1,914	1,959	2,012	2,149		
	2nd Seg. Grad.	0.056	0.0605	0.062	0.062		
	V(Appr.) m/s	69	<u>. 69</u>	69	69		
	W/S — kg/m ²	578	575	574	570		
	T/W N/kg	0.27	0.26	0.25	0.24		
	DOC - seat km	.769	.764	.767	.789		
	1 VIO NI	273,430	274,340	277,470	288,800		
0.75	Cost - \$10 ⁶	38.98	39.37	40.1	42.56		
9.75	FAR T.O. — m	2,088	2,143	2,210	2,262		
	2nd Seg. Grad. V(Appr.) — m/s	0.045 69	0.048 69	√.05 69	0.0565 69		
	W/S - kg/m ²						
		579	577	575	571		
	T/W - N/kg	0.256	0.25	0.24	0.233		
	DOC - geat km	.772 275,240	.766	.774	.795		
	W _G - kg Cost - \$10 ⁶	38.83	275,520 39.28	280,640 40.18	291,670 42.75		
	FAR T.O. — m	2,234	2,251	2,338	2,359		
9.14	2nd Seg. Grad.	0.0364	0.043	0.045	0.0525		
	V(Appr.) m/s	69	69	69	69		
	W/S — kg/m ²	580	578	577	572		
	T/W — N/kg	0.25	0.247	0.235	0.23		
	DOC -	.775	.768	.780	.798		
	DOC - geat km W _G - kg	276,520	276,240	282,590	292,570		
8.53	Cost - \$10 ⁶	38.2	39.3	42.8	42.82		
	FAR T.O m	2,304	2,292	2,377	2,393		
	2nd Seg. Grad.	0.033	0.0413	0.042	0.051		
	V(Appr.) - m/s	69	69	69	69		

TABLE XIII. EFFECT OF INITIAL CRUISE ALTITUDE ON LH₂ AIRCRAFT (U.S. CUSTOMARY UNITS) (Aircraft No. 7)

Initial Cruise		Aspect Ratio				
Cruise Alt10 ³ m		8	9	10	12	
	W/S - 1b/ft ²	117.7	117	116.5	115.7	
	T/W	0.33	0.32	0.31	0.29	
	DOC - Seat n.mi.	1,4867	1.4527	1.437	1.46	
	W - Ib	621,800	614,500	613,800	626,800	
38	W _G - Ib Cost - \$10 ⁶	41.63	41.56	41.8	43.3	
-	FAR T.O. — ft	5,400	5,480	5, 6 00	5,900	
	2nd Seg. Grad.	0.079	0.082	0.085	0.085	
	V(Appr.) — KEAS	135	135	135	135	
	W/S - lb/ft ²	117.82	117.3	116.7	116	
	T/W	0.31	0.30	0.29	0.27	
	DOC - Seat n.mi.	1.456	1.43	1.42	1.438	
	Wo - Ib	611,800	606,900	608,300	625,800	
36	W _G - Ib Cost - \$10 ⁶	40.53	40.54	40.96	42.7	
	FAR T.O. — ft	5,820	5,920	6,060	6,440	
	2nd Seg. Grad.	0.067	0.072	0.073	0.073	
	V(Appr.) - KEAS	135	135	135	135	
	W/S - Ib/ft ²	118	117.5	117	116.4	
	T/W	0.29	0.28	0.27	0.25	
	DOC - Seat n.mi.	1,437	1.418	1.410	1 446	
	Wo - Ib	606,000	604,000	605,700	629,700	
34	W _G - Ib Cost - \$10 ⁶	39.7	39.86	40.28	42.42	
	FAR T.O. – ft	6,280	6,426	6,600	7,050	
	2nd Seg. Grad.	0.056	0.060	0.062	0.062	
	V(Appr.) – KEAS	135	135	135	135	
	W/S - lb/ft ²	118.3	117.8	117.5	116.75	
	T/W	0.27	0.26	0.25	0.24	
	DOC - Seat n.mi.	1.4243	1.415	1.42	1.462	
32	Wa - 1b	602,800	604,300	611,700	636,700	
	Cost - \$10°	38.98	39.37	40.1	42.56	
	FAR T.O. — ft	6,850	7,030	7,250	7,420	
	2nd Seg. Grad.	0.045	0.048	0.05	0.056	
	V(Appr.) – KEAS	135	135	135	135	
	W/S — lb/ft ²	118.5	1:9.1	117.8	117	
	T/W	0.256	0.25	0.24	0.233	
	DOC - Seat n.mi.	1.429	1.418	1.4325	1.473 643,000	
	1 VV - ID	606,800	607,400	618,700	42.75	
	Cost — \$10 ⁶	38.83	39.28	40.18 7,670	7,740	
30	FAR T.O. – ft	7,330	7,385	•	0.052	
	2nd Seg. Grad. V(Appr.) – KEAS	0.036 135	0.043 135	0.045 135	135	
	<u> </u>		118.3	118.2	117.1	
	W/S - lb/ft ²	118.8 0.25	0.247	0.235	0.23	
	T/W	1,4345	1.422	1.445	1.478	
00	DOC - Seat n.mi.		609,000	623,000	645,000	
28	1 710 - 117	609,600	39.3	42.B	42.82	
	Cost - \$10 ⁶	38.2	39.3 7,520	7,800	7,850	
	FAR T.O. — ft 2nd Seg. Grad.	7,560 0.033	7,520 0.041	0.042	0.051	
	200 500 [4780]	: U.U.S.S	U.U9 I	U.U74	V.VU!	

Figure 22. Effect of Aspect Ratio and Initial Cruise Altitude on Direct Operating Cost of the Long Range LH2 Aircraft

Figure 23. Effect of Initial Cruise Altitude on Performance and Cost of the Long Range LH_2 Aircraft

No provision was made for a passageway through or around the forward tank to permit movement between flight station and passengers. In the absence of such communication, the flight station is provided with special lavatory and galley facilities.

Passenger accommodations are shown in Figure 25 which shows the 10/90 percent class mix and seat spacing of 0.965 m (38 in.) and 0.86 m (34 in.) respectively, for first class and coach. Seven abreast seating is used in first class and 10 abreast in coach. The arrangement includes doors, lavatory and galley facilities in keeping with the requirements of FAR 25 and current widebody standards. Stairwells at each end of the cabin allow access to either deck in flight.

All cargo is contained in the pressurized fuselage, below the lower deck, where space is provided for cargo containers plus an additional 17 m^3 (600 ft³) for loose cargo.

<u>Wings:</u> The wing has as aspect ratio of 10, and a sweep of 30°. The high lift devices include 15 percent leading edge slats and 35 percent double-slotted flaps where shown. Spoilers are used in flight for direct lift control, and for landing ground run deceleration. Conventional ailerons are fitted outboard of the flaps.

Landing Gear: The main gear consists of two six-wheel bogies mounted aft of the rear spar. They retract inward into the fuselage. The space between the retracted gear contains the hydraulic service center. The forward gear is a two-wheel strut arrangement retracting forward under the flight station.

Hydrogen Tank and Systems: The hydrogen tank structural concept selected for purposes of this study is the integral type described in Section 3.1.2. All aircraft structural loads in addition to the fuel dynamic and pressure loads are taken by the tank shell. Loads are transferred from the vehicle structure to the tank at each end by low heat-leak boron reinferced fiberglass tubes arranged in an interconnect truss structure. Seven inches of closed-sell plastic foam insulation, e.g., Rohacell 41S, covers the tank. This is then wrapped by a vapor shield (Kapton) which is to pr vent cryopumping in event a crack develops in the foam insulation. A fiberglass reinforced composite layer covers the entire tank section to provide a smooth rerodynamic surface and protection from physical damage.

The tank is thus generally protected from mechanical damage by the foam insulation and its fiberglass cover. Further special protection from both foreign object damage and damage from maneuvers such as over-rotation or tail scrape is provided on the bottom of the tank. An energy absorbing, aluminum honeycomb structure is supported from

CANAL MALE LIFE LIFE LIFE LIFE LIFE LIFE LIFE LI		HORIZ. TAIL	VERT. TAIL
A PART (A FT)	466.4 (5020.2)	65.0 (699.6)	68.6 (738.0)
	10	4.5	1.6
SPAN M (FT)	68.29 (224.1)	17.10 (56.1)	10.47 (34.4)
ROOT CHORD M(IN)	10.51 (413.6)	5.85 (230.2)	10.06 (396.1)
TIP CHORD M (IN	3.15 (124.1)	1.75 (69.1)	3.02 (118.8)
TAPER RATIO	0.3	0.3	0.3
MAC M (IN)	7.49 (294 8)	4.17 (164.1)	7.17 (282.3)
SWEEP RAD. (DEG	0.524 (30)	0.524 (30)	0.524 (30)
T/C ROOT (X)	10	9	9
T/C TIP (X)	10	9	9

DESIGN GROSS WT . 266.429 KG (587,365 LB.)

POWER PLANT - (2) TURBOFANS

INSTALLED THRUST (EA.)-175,042 N (39,353 LB.)

PASSENGEPS · 400

FUEL (LH2) - 68,424 KG. (150,847 LB)

RANGE - 3,265 KM RADIUS (5,000 M.M. RADIUS)

SECTION B.B

I. DIM. IN METERS (FEET), OR NOTED NOTE:

Figure 24. General Arrangement:
Long Linge, Internal
Tank LH2 Transport

EOFDOOR SAME

SEATING ARRANGEMENT

TOTAL PASSENGERS = 400
FIRST CLASS = 40 /.96 m (38 IN) S
COACH CLASS = 360 /.86 m (34 IN) S

DRIGINAL PAGE IS OF POOR QUALITY

BOEDING PAGE BLANE NOR BILLIE

PANGEMENT

.ā = 400

-/.96 m (38 IN) SPACING

7/.86 m (34 IN) SPACING

Figure 25. Interior Arrangement: 400 Pax Transport, LH₂ Fuel

POLDOUR FIAM 2

the tank bottom. In this manner protection is also pro ided for plumbing, electrical wiring, and control systems routed adjacent to the tank.

The tank and mounting is designed for both inflight structural and fatigue loads (fail safe considerations) and to withstand the emergency crash load requirements of FAR 25 with a full fuel load.

6.3.3 <u>Vehicle Pata.</u> - All weight, performance, and cost data are presented in Section 6.5.

6.4 Jet A Airplane (Aircraft No. 8)

6.4.1 Parametric Investigation. - The results of the preliminary parametric investigation are shown in Figure 26. The data show that the takeoff field length is critical since it exceeds the original constraint of 3048 m (10 000 ft). It also indicates that minimum DOC is achieved with an aspect ratio of 11. This aspect ratio was then used for the following tradeoff study. It should be noted that because the original preliminary assessment of the design characteristics of aircraft No. 7 indicated it might have a gross weight well in excess of 453,600 kg (1 million 1b), it was planned that the airplane would have six engines. Subsequently, the final design was changed to four engines when it became apparent the thrust requirement could be met without resorting to excessively large engines.

At the conclusion of the initial parametric investigation, the question of the validity of the original takeoff field length specification of 3048 m (10,000 ft) was raised by the NASA technical monitor as perhaps being unduly restrictive. For an aircraft contains size and purpose, it is logical to assume it would characteristically operate from the major airports of the world where long, nodern runways would be available. Accordingly, a special study was made to determine the effect various field lengths ranging from 2740 m (9000 ft) to almost 4880 m (16,000 ft) would have on the long range Jet A aircraft design and performance. Figure 27 presents the results of this investigation. A series of aircraft designs was generated, each of which meets the guideline constraints, except for the specified field length. For each, the DOC, gross weight, initial cruise altitude, second

Figure 26. Aspect Ratio Selection for Long Range Jet A Aircraft

: *

Figure 27. Recommended Field Length for the Long Range, Jet A Aircraft

The state of the s

segment climb gradients, and aircraft production price are all plotted to show the effect of FAR takeoff field length.

In addition, data on existing runway lengths and reference conditions of some of the major airports in the world which have high traffic densities was compiled and tabulated. These results are shown in Table XIV. Evaluation of these data showed that all the airports marked with an asterisk could be used if the subject airplane was capable of taking off from Miami which has a runway length of 3048 m (10,000 ft), elevation of 3 m (10 ft), and a reference temperature of 28.9°C. If these runway conditions are translated to the conditions of this study, i.e., 304.8 m (1000 ft) elevation and 32.2°C (90°F), the equivalent maximum allowable takeoff distance becomes approximately 3658 m (12,000 ft). This recommended field length is indicated on Figure 27.

Examination of the figure shows that considerable improvement in all of the vehicle parameters can result from increasing takeoff field length to 3658 m (12,000 ft), from the 3048 m (10,000 ft) originally proposed, and that not a great deal of further improvement would be realized if the field length requirement increased still further at the cost of eliminating the capability of operating from many of the world's major airports. Accordingly, a change to the design constraint of 3658 m (12,000 ft) FAR takeoff distance was adapted for the Jet A long range aircraft of this study.

The characteristics of the final vehicle design were generated using this constraint after modifying the ASSET inputs as required by the reduction in the vehicle size from the original estimate. For example, four engines were specified instead of the original six.

6.4.2 Configuration Description. - The general arrangement of this aircraft is shown in Figure 28. The arrangement is conventional with the exception of the main gear which consists of four six-wheel bogies mounted aft of the rear spar. The outboard bogies retract inward into the fuselage, while the inboard bogies retract aft into the fuselage. The nose gear consists of dual wheels which retract forward. All fuel is carried in the wing box and wing center section.

TABLE XIV. MAJOR AIRPORT RUNWAY LENGTHS AND REFERENCE CONDITIONS

	Runway m	Length (ft)	Ele m	vation (ft)	Ref.	Temp.†
ATLANTA	3,048.	(10,000)	313.	(1,026)	30.0	(86.0)
* CHICAGO	3,556.	(11,667)	203.	(666)	23.7	(74.7)
* DALLAS - FT. WORTH	3,477.	(11,408)	183.	(600)	30.8	(87.4)
* HONOLULU	3,771.	(12,373)	4.	(13)	26.5	(79.7)
* LOS ANGELES	3 , 685.	(12.090)	38.	(126)	23.7	(74.7)
* MIAMI	3,200.	(10,500)	3.	(10)	28.9	(84.0)
MINNEAPOLIS	3,048.	(10,000)	256.	(840)	29.0	(84.2)
NEW ORLEANS	2,812.	(9,226)	.9	(3)	29.6	(85.3)
* NEW YORK (JFK)	4,441.	(14,571)	4.	(13)	24.8	(76.6)
* SAN FRANCISCO	3,225.	(10,581)	3.	(10)	17.8	(64.0)
* WASHINGTON (DULLES)	3,505.	(11,500)	95.	(3-2)	26.9	(80.4)
* AMSTERDAM	3,452.	(11,326)	<u>l</u> i.	(13)	17.8	(64.0)
* BRUSSELS	3,638.	(11,936)	55.	(180)	19.1	(66.4)
* COPENHAGEN	3,599.	(11,808)	5.	(16)		
* FRANKFURT	3 , 899.	(12,792)	112.	(367)	20.9	(69.6)
* GENEVA	3,898.	(12,790)	430.	(1,411)	21.5	(70.7)
* LONDON	3,657.	(12,000)	24.	(79)	19.0	(66.2)
* MOSCOW	3,499.	(11,480)	204.	(670)	21.0	(69.8)
* MUNICH	3,998.	(13,124)	530.	(1,740)	19.2	(66.6)
* PARIS (ORLY)	3,649.	(11,972)	89.	(292)	21.0	(69.8)
* ROME	3,899.	(12,792)	2.	(7)	25.4	(77.7)

^{*}REF. TEMP. = Mean 24-hour temperature for hottest month of year plus one-third of difference between maximum daily mean and 24-hour mean temperature.

^{*}Airports from which subject aircraft could operate if designed to 3658 m (12,000 ft) FAR runway length, specified conditions.

The interior arrangement is shown in Figure 29 with a 10/90 percent first-to-coach class mix with 6 abreast, 0.96 m (38 in.) seat spacing in first class and 8 abreast, 0.86 m (34 in.) spacing in coach. A below-deck galley is used. Doors and lavatories are provided in accordance with requirements of FAR 25 and current industry standards. Storage for carry-on luggage and passenger belongings suitable for a 400 passenger aircraft is also provided.

6.4.3 <u>Vehicle Data.</u> - All performance, weight, and cost data is shown in Section 6.5.

6.5 Comparison of Long Range Aircraft

Table XV presents a summary of significant design and performance data for the LH_2 and Jet A long range aircraft. The table also shows a ratio which compares the value of each significant parameter listed for the Jet A design with that of the LH_2 fueled airplane. Copies of pertinent sheets of the ASSET computer printouts for each of these final design aircraft are presented in Appendix A-7 and A-8 for more detailed information.

Generally, comparing the values listed in the columns of Table XV, it is seen that the LH_2 aircraft offers significant advantage in almost every category of comparison for this long range mission. The LH_2 aircraft is lighter, requires a smaller wing but a larger fuselage, uses smaller engines, can takeoff in shorter distances, and uses 25 percent less energy per seat mile in performing its mission.

The penalties occasioned by the density and cryogenic nature of liquid hydrogen, reflected in the values shown for Lift/Drag are more than overcome by the advantage of the heating value of the fuel, indicated by the values shown for specific fuel consumption (SFC).

The heating values of the fuels used in this study are 42,760 kJ/kg (18,400 Btu/lb) for Jet A, and 119,900 kJ/kg (51,590 Btu/lb) for hydrogen. This is a ratio of 2.8 in favor of hydrogen which accounts for the principle portion of the difference in specific fuel consumptions (SFC) listed in the

CHARACTERISTICS	MANAG	HORIZ TAIL	VERT. TAIL
AREA M2 (SQ FT)	661 91 (7125)	7 107112	70.84 (7266)
ASPECT RATIO	11	4.5	16
SPAN M (FT)		1780 (584)	1064 (349)
ROOT CHORD M(IN)	11 93 (4698)	6.08 (2394)	10.24 (4031)
TIP CHORD M (IN)	3 58 (141.0)	1.82 (7/8)	3.07 (120 9)
TAPER RATIO	03	0.3	0.3
MAC M (IN)	851 (3349)	4 34 (1707)	734 (2873)
SWEEP =40. (DEG)	0.524 (30)	0 524 (30)	0.524 (30)
T/C ROOT (%)	10	9	9
T/C TIP (%)	10	9	9

DESIGN GROSS WT - 450,206 KG (997,517 LB)

POWER PLANT-(4) TUROFANS

INSTALLED THRUST (EA) 220,723 N (49,625L8)

PASSENGERS - 400

FUEL (JET A) - 237,685 KG (523,996 LB)

RANGE - 9,265 KM RADIUS (5,000 N.M. RADIUS)

ORIGINAL PAGE IS OF POOR QUALITY

TOLDOUGH PRODUCT

T. William Company

0.227 RAQ (13°)

I. DIM. IN METERS (FEET), OR NOTED NOTE:

Figure 28. General Arrangement:
Long Range, Jet A
Fuel Transport

- L-LAVATORY
- C-COATS
- E-ELEVATOR TO BELOW FLOOR KITCHEN
- S-SERVICE CART
- SC- SERVICE CENTER

PRECEDING PAGE BLANK NOT FILMED

FIRST CLASS: 40 PAX, .96 m (38 IN) SPACING COACH CLASS: 360 PAX, .86 m (34 IN) SPACING

- 57.15 m (187.5 FT)-

Figure 29. Interior Arrangement: 400 Pax Transport, Jet A Fuel

TABLE XV. COMPARISON OF FINAL DESIGN LONG RANGE AIRCRAFT (S.I. UNITS)

(9265 km radius - 400 PAX. - Mach 0.85) (Payload - 39,920 kg)

		Aircraft	Aircraft	Rat o
		No. 7	No. 8	(Jet A)
		(Int. LH ₂)	(Jet A)	(Int. LH ₂)
		(1110. 2.1.2)		, ₂ ,
Gross Wt	kg	266,430	450,200	1.69
Total Fuel Wt	kg	68,430	237,690	3.47
Block Fuel Wt	kg	59,610	208,720	3.50
Operating Empty Wt	kg	158,090	172,600	1.09
Empty Wt	kg	147,700	159,280	1.08
Aspect Ratio	2	10	11	_
Wing Area	m ²	466	662	1.42
Sweep	deg	30	30	
Span	m	68	85	1.25
Fuselage Length	m	77	69	0.89
L/D - Cruise		16.8	20.3	1.21
SFC - Cruise	$\frac{\text{kg}}{\text{hr}}$ /daN	0.203	0.593	2.93
Initial Cruise Altitude	m o	10,360	10,060	
Wing Loading	m kg/m ²	571	680	
Thrust/Weight	N/kg	2.63	1.96	0.75
No. Engines		4	4	
Thrust Per Engine	N	175,000	220,700	1.26
FAR T.O. Distance	m	2,107	3,649	1.73
FAR Ldg. Distance	m	1,795	1,788	
2nd Seg Climb Grad. (Eng Out)		0.066	0.034	0.52
Approach Speed	m/s	69	69	
Weight Fractions	percent			
Fuel	•	25.7	52.8	1
Payload		15.0	8.9	1
Structure		32.6	24.6	
Propulsion (Includes Fuel Sy	stem)	14.3	5.3	
Equipment and Operating Item	8	12.4	8.4	
Price	\$10 ⁶	38.89	39.99	1.03
DOC	scat km	0.7381	0.723 ²	0.98
Energy Utilization	kJ seat km	96H	1207	1.25
Max. Nonstop Range ³	km	19,590	19,980	1.02

 $^{^{1}}$ DOC based on LH₂ cost = \$2.85/GJ

i:

²DOC based on Jet A cost = \$1.90/GJ

³Including reserve fuel requirement.

TABLE XV. COMPARISON OF FINAL DESIGN LONG RANGE AIRCRAFT (U.S. CUSTOMARY UNITS)

(5000 n.mi. radius - 400 PAX. - Mach 0.85) (Payload = 88,000 lb)

	ray10au - 00,00			
		Aircreft No. 7 (Int. LH ₂)	Aircraft No. 8 (Jet A)	Ratio (Jet A) (Int LH ₂)
Gress Wt	lb	587,370	992,520	1.69
Total Fuel Wt	1b	150,850	524,000	3.47
Block Fuel Wt	lb	131,420	460,150	3.50
Operating Empty Wt	16	348,520	380,520	1.09
Empty Wt	1b	325,630	351,150	1.08
Aspect Ratio		10	11	
Wing Area	ft ²	5020	7125	1.42
Sweep	deg	30	30	
Span	ft	224.1	279.9	1.25
Fuselage Length	ft	253.9	225.0	.89
L/D - Cruise		16.8	20.3	1.21
SFC - Cruise	(lb/hr)/lb	0.199	0.583	2.93
Initial Cruise Altitude	ft	34,000	33,000	
Wing Loading	lb/ft ²	117.0	139.3	
Thrust/Weight	•	0.268	0.200	0.75
No. Engines		4	4	
Thrust Per Engine	16	39,350	49,630	1.26
FAR T.O Distance	ft	6914	11,970	1.73
FAR Ldg. Distance	ft	5890	5867	
2nd Seg Climb Grad. (Eng Ou		0.066	0.034	0.52
Approach Speed	KEAS	135	135	
Weight Fractions	percent			
Fuel	•	25.7	52.8	
Payload		15.9	8.9	
Structure		32.6	24.6	
Propulsion (Includes Fuel	System)	14.3	5.3	
Equipment and Operating I		12.4	8.4	
Price	\$10 ⁶	38.89	39.99	1.03
DOC	d:	1.3661	1.339 ²	0.98
200	scat n.mi.	11,500		.,,,
ENERGY UTILIZATION	Btu	1695	2122	1.25
	seat n.mi.			
Max Nonstop Range ³	n.mi.	10,571	10,780	1.02

¹DOC based on LH₂ cost = \$3/10⁶ Btv = 15.48\$/1b

²DOC based on Jet A cost = \$2/10⁶ Btu = 24.8\$/gal

³ Including reserve fuel requirement

tables. The ratio of cruise SFC's, Jet A-to-LH₂, listed in Table XV is 2.93. The extra advantage given the hydrogen system over the factor of 2.8 expected from comparison of the heating values, is mostly due to the requirement to cool the high pressure turbine stages of the Jet A engine with air bled from its compressor---air on which energy has been expended and which is not available for performing useful work.

The ratio of block fuel consumed by aircraft using each type of fuel is in the ratio of 3.50. It might normally be expected that the fuel used to perform a mission would be in approximately the same ratio as the SFC's realized in cruise. Actually, there is a leverage factor which works to the advantage of the LH₂ aircraft. Because that aircraft user less fuel, it has a lower gross weight to accelerate and to lift to cruise conditions. This advantage, reduced somewhat by the lower L/D of the hydrogen fueled aircraft, produces an iterative fuel saving which compounds to produce the final block fuel weight relationship listed. The lower gross weight also permits a reduction in structure and propulsion weight in spite of the hydrogen tankage and insulation weight penalties.

For purposes of providing data for plotting in a late, section (Section 8), the conventional, non-stop range capability of both the long range aircraft was calculated and the results are shown as the bottom entry of Table X'.

Table XVI is a summary of costs calculated for the subject aircraft. The basis for these cost estimates was presented in Sect..ons 4.4 and 4.7 of Reference I. In the comparison shown the LH₂ aircraft are seen to cost less, both to develop and to produce, than the Jet A. The price of the Jet A aircraft is 3 percent greater than the LH₂ airplane.

In considering the development costs, it should be noted that the cost of basic hydrogen technology development was assumed to be funded separate and apart from the traditional aircraft development costs represented in the table. As discussed in the Reference 1 report, Section 6.0, a six year program is suggested during which such technology development

TABLE XVI. COST COMPARISON OF FINAL DESIGN LONG RANGE AIRCRAFT

9265 km (5000 n.mi. radius - 200 Pax. - Mach 0.85)

	Aircraf	t No. 7 LH ₂)	A'rcraí (Jet	t No. 8
Development - \$10 ⁶				
Airframe	919	.64	1221	.79
Engine (Amortized in prod. cost)		0		0
TOTAL	919	.64	1221	.79
Production - \$10 ⁶				1
Airframe Cost	29	.975	30	.111
Engine (Including R&D)	5	.789	5	.884
Avionics	0	.500	o	.500
R&D Amortization (Airframe)	2	.628	3	.491
TOTAL AIRCRAFT PRICE	38	.892	39	.986
Direct Operating Cost - $\frac{\$}{km}$ $\frac{\$}{(n,mi.)}$				
Crew	0.208	(0.385)	0.208	(0.386)
Maintenance				
Airframe Labor (Including Burden)	0.194	(0.359)	0.204	(0.377)
Engine Labor (Including Burden)	0.073	(0.135)	0.129	(0.238)
Airframe Material	0.126	(c.234)	0.131	(0.242)
Engine Material	0.113	(0.209)	0.173	(0.320)
Fuel* and Oil	1.154	(2.137)	0.933	(1.728)
Insurance	0.225	(0.416)	0.232	(0.429)
Depreciation	0.858	(1.589)	0.883	(1.635)
TOTAL DOC -	2.951	(5.465)	2.892	(5.355)
TOTAL UNIT DOC - seat kin (seat n.mi.)	0.738	(1.366)	0.723	(1.339)

*Fuel Cost:

Jet A = \$1.90/GJ (\$2/10⁶ Btu = 24.8 ϕ /gal = 3.68 ϕ /1b)

LH₂ = \$2.85/GJ (\$3/10⁶ Btu = 15.48 ϕ /1b)

would occur before a decision need be made to proceed with development of a commercial transport airplane. The cost of this basic technology development is not included in the costs shown in Table XV.

Direct operating cost (DOC) is very sensitive to fuel cost. As noted in Table XVI, the fuel prices which were specified for use in this study to establish baseline DOC's were \$1.90 per GJ for Jet A (equivalent to \$2/10⁶ Btu=24.8¢/gal or 3.68¢/lb), and \$2.85 per GJ for LH₂ (equivalent to \$3/10⁶ Btu's or 15.48¢/lb). The sensitivity of DOC to fuel cost is shown in Figure 30 for the long range vehicles. The price of Jet A fuel expressed in cents per gallon is shown for reference across the top of the grid.

To provide perspective for these comparisons, in September, 1975, U.S. international air carriers paid an average of $36.6\phi/\text{gal}$ for Jet A fuel. The horizontal dotted line in Figure 30, shows that from the Jet A price of $36.6\phi/\text{gal}$, airlines could afford to pay \$1.00 more per GJ (\$1.05/10⁶ Btu) for LH₂ and still operate at equal DOC. This price differential increases with fuel costs as shown by the divergence of the fuel cost lines.

6.5.1 Noise. - A comparison of noise generated by the two aircraft is presented numerically in Table XVII and graphically in Figure 31. The analysis was made using the takeoff and approach paths generated for the respective aircraft in the ASSET program, and using engine parameters and procedures described in section 4.8.2 of the final report of the previous study (Reference 1).

The LH₂ aircraft designed for the long range mission is appreciably quieter in flyover, but slightly noisier in sideline and approach, compared with its Jet A fueled counterpart. The LH₂ airplane is slightly noisier in approach for reasons previously explained. Both are significantly quieter than the limit noise calculated by the proposed standard, NPRM 75-37. The differences are 10.1 and 6.5 EPNdb quieter in flyover, 8.1 and 10.2 EPNdb quieter in sideline, and 6.0 and 9.5 EPNdb quieter in approach respectively, for the LH₂ and Jet A aircraft.

Figure 30. DOC vs Fuel Cost - 5000 n.mi. radius, 400 Pax Aircraft

TABLE XVII. NOISE EVALUATION - LONG RANGE AIRCRAFT

				
Airplane No.		7		8
Number of Engines		4		ļţ
Fuel		LH ₂		Jet A
Gross Weight kg (1b)	266,430	(587,370)	450,210	(992,520)
Far 36 Flyover Level (EPNdB)		93.3		99.5
Limit Per NPRM 75-37		103.4		106.0
FAR 36 Sideline Level (EPNdB)		93.9		92.8
Limit Per NPRM 75-37		102.0		103.0
FAR 36 Approach Level (EPNdB)		97.9		95.5
Limit Per NPRM 75-37		103.9		105.0
Enclosed "Footprint" Contour Area				
	km ²	st.mi.2	km ²	st.mi.2
80 EPNdB - Takeoff	35.74	13.80	50.38	19.45
- Approach	25.66	9.91	18.31	7.07
- Total	61.40	23.71	68.69	26.52
90 EPNdB - Takeoff	8.52	3.29	11.16	4.31
- Approach	3.13	1.21	1.84	0.71
- Total	11.65	4.50	13.00	5.02
<u> </u>				

Figure 31. 9 EPNdB Contour Comparison - Long Range Aircraft

, 40, man

Figure Contract of the Contrac

1

7

07

U

一方のなっては、「これのでは、「一方のない」という。

Aircraft No. 7 has a smaller total footprint area, for both the 80 and 90 EPNdb contours. As shown in Table XVII, the area of the 90 EPNdb contour for the LH_2 airplane is 1°.65 km² (4.5 mi²) vs 13.0 km² (5.02 mi²) for the Jet A design. These areas are the total of approach plus takeoff.

6.6 Sensitivity Factors

The sensitivity of the large aircraft to increases in inert weight was briefly explored. Tables XVIII and XIX present the data which were generated for Aircraft Nos. 7 and 8, respectively. In each case, data for the baseline aircraft are presented, followed by columns representing changes in the parameters which would result from modifications in the design of the aircraft assuming 4536 kg (10,000 lb), was added to the inert weight before design freeze. For example, if detail design of the aircraft indicated that the structure was going to be 4536 kg (10,000 lb) heavier than the original allocation, in order to perform the design mission the aircraft would have to grow. The results are shown in the tables for selected parameters for both the LH₂ and the Jet A fueled aircraft.

The effect of this type of change is indicated in terms of growth factors in the tables. Gross weight and block fuel weight changes are expressed per unit of inert weight increase which caused the change. The change in airplane purchase price is also evaluated per unit of original inert weight increase. Changes in direct operating cost and energy utilization are both expressed in terms of the total inert weight change which perturbed the original design. Each of these growth factors is an expression of the rate of change of the given parameter as a function of a specified unit change in the variable.

The significant conclusion from this exercise follows from comparing growth factors for the LH₂ airplane from Table XVIII with corresponding factors for the Jet A design from Table XIX. The Jet A airplane is significantly more sensitive to changes in each of the parameters than is the LH₂ design. For instance, the gross weight of the Jet A airplane must increase 2.48 kg (5.49 lb) for every kilogram (pound) increase in inert weight, whereas the LH₂ design only requires 1.27 kg (2.8 lb) increase in gross weight to

TABLE XVIII. SENSITIVITY TO INERT WEIGHT INCREASE - BEFORE DESIGN FREEZE - AIRCRAFT NO. 7

					OF 4536 kg
		BAS	ELINE		Inert Weigh
Basic Data					
Gross Weight	kg (lb)	266,430	(587,370)	279,170	(615, 46 0
Total Fuel Weight	kg (lb)	69,430	(150,850)	70,980	(156,470
Block Fuel Weight	kg (lb)	59,610	(131,420)	61,770	(136,180
Empty Weight	kg (lb)	147,700	(325,630)	153,290	(337,940
Price	\$10 ⁶	31	3.89	4	0.27
DOC	est km (set n.mi.)	0.738	(1.366)	0.762	(1,412)
Energy Utilization	seet km (seet n.mi.)	964	(1 69 5)	990	(1756)
Factors					
Gross Weight	$\left(\frac{\mathbf{kg}}{\mathbf{kg}} \frac{\mathbf{tb}}{\mathbf{D}} \right)$			1.27	(2.8)
Block Fuel Weight	(kg Hb)			0.22	(0.48)
Price	\$/kg			304.	(138)
DOC	¢ ¢ (seet n.mi./10,000 lb)			.025	(0.046)
Energy Utilization	kJ seet km/4636 kg (Btu seet n.ml./10,000 lb)			36.0	(61)

compensate for an unexpected 0.454 kg (1 lt) increase in inert weight. The increase in block fuel required by the Jet A vehicle is 1.01 kg (2.23 lb) per pound of inert weight increase; the value for the LH₂ airplane is only 0.22 kg (0.48 lb). For every 0.454 kg (pound) increase in inert weight the purchase price of the Jet A airplane goes up \$197; the LH₂ design, \$138. The growth factors for DOC and energy utilization are expressed in terms of 4536 kg (10,000 lb) increase of inert weight because these parameters are relatively insensitive.

TABLE XIX. SENSITIVITY TO INERT WEIGHT INCREASE - BEFORE DESIGN FREEZE - AIRCRAFT NO. 8

					OF 4636 kg 100 lb)
		BAS	ELINE	Increase in	Inert Weight
Besic Deta					
Gross Weight	kg (Ho)	450,200	(992,520)	475,300	(1,047,800)
Total Fuel Weight	kg (Ib)	237,890	(524,000)	240,520	(550,100)
Block Fuel Weight	kg (lb)	208,720	(400,150)	218,820	(482,400)
Empty Weight	kg (Ib)	159,280	(361,150)	167,570	(309,400)
Price	\$10 ⁶	31).99	4	1.96
DOC	seet km (seet n.mi.)	0.723	(1.330)	0.755	(1.306)
Energy Utilization	sout km (sout n.ml.)	1,206.	(2117)	1,263.	(2219)
Growth Factors					
Gross Weight	kg (10)		(0)	2.49	(5.40)
Block Fuel Weight	to (tb)		(0)	1.01	(2.23)
Price	\$/te (\$/fb)		(0)	434	(197)
DOC	eset km/4536 kg (seet n.mi./10,000 lb)		(0)	0.032	(0.080)
Energy Utilization	kJ seet km/4536 kg (Seet n.ml./10,000 to)		(0)	58.	(102)

ORIGINAL PAGE IS OF POOR QUALITY

the state of the s

7. RESEARCH AND DEVELOPMENT RECOMMENDATIONS

Technology development required for LH₂ fueled transport aircraft is essentially as described in the final report of the previous study (Reference 1). For convenience, the recommended development program schedule from that report (Figure 99, p 302 from Reference 1) has been updated and is presented as Figure 32. Of the items recommended, a preliminary assessment of task 4, "Airport Fuel Supply System Analysis" has been funded and the work is in progress.

In addition to the technology development listed in Figure 32, a very significant event for which there is an immediate need is an assessment of the impact the initiation of use of hydrogen as fuel for commercial transport aviation would have on society in general.* In a sense this effort would be a preliminary study of task 9, Figure 32. since one output would be a hypothetical but realistic scenario depicting the transition to hydrogen. In addition, the economic ramifications, the institutional barriers and incentives, and the social dislocations and opportunities of all major stakeholder classes in society would be disclosed. Stakeholder classes whose participation in the evolutionary scenario would be described include the following:

- airlines
- aircraft manufacturers
- fuel suppliers
- airport operators
- consumers
- government regulators
- work forces
- general public

*This study suggested by Stanford Research Institute, September 26, 1975.

STUDIES

the state of the state of the state of

FLIGHT OPERATIONS

¥.

Figure 32. Technology Development Program

日本の 第5 と に かしの 田場である しゃ の気がなる しゃ

a chair or majories defendance or chair

選挙 き あさいこの 紫 しゅうじゅうせいじゅせい しゅうしゅ

While not classified as a "technology development," this study would provide important input and an order of priorities for the technical work. In addition it would acquaint, and hopefully convince, many stakeholders of the need for early conversion of commercial aviation to hydrogen fuel.

8. CONCLUSIONS AND RECOMMENDATIONS

This study explored an enlarged matrix of passenger/range mission requirements to determine the comparative desirability of LH₂ vs Jet A fuel, relative to the missions studied in the original program (Reference 1).

The analysis showed that even for short range missions the internal tank arrangement for LH₂ fueled aircraft is clearly preferred from a performance and cost point of view over the design concept which uses external tanks. In order to provide a fineness ratio for the externally mounted tanks which is aerodynamically acceptable, the surface-to-volume ratio of the tanks is increased to the point that insulation must be both thick and therefore heavy to achieve acceptable boiloff percentages.

The results of the study of small payload - short range aircraft, designed to carry 130 passengers 2780 km (1500 n.mi.), showed that use of LH₂ offers no performance advantage compared to a Jet A fueled design. This mission appears to represent an approximate crossover point. Payload/range requirements which involve use of larger Jet A fuel loads show increasing advantage for using LH₂ fuel. It is probable that aircraft designed for even shorter ranges and smaller payloads would begin to show net disadvantages for LH₂ fueled aircraft. The advantages of using the higher energy fuel are mitigated by the penalties involved: weight of tanks, insulation, and fuel system, plus the increased drag due to the larger volume required for the LH₂ fuel and the insulation surrounding the tanks. The aircraft are essentially equal insofar as noise is concerned. They are both significantly quieter than limits calculated according to the newly proposed change to the noise standard (Reference 3).

Analysis of aircraft designs for the medium range mission, which involves carrying 200 passengers 5560 km (3000 n.mi.), showed the internal tank LH₂ aircraft to have marginally superior characteristics, compared with the Jet A design. It is considerably lighter in gross weight but slightly heavier in empty weight. The Jet A aircraft requires 9 percent more energy to perform

the design mission. The SH_2 design is 4 EPNdB quieter in flyover but slightly noisier in sideline and approach than its Jet A consciourpart. Its 90 EPNdB contour is slightly smaller.

The long range mission involved a requirement in retrying 400 passengers 9265 km (5000 n.mi.), landing, then taking off withchi refueling and flying another 9265 km segment with full payload. Full reserve fuel calculated by ATA international definition was provided for each regment. The LH₂ fueled aircraft showed important advantages over the Jet A design for this mission. It is lighter, requires a smaller wing but a larger fuselage, uses smaller engines, can operate from shorter runways, and uses 25 percent less energy per seat mile in performance of the design mission. The LH₂ airplane would cost less both to develop and to produce. A differential of \$1.00 more per GJ (\$1.05/10⁶ Btu) can be paid for LH₂, relative to a current price for Jet A, and still provide equal DOC. The LH₂ airplane is nearly 6 EPNdB quieter in flyover, but slightly noiser in sideline and approach compared to the Jet A design. Both aircraft are significantly quieter than the noise limit calculated according to the pending revision to FAR 36. The LH₂ airplane has a slightly smaller 90 EPNdB contour.

A study of sensitivities of the long range aircraft to increases in inert weight before design freeze showed the $\rm LH_2$ design to be considerably less sensitive.

Results of analyses from the previous study of subsonic passenger transport aircraft (Reference 1) are combined with those from the present work and are plotted in Figures 33 and 34. The total energy (represented by the energy content of the block fuel) required to perform various payload-range missions is displayed as a function of the mission requirements (expressed in available seats times design range in Figure 33. Two characteristics are plotted, the trend of energy requirement for aircraft of a given passenger capacity - with range as the variable, and the energy requirement of aircraft designed for a given range - with passenger capacity as the variable.

Figure 33. Total Energy vs Design Mission Capability ·

Figure 34. Growth Characteristics

The figure shows that the energy requirement varies almost linearly as passenger capacity increases from 400 to 800 seats in aircraft designed for a given range. On the other hand, as the range requirement changes in aircraft designed for a constant number of passengers, the energy requirement varies exponentially. In other words, more energy is required to increase the mission capability (seats x distance) of a given aircraft configuration by increasing its range than by adding to its passenger seating capacity. It is also apparent that the energy requirement for Jet A fueled aircraft increases substantially faster than for aircraft fueled with LH₂.

Three additional relationships for the 400 passenger aircraft are plotted in Figure 34. Gross weight, energy utilization, and the difference in energy required by the Jet A fueled aircraft - relative to the LH₂ - to perform the various design missions, are all plotted vs range. For reference, points representing the 130 passenger and 200 passenger aircraft design are also shown.

The advantage of using LH_2 as fuel in transport aircraft increases with the amount of energy required to perform the mission. The crossover point, above which LH_2 can be used to advantage, and below which Jet A is more energy efficient, seems to vary somewhat with the passenger load. For the 130 passenger Mach 0.85 aircraft shown in the lower left corner of Figure 33 the crossover point is approximately the 2780 km (1500 n.mi.) design range, which requires about 0.264 kJ (0.25 x 10^9 Btu). For a 400 passenger Mach 0.85 aircraft the crossover appears to be just under 3700 km (2000 n.mi.) design range, a mission which needs approximately 1.054 kJ (10^9 Btu).

In view of the obvious advantages of LH₂ fuel in long range aircraft an aggressive program of technology investigation and development is recommended. In particular, a societal impact study is recommended for immediate undertaking.

APPENDIX A

SELECTED PAGES OF ASSET COMPUTER PRINTOUT FOR EIGHT AIRCRAFT

A-1	Internal Tan	k LH ₂	١	
A-2	External Tan	k LH ₂	}	Short Range Aircraft
A-3	Jet A		•	
A-4	Internal Tan	k LH ₂)	
A-5	External Tar	k LH ₂	}	Medium Range Aircraft
A-6	Jet A)	
A-7	Internal Tar	k LH ₂	1	Tong Pongo Aimonoft
A-8	Jet A		}	Long Range Aircraft

INT. LH	
M1 SS	
S/ 1500 N HI	4/K
7130 PAS	N/S
HISSION,	R LAM W/S
DE S I GN	
-BASIC	1/0 1/8
LIQUID HYDROGENBASIC DESIGN MISSION/130 PASS/ 1500 N MI MI	1/0

he arrest a

16.60 0.30 16.00 30.00 107.8 0.345

CNFICURATION GEOFFIRY

MING	AREA(SO.FT)	SPAN(FT) T	APER RATIO	SPANIFT) TAPER RATIO C/4 SWEFP L.E. SWEFP	E. SWEEP L.	L.F.P/CHORD	
	911.5	4.47	0.300	30.00	32.260	0.0	
	CR (FT)	CT (FT)	MAC(FT) 10.47	CRE(FT) S 13.29	CREIFT) S WET(SO.FT) 13.29 1568.6	REF L(FT) 10.47	
WING TANK	CRARICET) 13.29	CBAR2(FT) 5.15	FTL(FT) F	WINGICU FT)	FVWINGLCU FT) FVRNX (CU FT)		
FUSELAGE	LENGTH(FT) 139.47	S WET(SQ FT) 5100.5	8WW(FT) 13.00	EQUIV DIFT) 13.32	EQUIV D(FT) SP1(S0 FT) 13.32 134.30		
	BW(FT) 13.00	BH(FT) 13.66	5100.49	SBM(SQ FT) FVB(CU FT) 5] 00.49 1807.29	•		
TA11	SHT (50.FT)	SHI(SQ.FT) SHIX(SQ.FT) HT RFF L(FT) SVI(SQ.FT) SVIX(SQ.FT) VT RFF L(FT) 94.04 77.54 4.68 89.96 89.96 89.96	4.68	SVT (SQ.FT) 89.96	SVT# (50.FT) 89.96	VT REF L (FT) 8.25	
PROPULS 104	ENG LIFT)	ENG D(FT)	PCD L(FT)	POD D(FT)	PCN S WET (SQ. FT) \$45.09	NO. POES	INLET LIF

A-1 Aircraft No. 1 LH2 Internal Tank 130 PAX, 1500 n mi range Mach 0.85

PRECEDING PAGE BLANK NOT FILMED

1/7 1/P AR LAM W/S 1/W									
10.00 0.30 10.00 30.00 10.25 10.30 CAGOS WEIGHT		1//	1/P	*	LAM	\$ / \$	4/F		
## GROSS WEIGHT ZERO FUEL WEI		10.00	0°40	10.06	30,00	167.R	6.345		
Priunds O									
READ FUEL WEIGHT PAGE PA					POUNDS	0	•	POUNDS	0/0
ZERO FUEL WEIGHT ZERO FUEL WEIGHT ZERO FUEL WEIGHT ZERO POPEL WEIGHT EMPTY ZEP71 Z = 92 AND DIENS Z = 92	DESIGN GROSS WEIGHT FIFE.				7289	2	00,		
CONTROLS CONTROLS	- 3					•		90893°	
### PASENGERS 1457. 1.48 #### PASENGERS 1457. 1.48 ####################################	PAYLDAD DEFRATING WEIGHT SMP	*			28600.			43303	07 64
FMPTY WETCHT-MFG. FMPTY WETCHT-MFG. FM C GEAP THE CONTROLS LES THE CONTROLS LES THE STATING THE LALL AND THE CONTROLS THE CONTROLS THE LALL AND THE CONTROLS THE SERVE THE LALL AND THE CONTROLS THE LALL AND THE CONTROLS THE LALL AND THE CONTROLS THE SERVE TH	OPERATIONAL ITEMS STANDARD ITEMS	•			2871	~-	592	•64330	
TOUTROLS					•			\$7965.	
116.6 116.	MING				1924		90,		
CONTROLS	TAIL				705		25		
OLS VSTEM VSTEM VSTEM TAKE CONTROLS STANTING LUMBING AND EQUIP. MING	LANDING GEAR				3762		. 6		
# 12 # 31	FLIGHT CONTROLS				1536		.56		
6815. 12538. 1 6875. 787. 1 7875. 787. 1 617. 617. 617. 617. 11. 11. 11. 11. 11. 11. 11. 11. 11.	MACELLES				2031		101	•	
THES OIL) 11. 11. 11. 11. 11. 11. 11. 1	PROPULSION SYSTEM		4		12436	12	.16		
CLESS OIL) 11. 11. 11. 11. 11. 11. 11. 1	AIR INTAKE		32	•					
CLESS OIL) 11. 11. 12. 13. 14.	EXHAUST		. 7						
FOLES 71L) 11. FOLES 71L) 38. 118. 146.3. 146.3. 146.3. 146.3. 147. 147. 147. 147. 147. 157. 157. 157. 177.	2001146			ċ					
118. 118. 1663. 196. 960. 931. 948. 2586. 968. 9440. 1873. 197. 197. 197. 197. 197. 197. 197. 197	UIL SYSTEM (LESS VIL)		- 6	•					
1466. 1663. 1966. 946. 948. 2586. 9440. 1873. 1873. 1873. 1874. 1875. 1875. 1875. 1876. 0.0	ENGINE STARTING		1						
1663. 1960. 1931. 948. 2586. 268. 268. 1970. MIT AVAILABLE 100. 1100.	TANKS		150						
FWG 960. 948. 948. 2566. 268. 268. 268. 268. 268. 268. 268. 2	INSULATION		30						
EQUIP. 948. 2566. 2566. 2566. 466. 4673. 1137. 60. 60. 130. 84. 130. 130. 130. 100. 100.			9	•					
2586. 2586. 9680. MIT 1973. 137. 130. S 130. S 17. 130. O 0.	INSTRUMENTS				158		m. 4		
966. MIT 1873. 1873. 1873. 1873. 1874. 1876. 0.0	FLFCTRICAL				2586.				
EQUIP. 9440. 1873. 1873. 1873. 1874. 1875. 1876. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877.	ELECTRONICS				990		00		
1873. 137. 137. 0. 0. 130. 14.50 17.50 17.50					0776		.61		
MIT #30. 0. 0. 130. 5 130. 130. AVAILABLE 0.0	AIR COMDITIONING				1873				
S 130. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							* *		
S 130. 7. 12.50 AVAILABLE 0.0	ť						· c		
S AVAJLAÐLE	DESIGN RESERVE				Ó		9		
S AVAILABLE 1									
AVA11.481.E	NO. OF PASSENGERS				130				
AVATLABLE	MO. OF CREW								
AVAILABLE	FIFT WILLIAM BEOD				1761				
	WING FUEL VOLUME AVAILABLE				6				

>
œ
•
X
¥
٥
S
z
~
C
-
v
8
-
E

1101	LIGUID HYDRIGENRASIC DESIGN													
SE GRENT	INIT ALTITUDE (FT)	INIT MACH NO	INIT WEIGHT (LB)	SECPT FUEL (LR)	TOTAL FUEL (LR)	SFGMT PIST (N MI)	TOTAL 01 S1 (N M1)	SFGMT TIME (MIN)	TOTAL TIME (HIN)	EXTERN STORE TAB ID	ENGINE THRUST TAB ID	EXTERN F T ANK TAB ID	AV6 L/D RA710	AW6 SFC (FF/T)
TAKEOFF POMER 1	.6	0.0	98257.	•	.64	ċ	•	14.0	14.0	ថ	-63101.	ટ	9 3	6.124
POWER 2	•	0.0	9820R.	56.	105.	ċ	•	1.0	15.0	ċ	A3401.	.	0.0	0.100
CLIMB	ċ	C.378	98152.	1*4.	200-	13.	13.	2.9	17.9	ė	83101.	ċ	ir.75	0.161
ACCEL	10000	0.456	9799 A.	58.	338.	7.	20.	1.2	14.1	ć	.10168	ċ	13.00	0.184
Ct JMB	10000	0.638	97439.	1386.	1703.	332.	352.	40.7	50.8	ċ	83101.	ċ	11.93	6.212
CAUI SE	36000.	0-650	96554.	2668.	4372.		1250.	110.4	170.2	ċ	-64101.	ċ	13.67	0.211
DE SCENT	36000.	0.A50	.9 4464	43.	4415.	51.	1301.	4.5	176.7	ċ	63301.	į	11.01	-1.716
DECFL	10000	0.638	93842.	13.	4428.		1309.	1.4	176.0	ċ	83301.	•	13.13	47.336
DESCENT	10000	0.456	93829.	74.	4506.	32.	141.	7.2	184.2	•	A3301.	•	15.50	0.847
CRUT SE	36000.	0.840	93751.	.697	.975.	150.	1400.	19.6	204.B	ċ	-63101.	3	13.75	6.211
LOITER	1500.	0.248	93282.	46.	5061.	.	1 500.	0.0	23 0.A	ě	-101-4-	0	16.07	0.146
RESET	•	0.0	.90160	3	5061.	•	1 500.	0.0	210.8	°o	•	3	0.0	0.0
RESET	ċ	0.0	93196.	វ	5061.	-1406.	ď	-216.8	0.0	• •	ė	•	3	0.0
CRUI SE	36000.	0.850	93196.	1429.	.0679	•	ò	0.09	0.00	.	-64101.	ò	13.67	6.211
AESET	•	0.0	41 76 7.	ċ	6440.	ċ	•	0.0	0.04	ċ	•	•	0.0	0.0
CLIMB	•	6.37A	91767.	142.	6632.	12.	12.	2.7	62.7	•	83101.	ċ	15.27	0.161
ACCEL	10000	0.456	.22916	23.	.4699	ė	15.	ć	43.2	ċ	83101.	;	13.95	C-175
CL JPB	10000.	0.547	91603.	393.	7048	70.	ž	10.4	73.6	•	R3101.	ċ	13.15	6.153
CAUT SE	30000.	0.650	•1200	;	7001.	15.	100.	7.4	76.0	ċ	-63101.	•	15.67	0.169
DESCENT	30000.	0.700	.99116	50•	7141.	47.	147.	1.1	F3.1	ئ	83301.	ં	12.97	-4.275
DECEL	10000.	0.547	91116.		7148.	;	151.	o.	# *G	ċ	A3301.	ċ	14.01	1.705
DESCENT	10000	0.456	.0110	57.	7205.	25.	175.	4.6	84.2	ò	83301.	ડં	15.29	0.88.0
CRUT SE	30000.	0.650	91C52.	70.	7274.	25.	200	3.6	9.4.0	•	-63101.	ċ	15.64	6.169
LOITER	1500.	0.245	90943.		7358.	0	90°	0.0	99.0	¢	-4-101-	ô	16.04	0.148
TOCANT	•6257.3	FUEL As	As 7364.4		Firel Re	7358.2								

ORIGINAL PAGE IS OF POOR QUALITY

1500. 1.4132 3.5134 2756.

>
œ
<
I
I
2
~
-
S
C
J

10 20 20 20 20 20 20 20	WING		5 14 4 R 9 . R]								
### GEAR \$105-0.0. ***CEAR \$105-0.0.	600v		10.74.711.86								
LS 3004218 1055C0.33	LANDING GEAR		41654.64								
CONTINUE C	FLECHT CONTROLS		105000.81								
### 1955-75 ### 1	PROPUL S TON		• • • • • • • • • • • • • • • • • • • •								
### 1895.57 ***CONTINUE AND ENTRY TO STATE AND OF THE NOTE OF THE	EMCINE AIR INDUCTION	\$4.62.58 6.75.07.60									
STATEST STAT	FUEL SYSTEM	175367.75									
12771.75 12771.75	ENGINE CONTROLS	737.11									
March Marc	EXH/THRUST REV. LUBE SYSTEM	A43.25 2186.88									
######################################	TOTAL PROPULSION		458070.69								
TOTAL	INSTRIMENTS		127741.75								
### CANNOTE AND PRESENCE ### CANNOTE AND PRESE	ELECTAICAL		22376A.69								
MINEGAATION			61507-32								
FIRED FIRE	ATE CONTINUE		212208.00								
NUMBER N	ANTI ICING		11275.36								
IL EMPTY MFG. COST 3556301.00 INING ENGINEER 1 242570.25 ICAL DATA	APU SYS. INTEGRATION		90520.56 81474.25								
TOOLING FAEINGERI 242578-25 TOOLING FAEINGERI 242578-25	TOTAL EMPTY MFG. CO	150		3556	901.00						
TOOLING MAINT 319432.44 PAND D	SUSTATINING ENGINEERS	242570.25									
MANNEGORDER 0.00	TECHNICAL DATA PROC. TOOLING HAINT.	0.0									
333245.19 333245.19 227017.38 715104.75 715105.00 715104.75 715104	MISC.	88743.44							D GNA 9		
227017.38 115104.75 4582470.00 65034.75 16387.50 16487.50 16	EMG. CHANGE DRDER	0.0						FEVEL HOME	AT TECHNIC	AL PATA	4956555
14:104.75 5482470.00 CEVELOPHENT TEST ARTICLE	AIRFRAME MARRANTY	110.43666	227017.38					DEVELOPME	NT TOOLING	,,	53545404
### ##################################	AIRFRAME FEE		715104.75					CEVELOPME	NT TEST AN	TICLE	174000.64
1636F7.50 1620A18.00 1620A18.00 2200G0.00 TAL FLY AMAY CTST ING COST-DDILARS/N. MILE 0.4216 22.95 AND RUBDEN MAINT. 0.0531 2.89 RANGE AL MAINT. 0.0642 3.77 D.C. 0.4450 2.89 C/ASM 1.6427 1.5836 1.5314 1.4601 1 MCLUDING SPARES) 0.4307 2.467 1.5636 2.1969 2.4618 2.7247 2.9976 MILE 1.8371 100.00 1569. 1767. 1167. 2.9976 3.346.	FIGURE WARRANTY		65034.75					SPECIAL	ST SUPPORT FOI	1 PPENT	12462064
### COST #### ### COST ###### COST ####################################	ENGINE FEE		163667.50					DEVELOPME	NY SPARES		15257614
ANCH AND DEVELOPMENT TOTAL FLY AMAY CROT TOTAL FL	ENGINE COST			1520	518.00			FNGINE DE	-VLEDPMFNT	•	ė.
RECT CPERATING COST-DOLLARS/N. MILE 0/0 0.4216 22.95 14ME LABOR AND BURDEN MAINT. 0.1346 1.27 14ME LABOR AND BURDEN MAINT. 0.0531 2.89 AAVIE 14ME MATERIAL MAINT. 0.0531 2.89 AAVIE 14ME MATERIAL MAINT. 0.0649 3.75 M. MI 740. 467. 1115. 1243. 1544 MAID OIL 14401 1545 1.5314 1.4016 1.4601 15401 1.6114 6.07 15401 1.6316 2.4618 2.7247 2.9876 15400 8/N. MILE 1.8371 100.00	RESEARCH AND DEVELOPM	MENT		417	74C . 3R	00000	9	101	TAL R AND C	• •	21620
TECT DEFINING COST-DULLARS/N. TILL 20/0 TAME LABOR AND BURGEN MAINT. 0.1346 7.27 WE LABOR AND BURGEN MAINT. 0.0531 2.89 RANGE TAME WATERIAL MAINT. 0.0649 3.77 DG 6.00 1.5836 1.5314 1.4016 1.4601 AMO TILL AND THE CONTROL O.4460 2.89 C/ASM 1.457 1.5836 1.5314 1.4016 1.4601 TAME ELABOR AND SPARES) C.4364 2.457 1.9460 2.1949 2.4618 2.7247 2.9476 TAME DOC S/N. MILE 1.6371 100.00	TO COLUMN TO SEC			9			ŝ				
HE LABOR AND BURDEN MAINT. 6-1376 7-27 HE LABOR AND BURDEN MAINT. 6-1536 2-89 RANGE TAME MATERIAL MAINT. 6-06531 2-89 RANGE HAME MATERIAL MAINT. 6-0650 2-89 C/ASM 1-657 1-5836 1-5314 1-4016 1-4601 AMO OIL AMO CELETION (INCLUDING SPARES) 6-4367 2-4518 2-7247 2-9876 FELATION (INCLUDING SPARES) 6-4367 1-6969 2-4618 2-7247 2-9876 TAL DOC S/No. HILE	CAFE	ISI-UULLAKS/ M	E.	22.45							
0.0531 2.89 MANGE 0.00449 3.72 N. MI 740. 859. 947. 1114. 1243. 0.00469 3.77 DOC 0.4450 25.89 C/ASM 1.6427 1.5836 1.5314 1.4016 1.4601 0.4361 23.42 TR-HR 1.9366 2.1969 2.461R 2.7247 2.9876 1.6371 100.00 1569. 1767. 1965. 2163. 2366.	ATREAME LABOR AND PU	JADEN HAINT.	0.1336	7.27							
0.00449 3.75 N. MI 770. R59. GA7. 1114. 1243. 0.0049 3.77 DOC 1.5836 1.5314 1.4014 1.4601 0.4114 6.07 E-MR 1.9366 2.1969 2.4618 2.7247 2.9876 1.8371 100.00 1549. 1767. 1966. 2.163. 2360.	ENGINE LABOR AND BURD	SEN MAINT.	0.0531	2.80	A ANGE	i		!	,	,	
C. SPARES) C.450 25.89 C/ASM 1.657 1.5836 1.5314 1.4016 1.4661 C.1114 6.07 1.406 2.1969 2.4618 2.7247 2.9876 S. SPARES) C.4361 27.42 1.569. 1769. 1965. 2163. 236C.	AINFRAME NAITHIRE FAINT		200000	3.77	Ϊ () 2	, 0, 1,	# 5 G	· 3	1114.	1244.	1372.
0.1114 6.07 IOW (FWCLUDING SPARES) C.4367 27.42 TR-HR 1.9360 2.1969 2.461R 2.7247 2.9876 8/TRP 1549. 1767. 1964. 2163. 234C. 1.8371 100.00	FUEL MO OTL		0.440	25.89	C/ASM		1.5830	1.5314	1.4016	1.4601	1 344
C.43(1 27647 TR-HR 1,936G 2,1969 2,461R 2,7247 2,9876 8/TRP 1569, 1767, 1965, 2163, 236C, 1965,	IN SUR ANCE		0.1114	6.07		•			;	:	
1.4371 100.00	DEPRECIATION (INCLUD)	INC SPARES!	C. 4304	24.62	18-18-18-18-18-18-18-18-18-18-18-18-18-1	1.9760	2.1969	2.4618	2.7247	2.0876	3 -2 505
	TOTAL DOC 8/N. HILE		1.8371	100.00	•	•	•	•		• 200	*500%

				•	1 S S E	•	4	# # #	J C	-	. × s	s					
							SUMM ARY NOVE MRE	SUMMARY TO NO. 101 NOVEMBER 12 1975	101								
AJRCRAFT MODEL 1.00.C. DATE DESIGN SPEED						S 25	ENCINE I.D SLS SCALE NUMBER OF	1.0 = ENGINE	83000 35000 5 = 2.		33	WING DUAP WING TAPE	OUAPTER CHORD TAPER RATIO =	RD SWEEP = 0.300		30.00 tEG	
2 1/4 2 1/4 3 4 R 4 1/C 5 RADIUS N. HI		104.2 0.345 10.00 16.00 150	108.2 0.347 10.00 10.00	108.2 0.34 10.00 10.00	10.00 10.00 10.00 1500	108.0 0.345 10.00 10.00	10.00 10.00 10.00 15.00	104.0 0.340 10.00 16.00	104.0	107.8 0.345 10.00 15.00	0000	0.00	c	ç • • • • • • • • • • • • • • • • • • •)	0.000
6 GROSS WEIGHT 7 FUEL WEIGHT 8 OPP, WT. EMPTY	F-E	7358 62247	7356	98068 7396 62071	98019 7414 62004	98231 7361 62270	98193 7402 62191	7400	98049	98257 7364 62292	C C C C	540	cc06	600:	6605	000	0000
		164.0	16786 0.480 907.	16671	16565	16944	16741	10.476 0.476	16569	0.486					, , ,	, o-o	•
13 WING SPAN 14 M. TAIL AREA 15 V. TAIL AREA 16 BEDY LENGTH 17 WING FUEL LI	SPAN IIC AREA IIC AREA LEMGTH FUEL LIMIT	136.5	134.5	65.2 63.2 136.5	64.2 64. 139.6 0.000	139.5	2	44.3 83. 139.6 0.000	£ 5 5 C	139 6.5 000 000							
COST DATA—MILLION DOLLARS/ANGCR 10 FLYAMAY COST 7.844 7.828 10 ANGRHE COST 6.0095 6.001 20 ENGINE COST 1.520 1.517 21 AVIGNICS COST 0.220 0.220	11.10% 357 1057 1057	00LLARS 7.844 6.095 1.529 0.220	7.828 6.091 1.517 0.220	7.811 6.083 1.508 0.220	7.798 6.078 1.500 0.220	7.847 6.098 1.529 0.220	7.831 6.694 1.517 0.220	7.614 6.085 1.508 0.220	7.801 6.061 1.500 0.220	7.850 6.100 1.530		0000			0000	0000	0000
COST DATA—DIRECT OF 22 S PER NILE 23 CBUTS/A S MILE PLIGHT PATH MISSION 24 MISSION SYM(1) 25 PISSION SYM(1)	wo			1.833 1.410 1CS 35000 5091	1.734 1.411 35000 5120	1.637 1.413 36000 5058	1.837 1.413 35000 5101	1.834 1.416 35000 5094	35000	1.637	00	00	00	00	000	000	• • • • • • • • • • • • • • • • • • •
CONSTRAINT OUTPUT 26 CETLING PHRII) 36293 36117 3 27 TAKEGFF DSTII) 4713 4754 28 CLIMG GRADII10.1779 0.1754 0.152 39 CLIMG GRADI210.0275 0.0264 0.0	57.00 57.00 57.00 57.00 57.00 57.00	36243 4713 11774 0. 7959 0275 0.	36117 474 1754 0. 6182		35824 4614 1719 0. A516 0245 0.	36299 4703 11780 0. 7922 0275 0.	35824 36289 36123 4814 4703 4744 1719 0.1740 0.1754 0. 1516 7922 8142 0244 0.0275 0.0264 0.	m 7 = 0		36307 4693 1781 0 7885 -0276 0	6 0				ئ د د د د		03 0
31 AP SPEED-KT(11) 32 CTOL LMGE D(11) 33 AP SPEED-KT(2) 34 AP SPEED-KT(3) 34 CTOL LMGE D(2) 35 AP SPEED-KT(3)		135.3 5742 149.2 6576 135.5 57.8	135.3 47.4 169.1 457.4 135.5	135.3 4748 169.2 6574 135.5	135.3 14736 149.1 145.2 135.5 145.5	135.2 5735 169.0 6568 135.3 4741	195.2 5732 169.0 6965 135.3	135.2 5731 149.0 6565 135.3	135.2 149.0 149.0 135.0 135.0 135.0 135.0	134.1 5728 148.9 6549 135.2 4734		0 0 0	0 2 2 0 0		000000	733635 0 3 3	

ORIGINAL PAGE IS OF POOR QUALITY

TICGID MADDUCEN --- BANIC OF SICH MISSINGLIAN PASS 2 1500 N MI MISS BAT LE

16.60 6.40 0.50 36.00 10P.0 0.450

TONE TOTAL TANDON CECHILOR

	(1 (61)
8c° 01	
	CFAK2(FT) 6.5h
F	5 WETISO FT) 4677.0
CBW(SC FT)	EHEFT]
Ĭ	CHTEC.FTB SHTMESC.FTB MF PEF LLET) SVTISC.FTB
ו אנט רוניז)	_
25 25	5,43 14,16 5,48 6,48 (ERCTH(ET) SP1(S0 FT) S WET(CC FT) 45,68 107,27 206,4

A-2 Aircraft No. 2 LH₂ External Tank 130 PAX, 1500 n mi range Mach 0.85

MI 55	
1 1 500 W MI	4/A
N/130 PASS	\$
ICM MISSIN	AA 1.64
NASIC DES	17.
IOUIN HYPRICEN BASIC DESIGN MISSION/130 PASS/ 1500 N MI	1/4

To resident

Ender Conserved

0.4.0
7.8.C
30.00
Ç.
ر ٠ ډي
19.30

DESIGN GRESS VETCHT FUEL ZFRC FIFL WETCHT					
FUEL ZERC FIFL WEIGHT	100007. 100.00	בי בעי	٠٠٠		
ZERC FIFE WEIGHT	.916.		A.75		
				1 CO 2RC.	
	.06600.		26.0.2		
ALGES ATTIES DELLEGISCO				71486.	65.23
CPE RATIONAL TIENS	2886.		.6.		
STANDARC ITEMS	14:24		1.10		
FRIFTY DE TONT-MFC.				£7272.	
X IX	0357.		15.8		
711	1505.		1.37		
FILL A	10701		9.A2		
LANDING CEAR	3037.		3.5		
FLIGHT CONTROLS	1684.		1.53		
MACELLES	1906		7.77		
PREMILSIEN SYSTEM	****	_	17.64		
The The			i		
AJR INTAFF	1170.				
FEETST	925.				
CIEC SOLIE WILLAS TIL					
PAGING COSTABLE	2.7				
	174				
•					
47104		•			
	2002				
	· / • / • / • / • / • / • / • / • / • /				
	7				
	•		***		
	077		 		
AIR CONDINGS OF			-70		
			ć		
AUXILIANY FINE UNIT	.012		٥.74		
wiscell mercus	•		ę		
resign apprave		٠ د	ç		
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ì				
	C -	•			
יש של נפנה		•			
STAICTURAL TAC	33.61	Ş			
COLL WILDER CECP	2204.0	•			
VINC FIRE VALUE AVAIL AND					

>
æ
•
x
1
3
S
_
Z
0
-
8
61
-
•
•
•

L 10U	LIQUID PVDFOGERRASIC NE	FK	SIC NESIGN		FISO PAS	HISSIUN/ISO PASS/ 1500 N MI	ı x	MISS						
SECNENT	INIT ALTITUME (FT)	MACE	TNIT METCHT (LB)	SFGWT FUEL (LR)	TCTAL FUFL (LB)	SFGMT TUTAL DIST DIST IN MIS IN MIS	TOTAL DIST	SEGMT TIME (MIN)	TOTAL TIPE (MIN)	EXTERN STORE TAB ID	FNG INE THRUST TAB IO	EXTERN F TANK TAB IN	AV6 L/0 R110	AVG SPC CFF/T
TAKE COFF PCMER 1	ċ	0,0	100002.	т.	ŗ.	ċ	ċ	4.0	14.0	ċ	-43101.	ċ	0.0	6.13
2 JANUA	•	e.	169631.	82.	143.	ċ	¢.	0:1	14.0	ċ	. 104FA	ė	0.	0.100
CL THR	ċ	0.378	170768.	168.	321.	<u>.</u>	10.	2.2	17.2	ċ	83101.	ċ	12.77	6.161
12001	1 0000	957.0	100440.		188.	•	15.	c	14.1	ċ	83101.	ç	10.35	1
CLIMR	10000	0.636	160517.	1472.	1656.	251.	766.	30.0	c. • •	ċ	83101.	ċ	9.79	0.212
CRUI SE	· JUCUC.	0.050	10806.	3846.	\$703.	. 760	1756.	121.1	176.6	ċ	-63161.	ċ	11.74	0.211
nf SC ENT	38000.	P.85C	16.100.	*:	47%.	.63.	. 68.	4.5	175.5	ċ	93301.	•	. 8	-1.656
NECFL	luoto.	0.636	104148.	18.	.769.	•	. %.	1:1	174.6	ċ	13701.	•	30.34	46.587
PFSCFNT	1000	6.456	164133.	;	\$162.	26.	1325.	۶.	142.5	ċ	A3301.	ċ	12.52	0.047
35 In 4 3	4 4000	0.850	104020.	675.	£537.	175.	1 500.	21.5	6*102	ċ	-83101.	ċ	11.61	0.211
LOTTER	1.00.	0.243	101 164.	110.	£647.	Ė	çç	, · · · ·	204.05	ċ	-63101.	ċ	14.50	0.152
RFSF1	ċ	0.0	1m254.	ċ	4647.	ċ	1,00.	6.0	٠٠,٠٧	ċ	ċ	ċ	0.0	0.0
RESET	ċ	ç. c	163754.	ċ.	.1.999	-1500-	ċ	-200-	0.0	3	ć	ċ	0.0	0.0
S Inac	3.000		10:254.	1834.	84 62.	ċ	ċ	0.09). 04	ċ	-43101.	:	11.78	0.211
13538	ė,	c E	101420.	ċ	PARZ.	°	ċ	0.0	40.0	ċ	ċ	c	٥	0.0
Ct INE	3	6.37	161420.	143.	£634.	•	•	2.0	e e	ċ	ATIOI.	.	12.32	0.161
ACCEL	ا بريري •	1.454	101767.	24.	36 54.	~	11.	ċ	62.3	ċ	A3161.	3	11.03	0.175
14.73	10000	1.447	101243.	411.		ç	ç	*	44.0	ċ	84101.	٤	16.34	0.192
CPUI SE	· puppus	n. A.C.	Icopas.	1,00	.0276	ŝ	100	6.6	76.3	ċ	-83101.	3	12.40	0.184
DESCENT	sooce.	n. 70C	1 COARZ.	:7:	9276.	37.	137.	4.2	3.6	ċ	.Inge	ċ	10.10	-5.262
DECFL	וננטני.	6.547	1006.74.	ė	.284.	m	140.	9.0	97.4	ċ	43301.	ئ	11.10	1.761
DFSC FNT	1000	4.4.0	100617.	۴۲.	.1.54	20.	140.	4.4	0.,	ċ	43301.	?	12.24	0.88
351043	scoco.	n.664	100450.	152.	.404.	¢,	ć K	4.7	6.00	ė	-63101.	ċ	13.47	0.184
Laster	1.00.	r.24n	licies.	167.	*11.	ç	, C	6.1	4. **	ċ	-83101.	;	14.28	6.153
TOCALT. 1	0.10**01	FUFL A.	Ar 9614.8		FIFE Re	4610.								

			6352.	1.668
		·	6910973. 1538 736 77. 568 726. 769 75. 143 988. 184 2886. 1870 960. 0.	13.0. 1.6060 3.2169 2047.
			CAL DATA TICLE ATTOREGY	1219- 1-7293 2-9224 2746-
			R ANC. C. PESSON FROM THE CONTROL TO THE STAND	1074. 1.771. 2.6343.
			FEVELOPHENT PESIGN FNGSI FEVELOPMENT FEUGHT TEST SPECIAL SUP PEVELOPMENT FEVELOPMENT FNGSI AVIMIZES PEL	414. 1.6740 2.3461 2726.
			ş	707. 1.007
			**************************************	2.831. 1.831. 172.
		m.252,142.34	6221461.00 2113464.00 220000.00	5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45
> • •	676 716.86 17104.04 947614.67 94371.24 115.187.63 342759.54	122402-13 7116-5-6 21416-2-6-6 71116-2-13 1516-13 1171-6-2 65-3-6-2-13 171-6-2 171-1-13	2470.19.56 817-66.55 8044.31	0.414 0.414 0.4744 0.4744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744
S 1 S : N	11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8	\$. \$.	GINGTR: PTWOOS.NC AMINT. SATATIII BODGO.11 ENCY ENCY ANTO ANTO ANTO ANTO ANTO ANTO ANTO ANTO	TT-COLL DATAL. FOR MAINT. INC. SPARF.
E U	MANUEL CEAR PROCY FLICAT CONTROLS MACYLES MA	METALINENTS MOTORIALICE ELECTRICAL ELECTRICAL ALECTRICAL AND CONCINTENTIAL ANTI MCINC AND SYS. INTERATION TOTAL EMPTY VEG. COST	PUSTA IN 196 EMEING FRI PT TECHNICAL NATA PRICT. TODLING MAINT. 36 RISC. CLANGE LENGE RUSC. CLANGE LENGE ANGERANG FF ANGERANG FF ANGERANG FF RUGHE	DIRECT PRESATING CRET-COLLAGGN. CREW DIPPERMETANCE ATT BURGEN PAINT. AIRPRAME LANCE ATT FURIEN HAINT. AIRPRAME PATE LA HAINT. FUGINE PATE LE PAINT. FUGINE AND NIT FUGINE AND NIT FUGINE AND NIT FUGINE AND NIT FUGINE AND NITH
		ORIGI OF P	NALI PAGE IN DOR QUALITY	•

Contraction of

Townson I

- Albandi

to the ribe terriber

U

				1 5 5 6	• F			5	J. M M A	× × 1	~					
					J. V	SIMMARY IN	TO 100 10	101								
AIRCLAFT MOVELCO Ionico Date					325	EWCINE 1.0 SLS SCALF MUMFER OF	1.0 MGIN	930AC 55000 5 = 2.		33	WING QUAR	7ER CHO R RATTO	EN SVEE	2 4	90 066	
× × ·	10.0	316.6	110.0	10.011	100.0	6.0	c		c.		6	0.0	_	٥.	٥.	•
35.	0.45	9-0	0.43	0.47	0.45	0.0	ت		٥.٠					. 0.0	•	ė
	Ç	5.	٠ •	.59		G.	ر ب ت		ن	0.0		ت د د	0.0	0.0	0 0	၌ (
	10.00	50° C	٠ <u>٠</u>	Ę	2	e '	e. e	• ' •	د	,			_		•	•
4 RADIUS 1. MI	5	\$ -		9	66.	c	B	8	5	5	•	5	>	;	•	
A CRESS WEITH	13056	וטפיו	>>2 au1	122-01	10001	c	•	c	٤	c	c	c	c	٠ -	•	
	4574	SG.	Ţ,	10100	4134	0	•	c (، ت	c (e (c (c (c .	•	
	71384	71416	27.5	2	71600	c (c (c	ه ت	c (.	o (.	3 4	> c	
TERT FORL ST.		1000		****	24.7.7	e c	: c	: c	ء د	: c	: c	٤ د	۔ د	۔ د	•	
	104	0.487	0.671		202	CC	6.0	0.0	0.0	o. 0	6.0	0.0	0.0	0.0	0.0	Ġ
12 WING OFFA	•	*	-		1016.	ċ	ė	ė	ċ	ċ	.	ė	ċ	ٔ ع	ė į	
NAS SOLU EL	F. * A.	47.7	1.7.	-7.1		c c	0.0	٠ <u>.</u>	و. ن	e G	e (e ,	e e	e ,	e (
14 M. TOR. AFFA	154.	147.	147.		163.	ċ	ė			٠ د		ė (• ·	.	.	
15 V. TATL ARFA	134.		133.		2		:		÷ (9	
14 FOOV LFRGTH	0.51		200		3 6	Ę									0	à
O CONTROL TIME DE LOS DOCUMENTOS DE LA CONTROL DE LA CONTR	0 - CO		9 C 5			÷						:		}	}	5
SO SEVANA CAST					346	ت د	0.	ت.	ن و• د	c.	c. c		د.	٥.٠	0.0	Ö
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			٠	630	7.304	C	ء ن	C	ر د د	c.	٥.		J. f.	0. 6	<u>.</u>	ś
20 ENGINE CUST	2.108	7 7	2.0.2		2.113	٠.	ç	e. c	٠.	٠.0	٠.	c .	، ت	، ت	ب 0	ė (
	0.220	•	0.270	_	0.220	c.	ن ن	0.0	ت ن	e.	c.		e e	٠ د	e.	ě
1416-01660	COCKAT INC				1	•	•		•		•		•	6	0	Ġ
22 6 PER #11 F		~ •	7.17		2.170										9	Ó
S SOUT BANK SCRIPT	TOWNS AT THE	101014						.		•	:		•			
COLAS MISSIA PA				•	1600 ¢	c	c	3	c	c	c	C	ټ	٠	، ی	
24 HISSING STATES			4574	7030	Pet 7	c	c	6	c	c	c	c	÷	_	C	
COMPTRA SMT CALPIUT						•	•	•	•	•	•	c	c	٤	c	
	-	2 2				: 6	. «	: 6	. c	. c		c	c	c	0	
THE COURT CLICKLY AND MEN IN A			24.34		2011		ءَ د		<u>د</u>		· ·	3	ت د	3	•	٥
COLY INDICATE AND SEC	4700	,	5167	41.3	193	ے	c	c	c	c	c	ټ	_	_	c [']	
	1.0474 B.	3 2 2.	: IcA)		O LESUT	<u>.</u> د	ě		٠	ċ			ر د د	.	•	•
		130.7	136.4	1.6.4	135.4	c c	c. c	c e	e e	0.0	c ·	c (o (•	
		1115	1645	5.70A	5752	C (C (c (5 (c (= 6		-	
	_	1.0.1	÷	144.2	14.8	٠. د	÷ •	٠ •		•		•			9 -	
		A	4	5	1		: <	: <	: c	: 0		; L	، د	ت ، ت	, o	_
	-				3		•		:	, c	c	c	-	ے	٥	
א ניינון נאואי יוניין			; }	!												

P1 SS		
ï		
5	7/2	0.148
1 .514	Š	0 117.C 0
£1 /	AR LAN W/S	10.00
DES ICM	1	.00.
RA SEL INC	1/4	6.10 11.00
FIRE WEFFRENCE RASELINE DESIGN / 140 PAS' / 1400 H M.	7,2	١٠.٥٤
FIFE		

A-S Aircraft No. 3 JET A Fueled 130 PAX, 1500 n mi range Mach 0.85

7/F AR LAM W/S 0 0.10 11.00 10.00 108659, 100.00 19704, 15.13 26600, 24.32 2875, 2.65 1351, 1.25 1475, 2.65 1532, 2.10 1600, 24.32 2875, 2.65 1875, 2.65 1875, 2.65 1875, 2.65 1875, 2.65 1875, 2.65 1875, 2.10 1976, 2.27 1976, 2.27 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89 1977, 1.89									
10.00		1/0	<u>.</u>	4	. EAM	S/M	4/F		
108659 100 00 19704 15 13 168943 101 10 19704 15 13 15 15 15 15 15 15		10.00	٥٠ - ١	11.00	ו טט•טר	17.0	974.0		
106659 100 00 106659 16 13 16 8983 16 8954 16 13 16 8983 16 8954 1									
106659, 100.00 19704, 15.13 10047 26600, 24.32 60353, 1351, 1.24 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.					POUNDS	9/0		POUNDS	9/0
Section	DESIGN SERST METCHY				108659		00		
The part	ZEPO FIFE WEIGHT						1	88943.	
	PAYICAL	i			28600,		32		
17 17 18 18 18 18 18 18	rozkalina Welchi the Porkalinak lites	<u> </u>			2876.	~	.	60353	55.54
### ##################################	STANDAP'S TTEMS				1351	_	24		
						1	į	56128.	
					9 4 10		78		
1468- 1668-	141				27.75		t «		
T((0, 1)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)	TANDAM CERC				200		- «		
11	FLIGHT CONTONLS				1668		53		
7((0. 10)18. FF5. 694. 00. 00. 00. 11. 47. 47. 13. 47. 47. 13. 47. 13. 841. 10. 00. 2640. 2040.	NACFLUE				6000		0		
76.0. 86.0. 11. 10. 11. 11. 10. 11. 10.	PRIPALL STOR SASTEM				1001B		22		
FF5. 694. 0. 11. 0. 11. 11. 11. 11. 11. 11. 10. 10	F4C 1135		76.6	ċ					
1155. DIL) 10. 110. 1110. 1110. 1110. 1111	AIR IPTAKE		i i	٠					
11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 11: 0. 0. 11: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F WHALST		4	•					
11. 42. 132. 132. 132. 132. 132. 133. 130. 130. 130. 130. 130. 130. 130. 130. 130.			- ,	•					
132. 701. 703. 703. 701. 701. 701. 70. 70. 70. 70. 70. 70. 70. 70			-	<u>.</u>					
201. 0. 393. 841. 1010. 2509. 2509. 2058. 143. 117. 130. 130. 12. ⁶ 0. 393.2			1 2	• .					
001P. 841. 1010. 2409. 041. 001P. 0424. 041P. 041P. 0424. 041P. 0424. 041P. 0424. 041P. 0424. 041P. 0424. 0424. 042P. 04			2 6	• -					
10.01P. 10.024. 10.01P. 20.440. 20.440. 20.440. 1147. 11430. 115. 60. 115. 60. 115. 60. 115. 60. 115. 60. 115. 60. 115. 60. 115. 60.	AND THE STATE OF T			ے :					
1010- 1010- 2600- 2600- 2058- 143- 143- 143- 143- 143- 143- 143- 15-50- 303-2	FIEL PLINGTRE		3.						
1010. 2509. 924. 0440. 2058. 143. 1130. 130. 130. 130. 393.7	INSTRUMENTS				841		77		
2509. 040. 2058. 143. 117. 117. 1190. 12.50. 393.2	PYDP AUL ICS				1010		76		
924. 0440. 2048. 143. 143. 1430. 0. 0. 130. 130. 130.	FLECTRICAL				2509.		31		
001P. 2058. 2058. 143. 147. 0. 0. 0. 130. 17. 17. 17. 17. 17.	FLFCTFONTCS				956				
2058. 143. 143. 130. 130. 130. 130. 393.2	FURNISHINGS AND EQUIP.				0770		ę.		
143. 130. 0. 0. 130. 17. 17. 17. 17.	AIS COMOITICHING				205A		9 00		
130. 130. 130. 130. 303.?	ANT 1-1C INC				143		13		
0. 0. 130. 7. 12.*6	AUY II JAFV DOWER IMIT	•			P30.		76		
130. 17. 12.50	PISCELLAWFRUS				Ċ		c		
12 13 39	DESTON DESCUVE				c		c		
12 399									
12	NO. OF PASSENCERS				130				
12	Mr. CF CELW				7				
	STRIKTIPS L T/C				17.4	_			
	FIRE VOLUME BEOF				203				

RISSION CORRERY

.

							•	,) •						
SE GPE NT	INIT ALTITUDE (FT)	INIT MACF	INIT WFIGHT (LE)	SE CMT FUEL (LE)	TOTAL FUFL (LP)	SFG4T DIST (N Pl)	TCTAL OIST (N HI)	SECHT TIME (MIN)	TOTAL TIME	EXTERN STORE TAR ID	ENGINE THRUST TAR ID	EXTERN F TANK	AV6 L/D .RAT10	AVG SFC (FF/T)
TAKFOFF PFWER 1	٠,	ن ن•ن	105658.	265.	205.	:	.	14.0	14.0	¢	-61101.	ô	. 0	0.465
Prints 2	٥.	o•0	106453.	188.	393.	•	°	1.0	15.0	ċ	81401.	•	0.0	0.298
CLIPT	c.	0.379	Irraes.	485.	877.	12.	12.	<u>.</u>	17.8	ċ	41101.	ċ	17.57	0.482
ACCFI	tenan.	957.0	. 047731	116.	1045.	;		7.1	a.	٤	A1101.	ċ	14.83	0.54
CLIMP	10000	f.63F	167613.	3167.	4212.	254.	272.	31.3	40.1	•	e1101.	ċ	14.20	0.619
C RI'1 SF	* 0000	0.450	104446.	7646.	11855.	978.	1250.	120.3	170.5	•	-81101.	ċ	16.30	0.618
DE SC ENT	*1166	C. F.O.	•90895	163.	12021.	67.	1217.	æ.\ Œ.	170.0	•	81301.	•	12.58	4.507
PECFL	10000	0.628	4637.	6.3°	12064.	•	137".	5.1	186.4	5	81301.	ċ	14.27	131.889
DESCINI	10000.	0.45¢	44543.	275.	12340.	36.	1761.	F.0	168.5	ċ	81301.	:	16.64	2.372
CPUTEE	41000.	0.8.0	431F.	1645.	13384.	139.	1500.	17.1	3.105	ċ	-81101.	ċ	16.13	0.618
LOTTER	1,000	0.247	95273.	260.	13645.	0	1 500.	9.4	2111.5	å	-81101.	:	17.54	0.481
RFSE 1	ė.	9°0	45013.	ċ	136+5.	ò	1500.	C°C	211.5	•	•	ċ	0.0	0.0
RESET	¢	0.0	95013.	ċ	13645.	-1500.	•	-2113	0.0	0.	•	•0	0.0	0.0
CHILL	*1000	364.3	44013.	1560.	17204.	٥	•	0.09	0.09	•	-81101.	:	16.19	0.618
Listed	ò	0.0	01443.	ċ	17204.	•	°	0.0	0.09	ξ.	•	ċ	0.0	0.0
C1 17F	•	0.376	.65710	304.	17590.	16.	10.	2.2	62.2	ċ	F1101.	ċ	16.30	0.482
ACCFI	16666	0.456	91056.	•04	17659.	2.	12.	0.0	62.6	ċ	81101.	Ċ	14.84	0.516
CLIME	10000	()	· oonUn	.16.	18575.	4 .	• 09	7.2	a . , ,	ċ	.10118	٤	13.88	0.568
3; L. 43	30000	0.656	400A2.	216.	18891.	*0*	300.	6.1	75.0	•	-81101.	ċ	16.59	175.0
DESCFNT	30000	0.706	60766.	167.	19051	* 0 7	144.	7.5	83.4	•	61301.	3	13.66	-14.768
DECEL	17666.	27.0	Pc463.	23.	19678.	;	141.	٠. 9	84.2	ં	P1301.	ં	14.81	4.771
EESCENT	1 DOMO 1	0.456	fot,7c.	104.	19277.	27.	180.	R.	٥٤.1	•	81301.	ئ	16.24	2.491
CRUISE	30000	0.645	64386.	1,4.	19426.	20.	200	3.0	43.1	ċ	-81101.	٤	16.64	0.569
LOTTE	1*60.	242.0	R9732.	247.	19673.	•	30.	C v	90.1	ċ	-10116-	ċ	17.47	0.485

ORIGINAD PAGE IS OF POOR QUALITY TOGF#T# 106447.7

FUEL P# 19672.0

FUFL As 14704.4

1500. 1.2764 3.5257 2489.

F 100 A 1

3	•	•
6	١	•
4		•
1	ľ	
1	į	:
:		;
•	,	,
٠	-	•
	,	b
Ċ	:	,

WING Tail Bopy Laweing Ceap Flight Companic		618464.00 1036*4.13 956650.38 94250.61 114513.66							
MACELLES PREDULSION ENGINE AIP INCUCTION FUER SYSTEM ENGINE CONTOCLS EXMATHRUST PTV. LUBS SYSTEM TITAL PEPRULSION	10656.41 76101.75 10660.60 787.33 879.19 949.64	2550598.38 207444.#6							
INSTEUNTY WERRULICE ELECTPICAL ELECTPONIC RACKS FUPNISHING ANT CONSITIONING ANT ICING APU SYS, INTEGRATION	•	120454.75 71056.56 217456.56 58727.23 11016.94 11016.75 906.77.38							
TRIAL FAPTY MFG. Cres	151		1300	1340401.00					
SUSTAINING FUCTNEED I TECNICAL DATA PROC. TUDINS MAINT. PRIC. CHANCE UNDER GURALTY ESSIPANCE AIPFRAME VARBANTY AIPFRAME COST BECKE MAFRANTY ENGINE FEE	727943.75 0.0 30.0161.44 F73.89.67 6.0	215754.00 674625.13 64506.50		\$210466.00			CEVELOPHENT CESIGN FNGI CEVELOPMENT SEVELOPMENT SPECIAL SUP CFUELOPMENT CFUELOPMENT	R AND D FEVELOPHEN TECHNICAL DATA PESSON FUGING NEVELOPHENT TOPLING SEVELOPHENT TEST ARTICLE FLIGHT TEST SPECIAL SUPPIENT FQUIPMENT SPECIAL SUPPIENT SPARES	AL DATA TICLE TIPMENT
ENGINE COST		1	1199	1199663.00			ENGINE D AVIONICS	ENGINE DEVLEDPMENT	<u> </u>
PESFAFTH AND DEVFLOPMENT TOTAL FLY A	DEVELOPMENT TOTAL FLY AWAY COST		919	61.671.19	7.0664.00	93	οτ	TOTAL R AND D	
FIFET PERATING COST-POLLARS/P. LOFF JOEKAN LEPER AND RUDDEN MAINT. FRESH: LEFE AND RIPDEN MAINT.	UST-POLLARCZA. UPDEN MAINT. DER MAINT.	#1L5 0.4231 0.1286	0/0 2**56 7*75	2 4 4					
AIRFRANC MATERIAL MAINT.	INT.	0.0667	10.4		.543	802.	£ .	1081.	1221.
FUEL AFT OIL	•	0.34.0	20.61	7 V S P	1.506	1.4706	1.4087	1,3628	1.3274
INSURFICE DEPARTITUM (INCLUMING SPAPES)	(Sidrds ONL	0.4120	24.83	TB-HR	1.8067	2.0932	7.3797	7.6662	2.9527
Trial DOC SAN HILE	14.	1.6543	100.00		•	•	• • • • •	• • • •	• 0017

			9000	0000			0000	000	00		
		30.00 DEG	••••	0000		•	0000	00	00	۰۰°۰۰	
		4.0	0000	00000	, e ; e	••••	0000	0.0	co	ء ف ه ه	3 6 6
	ŧ.	RD SWEE	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	c : 0 0 0			0000	00	36	0300	
	Å	QUARTER CHORD TAPER RATIO =	0000	0000	, ° ° ° °	0.00	0000	0.0	co		
s		MING OUAR WING TAPE	0000	0000		0.00	0000	0.0	06	م د ف و	
× ×		33	0000	00606		••••	0000	0.0	00	°°°	
A M A			0.000	cocc		ō	0000	000	٥٥	د د ^ف ه	
1 C	103	81060 35000 5 = 7.	0.00	c000		0.0	0000	0.0	ငပ	د د ^د د	
π +	10 MG. 09 1975	1.0 = 3 FNG INF S	0000	cocc				0.0	c c	ء د <mark>•</mark> د	
A A F	SUMMARY OCTOBER	FNGINE 1.D SLS SCALF NUMBEP 7F				30	0000	0.0	د ن	ده ^د د	
<u>م</u>	νc	FNG	0 0 0	0000	ر د د د د د د د د د د د د د د د د د د د	3.00	0000	c 0	c s	ت ه ^د د	
٠ د د د			0000	0066	0.00		0000	٠. د د	CC	ن ه د د	
4			· · · · · · · · · · · · · · · · · · ·	5034		000	CCCC	0.0	د د ای	30°C	
			117.0 0.39 11.00 10.00	10F6.7 14704 60353 984°3	1590¢ 0.540 676. 101.1	113.0	7.507 7.507 5.667 1.400	6 CAST 1-650	_	38641 5146 1877 04	0365 0. 155.0 5784 148.6 6572 140.7 6090
			200000	4 10 10 10	1016 0.56 1016 1016 1016 1016 1016 1016 1016 10	1336	7. 40 4. 964 1. 418 0. 220	1.664 1.659		38011 5086 1911 G	15.00 17.00 148.5 140.7
			<u> </u>	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALE T	16 M. TAIL BRIB 18 V. TAIL AFFA 16 FOFY LFASTH 17 WIMS FUEL LIWIT	COST CATA—MILLION DULLANG 18 FLYANAY COST 75-46 14 AFFFRAM COST 5-964 21 FMGIMT COST 5-964 21 ANTONICE COST 0-270	-	1 TOT PATH MISSICH 24 WISSING SW411) 2F MISSING SW4(2)	0	LIMP GRANCIO 6379 0 AF CFCP-111 35.0 CTCL UNIS 012 548.5 TTL UNIS 012 6573 AP SPERNIT(3) 140.7 (TCL UNIS 013) 6097
		AIRCRAFT WILFE I.O.C. DATE DESION SPEED	125 175 170 170 170 170 170 170 170	SPCSS WETGHT FUEL WETGHT MP. WT. FWDTV ZFRO FUEL WT.	THEUST/FUGINE FNGIME SCALE MING AP FA MING SPAM	W. TAIL AKFA V. TAIL AFFA FOFY LFAGTH *IMG FUEL LI	051 0878—MILLIO 19 FLYAVAY COST 14 ATFRAME COST 20 FMG1ME COST 21 AVIONICE COST	Cort Cata-Ciptor	1 TOPT PATH 24 * 15517N	CONTRAINT DUTPUT 26 CFILING PWG[1] 27 TAKECEF NOT[1] 27 CLING GERT[1] 28 CLING G	LIME GRANCIO AF CETE-TII AF SEEN-TII THE LINE DIE AF SPEENTIE AF
		AIPCRAFT WI I.O.C. DATE DESION SPEET	2144	4 M M M M M M M M M M M M M M M M M M M			19 19 19 19 19 19 19 19 19 19 19 19 19 1			76 C C C C C C C C C C C C C C C C C C C	- U 4 U 4 U 4 U ;

-

OR POOR QUALITY

INT. THE	
P1 SS	
ASS/ 3000 N HI	
HISSION/200 P.	
DE STGN	
LIGUID HYDROGENBASIC DESIGN MISSIONZZOO PASS/ 3GGO N MI MI	•
L100	

T/C T/R AR LAM M/S T/W 10.00 0.30 9.50 36.00 112.0 0.335

CONFIGURATION GEOMETRY

W1N6	AREALSO.FT)		TAPER RATIO	SPANIFT) TAPER RATIO C/4 SWEEP L.E. SWEEP L.E.R/CHORD	L.E. SWEEP	L.E.R/CHORD
	1662.3	123.38	0.300	30.000	37, 76	0.0
	19.98	CT (FT) 5.99	MAC(FT) 14.24	CRE(FT) S 17.76	CRE(FT) S WET(SQ.FT) 17.76 2638.7	REF L(FT) 14.24
WING TANK	CRAP1(FT) 17.76	CAAR 2 (FT) 7.01	671 (FT) F	FTL(FT) FVWING(CU FT)	FVBDX (CU FT) 0.00	_
FUSELAGE	LENGTHIFT) 173.35	S WET (SQ FT) 9306.3	8WW(FT) 19.5R	EQUIV D(FT) 20.13	SPI(50 FT) 318.20	
	FW(FT) 19.58	RH(FT) 20.58	SPW(SD FT) 9306.31	FVR(CU FT) 5131.63		
TATL	SH1 (SQ.FT) 212.03	SHIX(SG.FT) HT PEF L(FT) SVI(SO.FT) 157.56 5.68 167.71	F PEF L(FT) 5.68		SVTX(5Q.FT) 167.71	VT REF L(F1) 11.21
PROPULS 10N	FWG L(FT) 6-84	ENG D(FT)	POD L(FT) 16-12	POD ((FT) 5.07	PCD S WET (SQ. FT) 1027.51	40. PUES INLET LIFT)

A-4 Aircraft No. 4 LH₂ Internal Tank 200 PAX, 3000 n mi range Mach 0.85

	LIQUID MYDROGENBASIC DESIGN MISSIOM/200 PASS/ 3000 N MI	¥	ISIC DES	IGN MT	SSIOM/2	OD PAS	57 3000 N MI	MT SS	
	•	1,70	1/4	ž	3	K/S	17.		
	01	10.00	0.30	0.50	30.00 112.0	112.0	0.115		
					POUNDS	0/0		PCUNDS	٥/٥
6	DESIGN GROSS WETCHT				179460.	179460. 100.00	c 4		
2	FUEL ZERN FUEL WEICHT				765		•	158536.	
44	PAVLOAD				44000	24.52	2	114514.	43.82
8	OPERATING WEIGHT EMPTY OPERATIONAL ITEMS				.1777	4.33	6		33.00
5	STANDARD ITEMS				2225.		•	106433	
3	PAIN ALLEY PAIN				14644.	A .30	•		
14	7416				2014.	•	~ *		
	F007				7676		n ec		
	FLIGHT CONTROLS				2461.		. ~		
3	MACELLES				3465		€.		
	PROPULSTON SYSTEM				22405	12.48	6 5		
Ó	ENCINE		11624.						
DA F	EXHAUST		1053						
i A	CUTING		•						
200	OIL SYSTEM (LESS OIL)		- 4						
ZA R			201						
\D\ \Q\	TANKS		4166						
PU	145ULA T104		2426.						
	FUEL-PLUMBING		1512.			4			
	SASTRUMENTS				1400		0 4		
	AVORABLICS FLECTRICAL				3895.				
_	ELECTRONICS				1588.		•		
_	FURNISHINGS AND FOUTP.				14343.	00.0	•		
ā 1	AIR COMOI LIBRING				187		, 3		
1 4	AIRTLIARY POWER URIT				0.40	97.0	ب		
•					c				
8	DESIGN PESERVE				ō				
7	MD. OF PASSENGERS				200.	•			
**	MO. OF CREW					. 9			
n u	STRUCTURAL VAL				5000.3	, m			
***	NING FUEL VOLUME AVAILABLE				0.0	•			

0.889

0.190

ċ

20950

159407.

1500.

.....

Section and the section of

0.193

1.706

0.175

0.161

14.14 13.68 13.11 15.43

0.211

13.84

<u>.</u> ن

د د

EXTERN F TANK TAB 10 ċ ن ် ċ ċ 83101. 83101. A3101. .10ces 83101. ċ ċ ċ 63101. A3401. -83101. 83301. 83301. -83101. -83101. -831C1. 63101. A3101. -83101. 83301. A3301. 83301. -83101. ં 15.0 14.0 362.0 0.0 40.0 40.0 42.7 TOTAL TIME (HIN) 10.3 354.2 369.1 188.8 394.8 394.8 53.3 63.0 43.1 63.R 69.1 c. 10.1 7.1 SEGNT TOTAL DIST (N MI) 2101 146. 150. ċ 12. . . 3000 #1: S1DN/200 PASS/ 3000 N HI NOISSIW ċ ċ • • 260. -3000ċ ċ 12. 19615. 186. 15886. 15909. 16047. 16875. 18672. 16920. 18959. 10727. 19827. 19927. 17024 17028. 17028 18672. 19640. 248. 107. 12. SEGHT FUEL (LB) ċ ċ 100. ċ 87. LIQUID MYDROGEN --- BASIC DESIGN TNIT WEIGHT 159732. I TROAP. 161551. 159644. 17946C. 1 7486 1. 162431. 162431. 16241. 160788. 160788. 160539. 159619. 179473. 176A20. 163649. 163573. 163412. 162585. 160500. 0.100 174.0 0.378 C.645 0.456 0.850 0.638 0.850 0.547 0.655 9.440 MACH MO MO 0.638 0.850 0.456 0.850 0.247 957.0 0.0 0.0 0.0 0.0 INIT ALTITUDE (FT) 36000. 100001 ċ ċ 100001 35000. 100001 36COC. 1500. 36000 100001 10000 30000 30000 10000 30000 TAKERFF Primer 1 **EFFCENT** DESCENT DFSCENT DESCENT CRUT SE LC 17ER CRUT SE CPU1SE CRUTSE CPUISE CLIME RESET RESET RESET CL IMR ACCFL CLIMA DFCFL CLIPP CECEL

0.213

0.211

0.184

* 5 E

AV6 L/0 RA130

0.0

-1.716

47.438

15.33

0.211

0.0

0.0

15.59

,		
8		
•		
•		
	,	
	,	
•	۰	
•		
	•	
	د	
۰	•	

AND THE PROPERTY OF THE PROPER

į i.

:

		> × ×								
	NING.	974538.75								
	777	126436-44								
	LABOTAC CEAR	183404.81								
	FLIGHT CONTROLS	173523.75								
	MACELLES PROPIL STON	382040.50								
	REV.									
	LUBE SYSTEM 2137.05 TOTAL PROPULSION	848776.06								
	PRSTALMENTS	152961.56								
	MYDRAULICS En ECTORCAI	329601.31								
	ELECTRONIC RACKS	98400-44								
	FURNISHING ATE CONDITIONING	316431.00								
	ANTI ICING	15153,31								
	APU SYS. DITEGRATION	141944.81								
D	TOTAL EIPTY MFG. COST		6363686.00							
RIG.	SUSTATISTING ENGINEERI 443379.63 TECHNICAL DATA 0.0									
n -	MAINT. 5838									
	MANGE ORDER					DESIGN ENGI	DEVELOPHENT TECHNICAL DATA DESIGN ENGINEERING	IL DATA	R206321. 182362704.	
		409115.56				DEVELOPMENT	NT TOOLING	11.16	88812128.	
	ATRFAME FEE ATRFAME COST	128, 713-00	9680140.00			FL TGHT TEST	ST	3	2 10 1964	
	ENGINE WARRANTY	107985.88				SPECIAL S	SPECIAL SUPPORT EQUIPMENT Development Spares	PHENT	2168352. 26927328.	
	ENGINE COST		2534828.00			ENGINE DE	ENGINE DEVLEOPMENT		.	
	AVIORICS COST RESEARCH AND DEVELOPMENT		1034458.94			AVIONIL'S DE TOTAL	AL R AND D	-	362235392	5392.
	TOTAL FLY AWAY COST -	1		13954926.00	2					
	DIRECT OPERATING COST-DOLLARS/N.	4. MILE 0.3048	0/0							
	RAME LABOR AND BURDEN MAI	0-1702								
	ENGINE LABOR AND BURDEN MAINT.	0.0886	3.31 KAMGE	P. A. A.	1236.	1509.	1942.	2295.	2047.	3000
	FACING MATERIAL MAINT.	0.1006		,						1
	FUFL AND OTL	0.9237	34.43 C/ASH	1.6195	1.5055	1.4421	1.4018	1.3738	1.3533	1.3376
	INSURANCE SECTIONS COLORS	0.1022	24.46 TR-48	2,2501	2.9716	3.6932	4-4147	5.1363	9.8578	6.5794
	Devellation including states				3723.	4 583	5444.	6305.	7165.	\$ 056.
	TOTAL DOC 8/N. HILE	2.6753	100.00							

DEFERNAL PAGE IS POOR QUALITY

	COGNI	OVERSPC OCDSTA LOTO	MF 16HT	FLAP CLAT	CDR11	DCPSTA	CHRT	061.590	CLST	ตรภ	048000	CDST
VSTALL	7	VROT	VID	۸2	9	x61	XR DT	S X	xTO	FIELDL	GRAD	
83401.	4.00	1.00	179466.	10.00								
99162.0	0.11295	69010-0	0.12357	1.96987	0.16275	0.01063	0.17298	-0.57424	-0.29240	0.12411	0.0730	0.15715
2,06046	0.25809	12.12550	1.88959	0.25489	12.08684	1.55444	0.254.89	11.12763				
112.06	130.21	130.21	140.07	146.88	3150.51	0.0	684.27	196.01	4638.78	5334.59	0.1672	
10768	00°E	1.00	179460.	18.00								
*8182. 0	0.11295	C.01063	0.12357	1.91480	0.15815	0.01063	0.16878	-0.57424	-0.29240	0.12411	0.07308	0.19719
1.72117	0.19357	12.11145	1.74643	0.19157	11.94464	1.61663	0.19157	10.88545				
112.06	129.86	134.27	140.07	145.67	3137.52	429.14	694.56	1:21.53	5342.75	5362.75	0.0937	

	V APPR SKTS	134.98 143.05 138.29
	FIELD L	5779.00 6261.63 5973.44
	TOT DISTOFT	3467.40 3756.98 3584.06
PERFORMANCE	XBRAKE ,FT	2100.50 2349.13 2200.61
G PERF	KROLL, FT	227.82 241.44 233.40
LANDIN	X06, FT	1139.08 1166.42 1150.05
	LANDING WT	162431-13 182431-13 170486-56

0.06850 0.01940 0.28436

-0.76500 -0.01021 0.19626

0.75479

BRAKING RUN COEFFIENTS---LANDING CLAN DCDSPO DCDSPA COGRD

CONT INUES

LESS THAN ROCLIM. CLIMB STOPPED. MISSION

•
-
S
>
_
⋖
z
⋖
U
_
•
-
ш
Ŧ
•
~
4
۵
-
•
S
S
•

	• • • • •	••••	• • • • • • • • • • • • • • • • • • • •	••••	••	
36.00 DEG	112.0 0.335 9.50 10.00	179459 20924 114535 158535 158535		13.455 10.415 2.540 0.500 2.473 1.338	35000 1 7028	35411 5334 1672 0 5382 20837 0 135.0 143.0 6261 136.3
SWEEP = 3 0.300	112.7 0.340 9.50 10.00	179760 20873 114887 158887		10.91 10.94 10.94 1.94 1.94	35000	42 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
	112.0	179690 20746 115143 159143	169. 173.5 173.5 173.5 173.5 0.000	2.650 0.500 2.680 2.680 1.340	3 6000 1 6616	35128 36045 5437 5178 1629 0.1755 0.521 5221 5203 0007 0.00005 0.135.2 135.2 135.1 6272 6209 138.5 138.3
QUARTER CHURD TAPER RATIO *	112.4 0.33 9.50 10.00	21111 114292 156292 14800		13.908 10.901 2.507 0.500 2.674 1.337	34000	35128 5437 1629 0 5521 0607 0 1135.2 1437.2 6787 1436.5
WING QUARTER CHURD WING TAPER RATIO =	112.4 0.33 9.50 10.00	179366 20912 114454 158454	0.429 1596. 123.1 212. 167. 173.3	13.945 10.907 2.539 0.500 2.674 1.337	35000 17015	35396 35128 5355 5437 1670 0.1629 0 5603 0.0907 0 135.2 135.2 5792 143.2 6277 6272 138.5 138.5
••	112.4 0.34 9.50 10.00	17966F 20861 114806 158866		14.007 10.932 2.575 0.500 2.678 1.339	35000 16427	35763 5275 1712 0 5328 0965 0 135.3 143.3 6281 138.3 6281 138.5
	117.4 0.34 4.50 10.00	20792 20733 115069 159059		14.0% 10.948 2.609 0.500 2.678 1.339	36000	36029 5194 5194 6724 6283 143.4 6285 134.5 148.5
83000 35000 35000	112.8 0.33 6.50 10.00	179304 21096 114208 158208	0.423 152.9 210. 165.	13.898 10.892 2.505 0.500 2.672 1.336	34000	34113 5458 1527 1527 1036 1036 1638 1638 1788
F 11 1975	112.8 0.33 4.50 10.00	179277 20899 114772 158372		13.936 10.898 2.538 0.500 2.672 1.336	15000	15536 1569 1569 1355 1355 1536 1536 1536 1536 1536 1536
NOVEMBER 11 ENGINE 1.C SLS SCALF 1.0 NUMRER OF ENG	112. P 0.34 9.40 10.00	179575 20850 114724 156725	1592. 1592. 123.0 211. 166. 173.3	13.998 10.924 2.574 0.500 2.676 1.338	35000	3574# 5295 1710 5394 0063 0 135.5 135.6 6296 138.8 6296 138.8
£ 15 £	112.8 0.34 4.50 10.00	179499 20721 114978 158978		14.047 10.939 7.606 0.500	36000	35098 36013 35749 5479 5218 5295 1626 0.193 0.1170 0 5570 3224 3340 6905 0.0992 0.0963 0 135.6 135.6 135.5 5815 5816 5811 143.8 143.6 143.6 139.0 138.8 138.8 6015 6005
	113.2 0.33 9.59 16.00	179203 21060 114122 158122		17.888 10.883 2.504 0.500 2.671 1.335	34000	
	113.2 0.33 4.40 10.00	1791¢ 7 208£2 114285 158285	1750 0.429 172.6 269. 173.3	13.924 10.849 2.537 0.500 2.671 1.335	35000 35000 16990	• •
_	113.2 0.34 9.50 10.00	179473 20834 114639	1565. 1585. 172.7 210. 184. 174.3	10.437 13.987 10.430 13.987 2.606 2.572 0.500 0.500 PERATING COST 2.675 2.675	35000 35000 16904	34732 5315 1706 0.0962 0.135.6 5375 143.9 6312 139.0
	113.2 0.34 0.40 10.00	179601 20707 114894 156894		ب م م		1750 0 5231 1750 0 5271 00401 0 135.8 5830 143.4 6317 6317 6317
	¥ :	ERGHT IGHT EMPTY EL WT.	11 D TREUS TYPECINE 12 WING SPAN 12 WING SPAN 13 WING SPAN 14 W. TAIL AREA 15 V. TAIL AREA 16 RODY LENGTH		24 MISSION SYM(2) 25 MISSION SYM(2)	27 TAKENFE DST(1) 35997 35732 27 TAKENFE DST(1) 5234 5315 28 CLIMB GRADI(1)0.1750 0.1706 0. 20 TAKENFE DST(2) 5271 5370 31 AP SPEED-KT 1) 135.8 135.8 32 CTOL LNCC 011) 5830 5825 33 CTOL LNCC 012) 143.9 143.9 34 CTOL LNDC 012) 153.7 631.7 35 AP SPEED-KT(3) 139.6 139.0
AIPCPAFT MODEL I.O.C. DATE DESIGN SPEED	# 75 172 176 RADIUS 4. 41	GROSS WEIGHT FUEL WEIGHT OP. WI. EMPTY	THRUS YENGINE ENGINE SCALE MING SPAN H. TAIL AREA NOV LENGTH MING FUEL LIM	10 FUNDANCOST 10 ANGROME COST 20 ENGINE COST 21 ANDONICS COST 605 DATA—DIRECT 22 D PER MIE 23 CEMTS/A S MIE	24 MISSION SYM(1) 25 MISSION SYM(2) 25 MISSION SYM(2)	CELLING PURELLY TAKENFF OSTIL TOTAL TAKENFF OSTIL TAKENFF
A19C4 1.0.0	- N F: 4 W		7656	22.22.22.22.22.22.22.22.22.22.22.22.22.	222	

BRANT PIL

HISS - EXTERNAL TANK LIQUID MYDENGER --- BASIC DESIGN PISSION/206 PASS/ 5000 N PI

17. 178 AR 1AP W/S 17H 10.00 0.40 9.50 30.00 110.6 0.~30

CONFIGURALION GEOMETRY

¥116	AREA (SQ.FT)	SPAN(FT)	TAPER RATIO	SPAN(FT) TAPER RATIO C/4 SWEEP L.E. SWEEP		L.E.R/CHORD	
	1674.7	133.45	0.400	30000	31.401	0.0	
	CA (FT) 20.07	CT (FT) B.03	NAC (FT) 14.91	CAE (FT) S 18.30	CAE(FT) S WET(SQ.FT) 18.30 3223.2	REF LIFT) 14.91	
WING TANK—	CBAR1(FT) 18.30	CBAK2 (FT) 8.90	F1L (F1) 1	FWINGICU FT) FYBOXICU FT) 6.01 0.00	FVB0X(CU F1	•	
FUSE LAGE	LENG IM(FT) 144.70	S WET(50 FT)	BWW(FT) 19.58	(QUIV D(FT) 26.13	SP1(SQ FT) 316.20		
	BW(FT) 19.58	bн (FT) 20.58	Sbu(SG FT) 7560.60	FVECCU FT			
	SMT(S0.FT) 349.22	SHTXISO.FT) HT BEF LIFT) SVTISC.FT) 251.34 E.U9 264.'4	(1 PEF L(FT)		SVTX(SQ_FT) 264.64	SVTX(SQ.FT) VT REF L(FT) 264.64 14.10	
PEDPULSION	ENG LIFT)	FNG D(FT)	POD L(FT)	POC D(FT)	POD S WET (SQ. FT) 1483.21	MO. PODS	INLET LIFT!
FUEL #005	VOL (CU FT) 6676.41	1676		SPI(SQ FT) S WET(SC FT) 181-15 4006-8			

A-5 Aircraft No. 5 LH₂ External Tank 200 PAX, 3000 n mi range

· France

MISS	
£	
2	
3000	<u> </u>
PASS/	_
1200	* /\$
41 SS 10N	LAM W/S
DESIGN I	*
-BAS IC	¥1 2/1
LIGUID MYDFOGENHASIC DESIGN MISSION/20C PASS/ 300G N MI	1/0
r sourb	

	1,6	₹ -	¥	LAN	8/R	ζ		
	10.00	0.40	95.0	30.00 110.6	10.6	0.430		
				FOUNDS	8		POUNDS	Ş
DESIGN GROSS NEIGHT				207346.	3.031	•		
FUEL				27229.		•		
SERO FUEL ME IGHT				9001			180117.	
OPERATING METERS EMPTY	Y			200	77.77		174117	44.64
OPERATIONAL TIENS	· •			7605.	3.76	•		
STANDARD ITEMS				2541.				
ENDTY METCHT-MFG.							125772.	
# INC				19603.				
TAIL				3312.		•		
Agona Cara				26.3C	-	•		
CATCAT CONTROLS				8203				
				56656				
CACTAN STATEM			_	32240		•		
A18 THYARE		2000	•					
EXMAUST		90						
2007		0						
OIL SYSTEM ILESS CIL.)	-	11.	•					
ENGINE CONTACLS		\$						
ENGINE STARTING		306.	•					
T LEKS		7523.	•					
TASUL AT TON		4473.	•					
FUEL - PLUMBING		1247.	.•					
INSTRUMENTS				3		_		
HYDRAIL ICS				16%	-			
ELECTRICAL				3 604.				
ELECTRONICS				-24				
FURNISHINGS AND ECUIP.				14353.				
AIR COMOITIONING				3122.				
ANY 1-1C 1MG				20%				
AUXILIARY POWER UNIT				5.00		•		
MISCELL AMERICA				ė				
DESIGN RESERVE				ડ	3			
MC. OF PASSENCERS				Š				
				3				
				: :				
Sing Carl 17.				2.50				
FURL WALLE REGO				6.502°				
WINT FUEL VOLUME AVAILABLE				0.0				

>
4
•
*
£
2
٠.
2
0
-
<u>.</u>
٠.
ر. دو

	ALTITUD 15.11	, in the second	1557		1101	CA MI	E PER	CHIL		STERE TAR 10	THEUST TAF ID	F TANK TAB 10	EA110	SFC (FF/1)
TAKECSE PUMB 1	•	٥.	267344.	.>21	124.	ò	å	14.6	14.0	ċ	-53101.	ż	0.	\$1.°
POME R. 2	3	3.7	x7217.	148.	277.	•	.	7.1	15.û	•	13401.	ં	9.0	0.10
CL INE	j	4.374	1,1064.	317.	; ;	9		2.3	17.3	•	£3101.	ċ	13.37	0.161
ACCEL	10000	0.456	26.152.	=	112.	•	19.	٠ د	16.2	•	63101.	•	10.44	0.1¥
Ct Inc	100001	4.434	¿16634.	2316.	30.26.	208	.423	3. 25	43.8	ć	13161.	•	10.35	0.212
COUISE	36000.	0.85	24431E.	17360.	20406.	2526.	2750.	310.5	3.4.7	ċ	-(310).	6	12.30	0.211
DE SCENT	34000	0.850	186437.	.7.	20506.	;	. 7. se	5.6	306.5	•	63301.	•	9.13	-1.639
1135	16000	6.636	116666.	27.	26533.	•	28 42.	1.1	361.6	ċ	63301.	•	10.60	4.52
DE SCENT	1000	0.454	166613.	173.	20706.	27.	7.22	7.	347.6	•	13561.	3	12.78	0.847
CAUTSE	34000.	0.850	186646.	1136.	216.2.	.171	3000	21.6	366.7	•	-£3101.	6	12.11	0.211
LOTTER	3.	0.241	185:04.	165.	22037.	ò	3000.	9	34.7	•	-63101.	•	14.53	0.153
RESET	3	9	1836.	ċ	22637.	•	3600.	0.0	7.36	;	ó	•	0.0	0.0
A E SE T	•	0	185304.	ė	22037.	-3000.	ċ	-344.7	0.3	•	3	•	9 •0	0.0
CAUTSE	34000.	0.450	105300.	3100.	25235.	ó	;	9.09	3.48	•	-63401.	•	12.13	0.211
RE SET	•	0.0	142111.	•	25235,	•	•	0.0	0.04	•	ó	•	0.0	0.0
Ct 138	6	0.378	162111.	.272	25566.	•	;	7.5	0.54	•	.1016	•	12.48	0.141
ACCEL	10000	0.454	101034.	•3•	25540.	7.		6.3	62.3	•	e3101.	•	11.29	0,13
Ct 1m	10000	0.547	10176.	114.	26263.	;	*	1.1	4.60	•	43101.	3	10.54	0.192
Ca vi Se	36000	£04-3	101082.	277.	24540.		100	•••	16.3	•	-63101.	•	13.79	
DE SCENT	30000	0.700	100 005.	. 60	26645.	¥.	137.	5.7	3	•	83301.	•	10.41	-5.261
DECEL	16000	0.547	100 001.	15.	26654.	3.	3	3	£2.4	3	83301.	•	11.34	1.700
DE SCENT	10000	0.45	1 20 424.	124.	26.783.	2	141.	¢:	1.18	•	43301.	•	12.55	0.0
CPUISE	36000	6.60	100%22.	* 0 *	27043.	*	36.	4.4	2.	9.	-63101.	•	13.77	0.1
										•	1	•		

	TOCHAT: 2073-0-1	12 -17 130	27224-1 F	FUEL 6: 2	27233.0						
	•	* >	*								
	WING TAIL MAGNIC GEAR FLEGAT CONTOURS MACFLEE PROPULSION FMCINE AIR IMPLETION FUEL SYSTEM START SYSTEM EMATHMUST REV. LUME SYSTEM TOTAL PROPULSION	23516.36 100304.50 1100304.50 1100304.50 11003.50 12003.65	00°56-20°1 00°51 17°0 00°71 17°50 00°71 17°50 00°56 17								
	INSTRUMENTS INTEGRAL TCS ELECTRICAL TCS ELECTRONIC RACES FURNT SHING A IN CONDITIONING ANTI ICING ANY SYS. INTEGRATION		11.000.11 11.000.11 11.000.11 11.000.11 11.000.11 11.000.11 11.000.11								
D D	TOTAL EMPTY MEG. CI	TS:00		7316453.00	3.00						
RIGINAL PAGE IS F. POOR GUALITY	SUGTAINING ENGINGERS SS TECHNICA, DATA PRED. TOUTHE NAINT. AN HISC. CAMME ORDER OUALITY ASSURANCE ASSURANCE AS ASSURANCE TO ASSURANCE TO ASSURANCE TO ASSURANCE TO ASSURANCE TO ASSURANCE TO ASSURANCE TO ASSURE COST ENGINE COST ENGINE COST RESEARCH AND OCVELOPMENT RESEARCH AND OCVELOPMENT	1 53076.11 • 6007 6.04 194103.54 178206.63 778206.63 778206.63	45.265.13 15.2653.00 15.13.12.13	3558861 .00 50000000000000000000000000000000000		3. 14. 2. 2.	۵	DEVELO. MENT DES IGN FING DEVELOPMENT DEVELOPMENT FLIGHT YEST SPECTAL SUP DEVELOPMENT FMG INF DEVL AVIONICS. DE	P AND D DEVELO MENT TECHNICAL VY DESIGN ENGINERATION DEVELOPMENT TEST ARTICLE FLIGHT TEST ARTICLE SPECTAL SUPPORT EQUIPMENT SPECTAL SUPPORT EQUIPMENT ANIONICS DEVLEDMENT AVIONICS AND D VOTAL R AND D	A	100 100 100 100 100 100 100 100 100 100
	DIRECT DPERATING CALL CREW ASSPRANE LABOR AND BE ENGINE LABOR AND BURN ASSPRANE MATERIAL, NA ASSPRANE MATERIAL, NA	E COST-DOLLARS/N. DUADEN MAINT. MART.			7 T	.33.	175.	1596.		% %	2630
	ENGINE NATERIAL MAINT. FUEL AND OIL INCA ANGE	÷	0.1404		79C C/A SE	1.425	1.8340	1.7567	1.7054	1.4703	1.000
	3	LUBING SPARLS)	0.670		A-61	2.1366	2.8768	3.4170	4.3572	5.0974 7610.	5.4377
13	101AL BOC 6.78. #1LE		3.2510	190.00			!				

SMARL COMMENT OF

-

I

To the same of the

Secretaries 4

All I I

U

v.
_
S
>
-
⋖
Z
•
•
·
-
_
فق
Σ
~
œ
•
٥.
-
w
S
S
4
4

						NOVE MET	NOVEMETE (5 1975	25								
AIRCK FT MLDELCL13 1.D.C. DATE1990 UESIGN SPEEDSUES				-	N S S	ENGINE 1.0 E3666 SLS SCALE 1.0 = 35666 NUMBER DF ENGINES = 4	0 +3666 1.0 = 35666 ENGINES = 4	+3666 35666 S = 4.		33	MING CUA	CUARTER CHORL TAPER RATIC =	CUARTER CHORD SWEEP TAPER RATIC = 0.400	n	30.00 DEG	
1 W/S	1111.2	1111.2	1111.2	1111.2	1111.0	3.11	111.6	311.6	110.8	110.8	110.8	110.8	110.6	_	0.0	0.0
	05.5	. 20	36.0	9.50	96.6	3 6	9 6		9.50	200		9	9		2 6	
	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.0	3	00.01			
S RADIUS N. MI	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	308	3000	٥	_	٥
A GROSS METGET	561105	76 1505	20.71.78	202202	26.7194	1 36.736	207264	26 70 66	1602.32	20200	16.55.00	707267	77566	ć	c	•
		27443	27665	27898	2726	27453	77675	3352	27218	77464	27688	27621	3 2 2 2	ی د	> c	> c
8 OP. WT. EMPTY	135924	135734	135512	135304	135988	135797	135577	135370	154052	135862	135643	135436	136117	ء د	•	• •
S ZERO FUEL WT.		174734	174512	179304	179988	170747	179577	179370	150052	179862	179643	179436	180117) 3	•	0
	22265	22012	21753	21497	22273	22020	21761	21505	22281	22028	21769	21513	22289	3	0	0
	0.636	0.629	0.622	0.614	0.636	629.0	0.622	0.614	1.637	0.629	0.622	0.615	0.637	0.0	0.0	0.0
	1863.	1863.	1863.	1863.	1867.	1867.	1867.	1867.	1871.	1871.	1871.	1871.	1875.	•	•	ċ
	133.0	133.0	133.0	133.0	133.2	133.2	133.2	133.2	133.3	133.3	133.3	133.3	133.5	٠ <u>٠</u>	0.0	0.0
	346.	346.	346.	346.	347.	347.	347.	347.	348	346.	346.	348.	349.	ċ	•	ċ
15 V. TAIL ARFA	262.	262.	262.	262.	263.	263.	263.	263.	264.	264.	264.	264.	265.	•	ċ	ċ
16 BUDY LENGTH	144.7	14.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	0.0	0.0	0.0
17 WING FUEL LIMIT	000-0	00000	939°0	000.0	030.0	00000	0.000	930.3	00000	00000	00000	000	000.0	0.0	0.0	0.0
CUST DATA-MILLION	DOLLARS/AIRCRA	/a ir cr a	F.T													
	17.051 17.010	17.010	16.966	16.923	17.056		16.974	16.431	17.066	17.026	16.482	16.939	17.074	0.0	0.0	0.0
19 AIRFRANE COST	12,995 12,989	12.989	12.980	12.973	13.002		12.967	12.980	13.008	13.003	12.994	12.986	13.015	0.0	0.0	0.0
20 ENGINE COST	3.556	3.521	3.485	3.450	3.557	3.522	3.467	3.451	3.558	3.523	3.488	3.452	3.559	0.0		0.0
	0.500	0.500	o.500	005-0	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.0	0.0	0.0
DATA-DIRECT	DPERATING COST	c cost														
22 & PER MILE	3.248	3.253	3.259	3.263	3.249	3.254	3.260	3.26	3.250	3.255	3.261	3.266	3.251	0.0		0.0
23 CENTS/A S HILE		1.626	1.630	1.632	1.624	1.627	1.630	1.632	1.625	1.627	1:631	1.633		0.0	90	0.0
FLICHT PATH MISSION		CHARACTERIST I	u													
24 MISSION SYM(1)	38000	37000	37606	36000	38600	37006	37000	36000	38000	37000	37000	36000	38000	0	•	0
25 HISSION SYN(2)	22010	22197	22414	22595	22018	22206	22424	22605	22027	22215	22433	22619	22036	9	0	•
CONSTRAINT OUTPUT																
		38116	37798	37575	38335		37808				37817	3758	38354	٥	٥	٥
	4258	4303	÷35C		4256	4295	1345	4364	4243	4287	4334	4381	4235	0	•	0
28 CLIMB GRAD(1)0.2430 0.2388 0.2345 0.2303 0	2430 0.	2388 0.	2345 0.		2431 0.	.2431 0.2389 0.2346 0.2304 0.2432 0	2346 0.	2304 0.	2432 0.	2390 0	.2390 0.2348 0.2305 Q		2433 010	0.0	0	
	4116	4159	4215	4271	4108	4151	4207	4262	+10C	4143	4196	4253	4092	0	Ū	0
30 CLIMB CRANCETO. 1456 0-1426 0-1379 0-1369 0-1459 0-1429 0-1400 0-1370 0-1460 0-1430 0-1401 0-1371 0-1461 0-0	1458 U.	1426 0.	1395 0	1369 0	1459 0.	1429 0.	1400 0.	1370 0.	1466 0	1430 0.	1401 0.	1371 OF	1-61 040			
31 AP SPEED-KT(1) 135.3		135.3	135.2	135.1	135.2	135.1	135.1	135.0	135.1	135.0	134.9	134.9	135.0	0.0	0.0	0.0

Jet		
1166		
the districted to extrance design a societies a second in	# \ r	6.242
1 284 7	Ah 124 W/5 1/W	7.0°
902 / 1	441	0.100
CESIC.	4	4.75
62411Nt	17C 17.E	10.00 0.50 9.75 30.00 20.4 0.2F2
وراويدا وال	176	10.50
1:01 11		

•

CLNFICUSATION CEUMFIFY

#1P.G	AREACCU-FT3	SPANIET F	APER KATIF	C/4 SWIFP	SPARIETY TAPER KATHE CZZ SWIEP L.F. SWEEP L.F.XCMERI	L.F. X/CHI'K!	
	1663.4	127.56	gray •)	30,000	32.316	،• 0	
	CF (FT) 20.10	C1 (FT.) c+03	MAC(61) 14.33	(FE (+T) S	17.52 S WET (54.FT)	REF 1 (FT) 14.33	
WING TARK	CFAF1(FT) 17.93	CBAR2(FT) 7.05	+TL(FT)	FTL(FT) FVW]HC(CU FT)	+VRCX (CU FT) 277.05	£	
FUSELAGE	LENGTH(FT) 144.70	S WFT (SG FT) 75+0.0	BWW(FT) 19.5#	EQUIV CIFT)	LQUIV C(FT) SP1(SQ FT) 20.13 319.20		
	RW[FT] 19.58	BH(FT) 20.58	SAMISU FT!	SAWISU FT) FVF(CLI FT) 7580.60 90994.60	_		
TAIL	SHT (SQ. FT) 296.30	SHT(\$0.FT) SHTX(\$0.FT) HT REF L(FT) SVT(\$4.FT) SVTX(\$4.FT) VT REF L(FT) 296.30 203.11 7.36 221.56 221.56 12.41	7.36	SVT (SU.FT) 221.50	SVTX(SU.FT) 221.50	VT RFF L (FT) 12.91	
PROPULS ION	ENC L(FT)	ENG D(FT)	PDD L(FT) 16.25	PCD D(FT) 5.07	PUD S WET (SQ. FT) 1034.05	NU. POUS	MLET LIFT 0.0

A-6 Aircraft No. 6 JET A Fueled 200 PAX, 3000 n mi range Mach J.85

The state of the s

Section of the contract of the	6451 t.Inc	- - - -	- J. J	[M 1 3 OF / 314		
3/1	Ś	યું	ני	R/L		
10.01	٥, • ٥	۶۰.۲	steed 1 dies	24 743 400,		
			, Jean 14	2/2	PC UNES	6/0
DESTON GRUSS WEICHT			231474.			
FIEL SERI FULL VETCET			£1117.	2I.s	10.441	
PAYLOAT TANGENT THOSE			******	20.20	•	;
OPERATIONAL ITEM			ATTF.	35.5	1117e7.	51.5
STANDARF TIEMS			2002	7,00		
			171,7	,	102006.	
TAIL			744	3.4.		
FODY			26434	,		
LANDING GEAR			6542.	3		
FLIGHT CONTROLS			3012.	3.5		
RACE: LES			3636	1.63		
TAUTOLO JUN STOLET			12521	91.		
ATO TRITAL	11846.					
	1,00%					
C00134						
OIL SYSTEM (LESS DIL)						
	94					
ENGINE STARTING	204.					
ANKS	320					
INSULATION CONTRACTOR	ċ					
	632.			:		
HYDRAUL ICS			1756	B 4 5		
ELECTRICAL			3776	1.34		
FLECTRONICS			1542	12.7		
FURNISHINGS AND EDUIP.			14353	6.667		
A DR CONDITIONING			3431			
ANT 1-1CING			211.	0.10		
AURILIARY POWER UNIT			R 3C.	(1.3F		
MISCELL ANEOUS			.	J*0		

MISCEL MESERVE 0.	MO. OF PASSENCERS 200. NO. OF CREW 8. STRUCTURAL T/C 12.50 FUEL VOLUME REOD 1719.6 MING FUEL VOLUME AVAILABLE 1074.9
0°0 °0 0°0 °0	

>
٠.
•
.
٠.,
u٦
•
-
-
•
•
-
*

1

CLIPPE Co. cl. cl. cl. cl. cl. cl. cl. cl. cl. cl	SEC PENT	1.117 0.1179, 0-13	TEAT - MACE	T 1417 15.17 17.14 (16.9) 1(74) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9) (1.9)	1. H	11.7A1 102.1 1.93	11/1 1157 11/1 1157 11/4 11/57	117.11	17 15 1 1 10 1 1 10	10 fal. 1181 (318)	TATES TATES TAN TO	110 14h 14h 17 16 17	EX11 PN F 1 4 PN 1 A F 1 E	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	AVG SFC (+F/1)
			3	.10 6:	24.5	****	Š	<i>3</i>	14.0	4	<i>:</i>	-: 1101.	ż	c.	200
100 0. 0. 17.2 1. 17.2 1. 17.2 17				216247.	i,	636.	;	.	1. 0	::	.	41401.	:	3 9	0.298
10000 0.404 1392. 379, 1001 0.0 0.	CL 1PE	ė			;que.	1761.	17.	17.	7 • 6	16.0	;	r1101.	3	. 17.65	0.443
101000	שנמו	100 00	0.00	:1575	374.	:083.	;	ď.	4.1	5.002	:	41161.	3	15.00	0.545
	CLIMB	100001	369.0		1078.	\$144.	. 50.5	328.	37.2	57.4	ż	81101.	ક	14.07	0.623
1 10000 0.44 17014-4 12-7 47027 14. 2409 14. 36.27 0.6 41301 0.6 12.08 13.08 1	CRUTSE	3~650.			+ 1A22.	-67F1.	.527.	.750.	207.3	7.4.4.7	3	-61161.	ó	15.24	0.616
10000. 0.444 149494 649. 47046. P. 2462. 1.4 1.5 56.2.7 0. 41010. 0. 14.66 13.4	DESCINT	-000 PE	0.8.0		247.	47027.	3.	2 MD9.	7.5	362.1	ċ	41301.	;	12.08	99.1
	DECE L	10000	0.634	169596.	44.	. 1046.	÷	2818.	1.5	563.7	ċ	F1301.	* 3	14.00	133.291
1500 0.440 0.4401 0.4601 0.0401 0.0 0.000 0.	DE SCENT	10000		:69427.	.426.	47522.	* e1	2852.	7.7	271.4	0	.1301.	•	16.43	2.374
1506 6.00 16.04 16.04 16.04 0.0 3000 0.0 305.04 0.0 305.04 0.0 305.04 0.0 305.04 0.0 305.04 0.0 305.04 0.0 305.04 0.0	CRUI SE	34000		104401	2016	*****	148.	3000.	16.2	384.4	;	-61161.	•	15.08	0.416
0 0	LOTTER	1500.		167316.	46A.	\$00.76	ځ	\$000°	0. 4	30.46	ŝ	-91101.	.	16.54	•
10000 0.4% 166847, 0. 4607e, -3760. 0. 404.c, 0. 64.c, 0. 64.c, 0. 64.c, 0. 41101. 0. 15.07 38000 0.4% 160847, 6683, 54754, 0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	RESET	ċ		166947.	ċ	\$6076.	;	1000.	0.0	105.6	3	•	•0	0.0	0.0
10000 0.446 160447, 0.4579, 0. 0. 0. 0. 0. 0. 0. 0	RESET	ċ		166847.	ં	.40076.	-3000-	3	4.396-	ن ن•	;	•	3	3.	9
10000 0.45 150164. 0.5 46754. 0.5 0.6 0.0	C KUI SE	38000.		100 447.	66 A.3.	56759.	ځ	°	0.00	9.09	ċ	-A1101.	.	15.07	0.616
0. C.376 160165. 719. 57477. 11. 11. 2.5 62.5 0. 81101. 0. 15.43 10000. 0.450 15946. 110. 57587. 2. 14. 0.4 57.0 0. 81101. 0. 14.57 10000. 0.457 15946. 56. 71. 6.6 71.6 0. 81101. 0. 14.57 10000. 0.457 15563. 4046. 48. 148. 7.4 83.2 0. 81101. 0. 15.79 17 30000. 6.700 157160. 7.1 48. 148. 7.4 83.2 0. 81301. 0. 15.79 10000. 0.547 15669. 37. 60061. 4. 153. 0.7 84.0 0. 81301. 0. 15.54 1 10000. 0.456 15662. 26. 26. 26. 44.0 0. 81301. 0. 15.54	RESET	ė		160165.	ċ	\$6754.	0	3	0.0	0.09	0	•	•	0.0	9.0
100000. 0.456. 15946 2. 14. 0.4 57.0 0. 61101 0. 1101 0. 14.57 100000. 0.447. 15936 56. 71. 4.6 71.6 0. 61101 0. 13.69 1 100000. 0.470. 15756 4.0 7.4 7.4 7.4 0. 61101 0. 15.79 1 100000. 0.700. 157160 7.1 4.6 7.4 84.0 0. 81301 0. 15.47 -1 1 100000. 0.547 15669 2. 153 0.4 84.0 0. 81301 0. 15.54 -1 1 100000. 0.450 1566 2. 178 4.7 84.0 0. 81301 0. 15.54 1 100000. 0.470 1562 2. 200 4.2 92.4 0. 41301 0. 15.	CL IMB	ò			719.	\$7477.	11.	11.	2.5	62.5	;	81101.	.	15.43	0.462
100000. 0.447 159336. 7E. 71. F.6 71.6 0. 61101. 0. 13.69 I 90000. 0.470. 157567. 404. 49762. 29. 100. 4.3 75.6 0. 61101. 0. 15.79 II 90000. 0.547 155699. 37. 60061. 4. 153. 0.8 44.0 0. 81301. 0. 15.57 -1 II 10000. 0.547 15669. 301. 60362. 26. 178. 7.7 84.6 0. 81301. 0. 15.67 -1 II 10000. 0.456 156501. 301. 60465. 22. 200. 3.2 92.4 0. 41101. 0. 15.75	ACTEL	10000		159460.	110.	57587.	2.	14.	7.0	93.P	.	61101.	•	14.57	0.516
NT 30000. 0.747 15761. 29. 100. 4.3 75.6 0. -81101. 0. 15.77	CL IMB	10000		159336.	1773.	5 43 60.	56.		4.6	71.6	•	61101.	ò	13.69	0.569
NT 30000. 0.750 157160. 201. 60024. 48. 148. 7.4 83.2 0. 81301. C. 133.47 -1 10000. 0.547 15689. 37. 60061. 4. 153. 0.P 84.0 0. 81301. 0. 16.54 NT 15000. 0.456 116862. 301. 60362. 26. 178. 5.7 84.6 0. 81301. 0. 15.87 F 30000. 0.470 156501. 303. 66465. 22. 200. 3.2 92.4 0. -61101. 0. 15.75 R 1500. 0.252 156258. 442. 61100. 0. 700. 6.0 98.4 0. -81101. 0. 16.37	CAUT SE	10000		157563.	**************************************	49763.	20.	100.	4.3	75.8	•	-81101.	•	15.79	0.571
10000. 0.547 156899. 37. 60061. 4. 153. 0.P 94.0 0. 91301. 0. 15.54 NT 10000. 0.456 11.6862. 301. 60362. 26. 178. 6.7 84.0 0. 81301. 0. 15.87 F 30000. 0.470 15651. 203. 66465. 22. 200. 3.2 92.4 0. 41101. 0. 15.75 R 1500. 0.232 156258. 442. 61100. 0. 200. 6.0 98.4 0. -81101. 0. 16.37	DE SC ENT	30000		157160.	201.	60024°	48.	148.	7:4	83.2	•	81301.	3	13.47	-14.785
T 10000. 0.456 1:6862. 301. 60362. 26. 178. 5.7 89.6 6. 81301. 0. 15.87 30000. 0.470 156561. 303. 66665. 22. 206. 1.2 92.6 661161. 0. 15.75 1500. 0.242 156258. 442. 61100. 0. 200. 6.0 98.6 081101. 0. 16.37	DECEL	10000.	0.547	156899.	37.	60061.	;	153.	0.0	94.0	ò	91301.	ó	7:5	£.7
30000. 0.270 156561. 303. 66665. 22. 206. 3.2 92.4 661161. 0. 15.75	DE SCENT	10000	0.456		301.	60362.	26.	178.	۲.٠	A . 6	3	81301.	ò	15.87	2.492
1500. 0.252 15625A. 442. 61106. 0. 200. 6.0 9A.H A81101. 0. 16.37	CRUISE	30000		156501.	303.	•6443e	34.	200.	3.2	92.h	ះ	-61161.	•	15.75	175.0
	LC: TER	1500.		15625A.	442.	61106.	ċ	200.	0.9	E T	ċ	-41101.	•	16.37	0.445

OF POOR GUYLITY

TOGANT= 216"23.9

FUEL R. 61106.3

FIFE A# 61136.6

	1 * 4 14 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1213 552 516 1 2 1 1 2 5 5 5 1 1 1 1 1 2 5 5 5 5 5 5									
EXHTMEUST REVELLED TOTAL PROPULSION INSTRUMENTS HYDRAULICS ELECTRICAL ELECTRONIC RACKS FURNISHING ANT ICING SYS. INTEGRATION	14.0 11.0 11.0	316199.60 119482.16 119482.41 226281.51 95630.19 416684.60 1708.60 89533.60									
SUSTAINING ENGINEER! ~241E: PROD. TOOLING MAINT. 55H57 PROC. CHANCE ORICR OUALITY ASSURANCE AIRTRANE FE AIRTRANE FE AIRTRANE COST BUSINE WARRANTY ANGENE WARRANTY ANGENE WARRANTY ANGORICS COST ANGORICS COST ANGORICS COST ANGORICS COST ANGORICS COST RESEARCH AND DEVELOPMENT	2241833F 0.0 5545743 159186.75 0.0 592815.13	395965.50 1247102.66 91336.38 230167.55	9561114.00 2148231.00 50000.00	44 00 00 00 00 00 00 00 00 00 00 00 00 0	133.25814.00	9	CEVELOPHENT DESIGN ENGIN DEVELOPHENT FEVELOPHENT FEVELOPHENT FEVELOPHENT FEVELOPHENT FEVELOPHENT FOVELOPHENT FOVEL		ANI D TECHNICAL DATA IEERING TLOULING TEST ARTICLE CORT EQUIPHENT SPARES CRT EQUIPHENT CRT EQUIPHENT CRT EQUIPHENT	80.6.02.77. 1791.17184. 11.7099824. 3.16.4266. 2.79.2.1964. 2.79.2.1964. 2.79.2.1964. 2.79.2.1964. 2.79.2.1964. 2.79.2.1964. 3.79.2.1964.	22.72. 22.72. 22.73. 24.03. 25.03. 26
DIRECT OPERATING COST-DOLLARS/ CREW ATTERCAME LABOR AND BUNDEN MAINT. ENGINE LABOR AND BUNDEN MAINT. AIRPRAME NATERIAL MAINT. ENGINE MATERIAL MAINT. FUSARANCE DEPRECIATION (INCLUDING SPARES)	F-DOLLARS/N. SEW MATNT. C. MAINT. S. SPARES	0.3956 0.3956 0.1066 0.1344 0.1344 0.1277 0.6277 0.6277	0/0 10,40 10	RANGE N. HI DOC C/ASH 18-1-R	724. 1.463% 2.345% 2705.	1270. 1.3609 3.0537 3457.	1016. 1.3022 1.7616 4.209.	1962.	230A. 1.2376 5.1775 5713.	2654. 1.21 A. 5.4855	

					3 > 1	-	· ••	5	-	-1 -1 -1	1 7 7 1						
							And IA.II	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101								
AIRTRAFT MOLL INCL INC. CATT DESIGN SPEED	ب					: 7 3	TATES SUFE		21006 45000 6 = #.		3 3	WING GOA	CHAKTER CMURE Japed Ratiu ≈	UPE SWIEP U = 0.366	*	0.00 UEG	
1 W/S		131.0	1:1:0	171.4	131.6	130.6	130.1	1 34.06	136.4	4.0.1	130.0	130.0		136.4	130	130.4	130.4
<u>کر</u> ،		12.0	, /· n	ر• د ا		\$2.0	\$.	0.28	٥٠/٩	62.5	?	42.0	0.28	9 7.0	7.0	₹ 8/*0	0.282
		5.74	5. c.		7.7.		٠,٠		ř.			42.0	0.75	٤.	4.7		¥. 7.
	,	30.31	၁ ၁	16.0	33.0:	10.00).].	16.00)C. (C.			Jo-0[10.00	30.0	10.60	_	3.6
S RADIU	RADIUS wi	000	900 _E	4(.().)	3006	3000	36.63	3000	300t	3000	3000	0000	2000	3,5	306	3100	8
6 GRUSS	GRUSS WFIGHT	210417	21 68A.S	2167413	216 139	217066	416923	216509	216600	217145	-	216871	236462	217209	2170.0	/16532	216923
7 5.061	FUEL WFIGHT	60 857	30,00	F 1, 40 A	61076	504G4	10513	fulther						24609	0.0609	61007	61136
8 OP.	OP. 41. IMPTY	11214	111905	1,1940	1116e3	731211	115066	111641						11.266	112600	111424	111 787
9 ZERU	ZERO FUFL MT.	156144	154405	1259(1	15,003	156164	1.0010	155641	15.704			155663	15,5745	154766	1560.30	155024	155787
	THRUS T/ENGING	15620	15505	15.44	15280	150,0	15, 10	16161	79.51	15634	15514	15397	15286	15639	1441	15462	15293
	FMGINE SCALE	0.14.	0.4.3	C 44 C	0.437	1790	0.44.0	0.440	0.437	1	0.443	0.440	(1.4.37		0.443	9	0.437
	AREA	1691	1656	1657	701	2660.	- 200	1656.	1657	1663.	1661.	1961	1661	997	1644.	100	- to to
13 16 18	MING STATE	1771	121	2.7	0.771	751.52	7017	127.1	1771	12 1.3	5.5	12700	127.7	4.2	127.4	7.7	127.4
	H. IAIL AKEA	3 6		747		6.60		5,00	C. 7.	9.5	2.00		4 .		707	2	.
	M. IAIL AKEA				077	7.21	177		077	277	:27		-127	777		•	777
	TA MINE CITE LANGE						1000									1	
COST DATA	COST DATA MILLION POLLAPS/AIRCR	POLLAPS	/A IRCR A	AFT	•	10000				*	760.0	10000		5	i.		
10 FLVAWAY COST	AV COST	13.368 13.360	13.360	13.444	13.716	13,393	13,365	13,325	13,315	3.306	13.370	13,343	13, 320	13.404	13,374	13.340	13.326
19 A IRFR	19 A INFRAME CUST	16. 700		10.673	_	1C.7CF	179.71	1 C. 678	10.66			10.683	10.673	16.714	10-701	10.087	10.677
20 ENGIN	ENGINE COST	2.1eh		2.160			2.174	2.1%	2.147		2.175	2.161	2.148	2.190	2.1 7	101.7	2.14
21 AVION		0.500		0.500			0.500	0.500	0.500		0.500	0.500	0.500	0.500	0.500	00%	9, 28
COST DATA-DIRECT		OPERATING COST	c cost														
22 S PER WILE	WILE			2.40	7.404		404.7	907.7	7.404	¿.413	2.410	7.407	2.405	2 -414	2.411	2.46	2.4
23 CENTS		- 1		1.263	1.262	1.206	1.205	1.263	707 · I	1.206	1.205	1.264	1.202	1.267	1.200	3	1.203
PLICHT PATH	THE MISSION	N CHARACTERIST		105	7,00		0.5035	600	000	2600	2000	3,545,6	200	9	*		1
25 HISSION		44747	44823	1667	50025	49762	406 17	7,007	200	22107	40443	4437		4 4 70 4	17894	9	
CONSTRAINT OUTPUT	TOUT T			•			•	•				•					
20 CEILI	26 CEILING PURILLY	•	1392 0	31700	136e I	34046	33926		336P6					34059	3393r	33615	33697
	TAKEOFF OST(1)	7674		7615	1881	7666	7226	76(1	7872		77.15	77F6	7858	1631	36	1111	7843
	CLIMB GRAD(1110.1304 0.1249 0	1304 6.		1273 0.	325A U.	.1273 0.125A U.1305 0.1289 0.1774 0.125A 0.1306 F	1289 O.	1274 n.	125 P.		ċ	1274 n.	1259 0.	1366 0.	.1366 0.1291 0.1275 0 1259	12.75 0	129
	TAKEOFF DST(2)	7e09	7879	7950		1794	,	2 2	9000			7914	1891	12.	50		202
	CLIMB GRAD(2)0.0684 0.0678 0	.0 4840.	0678 0	0667 O.	0.656 0	.0664 0.067P	۽ ت	\sim	3	ċ	3	:	0657 0	06 90	•		500
	AP SPEED-KILL	133.	137.3	6.001	735.6	135.4	1950	7.65						135.1		135.0	
	בונה בשפה מונו	74.	7,700	1,100	1016	. ליני	7015		21.12			0 0	2010	2	2 (70,0	3
30 87 26	AP SPEETINGS	0 0 0 0	70.00	7.647	10.01	14.34	14.41	0.641	143.0	0.641		6.2.1	27.7	146.9		142.8	
	AP 5665047733	2070	150.3	150.2	7070	(6/0	2670	2 to 4 to	25.00	• • • • • • • • • • • • • • • • • • •		7470		7579	8 3	C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X 5
	I MOG OCA	4074	70.4	4064	4704	7.004	7.0.1	7.044	7.00	1.04	120.1	120-1		4 6 6 6 6		4442	
5		2	2	5	2	000	1	00 1	0010	77.00	201	2	1000	100	000	1 7200	7 B D

OF HOLE WAS TO

EILJIT PYTFUGEN----FASIC TESTON MISSIUN/AND PASS/ICCNE N.M. MISS NT. CM. T/C 1/n Ax LAM W/S 1/h

;

The state of the state of

10.06 6.36 10.00 2C.00 117.6 6.265

CONFECURATION CLONETFY

NC. PODS INLET LIFT! 0 SHITESO.FT) SHIRISO.FT) HT REF L(FT) SVITISU.FT) SVIXISO.FT) VT REF L(FT) C99.64 522.69 12.71 737.97 737.97 23.03 hts L(FT) 24.57 ; FTL(FT) FVWINC(CU FT) FVPUX(CU FT)
01.5E 0.06 0.06 SP1(SU FT) 552.00 CRE (FT) S WET (SO.FT) 21.81 9166.4 POD S WET (SG. FT) 2534.08 FVE(CU FT) 36996.96 EGUIV DIFT) 26.53 POD LIFT! POD DIFT! h.13 SBW(SQ F7) BUW(FT) 2~•66 4AC (FT) 24.8t WET (SG FT) 18129.6 вн(FT) 28.75 FNG D(FT) ChAR 2 (FT) 7.45 (T(FT) Ų, FNG LIFT) LEAR 1(FT) 31.81 54.66 24.66 AKLA(SU.FT) LENGTH(FT) 253.87 34.47 10.54 1 54.29.4 CR (FT) PRITPULS 10N-WING TANK-FUSELAGG ---WING--TAIL

A-7 Aircraft No. 7 LH2 Internal Tank 400 PAX, 5000 n mi radius Mach 0.85

-
Ĩ
4
3
<u>3</u>
1881
o o
₹
Z .
155
1
5
r S
310
4
Į
و
ī] }
101
13:11

3	0.26
\ \ \	30.11 00.04
LAH	00.06
¥	14.00
<u>*</u>	ن ر• م
1/6	10.67

First black		POUNDS	2/2	PUNNES	2
	LESTEN GROSS WETCHT	587366			
FERD FUEL WEIGHT HELON 14.46 3.46.18 DELARTING WEIGHT FIREY 15.46. 2.40.3 DITENS 15.46. 1.27 DITENS 16.47 16.45 DITENS 16.47 DITENS	FUEL	110040			
	ZERO FUEL WETCHT			4.46.18	
MIT HIPTY 15466. 2-63 MITHEG. 1-27 7430. 1-27 7430. 1-27 7430. 1-27 9256.27. 1180. 1-25 9252. 1-56 9252. 1	PAVLCAD	HEC.00			
15466 2003 17466 1757 1730 17466 1757	UPLRATING MEJGNT PHPTY			¥8:14.	14.34
7430 1.27 71300 12.15 61242 10.55 64242 10.55 64242 10.55 70564 1.20 70564 1.20 70564 1.20 70564 1.20 70564 1.20 70562 1.50 7064 1.20 70	OPERATIONAL 1TEMS	15466			
EMPTY WEIGHT-HFG. EMPTY WEIGHT-HFG. T1380- 12-15 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-65 6186- 1-69 6227- 16-94 6227- 16-94 6231- 16-34 6231- 1	STANDARD ITEMS	7430			
Time	ENDTY DE LEAT-MFG.			325627	
INC CEAR		71380			
INC. GEAR 100 GEAR	TALL	4614			
### ##################################	ACODA	64249	_		
FM 31644. EM 31644. EM (LESS OIL) 11. NUROLS	I AMOUNT. C.S.A.P.	*****	•		
FIN 31644. 64217. 1 11 3567. 12 613. 10 0.0 11 10.	FLIGHT CONTROLS	705E			
SYSTEM 31644. WE STATEMENT 35677. JUST 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MACELLES	69:6			
######################################	PROPULSION SYSTEM	84217	_		
INT ARE 3507. 2013. 2013. 2013. 2013. 11. 8 CCNTROLS 11. 11. 11. 11. 11. 11. 11. 1					
USY 2013. 206. 206. 207.	AI'N INTAKE	3507			
NEC 11. 13.	EXMAUST	2813.			
SYSTEM (LESS OIL) 11. WE CENTROLS 174. WE STANTING 536. S 30962. LATION 11920. LATION 3171. S AND EQUIP. 1324. S AND EQUIP. 2840. LOWING WIT 1116. DULS 0. ERVE 0. TYC. 12.50 ERVE 0.00 SCHOOL 11.50 ERVE 0.00 ACCOUNTY 11.50 ACCO	COOL 1NG	•			
ME CCNTROLS 174. ME STARTING 30962. LATION 11920. LUND MINO 3171. 1324. S. AND EQUIP. 2281. S. AND EQUIP. 2281. S. AND EQUIP. 2281. S. AND EQUIP. 2281. S. AND EQUIP. 2284. MASTER MIT 0. ERVE 0. T. C. 12.50 ERVE 0.00 ACCURATE AVAILABLE 0.00	OIL SYSTEM (LESS OIL)	31.			
ME STANTING 536. 5. 30962. 1.1920. -PLUNE INC. 3171. 1324. 5. AND EQUIP. 3171. 1324. 5. AND EQUIP. 5963. 5. AND EQUIP. 5960. 100170. 5960. 100170. 5960. 100170. 6	EMGINE CONTROLS	174.			
S 30962. Laylor 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 11920. 12920. 1002	ENGINE STARTING	536.			
LATION 11920PLUMBING 3171. 1324. 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 6 7	TANKS	30%62.			
S AND EQUIP. 1324. S AND EQUIP. 2940. S AND EQUIP. 2940. DUS 0.0 ENVE UNIT 1116. O. ENVE UNIT 0.0 ENVE 0.0 ENVE 0.0 A3. A43. A43. A43. A44. A44	INSUL A 7 10M	11920-			
324- 324- 324- 324- 324- 342-	FUEL -PLUMB ING				
5 AND EQUIP. 2343. 5 AND EQUIP. 2343. 100 FRC. 26400. 100 FRC. 26400. 100 FRC. 26400. 1116. 1015. 0. 1026. 1116. 1036. 112.50 1036.44.9 1036.44.9 1036.44.9	INSTRUCENTS	1324			
5 AND EQUIP. 2381. 5 AND EQUIP. 2843. 109196. 2840. 109196. 5924. 443. 603. 604. 614. 1116. 0. 614. 116. 0. 117. 117. 118. 118. 119. 119. 110. 110. 110. 110. 110. 110	MPRAULICS	42.24			
28400. 28400. 5926. 443. 1116. 0. 0. 460. 111. 12.50 34064.9	E. ECTRICAL	5463			
28400- 5924- 443- 1116- 0- 0- 0- 11- 12-50 3404-9	ELECTRONICS	2361			
5926. 443. 1116. 0. 0. 450. 111. 12.50 34049.9	FRANSHIES AND EQUIP.	28400			
443. 1116. 0. 0. 400. 11. 12.50 34049.9	AIR COMDITIONING	9265			
1116. 0. 0. 460. 11. 12.50 3404.9	ANT1-1CING	3			
000 4000 111 12.50 340469 0.0	ANKILIARY PONER UNIT	1116			
400.		٥			
34.00	DESIGN RESERVE	•	-		
346					
3400	MO. OF PASSENGERS	00+	•		
3404	NO. OF CREW		. •		
3604	STRUCTURAL T/C	12.5	•		
	FUEL WALLINE REGU	36049	•		
	WING FIEL VOLUME AVAILABLE	•	0		

>
-
4
I
ı
⊋
v.
Z
7
-
v
v.
_
2.

רוים	LINDID PYTRIGEN SASSIN O	- N	Sir of the		MISSINAMIN PASSATLUCE	S/1tocc	ī ~	·185						
Stoff.nT	IN 17 AL 7 J 701 + (F 1)	INI I MACH MC	1011 WE 160 T CLE F	SLGMF FUEL (Lb)	7374t Firet (LF)	SEGNT TOTAL PLEST EN FILL (N. MIL)	LIST CIST	52641 TIPL (PIL)	TUTAL	EXTERN STERE TAB TO	t MC.1NE THRUST TAF 1D	EXTIPN F TANK TAR 1D	AVI. L/D RATIO	AVG SFC (FF/T)
TAKENPE PLUEN 1	3	5.0	of 7366.	.29.	?	ż	٠	(A)	7.4.5	ċ	-64101.	;	•	0.117
PUNER 2	· ,	ن• ن	566937.	493.	¥:1:	÷	ċ	2 • 0	30.3	ខ	£3401.	ė	0.0	*0.0
רר זאפ	3	.374	5 Re 444.	144.	1415.	17.	13.	**	33.6	.	83161.	;	10.36	0.152
ACCEL	100001	0.*56	585556.	32	2140-	•	. ye	1.5	35.4		13161.	•	16.90	0.173
C. INB	100001	0.638	584226.	6 700.	9939.	366.	30.	1.42	æ	•	83101.	ò	15.33	0.201
CRUISE	34000	0.85	578427.	.7667.	. 42894	.358.	. 1547	534 .3	614.4	•	-e3101·	•	16.85	0.199
UESCENT	35000.	0.850	576540.	7.0.	67574.	11.	* +94+	19.3	7.550	•	A3301.	•	16.68	-5.477
QUISE	30000	0.850	514796.	1724.	64244.	136.	• 0005	16.7	4.0%	•	-83101.	•	16.66	0.199
LOITER	1500.	4.277	43.066.	*05*	69701.	٠,	*00¢	0.4	6.65.0	•	-63101.	ė	19.61	0.145
HE SE T	•	0.0	517665.	ò	69701.	5	.0003	0.0	4.017	•	•	•	0.0	0.0
CL 1MB	ċ	0.376	517665.	756.	73456.	15.	:015.	3,3	6:99.3	· 0	63101.	•	18.02	0.152
ACCFL	10000	0.456	416409.	274.	10740.	e	£025.	1.3	0.103	•	83161.	ċ	15.78	0.173
CL 1MB	10000	0.638	510634.	4737.	75467.	244.	5272.	36.7	1. (00)	•	.1016	3	14.53	0-200
CKUISE	37000.	0.850	511696.	53276.	128743.	4478.	.0526	551.1	i	•	-63101.	•	16.61	0.199
IE SCENT	35000.	0.850	458622.	708.	129451.	107.	¥857.	16.1	****	ò	63301.	ò	15.69	-5.807
Gui SE	34006.	C.850	457914.	1610.	1610. 131061.	143.	16000.	17.6	:	3	-67101.	ċ	16.61	0.14
LOTTER	1500.	0.25	*\$6303.	356.	356. 131418.	•	10000	•	****	•	-63101.	•	10.53	0.145
NE SE T	•	0.0	455947.	ċ	131410.	•	10000	0.0	:	•	ė	ċ	0.0	0.0
RE SŁ T	•	•••	415047.	•	0. 171416.	-10000.	ċ	*****	0.0	•	•	•	0.0	0.0
CRUI SE	34000	0.4.0	455947.	10415. 141833	141613.	°	•	115.0	115.0	•	-63101.	•	16.52	0.14
ne se t	•	0.0	.55.55	Ġ	P. 141413	•	ò	0.0	115.0	•	ò	ċ	0.0	0.0
G. 178		0.378	₩\$532°	2311.	2311. 144143.	ģ	78.	12.7	127.7	•	83101.	ċ	15.70	0.174
CRU1SE	30006.	0.650	443222	1384.	13Av. 145532.	122.	200.	10.6	146.3	•	-69101.	ė	17-05	191.0
DESCENT	30000	0.700	**1833.	.111	244143.	\$	290.	16.1	162.4	•	A3301.	ċ	16.15	-2.140
CRUTSE	36000	0.690	**1222.	1254.	1254. 147397.	110.	400	16.8	178.2	ċ	-63101.	ė	17.62	0-101
LOLTER	1500.	0.254	430068.	3433.	3433. 150829.	•	*007	0.0	239.2	•	-63101.	Ġ	18.50	6.145

1.3463

_
>
Œ
•
>
X.
=
~ }
_
_
• •
=
٠,

19258774.00 19258774.00 19258775.00 19258			44.44.44									
17474.00 17474.00	בייני פייני		00 -44 46 47 4									
			764336-69									
Style="1" Style=""1" St	LANDING GEAR		44-64-64 44-64-64									
	MACRILLES		404364.3A									
	PALFULSIA											
242112.30 2412.31 2410.41 24		36744.50										
15/10/4/4 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 15/20/4/2 16/2		263113.30										
### STATE ST		646535.66										
Signary Sign	START SYSTEM	#107.43										
1.2.70.10 1.2.70.10 2.2.70.10 2.2.	ELGINE CONTROLS	3214.21										
	EM/IMRUST REV.	36.430										
1.0.7001.04 1.0.2003.04	TUTAL PROPULSION		~1+7424.00									
117724.36 144.340.46 145.244.46 145.	MASTRIANCE S		147801.94									
10 10 10 10 10 10 10 10	WORALA ICS		2AC635.88									
CHING	ELECTRICAL		444.346.64									
141723.88			14 CC 77. %									
17726.30	FLAMI SHIME		66.3323.88									
1778-180	A IR CLADIT : ON ING		400603.38									
Internation	PATE ICING		34407-60									
19298774.00 1241214.00 12412	SYS. INTEGRATION		414123.44									
1241214.00 1241214.00 19143348. 1914338. 19143388. 19143388. 19143388. 19143388. 19143388. 19143388. 19143388. 1	TUTAL ENPTY NFC. COS	5		142487M	8.							
FEEE 396,0622.00 20975204.00 12,0621.01 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,07448 12,04487 12,04	SIGNAINING ENGINEER! I TICHNICAL DATA PAGD. TGQLING MAINT. I HISC CHANGE GROER CHALITY ASMANCE I	362116.00 6.0 179366.40 0.9 0.9	1241214-00					DEVELOPM	R AND D ENT TECHNI WGINEERING	CAL DATA	19143248	• • •
SPECIAL SUPPORT FOULPHENT 5104847 510484	A MFRAME FEE		3404822.00	2007530	8			DEVELOPY		RTIGE	100038704	
FEE 620300.06 FEE COST COST AND DEVLEDOMENT TOTAL R AND D TOT	EAGINE WARRANTY		240150.4		3			SPEC 1AL	SUPPORT FO	UIPMENT	5104867	
ALCO DECENTION COST TOTAL FLY ANAY COST COLLARS/N. FILL O/O RECT OPERATING COST—COLLARS/N. FILL O/O RECT OPERATING COST—COLLARS/N. FILL O/O READER AND DEFINE MAINT. 0.23-2 4.57 RANGE READER AND DEFINE MAINT. 0.23-2 4.57 RANGE READER AND DEFINE MAINT. 0.23-2 4.57 RANGE READER AND DEFINE MAINT. 0.23-2 4.58 N. NI 0.264- 6887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.58 N. NI 0.264- 6887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 6887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 6887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 6887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.28 N. NI 0.264- 8887. 7510, 8132- 8755- 9377. READER AND DEFINE MAINT. 0.23-2 4.29-1 1.20-20-1 1.20-	ENGINE FEE		620300.04	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8			CEVELOPH	ENT SPARES		75231712	•
ALCT OPERATING COST-COLLARS/N. FILL 0/0 RECT OPERATING COST-COLLARS/N. FILL 0/0 RECT OPERATING COST-COLLARS/N. FILL 0/0 READER AND BURDEN MAINT. 0.23-2 4.27 MANCE AND OIL 1.30-2 1.37 3-0.11 C/ASM 1.39-13 1.38-23 1.38-22 13.38-3 1.38-32 1.38-3	ENGINE COST			9000				AVIONICS	DEVLEOPME	1	•	
RECT OPERATING COST-COLLARS/N. FILE 0/0 C.3854 7.05 RAME LABOR AND BURDEN MAINT. C.5592 6.57 RE LABOR AND BURDEN MAINT. C.5592 6.57 RE LABOR AND BURDEN MAINT. C.5592 6.57 RE LABOR AND BURDEN MAINT. C.5592 6.57 AND OIL RAME ECIATLAR INCLUDING SPARES! 1.5865 29.07 18-48 13.7755 15.0478 16.3200 17.5922 18.8645 20.1367 TAL DOC 5/N. MILE 5.4652 100.00	RESEARCH AND DEVELOPMENT TOTAL FLY	¥		262755	8	38842304.0	9	10	TAL R AND	۵	?	4
MANE LABOR AND BURDEN MAINT. 6.3592 6.57 ME LABOR AND BURDEN MAINT. 0.1352 2.47 MANE MATERIAL MAINT. 0.2342 4.28 M. MI 6.264. 6687. 7510. 8132. 8755. 9377. MANE MATERIAL MAINT. 6.2003 3.83 DUC AND DIL MANUE ECIATI.AI (THICLUDING SPARES) 1.5805 1.7759 1.3753 1.3691 SAND CONTROL MANUE 5.4054. 8165. 44756. 44756. 46054. 51354.	DIRECT OPERATING COS	51-COLLARS /N	E	20,5								
T. 0.2342 4.78 N. NI 6244. 6887. 7510. 8132. 8755. 9377. 6.2093 3.83 DUC 1.3953 1.3862 1.3759 1.3723 1.3691 1.3613 7.62 1.3723 1.3691 1.3621 1.5885 29.07 TB-HR 13.7755 15.0478 16.3200 17.5922 18.8645 20.1367 2.6652 100.30 17.5922 18.8645 20.1367 2.6652 100.30	AIRPRAME LABOR AND BUT	RDEN MAINT. EN RAINT.	6.3962	_	AMGE							
L.1372 3-13 UAX 1.3913 1.3853 1.3802 1.3759 1.3723 1.3891 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4163 7-62 0.4160 0.44758 7-62 0.4160 7-64758 7-6656 7-	AMPRAHE MATERIAL MAIS	NY.	0-23-2	_	E .	6264.	6687.	7510.	8132.	.552	1377.	10000-
0-4163 7-62 1.586 24.07 IB-HR 13.7755 15.0476 16.3200 17.5922 18.8645 20.1367 1.460. 44758. 46054. 51354. 5.4652 100.30	enejme majerial majni. Flet and oil	•	2.1372		78 K	1.3913	1.3053	1.3802	1.1759	1.3723	1.3691	1.3663
5,4652 100.30	INGURANCE CARDACTATE AL CTACOLOGIA	1 SEA CEANAGE	0.4163		9	11,7755	15.0478	16.3200	17.5022	18.8645	20-1367	21.4089
2597*5	DEFACTION CONTROL	Me Mantes			71.	34864	30162.	41460.	44758.	49094	51354.	74652.
	101AL BOC SAN. MILE			00.001								

			•	4 5 5 4	a -	4	" - 1) I	× z	1 × × 1	S					
						SUPPLIATE TO SEPTINGE OF	SUPMARY TO SEC. ICE SPETIMERE CS 1575	101								
AIRCYAFT MUBELCLI3 1-40-C. DATE1596 LISIGN SPEEDSIRS					2	ENGINE 1-6 SIS SCALE 1-6 = NUMBER OF INCINE		25ccc 25ccc 2 = 4.		77	HING CUARTER CMURIS SMLEP WING TAFFE RATIO = 0.300	TER CHO R RATIO	CUALTER CHURL: SWLEP TAFFE RATIO = 0.300	o = 30.60 (FG	o CFG	
	110.00 1.27 10.00	2000	7	5.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00	116.5	16.00	10.00	10.00 10.00 10.00 10.00	04.000	117.0 0.216 10.00 10.00	0.000	3000	0000	0.000		9000
E GAUSS WEIGHT 7 FULL MEIGHT 8 LP. MT. ERPTV	568518 151556 344162	34 more 5 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.884FE 150702 34.8964	584077 1508 30 150277	5 c 8 c 4 2 1 5 1 3 64 3 c 8 5 8	588105 151046 340063	547615 140434 3490Eú	36.674 36.674		% 57465 150847	ပော	600	000	000	000	000
	447167 3913c 1-116 5075.	417046 39463 1-128 5078	437694 29722 1-135 4073	4 M277 40057 1-144 5074	410.858 30118 1.116 5649.	437063 39-03 1-1:6 5048-	4470AU 39664 1.133 4044.	37675 34949 1-143 5044	436240 39660 1-110 5000	39353 1.124 5620) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.00	3	• • • •	ره و . و . و . و . و . و . و . و . و . و	
13 bild SPAN 225-2 14 H. 'AL AREA 710- 15 W. TAL AREA 750- 14 BULY LENGTH 254-1 17 MING FUEL LIMIT 0.000	225.2 716. 750. 254.1		25.27	752. 712. 752. 253.8 0.000	22.7.2.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	22.2000.0	765.	766. 766. 253.7	:£, ½, §	748. 253.9		300	3000			
7.	DBCLAKS 38.441 32.679 5.762 6.506	DDLLAKS/AIMCRA 3M.441 34.014 32.479 32.716 5.782 5.463 6.500 6.500	44 34.034 37.303 5.636 0.460	39.123 72.745 5.876 6.566	34.56 5.45.0 5.750 5.750	38.451 32.656 5.796 0.500	34.972 37.644 5.829 1.500	39.05h 32.6+7 5.871 0.500	34.847	38.892 32.663 5.789 0.506	0 0 0 0	0000	0000	0000	0000	0000
DATA-OTRECT S PER MILE CENTS/A S BILE MI PATH HISSICH HISSICH SWELLE	DPERATIMC COST 5-475 5-461 1-369 1-370 N CHARACTERIST 3-4-00 3-4-00	68AT INC. COST 5-475 5-461 11-36-11-370 CHARACTERISTI 34-00 34-00	5.478 1.369 10.8 34660	35000	5.470 1.368 34000	34600	34000	5.476 1.364 34600	7.000 34.000 1.36.2	5.465 1.366 34000	00 00 00	00	00	00	000	00
	33774	33.65		34276 6730 1264 0	41/6 34276 33763 33970 6789 6730 6943 6881 746 U-1264 0-1231 0	33970 4861 1231 0	34115 34265 33751 6822 6762 6976 -1246 0.1262 (5.1213 0	34265 6782 11362 C		33956 6914 11229 0	o• o		••••		000	60 9
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		13.5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5	6766 6704 640R 671 0.062 0.6647 0. 134.5 134.5 134.7 134.7 137.6 137.0 137.3 160.7 137.0 137.3 160.7 137.0 137.3 140.2 137.0 137.3 137.0 137.3 137.0 137.3 137.0 137.3 137.0 137.0 137.0 137.3 137.0	655 0659 0659 134.7 134.3 186.4 186.4	6850 6793 6736 6%1 6659 0.0669 0.0681 0.0666 0 134.7 134.8 134.6 134.6 137.3 137.3 137.3 137.6 6028 6031 6032 (465) 139.* 139.* 139.9 143.2 139.* 139.* 139.9 143.2	6736 134.6 5876 137.3 6032 139.9	13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	6683 0667 135.0 5890 137.6 6067 6206						

. :

(

•

COMPIGNORIAL CECEFTRY

W.T.W.	40+4450-67)	SPALIFIE	APF & AATIO	SPARIFFE TAPER AATIO CZ4 SMFFP L.F. SWFFP L.F. RACMOPD	C.F. SWEEP	L.F.RACHOPD	
	7124.0	276.4	3000	30.000	32.050	0.0	
	30.14	CT (FT) 11.7%	£C(FT)	CKF(FT) S	CKFFFF) S MET 150. FT) 37.24 1342.9	4EF L(FT) 27.91	
wing tank	(FAR11FT) 37.24	(FA62(6₹) 13.73	120.04	FWINGER FT FREDVICU FT	FVEO* (CU F	£	
FUSEL AGE	LENCTH(FT) 225.00	S WEY(SF FT) 14425.0	19.58	EQUIV D(FT) 19.56	SP 115Q FT) 301-10		
	10.5A	BM(FT) 10.58	SAVISO FT.	984(59 FT) FYFICU FT) 4434.00 99449.00	_		
TAIL	247 (SC.F1)	SMTMISC.FT) HT REF LIFT) SVT(SO.FT) SVTXISC.FT) VT REF LIFT)	TO'S TIERS	SVT (50.FT) 742.42	SVTX (SC. FT) 7£7.6?	VI REF L (FT 23.92	
PROPULS TON	ENG LIFT!	FMG DIFT]	PCD LIFTI	Pen DIFT;	POD S WFT	MO. Pros	TALLT LIFT)
	11.70	E-37	27.59	9.12	3103.09	;	•••

A-8 Aircraft No. 8 JET A Fueled 400 PAX, 5000 n mi radius Mach 0.35

ORIGINAL PAGE IN POOR QUALITY

•

TO BIRE REBUILDER MARKETHE FELLEN / TOO DEUL / 10,000 o	MATELINE FF11	4 637 / 2	In a cocole sat	\$5 [
1/1	** ***	3	4/4 2/8		
0,-01	0.30 11.60	54.00 134.30	002*0 5*0		
		PINNSS	0,/0	POINT	20
CASIGN CAMS WEIGHT		9026.7.	10° 00°		
FIEL MED FIEL METCHT		. 23996.		468521.	
PAVLDAD		·8000	f. 6.8.7		;
OPFRATING WEIGHT FROTY PERSONS INFO		14400.	1.54	3 mos 2 1 .	
STANDARY ITEMS		11874.	٠٠٠	141146	
THE LINE CANADA		106637.	16.77		
1416		7013.	12.0		
MODING CEAS		43142	A		
FLICHT CONTROLS		11054.			
WEELLFS		117.7.	•		
PROPIL STON CVSTFIN		5300%	5 e.4		
ENG.100	26786				
FERRIST	360%				
	ò				
OIL SYSTEM (LFSS OIL)	=;				
ENGINE CONTAINS	• • • • • • • • • • • • • • • • • • • •				
TARS	2222.				
THSULATION	ċ				
FIEL-PLINGTNC		1517	11.0		
MANAGER 13		707	0.71		
ELECTRICAL		\$000	14.0		
FLECTRENTCS ELECTRENTCS AND FOLITE		28400	9		
AIR CONGITIONING		6982	0.10		
ANTI-1C PMG		9.	10°0		
AUXILIARY POWER UNIT		.91			
AISCELLANTON'S DESIGN NESFRYE		•	19		
MD. OF PASSENGERS		. CD.			
19. 04 CIT					
STRICTURAL T/C		1045401			
MULTINE WILDER AND AND AND		4372.A			

SE CAF VI	1437 1437 1473	TAIT MACH MD	1011	110M FUEL 1777	Testal Fufi (LP)	CF 413	101 A	SF DRY TIEFF	707AL 77MF (M3N)	STOPE STOPE TAR IO	TANGE TANGE	FXT FF. F T ANK TAK 10	AV6 1/6 8ATIO	SPEC
TAKFOFF POWER	ċ	ć.	-11540	2030.	.0.05	ċ	÷	3 F . D	26.0	ċ	-A1101.	٤	c	0.430
MAKE	°°	٥.0	. 447000	1661.	3801.	<u>.</u>	÷	7.0	36.6	ż	.1011	ċ	0.0	0.201
#173	ė	0.378	• bn 6.2 c .	4798.	. 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.	*.		34.4	ċ	A1101.	ં	23.10	0.455
ACCFL	10000	0.456	PPSATA.	1664.	10333.	17.	37.	2.0	37.4	ċ	.1011.	•	21.73	0.513
Ct Imb	10000	0.638	. F21F4.	248 44.	35226.	327.	ż	46.2	17.6	.	.1011.	ò	19.33	0.50
CHITSE	33000.	6.4.6	.00% 150	21 1240.	24.24.7.	4146.	ř.	417.0	614.8	ė	- 1011.	÷	20.26	0.983
DESCENT	35000·	0.850	140040.	3177.	255654.	137.	4 KA 7.	23.1	637.6	ċ	e 1301.	ċ	19.92	-16.03
CRUTSE	38000.	0.850	736667-	4403.	260557.	113.	.	13.0	451.8	ċ	-11101-	ò	20.04	0.961
LOTTER	8	0.204	731 %	1531.	1531. 26208F.	ċ	, OOD 4	0.0	4.7.4	ċ	-41103.	•	21.71	0.435
RESET	ċ	0.0	730420.	ċ	26.2088.	ċ	30.	c.	£ 4.7.3	ċ	•	ċ	0.0	•
CLIM	ò	0.37A	130424.	3119.	3114. :65207.	14.	.016.	3.6	4.61.4	•	A1101.	0	22.07	•••
ACCFL	1000.	0.456	.77304.	1071.	1071. 266278.	•	.164.	1.3	1./99	•	.10119	ò	:	0.513
14173	10000	0.638	726230.	1.4267.	14267. 245544.	301.		17.2	6.00	ċ	A1101.	÷	17.00	•
C MUSSE	3 9000.	0.7.0	706471.	166276.	453823.	4425.	• X0.	4.14	:	ċ	-61101.	•	1. 2	
DRESTAT	35000.	0.050	\$10645.	2757.	2757. 454578.	116.	• B.c.	1.0.0	:	ċ	R1301.	ċ	17.03	-15.707
CAUTSE	.4006.	0.846	43743A.	****	***************************************	134.	10000.	16.5	:	ó	-101101.	•	10.54	
LOTTER	1500.	0.240	533433.	1164.	1164. 460147.	ċ	100001	0.4	:	ċ	-81101.	ċ	21.43	•
1 52 5 1	•	0.0	537369.	ċ	440147.	•	0. 10mn.	o.c	:	ċ	ċ	•	0.0	:
4 5 5 6 7	ė	•	532369.	ò	440147.	-10000-	ċ	:	0.0	•	•	ė	;	3
CARTSE	4400	0.85	Sizue.	36134.	36114. 406261.	0	•	0.041	0 071	ċ	-01101.	ė	19.30	4
168.	ċ	٥.	.255.	ċ	.145241.	ċ	ċ	0.0	140.0	ċ	ċ	•	0.0	3
CLIM	ċ	0.378	.852#4	*	10 70 70 20 E	. 98		4.	149.6	ė	F1101.	•	16.23	0.5B·)
C mut se	\$6000.	0.400	. 10004.	.010.	% 7845.	142.	8	24.2	173.6	ċ	-41101.	ė	20.87	
JESCENT	30000	0.100	404071.	2271.	410117.	:	%	16.8	100.	•	013: 1.	ċ	16.70	1
CRUT SE	30000	0.585	4R7399.	3468.	513785.	107.	.003	1.6.	239.0	ć	-41101.	ė	8.65	
I NITE		A. 227	4 WE 710.	10471.	. 76158.	ć	\$	¢.	74.0	ė	- 10114-	ċ	* .	***

SUSTAINING ENGINEERI 1336214.00 TECHNICAL DATA 6.0										
MI SC. 488833.00							E ANG			
ENG. CHANGE DPDFR 0.0						DE VFLOPM	DEVFLOPMENT TECHNICAL DATA	CAL DATA	22709904	•
QUALITY ASSURANCE 1835917.00						DESIGN E	DESIGN ENGINEERING		50 46 6 4 832	
AIRFRAME WARRANTY	1246844.00					DE VELOPI	PEVEL PPHENT TOOLING	ي	42 00 6 6048	
ATRFRAME FEE	3927558.00					DE VELOFM	DEVELOFMENT TEST ARTICLE	RTICLE	99036192.	
AIRPRAME COST		30111	30111280.00			FL JGHT TEST	EST		94250336.	
ENGINE MARRANTY	2.0173.35					SPECTAL	SPECTAL SUPPORT FOUTPHENT	1) I PMENT	6055977	•
ENGINE FEE	630436+67					DF VELCPN	DE VELCPMENT SPARES		7 F007344	
BREINE COST		5884	5884678.00			FNGINE	FNGINE DEVLEUPMENT		•	
AV IONICS COST		206	500000.00			AV 10N ICS	AVIONICS PEVLEOPMENT	L N	•	
RESEARCH AND DEVELOPMENT		349(1	3490824.00			10	TOTAL R AND D	٥	12217	122178 9952.
TOTAL FLY AWAY COST				39986160.60	co					
DIRECT OPERATING COST-DOLLARS/N. MILE	. MILF	0/0								
¥ 5	0.3860	1.21								
AIRFRAME LABOR AND BURDEN MAINT.	0.3766	7.03								
BUGINE LABOR AND BURDEN MAINT.	0.2379	77.7	RANGE							
AIRFRAME MATERIAL MAINT.	0.2416	4.53	2	6760.	6867.	7493.	R120.	R747.	9373.	10000
ENGINE HATERIAL MAINT.	0.3204	40.0	5							
PUFL AND OTL	1.7283	32.28	MS*/J	1.36.71	1.3488	1.3461	1.3438	1.3419	1.3402	1.3307
TN SLIR ANC F	0.4788	R.01								
DEPRECIATION (INCLUDING SPARES)	1 • 6353	30.54	TE-HR	13.7740	15.0527	16.3313	17.6100	18.8886	20.1673	21.4459
			\$,'TRP	33748.	3 7048	40340	43649.	. 64697	50249.	53549
TOTAL DOC S/N. HILE	6.3549	100.00								

ENGINE
AIR INDUCTION
AIR INDUCTION
AIR INDUCTION
AIR INDUCTION
FUEL SYSTEM
TOTAL SYSTEM
TOTAL PROPULSION
INSTRUMENTS
WINDAULICS
ELECTRICAL
ELECTRONIC
AIR CONDITIONING
ANT ICING
APU
SYS. INTEGRATION

19516400.00

TOTAL EMPTY MEG. COST

222.091.00 460357.25 467.85.00 142506.75 601854.60 541264.07 117556.63

PAGE IS QUALITY

				υ υ •	<u>م</u> ۲	4	·) 1	 ₹	1 . x	·					
						Strymany in Mis- Strymant is a	17 Mis.	260 78								
ATHURAFT MULEL	51195041C				1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rine in serie	00014 1000 10002 = 0.1 100015 = 4	114 60 15000 5 = 4.		33	WING CHA	TER CHI	ORE SWEE	00 = 30°	30 .00 DEG	
1 W/S	139.3	0.0) • ()	0.0	() • ()	0.0		ء. د	0.0		0.0	c c	0.0	ن ن	0.0	0.0
2 1/2	2.20	၀ ပ (ن د د	ر د د د	م د د د		د د د د	ن د د د	: ت	0.0	د ت .	٠,٠	c (0.0	0.0	0.0
7 1/C	00-02			: - : c	9 9			ب د د	ء د د		ے د د	0 0	ن د د	0 0	o c	
* PACTUS N. MI	10000	c	ء ا	5	٥	ت :		ت	; ;		c.	=	ت		•	•
6 GROSS WETCHT	965 # 16	٦	c	c	_	5	¢	c	c	c	ح	c	ت	c	c	•
7 FUEL WETCHT	\$2390£	c	U		C	. с	c	. c	ت .	ت د	ټ .	i Ç	ے د	.	0	•
8 OP. WT. EMPTY	380520	9	9		0	٥	0	ပ	C	c	c	0	Ö	٥	•	•
O ZERO MIEL WT.	468520	c.	د ه		: ت	٠ .	c (، ت	ا ت	Ç (c (۰	0	٥	0	•
	1.418	- 0	5	ء ج	= c	3		ء د	ء د	د د	ء د	د د	ت د د	ۍ د	0	•
	71.25.	c	.	3	÷	ċ			c		ئے د			2		•
13 WING SPAN	280.0	0.0	ن د	0.0	ت• د	C C		ت و	0.0	c	c .	0	0.0	0.0	0	3
14 H. TAIL AREA	757.	°.	.	• •	္ခ်	•0		·0	•	ċ	•	ċ	ċ	•	ċ	ċ
15 V. TAIL AREA	763.	و ع	÷ ا	•	.	ځ		ċ	;	•	ċ	ċ	ċ	ဒ်	ċ	ċ
16 BOOV LENGTH		٠ د د	0.0	c ·	3.0	د. ت		c	c c	ر د	0.0	c	ڻ. ن	0.0	0.0	•
IT WING FITE LIMIT 0.897 0.0	7 0.897	0.0 /4 10 C 0 A 1)*C	ə	c c	ن. د	<u>ء</u> ئ	ت ت	٥.	0.0	٥.	0.0	0.0	9 •0	0.0	0.0
18 FLYAMAY COST	39.986	500	0.0	0	0,0	c		0.0	ن	6	6	6	9		6	6
19 AIRFRAME COST	33.602)•O	0.0	9.0	0.0	0.0		ت د	ن ت	0.0		0	0	0	9 0	0
20 ENGINE COST		0.0	ن. ت	o•ر	0.0	0.0	0-1	0.0	٥•٥	0.0	0.0	0.0	0.0		0.0	0
	00, 00	0.0	0. 0	0.0	0.0	0.0	ن <u>.</u> ه	ت د	٥.٥	٠.	o.°0	٥٠٥	ن.		0.0	0.0
22 & DEC # 24 F	SPEKATING COST	200 c	•	ć	:	•		6	(•		•		•	•	•
23 CENTS/A S HILE	1.339	9								200		e e	ء د د	٥	9 6	
PLIGHT PATH MISSION CHARACTERIST	3N CHARAC	TFRIST (T1CS		•	•		•		.		•	: :		•	3
24 MISSICH SYN(1)		c .	٠ ت	، ټ	۰ ت	0	C	۰	3	0	0	0	0	•	•	•
CONSTRAINT CUITMIT	400147	С	5	3	င	c.	c.	c	c	c	c	ے	c	0	•	•
26 CETLING PARCES	31424	a		c	c	_	•	c	c	c	•	•	•	•	•	•
27 TAKEDFF DST(1)			С		ے ،	. c	; c	. c				•	. 6	•	•	•
	0.0759 0.	ċ	0	0	o	ċ	0	c	, ċ	ċ	, ē	. č	, -	, 0	•	•
29 TAKEOFF DST(2) 11686	11666	' ء	ٔ ء	c '	' ہ	ٔ د	c	ی ا	c	٥	၁	0	0	0	0	0
34 AB CECKATION 136 A	7 250	•	• (•	Š,	:	6	c	: د	ċ	٠		0	0	•	•
	5867	•	9 0		÷ c	9 6	ç	ş c	9 6	ş	٥	٠ •	0.0	۰ د	•	9 (
33 AP SPEED-KT(?	136.5		0.0	٠ د	. 0	: c	٠,	۽ د	و د	င့	ء د	. 0	0	9 0	900	9
			3	င	0	c	0	c	0	0	c	0	c	0	•	•
35 AP SPEED-K1(3)	7056	0	0.0	م م	ء ۾	0.0	٠. د	ç	0,0	0,0	٥	0.0	0.0	0.0	0.0	9
				>	>	=	=	-	>	2	۵	څ	٥	0	0	8

B ST. A QUALITY

REFERENCES

- 1. Brewer, G. D., Morris, R. E., Lange, R. H., and Moore, J. W. Final Report: Study of the Application of Hydrogen Fuel to Long Range Subsonic Transport Aircraft, Lockheed Aircraft Corporation, NASA CR-132559, January 1975.
- 2. Anon., Standard Method of Estimating Comparative Direct Operating Costs of Turbine Powered Transport Airplanes, Air Transport Association of America, December 1967.
- 3. Anon., Subsonic Transport Category Large Airplanes and Subsonic Turbojet Powered Airplanes Proposed Noise Reduction Stages and Acoustical Change Requirements, Notice No. 75-37, Federal Register, Vol. 40, No. 214, Nov. 5, 1975.

PRECEDING PAGE BLANK NOT FILMED