Bases de données

1- EXERCICE 1:

Deux relations modélisent la flotte d'un réseau de location de voitures, la relation *agence* et la relation *voiture*. On donne ci-dessous leur contenu :

id_agence	ville	département
1	Paris	75
2	Lyon	69
3	Marseille	13
4	Aubagne	13

id_voiture	marque	modèle	kilométrage	couleur	id_agence
1	Renault	Clio	12000	Rouge	2
2	Peugeot	205	22000	Noir	3
3	Toyota	Yaris	33000	Noir	3

Le schéma relationnel de la table *agence* est :

agence (id agence INTEGER , ville TEXT , departement INTEGER)

1- Compléter ci-dessous le schéma relationnel de la table *voiture* (ne pas repérer le type des attributs) . Repérer en rouge la clé primaire et la clé étrangère.

voiture (id voiture INTEGER , marque TEXT , modele TEXT , kilometrage TEXT, couleur TEXT , #id agence INTEGER)

2- Compléter ci-dessous le diagramme relationnel de la bdd :

3- Donner ci-dessous, les requêtes Sql qui permettent de créer chacune des relations :

```
Relation agence
                                                             Relation voiture
                                         CREATE TABLE voiture (
CREATE TABLE agence (
                                             id_voiture INTEGER PRIMARY KEY ,
    id_agence INTEGER AUTOINCREMENT,
                                             marque TEXT,
    ville TEXT,
                                             modele TEXT,
    departement TEXT,
                                             kilometrage INTEGER,
    PRIMARY KEY (id_agence)
                                             couleur TEXT,
) ;
                                             id_agence INTEGER,
                                             FOREIGN KEY(id_agence) REFERENCES agence(id_agence)
```

4- Donner ci-dessous, les requêtes Sql qui permettent de remplir chacune des relations :

Relation agence	Relation <i>voiture</i>	
<pre>INSERT INTO agence(ville,departement) VALUES ('Paris',75), ('Lyon',69), ('Marseille',13) ('Aubagne',13);</pre>	<pre>INSERT INTO voiture VALUES (1,'Renault','Clio',12000,'Rouge',2), (2,'Peugeot','205',22000,'Noir',3), (3,'Toyota','Yaris',33000,'Noir',3);</pre>	

5- Donner la requête Sql qui permet de retourner la ville et le kilométrage de Toyota Yaris :

```
SELECT agence.ville , v.kilometrage FROM agence

JOIN voiture AS v ON agence.id_agence = v.id_agence

WHERE v.marque = 'Toyota' AND v.modele = 'Yaris';
```

6- Donner la requête Sql qui permet de retourner le kilométrage moyen de la flotte :

```
SELECT AVG(kilometrage) FROM voiture
```

2- EXERCICE 2:

La Bdd tourDeFrance contient les relations suivantes :

Table equipe:

code_equipe	nom_equipe	
ALM	AG2R La Mondiale	
AST	Astana Pro Team	
ТВМ	Bahrain - McLaren	
вон	BORA - hansgrohe	
ccc	CCC Team	
COF	Cofidis, Solutions Crédits	
DQT	Deceuninck - Quick Step	
EFI	EF Pro Cycling	
GFC	Groupama - FDJ	
LTS	Lotto Soudal	

Table coureur:

dossard	nom_coureur	prenom_coureur	code_equipe
141	LÓPEZ	Miguel Ángel	AST
142	FRAILE	Omar	AST
143	HOULE	Hugo	AST
11	ROGLIČ	Primož	TJV
12	BENNETT	George	TJV
41	ALAPHILIPPE	Julian	DQT
44	CAVAGNA	Rémi	DQT
45	DECLERCQ	Tim	DQT
121	MARTIN	Guillaume	COF
122	CONSONNI	Simone	COF
123	EDET	Nicolas	COF

Table etapes:

num_etape	ville_depart	ville_arrivee	km
1	Nice	Nice	156
2	Nice	Nice	185
3	Nice	Sisteron	198
4	Sisteron Orcières-Merlette		160
5	Gap	Privas	198

Table temps:

dossard	num_etape	temps
41	2	04:55:27
121	4	04:07:47
11	5	04:21:22
122	5	04:21:22

1- Donner le schéma relationnel de chaque relation :

```
equipe ( code_equipe TEXT , nom_equipe TEXT )

coureur (dossard TEXT , nom_coureur TEXT , prenom_coureur TEXT , # code_equipe TEXT

etapes (num_etape INTEGER , ville_depart TEXT , ville_arrivee TEXT , km INTEGER )

temps (#dossard INTEGER, #num_etape INTEGER, temps TEXT )
```

2- Donner le diagramme relationnel de la bdd.

3- Donner la requête sql qui retourne le temps qu'a réalisé Guillaume MARTIN sur l'étape Sisteron ⇒ Orcières-Merlette.

```
SELECT temps FROM temps AS t

JOIN etapes AS e ON t.num_etape = e.num_etape

JOIN coureur AS c ON t.dossard = c.dossard

WHERE c.prenom_coureur = 'Guillaume' AND c.nom_coureur = 'MARTIN'

AND e.ville_depart = 'Sisteron' AND e.ville_arrivee = 'Orcières-Merlette';
```

3- EXERCICE 3:

On considère une bdd permettant de gérer des réservations avec une compagnie d'Hotels. Le schéma de cette base est donné ci-dessous :

```
Client(nom TEXT, prenom TEXT)

Reservation(id_reservation INT, num_chambre INT, nom_hotel TEXT)

Hotel(id_hotel TEXT, nom_hotel TEXT, adresse TEXT)

Chambre(num_chambre INT, nom_hotel TEXT, prix INT)
```

⇒ Repérer et corriger ci-dessous toutes les anomalies dans le schéma relationnel de cette base.

```
Client(nom TEXT, prenom TEXT)

Reservation(id_reservation INT, num_chambre INT, nom_hotel TEXT)

Hotel(id_hotel TEXT, nom_hotel TEXT, adresse TEXT)

Chambre(num_chambre INT, nom_hotel TEXT, prix INT)
```