Pizzaseminar zur Knotentheorie

1. Übungsblatt

Aufgabe 1. Konkrete Knoten und Verschlingungen

- a) Zu welchem bekannten Knoten ist der links abgebildete Knoten äquivalent?
- b) Eine Verschlingung heißt genau dann zerlegbar, wenn sich ihre Komponenten so deformieren lassen, dass sie auf verschiedenen Seiten einer Ebene des dreidimensionalen Raums liegen. Ist die rechts abgebildete Verschlingung zerlegbar?

Aufgabe 2. Triviale Knoten

- a) Ist jeder Knoten mit genau vier Eckpunkten trivial?
- b) Ist jeder Knoten mit genau fünf Eckpunkten trivial?
- c) Zeige, dass jeder Knoten mit genau zwei Überkreuzungen trivial ist.

Hawaiische Ohrringe

Aufgabe 3. Abänderung von Projektionen

Zeige, dass durch geeignete Abänderung der Überkreuzungen in Unterkreuzungen oder umgekehrt aus jeder Projektion eines Knotens eine Projektion des Unknotens erzeugt werden kann.

Aufgabe 4. Knoten auf Tori

- a) Welche Knoten gibt es auf dem zweidimensionalen Torus (der Donutoberfläche oder dem zweidimensionalen Asteroids-Spielfeld)?
- b)* Welche Knoten gibt es auf dem dreidimensionalen Torus? Diesen kann man sich als ein dreidimensionales Asteroids-Spielfeld vorstellen, also als ein Zimmer, in dem man wieder links herauskommt, wenn man gegen die rechte Wand läuft, und genauso mit vorne/hinten und unten/oben.

Aufgabe 5. Ein Spezialfall des Satzes von Seifert und van Kampen

Seien X und Y offene und wegzusammenhängende Teilmengen eines topologischen Raums. Sei ferner der Schnitt $X \cap Y$ nichtleer und wegzusammenhängend. Zeige, dass wenn X und Y einfach zusammenhängend sind, dann auch $X \cup Y$ einfach zusammenhängend ist. Schon ein informaler Beweis ist interessant.

Dabei heißt ein Raum A genau dann wegzusammenhängend, wenn es zu je zwei Punkten $x,y \in A$ eine stetige Abbildung $\gamma:[0,1] \to A$ mit $\gamma(0)=x$ und $\gamma(1)=y$ gibt. Ein Raum A heißt genau dann einfach zusammenhängend, wenn er wegzusammenhängend ist und jede Schleife nullhomotop ist (sich also zu einer konstanten Punktkurve homotopieren lässt).

Aufgabe 6. Hawaiische Ohrringe

Sei $X \subseteq \mathbb{R}^2$ die Vereinigung der Kreislinien mit Mittelpunkten (1/n,0) und Radien $1/n, n \ge 1$ (siehe Skizze oben). Gib explizit eine stetige Abbildung $\gamma : [0,1] \to X$ an, die als Bild ganz X hat, und weise ihre Stetigkeit nach.