HuStar Al Course: Computer Vision

Digital Image Processing

Janghun Jo

Geonung Kim

Computer Graphics Lab.

Histogram

Histogram = Graph of population frequencies

Grades of the course 178 xxx

- Assume an image whose pixel values are integers from 0 to 255
- Then, for each $x \in \{0, ..., 255\}$, we can count the number of pixels whose values are x.
- We can obtain a histogram of 256 bins

- We can subdivide the intensities into $0\sim7$, $8\sim15$, \cdots $223\sim255$
- Then we have 32 bins

Useful for analyzing and manipulating brightness and contrast of an image

• Useful for analyzing and manipulating brightness and contrast of an image

Contrast stretching

Contrast means the difference between the brightest and darkest intensities

Before contrast enhancement

After

Contrast stretching

Histogram equalization

Adjust image's brightness and contrast

Before histogram equalization

After histogram equalization

Corresponding histogram (red) and cumulative histogram (black)

Corresponding histogram (red) and cumulative histogram

Histogram equalization

$$y = H_l(x) = \sum_{w=0}^{x} h_l(w)$$

We want x' = T(x) s.t. $H_l(T^{-1}(x')) = \alpha x'$ i.e., the transformed intensities x' has a cumulative histogram shown below.

$$\Rightarrow T(x) = \frac{1}{\alpha}H_l(x)$$

Histogram
$$y = h_h(x)$$
 Cumulative histogram
$$\alpha = \frac{x}{255}$$

$$\alpha = \frac{x}{255}$$

Thresholding

- Simplest case of binary segmentation
- Assign white / black to each pixel according to its intensity

Original image $Peter\ f[x,y]$

Thresholded $Peter \ m \ [x,y]$

How can holes be filled?

 $f[x,y] \cdot m[x,y]$

Thresholding

Color model

- Widely used color models
 - RGB (Red, Green, Blue) for displays and cameras
 - CMY, CMYK (Cyan, Magenta, Yellow, Black) for printing
 - HSI (Hue, Saturation, Intensity), HSV (Hue, Saturation, Value)

Saturation

RGB color model

 Non-perceptual → Not easy to guess the coordinates of a specific color e.g., purple

HSV color model

Intuitive color space

S (H=1,V=1)

V (H=1,S=0)

Splash of color

