PROVA COMUNE DI MATEMATICA E FISICA

Tempo a disposizione: 55 minuti

1. Data l'ellisse

$$9x^2 + y^2 + 36x - 4y + 4 = 0$$

calcola il suo centro, i valori dei semiassi, i fuochi e l'eccentricità.

- 2. Un aereo di linea ha una potenza sonora di circa 4.8×10^4 W. Un operatore aeroportuale si trova a 25 m di distanza.
 - ► Calcola l'intensità e il livello sonoro percepiti dall'operatore.
 - \blacktriangleright Calcola l'intensità e il livello sonoro a 1,5 × 10³ m di distanza.

3. Data l'equazione

$$\frac{x^2}{25} + \frac{y^2}{12 - k} = 1$$

determina per quale valore di k essa rappresenta

- a) un'ellisse;
- b) un'ellisse coi fuochi sull'asse x;
- c) un'ellisse coi fuochi sull'asse y;
- d) un'ellisse passante per il punto (-2, 1);
- e) un'ellisse passante per il punto $(5\sqrt{2}, -1)$.
- 4. Risolvi le seguenti equazioni e disequazioni.

a)
$$2\cos^2 x + 3\sin^2 x = \frac{5}{2}\sin 2x$$

b)
$$\frac{1 - \cos 2x}{\sqrt{3}\sin x} = \frac{\tan x}{2\cos x}$$

c)
$$2\sin^2 x + 3\cos x - 2 \le 0$$

d)
$$3\sin^2 x - 2\sqrt{3}\sin x \cos x > 3\cos^2 x$$

5. True or false?

a) The speed of light in vacuum is approximately $3.0\times10^8\,\mathrm{m/s}.$

T F

b) The gravitational acceleration of an object in vacuum, near the surface of the Earth, is denoted by g and is approximately $9.8\,\mathrm{m/s^2}$. At different points, g changes depending on altitude and latitude.

T F

Esercizio	1	2	3				4				5	
			a	b	c	d	e	a	b	c	d	
Punteggio	9	9	6	6	6	6	6	10	10	12	12	4
Totalizzato												

		VOTO
Totale punti	/12 + 2 =	=