

Lecture 05: Decision Tree

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Classification Tree
02	Regression Tree
03	R Exercise

Why Are There So Many Classifiers?

• We cannot guarantee that a single classifier is always better than the others

Goal

- ✓ Classify or predict an outcome based on a set of predictors.
- ✓ The output is a set of rules.

Rule example

If outlook is sunny and if humidity > 70 then he does not play

or

If outlook is rainy and it is not windy then he does play

Terminologies

- ✓ Parent node: node before split
- ✓ Child node: node after split
- ✓ Split criterion: a certain variable value used for split a node
- ✓ Root node: node that only has child nodes but no parent node
- Leaf nodes: nodes that only have a parent node but no child nodes

Why CART?

- ✓ Simple to understand and interpret.
- ✓ Requires little data preparation (normalization, missing value treatments, etc.)
- ✓ Able to handle both numerical and categorical data.

Key Ideas

- ✓ <u>Recursive Partitioning</u>
 - Repeatedly split the records into two parts so as to achieve maximum homogeneity within the new parts.
- ✓ Pruning the Tree
 - Simplify the tree by pruning peripheral branches to avoid over-fitting.

Classification and Regression Tree (CART)

- Generate a set of rules by recursively partitioning the entire datasets to increase the purity of the partitioned area (Breiman, 1984)
- Being able to explain the reason of the prediction result by following the rules to the target leaf node
- Can handle categorical and numerical variables simultaneously

Recursive Partitioning

- Partition the data in a parent node into two child nodes using a certain value of a certain variable
- Select the split point to maximize the purity of the child nodes
- Gini-index (for categorical variable) and the variance (for numerical variable) are used to measure the impurity of a node

- Measuring Impurity 1: Gini Index
 - ✓ Gini Index for rectangle A containing m records

$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

p = proportion of cases in rectangle A that belong to class k.

proportion of cases in rectangle A that belong to class k.
$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

$$= 1 - \left(\frac{6}{16}\right)^2 - \left(\frac{10}{16}\right)^2$$

$$\approx 0.47$$

- I(A) = 0 when all cases belong to the same class.
- Max value when all classes are equal represented (=0.5 in binary case)

- Measuring Impurity I: Gini Index
 - ✓ When their more than two rectangles

$$I(A) = \sum_{i=1}^{d} \left(R_i \left(1 - \sum_{k=1}^{m} p_{ik}^2 \right) \right)$$

• R_i = proportion of cases in rectangle Ri among the training data.

$$I(A) = 0.5 \times \left(1 - \left(\frac{7}{8}\right)^2 - \left(\frac{1}{8}\right)^2\right) + 0.5 \times \left(1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2\right)$$

$$= 0.34$$

"Information gain" after splitting: 0.47-0.34=0.13

Measuring Impurity 2: Deviance

$$D_i = -2\sum_k n_{ik}log(p_{ik})$$

 \checkmark i: node index, k: class index, p_{ik} : probability of class k in node I

$$D_{i} = -2 \times \left(10 \times log\left(\frac{10}{16}\right) + 6 \times log\left(\frac{6}{16}\right)\right)$$

$$= 21.17$$

 \checkmark Deviance = 0 if and only if all nodes contain instances from the same class

Measuring Impurity 2: Deviance

$$D_i = -2\sum_k n_{ik}log(p_{ik})$$

 \checkmark i: node index, k: class index, p_{ik} : probability of class k in node I

$$D_1 = -2 \times \left(7 \times log\left(\frac{7}{8}\right) + 1 \times log\left(\frac{1}{8}\right)\right) = 6.03$$

$$D_2 = -2 \times \left(3 \times log\left(\frac{3}{8}\right) + 5 \times log\left(\frac{5}{8}\right)\right) = 10.59$$

$$D_1 + D_2 = 16.62$$

 \checkmark Information gain = 21.17 − 16.62 = 4.55

• Example: Riding Mowers

✓ Goal: Classify 24 households as owning or not owning riding mowers

✓ Predictors: Income, Lot size

Income	Lot size	Ownership	Income	Lot size	Ownership
60.0	18.4	Owner	75.0	19.6	Non-owner
85.5	16.8	Owner	52.8	20.8	Non-owner
64.8	21.6	Owner	64.8	17.2	Non-owner
61.5	20.8	Owner	43.2	20.4	Non-owner
87.0	23.6	Owner	84.0	17.6	Non-owner
110.1	19.2	Owner	49.2	17.6	Non-owner
108.0	17.6	Owner	59.4	16.0	Non-owner
82.8	22.4	Owner	66.0	18.4	Non-owner
69.0	20.0	Owner	47.4	16.4	Non-owner
93.0	20.8	Owner	33.0	18.8	Non-owner
51.0	22.0	Owner	51.0	14.0	Non-owner
81.0	20.0	Owner	63.0	14.8	Non-owner

Order records according to one variable

Order the data with regard to <u>lot size</u>

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

Find midpoints between successive values

- First midpoint = 14.4 (0.5*(14.0+14.8))
- Divide records into those with Lot size > 14.4 and those < 14.4
- Compute the impurity: Gini index
 - ✓ Before splitting:

$$1 - \left(\frac{12}{24}\right)^2 - \left(\frac{12}{24}\right)^2 = 0.5$$

✓ After splitting:

$$\frac{1}{24} \left(1 - \left(\frac{1}{1} \right)^2 \right) + \frac{23}{24} \left(1 - \left(\frac{12}{23} \right)^2 - \left(\frac{11}{23} \right)^2 \right) \approx 0.48$$

✓ Information gain: 0.50-0.48=0.02

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

Find the best split

 Find the best split which maximize the (Gini or information gain)

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

Tree structure

- Split point become nodes on tree (circles with split value in center)
- Rectangles represent "leaves" (terminal points, no future splits, classification value noted)
- Numbers on lines between nodes indicate # cases.

Income	Lot size	Ownership
51.0	14.0	Non-owner
63.0	14.8	Non-owner
59.4	16.0	Non-owner
47.4	16.4	Non-owner
85.5	16.8	Owner
64.8	17.2	Non-owner
108.0	17.6	Owner
84.0	17.6	Non-owner
49.2	17.6	Non-owner
60.0	18.4	Owner
66.0	18.4	Non-owner
33.0	18.8	Non-owner
110.1	19.2	Owner
75.0	19.6	Non-owner
69.0	20.0	Owner
81.0	20.0	Owner
43.2	20.4	Non-owner
61.5	20.8	Owner
93.0	20.8	Owner
52.8	20.8	Non-owner
64.8	21.6	Owner
51.0	22.0	Owner
82.8	22.4	Owner
87.0	23.6	Owner

- Repeat the splitting until there is no gain.
- E.g., second split = income = 84.75

Income	Lot size	Ownership
33.0	18.8	Non-owner
47.4	16.4	Non-owner
49.2	17.6	Non-owner
51.0	14.0	Non-owner
59.4	16.0	Non-owner
60.0	18.4	Owner
63.0	14.8	Non-owner
64.8	17.2	Non-owner
66.0	18.4	Non-owner
84.0	17.6	Non-owner
85.5	16.8	Owner
108.0	17.6	Owner

- Repeat the splitting until there is no gain.
- E.g., second split = income = 84.75

Income	Lot size	Ownership
33.0	18.8	Non-owner
47.4	16.4	Non-owner
49.2	17.6	Non-owner
51.0	14.0	Non-owner
59.4	16.0	Non-owner
60.0	18.4	Owner
63.0	14.8	Non-owner
64.8	17.2	Non-owner
66.0	18.4	Non-owner
84.0	17.6	Non-owner
85.5	16.8	Owner
108.0	17.6	Owner

- Repeat the splitting until there is no gain.
- Final splitting

- Each leaf node label is determined by "voting" of the records within it, and by the cutoff value.
- Records within each leaf node are from the training data.
- Default cutoff=0.5 means that the leaf node's label is the majority class.
- Cutoff = 0.75 requires majority of 75% of more "I" records in the leaf to label it a "I" node.

This is a country Contests of fire Service Barrick Oolanin has won the And say majority of counties With large black or highly Min Through are not. We have country And is the high school graduation rate higher And see higher than 78 percent? And she high school graduation rate higher And she high school graduation rate higher than 78 percent? No 78 s87 VEE The is a percent have So only We and is the high school graduation rate higher The to 89. No 78 s87 VEE The is a percent have So only We and is the high school graduation rate higher The to 89. No 78 s87 VEE The is a percent have So only We and is the country No 78 s87 VEE The is a percent have So only We and is the signer The to 89. No 78 s87 VEE The is a percent have So only So

Classification and Regression Tree (CART)

- Generate a set of rules by recursively partitioning the entire datasets to increase the purity of the partitioned area (Breiman, 1984)
- Being able to explain the reason of the prediction result by following the rules to the target leaf node
- Can handle categorical and numerical variables simultaneously

Pruning

- Aggregate some child node into a parent node to avoid over-fitting
- Pre-pruning: pruning is done during the tree construction
- Post-pruning: Once a full-tree is constructed, nodes are pruned by taking the validation error and tree complexity

• Recursive partitioning is completed when every leaf node has 100% purity

- Full tree which is a result of recursive partitioning has a risk of overfitting, which in turn, results in poor generalization ability
 - ✓ It tends to memorize the training dataset, rather than discovering significant patterns

Overfitting problem

- √ The end of recursive partitioning process is 100% purity in each leaf
- ✓ It over-fits the data, ending up fitting noise in the data and leading to low predictive accuracy of new data
- ✓ Past a certain point, the error rate for the validation data starts to increase

- ✓ CART lets tree grow to full extent, then prunes it back.
- ✓ Idea is to find that point at which the validation error begins to rise.
- √ Generate successively smaller trees by pruning leaves.
- ✓ At each pruning stage, multiple trees are possible.
- ✓ Use "cost complexity" to choose the best tree at that stage.

Cost complexity

$$CC(T) = Err(T) + \alpha \times L(T)$$

- \checkmark CC(T) = cost complexity of a tree
- \checkmark ERR(T) = proportion of misclassified records in the validation data
- ✓ Alpha = penalty factor attached to the tree size (set by the user)

Cost Complexity Example 1

 Two trees have the same number of leaf nodes but Tree I yields lower validation error → Tree I should be preferred

Cost Complexity Example 2

√ Two trees yield the same validation error, but Tree A has fewer leaf nodes (simpler tree structure) → Tree A should be preferred

• Full tree constructed by recursive partitioning

Pruning

• Full tree vs. Pruned tree

- Example: Universal bank
 - ✓ Goal: to analyze what combination of factors make a customer more likely to accept
 a personal loan

일련 번호	나이	경력	소득	가족 수	월별 신용카드 평균사용액	교육 수준	담보부 채권	개인 대출	증권 계좌	CD 계좌	온라인 뱅킹	신용 카드
1	25	1	49	4	1.60	UG	0	No	Yes	No	No	No
2	45	19	34	3	1.50	UG	0	No	Yes	No	No	No
3	39	15	11	1	1.00	UG	0	No	No	No	No	No
4	35	9	100	1	2.70	Grad	0	No	No	No	No	No
5	35	8	45	4	1.00	Grad	0	No	No	No	No	Yes
6	37	13	29	4	0.40	Grad	155	No	No	No	Yes	No
7	53	27	72	2	1.50	Grad	0	No	No	No	Yes	No
8	50	24	22	1	0.30	Prof	0	No	No	No	No	Yes
9	35	10	81	3	0.60	Grad	104	No	No	No	Yes	No
10	34	9	180	1	8.90	Prof	0	Yes	No	No	No	No
11	65	39	105	4	2.40	Prof	0	No	No	No	No	No
12	29	5	45	3	0.10	Grad	0	No	No	No	Yes	No
13	48	23	114	2	3.80	Prof	0	No	Yes	No	No	No
14	59	32	40	4	2.50	Grad	0	No	No	No	Yes	No
15	67	41	112	1	2.00	UG	0	No	Yes	No	No	No
16	60	30	22	1	1.50	Prof	0	No	No	No	Yes	Yes
17	38	14	130	4	4.70	Prof	134	Yes	No	No	No	No
18	42	18	81	4	2.40	UG	0	No	No	No	No	No
19	46	21	193	2	8.10	Prof	0	Yes	No	No	No	No
20	55	28	21	1	0.50	Grad	0	No	Yes	No	No	Yes

의사결정 마디	학습용 집합의 오차율	평가용 집합의 오차율
41	0	2.133333
40	0.04	2.2
39	0.08	
38	0.12	2.2
37	0.16	2.066667
36	1	2.066667
35	0.2	2.066667
34	0.24	2.066667
•••	•••	•••
13	1.16	1.6
12	1	
11	1	
10	1	
9		1
8	1	1
7	2.24	1
6		
5	4.44	
4	5.08	1
3	5.24	3.466667
2	9.4	9.533333
1	9.4	9.533333
0	9.4	9.533333

Generating the rules from the pruned tree

- IF(Lot size < 19) AND IF(Income < 84.75) THEN Owner = No
- IF(Lot size < 19) AND IF(Income > 84.75) THEN Owner = YES
- IF(Lot size > 19) AND IF(Income < 57.15) THEN Owner = NO
- IF(Lot size > 19) AND IF(Income > 57.15) THEN Owner = YES

AGENDA

01	Classification Tree
02	Regression Tree
03	R Exercise

- The output of a leaf (terminal) node
 - ✓ The average of the target values of the observations in the node

- The output of a leaf (terminal) node
 - √ The average of the target values of the observations in the node
 - √ Regression tree example

Similar process with classification tree except

- Prediction of the node
 - √ The average of the outcome variables belonging to the node

- Predicted value of the left leaf node = 10
- Predicted value of the right leaf node = 20

- Impurity
 - ✓ Sum of squared error (SSE: $\sum_{i=1}^{n} (y_i \hat{y})^2$)
 - \checkmark SSE(Parent) = 300, SSE(Left) = 10, SSE(Right) = 40, Gain = 250

• Predict the selling price of Toyota corolla

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description				
Price	Offer Price in EUROs				
Age_08_04	Age in months as in August 2004				
KM	Accumulated Kilometers on odometer				
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)				
HP	Horse Power				
Met_Color	Metallic Color? (Yes=1, No=0)				
Automatic	Automatic ((Yes=1, No=0)				
CC	Cylinder Volume in cubic centimeters				
Doors	Number of doors				
Quarterly_Tax	Quarterly road tax in EUROs				
Weight	Weight in Kilograms				

• Pruned Tree

CART: Summary

Advantages

- √ Classification and regression tree (CART) is easy to use and understand
- ✓ Produce rules that are easy to interpret & implement
- √ Variable selection & reduction is automatic.
- ✓ Do not require the assumptions of statistical models
- ✓ Can work without extensive handling of missing data

Disadvantages

- ✓ May not perform well where there is structure in the data that is not well captured
 by horizontal or vertical split
- ✓ Since the process deals with "one variable at a time", no way to capture interactions between variables

CART: Summary

AGENDA

01	Classification Tree
02	Regression Tree
03	R Exercise

R Exercise: Data Set

Personal Loan

✓ Purpose: identify future customer who will use the personal loan service based on his/her demographic information and banking service history

	Α	В	С	D	E	F	G	Н	T	J	K	L	М	N
1	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal L	Securities	CD Accou	Online	CreditCard
2	1	25	1	49	91107	4	1.6	1	0	0	1	0	0	0
3	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0
4	3	39	15	11	94720	1	1	1	0	0	0	0	C	0
5	4	35	9	100	94112	1	2.7	2	0	0	0	0	C	0
6	5	35	8	45	91330	4	1	2	0	0	0	0	0	1
7	6	37	13	29	92121	4	0.4	2	155	0	0	0	1	0
8	7	53	27	72	91711	2	1.5	2	0	0	0	0	1	0
9	8	50	24	22	93943	1	0.3	3	0	0	0	0	0	1
10	9	35	10	81	90089	3	0.6	2	104	0	0	0	1	0

- A total of 14 variables (columns)
- ID, ZIP Code: irrelevant column (remove)
- Personal loan: target variable

R Exercise: Preprocessing

- Data: Personal loan prediction
 - √ Write a performance evaluation function
 - ✓ Load the data
 - √ Use the "tree" package
 - √ Transform the target variable as "factor" type
 - \checkmark Divide the dataset into the training (1,500) and validation (1,000)

R Exercise: Preprocessing

Install packages & write a performance evaluation function

```
# Performance Evaluation Function
perf eval <- function(cm){</pre>
     # True positive rate: TPR (Recall)
     TPR \leftarrow cm[2,2]/sum(cm[2,])
     # Precision
     PRE \leftarrow cm[2,2]/sum(cm[,2])
     # True negative rate: TNR
     TNR \leftarrow cm[1,1]/sum(cm[1,1])
     # Simple Accuracy
     ACC \leftarrow (cm[1,1]+cm[2,2])/sum(cm)
     # Balanced Correction Rate
     BCR <- sqrt(TPR*TNR)
     # F1-Measure
     F1 <- 2*TPR*PRE/(TPR+PRE)
     return(c(TPR, PRE, TNR, ACC, BCR, F1))
Perf. Table <- matrix(0, nrow = 1, ncol = 6)
rownames(Perf.Table) <- c("CART")</pre>
colnames(Perf.Table) <- c("TPR", "Precision", "TNR", "Accuracy", "BCR",</pre>
                               "F1-Measure")
```

R Exercise: Preprocessing

Load the dataset and set the input/target indices

```
# Load the data & Preprocessing
Ploan <- read.csv("Personal Loan.csv")
input.idx <- c(2,3,4,6,7,8,9,11,12,13,14)
target.idx <- 10

Ploan.input <- Ploan[,input.idx]
Ploan.target <- as.factor(Ploan[,target.idx])
Ploan.data <- data.frame(Ploan.input, Ploan.target)

trn.idx <- 1:1500
tst.idx <- 1501:2500</pre>
```

- ✓ [ID], [ZIP Code], [Personal Loan] are excluded from the input variable set
- √ [Personal Loan] is set to the target variable.
- ✓ Convert the variable type of [Personal Loan] from binary(0/1) to factor for building a
 classification model
- ✓ Use the first 1,500 customers to train the model and use the remaining 1,000 customers to validate the model

Training and evaluating CART

```
# Classification and Regression Tree (CART)
install.packages("tree")
library(tree)

CART.trn <- data.frame(Ploan.input[trn.idx,], PloanYN = Ploan.target[trn.idx])
CART.tst <- data.frame(Ploan.input[tst.idx,], PloanYN = Ploan.target[tst.idx])

# Training the tree
CART.model <- tree(PloanYN ~ ., CART.trn)
summary(CART.model)</pre>
```

✓ tree() function

- Formula: the left side of (~) is target and the right side of (~) is input variables
- Y ~ XI: Set XI as the input variable and Y as the target variable
- Y ~ XI+X2: Set XI and X2 as the input variables and Y as the target variable
- Y ~ .: Set Y as the target variable and all the remaining variables as the input variables

Training and evaluating CART

```
> summary(CART.model)

Classification tree:
tree(formula = PloanYN ~ ., data = CART.trn)
Variables actually used in tree construction:
[1] "Income" "CCAvg" "CD.Account" "Education" "Family"
Number of terminal nodes: 10
Residual mean deviance: 0.06996 = 104.2 / 1490
Misclassification error rate: 0.01267 = 19 / 1500
```

- ✓ A total of 5 variables are used at least once as a split variable during the tree
 construction
 - [Income], [CCAvg], [CD.Account], [Education], [Family]
- \checkmark The number of terminal/leaf nodes = 10
- √ Training error: I.267% (19 out of 1,500 observations)

Training and evaluating CART

```
# Plot the tree
plot(CART.model)
text(CART.model, pretty = 1)
```


Find the best tree based on cross-validation

```
# Find the best tree
set.seed(12345)
CART.model.cv <- cv.tree(CART.model, FUN = prune.misclass)

# Plot the pruning result
plot(CART.model.cv$size, CART.model.cv$dev, type = "b")
CART.model.cv</pre>
```



```
$ CART.model.cv
$size
[1] 10 9 8 6 5 4 3 1

$dev
[1] 29 29 29 29 33 67 69 152

$k
[1] -Inf 0.0 1.0 1.5 9.0 17.0 19.0 42.0

$method
[1] "misclass"

attr(,"class")
[1] "prune" "tree.sequence"
```

Find the best tree based on cross-validation

```
# Select the final model
CART.model.pruned <- prune.misclass(CART.model, best = 6)
plot(CART.model.pruned)
text(CART.model.pruned, pretty = 1)</pre>
```


• Prediction performance with the best tree

```
# Prediction
CART.prey <- predict(CART.model.pruned, CART.tst, type = "class")
CART.cfm <- table(CART.tst$PloanYN, CART.prey)
CART.cfm
Perf.Table[1,] <- perf_eval(CART.cfm)
Perf.Table</pre>
```

Cantusian matrix		Predicted			
Confusio	Confusion matrix		Yes (I)		
A at a l	No (0)	888	8		
Actual	Yes (I)	11	93		

	TPR	Precision	TNR	Accuracy	BCR	FI-Measure
CART	0.8942	0.9208	0.9911	0.9810	0.9414	0.9073

