Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$
Nome:	Ra:	$ADS M_{\square} N_{\square}$

Orientações Gerais:

- Todo tipo de cópia não referenciada será considerada plágio.
- O trabalho deverá conter:
 - 1. CAPA: Utilize exclusivamente esta página como capa;
 - 2. INTRODUÇÃO: Breve Introdução e desenvolvimento teórico;
 - 3. RESULTADOS: Resultados obtidos comentados;
 - 4. BIBLIOGRAFIA: Referências bibliográficas utilizadas no desenvolvimento do trabalho e citadas na INTRODUÇÃO;
 - 5. APÊNDICE: listagens dos códigos desenvolvidos.
- O trabalho deverá ser entregue a mim em mãos. Os códigos deverão ser enviados por e-mail ao monitor com o assunto Trabalho 1 Matemática Discreta. O corpo do e-mail deverá conter o NOME e RA dos integrantes do grupo.

1. Questões

- 1. Escreva um programa em C que faça o método de Newton-Raphson com a derivada numérica. Este método tem a finalidade de determinar a solução aproximada de equações do tipo f(x) = 0.
 - Usuário entra com o chute inicial x_0 .
 - \bullet Usuário entra com o critério de parada $\epsilon.$
 - Dada uma função f(x).
 - O algoritmo calcula $x_{k+1} = x_k \left[\frac{f(x_k)}{f'(x_k)}\right]$. OBS.: A derivada $f'(x_k)$ será calculada de forma numérica como no trabalho anterior.
 - Apresente a solução encontrada e o número de iterações k.
 - Teste o seu código para resolver $e^x + x 3 = 0$ com $\epsilon = 0,0001$.