INSTITUTO DE MATEMÁTICA -UFRI Cálculo Infinitesimal I - 2022.1 - Professor Felipe Acker Teste 2 - 12/13 de maio

PARTE I - MÚLTIPLA ESCOLHA

Para cada questão pode haver de 0 a 4 respostas corretas. Cada resposta errada anula uma certa, dentro da mesma questão.

1. Se $f'(x) = \cos^2 x$, en	tão $f(x)$ pode ser:
(a) $\frac{2x-\sin(2x)}{4}$.	(c) $\frac{\sin(2x)-2x}{4}$.
$\frac{2x+\sin(2x)}{4}$.	(d) $\frac{\sin(2x)-2x}{2}$.
2.	
	lnx dx =
(a) $nln(n) - n - 1$.	(c) $nln(n) + n - 1$.
(b) $nln(n) + n + 1$.	nln(n) - n + 1.
3.	
$\int_{-1}^{1} \sqrt{2}$	$1 - x^2 dx =$
(a) $\int_{-1}^{1} \cos^2 x dx$.	
(b) $\int_{-\pi}^{\pi} \sqrt{1 - \sin^2 x}$	$\cos x dx$.
Mt/01/2.	
$\int_{-\pi/2}^{\pi/2} \cos^2 x dx$.	
l. Se	
$f(x) = \int$	$\int_{1}^{x} \sin(t^{2}) dt,$
então $f'(\sqrt{\pi/2})$ é	
10.	(c) $2\sqrt{\pi/2}$.
(b) 1.	(d) ∞.

5. A afirmação a seguir é verdadeira:

$$\int_{0}^{\infty} \int_{\frac{1}{2}}^{\infty} dx = 1.$$
(c)
$$\int_{0}^{1} \int_{\sqrt{x}}^{1} dx = \infty.$$
(b)
$$\int_{0}^{1} \sqrt{x} dx = \sum_{\mathbb{F}_{0} \setminus A} \int_{0}^{1} \int_{0}^{1} \int_{x^{2}}^{1} dx = \infty.$$

6. A área da região limitada pelos gráficos de $y = x^2 e y = x + 1 e$

(a)
$$3\sqrt{5}$$
.
(b) $\int_{\frac{1-y/5}{2}}^{\frac{1-y/5}{2}} x^2 dx - \int_{\frac{1-y/5}{2}}^{\frac{1-y/5}{2}} (x+1) dx$.
(d) $\frac{1}{3} \left(9\sqrt{5} - \left(\frac{1+y/5}{2} \right)^3 + \left(\frac{1-y/5}{2} \right)^3 \right)$.

$$\int_0^{\frac{\pi}{2}} e^{\sin x} \cos x dx =$$

8. Se m é uma constante negativa e $x:[a,b]\to\mathbb{R}$ satisfaz, para uma certa $F:\mathbb{R}\to\mathbb{R}$, contínua,

$$mx''(t) = F(x(t)) \ \forall \ t \in [a,b].$$

$$\int_{a}^{b} F(x(t))x'(t)dt = \frac{1}{2}mx'(b)^{2} - \frac{1}{2}mx'(a)^{2}.$$
(b) $\frac{-m}{2} \left[x'(b)^{2} - x'(a)^{2}\right].$

U(b) - U(a), para qualquer $U : \mathbb{R} \to \mathbb{R}$ tal que U' = F.

(d) U(a) - U(b), para uma certa $U : \mathbb{R} \to \mathbb{R}$ tal que U' = F.

9.
$$\int_0^1 \sqrt{1+x^2} dx =$$
 (a) $\pi/2$. (c) $\ln \sqrt{1+\sqrt{2}}$. (b) $\ln \left(1+\sqrt{2}\right)$. (d) $\pi/4$.

10. Considere as funções $f(x) = 1/x e g(x) = x^5$. Suponha que queremos calcular as áreas sob os gráficos de ambas, respectivamente chamadas de s_f e s_g, no intervalo [10,20]. Se partirmos o intervalo em n partes iguais e usarmos aproximações por retângulos, usando, em ambos os casos, como altura, o maior valor da função no intervalo, o que podemos

A aproximação obtida para s_f vai ter erro menor do que o da aproximação obtida para se.

(b) A aproximação obtida para sg vai ter erro menor do que o da aproximação obtida

(c) O menor erro tanto pode ser obtido para s, ou para se, dependendo de n.

(d) Todas as afirmações anteriores estão erradas.

	(a)	(b)	(c)	(d)	nota
1.	\Diamond	0	Ø	Ø	
2.	0	\Diamond	\Diamond	•	
3.	0	\Diamond	(00	
4.	0	\Diamond	\Diamond	\Diamond	
5.	(\Diamond	\Diamond	0	
6.	\Diamond	\Diamond	0	\Diamond	
7.	\Diamond	\Diamond	\Diamond	0	
8.	0	\Diamond	(\Diamond	
9.	\Diamond	\Diamond	\Diamond	\Diamond	
10.	0	\Diamond	\Diamond	\Diamond	

Tabela Básica de Derivadas

f	x^{α}	sen x	cos x	ln x	e^x	u+v	иυ	$\frac{u}{v}$	g(u)
f'	$\alpha x^{\alpha-1}$	cos x	−sen x	1/x	e^x	u' + v'	u'v + uv'	$\frac{vu'-uv'}{v^2}$	g'(u)u'

PARTE II - QUESTÕES CALCULE

permitido o uso de software para calcular as integrais

Explique as soluções e não use aproximações nos resultados das integrais

- 1. Seja C o círculo centrado em (R,0) e de raio r. Suponha que r < R. Determine o volume do sólido de revolução obtido pela rotação de C em torno do eixo x.
- 2. Seja D a região situada entre as curvas $y=\frac{1}{12},\ x=1$ $x=\sqrt{3}$ e $y=\frac{1}{x+x^3}$. Calcule o volume do sólido S obtido fazendo girar a região D em torno do eixo y.
- 3. Seja R a região limitada entre $y=x^2-x$ e a reta y=x. Encontre a equação da reta que passa pela origem e que divide R em duas subregiões de áreas iguais.
- 4. Seja a curva f(x) = Mcos(x) definida sobre o intervalo $[-\frac{\pi}{4}, \frac{\pi}{4}]$, onde M é uma constante não nula. Calcule o(s) valor(es) de M de tal forma que o volume gerado pela rotação da região limitada pela curva f(x) e pelas retas $x = -\frac{\pi}{4}$, $x = -\frac{\pi}{4}$ e y = 0, em torno do eixo-x, tenha um volume igual a $\frac{\pi}{4}$.
- 5. Calcule a área da região limitada pelas curvas $y=\sqrt{x^2+1}$ e y=|2x|. Faça um esboço da região.

PARTE III - QUESTÕES EXTRA

Todas as respostas devem ser justificadas

1. Uma partícula, de massa m, se move sobre uma reta, sob a ação de uma força, F(x), sendo x a posição da partícula (note que x=x(t) é um número real, dado em alguma unidade de comprimento, podendo ser positivo ou negativo, de acordo com a posição da origem, fixa, que corresponde ao número 0). Temos, pois, supondo em vigor as Leis de Newton,

$$F(x(t)) = mx''(t),$$

durante um intervalo de tempo que suporemos corresponder à eternidade (para trás e para a frente). Suporemos, também, que a força, dada por $F:\mathbb{R}\to\mathbb{R}$, é uma função contínua. O **trabalho** realizado pela força F, entre os tempos t_1 e t_2 , é definido por

$$W = \int_{x(t_1)}^{x(t_2)} F(y) dy.$$

Fixemos uma primitiva qualquer de F, que chamaremos de -U:

$$U: \mathbb{R} \to \mathbb{R}$$
,

$$com - U'(x) = F(x), \forall x \in \mathbb{R}.$$

(a) Mostre que

$$W = \frac{1}{2}m[x'(t_2)]^2 - \frac{1}{2}m[x'(t_1)]^2.$$

(b) Supondo F dada por F(x) = -kx (para um certo k fixo, estritamente positivo), mostre que

$$W = k \frac{x(t_1)^2}{2} - k \frac{x(t_2)^2}{2}.$$

(c) Mostre que, qualquer que seja F, desde que contínua, a função E, definida por

$$E(t) = \frac{1}{2}m[x'(t)]^2 + U(x(t)),$$

é constante (independe de t).

2. A função gama é definida por

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

- a. Mostre que $\Gamma(x)$ está bem definida para x>0e que $\Gamma(1)=1.$
- b. Mostre que $\Gamma(x+1) = x\Gamma(x) \ \forall x > 0$. Conclua que

$$\Gamma(n) = (n-1)! \ \forall n \in \mathbb{N}.$$

c. Mostre que

$$\Gamma(x) = \frac{1}{x} \int_0^\infty e^{-u^{1/x}} du.$$

3. Considere a hipérbole equilátera h, dada por

$$h = \{(x, y) \in R^2 | x^2 - y^2 = 1\}.$$

Dado $x \ge 1$, seja t a área da região limitada pelos segmentos OP_1 , OP_2 e o arco de h ligando P_1 a P_2 , onde O = (0,0), $P_1 = (x, \sqrt{x^2 - 1})$ e $P_2 = (x, -\sqrt{x^2 - 1})$.

a. Note a analogia, se trocarmos h pelo círculo

$$c = \{(x,y) \in R^2 | x^2 + y^2 = 1\},$$

entre t e o ângulo $\theta = arc \cos x$.

- b. Calcule t em função de x.
- c. Expresse x e $y=\sqrt{x^2-1}$ em função de t (x é chamado de cosseno hiperbólico de t e y de seno hiperbólico de t).

Teste 2 - Edicalo Indineksimal I - 2022 1 - Prol Felipe Acker Park I. 1. 1'(+) = cos2x .. 1(1) = 1'(1) de Scorrede = corresede 4' V = CO1x . CO1x => 4'(A - CO1x V(X) = CO1x : 4(v) = Jen(v) (UV)' = U'V + UV' => (SEN x CO)X)' = CO) X CO) X - SEN X SEN X - (sonx coox) de = [coxx coxx dx -] anx genx de >> Senx cosx = Jcos2xdx - Jen2xdx = Jcos2x - J(1-cos2x)de => Senx cosx = Jcos2xdx - Jdx + Jcos2xdx = 2 Jcos2xdx - x + Co => 2 /cos2xdx = genx cosx +x -c1 => /cos2xdx = senx cosx +x -c1 => $\int c_0 r^2 x \, dx = \frac{1}{2} s_0 x^2 x + x + C = \left(\frac{s_0 x^2 + 2x}{2}\right) \cdot \frac{1}{2} = \frac{s_0 x^2 x}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac$ Resporta (a) (d) 2 - I - Encontrar a primitiva: Sincide = St. Inada = Enlegral por parter: 1. lnx = u'y => u'(x)=1 , v= lnx -: u(x)=x , v= lnx >> (4v)' = u'v + uv' => (xlnx)' = 1·lnx + x. /x = lnx +1 = S(xlnx)'dx = S(lnx+1)dx = xlnx = Slnxdx + Sdx = Imxdx + x+c = xlnx -x-c = Ilnxdx Assumted. C=D => \[\langle \l - n | n n - h + 1 Resporta: (a) (b) (c) A

DAC)

Sec 141 =
$$\frac{1}{2} \left[\text{sec } + \frac{1}{2} t - \ln \left(\text{rect } + \frac{1}{2} t \right) \right]^{\frac{1}{2}} = \frac{1}{2} \left[\frac{1}{\sqrt{2}} \cdot 1 - \ln \left(\frac{1}{\sqrt{2}} t + 1 \right) \right]$$

= $\frac{1}{2} \left(\frac{1}{2} - \ln \left(\frac{1}{2} t \right) \right) / = 1 \text{ Now Consequen larger larger}$

10. (b) (c) (d)

Park IT

1) \(\left(\text{(x-x_0)}^2 + \left(\frac{y}{y_0} \right)^2 = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{r}^2 \text{ x, = R_1 y_0 = 0} \)

\(\text{(x-R_1)}^2 + \frac{y^2}{2} = \text{(

ax = x2-x, = x,2-(a+1)x,=0 = x,(x,-(a+1))=0 = x,=0 A1 = ((0x - x2 + 1) dx = ((a+1) x - x2 dx $= \frac{[a+1] \times 1}{2} - \frac{x^3}{3}$ $A_{1} = \frac{1}{2}A \Rightarrow \left[\frac{(a_{1}1) \times^{2} - \frac{\chi^{3}}{3}}{2}\right]_{\chi=0}^{2} = \frac{1}{2}\left[\chi^{2} - \frac{\chi^{3}}{3}\right]_{\chi=0}^{2}$ Calcula para X, entar isola o $r(x) = M_{001}x -_{1}A = \int_{-\pi/6}^{\pi} (M_{001}x)^{2} dx$ $\frac{12}{2} \text{m} \Rightarrow A = \pi M^2 \int \cos^2 x \, dx = \frac{1}{2} \sin^2 x \, dx$ $\frac{1}{14} = \frac{1}{4} = \frac{1}{4}$ = # M2 [x + sen x cosx] = # => M2 [# + m# cos# +# - +m (-11) cos (-11)]-1 $= M^{2} \left[\frac{2\pi}{4} + \frac{12}{2} \cdot \frac{12}{2} - \left(-\frac{12}{2} \right) \left(\frac{12}{2} \right) \right] = M^{2} \left[\frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} \right] = M^{2} \left[\frac{\pi}{2} + 1 \right] = \frac{1}{4}$ $\Rightarrow M = \sqrt{\frac{1}{4(\frac{\pi}{11})}} = \frac{1}{2}\sqrt{\frac{\pi}{11}} = \frac{1}{2\sqrt{\frac{\pi}{11}}}, M = \frac{1}{2\sqrt{\frac{\pi}{11}}}$

b) Intelizemente tive que parar por aqui!!!]