

# Gender debiased dialogue system GDD ReFormer

Yuxuan Jiang yj2199nyu.edu Yanbo Zhang yz6730nyu.edu Zhengyan Wang zw2781nyu.edu Yihan Ma ym2235nyu.edu

# Research Background

Gender bias is a serious problem in our society, and using conversation contains "offensive sentences" as training sets will certainly lead to bias in dialogue systems.

For instance,

| Message                             | Response                |
|-------------------------------------|-------------------------|
| Really wishes he could take at      | I'm sure he's going to  |
| least one step on this husker floor | be a great guest.       |
| Really wishes she could take at     | I'm sure she's a little |
| least one step on this husker floor | jealous.                |



# **Objectives**

Mitigate gender bias from single-turn dialogue system

Gender category: Male & Female

 Gender Dimension: Speaking about (the referred gender in dialogue)



## **Data Corpus**

#### Twitter Conversation Dataset

An database collected conversations on twitters, related to all daily contents.



#### CDA TCD

Using Counterpart Data Augmentation (CDA) method to augment Gender Information in original corpus.



# **CDA Description**

#### CDA: Counterpart Data Augmentation

| A:     | they seriously a perfect couple with a perfect family unk their unk son be help his mom make the      |
|--------|-------------------------------------------------------------------------------------------------------|
| CDA_A: | they seriously a perfect couple with a perfect family unk their unk daughter be help her dad make the |
| B:     | thank so much unk unk wish you be here so we could finally meet unk                                   |
| CDA_B: | thank so much unk unk wish you be here so we could finally meet unk                                   |

Table 1: TCD after CDA (Sentence Length restrict to 20, emoji / misspelling="unk")



### **Model Architecture**



Figure 1: GDD Reformer



#### **EXPERIMENT RESULT**

| Model                               | Gender | Offensive Rate<br>(%) | Pos<br>Sentiment (%) | Neg<br>Sentiment<br>(%) | BLEU-1(%) |
|-------------------------------------|--------|-----------------------|----------------------|-------------------------|-----------|
| Original Dialogue<br>Model          | Male   | 19.34                 | 35.50                | 40.35                   | 6.46      |
|                                     | Female | 19.49                 | 17.67                | 16.31                   | 6.46      |
| CDA Dialogue Model                  | Male   | 16.09                 | 28.83                | 33.41                   | F 04      |
|                                     | Female | 19.02                 | 10.76                | 9.44                    | 5.04      |
| Reformer + Dialogue<br>Model (Ours) | Male   | 3.70                  | 20.11                | 6.52                    | 4.24      |
|                                     | Female | 6.68                  | 27.26                | 5.98                    | 4.24      |



Table 2: Evaluation of different models

### Case

| Message                             | she is not doing, that is the problem! | he is not doing, that is the problem! |
|-------------------------------------|----------------------------------------|---------------------------------------|
| Original Dialogue Model             | oh god she is such idiot               | he just forgot about this lol         |
| CDA Dialogue Model                  | i know right                           | he thinks he did                      |
| Reformer + Dialogue<br>Model (Ours) | oh god she is so precious girl?        | he just forgot about this lol!!!      |

Table 3. Sample output of our model



### Conclusion

- Good performance on offensive mitigation, huge improvement comparing to CDA.
- Fluency has space to improve.



### **Future Work**

- 1. Use GAN method to Improve fluency
- 2. Select dialogue system which has better performance on fluency.
- Immigrate our method to other field, and mitigate other offensive words, such as age and racial discrimination.





# References

- Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao Liu, and Jiliang Tang.
  2019a. Does gender matter? towards fairness in dialogue systems. CoRR, abs/1910.10486.
- 2. Haochen Liu, Wentao Wang, Yiqi Wang, Hui Liu, Zitao Liu, and Jiliang Tang. 2020b. Mitigating gender bias for neural dialogue generation with adversarial learning.

