Human-Centered Design

CSCI 497T/597T

What is Human-Centered Design?

- Development driven by real users and their goals, not just technology.
 - Makes the most of human skill
 - Directly relevant to the work in hand
 - Supports the user, doesn't constrain
- Gould and Lewis principles for a "useful and easy to use computer system"
 - Early focus on users and tasks
 - Empirical measurement
 - Iterative design

Human-Centered Design – How?

1. Spiral design

- repeated iterations of cheap prototypes
- 2. Early focus on users and tasks
 - user analysis: who the users are
 - task analysis: what they need to do
 - involving users as evaluators, consultants, and sometimes designers
- 3. Empirical Measurements
 - users are involved in every iteration every prototype is evaluated somehow

1. Spiral Design

- Early iterations use cheap prototypes
 - Parallel design is feasible: build & test multiple prototypes to explore design alternatives
- Later iterations use richer implementations, after
 UI risk has been mitigated
- More iterations generally means better UI
- Only mature iterations are seen by the world

2. User Analysis

- Identify characteristics of target user Age, gender, culture, language
 - Education (literacy? numeracy?) Functional limitations (ability-based design)
 - Technology experience (computers? typing?)
 - Motivation, attitude
 - Relevant environment and other social context
 - Relevant relationships and communication patterns

Skills Evaluation: Sensory

- Visual function
 - acuity, field, tracking, scanning
- Visual perception
 - depth, spatial relationships
- Tactile function
- Auditory function

Skills Evaluation: Cognitive

- Memory
- Problem-solving
- Sequencing
- Language

Skills Evaluation: Motor

- Range of motion
- Muscle strength
- Muscle tone
- Balance
- Tremor/involuntary movement
- Functional grasp patterns

Task Analysis

- Identify the individual tasks the assistive technology might address
- Each task is a goal (what)
- Start with a high-level activity
- Then decompose it hierarchically into subtasks (how)

Essential Parts of Task Analysis

- What needs to be done?
 - Goal
- What must be done first to make it possible
 - Preconditions
 - Tasks on which this task depends
 - Information that must be known to the user
- What steps are involved in doing the task?
 - Subtasks
 - may be further decomposed, recursively

Other Questions to Ask About a Task

- Where is the task performed?
- What is the environment like?
 - noisy, dirty, dangerous, crowded
- How often is the task performed?
- What are its time or resource constraints?
- What can go wrong?
 - exceptions, errors, emergencies
- Who else is involved in the task?
- What assistive technology (if any) is the client currently using for the task?

Hints for Better Task Analysis

- Questions to ask
 - Why do you do this? (goal)
 - How do you do it? (subtasks)
- Look for weaknesses in current situation
 - Goal failures
 - Wasted time
 - User irritation or fatigue

Empirical Methods to Gather Data

- Contextual Inquiry
 - Observe client doing the tasks in their real environment
 - Establish a master-apprentice relationship
 - Client shows how and talks about it
 - You watch and ask questions
 - Challenge your own assumptions
 - Share your assumptions openly with client
 - Probe surprises
- Other methods: focus groups, surveys, journaling, interviews

Participatory Design (PD)

- Users are actively involved in development
- Nothing about us without us
- Should be used if you want to draw on existing artifacts
- Not suited for radical design changes

Participatory Design (Cont.)

Data collection

- Observations, interviews, collaborative design and cooperative prototyping guided by a well-defined research question
 - Users and designers cooperatively envision new designs, and inform each other's perception of their practicality and utility

Data analysis

- Analyze artifacts at breakdowns
- Analyze videos, interviews and prototypes collected from sessions with the users

Outcome

Working with the users, the product is evolved from the existing artifact

Examples of paper based prototyping techniques for PD.

Pictive

- Some design components are prepared by the developers
- Pen, pencil, sticky notes, paper etc. are used by the users
- Video recording devices are used to record what happens

Examples of paper based prototyping techniques for PD.

Customer Mental Operation
Decide what

Card

- The same principle as Pictive but with screen dumps
- The cards are used to explore workflow options with the user

Figure 9.12 Example of CARD.

3. Empirical Measurements

- This means that the reactions and performance of intended users to...
 - printed scenarios, manuals and help, systems simulations, prototypes should be observed, measured and analyzed as early in the design and development process as possible
- Choose evaluation metric(s) such as
 - efficiency: time on task
 - success rate
 - errors: frequency or severity
 - fatigue: how many times task can be done
- Set quantitative and qualitative targets
 - "get dressed in 2 minutes"
 - "make coffee without assistance"
 - "control my bed while hand is holding something else"
- Use the metrics and targets in subsequent process
 - evaluate on system models
 - predict outcome
 - measure on prototypes

Example: User Analysis

Paul: One of my big dreams in life is to be able to carry a cup of coffee around my house

Abilities:

Right leg amputee, user of forearm crutches
Unable to hold a cup of liquid while using crutches

Example: Task Analysis

- Goal: carry a cup of hot liquid
- Key constraints: safety, no spilling, reasonable time limit, multiple times per week, no assistance
- Context: at home, kitchen counter to dining room table or living room

Example: Collecting Data

- Interviews
- Contextual inquiry
- Participatory design

Example: Solution

Team Members: Lexi D., Brady E., Yi Z.

References

- Muller, M. J. Participatory design: The third space in HCI. In J. Jacko & A. Sears (Eds.), The Human-Computer Interaction Handbook. Mahwah, NJ: Lawrence Erlbaum Associates
- <u>Designing assistive technology: The human-activity-assistive technology-context (HAAT) model</u>