Quick review of probability theory 9.S918 Spring 2025

Roger Levy

MIT Course 9 (Brain & Cognitive Sciences)

3 Feb 2025

Core introductory concepts in probability theory

- Foundations of probability theory
- Joint, marginal, and conditional probability
- ► Bayes' Rule
- Conditional Independence
- Discrete and continuous random variables
- Mean, variance, covariance, and correlation

Probability spaces

Traditionally, probability spaces are defined in terms of **sets**. An event E is a subset of a **sample space** Ω : $E \subseteq \Omega$.

Probability spaces

Traditionally, probability spaces are defined in terms of **sets**. An event E is a subset of a **sample space** Ω : $E \subseteq \Omega$.

A **probability space** P on a sample space Ω is a function from events E in Ω to real numbers such that the following three axioms hold:

- 1. $P(E) \ge 0$ for all $E \subseteq \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

Probability spaces

Traditionally, probability spaces are defined in terms of **sets**. An event E is a subset of a **sample space** Ω : $E \subseteq \Omega$.

A **probability space** P on a sample space Ω is a function from events E in Ω to real numbers such that the following three axioms hold:

- 1. $P(E) \ge 0$ for all $E \subseteq \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

Note that the set-theoretic characterization of events can also be translated into fundamental operations in Boolean logic:

	Sets	Boolean logic
Subset	$A \subseteq B$	A o B
Disjointness	$E_1 \cap E_2 = \emptyset$	$\neg (E_1 \wedge E_2)$
Union	$E_1 \cup E_2$	$E_1 \vee E_2$

A simple example

In historical English, object NPs could be preverbal or postverbal.

There is a broad cross-linguistic tendency for *pronominal* objects to occur earlier on average than *non-pronominal* objects.

So, hypothetical probabilities from historical English:

			<i>Y</i> :
		Pronoun	Not Pronoun
<i>X</i> :	Object Preverbal	0.224	0.655
Λ.	Object Preverbal Object Postverbal	0.014	0.107

A simple example

In historical English, object NPs could be preverbal or postverbal.

There is a broad cross-linguistic tendency for *pronominal* objects to occur earlier on average than *non-pronominal* objects.

So, hypothetical probabilities from historical English:

			<i>Y</i> :
		Pronoun	Not Pronoun
X:	Object Preverbal	0.224	0.655
Λ.	Object Preverbal Object Postverbal	0.014	0.107

We will sometimes call this the **joint distribution** P(X, Y) over two **random variables**—here, verb-object word order X and object pronominality Y.

- 1. $P(E) \ge 0$ for all $E \subset \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

	Object	
	Pronoun	Not Pronoun
Object Preverbal	0.224	0.655
Object Postverbal	0.014	0.107

We can consider the sample space to be

 $\Omega = \{ \begin{aligned} &\text{Preverbal+Pronoun}, &\text{Preverbal+Not Pronoun}, \\ &\text{Postverbal+Pronoun}, &\text{Postverbal+Not Pronoun} \end{aligned}$

- 1. $P(E) \ge 0$ for all $E \subset \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

	Object		
	Pronoun Not Pronoun		
Object Preverbal	0.224	0.655	
Object Postverbal	0.014	0.107	

We can consider the sample space to be

 $\Omega = \{ \begin{aligned} &\text{Preverbal+Pronoun}, &\text{Preverbal+Not Pronoun}, \\ &\text{Postverbal+Pronoun}, &\text{Postverbal+Not Pronoun} \end{aligned}$

Disjoint union tells us the probabilities of non-atomic events:

- 1. $P(E) \ge 0$ for all $E \subset \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

	Object		
	Pronoun Not Pronoun		
Object Preverbal	0.224	0.655	
Object Postverbal	0.014	0.107	

We can consider the sample space to be

$$\Omega = \{ \begin{aligned} &\text{Preverbal+Pronoun}, &\text{Preverbal+Not Pronoun}, \\ &\text{Postverbal+Pronoun}, &\text{Postverbal+Not Pronoun} \end{aligned}$$

- Disjoint union tells us the probabilities of non-atomic events:
 - If we define $E_1 = \{ Preverbal + Pronoun, Postverbal + Not Pronoun \}$, then $P(E_1) = 0.224 + 0.107 = 0.331$.

- 1. $P(E) \ge 0$ for all $E \subset \Omega$ (non-negativity).
- 2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
- 3. $P(\Omega) = 1$ (properness).

	Object		
	Pronoun	Not Pronoun	
Object Preverbal	0.224	0.655	
Object Postverbal	0.014	0.107	

We can consider the sample space to be

$$\begin{split} \Omega = & \{ \mbox{Preverbal+Pronoun}, \mbox{Preverbal+Not Pronoun}, \\ & \mbox{Postverbal+Pronoun}, \mbox{Postverbal+Not Pronoun} \} \end{split}$$

- Disjoint union tells us the probabilities of non-atomic events:
 - If we define $E_1 = \{ Preverbal + Pronoun, Postverbal + Not Pronoun \},$ then $P(E_1) = 0.224 + 0.107 = 0.331.$
- Check for properness: $P(\Omega) = 0.224 + 0.655 + 0.014 + 0.107 = 1$

Marginal probability

Sometimes we have a joint distribution P(X, Y) over random variables X and Y, but we're interested in the distribution implied over one of them (here, without loss of generality, X)

Marginal probability

- Sometimes we have a joint distribution P(X, Y) over random variables X and Y, but we're interested in the distribution implied over one of them (here, without loss of generality, X)
- ▶ The marginal probability distribution P(X) is

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Marginal probability

- Sometimes we have a joint distribution P(X, Y) over random variables X and Y, but we're interested in the distribution implied over one of them (here, without loss of generality, X)
- ▶ The marginal probability distribution P(X) is

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

▶ This is sometimes known as the law of total probability.

Marginal probability: an example

		Pronoun	Y: Not Pronoun
X:	Object Preverbal	0.224	0.655
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Object Preverbal Object Postverbal	0.014	0.107

Finding the marginal distribution on X:

$$P(X = Preverbal) = P(X = Preverbal, Y = Pronoun)$$

 $+ P(X = Preverbal, Y = Not Pronoun)$
 $= 0.224 + 0.655$
 $= 0.879$

$$P(X = Postverbal) = P(X = Postverbal, Y = Pronoun)$$

+ $P(X = Postverbal, Y = Not Pronoun)$
= $0.014 + 0.107$
= 0.121

Marginal probability: an example

		Pronoun	Y: Not Pronoun
X:	Object Preverbal	0.224	0.655
Λ:	Object Preverbal Object Postverbal	0.014	0.107

So, the marginal distribution on X is

	P(X)
Preverbal	0.879
Postverbal	0.121

Likewise, the marginal distribution on Y is

	P(Y)
Pronoun	0.238
Not Pronoun	0.762

Conditional probability

The conditional probability of event B given that A has occurred/is known is defined as follows:

$$P(B|A) \equiv \frac{P(A,B)}{P(A)}$$

		Pronoun	Y: Not Pronoun
<i>X</i> :	Object Preverbal	0.224	0.655
Λ.	Object Preverbal Object Postverbal	0.014	0.107

P(X)
0.879
0.121

	P(Y)
Pronoun	0.238
Not Pronoun	0.762

		Pronoun	Y: Not Pronoun
<i>X</i> :	Object Preverbal	0.224	0.655
Λ.	Object Preverbal Object Postverbal	0.014	0.107

P(X)
0.879
0.121

	P(Y)
Pronoun	0.238
Not Pronoun	0.762

How do we calculate the following?

$$\begin{split} P(Y = \mathbf{Pronoun}|X = \mathbf{Postverbal}) &= \frac{P(X = \mathbf{Postverbal}, Y = \mathbf{Pronoun})}{P(X = \mathbf{Postverbal})} \\ &= \frac{0.014}{0.121} = 0.116 \end{split}$$

		Pronoun	Y: Not Pronoun
<i>X</i> :	Object Preverbal	0.224	0.655
Λ.	Object Preverbal Object Postverbal	0.014	0.107

P(X)
0.879
0.121

	P(Y)
Pronoun	0.238
Not Pronoun	0.762

How do we calculate the following?

$$P(Y = Pronoun | X = Postverbal)$$

$$= \frac{0.014}{0.121} = 0.11$$

		Pronoun	Y: Not Pronoun
<i>X</i> :	Object Preverbal	0.224	0.655
λ:	Object Preverbal Object Postverbal	0.014	0.107

P(X)
0.879
0.121

	P(Y)
Pronoun	0.238
Not Pronoun	0.762
	'

How do we calculate the following?

$$P(Y = \mathbf{Pronoun}|X = \mathbf{Postverbal}) = \frac{P(X = \mathbf{Postverbal}, Y = \mathbf{Pronoun})}{P(X = \mathbf{Postverbal})}$$
$$= \frac{0.014}{0.121} = 0.116$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)$$

$$\vdots$$

$$P(E_1, E_2, \dots, E_n) = P(E_n|E_1, E_2, \dots, E_{n-1}) \dots P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)$$

$$\vdots$$

$$P(E_1, E_2, \dots, E_n) = P(E_n|E_1, E_2, \dots, E_{n-1}) \dots P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)$$

$$\vdots$$

$$P(E_1, E_2, \dots, E_n) = P(E_n|E_1, E_2, \dots, E_{n-1}) \dots P(E_2|E_1)P(E_1)$$

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

And this generalizes to more than two variables:

$$P(E_1, E_2) = P(E_2|E_1)P(E_1)$$

$$P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)$$

$$\vdots$$

$$P(E_1, E_2, \dots, E_n) = P(E_n|E_1, E_2, \dots, E_{n-1}) \dots P(E_2|E_1)P(E_1)$$

Breaking a joint probability down into the product of a marginal probability and several conditional probabilities this way is called **chain rule decomposition**.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

This "theorem" follows directly from def'n of conditional probability:

$$P(A, B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

This "theorem" follows directly from def'n of conditional probability:

$$P(A, B) = P(B|A)P(A)$$

$$P(A, B) = P(A|B)P(B)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

This "theorem" follows directly from def'n of conditional probability:

$$P(A,B) = P(B|A)P(A)$$

$$P(A,B) = P(A|B)P(B)$$

So

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

This "theorem" follows directly from def'n of conditional probability:

$$P(A,B) = P(B|A)P(A)$$

$$P(A,B) = P(A|B)P(B)$$

So

$$\frac{P(A|B)P(B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$\frac{P(A|B)P(B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

With extra "background" random variables 1:

$$P(A|B,I) = \frac{P(B|A,I)P(A|I)}{P(B|I)}$$

This "theorem" follows directly from def'n of conditional probability:

$$P(A,B) = P(B|A)P(A)$$

$$P(A,B) = P(A|B)P(B)$$

So

$$\frac{P(A|B)P(B)}{\frac{P(A|B)P(B)}{P(B)}} = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' Rule, more closely inspected

$$\underbrace{P(A|B)}_{P(A|B)} = \underbrace{\frac{P(B|A)P(A)}{P(B)}}_{Normalizing constant}$$

Let me give you the same information you had before:

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Not Pronoun}) = 0.860$$

¹A "transitive" verb is one that requires an object.

Let me give you the same information you had before:

$$\begin{split} P(Y = \textbf{Pronoun}) &= 0.238 \\ P(X = \textbf{Preverbal}|Y = \textbf{Pronoun}) &= 0.941 \\ P(X = \textbf{Preverbal}|Y = \textbf{Not Pronoun}) &= 0.860 \end{split}$$

Imagine you're an incremental sentence processor. You encounter a transitive verb¹ but haven't encountered the object yet. **Inference under uncertainty:** How likely is it that the object is a pronoun?

¹A "transitive" verb is one that requires an object.

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Not Pronoun}) = 0.860$$

$$P(Y = Pron|X = PostV)$$

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Not Pronoun} \) = 0.860$$

$$P(Y = \mathbf{Pron}|X = \mathbf{PostV}) = \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})}$$

```
P(Y = \textbf{Pronoun}) = 0.238 P(X = \textbf{Preverbal}|Y = \textbf{Pronoun}) = 0.941 P(X = \textbf{Preverbal}|Y = \textbf{Not Pronoun}) = 0.860
```

$$\begin{split} P(Y = \mathbf{Pron}|X = \mathbf{PostV}) &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}, Y = y)} \end{split}$$

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Not Pronoun}\) = 0.860$$

$$\begin{split} P(Y = \mathbf{Pron}|X = \mathbf{PostV}) &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}, Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}|Y = y)P(Y = y)} \end{split}$$

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal} | Y = \textbf{Not Pronoun} \) = 0.860$$

$$\begin{split} P(Y = \mathbf{Pron}|X = \mathbf{PostV}) &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}, Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}|Y = y)P(Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(\mathbf{PostV}|\mathbf{Pron})P(\mathbf{Pron})P(\mathbf{Pron})P(\mathbf{NotPron})P(\mathbf{NotPron})} \end{split}$$

$$P(Y = \textbf{Pronoun}) = 0.238$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Pronoun}) = 0.941$$

$$P(X = \textbf{Preverbal}|Y = \textbf{Not Pronoun}\) = 0.860$$

$$\begin{split} P(Y = \mathbf{Pron}|X = \mathbf{PostV}) &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}, Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}|Y = y)P(Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = y)P(Y = y)}{P(\mathbf{PostV}|\mathbf{Pron})P(\mathbf{Pron})P(\mathbf{PostV}|\mathbf{NotPron})P(\mathbf{NotPron})} \\ &= \frac{(1 - 0.941) \times 0.238}{(1 - 0.941) \times 0.238 + (1 - 0.860) \times (1 - 0.238)} \end{split}$$

```
P(Y = \textbf{Pronoun}) = 0.238 P(X = \textbf{Preverbal} | Y = \textbf{Pronoun}) = 0.941 P(X = \textbf{Preverbal} | Y = \textbf{Not Pronoun} \ ) = 0.860
```

$$\begin{split} P(Y = \mathbf{Pron}|X = \mathbf{PostV}) &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(X = \mathbf{PostV})} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}, Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{\sum_{y} P(X = \mathbf{PostV}|Y = y)P(Y = y)} \\ &= \frac{P(X = \mathbf{PostV}|Y = \mathbf{Pron})P(Y = \mathbf{Pron})}{P(\mathbf{PostV}|\mathbf{Pron})P(\mathbf{Pron}) + P(\mathbf{PostV}|\mathbf{NotPron})P(\mathbf{NotPron})} \\ &= \frac{(1 - 0.941) \times 0.238}{(1 - 0.941) \times 0.238 + (1 - 0.860) \times (1 - 0.238)} \\ &= 0.116 \end{split}$$

$$P(A|B) = \frac{\overbrace{P(B|A)}^{\text{Likelihood Prior}}}{\underbrace{P(B|A)}_{\text{Normalizing constant}}}$$

► The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the **partition function**)

$$P(A|B) = \frac{\overbrace{P(B|A)}^{\text{Likelihood Prior}}}{\underbrace{P(B|A)}_{\text{Normalizing constant}}}$$

- ► The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the **partition function**)
- ▶ Hence there are often two other ways we write Bayes' Rule:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
Normalizing constant

- ► The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the **partition function**)
- ▶ Hence there are often two other ways we write Bayes' Rule:
 - 1. Emphasizing explicit marginalization:

$$P(A|B) = \frac{P(B|A)P(A)}{\sum_{a} P(A = a, B)}$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
Normalizing constant

- ► The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the **partition function**)
- ▶ Hence there are often two other ways we write Bayes' Rule:
 - 1. Emphasizing explicit marginalization:

$$P(A|B) = \frac{P(B|A)P(A)}{\sum_{a} P(A=a,B)}$$

2. Ignoring the partition function:

$$P(A|B) \propto P(B|A)P(A)$$

(Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

$$P(A, B|C) = P(A|C)P(B|C)$$

Conditional independence of A and B given C is often expressed as

$$A \perp B \mid C$$

► The **support** of a random variable is the set of values for which its probability is non-zero

- ► The **support** of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values

- ► The support of a random variable is the set of values for which its probability is non-zero
- ➤ A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability mass P(X = x) (or just P(x) for short)

- ► The support of a random variable is the set of values for which its probability is non-zero
- ➤ A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability **mass** P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum:

$$\sum_{x} P(X = x) = 1$$

- ► The support of a random variable is the set of values for which its probability is non-zero
- ➤ A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability **mass** P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum: $\sum_{x} P(X = x) = 1$
- A **continuous** random variable's support is a continuum (e.g., [0,1])

- ► The support of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability **mass** P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum: $\sum_{x} P(X = x) = 1$
- A **continuous** random variable's support is a continuum (e.g., [0,1])
 - Each possible value has a probability **density** p(X = x) (or just p(x) for short)

- ► The support of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability mass P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum: $\sum_{x} P(X = x) = 1$
- A **continuous** random variable's support is a continuum (e.g., [0,1])
 - Each possible value has a probability **density** p(X = x) (or just p(x) for short)
 - ► The probability *mass* of any value on the continuum is zero, regardless of the density!

- ► The support of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability **mass** P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum: $\sum_{x} P(X = x) = 1$
- A **continuous** random variable's support is a continuum (e.g., [0,1])
 - Each possible value has a probability **density** p(X = x) (or just p(x) for short)
 - The probability mass of any value on the continuum is zero, regardless of the density!
 - Properness is characterized in terms of an integral: $\int_{X} P(X = x) dx = 1$ (note the derivative!)

- ► The support of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
 - Each possible value has a probability mass P(X = x) (or just P(x) for short)
 - Properness is characterized in terms of a sum: $\sum_{x} P(X = x) = 1$
- A **continuous** random variable's support is a continuum (e.g., [0,1])
 - Each possible value has a probability **density** p(X = x) (or just p(x) for short)
 - The probability mass of any value on the continuum is zero, regardless of the density!
 - Properness is characterized in terms of an integral: $\int_{x} P(X = x) dx = 1 \text{ (note the derivative!)}$
 - Remember that probability densities have units (the inverse of the unit of the continuum), and the densities can exceed 1 per unit!

- ► The **support** of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
- ► A **continuous** random variable's support is a continuum (e.g., [0,1])
- (We are presently eliding over cases where a random variable can have both mass and density on different sets of values)

- ► The **support** of a random variable is the set of values for which its probability is non-zero
- A discrete random variable's support is a finite or countably infinite number of values
- A **continuous** random variable's support is a continuum (e.g., [0,1])
- (We are presently eliding over cases where a random variable can have both mass and density on different sets of values)
- Unless I mention otherwise, things I say will hold for both discrete and continuous random variables, and I will freely use sums or integrals with the implicit understanding that what I say applies to both cases

Mean and variance

► (Population) mean, or expected value:

$$E[X] = \sum_{x} x P(X = x)$$
 (discrete)
 $E[X] = \int_{x} x p(X = x) dx$ (continuous)

Mean and variance

(Population) mean, or expected value:

$$E[X] = \sum_{x} x P(X = x)$$
 (discrete)
 $E[X] = \int_{x} x p(X = x) dx$ (continuous)

► (Population) variance:

$$Var[X] = \sum_{x} (x - E[X])^{2} P(X = x)$$
 (discrete)

$$Var[X] = \int_{x} (x - E[X])^{2} p(X = x) dx$$
 (continuous)

Covariance and correlation

► The **covariance** between two random variables is how much they vary together:

$$Cov(X,Y) = \int_{x,y} (x - E[X])(y - E[Y]) dxdy$$