Here we will be looking at the trends of FDI in India 2000 to 2017.

FDI support on different sectors over the years indicates changes in interest over time.

1. Firing up colab

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

df = pd.read_csv('/content/FDI_in_India.csv')
df.head(3)
```

	Sector	2000- 01	2001- 02	2002- 03	2003- 04	2004- 05	2005- 06	2006- 07	2007 - 08	2008- 09
0	METALLURGICAL INDUSTRIES	22.69	14.14	36.61	8.11	200.38	149.13	169.94	1175.75	959.94
1	MINING	1.32	6.52	10.06	23.48	9.92	7.40	6.62	444.36	34.16

len(df)

63

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 18 columns):
 #
    Column
             Non-Null Count Dtype
 0
    Sector
             63 non-null
                             object
 1
    2000-01 63 non-null
                             float64
    2001-02 63 non-null
                             float64
                             float64
 3
    2002-03 63 non-null
    2003-04 63 non-null
                             float64
 5
    2004-05 63 non-null
                             float64
 6
    2005-06 63 non-null
                             float64
 7
    2006-07 63 non-null
                             float64
    2007-08 63 non-null
                             float64
 8
 9
    2008-09 63 non-null
                             float64
 10 2009-10 63 non-null
                             float64
 11 2010-11 63 non-null
                             float64
 12 2011-12 63 non-null
                             float64
 13 2012-13 63 non-null
                             float64
 14 2013-14 63 non-null
                             float64
 15 2014-15 63 non-null
                             float64
 16 2015-16 63 non-null
                             float64
 17
    2016-17 63 non-null
                             float64
dtypes: float64(17), object(1)
memory usage: 9.0+ KB
```

2. Setting the index and subsequent

```
df.set_index('Sector', inplace = True)
```

Year-wise total Investment

```
df.sum(axis=0).plot(kind='bar', figsize=(10,4))
plt.grid()
plt.show()
```


sector-wise total investment over the years

```
df.sum(axis=1).sort_values().plot(kind = 'barh', figsize=(10,20))
plt.grid()
plt.show()
```


We find that from 2007 onwards there has been an overall large increase in Investment levels.

Also, Services (Finance, Banking etc.) sector has had the max overall investment while Coir has had the least investment overall across the years.

finding trends

a. correlation

import numpy as np

```
new = df.transpose()
corrMatrix=new.corr()
corrMatrix.loc[:,:] = np.tril(corrMatrix, k=-1) # borrowed from Karl D's answer
already_in = set()
result = []
for col in corrMatrix:
    perfect_corr = corrMatrix[col][corrMatrix[col] >= 0.9].index.tolist()
    if perfect_corr and col not in already_in:
        already in.update(set(perfect corr))
        perfect corr.append(col)
        result.append(perfect_corr)
result
     [['TELECOMMUNICATIONS',
       'TEXTILES (INCLUDING DYED, PRINTED)',
       'GLUE AND GELATIN',
       'ELECTRICAL EQUIPMENTS'],
      ['TRADING', 'AUTOMOBILE INDUSTRY'],
      ['SUGAR',
       'CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES',
       'AIR TRANSPORT (INCLUDING AIR FREIGHT)'],
      ['RETAIL TRADING', 'SEA TRANSPORT'],
      ['SOAPS, COSMETICS & TOILET PREPARATIONS', 'INDUSTRIAL MACHINERY'],
      ['DEFENCE INDUSTRIES', 'MISCELLANEOUS MECHANICAL & ENGINEERING INDUSTRIES'],
      ['TEXTILES (INCLUDING DYED, PRINTED)', 'MEDICAL AND SURGICAL APPLIANCES'],
      ['GLASS', 'MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS'],
      ['DIAMOND, GOLD ORNAMENTS', 'DYE-STUFFS'],
      ['FOOD PROCESSING INDUSTRIES', 'FERMENTATION INDUSTRIES']]
```

Above we set the correlation coefficient score to 0.9.

Now that we plot them to observe price trends considering each group as a separate segment wherein sectors have high correlation with each other.

```
X = list(df.columns)
#X.remove('Sector')
Χ
      ['2000-01',
       '2001-02',
       '2002-03',
       '2003-04',
       '2004-05'
       '2005-06',
       '2006-07',
       '2007-08',
       '2008-09',
       '2009-10',
       '2010-11',
       '2011-12',
       '2012-13'
       '2013-14',
       '2014-15',
```

```
'2015-16', '2016-17']
```

plotting graphs for each groups which are highly correlated

```
norm_df=(df-df.mean())/df.std()
norm_df.head(2)
```

	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006
Sector							
METALLURGICAL INDUSTRIES	-0.134256	-0.315379	-0.072924	-0.393441	1.464559	0.296446	-0.041
MINING	-0.324673	-0.363644	-0.379483	-0.166255	-0.403888	-0.390107	-0.279
= norm_df.loc[['TI XTILES (INCLUDING		_					

```
df_1 = norm_df.loc[['TELECOMMUNICATIONS',
    'TEXTILES (INCLUDING DYED,PRINTED)',
    'GLUE AND GELATIN',
    'ELECTRICAL EQUIPMENTS','MEDICAL AND SURGICAL APPLIANCES'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
#df_1
```


In the figure above, we see that while Telecom sector has had over average investment overall with Electrical equipments following. For others (glue, medical and textile) the investment has been below average throughout. In 2012-13 though investment in this category has been below average.

```
df_1 = norm_df.loc[['TRADING', 'AUTOMOBILE INDUSTRY'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
#df_1
```


While Automobile has been above average but trading had a cyclic pattern with investment going to positive 2008 onwards.

```
df_1 = norm_df.loc[['SUGAR',
    'CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES',
    'AIR TRANSPORT (INCLUDING AIR FREIGHT)'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```


In this group we see that while overall this group has below average investment, construction saw an above average insvestment with highest in 2015.

```
df_1 = norm_df.loc[['RETAIL TRADING', 'SEA TRANSPORT'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```



```
df_1 = norm_df.loc[['SOAPS, COSMETICS & TOILET PREPARATIONS', 'INDUSTRIAL MACHINERY'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```


df_1 = norm_df.loc[['DEFENCE INDUSTRIES', 'MISCELLANEOUS MECHANICAL & ENGINEERING INDUSTRI
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()


```
df_1 = norm_df.loc[['GLASS', 'MATHEMATICAL,SURVEYING AND DRAWING INSTRUMENTS'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```



```
df_1 = norm_df.loc[['DIAMOND,GOLD ORNAMENTS', 'DYE-STUFFS'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```


For the rest, we observe a cyclic pattern in investment. (Most below average).

```
df_1 = norm_df.loc[['FOOD PROCESSING INDUSTRIES', 'FERMENTATION INDUSTRIES'], X]
df_1.transpose().plot(kind = 'bar', figsize=(15,6))
plt.grid()
plt.show()
```


Top-most 10

```
df.sum(axis=1).nlargest(10)
```

```
Sector
```

SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourcing, R&D, Courier, Teck COMPUTER SOFTWARE & HARDWARE

CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and constructic TELECOMMUNICATIONS

AUTOMOBILE INDUSTRY

DRUGS & PHARMACEUTICALS

TRADING

CHEMICALS (OTHER THAN FERTILIZERS)

POWER

METALLURGICAL INDUSTRIES

dtype: float64

'METALLURGICAL INDUSTRIES'

plt.grid()
plt.show()

```
df_1 = norm_df.loc[['SERVICES SECTOR (Fin.,Banking,Insurance,Non Fin/Business,Outsourcing,
'COMPUTER SOFTWARE & HARDWARE',
'CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and construction-de
'TELECOMMUNICATIONS',
'AUTOMOBILE INDUSTRY',
'DRUGS & PHARMACEUTICALS',
'TRADING',
'CHEMICALS (OTHER THAN FERTILIZERS)',
'POWER',
```

], X]

df 1.transpose().plot(kind = 'bar', figsize=(35,8))

While computer sector was a prominent sector until 2006, 2006 onwards services sector took the top notch.

Bottom - 10

```
s = df.sum(axis=1).sort_values(ascending=True)
s.head(10)
```

```
Sector
COIR
                                                                 4.06
DEFENCE INDUSTRIES
                                                                 5.12
MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS
                                                                 7.98
                                                                27.74
COAL PRODUCTION
PHOTOGRAPHIC RAW FILM AND PAPER
                                                                67.28
INDUSTRIAL INSTRUMENTS
                                                                76.12
                                                                88.40
DYE-STUFFS
TEA AND COFFEE (PROCESSING & WAREHOUSING COFFEE & RUBBER)
                                                               111.22
GLUE AND GELATIN
                                                               128.39
TIMBER PRODUCTS
                                                               157.68
dtype: float64
```

```
df_1 = norm_df.loc[['COIR',
'DEFENCE INDUSTRIES',
'MATHEMATICAL,SURVEYING AND DRAWING INSTRUMENTS',
'COAL PRODUCTION',
'PHOTOGRAPHIC RAW FILM AND PAPER',
'INDUSTRIAL INSTRUMENTS',
'DYE-STUFFS',
'TEA AND COFFEE (PROCESSING & WAREHOUSING COFFEE & RUBBER)',
'GLUE AND GELATIN',
'TIMBER PRODUCTS'], X]
df_1.transpose().plot(kind = 'bar', figsize=(35,8))
```

plt.grid()
plt.show()

Year wise Max and min Sectors.

df.idxmax()

2000-01		MISCELLANEOUS INDUSTRIES
2001-02		TELECOMMUNICATIONS
2002-03		AUTOMOBILE INDUSTRY
2003-04		COMPUTER SOFTWARE & HARDWARE
2004-05		COMPUTER SOFTWARE & HARDWARE
2005-06		COMPUTER SOFTWARE & HARDWARE
2006-07		(Fin., Banking, Insurance, Non Fi
2007-08	SERVICES SECTOR	(Fin., Banking, Insurance, Non Fi
2008-09		(Fin., Banking, Insurance, Non Fi
2009-10	CONSTRUCTION DEV	/ELOPMENT: Townships, housing,
2010-11	SERVICES SECTOR	(Fin., Banking, Insurance, Non Fi
2011-12		(Fin., Banking, Insurance, Non Fi
2012-13	SERVICES SECTOR	(Fin., Banking, Insurance, Non Fi
2013-14		FOOD PROCESSING INDUSTRIES
2014-15	SERVICES SECTOR	(Fin., Banking, Insurance, Non Fi
2015-16		(Fin., Banking, Insurance, Non Fi
2016-17	SERVICES SECTOR	(Fin., Banking, Insurance, Non Fi
dtype: obj	ect	

df.idxmin()

2000-01

NON-CONVENTIONAL ENERGY

10/19/21, 10:58 PM	FDI in India.ipynb - Colaboratory
2001-02	NON-CONVENTIONAL ENERGY
2002-03	COAL PRODUCTION
2003-04	PRIME MOVER (OTHER THAN ELECTRICAL GENERATORS)
2004-05	COAL PRODUCTION
2005-06	BOILERS AND STEAM GENERATING PLANTS
2006-07	PORTS
2007-08	SCIENTIFIC INSTRUMENTS
2008-09	BOILERS AND STEAM GENERATING PLANTS
2009-10	COAL PRODUCTION
2010-11	COAL PRODUCTION
2011-12	COAL PRODUCTION
2012-13	COAL PRODUCTION
2013-14	MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS
2014-15	COAL PRODUCTION
2015-16	COAL PRODUCTION
2016-17	COAL PRODUCTION
dtype: ob	ject

The min values shows that while COIR is sector with total investment, in majority years COAL Production had least investment, while COIR didn't have the minimum investment in any year.