Semantics and Types - Assignment 4

Mikkel Willén bmq419

March 6, 2024

We extend the FUN syntax with the following term:

$$t := 5dots \mid \mathbf{min} \ x \ge t_0. \ t_1$$

We define the big-step semantics as the following:

E-MINT :
$$\frac{t_0 \downarrow \overline{n_0} \quad t_1[\overline{n_0}/x] \downarrow \mathbf{true}}{\mathbf{min} \ x > t_0. \ t_1 \downarrow \overline{n_0}}$$

E-MINF:
$$\frac{t_0 \downarrow \overline{n_0} \quad t_1[\overline{n_0}/x] \downarrow \mathbf{false} \quad \mathbf{min} \ x \geq \overline{n_0 + 1}. \ t_1 \downarrow c}{\mathbf{min} \ x \geq t_0. \ t_1 \downarrow c}$$

and the small-step semantics as:

S-Min1:
$$\frac{t_0 \to t'_0}{\min \ x \ge t_0. \ t_1 \to \min \ x \ge t'_0. \ t_1}$$

S-Min:
$$\overline{\min x \geq \overline{n_0}}$$
. $t_1 \to \mathbf{if} \ t_1[\overline{n_0}/x] \ \mathbf{then} \ \overline{n_0} \ \mathbf{else} \ \mathbf{min} \ x \geq \overline{n_0+1}$. t_1

and the typing rule as:

T-MIN:
$$\frac{\Gamma \vdash t_0 : \mathbf{int} \quad \Gamma[x \mapsto \mathbf{int}] \vdash t_1 : \mathbf{bool}}{\Gamma \vdash \mathbf{min} \ x \ge t_0. \ t_1 : \mathbf{int}}$$

Task 4.1

Theorem 4.2 If $t \downarrow c$, then $t \rightarrow^* c$.

Proof. By induction on the big-step derivation.

Case
$$\mathcal{E} = \text{E-MinT} \frac{t_0 \downarrow \overline{n_0}}{\min x > t_0, t_1 \downarrow \overline{n_0}} \frac{\mathcal{E}_1}{t_1 [\overline{n_0}/x] \downarrow \text{true}}$$

Here $t = (\min x \ge t_0, t_1)$ and $c = \overline{n_0}$. By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $t_0 \to^* \overline{n_0}$, and we can then, by step-wise use of S-Min1, get

$$\min x > t_0. t_1 \rightarrow^* \min x > \overline{n_0}. t_1$$

Now, by step-wise use of S-Min we get

$$\min x \ge \overline{n_0}. \ t_1 \to^* \text{if} \ t_1[\overline{n_0}/x] \ \text{then} \ \overline{n_0} \ \text{else min} \ x \ge \overline{n_0+1}. \ t_1$$

By IH on \mathcal{E}_1 we get \mathcal{SS}_1 of $t_1[\overline{n_0}/x] \to^*$ **true** and we can use S-I_FT to get

if true then
$$\overline{n_0}$$
 else min $x \ge \overline{n_0 + 1}$. $t_1 \to^* \overline{n_0}$

Concatenating these together with Lemma 4.1 we get the desired

$$\min x \ge t_0. \ t_1 \downarrow c \to^* \overline{n_0}$$

Case
$$\mathcal{E} = \text{E-MinF} \frac{t_0 \downarrow \overline{n_0} \quad t_1[\overline{n_0}/x] \downarrow \text{false} \quad \min \ x \geq \frac{\mathcal{E}_2}{n_0 + 1} \cdot t_1 \downarrow c'}{\min \ x \geq t_0 \cdot t_1 \downarrow c'}$$

Here $t = (\min x \ge t_0. t_1)$ and c = c'. By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $t_0 \to^* \overline{n_0}$, and we can then, by step-wise use of S-Min1, get

$$\min x \ge t_0. \ t_1 \to^* \min x \ge \overline{n_0}. \ t_1$$

Now, by step-wise use of S-Min we get

$$\min \ x \ge \overline{n_0}. \ t_1 \to^* \text{if} \ t_1[\overline{n_0}/x] \ \text{then} \ \overline{n_0} \ \text{else min} \ x \ge \overline{n_0+1}. \ t_1$$

By IH on \mathcal{E}_1 we get \mathcal{SS}_1 of $t_1[\overline{n_0}/x] \to^*$ false and we can use S-IFF to get

if false then
$$\overline{n_0}$$
 else min $x \ge \overline{n_0 + 1}$. $t_1 \to^* \min x \ge \overline{n_0 + 1}$. t_1

Now by IH on \mathcal{E}_2 we get \mathcal{SS}_2 of min $x \geq \overline{n_0 + 1}$. $t_1 \to^* c'$. Concatenating these together with **Lemma 4.1** we get the desired

$$\min x > t_0. \ t_1 \downarrow c \rightarrow^* c'$$

Lemma 4.4 If $t \to t'$ and $t' \downarrow c$, then $t \downarrow c$.

Proof. By induction on the first derivation.

Case
$$S = S\text{-Min1} \frac{t_0 \xrightarrow{S_0} t'_0}{\min \ x \ge t_0. \ t_1 \to \min \ x \ge t'_0. \ t_1}$$

We have $t = (\min x \ge t_0, t_1)$, which means we have two possibilities for \mathcal{E}' depending on which of the two big-step rules are used:

Subcase
$$\mathcal{E}' = \text{E-MinT} \frac{t_0' \downarrow \overline{n_0}}{\min x \geq t_0'. t_1 | \overline{n_0}/x| \downarrow \text{true}}{\min x \geq t_0'. t_1 \downarrow \overline{n_0}}$$

By IH on S_0 with \mathcal{E}_1 we get get \mathcal{E}_1 of $t_1[\overline{n_0}/x] \downarrow \mathbf{true}$ and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-MinT} \frac{t_0' \stackrel{\mathcal{E}_0}{\downarrow} \overline{n_0} \quad t_1[\overline{n_0}/x] \downarrow \mathbf{true}}{\mathbf{min} \ x \ge t_0'. \ t_1 \downarrow \overline{n_0}}$$

Subcase
$$\mathcal{E}' = \text{E-MinF} \frac{t_0' \downarrow \overline{n_0}}{t_0' \downarrow \overline{n_0}} \frac{\mathcal{E}_1'}{t_1[\overline{n_0}/x] \downarrow \text{false}} \frac{\min x \geq \frac{\mathcal{E}_2'}{n_0 + 1} \cdot t_1 \downarrow c'}{\min x \geq t_0' \cdot t_1 \downarrow c'}$$

By IH on S_0 with \mathcal{E}_1 we get get \mathcal{E}_1 of $t_1[\overline{n_0}/x] \downarrow \mathbf{false}$ and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-MinF} \frac{t_0' \downarrow \overline{n_0} \quad t_1[\overline{n_0}/x] \downarrow \text{false} \quad \min \ x \ge \frac{\mathcal{E}_2}{n_0 + 1}. \ t_1 \downarrow c'}{\min \ x \ge t_0'. \ t_1 \downarrow c'}$$

Task 4.2

Let the term MIN(x,t) of type $int \rightarrow int$ be defined as:

$$\mathtt{MIN}(x,t) \equiv \mathbf{rec} \ f. \ \lambda x. \ \underbrace{\mathbf{if} \ t \ \mathbf{then} \ x \ \mathbf{else} \ f(x+\overline{1})}_{t_0'}$$

where t is any boolean term potentially containing an integer variable x.

We show by induction on derivations, that

$$\underbrace{\min \ x \ge t_0. \ t_1}_{t} \downarrow c \Rightarrow \underbrace{\min (x, t_1) t_0}_{t'} \downarrow c$$

Looking at the execution rules for min-commands, we see that \mathcal{E} must have one of the two following shapes

Case
$$\mathcal{E} = \text{E-MINT} \frac{t_0' \downarrow \overline{n_0}}{\min x \geq t_0' \cdot t_1 \lfloor \overline{n_0}/x \rfloor \downarrow \text{true}}{\min x \geq t_0' \cdot t_1 \downarrow \overline{n_0}}$$

Since \mathcal{E}_1 evaluates to **true**, we can construct \mathcal{E}' as follows:

$$\mathcal{E}' = \text{E-App} \frac{\text{E-Lam}}{\frac{\text{E-Lam}}{\lambda x. \ t_0' \downarrow \lambda x. \ t_0'}}{\text{rec} \ f. \lambda x. \ t_0' \downarrow \lambda x. \ t_0'} \\ = \text{E-App} \frac{t_1 \downarrow \textbf{true} \quad \text{E-Num} \frac{1}{\overline{n_0} \downarrow \overline{n_0}}}{\text{if} \ t_1 \ \textbf{then} \ \overline{n_0} \ \textbf{else} \ f(x + \overline{1}) \downarrow \overline{n_0}}}{t_0' [\overline{n_0}/x] \downarrow \overline{n_0}}$$

$$\mathcal{E}' = \text{E-App} \frac{\text{E-Iam}}{\text{rec} \ f. \lambda x. \ t_0' \downarrow \lambda x. \ t_0'}}{\text{rec} \ f. \lambda x. \ t_0' \downarrow \lambda x. \ t_0'} \quad \text{Min}(x, t_1) t_0 \downarrow \overline{n_0}}$$

Case
$$\mathcal{E} = \text{E-MinF} \frac{t_0 \downarrow \overline{n_0}}{t_0 \downarrow \overline{n_0}} \frac{t_1[\overline{n_0}/x] \downarrow \text{false}}{\min \ x \geq t_0. \ t_1 \downarrow c'} \frac{\mathcal{E}_2}{n_0 + 1} t_1 \downarrow c'$$

Since \mathcal{E}_1 evaluates to **false**, we can construct \mathcal{E}' as follows:

$$\mathcal{E}' = \text{E-App} \frac{\text{E-Lam}}{\frac{\text{E-Lam}}{\lambda x. \ t_0' \downarrow \lambda x. \ t_0'}}{\frac{\text{E-Lam}}{\text{rec} \ f. \lambda x. \ t_0' \downarrow \lambda x. \ t_0'}}{\text{rec} \ f. \lambda x. \ t_0' \downarrow \lambda x. \ t_0'}} \quad t_0 \downarrow \overline{n_0} \quad \frac{t_1 \downarrow \text{false}}{\text{if} \ t_1 \ \text{then} \ \overline{n_0} \ \text{else} \ f(x + \overline{1}) \downarrow c''}}{t_0' [\overline{n_0}/x] \downarrow c''}$$

$$\mathcal{E}' = \text{E-App} \frac{\mathcal{E}_2'}{\text{if} \ t_1 \ \text{then} \ \overline{n_0} \ \text{else} \ f(x + \overline{1}) \downarrow c''}}{\text{Min}(x, t_1) t_0 \downarrow c''}$$

We see \mathcal{E}_2 is on the form of t and \mathcal{E}_2' is on the form of t' and by IH on \mathcal{E}_2 with \mathcal{E}_2' we get c'' = c'.

Task 4.4

Lemma 4.8 If $[] \vdash t : \tau$, then either t = c for some canonical form c, or $\exists t'$ such that $t \to t'$.

Proof. By induction on the typing derivation \mathcal{T} of $[]\vdash t:\tau$:

Case
$$\mathcal{T} = \text{T-Min} \frac{\begin{bmatrix} \mathcal{T}_0 \\ \mathcal{T}_0 \end{bmatrix} \cdot \mathbf{int} \quad [x \mapsto \mathbf{int}] \vdash t_1 : \mathbf{bool}}{\begin{bmatrix} \mathcal{T}_0 \\ \mathcal{T}_0 \end{bmatrix} \vdash \mathbf{min} \quad x > t_0, \ t_1 : \mathbf{int}}$$

Here $t = (\min x \ge t_0. \ t_1 : \text{int})$. By IH on \mathcal{T}_0 we have that either $t_0 = c_0$ or $t_0 \to t'_0$. In the latter case, the entire \min term can take a step with S-Min1. In the former case we must have $t_0 = c_0 = \overline{n_0}$, since no other canonical forms have type int, so $t = (\min x \ge \overline{n_0}. \ t_1)$, which steps to $t' = (\text{if } t_1[\overline{n_0}/x] \text{ then } \overline{n_0} \text{ else } \min x \ge \overline{n_0} + 1. \ t_1)$ by S-Min.

Lemma 4.11 If $t \to t'$ (by S) and $[] \vdash t : \tau$ (by T), then also $[] \vdash t' : \tau$ (by some T').

Proof. By induction on the derivation S.

Case
$$S = S\text{-Min1} \frac{t_0 \xrightarrow{S_0} t_0'}{\min \ x \ge t_0. \ t_1 \to \min \ x \ge t_0'. \ t_1}$$

Since $t = (\min x \ge t_0, t_1)$ the typing derivation \mathcal{T} must be:

$$\mathcal{T} = \text{T-Min} \frac{[] \vdash \overset{\mathcal{T}_0}{t_0} : \mathbf{int} \quad [x \mapsto \mathbf{int}] \vdash t_1 : \mathbf{bool}}{[] \vdash \mathbf{min} \ x \ge t_0. \ t_1 : \mathbf{int}}$$

By IH on S_0 with T_0 we get a derivation T_0' of $[] \vdash t_0' : \mathbf{int}$, and we can construct the T' as:

$$\mathcal{T}' = \text{T-Min} \frac{\begin{bmatrix} & \mathcal{T}'_0 \\ & \vdots & \text{int} & [x \mapsto \text{int}] \vdash t_1 : \text{bool} \\ & \vdots & & \end{bmatrix} \vdash \text{min } x \geq t'_0. \ t_1 : \text{int}}$$

Case
$$S = S-Min \frac{1}{\min x \geq \overline{n_0}. \ t_1 \rightarrow \text{if} \ t_1[\overline{n_0}/x] \ \text{then} \ \overline{n_0} \ \text{else min} \ x \geq \overline{n_0 + 1}. \ t_1}$$

Here $t = (\min x \ge \overline{n_0}. t_1)$ and $t' = (\text{if } t_1[\overline{n_0}/x] \text{ then } \overline{n_0} \text{ else min } x \ge \overline{n_0 + 1}. t_1)$, and the typing derivation for t must look like:

$$\mathcal{T} = \text{T-Min} \frac{\text{T-Num} \frac{\mathcal{T}_1}{\left[\right] \vdash \overline{n_0} : \mathbf{int}}{\left[\right] \vdash \overline{n_0} : \mathbf{int}} \quad [x \mapsto \mathbf{int}] \vdash t_1 : \mathbf{bool}}{\left[\right] \vdash \mathbf{min} \ x \ge \overline{n_0}. \ t_1 : \mathbf{int}}$$

We can construct \mathcal{T}' as:

$$\mathcal{T}' = \text{T-If} \frac{[x \mapsto \mathbf{int}] \vdash t_1 : \mathbf{bool} \quad \text{T-Num} \frac{\mathcal{T}'_2}{\left[\right] \vdash \overline{n_0} : \mathbf{int}} \quad [x \mapsto \mathbf{int}] \vdash \mathbf{min} \ x \geq \overline{n_0 + 1} : \mathbf{int}}{\mathbf{if} \ t_1[\overline{n_0}/x] \ \mathbf{then} \ \overline{n_0} \ \mathbf{else} \ \mathbf{min} \ x \geq \overline{n_0 + 1} . \ t_1 : \mathbf{int}}$$

since both cases of the **if** term ends in type **int**.