

Department of Electrical and Computer Engineering

UNIVERSITY OF WATERLOO

ELECTRICAL & COMPUTER ENGINEERING

ECE 499 Engineering Project

Advanced Packaging for μ LEDs using Indium **Electroplating**In Fulfillment of ECE 499 Course Requirement

Author: Kunal Chandan Project Supervisor: William Wong

ID No: 20778788 ECE 499 Course Coordinator: Mark Crowley

Abstract

Micro LEDs (μ LEDs) are an exciting, new technology that hold the potential to improve upon the capabilities of the incumbent display technologies of liquid crystal displays (LCDs) and organic light emitting diodes (OLEDs). Researchers and industry leaders deem μ LEDs capable of significant advantages in display technologies particularly with key performance metrics in contrast, colour gamut, pixel response timings, display lifetime, and power consumption. Currently there are a variety of technical challenges in fabrication to making the dream of μ LED displays a reality. During this research project I aim to assist in developing a process for packaging μ LEDdisplays onto an addressable backplane. To achieve this we use electroplated indium to create a mechanical and electrical connection between the μ LEDs and thin-film-transistor (TFT) backplane.

Acknowledgements

I would like to thank Prof. William Wong for allowing me to participate in his research lab and providing funding for the entire project, Pranav Gavirneni for being a supportive mentor through the entire research project.

Contents

1	
2	Indium Electroplating 2.1 Introduction
3	Phase 1 - Uniform Bonding 3.1 Characterization of Indium Bonding Spread 3.2 Thermal Simulations 3.3 Conformation to Theory 3.4 Development of a Repeatable Process
4	Phase 2 - Electrical Connection 4.1 Characterization of Electrical Connection 4.2 Connection Issues
5	Phase 3 - Bonding to LEDs 5.1 Bonding Issues 5.2 Lighting Issues 5.3 Conformation to Theory 5.4 Development of a Repeatable Process
6	Addendum - Driving Displays 6.1 Passive Matrix Displays
7	Appendix 7.1 Appendix A
L	st of Figures
T	st of Tables

Symbol	Definition	Unit
V	Velocity	[m/s]
ρ	Density	[kg/m ³]
Re	Reynolds Number	
$\mid g \mid$	Gravity	[m s ⁻ 2]

Table 1: Nomenclature Table

1 Introduction

LEDs are exceptionally efficient when compared to legacy lighting technologies like arc, incandescent, fluorescent lighting, and others. The advantages inherent to the technology have allowed LEDs to enter a variety of light applications like automotive, general lighting, and display backlighting and many other use-cases. [1] Conventional inorganic LEDs have MESA dimensions generally greater than $(300 \times 300) \mu m^2$, however $\mu LEDs$ target an area below $(100 \times 100) \mu m^2$ to $1 \mu m^2$ [2]

One of the earliest claims to the discoveries of the LED was by Oleg Losev in the 1920s, the work was generally ignored and the conjectured theory for the operation was incorrect, the subsequent research also focused on SiC and II-IV semiconductors. This era of research was generally impractical and did not produce sufficient light. However, with the arrival of III-V semiconductors like GaAs, GaSb, InP, and SiGe there was significant progress in luminosity although sadly this was all within the infrared spectrum. Visible LEDs would emerge as research in the area quickened, the technology was based on GaAsP epitaxy over GaAs substrates. This would bring forth the advent of commercializable LEDs that would now be seen everywhere. Eventually efficiency and luminosity would surpass that of traditional lighting solutions like filament based tungsten and bring us to where we are today with LEDs being used in nearly all lighting and display applications.

1.1 Motivation for μ LEDs as a Technology

LCDs and OLEDs currently dominate the display market, each technology comes with its trade-offs and current innovations with quantum dots and fully addressable back-lit mini-LED panels aim to address some of the shortcomings concerning contrast, colour accuracy, power consumption, brightness, lifetime, and response times.

 μ LEDs aim to address many of these concerns as well, by offering a number of advantages over traditional LCD and OLED displays. The biggest advantage μ LEDs would provide over LCDs is the power effeciency where LCDs suffer from high power loss due to the multiple diffuser and filtering layers required to compose a screen (CITE AND REWORD). A commonly cited number is that LCDs loose nearly 70-90% of the flux introduced by the backlight to the various polarizing layers that comprise the display. In contrast as μ LEDdisplays would be entirely emissive, none of the light would be lost to the conventional filtering layers. (IS THIS EVEN TRUE, IS LIGHT LOST TO PHOSPHOR LAYERS?)

1.2 Hurdles in μ LEDTechnology

IDENTIFY COMMON HURDLES IN MICRO LED TECHNOLOGY SHOW WHICH OF THESE PROBLEMS WE ARE AIMING TO FIX OR SOLVE FOR

1.3 Motivation for Indium as a Diebonding Material

EASE OF INDIUM AS AN ELECTROPLATING MATERIAL LOW MELTING POINT SOFTNESS OF MATERIAL/DUCTILITY LOW LIKELYHOOD OF SURFACE OXIDES EASE OF WETTING TO SURFACE

2 Indium Electroplating

2.1 Introduction

There are a variety of methods for indium electroplating, while I did not select the electroplating process there are a variety of methods available that are commonly used in industry. The largest differences tend to be in what comprises of the solution and the operating temperatures.

2.2 Process

The indium electroplating process is based on a now industry standard process that is known to yield good results while requiring a minimum of process optimization.

CITE THE INDIUM CORPORATION AND THE ADDITIVES IN THEIR ELECTROPLATING SOLUTION IDENTIFY BENEFITS OF EACH CHEMICAL IN THE THING? IF POSSIBLE?

WALK-THROUGH OF THE PROCESS AS OUTLINED IN MY STEPS DOCUMENT

Adapting the indium electroplating process to the E3-3139 and the resources available there, the process was as follows:

Note: Electroplating procedure used in the E3-3139 Lab

1 Purpose

Depositing Indium from an electroplating solution onto samples for die-bonding. The solution used is from Indium Corporation of America and uses their Indium Sulfamate Plating Kit to perform the Indium electroplating.

2 Equipment

Name	Quantity
Fume Hood	1
N2 Gun	1
DI Water Bottle	1
2L Beakers	2
400mL Beaker	1
200mL Beaker	1
1L HDPE Bottle	1
500mL HDPE Bottle	1
Hotplate with Magnetic Stirring	1
Magnetic Stir Bar	1
Funnel	1
Insulated Copper Wire	2
Banana Plug Wires	2
Copper Alligator Clips	2
Tweezers kit	1
Custom Sample Holder	1

Name	Quantity
Indium Sulfamate Plating Bath	1L
Indium Anode (30cm x 2.5cm x 1.5mm)	1
Sulfamic Acid	150mL
15-20% HCl	150mL
DI Water	10L
pH Paper Set or pH Meter	1
Clean Room Wipes Pack	1

3 Chemical Hazards

No new chemicals are being introduced into the lab, and the SDS of the chemicals relevant to the experiment are attached with the following SOP.

- Sulfamic Acid
- Indium Sulfamate Plating Bath

1 Safety Procedure

- Lab apron, rubber gloves, safety goggles, face-shield, and closed-toed shoes must be worn before interacting with any chemicals
- To avoid spills ready all beakers and bottles under the fume-hood over clean room wipes before opening
- Use care when opening and pouring chemicals to avoid spills during the preparation and process of the experiment
- Do not touch your face or exposed skin during the process of the experiment
- Always wash hands after handling any chemicals or materials
- Avoid inhaling the mist or vapor of the chemicals, and avoid exposure to eyes and skin
- Perform the entire experiment under a fume hood

1 Process Flow

- 1. Prepare the fume hood surface:
 - (a) Place clean room wipes on the surface of the fume hood.
 - (b) Ensure your name and contact information are visible at the work location in case people need to contact you.
 - (c) Chemicals in the beakers should be identified and all beakers should be labeled with what chemicals will be in them.
- 2. Place the digital hotplate with stirring functionality inside the fume hood.
 - (a) Do not place a wipe on the hotplate surface. This interferes with the transmission of heat to the beaker and its contents. It may also present a fire hazard. This is regardless of weather the heating element will be used.
 - (b) Do NOT turn on the heating element over the course of this experiment.
- 3. Set all four beakers (2x 2L, 1x 400mL, 1x 200mL) under the fume hood, and set one 2L beaker on the hotplate. Place the stir bar inside the beaker on the hotplate.
- 4. Build the Custom Sample Holder and place in the beaker on the hotplate at the appropriate distance for the electroplating process (5cm).
- 5. Place the indium anode into the beaker on the hotplate, ensure that there is an appropriate distance from the sample and ensure that the electrode is connected to an alligator clip. Be sure to use fresh gloves when handling the indium electrode to avoid contamination.
 - (a) Anode/cathode distance may alter grain size and uniformity of electroplating.
 - (b) It is essential that the sample is perpendicular to the normal of the anode (indium)
- 6. Ensure that all PPE is worn appropriately, and no skin is exposed.
- 7. Acquire the indium sulfamate solution, sulfamic acid, and diluted HCl solutions from the Acids cabinet and transport it to the fume hood.
 - (a) Pour the indium sulfamate solution into the beaker on the hotplate.

 Ensure that the hotplate is OFF and the beaker is at room temperature to avoid shattering glass
 - (b) Pour the sulfamic acid into the 200mL beaker
 - (c) Pour the HCl dilution into the 400mL beaker
 - (d) Pour 2L of DI water into the remaining large beaker
 - (e) Turn on stirring to 300RPM

- 8. Check the pH of the indium sulfamate solution and verify it is between 1.5 and 2. If the pH exceeds 2 titrate sulfamic acid and mix until the pH enters the range again.
 - (a) Titration of sulfamic acid into the indium sulfamate solution can be done using a pipette that is labeled and only to be used for sulfamic acid. Since the exact pH is not important titration with a pipette is sufficient and a buret is not required.
 - (b) Note that all tools used in the titration process must be rinsed with DI water and dried with N2.
- 9. Power should ideally be supplied with a pulsed constant current source and set to values in accordance with current over the plating surface area.
 - (a) Ensure that the power supply is set and ready but disconnected from the sample now.
 - (b) Measure the surface area of the sample and validate that current supplied to the sample is nominal to $10-20A/ft^2$ or $0.01-0.02A/cm^2$. For the current design this corresponds to nominal values of (0.02A, 0.1V)
 - (c) Power should be connected as NEGATIVE terminal to sample and POSITVE terminal to indium anode
 - (d) Electroplating time is a function of the current density and expected final thickness of the deposited indium.
- 10. Rinse the sample with DI water, place into HCl solution for the activation time (5min), rinse again with DI water, and place into the sulfamic acid solution for cleansing (3min).
 - (a) The sample should be attached to the custom holder
 - (b) The HCl solution is required for cleaning and acid-activation (see the guide to indium plating).
 - (c) The sulfamic acid ensures the pH of the base metallization surface remains acidic and no reformation of oxide occurs.
- 11. Place the sample into the plating bath at the appropriate distance and turn on the power supply for the target plating time.
 - See the Indium electroplating guide for more information on how this affects the grain size
- Waste disposal, storage instructions for equipment and materials, emergency procedures, and MSDS can be found in the original electroplating SOP document. They were not attached for brevity

2.3 Experimental Issues - Deviation from Theory

HERE I WANT TO IDENTIFY THE PLATING GROWTH PPER SECOND AS A FUNCTION OF THE PLATING AREA

DESIGN OF ALIGATOR CLIP WAS MESSING WITH OUR RESILTS
ACCOUNTINF FOR THE AREA OF THE ALIGATOR CLOP
DERIVING THE ARE OF THE ALGATOR CLOP BASED ON EXPECTED PLATING GROWTH RATE

2.4 Development of a Repeatable Process

TO DEVELOP A REPEATABLE PROCESS PICKING A DISTANCE AND ENSURING ALIGNEMENT SELECTING A BETTER VOLTAGE SOURCE/CURRENT SOURCE MILLIVOLT CONTROL, RESOLUTION OF 0.02mA per milli Volt

3 Phase 1 - Uniform Bonding

3.1 Characterization of Indium Bonding Spread

Once there was a repeatable electroplating process developed the second step was to understand how the indium would spread once diebonded

Insert stuff about the tresky diebonder here

Insert calculation of bonding volume Diebonding process fits here as well

3.2 Thermal Simulations

Insert figures about the thermal simulations and refer to the code that is in the appendix Discuss the lack of wetting to the LEDs. insert the sem images and the EDX images

3.3 Conformation to Theory

Conformed to theory when the bonding would spread according to the calculated volume

3.4 Development of a Repeatable Process

4 Phase 2 - Electrical Connection

4.1 Characterization of Electrical Connection

Conducting the daisychain test

4.2 Connection Issues

did not connect at first, adjusted process to not do hmds

- 4.3 Conformation to Theory
- 4.4 Development of a Repeatable Process
- 5 Phase 3 Bonding to LEDs
- 5.1 Bonding Issues
- 5.2 Lighting Issues
- **5.3** Conformation to Theory
- 5.4 Development of a Repeatable Process
- 6 Addendum Driving Displays
- 6.1 Passive Matrix Displays
- **6.2** Active Matrix Displays
- 6.3 Designs for In-House drivers

References

- [1] K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, "Micro-leds, a manufacturability perspective," *Applied Sciences*, vol. 9, no. 6, 2019, ISSN: 2076-3417. DOI: 10.3390/app9061206. [Online]. Available: https://www.mdpi.com/2076-3417/9/6/1206.
- [2] P. J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, and H. Amano, "Micro-light emitting diode: From chips to applications," *Laser & Photonics Reviews*, vol. 15, no. 5, p. 2000133, 2021.

7 Appendix

7.1 Appendix A

7.2 Appendix B - Themral Simulation Code

```
%% Define Constants
BP\_width = 6.2 * 10^-3; % m
BP\_length = 6.2 * 10^-3; % m
BP\_thickness = 500 * 10^-6; % m
LED_width = 4.5 \times 10^-3; % m
LED_length = 4.5 \times 10^{-3}; % m
LED_thickness = 500 * 10^-6; % m
% http://www.roditi.com/SingleCrystal/Sapphire/Properties.html
SAPPHIRE_THERMAL_CONDUCTIVITY = 25.12; % W / m*K
SAPPHIRE_MASS_DENSITY = 3980; % kg / m^3
SAPPHIRE_SPECIFIC_HEAT = 750; % J / kg * K
AMBIENT_TEMPERATURE = 273.15 + 22; % K
HOTPLATE_TEMPERATURE = 273.15 + 250; % K
CONVECTION_COEFFICIENT_AIR = 5; % Unitless nominal 1-5
% https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html
EMISSIVITY_COEFFICIENT_SAPPHIRE = 0.8;
%% Define 2D geometry
pderect([(-BP_width/2) (BP_width/2) (-BP_length/2) (BP_length/2)], 'BP')
pderect([(-LED_width/2) (LED_width/2) (-LED_length/2) (LED_length/2)], 'LED')
%% Export the geometry description matrix, set formula, and name-space matrix into the
   MATLAB workspace by selecting
%%%%%%% Draw > Export Geometry Description, Set Formula, Labels.
% This data lets you reconstruct the geometry in the workspace.
%% Start 3D geometry
g = decsg(gd, sf, ns);
pdegplot(g, "FaceLabels", "on")
model = createpde("thermal", "transient");
g = geometryFromEdges(model, g)
% Extrude BP
g = extrude(g, BP_thickness);
% Plot
f = figure('Name', 'Geometry');
pdegplot(g, "FaceLabels", "on")
view([45 45])
%% Extrude LED
g = extrude(g, 4, LED_thickness);
close(f)
f = figure('Name', 'Geometry');
pdegplot(g, "FaceLabels", "on")
view([45 45])
%% Assign geometry to thermal model
model.Geometry = g;
close(f)
f = figure('Name', 'Geometry');
pdegplot(g)
%% Setup Thermal model
thermalProperties (model, ...
   "ThermalConductivity", SAPPHIRE_THERMAL_CONDUCTIVITY, ...
```

```
"MassDensity", SAPPHIRE_MASS_DENSITY, ...
   "SpecificHeat", SAPPHIRE_SPECIFIC_HEAT)
model.StefanBoltzmannConstant = 5.670367e-8;
% Apply heat to the bottom 2 faces
thermalBC(model, "Face", [1 2] , "Temperature", HOTPLATE_TEMPERATURE);
thermalBC(model, "Face", 3:g.NumFaces, ...
             "ConvectionCoefficient", CONVECTION_COEFFICIENT_AIR, ...
             "AmbientTemperature", AMBIENT_TEMPERATURE, ...
             "Emissivity", EMISSIVITY_COEFFICIENT_SAPPHIRE);
thermalIC(model,AMBIENT_TEMPERATURE);
generateMesh (model);
%% Perform computation for transient thermal analysis
results = solve(model, 0:.01:0.3);
%% Plot
for i = 1:length(results.SolutionTimes)
 f = figure(i+5);
 pdeplot3D(model, "ColorMapData", results.Temperature(:,i))
 % clim([AMBIENT_TEMPERATURE HOTPLATE_TEMPERATURE])
 title({['Time = ' num2str(results.SolutionTimes(i)) 's']})
 saveas(f, [num2str(i, '%03.f') '.png']);
end
```

7.3 Appendix C

```
import unittest
class TestSum(unittest.TestCase):
  def test_sum(self):
     self.assertEqual(sum([1, 2, 3]), 6, "Should be 6")
if __name__ == '__main__':
  unittest.main()
$ python test_sum_unittest.py
______
FAIL: test_sum_tuple (__main__.TestSum)
_____
Traceback (most recent call last):
 File "test_sum_unittest.py", line 9, in test_sum_tuple
  self.assertEqual(sum((1, 2, 2)), 6, "Should be 6")
AssertionError: Should be 6
Ran 2 tests in 0.001s
FAILED (failures=1)
$ pip install nose2
$ python -m nose2
.F
```