Producto vectorial

J. A. Rodríguez-Velázquez

URV

Sean $\overrightarrow{u}=(u_1,u_2,u_3)$ y $\overrightarrow{v}=(v_1,v_2,v_3)$ dos vectores no proporcionales de \mathbb{R}^3 . Determina un vector no nulo $\overrightarrow{n}=(x,y,z)$ tal que $\overrightarrow{n}\perp\overrightarrow{u}$ y $\overrightarrow{n}\perp\overrightarrow{v}$.

Sean $\overrightarrow{u} = (u_1, u_2, u_3)$ y $\overrightarrow{v} = (v_1, v_2, v_3)$ dos vectores no proporcionales de \mathbb{R}^3 . Determina un vector no nulo $\overrightarrow{n} = (x, y, z)$ tal que $\overrightarrow{n} \perp \overrightarrow{u}$ y $\overrightarrow{n} \perp \overrightarrow{v}$.

Solución

Tenemos
$$\begin{cases} u_1 x + u_2 y = -u_3 z \\ v_1 x + v_2 y = -v_3 z. \end{cases}$$

Podemos asumir, sin perder generalidad, que $u_1v_2 - v_1u_2 \neq 0$, y por eso

$$x = \frac{\begin{vmatrix} -u_3z & u_2 \\ -v_3z & v_2 \end{vmatrix}}{\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}} = z \frac{\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}}{\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}}, \qquad y = \frac{\begin{vmatrix} u_1 & -u_3z \\ v_1 & -v_3z \end{vmatrix}}{\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}} = -z \frac{\begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}}{\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}}.$$

Por lo tanto,

$$\overrightarrow{n} = \left(\frac{u_2v_3 - v_2u_3}{u_1v_2 - v_1u_2}z, -\frac{u_1v_3 - v_1u_3}{u_1v_2 - v_1u_2}z, z\right).$$

En su lugar, podemos tomar $\overrightarrow{n} = (u_2v_3 - v_2u_3, -(u_1v_3 - v_1u_3), u_1v_2 - v_1u_2).$

Producto vectorial

Sea $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ una base ortonormal de \mathbb{R}^3 con orientación positiva. Dados dos vectores $\overrightarrow{u}=(u_1,u_2,u_3)$ y $\overrightarrow{v}=(v_1,v_2,v_3)$ expresados en la base anterior, el producto vectorial $\overrightarrow{u}\times\overrightarrow{v}$ de \overrightarrow{u} y \overrightarrow{v} se define como

$$\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{i} (u_2 v_3 - v_2 u_3) - \overrightarrow{j} (u_1 v_3 - v_1 u_3) + \overrightarrow{k} (u_1 v_2 - v_1 u_2).$$

Producto vectorial

Sea $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ una base ortonormal de \mathbb{R}^3 con orientación positiva. Dados dos vectores $\overrightarrow{u}=(u_1,u_2,u_3)$ y $\overrightarrow{v}=(v_1,v_2,v_3)$ expresados en la base anterior, el producto vectorial $\overrightarrow{u}\times\overrightarrow{v}$ de \overrightarrow{u} y \overrightarrow{v} se define como

$$\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{i} (u_2 v_3 - v_2 u_3) - \overrightarrow{j} (u_1 v_3 - v_1 u_3) + \overrightarrow{k} (u_1 v_2 - v_1 u_2).$$

El producto vectorial puede escribirse en una notación abreviada que toma la forma de un determinante:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

El producto vectorial puede escribirse en una notación abreviada que toma la forma de un determinante:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

El producto vectorial puede escribirse en una notación abreviada que toma la forma de un determinante:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

Observación

- \bullet $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$ si y solo si \overrightarrow{u} y \overrightarrow{v} son proporcionales.
- En el caso no nulo, $\overrightarrow{u} \times \overrightarrow{v}$ es perpendicular a los vectores \overrightarrow{u} y \overrightarrow{v} , y su orientación está determinada por la regla de la mano derecha.

Ejercicio (Longitud de $\overrightarrow{u} \times \overrightarrow{v}$)

Demuestra que si α es el ángulo entre $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^3$, entonces $\|\overrightarrow{u} \times \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \alpha|$.

Ejercicio (Longitud de $\overrightarrow{u} \times \overrightarrow{v}$)

Demuestra que si α es el ángulo entre $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^3$, entonces $\|\overrightarrow{u} \times \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \alpha|$.

Solución

Por definición de norma y producto escalar en \mathbb{R}^3 se deduce que

$$\|\overrightarrow{u} \times \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2.$$

Por otro lado, $\cos \alpha = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$, lo que implica que

$$\sin^2 \alpha = 1 - \cos^2 \alpha = \frac{\|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2}{\|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2}.$$

Así, $\|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 \sin^2 \alpha$. Por lo tanto, $\|\overrightarrow{u} \times \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin \alpha|$.

Ejercicio (Área del triángulo)

Demuestra que si a, b y c son tres puntos no colineales de un espacio euclidiano, entonces el área del triángulo abc está dada por

$$Area(abc) = \frac{1}{2} \|\overrightarrow{ab}\| \|\overrightarrow{ac}\| \sin \alpha,$$

donde α es el ángulo entre \overrightarrow{ab} y \overrightarrow{ac} .

Ejercicio (Área del triángulo)

Demuestra que si a, b y c son tres puntos no colineales de un espacio euclidiano, entonces el área del triángulo abc está dada por

$$Area(abc) = \frac{1}{2} \|\overrightarrow{ab}\| \|\overrightarrow{ac}\| \sin \alpha,$$

donde α es el ángulo entre \overrightarrow{ab} y \overrightarrow{ac} .

Solución

Sea c' la proyección ortogonal de c sobre el lado ab. Asumiremos, sin pérdida de generalidad, quet c' es un punto del segmento \overline{ab} . Así, si α es el ángulo entre \overline{ab} y

$$\overrightarrow{ac}$$
, entonces $\sin \alpha = \frac{\|\overrightarrow{c'c}\|}{\|\overrightarrow{ac}\|}$. De ahí que

$$\|\overrightarrow{ab}\|\|\overrightarrow{ac}\|\sin\alpha = \|\overrightarrow{ab}\|\|\overrightarrow{c'c}\| = 2Area(abc).$$

Por lo tanto, el resultado se cumple.

Ejercicio (Área del triángulo en \mathbb{R}^3)

Demuestra que sia, b y c son tres puntos no colineales de \mathbb{R}^3 , entonces el área del triángulo abc está dada por

$$Area(abc) = \frac{1}{2} \left\| \overrightarrow{ab} \times \overrightarrow{ac} \right\|.$$

Ejercicio (Área del triángulo en \mathbb{R}^3)

Demuestra que sia, b y c son tres puntos no colineales de \mathbb{R}^3 , entonces el área del triángulo abc está dada por

$$Area(abc) = \frac{1}{2} \left\| \overrightarrow{ab} \times \overrightarrow{ac} \right\|.$$

Solución

El resultado se obtiene a partir de los dos ejercicios anteriores.

Ejercicio (Área del triángulo en \mathbb{R}^3)

Demuestra que sia, b y c son tres puntos no colineales de \mathbb{R}^3 , entonces el área del triángulo abc está dada por

$$Area(abc) = \frac{1}{2} \left\| \overrightarrow{ab} \times \overrightarrow{ac} \right\|.$$

Solución

El resultado se obtiene a partir de los dos ejercicios anteriores.

Área de un paralelogramo

Obviamente, el área de un paralelogramo a,b,c,d está determinada por los vectores \overrightarrow{ab} y \overrightarrow{ad} , y está dada por $\left\|\overrightarrow{ab} \times \overrightarrow{ad}\right\|$.

Ejercicio (Distancia de un punto a una recta en \mathbb{R}^3)

Demuestra que la distancia de un punto p a una recta L de \mathbb{R}^3 está dada por $d(p,L) = \frac{\|\overrightarrow{mp} \times \overrightarrow{v}\|}{\|\overrightarrow{v}\|}$, donde m es un punto de L y \overrightarrow{v} es un vector director de L.

Ejercicio (Distancia de un punto a una recta en \mathbb{R}^3)

Demuestra que la distancia de un punto p a una recta L de \mathbb{R}^3 está dada por $d(p,L) = \frac{\|\overrightarrow{mp} \times \overrightarrow{v}\|}{\|\overrightarrow{v}\|}$, donde m es un punto de L y \overrightarrow{v} es un vector director de L.

Solución

Si $p \in L$, ya estamos. Asumiremos que $p \notin L$. Sea a la proyección ortogonal de p sobre L. Si α es el ángulo entre \overrightarrow{mp} y \overrightarrow{v} , entonces

$$\|\overrightarrow{mp} \times \overrightarrow{v}\| = \|\overrightarrow{mp}\| \|\overrightarrow{v}\| |\sin \alpha|.$$

Por otro lado,

$$\sin\alpha = \frac{\|\overrightarrow{pa}\|}{\|\overrightarrow{mp}\|}.$$

Entonces, $\|\overrightarrow{mp} \times \overrightarrow{v}\| = \|\overrightarrow{pa}\| \|\overrightarrow{v}\|$. Por lo tanto,

$$d(p,L) = \|\overrightarrow{pa}\| = \frac{\|\overrightarrow{mp} \times \overrightarrow{v}\|}{\|\overrightarrow{v}\|} \quad \Box$$

Ejercicio (Distancia de un punto a un plano)

Demuestra que la distancia de un punto p a un plano P está dada por

$$d(p,P) = |\overrightarrow{pm} \cdot \overrightarrow{v}|,$$

donde m es un punto de P y $\overrightarrow{v} \perp P$ es un vector unitario.

Ejercicio (Distancia de un punto a un plano)

Demuestra que la distancia de un punto p a un plano P está dada por

$$d(p,P) = |\overrightarrow{pm} \cdot \overrightarrow{v}|,$$

donde m es un punto de P y $\overrightarrow{v} \perp P$ es un vector unitario.

Solución

Si $p \in P$, ya estamos. Asumiremos que $p \notin P$. Sea a la proyección ortogonal de p sobre P. Si α es el ángulo entre \overrightarrow{pm} y \overrightarrow{pa} , entonces $\cos \alpha = \frac{\overrightarrow{pm} \cdot \overrightarrow{pa}}{\|\overrightarrow{pm}\| \|\overrightarrow{pa}\|}$. Por otro lado, $\cos \alpha = \frac{\|\overrightarrow{pa}\|}{\|\overrightarrow{pm}\|}$. Así, para $\overrightarrow{v} \perp P$ unitario,

$$d(p,P) = \|\overrightarrow{pa}\| = \|\overrightarrow{pm}\| \cos \alpha = \frac{\overrightarrow{pm} \cdot \overrightarrow{pa}}{\|\overrightarrow{pa}\|} = |\overrightarrow{pm} \cdot \overrightarrow{v}|.$$

Ejercicio (Distancia entre rectas no paralelas)

Sean L_1 y L_2 dos rectas no paralelas. Asumimos que L_1 está dada por un punto p y un vector director \overrightarrow{u} . Análogamente, L_2 está dada por un punto q y un vector director \overrightarrow{v} . Demuestra que la distancia entre L_1 y L_2 está dada por

$$d(L_1,L_2) = \frac{|(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{pq}|}{\|\overrightarrow{u} \times \overrightarrow{v}\|}.$$

Ejercicio (Distancia entre rectas no paralelas)

Sean L_1 y L_2 dos rectas no paralelas. Asumimos que L_1 está dada por un punto p y un vector director \overrightarrow{u} . Análogamente, L_2 está dada por un punto q y un vector director \overrightarrow{v} . Demuestra que la distancia entre L_1 y L_2 está dada por

$$d(L_1,L_2) = \frac{|(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{pq}|}{\|\overrightarrow{u} \times \overrightarrow{v}\|}.$$

Solución

Sea P el plano que contienen a L_2 y tiene la dirección de $\langle \overrightarrow{u}, \overrightarrow{v} \rangle$. Observa que la distancia entre L_1 y L_2 es igual a la distancia entre el plano P y la recta L_1 . Como $\frac{\overrightarrow{u} \times \overrightarrow{v}}{\|\overrightarrow{u} \times \overrightarrow{v}\|}$ es un vector unitario, y ortogonal a P,

$$d(L_1,L_2) = d(p,P) = \frac{|(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{pq}|}{\|\overrightarrow{u} \times \overrightarrow{v}\|}.$$

Ejercicio (Volumen de un paralelepípedo)

Demuestra que el volumen del paralelepípedo generado por \overrightarrow{u} , \overrightarrow{v} , y \overrightarrow{w} está dado por $V = |(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}|$.

Ejercicio (Volumen de un paralelepípedo)

Demuestra que el volumen del paralelepípedo generado por \overrightarrow{u} , \overrightarrow{v} , y \overrightarrow{w} está dado por $V = |(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}|$.

Solución

Considera la figura donde $\overrightarrow{u} = \overrightarrow{ab}$, $\overrightarrow{v} = \overrightarrow{ac}$, y $\overrightarrow{w} = \overrightarrow{ad}$. En este caso, el volumen es igual al área de la base por la altura.

Ejercicio (Volumen de un paralelepípedo)

Demuestra que el volumen del paralelepípedo generado por \overrightarrow{u} , \overrightarrow{v} , y \overrightarrow{w} está dado por $V = |(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}|$.

Solución

Considera la figura donde $\overrightarrow{u} = \overrightarrow{ab}$, $\overrightarrow{v} = \overrightarrow{ac}$, y $\overrightarrow{w} = \overrightarrow{ad}$. En este caso, el volumen es igual al área de la base por la altura.

El área de la base es $\|\overrightarrow{u} \times \overrightarrow{v}\|$, mientras la altura es $h = \frac{|(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}|}{\|\overrightarrow{u} \times \overrightarrow{v}\|}$, que es la fórmula de la distancia entre rectas no paralelas.

El plano en el espacio

Ecuación del plano

Sea $\mathbb P$ un plano determinado por los puntos $p=(x_0,y_0,z_0)$, $q=(x_1,y_1,z_1)$ y $r=(x_2,y_2,z_2)$, i.e.,

$$\mathbb{P} = \{ p + \lambda_1 \overrightarrow{pq} + \lambda_2 \overrightarrow{pr}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \}.$$

El plano P tiene ecuación

$$(x,y,z) = (x_0,y_0,z_0) + \lambda_1(x',y',z') + \lambda_2(x'',y'',z''), \tag{1}$$

donde

$$(x', y', z') = \overrightarrow{pq} = (x_1 - x_0, y_1 - y_0, z_1 - z_0),$$

$$(x'', y'', z'') = \overrightarrow{pr} = (x_2 - x_0, y_2 - y_0, z_2 - z_0)$$

son vectores directores de \mathbb{P} .

Ecuación general del plano

Sea $\mathbb P$ un plano determinado por los puntos $p=(x_0,y_0,z_0)$, $q=(x_1,y_1,z_1)$ y $r=(x_2,y_2,z_2)$.

Ecuación general del plano

Sea \mathbb{P} un plano determinado por los puntos $p=(x_0,y_0,z_0)$, $q=(x_1,y_1,z_1)$ y $r=(x_2,y_2,z_2)$.

Sea $H = \langle \overrightarrow{pq}, \overrightarrow{pr} \rangle$ y $H^{\perp} = \langle \overrightarrow{n} \rangle = \langle (a,b,c) \rangle$. Como para todo punto $q = (x,y,z) \in \mathbb{P}$ tenemos $\overrightarrow{pq} \perp \overrightarrow{n}$, podemos concluir que $\overrightarrow{n} \cdot \overrightarrow{pq} = 0$, y por eso la ecuación general del plano está dada por

$$ax + by + cz = d$$

donde d se obtiene al sustituir en esta ecuación las coordenadas de cualquier punto del plano.

Ecuación general del plano

Sea $\mathbb P$ un plano determinado por los puntos $p=(x_0,y_0,z_0)$, $q=(x_1,y_1,z_1)$ y $r=(x_2,y_2,z_2)$.

Sea $H=\langle \overrightarrow{pq},\overrightarrow{pr}\rangle$ y $H^{\perp}=\langle \overrightarrow{n}\rangle=\langle (a,b,c)\rangle$. Como para todo punto $q=(x,y,z)\in\mathbb{P}$ tenemos $\overrightarrow{pq}\perp\overrightarrow{n}$, podemos concluir que $\overrightarrow{n}\cdot\overrightarrow{pq}=0$, y por eso la ecuación general del plano está dada por

$$ax + by + cz = d$$

donde d se obtiene al sustituir en esta ecuación las coordenadas de cualquier punto del plano.

Observación

- Nótese que si ax + by + cz = d es la ecuación de un plano P, entonces (a,b,c) es ortogonal a los vectores directores de P.
- ullet En particular, (a,b,c) se obtiene como el producto vectorial de dos vectores directores de P.
- El vector $\overrightarrow{n} = (a,b,c)$ se conoce como vector normal al plano.

Determina la ecuación general del plano dado por los puntos (2,-1,1), (-2,1,3) y (3,2,-2).

Determina la ecuación general del plano dado por los puntos (2,-1,1), (-2,1,3) y (3,2,-2).

Solución

$$6x + 5y + 7z = 14.$$

Determina la ecuación general del plano que contiene el punto (-2,-1,5) y es ortogonal a la recta dada por los puntos (2,-1,2) y (-3,1,-2).

Determina la ecuación general del plano que contiene el punto (-2,-1,5) y es ortogonal a la recta dada por los puntos (2,-1,2) y (-3,1,-2).

Solución

$$5x - 2y + 4z = 12$$
.

Representa los planos de ecuación,

- (a) x = 3
- (b) y = x
- (c) x + y = 5
- (d) x + 2y + 3z = 6

Ejercicio (Simetría especular)

Sea \mathbb{P} un plano de ecuación ax+by+cx+d=0. demuestra que la imagen de un punto q=(x,y,z) por la simetría especular $\sigma_{\mathbb{P}}$ satisface

$$\sigma_{\mathbb{P}}(q) = \begin{pmatrix} \frac{-a^2 + b^2 + c^2}{a^2 + b^2 + c^2} & \frac{-2ab}{a^2 + b^2 + c^2} & \frac{-2ac}{a^2 + b^2 + c^2} \\ \frac{-2ab}{a^2 + b^2 + c^2} & \frac{a^2 - b^2 + c^2}{a^2 + b^2 + c^2} & \frac{-2bc}{a^2 + b^2 + c^2} \\ \frac{-2ac}{a^2 + b^2 + c^2} & \frac{-2bc}{a^2 + b^2 + c^2} & \frac{a^2 + b^2 - c^2}{a^2 + b^2 + c^2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \frac{-2ad}{a^2 + b^2 + c^2} \\ \frac{-2bd}{a^2 + b^2 + c^2} \\ \frac{-2cd}{a^2 + b^2 + c^2} \end{pmatrix}.$$

Ejercicio (Simetría especular)

Sea \mathbb{P} un plano de ecuación ax+by+cx+d=0. demuestra que la imagen de un punto q=(x,y,z) por la simetría especular $\sigma_{\mathbb{P}}$ satisface

$$\sigma_{\mathbb{P}}(q) = \begin{pmatrix} \frac{-a^2 + b^2 + c^2}{a^2 + b^2 + c^2} & \frac{-2ab}{a^2 + b^2 + c^2} & \frac{-2ac}{a^2 + b^2 + c^2} \\ \frac{-2ab}{a^2 + b^2 + c^2} & \frac{a^2 - b^2 + c^2}{a^2 + b^2 + c^2} & \frac{-2bc}{a^2 + b^2 + c^2} \\ \frac{-2ac}{a^2 + b^2 + c^2} & \frac{-2bc}{a^2 + b^2 + c^2} & \frac{a^2 + b^2 - c^2}{a^2 + b^2 + c^2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \frac{-2ad}{a^2 + b^2 + c^2} \\ \frac{-2bd}{a^2 + b^2 + c^2} \\ \frac{-2cd}{a^2 + b^2 + c^2} \end{pmatrix}.$$

Solución

Ver los detalles en los apuntes...

La recta en el espacio

La recta

Sea l una recta determinada por los puntos $p=(x_0,y_0,z_0)$ y $q=(x_1,y_1,z_1)$, i.e.,

$$l = \{p + \lambda \overrightarrow{pq}, \quad \lambda \in \mathbb{R}\}.$$

La recta

Sea l una recta determinada por los puntos $p=(x_0,y_0,z_0)$ y $q=(x_1,y_1,z_1)$, i.e.,

$$l = \{p + \lambda \overrightarrow{pq}, \quad \lambda \in \mathbb{R}\}.$$

Ecuación de la recta

La recta l tiene ecuación

$$(x,y,z) = (x_0,y_0,z_0) + \lambda(x',y',z'),$$
 (2)

donde $(x',y',z') = \overrightarrow{pq} = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$ es un vector director de l.

 $\cite{Como determinar el ángulo que forma una recta con los ejes de coordenadas?}$

Ángulos directores

Sea L una recta en \mathbb{R}^3 determinada por los puntos p_0 y p_1 . Los ángulos directores de la recta L, orientada por el vector $\overrightarrow{u} = \overrightarrow{p_0p_1}$, son los ángulos α , β y γ formados por el vector \overrightarrow{u} y los vectores de la base canónica de \mathbb{R}^3 .

Ángulos directores

Sea L una recta en \mathbb{R}^3 determinada por los puntos p_0 y p_1 . Los ángulos directores de la recta L, orientada por el vector $\overrightarrow{u} = \overrightarrow{p_0p_1}$, son los ángulos α , β y γ formados por el vector \overrightarrow{u} y los vectores de la base canónica de \mathbb{R}^3 .

Cosenos directores

Los cosenos directores de la recta L, orientada por el vector \overrightarrow{u} , son $\cos \alpha$, $\cos \beta$ y $\cos \gamma$.

Ángulos directores

Sea L una recta en \mathbb{R}^3 determinada por los puntos p_0 y p_1 . Los ángulos directores de la recta L, orientada por el vector $\overrightarrow{u} = \overrightarrow{p_0p_1}$, son los ángulos α , β y γ formados por el vector \overrightarrow{u} y los vectores de la base canónica de \mathbb{R}^3 .

Cosenos directores

Los cosenos directores de la recta L, orientada por el vector \overrightarrow{u} , son $\cos \alpha$, $\cos \beta$ y $\cos \gamma$.

Observación

Si damos a L la orientación de $-\overrightarrow{u}$, entonces los cosenos directores son $-\cos\alpha$, $-\cos\beta$ y $-\cos\gamma$.

Prueba que si una recta L pasa por los puntos $p_0=(x_0,y_0,z_0)$ y $p_1=(x_1,y_1,z_1)$, y está orientada por el vector $\overrightarrow{u}=\overrightarrow{p_0p_1}$, los cosenos directores están dados por

$$\cos\alpha = \frac{x_1-x_0}{d}, \ \cos\beta = \frac{y_1-y_0}{d} \ \ \text{y} \ \ \cos\gamma = \frac{z_1-z_0}{d},$$

donde
$$d = \|\overline{p_0p_1}\| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$$
.

Solución

A partir de los triángulos rectángulos mostrados en la figura, donde el vector $\overrightarrow{p_0p_1}$ aparece en rojo, se deduce el resultado aplicando la definición de coseno de un ángulo como razón trigonométrica.

Corolario

Si α , β y γ son los ángulos directores de una recta, entonces

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$$

Determina los cosenos directores de una recta sabiendo que dos de sus ángulos directores son $\alpha=\frac{\pi}{3}$ y $\beta=\frac{\pi}{6}$.

Determina los cosenos directores de una recta sabiendo que dos de sus ángulos directores son $\alpha=\frac{\pi}{3}$ y $\beta=\frac{\pi}{6}.$

Solución

$$\frac{1}{2}$$
, $\frac{\sqrt{3}}{2}$ y 0.

Ángulo entre dos rectas

El ángulo entre dos rectas orientadas L_1 y L_2 es el ángulo entre los subespacios vectoriales L_1' y L_2' que definen su dirección y orientación.

Sean L_1 y L_2 dos rectas orientadas en \mathbb{R}^3 . Sean $\cos \alpha_i$, $\cos \beta_i$ y $\cos \gamma_i$ los cosenos directores de L_i para $i \in \{1,2\}$, y sea θ el ángulo entre L_1 y L_2 . Demuestra que

$$\cos\theta = \cos\alpha_1\cos\alpha_2 + \cos\beta_1\cos\beta_2 + \cos\gamma_1\cos\gamma_2.$$

Sean L_1 y L_2 dos rectas orientadas en \mathbb{R}^3 . Sean $\cos \alpha_i$, $\cos \beta_i$ y $\cos \gamma_i$ los cosenos directores de L_i para $i \in \{1,2\}$, y sea θ el ángulo entre L_1 y L_2 . Demuestra que

$$\cos\theta = \cos\alpha_1\cos\alpha_2 + \cos\beta_1\cos\beta_2 + \cos\gamma_1\cos\gamma_2.$$

Solución

- Se $\overrightarrow{u}_i = (x_i, y_i, z_i)$ un vector que determina la dirección y la orientación de L_i para i = 1, 2.
- Sabemos que $\cos \theta = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\|\overrightarrow{u_1}\| \|\overrightarrow{u_2}\|}.$
- Por último, el resultado se deduce ya que

Sea r la recta que pasa por el origen en la dirección de $\overrightarrow{u} = (1,1,1)$. Sea $R_{(r,\overrightarrow{u},\alpha)}$ una rotación de ángulo α y eje r orientado por el vector \overrightarrow{u} .

- (a) Si q=(x,y,z), determina un fórmula para $R_{(r,\overrightarrow{u},\alpha)}(q)$.
- (b) Determina $R_{(r,\overrightarrow{u},\alpha)}(q)$ para q=(0,3,0) y $\alpha=\frac{2\pi}{3}$.

Solución (a)

A partir de $\overrightarrow{u}=(1,1,1)$ y $\overrightarrow{u}^{\perp}=\langle (1,1,-2),(-1,1,0)\rangle$ formamos la base ortonormal

$$B = (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3) = \left(\left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{3} \right), \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right), \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right) \right).$$

La matriz de cambio de base de B a la canónica es

Solución (a)

A partir de $\overrightarrow{u}=(1,1,1)$ y $\overrightarrow{u}^{\perp}=\langle (1,1,-2),(-1,1,0)\rangle$ formamos la base ortonormal

$$B = (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3) = \left(\left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{3} \right), \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right), \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right) \right).$$

La matriz de cambio de base de B a la canónica es

$$M_{B\to C} = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}.$$

Solución (a)

A partir de $\overrightarrow{u}=(1,1,1)$ y $\overrightarrow{u}^{\perp}=\langle (1,1,-2),(-1,1,0)\rangle$ formamos la base ortonormal

$$B=(\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3)=\left(\left(\frac{\sqrt{6}}{6},\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{3}\right),\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right),\left(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right)\right).$$

La matriz de cambio de base de B a la canónica es

$$M_{B\to C} = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}.$$

Como $\det(M_{C \to B}) = \frac{1}{\det(M_{B \to C})} > 0$, la base B preserva la orientación del espacio. Por tanto,

$$R_{(r,\overrightarrow{u},\alpha)}(x,y,z) = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{6}}{6}x + \frac{\sqrt{6}}{6}y - \frac{\sqrt{6}}{3}z \\ -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \\ \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}y + \frac{\sqrt{3}}{3}z \end{pmatrix}.$$

Solución (b)

En particular, si $\alpha = \frac{2\pi}{3}$, entonces

$$\begin{split} R_{(r,\overrightarrow{u},\alpha)}(0,3,0) &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{6}}{2} \\ \frac{3\sqrt{2}}{2} \\ \sqrt{3} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\sqrt{6} \\ 0 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}. \end{split}$$

Por lo tanto, $R_{(r,\overrightarrow{u},\frac{2\pi}{3})}(0,3,0)=(0,0,3).$

Solución (b)

En particular, si $\alpha = \frac{2\pi}{3}$, entonces

$$\begin{split} R_{(r,\overrightarrow{u},\alpha)}(0,3,0) &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{6}}{2} \\ \frac{3\sqrt{2}}{2} \\ \sqrt{3} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\sqrt{6} \\ 0 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}. \end{split}$$

Por lo tanto, $R_{(r,\overrightarrow{u},\frac{2\pi}{3})}(0,3,0)=(0,0,3).$

Solución (b)

En particular, si $\alpha = \frac{2\pi}{3}$, entonces

$$\begin{split} R_{(r,\overrightarrow{u},\alpha)}(0,3,0) &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{6}}{2} \\ \frac{3\sqrt{2}}{2} \\ \sqrt{3} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} -\sqrt{6} \\ 0 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}. \end{split}$$

Por lo tanto, $R_{(r, \frac{1}{u'}, \frac{2\pi}{2})}(0,3,0) = (0,0,3).$

Observación: si el eje r de rotación se orienta por el vector $-\overrightarrow{u}$, entonces tenemos que tomar la base $B'=(\overrightarrow{v}_2,\overrightarrow{v}_1,-\overrightarrow{v}_3)$ y en tal caso se obtiene $R_{(r,-\overrightarrow{u},\frac{2\pi}{3})}(0,3,0)=(3,0,0)$.

