

目录

图谱简介

图谱实践

命名实体抽取 属性抽取

图谱进阶

小结

1、图谱简介

发展脉络

开源项目

知识图谱

技术体系

商用案例

Q Palantir

1.1、发展脉络——超文本与WEB

1969年

ARPANET

1973、1974年

TCP/IP

Internet

1989年

WWW, 万维网

1.1、发展脉络——从链接文档,到链接数据

链接文档

是一个概念 也是一个词典的名字

链接数据

也是一个词典的名字

语义网络

Semantic Network

优点:1、容易理解和展示。2、相关概念 容易聚类。

缺点:1、节点和边的值没有标准2、多源数据融合比较困难,3、无法区分概念节点和对象节点

语义网

Semantic Web

RDF, RDFS, OWL

SP0与RDF

Internation Resource Identifiers

Blank nodes

literals

"A knowledge graph consists of a set of interconnected typed entities and their attributes."

知识图谱

是由一些相互连接的实体和他们的属性构成的。

是由一条条知识组成,每条知识表示为一个 SPO 三元组

SP0三元组

知识图谱的核心

(实体,关系,实体)

(实体,属性,字面量)

聪明的AI

感知,识别,判断

有学识的AI

思考,推理,语言

1.2、技术体系

1.3、开源项目

1.4、商业案例

Q Palantir

关系

▶ 成立于2004年,总部设在加州帕罗奥 多。"Palantir"就是《指环王》里那个能看到 一切、穿越时空的水晶球。

1.4、商业案例一

淘宝商品图谱

- ▶ 其包含了四个核心节点:商品、产品、品牌、条码。围绕着这四个节点进行扩展,最终形成知识图谱中实体的关系结构。
- ▶ 在线图数据库提供在线服务, 毫秒级查询,
- ▶ 在线关系数据库,解决在图数据库中跨多个本体,长路径的查询响应慢的问题。
- ▶ 搜索引擎,支持模糊匹配,节点倒排索引。
- ▶ 缓存,数据模型(算法包)和数据分析。
- > 离线关系数据库,存储全量数据。

1.4、商业案例——医疗图谱

深度智耀

- > 药物研发知识图谱
- ▶ 整合数百个开放数据源,PB级的大数据,通过机器学习技术,结合医药研发专家知识,自动提取医药实体、关系和属性,构建医药研发知识图谱

2.0、Schema设计

设计知识图谱的结构,要构建哪些类别的实体,实体有什么属性,实体间有什么关系,关系有什么属性

类 型	名称	举例	属性
0	不合法	非具体实体 "文化", "条 件"	无
1	人物	"袁隆平" "周恩来"	生日,性别
2	机构	"农业部" "华东师范大学"	名称,联系方 式
3	气候	"夏天" "温带季风气候"	描述
4	动植物 产品	"奶酪" "牛奶" "面粉"	上下级关系

2.1、获取数据

目标数据 => 目标网页 => 爬取

互动百科

2.2、实体分类

实体特征构造

2.3、数据存储

关系型数据库

优点:成熟,支持分布式

缺点: 跨表繁琐

Titan--JanusGraph

优点:分布式

缺点: 部署繁琐

操作繁琐

Neo4j

优点: 性能强大, 开源, 易用性好

缺点:分布式支持一般

企业自研

优点:团队维护

功能响应快

缺点:成本,通用

2. 4、图谱应用—KBQA

小结

1. 图谱简介

- 发展脉络
- 技术体系
- 应用领域

2. 图谱实践

- schema设计
- 生成数据
- 数据存储
- 问答应用

