$12a_{0251} \ (K12a_{0251})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{79} - u^{78} + \dots + 4u^3 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 79 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{79} - u^{78} + \dots + 4u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} + 3u^{10} + 5u^{8} + 4u^{6} + 2u^{4} + u^{2} + 1 \\ -u^{14} - 2u^{12} - 3u^{10} - 2u^{8} - 2u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + 3u^{10} + 5u^{8} + 4u^{6} + 2u^{4} + u^{2} + 1 \\ -u^{14} - 2u^{12} - 3u^{10} - 2u^{8} - 2u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{17} - 4u^{15} - 9u^{13} - 12u^{11} - 11u^{9} - 8u^{7} - 6u^{5} - 4u^{3} - u \\ u^{19} + 3u^{17} + 6u^{15} + 7u^{13} + 7u^{11} + 7u^{9} + 6u^{7} + 4u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{35} - 8u^{33} + \dots - 8u^{5} - u^{3} \\ u^{37} + 7u^{35} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{22} + 4u^{20} + 9u^{18} + 12u^{16} + 10u^{14} + 6u^{12} + 3u^{10} + 2u^{8} - u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{63} - 14u^{61} + \dots - 8u^{3} - 2u \\ -u^{63} - 13u^{61} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{78} + 4u^{77} + \cdots 8u^2 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{79} + 35u^{78} + \dots + 8u^2 - 1$
c_2, c_6	$u^{79} - u^{78} + \dots + 4u^3 + 1$
c_3	$u^{79} + u^{78} + \dots + 9u + 2$
c_4, c_{10}	$u^{79} - u^{78} + \dots - 2u^4 + 1$
c_5, c_{11}	$u^{79} - 3u^{78} + \dots - 445u + 88$
c_7, c_8, c_{12}	$u^{79} - 5u^{78} + \dots - 24u + 1$
c_9	$u^{79} + 41u^{78} + \dots - 4u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{79} + 19y^{78} + \dots + 16y - 1$
c_2, c_6	$y^{79} + 35y^{78} + \dots + 8y^2 - 1$
c_3	$y^{79} + 3y^{78} + \dots - 139y - 4$
c_4,c_{10}	$y^{79} - 41y^{78} + \dots + 4y^2 - 1$
c_5,c_{11}	$y^{79} + 51y^{78} + \dots + 140825y - 7744$
c_7, c_8, c_{12}	$y^{79} + 79y^{78} + \dots + 72y - 1$
<i>c</i> ₉	$y^{79} - 5y^{78} + \dots + 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.518439 + 0.839977I	-2.47695 + 1.61220I	0
u = -0.518439 - 0.839977I	-2.47695 - 1.61220I	0
u = -0.250874 + 0.935800I	-2.18929 + 0.78848I	-9.38930 - 3.30417I
u = -0.250874 - 0.935800I	-2.18929 - 0.78848I	-9.38930 + 3.30417I
u = 0.472540 + 0.928709I	-0.19704 + 2.19503I	0
u = 0.472540 - 0.928709I	-0.19704 - 2.19503I	0
u = -0.777679 + 0.521809I	3.79637 - 7.20850I	-1.29301 + 5.78914I
u = -0.777679 - 0.521809I	3.79637 + 7.20850I	-1.29301 - 5.78914I
u = 0.790583 + 0.491775I	8.97318 + 0.79076I	3.03187 - 3.00040I
u = 0.790583 - 0.491775I	8.97318 - 0.79076I	3.03187 + 3.00040I
u = 0.776695 + 0.512527I	6.49253 + 2.31855I	1.93099 - 2.22263I
u = 0.776695 - 0.512527I	6.49253 - 2.31855I	1.93099 + 2.22263I
u = -0.794225 + 0.480848I	8.91071 + 3.99166I	2.81554 - 3.57592I
u = -0.794225 - 0.480848I	8.91071 - 3.99166I	2.81554 + 3.57592I
u = 0.799974 + 0.452152I	3.40222 - 10.36420I	-1.86089 + 6.02560I
u = 0.799974 - 0.452152I	3.40222 + 10.36420I	-1.86089 - 6.02560I
u = -0.795010 + 0.457768I	6.18261 + 5.44195I	1.37667 - 2.61754I
u = -0.795010 - 0.457768I	6.18261 - 5.44195I	1.37667 + 2.61754I
u = -0.539580 + 0.740555I	-2.19284 - 5.95136I	-3.06972 + 7.35183I
u = -0.539580 - 0.740555I	-2.19284 + 5.95136I	-3.06972 - 7.35183I
u = 0.078728 + 1.082670I	-3.31194 - 0.08407I	0
u = 0.078728 - 1.082670I	-3.31194 + 0.08407I	0
u = -0.758214 + 0.509308I	2.23994 + 0.99895I	-3.29257 - 0.53289I
u = -0.758214 - 0.509308I	2.23994 - 0.99895I	-3.29257 + 0.53289I
u = 0.782931 + 0.451118I	1.90919 - 1.95514I	-3.75115 + 0.I
u = 0.782931 - 0.451118I	1.90919 + 1.95514I	-3.75115 + 0.I
u = -0.057574 + 1.102150I	0.80009 + 3.56647I	0
u = -0.057574 - 1.102150I	0.80009 - 3.56647I	0
u = -0.011598 + 1.103820I	3.36202 + 2.32895I	0
u = -0.011598 - 1.103820I	3.36202 - 2.32895I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.330330 + 1.053940I	-4.29872 - 0.60827I	0
u = -0.330330 - 1.053940I	-4.29872 + 0.60827I	0
u = 0.315571 + 1.069460I	-7.52343 - 3.77517I	0
u = 0.315571 - 1.069460I	-7.52343 + 3.77517I	0
u = 0.066591 + 1.113330I	-1.99034 - 8.40432I	0
u = 0.066591 - 1.113330I	-1.99034 + 8.40432I	0
u = 0.518854 + 0.988102I	0.41468 + 2.88353I	0
u = 0.518854 - 0.988102I	0.41468 - 2.88353I	0
u = -0.430212 + 1.031220I	-3.49022 - 3.24568I	0
u = -0.430212 - 1.031220I	-3.49022 + 3.24568I	0
u = 0.345422 + 1.071560I	-7.79780 + 4.70521I	0
u = 0.345422 - 1.071560I	-7.79780 - 4.70521I	0
u = 0.472065 + 0.706972I	0.43948 + 1.74919I	0.70667 - 4.05874I
u = 0.472065 - 0.706972I	0.43948 - 1.74919I	0.70667 + 4.05874I
u = -0.530932 + 1.032320I	-0.41303 - 6.78330I	0
u = -0.530932 - 1.032320I	-0.41303 + 6.78330I	0
u = -0.498801 + 1.079610I	-3.17706 - 6.37439I	0
u = -0.498801 - 1.079610I	-3.17706 + 6.37439I	0
u = 0.484264 + 1.086440I	-6.87950 + 2.43282I	0
u = 0.484264 - 1.086440I	-6.87950 - 2.43282I	0
u = 0.503668 + 1.090740I	-6.28401 + 10.93530I	0
u = 0.503668 - 1.090740I	-6.28401 - 10.93530I	0
u = -0.615780 + 1.056650I	0.60926 - 6.20761I	0
u = -0.615780 - 1.056650I	0.60926 + 6.20761I	0
u = -0.631557 + 1.055390I	2.20395 + 1.89316I	0
u = -0.631557 - 1.055390I	2.20395 - 1.89316I	0
u = 0.627875 + 1.060360I	4.85794 + 2.98135I	0
u = 0.627875 - 1.060360I	4.85794 - 2.98135I	0
u = 0.628251 + 1.075530I	7.22967 + 4.54653I	0
u = 0.628251 - 1.075530I	7.22967 - 4.54653I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.626429 + 1.081980I	7.11532 - 9.33149I	0
u = -0.626429 - 1.081980I	7.11532 + 9.33149I	0
u = 0.612337 + 1.091520I	0.00350 + 7.21255I	0
u = 0.612337 - 1.091520I	0.00350 - 7.21255I	0
u = 0.516957 + 0.538342I	1.69269 + 1.37789I	2.70355 - 4.03268I
u = 0.516957 - 0.538342I	1.69269 - 1.37789I	2.70355 + 4.03268I
u = -0.619167 + 1.092530I	4.28876 - 10.75590I	0
u = -0.619167 - 1.092530I	4.28876 + 10.75590I	0
u = 0.619393 + 1.096430I	1.4791 + 15.6911I	0
u = 0.619393 - 1.096430I	1.4791 - 15.6911I	0
u = -0.560028 + 0.413582I	1.30119 + 2.38830I	0.66864 - 5.36145I
u = -0.560028 - 0.413582I	1.30119 - 2.38830I	0.66864 + 5.36145I
u = 0.624420 + 0.239874I	-3.92703 - 6.58068I	-5.74395 + 6.54636I
u = 0.624420 - 0.239874I	-3.92703 + 6.58068I	-5.74395 - 6.54636I
u = -0.582840 + 0.243162I	-0.90156 + 2.12687I	-2.58208 - 3.56451I
u = -0.582840 - 0.243162I	-0.90156 - 2.12687I	-2.58208 + 3.56451I
u = 0.590316 + 0.185482I	-4.44704 + 1.71932I	-7.28622 - 0.52322I
u = 0.590316 - 0.185482I	-4.44704 - 1.71932I	-7.28622 + 0.52322I
u = -0.396331	-1.15940	-8.74740

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{79} + 35u^{78} + \dots + 8u^2 - 1$
c_2, c_6	$u^{79} - u^{78} + \dots + 4u^3 + 1$
c_3	$u^{79} + u^{78} + \dots + 9u + 2$
c_4,c_{10}	$u^{79} - u^{78} + \dots - 2u^4 + 1$
c_5,c_{11}	$u^{79} - 3u^{78} + \dots - 445u + 88$
c_7, c_8, c_{12}	$u^{79} - 5u^{78} + \dots - 24u + 1$
<i>c</i> ₉	$u^{79} + 41u^{78} + \dots - 4u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{79} + 19y^{78} + \dots + 16y - 1$
c_2, c_6	$y^{79} + 35y^{78} + \dots + 8y^2 - 1$
c_3	$y^{79} + 3y^{78} + \dots - 139y - 4$
c_4, c_{10}	$y^{79} - 41y^{78} + \dots + 4y^2 - 1$
c_5, c_{11}	$y^{79} + 51y^{78} + \dots + 140825y - 7744$
c_7, c_8, c_{12}	$y^{79} + 79y^{78} + \dots + 72y - 1$
<i>c</i> ₉	$y^{79} - 5y^{78} + \dots + 8y - 1$