

Week 8 Workshop – Query Processing and Optimisation

Housekeeping

- Assignment 2 (Database Theory) for both COMP2400/6240 students:
 - The submission deadline is 23:59, Oct 12, 2021.
 - This assignment must be done individually (no group work). Please join the special drop-in sessions if you need any clarifications.

Housekeeping

- Assignment 2 (Database Theory) for both COMP2400/6240 students:
 - The submission deadline is 23:59, Oct 12, 2021.
 - This assignment must be done individually (no group work). Please join the special drop-in sessions if you need any clarifications.
- 2 All the labs on Oct 4 (Monday, public holiday) in Week 9 will be moved to the same timeslots on Oct 11 (Monday) in Week 10.

Housekeeping

- Assignment 2 (Database Theory) for both COMP2400/6240 students:
 - The submission deadline is 23:59, Oct 12, 2021.
 - This assignment must be done individually (no group work). Please join the special drop-in sessions if you need any clarifications.
- All the labs on Oct 4 (Monday, public holiday) in Week 9 will be moved to the same timeslots on Oct 11 (Monday) in Week 10.
- Lab 8 is optional (no associated with any assessment items)
 - We will open a separate sign-up page on Wattle at 12pm Oct 6.
 - All the optional labs will be scheduled from Oct 12 to Oct 15.
 - Three options are available
 - (1) Database Programming with Java
 - (2) Database Programming with Python
 - (3) Database Exercises on IMDB

Query Processing – Example

From SQL to RA Expressions

```
Students(matNr, firstName, lastName, email)
Exams(matNr, crsNr, result, semester)
Courses(crsNr, title, unit)

SELECT lastName, result, title
FROM STUDENTS, EXAMS, COURSES
WHERE STUDENTS.matNr=EXAMS.matNr AND
EXAMS.crsNr=COURSES.crsNr AND result≤1.3;
```


From SQL to RA Expressions

```
Students(matNr, firstName, lastName, email)
Exams(matNr, crsNr, result, semester)
Courses(crsNr, title, unit)

SELECT lastName, result, title
FROM STUDENTS, Exams, Courses
WHERE STUDENTS.matNr=Exams.matNr AND
Exams.crsNr=Courses.crsNr AND result≤1.3;
```

RA Expressions:

- 2 $\pi_{lastName,result,title}(\sigma_{result} \leq 1.3(\sigma_{EXAMS.crsNr=Courses.crsNr}(\sigma_{Students.matNr=Exams.matNr}(Students \times Exams \times Courses))))$
- ③ $\pi_{lastName,result,title}$ ((Students ⋈_{Students.matNr=Exams.matNr} ($\sigma_{result \leq 1.3}$ (Exams))) ⋈_{Exams.crsNr=Courses.crsNr} Courses)
- 4 ...

From RA Expressions to Query Trees

- Each RA expression can be represented as a query tree:
 - leaf nodes represent the input relations;
 - internal nodes represent the intermediate result;
 - the root node represents the resulting relation.
- Example:

```
\pi_{lastName,result,title}(\sigma_{result} \leq 1.3 ((\text{Students} \bowtie_{\text{Students}.matNr} = \text{Exams}.matNr} \text{ Exams}) \\ \bowtie_{\text{Exams}.crsNr} = courses.crsNr} \text{ Courses}))
```


Query Tree Example

- For each query tree, computation proceeds **bottom-up**:
 - child nodes must be executed before their parent nodes;
 - but there can exist multiple methods of executing sibling nodes.

Example:

```
\pi_{lastName,result,title}(\sigma_{result \le 1.3}(\sigma_{\tt Exams.crsNr=Courses.crsNr}(\sigma_{\tt Students.matNr=Exams.matNr}(Students \times Exams \times Courses))))
```


Equivalent Query Trees (Query Optimisation)

Execution Plan (Slide 8-27 will not be assessed in our course)

- A query execution plan consists of an (extended) query tree with additional annotation at each node indicating:
 - (1) the access method to use for each table, and
 - (2) the implementation method for each RA operator.

- Materialized: The intermediate result of an operator may be saved in a temporary table for processing by the next operator.
- Pipelined: the intermediate result of an operator is directly sent to another operator without creating a temporary table (also called on-the-fly).

Note: Pipelined evaluation may have significant saving on I/O cost, while materialized evaluation can avoid repeated computations.

Question: Which execution plan is "optimal" in terms of processing efficiency?

- Question: Which execution plan is "optimal" in terms of processing efficiency?
- This is determined by the query optimiser using a variety of algorithms (Fact: there is no true optimal solution in general!).
- Realistically, we cannot expect to always find the best plan, but we expect to consistently find a plan that is good.

- Question: Which execution plan is "optimal" in terms of processing efficiency?
- This is determined by the query optimiser using a variety of algorithms (Fact: there is no true optimal solution in general!).
- Realistically, we cannot expect to always find the best plan, but we expect to consistently find a plan that is good.
- The performance of different execution plans for the same query may differ considerably (e.g., seconds vs. hours vs. days):
 - different but equivalent RA expressions;
 - different algorithms for each RA operator.

Basic ideas of algorithms used for RA operators

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.
 - Projection retrieves a subset of attributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.
 - Projection retrieves a subset of attributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)
 - Join: We may use nested loops join, or sort-merge join, hash joins, block nested loops join, etc.

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.
 - Projection retrieves a subset of attributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)
 - Join: We may use nested loops join, or sort-merge join, hash joins, block nested loops join, etc.
 - Group by and order by are typically implemented using sorting.

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.
 - Projection retrieves a subset of attributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)
 - Join: We may use nested loops join, or sort-merge join, hash joins, block nested loops join, etc.
 - Group by and order by are typically implemented using sorting.
 - Aggregation operators use temporary counters in main memory when retrieving tuples.

- Basic ideas of algorithms used for RA operators
 - Selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.
 - Projection retrieves a subset of attributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)
 - Join: We may use nested loops join, or sort-merge join, hash joins, block nested loops join, etc.
 - Group by and order by are typically implemented using sorting.
 - Aggregation operators use temporary counters in main memory when retrieving tuples.
 - Set operators can use the same approach as projection to eliminate duplicates.

Estimating Query Costs - Example

Which movies got a non-US award for one of its actors playing an 'agent'?

Estimating Query Costs - Example

Which movies got a non-US award for one of its actors playing an 'agent'?

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{role\_description}='\textit{agent'}}(\mathsf{ROLE}\bowtie\mathsf{ACTOR\_AWARD}\bowtie(\mathsf{AWARD}))))
```


Estimating Query Costs - Example

Which movies got a non-US award for one of its actors playing an 'agent'?

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{role\_description}='\textit{agent'}}(\mathsf{ROLE}\bowtie\mathsf{ACTOR\_AWARD}\bowtie(\mathsf{AWARD}))))
```


Size of Relations

- How to determine the size of a relation r over $R(A_1, \ldots, A_k)$?
 - Let n denote the average number of tuples in r, and ℓ_j the the average space (e.g., in bits) for attribute A_j .

	R				
	A ₁	A ₂		A_k	
1					
n					
	ℓ_1	ℓ_2		ℓ_{k}	

Size of Relations

- How to determine the size of a relation r over $R(A_1, ..., A_k)$?
 - Let n denote the average number of tuples in r, and ℓ_j the the average space (e.g., in bits) for attribute A_i .

	R				
	A ₁	A ₂		A_k	
1					
n					
	ℓ_1	ℓ_2		ℓ_k	

- Then, $n \cdot \sum_{i=1}^{k} \ell_i$ is the size of the relation r.
- We use this formula to assign sizes to leaf nodes in the query tree.

• AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))

- AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))
 - Estimate the average number of tuples as 15.

AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))

- Estimate the average number of tuples as 15.
- Estimate the average space for attributes:

- AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))
 - Estimate the average number of tuples as 15.
 - Estimate the average space for attributes:
 - Award_name: $8 \cdot 20 = 160$ bits (the mean length is 20);
 - Institution: $8 \cdot 30 = 240$ bits (the mean length is 30);
 - Award_country: $8 \cdot 10 = 80$ bits (the mean length is 10).

- AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))
 - Estimate the average number of tuples as 15.
 - Estimate the average space for attributes:
 - Award_name: $8 \cdot 20 = 160$ bits (the mean length is 20);
 - Institution: $8 \cdot 30 = 240$ bits (the mean length is 30);
 - Award_country: $8 \cdot 10 = 80$ bits (the mean length is 10).
- The average size of a tuple is 160 + 80 + 240 = 480 bits.

- AWARD(Award_name:varchar(30),Institution:varchar(50),Award_country: varchar(20))
 - Estimate the average number of tuples as 15.
 - Estimate the average space for attributes:
 - Award_name: $8 \cdot 20 = 160$ bits (the mean length is 20);
 - Institution: $8 \cdot 30 = 240$ bits (the mean length is 30);
 - Award_country: $8 \cdot 10 = 80$ bits (the mean length is 10).
- The average size of a tuple is 160 + 80 + 240 = 480 bits.
- The average size of a relation is estimated to be $15 \cdot 480 = 7,200$ bits.

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Credits:varchar(40))

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),
 Role_description:varchar(100), Credits:varchar(40))

Estimate the average number of tuples as 500.

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Credits:varchar(40))

- Estimate the average number of tuples as 500.
- Estimate the average space for attributes:

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Credits:varchar(40))

- Estimate the average number of tuples as 500.
- Estimate the average space for attributes:
 - Id: $8 \cdot 8 = 64$ bits (as the domain is char(8));
 - Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
 - Production_year: 13 bits (as the domain is number(4));
 - Role_description: 8 · 50 = 400 bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Credits:varchar(40))

- Estimate the average number of tuples as 500.
- Estimate the average space for attributes:
 - Id: $8 \cdot 8 = 64$ bits (as the domain is char(8));
 - Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
 - Production_year: 13 bits (as the domain is number(4));
 - Role_description: $8 \cdot 50 = 400$ bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).
- The average size of a tuple is 64 + 200 + 13 + 400 + 160 = 837 bits

ROLE(Id:char(8), Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Credits:varchar(40))

- Estimate the average number of tuples as 500.
- Estimate the average space for attributes:
 - Id: $8 \cdot 8 = 64$ bits (as the domain is char(8));
 - Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
 - Production_year: 13 bits (as the domain is number(4));
 - Role_description: 8 · 50 = 400 bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).
- The average size of a tuple is 64 + 200 + 13 + 400 + 160 = 837 bits
- The average size of a relation is to be $500 \cdot 837 = 418,500$ bits

ACTOR_AWARD(Title:varchar(40), Production_year:number(4),

Role_description:varchar(100),Award_name:varchar(30),

Year_of_award:number(4), Category:varchar(100), Result:varchar(20))

- Estimate the average number of tuples as 40
- Estimate the average space for attributes:
 - Title: 200 bits (as before);
 - Production_year: 13 bits (as before);
 - Role_description: 400 bits (as before);
 - Award_name: 160 bits (as before);
 - Year_of_award: 13 bits (as the domain is number(4));
 - Category: $8 \cdot 40 = 320$ bits (the mean length is 40);
 - Result: $8 \cdot 7 = 56$ bits (the mean length is 7).
- The average size of a tuple is 200 + 13 + 400 + 160 + 13 + 320 + 56 = 1,162 bits.
- The average size of a relation is $40 \cdot 1162 = 46,480$ bits.

Estimating Query Costs - Example (Query Tree)

Size of Selection Node

- Selection σ_{φ} is linear in the number *n* of tuples of the involved relation:
 - Scan the relation one tuple after another (if there is no index);
 - Check for each tuple, whether the condition φ is satisfied or not;
 - Keep exactly those tuples satisfying φ .

Size of Selection Node

- Selection σ_{ω} is linear in the number *n* of tuples of the involved relation:
 - Scan the relation one tuple after another (if there is no index);
 - Check for each tuple, whether the condition φ is satisfied or not;
 - Keep exactly those tuples satisfying φ .
- Let s be the size of its single relevant node.
- The size of a selection node σ_{φ} is

$$a_{\varphi}\cdot s$$
 ,

where a_{φ} is the average percentage of tuples satisfying φ .

Estimating Query Costs - Example (Selection)

• For selection $\sigma_{\text{award_country="USA"}}$ assume $a_{\varphi}=0.4$ (i.e., 40% of the movie awards from the USA). Hence, we have: $a_{\varphi} \cdot s = 0.4 \cdot 7,200 = 2,880$.

Size of Difference Node

- Let s_1 and s_2 be the sizes of the two relevant nodes.
- Again, we need to consider the probability that tuples occur in both relations.

Size of Difference Node

- Let s_1 and s_2 be the sizes of the two relevant nodes.
- Again, we need to consider the probability that tuples occur in both relations.
- The size of a difference node is

$$s_1 \cdot (1-p)$$

where (1 - p) is the probability that tuples from s_1 does not occur in s_2 .

Estimating Query Costs - Example (Difference)

• Since 40% of the movie awards from the USA, the probability of an award to be a US-award is p = 0.4. We have: $s_1 \cdot (1 - p) = 7,200 \cdot (1-0.4) = 4,320$.

Size of Natural Join Node

• Let s_1 and s_2 be the sizes of the two relevant nodes, and r_1 and r_2 be the size of a tuple in these two nodes. $\frac{s_1}{r_1}$ and $\frac{s_2}{r_2}$ are the estimated number of tuples in these two nodes.

Size of Natural Join Node

- Let s_1 and s_2 be the sizes of the two relevant nodes, and r_1 and r_2 be the size of a tuple in these two nodes. $\frac{s_1}{r_1}$ and $\frac{s_2}{r_2}$ are the estimated number of tuples in these two nodes.
- The size of a natural join node is

$$\frac{s_1}{r_1} \cdot p \cdot \frac{s_2}{r_2} \cdot (r_1 + r_2 - r) ,$$

where r is the size of a tuple over the **common attributes**, and p is the **matching probability** (for any tuple of the first relevant node to match with any tuples in the second relevant relation). Note that $r_1 + r_2 - r$ is the size of a tuple after the natural join operation.

Estimating Query Costs - Example (Natural Join)

• For join with ACTOR_AWARD assume p=0.08, i.e., 8% of the actor awards are non-US awards. By $\frac{s_1}{r_1} \cdot p \cdot \frac{s_2}{r_2} \cdot (r_1 + r_2 - r)$, we have:

$$\frac{46,480}{1,162} \cdot 0.08 \cdot \frac{4,320}{480} \cdot (1,162+480-160) = 42,682.$$

Estimating Query Costs - Example (Natural Join)

• Assume p=0.002. By $\frac{s_1}{r_1} \cdot p \cdot \frac{s_2}{r_2} \cdot (r_1+r_2-r)$, we have: $\frac{418,500}{837} \cdot 0.002 \cdot \frac{42,682}{1,482} \cdot (837+1,482-200-400-13) = 49,133.$

Estimating Query Costs - Example (Selection)

• For selection $\sigma_{\text{role.description='agent'}}$ assume $a_{\varphi}=0.05$ (i.e., non-US awards for "agent" roles are 5%). Hence, we have: $a_{\varphi} \cdot s = 0.05 \cdot 49{,}133 = 2{,}457.$

Size of Projection Node

- Projection $\pi_{\{}A_1, \ldots, A_n\}$:
 - Project each tuple to the attributes in $\{A_1, \ldots, A_n\}$
 - Eliminate duplicates (Note: SQL does not eliminate tuples unless DISTINCT is used).

Size of Projection Node

- Projection $\pi_{\{}A_1, \ldots, A_n\}$:
 - Project each tuple to the attributes in $\{A_1, \ldots, A_n\}$
 - Eliminate duplicates (Note: SQL does not eliminate tuples unless DISTINCT is used).
- Let *s* be the size of its single relevant node with $s = n \cdot r$ for its average number *n* of tuples and its average size *r* of a tuple.
- The size of a projection node $\pi_{A_1,...,A_n}$ is

$$(1-p_i)\cdot s\cdot \frac{r_i}{r}$$
,

where r_i is the average size of a tuple over $\{A_1, \ldots, A_n\}$, and p_i is the probability that two tuples coincide on A_1, \ldots, A_n (i.e., the same values on all attributes A_1, \ldots, A_n).

Estimating Query Costs - Example (Projection)

• For projection $\pi_{\text{title, production, year}}$ assume that there are 1% of duplicates, i.e.,

$$p_i = 0.01$$
. By $(1 - p_i) \cdot s \cdot \frac{r_i}{r}$, we have $(1 - 0.01) \cdot 2,457 \frac{213}{1706} = 304$

I can remember song lyrics from 2006 but not whatever maths formula we were learning yesterday

©santabanta.com

Which RA query should be chosen for a given SQL query?

- Which RA query should be chosen for a given SQL query?
 - Who choose?

- Which RA query should be chosen for a given SQL query?
 - Who choose? Query optimiser!

- Which RA query should be chosen for a given SQL query?
 - Who choose? Query optimiser!
 - How to choose?

- Which RA query should be chosen for a given SQL query?
 - Who choose? Query optimiser!
 - How to choose?
 - Semantic query optimisation
 - Rule-based optimisation
 - Cost-based optimisation

 In practice, query optimisers incorporate elements of the following three optimisation approaches:

- In practice, query optimisers incorporate elements of the following three optimisation approaches:
 - Semantic query optimisation

Use application specific semantic knowledge to transform a query into the one with a lower cost (they return the same answer).

- In practice, query optimisers incorporate elements of the following three optimisation approaches:
 - Semantic query optimisation

Use application specific semantic knowledge to transform a query into the one with a lower cost (they return the same answer).

Rule-based query optimisation

Use heuristic rules to transform a relational algebra expression into an equivalent one with a possibly lower cost.

 In practice, query optimisers incorporate elements of the following three optimisation approaches:

Semantic query optimisation

Use application specific semantic knowledge to transform a query into the one with a lower cost (they return the same answer).

Rule-based query optimisation

Use heuristic rules to transform a relational algebra expression into an equivalent one with a possibly lower cost.

Cost-based query optimisation

Use a cost model to estimate the costs of plans, and then select the most cost-effective plan. This will not be assessed in our course.

Semantic Query Optimisation

Example:

```
\begin{split} & \mathsf{PERSON}(\underline{\mathsf{id}}, \mathsf{first\_name}, \mathsf{last\_name}, \mathsf{year\_born}) \\ & \mathsf{MOVIE}(\underline{\mathsf{title}}, \mathsf{production\_year}, \mathsf{country}, \mathsf{run\_time}, \mathsf{major\_genre}) \\ & \mathsf{WRITER}(\underline{\mathsf{id}}, \underline{\mathsf{title}}, \underline{\mathsf{production\_year}}, \mathsf{credits}) \mathsf{ where} \\ & [\mathsf{id}] \subseteq \mathsf{PERSON}[\mathsf{id}] \\ & [\mathsf{title}, \mathsf{production\_year}] \subseteq \mathsf{MOVIE} [\mathsf{title}, \mathsf{production\_year}] \end{split}
```

• List the ids of the writers who have written movies produced in 2000.

Semantic Query Optimisation

Example:

```
PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

WRITER(id, title, production_year, credits) where

[id] ⊆ PERSON[id]

[title, production_year] ⊆ MOVIE [title, production_year]
```

• List the ids of the writers who have written movies produced in 2000.

```
\pi_{id}\sigma_{production\_year=2000}(WRITER\bowtie PERSON\bowtie MOVIE)
\pi_{id}\sigma_{production\_year=2000}(WRITER\bowtie PERSON)
\pi_{id}\sigma_{production\_year=2000}(WRITER\bowtie MOVIE)
```


Semantic Query Optimisation

Example:

```
PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

WRITER(id, title, production_year, credits) where

[id] 

[id] 

[ PERSON[id] 

[ title, production_year] 

MOVIE [ title, production_year]
```

• List the ids of the writers who have written movies produced in 2000.

```
\pi_{id}\sigma_{production\_year=2000}(WRITER \bowtie PERSON \bowtie MOVIE)
\pi_{id}\sigma_{production\_year=2000}(WRITER \bowtie PERSON)
\pi_{id}\sigma_{production\_year=2000}(WRITER \bowtie MOVIE)
\pi_{id}\sigma_{production\_year=2000}WRITER \longleftarrow the optimised RA
```


 A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.

- A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the size of intermediate results:

- A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the size of intermediate results:
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

- A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the size of intermediate results:
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

• Push-down projection:

Apply as early as possible to reduce the number of attributes.

Rule-based Query Optimisation

- A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the size of intermediate results:
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

• Push-down projection:

Apply as early as possible to reduce the number of attributes.

Rule-based Query Optimisation

- A rule-based optimisation transforms the RA expression by using a set of heuristic rules that typically improve the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the size of intermediate results:
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

• Push-down projection:

Apply as early as possible to reduce the number of attributes.

 But we must ensure that the resulting query tree gives the same result as the original query tree, i.e., the equivalence of RA expressions.

Oan they be executed in one go?

→ Merging RA operators.

- Oan they be executed in one go?

 → Merging RA operators.
 - $\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R);$
 - $\pi_X(\pi_Y(R)) \equiv \pi_X(R)$ if $X \subseteq Y$;
 - $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$;
 - $\sigma_{\varphi_1}(R_1 \bowtie_{\varphi_2} R_2) \equiv R_2 \bowtie_{\varphi_1 \land \varphi_2} R_1$;

• Can they be executed in one go? \hookrightarrow Merging RA operators.

- Can they be executed in one go? \hookrightarrow Merging RA operators.
 - $\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R)$;

• Can they be executed in one go? \hookrightarrow Merging RA operators.

•
$$\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R);$$

 $\sigma_{CourseNo='COMP2400'}(\sigma_{UID=111}(STUDY))$ v.s. $\sigma_{(Course='COMP2400')\land (UID=111)}(STUDY)$

• Can they be executed in one go?

→ Merging RA operators.

•
$$\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R);$$

 $\sigma_{CourseNo="COMP2400"}(\sigma_{UID=111}(STUDY))$ v.s. $\sigma_{(Course="COMP2400")\land (UID=111)}(STUDY)$

STUDY				
UID	<u>CourseNo</u>	Hours		
111	COMP2400	120		
222	COMP2400	115		
333	STAT2001	120		
111	BUSN2011	110		
111	ECON2102	120		
333	BUSN2011	130		

STUDY			
<u>UID</u>	<u>CourseNo</u>	Hours	
111	COMP2400	120	
111	BUSN2011	110	
111	ECON2102	120	

	STUDY	
UID	<u>CourseNo</u>	Hours
111	COMP2400	120

• Can they be executed in one go? \hookrightarrow Merging RA operators.

•
$$\sigma_{\omega}(\sigma_{\psi}(R)) \equiv \sigma_{\omega \wedge \psi}(R)$$
;

 $\sigma_{CourseNo="COMP2400"}(\sigma_{UID=111}(STUDY))$ v.s. $\sigma_{(Course="COMP2400")\land (UID=111)}(STUDY)$

	STUDY				
UID	<u>CourseNo</u>	Hours			
111	COMP2400	120			
222	COMP2400	115			
333	STAT2001	120			
111	BUSN2011	110			
111	ECON2102	120			
333	BUSN2011	130			

STUDY				
UID	<u>UID</u> <u>CourseNo</u> Hours			
111	COMP2400	120		
222	COMP2400	115		
333	STAT2001	120		
111	BUSN2011	110		
111	ECON2102	120		
333	BUSN2011	130		

STUDY				
UID CourseNo Hours				
111	COMP2400	120		
111	BUSN2011	110		
111	ECON2102	120		

31001				
<u>CourseNo</u>	Hours	STUDY		
COMP2400	120	UID	CourseNo	Hours
BUSN2011	110	111	COMP2400	120
ECON2102	120		•	

(without any intermediate relation)

	STUDY	
UID	<u>CourseNo</u>	Hours
111	COMP2400	120

• Can they be executed in one go? \hookrightarrow Merging RA operators.

- Can they be executed in one go? \hookrightarrow Merging RA operators.
 - $\pi_X(\pi_Y(R)) \equiv \pi_X(R)$ if $X \subseteq Y$;

• Can they be executed in one go?

→ Merging RA operators.

```
\bullet \ \pi_X(\pi_Y(R)) \equiv \pi_X(R) \text{ if } X \subseteq Y;
\pi_{UID}(\pi_{UID,CourseNo}(Study)) \quad \text{v.s.} \quad \pi_{UID}(Study)
```

Oan they be executed in one go?

→ Merging RA operators.

•
$$\pi_X(\pi_Y(R)) \equiv \pi_X(R)$$
 if $X \subset Y$;

 $\pi_{UID}(\pi_{UID,CourseNo}(Study))$ v.s. $\pi_{UID}(Study)$

	STUDY				
UID	<u>UID</u> <u>CourseNo</u> Hours				
111	COMP2400	120			
222	COMP2400	115			
333	STAT2001	120			
111	BUSN2011	110			
111	ECON2102	120			
333	BUSN2011	130			

UID	CourseNo
111	COMP2400
222	COMP2400
333	STAT2001
111	BUSN2011
111	ECON2102
333	BUSN2011

• Can they be executed in one go? \hookrightarrow Merging RA operators.

•
$$\pi_X(\pi_Y(R)) \equiv \pi_X(R)$$
 if $X \subset Y$;

 $\pi_{UID}(\pi_{UID,CourseNo}(Study))$ v.s. $\pi_{UID}(Study)$

STUDY			
UID CourseNo Hours			
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

STUDY			
<u>UID</u>	<u>UID</u> <u>CourseNo</u>		
111	COMP2400	120	
222	COMP2400	115	
333	STAT2001	120	
111	BUSN2011	110	
111	ECON2102	120	
333	BUSN2011	130	

UID	CourseNo
111	COMP2400
222	COMP2400
333	STAT2001
111	BUSN2011
111	ECON2102
333	BUSN2011

(without any intermediate relation)

UID	
111	
222	
333	

• Can they be executed in one go?

→ Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

• Can they be executed in one go? \hookrightarrow Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $\sigma_{Course.No=Enrol.CourseNo}(Course \times Enrol)$

• Can they be executed in one go?

→ Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

Course					
No	Cname	Unit			
COMP2400	Relational Databases	6			
BUSN2011	Management Accounting	6			

ENROL					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

• Can they be executed in one go?

→ Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $\sigma_{Course.No=Enrol.CourseNo}(Course \times Enrol)$

Course				
No	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		

ENROL					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

No	Cname	Unit	StudentID	CourseNo	Semester	Status
COMP240	Relational Databases	6	111	BUSN2011	2016 S1	active
COMP240	Relational Databases	6	222	COMP2400	2016 S1	active
COMP240	Relational Databases	6	111	COMP2400	2016 S2	active
BUSN201	Management Accounting	6	111	BUSN2011	2016 S1	active
BUSN201	Management Accounting	6	222	COMP2400	2016 S1	active
BUSN201	Management Accounting	6	111	COMP2400	2016 S2	active

Oan they be executed in one go?

→ Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

Course					
No	Cname	Unit			
COMP2400	Relational Databases	6			
BUSN2011	Management Accounting	6			

ENROL					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

No	Cname	Unit	StudentID	CourseNo	Semester	Status
COMP2400	Relational Databases	6	111	BUSN2011	2016 S1	active
COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6	222	COMP2400	2016 S1	active
BUSN2011	Management Accounting	6	111	COMP2400	2016 S2	active

• Can they be executed in one go? \hookrightarrow Merging RA operators.

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $Course \bowtie_{Course.No=Enrol.CourseNo} Enrol$

Course				
No	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		

I	ENROL					
ĺ	StudentID	CourseNo	Semester	Status		
Ì	111	BUSN2011	2016 S1	active		
ĺ	222	COMP2400	2016 S1	active		
ĺ	111	COMP2400	2016 S2	active		

•
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

 $Course \bowtie_{Course,No=Enrol,Course,No} Enrol$

No	No Cname			
COMP2400	Relational Databases	6		
BUSN2011	BUSN2011 Management Accounting			

ENROL				
Stude	ntID	CourseNo	Semester	Status
11	1	BUSN2011	2016 S1	active
222		COMP2400	2016 S1	active
11	1	COMP2400	2016 S2	active

Inner Join on Course.No=Enrol.CourseNo (no intermediate Cartesian product)

ı	No	Cname	Unit	StudentID	CourseNo	Semester	Status
	COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
	COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
	BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active

• Can join be executed last?

→ Push select/project before join.

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ;
 - σ_{φ1}∧φ2 (R₁ ⋈ R₂) ≡ σ_{φ1} (R₁) ⋈ σ_{φ2} (R₂), if φ₁ contains only attributes in R₁ and φ₂ contains only attributes in R₂;
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition contains attributes not in X, where X_i contains attributes both in R_i and X, and ones both in R_1 and R_2 ;
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, where X_i contains attributes both in R_i and X, and ones both in R_1 and R_2 ;

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

Course				
CourseNo	CourseNo Cname			
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

ENROL					
StudentID	Semester	Status			
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

	COURSE	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

ENROL				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

CourseNo	Cname	Unit	StudentID	Semester	Status
COMP2400	Relational Databases	6	222	2016 S1	active
COMP2400	Relational Databases	6	111	2016 S2	active
BUSN2011	Management Accounting	6	111	2016 S1	active

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	6	

ENROL				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

CourseNo	Cname	Unit	StudentID	Semester	Status
COMP2400	Relational Databases	6	222	2016 S1	active
COMP2400	Relational Databases	6	111	2016 S2	active
BUSN2011	Management Accounting	6	111	2016 S1	active

ſ	CourseNoNo	Cname	Unit	StudentID	Semester	Status
Ì	BUSN2011	Management Accounting	6	111	2016 S1	active

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

I		Course	
	CourseNo	Cname	Unit
	BUSN2011	Management Accounting	6

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

	Course	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

	Course	
CourseNo	Cname	Unit
BUSN2011	Management Accounting	6

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

- - $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

	Course	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

Course		
CourseNo	Cname	Unit
BUSN2011	Management Accounting	6

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

CourseNo	Cname	Unit	StudentID	Semester	Status
BUSN2011	Management Accounting	6	111	2016 S1	active

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ? $\pi_{CourseNo.Cname.StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Unit	
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{CourseNo,Cname,StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

Enrol			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{CourseNo,Cname,StudentID}(Course \bowtie Enrol)$

	Course	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

CourseNo	Cname	Unit	StudentID	Semester	Status
COMP2400	Relational Databases	6	222	2016 S1	active
COMP2400	Relational Databases	6	111	2016 S2	active
BUSN2011	Management Accounting	6	111	2016 S1	active

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{CourseNo,Cname,StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

Enrol			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

	CourseNo	Cname	Unit	StudentID	Semester	Status
	COMP2400	Relational Databases	6	222	2016 S1	active
	COMP2400	Relational Databases	6	111	2016 S2	active
Γ	BUSN2011	Management Accounting	6	111	2016 S1	active

ı	CourseNo	Cname	StudentID
	COMP2400	Relational Databases	222
	COMP2400	Relational Databases	111
	BUSN2011	Management Accounting	111

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ? $\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol)$

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ? $\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol)$

Course		
CourseNo Cname Unit		Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ? $\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

π _{CourseNo} , Cname COURSE		
CourseNo Cname		
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo, Cname} COURSE		
CourseNo Cname		
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

$\pi_{ extit{CourseNo,Cname}} exttt{COURSE}$		
CourseNo Cname		
COMP2400 Relational Databases		
BUSN2011 Management Accounting		

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo} , StudentID ENROL		
StudentID	CourseNo	
111	BUSN2011	
222	COMP2400	
111	COMP2400	

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

	π _{CourseNo} , Cname COURSE		
Γ	CourseNo Cname		
Γ	COMP2400	Relational Databases	
	BUSN2011	Management Accounting	

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π CourseNo, StudentID ENROL		
StudentID	CourseNo	
111	BUSN2011	
222	COMP2400	
111	COMP2400	

CourseNo	Cname	StudentID
COMP2400	Relational Databases	222
COMP2400	Relational Databases	111
BUSN2011	Management Accounting	111

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname.StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

Enrol				
StudentID	CourseNo	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

Course			
CourseNo	Cname	Unit	
COMP2400	Relational Databases	6	
BUSN2011	Management Accounting	6	

Enrol			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

CourseNo	Cname	Unit	StudentID	Semester	Status
COMP2400	Relational Databases	6	222	2016 S1	active
COMP2400	Relational Databases	6	111	2016 S2	active
BUSN2011	Management Accounting	6	111	2016 S1	active

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname.StudentID}(Course \bowtie Enrol)$

Course			
CourseNo	Cname	Unit	
COMP2400	Relational Databases	6	
BUSN2011	Management Accounting	6	

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

ı	CourseNo	Cname	Unit	StudentID	Semester	Status
	COMP2400	Relational Databases	6	222	2016 S1	active
	COMP2400	Relational Databases	6	111	2016 S2	active
	BUSN2011	Management Accounting	6	111	2016 S1	active

Cname	StudentID
Relational Databases	222
Relational Databases	111
Management Accounting	111

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ? $\pi_{Cname.StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

Course		
CourseNo Cname Unit		
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

Course		
CourseNo Cname Unit		Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

π _{Cname} Course	
Cname	
Relational	
Management	Ī

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

	Course	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

	Enroi	L	
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

$\pi_{\mathit{Cname}}Course$
Cname
Relational
Management

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

$\pi_{\mathit{Cname}}Course$
Cname
Relational
Management

	Enroi	<u></u>	
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{StudentID} ENROL
StudentID
111
222

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

	Course	
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

$\pi_{\mathit{Cname}}Course$
Cname
Relational
Management

	Enroi	<u></u>	
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{StudentID} ENROL
StudentID
111
222

Is $\pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$ our desired result?

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol) = \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$?

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

BUSINZUTT	IVIa	anagement Accounting	y
π _{Cname} Cour	SE		
Cname			
Relational			

Management

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{StudentID} ENROL
StudentID
111
222

Is $\pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$ our desired result?

No. $\pi_{Cname,StudentID}(Course \bowtie Enrol) \neq \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

```
\pi_{Cname,StudentID}(Course \bowtie Enrol)
```

```
\pi_{Cname,StudentID}(\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol))
```

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

```
\pi_{Cname,StudentID}(Course \bowtie Enrol)
```

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

```
\pi_{Cname,StudentID}(Course \bowtie Enrol)
```

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

π _{CourseNo} , CnameCOURSE		
CourseNo	Cname	
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

```
\pi_{Cname,StudentID}(Course \bowtie Enrol)
```

	Course		
	CourseNo	Cname	Unit
	COMP2400	Relational Databases	6
ľ	BUSN2011	Management Accounting	6

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo} , CnameCOURSE	
CourseNo	Cname
COMP2400	Relational Databases
BUSN2011	Management Accounting

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

π _{CourseNo, Cname} Course		
CourseNo	Cname	
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

Enrol			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo} , StudentIDENROL		
StudentID	CourseNo	
111	BUSN2011	
222	COMP2400	
111	COMP2400	

- Oan join be executed last?

 → Push select/project before join.
 - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

```
\pi_{Cname,StudentID}(Course \bowtie Enrol)
```

	Course		
CourseNo Cname U		Unit	
	COMP2400	Relational Databases	6
	BUSN2011	Management Accounting	6

π _{CourseNo, Cname} Course		
CourseNo Cname		
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

ENROL			
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo} , StudentID ENROL		
StudentID	CourseNo	
111	BUSN2011	
222	COMP2400	
111	COMP2400	

CourseNo	Cname	StudentID
COMP2400	Relational Databases	222
COMP2400	Relational Databases	111
BUSN2011	Management Accounting	111

- - $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

Course		
CourseNo	Cname	Unit
COMP2400	Relational Databases	6
BUSN2011	Management Accounting	6

π _{CourseNo} , Cname COURSE		
CourseNo Cname		
COMP2400	Relational Databases	
BUSN2011	Management Accounting	

CourseNo	Cname	StudentID	
COMP2400	Relational Databases	222	
COMP2400	Relational Databases	111	
BUSN2011	Management Accounting	111	

ENROL			
StudentID CourseNo Semester Status			
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π _{CourseNo} , StudentID ENROL		
StudentID CourseNo		
111	BUSN2011	
222	COMP2400	
111	COMP2400	

Cname	StudentID
Relational Databases	222
Relational Databases	111
Management Accounting	111

Heuristic Rules and Query Trees

(1)
$$\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R)$$
;

Heuristic Rules and Query Trees

(1)
$$\sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R)$$
;

(2)
$$\pi_X(\pi_Y(R)) \equiv \pi_X(R)$$
 if $X \subseteq Y$;

Heuristic Rules

(3)
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\alpha} R_2$$

Heuristic Rules

(3)
$$\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$$

(4)
$$\sigma_{\varphi_1}(R_1\bowtie_{\varphi_2}R_2)\equiv R_2\bowtie_{\omega_1\wedge\omega_2}R_1$$

- Given the relation schemas:
 PERSON(id, first_name, last_name, year_born)
 MOVIE(title, production_year, country, run_time, major_genre)
 ROLE(id, mtitle, mprod_year, description, credits)
- Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi title_production_year (\sigma title=mtitle_production_year=mprod_year (\sigma major_genre='war' \\ first_name='Tom' \last_name='Cruise' (MOVIE \times (PERSON \imp ROLE))))
```

- Given the relation schemas:
 PERSON(id, first_name, last_name, year_born)
 MOVIE(title, production_year, country, run_time, major_genre)
 ROLE(id, mtitle, mprod_year, description, credits)
- Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{title,production\_year}(\sigma_{title=mtitle} \land production\_year=mprod\_year(\sigma_{major\_genre='war'} \land first\_name='Tom' \land last\_name='Cruise'(MOVIE <math>\times (PERSON \bowtie ROLE))))
```

• Question: Can we apply the following rule to optimise the query? $\sigma_{\varphi_1 \wedge \varphi_2}(R_1 \times R_2) \equiv \sigma_{\varphi_1}(R_1) \times \sigma_{\varphi_2}(R_2)$ if φ_1 contains only attributes in R_1 and φ_2 contains only attributes in R_2

- Given the relation schemas:
 - PERSON(id, first_name, last_name, year_born)

 MOVIE(title, production_year, country, run_time, major_genre)

 ROLE(id, mtitle, mprod_year, description, credits)
- Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{title,production\_year}(\sigma_{title=mtitle} \land production\_year=mprod\_year(\sigma_{major\_genre='war'} \land first\_name='Tom' \land last\_name='Cruise'(MOVIE <math>\times (PERSON \bowtie ROLE))))
```

- Question: Can we apply the following rule to optimise the query? $\sigma_{\varphi_1 \wedge \varphi_2}(R_1 \times R_2) \equiv \sigma_{\varphi_1}(R_1) \times \sigma_{\varphi_2}(R_2)$ if φ_1 contains only attributes in R_1 and φ_2 contains only attributes in R_2
- We would have

```
\pi_{\textit{tittle,production\_year}}(\sigma_{\textit{tittle=mtittle}} \land \textit{production\_year=mprod\_year}(\sigma_{\textit{major\_genre='war'}}(\mathsf{MOVIE}) \\ \times \sigma_{\textit{first\_name='Tom'}} \land \textit{last\_name='Cruise'}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```


Given the relation schemas:
 PERSON(id, first_name, last_name, year_born)
 MOVIE(title, production_year, country, run_time, major_genre)

Role(id, mtitle, mprod_year, description, credits)

• Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{title}=\textit{mtitle} \land \textit{production\_year}=\textit{mprod\_year}}(\sigma_{\textit{major\_genre='war'}}(\mathsf{MOVIE}) \\ \times \sigma_{\textit{first\_name='Tom'} \land \textit{last\_name='Cruise'}}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```

- Given the relation schemas:
 - PERSON(id, first_name, last_name, year_born)

 MOVIE(title, production_year, country, run_time, major_genre)

 ROLE(id, mtitle, mprod_year, description, credits)
- Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{title,production\_year}(\sigma_{title=mtitle} \land production\_year=mprod\_year(\sigma_{major\_genre='war'}(MOVIE) \times \sigma_{first\_name='Tom'} \land last\_name='Cruise'(PERSON \bowtie ROLE)))
```

• Can we apply $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$?

- Given the relation schemas:
 - PERSON(id, first_name, last_name, year_born)

 MOVIE(title, production_year, country, run_time, major_genre)

 ROLE(id, mtitle, mprod_year, description, credits)
- Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{title}=\textit{mtitle}\,\land\textit{production\_year}=\textit{mprod\_year}}(\sigma_{\textit{major\_genre}='\textit{war'}}(\mathsf{MOVIE}) \\ \times \sigma_{\textit{first\_name}='\textit{Tom'}\,\land\textit{last\_name}='\textit{Cruise'}}(\mathsf{PERSON}\bowtie\mathsf{ROLE})))
```

- Can we apply $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$?
- We would have

```
\pi_{title,production\_year}(\sigma_{major\_genre='war'}(\mathsf{MOVIE}) \bowtie_{title=mtitle \land production\_year=mprod\_year}(\sigma_{title,production\_year=mprod\_year}(\sigma_{title,production\_year=mprod\_year}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```


• Given the relation schemas:

```
PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

ROLE(id, mtitle, mprod_year, description, credits)
```

Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{\textit{title},\textit{production}\_\textit{year}}(\sigma_{\textit{major}\_\textit{genre}='\textit{war'}}(\mathsf{MOVIE})\bowtie_{\textit{title}=\textit{mtitle}\land\textit{production}\_\textit{year}=\textit{mprod}\_\textit{year}}(\sigma_{\textit{first}\_\textit{name}='\textit{Tom}'\land\textit{last}\_\textit{name}='\textit{Cruise'}}(\mathsf{PERSON}\bowtie\mathsf{ROLE})))
```

• Given the relation schemas:

```
PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

ROLE(id, mtitle, mprod_year, description, credits)
```

Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{major\_genre}='\textit{war}'}(\mathsf{MOVIE})\bowtie_{\textit{title}=\textit{mtitle}\land\textit{production\_year}=\textit{mprod\_year}}(\sigma_{\textit{first\_name}='\mathsf{Tom}'\land last\_name='\mathsf{Cruise}'}(\mathsf{PERSON}\bowtie \mathsf{ROLE})))
```

Question: Can we apply the following rule to optimise the query?

$$\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)),$$

where X_i contains attributes both in R_i and X, and ones both in R_1 and R_2

Given the relation schemas:

```
Person(id, first_name, last_name, year_born)

Movie(title, production_year, country, run_time, major_genre)

Role(id, mtitle, mprod_year, description, credits)
```

Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{title,production\_year}(\sigma_{major\_genre='war'}(\mathsf{MOVIE}) \bowtie_{title=mtitle \land production\_year=mprod\_year}(\sigma_{tirst\_name='Tom' \land last\_name='Cruise'}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```

Given the relation schemas:

```
PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

ROLE(id, mtitle, mprod_year, description, credits)
```

Query: List all war movies that are performed by 'Tom Cruise'.

```
\pi_{title,production\_year}(\sigma_{major\_genre='war'}(\mathsf{MOVIE}) \bowtie_{title=mtitle \land production\_year=mprod\_year}(\sigma_{tirst\_name='Tom' \land last\_name='Cruise'}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```

We would have:

```
\pi_{\textit{title},\textit{production\_year}}(\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{major\_genre='war'}}(\mathsf{MOVIE}))\\ \bowtie_{\textit{title=mtitle} \land \textit{production\_year=mprod\_year}}(\pi_{\textit{mtitle},\textit{mprod\_year}}(\sigma_{\textit{first\_name='Tom'} \land \textit{last\_name='Cruise'}}(\mathsf{PERSON} \bowtie \mathsf{ROLE}))))
```

We further apply some rules to optimise the guery ...

• Consider Charts={Rank, Artist, Song} with 100 tuples and 3 attributes.

Rank	Artist	Song	
1	Chingy	Right Thurr	
2	Scribe	Stand up	
3	Aguilera and Kim	Can't hold us down	
4	Evanescence	Going under	
5	Justin Timberlake	Senorita	
6	Brooke Fraser	Better	
7	Black Eyed Peas	Where is the love?	

- Compare two strategies of evaluating "Who is top of the pops?":
 - σ Rank=1 $(\pi$ Rank, Artist(CHARTS))
 - π Rank, Artist (σ Rank=1 (CHARTS))

Consider CHARTS={Rank, Artist, Song} with 100 tuples and 3 attributes.

Rank	Artist	Song	
1	Chingy	Right Thurr	
2	Scribe	Stand up	
3	Aguilera and Kim	Can't hold us down	
4	Evanescence	Going under	
5	Justin Timberlake	Senorita	
6	Brooke Fraser	Better	
7	Black Eyed Peas	Where is the love?	

- Compare two strategies of evaluating "Who is top of the pops?":
 - σ Rank=1 $(\pi$ Rank, Artist(CHARTS))
 - π Rank, Artist $(\sigma$ Rank=1(CHARTS))

Selection before Projection is preferred.

• Consider Charts={Rank, Artist, ...} with 100 tuples and 50 attributes:

Rank	Artist	Song	 	
1	Chingy	Right Thurr	 	
2	Scribe	Stand up	 	
3	Aguilera and Kim	Can't hold us down	 	
4	Evanescence	Going under	 	
5	Justin Timberlake	Senorita	 	
6	Brooke Fraser	Better	 	
7	Black Eyed Peas	Where is the love?	 	

- Compare two strategies of evaluating?
 - σ Rank > 10 $(\pi$ Rank, Artist(CHARTS))
 - π Rank, Artist $(\sigma_{\text{Rank}} > 10(\text{CHARTS}))$

Consider CHARTS={Rank, Artist, ...} with 100 tuples and 50 attributes:

Rank	Artist	Song	 	
1	Chingy	Right Thurr	 	
2	Scribe	Stand up	 	
3	Aguilera and Kim	Can't hold us down	 	
4	Evanescence	Going under	 	
5	Justin Timberlake	Senorita	 	
6	Brooke Fraser	Better	 	
7	Black Eyed Peas	Where is the love?	 	

- Compare two strategies of evaluating?
 - σ Rank > $10^{(\pi)}$ Rank. Artist (CHARTS))
 - π Rank. Artist (σ Rank > 10 (CHARTS))

Projection before Selection is preferred.

Query Optimisation

Trade-off:

Time for executing a RA query vs Time for finding a better RA query

(credit cookie) memorising vs understanding

I can remember song lyrics from 2006 but not whatever maths formula we were learning yesterday

@santabanta.com