

In This Video

- Representing standard transformations using matrices and vectors
- Combining transformations

Interlude: ImmersiveMath.com

• If your matrices and vectors are a little rusty, and even if they aren't, read the first chapters from this really neat interactive linear algebra "book"!

Interactive Illustration 6.4: The two sliders above control the scaling factors f_x and f_y , in the x- and y-direction, respectively.

The effect of a shear matrix is best seen before it is described in detail, so we recommend that the reader explores Interactive Illustration 6.5 first, and then a formal definition will be provided.

Matrix representations for common transformations

Linear transformations include rotation, scaling, reflection, and shear

$$x' = ax + by$$
$$y' = dx + ey$$

Linear transformations include rotation, scaling, reflection, and shear

$$x' = ax + by$$
$$y' = dx + ey$$

Linear transformations include rotation, scaling, reflection, and shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$p' = Mp$$

$$x' = ax + by$$
$$y' = dx + ey$$

Linear transformations include rotation, scaling, reflection, and shear

Note that the origin always stays fixed.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$p' = Mp$$

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Affine transformations include all linear transformations, plus translation

$$p' = Mp + t$$

Can we use matrices for affine transforms?

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

$$p' = Mp$$

The Homogeneous Coordinate Trick

This is what
$$x' = ax + by + c$$

we want: $y' = dx + ey + f$

Affine formulation

$$p' = Mp + t$$

Homogeneous formulation

The Homogeneous Coordinate Trick

This is what
$$x' = ax + by + c$$

we want: $y' = dx + ey + f$

Affine for See the next video for more $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ d \end{pmatrix} \begin{pmatrix} y \\ y \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix} \end{pmatrix} \begin{pmatrix} f \\ f \end{pmatrix}$ p' = Mp + t p' = Mp

Scale (sx, sy, sz)

Scale(s,s,s)

• Isotropic (uniform) scaling: $S_x = S_y = S_z$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation

 $ZRotate(\theta)$

About z axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation

 About (kx, ky, kz), a unit vector on an arbitrary axis (Rodrigues Formula)

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} k_x k_x (1-c) + c & k_x k_y (1-c) - k_z s & k_x k_z (1-c) + k_y s & 0 \\ k_y k_x (1-c) + k_z s & k_y k_y (1-c) + c & k_y k_z (1-c) - k_x s & 0 \\ k_z k_x (1-c) - k_y s & k_z k_y (1-c) + k_x s & k_z k_z (1-c) + c & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

where
$$c = \cos \theta$$
 & $s = \sin \theta$

Rotations and Matrices

- Rotations are represented by orthonormal matrices, i.e., matrices such that $\mathbf{M}^{T}\mathbf{M} = \mathbf{I}$
 - This implies $det(\mathbf{M}) = \pm 1$ (why?)
 - Furthermore, to rule out reflections, require det(M)=1
- Rotations are a group of their own
 - Can you prove this based on the above properties?

Combining transformations

How are transforms combined?

Scale then Translate

Use matrix multiplication: p' = T(Sp) = TSp

$$TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Caution: matrix multiplication is NOT commutative!

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

Translate then Scale: p' = S(Tp) = STp

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

$$TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Translate then Scale: p' = S(Tp) = STp

$$ST = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Key Takeaways

- Matrices represent linear transformations
- Adding an extra dimension allow affine transformations to be represented by matrices
- Successive transformations=matrix multiplication
 - Order matters!