Chapter 6

dplyr을 이용한 데이터 전처리

데이터 전처리

데이터 전처리(Preprocessing) - dplyr 패키지

함수	기능	
filter()	행 추출	

select() 열(변수) 추출

arrange() 정렬

mutate() 변수 추가

summarise() 통계치 산출

group_by() 집단별로 나누기

left_join() 데이터 합치기(열)

bind_rows() 데이터 합치기(행)

데이터 전처리 filter()

dplyr 패키지 로드 & 데이터 준비

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
##
id class math english science
1 1
     1 50
          98
               50
2 2
    1 60
               60
          97
3 3
    1 45
           86
               78
               58
4 4
    1 30
           98
5 5 2 25
           80
               65
6 6 2 50
           89
               98
           90 45
7 7 2 80
8 8 2 90
           78 25
9 9
    3 20
           98
               15
10 10 3 50 98 45
```

B

데이터 전처리 filter()

filter를 이용한 행 추출

```
data1 <- filter(data, class == 1) #class가 1인 학생
data1
data2 <- filter(data, math >= 50) #수학점수가 50이상인 학생
data2
data3 <- filter(data, math >= 80 & english >= 80) #수학, 영어가 80이상인 학생
data3
data4 <- filter(data, math %in% c(50:60) ) #매칭확인
data4
data5 <- filter(data, class %in% c(1,3,5) ) #1 3 5반
```


파이프라인 %>%

파이프라인으로 작업처리 하기

```
ex1 <- filter(data, class != 1) #클래스가 1이아닌 학생
ex1
ex2 <- filter(ex1, math >= 50 ) #수학이 50점 이상인 학생
ex2
result <- filter(ex2, id %% 2 == 0) #id가 짝수인 학생(나머지)
result
#위와 동일한 결과
result <- data %>%
         filter(class != 1 ) %>%
         filter(math >= 50) %>%
         filter(id %% 2 == 0)
```

[참고] 단축키 [Ctrl+Shit+M]으로 %>% 기호 입력

R연산 기호

R에서 연산기호

논리 연산자	기능	산술 연산자	기능
<	작다	+	더하기
<=	작거나 같다	-	빼기
>	크다	*	곱하기
>=	크거나 같다	/	나누기(소수 몫)
==	같다	^	제곱
!=	같지 않다	%/%	나누기(정수 몫)
1	또는	%%	나눗셈의 나머지
&	그리고		
%in%	매칭 확인		

문제

ggplot2에 있는 mpg 데이터를 이용해 분석 문제를 해결해 보세요.

- Q1. 자동차 배기량에 따라 고속도로 연비가 다른지 알아보려고 합니다. displ(배기량)이 4 이하인 자동차와 5 이상인 자동차 중 어떤 자동차의 hwy(고속도로 연비)가 평균적으로 더 높은지 파이프라인을 이용해서 알아보세요.
- Q2. 자동차 제조 회사에 따라 도시 연비가 다른지 알아보려고 합니다. "audi" 제조년월이 2000년 이상인 데이터의 cty 합계, 평균을 구하세요
- Q3. "chevrolet", "ford", "honda" 자동차의 고속도로 연비 평균을 알아보려고 합니다. 이 회사들의 자동차를 추출한 뒤 hwy 전 체 평균을 구해보세요.

데이터 전처리 select()

select를 이용한 열 추출

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
select(data, id)
##
    id
     1
     2
3
4
     3
                                                                     class
                                                               id
                                                                           english
                                                                                  science
                                                                                              class
                                                                                                     english
     4
                                                                                   50
     5
                                                                      2
                                                                                                      98
                                                               2
     6
                                                                             97
                                                                                    60
                                                                                                      97
    7
                                                                                                      86
                                                                                   78
8
     8
                                                                                                      98
     9
                                                                                                      80
                                                                                    65
10 10
                                                                                   98
                                                                                                      89
```


데이터 전처리 select()

select를 이용한 열 추출 & 가독성 높이기

```
select(data, id)
select(data, id, math, english) #여러 행 셀렉트
select(data, -class) #행 제외
select(data, -class, -english) #여러행 제외
#파이프라인
data %>%
  filter(class == 1) %>% # class 가 1 인 행 추출
  select(english)
                # english 추출
                         # 10열만 보기
  head(10)
```


데이터 전처리 arrange()

arrange를 이용한 정렬

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
arrange(data, id) #수학기준 오름차순
  id class math english science
         3
             20
                     98
                            15
         2 25
                     80
                            65
   4
         1 30
                            58
                     98
   3
                         78
         1 45
                     86
  12
         3
            45
                    85
                            32
  13
                            65
         4
             46
                     98
  14
             48
                     87
                            12
         4
                            50
  1
             50
                     98
         1
   6
             50
                     89
                            98
10 10
             50
                     98
                            45
```

id	english	science		id	english	science
ল	98	50		6	89	98
2	97	60		5	86	78
3	86	78	-	4	80	65
4	98	58		3	97	60
5	80	65		2	98	- 58
6	89	98		1	98	50

데이터 전처리 arrange()

arrange를 이용한 내림차순 정렬

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
arrange(data, desc(math)) #수학기준 내림차순
arrange(data, desc(class)) #클래스기준 내림차순
arrange(data, desc(class), id) #클래스기준 내림차순, 아이디 오름차순
#파이프라인
data %>% arrange(class, desc(math)) # 클래스 오름차순 수학 내림차순
```


데이터 전처리 mutate()

mutate()를 이용한 새로운 행 추가

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
mutate(data, total = math + english + science) # 합계변수 추가
   id class math english science total
    1
              50
                       98
                               50
                                     198
          1
1
2
3
4
5
6
7
              60
                       97
                                     217
          1
                               60
    3
                                     209
          1 45
                       86
                               78
    4
              30
                       98
                               58
                                     186
          1
    5
              25
                               65
                                     170
                       80
    6
              50
                               98
                                    237
                       89
   7
              80
                       90
                               45
                                     215
8
   8
              90
                               25
                                     193
                       78
    9
              20
                               15
                                     133
                       98
              50
                       98
                               45
                                     193
10 10
```

id	english	science
31	98	50
2	97	60
3	86	78
4	98	58
5	80	65
6	89	98

id	english	science	total
31	98	50	148
2	97	60	157
3	86	78	164
4	98	58	156
5	80	65	145
6	89	98	187

데이터 전처리 mutate()

mutate()를 이용한 새로운 여러 행 추가

```
library(dplyr)
data <- read.csv("csv_exam.csv")</pre>
data
mutate(data, total = math + english + science,
             avg = (math + english + science)/3 ) #합계, 평균 추가
   id class math english science total
                                            avg
          1
   1
              50
                      98
                              50
                                   198 66.00000
   2
              60
                      97
                              60
                                  217 72.33333
3
4
   3
          1 45
                                  209 69.66667
                      86
                              78
   4
          1 30
                              58
                      98
                                  186 62.00000
    5
             25
                              65
                                  170 56.66667
                      80
   6
              50
                      89
                              98
                                   237 79.00000
   7
              80
                                   215 71.66667
                      90
                              45
8
   8
          2 90
                              25
                      78
                                   193 64.33333
   9
              20
                      98
                              15
                                   133 44.33333
              50
                              45
                                   193 64.33333
10 10
                      98
```


데이터 전처리 mutate()

mutate()를 이용한 새로운 여러 행 추가

```
library(dplyr)
data <- read.csv("csv exam.csv")</pre>
data
# 파생변수로 새로운 데이터 만들기
data1 <- mutate(data, total = math + english + science,</pre>
                     avg = (math + english + science)/3)
data2 <- mutate(data1, result = ifelse(avg >= 60, "pass", "fail" ) )
data2
#파이프라인으로 한번에 쓰기
result <- data %>%
         mutate(total = math + english + science,
                avg = (math + english + science)/3, 2) %>%
         mutate(result = ifelse(avg > 60, "pass", "fail")) %>%
         arrange( desc(avg) ) %>%
         head(10)
```

문제

gglplot2에 있는 mpg 데이터를 사용합니다.

- Q1. mpg데이터에서 class(자동차 종류), cty(도시 연비) 변수를 추출해 새로운 데이터를 만들고 class(자동차 종류) 가 "suv"인 자동차와 "compact"인 자동차 중 어떤 자동차의 cty(도시 연비)만 추출합니다.
 - 파이프라인으로 한번에 처리하세요.

```
class cty
   compact 18
1
2
   compact 21
3
   compact 20
4
   compact 21
5
   compact
            16
6
            18
   compact
   compact
            18
8
   compact 18
   compact 16
10
   compact 20
```

• Q2. audi에서 생산한 자동차 중에 중 hwy가 1~5위에 해당하는 자동차의 (제조사, 모델, 년도, hwy)데이터만 출력하세요.

- 파이프라인으로	한번에	처리하세요.
-----------	-----	--------

	manufacturer		model	year	hwy
1	audi		a4	2008	31
2	audi		a4	2008	30
3	audi		a4	1999	29
4	audi		a4	1999	29
5	audi	a4	quattro	2008	28

문제

gglplot2에 있는 mpg 데이터는 연비를 나타내는 변수가 hwy(고속도로 연비), cty(도시 연비) 두 종류로 분리되어 있습니다.

- Q1. mpg 데이터 복사본을 만들고, cty 와 hwy 를 더한 '합산 연비 변수'를 추가.
- Q2. 앞에서 만든 '합산 연비 변수'를 2 로 나눠 '평균 연비 변수'를 추가.
- Q3. '평균 연비 변수'가 가장 높은 자동차 5순위 데이터를 출력.
- Q4. 원본 데이터를 이용해서 1~3 번 문제에 더하여 avg가 35이상이면 high, 35미만이면 row를 추가하는 <mark>파이프라인</mark> 으로 한번에 처리하는 구문을 완성하세요.

```
manufacturer
                 model displ year cyl
                                        trans drv cty hwy fl
                                                                class total avg result
   volkswagen new beetle 1.9 1999
                                  4 manual(m5) f 35 44 d subcompact
                                                                        79 39.5
                                                                                 high
                                  4 manual(m5) f 33 44 d
   volkswagen
                 jetta 1.9 1999
                                                              compact
                                                                        77 38.5
                                                                                 high
   volkswagen new beetle 1.9 1999
                                      auto(14) f 29 41 d subcompact
                                                                                 high
                                                                        70 35.0
4
                                  4 manual(m5) f 28 37
               corolla 1.8 2008
                                                              compact
                                                                        65 32.5
       toyota
                                                                                  row
                                  4 manual(m5) f 28 33
5
       honda
                 civic 1.6 1999
                                                         r subcompact
                                                                        61 30.5
                                                                                  row
```


summarise() 집단별로 요약해서 추출하기

전체를 요약하여 보여주고 list형태로 반환 합니다.

```
library(dplyr)
data <- read.csv("csv exam.csv")</pre>
data
summarise(data, mean math = mean(math) ) # math로 평균 산출
##
mean_math
    57.45
summarise(data, mean math = mean(math), #평균
                   sum_math = sum(math), #합계
                   count = n() ) # 빈도수
                                                                                        mean(science)
                                                                            97
                                                                                  60
                                                                                         class 1 61.0
##
                                                       english science
mean math sum math count
                                                               50
      57.45
                  1149
                           20
                                                         97
                                                                                                   mean(science)
                                                               78
                                                               58
                                                                                                   class 2
                                                                           english
                                                                                science
                                                                                         mean(science)
                                                               85
                                                                                  50
                                                                                         class 2 75.3
                                                                                  78
```


자주 사용하는 요약통계량 함수

함수	의미
mean()	평균
sd()	표준편차
sum()	합계
median()	중앙값
min()	최솟값
max()	최댓값
n()	빈도

group_by() 로 요약하기 전에 그룹핑 하기

summarise() 가 전체를 요약할 때 사용하는 반해 group_by() 는 그룹별 데이터를 요약할 때 사용합니다. 즉, 데이터를 지정한 조건에 따라 그룹으로 묶어 주는 역할을 합니다.

```
library(dplyr)
data <- read.csv("csv_exam.csv")
data
group_by(data, class) # data를 class별로 그룹핑
summarise(data1, math_sum = sum(math)) # class별 수학점수 합계
```

	class	math_sum
	<int></int>	< <i>int></i>
1	1	185
2	2	245
3	3	180
4	4	227
5	5	312

파이프라인으로 한번에 요약통계 구하기

```
library(dplyr)
data <- read.csv("csv exam.csv")</pre>
data
# 파이프라인으로 한번에 작성하기
data %>%
 group by(class) %>%
 summarise(math_avg = mean(math),
        eng avg = mean(english),
        sci_avg = mean(science),
        total = n()
   class math_avg eng_avg sci_avg total
   <int> <db1> <db1> <db1> <int>
         46.2 94.8 61.5
       1
       2 61.2 84.2 58.2
       3 45 86.5 39.2
 3
                                   4
       4 56.8 84.8 55
            78
               74.2 83.2
                                   4
```


group_by() 집단별 집단 처리

```
library(dplyr)
data <- read.csv("csv exam.csv")</pre>
data
# 제조사별 구동방식 도로연비
mpg %>%
 group by(manufacturer, drv) %>%
  summarise( mean_cty = mean(cty) )
  # A tibble: 22 x 3
  # Groups: manufacturer [15]
     manufacturer drv
                         mean_cty
     <chr>
                  <chr>
                            <db7>
   1 audi
                             16.8
   2 audi
                             18.9
   3 chevrolet
                             12.5
   4 chevrolet
                             18.8
   5 chevrolet
                             14.1
   6 dodge
                             12
                             15.8
   7 dodge
   8 ford
                             13.3
   9 ford
                             14.8
  10 honda
                             24.4
```


데이터 전처리 left_join()

데이터프레임 가로 합치기 left_join()

필요한 데이터프레임을 가로로 합쳐서 리스트형태로 반환합니다. (행이 안맞으면 NA처리됩니다)

```
library(dplyr)
name = data.frame(class = c(1:5),
                  teacher = c("hong", "kim", "park", "lee", "choi") )
job = data.frame(teacher = c("hong", "kim", "park", "lee", "choi"),
                 job = c("math", "kor", "science", "eng", "society"))
left_join(name, job, by = "teacher") # 열이름을 by로 연결합니다
##
  class teacher subject
           hong
                   math
1
                                            midterm
                                                                            midterm
2
3
            kim
                   kor
                                              60
                                                                              60
                                                                                    70
         park science
           lee
                    eng
                                                              83
                                              80
                                                                              80
           choi society
                                              70
                                                              65
                                                                              70
                                                                                    65
```

가로로 합치기

데이터 전처리 left_join()

데이터프레임 가로 합치기 left_join()

연결할 열이름이 다르다면 아래와 같이 강제 연결할 수 있습니다. (행이 안맞으면 NA처리됩니다)

```
library(dplyr)
name = data.frame(class = c(1:5),
                  teacher = c("hong", "kim", "park", "lee", "choi") )
job = data.frame(ttt = c("hong", "kim", "park", "lee", "choi"),
                 subject = c("math", "kor", "science", "eng", "society"))
left_join(name, job, by = c("teacher"="ttt") )
```


데이터 전처리 bind_rows()

데이터프레임 세로 합차기bind_rows()

연결할 열이름이 다르다면 아래와 같이 강제 연결할 수 있습니다. (열이 안맞으면 NA처리됩니다)

```
library(dplyr)
a <- data.frame(id = c(1, 2, 3, 4, 5),
                    test = c(60, 80, 70, 90, 85)
b \leftarrow data.frame(id = c(6, 7, 8, 9, 10),
                    test = c(70, 83, 65, 95, 80)
bind_rows(a,b) # 세로로 합치기
##
id test
   1
       60
   2 80
   3 70
   4 90
   5 85
   6 70
   7 83
   8 65
   9
       95
10 10
       80
```

문제

mpg데이터를 이용합니다.

Q01

회사별로 "suv" 자동차의 도시 및 고속도로 통합 연비 평균을 구해 내림차순으로 정렬하고, 1~10위까지 출력하세요

Q02

mpg데이터의 class는 자동차 특징에 따라 분류된 변수입니다. class별 cty평균을 구하고 높은 순으로 정렬해 출력하세요.

Q03

mpg데이터의 hwy 평균이 가장 높은 제조사 3곳을 출력하세요.

Q04

어떤 회사가 compact(경차) 를 많이 생산하는지 확인하려 합니다. class가 compact(경차) 인 제조사별 차종 수를 내림차순 정렬해 출력하세요

힌트: class가 compact인 행 데이터를 먼저 추출

mpg데이터의 if변수는 자동차 연료입니다. 아래 같은 표를 생성하세요.

fl	kind	price
С	CNG	2.35
d	diesel	2.38
e	ethanol	2.11
p	premium	2.76
r	regular	2.22

Q1

위 표를 mpg데이터에 left_join하고, 새로운 데이터를 만들어 냅니다.

그 이후에 파이프라인을 사용해서

model, fl, kind, price 데이터만 추출한 후에 앞부분 10행만 출력하세요

종합 문제

ggplot2에 존재하는 midwest데이터를 사용합니다 (미국 주 437개 지역의 인구 통계를 담고 있는 데이터 입니다)

Q1

midwest데이터를 데이터프레임으로 가져오고 구조를 확인하세요

O2

popadults 는 해당 지역의 성인 인구, poptotal 은 전체 인구를 나타냅니다. midwest 데이터에 전체 인구 대비 성년 인구 백분율(adult_of_percent) 전체 인구 대비 미성년 인구 백분율(young_of_percent) 변수를 추가하세요. 전체 인구 대비 성년 인구 백분율공식 = (성인인구/전체인구) * 100

Q3

아래 등급표에 따라 grade변수를 추가하고, 미성년인구 백분율이 가장 높은 상위 5개 county(지역), 미성년백분율, grade를 출력하세요.

Q4

popasian은 해당 지역의 아시아인 인구를 나타냅니다. '전체 인구 대비 아시아인 인구 백분율' 변수를 추가하고, 하위 10개 지역의 state(주), county(지역명), 아시아인 인구 백분율을 출력하세요.

	county	young_of_percent	grade
1	ISABELLA	51.50	large
2	MENOMINEE	50.59	large
3	ATHENS	49.32	large
4	MECOSTA	49.06	large
5	MONROE	47.36	large

종합 문제

Q5

popasian은 해당 지역의 아시아인 인구입니다.

전체 인구 대비 아시아인 인구 백분율변수를 추가하고, 하위 10개 지역의 state(주), county(지역명), 아시아인 인구 백분율을 출력하세요.

	state	county	asian_percent
1	WI	MENOMINEE	0.0000000
2	IN	BENTON	0.01059210
3	IN	CARROLL	0.01594981
4	ОН	VINTON	0.02703190
5	WI	IRON	0.03250447
6	IL	SCOTT	0.05315379
7	IN	CLAY	0.06071645
8	MI	OSCODA	0.06375925
9	ОН	PERRY	0.06654625
10	IL	PIATT	0.07074865

Chapter 6 수고하셨습니다