ROB311 Quiz 2

Hanhee Lee

March 26, 2025

Contents

1	Bod	Bode Plots		
	1.1	Bode Plots	2	
		1.1.1 Constant Gain	2	
		1.1.2 Pole or Zero at $\omega = 0$	2	
		1.1.3 Non-Zero Pole or Zero	2	
		1.1.4 Complex Conjugate Poles	2	
	1.2	Robustness Margins	2	
		1.2.1 Gain Margin	2	
		1.2.2 Phase Margin	2	
2	Rob	oustness Margins	3	
3	Roc	ot Locus, Bode, and Nyquist	4	
4	Con	ntrol Design in the Frequency Domain	5	
	4.1		E	
	4.2	Proportional Derivative (PD) Controller	E	
		4.2.1 Bode Plot	E	
	4.3	Proportional Integral (PI) Controller	6	
		4.3.1 Bode Plot	6	
		4.3.2 Design Procedure	6	
	4.4	Proportional Integral Derivative (PID) Controller	6	
		4.4.1 Design Procedure	6	
	4.5	Examples	7	
5	Los	d Controller	ç	
J	Lea	a Controller	С	

1 Bode Plots

1.1 Bode Plots

Process:

- 1.1.1 Constant Gain
- 1.1.2 Pole or Zero at $\omega = 0$
- 1.1.3 Non-Zero Pole or Zero
- 1.1.4 Complex Conjugate Poles
- 1.2 Robustness Margins

Motivation: Approximate the GM and PM from the Bode plot:

- L(s) is a strictly proper rational fn.
- L(s) has no poles in \mathbb{C}^+ (no open loop variable poles)

1.2.1 Gain Margin

Definition:

$$|L(j\omega_{gc}) = 1| \iff |L(j\omega_{gc})|_{dB} = 0$$

1.2.2 Phase Margin

Definition:

$$|L(j\omega_{gc})| = 1 \implies |L(j\omega_{gc})|_{dB} = 0$$

2 Robustness Margins

3 Root Locus, Bode, and Nyquist

4 Control Design in the Frequency Domain

4.1 Goal

Motivation:

Figure 1

Design C(s) so that the feedback loop:

- BIBO Stable: Verify using Nyquist criterion
 - $\operatorname{roots}(1 + C(s)P(s)) \subseteq \mathbb{C}^{-}$
 - -C(s)G(s) has no pole-zero cancellations in $\overline{\mathbb{C}^+}$
- Satisfies certain performance specifications: Tune using Bode plots

4.2 Proportional Derivative (PD) Controller

Motivation: Increase PM at higher frequencies.

Definition:

$$C(s) = K(T_D s + 1) \tag{1}$$

• $K, T_D > 0$

Since U(s) = C(s)E(s),

$$u(t) = \underbrace{KT_D e(t)}_{D} + \underbrace{Ke(t)}_{P} \tag{2}$$

4.2.1 Bode Plot

Notes:

$$|C(j\omega)|_{\mathrm{dB}} = 20\log|K| + 20\log|j\omega T_D + 1|$$
$$\angle C(j\omega) = \angle K + \angle(j\omega T_D + 1)$$

Figure 2

Proportional Integral (PI) Controller

Motivation: Increase the "system type" for better tracking (IMP) w/o affecting high frequencies.

Definition:

$$C(s) = K\left(1 + \frac{1}{T_I s}\right) = K \frac{T_I s + 1}{T_I s} \tag{3}$$

• $K, T_I > 0$

Since U(s) = C(s)E(s),

$$u(t) = \underbrace{Ke(t)}_{P} + \underbrace{\frac{K}{T_{I}} \int_{0}^{t} e(\tau)d\tau}_{I}$$

$$\tag{4}$$

Bode Plot 4.3.1

Notes:

Figure 3

Design Procedure 4.3.2

- 1. Choose K to meet asymptotic tracking or bandwidth (loosely increase w_{gc}) requirements (often set K=1)
- 2. Find the crossover frequency ω_{gc} of $KG(j\omega)$. Suppose we are happy w/ the PM and ω_{gc} . 3. Set $\frac{1}{T_I} \ll \omega_{gc}$. Typically want $\frac{1}{T_I}$ b/w $0.01\omega_{gc}$ and $0.1\omega_{gc}$

Proportional Integral Derivative (PID) Controller

Definition:

$$C(s) = K(T_D s + 1) \left(1 + \frac{1}{T_I s} \right) = K_p + \frac{K_I}{s} + K_D s$$
 (5)

• $K, T_I, T_D > 0$

4.4.1 Design Procedure

Process:

- 1. Design K, T_D (i.e. the PD controller) to increase the PM.
- 2. Design T_I (i.e. the PI controller) to increase system type (satisfy IMP) w/o affecting high frequencies.

Examples

Example:

- 1. Given: $G(s) = \frac{1}{j\omega(j\omega+1)}$, $C(s) = K(T_D s + 1)$ 2. Problem: Sketch Bode plots of C(s)G(s) for PD controllers:
- - $K = 1, T_D = 10 \rightarrow 20 \log |K| = 0$
 - $K = 10, T_D = 10 \rightarrow 20 \log_{1} |K| = 20$
 - Corner frequency: $\omega_c = \frac{1}{T_D} = 10^{-1}$
- 3. Solution:

Figure 4

Lead Controller 5

Motivation:

- Approximates a PD controller as $\alpha \to 0$.
- Used to add phase at a particular frequency $\omega_{\rm max}$ in order to increase the PM (decreases the % OS).
- Increases ω_{qc}

Definition:

$$C(s) = K \frac{T_s + 1}{\alpha T_s + 1} \tag{6}$$

Hanhee Lee

- K, T > 0
- $0 < \alpha < 1$

5.1 **Bode Plot**

Notes:

Figure 5

- $w_{\text{max}} = \frac{1}{\sqrt{\alpha T}}$ $\phi_{\text{max}} = \alpha \sin\left(\frac{1-\alpha}{1+\alpha}\right)$