GE2262 Business Statistics Topic 2 Basic Probability

Lecturer: Dr. Iris Yeung

Room: LAU-7239

Tel No.: 34428566

E-mail: msiris@cityu.edu.hk

Part 1

- Basic Probability Concepts
- Conditional Probability
- Counting Rules

Outline

- Basic Probability Concepts
- Conditional Probability
- Counting Rules

Experiment, Sample Space, Event

- Random Experiment
 - Is a process which results in ONE of a number of possible outcomes.
 - Random means we don't know the result of the experiment beforehand
 - Throw a die gives one of the six possible outcomes, we don't know which number shows up before we throw a die

- Sample Space (S)
 - Is the set of all possible outcomes of an experiment
 - Sample space of throwing a die is {1,2,3,4,5,6}
 - Each of the possible outcome in S is called a simple event or a basic outcome. Example: {1}, {2}, ...
- Event
 - □ Is a collection of some possible outcomes of the experiment.
 - Is a subset of the sample space
 - Examples: A={2, 4, 6}, C={1,3,5}
 - An event occurs when any one of the outcomes in the event occurs.
 - Example: when a number 4 shows up in throwing a die, event A is said to occur.

Mutually Exclusive and Collectively Exhaustive

- Events are said to be mutually exclusive if one and only one of them can occur at a time.
 - □ Throw a die example: A={2, 4, 6}, B={1,2,3}, C={1,3,5}
 - Events A and C are mutually exclusive
 - Events A and B, Events B and C are not mutually exclusive
- A list of events is said to be collectively exhaustive if it includes every possible outcome of the experiment.
 - □ Events A, B, C are collectively exhaustive
 - $[2,4,6,1,2,3,1,3,5] = \{1, 2, 3, 4, 5, 6\}$

Three Methods to Find Probability

- □ A priori classical probability method
 - Calculate the probability **objectively** based on prior or theoretical knowledge of the process
- □ Empirical method (relative frequency method)
 - Calculate the probability **objectively** based on observed data
- Subjective method
 - Determine probability based on a person's experiences, opinions, and analysis of a particular situation

Probability of an Event

 A probability, which is a numerical value, is assigned to each event to denote the chance that the event will occur

- Probability value is between 0 and 1, inclusive $0 \le P(event) \le 1$
- When P(event) = 0, that event has no chance of occurring
 - ☐ The event is called Impossible event
 - \blacksquare Example: probability of obtaining number 7 in throwing a die = 0
- When P(event) = 1, that event is sure to occur
- □ The event is called Certain event
- Example:
 - P(S)=1
 - The probability of obtaining either 1, or 2, or 3, or 4, or 5, or 6 in throwing a die =1 (the event comprises the sample space)

A priori / Theoretical Method

- Assume the outcomes are equally likely to occur.
- Use counting techniques to count the number of possible outcomes in the sample space and the event
- The probability of event A is:

$$P(A) = \frac{\text{No of possible outcomes in A}}{\text{No of possible outcomes in S}} = \frac{n(A)}{n}$$

Throw a die example
 S={1, 2, 3, 4, 5, 6}
 A={2, 4, 6}, B={1,2,3}, C={1,3,5}

$$P(A) = \frac{3}{6} = \frac{1}{2}, P(B) = \frac{3}{6} = \frac{1}{2}, P(C) = \frac{3}{6} = \frac{1}{2}$$

Empirical Method (Relative Frequency Concept of Probability)

- Repeat the experiment *n* times under the same condition.
- The empirical probability of an event is determined by the number of times the event occurred (relative frequency)

$$P(A) = \frac{\text{number of times the event occurred}}{n}$$

Example: tossing a fair coin 100 times, 58 heads are obtained.

$$P(H) = \frac{58}{100} = 0.58$$

Example: tossing a biased coin 100 times, 20 heads are obtained $P(H) = \frac{20}{100} = 0.2$

Subjective Method

- Determine the probability based on a person's experiences, opinions, and analysis of a particular situation
 - It may differ from person to person
 - □ It is useful in situations when a priori or empirical probability cannot be computed
- Example:
 - Manager A assigns a 60% probability of success to its new ad campaign
 - Manager B is less optimistic and assigns a 40% of success to the **new** ad campaign

10

Union and Intersection

■ Given events A and B in a sample space, the intersection of A and B (denoted by A AND B, AB, $A \cap B$) is the event that both A and B occur

- The union of A and B (denoted by A OR B , $A \cup B$) is the event that either one or both events occur (whole purple area)
- If A and B are mutually exclusive, one and only one of them can occur at a time, they cannot both occur and their circles do not overlap

Union and Intersection

Throw a die example:

Event $A = \{ 2, 4, 6 \}$, Event $B = \{ 1, 2, 3 \}$, $S = \{ 1, 2, 3, 4, 5, 6 \}$

Intersection

A and B =
$$A \cap B = \{2\}$$

$$P(A \text{ and B}) = P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{6}$$

Union

$$A \text{ or } B = A \cup B = \{1, 2, 3, 4, 6\}$$

$$P(A \text{ or B}) = P(A \cup B) = \frac{n(A \cup B)}{n(S)} = \frac{5}{6}$$

General Addition Rule

 If A and B are not mutually exclusive events, the probability of either event A or event B occurs is defined as

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \text{ and } B) \leftarrow Addition rule$$

If A and B are mutually exclusive events, P(A and B) =0, the addition rule is simplified as: P(A or B) = P(A) + P(B)

Throw a die example: Event $A = \{ 2, 4, 6 \}$, Event $B = \{ 1, 2, 3 \}$, $S = \{ 1, 2, 3, 4, 5, 6 \}$

A and B
$$(A \cap B) = \{2\}$$

 $P(A) = \frac{3}{6}, P(B) = \frac{3}{6}, P(A \text{ and } B) = P(A \cap B) = \frac{1}{6}$
 $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$

13

Complement Rule

- Complement of an event A (denoted A') is the set of outcomes in S but not in A
- A and A' are mutually exclusive and collectively exhaustive
- P(A or A') = P(A u A')= P(A) + P(A') =1 => P(A') =1- P(A)

- The complement rule provides a way to calculate a probability based on the probability of its complement
- Example: toss two coins and count the number of heads. What is the probability that at least one head occurs?

P(no head) = $\frac{1}{2}$ P(at least one head) = 1-P(no head) = 1- $\frac{1}{2}$ = $\frac{1}{2}$

Part 2

- Basic Probability Concepts
- Conditional Probability
- Counting Rules

Conditional Probability

 The conditional probability of event A given event B occurs, denoted by P(A|B), is defined as

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$
 with $P(B) > 0$

 Similarly, the conditional probability of event B given event A occurs, denoted by P(B|A), is defined as

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
 with $P(A) > 0$

- Example:
 - In a room, there are 5 men and 3 women (one is called Jane). If we choose 1 representative, P(Jane chosen) = 1/8.
 - □ Suppose a representative is chosen and is known to be a women, P(Jane chosen) = 1/3.
 - A = {Jane Chosen}
 - □ B = {representative is woman}
 - □ P(Jane chosen | representative is woman)= P(A | B) = $\frac{P(A \text{ and } B)}{P(B)} = \frac{1/8}{3/8} = 1/3$

14

Market Basket Analysis Example

Suppose a supermarket has the following five transactions:

Cu	stomer	Items			
	1	Bread, milk			
	2	Bread, diaper, beer, eggs		Huggies 2002700	ibeatt 1
	3	Milk, diaper, beer, coke		BLUE	LIGHT
	4	Bread, milk, diaper, beer		CAMADI	W PHISENER
	5	Bread, milk, diaper, coke			
		No of transactions containing diaper	4		_

$P(diaper) = \frac{\text{No of tr}}{}$	ransactions containing diaper No of transactions $= \frac{4}{5} = 0.8$	
	$= \frac{\text{No of transactions containing both diaper and beer}}{\text{No of transactions}}$	3 = 0.6 (support)
$P(\text{beer} \text{diagner}) = \frac{N}{N}$	$\frac{\text{fo of transactions containing both diaper and beer}}{\text{No of transactions containing diaper}} = \frac{3}{4}$	= 0.75 (confidence)
r (occi diaper) =	No of transactions containing diaper 4	· · · · · · · · · · · · · · · · · · ·
or		
$P(\text{beer} \text{diaper}) = \frac{P}{P}$	$\frac{\text{(diaper and beer)}}{\text{(diaper and beer)}} = \frac{0.6}{0.0} = 0.75$	

17

Market Basket Analysis Example

Customer	Items	14.60	
1	Bread, milk		
2	Bread, diaper, beer, eggs	Huggirs Labour	
3	Milk, diaper, beer, coke	BLUFLIGHT	
4	Bread, milk, diaper, beer	Carrier Fidenti	
5	Bread, milk, diaper, coke		
			_

	Association Report												
	Expected						Left	Right					
		Confidence	Support		Transaction		Hand of	Hand of	Rule	Rule	Rule	Rule	
Relations	(%)	(%)	(%)	Lift	Count	Rule	Rule	Rule	Item 1	Item 2	Item 3	Index	
2	60.00	100.00	20.00	1.67	1.00	Eggs ==> Beer	Eggs	Beer	Eggs	======>	Beer	1	
2	20.00	33.33	20.00	1.67	1.00	Beer ==> Eggs	Beer	Eggs	Beer	======>	Eggs	2	
2	60.00	75.00	60.00	1.25	3.00	Diaper ==> Beer	Diaper	Beer	Diaper	======>	Beer	3	
2	80.00	100.00	20.00	1.25	1.00	Eggs ==> Bread	Eggs	Bread	Eggs	======>	Bread	10	
2	40.00	50.00	40.00	1.25	2.00	Milk ==> Coke	Milk	Coke	Milk	======>	Coke	5	
2	40.00	50.00	40.00	1.25	2.00	Diaper ==> Coke	Diaper	Coke	Diaper	======>	Coke	7	
2	80.00	100.00	60.00	1.25	3.00	Beer ==> Diaper	Beer	Diaper	Beer	======>	Diaper	4	
2	80.00	100.00	40.00	1.25	2.00	Coke ==> Diaper	Coke	Diaper	Coke	======>	Diaper	8	
2	80.00	100.00	20.00	1.25	1.00	Eggs ==> Diaper	Eggs	Diaper	Eggs	======>	Diaper	9	
2	80.00	100.00	40.00	1.25	2.00	Coke ==> Milk	Coke	Milk	Coke	======>	Milk	6	
2	80.00	75.00	60.00	0.94	3.00	Milk ==> Bread	Milk	Bread	Milk	======>	Bread	13	
2	80.00	75.00	60.00	0.94	3.00	Diaper ==> Bread	Diaper	r Bread	Diaper	======>	Bread	15	
2	80.00	75.00	60.00	0.94	3.00	Milk ==> Diaper	Milk	Diaper	Milk	======>	Diaper	11	
2	80.00	75.00	60.00	0.94	3.00	Bread ==> Diape	Bread	Diaper	Bread	======>	Diaper	16	
2	80.00	75.00	60.00	0.94	3.00	Diaper ==> Milk	Diaper	Milk	Diaper	======>	Milk	12	
2	80.00	75.00	60.00	0.94	3.00	Bread ==> Milk	Bread	Milk	Bread	======>	Milk	14	
2	60.00	50.00	40.00	0.83	2.00	Milk ==> Beer	Milk	Beer	Milk	======>	Beer	17	
2	60.00	50.00	40.00	0.83	2.00	Bread ==> Beer	Bread	Beer	Bread	======>	Beer	18	
2	60.00	50.00	20.00	0.83	1.00	Coke ==> Beer	Coke	Beer	Coke	======>	Beer	19	
2	80.00	66.67	40.00	0.83	2.00	Beer ==> Bread	Beer	Bread	Beer	======>	Bread	21	
2	40.00	33.33	20.00	0.83	1.00	Beer ==> Coke	Beer	Coke	Beer	======>	Coke	22	
2	80.00	66.67	40.00	0.83	2.00	Beer ==> Milk	Beer	Milk	Beer	======>	Milk	20	
2	80.00	50.00	20.00	0.63	1.00	Coke ==> Bread	Coke	Bread	Coke	======>	Bread	23	

Analysts are interested in cases with high support (joint probability) or high confidence (conditional probability) or both.

Multiplication Rule and Statistical Independence

■ P(A|B), P(B|A) are called Conditional probability

- P(A), P(B) are called Marginal probability probability of only 1 event occurring
- P(A and B) is called Joint probability probability of 2 or more events occurring together
- Multiplication rule
 - \square P(A and B) = P(A|B)P(B) = P(B|A)P(A)
- Statistical independence
 - Two events, A and B, are independent if the occurrence of event A does not affect the probability of occurrence of event B, or vice versa
 - P(A|B) = P(A), or
 - P(B|A) =P(B), or
 - P(A and B) = P(A)P(B)

Purchase Example – Calculate Marginal Probability

A sample of 1,000 households were asked about their intentions to purchase a new product sometime during the next 12 months. The same 1,000 households were surveyed 12 months later to see whether they purchased the product. The results are:

Planned to	Actually Purchased				
Purchase	Yes	No	Total		
Yes	200	50	250		
<u>No</u>	<u>100</u>	<u>650</u>	<u>750</u>		
Total	300	700	1000		

- What is the probability of selecting a household that planned to purchase a new product in the next 12 months?
 - P(planned to purchase) = 250/1000 = 0.25
- What is the probability of selecting a household that actually purchased the product in the next 12 months?
 - P(actually purchased) = 300/1000 = 0.3

Purchase Example – Calculate Joint Probability

 A sample of 1,000 households were asked about their intentions to purchase a new product sometime during the next 12 months. The same 1,000 households were surveyed 12 months later to see whether they purchased the product. The results are:

Planned to	Actually F		
Purchase	Yes	No	Total
Yes	200	50	250
No	100	650	750
Total	300	700	1000

What is the probability of selecting a household that planned to purchase a new product and actually purchased?

P(planned to purchase and actually purchased)

- $= \frac{\text{No of households that planned to purchase and actually purchased}}{\text{Total number of households}} = \frac{200}{1000} = 0.2$
- What is the probability of selecting a household that planned to purchase a new product and actually did not purchase?

P(planned to purchase and actually did not purchase)

$$=\frac{\text{No of households that planned to purchase and actually did not purchase}}{\text{Total number of households}} = \frac{50}{1000} = 0.05$$

21

23

Purchase Example – Addition Rule

A sample of 1,000 households were asked about their intentions to purchase a new product sometime during the next 12 months. The same 1,000 households were surveyed 12 months later to see whether they purchased the product. The results are:

Planned to	Actually F		
Purchase	Yes	No	Total
Yes	200	50	250
No	100	650	750
Total	300	700	1000

P(planned to purchase) = 250/1000 = 0.25

P(actually purchased) = 300/1000 = 0.3

P(planned to purchase and actually purchased) = $\frac{200}{1000}$ = 0.2

P(Planned to purchase or actually purchased)

= P(Planned to purchase) + P(Actually purchased) -

P(Planned to purchase and actually purchased)

= 0.25 + 0.30 - 0.20 = 0.35

22

Purchase Example – Conditional Probability and Statistical Independence

A sample of 1,000 households were asked about their intentions to purchase a new product sometime during the next 12 months. The same 1,000 households were surveyed 12 months later to see whether they purchased the product. The results are:

Planned to	Actually F	Actually Purchased			
Purchase	Yes	No	Total		
Yes	200	50	250		
No	100	650	750		
Total	300	700	1000		

P(planned to purchase) = 250/1000 = 0.25

P(actually purchase) = 300/1000 = 0.3

P(planned to purchase and actually purchased) = $\frac{200}{1000}$ = 0.2

P(planned to purchase)* P(actually purchase) = 0.25*0.3 = 0.075

P(Actually purchased | Planned to purchase)

$$= \frac{P(Planned to purchase and actually purchased)}{P(Planned to purchase)} = \frac{0.2}{0.25} = 0.80$$

As (1) P(actually purchased | planned to purchase) \neq P(actually purchased)

(2) P(planned to purchase and actually purchased) ≠ P(planned to purchase) * P(actually purchased),

"Planned to purchase" and "Actually purchase" are not statistically independent.

Purchase Example –Law of Total Probability

If B₁ and B₂ is a partition of the sample space S, then for any event A,

$$P(A) = P(A \text{ and } B_1) + P(A \text{ and } B_2)$$

 A sample of 1,000 households were asked about their intentions to purchase a new product sometime during the next 12 months. The same 1,000 households were surveyed 12 months later to see whether they purchased the product. The results are:

Planned to	Actually F		
Purchase	Yes	No	Total
Yes	200	50	250
No	100	650	750
Total	300	700	1000

Let A = planned to purchase, B_1 = actually purchase, B_2 = did not actually purchase P(planned to purchase and actually purchased) = 0.2

P(planned to purchase and actually did not purchase) = 0.05

P(Planned to purchase)

= P(Planned to purchase and actually purchased)

+P(Planned to purchase and did not actually purchase)

= 0.2 + 0.05 = 0.25

Worker Example

A company is considering changing its starting business hour from 8am to 7:30am. The company has 1200 workers, including 450 office and 750 production workers. A census shows that 370 production workers favor the change, and a total of 715 office and production workers favor the change. Is worker type and favor change independent?

	Favor c		
Worker type	Favor	Not favor	Total
Office	?	?	450
Production	370	?	750
Total	715	?	1200

25

Worker Example

Is worker type and favor change independent?

Favor change?							
Worker type	Favor	Not favor	Total				
Office	345	105	450				
Production	<u>370</u>	<u>380</u>	<u>750</u>				
Total	715	485	1200				

P(favor change) = $\frac{715}{1200}$ = 0.596

P(favor change | office worker) = $\frac{P(office\ worker\ and\ favor)}{P(office\ worker)} = \frac{345/1200}{450/1200} = \frac{0.767}{100}$

P(favor change | production worker)

 $=\frac{P(production\ worker\ and\ favor)}{P(production\ worker)} = \frac{370/1200}{750/1200} = 0.4933$

P(Production workers and Favor change)

 $=\frac{370}{1200}=0.3083$

 $P(Production\ workers) \times P(Favor\ change)$

$$=\frac{750}{1200}\times\frac{715}{1200}=0.3724$$

As (1) P(favor change | production worker) ≠ P(favor change)

(2) P(Production workers and Favor change) \neq P(Production workers)×P(Favor change),

"Worker type" and "favor change" are not statistically independent.

26

Part 3

- Basic Probability Concepts
- Conditional Probability
- Counting Rules

Counting Rule 1

- For a sample space with a large number of possible outcomes, counting rules can be used to compute probabilities
- Counting rule 1:
 - If any one of k different mutually exclusive and collectively exhaustive events can occur on each of n trials, the number of possible outcomes is equal to

k'

■ Example: If you roll a fair die 3 times then there are 6^3 = 216 possible outcomes

27

28

Counting Rule 2

■ If there are k_1 events on the first trial, k_2 events on the second trial, ... and k_n events on the n^{th} trial, the number of possible outcomes is

$$(k_1)(k_2)^{....}(k_n)$$

- Example: You want to go to a park, eat at a restaurant, and see a movie on a holiday. There are 3 parks, 4 restaurants, and 6 movie choices. How many different possible choices are there for you?
 - □ Answer: (3)(4)(6) = 72 different choices

Counting Rule 3

■ The number of ways that n items can be arranged in order is $n! = (n)(n-1)^{-1}(1)$

where n! is called n factorial

- Example: You have five books to put on a bookshelf. How many different ways can these books be placed on the shelf?
 - □ Answer: 5! = (5)(4)(3)(2)(1) = 120 different possibilities

29

30

Counting Rule 4

Permutations: The number of ways of arranging x objects selected from n objects in order is

$${}_{n}P_{x} = n(n-1)...(n-x+1)$$

$$= \frac{n(n-1)...(n-x+1)(n-x)(n-x-1)...1}{(n-x)(n-x-1)...1}$$

$$= \frac{n!}{(n-x)!}$$

- Example: You have five books and are going to put three on a bookshelf. How many different ways can the books be ordered on the bookshelf?
 - Answer: ${}_{5}P_{3} = \frac{5!}{(5-3)!} = \frac{120}{2} = 60$ different ways

Counting Rule 5

 Combinations: The number of ways of selecting x objects from n objects, irrespective of order, is

$$_{n}C_{x}=\frac{n!}{x!(n-x)!}$$

- Note that $_{n}C_{x}(x!) = _{n}P_{x}$
- **Example:** You have five books and are going to select three to read. How many different combinations are there, ignoring the order in which they are selected?
 - Answer: ${}_{5}C_{3} = \frac{5!}{3!(5-3)!} = \frac{120}{(6)(2)} = 10$ different combinations