Objective Questions

Question 1.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

A unit vector in the direction of the vector $\vec{a} = \left(2\,\hat{i} - 3\,\hat{j} + 6\hat{k}\right)$ is

A.
$$\left(\hat{\mathbf{i}} - \frac{3}{2}\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right)$$

$$B.\left(\frac{2}{5}\hat{\mathbf{i}} - \frac{3}{5}\hat{\mathbf{j}} + \frac{6}{5}\hat{\mathbf{k}}\right)$$

$$C.\left(\frac{2}{7}\hat{\mathbf{i}} - \frac{3}{7}\hat{\mathbf{j}} + \frac{6}{7}\hat{\mathbf{k}}\right)$$

D. none of these

Answer:

Tip – A vector in the direction of another vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is given by $\lambda(a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}})$ and the unit vector is given by $\frac{\lambda(a\hat{\mathbf{i}}+b\hat{\mathbf{j}}+c\hat{\mathbf{k}})}{\sqrt{(a\lambda)^2+(b\lambda)^2+(c\lambda)^2}}$

So, a vector parallel to $\vec{a}=2\hat{\imath}-3\hat{\jmath}+6\hat{k}$ is given by $\lambda(2\hat{\imath}-3\hat{\jmath}+6\hat{k})$ where λ is an arbitrary constant.

Now,
$$|\vec{a}| = \sqrt{2^2 + 3^2 + 6^2} = 7$$

Hence, the required unit vector

$$= \frac{\lambda(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})}{\sqrt{(2\lambda)^2 + (3\lambda)^2 + (6\lambda)^2}}$$

$$= \frac{\lambda(2\hat{1} - 3\hat{j} + 6\hat{k})}{\lambda\sqrt{2^2 + 3^2 + 6^2}}$$

$$=\frac{2}{7}\hat{i}-\frac{3}{7}\hat{j}+\frac{6}{7}\hat{k}$$

Question 2.

Mark $(\sqrt{\ })$ against the correct answer in the following:

A unit vector in the direction of the vector $\vec{a} = \left(2\,\hat{i} - 3\,\hat{j} + 6\hat{k}\right)$ is

$$A.\left(\hat{\mathbf{i}} - \frac{3}{2}\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right)$$

$$\mathsf{B.}\left(\frac{2}{5}\hat{\mathbf{i}} - \frac{3}{5}\hat{\mathbf{j}} + \frac{6}{5}\hat{\mathbf{k}}\right)$$

$$C.\left(\frac{2}{7}\hat{\mathbf{i}} - \frac{3}{7}\hat{\mathbf{j}} + \frac{6}{7}\hat{\mathbf{k}}\right)$$

D. none of these

Answer:

Given vector $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$

Property : The unit vector corresponding to the vector $a\hat{\bf i} + b\hat{\bf j} + c\hat{\bf k} = \frac{a\hat{\bf i} + b\hat{\bf j} + c\hat{\bf k}}{\sqrt{a^2 + b^2 + c^2}}$

Therefore the unit vector corresponding to the vector $\vec{a} = 2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}$

is

$$\hat{a} = \frac{2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}}{\sqrt{2^2 + (-3)^2 + 6^2}}$$

$$\hat{a} = \frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{\sqrt{4 + 9 + 16}}$$

$$\hat{a} = \frac{2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}}{\sqrt{49}}$$

$$\hat{a} = \frac{2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}}{7}$$

$$\widehat{a} = \frac{2}{7}\widehat{\mathbf{1}} - \frac{3}{7}\widehat{\mathbf{j}} + \frac{6}{7}\widehat{\mathbf{k}}$$

Question 3.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3\,\hat{i}+4\,\hat{j}$ and $\vec{b}=-5\,\hat{i}+7\,\hat{j}$. The area of the triangle is

- A. 41 sq units
- B. 37 sq units
- C. $\frac{41}{2}$ sq units
- D. none of these

Answer:

Given - Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3\hat{\imath}+4\hat{\jmath}$ and $\vec{b}=-5\hat{\imath}+7\hat{\jmath}$

To find – Area of the triangle

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Area of triangle $=\frac{1}{2}\left|\vec{a}\times\vec{b}\right|$ and magnitude of a vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

Hence,

$$\vec{a} \times \vec{b}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0 \end{vmatrix}$$

$$=\hat{k}(21+20)$$

$$=41\hat{k}$$

i.e. the area of the parallelogram = $\frac{41}{2}$ sq. units

Question 4.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

A unit vector in the direction of the vector $\vec{a} = \left(2\,\hat{i} - 3\,\hat{j} + 6\hat{k}\right)$ is

A.
$$\left(\hat{\mathbf{i}} - \frac{3}{2}\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right)$$

$$B.\left(\frac{2}{5}\hat{\mathbf{i}} - \frac{3}{5}\hat{\mathbf{j}} + \frac{6}{5}\hat{\mathbf{k}}\right)$$

$$C.\left(\frac{2}{7}\hat{\mathbf{i}} - \frac{3}{7}\hat{\mathbf{j}} + \frac{6}{7}\hat{\mathbf{k}}\right)$$

D. none of these

Answer:

Tip – A vector in the direction of another vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is given by $\lambda(a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}})$ and the unit vector is given by $\frac{\lambda(a\hat{\mathbf{i}}+b\hat{\mathbf{j}}+c\hat{\mathbf{k}})}{\sqrt{(a\lambda)^2+(b\lambda)^2+(c\lambda)^2}}$

So, a vector parallel to $\vec{a}=2\hat{\imath}-3\hat{\jmath}+6\hat{k}$ is given by $\lambda(2\hat{\imath}-3\hat{\jmath}+6\hat{k})$ where λ is an arbitrary constant.

Now,
$$|\vec{a}| = \sqrt{2^2 + 3^2 + 6^2} = 7$$

Hence, the required unit vector

$$= \frac{\lambda (2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})}{\sqrt{(2\lambda)^2 + (3\lambda)^2 + (6\lambda)^2}}$$

$$= \frac{\lambda (2\hat{\imath} - 3\hat{\jmath} + 6\hat{k})}{\lambda \sqrt{2^2 + 3^2 + 6^2}}$$

$$=\frac{2}{7}\hat{1}-\frac{3}{7}\hat{j}+\frac{6}{7}\hat{k}$$

Question 5.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3\,\hat{i}+4\,\hat{j}$ and $\vec{b}=-5\,\hat{i}+7\,\hat{j}$. The area of the triangle is

- A. 41 sq units
- B. 37 sq units
- C. $\frac{41}{2}$ sq units
- D. none of these

Answer:

Given - Two adjacent sides of a triangle are represented by the vectors $\vec{a} = 3\hat{\imath} + 4\hat{\jmath}$ and $\vec{b} = -5\hat{\imath} + 7\hat{\jmath}$

To find – Area of the triangle

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Area of triangle
$$=\frac{1}{2}\left|\vec{a}\times\vec{b}\right|$$
 and magnitude of a vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

Hence,

$$\vec{a} \times \vec{b}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0 \end{vmatrix}$$

$$= \hat{k}(21+20)$$

$$=41\hat{k}$$

i.e. the area of the parallelogram = $\frac{41}{2}$ sq. units

Question 6.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The direction cosines of the vector $\vec{a} = \left(-2\,\hat{i} + \hat{j} - 5\hat{k}\right)$ are

B.
$$\frac{1}{3}$$
, $\frac{-1}{6}$, $\frac{-5}{6}$

C.
$$\frac{2}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{5}{\sqrt{30}}$

D.
$$\frac{-2}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$

Answer:

Formula to be used – The direction cosines of a vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $-2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ is given by

$$\left(\frac{-2}{\sqrt{2^2+1^2+5^2}}, \frac{1}{\sqrt{2^2+1^2+5^2}}, \frac{-5}{\sqrt{2^2+1^2+5^2}}\right)$$

$$=\frac{-2}{\sqrt{30}},\frac{1}{\sqrt{30}},\frac{-5}{\sqrt{30}}$$

Question 7.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The direction cosines of the vector $\vec{a} = \left(-2\,\hat{i} + \hat{j} - 5\hat{k}\right)$ are

B.
$$\frac{1}{3}, \frac{-1}{6}, \frac{-5}{6}$$

C.
$$\frac{2}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{5}{\sqrt{30}}$

D.
$$\frac{-2}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$

Answer:

Formula to be used – The direction cosines of a vector $a\hat{\bf i}+b\hat{\bf j}+c\hat{\bf k}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $-2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ is given by

$$\left(\frac{-2}{\sqrt{2^2+1^2+5^2}}, \frac{1}{\sqrt{2^2+1^2+5^2}}, \frac{-5}{\sqrt{2^2+1^2+5^2}}\right)$$

$$=\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$$

Question 8.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The direction cosines of the vector $\vec{a} = \left(-2\,\hat{i} + \hat{j} - 5\hat{k}\right)$ are

B.
$$\frac{1}{3}, \frac{-1}{6}, \frac{-5}{6}$$

C.
$$\frac{2}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{5}{\sqrt{30}}$

D.
$$\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$$

Answer:

Given vector $\vec{\mathbf{r}} = -2\hat{\imath} + 1\hat{\jmath} - 5\hat{k}$

Property: for the vector $\hat{\mathbf{i}} + \mathbf{b}\hat{\mathbf{j}} + c\hat{\mathbf{k}}$,

- 1) Direction ratios dr's are a,b,c
- 2) Direction cosines dc's are $\frac{a}{\sqrt{a^2+b^2+c^2}}$, $\frac{b}{\sqrt{a^2+b^2+c^2}}$, $\frac{c}{\sqrt{a^2+b^2+c^2}}$

Therefore the dc's of the vector $-2\hat{\mathbf{i}} + 1\hat{\mathbf{j}} - 5\hat{\mathbf{k}} = \frac{-2}{\sqrt{(-2)^2 + 1^2 + (-5)^2}} \cdot \frac{1}{\sqrt{(-2)^2 + 1^2 + (-5)^2}} \cdot \frac{-5}{\sqrt{(-2)^2 + 1^2 + (-5)^2}}$

$$=\frac{-2}{\sqrt{4+1+25}'}\frac{1}{\sqrt{4+1+25}'}\frac{-5}{\sqrt{4+1+25}}$$

$$= \frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$$

Question 9.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If A(1, 2, -3) and B(-1, -2, 1) are the end points of a vector \overrightarrow{AB} then the direction cosines of \overrightarrow{AB} are

B.
$$\frac{-1}{2}$$
, -1 , 1

c.
$$\frac{-1}{3}$$
, $\frac{-2}{3}$, $\frac{2}{3}$

D. none of these

Answer:

Given A(1,2,-3) and B(-1,-2,1)

Property: The position vector of the of the vector joining two points (x_1,y_1,z_1) and (x_2,y_2,z_2) is $(x_2-x_1)\hat{i}+(y_2-y_1)\hat{j}+(z_2-z_1)\hat{k}$

So, the position vector of the line joining A and B is

$$\overrightarrow{AB} = (-1 - 1)\hat{i} + (-2 - 2)\hat{j} + [1 - (-1)]\hat{k}$$

$$\overrightarrow{AB} = -2\hat{\imath} - 4\hat{\jmath} + 4\hat{k}$$

Property: for the vector $\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$, Direction cosines dc's are $\frac{a}{\sqrt{a^2+b^2+c^2}}$, $\frac{b}{\sqrt{a^2+b^2+c^2}}$, $\frac{c}{\sqrt{a^2+b^2+c^2}}$

Therefore the Dc's of the vector $\overrightarrow{AB} = \frac{-2}{\sqrt{(-2)^2 + (-4)^2 + 4^2}}, \frac{-4}{\sqrt{(-2)^2 + (-4)^2 + 4^2}}, \frac{4}{\sqrt{(-2)^2 + (-4)^2 + 4^2}}$

$$=\frac{-2}{\sqrt{4+16+16'}}\frac{-4}{\sqrt{4+16+16'}}\frac{4}{\sqrt{4+16+16}}$$

$$=\frac{-2}{\sqrt{36}}, \frac{-4}{\sqrt{36}}, \frac{4}{\sqrt{36}}$$

$$=-\frac{2}{6},-\frac{4}{6},\frac{4}{6}$$

$$=-\frac{1}{3},-\frac{2}{3},\frac{2}{3}$$

Question 10.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If A(1, 2, -3) and B(-1, -2, 1) are the end points of a vector \overrightarrow{AB} then the direction cosines of \overrightarrow{AB} are

B.
$$\frac{-1}{2}$$
, -1 , 1

c.
$$\frac{-1}{3}$$
, $\frac{-2}{3}$, $\frac{2}{3}$

D. none of these

Answer:

Given - A(1, 2, -3) and B(-1, -2, 1) are the end points of a vector \overrightarrow{AB}

Tip – If P(a₁,b₁,c₁) and Q(a₂,b₂,c₂) be two points then the vector \overrightarrow{PQ} is represented by $(a_2 - a_1)\hat{i} + (b_2 - b_1)\hat{j} + (c_2 - c_1)\hat{k}$

Hence,
$$\overrightarrow{AB} = (-1-1)\hat{i} + (-2-2)\hat{j} + (1+3)\hat{k} = -2\hat{i} - 4\hat{j} + 4\hat{k}$$

Formula to be used – The direction cosines of a vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $-2\hat{\imath}-4\hat{\jmath}+4\hat{k}$ is given by

$$\left(\frac{-2}{\sqrt{2^2+4^2+4^2}}, \frac{-4}{\sqrt{2^2+4^2+4^2}}, \frac{4}{\sqrt{2^2+4^2+4^2}}\right)$$

$$=\left(\frac{-2}{6},\frac{-4}{6},\frac{4}{6}\right)$$

$$=\frac{-1}{3},\frac{-2}{3},\frac{2}{3}$$

Question 11.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If A(1, 2, -3) and B(-1, -2, 1) are the end points of a vector \overrightarrow{AB} then the direction cosines of \overrightarrow{AB} are

B.
$$\frac{-1}{2}$$
, -1,1

c.
$$\frac{-1}{3}$$
, $\frac{-2}{3}$, $\frac{2}{3}$

D. none of these

Answer:

Given - A(1, 2, -3) and B(-1, -2, 1) are the end points of a vector \overrightarrow{AB}

Tip – If P(a₁,b₁,c₁) and Q(a₂,b₂,c₂) be two points then the vector \overrightarrow{PQ} is represented by $(a_2-a_1)\hat{i}+(b_2-b_1)\hat{j}+(c_2-c_1)\hat{k}$

Hence,
$$\overrightarrow{AB} = (-1-1)\hat{i} + (-2-2)\hat{j} + (1+3)\hat{k} = -2\hat{i} - 4\hat{j} + 4\hat{k}$$

Formula to be used – The direction cosines of a vector $a\hat{\bf i}+b\hat{\bf j}+c\hat{\bf k}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $-2\hat{\mathbf{1}}-4\hat{\mathbf{j}}+4\hat{\mathbf{k}}$ is given by

$$\left(\frac{-2}{\sqrt{2^2+4^2+4^2}}, \frac{-4}{\sqrt{2^2+4^2+4^2}}, \frac{4}{\sqrt{2^2+4^2+4^2}}\right)$$

$$=\left(\frac{-2}{6},\frac{-4}{6},\frac{4}{6}\right)$$

$$=\frac{-1}{3},\frac{-2}{3},\frac{2}{3}$$

Question 12.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If a vector makes angle α , β and γ with the x-axis, y-axis and z-axis respectively then the value of $(\sin^2\alpha + \sin^2\beta + \sin^2\gamma)$ is

- A. 1
- B. 2
- C. 0
- D. 3

Answer:

Given - A vector makes angle α , β and γ with the x-axis, y-axis and z-axis respectively.

To Find - $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$

Formula to be used – $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$

Hence,

$$\sin^2\alpha + \sin^2\beta + \sin^2\gamma$$

$$=(1-\cos^2\alpha) + (1-\cos^2\beta) + (1-\cos^2\gamma)$$

$$= 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)$$

- =3-1
- =2

Question 13.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If a vector makes angle α , β and γ with the x-axis, y-axis and z-axis respectively then the value of $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$ is

- A. 1
- B. 2
- C. 0
- D. 3

Answer:

Given - A vector makes angle α , β and γ with the x-axis, y-axis and z-axis respectively.

To Find -
$$(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$$

Formula to be used - $\cos^2 \alpha + \cos^2 \beta + \cos^2 v = 1$

Hence,

$$\sin^2\alpha + \sin^2\beta + \sin^2\gamma$$

$$=(1-\cos^2\alpha) + (1-\cos^2\beta) + (1-\cos^2\gamma)$$

$$= 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)$$

=3-1

=2

Question 14.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If a vector makes angle α , β and γ with the x-axis, y-axis and z-axis respectively then the value of $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$ is

- A. 1
- B. 2
- C. 0
- D. 3

Answer:

Given α , β and γ are the angles made by the vector with X,Y and z axes respectively

 \Rightarrow cos α , cos β , cos γ are the direction cosines.

As we know that if $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosines , then the relation between them is $\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$

We also know that $\cos^2\theta = 1 - \sin^2\theta$

So we can write $(1 - \sin^2 \alpha) + (1 - \sin^2 \beta) + (1 - \sin^2 \gamma) = 1$

$$\Rightarrow 3 - (\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma) = 1$$

$$\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$$

Question 15.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The vector $(\cos \alpha \cos \beta)\hat{i} + (\cos \alpha \cos \beta)\hat{j} + (\sin \alpha)\hat{k}$ is a

A. null vector

B. unit vector

C. a constant vector

D. none of these

Answer:

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

A unit vector is a vector whose magnitude = 1.

Formula to be used $-\sin^2\theta + \cos^2\theta = 1$

Hence, magnitude of $(\cos\alpha\cos\beta)\hat{i} + (\cos\alpha\sin\beta)\hat{j} + (\sin\alpha)\hat{k}$ will be given by $\sqrt{(\cos\alpha\cos\beta)^2 + (\cos\alpha\sin\beta)^2 + (\sin\alpha)^2}$

$$= \sqrt{\cos^2\alpha(\cos^2\beta + \sin^2\beta) + \sin^2\alpha}$$

$$=\sqrt{\cos^2\alpha+\sin^2\alpha}$$

= 1 i.e a unit vector

Question 16.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The vector $(\cos\alpha\cos\beta)\hat{i}+(\cos\alpha\cos\beta)\hat{j}+(\sin\,\alpha)\hat{k}$ is a

A. null vector

B. unit vector

C. a constant vector

D. none of these

Answer:

Given vector

 $\cos \alpha \cos \beta \hat{i} + \cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{k}$

UNIT VECTOR: the vector with magnitude as 1.

Property: The magnitude of the vector $\mathbf{a}\hat{\mathbf{i}} + \mathbf{b}\hat{\mathbf{j}} + c\hat{\mathbf{k}} = \sqrt{a^2 + b^2 + c^2}$

The magnitude of the given vector is $\sqrt{(\cos\alpha\cos\beta)^2 + (\cos\alpha\sin\beta)^2 + \sin^2\alpha}$

$$= \sqrt{\cos^2 \alpha (\cos^2 \beta + \sin^2 \beta) + \sin^2 \alpha}$$

$$=\sqrt{\cos^2\alpha + \sin^2\alpha}$$

=1

As the magnitude of the given vector is 1, it is a UNIT VECTOR.

Question 17.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The vector $(\cos\alpha\cos\beta)\hat{i} + (\cos\alpha\cos\beta)\hat{j} + (\sin\alpha)\hat{k}$ is a

- A. null vector
- B. unit vector
- C. a constant vector
- D. none of these

Answer:

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

A unit vector is a vector whose magnitude = 1.

Formula to be used $-\sin^2\theta + \cos^2\theta = 1$

Hence, magnitude of $(\cos\alpha\cos\beta)\hat{\imath} + (\cos\alpha\sin\beta)\hat{\jmath} + (\sin\alpha)\hat{k}$ will be given by $\sqrt{(\cos\alpha\cos\beta)^2 + (\cos\alpha\sin\beta)^2 + (\sin\alpha)^2}$

$$= \sqrt{\cos^2\alpha(\cos^2\beta + \sin^2\beta) + \sin^2\alpha}$$

$$=\sqrt{\cos^2\alpha+\sin^2\alpha}$$

= 1 i.e a unit vector

Question 18.

Mark $(\sqrt{\ })$ against the correct answer in the following:

What is the angle which the vector $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2}\,\hat{k})$ makes with the z-axis?

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{6}$
- D. $\frac{2\pi}{3}$

Answer:

Given vector is $1\hat{i} + 1\hat{j} + \sqrt{2}\hat{k}$

Property: for the vector $\hat{\bf i} + b\hat{\bf j} + c\hat{\bf k}$, Direction cosines dc's are $\frac{a}{\sqrt{a^2+b^2+c^2}}$, $\frac{b}{\sqrt{a^2+b^2+c^2}}$, $\frac{c}{\sqrt{a^2+b^2+c^2}}$

Therefore the dc's of the given vector is $\frac{1}{\sqrt{1^2+1^2+\sqrt{2}^2}}$, $\frac{1}{\sqrt{1^2+1^2+\sqrt{2}^2}}$, $\frac{\sqrt{2}}{\sqrt{1^2+1^2+\sqrt{2}^2}}$

$$=\frac{1}{\sqrt{1+1+2}},\frac{1}{\sqrt{1+1+2}},\frac{\sqrt{2}}{\sqrt{1+1+2}}$$

$$=\frac{1}{\sqrt{4}},\frac{1}{\sqrt{4}},\frac{\sqrt{2}}{\sqrt{4}}$$

$$=\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}}$$

Let the angle made by the vector with the Z axis be $\boldsymbol{\gamma}.$

we got that the cosine of the angle γ is $\frac{1}{\sqrt{2}}$

$$\Rightarrow \cos \gamma = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos \gamma = \cos \left(\frac{\pi}{4}\right)$$

$$\Rightarrow \gamma = \frac{\pi}{4}$$

Question 19.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

What is the angle which the vector $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \sqrt{2}\,\hat{\mathbf{k}})$ makes with the z-axis?

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$
- c. $\frac{\pi}{6}$
- D. $\frac{2\pi}{3}$

Answer:

Formula to be used – The direction cosines of a vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $\hat{\mathbf{1}}+\hat{\mathbf{j}}+\sqrt{2}\hat{\mathbf{k}}$ is given by

$$\left(\frac{1}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}, \frac{1}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}, \frac{\sqrt{2}}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}\right)$$

$$=\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}$$

$$=\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}}$$

The direction cosine of z-axis = $\frac{1}{\sqrt{2}}$ i.e. $\cos \theta = \frac{1}{\sqrt{2}}$ where θ is the angle the vector makes with the z-axis.

$$\therefore \theta = \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$$

Question 20.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

What is the angle which the vector $(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\sqrt{2}\,\hat{\mathbf{k}})$ makes with the z-axis?

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{6}$
- D. $\frac{2\pi}{3}$

Answer:

Formula to be used – The direction cosines of a vector $a\hat{\bf i}+b\hat{\bf j}+c\hat{\bf k}$ is given by $\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}.$

Hence, the direction cosines of the vector $\hat{\mathbf{1}}+\hat{\mathbf{j}}+\sqrt{2}\hat{\mathbf{k}}$ is given by

$$\left(\frac{1}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}, \frac{1}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}, \frac{\sqrt{2}}{\sqrt{1^2+1^2+\left(\sqrt{2}\right)^2}}\right)$$

$$=\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}$$

$$=\,\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}}$$

The direction cosine of z-axis = $\frac{1}{\sqrt{2}}$ i.e. $\cos \theta = \frac{1}{\sqrt{2}}$ where θ is the angle the vector makes with the z-axis.

$$\therefore \theta = \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$$

Question 21.

Mark $(\sqrt{\ })$ against the correct answer in the following:

if \vec{a} and \vec{b} are vectors such that $\left|\vec{a}\right|=\sqrt{3}$, $\left|\vec{b}\right|=2$ and $\vec{a}\cdot\vec{b}=\sqrt{6}$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer:

Given
$$|\vec{a}| = \sqrt{3}$$
, $|\vec{b}| = 2$

And
$$\vec{a} \cdot \vec{b} = \sqrt{6}$$

Let angle between the vectors \vec{a} and \vec{b} be θ

Using the dot product property of the vectors,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Substituting the given values in the equation,

$$\sqrt{6} = \sqrt{3} \times 2 \times \cos \theta$$

$$\Rightarrow \cos\theta = \frac{\sqrt{6}}{\sqrt{3} \times 2}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Question 22.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

f \vec{a} and \vec{b} are vectors such that $\left|\vec{a}\right|=\sqrt{3}$, $\left|\vec{b}\right|=2$ and $\vec{a}\cdot\vec{b}=\sqrt{6}$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer:

Given - \vec{a} and \vec{b} are vectors such that $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Hence, $\sqrt{6} = 2\sqrt{3}\cos\theta$ i.e. $\cos\theta = \frac{1}{\sqrt{2}}$ $\therefore \theta = \frac{\pi}{4}$

Question 23.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

f \vec{a} and \vec{b} are vectors such that $\left|\vec{a}\right|=\sqrt{3}$, $\left|\vec{b}\right|=2$ and $\vec{a}\cdot\vec{b}=\sqrt{6}$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer:

Given $-\vec{a}$ and \vec{b} are vectors such that $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Hence, $\sqrt{6} = 2\sqrt{3}\cos\theta$ i.e. $\cos\theta = \frac{1}{\sqrt{2}}$ $\therefore \theta = \frac{\pi}{4}$

Question 24.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If \vec{a} and \vec{b} are two vectors such that $\left|\vec{a}\right|=\left|\vec{b}\right|=\sqrt{2}$ and $\vec{a}\cdot\vec{b}=-1$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$

D.
$$\frac{2\pi}{3}$$

Answer:

Given

Given
$$|\vec{a}| = \sqrt{2}$$
, $|\vec{b}| = \sqrt{2}$

And
$$\vec{a} \cdot \vec{b} = -1$$

Let angle between the vectors \vec{a} and \vec{b} be θ

Using the dot product property of the vectors,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Substituting the given values in the equation,

$$-1 = \sqrt{2} \times \sqrt{2} \times \cos \theta$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow$$
 $-\cos\theta = \frac{1}{2}$

$$\Rightarrow \cos(\pi - \theta) = \cos\frac{\pi}{3}$$

$$\Rightarrow \pi - \theta = \frac{\pi}{3}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Question 25.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} and \vec{b} are two vectors such that $\left|\vec{a}\right|=\left|\vec{b}\right|=\sqrt{2}$ and $\vec{a}\cdot\vec{b}=-1$ then the angle between \vec{a}

and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$
- D. $\frac{2\pi}{3}$

Answer:

Given - \vec{a} and \vec{b} are vectors such that $|\vec{a}| = |\vec{b}| = \sqrt{2}$ and $\vec{a} \cdot \vec{b} = -1$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Hence, $-1 = \sqrt{2}\sqrt{2}\cos\theta$ i.e. $\cos\theta = \frac{1}{2}$ $\therefore \theta = \frac{\pi}{3}$

Question 26.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a}\cdot\vec{b}=-1$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$

D.
$$\frac{2\pi}{3}$$

Answer:

Given - \vec{a} and \vec{b} are vectors such that $|\vec{a}|=\left|\vec{b}\right|=\sqrt{2}$ and $\vec{a}.\vec{b}=-1$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Hence,
$$-1 = \sqrt{2}\sqrt{2}\cos\theta$$
 i.e. $\cos\theta = \frac{1}{2}$ $\therefore \theta = \frac{\pi}{3}$

Question 27.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The angle between the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ is

A.
$$\cos^{-1} \frac{5}{7}$$

B.
$$\cos^{-1} \frac{3}{5}$$

c.
$$\cos^{-1} \frac{3}{\sqrt{14}}$$

D. none of these

Answer:

Given -
$$\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$$
 and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Here,
$$\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k}) = 3 + 4 + 3 = 10$$

$$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$$

Hence,
$$10 = \sqrt{14}\sqrt{14}\cos\theta$$
 i.e. $\cos\theta = \frac{10}{14} = \frac{5}{7}$

$$\therefore \theta = \cos^{-1}\frac{5}{7}$$

Question 28.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The angle between the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ is

A.
$$\cos^{-1} \frac{5}{7}$$

B.
$$\cos^{-1} \frac{3}{5}$$

c.
$$\cos^{-1} \frac{3}{\sqrt{14}}$$

D. none of these

Answer:

Given -
$$\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$$
 and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$

To find – Angle between \vec{a} and \vec{b} .

Formula to be used $-\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Here,
$$\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k}) = 3 + 4 + 3 = 10$$

$$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$$

Hence,
$$10 = \sqrt{14}\sqrt{14}\cos\theta$$
 i.e. $\cos\theta = \frac{10}{14} = \frac{5}{7}$

$$\therefore \theta = cos^{-1} \frac{5}{7}$$

Question 29.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The angle between the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ is

A.
$$\cos^{-1} \frac{5}{7}$$

B.
$$\cos^{-1} \frac{3}{5}$$

c.
$$\cos^{-1} \frac{3}{\sqrt{14}}$$

D. none of these

Answer:

Given vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and

Magnitude
$$|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$$

Magnitude of
$$|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$$

Property:

$$\overrightarrow{r_1} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

$$\overrightarrow{r_2} = x_2 \hat{\imath} + y_2 \hat{\jmath} + z_2 \hat{k}$$

$$\overrightarrow{r_1}.\overrightarrow{r_2} = (x_1.x_2)\hat{\imath} + (y_1.y_2)\hat{\jmath} + (z_1.z_2)\hat{k}$$

Then

$$\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k})$$

$$= (1 \times 3) + (-2 \times -2) + (3 \times 1)$$

Let angle between the vectors \vec{a} and \vec{b} be θ

Using the dot product property of the vectors,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Substituting the given values in the equation,

$$10 = \sqrt{14} \times \sqrt{14} \times \cos \theta$$

$$\Rightarrow \cos \theta = \frac{10}{14}$$

$$\Rightarrow \cos \theta = \frac{5}{7}$$

$$\Rightarrow \theta = \cos^{-1} \frac{5}{7}$$

Question 30.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$\vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right)$$
 and $\vec{b} = \left(3\hat{i} - \hat{j} + 2\hat{k}\right)$ then the angle between $\left(\vec{a} + \vec{b}\right)$ and $\left(\vec{a} - \vec{b}\right)$ is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer:

Given vectors $\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and $\vec{b} = 3\hat{\imath} - 1\hat{\jmath} + 2\hat{k}$

$$\vec{a} + \vec{b} = 4\hat{i} + \hat{j} - \hat{k}$$

$$\vec{a} - \vec{b} = -2\hat{i} + 3\hat{j} - 5\hat{k}$$

$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k})$$

- = -8+3+5
- =0

As $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$, then the cosine of angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is 0.

- $\Rightarrow \cos \theta = 0$
- $\Rightarrow \theta = \frac{\pi}{2}$.

Question 31.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\vec{a}=\left(\hat{i}+2\hat{j}-3\hat{k}\right)$ and $\vec{b}=\left(3\hat{i}-\hat{j}+2\hat{k}\right)$ then the angle between $\left(\vec{a}+\vec{b}\right)$ and $\left(\vec{a}-\vec{b}\right)$ is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer:

Given
$$-\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$$
 and $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$

To find – Angle between $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$.

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – Magnitude of a vector $\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{a}|=\sqrt{x^2+y^2+z^2}$

Here,
$$\vec{a} + \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) = 4\hat{i} + \hat{j} - \hat{k}$$

and
$$\vec{a} - \vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + 2\hat{k}) = -2\hat{i} + 3\hat{j} - 5\hat{k}$$

$$\therefore (\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}).(-2\hat{i} + 3\hat{j} - 5\hat{k}) = -8 + 3 + 5 = 0$$

$$|\vec{a} + \vec{b}| = \sqrt{4^2 + 1^2 + 1^2} = \sqrt{18}$$

$$|\vec{a} - \vec{b}| = \sqrt{2^2 + 3^2 + 5^2} = \sqrt{38}$$

Hence, $0 = \sqrt{18}\sqrt{38}\cos\theta$ i.e. $\cos\theta = 0$

$$\therefore \theta = \frac{\pi}{2}$$

Question 32.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If $\vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - \hat{j} + 2\hat{k}\right)$ then the angle between $\left(\vec{a} + \vec{b}\right)$ and $\left(\vec{a} - \vec{b}\right)$ is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer:

Given $-\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$

To find – Angle between $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$.

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Here,
$$\vec{a} + \vec{b} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) + (3\hat{\imath} - \hat{\jmath} + 2\hat{k}) = 4\hat{\imath} + \hat{\jmath} - \hat{k}$$

and
$$\vec{a} - \vec{b} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) - (3\hat{\imath} - \hat{\jmath} + 2\hat{k}) = -2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$$

$$\therefore (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k}) = -8 + 3 + 5 = 0$$

$$|\vec{a} + \vec{b}| = \sqrt{4^2 + 1^2 + 1^2} = \sqrt{18}$$

$$|\vec{a} - \vec{b}| = \sqrt{2^2 + 3^2 + 5^2} = \sqrt{38}$$

Hence, $0 = \sqrt{18}\sqrt{38}\cos\theta$ i.e. $\cos\theta = 0$

$$\therefore \theta = \frac{\pi}{2}$$

Question 33.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - \hat{j} + 2\hat{k}\right)$ then the angle between $\left(2\vec{a} + \vec{b}\right)$ and $\left(\vec{a} + 2\vec{b}\right)$ is

A.
$$\cos^{-1}\left(\frac{21}{40}\right)$$

B.
$$\cos^{-1}\left(\frac{31}{50}\right)$$

c.
$$\cos^{-1} \left(\frac{11}{30} \right)$$

D. none of these

Answer:

Given $-\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$

To find – Angle between $2\vec{a} + \vec{b}$ and $\vec{a} + 2\vec{b}$.

Formula to be used $-\vec{p} \cdot \vec{q} = |\vec{p}| |\vec{q}| \cos \theta$ where \vec{p} and \vec{q} are two vectors

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Here,
$$2\vec{a} + \vec{b} = 2(\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) = 5\hat{i} + 3\hat{j} - 4\hat{k}$$

and
$$\vec{a} + 2\vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + 2(3\hat{i} - \hat{j} + 2\hat{k}) = 7\hat{i} + \hat{k}$$

$$(2\vec{a} + \vec{b}) \cdot (\vec{a} - 2\vec{b}) = (5\hat{i} + 3\hat{j} - 4\hat{k}) \cdot (7\hat{i} + \hat{k}) = 35 - 4 = 31$$

$$|2\vec{a} + \vec{b}| = \sqrt{5^2 + 3^2 + 4^2} = \sqrt{50}$$

$$|\vec{a} - 2\vec{b}| = \sqrt{7^2 + 1^2} = \sqrt{50}$$

Hence,
$$31 = \sqrt{50}\sqrt{50}\cos\theta$$
 i.e. $\cos\theta = \frac{31}{50}$

$$\therefore \theta = \cos^{-1} \frac{31}{50}$$

Question 34.

Mark $(\sqrt{})$ against the correct answer in the following:

If $\vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - \hat{j} + 2\hat{k}\right)$ then the angle between $\left(2\vec{a} + \vec{b}\right)$ and $\left(\vec{a} + 2\vec{b}\right)$ is

A.
$$\cos^{-1}\left(\frac{21}{40}\right)$$

B.
$$\cos^{-1}\left(\frac{31}{50}\right)$$

C.
$$\cos^{-1}\left(\frac{11}{30}\right)$$

D. none of these

Answer:

Given vectors $\vec{a}=\hat{\imath}+2\hat{\jmath}-3\hat{k}$ and $\vec{b}=3\hat{\imath}-1\hat{\jmath}+2\hat{k}$

$$2\vec{a} = 2\hat{i} + 4\hat{i} - 6\hat{k}$$

$$2\vec{b} = 6\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$$

Let the vector $2\vec{a} + \vec{b}$ be \vec{U}

$$\vec{U} = 2\vec{a} + \vec{b} = 2\hat{i} + 4\hat{j} - 6\hat{k} + 3\hat{i} - 1\hat{j} + 2\hat{k}$$

$$\vec{U} = 2\vec{a} + \vec{b} = 5\hat{i} + 3\hat{j} - 4\hat{k}$$

$$|\vec{U}| = \sqrt{5^2 + 3^2 + (-4)^2} = \sqrt{25 + 9 + 16} = \sqrt{50}$$

Let the vector $2\vec{b} + \vec{a}$ be \vec{V}

$$\vec{V} = \vec{a} + 2\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k} + 6\hat{i} - 2\hat{j} + 4\hat{k}$$

$$\vec{V} = \vec{a} + 2\vec{b} = 7\hat{i} + 0\hat{j} + \hat{k}$$

$$|\vec{V}| = \sqrt{7^2 + 0^2 + 1^2} = \sqrt{49 + 1} = \sqrt{50}$$

$$\vec{U} \cdot \vec{V} = (5\hat{i} + 3\hat{j} - 4\hat{k}) \cdot (7\hat{i} + 0\hat{j} + \hat{k})$$

$$= (5 \times 7) + 0 - (4 \times 1)$$

=35-4

=31

Let angle between the vectors $\vec{\mathbf{U}}$ and $\vec{\mathbf{V}}$ be $\boldsymbol{\theta}$

Using the dot product property of the vectors,

$$\vec{U} \cdot \vec{V} = |\vec{U}| |\vec{V}| \cos \theta$$

Substituting the given values in the equation,

$$31 = \sqrt{50} \times \sqrt{50} \times \cos \theta$$

$$\Rightarrow$$
cos $\theta = \frac{31}{50}$

$$\Rightarrow \theta = \cos^{-1} \frac{31}{50}$$

Question 35.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If
$$\vec{a} = \left(\hat{i} + 2\hat{j} - 3\hat{k}\right)$$
 and $\vec{b} = \left(3\hat{i} - \hat{j} + 2\hat{k}\right)$ then the angle between $\left(2\vec{a} + \vec{b}\right)$ and $\left(\vec{a} + 2\vec{b}\right)$ is

A.
$$\cos^{-1}\left(\frac{21}{40}\right)$$

B.
$$\cos^{-1} \left(\frac{31}{50} \right)$$

$$C. \cos^{-1}\left(\frac{11}{30}\right)$$

D. none of these

Answer:

Given -
$$\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$$
 and $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$

To find – Angle between $2\vec{a} + \vec{b}$ and $\vec{a} + 2\vec{b}$.

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – Magnitude of a vector $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Here,
$$2\vec{a} + \vec{b} = 2(\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) = 5\hat{i} + 3\hat{j} - 4\hat{k}$$

and
$$\vec{a} + 2\vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + 2(3\hat{i} - \hat{j} + 2\hat{k}) = 7\hat{i} + \hat{k}$$

$$\therefore (2\vec{a} + \vec{b}).(\vec{a} - 2\vec{b}) = (5\hat{i} + 3\hat{j} - 4\hat{k}).(7\hat{i} + \hat{k}) = 35 - 4 = 31$$

$$|2\vec{a} + \vec{b}| = \sqrt{5^2 + 3^2 + 4^2} = \sqrt{50}$$

$$|\vec{a} - 2\vec{b}| = \sqrt{7^2 + 1^2} = \sqrt{50}$$

Hence,
$$31 = \sqrt{50}\sqrt{50}\cos\theta$$
 i.e. $\cos\theta = \frac{31}{50}$

$$\therefore \theta = \cos^{-1} \frac{31}{50}$$

Question 36.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\vec{a} = \left(2\hat{i} + 4\hat{j} - \hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - 2\hat{j} + \lambda\hat{k}\right)$ be such that $\vec{a} \perp \vec{b}$ then $\lambda = ?$

- A. 2
- B. -2
- C. 3
- D. -3

Answer:

Given $-\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - \hat{k}$, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \lambda \hat{k}$ and $\vec{a} \perp \vec{b}$

To find − Value of λ

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – For perpendicular vectors, $\theta = \frac{\pi}{2}$ i.e. $\cos \theta = 0$ i.e. the dot product=0

Hence, $\vec{a} \cdot \vec{b} = 0$

$$\therefore (2\hat{\imath} + 4\hat{\jmath} - \hat{k}).(3\hat{\imath} - 2\hat{\jmath} + \lambda \hat{k}) = 0$$

$$\Rightarrow 6 - 8 - \lambda = 0$$

i.e.
$$\lambda = -2$$

Question 37.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\vec{a} = \left(2\hat{i} + 4\hat{j} - \hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - 2\hat{j} + \lambda\hat{k}\right)$ be such that $\vec{a} \perp \vec{b}$ then $\lambda = ?$

- A. 2
- B. -2
- C. 3
- D. -3

Answer:

Given
$$-\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - \hat{k}$$
, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \lambda \hat{k}$ and $\vec{a} \perp \vec{b}$

To find − Value of λ

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – For perpendicular vectors, $\theta = \frac{\pi}{2}$ i.e. $\cos \theta = 0$ i.e. the dot product=0

Hence, $\vec{a} \cdot \vec{b} = 0$

$$\therefore (2\hat{\imath} + 4\hat{\jmath} - \hat{k}).(3\hat{\imath} - 2\hat{\jmath} + \lambda \hat{k}) = 0$$

$$\Rightarrow 6 - 8 - \lambda = 0$$

i.e.
$$\lambda = -2$$

Question 38.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $\vec{a} = \left(2\hat{i} + 4\hat{j} - \hat{k}\right)$ and $\vec{b} = \left(3\hat{i} - 2\hat{j} + \lambda\hat{k}\right)$ be such that $\vec{a} \perp \vec{b}$ then $\lambda = ?$

- A. 2
- B. -2
- C. 3
- D. -3

Answer:

Given vectors $\vec{a} = 2\hat{\imath} + 4\hat{\jmath} - \hat{k}$ and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \lambda \hat{k}$

Also given that $\vec{a} \perp \vec{b}$

Let the angle between the vectors \vec{a} and \vec{b} be θ .

$$\Rightarrow \theta = \frac{\pi}{2}$$

$$=\cos\theta=0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 0$$

So,
$$(2\hat{i} + 4\hat{j} - \hat{k}) \cdot (3\hat{i} - 2\hat{j} + \lambda \hat{k}) = 0$$

$$\Rightarrow (2 \times 3) + (4 \times -2) + (-1 \times \lambda) = 0$$

$$\Rightarrow$$
 6-8- λ =0

$$\Rightarrow \lambda = -2$$

Question 39.

Mark $(\sqrt{\ })$ against the correct answer in the following:

What is the projection of $\vec{a}=\left(2\,\hat{i}-\hat{j}+\hat{k}\right)$ on $\vec{b}=\left(\hat{i}-2\,\hat{j}+\hat{k}\right)$?

A.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{4}{\sqrt{5}}$$

c.
$$\frac{5}{\sqrt{6}}$$

D. none of these

Answer:

Given vectors $\vec{a}=2\hat{\imath}-1\hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2\hat{\jmath}+1\hat{k}$

Property:

Projection of the vector \vec{a} on \vec{b} is $\vec{a} \cdot \frac{\vec{b}}{|\vec{b}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

Therefore the projection of \vec{a} on \vec{b} is $\frac{(2\hat{\imath}-1\hat{\jmath}+\widehat{k}).(\hat{\imath}-2\hat{\jmath}+1\widehat{k})}{\sqrt{1^2+(-2)^2+1^2}}$

$$=\!\frac{(2x1)\!+\!(-1x\!-\!2)\!+\!(1x1)}{\sqrt{1\!+\!4\!+\!1}}$$

$$=\frac{2+2+1}{\sqrt{6}}$$

$$=\frac{5}{\sqrt{6}}$$

Question 40.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

What is the projection of $\vec{a}=\left(2\,\hat{i}-\hat{j}+\hat{k}\right)$ on $\vec{b}=\left(\hat{i}-2\,\hat{j}+\hat{k}\right)$?

- A. $\frac{2}{\sqrt{3}}$
- B. $\frac{4}{\sqrt{5}}$
- c. $\frac{5}{\sqrt{6}}$

D. none of these

Answer:

Given
$$-\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$$
, $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$

To find – Projection of \vec{a} on \vec{b} i.e. $\vec{a} \cos \theta$

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – If \vec{p} and \vec{q} are two vectors, then the projection of \vec{p} on \vec{q} is defined as $\vec{p}\cos\theta$

Magnitude of a vector $\vec{p}=x\hat{\imath}+y\hat{\jmath}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow \left(2\hat{\imath} - \hat{\jmath} + \hat{k}\right) \cdot \left(\hat{\imath} - 2\hat{\jmath} + \hat{k}\right) = \sqrt{1^2 + 2^2 + 1^2} |\vec{a}| \cos \theta$$

$$\Rightarrow |\vec{a}|\cos\theta = \frac{2+2+1}{\sqrt{6}}$$

$$\Rightarrow |\vec{a}|\cos\theta = \frac{5}{\sqrt{6}}$$

Question 41.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

What is the projection of $\vec{a}=\left(2\,\hat{i}-\hat{j}+\hat{k}\right)$ on $\vec{b}=\left(\hat{i}-2\,\hat{j}+\hat{k}\right)$?

A.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{4}{\sqrt{5}}$$

c.
$$\frac{5}{\sqrt{6}}$$

D. none of these

Answer:

Given
$$-\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} - 2\hat{j} + \hat{k}$$

To find – Projection of \vec{a} on \vec{b} i.e. $\vec{a} \cos \theta$

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – If \vec{p} and \vec{q} are two vectors, then the projection of \vec{p} on \vec{q} is defined as $\vec{p}\cos\theta$

Magnitude of a vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow (2\hat{\imath} - \hat{\jmath} + \hat{k}).(\hat{\imath} - 2\hat{\jmath} + \hat{k}) = \sqrt{1^2 + 2^2 + 1^2} |\vec{a}| \cos \theta$$

$$\Rightarrow |\vec{a}|\cos\theta = \frac{2+2+1}{\sqrt{6}}$$

$$\Rightarrow |\vec{a}|\cos\theta = \frac{5}{\sqrt{6}}$$

Question 42.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then

A.
$$\left| \vec{a} \right| = \left| \vec{b} \right|$$

B.
$$\vec{a} \parallel \vec{b}$$

C.
$$\vec{a} \perp \vec{b}$$

D. none of these

Answer:

Given
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

Squaring on both the sides,

$$\left|\vec{a} + \vec{b}\right|^2 = \left|\vec{a} - \vec{b}\right|^2$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a}.\vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a}.\vec{b})$$

$$\Rightarrow 4. \vec{a}. \vec{b} = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow \vec{a} \perp \vec{b}$$

Question 43.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then

- A. $\left| \vec{a} \right| = \left| \vec{b} \right|$
- B. $\vec{a} \parallel \vec{b}$
- C. $\vec{a} \perp \vec{b}$
- D. none of these

Answer:

Given -
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

Tip – If \vec{a} and \vec{b} are two vectors then $|\vec{a} \pm \vec{b}| = \sqrt{a^2 + b^2 \pm 2abcos\theta}$

Hence,

$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

$$\Rightarrow \sqrt{a^2 + b^2 + 2abcos\theta} = \sqrt{a^2 + b^2 - 2abcos\theta}$$

$$\Rightarrow a^2 + b^2 + 2ab\cos\theta = a^2 + b^2 - 2ab\cos\theta$$

$$\Rightarrow$$
 4abcos $\theta = 0$

$$\Rightarrow \cos\theta = 0$$

i.e.
$$\theta = \frac{\pi}{2}$$

So,
$$\vec{a} \perp \vec{b}$$

Question 44.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then

A.
$$\left| \vec{a} \right| = \left| \vec{b} \right|$$

B.
$$\vec{a} \parallel \vec{b}$$

C.
$$\vec{a} \perp \vec{b}$$

D. none of these

Answer:

Given -
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

Tip – If \vec{a} and \vec{b} are two vectors then $|\vec{a} \pm \vec{b}| = \sqrt{a^2 + b^2 \pm 2abcos\theta}$

Hence,

$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

$$\Rightarrow \sqrt{a^2 + b^2 + 2ab\cos\theta} = \sqrt{a^2 + b^2 - 2ab\cos\theta}$$

$$\Rightarrow a^2 + b^2 + 2ab\cos\theta = a^2 + b^2 - 2ab\cos\theta$$

$$\Rightarrow$$
 4abcos $\theta = 0$

$$\Rightarrow \cos\theta = 0$$

i.e.
$$\theta = \frac{\pi}{2}$$

So,
$$\vec{a} \perp \vec{b}$$

Question 45.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = ?$

- A. 3
- B. 5
- C. 6
- D. 12

Answer:

Given - \vec{a} and \vec{b} are two mutually perpendicular unit vectors i.e. $|\vec{a}| = |\vec{b}| = 1$

To Find
$$-(3\vec{a}+2\vec{b}).(5\vec{a}-6\vec{b})$$

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip
$$-\vec{a} \perp \vec{b}$$

$$... |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$$

$$\vec{a} \cdot \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = 0$$

Hence,

$$(3\vec{a} + 2\vec{b}).(5\vec{a} - 6\vec{b})$$

$$= 15|\vec{a}|^2 + 10\vec{b}.\vec{a} - 18\vec{a}.\vec{b} - 12|\vec{b}|^2$$

$$= 15 - 12$$

$$=3$$

Question 46.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = ?$

- A. 3
- B. 5

C. 6

D. 12

Answer

Given - \vec{a} and \vec{b} are two mutually perpendicular unit vectors i.e. $|\vec{a}| = |\vec{b}| = 1$

To Find
$$-(3\vec{a}+2\vec{b})$$
. $(5\vec{a}-6\vec{b})$

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip
$$-\vec{a} \perp \vec{b}$$

$$.. \ |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$$

$$\vec{a} \cdot \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = 0$$

Hence,

$$(3\vec{a} + 2\vec{b}).(5\vec{a} - 6\vec{b})$$

$$= 15|\vec{a}|^2 + 10\vec{b}.\vec{a} - 18\vec{a}.\vec{b} - 12|\vec{b}|^2$$

$$= 15 - 12$$

= 3

Question 47.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = ?$

- A. 3
- B. 5
- C. 6
- D. 12

Answer:

Given \vec{a} and \vec{b} are mutually perpendicular unit vectors

$$\Rightarrow |\vec{a}| = |\vec{b}| = 1$$

And angle between the vectors \vec{a} and \vec{b} is $\frac{\pi}{2}$ and \vec{a} . \vec{b} =0

Asking to find $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b})$

Multiplying,

=(3×5)
$$|\vec{a}|^2$$
 - (3×6) $(\vec{a}.\vec{b})$ + (2×5) $(\vec{b}.\vec{a})$ - (2×6) $|\vec{b}|^2$

= $15|\vec{a}|^2 - 18(\vec{a}.\vec{b}) + 10(\vec{a}.\vec{b}) - 12|\vec{b}|^2$ [reason: dot product is commutative i.e, $\vec{a}.\vec{b} = \vec{b}.\vec{a}$]

$$=15-8(\vec{a}.\vec{b})-12$$

=15-12 [reason:
$$\vec{a} \cdot \vec{b} = 0$$
]

= 3

Question 48.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = ?$

- A. 3
- B. 5
- C. 6
- D. 12

Answer:

Given vectors $\vec{a} = 3\hat{\imath} + 1\hat{\jmath} - 2\hat{k}$ and $\vec{b} = \hat{\imath} + \lambda\hat{\jmath} - 3\hat{k}$

Also given $\vec{a} \perp \vec{b}$

As they are perpendicular, $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow (3\hat{\imath} + 1\hat{\jmath} - 2\hat{k}) \cdot (\hat{\imath} + \lambda\hat{\jmath} - 3\hat{k}) = 0$$

$$\Rightarrow (3 \times 1) + (1 \times \lambda) + (-2 \times -3) = 0$$

$$\Rightarrow$$
 3+ λ +6=0

$$\Rightarrow \lambda = -9$$

Question 49.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If the vectors $\vec{a}=3\hat{i}+\hat{j}-2\hat{k}$ and $\vec{b}=\hat{i}+\lambda\hat{j}-3\hat{k}$ are perpendicular to each other then λ = ?

- A. -3
- B. -6
- C. -9
- D. -1

Answer:

Given -
$$\vec{a}=3\hat{\imath}+\hat{\jmath}-2\hat{k}$$
, $\vec{b}=\hat{\imath}+\lambda\hat{\jmath}-3\hat{k}$ and $\vec{a}\perp\vec{b}$

To find – Value of λ

Formula to be used – \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – For perpendicular vectors, $\theta = \frac{\pi}{2}$ i.e. $\cos \theta = 0$ i.e. the dot product=0

Hence, $\vec{a} \cdot \vec{b} = 0$

$$\therefore (3\hat{\imath} + \hat{\jmath} - 2\hat{k}).(\hat{\imath} + \lambda\hat{\jmath} - 3\hat{k}) = 0$$

$$\Rightarrow$$
 3 + λ + 6 = 0

i.e.
$$\lambda = -9$$

Question 50.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If the vectors $\vec{a}=3\hat{i}+\hat{j}-2\hat{k}$ and $\vec{b}=\hat{i}+\lambda\hat{j}-3\hat{k}$ are perpendicular to each other then λ = ?

- A. -3
- B. -6
- C. -9
- D. -1

Answer:

Given -
$$\vec{a}=3\hat{\imath}+\hat{\jmath}-2\hat{k}$$
, $\vec{b}=\hat{\imath}+\lambda\hat{\jmath}-3\hat{k}$ and $\vec{a}\perp\vec{b}$

To find – Value of λ

Formula to be used - \vec{p} . $\vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where \vec{p} and \vec{q} are two vectors

Tip – For perpendicular vectors, $\theta = \frac{\pi}{2}$ i.e. $\cos \theta = 0$ i.e. the dot product=0

Hence, $\vec{a} \cdot \vec{b} = 0$

$$\therefore (3\hat{\imath} + \hat{\jmath} - 2\hat{k}).(\hat{\imath} + \lambda\hat{\jmath} - 3\hat{k}) = 0$$

$$\Rightarrow$$
 3 + λ + 6 = 0

i.e.
$$\lambda = -9$$

Question 51.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If θ is the angle between two unit vectors \hat{a} and \hat{b} then $\frac{1}{2}|\hat{a}-\hat{b}|=?$

A.
$$\cos \frac{\theta}{2}$$

B.
$$\sin \frac{\theta}{2}$$

C.
$$tan \frac{\theta}{2}$$

Answer:

Given - \hat{a} and \hat{b} are two unit vectors with an angle θ between them

To find
$$-\frac{1}{2}|\hat{a}-\hat{b}|$$

Formula used - If \vec{a} and \vec{b} are two vectors then $|\vec{a}\pm\vec{b}|=\sqrt{a^2+b^2\pm2abcos\theta}$

$$\cos 2\theta = 1 - 2\sin^2\theta$$

Tip -
$$|\hat{a}|^2 = |\hat{b}|^2 = 1 \& \hat{a}.\hat{b} = 1$$

Hence,

$$\frac{1}{2}|\hat{a}-\hat{b}|$$

$$=\frac{1}{2}\sqrt{|\hat{a}|^2+|\hat{b}|^2+2abcos\theta}$$

$$=\frac{1}{2}\sqrt{2+2\cos\theta}$$

$$=\frac{1}{\sqrt{2}}\sqrt{1+\cos\theta}$$

$$=\frac{1}{\sqrt{2}}\times\sqrt{2sin^2\frac{\theta}{2}}$$

$$=\sin\frac{\theta}{2}$$

Question 52.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If θ is the angle between two unit vectors \hat{a} and \hat{b} then $\frac{1}{2}|\hat{a}-\hat{b}|=?$

- A. $cos \frac{\theta}{2}$
- B. $\sin \frac{\theta}{2}$
- C. $tan \frac{\theta}{2}$
- D. none of these

Answer:

Given \hat{a} and \hat{b} are unit vectors

Let θ be the angle between them.

Asking us to find the value of $\frac{1}{2} |\hat{a} - \hat{b}|$

Let this value de T

$$\Rightarrow T = \frac{1}{2} |\hat{a} - \hat{b}|$$

Squaring on both the sides

$$T^2 = \frac{1}{4} |(\hat{a})^2 + (\hat{b})^2 - 2.(\hat{a}.\hat{b})|$$

$$T^2 = \frac{1}{4} |1 + 1 - 2.(\hat{a}.\hat{b})|$$

$$T^2 = \frac{1}{4} |2 - 2. (\hat{a}.\hat{b})|$$

$$T^2 = \frac{2}{4} |1 - (\hat{a}.\hat{b})|$$

$$T^2 = \frac{1}{2} |1 - (\hat{a}.\hat{b})|$$

$$T^2 = \frac{1}{2} \left| 1 - (|\widehat{a}||\widehat{b}|) \cos \theta) \right|$$

$$T^2 = \frac{1}{2} \cdot |1 - (1 \cdot \cos \theta)|$$

 $(1 - \cos \theta)$ can be written as $2. \sin^2 \frac{\theta}{2}$

$$\Rightarrow T^2 = \frac{1}{2} \cdot |1 - (1 \cdot \cos \theta)|$$

$$= T^2 = \frac{1}{2} \cdot |2 \cdot \sin^2 \frac{\theta}{2}|$$

$$T^2 = \sin^2 \frac{\theta}{2}$$

$$\Rightarrow T = \sin \frac{\theta}{2}$$

Question 53.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If θ is the angle between two unit vectors \hat{a} and \hat{b} then $\frac{1}{2}|\hat{a}-\hat{b}|=?$

A.
$$\cos \frac{\theta}{2}$$

B.
$$\sin \frac{\theta}{2}$$

C.
$$\tan \frac{\theta}{2}$$

D. none of these

Answer:

Given - \hat{a} and \hat{b} are two unit vectors with an angle θ between them

To find
$$-\frac{1}{2}|\hat{a} - \hat{b}|$$

Formula used - If \vec{a} and \vec{b} are two vectors then $|\vec{a}\pm\vec{b}|=\sqrt{a^2+b^2\pm2abcos\theta}$

$$\cos 2\theta = 1 - 2\sin^2\theta$$

Tip -
$$|\hat{a}|^2 = |\hat{b}|^2 = 1 \& \hat{a}.\hat{b} = 1$$

Hence,

$$\frac{1}{2}|\hat{a}-\hat{b}|$$

$$=\frac{1}{2}\sqrt{|\hat{\mathbf{a}}|^2+|\hat{\mathbf{b}}|^2+2ab\cos\theta}$$

$$=\frac{1}{2}\sqrt{2+2\cos\theta}$$

$$=\frac{1}{\sqrt{2}}\sqrt{1+\cos\theta}$$

$$=\frac{1}{\sqrt{2}}\times\sqrt{2sin^2\frac{\theta}{2}}$$

$$=\sin\frac{\theta}{2}$$

Question 54.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If
$$\vec{a} = \left(\hat{i} - \hat{j} + 2\hat{k}\right)$$
 and $\vec{b} = \left(2\hat{i} + 3\hat{j} - 4\hat{k}\right)$ then $\left|\vec{a} \times \vec{b}\right| = ?$

A.
$$\sqrt{174}$$

B.
$$\sqrt{87}$$

Answer:

Given $-\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ are two vectors.

To find - $|\vec{a} \times \vec{b}|$

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Magnitude of a vector $\vec{p}=x\hat{\imath}+y\hat{\jmath}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

$$\vec{a} \times \vec{b}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 3 & -4 \end{vmatrix}$$

$$= \hat{1}(4-6) + \hat{1}(4+4) + \hat{k}(3+2)$$

$$= -2\hat{i} + 8\hat{i} + 5\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{2^2 + 8^2 + 5^2} = \sqrt{93}$$

Question 55.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

$$\text{If } \vec{a} = \left(\hat{i} - \hat{j} + 2\,\hat{k}\right) \text{ and } \vec{b} = \left(2\,\hat{i} + 3\,\hat{j} - 4\,\hat{k}\right) \text{ then } \left|\vec{a} \times \vec{b}\right| = ?$$

A.
$$\sqrt{174}$$

Answer:

Given - $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ are two vectors.

To find - $|\vec{a} \times \vec{b}|$

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Magnitude of a vector $\vec{p}=x\hat{\imath}+y\hat{\jmath}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

 $\vec{a} \times \vec{b}$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 3 & -4 \end{vmatrix}$$

$$= \hat{1}(4-6) + \hat{1}(4+4) + \hat{k}(3+2)$$

$$= -2\hat{i} + 8\hat{i} + 5\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{2^2 + 8^2 + 5^2} = \sqrt{93}$$

Question 56.

Mark $(\sqrt{})$ against the correct answer in the following:

If
$$\vec{a} = \left(\hat{i} - \hat{j} + 2\hat{k}\right)$$
 and $\vec{b} = \left(2\hat{i} + 3\hat{j} - 4\hat{k}\right)$ then $\left|\vec{a} \times \vec{b}\right| = ?$

A.
$$\sqrt{174}$$

B.
$$\sqrt{87}$$

Answer:

Given vectors $\vec{a} = \hat{i} - 1\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 3 & -4 \end{vmatrix}$$

$$= \hat{\mathbf{i}}[(-1 \times -4) - (2 \times 3)] - \hat{\mathbf{j}}[(1 \times -4) - (2 \times 2)] + \hat{\mathbf{k}}[(1 \times 3) - (2 \times -1)]$$

$$=\hat{i}[4-6]-\hat{j}[-4-4]+\hat{k}[3+2]$$

$$=-2\hat{i}+8\hat{j}+5\hat{k}$$

$$|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = \sqrt{(-2)^2 + 8^2 + 5^2} = \sqrt{4 + 64 + 25} = \sqrt{93}$$

Question 57.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$\vec{a} = (\hat{i} - 2\hat{j} + 3\hat{k})$$
 and $\vec{b} = (\hat{i} - 3\hat{k})$ then $\left|\vec{b} \times 2\vec{a}\right| = ?$

A.
$$10\sqrt{3}$$

B.
$$5\sqrt{17}$$

C.
$$4\sqrt{19}$$

D.
$$2\sqrt{23}$$

Answer:

Given vectors $\vec{a}=\hat{i}-2\hat{j}+3\hat{k}$ and $\vec{b}=\hat{i}-3\hat{k}$

Asking us to find, $|\vec{b}x \ 2\vec{a}|$

$$2\vec{a}=2\hat{i}-4\hat{j}+6\hat{k}$$

$$\vec{b} \times 2\vec{a} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 0 & -3 \\ 2 & -4 & 6 \end{vmatrix}$$

=
$$\hat{\mathbf{i}}[0-(-4 \times -3)] - \hat{\mathbf{j}}[(1 \times 6)-(2 \times -3)] + \hat{\mathbf{k}}[(1 \times -4)-0]$$

$$=\hat{\mathbf{i}}(-12)-\hat{\mathbf{j}}(6+6)+\hat{\mathbf{k}}(-4)$$

$$=-12\hat{i} + 12\hat{j} - 4\hat{k}$$

$$|\vec{b} \times 2\vec{a}| = \sqrt{(-12)^2 + 12^2 + (-4)^2} = \sqrt{414 + 144 + 16} = \sqrt{304}$$

$$=\sqrt{16.19}$$

$$=4.\sqrt{19}$$

Question 58.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$\vec{a} = (\hat{i} - 2\hat{j} + 3\hat{k})$$
 and $\vec{b} = (\hat{i} - 3\hat{k})$ then $|\vec{b} \times 2\vec{a}| = ?$

A.
$$10\sqrt{3}$$

B.
$$5\sqrt{17}$$

C.
$$4\sqrt{19}$$

D.
$$2\sqrt{23}$$

Answer:

Given $-\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{k}$ are two vectors.

To find -
$$|\vec{b} \times 2\vec{a}|$$

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k}$

Tip – Magnitude of a vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

$$\vec{b} \times 2\vec{a}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 0 & -3 \\ 2 & -4 & 6 \end{vmatrix}$$

$$=\hat{i}(12) + \hat{j}(-6-6) + \hat{k}(-4)$$

$$= 12\hat{i} - 12\hat{j} - 4\hat{k}$$

$$|\vec{b} \times 2\vec{a}| = \sqrt{12^2 + 12^2 + 4^2} = \sqrt{304} = 4\sqrt{19}$$

Question 59.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$\vec{a} = (\hat{i} - 2\hat{j} + 3\hat{k})$$
 and $\vec{b} = (\hat{i} - 3\hat{k})$ then $\left|\vec{b} \times 2\vec{a}\right| = ?$

A.
$$10\sqrt{3}$$

B.
$$5\sqrt{17}$$

C.
$$4\sqrt{19}$$

D.
$$2\sqrt{23}$$

Answer:

Given $-\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{k}$ are two vectors.

To find -
$$|\vec{b} \times 2\vec{a}|$$

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Magnitude of a vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ is given by $|\vec{p}|=\sqrt{x^2+y^2+z^2}$

So,

$$\vec{b} \times 2\vec{a}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & 0 & -3 \\ 2 & -4 & 6 \end{vmatrix}$$

$$=\hat{i}(12) + \hat{j}(-6-6) + \hat{k}(-4)$$

$$= 12\hat{i} - 12\hat{j} - 4\hat{k}$$

$$|\vec{b} \times 2\vec{a}| = \sqrt{12^2 + 12^2 + 4^2} = \sqrt{304} = 4\sqrt{19}$$

Question 60.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\left|\vec{a}\right|=2,\left|\vec{b}\right|=7$ and $\left(\vec{a}\times\vec{b}\right)=\left(3\hat{i}+2\hat{j}+6\hat{k}\right)$ then the angle between \vec{a} and \vec{b} is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

c.
$$\frac{2\pi}{3}$$

D.
$$\frac{3\pi}{4}$$

Answer:

Given - $|\vec{a}|=2$, $|\vec{b}|=7$ and $\vec{a}\times\vec{b}=3\hat{\imath}+2\hat{\jmath}+6\hat{k}$

To find – Angle between \vec{a} and \vec{b}

Formula to be used - $\vec{p} \times \vec{q} = |\vec{p}| |\vec{q}| sin\theta \hat{n}$

 $\begin{aligned} \text{Tip} - |\vec{p} \times \vec{q}| &= \left| |\vec{p}| |\vec{q}| \text{sin} \theta \hat{n} \right| = |\vec{p}| |\vec{q}| \text{sin} \theta \, \& \, \text{magnitude of a vector} \, \vec{p} = x \hat{i} + y \hat{j} + z \hat{k} \, \text{is given by} \\ |\vec{p}| &= \sqrt{x^2 + y^2 + z^2} \end{aligned}$

Hence, $|\vec{a} \times \vec{b}| = |3\hat{i} + 2\hat{j} + 6\hat{k}| = \sqrt{3^2 + 2^2 + 6^2} = 7$

 $\therefore 7 = 2 \times 7\sin\theta$

$$\Rightarrow \sin\theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

Question 61.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $\left|\vec{a}\right|=2, \left|\vec{b}\right|=7$ and $\left(\vec{a}\times\vec{b}\right)=\left(3\hat{i}+2\hat{j}+6\hat{k}\right)$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- c. $\frac{2\pi}{3}$
- D. $\frac{3\pi}{4}$

Answer:

Given

$$|\vec{a}| = 2$$

And
$$|\vec{b}| = 7$$

$$\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$$

Let the angle between the vector be θ

As we know that,

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \theta$$

Substituting the values,

$$7=2 \times 7 \times \sin \theta$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

Question 62.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\left|\vec{a}\right|=2, \left|\vec{b}\right|=7$ and $\left(\vec{a}\times\vec{b}\right)=\left(3\hat{i}+2\hat{j}+6\hat{k}\right)$ then the angle between \vec{a} and \vec{b} is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{3}$
- C. $\frac{2\pi}{3}$

D.
$$\frac{3\pi}{4}$$

Answer:

Given -
$$|\vec{a}| = 2$$
, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{\imath} + 2\hat{\jmath} + 6\hat{k}$

To find – Angle between \vec{a} and \vec{b}

Formula to be used - $\vec{p} \times \vec{q} = |\vec{p}| |\vec{q}| \sin \theta \hat{n}$

 $\begin{aligned} \text{Tip} - |\vec{p} \times \vec{q}| &= \left| |\vec{p}| |\vec{q}| \text{sin} \theta \hat{n} \right| = |\vec{p}| |\vec{q}| \text{sin} \theta \text{ & magnitude of a vector } \vec{p} = x \hat{i} + y \hat{j} + z \hat{k} \text{ is given by } \\ |\vec{p}| &= \sqrt{x^2 + y^2 + z^2} \end{aligned}$

Hence, $|\vec{a} \times \vec{b}| = |3\hat{i} + 2\hat{j} + 6\hat{k}| = \sqrt{3^2 + 2^2 + 6^2} = 7$

 $\therefore 7 = 2 \times 7\sin\theta$

 $\Rightarrow \sin\theta = \frac{1}{2}$

 $\Rightarrow \theta = \frac{\pi}{6}$

Question 63.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $\left|\vec{a}\right| = \sqrt{26}, \left|\vec{b}\right| = 7$ and $\left|\vec{a} \times \vec{b}\right| = 35$ then $\vec{a} \cdot \vec{b} = ?$

A. 5

B. 7

C. 13

D. 12

Answer:

Given

$$|\vec{a}| = \sqrt{26}$$

And
$$|\vec{b}| = 7$$

$$|\vec{a} \times \vec{b}| = 35$$
 and $|\vec{a} \cdot \vec{b}| = ?$

As we know that, $|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$ and $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

Adding and subtracting the above equations,

$$|\overrightarrow{a}.\overrightarrow{b}|^2 + |\overrightarrow{a} \times \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \cos^2 \theta + |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 \sin^2 \theta$$

$$|\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 (\cos^2 \theta + \sin^2 \theta)$$

$$|\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 (1)$$

Substituting the given values, we get

$$|\vec{a} \cdot \vec{b}|^2 + 35^2 = \sqrt{26}^2 7^2$$

$$|\vec{a} \cdot \vec{b}|^2 + 1225 = 26.49$$

$$|\vec{a}.\vec{b}|^2 + 1225 = 1274$$

$$|\vec{a}.\vec{b}|^2 = 1274 - 1225$$

$$|\vec{a}.\vec{b}|^2 = 49$$

$$|\vec{a} \cdot \vec{b}| = 7$$

Question 64.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$|\vec{a}| = \sqrt{26}$$
, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35$ then $\vec{a} \cdot \vec{b} = ?$

A. 5

B. 7

C. 13

D. 12

Answer:

Given –
$$|\vec{a}| = \sqrt{26}$$
, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35$

To find $-\vec{a} \cdot \vec{b}$

Formula to be used $-\vec{p} \times \vec{q} = |\vec{p}||\vec{q}|\sin\theta \hat{n} \& \vec{p}. \vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where $\vec{p} \& \vec{q}$ are any two vectors

$$\mathsf{Tip} - |\vec{p} \times \vec{q}| = ||\vec{p}||\vec{q}|\sin\theta \hat{n}| = |\vec{p}||\vec{q}|\sin\theta$$

So,

$$|\vec{a} \times \vec{b}| = 35$$

$$\Rightarrow |\vec{a}||\vec{b}|\sin\theta = 35$$

$$\Rightarrow \sin\theta = \frac{35}{7\sqrt{26}} = \frac{5}{\sqrt{26}}$$

$$\therefore \cos\theta = \sqrt{1 - \left(\frac{5}{\sqrt{26}}\right)^2} = \frac{1}{\sqrt{26}}$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = \sqrt{26} \times 7 \times \frac{1}{\sqrt{26}} = 7$$

Question 65.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If
$$|\vec{a}| = \sqrt{26}$$
, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35$ then $\vec{a} \cdot \vec{b} = ?$

A. 5

B. 7

C. 13

D. 12

Answer:

Given –
$$|\vec{a}| = \sqrt{26}$$
, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35$

To find $-\vec{a} \cdot \vec{b}$

Formula to be used $-\vec{p} \times \vec{q} = |\vec{p}||\vec{q}|\sin\theta \hat{n} \& \vec{p}. \vec{q} = |\vec{p}||\vec{q}|\cos\theta$ where $\vec{p} \& \vec{q}$ are any two vectors

$$\mathsf{Tip} - |\vec{p} \times \vec{q}| = \left| |\vec{p}| |\vec{q}| sin\theta \hat{n} \right| = |\vec{p}| |\vec{q}| sin\theta$$

So,

$$|\vec{a} \times \vec{b}| = 35$$

$$\Rightarrow |\vec{a}||\vec{b}|\sin\theta = 35$$

$$\Rightarrow \sin\theta = \frac{35}{7\sqrt{26}} = \frac{5}{\sqrt{26}}$$

$$\therefore \cos\theta = \sqrt{1 - \left(\frac{5}{\sqrt{26}}\right)^2} = \frac{1}{\sqrt{26}}$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = \sqrt{26} \times 7 \times \frac{1}{\sqrt{26}} = 7$$

Question 66.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Two adjacent sides of a || gm are represented by the vectors $\vec{a} = \left(3\hat{i} + \hat{j} + 4\hat{k}\right)$ and $\vec{b} = \left(\hat{i} - \hat{j} + \hat{k}\right)$. The area of the || gm is

A.
$$\sqrt{42}$$
 sq units

B. 6 sq units

C.
$$\sqrt{35}$$
 sq units

D. none of these

Given the adjacent sides of the parallelogram

$$\vec{a}=3\hat{\imath}+\hat{\jmath}+4\hat{k}$$
 and $\vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$

Property: The area of the parallelogram with the adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$

Therefore the area of the parallelogram is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix}$$

=
$$\hat{i}[1 - (-4)] - \hat{j}[3 - 4] + \hat{k}[-3 - 1]$$

$$=5\hat{i}+\hat{j}-4\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{5^2 + 1^2 + (-4)^2} = \sqrt{25 + 1 + 16} = \sqrt{42}$$
 sq.units

Question 67.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

Two adjacent sides of a || gm are represented by the vectors $\vec{a} = \left(3\hat{i} + \hat{j} + 4\hat{k}\right)$ and $\vec{b} = \left(\hat{i} - \hat{j} + \hat{k}\right)$. The area of the || gm is

- A. $\sqrt{42}$ sq units
- B. 6 sq units
- C. $\sqrt{35}$ sq units
- D. none of these

Answer:

Given - Two adjacent sides of a || gm are represented by the vectors $\vec{a}=3\hat{\imath}+\hat{\jmath}+4\hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$

To find – Area of the parallelogram

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Area of $||gm = |\vec{a} \times \vec{b}|$ and magnitude of a vector $\vec{p} = x\hat{i} + y\hat{j} + z\hat{k}$ is given by $|\vec{p}| = \sqrt{x^2 + y^2 + z^2}$

Hence,

$$\vec{a} \times \vec{b}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= \hat{i}(-4-1) + \hat{j}(4-3) + \hat{k}(-3-1)$$

$$= -5\hat{\imath} + \hat{\jmath} - 4\hat{k}$$

$$|\vec{a} \times \vec{b}| = \sqrt{5^2 + 1^2 + 4^2} = \sqrt{42}$$

i.e. the area of the parallelogram = $\sqrt{42}$ sq. units

Question 68.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The diagonals of a || gm are represented by the vectors $\overrightarrow{d_1} = \left(3\hat{i} + \hat{j} - 2\hat{k}\right)$ and $\overrightarrow{d_2} = \left(\hat{i} - 3\hat{j} + 4\hat{k}\right)$. The area of the || gm is

- A. $7\sqrt{3}$ sq units
- B. $5\sqrt{3}$ sq units
- C. $3\sqrt{5}$ sq units
- D. none of these

Answer:

Given diagonals of the parallelogram $\overrightarrow{d_1}=3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and $\overrightarrow{d_2}=\hat{\imath}-3\hat{\jmath}+4\hat{k}$

Area of the parallelogram as $\overrightarrow{d_1}$ and $\overrightarrow{d_2}$ as diagonals is $\frac{1}{2} |\overrightarrow{d_1} x \overrightarrow{d_2}|$

$$\overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$

$$=\hat{i}[4-6]-\hat{j}[12-(-2)]+\hat{k}[-9-1]$$

$$=-2\hat{i}-14\hat{j}-10\hat{k}$$

$$|\overrightarrow{d_1} \times \overrightarrow{d_2}| = \sqrt{(-2)^2 + (-14)^2 + (-10)^2} = \sqrt{4 + 196 + 100} = \sqrt{300} = 10 \times \sqrt{3}$$

Therefore the area of the parallelogram is $\frac{1}{2} |\overrightarrow{d_1} \times \overrightarrow{d_2}| = \frac{1}{2} \times 10 \times \sqrt{3}$

= $.5\sqrt{3}$ sq units

Question 69.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The diagonals of a || gm are represented by the vectors $\overrightarrow{d_1} = \left(3\hat{i} + \hat{j} - 2\hat{k}\right)$ and $\overrightarrow{d_2} = \left(\hat{i} - 3\hat{j} + 4\hat{k}\right)$. The area of the || gm is

A.
$$7\sqrt{3}$$
 sq units

B.
$$5\sqrt{3}$$
 sq units

C.
$$3\sqrt{5}$$
 sq units

D. none of these

Answer:

Given - Two diagonals of a || gm are represented by the vectors $\overrightarrow{d_1}=3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and $\overrightarrow{d_2}=\hat{\imath}-3\hat{\jmath}+4\hat{k}$

To find – Area of the parallelogram

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – Area of $||gm = \frac{1}{2} |\overrightarrow{d_1} \times \overrightarrow{d_2}|$ and magnitude of a vector $\overrightarrow{a} = x \hat{i} + y \hat{j} + z \hat{k}$ is given by $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Hence,

$$\overrightarrow{d_1} \times \overrightarrow{d_2}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$

$$= \hat{i}(4-6) + \hat{j}(-2-12) + \hat{k}(-9-1)$$

$$= -2\hat{i} - 14\hat{j} - 10\hat{k}$$

$$\therefore \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right| = \sqrt{2^2 + 14^2 + 10^2} = \sqrt{300}$$

i.e. the area of the parallelogram = $\frac{1}{2} \times \sqrt{300} = 5\sqrt{3}$ sq. units

Question 70.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3\,\hat{i}+4\,\hat{j}$ and $\vec{b}=-5\,\hat{i}+7\,\hat{j}$. The area of the triangle is

- A. 41 sq units
- B. 37 sq units
- C. $\frac{41}{2}$ sq units
- D. none of these

Answer:

Given the adjacent sides of the triangle are $\vec{a}=3\hat{\imath}+4\hat{\jmath}$ and $\vec{b}=-5\hat{\imath}+7\hat{\jmath}$

Property: The area of the triangle with the sides \vec{a} and \vec{b} is $\frac{1}{2} |\vec{a} \times \vec{b}|$

$$\vec{a} \vec{x} \vec{b} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0 \end{vmatrix}$$

$$=\hat{k}[21-(-20)]$$

 $=41\hat{k}$

$$|\vec{a} \times \vec{b}| = 41$$

Therefore area of the triangle $=\frac{1}{2} \times 41 = \frac{41}{2}$ sq. units

Question 71.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The unit vector normal to the plane containing $\vec{a}=\left(\hat{i}-\hat{j}-\hat{k}\right)$ and $\vec{b}=\left(\hat{i}+\hat{j}+\hat{k}\right)$ is

A.
$$\left(\hat{j} - \hat{k}\right)$$

B.
$$\left(-\hat{j} + \hat{k}\right)$$

c.
$$\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$$

D.
$$\frac{1}{\sqrt{2}} \left(-\hat{i} + \hat{k} \right)$$

Answer:

Given
$$-\vec{a} = \hat{i} - \hat{j} - \hat{k}$$
 & $\vec{b} = \hat{i} + \hat{j} + \hat{k}$

To find – A unit vector perpendicular to the two given vectors.

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – A vector perpendicular to two given vectors is their cross product.

The unit vector of any vector $a\hat{i} + b\hat{j} + c\hat{k}$ is given by $\frac{(a\hat{i}+b\hat{j}+c\hat{k})}{\sqrt{a^2+b^2+c^2}}$

Hence,

 $\vec{a} \times \vec{b}$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $=-2\hat{\jmath}+2\hat{k}$, which the vector perpendicular to the two given vectors.

The required unit vector
$$=\frac{-2\hat{j}+2\hat{k}}{\sqrt{2^2+2^2}}=\frac{1}{\sqrt{2}}\left(-\hat{j}+\hat{k}\right)$$

Question 72.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

The unit vector normal to the plane containing $\vec{a}=\left(\hat{i}-\hat{j}-\hat{k}\right)$ and $\vec{b}=\left(\hat{i}+\hat{j}+\hat{k}\right)$ is

A.
$$(\hat{j} - \hat{k})$$

B.
$$\left(-\hat{j} + \hat{k}\right)$$

c.
$$\frac{1}{\sqrt{2}} \left(-\hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$$

D.
$$\frac{1}{\sqrt{2}} \left(-\hat{i} + \hat{k} \right)$$

Answer:

Given
$$-\vec{a} = \hat{i} - \hat{j} - \hat{k}$$
 & $\vec{b} = \hat{i} + \hat{j} + \hat{k}$

To find – A unit vector perpendicular to the two given vectors.

Formula to be used -
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 where $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ and $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$

Tip – A vector perpendicular to two given vectors is their cross product.

The unit vector of any vector $a\hat{\bf i} + b\hat{\bf j} + c\hat{\bf k}$ is given by $\frac{(a\hat{\bf i} + b\hat{\bf j} + c\hat{\bf k})}{\sqrt{a^2 + b^2 + c^2}}$

Hence,

$$\vec{a} \times \vec{b}$$

$$= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $=-2\hat{\jmath}+2\hat{k}$, which the vector perpendicular to the two given vectors.

The required unit vector $=\frac{-2\hat{j}+2\hat{k}}{\sqrt{2^2+2^2}}=\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$

Question 73.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The unit vector normal to the plane containing $\vec{a} = \left(\hat{i} - \hat{j} - \hat{k}\right)$ and $\vec{b} = \left(\hat{i} + \hat{j} + \hat{k}\right)$ is

A.
$$(\hat{j} - \hat{k})$$

B.
$$\left(-\hat{j}+\hat{k}\right)$$

$$\text{C. } \frac{1}{\sqrt{2}} \Big(-\hat{j} + \hat{k} \, \Big)$$

D.
$$\frac{1}{\sqrt{2}} \Big(-\hat{i} + \hat{k} \Big)$$

Answer:

Given the plane is passing through $\vec{a} = \hat{i} - \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$

Property: The normal to the plane passing through \vec{a} and \vec{b} is $\vec{a} \times \vec{b}$

Here,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$=\hat{i}[-1-(-1)]-\hat{j}[1-(-1)]+\hat{k}[1-(-1)]$$

$$=-2\hat{j}+2\hat{k}$$

As it is a unit normal vector,

 $\Rightarrow \vec{a} \times \vec{b}$ is divided by its magnitude.

Therefore the unit normal vector is $\frac{-2\hat{j}+2\hat{k}}{\sqrt{(-2)^2+2^2}}$

$$=\frac{-2\hat{\jmath}+2\hat{k}}{\sqrt{4+4}}$$

$$=\frac{-2\hat{j}+2\hat{k}}{\sqrt{8}}$$

$$=\frac{-2\hat{j}+2\hat{k}}{2\sqrt{2}}$$

$$=\frac{-\hat{j}+\hat{k}}{\sqrt{2}}$$

Question 74.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = ?$

- A. $\frac{1}{2}$
- B. $\frac{-1}{2}$
- c. $\frac{3}{2}$
- D. $\frac{-3}{2}$

Answer:

Given \vec{a} , \vec{b} , \vec{c} are unit vectors and $\vec{a} + \vec{b} + \vec{c} = 0$

$$|\vec{a}| = 1$$
, $|\vec{b}| = 1$, $|\vec{c}| = 1$

Let the angle between \vec{a} and \vec{b} be θ

We can write the given relation as $\vec{a} + \vec{b} = -\vec{c}$

Squaring on both the sides

$$(\vec{a} + \vec{b})^2 = \vec{c}^2$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a}.\vec{b}) = |\vec{c}|^2$$

$$\Rightarrow$$
 1+1+2(\vec{a} . \vec{b})=1

$$\Rightarrow 2(\vec{a}.\vec{b})=-1$$

$$\Rightarrow \vec{a}.\vec{b} = -\frac{1}{2}$$

Similarly we can prove that $\vec{b} \cdot \vec{c} = 0$ and $\vec{c} \cdot \vec{a} = 0$

Asking us to find the value of $(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$

$$=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}$$

$$=-\frac{3}{2}$$

Question 75.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = ?$

- A. $\frac{1}{2}$
- B. $\frac{-1}{2}$
- c. $\frac{3}{2}$
- D. $\frac{-3}{2}$

Answer:

Given $-\vec{a}$, \vec{b} , \vec{c} are three unit vectors and $(\vec{a} + \vec{b} + \vec{c}) = 0$

To find $-\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$

Tip - $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

So,

$$(\vec{a} + \vec{b} + \vec{c})^2 = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

$$\Rightarrow 3 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

$$\Rightarrow (\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = \frac{-3}{2}$$

Question 76.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = ?$

- A. $\frac{1}{2}$
- B. $\frac{-1}{2}$
- c. $\frac{3}{2}$
- D. $\frac{-3}{2}$

Answer:

Given $-\vec{a}, \vec{b}, \vec{c}$ are three unit vectors and $(\vec{a} + \vec{b} + \vec{c}) = 0$

To find $-\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$

 $\mathsf{Tip} - |\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

So,

$$(\vec{a} + \vec{b} + \vec{c})^2 = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

$$\Rightarrow 3 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

$$\Rightarrow (\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = \frac{-3}{2}$$

Question 77.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular unit vectors then $\left[\vec{a} + \vec{b} + \vec{c}\right] = ?$

A. 1

B. $\sqrt{2}$

C. $\sqrt{3}$

D. 2

Answer:

Given \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors

$$|\vec{a}| = 1, |\vec{b}| = 1, |\vec{c}| = 1$$

And
$$\vec{a}$$
, $\vec{b} = 0$, \vec{b} , $\vec{c} = 0$, \vec{c} , $\vec{a} = 0$

Let the value of $\vec{a} + \vec{b} + \vec{c} = T$

Squaring on both the sides,

$$(\vec{a} + \vec{b} + \vec{c})^2 = T^2$$

$$\Rightarrow (\vec{a} + \vec{b} + \vec{c}).(\vec{a} + \vec{b} + \vec{c}) = T^2$$

$$\Rightarrow |\vec{a}|^2 + \left(\vec{a}.\vec{b}\right) + (\vec{a}.\vec{c}) + |\vec{b}|^2 + \left(\vec{b}.\vec{a}\right) + \left(\overrightarrow{b}.\vec{c}\right) + |\vec{c}|^2 + (\vec{c}.\vec{a}) + \left(\vec{c}.\vec{b}\right) = T^2$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = T^2$$

$$\Rightarrow 1+1+1=T^2$$

$$\Rightarrow$$
T² = 3

Question 78.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular unit vectors then $\left[\vec{a} + \vec{b} + \vec{c}\right] = ?$

- A. 1
- B. $\sqrt{2}$
- C. $\sqrt{3}$
- D. 2

Answer:

Given $-\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors

To find -
$$\left[\vec{a} + \vec{b} + \vec{c}\right]$$

Tip -
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \& \vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 0$$

So,

$$(\vec{a} + \vec{b} + \vec{c})^2$$

$$= |\vec{a}|^2 + \left|\vec{b}\right|^2 + |\vec{c}|^2 + 2\left(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}\right)$$

=3

$$\therefore \left[\vec{a} + \vec{b} + \vec{c} \right] = \sqrt{3}$$

Question 79.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular unit vectors then $|\vec{a} + \vec{b} + \vec{c}| = ?$

- A. 1
- B. $\sqrt{2}$
- C. $\sqrt{3}$
- D. 2

Answer:

Given $-\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors

To find - $[\vec{a} + \vec{b} + \vec{c}]$

Tip -
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \& \vec{a} . \vec{b} = \vec{b} . \vec{c} = \vec{c} . \vec{a} = 0$$

So,

$$(\vec{a} + \vec{b} + \vec{c})^2$$

$$= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$$

=3

$$\therefore \left[\vec{a} + \vec{b} + \vec{c} \right] = \sqrt{3}$$

Question 80.

Mark $(\sqrt{\ })$ against the correct answer in the following:

$$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} = ?$$

- A. 0
- B. 1
- C. 2
- D. 3

Answer:

Asking us to find the value of $[\hat{i} \hat{j} \hat{k}]$

$$[\hat{i}\,\hat{j}\,\hat{k}]$$
= \hat{i} . $(\hat{j}\times\hat{k})$ or $(\hat{i}\times\hat{j})$. \hat{k}

The value of $\hat{\mathbf{j}}$ x $\hat{\mathbf{k}}\!\!=\!\hat{\mathbf{i}}$ and $\hat{\mathbf{i}}$ x $\hat{\mathbf{j}}=\hat{k}$

$$\Rightarrow$$
î. (ĵ × k̂) =î. (î) or (î × ĵ). k̂ = k̂. k̂

=1 =1

Question 81.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

$$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} = ?$$

- A. 0
- B. 1
- C. 2
- D. 3

Answer:

To find - $\begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \end{bmatrix}$

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\therefore \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix}$$

$$= \hat{1} \cdot (\hat{j} \times \hat{k})$$

$$= \hat{1}.\hat{1}$$

$$= |\hat{1}|^2$$

Question 82.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

$$\left[\hat{i} \ \hat{j} \ \hat{k}\right] = ?$$

- A. 0
- B. 1
- C. 2
- D. 3

Answer:

To find - $\begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \end{bmatrix}$

Formula to be used - $\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix} = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\div \begin{bmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \end{bmatrix}$$

$$= \hat{1} \cdot (\hat{j} \times \hat{k})$$

$$=$$
 î. î

$$=|\hat{\mathbf{i}}|^2$$

$$= 1$$

Question 83.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

If $\vec{a} = \left(2\hat{i} - 3\hat{j} + 4\hat{k}\right)$, $\vec{b} = \left(\hat{i} + 2\hat{j} - \hat{k}\right)$ and $\vec{c} = \left(3\hat{i} - \hat{j} - 2\hat{k}\right)$ be the coterminous edges of a parallelepiped then its volume is

- A. 21 cubic units
- B. 14 cubic units
- C. 7 cubic units
- D. none of these

Answer:

Given – The three coterminous edges of a parallelepiped are $\vec{a} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$,

$$\vec{b} = \hat{i} + 2\hat{j} - \hat{k} \& \vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$$

To find – The volume of the parallelepiped

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

Tip - The volume of the parallelepiped = $| [\hat{a} \ \hat{b} \ \hat{c}] |$

Hence,

$$= \hat{a} \cdot (\hat{b} \times \hat{c})$$

$$= (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot \{(\hat{i} + 2\hat{j} - \hat{k}) \times (3\hat{i} - \hat{j} - 2\hat{k})\}\$$

$$= (2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}) \cdot \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

$$= (2\hat{i} - 3\hat{j} + 4\hat{k}).(-5\hat{i} - \hat{j} - 7\hat{k})$$

$$= -10 + 3 - 28$$

$$= -35$$

The volume = 35 sq units

Question 84.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If $\vec{a} = \left(2\hat{i} - 3\hat{j} + 4\hat{k}\right)$, $\vec{b} = \left(\hat{i} + 2\hat{j} - \hat{k}\right)$ and $\vec{c} = \left(3\hat{i} - \hat{j} - 2\hat{k}\right)$ be the coterminous edges of a parallelepiped then its volume is

- A. 21 cubic units
- B. 14 cubic units
- C. 7 cubic units
- D. none of these

Answer:

Given – The three coterminous edges of a parallelepiped are $\vec{a}=2\hat{\imath}-3\hat{\jmath}+4\hat{k}$,

$$\vec{b} = \hat{i} + 2\hat{j} - \hat{k} \& \vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$$

To find – The volume of the parallelepiped

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

Tip - The volume of the parallelepiped = $\left[\hat{a} \ \hat{b} \ \hat{c} \right]$

Hence,

$$[\hat{a} \ \hat{b} \ \hat{c}]$$

$$= \hat{a} \cdot (\hat{b} \times \hat{c})$$

$$= (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot \{(\hat{i} + 2\hat{j} - \hat{k}) \times (3\hat{i} - \hat{j} - 2\hat{k})\}\$$

$$= \left(2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}\right) \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

$$= (2\hat{i} - 3\hat{j} + 4\hat{k}).(-5\hat{i} - \hat{j} - 7\hat{k})$$

$$= -10 + 3 - 28$$

$$= -35$$

The volume = 35 sq units

Question 85.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $\vec{a} = \left(2\hat{i} - 3\hat{j} + 4\hat{k}\right)$, $\vec{b} = \left(\hat{i} + 2\hat{j} - \hat{k}\right)$ and $\vec{c} = \left(3\hat{i} - \hat{j} - 2\hat{k}\right)$ be the coterminous edges of a parallelepiped then its volume is

- A. 21 cubic units
- B. 14 cubic units
- C. 7 cubic units
- D. none of these

Answer:

Given
$$\vec{a} = 2\hat{i} - 3\hat{i} + 4\hat{k}$$

And
$$\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$$

 $\vec{c}{=}3\hat{\imath}-\hat{\jmath}-2\hat{k}$ are the coterminous edges of the parallelepiped.

Property:

If \vec{a} , \vec{b} , \vec{c} are the coterminous edges of the parallelepiped, the the volume of the parallelepiped is [\vec{a} \vec{b} \vec{c}]

 $[\vec{a}\;\vec{b}\;\vec{c}]$ is the scalar triple product.

$$[\vec{a}\;\vec{b}\;\vec{c}]=|\vec{a}.(\vec{b}\times\vec{c})|$$

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

$$=\hat{\mathbf{i}}[-4-1]-\hat{\mathbf{j}}[-2-(-3)]+\hat{\mathbf{k}}[-1-6]$$

$$=-5\hat{\mathbf{i}}-\hat{\mathbf{j}}-7\hat{\mathbf{k}}$$

$$\vec{a}.(\vec{b} \times \vec{c})=(2\hat{i}-3\hat{j}+4\hat{k}).(-5\hat{i}-\hat{j}-7\hat{k})$$

 $|\vec{a}.(\vec{b} \times \vec{c})|=35$ cubic units

OR

$$[\vec{a}\ \vec{b}\ \vec{c}] = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

$$= -35$$

Therefore the volume of the parallelepiped with the given coterminous edges is 35 cubic units

Question 86.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If the volume of a parallelepiped having $\vec{a} = \left(5\,\hat{i} - 4\,\hat{j} + \hat{k}\right), \vec{b} = \left(4\,\hat{i} + 3\,\hat{j} + \lambda\,\hat{k}\right)$ and $\vec{c} = \left(\hat{i} - 2\,\hat{j} + 7\,\hat{k}\right)$ as conterminous edges, is 216 cubic units then the value of λ is

- A. $\frac{5}{3}$
- B. $\frac{4}{3}$
- c. $\frac{2}{3}$
- D. $\frac{1}{3}$

Answer:

Given volume of the parallelepiped is 216 cubic units

Given
$$\vec{a} = 5\hat{i} - 4\hat{j} + \hat{k}$$

And
$$\vec{b} = 4\hat{i} + 3\hat{j} - \lambda \hat{k}$$

 \vec{c} = \hat{i} - 2 \hat{j} + 7 \hat{k} are the coterminous edges of the parallelepiped.

$$[\vec{a}\ \vec{b}\ \vec{c}] = 216$$

$$\Rightarrow 216 = \begin{vmatrix} 5 & -4 & 1 \\ 4 & 3 & \lambda \\ 1 & -2 & 7 \end{vmatrix}$$

$$\Rightarrow$$
 216=5[21-(-2 λ)]-(-4)[28- λ]+1[-8-3]

$$\Rightarrow$$
 216=5[21+2 λ]+4[28- λ]+1[-11]

$$\Rightarrow$$
 216= 105 +10 λ +112 -4 λ -11

$$\Rightarrow$$
 216-105-112+11=6 λ

$$\Rightarrow$$
 6 λ =10

$$\Rightarrow \lambda = \frac{10}{6}$$

$$\Rightarrow \lambda = \frac{5}{3}$$

Question 87.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If the volume of a parallelepiped having $\vec{a} = \left(5\,\hat{i} - 4\,\hat{j} + \hat{k}\right), \vec{b} = \left(4\,\hat{i} + 3\,\hat{j} + \lambda\,\hat{k}\right)$ and $\vec{c} = \left(\hat{i} - 2\,\hat{j} + 7\,\hat{k}\right)$ as conterminous edges, is 216 cubic units then the value of λ is

- A. $\frac{5}{3}$
- B. $\frac{4}{3}$
- c. $\frac{2}{3}$
- D. $\frac{1}{3}$

Answer:

Given – The three coterminous edges of a parallelepiped are $\vec{a}=5\hat{\imath}-4\hat{\jmath}+\hat{k}$,

$$\vec{b} = 4\hat{i} + 3\hat{j} + \lambda \hat{k} \& \vec{c} = \hat{i} - 2\hat{j} + 7\hat{k}$$

To find – The value of λ

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}} \text{ and } \vec{b} = b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}}$$

Tip - The volume of the parallelepiped = $|\hat{a} \hat{b} \hat{c}|$

Hence,

$$[\hat{a} \ \hat{b} \ \hat{c}]$$

$$= \hat{a} \cdot (\hat{b} \times \hat{c})$$

$$= (5\hat{i} - 4\hat{j} + \hat{k}).\{(4\hat{i} + 3\hat{j} + \lambda\hat{k}) \times (\hat{i} - 2\hat{j} + 7\hat{k})\}\$$

$$= (5\hat{\imath} - 4\hat{\jmath} + \hat{k}) \cdot \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 3 & \lambda \\ 1 & -2 & 7 \end{vmatrix}$$

$$= (5\hat{i} - 4\hat{j} + \hat{k}) \cdot ((21 + 2\lambda)\hat{i} + (\lambda - 28)\hat{j} - 11\hat{k})$$

$$=5(21+2\lambda)-4(\lambda-28)-11$$

The volume = $206+6\lambda$

But, the volume = 216 sq units

So,
$$206+6\lambda=216 \Rightarrow \lambda=\frac{10}{6}=\frac{5}{3}$$

Question 88.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

If the volume of a parallelepiped having $\vec{a} = \left(5\,\hat{i} - 4\,\hat{j} + \hat{k}\right), \vec{b} = \left(4\,\hat{i} + 3\,\hat{j} + \lambda\,\hat{k}\right)$ and $\vec{c} = \left(\hat{i} - 2\,\hat{j} + 7\,\hat{k}\right)$ as conterminous edges, is 216 cubic units then the value of λ is

- A. $\frac{5}{3}$
- B. $\frac{4}{3}$
- c. $\frac{2}{3}$
- D. $\frac{1}{3}$

Answer:

Given – The three coterminous edges of a parallelepiped are $\vec{a}=5\hat{\imath}-4\hat{\jmath}+\hat{k}$,

$$\vec{b} = 4\hat{i} + 3\hat{j} + \lambda \hat{k} \& \vec{c} = \hat{i} - 2\hat{j} + 7\hat{k}$$

To find – The value of λ

Formula to be used - $\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix} = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \text{ and } \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$

Tip - The volume of the parallelepiped = $\left[\hat{a} \ \hat{b} \ \hat{c} \right]$

Hence,

$$[\hat{a} \hat{b} \hat{c}]$$

$$= \hat{a} \cdot (\hat{b} \times \hat{c})$$

$$= (5\hat{i} - 4\hat{j} + \hat{k}) \cdot \{(4\hat{i} + 3\hat{j} + \lambda \hat{k}) \times (\hat{i} - 2\hat{j} + 7\hat{k})\}\$$

$$= (5\hat{\imath} - 4\hat{\jmath} + \hat{k}) \cdot \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 3 & \lambda \\ 1 & -2 & 7 \end{vmatrix}$$

$$= \big(5\hat{\imath} - 4\hat{\jmath} + \hat{k}\big).\Big((21+2\lambda)\hat{\imath} + (\lambda-28)\hat{\jmath} - 11\hat{k}\Big)$$

$$=5(21+2\lambda)-4(\lambda-28)-11$$

$$=206+6\lambda$$

The volume = $206+6\lambda$

But, the volume = 216 sq units

So,
$$206+6\lambda=216 \Rightarrow \lambda=\frac{10}{6}=\frac{5}{3}$$

Question 89.

Mark $(\sqrt{\ })$ against the correct answer in the following:

It is given that the vectors $\vec{a} = \left(2\,\hat{i} - 2\hat{k}\right), \, \vec{b} = \hat{i} + \left(\lambda + 1\right)\hat{j}$ and $\vec{c} = \left(4\,\hat{i} + 2\,\hat{k}\right)$ are coplanar. Then, the value of λ is

- A. $\frac{1}{2}$
- B. $\frac{1}{3}$
- C. 2
- D. -1

Answer:

Given $\vec{a} = 2\hat{i} - 2\hat{k}$

And $\vec{b} = 1\hat{i} + (1 + \lambda)\hat{j}$

 $\vec{c}=4\hat{i}+2\hat{k}$ are the coplanar.

If three vectors \vec{a} , \vec{b} , \vec{c} are coplanar, then $[\vec{a}\ \vec{b}\ \vec{c}] = 0$

$$[\vec{a}\,\vec{b}\,\vec{c}] = \begin{vmatrix} 2 & 0 & -2 \\ 1 & 1+\lambda & 0 \\ 4 & 0 & 2 \end{vmatrix} = 0$$

$$\Rightarrow$$
2[2(1+ λ)]-2[-4(1+ λ)=0

$$\Rightarrow 4(1+\lambda)+8(1+\lambda)=0$$

$$\Rightarrow 12(1+\lambda)=0$$

$$\Rightarrow \lambda = -1$$

Question 90.

Mark ($\sqrt{\ }$) against the correct answer in each of the following:

It is given that the vectors $\vec{a}=\left(2\,\hat{i}-2\hat{k}\right),\,\vec{b}=\hat{i}+\left(\lambda+1\right)\hat{j}$ and $\vec{c}=\left(4\,\hat{i}+2\,\hat{k}\right)$ are coplanar. Then, the value of λ is

- A. $\frac{1}{2}$
- B. $\frac{1}{3}$
- C. 2
- D. 1

Answer:

Given – The vectors $\vec{a} = 2\hat{i} - 2\hat{k}, \vec{b} = \hat{i} + (\lambda + 1)\hat{j} \& \vec{c} = 4\hat{i} + 2\hat{k}$ are coplanar

To find – The value of λ

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \text{ and } \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$

Tip – For vectors to be coplanar, $[\hat{a} \ \hat{b} \ \hat{c}] = 0$

Hence,

$$[\hat{a} \ \hat{b} \ \hat{c}] = 0$$

$$\Rightarrow \hat{a} \cdot (\hat{b} \times \hat{c}) = 0$$

$$\Rightarrow (2\hat{\imath} - 2\hat{k}).\{(\hat{\imath} + (\lambda + 1)\hat{\jmath}) \times (4\hat{\imath} + 2\hat{k})\} = 0$$

$$\Rightarrow (2\hat{\mathbf{i}} - 2\hat{\mathbf{k}}) \cdot \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & \lambda + 1 & 0 \\ 4 & 0 & 2 \end{vmatrix} = 0$$

$$\Rightarrow (2\hat{\imath} - 2\hat{k}).(2(\lambda + 1)\hat{\imath} - 2\hat{\jmath} - 4(\lambda + 1)\hat{k}) = 0$$

$$\Rightarrow 4(\lambda-1)+8(\lambda-1)=0$$

$$\Rightarrow$$
 12(λ -1)=0 i.e. λ = 1

Question 91.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

It is given that the vectors $\vec{a} = \left(2\hat{i} - 2\hat{k}\right)$, $\vec{b} = \hat{i} + \left(\lambda + 1\right)\hat{j}$ and $\vec{c} = \left(4\hat{i} + 2\hat{k}\right)$ are coplanar. Then, the value of λ is

- A. $\frac{1}{2}$
- B. $\frac{1}{3}$
- C. 2
- D. 1

Answer:

Given – The vectors $\vec{a} = 2\hat{i} - 2\hat{k}$, $\vec{b} = \hat{i} + (\lambda + 1)\hat{i}$ & $\vec{c} = 4\hat{i} + 2\hat{k}$ are coplanar

To find – The value of λ

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c})$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ where } \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

Tip – For vectors to be coplanar, $[\hat{a} \ \hat{b} \ \hat{c}] = 0$

Hence,

$$[\hat{a} \ \hat{b} \ \hat{c}] = 0$$

$$\Rightarrow \hat{a} \cdot (\hat{b} \times \hat{c}) = 0$$

$$\Rightarrow \left(2\hat{\imath}-2\hat{k}\right)\!.\left\{\left(\hat{\imath}+(\lambda+1)\hat{\jmath}\right)\times\left(4\hat{\imath}+2\hat{k}\right)\right\}=0$$

$$\Rightarrow (2\hat{\mathbf{i}} - 2\hat{\mathbf{k}}) \cdot \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & \lambda + 1 & 0 \\ 4 & 0 & 2 \end{vmatrix} = 0$$

$$\Rightarrow (2\hat{\imath} - 2\hat{k}).(2(\lambda + 1)\hat{\imath} - 2\hat{\jmath} - 4(\lambda + 1)\hat{k}) = 0$$

$$\Rightarrow 4(\lambda-1)+8(\lambda-1)=0$$

$$\Rightarrow$$
 12(λ -1)=0 i.e. λ = 1

Question 92.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

Which of the following is meaningless?

A.
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

B.
$$\vec{a} \times (\vec{b} \cdot \vec{c})$$

C.
$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

D. none of these

Answer

Tip - $\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix} = \hat{a} \cdot (\hat{b} \times \hat{c}) = \hat{b} \cdot (\hat{c} \times \hat{a}) = \hat{c} \cdot (\hat{a} \times \hat{b}) = (\hat{a} \times \hat{b}) \cdot \hat{c}$ since, dot product is commutative

Hence, $\hat{a} \times (\hat{b}.\hat{c})$ is meaningless.

Question 93.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

Which of the following is meaningless?

A.
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

в.
$$\vec{a} \times (\vec{b} \cdot \vec{c})$$

C.
$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

D. none of these

Answer:

Tip -
$$\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix} = \hat{a} \cdot (\hat{b} \times \hat{c}) = \hat{b} \cdot (\hat{c} \times \hat{a}) = \hat{c} \cdot (\hat{a} \times \hat{b}) = (\hat{a} \times \hat{b}) \cdot \hat{c}$$
 since, dot product is commutative

Hence, $\hat{\mathbf{a}} \times (\hat{\mathbf{b}}.\hat{\mathbf{c}})$ is meaningless.

Question 94.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Which of the following is meaningless?

A.
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

B.
$$\vec{a} \times (\vec{b} \cdot \vec{c})$$

C.
$$(\vec{a} \times \vec{b}) \cdot \vec{c}$$

D. none of these

Answer:

Option B is meaningless

Reason:

The term (\vec{b}, \vec{c}) is a scalar term and \vec{a} is a vector. Cross product can only be applied in between the vectors. It is meaning less if used in between scalars or between scalar and vector.

Question 95.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = ?$$

- A. 0
- B. 1
- $C. a^2b$

D. meaningless

Answer:

Tip – The cross product of two vectors is the vector perpendicular to both the vectors.

 $\vec{a} \times \vec{b}$ gives a vector perpendicular to both \vec{a} and \vec{b} .

Now,

$$\vec{a} \cdot (\vec{a} \times \vec{b})$$

$$= |\vec{a}||\vec{b}|\cos\theta$$

$$= |\vec{a}||\vec{b}|\cos\frac{\pi}{2}$$

$$= 0$$

Question 96.

Mark $(\sqrt{\ })$ against the correct answer in the following:

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = ?$$

- A. 0
- B. 1
- $C. a^2b$
- D. meaningless

Answer:

Asking us to find $\vec{a} \cdot (\vec{a} \times \vec{b})$

By the definition of the scalar triple product,

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b}) \cdot \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b}$$

Also $(\vec{a}.\vec{b}).\vec{a} = (\vec{a}.\vec{a})\vec{b}$ [reason : dot product is associative]

$$\Rightarrow \vec{a} \cdot (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{a})\vec{b} - (\vec{a} \cdot \vec{a})\vec{b}$$

=0

Question 97.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = ?$$

- A. 0
- B. 1
- $C. a^2b$
- D. meaningless

Answer:

Tip – The cross product of two vectors is the vector perpendicular to both the vectors.

 $\vec{a} \times \vec{b}$ gives a vector perpendicular to both \vec{a} and \vec{b} .

Now,

$$\vec{a} \cdot (\vec{a} \times \vec{b})$$

$$= |\vec{a}| |\vec{b}| \cos \theta$$

$$= |\vec{a}||\vec{b}|\cos\frac{\pi}{2}$$

= 0

Question 98.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

For any three vectors \vec{a} , \vec{b} , \vec{c} the value of $\left[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a} \right]$ is

A.
$$2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

B. 1

C. 0

D. none of these

Answer:

Formula to be used - $\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix} = \hat{a} \cdot (\hat{b} \times \hat{c}) = \hat{b} \cdot (\hat{c} \times \hat{a})$ for any three arbitrary vectors

$$\therefore \begin{bmatrix} \hat{a} - \hat{b} & \hat{b} - \hat{c} & \hat{c} - \hat{a} \end{bmatrix}$$

$$= (\hat{a} - \hat{b}).\{(\hat{b} - \hat{c}) \times (\hat{c} - \hat{a})\}\$$

$$= (\hat{\mathbf{a}} - \hat{\mathbf{b}}).(\hat{\mathbf{b}} \times \hat{\mathbf{c}} - \hat{\mathbf{c}} \times \hat{\mathbf{c}} - \hat{\mathbf{b}} \times \hat{\mathbf{a}} + \hat{\mathbf{c}} \times \hat{\mathbf{a}})$$

$$=(\hat{a}-\hat{b}).(\hat{b}\times\hat{c}-\hat{b}\times\hat{a}+\hat{c}\times\hat{a})$$

$$= \left[\hat{\mathbf{a}} \cdot (\hat{\mathbf{b}} \times \hat{\mathbf{c}}) - \hat{\mathbf{b}} (\hat{\mathbf{b}} \times \hat{\mathbf{c}}) - \hat{\mathbf{a}} \cdot (\hat{\mathbf{b}} \times \hat{\mathbf{a}}) + \hat{\mathbf{b}} (\hat{\mathbf{b}} \times \hat{\mathbf{a}}) + \hat{\mathbf{a}} \cdot (\hat{\mathbf{c}} \times \hat{\mathbf{a}}) - \hat{\mathbf{b}} \cdot (\hat{\mathbf{c}} \times \hat{\mathbf{a}}) \right]$$

$$= \left[\hat{a} \ \hat{b} \ \hat{c} \right] - \left[\hat{a} \ \hat{b} \ \hat{c} \right] = 0$$

Question 99.

Mark $(\sqrt{\ })$ against the correct answer in the following:

For any three vectors \vec{a} , \vec{b} , \vec{c} the value of $[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}]$ is

A.
$$2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

B. 1

C. 0

D. none of these

Answer:

Asking us to find the value of $[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}]$

$$[\vec{a} - \vec{b} \qquad \vec{b} - \vec{c} \qquad \vec{c} - \vec{a}] = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}. \ [\vec{a} \qquad \vec{b} \qquad \vec{c}]$$
Coefficients coefficients coefficients

Of \vec{a} of \vec{b} of \vec{c}

$$= \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} \cdot [\vec{a} \vec{b} \vec{c}]$$

$$=0$$

Question 100.

Mark $(\sqrt{\ })$ against the correct answer in each of the following:

For any three vectors \vec{a} , \vec{b} , \vec{c} the value of $\left[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}\right]$ is

A.
$$2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

- B. 1
- C. 0
- D. none of these

Answer

Formula to be used - $[\hat{a} \ \hat{b} \ \hat{c}] = \hat{a} \cdot (\hat{b} \times \hat{c}) = \hat{b} \cdot (\hat{c} \times \hat{a})$ for any three arbitrary vectors

$$\therefore [\hat{a} - \hat{b} \ \hat{b} - \hat{c} \ \hat{c} - \hat{a}]$$

$$= (\hat{\mathbf{a}} - \hat{\mathbf{b}}) \cdot \{(\hat{\mathbf{b}} - \hat{\mathbf{c}}) \times (\hat{\mathbf{c}} - \hat{\mathbf{a}})\}$$

$$= (\hat{a} - \hat{b}).(\hat{b} \times \hat{c} - \hat{c} \times \hat{c} - \hat{b} \times \hat{a} + \hat{c} \times \hat{a})$$

$$= (\hat{a} - \hat{b}).(\hat{b} \times \hat{c} - \hat{b} \times \hat{a} + \hat{c} \times \hat{a})$$

$$= \left[\hat{a}. \left(\hat{b} \times \hat{c} \right) - \hat{b} \left(\hat{b} \times \hat{c} \right) - \hat{a}. \left(\hat{b} \times \hat{a} \right) + \hat{b} \left(\hat{b} \times \hat{a} \right) + \hat{a}. \left(\hat{c} \times \hat{a} \right) - \hat{b}. \left(\hat{c} \times \hat{a} \right) \right]$$

$$= \left[\hat{a} \ \hat{b} \ \hat{c} \ \right] - \left[\hat{a} \ \hat{b} \ \hat{c} \ \right] = 0$$