Torus[™] - L'outil de nettoyage de réservoir 3D jusqu'à 1 500 bar (TR-130)

Description:

L'outil 3D **Torus** est conçu pour le nettoyage de réservoirs, de récipients, d'autoclaves, de gaines et d'intérieurs de réacteur. L'outil peut supporter des pressions de travail jusqu'à 1 500 bar et des débits de 38 à 300 l/min. La large plage de débit est rendue possible par l'utilisation de quatre distributeurs différents : Haut débit (R30), moyen débit (R50), bas débit (R90) et extra bas débit (R150). Un frein magnétique sans entretien permet de commander la vitesse de rotation. Remarquez que la vitesse de rotation peut augmenter lors du réchauffage de l'outil jusqu'à la température de fonctionnement. Le cycle de nettoyage Torus complet peut prendre de 4 à 30 minutes environ, selon la vitesse de rotation, qui dépend de la pression, du débit, du diamètre de la buse, du choix de distributeur et du réglage du frein. Un cycle complet de nettoyage correspond à 92 tours du corps. Le distributeur HP tourne 2,36 fois pour chaque tour du corps. En cas d'utilisation dans de grands récipients, des bras de rallonge jusqu'à 900 mm de long peuvent réduire la distance du support au jet. Le Torus peut être suspendu à un flexible haute pression ou à la bague de traction en option proposée pour l'outil. Il est recommandé de souffler à l'air comprimé tous les passages d'eau internes (buses, trous de fuite, entrée) après chaque utilisation.

AVERTISSEMENT: Le Torus contient plusieurs aimants puissants aux terres rares qui produisent un champ magnétique pouvant dépasser 10 Gauss. Les personnes porteuses de stimulateur cardiaque ou autre appareil électronique médical doivent prendre les plus grandes précautions pour manipuler ou se trouver à proximité immédiate de l'appareil Torus. Il est recommandé de respecter une distance minimale de 152 mm à tout moment entre le Torus et tout appareil électronique médical.

ATTENTION: L'utilisation de gants est recommandée pour la manipulation de l'outil après l'utilisation car le corps du côté de l'anneau de traction peut atteindre des températures jusqu'à 70 °C selon les conditions d'utilisation.

Fonctionnement:

Avant usage, vérifiez que le distributeur installé est la configuration correcte correspondant à la pression et au débit de fonctionnement. Le défaut d'utilisation du distributeur correct peut conduire à un surrégime pouvant causer des dégâts irréversibles aux composants, ou encore une rotation très lente voire absente. Le tableau ci-dessous indique le distributeur correct à utiliser pour diverses combinaisons de pression et de débit. Vérifiez sans faute que les deux buses utilisées sont de même dimension et en bon état, sinon la rotation du Torus pourrait être erratique, trop rapide ou absente. Pour utiliser le tableau, commencez par sélectionner la ligne de pression de fonctionnement à gauche. Parcourez le tableau vers la droite jusqu'à trouver le débit le plus proche de la valeur réelle. Vous trouverez juste au-dessus du débit le type de distributeur approprié, et le haut de la colonne indique la dimension de buse appropriée. Si vous connaissez la pression et la dimension de buse, sélectionnez la ligne de pression de fonctionnement à gauche et lisez sur le tableau les dimensions de buse dans les cases supérieures pour trouver la plus proche. La case d'intersection des deux donne le débit et le type de distributeur appropriés.

							•											<u> </u>			
										DIME	NSION D	E BUSE									
		Diamètre de buse	0,035	0,038	0,042	0,047	0,052	0,057	0,063	0,069	0,075	0,082	0,090	0,098	0,106	0,115	0,125	0,135	0,145	0,155	0,165
		N° de buse	2	2,5	3	4	5	5,5	6,5	8	10	12	14	16	19	23	27	31	36	41	46
N, BAR	38	DÉBIT, L/min	LA COMMANDE DE RÉGIME EST LIMITÉE À 138 BAR										98	114	129	148	163	178	193		
	13	DISTRIBUTEUR											R150	R150	R150	R150	R150	R150	R150		
	345	DÉBIT, L/min								68	83	98	114	133	155	178	204	231	257	284	
		DISTRIBUTEUR	R1							R150	R150	R150	R90	R90	R90	R90	R50	R50	R50	R50	
	069	DÉBIT, L/min				45	57	64	83	98	114	136	159	189	216	250	288				
PRESSION,		DISTRIBUTEUR				R150	R150	R150	R90	R90	R90	R50	R50	R50	R50	R30	R30				
PRE	1 034	DÉBIT, L/min		38	45	57	68	80	102	117	140	167	197	231	265	307					
		DISTRIBUTEUR		R150	R150	R150	R90	R90	R90	R50	R50	R50	R30	R30	R30	R30					
	1 379	DÉBIT, L/min	38	42	49	64	76	91	114	136	159	193	227	265	307						
		DISTRIBUTEUR	R150	R150	R150	R90	R90	R90	R50	R50	R50	R30	R30	R30	R30						

Entretien:

L'outil Torus 3D est simple à utiliser, mais certaines précautions assurent une utilisation sûre et productive. Veuillez lire et respecter toutes ces recommandations.

JOINT À HAUTE PRESSION

Le Torus a deux joints à haute pression, un dans l'arbre d'entrée, et l'autre dans l'arbre transversal. Ces joints sont identiques ; ils peuvent laisser fuir de l'eau à basse pression (en dessous de 70 bar) et laissent fuir l'eau en continu à la pression de fonctionnement en cas de défaillance. Si de l'eau fuit par les trous de fuite les plus proches de l'entrée, c'est que le joint d'entrée est endommagé. Si de l'eau fuit par les trous de fuite les plus éloignés de l'entrée, c'est que le joint de l'arbre transversal est endommagé.

LUBRIFICATION ET STOCKAGE

Il est recommandé de graisser l'outil toutes les 100 heures de fonctionnement. Une graisse polyvalent NLGI 2 est acceptable. Il y a cinq graisseurs sur l'extérieur du corps. Un graissage excessif ne créera aucun dégât à l'outil, mais l'opérateur risque de voir la graisse excédentaire fuir autour des joints d'arbre en fonctionnement. Il est aussi recommandé de souffler à l'air comprimé tous les passages d'eau internes (buses, trous de fuite, entrée) après chaque utilisation pour prolonger la durée de vie des composants internes.

FREIN MAGNÉTIQUE

Le frein magnétique ne nécessite ni lubrification ni entretien. En cas de soupçon de problème sur l'ensemble frein magnétique, il doit être renvoyé à un centre de réparation certifié StoneAge pour réparation ou remplacement.

RACCORDS FILETÉS À HAUTE PRESSION

Pour éviter le grippage, utilisez pour les raccordements de canalisations filetées un produit d'étanchéité Parker Thread Mate ® (référence StoneAge GP047) et du ruban Téflon. Pour tous les autres raccordements filetés à haute pression, utilisez un lubrifiant antigrippant seul. StoneAge recommande le Swagelok Blue Goop ® (référence StoneAge GP 043).

FIXATIONS FILETÉES

Il est EXTRÊMEMENT IMPORTANT de remonter toutes les fixations filetées selon la procédure suivante : A) Les fixations étiquetées avec une note spécifique de Blue Loctite (GP180) doivent être remontées et serrées au couple indiqué. B) Toutes les autres fixations doivent être remontées avec du Blue Goop ® (GP 043) et serrées au couple éventuellement indiqué.

Description:

DISTRIBUTEURS

Il y a quatre distributeurs pour le Torus ; sélectionnez la version appropriée aux conditions de fonctionnement

TR 230-P12

TR 230-P16 TR 230-MP12 TR 230-MP16

ADAPTATEUR D'ENTRÉE

ADAPTATEUR D'ENTREE

Les adaptateurs d'entrée sont tous des accouplements femelle-femelle. Une extrémité a un joint torique sur une face d'étanchéité avec l'arbre d'entrée. L'autre extrémité est disponible en 3/4" NPT, 1" NPT, 3/4" moyenne pression ou 1" moyenne pression.

R150 38-68 L/min Arbre d'entrée Joint torique

RÉGLAGE DE RÉGIME

Remarque : Il <u>n'est pas</u> nécessaire de déposer l'ensemble bague de traction en option pour accéder au bouton de réglage de régime.

La vitesse de rotation du Torus peut être réglé par l'arbre de réglage de régime du côté opposé à l'entrée. L'arbre peut être positionné à tout emplacement entre slow (lent) et fast (rapide). Tout outil adapté tel qu'un tournevis Phillips peut être utilisé pour régler le régime en insérant l'outil par la fente d'accès du boîtier pour passer par le trou de l'arbre. Pour passer de lent à rapide, tournez l'arbre de réglage de régime d'environ 50° vers la gauche. Des repères gravés à l'extérieur du corps indiquent les réglages slow et fast. La modification du régime de lent à rapide augmente le régime d'environ trois fois (Par ex. : slow 10 tr/min ; fast 30 tr/min). La vitesse de rotation dépend du couple produit en fonctionnement par la combinaison de pression, de débit, de version de distributeur et de réglage de frein. La plage de régime de fonctionnement moyen de l'arbre transversal est d'environ 8-16 tr/min en réglage slow et d'environ 25-50 tr/min en réglage fast.

Pour les conditions générales de vente, consultez : http://www.stoneagetools.com/terms
Pour la garantie limitée, consultez : http://www.stoneagetools.com/warranty
Pour les brevets applicables, consultez : http://www.sapatents.com

Torus™ - L'outil de nettoyage de réservoir 3D

Torus™ - L'outil de nettoyage de réservoir 3D

TR130 200 FREIN

 Assurez-vous que la plaque d'extrémité de la cage est installée comme indiqué sur le boîtier de la bague de traction avec un jeu d'environ 3 mm derrière le seau de traction ; sinon le Torus ne pourra pas tourner correctement en fonctionnement.

Remarquez que la bague de traction doit être déposée du Torus avant l'installation du Torus dans la cage.

Appliquez du Blue Loctite 242 (référence StoneAge GP 180) sur la vis de la bague de traction avant l'installation. Serrez la vis à 68-80 N·m.

Boîtier de bague de traction

INSTALLATION DE LA BAGUE DE TRACTION HC 090

Appliquez du Blue Loctite 242 (référence StoneAge GP 180) sur la vis de la bague de traction avant l'installation. Serrez la vis à 68-80 N·m.

PL 556 © 12/09/2017 StoneAge[®], Tous droits réservés

Torus™ - L'outil de nettoyage de réservoir 3D

TR130 120 Ensemble d'entrée

! ATTENTION ! : L'utilisation de gants est recommandée pour la manipulation de l'outil après l'utilisation car le corps et le couvercle de frein du côté de l'anneau de traction peuvent atteindre des températures jusqu'à 70 °C selon les conditions

Serrez à 16 N·m

d'utilisation. Graissez aussi les (5) graisseurs sur le coude, le boîtier d'entrée et le boîtier d'arbre transversal

Remarque : Utilisez toujours un lubrifiant antigrippant sur tous les raccordements filetés pour éviter le grippage.

- 1. Déposez le siège en carbure (MJ 011-C) et le joint HP (HC 012-TO). Contrôlez le siège pour rechercher des écailles sur les bords. Remplacez la pièce si elle est endommagée. Contrôlez la face correspondante du coude pour rechercher des coups ou des cratères. Si la pièce est endommagée, elle doit être surfacée ou remplacée, sinon le joint fuira.
- 2. Graissez le joint HP neuf pour l'installer dans l'alésage. Placez le siège sur le joint, côté plat contre le joint. Le côté chanfreiné doit être dirigé

Contenu du kit d'entretien TR130 600						
RÉFÉRENCE	DESCRIPTION	QUANTITÉ				
GP 043	Blue Goop ® 2 oz	1				
GP 180	Blue Loctite 242 ® 0,02 oz	1				
HC 012-TO	Joint haute pression avec joint torique	2				
MJ 011-C	Joint haute pression	2				
PL 556	TR-130 Insert manuel	1				
SA 059	Joint torique, G12	2				
TR 245	Joint haute pression, distributeur	2				
WS 210	Joint torique	1				

(4) TR130 115 VIS D'ÉTANCHÉITÉ

Appliquer du Blue Goop sur les filetages

SHCS 0,312-18 X 1,50 INOX

Contenu du kit de remise en état TR130 610							
RÉFÉRENCE	DESCRIPTION	QUANTITÉ					
BJ 007	Roulement, contact oblique	2					
BR 196	Bague de retenue, INOX	1					
CJ 009	Roulement, billes	1					
GP 043	Blue Goop ® 2 oz	1					
GP 180	Blue Loctite 242 ® 0,02 oz	1					
HC 012-TO	Joint haute pression avec joint torique	2					
MJ 008	Joint torique, frein	1					
MJ 011-C	Joint haute pression	2					
PL 556	TR-130 Insert manuel	1					
PTL 078	Bague de retenue, INOX	1					
SA 059	Joint torique, G12	2					
SG 009	Roulement, billes	1					
TR130 105	Joint torique, corps	4					
TR130 113	Joint	2					
TR130 114	Bague de retenue, INOX	2					
TR130 230	Roulement, billes	2					
TR130 233	Joint torique, frein	2					
TR130 234	Bague de retenue, INOX	2					
TR 134	Joint	2					
TR 136	Roulement à aiguilles	2					
TR 138	Bague de retenue, INOX	2					
TR 245	Joint, distributeur haute pression	2					
WS 029	Joint	1					
WS 210	Joint torique	1					