

Please turn in the problem set at the start of class.

COSC 290 Discrete Structures

Lecture 20: Asymptotics

Prof. Michael Hay Monday, Oct. 16, 2017 Colgate University

Plan for today

- 1. Big-Oh definition
- 2. Proving f(n) = O(g(n)) or $f(n) \neq O(g(n))$
- 3. Properties of Big-Oh
- 4. Discuss mid-semester feedback

Big-Oh definition

Main use for big-Oh notation

f(n) is typically the runtime of some algorithm $\mathcal A$ on an input of size n.

g(n) is an upper bound on the runtime of the algorithm, ignoring constants.

Why ignore constants?

A graphical view

Figure 1: f(n) = O(g(n)). For $n \ge n_o$, f(n) grows no faster than $c \cdot g(n)$.

Big Oh Notation

Let
$$f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$$
 and $g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

We say that f grows no faster than g if there exists some $n_o \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{> 0}$ such that for all $n \geq n_o$, $f(n) \leq c \cdot g(n)$.

This is denoted f(n) = O(g(n)).

Poll: formalized logically

We say f(n)=O(g(n)) when there exists some $n_0\in\mathbb{R}^{\geq 0}$ and some $c\in\mathbb{R}^{>0}$ such that for all $n\geq n_0$, $f(n)\leq c\cdot g(n)$.

How do we formalize this as a proposition?

A)
$$\forall n \in \mathbb{R}^{\geq 0} : \exists c \in \mathbb{R}^{>0} : \exists n_0 \in \mathbb{R}^{\geq 0} : (n > n_0) \land (f(n) < c \cdot q(n))$$

B)
$$\forall n \in \mathbb{R}^{\geq 0} : \exists c \in \mathbb{R}^{>0} : \exists n_0 \in \mathbb{R}^{\geq 0} : (n \geq n_0) \Longrightarrow (f(n) \leq c \cdot g(n))$$

C)
$$\exists c \in \mathbb{R}^{>o} : \exists n_o \in \mathbb{R}^{\geq o} : \forall n \in \mathbb{R}^{\geq o} : (n \geq n_o) \land (f(n) \leq c \cdot g(n))$$

$$\mathsf{D}) \ \exists c \in \mathbb{R}^{>o} : \exists n_o \in \mathbb{R}^{\geq o} : \forall n \in \mathbb{R}^{\geq o} : (n \geq n_o) \implies (f(n) \leq c \cdot g(n))$$

5

Proving
$$f(n) = O(g(n))$$
 or $f(n) \neq O(g(n))$

Problem set question

6.5. Let f(n) = 9n + 3 and let g(n) = n. Prove that f(n) = O(g(n)). Choose values for n_0 and c:

• n₀ = 3 (other choices work)

• c = 10 (other choices work)

Want to show: for $n \ge n_0$, $f(n) \le c \cdot g(n)$.

$$f(n) = 9n + 3$$

$$\leq 9n + n \qquad \text{when } n \geq n_0$$

$$= 10n$$

$$\leq c \cdot g(n) \qquad \text{because } c = 10. \square$$

Proving a big-Oh relationship

We say f(n) = O(g(n)) when there exists some $n_0 \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{\geq 0}$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

$$\exists n_0 \in \mathbb{R}^{\geq 0} : \exists c \in \mathbb{R}^{> 0} : \forall n \in \mathbb{R}^{\geq 0} : (n \geq n_0) \implies (f(n) \leq c \cdot g(n))$$

To prove f(n) = O(g(n)), ...

- you get to choose values for no and c.
- Then, start with f(n) and...
- ... use inequalities to show it's no larger than c ⋅ q(n).

Problem set question

6.7. Let f(n) = 9n + 3 and let $g(n) = 3n^3 - n^2$. Prove that f(n) = O(q(n)).

Choose $n_0=3$ and c=5 (other choices also work).

Want to show: for $n \ge n_0$, $f(n) \le c \cdot g(n)$.

$$\begin{split} f(n) &= 9n + 3 \leq 9n + n & \text{when } n \geq n_0 \\ &= 10n \\ &\leq 10n^3 & \text{since } n^2 \geq 1 \text{ when } n \geq n_0 \\ &= 5 \cdot 2n^3 = 5 \cdot (3n^3 - n^3) & \text{algebra} \\ &\leq 5 \cdot (3n^3 - n^2) & \text{because } n^2 \leq n^3 \\ &= c \cdot o(n) & & \end{split}$$

8

Exercise

Let $f(n) = 10^6 n^2 + 10^3 n$ and let $g(n) = n^2$. Show that $f(n) = O(n^2)$.

Work in small groups. Raise your hand when you have an answer.

Poll: formalized logically

We say f(n) = O(q(n)) when

$$\exists c \in \mathbb{R}^{>0} : \exists n_0 \in \mathbb{R}^{\geq 0} : \forall n \in \mathbb{R}^{\geq 0} : (n \geq n_0) \Longrightarrow (f(n) \leq c \cdot g(n))$$

How do we formalize $f(n) \neq O(g(n))$ as a proposition?

A)
$$\exists c \in \mathbb{R}^{>0}$$
: $\exists n_o \in \mathbb{R}^{\geq o}$: $\forall n \in \mathbb{R}^{\geq o}$: $\neg (n \geq n_o) \implies \neg (f(n) \leq c \cdot g(n))$

B)
$$\forall c \in \mathbb{R}^{>0} : \forall n_0 \in \mathbb{R}^{\geq 0} : \exists n \in \mathbb{R}^{\geq 0} : \neg(n > n_0) \implies \neg(f(n) < c \cdot q(n))$$

C)
$$\exists c \in \mathbb{R}^{>0} : \exists n_0 \in \mathbb{R}^{\geq 0} : \forall n \in \mathbb{R}^{\geq 0} : (n > n_0) \land (f(n) > c \cdot q(n))$$

D)
$$\forall c \in \mathbb{R}^{>o} : \forall n_o \in \mathbb{R}^{\geq o} : \exists n \in \mathbb{R}^{\geq o} : (n \geq n_o) \land (f(n) > c \cdot g(n))$$

D)
$$\forall c \in \mathbb{R}^{>o} : \forall n_o \in \mathbb{R}^{\geq o} : \exists n \in \mathbb{R}^{\geq o} : (n \geq n_o) \land (f(n) > c \cdot g(n))$$

F) More than one / None of the above

Proving a big-Oh relationship does not hold

We say $f(n) \neq O(g(n))$ when for all $n_0 \in \mathbb{R}^{\geq 0}$ and all $c \in \mathbb{R}^{> 0}$ there exists $n > n_0$ such that $f(n) > c \cdot q(n)$.

$$\forall c \in \mathbb{R}^{>0} : \forall n_0 \in \mathbb{R}^{\geq 0} : \exists n \in \mathbb{R}^{\geq 0} : (n > n_0) \land (f(n) > c \cdot g(n))$$

To prove $f(n) \neq O(q(n)), ...$

- you cannot choose values for no and c, so let them be arbitrary values
- You do get to choose any n > no.
- · Then, start with f(n) and...
- ... use inequalities to show it's larger than c ⋅ q(n).

Problem set question

6.10. Let $g(n) = 3n^3 - n^2$ and $h(n) = n^2$. Prove that $g(n) \neq O(h(n))$. Let $n_0 \in \mathbb{R}^{\geq 0}$ and $c \in \mathbb{R}^{>0}$ be arbitrary.

Want to show: there is some $n > n_0$ where $q(n) > c \cdot h(n)$.

Let $n := \max\{n_0, c+1\}$ so that $n > n_0$ and n > c:

$$g(n)=3n^3-n^2$$

$$\geq 3n^3 - n^3$$
 $n^3 \geq n^2$ because $n \geq 1$

$$cn^2$$
 because $n > c$

$$= c \cdot g(n)$$

11

Properties of Big-Oh

Useful properties

- If $f(n) = \log n$, f(n) = O(n).
- If f(n) is a degree k polynomial, f(n) = O(n^k).
- If $f(n) = n^k$, $f(n) = O(2^n)$.
- If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
- If $f(n) = O(h_1(n))$ and $g(n) = O(h_2(n))$, then
 - $f(n) + g(n) = O(h_1(n) + h_2(n))$, and
 - $f(n) \cdot g(n) = O(h_1(n) \cdot h_2(n)).$
- $f(n) = O(g(n) + h(n)) \iff f(n) = O(\max(g(n), h(n)))$

Exercise

Recall definition of big-Oh: we say f(n) = O(g(n)) when there exists some $n_0 \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{> 0}$ such that for all $n \geq n_0$, $f(n) < c \cdot g(n)$.

$$\exists n_o \in \mathbb{R}^{\geq o}: \exists c \in \mathbb{R}^{> o}: \forall n \in \mathbb{R}^{\geq o}: (n \geq n_o) \implies (f(n) \leq c \cdot g(n))$$

Exercise: Use this to prove that if $f(n) = O(h_1(n))$ and $g(n) = O(h_2(n))$, then $f(n) \cdot g(n) = O(h_1(n) \cdot h_2(n))$.

Work in small groups. Raise your hand when you have an answer.

Big Theta and the rest

- 1. f(n) = O(g(n)) says f grows no faster than g(n)
- 2. $f(n) = \Omega(g(n))$ says f grows no slower than g(n)
- 3. $f(n) = \Theta(g(n))$ says f grows at the same rate as g(n)
- 4. f(n) = o(g(n)) says f grows (strictly) slower faster than g(n)
- 5. $f(n) = \omega(g(n))$ says f (strictly) faster than g(n)

See text for formal definitions. You are expected to become familiar with this notation, especially first three!

Discuss mid-semester feedback

Some comments

- · Course is challenging for some but "well paced" for others
- Almost all valued in-class questions and discussion
- Less frequent comments I want to address
 Asking questions in class
 - More "individualized attention"
 - More time to copy materials on slides
 - Grading fairness almost all agreed grading was fair but a few did not (please come see mel)