Sistemi di Calcolo Corso di Laurea in Ingegneria Informatica e Automatica

Riccardo Lazzeretti Daniele Cono D'Elia

Il Sistema Operativo e la rete

Principali riferimenti:

W.R. Stevens "Unix Network Programming" Prentice Hall, 1999 Peterson - Davie "Computer Networks: A system approach" Morgan Kaufmann 2000

Andrew Tanenbaum and David Wetherall, Computer Networks

Contenuti

- Architettura di Internet
- Richiami di TCP/IP
- Sockets
- Network Adaptors

Architettura di Internet

Business Applications (1)

A network with two clients and one server

Business Applications (2)

The client-server model involves requests and replies

Home Applications

In a peer-to-peer system there are no fixed clients and servers.

Network classification by scale

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	Mide avec met could
1000 km	Continent	Wide area network
10,000 km	Planet	The Internet

Personal Area Network

Local Area Networks

Wireless and wired LANs. (a) 802.11. (b) Switched Ethernet.

Metropolitan Area Networks

A metropolitan area network based on cable TV.

Wide Area Networks (1)

WAN that connects three branch offices in Australia

Wide Area Networks (2)

WAN using a virtual private network.

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Wide Area Networks (3)

WAN using an ISP network.

Rete geografica per trasmissione dati

- = terminale di utente
- = unità di accesso
- = nodo del sottosistema di comunicazione

Internet

Internet Architecture

Internet Service Providers

Global IP Backbone

Sighali P Backhone 8

Network Access Point (NAP) anche Neutral Access Point o Internet Exchange Point

Punto "neutrale" di scambio dati tra ISPs

Localizzato in aree metropolitane

Network access point

Network Access Point (NAP)

Lo scambio di dati tra diversi ISP avviene in base ai cosiddetti "accordi di peering"

NAP in Italia

- Milano: MIX Milan Internet eXchange
- Roma: NaMeX Nautilus Mediterranean eXchange
- Torino: TOP-IX TOrino Piemonte Internet eXchange
- Udine: FVG-IX Friuli Venezia Giulia Internet eXchange
- Firenze: TIX Tuscany Internet eXchange
- Padova: VSIX Nap del Nord Est

NAP NAMEX (Roma)

Il Nautilus Mediterranean eXchange point (NaMeX) è un punto d'interscambio e interconnessione, neutrale e senza fini di lucro, tra Internet Service Provider e operatori di rete nazionali ed internazionali.

NaMeX consente agli operatori di rete di usufruire di servizi per lo scambio di traffico IP attraverso peering pubblici e privati e realizzazione di circuiti fisici tra operatori.

Organizzazione

Consiglio direttivo:

- Riccardo de Sanctis ANFoV (Presidente)
- · Renato Brunetti Unidata (Vice Presidente)
- Antonio Baldassarra Seeweb
- · Silvano Fraticelli MC-link
- · Alberto Maria Langellotti Telecom Italia
- · Danilo Lanzoni Wind
- · Stefano Merigliano CINECA
- · Giuliano Peritore Panservice
- · Rosario Pingaro Convergenze

Direttore generale:

Maurizio Goretti

Direttore tecnico:

Francesco Ferreri

Comitato tecnico:

- · Antonio Baldassarra Seeweb
- Prof. Giuseppe Di Battista DIA. Università Roma Tre
- · Silvano Fraticelli MC-link
- · Maurizio Goretti CINECA
- · Gabriella Paolini GARR
- Luca Rea FUB
- · Giampaolo Rossini Unidata
- · Gianpaolo Scassellati Wind
- · Antonio Soldati Telecom Italia

Membri NAMAX

2006 1.Agora' 2.CASPUR 3.Cybernet 4.GARR 5.MClink 6.Unidata 7.InterBusiness 8. Unisource 9.Pronet 10.Infostrada 11.Wind 12. Tiscali 13.UUnet 14.Cubecom 15. Atlanet 16. Galactica 17.Postecom 18. Edisontel

Members

2015

Total number of members: 59

Member info		Network	
Name	AS Number	Peering bandwidth	RS
ACI Informatica	AS42515	n/a	×
Active Network	AS197075	200 Mbps	4
<u>Aqesci</u>	AS42463	200 Mbps	×
<u>Akamai</u>	AS20940	10 Gbps	4
<u>Almaviva</u>	AS29419	200 Mbps	4
<u>Aruba</u>	AS31034	2 Gbps	×
BT Italia	AS8968	4 Gbps	×
Caspur	AS5397	2 Gbps	4
<u>Cliocom</u>	AS9104	100 Mbps	×
Clouditalia Communications	AS15589	2 Gbps	4
Cogent	AS174	100 Mbps	×
Colt Technology	AS8220	200 Mbps	×
Convergenze	AS39120	2 Gbps	4
<u>E4A</u>	AS34695	200 Mbps	4
Engineering.IT	AS21176	2 Gbps	4
<u>Eurnetcity</u>	AS20794	100 Mbps	×
F-Root	AS27320	200 Mbps	4
Fastnet	AS8265	1 Gbps	4
<u>Fastweb</u>	AS12874	10 Gbps	×
Foxtel	AS56754	n/a	×
Frosinone Wireless	AS50627	200 Mbps	4
<u>FUB</u>	AS50112	2 Gbps	×
GARR	AS137	20 Gbps	4
Google	AS36040	20 Gbps	4
<u>H3G</u>	AS24608	10 Gbps	4
Holy See	AS8978	2 Gbps	4
Hurricane Electric	AS6939	n/a	×
<u>I.NET</u>	AS3313	2 Gbps	×
ICT ∀alle Umbra	AS15605	2 Gbps	~
<u>Infrac om</u>	AS3302	1 Gbps	×

Traffico Giornaliero NAMEX

The company has essentially two huge networks: the one that connects users to Google services (Search, Gmail, YouTube, etc.) and another (internal) that connects Google data centers to each other.

- Google is in control of scheduling internal traffic (bursty), but it faces difficulties in traffic engineering.
- Often Google has to move many petabytes of data (indexes of the entire web, millions of backup copies of user Gmail) from one place to another.

Architecture of the Internet

Overview of the Internet architecture

Third-Generation Mobile Phone Networks (1)

Cellular design of mobile phone networks

Third-Generation Mobile Phone Networks (2)

Architecture of the UMTS 3G mobile phone network.

Third-Generation Mobile Phone Networks (3)

Mobile phone handover (a) before, (b) after.

Wireless LANs: 802.11 (1)

(a)Wireless network with an access point.(b)Ad hoc network.

Wireless LANs: 802.11 (2)

Multipath fading

Wireless LANs: 802.11 (3)

The range of a single radio may not cover the entire system.

RFID and Sensor Networks (1)

RFID used to network everyday objects.

RFID and Sensor Networks (2)

Multihop topology of a sensor network

Architettura a tre livelli di Internet

■ Neutral/Network access point

Architettura a tre livelli di Internet

Eliminare colli di bottiglia (soluzioni hardware)

- first mile, last mile -> aumentare la banda che connette al provider
- •Backbone -> dipende dal miglioramento delle infrastrutture di rete dei singoli ISP (non controlabile dagli utenti finali)

Eliminare il collo di bottiglia di backbone (soluzione software)

- Content Delivery Netwoks.
- Caching di pagine vicino a dove risiede l'utente completamente trasparente all'utente (e.g. AKAMAI). In questo modo si spera che l'utente possa accedervi con larga banda

Nota: idea di soluzione simile a quella della gerarchia di caching delle memorie nei processori

Akamai's Global Platform

Akamai's Internet Platform

- 100,000+ servers
- 72 countries
- 1,500+ locations
- 1,000 networks

Ginormous Daily Traffic

- Carries 15-30% of the world's web traffic on any given day
- More than 1 trillion requests
- More than 30 petabytes
- 10 million+ concurrent video streams

Protocol Hierarchies (1)

Layers, protocols, and interfaces.

Protocol Hierarchies (2)

The philosopher-translator-secretary architecture

Protocol Hierarchies (3)

Example information flow supporting virtual communication in layer 5.

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

The OSI Reference Model

Principles for the seven layers

- Layers created for different abstractions
- Each layer performs well-defined function
- Function of layer chosen with definition of international standard protocols in mind
- Minimize information flow across interfaces between boundaries
- Number of layers optimum

Il modello di comunicazione OSI

ESEMPIO DI PROFILO DEI PROTOCOLLI PER IL PIANO UTENTE (commutazione di pacchetto)

ESEMPIO DI PROFILO DEI PROTOCOLLI PER IL PIANO UTENTE (commutazione di circuito)

Critique of the OSI Model and Protocols

- Bad timing.
- Bad technology.
- Bad implementations.
- Bad politics.

OSI Model Bad Timing

The apocalypse of the two elephants.

Struttura a tre livelli di una rete di calcolatori

Area Applicativa

Interoperabilità trasporto dell'informazione

Infrastruttura di trasporto dell'informazione

Struttura a tre livelli di una rete di calcolatori

Rete geografica di calcolatori

Host A Host B

Esempi di problematiche comuni

Area Applicativa

Interoperabilità trasporto dell'informazione

Indirizzamento
Routing
Frammentazione/Riassemblaggio

Indirizzamento

Routing Frammentazione/Riassemblaggio

Infrastruttura di trasporto dell'informazione

Indirizzamento

Routing Frammentazione/Riassemblaggio

Esempi di problematiche comuni: Indirizzamento

Interoperabilità Trasporto dell'informazione: Internet

L'ARCHITETTURA TCP/IP E LA RETE INTERNET

Protocol Stack: esempi

http= hyper text tranfer protocol smtp= simple mail transfer protocol Rpc= remote procedure call

Richiami di TCP/IP

- IP e' una grande coperta che nasconde ai protocolli sovrastanti tutte le disomogeneità della infrastruttura di trasporto dell'informazione
- Per far questo necessità di due funzionalità di base:
 - Indirizzamento di rete (indirizzi omogenei a dispetto della rete fisica sottostante)
 - Instradamento dei pacchetti (Routing) (capacità di inviare pacchetti da un host ad un altro utilizzando gli indirizzi definiti al punto precedente)

Proprietà di IP

- Senza connessione (datagram based)
- Consegna Best effort
 - I pacchetti possono perdersi
 - I pacchetti possono essere consegnati non in sequenza
 - I pacchetti possono essere duplicati
 - I pacchetti possono subire ritardi arbitrari

Servizi di compatibilità con l'hardware sottostante

- Frammentazione e riassemblaggio
- Corrispondenza con gli indirizzi dei livelli sottostanti (ARP)

In Trasmissione, IP

 riceve il segmento dati dal livello di trasporto

Segmento dati

- inserisce header e crea datagram

IP

Segmento dati

- applica l'algoritmo di routing
- invia i dati verso l'opportuna interfaccia di rete

In Ricezione, IP

 consegna il segmento al protocollo di trasporto individuato

Segmento dati

- se sono dati locali, individua il protocollo di trasporto, elimina l'intestazione

IP Segmento dati

- verifica la validità del datagram
 e l'indirizzo IP
- riceve i dati dalla interfaccia di rete

Indirizzamento

Classi di indirizzi

Indirizzi di classe A

Esempio di indirizzo di classe A:

Indirizzi di classe C

Esempio di indirizzo di classe C:

Indirizzi di classe B

Esempio di indirizzo di classe B:

ARP

FIGURE 4.9.

Resolution of an IP address into its MAC address using ARP.

Address Resolution Protocol: ARP

Forwarding diretto: esempio

Subnet 192.168.10.0/24

.35

MAC 00082C785852

MAC 000060AD8744

MAC-D 000060AD8744

MAC-S 00082C785852

IP-D 192.168.10.35

IP-S 192.168.10.10

Forwarding indiretto: esempio

Strato di Trasporto

20 byte

Strato di Trasporto

Strato di Trasporto: UDP

Il pacchetto UDP viene imbustato in IP ed indirizzato con il campo protocol pari a 17.

L'intestazione di UDP è lunga 8 byte

port number, sorgente e destinazione, servono a multiplare, su una connessione tra due macchine, diverse sessioni e individuano i protocolli di livello superiore;

length, è la lunghezza in byte del pacchetto UDP, header e dati; il minimo valore per questo campo è di 8 byte, quando la parte dati è vuota; questa informazione è ridondante perché nell'intestazione IP è presente il campo length, relativo alla lunghezza di tutto il pacchetto IP; visto che l'intestazione UDP ha una lunghezza fissa di 8 byte, la lunghezza della parte dati potrebbe essere ricavata sottraendo al contenuto del campo lenght dell'header IP 8 byte;

checksum, campo per il controllo di errore, che copre tutto il pacchetto UDP, header e dati; in realtà oltre al pacchetto UDP, il checksum è applicato anche ad una parte dell'intestazione IP, composta tra l'altro dagli indirizzi IP sorgente e destinazione e dal campo protocol, detta UDP-pseudo-header.

TCP Overview

- Connection-oriented
- Byte-stream
 - app writes bytes
 - TCP sends segments
 - app reads bytes

- Full duplex
- Flow control: keep sender from overrunning receiver
- Congestion control: keep sender from overrunning network

Strato di Trasporto: TCP

Domain Name System (DNS)

