Binary Logic and Gates:

September 11, 2018

1:27 PM

We study Boolean algebra as foundation for designing and analyzing digital systems!

• Binary variables take on one of two values.

Basic logical operators

September 11, 2018 2:24 PM

 Basic logical operators are the <u>logic functions</u> AND, OR and NOT. <u>Logical operators</u> operate on binary values and binary variables.

Operator Definitions

September 11, 2018

1:54 PM

Operations are defined on the values "0" and "1" for each operator:

AND OR NOT
$$0 \cdot 0 = 0 \qquad 0 + 0 = 0 \qquad \overline{0} = 1$$

$$0 \cdot 1 = 0 \qquad 0 + 1 = 1 \qquad \overline{1} = 0$$

$$1 \cdot 0 = 0 \qquad 1 + 0 = 1$$

$$1 \cdot 1 = 1 \qquad 1 + 1 = 1$$

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such that:
 - logic 1 is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic gates

September 11, 2018

2:26 PM

• <u>Logic gates</u> implement logic functions.

$$x = 0$$
 1 1 0 0
 $y = 0$ 0 1 1 0

AND: $x \cdot y = 0$ 0 1 0 0

OR: $x + y = 0$ 1 1 0

NOT: $x' = 1$ 0 0 1 1

(a) Three-input AND gate (b) Four-input OR gate

Boolean Algebra

September 11, 2018 1:39 PM

<u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.

Postulates and Theorems of Boolean Algebra.

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x+y)'=x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Boolean Functions

September 11, 2018 1:39

Any Boolean function can be represented by an expression (consisting of binary variables, the constants 0 and 1).

For example, consider the function F_1 represented by the expression:

$$F_1 = x + y'.z$$

Function F_1 has three variables x, y, and z, where these variables and/or their complements may appear in a Boolean function.

- A literal is a Boolean variable or its complement in a Boolean function.
- A **term** is the expression formed by literals and operations at one level.

For example, F_l has three literals x, y' and z and two terms

Why the Number of literals and terms are important in a Boolean expression?

The number of lierals in a term shows the number of inputs for a specific gate. Also, the number of terms shows the number og gates needed to implement a Boolean expression using gates.

Example: Find the number of literals and terms in the following expression:

$$F = x.y + x'.z + y.z$$

Truth Tables

September 11, 2018 1:58 PM

Consider the function F represented by the expression:

Now we want to see the value of this function for all different combinations of variables:

Truth table: a tabular listing of the values of a function for all possible combinations of values on its arguments

- \blacksquare In general, the truth table has rows, where n is the number of variables used in the function expression.
- It gives all different combinations of binary values for each variable.
- A Boolean expression can also be implemented by logic gates

Truth Tables - Cont'd

September 11, 2018 1:58 PM

• The truth table representation of a Boolean function is unique, while the Boolean expression is not unique.

For example consider the following Boolean functions.

$$F_2 = x'.y'.z + x'.y.z + x.y'$$

$$F_3 = x'.z + x.y'$$

The truth table for these functions are:

x	y	z	F ₂	F ₃
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Function Simplification

September 11, 2018 2:06 PM

Lets look at the implementation of functions F_1 and F_2 using logic gates.

- To implement a Boolean function each term requires a gate and each variable within the term designates an input to the gate.
- Reducing the number of terms and/or literals, the implementation of the expression will be simplified.

Function Simplification - Cont'd

September 13, 2018 1:20 PM

Example: $F = x + x' \cdot y$

Example: $G = x \cdot y + x' \cdot z + y \cdot z$

Complement of a Function

September 11, 2018 3:18 PM

Complement of a function can be obtained by using DeMorgan's theorem in general case as follows:

$$(A + B + C + \cdots E)' = A'.B'.C'...E'$$

$$(A.B.C...E)' = A' + B' + C' + \cdots E'$$

Example: F = x.(y'.z' + y.z)

Canonical and Standard Forms

September 13, 2018 1:34 PM

Minterm: A *minterm* is a product term in a Boolean function in which every variable is present is either in normal or in complemented form. It is also called standard product.

- n variables can be combined to form 2^n minterms.
- A symbol for each minterm is of the form m_j , where the subscript j denotes the decimal equivalent of the binary number of the minterm designated.

Maxterm: A *maxterm* is a sum term in a Boolean function in which every variable is present is either in normal or in complemented form. It is also called standard sum.

- n variables can be combined to form 2^n maxterms.
- A symbol for each maxterm is of the form M_j , where the subscript j denotes the decimal equivalent of the binary number of the maxterm designated.

Minterms and Maxterms for Three Binary Variables

			Minterms		Maxterms	
x y	z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Canonical and Standard Forms - Cont'd

September 13, 2018 3:05 PM

• A Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms.

Example: Function f_1 and f_2 can be defined from the following truth table using minterms as follows:

Functions of Three Variables

arrectio	113 01 111	ree varie	ibics	
x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• A Boolean function can be expressed algebraically from a given truth table by forming a maxterm for each combination of the variables that produces a 0 in the function and then taking the AND of all those terms.

Example: Function f_1 and f_2 can be defined from the above truth table using maxterms as follows:

Canonical form: Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Canonical and Standard Forms - Cont'd

September 13, 2018 3:34 PM

Example: Express function F = A + B'C as a sum of minterms:

- 1- Method 1: Using truth table
- 2- Using Boolean Algebra

Example: Express function F = xy + x'z as a sum of minterms:

- 1- Method 1: Using truth table
- 1- Using Boolean Algebra

Sum of Products (SOP) and product of sums (POS)

September 13, 2018 4:23 PM

There are two standard form of representations for Boolean expression.

1- The **sum of products** (**SOP**) is a Boolean expression in which different product terms of inputs (ANDing) are being summed together (ORing). The function F_1 in the below is in the form of SOP:

$$F_1 = y' + xy + x'yz'$$

Types of Sum Of Product (SOP) Forms:

- Canonical SOP Form
- Non-Canonical SOP Form
- Minimal SOP Form

2- The **product of sums (POS)** is a Boolean expression in which products (ANDing) of different sum terms of inputs (ORing) are taken. The function F_2 in the below is in the form of POS.

$$F_2 = x(y' + z)(x' + y + z')$$

Types of Product of Sums (POS) Forms:

- Canonical POS Form
- Non-Canonical POS Form
- Minimal POS Form

Non-Standard form of a Boolean expression:

