Пермский филиал федерального государственного автономного образовательного учреждения высшего образования Национальный исследовательский университет «Высшая школа экономики»

Факультет социально-экономических и компьютерных наук

Соломатин Роман Игоревич

РАЗРАБОТКА САЙТА ДЛЯ АВТОМАТИЧЕСКОГО СБОРА, АНАЛИЗА И ВИЗУАЛИЗАЦИИ ИНФОРМАЦИИ ПО ЭТИЧНОСТИ КОМПАНИЙ

Выпускная квалификационная работа

студента образовательной программы «Программная инженерия» по направлению подготовки 09.03.04 Программная инженерия

Руководитель
к.т.н., доцент кафедры
информационных технологий в
бизнесе НИУ ВШЭ-Пермь

А. В. Бузмаков

Аннотация

В данной работе проведен анализ этичности разных компаний.

В первой главе находится описание используемых алгоримов.

Во второй главе представлено проектирование системы.

В третьей главе представлена реализация системы.

В четвертой главе представлено тестирование работы системы.

Количество страниц -29, количество иллюстраций -8, количетсво таблиц -10.

Оглавление

Введени	ие	5
Глава 1	Анализ предметной области	8
1.1	Анализ определения этичности компании	8
1.2	Анализ оценок этичности компаний	9
1.3	Анализ существующих решений	10
1.4	Алгоритмы для анализа текста	11
	1.4.1 BERT	12
	1.4.2 Sentence BERT	14
1.5	Анализ требований к системе	15
1.6	Выбор технологий для разработки	16
1.7	Выводы главы	17
Глава 2	Проектирование системы	18
2.1	Проектирование архитектуры системы	18
2.2	Проектирование базы данных	20
	2.2.1 Проектирование основной базы данных	20
	2.2.2 Проектирование таблицы для агрегации	24
2.3	Проектирование серверной части	24
	2.3.1 Модуль сбора данных	24
	2.3.2 Модуль обработки данных	24
	2.3.3 Модуль агрегации данных	24
2.4	Проектирование клиентской части	24
Глава 3	Реализация системы	25
3.1	Реализация серверной части	25
	3.1.1 Реализация АРІ	25
	3.1.2 Реализация парсера banki.ru	25
	3.1.3 Реализация парсера sravni.ru	25
	3.1.4 Реализация модуля обработки текста	25

3.1.5 Дообучение модели	25
3.2 Реализация клиентской части	25
Глава 4 Тестирование системы	26
Заключение	27
Библиографический список	28
ПРИЛОЖЕНИЕ А Техническое задание на разрабатываемую систему	30
ПРИЛОЖЕНИЕ Б Схема базы данных	41

Введение

Этика компаний — это разделяемые всеми сотрудниками организации правила и нормы, ценности и убеждения, манера общения и другие факторы, которые регламентируют поведение и взаимодействии членов компании. Существует 3 уровня этики компаний[1]:

- 1. мировой отвечает за увеличение общественного благосостояния, обеспечение рабочих мест, научно-технические инновации и модернизацию производственных процессов и т. д.
- 2. макроуровень отвечает за принципы рыночной конкуренции, информационной прозрачность и равнодоступности для всех участников рынка и т. д.
- 3. микроуровне отвечает за доверие и отсутствие дискриминации в отношениях между контрагентами, между сотрудниками и менеджерами, моральнонравственный климат в организации и т. д.

В данной работе будет рассматриваться этика на микроуровне.

Этичность компаний уже давно вызывает озабоченность, особенно их поведение в спорных ситуациях и предоставление услуг, ориентированных на клиента. В последние годы все большее внимание уделяется оценке этичности компаний[2, 3, 4], особенно в банковском секторе и через призму экологических, социальных и управленческих факторов (ESG). Необходимость в таких оценках становится все более острой по мере того, как общество продолжает бороться с последствиями неправомерных действий корпораций и более широким воздействием корпоративной деятельности на общество и окружающую среду.

В настоящее время существует несколько сервисов, которые призваны оценивать этику компании на основании финансовых показателей и судебных дел². Это привело к ситуации, когда отдельные лица должны проводить свои собственные исследования, чтобы определить насколько этична компания. Это часто включает в себя просмотр отзывов с различных веб-сайтов, что может занять много времени и не всегда может

¹https://kontur.ru/expert, https://www.esphere.ru/products/spk/financial

²https://proverki.gov.ru/portal/public-search

дать исчерпывающую или точную картину, так как не включает в себя качество обслуживания.

Для решения этой проблемы реализована система, которая собирает и анализирует отзывы потребителей с различных веб-сайтов, чтобы дать более полную и точную оценку этической практики компании. Затем собранные данные анализируются с помощью различных методов, таких как обработка естественного языка и машинного обучения, для выявления закономерностей и тенденций, связанных с этической практикой компании. Полученный анализ может быть использован для разработки более надежной и достоверной системы оценки этичности компаний.

Объект исследования – взаимодействие компаний с клиентами.

Предмет исследования – программные средства для оценки этичности на основе взаимодействия компаний с клиентами.

Цель работы – создание системы для оценки этичности компаний.

Исходя из поставленной цели, необходимо:

- 1. Провести анализ предметной области и требований
- 2. Реализовать систему
- 3. Провести тестирование системы

Этап анализа должен:

- 1. Анализ предметной области
- 2. Анализ требований к системе
- 3. Анализ существующих алгоритмов

Этап проектирования должен включать:

- 1. Проектирование серверной части
- 2. Проектирование модели для определения этичности
- 3. Проектирование клиентской части приложения

Этап реализации должен включать:

- 1. Описание сбора данных
- 2. Реализации модели
- 3. Реализации серверной части
- 4. Реализации клиентской части

Этап тестирования должен включать:

- 1. Тестирование модели
- 2. Тестирование серверной части
- 3. Тестирование клиентской части

В ходе выполнения анализа, проектирования и реализации приложения используется объектно-ориентированный подход. Результаты анализа и решения задач проектирования формализуются с помощью диаграмм UML. При разработке базы данных используется реляционная СУБД PostgreSQL, а серверная часть приложения реализуется на языке руthоп с помощью фреймворка FastApi, а алгоритмы анализы текста будут использовать методы машинного обучения.

Глава 1 Анализ предметной области

В данной главе представлен аналитический обзор оценок этичности компаний и алгоритмов машинного обучения, а также обзор существующих программных решений для поставленной проблемы.

Анализ предметной области следует разделить на следующие пункты:

- 1. анализ процесса определения этичности компаний сейчас позволяет понять, как этот процесс сейчас происходит и как его лучше всего автоматизировать;
- 2. анализ оценок этичности компаний для того, чтобы в дальнейшем определить этичность компаний;
- 3. анализ существующих решений выполняется с целью выделения их сильных и слабых сторон по отношению к решаемой проблеме и обоснования необходимости разработки нового средства, подходящего под регламент задач;
- 4. анализ алгоритмов позволяет понять с помощью каких алгоритмов можно найти полезную информацию в текстах;
- 5. анализ требований к системе позволит выделить функциональные и не функциональные требования.

1.1. Анализ определения этичности компании

Сейчас процесс поиска этичной компании выгладит следующим образом: сначала ищутся компании, которые предоставляют желаемые услуги. Далее они изучаются, чтобы определить их этичность. Этот процесс включает в себя:

- 1. просмотр отчетности компании
- 2. анализ ее финансовой деятельности
- 3. изучение информации о социальной ответственности

Для этого они обращаются к различным источникам информации, таким как веб-сайты компаний, рейтинговые агентства, исследовательские организации и другие источники. Потом, изучаются социальные сети компании или отзывы пользователей на разных сайтах, форумах и социальных сетях, чтобы получить дополнительную информацию и оценить общее мнение о компании. После изучения каждой компании люди

выбирают ту, которую они считают наиболее этичной и социально ответственной. Блоксхема данного поиска рис. 1.1. Важным фактором для определения этичности компании может быть ее социальная ответственность, устойчивость бизнеса и соблюдение норм и стандартов в области финансовой деятельности.

В целом, процесс поиска компаний и определения их этичности может быть длительным и требует серьезного подхода. Люди могут использовать различные источники информации, чтобы сделать осознанный выбор и инвестировать свои деньги в компанию, которая соответствует их ожиданиям и требованиям.

Рисунок 1.1 – Диаграмма того, как сейчас происходит поиск компании

1.2. Анализ оценок этичности компаний

Оценка этики компании – это не одноразовый процесс, а скорее непрерывная попытка понять и оценить действия, политику и практику компании с течением времени. Это включает в себя рассмотрение соблюдения компанией отраслевых этических стандартов и передовой практики, а также мониторинг любых изменений в этической

позиции компании с течением времени. Кроме того, участие в диалоге с компанией и консультации с организациями, специализирующимися на оценке корпоративной ответственности могут дать ценную информацию об этических практиках компании.

Компаниям важно оставаться этичными, так как на долгосрочной перспективе это приносит большую прибыль и улучшает показатели бизнеса, чем неэтичный способ ведение бизнеса[5, 2]. Насколько этична компания можно рассматривать с двух сторон, самой компании и их клиентов. Со стороны компаний можно выделить факторы, которые можно получить из их отчетности:

- количество капитала, чтобы они не могли обанкротиться;
- какое влияние они вносят на окружающую среду;
- куда идут инвестиции[6].

Для пользователей одними из ключевых факторов можно выделить:

- качество пользовательского сервиса[7], как правило пользователи оставляют
 отзывы на сайтах по 5-ти бальной шкале;
- насколько навязчивые услуги компании[8], как правило пользователи оставляют отзывы на сайтах по 5-ти бальной шкале.

В данной работе этичность компаний будет определяться по отзывам клиентов, которые освещают проблемы качества услуг и качество сервиса, и на основе отчетности компаний, что позволит полностью осветить проблему. Для анализа текстов будут использоваться алгоритмы машинного обучения.

1.3. Анализ существующих решений

Существует несколько индексов, предназначенных для измерения этичности – индекс Доу Джонса (DJSI)[9] и FTSE4GOOD[10].

DJSI оценивает показатели устойчивости компаний различных секторов на основе экономических, экологических и социальных критериев. Компании отбираются на основе их показателей по сравнению с аналогичными компаниями в том же секторе. Процесс оценки включает в себя тщательную оценку компаний по различным критериям, включая корпоративное управление, экологический менеджмент, трудовую практику, права человека и социальные вопросы.

Аналогичным образом, индекс FTSE4GOOD предназначен для оценки деятельности компаний, которые демонстрируют эффективную практику экологического, социального и управленческого менеджмента (ESG). Компании отбираются на основе их практики ESG и оцениваются по различным критериям, включая изменение климата, права человека и корпоративное управление.

Индексы DJSI и FTSE4GOOD разработаны для того, чтобы помочь инвесторам определить компании, которые привержены этической практике. Эти индексы предоставляют инвесторам стандартизированный способ сравнения компаний на основе их показателей. Это помогает инвесторам принимать более обоснованные инвестиционные решения и побуждает компании внедрять устойчивую практику для привлечения инвестиций.

Для российских компаний нет аналогичных индексов. Сейчас данные об этичности компаний можно получить из агрегаторов отзывов и отчётности. Агрегаторы позволяют собрать информацию о клиентском обслуживании, а отчетность компаний о положении дел в целом. Но сейчас не существует способов, как можно оценить все вместе.

1.4. Алгоритмы для анализа текста

Алгоритмы машинного обучения для анализа текста получили широкое распространение для извлечения информации из неструктурированных данных с помощью больших помеченных наборов данных. Среди различных используемых методов несколько алгоритмов оказались особенно эффективными в этой области. К ним относятся мешок слов[11], TF-IDF[12], Word2Vec[13], ELMO[14], GPT[15] и BERT[16]. Каждый из этих алгоритмов обладает уникальными характеристиками, которые делают их хорошо подходящими для определенных приложений.

Модель «Мешок слов» представляет текстовые данные путем присвоения уникального номера каждому слову в документе. Этот метод прост в реализации, но не учитывает порядок слов в предложении. С другой стороны, модель TF-IDF представляет текстовые данные, учитывая как частоту слова в документе (TF), так и его редкость во всех документах корпуса (IDF). Этот подход может быть использован для определения важности слова в данном документе и обычно используется в задачах поиска информации и обработки естественного языка, но он не понимает контекста слов.

Word2Vec использует векторное представление слов, что позволяет алгоритму улавливать значение слов в сходных контекстах. Это позволяет более точно и изощренно представлять взаимосвязи между словами, что приводит к повышению производительности в таких задачах, как классификация текста и анализ настроений.

ELMO, GPT и BERT, с другой стороны, основаны на архитектуре трансформеров, в которой каждое предложение представлено вектором чисел, обычно известным как вложение. Такое представление позволяет получить более полное и целостное понимание текста, поскольку оно учитывает контекст всего предложения или текста.

Из этих алгоритмов BERT считается наиболее продвинутым и мощным, поскольку он способен учитывать контекст всего предложения или текста, в то время как GPT и ELMO рассматривают только односторонний контекст. Это позволяет BERT достигать самых современных результатов в широком спектре задач анализа естественного языка.

Таблица результата сравнения моделей 1.1.

Таблица 1.1 – Сравнение моделей

Модель	Вектор слов	Контекст
Мешок слов	зависит от количества слов	нет
TF-IDF	зависит от количества слов	очень слабо
Word2Vec	не зависит от количества слов	слабо
ELMO	не зависит от количества слов	однонаправленный
GPT	не зависит от количества слов	однонаправленный
BERT	не зависит от количества слов	двунаправленный

1.4.1. BERT

BERT [16] (Bidirectional Encoder Representations from Transformers) – это нейросетевая языковая модель, которая относится к классу трансформеров. Она состоит из 12 «базовых блоков» (слоев), а на каждом слое 768 параметров. На вход модели подается предложение или пара предложений. Затем разделяется на отдельные слова (токены). Потом в начало последовательности токенов вставляется специальный токен [CLS], обозначающий начало предложения или начало последовательности предложений. Пары предложений группируются в одну последовательность и разделяются с помощью специального токена [SEP], затем к каждому токену добавляется эмбеддинг, показывающий к какому предложению относится токен. Потом все токены превращаются в эмбеддинги 1.2 по механизму описаному в работе [17].

Рисунок 1.2 - Пример ввода текста в модель

При обучении модель выполняет на 2 задания:

1. Предсказание слова в предложении

Поскольку стандартные языковые модели либо смотрят текст слева направо или справа налево 1.3, как ELMo[14] и GPT[15], они не подходят под некоторые типы заданий. Так как BERT двунаправленный, у каждого слова можно посмотреть его контекст, что позволит предсказать замаскированное слово.

Рисунок 1.3 - Сравнение принципов работы BERT, ELMo, GPT

Это задание обучается следующим образом — 15% случайных слов заменяются в каждом предложении на специальный токен [MASK], а затем предсказываются на основании контекста. Однако иногда слова заменяются не

на специальны токена, в 10% заменяются на случайный токен и еще в 10% заменяются на случайное слово.

2. Предсказание следующего предложения

Для того чтобы обучить модель, которая понимает отношения предложений, она предсказывает, идут ли предложения друг за другом. Для этого с 50% вероятностью выбирают предложения, которые находятся рядом и наоборот. Пример ввода пары предложений в модель 1.4.

Рисунок 1.4 - Схемам работы BERT

1.4.2. Sentence BERT

Sentense BERT [18] — это модификация предобученных моделей BERT, которая использует 2 модели BERT, затем усреднят их выходы, а после с помощью функции ошибки выдаёт результат. Схема работы модели 1.5. Основное преимущество данной модели над классическим BERT: эмбеддинги предложений можно сравнивать друг с другом независимо и не пересчитывать их пару каждый раз. Например, если для поиска похожих предложений из 10000 для обычного BERT потребуется 50 миллионов вычислений различных пар предложений, и это займёт 50 часов, то Sentense BERT

Рисунок 1.5 - Схема работы SBERT

рассчитает эмбеддинг каждого предложения отдельно, потом их сравнит. Такой способ рассчета ускоряет работу программы до 5 секунд.

1.5. Анализ требований к системе

Исходя из интервью с пользователями система должна уметь:

- 1. Показывать историю изменений индекса с возможностью фильтровать по:
 - 1. годам;
 - 2. отраслям компаний, с возможностью множественного выбора;
 - 3. компаниям, с возможностью множественного выбора;
 - 4. моделям, с возможностью множественного выбора;
 - 5. источникам, с возможностью множественного выбора.
- 2. Агрегировать значения индекса по годам и кварталам;
- 3. Анализировать тексты для построения индекса этичности;
- 4. Иметь возможность добавления анализа текста несколькими вариантами;
- 5. Сохранять тексты для последующего анализа другими методами;

- 6. Система должна собирать данные с сайтов banki.ru, sravni.ru и комментарии из групп «вконтаке»;
- 7. На сайте должен быть график, который показывать изменение индекса этичности компаний.

На основе описания функциональных требований была создана диаграмма вариантов использования, которая представлена на рисунке 1.6.

Рисунок 1.6 - Диаграмма вариантов использования

Также были получены нефункциональные требования:

- 1. построение графика не должно занимать больше секунды;
- 2. данные должны собираться автоматически;
- 3. данные должны обрабатываться автоматически;
- 4. система должны способна работать с большим объемом информации;
- 5. система должна быть стабильна.

1.6. Выбор технологий для разработки

Для реализации этой системы будет использоваться язык Python. Для этого языка разработано много библиотек, которые позволят быстро реализовать нейротропные алгоритмы обработки естественного языка, в частности в этом проекте будет использоваться Pytorch[19] и HuggingFace[20], и собирать данные с сайтов. Для реализации API будет использоваться FastAPI, что позволит разрабатывать API с автоматической документацией.

Хранение данных будет использоваться объектно-реляционная система управления базами данных PostgreSQL, что позволит обрабатывать большие объемы данных.

Для работы с ней будет использоваться Code first подход, с помощью Python библиотек Sqlalchemy и Alembic для изменения схемы данных (миграций).

Для клиентской части приложения будет использоваться библиотека React.

1.7. Выводы главы

По итогам анализа предметной области, можно сделать вывод о том, что определение этичности компаний является важной задачей, которую можно автоматизировать с помощью алгоритмов машинного обучения. Анализ оценок этичности компаний позволяет понять, какие факторы необходимо учитывать при разработке алгоритмов. Обзор существующих решений показал, что некоторые из них имеют свои преимущества и недостатки, и может потребоваться разработка нового средства, учитывающего особенности задачи. Анализ алгоритмов помогает выбрать наиболее подходящие алгоритмы для поиска полезной информации в текстах. Наконец, анализ требований к системе позволяет определить необходимые функциональные и нефункциональные требования, которые будут учитываться при разработке решения. В целом, эти аналитические пункты помогут определить оптимальный подход к решению задачи определения этичности компаний.

Глава 2 Проектирование системы

В данной главе определена общая архитектура системы и каждого микросервиса, осуществлено проектирование баз данных, API микросервисов для модуля анализа для универсальной рекомендательной системы.

2.1. Проектирование архитектуры системы

Система будет разделена на отдельные независимые компоненты (микросервисы), что позволит ей быть надежной, если в какой-то части системы будут сбои, то остальная часть системы продолжит работать, и масштабируемой, легко добавлять новые компоненты. Каждый микросервис системы будет представлять собой docker container, которые будут управляться с помощью docker compose. Каждый сервис будет реализовывать отдельный компонент бизнес-логики и коммуницировать с другими компонентами через HTTP API.

Было выделено 5 главных компонента бизнес логики:

- 1. Работа с базой данных это HTTP API, который обеспечивает возможность сохранения и получения данных из базы данных. Данный компонент принимает запросы на сохранение данных, получение информации из базы данных и возвращает результаты обработки этих запросов.
- 2. Сбор данных компонент, который отвечает за сбор информации с нескольких источников. Для этого используется несколько независимых сборщиков данных, которые работают с различными сайтами и другими источниками.
- 3. Обработка данных данный компонент содержит несколько моделей, которые используются для анализа данных. Эти модели производят различные виды анализа, от простой фильтрации и сортировки до более сложных операций анализа и прогнозирования.
- 4. Агрегирование данных этот компонент отвечает за агрегацию обработанных данных в единый индекс. Данный индекс может быть использован для удобного представления полученных результатов в виде отчетов и графиков.
- 5. Сайт этот компонент будет отображать агрегированную информацию.

Результат архитектуры системы на рис. 2.1.

Рисунок 2.1 - Диаграмма архитектуры системы

Сервис для работы с базой данных, который будет обеспечивать сохранение и получение информации из различных сервисов сбора и обработки данных, а также сайтов. Для этого будет предоставлен API, который будет использоваться для отправки и получения данных.

Сервисы сбора данных будут отправлять собранные тексты в формате JSON на сервис работы с базой данных с помощью HTTP запросов. Кроме того, информация, необходимая для сбора данных, будет храниться в базах данных соответствующих сервисов.

Сервис агрегации данных будет периодически обновлять базу данных один раз в день для обеспечения актуальности данных.

Сервис сбора данных будет включать несколько моделей машинного обучения, которые будут использоваться для анализа данных, полученных из сервиса сбора данных. После обработки данных, результаты будут отправляться обратно в сервис сбора данных.

Сайт будет получать данные из сервиса работы с базой данных.

2.2. Проектирование базы данных

2.2.1. Проектирование основной базы данных

На основании требований была разработана следующая схема базы данных:

Таблица сфер компаний, чтобы можно было фильтровать различные сферы компаний и смотреть как меняется этичность сферы в целом.

Таблица 2.1 – Таблица сфера компании

Название	Тип	Описание
Идентификатор	Целое	Уникальный идентификатор
Сфера компании	Строка	

Таблица 2.2 – Таблица компании

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Название компании	Строка	
Описание компании	Строка	Дополнительное поле для
		сохранения
		вспомогательной
		информации о компании
Лицензия компании	Строка	По лицензии компаний
		может будет сопоставлять
		компании на разных
		сайтах
Код сферы компании	Целое	Внешний ключ из
		таблицы Сфера компании

Таблица 2.3 – Таблица тип источников

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Название типа источника	Строка	

Таблица 2.4 – Таблица источники

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Сайт	Строка	Сайт источника
Код типа источника	Целое	Внешний ключ из
		таблицы тип источника
Состояние сборщика	JSON	Данные о текущем
данных		состояние сборщика
		данных, если возникнет
		сбой
Дата последнего сбора	DateTime	Точка когда сбор данных
		закончился, для
		дальнейшего сбора
		данных

Таблица 2.5 – Таблицы текст

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Ссылка	Строка	Ссылка на текст

Продолжение на следующей странице

Таблица 2.5 – Таблицы текст (Продолжение)

Название	Тип	Описание
Код источника	Целое	Внешний ключ из
		таблицы источники
Дата текста	DateTime	Время публикации текста
Заголовок	Строка	Заголовок текста
Код компании	Целое	Внешний ключ на
		компанию
Количество комментариев	Целое	

Таблица 2.6 – Таблица тип модели

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Название модели	Строка	

Таблица 2.7 — Таблица модели

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Название модели	Строка	
Код типа модели	Целое	Внешний ключ на
		таблицу тип модели

Так как Bert на вход принимает отдельные предложения, было решено сделать для них отдельную таблицу.

Таблица 2.8 – Таблица предложений

Название	Тип	Описание
Идентификатор	Целое	Уникальный
		идентификатор
Код текста	Целое	Внешний ключ из
		таблицы тексты
Предложение	Строка	
Номер предложения	Целое	Порядковый номер
		предложения в тексте

Таблица 2.9 — Таблица результатов анализа текстов

Название	Тип	Назначение
Идентификатор	Целое	Уникальный
		идентификатор
Код предложения	Целое	Внешний ключ из
		таблицы предложения
Код модели	Целое	Внешний ключ из
		таблицы модели
Результат	Вещественный массив	Результат работы модели
Обработано	Логическое	Показатель, обработано
		ли предложение или нет

2.2.2. Проектирование таблицы для агрегации

2.3. Проектирование серверной части

- 2.3.1. Модуль сбора данных
- 2.3.2. Модуль обработки данных
- 2.3.3. Модуль агрегации данных

2.4. Проектирование клиентской части

Глава 3 Реализация системы

- 3.1. Реализация серверной части
 - 3.1.1. Реализация АРІ
 - 3.1.2. Реализация парсера banki.ru
 - 3.1.3. Реализация парсера sravni.ru
- 3.1.4. Реализация модуля обработки текста
 - 3.1.5. Дообучение модели
 - 3.2. Реализация клиентской части

Глава 4 Тестирование системы

Заключение

Библиографический список

- 1. *Смирнова*, *И. Л.* Бизнес-Этика Как Приоритетный Вектор Современного Развития Организаций / И. Л. Смирнова, М. В. Соловьева // Вестник Волжского Университета Им. В.н. Татищева. 2021. Т. 2, 1 (47).
- Murè, P. ESG and Reputation: The Case of Sanctioned Italian Banks / P. Murè [et al.] // Corporate Social Responsibility and Environmental Management. 2021. Vol. 28, no. 1. P. 265–277.
- 3. *Семенко, И. Е.* Корпоративная Социальная Ответственность И Бизнес-Этика Компании / И. Е. Семенко // Экономические науки: актуальные вопросы теории и практики. Наука и Просвещение, 2022. С. 43—45.
- 4. *Кудрявцева*, *Ю. А.* Корпоративно-Социальная Ответственность В Контексте Этики Банковского Дела / Ю. А. Кудрявцева, Г. Г. Чахкиев. — 2016.
- 5. Climent, F. Ethical Versus Conventional Banking: A Case Study / F. Climent // Sustainability. 2018. July. Vol. 10, issue 7, no. 7. P. 2152.
- 6. Harvey, B. Ethical Banking: The Case of the Co-operative Bank / B. Harvey // Journal of Business Ethics. 1995. Dec. 1. Vol. 14, no. 12. P. 1005–1013.
- 7. Brunk, K. H. Exploring Origins of Ethical Company/Brand Perceptions A Consumer Perspective of Corporate Ethics / K. H. Brunk // Journal of Business Research. 2010. Mar. 1. Vol. 63, no. 3. P. 255–262.
- 8. Mitchell, W. J. Bank Ethics: An Exploratory Study of Ethical Behaviors and Perceptions in Small, Local Banks / W. J. Mitchell, P. V. Lewis, N. L. Reinsch // Journal of Business Ethics. 1992. Mar. 1. Vol. 11, no. 3. P. 197–205.
- 9. López, M. V. Sustainable Development and Corporate Performance: A Study Based on the Dow Jones Sustainability Index / M. V. López, A. Garcia, L. Rodriguez // Journal of Business Ethics. 2007. Oct. 1. Vol. 75, no. 3. P. 285–300.

- Collison, D. J. The Financial Performance of the FTSE4Good Indices / D. J. Collison [et al.] // Corporate Social Responsibility and Environmental Management. 2008. Vol. 15, no. 1. P. 14–28.
- Harris, Z. S. Distributional Structure / Z. S. Harris // WORD. 1954. Aug. 1. —
 Vol. 10, no. 2/3. P. 146–162.
- Jones, Karen Sparck. A Statistical Interpretation of Term Specificity and Its Application in Retrieval / Jones, Karen Sparck // Journal of Documentation. 1972. Jan. 1. Vol. 28, no. 1. P. 11–21.
- Mikolov, T. Distributed Representations of Words and Phrases and Their Compositionality / T. Mikolov [et al.] // Advances in Neural Information Processing Systems.
 Vol. 26. Curran Associates, Inc., 2013.
- 14. Peters, M. E. Deep Contextualized Word Representations / M. E. Peters [et al.]. 03/22/2018.
- Radford, A. Language Models Are Unsupervised Multitask Learners / A. Radford [et al.]. 2019.
- Devlin, J. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding / J. Devlin [et al.]. 05/24/2019.
- 17. Vaswani, A. Attention Is All You Need / A. Vaswani [et al.] // Advances in Neural Information Processing Systems. Vol. 30. 2017.
- Reimers, N. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks / N. Reimers, I. Gurevych. — 08/27/2019.
- Paszke, A. PyTorch: An Imperative Style, High-Performance Deep Learning Library /
 A. Paszke [et al.] // Advances in Neural Information Processing Systems. Vol. 32. —
 Curran Associates, Inc., 2019.
- 20. Wolf, T. Transformers: State-of-the-Art Natural Language Processing / T. Wolf [et al.] // Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, 10/2020. P. 38–45.

ПРИЛОЖЕНИЕ А Техническое задание на разрабатываемую систему

УТВЕРЖДЕНО А.В.00001-01 ТЗ 01

ЗАГОЛОВОК

Техническое задание

	техни теское задание	
Лист утверждения		
Подпись и дата		
Инв. № дубл.	Руководитель разработки Иванов И.И.	
Взам. инв. №	«» 2023 Исполнитель	
Подпись и дата	Петров П.П. «» 2023	
⁰ подл.		

1. Общие сведения

В разделе «Общие сведения» указывают следующее:

- полное наименование AC и ее условное обозначение
- шифр темы (при наличии);
- наименование организации заказчика AC, наименование организацииразработчика (при наличии сведений о ней);
- перечень документов, на основании которых создается AC, кем и когда утверждены эти документы
- плановые сроки начала и окончания работ по созданию АС
- общие сведения об источниках и порядке финансирования работ

 Π р и м е ч а н и е — K документам, на основании которых или в соответствии с которыми создается AC, могут относиться, например, следующие: - договорные документы на создание AC;

- нормативно-правовые и нормативно-технические документы, регламентирующие создание АС;
- техническое задание на создание ранее разрабатывавшейся АС.

2. Цели и назначение создания автоматизированной системы

2.1. Цели создания АС

В подразделе «Цели создания АС» приводят наименования и требуемые значения технических, технологических, производственно-экономических или других показателей объекта автоматизации, которые должны быть достигнуты в результате создания АС, и указывают критерии оценки достижения целей создания АС

3. Характеристика объекта автоматизации

В разделе «Характеристика объекта автоматизации» приводят следующую информацию:

 основные сведения об объекте автоматизации или ссылки на документы, содержащие такие сведения; сведения об условиях эксплуатации объекта автоматизации и характеристиках окружающей среды.

 Π р и м е ч а н и е — B разделе приводят основные сведения об объекте автоматизации, позволяющие однозначно его идентифицировать и сформировать правильное представление о масштабах разработки.

4. Требования к автоматизированной системе

Состав требований к АС, включаемых в данный раздел ТЗ на АС, устанавливают в зависимости от вида, назначения, специфических особенностей и условий функционирования конкретной автома тизированной системы. В каждом подразделе приводят ссылки на действующие НТД, определяющие требования к автоматизированным системам соответствующего вида.

4.1. Требования к структуре АС в целом

В подразделе «Требования к структуре АС в целом» указывают следующее:

- перечень подсистем (при их наличии), их назначение и основные характеристики. Дополнительно могут быть приведены требования к числу уровней иерархии и степени централизации АС;
- требования к способам и средствам обеспечения информационного взаимодействия компонентов АС;
- требования к характеристикам взаимосвязей создаваемой АС со смежными
 АС, требования к интероперабельности, требования к ее совместимости, в
 том числе указания о способах обмена информацией;
- требования к режимам функционирования АС;
- требования по диагностированию АС;
- перспективы развития, модернизации АС.

4.2. Требования к функциям (задачам), выполняемым АС

В подразделе «Требования к функциям (задачам), выполняемым АС», приводят перечень функций (задач), подлежащих автоматизации для АС в целом или для каждой подсистемы (при их наличии). В перечень включаются в том числе функции

(задачи), обеспечивающие взаимодействие частей АС. Для каждой функции (задачи) должен быть указан результат ее выполнения и, при необходимости, приведены основные арактеристики результата. При необходимости дополнительно могут быть указаны следующие данные:

- временной регламент реализации каждой функции (задачи);
- требования к реализации каждой функции (задачи), к форме представления выходной инфор мации, характеристики необходимой точности и времени выполнения, требования одновременности выполнения группы функций, достоверности выдачи результатов;
- перечень и критерии отказов для каждой функции, по которой задаются требования по надежности.

4.3. Требования к видам обеспечения АС

В подразделе «Требования к видам обеспечения АС» приводят требования к математическому, информационному, лингвистическому, программному, техническому, метрологическому, организационному, методическому и другим видам обеспечения АС.

Для математического обеспечения AC приводят требования к составу, области применения (ограничениям) и способам использования в AC математических методов и моделей, типовых алгоритмов и алгоритмов, подлежащих разработке.

Для информационного обеспечения АС приводят следующие требования:

- к составу, структуре и способам организации данных в АС;
- к информационному обмену между компонентами АС и со смежными АС;
- к информационной совместимости со смежными АС;
- по использованию действующих и по разработке новых классификаторов, справочников, форм документов;
- по применению систем управления базами данных;
- к представлению данных в АС;
- к контролю, хранению, обновлению и восстановлению данных.

Для лингвистического обеспечения АС приводят следующие требования:

 к языкам, используемым в АС, и возможности расширения набора языков (при необходимости);

- к способам организации диалога;
- к разработке и использованию словарей, тезаурусов;
- к описанию синтаксиса формализованного языка.

Для программного обеспечения АС приводят следующую информацию:

- требования к составу и видам программного обеспечения;
- требования к выбору используемого программного обеспечения;
- требования к разрабатываемому программному обеспечению;
- перечень допустимых покупных программных средств (при наличии).

Для технического обеспечения АС приводят следующие требования:

- к видам технических средств, в том числе к видам комплексов технических средств, программно-технических комплексов и других комплектующих изделий, допустимых к использованию в АС;
- к функциональным, конструктивным и эксплуатационным характеристикам средств технического обеспечения АС.

В требованиях к метрологическому обеспечению АС приводят следующую информацию:

- количественные значения показателей метрологического обеспечения;
- требования к методам (методикам) измерений и измерительного контроля параметров и их характеристик;
- требования к средствам измерений и измерительного контроля;
- требования к метрологическому обеспечению испытаний АС;
- требования к программе метрологического обеспечения АС;
- требования к метрологической совместимости технических средств АС;
- требования проведения метрологической экспертизы технической документации (при необходимости).

Для организационного обеспечения АС приводят следующие требования:

- к структуре и функциям подразделений, участвующих в функционировании
 АС или обеспечивающих эксплуатацию;
- к организации функционирования АС и порядку взаимодействия персонала и пользователей АС;

- к организации функционирования АС при сбоях, отказах и авариях;
- к порядку обеспечения нормативными документами, необходимыми для разработки АС.

Для методического обеспечения АС приводят следующую информацию:

- перечень применяемых при разработке и функционировании АС нормативно-технических документов (стандартов, нормативов, методик, профилей и т. п.);
- порядок и правила обеспечения разработчиков АС нормативно-технической документацией.

4.4. Общие технические требования к АС

В подразделе «Общие технические требования к АС» указывают следующее:

- требования к численности и квалификации персонала и пользователей АС;
- требования к показателям назначения;
- требования к надежности;
- требования по безопасности;
- требования к эргономике и технической эстетике;
- требования к транспортабельности для подвижных АС;
- требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов АС;
- требования к защите информации от несанкционированного доступа;
- требования по сохранности информации при авариях;
- требования к защите от влияния внешних воздействий;
- требования к патентной чистоте и патентоспособности;
- требования по стандартизации и унификации;
- дополнительные требования.

В требованиях к численности и квалификации персонала и пользователей АС приводят следующее:

- требования к численности персонала и пользователей АС;
- требования к квалификации персонала и пользователей AC, порядку их подготовки и контроля знаний и навыков;

– требуемый режим работы персонала и пользователей АС.

В требованиях к показателям назначения АС приводят значения параметров, характеризующих степень соответствия АС ее назначению (при их наличии).

В требования к надежности включают:

- состав и количественные значения показателей надежности для АС в целом или ее подсистем (составных частей);
- перечень аварийных ситуаций, по которым должны быть регламентированы
 требования к надежности, и значения соответствующих показателей;
- требования к надежности технических средств и программного обеспечения;
- требования к методам оценки и контроля показателей надежности на разных стадиях создания АС в соответствии с действующими нормативнотехническими документами.

В требования по безопасности включают требования по обеспечению безопасности при монтаже, наладке, эксплуатации, обслуживании и ремонте технических средств АС (защита от воздействий электрического тока, электромагнитных полей и т. п.), по допустимым уровням вибрационных и шумовых нагрузок, а также по обеспечению экологической безопасности.

В требования к эргономике и технической эстетике включают следующие требования:

- эргономические требования к организации и средствам деятельности персонала и пользователей АС, в том числе к средствам отображения информации и организации рабочего места;
- требования к технической эстетике, определяющие композиционную целостность, информационную выразительность, рациональность формы и культуру производственного исполнения создаваемого изделия, в том числе реализации человеко-машинного интерфейса.

В требования к транспортабельности для подвижных AC включают конструктивные требования, обеспечивающие транспортабельность технических средств AC, а также требования к транспортным средствам, включая условия транспортирования, возможность перевозки в готовом к функционированию состоянии, необходимость защиты эле-

ментов AC от внешних воздействующих факторов при транспортировании, а также требования безопасности перевозки.

В требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов АС включают:

- условия и регламент (режим) эксплуатации, которые должны обеспечивать использование технических средств (ТС) и программно-технических средств (ПТС) АС с заданными показателями;
- требования к видам, периодичности и объему технического обслуживания, контролю технического состояния и ремонта или допустимость работы без обслуживания;
- предварительные требования к допустимым площадям для размещения персонала и технических средств АС, к параметрам сетей энергоснабжения, вентиляции, охлаждения и т. п.;
- требования к составу, размещению и условиям хранения комплекта запасных частей, инструментов и принадлежностей, а также к нормам расхода запасных частей;
- требования к регламенту обслуживания.

В требования к защите информации от несанкционированного доступа включают требования, установленные в НТД, действующей в отрасли (ведомстве) заказчика.

В требованиях по сохранности информации приводят перечень событий: аварий, отказов технических средств (в том числе — потеря питания) и т. п., при которых должна быть обеспечена сохранность информации в АС.

В требованиях к защите от внешних воздействий приводят:

- требования к радиоэлектронной защите средств АС;
- требования по стойкости, устойчивости и прочности к внешним воздействиям (среде применения)

В требованиях к патентной чистоте и патентоспособности указывают требования по патентной чистоте и патентоспособности АС и ее частей, включая требования по проведению патентных исследований.

В требования к стандартизации и унификации включают показатели, устанавливающие следующее:

- требуемую степень использования стандартных, унифицированных методов реализации функций (задач) АС, поставляемых программных средств, типовых математических методов и моделей, типовых проектных решений, унифицированных форм документов, общероссийских классификаторов и классификаторов других категорий в соответствии с областью их применения;
- требования к использованию типовых автоматизированных рабочих мест, компонентов и комплексов

В дополнительные требования включают:

- требования к оснащению AC учебно-тренировочными средствами и документацией на них;
- требования к сервисной аппаратуре, стендам для проверки элементов АС;
- требования к АС, связанные с особыми условиями эксплуатации;
- специальные требования по усмотрению разработчика или заказчика АС.

5. Состав и содержание работ по созданию автоматизированной системы

Раздел «Состав и содержание работ по созданию автоматизированной системы» должен содержать перечень этапов работ по созданию АС и сроки их выполнения.

6. Порядок разработки автоматизированной системы

В разделе «Порядок разработки автоматизированной системы» приводят следующее:

- порядок организации разработки АС;
- перечень документов и исходных данных для разработки АС;
- перечень документов, предъявляемых по окончании соответствующих этапов работ;
- порядок проведения экспертизы технической документации;

- перечень макетов (при необходимости), порядок их разработки, изготовления, испытаний, необходимость разработки на них документации, программы и методик испытаний;
- порядок разработки, согласования и утверждения плана совместных работ по разработке АС;
- порядок разработки, согласования и утверждения программы работ по стандартизации;
- требования к гарантийным обязательствам разработчика;
- порядок проведения технико-экономической оценки разработки АС;
- порядок разработки, согласования и утверждения программы метрологического обеспечения, программы обеспечения надежности, программы эргономического обеспечения.

7. Порядок контроля и приемки автоматизированной системы

В разделе «Порядок контроля и приемки автоматизированной системы» указывают следующую информацию:

- виды, состав и методы испытаний АС и ее составных частей;
- общие требования к приемке работ, порядок согласования и утверждения приемочной документации;
- статус приемочной комиссии (государственная, межведомственная, ведомственная и др.).

 Π р и м е ч а н и е — Порядок согласования и утверждения приемочной документации, а также статус приемочной комиссии указываются при необходимости.

8. Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу автоматизированной системы в действие

В разделе «Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу автоматизированной системы в действие» приводят перечень

мероприятий, которые необходимо осуществить при подготовке объекта автоматизации к вводу АС в действие.

В перечень мероприятий включают следующее:

- создание условий функционирования объекта автоматизации, при которых гарантируется соответствие создаваемой АС требованиям, содержащимся в ТЗ на АС;
- проведение необходимых организационно-штатных мероприятий;
- порядок обучения персонала и пользователей АС.

9. Требования к документированию

В разделе «Требования к документированию» приводят следующую информацию:

- перечень подлежащих разработке документов;
- вид представления и количество документов;
- требования по использованию ЕСКД и ЕСПД при разработке документов.
 При отсутствии государственных стандартов, определяющих требования к документированию элементов АС, дополнительно включают требования к составу и содержанию таких документов.

10. Источники разработки

В разделе «Источники разработки» должны быть перечислены документы и информационные материалы (технико-экономическое обоснование, отчеты о законченных научно-исследовательских работах, информационные материалы на отечественные, зарубежные системы-аналоги и др.), на основании которых разрабатывалось ТЗ и которые должны быть использованы при создании АС.

ПРИЛОЖЕНИЕ Б Схема базы данных

Рисунок Б.1 - Схема базы данных