• Una sucesión x_1, x_2, \ldots satisface que:

$$x_{n+1} = x_n \cos x_n \quad \forall n \geqslant 1$$

¿Se puede decir que esta sucesión converge para cualquier valor inicial de x_1 ?

• Otra sucesión y_1, y_2, \ldots satisface que:

$$y_{n+1} = y_n \operatorname{sen} y_n \quad \forall n \geqslant 1$$

¿Se puede decir que esta sucesión converge para cualquier valor inicial de y_1 ?

Solución:

En primer lugar, se ve que $|x_1| \ge |x_2| \ge ... \ge |x_n| \ge 0$, porque $0 \le |\cos \alpha| \le 1$ para todo $\alpha \in \mathbb{R}$. Con esto se demuestra que x_n no puede ser divergente.

La única posibilidad de que la sucesión no sea convergente es que sea oscilante. Esto se da cuando $x_1 = -x_2 = \cdots = (-1)^n x_{n-1} = (-1)^{n+1} x_n$. Y para que $x_1 = -x_2$, tiene que pasar que $x_2 = x_1 \cos x_1 = -x_1 \iff \cos x_1 = -1 \iff x_1 = (2k-1)\pi$, con $k \in \mathbb{Z}$. Esto se debe a que $\cos -\alpha = \cos \alpha$.

Para el resto de valores, como $|x_n| \to 0$ cuando $n \to \infty$, aunque los términos tengan signos alternos, eventualmente la sucesión tenderá a ser nula.

Con la sucesión y_n ocurre algo parecido: $|y_1| \geqslant |y_2| \geqslant \ldots \geqslant |y_n| \geqslant 0$, ya que $0 \leqslant |\operatorname{sen} \alpha| \leqslant 1$.

La sucesión y_n no puede ser oscilante, ya que se tendría que cumplir que $y_1 = -y_2 = \cdots = (-1)^n y_{n-1} = (-1)^{n+1} y_n$. El caso $y_1 = -y_2$ se da cuando $y_1 = (4k-1)\frac{\pi}{2}$. Pero como la función seno no es una función par, no se podrá cumplir esta hipótesis. De hecho, ocurriría que $y_1 = -y_2 = \cdots = -y_{n-1} = -y_n$.

Entonces, queda demostrado que existen valores de x_1 para los que la sucesion x_n no es convergente. En cambio, la sucesión y_n será siempre convergente.