

Рис. 1: Одноатомный одноэлектронный транзистор

Рис. 2: Модель одноатомного одноэлектронного транзистора

1 Модель

Необходимо смоделировать работу одноатомного одноэлектронного транзистора. Типичное его устройство представлено на рис.1. Кремниевые электроды на подложке из оксида кремния. Между электродами находится примесный атом мышьяка. Любой процесс моделирования начинается с построения модели, и наш не будет исключением.

Электроды представим как три относительно больших проводящих сферы. Примесный атом отождествим с двумя концентрическими проводящими сферы. Две последних практически отождествляют электронные оболочки атомов. Каждая сфера из набора концентрических будет соответствовать отдельной оболочке и отдельному энергетическому уровню. Для наглядности пока ограничимся двумя. Все геометрические размеры представлены на рис. 2

Так-же будем считать, что электроны могут туннелировать только со сфер Исток, Сток на сферы атома и в обратную сторону. Т.е. туннельного тока на Затвор нет. Анализ состоятельности модели будет проведён позднее при сравнении с результатами эксперимента.

2 Изменение свободной энергии системы

Изменение электростатической энергии запишем в виде

$$dU = \frac{\vec{\varphi_f^T} \vec{q_f} - \vec{\varphi_i^T} \vec{q_i}}{2} = \frac{(\vec{\varphi_i^T} + d\vec{\varphi}^T)(\vec{q_i} + d\vec{q}) - \vec{\varphi_i^T} \vec{q_i}}{2}$$
(1)

Заметим, поскольку электроды поддерживаются при постоянном потенциале, то вектор изменения потенциалов всех элементов

$$d\vec{\varphi} = \vec{\varphi}_{f} - \vec{\varphi}_{i} = \begin{pmatrix} \vec{0}_{e} \\ d\vec{\varphi}_{d} \end{pmatrix} \tag{2}$$

Вектор изменения зарядов всех элементов

$$d\vec{q} = \vec{q}_{f} - \vec{q}_{i} = \begin{pmatrix} d\vec{q}_{ind} + d\vec{q}_{tun} \\ d\vec{q}_{d} \end{pmatrix} = \begin{pmatrix} d\vec{q}_{ind} + ed\vec{n}_{tun} \\ ed\vec{n}_{d} \end{pmatrix}$$
(3)

Выражение для изменения свободной энергии можно переписать в следующем виде с учетом неизменности электрических потенциалов электродов

$$dU = \frac{\vec{\varphi}_{i}^{T} d\vec{q} + \vec{q}_{i}^{T} d\vec{\varphi} + d\vec{q}^{T} d\vec{\varphi}}{2} = \frac{(\vec{q}_{d}^{T} + d\vec{q}_{d}^{T}) d\vec{\varphi}_{d} + \vec{\varphi}_{d}^{T} d\vec{q}_{d} + \vec{\varphi}_{e}^{T} d\vec{q}_{ind}}{2}$$
(4)

Для нахождения $dec{q}_{ind},\,ec{arphi}_d$ и $dec{arphi}_d$ запишем систему уравнений

$$\begin{pmatrix} \vec{q}_{ind} \\ \vec{q}_{d} \end{pmatrix} = \begin{pmatrix} \hat{C}_{ee} & \hat{C}_{ed} \\ \hat{C}_{de} & \hat{C}_{dd} \end{pmatrix} \begin{pmatrix} \vec{\varphi}_{e} \\ \vec{\varphi}_{d} \end{pmatrix}$$
 (5)

откуда получаем

$$\vec{\varphi}_{d} = \hat{C}_{dd}^{-1} (\vec{q}_{d} - \hat{C}_{de} \vec{\varphi}_{e})
\vec{q}_{ind} = (\hat{C}_{ee} - \hat{C}_{ed} \hat{C}_{dd}^{-1} \hat{C}_{de}) \varphi_{e} + \hat{C}_{ed} \hat{C}_{dd}^{-1} \vec{q}_{d}.$$
(6)

На основе этих уравнений для $d\vec{q}_{ind}$ и $d\vec{arphi}_d$ получаем:

$$d\vec{\varphi}_d = \hat{C}_{dd}^{-1} d\vec{q}_d$$

$$d\vec{q}_{ind} = \hat{C}_{ed} \hat{C}_{dd}^{-1} d\vec{q}_d.$$
(7)

Получаем для изменения электростатической энергии

$$dU = \frac{(\vec{q}_d^T + d\vec{q}_d^T)\hat{C}_{dd}^{-1}d\vec{q}_d + (\vec{q}_d^T - \vec{\varphi}_e^T\hat{C}_{ed})\hat{C}_{dd}^{-1}d\vec{q}_d + \vec{\varphi}_e^T\hat{C}_{ed}\hat{C}_{dd}^{-1}d\vec{q}_d}{2}$$
(8)

Окончательно изменения электростатической энергии:

$$dU = \vec{q}_d^T \hat{C}_{dd}^{-1} d\vec{q}_d + \frac{d\vec{q}_d^T \hat{C}_{dd}^{-1} d\vec{q}_d}{2} = e^2 \vec{n}_d^T \hat{C}_{dd}^{-1} d\vec{n}_d + \frac{e^2}{2} d\vec{n}_d^T \hat{C}_{dd}^{-1} d\vec{n}_d$$
(9)

Изменение свободной энергии системы включает в себя работу источников

$$dF = dU + U = e^2 \vec{n}_d^T \hat{C}_{dd}^{-1} d\vec{n}_d + \frac{e^2}{2} d\vec{n}_d^T \hat{C}_{dd}^{-1} d\vec{n}_d + e\vec{\varphi}_e^T (\hat{C}_{ed} \hat{C}_{dd}^{-1} d\vec{n}_d + d\vec{n}_{tun})$$
(10)

3 Матрица ёмкостей

Для вычисления свободной энергии требуется вычислить матрицу ёмкостей, фигурирующую в (5). По сути само уравнение (5) можно считать определением матрицы ёмкостей данной системы — элементы матрицы ёмкости есть коэффициенты в линейной комбинации потенциалов для выражения зарядов на объектах в системе.

Рассмотрим процедуру расчёта данной матрицы в нашей модели. Расчёту взаимных коэффициентов концентрических сфер мы посвятим следующий параграф, а пока остановимся на всех остальных элементах. Для наглядности выпишем нашу матрицу в полном виде

$$\hat{C} = \begin{pmatrix}
C_{ss} & C_{sd} & C_{sg} & C_{s1} & C_{s2} \\
C_{ds} & C_{dd} & C_{dg} & C_{d1} & C_{d2} \\
C_{gs} & C_{gd} & C_{gg} & C_{g1} & C_{g2} \\
C_{1s} & C_{1d} & C_{1g} & C_{11} & C_{12} \\
C_{2s} & C_{2d} & C_{2g} & C_{21} & C_{22}
\end{pmatrix}$$
(11)

Поясним: здесь C_{ss} — собственная ёмкость истока, C_{dd} — стока, C_{gg} — затвора, C_{11} — собственная ёмкость сферы первого энергетического уровня, C_{22} — второго. К примеру, C_{sd} — взаимная ёмкость стока и стока и т.д. Элементы C_{11} , C_{12} , C_{21} , C_{22} оставляем на потом, а с остальными разберёмся уже сейчас. Вычислять их будем по отдельности: Первая группа будет состоять из элементов собственных и взаимных ёмкостей электродов (их всего 9, например C_{gg} , C_{ds}) а так же ещё шести элементов взаимной ёмкости первой сферы и электродов (это элементы вида C_{s1} , C_{d1} , C_{1g} и т.д.). Вторая группа будет состоять из тех же девяти коэффициентов, относящихся к электродам, и ещё шести, связанных со второй сферой (вида C_{s2} , C_{2g} и т.д.)

Разделив матрицу на 2 таких группы, мы можем рассчитать матрицу ёмкостей для двух систем четырёх непересекающихся и не лежащих внутри друг друга сфер. Сделать это можно с помощью метода изображений. Данный метод был хорошо описан в [1]. Поместив пробный заряд на одну из сфер, будем последовательно строить заряды-изображения в других сферах до тех пор, пока поправка на величину заряда-изображения в i-ой итерации не станет меньше выбранного ε

4 Потенциалы и заряды системы концентрических проводящих сфер

Пусть имеется система проводящих концентрических сфер с радиусами $r_1 < r_2 < \cdots < r_N$ и зарядами q_i . Тогда потенциал внешней сферы по теореме Остроградского-Гаусса определяется как

$$\varphi_N = \frac{\sum_{i=1}^N q_i}{r_N} \,. \tag{12}$$

Потенциал N-1 сферы определяется как

$$\varphi_N = \frac{\sum_{i=1}^{N-1} q_i}{r_{N-1}} + C_{N-1}, \qquad (13)$$

где константа C_{N-1} определяется из условия

$$\frac{\sum_{i=1}^{N-1} q_i}{r_N} + C_{N-1} = \frac{\sum_{i=1}^{N} q_i}{r_N}, \ C_{N-1} = \frac{q_N}{r_N}$$
(14)

Таким образом, потенциалы и заряды на N концентрических сферах определены равенством:

$$\begin{pmatrix} \vec{\varphi}_{1} \\ \vdots \\ \vec{\varphi}_{N} \end{pmatrix} = \begin{pmatrix} 1/r_{1} & 1/r_{2} & 1/r_{3} & \dots & 1/r_{N-2} & 1/r_{N-1} & 1/r_{N} \\ 1/r_{2} & 1/r_{2} & 1/r_{3} & \dots & 1/r_{N-2} & 1/r_{N-1} & 1/r_{N} \\ 1/r_{3} & 1/r_{3} & 1/r_{3} & \dots & 1/r_{N-2} & 1/r_{N-1} & 1/r_{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 1/r_{N-2} & 1/r_{N-2} & 1/r_{N-2} & \dots & 1/r_{N-2} & 1/r_{N-1} & 1/r_{N} \\ 1/r_{N-1} & 1/r_{N-1} & 1/r_{N-1} & \dots & 1/r_{N-1} & 1/r_{N-1} & 1/r_{N} \\ 1/r_{N} & 1/r_{N} & 1/r_{N} & \dots & 1/r_{N} & 1/r_{N} & 1/r_{N} \end{pmatrix} \begin{pmatrix} \vec{q}_{1} \\ \vdots \\ \vec{q}_{N} \end{pmatrix}.$$

$$(15)$$

Элементы потенциальной матрицы в этой системе определяются как

$$S_{ij} = \begin{cases} 1/r_i \text{ если } i > j, \\ 1/r_j \text{ если } i \le j. \end{cases}$$
 (16)

5 Расчёт темпа туннелирования

Распределение электронов по энергиям в электроде описывается распределением Ферми-Дирака:

$$f(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})},\tag{17}$$

где E_F — энергия Ферми. Толщина энергетических уровней в атоме описывается распределением Лоренца:

$$L(E) = \frac{1}{\pi} \frac{\gamma/2}{(E - E_0)^2 + (\gamma/2)^2}$$
 (18)

Здесь γ — полуширина энергетического уровня. E_0 — энергия уровня. Прозрачность туннельного барьера даётся формулой:

$$\tau = \exp(-\frac{2}{\hbar}\sqrt{2m\Delta\mu}l),\tag{19}$$

 $\Delta \mu = \mu_d - \mu_e$ — изменение химического потенциала при туннелировании электрона с электрода на атом. l есть расстояние между примесным атомом и электродом. Беря во внимание плотность электронных состояний D на границе электрода, значение темпа туннелирования можно оценить следующим образом:

$$\Gamma_{ed} = D\tau \int_{-\infty}^{\infty} f(E)L(E + \Delta E)dE, \qquad (20)$$

Причём $\Delta E = dF + \Delta \mu$, где dF определяется из формулы (10). По физическому смыслу формула (20) представляет собой формулу нахождения вероятности наступления двух независимых событий: наличие электрона с энергией E в электроде и "попадание"электрона после туннелирования в атомный уровень. Темп туннелирования с примесного атома на электрод даётся в свою очередь формулой:

$$\Gamma_{de} = D\tau \int_{-\infty}^{\infty} (1 - f(E + \Delta E)) L(E) dE, \tag{21}$$

Рис. 3: Граф состояний двухуровневой системы

6 Граф состояний двухуровневой системы

Рассмотрим следующую систему. Пусть на островке между двумя электродами электрон может находиться лишь в двух энергетических состояниях. Согласно принципу Паули на каждом из уровней может находится максимум два электрона. Тогда система может находиться в одном из 16 состояний, причём возможны только строго определённые переходы между этими состояниями в процессе актов туннелирования. Эти состояния и разрешённые переходы между ними изображены на рис. 3.

Пронумерованы они в двоичной системе счисления. Это очень удобно при численном моделировании данной системы, поскольку каждый разряд числа отвечает за наличие электрона с некоторым спином на данном энергетическом уровне.

Список литературы

[1] Л.Д.Ландау, Е.М.Лифшиц Электродинамика сплошных сред М., Наука, 1982