10000

 D-TMS-methylricinoleate

Abundance Scan 387 (14.044 min): 0201005.D

130000
120000
100000
90000
60000
70000
40000
30000
20000
55 103 270

200

250

300

1D

In
$$\#2: Mass 299$$

$$\left[(CH_3)_3 - S_1 - O - CH - CH_2 - CH = CH - (CH_2)_7 - C - O - CH_3 \right]^{\dagger}$$

Ton#3: Mass 270 (characteristic rearrangement ion)

$$[CH_2-CH=CH-(CH_2)_7-C-O-CH_3]^+$$

 $S_{i}-(CH_3)_3$

In#4: Mass 185 & desaturated analog of Ion#1)

[CH3-(CH2)2-CH=CH-CH2-CH-O-Si-(CH3)3] +

In#5: Mass 298 (elongated analog of Ion#3)

[CH2-CH=CH-(CHz)q-C-O-CH3]

\$\frac{1}{5}i-(CH_3)_3

In \$6: Mass 327 (clousated analog of 1 on #2)

(CH3)3-Si-O-CH-CN2-CH=CH-(CH2)9-E-O-CH3]

Figure 2.

	10	20	30	40	50	60
	TATTGGCACC	GGCGGCACCA	TTCCAACAAT	GGATCCCTAG	AAAAAGATGA	AGTCTTTGTC
	70	80	90	100	110	120
	CCACCTAAGA	AAGCTGCAGT	CANATGGTAT	GTCAAATACC	TCAACAACCC	TCTTGGACGC
	130	140	150	160	170	180
	ATTCTGGTGT	TAACAGTTCA	GTTTATCCTC	GGGTGGCCTT		CTTTAATGTA
	190	200	210	220	230	240
	TCAGGTAGAC		TTTCGCTTCA	CATTTCTTCC		TATCTTTAAG
	250	260	270	280	290	300
	GACCGTGAAC	GTCTCCAGAT		GATGCTGGTA	TTCTAGCTGT	CTGTTATGGT
	310	320	330	340	350	360
1777	CTTTACCGTT	ACGCTGCTTC		ACTGCTATGA		CGGAGTACCG
1	370	380	390	400	410	420
11.5	CTTTTGATAG	TGAACTTTTT		GTCACTTTCT		TCATCCTTCA
	430	440	450	460	470	480
17	TTACCTCACT		CGAGTGGGAA	TGGATTAGAG	GAGCTTTGGT	TACGGTAGAC
	490	500		520	530	
And the court and the first limit and		GAATCIIGAA	CAAGGIGIII	CACAACATAA	CAGACACCCA	CGTAGCACAC
	550 CAC					
31	CAC					
						•
170	5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			_		
דוכ	gure 5 Nucle	otide seque	nce of plesc	72		
			•			
£						

10	20	30	40	50	60
TATAGGCACC	GGAGGCACCA	TTCCAACACA	GGATCCCTCG	AAAGAGATGA	AGTATTTGTC
70	80	90	100	110	120
CCAAAGCAGA	AATCCGCAAT	CAAGTGGTAC	GGCGAATACC	TCAACAACCC	TCCTGGTCGC
130	140	150	160	170	180
ATCATGATGT	TAACTGTCCA	GTTCGTCCTC	GGATGGCCCT	TGTACTTAGC	CTTCAACGTT
190	200	210	220	230	240
TCTGGCAGAC	CCTACAATGG	TTTCGCTTCC	CATTTCTTCC	CCAATGCTCC	TATCTACAAC
250	260	270	280	290	300
GACCGTGAAC	GCCTCCAGAT	TTACATCTCT	GATGCTGGTA	TTCTAGCCGT	CTGTTATGGT
310	320	330	340	350	360
CTTTACCGTT	ACGCTGTTGC	ACAAGGACTA	GCCTCAATGA	TCTGTCTAAA	CGGAGTTCCG
370	380	390	400	410	420
CTTCTGATAG	TTAACTTTTT	CCTCGTCTTG	ATCACTTACT	TACAACACAC	TCACCCTGCG
430	440	450	460	470	480
TTGCCTCACT	ATGATTCATC	AGAGTGGGAT	TGGCTTAGAG	GAGCTTTAGC	TACTGTAGAC
490	500	510	520	530	540
AGAGACTATG	GAATCTTGAA	CAAGGTGTTC	CATAACATCA	CAGACACCCA	CGTCGCACAC
550					
CACT					

Figure 6 Nucleotide sequence of pLesq3

the first form the son son the son the

Probe Probe

Probe

Probe

Probe

Probe

S L S L

Figure 7

AT GAA GCT TTA TAA GAA GTT AGT TTT CTC TGG TGA CAG AGA AAT TNT 47 GTC AAT TGG TAG TGA CAG TTG AAG CAA CAG GAA CAA GGA TGG TTG 95 GTG NTG ATG CTG ATG TGG TGA TGT GTT ATT CAT CAA ATA CTA AAT ACT 143 ACA TTA CTT GTT GCT GCC TAC TTC TCC TAT TTC CTC CGC CAC CCA TTT 191 TGG ACC CAC GAN CCT TCC ATT TAA ACC CTC TCT CGT GCT ATT CAC CAG 239 AAG AGA AGC CAA GAG AGA GAG AGA GAG AAT GTT CTG AGG ATC ATT GTC 287 TTC TTC ATC GTT ATT AAC GTA AGT TTT TTT TGA CCA CTC ATA TCT AAA 335 ATC TAG TAC ATG CAA TAG ATT AAT GAC TGT TCC TTC TTT TGA TAT TTT 383 Met Gly Ala Gly Gly Arg Ile Met Val Thr 10 CAG CTT CTT GAA TTC AAG ATG GGT GCT GGT GGA AGA ATA ATG GTT ACC 431 Pro Ser Ser Lys Lys Ser Glu Thr Glu Ala Leu Lys Arg Gly Pro Cys 26 CCC TCT TCC AAG AAA TCA GAA ACT GAA GCC CTA AAA CGT GGA CCA TGT 479 Glu Lys Pro Pro Phe Thr Val Lys Asp Leu Lys Lys Ala Ile Pro Gln 42 GAG AAA CCA CCA TTC ACT GTT AAA GAT CTG AAG AAA GCA ATC CCA CAG 527 His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Leu Thr 58 CAT TGT TTC AAG CGC TCT ATC CCT CGT TCT TTC TCC TAC CTT CTC ACA 575 Asp Ile Thr Leu Val Ser Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe GAT ATC ACT TTA GTT TCT TGC TTC TAC GTT GCC ACA AAT TAC TTC 74 623 Ser Leu Leu Pro Gìn Pro Leu Ser Thr Tyr Leu Ala Trp Pro Leu Tyr 90 TCT CTT CCT CAG CCT CTC TCT ACT TAC CTA GCT TGG CCT CTC TAT 671 Trp Val Cys Gln Gly Cys Val Leu Thr Gly Ile Trp Val Ile Gly His 106 TGG GTA TGT CAA GGC TGT GTC TTA ACC GGT ATC TGG GTC ATT GGC CAT 719 Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Val Asp Asp Thr 122 GAA TGT GGT CAC CAT GCA TTC AGT GAC TAT CAA TGG GTA GAT GAC ACT 767 Val Gly Phe Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp 138 GTT GGT TTT ATC TTC CAT TCC TTC CTT CTC GTC CCT TAC TTC TCC TGG 815 Lys Tyr Ser His Arg Arg His His Ser Asn Asn Gly Ser Leu Glu Lys 154 AAA TAC AGT CAT CGT CGT CAC CAT TCC AAC AAT GGA TCT CTC GAG AAA 863 Asp Glu Val Phe Val Pro Pro Lys Lys Ala Ala Val Lys Trp Tyr Val 170 GAT GAA GTC TIT GTC CCA CCG AAG AAA GCT GCA GTC AAA TGG TAT GTT 911 Lys Tyr Leu Asn Asn Pro Leu Gly Arg Ile Leu Val Leu Thr Val Gln 186 AAA TAC CTC AAC AAC CCT CTT GGA CGC ATT CTG GTG TTA ACA GTT CAG

Figure 8A

959

Phe TTT	Ile ATC	Leu CTC	Gly GGG	Trp TGG	Pro CCT	Leu TTG	Tyr TAT	Leu CTA	Ala GCC	Phe TTT	Asn AAT	Val GTA	Ser TCA	Gly GGT	Arg AGA	202 1007
										Pro CCT						218 1055
										Ser TCA						234 1103
										Ala GCT						250 1151
										Leu TTG						266 1199
										His CAT						282 1247
										Gly GGA						298 1295
										Phe TTC						314 1343
										Ile ATA						330 1391
										Leu CTT						346 1439
										Tyr TAT						362 1487
										Gly GGG						378 1535
	Tyr TAC					TGA	GGC	TGA	TAG	GGC	GAG	AGA	AGT	GCA	ATT	384 1583
ATC	AAT	CTT	CAT	TTC	CAT	GTT	TTA	GGT	GTC	TTG	TTT	AAG	AAG	СТА	TGC	1631
TTT	GTT	TCA	ATA	ATC	TCA	GAG	TCC	ATN	TAG	TTG	TGT	ŢCT	GGT	GCA	ттт	1679
TGC	СТА	GTT	ATG	TGG	TGT	CGG	AAG	TTA	GTG	TTC	AAA	CTG	стт	CCT	GCT	1727
GTG	CTG	ССС	AGT	GAA	GAA	CAA	GTT	TAC	GTG	ттт	AAA	ATA	СТС	GGA	ACG	1775
AAT	TGA	CCA	CAA	NAT	ATC	CAA	AAC	CGG	СТА	TCC	GAA	TTC	CAT	ATC	CGA	1823
AAA	CCG	GAT	ATC	CAA	ATT	TCC	AGA	GTA	СТТ	AG						1855

Figure 8B

	·	10	20	30	40	50~	•
LFFAH12.AMI	1	MGAGGRIM	VTPSSKKS	ETEALKRG	PCEKPPFTVK	DLKKAIPQHC	50
FAH12.AMI	1	MGGGGRMSTV	ITSNNSEKKG	GSSHLKRA	PHTKPPFTLG	DLKRAIPPHC	50
ATFAD2.AMI	1	MGAGGRMP	VPTSSKKS	ETDTTKRV	PCEKPPFSVG	DLKKAIPPHC	50
BNFAD2.AMI	1	MGAGGRMQ	VSPPSKKS	ETDNIKRV	${\tt PCETPPFTVG}$	ELKKAIPPHC	50
D2-1.AMI	1	MGLA-KETTM	GGRGRVAKVE	VQGKKPLSRV	PNTKPPFTVG	QLKKAIPPHC	50
GMFAD2-2.AMI	1	MGAGGR	TDVPPANRKS	EVDPLKRV	${\tt PFEKPQFSLS}$	QIKKAIPPHC	50
ZMFAD2.AMI	1	MGAGGRMTEK	EREKQEQLAR	ATGGAAMQRS	${\tt PVEKPPFTLG}$	QIKKAIPPHC	50
RCFAD2.AMI	1						50
		60	70	80	90	100	
LFFAH12.AMI		FKRSIPRSFS					100
FAH12.AMI	51	FERSFVRSFS	YVAYDVCISF	LFYSIATNFF	PYISSPLS-Y	VAWLVYWLFQ	100
ATFAD2.AMI	51	FKRSIPRSFS	YLISDIIIAS	CFYYVATNYF	SLLPQPLS-Y	LAWPLYWACQ	100
BNFAD2.AMI	51	FKRSIPRSFS	HLIWDIITAS	CFYYVATTYF	PLLPNPLS-Y	FAWPLYWACQ	100
GMFAD2-1.AMI	51	FQRSLLTSFS	YVVYDLSHAF	IFY-IATTYF	HLLPQPFS-L	IAWPIYWVLQ	100
GMFAD2-2.AMI	51	FQRSVLRSFS	YVVYDLTIAF	CLYYVATHYF	HLLPGPLS-F	RGMAIYWAVQ	100
ZMFAD2.AMI	51	FERSVLKSFS	YVVHDLVIJA	ALLYFALAII	PALPSPLR-Y	AAWPLYWIAQ	100
RCFAD2.AMI							100
A majorina.		110	120	130	140	150	
LFFAH12.AMI	101	GCVLTGIWVI	GHECGHHAFS	DYQWVDDTVG	FIFHSFLLVP	YFSWKYSHRR	150
FAH12 AMI	101	GCILTGLWVI	CHECGHHAFS	EYQLADDIVG	LIVHSALLVP	YFSWKYSHRR	150
ATFAD2.AMI	101	GCVLTGIWVI	AHECGHHAFS	DYQWLDDTVG	LIFHSFLLVP	YFSWKYSHRR	150
BNFADZ.AMI	101	GCVLTGVWVI	AHECGHAAFS	DYQWLDDTVG	LIFHSFLLVP	YFSWKYSHRR	150
GMFAD2-1.AMI	101	GCLLTGVWVI	AHECGHHAFS	KYQWVDDVVG	LTLHSTLLVP	YFSWKISHRR	150
GMFAD2-2.AMI	101	GCILTGVWVI	AHECGHHAFS	DYQLLDDIVG	LILHSALLVP	YFSWKYSHRR	150
ZMFADŽ.AMI		. G					150
RCFAD2.AMI	101	WVM	AHDCGHHAFS	DYQLLDDVVG	LILHSCLLVP	YFSWKHSHRR	150
a particular		160	170	180	190	200	
LFFAH12.AMI	151	. HHSNOGSLEK	DEVFVPPKKA	AVKWYVKYL-	NNPLGRILVL	TVQFILGWPL	200
FAH12.AMI		HHSNIGSLER					200
ATFAD2.AMI	151	HHSNIGSLER	DEVFVPKQKS	AIKWYGKYL-	NNPLGRIMML	TVQFVLGWPL	200
BNFAD2.AMI	151	HHSNIGSLER	DEVFVPR-RS	QTSSGTAST-	STTFGRTVML	TVQFTLGWPL	200
GMFAD2-1.AMI		HHSNIGSLDR					200
GMFAD2-2.AMI	151	HHSNIGSLER	DEVFVPKQKS	CIKWYSKYL-	NNPPGRVLTL	AVTLTLGWPL	200
ZMFAD2.AMI	151	HHSNIGSLER	DEVFVPKKKE	ALPWYTPYVY	NNPVGRVVHI	VVQLTLGWPL	200
RCFAD2.AMI	151	HHSNIGSLER	DEVFVPKKKS	SIRWYSKYL-	NNPPGRIMTI	AVTLSLGWPL	200
		210			240		
LFFAH12.AMI	201	L YLAFNVSGRP	YDG-FASHFF	PHAPIFKDRE	RLQIYISDAG	ILAVCYGLYR	250
FAH12.AMI	202	L YLAFNVSGRP	YDR-FACHYD	PYGPIFSERE	RLQIYIADLG	IFATTFVLYQ	250
ATFAD2.AMI	203	L YLAFNVSGRP	-YDG -FACHFF	PNAPIYNDRE	RLQIYLSDAG	ILAVCFGLYR	250
BNFAD2.AMI	20:	L YLAFNVSGRP	YDGGFACHFH	PNAPIYNDRE	RLQIYISDAG	ILAVCYGLLP	250
GMFAD2-1.AMI	202	l YLAFNVSGRP	YDS-FASHYH	PYAPIYSNRE	RLLIYVSDVA	LFSVTYSLYR	250
GMFAD2-2.AMI	202	l YLALNVSGRF	YDR-FACHYD	PYGPIYSDRE	RLQIYISDAG	VLAVVYGLFR	250
ZMFAD2.AMI	201	1 YLATNASGRF	YPR-FACHFD	PYGPIYNDRE	RAQIFVSDAG	VVAVAFGLYK	250
RCFAD2.AMI	20:	1 YLAFNVSGRF	YDR-FACHYD	PYGPIYNDRE	RIEIFISDAG	VLAVTFGLYQ	250
		260	270	280	290	300	
LFFAH12.AMI	25	1 YAASQGLTAM	1 ICVYGVPLLI	VNFFLVLVTF	LQHTHPSLPH	YDSTEWEWIR	300
FAH12.AMI		1 ATMAKGLAW					300
ATFAD2.AMI		1 YAAAQGMASN					300
BNFAD2.AMI		1 YAAVQGVASN					300
O'FAD2-1.AMI		1 VATLKGLVWI					300
AD2-2.AMI		1 LAMAKGLAW					300
ZMFAD2.AMI		1 LAAAFGVWW					300

RCFAD2 .AMI	251 LATAKGLAW	A - ACAAGABITA	VNSFLVLITF	LQHTHPALPH	YDSSEWDWLR	300
	31	320	330	340	350	
LFFAH12.AMI	301 GALVIVDRD	Y GILNKVFHNI	TDTHVAHHLF	ATIPHYNAME	ATEAIKPILG	350
F>H12.AMI	301 GAMVIVDRD	Y GVLNKVFHNI	ADTHVAHHLF	ALLAHAHE	ATKAIKPIMG	350
OZ . AMI	301 GALATVORD	Y GILNKVFHNI	TDTHVAHHLF	SIMPHYNAME	ATKAIKPILG	350
BNFAD2.AMI	301 GALATVORD	Y GILNQGFHNI	TOTHEAHHLF	STMPHYHAME	ATKAIKPILG	350
GMFAD2-1.AMI	301 GALATMORD	Y GILNKVFHHI	TDTHVAHHLF	STMPHYHAME	ATNAIKPILG	350
GMFAD2-2.AMI	301 GALATVORD	Y GILNKVFHNI	TDTHVAHHLF	SEMPHYHAME	ATKAIKPILG	350
ZMFAD2.AMI	301 GALAFMORD	Y GILNRVFHNI	TDTHVAHHLF	SГМРНУНАМЕ	ATKAIRPILG	350
RCFAD2.AMI	301 GALATVDRD	Y GILNKVFHNI	TDTQVAHHLF	-TMP		350
	36	370	380	390	400	
LFFAH12.AMI						400
FAH12.AMI	351 EYYRYDGTP	f ykalwreake	CLFVEPDEGA	PTQGVFWYRN	KY	400
ATFAD2.AMI	351 DYYQFDGTP	W YVAMYREAKE	CIYVEPDREG	DKKGVYWYNN	K-L	400
BNFAD2.AMI	351 EYYQFDGTP		~			100
GMFAD2-1.AMI	351 EYYQFDDTP	F YKALWREARE	CLYVEPDEGT	SEKGVYWYRN	KY	400
GMFAD2-2.AMI	351 EYYRFDETP					200
ZMFAD2.AMI	351 DYYHFDPTP					
RCFAD2.AMI						400
Jan 1997	41	0 420	430	440	450	
LFFAH12.AMI	401					450
FAH12.AMI	401					
ATFAD2.AMI	401					450
BNFAD2.AMI	401					
GMFAD2-1.AMI	401					
GMFAD2-2.AMI	401					
ZMFAD2.AMI	401					450
- Marco II - Monardo - Monardo - C - C - C - C - C - C - C - C						

Molecular weight markers

 \downarrow

EHX

1.8 -

1.5 -

Figure 10

