Data • Model • Loss

An open resource from the Aalto Dictionary of ML

Alexander Jung

October 7, 2025

Licensed under CC BY 4.0

At a glance — goals

- Understand the three components of machine learning (ML): data, model, loss.
- ▶ Identify features vs labels in common modalities (image, audio).
- lacktriangle Explain how a hypothesis maps $\mathcal{X} o \mathcal{Y}$.
- ► Compare common loss functions and when to use them.

Data point = An Image z

Features:

- $ightharpoonup x_1, \ldots, x_d$: Colour intensities of all image pixels.
- $ightharpoonup x_{d+1}$: Time-stamp of the image capture.
- $ightharpoonup x_{d+2}$: Spatial location of the image capture.

Labels:

- \triangleright y_1 : Number of cows depicted.
- ▶ *y*₂: Number of wolves depicted.
- \triangleright y_3 : Condition of the pasture (e.g., healthy, overgrazed).

Data point = An Audio Recording z

Figure: An audio signal (blue waveform) z and its discretized signal samples (red dots) which can be used as its features x_1, \ldots, x_d .

Feature space

- ▶ often we use a fixed number $d \in \mathbb{N}$ of features
- ightharpoonup stack them into a feature vector $\mathbf{x} = \left(x_1, \dots, x_d\right)$
- lacktriangle feature vectors belong to some feature space ${\mathcal X}$
- lacktriangle most widely-used (by far) choice is $\mathcal{X}=\mathbb{R}^d$

Label space

Figure: Examples of label spaces and corresponding ML flavours.

Goal of ML: Predict Label from Features

Figure: A hypothesis $h: \mathcal{X} \to \mathcal{Y}$ maps the features $\mathbf{x} \in \mathcal{X}$ of a data point to a prediction $h(\mathbf{x}) \in \mathcal{Y}$ of the label. For example, the ML application https://freddiemeter.withyoutube.com/ uses the samples of an audio recording as features predict how closely a person's singing resembles that of Freddie Mercury.

From Features to Prediction

Core Problem of ML given data $\{(\mathbf{x}^{(r)},y^{(r)})\}_{r=1}^m$ and model \mathcal{H} , learn (or find) $\hat{h}\in\mathcal{H}$ such that $\hat{h}(\mathbf{x})\approx y$ for any data point with features \mathbf{x} and label y.

Model = A Set of Hypothesis Maps

Figure: A hypothesis space $\mathcal{H}=\{h^{(1)},h^{(2)},h^{(3)}\}$ consisting of three linear maps.

Which one of the hypothesis maps is the best?

Loss function

A loss function $L((\mathbf{x},y),h)$ measures the error (or "loss"), incurred by predicting the label y of a data point with feature vector \mathbf{x} .

Which Loss function should we use?

The choice of loss function influences

- computational aspects,
- statistical aspects (robustness, generalization, ...), and
- interpretability

of the resulting ML method.

Reuse & Citation

This deck is part of the **Aalto Dictionary of Machine Learning** (open source).

License: **CC BY 4.0**. Please cite: *Jung, A. et.al. (2025). The Aalto Dictionary of Machine Learning.* DOI:

10.5281/zenodo.17273736.

Source and updates: https://github.com/ AaltoDictionaryofML/AaltoDictionaryofML.github.io