IN THE CLAIMS

Kindly amend the claims to read as follows.

- 1. (cancelled).
- 2. (previously presented): A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

 M_1 is a divalent metal, an exometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

 Y_1 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$,

Y₂ is -SR₁,

R₃ is

$$\nearrow$$
E \nearrow R₆ \bowtie R₇

 R_8 and R_7 are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

- x may be a rational number from 0 to 8
- y₁ and y₂ may be each independently of the other a rational number from 0 to 6
- z may be a number from 1 to 4,

10/037,106

-4

wherein $(x + y_1 + y_2 + z)$ is ≤ 16 ,

and wherein R₁ and R₂ may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by $-O_-$, $-S_-$, $-NH_-$ or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_5 alkyl,

 C_{5} - C_{20} cycloalkyl, C_{2} - C_{20} alkenyl, C_{5} - C_{12} cycloalkenyl, C_{2} - C_{20} alkynyl, C_{6} - C_{18} aryl or C_{7} - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of - CH_{2} -, -C(=O)-, - $CH(C_{1}$ - C_{4} alkyl)-, - $C(C_{1}$ - C_{4} alkyl)₂-, - $C(C_{1}$ - C_{4} -C

3. (currently amended): A-A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad CH_2OC(=O)$$

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad OCH(CHMe_2)_2$$

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad OCH(CHMe_2)_2$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8.

4. (currently amended): A-A process according to claim 8 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O$$

$$N$$

$$N$$

$$CH_{2}OC(=O)$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

where x = 0 to 0.5.

5-7. (cancelled).

- 8. (currently amended): A process for the manufacture of <u>an</u>optical recording medium having at least one recording layer, comprising the steps of
- a) incorporating a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as <u>a_substituent</u>, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH- into said recording layer_wherein the substrate is a homo- or copolymeric plastic.
- 9. (currently amended): An optical recording medium, which comprises a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as <u>a</u> substituent, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH-, and a substrate which is a homo- or copolymeric plastic.
- 10. (previously presented): An optical recording medium, which consists essentially of a transparent substrate, a recording layer on that substrate, a reflection layer on the recording layer and, if desired,

D2 Cont

T-981

Sep-08-03 04:14pm From-CIBA PATENT TCC

a final protective layer, the recording layer comprising a metallocenyl-phthalocyanine or its metal complex of a divalent metal, oxometal, halogenometal or hydroxymetal, in which at least one of the four phenyl rings of the phthalocyanines contains, bound via a bridge unit E, at least one metallocene radical as substituent, E being composed of a chain of at least two members selected from the group consisting of -CH₂-, -C(=O)-, -CH(C₁-C₄alkyl)-, -C(C₁-C₄alkyl)₂-, -NH-, -S-, -O- and -CH=CH-.

- 11. (previously presented): A process according to claim 8 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 12. (currently amended): A process for the manufacture of <u>an</u> optical recording medium having at least one recording layer, comprising the steps of
 - a) incorporating a mixture, which comprises
- (a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

- (b) 5 to 20 mol % of a compound II containing two radicals R_3 (z = 2), and
- (c) 0 to 25 mol % of a compound IV

wherein $-OR_{11}$, $R_3 = R_{14}$, X and M_3 each have the same meaning in formulae II and IV and are as defined in claim 2, the mol-% amounts making up 100% into said recording layer.

- 13. (previously presented): A process according to claim 2 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 14. (currently amended): A process for the manufacture of optical recording medium having at least one recording layer, comprising the steps of
 - a) incorporating a mixture, which comprises
- (a) 60 to 95 mol % of a compound II

containing one radical R_3 (z = 1),

wherein R₁₁ is C₁-C₁₂alkyl and M₃ is palladium or copper, and z is 1,

- (b) 5 to 20 mol % of a compound II containing two R_3 (z = 2), and
- (c) 0 to 25 mol % of a compound IV

10/037,106

wherein R_{14} may be -CHO, -CH₂OH, -COOH, -CH₂OC(O)-C₁-C₄alkyl or an acetal, and z may be 1 or 2,

wherein -OR₁₁, R₃ \approx R₁₄, X and M₃ each have the same meanings in formulae II and IV and are as defined for claim 2, the mol-% amounts making up 100%, into said recording layer.

- 15. (previously presented): A process according to claim 14 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 16. (previously presented): An optical recording medium according to claim 9 wherein the metallocenyl-phthalocyanine compound is represented by formula !

wherein

M₁ is a divalent metal, an exometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

 Y_1 is $-QR_1$, $-QQC-R_2$, $-NHR_1$, $-N(R_1)R_2$,

10/037,106

-9-

$$Y_2$$
 is -SR₁, R_3 is $E \longrightarrow R_8$ $M_2 \longrightarrow R_7$

 R_6 and R_7 are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, amino- C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

- x may be a rational number from 0 to 8
- y₁ and y₂ may be each independently of the other a rational number from 0 to 6
- z may be a number from 1 to 4,

wherein $(x + y_1 + y_2 + z)$ is ≤ 16 ,

and wherein R₁ and R₂ may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by $-O_-$, $-S_-$, $-NH_-$ or $-NR_{10}$ -, wherein R_{10} may be C_1 - C_6 alkyl,

 C_5 - C_{20} cycloalkyl, C_2 - C_{20} alkenyl, C_8 - C_{12} cycloalkenyl, C_2 - C_{20} alkynyl, C_6 - C_{18} aryl or C_7 - C_{18} aralkyl, and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of - CH_{2^-} , -C(=O)-, -CH(C_1 - C_4 alkyl)-, -C(C_1 - C_4 alkyl)₂-, -C+, -C- and -C+=C+-.

17. (currently amended): An optical recording medium according to claim 9 wherein the metallocenylphthalocyanine compound is represented by formula

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad CH_2OC(=O) \\ N \qquad Pd \qquad N \qquad OCH(CHMe_2)_2 \qquad Br_x$$

$$(Me_2CH)_2C(H)O \qquad OCH(CHMe_2)_2 \qquad$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8.

- 18. (previously presented): An optical recording medium according to claim 17 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.
- 19. (previously presented): An optical recording medium according to claim 9 wherein the metallocenyl-phthalocyanine compound is represented by formula

$$(Me_{2}CH)_{2}C(H)O$$

$$N$$

$$N$$

$$CU-N$$

$$OCH(CHMe_{2})_{2}$$

$$OCH(CHMe_{2})_{2}$$

$$(Me_{2}CH)_{2}C(H)O$$

$$OCH(CHMe_{2})_{2}$$

where x = 0 to 0.5.

20. (previously presented): An optical recording medium according to claim 10 wherein the metallocenyl-phthalocyanine compound is represented by formula I

wherein

 M_1 is a divalent metal, an oxometal group, halogenometal group or hydroxymetal group, or two hydrogen atoms,

X is halogen

 Y_1 is $-OR_1$, $-OOC-R_2$, $-NHR_1$, $-N(R_1)R_2$,

Y₂ is -SR₁,

R₃ is

$$\nearrow$$
 M_2 \nearrow R_2

 R_8 and R_7 are each independently of the other hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, amino- C_1 - C_4 alkyl, diarylphosphine, or phosphorus-containing C_1 - C_4 alkyl,

x may be a rational number from 0 to 8

 y_1 and y_2 may be each independently of the other a rational number from 0 to 6

z may be a number from 1 to 4,

wherein $(x + y_1 + y_2 + z)$ is ≤ 16 ,

and wherein R1 and R2 may be each independently of the other

 C_1 - C_{20} alkyl which is unsubstituted or substituted by halogen, hydroxy, C_1 - C_{20} alkoxy, C_1 - C_{20} alkylamino or C_2 - C_{20} dialkylamino and which may be interrupted by $-O_-$, $-S_-$, $-NH_-$ or $-NR_{10}_-$, wherein R_{10} may

10/037,106

- 12 **-**

be C_1 - C_6 alkyl, C_5 - C_{20} cycloalkyl, C_2 - C_{20} alkenyl, C_5 - C_{12} cycloalkenyl, C_2 - C_{20} alkynyl, C_6 - C_{18} aryl or C_7 - C_{18} aralkyl,

and wherein one or two ligands may optionally be bound to the divalent metal atom, the oxometal group, halogenometal group or hydroxymetal group, and E being composed of a chain of at least two members selected from the group consisting of $-CH_2-$, -C(=O)-, $-CH(C_1-C_4alkyl)-$, $-C(C_1-C_4alkyl)_2-$, -NH-, -S-, -O- and -CH=CH-.

21. (currently amended): An optical recording medium according to claim 10 wherein the metallocenylphthalocyanine compound is represented by formula

$$(\text{Me}_2\text{CH})_2\text{C}(\text{H})\text{O} \qquad \text{N} \qquad \text{CH}_2\text{OC}(=\text{O})$$

$$(\text{Me}_2\text{CH})_2\text{C}(\text{H})\text{O} \qquad \text{OCH}(\text{CHMe}_2)_2$$

$$(\text{Me}_2\text{CH})_2\text{C}(\text{H})\text{O} \qquad \text{OCH}(\text{CHMe}_2)_2$$

where x = 2.6 to 3.0, preferably 2.7 to 2.9, more preferably 2.8.

22. (previously presented): An optical recording medium according to claim 10 wherein the metallocenyl-phthalocyanine compound is represented by formula

 $\frac{\sqrt{2}}{\text{cont}}$

$$(Me_2CH)_2C(H)O \qquad N \qquad N \qquad CH_2OC(=O)$$

$$N \qquad N \qquad N \qquad OCH(CHMe_2)_2$$

$$(Me_2CH)_2C(H)O \qquad OCH(CHMe_2)_2$$

where x = 0 to 0.5.

23. (previously presented): An optical recording medium according to claim 22 wherein the optical recording medium is a DVD, a diffractive-optical element or medium for recording a hologram.

STATUS OF THE CLAIMS

Claims 2-4 and 8-23 are pending in this application.

Claims 3 and 4 are rejected under 35 U.S.C. § 112, second paragraph.

Claims 8, 9 and 11 are rejected under 35 U.S.C. § 102(b) as being anticipated by Cook et al.

Claims 8-11 are rejected under 35 U.S.C. § 103(a) as being unpatentable over Cook et al. in view of published European Patent Application 811,506 and U.S. Patent No. 5,124,067 (Itoh et al.).

Claims 2-4, 8-9 and 23 are rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claims 1-5 of U.S. Patent No. 6,399,768.

Claims 3, 4, 8, 9, 12, 14, 17 and 21 have been amended.

Claims 2-4 and 8-23 are presented for reconsideration.

REMARKS

It is requested that the present amendment be entered in place of the unentered amendment mailed on 7/16/03 as well as the Amendment filed on August 21, 2003. Due to computer problems several of the formulae were incorrectly depicted in the unentered amendment mailed on 7/16/03. While the Amendment filed on August 21, 2003 corrected the formulae, the range for variable x was not corrected in claim 22. Hence the request to enter the Amendment filed on August 21, 2003 is herewith withdrawn.

The specification and claims have been amended in accord with the current rules. Additions are shown by underlining and deletions are shown by strikethrough. No new matter has been added.

The examiner asserts that the specification should be amended to indicate the parent case has been patented. Responsive thereto applicants propose to amend the specification accordingly.