A survey on deep learning techniques in image and video semantic segmentation (paper analysis)

Jessica Motta

Senai Cimatec

May 28, 2020

Concept Map

CNN- How it works?

Figure: Convolutional Neural Network [Sha19]

Common deep networks architecture

COMPARATIVE FOR COMMON DEEP NETWORK ARCHITECTURES			
Network	Year champion ILSVRC*	Number of Layers	Accuracy
AlexNet	2012	3	84.6%
VGG	2013	16	92.7%
GoogleNet	2014	22	93.3%
ResNet	2016	152	96.4%

Table: Deep network architectures. [GGOEO+18]

*ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

Methods to image analysis

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

Figure: Accuracy evaluation. [LMB+14]

Evaluation Metrics

Execution time

Memory footprint

Accuracy

Accuracy

Figure: Accuracy evaluation. [Ros16]

Limitations

Advantages and disadvantages

9 / 12

Wich cases doesn't apply deep learning?

Dataset size it isn't enought.

Not sure about the object.

Deep learning vs. Classic methods

References I

- Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez, *A survey on deep learning techniques for image and video semantic segmentation*, Applied Soft Computing **70** (2018), 41–65.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, *Microsoft coco: Common objects in context*, European conference on computer vision, Springer, 2014, pp. 740–755.
- Adrian Rosebrock, Intersection over union (iou) for object detection, 2016.
- Shashikant, Convolutional neural network: A step by step guide, 2019.