Luis M. Torres Julio, 2025

Ejercicios Capítulo 2

- 1. Sean $Y = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ y C el \mathcal{V} -cono definido por $C := \operatorname{cone}(Y)$. Determinar un sistema de desigualdades lineales en las variables x_1, x_2, t_1, t_2 , asociado a un \mathcal{H} -cono $\hat{C} \subset \mathbb{R}^4$ con la propiedad de que $C \cong \operatorname{proj}_{t_1}(\operatorname{proj}_{t_2}(\hat{C}))$. Aplicar el método de Fourier-Motzkin para eliminar las variables t_1 y t_2 . de este sistema.
- 2. Sea $P := \operatorname{conv}(V) + \operatorname{cone}(Y) \subset \mathbb{R}^2$ un \mathcal{V} -poliedro, con

$$V = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \qquad Y = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

- (a) Dibujar P.
- (b) Expresar el cono de homogeneización C := homog(P) en su forma \mathcal{V} .
- (c) Construir un \mathcal{H} -cono $\hat{C} \subset \mathbb{R}^6$, dado en las variables $x_0, x_1, x_2, t_1, t_2, t_3$ con la propiedad de que $C \cong \operatorname{proj}_{t_1}(\operatorname{proj}_{t_2}(\operatorname{proj}_{t_3}(\hat{C})))$.
- (d) Utilizar el método de Fourier-Motzkin para expresar C en la forma \mathcal{H} .
- (e) Expresar P en la forma \mathcal{H} .
- 3. Sean

$$V := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad Y := \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \qquad P := \operatorname{conv}(V) + \operatorname{cone}(Y).$$

- (a) Encontrar un \mathcal{H} -poliedro $\hat{P} := \left\{ w := (x_1, x_2, \lambda_1, \lambda_2, t)^T \in \mathbb{R}^5 : \hat{A}w \leq \hat{b} \right\}$, con $\hat{A} \in \mathbb{R}^{M \times 5}$ y $\hat{b} \in \mathbb{R}^M$ tal que P sea congruente con la proyección de \hat{P} en la dirección de los ejes coordenados correspondientes a las variables λ_1, λ_2 y t.
- (b) Utilizar el algoritmo de elimnación de Fourier-Motzkin para escribir a P en la forma \mathcal{H} .
- 4. Sea $C \subset \mathbb{R}^3$ el conjunto solución del siguiente sistema de desigualdades lineales.

$$\begin{cases}
-x_1 + x_2 - x_3 \le 0, \\
-x_1 - x_2 + x_3 \le 0, \\
x_1 - x_2 - x_3 \le 0
\end{cases}$$

(a) Encontrar un conjunto finito de vectores $\hat{Y} \subset \mathbb{R}^6$ tal que el \mathcal{V} -cono generado por ellos $\hat{C} := \{(x_1, x_2, x_3, w_1, w_2, w_3)^T \in \operatorname{cone}(\hat{Y})\}$ satisfaga la propiedad:

$$C \cong \hat{C} \cap \left(\bigcap_{i=1}^{3} \{w_i = 0\}\right).$$

- (b) Calcular los vectores generadores de $\hat{C} \cap \{w_3 = 0\}$.
- 5. Sean

$$V := \begin{pmatrix} 40 & 24 & 12 & -12 & -30 & 2 \\ -30 & -24 & -6 & 12 & 30 & -1 \\ 3 & 2 & 1 & 0 & -1 & 0 \end{pmatrix}, \qquad P := \operatorname{conv}(V) \subset \mathbb{R}^3.$$

Calcular un conjunto (matriz) V' tal que

$$P \cap \left\{ x \in \mathbb{R}^3 : x_3 = 0 \right\} = \operatorname{conv}(V').$$

Dibujar la región conv (V').

6. Sean

$$V := \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \qquad P := \operatorname{conv}(V) \subset \mathbb{R}^2.$$

Determinar un poliedro $\hat{P} = \left\{ x \in \mathbb{R}^d : \hat{A}x \leq \hat{b} \right\}$, con d > 2, que satisfaga la propiedad de que P sea congruente con el poliedro obtenido a partir de proyectar \hat{P} sucesivamente en la dirección de algunos ejes coordenados. Escribir el sistema $\hat{A}x \leq \hat{b}$.

- 7. Demostrar la siguiente versión del Lema de Farkas: Dados $A \in \mathbb{R}^{m \times d}$ y $b \in \mathbb{R}^m$, exactamente uno de los dos enunciados siguientes es verdadero:
 - 1. Existe $x \in \mathbb{R}^d$ tal que $Ax = b, x \ge \mathbf{0}$.
 - 2. Existe $y \in \mathbb{R}^m$ tal que $y^T A \ge \mathbf{0}^T$, $y^T b < 0$.
- 8. Demostrar la siguiente versión del Lema de Farkas: Dados $A \in \mathbb{R}^{m_1 \times d}, C \in \mathbb{R}^{m_2 \times d}, b \in \mathbb{R}^{m_1}$ y $f \in \mathbb{R}^{m_2}$, exactamente uno de los dos enunciados siguientes es verdadero:
 - 1. Existe $x \in \mathbb{R}^d$ tal que Ax = b, $Cx \ge f$.
 - 2. Existen $y \in \mathbb{R}^{m_1}$, $w \in \mathbb{R}^{m_2}$, $w \leq 0$ tales que $y^T A + w^T C = \mathbf{0}^T$, $y^T b + w^T f < 0$.

- 9. Formular y demostrar una versión del Lema de Farkas que caracterice cuándo un sistema de la forma $Ax \le b, \ x \ge 0$ tiene solución.
- 10. Usar el Lema de Farkas para demostrar el siguiente resultado.

Dada una matriz $A \in \mathbb{R}^{m \times d}$, uno y sólo uno de las dos enunciados siguientes es verdadero:

- 1. Existe $x \in \mathbb{R}^d$ tal que Ax < 0.
- 2. Existe $y \in \mathbb{R}^m$, $y \ge 0$, $y \ne 0$ tal que $y^T A = 0$.

Nota: Si w es un vector, usamos la notación w < 0 para decir que cada una de las componentes de w es estrictamente menor que cero. Observar que esto es equivalente a afirmar que existe al menos un $\varepsilon > 0$ tal que $w \le -\varepsilon \mathbf{1}$.

11. Sea $P:=P(A,b)\subset\mathbb{R}^d$ un \mathcal{H} -poliedro, con $A\in\mathbb{R}^{m\times d}$ y $b\in\mathbb{R}^m$. Definimos

$$C(P) := P\left(\left(\begin{array}{cc} -1 & \mathbf{0}^T \\ -b & A \end{array} \right), \left(\begin{matrix} 0 \\ \mathbf{0} \end{matrix} \right) \right) \subset \mathbb{R}^{d+1}.$$

Demostrar que:

(a) $P = \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in C(P) \right\}.$

(b) $C(P) \subset H_0^+$, donde $H_0^+ := \{ \binom{x0}{x} \in \mathbb{R}^{d+1} : x_0 \ge 0 \}$.

12. Sea $\hat{P} := P(\hat{A}, \hat{b}) \subset \mathbb{R}^{d+1}$ un \mathcal{H} -poliedro, con $\hat{A} \in \mathbb{R}^{m \times (d+1)}$ y $\hat{b} \in \mathbb{R}^m$. Demostrar que

$$P := \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in \hat{P} \right\}$$

es un \mathcal{H} -poliedro en \mathbb{R}^d .

13. Sea $P := \operatorname{conv}(V) + \operatorname{cone}(Y) \subset \mathbb{R}^d$ un \mathcal{V} -poliedro, con $V \in \mathbb{R}^{d \times n}$ y $Y \in \mathbb{R}^{d \times k}$. Definimos

$$C(P) := \operatorname{cone} \left(\begin{array}{cc} \mathbf{1}^T & \mathbf{0}^T \\ V & Y \end{array} \right) \subset \mathbb{R}^{d+1}.$$

Demostrar que:

$$P = \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in C(P) \right\}.$$

14. Sea $P := \operatorname{conv}(V) \subset \mathbb{R}^d$ un \mathcal{V} -polítopo, con $V \in \mathbb{R}^{d \times n}$. Definimos

$$C(P) := \operatorname{cone} \left(\begin{array}{c} \mathbf{1}^T \\ V \end{array} \right) \subset \mathbb{R}^{d+1}.$$

Demostrar que:

$$P = \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in C(P) \right\}.$$

15. Sean $W \in \mathbb{R}^{(d+1)\times k}$ y $\hat{C} = \text{cone}(W) \subset H_0^+$, donde $H_0^+ := \{\binom{x0}{x} \in \mathbb{R}^{d+1} : x_0 \ge 0\}$. Demostrar que el conjunto:

$$P := \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in \hat{C} \right\}$$

es un \mathcal{V} -poliedro en \mathbb{R}^d .

16. Sea $P:=P(A,b)\subset\mathbb{R}^d$ un \mathcal{H} -poliedro, con $A\in\mathbb{R}^{m\times d}$ y $b\in\mathbb{R}^m$. Definimos el \mathcal{H} -cono

$$Q := P((-b \ A), \mathbf{0}) \subset \mathbb{R}^{d+1}.$$

Demostrar que:

$$P = \emptyset$$
 \Leftrightarrow $Q \subseteq \{x \in \mathbb{R}^{d+1} : x_0 \le 0\},$

donde x_0 designa a la primera componente de $x \in \mathbb{R}^{d+1}$.

- 17. Usando los resultados de los ejercicios anteriores, demostrar que el resultado del Teorema de Minkowski-Weyl para poliedros se obtiene como corolario del Teorema de Minkowski-Weyl para conos.
- 18. Demostrar que el Teorema de Minkowski-Weyl para polítopos se obtiene como corolario del Teorema de Minkowski-Weyl para poliedros.
- 19. Sea $P := P(A, b) \subset \mathbb{R}^d$ un \mathcal{H} -poliedro, con $A \in \mathbb{R}^{m \times d}$ y $b \in \mathbb{R}^m$. Demostrar que $\lim_{n \to \infty} (P) = \{x \in \mathbb{R}^d : Ax = 0\}$, es decir, que el espacio de linealidad de P es el espacio núcleo de A.
- 20. Sea $P \subset \mathbb{R}^d$ un poliedro. Demostrar que si U es el complemento ortogonal de $\lim (P)$, entonces se cumple que $\lim (P \cap U) = \{0\}$.
- 21. Sea $P \subset \mathbb{R}^d$ un poliedro. Su cono de homogeneización está definido por homog $(P) := C_1 + C_2$, con

$$C_1 := \left\{ \alpha \begin{pmatrix} 1 \\ x \end{pmatrix} \in \mathbb{R}^{d+1} : x \in P, \alpha \ge 0 \right\}, \qquad C_2 := \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \in \mathbb{R}^{d+1} : y \in rec(P) \right\}.$$

- (a) Demostrar que C_1 es un cono convexo.
- (b) Demostrar que C_2 es un cono convexo. (Puede darse por conocido que rec (P) es un cono convexo).
- (c) Demostrar que la suma de Minkowski de dos conos convexos es un cono convexo, de donde se concluye que homog (P) es un cono convexo.
- 22. Sea $P \subset \mathbb{R}^d$ un conjunto convexo.
 - (a) Demostrar que rec(P) es un cono convexo.
 - (b) Demostrar que homog (P) es un cono convexo en \mathbb{R}^{d+1} .
 - (c) Demostrar que

$$P = \left\{ x \in \mathbb{R}^d : \begin{pmatrix} 1 \\ x \end{pmatrix} \in \text{homog}(P) \right\}.$$

23. Sea $P := \operatorname{conv}(V) + \operatorname{cone}(Y) \subset \mathbb{R}^d$ un V-poliedro, con $V \in \mathbb{R}^{d \times n}$ y $Y \in \mathbb{R}^{d \times k}$. Demostrar que:

$$\operatorname{homog}\left(P\right) = \operatorname{cone}\left(\begin{array}{cc} \mathbf{1}^T & \mathbf{0}^T \\ V & Y \end{array}\right).$$

24. Empleando el Teorema de Carathéodory para conos, demostrar como corolario el Teorema de Carathéodory para polítopos:

Sean
$$V \in \mathbb{R}^{d \times n}$$
 y $x \in \mathbb{R}^d$. Si $x \in \text{conv}(V)$, entonces existe $V' \subset V$, con $|V'| \leq \dim(\text{conv}(V)) + 1 = \operatorname{rg}\binom{1^T}{V}$ tal que $x \in \text{conv}(V')$.