Computer Organization and Architecture

Chapter 3
Top Level View of Computer
Function and Interconnection

Program Concept

- Hardwired systems are inflexible
- General purpose hardware can do different tasks, given correct control signals
- Instead of re-wiring, supply a new set of control signals

What is a program?

- A sequence of steps
- For each step, an arithmetic or logical operation is done
- For each operation, a different set of control signals is needed

Function of Control Unit

- For each operation a unique code is provided
 - -e.g. ADD, MOVE
- A hardware segment accepts the code and issues the control signals

We have a computer!

Components

- The Control Unit and the Arithmetic and Logic Unit constitute the Central Processing Unit
- Data and instructions need to get into the system and results out
 - —Input/output
- Temporary storage of code and results is needed
 - —Main memory

Computer Components: Top Level View

Instruction Cycle

- Two steps:
 - —Fetch
 - -Execute

Fetch Cycle

- Program Counter (PC) holds address of next instruction to fetch
- Processor fetches instruction from memory location pointed to by PC
- Increment PC
 - Unless told otherwise
- Instruction loaded into Instruction Register (IR)
- Processor interprets instruction and performs required actions

Execute Cycle

- Processor-memory
 - —data transfer between CPU and main memory
- Processor I/O
 - Data transfer between CPU and I/O module
- Data processing
 - —Some arithmetic or logical operation on data
- Control
 - Alteration of sequence of operations
 - -e.g. jump
- Combination of above

Example of Program Execution

Instruction Cycle State Diagram

Interrupts

- Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing
- Program
 - —e.g. overflow, division by zero
- Timer
 - —Generated by internal processor timer
 - —Used in pre-emptive multi-tasking
- I/O
 - -from I/O controller
- Hardware failure
 - —e.g. memory parity error

Program Flow Control

Interrupt Cycle

- Added to instruction cycle
- Processor checks for interrupt
 - Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending:
 - Suspend execution of current program
 - —Save context
 - —Set PC to start address of interrupt handler routine
 - —Process interrupt
 - Restore context and continue interrupted program

Transfer of Control via Interrupts

Instruction Cycle with Interrupts

Instruction Cycle (with Interrupts) - State Diagram

Connecting

- All the units must be connected
- Different type of connection for different type of unit
 - —Memory
 - —Input/Output
 - -CPU

Computer Modules

Memory Connection

- Receives and sends data
- Receives addresses (of locations)
- Receives control signals
 - —Read
 - -Write
 - —Timing

Input/Output Connection(1)

- Similar to memory from computer's viewpoint
- Output
 - Receive data from computer
 - -Send data to peripheral
- Input
 - Receive data from peripheral
 - —Send data to computer

Input/Output Connection(2)

- Receive control signals from computer
- Send control signals to peripherals
 - —e.g. spin disk
- Receive addresses from computer
 - —e.g. port number to identify peripheral
- Send interrupt signals (control)

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - —e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Data Bus

- Carries data
 - —Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - -8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - —e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - —Memory read/write signal
 - —Interrupt request
 - —Clock signals

Bus Interconnection Scheme

Big and Yellow?

- What do buses look like?
 - Parallel lines on circuit boards
 - Ribbon cables
 - —Strip connectors on mother boards
 - e.g. PCI
 - —Sets of wires

Single Bus Problems

- Lots of devices on one bus leads to:
 - —Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
 - If aggregate data transfer approaches bus capacity
- Most systems use multiple buses to overcome these problems

Traditional (ISA) (with cache)

High Performance Bus

Bus Types

- Dedicated
 - —Separate data & address lines
- Multiplexed
 - -Shared lines
 - Address valid or data valid control line
 - —Advantage fewer lines
 - Disadvantages
 - More complex control
 - Ultimate performance

Bus Arbitration

- More than one module controlling the bus
- e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised or Distributed Arbitration

- Centralised
 - Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
 - —May be part of CPU or separate
- Distributed
 - —Each module may claim the bus
 - Control logic on all modules

Timing

- Co-ordination of events on bus
- Synchronous
 - Events determined by clock signals
 - Control Bus includes clock line
 - —A single 1-0 is a bus cycle
 - —All devices can read clock line
 - Usually sync on leading edge
 - Usually a single cycle for an event

Synchronous Timing Diagram

Asynchronous Timing – Read Diagram

Asynchronous Timing – Write Diagram

Foreground Reading

- Stallings, chapter 3 (all of it)
- www.pcguide.com/ref/mbsys/buses/
- In fact, read the whole site!
- www.pcguide.com/