Ima

L3 RI

Table des matières

1	Int	roduction 2	
	1.1	Histogramme	
	1.2	Transformations géométriques	
2	Dérivées, opérateurs, discrétisation		
	2.1	Opérateurs usuels	
	2.2	Équation aux dérivées partielles	
	2.3	Discrétisation	
	2.4	Stabilité d'un schéma numérique	
3	Restauration d'images		
	3.1	Régularisation	
	3.2	Minimisation de fonctionnelle	
	3.3	Débruitage	
	3.4	Défloutage	
	3.5	Inpainting	
4	Segmentation 10		
	4.1	Seuillage d'histogramme	
	4.2	Algo K-means	
	4.3	Limites algos globaux	
	4.4	Region growing	
	4.5	Split and merge	
	4.6	Méthode markovienne	
	4.7	Graph-Cuts	
	4.8	Détecteur de Canny	
	4.9	Segmentation par contours actifs	
5	Transformée de Fourier 10		
	5.1	Transformée 1D	
	5.2	Transformée 2D et 2D discrète	
	5.3		

1 Introduction

On considère des images en niveaux de gris. À chaque pixel d'une image on associe donc une valeur dans $0\dots 255$

1.1 Histogramme

L'histogramme d'une image donne des informations que la densité de chaque valeur.

Définition L'histogramme d'une image I est une fonction discrète qui associe à chaque valeur d'intensité le nombre de pixels prenant cette valeur.

$$\begin{array}{ccc} h_t: & 0\dots 255 & \to & \mathbb{N} \\ & n & \mapsto & \operatorname{Card}\left\{(x,y)|I(x,y)=n\right\} \end{array}$$

Remarque Si on a une image de taille $p \times q$ alors $\sum_{n=0}^{255} = p * q$

Propriété L'histogramme d'une image et de sa translation sont les mêmes. Ce n'est donc pas une caractéristique de l'image.

Interprétation Si l'histogramme est condensé sur les valeurs faibles (resp. sur les fortes) alors l'image est sous-exposé (resp. surexposé).

Égalisation On peut normaliser un histogramme condensé en étalant ces valeurs sur toute la plage [0, 255]. Cela améliore le contraste.

Si l'image occupe déjà toute la plage on utilise un autre algorithme basé sur l'histograme cumulé :

$$h_c: 0...255 \rightarrow \mathbb{N}$$

 $n \mapsto \operatorname{Card} \{(x,y) | I(x,y) < n\}$

On répartit pour obtenir un histogramme linéaire.

1.2 Transformations géométriques

Le résultat d'une transformation géométrique (rotation, transformations affines, etc.) aboutit généralement à ce que les pixels de l'image d'origine n'aient plus des coordonnées entières.

Inteprolation d'intensité L'interpolation permet de déduire la couleur des positions entières à partir des positions non entières connues.

Exemple : Plus proches voisins, bilinéaire, bicubique, par convolution.

Convolution 1D

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(x - t)g(t)dt$$

FIGURE 1 – Résultat de l'Algorithme d'égalisation de l'histogramme (Source : Wikipédia)

Convolution 2D Soit g une fonction telle que $\int_{\mathbb{R}^2} g(x,y) dx dy = 1$. On définit l'image traitée par convolution :

$$I_{\text{convol}} = I(x, y) * g(x, y) = \int_{\Omega} g(x - a, y - b)I(a, b)dadb$$

L'influence des voisins sur le résultat en une position donnée va donc dépendre du noyau de convolution g utilisé. Cela permet de lisser mais peut aussi induire du flou.

Ex : Noyau moyenneur, gaussienne, floude bougé, etc.

Remarque Pour débruiter, un filtre médian est plus efficace qu'un filtre moyenneur.

2 Dérivées, opérateurs, discrétisation

Principe : Voir une image non plus comme un tableau mais comme une fonction $f(x,y) \in [0,255]$

2.1 Opérateurs usuels

Dérivées partielles On peut considérer les dérivées partielles de l'image : $|\frac{\partial f}{\partial x}|$ et $|\frac{\partial f}{\partial y}|$

Interprétation Une dérivée partielle grande indique une forte variation selon la direction considérée \longrightarrow permet de détecter des contours mais dans une seule direction.

Gradient Le gradient de f est un champ de vecteurs :

$$\vec{\text{grad}} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Interprétation Le gradient en une position donne la direction est l'intensité de la plus forte variation autour de la position. Le vecteur est dirigé vers les valeurs fortes. On peut donc aussi détecter les contours, en considérant sa norme.

Laplacien Le laplacien de f est un champ de scalaire :

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Divergence La divergence d'un ensemble de vecteurs $w = (w_1, \dots w_n)$ donne une information scalaire sur la variation du volume autour du point.

$$\operatorname{div} w = \frac{\partial w_1}{\partial x_1} + \dots + \frac{\partial w_n}{\partial x_n} = \nabla \cdot w$$

Rotationnel [À compléter, éventuellement, pour ceux qui ont du temps, et du courage, ou une quelconque autre motivation]

2.2 Équation aux dérivées partielles

Définition Une équation aux dérivées partielles (EDP) est un système d'équations faisant intervenir les dérivées partielles de fonctions qui sont les inconnues.

Équation de la chaleur EDP décrivant l'évolution de la température T(x, y, t) en l'absence de contraintes extérieures.

$$\forall (x,y) \in \Omega \frac{\partial T(x,y,t)}{\partial t} = \Delta T(x,y,t) \text{ et } T(x,y,0) = T_0$$

Attention le laplacien ne concerne que l'espace, ie les coordonnées x et y En image, la température initiale T_0 est donnée par f(x, y).

Diffusion isotrope Diffusion sans orientation préférentielle.

La diffusion induite par l'équation de la chaleur appliquée à une image est isotrope. Au bout d'un certain temps, l'image devient flou puis s'unifie (homogénéisation de la température).

Résolution 1D La solution de l'équation de la chaleur en 1D

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}$$
 avec $u(x,0) = u_0(x)$

est

$$u(x,t) = G_{\sqrt{2t}}(x,t) * u_0(x)$$

où G_a est une gausienne d'écart type a.

Résolution 2D De même, la solution de l'équation de la chaleur en 2D

$$\frac{\partial u(x, y, t)}{\partial t} = \Delta u(x, y, t)$$
 avec $u(x, y, 0) = u_0(x, y)$

est

$$u(x, y, t) = G(x, t, \sigma(t)) * u_0(x, y)$$

où $G(x,t,\sigma(t))$ est une gausienne d'écart type σ proportionnel à t.

Application à une image La diffusion est isotrope, elle floute donc toute l'image, sans s'arrêter aux contours. On utilise donc la divergence pour obtenir une diffusion non-linéaire anisotrope d'une image I.

$$\frac{\partial I}{\partial t} = \operatorname{div}\left(f(x, y)\nabla I\right)$$

- f petit \rightarrow divergence faible \rightarrow peu de variation au cours du temps.
- -f grand \rightarrow divergence grande \rightarrow diffusion importante

Ainsi les zones unies sont homogénéisées mais les contours sont conservés.

Autre diffusion non linéaire Perona-Malik, diffuse selon la norme du gradient.

2.3 Discrétisation

Les dérivées partielles ne sont utilisables qu'en continu.

En continu, en trouve une solution analytique. En discret, on construit une solution, étape après étape.

Différences finies On peut remplacer les dérivées partielles par des différences finies. Pour une image décrite par une grille de pixel, on a $I(i,j) = u(i\Delta x, j\Delta y)$ où I est discrète et u continue, Δx et Δy sont des pas de discrétisation. La dérivée partielle peut alors être décrite par différentes formules

$$\frac{I(j+1,j) - I(i,j)}{\Delta x} \quad \text{(Schéma arrière)}$$

ou

$$\frac{I(j-1,j) - I(i,j)}{-\Delta x} \quad \text{(Schéma avant)}$$

ou

$$\frac{I(j+1,j)-I(i-1,j)}{2\Delta x} \quad \text{(Schéma centré)}$$

Remarque Généralement pour les images, on prend $\Delta x = \Delta y = 1$.

Conditions aux bords Ce système pose la question des conditions aux bords. Une solution est de copier en miroir les bords pour prolonger l'image.

Sensibilité au bruit Ce type de différenciation est très sensible au bruit. On peut augmenter la robustesse en filtrant avant de différencier (filtre linéaire, moyenneur ou gaussien par exemple).

EDP Avec cette différenciation discrète, on peut re-résoudre l'EDP d'une variable 1D discrète $\frac{\partial v}{\partial t} = \alpha \frac{\partial^2 v}{\partial x^2}$. On trouve l'approximation u de v, pour un pas Δt

$$u_k^{n+1} = (1 - 2r)u_k^n + r(u_{k+1}^n + u_{k-1}^n)$$
 avec $r = \alpha \frac{\Delta t}{\Delta x^2}$

et où $u_k^n = u(k\Delta x, n\Delta t)$ est la variable à l'étape n, translatée de k pas sur x.

2.4 Stabilité d'un schéma numérique

Analyse Comment choisir Δx et Δt ? Le choix lors de la discrétisation va reposer sur la notion de *consistance* et de *stabilité*.

Schéma convergent Il y a convergence si, quand $\Delta x \to 0$ et $\Delta t \to 0$, $(k\Delta x, n\Delta t) \to (x, t) \Rightarrow u_k^n \to v(t, x)$

Schéma consistant Un schéma convergent est consistant si, lorsque les pas tendent vers 0, l'erreur de discrétisation tend vers 0 ie les approximations discrètes des dérivées tendent vers les dérivées continues.

Stabilité Un processus de calcul séquentiel est stable si les erreurs d'arrondis ne s'amplifient pas lors de la progression des calculs.

$$||u^{n+1}|| \le K||u^0||$$

Exemple En considérant la norme $\|u^n\| = \sup_k |u^n_k|$, notre schéma précédent est stable pour $r \leq \frac{1}{2}$

Méthode générale La méthode de Fourier permet de prouver la stabilité d'un processus.

Explicite/Implicite Un schéma est explicite si on peut écrire u_k^{n+1} en fonction de u_i^n pour un certain i. Il est implicite sinon.

3 Restauration d'images

On considère trois types de régularisation : débruitage, déconvolution («défloutage») et inpainting (ou désocclusion).

Modélisation mathématique La dégradation d'une image f_0 inconnue en une image f observé se traduit par $f = \mathcal{R}f_0 + \eta$ où \mathcal{R} est l'opérateur représentant la dégradation déterministe (ex : convolution avec une gaussienne, opérateur de masquage) et η est une image aléatoire, le bruit.

Bruit On suppose que η décrit un bruit blanc, ie que toutes les fréquences ont la même importance dans le processus aléatoire. Généralement, on prend un bruit blanc gaussien, la loi de probabilité des fréquences est alors une gaussienne.

3.1 Régularisation

Score de régularité Il existe une infinité de η aboutissant à une image initiale f_0 . On sait cependant que l'image initiale était «lisse». On a donc besoin de mesurer la régularité. Souvent, on utilise la norme du gradient $\phi(u) = \int_{\Omega} \|\nabla u(x)\|^2 d\Omega$.

Modélisation On aboutit à la résolution du problème :

$$\mathcal{R}u$$
 proche de f ET u régulière

Une modélisation possible est alors

$$\|f - \mathcal{R}u\|_{\mathcal{L}^2}^2 = \int_{\Omega} (f(x) - \mathcal{R}u(x))^2 d\Omega \quad \text{petit}$$
$$\|\nabla u\|_{\mathcal{L}^2}^2 = \int_{\Omega} \|\nabla u(x)\|^2 d\Omega \quad \text{petit}$$

Régularisation de Tikhonov On cherche u telle que

$$\inf_{u} \underbrace{\int_{\Omega} \left(f(x) - \mathcal{R}u(x)\right)^{2} d\Omega}_{\text{Terme de fidelit\'e}} + \lambda \underbrace{\int_{\Omega} \|\nabla u(x)\|^{2} d\Omega}_{\text{R\'egularisation}}$$

3.2 Minimisation de fonctionnelle

Méthodes locales Depuis un point x_0 on construit une suite de point avec une condition d'arrêt. Ex : Descente de gradient, recuit simulé.

Méthodes globales On cherche directement le minimum global. Ex : Moindre carré, simplexe, algos génétiques.

Descente de gradient On se déplace dans la direction opposé au gradient, c'est la direction de la plus grande descente. On avance à un pas proportionnel au gradient.

Limites de l'algo On ne converge que vers un minimum local dépendant du point de départ. Dans les zones «plates», le gradient est faible et donc l'algo lent.

Image Pour adapter la méthode de descente de gradient aux images on passe par la dérivée de Gâteaux.

Dérivée de Gâteaux La dérivée de Gâteaux de J au point u dans la direction ϕ est définie par

$$\lim_{\epsilon \to 0} \frac{J(u + \epsilon \phi) - J(u)}{\epsilon}$$

On cherche $\inf_u J(u)$. Après calculs, on trouve une EDP:

$$\frac{\partial F}{\partial u(x,y)}(x,y,u(x,y),\nabla u(x,y)) - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (\frac{\partial F}{\partial \xi_{i}}(x,y,u(x,y),\nabla u(x,y))) = 0$$

où $\frac{\partial F}{\partial \xi_i}$ est la dérivée partielle par rapport à la i^ecomposante de $\nabla u(x,y)$. C'est l'Équation d'Euler-Lagrange associé au problème d'optimisation.

3.3 Débruitage

Régularisation de Tikhonov En utilisant l'EDP précédente, on montre qu'il faut résoudre l'EDP $u(x,y) - f(x,y) - \lambda \nabla u(x,y) = 0$ pour résoudre le problème de minimisation.

Descente de gradient La formule de descente de gradient devient

$$\frac{\partial u(x,t)}{\partial t} = -\left(\frac{\partial F}{\partial u(x,y)} - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{\partial F}{\partial \xi_i}\right)\right)$$

Discrétisation Au final à chaque étape de la descente on a

$$u_{i,j}^{n+1} = u_{i,j}^n - \Delta t \left(\frac{\partial F}{\partial u(x,y)} - \sum_{i=1}^n \frac{\partial}{\partial x_i} (\frac{\partial F}{\partial \xi_i}) \right)$$

Observation La courbe d'énergie (ie le terme régularisant) est bien décroissant et converge vers 0. L'énergie est convexe donc ne dépend pas de l'initialisation, prendre $u^0 = f$ accélère la convergence.

Diffusion linéaire L'opérateur laplacien ∇ lisse de manière isotrope et altère donc trop les contours. On transforme l'équation pour moins pénaliser les gradients forts grâce à une fonction Ψ adaptée :

$$J(u) = \underbrace{\int_{\Omega} \left(u(x) - f(x)\right)^2 d\Omega}_{\text{Terme de fidelit\'e}} + \lambda \underbrace{\int_{\Omega} \Psi \|\nabla u(x)\| d\Omega}_{\text{R\'egularisation}}$$

Nouvelle descente de gradient

$$\frac{\partial u}{\partial t} = 2(f - u) + \lambda \operatorname{div}\left(\frac{\Psi'(\|\nabla u\|)}{\|\nabla u\|}\nabla u\right)$$

Avec par exemple : $\Psi(x) = \sqrt{\varepsilon + x^2} \xrightarrow[\varepsilon \to 0]{} |x|$

Autres méthodes de débruitage Non-Local Means et BM3D.

3.4 Défloutage

Adjoint On définit l'adjoint \mathcal{R}^* de \mathcal{R} par $\langle \mathcal{R}f|g \rangle = \langle f|\mathcal{R}^*g \rangle$.

 $\mathcal{R} \neq \mathbf{Id}$ Si on considère la condition $\lim_{\epsilon \to 0} \frac{J(u+\epsilon\phi)-J(u)}{\epsilon}$ alors il suffit de prendre $\phi = -2\mathcal{R}^*(\mathcal{R}u-f)$ pour avoir la convergence.

Nouvelle descente de gradient

$$\frac{\partial u}{\partial t} = 2\mathcal{R}^* f - 2\mathcal{R}^* \mathcal{R} u$$

Déconvolution Ici, $\mathcal{R}u = G_{\sigma} * u$. On peut alors montrer que $\mathcal{R}^* = \mathcal{R}$

3.5 Inpainting

Descente de gradient En précisant que l'on a un terme de régularité $(\lambda \neq 0)$ on aboutit à la descente de gradient :

$$\frac{\partial u}{\partial t} = 2\mathcal{R}^* f - 2\mathcal{R}^* \mathcal{R} u + \lambda \operatorname{div} \left(\frac{\Psi'(\|\nabla u\|)}{\|\nabla u\|} \nabla u \right)$$

On peut aussi prouver que $\mathcal{R}^* = \mathcal{R}$.

Autre méthode Le copier-coller.

4 Segmentation

- 4.1 Seuillage d'histogramme
- 4.2 Algo K-means
- 4.3 Limites algos globaux
- 4.4 Region growing
- 4.5 Split and merge
- 4.6 Méthode markovienne
- 4.7 Graph-Cuts
- 4.8 Détecteur de Canny
- 4.9 Segmentation par contours actifs
- 5 Transformée de Fourier
- 5.1 Transformée 1D
- 5.2 Transformée 2D et 2D discrète
- 5.3 Transformée sur des images