Waiter

Problem Statements:

You are a waiter at a party. There are N stacked plates on pile A_0 . Each plate has a number written on it. Then there will be Q iterations. In i-th iteration, you start picking the plates in A_{i-1} from the top one by one and check whether the number written on the plate is divisible by the i-th prime. If the number is divisible , you stack that plate on pile B_i . Otherwise you stack that plate on pile A_i . After Q iterations, plates can only be on pile B_1 , B_2 , B_3 ,, B_Q , A_Q . Output numbers on these plates from top to bottom of each piles in order of B_1 , B_2 , B_3 ,, B_Q , A_Q .

Problem Source: https://www.hackerrank.com/challenges/waiter/problem

Input Format:

First line contains two space separated integers, N and Q.

The next line contains N space separated integers representing the initial pile of plates, i.e. A_0 . The leftmost value represents the bottom plate of the pile.

Constraints:

```
1 < N < 5*10^4
2 < A_i, B_i < 10^4
```

Output Format:

Output N lines. Each line contains a number written on the plate. Printing should be done in the order defined above.

Sample Input:

```
5 1
3 4 7 6 5
```

Sample Output:

```
4
```

6

3

Explanation:

Initially:

$$A_0 = [3, 4, 7, 6, 5] < -TOP$$

After 1 iteration:

$$A_0$$
 = []<-TOP

$$B_1 = [6, 4] < -TOP$$

$$A_1 = [5, 7, 3] < -TOP$$

We should output numbers in B_1 first from top to bottom, and then output numbers in A_1 from top to bottom.

Time Limit: