Homework #4

Due Monday, November 6

1 Limits and continuity of functions of n variables

- 1. Let $(x_0, y_0) \in \mathbb{R}^2$ and use the $\delta \epsilon$ method to show that:
 - (a) $f(x,y)=x-y\implies \lim_{(x,y)\to(x_0,y_0)}f(x,y)=x_0-y_0$ without using the theorem about limits and arithmetic operations.
 - (b) $f(x,y)=yx^2-y^3 \implies \lim_{(x,y)\to(x_0,y_0)}f(x,y)=y_0x_0^2-y_0^3$ using the theorem about limits and arithmetic operations.
- 2. Let $f(x,y)=\frac{x^2y}{x^4+y^2}$ and show that $\lim_{(x,y)\to(0,0)}f(x,y)$ does not exist. **Hint:** consider what happens when the origin is approached along a line (e.g., y=x) and along a parabola (e.g., $y=x^2$).
- 3. Let $f(x,y) = \begin{cases} x+y & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y,z) = (0,0,0) \end{cases}$
 - (a) Show that f is **not** continuous at (0,0).
 - (b) Show that f is continuous on $S = \mathbb{R}^2 \setminus \{0\}$.

2 Differentiability of functions of n variables