Self-Driving Cars

Exercise 0 - Introduction

Katrin Renz

Autonomous Vision Group University of Tübingen

Outline

- ► Setup for Exercises
- ► PyTorch
- ► Cluster
- ▶ OpenAl Gym
- ► Exercise 0

Exercise organization

- ► Exercises are offered every 2 weeks, 6 assignments in total
- ▶ Deepen understanding with **coding challenges** and **pen & paper tasks**
- ► Handed out via the website and introduced during the live sessions
- ► Can be conducted in groups **up to 2 students** (find partner via ILIAS forum)
- ► All lectures and exercises are **relevant** for the exam

Exercise organization

- ► We upload one folder per exercise with the tasks and code (for the challenge)
- ► Excercise folder can be accessed over the link on the course website
- ► Pen & Paper: we upload the solutions around one week before the final Q&A session of the excercise.
- ► Challenge: you hand in your final agent and your code and we provide the leaderboard with the final scores. Please be aware of the **submission deadlines**.
- ► If you have any questions, please ask at the **forum** on ILIAS.
- ► TA Email IDs: katrin.renz@uni-tuebingen.de, joo-ho.lee@uni-tuebingen.de, apratim.bhattacharyya@uni-tuebingen.de.

5

Important Rule

➤ You are not allowed to share results and code of the coding challenge or make it public (e.g., GitHub).

TCML cluster

- ► Most parts of the challenge can be done without a GPU. You can use your local machine/ laptop.
- ► For the reinforcement learning part using a GPU makes sense.
- ➤ You are eligible to use the Training Center for Machine Learning (TCML) cluster for exercises in this lecture.
- We will create accounts for you on the cluster. Each group shares an account.
 You are not supposed to apply for the account by yourself.
- ► Cluster has a master node to launch jobs, and 40 compute nodes to execute jobs.
- Compute nodes are allocated based on a queuing system, so please start the assignments early if you want to use this resource.

TCML cluster

► Login to master:
ssh username@tcml-master01.uni-tuebingen.de

- ► To access compute nodes: create an .sbatch file
- ▶ Please find more information/instructions about the cluster below:

https://docs.google.com/document/d/
1AgtLy28VVZaPe79Tw0b9jjC4F1KVzffb8y1vZoURZE8/edit?usp=sharing.

Some useful tools

- ► Consider using tmux/screen for running your jobs. (Start a tmux session: "tmux new -s mysession")
- ► slurm_gpustat: pip install -user slurm-gpustat

PyTorch

- What is PyTorch?
 A Python-based scientific computing package for Deep Learning.
- Why PyTorch? Beginner friendly, well documented, good for fast development.
- ► How to install?

 https://pytorch.org/get-started/locally/

References

- ► PyTorch official tutorials: https://pytorch.org/tutorials/
- ► Stanford Course on Deep Learning for Computer Vision:
 http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf
- ► NTU Machine Learning Course: https://www.slideshare.net/lymanblueLin/pytorch-tutorial-for-ntu-machine-learing-course-2017
- ► PyTorch tutorial with code examples: https://github.com/MorvanZhou/PyTorch-Tutorial

OpenAl Gym

- What is OpenAl Gym?
 A python based toolkit for developing and comparing RL algorithms.
- Why OpenAl Gym? Standardization of environments/benchmarks for RL algorithms.
- How to install?
 We provide a custom package with instructions.

Examples

Create an Environment

- ► Each gym environment has a unique name
- ► To create an environment from the name use the

```
env = gym.make(env_name)
```

► For example, to create a CarRacing environment:

```
env = gym.make('CarRacing-v0')
```

Initialize State

- ► Used to reinitialize a new episode
- ► Returns the initial state

```
init_state = env.reset()
```

Take an action

- ► Performs the specified action and returns the resulting state
- ► The main method your agent interacts with

Take an observation: Render

- ► Optional method
- ► Used to display the state of your environment
- ► Useful for debugging and qualitatively comparing different agent policies

```
env.render()
```

► Randomly generated tracks

► action_space: three continous values, including steer, gas, brake

▶ observation_space: color image

$$lacktriangledown$$
 reward: $R = N_{visited_tile} * rac{1000}{N_{all_tile}} - N_{frame} * 0.1$

► Reward

- ▶ Reward
- ► Car speed

- ► Reward
- ► Car speed
- ► Wheel speed

- ► Reward
- ► Car speed
- ► Wheel speed
- ► Joint angle

- ► Reward
- ► Car speed
- ▶ Wheel speed
- ► Joint angle
- ► Angular Velocity

- ► We will create a leaderboard for the exercises
- ► Evaluation metrics:
 - $ightharpoonup R = N_{visited_tile} * \frac{1000}{N_{all_tile}}$ given a fixed N_{frame}
 - ightharpoonup R = R 100 if the car get too far away from the track
- Submit your code and we will evaluate it on our server

References

- ► Official document: https://gym.openai.com/docs
- ► Source code: https://github.com/openai/gym
- ▶ https://katefvision.github.io/10703_openai_gym_recitation.pdf

- ► Goal: setting up the environment so that you can start with the challenge next week
- Creating a conda environment on your local machine.
- ► Getting the TCML cluster account if needed and try to access it.
- ► Familiarize with the car racing environment.
- ► Create teams (2 people) for the challenge.

Install PyTorch locally

► Recommended to install with Anaconda

Install OpenAl Gym locally

- ► Python 3.8
- ► Unzip sdc_gym.zip and enter the folder
- ► Install the box2d package pip3 install -e '.[box2d]'
- ► Please use the code we provided as there are some modifications compared to the official version.

Work on Cluster

Download the Singularity image and copy it to your home directories on the cluster: https:

//owncloud.tuebingen.mpg.de/index.php/s/CbGdQrCfcpP4EFA/download It is an environment that contains everything you need for the exercises of this lecture such as PyTorch, OpenAI Gym.

- Create .sbatch file to submit a job
- ► Run the code under the Singularity environment:

```
singularity exec --nv ~/sdc_gym.simg python your_python_file.py
```

