CrIn Ge CrIn Ge Production. Supercringe introduction here:Let's calculate smth with expression given: f(x, y) = $x^{3.000} \cdot \ln\left(x+y\right)$ Firstly, let's insert all constants and simplify it: $x^{3.000} \cdot \ln\left(x+y\right)$ BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!! IN THE POINT (x = 3.000, y = 2.000)IT'S VALUE = 43.455!!! 1 step: finding a derivation of function: yhere it is: 1.000 2 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 3 step: finding a derivation of function: (x+y)here it is: 2.000 4 step: finding a derivation of function: $\ln\left(x+y\right)$ here it is: $2.000 \cdot \frac{1.000}{x+y}$ 5 step: finding a derivation of function: here it is: 1.000 6 step: finding a derivation of function: $x^{3.000}$ here it is: $3.000 \cdot x^{2.000}$ 7 step: finding a derivation of function: $x^{3.000} \cdot \ln\left(x+y\right)$ here it is: $3.000 \cdot x^{2.000} \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot x^{3.000}$ Congratulations! The first derivation of the expression is: $3.000 \cdot x^{2.000} \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot x^{3.000}$ IN THE POINT (x = 3.000, y = 2.000)IT'S VALUE = 54.255 !!!Let's calculate the 3 derivation of the expression: Calculating the 1 derivation of the expression: 1 step: finding a derivation of function: yhere it is: 1.000 2 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 3 step: finding a derivation of function: (x+y)here it is: 2.000 4 step: finding a derivation of function: $\ln\left(x+y\right)$ here it is: $2.000 \cdot \frac{1.000}{}$ 5 step: finding a derivation of function: here it is: 1.000 6 step: finding a derivation of function: $x^{3.000}$ here it is: $3.000 \cdot x^{2.000}$ 7 step: finding a derivation of function: $x^{3.000} \cdot \ln\left(x + y\right)$ here it is: $3.000 \cdot x^{2.000} \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot x^{3.000}$ Calculating the 2 derivation of the expression: 1 step: finding a derivation of function: \boldsymbol{x} here it is: 1.0002 step: finding a derivation of function: $x^{3.000}$ here it is: $3.000 \cdot x^{2.000}$ 3 step: finding a derivation of function: yhere it is: 1.000 4 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 5 step: finding a derivation of function: x + yhere it is: 2.0006 step: finding a derivation of function: 1.000here it is: 0.0007 step: finding a derivation of function: 1.000x + yhere it is: $(-1.000) \cdot 2.000$ 8 step: finding a derivation of function: 2.000here it is: 0.0009 step: finding a derivation of function: $2.000 \cdot \frac{1.000}{x+y}$ here it is: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}}$ 10 step: finding a derivation of function:

here it is:

11 step: finding a derivation of function:

 $2.000 \cdot \frac{1.000}{x+y} \cdot x^{3.000}$ $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{1.000}{x+y}$

	1.000
12 step: finding a derivation of function:	x
here it is:	1.000
13 step: finding a derivation of function:	(x+y)
here it is:	2.000
14 step: finding a derivation of function:	
here it is:	$\ln\left(x+y\right)$ 1.000
15 step: finding a derivation of function:	$2.000 \cdot \frac{1.000}{x+y}$
	x
here it is:	1.000
16 step: finding a derivation of function:	$x^{2.000}$
here it is:	$2.000 \cdot x$
17 step: finding a derivation of function:	3.000
here it is:	0.000
18 step: finding a derivation of function:	$3.000\cdot x^{2.000}$
here it is:	$3.000 \cdot 2.000 \cdot x$
19 step: finding a derivation of function:	$3.000 \cdot x^{2.000} \cdot \ln{(x+y)}$
here it is:	$3.000 \cdot 2.000 \cdot x \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot x^{2.000}$
20 step: finding a derivation of function:	
	$3.000 \cdot x^{2.000} \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot x^{3.000}$
here it is:	$3.000 \cdot 2.000 \cdot x \cdot \ln{(x+y)} + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot x^{2.000} + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{1.000}{x+y}$
Calculating the 3 derivation of the expression: 1 step: finding a derivation of function:	
here it is:	y
2 step: finding a derivation of function:	1.000
here it is:	x
	1.000
3 step: finding a derivation of function:	x + y
here it is:	2.000
4 step: finding a derivation of function:	1.000
here it is:	0.000
5 step: finding a derivation of function:	1.000
here it is:	$x + y$ $(-1.000) \cdot 2.000$
6 step: finding a derivation of function:	$(x+y)^{2.000}$
here it is:	2.000
	0.000
7 step: finding a derivation of function:	$2.000 \cdot \frac{1.000}{x+y}$
here it is:	$2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}}$
8 step: finding a derivation of function:	$(x+y)^{2.000}$
here it is:	x
9 step: finding a derivation of function:	1.000
here it is:	$x^{2.000}$
10 step: finding a derivation of function:	$2.000 \cdot x$
here it is:	3.000
	0.000
11 step: finding a derivation of function:	$3.000\cdot x^{2.000}$
here it is:	$3.000 \cdot 2.000 \cdot x$
12 step: finding a derivation of function:	$3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{1.000}{x+y}$
here it is:	$3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x^{2.000}$
13 step: finding a derivation of function:	x+y 2.000 $x + y$ 2.000 $x + y$ 2.000 $x + y$
here it is:	x
14 step: finding a derivation of function:	1.000
here it is:	$x^{3.000}$
15 step: finding a derivation of function:	$3.000\cdot x^{2.000}$
	y
here it is:	1.000
16 step: finding a derivation of function:	x
here it is:	1.000
17 step: finding a derivation of function:	(x+y)
here it is:	2.000
18 step: finding a derivation of function:	$\left(x+y\right)^{2.000}$
here it is:	$2.000 \cdot 2.000 \cdot (x+y)$

1.000

here it is:

here it is: 0.00020 step: finding a derivation of function: (-2.000) $(x+y)^{2.000}$ here it is: $\frac{\left(-1.000\right)\cdot\left(-2.000\right)\cdot2.000\cdot2.000\cdot\left(x+y\right)}{\left(\left(x+y\right)^{2.000}\right)^{2.000}}$ 21 step: finding a derivation of function: 2.000here it is: 0.00022 step: finding a derivation of function: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}}$ here it is: $2.000 \cdot \frac{(-1.000) \cdot (-2.000) \cdot 2.000 \cdot 2.000 \cdot (x+y)}{((x+y)^{2.000})^{2.000}}$ 23 step: finding a derivation of function: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot x^{3.000}$ here it is: $2.000 \cdot \frac{(-1.000) \cdot (-2.000) \cdot 2.000 \cdot 2.000 \cdot (x+y)}{\left((x+y)^{2.000}\right)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{(-2.000)}{\left(x+y\right)^{2.000}}$ 24 step: finding a derivation of function: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{1.000}{x+y}$ here it is: $2.000 \cdot \frac{(-1.000) \cdot (-2.000) \cdot 2.000 \cdot 2.000 \cdot (x+y)}{\left((x+y)^{2.000}\right)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} + 3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x^{2.000}$ 25 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 26 step: finding a derivation of function: $x^{2.000}$ here it is: $2.000 \cdot x$ 27 step: finding a derivation of function: 3.000 here it is: 0.00028 step: finding a derivation of function: $3.000 \cdot x^{2.000}$ here it is: $3.000 \cdot 2.000 \cdot x$ 29 step: finding a derivation of function: yhere it is: 1.00030 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 31 step: finding a derivation of function: x + yhere it is: 2.00032 step: finding a derivation of function: 1.000 here it is: 0.00033 step: finding a derivation of function: 1.000 x + yhere it is: $(-1.000) \cdot 2.000$ 34 step: finding a derivation of function: 2.000here it is: 0.00035 step: finding a derivation of function: $2.000 \cdot \frac{1.000}{x+y}$ here it is: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}}$ 36 step: finding a derivation of function: $2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot x^{2.000}$ here it is: $2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x^{2.000} + 3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y}$ 37 step: finding a derivation of function: here it is: 1.000 38 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 39 step: finding a derivation of function: (x+y)here it is: 2.00040 step: finding a derivation of function: $\ln(x+y)$ here it is: $2.000 \cdot \frac{1.000}{x+y}$ 41 step: finding a derivation of function: \boldsymbol{x} here it is: 1.000 42 step: finding a derivation of function: 2.000here it is: 0.00043 step: finding a derivation of function: $2.000 \cdot x$ here it is: 2.000 44 step: finding a derivation of function: 3.000here it is: 0.000

(-2.000)

19 step: finding a derivation of function:

45 step: finding a derivation of function:

 $3.000 \cdot 2.000 \cdot x$

here it is:

6.000

46 step: finding a derivation of function:

 $3.000 \cdot 2.000 \cdot x \cdot \ln\left(x + y\right)$

here it is:

 $6.000 \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot 2.000 \cdot x$

47 step: finding a derivation of function:

 $3.000 \cdot 2.000 \cdot x \cdot \ln(x+y) + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot x^{2.000}$

here it is:

 $6.000 \cdot \ln{(x+y)} + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot 2.000 \cdot x + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x^{2.000} + 3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y}$

48 step: finding a derivation of function:

 $3.000 \cdot 2.000 \cdot x \cdot \ln{(x+y)} + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot x^{2.000} + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot x^{3.000} + 3.000 \cdot x^{2.000} \cdot 2.000 \cdot \frac{1.000}{x+y}$

here it is:

 $6.000 \cdot \ln{(x+y)} + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot 2.000 \cdot x + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-1.000) \cdot (-2.000) \cdot 2.000 \cdot 2.000 \cdot (x+y)}{((x+y)^{2.000})^{2.000}} \cdot x^{3.000} \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} + 3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-2.000) \cdot (-2.000) \cdot (-2.000) \cdot (x+y)}{((x+y)^{2.000})^{2.000}} \cdot x^{3.000} \cdot x^{3.000} \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (-2.000) \cdot (-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x^{3.000} \cdot x \cdot 2.000 \cdot x \cdot 2$

Finally... The 3 derivation of the expression:

 $6.000 \cdot \ln{(x+y)} + 2.000 \cdot \frac{1.000}{x+y} \cdot 3.000 \cdot 2.000 \cdot x + 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} \cdot 3.000 \cdot x \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-1.000) \cdot (-2.000) \cdot 2.000 \cdot (x+y)}{((x+y)^{2.000})^{2.000}} \cdot x^{3.000} \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000)}{(x+y)^{2.000}} + 3.000 \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{1.000}{x+y} + 2.000 \cdot \frac{(-2.000) \cdot (-2.000) \cdot (x+y)}{(x+y)^{2.000}} \cdot x^{3.000} \cdot x^{3.000} \cdot x^{3.000} \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x^{3.000} \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x+y)^{2.000}} + 3.000 \cdot x \cdot 2.000 \cdot \frac{(-2.000) \cdot (x+y)}{(x$

BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT THE 3 DERIVATION OF THIS EXPRESSION!!! IN THE POINT (x = 3.000, y = 2.000)IT'S VALUE = 21.753!!! Partial derivation of the expression on the variable 'x':

 $3.000 \cdot x^{2.000} \cdot \ln(x + 2.000) + \frac{1.000}{x + 2.000} \cdot x^{3.000}$

IN THE POINT (x = 3.000, y = 2.000) IT'S VALUE = 48.854824 !!!

Partial derivation of the expression on the variable 'y':

 $27.000 \cdot \frac{1.000}{3.000 + y}$

IN THE POINT (x = 3.000, y = 2.000) IT'S VALUE = 5.400000 !!!

Full derivation:

 $\sqrt{\left(3.000 \cdot x^{2.000} \cdot \ln\left(x + 2.000\right) + \frac{1.000}{x + 2.000} \cdot x^{3.000}\right)^{2.000} + \left(27.000 \cdot \frac{1.000}{3.000 + y}\right)^{2.000}}$

IN THE POINT (x = 3.000, y = 2.000)IT'S VALUE = 49.152!!! Let's consider the expression as a function of x variable: f(x) =

 $x^{3.000} \cdot \ln{(x + 2.000)}$

Maklorens formula for x near to 3.000000:

 $43.455 + 48.855 \cdot (x - 3.000) + 19.345 \cdot (x - 3.000)^{2.000} + 2.941 \cdot (x - 3.000)^{3.000} + 0.081 \cdot (x - 3.000)^{4.000}$

And remainig member is o maloe from:

 $(x - 3.000)^{4.000}$

Graph f(x):

Tangent equation in point -2.000: f(x) =

 $(-inf) \cdot (x - (-2.000)) + inf$

Normal equation in point -2.000: f(x) =

 $0.000 \cdot (x - (-2.000)) + inf$