Math 118. Combinatorics.

Problem Set 4. Due on Friday, 3/4/11.

- 1. Fix $t \geq 0$. Show that $p_{n-t}(n)$ becomes eventually constant as $n \to \infty$. What is this constant c_t ? What is the least value of n for which $p_{n-t}(n) = c_t$?
- 2. Show that for any partition λ ,

$$\sum_{i} (i-1)\lambda_i = \sum_{i} {\lambda_i' \choose 2},$$

where the λ'_i denote the parts of the conjugate partition λ' .

3. Prove that

$$\prod_{i>0} (1+q^{2i+1}) = \sum_{k>0} \frac{q^{k^2}}{(1-q^2)\cdots(1-q^{2k})},$$

- 4. How many SYT of shape (n^n) have main diagonal $(1, 4, 9, 16, \dots, n^2)$?
- 5. Let $f^{\lambda/2}$ denote the number of SYT of shape λ having the entry 2 in the first row. Evaluate the sums

$$\sum_{\lambda \vdash n} f^{\lambda/2} f^{\lambda}$$
 and $\sum_{\lambda \vdash n} \left(f^{\lambda/2} \right)^2$.

6. Let M be a random $n \times n$ matrix with entries in the finite field \mathbb{F}_q , where each entry is chosen uniformly and independently at random. Show that with probability at least 1/4, M is non-singular (i.e., it has nonzero determinant).

Hint: The generating function for pentagonal numbers may be surprisingly useful here.

7. Show that the (ordinary) generating function for Dyck paths D whose peak heights strictly increase from left to right is

$$\sum_{D} q^{|D|} = \sum_{k \ge 0} q^{k} [k]_{q}!,$$

where $[k]_q! = (1+q)(1+q+q^2)\dots(1+q+\dots+q^{k-1})$, and |D| is half of the number of steps of D.