Вопрос 4

Переход к пределу в неравенствах

Утверждение 1. Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, тогда $\exists N \ \forall n > N : a_n \le b_n \Rightarrow a \le b$.

Доказательство. Предположим $a-b=\varepsilon_0>0\Rightarrow$ $\Rightarrow \exists N_1,\ N_2: |a_n-a|<\frac{\varepsilon_0}{2}\ \forall\ n>N_1,\ |b_n-b|<\frac{\varepsilon_0}{2}\ \forall\ n>N_2\Rightarrow$ $\Rightarrow \epsilon_0=a-b=a-a_n+a_n-b+b_n-b_n\leq a-a_n+b_n-b<\varepsilon_0$ противоречие.

Лемма о зажатой последовательности

Лемма 1. Пусть $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$. Тогда $\exists N \ \forall n > N : a_n \le c_n \le b_n \Rightarrow \lim_{n\to\infty} c_n = a$.

Доказательство. По определению $\forall \varepsilon \exists N_1 \in \mathbb{N}, N_2 \in \mathbb{N} : |a - a_n| < \varepsilon \forall n > N_1, |b - b_m| < \varepsilon \forall m > N_2 \Rightarrow \forall k > \max\{N, N_1, N_2\} : a - \varepsilon < a_k \le c_k \le b_k < a + \varepsilon \Rightarrow \lim_{n \to \infty} c_n = a$

Вещественная прямая

Пусть $a, b \in \mathbb{R}$ и a < b. Множества $[a; b] := \{x \in \mathbb{R} : a \le x \le b\}$, $(a; b) := \{x \in \mathbb{R} : a < x < b\}$ называются отрезком и интервалом соответственно. Длина отрезка (интервала) – величина b - a.

Принцип вложенных отрезков

Теорема 1. Всякая последовательность $\{[a_n; b_n]\}_{n=1}^{\infty}$ вложенных отрезков (то есть таких, что $[a_{n+1}; b_{n+1}] \subset [a_n; b_n]$) имеет общую точку. Кроме того, если длины отрезков стремятся к нулю, то есть $b_n - a_n \to 0$, то такая общая точка только одна.

Доказательство. По условию $[a_{n+1}; b_{n+1}] \subset [a_n; b_n]$, откуда $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$. Пусть n < m, тогда $a_n \leq a_m \leq b_m \Rightarrow a_n < b_m$. При n > m получим, что $a_n \leq b_n \leq b_m \Rightarrow a_n < b_m$. Таким образом, $a_n < b_m \ \forall \ n, m \in \mathbb{N}$, тогда если $A := \{a_n, n \in \mathbb{N}\}, \ B := \{b_m, m \in \mathbb{N}\}$, то A левее B. Тогда по принципу полноты $\exists \ c \in \mathbb{R}: \ a_n \leq c \leq b_m \ \forall \ n, m \in \mathbb{N}$. В частности, $a_n \leq c \leq b_n \Rightarrow c \in [a_n; b_n]$.

Пусть общих точек две: c и c'. Без ограничения общности, скажем, что c < c'.

Тогда, получим, что $a_n \le c \le c' \le b_n$ и $c' - c \le b_n - a_n$.

Ho $\lim_{n\to\infty} b_n - a_n = 0 \Rightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geq N(\varepsilon) |0 - b_n + a_n| < \varepsilon.$

Пусть $\varepsilon = c' - c$, тогда $|a_n - b_n| < c' - c \Rightarrow b_n - a_n < c' - c$ — противоречие.

Геометрическая интерпретация вещественных чисел

Сопоставим десятичной дроби $0.a_1a_2...$ последовательность вложенных отрезков по следующему правилу.

Разделим отрезок [0; 1] на 10 равных частей и выберем из получившихся частей a_1+1 -ый по счету. Проделываем ту же самую процедуру с выбранным отрезком и выбираем a_2+1 -ый по счету. И так далее.

Получаем последовательность вложенных отрезков. Причем длина отрезка, получаемого на n-ом

шаге, равна $\frac{1}{10^n}$.

По теореме 1 существует единственная $(\lim_{n\to\infty}\frac{1}{10^n}=0)$ общая точка получившейся последовательности вложенных отрезков, которая совпадает с $0.a_1a_2$.

Анекдот

ПРЕПОД ПО МАТАНУ ДОСТАЁТ НА ЛЕКЦИИ ХУЙ, НАЧИНАЕТ ЕГО НАЯРИВАТЬ, ПРИГОВАРИВАЯ:

- -ДЛЯ ЛЮБОГО ЭПСИЛОН, ДЛЯ ЛЮБОГО ЭПСИЛОН, ОЗАЛУПЛИВАЕТ И СТУЧИТ ПО ПАРТЕ:
- -БОЛЬШЕ НУЛЯ! ОЙ! БОЛЬШЕ НУЛЯ! ОДИН ПАЦАН СПРАШИВАЕТ:
- -А ПОЧЕМУ ВЫ ЗАЛУПОЙ ПО ПАРТЕ СТУЧИТЕ?
- -ДЕЙСТВИТЕЛЬНО, ЭТО Я ПЕРЕПУТАЛ С КРИТЕРИЕМ КОШИ, СЕЙЧАС ПО ГЕЙНЕ БУДЕТ, БЬЁТ ЯЙЦАМИ ПО ЛИЦУ СТУДЕНТАМ ЗА ПЕРВОЙ ПАРТОЙ И КРИЧИТ:
- -ПРОИЗВОЛЬНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ!