```
In [ ]: # https://pyronear.org/pyro-risks/overview/datasets/NASA-FIRMS_ACTIVE-FIRE_VIIRS.ht
In [99]: import pandas as pd
         import seaborn as sns
         import numpy as np
         import matplotlib.pyplot as plt
         import matplotlib.patches as mpatches
         import geopandas as gpd
         sns.set_style('whitegrid')
         import warnings
         warnings.filterwarnings('ignore')
 In [3]: # Concatenating all datasets into 1
         df1 = pd.read csv('Datasets/MODIS SP DF1.csv')
         df2 = pd.read csv('Datasets/VIIRS SNPP SP DF2.csv')
         df3 = pd.read csv('Datasets/MODIS SP DF2.csv')
 In [9]: df1.columns
 Out[9]: Index(['latitude', 'longitude', 'brightness', 'scan', 'track', 'acq_date',
                 'acq_time', 'satellite', 'instrument', 'confidence', 'version',
                'bright_t31', 'frp', 'daynight', 'type'],
               dtype='object')
 In [8]: df2 = df2.rename(columns={'bright_ti4': 'brightness', 'bright_ti5': 'bright_t31'})
         df2.columns
 Out[8]: Index(['latitude', 'longitude', 'brightness', 'scan', 'track', 'acq_date',
                 'acq_time', 'satellite', 'instrument', 'confidence', 'version',
                 'bright_t31', 'frp', 'daynight', 'type'],
               dtype='object')
In [10]: df3.columns
Out[10]: Index(['latitude', 'longitude', 'brightness', 'scan', 'track', 'acq_date',
                 'acq_time', 'satellite', 'instrument', 'confidence', 'version',
                'bright_t31', 'frp', 'daynight', 'type'],
               dtype='object')
In [11]: final df = pd.concat([df1,df2,df3],ignore index=True)
In [12]: final_df
```

_		Гα		-
\cap	Jt.	11	")	
\cup	<i>a</i> u	1 1	_	

	latitude	longitude	brightness	scan	track	acq_date	acq_time	satellite	instr
0	-18.6804	145.5470	317.3	2.9	1.6	2000-11- 01	16	Terra	
1	-18.4459	144.8904	324.6	3.2	1.7	2000-11- 01	16	Terra	
2	-18.4401	144.8603	317.7	3.3	1.7	2000-11- 01	16	Terra	
3	-18.4005	144.9007	318.8	3.2	1.7	2000-11- 01	16	Terra	
4	-17.0518	143.8872	322.1	4.1	1.9	2000-11- 01	16	Terra	
•••	•••	•••	•••		•••	•••	•••	•••	
12105617	-23.0698	144.1217	306.5	1.4	1.2	2024-01- 21	1626	Aqua	
12105618	-21.6129	116.3878	315.2	1.0	1.0	2024-01- 21	1804	Aqua	
12105619	-21.6115	116.3781	307.1	1.0	1.0	2024-01- 21	1804	Aqua	
12105620	-34.9101	116.3435	301.5	1.3	1.1	2024-01- 21	1808	Aqua	
12105621	-34.9074	116.3384	305.6	1.3	1.1	2024-01- 21	1808	Aqua	

12105622 rows × 15 columns

In [16]: final_df.describe()

Out[16]:

		latitude	longitude	brightness	scan	track	acq_tiı
	count	1.210562e+07	1.210562e+07	1.210562e+07	1.210562e+07	1.210562e+07	1.210562e+
	mean	-2.023332e+01	1.346891e+02	3.337769e+02	9.142085e-01	7.660196e-01	7.649485e+
	std	6.866176e+00	9.634424e+00	2.081605e+01	7.916361e-01	4.024843e-01	5.602756e+
	min	-5.466900e+01	1.126964e+02	2.080000e+02	3.200000e-01	3.600000e-01	0.000000e+
	25%	-2.450756e+01	1.273325e+02	3.176000e+02	4.200000e-01	4.200000e-01	4.100000e+
	50%	-1.826439e+01	1.330795e+02	3.348000e+02	5.300000e-01	6.000000e-01	5.060000e+
	75 %	-1.500322e+01	1.429743e+02	3.466500e+02	1.100000e+00	1.100000e+00	1.442000e+
	max	-9.133000e+00	1.679997e+02	5.088000e+02	4.800000e+00	2.000000e+00	2.359000e+

```
In [18]: final_df.dtypes
Out[18]: latitude
                       float64
         longitude
                       float64
         brightness
                       float64
                       float64
         scan
         track
                       float64
         acq_date
                        object
         acq_time
                         int64
         satellite
                        object
         instrument
                        object
         confidence
                        object
         version
                       float64
         bright_t31
                       float64
         frp
                       float64
         daynight
                        object
                         int64
         type
         dtype: object
In [20]: final_df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 12105622 entries, 0 to 12105621
       Data columns (total 15 columns):
        #
            Column
                        Dtype
            ----
        0
            latitude
                        float64
        1
            longitude
                        float64
        2
            brightness float64
        3
            scan
                        float64
        4
            track
                        float64
        5
            acq_date
                        object
        6
            acq_time
                        int64
        7
            satellite
                        object
        8
            instrument object
        9
            confidence object
        10 version
                        float64
        11 bright_t31 float64
        12
            frp
                        float64
            daynight
        13
                        object
        14 type
                        int64
       dtypes: float64(8), int64(2), object(5)
       memory usage: 1.4+ GB
In [22]: final_df.shape
Out[22]: (12105622, 15)
In [24]: final_df.describe(include='0')
```

```
Out[24]:
                    acq_date
                               satellite instrument confidence daynight
                   12105622
                             12105622
                                         12105622
                                                     12105622 12105622
           count
                                                2
                                                                      2
          unique
                       8450
                                     3
                                                          104
             top 2012-10-22
                                    Ν
                                             VIIRS
                                                                      D
                                                            n
                      45637
                              7644860
                                          7644860
                                                      6215525
                                                                8344820
            freq
In [25]: final df.isnull().sum()
Out[25]: latitude
                        0
          longitude
                        0
          brightness
                        0
                        0
          scan
          track
                        0
          acq_date
                        0
          acq_time
          satellite
          instrument
          confidence
                        0
          version
                        0
          bright_t31
                        0
          frp
          daynight
                        0
          type
          dtype: int64
In [27]: final df[final df.duplicated(keep='first')]
Out[27]:
            latitude longitude brightness scan track acq date acq time satellite instrument co
In [28]:
          # Univariate Analysis
In [30]: non_numeric_conf = len( final_df[(final_df['confidence']=='l') | (final_df['confidence']=='l')
          print("Percentage of rows where confidence is non-numeric is :", ( non_numeric_conf
        Percentage of rows where confidence is non-numeric is: 63.15131927958761
In [31]: # 63% of the records for 'Confidence' are categorical, while the rest are numeric
          def standardize_confidence(value):
              try:
                  value=float(value)
                  if(value<=33.3):
                      return '1'
                  elif(value>33.3 and value<66.6):</pre>
                      return 'n'
                  elif(value>=66.6):
                      return 'h'
              except:
                  return value
```

```
final_df['confidence'] = final_df['confidence'].astype(str)
         final_df['confidence'] = final_df['confidence'].apply(standardize_confidence)
In [32]: final df['confidence']
Out[32]: 0
         1
                     h
         2
                     n
         3
                     n
                     1
                     . .
         12105617 n
         12105618 h
         12105619 h
         12105620
                     1
                     1
         12105621
         Name: confidence, Length: 12105622, dtype: object
In [40]: from cartopy import crs as ccrs
         from geodatasets import get path
In [44]: | final_df['acq_date'] = pd.to_datetime(final_df['acq_date'])
         world = gpd.read file(get path('naturalearth.land'))
In [72]: | australia_bbox = {
             'lat min': -44.0,
             'lat_max': -10.0,
             'lon_min': 112.0,
             'lon max': 154.0
         plt.ioff()
In [73]: for year in range(2000, 2024):
             # Filter the dataframe for the current year
             df_year = final_df[final_df['acq_date'].dt.year == year]
             fig, ax = plt.subplots(figsize=(10, 10))
             ax = world.plot(figsize=(10, 10), color="lightgrey", edgecolor="black", ax=ax)
             ax.set_xlim(australia_bbox['lon_min'], australia_bbox['lon_max'])
             ax.set_ylim(australia_bbox['lat_min'], australia_bbox['lat_max'])
             scatter = ax.scatter(df_year['longitude'], df_year['latitude'],
                                  c=df_year['brightness'], cmap='plasma', alpha=0.9)
             cbar = plt.colorbar(scatter, ax=ax)
             cbar.set_label('Brightness')
             ax.set_title(f'Brightness over Australia in {year}')
             plt.xlabel('Longitude')
             plt.ylabel('Latitude')
             plt.grid(True)
```

```
plt.show()
plt.clf()

plt.ion()
```


<Figure size 640x480 with 0 Axes>

500

<Figure size 640x480 with 0 Axes>

- 500

<Figure size 640x480 with 0 Axes>

500

<Figure size 640x480 with 0 Axes>

Out[73]: <contextlib.ExitStack at 0x26e7fe8d3d0> <Figure size 640x480 with 0 Axes>


```
final_df['year'].describe().round()
In [81]:
Out[81]: count
                   12105622.0
                       2013.0
         mean
         std
                          5.0
                       2000.0
         min
         25%
                       2012.0
         50%
                       2013.0
         75%
                       2016.0
                       2024.0
         max
         Name: year, dtype: float64
         # Monthly frequency
In [82]:
In [97]: final_df['month'] = final_df['acq_date'].dt.month
         monthly_frequency = final_df['month'].value_counts(ascending=True)
         month_labels = ['January', 'February', 'March', 'April', 'May', 'June',
                          'July', 'August', 'September', 'October', 'November', 'December']
         palette = sns.color_palette("mako", len(monthly_frequency))
         plt.figure(figsize=(10, 6))
         bars = plt.bar([month_labels[i-1] for i in monthly_frequency.index], monthly_freque
         plt.xlabel('Month')
         plt.ylabel('Frequency')
         plt.title('Monthly Frequency')
         plt.xticks(rotation=45)
```

```
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```

