

May 24, 2024

Protocol preparation of bacterial cells

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.dm6gpzb45lzp/v1

Thomas Quiroz Monnens¹, Alice Boulanger¹

¹LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, 31320, Castanet-Tolosan, France

Boulanger Alice

université Paul sabatier - toulouse III

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.dm6gpzb45lzp/v1

Protocol Citation: Thomas Quiroz Monnens, Alice Boulanger 2024. Protocol preparation of bacterial cells. **protocols.io** https://dx.doi.org/10.17504/protocols.io.dm6gpzb45lzp/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: May 03, 2024

Last Modified: May 24, 2024

Protocol Integer ID: 99637

Abstract

This protocol details the preparation of bacterial cells to set up LSBA.

Materials

MOKA rich medium

For 1 liter:

A	В
Yeast extract	4 g
Casamino acids	8 g
K2HPO4	2 g
MgSO4.7H2O, pH 7.3	0.3 g
Autoclaved at 120°C for 20 min	

- 1 mM MgCl₂.
- LB rich medium

For 1 liter:

A	В
Tryptone	10 g
Yeast extract	5 g
NaCl, pH 7.2	5 g
Autoclaved at 120°C for 20 min	

LM medium

For 1 liter:

	A	В
	Yeast extract	0.2 g
	Peptone	0.1 g
	HEPES, pH 7.4	10 mM
	NaHCO3	10 mM
Γ	Tween 20, pH 7.2	0.1%
	Filtered using a 0.22 micron filter	

Biological material

- Xcc strain 8004::GUS*-GFP* (carrying the point mutations inactivating the catalytic sites of the β-glucuronidase and GFP proteins, made in a 8004::GUS-GFP background [3,4].
- Xcc strain 8004::GUS-GFP deleted for both the fliC flagellin and the pilA and pilE pillins [4].
- Shewanella oneidensis strain MR1-R [2].

For Xanthomonas campestris pv. campestris (Xcc)

8h 20m

1

Note

Estimated preparation time of the bacterial suspension is around one hour excluding an overnight growth step.

We collect bacteria in exponential phase. (OD_{600nm} between 1 and 2). For our experiments, 400 mL of washed bacteria at an OD_{600nm} of 0.1 (1 × 10⁸ cfu/ml) are required for the lower receiver of each of the LSBAs.

- For 1 LSBAs, inoculate Δ 100 mL of liquid MOKA medium with appropriate antibiotics (here Rifampicin 50 μg/ml) using Xcc and grow Overnight at 28 °C under agitation at 200 rpm.
- Centrifuge the overnight growth for 10 minutes at 6,000 rpm and wash twice with Imillimolar (mM) MgCl₂.

8h

Note

1 mM ${\rm MgCl_2}$ is the common physiological serum used for different $\it Xanthomonas$ species including Xcc.

3.1 Centrifuge the overnight growth for 6000 rpm, 00:10:00 and wash twice with [M] 1 millimolar (mM) MgCl₂ (1/2).

10

3.2 Centrifuge the overnight growth for 6000 rpm, 00:10:00 and wash twice with IMI 1 millimolar (mM) MgCl₂ (2/2).

4 Resuspend the final pellet in 5 mL of [M] 1 millimolar (mM) MgCl₂ and measure the OD_{600nm}.

Add 1 mL of bacterial suspension at a concentration of 4 x 10¹⁰ cells/ml to a syringe with a 25G needle.

For Schewanella oneidensis (So)

20m

We collect bacteria in exponential phase. (OD_{600nm} between 3 and 4). For our experiments, 400 ml of washed bacteria at an OD_{600nm} of 0.1 (1 × 10⁸ cfu/ml) are required for the lower receiver of each of the LSBAs.

7

For Schewanella oneidensis (So)

20m

- 8 For 1 LSBAs, inoculate Δ 100 mL of liquid LB medium with appropriate antibiotics (here Rifampicin 50 μg/ml) using So and grow Overnight at 28 °C under agitation at 200 rpm.
- 9 Centrifuge the overnight growth for 10 minutes at 3,500 rpm and wash twice with LM medium.

9.1 Centrifuge the overnight growth for 3500 rpm, 00:10:00 and wash twice with LM medium. (1/2)

10m

9.2 Centrifuge the overnight growth for 3500 rpm, 00:10:00 and wash twice with LM medium. (2/2)

10m

- 10 Resuspend the final pellet in \perp 5 mL LM medium and measure the OD_{600nm}.
- Add Δ 1 mL of bacterial suspension at a concentration of 4 x 10¹⁰ cells/ml to a syringe with a 25G needle.

Protocol references

- 1. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, et al. Plant carbohydrate scavenging through tonBdependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PloS One. 2007;2: e224. doi:10.1371/journal.pone.0000224
- 2. Boyeldieu A, Poli J-P, Ali Chaouche A, Fierobe H-P, Giudici-Orticoni M-T, Méjean V, et al. Multiple detection of both attractants and repellents by the dCache-chemoreceptor SO_1056 of Shewanella oneidensis. FEBS J. 2022;289: 6752-6766. doi:10.1111/febs.16548
- 3. Cerutti A, Jauneau A, Auriac M-C, Lauber E, Martinez Y, Chiarenza S, et al. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris. Plant Physiol. 2017;174: 700-716. doi:10.1104/pp.16.01852
- 4. Luneau JS, Baudin M, Quiroz Monnens T, Carrère S, Bouchez O, Jardinaud M-F, et al. Genome-wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. New Phytol. 2022. doi:10.1111/nph.18313