Řešení písemky z Automatů a gramatik z úterý 4.5.2004:

1/4) "sloveso" redukovaný konečný automat přijímající jazyk slov nad abecedou $\{a,b\}$ obsahujících bbaa a neobsahujících aabb:

Viz obdobné příklady z minulého ročníku.

2/3) Popište regulárním výrazem jazyk nad abecedou $\{0,1\}$ slov, kde za každou 1 bezprostředně následuje 0 a nikde se nevyskytuje 000 jako souvislé podslovo.

Viz příklady z minulého ročníku pro systematický postup. Výsledek $(\lambda+0+00)(10(\lambda+0))^*$ bylo možno i "uhádnout".

- 3/2) Dá se z platnosti podtrhávacího pumping lemma pro L i \overline{L} odvodit regularita L? Pro libovolný jazyk L zavedeme operátor $\mathcal{P}(L)$ následujících vlastností:
- (a) Jazyk $\mathcal{P}(L)$ je regulární, právě když je jazyk L regulární.
- (b) Pro $\mathcal{P}(L)$ platí podtrhávací pumping lemma.
- (c) Pokud pro L platí podtrhávací pumping lemma, pak pro $\overline{\mathcal{P}(L)}$ platí podtrhávací pumping lemma. Je-li L libovolný neregulární jazyk, pak $\mathcal{P}(\mathcal{P}(L))$ je hledaný protipříklad. (Vzhledem k tomu, že pro libovolné L navíc platí (d) $\overline{\mathcal{P}(L)}$ je bezkontextový, právě když je L bezkontextový, a (e) $\mathcal{P}(L)$ je bezkontextový, právě když je \overline{L} bezkontextový, zvolíme-li za L jazyk, který není bezkontextový (např. $a^nb^nc^n$ či a^{n^2}), je $L' = \mathcal{P}(\mathcal{P}(L))$ zároveň příklad jazyka, který není bezkontextový a přitom jak pro L', tak pro $\overline{L'}$ platí podtrhávací lemma pro regulární jazyky.)

Nechť L je jazyk nad abecedou A, pak $\mathcal{P}(L)$ bude jazyk nad abecedou $A \cup \{\bullet\}$ (kde $\{\bullet\} \notin A$). Definujme homomorfismus $h: A \to (A \cup \{\bullet\})^*$ následovně $\forall x \in A \ h(x) = x \bullet$. Homomorfismus $h': A \cup \{\bullet\} \to A^*$ definovaný vztahy $\forall x \in A \ h'(x) = x$ a $h'(\bullet) = \lambda$, je inverzní zobrazení k h. Definujeme $\mathcal{P}(L) = (A \cup \{\bullet\})^* \setminus h(L)$.

Protože regulární jazyky jsou uzavřeny na doplněk, je $(A \cup \{\bullet\})^* \setminus h(L)$ regulární právě když je h(L) regulární. Vzhledem k tomu, že regulární jazyky jsou uzavřeny na homomorfismus, je h(L) regulární, právě když je L = h'(h(L)) regulární. Platí tedy podmínka (a).

Mějme slovo $w \in \mathcal{P}(L)$ pro nějž jsou splněny předpoklady podtrhávacího pumping lemma*. Využijeme toho, že $h(L) \subseteq (A \bullet)^*$, tedy $\mathcal{P}(L) \supseteq (A \cup \bullet)^* \setminus (A \bullet)^*$. Pokud $w \in (A \bullet)^*$, můžeme za u_2 v podtrhávacím pumping lemma zvolit libovolné jedno podtržené písmenko a pro $i \neq 1$ dostaneme $u_1 u_2^i u_3 \notin (A \bullet)^*$, tedy $u_1 u_2^i u_3 \in \mathcal{P}(L)$. Pokud $w \notin (A \bullet)^*$, pak využitím podtrhávacího lemma pro regulární jazyk $(A \bullet)^*$ dostaneme rozklad $u_1 u_2 u_3$ požadovaných vlastností, kde pro libovolné i platí $u_1 u_2^i u_3 \notin (A \bullet)^*$, tedy $u_1 u_2^i u_3 \in \mathcal{P}(L)$ a platí podmínka (b).

Předpokládejme, že pro L platí podtrhávací pumping lemma. Mějme slovo $w \notin \mathcal{P}(L)$ pro nějž jsou splněny předpoklady podtrhávacího pumping lemma†. Nutně $w \in h(L)$. Pro $h'(w) \in L$ (kde podtrhneme i-té písmeno, bylo-li podtrženo 2i-té či (2i-1)-ní) jsou splněny předpoklady podtrhávacího pumping lemma a tedy dostáváme rozklad $h'(w) = u_1u_2u_3$ požadovaných vlastností a pro libovolné i platí $u_1u_2^iu_3 \in L$. Nutně pak $w = h(u_1)h(u_2)h(u_3)$ má požadované vlastnosti (pokud |x| měří počet podtržených písmen, pak $|u_2| \leq |h(u_2)| \leq 2|u_2|$) a $h(u_1)h(u_2)^ih(u_3) \in h(L)$, tedy $h(u_1)h(u_2)^ih(u_3) \notin \mathcal{P}(L)$ a platí i podmínka (c).

(Protože bezkontextové jazyky jsou uzavřeny na homomorfismus, je h(L) bezkontextový, právě když je L = h'(h(L)) bezkontextový. Platí tedy i podmínka (d). Stejně tak je bezkontextový $h(\overline{L})$, právě když je bezkontextový $\overline{L} = h'(h(\overline{L}))$. A protože $h(L) = h(\overline{L}) \cup ((A \cup \{\bullet\})^* \setminus (A \bullet)^*)$ a $h(\overline{L}) = h(L) \cap (A \bullet)^*$ a bezkontextové jazyky jsou uzavřeny na konečná sjednocení a průniky s regulárními jazyky, platí i (e).)

4/1) Rozhodněte/dokažte, zda gramatiku typu \mathcal{L}_0 je možno převést do "kontextového" tvaru $\alpha X\beta \to \alpha Y\beta$, kde $X \in V_N$ a $\alpha, \beta, Y \in (V_T \cup V_N)^*$.

Viz přednáška pro převod nezkracujících pravidel na kontextová, pro zkracující pravidla obdobně. Je důležité si uvědomit, že pomocné neterminály je možno odstraňovat jen v pořadí, v jakém byly vytvářeny, to nám zajistí možnost přeuspořádání posloupnosti přepisování tak, aby "podprogramy" byly vykonávány v blocích. Z toho vyplyne, proč definovaná gramatika negeneruje větší jazyk.

Uznával jsem řešení, která uváděla správnou konstrukci "kontextových" pravidel. Správné řešení mělo zmínit i důvod, proč vzniklá gramatika nemůže vygenerovat slova navíc oproti původní gramatice.

^{*} číslo n je zvoleno dle podtrhávacího lemma pro jazyk $\overline{(A \bullet)^*}$

[†] číslo n je zvoleno jako dvojnásobek n' z podtrhávacího lemma pro jazyk L