hw1.md - Grip

Homework 1

By Anthony DeDominic <dedominica@my.easternct.edu>

Consecutive Integer Check GCD (Bruteforce) Algorithm

	GCD(int,int)	Recursive Depth	GCD
worst	GCD(17711, 19035)	17711	1
best	GCD(1033, 16906)	1033	1
average	??	7283	??

Initial Analysis

The worst case time complexity of the bruteforce algorithm is linearly proportional to the min(N, M); where N is an integer and M is another integer as defined here. The worst case being when GCD(N,M) = 1. This is because the algorithm goes from the smallest of the two numbers and recursively counts downwards, by a factor of 1, from the starting value of min(N, M) until it reaches the base case of 1 which will always divide N and M completely with no remainders. In general, this algorithm will perform faster when the min() is small, max() will not change anything assuming GCD will equal 1 for GCD(N,M).

Time Complexity

Like explained above, this algorithm's best and worst number pairs appear to be directly influenced by the smallest of the two numbers. This is a linear relationship since the decreasing factor is only 1.

O(min(N,M))

Function Used

```
gcd_count gcd_brute(int large, int small, int gcd, int count) {
   if (large % gcd == 0 && small % gcd == 0) {
      return (gcd_count) {gcd, count};
   }
   return gcd_brute(large, small, gcd-1, count+1);
}
```

Euclidean GCD Algorithm

1 of 2 02/01/2016 04:35 PM

	GCD(int, int)	Recursive Depth	GCD
worst	GCD(9955, 12581)	15	1
best	GCD(1331, 9331)	4	1
average	??	8	??

Initial Analysis

This algorithm uses significantly less operations to complete. This is due in fact that the decreasing factor is $(\max(N,M) / \max(N,M))$, this value is much larger than ~1, which is the decreasing factor for the Consecutive Integer Check algorithm. Unlike the other above algorithm, it will complete faster on average when the difference between $\max()$ and $\min()$ is either very far apart or very close; in the burteforce method, closeness of said difference is irrelevent. this will allow the algorithm to fall nearer to the base case of 1 faster.

NOTE that this assumes GCD(N,M) = 1 which would be the worst case

Time Complexity

Where the bruteforce method has a linear time complexity, this algorithm appears to have a logirithmic complexity. doing log(min(N,M),10)*C gets me numbers very close to the amount of iterations these gcd algorithms had to run through.

 $O(log_10(min(N,M))$

Function Used

```
gcd_count gcd_eculid(int large, int small, int count) {
   if (small == 0) {
      return (gcd_count) {large, count};
   }
   return gcd_eculid(small, large % small, count+1);
}
```

2 of 2 02/01/2016 04:35 PM