Cognome		
Nome		Non scrivere qui
MATRICOLA		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4

Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Egamb di Analysi Mardinatura 2 - Solvizioni

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2019-2020 — PARMA, 10 GIUGNO 2020

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di due ore e mezza. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. Sia $\gamma \colon [-1,1] \to \mathbb{R}^3$ la curva parametrica definita da

$$\gamma(t) = t^2 e_1 + t^4 e_2 + t^6 e_3, \qquad |t| \le 1.$$

(a) Determinate per quali valori del parametro $\lambda \in \mathbb{R}$ il campo vettoriale $f_{\lambda} \in C^{1}(\mathbb{R}^{3}, \mathbb{R}^{3})$ di componenti $f_{\lambda} = (f_{\lambda}^{1}, f_{\lambda}^{2}, f_{\lambda}^{3})$ definite da

$$f_{\lambda}^{1}(x,y,z) = 2xy;$$
 $f_{\lambda}^{2}(x,y,z) = \lambda x^{2};$ $f_{\lambda}^{3}(x,y,z) = e^{z^{2}};$

per ogni $(x, y, z) \in \mathbb{R}^3$ è conservativo.

- (b) Calcolate per ogni λ l'integrale curviline
o $\int_{\gamma} f_{\lambda} \cdot dl.$
- (c) Calcolate l'integrale curvilineo $\int_{\gamma} (2x + 9z) dl(x, y)$.

Soluzione. (a) Poiché \mathbb{R}^3 è convesso ed il campo vettoriale f_{λ} è di classe C^1 in \mathbb{R}^3 , esso è conservativo se e solo se è irrotazionale. Le derivate parziali miste delle componenti di f_{λ} sono date da

per ogni (x,y,z) e quindi risulta $\partial_y f_\lambda^1 = \partial_x f_\lambda^2$, $\partial_z f_\lambda^1 = \partial_x f_\lambda^3$ e $\partial_z f_\lambda^2 = \partial_y f_\lambda^3$ in \mathbb{R}^3 se e solo se è $\lambda = 1$. Per tale scelta di λ un potenziale del campo vettoriale f_1 è la funzione

$$F(x, y, z) = x^2 y + \int_0^z e^{t^2} dt, \quad (x, y, z) \in \mathbb{R}^3.$$

(b) Per definizione di integrale curvilineo di un campo vettoriale si ha

$$\int_{\gamma} f_{\lambda} \cdot dl = \int_{-1}^{1} \langle f_{\lambda}(\gamma(t)) | \gamma'(t) \rangle dt = \dots = \int_{-1}^{1} \left[4(1+\lambda)t^{7} + 6t^{5}e^{t^{12}} \right] dt = 0$$

per ogni λ poiché la funzione integranda è dispari e l'intervallo di integrazione è simmetrico rispetto all'origine.

(c) Per definizione di integrale curvilineo di una funzione scalare si ha

$$\int_{\gamma} (2x + 9z) \, dl(x, y) = \int_{-1}^{1} (2t^2 + 9t^6) \sqrt{4t^2 + 16t^6 + 36t^{10}} \, dt = \dots =$$

$$= \frac{1}{2} \int_{0}^{1} (16t^3 + 72t^7) \sqrt{1 + 4t^4 + 9t^8} \, dt = \frac{1}{3} (1 + 4t^4 + 9t^8)^{3/2} \Big|_{0}^{1} = \frac{1}{3} (14\sqrt{14} - 1).$$

Esercizio 2. Sia

$$f(x,y) = \frac{x^4}{4} + \frac{y^3}{3} + 2x^2y - 9y, \qquad (x,y) \in \mathbb{R}^2.$$

- (a) Determinate gli eventuali punti critici di f e stabilitene la natura.
- (b) Determinate massimo e minimo globali di f sull'insieme $K = \{(x, y) : 0 \le x, y \le 3\}$;
- (c) Determinate l'insieme immagine f(K).

Soluzione. (a) La funzione f è un polinomio e quindi è di classe $C^{\infty}(\mathbb{R}^2)$. Le derivate parziali di f sono date da

$$f_x(x,y) = x^3 + 4xy$$
 e $f_y(x,y) = y^2 + 2x^2 - 9$

per ogni (x,y) e quindi i punti critici sono le soluzioni del sistema di equazioni

$$\begin{cases} x(x^2 + 4y) = 0\\ y^2 + 2x^2 - 9 = 0 \end{cases}$$

Dalla prima equazione si deduce che deve essere x=0 oppure $y=-x^2/4$. Sostituendo nella seconda equazione, nel primo caso si trova $y=\pm 3$ e nel secondo si trova l'equazione biquadratica $x^4+32x^2-144=(x^2+36)(x^2-4)=0$ cui corrisponde $x=\pm 2$ e y=-1. Pertanto i punti critici di f sono i punti di coordinate $P_{\pm}=(0,\pm 3)$ e $Q_{\pm}=(\pm 2,-1)$. Le derivate seconde di f sono

$$f_{xx}(x,y) = 3x^2 + 4y;$$
 $f_{yy}(x,y) = 2y;$ $f_{xy}(x,y) = f_{yx}(x,y) = 4x;$

per ogni (x,y) e conseguentemente la matrice hessiana di f in P_{\pm} e Q_{\pm} è

$$D^2 f(P_{\pm}) = \begin{pmatrix} \pm 12 & 0 \\ 0 & \pm 6 \end{pmatrix}$$
 e $D^2 f(Q_{\pm}) = \begin{pmatrix} 8 & \pm 8 \\ \pm 8 & -2 \end{pmatrix}$.

Dall'esame del determinante e della traccia si conclude che P_+ è punto di minimo locale, P_- è punti di massimo locale e i punti Q_{\pm} sono punti di sella.

(b) L'insieme K è il quadrato compatto di vertici (0,0), (3,0), (3,3) e (0,3) e la funzione f assume quindi minimo e massimo globale su K per il teorema di Weierstrass. Poiché i punti critici di f interni a K sono punti di sella, i punti di minimo e di massimo globale di f su K devono essere assunti sul bordo di K.

Le restrizioni di f alle curve parametriche semplici i cui sostegni formano il bordo di K sono

$$f_1(t) = f(t,0) = t^4/4, 0 \le t \le 3;$$

$$f_2(t) = f(3,t) = t^3/3 + 9t + 81/4, 0 \le t \le 3;$$

$$f_3(t) = f(3-t,3) = (3-t)^4/4 + 6(3-t) - 18, 0 \le t \le 3;$$

$$f_4(t) = f(0,3-t) = (3-t)^3/3 - 9(3-t), 0 \le t \le 3.$$

Studiando l'andamento delle funzioni f_i nei rispettivi domini si ricava che f_1 , f_2 e f_4 sono strettamente crescenti mentre f_3 è strettamente decrescente. Conseguentemente, il minimo globale di f in K è assunto nel punto $P_+ = (0,3)$ ed il massimo globale nel punti R = (3,3). Risulta quindi

$$\min_{K} f = f(0,3) = -18$$
 e $\max_{K} f = f(3,3) = 63/4$.

(c) L'insieme K è convesso. Per il teorma dei valori intermedi si ha dunque f(K) = [-18, 63/4].

Esercizio 3. Sia S_k l'insieme di \mathbb{R}^3 contenuto nel piano y=0 definito da

$$S_k = \{(x, y, z) : 0 \le z \le kx^2, y = 0 \text{ e } 0 \le x \le 1\}$$
 $(k > 0).$

(a) Determinate k > 0 in modo che le misure dei solidi di rotazione E e F ottenuti facendo ruotare S_k rispettivamente attorno agli assi x e z siano uguali.

(b) Per
$$k>0$$
 calcolate $I_E=\int_E z\,dm_3(x,y,z)$ e $I_F=\int_E x\,dm_3(x,y,z).$

Soluzione. L'insieme S_k è la porzione del piano xz compresa tra l'asse delle ascisse e la parabola di equazione $z = kx^2$ nell'intervallo $0 \le x \le 1$ come illustrato nella figura seguente (k = 1).

Gli insiemi E ed F sono i solidi di rotazione che si ottengono facendo ruotare l'insieme S_k rispettivamente attorno agli assi x e z:

$$E = \{(x, y, z) : 0 \le z \le k(x^2 + y^2) e x^2 + y^2 \le 1\};$$

$$F = \{(x, y, z) : z^2 + y^2 \le k e \sqrt{y^2 + z^2}/k \le x \le 1\}.$$

Gli insiemi E ed F sono evidentemente compatti perché limitati e definiti come intersezione di controimmagini di intervalli chiusi mediante funzioni continue e come tali sono entrambi (Lebesgue) misurabili. Calcoliamo la misura di E mediante la formula di riduzione per fili. La proiezione di E sul piano xy è il cerchio

$$\pi_{xy}(E) = \{(x,y): x^2 + y^2 \le 1\}$$

e per ogni $(x,y) \in \pi_{xy}(E)$ la corrispondente sezione è l'intervallo $E_{(x,y)} = [0, k(x^2 + y^2)]$. Per la formula di riduzione abbinata a coordinate polari nel piano si ha allora

$$|E| = \int_{\pi_{xy}(E)} k(x^2 + y^2) dm_2(x, y) = 2\pi \int_0^1 kr^3 dr = k\frac{\pi}{2}.$$

Calcoliamo quindi la misura di F mediante la formula di riduzione per strati rispetto all'asse x. La proiezione di F sull'asse x è l'intervallo [0,1] e per ogni $x \in [0,1]$ la corrispondente sezione è

$$F_x = \left\{ (y, z) : \sqrt{y^2 + z^2} \le kx^2 \right\}.$$

Per avere l'uguaglianza |E| = |F| deve quindi essere k = 5/2.

(b) Le funzioni f e g definite da

$$f(x,y,z) = z$$
 e $g(x,y,z) = x$

per ogni $(x, y, z) \in \mathbb{R}^3$ sono lineari e quindi integrabili in ogni insieme compatto. Procedendo come in (a) per fili per I_E e per strati per I_F risulta

$$I_E = \int_{\pi_{xy}(E)} \left(\int_0^{k(x^2 + y^2)} z \, dz \right) dm_2(x, y) = 2\pi \int_0^1 r \, \frac{z^2}{2} \Big|_0^{kr^2} \, dr = k^2 \pi \int_0^1 r^5 \, dr = k^2 \frac{\pi}{6};$$

$$I_F = \int_0^1 \left(\int_{F_x} x \, dm_2(y, z) \right) dx = k^2 \pi \int_0^1 x^5 \, dx = k^2 \frac{\pi}{6}.$$

Esercizio 4. Sia

$$\begin{cases} x''(t) - 2x'(t) + 10x(t) = 0\\ x(0) = 1 \text{ e } x'(0) = 0. \end{cases}$$

- (a) Determinate tutte le soluzioni dell'equazione differenziale omogenea.
- (b) Determinate tutte le soluzioni del problema di Cauchy.
- (c) Determinate tutte le soluzioni dell'equazione differenziale non omogenea

$$x''(t) - 2x'(t) + 10x(t) = \frac{3e^t}{\operatorname{sen}(3t)}, \qquad 0 < t < \pi/3.$$

Soluzione. (a) L'equazione proposta è una equazione differenziale lineare del secondo ordine a coefficienti costanti. L'equazione caratteristica è $\lambda^2 - 2\lambda + 10 = 0$ le cui soluzioni complesse e coniugate sono $\lambda = 1 \pm 3i$. Quindi, le funzioni

$$x_1(t) = e^t \cos(3t);$$
 $x_2(t) = e^t \sin(3t);$

con $t \in \mathbb{R}$ sono un sistema fondamentale di soluzioni dell'equazione omogenea e tutte le soluzioni dell'equazione omogenea sono le funzioni

$$x(t) = C_1 e^t \cos(3t) + C_2 e^t \sin(3t), \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

(b) Scegliamo le costanti $C_i \in \mathbb{R}$ (i=1,2) in modo che la soluzione x(t) definita in (a) sia tale che x(0)=1 e x'(0)=0. Si ha

$$\begin{cases} x(0) = C_1 = 1\\ x'(0) = C_1 + 3C_2 = 0 \end{cases}$$

da cui segue $C_1 = 1$ e $C_2 = -1/3$ e quindi la soluzione del problema di Cauchy considerato è la funzione

$$x(t) = e^t \cos(3t) - \frac{1}{3}e^t \sin(3t), \qquad t \in \mathbb{R}.$$

(c) Procediamo con il metodo delle costanti arbitrarie cercando una soluzione dell'equazione completa $x_p(t), t \in \mathbb{R}$, della forma

$$x_p(t) = c_1(t)e^t \cos(3t) + c_2(t)e^t \sin(3t), \qquad |t|\pi/3,$$

con $c_1(t)$ e $c_2(t)$ funzioni da determinare in modo che che risulti

$$\begin{cases} c'_1(t)e^t \cos(3t) + c'_2(t)e^t \sin(3t) = 0\\ c'_1(t) \left[e^t \cos(3t) - 3e^t \sin(3t) \right] + c'_2(t) \left[e^t \sin(3t) + 3e^t \cos(3t) \right] = \frac{3e^t}{\sin(3t)} \end{cases}$$

per gli stessi t. Il sistema precedente è equivalente a

$$\begin{cases} c_1'(t)\cos{(3t)} + c_2'(t)\sin{(3t)} = 0 \\ c_1'(t)\sin{(3t)} - c_2'(t)\cos{(3t)} = -\frac{1}{\sin{(3t)}} \end{cases} \iff \begin{cases} c_1'(t) = -1 \\ c_2'(t) = \frac{\cos{(3t)}}{\sin{(3t)}} \end{cases}$$

con $|t| < \pi/3$ da cui segue

$$c_1(t) = -t$$
 e $c_2(t) = \frac{1}{3} \log (\sin (3t))$

per gli stessi t. Risulta così

$$x_p(t) = -te^t \cos(3t) + \frac{1}{3} \log(\sin(3t))e^t \sin(3t), \qquad |t| < \pi/3,$$

e quindi tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 e^t \cos(3t) + C_2 e^t \sin(3t) - t e^t \cos(3t) + \frac{1}{3} \log(\sin(3t)) e^t \sin(3t), \qquad |t| < \pi/3,$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.