La symétrie centrale

Utiliser des nombres pour calculer et résoudre des problèmes

- ☐ Comprendre l'effet d'une symétrie centrale sur une figure géométrique
- $\hfill \square$ Mettre en œuvre ou écrire un protocole de construction d'une figure géométrique

Définition 1. Symétrie centrale

Transformer une figure par une **symétrie centrale** revient à lui appliquer un demi tour autour d'un point fixe, le centre de symétrie.

Deux points A et B sont symétriques par rapport à un point O lorsque O est le milieu de [AB].

Définition 2.

Une figure admet un centre de symétrie O lorsqu'elle est invariante par rapport au point O.

Proposition 1.

La symétrie centrale conserve l'alignement, les longueurs, le parallélisme et la mesure des angles géométriques.

Le parallélogramme

Utiliser des nombres pour calculer et résoudre des problèmes

- ☐ Construire un parallélogramme
- ☐ Utiliser les propriétés du parallélogramme
- ☐ Étudier les parallélogrammes particuliers

Définition 3. Parallélogramme

Un parallélogramme est un quadrilatère dont les diagonales se coupent en leur milieu.

- Le parallélogramme admet un centre de symétrie, le milieu des diagonales.
- Les cotés opposés du parallélogramme sont deux à deux parallèles et de même longueur.

Proposition 2. relative aux diagonales

- Un parallélogramme avec des diagonales de même longueur est un rectangle.
- Un parallélogramme avec des diagonales perpendiculaires est un rectangle.
- Un rectangle avec des diagonales perpendiculaires est un carré.
- Un losange avec des diagonales de même longueur est un carré.

Proposition 3. relative aux cotés

- Un parallélogramme avec deux cotés consécutifs de même longueur est un losange.
- Un parallélogramme avec deux cotés consécutifs perpendiculaires est un rectangle.
- Un losange avec deux cotés consécutifs perpendiculaires est un carré.
- Un rectangle avec deux cotés consécutifs de même longueur est un carré.

La translation

Utiliser des nombres pour calculer et résoudre des problèmes

- ☐ Étudier les parallélogrammes particuliers
- \square Mettre en œuvre un protocole de construction
- ☐ Faire le lien entre parallélogramme et translation

Définition 4. Translation

La **translation** d'un point A vers un point B est un glissement rectiligne de A vers B.

- B est l'**image** de A par la translation.
- Alors : AB = CD = EF
- Aucun point d'une figure n'est invariant par translation.

Proposition 4.

La translation conserve l'alignement, les longueurs, le parallélisme et la mesure des angles géométriques.

La rotation

Utiliser des nombres pour calculer et résoudre des problèmes

- $\hfill \square$ Comprendre l'effet d'une rotation sur une figure
- \square Mettre en œuvre un protocole de construction
- \square Faire le lien entre cercle et rotation

Définition 5. rotation

La **rotation** de centre Ω et d'angle θ transforme le point A en un point B tels que :

 $\Omega A = \Omega B$

et $\widehat{A\Omega B} = \theta$

Proposition 5.

La translation conserve l'alignement, les longueurs, le parallélisme et la mesure des angles géométriques.

Triangles égaux, semblables

Utiliser des nombres pour calculer et résoudre des problèmes

- ☐ Comprendre l'effet d'une homothétie sur une figure
- ☐ Cas d'égalité des triangles

Définition 6. Triangles semblables

Deux triangles sont **semblables** si les angles de l'un sont égaux aux angles de l'autre.

Proposition 6.

- **a.** Si deux triangles sont semblables alors les longueurs des cotés de l'un sont proportionnelles aux longueurs des cotés de l'autre.
- **b.** Si les longueurs des cotés de l'un sont proportionnelles aux longueurs des cotés de l'autre alors les deux triangles sont semblables.

Homothétie

Définition 7. Homothétie

Soit O un point fixe du plan et k un nombre non nul. Une homothétie est une transformation du plan qui à tout point M du plan associe le point M' du plan tel que

si k > 0: OM' = kOM et O, MetM' sont alignés dans cet ordre.

si k < 0: OM' = -kOM et M', OetM sont alignés dans cet ordre.

Voir les figures ci-dessus.

Théorème 7. Image des figures usuelles

L'image d'une droite d par une homothétie est une droite parallèle à d.

L'image d'un segment [AB] par une homothétie de rapport k est un segment [A'B'] tel que A'B' = kAB.

Théorème 8. Image des figures usuelles

L'image d'une figure usuelle \mathscr{F} par une homothétie est une figure usuelle \mathscr{F}' dont les dimensions sont multipliées

k, si k est positif

-k si k est négatif.

Remarque

Les aires d'une figure et de son image sont donc multipliées par k^2

Les volumes d'un solide et de son image sont donc multipliés par k^3 ou $-k^3$.

Les homothéties permettent des agrandissements et réductions de figures et de formes. De nombreux logiciels utilisent cette transformation.