link analysis

introduction to network science in Python (NetPy)

Lovro Šubelj University of Ljubljana 18th Jan 2022

link analysis

which web pages are most important?

- node centrality measures for (un)directed networks
- link analysis algorithms primarily for directed (web) graphs
 - Google search ranking PageRank [BP98, PBMW99]
 - hyperlink-induced topic search HITS [Kle99]

Sergey Brin

Lawrence Page

Jon Kleinberg

networkology LPP

- corrected LPP public bus transport network*
- n = 408 bus stops with $\langle k \rangle = 5.73$ connections
- giant component 95.3% nodes (6 components)
- "small-world" with $\langle C \rangle = 0.10$ and $\langle d \rangle = 14.43$
- "scale-free" with $\gamma = 2.60$ for cutoff $k_{min} = 5$

^{*} reduced to largest connected component

analysis PageRank

ranking algorithm for web page importance

— for directed G PageRank rank p [BP98] of i is – α is positive constant traditionally set $\alpha = 0.85$

$$p_i = \alpha \sum_j A_{ij} \frac{p_j}{k_j^{out}} + \frac{1 - \alpha}{n}$$

p_i probability random surfer with teleports lands on i

networkology PageRank

- PageRank ranks p in corrected LPP network
- highest p nodes are Razstavišče and Ajdovščina

#	bus stop	k_i	p _i
1	Razstavišče	43	0.010601
2	Ajdovščina	36	0.007694
3	Bežigrad	23	0.007161
4	Bavarski dvor	30	0.007013
5	Konzorcij	30	0.006884
6	Gosposvetska	30	0.006527
7	Stara cerkev	26	0.005485
8	Sava	12	0.005165
9	Tobačna	22	0.005136
10	Kino Šiška	18	0.004907
11	Medvode	4	0.004853
12	Tivoli	26	0.004838

analysis SimRank

ranking algorithm for web page similarity

— for directed G SimRank rank s [TFP06] for t of i is $-\alpha$ is positive constant traditionally set $\alpha = 0.85$

$$s_i^t = \alpha \sum_j A_{ij} \frac{s_j^t}{k_j^{out}} + (1 - \alpha)\delta_{it}$$

— s_i^t probability random surfer with teleport t lands on i

networkology SimRank

- SimRank ranks s in corrected LPP network
- highest s nodes for Razstavišče and Hajdrihova

#	bus stop	k_i	Si
1	Razstavišče	43	0.236115
2	Bavarski dvor	30	0.065124
3	Bezigrad	23	0.057260
4	Astra	16	0.047765
5	Ajdovščina	36	0.040099
6	Kozolec	10	0.038384
7	Gosposvetska	30	0.030981
8	Konzorcij	30	0.020278
9	Bavarski dvor	8	0.019262
10	Polje	10	0.014254
11	Stadion	8	0.013294
12	Topniška	8	0.013235

#	bus stop	k_i	si
1	Hajdrihova	14	0.201318
2	Tobačna	22	0.091186
3	Ilirija	12	0.051714
4	Stara cerkev	26	0.046825
5	Tabor	10	0.038395
6	Vič	16	0.034478
7	Avtomontaža	6	0.030372
8	Stan in dom	4	0.030296
9	Kino Šiška	18	0.028569
10	Tivoli	26	0.028180
11	Glince	8	0.027528
12	Na klancu	10	0.023836

analysis *HITS*

ranking algorithm for web hubs & authorities

- for directed G hub & authority ranks h & a [Kle99] of i
 - h is eigenvector of $A^T A$ with eigenvalue $(\alpha \beta)^{-1}$
 - a is eigenvector of AA^T with eigenvalue $(\alpha\beta)^{-1}$
 - α and β are appropriate positive constants

$$h_i = \alpha \sum_j A_{ji} a_j$$
 $a_i = \beta \sum_j A_{ij} h_j$

- a measures content and h measures table of content
- a = 0 for $k^{in} = 0$ nodes and h = 0 for $k^{out} = 0$ nodes

networkology *HITS*

- hub & authority ranks h & a in corrected LPP network
- highest h node is Ajdovščina and highest a node is Konzorcij

#	bus stop	k_i	h _i	#	bus stop	k_i	ai
1	Ajdovščina	36	0.715370	1	Konzorcij	30	0.656745
2	Razstavišče	43	0.455771	2	Bavarski dvor	30	0.512119
3	Tivoli	26	0.286178	3	Gosposvetska	30	0.235790
4	Drama	23	0.256027	4	Kozolec	10	0.224651
5	Gosposvetska	30	0.175142	5	Bežigrad	23	0.176839
6	Bavarski dvor	30	0.129155	6	Astra	16	0.172509
7	Pošta	9	0.111497	7	Stara cerkev	26	0.172482
8	Kolodvor	4	0.090644	8	Ajdovščina	36	0.161840
9	Konzorcij	30	0.083028	9	Razstavišče	43	0.110391
10	Tavčarjeva	7	0.069477	10	Tivoli	26	0.106024
11	Kozolec	10	0.068749	11	Bavarski dvor	8	0.096486
12	Stara cerkev	26	0.064760	12	Kolizej	4	0.088636

analysis references

S. Brin and L. Page.

The anatomy of a large-scale hypertextual Web search engine. Comput. Networks ISDN. 30(1-7):107–117, 1998.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge University Press, Cambridge, 2010.

J. M. Kleinberg.

Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, 1999.

Mark E. J. Newman.

Networks: An Introduction.
Oxford University Press, Oxford, 2010.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford University, 1999.

H. Tong, Christos Faloutsos, and Jia-Yu Pan.

Fast random walk with restart and its applications.

In Proceedings of the IEEE International Conference on Data Mining, pages 613–622, Washington, DC, USA, 2006.