@9(fkn)11(xH);-

7=9(17)

Пусть теперь z=f(x), т.е. $y=g(\underline{f(x)}).$ Найдем d^2y в этом случае. Имеем

$$d^{2}y = (g(f(x)))''dx^{2} = (g'(f(x))f'(x))'dx^{2} =$$

$$= (g''(f(x))(f'(x))^{2} + g'(f(x))f''(x))dx - (g''(z)dz^{2} + g'(z)d^{2}z)$$

Теоремы Ферма, Ролля, Лагранжа, Коши

Определение 4.11. Точка $x_0 \in X$ называется точкой локального максимума (минимума) функции $f: X \to \mathbb{R}$, если существует окрестность $U(x_0)$ точки x_0 такая, что

$$f(x) \le f(x_0) \quad \forall x \in X \cap U(x_0) \quad (f(x) \ge f(x_0) \quad \forall x \in X \cap U(x_0)).$$

Определение 4.12. Точка $x_0 \in X$ называется точкой строгого локального максимума (минимума) функции $f: X \to \mathbb{R}$, если существует окрестность $U(x_0)$ точки x_0 такая, что

$$f(x) < f(x_0) \quad \forall x \in X \cap \mathring{U}(x_0) \quad (f(x) > f(x_0) \quad \forall x \in X \cap \mathring{U}(x_0)).$$

Точки (строгого) локального максимума и минимума называются точками (строгого) экстремума.

Определение 4.13. Точка x_0 называется внутренней точкой множества X, если она принадлежит этому множеству вместе с некоторой своей окрестностью.

Теорема 4.9 (Ферма). Если функция $f: X \to \mathbb{R}$ имеет локальный экстремум во внутренней точке x_0 и дифференцируема в этой точ- $\kappa e, \ mo \ f'(x_0) = 0.$

Доказательство. Пусть, например, функция f(x) имеет локальный минимум в точке x_0 , то есть существует δ -окрестность $U(x_0, \delta)$ точки

минимум в точке
$$x_0$$
, то есть существует в-окрестность $\mathcal{C}(x_0, \theta)$ точки x_0 такая, что $f(x) - f(x_0) \ge 0 \quad \forall x \in X \cap U(x_0, \delta)$. Если $x \in (x_0 - \delta, x_0)$, то $x - x_0 < 0$ и
$$\frac{f(x) - f(x_0)}{x - x_0} \le 0,$$
 а если $x \in (x_0, x_0 + \delta)$, то выполняется неравенство

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0. \tag{4.18}$$

Xo

По условию теоремы функция f дифференцируема в точке x_0 , поэто-

$$f'_{-}(x_0) = f'_{+}(x_0) = f'(x_0). (4.19)$$

му $\int f'_{-}(x_0) = f'_{+}(x_0) = f'(x_0).$ (4.19) Перейдем к пределу при $x \to x_0 - 0$ в неравенстве (4.17). По свойствам пределов получим

 $\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$

то есть

$$f'_{-}(x_0) \le 0. (4.20)$$

Аналогично, переходя к пределу при $x \to x_0 + 0$ в неравенстве (4.18), получаем

$$f'_{+}(x_0) \ge 0. (4.21)$$

Из
$$(4.19)$$
 – (4.21) следует, что $f'(x_0) = 0$.

Из (4.19) – (4.21) следует, что $f'(x_0)=0$. \square Теорема 4.10 (Ролль). Пусть функция $f:[a,b]\to\mathbb{R}$ непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает равные значения на концах отрезка, то есть

$$f(a) = f(b). (4.22)$$

Тогда $\exists \ \xi \in (a,b)$ такая, что

$$f'(\xi) = 0. \tag{4.23}$$

Доказательство. Обозначим $M = \sup_{a \le x \le b} f(x), \ m = \inf_{a \le x \le b} f(x).$

Согласно второй теореме Вейерштрасса, на отрезке $\left[a,b\right]$ существуют точки c_1 и c_2 такие, что $f(c_1) = m, f(c_2) = M.$

Если m = M, то функция f является постоянной на отрезке [a, b],

поэтому в качестве ξ можно взять любую точку интервала (a,b). Если $m \neq M$, то n < M, и поэтому $f(c_1) < f(c_2)$ В силу условия (4.22), по крайней мере одна из точек c_1, c_2 является внутренней точкой отрезка [a,b]. Пусть, например, $c_1 \in (a,b)$. Тогда существует число $\delta > 0$ такое, что $U(c_1, \delta) \subset (a, b)$. Так как для всех $x \in U(c_1, \delta)$ выполняется условие $f(x) \ge f(c_1) = m$, то по теореме Ферма $f'(c_1) = 0$, то есть условие (4.23) выполняется при $\xi = c_1$. Аналогично рассматривается случай, когда $c_2 \in (a, b)$.

Теорема 4.11 (Лагранж). Пусть функция $f:[a,b] \to \mathbb{R}$ непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b). Тогда $\exists \ \xi \in (a,b)$:

 $f(b) - f(a) = f'(\xi)(b - a).$ (4.24)

Доказательство. Рассмотрим вспомогательную функцию

$$\varphi(x) = f(x) - \lambda x \tag{4.25}$$

и определим число λ так, чтобы $\varphi(a)=\varphi(b)$, то есть чтобы

$$f(a) - \lambda a = f(b) - \lambda b.$$

Это равносильно тому, что

$$\lambda = \frac{f(b) - \lambda a}{b - a}.$$

$$\lambda = \frac{f(b) - f(a)}{b - a}.$$

Для функции φ выполняются все условия теоремы Ролля. Действительно, функция f(x) непрерывна на отрезке [a, b], а функция λx , будучи линейной, непрерывна на всей числовой оси; поэтому и функция $\varphi(x) = f(x) - \lambda x$ также непрерывна на отрезке [a, b]. Функция f дифференцируема на интервале (a,b), а функция λx – во всех точках числовой оси, поэтому их разность $\varphi(x)$ также дифференцируема на интервале (a, b). Наконец, на концах отрезка [a, b], в силу выбора λ (см. (4.26)), функция φ принимает одинаковые значения. Поэтому $\exists \ \xi \in (a,b) : \varphi'(\xi) = 0$. Из (4.25) получаем $\varphi'(\xi) = f'(\xi) - \lambda$, поэтому $f'(\xi) - \lambda = 0$. Подставив сюда λ из (4.26), получим

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Формулу (4.24) называют формулой конечных приращений Лагранжа или просто формулой конечных приращений.

Теорема 4.12 (Коши). Пусть функции $f:[a,b] \to \mathbb{R}$ и $g:[a,b] \to \mathbb{R}$ непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0 \ \forall x \in (a,b)$. Тогда $\exists \ \xi \in (a,b)$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

 $\sqrt{-K}X+U$

7-4/1/(3/3/11) Y= f'(\)(x-3)+

9

Доказательство. Рассмотрим вспомогательную функцию

$$\varphi(x) = f(x) - \lambda g(x), \tag{4.28}$$

где число λ выберем таким образом, чтобы $\varphi(a)=\varphi(b)$, т.е. чтобы $f(a) - \lambda g(a) = f(b) - \lambda g(b)$. Для этого нужно взять

(4.29)1 (28)- 3(9)

Заметим, что $g(a) \neq g(b)$. В самом деле, если g(a) = g(b), то функция д удовлетворяла бы условиям теоремы Ролля и, значит, нашлась -410-41a бы точка $\zeta \in (a,b)$ такая, что $g'(\zeta) = 0$, что противоречило бы условиям теоремы.

Функция φ удовлетворяет всем условиям теоремы Ролля, следовательно, существует такая точка $\xi \in (a,b)$, что $\varphi'(\xi) = 0$. Но из (4.28) $\varphi'(x) = f'(x) - \lambda g'(x)$, поэтому

$$f'(\xi) - \lambda g'(\xi) = 0,$$

откуда следует, что

$$\lambda = \frac{f'(\xi)}{g'(\xi)}.\tag{4.30}$$

Сравнив (4.29) и (4.30), получим формулу (4.27), обычно называемую формулой конечных приращений Коши.

Отметим, что формула конечных приращений Лагранжа является частным случаем формулы конечных приращений Коши, в которой g(x) = x.

3∈(a,6) 41(3)=0 Y(x)= {(x)--) g'(v

Формула Тейлора

Если функция y = f(x) имеет в точке x_0 производную, то приращение этой функции можно представить в виде

$$\Delta y = A\Delta x + o(\Delta x), \quad \Delta x \to 0,$$

где $\Delta x = x - x_0$, $\Delta y = f(x) - y_0$, $y_0 = f(x_0)$ и $A = f'(x_0)$, то ести

$$f(x) = y_0 + A(x - x_0) + o(x - x_0), \quad x \to x_0.$$

Иначе говоря, существует линейная функция

$$P_1(x) = y_0 + A(x - x_0) (4.31)$$

QDX,

 $\nabla X = X - X^{\circ} \Rightarrow X = X^{\circ} + \nabla X$

GK-X) THGK+) (-X) 7+(-X) Z=(X) E

такая, что

$$f(x) = P_1(x) + o(x - x_0), x \to x_0,$$

причем $P_1(x_0) = y_0$, $P'_1(x_0) = A = f'(x_0)$.

Поставим более общую задачу. Пусть функция f имеет n производных в точке x_0 . Требуется выяснить, существует ли многочлен $P_n(x)$ степени не выше n такой, что

$$f(x) = P_n(x) + o((x - x_0)^n), \quad x \to x_0, \tag{4.32}$$

И

$$P_n(x_0) = f(x_0), P'_n(x_0) = f'(x_0), ..., P_n^{(n)}(x_0) = f^{(n)}(x_0).$$
 (4.33)

Будем искать этот многочлен по аналогии с формулой (4.31) в виде

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)^2 + \dots + A_n(x - x_0)^n.$$

Замечая, что $P_n(x_0) = A_0$, из первого условия (4.33), то есть условия $P_n(x_0) = f(x_0)$, получаем $A_0 = f(x_0)$. Далее,

$$P_n(x_0)=f(x_0)$$
, получаем $A_0=f(x_0)$. Далее,
$$P'_n(x)=A_1+2A_2(x-x_0)+...+nA_n(x-x_0)^{n-1},$$

отсюда $P_n'(x_0)=A_1$, и так как $P_n'(x_0)=f'(x_0)$, то $A_1=f'(x_0)$. Затем найдем вторую производную многочлена $P_n(x)$:

$$P_n''(x) = 2 \cdot 1 \cdot A_2 + \dots + n(n-1)A_n(x-x_0)^{n-2}$$

Отсюда и из условия $P_n''(x_0) = f''(x_0)$ получим $A_2 = \frac{f''(x_0)}{2!}$ и вообще

$$A_k = \frac{f^{(k)}(x_0)}{k!}, \ k = 0, 1, 2, ..., n.$$

В силу самого построения, для многочлена

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots$$

... +
$$\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + ... + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

выполнены все соотношения (4.33). Проверим, удовлетворяет ли он условию (4.32).

Сначала докажем следующую лемму.

P"(x0)-3"(x)

 $A_3 = \frac{1}{2}(x_0)$

Лемма 4.1. Пусть функции $\varphi(x)$ и $\psi(x)$ определены в δ -окрестности точки x_0 и удовлетворяют следующим условиям: для каждого $x \in U(x_0, \delta)$ существуют $\varphi^{(n+1)}(x)$ и $\psi^{(n+1)}(x)$;

$$\varphi(x_0) = \varphi'(x_0) = \dots = \varphi^{(n)}(x_0) = 0;$$
 (4.34)

$$\overline{\psi(x_0)} = \psi'(x_0) = \dots = \psi^{(n)}(x_0) = 0;$$
(4.35)

 $\psi(x) \neq 0, \ \psi^{(k)}(x) \neq 0 \ \text{dis} \ x \in \mathring{U}(x_0, \delta) \ u \ \text{dis} \ k = 1, 2, ..., n + 1.$

Тогда для каждого $x \in \mathring{U}(x_0, \delta)$ существует точка ξ , принадлежащая интервалу с концами x_0 и x такая, что

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}.$$
(4.36)

Доказательство. Пусть, например, $x \in (x_0, x_0 + \delta)$. Тогда, применяя к функциям φ и ψ на отрезке $[x_0, x]$ теорему Коши (см. § 4.7) и учитывая, что $\varphi(x_0) = \psi(x_0) = 0$ в силу условий (4.34) и (4.35), получаем

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi(x) - \varphi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)}, \quad x_0 < \xi_1 < x. \tag{4.37}$$

Аналогично, применяя к функциям φ' и ψ' на отрезке $[x_0, \xi_1]$ теорему Коши, находим

$$\frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \frac{\varphi'(\xi_1) - \varphi'(x_0)}{\psi'(\xi_1) - \psi'(x_0)} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)}, \quad x_0 < \xi_2 < \xi_1.$$
 (4.38)

Из равенств (4.37) и (4.38) следует, что

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)}, \quad x_0 < \xi_2 < \xi_1 < x < x_0 + \delta.$$

Применяя теорему Коши последовательно к функциям φ'' и ψ'' , $\varphi^{(3)}$ и $\psi^{(3)},...,$ $\varphi^{(n)}$ и $\psi^{(n)}$ на соответствующих отрезках, получаем

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \dots = \frac{\varphi^{(n)}(\xi_n)}{\psi^{(n)}(\xi_n)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)},$$

где $x_0 < \xi < \xi_n < \dots < \xi_1 < x < x_0 + \delta$.

Равенство (4.36) доказано для случая, когда $x \in (x_0, x_0 + \delta)$. Аналогично рассматривается случай, когда $x \in (x_0 - \delta, x_0)$.

