Estructuras de Datos y Algoritmos Tema 1: Análisis de Algoritmos

Departamento de Informática Universidad de Valladolid

Curso 2011-12

Grado en Ingeniería Informática Grado en Ingeniería Informática de Sistemas

1. MEDIDA DE ALGORITMOS

Análisis de Algoritmos

- Estudio teórico de la eficiencia de un algorítmo
- Eficiencia: Medida del coste en el uso de recursos que necesita el algoritmo para llevar a cabo su tarea.
- Recursos más importantes:

 - Espacio de almacenamiento
- La medida se denomina complejidad del algoritmo.
- Otros aspectos (contemplados en otras asignaturas):
 - Funcionalidad
 - Robustez
 - Modularidad
 - Mantenibilidad

- Facilidad de uso
- Extensibilidad
- Corrección
- ...

Búsqueda Secuencial

```
type
 TDato = ...;
  // Array dinámico (indices 0-based)
  TVector = array of TDato;
{ Devuelve el índice donde se encuentra la primera
  aparición de x en V o -1 si no existe }
function Busqueda(const V: TVector; x: TDato): integer;
var
 n,i : integer;
begin
  i := 0; n := length(V); \{ N^{o} \ de \ elementos \ de \ V \}
  while (i < n) and (V[i] <> x) do i := i+1;
  if i < n then Busqueda := i else Busqueda := -1</pre>
end;
```


- Dependencia con el <u>tamaño</u> de la entrada: No se tarda lo mismo en buscar en un vector de 10 elementos que buscar en uno de 1.000.000
- Dependencia de <u>valores</u> de la entrada: Aunque fijemos el tamaño del vector, no se tarda lo mismo en buscar un valor que está en la primera posición que otro que no esté en el vector.
- Depencia del <u>procesador</u>: Aunque fijemos el tamaño y los valores concretos del vector y el valor buscado, el algoritmo tardará tiempos distintos en ordenadores diferentes.

Dependencia del procesador

- **Solución**: No medir tiempo (segundos, por ejemplo), sino el número de **operaciones elementales** ejecutadas.
- Operación Elemental: Toda operación que tarda un tiempo constante en cualquier procesador razonable.
 - Tipicamente se consideran elementales las asignaciones, operaciones aritméticas y relacionales con tipos de datos de tamaño fijo, acceso a arrays.
 - En general se cuenta sólo un tipo de operación concreta (la más relevante para la eficiencia del algoritmo)
 - Conociendo el número de operaciones y lo que tarda cada una en procesador concreto, se puede hallar el tiempo para ese procesador.
 - Medida independiente del procesador.

- Definición estricta: El mínimo número de bits necesario para representar la parte no precalculable de la entrada del algoritmo.
- **Definición útil**: Uno o más valores relacionados con los datos de entrada que sirven de parámetros para expresar las funciones que miden el uso de recursos del algoritmo.
 - En el caso de algoritmos que trabajan sobre colecciones de datos, suele ser el número de datos que contienen.
 - Para algoritmos de cálculo con enteros de tamaño arbitrario, se suele usar el número de bits de esos enteros (se tratan como arrays de bits).
 - El tamaño de la entrada puede indicarse por más de un valor (siempre enteros positivos).

- Solución: Expresar la complejidad no mediante un valor sino por una función cuyo parámetro(s) es el tamaño de la entrada.
 - El tamaño de la entrada, si es un único valor, se suele denominar n.
 - La complejidad temporal se denominará mediante la función T(n), y la espacial por E(n).
- De esa función nos interesa, más que su forma concreta, su ritmo de crecimiento.
 - Nos da la idea de como escala un algoritmo: Cómo crece su complejidad cuando aumenta el tamaño de la entrada.

Dependencia con los valores

- Solución: Dividir el análisis en casos.
 - Analizar subconjuntos de las entradas cuya complejidad es la misma para todos las entradas de ese subconjunto. (análisis de peor y mejor caso)
 - Calcular un promedio, dada una distribución estadística de las entradas. Tipicamente se supone que todas las posibles entradas son equiprobables. (análisis de caso promedio y de tiempo amortizado)
- Nota: Estos análisis trabajan sobre entradas de un tamaño fijo (aunque no especificado).
 - Subnota: Aunque en el análisis de tiempo amortizado realmente las entradas varían de tamaño, el ignorar este hecho no suele tener consecuencias adversas.

- Análisis en el peor caso: Calcula la complejidad del algoritmo para las entradas (del mismo tamaño) que máximizan la complejidad.
 - $T_{peor}(n) = máx\{ T(n, entrada) \}$ para toda entrada de tamaño n.
 - Suele ser el caso más relevante (hay excepciones).
- Análisis en el mejor caso: Calcula la complejidad del algoritmo para las entradas (del mismo tamaño) que minimizan la complejidad.
 - $T_{\text{mejor}}(n) = \min\{ T(n, entrada) \}$
 - No suele ser un caso relevante.

Búsqueda Secuencial

```
type
 TDato = ...;
  // Array dinámico (indices 0-based)
  TVector = array of TDato;
{ Devuelve el índice donde se encuentra la primera
  aparición de x en V o -1 si no existe }
function Busqueda(const V: TVector; x: TDato): integer;
var
 n,i : integer;
begin
  i := 0; n := length(V); \{ N^{o} \ de \ elementos \ de \ V \}
  while (i < n) and (V[i] <> x) do i := i+1;
  if i < n then Busqueda := i else Busqueda := -1</pre>
end;
```


- Operación elemental: Elegimos contar comparaciónes en las que intervenga un elemento del vector.
- Tamaño de la entrada: Elegimos tomar como tamaño de entrada el número de elementos del vector.
- **Peor Caso**: Para vectores de tamaño n, las entradas que hacen que el algoritmo trabaje más son aquellas en que el valor buscado no se encuentra en el vector.

$$T_{peor}(n) = n \text{ comparaciones}$$

 Mejor Caso: Las entradas que hacen que el algoritmo trabaje menos son aquellas en que el valor buscado está en la primera posición del vector.

$$T_{\text{meior}}(n) = 1 \text{ comparación}$$

- Calcula el promedio de la complejidad del algoritmo para todas las entradas posibles (del mismo tamaño).
 - Supondremos que todas las entradas son equiprobables
 - Llamaremos s a una entrada cualquiera del algoritmo.
 - Llamamos S_n al conjunto de todas las posibles entradas de tamaño n.
 - S_n denota el número de elementos de S_n

$$T_{med}(n) = \frac{\sum_{\forall s \in S_n} T(n, s)}{|S_n|}$$

- Suele ser mas sencillo agrupar las entradas en conjuntos de aquellas entradas para las que el algoritmo tarda lo mismo.
 - Suele pasar que las entradas para las que el algoritmo da la misma respuesta tardan lo mismo
 - Llamamos $S_{n,t}$ al subconjunto de S_n formado por las entradas que tardan un tiempo t.
 - Llamamos R al conjunto de todos los tiempos posibles (valores enteros) que puede tardar el algoritmo con entradas de tamaño n.

$$T_{med}(n) = \sum_{t \in R} \frac{|S_{n,t}|}{|S_n|} \cdot t$$
Probabilidad de que una entrada provoque t operaciones

- Elegimos restringir el análisis a búsquedas exitosas (el valor buscado está en el vector).
- El conjunto R (número de posibles comparaciones que puede realizar el algoritmo) es $\lceil 1..n \rceil$.
- El conjunto $S_{n,t}$ es el conjunto de todos los vectores posibles de tamaño n y de posibles valores de búsqueda para los que el algoritmo realiza t operaciones \rightarrow el valor buscado está en la posición t-1.
- Todos los subconjuntos $S_{n,t}$ tienen el mismo tamaño (es equiprobable el encontrar el valor en cualquier posición)

$$\frac{|S_{n,t}|}{|S_n|} = \frac{1}{n} \Rightarrow T_{med}(n) = \sum_{t \in [1..n]} t/n = \frac{n+1}{2}$$

- Da una idea mucho más ajustada de cómo se comporta el algoritmo para entradas cualesquiera, o para muchas ejecuciones independientes del mismo.
- Pero puede ser muy difícil de analizar.
- Sólo se indica para aquellos algoritmos en los que el caso promedio difiere significativamente del peor caso (ejemplo: quicksort).
- Cuando un algoritmo se ejecuta muchas veces, pero las ejecuciones no son independientes (se actualiza un conjunto de datos, por ejemplo) se suele usar el análisis de tiempo amortizado.

- En vez de promediar sobre distintas entradas, se promedia sobre una serie de ejecuciones de un algoritmo.
 - Se utiliza cuando la entrada del algoritmo se modifica en cada ejecución (ejemplo: operaciones de inserción en un conjunto de datos).
 - Es importante cuando las entradas tienen sólo peor y mejor caso, sin casos intermedios..
 - .. y la ejecución de un peor caso garantiza que un determinado número de las siguientes ejecuciones pertenezcan al mejor caso.
 - Si se da esta situación, se promedia una serie de ejecuciones [peor caso + mejores casos garantizados].

- Sea un algoritmo con las siguientes características:
 - La aplicación realiza una serie de ejecuciones, cada una de ellas tomando la entrada actualizada por la anterior.
 - Un peor y mejor caso $T_{peor}(n)$ y $T_{mejor}(n)$.
 - La ejecución del peor caso garantiza que las siguientes f(n) ejecuciones serán del mejor caso.
 - El tiempo amortizado se calcula como:

$$T_{amort}(n) = \frac{T_{peor}(n) + f(n) \cdot T_{mejor}(n)}{1 + f(n)}$$

• **Nota**: En realidad, en un cálculo riguroso se debería sustituir $f(n) \cdot T_{mejor}(n)$ por un sumatorio que refleje el cambio de n en las subsiguientes operaciones.

- Se dispone de un array parcialmente lleno (capacidad m, número de elementos n) y se diseñan dos estrategias de inserción:
 - En ambos casos, si n < m (existe espacio libre), se inserta al final de los elementos existentes (una operación)
 - Si n = m (vector lleno) se crea un nuevo vector más grande y se copian los n elementos del antiguo en él.
 - La primera estrategia crea un vector con 100 posiciones extra.
 - La segunda estrategia crea un vector con *n* posiciones extra (duplica la capacidad del antiguo).

Análisis

• **Peor caso**: El peor caso se da cuando se inserta en un vector lleno. En ambas estrategias, se deben copiar los *n* elementos existentes e insertar el antiguo, por lo que:

$$T_{peor}(n) = n+1$$

 Mejor caso: Cuando el vector no está lleno sólo se debe realizar una inserción:

$$T_{\text{mejor}}(n) = 1$$

• Caso promedio: No es aplicable, ya que los valores de las entradas no influyen en el tiempo, tan sólo si el vector está lleno o no, y a priori no se puede saber la probabilidad de esa situación para una ejecución aislada.

• **Primer escenario**: Si el algoritmo amplia el vector en 100 posiciones, esto garantiza que tras un inserción en un vector lleno las siguientes 99 inserciones caerán en el mejor caso:

$$T_{amort}(n) = \frac{(n+1) + 99 \cdot 1}{1 + 99} = \frac{n}{100} + 1$$

• **Segundo escenario:** Si el algoritmo duplica la capacidad del vector, esto garantiza que tras cada inserción en un vector lleno las siguientes n-1 inserciones caerán en el mejor caso:

$$T_{amort}(n) = \frac{(n+1) + (n-1) \cdot 1}{1 + (n-1)} = 2$$

Primer escenario

Segundo escenario

- El análisis de la complejidad temporal consiste en contar el número de operaciones elementales
 - El tiempo se acumula (a diferencia del espacio)
 - Una secuencia de operaciones se computa sumando los tiempos de los bloques que la forman.
 - Una bifurcación requiere un análisis por casos.
 - Las iteraciones requieren el calcular el número de repeticiones (puede no ser sencillo o requirir análisis por casos). También hay que analizar si el tiempo de cada repetición es constante o no:
 - Si → Multiplicar.
 - No → Sumatorios.

$$\sum_{i=c_1}^{n\pm c_2} (i\pm c_3)^a = \frac{n^{a+1}}{a+1} + O(n^a)$$

- El análisis de la complejidad espacial consiste en determinar el máximo espacio extra de almacenamiento que necesita el algoritmo.
 - No se tiene en cuenta el espacio que ocupan los datos de entrada (se supondrá siempre paso por variable).
 - Se cuenta el espacio necesario para las variables locales y los resultados.
 - Tambien las operaciones de creación de objetos, variables dinámicas y ampliación de arrays (no suelen aparecer en los algoritmos que examinaremos)
 - Las **llamadas a subprogramas** necesitan el espacio que dicte el subprograma como necesario para su ejecución.

- Supongamos un programa que llama en secuencia a 3 subprogramas A, B y C que necesitan un espacio de almacenamiento de $E_{\rm A}$, $E_{\rm B}$ y $E_{\rm C}$, respectivamente.
 - Tras la ejecución de cada subprograma la memoria extra que necesita se libera.
 - Por lo tanto el espacio extra del algoritmo no es la suma de esos valores, sino su máximo.

 EL max(EA, EB, EC)
 - E_L = Espacio vars. locales

$$E = max\{E_A, E_B, E_C\} + E_L$$
$$= E_B + E_L$$

Otros factores

- Existen otros factores que se pueden tener en cuenta a la hora de valorar la eficiencia de algoritmos:
 - Localización: Un algoritmo hace uso localizado de memoria si tras cada acceso existe una gran probabilidad de que el siguiente acceso sea a una posición cercana. Es importante en sistemas con memoria jerárquica (caches).
 - **Paralelización**: Posibilidad de dividir un algoritmo en tareas independientes. Importante en sistemas con múltiples procesadores.
 - **Gestión de memoria**: Secuencia que sigue un algoritmo a la hora de crear objetos. Importante en sistemas con recolección de basura (garbage collector).

2. NOTACIÓN ASINTÓTICA

Definición matemática

Dada una función f(n) la notación O(f(n)) representa al conjunto de funciones con la siguiente propiedad:

$$g(n) \in O(f(n)) \Leftrightarrow \exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : g(n) \le c \cdot f(n)$$

- El conjunto O(f(n)) se denomina conjunto de cotas superiores generado por f(n).
- Toda función que pertenece a O(f(n)) se dice que está acotada superiormente por f(n).
- Definición alternativa: $g(n) \in O(f(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = \begin{cases} 0 & \text{or } g(n) \text{ mas lenta que } f(n) \\ cte & \text{otherwise} \end{cases}$

El conjunto O(f(n)) representa a las funciones que:

- Tienen un ritmo de crecimiento **igual o menor** que f(n)
- No importan las constantes de proporcionalidad (positivas) por las que esté multiplicada la función (podemos ajustar el valor de c en la definición)
- Solo importa el comportamiento para valores de n grandes, tendentes a infinito (podemos elegir n_0 como queramos)
- Nota: Las funciones con las que tratamos son no decrecientes, positivas y con parámetros enteros positivos.

Representación gráfica

Ejemplos

- $\xi 3 \cdot n^2 \in O(n^2)$?
 - Aplicando la definición se debe cumplir:

$$\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : 3 \cdot n^2 \le c \cdot n^2$$

- Es cierto, escogiendo n_0 = 0, cualquier c > 3
- ¿n/10 ∈ O(n²)?

$$\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : n/10 \le c \cdot n^2$$

- Es cierto escogiendo n_0 = 0, cualquier c > 0.1

$$\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : 0.01 \cdot n^3 \le c \cdot n^2$$

Ejemplos

- - Aplicando la definición se debe cumplir:

$$\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : 3 \cdot n^2 \le c \cdot n^2$$

- Es cierto, escogiendo n_0 = 0, cualquier c > 3
- ¿n/10 ∈ O(n²)? Si $\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : n/10 \le c \cdot n^2$
 - Es cierto escogiendo n_0 = 0, cualquier c > 0.1

$$\exists n_0 \in \mathbb{Z}^+, c \in \mathbb{R}^+ : \forall n > n_0 : n \leq 100 \cdot c$$

Utilidad

Sustituir en expresiones la función g(n) (complicada, detallada) por O(f(n)) (donde f(n) es más sencilla)

- En general f(n) y g(n) tendrán el mismo ritmo de crecimiento (cotas ajustadas).
- Perdemos precisión (constantes de proporcionalidad y términos que crecen más lentamente que el dominante)
- Ganamos generalidad: Muchas expresiones distintas pasan a estar representadas por una sola, usando el criterio de crecimiento de la función
- El cálculo con notación asintótica es mucho más sencillo
- Las comparaciones (basadas en ritmo de crecimiento) entre funciones son inmediatas.

Propiedades

- $f(n) \in O(f(n))$: Paso de expresión a notación asintótica.
- $O(k \cdot f(n)) \equiv O(f(n))$: Las constantes de proporcionalidad se omiten.
- $O(f(n) + g(n)) \equiv O(\max\{f(n), g(n)\})$: Sólo importa el término de mayor crecimiento.
- $O(f(n) g(n)) \equiv O(f(n))$ si g(n) crece más lentamente que f(n), en caso contrario no se puede simplificar.
- Los productos y divisiones pueden incorporarse a la notación O-grande sin problemas.
- Dentro de la O-grande se debe usar la función más sencilla posible!

Clasificación de funciones según su crecimiento:

- $T(n) \in O(1) \Rightarrow T(n) = cte$: Funciones constantes, que no dependen del tamaño de la entrada.
- $T(n) \in O(n^{1/a})$, $a \to \infty$: Funciones subpolinómicas, crecen más lentamente que cualquier polinomio.
- $T(n) \in O(n^a)$: Funciones polinómicas, existe un polinomio que las acota.
- $T(n) \not\in O(n^a)$, $a \to \infty$: Funciones no polinómicas, crecen más rápido que cualquier polinomio.

Comparación (I)

Un algoritmo resuelve un problema con n = 100 en 1 seg. Cambiamos el ordenador por uno 10 veces más rápido. ¿Cuál es ahora el tamaño para el que tardará 1 seg.?:

Tipo	Orden	Tamaño	Ejemplo
Constante	O(1)	Ilimitado	Acceso array
Subpolinómico	O(log n)	100 trillones	Búsqueda binaria
	O(log² n)	2.111.136	Planos ocultos (Doom)
Polinómico	O(n ^{1/2})	10.000	Test primalidad
	O(n)	1.000	Búsqueda secuencial
	O(n·log n)	703	Ordenación, FFT
	O(n²)	316	Ordenación (básica)
	O(n ³)	215	Multiplicación matrices
No polinómico	O(2 ⁿ)	103	Problema SAT
	O(n!)	101	Problema del viajante

Comparación (II)

Un algoritmo resuelve un problema con n = 1.000 en 1 seg. ¿Cuanto tardará en resolver el problema para un tamaño 10 veces mayor (n = 10.000)?:

Tipo	Orden	Tiempo	Ejemplo
Constante	O(1)	1 seg.	Acceso array
Subpolinómico	O(log n)	1,3 seg.	Búsqueda binaria
	O(log² n)	1,8 seg.	Planos ocultos (Doom)
Polinómico	O(n ^{1/2})	3,2 seg.	Test primalidad
	O(n)	10 seg.	Búsqueda secuencial
	O(n·log n)	13,3 seg.	Ordenación, FFT
	O(n²)	100 seg.	Ordenación (básica)
	O(n ³)	17 min.	Multiplicación matrices
No polinómico	O(2 ⁿ)	Infinito	Problema SAT
	O(n!)	Infinito	Problema del viajante

Uso habitual

La notación asintótica se usa para trabajar con una expresión con el nivel de detalle adecuado:

- Sea $T(n) = 3n^2 5n + 34$. Se puede convertir en:
- $T(n) = 3n^2 5n + O(1)$
- $T(n) = 3n^2 + O(n)$ Atención: La O-grande siempre sumando
- $T(n) = O(n^2)$

- Nota: Se debería usar ∈ en vez de =, pero la convención matemática permite este abuso de lenguaje.

Cuando sustituimos g(n) por O(f(n)), f(n) debe ser una función de **igual** o **mayor** crecimiento que g(n)

- Salvo que se diga lo contrario, se supone que el crecimiento es igual.
- En ese caso se dice que la cota es ajustada.
- Puede haber situaciones (para simplificar cálculos, sobre todo) en que la cota obtenida no tiene garantías de estar ajustada: En ese caso debe indicarse explícitamente.
- También es posible que la cota no esté ajustada porque se refiera al peor caso de un algoritmo.

- $\Omega(f(n))$: Cota inferior. Funciones que crecen igual o más rápido que f(n).
- $\Theta(f(n))$: Cota estricta. Funciones que crecen al mismo ritmo que f(n).
- $\omega(f(n))$: Cota inferior exclusiva. Funciones que crecen más rápido (no igual) que f(n).
- O(f(n)): Cota superior exclusiva (o-pequeña). Funciones que crecen más lentamente (no igual) que f(n).

$$\sum_{i=c_1}^{n-c_2} (i+c_3)^a = \frac{n^{a+1}}{a+1} + O(n^a)$$

$$\sum_{i=c_1}^{n-c_2} O(i^a) = O(n^{a+1})$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1)$$

$$\log_b n = \frac{\log_c n}{\log_c b} = cte \cdot \log_c n \equiv O(\log n)$$


```
type TVector = array of TDato;
procedure OrdIns(var V: TVector);
var n,i,j : integer;
    tmp : TDato;
begin
  n := length(V); \{ N^{o} \ de \ elementos \ de \ V \}
  for i := 1 to n-2 do
  begin
    j := i-1; tmp := V[i];
    while (j > 0) and (V[j] > tmp) do
    begin
     V[j+1] := V[j]; j := j-1
    end;
    V[j+1] := tmp
  end
end;
```



```
A DILICANIA
```

```
type TVector = array of TDato;
procedure OrdIns(var V: TVector);
var n,i,j : integer;
    tmp : TDato;
begin
  n := length(V); \{ N^{o} \ de \ elementos \ de \ V \}
  for i := 1 to n-1 do
  begin
   j := i-1; tmp := V[i];
                                           Peor caso:
   while (j > 0) and (V[j] > tmp) do
                                           i comp
                                             i+2 movs
    begin
    V[j+1] := V[j]; j := j-1
                                           Mejor caso:
                                             1 comp
    end;
   V[j+1] := tmp
                                             2 movs
  end
end;
```


Movimientos, peor caso, exacto:

$$T_{peor}^{movs}(n) = \sum_{i=1}^{n-1} (i+2) = \frac{n^2}{2} + \frac{3n}{2} - 3$$

Movimientos, peor caso, notación asintótica:

$$T_{peor}^{movs}(n) = \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} O(1) = \frac{n^2}{2} + O(n) + O(n) = \frac{n^2}{2} + O(n)$$

$$T_{peor}^{movs}(n) = \sum_{i=1}^{n-1} O(i) = O(n^2)$$

3. RELACIONES DE RECURRENCIA


```
function EsPrimo(n: integer): boolean;
var d : integer;
begin
    d := 2;
    while (d*d <= n) and (n mod d <> 0) do d := d+1;
    EsPrimo := d*d > n;
end;
```

```
function NumPrimos(n: integer): integer;
var sum,i : integer;
begin
   sum := 0;
   for i :=1 to n do
       if EsPrimo(i) then sum := sum+1;
   NumPrimos := sum;
end;
```

$$-\sum_{i=1}^{n} O(\sqrt{i}) = O(n^{3/2})$$

Queremos contar el número de productos en función del valor de n:

```
function Fact(n: integer): integer;
begin
  if n <= 1 then
    Fact := 1
  else
    Fact := n * Fact(n-1);
end;</pre>
```



```
function Fact(4): integer;
begin
  if 4 <= 1 then Fact := 1 else Fact := 4 * Fact(3);</pre>
end;
if 3 <= 1 then Fact := 1 else Fact := 3 * Fact(2);</pre>
if 2 <= 1 then Fact := 1 else Fact := 2 * Fact(1);</pre>
if 1 <= 1 then Fact := 1 else Fact := 2 * Fact(1);</pre>
```


Arbol de llamadas

```
THE STATE OF THE S
```

```
function Fact(4): integer;
begin
  if 4 <= 1 then Fact := 1 else Fact := 4 * 6;</pre>
end;
if 3 <= 1 then Fact := 1 else Fact := 3 * 2;</pre>
if 2 <= 1 then Fact := 1 else Fact := 2 * 1;</pre>
if 1 <= 1 then Fact := 1 else Fact := 2 * Fact(1);</pre>
```

Evaluación con Recursividad

- La solución pasa por establecer una ecuación donde la incognita sea la **función** de medida del tiempo o espacio: T(n) o E(n).
- Las ecuaciones donde las incognitas son funciones, no variables, se denominan relaciones de recurrencia.
- El tiempo o espacio de las llamadas recursivas se representan por T(n) o E(n) con el parámetro adecuado.
- Las resolveremos por sustitución o aplicación del teorema maestro.


```
function Fib(n: integer): integer;
begin
  if n = 1 then Fib := 1 else
  if n = 2 then Fib := 1 else
    Fib := Fib(n-1) + Fib(n-2);
end;
```

$$T(n) = T(n-1) + T(n-2) + O(1)$$

$$E(n) = max\{E(n-1), E(n-2)\} + O(1)$$
$$= E(n-1) + O(1)$$

Arbol de llamadas (Fibonacci)

Tiempo $\equiv N^o$ de nodos

$$T(n) = a \cdot T(n-b) + O(n^k)$$
 $T(n) = a \cdot T(n/b) + O(n^k)$

$$\begin{cases} T(n) \in O(n^{k+1}) & \text{si } a = 1 \\ T(n) \in O(a^{n/b}) & \text{si } a > 1 \end{cases}$$

$$T(n) = a \cdot T(n/b) + O(n^k)$$

$$\begin{cases} T(n) \in O(n^{k+1}) & si \ a = 1 \\ T(n) \in O(a^{n/b}) & si \ a > 1 \end{cases} \begin{cases} T(n) \in O(n^k) & si \ a < b^k \\ T(n) \in O(n^k \log n) & si \ a = b^k \\ T(n) \in O(n^{\log_b a}) & si \ a > b^k \end{cases}$$

 Existen problemas a cuya relación de recurrencia no se puede aplicar el teorema maestro (llamadas con parámetros distintos). Por ejemplo, la función Fibonacci:

$$T(n) = T(n-1) + T(n-2) + O(1)$$

 En estos casos, lo que podemos es resolver versiones de mayor y menor crecimiento de la relación de recurrencia.

$$H(n) = 2 \cdot H(n-1) + O(1) \Rightarrow H(n) \in O(2^n)$$

$$L(n) = 2 \cdot L(n-2) + O(1) \Rightarrow L(n) \in O(2^{n/2})$$

 En este caso H(n) es mayor que T(n) por lo que actua como cota superior suya. L(n) es menor que T(n), y actua como cota inferior. Lo podemos expresar así:

$$T(n) \in O(2^n), T(n) \notin O(2^{\frac{n}{2}})$$

4. ALGORITMOS DE ORDENACIÓN

Taxonomía

Algoritmos Directos:

- Inserción
- Selección
- Intercambio (burbuja)

$$T(n) \in O(n^2)$$
$$E(n) \in O(1)$$

Algoritmos Avanzados:

- Ordenación por fusión (mergesort)
- Ordenación rápida (quicksort)*
- Ordenación por montículos (heapsort)

$$T(n) \in O(n \log n)$$

Caso promedio

Algoritmos No Universales:

- Residuos-Recuento
- Radix sort

$$T(n,p,q) \in O(p \cdot n + p \cdot q)$$

 $T(n,m) \in O(n \log m)$

- **Universal / Específico**: Un método es universal si está basado en **comparaciones**. Es específico si se basa en propiedades especiales de los datos.
- **Tipo de acceso**: Existen algoritmos que requieren **acceso indexado** en O(1) a los elementos (**arrays**). Si tan sólo se requiere **acceso secuencial**, el algoritmo se puede aplicar a otras estructuras de datos (listas enlazadas, etc.)
- **Sobre el propio vector**: Algunos algoritmos actuan sobre el propio vector y otros requieren que el resultado se proporcione sobre **otro vector** distinto del original.
- **Estabilidad**: Una estrategia de ordenación es **estable** si mantiene el **orden original** de los elementos con **claves iguales** y ello no supone una pérdida de eficiencia.

Ordenación de un vector por el campo clave "Apellido":

Apellido	Nombre	
Rodriguez	Angel	
Sánchez	Beatriz	
Sánchez	Javier	
Pérez	Laura	
Rodríguez	Miguel	
Pérez	Nacho	
Pérez	Roberto	

Vector original

Apellido	Nombre
Pérez	Laura
Pérez	Nacho
Pérez	Roberto
Rodriguez	Angel
Rodríguez	Miguel
Sánchez	Beatriz
Sánchez	Javier

Ordenación estable

Apellido	Nombre	
Pérez	Nacho	
Pérez	Roberto	
Pérez	Laura	
Rodriguez	Angel	
Rodríguez	Miguel	
Sánchez	Javier	
Sánchez	Beatriz	

Ordenación no estable

No puede existir ningún algoritmo de ordenación basado en comparaciones cuyo tiempo de ejecución tenga una cota menor que $O(n \log n)$

- El espacio de posibles soluciones tiene un tamaño n!
 (posibles permutaciones de un vector de n elementos)
- De ese espacio el algoritmo debe encontrar el único vector resultado (aquel que está ordenado)
- Cada comparación proporciona un bit de información
- Un algoritmo perfecto usaría cada comparación para obtener un bit del índice al espacio de permutaciones
- Ese índice contiene $log_2(n!)$ bits.

 $\log_2(n!) \in O(n \log n)$

En los siguientes programas se usa la notación:

- Los arrays son dinámicos, indexados por 0.. y su número de elementos (longitud) se calcula con la función *length*.
- La operación de intercambio entre elementos del vector (tmp := v[i]; v[i] := v[j]; v[j] := tmp) se representa de forma abreviada como v[i] ⇔ v[j]
- Se marcan en rojo las comparaciones entre elementos del vector y en violeta los movimientos o intercambios entre elementos del vector.
- Las comparaciones se realizan entre los elementos, para simplificar la notación. En la vida real se usaran campos clave de los elementos o funciones comparadoras.


```
type TVector = array of TDato;
procedure OrdIns(var V: TVector);
var n,i,j : integer;
    tmp : TDato;
begin
  n := length(V); \{ N^o \ de \ elementos \ de \ V \}
  for i := 1 to n-2 do
  begin
    j := i-1; tmp := V[i];
    while (j > 0) and (V[j] > tmp) do
    begin
     V[j+1] := V[j]; j := j-1
    end;
    V[j+1] := tmp
  end
end;
```

Propiedades (Ord. Inserción)

- Eficiencia $O(n^2)$
 - Espacio *O*(1)
 - Peor caso (vector orden inverso): $n^2/2 + O(n)$
 - Mejor caso (vector ordenado): O(n)
 - Promedio: $n^2/4 + O(n)$
 - Las fórmulas son iguales para movimientos y comparaciones
- Método universal
- Acceso secuencial: Sólo si el acceso es bidireccional (por ejemplo listas doblemente enlazadas)
- Estable
- Adaptativo
- Sobre el propio vector

Ordenación por Selección

```
type TVector = array of TDato;
procedure OrdSel(var V: TVector);
var
  n,i,j,jmin : integer; { Tmp : TDato; }
begin
  n := lenght(V); { V: array[0..N-1] of TDato }
  for i := 0 to n-2 do
  begin
    { Búsqueda del menor de zona no ordenada }
    jmin := i;
    for j := i+1 to N-1 do
      if V[j] < V[jmin] then jmin := j;</pre>
    { Intercambio menor <-> primero zona no ord. }
   V[i] ⇔ V[jmin]
  end
end;
```

Propiedades (Ord. Selección)

- Eficiencia $O(n^2)$ [$O(n^2)$ comparaciones, O(n) movimientos]
 - Espacio *O*(1)
 - Siempre hace el mismo número de operaciones
 - Comparaciones: $n^2/2 + O(n)$
 - Movimientos: 3n
- Método universal
- Acceso secuencial: Sólo si el acceso permite marcas (marcar un punto y poder volver a él)
- No Estable (V[I] puede saltar por delante de elementos iguales)
- No adaptativo
- Sobre el propio vector

Ordenación burbuja

```
type TVector = array of TDato;

procedure OrdBur(var V: TVector);
var
   n,i,j : integer; { Tmp : TDato; }
begin
   n := Lenght(V); { V: array[0..N-1] of TDato }
   for i := 0 to n-2 do
     for j := n-1 downto i+1 do
        if V[j] > V[j+1] then
        V[j] ⇔ V[j+1]
end;
```

Propiedades (Ord. Burbuja)

- Eficiencia $O(n^2)$
 - Espacio *O*(1)
 - Comparaciones: $n^2/2 + O(n)$
 - Movimientos:
 - 0 mejor caso
 - $3n^2/4 + O(n)$ promedio
 - $3n^2/2 + O(n)$ peor caso
- Método universal
- Acceso secuencial: Sólo si el acceso es bidireccional
- Estable
- No adaptativo
- Sobre el propio vector

Ordenación por Fusión

```
procedure OrdFus(var V: TVector);
var W : TVector; { Vector temporal }
begin
 SetLength(W,Length(V)); { Crear vector extra }
 OrdFusRec(V,W,0,Length(V)-1) { Ordenar recurs. todo el vector }
end;
procedure OrdFusRec(var V,W: TVector; Ini,Fin: integer);
{ Ordena V[Ini..Fin] }
var Med,I : integer;
begin
  if Ini < Fin then</pre>
  begin
   Med := (Ini+Fin) div 2;
   OrdFusRec(V,W,Ini,Med); { Ordenación primera mitad }
   OrdFusRec(V,W,Med+1,Fin); { Ordenación segunda mitad }
   Fusion(V,W,Ini,Med,Fin); { Fusionar mitades en W }
   for I := Ini to Fin do V[I] := W[I] { Copiar de W a V }
  end { else caso base }
end;
```

Algoritmo de Fusión

```
procedure Fusion(var V,W: TVector; Ini,Med,Fin: integer);
{ Fusiona V[Ini..Med] y V[Med+1..Fin] en W[Ini..Fin] }
var Ia, Ib, Ic : integer;
begin
  { "Extraer" mínimos y llevarlos a W }
  Ia := Ini; Ib := Med+1; Ic := Ini;
  while (Ia <= Med) and (Ib <= Fin) do</pre>
    if V[Ia] < V[Ib] then
    begin
      W[Ic] := V[Ia]; Inc(Ia); Inc(Ic)
    end else begin
      W[Ic] := V[Ib]; Inc(Ib); Inc(Ic)
    end:
  { Copiar zona no vacía a W }
  while Ia <= Med do
  begin
    W[Ic] := V[Ia]; Inc(Ia); Inc(Ic)
  end;
  while Ib <= Fin do
  begin
    W[Ic] := V[Ib]; Inc(Ib); Inc(Ic)
  end;
end;
```

Análisis (Ord. Fusión)

- Eficiencia $O(n \log n)$
 - 2n log₂ n movimientos
 - $n \log_2 n n$ comparaciones (peor caso \approx caso promedio)
 - n datos (vector extra) + $O(\log n)$ espacio adicional
- Método universal
- Fácilmente adaptable a acceso secuencial (separando ambas mitades en estructuras distintas)
- Estable
- No adaptativo
- Sobre el propio vector (no se puede usar el vector extra para devolver el resultado)


```
procedure OrdRap(var V: TVector);
var I,J : integer;
begin
  { Desordenar vector (Knuth shuffle algorithm) }
  for I := 0 to Lenght(V)-1 do
    V[I] \Leftrightarrow V[Random(Length(V)-I)]
  { Ordenación recursiva sobre todo el vector }
  OrdRapRec(V,0,Length(V)-1)
end;
procedure OrdRapRec(var V: TVector; Ini,Fin: integer);
{ Ordena V[Ini..Fin] }
var Fin Men,Ini May : integer;
begin
  if Ini < Fin then
  begin
    Particion(V,Ini,Fin,Fin Men,Ini May); { Redistribuir elems. }
    OrdRapRec(V,Ini,Fin Men); { Ordena parte de menores }
    OrdRapRec(V,Ini May,Fin); { Ordena parte de mayores }
  end { else caso base }
end;
```

Partición (1er método)

```
procedure Partición(var V: TVector; Ini,Fin: integer;
                    var Fin Men, Ini May: integer);
{ Reorganiza V[Ini..Fin] de manera que termine organizado en tres zonas:
  · V[Ini..Fin Men] contiene elementos menores o iguales al pivote.
  · V[Fin Men+1..Ini May-1] contiene elementos iguales al pivote.
  · V[Ini May..Fin] contiene elementos mayores o iguales al pivote.
 Ninguna zona se extiende en todo V[Ini..Fin] }
var
  Izda,Dcha : integer; Pivote : TDato;
begin
  Pivote := V[Ini]; { Hay otras alternativas a elección de pivote }
  Izda := Ini; Dcha := Fin;
  while Izda <= Dcha do
  begin { Invariante: V[Ini..Izda-1] <= Pivote, V[Dcha+1..Fin] >= Pivote }
   while V[Izda] < Pivote do Inc(Izda);</pre>
   while V[Dcha] > Pivote do Dec(Dcha);
   if Izda <= Dcha then
   begin
     V[Izda] ⇔ V[Dcha];
     Inc(Izda); Dec(Dcha)
    end
  end;
  Fin Men := Dcha; Ini May := Izda
end;
```

Partición (2º método)

```
procedure Partición(var V: TVector; Ini,Fin: integer;
                    var Fin Men, Ini May: integer);
{ Reorganiza V[Ini..Fin] de manera que termine organizado en tres zonas:
  · V[Ini..Fin Men] contiene elementos menores que el pivote.
  · V[Fin Men+1] contiene el pivote.
  · V[Ini May..Fin] contiene elementos mayores o iguales al pivote.
  IniMay = Fin Men+2 }
var
  I,Lim : integer;
begin
  { Se toma como pivote el 1er elemento, V[Ini] (hay otras alternativas) }
 Lim := Ini+1;
  for I := Ini+1 to Fin do
   { Invariante: V[Ini+1..Lim-1] < Pivote, V[Lim..I-1] >= Pivote }
   if V[I] < V[Ini] then
   begin
    V[I] \Leftrightarrow V[Lim];
      Inc(Lim)
   end; { if-for }
 V[I] ⇔ V[Lim-1]; { Pivote entre menores y mayores/iguales }
  Fin Men := Lim-2; Ini May := Lim
end:
```

Análisis (Ord. Rápida, 2º mét.)

Mejor caso

- Se da cuando las particiones son equilibradas (m ≈ n/2)
- T(n) = 2T(n/2) + O(n), E(n) = E(n/2) + O(1)
- Comparaciones: $n \log_2 n + O(n)$ [igual a ord. fusión]
- Movimientos: $1.5 n \log_2 n + O(n)$ [mejor que ord. fusión]
- Espacio: O(log n) [mucho mejor que ord. fusión]

THE TOTAL OF THE PARTY OF THE P

Peor caso

- Se da cuando las particiones son desequilibradas: Una de las zonas está vacía (m = 0 ó m = n-1)
- T(n) = T(n-1) + O(n), E(n) = E(n-1) + O(1)
- Comparaciones: $n^2/2 + O(n)$
- Movimientos: O(n) si $m = 0, 1.5 n^2 + O(n)$ si m = n-1
- Espacio: O(n)
- La ordenación rápida es un algoritmo $O(n^2)$
- Tipos de vectores que provocan el peor caso:
 - Pivote primero o último: Vector ordenado o en orden inverso
 - Pivote elem. medio: Vector con elementos en orden creciente hasta la mitad y decreciente a partir de entonces, o al revés.
 - Pivote al azar: La probabilidad de caer en el peor caso decrece exponencialmente.

Relación de recurrencia general (2º método partición)

$$T(n,m) = T(m,\cdot) + T(n-m-1,\cdot) + f(n,m)$$

- Donde m es el número de elementos menores que el pivote
- f(n,m) son las operaciones no recursivas (partición):
 - *n*-1 comparaciones
 - m+2 intercambios
- Si el pivote es un elemento cualquiera de la zona, entonces cualquier valor de $m \in [0..n-1]$ es equiprobable.
- Número de operaciones promedio:

$$\widehat{T}(n) = \frac{1}{n} \sum_{m=0}^{n-1} T(n,m)$$

Aplicandolo a la relación de recurrencia (comparaciones):

$$\widehat{T}(n) = \frac{1}{n} \sum_{m=0}^{n-1} \left(\widehat{T}(m) + \widehat{T}(n-m-1) + n - 1 \right)$$

Operando:

$$\widehat{T}(n) = \frac{2}{n} \sum_{m=0}^{n-1} \widehat{T}(m) + n - 1$$

$$n \cdot \widehat{T}(n) = 2 \sum_{m=0}^{n-1} \widehat{T}(m) + n \cdot (n-1)$$
 (eq. A)

$$(n-1)\cdot\widehat{T}(n-1) = 2\sum_{m=0}^{n-2}\widehat{T}(m) + (n-1)\cdot(n-2)$$
 (eq. B)

Restando las ecuaciones A y B:

$$n \cdot \widehat{T}(n) - (n-1) \cdot \widehat{T}(n-1) = 2 \cdot \widehat{T}(n-1) + 2(n-1)$$

$$n \cdot \widehat{T}(n) = (n+1) \cdot \widehat{T}(n-1) + 2(n-1)$$

$$\frac{\widehat{T}(n)}{n+1} = \frac{\widehat{T}(n-1)}{n} + \frac{2(n-1)}{n \cdot (n+1)}$$

$$\frac{\widehat{T}(n)}{n+1} = \frac{\widehat{T}(n-1)}{n} + \frac{4}{n} - \frac{2}{n+1}$$

$$\widehat{T}(n) = n \cdot \ln n + O(n) = 1.44 \cdot n \cdot \log_2 n$$

- Eficiencia $O(n^2)$
 - Peor caso: $O(n^2)$ tiempo, O(n) espacio.
 - Mejor caso: $O(n \log n)$ tiempo, $O(\log n)$ espacio
 - Promedio: $O(n \log n)$ tiempo, $O(\log n)$ espacio
 - El tiempo promedio sólo es un 40% mayor que el mejor
- Método universal
- Acceso secuencial: No.
- No Estable
- No adaptativo → Antiadaptativo
- Sobre el propio vector

Ordenación por montículos

```
THE STATE OF THE S
```

```
procedure Monticulos(var V: TVector);
var Lim,I,P,H : integer;
begin
  Lim := Length(V)-1;
  for I := (Lim-1) div 2 downto 0 do
  begin
    P := I; H := 2*I+1;
    if (H < Lim) and (V[H] < V[H+1]) then Inc(H);</pre>
    while (H <= Lim) and (V[P] < V[H]) do
    begin
     V[P] \Leftrightarrow V[H]; P := H; H := 2*P+1;
      if (H < Lim) and (V[H] < V[H+1]) then Inc(H)
    end
  end;
  for I := Lim-1 downto 0 do
  begin
    V[0] \Leftrightarrow V[I+1]; P := 0; H := 1;
    if (H < I) and (V[H] < V[H+1]) then Inc(H);
    while (H \le I) and (V[P] \le V[H]) do
    begin
      V[P] \Leftrightarrow V[H]; P := H; H := 2*P+1;
      if (H < I) and (V[H] < V[H+1]) then Inc(H)
    end
  end
end;
```


- Eficiencia $O(n \log n)$
 - Espacio O(1)
 - No recursiva
 - Entre 2 y 5 veces más lenta que la ordenación rápida
- Método universal
- Acceso secuencial: No.
- No Estable
- No adaptativo
- Sobre el propio vector

Algoritmos no universales

- Se basan en los valores de las claves, no en comparar unas claves con otras.
- Supondremos que los elementos tienen un campo clave:
 - Dividido en p subclaves (p puede ser 1)
 - Organizadas en orden lexicográfico
 - Cada una de las cuales almacena (o se puede convertir en) un entero positivo en el rango 0..q-1
- No de posibles valores distintos de cada clave: $m = q^p$

Ordenación por recuento

```
procedure Recuento(const V: TVector; var W: TVector; k: integer);
{ Devuelve en W una copia del vector V ordenado por subclave k }
var
  c,i: integer;
  { Tabla de recuento. T[i] = N^{\circ} de elementos en V con clave[k] = i }
  T: array[0..0-1] of integer;
begin
  n := length(V);
  { Inicializar la tabla de recuento }
  for c := 0 to O-1 do T[c] := 0;
  { Contar nº de elementos con cada posible valor de subclave k }
  for i := 0 to n-1 do Inc(T[V[i].clave[K]]);
  { Convertir recuento en posición del último elemento con ese valor de
   subclave en el vector ordenado }
  T[0] := T[0]-1;
  for c := 1 to 0-1 do T[c] := T[c-1] + T[c];
  { Rellenar vector ordenado W a partir de V }
  for i := n-1 downto 0 do
  begin
    c := V[i].clave[K];
    W[T[c]] := V[i];
    T[c] := T[c]-1
  end
end:
```


- Eficiencia (q: rango subclaves) : O(n + q)
 - Espacio O(q): Tabla de recuento. No se tiene en cuenta el tamaño de los vectores de entrada y salida
 - Sólo es lineal si q es del mismo orden que n
- Método no universal: Las claves deben cumplir ciertos requisitos (conversión a entero)
- Acceso secuencial: No.
- Estable (crucial para el método residuos-recuento)
- No adaptativo
- Devuelve el resultado en otro vector. Si se desea ordenar sobre el propio vector hay que copiar el vector resultado sobre el original (espacio O(q + n))

Si se dispone de una ordenación estable se puede ordenar por toda la clave mediante una secuencia de ordenaciones por subclaves (de - a + significativa)

911		91 0		9 0 1		0 09
099	Unidades	19 0	Decenas	9 0 5	Centenas	0 99
905		91 1		0 0 9		1 15
009		901		9 1 0		1 90
901		115		9 1 1		9 01
910		90 5		1 1 5		9 05
115		09 9		1 9 0		9 10
190		00 9		0 9 9		911

Residuos - Recuento


```
procedure ResiduosRec(var V: TVector);
var
 k,i,n: integer;
 { Vector extra para las ordenaciones por subclave }
  W: TVector;
begin
  { Dimensionar vector extra }
 n := length(V);
  SetLength(W,n);
  { Ordenaciones parciales }
  for k := 0 to P-1 do
 begin
    Recuento(V,W,k);
   { Copiar W en V }
    for i := 0 to n-1 do V[i] := W[i]
  end
end;
```

Propiedades (Ord. Res-Rec)

- Eficiencia: $O(p \cdot n + p \cdot q)$
 - q: rango subclaves, p: número de subclaves
 - Espacio O(n+q): Tabla de recuento y vector extra.
 - Caso habitual: Sea m el número de claves posibles, y la clave se divide en bits. q=2 y $p=\log_2 m$

$$T(n) = O(n \log m), E(n) = O(n + \log m)$$

- Método no universal: Las claves deben cumplir ciertos requisitos (conversión a entero)
- Acceso secuencial: No.
- Estable
- Sobre el propio vector.

Radix-sort

- Inspirado en quicksort y residuos
- Clave dividida en bits
- Se realizan $p = \log_2 m$ ordenaciones por el bit i-ésimo
- Pero desde el bit más significativo al menos significativo (a la inversa que en residuos)
- No se ordena todo el vector, sino en zonas con el mismo valor del bit previo (recursivamente)
- Truco: Ordenar por un bit es equivalente a realizar una partición (sin pivote): los bits 0 a la izquierda y los bits 1 a la derecha.

Radix-sort

```
procedure Radix(var V: TVector);
begin
 RadixRec(V,0,length(V)-1,0)
end;
procedure RadixRec(var V: TVector; Ini,Fin,Bit: integer);
{ Ordena V[Ini..Fin] }
var Lim : integer;
begin
 if (Ini < Fin) and (Bit < P) then
 begin
   ParticionBit(V,Bit,Ini,Fin,Lim); { Redistribuir elems. }
   end { else caso base }
end;
```

Partición por bits

```
procedure ParticionBit(var V: TVector; K,Ini,Fin: integer;
                       var Lim: integer);
{ Reorganiza V[Ini..Fin] en dos zonas:

    V[Ini..Lim] contiene elementos con el bit k-ésimo = 0.

  • V[Lim+1..Fin] contiene elementos con el bit k-ésimo = 1. }
var
  Izda,Dcha : integer;
begin
  Izda := Ini; Dcha := Fin;
  while Izda <= Dcha do
  begin { Invariante: V[Ini..Izda-1] = bit 0, V[Dcha+1..Fin] = bit 1 }
   while V[Izda].clave[k] = 0 do Inc(Izda);
   while V[Dcha].clave[k] = 1 do Dec(Dcha);
    if Izda <= Dcha then
   begin
     V[Izda] ⇔ V[Dcha]; Inc(Izda); Dec(Dcha)
    end
  end;
  Lim := Dcha;
end;
```


- Eficiencia: $O(n \log m)$
 - *m*: número de claves posibles
 - Espacio $O(\log m)$: Llamadas recursivas.
- Método no universal: Las claves deben poderse comparar mediante su secuencia lexicográfica de bits (contraejemplo: números reales)
- Acceso secuencial: No.
- No adaptativo
- No estable
- Sobre el propio vector.

Algoritmo	Tiempo	Espacio	Estable
Inserción	O(n²)	O(1)	Si
Selección	O(n²)	O(1)	No
Burbuja	O(n ²)	O(1)	Si
Fusión	O(n log n)	O(n)	Si
Rápida	O(n²) [peor] O(n log n) [prom]	O(n) [peor] O(log n) [prom]	No
Montículos	O(n log n)	O(1)	No
Residuos- Recuento	O(p·n + q·n)	O(n + q)	Si
Radix-Sort	O(n log m)	O(log m)	No

A. APÉNDICE: ALGORITMOS DE ORDENACIÓN EN HASKELL


```
minLis :: Ord a => [a] -> a
minLis[x] = x
minLis (x:xs) = if x < y then x else y
                where y = minLis xs
borraElem :: Eq a => a -> [a] -> [a]
borraElem x [] = []
borraElem x (y:ys) = if x == y
                     then xs
                     else x:(borraElem x ys)
ordSel :: Ord a => [a] -> [a]
ordSel [] = []
ordSel lis = x:(ordSel (borraElem x lis))
             where x = minLis lis
```

Ordenación por Intercambio (burbuja)

Ordenación por Fusión

```
fusion :: Ord a => [a] -> [a] -> [a]
fusion [] 12 = 12
fusion 11 [] = 11
fusion (x:xs) (y:ys) = if x < y
                       then x : fusion xs (y:ys)
                       else y : fusion (x:xs) ys
ordFus :: Ord a => [a] -> [a]
ordFus [] = []
ordFus [x] = [x]
ordFus lis = fusion (ordFus izda) (ordFus dcha)
             where
               mitad = (length lis) `div` 2
               izda = take mitad lis
               dcha = drop mitad lis
```


Ordenación Rápida

Radix-sort