Tunable algorithms for transient follow-up

Tim Staley

TKP Meeting, Manchester, Sept 2014

WWW: 4pisky.org , timstaley.co.uk

Aim of this talk

A basic, intuitive understanding of

information content

and how this can be used to optimize / automate decision making, a.k.a.

Bayesian decision theory

Outline

Context

Theory

Implementation

Future work

A blueprint for automated follow-up

Outline

Context

Theory

Implementation

Future work

Evaluating each epoch

Confusion matrices

True class	Labelled(A)	Labelled(B)	Labelled(C)
A	$P(\hat{A} \mid A)$	$P(\hat{B} \mid A)$	$P(\hat{C} \mid A)$
В	$P(\hat{A} \mid B)$	$P(\hat{B} \mid B)$	$P(\hat{C} \mid B)$
C	$P(\hat{A} \mid C)$	$P(\hat{B} \mid C)$	$P(\hat{C} \mid C)$

Confusion matrices

True class	Labelled(A)	Labelled(B)	Labelled(C)
A	$P(\hat{A} \mid A)$	$P(\hat{B} \mid A)$	$P(\hat{C} \mid A)$
В	$P(\hat{A} \mid B)$	$P(\hat{B} \mid B)$	$P(\hat{C} \mid B)$
C	$P(\hat{A} \mid C)$	$P(\hat{B} \mid C)$	$P(\hat{C} \mid C)$

Epoch =
$$-2$$

Label	logistic	stable	null
True class			
logistic	0.387	0.604	0.009
stable	0.302	0.697	0.001
null	0.009	0.003	0.988

Outline

Context

Theory

Implementation

Future work

Required knowledge / user-inputs

► Transient rate priors.

Required knowledge / user-inputs

- ► Transient rate priors.
- ▶ Transient lightcurve ensemble models.

Required knowledge / user-inputs

- ► Transient rate priors.
- ▶ Transient lightcurve ensemble models.
- Telescope / noise models.

Required knowledge / user-inputs

- ► Transient rate priors.
- Transient lightcurve ensemble models.
- Telescope / noise models.
- Follow-up prioritization weightings.

Required software components

Efficient lightcurve generation library.

Required software components

- Efficient lightcurve generation library.
- MCMC data fitting models and routines.

Required software components

- Efficient lightcurve generation library.
- MCMC data fitting models and routines.
- Statistical routines for calculating confusion matrices.

Required software components

- Efficient lightcurve generation library.
- MCMC data fitting models and routines.
- Statistical routines for calculating confusion matrices.
- Observation schedule optimization engine.

Required components

Outline

Context

Theory

Implementation

Future work

What's next?

- Finish bolting components together.
- Run simulations, test in more realistic scenarios.
- Interfacing with optimizer / scheduler.

Longer term

- Variational Bayes?
- Gaussian processes?

Fin

Outline

Context

Theory

Implementation

Future work

Summary

- Information content is just a penalty function for scoring predicted observations.
- Using it to decide when to observe is applied Bayesian decision theory.
- But doing this for real requires a number of non-trivial software components.
- Nearly ready for testing!