ЛЕКЦИЯ № 3

Математические основы оптимизации

Основные понятия теории множеств.

1.1. Задание множеств

- А) Перечислением: $X = \{x_1, x_2, x_3...x_n\}$, где χ_i і й элемент множества X, n число элементов.
- Б) Заданием свойств $X = \{x \in X | P(x)\}$, где P(x) предикат, определяющий свойства множества X.
- В) Примеры числовых множеств:

$$n\in N$$
 - натуральный ряд чисел $N=\{1,2,3,...\infty\}$ - множество целых чисел $Z=\{-\infty,...-3,-2,-1,0,1,2,3,...\infty\}$ $q\in Q$ - множество рациональных чисел $Q=\{rac{z_i}{z_j}\in Q| \forall i,j\in N\}$ $r\in \Re$ - множество действительных чисел.

1. Основные понятия теории множеств.

Г) Произведение множеств.

Прямое произведение

 $\mathfrak{R}^2 = \mathfrak{R}^1 \otimes \mathfrak{R}^1$

 $\Re^n = \Re^1 \otimes \Re^1 \otimes \otimes \Re^1$ - прямое произведение множеств n раз.

1.2. Операции над множествами.

1.2.1. Объединение множеств.

Пусть **A** и **B** некоторые множества $x \in A, y \in B$ Тогда объединением множеств называется операция

$$A \bigcup B \equiv \{x, y \in C \mid (\forall x \in A) \lor (\forall y \in B) \Rightarrow x, y \in C\}$$

1.2.2. Пересечение множеств.

Пусть **A** и **B** некоторые множества $x \in A, y \in B$

Тогда пересечением множеств называется операция

$$A \cap B \equiv \{x, y \in D \mid (\exists x \in B\} \land (\exists y \in A) \Rightarrow x, y \in D\}$$

2. Краткий экскурс в функциональный анализ.

2.1. Векторное пространство.

представляет собой множество **X** (элементы этого множества называются векторами), дяя которого определены две операции: *умножение на скаляры* и *сложение векторов*. Они должны обладать следующими свойствами:

1. Каждой паре векторов \mathbf{x}_{x} у ставится в соответствие вектор $\mathbf{x}+\mathbf{y}$. При этом, если также \mathbf{z} , тогда

x+y=y+x — свойство коммутативности, x+(y+z)=(x+y)+z — свойство ассоциативности.

2. Каждой паре $\alpha x \in X$, где $\alpha \in R$ и $x \in X$ сопоставляется вектор $\alpha x \in X$

2. Краткий экскурс в функциональный анализ.

2.2. Линейное пространство R^n (n – размерность пространства)

Элементами линейного пространства (линеала) являются $_{R}$ объекты a, b, c.

Свойства линейного пространства:

- 1. a,b $\in R^n$,тогда a+b=c $\in R^n$
- 2. $x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}_{1}, \lambda x = f произведение на скаляр при этом для <math>\forall x, y, z \in \mathbb{R}^{n}$
 - и $\forall \lambda, \mu$ выполняются аксиомы:
 - 1)x + y = y + x коммутативность сложения;
 - 2(x + (y + z)) = (x + y) + z accoциативность сложения;
 - 3) \exists 0 \in Rn, такой, что x + 0 = x; существование нулевого элемента для сложения;
 - $4)\lambda(\mu x)=(\lambda \mu)x$ ассоциативность умножения скаляров;
 - 5)∃ 1∈ R1 такой, что1*х = х; существование единичного элемента для умножения;
 - 6) $\lambda(x + y) = \lambda x + \lambda y дистрибутивность умножения на скаляр;$
 - 7)($\lambda + \mu$) x = λ x + μ x дистрибутивность умножения на вектор.

2.Краткий экскурс в функциональный анализ.

2.3. Евклидово пространство

Вводится скалярное произведение: $(a,b) = \sum_{i=1}^{n} a_i b_i$.

$$E^n \subset R_2^n, ||a|| = (a,a)^{\frac{1}{2}} = \left[\sum_{i=1}^n a_i^2\right]^{\frac{1}{2}}.$$

2.4. Метрическое пространство M

Метрическим пространством называется всякое множество М, в котором для любых 2-х его элементов а и b введено вещественное неотрицательное число, называемое расстоянием, обозначаемое d (a, b). Например, для евклидового пространства:

$$d(a,b) = ||a-b|| = \left[\sum_{i=1}^{n} (a-b)^{2}\right]^{\frac{1}{2}}$$

Пространство, обладающее евклидовой метрикой обозначается l_2^n или E^n

2.Краткий экскурс в функциональный анализ.

2.5. <u>Гильбертово пространство</u> (аналог евклидова пространства в функциональном пространстве).

Расстояние в гильбертовом пространстве:

$$d[f_1(x),f_2(x)] = \left\{ \int\limits_{x \in X} [f_1(x) - f_2(x)]^2 dx \right\}^{\frac{1}{2}}.$$
 Норма гильбертова пространства: $\left\| f(x) \right\| = \left[\int\limits_{\Omega} \left| f(x) \right|^2 dx \right]^{\frac{1}{2}}.$

2.6. Общее конечномерное пространство R_p^n

$$\left\|a
ight\|_{p} = \left[\sum\left|a_{i}
ight|^{p}\right]^{\frac{1}{p}}$$

$$\begin{cases}
p = 1; \left\|a
ight\|_{1} = \sum_{i=1}^{n}\left|a_{i}
ight| \\
p = \infty; \left\|a
ight\|_{\infty} = \max\left|a_{i}
ight|
\end{cases}$$

2.Краткий экскурс в функциональный анализ.

2.7. Общие функциональные пространства

Норма функционального пространства:

$$\left\|f(x)\right\|_{p} = \left\{ \int_{x \in X} \left|f(x)\right|^{p} dx \right\}^{\frac{1}{p}}$$

2.8. Банахово пространство.

Полное нормированное пространство называется банаховым (банаховым является евклидово и гильбертово пространства).

2.9. Понятие функционала.

Оператор, заданный на некотором множестве в метрическом пространстве, значения которого вещественные и комплексные числа, называется функционалом.

3.1. Задачи оптимизации.

Решением задачи Р₁ называется любой вектор х∈S, удовлетворяющий ограничениям

$$\begin{cases} g_j(x) \le 0, j = 1, ..., m \\ x \in S \end{cases}$$

3.1. Задачи оптимизации.

Оптимальным решением (или глобальным оптимумом) задачи Р1 называется решение хе, минимизирующее f(x) – целевую функцию на множестве всех решений S (xe∈S).

3.1. Задачи оптимизации. Полимодальная функция. *Р*2

$$\begin{cases} \min f(x) \\ g_j(x) \le 0 \\ x \in S \cap U_{\varepsilon}(x^{\varepsilon}) \end{cases}$$

Локальным оптимумом задачи P2 является вектор x_{ϵ} , для которого существует окрестность $U_{\epsilon}(x_{\epsilon})$ такая, что x_{ϵ} является оптимальным решением задачи P1 на множестве $U_{\epsilon}(x_{\epsilon})$.

<u>Глобальным оптимумом</u> задачи Р2 является решение, удовлетворяющее условию $f(x^e) \le \min\{f(x_i^{\varepsilon})\}, f(x) \le \{f(x_1^{\varepsilon}), f(x_2^{\varepsilon}), ..., f(x_k^{\varepsilon})\}.$

Множество локальных оптимумов, включающее также глобальный оптимум, носит название множество эффективных решений $Xe = \{xe, x\epsilon\}$.

3.2. Выпуклые множества.

Определение 1: Множество S ⊂ Rn называется выпуклым, если

$$S \stackrel{d}{=} \{x \in S \mid (\forall x^1, x^2 \in S) \& (\forall \lambda \in [0,1]) \Rightarrow \forall x = \lambda x^1 + (1-\lambda)x^2 \in S\}.$$

Обобщение: Пусть $x^i \in S \subset R^n$, тогда $x \in S$ – выпуклая комбинация этих точек, если существуют числа (коэффициенты) $\mu_1, \mu_2, ..., \mu_k$ ($0 \le \mu_i \le 1$), такие, что

$$\sum_{i=1}^k \mu_i = 1$$
 $X = \sum_{i=1}^k \mu_i x^i = \mu_i x^i$.

Множество S ⊂ Rn – выпукло, тогда и только тогда, если любая выпуклая комбинация точек из S принадлежит S.

3.2. Выпуклые множества.

Определение 2: Выпуклой оболочкой множества S (не обязательно выпуклого) является множество принадлежит \hat{S} .

Свойства выпуклых множеств:

объединение конечного числа выпуклых множеств не всегда является выпуклым;

пересечение конечного числа выпуклых множеств всегда является выпуклым множеством.

3.2. Выпуклые множества.

Свойства выпуклых множеств:

<u>Определение 3</u>:

- **1. Внутренность** множества A I(A); $I(A) = \{x \in A \mid (\forall x \in A) \Rightarrow U_{\varepsilon}(x) \in A\}$
- открытое множество;
- 2. Граница множества A $\Gamma(A)$: $\Gamma(A) = \{x \in A \mid (\exists x \in A) \Rightarrow U_{\varepsilon}(x) \notin A\}$
- граница множества;
- 3. Замыкание множества $A = \tilde{A} \stackrel{d}{=} I(A) \cup \Gamma(A)$.

Примеры:

Открытый интервал (a,b).

Замкнутый интервал [a,b].

- Определение 4: Множество К ⊂ Rⁿ называется компактным, если из любой последовательности {x_k} k ∈ N элементов из К можно выделить подпоследовательность {x_i}, I ∈ L
 (L ⊂ N), сходящемуся к элементу из К.
- Свойство 4: Множество $K \subset \mathbb{R}^n$
- является компактным тогда и только тогда, когда оно замкнуто и ограничено.

Отображения и функции.

1. Отображения: f: $X \rightarrow Y$; $f \subset X*Y$; $X \subset R^n$; $Y \subset R^m$.

Если $A \subset X$ и $B \subset Y$, то $f: A \rightarrow B(f \subset AxB)$. Отображение f может быть как однозначным, так и многозначным. Однозначное отображение называется функциональным.

Функциональное отображение.

f: X
$$\rightarrow$$
Y; X \subset E^n , Y \subset E^1 ; y = f(x), где x \in X, y \in Y.

Если функция имеет обратную функцию, то она представляет одно - однозначное отображение.

Операторное отображение.

F: X \rightarrow Y, где X \subset E^n , Y \subset E^m обобщение понятия функционального отображения.

Теорема Вейерштрасса (теорема имеет фундаментальное значение для решения задач оптимизации): Если f – непрерывная действительная функция, область определения которой задана на компактном множестве $K \subseteq \mathbb{R}^n$,

4.Выпуклые функции.

4.1. Выпуклые (вниз) функции.

Выпуклой будем называть функцию, которая удовлетворяет следующему условию:

$$f(x) = \{ y \in Y, y \in f(x) \mid (\forall x_1, x_2 \in X) \& (\forall \theta \in [0,1]) \Rightarrow f[\theta x_1 + (1-\theta)x_2] < \theta f(x_1) + (1-\theta)f(x_2) \}$$

4.1. Выпуклые функции.

4.2. Множества уровня.

Пусть f(x) – выпуклая функция. Зададим плоскость $P(\alpha) \subset E^n$ при $f(x) = \alpha$.

Тогда $S\alpha$ - сечение уровня, $L\alpha$ - линия уровня.

$$S_{\alpha} = \left\{ x \in X \middle| \exists \alpha \in E^{1} \Rightarrow f(x) \leq \alpha \right\}$$

$$L_{\alpha} = \left\{ x \in X \middle| \exists \alpha \in E^{1} \Rightarrow f(x) = \alpha \right\}$$