## **Introduction to Linear Regression (Solutions)**

STAT-UB.0003: Regression and Forecasting Models

## Hypothesis tests (review)

- 1. We collect a simple random sample of size n=100 from a population. The sample mean is  $\bar{x}=12.4$  and the sample standard deviation is s=8.0. Use this data to test the null hypothesis  $H_0: \mu=10.0$  against the alternative  $H_\alpha: \mu\neq 10.0$ , where  $\mu$  denotes the population mean:
  - (a) Compute the test statistic.

**Solution:** Since the population standard deviation ( $\sigma$ ) is unknown, we use a t-statistic:

$$\begin{split} t &= \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \\ &= \frac{(12.4) - (10.0)}{(8.0)/\sqrt{(100)}} \\ &= 3.00 \end{split}$$

(b) If the null hypothesis were true and we were to repeat the experiment, we would get a new test statistic. In this hypothetical setting, approximately what is the probability of getting a new test statistic at least as extreme as the observed test statistic we computed in part (a)?

## **Solution:**

The t-statistic has n-1=99 degrees of freedom. The question asks for

$$p = P(|T_{99}| \ge 3.00)$$
  
= .0034.

where T<sub>99</sub> denotes a random t-statistic with 99 degrees of freedom. To get the value .0034, I used Minitab.

We can get an approximate probability by using a z table (e.g., Table II from Appendix D). In this case, we get

$$p \approx P(|Z| \geqslant 3.00)$$
  
= 1 - 2(.4987)  
= .0026.

(c) What is the p-value for performing this hypothesis test? Give a one-sentence explanation.

**Solution:** If the population mean were equal to 10.0, then the chance of seeing data at least as extreme as observed would be  $p \approx .0026$ .

A more precise sentence is the following: if the population mean were equal to 10.0 and we were to repeat the experiment—collecting a new sample—then the chance of

| observed samp     | ble would be $p \approx .0026$ .                                       |                       |               |
|-------------------|------------------------------------------------------------------------|-----------------------|---------------|
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
| Using a significa | nce level (a) of 50% what is                                           | the result of the hyp | othesis tost? |
|                   | nce level ( $\alpha$ ) of 5%, what is                                  |                       |               |
|                   | nce level ( $lpha$ ) of 5%, what is ce $ ho < .05$ , we would reject t |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |
|                   |                                                                        |                       |               |

## Linear regression

- 2. In the following scenarios, which would you consider to be predictor (x) and which would you consider to be response (y)?
  - (a) Sales revenue; Advertising expenditures
  - (b) Starting salary after college; Undergraduate GPA
  - (c) The current month's sales; the previous month's sales
  - (d) The size of an apartment; the sale price of an apartment.
  - (e) A restaurant's Zagat Price rating; a restaurant's Zagat Food rating.

**Solution:** This is a little bit subjective, but the following answers make sense: (a) y = sales revenue; (b) y = starting salary; (c) y = current sales; (d) y = sale price; (e) either makes sense.

3. Let y be the payment (in dollars) for a repair which takes x hours. Suppose that

$$y = 25 + 30 x$$
.

What is the interpretation of this model?

**Solution:** There is a positive linear relationship between y and x. Increasing repair time by one hour increases payment by \$30. There is no interpretation for the intercept since repair time is always positive.

4. Consider two variables measured on 294 restaurants in the 2003 Zagat guide:

y = typical dinner price, including one drink and tip (\$)

x =Zagat quality rating (0–30).

Here is a scatterplot of y on x:

Why is an exact linear relationship inappropriate to describe the relationship between y and x?

**Solution:** There are no values  $\beta_0$  and  $\beta_1$  such that  $y = \beta_0 + \beta_1 x$  for all restaurants; no straight line fits the data perfectly.



5. Here is the least squares regression fit to the Zagat restaurant data:



Here is the Minitab output from the fit:

Model Summary

Coefficients

| Term     | Coef  | SE Coef | T-Value | P-Value | VIF  |
|----------|-------|---------|---------|---------|------|
| Constant | -4.74 | 3.95    | -1.20   | 0.232   |      |
| Food     | 2.129 | 0.200   | 10.64   | 0.000   | 1.00 |

Regression Equation

Price = -4.74 + 2.129 Food

(a) What are the estimated intercept and slope?

**Solution:** The estimated intercept is  $\hat{\beta}_0 = -4.74$ ; the estimated slope is  $\hat{\beta}_1 = 2.129$ .

(b) Use the estimated regression model to estimate the average dinner price of all restaurants with a quality rating of 20.

**Solution:** If Food = 20, then estimated expected price per meal (\$) is  $\widehat{\text{Price}} = -4.74 + 2.129(20) = 37.84$ .

(c) In the estimated regression model, what is the interpretation of the slope?

**Solution:** For every 1-point increase in food quality, the expected dinner price goes up by \$2.129.

(d) In the estimated regression model, why doesn't the intercept have a direct interpretation?

**Solution:** This would be the expected dinner price for a restaurant with a quality of 0. No such restaurant exists (this is outside the range of the data).

- 6. Refer to the Minitab output from the previous problem, the regression analysis of the Zagat data.
  - (a) What is the estimated standard deviation of the error (the "standard error of the regression")? What is the interpretation of this value?

**Solution:** The estimated error standard deviation is s=12.5559. Using the empirical rule, the model says that approximately 95% of restaurants have prices within 2s=25.11 of the regression line.

(b) According to the estimated regression model, what is the range of typical prices for restaurants with quality ratings of 20?

**Solution:**  $37.84 \pm 25.11 = (12.73, 62.95)$ 

(c) According to the estimated regression model, what is the range of typical prices for restaurants with quality ratings of 10?

**Solution:** In the estimated regression model, when the quality rating is 10, the expected price is -4.74 + 2.129(10) = 16.55; the range of typical prices is  $16.56 \pm 25.11 = (-8.5441.66)$ . Since price can't be negative, we could just as well report the range as (0,41.66). Note that since x = 10 is at the edge of the range of the data, the values predicted by the model are not very reliable.