MTH 480 Project 2

Curtis Rau, Benjamin Brophy

March 21, 2016

1 Abstract

2 Introduction

Last time we took the Schrödinger equation and transformed it to the radial equation in center of mass frame.

$$\left[\left(= \frac{\hbar^2}{m} \frac{1}{r^2} \partial_r r^2 \partial_r + \frac{1}{4} m \omega^2 r^2 + \frac{ke^2}{r} \right) \left(-\frac{\hbar^2}{4m} \frac{1}{R^2} \partial_R R^2 \partial_R + m \omega^2 R^2 + \frac{\hbar l(l+1)}{R^2} \right) \right] \psi(r) \theta(R) = (E_r + E_R) \psi(r) \theta(R) \tag{1}$$

we are only interested in the

$$\left(= \frac{\hbar^2}{m} \frac{1}{r^2} \partial_r r^2 \partial_r + \frac{1}{4} m \omega^2 r^2 + \frac{ke^2}{r} \right) \psi(r) = E_r \psi(r) \tag{2}$$

we can make the equation dimensionless which gives

$$\left(-\partial_{\rho}^{2} + \rho^{2} + \frac{\beta}{\rho}\right)u(\rho) = \lambda u(\rho)\left(-\partial_{\rho}^{2} + V(\rho)\right)u(\rho) = \lambda u(\rho)$$
(3)

Discretize

$$u(\rho) \to u(\rho_i) = u_i$$

$$\rho \to \rho_i = \rho_0 + ih$$

$$h = \frac{b-a}{n+1}$$

$$a = 0$$
(4)

the linear algebra equation is

$$\hat{A} = \begin{pmatrix} \frac{2}{h^2} + V_1 & -\frac{1}{h^2} \\ -\frac{1}{h^2} & \frac{2}{h^2} + V_2 & -\frac{1}{h^2} \\ & & \ddots & \\ & & -\frac{1}{h^2} & \\ & & -\frac{1}{h^2} + V_{N-1} \end{pmatrix}$$
 (5)

$$\hat{A}x = \lambda x \tag{6}$$

$$S^T A x = \lambda S^T x \tag{7}$$

$$S^T A S(S^T x) = \lambda(S^T x) \tag{8}$$

Eigenvalues unchanged under orthogonal transforms Eigenvectors change, but the length is preserved Dot product between vectors is conserved

Size of		Householder	Jacobi	Itterations of	Jacobi	Householder
Matrix	Tolerance	Time	Time	Jacobi Method	E1	E1
100	0.1	0.01	0.15	8684	3.00030	3.22937
"	0.01	"	0.20	10667	2.99924	"
"	0.001	"	0.21	12076	2.99923	"
"	0.0001	"	0.25	13200	"	"
200	0.1	0.1	2.5	36836	3.00228	2.99986
"	0.01	"	2.9	44012	2.99981	"
"	0.001	"	3.2	49387	"	"
"	0.0001	"	3.6	53888	"	"
300	0.1	0.38	12.2	85521	3.00024	3.00000
500		2.9				3.00003
750		9.7				3.00006
1000		54.6				2.99967

Table 1: rhoMax = 5.0

3 Methods

We performed a Jacobian eigenvalue algorithm to

4 Analysis

- for part B, using N=200 and rhoMax = 5.0 gives the three lowest eigenvalues up to 3 decimal places.

4.1 Part B

5 Conclusions

6 Works Cited