Chapter 11

Minimum Spanning Tree Recitation.

11.1 The Spanning Tree Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is a subset of edges in E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weighted graph with weight function $w:E\to\mathbb{R}$. We extend the weight function to subsets of E by defining the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree (MST) of G is the spanning tree of G that has the minimal weight according to w. Note that in general, there might be more than one MST for G.

Definition 11.1.2. Let $U \subset V$. We define the cut associated with U as the set of outer edges of U, namely all the edges $(u,v) \in E$ such that $u \in U$ and $v \notin U$. We use the notation $X = (U, \bar{U})$ to represent the cut. We say that $E' \subset E$ respects the cut if $E' \cap X = \emptyset$.

Lemma 11.1.1 (The Cut-Lemma). Let T be an MST of G. Consider a forest $F \subset T$ and a cut X that respects X (i.e. $F \cap X = \emptyset$). Then $F \cup \arg\min_e w(e)$ is also contained in some MST. Note that it does not necessarily have to be the same tree T.

```
Result: Returns MST of given S G = (V, E, w)
1 sorts the E according to w
2 define F_0 = \emptyset and i \leftarrow 0
3 for e \in E in sorted order do
4 | if F_i \cup \{e\} has no cycle then
5 | F_{i+1} \leftarrow F_i \cup \{e\}
6 | i \leftarrow i+1
7 | end
8 end
9 return F_i
```

Algorithm 1: Kruskal alg.