ARHITECTURA SISTEMELOR DE CALCUL SEMINAR 0x00

NOTIȚE SUPORT SEMINAR

Cristian Rusu

hexa: 0x1111

binar: 0001 0001 0001 0001

baza 4: 00 01 00 01 00 01 00 01 = 01010101

baza 8: 0 001 000 100 010 001 = 10421

baza 10: 4369

O hex	=	<u>O</u> dec	=	0 _{oct}	0	0	0	0
1 _{hex}	=	1 _{dec}	=	1 _{oct}	0	0	0	1
2 _{hex}	=	2 _{dec}	=	2 _{oct}	0	0	1	0
3 _{hex}	=	3 _{dec}	=	3 _{oct}	0	0	1	1
4 _{hex}	=	4 _{dec}	=	4 _{oct}	0	1	0	0
5 _{hex}	=	<u>5_{dec}</u>	=	5 _{oct}	0	1	0	1
6 _{hex}	=	6 _{dec}	=	6 _{oct}	0	1	1	0
7 _{hex}	=	<u>Z_{dec}</u>	=	7 _{oct}	0	1	1	1
8 _{hex}	=	8 _{dec}	=	10 _{oct}	1	0	0	0
9 _{hex}	=	9 _{dec}	=	11 _{oct}	1	0	0	1
A _{hex}	=	<u>10_{dec}</u>	=	12 _{oct}	1	0	1	0
\mathbf{B}_{hex}	=	<u>11_{dec}</u>	=	13 _{oct}	1	0	1	1
C _{hex}	=	<u>12_{dec}</u>	=	14 _{oct}	1	1	0	0
D _{hex}	=	<u>13_{dec}</u>	=	15 _{oct}	1	1	0	1
E _{hex}	=	<u>14_{dec}</u>	=	16 _{oct}	1	1	1	0
F _{hex}	=	<u>15_{dec}</u>	=	17 _{oct}	1	1	1	1

0x11111

1111 1111 0000 0000

binar: 1111 1111 0000 0000

hexa: 0xFF00

baza 4: 11 11 11 11 00 00 00 00 = 33330000

baza 8: 1 111 111 100 000 000 = 177400

baza 10: 65280

O hex	=	<u>O</u> dec	=	0 _{oct}	0	0	0	0
1 _{hex}	=	1 _{dec}	=	1 _{oct}	0	0	0	1
2 _{hex}	=	2 _{dec}	=	2 _{oct}	0	0	1	0
3 _{hex}	=	3 _{dec}	=	3 _{oct}	0	0	1	1
4 _{hex}	=	4 _{dec}	=	4 _{oct}	0	1	0	0
5 _{hex}	=	<u>5_{dec}</u>	=	5 _{oct}	0	1	0	1
6 _{hex}	=	6 _{dec}	=	6 _{oct}	0	1	1	0
7 _{hex}	=	<u>Z_{dec}</u>	=	7 _{oct}	0	1	1	1
8 _{hex}	=	8 _{dec}	=	10 _{oct}	1	0	0	0
9 _{hex}	=	9 _{dec}	=	11 _{oct}	1	0	0	1
A _{hex}	=	<u>10_{dec}</u>	=	12 _{oct}	1	0	1	0
\mathbf{B}_{hex}	=	<u>11_{dec}</u>	=	13 _{oct}	1	0	1	1
C _{hex}	=	<u>12_{dec}</u>	=	14 _{oct}	1	1	0	0
D _{hex}	=	<u>13_{dec}</u>	=	15 _{oct}	1	1	0	1
E _{hex}	=	<u>14_{dec}</u>	=	16 _{oct}	1	1	1	0
F _{hex}	=	<u>15_{dec}</u>	=	17 _{oct}	1	1	1	1

0xFEED

hexa: 0xFEED

binar: 1111 1110 1110 1101

baza 4: 11 11 11 10 11 10 11 01 = 33323231

baza 8: 1 111 111 011 101 101 = 177355

baza 10: -275

O hex	=	<u>O</u> dec	=	0 _{oct}	0	0	0	0
1 _{hex}	=	1 _{dec}	=	1 _{oct}	0	0	0	1
2 _{hex}	=	2 _{dec}	=	2 _{oct}	0	0	1	0
3 _{hex}	=	3 _{dec}	=	3 _{oct}	0	0	1	1
4 _{hex}	=	4 _{dec}	=	4 _{oct}	0	1	0	0
5 _{hex}	=	<u>5_{dec}</u>	=	5 _{oct}	0	1	0	1
6 _{hex}	=	6 _{dec}	=	6 _{oct}	0	1	1	0
7 _{hex}	=	<u>Z_{dec}</u>	=	7 _{oct}	0	1	1	1
8 _{hex}	=	8 _{dec}	=	10 _{oct}	1	0	0	0
9 _{hex}	=	9 _{dec}	=	11 _{oct}	1	0	0	1
A _{hex}	=	<u>10_{dec}</u>	=	12 _{oct}	1	0	1	0
\mathbf{B}_{hex}	=	<u>11_{dec}</u>	=	13 _{oct}	1	0	1	1
C _{hex}	=	<u>12_{dec}</u>	=	14 _{oct}	1	1	0	0
D _{hex}	=	<u>13_{dec}</u>	=	15 _{oct}	1	1	0	1
E _{hex}	=	<u>14_{dec}</u>	=	16 _{oct}	1	1	1	0
F _{hex}	=	<u>15_{dec}</u>	=	17 _{oct}	1	1	1	1

1111 1111 0000 0000

binar: 1111 1111 0000 0000

hexa: 0xFF00

baza 4: 11 11 11 11 00 00 00 00 = 33330000

baza 8: 1 111 111 100 000 000 = 177400

baza 10: -256

O _{hex}	=	<u>O_{dec}</u>	=	0 _{oct}	0	0	0	0
1 _{hex}	=	1 _{dec}	=	1 _{oct}	0	0	0	1
2 _{hex}	=	2 _{dec}	=	2 _{oct}	0	0	1	0
3 _{hex}	=	3 _{dec}	=	3 _{oct}	0	0	1	1
4 _{hex}	=	4 _{dec}	=	4 _{oct}	0	1	0	0
5 _{hex}	=	5 _{dec}	=	5 _{oct}	0	1	0	1
6 _{hex}	=	6 _{dec}	=	6 _{oct}	0	1	1	0
7 _{hex}	=	<u>Z_{dec}</u>	=	7_{oct}	0	1	1	1
8 _{hex}	=	<u>8</u> dec	=	10 _{oct}	1	0	0	0
9 _{hex}	=	9 _{dec}	=	11 _{oct}	1	0	0	1
A _{hex}	=	<u>10_{dec}</u>	=	12 _{oct}	1	0	1	0
\mathbf{B}_{hex}	=	<u>11_{dec}</u>	=	13 _{oct}	1	0	1	1
C _{hex}	=	<u>12_{dec}</u>	=	14 _{oct}	1	1	0	0
D _{hex}	=	<u>13_{dec}</u>	=	15 _{oct}	1	1	0	1
E _{hex}	=	<u>14_{dec}</u>	=	16 _{oct}	1	1	1	0
F _{hex}	=	<u>15_{dec}</u>	=	17 _{oct}	1	1	1	1

0101 1100 1111 0011	
1111 1111 0000 0000	+
0101 1011 1111 0011	

1111 1111 1111 1111	
$0000\ 0000\ 0000\ 0001$	+

- care sunt operanzii/rezultatul (zecimal/binar)?
 - stânga: 23795 și -256, rezultatul 23539
 - dreapta: -1 şi +1

1111 1111 1111 1111	
1000 0000 0000 0000	+

1000 0000 0000 0000	
0000 0000 0000 0001	+

- care sunt operanzii/rezultatul (zecimal/binar)?
 - stânga: -1 și -32 768
 - dreapta: -32 768 și +1

0101 1100 1111 0011	
0101 1100 1111 0011	AND

X	Υ	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

1101 1100 1111 0011	
1101 1100 1111 0011	XOR

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

0000 0000 1111 1111	
0000 0001 0000 0000	AND

1100 0110 1001 1110	
1001 1111 0110 1100	XOR
1100 0110 1001 1110	XOR

X	Υ	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Υ	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

ÎNTREBĂRI SCURTE, EX 5

- a) $2^{N}-1$
- b) $2^{N-1} 1$ și -2^{N-1}
- c) aproximativ $log_2 x$, exact sunt ceil($log_2 (x+1)$)
- d) 4k
- e) ceil (k / 4)
- f) ceil (k log₂ 10)

BINARY FIXED-POINT, EX 6

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2^{-4} 2^{-5} 2^{-6} 2^{-7}
--	-------------------------------------

- $\frac{1}{2} = 0.5$
- $\frac{1}{4} = 0.25$
- 1/8 = 0.125
- 1/16 = 0.0625
- •

Calculați reprezentările pentru

- (a) 101.101; **5.625**
- (b) 111.001;
- (c) 1110.00111;

- (a) 3.75; **11.11**
- (b) 12.3125;
- (c) 3.078125;

COMPLEMENT FAȚĂ DE DOI, EX 7

bit b _i :	1	1	1	1	0	0	0	1
2 ⁱ :	-2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

•
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

- ca să reprezentăm un număr negativ, luăm valoarea pozitivă a numărului, îi inversăm biții și adunăm unu
- de ce funcționează această procedură?
 - pornim de la faptul că folosim aritmetică modulo
 - fixăm și suntem pe 8 biți
 - deci, să scădem 3 e echivalent cu a aduna 256 3 1111 0000

•
$$-3 \equiv 256 - 3 = 1\ 0000\ 0000 - 0000\ 0011$$

= 1 + 1111\ 1111 - 0000\ 0011
= 1 + (3\ cu\ biţii\ inversaţi)

COMPLEMENT FAȚĂ DE DOI, EX 7

bit b _i :	1	1	1	1	0	0	0	1
2 ⁱ :	-2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

•
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

- ca să reprezentăm un număr negativ, luăm valoarea pozitivă a numărului, îi inversăm biții și adunăm unu
- de ce funcționează această procedură?

$$-\left(-2^{N} + \sum_{i=0}^{N-1} b_{i} 2^{i}\right) = 2^{N} - \sum_{i=0}^{N-1} b_{i} 2^{i}$$

$$= \sum_{i=0}^{N-1} 2^{i} + 1 - \sum_{i=0}^{N-1} b_{i} 2^{i}$$

$$= \sum_{i=0}^{N-1} (1 - b_{i}) 2^{i} + 1$$

$$= (\text{inversam bitii}) + 1$$

LOGARITM ÎNTREG, EX 9

- arătați că $\lfloor \log_2 x \rfloor = i_{\max}$
- pornim de la reprezentarea binară și aplicăm logaritmul

$$x = \sum_{i=0}^{N-1} b_i 2^i$$

$$\log_2 x = \log_2 \left(\sum_{i=0}^{N-1} b_i 2^i \right)$$

$$= \log_2 \left(2^{i_{\text{max}}} \left(\sum_{i=0}^{N-1} b_i \frac{2^i}{2^{i_{\text{max}}}} \right) \right)$$

$$= \log_2 2^{i_{\text{max}}} + \log_2 \left(\left(\sum_{i=0}^{N-1} b_i \frac{2^i}{2^{i_{\text{max}}}} \right) \right)$$

$$= i_{\text{max}} + C, C < 1$$