

The Scalar Auxiliary Variable Approach for gradient flows

Ding Zhao May 5, 2021

Wuhan University

Contents

Phase Field Recap

SAV Approach

Main Idea

Numerical Schemes

Numerical Experiments

Finite Difference Schemes for Cahn-Hiliard Equation

SAV with Fourier Transform for Allen-Cahn Equation

Code

Definition

Given a free energy functional $\mathcal{E}(\phi(x))$

$$\begin{cases} \phi_t = \mathcal{G}\mu \\ \mu = \frac{\delta \mathcal{E}}{\delta \phi} \end{cases}$$

In the above, operator ${\cal G}$ gives the dissipation mechanism:

- L^2 gradient flows when G = -I (Allen-Cahn)
- H^{-1} gradient flow when $G = \Delta$ (Cahn-Hiliard)
- $H^{-\alpha}$ gradient flow when $\mathcal{G} = -(-\Delta)^{\alpha}$ with $0 < \alpha < 1$

In this talk, we choose periodic boundary conditions or homogeneous Neumann boundary conditions.

Dissipation

As long as ${\cal G}$ is non-positive, the free energy is non-increasing:

$$\frac{\mathrm{d}\mathcal{E}(\phi)}{\mathrm{d}t} = \frac{\delta\mathcal{E}}{\delta\phi} \cdot \frac{\partial\phi}{\partial t} = (\mu, \mathcal{G}\mu) \leq 0$$

In this talk, we consider ${\mathcal G}$ is non-positive, linear and independent of $\phi.$

Free Energy Functional

Usually, the free energy functional contains a quadratic term, which we write explicitly as

$$\mathcal{E}(\phi) = rac{1}{2}(\phi,\mathcal{L}\phi) + \mathcal{E}_1(\phi)$$

where \mathcal{L} is a symmetric non-negative linear operator (independent of ϕ), and $\mathcal{E}_1(\phi)$ are nonlinear but with only lower-order derivatives than \mathcal{L} . We take $\mathcal{E}_1(\phi) = \int_{\Omega} F(\phi) dx$

Existing Approaches

• Convex Splitting Approach Assume $F(\phi) = F_c(\phi) - F_e(\phi)$ with $F_c''(\phi), F_e''(\phi) \ge 0$.

$$\begin{cases} \frac{\phi^{n+1} - \phi^{n}}{\delta t} = \mathcal{G}\mu^{n+1} \\ \mu^{n+1} = \mathcal{L}\phi^{n+1} + \left(F_{c}'\left(\phi^{n+1}\right) - F_{e}'\left(\phi^{n}\right)\right) \end{cases}$$

Stablized Approach
 Introduce stabilization term S to balance nonlinear term.

$$\begin{cases} \frac{1}{\delta t} \left(\phi^{n+1} - \phi^n \right) = \mathcal{G}\mu^{n+1} \\ \mu^{n+1} = \mathcal{L}\phi^{n+1} + S\left(\phi^{n+1} - \phi^n \right) + F'\left(\phi^n \right) \end{cases}$$

• Invariant energy quadratization(IEQ) Introduce a Lagrange multiplier $q(t, x; \phi) = \sqrt{F(\phi) + C_0}$.

$$\begin{cases} \phi_t = \mathcal{G}\mu \\ \mu = \mathcal{L}\phi + \frac{q}{\sqrt{F(\phi) + C_0}}F'(\phi) \\ q_t = \frac{F'(\phi)}{2\sqrt{F(\phi) + C_0}}\phi_t \end{cases}$$

Contents

Phase Field Recap

SAV Approach

Main Idea

Numerical Schemes

Numerical Experiments

Finite Difference Schemes for Cahn-Hiliard Equation

SAV with Fourier Transform for Allen-Cahn Equation

Code

Assume $\mathcal{E}_1(\phi)$) = $\int_{\Omega} F(\phi) dx$ is bounded from below, i.e., $\mathcal{E}_1(\phi) \geq -C_0$, introduce a scalar auxiliary variable $r(t) = \sqrt{\mathcal{E}_1(\phi) + C_0}$.

$$\begin{cases} \phi_t = \mathcal{G}\mu \\ \mu = \mathcal{L}\phi + \frac{r(t)}{\sqrt{\mathcal{E}_1[\phi] + C_0}} F'(\phi) \\ r_t = \frac{1}{2\sqrt{\mathcal{E}_1[\phi] + C_0}} \int_{\Omega} F'(\phi)\phi_t dx \end{cases}$$

Taking the inner products of the above with μ, ϕ_t and 2r respectively, one can obtain the modified energy dissipation law:

$$\frac{d}{dt}\left[\left(\phi,\mathcal{L}\phi\right)+r^2\right]=\left(\mu,\mathcal{G}\mu\right)$$

First-Order Scheme(1)

$$\begin{cases} \frac{\phi^{n+1} - \phi^n}{\Delta t} = \mathcal{G}\mu^{n+1} \\ \mu^{n+1} = \mathcal{L}\phi^{n+1} + \frac{r^{n+1}}{\sqrt{\mathcal{E}_1(\phi^n) + C_0}} F'(\phi^n) \\ \frac{r^{n+1} - r^n}{\Delta t} = \frac{1}{2\sqrt{\mathcal{E}_1(\phi^n) + C_0}} \int_{\Omega} F'(\phi^n) \frac{\phi^{n+1} - \phi^n}{\Delta t} dx \end{cases}$$

From the above we have

$$\frac{\phi^{n+1} - \phi^n}{\Delta t} = \mathcal{G}\left[\mathcal{L}\phi^{n+1} + \frac{F'(\phi)}{\sqrt{\mathcal{E}_1(\phi^n) + C_0}}\left(r^n + \int_{\Omega} \frac{F'(\phi)}{2\sqrt{\mathcal{E}_1(\phi^n) + C_0}}\left(\phi^{n+1} - \phi^n\right)dx\right)\right]$$

First-Order Scheme(2)

denote
$$b^n = rac{F'(\phi^n)}{\sqrt{\mathcal{E}_1(\phi^n) + \mathcal{C}_0}}$$
,

$$\Rightarrow (I - \Delta t \mathcal{GL})\phi^{n+1} - \frac{\Delta t}{2} \mathcal{G}b^{n} \left(b^{n}, \phi^{n+1}\right) = \phi^{n} + r^{n} \mathcal{G}b^{n} - \frac{\Delta t}{2} \left(b^{n}, \phi^{n}\right) \mathcal{G}b^{n} \triangleq c^{n}$$

Multiply it with $(I - \Delta t \mathcal{GL})^{-1}$ and then take inner product with b^n

$$\Rightarrow \left(b^{n},\phi^{n+1}\right) + \frac{\Delta t}{2} \gamma^{n} \left(b^{n},\phi^{n+1}\right) = \left(b^{n},(I-\Delta t \mathcal{GL})^{-1}c^{n}\right)$$

where
$$\gamma^n = -\left(b^n, (I - \Delta t \mathcal{GL})^{-1} \mathcal{G} b^n\right) = \left(b^n, \left(-\mathcal{G}^{-1} + \Delta t \mathcal{L}\right)^{-1} b^n\right) > 0$$

hence
$$(b^n, \phi^{n+1}) = \frac{(b^n, (I - \Delta t \mathcal{GL})^{-1} c^n)}{1 + \Delta t \gamma^n / 2}$$

First-Order Scheme(3)

To summarize, one can implement the first order SAV with following steps:

- 1. compute b^n and c^n
- 2. compute (b^n, ϕ^{n+1})
- 3. compute ϕ^{n+1}

Note that in 2 and 3 of the above procedure, one only need to solve, twice, a linear equation with constant coefficients of the form

$$(I - \Delta t \mathcal{GL})x = b$$

$$\begin{cases} \frac{3\phi^{n+1} - 4\phi^n + \phi^{n-1}}{2\Delta t} = \mathcal{G}\mu^{n+1}, \\ \mu^{n+1} = \mathcal{L}\phi^{n+1} + \frac{r^{n+1}}{\sqrt{\mathcal{E}_1(\bar{\phi}^{n+1}) + C_0}} F'(\bar{\phi}^{n+1}) \\ 3r^{n+1} - 4r^n + r^{n-1} = \int_{\Omega} \frac{F'(\bar{\phi}^{n+1})}{2\sqrt{\mathcal{E}_1(\bar{\phi}^{n+1}) + C_0}} \left(3\phi^{n+1} - 4\phi^n + \phi^{n-1}\right) dx \end{cases}$$

Here $\bar{\phi}^{n+1}$ can be any explicit approximation of ϕ^{n+1} with an error of $\mathcal{O}(\Delta t^2)$.

With similar procedure as first order scheme, one can obtain the iteration format. Each iteration requires solving two linear equations with constant coefficients of the form of

$$(I - \Delta t \mathcal{GL})x = b$$

Crank-Nicolson scheme

The semi-implicit BDF2 can be replaced by semi-implicit Crank–Nicolson scheme.

Contents

Phase Field Recap

SAV Approach

Main Idea

Numerical Schemes

Numerical Experiments

Finite Difference Schemes for Cahn-Hiliard Equation

SAV with Fourier Transform for Allen-Cahn Equation

Code

Problem Problem

Consider free energy functional $\mathcal{E}(\phi) = \int_{\Omega} \left[\frac{\varepsilon^2}{2} |\nabla \phi|^2 + \frac{(1-\phi^2)^2}{4} \right] dx$

One can obtain Cahn-Hiliard Equation from it

$$\begin{cases} \phi_t = \Delta \mu \\ \mu = -\varepsilon^2 \nabla^2 \phi + \phi^3 - \phi \end{cases}$$

I chose Neumann boundary conditions $\frac{\partial c}{\partial n}=0=\frac{\partial \omega}{\partial n}.$

Finite Difference Scheme

For the first equation I used implicit Euler scheme

$$\phi^n - \frac{\Delta t}{h^2} D\mu^n - \phi^{n-1} = 0$$

where the matrix ${\it D}$ is the central-difference Laplacian with Neumann boundary conditions.

For the second equation, I considered five different schemes of the form:

$$\mu^n + \frac{\epsilon^2}{h^2} D\phi^n - \Phi^n = 0$$

where Φ^n is a discretization of the free energy term $F'(\phi)$.

Five Finite Difference Schemes

Depend sensitively on the discretization of the nonlinear term Φ^n , and so I considered the following possibilities:

$$\begin{split} & \Phi^{n} = \left(\phi^{n-1}\right)^{2} \phi^{n} - \phi^{n-1} \\ & \Phi^{n} = \left(\phi^{n-1}\right)^{3} - 3\phi^{n-1} + 2\phi^{n} \\ & \Phi^{n} = 3\left(\phi^{n-1}\right)^{2} \phi^{n} - 2\left(\phi^{n-1}\right)^{2} \phi^{n-1} - \phi^{n}, \\ & \Phi^{n} = \left(\phi^{n}\right)^{3} - \phi^{n-1} \\ & \Phi^{n} = \left(\phi^{n}\right)^{3} - \phi^{n} \end{split}$$

Linear Schemes

The first three schemes result in linear system of the form:

$$\left[\begin{array}{cc} I & -\mu D \\ R_n & I \end{array}\right] \left[\begin{array}{c} \phi^n \\ \mu^n \end{array}\right] = \left[\begin{array}{c} \phi^{n-1} \\ b_n \end{array}\right]$$

where

$$R_{n} = \begin{cases} \epsilon^{2}/h^{2}D - \phi_{n-1}^{2}, \\ \epsilon^{2}/h^{2}D - 2I, \\ \epsilon^{2}/h^{2}D - 3\phi_{n-1}^{2} + I \end{cases}$$
$$b_{n} = \begin{cases} -\phi^{n-1} \\ -3\phi^{n-1} + (\phi^{n-1})^{3} \\ -2(\phi^{n-1})^{3} \end{cases}$$

Nonliear Schemes

The last two schemes take the form of vector systems:

$$g_n = \begin{bmatrix} \phi^n - \frac{\Delta t}{h^2} D\mu^n - \phi^{n-1} \\ f(\phi^n, \phi^{n-1}) + \mu^n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 g_n has Jacobian J_n :

$$J_n = \left[\begin{array}{cc} I & -\frac{\Delta t}{h^2} D \\ \partial f / \partial \phi^n & I \end{array} \right]$$

where the partial derivative term for the two schemes is:

$$\frac{\partial f}{\partial c^n} = \begin{cases} \epsilon^2 / h^2 D - 3\phi_n^2 \\ \epsilon^2 / h^2 D - 3\phi_n^2 + I \end{cases}$$

When implementing Newton's method, at each time-step n I used the previous iterates ϕ^{n-1} and μ^{n-1} as starting guesses for the roots, and computed the Newton step s by solving the linear system

$$J_n s = -g_n$$

Numerical Results

I ran the above five schemes on $[0,1]^2 \times 200\Delta t$, with smooth initial conditions $\phi_0(x,y) = cos(2\pi x)cos(\pi y)$, and the mesh resolution was set 64 × 64.

Figure 1: phases transition

Configuration and Main Idea

- Let $\mathcal{G}=-1, \mathcal{L}=-\Delta$, one gets the Allen-Cahn Equation from previous discussion
- The complexity of SAV mainly locates in solving equation of the form

$$(I - \Delta t \mathcal{GL})x = b$$

 I used Fourier Transfom to solve the above equation in the frequency domain and then inverse transform the result back to the phase field

Numerical Results

• I ran the above five schemes on $[0,1]^2 \times 20000\Delta t$, with smooth initial conditions $\phi_0(x,y) = 0.05 sin(2\pi x) sin(2\pi y)$, and the mesh resolution was set 128×128 . The difference scheme was first order.

Figure 2: phases transition

Energy decay

The modified and raw free energy changes as follow

Figure 3: Modified and Raw Free Energy

Contents

Phase Field Recap

SAV Approach

Main Idea

Numerical Schemes

Numerical Experiments

Finite Difference Schemes for Cahn-Hiliard Equation

SAV with Fourier Transform for Allen-Cahn Equation

Code

Related code is uploaded to

https://github.com/burning489/cahn-hiliard

https://github.com/burning489/sav

Welcome further discussion :)

Thank you!

References i

- [SXY17] Jie Shen, Jie Xu, and Jiang Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Review **61** (2017).
- [SXY18] Jie Shen, Jie Xu, and Jiang Yang, *The scalar auxiliary variable (sav)* approach for gradient flows, Journal of Computational Physics **353** (2018), 407–416.

