# Data-Driven Modeling and Control

# Lecture 2

Dr. Shima Nazari



#### From Lecture 1

**Recall** pseudoinverse calculations for underdetermined systems:

$$Ax = b$$
,  $A \in \mathbb{R}^{m \times n}$ ,  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $m < n$ 

We seek to minimize norm solution from the infinitely many solutions:

$$\min \frac{1}{2}x^T x$$

$$s. t. \quad Ax - b = 0$$

**Hamiltonian:** 
$$H = \frac{1}{2}x^Tx + \lambda^T(Ax - b)$$

#### From Lecture 1

**Hamiltonian:** 
$$H = \frac{1}{2}x^Tx + \lambda^T(Ax - b)$$

$$\frac{\partial H}{\partial x} =$$

$$\frac{\partial H}{\partial \lambda} =$$

#### **Function:**

A function  $f: X \to Y$  assigns an element of Y to each element of X (called f(x) = y)

- Domain:
- Range

Linear function (linear operator, linear transformation, linear mapping)

Operates on a linear space (V, F) to produce elements from another linear space (U, F).

Notated:  $\mathcal{A}: (V, F) \to (U, F)$ 

Note:

DEF: Null space of A is the set  $\mathcal{N}(A) = \{v \in V, Av = \emptyset_u\}$ 

DEF: Range of A is the set  $\mathcal{R}(A) = \{u \in U, Av = u \ \forall \ v \in V\}$ 



Q: Can  $\mathcal{N}(A)$  and  $\mathcal{R}(A)$  be empty?



DEF: The rank of the {linear map  $\mathcal{A}/$  matrix A} is denoted by rank(A) or  $\rho(A)$  is the dimension of range of A.

$$\rho(A) =$$

DEF: The nullity of the {linear map  $\mathcal{A}/$  matrix A} is denoted with null(A) or v(A) is the dimension of null space of A.

$$\nu(A) =$$

Linearly independent columns of A:



Rank-Nullity Theorem:

$$\dim(\mathcal{R}(A)) + \dim(\mathcal{N}(A)) = \dim(V)$$

Proof:











Let A to be a linear map that operates on a linear space (V, F). Suppose that there exists  $\lambda \in F$  and  $v \in V$  ( $v \neq \emptyset$ ) such that:

$$Av = \lambda v$$

- $\lambda$  is an **eigenvalue** of A
- v is an eigenvector of A
- For any eigenvalue there exists an associated linear subspace of eigenvectors
- $\mathcal{N}(A \lambda I)$  is called  $\mathcal{N}_{\lambda}$  (eigenspace)
- $\star$  dim( $\mathcal{N}_{\lambda}$ ) is called the geometric multiplicity of  $\lambda$

#### How to find eigenvalues of A:

I. write  $Av = \lambda v$ 



II. Form  $\Phi(\lambda) = \det(A - \lambda I)$ , a polynomial of degree n in  $\lambda s$ 

II. Solutions to  $\Phi(\lambda) = 0$  are eigen values of A.

IV. For distinct eigenvalues form  $Av_i = \lambda_i v_i$  and fine  $v_i$ s (eigenvectors)

**Example:** find eigenvalues and eigenvectors for  $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ 



**Theorem:** If eigenvalues  $\lambda_i$  are all distinct, then the associated eigenvectors  $v_i$  in the set  $\{v_1, v_2, ..., v_n\}$  form a linearly independent basis.

Representation of A in  $\{v_1, v_2, ..., v_n\}$ 



#### Q: what if there are repeated eigenvalues? (not all eigenvalues are distinct)

Assume A:  $V \rightarrow V$ ,  $(\dim(V) = n)$ 

- A always has n eigenvalues (some distinct, some repeated)
- Let  $\lambda_1, \lambda_2, ... \lambda_c$  to be distinct eigenvalues of A
- Let  $m_1, m_2, ... m_c$  be algebraic multiplicity of  $\lambda_i$ s.

Use 
$$q_i = \dim(\mathcal{N}(A - \lambda_i I))$$

Case 1:  $q_i = m_i$ 



Case 1: 
$$q_i < m_i$$
 or  $dim(\mathcal{N}(A - \lambda_i I)) < m_i$ 

CLAIM 1: 
$$\dim(\mathcal{N}(A - \lambda_i I)^{m_i}) = m_i$$



DEF: A vector v is a **generalized eigenvector** of **rank k** associated with eigenvalue  $\lambda$  if:

$$v \in \mathcal{N}(A - \lambda I)^k$$
 but  $v \notin \mathcal{N}(A - \lambda I)^{k-1}$ 



CLAIM 2:  $v^{\eta_i-1} = (A - \lambda I)v^{\eta_i}$  is a generalized eigenvector of rank  $\eta_i - 1$ 

Similarly:

 $\{v^1, v^2, ..., v^{\eta_i}\}$  is called a chain of generalized eigenvectors.

How to construct a chain of eigenvectors:



CLAIM 3: Any chain of generalized eigenvectors are linearly independent.

CLAIM 4: chains associated with different eigenvalues are linearly independent and different chains associated with the same eigenvalue are linearly independent.

 **Conclusion:** set  $\{v_1^1, \dots, v_1^{m_1}, v_2^1, \dots, v_2^{m_2}, \dots\}$  are linearly independent basis.

What is the representation of A in about basis:





**Adjoint** of a linear operator A:  $V \to W$  is  $A^*: W \to V$ , such that  $\forall x \in V$ , and  $\forall y \in W$ :  $< y, Ax > = < A^*y, x >$ 

If  $A \in \mathbb{C}^{n \times n}$ , and we have  $A = A^*$ , then we say A is **Hermitian**.

If  $A \in \mathbb{R}^{n \times n}$ , and we have  $A = A^T$ , then we say A is **Symmetric**.

**Theorem:** If matrix *A* is Hermitian then all of its eigenvalues are real and it will have full set of eigenvectors that are all mutually orthogonal, regardless of the existence of any repeated eigenvalues.

**Theorem:** Hermitian matrices have a complete set of n regular (not generalized) eigenvectors.

Consider  $A^*A$ , where  $A \in \mathbb{C}^{m \times n}$ 

**CLAIM:** The eigenvalues of  $A^*A$  are non-negative.





$$\mathcal{N}(A) = \mathcal{N}(A^*A)$$



Consider  $A \in \mathbb{C}^{m \times n}$  and  $A^*A \in \mathbb{C}^{n \times n}$ , assume that  $\rho(A^*A) = r$ , and let's name the eigenvalues of  $A^*A$  as  $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > \sigma_{r+1} = \cdots = \sigma_n = 0$ 

Representation of  $A^*A$  in the basis  $\{v_i\}_1^n$ :

Define 
$$V_1 = [v_1, v_2, ..., v_r]$$
 and  $V_2 = [v_{r+1}, ..., v_n]$ 



Define transformation matrix P

$$P^{-1} = [V_1 \mid V_2] = Q$$

Then

$$A^*A = Q \begin{bmatrix} \sigma^2 & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

We would like to show that there exists an orthonormal matrix  $U \in \mathbb{C}^{m \times m}$  such that:

$$A = U\Sigma V^* = U\begin{bmatrix} \sigma & o \\ 0 & 0 \end{bmatrix} V^*$$

Review: 
$$A^*A = V \begin{bmatrix} \sigma^2 & 0 \\ 0 & 0 \end{bmatrix} V^*$$

Decompose  $U = [U_1 | U_2]$  where  $U_1 \in \mathbb{C}^{m \times r}$  and  $U_2 \in \mathbb{C}^{m \times (m-r)}$ 

Then  $A = U\Sigma V^* =$ 

- ❖ Columns of  $V_1$  span  $\mathcal{R}(A^*) = \mathcal{R}(A^*A)$ , they are also eigenvectors  $A^*A$  corresponding to nonzero eigenvalues  $\{\sigma_1^2, \sigma_2^2, ..., \sigma_r^2\}$
- ❖ Columns of  $V_2$  span  $\mathcal{N}(A) = \mathcal{N}(A^*A)$ , they are also eigenvectors  $A^*A$  corresponding to zero eigenvalues  $\{\sigma_{r+1}^2, ..., \sigma_n^2\} = \{0, ..., 0\}$
- $\bullet$  The columns of  $U_1$  span  $\mathcal{R}(A)$
- **The columns of**  $U_2$  **span**  $\mathcal{N}(A)$
- Singular values of A of are  $\sigma_1, ..., \sigma_n$ , where  $\sigma_i(A) = [\lambda_i(A^*A)]^{1/2}, i = 1, ..., n$

#### **Matrix Approximation**

Theorem (Eckart-Young): The optimal rank-r approximation to matrix X, in a least squares sense, is given by the rank-p SVD truncation  $\tilde{X}$ :

$$\underset{\tilde{X},s.t.\ rank(\tilde{X})=p}{\operatorname{argmin}} \|X - \tilde{X}\|_{F} = \tilde{U}\tilde{\Sigma}\tilde{V}^{*}$$

Where :  $\tilde{V}$  and  $\tilde{U}$  are the first p leading columns of V and U, and  $\tilde{\Sigma}$  contains the leading  $p \times p$  sub-block of  $\Sigma$ .

Review: Frobenius norm  $\|.\|_F$ 

 $\tilde{X}$  is an approximation to X and is called truncated SVD of X:

$$\tilde{X} = \tilde{U}\tilde{\Sigma}\tilde{V}^*$$



#### **Applications of SVD:**

- Image compression.
- Market data analysis.
- Latent Semantic Indexing (LSI).
- Political spectrum analysis.
- 3D image deformation using moving least-squares.
- SVD and PCA for gene expression data.

See example applications in chapter 1 of your textbook and here:

https://inst.eecs.berkeley.edu/~ee127/sp21/livebook/l\_svd\_apps.html



**Example:** Image compression

Let  $X \in \mathbb{R}^{n \times m}$  be a real valued matrix representing pixel values for the image. n and m are the number of pixels in the vertical and horizontal directions.





 $r=20,\ 2.33\%$  storage



r=5,~0.57% storage



r=100,~11.67% storage



Figure 1.3 Image compression of Mordecai the snow dog, truncating the SVD at various ranks r. Original image resolution is  $2000 \times 1500$ .