AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES

(AIMS RWANDA, KIGALI)

Name: Emmanuel Ansah

Assignment Number: 1

Course: Topological Data Analysis Date: January 11, 2025

Lesson 1

1. (Equivalent definition of continuity): A map f is continuous if and only if the preimage of any closed set is closed.

Solution

Let $f: X \to Y$ be a map between topological spaces.

Assume f is continuous,

Let $C \subseteq Y$ be a closed set. Then $Y \setminus C$ is open. Since f is continuous, the preimage $f^{-1}(Y \setminus C)$ is open.

By properties of set preimages,

$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C).$$

Since the complement $X \setminus f^{-1}(C)$ is open, it follows that $f^{-1}(C)$ is closed.

Assume that for every closed set $C \subseteq Y$, $f^{-1}(C)$ is closed,

Let $U \subseteq Y$ be an open set. Then $Y \setminus U$ is closed. By assumption, the preimage $f^{-1}(Y \setminus U)$ is closed.

By properties of set preimages,

$$f^{-1}(Y \setminus U) = X \setminus f^{-1}(U).$$

Since the complement $X \setminus f^{-1}(U)$ is closed, $f^{-1}(U)$ is open.

This shows that f is continuous.

Since we have shown the implication holds in both directions, the statement, f is continuous if and only if the preimage of any closed set is closed is true.

2. Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in B(x,r)$. Show that

$$B(y, r - ||x - y||) \subseteq B(x, r).$$

Solution

Lets consider an open ball,

$$B(x,r) = \{ z \in \mathbb{R}^n : ||x - z|| < r \}.$$

Now, let $z \in B(y, r - ||x - y||)$, where,

$$B(y, r - ||x - y||) = \{z \in \mathbb{R}^n : ||y - z|| < r - ||x - y||\}.$$

We check ||x - z||

Using the triangle inequality,

$$\begin{split} \|x-z\| & \leq \|x-y\| + \|y-z\| \\ \text{Substituting} \quad \|y-z\| \text{ from the definition of } B(y,r-\|x-y\|), \\ \|x-z\| & < \|x-y\| + (r-\|x-y\|) \\ \text{Simplifying,} \quad \|x-z\| & < \|x-y\| + r - \|x-y\| \\ \text{Thus,} \quad \|x-z\| & < r \end{split}$$

which implies $z \in B(x, r)$ Since,

$$z \in B(y, r - ||x - y||)$$
 and $y \in B(x, r)$

we conclude that,

$$B(y, r - ||x - y||) \subset B(x, r).$$

3. Show that the open balls B(x,r) of \mathbb{R}^n are open sets (with respect to the Euclidean topology).

Solution

Let $y \in B(x,r)$. By definition of the open ball, ||y-x|| < r

Define
$$\delta = r - \|y - x\|$$

so that $\delta > 0$

Now consider the open ball,

$$B(y,\delta) = \{ z \in \mathbb{R}^n : ||z - y|| < \delta \}.$$

For any $z \in B(y, \delta)$, we have,

$$||z - x|| \le ||z - y|| + ||y - x||$$
 (by the triangle inequality)

Since,

$$||z - y|| < \delta = r - ||y - x||$$

it follows that,

$$||z - x|| < (r - ||y - x||) + ||y - x||$$

$$||z - x|| < r$$

Thus, $z \in B(x,r)$, and we have shown that

$$B(y, \delta) \subseteq B(x, r)$$
.

For every $y \in B(x,r)$, there exists an open ball $B(y,\delta)$ centered at y that is contained within B(x,r). This demonstrates that B(x,r) is an open set.

4. Let $x, y \in \mathbb{R}^n$, and r = ||x - y||. Show that

$$B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subseteq B(x,r) \cap B(y,r)$$

Solution

For
$$B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(x,r) \cap B(y,r)$$
,

it must be true that,

$$B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(x, r)$$
 and $B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(y, r)$

Proof for $B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(x, r)$

Let $z \in B\left(\frac{x+y}{2}, \frac{r}{2}\right)$, where

$$B\left(\frac{x+y}{2}, \frac{r}{2}\right) = \left\{z \in \mathbb{R}^n : \left\|z - \frac{x+y}{2}\right\| \le \frac{r}{2}\right\}$$

If $z \in B(x, r)$, then,

$$B(x,r) = \{ z \in \mathbb{R}^n : ||z - x|| \le r \}$$

Using the triangle inequality,

$$||z - x|| \le ||z - \frac{x+y}{2}|| + ||\frac{x+y}{2} - x||$$

$$||z - x|| \le ||z - \frac{x+y}{2}|| + ||\frac{x+y}{2} - \frac{2x}{2}||$$

Thus,

$$||z - x|| \le ||z - \frac{x + y}{2}|| + \frac{1}{2}||y - x||$$

Since ||y - x|| = r and $||z - \frac{x+y}{2}|| < \frac{r}{2}$,

$$||z-x|| < \frac{r}{2} + \frac{r}{2}$$

$$||z - x|| < r$$

Therefore, $z \in B(x,r)$

Proof for $B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(y, r)$

Let $z \in B\left(\frac{x+y}{2}, \frac{r}{2}\right)$

Then

$$B(y,r) = \{ z \in \mathbb{R}^n : ||z - y|| \le r \}$$

Using the triangle inequality,

$$||z - y|| \le ||z - \frac{x + y}{2}|| + ||\frac{x + y}{2} - y||$$

Simplifying,

$$||z - y|| \le ||z - \frac{x + y}{2}|| + \frac{1}{2}||x - y||.$$

Since ||x - y|| = r and $||z - \frac{x+y}{2}|| < \frac{r}{2}$:

$$||z-y|| < \frac{r}{2} + \frac{r}{2}$$

$$||z - y|| < r$$

Therefore, $z \in B(y, r)$.

Conclusion

Since $z \in B\left(\frac{x+y}{2}, \frac{r}{2}\right)$ implies $z \in B(x, r)$ and $z \in B(y, r)$, we conclude that,

$$B\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset B(x,r) \cap B(y,r).$$

5. Show that the set of rational numbers is not an open subset of $\mathbb R$

Let \mathbb{Q} be the set of rational numbers. Suppose, for contradiction, that \mathbb{Q} is an open subset of \mathbb{R} .

Proof by Contradiction

If \mathbb{Q} is open, then for any $q \in \mathbb{Q}$, there exists $\epsilon > 0$ such that the open interval $(q - \epsilon, q + \epsilon) \subseteq \mathbb{Q}$. However, it is a known property of the real numbers that between any two real numbers, there exists an irrational number.

Therefore, for any such $\epsilon > 0$, the interval $(q - \epsilon, q + \epsilon)$ will contain at least one irrational number.

This contradicts the assumption that $(q - \epsilon, q + \epsilon) \subseteq \mathbb{Q}$, since the presence of an irrational number implies that the interval cannot be fully contained within \mathbb{Q}

Thus, our assumption that $\mathbb Q$ is an open subset of $\mathbb R$ leads to a contradiction.

Therefore, \mathbb{Q} is not an open subset of \mathbb{R} .

6. Show that a map is continuous if and only if the preimage of closed sets are closed sets

Solution

Let $f: X \to Y$ be a map between topological spaces.

Assume f is continuous,

Let $C \subseteq Y$ be a closed set. Then $Y \setminus C$ is open. Since f is continuous, the preimage $f^{-1}(Y \setminus C)$ is open.

By properties of set preimages,

$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$$

Since the complement $X \setminus f^{-1}(C)$ is open, it follows that $f^{-1}(C)$ is closed.

Assume that for every closed set $C \subseteq Y$, $f^{-1}(C)$ is closed,

Let $U\subseteq Y$ be an open set. Then $Y\setminus U$ is closed. By assumption, the preimage $f^{-1}(Y\setminus U)$ is closed.

By properties of set preimages,

$$f^{-1}(Y \setminus U) = X \setminus f^{-1}(U).$$

Since the complement $X \setminus f^{-1}(U)$ is closed, $f^{-1}(U)$ is open.

This shows that f is continuous.

Since we have shown the implication holds in both directions, the statement, f is continuous if and only if the preimage of any closed set is closed is true.

Lesson 2

- 1. Show that the following spaces are homeomorphic:
- (i) Let $a \neq b$. Show that the interval [0,1] is homeomorphic to [a,b].

Proof:

Define the function $f:[0,1] \to [a,b]$ by

$$f(x) = (b - a)x + a.$$

Continuity: f is a linear function and thus continuous.

Bijective: Since $a \neq b$, f has a non-zero slope and is injective. The range of f is [a, b] because f(0) = a and f(1) = b. Thus f is bijective.

Inverse Continuous: The inverse is

$$f^{-1}(x) = \frac{x-a}{b-a},$$

which is also a linear function and thus continuous.

Since f is bijective and both f and f^{-1} are continuous, f is a homeomorphism, and therefore

$$[0,1] \cong [a,b]$$

.

(ii) The interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is homeomorphic to the interval (0, 1).

Proof:

To show that two spaces are homeomorphic, we need to find a bijective continuous function between them that has a continuous inverse.

Define a function $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to(0,1)$ as follows:

$$f(x) = \frac{1}{2} \left(\frac{x}{\frac{\pi}{2}} + 1 \right) = \frac{x}{\pi} + \frac{1}{2}.$$

This function is a linear transformation that maps the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to the interval (0,1).

The function $f(x) = \frac{x}{\pi} + \frac{1}{2}$ is a linear function. Linear functions are continuous everywhere, and thus f is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Injective (One-to-one): Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then:

$$\frac{x_1}{\pi} + \frac{1}{2} = \frac{x_2}{\pi} + \frac{1}{2}.$$

8

Simplifying:

$$\frac{x_1}{\pi} = \frac{x_2}{\pi} \implies x_1 = x_2.$$

Therefore, f is injective.

Surjective (Onto): For any $y \in (0,1)$, we need to show that there exists an $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that f(x) = y. Let's solve for x in the equation $y = \frac{x}{\pi} + \frac{1}{2}$:

$$y - \frac{1}{2} = \frac{x}{\pi} \implies x = \pi \left(y - \frac{1}{2} \right).$$

Since 0 < y < 1, we have $-\frac{1}{2} < y - \frac{1}{2} < \frac{1}{2}$, and multiplying by π , we get:

$$-\frac{\pi}{2} < \pi \left(y - \frac{1}{2} \right) < \frac{\pi}{2}.$$

Thus, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and f is surjective.

Since f is both injective and surjective, it is a bijection.

We already solved for x in terms of y in the surjectivity argument. The inverse function $f^{-1}:(0,1)\to\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ is given by:

$$f^{-1}(y) = \pi \left(y - \frac{1}{2}\right) = \pi y - \frac{\pi}{2}.$$

The inverse function is a linear function, therefore f^{-1} is continuous on (0,1).

Since:

- $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (0, 1)$ is a bijection,
- \bullet f is continuous, and
- f^{-1} is continuous,

the function f is a homeomorphism. Therefore, the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is homeomorphic to the interval (0,1), denoted as:

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cong (0, 1).$$

(iii) The interval (-1,1) is homeomorphic to \mathbb{R} .

Proof:

Define the function $f:(-1,1)\to\mathbb{R}$ as

$$f(x) = \tan\left(\frac{\pi x}{2}\right).$$

Continuity: $\tan\left(\frac{\pi x}{2}\right)$ is continuous for $x \in (-1,1)$.

Bijective: The range of $\tan(x)$ is all real numbers, and when restricted to the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the tan function is bijective. The map $\frac{\pi x}{2}$ maps (-1,1) bijectively to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, so f(x) is also bijective.

Inverse Continuous: The inverse is

$$f^{-1}(y) = \frac{2}{\pi}\arctan(y),$$

which is continuous.

Since f is bijective and both f and f^{-1} are continuous, f is a homomorphism, and therefore

$$(-1,1)\cong\mathbb{R}$$

.

2. Show that the function $f: \mathbb{R}^n \to [0, \infty)$ defined by

$$f(x) = ||x||$$

is continuous

Solution

Given an arbitrary $x_0 \in \mathbb{R}^n$ and an arbitrary $\epsilon > 0$.

we need to find $\delta > 0$ such that if $||x - x_0|| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

Now let $\delta = \epsilon$.

Assume $||x - x_0|| < \delta$

Then, using the reverse triangle inequality,

$$|f(x) - f(x_0)| = |||x|| - ||x_0||| \le ||x - x_0||$$

Since $||x - x_0|| < \delta$, we have,

$$|f(x) - f(x_0)| \le ||x - x_0|| < \delta$$

Substituting $\delta = \epsilon$, it follows that,

$$|f(x) - f(x_0)| < \epsilon.$$

For all $\epsilon > 0$, there exists $\delta > 0$ (specifically $\delta = \epsilon$) such that if $||x - x_0|| < \delta$, then $|f(x) - f(x_0)| < \epsilon$. Thus, f(x) = ||x|| is continuous on \mathbb{R}^n .

3. Consider the sets

$$D = \{x \in \mathbb{R}^2 : ||x|| \le 1\}, \quad S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}.$$

(a) Let $S^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$. Show that $f: D \setminus S^1 \to \mathbb{R}^2$ defined by

$$f(x) = \frac{x}{1 - \|x\|}$$

is a homeomorphism.

Solution

Let $x, y \in D \setminus S^1$. Suppose

$$f(x) = f(y) \implies \frac{x}{1 - ||x||} = \frac{y}{1 - ||y||}.$$

Cross-multiplying gives,

$$x(1 - ||y||) = y(1 - ||x||)$$

which simplifies to

$$|x - x||y|| = y - y||x|| \implies x = y.$$

Thus,

f is injective

Also letting $y \in \mathbb{R}^2$, we solve,

$$y = \frac{x}{1 - \|x\|}.$$

Taking the norm, we get

$$||y|| = \frac{||x||}{1 - ||x||} \implies ||x|| = \frac{||y||}{1 + ||y||}.$$

Since

$$||x|| < 1, \quad x \in D \setminus S^1$$

Thus, f is surjective.

Let $\epsilon > 0$ and $x_0 \in D \setminus S^1$.

Choose

$$\delta = \frac{\epsilon}{(1 - \|x\|)(1 - \|x_0\|)}$$

For $||x - x_0|| < \delta$, we need to show

$$||f(x) - f(x_0)|| < \epsilon.$$

We have

$$||f(x) - f(x_0)|| = \left\| \frac{x}{1 - ||x||} - \frac{x_0}{1 - ||x_0||} \right\|.$$

Using the reverse triangle inequality,

$$||f(x) - f(x_0)|| \le \frac{1}{(1 - ||x||)(1 - ||x_0||)} \left(||x - x_0|| + ||x|| ||x_0|| \left\| \frac{x_0}{||x_0||} - \frac{x}{||x||} \right\| \right).$$

Since $||x - x_0|| < \delta$, we conclude $||f(x) - f(x_0)|| < \epsilon$.

Thus, f is continuous.

Let $g: \mathbb{R}^2 \to D \setminus S^1$, where,

$$g(y) = \frac{y}{1 + \|y\|}.$$

Then for $y \in \mathbb{R}^2$,

$$f(g(y)) = f\left(\frac{y}{1+\|y\|}\right) = \frac{\frac{y}{1+\|y\|}}{1-\left\|\frac{y}{1+\|y\|}\right\|} = y.$$

Similarly, for $x \in D \setminus S^1$,

$$g(f(x)) = g\left(\frac{x}{1 - ||x||}\right) = \frac{\frac{x}{1 - ||x||}}{1 + \left\|\frac{x}{1 - ||x||}\right\|} = x.$$

Thus, $f: D \setminus S^1 \to \mathbb{R}^2$ is a homeomorphism.

(b) Show that the map $g: S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2$ defined by

$$g(x) = \frac{1}{1 - x_3}(x_1, x_2)$$

is a homeomorphism.

Solution

The map is defined for all points $(x_1, x_2, x_3) \in S^2 \setminus \{(0, 0, 1)\}.$

The components x_1 , x_2 , and x_3 of the input vector x are continuous functions of x.

The function $1 - x_3$ is also a continuous function of x.

Since $1 - x_3 \neq 0$, the function $1/(1 - x_3)$ is continuous.

The map g(x) is a combination of continuous functions, so g(x) is continuous.

Suppose g(x) = g(y), where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. Then:

$$\frac{1}{1-x_3}(x_1, x_2) = \frac{1}{1-y_3}(y_1, y_2)$$

This implies:

$$\frac{x_1}{1-x_3} = \frac{y_1}{1-y_3}, \quad \frac{x_2}{1-x_3} = \frac{y_2}{1-y_3}$$

We also know that

$$x_1^2 + x_2^2 + x_3^2 = 1$$

and

$$y_1^2 + y_2^2 + y_3^2 = 1$$

. Let
$$(u, v) = \frac{(x_1, x_2)}{1 - x_3}$$
.

Solving for x_1 , x_2 , and x_3 in terms of u and v, we get:

$$x_3 = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}, \quad x_1 = \frac{2u}{u^2 + v^2 + 1}, \quad x_2 = \frac{2v}{u^2 + v^2 + 1}$$

Since these expressions uniquely determine x, g is injective.

Using the inverse map,

$$g^{-1}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

We can verify that $x_1^2 + x_2^2 + x_3^2 = 1$ and $x_3 \neq 1$. Hence, g is surjective.

Since the components of g^{-1} are rational functions of u and v with a nonzero denominator, they are continuous. Therefore, g^{-1} is continuous.

Since q is continuous, bijective and q^{-1} is continuous.

 $\therefore g$ is a homeomorphism.

Lesson 3

1. Definition: Let X be a topological space, and $x,y\in X$. A path between the points x and y is a continuous function $\eta:[0,1]\to X$ such that $\eta(0)=x$ and $\eta(1)=y$. Show that the unit sphere $S^n=\{x\in\mathbb{R}^{n+1}:\|x\|=1\}$ is path-connected for $n\geq 1$

Solution

Let $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ for $n \ge 1$, and let $x, y \in S^n$ be arbitrary points.

Case 1: $x \neq -y$

Define a path $\eta:[0,1]\to S^n$ by

$$\eta(t) = \frac{(1-t)x + ty}{\|(1-t)x + ty\|}$$

The numerator

$$(1-t)x + ty$$

and the denominator

$$\|(1-t)x+ty\|$$

are continuous functions of t. Since $x \neq -y$, the denominator is never zero. Therefore, $\eta(t)$ is continuous.

Path Conditions

$$-\eta(0) = \frac{(1-0)x + 0y}{\|(1-0)x + 0y\|} = \frac{x}{\|x\|} = x.$$

$$-\eta(1) = \frac{(1-1)x + 1y}{\|(1-1)x + 1y\|} = \frac{y}{\|y\|} = y.$$

Thus, the path η connects x to y.

Case 2: x = -y

Since $n \ge 1$, there exists a point $z \in S^n$ such that $z \ne x$ and $z \ne y$. Define a combined path $\eta : [0,1] \to S^n$ by

$$\eta(t) = \begin{cases} \eta_1(2t) & \text{for } 0 \le t \le \frac{1}{2}, \\ \eta_2(2t - 1) & \text{for } \frac{1}{2} \le t \le 1, \end{cases}$$

where η_1 is the path from z to z and η_2 is the path from z to y, as in Case 1.

Since both η_1 and η_2 are continuous, and $\eta_1(1) = \eta_2(0)$, the path η is continuous.

$$- \eta(0) = \eta_1(0) = x.$$

-
$$\eta(1) = \eta_2(1) = y$$
.

Thus, the combined path η connects x to y.

In either case, we have shown that a continuous path exists from x to y.

Therefore, S^n is path-connected for n > 1

2. Intermediate Value Theorem: Let X be a connected topological space and let $f: X \to X$ be a continuous function. If a < b are points in $\mathbb R$ such that a = f(x) and b = f(y) for some $x, y \in X$, then for each $c \in (a, b)$ there exists $z \in X$ such that c = f(z). Apply the Intermediate Value Theorem to answer the following: Let $f: \mathbb R \to \mathbb R$ be a continuous function such that $f(x) \cdot f(f(x)) = 2$ for all $x \in \mathbb R$ and f(3) = 10. Find the value of f(5)

Solution

Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(x) \cdot f(f(x)) = 2, \quad \forall x \in \mathbb{R},$$

and f(3) = 10.

From the given equation, substituting x = 3:

$$f(3) \cdot f(f(3)) = 2.$$

Let f(3) = 10. Then:

$$10 \cdot f(10) = 2 \quad \Rightarrow \quad f(10) = \frac{1}{5}.$$

This implies:

$$f(10) < f(s) < f(3)$$
, where $s \in \mathbb{R}$.

Thus,

$$\frac{1}{5} < f(s) < 10.$$

using the Intermediate Value Theorem, there must exist a $z \in \mathbb{R}$ such that,

$$f(z) = 5$$

and

$$z\in(\frac{1}{5},10)$$

Substituting z into the function,

$$f(z) \cdot f(f(z)) = 2$$
$$5 \cdot f(5) = 2$$
$$\Rightarrow f(5) = \frac{2}{5}$$

3. Let $f: S^n \to \mathbb{R}$ be a continuous function. Show that there exists a point $x \in S^n$ such that f(x) = f(-x). Here, if $x = (x_1, x_2, \dots, x_{n+1})$, then $-x = (-x_1, -x_2, \dots, -x_{n+1})$

Solution

Let $f: S^n \to \mathbb{R}$ be a continuous function. Define $g: S^n \to \mathbb{R}$ by

$$g(x) = f(x) - f(-x)$$

Since f is continuous and -x is a continuous function of x, the composition f(-x) is continuous. Since subtraction preserves continuity, g is continuous.

For any $x \in S^n$, we have,

$$g(-x) = f(-x) - f(-(-x)) = f(-x) - f(x) = -(f(x) - f(-x)) = -g(x)$$

Thus, g(-x) = -g(x), so g is an odd function with respect to the antipodal map.

Assume a contradiction that there is no point $x \in S^n$ such that g(x) = 0. Therefore, for all $x \in S^n$, g(x) is either always positive or always negative.

- If q(x) is always positive, then from the antipodal property, q(-x) is always negative.
- If g(x) is always negative, then g(-x) is always positive.

Since S^n is a path-connected space and g is continuous, the image $g(S^n)$ must be a path-connected interval.

Since the image contains both positive and negative values, there must be a value in the image where g(x) = 0, which is a contradiction to our assumption that $g(x) \neq 0$ for all $x \in S^n$.

Therefore, there exists some $x \in S^n$ such that q(x) = 0, which implies

$$f(x) - f(-x) = 0$$

Thus

$$f(x) = f(-x)$$

Therefore, there exists a point $x \in S^n$ such that f(x) = f(-x).

4. Show that the intervals [0,1) and (0,1) are not homeomorphic

Solution

Let $I_1 = [0, 1)$ and $I_2 = (0, 1)$ denote the two intervals.

- Let $y \in I_2$. Then $I_2 \setminus \{y\}$ is disconnected, with two connected components: (0, y) and (y, 1).
- Let $x \in (0,1)$. Then $I_1 \setminus \{x\}$ is disconnected.
- $I_1 \setminus \{0\}$ is connected (the space (0,1)).

Assume there exists a homeomorphism $h:I_1\to I_2$

Let z = h(0). Since h is a homeomorphism, it maps connected components to connected components.

Therefore, $I_1 \setminus \{0\}$ should be homeomorphic to $I_2 \setminus \{z\}$.

However, since removing 0 from I_1 results in a connected space, and removing z from I_2 results in a disconnected space, this leads to a contradiction.

Since h cannot preserve the connectedness properties, no homeomorphism exists between [0,1) and (0,1).

Therefore, the interval [0,1) is not homeomorphic to (0,1).

5. Show that the closed interval [0,1] is not homeomorphic to a cross Solution

Let I = [0, 1] denote the closed interval and let X denote the cross.

- If $x \in (0,1)$, then $I \setminus \{x\}$ has two connected components: (0,x) and (x,1).
- If x = 0 or x = 1, then $I \setminus \{x\}$ has one connected component, either (0,1] or [0,1).
- Let p denote the intersection point of the cross X. Then $X \setminus \{p\}$ has four connected components.

Suppose there exists a homeomorphism $h: I \to X$.

Let $p \in X$ be the intersection point.

Let
$$q = h^{-1}(p) \in I$$
.

Since h is a homeomorphism, it maps connected components of $I \setminus \{q\}$ to connected components of $X \setminus \{p\}$.

- $I \setminus \{q\}$ has either 1 or 2 connected components, depending on whether q is an endpoint or not, respectively.
- $X \setminus \{p\}$ has four connected components.

Therefore, h cannot be a homeomorphism because it doesn't preserve the number of connected components when a single point is removed.

Therefore, no homeomorphism $h: I \to X$ can exist, so the closed interval [0,1] is not homeomorphic to the cross X.