Joshua Dunne 1

1 Question 1

Given

Given
$$\vec{v_3} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
 is $\vec{v_3} \in \operatorname{span}\{\vec{v_1}, \vec{v_2}\}$?

where
$$\vec{v_1} = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$$
 and $\vec{v_2} = \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}$.

Solution We're given thast we can consider these vectors as

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

We're still asking the same question, so let's see how that breaks down

$$c_1 \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

This gives us the following system of equations

$$c_1 + c_2 = 1$$
$$c_1 - c_2 = 2$$
$$c_1 = 3$$
$$c_1 = 4$$

Seen as we can't reconcile the last two equations, we can see that this system is inconsistent.

2 Question 2

Restate Is
$$\mathbf{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
?

Values

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$$

Joshua Dunne 2

Form span $\{p(x), q(x), r(x)\}$ is of the form

$$p(x) = 1 - 2x + 0x^{2}$$

$$q(x) = 0 + 1x - 1x^{2}$$

$$r(x) = -2 - 3x + 1x^{2}$$

Investigation

$$1 = 1c_1 + 0c_2 - 2c_3$$

$$1 = -2c_1 + 1c_2 - 3c_3$$

$$1 = 0c_1 - 1c_2 + 1c_3$$

Augment We can express this as an augmented matrix

$$\left[\begin{array}{ccc|c} 1 & 0 & -2 & 1 \\ -2 & 1 & -3 & 1 \\ 0 & -1 & 1 & 1 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -2 & 1 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & 5/2 \end{array}\right]$$

Analysis Not only consistent, but unique as well! So. Yes. We can use these coefficients to express \mathbf{v}_4 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.