Lista de exercícios: Lógica Proposicional

- 1. Traduza para a linguagem natural as fórmulas abaixo, utilizando o seguinte esquema:
 - $P \equiv$ o livro é interessante.
 - $Q \equiv$ o livro é caro.
 - $R \equiv$ o livro é de lógica.
 - a) $\neg P$
 - b) $P \wedge Q$
 - c) $P \wedge \neg Q$
 - d) $\neg P \wedge Q$
 - e) $\neg (P \land Q)$
 - f) $P \rightarrow Q$
 - g) $P \leftrightarrow (\neg Q \lor R)$
- 2. Escreva fórmulas para as sentenças abaixo utilizando os seguintes símbolos proposicionais:
 - $P \equiv \text{Paula vai à festa.}$
 - $Q \equiv \text{Quincas vai à festa.}$
 - $R \equiv \text{Ricardo vai à festa}$.
 - $S \equiv \text{Sara vai à festa}$.
 - a) Paula não vai.
 - b) Paula vai, mas Quincas não vai.
 - c) Se Paula for, então Quincas também irá.
 - d) Paula irá, se Quincas for.
 - e) Paula irá, somente se Quincas for.
 - f) Paula irá se e somente se Quincas for.
 - g) Nem Paula nem Quincas irão.
 - h) Paula e Quincas não irão.
 - i) Paula vai ou Quincas não vai.
 - j) Paula não irá, se Quincas for.
 - k) Ou Paula vai, ou Ricardo e Quincas vão.
 - 1) Se Paula for, então Ricardo e Quincas irão.
 - m) Paula não irá, mas Ricardo e Quincas irão.
 - n) Se Ricardo for, então se Paula não for, Quincas irá.
 - o) Se nem Ricardo nem Quincas forem, então Paula irá.
 - p) Ricardo irá, somente se Paula e Quincas não forem.
 - q) Se Ricardo ou Quincas forem, então Paula irá e Sara não irá.
 - r) Ricardo e Quincas irão se e somente se Paula ou Sara for.
 - s) Se Sara for, então Ricardo ou Paula irão, e se Sara não for, então Paula e Quincas irão.
 - t) Paula irá a festa, a menos que Quincas vá.

- Escreva as sentenças a seguir utilizando a linguagem da Lógica Proposicional e monte as tabelas verdade correspondentes.
 - a) José virá à festa e Maria não gostará ou José não virá à festa e Maria gostará da festa.
 - b) A novela será exibida, a menos que seja exibido o programa político.
 - Se chover irei para casa, caso contrário, ficarei no escritório.
 - d) Irei ao teatro somente se for uma peça de comédia.
 - e) Se minha namorada vier, irei ao teatro somente se for uma peça de comédia.
- 4. Demonstre, utilizando o método da refutação, que as fórmulas a seguir são tautologias.
 - a) $P \leftrightarrow \neg \neg P$
 - b) $(P \lor Q) \leftrightarrow (Q \lor P)$
 - c) $(P \wedge Q) \leftrightarrow (Q \wedge P)$
 - d) $(\neg P \lor Q) \leftrightarrow (P \rightarrow Q)$
 - e) $(P \to Q) \to ((P \to \neg Q) \to \neg P)$
 - f) $(P \to (Q \to R)) \leftrightarrow ((P \land Q) \to R)$
 - g) $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
 - h) $(P \to R) \to ((Q \to R) \to ((P \lor Q) \to R))$
 - i) $(P \land Q) \leftrightarrow \neg(\neg P \lor \neg Q)$
 - j) $(P \leftrightarrow Q) \leftrightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$
- 5. Demonstre, utilizando o método da refutação, que as fórmulas a seguir são contraditórias.
 - a) $\neg((P \land Q) \to Q)$
 - b) $P \wedge (Q \wedge \neg P)$
 - c) $(P \wedge Q) \wedge \neg P$
 - d) $(P \to (Q \land \neg Q)) \land P$
 - e) $\neg ((P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P))$
 - f) $\neg (P \land (Q \land \neg P)) \rightarrow ((P \land Q) \land \neg P)$
- 6. Determine, utilizando o método da refutação, se as fórmulas a seguir são tautologias, contraditórias ou satisfatíveis. Para as fórmulas satisfatíveis, indique interpretações (I) das fórmulas atômicas (símbolos proposicionais) para as quais as fórmulas são verdadeiras e para as quais as fórmulas são falsas.
 - a) $\neg (P \land \neg Q)$
 - b) $(\neg P \lor \neg Q) \leftrightarrow \neg R$
 - c) $(\neg P \lor \neg Q) \leftrightarrow \neg P$
 - d) $\neg((P \to Q) \land (P \lor \neg R))$
 - e) $((P \vee Q) \wedge (P \to Q)) \to P$
 - f) $((P \lor (Q \to R)) \leftrightarrow Q) \land \neg R$
 - g) $((P \to \neg P) \to Q) \land (Q \to \neg \neg P)$
 - h) $(P \land (Q \lor R)) \leftrightarrow ((P \land Q) \lor (P \land R))$
 - i) $P_1 \to ((P_2 \land P_3) \to ((P_4 \land P_5) \to ((P_6 \land P_7) \to P_8)))$

7. Sejam α e β as fórmulas indicadas a seguir. Identifique, justificando sua resposta, os casos em que α implica logicamente em β ($\alpha \models \beta$).

	α	β
a)	$P \lor Q$	P
b)	$P \vee \neg Q$	P
c)	$P \vee \neg Q$	
d)	⊥	P
e)	P	T
f)	$(P \to Q) \land (Q \to R)$	$P \to R$
g)	$(P \wedge Q) \vee (P \wedge R)$	P
h)	$(P \to Q) \land \neg Q$	$\neg P$
i)	$(P \to Q) \land \neg Q$	P
j)	$(P \to Q) \land \neg P$	Q
k)	$(P \to Q) \land \neg P$	$\neg Q$
1)	$\neg (P \to Q) \land \neg P$	Q
m)	$\neg (P \to Q) \land \neg P$	R
n)	P	$\neg \neg P$
0)	P	$P \lor Q$
p)	P	$P \lor (Q \land S \to R \lor T)$
q)	$P \wedge (P \rightarrow Q)$	Q
r)	Т	$(P \to Q) \leftrightarrow (\neg P \lor Q)$

8. Considerando as fórmulas $\alpha_1, ..., \alpha_9$, que são formadas pelos símbolos proposicionais P e Q e possuem a seguinte tabela verdade

\overline{P}	Q	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9
v	v	v	v	v	v	f	v	f	v	f
v	f	v	v	v	f	v	v	f	f	v
f	v	v	v	f	v	v	f	v	f	v
f	f	v	f	v	v	v	f	v	v	f

- a) Identifique os valores de i (0 < i < 10) tais que α_i implica em α_j (0 < j ≤ 10).
- b) Identifique os valores de i tais que α_i não implica em α_i .
- c) Identifique os valores de $i, j \in k$, diferentes entre si, tais que α_i implica em α_j que implica em α_k . Certifique-se que α_i implica em α_k .
- d) Existem valores de i e j diferentes entre si, tais que α_i implica em α_j e α_j implica em α_i ? Como deve ser a relação entre as colunas de α_i e α_j para que essas relações de implicação ocorram?
- e) Existem valores de i e j diferentes entre si, tais que α_i implica em α_j e α_j não implica em α_i
- f) O conjunto de fórmulas $\{\alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ é satisfatível?
- g) Qual o maior conjunto de fórmulas α que é satisfatível?
- h) Identifique as fórmulas que são tautologias, contradições e satisfatíveis.
- i) Construa as fórmulas α_i a partir dos símbolos proposicionais P e Q.

9. Considerando a seguinte teoria (uma conjunção de fórmulas)

 $crianca \lor jovem \lor adulto \lor idoso$ $trabalhador \lor estudante \lor aposentado$ $jovem \rightarrow trabalhador \lor estudante$ $\neg (crianca \land aposentado)$ $\neg (crianca \land trabalhador)$

Verificar quais das seguintes fórmulas são implicação lógica dessa teoria:

- a) $aposentado \land \neg jovem \rightarrow adulto \lor idoso$
- b) $crianca \rightarrow \neg jovem$
- c) $crianca \rightarrow estudante$
- d) $aposentado \lor jovem$

[exercício de [da Silva et al., 2006, p. 28]]

 Verifique se os seguintes argumentos são válidos justificando sua resposta com provas por dedução natural.

a)
$$\neg P \rightarrow (Q \rightarrow R), \neg P, Q \vdash R$$

b)
$$\neg P \rightarrow \neg \neg Q, \neg \neg \neg P \vdash Q$$

c)
$$P \to (Q \land R), P \vdash P \land Q$$

d)
$$P, \neg \neg (P \to Q) \vdash (R \land S) \lor Q$$

e)
$$(P \lor Q) \land (P \lor R), P \to S, Q \to S, P \to T, R \to T \vdash S \land T$$

f)
$$P \to Q, (P \to Q) \to (Q \to P) \vdash P \leftrightarrow Q$$

g)
$$P \to Q, \neg Q \vdash \neg P \text{ (sem usar MT)}$$

h)
$$P \to Q \vdash \neg Q \to \neg P$$

i)
$$P \to (Q \lor R), Q \to \neg S, R \to \neg S \vdash P \to \neg S$$

j)
$$(P \to R) \land (Q \to R) \vdash (P \lor Q) \to R$$

k)
$$P \to (Q \land S) \vdash (P \to Q) \land (P \to S)$$

1)
$$P \leftrightarrow Q, Q \leftrightarrow R \vdash P \leftrightarrow R$$

m)
$$P \to Q \vdash (Q \to R) \to (P \to R)$$

n)
$$P \vdash \neg \neg P \text{ (sem usar } E \neg \neg)$$

o)
$$P \vee (Q \wedge R) \vdash (P \vee Q) \wedge (P \vee R)$$

p)
$$(P \wedge Q) \vee (P \wedge R) \vdash P$$

[exercício de [Newton-Smith, 1998, várias páginas do cap. 3]]

Referências

[da Silva et al., 2006] da Silva, F. S. C., Finger, M., and Vieira, A. C. (2006). *Lógica para Computação*. Thomson.

[Newton-Smith, 1998] Newton-Smith, W. H. (1998). Lógica: um curso introdutório. Gradiva, Lisboa.

[Souza, 2002] Souza, J. N. d. (2002). Lógica para Ciência da Computação. Campus.