Anomaly Detection

What is an Anomaly?

 Anomaly is synonymous with an outlier. These terms are often interchanged and may be called Novelty depending on the context.

What's the difference?

- Anomaly means something which is not a part of the normal behavior
- Novelty means something unique, or something that you haven't seen before(novel)

1. Distribution Based

• The simplest way to detect an outlier would be to use distribution parameters (mean and standard deviation).

Problem with this approach:

- While we know the distribution, the parameter estimates of the distribution are often corrupted by the noise/outlier
- Hence, we need to robustly estimate the parameters of the distribution.

2. z-score

Calculate the z-score for each data point: The z-score of a data point (x) is calculated using the formula:

$$z = \frac{x-\mu}{\sigma}$$

Identify outliers:

• you can identify outliers based on a chosen threshold(τ)

• $|z| > \tau$, the point is an outlier

This method is particularly useful when dealing with normally distributed data.

A common threshold τ =2,3

- If (|z|>2), the data point is often considered a mild outlier.
- If (|z|>3), the data point is often considered a significant outlier.

3. DBSCAN

It randomly picks a point and checks its neighborhood using eps

- if num of points ≥ min_num_pts → core point
- if num of points < min_num_pts, but contains at least one core point → Boarder point
- if num of points < min_num_pts, but not a border point → Noise point

4. Isolation Forests (iForests)

- Consider a dataset D which contains data points x₁, x₂,..., x_n. Just like Random forests, Isolation Forests build many trees.
- Following are the steps involved in Isolation Forest:
 - Build many trees like random forests
 - o For each tree:
 - Randomly pick a feature
 - Randomly threshold that features
 - Build each tree until the leaf consists of only one datapoint

- In isolation forests, we are building random trees. So if we pick feature f₁ and put a threshold there will be a vertical bar.
- Similarly, if we pick feature f₂ and put a threshold there will be a horizontal bar.
- For example, if we pick feature f_1 and select threshold as $f_1 < 1$, then our first root node will be based on this condition

- Based on the diagram above,
 - \circ The node containing x_1 will be at more depth.
 - \circ Observe that the point x_1 is in a dense region, and point x_2 is far away

- \circ That is because, to break point x_1 from all the other points, more and more splits will be required and that will increase the depth of the node containing point x_1 .
- So, to sum it up, the idea behind Isolation Forest is:
 - On average outliers have lower depth in the random trees
 - o On average, inliers have more depth in the random trees

Evaluation of Isolation Forest

- Imagine, we have to build random trees.
 - \circ For each point x_i in the dataset, we can get an average depth.
- We use this average depth to convert it into a metric.
- The basic intuition is that the lesser the average depth, the higher the likelihood is there that it is an outlier

Disadvantages

- They are biased towards axis parallel splits.
 - Because of this, the boundary will not be smoothened.
 - Because the model is biased towards the axis, it will classify the point as an inlier and as an outlier

Local Outlier Factor (LOF)

- Core idea: to compare the density of a point with its neighbors' density
- If the density of a point is less than the density of its neighbors, we flag that point as an outlier
- Imagine a bunch of datapoints as shown below

- We compute the density of a point based on average distance.
- If the average distance between a point and its **K** nearest neighbors is large, it is more likely that the point will be an outlier
- Also, the larger the value of **K**, the more confident are the results.

1(a) K-distance

- We define the K-distance of point **A** as the distance of point **A** to its **K**th nearest neighbor
- In general, the larger the value of k-distance is, the farther away the point is from other data points

1(b) Set: Nk (A): It is a set of k-nearest neighbors of point A.

2. Reachability distance

- From point **A** to point **B**, we define reachability distance as
 - a maximum of the distance from point A to point B and the maximum k-distance of point B
- Consider point **B** with some **k** nearest neighbors shown in the diagram below.

- There is a possibility that some neighbors might be close(condition 1) and some neighbors might be very far away(condition 2)
- In this case, there is a neighbor of point B whose k-distance is greater than the
 distance between point A and B, and hence, it is considered as its reachability
 distance.

3. Local Reachability Density

- It is often represented as $Ird_k(A)$, which tells the local reachability density of point **A**.
- It is defined as the average reachability distance between point A and k neighbors

So,
$$lrd_k(A) = \frac{\sum_{B \in N_k(A)} rd_k(A,B)\$}{N_k(A)}$$

- The summation in the above equation represents the sum of reachability distances from a point A and a set of neighbors B as $B \in N_k(A)$
- We define the Local Outlier Factor of the point as follows:

$$LOF_k(A) = \frac{\sum_{B \in N_k(A)} lrd_k(B)}{|N_k(A)| . ldr_k(A)}$$

o Ird_k(A) is the density of point A

$$\frac{\sum_{B \in N_k(A)} lrd_k(B)}{|N_k(A)|}$$

The expression

- is the average neighborhood density
- So, LOF of point A is nothing but the average neighborhood density(Ird) of point A divided by the density of A

Interpretation of LOF

- If LOF(A) = 1, then we can say that the point has the same density(Ird) as its k nearest neighbors
- If LOF(A) > 1, then the k neighbors of point A have a higher density than point Α.
 - That does not mean point A is an outlier. It may or may not be.
 But if LOF(A) >>> 1, then the point is an outlier.
- If LOF(A) < 1, then the point has more density than its nearest neighbors.

Disadvantages of LOF

- Finding optimal K
- Finding threshold.
 - If LOF(A) >> 1, what is the threshold??
- Cannot handle high dimensional data efficiently
- High Time Complexity