Cours d' ÉLECTRICITÉ

IUT de Saint Nazaire Département Mesures - Physiques

l.	La matière et ses propriétés	p. 1
II.	Grandeurs électriques	p. 4
III.	Eléments des circuits électriques	p. 10
IV.	Lois générales de l'électricité	p. 16
V.	Générateur de Thévenin et générateur de Norton	p. 21
VI.	Etude des circuits en régime continu (DC)	p. 23
VII.	Etude des circuits en régime sinusoïdal (AC)	p. 28
VIII	. Câblage et mesures en électricité	p. 35

I. La Matière et ses Propriétés Electriques

Représentations de l'atome

→ Représentation classique : modèle planétaire

Représentations d'un matériau (structure atomique)

Isolant électrique

Conducteur électrique

Ex: cuivre

→ Charges liées + charges libres

Différence de potentiel électrique

Ligne de champ électrique

U

E : champ électrique

U : différence de potentiel [en Volt : V]

Force Electrique (Force de COULOMB)

$$\vec{F} = q \vec{E}$$

 $q = +/- 1.602.10^{-19} C (Coulomb)$

Courant électrique

$$i = \frac{dq}{dt}$$

: courant électrique [en Ampère : A]

II. Grandeurs Electriques

Courant Electrique

Notation: I

Unité: l'Ampère [A]

Tension électrique (Potentiel et différence de potentiel)

Exemple de circuit électrique

Notation: Vou U

Unité : le Volt [V]

✓ Référence (0 V) → Masse électrique

✓ Différence de potentiel : tension mesurée entre deux points

✓ Potentiel en un point : tension mesurée entre le point et la masse

Puissance électrique active

Notation: P

Unité: le Watt [W]

Puissance active = partie de l'énergie convertie (ou fournie) sous forme d'un travail (Force, échauffement)

Définition:

$$P = \frac{1}{T} \int_0^T u(t) i(t) dt$$

P = valeur moyenne de la puissance instantanée

Puissance en régime continu (DC) :

$$P = U I$$

Puissance en régime sinusoïdal (AC) :

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

$$i(t) = I_{eff} \sqrt{2} \sin(\omega t - \varphi)$$

$$P = U_{eff} I_{eff} \cos(\varphi)$$

Régime continu (DC) et alternatif (AC)

Obtention d'une tension continue

Batterie électrochimique ou accumulateur (rechargeable)

(non rechargeables)

Obtention d'une tension sinusoïdale

Alternateur de centrale hydraulique

Caractéristiques d'un signal sinusoïdale (ex. d'une tension)

Expression temporelle (fonction du temps)

$$u_1(t) = U_{max} \sin(\omega t)$$

$$u_2(t) = \frac{U_{max}}{2} \sin(\omega t - \varphi_0)$$

Chronogramme (visualisation à l'oscilloscope)

φ₀ -0 60 120 180 240 300 360

 U_{max} : amplitude [V]

 ω : pulsation [rad/s]

 φ_0 : phase à l'origine [rad]

f: fréquence [Hz]

T: période [s]

Période : $T = \frac{1}{f}$

Pulsation : $\omega = 2 \pi f$

Valeur efficace d'un signal sinusoïdal

Définition:

$$Valeur\ efficace = \frac{Amplitude}{\sqrt{2}}$$

Exemple:

$$u(t) = U_{max} \sin(\omega t)$$

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

Signification:

La valeur efficace d'une tension sinusoïdale est la grandeur qui, en régime continu, produirait dans une résistance le même échauffement Réseau EDF:

spécifié en valeur efficace

Installations domestiques: $U_{eff} = 240V$ Distribution haute tension : $U_{eff} = 400 \text{ kV}$

Ecriture complexe et représentation de FRESNEL

Si régime établi

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t - \varphi_0)$$

Ecriture en complexe (forme polaire)

$$\underline{U} = U_{eff} \sqrt{2} e^{j(\omega t - \varphi_0)}$$

Amplitude = Module Phase = Argument

Représentation graphique (vecteur de FRESNEL)

Rappel

Forme cartésienne
$$\longrightarrow$$
 $\underline{Z} = a + jb$

Forme polaire
$$\longrightarrow$$
 $\underline{Z} = \rho e^{j\varphi}$

module

$$\rho = \sqrt{a^2 + b^2}$$

argument
$$\varphi = atan\left(\frac{b}{a}\right)$$

III. Eléments des circuits électriques

Générateurs (actifs) → fléchage tension et courant dans le même sens

Composants (passifs) → fléchage tension et courant en sens inverse (Résistance, Inductance, Condensateur)

La Résistance électrique

Définition

$$R = \rho \, \frac{l}{S}$$

R : résistance $[\Omega]$

 $\rho \, : r\acute{e}sistivit\acute{e} \, [\Omega m]$

: longueur [m]

S: section [m²]

Applications

 \rightarrow **C**hauffage par effet Joule

Radiateur électrique (1kW)

Résistances pour carte électronique (0,25 W max)

Résistance variable de puissance (Rhéostat) 11

Résistances pour l'électronique

Code couleur Résistance - série E24 et E48 4 Bandes 1 2 3 1 er chiffre 2e chiffre multiplicateur précision 1% marron x 100 x 1000 orange x 10 000 x 100 000 x 1 000 000 violet 0,1% argent x 0,01 gris 10% blanc x 0,1 3e chiffre 5 Bandes

Mesure d'un résistance au multimètre

Utilisation d'un multimètre en position ohmmètre

Ne jamais utiliser un ohmmètre sur un montage sous tension

Multimètre portable

Multimètre de table

L'inductance

Principe

Courant

- → Champ magnétique
 - → Energie magnétique

Energie stockée sous forme magnétique

$$W = \frac{1}{2} L I^2$$

L: inductance [en Henry; H]

W: énergie [en Joule; J]

// : courant [A]

Réalisation d'une inductance avec noyau de fer

Inductance de lissage et de filtrage (20 kHz)

Bobine de cuivre

n spires

Matériau

ferromagnétique

(entrefer)

Applications

- → Stockage d'énergie
- → Lissage d'un courant ondulé
- $\rightarrow \textbf{Filtrage}$

Inductance de lissage 50 Hz

Le condensateur

Principe

tension

→ Champ électrique

 \rightarrow Energie électrique

Energie stockée sous forme électrique

$$W = \frac{1}{2} C V^2$$

C : capacipé [en Farad; F]

W: énergie [en Joule; J]

V: tension [V]

Applications

- → Stockage d'énergie
- → Lissage d'une tension ondulée
- $\rightarrow \textbf{Filtrage}$

Condensateurs polariser pour le lissage d'une tension

Condensateurs pour l'électronique

Composants et relations courant/tension

Formulation générale

Résistance

Inductance

Condensateur

u(t) = R i(t)Loi d'Ohm

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = C \frac{du(t)}{dt}$$

Formulations particulières

En continu DC $\frac{U}{I} = R$

En sinusoïdal AC $\frac{U}{I} = R$

En continu DC $\frac{U}{I} = 0$ $\rightarrow \text{Inductance} = \text{fil}$

En sinusoïdal AC $\frac{\underline{U}}{\underline{I}} = jL\omega$

En continu DC $\frac{U}{I} = \infty$

→ Condensateur = circuit ouvert

En sinusoïdal AC $\frac{\underline{U}}{\underline{I}} = \frac{1}{jC\omega}$

IV. Lois Générales de l'électricité

Loi des Mailles

La somme des tensions sur une maille est nulle

Exemple 1 : Circuit à 1 maille

$$u_0(t) - u_1(t) - u_2(t) - u_3(t) = 0$$

En continu (DC)

$$U_0 = U_1 + U_2 + U_3$$

En sinusoïdal (AC)

$$\underline{U_0} = \underline{U_1} + \underline{U_2} + \underline{U_3}$$

Exemple 2 : Circuit RL série en sinusoïdal

Loi des Næuds

La somme des courants arrivant sur un nœud est nulle

Exemple 1:

En continu (DC)

$$I_1 + I_2 + I_4 = I_3$$

En sinusoïdal (AC)

$$\underline{I_1} + \underline{I_2} + \underline{I_4} = I_3$$

Exemple 2:

$$i_1(t) = I_{1max} \cos(\omega t)$$

$$i_2(t) = I_{2max} \cos(\omega t - \frac{\pi}{2})$$

$$i_3(t) = ...$$

$$I_{3eff} = \dots$$

Loi d'Ohm

En régime continu (DC)

$$U = R I$$

En régime sinusoïdal (AC)

$$\underline{U} = \underline{Z} \underline{I}$$

$$\underline{Z} = Z e^{j\varphi}$$

Impédances complexes des éléments passifs en régime sinusoïdal (AC)

$$Z_R = R$$

$$\underline{Z_L} = jL\omega$$

$$Z_C = \frac{1}{jC\omega}$$

$$\underline{Z_L} = L\omega \ e^{j\frac{\pi}{2}}$$

$$\underline{Z_C} = \frac{1}{C\omega} e^{-j\frac{\pi}{2}}$$

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

■ Exemple 1 : Cas d'une résistance

$$I_{eff} = \frac{U_{eff}}{R}$$
$$\arg(\underline{I}) = \omega t$$

■ Exemple 2 : Cas d'une inductance

$$I_{eff} = \frac{U_{eff}}{L\omega}$$

$$\arg(\underline{I}) = \omega t - \frac{\pi}{2}$$

■ Exemple 3 : Cas d'une capacité

$$I_{eff} = U_{eff} C\omega$$

$$\arg(\underline{I}) = \omega t + \frac{\pi}{2}$$

Associations série et parallèle des impédances

→ Des impédances sont **en série** si elles sont traversées par le **même courant**

Exemple:

En série:

On additionne les impédances

Impédance équivalente entre A et B
$$\longrightarrow$$
 $Z_{AB} = Z_1 + Z_2 + Z_3$

→ Des impédances sont en parallèle si elles sont soumises à la même tension

Exemple:

En parallèle :

On additionne l'inverse des impédances

Impédance équivalente entre A et B
$$\longrightarrow \frac{1}{Z_{AB}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$$

V. Générateur de THEVENIN et Générateur de NORTON

Générateurs : cas idéal/cas réel

Exemple : Caractéristique d'un générateur de tension

—— Générateur parfait ---- Générateur imparfait

 U_0 : Tension à vide

I_{cc}: Courant de court-circuit

Modèle équivalent d'un générateur de tension avec imperfection

Tension à vide

$$U_{AB} = U_{th}$$

Courant de court-circuit

$$I_{cc} = \frac{U_{th}}{R_{th}}$$

Modèle équivalent d'un générateur courant avec imperfection

Tension à vide

$$U_{AB} = R_N I_N$$

Courant de court-circuit

$$I_{cc} = I_N$$

Transformation Thevenin ← **Norton**

Permet de simplifier l'étude des circuits électriques

VI. Etude des circuits en continu (Régime DC)

Règles du régime continu et permanent

Les phénomènes électriques sont indépendant du temps

■ Condensateur = interrupteur ouvert
Inductance = interrupteur fermé

Les circuits électriques ne comportent que des générateurs et des résistances

Puissance absorbée (ou fournie) par un dipôle

$$A \leftarrow \bigcup_{I} B$$

$$P = U I$$

P > 0 : puissance consommée

P < 0 : puissance fournie

Méthode de calcul des circuits électriques

Procédure à respecter

- 1. Fléchage des courants
- 2. Fléchage des tensions
- 3. Application de la loi des nœuds
- 4. Application de la loi des mailles
- 5. Résolution du système d'équations

Exemple 1 : Circuit à 1 mailles

• Grandeurs connues :

$$U_0, R_1, R_2 \text{ et } R_3$$

■ Calculs à effectuer :

Expression du courant IExpression de la tension U_3

Exemple 1 : Circuit à 2 mailles

• Grandeurs connues :

$$U_0, R_1, R_2, R_3 \text{ et } R_4$$

Calculs à effectuer :

Expression du courant I_4 Expression de la tension U_2

Règles de simplification

Calcul des résistances équivalentes

Résistances en **série**Résistances en **narallèle**

- → résistances traversées par un **même courant**
- Résistances en **parallèle** → résistances soumises à la **même tension**

→ Résistance équivalente de résistances en série

Équivalent à

→ Résistance équivalente de résistances en parallèle

$$\frac{1}{R_{eq}} = \sum_{k=1}^{n} \frac{1}{R_k}$$

■ Pont diviseur de tension

$$U_2 = \frac{R_2}{R_1 + R_2} \ U$$

■ Pont diviseur de courant

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

VII. Etude des circuits en sinusoïdale (Régime AC)

Règles du régime sinusoïdal et permanent

u(t) = fonction sinuso"idale du temps i(t) = fonction sinuso"idale du temps

Les signaux sont caractérisés par une amplitude et une phase
→ Utilisation du calcul complexe

■ Loi d'Ohm en régime sinusoïdal

$$\underline{I} = \dots$$
 $i(t) = \dots$
 \vec{U}

→ Impédance équivalente d'impédances en série

→ Impédance équivalente d'impédances en parallèle

$$\frac{1}{Z_{eq}} = \sum_{k=1}^{n} \frac{1}{Z_k}$$

Pont diviseur de tension

$$\underline{U} \qquad \qquad \underline{Z_1} \qquad \qquad \underline{U_2} = \underline{Z_2} \qquad \underline{U}$$

$$\underline{Z_2} \qquad \qquad \underline{U_2} = \underline{Z_1 + Z_2} \qquad \underline{U}$$

Pont diviseur de courant

Règles du calcul complexe

Forme cartésienne

$$\underline{Z} = a + jb$$

$$\rho = \sqrt{a^2 + b^2}$$

$$\theta = atan\left(\frac{b}{a}\right)$$

Forme polaire

$$\underline{Z} = \rho \ e^{j\theta}$$

Partie réelle

$$a = \rho \cos \theta$$

Partie imaginaire $b = \rho \sin \theta$

$$b = \rho \sin \theta$$

Produit de nombres complexes :

Exemple:

$$\underline{Z_1} = \rho_1 e^{j\varphi_1}$$

$$\underline{Z_2} = \rho_2 e^{j\varphi_2}$$

$$Z_2 = \rho_2 \, e^{j\varphi_2}$$

$$\underline{Z} = \underline{Z_1} \cdot \underline{Z_2} = (\rho_1 \cdot \rho_2) e^{j(\varphi_1 + \varphi_2)}$$

Produit des modules

Exemples d'exercices en régime sinusoïdal (AC)

Exemple 1 : Circuit RC série

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

- ✓ Expression de *i(t)*
- ✓ Représentation de FRESNEL

Exemple 2 : Circuit RC //

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

- ✓ Expression de i(t)
- ✓ Représentation de FRESNEL

Calcul des puissances

En régime sinusoïdal -> 3 puissances

P: puissance active en Watt [W]

Q: puissance réactive en Voltampères réactifs [VAR]

S: puissance apparente en Voltampères [VA]

Définitions:

$$u(t) = U_{eff} \sqrt{2} \sin(\omega t)$$

$$i(t) = I_{eff} \sqrt{2} \sin(\omega t - \varphi)$$

$$P = U_{eff} I_{eff} \cos(\varphi)$$

$$Q = U_{eff} I_{eff} \sin(\varphi)$$

$$S = U_{eff} I_{eff}$$

Relation de Boucherot:

$$S^2 = P^2 + Q^2$$

Puissances dans une résistance :

$$\phi = 0 \rightarrow Q = 0$$

$$P = R I_{eff}^2 = \frac{U_{eff}^2}{R}$$
$$Q = 0$$

$$\frac{Z_R}{arg\left(\underline{Z_R}\right)} = \varphi = 0$$

Puissances dans une inductance:

$$\varphi = +\frac{\pi}{2} \rightarrow \sin \varphi = 1$$

 $\phi = +\frac{\pi}{2} \rightarrow \sin \phi = 1$ **Q > 0**: Puissance réactive consommée

$$P = 0$$

$$Q = L\omega I_{eff}^2 = \frac{U_{eff}^2}{L\omega}$$

$$\frac{\underline{I}}{U} \qquad \frac{\underline{Z_L} = jL\omega}{arg\left(\underline{Z_L}\right) = \varphi = +\frac{\pi}{2}}$$

Puissances dans un condensateur :

$$\varphi = -\frac{\pi}{2} \rightarrow \sin \varphi = -1$$

 $\varphi = -\frac{\pi}{2} \rightarrow \sin \varphi = -1$ **Q < 0**: Puissance réactive fournie

$$P = 0$$

$$Q = -\frac{I_{eff}^2}{C\omega} = -C\omega U_{eff}^2 = \frac{\frac{1}{J}}{U} \frac{C}{J} \frac{\frac{Z_C}{J} - \frac{Z_C}{J}}{\frac{Z_C}{J}} = \varphi = -\frac{\pi}{2}$$

$$\frac{Z_C}{jC\omega} = \frac{1}{jC\omega}$$

$$arg\left(\underline{Z_C}\right) = \varphi = -\frac{\pi}{2}$$

VIII. Câblage et mesures en électricité

Câblage et Schéma de câblage

Câblage d'un circuit avec mesures (tension et courant) au multimètre

Ampèremètre : câblage en série Voltmètre : câblage en parallèle

En position DC : mesure d'une tension ou d'un courant continu En position AC : mesures d'une tension ou d'un courant efficace

Choisir le calibre Pas de changement de calibre montage sous tension

Cablâge d'un circuit avec visualisation de tension à l'oscilloscope :

Cordons

Utiliser les couleurs de cordons pour faciliter la visibilité du montage

Cordons BNC (ou coaxial)

