

Grid - Hands-on

ATLAS-D Physics Meeting Göttingen 2021 Dr. Gen Kawamura II.Physikalisches Institut, Universität Göttingen

Exercise overview (30mins)

- Your Grid environments
 - Lxplus at CERN, or NAF
 - Environments/Scripts for this tutorial
- Introduction to Grid computing
- PanDA (ATLAS job management system)
 - Hello world prun Grid job
 - Hello world pathena Grid job
 - Hello world PyRoot
 - Hello world PyRoot Grid job
- Rucio (ATLAS data management system)
 - Rucio Client CLI
- RucioUI (WebUI)
- ATLAS Metadata Interface (AMI)
 - AMI Client CLI
- Extra: Information Provider (of gLite)

Your Grid environments

Lxplus at CERN, or NAF

Loging in Ixplus (Scientific Linux 7)

If you have a CERN account ssh -Y YOUR_CERN_ACCOUNT@lxplus.cern.ch

NAF

https://confluence.desy.de/display/IS/NAF+-+National+Analysis+Facility

If you have a NAF account (yourusername = username, atlasXX = node) ssh -XY yourusername@nafhh-atlasXX.desy.de

Environments/Scripts for this tutorial

From GitHub

Cloning materials
git clone https://github.com/GenKawamura/ATLAS-D_2021_Computing_Tutorial
cd ATLAS-D_2021_Computing_Tutorial

Introduction to ATLAS Grid Computing

Setup CVMFS

- In LXPLUS, use setupATLAS command
- For example. write the command aliases in ~/.bashrc

```
## Alias to initialization of VOMS proxy
alias vinit='voms-proxy-init --voms atlas -hours 200 --valid 200:00'

## Alias to setupCVMFS
setupCVMFS(){
    export LCG_LOCATION=
    export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
    source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh ""

## Using EMI LCG package
    source ${ATLAS_LOCAL_ROOT_BASE}/packageSetups/atlasLocalEmiSetup.sh --emiVersion ${emiVersionVal}}

## Using CVMFS (with EMI LCG client tools)
```

Setup ATLAS

In LXPLUS, use setupATLAS command

```
setupATLAS(){
    export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
    source "${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh" "${@}"
}

## Using ATLAS environments
setupATLAS
```

Hands-on exercise user certificate - 1

Getting your user certificate (if you have, skip)

```
## Check important environment variables for your certificate
env | grep X509
## Generating a proxy certificate
export X509 USER CERT=~/.alobus/usercert.pem
export X509_USER_KEY=~/.globus/userkev.pem
## Generate user certificate
## (usercert.p12 was already exported by your browser)
openssl pkcs12 -clcerts -nokeys -in usercert.p12 -out $X509 USER CERT
## create a private certificate with passphrase
openssl pkcs12 -nocerts -in usercert.p12 -out $X509 USER KEY
## Set permissions
chmod 644 $X509 USER CERT
chmod 400 $X509 USER KEY
## show enddate
openssl x509 -in $X509 USER CERT -noout -enddate
## show if the certificate is valid
openssl verify -CApath $X509 CERT DIR -purpose sslclient $X509 USER CERT
```

Hands-on exercise user certificate - 2

Checking your certificate and VO

Generating a proxy

voms-proxy-init

Enter GRID pass phrase for this identity:

Contacting voms2.cern.ch:15001 [/DC=ch/DC=cern/OU=computers/CN=voms2.cern.ch] "atlas"... Remote VOMS server contacted succesfully.

voms2.cern.ch:15001: The validity of this VOMS AC in your proxy is shortened to 345600 seconds!

Generating a proxy certificate without VO

grid-proxy-init voms-proxy-info -all

(it displays information without VO attributes)

Generating a proxy certificate with VO (a normal use)

voms-proxy-init --voms atlas -hours 200 voms-proxy-info -all

(it displays information with VO attributes)

Using another role (if you have another)

voms-proxy-init -voms atlas:/atlas/de/Role=production voms-proxy-info -all

Hands-on exercise user certificate - 2

Checking your certificate and VO

```
## Check context of your certificate
## The proxy certificate has 3 fields (Public Key, New Public Key, New Secret Key)
less /tmp/x509up u$UID | grep '\-'
----BEGIN CERTIFICATE-----
----END CERTIFICATE----
-----BEGIN RSA PRIVATE KEY-----
----END RSA PRIVATE KEY-----
----BEGIN CERTIFICATE----
----END CERTIFICATE----
## Check X509 attribute
openssl x509 -in /tmp/x509up u$UID -text | less
## Using a different proxy certificate
## (switch them if you have several ones)
mv -v /tmp/x509up u$UID /tmp/x509 different cert
export X509 USER PROXY=/tmp/x509 different cert
voms-proxy-info -all
```

PanDA (ATLAS Job Management System)

Hello World prun Grid Job

Hands-on exercise Using ATLAS client tools

First "Hello world" job by PanDA client

```
## PanDA client
Isetup panda
## Make a Python script
cat hello world.py
#!/usr/bin/python
print "Hello world!"
chmod 755 hello world.py
./hello world.py
Hello world!
## Submitting a prun job (--outDS <dataset_name> is an identifier of a PanDA job)
## Please use your name (usually RUCIO_ACCOUNT name)
prun --outDS user.gkawamur.pruntest.$RANDOM --exec hello world.py
INFO: gathering files under /home/gen/tmp/for new comer
INFO: upload source files
INFO: submit
INFO: succeeded. new jediTaskID=5107461
## Submitting 5 prun jobs
prun --outDS user.gkawamur.pruntest.$RANDOM --exec hello world.py --nJobs=5
```

How it works

A Python code is serialized and is sent to the backends

What will happen?

 On PanDA web interface (bigpanda.cern.ch), find the jobs submitted

jobstatus (1)	finished (2)
minramcount (1)	1-2GB (1)
outputfiletype (2)	? (1) log (1)
priorityrange (2)	1000:1099 (1) 2000:2099 (1)
processingtype (1)	panda-client-0.5.72-jedi-athena (2)
prodsourcelabel (2)	panda (1) user (1)
produsemame (1)	Gen Kawamura (2)
regid (1)	94 (2)
specialhandling (1)	ddm:rucio (2)
transformation (2)	buildJob-00-00-03 (1) runAthena-00-00-12 (1)

Prodsys Jobs Handling

Hello World pathena Grid Job

Hands-on exercise simple Athena job

The xAOD Athena example (muon selection)

```
## xAOD Tutorial
$ cd xAOD_example

$ mkdir source build run
$ cd build
$ asetup AthAnalysis,21.2.90,here
$ mv CMakeLists.txt ../source/
$ cmake $TestArea/../source
$ source $TestArea/*/setup.sh

## Copying example files
$ cd $TestArea/../run/
$ cp -v ../myJobOptions.py .
```

Or, simply

```
## xAOD Tutorial
$ cd xAOD_example
$ source set_athena_env.sh
```

Hands-on exercise simple Athena job

- The xAOD Athena example
 - The input files are defined by myJobOptions.py

```
import glob
fileInputs =
glob.glob('valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534/*')
svcMgr.EventSelector.InputCollections = fileInputs
```

* "valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534" is a Rucio dataset stored in Grid storages

```
## Get a sample file
$ export RUCIO_ACCOUNT=your_rucio_account_here
$ rucio download --nrandom 1 "valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534"

## Test Athena with the job option file
$ athena myJobOptions.py
```

Hands-on exercise simple pathena job

- Athena job using PanDA client
 - Pathena job (JOB ID = user.gkawamur.test.\$RANDOM)

```
## Loading PanDA client $ Isetup panda
```

For example, you can seamlessly run Athena code on Grid \$ pathena --inDS valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534 --outDS user.gkawamur.test.\$RANDOM --nFilesPerJob=1 myJobOptions.py

...

INFO: checking symbolic links INFO: uploading source/jobO files

INFO: submit

INFO: succeeded. new jediTaskID=15301491

Hands-on exercise simple pathena job

- Athena job using PanDA client
 - Pathena job (JOB ID = user.gkawamur.test.\$RANDOM)

```
## Loading PanDA client
$ Isetup panda

## For example, you can seamlessly run Athena code on Grid
$ pathena --inDS valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534 --outDS
user.gkawamur.test.$RANDOM --nFilesPerJob=1 myJobOptions.py

....

INFO: checking symbolic links
INFO: uploading source/jobO files
INFO: submit
INFO: succeeded. new jediTaskID=15301491

1 Grid subjob processes only
1 file in the input dataset
```

How it works

Executing a task processing processing events per job (per file)

--inDS (input Dataset)

Hello World PyRoot

Hands-on exercise PyRoot example

- ATLAS xAOD EDM tutorial using pyRoot
 - https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/SoftwareTutorialxAODEDM
 - We will run it on Grid later

Making PyRoot environments (using RootCore)

\$ cd pyroot

\$ source pyroot_env.sh

Getting a sample file (set your rucio account)

\$ export RUCIO ACCOUNT=your rucio account here

 $\$ \ rucio \ download \ --nrandom \ 1 \ "valid2.117050. PowhegPythia_P2011C_ttbar.digit. AOD.e2657_s1933_s1964_r5534"$

\$ Is valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534/* > input.txt

Extracting and counting electron energy

\$ less xAOD_electron_hist_example.py

\$./xAOD_electron_hist_example.py -i input.txt -o hist.root

Plotting electron Pt distribution (on X-window TBrowser).

\$ root hist.root root [1] TBrowser t

Plot of electron Pt distribution

How it works - 1

 Just looping entries (events) in a Root tree and counting electron Pt in histogram object

* xAOD_electron_hist_example.py

```
# Make the "transient tree":

t = ROOT.xAOD.MakeTransientTree( f, treeName)

print( "Number of input events: %s" % t.GetEntries() )

for entry in xrange( t.GetEntries() ):
    t.GetEntry( entry )
    print( "Processing run #%i, event #%i" % ( t.EventInfo.runNumber(), t.EventInfo.eventNumber() ) )

print( "Number of electrons: %i" % len( t.ElectronCollection ) )

# loop over electron collection

for el in t.ElectronCollection:
    pthist.Fill(el.pt()/1000.)
    pass # end for loop over electron collection

pass # end loop over entries

f.Close()

pass
```

How it works - 2

- Is technically quite smart code…
 - Provides an "array of structs" interface to data held as "struct of arrays" in memory
 - This "struct of arrays" layout allows us to write files that can be browsed similar to D3PD files

Hello World PyRoot Grid Job

Hands-on exercise PyRoot with Grid

First "Hello world" PyRoot job by PanDA client

```
## Making PyRoot environments
$ inDS="valid2.117050.PowhegPythia_P2011C_ttbar.digit.AOD.e2657_s1933_s1964_r5534"
$ outDS="user.gkawamur.DStutorial.pyroot.xAOD.v0.1_$$"
$ infile="input.txt"
$ outfile="hist.root"
$ prun --useRootCore --inDS=$inDS --forceStaged \
--outDS=$outDS --outputs=$outfile --nFiles=100 --nFilesPerJob=1 \
--exec="echo %IN > $infile; xAOD_electron_hist_example.py -i $infile -o $outfile"
```

or, use a simple submitter script \$ bash submit.sh

How it works

Executing a task processing processing events per job (per file)

--inDS (input Dataset)

Rucio (ATLAS data management system)

ATLAS-D Physics Meeting 2021

Setup Rucio

Initializing Rucio client

rucio whoami

```
## Loading Rucio client
Isetup rucio
******************************
Requested: rucio ...
Setting up emi 3.17.1-1 v2.sl6 ...
 Skipping: grid middleware already setup (from UI)
Setting up rucio 1.7.3 ...
Info: Setting compatibility to slc6
Info: Set RUCIO AUTH TYPE to x509 proxy
Info: Set RUCIO ACCOUNT to gkawamur
>>>>>>>> Information for user <<<<<<<<<<<<<<<<<<<
emi:
 Your proxy has 95h:54m:0s remaining
## Rucio command
rucio
usage: rucio [-h] [--version] [--verbose] [-H ADDRESS] [--auth-host ADDRESS]
       [-a ACCOUNT] [-S AUTH STRATEGY] [-T TIMEOUT] [--robot]
      [--user-agent USER AGENT] [-u USERNAME] [-pwd PASSWORD]
      [--certificate CERTIFICATE] [--ca-certificate CA CERTIFICATE]
## In Rucio, check which account you use
```

Hands-on exercise list scopes

 Each user account has one default scope, e.g., user.rucio_user for account rucio_user

```
## Listing sopes
rucio list-scopes
user.gkawamur
group.phys-sm
group.phys-susy
data15 13TeV
data15 1beam
data15 900GeV
mc15 5TeV
mc15 8TeV
mc15 900GeV
## Your user scope
rucio list-scopes | grep user.gkawamur
user.gkawamur
```

Hands-on exercise list DIDs

A data Identifier is found by name and scope

```
## To list all DIDs within a scope
rucio list-dids user.akawamur:*
 SCOPE:NAME
 · ------+
user.gkawamur:user.gkawamur.pruntest 7168.log
                                                 I CONTAINER
user.gkawamur:user.gkawamur.tut.helloworldathena.test.log | CONTAINER |
user.gkawamur:user.gkawamur.20160323144306.1.log
                                                   | CONTAINER |
user.gkawamur:user.gkawamur.tutorial.grid.deriv.test1.log | CONTAINER |
user.gkawamur:user.gkawamur.pruntest 14222.log
                                                 | CONTAINER
## Using filters (search)
rucio list-dids data16 13TeV:* --filter type=DATASET,datatype=AOD
 SCOPE:NAME
                                                                 | [DID TYPE]
 data16 13TeV:data16 13TeV.00293572.physics CosmicCalo.merge.AOD.x387 m1554
                                                                                            | DATASET
 data16 13TeV:data16 13TeV.00297447.physics Standby.merge.AOD.x416 m1583
                                                                                           I DATASET
 data16 13TeV:data16 13TeV.00297041.physics Main.merge.AOD.f686 m1583
                                                                                         I DATASET
 data16 13TeV:data16 13TeV.00297041.physics CosmicCalo.merge.AOD.f686 m1583
                                                                                             DATASET
data16 13TeV:data16 13TeV.00297041.physics ZeroBias.merge.AOD.f686 m1583
                                                                                           DATASET
```

Hands-on exercise list contents

```
## List file contents of dataset or container
rucio list-files data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620
data16_13TeV:data16_13TeV.00303819.physics_Main.merge.AOD.f716_m1620._lb0004._0001.1 | 98325FCF-9E4E-B442-A4B2-
2A64E271C697 | ad:130a9a7c | 182.9 MB | 887 |
| data16 13TeV:data16 13TeV:00303819.physics Main.merge.AOD.f716 m1620. lb0005. 0001.1 | 85303413-544F-EC4A-B494-
494091163A92 | ad:d78501da | 220.4 MB | 836 |
| data16 13TeV:data16 13TeV:00303819.physics Main.merge.AOD.f716 m1620. lb0006. 0001.1 | 970BCEFD-CF3D-C541-8507-
471F54E3167A | ad:abc20882 | 2.7 GB | 9097 |
## List file contents of dataset or container
rucio list-content data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620
I SCOPE:NAME
data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620. lb0004. 0001.1 | FILE
data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620. lb0005. 0001.1 | FILE
data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620. lb0006. 0001.1 | FILE
## List all contents recursively
rucio list-dids --recursive data16 13TeV:data16 13TeV.periodA3.physics Main.PhysCont.AOD.t0pro20 v01
LSCOPE:NAME
data16 13TeV:data16 13TeV.00297730.physics Main.merge.AOD.f694 m1583
data16 13TeV:data16 13TeV.00297730.physics Main.merge.AOD.f694 m1583. lb0108. 0001.1 | FILE
data16 13TeV:data16 13TeV.00297730.physics Main.merge.AOD.f694 m1583. lb0108. 0002.1 | FILE
data16 13TeV:data16 13TeV.00297730.physics Main.merge.AOD.f694 m1583. lb0108. 0003.1 | FILE
data16 13TeV:data16 13TeV.00297730.physics Main.merge.AOD.f694 m1583. lb0109. 0001.1 | FILE
| data16_13TeV:data16_13TeV.periodA3.physics_\overline{Main}Rby\overline{p}Cont AGPst\overline{p}re\overline{p}12021 \overline{p}
                                                                             I CONTAINER
```

Hands-on exercise show metadata

Showing metadata of a dataset

rucio get-metadata data16_13TeV:data16_13TeV.00303819.physics_Main.merge.AOD.f716_m1620

purge_replicas: None campaign: None is_new: None is_open: False

closed at: 2016-07-18 07:39:44

deleted_at: None availability: AVAILABLE eol at: None

guid: None panda_id: None provenance: None

accessed_at: 2016-09-19 22:00:22

version: f716_m1620 scope: data16_13TeV hidden: False

md5: None events: 25475721 adler32: None complete: None lumiblocknr: None monotonic: False

updated_at: 2016-09-19 22:00:42

obsolete: False transient: None did_type: DATASET suppressed: True expired at: None

stream name: physics Main

account: tzero run number: 303819

name: data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620

task_id: None datatype: AOD

created at: 2016-07-17 04:17:53

bytes: 6462688464808 project: data16_13TeV

length: 2595 prod_step: merge phys_group: None

Hands-on exercise list replicas

```
## Listing dataset replicas
rucio list-dataset-replicas data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620
DATASET: data16 13TeV:data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620
-----+-----|
 CERN-PROD TZDISK | 2567 | 2595 |
 GRIF-LPNHE DATADISK | 2595 | 2595 |
IN2P3-CC_DATADISK | 2595 | 2595 |
CERN-PROD DERIVED | 2595 | 2595 |
## Listing file replicas
rucio list-file-replicas data16 13TeV:data16_13TeV.00303819.physics_Main.merge.AOD.f716_m1620
ISCOPE
          INAME
                                                     | FILESIZE | ADLER32 | RSE: REPLICA
| data16 13TeV | data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620. lb0004. 0001.1 | 182.9 MB |
130a9a7c | GRIF-LPNHE DATADISK: srm://lpnse1.in2p3.fr:8446/srm/managerv2?
SFN=/dpm/in2p3.fr/home/atlas/atlasdatadisk/rucio/data16 13TeV/39/bc/data16 13TeV.00303819.physics Main.merge.A
OD.f716 m1620. lb0004. 0001.1
| data16 13TeV | data16 13TeV.00303819.physics Main.merge.AOD.f716 m1620. lb0004. 0001.1 | 182.9 MB |
130a9a7c | TAIWAN-LCG2 DATADISK: https://f-
dpm000.grid.sinica.edu.tw:443/dpm/grid.sipira.edu.tpv/pionse/etlasdatm/jsk/rucio/data16_13TeV/39/bc/data16_13TeV
.00303819.physics Main.merge.AOD.f716 m1620. lb0004. 0001.1
```

Hands-on exercise download data

Make a local copy from Rucio RSEs

Downloading a dataset to local disk (select an output dataset of your test job)
rucio download user.gkawamur:user.gkawamura.test1

2019-02-01 20:26:57,534 INFO [Starting download for user.gkawamur:user.gkawamura.test1 with 0 files]
-----Download summary
----DID user.gkawamur:user.gkawamura.test1
Total files: 0
Downloaded files: 0
Files already found locally: 0
Files that cannot be downloaded: 0

Hands-on exercise request a replica

- Request a replica to a RSE space
 - The same action can be performed by R2D2

```
## Request a replication
rucio add-rule user.gkawamur:user.gkawamura.test1 --grouping DATASET 1 "DESY-HH_SCRATCHDISK"
...
<Transfer ID>
## Check the transfer status (or by RucioUI https://rucio-ui.cern.ch/list_rules)
rucio rule-info <Transfer ID>
```

RucioUI (WebUI) - Request replicas -

RucioUI

- Move data between RSEs, use Rucio replication rules
- Such request can be generated by CLI and UI
- The UI tool is the Rucio Rule Definition Droid (R2D2) https://rucio-ui.cern.ch/r2d2
- Basic need: X509 certificate in your browse

RucioUI: Select DIDs - 1

Data transfers (R2D2) → Request new rule

RucioUI: Select DIDs - 2

- E.g. a wild card pattern
 - "data15_13TeV.*.physics_Main.merge.DAOD_SUSY1.*"

Your input will be saved until you submit it. If you want to clear the form please click here.

RucioUI: Select DIDs - 3

Metadata

RucioUI: select a RSE - 1

Find your destination space

RucioUI: select a RSE - 2

- SCRATCHDISKs in Germany
 - cloud=DE&type=SCRATCHDISK

RucioUI: select options

ease select/enter your wanted options	then submit your rule request.
Grouping	A grouping definition
○ All ● Dataset ○ None	of how the replica will
Lifetime (in days). Leave empty for infinite	be distributed
15	
Copies	
1	
Comment	
For ATLAS-D	
Create sample Number of	S
Asynchronous Mode	Use if you select files
	randomly

Continue

Rucio UI: summary

Before submission check rules

4. Summary

This request will create rules for the following DIDs:

DID	^ Co	pies Files	Size	Requested Size
data15_13TeV:data15_13TeV.00266904.physics_Main.merge.DAOD_SUSY1.f594 m1435_p2361_tid05608871_00	- 1	7	237.94 MB	237.94 MB
data15_13TeV:data15_13TeV.00266904.physics_Main.merge.DAOD_SUSY1.r694 p2410_p2425_tid06685122_00	⁴ - 1	14	2.96 GB	2.96 GB
data15_13TeV:data15_13TeV.00266904.physics_Main.merge.DAOD_SUSY1.r694 p2410_p2540_tid07869001_00	⁴ – 1	5	3.4 GB	3.4 GB
data15_13TeV:data15_13TeV.00266904.physics_Main.merge.DAOD_SUSY1.r760 p2521_p2614_tid08133087_00	0_ 1	10	2.62 GB	2.62 GB
Total	4	36	8.59 GB	8.59 GB

The rules will replicate to one of the following RSEs:

Check quota limit carefully!

RSE	Remaining Quota	Total Quota
CSCS-LCG2_SCRATCHDISK	20 TB	20 TB
CYFRONET-LCG2_SCRATCHDISK	11 TB	11 TB
DESY-HH_SCRATCHDISK	30.68 TB	30.68 TB
DESY-ZN_SCRATCHDISK	25 TB	25 TB
FMPHI-UNIBA_SCRATCHDISK	11 TB	11 TB
FZK-LCG2_SCRATCHDISK	50 TB	50 TB
GOEGRID_SCRATCHDISK	25 TB	25 TB
HEPHY-UIBK_SCRATCHDISK	1.65 TB	1.65 TB
IEPSAS-KOSICE_SCRATCHDISK	14.29 TB	14.29 TB
LRZ-LMU_SCRATCHDISK	26.91 TB	26.91 TB
MPPMU_SCRATCHDISK	20 TB	20 TB
PRAGUELCG2_SCRATCHDISK	20.4 TB	20.4 TB
PSNC_SCRATCHDISK	2.2 TB	2.2 TB
TUDRESDEN-ZIH_SCRATCHDISK	4.26 TB	4.26 TB

Rucio UI: Transfer status

- Go to top page and see your transfer activity
 - https://rucio-ui.cern.ch/r2d2

ATLAS-D Physics Meeting 2021

ATLAS Metadata Interface (AMI) If no time, please skip this part

Hands-on exercise pyAMI Interface

AMI CLI interface

```
## Loading the pyAMI environment
$ | Search data of 2016 and period A1
$ | ami | list datasets data16_13TeV%periodA1.%
| data16_13TeV.periodA1.physics_Main.PhysCont.AOD.t0pro20_v01
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM2.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM4.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM5.grp16_v01_p2623
| data16_13TeV.periodA1.physics_Main.PhysCont.DAOD_STDM7.grp16_v01_p2623
```

Hands-on exercise check metadata by pyAMI

Show metadata of a dataset

\$ ami show dataset info data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645 logicalDatasetName: data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645

nFiles: 0 totalEvents: 0 totalSize: NULL runNumber: 284285

period: J6

prodsysStatus : NO EVENTS YET

dataType : AOD beamType : NULL conditionsTag : NULL geometryVersion : NULL streamName : physics_Main

version : f662_m1453_r8067_p2645 lastModified : 2016-06-09 18:35:05

amiStatus : VALID

created: 2016-06-09 18:35:04

inContainer: 0

added_comment : NULL

keyword: NULL

prodsysIdentifier_0: 8650873

taskStatus_0 : UNKNOWN:METADATA ERROR

TIDState_0 : added

task_lastModified_0: 2016-06-10 09:24:25

Hands-on exercise check metadata by pyAMI

Show RAWs

\$ ami show dataset prov data16_13TeV.00284285.physics_Main.merge.AOD.f662_m1453_r8067_p2645 ...

How it works

- Applications
 - The Monte-Carlo Dataset Number Broker
 - The ATLAS Metadata directory
 - Tag collector
- ProdDB
 - For Monte-Carlo simulation

S. Albrand, T. Doherty, J. Fulachier, F. Lambert. The ATLAS Metadata Interface. Interna-tional Conference on Computing in High Energy and Nuclear Physics (CHEP-07), Sep 2007, Victoria, Canada. IOP Publishing, 120, pp.072003, 2008, <10.1088/1742-6596/120/7/072003>. <in2p3-00192624>

Extra: Information Provider (of gLite)

Information Provider

Hands-on exercise Information Provider - 1

Searching resources

n.a n.a SRM prometheus.desy.de

963849833 2517808 SRM prometheus.desy.de

```
## EMI (European Middleware Initiative) LCG (LHC Computing Grid) tools
$ setupCVMFS
## See usage
$ lcg-infosites
Usage: lcg-infosites [options] selection(s)
Selections:
        dli
              lfc
  bdii site dliLocal IfcLocal
                         vobox
  bdii top fts myproxy
                         voms
        gridice se
                    voms-admin
  closeSE lb
                 sitenames voview
          lcg-ce space
  cream
                          wms
## Searching for storage element at DESY-HH
$ lcg-infosites --vo atlas se -f DESY-HH
Avail Space(kB) Used Space(kB) Type
                                   SE
      n.a n.a SRM dcache-se-atlas.desy.de
  144686862585 1155357848246 SRM
                                   dcache-se-atlas.desy.de
  989417595283 2662137428541 SRM
                                   dcache-se-atlas.desv.de
  1991791084 n.a SRM
                             dcache-se-atlas.desv.de
  33956785021 30907581359 SRM
                                   dcache-se-atlas.desy.de
   3972844749 n.a SRM
                             dcache-se-atlas.desv.de
```

Structure of Information Providers among sites

GlueSchema & LDAP

- https://www.slac.stanford.edu/grp/eg/minos/dist/dist_aux2/package s/GridTools/HEAD/docs/glue_schema.html
- https://www.centos.org/docs/5/html/CDS/ag/8.0/Finding_Directory_Entries-LDAP_Search_Filters.html

Hands-on exercise Information Provider - 2

Using 'Idapsearch' command

Checking site-level information provider (GIIS)

\$ lcg-infosites --vo atlas bdii_site -f DESY-HH

ldap://grid-giis0.desy.de:2170/mds-vo-name=DESY-HH,o=grid ldap://grid-giis1.desy.de:2170/mds-vo-name=DESY-HH,o=grid

Getting GridFTP endpoints from GIIS at DESY-HH

\$ SE=dcache-se-atlas.desy.de

\$ Idapsearch -xLLL -b 'o=grid' "(GlueChunkKey=GlueSEUniqueID=\$SE)" -p 2170 -h grid-giis0.desy.de | grep gsiftp GlueSEAccessProtocolType: gsiftp

Getting SRM endpoints from GIIS at DESY-HH

\$ Idapsearch -xLLL -b 'o=grid' "(GlueChunkKey=GlueSEUniqueID=\$SE)" -p 2170 -h grid-giis0.desy.de | grep httpg

ATLASDATADISK (using AND), the unit of size is "GigaByte"

\$ Idapsearch -xLLL -b 'o=grid' "(&(GlueChunkKey=GlueSEUniqueID=\$SE)(GlueSALocaIID=atlas:ATLASDATADISK))" \ -p 2170 -h grid-giis0.desy.de

Only OnlineSize (=GlueSATotalOnlineSize)

\$ Idapsearch -xLLL -b 'o=grid' "(&(GlueChunkKey=GlueSEUniqueID=\$SE)(GlueSALocalID=atlas:ATLASDATADISK))" \ GlueSATotalOnlineSize -p 2170 -h grid-giis0.desy.de

Hands-on exercise Information Provider - 3

Getting SE information given by a site BDII

Connecting to DESY-HH SE via SRM protocol

srmls srm://dcache-se-atlas.desy.de

512 /

512 /upload/

512 /admin/

512 /usr/

512 /pnfs/

SRM space token (which is used by Rucio Storage Endpoint)

srm-get-space-tokens -space_desc=ATLASLOCALGROUPDISK srm://dcache-se-atlas.desy.de Space Reservation Tokens:

540002

Checking site-level information provider

lcg-infosites --vo atlas bdii site -f DESY-HH

ldap://grid-giis0.desy.de:2170/mds-vo-name=DESY-HH,o=grid ldap://grid-giis1.desy.de:2170/mds-vo-name=DESY-HH,o=grid

Getting GridFTP endpoints

SE=dcache-se-atlas.desy.de

Idapsearch -xLLL -b 'o=grid' '(GlueChunkKey=GlueSEUniqueID=\$SE)' -p 2170 -h grid-giis0.desy.de | grep gsiftp GlueSEAccessProtocolType: gsiftp

Connecting to DESY-HH SE via GridFTP protocol

uberftp -ls gsiftp://dcache-door-atlas12.desy.de/