Teoria de Informação Ficha Teórico-Prática nº2

"Codificação"

Período de execução: 2 semanas

Objectivo: Pretende-se que o aluno adquira sensibilidade para as questões

relacionadas com a teoria dos códigos.

Trabalho

1. Considere os códigos cujos conjuntos de palavras são os seguintes:

a. $\{0, 10, 11\}$

b. {00, 11}

c. $\{00, 01, 10, 100\}$

d. {00, 01, 10, 110}

e. $\{0, 10, 110, 111\}$.

Para cada código, diga, justificando, se é instantâneo ou não e se pode ser um código óptimo para uma dada fonte.

2. Considere um alfabeto composto pelos símbolos $\{1,2,....,10\}$ com as probabilidades de ocorrência que se indicam na tabela.

a. Determine o majorante do bit-rate garantido pela aplicação de uma codificação com base numa árvore de Huffman estática e com base num código aritmético em que em cada TAG sejam transmitidos 4 símbolos.

b. Determine a TAG a que corresponderá a sequência "1 2 3 10".

Símbolo	Prob de ocorrência
1	1/4
2	1/4
3	1/8
4	1/16
5	1/16
6	1/32
7	1/32
8	1/32
9	1/32
10	1/8

3. Considere uma fonte de informação $S=\{1,2,3,4\}$, cujos símbolos se encontrem distribuídos de acordo com a seguinte distribuição estatística:

Símbolo	Probabilidade
1	0,6
2	0,2
3	0,15
4	0,05

Teoria da Informação 1/3

Assumindo um código aritmético, qual deverá ser a TAG para codificar a seguinte sequência: "1112"?

- 4. Considere uma fonte de informação com o seguinte alfabeto: {1,2,3,4,5,6,7,8,9,10}. Admitindo que a sequência dos primeiro símbolos da referida fonte são "1,1,2,3,4,1,2,5" indique a sequência de bits transmitidos para cada um dos símbolos codificados. Para o efeito considere que o VLC é implementado com base no algoritmo de Huffman adaptativo. Em cada iteração, indique o estado da árvore de Huffman.
- 5. Considere uma fonte de informação composta pelos 26 caracteres do alfabeto anglosaxónico. Considere que se pretende codificar a mensagem "bbsdgbsh" de forma adaptativa. Indique para cada símbolo da cadeia de caracteres (i) o código binário a transmitir e (ii) o estado da árvore sibilante.
- 6. Considere a seguinte cadeia de símbolos: "barrayar#bar#by#barrayar#bay". Assuma que C(a)=1, C(b)=2, C(#)=3, C(r)=4 e que C(y)=5
 - a. Codifique a sequência usando LZW.
 - b. Codifique a sequência usando LZ77. Para o efeito considere que a dimensão da janela é 30 e que o look-ahead buffer é de 15 símbolos. Observe que inicialmente o buffer de pesquisa é vazio.
- 7. Codifique a seguinte sequência usando LZ78: "barrayar#bar#by#barrayar#bay". Para o efeito considere que C(a)=1, C(b)=2, C(#)=3, C(r)=4 e que C(y)=5.

		, - (//) - , - (-) 1 (J) - ·
8. Assir	nale a(s) resposta(s) certa(s).	
eficie □ - (□ - A padrô	ente qualquer que seja o contexto. O código aritmético e o código Fanc	ue o segundo não consegue capturar os
	O código {0,10,110} é óptimo. O código {0,01,011} é instantâneo O código {0,01,011} é unicamente d Venhuma das anteriores está correct	
	quência final de índices resultante	qrstuvwxyz), com indexação 0, 1, 2,, 25 da aplicação do algoritmo Move to Front
	5, 13, 7, 1, 1, 4, 19, 3 5, 12, 6, 0, 0, 3, 20, 2	☐ 15, 12, 6, 0, 0, 3, 18, 2 ☐ Nenhuma das anteriores

Teoria da Informação 2/3

 \square 011

 $\Box 0011$

10 – Considere uma fonte de informação descrita pelo alfabeto A={A, B, C, D, E, F, G, H, I, J, K}. Pretende-se codificar a fonte usando uma árvore de Huffman adaptativa.

a) O código pré-acordado para o símbolo **G** é:

□ 0101

 \square 010

primeiros símbolos da sequência referida em a).

11 - Considere uma fonte de informação pertencente ao dicionário S={1,2,3,4,5}.

Assumindo que os símbolos são todos equiprováveis, indique a sequência de bits resultante da codificação da sequencia "1233554424" usando um código artimético inteiro.

a) Indique o bitstream resultante da codificação da seguinte mensagem: HHFGHF

□ 10010010100011001

□ 10010010100011101

□ Nenhum dos anteriores

b) Assumindo um algoritmo PPM com contexto de ordem 1, indique a codificação dos 3 primeiros símbolos da sequência referida em a).

b) Assumindo um algoritmo PPM com contexto de ordem 1, indique a codificação dos 3

Teoria da Informação 3/3