

DATA ANALYTICS CASE STUDY

FMCG Warehouse: Optimizing Amazon's Distribution Efficiency

Presented BY
JAYA SUHANE | 02/04/2025

Content

- 1-Introduction
- 2-Problem
- 3-Background
- 4-Solution
- 5-Methodology and Project Scope
- 6-Goals and KPI's
- 7-Technical Process
- 8-Conclusion
- 9-Project Owner

Introduction: Backgroung And Problem

Introduction

This project involves analyzing data from Amazon's network of warehouses to identify inefficiencies affecting the supply chain. These inefficiencies have led to frequent stockouts, delivery delays, and increased operational costs.

BackGround

You are a data analyst at Amazon, which has an extensive network of warehouses across various regions. The company is facing challenges in ensuring efficient warehouse operations, resulting in frequent stockouts, delays in deliveries, and increased operational costs. The management has tasked you with analyzing the data from these warehouses to identify key issues and provide actionable insights to enhance warehouse efficiency.

Problem

You are a data analyst at Amazon, which has an extensive network of warehouses across various regions. The company is facing challenges in ensuring efficient warehouse operations, resulting in frequent stockouts, delays in deliveries, and increased operational costs. The management has tasked you with analyzing the data from these warehouses to identify key issues and provide actionable insights to enhance warehouse efficiency.

Solution

o solve Amazon's warehouse inefficiencies as a data analyst, we can take a systematic approach involving data exploration, root cause analysis, and optimization strategies.

- 1. Understand the Problem & Define Key Metrics
- Stockouts → Lost sales & customer dissatisfaction
- Delivery delays → Reduced Prime efficiency & SLA breaches
- Increased costs → Inefficient labor & warehouse space usage

2. Collect & Analyze Warehouse Data

Data Sources:

- Warehouse Management System (WMS) logs
- Labor productivity records
- Historical order & shipment data
- Inventory records & demand forecasts

Solution

3. Identify Root Causes of Inefficiencies

QPotential Issues & Data Insights

Issue	Data Indicators	Possible Solution
Stockouts	High demand volatility, poor forecasting	Al-driven demand prediction
Delivery Delays	Long pick & pack times, inefficient layout	Optimize warehouse zoning & automation
Inventory Inaccuracy	Mismatch between WMS and physical stock	RFID-based real-time tracking
Poor Labor Productivity	High idle time, overtime costs	Workforce optimization & task scheduling
Underutilized Space	Low storage density, poor slotting	Dynamic slotting & vertical storage

4. Implement Data-Driven Optimization Strategies

Improve Inventory Management
Optimize Warehouse Layout & Storage
Enhance Order Fulfilment Process
Improve Workforce Productivity

Project Scope

This project aims to analyze Amazon's warehouse operations to identify inefficiencies contributing to stockouts, delivery delays, and increased costs. The focus will be on diagnosing operational bottlenecks, leveraging data analytics for insights, and proposing data-driven solutions to optimize performance.

Objectives

- 1. Identify key inefficiencies in inventory management, order fulfillment, and warehouse operations.
- 2. Analyze warehouse data to uncover root causes of stockouts, delays, and cost escalations.
- 3. Develop predictive models & optimization strategies to enhance warehouse efficiency.

Implement data visualization

Project Scope And Methodology

Key Focus Areas:

- Inventory Management: Stock replenishment, demand forecasting, inventory accuracy.
- Order Fulfilment: Picking, packing, sorting, and shipment processing times.
- Warehouse Layout & Storage: Space utilization, item placement, and traffic flow.
- Labor Productivity: Workforce allocation, task scheduling, and operational efficiency.
- Technology & Automation: RFID tracking, robotics, and real-time monitoring.

Methodology

Phase 1: Problem Definition & Data Collection

Phase 2: Exploratory Data Analysis (EDA) & Root Cause Analysis

Phase 3: Predictive Modelling & Optimization

Phase 4: Implementation & Data Visualization

Goals And KPI's

©Project Goals

The primary goal is to **optimize warehouse efficiency** by analyzing data to identify bottlenecks, reduce costs, and improve order fulfilment.

Specific Goals:

Reduce Stockouts → Improve inventory accuracy and demand forecasting.

Minimize Delivery Delays → Optimize order picking, packing, and dispatch.

Decrease Operational Costs → Enhance labor productivity and space utilization.

Improve Warehouse Throughput → Reduce order processing time and increase automation.

Enhance Customer Satisfaction → Faster and more accurate deliveries.

MKey Performance Indicators (KPIs)

To measure the success of warehouse optimization, we track efficiency, accuracy, and cost-related KPIs.

Inventory Management KPIs

The total number of retail shops served by each zone?

zone	Sum of retail_shop_num
East	2061277
North	51869267
South	31932776
West	38779469
Grand Total	124642789

Warehouse Operations KPIs

The average number of workers per warehouse.

WH_regional_zone	Average of workers_num
Zone 1	29.07643622
Zone 2	28.7522781
Zone 3	29.00312392
Zone 4	28.70138889
Zone 5	28.98931764
Zone 6	29.06343686
Grand Total	28.9466

KPI's

The percentage of warehouses with electric supply.

electric_supply		Count of electric_supply	
	0	34.31%	
	1	65.69%	
Grand Total		100.00%	

The average distance of warehouses zone & regional zones from the central distribution hub?

zone	WH_regional_zone	Average of dist_from_hub
East		162.6340326
North		162.9009535
South		164.1287331
West		163.9364519
Grand Total		163.53732

KPI's

Order Fulfilment KPIs

The top 3 zones with the highest number of refill requests in the last 3 months

zone	Count of num_refill_req_l3m
North	10278
West	7931
South	6362
East	429
Grand Total	25000
Crana i Stai	25000

Technical Process

To analyze and optimize Amazon's warehouse operations, we apply various **data-driven methodologies**, **optimization techniques**, **and predictive analytics**. Below is the core concepts used:

Concepts Used:

- Exploratory Data Analysis (EDA) → Identifies patterns, trends, and outliers in warehouse data.
- Descriptive Analytics → Summarizes current warehouse performance through KPI tracking.
- Data Visualization → Power BI, Looker Studio, Tableau dashboards for real-time monitoring.

Conclusion

After analyzing Amazon's warehouse operations, the key findings highlight inefficiencies in **inventory management, order fulfilment, warehouse layout, labour productivity, and logistics**. These inefficiencies contribute to **stockouts, delivery delays, and rising operational costs**.

By leveraging data-driven solutions, such as demand forecasting, Al-powered automation, warehouse layout optimization, and predictive labour scheduling, Amazon can significantly enhance efficiency, reduce costs, and improve customer satisfaction.

Project Owner

THANK YOU

For Any Query Contact us on

- suhane79jaya@gmail.com
- https://www.linkedin.com/in/jaya-suhane-776142275/
- Peerlist.io/jayasuhane/