Majorana corner modes in triangular superconductor islands

Aidan Winblad

Motivation

Formulation

Results

Summary

....

Majorana Corner Modes in Triangular Superconductor Islands

Aidan Winblad Hua Chen

Department of Physics

Colorado State University

March 18, 2022

Motivation

Formulation

Results

Summary

- P-wave superconductors contain half-quantum vortices.
 - Majorana fermions located at core of a vortex.
 - Braiding vortices exhibits Non-Abelian statistics.
- 1D p-wave superconductors host Majorana fermions on end points.
 - Possibly measured in real systems: Mourik, Science 336, 1003 (2012)
 Nadj-Perge, Science 346, 602 (2014)
- Quasi-1D T-junction
 - Braiding of Majorana fermions is defined for 2D.
 - In practice challenging to make, but still feasible and seriously pursued.

../../images/t-junction.pdf

Alicea, *Nature Phys.* **7**, 412 (2011)

Motivation

Formulatio

Results

Summar

- Consider triangular islands, topologically similar to T-junctions.
- Islands of three-fold rotational symmetry occur naturally in epitaxial growth on close-packed metal surfaces.
- Good platform for transition from 2D to 1D topological superconductor.

../../images/triangular-islands.po

Triangular Co islands on Cu(111).

Pietzsch et al., PRL 96, 237203 (2006)

Kitaev Limit with Vector Potential on a Triangular Island

Aidan Winblad

Motivatio

Formulation

Results

_

 $\mathcal{H} = \sum_{< j, l>} \left[-
ight.$../../images/left-triangle-corner.pdf

$$\mathcal{H} = \sum_{\langle j,l \rangle} \left[-te^{i\phi_{l,j}} c_l^{\dagger} c_j + \Delta e^{i heta_{l,j}} c_l^{\dagger} c_j^{\dagger} + h.c. \right] - \sum_j \mu c_j^{\dagger} c_j$$
 $\phi_{l,j} = -rac{e}{\hbar} \int_{\mathbf{r}_j}^{\mathbf{r}_l} \mathbf{A} \cdot d\mathbf{l}$

Hence $\mathbf{A} = -rac{2\pi}{3\sqrt{3}a} \hat{\mathbf{y}}$

Majorana Number of 1D Chain with Vector Potential

CSU-

φ =.π../images/kitaev-chain-mu_pi.pdf

Triangular Chain

Aidan Winblad

Motivatio

Formulation

Results

Summary

Hollow Triangle

Aidan Winblad

Motivatio

Formulatio

Results

Summary

Motivatio

Formulatio

Results

Summary

■ Introduction of vector potential allows for additional tunability of topology.

■ Triangular islands with a gapped interior can be a promising platform for hosting and manipulating MZMs.

Next steps

■ Search for safe MZMs in hollow triangles outside the Kitaev limit.

Develop a robust braiding scheme.

Majorana fermion notation and coupling isolations

Aidan Winblad

The complex fermion operator can be written as a superposition of two Majorana fermions $c_i = \frac{1}{2}(a_i + ib_i)$. Due to the nature of Majorana fermions, $a_i^{\dagger} = a_i$, the creation operator is $c_i^{\dagger} = \frac{1}{2}(a_i - ib_i)$.

$$H = -\frac{i\mu}{4} \sum_{j} (a_j b_j - b_j a_j) - \frac{i}{4} \sum_{\langle j,l \rangle} [(t \sin \phi - \Delta \sin \theta) a_l a_j + (t \sin \phi + \Delta \sin \theta) b_l b_j + (t \cos \phi + \Delta \cos \theta) a_l b_j - (t \cos \phi - \Delta \cos \theta) b_l a_j].$$

$$(t\sin\phi_{j,l} - \Delta\sin\theta_{j,l})a_la_j,\tag{1}$$

$$(t\sin\phi_{i,l} + \Delta\sin\theta_{i,l})b_lb_i,\tag{2}$$

$$(t\sin\phi_{j,l} + \Delta\sin\theta_{j,l})b_lb_j, \tag{2}$$

$$(t\cos\phi_{j,l} + \Delta\cos\theta_{j,l})a_lb_j,\tag{3}$$

$$(t\cos\phi_{i,l} - \Delta\cos\theta_{i,l})b_l a_i \tag{4}$$

Triangular chain degeneracy

0.0

-10

 ε =1.4546e-17, B=1.0291e-01 Aidan Winblad 0.48 20.0 0.42 17.5 - 0.36 15.0 - 0.30 12.5 y (a) - 0.24 ⋚ 10.0 - 0.18 7.5 5.0 0.12 2.5 0.06

-5

x (a)

0.00

10

5

Hollow triangle degeneracy?

