Practice 8

Islambek Madizhan

p42isdam@uco.es

Exercise 1)
To complete this task we need to use the needed library(Cryptodome) by using this
command: pip install pycryptodome
What Happens During Execution:
Input: The script uses the hardcoded string b"secret word" as plaintext.
Process:
Generates a random key and IV.
Encrypts the plaintext using AES in CBC mode.
☐ Encodes the IV and ciphertext in Base64.
Saves the results to a JSON file.
Output:
☐ Prints the encrypted data and the key.
☐ Creates a data.json file containing the IV and ciphertext.
The output:
<pre>{'iv': 'jCnr/ya29s6UH1zubYqZ1g==', 'ciphertext': '7HYJRpWZEkdsHMI7tnkMtg=='} key = b07548cd670c8de59cced86770d99b31 bye.</pre>
Exercise 2)
During the execution of first script, we created 'data.json' file that looks like this:
Práctica 8 Encriptacón Moderna > {} data.json >
<pre>1 {"iv": "jCnr/ya29s6UH1zubYqZ1g==", "ciphertext": "7HYJRpWZEkdsHMI7tnkMtg=="}</pre>
Now, this is what our script does:
Input the Key:
☐ The user enters the key in hexadecimal format (output from the encryption script).
Load the Encrypted Data:
☐ Reads data.json to retrieve the IV and ciphertext.
☐ Decodes the Base64-encoded IV and ciphertext back into bytes.
Decrypt:
☐ Initializes the AES cipher using the provided key and IV.
☐ Decrypts the ciphertext.
☐ Removes padding using unpad.
Output:
☐ Displays the decrypted plaintext message.
The output:
··· {'iv': 'jCnr/ya29s6UH1zubYqZ1g==', 'ciphertext': '7HYJRpWZEkdsHMI7tnkMtg=='}

```
Exercise 3)
To complete this task, the following code was written:
import json
import sys
from base64 import b64encode
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from Crypto.Random import get random bytes
if len(sys.argv) != 2:
  print("Usage: python encFICH.py cipher.txt")
  sys.exit(1)
input_filename = sys.argv[1]
  with open(input_filename, 'rb') as file:
    data = file.read()
except FileNotFoundError:
  print(f"Error: File '{input_filename}' not found.")
  sys.exit(1)
key = get_random_bytes(16)
cipher = AES.new(key, AES.MODE_CBC)
ct_bytes = cipher.encrypt(pad(data, AES.block_size))
iv = b64encode(cipher.iv).decode('utf-8')
ct = b64encode(ct bytes).decode('utf-8')
result = {
  "iv": iv,
  "ciphertext": ct
}
output_filename = f"{input_filename}.enc.json"
with open(output_filename, 'w') as outfile:
  json.dump(result, outfile)
print(f"Encryption complete. Encrypted file saved as '{output filename}'.")
print(f"Key (hex): {key.hex()}")
```

Then cipher.txt file was created to encrypt. The content of cipher.txt:

After writing in the command line: **python enFICH.py cipher.txt**, these are the outputs:

```
C:\Users\2022\OneDrive\Pa6очий стол\SEGU\Práctica 8 Encriptacón Moderna>python enFICH.py cipher.txt Encryption complete. Encrypted file saved as 'cipher.txt.enc.json'. Key (hex): f02b5a11c240d097c603bf8701287387
```

The output cipher.txt.enc.json file:

```
Práctica 8 Encriptacón Moderna > {} cipher.txt.enc.json > ...

1  ["iv": "aDm3HkC@QUAQoTttUfVa1w==", "ciphertext": "@hyDdLvJgrGsI9DGazHH6w=="]}
```

Once our data was encrypted and stored as json file, we can begin writing **deFICH.py** file that decrypts the content of encrypted file. It should require a key just as was done in previous exercises. The code:

```
import ison
import sys
from base64 import b64decode
from Crypto.Cipher import AES
from Crypto. Util. Padding import unpad
if len(sys.argv) != 2:
  print("Usage: python decFICH.py <encrypted_file>")
  sys.exit(1)
input_filename = sys.argv[1]
try:
  with open(input_filename, 'r') as file:
     encrypted_data = json.load(file)
except FileNotFoundError:
  print(f"Error: File '{input_filename}' not found.")
  sys.exit(1)
except json.JSONDecodeError:
  print(f"Error: File '{input filename}' is not a valid JSON file.")
  sys.exit(1)
key_input = input("Enter the key (hex): ")
try:
  key = bytes.fromhex(key input)
except ValueError:
  print("Invalid key. Please enter a valid hexadecimal key.")
  sys.exit(1)
try:
  iv = b64decode(encrypted_data['iv'])
  ct = b64decode(encrypted_data['ciphertext'])
except KeyError:
  print("Error: JSON file missing required fields ('iv' or 'ciphertext').")
  sys.exit(1)
```

```
try:
  cipher = AES.new(key, AES.MODE_CBC, iv)
  plaintext = unpad(cipher.decrypt(ct), AES.block size)
  print("Decryption successful. Decrypted content:")
  print(plaintext.decode('utf-8'))
except (ValueError, KeyError):
  print("Error: Decryption failed. Check the key and input file.")
To execute the script we use this command line:
python deFICH.py cipher.txt.enc.json
The output:
 <u>C:\Users\20022\OneDrive\Paбoчий стол\SEGU\Práctica 8 Encriptacón Moderna</u>>python deFICH.py cipher.txt.enc.json
 Enter the key (hex): f02b5a11c240d097c603bf8701287387
 Decryption successful. Decrypted content:
 the cipher text
Exercise 4)
Summary of what I got from running the command lines
    ☐ Encrypted and decrypted files (secret.enc, secret_dec.txt).
   ☐ Hashes (MD5, SHA256).
   ☐ RSA private and public keys (private key.pem, public key.pem).
   ☐ Encrypted and decrypted content with RSA (secret_rsa.enc, secret_rsa_dec.txt).
```