Chapter-03 GATE LEVEL MINIMIZATION

NAND and NOR IMPLEMENTATION

Universal Gates

- A universal gate is a gate that can implement any Boolean function without the use of any other gate.
- The NAND and NOR gates are universal gates.
- The NAND and NOR gates are said to be universal gates because any logic circuit can be implemented with it.

NAND Gate

INPUT		OUTPUT
Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

INPUT		OUTPUT
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Logic Gates using only NAND Gates

NOT Gate

AND Gate

OR Gate

NOR Gate

• EX-OR Gate

• EX-NOR Gate

Logic Gates using only NOR Gates

NOT Gate

OR Gate

AND Gate

NAND Gate

EX-OR Gate

• EX-NOR Gate

Equivalent Gates

- Note that a bubble denotes complementation (inverter) and two bubbles along the same line represent double complementation, so both can be removed.
- Two NOT gates in series are same as a buffer because they cancel each other as $\bar{A} = A$

 An AND gate is equivalent to an inverted-input NOR gate.

 A NAND gate is equivalent to an invertedinput OR gate.

 An OR gate is equivalent to an inverted-input NAND gate.

 A NOR gate is equivalent to an inverted-input AND gate.

NAND Implementation

 The implementation of Boolean functions with NAND gates requires that the functions be in sum-of-products form.

$$F = AB + CD$$

$$= \overline{AB + CD}$$

$$= \overline{AB \cdot \overline{CD}}$$

$$= \overline{AB \cdot \overline{CD}}$$

$$= \overline{AB \cdot \overline{CD}}$$

$$= \overline{AB \cdot \overline{CD}}$$

NOR Implementation

 The implementation of Boolean functions with NOR gates requires that the functions be in product-of-sums form.

$$F = (A + B)(C + D)$$

$$F = (A + B) \cdot (C + D)$$

$$= \overline{(A + B) \cdot (C + D)}$$

$$= \overline{(A + B) + \overline{(C + D)}}$$

$$C$$

$$D$$