Convergence and Limit Theorems

Paweł Polak

January 26, 2016

STAT W4413: Nonparametric Statistics - Lecture 4

Convergence and limit theorems

- Calculating the significance level and probability of Type II error of most of the tests that we see in this lecture, requires nontrivial calculations.
- One of the main tools that will help us in such cases is the asymptotic performance analysis.
- With very little computational power, such analysis can usually provide sufficiently accurate results, especially when the number of samples is high.

Convergence in distribution

Definition

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables with $X_n \sim F_n$. Also, let $X \sim F$. The sequence $\{X_n\}_{n=1}^{\infty}$ is said to converge to X in distribution, denoted by

$$X_n \stackrel{d}{\rightarrow} X$$
,

if and only if

$$F_n(x) \to F(x)$$

for all continuity points of F as $n \rightarrow 1$.

Note that it is usually easier to prove that the probability density function of X_i converges to the probability density function of X.

Remark

It turns out that if the pdf of X_n converges to the pdf of X, then we can conclude that $X_n \stackrel{d}{\to} X$.

- This is a simple corollary of Scheffe's lemma.
- The same is true for the probability mass functions, i.e., if you prove the convergence of the probability mass functions, then you again have the convergence in distribution.

Example

Let $X_i \sim N(\frac{1}{n},1)$. What is the limiting distribution of $\{X_i\}_{i=1}^{\infty}$? It is straightforward to confirm that the pdf of X_i is converging to the pdf of N(0,1). Therefore, N(0,1) is the limiting distribution.

A well-known example of convergence in distribution is the *Central Limit Theorem (CLT)*.

Theorem

Let $X_1, X_2, \ldots \overset{i.i.d.}{\sim} F$, with $\mathbb{E}(X_i) = \mu < \infty$ and $Var(X_i) = \sigma^2 < \infty$. Define the sample average as $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2).$$

证明用:分布收敛<=>特征函数收敛或者暴力的Epsilon Delta

Example

Let X_n be a $\chi^2(n)$. What is the limiting distribution of $Y_n = \frac{1}{\sqrt{n}}(X_n - n)$?

想办法凑summation

Let $Z_1, Z_2, \ldots, Z_n, \ldots \stackrel{iid}{\sim} \mathcal{N}(0,1)$. Since X_n is $\chi^2(n)$, its distribution is the same as the distribution of $\sum_{i=1}^n Z_i^2$, which is the sum of i.i.d. random variables Z_i^2 . Note that $\mathbb{E}(Z_i^2) = 1$. Also,

$$var(Z_i^2) = \mathbb{E}(Z_i^2 - 1)^2 \stackrel{(a)}{=} 2$$
. 笔记本

To obtain Equality (a), we have used the fact that $\mathbb{E}(Z_i^4)=3$. Can you prove it? Now it is clear from CLT that the random variable $\sqrt{n}(\frac{1}{n}(X_n)-1)\to N(0,2)$. It is also straightforward to confirm that if $Y_n=\frac{1}{\sqrt{n}}(X_n-n)$, then $Y_n\stackrel{d}{\to} N(0,2)$.

Convergence in probability

Definition

Consider a sequence of random variables $\{X_i\}_{i=1}^{\infty}$. The sequence is said to converge to X in probability, denoted by $X_n \overset{p}{\to} X$, if and only if $\forall \epsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}(|X_n-X|<\epsilon)=1.$$

Convergence in probability

Example

Consider $X_n \sim \text{Exponential}(\lambda n)$, i.e., the pdf of X_n is

$$f_{X_n}(x) = \lambda n e^{-\lambda n x} \mathbb{I}(x \ge 0),$$

and $\lambda > 0$ is fixed and \mathbb{I} is the indicator function. Prove that $X_n \stackrel{p}{\to} 0$ as $n \to \infty$.

Proof.

In order to prove this convergence we should calculate $\mathbb{P}(|X_n| > \epsilon)$. It is straightforward to confirm that

$$\mathbb{P}(|X_n| > \epsilon) = e^{-\lambda n\epsilon} \underset{n \to \infty}{\to} 0.$$

Hence $X_n \stackrel{p}{\to} 0$.

Convergence in probability: WLLN

A well-known example of convergence in probability, that will be used in this course often, is the *weak law of large numbers (WLLN)*.

Theorem (WLLN)

Let
$$X_1, X_2, \dots, X_n, \dots$$
 be i.i.d. with $E(X_i) = \mu < \infty$ and $var(X_i) = \sigma^2 < \infty$. Then $\overline{X}_n \stackrel{p}{\to} \mu$

- The proof of this statement is straightforward and I encourage you to prove this.
- The only inequality that you may need to prove this result is Markov inequality (or more specifically, Chebyshev.
- You can look it up in Wikipedia to refresh your memories.

Almost sure convergence

几乎处处收敛? WP1

The last type of convergence we discuss here is the *almost sure* convergence.

Definition

 $\{X_n\}_{n=1}^\infty$ is said to converge to X almost surely denoted by $X_n \overset{a.s.}{\to} X$ if and only if

$$\mathbb{P}(\left\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\right\}) = 1.$$

Almost sure convergence is also known as *convergence with probability* one.

Almost sure convergence: SLLN

A well-known example of almost sure convergence is the *Strong Law of Large Numbers*.

Theorem (SLLN)

Let
$$X_1, X_2, ..., X_n, ...$$
 be iid with $\mathbb{E}(X_i) = \mu < \infty$ and $var(X_i) = \sigma^2 < \infty$. Then $\overline{X}_n \stackrel{a.s.}{\to} \mu$.

Note that among the three types of convergence we have discussed so far, almost sure convergence is the strongest. In fact if $X_n \overset{a.s.}{\rightarrow} X$ then X_n converges to X in both probability and distribution. We discuss some parts of this statement in the next slides and will leave the rest as an exercise for you.

Theorem

If
$$X_n \stackrel{p}{\to} X$$
, then $X_n \stackrel{d}{\to} X$.

Proof.

We would like to prove that $\lim_{n\to\infty}\mathbb{P}(X_n\leq a)=\mathbb{P}(X\leq a)$. Let $\epsilon>0$ be a fixed number. Here we employ a very useful trick known as conditioning. We have

$$\mathbb{P}(X_n \le a) = \mathbb{P}(X_n \le a| |X_n - X| < \epsilon) \mathbb{P}(|X_n - X| < \epsilon) + \mathbb{P}(X_n \le a| |X_n - X| \ge \epsilon) \mathbb{P}(|X_n - X| \ge \epsilon)$$
(1)

We now use (1) to find an upper bound and a lower bound for $\mathbb{P}(X_n \leq a)$. Let's start with the upper bound.

$$\mathbb{P}(X_n \leq a) \stackrel{(b)}{\leq} \mathbb{P}(X_n \leq a| |X_n - X| < \epsilon) \mathbb{P}(|X_n - X| < \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon)
\stackrel{(c1)}{\leq} \mathbb{P}(X \leq a + \epsilon| |X_n - X| < \epsilon) \mathbb{P}(|X_n - X| < \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon)
\stackrel{(c2)}{\leq} \mathbb{P}(X \leq a + \epsilon, |X_n - X| < \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon)
\stackrel{(d)}{\leq} \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon)$$
(2)

Proof.

To obtain a lower bound we again use (1). Since $\mathbb{P}(X_n \leq a| |X_n - X| \geq \epsilon)\mathbb{P}(|X_n - X| \geq \epsilon) \geq 0$, we have

$$\mathbb{P}(X_{n} \leq a) \geq \mathbb{P}(X_{n} \leq a \mid |X_{n} - X| < \epsilon) \mathbb{P}(|X_{n} - X| < \epsilon) \\
\geq \mathbb{P}(X \leq a - \epsilon \mid |X_{n} - X| < \epsilon) \mathbb{P}(|X_{n} - X| < \epsilon) \\
\stackrel{(f)}{=} \mathbb{P}(X \leq a - \epsilon) - \mathbb{P}(X \leq a - \epsilon \mid |X_{n} - X| \geq \epsilon) \mathbb{P}(|X_{n} - X| \geq \epsilon) \\
\stackrel{(g)}{\geq} \mathbb{P}(X \leq a - \epsilon) - \mathbb{P}(|X_{n} - X| \geq \epsilon) \tag{3}$$

We obtain Inequality (e) by the following argument: $|X_n-X|<\epsilon$ implies that $X_n\leq X+\epsilon$. Also if we replace X_n with something larger $\mathbb{P}(X_n\leq a|\ |X_n-X|<\epsilon)$ decreases. Hence we replace X_n with $X+\epsilon$ and obtain Inequality (e). Equality (f) is due to the fact that

$$\mathbb{P}(X \leq a - \epsilon) = \mathbb{P}(X \leq a - \epsilon | |X_n - X| \geq \epsilon) \mathbb{P}(|X_n - X| \geq \epsilon) + \mathbb{P}(X \leq a - \epsilon | |X_n - X| < \epsilon) \mathbb{P}(|X_n - X| < \epsilon).$$

Finally, to obtain Inequality (g) from $\mathbb{P}(X \leq a - \epsilon | |X_n - X| \geq \epsilon) \leq 1$.

15/1

Proof.

Combining (2) and (3) we obtain

$$\mathbb{P}(X \leq a - \epsilon) - \mathbb{P}(|X_n - X| \geq \epsilon) \leq \mathbb{P}(X_n \leq a) \leq \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon).$$

Letting $n \to \infty$ implies that (since $X_n \stackrel{p}{\to} X$) for every $\epsilon \ge 0$.

$$\mathbb{P}(X \le a - \epsilon) \le \lim_{n \to \infty} \mathbb{P}(X_n \le a) \le \mathbb{P}(X \le a + \epsilon). \tag{4}$$

If a is a continuity point of F, then letting $\epsilon \to 0$ establishes the result (by using Sandwich theorem for limits).

Remarks

 While convergence in probability implies convergence in distribution, the other direction is not correct. i.e., convergence in distribution does not imply convergence in probability. Here is an example:

Example

Let $X \sim Unif(0,1)$. We define $\{X_n\}_{n=1}^{\infty}$, with $X_n = X$. First note that $X_n \stackrel{d}{\to} X$. Why?

Since X has the same distribution as 1-X, we can conclude that $X_n \stackrel{d}{\to} 1-X$. However, I claim X_n does not converge to 1-X in probability. Because,

$$\mathbb{P}(|X_n-1+X| \geq \epsilon) = \mathbb{P}(|X-1+X| \geq \epsilon) = 1-\epsilon.$$
 笔记本

- Make sure to calculate the probability yourself and prove that $\mathbb{P}(|X-1+X| \geq \epsilon) = 1 \epsilon$.
- As this example shows the convergence in distribution does not imply the convergence in probability. That said, there is a very special but important partial inverse for the last Theorem that we will mention in the next Theorem.

Remarks

Theorem

Let $c \in \mathbb{R}$ be a fixed (nonrandom) number. If $X_n \stackrel{d}{\to} c$, then $X_n \stackrel{p}{\to} c$.

Proof.

Let F(x) be defined in $F(x) \triangleq \mathbb{I}(x \geq c)$.

$$\mathbb{P}(|X_n - c| \le \epsilon) = \mathbb{P}(c - \epsilon \le X_n \le c + \epsilon) \ge \mathbb{P}(c - \epsilon < X_n \le c + \epsilon) = F_{X_n}(c + \epsilon) - F_{X_n}(c - \epsilon)$$
 (5)

Clearly F_{X_n} converges to F and the only discontinuity point of F occurs at x=c. Therefore,

$$\lim_{n\to\infty} F_{X_n}(c+\epsilon) = F(c+\epsilon) = 1$$
 定是CDF的一类间断点 $\lim_{n\to\infty} F_{X_n}(c-\epsilon) = F(c-\epsilon) = 0$ (6)

Combining (5) with (6), we obtain

$$\lim_{n\to\infty} \mathbb{P}(|X_n-c|\leq \epsilon)\geq 1.$$

But we also know that $\mathbb{P}(|X_n-c|\leq \epsilon)\leq 1$. Therefore, $\lim_{n\to\infty}\mathbb{P}(|X_n-c|\leq \epsilon)=1$, that completes the proof.