

Document Title	Explanation of Application Interfaces of the Powertrain Domain
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	269
Document Classification	Auxiliary

Document Status	Final
Part of AUTOSAR Release	4.2.2

Document Change History			
Release	Changed by	Change Description	
4.2.2	AUTOSAR Release Management	Chapter "Timing and Accuracy Requirements to Torque Signals" and related figure removed and moved into description of related Interfaces in AI-Tool	
4.2.1	AUTOSAR Release Management	 Chapter "Sensor/Actuator Design Pattern" moved to new document "AIDesignPatternsCatalogue" Integrate new interfaces / update existing interfaces for network representation of engine & transmission interfaces 	
4.1.2	AUTOSAR Release Management	 Updated/Rework of Chapter "Sensor/Actuator Design Pattern" Update of Chapter "Appendix: Mapping Ports to Display Names - Powertrain Domain" according to changes in application interfaces model or patterns 	
4.1.1	AUTOSAR Administration	 New: chapter describing Sensor Actuator Design Pattern Update w.r.t. to obsolete names etc. according to changes in AlSpecification etc. 	
4.0.3	AUTOSAR Administration	 Splitting of document: Topic of Measurement and Calibration moved to new document TR_AIMeasurementCalibrationDiagnostics_537 Update w.r.t. to names etc. according to changes in AISpecification 	
3.1.5	AUTOSAR Administration	 Display names made consistent to AlSpecification Rule MCM390 added: Suffix should not exceed 3 char 	

Document Change History				
Release	Changed by	Change Description		
3.1.4	AUTOSAR Administration	 Added: overview figures of different torque interfaces New: chapter about modeling aspects and automatic generation of display names New: Mapping Ports to Display Names Legal disclaimer revised 		
3.1.1	AUTOSAR Administration	Legal disclaimer revised		
3.0.1	AUTOSAR Administration	Initial Release		

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Table of Contents

1	Purpo	se of this Document	5
2	Refere	ences	6
3	Descr	iption of Terms and Concepts	7
	3.1 3.2 3.3 3.4	Abbreviations Terminology – Torque within the Powertrain Domain Terminology – Fast and Slow Torque Requests Overview of AUTOSAR torque application interfaces	7 8
4	Archit	ecture Overview	14
5	Descr	iption of Exemplary Software Components	16
	5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.5	Powertrain Coordinator – PTC (PtCoorr)	16 17 18 18 18 18 18 18
6	Addition	onal Information	
	6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 power	Differences between SW-Cs and ECUs Functional safety Powertrain Application Interfaces - Decisions / Assumptions Scope PTC Composition (PtCoorr) Definition of overboost Coordination at the vehicle level PTC Arbitration between Driver and Chassis torque requests Assumptions on modeling style and naming aspects specific for train domain	20 20 20 20 21 21
7	Apper	ndix: Mapping Ports to Display Names - Powertrain Domain	26

1 Purpose of this Document

This document explains design decisions that lead to the standardized applications interfaces relevant to the Powertrain Domain.

The sensor actuator pattern described in this document is not specific to the power-train domain but can be applied to other domains too, e.g. the chassis domain.

<u>NOTE:</u> If any information in diagrams or text (or conclusions drawn from them) conflict with the information in [2] or [3] or [3b] and this is not explicitly mentioned the information in [2] or [3] or [3b], resp., should be regarded as definitive.

2 References

- [1] SW-C and System Modeling Guide AUTOSAR_TR_SW-CModelingGuide
- [2] Table of Application Interfaces AUTOSAR_MOD_AITable
- [3] XML Specification of Application Interfaces AUTOSAR_MOD_AlSpecification
- [3b] Application Interfaces Examples AUTOSAR_MOD_AISpecificationExamples
- [4] Explanation of Application Interfaces of the Chassis Domain AUTOSAR_EXP_AIChassisExplanation
- [5] Unique Names for Documentation, Measurement and Calibration: Modeling and Naming Aspects including Automatic Generation AUTOSAR_TR_AIMeasurementCalibrationDiagnostics
- [6] Software Component Template
 AUTOSAR_TPS_SoftwareComponentTemplate
- [7] Standardization Template AUTOSAR_TPS_StandardizationTemplate
- [8] ANTLR parser generator V3 http://www.antlr.org
- [9] Virtual Function Bus AUTOSAR_EXP_VFB
- [10] Glossary
 AUTOSAR TR Glossary
- [11] AUTOSAR TR AlDesignPatternCatalogue AUTOSAR_TR_AlDesignPatternCatalogue

3 Description of Terms and Concepts

3.1 Abbreviations

For abbreviations used in this document please refer to the keyword list in [2] (as .xls) and in [3] (as .arxml).

Additionally please also refer to [10] for explanation of commonly used terms and abbreviations within AUTOSAR.

3.2 Terminology – Torque within the Powertrain Domain

Figure 1: Powertrain Torque terminology

Sign definition for torque at clutch / torque at wheels:

Positive value means that torque is transmitted from the engine to the drivetrain / from the powertrain to the wheels.

Negative value means that torque is transmitted from the drivetrain to the engine / from the wheels to the powertrain.

Zero means that no torque is transmitted between engine and drivetrain / between wheels and powertrain.

Engine Clutch

For Hybrid Systems an additional clutch can be present between combustion engine and electric machine.

3.3 Terminology – Fast and Slow Torque Requests

Many torque request interfaces have the additional descriptors "Fast" or "Slow". These descriptors are relevant to gasoline spark ignition engines, whose torque output can be modified by means of throttle angle (and hence air mass) and ignition timing. In general, the torque output responds slowly to changes in throttle angle due to fluid dynamics in the manifold and cylinder head. The reaction to ignition timing changes is almost instantaneous, especially at higher engine speeds.

"Fast" refers to the "immediate" / "instant" torque request, typically achieved by ignition timing.

"Slow" refers to the longer term or "torque reserve" request, usually the input to throttle control.

Note that a gasoline engine running at optimum ignition timing cannot **increase** torque quickly as the throttle is the only means for the increase. However, preemptively opening the throttle and running with retarded ignition to maintain the the original (lower) torque allows the torque to be increased quickly by ignition a short time in the future. This operation is usually achieved by setting the "Slow" torque request to be greater than the "Fast" torque request to provide this "torque reserve", allowing the torque to be rapidly increased by increasing the "Fast" request.

Explanation of Application Interfaces of the Powertrain Domain AUTOSAR Release 4.2.2

Figure 2: The Torque Reserve concept, with "Fast" and "Slow" torque requests

For conventional diesel engines only the fast torque interfaces are relevant. However, future diesel engines could have the possibility to use both fast and slow torque interfaces.

3.4 Overview of AUTOSAR torque application interfaces

Legend within Figure 3:

<ShortName of Powertrain Port>/ <ShortName of Chassis Port>]

<LongName of Port>

Note: Obsolete Interfaces from before AUTOSAR 4.1.1 are still included.

Figure 3: Overview of AUTOSAR crankshaft torque interfaces

Overview of AUTOSAR torque at clutch interfaces (1) Torque at clutch Upper limit of data type TrsmTqCluMaxProtn timum Torque at Clutch at Current Clutch Spec Transmission: Maximum Torque at Clutch Requested by Transmission for Gearbox Protection Powertrain: Maximum Available Torque at Clutch for Driver TrsmTqCluMaxSlow Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on SlowPath TrsmTqCluMaxFast Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Intervention on Fast Path DrvReqTqCluS Driver Request of Clutch Torque (Slow Path) PtTqClu/EngTqActAtClu EscTqCluPtMaxSlow / EngTqDecAtCluReqByEscSlow Setpoint Maximum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) Slow Path (also EscTqWhlPtMaxSlow exists) Powertrain: Torque at Clutch Driver Request of Torque at Clutch Fast Path EngTqDynJ **TrsmTqCluFast** Engine Dynamic Moment of Inertia TrsmReqTypTqCluFast ${\sf EscTqCluPtMaxFast/EngTqDecAtCluReqByEscFast}$ PtTqCluDyn Maximum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) Fast Path (also EscTqWhlPtMaxFast exists) tric Machine Dynamic Dynamic Torque at Clutch ossible range for driver request 0 PtTaCluMinDry EscTaCluPtMin/EnaTaIncAtCluReadBvEsc Minimum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) (also EscTorqueWheelPowertrainMinimumFast/Slow exist) Powertrain: Minimum Available Torque at Clutch for Driver TrsmTqCluMinSlow Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Slow Path TrsmTqCluMinFast Transmission: Minimum Torque at Clutch Requested by EngTqCluMin Transmission for Shift Intervention on Fast Pa

Figure 4: Overview of AUTOSAR torque at clutch interfaces (1)

Lower limit of data type

Figure 5: Overview of AUTOSAR torque at clutch interfaces (2)

Overview of AUTOSAR torque at wheel interfaces Upper limit of data type Powertrain: Maximum Possible Total Torque at Wheels Safety Torque Limit calculated from the Vehicle's Maximum Speed Maximum Possible Total Torque at Wheels at Optimum Conditions Delivered by Powertrain EscTqWhIPtMaxSlow / PtTqDecAtWhIsReqdByEscSlow Maximum Powertrain Wheel Torque Requested by Electronic Stability for Driver (n Control (ESC) Slow Path (also EscTqCluPtMaxSlow exists) EscTqWhIPtMaxFast / PtTqDecAtWhIsReqdByEscFast Maximum Powertrain Wheel Torque Requested by Electronic Stability Maximum Torque at Wheel by Vehicle Longitudinal Control (VLC) Control (ESC) Fast Path (also EscTqCluPtMaxFast exists) DryReaTaWhISIo Driver Request of Wheel Torque (Slow Torque Path) PtTqWhlReqDrvVlc / PtTqTotReqdAtWhisForVlc Powertrain: Total Requested Propulsion Wheel Torque by the Driver or Vehicle Total wheel torque provided by powertrain DryReqTqWhlFast PtTqWhlInd / PtTqActAtWhls PtTqWhlInd / PtTqActAtWhls PtTqWhlInd / PtTqActAtWhls PtTqWhlInd / PtTqActAtWhIs Powertrain: Total Requested Propulsion Wheel Torque (Driver, VLC, ESP) Torque Delivered by the Powertrain to the Individual Wheels Possible range or driver request 0 PtTqWhIMinWoCutOff / PtTqTotAvIMinAtWhIs Minimum Possible Total Powertrain Torque at Wheels Without Complete Fuel Cut Off Minimum Possible Total Torque at Wheels Delivered by Powertrain for Driver (with or without fuel cut-off) PtTaWhlMin Minimum Available Total Powertrain Torque at Wheels (with fuel cut-off) EscTqWhIPtMinSlow / PtTqIncAtWhIsReqdBvEscSlow Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Slow Path (also EscTqCluPtMin exists) Minimum Torque at Wheel by Vehicle Longitudinal Control (VLC) EscTgWhIPtMinFast / PtTgIncAtWhIsRegdByEscFast Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Fast Path (also EscTqCluPtMin exists) Lower limit of data type

Figure 6: Overview of AUTOSAR torque loss interfaces

Overview of AUTOSAR torque at wheel interfaces Torque at wheel Upper limit of data type PtTqWhlMax/PtTqTotAvlMaxAtWhls Powertrain: Maximum Possible Total Torque at Wheels Safety Torque Limit calculated from the Vehicle's Maximum Speed Maximum Possible Total Torque at Wheels at Optimum Conditions Delivered by Powertrain EscTqWhIPtMaxSlow / PtTqDecAtWhIsReqdByEscSlow Maximum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Slow Path (also EscTqCluPtMaxSlow exists) for Driver (m EscTqWhIPtMaxFast / PtTqDecAtWhIsReqdByEscFast Maximum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Fast Path (also EscTqCluPtMaxFast exists) Maximum Torque at Wheel by Vehicle Longitudinal Control (VLC) DrvReaTaWhISlow Driver Request of Wheel Torque (SlowTorque Path) PtTqWhlReqDrvVlc/PtTqTotReqdAtWhlsForVlc Powertrain: Total Requested Propulsion Wheel Torque by the Driver or Vehicle Longitudinal Control (VLC) PtTqWhI/PtTqTotActAtWhls Total wheel torque provided by powertrain DrvReqTqWhlFast The request of Wheel Torque (Fast Torque Path) Setpoint PtTqWhlReq / PtTqTotReqdAtWhls PtTqWhlInd / PtTqActAtWhIs Torque Delivered by the Powertrain to the Individual Wheels $Power train: Total \, Requested \, Propulsion \, Wheel \, Torque \, \, (Driver, \, VLC, \, ESP)$ Possible range or driver request 0 PtTqWhlMinWoCutOff / PtTqTotAvlMinAtWhls Minimum Possible Total Powertrain Torque at Wheels Without Complete Fuel Cut Off Minimum Possible Total Torque at Wheels Delivered by Powertrain for Driver (with or without fuel cut-off) PtTqWhlMin Minimum Available Total Powertrain Torque at Wheels (with fuel cut-off) EscTqWhIPtMinSlow / PtTqIncAtWhIsReqdByEscSlow Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Slow Path (also EscTqCluPtMin exists) Minimum Torque at Wheel by Vehicle Longitudinal Control (VLC) EscTqWhIPtMinFast / PtTqIncAtWhIsReqdByEscFast Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Fast Path (also EscTqCluPtMin exists) Lower limit of data type

Figure 7: Overview of AUTOSAR torque at wheel interfaces

4 Architecture Overview

The following figures give an overview of the domain or functional architecture. They not necessarily give a complete picture but show the most relevant interconnections and components.

Figure 8: Overview of Functional Architecture

Figure 9: Detail - Combustion Engine Domain Architecture

Transmission System Architecture **Transmission System** requested PT Ratio Transmission powertrain Coordinator Target Gea Actual Gea torque at wheel Chassis ı Gear State. Fransmission Torque Power Train Min. / Max. Total Powertrain at wheels requested by VLC Coordinator Vehicle **Drivetrain Torque** Transm. Longitudinal Control (prioritisation, System Distribution optimiser, Max./ Min. Total Powertrain torque at wheels requested by Stability Control Coord. 'Differential distribution) Powertrain Torqu stribution To Whee Requested By PT Lock Powertrain Torque Distribution to **ESC** Torque Actual Powertra Torque At Whee ı Vectoring Axle Transm. **Brake System** requested gearbox Transfer Case output torque Chassis Powertrain

Figure 10: Detail -Transmission System Domain Architecture

v1.04

5 Description of Exemplary Software Components

For being able to use and understand the standardized application interfaces a typical domain architecture was used as basis for demonstrating the signal flow. The components of this example domain architecture are described in the following.

5.1 Powertrain Coordinator – PTC (PtCoorr)

This composition includes all functions that coordinate the operation of the Power-train, including:

Powertrain operation mode – management of states of all actuators (e.g. combustion engine, clutch(es), transmission, electric motors, etc.), including engine start / stop management (conventional & hybrid Powertrains).

Powertrain torque coordination – Torque coordination at Powertrain (PT) level, torque prioritisation, torque distribution for realisation at at PT level, torque reserve request for the PTC, pre-coordination of driveability functions for hybrids, Powertrain driveability filters, determination of total Powertrain losses for torque calculation, wheel torque calculation (min, max, consolidated), torque at clutch calculation (min, max, consolidated), transformation of torque set point from wheel torque to torque at clutch, transformation of torque set point from torque at clutch to torque at crankshaft, control/coordination of auxiliary drivers/actuators.

Powertrain speed coordination – Maximum speed limitation coordination (for protection of all PT components from damage from over speed) and coordination of idle speed / engine speed set point requests from all sources, e.g. transmission.

Powertrain ratio coordination – all transmission ratio set point logic. Note that realisation of ratio set point is carried out by transmission system, not PTC.

5.2 Transmission System (Trsm)

This composition includes all functions of the transmission system, including: *Transmission system coordination* – Determines the torque and speed ratio over transmission, converter and differential, including the calculation of torque losses in the transmission system. Coordinates mechanical protection of the Drivetrain (gearbox, driveshafts, etc.), including calculation of torque limitation.

For manual transmission, this function includes the determination of the current gear and clutch status.

Transmission – Management of particular states in the transmission, including shift transition, driving off situation, creeping mode etc.. In case of shift transition, this functionality calculates torque requests to optimise the transition.

Control of transmission actuators to adjust the gear to the target gear (or to adjust the gear ratio to the target gear ratio in case of CVT). Gear ratio means the theoretical / physical ratio belonging to each gear and not any actual measured value. Control of gearbox countershaft (low/higher range) actuators is not included.

Calculates the torque gain of a hydrodynamic converter and the torque required to the converter input side in idle, etc. and controls clutch or converter actuators. All functionality related to the protection of the transmission, including calculation of torque limitation, measurement or calculation of gearbox oil temperature, etc., and calculation of requests to other systems.

Example of signal flow of gear signals during an single upshift or downshift

Figure 11: Example of signal flow of gear signals during a single upshift or downshift

Drivetrain Torque Distribution (DtTqDibtn) Differential Lock – All functionality related to the differential(s), which manage the torque distribution between left and right wheels, for example locking of the differential. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Transfer Case – All functionality related to the transfer case, which manages the torque distribution between front and rear wheels. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Torque vectoring axle transmission – All functionality related to active distribution of powertrain torque to all four wheels individually. Does not include the calculation of the distribution set point.

For additional information on Drivetrain Torque Distribution (DtTqDibtn) please also refer to [4].

5.3 Combustion Engine (CmbEng)

This composition includes all functions directly related to the operation and control of the vehicle's combustion engine. The following sections, 5.3.1 to 5.3.3 inclusive, define the components as a result of Combustion Engine functionality decomposition agreed to date.

5.3.1 Engine Speed and Position (EngSpdAndPosn)

Functions that provide all parameters linked to engine shaft position and speed, including the synchronisation on between crankshaft and camshaft.

Crankshaft and camshaft signal acquisition.

Calculation of the engine position.

Calculation of the relative camshaft position for systems with variable valve timing and/or lift.

Related diagnosis and plausibility checks.

5.3.2 Engine Torque Mode Management (EngTqModMngt)

Includes calculation of engine torque set point, realisation of that set point (coordination of air / fuel / ignition, etc.), determination of consolidated engine torque, control of engine speed (idle / off-idle / limitation), and management of engine modes (including overall mode, modes for realisation of engine start & stop, and combustion modes).

5.3.3 Combustion Engine: Miscellaneous (CmbEngMisc)

Combustion Engine Misc gathers together miscellaneous engine interfaces. In general these are common data required for correct operation of the engine (engine temperature, ambient air pressure and battery voltage) or required for fail-safe actions (crash status). The way in which these interfaces are used is not standardised In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions.

5.4 Vehicle Motion relevant for Powertrain (VehMtnForPt)

This composition includes Powertrain functions related to vehicle motion. The following sections, 5.4.1 to 5.4.3 inclusive, define the components that have so far been agreed as part of this composition.

5.4.1 Driver Request (DrvReq)

Driver-specific conversion of accelerator pedal position to requested torque: determines the driver request related to the motion of the vehicle. For longitudinal motion, this functionality interprets the driver request as a torque request.

5.4.2 Accelerator Pedal Position (AccrPedIPosn)

The component calculates a percentage from the acquired position of the sensor, and contains plausibility checks to ensure the information. Kick-down detection is included in this component.

5.4.3 Safety Vehicle Speed Limitation (VehSpdLimnForSfty)

Hard limitation of vehicle speed by engine torque reduction, without any comfort functionality.

5.4.4 Vehicle Motion (Powertrain): Miscellaneous (VehMtnForPtMisc)

VehMtnForPtMisc gathers together miscellaneous interfaces in the context of vehicle motion powertrain. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

VehMtnForPtMisc e.g. is used to close open interfaces in the case that it is committed that some component within vehicle motion powertrain will request or provide it but it is not yet decided which component or the component is missing.

5.5 Powertrain: Miscellaneous (PtMisc)

PtMisc gathers together miscellaneous powertrain interfaces. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

PtMisc e.g. is used to close open interfaces in the case that it is committed that some component within powertrain will request or provide it but it is not yet decided which component or the component is missing.

6 Additional Information

6.1 Differences between SW-Cs and ECUs

The SW components defined in chapter 4 are not to be confused with an ECU's functionalities.

For example, a combustion engine control ECU may contain the Combustion Engine SW-C plus other SW-Cs.

6.2 Functional safety

Many Powertrain signals are safety-relevant, therefore

The AUTOSAR RTE will provide reliable communication for these signals at the low level, and

Diagnostics and safety concepts for these signals must be applied at the higher, functional level.

AUTOSAR does not provide a Safety Concept for Powertrain systems. This must be done at the project level. This means that the specified interfaces must be checked to fulfill the safety requirements on each specific project.

6.3 Powertrain Application Interfaces - Decisions / Assumptions

6.3.1 Scope

In this document only passenger cars are considered.

6.3.2 PTC Composition (PtCoorr)

The PTC is not an atomic AUTOSAR SW-Component. In fact its functionalities should be separated, into several sub-components. These sub-components will communicate with each other and with AUTOSAR SW-Components outside the PTC. The interfaces between the sub-components are not in the current scope, which is restricted to the definition of main interfaces between the non-PTC components and the PTC sub-components.

6.3.3 Definition of overboost

Overboost is a state in which the maximum torque which the combustion engine can deliver is increased for a limited period of time. Depending on the engine type, this could be realised, for example, as an increase in boost pressure on a turbocharged engine.

6.3.4 Coordination at the vehicle level

Coordination of vehicle energy (mechanical / electrical / thermal), vehicle operation modes, vehicle personalisation, etc., should be done at the vehicle level. This is not in the scope of the Powertrain Application Interfaces.

The composition VehMtnForPtMisc was added to [2] as an interim solution for some vehicle level issues relevant to the powertrain domain.

6.3.5 PTC Arbitration between Driver and Chassis torque requests

Figure 12 and 13, unterhalb, shows how the VLC and Stability Control torques requests could be arbitrated with the Driver Request. This is just an example to illustrate the concept behind the powertrain torque request interfaces defined in [2], it is not intended to standardise the arbitration behavior in the PTC.

Figure 12: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on wheel torque)

Figure 13: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on clutch torque)

6.3.6 Assumptions on modeling style and naming aspects specific for power-train domain

AUTOSAR provides a guideline for modeling and naming of model elements ([1]).

There are architectural design patterns like the sensor actuator design pattern described in [11] that also include modeling and naming aspects.

In this section only additional patterns and modeling styles followed are explained to get an overall understanding of the signals standardized for the powertrain domain.

Please note: Here standardized ports or port interfaces mean standardized port prototype blueprints or port interface blueprints [7].

Kind of Modeling in general applied within powertrain domain, especially if the system modeling guideline [1] gives some freedom.		
Kind of modeling or as- sumptions Rationale		
All SenderReceiverInterfaces standardized are assumed to be measurable.	In earlier versions of the standard [2] the standard did not contain information about calibration and measurement.	
	Since R4.0.3 all data types allow measurement by default (see generated .arxml [3]). So our implicit assumption that all signals are measurable is fulfilled.	

tem modeling guideline [1] give Kind of modeling or as- sumptions	Rationale
All ports are assumed to be optional.	Within our example components all ports are assumed to be optional. The ports are derived from the port prototype blueprints with the same name. It is optional per default that port prototype blueprints are allowed to be used but not necessarily used in every project.
	In previous releases without blueprints this assumption was very important because there was no variant handling done in [2]. So within the powertrain domain it was assumed that all ports are optional. Since only ports but no components are standardized this was even more important: it means that a supplier or OEM may create a single SW-C (Software Component) and use only the standardized ports that are relevant for this SW-C in his sw architecture.
Port interfaces are not designed to be reused: there is a 1:1 relationship between port and port interface. The port interface has the same name as the port + an additional index as required by the System Modeling Guideline [1]. Exception: If powertrain is not the provider then the rules of other domains are respected.	Ports are attached to SW-C. Since SW-C are not standardized only port interfaces were really subject of usage in projects up to Release 3.1. With Release 4.0 the standardization of ports is supported by using so-called <i>PortPrototypeBlueprints</i> in the meta model. However, in practice older versions of the AUTOSAR meta model are still in use and the existing tools do not yet fully support <i>PortPrototypeBlueprints</i> . To be backward compatible and to enable the easy introduction of the standardized application interfaces within the powertrain domain not all features of the meta model (like e.g. connectiong of compatible interfaces with different port interface short names) therefore were yet fully exploited. A second reason was that [2] does not support connecting of compatible interfaces with different port interface short names.
If a port interface contains exactly one data prototype its name is identical to the port interface excluding the trailing index.	There were only two alternatives: - using full name - using name "Val" for Value Disadvantage of solution 2) would have been that many ports would have been assumed to be com- patible by tools because identical data prototype names (with compatible interfaces) allow an auto- matic connection. Within specification tools like e.g. ASCET-SD or MATLAB/Simulink it might be possible to only show

Kind of Modeling in general applied within powertrain domain, especially if the sys-			
tem modeling guideline [1] gives some freedom.			
Kind of modeling or as-	Rationale		
sumptions			
	the data prototype name and to not display the port interface or port name.		
The reuse of data types was explicit goal within the power-train domain.	Within the powertrain domain it was an important design goal to use as few data types as possible.		
Computation methods were not subject to reuse yet.	The [2] does not support the reuse of computation methods, only of data types. But reuse of computation methods should be considered for the next release.		
In most cases only one data prototype was defined per port interface.	This kind of modeling allows the biggest flexibility in implementing the standard.		
	On assembly level e.g. it is not allowed that the r-port has more data prototypes than the p-ports ([6], figure 6.3). Therefore in such cases, when several data prototypes are part of one r-port the data prototypes themselves cannot be assumed to be optional, only the complete r-port.		
	In older versions of the AUTOSAR standard is was not allowed that a sub-component provides only part of the port, i.e. if several data prototypes were part of a port interface it was implicitly standardized that there is one SW-C providing it. When splitting the information on several port interfaces each data prototype might be provided by a different SW-C.		
In most cases no records were used to define port interfaces.	The rationale is similar to the one stated for the assumption to only define one DataPrototype per Port-Interface. Since within the powertrain domain PortInterfaces with multiple DataPrototypes are seldomly used, there is no necessity to use records and it is assumed that timing related aspects of the data prototypes are to be handled separately, that there are other more flexible possibilities to do so.		

Specific Naming Assumptions for Powertrain Domain		
Assumption	Rationale	
The names were chosen such	In Powertrain ECUs there are thousands of calibra-	
that automatic generation of	tion relevant data. So it is important to apply the	
display names is possible.	System Modeling Guideline [1] in a way that auto-	
	matic generation of display names is possible.	
	See [5] for details.	
In general the keyword abbre-	Reason for doing so is to have short names when-	
viation "Consold" for "Consoli-	ever possible (see [TR_MCM_70020] in [5])	
dated" as well as the abbrevia-	Example:	

Specific Naming Assumptions for Powertrain Domain		
Assumption	Rationale	
tion "Act" for "Actual" was suppressed.	PtTqClu for "Torque at Clutch "	
In case a port is only for Fast Path or Slow Path "Fast" and "Slow" is added. In the other cases "SlowFast" is suppressed.	Reason for doing so is to have short names whenever possible (see [TR_MCM_70020] in [5]) Example: PtTqWhlMinWoCutOff affects Slow and Fast path EscTqWhlPtMaxSlow or EscTqWhlPtMaxFast is for a specific path	
	For more details on fast and slow paths see chapter 3.3	
"State" is used as abbreviation "St" for "State" and "Status".	In most cases it is very difficult to explain the difference between State and Status. So for sake of simplicity and consistency within the powertrain domain only "St" is used.	
TqWhl means sum of Torque Wheels whereas TqWhlInd means the torque of an individual wheel.	Within Powertrain the sum of torque wheels is more often used. So information ("Ind") is added in the case that individual wheel torques are meant. Example: PtTqWhI for "Total Wheel Torque Provided by Powertrain" PtTqWhIInd for "Torque Delivered by the Powertrain to the Individual Wheels"	
Prepositions are only used in the short name if it really helps understanding.	In most cases the preposition does not really add information and makes short names unnecessarily long (see [TR_MCM_70020] in [5]). Examples: PtTqWhlMinWoCutOff for Minimum Possible Total Powertrain Torque at Wheels Without Complete Fuel Cut Off using the preposition 'Wo' (without)	
	PtTqWhlReqDrvVlc for Powertrain: Total Requested Propulsion Wheel Torque by the Driver or Vehicle Longitudinal Control (VLC) instead of PtTqAtWhlReqByDrvForVlc as recommended by the system modeling guideline [1].	

7 Appendix: Mapping Ports to Display Names - Powertrain Domain

In the following display names for the standardized port prototype blueprints are defined. It is recommended to use the display name without name space identifier "AR_" in case no naming conflicts are expected within the system or for the ECU. In all other cases it is recommended to use the display name with name space identifier.

The rules of [5] for generating display names are followed.

There are only the following exceptions in which a name was choosen manually: EscVWhlInd: Instead of numbers for the index element a meaningful name part was added.

The virtual name space for ports is the top-level package AUTOSAR abbreviated with AR_ (see [TR_MCM_70040] in [5]). Virtual name spaces are described in [5]. Port prototype blueprint names are unique within top-level package "AUTOSAR". The sub packages of the top-level package AUTOSAR partly define virtual name spaces (e.g. for data types and port interfaces) but none of these name spaces are relevant for the generation of display names.

Basis for the definition of the display names is [2], sheets "0502*" for Powertrain.

Note: Long Names might differ in [2] (in content but not in meaning) since not all long names were yet made consistent with new sensor/actuator pattern. Consolidation with Chassis application interfaces might also lead to additional long name changes.

DisplayName w/o Name Space. With Name Space add AR_ before name, e.g. AR_Abs_flgActv	Shortname of Port / additional information if needed	Longname of Display- name (= PortProto- typeBlueprint name ex- tended in case of multi- ple data prototypes or arrays)
Abs_flgActv	AbsFlgActv	Antilock Braking System (ABS) Control Active
AccrPedl_rat AccrPedl_ratFild	AccrPedlRat AccrPedlRatFild	Accelerator Pedal Ratio Filtered Accelerator Pe- dal Ratio
AccrPedl_ratGrdt	AccrPedlRatGrdt	Accelerator Pedal Ratio Gradient
Alt_tq	AltTq	Alternator Mechanical Torque (Load)
Alt_tqReq	AltTqReq	Requested Mechanical Torque for Alternator (Generator) at Engine Crank Shaft
AxleFrntCoorr_st	AxleFrntCoorrSt	Status of the Front Axle Coordinator
AxleReCoorr_st	AxleReCoorrSt	Status of the Rear Axle Coordinator

Dott	Dotti	Dottom: Valtaria
Batt_u	BattU PrkPodIEIgPod	Battery Voltage Brake Pedal Pressed
BrkPedl_flgPsd	BrkPedIFIgPsd	
BrkPedl_rat	BrkPedlRat	Brake Pedal Position
CluPedl_rat	CluPedlRat	Clutch Pedal Ratio
Drv_flgGearShiftDwnRe	DrvFlgGearShiftDwnReq	Gear Shift Down Re-
q Drv_flgGearShiftUpReq	DryElgCoarShift! InPog	quest by Driver
	DrvFlgGearShiftUpReq	Gear Shift Up Request by Driver
Drv_flgKdDetd	DrvFlgKdDetd	Driver: Kickdown Detected
DrvReq_ratVirtAccrPedl	DrvReqRatVirtAccrPedl	Driver Request: Virtual Accelerator Pedal Ratio
DrvReq_tqCluFast	DrvReqTqCluFast	Powertrain: Driver Request of Clutch Torque Fast Path
DrvReq_tqCluSlow	DrvReqTqCluSlow	Driver Request of Clutch Torque (Slow Torque Path)
DrvReq_tqWhlFast	DrvReqTqWhlFast	Driver Request of Wheel Torque (Fast Torque Path)
DrvReq_tqWhlSlow	DrvReqTqWhISlow	Driver Request of Wheel Torque (Slow Torque Path)
Dtd_ratTqDistbnReqWh IFrntLe	DtdRatTqDistbnReq / Front Left Wheel	Requested Drivetrain Torque Distribution - Front Left Wheel
Dtd_ratTqDistbnReqWh IFrntRi	DtdRatTqDistbnReq / Front Right Wheel	Requested Drivetrain Torque Distribution - Front Right Wheel
Dtd_ratTqDistbnReqWh IReLe	DtdRatTqDistbnReq / Rear Left Wheel	Requested Drivetrain Torque Distribution - Rear Left Wheel
Dtd_ratTqDistbnReqWh IReRi	DtdRatTqDistbnReq / Rear Right Wheel	Requested Drivetrain Torque Distribution - Rear Right Wheel
Dtd_tqDftlAxleFrntReq	DtdTqDftlAxleFrntReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Front Axle Actuator
Dtd_tqDftlAxleReReq	DtdTqDftlAxleReReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Rear Axle Actuator
Dtd_tqDftlTrfReq	DtdTqDftlTrfReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Transfer Case
EgyMngt_st	EgyMngtSt	State of Energy Ma- nagement

_		
Eng_n	EngN	Engine Speed
Eng_nGearTar	EngNGearTar	Engine Speed at Target Gear
Eng_nGrdt	EngNGrdt	Engine Speed Gradient
Eng_nMax	EngNMax	Maximum Allowed En- gine Speed
Eng_nMin	EngNMin	Minimum Allowed Engi- ne Speed
Eng_pAmbAir	EngPAmbAir	Engine Ambient Air Pressure
Eng_t	EngT	Engine Temperature
Eng_tqCrksft	EngTqCrksft	Engine Torque at Crankshaft
Eng_tqCrksftMax	EngTqCrksftMax	Maximum Engine Torque at Crankshaft
Eng_tqCrksftMaxFast	EngTqCrksftMaxFast	Maximum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMaxOptm Cdn	EngTqCrksftMaxOptmCdn	Maximum Engine Torque at Crankshaft at Optimum Conditions
Eng_tqCrksftMaxProtn	EngTqCrksftMaxProtn	Maximum Allowed Torque at Crankshaft for Engine Protection
Eng_tqCrksftMin	EngTqCrksftMin	Minimum Engine Torque at Crankshaft considering all engine losses
Eng_tqCrksftMinBasc	EngTqCrksftMinBasc	Minimum Engine Torque at Crankshaft for Power- train realized by Slow Path
Eng_tqCrksftMinFast	EngTqCrksftMinFast	Minimum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMinWoCut Off	EngTqCrksftMinWoCutOff	Minimum Engine Torque at Crankshaft for Power- train realized by Slow and Fast Path
Eng_tqDynJ	EngTqDynJ	Engine Dynamic Mo- ment of Inertia
Eng_tqResvPt	EngTqResvPt	Torque Reserve Request from Engine to Powertrain
Esc_flgNoFuCutOff	EscFlgNoFuCutOff	Request "No Fuel Cut Off" by Electronic Stabil- ity Control (ESC)
Esc_st	EscSt	Electronic Stability Control (ESC) Status
Esc_stShiftPrevnStaby	EscStShiftPrevnStaby	Electronic Stability Control (ESC): State of Shift

		Prevention for Stability Reasons
Esc_tqCluPtMaxFast	EscTqCluPtMaxFast	Maximum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) Fast Path
Esc_tqCluPtMaxSlow	EscTqCluPtMaxSlow	Maximum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) Slow Path
Esc_tqCluPtMin	EscTqCluPtMin	Minimum Powertrain Clutch Torque Request- ed by Electronic Stability Control (ESC)
Esc_tqWhlPtMaxFast	EscTqWhlPtMaxFast	Maximum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Fast Path
Esc_tqWhIPtMaxSlow	EscTqWhlPtMaxSlow	Maximum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Slow Path
Esc_tqWhlPtMinFast	EscTqWhlPtMinFast	Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Fast Path
Esc_tqWhlPtMinSlow	EscTqWhIPtMinSlow	Minimum Powertrain Wheel Torque Requested by Electronic Stability Control (ESC) Slow Path
Esc_vMax	EscVMax	Maximum Vehicle Speed due to Electronic Stability Control (ESC)
Esc_vVhlIndFrntLe	EscVWhlInd / Index 0	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Front Left
Esc_vVhlIndFrntRi	EscVWhlInd / Index 1	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Front Right
Esc_vVhlIndReLe	EscVWhlInd / Index 2	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Rear Left
Esc_vVhlIndReRi	EscVWhlInd / Index 3	Electronic Stability Control (ESC): Vector of

		Individual Speed of Wheels - Rear Right
Ac_tq	AcTq	Mechanical Torque for A/C Compressor
Ac_tqReq	AcTqReq	Requested Mechanical Torque for A/C Com- pressor
Outd_t	OutdT	Outdoor Temperature
Pt_flgAltDeactvt	PtFlgAltDeactvt	Powertrain: Request to Deactivate Alternator (Generator)
Pt_flgDrvOvrdVlc	PtFlgDrvOvrdVlc	Powertrain: Driver Request Overrides Vehicle Longitudinal Control (VLC)
Pt_flgEngRun	PtFlgEngRun	Powertrain: Engine is Running
Pt_flgEngStop	PtFlgEngStop	Powertrain: Engine is Stopped
Pt_flgEngStopReq	PtFlgEngStopReq	Powertrain: Engine Stop Request
Pt_flgEngStopReqAllwd	PtFlgEngStopReqAllwd	Powertrain: Request to Stop Engine is Allowed
Pt_flgEngStrtReq	PtFlgEngStrtReq	Powertrain: Engine Start Request
Pt_flgEngStrtReqAllwd	PtFlgEngStrtReqAllwd	Powertrain: Request to Start Engine is Allowed
Pt_flgAcDeactvt	PtFlgAcDeactvt	Powertrain: Request to Deactivate Air Conditioner (A/C)
Pt_flgNoTqWhlReq	PtFlgNoTqWhlReq	Powertrain: No Torque Request for Wheel Torque
Pt_flgTqDecPsbl	PtFlgTqDecPsbl	Powertrain: Torque Decrease Possible
Pt_flgTqIncPsbl	PtFlgTqIncPsbl	Powertrain: Torque Increase Possible
Pt_nClu	PtNClu	Powertrain: Speed at Clutch
Pt_nEngSp	PtNEngSp	Powertrain: Engine Speed Setpoint
Pt_ratTqDistbnReqFrnt Le	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Front Left Wheel
Pt_ratTqDistbnReqFrnt Ri	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Front Right Wheel
Pt_ratTqDistbnReqReL	PtRatTqDistbnReq	Powertrain: Requested

е		Percental Distribution of Torque to Wheels - Rear Left Wheel
Pt_ratTqDistbnReqReRi	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Rear Right Wheel
Pt_tqClu	PtTqClu	Powertrain: Torque at Clutch
Pt_tqCluDyn	PtTqCluDyn	Powertrain: Dynamic Torque at Clutch
Pt_tqCluMaxDrv	PtTqCluMaxDrv	Powertrain: Maximum Available Torque at Clutch for Driver
Pt_tqCluMinDrv	PtTqCluMinDrv	Powertrain: Minimum Available Torque at Clutch for Driver
Pt_tqCluReqWoTrsmInt v	PtTqCluReqWoTrsmIntv	Powertrain: Torque at Clutch Request Without Transmission Intervention
Pt_tqCluTarGear	PtTqCluTarGear	Powertrain: Predicted Torque at Clutch at Target Gear
Pt_tqCluWoTrsmIntv	PtTqCluWoTrsmIntv	Powertrain: Torque at Clutch Without Trans- mission Intervention
Pt_tqCrksftReqFast	PtTqCrksftReqFast	Crankshaft Torque Request to be realized by the Fast Path of Powertrain
Pt_tqCrksftReqSlow	PtTqCrksftReqSlow	Crankshaft Torque Request to be realized by the Slow Path of Powertrain
Pt_tqMaxAlt	PtTqMaxAlt	Powertrain: Maximum Allowed Mechanical Load for Alternator (Generator) at Engine Crank Shaft.
Pt_tqMaxAc	PtTqMaxAc	Powertrain: Maximum Allowed Torque for A/C Compressor
Pt_tqMaxSteer	PtTqMaxSteer	Powertrain: Maximum Allowed Mechanical Load for Steering at Engine Crank Shaft
Pt_tqMaxTrsmOilPmp	PtTqMaxTrsmOilPmp	Maximum Allowed Transmission Oil Pump Load

Pt_tqResvEng	PtTqResvEng	Torque Reserve Request from Powertrain to Engine
Pt_tqWhl	PtTqWhl	Total Wheel Torque Provided by Powertrain
Pt_tqWhlIndFrntLe	PtTqWhlInd	Torque Delivered by the Powertrain to the Individual Wheels - Front Left Wheel
Pt_tqWhlIndFrntRi	PtTqWhlInd	Torque Delivered by the Powertrain to the Individual Wheels - Front Right Wheel
Pt_tqWhlIndReLe	PtTqWhlInd	Torque Delivered by the Powertrain to the Individual Wheels - Rear Left Wheel
Pt_tqWhlIndReRi	PtTqWhlInd	Torque Delivered by the Powertrain to the Indi- vidual Wheels - Rear Right Wheel
Pt_tqWhlMax	PtTqWhlMax	Powertrain: Maximum Possible Total Torque at Wheels
Pt_tqWhlMaxDrv	PtTqWhlMaxDrv	Maximum Possible Total Torque at Wheels at Optimum Conditions Delivered by Powertrain for Driver
Pt_tqWhlMin	PtTqWhlMin	Minimum Available Total Powertrain Torque at Wheels
Pt_tqWhlMinDrv	PtTqWhlMinDrv	Minimum Possible Total Torque at Wheels De- livered by Powertrain for Driver
Pt_tqWhlMinWoCutOff	PtTqWhlMinWoCutOff	Minimum Possible Total Powertrain Torque at Wheels Without Com- plete Fuel Cut Off
Pt_tqWhlReq	PtTqWhlReq	Powertrain: Total Requested Propulsion Wheel Torque
Pt_tqWhlReqDrvVlc	PtTqWhlReqDrvVlc	Powertrain: Total Requested Propulsion Wheel Torque by the Driver or Vehicle Longitudinal Control (VLC)
Ssm_flgGearParkReq	SsmFlgGearParkReq	Standstill Manager: Request to Engage the

		Parking Lock
Steer_tq	SteerTq	Hydraulic Power Steer-
		ing Load at Engine
		Crank Shaft
Steer_tqReq	SteerTqReq	Requested Hydraulic
_ ' '	• •	Power Steering Load at
		Engine Crank Shaft
TrfCaseCoorr_st	TrfCaseCoorrSt	Status of the Transfer
_		Case Coordinator
TrsmClu_stAct	TrsmCluStAct	Transmission: Actual
		Clutch State
TrsmClu_stTar	TrsmCluStTar	Transmission: Target
		State of the Clutch
Trsm_flgCtrsftActv	TrsmFlgCtrsftActv	Transmission: Coun-
	-	tershaft Active
Trsm_flgDtOpen	TrsmFlgDtOpen	Transmission: Drivetrain
	-	Opened
Trsm_flgParkLockEngd	TrsmFlgParkLockEngd	Transmission: Park
		Lock Engaged
Trsm_flgShiftProgs	TrsmFlgShiftProgs	Transmission: Flag indi-
		cates that a Gear Shift
		is In Progress
Trsm_flgSptMod	TrsmFlgSptMod	Transmission: Sport
		Mode Request by Driver
Trsm_flgWntrMod	TrsmFlgWntrMod	Transmission: Winter
		Mode Request by Driver
Trsm_nInp	TrsmNInp	Transmission: Speed at
		Input
Trsm_nrGearAct	TrsmNrGearAct	Transmission: Actual
		Gear
Trsm_nrGearReq	TrsmNrGearReq	Transmission: Reques-
		ted Gear
Trsm_nrGearTar	TrsmNrGearTar	Transmission: Target
		Gear
Trsm_nrTyp	TrsmNrTyp	Transmission Type
Trsm_ratGear	TrsmRatGear	Transmission: Get the
		Gear Ratio of the Gear
T	TD-40	of Interest (C/S)
Trsm_ratGearAct	TrsmRatGearAct	Transmission: The Ac-
		tual Gear Ratio being
		Currently Engaged in
Trans vatOs = D = =	Trans Dat CasuDa	the Gear Box
Trsm_ratGearReq	TrsmRatGearReq	Transmission: Reques-
Trom rotCoorTor	TromBotCoorTor	ted Gear Ratio Transmission: The Gear
Trsm_ratGearTar	TrsmRatGearTar	
		Ratio which will be En-
		gaged in the Gear Box
		when Target Gear is Reached
Trem_ratTaDtAat	TremPatTaDt A at	Transmission: Actual
Trsm_ratTqPtAct	TrsmRatTqPtAct	Hansiiission. Actual

		D T D .:
Trsm_stAxelFrntActr	TrsmStAxleFrntActr	Powertrain Torque Ratio Transmission: Status of the Front Axle Actuator
Trsm_stAxelReActr	TrsmStAxleReActr	Transmission: Status of the Rear Axle Actuator
Trsm_stGearLvr	TrsmStGearLvr	Transmission: Actual Gear Lever Position
Trms_stTrfCaseDftI	TrsmStTrfCaseDftI	Transmission: Status of the Transfer Case Differential
Trsm_tOil	TrsmTOil	Transmission: Oil Temperature
Trsm_tqCluMaxFast	TrsmTqCluMaxFast	Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path
Trsm_tqCluMaxProtn	TrsmTqCluMaxProtn	Transmission: Maximum Torque at Clutch Requested by Transmission for Gearbox Protection
Trsm_tqCluMaxSlow	TrsmTqCluMaxSlow	Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on Slow Path
Trsm_tqCluMinFast	TrsmTqCluMinFast	Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path
Trsm_tqCluMinSlow	TrsmTqCluMinSlow	Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Slow Path
Trsm_tqDftlAxleFrntAct	TrsmTqDftlAxleFrntAct	Transmission: Actual Differential Torque at Front Axle
Trsm_tqDftlAxleFrntMa x	TrsmTqDftlAxleFrntMax	Transmission: Maximum Differential Torque at Front Axle
Trsm_tqDftlAxleReAct	TrsmTqDftlAxleReAct	Transmission: Actual Differential Torque at Rear Axle

Trsm_tqDftlAxleReMax	TrsmTqDftlAxleReMax	Transmission: Maximum Differential Torque at Rear Axle
Trsm_tqDftlTrfAct	TrsmTqDftlTrfAct	Transmission: Actual Differential Transfer Torque
Trsm_tqDftlTrfMax	TrsmTqDftlTrfMax	Transmission: Maximum Differential Transfer Torque
Trsm_tqOilPmp	TrsmTqOilPmp	Transmission Oil Pump Load
Trsm_tqOilPmpReq	TrsmTqOilPmpReq	Requested Transmis- sion Oil Pump Load
Trsm_tqWhlIndDistbnFr ntLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Front Left Wheel
Trsm_tqWhlIndDistbnFr ntRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Front Right Wheel
Trsm_tqWhlIndDistbnR eLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Rear Left Wheel
Trsm_tqWhlIndDistbnR eRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Rear Right Wheel
Veh_stOper	VehStOper	Vehicle Operating State
Veh_tqWhlMaxSftyLimn	VehTqWhlMaxSftyLimn	Safety Torque Limit cal- culated from the Vehi- cle's Maximum Speed
Veh_vLgt	VehVLgt	Vehicle Speed (Longitu- dinal)
Vlc_stShiftPrevnCmft	VIcStShiftPrevnCmft	Vehicle Longitudinal Control (VLC): State of Shift Prevention for Comfort Reasons
Vlc_tqWhIPtMax	VlcTqWhlPtMax	Maximum Torque at Wheel by Vehicle Longi-tudinal Control (VLC)
Vlc_tqWhlPtMin	VIcTqWhIPtM in	Minimum Torque at Wheel by Vehicle Longitudinal Control (VLC)
Eng_tqCluMin	EngTqCluMin	Minimum Engine Torque

Explanation of Application Interfaces of the Powertrain Domain AUTOSAR Release 4.2.2

		at Clutch
Pt_tqCluDynJ	PtTqCluDynJ	Powertrain: Dynamic Moment of Inertia at Clutch
Eng_tqCrksftMaxSpdCu r	EngTqCrksftMaxSpdCur	Engine: Maximum Torque at Crankshaft at Current Speed
Pt_tqCluMaxSpdCluCur	PtTqCluMaxSpdCluCur	Powertrain: Maximum Torque at Clutch at Cur- rent Clutch Speed
PtEng_tgCrksftMinFast	PtEngTqCrksftMinFast	Powertrain: Minimum Engine Torque at Clutch Fast Path
Em_tqDynJ	EmTqDynJ	Electric Machine Dy- namic Moment of Inertia
Trsm_tqCluStsFast	TrsmTqCluStsFast	Transmission: Status of Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path
Pt_drvTqCluVirtEngSpd	PtDrvReqTqCluVirtEngSpd	Powertrain: Virtual Driver Request of Torque at Clutch at Target Speed
Trsm_tqCluFast	TrsmTqCluFast	Transmission: Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path