

Truth Seeker for Tweets

Ali Al-Awiede and Hussen Mahmoud May 2025

Introduction

- Objective: Detect the truthfulness of tweets using deep learning and machine learning.
- Motivation: Combat misinformation on Tweet.
- Approach: Use NLP, ML, and DL models for tweet classification.

Dataset Overview

- Source: TruthSeeker2023 dataset
- Key columns: tweet, target,
 5_label_majority_answer.
- Tweet labels: truthful vs. false (multi-class)
- Preprocessing steps applied to raw tweets

Tweet Distribution

Tweet Distribution

Word cloud for Most word in truth and False

Word cloud for False tweet

Word cloud for Truth tweet

Preprocessing Steps

- 1. Removed user mentions (@username)
- 2. Removed punctuation and stopwords
- 3. Converted text to lowercase
- 4. Calculated text length
- 5. Dropped irrelevant or null columns

Modeling Approach

- Vectorization:TF-IDF
- Models Used:
- Random Forest
- XGBoost
- - Logistic Regression
- Linear SVM
- Deep Neural Network (Keras)

Evaluation Metrics

- Accuracy Score
- Classification Report
- Confusion Matrix
- EarlyStopping used in DNN to avoid overfitting

Deep Learning result

Result for machine learning classification

Result for machine learning classification

Conclusion

- Deep learning shows strong potential for truth detection.
- Classical ML models also achieve good accuracy.