CMPUT 498/501: Advanced Algorithms

Fall 2025

Lecture 4 (Sep 15, 2025): Minimum Spanning Trees

Lecturer: Mohammad R. Salavatipour Scribe: Keven Qiu

4.1 Brief History of Minimum Spanning Trees

Finding a minimum spanning tree (MST) is a classic graph theory problem. Given an edge weighted, simple graph G = (V, E), $w : E \to \mathbb{R}^+$, we want to find a minimum weight spanning tree T where the weight of T is

$$w(T) = \sum_{e \in T} w(e)$$

- 1. Boruvka first came up with MST algorithm in 1926. A few others rediscovered Borukva's later on.
- 2. Jarnik gave his own algorithm in 1930, which was rediscovered by Prim and Dijkstra notably, which it is now name Prim's algorithm.
- 3. Kruskal gave his own algorithm in 1956.
- 4. Freman and Tarjan gave an $O(m \log^* n)$ algorithm in 1984.
- 5. Karger, Klein, and Tarjan gave an O(m) linear time randomized algorithm in 1995.

In this lecture, we go through Prim's, Kruskal's, and Boruvka's algorithms, then Fredman and Tarjan's $O(m \log^* n)$ algorithm.

4.2 Minimum Spanning Tree Rules

Without loss of generality, we can assume the edge weights are all distinct. Otherwise, we can put in a tie breaking rule.

Proposition 1 Given a graph with distinct edge weights, the MST is unique.

Proof. Suppose there are two distinct MSTs T_1 and T_2 for a contradiction. Let e be the minimum weight edge among the two trees and without loss of generality, let $e \in T_1$.

 $T_2 \cup \{e\}$ contains a cycle C. Let $e' \in E(C) - \{e\}$, where $e' \notin T_1$. Since e is the minimum weight edge and edge weights are distinct, i.e. w(e) < w(e'), then $T_2 \cup \{e\} - \{e'\}$ is a spanning tree of smaller weight than T_2 (adding e creates a cycle and removing a different e' from the cycle leaves the graph connected and acyclic that still spans all vertices). This means that T_2 was an MST, but we achieved a tree of smaller weight, a contradiction.

Definition 1 For a graph G, any non-trivial set $S \subset V$ defines a cut

 $\delta(S) = \{e \in E : e \text{ has one endpoint in } S \text{ and the other in } V - S\}$

We define the Cut Rule, a property of cut edges of any MST:

Proposition 2 (Cut Rule) In any graph G, for any cut S, the minimum edge $e \in \delta(S)$ belongs to the MST T.

Proof. Suppose not, and say the minimum weight edge $e_{\min} \notin T$. Now consider adding e_{\min} to T. $T \cup \{e_{\min}\}$ will create a cycle C. There exists an edge $e' \in C$ across the cut with $w(e') > w(e_{\min})$. If we remove e' from T and add e_{\min} into T, we get a spanning tree with less weight than before. This contradicts T being an MST.

Proposition 3 (Cycle Rule) For any cycle C, the heaviest edge on C cannot be in the MST.

Proof. Assume for a contradiction that the heaviest edge e = (u, v) of a cycle C is in the MST T. Delete e from T. Since T is a tree, T - e will create two components, say C_1 and C_2 . Without loss of generality, let $u \in C_1$ and $v \in C_2$.

Note that the path C-e is a uv-path and u and v are in separate components, so there is an edge $e' \in C - \{e\}$ on the uv-path C-e that has one endpoint in C_1 and the other in C_2 that connects the two components. So $T' = T \cup \{e'\} - \{e\}$ is a spanning tree since |E(T')| = |V| - 1. By choice of e, w(e') < w(e), which implies w(T') < w(T).

4.3 Classic MST Algorithms

4.3.1 Kruskal's Algorithm

Algorithm 1 Kruskal's Algorithm

- 1: Sort edges E in non-decreasing order of weight, i.e. $w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m)$.
- 2: $T = (V, \emptyset)$
- 3: Each vertex of G will be its own component
- 4: for $e \in E$ do
- 5: **if** e connects two different components **then**
- 6: Add e to T.
- 7: Merge components into one connected component.
- 8: $\mathbf{return} \ T$

Figure 4.1: Running Kruskal's algorithm ordered by the labelled edges.

Proof of Correctness. Each ignored edge by the algorithm creates a cycle. Since we consider edges in non-decreasing order, this edge must be the heaviest of the cycle, which cannot be in a MST by the Cycle Rule.

Definition 2 A union-find is a data structure that supports three operations on an input set $[n] := \{1, \ldots, n\}$:

- Initialize: starts data structure by creating n disjoint sets S_1, \ldots, S_n where $S_i := \{1\}$.
- Union(i, j): given index of two sets i, j, replace S_i and S_j with $S_i \cup S_j$ and the index of the new set with $\min\{i, j\}$.
- Find(e): given an element $e \in [n]$, return the index of the set.

Easy implementations of union-find can be done with O(n) time for initialization and $O(\log n)$ update time. We can use Union-Find to implement Kruskal's algorithm in $O(m \log n)$ runtime.

Using a more efficient implementation of Union-Find, we can find/union using m operations in amortized time $O(m \cdot \alpha(m))$, where α is the inverse Ackermann function (grows slower than $\log^*(\cdot)$ where $\log^* n$ is the number of iterated log one needs to take to get to 1).

The total running time for Kruskal's algorithm is $O(m \log n + m\alpha(m))$.

4.3.2 Prim's Algorithm

Unlike Kruskal's algorithm that grows trees from individual nodes and merges them, Prim's algorithm grows one tree until it is spanning.

Algorithm 2 Prim's Algorithm

- 1: Start with arbitrary vertex s.
- 2: Let T be tree with zero edges on s
- 3: **for** i = 1 to n 1 **do**
- 4: Pick the cheapest edge e = (u, v) between T and V T, where $u \in T, v \in V T$.
- 5: Add e to T
- 6: return T

Figure 4.2: Prim's algorithm example

We can use a priority queue to pick the cheapest edges in each iteration.

Algorithm 3 Prim's Algorithm with PQ

```
1: Start with arbitrary vertex s.

2: T = (\{s\}, \emptyset)

3: Let Q be a priority queue with keys being vertices and key-values being \operatorname{edge}(v) and its weights

4: For each v \in N(s), \operatorname{edge}(s) = (s, v) and Q.insert(v, w(\operatorname{edge}(v)))

5: for i = 1 to n - 1 do

6: Pick v with smallest value in Q (Q.extract_min

7: for each u \in N(v) do

8: if u \notin T then

9: Update Q.decrease_key(u, w(uv)) (if u is not in Q, we instead run Q.insert(u, w(uv)).

10: return T
```

Proof of correctness: First note that the algorithms adds n-1 edges and it always adds an edge from a tree to another vertex outside of the tree; so never creats a cycle. Thus it finds a spanning tree. To prove it returns a MST we use the cut-rule: anytime we add an edge e to the tree T, the set of vertices in T are connected and all the edges between T and V-T are added to Q, so Q contains all $\delta(T)$ and e is the smallest edge across the cut. So it belongs to a MST.

The runtime analysis:

- O(n) insert operations from the iterations of running the loop.
- O(m) decrease_key operations, which we do twice for each edge.
- O(n) extract_min operations to add the next edge.
- Using min-heap implementation for PQ the total time will be $O(m \log n)$.

4.3.3 Boruvka's Algorithm

One of the oldest MST algorithms and its implementation is between Kruskal's and Prim's.

Algorithm 4 Boruvka's Algorithm

```
Start from S(v) = \{v\} for each v \in V.

T = \emptyset.

while there are more than one sets do

For each set S, find the cheapest edge e \in \delta(S), call it e_S.

Add all edges e_S to T and merge all sets that these edges run between.

return T
```

Correctness: It is a spanning tree because no edge that gets added creates a cycle and we repeat until there is one single component. A connected, acyclic graph that contains all vertices of G is a spanning tree. To show it is minimum, we use the Cut Rule. Any edge selected by the algorithm is a min-cost edge going out of a component and hence is in the MST.

Runtime: There are $O(\log n)$ rounds as the number of component goes down by a factor of 2 each time. In each round we spend O(m) time for a total of $O(m \log n)$.

Figure 4.3: The 3 components/trees of Fredman-Tarjan and the edges chosen after shrinking each component.

4.4 Fredman-Tarjan MST

Definition 3 A Fibonacci heap is an advanced implementation of the priority queue using heaps. It supports

- O(1) amortized runtime for insert and decrease_key.
- $O(\log n)$ amortized time for extract_min where n is the maximum size of the heap at any time.

If we use Fibonacci heaps on Prim's algorithm, we have

- O(n) insert operations.
- O(m) decrease_key operations.
- O(n) iterations and extract_min operations, for a total of $O(m+n\log n)$ time.

We can improve on Prim's idea to get a better runtime. Each iteration, we have a priority queue of edges going out of the current tree. We can ensure the current tree has a small boundary and use a Fibonacci heap.

Run Prim's algorithm as long as the boundary is bounded by a constant. Once it becomes too big, start growing tree from another vertex. Once every vertex belongs to one of these trees, C_1, C_2, \ldots , contract each C_i into a single vertex and recurse on this new contracted graph.

This is the main idea of Fredman-Tarjan. The algorithm runs in rounds, where in round i we have graph G_i with n_i vertices and m_i edges, obtained by contracting some trees in the previous rounds.

Let $G_1 = G$. In each round,

- 1. Pick an unmarked vertex and run Prim's algorithm to grow a tree T. Keep track of lightest edges going out of T to vertices in $N(T) = \{u \in V T : \exists v \in T, uv \in E\}$.
- 2. If $|N(T)| \ge k_i$ or if added an edge to a marked vertex, stop. Mark all vertices in T and go to Step 1.
- 3. If no unmarked vertex left, contract each tree into a single vertex and go to next round.

Runtime: The runtime for each round is $O(m + n \log k_i)$ since

- each edge is considered twice
- each time we grow a tree, the number of components decrease, so O(n) times
- the priority queue operations take $O(\log k_i)$.

Observation 1: For every component C, $\sum_{v \in C} \deg(v) \geq k_i$.

Proof of Observation 1. When v gets added to a component C, this is because the number of edges going out of the current tree is $\geq k_i$. So clearly, $\sum_{v \in C} \deg(v) \geq k_i$.

So if C_1, \ldots, C_ℓ are the components at the end of the current round, then

$$\sum_{i=1}^{\ell} \sum_{v \in C_i} \deg(v) \ge \ell k_i$$

Assuming we have m_i edges, by handshaking lemma

$$2m_i = \sum_{v} \deg(v) \ge \ell k_i \implies \ell \le \frac{2m_i}{k_i} \le \frac{2m}{k_i}$$

We let $k_i = 2^{2m/n_i}$. Also note that the number of vertices in each round satisfies

$$n_{i+1} \le \frac{2m_i}{k_i} \implies k_i \le \frac{2m_i}{n_{i+1}} = \log k_{i+1}$$

So the threshold k_i exponentiates in each round $(k_{i+1} \ge 2^{k_i})$, implying the number of rounds is bounded by $\log^* n$. Thus, total runtime of the algorithm is $O(m \log^* n)$.

4.5 Linear Time MST

There is a randomized O(m+n) time MST algorithm by Karger-Klein-Tarjan (KKT).

Definition 4 Suppose $F \subseteq G$ is a forest. An edge $e \in E$ is F-heavy if e creates a cycle in $F \cup \{e\}$ and it is the heaviest edge in that cycle. Otherwise, e is F-light.

Observation:

- e is F-light if and only if $e \in MST(F \cup \{e\})$.
- If T is an MST, then e is T-light if and only if $e \in T$.
- For any forest F, the F-light edges contain MST of G, i.e. for any F-heavy edge e, MST(G-e) = MST(G).

If F is a forest, we can discard F-heavy edges from G. So our goal is to find a forest with as many F-heavy edges as possible. F is close to an MST in this case. We can recurse on the remaining edges.

The problem arises on how to find a good forest F and how to classify edges as F-heavy fast.

Theorem 1 Given a forest $F \subseteq G$, there is an algorithm that outputs all F-heavy (or F-light) edges in O(m+n).

Idea for KKT: Randomly choose half of the edges and find a minimum spanning forest F over the edges. Find the F-heavy edges and discard them, then recurse on the rest of the graph.