csp 2022 大连二十四中模拟赛 Day 4

竞赛时间:?h

题目名称	互质	游历的路线	最快路线
目录	coprimes	lines	fast
可执行文件名	coprimes	lines	fast
输入文件名	coprimes.in	lines.in	fast.in
输出文件名	coprimes.out	lines.out	fast.out
每个测试点时限	1秒	1秒	1秒
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	无	无
题目类型	传统	传统	传统

提交源程序须加后缀

对于 Pascal 语言	coprimes.pas	lines.pas	fast.pas
对于 C 语言	coprimes.c	lines.c	fast.c
对于 C++ 语言	coprimes.cpp	lines.cpp	fast.cpp

注意: 1. 最终测试时, 所有编译命令均不打开任何优化开关

2. 每道题目的**空间限制**为 : 262144 KB

互质

【问题描述】

给定一个整数N ($1 \le N \le 2^{31} - 1$), 求小于 N 且与 N 互质的正整数个数。

【输入文件】

输入文件为 coprimes.in。 仅一行,包含正整数 N。

【输出文件】

输出文件为 *coprimes.out*。 仅一个整数,为小于 N 且与 N 互质的正整数个数。

【输入样例】

9

【输出样例】

6

【样例解释】

小于9 且与9 互质的正整数有: 1, 2, 4, 5, 7, 8 共 6 个。

【数据规模和约定】

60%的数据中, $1 \le N \le 10,000$ 。 100%的数据中, $1 < N < 2^{31} - 1$ 。

游历的路线

【问题描述】

郭嘉经过一段时间发现了袁绍这个人干大事而惜身,见小利而忘义,又逢曹操在招兵买马,决定逃离袁绍去投曹操,而曹操在第m天招募良材,我们的郭嘉既不能早去,也不能晚去,于是乎,他就趁着这一段时间到其他的城市游历一番。他每天都需要离开当前城市去一个其他城市(即相邻两天不能处在同一个城市内),而每两个城市之间只能坐马车来往,由于郭嘉很贪钱,他想用最少的费用,所以需要我们帮他求出这一个最小的费用。

【输入文件】

输入文件 lines.in:

第一行包含两个数 n, m,表示有 n 个城市,在 m 天后曹操招纳良材。城市 1 就是郭嘉所在的城市,城市 n 就是曹操处。

接下来 $n \cdot (n-1)$ 行描述马车乘坐表。

第 2 到第 n 行就是描述的城市 1 到城市 2, 3, ..., n 的马车乘坐表,第n+1到第2n-1行描述的城市 2 到城市 1, 3, ..., n 的马车乘坐表……。对每一行,首先有一个数 T,表示城市 i 到城市 j 的马车以 T 为周期,接下来有 T 个整数,表示每天的马车的价格,如果价格为 0,则表示没有马车可坐。

【输出文件】

输出文件为 lines.out。

如果存在这样的路线使郭嘉第 m 天到达曹操处,则输出最少的费用,否则输出 0。

【输入样例】

- 3 5
- 2 130 150
- 3 75 0 80
- 2 110 100
- 4 60 70 60 50
- 3 0 135 140
- 2 70 80

【输出样例】

355

【数据规模和约定】

10%的数据中: $1 \le n \le 10$, $1 \le m \le 5$;

100%的数据中: $1 \le n \le 100$, $1 \le m \le 200$, $1 \le T \le 20$, 每个价格不超过 50,000。

最快路线

【问题描述】

给出一个城市的地图,你可以把它看成是一个 $H \times W$ 的网格,每一个点是一个十字路口。每一个点用(r,c)表示,表示从北往南的第 r 条路和从西往东的第 c 条路的交叉点。其中 $1 \le r \le H$, $1 \le c \le W$ 。路口有红绿灯,他们的初始状态、红绿变换的周期都是已知的。你现在在一个点 (r_1,c_1) ,目的地是点 (r_2,c_2) ,请问最少要多少时间才能从所在地到达目的地?假设你从一个点到相邻的另一个点只要 20 秒。通过路口的规则如上题。

注意,出发时可以直接向任意 4 个方向走,不用等出发点的绿灯。当然,车子不能开到城市外面。还有,不能抢绿灯,比如绿灯从第 0 秒开始时开始到第 1 秒开始时结束,那么第一秒车子不能通过。同理,如果红灯从第 0 秒开始时开始到第一秒开始时结束,那么第一秒车子能通过。

【输入文件】

输入文件为 fast.in。

第一行两个数字, H和W。代表城市南北向有H条路, 东西向有W条路。

接下来有 $H \times W$ 行,每行描述一个红绿灯。其中第 $i \cdot W + j$ 行表示(i+1,j)这个路口的红绿灯。格式如下: $X \quad T_0 \quad T_1 \quad T_2$

其中 X 为 'R' 或 'G',分别表示初始时南北方向是红灯还是绿灯。 T_0 表示初始状态持续的时间,之后开始周期性的红绿变换。其中南北方向红灯的持续时间为 T_1 ,南北方向绿灯的持续时间为 T_2 。其中 T_0 、 T_1 、 T_2 都不超过 60。所有时间以秒为单位。

最后有两行,分别表示起点和终点。格式为: \mathbf{r} c,表示(r,c)。

【输出文件】

输出文件为 *fast.out*。 仅包含一个整数,为最短所需要的时间。

【输入样例】

- 3 3
- G 1 16 16
- R 27 24 27
- G 26 50 52
- G 43 24 2

R 30 51 13

R 17 35 18

G 50 24 22

G 26 16 58

G 6 6 31

2 2

1 1

【输出样例】

47

【数据规模和约定】

60%的数据中: $1 \le H, W \le 20$;

100%的数据中: $1 \le H, W \le 200$, $1 \le T_1, T_2, T_3 \le 60$.