Consensus Trees

Strict Consensus Tree

Majority rule consensus

A	В	С	D	E	F	Count

A	В	С	D	E	F	Count
						_

A	В	С	D	E	F	Count
*	_	_	_	*	-	

A	В	С	D	E	F	Count
*	_	_	_	*	-	I

A	В	С	D	E	F	Count
*	-	_	_	*	1	I

A	В	С	D	E	F	Count
*	-	_	-	*	ı	I
*	_	*	_	*	-	

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	I

В	С	D	E	F	Count
-	-	-	*	ı	I
-	*	-	*	-	I
	B -			*	* -

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	I
-	*	-	*	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	I
-	*	-	*	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	I
_	*	-	*	-	-	I
*	_	*	-	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	I
_	*	-	*	_	-	I
*	_	*	-	_	-	I

	A	В	С	D	E	F	Count
·	*	-	-	-	*	-	I
	*	-	*	-	*	-	I
	-	*	-	*	-	-	I
	*	-	*	-	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	I
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	ı	I
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I

A	В	С	D	E	F	Count
*	-	-	-	*	ı	I
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	_	-	I
-	-	-	*	-	*	I

•	A	В	С	D	E	F	Count
	*	_	_	_	*	_	II
	*	_	*	_	*	-	II
	-	*	_	*	_	-	I
	*	-	*	-	-	-	I
	-	-	-	*	-	*	I

A	В	С	D	E	F	Count
*	_	_	-	*	1	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I

A	В	С	D	E	F	Count
*	-	-	-	*	ı	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I

A	В	С	D	E	F	Count
*	_	-	-	*	-	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I

A	В	С	D	E	F	Count
*	-	-	-	*	ı	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I
-	*	*	-	-	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I
-	*	*	-	-	-	I

A	В	С	D	E	F	Count
*	_	-	-	*	-	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I
-	*	*	-	-	-	I
	-	*	-	*	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	II
*	-	*	-	*	-	II
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	_	-	-	*	*	I
-	*	*	-	_	-	I
	-	*	-	*	-	I

	A	В	С	D	E	F	Count
·	*	-	-	-	*	ı	II
	*	-	*	-	*	-	III
	-	*	_	*	-	-	I
	*	-	*	-	-	-	I
	_	_	_	*	_	*	I
	*	-	_	-	*	*	I
	-	*	*	_	_	-	I
	_	-	*	-	*	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	II
*	-	*	-	*	-	III
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	I
*	-	-	-	*	*	I
-	*	*	-	-	-	I
	-	*	-	*	-	I

	A	В	С	D	E	F	Count
•	*	-	-	-	*	-	II
	*	-	*	-	*	-	III
\Longrightarrow	-	*	-	*	-	-	I
	*	-	*	-	-	-	I
	· -	-	-	*	-	*	II
	*	-	-	-	*	*	I
	-	*	*	-	-	-	I
	-	-	*	-	*	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	II
*	-	*	-	*	-	III
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	II
*	-	-	-	*	*	I
-	*	*	-	-	-	I
	-	*	-	*	-	I

_							
	A	В	С	D	E	F	Count
	*	-	-	-	*	-	III
	*	-	*	-	*	-	III
	_	*	-	*	-	-	I
	*	-	*	-	_	-	I
	-	-	_	*	_	*	II
	*	_	_	-	*	*	I
	_	*	*	_	_	-	I
	_	-	*	_	*	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	-	III
*	-	*	-	*	-	III
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	-	*	II
*	-	-	-	*	*	I
-	*	*	-	-	-	I
_	-	*	-	*	-	I

	A	В	С	D	E	F	Count
•	*	-	-	-	*	-	III
	*	-	*	-	*	-	III
	-	*	-	*	-	-	I
\Longrightarrow	*	-	*	-	-	-	I
	_	-	-	*	-	*	III
	*	-	-	-	*	*	I
	-	*	*	-	-	-	I
	-	-	*	-	*	-	I

A	В	С	D	E	F	Count
*	_	-	-	*	-	III
*	-	*	-	*	-	III
-	*	-	*	-	-	I
*	-	*	-	-	-	I
-	-	-	*	_	*	III
*	-	-	-	*	*	I
-	*	*	-	_	-	I
_	-	*	-	*	-	I

	A	В	С	D	E	F	Count
	*	-	-	-	*	-	III
	*	-	*	-	*	-	III
	_	*	-	*	-	-	I
	*	-	*	-	-	-	I
	-	-	-	*	-	*	III
	*	-	-	-	*	*	I
\Rightarrow	· -	*	*	-	-	-	II
	-	-	*	-	*	-	I

A	В	С	D	E	F	Count
*	-	-	-	*	ı	III
*	_	*	-	*	-	III
_	*	-	*	_	-	I
*	-	*	-	_	-	I
_	_	_	*	_	*	III
*	-	-	-	*	*	I
-	*	*	-	-	-	II
-	_	*	-	*	-	I

A	В	С	D	E	F	Freq
*	-	-	-	*	-	60
*	-	*	-	*	-	60
-	*	_	*	-	-	20
*	_	*	_	-	-	20
-	_	_	*	-	*	60
*	_	_	_	*	*	20
-	*	*	-	-	-	40
-	-	*	-	*	-	20

A	В	С	D	E	F	Freq
*	_	_	-	*	1	60
*	-	*	-	*	-	60
 		_	*		*	60
-	*	*	-	-	-	40
-	*	-	*	-	-	20
*	-	-	-	*	*	20
*	-	*	-	-	-	20
-	-	*	-	*	-	20

A	В	С	D	E	F	Freq	
*	-	-	-	*	-	60	
*	_	*	-	*	-	60	
_	-	_	*	_	*	60	
 	*	*	_		_	40	
_	*	_	*	_	-	20	
*	_	_	_	*	*	20	
*	_	*	_	_	-	20	
_	_	*	-	*	-	20	

A	В	С	D	E	F	Freq
*	-	-	_	*	ı	60
*	-	*	-	*	-	60
 			*		*	60
-	*	*	-	-	-	40
-	*	-	*	-	-	20
*	-	-	-	*	*	20
*	-	*	-	-	-	20
-	-	*	-	*	-	20

A	В	С	D	E	F	Freq
*	-	_	_	*	ı	60
*	-	*	-	*	-	60
 _			*		*	60
_	*	*	_	_	-	40
-	*	-	*	-	-	20
*	_	_	_	*	*	20
*	_	*	_	_	-	20
-	-	*	-	*	_	20

	A	В	С	D	E	F	Freq
'	*	-	-	-	*	-	60
\Longrightarrow	*	-	*	-	*	-	60
	_	_	_	*	_	*	60
	_	*	*	_	_	-	40
	-	*	_	*	-	-	20
	*	-	_	-	*	*	20
	*	_	*	_	-	-	20
	-	-	*	-	*	-	20
			•		•		

	A	В	С	D	E	F	Freq
•	*	-	-	-	*	-	60
	*	-	*	-	*	-	60
	_	_	_	*	_	*	60
	_	*	*	_	_	-	40
	-	*	-	*	-	-	20
	*	_	-	-	*	*	20
	*	-	*	-	-	-	20
	-	-	*	-	*	-	20
•							

A	В	С	D	E	F	Freq
*	-	-	_	*	-	60
*	-	*	-	*	-	60
-	<u>-</u> _		*	<u>-</u>	*	60
 _	*	*	_	_	-	40
_	*	-	*	-	-	20
*	-	-	_	*	*	20
*	-	*	_	_	-	20
-	-	*	-	*	-	20

	A	В	С	D	E	F	Freq
	*	-	-	-	*	-	60
	*	-	*	-	*	-	60
\Longrightarrow	-	-	-	*	_	*	60
		*	*	_		_	40
	-	*	-	*	-	-	20
	*	_	_	_	*	*	20
	*	_	*	_	_	-	20
	-	-	*	-	*	-	20

								_
	A	В	С	D	E	F	Freq	_
	*	-	-	-	*	-	60	•
	*	-	*	-	*	-	60	
	_	-	-	*	-	*	60	
	_	*	*	_		-	40	
\Longrightarrow	-	*	_	*	-	-	20	•
r	*	-	_	_	*	*	20	
	*	-	*	-	-	-	20	
	-	-	*	-	*	-	20	
								•

	A	В	С	D	E	F	Freq	
	*	-	-	-	*	-	60	
	*	-	*	-	*	-	60	
	-	-	-	*	_	*	60	
	_	*	*	_	_	-	40	
	_	*	_	*	_	-	20	
\Longrightarrow	*	-	_	-	*	*	20	•
	*	-	*	-	_	-	20	
	-	-	*	-	*	-	20	

	A	В	С	D	E	F	Freq	
	*	-	-	-	*	-	60	
	*	-	*	-	*	-	60	
				*		*	60	
	-	*	*	-	-	-	40	
	-	*	-	*	-	-	20	
	*	-	_	-	*	*	20	
\Longrightarrow	*	-	*	-	-	-	20	•
	_	-	*	-	*	-	20	

	A	В	С	D	E	F	Freq	
	*	-	-	_	*	ı	60	
	*	-	*	-	*	-	60	
				*	<u> </u>	*	60	
	_	*	*	_	_	-	40	
	_	*	_	*	-	-	20	
	*	-	_	-	*	*	20	
	*	-	*	-	-	-	20	
\Longrightarrow	-	-	*	-	*	-	20	•

Distance Matrix Methods

| | | | |

Gorilla : ACGTCGTA
Human : ACGTTCCT
Chimpanzee: ACGTTTCG

† †

1. Construct multiple alignment of sequences

2. Construct table listing all pairwise differences (distance matrix)

3. Construct tree from pairwise distances

	S_1	S_2	S_3	S ₄
S ₁	-	D ₁₂	D ₁₃	D ₁₄
S_2		-	D ₂₃	D ₂₄
S ₃			-	D ₃₄
S ₄				

Observed distance

Distance along tree (patristic distance)

Weekly Quiz: Manual Reconstruction of Phylogenetic Tree

Construct distance matrix (count different positions)

Reconstruct tree and find best set of branch lengths

Distance Matrix Methods (continued)

Distance along tree

distances can be expressed as "sum of squared differences":

Fit between given tree and observed

•
$$Q = \sum_{j>i} (D_{ij} - d_{ij})^2$$

 Find branch lengths that minimize Q this is the optimal set of branch lengths for this tree.

Distance along tree

Longer distances associated with larger errors

• Squared deviation may be weighted so longer branches contribute less to Q:

$$Q = \sum_{j>i} \frac{(D_{ij} - d_{ij})^2}{D_{ij}^n}$$

• Power (n) is typically 1 or 2

S1 :	TCCGAGTCGATCAGC
S2:	ACCGAGTCGATCTGC
s3:	AAGTACCCGTTGATC
S4:	AAGTTGCCGTTCAGG

	S_1	S_2	S_3	S_4
S_1	-	2	9	8
S_2		_	9	8
S ₃			-	5
S ₄				-

Multiple alignment

Observed distance

	S_1	S_2	S_3	S_4
S ₁	1	2	9	8
S_2		_	9	8
S ₃			_	5
S ₄				-

Observed distance

	S_1	S_2	S ₃	S_4
S ₁	-	2	9	8
S_2		-	9	8
S_3			_	5
S ₄				-

$$d_{12} = a + d$$
 $d_{13} = a + b + c$
 $d_{14} = a + b + c$
 $d_{23} = d + b + c$
 $d_{24} = d + b + c$
 $d_{34} = c + e$

Observed distance

Distance along tree

Goal: find branch lengths that minimize Q

$$Q = \sum_{i < j} (D_{ij} - d_{ij})^2$$

= $(D_{12} - d_{12})^2 + (D_{13} - d_{13})^2 + (D_{14} - d_{14})^2 + (D_{23} - d_{23})^2 + (D_{24} - d_{24})^2 + (D_{34} - d_{34})^2$

	S_1	S_2	S_3	S ₄
S ₁	1	2	9	8
S_2		_	9	8
S ₃			_	5
S ₄				-

Observed distance

Distance along tree

$$d_{12} = a + d$$
 $d_{13} = a + b + c$
 $d_{14} = a + b + e$
 $d_{23} = d + b + c$
 $d_{24} = d + b + e$
 $d_{34} = c + e$

Goal: find branch lengths that minimize Q

$$Q = \sum_{i < j} (D_{ij} - d_{ij})^{2}$$

$$= (D_{12} - d_{12})^{2} + (D_{13} - d_{13})^{2} + (D_{14} - d_{14})^{2} + (D_{23} - d_{23})^{2} + (D_{24} - d_{24})^{2} + (D_{34} - d_{34})^{2}$$

$$= (D_{12} - a - d)^{2} + (D_{13} - a - b - c)^{2} + (D_{14} - a - b - e)^{2} + (D_{23} - d - b - c)^{2} + (D_{24} - d - b - e)^{2} + (D_{34} - c - e)^{2}$$

Substitute d-terms with sums of branch lengths

	S_1	S_2	S_3	S ₄
S_1	1	2	9	8
S_2		-	9	8
S_3			-	5
S ₄				_

Observed distance

Distance along tree

$$d_{12} = a + d$$
 $d_{13} = a + b + c$
 $d_{14} = a + b + e$
 $d_{23} = d + b + c$
 $d_{24} = d + b + e$
 $d_{34} = c + e$

Goal: find branch lengths that minimize Q

$$Q = \sum_{i < j} (D_{ij} - d_{ij})^{2}$$

$$= (D_{12} - d_{12})^{2} + (D_{13} - d_{13})^{2} + (D_{14} - d_{14})^{2} + (D_{23} - d_{23})^{2} + (D_{24} - d_{24})^{2} + (D_{34} - d_{34})^{2}$$

$$= (D_{12} - a - d)^{2} + (D_{13} - a - b - c)^{2} + (D_{14} - a - b - e)^{2} + (D_{23} - d - b - c)^{2} + (D_{24} - d - b - e)^{2} + (D_{34} - c - e)^{2}$$

$$= (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

Substitute D-terms with observed values

$$Q = (2 - a - d)^2 + (9 - a - b - c)^2 + (8 - a - b - e)^2 + (9 - d - b - c)^2 + (8 - d - b - e)^2 + (5 - c - e)^2$$

Transferred from previous slide

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^2 + 2ad + 3d^2 + 4ab + 2ac + 4b^2 + 4bc + 3c^2 + 2ae + 4be + 3e^2 + 4db + 2dc + 2de$$

Expand by multiplying out parentheses

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$\Rightarrow = 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

Collect all terms with a

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

Keep all other branch lengths constant: b, c, d, e

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

Keep all other branch lengths constant: b, c, d, e

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

Keep all other branch lengths constant: b, c, d, e

Optimal Branch Lengths for a Given Tree: Least Squares Example

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

 $Minimum: \quad \frac{\partial Q}{\partial a} = 0$

$$6a + 4b + 2c + 2d - 38 + 2e = 0$$

Keep all other branch lengths constant: b, c, d, e

Optimal Branch Lengths for a Given Tree: Least Squares Example

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$\frac{\partial Q}{\partial a} = 6a + 4b + 2c + 2d - 38 + 2e = 0$$

$$\frac{\partial Q}{\partial b} = -68 + 4a + 8b + 4c + 4e + 4d = 0$$

$$\frac{\partial Q}{\partial c} = -46 + 2a + 4b + 6c + 2d + 2e = 0$$

$$\frac{\partial Q}{\partial d} = -38 + 2a + 6d + 4b + 2c + 2e = 0$$

$$\frac{\partial Q}{\partial e} = -42 + 2a + 4b + 6e + 2d + 2c = 0$$

- System of 5 linear equations with 5 unknowns
- Can be solved for a, b, c, d, e

Optimal Branch Lengths for a Given Tree: Least Squares Example

$$Q = (2 - a - d)^{2} + (9 - a - b - c)^{2} + (8 - a - b - e)^{2} + (9 - d - b - c)^{2} + (8 - d - b - e)^{2} + (5 - c - e)^{2}$$

$$= 319 - 38a - 68b - 42e - 46c - 38d + 2ce + 3a^{2} + 2ad + 3d^{2} + 4ab + 2ac + 4b^{2} + 4bc + 3c^{2} + 2ae + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$= 3a^{2} + (4b + 2c + 2d - 38 + 2e)a + 319 - 68b - 42e - 46c - 38d + 2ce + 3d^{2} + 4b^{2} + 4bc + 3c^{2} + 4be + 3e^{2} + 4db + 2dc + 2de$$

$$\frac{\partial Q}{\partial a} = 6a + 4b + 2c + 2d - 38 + 2e = 0$$

$$\frac{\partial Q}{\partial b} = -68 + 4a + 8b + 4c + 4e + 4d = 0$$

$$\frac{\partial Q}{\partial c} = -46 + 2a + 4b + 6c + 2d + 2e = 0$$
 $\Rightarrow a = 1, b = 5, c = 3, d = 1, e = 2$

$$\frac{\partial Q}{\partial d} = -38 + 2a + 6d + 4b + 2c + 2e = 0$$

$$\frac{\partial Q}{\partial e} = -42 + 2a + 4b + 6e + 2d + 2c = 0$$

- System of 5 linear equations with 5 unknowns
- Can be solved for a, b, c, d, e

$$a = 1, b = 5, c = 3, d = 1, e = 2$$

Finding Optimal Branch Lengths

	S_1	S_2	S_3	S ₄
S_1	1	2	9	8
S_2		_	9	8
S_3			_	5
S ₄				-

Observed distance

$$a = 1, b = 5, c = 3, d = 1, e = 2$$

Distance along tree

Least Squares Optimality Criterion

Search through all (or many) tree topologies

 For each investigated tree, find best branch lengths using least squares criterion (solve N equations with N unknowns)

 Among all investigated trees, the best tree is the one with the smallest sum of squared errors.

• Least squares criterion used both for finding branch lengths on individual trees, and for finding best tree.

Minimum Evolution Optimality Criterion

Search through all (or many) tree topologies

 For each investigated tree, find best branch lengths using least squares criterion (solve N equations with N unknowns)

 Among all investigated trees, the best tree is the one with the smallest sum of branch lengths (the shortest tree).

• Least squares criterion used for finding branch lengths on individual trees, minimum tree length used for finding best tree.

Superimposed Substitutions

- Actual number of evolutionary events: 5
- Observed number of differences: 2

• Distance is (almost) always underestimated

Model-based correction for superimposed substitutions

- Goal: try to infer the real number of evolutionary events (the real distance) based on
- Observed data (sequence alignment)
- A model of how evolution occurs

Jukes and Cantor Model

	A	С	G	T
A	-3 α	α	α	α
С	α	-3α	α	α
G	α	α	-3α	α
T	α	α	α	-3 α

- Four nucleotides assumed to be equally frequent (f=0.25)
- All 12 substitution rates assumed to be equal
- Under this model the corrected distance is: $D_{\rm JC} = -\frac{3}{4} \ln(1-\frac{4}{3}D_{\rm OBS})$
- For instance: $D_{\rm OBS}=0.42\Rightarrow D_{\rm JC}=0.62$

Clustering Algorithms: Neighbor Joining

DTI

Clustering Algorithms

- Starting point: Distance matrix
- Cluster the two nearest nodes:
 - Tree: connect pair of nodes to common ancestral node, compute branch lengths from ancestral node to both descendants
 - Distance matrix: replace the two joined nodes with the new (ancestral) node. Compute new distance matrix, by finding distance from new node to all other nodes
- Repeat until all nodes are linked in tree
- Results in only one tree, there is no measure of tree-goodness.

- For each tip compute $u_i = \Sigma_i D_{ii} / (n-2)$
 - (essentially the average distance to all other tips, except the denominator is n-2 instead of n-1)
- Find the pair of tips, i and j, where $D_{ij}-u_i-u_j$ is smallest
- Connect the tips i and j, forming a new ancestral node. The branch lengths from the ancestral node to i and j are:

$$v_i = 0.5 D_{ij} + 0.5 (u_i - u_j)$$

$$v_{j} = 0.5 D_{ij} + 0.5 (u_{j}-u_{i})$$

 Update the distance matrix: Compute distance between new node and each remaining tip as follows:

$$D_{ij,k} = (D_{ik} + D_{jk} - D_{ij})/2$$

- Replace tips i and j by the new node which is now treated as a tip
- · Repeat until only two nodes remain.

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			-	14
D				-

	A	В	С	D
A	-	17	21	27
В		-	12	18
С			_	14
D				_

i	• $u_i = \Sigma_j D_{ij} / (n-2)$
A	(17+21+27)/2=32.5
В	(17+12+18)/2=23.5
С	(21+12+14)/2=23.5
D	(27+18+14)/2=29.5

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			_	14
D				_

i	• $u_i = \Sigma_j D_{ij} / (n-2)$
A	(17+21+27)/2=32.5
В	(17+12+18)/2=23.5
С	(21+12+14)/2=23.5
D	(27+18+14)/2=29.5

$$\mathbf{D}_{\mathtt{i}\mathtt{j}} \mathtt{-} \mathbf{u}_{\mathtt{i}} \mathtt{-} \mathbf{u}_{\mathtt{j}}$$

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			_	14
D				_

i	• $u_i = \Sigma_j D_{ij} / (n-2)$
A	(17+21+27)/2=32.5
В	(17+12+18)/2=23.5
С	(21+12+14)/2=23.5
D	(27+18+14)/2=29.5

$$\mathbf{D_{ij}}\mathbf{-}\mathbf{u_i}\mathbf{-}\mathbf{u_j}$$

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			-	14
D				_

i	• $u_i = \Sigma_j D_{ij} / (n-2)$
A	(17+21+27)/2=32.5
В	(17+12+18)/2=23.5
С	(21+12+14)/2=23.5
D	(27+18+14)/2=29.5

	A	В	С	D
A	_	-39	-35	-35
В		-	-35	-35
С			_	-39
D				_
		D _{i i} -1	u _i -u _i	

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			_	14
D				_

i	• $u_i = \Sigma_j D_{ij} / (n-2)$
A	(17+21+27)/2=32.5
В	(17+12+18)/2=23.5
С	(21+12+14)/2=23.5
D	(27+18+14)/2=29.5

$$v_i = 0.5 D_{ij} + 0.5 (u_i - u_j)$$

 $v_j = 0.5 D_{ij} + 0.5 (u_j - u_i)$
 $v_c = 0.5 \times 14 + 0.5 \times (23.5 - 29.5) = 4$
 $v_D = 0.5 \times 14 + 0.5 \times (29.5 - 23.5) = 10$

	A	В	С	D	x
A	-	17	21	27	
В		-	12	18	
С			_	14	
D				_	
X					-

	A	В	С	D	x
A	-	17	21	27	
В		-	12	18	
С			_	14	
D				_	
x					-

$$D_{XA} = (D_{CA} + D_{DA} - D_{CD})/2$$

= $(21 + 27 - 14)/2$
= 17

$$D_{XB} = (D_{CB} + D_{DB} - D_{CD})/2$$

= (12 + 18 - 14)/2
= 8

	A	В	С	D	X
A	-	17	21	27	17
В		_	12	18	8
С			_	14	
D				-	
x					-

$$D_{XA} = (D_{CA} + D_{DA} - D_{CD})/2$$

= $(21 + 27 - 14)/2$
= 17

$$D_{XB} = (D_{CB} + D_{DB} - D_{CD})/2$$

= (12 + 18 - 14)/2
= 8

$$D_{XA} = (D_{CA} + D_{DA} - D_{CD})/2$$

= (21 + 27 - 14)/2
= 17

$$D_{XB} = (D_{CB} + D_{DB} - D_{CD})/2$$

= (12 + 18 - 14)/2
= 8

	A	В	X
A	-	17	17
В		-	8
x			-

i	• $u_i = \sum_i D_{i,i} / (n-2)$
A	(17+17)/1 = 34
В	(17+8)/1 = 25
x	(17+8)/1 = 25

	A	В	X
A	_	17	17
В		-	8
X			-

i	• $u_i = \sum_i D_{i,i} / (n-2)$
A	(17+17)/1 = 34
В	(17+8)/1 = 25
Х	(17+8)/1 = 25

$$C$$
 A
 X
 10

$$\mathtt{D_{ij}}\mathtt{-}\mathtt{u_i}\mathtt{-}\mathtt{u_j}$$

	A	В	X
A	_	17	17
В		_	8
X			_

i	• $u_i = \sum_i D_{i,i} / (n-2)$
A	(17+17)/1 = 34
В	(17+8)/1 = 25
Х	(17+8)/1 = 25

$$\mathtt{D_{ij}}\mathtt{-}\mathtt{u_i}\mathtt{-}\mathtt{u_j}$$

	A	В	X
A	-	17	17
В		_	8
x			-

i	• $u_i = \sum_i D_{i,i} / (n-2)$
A	(17+17)/1 = 34
В	(17+8)/1 = 25
х	(17+8)/1 = 25

$$v_{A} = 0.5 \times 17 + 0.5 \times (34-25) = 13$$
 $v_{D} = 0.5 \times 17 + 0.5 \times (25-34) = 4$

	A	В	x	Y
A	-	17	17	
В		-	8	
X			_	
Y				

$$D_{YX} = (D_{AX} + D_{BX} - D_{AB})/2$$

= (17 + 8 - 17)/2
= 4

$$D_{YX} = (D_{AX} + D_{BX} - D_{AB})/2$$

= (17 + 8 - 17)/2
= 4

$$D_{YX} = (D_{AX} + D_{BX} - D_{AB})/2$$

= (17 + 8 - 17)/2
= 4

	A	В	С	D
A	_	17	21	27
В		-	12	18
С			-	14
D				-

