Lecture notes for 4.1-4.2 Memory Protection

[wrapup anonymity]

[wrapup crypto]

Cryptographic hash collisions

- Book mentions that in 160-bit SHA1 attacker can find P1, P2 with same hashes in 2⁶³ steps, which is weaker than **expected 2⁸⁰** steps
- Why 2^80 ? Why not 2^159 (½ of 2^160)?
- Birthday problem: collision in $sqrt(2^160) = 2^80$
 - In a set of n items, we have n^2 comparisions (and possible matches), not 2n comparisons

Operating system mediation

- Control access by users/processes to resources
- Resources may be other users & processes, also files, hardware, etc.

Memory protection

- Multiprocess, multiuser systems
- Each running process can access only its own memory
 - Cannot access memory of other processes
 - Cannot access kernel memory
 - Limits damage of attack against a vulnerable process
 - Limits damage of malicious process
- Kernel can access any process' memory
- Kernel allows processes to share memory only if user permissions allow

Separation

- Keep one user (or role) separated from another user (or role)
 - Example: Military general needing to access both classified data and unclassified email
 - Convenience: wants to use single system
- Physical separation
 - Different users use different physical objects
 - General has two computers on his desk
- Temporal separation
 - Different users execute at different times
 - General reboots into secure OS
- Cryptographic separation
 - Users execute simultaneously but use encrypted computation to remain unintelligible to other users
- Logical separation
 - Users execute simultaneously, OS gives users isolated view

Granularity

- No protection
- Total isolation
- Share all or share none
- Share via OS-mediated access
- Share but limit use (some PDFs disallow printing)

Memory protection implemented via virtual memory / MMU

- Segmentation
- Paging

Paged virtual memory

- Every process views memory as contiguous, often larger than physical memory
 - Usually 2³² or 2⁶⁴ addresses
- Operating system maps virtual pages onto physical memory frames
- Each process has own mapping
- OS will not map a virtual page for process A to a physical page for process B unless memory is shared
- Process A cannot access process B's memory because it has no way to name the memory
- Page tables managed by OS
- Processor MMU uses page tables to resolve virtual addresses to physical addresses
- Used by: Windows, OS X, Linux

Page protection bits

- RWX bits on memory pages
- Limits type of access to addressable memory
- Non-exec stacks help prevent basic code injection via stack buffer overflow

Operating systems without memory protection

- DOS
- Old mainframe systems
- Some embedded systems

Kernel fence

- Kernel resides in a portion of each process' virtual address space
- 32-bit Linux 2.6: Lower 3 GB for process, top 1 GB is kernel
 - True for each process
- Processes can cross fence only in limited ways
 - Corresponds to x86 privilege ring transition
- Windows, OS X similar
- DOS had no fence (no virtual memory...)
 - Any process could alter DOS
 - Viruses spread by hooking DOS interrupt handlers via direct kernel alteration