

SEQUENCE LISTING

<110> Kaplan, Aaron
Lieman-Hurwitz, Judy
Schatz, Daniella
Mittler, Ron
Ronen-Tarazi, Michal
Bonfil, David J.

<120> ENHANCING INORGANIC CARBON FIXATION BY PHOTOSYNTHETIC ORGANISMS

<130> 01/22171

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 4957

<212> DNA

<213> Synechococcus sp.

<400> 1
aagcttggat tgaaggcgatc ggggtcaatc ccagcgatga tcctcagttc ctcctgatgg 60
tcgatccctt tagcgccaag attgaggatc tgctgcaagg gctggatttc gcctatcccg 120
aggccgtgaa agtgggcgga ttggccagtg gtttggggc agagtcagcg atcgccagct 180
tgtttttca agaccgacag gtcgatggcg tgattggct agccctcagt ggcaatgtcc 240
agctgcaggc gatcgtggct cagggctgtc gtccagttgg cccgcttgg catgtggcag 300
cggcggagcg caacattctg cggcaacttc agaccgaaga cgaggaaccc atcgccgcgc 360
tgcaaggccct acagtcagtc ctgcgtgatc tctcccctga attacagcga tcgctctgtg 420
tgggcctggc ctgcaattct ttccaaacgg tattacaacc gggcgacttc ctgatccgta 480
acctgctggg gtttgatccc cgcaactggtg ctgttagaat cggcgatcgc attcgagttg 540
ggcageggct gcaagctgcac gtacggatg cccagacagc ggcggatgac ctgcagcggc 600

aactggggca atggtgccgg cagcatgcga caaaaccaggc agcttccctc ttgtttcct	660
gcttggggcg cgccaagccc ttctatcagc aggccaactt cgagtcgcaa ctgattcagc	720
attacctctc agagctgccc ctagctggct ttttctgtaa tggcgaaatc ggcccgatcg	780
ctggcagcac ctacctgcat ggctacacat cggtgctggc tttgctgtcg gccaaaactc	840
actagcgcca gcgagacctg attgtcgatc tgctgagcgc gactgtagcg ctggaaatag	900
gccccggacct gagcaggcgc atcggccaag ctgaccgtag tataccgtc agccacccccc	960
gccccagaaaat tccgcaacat cgccaggaga gcgatcgccct ccgcctccga taaattcaac	1020
ggctcatggg tcaacaggcg gatcaagtac tctgactgct atcgccatcc attccgccc	1080
aaaacgtttg taaatcagtc ttgatccggt agcgatcgca cccgacggga ctctagttct	1140
agttgccaac cttcagcggc aggttgtacg gttccgagtc ggttagggatg gggatacg	1200
accaaggAAC acggcgtgac ttcccagaga gcacccgtct gactgggtggc ttggatgtgg	1260
aggtggcctg tgaagatcac cgagacgctg cccgcttcga ggattgtatcg caattcctcg	1320
gcattttcta agatgttagcg ctgaccaagc ggatgtgtct gttgatcggg cagatgtcc	1380
aacacattgt ggtgaatcat cacccagcgt tggctagcgg tggaaagtggc gagttttgt	1440
tgcagccagt tgagttgcgc gcaatcgact cgcccccgat gcagttgtatg gccccgttca	1500
tcaaaagcga tcgaattcag cgcaaacaga tcgagatccg gtgcgatcgt gcagcgatag	1560
tagggcgtat cgctcgtgaa gccaaagtct tgatagagct cgacaaaactc ggccacaccg	1620
gtgcgatcgc gatcgctcgc tgcggcgggc atatcggt tgccggcac cacatagacc	1680
ggatagggca actggcgcaa ttgttgccgc agccactgtat ggtttcccg ctcccggtc	1740
tgggttaaat ccccccggcag caacaggaag tccaaatcca gcgctgccag ttctgtcagg	1800
atttgctcaa aagccggaat gctgcactca atcaaattggc agcgatggg atggtgccaa	1860
attgtctcg gcaatcgactat gtggagatcg ctcagcagcg caaatcgaaa cgctcggttc	1920
attgccatcc cctcagctat cgagcccgat tctaggcgaa gctaggtcga gtccgttgc	1980
ttcagttgca agcattcatg gccagaggc gcgttcggca gcacgtcaat ccgcctctc	2040
agaaatcca agtggtcacg acttggccgg attggcaaca ggtctatgct gactgcgatc	2100
gccccgtgca ttggatatt ggctgtgtc gcggcgctt tctgctggca atggcgacac	2160
gacaacctga gtggaaattat ctggggctgg aaattcgtga gcccgtggta gatgaggcga	2220
acgcgatcgc ccgcgaacgt gaactgacca atctctacta ccacttcagc aacgcacatt	2280
tggacttggc accgctgctg cgatcgctgc cgacaggat tttgcagcgg gtcagcattc	2340
agttcccgaa tccttggttc aagaaacgccc atcaaaagcg acgcgtcgatc cagccggAAC	2400
tggtgcaagc cctcgact gcttacctg ctggtgccaga ggtctttctg caatccgatg	2460
tgctggaaatg gcaggcagag atgtgcgaac actttgcggc ggaaccccccgc tttcagcgc	2520

cctgcttggaa ctggctgccg gaaaatccgc tgcccgcccc gaccgagcgc gaaattgccg	2580
ttcaaaaaca acagttgcca gtctaccgtg ctctttcat tcggcagcca gcggactaag	2640
ctcttaaggc aagcggtgac gcgatcgca tgactgtctg gcaaactctg acttttgc	2700
attaccaacc ccaacagtgg ggccacagca gtttcttgca tcggctgttt ggcagcctgc	2760
gagcttggcg gcctccagc cagctgtgg tttggctctga ggcactgggt ggcttcttc	2820
ttgctgtcgt ctacggttcg gctccgttt tgccctagtt cgcccttaggg ttggggctag	2880
ccgcgatcgc gccttattgg gccctgctct cgctgacaga tatcgatctg cggcaagcaa	2940
cccccatca ctggctggtg ctgctctact gggcgctcgta tgccctagca acgggactct	3000
cacccgtacg cgctgcagct ttagttggc tagccaaact gacgctctac ctgttggttt	3060
ttgccctagc ggctcggtt ctccgcaatc cccgtctcgat atcgctgtcg ttctcggtcg	3120
tcgtgatcac atcgctttt gtcagtgtct acggcctcaa ccaatggatc tacggcggtt	3180
aagagctggc gacttgggtg gatcgcaact cggttgccga cttcaccta cgggtttaca	3240
gctatctggg caaccccaac ctgctggctg cttatctggt gccgacgact gcctttctg	3300
cagcagcgat cgggtgtgg cgccgctggc tcccaagct gctggcgatc gctgcgacag	3360
gtgcgagcag cttatgtctg atcctcacct acagtcgcgg tggctggctg ggttttgtcg	3420
ccatgatttt tgtctggcg ttatttaggc tctactggtt tcaacccctt ctacccgcac	3480
cctggcgacg ctggcttattc ccagtcgtat tgggtggact agtcgcggc ctcttgggg	3540
cggtgcttgg acttgagccg ttgcgcgtgc gcgtgttgag catctttgtg gggcgtgaag	3600
acagcagcaa caacttccgg atcaatgtct ggctggcggt gctgcagatg attcaagatc	3660
ggccttggct gggcatcgcc cccggcaata ccgcctttaa cctggtttat cccctctatc	3720
aacaggcgcg ctttacggcg ttgagcgctt actccgtccc gctggaaatc gcggttgagg	3780
gcggactact gggcttgacg gccttcgtt ggctgtctgct ggtcacggcg gtgacggcg	3840
tgcggcaggt gagccgactg cggcgatc gcaatccccca agcctttgg ttgatggcta	3900
gcttggccgg tttggcagga atgctgggtc acggctgtt tgataccgtg ctctatcgac	3960
cggaaagccag tacgctctgg tggctctgtt ttggagcgat cgcgagtttc tggcagcccc	4020
aaccttccaa gcaactccct ccagaagccg agcattcaga cgaaaaaatg tagcgggctc	4080
cccaacaaat tcctgtgcac ccgactggat ccaccaccta aactggatcc caaaggtatc	4140
cggtgatct agggtcataa cgaactccga ccgcgatcgc gtccgcgaac tgaacctcca	4200
tcgcaccgaa gcggagttcg ttagtcgtt aagagccat gctagagggg gctgccgaag	4260
cagttggct ggaagcaggc tgcgagaagc caccgcgtc caaggcaag ttcagccgac	4320
cttccgcaaa gactacgatc gccacggcg ctctgccagc taagtcagcg ctgggttagt	4380
tgtcatagca gtccgcagac aagtttaggac aacttcatacg agggactcgc tcagagtcaa	4440

cagccgctgt ccgtgggggt ggcgaatcac ccccacaccc acgcactggg ggactcgact 4500
 ccccccaggcc ccccgcaaca agatttcgga taagggcat cggtgaatc gcgatcgctg 4560
 cgggtaaaac tagccggtgt tagccatggg tttgagacta atcggcacgg ggcaaaacgt 4620
 cctgatttat ttgctcaatg tgataggtt catcgtaaa aacaaggccc aagaggtagg 4680
 aaaaatcacg accgccccaaag tccgagggtt ttgctgttgg gagcgaccta gggcagacta 4740
 gacagagcat tgctgtgagc caaagcgccct tcaattgctg gggctgttgg gttttcgga 4800
 ggttgccaaa tgaaagacct tttcgtcaat gtcctccgct atccccgcta cttcatcacc 4860
 ttccagctgg gtatTTTta gtcgatctac cagtgggtgc ggccgatgt tcgcaaccca 4920
 gtcgcggctt gggcgctgct aggctttgga gtttcga 4957

<210> 2

<211> 1404

<212> DNA

<213> Synechococcus sp.

<400> 2
 atgactgtct ggcaaactct gactttgcc cattaccaac cccaacagtg gggccacagc 60
 agtttcttgc atcggtgtt tggcagccgt cgagcttggc gggctccag ccagctgtt 120
 gtttggtctg aggactggg tggcttctt cttgctgtcg tctacggttc ggctccgttt 180
 gtgcccagtt ccggccctagg gttggggcta gccgcgatcg cggcctattt ggccctgctc 240
 tcgctgacag atatcgatct gcggcaagca acccccattt actggctggt gctgctctac 300
 tggggcgtcg atggcccttagc aacgggactc tcacccgtac ggcgtgcagc ttttagttggg 360
 cttagccaaac tgacgctcta cctgttgggtt tttggccctag cggctgggt tctccgcaat 420
 ccccgctctgc gatcgctgct gttctcggtc gtcgtgatca catcgctttt tgtcagtgtc 480
 tacggcctca accaatggat ctacggcggtt gaagagctgg cgacttgggt ggatcgcaac 540
 tcgggttggccg acttcacctc acgggtttac agctatctgg gcaaccccaa cctgctggct 600
 gcttatctgg tgccgacgac tgccctttct gcagcagcga tcgggggtgtg ggcggctgg 660
 ctccccaaac tgctggcgat cgctgcgaca ggtgcgagca gcttatgtct gatcctcacc 720
 tacagtgcgcg gtggctggct ggggtttgtc gccatgattt ttgtctggc gttattaggg 780
 ctctactgggt ttcaaccccg tctacccgca ccctggcgac gctggctatt cccagtcgt 840
 ttgggtggac tagtcgcgggt gctcttgggt gcggtgctt gacttgagcc gttgcgcgtg 900
 cgcgtgttga gcatctttgt ggggcgtgaa gacagcagca acaacttccg gatcaatgtc 960
 tggctggcgg tgctgcagat gattcaagat cggccttggc tggcgtatcgg ccccgcaat 1020

accgccttta acctggttta tccccttat caacaggcgc gcttacggc gttgagcgcc 1080
 tactccgtcc cgctggaagt cgcggtttag ggcggactac tgggcttgac ggccttcgct 1140
 tggctgctgc tggcacggc ggtgacggcg gtgcggcagg tgagccgact gcggcgcgat 1200
 cgcaatcccc aagcctttt gttgatggct agcttggccg gtttggcagg aatgctgggt 1260
 cacggcttgt ttgataccgt gctctatcga ccggaagcca gtacgctctg gtggctctgt 1320
 attggagcga tcgcgagttt ctggcagccc caacattcca agcaactccc tccagaagcc 1380
 gagcattcag acgaaaaaat gtag 1404

<210> 3

<211> 467

<212> PRT

<213> Synechococcus sp.

<400> 3

Met Thr Val Trp Gln Thr Leu Thr Phe Ala His Tyr Gln Pro Gln Gln
 1 5 10 15

Trp Gly His Ser Ser Phe Leu His Arg Leu Phe Gly Ser Leu Arg Ala
 20 25 30

Trp Arg Ala Ser Ser Gln Leu Leu Val Trp Ser Glu Ala Leu Gly Gly
 35 40 45

Phe Leu Leu Ala Val Val Tyr Gly Ser Ala Pro Phe Val Pro Ser Ser
 50 55 60

Ala Leu Gly Leu Gly Leu Ala Ala Ile Ala Ala Tyr Trp Ala Leu Leu
 65 70 75 80

Ser Leu Thr Asp Ile Asp Leu Arg Gln Ala Thr Pro Ile His Trp Leu
 85 90 95

Val Leu Leu Tyr Trp Gly Val Asp Ala Leu Ala Thr Gly Leu Ser Pro
 100 105 110

Val Arg Ala Ala Ala Leu Val Gly Leu Ala Lys Leu Thr Leu Tyr Leu
 115 120 125

Leu Val Phe Ala Leu Ala Ala Arg Val Leu Arg Asn Pro Arg Leu Arg
 130 135 140

Ser Leu Leu Phe Ser Val Val Val Ile Thr Ser Leu Phe Val Ser Val
 145 150 155 160

 Tyr Gly Leu Asn Gln Trp Ile Tyr Gly Val Glu Glu Leu Ala Thr Trp
 165 170 175

 Val Asp Arg Asn Ser Val Ala Asp Phe Thr Ser Arg Val Tyr Ser Tyr
 180 185 190

 Leu Gly Asn Pro Asn Leu Leu Ala Ala Tyr Leu Val Pro Thr Thr Ala
 195 200 205

 Phe Ser Ala Ala Ala Ile Gly Val Trp Arg Gly Trp Leu Pro Lys Leu
 210 215 220

 Leu Ala Ile Ala Ala Thr Gly Ala Ser Ser Leu Cys Leu Ile Leu Thr
 225 230 235 240

 Tyr Ser Arg Gly Gly Trp Leu Gly Phe Val Ala Met Ile Phe Val Trp
 245 250 255

 Ala Leu Leu Gly Leu Tyr Trp Phe Gln Pro Arg Leu Pro Ala Pro Trp
 260 265 270

 Arg Arg Trp Leu Phe Pro Val Val Leu Gly Gly Leu Val Ala Val Leu
 275 280 285

 Leu Val Ala Val Leu Gly Leu Glu Pro Leu Arg Val Arg Val Leu Ser
 290 295 300

 Ile Phe Val Gly Arg Glu Asp Ser Ser Asn Asn Phe Arg Ile Asn Val
 305 310 315 320

 Trp Leu Ala Val Leu Gln Met Ile Gln Asp Arg Pro Trp Leu Gly Ile
 325 330 335

 Gly Pro Gly Asn Thr Ala Phe Asn Leu Val Tyr Pro Leu Tyr Gln Gln
 340 345 350

 Ala Arg Phe Thr Ala Leu Ser Ala Tyr Ser Val Pro Leu Glu Val Ala
 355 360 365

 Val Glu Gly Gly Leu Leu Gly Leu Thr Ala Phe Ala Trp Leu Leu Leu
 370 375 380

 Val Thr Ala Val Thr Ala Val Arg Gln Val Ser Arg Leu Arg Arg Asp
 385 390 395 400

Arg Asn Pro Gln Ala Phe Trp Leu Met Ala Ser Leu Ala Gly Leu Ala
 405 410 415

Gly Met Leu Gly His Gly Leu Phe Asp Thr Val Leu Tyr Arg Pro Glu
 420 425 430

Ala Ser Thr Leu Trp Trp Leu Cys Ile Gly Ala Ile Ala Ser Phe Trp
 435 440 445

Gln Pro Gln Pro Ser Lys Gln Leu Pro Pro Glu Ala Glu His Ser Asp
 450 455 460

Glu Lys Met
 465

<210> 4

<211> 1425

<212> DNA

<213> Synechococcus sp.

<400> 4	
atgggtgtctc ccatctctat ctggcgatcg ctgatgttg gcggttttc ccccccaggaa	60
tggggccggg gcagtgtgct ccatcgtttgc gtgggctggg gacagagttg gatacaggct	120
agtgtgtctt ggccccactt cgaggcatttgc ggtacggctc tagtggcaat aatttttattt	180
gcggctccct tcacaccttccac caccatgttgc ggcattttta tgctgctctg tggaggcttt	240
tgggctctgc tgaccttttgc tgatcaacca gggaaagggtt tgactcccat ccatgtttta	300
gtttttgcct actgggtgcattt ttcggcgatc gccgtggat tttctcccggtt aaaaatggcg	360
gcggcgtcgg ggttagcgaa attaacagct aatttatgtc tgtttctact ggcggcgagg	420
ttattgcaaa acaaacaatg gttgaaccgg ttagtaaccg ttgttttact ggtagggtca	480
ttgggtgggaa gttacggtct gcgacaacag gtggacgggg tagaacagtt agccacttgg	540
aatgacccca cctctacctt ggcccaggcc actagggtat atagctttt aggtaatccc	600
aatctcttgg cggcttacccctt ggtgcccattt acgggtttga gcttgagtgc cctgggtgtt	660
tggcgacgggtt ggtggcccaa actgctggga gcaaccatgg tgattgtttaa cctactctgt	720
ctctttttta cccagagccg gggcggttgg cttagcagtgc tggccctggg agctacccat	780
ctggccctttt gttacttctg gtgggttaccc caattaccca aattttggca acgggtgtt	840
ttgccccctgg cgatcgccgtt ggcgggtata ttaggtgggg gagcgttgat tgcgggtggaa	900
ccgattcgac tcagggccat gagcattttt gctggcgaaa aagacagcag taataatttc	960
cgcacatcaatg tttgggaagg ggtaaaagcc atgatccgag cccgcctat cattggcatt	1020

ggcccaggta acgaaggcatt taacccaaatt tatccttact atatgcggcc ccgcttcacc	1080
gccctgagtg cctattccat ttacctagaa attttggtgg aaacgggtgt agttggtttt	1140
acctgtatgc tctggctgtt ggccgttacc ctaggcaaag gcgtagaact ggttaaacgc	1200
tgtcgccaaa ccctcgcccc ggaaggcatc tggattatgg gggctttagc ggcgatcatc	1260
ggtttgtgg tccacggcat ggtagataca gtctggtacc gtccccggt gagcactttg	1320
tgggttgtgc tagtggccat tggtgctagt cagtgggcca gcgcggcaggc ccgtttggag	1380
gccagtaaag aagaaaatga ggacaaacct cttcttgctt cataaa	1425

<210> 5

<211> 474

<212> PRT

<213> Synechococcus sp.

<400> 5

Met	Val	Ser	Pro	Ile	Ser	Ile	Trp	Arg	Ser	Leu	Met	Phe	Gly	Gly	Phe
1					5					10					15

Ser Pro Gln Glu Trp Gly Arg Gly Ser Val Leu His Arg Leu Val Gly
20 25 30

Trp Gly Gln Ser Trp Ile Gln Ala Ser Val Leu Trp Pro His Phe Glu
35 40 45

Ala Leu Gly Thr Ala Leu Val Ala Ile Ile Phe Ile Ala Ala Pro Phe
50 55 60

Thr Ser Thr Thr Met Leu Gly Ile Phe Met Leu Leu Cys Gly Ala Phe
65 70 75 80

Trp Ala Leu Leu Thr Phe Ala Asp Gln Pro Gly Lys Gly Leu Thr Pro
85 90 95

Ile His Val Leu Val Phe Ala Tyr Trp Cys Ile Ser Ala Ile Ala Val
100 105 110

Gly Phe Ser Pro Val Lys Met Ala Ala Ala Ser Gly Leu Ala Lys Leu
115 120 125

Thr Ala Asn Leu Cys Leu Phe Leu Leu Ala Ala Arg Leu Leu Gln Asn
130 135 140

Lys Gln Trp Leu Asn Arg Leu Val Thr Val Val Leu Leu Val Gly Leu
145 150 155 160

Leu Val Gly Ser Tyr Gly Leu Arg Gln Gln Val Asp Gly Val Glu Gln
165 170 175

Leu Ala Thr Trp Asn Asp Pro Thr Ser Thr Leu Ala Gln Ala Thr Arg
180 185 190

Val Tyr Ser Phe Leu Gly Asn Pro Asn Leu Leu Ala Ala Tyr Leu Val
195 200 205

Pro Met Thr Gly Leu Ser Leu Ser Ala Leu Val Val Trp Arg Arg Trp
210 215 220

Trp Pro Lys Leu Leu Gly Ala Thr Met Val Ile Val Asn Leu Leu Cys
225 230 235 240

Leu Phe Phe Thr Gln Ser Arg Gly Gly Trp Leu Ala Val Leu Ala Leu
245 250 255

Gly Ala Thr Phe Leu Ala Leu Cys Tyr Phe Trp Trp Leu Pro Gln Leu
260 265 270

Pro Lys Phe Trp Gln Arg Trp Ser Leu Pro Leu Ala Ile Ala Val Ala
275 280 285

Val Ile Leu Gly Gly Ala Leu Ile Ala Val Glu Pro Ile Arg Leu
290 295 300

Arg Ala Met Ser Ile Phe Ala Gly Arg Glu Asp Ser Ser Asn Asn Phe
305 310 315 320

Arg Ile Asn Val Trp Glu Gly Val Lys Ala Met Ile Arg Ala Arg Pro
325 330 335

Ile Ile Gly Ile Gly Pro Gly Asn Glu Ala Phe Asn Gln Ile Tyr Pro
340 345 350

Tyr Tyr Met Arg Pro Arg Phe Thr Ala Leu Ser Ala Tyr Ser Ile Tyr
355 360 365

Leu Glu Ile Leu Val Glu Thr Gly Val Val Gly Phe Thr Cys Met Leu
370 375 380

Trp Leu Leu Ala Val Thr Leu Gly Lys Gly Val Glu Leu Val Lys Arg
385 390 395 400

Cys Arg Gln Thr Leu Ala Pro Glu Gly Ile Trp Ile Met Gly Ala Leu
405 410 415

Ala Ala Ile Ile Gly Leu Leu Val His Gly Met Val Asp Thr Val Trp
420 425 430

Tyr Arg Pro Pro Val Ser Thr Leu Trp Trp Leu Leu Val Ala Ile Val
435 440 445

Ala Ser Gln Trp Ala Ser Ala Gln Ala Arg Leu Glu Ala Ser Lys Glu
450 455 460

Glu Asn Glu Asp Lys Pro Leu Leu Ala Ser
465 470

<210> 6

<211> 31

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 6

gggctagccg cgatcgccgc ctattgggcc c

31

<210> 7

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 7

gggctagggta tcgcgcctat tgggcccc

27

<210> 8

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 8

gggctcagat cgcgccattt gggccc

26

<210> 9

<211> 11

<212> PRT

<213> Synechococcus sp.

<400> 9

Gly Leu Ala Ala Ile Ala Ala Tyr Trp Ala Leu
1 5 10