EECS 427 Lecture 12: Multipliers WH 11.9.1-11.9.3

1

Lecture Overview

- Multipliers are vital in digital signal processing and general purpose processors & GPUs
- They are speed limiting very slow operations

Binary Multiplication

3

Key points

- · MxN multiplication fits in N+M bits
- 2s complement multiplication is more difficult: Either convert to + numbers and keep track of original signs OR use Booth's algorithm
- · Major steps are:
 - 1) Partial product generation
 - 2) Partial product accumulation
 - 3) Final addition (done using fast carry lookahead techniques)

Generating Partial Products

· All partial products: AND

 Booth's recoding – reduction of partial product count (more later)

5

The Array Multiplier

MxN Array Multiplier — Critical Path

$$t_{mult} = [(M-1)+(N-2)]t_{carry} + (N-1) t_{sum} + t_{and}$$

Both carry and sum delays important: T-gate adder cell...

7

Carry-Save Multiplier

Booth Recoding

- To implement 2s complement multiplication, modified Booth recoding is typically used
- Idea: Recode the multiplier value in a higher radix in order to reduce the # of partial products
- Ex: 010111 (23) 011110 (30) 1 3 2

9

Modified Booth Recoding

- Now we need to be able to multiply by 0,1,2, or 3
 - +3 is not easy to implement; requires two stages (+4X - 1X OR +2X + 1X)
- Instead look at three bits at a time and use negatives:
 - $-\pm 2X, \pm 1X, 0$
 - Must be able to multiply by 0, 1, 2, -1, -2
 - 0 and 1 are easy, 2X involves a shift left by 1 bit position, -1X: invert all bits and set Cin = 1, -2X: invert all bits, carry in a 1, and shift left by 1 bit

Recoding table

- From MSB to LSB, look at multiplier bits two at a time along with MSB of next less-significant pair
- Instead of 3Y, use –Y, then increment next partial product to add 4Y

• Similarly, for 2Y, use –2Y, then increment next partial product to add 4Y

<i>x</i> i+2 <i>x</i> i+1 <i>x</i> i	Add to partial product	
000	+0Y	
001	+1Y	
010	+1Y	
011	+2Y	
100	-2Y	
101	-1Y	
110	-1Y	
111	-0Y	

1

Example

• 010111 (23) 011110 (30)

Originally: 011110

011 → +2

111 → 0

100 → -2

LSB extends with 0s

So we have:

(+2)(0)(-2)

Booth Decoding and Partial Product Generation

Operation	NEG	ZERO	TWO
x 0	0	1	0
x 1	0	0	0
x (-1)	1	0	0
x 2	0	0	1
x (-2)	1	0	1

Sign Extension

- Partial products can be negative
 - Require sign extension, which is cumbersome
 - High fanout on most significant bit

Simplified Sign Ext.

- · Sign bits are either all 0's or all 1's
 - Note that all 0's is all 1's + 1 in proper column
 - Use this to reduce loading on MSB

Even Simpler Sign Ext.

- No need to add all the 1's in hardware
 - Precompute the answer!

17

Summary

- Generally, multiply function consists of AND functions to generate the partial products and lots of addition
 - Carry and sum delays of adder cells can be equally critical
- Modified Booth recoding reduces the # of partial products to be added, improves speed
 - Also suitable for 2s complement addition
- Other topics:
 - Can pipeline within the multiplier unit to improve throughput
 - Tree structures to reduce the # of adders needed and speed the result (speed becomes logarithmic in # of bits); see Fig 11.85, Wallace Tree