Avaliação do Software CASToR para reconstrução de imagens a partir de simulação com 1311 no código GATE

João Henrique Martins Castelo

Graduando em Física Médica pela UFRJ

Bolsista PIBIC pelo IRD

Como reconstruir imagens a partir de uma simulação SPECT Monte Carlo?

GEANT4 APP FOR TE

GATE

PHANTOM AT THE GATE RADIATION TRANSPORT CODE FOR SPECT SIMULATION

João H. M. Castelo¹, ¹Daniel A. B. Bonifácio

*Instituto de Radioproteção e Dosimetria - IRD/CNEN - Rio de Janeiro, RJ

Cores meramente ilustrativas

JS

Journal of Radiological Protection

ACCEPTED MANUSCRIPT

Influence of the SPECT calibration source position on the absorbed dose calculation for ¹³¹I-NaI therapy using GATE simulations

Samira Marques de Carvalho¹, Ana Paula Marques Costa², Celso D Ramos³, João H. M. Castelo⁴, Sérgio Querino Brunetto⁵ and D A B Bonifacio⁶

Accepted Manuscript online 18 July 2018 • © 2018 IOP Publishing Ltd

Mapa 3D de Dose

Projeções

Out[3]: <matplotlib.colorbar.Colorbar at 0x7f981079c550>

Caminhos possíveis?

$$p_1 = v4 + v5 + v6$$

 $p_2 = v4 + v8$
 $p_3 = v7 + v5 + v3$

Projection #1

$$\frac{\partial}{\partial x} \leftarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \underbrace{\begin{pmatrix} (6-0) \\ 2 \end{pmatrix}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{\partial}{\partial x} \leftarrow \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix} + \underbrace{\begin{pmatrix} 14-0 \\ 2 \\ 1 \end{bmatrix}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$Q_{3}^{T} P = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 & 3 \\ 3 & 7 & 7 & 7 \\ 7 & 7 & 7 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Js

Customizable and Advanced Software for Tomographic Reconstruction (CASToR)


```
TFile *f = new TFile("./solo.root", "OPEN");
TTree *singles364 = (TTree*)gDirectory->Get("364keV");
nSingles364 = singles364->GetEntries();
TTree *singles400 = (TTree*)gDirectory->Get("400keV");
nSingles400 = singles400->GetEntries();
TTree *singles300 = (TTree*)gDirectory->Get("300keV");
nSingles300 = singles300->GetEntries();
TFile *f364 = new TFile("./wto364.root", "RECREATE");
TTree *newtree364 = singles364->CloneTree();
newtree364->SetName("Singles");
newtree364->Print();
f364->Write();
f364->Close();
TFile *f300 = new TFile("./wto300.root", "RECREATE");
TTree *newtree300 = singles300->CloneTree();
newtree300->SetName("Singles");
newtree300->Print();
f300->Write();
f300->Close();
```


castor-GATEMacToGeom -m ../mac/flipedSymbia_T2_HE.mac -o hecol castor-GATERootToCastor -m ../mac/flipedSymbia_T2_HE.mac -o castorfile -i wto364.root -s hecol -sp_bins 180,128

Se o último comando não funcionar devido a falta do **time slice**, adicione as linhas na macro do SPECT.

```
Data filename: castorfile CstrProj.Cdf
Number of events: 1474560
Data mode: histogram
Data type: SPECT
Start time (s): 0
Duration (s): 4160
Scanner name: hecol
Number of bins: 180, 128
Number of projections: 64
Projection angles: 0, 5.6225, 11.245, 16.8675, 22.49, 28.1125, 33.735, 39.3575, 44.98, 50.6025, 56.225, 61.8475, 67.47, 73.0925, 78.715,
84.3375, 89.96, 95.5825, 101.205, 106.827, 112.45, 118.073, 123.695, 129.318, 134.94, 140.562, 146.185, 151.807, 157.43, 163.053,
168.675, 174.298, 179.92, 185.542, 191.165, 196.787, 202.41, 208.033, 213.655, 219.277, 224.9, 230.522, 236.145, 241.768, 247.39,
253.012, 258.635, 264.258, 269.88, 275.503, 281.125, 286.747, 292.37, 297.992, 303.615, 309.237, 314.86, 320.482, 326.105, 331.728,
337.35, 342.973, 348.595, 354.217
Distance camera surface to COR: 234.5
Calibration factor: 1
Isotope: unknown
Normalization correction flag: 0
Scatter correction flag: 0
Head rotation direction: CW
```

Global distance camera to surface to COR: 234.5

castor-recon -df castorfile_CstrProj.Cdh -opti MLEM -dim 64,64,64 -vox 9.59,9.59,9.59 -fout convatnBih -it 10:10 -proj incrementalSiddon -fov-out 78 -oit -1 -conv gaussian,4.5,4.5,3::psf |

E agora?

Volume de Reconstrução altera significativamente a qualidade da imagem!

Ann Nucl Med. 1992 Aug;6(3):153-8.

Correction of scattered photons in Tc-99m imaging by means of a photopeak dual-energy window acquisition.

Kojima A¹, Tsuji A, Takaki Y, Tomiguchi S, Hara M, Matsumoto M, Takahashi M.

Quantitative 131I SPECT with triple energy window Compton scatter correction

Article (PDF Available) in IEEE Transactions on Nuclear Science 45(6):3109 - 3114 · January 1999 with 135 Reads

DOI: 10.1109/23.737672 · Source: IEEE Xplore

O problema da janela tripla

$$C_{sc} = \left(\frac{C_{high}}{W_{high}} + \frac{C_{low}}{W_{low}}\right) \frac{W_{main}}{2}$$

Matriz de Projeção

OU

Projeções

O CASToR não possui espaço para informação de espalhamento quando convertido do ROOT.

Porém ele existe na conversão direta para arquivos cdF e cdH.

```
###### 364, 300, 400
/gate/output/projection/enable
/gate/output/projection/setInputDataName 364keV
/gate/output/projection/addInputDataName 300keV
/gate/output/projection/addInputDataName 400keV
#/gate/output/projection/setFileName ../output/{testNumber}
/gate/output/projection/setFileName ../output/ONEHEADEW{i}
/gate/output/projection/pixelSizeX 9.59 mm
/gate/output/projection/pixelSizeY 9.59 mm
/gate/output/projection/pixelNumberX 64
/gate/output/projection/pixelNumberY 64
/gate/output/projection/projectionPlane YZ
```

Como eu economizo tempo de simulação

```
#set -x
nohup Gate -a [i,1][act,650000][source,131IGamas] main.mac > flowlogi1.txt &
nohup Gate -a [i,2][act,650000][source,131IGamas] main.mac > flowlogi2.txt &
nohup Gate -a [i,3][act,650000][source,131IGamas] main.mac > flowlogi3.txt &
nohup Gate -a [i,4][act,650000][source,131IGamas] main.mac > flowlogi4.txt &
nohup Gate -a [i,5][act,650000][source,131IGamas] main.mac > flowlogi5.txt &
nohup Gate -a [i,6][act,650000][source,131IGamas] main.mac > flowlogi6.txt &
```

hadd full.root split1.root split2.root splitn.root

É muito mais fácil operar em projeções do que nos arquivos do ROOT.

VAMOS PROGRAMAR!

Alternativa 1 Projeções para cdH e cdF

O método de reconstrução ainda é de grande influência

DESCRICAO	FWHM X (GATE/REF)	FWHM Y (GATE/REF)	X+Y	X		Υ
PROJECAO	1.282664704	1.49914805		3.485	2.717	15.837 10.564
NOCORR	2.419925512	2.395204263	4.815129775	2.599 🤟	1.074	2.697 🤟 1.126
ATNCORR	2.26367713	2.2271 <mark>97347</mark>	4.490874477	2.524 🧌	1.115	2.686 🦣 1.206
SC + ATNCORR	2.774674115	2.156305506	4.930979622	2.98 🤟	1.074	2.428 🤟 1.126
CASTOR REF	2.469273743	2.3339254	4.803199143	2.652 🤟	1.074	2.628 🌵 1.126

https://github.com/SimpleITK/SimpleITK/blob/master/Example s/DicomSeriesFromArray/DicomSeriesFromArray.py

https://fiji.sc/

Adrian-FWHM

https://imagej.nih.gov/ij/plugins/fwhm/

NucMed

http://www.med.harvard.edu/JPNM/ij/plugins/NucMed.html

Agradecimentos especiais Igor Vieira CRCN James Scuffham

ROYAL SURREY COUNTY HOSPITAL NHS FOUNDATION TRUST

Daniel Bonifácio IRD T. Merlin CASToR Uwe Pietrzyk GATE