Organização de Computadores I

Complemento de 2 e Ponto Flutuante

Revisão

- Binário n bits → 2ⁿ
- Complemento de 2
 - Único Zero
 - Bit de Sinal (0 positivo 1 negativo)
 - Aritmética direta somar
 - Simetria em relação ao zero
 - Compl2(x) = -x
 - Inverter sinal
 - Compl2 (compl2 (x)) = x
 - Compl2(x): inverter x e somar 1

Positivos

Representação 4 bits -8 ao +7

Sinal	Num	Decimal
0	000	0
0	001	1
0	010	2
0	111	7

Positivos e negativos

Representação 4 bits -8 ao +7

Sinal	Num	Decimal
0	000	0
0	001	1
0	010	2
0	111	7
1	000	-8
i	001	-7
 1	111	-1

Positivos e negativos

Representação 4 bits

-8 ao +7

Sinal	Num	Decimal
0	000	0
0	001	1
0	010	2
0	111	7
1	000	-8
1	001	-8 -7
 1	111	-1

$$5 = 0 \ 101$$

 $3 = 0 \ 011$

```
5 = 0.101

3 = 0.011 \rightarrow 1.100 \text{ (inverter)}

1 \text{ (somar 1)}

1.101 = -3
```

$$5 = 0.101$$
 $0.101.5$ $3 = 0.011 \rightarrow 1.100$ $1.101.3$ $0.101.5$ $0.101.5$ $0.101.5$ $0.101.5$

Exemplo
$$-5 + (-2)$$

$$5 = 0 \ 101 \longrightarrow 1 \ 010$$

 $2 = 0 \ 010 \qquad 1$
 $-----$
 $1 \ 011 = -5$

$$5 = 0 \ 101$$
 $\rightarrow 1 \ 010$ $1 \ 011 = -5$ $3 = 0 \ 011$ $1 \ 011 = -5$ $1 \ 011 = -5$

$$5 = 0 \ 101$$
 $2 = 0 \ 010 \rightarrow 1 \ 101$
 $1 \ 110 = -5$
 $1 \ 110 = -2$

$$1 \ 110 = -2$$

$$5 = 0 \ 101$$

 $2 = 0 \ 010$

$$\begin{array}{r}
 1 & 011 = -5 \\
 1 & 110 = -2 \\
 \hline
 1 & 001 = ?
 \end{array}$$

$$5 = 0 101$$

 $2 = 0 010$

$$\begin{array}{c}
 1 & 011 = -5 \\
 1 & 110 = -2 \\
 \end{array}$$

$$\begin{array}{c}
 1 & 001 \rightarrow 0110 \\
 & 1 \\
 & ----- \\
 & 7=0 111
 \end{array}$$

$$5 = 0 101$$

 $2 = 0 010$

$$5 = 0 \ 101$$

 $4 = 0 \ 100$

$$5 = 0 \ 101$$
 $4 = 0 \ 100$
 $\frac{1}{1} \ 001$

$$5 = 0 \ 101$$
 $4 = 0 \ 100$
 $\frac{1}{1} \ 001$

Bit de sinal Negativo!!

```
5 = 0 \ 101
4 = 0 \ 100
\frac{1}{1} \ 001
```

```
Como verificar que não é -7 = 1001 → 0110
1
------
0 111
```

$$5 = 0 \ 101$$
 $4 = 0 \ 100$
 $\frac{1}{1} \ 001$

Se somamos dois números positivos O resultado deve ser positivo Caso contrário ERRO de overflow

Outros casos de Overflow

- Pos + Pos = Pos senão overflow
- Pos + Neg = Pos ou Neg
 - Pode gerar erro ?

Outros casos de Overflow

- Pos + Pos = Pos senão overflow
- Pos + Neg = Pos ou Neg
 - Pode gerar erro ?
 - Maior +7, menor -8
 - S = 7 + (-8) = -1
 - S = 0 + (-8) = -8
 - S = 7 + (-1) = 6

Outros casos de Overflow

- Pos + Pos = Pos senão overflow
- Pos + Neg = Pos ou Neg OK
- Neg + Neg = Neg senão underflow
- Como detectar
 - Olhar bit de sinal dos operandos e resultado

Op 1	Op 2	res	erro
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Op 1	Op 2	res	erro
0	0	0	0
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Op 1	Op 2	res	erro
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Usando 5 bits ? 5+4=

$$5 = 0 \ 0101$$
 $4 = 0 \ 0100$
 $0 \ 1001 = 9$

Como 5 bits temos -16 a +15

Considerações Finais

- Representação finita overflow ou underflow
- Somar n bits pode gera n+1 bits
- Simetria do Complemento de dois
- Padrão usado nos computadores
- \bullet 0000000...0001 = +1

$$X * 0 = 0$$

$$X * 1 = X$$

- Somas parciais
- Número de n bits pode gera números de 2n bits

Exemplo
$$5 = 0.101$$

 $4 = 0.100$

- Somas parciais
- Número de n bits pode gera números de 2n bits

Exemplo
$$5 = 0101 \\ 4 = 0100 \\ \hline 00000 \\ 0101 \\ 0000$$

- Somas parciais
- Número de n bits pode gera números de 2n bits

- Somas parciais
- Número de n bits pode gera números de 2n bits

- Somas parciais
- Número de n bits pode gera números de 2n bits

- Somas parciais
- Número de n bits pode gera números de 2n bits

- Somas parciais
- Número de n bits pode gera números de 2n bits

- Somas parciais
- Número de n bits pode gera números de 2n bits

Números reais ou Flutuante? 1,0110101 em binário Como converter? Como representar? Como somar?