1ª Prova de Sistemas Operacionais II - BCC

Questões

1. Um determinado computador, que utiliza a paginação pura, tem endereços virtuais de 32 bits e páginas de 4KB.

O código do programa está na página virtual de mais baixa ordem, ou seja, na página virtual 0. Os dados do programa estão na página virtual 1. A área de heap do programa está na página virtual 1024 e a pilha do programa, por sua vez, está na página virtual 1025.

Responda:

- a) Quantas entradas nas tabelas de páginas são necessárias para a paginação em dois níveis, com 10 bits para cada parte?
- b) Quais tabelas precisarão estar carregadas na memória principal para que este programa execute inteiro?

Obs. Explique claramente sua resposta, esquematizando as tabelas e identificando as entradas usadas.

- **2.** Quantos bytes uma de tabela de páginas tradicional ocupará na memória, considerando que o processo tem 1 GB de tamanho, que o tamanho de uma entrada na tabela de páginas é 8 bytes e o tamanho das páginas é 4 KB? Exiba seu cálculo.
- **3.** Considerando o mecanismo de paginação pura, suponha que um processo referencie suas páginas virtuais, conforme a sequência apresentada na primeira linha da Tabela 1.

Neste sistema, existem 4 páginas físicas (molduras) presentes na memória principal, as quais estão inicialmente vazias.

Mostre quais referências causam falta de página (marcando um X na linha correspondente da Tabela 1), bem como, que página encontra-se em que moldura ao final da execução de cada algoritmo (Tabela 2 e 3).

Obs. Assuma que quando há molduras livres, as páginas são carregadas nas molduras de menor endereço. No MRU considere o algoritmo teórico, ou seja, deve ser substituída a página que encontra-se há mais tempo sem ser acessada.

Tabela 1

	1	2	2	3	7	1	3	4	5	7	2	4	2	7	7	5	3	4	6
MRU																			
FIFO																			

Tabela 2

MRU						
Moldura	Página virtual					
0						
1						
2						
3						

Tabela 3

FIFO						
Moldura	Página virtual					
0						
1						
2						
3						

4. No algoritmo WSClock da figura abaixo, o ponteiro aponta para uma página com R=0. Se τ = 200, qual página será removida? E se ele for τ = 1050? Explique sua resposta.

5. Consideramos um programa que tem os dois segmentos mostrados a seguir, consistindo em **instruções** no segmento 0, e **dados** no segmento 1. O segmento 0 tem proteção (modo de acesso) para leitura/execução, e o segmento 1 tem proteção apenas para leitura/escrita. O sistema de memória é um sistema de memória virtual paginado com endereços virtuais que tem números de páginas de 4 bits e um deslocamento de 10 bits.

Segm	ento 0	Segmento 1						
Leitura/E	xecução	Leitura/Escrita						
Página Virtual#	Quadro de Página #	Página Virtual#	Quadro de Página #					
0	2	0	No Disco					
1	No Disco	1	14					
2	11	2	9					
3	5	3	6					
4	No Disco	4	No Disco					
5	No Disco	5	13					
6	4	6	8					
7	3	7	12					

Para cada um dos casos a seguir, **dê o endereço de real memória real** (físico) que resulta da tradução dinâmica de endereço, **ou identifique o tipo de falta que ocorre** (falta de página ou violação de proteção). Explique sua resposta para cada um dos casos.

- (a) Busque do segmento 0, página 0, deslocamento 100.
- (b) Armazene no segmento 0, página 4, deslocamento 65.
- (c) Busque do segmento 1, página 5, deslocamento 18.
- (d) Salte para localização no segmento 0, página 3, deslocamento 2.
- **6.** Diferencie a **E/S programada** da **E/S via interrupções**. Na **E/S via interrupções**, a UCP necessita verificar o estado (status) do controlador para efetuar a transferência de cada byte? Explique sua resposta.