

Inspirar para Transformar

VBA para Engenharia

Aula 03 - Anexo Prof. Raul Ikeda rauligs@insper.edu.br

Problema

Inspirar para Transformar

- Um certo aluno coletou alguns dados de satélites de GPS com o seu Arduíno. Ao contrário do que ele imaginava, os dados não contém a posição do receptor e sim as posições dos satélites e distância do receptor. Agora ele precisa calcular qual é a posição dele (latitude, longitude e altura).
- Fazer o download da planilha Aula02.xlsm no Blackboard.

Problema

Inspirar para Transformar

A	Α	В	С	D	Е	F
1	SV	ρ	X	Y	Z	correções
2	15	22524470,244	23222065,313	-9681191,487	8129695,157	40214,327
3	27	21091056,788	13005776,681	-9770616,616	-20933199,136	130757,949
4	31	23065100,145	12224816,971	-20345626,458	11954980,988	76165,133
5	7	20527251,401	19947181,626	-17284410,000	-2497145,426	29484,137
6	22	21100716,979	3864672,141	-24176481,642	-9040154,945	-89263,839
7	14	23444227,142	-7252191,778	-24263801,661	-7338822,589	94311,998
8						

- SV é o número do satélite.
- ρ é a pseudodistância entre os satélite e o receptor em metros.
- X, Y e Z é a posição do satélite no plano cartesiano em relação ao centro da terra.
- As correções são estimativas de modelos que devem corrigir erros associados à transmissão, como a influência da troposfera, da ionosfera e o viés de relógio.

Solução

Inspirar para Transformar

A equação que realiza a triangulação dos dados é em metros:

$$\rho_i + corr_i = R_i + c\Delta t = \sqrt{(X_i - x_R)^2 + (Y_i - y_R)^2 + (Z_i - Z_R)^2} + c\Delta t$$

- Onde:
 - i é o índice do satélite, ou seja i=1,...,6.
 - $-x_R, y_R$ e z_R é a posição do receptor que queremos descobrir.
 - c é a velocidade da luz.
 - $-\Delta t$ é a diferença de tempo em nanossegundos entre o momento da transmissão e o momento da recepção (lembrem-se que os satélites estão a quilômetros de altura).
- Pronto, temos 4 incógnitas e 6 equações (6 satélites), basta resolver a equação por mínimos quadrados.
 - Hã? Ehh... Solver?

Solução

Inspirar para Transformar

 Bom, já que o Solver falhou, vamos tentar uma abordagem diferente. Sem muitos detalhes no desenvolvimento matemático, linearizando via expansão em série de Taylor a diferença entre as medidas observadas e as medidas estimadas, temos que:

$$\begin{pmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \vdots \\ \Delta \rho_6 \end{pmatrix} = \begin{pmatrix} \rho_1 + corr_1 - R_1 - c\Delta \hat{t} \\ \rho_2 + corr_2 - R_2 - c\Delta \hat{t} \\ \vdots \\ \rho_6 + corr_6 - R_6 - c\Delta \hat{t} \end{pmatrix} = \begin{pmatrix} \frac{\hat{x}_R - X_1}{R_1} & \frac{\hat{y}_R - Y_1}{R_1} & \frac{\hat{z}_R - Z_1}{R_1} & c \\ \frac{\hat{x}_R - X_2}{R_2} & \frac{\hat{y}_R - Y_2}{R_2} & \frac{\hat{z}_R - Z_2}{R_2} & c \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\hat{x}_R - X_6}{R_6} & \frac{\hat{y}_R - Y_6}{R_6} & \frac{\hat{z}_R - Z_6}{R_6} & c \end{pmatrix} \begin{pmatrix} x_R - \hat{x}_R \\ y_R - \hat{y}_R \\ z_R - \hat{z}_R \end{pmatrix}$$

Onde:

- $-\hat{x}_R$, \hat{y}_R , \hat{z}_R e $\Delta \hat{t}$ são os valores estimados para a posição e erro de relógio.
- Agora basta isolarmos a posição que queremos descobrir

Solução

Inspirar para Transformar

A fórmula no slide anterior pode ser reescrita em forma matricial:

$$\Delta \rho = A \Delta P$$

Para isolar ΔP , bastaria multiplicar pela inversa de A à esquerda. Contudo A não é quadrada e portanto utilizamos a pseudo-inversa de Moore-Penrose, obtendo:

$$\Delta P = (A^T A)^{-1} A^T \Delta \rho$$

Solução (Aleluia)

Inspirar para Transformar

Isolando as variáveis de interesse:

$$\begin{pmatrix} x_R \\ y_R \\ z_R \\ \Delta t \end{pmatrix} = \begin{pmatrix} \hat{x}_R \\ \hat{y}_R \\ \hat{z}_R \\ \Delta \hat{t} \end{pmatrix} + (A^T A)^{-1} A^T \begin{pmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \vdots \\ \Delta \rho_6 \end{pmatrix}$$

- Se a linearização não tivesse erros, bastava chutar algum valor para \hat{x}_R , \hat{y}_R , \hat{z}_R e $\Delta \hat{t}$, calcular a equação anterior para obter a posição observada.
- Mas no fim acaba se tornando um processo iterativo, onde utiliza-se os valores calculados para um novo chute até o estimado convergir para a posição observada.