⊗ ATN	// 651 Statistical dynamics
	Maximum Covariance "modes"RotatedOrthogonal
	 Impacts that integrate Land: Precip, Evap, hydrology Ocean
	Wind stressFreshwater fluxZonal mean and eddies
	 Momentum flux [u*v*] drives Zonal PGF vanishes Time mean and anomalies (or 'transients')
	 (or 'transients') Anomaly covariance [w'T'] is eddy or transient heat flux partial_t = conv(flux) or =0 if you assume balance
	or =0 if you assume balance Statistics Joint PDFs Mutual information
(Mutual Information Covariances Marginal, conditional PDFs PDF /histogram
	 Shannon information Moments Skewness
♀ F	variance (stdev is sqrt)MeanPhenomena
	Features (coherent structures) intensity durations in time
	scales in spaceconvectivemesoscale
	 frontal synoptic planetary
	 boundaries? "systems"? Maps/grids (MERRA2) Data collections: hourly, monthly, diurnal. 3D https://goldsmr5.gesdisc.eosdis.nasa.gov/dods/, 2D https://goldsmr4.gesdisc.eosdis.nasa.gov/dods/
	goldsmr4.gesdisc.eosdis.nasa.gov/dods/ State variables Tendencies
	 Integrated Budgets Statistics monthly or daily surface impacts https:// goldsmr4.gesdisc.eosdis.nasa.gov/dods/M2SDNXS- LV.info
	EXTREMES: https://disc.gsfc.nasa.gov/datasets/ M2SMNXEDI_1/summary , https://goldsmr4.gesdis- c.eosdis.nasa.gov/dods/M2SMNXEDI Documentation https://gmao.gsfc.nasa.gov/pubs/docs/
	Bosilovich785.pdf Pure obs (satellite, radar, in situ) spectral imagery interpretations
	 clouds/particles easiest to see hyperlocal values Model Outputs
	(Re)Analyses (data assimilation) Simulations
	Iumerical models: see MindMap Atmosphere.mm Regional (w/ neither virtue!) Globe-covering
	 physics water phase changes subgrid turbulence surface interaction
	 surface interaction radiation longwave shortwave
	shortwavedynamicsspectralgridpoint
	 gridpoint Process-resolving (LES, CRM) microphysics subgrid turbulence
• 1	 subgrid turbulence resolution boundary conditions THE GAP (explicit models help)
	ogic: stability, waves, balance maintenance Ageostrophic in QG theory
	 Stratification and lifted-parcel instability Conserved moist variable (h, theta-e) lifted from PBL Comparison to environment's saturated value of that indi-
	 cates sign of T_parcel - T_env No Title For linearly-mixing variable, entrainment pulls parcel toward env as it rises
	PV: conserved even w/ hordiv, which affects vorticity and mass between theta surfaces in the same (proportional) way Huge in stratosphere (due to static stability part)
	 Mainly matters in strato-tropo sphere interactions Source and sink terms: curl(Friction).grad(theta) 3Dvor.d(heating)/dz
	 Curl friction of course Heating acts as a **downward flux** of PV, like how an upper cool-core cyclone spawns or strengthens a surface of warm-core cyclone with latent heat release. "PV
	substance" is globally conserved! Momentum Horizontal
	 Cartesian tangent plane vort = v_y - u_x, eliminates PGF Absolute vort cons: Ro waves Phase west, energy east, equal
	 Phase west, energy east, equal Goes as wavelength squared Stationary: roughly continent scale wavelength
	 Relative vort cons: vortex interactions, V goes as 1/r aGeostrophic (non-gradient) wind Contains almost all of the divergent wind compo-
	o Ooze to maintain balance (QG omega equation) warm advection —> ascent
	 vorticity advection above —> up gravity waves convection
	 Frictional down-gradient flow Governs change: dV/dt = fV_a x k "Gradient wind": along isobars (Thereby almost no divergence)
	 Vertical diff: "Thermal Wind" V_T directed along isotherms "equivalent barotropic" V_T parallel to isobars
	 Vg turns with height: temperature advection Gradient: neglect partial_t(V) Geostrophic: neglect d/dt(V)
	 Spherical Vertical in atm. hydrostatic approx. Hypsometric equation relates thickness to T. p.
	 Hypsometric equation relates thickness to T, p Use hyd. p as coordinate Full dw/dt equation Thermal buoyancy
	 Thermal buoyancy Dynamic pressure 3D in atm. KE: V dot dV/dt eliminates Cor
	 KE: V dot dV/dt eliminates Cor Source: V.PGF Transport Advective
	 Advective Nonadvective Sink: V.Fri Curl(V): turbulence, tornadoes
	 Curi(v): turbulence, tornadoes solutions (e.g. instabilities) counterweight: stability (KH) internal vorticity line or sheet rolls up into balls, rolls
	 Navier-Stokes: Source = Force PGF: cop enforcing mass continuity Hydrostatic: fights gravity, prevents collapse on sfc
	 Geostrophic: fights divergence of Coriolis force Dynamic: fights divergence of (advection of momentum)
	 Coriolis if coords rotating Gravity Thermo Stability & convection logic
	 Stability & convection logic shear & tornadoes filigree skew-T, log-p plots (trad) moist conserved plots (logical!)
	 Moist conserved Liquid water SE: s - Lq_liq MSE: h = s + Lq_v dh/dt = Qrad + Qmix
	 theta-e ('equivalent') or theta-w ('wet bulb') potential temp. Dry conserved
	 hydrostatic z(p): static energies s = C_p T + gz ds/dt = 0 + L dq/dt + Qrad + Qmix
	 Enthalpy (heat content): C_p T Divide by T: entropy S, or potential temperatures (theta)
	 theta = T(1000 hPa /p)^(R/C_p) Temperature Has adiabatic compression term, clearer to convert from conserved vars as needed
♥ T	needed for density (thickness,buoyancy) ransport tendencies in d/dt Advection -V.del()
	 separate: vertical, horizontal, (equals LS flux convergence, in 3D) Convergence of flux
	 flux by Large-Scale (LS) flow flux by small scales (down gradient: diffusion, viscosity) Area average = flux into perimeter, *zero for globe*
	continuity of mass in space-time rho_t partial derivative =0 in Anelastic and Boussinesq sets rho_t = -div(rho*V)
	/ector calculus 2D: area <> perimeter Circulation theorem
	 Divergence theorem 3D Del operator Curl of vector field: only in 3D Divergence of vector field
	 Divergence of vector field Gradient of scalar field *fields* of scalars and vectors Vectors: mag (w/units), direction
♥ F	Vectors: mag (w/units), direction Partial and total derivatives total d/dt in moving coordinate partials of T(x,y,z,t), T(x,y,p,t)
	partials of T(x,y,z,t), T(x,y,p,t) Quantities and Units Special honorifics (N, J, W, Pa) MKS: Earth, water, 10fingers
	,gs. s