Machine Learning-Based Phishing Website Detection

High-Level Design (HLD)

System Overview

- Data Layer: Kaggle dataset, URL lexical and metadata features
- Processing Layer: Preprocessing, Feature Engineering, ML Model Training, Evaluation
- Application Layer: Streamlit/Web App for URL checking

Detailed Design (DLD)

Input Data

10,000 rows × 50 features (Phishing_Legitimate_full.csv), label column: **CLASS_LABEL** (1 = Phishing, 0 = Legitimate).

Preprocessing

- Drop ID columns
- Median imputation for missing values
- Feature scaling with StandardScaler (for LR)

Feature Set

- Lexical: NumDots, SubdomainLevel, UrlLength, NumDash, IpAddress
- Metadata: NoHttps, HostnameLength, PctExtHyperlinks, AbnormalFormAction
- Behavioral: PopUpWindow, RightClickDisabled, SubmitInfoToEmail

Model Pipeline

1. Load dataset & split (80/20)

- 2. Train models: Logistic Regression, Random Forest, Gradient Boosting
- 3. Evaluate with Accuracy, Precision, Recall, F1, ROC-AUC
- 4. Save best model (Random Forest)

Flowcharts / Diagrams (Text Format)

Workflow Diagram

```
User URL → Feature Extraction → Preprocessing → ML Model → Prediction → Result
```

Data Flow Diagram (DFD)

```
Level 0: User ↔ Phishing Detection System ↔ Dataset

Level 1:

Data Input → Feature Extractor → Preprocessor → Classifier → Output
```

Process Flow (Training Phase)

```
Start

↓
Load Dataset

↓
Preprocess Data

↓
Train Models (LR, RF, GB)

↓
Evaluate Models

↓
Save Best Model

↓
End
```

Process Flow (Prediction Phase)

```
Start

↓
User Enters URL

↓
Extract Features

↓
Load Saved Model

↓
Predict Phishing/Legitimate

↓
Show Result

↓
End
```

Results

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	96.7%	0.96	0.97	0.967	0.987
Random Forest	99.4%	0.99	0.99	0.994	0.999
Hist. Gradient Boost	98.9%	0.98	0.99	0.989	0.998

Visual Results

Dataset Description

ROC Curve

Confusion Matrix

Feature Importances

References (IEEE Format)

- 1. N. Abdelhamid, A. Ayesh, and F. Thabtah, "Phishing detection based associative classification data mining," *Expert Systems with Applications*, vol. 41, no. 13, pp. 5948–5959, 2014.
- 2. Y. Zhang, J. Hong, and L. F. Cranor, "CANTINA: A content-based approach to detecting phishing websites," in *Proc. 16th Int. Conf. World Wide Web (WWW)*, 2007, pp. 639–648.
- 3. D. Miyamoto, et al., "An evaluation of machine learning-based methods for detection of phishing sites," in *Proc. APWG eCrime Researchers Summit*, 2008.
- 4. S. Marchal, G. Armano, et al., "PhishStorm: Detecting phishing with streaming analytics," *IEEE Trans. Comput.*, vol. 65, no. 5, pp. 1352–1365, 2016.
- 5. Kaggle, "Phishing Website Dataset," [Online]. Available: https://www.kaggle.com/dataset