Cálculo 1

Integração por frações parciais - Parte 1

Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções do tipo $\frac{p(x)}{q(x)}$, com p e q sendo polinômios. Por exemplo, suponha que queremos integrar a função

$$f(x) = \frac{x+1}{x^2 + 2x - 3} = \frac{x+1}{(x+3)(x-1)}.$$

O que vamos fazer é tentar escrever a função acima como uma soma de frações mais simples, que sabemos integrar. Mais especificamente, vamos procurar constantes A e B tais que

$$\frac{x+1}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1}.$$

Para encontrar as constantes, vamos escrever todos os termos do lado direito acima com um denominador comum:

$$\frac{x+1}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1} = \frac{A(x-1) + B(x+3)}{(x+3)(x-1)}.$$

Olhando para os dois termos extremos da expressão acima, percebemos que elas têm o mesmo denominador. Assim, para que sejam iguais, é necessário que tenham o mesmo numerador, isto é,

$$x + 1 = A(x - 1) + B(x + 3) = (A + B)x + (-A + 3B).$$

Igualando os coeficientes dos termos de mesmo grau, concluímos que

$$A + B = 1,$$
 $-A + 3B = 1.$

Resolvendo este sistema concluímos que A = 1/2 = B. Deste modo,

$$\frac{x+1}{(x+3)(x-1)} = \frac{1/2}{x+3} + \frac{1/2}{x-1}.$$

Integrando, obtemos

$$\int \frac{x+1}{(x+3)(x-1)} dx = \frac{1}{2} \int \frac{1}{x+3} dx + \frac{1}{2} \int \frac{1}{x-1} dx = \frac{1}{2} \ln|x+3| + \frac{1}{2} \ln|x-1| + K.$$

A decomposição que fizemos acima é chamada de decomposição em frações parciais da função f. Basicamente, queremos escrever uma função racional como uma soma de outras frações mais simples. Vamos fazer mais dois exemplos.

Exemplo 1. Para a função $\frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)}$, vamos procurar constantes $A, B \in C$, tais que

$$\frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+3}.$$

Colocando os termos do lado direito todos com o mesmo denominador (x-1)(x+1)(x+3), podemos igualar os numeradores para concluir que

$$x^{2} + 4x + 1 = A(x+1)(x+3) + B(x-1)(x+3) + C(x-1)(x+1).$$
(1)

A princípio, a igualdade acima é valida para todos os valores $x \in \mathbb{R} \setminus \{-3, -1, 1\}$. Contudo, por continuidade, podemos supor que ela vale para qualquer x real. Assim, escolhendo x = 1, obtemos

$$6 = (1)^2 + 4 \cdot 1 + 1 = A(1+1)(1+3) + B(1-1)(1+3) + C(1-1)(1+1) = 8A,$$

e portanto A=3/4. De maneira análoga, fazendo x=-1 obtemos -2=-4B, e portanto B=1/2. Fazendo agora x=-3, concluímos que C=-1/4. Assim,

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx = \int \frac{3/4}{x - 1} dx + \int \frac{1/2}{x + 1} dx + \int \frac{-1/4}{x + 3} dx,$$

ou ainda

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} dx = \frac{3}{4} \ln|x - 1| + \frac{1}{2} \ln|x + 1| - \frac{1}{4} \ln|x + 3| + K.$$

Vale observar que, neste exemplo, encontramos as constantes A, B e C escolhendo valores apropriados de x. Poderíamos também ter reescrito a equação (1) como

$$x^{2} + 4x + 1 = (A + B + C)x^{2} + (4A + 2B)x + (3A - 3B - C),$$

o que nos levaria ao sistema

$$A + B + C = 1$$
, $4A + 2B = 4$, $3A - 3B - C = 1$.

Em seguida, usa-se qualquer método para resolver o sistema e encontrar as constantes. \square

Exemplo 2. Vamos encontrar uma primitiva para $\frac{5x^2 + 3x}{(x-1)(x+1)^2}$. Em analogia ao que fizemos acima, vamos tentar uma decomposição na forma

$$\frac{5x^2 + 3x}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{(x+1)^2} = \frac{A(x+1)^2 + B(x-1)}{(x-1)(x+1)^2}.$$

Expandindo o numerador da última fração acima, vemos que as constantes A e B devem satisfazer

$$5x^2 + 3x = Ax^2 + (2A + B)x + (A - B).$$

Igualando os coeficientes, obtemos

$$A = 5,$$
 $2A + B = 3,$ $A - B = 0.$

Usando a primeira e a terceira equação concluímos que A = B = 5. Assim, 2A + B = 15, de modo que a segunda equação não pode ser satisfeita.

O procedimento acima deu errado porque não tentamos a expressão correta. Vamos fazer uma nova tentativa, fazendo

$$\frac{5x^2 + 3x}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} = \frac{A(x+1)^2 + B(x-1)(x+1) + C(x-1)}{(x-1)(x+1)^2}.$$

Expandindo o numerador como antes, obtemos

$$5x^2 + 3x = (A+B)x^2 + (2A+C)x + (A-B-C),$$

o que nos leva às seguintes equações

$$A + B = 5$$
, $2A + C = 3$, $A - B - C = 0$.

Este é um sistema de três equações e três incógnitas. Após resolvê-lo, obtemos $A=2,\,B=3$ e $C=-1,\,$ de modo que

$$\int \frac{5x^2 + 3x}{(x-1)(x+1)^2} dx = \int \frac{2}{x-1} dx + \int \frac{3}{x+1} dx + \int \frac{-1}{(x+1)^2} dx.$$

Todas as integrais do lado direito são simples e, após resolvê-las, obtemos

$$\int \frac{5x^2 + 3x}{(x-1)(x+1)^2} dx = 2\ln|x-1| + 3\ln|x+1| - \frac{1}{x+1} + K,$$

que é a solução do problema. \square

O método descrito acima deve ser aplicado somente quando o grau do numerador é menor do que o grau do denominador. Quando isso não acontece, podemos sempre efetuar a divisão de modo a recair na soma de um polinômio (que é sempre fácil de integrar) com uma outra função racional, tendo agora grau do numerador menor que o do denominador. Por exemplo, para a função

$$f(x) = \frac{2x^3 + 7x^2 + x - 8}{x^2 + 2x - 3},$$

após efetuar a divisão, obtemos

$$2x^3 + 7x^2 + x - 8 = (2x+3)(x^2 + 2x - 3) + (x+1).$$

Perceba que o termo (x + 1), que é o resto da divisão, tem grau menor que 2, que é o grau do divisor. A expressão acima nos fornece

$$\frac{2x^3 + 7x^2 + x - 8}{x^2 + 2x - 3} = (2x + 3) + \frac{x + 1}{x^2 + 2x - 3},$$

de modo que

$$\int \frac{2x^3 + 7x^2 + 2x - 7}{x^2 + 2x - 3} dx = x^2 + 3x + \int \frac{x + 1}{x^2 + 2x - 3} dx$$

e a última integral pode ser resolvida como nos exemplos acima.

Uma outra observação é que a técnica sempre funciona quando o denominador da fração pode ser escrito como um produto de termos irredutíveis de grau 1, eventualmente elevados à alguma potência. Um termo do tipo $(x-r)^m$ no denominador, com $m \in \mathbb{N}$, vai gerar a seguinte soma na decomposição

$$\frac{A_1}{x-r} + \frac{A_2}{(x-r)^2} + \dots + \frac{A_m}{(x-r)^m}.$$

Após encontrar os coeficientes, essa soma pode ser facilmente integrada, bastando para isso observar que

$$\int \frac{A_1}{x-r} dx = A_1 \ln|x-r| + K, \qquad \int \frac{A_k}{(x-r)^k} dx = A_k \frac{(x-r)^{-k+1}}{-k+1} + K,$$

para cada $k = 2, \ldots, m$.

Tarefa

Nesta tarefa vamos tentar encontrar uma primitiva para a função $f(x) = \frac{x+1}{x(1+x^2)}$. Note que o grau do numerador é menor do que o do denominador, e que este último já se encontra fatorado.

1. Em analogia ao que foi feito no texto, tente encontrar constantes A e B tais que

$$\frac{x+1}{x(1+x^2)} = \frac{A}{x} + \frac{B}{1+x^2}.$$

Por que isso não é possível?

2. O insucesso do item acima mostra que a decomposição que tentamos não está na forma correta. Vamos então tentar

$$\frac{x+1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx+C}{1+x^2}.$$

Para a forma acima, encontre as constantes A, B e C.

3. Calcule as integrais $\int \frac{x}{1+x^2} dx$ e $\int \frac{1}{1+x^2} dx$ para, em seguida, usar as constantes encontradas no item acima e obter uma primitiva de f.