

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 441 501 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 13.08.1997 Bulietin 1997/33

(51) Int. Cl.⁶: **B05B 5/053**

(21) Application number: 91300507.0

(22) Date of filing: 23.01.1991

(54) Electrostatic spraying apparatus

Elektrostatische Sprühvorrichtung Appareil de pulvérisation électrostatique

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 06.02.1990 GB 9002631

(43) Date of publication of application: 14.08.1991 Builetin 1991/33

(60) Divisional application: 97100754.7

(73) Proprietor: **IMPERIAL CHEMICAL INDUSTRIES PLC** London SW1P 3JF (GB)

(72) Inventor: Noakes, Timothy James Pantmyn, Nr Moid, Ciwyd (GB)

(74) Representative: Coilingwood, Anthony Robert et inteliectuai Property Department iCl Chemicals & Polymers Ltd P.O. Box 11 The Heath Runcom Cheshire WA7 4QE (GB)

(56) References cited:

EP-A- 0 118 202 DE-B- 1 004 558 BE-A- 509 399

GB-A-2 197 225

US-A-3 630 441

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

This invention relates to an electrostatic spraying device.

1

Energy efficiency and generator current capacity 5 are not viewed as important in most conventional electrostatic spraying applications, since most use is in heavy industrial applications. In attempting to design small and/or hand held devices for the domestic market, for example, one of the major costs is that of the high voltage supply, usually in the form of a generator. Reducing the current output required from the generator enables it to be built less expensively. However, a problem with previously proposed devices is that if the output current of the generator is reduced significantly, the devices function less effectively or not at all.

EP-A-0163390 discloses an electrostatic spraying device comprising a nozzle, a liquid delivery arrangement incorporating a mechanically operable valve for supplying liquid from a reservoir to the nozzle and a high voltage generator for applying a high voltage relative to earth to the nozzle. A field adjusting electrode is located near to the nozzle and acts as a drain for surface leakage currents.

EP-A-0118202 discloses an aerosol type valved container for use in electrostatic spraying, the container being fitted with a device for preventing accidental acuation of the valve.

GB-A-2197225 discloses a compressed air assisted electrostatic paint spraying gun provided with a 30 high tension electrode in the paint supply duct and a metallic part connected to the metal handgrip of the gun upstream of the electrode for earthing the paint stream at a position which is located remotely from the electrode by means of length of plastics hose. This arrangement is intended to reduce the return current or leakage current through the paint to earth so as to allow paints of low resistance or metallic pigment content to be sprayed at higher efficiency.

Broadly, the inventive concept underlying the present invention resides in the recognition that it is possible to use a generator which has a current capacity much smaller than is conventional.

In accordance with the invention, there is provided an electrostatic spraying device comprising a nozzle, 45 means for supplying liquid to the nozzle, and high voltage supply means having a high voltage output pole connected, in use, so that liquid sprayed from the nozzle is electrostatically charged, characterised in that the leakage path from the high voltage output pole to the low voltage input pole of the high voltage supply means is specifically designed to have a length which, in use, reduces the leakage current between said poles to less than 0.3 microamps.

Preferably the leakage is less than 0.03 microamps. In prior art spraying devices, the majority of the current supplied by the high voltage generator is surface leakage current and unwanted corona discharge, only a proportion being spraying current i.e. current actually

used to charge the spray. For example a known hand held electrostatic crop spraying device has a spray current (to charge the spray) of about 0.5 microamps and a leakage current which, in use, can be as high as 5 microamps. Reducing the surface leakage enables a smaller generator to be used producing a potential cost

Preferably said high voltage output pole of the high voltage supply means is connected, in use, so that one or more ligaments of liquid is/are propelled from the nozzle, the ligaments breaking up into electrostatically charged droplets, the high voltage supply means having a maximum output current when the device is spraying of 1.5 microamps at 15kV in the case of a single ligament or 0.8 microamps per 15kV plus 0.15 microamps per ligament in the case of more than one ligament.

For example, the high voltage supply means may have a maximum output current when the device is spraying of 0.6 microamps at 15 kV in the case of a single ligament or 0.3 microamps per 15 kV + 0.15 per ligament in the case of multi-ligament spraying. Where the liquid being sprayed has a suitable resistivity, i.e. of the order if 108 ohm cm or above, the consumption of current by non-catastrophic corona discharge is negligible and the maximum output current that the high voltage supply means is capable of producing may be 0.33 microamps per 15 kV for a single ligament sprayer or 0.03 per 15 kV + 0.15 per ligament in the case of a multi-ligament sprayer.

As referred to above, it is to be understood that a reference to a maximum output current capability of for example 0.6 microamps at 15 kV means that at 15 kV. the maximum current output capability is 0.6 microamps but for high voltage supply means designed to operate at other voltage outputs, the maximum current output capability applicable is proportionally related so that, for instance, at an operating voltage of 20 kV the maximum current output capability is 20/15 x 0.6, ie 0.8 microamps.

Where the device of the invention is designed to produce multi-ligament spraying (e.g. using an annular or linear nozzle with an extended discharge edge), it is preferably arranged to operate so as to produce a ligament to ligament pitch of at least 400 microns.

Preferably the arrangement is such that the greatest average potential gradient, in normal use, across surfaces of the device between conductors or semiconductors connected to the high voltage output pole and the low voltage input pole of the high voltage supply means is less than 3kV per cm.

Typically a device in accordance with the invention is operated with an average potential gradient of less than 3 kV per cm across surfaces of the device between conductors or semiconductors connected between the high voltage output pole and the low voltage input pole of the high voltage supply means.

Preferably the greatest average potential gradient across such surfaces is less than 2 ky per cm.

Preferably where the device is so designed that

portions of such surfaces are disposed in such a way that potential current leakage paths exist across gaps between those surface portions, in normal use of the devices the air pathway potential gradient between any such surface portions is no greater that 6 kV/cm.

In comparison with normal practice at high voltages, the potential gradient is much less. This reduces the surface leakage current, so reducing the load on the generator. The generator may therefore be built less expensively.

In a preferable aspect of the invention, the liquid to be sprayed is contained in a pressurised container having a delivery valve which, in use, is opened by relative movement of the container and the nozzle towards each other, the device having a body or body part from which the nozzle extends, said valve being opened, in use, by relative movement between the container and the body or body part, the nozzle remaining fixed in relation to the body or body part.

Preferably, the body or body part is formed in one piece so that it is uninterrupted round its periphery, and formed of insulating plastics material, the nozzle projecting from one end and movement being applied to the container from the other end to operate the valve

The high voltage supply means may comprise a generator situated on a side of the container remote from the nozzle and having a high voltage connector for electrical connection thereto, the low voltage circuit of the generator being remote from the container, movement being applied to the container through the generator to operate the valve.

The generator preferably produces a unregulated output voltage, ie without employing any feedback-dependent form of voltage regulation, thereby allowing the generator to be constructed cheaply. Such a generator is particularly applicable to single ligament spraying since such spraying can tolerate a relatively wide range of operating voltages.

In a preferred embodiment of the invention the generator comprises means for converting a low voltage from a dc supply into a relatively low ac voltage, means for storing the energy content of said ac voltage, means for repeatedly discharging the energy-storing means to produce a relatively low magnitude higher frequency decaying oscillatory voltage, high gain transformer means for converting said higher frequency voltage to a large magnitude decaying oscillatory voltage (typically at least 10 Kv), and means for rectifying said large magnitude voltage to provide a uni-polar high voltage output which, when applied to the device, is subject to smoothing by capacitive elements associated with the device.

Such a generator can be manufactured in a compact form and at lower cost than generators of the type used conventionally which employ an array of voltage multiplier circuits to convert a low input voltage into a high output voltage suitable for use in electrostatic spraying devices, and the preferred generator does not require feedback control to produce a regulated voltage output as used in conventionally used generators.

In a preferable aspect of the invention there is provided an electrostatic spraying device having a nozzle and a surface near the nozzle which is sufficiently insulated as to charge to a high voltage, in use, whereby the spray from the nozzle is repelled therefrom. This reduces the amount to which the sprayed droplets spread, which may be desirable in some cases. In a preferred embodiment the surface is annular.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figures 1a and 1b are a cross section of an electrostatic spray gun embodying the invention;

Figures 2a and 2b are a cross section of another electrostatic spray gun embodying the invention.

Figure 3 is a view similar to Figures 1a and 1b but showing a modification thereof; and

Figure 4 is a block diagram of the circuitry of the high voltage generator employed in the embodiments of this invention.

DETAILED DESCRIPTION

The invention may be embodied in any shape convenient to the purpose to which it is to be put. The embodiments illustrated are both in the form of a spray gun.

The spray gun illustrated in Figure 1 has a body member 2 and a hand grip 4. The body member 2 is in the form of a tube of insulating plastics material. The tube is integral, that is to say it has no breaks round its periphery in contrast to a clam shell moulding. Suitable materials will usually be selected from a group defined by a bulk resistivity preferably greater than 1014 ohm cm. Given suitable thicknesses of material such bulk resistivities reduce the leakage through the material to a negligible amount. The problem is that at high voltages the leakage across the surface becomes important so that there is a requirement for high surface resistivity values in use. Thus materials which contaminate easily or absorb water easily are not suitable. For example it is preferred that the material does not absorb more than 0.7% by weight of water. Examples of suitable materials are ABS, polypropylene, polyethylene, some grades of polyvinyl chloride, acrylic, polycarbonate, acetal.

The body member is externally threaded at its end 6 to receive an end cap 8, which may also be of plastics material selected from the same group. Alternatively the end cap may be of a less insulating material, for example Tufnol Kite brand. The end cap 8 has a central aperture 10 through which, in use, a nozzle 12 projects. Means are provided, in the form of a container 14, for delivering liquid to he sprayed to the nozzle. The nozzle 12, which is permanently attached to the container 14, has a shoulder 16 which is received by a recess 18 on

the inside of the end cap, thereby to locate the nozzle accurately centrally of the end cap. The container may be replaced by removing the end cap.

The container is pressurised by liquefied propellant, e.g. fluorocarbon 134A, which is separated from the liquid to be sprayed by a metal foil sack (only part of which is shown). The supply of fluid to the nozzle 12 is switched on and off by a valve 20 with which a passage 22 in the nozzle communicates. As in the case of an aerosol can, pressing the valve 20 relatively towards the container 14 opens the valve allowing liquid to be propelled from the container by the pressurised propellant and into the passage 22 of the nozzle. An internal restriction in the container 14 limits the flow rate to a low value, e.g. 1 cc per minute and so that the liquid arrives at the outlet 24 of the nozzle at very low pressure which is not sufficient to cause any or significant atomisation. The nozzle may be conducting or insulating. It is preferred that the nozzle is insulating. The container 14 is conducting, in this example.

In the examples illustrated a single ligament issues from the tip of the nozzle. In other examples, the nozzle may be annular or in the shape of a plane blade so that a plurality of ligaments of liquid issue therefrom.

At the end of the body member 2 remote from the nozzle 12, a high voltage generator 26 is situated in a tubular carriage 28. The carriage 28 is slidable in the body member 2 and is biased away from the end cap 8 by a tension spring 29. The generator has a high voltage output pole 30 connected to a contact schematically indicated at 32 for contact with the conducting container 14. The other pole is electrically common with a low voltage supply lead 34 and thus connected via a resistor 36 to a contact strip 38 on the exterior of the hand grip 4. The low voltage supply lead is connected to one pole of a battery 40. The other pole of the battery is connected to the generator by another low voltage supply lead 42 via a microswitch 44.

In order to increase the length of the leakage path from the high voltage output pole 30 to the lead 34 on the low voltage side of the generator, the generator is hermetically sealed in the carriage 28, e.g. by encapsulating the generator in the carriage 28 so that there is no direct surface path inside the tubular carriage 28 between the one high voltage pole 30 of the generator and the other pole 34. The insulation on the low voltage leads 34 and 42 is sufficient that there is no significant leakage through the bulk of the insulation in relation to surface leakage to a break in the insulation at the connection with the resistor 36.

In a version, as illustrated in Figure 3, the tubular carriage 28 is extended towards the nozzle end of the container 14 and is sufficiently large for the container to fit therein. This both lengthens the leakage path from the container to the resistor 36, and ensures that if there is any spillage from the container 14, it is contained by the carriage and does not contaminate the leakage path.

The valve 20 is opened, in use, by relative move-

ment between the container 14 and the body 2, the nozzle 12 remaining fixed in relation to the body. Movement to operate the valve is applied to the container by movement of the generator. To this end, the grip 4 has a trigger 46 which when squeezed operates on one end of a lever 48 which is pivotally mounted at 50. Movement of the lever 48 is communicated by a link 51 to a further lever 52 which is pivotally mounted at one end 54. A central portion 56 of the lever 52 bears on the end of the carriage 28 remote from the container 14 so that when the trigger 46 is squeezed, resulting movement thereof is translated into movement of the carriage, and thus the container, towards the nozzle, so opening the valve 20. As this happens a linkage 58 operates the microswitch 44 so that power is supplied to the generator. The high voltage output from the generator is thus applied to the container and so to the liquid therein. The high voltage is thus conducted to the tip of the nozzle, via the liquid in the case of an insulating nozzle, where the electric field strength is sufficient to produce a charged spray.

The spray may be formed preponderantly by electrostatic forces, suitable liquids for such operation preferably having a resistivity in the range 1 x 10⁵ to 5 x 10¹⁰ ohm cm in the case of non-aqueous liquids. In the case of more conducting liquids and aqueous systems, a jet may be produced by hydraulic pressure, even in the absence of the high voltage, which jet breaks up into coarse droplets. The addition of the high voltage improves the spray by decreasing the droplet size and, since like charges repel each other, spreading the spray out into more of a cloud.

The end cap 8 has an annular shroud 60 also formed of insulating material. In initial operation of the spray gun small amounts of charge accumulate on the outer edge 62 of the shroud. As the shroud is insulating, e.g. being made of non conducting material, e.g. Tufno1, ABS, polypropylene, polyethylene, polyvinyl chloride, acrylic po1ycarbonate, acetal, and supported on the insulating body 2 leakage is sufficiently slow as the leave the shroud charged. The charge on the edge is of the same polarity as the spray which it thus repels. This reduced the tendency of the spray to lift or spread out. The shroud 60 can thus be used to control the shape of the spray and to this end may be adjustable or there may be several different interchangeable shrouds.

In use the grip is held in a hand and the trigger is squeezed as explained above. The hand contacts the conducting strip 38 to provide an earth return circuit. In relation to the high voltage circuit, any point on the relatively conducting hand is effectively short circuited to the conducting strip 38 and thus to the pole of the high voltage generator which is connected thereto in common with the low voltage input.

The two shortest leakage paths between the poles of the high voltage generator are indicated in the drawing by the heavy outlines in Figure 1b.

Recalling that in use the carriage is pressing against the rear of the container 14, one of these leakage paths is from the rear of the container 14, along the

surface inside the body member 2 between it and the carriage 29, through a slot 64 through which the link 51 and lever 52 connect, and over the outer surface of the grip 4 to the conducting strip 38.

From the slot 64 in the body there is also a sub 5 leakage path over the external surface of the tubular body member 2 (but inside the hand grip) to the finger of the operator squeezing the trigger.

Another leakage path is from the front of the container 14 across internal surfaces of the body member 2, across the surfaces through the screw thread of the end cap and over the external surfaces of the body member 14 and grip 4 to the hand of the operators and so to the conducting strip 38

In contrast to the situation if the body member 2 were a clam shell moulding, there is no direct surface path through the body member 2 since this is an integral tube.

The generator is unregulated and has a rectified output such that, at the load presented by the spraying current and the leakage, it operates at a voltage of about 15 kV. The distance of the shortest leakage path is designed to be about 8 cm, giving an average potential gradient over the shortest leakage path of 1.88 kV per cm. In practice the average potential gradient should not be greater than 3 kV per cm, preferably not greater than 2 kV per cm. By design of the gun with regard to such parameters, the leakage current can be reduced to less than 0.3 micro amps, more preferably to less than 0.03 micro amps. At a spraying rate of 1 cc per minute in the illustrated embodiments using a liquid formulation having a resistivity of the order of 10⁸ ohm.cm or greater, the spraying current (the current which actually charges the liquid) is less than 0.1 micro amps. In multi-ligament sprayers, the usual maximum spraying current per ligament would be about 0.15 micro amps. In the case of a single ligament sprayer as illustrated, the maximum spraying current would be about 0.3 micro amps. Thus, a 15 kV generator which in operation, has a maximum output current capability of 0.6 micro amps at the load presented by the spraying current and the leakage, would be adequate for most applications. In other words, in order to achieve the benefits of a low cost generator, for high resistivity liquids of the order of 108 ohm. cm and above a 15 kV generator which when spraying produces a current which is a maximum of 0.6 microamps for a single ligament sprayer is all that is required, since the spraying current is not more than 0.3 microamps and the leakage current is not more than 0.3 microamps. Where the leakage is limited to 0.03 microamps, a generator having a maximum output current capability of about 0.33 micro amps at 15 kV is all that is required so as to provide up to 0.3 micro amps spraying current and 0.03 micro amps leakage. In a single ligament sprayer, the spraying current is sometimes higher than is usual in a multi-ligament sprayer. In a multi-ligament sprayer, the spraying current would not normally be above, say, 0.15 micro amps per ligament per 15 kV. For a multi ligament sprayer all that is required is a generator which, when actually working in the device, provides an output current no greater than 0.15 micro amps per ligament plus an amount for leakage of 0.3 micro amps, preferably 0.03 micro amps.

In the foregoing it has been assumed that current consumption through non-catastrophic corona discharge is negligible, which is generally the case especially for single ligament spraying where the operating voltage of the generator is typically be of the order of 15 kV but generators with operating voltages up to 25 kV may be used without generating excessive corona discharge especially when used to spray liquids having resistivities of the order of 108 ohm. cm. In some circumstances however, even with operating voltages of the order of 15 kV, corona discharge may consume current in amounts which are comparable or even greater than the spraying current. For example, in multi-ligament spraying with liquids of high resistivity, current consumption resulting from corona discharge will usually be negligible but may become substantial, for instance up to 1 micro amp, if dry spots develop at the spraying edge especially in the case of linear nozzles, as are often used for multi-ligament spraying. Also in the case of single ligament spraying using liquids having low resistivity, eg of the order of 5 x 10⁶ ohm. cm, or liguids containing conductive particles, corona discharge can give rise to current consumption of up to about 0.5 micro amps (usually less). Multi-ligament spraying is generally not practicable with low resistivity liquids. Thus, where a spraying device is to be used in circumstances where there may be non-negligible current consumption due to corona discharge, the generator may be selected accordingly so that it has a maximum current output capability which is adequate to meet the load presented by the spraying current, the surface leakage path current and the current consumed by any corona discharge. Generally, where non-negligible current consumption by corona discharge is to be catered for, a generator with a maximum output current capability of about 1.5 micro amps will suffice and can be fabricated as a low cost unregulated generator of the type described herein with reference to Figure 4 of the drawings.

The embodiment illustrated in Figure 2a is similar to that of Figure 1a except for the way in which the generator is mounted and the way the can is pressed to operate the valve.

In this embodiment the container is mounted in a tubular body part 2a equivalent to the body member 2 in the embodiment of Figure 1. The body part 2a has an end cap 8, which in this case is shown integral with the tubular part 2a. The part 2a again is formed with no breaks round its periphery, e.g. by moulding. The part 2a has a trigger 46 which is fixed thereon. Another body part 2b, in which the body part 2a telescopes, carries the generator 28 and has a hand grip 4 fixed thereon. The body parts 2a and 2b are biased apart by means not shown.

In operation the trigger 46 is squeezed towards the

hand grip until the contact 32 on the generator meets the end of the container 14. Further pressure moves the container 14 in relation to the body part 2a whilst, again, the nozzle remains stationary in the part 2a. This movement operates the valve to supply liquid from the container to the nozzle producing a spray of electrostatically charged liquid as explained above.

The two shortest leakage paths are also shown in heavy outline in Figure 2 and are similar to those shown in Figure 1. One of the paths is from the rear of the container 14, along the surface between the parts 2a and 2b to the hand operating the trigger and so to the conducting strip 38. The other path is from the front of the can over the inside surfaces of the part 2a through the opening 10 (the nozzle is insulating), over the outer surfaces of the part 2a to the operator's hand and so to the conducting strip 39. The leakage paths are sufficiently long to achieve the required low leakage current enabling use of the same low current generator as in the embodiment of Figure 1.

Referring to Figure 4, the high voltage generator described previously is preferably one which does not require the use of an array of voltage multiplier circuits as in conventional generators. Thus as shown, the generator comprises an oscillator 100 receiving as its input the dc voltage provided by the battery pack 40 shown in Figure 1a for example. Typically, this input voltage is of the order of 9v. The oscillator 100 provides an oscillating output, typically of the order of 100Hz, which is converted by transformer 102 into a relatively low magnitude ac voltage (typically ca. 200v) which is applied to an energy storage and switching circuit 104, using capacitive elements to store the energy content of the output from the transformer 102. The circuit 104 is designed in such a way that the energy stored capacitively is repeatedly discharged at a frequency typically between 5 and 20 Hz, thereby producing an oscillatory output of a decaying nature (see signal depicted by reference 106), the peak output voltage of which is typically 200 v and the decay rate being such that the signal decays to virtually zero voltage within a millisecond or so. The pulsed signal 106 is applied to a high gain transformer 108 which converts it to a voltage of the order of 20-25kV (signal 110) and this signal is then applied to a half wave or full wave rectifier circuit 112 to produce the unipolar high voltage output 114 of the generator. The signal 114 is shown in its smoothed form, the smoothing being effected by stray capacitances associated with the device.

One form of generator suitable for use in the 50 embodiments described herein is disclosed in EP-A-0163390.

Although the embodiments described above have used electrical contact between the liquid and a conductor, in the form of the container, to charge the liquid, other arrangements are possible. For example in another such arrangement, there is no electrical contact between the liquid and the high voltage output of the generator but a ring electrode, connected to the high

voltage output of the generator surrounds the nozzle and charges the liquid by induction.

In another example, not illustrated, the nozzle is made of a porous material similar to that used for the writing element in a felt tip pen. The container may not then need to be pressurised, supply of liquid to the nozzle relying on capillary action.

Whereas the main teaching of this specification relates to the reduction of leakage across the surface of the device, those skilled in the art will recognise that the device should be of suitable materials and should have suitable radii and corner radii to reduce corona discharge to a minimum so as to reduce unwanted effects of corona in loading the generator.

In order to measure leakage currents, the following technique is suggested. All the parts of the device should be assembled in their working positions, with the exception of the generator which is replaced with a non working dummy having dummy electrical connectors in places corresponding to those in the real generator. The container should either be empty or it should be ensured that there is no liquid delivered. When the nozzle is dry, especially if it is conducting, there is a tendency for corona to discharge therefrom. To prevent this the nozzle tip should be fitted with a cover sufficiently insulating and of sufficiently large diameter as to prevent corona discharge. An external generator, adjusted to the operating voltage, has its high voltage circuit connected across the dummy high voltage poles of the dummy generator, e.g. between the container and the conducting strip 38. A sensitive ammeter or electrometer is connected to measure the current from the external generator, which current represents the leakage current of the device in use.

The spraying current and any current consumed through corona discharge may be determined by using the device (with a live generator) to spray the liquid towards an imperforate catch target (e.g. a metal sheet) and interposing a grid of fine wire gauze between the device and the catch target so that the corona current is collected by the grid and the charged spray droplets are collected by the catch target. The grid and target may be connected to respective ammeters to allow the different current components to be measured. In practice, some of the droplets may tend to deposit on the grid but this can be minimised by making the aperture size defined by the intersecting wires of the grid suitably large (eg 2.5cm square).

Cialms

 An electrostatic spraying device comprising a nozzle (12), means (14) for supplying liquid to the nozzle, and high voltage supply means (26) having a high voltage output pole (30) connected, in use, so that liquid sprayed from the nozzle (12) is electrostatically charged, characterised in that the leakage path from the high voltage output pole (30) to the low voltage input pole (34) of the high voltage sup-

20

35

40

ply means (26) is specifically designed to have a length which, in use, reduces the leakage current between said poles (30, 34) to less than 0.3 microamps.

- A device as claimed in Claim 1 in which the leakage current between said poles is less than 0.03 microamps.
- 3. A device as claimed in Claim 1 in which said high voltage output pole (30) of the high voltage supply means (26) is connected, in use, so that one or more ligaments of liquid is/are propelled from the nozzle (12), the ligaments breaking up into electrostatically charged droplets, the high voltage supply means (26) having a maximum output current when the device is spraying of 1.5 microamps at 15kV in the case of a single ligament or 0.8 microamps per 15kV plus 0.15 microamps per ligament in the case of more than one ligament.
- 4. A device as claimed in Claim 3 in which the maximum output current of the high voltage supply means (26) is 0.3 microamps at 15 kV in the case of a single ligament, or 0.3 microamps per 15 kV plus 0.15 microamps per ligament in the case of more than one ligament.
- 5. A device as claimed in any one of Claims 1 to 4 in which the greatest average potential gradient, in normal use, across surfaces of the device between conductors or semiconductors connected to the high voltage output pole (30) and the low voltage input pole (34) of the high voltage supply means (26) is less than 3kV per cm.
- A device as claimed in Claim 5 in which said greatest average potential gradient is less than 2 kV per
- 7. A device as claimed in any one of the preceding claims in which the liquid to be sprayed is contained in a pressurised container (14) having a delivery valve (20) which, in use, is opened by relative movement of the container (14) and the nozzle (12) 45 towards each other, the device having a body or body part (2) from which the nozzle (12) extends, said valve (20) being opened, in use, by relative movement between the container (14) and the body or body part (2), the nozzle (12) remaining in fixed 50 relation to the body or body part (2).
- A device as claimed in Claim 7 in which the body or body part (2) is uninterrupted round its periphery and is formed of insulating plastics material.
- A device as claimed in Claim 7 or 8 in which the high voltage supply means comprises a generator (26) situated on a side of the container (14) remote

from the nozzle (12) and having a high voltage connector (30, 32), the low voltage circuit of the generator (26) being remote from the container.

- A device as claimed in any one of the preceding claims in which the nozzle (12) is made of insulating material.
 - 11. A device as claimed in any one of the preceding claims in which the high voltage supply means (26) comprises means (100, 102) for converting a low voltage from a dc supply into a relatively low ac voltage, means (104) for storing the energy content of said ac voltage, means for repeatedly discharging the energy-storing means (104) to produce a relatively low magnitude higher frequency decaying oscillatory voltage, high gain transformer means (108) for converting said higher frequency voltage to a large magnitude decaying oscillatory voltage and means (112) for rectifying said large magnitude voltage to provide a smoothed uni-polar high voltage output.
 - 12. A device as claimed in any one of Claims 1 to 6, or as claimed in any one of Claims 10 and 11 when dependent on any one of Claims 1 to 6, comprising a housing (2, 4) which is suitable for hand held use and which receives a container (14) for the liquid, the housing including a body part (2) from which the nozzle (12) extends and said body part being uninterrupted around its periphery and being formed of insulating plastics material.
 - 13. A device as claimed in Claim 12 in which said container (14) is collapsible and means is provided for compressing the container in order to effect feed of liquid to the nozzle (12).
 - 14. A device as claimed in Claim 12 or 13 in which the container (14) is provided with a valve (20) and in which opening of the valve (20) is effected in response to movement of the container (14) relative to the housing (2, 4).
- 45 15. A device as claimed in any one of Claims 12 to 14 in which the collapsible container (14) is enclosed within a casing containing fluid pressurising the container.
- 16. A device as claimed in any one of Claims 12 to 15 in which the collapsible container (14) is received in the housing (2,4) as a replaceable unit.
 - 17. A device as claimed in Claim 13 in which the collapsible container (14) is enclosed within a carrier which is mounted for movement within the housing (2, 4) and in which the container is provided with a valve (20) which, in response to movement of the container (14) in a predetermined direction, is

opened, said compressing means being effective to expel liquid from the container (14) upon opening of the valve (20) in response to such movement.

- 18. A device as claimed in any one of Claims 13 to 17 in which the housing (2, 4) includes a user-operable trigger (46) for controlling feed of liquid by the compressing means.
- 19. A device as claimed in any one of Claims 12 to 18 in which the high voltage supply means comprises a HT generator (26) mounted for movement within the housing (2, 4), movement of the HT generator (26) being effected in response to operation of a user-operable member (46) and feed of liquid from the container being controlled in response to such movement of the HT generator or of a mounting (28) for the HT generator.
- 20. A device as claimed in Claim 12 in which the container (14) is mounted for movement within the housing (2, 4) and the compressing means is controlled in response to movement of the container (14) to effect enabling and disabling of liquid feed to the nozzle (12).
- 21. A device as claimed in any one of the preceding claims further comprising a shroud (60) of insulating material which encircles the nozzle (12) and on which a high voltage of the same polarity as that applied to the liquid is developed during spraying operation of the device.
- 22. A device as claimed in any one of Claims 1 to 6, or as claimed in any one of Claims 10 and 11 when dependent on any one of Claims 1 to 6, comprising a tubular body part (2) receiving a collapsible container (14) containing liquid to be sprayed and provided with a valve (20) to control supply of liquid from the container to the nozzle (14), said tubular body part (2) terminating in an end cap (8) which is removable to permit replacement of the container (14) and through which said nozzle (12) projects, and a shroud (60) of insulating material provided on said end cap (8) so as to encircle the nozzle and on which a high voltage of the same polarity as that applied to the liquid is developed during spraying operation of the device.
- 23. A device as claimed in any one of Claims 1 to 8 in which the high voltage supply means comprises an HT generator (26) mounted for movement, such movement being effected in response to operation of a user-operable member (46) forming part of the device and being effective to control supply of liquid to the nozzle (12).
- 24. A device as claimed in Claim 23 comprising an elongate tubular body part receiving in succession

said HT generator (26) which is movable longitudinally within the tubular body part (2) and a collapsible container (14) containing liquid to be sprayed and provided with a valve (20) which controls supply of liquid from the container to the nozzle (12) and which is operable in response to said longitudinal movement of the HT generator (26).

- 25. A device as claimed in Claim 24 in which the collapsible container (14) is received within a suitably dimensioned casing for transmitting movement of the HT generator (26) to the valve (20) to effect opening of the latter.
- 26. A device as claimed in Claim 25 in which said casing is electrically conducting and in which said high voltage is supplied from a high voltage output pole (30) of the HT generator (26) to the nozzle tip via said casing.
- 27. A device as claimed in any one of Claims 1 to 11 in which the device comprises first and second body parts (2a, 2b) which are movable relative to one another and a user operable actuator (46) which effects movement of the body parts (2a, 2b) relative to one another in such a way that the high voltage supply means (26) and the means (14) for supplying liquid are operated in response to such relative movement.
- 28. A device as claimed in Claim 1 or 2 or as claimed in any one of Claims 4 to 27 when dependent on Claim 1 or 2 in which, in the case where the liquid comprises an aqueous system or is more conductive than non-aqueous liquids having a resistivity of 1 x 10⁵ ohm cm, the liquid is discharged from the nozzle (12) as a jet by hydraulic pressure before breaking up into charged droplets.
- 29. A device as claimed in any one of Claims 1 to 28 in which the nozzle (12), liquid supply means (14) and the high voltage supply means (26) are embodied in a hand portable unit.
- 30. The use, in a method of electrostatic spraying, of a device as claimed in any one of the preceding claims.
 - 31. The use as claimed in Claim 30 in which the spray is controlled by means of a shroud (60) of insulating material mounted on the device so as to encircle the nozzle (12) and on which a high voltage of the same polarity as that applied to the liquid is developed during spraying operation of the device.

Patentansprüche

 Elektrostatische Sprühvorrichtung mit einer Düse (12), einer Einrichtung (14) zum Zuführen von Flüs-

sigkeit zur Düse, und einer Hochspannungsversorgungseinrichtung (26)mit einem Hochspannungsausgangspol (30). der Gebrauch derart angeschlossen ist, daß die von der Düse (12) versprühte Flüssigkeit elektrostatisch 5 geladen ist, dadurch gekennzelchnet, daß die Leckagestrecke vom Hochspannungsausgangspol (30) zum Niederspannungseingangspol (34) der Hochspannungsversorgungseinrichtung (26) speziell derart gestaltet ist, daß sie eine Länge hat, die im Gebrauch den Leckstrom zwischen den Polen (30, 34) auf weniger als 0,3 Mikroampere verringert.

- 2. Vorrichtung nach Anspruch 1, bei welcher der Leckstrom zwischen den Polen niedriger als 0,03 Mikroampere ist.
- 3. Vorrichtung nach Anspruch 1, bei welcher der Hochspannungsausgangspol (30) der Hochspannungsversorgungseinrichtung (26) im Gebrauch derart angeschlossen ist, daß ein oder mehrere Flüssigkeitsbänder von der Düse (12) vorwärts gestoßen wird/werden, wobei die Bänder in elektrostatisch geladene Tröpfchen aufbrechen, wobei die Hochspannungsversorgungseinrichtung (26) einen maximalen Ausgangsstrom hat, wenn die Vorrichtung mit 1,5 Mikroampere bei 15 kV im Fall eines einzelnen Bandes oder mit 0,8 Mikroampere pro 15 kV plus 0,15 Mikroampere pro Band im Fall von 30 mehr als einem Band sprüht.
- 4. Vorrichtung nach Anspruch 3, bei welcher der maximale Ausgangsstrom der Hochspannungsversorgungseinrichtung (26) 0,3 Mikroampere bei 15 kV 35 im Fall eines einzelnen Bandes oder 0,3 Mikroampere pro 15 kV plus 0,15 Mikroampere pro Band im Fall von mehr als einem Band beträgt.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, bei 40 welcher im normalen Gebrauch der größte durchschnittliche Potentialgradient über Oberflächen der Vorrichtung zwischen Leitern oder Halbleitern, die mit dem Hochspannungsausgangspol (30) und dem Niederspannungseingangspol (34) der Hochspannungsversorgungseinrichtung (26) verbunden sind, weniger als 3 kV pro cm beträgt.
- 6. Vorrichtung nach Anspruch 5. bei welcher der größte durchschnittliche Potentialgradient niedriger 50 als 2 kV pro cm ist.
- 7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei welcher die zu versprühende Flüssigkeit in einem unter Druck stehenden Behälter 55 (14) enthalten ist, der ein Zuführventil (20) aufweist, das im Gebrauch durch eine aufeinanderzu gerichtete Relativbewegung des Behälters (14) und der Düse (12) geöffnet wird, wobei die Vorrichtung

einen Körper oder ein Körperteil (2) aufweist, von dem aus die Düse (12) absteht, wobei das Ventil (20) im Gebrauch durch eine Relativbewegung zwischen dem Behälter (14) und dem Körper oder Körperteil (2) geöffnet wird, wobei die Düse (12) in Bezug auf den Körper oder das Körperteil (2) feststehend bleibt.

- Vorrichtung nach Anspruch 7, bei welcher der Körper oder das Körperteil (2) um seinen Umfang herum ununterbrochen und aus einem isolierenden Kunststoffmaterial hergestellt ist.
- Vorrichtung nach Anspruch 7 oder 8, bei welcher die Hochspannungsversorgungseinrichtung einen Generator (26) umfaßt, der an einer von der Düse (12) entfernt liegenden Seite des Behälters (14) angeordnet ist, und einen Hochspannungsverbinder (30, 32) aufweist, wobei die Niederspannungsschaltung des Generators (26) vom Behälter entfernt liegt.
- 10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei welcher die Düse (12) aus einem isolierenden Material besteht.
- 11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei welcher die Hochspannungsversorgungseinrichtung (26) eine Einrichtung (100, 102) zum Umwandeln einer niedrigen Spannung einer Gleichstromversorgung in eine relativ hohe Wechselstromspannung umfaßt, eine Einrichtung (104) zum Speichern des Energiegehaltes der Wechselstromspannung, eine Einrichtung zum wiederholten Entladen der Energiespeichereinrichtung (104), um eine relativ niedrige, abklingende Oszillatorspannung mit hoher Frequenz zu erzeugen, eine Transformatoreinrichtung (108) mit hoher Verstärkung, um die höherfrequente Spannung in eine große abklingende Oszillatorspannung umzuwandeln, und eine Einrichtung (102) zum Gleichrichten der großen Spannung, um eine geglättete unipolare hohe Ausgangsspannung bereitzustellen.
- 12. Vorrichtung nach einem der Ansprüche 1 bis 6 oder nach einem der Ansprüche 10 und 11, wenn diese von einem der Ansprüche 1 bis 6 abhängig sind, mit einem Gehäuse (2, 4), das zum tragbaren Gebrauch geeignet ist und einen Behälter (14) für die Flüssigkeit aufnimmt, wobei das Gehäuse ein Körperteil (2) enthält, von dem aus die Düse (12) vorsteht, und wobei das Körperteil um seinen Umfang herum nicht unterbrochen und aus einem isolierenden Kunststoffmaterial hergestellt ist.
 - 13. Vorrichtung nach Anspruch 12. bei welcher der Behälter (14) kollabierbar und eine Einrichtung zum Komprimieren des Behälters vorgesehen ist, um die Zufuhr von Flüssigkeit zur Düse (12) zu bewir-

ken.

- 14. Vorrichtung nach Anspruch 12 oder 13, bei welcher der Behälter (14) mit einem Ventil (20) versehen ist, und bei welcher das Öffnen des Ventils (20) in 5 Reaktion auf eine Bewegung des Behälters (14) relativ zum Gehäuse (2, 4) bewirkt wird.
- 15. Vorrichtung nach einem der Ansprüche 12 bis 14, bei welcher der kollabierbare Behälter (14) innerhalb eines Mantels eingeschlossen ist, der den Behälter unter Druck setzendes Fluid enthält.
- 16. Vorrichtung nach einem der Ansprüche 12 bis 15. bei welcher der kollabierbare Behälter (14) im 15 Gehäuse (2, 4) als austauschbare Einheit aufgenommen ist.
- 17. Vorrichtung nach Anspruch 13. bei welcher der kollabierbare Behälter (14) von einem Schlitten umgeben ist, der bewegbar innerhalb des Gehäuses (2, 4) angebracht ist, und bei welcher der Behälter mit einem Ventil (20) versehen ist, der in Reaktion auf die in einer vorbestimmten Richtung erfolgenden Bewegung des Behälters (14) geöffnet wird, wobei die Kompressionseinrichtung wirksam ist, um die Flüssigkeit aus dem Behälter (14) auf das Öffnen des Ventils (20) hin in Reaktion auf eine derartige Bewegung auszustoßen.
- 18. Vorrichtung nach einem der Ansprüche 13 bis 17. bei welcher das Gehäuse (2, 4) einen vom Benutzer betätigbaren Auslöser (46) enthält, um die Zufuhr der Flüssigkeit mittels der Kompressionseinrichtung zu steuern.
- 19. Vorrichtung nach einem der Ansprüche 12 bis 18. bei welcher die Hochspannungsversorgungseinrichtung einen Hochspannungsgenerator (26) umfaßt, der bewegbar innerhalb des Gehäuses (2, 4) angebracht ist, wobei die Bewegung des Hochspannungsgenerators (26) in Reaktion auf die Wirkung eines vom Benutzer betätigbaren Teils (46) bewirkt und die Zufuhr der Flüssigkeit aus dem Behälter in Reaktion auf eine derartige Bewegung des Hochspannungsgenerators oder einer Halterung (28) für den Hochspannungsgenerator gesteuert wird.
- 20. Vorrichtung nach Anspruch 12, bei welcher der 50 Behälter (14) bewegbar innerhalb des Gehäuses (2, 4) angebracht ist und die Kompressionseinrichtung in Reaktion auf die Bewegung des Behälters (14) gesteuert wird, um die Flüssigkeitszufuhr zur Düse (12) zu ermöglichen oder zu sperren.
- 21. Vorrichtung nach einem der vorhergehenden Ansprüche, welche ferner eine Abdeckung (60) aus isolierendem Material umfaßt, welche die Düse (12)

- umgibt und an welcher eine Hochspannung derselben Polarität wie diejenige, die auf die Flüssigkeit aufgebracht wird, während des Sprühvorgangs der Vorrichtung erzeugt wird.
- 22. Vorrichtung nach einem der Ansprüche 1 bis 6 oder nach einem der Ansprüche 10 und 11, wenn diese von einem der Ansprüche 1 bis 6 abhängig sind, mit einem rohrförmigen Körperteil (2), das einen kollabierbaren Behälter (14) aufnimmt, welcher die zu versprühende Flüssigkeit enthält, und mit einem Ventil (20) versehen ist, um die Zufuhr von Flüssigkeit aus dem Behälter zur Düse (12) zu steuern. wobei das rohrförmige Körperteil (2) in einer Endkappe (8) endet, die entfernbar ist, um den Austausch des Behälters (14) zu ermöglichen, und durch welche hindurch die Düse (12) vorsteht, und mit einer Abdeckung (60) aus isolierendem Material, die an der Endkappe (8) vorgesehen ist, um die Düse zu umgeben, und an welcher eine Hochspannung derselben Polarität wie diejenige, die auf die Flüssigkeit aufgebracht wird, während des Sprühvorgangs der Vorrichtung erzeugt wird.
- 23. Vorrichtung nach einem der Ansprüche 1 bis 8, bei welcher die Hochspannungsversorgungseinrichtung einen Hochspannungsgenerator (26) umfaßt, der zur Durchführung einer Bewegung angebracht ist, wobei diese Bewegung in Reaktion auf die Wirkung eines vom Benutzer betätigbaren Teils (46) bewirkt wird, das einen Teil der Vorrichtung bildet und wirksam ist, um die Zufuhr der Flüssigkeit zur Düse (12) zu steuern.
- 35 24. Vorrichtung nach Anspruch 23, mit einem länglichen rohrförmigen Körperteil, das aufeinanderfolgend den Hochspannungsgenerator (26), der in Längsrichtung innerhalb des rohrförmigen Körperteils (2) bewegbar ist, und einen kollabierbaren Behälter (14) aufnimmt, der die zu versprühende Flüssigkeit enthält und mit einem Ventil (20) versehen ist, das die Flüssigkeitszufuhr aus dem Behälter zur Düse (12) steuert und in Reaktion auf die Längsbewegung des Hochspannungsgenerators (26) betätigbar ist.
 - 25. Vorrichtung nach Anspruch 24, bei welcher der kollabierbare Behälter (14) innerhalb eines geeignet dimensionierten Mantels zum Übertragen der Bewegung des Hochspannungsgenerators (26) auf das Ventil (20) aufgenommen ist, um das Öffnen des Letzteren zu bewirken.
 - 26. Vorrichtung nach Anspruch 25, bei welcher der Mantel elektrisch leitend ist und bei welcher die Hochspannung von einem Hochspannungsausgangspol (30) des Hochspannungsgenerators (26) über den Mantel zur Düsenspitze geführt wird.

15

20

30

35

40

- 27. Vorrichtung nach einem der Ansprüche 1 bis 11, bei welcher die Vorrichtung ein erstes und zweites Körperteil (2a, 2b) umfaßt, die relativ zueinander bewegbar sind, und ein vom Benutzer betätigbares Betätigungsteil (46), das die gegenseitige Bewe- 5 gung der Körperteile (2a, 2b) derart bewirkt, daß die Hochspannungsversorgungseinrichtung (26) und die Einrichtung (14) zum Zuführen der Flüssigkeit in Reaktion auf eine derartige Relativbewegung betätigt werden.
- 28. Vorrichtung nach Anspruch 1 oder 2 oder nach einem der Ansprüche 4 bis 27, wenn diese von Anspruch 1 oder 2 abhängig sind, bei welcher in dem Fall, wo die Flüssigkeit ein wässriges System umfaßt oder stärker leitend als nichtwässrige Flüssigkeiten mit einem spezifischen Widerstand von 1 x 105 Ohm cm ist, die Flüssigkeit durch Hydraulikdruck als Strahl aus der Düse (12) abgegeben wird, bevor sie in geladene Tröpfchen aufbricht.
- 29. Vorrichtung nach einem der Ansprüche 1 bis 28, bei welcher die Düse (12), die Flüssigkeitszufuhreinrichtung (14) und die Hochspannungsversorgungseinrichtung (26) in einer tragbaren Einheit vorgesehen sind.
- 30. Verwendung einer Vorrichtung nach einem der vorhergehenden Ansprüche in einem Verfahren zum elektrostatischen Sprühen.
- 31. Verwendung nach Anspruch 30, bei welcher der Spray mittels einer Abdeckung (60) aus isolierendem Material gesteuert wird, die derart an der Vorrichtung angebracht ist, daß sie die Düse (12) umgibt, und an der sich eine Hochspannung derselben Polarität wie diejenige, die an die Flüssigkeit angelegt wird, während des Sprühvorgangs der Vorrichtung bildet.

Revendications

- 1. Dispositif de pulvérisation électrostatique comprenant un ajutage (12), un moyen (14) pour fournir du liquide à l'ajutage et un moyen d'alimentation en 45 haute tension (26) ayant un pôle de sortie à haute tension (30) connecté, en service, de telle sorte que le liquide débité par l'ajutage (12) soit chargé électrostatiquement, caractérisé en ce que la ligne de fuite entre le pôle de sortie à haute tension (30) et le pôle d'entrée à basse tension (34) du moyen d'alimentation en haute tension (26) est spécialement conçue de manière à présenter une longueur qui, en service, réduit le courant de fuite entre lesdits pôles (30, 34) à moins de 0,3 micro-ampère.
- 2. Dispositif suivant la revendication 1, dans lequel le courant de fuite entre lesdits pôles est inférieur à 0,03 micro-ampère.

- 3. Dispositif suivant la revendication 1, dans lequel ledit pôle de sortie à haute tension (30) du moven d'alimentation en haute tension (26) est connecté, en service, de telle sorte qu'un ou plusieurs filets de liquide soient débités par l'ajutage (12), les filets se fragmentant en gouttelettes chargées électrostatiquement, le moyen d'alimentation en haute tension (26) ayant un courant de sortie maximum, lorsque le dispositif pulvérise, de 1,5 micro-ampère, à une tension de 15 kV dans le cas d'un seul filet ou de 0,8 micro-ampère à une tension de 15 kV plus 0,15 micro-ampère par filet dans le cas de plus d'un filet.
- Dispositif suivant la revendication 3, dans lequel le courant de sortie maximum du moyen d'alimentation en haute tension (26) est de 0,3 micro-ampère à une tension de 15 kV dans le cas d'un seul filet ou de 0,3 micro-ampère à une tension de 15 kV plus 0,15 micro-ampère par filet dans le cas de plus d'un filet.
- Dispositif suivant l'une quelconque des revendications 1 à 4, dans lequel le gradient de potentiel moyen maximum, en service normal, sur les surfaces du dispositif entre les conducteurs ou semiconducteurs connectés au pôle de sortie à haute tension (30) et au pôle d'entrée à basse tension (34) du moyen d'alimentation en haute tension (26) est inférieur à 3 kV/cm.
- 6. Dispositif suivant la revendication 5, dans lequel le gradient de potentiel moyen maximum est inférieur à 2 kV/cm.
- 7. Dispositif suivant l'une quelconque des revendications précédentes, dans lequel le liquide à pulvériser est contenu dans un récipient pressurisé (14) comprenant une valve de distribution (20) qui, en service, est ouverte par un déplacement relatif entre le récipient (14) et l'ajutage (12) les rapprochant l'un de l'autre, le dispositif comportant un corps ou une partie de corps (2) d'où part l'ajutage (12), ladite valve (20) étant ouverte, en service, par un déplacement relatif entre le récipient (14) et le corps ou la partie de corps (2), l'ajutage (12) restant fixé par rapport au corps ou à la partie de corps (2).
- 8. Dispositif suivant la revendication 7, dans lequel le corps ou la partie de corps (2) est ininterrompu autour de sa périphérie et est fait d'une matière plastique isolante.
- 9. Dispositif suivant la revendication 7 ou 8, dans lequel le moyen d'alimentation en haute tension comprend un générateur (26) situé d'un côté du récipient (14) éloigné de l'ajutage (12) et ayant un connecteur à haute tension (30, 32), le circuit à basse tension du générateur (26) étant éloigné du

35

40

récipient.

- Dispositif suivant l'une quelconque des revendications précédentes, dans lequel l'ajutage (12) est fait d'une matière isolante.
- 11. Dispositif suivant l'une quelconque des revendications précédentes, dans lequel le moyen d'alimentation en haute tension (26) comprend un moyen (100, 102) pour convertir une basse tension d'une alimentation en courant continu en une tension alternative relativement faible, un moyen (104) pour accumuler le contenu d'énergie de ladite tension alternative, un moyen pour décharger de manière répétée le moyen d'accumulation d'énergie (104) en vue de produire une tension oscillante décroissante de fréquence supérieure et d'amplitude relativement faible, un moyen transformateur à grand gain (108) pour convertir ladite tension de fréquence supérieure en une tension oscillante décroissante d'amplitude élevée et un moyen (112) pour redresser ladite tension d'amplitude élevée en vue de fournir une sortie de tension élevée unipolaire lissée.
- 12. Dispositif suivant l'une quelconque des revendications 1 à 6 ou suivant l'une quelconque des revendications 10 et 11 lorsqu'elles dépendent de l'une quelconque des revendications 1 à 6, comprenant un boîtier (2, 4), à même d'être utilisé en étant tenu en main, qui reçoit un récipient (14) pour le liquide, le boîtier comprenant une partie de corps (2) d'où s'étend l'ajutage (12) et ladite partie de corps étant ininterrompue autour de sa périphérie et étant faite d'une matière plastique isolante.
- Dispositif suivant la revendication 12, dans lequel ledit récipient (14) est repliable et un moyen est prévu pour comprimer le récipient en vue d'alimenter l'ajutage (12) en liquide.
- 14. Dispositif suivant la revendication 12 ou 13, dans lequel le récipient (14) est pourvu d'une valve (20) et dans lequel l'ouverture de la valve résulte du déplacement du récipient (14) par rapport au boîtier (2, 4).
- 15. Dispositif suivant l'une quelconque des revendications 12 à 14, dans lequel le récipient (14) repliable est logé dans une enceinte contenant le fluide pressurisant le récipient.
- 16. Dispositif suivant l'une quelconque des revendications 12 à 15, dans lequel le récipient (14) repliable est reçu dans le boîtier (2, 4) en tant qu'une unité remplaçable.
- Dispositif suivant la revendication 13, dans lequel le récipient (14) repliable est logé dans un coulisseau

qui est monté mobile dans le boîtier 2, 4) et dans lequel le récipient est pourvu d'une valve (20) qui est ouverte en réaction au déplacement du récipient (14) dans une direction prédéterminée, ledit moyen de compression servant à propulser le liquide hors du récipient (14) dès l'ouverture de la valve (20) en réaction à un tel déplacement.

- 18. Dispositif suivant l'une quelconque des revendications 13 à 17, dans lequel le boîtier (2, 4) comprend une détente (46) pouvant être actionnée par l'utilisateur pour contrôler l'alimentation de liquide par le moyen de compression.
- 19. Dispositif suivant l'une quelconque des revendications 12 à 18, dans lequel le moyen d'alimentation en haute tension comprend un générateur de haute tension (26) monté mobile dans le boîtier (2, 4), le déplacement du générateur de haute tension (26) résultant de l'actionnement d'un organe (46) pouvant être actionné par l'utilisateur et l'alimentation du liquide contenu dans le récipient étant contrôlée en réaction à un tel déplacement du générateur de haute tension ou d'un montage (28) pour le générateur de haute tension.
- 20. Dispositif suivant la revendication 12, dans lequel le récipient (14) est monté mobile dans le boîtier (2, 4) et le moyen de compression est contrôlé en réaction au déplacement du récipient (14) en vue de permettre ou d'interdire l'alimentation de liquide à l'ajutage (12).
- 21. Dispositif suivant l'une quelconque des revendications précédentes, comprenant en outre une tubulure (60) en matière isolante qui entoure l'ajutage (12) et sur laquelle une haute tension de la même polarité que celle de la tension appliquée au liquide est développée au cours de l'opération de pulvérisation du dispositif.
- 22. Dispositif suivant l'une quelconque des revendications 1 à 6 ou suivant l'une quelconque des revendications 10 et 11 lorsqu'elles dépendent de l'une quelconque des revendications 1 à 6, comprenant une partie de corps tubulaire (2) recevant un récipient (14) repliable contenant le liquide à pulvériser et pourvu d'une valve (20) destinée à contrôler l'alimentation de liquide du récipient à l'ajutage (14), ladite partie de corps tubulaire (2) se terminant dans un capuchon d'extrémité (8) qui peut être enlevé pour permettre le remplacement du récipient (14) et au travers duquel l'ajutage (12) fait saillie, et une tubulure (60) en matière isolante prévue sur ledit capuchon d'extrémité (8) de façon à entourer l'ajutage et sur laquelle une haute tension de la même polarité que celle de la tension appliquée au liquide est développée au cours de l'opération de pulvérisation du dispositif.

- 23. Dispositif suivant l'une quelconque des revendications 1 à 8, dans lequel le moyen d'alimentation en haute tension comprend un générateur de haute tension (26) monté de manière à pouvoir se déplacer, ce déplacement résultant de l'actionnement d'un organe (46) pouvant être actionné par l'utilisateur, faisant partie du dispositif et à même de commander l'alimentation de liquide à l'ajutage (12).
- 24. Dispositif suivant la revendication 23, comprenant une partie de corps tubulaire oblongue recevant successivement ledit générateur de haute tension (26) pouvant être déplacé dans le sens longitudinal dans la partie de corps tubulaire (2) et un récipient repliable (14) contenant le liquide à pulvériser et pourvu d'une valve (20) qui commande l'alimentation de liquide du récipient à l'ajutage (12) et qui peut être actionnée en réaction audit déplacement longitudinal du générateur de haute tension (26).
- 25. Dispositif suivant la revendication 24, dans lequel le récipient (14) repliable est reçu dans une enceinte de dimensions appropriées destinée à transmettre le mouvement du générateur de haute tension (26) à la valve (20) en vue d'ouvrir cette dernière.
- 26. Dispositif suivant la revendication 25, dans lequel ladite enceinte est conductrice de l'électricité et dans lequel ladite haute tension est fournie d'un pôle de sortie à haute tension (30) du générateur de haute tension (26) à l'extrémité de l'ajutage via ladite enceinte.
- 27. Dispositif suivant l'une quelconque des revendications 1 à 11, dans lequel le dispositif comprend une première et une seconde parties de corps (2a, 2b) qui peuvent être déplacées l'une par rapport à l'autre et un actionneur (46) pouvant être actionné par l'utilisateur qui entraîne le déplacement des parties de corps (2a, 2b) l'une par rapport à l'autre de manière telle que le moyen d'alimentation en haute tension (26) et le moyen (14) d'alimentation de liquide soient actionnés en réaction à un tel déplacement relatif.
- 28. Dispositif suivant la revendication 1 ou 2 ou suivant l'une quelconque des revendications 4 à 27 lorsqu'elles dépendent des revendications 1 ou 2, dans lequel, lorsque le liquide comprend un système aqueux ou est plus conducteur que des liquides non aqueux ayant une résistivité de 1x10⁵ ohms cm, le liquide est débité par l'ajutage (12) comme un jet sous l'effet de la pression hydraulique avant de se fragmenter en gouttelettes chargées.
- 29. Dispositif suivant l'une quelconque des revendications 1 à 28, dans lequel l'ajutage (12), le moyen d'alimentation de liquide (14) et le moyen d'alimentation en haute tension (26) sont réalisés sous la

forme d'une unité pouvant être tenue en main.

- Utilisation, dans un procédé de pulvérisation électrostatique, d'un dispositif suivant l'une quelconque des revendications précédentes.
- 31. Utilisation suivant la revendication 30, lors de laquelle le jet pulvérisé est contrôlé au moyen d'une tubulure (60) en matière isolante montée sur le dispositif de façon à entourer l'ajutage (12) et sur laquelle une haute tension de même polarité que celle de la tension appliquée au liquide est développée au cours de l'opération de pulvérisation du dispositif.

13

55

