Задача:

Дифторид дикислорода O_2F_2 несколько выпадает из «школьных» представлений о валентности. Длина связи O-O в этой молекуле фактически равна длине двойной связи O=O в молекуле кислорода и существенно меньше длины связи O-O в молекуле пероксида водорода. Известно, что длины одинарных связей 9-Э (Элемент–Элемент) должны быть на несколько десятых ангстрема больше, чем длины соответствующих кратных связей 9=Э. Это иллюстрируют примеры, приведенные в таблице.

Примеры длин связей в различных соединениях

Связь	Длина (Å)	Связь	Длина (Å)
O=O	1,21	H ₃ C-CH ₃	1,54
FO-OF	1,22	H ₂ C=CH ₂	1,35
НО-ОН	1,48	HC≡CH	1,21

Предложите свое объяснение необычно малой длине связи О-О в молекуле О2F2.

Решение:

Из справочника (исключительно для информации – то, о чем идет речь в условии): структура О₂F₂:

Предположение может быть основано на большом количестве свободных электронных пар фтора и кислорода (даже в состоянии окисления +1), которые неизбежно отталкиваются. Молекула не резиновая, растягиваться в длину способна ограниченно, значит, такое расталкивание электронных пар фтора и кислорода на концах молекулы приводит к сжатию (друг к другу) внутренних атомов (кислорода), с пересечением электронных пар обоих атомов и увеличивая двоесвязность О—О связи. Чем выше двоесвязность — тем меньше длина связи.