FreeCAD-CFD Workbench

Tutorial 1: Elbow

CFD Workbench

WORKBENCH:

This workbench aims to help users set up and run CFD analysis. It guides the user in selecting the relevant physics, specifying the material properties, generating a mesh, assigning boundary conditions and setting the solver settings before running the simulation. Where possible best practices are included to improve the stability of the solvers.

PREREQUISITES:

WINDOWS:

- Install the binary package
- Install blueCFD build of OpenFOAM (http://bluecfd.github.io/Core/Downloads)

LINUX:

- FreeCAD (<u>https://www.freecadweb.org/wiki/Install_on_Unix</u>)
- OpenFOAM (3.0.1 or later) (<u>https://openfoam.org/download/</u>)
- Paraview (tested with 5.0.1)
- Gnuplot (tested with 5.0)
- PyFoam (0.6.6 +)
- GMSH (2.13+)

For more information, view the CFD workbench README file.

DEVELOPERS:

Johan Heyns (CSIR, 2016) jheyns@csir.co.za, Oliver Oxtoby (CSIR, 2016) ooxtoby@csir.co.za, Alfred Bogaers (CSIR, 2016) abogaers@csir.co.za, Qingfeng Xia (2015)

Background

- We aim to introduce the basic functionality of the CFD workbench on a simplistic pipe elbow with two inlets.
- The pipe flow benchmark problem is usually modelled in 2D. Unfortunately, the CFD workbench is currently limited to 3D problems only. We will therefore model the problem as a thin sliver, where the front and back faces will be treated with a slip condition.
- It is assumed that the user is familiar with FreeCAD geometry creation.

Elbow design

Part Design

Start a new sketch

A certain familiarity with the sketching environment within FreeCAD is expected. For more information on sketching and part design see:

https://www.freecadweb.org/wiki/Sketcher_tutorial

https://www.freecadweb.org/wiki/Basic Part Design Tutorial

Alternatively, have a look at the Eskom-FEM tutorial slides.

Sketch

- Create the sketch on the right, with the given set of dimensions.
- The sketch is easily created by first constructing the primitives in the form of interconnected lines and arcs. Then use the various constraint tools to insert horizontal, vertical, length and radius constraints where applicable.
- Nice tooltip descriptions of each function is shown by hovering the mouse pointer over any of the icons. The basic toolbars for sketch creation are

Pad the sketch

- Once the sketch has been completed, close the sketch creation.
- While still in the "Part Design" workbench, click on the "Pad" icon.
- Choose a length of 1m (1000mm) of Type Dimension.
- The pad function, takes a sketch and extrudes it in the 3rd direction.
- Click "Ok"

Fluid flow

Case setup

Activate CFD workbench

- To activate the Cfd Workbench, click on the dropdown menu in the taskbar, and select "CFD"
- Once activated, the CFD task bar should appear.

New CFD analysis

- To create a new analysis, click on the "CFD" icon button (or by selecting "Analysis Container" from the "CFD" drop down menu).
- Along with the "CfdAnalysis" object, the following objects are automatically created, with a set of default values assigned, which we will now go about modifying for the simulation:
 - PhysicsModel
 - FluidProperties
 - IntialiseFields
 - OpenFOAM

Physics model selection

- The Physics Model Selection is where the user specifies the desired simulation type.
- Upon creating a new analysis, default values is applied to the "PhysicsModel" object in the form of:
 - Steady state, incompressible, laminar flow.
- The simulation types that are not yet supported have been grayed out.
- For the current simulation we retain the default values as shown in the Figure.
- Click "OK" to save.

Select fluid properties

- Click on the material icon (or alternatively double click on "FluidProperties" object or select "Add fluid properties" from the Cfd dropdown menu).
- The mechanical material tab will appear.
- Properties can be set by either choosing an item from the predefined library, or by manually entering the desired values.
- Choose "Air" from the predefined library.
- Click "OK" to save

NOTE: There is an issue with FreeCAD's unit display. When you have saved a material property object, and re-open the fluid-material object, it is possible that only zeros are displayed. The values have been saved correctly but are not properly displayed, as scientific notation is not yet fully supported. To view the correct values, increase the number of decimal values that are displayed: Edit->Preferences->Units->Number of decimals.

Initialise the internal flow variables

- The internal flow variables need to be initialised prior to starting the simulation.
- Click on the initialise icon (or double click on the "InitialiseFields" object or select "Initialise" from the CFD dropdown menu).
- Internal flow variables can be initialised either by using PotentialFoam, or by individually entering the initial flow variables.
- Select "Potential flow" for the current tutorial.
- Click "OK" to save.

NOTE: Potential flow uses OpenFOAM's PotentialFoam solver to automatically initialise internal flow variables by solving a set of incompressible, potential flow equations.

Creating the mesh

- Highlight the 3D object "Pad" by clicking on it in the list of objects. This will activate the GMSH Icon
- Click on the GMSH Icon.
- In the Mesh task panel, enter 800 mm as the max element size characteristic length (as a start, you can make a more coarse mesh by setting it to 1500 mm).
- Click on the "Mesh" button.

TIP: When meshing, start with as coarse a mesh as possible. Once a mesh has been successfully created, only then is it advised to refine the mesh. Gmsh can take a very long time to create highly refined meshes.

NOTE: In the follow up tutorials, we will show how a mesh with different refinement regions can be generated. For now, we make use of a constant sized mesh.

Adding boundary conditions: Inlet 1

- To add a new boundary condition, click on the boundary condition icon.
- Lets add the first inlet boundary condition.
 - Click on the first inlet face, and click "Add Face" button.
 - Change "boundary" to "inlet"
 - Change "subtype" to "uniformVelocity"
 - Specify cartesian velocity components to U=(1m/s,0m/s,0m/s). (this can also be done by specifying "Magnitude and normal").
 - Change the object name to "Inlet1".
 The object name can be changed by pressing "F2" on the object list or by right clicking and choosing "Rename".

Adding boundary conditions: Inlet 2

- As with "Inlet1", choose the corresponding face and click "Add face".
- Choose Boundary: "inlet"
- Choose Subtype: "uniformVelocity"
- Enter velocity corresponding to U=(0m/s,3m/s,0m/s).
- Rename the object to "Inlet2".

Note: Inlet boundary conditions are colored blue.

Adding boundary conditions: Outlet

- Select the correct face, and click "Add face" button.
- Change Boundary: "outlet"
- Change Subtype: "staticPressure"
- Set Pressure: 0m/kg/s^2.
- Change object name to "Outlet"

Note: Output faces are colored in red.

Adding boundary conditions: Pipe walls

- Add all the wall faces and set the walls as Boundary: "wall", Subtype: "slip"
- Multiple faces can be added in one of two ways:
 - 1. Click on "Add face" without having selected any faces. All the faces can then one by one be added. Once all the desired faces have been selected, click "Add face" button again to deselect the button.
 - 2. Multiple faces can be simultaneously highlighted/selected by holding in the "Ctrl" button while clicking on multiple faces.

Note: Walls are colored in dark grey.

Adding boundary conditions: Front and back slip

- Finally, we add the front and back face boundary conditions.
- To emulate a 2D simulation in 3D, we set the front and back faces to a "slip" boundary condition.

Tip: Boundary faces that are not specified defaults to "slip".

Final set of properties

- If correctly set up, CfdAnalysis should now contain the following set of items.
- To make sure all boundary conditions have been allocated correctly, as a final check you can hide all objects, and one by one make each of the boundaries visible. Click on the item and press "spacebar" or right-click, and select "toggle visibility".
- We are now ready to run the CFD simulation.

Solver control settings

- The solver settings can be modified by
 - Highlighting the "OpenFOAM" object.
 - At the bottom select the "Data" tab.
- The following settings can be modified
 - Parallel: True/False
 - Parallel Cores: If Parallel=True, set the number of cores to be used
 - o End Time:
 - Steady state: Maximum number of iterations
 - Transient: End time
 - Time Step: Time step size, default =1.
 - Write Interval: How frequently information is stored to the hard drive for post processing.
 - Convergence Criteria: default = 1e-4.
 - NOTE: There is an issue with the display in FreeCAD for very small numbers. If you wish to include a convergence criteria smaller than 0.01, the number of decimal places to be displayed should be increased via Edit->Preferences->Units-> Number of decimal places.

Write the case to a directory

- Click on the analysis icon (or double click on "OpenFOAM" or select "Solver job control" from the CFD dropdown menu).
- "Working Directory" is the directory where the simulation will be temporarily stored. **WARNING:** If the case within the directory
- already exists, it will be overridden. Click "Write" button.
- Depending on the mesh size, writing the case directory may take some time.
- If successful, the output message will state so accordingly.
- The "Edit" button will open the case directory for manual editing.

Initial

Combo View Model Tasks Close Analysis control **Working Directory** /tmp/ Case Write Solver Run Results Output Time:

Analysis control	Close
Vorking Directory	
/tmp/	
ase	
Write	Edit
olver	
Run	Stop
tesults	
Paraview	
Output	
0.0: Check dependencies 0.0: OpenFOAM case wri	

Running the CFD simulation

- If the case was successfully created, the "Run" button will become active.
- Clicking "Run" starts the simulation which can be terminated at any time by clicking "Stop".
- A dynamic residual plot will be shown.
- The solver stops naturally once the convergence criteria has been satisfied or maximum number of iterations have been reached. Default convergence criteria is 1e-4 for Ux,Uy,Uz and pressure.
- To view the results, click the "Paraview" button.

Post-processing: Paraview

An assortment of post-processing tools, such as plotting glyphs, streamlines, cross-section, contours etc.

Refresh button: If simulation is still running, refresh to load new information as it becomes available.

For more information visit: http://www.paraview.org/Wiki/The_ParaView_Tutorial

The End