64Mbit IoT RAM

64Mbit SQPI PSRAM Data Sheet

Version 0.2

RIJS CONFIDENTIAL FOR

Index

Index	(
1	Inc	dex	2
2	Int	roduction	4
3	Pa	ckage Information	4
4	Pa	ckage Outline Drawing - SOP-8L(150)	5
5	Or	dering Information	6
6	Sig	gnal Table	6
7	Po	wer-Up Initialization	7
8	Int	erface Description	8
	8.1	Address Space	8
	8.2	Dage Length	8
	8.3	Drive Strength	٤
	8.4	Power-on Status	8
	8.5	Command/Address Latching Truth Table	<u>S</u>
	8.6	Command Termination	
9	SP	I Mode Operations	10
	9.1	SPI Read Operations	10
	9.2	SPI Write Operations	12
	9.3	SPI to QPI Mode Enable Operation	13
	9.4	SPI Read ID Operation	13
10	QP	PI Mode Operations	14
	10.1	QPI Read Operations	14
0/	10.2	QPI Write Operation(s)	15
	10.3	QPI Quad Mode Exit operation	15

11	Rese	et Operation	16
12	Inpu	ut/Output Timing	17
13	Elec	trical Specifications:	18
	13.1	Absolute Maximum Ratings	18
		Operating Conditions	
	13.3	DC Characteristics	18
	13.4	AC Characteristics	19
14	Vers	sion History	20
			X - Y > '

RUS Confidential for Life
RUS

2 Introduction

This document defines "64Mbit IoT RAM", which is 64 Mbit of SPI/QPI (serial/quad parallel interface) Pseudo-SRAM device. This RAM is configurable as 1 bit Input and Output separate or 4 bit I/O common interface.

The Linear Burst can cross page boundary as long as tCEM(max.) is met.

This device also has Pseudo-SRAM features. All of necessary Refresh operation is taken care by device itself.

3 Package Information

The IPS6404L-SQ/SQL is available in standard package in 8-lead SOP-8 (150mil)

Package Dimension SOP8 (150mil)

unit: mm (except Θ)

	unit .	mm (except o)
Symbol	Min	Max
Α	1.35	1.75
A1	0.10	0.25
b	0.33	0.51
С	0.15	0.25
D	4.75	5.05
E1	3.80	4.00
E	5.80	6.20
е	1.27(TYP.)
L	0.40	0.80
Θ	0°	8°

5 Ordering Information

Table 1: Ordering information

Ordering	Operational	Maximum	Temperature	Minimum
Part number	Voltage	Frequency	Range	Order Quantity
IPS6404L-SQ-SPN	2.7V ~ 3.6V	104Mhz		
IPS6404L-SQ-SP1	2.70 3.60	133Mhz	-25°C to	4V.unita
IPS6404L-SQL-SPN	1.62V ~ 1.98V	104Mhz	+85°C	4Kunits
IPS6404L-SQL-SP1	1.020 1.980	133Mhz		×.

6 Signal description

Table 2: Signal description

Symbol	Signal Type	SPI Mode	QPI Mode			
VDD	Power	Core Power Supply				
VSS	Ground	Core Supp	oly Ground			
CE#	Input		Low. When CE# input is			
CLII	трис	High, memory will be in Standby state				
CLK	Input	Clock	Signal			
SI/SIO[0]	I/O	Serial Input	I/O[0]			
SO/SIO[1]	1/0	Serial Output	I/O[1]			
SIO[3:2]	I/O •	(1/0[3:2]*)	I/O[3:2]			

^{*:} Fast read Quad access and Quad Write access in SPI Mode use SIO[3:2]

7 Power up initialization

SPI/QPI products include an on-chip voltage sensor used to start the self-initialization process. When VDD reaches a stable level at or above minimum VDD, the device will require 150µs to complete its self-initialization process. From the beginning of power ramp to the end of the 150µs period, CLK should remain LOW, CE# should remain HIGH (track VDD within 200mV) and SI/SO/SIO[3:0] should remain LOW.

After the 150 μ s period the device requires initialization command sequence as it's shown in Figure 1-b, and then the device is ready for normal operation.

* Please refer to Figure 1-b for device reset commands

Figure 1-a. Power-Up Initialization Timing

Figure 1-b. Reset command sequence for Device Initialization

8 Interface Description

8.1 Address Space

SPI/QPI PSRAM device is byte-addressable. 64M device is addressed with A[22:0].

8.2 Page Length

The page size is 1K Bytes. Read and write operations are always linear address space. The Linear Burst can cross page boundary as long as tCEM(max.) is met.

8.3 Drive Strength

The device powers up in 50Ω .

8.4 Power-on Status

The device powers up in SPI Mode.

RIS CONTIDENTIAL FOR

It is required to have CE# high before beginning any operations.

8.5 Command/Address Latching Truth

The device recognizes the following commands specified by the various input methods

				SPI Mode (QE=	0)			QPI Mode	(QE=	:1)
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.
Read	0x03	S	S	0	S	33			N.A.		
Fast Read	0x0B	S	S	8	S	104/133	Q	Q	4	Q	84
Fast Read Quad	0xEB	S	Q	6	Q	104/133	Q	Q	6	Q	104/133
Write	0x02	S	S	0	S	104/133	Q	Q	0	Q	104/133
Quad Write	0x38	S	Q	0	Q	104/133			same as 0	x02) `
Enter Quad Mode	0x35	S	-	-	_	104/133			N.A.		
Exit Quad Mode	0xF5			N.A.			Q	_			104/133
Reset Enable	0x66	S	-	-	_	104/133	Q	-	\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	104/133
Reset	0x99	S	-	-	_	104/133	Q	-	X-V	-	104/133
Read ID	0x9F	S	S	0	S	104/133		1//	N/A		
Remark: S	S = Seri	ial IO,	Q = 0	Quad IO					-5		

8.6 Command termination

All Reads & Writes must be completed by CE# LOW to HIGH. This CK# rising edge is the trigger to terminate the activated wordline for the read/write and set the device into standby. Not doing so will block internal refresh operations until the device sees the read/write wordline terminated.

Command termination operation is necessary not only for Reads & Write operation and also any command operation, such as Enter Quad mode command and Reset commands.

Figure 2. Activated Word Line Termination

9 SPI Mode Operations

The device powers up into SPI mode by default but can also be switched into QPI mode.

9.1 SPI Read Operations

For all reads, data will be available t_{ACLK} after the falling edge of CLK.

SPI Reads can be done in two ways:

- 0x03: Serial CMD, Serial IO, slow frequency
- 2. 0x0B: Serial CMD, Serial IO, fast frequency
- 3. 0xEB: Serial CMD, Quad IO, fast frequency

Figure 3: SPI Read 0x03 (max frequency @ 33MHz)

Figure 4: SPI Read 0x0B (max frequency @ 104/133MHz)

Figure 5: SPI Fast Quad Read 0xEB (max frequency @ 104/133MHz)

PUS Confidential For Fi

9.2 SPI Write Operations

Figure 6: SPI Write 0x02

Figure 7: SPI Write 0x38

9.3 SPI to QPI Mode Enable Operation

This command switches the device into QPI mode.

Figure 8: Quad Mode Enable 0x35

9.4 SPI Read ID Operation

This command is similar to Fast Read, but without the wait cycles and the device outputs EID value instead of data.

Figure 9: SPI Read ID 0x9F (available only in SPI mode)

Table 3: Known Good Die (KGD)

KGD [7:0]	Known Good Die Register
0x5D	Pass
0x55	Fail

^{*}Note: Default value on this register is (0x55=fail). After the all tests passed then programed as (0x5D= PASS) in manufacturing process.

10 QPI Mode Operations

10. 1 QPI Read Operations

For all reads, data will be available t_{ACLK} after the falling edge of CLK. QPI Reads can be done in one of two ways:

Figure 10: QPI Fast Read 0x0B (max frequency 84Mhz)

Figure 11 : QPI Fast Read 0xEB (max frequency 104/133Mhz)

10.2 QPI Write Operations

QPI write command can be input as 0x02 or 0x38. It does not matter Clock frequency.

Figure 12: QPI Write 0x02 or 0x38

10.3 QPI Quad Mode Exit Operation

This command will switch the device back into SPI mode.

Figure 13: Quad Mode Exit 0xF5 (Only available in QPI mode)

11 Reset Operation

The Reset operation is used as a system (software) reset that puts the device in SPI standby mode which is also the default mode after power up. This operation consists of two commands: Reset Enable (RSTEN) and Reset (RST).

Figure 15 : QPI Reset

The Reset operation requires the Reset Enable command followed by the Reset command. Any command other than the Reset command after the Reset Enable command will disable the Reset Enable procedure.

12 Input / Output Timing

Don't Care Undefined

Figure 16: Input Timing

Figure 17: Output Timing

13 Electrical Specifications:

13.1 Absolute Maximum Ratings

Table 4: Absolute Maximum Ratings

Parameter		Symbol	Rating	Unit	Notes
Voltage to any ball except VDD relative	to VSS	VT	-0.3 to VDD+0.3	V	
Voltago on VDD supply relative to VSS	IPS6404L-SQ	Voo	-0.2 to +4.10	V	
Voltage on VDD supply relative to VSS	IPS6404L-SQL	VDD	-0.2 to +2.45	V	-0
Storage Temperature		TSTG	-55 to +150	°C	1

Notes 1: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.

Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

13.2 Operating Conditions

Table 5: Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature (standard)	-25	85	°C	

13.3 DC Characteristics

Table 6: DC Characteristics

Symbol	Parameto	er	Min	Max	Unit	Notes
VDD	Supply//oltage	IPS6404L-SQ	2.70	3.60	V	
VDD	Supply Voltage	IPS6404L-SQL	1.62	1.98	V	
VIH	Input high voltage		VDD-0.4	VDD+0.2	V	
VIL	Input low voltage		-0.2	0.4	V	
VOH	Output high voltage (IOH=-	0.2mA)	0.8 VDD		V	
VOL	Output low voltage (IOL=+0).2mA)		0.2 VDD	V	
ILI	Input leakage current			1	μΑ	
ILO	Output leakage current			1	μΑ	
ICC	Read/Write			TBD	mA	
ISB	Standby current	IPS6404L-SQ	_	TBD	μΑ	
138	Standby current	IPS6404L-SQL		TBD	μΑ	

13.4 AC Characteristics

Table 7: READ/WRITE Timing

Symbol	Parameter		PN	SF		Unit	Note
Зуппоот	raiailietei	Min	Max	Min	Max	Oill	Note
	CLK period – SPI Read (0x03)	30.3		30.3			33MHz
t_{CLK}	CLK period – QPI Fast Read (0x0B)	11.9		11.9		ns	84MHz
	CLK period – all other operations	9.6		7.5		V	104/133MH
t _{CH} /t _{CL}	Clock high/low width	0.45	0.55	0.45	0.55	t _{CLK}	
t_{KHKL}	CLK rise or fall time		1.5	\\ \ \ \ \	1.2	ns	
t _{CPH}	CE# HIGH between subsequent burst operations	9.6		9.6	1/	ns	
t_{CEM}	CE# low pulse width		8	1	8	μs	
t _{CSP}	CE# setup time to CLK rising edge	3		3		ns	
t _{SP}	Setup time to active CLK edge	2.5	7	2.5		ns	
t _{HD}	Hold time from active CLK edge	2		2		ns	
t _{HZ}	Chip disable to DQ output high-Z		7		5.5	ns	
t _{ACLK}	CLK to output delay		7		5.5	ns	
t_{KOH}	Data hold time from clock falling edge	1.5		1.5		ns	
	Data note time from clock failing edge						

14 Version History

Version 0.1

Mar 15th, 2017

RIS Confidential For

Version 0.2

April 17th, 2017

Initial Version

Update initialization command sequence

Vdd range changed into two product categories

Update DC parameter table

Correct Device ID value on Fig 9