TERMODINAMISKO PROCESU APRĒĶINA FORMULAS

Nr. p/k	Process	Procesa vienādojums	Parametru aprēķina formula			Darbs	Darbs	Siltuma	Entropijas
			$\frac{p_2}{p_1} =$	$\frac{v_2}{v_1} =$	$\frac{T_2}{T_1} =$	(izplēšanās - deformācijas) $l_{1,2}$, kJ/kg	(spiediena) $l'_{1,2}$, kJ/kg	daudzums $q_{1,2}$, kJ/kg	izmaiņa Δs, kJ/(kg ·K)
1	Izohorais	v = const	$\frac{T_2}{T_1}$	1	$\frac{p_2}{p_1}$	0	$-v(p_2-p_1)$	$c_{\nu}(T_2 - T_1) =$ $= \frac{\nu}{R} c_{\nu}(p_2 - p_1)$	$c_{\nu} \ln \frac{T_2}{T_1}$
2	Izobārais	p = const	1	$\frac{T_2}{T_1}$	$\frac{v_2}{v_1}$	$p(v_2 - v_1) =$ $= R(T_2 - T_1)$	0	$c_{p}(T_{2}-T_{1}) =$ $= \frac{p}{R}c_{p}(v_{2}-v_{1})$	$c_p \ln \frac{T_2}{T_1}$
3	Izotermiskais	T = const $pv = const$	$\frac{v_1}{v_2}$	$\frac{p_1}{p_2}$	1	$RT \ln \frac{v_2}{v_1} =$ $= p_1 v_1 \ln \frac{p_1}{p_2}$	$p_1 v_1 \ln \frac{p_1}{p_2}$	$l_{1,2}$	$R \ln \frac{v_2}{v_1}$
4	Adiabātiskais	$pv^k = \text{const}$	$\left(\frac{v_1}{v_2}\right)^k = \left(\frac{T_2}{T_1}\right)^{\frac{k}{k-1}}$	$\left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}}$	(P_1)	$= \frac{RT_1}{k-1} \cdot \left[1 - \left(\frac{p_2}{p_1} \right)^k \right]$	$kl_{1,2}$	0	0
5	Politropais	$pv^n = \text{const}$	$\left(\frac{v_1}{v_2}\right)^n = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$	$\left(\frac{p_1}{p_2}\right)^{\frac{1}{n}} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{n-1}}$	$\left(\frac{v_1}{v_2}\right)^{n-1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$	$\frac{1}{n-1} (p_1 v_1 - p_2 v_2) =$ $= \frac{RT_1}{n-1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right]$	$nl_{1,2}$	$c_n(T_2 - T_1) =$ $= c_v \frac{n - k}{n - 1} (T_2 - T_1)$	$c_n \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$