Exercise 1: (Mathematic preliminary, Language, String)

1. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Describe \overline{L} by a set notation.

2. Find five strings which are in each of the following languages.

a)
$$L = \{w \in \{a\}^* : |w| \mod 3 \neq |w| \mod 2 \}$$

b) $L = \{w \in \{a, b\}^* : n_a(w) \ge n_b(w) + 1\}$ Where $n_a(w)$ means the number of a's in string w.

Exercise 2: (Deterministic Finite Automata - DFA)

1. Draw DFA for L1 $L1 = \{w \in \{0,1\}^* : w \text{ has no substring } 11\}$

2. Draw DFA for L2

$$L2 = \{0, 10\}^* \cup \{1\}$$

3. Find the language of DFA M.

M:

* 4. Draw DFA for L3 (Submit 1)

L3 = {
$$a^m b^n$$
: $m + n = 5$; $m \text{ and } n \ge 0$ }

Exercise 3: (Nondeterministic Finite Automata - NFA)

1. Construct the minimal-state NFA that accepts the language $\{ab, abc\}^*$

2. Convert the following NFA to DFA

NFA

(Homework 2)

*3. What are the languages accepted by the following NFA?

Exercise 4:

(Closure properties of Regular Language and Regular Expression)

1. Prove that the language $\{a^mb: m \ge 1 \ and \ m \ne 100\}$ is regular.

2. Find regular expression for the following language

 $L = \{ w \in \{a, b\}^* : w \text{ does not end with } ab \}$

*3. Find regular expression for the following DFA.

(Submit 3)

Exercise 5:

(Regular Grammar)

1. Give the right-linear grammar for the language $L = \{1^n 0^m : n \ge 1 \text{ and } m \ge 2\}.$

2. Give the left-linear grammar for the language L in problem 1.

*3. Draw NFA for the following grammar G.

$$G: A \to xyB$$
,
 $B \to yxC$,
 $C \to xB \mid yy$

Exercise 6:

(Pumping Lemma)

Prove by Pumping Lemma that the following languages are not regular.

1. L1 = $\{0^i 1^j : j \text{ is a multiple of } i\}$

2. L2 =
$$\{0^i 1^j : i < j\}$$

*3. L3 = $\{0^i 1^j : i \ge j\}$

(Homework 5)

Exercise 7: (More exercises on Pumping Lemma)

Prove that the following languag is not Regular

$$L = \{ a^i b^j c^k : k < 2i + j \}$$

Short prove:

Exercise 8: (Context-free grammar part 1)

1. Prove that the following grammar is ambiguous.

$$S \rightarrow S + S \mid S - S \mid S * S \mid S/S \mid c$$

2. Find CFG for the language L.

$$\mathsf{L} = \left\{ a^i b^j : i \le j \right\}$$

*3. Find the language of the following grammar. (Homework 6)

$$G: S \rightarrow aA \mid bA \mid a \mid b$$

 $A \rightarrow aS \mid bS$

Exercise 9: (Context-free grammar part 2)

1. Show that $L(G1) \neq L(G2)$.

$$G1 = ({S}, {a, b}, S, P1)$$

P1:
$$S \rightarrow aSb \mid SS \mid \lambda$$

$$G2 = ({S}, {a, b}, S, P2)$$

P2:
$$S \rightarrow aSb \mid abS \mid \lambda$$

2. Find CFG for the language L.

$$L = \left\{ a^i b^j c^k : j = i + k \right\}$$

$$G: S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

Exercise 10: (Pushdown Automata)

Find Pushdown Automata for the following languages.

1. L1 = {
$$a^n b^{2n}$$
: $n \ge 0$ }

2. L2 ={ $w \in \{a, b\}^*: n_a(w) > n_b(w)$ }

*3. L3 ={ $a^n b^m a^{n+m}$: $n, m \ge 1$ }

(Homework 8)

Exercise 11_12: (Pushdown Automata & Properties of CFL)

1. Find the language of NPDA M.

```
M = (\{q0, q1, qf\}, \{0,1\}, \{0,1,\$\}, \delta, q0,\$, \{qf\})
\delta: \delta(q0, 0, \$) = \{ (q1, 0), (qf, \lambda) \},
\delta(q1, 1, 1) = \{ (q1, 1) \},
\delta(q1, 1, 0) = \{ (q1, 1) \},
\delta(q1, 0, 1) = \{ (qf, 1) \}
```

2. Find PDA for the language L2.

L2 =
$$\{a^n b^m : n \le m \le 2n\}$$

*3. Prove that the language L is CFL by <u>using properties</u> (Homework 9) of CFL (DO NOT draw PDA or CFG).

L3 =
$$\{0^i 1^j 2^k : j = i + k\}$$

Exercise 13&14: (Pumping Lemma for NonCFL)

Prove by P.L. that the following languages are not CFL.

1. L1 ={
$$a^n b^{n+1} c^{n+2}$$
: $n \ge 0$ }

<u>Proof</u>: Assume that L1 is CFL. There is PDA accepts L1 with m number of states

2. L2 ={ $w \in \{a, b, c\}^*$: $n_a(w) = \min(n_b(w), n_c(w))$ }