Finding Many Stable Molecular Arrangements

Conformational Searching with Genetic Algorithms

Evan Curtin
December 2, 2016

University of Illinois at Urbana-Champaign

- 1. Background Information
- 2. The Genetic Algorithm
- 3. Finding Low Energy Conformers of Dipeptides
- 4. Concluding Remarks

Primary Resource

First-Principles Molecular Structure Search with a Genetic Algorithm Supady, A.P¹; Blum, V.¹; Baldauf, C. J.^{1,2} Chem. Inf. Model. 2015, 55 (11), 23382348.

- 1. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
- 2. Department of Mechanical Engineering & Materials Science, Duke University

Background Information

• Protein folding is important

Reddy, G.; Liu, Z.; Thirumalai, D. Proc. Natl. Acad. Sci. 2012, 109 (44), 1783217838.

- Protein folding is important
- Peptides are building blocks of protein

Reddy, G.; Liu, Z.; Thirumalai, D. Proc. Natl. Acad. Sci. 2012, 109 (44), 1783217838.

- Protein folding is important
- Peptides are building blocks of protein
- ullet Peptide conformations o protein folding

Reddy, G.; Liu, Z.; Thirumalai, D. Proc. Natl. Acad. Sci. 2012, 109 (44), 1783217838.

- Protein folding is important
- Peptides are building blocks of protein
- ullet Peptide conformations o protein folding
- How do we understand peptide conformations?

Reddy, G.; Liu, Z.; Thirumalai, D. Proc. Natl. Acad. Sci. 2012, 109 (44), 1783217838.

Computational methods require knowledge of molecular structure

We need to find the lowest energy structure

Computational methods require knowledge of molecular structure

We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima We can't tell for sure if we've found the global minimum

Computational methods require knowledge of molecular structure

We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima We can't tell for sure if we've found the global minimum

We may need information about one or more low-energy conformations

• Ok, let's find them all!

Computational methods require knowledge of molecular structure

We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima We can't tell for sure if we've found the global minimum

We may need information about one or more low-energy conformations

- Ok, let's find them all!
- Under a cutoff

Possible Solutions

• Many techniques are well established

Method	Implented in
grid-based	CEASAR, Open Babel, Confab,
	MacroModel, MOE
rule-based	ALFA, CONFECT, CORINA,
	ROTATE, COSMOS, OMEGA
population-based	Balloon, Cyndi
basin-hopping	ASE, GMIN, TINKER SCAN

Possible Solutions

•	Many techniques	are
	well established	

• None are perfect

Method	Implented in
grid-based	CEASAR, Open Babel, Confab,
	MacroModel, MOE
rule-based	ALFA, CONFECT, CORINA,
	ROTATE, COSMOS, OMEGA
population-based	Balloon, Cyndi
basin-hopping	ASE, GMIN, TINKER SCAN

What Algorithmic Properties do we want for conformer search?

1. Accurate energies & Structures

- 1. Accurate energies & Structures
- 2. Minimize # of geometry optimizations

- 1. Accurate energies & Structures
- 2. Minimize # of geometry optimizations
- 3. Find many low energy conformations

- 1. Accurate energies & Structures
- 2. Minimize # of geometry optimizations
- 3. Find many low energy conformations
- 4. Minimize human bias

- 1. Accurate energies & Structures
- 2. Minimize # of geometry optimizations
- 3. Find many low energy conformations
- 4. Minimize human bias
- 5. Parallel

The Genetic Algorithm

- At least 23 years
 - Judson, R. S.; Jaeger, E. P.; Treasurywala, A. M.; Peterson, M. L. J. Comput. Chem. 1993, 14 (11), 14071414.
- Flexible ligand docking (Most cited: 7428)
 Morris, G. et al. J. Comput. Chem. 1998, 19 (14), 16391662.
- Precombustion CO₂ adsorbing MOFs (October 14th)
 - Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.; Stoddart, J. F.; You, F.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2 (10)

• Inspired by biological evolution

- Inspired by biological evolution
- Evolve a population over generations

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:
 - Represent individuals as vector

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:
 - Represent individuals as vector
 - Fitness function

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:
 - Represent individuals as vector
 - Fitness function
- $V = (x_1 y_1 z_1 x_2 y_2 z_2 \cdots x_N y_N z_N)$

- Inspired by biological evolution
- Evolve a population over generations
- Survival of the fittest
- Requirements:
 - Represent individuals as vector
 - Fitness function
- $V = (x_1 y_1 z_1 x_2 y_2 z_2 \cdots x_N y_N z_N)$
- $F = \frac{E_{\text{max}} E}{E_{\text{max}} E_{\text{min}}}$

The Many Representations of a Molecule

2D Image

3D Image

Name

(3Z)-3,4-Dimethyl-3-hexene

SMILES

CCC(C)=C(C)CC

InChl

1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-

Cartesian Coords

	X	У	Z
C	0.90	-0.25	0.02
C	2.35	0.15	-0.17
C	2.91	1.30	-0.67

Internal Coords

		r		θ
C				
C	1	1.51		
C	2	1.38	1	131

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

The Many Representations of a Molecule

(3Z)-3,4-Dimethyl-3-hexene **SMILES** CCC(C)=C(C)CC1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-

Cartesian Coords

	^	y	_
C	0.90	-0.25	0.02
C	2.35	0.15	-0.17
C	2.91	1.30	-0.67

v v

Internal Coords

		r		θ
C				
C	1	1.51		
C	2	1.38	1	131

Equivalent in theory

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

The Many Representations of a Molecule

Name

(3Z)-3,4-Dimethyl-3-hexene

SMILES

CCC(C)=C(C)CC

InChl

1S/C8H16/c1-5-7(3)8(4)6-2/h5-6H2,1-4H3/b8-7-

Equivalent in theory

Cartesian Coords

	X	У	Z
C	0.90	-0.25	0.02
C	2.35	0.15	-0.17
C	2.91	1.30	-0.67

Internal Coords

		r		θ
C				
C	1	1.51		
C	2	1.38	1	131

^{1.} Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348. 2. http://www.chemspider.com/Chemical-Structure.2298795.html

Roulette Wheel Method

1. Reinforce good characteristics

Roulette Wheel Method

- 1. Reinforce good characteristics
- 2. Still give losers a chance

Roulette Wheel Method

- 1. Reinforce good characteristics
- 2. Still give losers a chance
- 3. 'Breed' pairs of winners

Roulette Wheel Method

- 1. Reinforce good characteristics
- 2. Still give losers a chance
- 3. 'Breed' pairs of winners

Selecting Parents

Roulette Wheel Method

- 1. Reinforce good characteristics
- 2. Still give losers a chance
- 3. 'Breed' pairs of winners

Selecting Parents

Roulette Wheel Method

- 1. Reinforce good characteristics
- 2. Still give losers a chance
- 3. 'Breed' pairs of winners

The Next Generation

1. Generate N random, sensible geometries

sensible

1. Generate N random, sensible geometries

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents
- 4. Crossover & Mutate

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents
- 4. Crossover & Mutate
- 5. Add Children to population

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents
- 4. Crossover & Mutate
- 5. Add Children to population
- 6. Remove the unfit

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents
- 4. Crossover & Mutate
- 5. Add Children to population
- 6. Remove the unfit
- 7. If converged:
 - Done!

sensible

utter nonsense

- 1. Generate N random, sensible geometries
- 2. Optimize
- 3. Select Parents
- 4. Crossover & Mutate
- 5. Add Children to population
- 6. Remove the unfit
- 7. If converged:
 - Done!

Otherwise:

• Go to 2

sensible

utter nonsense

Finding Low Energy Conformers

of Dipeptides

"Dipeptide" Structures

"We use the term dipeptide for amino acids with an acetylated N terminus and an amino-methylated C terminus"

Combinatorics

•	GA beats other			
	methods if space			
	is large			

 Space gets large fast

		# Notatable	
Molecule	N	# Cis/Trans Bonds	# Conformers
Gly	19	2 + 2	15
Ala	22	2 + 2	28
Phe	32	4 + 2	64
Val	28	3 + 2	60
Trp	36	4 + 2	141
Leu	31	4 + 2	183
lle	31	4 + 2	176

Rotatable +

- Smaller systems are reliably sampled
- As # of conformers increases, miss more and more
- Is there a pattern to what is missed?

Proportion of conformers found with increasing runs of the GA

 Most misses are very high energy

- Most misses are very high energy
- Algorithm favors low energy areas of the space

- New Found by GA
- In Reference & GA

- Most misses are very high energy
- Algorithm favors low energy areas of the space
- Features low in energy are favored and recombined

- Missed by the GA
- New Found by GA
- In Reference & GA

Energy Cutoff

Mycophenolic Acid

Energy Cutoff

Mycophenolic Acid

 GA is more sensitive to energy cutoff

Energy Cutoff

Mycophenolic Acid

- GA is more sensitive to energy cutoff
- For finding low energy ensemble, GA outperforms purely stochastic/deterministic method

Review

• Conformational searching is expensive

- Conformational searching is expensive
- The Genetic Algorithm is a guided global search

- Conformational searching is expensive
- The Genetic Algorithm is a guided global search
- It shines when asked to find many low energy solutions

- Conformational searching is expensive
- The Genetic Algorithm is a guided global search
- It shines when asked to find many low energy solutions
- GA can be used with any electronic structure package

- Conformational searching is expensive
- The Genetic Algorithm is a guided global search
- It shines when asked to find many low energy solutions
- GA can be used with any electronic structure package
- This one is available under the GNU Lesser General Public License: https://github.com/adrianasupady/fafoom

Backup slide

 Geometry optimization step makes the algorithm more Lamarckian (Jean Baptiste Larmarck, [1744-1829])

Genetic Algorithm Parameters

Geometry Optimization: DFT PBE + VdW, tier1 basis in FHI-aims¹. Convergence at 0.005 eV /Å

	parameter	value
molecule	SMILES	CC(=O)N[C@H](C(=O)NC)[C@H](CC)C
	distance_cutoff_1	1.2 Å
	distance_cutoff_2	2.0 Å
	rmsd_cutoff_uniq	0.2 Å
	chiral	true
run settings	max_iter	10
	iter_limit_conv	10
	energy_diff_conv	0.001 eV
GA settings	popsize	5
	energy_var	0.001 eV
	selection	roulette wheel
	fitness_sum_limit	1.2
	prob_for_crossing	0.95
	cross_trial	20
	prob_for_mut_cistrans	0.5
	prob_for_mut_rot	0.5
	max_mutations_cistrans	1
	max_mutations_torsions	2
	mut trial	100

GA Parameters for Isoleucine Dipeptide²

⁽¹⁾ Blum, V. et. 'ál., M. Comput. Phys. Commun. 2009, 180 (11), 21752196. (2) Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.