

CANTABRIA 2018

OPCIÓN 2 · EJERCICIO 1

R. ALCARAZ DE LA OSA · J. SÁNCHEZ MAZÓN

El sistema de la figura se libera a partir de la posición mostrada, donde el resorte, de constante recuperadora k, tiene inicialmente una longitud natural l_0 . Suponiendo que no existen fuerzas de rozamiento, halla:

- (a) La tensión de la cuerda en el instante de liberar el sistema.
- (b) La velocidad de m_2 en el instante en que choca contra el suelo.

Solución

(a) La siguiente figura muestra los DIAGRAMAS de CUERPO LIBRE de m_1 y m_2 al liberar el sistema¹:

¹ Al estar el muelle en su posición de equilibrio, éste NO ejerce ninguna fuerza recuperadora sobre *m*₁. FUERZAS que actúan:

Sobre m

• Peso
$$\vec{P}_1 = -P_x \hat{1} - P_y \hat{j}$$
, donde:

$$P_x = m_1 g \sin \alpha$$
$$P_y = m_1 g \cos \alpha$$

• Normal
$$\vec{N} = N \hat{j} \left(= -\vec{P}_{\nu} \right)$$

• Tensión
$$\vec{T} = T \hat{\imath}$$

Sobre m2

• Peso
$$\vec{P}_2 = m_2 g \hat{j}$$

• Tensión
$$\vec{T} = -T\hat{1}$$

Escribimos la 2ª LEY de NEWTON para cada masa para la componente en la que se produce el movimiento²:

$$T - m_1 g \sin \alpha = m_1 a \tag{1}$$

$$m_2g - T = m_2a \tag{2}$$

Tenemos un sistema de dos ecuaciones con dos incógnitas. Podemos despejar la aceleración a de (2):

$$a = g - \frac{T}{m_2}$$

y sustituirla en (1):

$$T - m_1 g \sin \alpha = m_1 \left(g - \frac{T}{m_2} \right)$$

Despejando T_i :

$$T_{\rm i} = \frac{m_1 m_2}{m_1 + m_2} g(1 + \sin \alpha)$$

 2 Notar que la aceleración de ambas masas es la misma, pues están enlazadas. Además, la tensión T no es constante, ya que en cuanto las masas se separen de su posición inicial, aparecerá la fuerza recuperadora del muelle, que depende de la altura de m_2 (b_2) como se muestra en la siguiente figura:

donde $b_2 = b$ representa la situación inicial y:

$$T(b_2) = \frac{m_2 k}{m_1 + m_2} (b - b_2) + \frac{m_1 m_2}{m_1 + m_2} g(1 + \sin \alpha)$$

$$E_{\rm A} = E_{\rm B} \tag{3}$$

$$E_{p_1} + E_{p_2} = E_{p_1'} + E_{e_1} + E_{c_1} + E_{c_2}$$
 (4)

Escribimos cada una de las CONTRIBUCIONES 4:

$$\begin{split} E_{\rm p_1} &= m_1 g h_1, & \cos h_1 &= l_0 \sin \alpha \\ E_{\rm p_2} &= m_2 g h \\ E_{\rm p_1'} &= m_1 g h_1', & \cos h_1' &= (l_0 + h) \sin \alpha \\ E_{\rm c_1} &= \frac{1}{2} k h^2 \\ E_{\rm c_1} &= \frac{1}{2} m_1 v^2 \\ E_{\rm c_2} &= \frac{1}{2} m_2 v^2 \end{split}$$

Sustituimos en (4):

$$\underline{m_{1}gl_{0}\sin\alpha} + m_{2}gh = \underline{m_{1}gl_{0}\sin\alpha} + m_{1}gh\sin\alpha + \frac{1}{2}kh^{2} + \frac{1}{2}m_{1}v^{2} + \frac{1}{2}m_{2}v^{2}$$

Despejamos⁵:

$$v_{\rm suelo} = \sqrt{\frac{2m_2gh - 2m_1gh\sin\alpha - kh^2}{m_1 + m_2}}$$

La velocidad de m_2 también depende de su altura, h_2 , a través de la expresión 6 :

$$v(h_2) = \sqrt{\frac{2m_2g(h - h_2) - 2m_1g(h - h_2)\sin\alpha - k(h - h_2)^2}{m_1 + m_2}}$$

 3 En la situación inicial, A, tanto m_1 como m_2 tienen únicamente energía potencial gravitatoria, mientras que en la situación final, B, m_1 tiene energía potencial gravitatoria, energía potencial elástica y energía cinética, mientras que m_2 tiene solo energía cinética.

⁴ Tomamos el origen de energías potenciales gravitatorias en el suelo. Es importante darse cuenta de que, como ambas masas están enlazadas, su aceleración es la misma, y por tanto también su velocidad (v) y espacio recorrido (b). La siguiente figura muestra la variación de las energías cinética y potencial gravitatoria de m₂ a medida que cae desde h hasta el suelo:

 5 Es importante notar que, en función de los valores de m_1 , m_2 , k, b y α , puede que la masa m_2 nunca llegue a tocar el suelo. En efecto, es posible demostrar que ambas masas describirán un MAS alrededor de su posición de equilibrio (obtenida imponiendo que la fuerza neta sobre cada una de las masas sea cero), dada por:

$$h_2^{\text{eq.}} = h - \frac{g}{b}(m_2 - m_1 \sin \alpha)$$

lo que implica que la altura mínima a la que llega m_2 viene dada por:

$$h_2^{\text{min.}} = h - \frac{2g}{k}(m_2 - m_1 \sin \alpha)$$

De forma que:

$$h \le \frac{2g}{b} (m_2 - m_1 \sin \alpha)$$

para que m_2 toque el suelo.

⁶ Fácilmente obtenible por conservación de energía sin más que considerar una situación final en la que ambas masas hayan recorrido una distancia $x = h - h_2$. La figura muestra la velocidad de m_2 a medida que ésta cae desde h hasta el suelo.