Extra opdrachten Analyse

Wietse Vaes

8 april 2023

1. Een deel $A \subset (\mathbb{R}, \|\cdot\|)$ is begrensd $\iff \exists m, M \in \mathbb{R} : m < a < M : \forall a \in A$

$$A \subset \mathbb{R}$$
 is begrensd $\Leftrightarrow \exists b \in \mathbb{R}, \exists r > 0 \text{ zodat } A \subset B(b,r)$ Def. 1.4.1 $\Leftrightarrow \exists b \in \mathbb{R}, \exists r > 0 \text{ zodat } \forall a \in A : a \in]b-r, b+r[$ $\Leftrightarrow \exists m(=b-r), M(=b+r) \in \mathbb{R} \text{ zodat } \forall a \in A : m < a < M$

2. Indien $V = (\mathbb{R}, \|\cdot\|)$, dan geldt een rij $(a_m)_{m \in \mathbb{N}}$ is begrensd in $\mathbb{R} \iff \exists M > 0 : |a_m| < M, \forall m \in \mathbb{N}$ Uit Def. 1.4.2 (zij we een rij beschouwen als een functie $a : \mathbb{N} \to V$) volgt dat:

een $\mathrm{rij}(a_m)_{m\in\mathbb{N}}$ in \mathbb{R} is begrensd $\Leftrightarrow a(\mathbb{N})\subset\mathbb{R}$ is begrensd

$$\begin{split} &\Leftrightarrow \exists b \in a(\mathbb{N}), \exists r > 0: a(\mathbb{N}) \subset B(b,r) =]b-r, b+r[\\ &\Leftrightarrow \exists M = \max\{b+r, b-r\} > 0: A(\mathbb{N}) \subset]b-r, b+r[\subset]-M, M[\\ &\Leftrightarrow |a_m| < M, \quad \forall a_m \in a(\mathbb{N}) \end{split}$$

3. Vindt een voorbeeld zodat d(B(a,r)) < 2r.

Zij we in de metrische ruimte (\mathbb{N}, d) met d de discrete metriek zijn. Dan: $\forall a \in \mathbb{N} : \exists r > 0 : \max_{a \in A} (d(B(a, r))) = 1$ en aangezien $a \in B(a, r)$ moet gelden en d(a, a) = 1 moet r > 1. Dus: $d(B(a, r)) \le 1 < r < 2r$

4. Zij we in $(\mathbb{R}, \|\cdot\|)$, r > 0 en $a \in \mathbb{R}^n \implies d(B(a, r)) = d(\overline{B}(a, r)) = 2r$ Zij $a \in \mathbb{R}^n$ er is reeds bewezen dat $d(B(a, r)) \le 2r$ en $d(\overline{B}(a, r)) \le 2r$. We moeten nu dus bewijzen dat d(B(a, r)) > 2r en $d(\overline{B}(a, r)) > 2r$.

Zonder verlies van algemeenheid nemen we aan dat a=0. We mogen dit, want: zij $x\in B(0,r)$, $z=(x+a)\in B(a,r)$. Omdat $d(B(0,r))=\sup\{d(x,y)|x,y\in B(0,r), \text{ zou } d(B(0,r))\geq 2r \text{ indien}\}$ we een rij $(x_m)_{m\in\mathbb{N}}\subset B(0,r)$ en $(y_m)_{m\in\mathbb{N}}\subset B(0,r)$ vinden zodat $\lim_{m\to\infty}x_m=x$, $\lim_{m\to\infty}y_m=y$ en $d(x,y)=\|x-y\|=2r$. Definieer nu de rij $r_m,1=r\frac{m}{m+1}$ en $r_m,i=0 \forall i\in\{2,\ldots n\}$. Dan is $(r_m)_{m\in\mathbb{N}}\subset B(0,r)$ en $\|\lim_{m\to\infty}r_m\|=r$. Merk op dat $(-r_m)_{m\in\mathbb{N}}$. Nu weten we dat:

$$\lim_{m \to \infty} ||r_m - (-r_m)|| = \lim_{m \to \infty} |2| ||r_m|| = 2|| \lim_{m \to \infty} r_m|| = 2r$$

De limiet mag naar binnen gebracht worden omdat de functie $\|\cdot\|$ continu is. Hierdoor weten we dus dat $d(B(a,r)) \geq 2r$ is. Dus d(B(a,r)) = 2r

- 5. Zij (V,d) een MR en (A,\tilde{d}) een deelruimte hiervan. In het bewijs van: $Y \subset A$ is gesloten in $A \iff \exists Z \subset V: Y = Z \cap A$. Bewijs gedetaileerder: $\exists W \subset V, W$ is open in V, zodat $A \setminus Y = W \cap A \iff \exists Z \subset V, Z$ is gesloten in V, zodat $Y = Z \cap A$
 - Stel er bestaat een $W \subset V$ open, zodat $A \setminus Y = W \cap A$. Definieer nu $Z = V \setminus W$. Z is dus gesloten in V want W is open in V. Bovendien: $Y = A \setminus (A \setminus Y) = A \setminus (W \cap A) = (A \setminus W) \cup (A \setminus A) = (V \setminus W) \cap A = Z \cap A$
 - Stel er bestaat een $Z \subset V$ gesloten, zodat $Y = Z \cap A$. Definieer nu $W = V \setminus Z$. W is dus open in V want Z is gesloten in V. Bovendien: $A \setminus Y = A \setminus (Z \cap A) = (A \setminus Z) \cup (A \setminus A) = A \setminus Z = (V \setminus z) \cap A = W \cap A$
- 6. $\bar{A} = \mathring{A} \cup \partial A$ $\operatorname{Zij} x \in \bar{A} \colon x \in V \text{ en } \forall r > 0 \colon B(x,r) \cap A \neq \emptyset$. Dus $\operatorname{zij} x \in A \colon \exists r > 0 \colon B(x,r) \subset A \Longrightarrow x \in \mathring{A}$ of, $\operatorname{zij} x \in V \setminus A \colon \forall r > 0 \colon B(x,r) \cap A \neq \emptyset$ en $B(x,r) \cap (V \setminus A) \neq \emptyset \Longrightarrow \partial A$. Dus $\bar{A} \subset \mathring{A} \cup \partial A$ $\operatorname{Zij} \text{ nu } x \in \mathring{A} \cup \partial A$, dan Volgt dat $x \in V \colon \forall r > 0 \colon (x,r) \cap A \neq \emptyset$ en $B(x,r) \cap (V \setminus A) \neq \emptyset$ of $x \in A \colon \exists r > 0 \colon B(x,r) \subset A$, dus $x \in \bar{A}$. Dus $\bar{A} = \mathring{A} \cup \partial A$

- $\bar{A} = A \cup \partial A$ Zij $x \in \bar{A}$: $x \in V$ en $\forall r > 0$: $B(x,r) \cap A \neq \emptyset$. Dus oftewel is $x \in V \setminus A : \forall r > 0 : B(x,r) \cap A \neq \emptyset$ en $B(x,r) \cap (V \setminus A) \neq \emptyset \implies \partial A$ of $x \in A$. Dus $\bar{A} \subset A \cup \partial A$ anderzijds, zij $x \in A \cup \partial A$: dan volgt hier meteen uit dat $x \in \bar{A}$
- $\mathring{A} = \bar{A} \backslash \partial A$ Omdat $\mathring{A} \cap \partial A = \emptyset$ want zij $x \in \mathring{A}$ dan $\exists r : B(x,r) \cap V \backslash A = \emptyset$ en omdat $\bar{A} = \mathring{A} \cup \partial A$ is $\mathring{A} = \bar{A} \backslash \partial A$
- $\mathring{A} = A \setminus \partial A$ Omdat $\bar{A} = A \cup \partial A$ en $\mathring{A} = \bar{A} \setminus \partial A$ is $\mathring{A} = \bar{A} \setminus \partial A = (A \cup \partial A) \setminus \partial A = A \setminus \partial A$
- 7. Zij (V,d) een MR, zij $A \subset V$, zij $a \in A'$ en zij $f, g : A \to \mathbb{R}$ twee afbeeldingen. Veronderstel dat $\lim_{x \to a} f(x) = b$ en dat $\lim_{x \to a} g(x) = c$. Dan geldt:
 - $\lim_{x \to a} (f(x) + g(x)) = b + c$ Er geldt:

$$\forall \varepsilon > 0, \exists \delta_1 > 0 \text{ zodat } \forall x \in A \setminus \{a\}, d(x,a) < \delta_1 \implies |f(x) - b| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0, \exists \delta_2 > 0 \text{ zodat } \forall x \in A \setminus \{a\}, d(x, a) < \delta_2 \implies |g(x) - c| < \frac{\varepsilon}{2}$$

We definieren nu ' = $\min\{\delta_1, \delta_2\}$ dan geldt $\forall x \in A \setminus \{a\} : d(x, a) < \delta$:

$$|(f(x)+g(x)-(b+c)| \leq |f(x)-b|+|g(x)-c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Dus: $\lim_{x \to a} (f(x) + g(x)) = b + c$

 $\begin{array}{l} \bullet \ \lim_{x \to a} (\alpha f(x)) = \alpha b, \qquad \forall \alpha \in \mathbb{R} \\ \operatorname{Zij} \ \alpha = 0 \ \operatorname{dan:} \ \forall \varepsilon > 0, \exists r > 0 \ \operatorname{zodat} \ \forall x \in A \backslash \{a\}, d(x,a) < \delta \implies |0 - 0| < \varepsilon. \\ \operatorname{Dus, \ uiteraard, \ } \lim_{x \to a} (0) = 0. \end{array}$

Zij $\alpha \in \mathbb{R} \setminus \{0\}$. Er geldt:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ zodat } \forall x \in A \setminus \{a\} : d(x, a) > \delta \implies |f(x) - b| < \frac{\varepsilon}{|\alpha|}$$

Dus zij $\forall \varepsilon>0, \exists \delta>0$ zodat $\forall x\in A\backslash\{a\}, d(x,a)<\delta,$ dan is:

$$|\alpha f(x) - \alpha b| = |\alpha||f(x) - b| < |\alpha| \frac{\varepsilon}{|\alpha|} = \varepsilon$$

Dus $\lim_{x \to a} (\alpha f(x)) = \alpha b$

• $\lim_{x \to a} (f(x) \cdot g(x)) = b \cdot c$ Zij $M = \sup |f(x)|$. Er geldt:

$$\forall \varepsilon > 0, \exists \delta_1 > 0 \text{ zodat } \forall x \in A \setminus \{a\}, d(x, a) < \delta_1 \implies |f(x) - b| < \frac{\varepsilon}{|c| + M}$$

$$\forall \varepsilon > 0, \exists \delta_2 > 0 \text{ zodat } \forall x \in A \setminus \{a\}, d(x, a) < \delta_2 \implies |g(x) - c| < \frac{\varepsilon}{|c| + M}$$

Definieer nu ' = $\min\{\delta_1, \delta_2\}$, als $\forall x \in A \setminus \{a\} : d(a, x) < \delta$:

$$|f(x)g(x)-bc|=|f(x)g(x)-f(x)c+f(x)c-bc|\leq |f(x)||g(x)-c|+|c||f(x)-b|< M\frac{\varepsilon}{|c|+M}+|c|\frac{\varepsilon}{|c|+M}=\varepsilon$$

Dus $\lim_{x \to a} (f(x) \cdot g(x)) = b \cdot c$

• zij $c \neq 0$ dan is $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{b}{c}$ We tonen aan dat, zij $c \neq 0$, $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{c}$. Er geldt:

$$\forall \varepsilon > 0, \exists \delta' > 0 \text{ zodat } \forall x \in A \setminus \{a\} : d(x, a) < \delta' \implies |g(x) - c| < \varepsilon$$

Kies nu $\varepsilon = \frac{2}{|c|}$. Dan geldt $\frac{1}{|g(x)|} < \frac{2}{|c|}$ indien $x \in A \setminus \{a\}$ en $d(x, a) < \delta'$. Dit omdat:

Zij
$$c > 0: \frac{-|c|}{2} < g(x) - |c| \implies 0 < \frac{c}{2} < g(x) \implies \frac{1}{|g(x)|} = \frac{1}{g(x)} < \frac{2}{|c|}.$$

$$\begin{aligned} & \text{Zij } c > 0 : \frac{-|c|}{2} < g(x) - |c| & \Longrightarrow 0 < \frac{c}{2} < g(x) \implies \frac{1}{|g(x)|} = \frac{1}{g(x)} < \frac{2}{|c|}. \\ & \text{Zij } c < 0(|c| = -c) : g(x) - c = g(x) + |c| < \frac{|c|}{2} \implies g(x) < \frac{|c|}{2} - |c| < 0 \implies -|g(x)| = g(x) < \frac{-|c|}{2} \implies |g(x)| > \frac{|c|}{2} \implies \frac{1}{|g(x)|} > \frac{2}{|c|}. \end{aligned}$$

Merk op $\exists \delta > 0$ zodat $d(x,a) < \delta \implies |g(x) - c| < \varepsilon \frac{|c|^2}{2}$. Dus: $\forall x \in A \setminus \{a\} \text{ zodat } d(x, a) < \min\{\delta, \delta'\} :$

$$|\frac{1}{g(x)} - \frac{1}{c}| = \frac{|g(x) - c|}{|cg(x)|} < \varepsilon \frac{|c|}{2} \frac{1}{|g(x)|} < \varepsilon$$

Hieruit volgt meteen dan dat $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}f(x)\cdot\frac{1}{g(x)}=\frac{b}{c}$

 $\bullet \quad \lim |f(x)| = |b|$ Wederom geldt er:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ zodat } \forall x \in A \setminus \{a\}, d(x, a) < \delta \implies |f(x) - b| < \varepsilon$$

Nu geldt er:

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ zodat } \forall x \in A \setminus \{a\} : d(x, a) < \delta :$

$$||f(x)| - |b|| = ||f(x) - b + b| - |b|| \le ||f(x) - b| + |b| - |b|| = |f(x) - b| < \varepsilon$$

Dus: $\lim_{x \to a} |f(x)| = |b|$

• de limiet van een convergente rij in (V,d) is uniek. Stel de limiet van een convergente rij in (V,d) is niet uniek. Dus: $\lim_{m\to\infty} a_m = a$ en $\lim_{m\to\infty} a_m = b$ met $a \neq b$. Zij nu $\varepsilon = d(a, b) > 0$, dan:

$$\forall \epsilon > 0, \exists m_1 \in \mathbb{N} \text{ zodat } \forall m > m_1 : d(a_m, a) < \frac{\varepsilon}{2}$$

$$\forall \epsilon > 0, \exists m_2 \in \mathbb{N} \text{ zodat } \forall m > m_2 : d(a_m, b) < \frac{\varepsilon}{2}$$

Zij $m_0 = \max\{a_1, a_2\}$, dan geldt $\forall m > m_0$:

$$\varepsilon = d(a,b) \le d(a,a_m) + d(a_m,b) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Dus: $\varepsilon < \varepsilon$. Dit is een tegenspraak dus is de limiet van een convergente rij in (V,d) uniek.

- een convergente rij in (V,d) is begrensd. Stel $\varepsilon = 1$, zij $(a_m)_{m \in \mathbb{N}}$ een convergente rij (naar a), dan: $\exists m_0 \in \mathbb{N}$ zodat $\forall m \geq m_0 : d(a_m, a) < 1$ Dan geldt: $\forall m \geq m_0 : a_m \in B(a,1)$. Merk op: er zijn eindig veel punten die verder dan 1 van a ligt. We definieren nu een $M = \max\{d(a_0, a), ..., d(a_{m_0-1}, a), 1\}$ dan: $(a_m)_{m \in \mathbb{N}} \subset B(a, M) \implies$ $(a_m)_{m\in\mathbb{N}}$ is begrensd
- elke deelrij van een convergente rij in (V,d) is convergent met dezelfde limiet. Zij $(a_m)_{m\in\mathbb{N}}$ een convergente rij in (V,d) met limiet a en $(a_{\rho(m)})_{m\in\mathbb{N}}$ een willekeurige deelrij. Kies $m_0 \in \mathbb{N}$ zodat $\forall m > m_0 : d(a_m, a) < \varepsilon$. Omdat de functie $\rho : \mathbb{N} \to \mathbb{N}$ strikt monotoon stijgende is, geldt: $\forall m \in \mathbb{N} : \rho(m) \geq m$. dus:

$$\rho(m) \ge m \implies \rho(m) \ge m_0 \implies d(a_{\rho(m)}, b) < \varepsilon \implies \lim_{m \to \infty} a_{\rho(m)} = b$$

9. Stelling: Er geldt: $(a_m)_{m\in\mathbb{N}} = \left(a_m^{(1)}, \dots, a_m^{(n)}\right)_{m\in\mathbb{N}}$ is een Cauchy rij in $\mathbb{R}^n \iff (a_m^{(k)})_{m\in\mathbb{N}}$ is een Cauchy rij in \mathbb{R} , $\forall k \in \{1, \dots n\}$.

Bewijs: We weten dat: zij $x \in \mathbb{R}^n |x_k| \le ||x||_m \le ||x|| \le ||x||_{\Sigma} \le n||x||_m$

 \Rightarrow : Zij $(a_m)_{m\in\mathbb{N}}$ een cauchy rij, dus:

 $\forall \varepsilon > 0, \exists m_0 \in \mathbb{N} \text{ zodat } \forall m \geq m_0, \forall p \in \mathbb{N} : ||a_{m+p} - a_m|| < \varepsilon \text{ of } ||a_{m+p} - a_m||_{\Sigma} < \varepsilon \text{ of } ||a_{m+p} - a_m||_m < \varepsilon$

Dus:

$$|(a_{m+p}-a_m)^{(k)}|=|a_{m+p}^{(k)}-a_m^{(k)}|\leq \|a_{m+p}-a_m\|<\varepsilon,\quad\forall k\text{ Dit geldt ook voor de andere normen}$$

Dus $(a_m^{(k)})_{m\in\mathbb{N}}$ is een cauchy reeks in \mathbb{R} $\forall k$

 \Leftarrow : Stel $(a_m^{(k)})_{m\in\mathbb{N}}$ is een cauchy reeks in $\mathbb{R} \ \forall k$. Dus:

$$\forall \varepsilon > 0, \exists m_k \in \mathbb{N} \text{ zodat } \forall m \geq m_k, \forall p \in \mathbb{N} : |a_{m+p}^{(k)} - a_m^{(k)}| < \frac{\varepsilon}{n}$$

Definieer $m_0 = \max\{m_1, \dots, m_n\}$, dan geldt $\forall m \geq m_0$:

$$\|a_{m+p}^{(k)} - a_m^{(k)}\|_m < \frac{\varepsilon}{n}$$

Dus:

$$||a_{m+p} - a_m||_m \le ||a_{m+p} - a_m|| \le ||a_{m+p} - a_m||_{\Sigma} \le n||a_{m+p} - a_m||_m < \varepsilon$$

Dus $(a_m)_{m\in\mathbb{N}}$ is een Cauchy rij in \mathbb{R}^n

10. Stelling: $C \subset \mathbb{R}$ is gesloten en begrensd \Longrightarrow C is compact.

Bewijs: Zij $C \subset \mathbb{R}$ gesloten en begrensd en $(a_m)_{m\mathbb{N}}$ een willekeurige rij in C. Omdat C begrensd is en $(a_m)_{m\in\mathbb{N}} \subset C$ is de rij ook begrensd, dus er bestaat, volgens de stelling van Bolzano-Weierstrass, een convergente deelrij $(a_{\rho(m)})_{m\in\mathbb{N}} \subset C$ van $(a_m)_{m\in\mathbb{N}}$. Dus $\exists a \in \mathbb{R} : \lim_{m\to\infty} a_{p(m)} = a$. Omdat C gesloten is, is de limiet van elke convergente rij in C een element van C. Dus $a \in C$. Dus elke rij in C heeft een convergente deelrij in C, dus C is compact.