

Attributed Graph Alignment

Ning Zhang*, Weina Wang†, Lele Wang*

* The University of British Columbia, † Carnegie Mellon University

Social network deanonymization

Find the user correspondence using both graph topology information and attribute information.

Problem formulation

Model: The attributed Erdős-Rényi pair $G(n, \mathbf{p}; m, \mathbf{q})$

- For $i, j \in [n]$, $(\mathbf{1}_{\{(i,j) \in E_1\}}, \mathbf{1}_{\{(i,j) \in E_2\}}) \sim \mathbf{p} = (p_{11}, p_{10}, p_{01}, p_{00})$
- For $i \in [n]$, $j' \in [m]$, $\left(\mathbf{1}_{\{(i,j') \in E_1\}}, \mathbf{1}_{\{(i,j') \in E_2\}}\right) \sim \mathbf{q} = (q_{11}, q_{10}, q_{01}, q_{00})$
- \blacktriangleright Anonymization: Apply unknown permutation Π^* on user set of G_2 and the resulting graph is G_2 .
- Attributed graph alignment: Given G_1 and G_2 , find a permutation $\widehat{\pi}(G_1, G_2)$: $[n] \to [n]$, s.t., $P(\widehat{\pi}(G_1, G_2)) = \Pi^* = 1 o(1)$.

Main results

Maximum a Posterior estimator (optimal)

$$\hat{\pi}_{MAP} = \operatorname{argmin}_{\pi} \{ w_1 \Delta^u(G_1, \pi \circ G_2) + w_2 \Delta^a(G_1, \pi \circ G_2) \}$$

 $\Delta_u(G_1, \pi \circ G_2)$: Hamming distance of user-user edges between G_1 and $\pi \circ G_2$ $\Delta_a(G_1, \pi \circ G_2)$: Hamming distance of user-attributed edges between G_1 , $\pi \circ G_2$

> (Simplified) achievability condition (feasible region in Fig1&2) If $G(n, \mathbf{p}; m, \mathbf{q})$ satisfies

$$np_{11} + m(\sqrt{q_{11}q_{00}} - \sqrt{q_{10}q_{01}}) - \log n \to \infty,$$
 then $P(\hat{\pi}_{MAP} = \Pi^*) = 1 - o(1).$

Converse condition (infeasible region in Fig1&2) If $G(n, \mathbf{p}; m, \mathbf{q})$ satisfies

$$np_{11} + mq_{11} - \log n \to -\infty,$$

then no algorithm guarantees recovering Π^* with high probability.

Fig1. $m = \Omega((\log n)^3)$

 $Fig2. m = o((\log n)^3)$

*We added a few mild assumptions to demonstrate the result in 2D plane. For general achievability results, please check our paper.

Connection with prior work

Erdős-Rényi graph alignment

Setting: Only user-user connection information is available. (Pedarsani& Grossglauser2011)

Our model: By removing user-attribute edges, our model specializes to correlated Erdős-Rényi graph pair and the corresponding information-theoretic limit is shown as the blue lines in Fig 1&2.

✓ Our results recover information-theoretic limits given by Cullina&Kiyavash in 2017

Bipartite graph alignment

Setting: Only user-attribute connection information is available. (Narayanan&Shmatikov 2008)

Our model: By removing user-user edges, our model specializes to correlated random bipartite graph pair and the corresponding information-theoretic limit is shown as the red lines in Fig 1&2.

✓ Our results improve the previous information-theoretic limits from Dai et al. 2019

Seeded graph alignment

Setting: Only user-user connection is available, and part of the vertices are correctly pre-aligned. (Yartseva&Grossglauser 2013, Shirani et al.2017)

Our model: We treat attributes as pre-aligned users and set the edge probability between user-attribute to be the same as user-user. The corresponding information-theoretic limit is shown as the yellow lines in Fig 1&2.

✓ Our results provide the tight achievability and converse conditions.

Future directions

- ☐ Tight achievability and converse conditions?
- ☐ Aligning graphs with community structure?

Conference paper

Full versio

Paper links: https://arxiv.org/abs/2102.00665v1
https://arxiv.org/abs/2102.00665v2

^{**} The dot lines correspond to three specialized settings in the next section.