# Roteamento de Veículo Elétrico via Algoritmo Genético Binário

#### Yago Pereira dos Anjos Santos

Universidade Federal de Juiz de Fora Programa de Pós-graduação em Modelagem Computacional

16 de julho de 2025



- 1 Introdução ao Problema
- 2 Descrição do Método: Algoritmo Genético Binário
- Resultados Obtidos
- 4 Conclusão

- Introdução ao Problema
- 2 Descrição do Método: Algoritmo Genético Binário
- Resultados Obtidos
- 4 Conclusão

## O Problema: EVRP Simplificado

- EVRP (Problema de Roteamento de Veículo Elétrico):
  Encontrar rotas para veículos elétricos que atendam a clientes.
- Objetivo: Minimizar a distância total percorrida.
- Clientes e Depósito: Cada cliente é visitado exatamente uma vez por um veículo; VEs começam e terminam no depósito.
- Simplificação na Implementação:
  - Ignoramos restrições de capacidade de carga.
  - Ignoramos restrições de capacidade e consumo de energia (bateria).

- 1 Introdução ao Problema
- 2 Descrição do Método: Algoritmo Genético Binário
- Resultados Obtidos
- 4 Conclusão

# Algoritmo Genético (AG)

# Algoritmo Genético Binário

- Meta-heurística baseada na seleção natural e genética.
- Busca soluções aproximadas para problemas de otimização.
- Opera com uma população de "indivíduos" (soluções candidatas).

# Representação do Indivíduo (Cromossomo)

- Um indivíduo é uma string (lista) puramente binária ('0's ou '1's).
- O comprimento da string é igual ao **número de clientes**.
- Cada bit corresponde a um cliente em uma ordem predefinida e fixa (ids ordenados).
- Significado do Bit:
  - '1': Indica que o veículo retorna ao depósito **após** visitar o cliente correspondente, iniciando uma nova rota.
  - '0': Indica que o veículo continua para o próximo cliente na mesma rota.
- Limitação: Esta representação não otimiza a ordem de visita dos clientes; apenas os pontos de "quebra" da rota.

## Operadores Genéticos e Aptidão

- População Inicial: Indivíduos binários gerados aleatoriamente.
- Função de Aptidão (Fitness):
  - Avalia a "qualidade" da solução.
  - Calculada como o inverso da distância total percorrida pelas rotas.
  - Quanto menor a distância, maior a aptidão.
- Seleção de Pais: Por roleta, favorecendo indivíduos com maior aptidão.
- Crossover (Recombinação):
  - Crossover de um ponto na string binária.
  - Troca segmentos binários entre pais para gerar filhos.
- Mutação:
  - Inversão de um bit ('0' para '1' ou '1' para '0') com pequena probabilidade.
- Critério de Parada: Número máximo de avaliações da função de aptidão: 25000n, onde n é o tamanho do problema.

- 1 Introdução ao Problema
- 2 Descrição do Método: Algoritmo Genético Binário
- Resultados Obtidos
- 4 Conclusão

#### Resultados Obtidos

### • Instância E-n23-k3.evrp:

Dimensão (total de nós): n = 23

Número de Clientes (com demanda > 0): 22

ID do Depósito: 1

Número máximo de avaliações por execução (25000·n): 575000 Número de execuções independentes: 20

• Distância média obtida pelo AG Binário:  $\approx$  918.56.

| instância     | Resultados AGB |        |        |       |
|---------------|----------------|--------|--------|-------|
|               | min            | max    | mean   | stdev |
| E-n23-k3.evrp | 918.56         | 918.56 | 918.56 | 0.0   |

Tabela 1: Resultados obtidos a partir da implementação do AGB

#### Resultados Obtidos

#### Instância E-n51-k5.evrp:

Dimensão (total de nós): n = 51

Número de Clientes (com demanda > 0): 50

ID do Depósito: 1

Número máximo de avaliações por execução: (25000·n) = 1275000 Número de execuções independentes: 20

• Distância média obtida pelo AG Binário:  $\approx$  1313.47.

| instância     | Resultados AGB |         |         |       |
|---------------|----------------|---------|---------|-------|
|               | min            | max     | mean    | stdev |
| E-n51-k5.evrp | 1313.47        | 1313.47 | 1313.47 | 0.0   |

Tabela 2: Resultados obtidos a partir da implementação do AGB

# Resultados da Competição

| instâncias    | (Time 1) VNS |        |        |       |
|---------------|--------------|--------|--------|-------|
|               | min          | max    | mean   | stdev |
| E-n23-k3.evrp | 571.94       | 571.94 | 571.94 | 0.0   |
| E-n51-k5.evrp | 529.90       | 548.98 | 543.26 | 3.52  |

| instâncias    | (Time 2) SA |        |        |       |
|---------------|-------------|--------|--------|-------|
|               | min         | max    | mean   | stdev |
| E-n23-k3.evrp | 571.94      | 571.94 | 571.94 | 0.0   |
| E-n51-k5.evrp | 533.66      | 533.66 | 533.66 | 0.0   |

| instâncias    | (Time 3) GA |        |        |       |
|---------------|-------------|--------|--------|-------|
|               | min         | max    | mean   | stdev |
| E-n23-k3.evrp | 571.94      | 571.94 | 571.94 | 0.0   |
| E-n51-k5.evrp | 529.90      | 553.23 | 542.08 | 8.57  |

Tabela 3: Resultados dos três times para diferentes instâncias

## Comparação dos Resultados

# Comparação de Valores Ótimos

- Instância E-n23-k3.evrp
  - Time 1: Diferença percentual: 60.60%
  - Time 2: Diferença percentual: 60.60%
  - Time 3: Diferença percentual: 60.60%
- Instância E-n51-k5.evrp
  - Time 1: Diferença percentual: 147.87%
  - Time 2: Diferença percentual: 146.12%
  - Time 3: Diferença percentual: 147.87%

- 1 Introdução ao Problema
- 2 Descrição do Método: Algoritmo Genético Binário
- Resultados Obtidos
- 4 Conclusão

#### Conclusão

- A codificação binária pura não otimiza a permutação dos clientes.
  A ordem de visita é fixa, limitando severamente o espaço de soluções explorável para roteamento.
- Ineficácia em encontrar soluções próximas do ótimo, pois sua codificação é inadequada para otimizar a permutação de clientes.
- Uma abordagem híbrida (permutação + binário) pode ser necessária para resolver eficientemente o problema de roteamento e obter resultados mais próximos dos ótimos.
- Além disso, a inclusão das restrições do problema são essenciais para resultados competitivos.