1. multiple y format (LR) X_train <- read.csv("ModelData/X_train2.csv")[,-1]; Y_train <- read.csv("ModelData/Y_train2.csv")[,-1]</pre> X_val <- read.csv("ModelData/X_val2.csv")[,-1]; Y_val <- read.csv("ModelData/Y_val2.csv")[,-1]</pre> X_test <- read.csv("ModelData/X_test2.csv")[,-1]; Y_test <- read.csv("ModelData/Y_test2.csv")[,-1]</pre> colnames(Y_train) <- c("Y1","Y2","Y3","Y4","Y5","Y6","Y7") Data_train <- cbind(Y_train,X_train); #head(Data_train); dim(Data_train)</pre> colnames(Y_val) <- c("Y1","Y2","Y3","Y4","Y5","Y6","Y7") Data_val <- cbind(Y_val, X_val); #head(Data_val); dim(Data_val)</pre> colnames(Y_test) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6", "Y7") Data_test <- cbind(Y_test,X_test); #head(Data_test); dim(Data_test)</pre> 1.1. Linear regression without interactions m1 <- lm(cbind(Data_train\$Y1,Data_train\$Y2,Data_train\$Y3,Data_train\$Y4,Data_train\$Y5,Data_train\$Y6,Data_train\$Y7) ~ . , Data_train[,-c(1:7)]) #summary(m1) #cat("MSE:", mean(m1\$residuals^2)) #cat("RMSE:", sqrt(mean(m1\$residuals^2))) y_pred <- predict(m1, Data_val)</pre> y_real <- Y_val</pre> y_pred <- rbind(y_pred[,1],y_pred[,2],y_pred[,3],y_pred[,4],y_pred[,5],y_pred[,6],y_pred[,7])</pre> y_real <- rbind(y_real[,1],y_real[,2],y_real[,3],y_real[,4],y_real[,5],y_real[,6],y_real[,7])</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.1117158 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3342391 y_pred <- predict(m1, Data_test)</pre> y_real <- Y_test</pre> y_pred <- rbind(y_pred[,1],y_pred[,2],y_pred[,3],y_pred[,4],y_pred[,5],y_pred[,6],y_pred[,7])</pre> y_real <- rbind(y_real[,1],y_real[,2],y_real[,3],y_real[,4],y_real[,5],y_real[,6],y_real[,7])</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.09493806 cat("RMSE:", sqrt(mean((y real-y pred)^2))) ## RMSE: 0.3081202 2. one y format, "all var & station" interactions (LR, LASSO, Ridge, Decision Tree) # read data Train <- read.csv("ModelData/Train2 long.csv"); #head(Train); dim(Train)</pre> Val <- read.csv("ModelData/Val2_long.csv"); #head(Val); dim(Val)</pre> Test <- read.csv("ModelData/Test2_long.csv"); #head(Test); dim(Test)</pre> # categorical var for(i in c(4:6)){ Train[,i] <- as.character(Train[,i])</pre> Val[,i] <- as.character(Val[,i])</pre> Test[,i] <- as.character(Test[,i])</pre> median_test <- median(Test[,3]); iqr_test <- IQR(Test[,3])</pre> Train \leftarrow Train[,-3]; Val \leftarrow Val[,-3]; Test \leftarrow Test[,-3] #summary(Train); summary(Val); summary(Test) 2.1. Linear regression with interactions lr_model <- lm(mrt_flow~ . * mrt_station, Train)</pre> #lr_model <- lm(mrt_flow ~ . * mrt_station, rbind(Train, Val))</pre> #summary(lr_model) #cat("MSE:", mean(m1\$residuals^2)) #cat("RMSE:", sqrt(mean(m1\$residuals^2))) y_pred <- predict(lr_model, Val)</pre> ## Warning in predict.lm(lr model, Val): prediction from a rank-deficient fit may ## be misleading y_real <- Val\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.104414 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3231316 cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2))) ## Original RMSE: 725.4304 y_pred <- predict(lr_model, Test)</pre> ## Warning in predict.lm(lr_model, Test): prediction from a rank-deficient fit may ## be misleading y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.06850735 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.2617391 cat("Original RMSE:", sqrt(mean(((y real*iqr test+median test) - (y pred*iqr test+median test))^2))) ## Original RMSE: 587.6042

2.2. LASSO with interactions

#y <- rbind(Train, Val)\$mrt_flow</pre>

Loading required package: Matrix

y_pred <- predict(lasso_model, x)</pre>

y pred <- predict(lasso model, x)</pre>

cat("MSE:", mean((y_real-y_pred)^2))

y_real <- Test\$mrt_flow</pre>

Original RMSE: 594.5962

#y <- rbind(Train, Val)\$mrt_flow</pre>

2.3. Ridge with interactions

y <- Train\$mrt_flow</pre>

library(glmnet)

RMSE: 0.3183888

cat("MSE:", mean((y_real-y_pred)^2))

y_real <- Val\$mrt_flow</pre>

MSE: 0.1019242

y <- Train\$mrt_flow

library(glmnet)

Loaded glmnet 4.1-7 lasso_kfold <- cv.glmnet(x, y, alpha=0, nfolds=10)</pre> lasso_best_lambda <- lasso_kfold\$lambda.min</pre> lasso_model <- glmnet(x, y, alpha=0, lambda=lasso_best_lambda)</pre>

x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre>

f <- as.formula(mrt_flow ~ .* mrt_station) # using .*. for all interactions

x <- model.matrix(f, Train)[,-1] # using model.matrix to take advantage of f

#x <- model.matrix(f, rbind(Train, Val))[,-1] # using model.matrix to take advantage of f</pre>

cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3192557 cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2))) ## Original RMSE: 716.729 x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test))[,-1][-(1:nrow(Train)),]</pre> #x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val, Test))[,-1][-(1:nrow(rbind(Train, Val))),]</pre>

MSE: 0.07014739 cat("RMSE:", sqrt(mean((y real-y pred)^2))) ## RMSE: 0.2648535 cat("Original RMSE:", sqrt(mean(((y real*iqr test+median test) - (y pred*iqr test+median test))^2)))

f <- as.formula(mrt_flow ~ .* mrt_station) # using .*. for all interactions

x <- model.matrix(f, Train)[,-1] # using model.matrix to take advantage of f

#x <- model.matrix(f, rbind(Train, Val))[,-1] # using model.matrix to take advantage of f</pre>

cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2)))

#x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val, Test))[,-1][-(1:nrow(rbind(Train, Val))),]</pre>

cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2)))

cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2)))

dt_model <- rpart(mrt_flow~., Train, cp=0.000005) # choose cp by the performance in val

x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test))[,-1][-(1:nrow(Train)),]</pre>

ridge_model <- glmnet(x, y, alpha=0, lambda=ridge_best_lambda)</pre> x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre> y_pred <- predict(ridge_model, x)</pre> y_real <- Val\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.1013714

ridge_kfold <- cv.glmnet(x, y, alpha=1, nfolds=10)</pre>

ridge_best_lambda <- ridge_kfold\$lambda.min</pre>

cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

y_pred <- predict(ridge_model, x)</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.06688835 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.2586278

Original RMSE: 580.6195

y_pred <- predict(dt_model, Val)</pre>

library(rpart)

#summary(dt_model) #printcp(dt_model) #plotcp(dt_model)

y_real <- Val\$mrt_flow</pre>

RMSE: 0.2310974

Original RMSE: 518.8136

y_real <- Test\$mrt_flow</pre>

RMSE: 0.1555518

y <- Train\$mrt_flow

Original RMSE: 349.2138

#y <- rbind(Train, Val)\$mrt_flow</pre>

y_pred <- predict(ridge_model, x)</pre>

cat("MSE:", mean((y_real-y_pred)^2))

y_real <- Val\$mrt_flow</pre>

Original RMSE: 580.3828

MSE: 0.1012653

y_pred <- predict(dt_model, Test)</pre>

cat("MSE:", mean((y_real-y_pred)^2))

#y_pred <- predict(dt_model_pruned, Test)</pre>

Original RMSE: 714.7828

cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.053406 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

2.4. Regression tree (decision tree) with interactions

#dt_model <- rpart(mrt_flow~.,rbind(Train,Val))</pre>

#dt_model_pruned <- prune(dt_model, cp = 0.000001)

MSE: 0.02419636 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

2.5. GLMNET (combine LASSO and Ridge) with interactions

f <- as.formula(mrt_flow ~ .* mrt_station) # using .*. for all interactions

x <- model.matrix(f, Train)[,-1] # using model.matrix to take advantage of f

#x <- model.matrix(f, rbind(Train, Val))[,-1] # using model.matrix to take advantage of f</pre>

library(glmnet) ridge_kfold <- cv.glmnet(x, y, alpha=0.05, nfolds=10) # choose alpha by the performance in val ridge_best_lambda <- ridge_kfold\$lambda.min</pre> ridge_model <- glmnet(x, y, alpha=0, lambda=ridge_best_lambda)</pre> x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre>

cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2)))

cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3182221 cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2))) ## Original RMSE: 714.4087 x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test))[,-1][-(1:nrow(Train)),]</pre> #x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val, Test))[,-1][-(1:nrow(rbind(Train, Val))),]</pre>

y_pred <- predict(ridge_model, x)</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.06683383 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.2585224

cat("Original RMSE:", sqrt(mean(((y_real*iqr_test+median_test) - (y_pred*iqr_test+median_test))^2)))