R studio Assignment Bike Rental Prediction Submitted by: Mohit Rohilla

Description

Problem Statement:

In bike-sharing systems, the entire process from membership to rental and return has been automated. Using these systems, users can easily rent a bike from one location and return it to another. Hence, a bike rental company wants to understand and predict the number of bikes rented daily based on the environment and seasons.

Objective: The objective of this case is to predict bike rental counts based on environmental and seasonal settings with the help of a machine learning algorithm.

Data Set: day.csv

Data Description

Variable Description

instant Record index

dteday Date

season Season (1: springer, 2: summer, 3: fall, 4: winter)

yr Year (0: 2011, 1:2012)

mnth Month (1 to 12)

holiday Weather day is a holiday or not

weekday Day of the week

workingdayWorking day (1: neither weekend nor holiday, 0: other days)

1: Clear, few clouds, partly cloudy, partly cloudy

2: Mist + cloudy, mist + broken clouds, mist + few clouds, mist

weathersit 3. Light snow light rain + thunderstorm + scatter

3: Light snow, light rain + thunderstorm + scattered clouds, light rain +

scattered clouds

4: Heavy rain + ice pallets

temp Normalized temperature in Celsius; The values are divided into 41 (max)

Normalized feeling temperature in Celsius; The values are divided into 50

atemp (max)

hum Normalized humidity; The values are divided into 100 (max)

windspeed Normalized wind speed; The values are divided into 67 (max)

casual Count of casual users

registered Count of registered users

cnt Count of total rental bikes including both casual and registered

Steps to Perform:

- 1. Exploratory data analysis
- Load dataset and libraries
- Perform data type conversion of the attributes
- Carry out the missing value analysis
- 2. Attributes distributions and trends
- Plot monthly distribution of the total number of bikes rented
- Plot yearly distribution of the total number of bikes rented
- Plot boxplot for outliers' analysis
- 3. Split the dataset into train and test dataset
- 4. Create a model using the random forest algorithm
- 5. Predict the performance of the model on the test dataseta

Step1: Load data into R studio

setwd("C:/Users/ml30r/Downloads")
install.packages("readxl")
library(readxl)
bike_data = read_excel("BikeRentals.xlsx")

- 1 setwd("C:/Users/ml30r/Downloads")
- 2 install.packages("readx1")
- 3 library(readxl)
- 4 bike_data = read_excel("BikeRentals.xlsx")

Task 1: Exploratory data analysis

Convert columns to appropriate types

bike_data\$season = as.factor(bike_data\$season) bike_data\$yr = as.factor(bike_data\$yr)

bike_data\$mnth = as.factor(bike_data\$mnth)

bike_data\$holiday = as.factor(bike_data\$holiday)

bike_data\$weekday = as.factor(bike_data\$weekday)

bike_data\$workingday = as.factor(bike_data\$workingday)

bike_data\$weathersit = as.factor(bike_data\$weathersit)

Convert 'dteday' to Date type

bike_data\$dteday <- as.Date(bike_data\$dteday)</pre>

View data structure to confirm types str(bike_data)

```
install.packages("ggplot2")
library(ggplot2)

# Plot monthly distribution of the total number of bikes rented
ggplot(bike_data, aes(x = mnth, y = cnt)) +
geom_boxplot() +
labs(title = "Monthly Distribution of Total Number of Bikes Rented",
x = "Month", y = "Total Number of Bikes Rented") +
theme_minimal()

Monthly Distribution of Total Number of Bikes Rented

7500

Monthly Distribution of Total Number of Bikes Rented
```



```
# Boxplot for outliers analysis (for temp, atemp, hum, windspeed)
ggplot(bike_data) +
 geom_boxplot(aes(x = factor(0), y = temp)) +
 labs(title = "Boxplot of Normalized Temperature", y = "Normalized Temperature
(temp)") +
 theme_minimal()
                        Boxplot of Normalized Temperature
                   Normalized Temperature (temp)
                                                  factor(0)
ggplot(BikeRentals) +
 geom_boxplot(aes(x = factor(0), y = atemp)) +
 labs(title = "Boxplot of Normalized Feeling Temperature", y = "Normalized Feeling
Temperature (atemp)") +
 theme_minimal()
                         Boxplot of Normalized Feeling Temperature
                     Normalized Feeling Temperature (atemp)
                                                 factor(0)
```

ggplot(bike_data) + $geom_boxplot(aes(x = factor(0), y = hum)) +$ labs(title = "Boxplot of Normalized Humidity", y = "Normalized Humidity (hum)") + theme_minimal() **Boxplot of Normalized Humidity** 0.75 Normalized Humidity (hum) ggplot(bike_data) + geom_boxplot(aes(x = factor(0), y = windspeed)) + labs(title = "Boxplot of Normalized Wind Speed", y = "Normalized Wind Speed (windspeed)") + theme_minimal() Boxplot of Normalized Wind Speed 0.5 Normalized Wind Speed (windspeed) 0.1 factor(0)

```
Task 3: Split the dataset into train and test dataset
set.seed(123)
# For reproducibility
install.packages("caret")
library(caret)
install.packages("lattice")
library(lattice)
trainIndex = createDataPartition(bike_data$cnt, p = 0.8, list = FALSE)
trainData = bike data[trainIndex, ]
testData = bike_data[-trainIndex,]
# Train the Random Forest model
install.packages("randomForest")
library(randomForest)
rf_model <- randomForest(cnt ~ season + yr + mnth + holiday + weekday +
workingday +
               weathersit + temp + atemp + hum + windspeed,
              data = trainData,
              importance = TRUE
# Print model summary
print(rf_model)
 arr.
randomForest(formula = cnt ~ season + yr + mnth + holiday + weekday +
      Mean of squared residuals: 479764.8
% Var explained: 87.03
# Predict on test data
predictions <- predict(rf_model, newdata = testData)</pre>
# Calculate RMSE (Root Mean Squared Error)
rmse <- sqrt(mean((predictions - testData$cnt)^2))
cat("RMSE: ", rmse, "\n")
> # Predict on test data
> predictions <- predict(rf_model, newdata = testData)
> # Calculate RMSE (Root Mean Squared Error)
> rmse <- sqrt(mean((predictions - testData$cnt)^2))</pre>
> cat("RMSE: ", rmse, "\n")
          674.779
RMSE:
```

A The the leafe are not to the leafe are not to

Architectus en en

A Profit lie le nent

A Pople de le ent

Plot predicted vs actual values ggplot(testData, aes(x = cnt, y = predictions)) + geom_point() + geom_abline(slope = 1, intercept = 0, color = "red") + labs(title = "Predicted vs Actual Bike Rentals", x = "Actual Bike Rentals", y = "Predicted Bike Rentals") + theme_minimal() Predicted vs Actual Bike Rentals 6000 Predicted Bike Rentals 4000 2000 2000 4000 Actual Bike Rentals