CS 303 Logic & Digital System Design

Ömer Ceylan

Boolean Algebra

Boolean Algebra 1/2

- A set of elements B
 - There exist at least two elements $x, y \in B$ s. t. $x \neq y$
- Binary operators: + and -
 - closure w.r.t. both + and -
 - additive identity?
 - multiplicative identity ?
 - commutative w.r.t. both + and -
 - Associative w.r.t. both + and -
- Distributive law:
 - · is distributive over +?
 - + is distributive over ?
 - We do not have both in ordinary algebra

Bo

Boolean Algebra 2/2

- Complement
 - $\forall x \in B$, there exist an element $x' \in B \ni$
 - a. x + x' = 1 (multiplicative identity) and
 - b. $x \cdot x' = 0$ (additive identity)
 - Not available in ordinary algebra
- Differences btw ordinary and Boolean algebra
 - Ordinary algebra with real numbers
 - Boolean algebra with elements of set B
 - Complement
 - Distributive law
 - Do not substitute laws from one to another where they are not applicable

Two-Valued Boolean Algebra 1/3

- To define a Boolean algebra
 - The set B
 - Rules for two binary operations
 - The elements of B and rules should conform to our axioms
- Two-valued Boolean algebra

$$\blacksquare$$
 B = {0, 1}

x	У	ж . й
0	0	0
0	1	0
1	0	0
1	1	1

x	У	x + y
0	0	0
0	1	1
1	0	1
1	1	1

x	x'
0	1
1	0

Two-Valued Boolean Algebra 2/3

- Check the axioms
 - Two distinct elements, 0 ≠ 1
 - Closure, associative, commutative, identity elements
 - Complement

•
$$x + x' = 1$$
 and $x \cdot x' = 0$

Distributive law

ж	У	Z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

y·z	$x + (y \cdot z)$

ж + у	x + z	$(x + y) \cdot (x + z)$
0	0	
0	1	
1	0	
1	1	
1	1	
1	1	
1	1	
1	1	

Two-Valued Boolean Algebra 3/3

- Two-valued Boolean algebra is actually equivalent to the binary logic defined heuristically before
 - Operations:
 - $\bullet \cdot \rightarrow AND$
 - + → OR
 - Complement → NOT
- Binary logic is the application of Boolean algebra to the gate-type circuits
 - Two-valued Boolean algebra is developed in a formal mathematical manner
 - This formalism is necessary to develop theorems and properties of Boolean algebra

Duality Principle

- An important principle
 - every algebraic expression deducible from the axioms of Boolean algebra remains valid if the operators and identity elements are interchanged
- Example:

```
■ x + x = x

■ x + x = (x+x) \cdot 1 (identity element)

= (x+x) \cdot (x+x') (complement)

= x+x \cdot x' (+ over ·)

= x (complement)
```

duality principle

$$X \cdot X = X \rightarrow$$

Duality Principle & Theorems

Theorem a:

- Theorem b: (using duality)
 - **?**

Absorption Theorem

a.
$$x + xy = x$$

b. ?

Involution & DeMorgan's Theorems

Involution Theorem:

- (X')' = X
- x + x' = 1 and $x \cdot x' = 0$
- Complement of x' is x
- Complement is unique

DeMorgan's Theorem:

$$(x + y)' = x' \cdot y'$$

Truth Tables for DeMorgan's Theorem

$$(x + y)' = x' \cdot y'$$

X	у	х+у	(x+y)'	x • y	(x · y)'
0	0				
0	1				
1	0				
1	1				

X'	у,	x' · y '	x' + y'

Operator Precedence

- Parentheses
- 2. NOT
- 3. AND
- 4. OR
- Example:
 - (x + y)'
 - x'·y'
 - $\mathbf{x} + \mathbf{x} \cdot \mathbf{y}'$

Boolean Functions

Consists of

- binary variables (normal or complement form)
- the constants, 0 and 1
- logic operation symbols, "+" and "-"

Example:

•
$$F_1(x, y, z) = x + y'z$$

•
$$F_2(x, y, z) = x' y' z + x' y z + xy'$$

X	у	Z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Logic Circuit Diagram of F₁

$$F_1(x, y, z) = x + y'z$$

Gate Implementation of $F_1 = x + y'z$

Logic Circuit Diagram of F₂

$$F_2 = x' y' z + x' y z + xy'$$

- Algebraic manipulation
- $F_2 = x' y' z + x' y z + xy'$ = ?

Alternative Implementation of F₂

$$F_2 = x'z + xy'$$

$$F_2 = x' y' z + x' y z + xy'$$

Complement of a Function

- F' is complement of F
 - We can obtain F', by interchanging of 0's and 1's in the truth table

x	У	Z	F	F′
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

$$F = x'yz' + xy'z' + xy'z$$

$$F' = ?$$

Generalizing Demorgan's Theorem

- We can also utilize DeMorgan's Theorem
 - (x + y)' = x' y'
 - (A + B + C)' = A'B'C'
- We can generalize DeMorgan's Theorem

1.
$$(x_1 + x_2 + ... + x_N)' = x_1' \cdot x_2' \cdot ... \cdot x_N'$$

2.
$$(x_1 \cdot x_2 \cdot ... \cdot x_N)' = x_1' + x_2' + ... + x_N'$$

Example: Complement of a Function

Example:

■
$$F_1$$
 = $x'yz' + x'y'z$
■ F_1 = $(x'yz' + x'y'z)'$
= ?
= $(x + y' + z)(x + y + z')$
■ F_2 = $x(y'z' + yz)$
■ F_2 = $(x(y'z' + yz))'$
= ?
= $x' + (y + z)(y' + z')$

 Easy Way to Complement: take the <u>dual</u> of the function and <u>complement</u> each literal

Canonical & Standard Forms

Minterms

- A product term: all variables appear (either in its normal, x, or its complement form, x')
- How many different terms we can get with x and y?
 - $x'y' \rightarrow 00 \rightarrow m_0$
 - $x'y \rightarrow 01 \rightarrow m_1$
 - $xy' \rightarrow 10 \rightarrow m_2$
 - $xy \rightarrow 11 \rightarrow m_3$
- m₀, m₁, m₂, m₃ (minterms or AND terms, standard product)
- n variables can be combined to form 2ⁿ minterms

Canonical & Standard Forms

- Maxterms (OR terms, standard sums)
 - $M_0 = x + y \rightarrow 00$
 - $M_1 = x + y' \rightarrow 01$
 - $M_2 = x' + y \rightarrow 10$
 - $M_3 = x' + y' \rightarrow 11$
 - n variables can be combined to form 2ⁿ maxterms
 - $m_0' = M_0$
 - $m_1' = M_1$
 - $m_2' = M_2$
 - $m_3' = M_3$

xyz	$m_{\mathtt{i}}$	Mi	F
000	$m_0 = x' y' z'$	$M_0 = x + y + z$	0
001	$m_1 = x' y' z$	$M_1=x+y+z'$	1
010	$m_2 = x'yz'$	$M_2 = x + y' + z$	1
011	$m_3 = x'yz$	$M_3=x+y'+z'$	0
100	$m_4 = xy'z'$	$M_4=x'+y+z$	0
101	m ₅ =xy'z	$M_5=x'+y+z'$	0
110	m ₆ =xyz'	$M_6=x'+y'+z$	1
111	m ₇ =xyz	$M_7 = x' + y' + z'$	0

$$F(x, y, z) = x'y'z + x'yz' + xyz' =$$

$$F(x, y, z) = (x+y+z)(x+y'+z')(x'+y+z)(x'+y+z')(x'+y'+z') =$$

Another Example

X	У	Z	F ₁	F ₂
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\bullet F_1(x, y, z) =$$

$$\mathbf{F}_{2}(\mathbf{x}, \mathbf{y}, \mathbf{z}) =$$

Important Properties

- Any Boolean function can be expressed as <u>a sum of minterms</u>
- Any Boolean function can be expressed as <u>a product of</u> <u>maxterms</u>
- Example:

■
$$F(x,y,z) = \sum (0, 2, 3, 5, 6)$$

= $x'y'z' + x'yz' + x'yz + xy'z + xyz'$

- How do we find the complement of F?
- F'(x,y,z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)= $M_0 M_2 M_3 M_5 M_6$ = $\Pi(0, 2, 3, 5, 6)$

Canonical Form

- If a Boolean function is expressed as a sum of minterms or product of maxterms the function is said to be in <u>canonical</u> form.
- Example: $F = x + y'z \rightarrow$ canonical form?
 - No
 - But we can put it in canonical form.
 - $x \rightarrow x(y+y')(z+z') = (xy+xy')(z+z') = xyz + xyz' + xy'z + xy'z'$
 - y'z →
 - x + y'z = xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z
 - $F = x + y'z = \sum (7, 6, 5, 4, 1)$
- Alternative way:
 - Obtain the truth table first and then the canonical term.

Example: Product of Maxterms

- \blacksquare F = xy + x'z
 - Use the distributive law + over -

■
$$F = xy + x' - z$$

= $(xy + x') - (xy + z)$

$$=\Pi(4, 5, 0, 2)$$

Conversion Between Canonical Forms

Fact:

 The complement of a function (given in sum of minterms) can be expressed as a sum of minterms missing from the original function

Example:

•
$$F(x, y, z) = \sum (1, 4, 5, 6, 7)$$

 Now take the complement of F' and make use of DeMorgan's theorem

$$- (F')' = (m_0 + m_2 + m_3)' =$$

•
$$F = M_0 \cdot M_2 \cdot M_3 = \prod (0, 2, 3)$$

General Rule for Conversion

Important relation:

- $m_i' = M_i$.
- $M_j' = m_j$.
- The rule:
 - Interchange symbols Π and Σ , and
 - list those terms missing from the original form
- Example: F = xy + x'z

•
$$F = \Sigma(1, 3, 6, 7) \rightarrow F = \Pi(?, ?, ?, ?)$$

Standard Forms

- Fact:
 - Canonical forms are very seldom the ones with the least number of literals
- Alternative representation:
 - Standard form
 - a <u>term</u> may contain any number of literals
 - Two types
 - 1. the sum of products
 - 2. the product of sums
 - Examples:
 - $F_1 = y' + xy + x'yz'$
 - $F_2 = x(y' + z)(x' + y + z')$

Example: Standard Forms

$$F_1 = y' + xy + x'yz'$$

$$F_2 = x(y' + z)(x' + y + z')$$

(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

Nonstandard Forms

- $F_3 = AB(C+D) + C(D+E)$
- This hybrid form yields three-level implementation

- The standard form: $F_3 = ABC + ABD + CD + CE$

OTHER LOGIC OPERATORS - 1

- AND, OR, NOT are logic operators
 - Boolean functions with two variables
 - three of the 16 possible two-variable Boolean functions

X	У	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

X	у	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

OTHER LOGIC OPERATORS - 2

- Some of the Boolean functions with two variables
 - Constant functions: $F_0 = 0$ and $F_{15} = 1$
 - AND function: $F_1 = xy$
 - OR function: $F_7 = x + y$
 - XOR function:
 - $F_6 = x'y + xy' = x \oplus y$ (x or y, but not both)
 - XNOR (Equivalence) function:
 - $F_9 = xy + x'y' = (x \oplus y)'(x \text{ equals } y)$
 - NOR function:
 - $F_8 = (x + y)' = (x \downarrow y)$ (Not-OR)
 - NAND function:
 - $F_{14} = (x y)' = (x \uparrow y) \text{ (Not-AND)}$

Logic Gate Symbols

40

Universal Gates

- NAND and NOR gates are universal
- We know <u>any</u> Boolean function can be written in terms of three logic operations:
 - AND, OR, NOT
- In return, NAND gate can implement these three logic gates by itself
 - So can NOR gate

Х	У	(xy)'	x'	у '	(x' y')'
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	1

Designs with NAND gates

Example 1/2

- A function:
 - $F_1 = x'y + xy'$

$$F_2 = x' y' + xy'$$

Multiple Input Gates

- AND and OR operations:
 - They are both commutative and associative
 - No problem with extending the number of inputs
- NAND and NOR operations:
 - they are both commutative but <u>not associative</u>
 - Extending the number of inputs is not obvious
- Example: NAND gates
 - **■** ((xy)'z)' ≠ (x(yz)')'
 - ((xy)'z)' = ?
 - (x(yz)')' = ?

Nonassociativity of NOR operation

Fig. 2-6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Multiple Input Universal Gates

 To overcome this difficulty, we define multiple-input NAND and NOR gates in slightly different manner

Three input NAND gate: (x y z)'

Three input NOR gate: (x + y + z)

Multiple Input Universal Gates

3-input NOR gate

3-input NAND gate

Cascaded NAND gates

XOR and XNOR Gates

- XOR and XNOR operations are both commutative and associative.
- No problem manufacturing multiple input XOR and XNOR gates
- They are more costly from hardware point of view than AND, OR NAND and NOR gates.

3-input XOR Gates

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
_1	1	1	1

(c) Truth table

Fig. 2-8 3-input exclusive-OR gate

Positive & Negative Logic

- In digital circuits, we have two digital signal levels:
 - H (higher signal level; e.g. 3 ~ 5 V)
 - L (lower signal level; e.g. 0 ~ 1 V)
- There is no logic-1 or logic-0 at the circuit level
- We can do any assignment we wish
 - For example:
 - H → logic-1
 - L → logic-0

Fig. 2-9 signal assignment and logic polarity

X	У	F
L	لــ	L
L	Ι	Н
Ι	L	Η
Ι	Ι	Н

What kind of logic function does it implement?

Signal Designation - 2

X	У	F
0	0	0
0	1	1
1	0	1
1	1	1

X	У	F
1	1	1
1	0	0
0	1	0
0	0	0

74LS00

Integrated Circuits

- IC silicon semiconductor crystal ("chip") that contains gates.
 - gates are interconnected inside to implement a "Boolean" function
 - Chip is mounted in a ceramic or plastic container
 - Inputs & outputs are connected to the external pins of the IC.
 - Many external pins (14 to hundreds)

Levels of Integration

- SSI (small-scale integration):
 - Up to 10 gates per chip
- MSI (medium-scale integration):
 - From 10 to 1,000 gates per chip
- LSI (large-scale integration):
 - thousands of gates per chip
- VLSI (very large-scale integration):
 - hundreds of thousands of gates per chip
- ULSI (ultra large-scale integration):
 - Over a million gates per chip

32 billion transistors

Digital Logic Families

- Circuit Technologies
 - TTL → transistor-transistor logic
 - ECL → Emitter-coupled logic
 - fast
 - MOS → metal-oxide semiconductor
 - high density
 - CMOS → Complementary MOS
 - low power

Parameters of Logic Gates - 1

- Fan-out
 - load that the output of a gate drives

 If a, say NAND, gate drives four such inverters, then the fan-out is equal to 4.0 standard loads.

Parameters of Logic Gates - 2

- Fan-in
 - number of inputs that a gate can have in a particular logic family
 - In principle, we can design a CMOS NAND or NOR gate with a very large number of inputs
 - In practice, however, we may have some limits
 - 4 for NOR gates
 - 6 for NAND gates
- Power dissipation
 - power needed by the gate that must be available from the power supply

Parameters of Logic Gates - 3

Propagation delay:

the time required for a change in value of a signal to propagate from input to output.

Computer-Aided Design - 1

- CAD
 - Design of digital systems with VLSI circuits containing millions of transistors is not easy and cannot be done manually.
- To develop & verify digital systems we need CAD tools
 - software programs that support computer-based representation of digital circuits.
- Design process
 - design entry
 - **.**...
 - database that contains the photomask used to fabricate the IC
 - Configuration file to program FPGA

Computer-Aided Design - 2

- Different physical realizations
 - ASIC (application specific integrated circuit)
 - PLD
 - FPGA
 - Other reconfigurable devices
- For every piece of device we have an array of software tools to facilitate
 - designing,
 - simulating,
 - testing,
 - and even programming

- Editing programs for creating and modifying schematic diagrams on a computer screen
 - schematic capturing or schematic entry
 - you can drag-and-drop digital components from a list in an internal library (gates, decoders, multiplexers, registers, etc.)
 - You can draw interconnect lines from one component to another

Schematic Editor

66

A Schematic Design

Hardware Description Languages

HDL

- Verilog, VHDL
- resembles a programming language

designed to describe digital circuits so that we can develop and test

digital circuits

$$F(x,y,z,t) = xz' + yz't' + xyt'$$

```
module comp(F, x, y, z, t);
   input x, y, z, t;
   output F;
   wire e1, e2, e3;
   and g1(e1, x, \sim z);
   and g2(e2, y, ~z, ~t);
   and g3(e3, x, y, \sim t);
   or q4(F, e1, e2, e3);
endmodule
```


Simulation Results 3/3

