ACM Template

HouZAJ 2019.11.2

Table of Content

1	技巧	
	1.1	VIM 配置
	1.2	运行脚本
	1.3	Fast IO
		1.3.1 C++ 二进制快读
		1.3.2 C++ 非二进制快读
		1.3.3 C++ 手写输出
		1.3.4 Java IO 类
2	字符	
	2.1	后缀自动机
	2.2	后缀数组
		2.2.1 求最长公共子串
	2.3	AC 自动机
	2.4	Z 函数
	2.5	KMP
	2.6	字典树
	2.7	Manacher
	2.8	回文树
	2.9	表达式
		2.9.1 调度场算法 (后缀表达式) 1
		2.9.2 后缀表达式 + 表达式树 (化简表达式) 1
	5.5 .XX	
3	数学	
	3.1	快速幂
		3.1.1 快速幂
		3.1.2 矩阵快速幂
	3.2	线性筛
		3.2.1 求素数与欧拉函数
		3.2.2 求积性函数
		3.2.3 求莫比乌斯函数
	3.3	中国剩余定理
		3.3.1 非互质 1
		3.3.2 互质
	3.4	高斯消元 2
		3.4.1 解线性方程组
		3.4.2 辗转相除思想的高斯消元
	3.5	牛顿迭代法
		3.5.1 求多项式的根
		$3.5.2$ 给定整数 N , 求最大的满足 $x^2 \leq N$ 的 x
	3.6	拉格朗日插值法
		3.6.1 拉格朗日插值法 2
		$3.6.2$ 求 i^k 的前缀和
	3.7	线性基
		3.7.1 求异或和值的第 k 小数
	3.8	欧拉降幂 2

	$3.8.1$ 计算 a^{a^a}
3.9	FFT 与 NTT
	3.9.1 FFT
	3.9.2 NTT
3.10	生成函数 3
	3.10.1 普通型 35
3.11	BSGS
3.12	自适应辛普森积分 3
	扩展欧几里德
	反素数
3.15	康托展开 3
	杜教筛
	3.16.1 求积性函数前缀和
3.17	Min_25 筛
	3.17.1 求积性函数前缀和
树	38
4.1	树状数组 3
4.2	线段树
	4.2.1 线段树合并
4.3	主席树
	4.3.1 主席树 38
	$4.3.2$ 在 $[x_1, x_2]$ 中 lower_bound(y)
4.4	平衡树
	4.4.1 Treap
	4.4.2 Splay
	4.4.3 可持久化 FHQ Treap
	4.4.4 带 pushdown 的可持久化 FHQ Treap
4.5	LCA
	4.5.1 倍增法 5
	4.5.2 Tarjan
	4.5.3 RMQ
4.6	带权并查集 55
4.7	DFS 序
4.8	树的直径 5.
4.9	树链剖分
4.10	ODT
4.11	点分治
	4.11.1 点分治 5
	4.11.2 动态点分治
4.12	LCT
	$4.12.1 \ \mathrm{LCT} \ \ldots \ \ldots \ \ldots \ \qquad 6$
	4.12.2 可维护子树信息的 LCT
4.13	左偏树
	4.13.1 左偏树 6
	4.13.2 带 pushdown 的左偏树 6
	3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 材 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12

5	图论		39
	5.1	最短路	69
		5.1.1 SPFA (带 SLF 优化)	69
		5.1.2 Dijkstra	69
	5.2	最小生成树	70
		5.2.1 Prim	70
		5.2.2 Kruskal	70
	5.3	拓扑排序 - BFS	71
	5.4		71
	5.5	最大团	72
	5.6		74
		5.6.1 ISAP	74
		5.6.2 HLPP	75
	5.7		78
		5.7.1 EK+SPFA 算法	78
			79
		· · · · · · · · · · · · · · · · · · ·	81
	5.8	· · · · · · · · · · · · · · · · · · ·	84
			84
			84
	5.9		85
			85
			87
	5.10		89
			89
			91
	5.11		93
		*	94
			96
6	计算		97
	6.1		97
	6.2	凸包 - Andrew 算法	00
	6.3	线段相交 1	01
7		· H · V · V · V · H · ·)2
	7.1	• • • • • • • • • • •	02
	7.2		03
	7.3		03
	7.4	V	04
	7.5		05
	7.6	= · · · · · · · · · · · · · · · · · · ·	05
	7.7		07
	7.8	· · · · · · · · · · · · · · · · · · ·	08
	7.9	动态 DP	08
			08
		7.9.2 树上最大权独立集 1	11
	7.10	CDQ 分治	15

		7.10.1 求解二维 LIS 问题	115
	7.11	斜率 DP	118
		7.11.1 Codeforces 1083E	118
	7.12	莫队算法	119
		7.12.1 不带修改	119
		7.12.2 带修改	119
		7.12.3 树上莫队	121
	7.13	分块	126
		7.13.1 区间正偶数次数的个数 (动态查询)	126
		7.13.2 区间众数 (动态查询)	128
8	Note	e	130
	8.1	Prime Table	130
	8.2	Formula And Equations	130
	8.3	Facts	131
	8.4	Catalan Number	131
	8.5	Combination	132
	8.6	Sum of GCD	132
	8.7	Sum of LCM	134
	8.8	Sum of $d(i, j)$	135
	8.9	Sum of $lcm(i,n)$	136
	8.10	Lagrange polynomial	136
	8.11	Min25 Sieve	137
		Matrix Tree	137

1 技巧

1.1 VIM 配置

```
syntax on
set cindent
set nu
set tabstop=4
set shiftwidth=4
set background=dark
set mouse=a

map <C-A> ggVG"+y
```

1.2 运行脚本

```
!/bin/bash

rm ./$1
g++ $1.cpp -std=gnu++14 -Wall -o $1
./$1
```

1.3 Fast IO

1.3.1 C++ 二进制快读

1.3.2 C++ 非二进制快读

1.3.3 C++ 手写输出

```
char WritellBuffer[1024];
template <typename T>
inline void write(T a, char end){
    ll cnt=0,fu=1;
    if(a<0){putchar('-');fu=-1;}
    do{WritellBuffer[++cnt]=fu*(a%10)+'0';a/=10;}while(a);
    while(cnt){putchar(WritellBuffer[cnt]);--cnt;}
    if(end) putchar(end);
}</pre>
```

1.3.4 Java IO 类

```
class InputReader {
   public BufferedReader reader;
   public StringTokenizer tokenizer;
   public InputReader(InputStream stream) {
        reader = new BufferedReader(new InputStreamReader(stream),

→ 32768);

        tokenizer = null;
   }
   public String next() {
        while (tokenizer == null || !tokenizer.hasMoreTokens()) {
            try {
                tokenizer = new StringTokenizer(reader.readLine());
            } catch (IOException e) {
                throw new RuntimeException(e);
        return tokenizer.nextToken();
   }
   public int nextInt() {
        return Integer.parseInt(next());
```

```
}
```

2 字符串

2.1 后缀自动机

```
char s[N];
struct SuffixAutomaton {
    int slink[N], len[N], trans[N][SIZE], cnt[N], buc[N], vec[N];
    11 dp[N];
    int lst, tot;
    inline void init() {
        tot = 0;
        lst = newNode();
        slink[lst] = len[lst] = 0;
    }
    inline int newNode() {
        int x = ++tot;
        memset(trans[x], 0, sizeof(trans[x]));
        dp[x] = idg[x] = cnt[x] = 0;
        return x;
    }
    inline void push(int val) {
        int p = lst, np = newNode();
        len[np] = len[p] + 1;
        cnt[np] = 1;
        for(; p && trans[p][val] == 0; p = slink[p]) {
            trans[p][val] = np;
        }
        if(p == 0) {
            slink[np] = 1;
        } else {
            int q = trans[p][val];
            if(len[q] == len[p] + 1) {
                slink[np] = q;
            } else {
                int nq = ++tot;
                cnt[nq] = dp[nq] = 0;
                slink[nq] = slink[q];
                len[nq] = len[p] + 1;
```

```
memcpy(trans[nq], trans[q], sizeof(trans[q]));
                slink[np] = slink[q] = nq;
                for(; p && trans[p][val] == q; p = slink[p]) {
                     trans[p][val] = nq;
                }
            }
        }
        lst = np;
    }
    inline void getCnt() {
        memset(buc, 0, (tot + 1) * sizeof(int));
        for(int i = 2; i <= tot; i++) {</pre>
            buc[len[i]]++;
        for(int i = 2; i <= tot; i++) {
            buc[i] += buc[i - 1];
        for(int i = tot; i >= 2; i--) {
            vec[buc[len[i]]--] = i;
        }
        for(int i = tot - 1; i >= 1; i--) {
            int u = vec[i];
            cnt[slink[u]] += cnt[u];
        cnt[1] = 0;
    }
};
SuffixAutomaton sam;
```

2.2 后缀数组

2.2.1 求最长公共子串

```
}
    for(int i = 1; i <= m; i++) {</pre>
        buc[i] += buc[i - 1];
    for(int i = n; i >= 1; i--) {
        sa[buc[x[i]]--] = i;
    }
    for(int k = 1; k <= n; k <<= 1) {
        int p = 0;
        for(int i = n - k + 1; i <= n; i++) {
            y[++p] = i;
        for(int i = 1; i <= n; i++) {
            if(sa[i] > k) {
                y[++p] = sa[i] - k;
            }
        }
        memset(buc + 1, 0, m * sizeof(int));
        for(int i = 1; i <= n; i++) {</pre>
            buc[x[i]]++;
        }
        for(int i = 1; i <= m; i++) {</pre>
            buc[i] += buc[i - 1];
        for(int i = n; i >= 1; i--) {
            sa[buc[x[y[i]]]--] = y[i];
        swap(x, y);
        p = x[sa[1]] = 1;
        for(int i = 2; i <= n; i++) {
            int a = sa[i] + k > n ? -1 : y[sa[i] + k];
            int b = sa[i - 1] + k > n ? -1 : y[sa[i - 1] + k];
            x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && a == b) ? p :
        if(p >= n) {
            break;
        }
        m = p;
    }
}
inline void getHeight(char* s, int n) {
    for(int i = 1; i <= n; i++) {
        rk[sa[i]] = i;
    }
    int k = 0;
```

```
for(int i = 1; i <= n; i++) {</pre>
        if(rk[i] == 1) {
             continue;
        }
        if(k) {
            k--;
        }
        int j = sa[rk[i] - 1];
        while(s[i + k] == s[j + k]) \{
            k++;
        height[rk[i]] = k;
    }
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    while(cin >> (s + 1)) {
        int pos = strlen(s + 1) + 1;
        s[pos] = '\$';
        cin >> (s + 1 + pos);
        int n = strlen(s + 1);
        buildSA(s, n);
        getHeight(s, n);
        int maxx = 0;
        for(int i = 2; i <= n; i++) {
             if(maxx < height[i] && (sa[i - 1] < pos && sa[i] > pos | |
             \rightarrow sa[i - 1] > pos && sa[i] < pos)) {
                 maxx = height[i];
             }
        cout << maxx << "\n";
    }
    cout.flush();
}
```

2.3 AC 自动机

```
char str[10000 + 1];
int pos[N];
int nxt[N][ascii_size];
int fail[N];
int tot;
int que[N];
```

```
int head, tail;
inline void newNode(int& x){
    x = tot++;
    memset(nxt[x], -1, sizeof(nxt[x]));
    fail[x] = 0;
    pos[x] = 0;
}
inline void init(){
    head = tail = 0;
    tot = 1;
    memset(nxt[0], -1, sizeof(nxt[0]));
    fail[0] = pos[0] = 0;
}
void push(char s[], int i){
    int p = 0;
    for(int i = 0; s[i]; i++){
        int idx = s[i] - 32;
        if(nxt[p][idx] == -1){
            newNode(nxt[p][idx]);
        p = nxt[p][idx];
    pos[p] = i;
}
void setFail(){
    for(int idx = 0; idx < ascii size; idx++){</pre>
        if(nxt[0][idx] != -1){
            que[head++] = nxt[0][idx];
        }else{
            nxt[0][idx] = 0;
        }
    }
    while(tail != head){
        int p = que[tail++];
        for(int idx = 0; idx < ascii size; idx++){</pre>
            if(~nxt[p][idx]){
                 fail[nxt[p][idx]] = nxt[fail[p]][idx];
                 que[head++] = nxt[p][idx];
                nxt[p][idx] = nxt[fail[p]][idx];
            }
        }
    }
}
```

2.4 Z 函数

```
char s[N];
int z[N];
inline void zFunc(char* s, int n) {
    z[1] = 0;
    for(int i = 2, 1 = 1, r = 1; i <= n; i++) {
        z[i] = 0;
        if(i <= r) {
            z[i] = min(z[i - 1 + 1], r - i + 1);
        while(i + z[i] <= n && s[1 + z[i]] == s[i + z[i]]) {
            z[i]++;
        if(i + z[i] - 1 > r) {
            1 = i;
            r = i + z[i] - 1;
        }
    }
}
```

2.5 KMP

```
knxt[j] = (p[k] != p[j] ? k : knxt[k]);
            // knxt[j] = k; //未优化版本, 可求循环节
        }else{
            k = knxt[k];
        }
    }
}
int kmpSearch(char* s, char* p){
    getNext(p);
    int i = 0, j = 0;
    int cnt = 0;
    while(s[i]){
        if(j == -1 \mid | s[i] == p[j]){
            i++;
            j++;
        }else{
            j = knxt[j];
        if(j>=0&&!p[j]){
            cnt++;
            j = 0;
        }
    return cnt;
}
```

2.6 字典树

```
int cnt[N];
int nxt[N][26];
char str[12];
int tot;
inline void init(){
    tot = 1;
    memset(cnt, 0, sizeof(cnt));
    memset(nxt[0], -1, sizeof(nxt));
}
void push(char* s){
    int p = 0;
    for(int i = 0; s[i]; i++){
        int idx = s[i] - 'a';
        if(nxt[p][idx] == -1){
            nxt[p][idx] = tot++;
        }
```

```
cnt[nxt[p][idx]]++;
    p = nxt[p][idx];
}

int query(char* s){
    int p = 0;
    for(int i = 0; s[i]; i++){
        int idx = s[i] - 'a';
        if(nxt[p][idx] == -1) return 0;
        p = nxt[p][idx];
    }
    return cnt[p];
}
```

2.7 Manacher

```
const int N = (int)1e5 + 15;
char tmp[N], s[2 * N];
int d[2 * N];
inline void manacher(char* s, int n) {
    for(int i = 1, l = 0, r = -1; i \le n; i++) {
        int k = (i > r ? 1 : min(d[1 + r - i], r - i + 1));
        while(i - k >= 1 && i + k <= n && s[i - k] == s[i + k]) {
            k++;
        }
        d[i] = k;
        if(i + k - 1 > r) {
            r = i + k - 1;
            1 = i - k + 1;
        }
    }
}
int main() {
    while (\simscanf("%s", tmp + 1)) {
        int n = 0, m = 0;
        s[++n] = '#';
        for(int i = 1; tmp[i]; i++) {
            s[++n] = tmp[i];
            s[++n] = '#';
            ++m;
        }
        s[n + 1] = 0;
        manacher(s, n);
        //...
```

```
}
```

2.8 回文树

```
char s[N];
struct Node{
    int slink, len, cnt;
    int nxt[26];
};
struct PalindromicTree{
    int tot;
    int cursuffix;
    Node tree[N];
    void init(){
        tree[0].slink = 0, tree[0].len = -1, tree[0].cnt = 1;
        tree[1].slink = 0, tree[1].len = 0, tree[1].cnt = 1;
        tot = 2, cursuffix = 1;
        initNode(1);
        initNode(0);
    }
    void initNode(int o){
        memset(tree[o].nxt, -1, sizeof(tree[o].nxt));
    }
    void add(int pos){
        int idx = s[pos] - 'a';
        int cur = cursuffix;
        while(true){
            int curlen = tree[cur].len;
            if(pos - 1 - curlen >= 0 \&\& s[pos] == s[pos - 1 -

    curlen])

                              break;
            cur = tree[cur].slink;
        }
        if(tree[cur].nxt[idx] != -1){
            cursuffix = tree[cur].nxt[idx];
            return;
        }
        int nxt = tree[cur].nxt[idx] = tot++;
        initNode(nxt);
        tree[nxt].len = tree[cur].len + 2;
        cursuffix = nxt;
```

```
if(tree[nxt].len == 1){
            tree[nxt].cnt = 1;
            tree[nxt].slink = 1;
            return:
        }
        while(true){
            cur = tree[cur].slink;
            int curlen = tree[cur].len;
            if(pos - 1 - curlen >= 0 \&\& s[pos] == s[pos - 1 -

    curlen]){
                tree[nxt].slink = tree[cur].nxt[idx];
                break;
            }
        }
        tree[nxt].cnt = tree[tree[nxt].slink].cnt + 1;
    }
};
PalindromicTree pt;
```

2.9 表达式

2.9.1 调度场算法(后缀表达式)

```
void getSuffixExp(char s[]){
   pp = 0;
   stack<char> stk;
   for(int i = 0; s[i]; ){
        if(s[i] == ' '){
            i++;
            continue;
        }
        if(isdigit(s[i])){
            sscanf(s + i, "%d", &suffix_exp[pp].data);
            suffix exp[pp++].type = 0;
            while(isdigit(s[i])) i++;
        }else{
            while(!stk.empty() && getPriority(stk.top()) >=

    getPriority(s[i])){
                suffix_exp[pp++] = Data{stk.top(), 1};
                stk.pop();
            }
            stk.push(s[i]);
```

```
i++;
        }
   }
   while(!stk.empty()){
        suffix_exp[pp++] = Data{stk.top(), 1};
        stk.pop();
    }
}
double solve(){
    stack<double> ans;
    for(int i = 0; i < pp; i++){</pre>
        if(suffix_exp[i].type == 0) ans.push(suffix_exp[i].data);
        else{
            double t2 = ans.top();
            ans.pop();
            double t1 = ans.top();
            ans.pop();
            if(suffix_exp[i].data == '+')
                                                 ans.push(t1 + t2);
            else if(suffix exp[i].data == '-') ans.push(t1 - t2);
            else if(suffix_exp[i].data == '*') ans.push(t1 * t2);
            else if(suffix_exp[i].data == '/')
                                                 ans.push(t1 / t2);
        }
   return ans.top();
}
```

2.9.2 后缀表达式 + 表达式树(化简表达式)

```
int getPriority(char ch){
   if(ch == '*' || ch == '/')
                                      return 2;
   else if(ch == '+' || ch == '-')
                                      return 1;
   else
                                      return 0;
}
bool isOperation(char ch){
   return (ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch ==
    }
void getSuffixExp(char s[]){
   stack<char> stk;
   pp = 0;
   for(int i = 0; s[i]; i++){
       if(isOperation(s[i])){
           if(s[i] == ')'){
               while(!stk.empty() && stk.top() != '('){
```

```
suffix_exp[pp++] = make_pair(stk.top(), 1);
                    stk.pop();
                }
                stk.pop();
            }else{
                while(s[i] != '(' && !stk.empty() &&

    getPriority(stk.top()) >= getPriority(s[i])){
                    suffix exp[pp++] = make pair(stk.top(), 1);
                    stk.pop();
                stk.push(s[i]);
        }else{
            suffix exp[pp++] = make pair(s[i], 0);
        }
    }
    while(!stk.empty()){
        suffix_exp[pp++] = make_pair(stk.top(), 1);
        stk.pop();
    }
}
void newNode(int rt, char val){
    tree[rt].ch[0] = tree[rt].ch[1] = 0;
    tree[rt].data = val;
}
int buildTree(){
    int rt = 0;
    stack<int> stk;
    for(int i = 0; i < pp; i++){
        if(suffix_exp[i].second == 0){
            newNode(++rt, suffix exp[i].first);
            stk.push(rt);
        }else{
            int t2 = stk.top();
            stk.pop();
            int t1 = stk.top();
            stk.pop();
            newNode(++rt, suffix exp[i].first);
            tree[rt].ch[0] = t1;
            tree[rt].ch[1] = t2;
            stk.push(rt);
        }
    }
    return rt;
```

```
}
void dfs(int u, int pre, bool is_left){
    if(!isOperation(tree[u].data)){
        putchar(tree[u].data);
        return;
    }
    bool flag = false;
    if(pre != -1 && is_left && getPriority(tree[u].data) <</pre>

    getPriority(tree[pre].data))

                                                        flag = true;
    if(pre != -1 && !is left){
        if(getPriority(tree[u].data) < getPriority(tree[pre].data))</pre>

    flag = true;

        else if(getPriority(tree[u].data) ==

    getPriority(tree[pre].data) && (tree[pre].data == '-' | |

    tree[pre].data == '/'))

                                           flag = true;
    }
    if(flag)
                putchar('(');
    dfs(tree[u].ch[0], u, true);
    putchar(tree[u].data);
    dfs(tree[u].ch[1], u, false);
              putchar(')');
    if(flag)
}
```

3 数学

3.1 快速幂

3.1.1 快速幂

```
inline int quickPow(int a, int b) {
   int ans = 1, base = a;
   while(b) {
      if(b & 1LL) {
         ans = (11)ans * base % MOD;
      }
      base = (11)base * base % MOD;
      b >>= 1LL;
   }
   return ans;
}
```

3.1.2 矩阵快速幂

```
struct Matrix {
    int met[metSize] [metSize];
    inline void initZero() {
        memset(met, 0, sizeof(met));
    }
    inline void initI() {
        for(int i = 0; i < metSize; i++) {</pre>
             for(int j = 0; j < metSize; j++) {
                 met[i][j] = (i == j);
             }
        }
    }
    Matrix operator * (const Matrix& b) const {
        Matrix ret;
        for(int i = 0; i < metSize; i++) {</pre>
             for(int j = 0; j < metSize; j++) {</pre>
                 ret.met[i][j] = 0;
                 for(int k = 0; k < metSize; k++) {</pre>
                     ret.met[i][j] = (ret.met[i][j] + (ll)met[i][k] *
                      \rightarrow b.met[k][j]) % (MOD - 1);
                 }
             }
        }
        return ret;
    }
};
inline Matrix quickPow(Matrix a, ll b) {
    Matrix ans;
    ans.initI();
    Matrix base = a;
    while(b) {
        if(b & 1) {
             ans = ans * base;
        base = base * base;
        b >>= 1;
    return ans;
```

3.2 线性筛

3.2.1 求素数与欧拉函数

```
int prime[N], phi[N];
int prime tot;
bool used[N];
void euler(){
    memset(used, true, sizeof(used));
    prime_tot = 0;
    phi[1] = 1;
    for(int i = 2; i < N; i++){</pre>
        if(used[i]){
            prime[prime_tot++] = i;
            phi[i] = i - 1;
        for(int j = 0; i*prime[j] < N; j++){</pre>
            used[i*prime[j]] = false;
            if(i\%prime[j] == 0){
                 phi[i*prime[j]] = phi[i] * prime[j];
                 break;
            }else{
                 phi[i*prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
}
```

3.2.2 求积性函数

```
tot = 0, f[1] = 1, sum[1] = 1;
    for(int i = 2; i < N; i++){</pre>
        if(isprime[i]){
             prime[tot++] = i;
             cnt[i]++;
        for(int j = 0; j < tot && i * prime[j] < N; <math>j++){
             isprime[i * prime[j]] = false;
             if(i % prime[j] == 0){
                 cnt[i * prime[j]] = cnt[i] + 1;
                 break;
             }else{
                 cnt[i * prime[j]] = 1;
            }
        }
    }
    for(int i = 0; i < tot && (11)prime[i] * prime[i] < N; i++){</pre>
        f[prime[i] * prime[i]] = 1;
        ll cur = (ll)prime[i] * prime[i] * prime[i];
        while(cur < N){</pre>
             f[cur] = 0;
             cur = cur * prime[i];
        }
    }
    for(int i = 2; i < N; i++){</pre>
        if(isprime[i]){
             f[i] = 2;
        for(int j = 0; j < tot && i * prime[j] < N; j++){</pre>
             if(i % prime[j] == 0){
                 int pk = quickPow(prime[j], cnt[i * prime[j]]);
                 f[i * prime[j]] = f[pk] * f[i * prime[j] / pk];
                 break;
             }else{
                 f[i * prime[j]] = f[i] * f[prime[j]];
             }
        sum[i] = f[i] + sum[i - 1];
    }
}
```

3.2.3 求莫比乌斯函数

```
11 mu[N], sum[N];
bool isprime[N];
```

```
int prime[N], tot;
void init(){
    memset(isprime, true, sizeof(isprime));
    tot = 0, mu[1] = 1, sum[1] = 1;
    for(int i = 2; i < N; i++){</pre>
        if(isprime[i]){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot && i * prime[j] < N; j++){</pre>
            isprime[i * prime[j]] = false;
            if(i % prime[j] == 0){
                 mu[i * prime[j]] = 0;
                 break;
            }else{
                mu[i * prime[j]] = -mu[i];
            }
        sum[i] = sum[i - 1] + mu[i];
    }
}
```

3.3 中国剩余定理

3.3.1 非互质

```
// x = a[i] \mod m[i]
11 a[N], m[N];
ll extgcd(ll a, ll b, ll& x, ll& y){
    11 d = a;
    if(!b){
        x = 1, y = 0;
    }else{
        d = extgcd(b, a\%b, y, x);
        y = a/b*x;
    }
    return d;
}
11 crt(11 n){
    if(n == 1){
        return (m[0] > a[0] ? a[0] : -1);
    }else{
        for(int i = 1; i < n; i++){
            if(m[i] <= a[i]) return -1;</pre>
```

3.3.2 互质

```
int m[N] = \{23, 28, 33\};
int a[N];
int m tot = 23*28*33;
int extgcd(int a, int b, int& x, int& y){
    int d = a;
    if(!b){
        x = 1, y = 0;
    }else{
        d = extgcd(b, a\%b, y, x);
        y = a/b*x;
    return d;
}
int res(){
    int ans = 0;
    for(int i = 0; i < N; i++){</pre>
        int mt = m_tot/m[i];
        int t, y;
        extgcd(mt, m[i], t, y);
        ans += a[i] * t * mt;
    return (ans%m_tot + m_tot)%m_tot;
```

3.4 高斯消元

3.4.1 解线性方程组

```
inline bool Guass(int n) {
  for(int i = 1; i <= n; i++) {</pre>
```

```
int r = i;
    for(int k = i + 1; k <= n; k++) {</pre>
        if(fabs(G[r][i]) < fabs(G[k][i])) {</pre>
            r = k;
        }
    swap(G[i], G[r]);
    if(fabs(G[i][i]) < 1e-4) {</pre>
        return false;
    }
    for(int k = i + 1; k <= n; k++) {
        for(int j = n + 1; j >= i; j--) {
            G[k][j] -= G[i][j] / G[i][i] * G[k][i];
        }
    }
}
for(int i = n; i >= 1; i--) {
    for(int j = i - 1; j >= 1; j--) {
        G[j][n + 1] = G[i][n + 1] / G[i][i] * G[j][i];
        G[j][i] = 0;
    }
return true;
```

3.4.2 辗转相除思想的高斯消元

```
inline bool Guass(int n) {
    bool flag = 0;
    for(int i = 1; i <= n; i++) {</pre>
        if(G[i][i] == 0) {
            return false;
        }
        for(int k = i + 1; k <= n; k++) {</pre>
             while(G[k][i]) {
                 int r = G[i][i] / G[k][i];
                 for(int j = i; j <= n; j++) {
                     G[i][j] = addMod(G[i][j], MOD - 1LL * G[k][j] * r
                      \rightarrow % MOD);
                 }
                 swap(G[k], G[i]);
                 flag ^= 1;
            }
        }
```

```
}
return flag;
}
```

3.5 牛顿迭代法

3.5.1 求多项式的根

```
inline double fun(const vector < double > & a, double x) {
    double res = 0;
    for(int i = 0; i < (int)a.size(); i++) {</pre>
        res += pow(x, i) * a[i];
    return res;
}
inline double newton(const vector<double>& a, const vector<double>&
→ aDiff) {
    double x = -30;
    for(int i = 0; i < 1000000; i++) {
        double nx = x - fun(a, x) / fun(aDiff, x);
        if(dcmp(x - nx) == 0) {
            return nx;
        }
        x = nx;
    return x;
}
inline vector<double> getRoots(vector<double> a) {
    vector<double> res;
    while(a.size() > 1) {
        vector<double> aDiff, na;
        for(int i = 1; i < (int)a.size(); i++) {</pre>
            aDiff.push_back(i * a[i]);
        }
        double x0 = newton(a, aDiff);
        res.push_back(x0);
        for(int i = a.size() - 1; i >= 1; i--) {
            a[i - 1] = a[i - 1] + x0 * a[i];
        }
        a.erase(a.begin());
    return res;
}
```

3.5.2 给定整数 N, 求最大的满足 $x^2 \leq N$ 的 x

3.6 拉格朗日插值法

3.6.1 拉格朗日插值法

```
#include <bits/stdc++.h>
typedef long long 11;
using namespace std;
const int MOD = 998244353;
 const int N = 2000 + 15;
int x[N], y[N];
 int quickPow(int a, int b, int MOD) {
                   int ans = 1, base = a;
                   while(b) {
                                       if(b & 1) {
                                                          ans = (11)ans * base % MOD;
                                       base = (11)base * base % MOD;
                                       b >>= 1;
                   return ans;
}
 inline int calc(int k, int n) {
                    int sum = 0;
                   for(int i = 1; i <= n; i++) {
                                       int cur = y[i];
                                       for(int j = 1; j <= n; j++) {
                                                          if(i == j) {
                                                                            continue;
                                                          cur = (11)cur * (k - x[j] + MOD) % MOD * quickPow((x[i] - x[i] + MOD)) % MOD * quickPow((x[i] - x[i] + MOD
                                                            \rightarrow x[j] + MOD) % MOD, MOD - 2, MOD) % MOD;
```

```
    sum = (sum + cur) % MOD;
}
return sum;
}
int main() {
    int n, k;
    while(~scanf("%d%d", &n, &k)) {
        for(int i = 1; i <= n; i++) {
            scanf("%d%d", &x[i], &y[i]);
        }
        printf("%d\n", calc(k, n));
    }
}
</pre>
```

3.6.2 求 i^k 的前缀和

```
#include <bits/stdc++.h>
typedef long long 11;
using namespace std;
const int MOD = 1000000007;
const int N = 50000 + 15;
int inv[N];
int prime[N], tot;
int fi[N];
int ans[N];
inline int quickPow(int a, int b) {
    int ans = 1, base = a;
    while(b) {
        if(b & 1) {
            ans = (11)ans * base % MOD;
        base = (11)base * base % MOD;
        b >>= 1;
    return ans;
inline void initInv() {
    inv[1] = 1;
    for(int i = 2; i < N; i++) {</pre>
        inv[i] = ((-(11)(MOD / i) * inv[MOD % i]) % MOD + MOD) % MOD;
    }
}
```

```
inline void initFi(int k) {
    memset(fi, 0, sizeof(fi));
    tot = 0;
    fi[1] = 1;
    for(int i = 2; i <= k + 1; i++) {
        if(!fi[i]) {
            fi[i] = quickPow(i, k);
            prime[tot++] = i;
            for(int j = 0; i * prime[j] < N; j++) {</pre>
                fi[i * prime[j]] = (l1)fi[i] * fi[prime[j]] % MOD;
                if(i % prime[j] == 0) {
                    break;
                }
            }
        }
    for(int i = 2; i <= k + 1; i++) {
        fi[i] = (fi[i] + fi[i - 1]) \% MOD;
    }
}
inline void Lagrange(ll n, int k) {
    int p = 1;
    for(int i = 1; i <= k + 1; i++) {</pre>
        ans[i] = (i + k + 1) & 1 ? MOD - fi[i] : fi[i];
        p = (11)p * ((n - i + 1) \% MOD) \% MOD * inv[i] \% MOD;
        ans[i] = (11)ans[i] * p % MOD;
    }
    p = 1;
    for(int i = k; i >= 1; i--) {
        p = (11)p * ((n - i - 1) \% MOD) \% MOD * inv[k + 1 - i] \% MOD;
        ans[i] = (ll)ans[i] * p % MOD;
    }
}
int main() {
    initInv();
    int t;
    scanf("%d", &t);
    while(t--) {
        11 n;
        int k;
        scanf("%lld%d", &n, &k);
        initFi(k);
        Lagrange(n, k);
        int res = accumulate(ans, ans + k + 2, 0, [] (int a, int b)
        → -> int { return (a + b) % MOD; });
```

```
printf("%d\n", res);
}
```

3.7 线性基

3.7.1 求异或和值的第 k 小数

```
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int HIGHEST = 63;
const int N = 1e4 + 15;
typedef long long ll;
11 a[N], b[HIGHEST + 5], c[HIGHEST + 5], pp;
void build(int n) {
    for(int i = 0; i < n; i++) {</pre>
        for(int j = HIGHEST; j \ge 0; j--) {
            if((a[i] >> j \& 1) == 0) continue;
            if(b[j]) a[i] ^= b[j];
            else {
                b[j] = a[i];
                for(int k = j - 1; k \ge 0; k--)
                                                          if(b[k] &&
                 \rightarrow (b[j] >> k & 1)) b[j] \stackrel{=}{} b[k];
                for(int k = j + 1; k <= HIGHEST; k++)</pre>
                                                          if(b[k] >> j
                 b[k] ^= b[j];
                break;
            }
       }
    }
}
int main() {
    int t, csn = 1;
    scanf("%d", &t);
    while(t--) {
        memset(b, 0, sizeof(b));
        int n;
        scanf("%d", &n);
        for(int i = 0; i < n; i++) scanf("%1ld", &a[i]);</pre>
        build(n);
        pp = 0;
        for(int j = 0; j <= HIGHEST; j++) {</pre>
            if(b[j]) c[pp++] = b[j];
```

```
}
        printf("Case #%d:\n", csn++);
        int q;
        scanf("%d", &q);
        while(q--) {
            11 k;
            scanf("%lld", &k);
            if(pp < n)
            if(k == 0) {
                puts("0");
            } else {
                11 xorsum = 0;
                for(int i = 0; i <= HIGHEST && k; i++, k >>= 1) {
                    if(i >= pp) {
                        xorsum = -1;
                        break;
                    }
                    if(k&1)
                                xorsum ^= c[i];
                printf("%lld\n", xorsum);
            }
        }
   }
}
```

3.8 欧拉降幂

3.8.1 计算 $a^{a^{a^{\cdots}}}$

```
ll quickPow(int a, int b, int p) {
    int ans = 1, base = a;
    while(b) {
        if(b & 1) {
            ans = (11)ans * base % p;
        base = (11)base * base % p;
        b >>= 1;
    }
    return ans;
}
11 quickPow(int a, int b) {
    11 \text{ ans} = 1, base = a;
    while(b) {
        if(b & 1) {
            ans = min((11)ans * base, (11)1e7);
        }
```

```
base = min((11)base * base, (11)1e7);
        b >>= 1;
    return ans;
}
pair<int, 11> fun(int a, int b, int p) {
    if(b == 0) {
        return make pair(a % p, a);
    if(p == 1) {
        auto ret = make_pair(0, (11)1e7);
        if(a == 1) {
            ret.second = a;
        } else if(b <= 10) {</pre>
            ret.second = a;
            for(int i = 0; i < b; i++) {
                ret.second = quickPow(ret.second, a);
        }
        return ret;
    }
    auto ele = fun(a, b - 1, phi[p]);
    if(ele.second < phi[p]) {</pre>
        ele.first = quickPow(a, ele.first, p);
        ele.second = quickPow(a, ele.second);
    } else {
        ele.first = quickPow(a, ele.first % phi[p] + phi[p], p);
        ele.second = quickPow(a, ele.second);
    return ele;
}
```

3.9 FFT 与 NTT

3.9.1 FFT

```
const double PI = acos(-1.0);
struct Complex {
  double x, y;
  Complex(double _x = 0.0, double _y = 0.0) {
    x = _x;
    y = _y;
  }
  Complex operator-(const Complex &b) const {
    return Complex(x - b.x, y - b.y);
  }
```

```
Complex operator+(const Complex &b) const {
    return Complex(x + b.x, y + b.y);
  Complex operator*(const Complex &b) const {
    return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
};
void change(Complex y[], int len) {
  int i, j, k;
  for (int i = 1, j = len / 2; i < len - 1; i++) {
    if (i < j) swap(y[i], y[j]);</pre>
    k = len / 2;
    while (j >= k) {
      j = j - k;
     k = k / 2;
    if (j < k) j += k;
}
void fft(Complex y[], int len, int on) {
  change(y, len);
  for (int h = 2; h <= len; h <<= 1) {
    Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
    for (int j = 0; j < len; <math>j += h) {
      Complex w(1, 0);
      for (int k = j; k < j + h / 2; k++) {
        Complex u = y[k];
        Complex t = w * y[k + h / 2];
        y[k] = u + t;
        y[k + h / 2] = u - t;
        w = w * wn;
      }
    }
  }
  if (on == -1) {
    for (int i = 0; i < len; i++) {
      y[i].x /= len;
    }
  }
}
const int MAXN = 200020;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN / 2];
int sum[MAXN];
```

```
int main() {
 while (scanf("%s%s", str1, str2) == 2) {
    int len1 = strlen(str1);
    int len2 = strlen(str2);
    int len = 1:
    while (len < len1 * 2 || len < len2 * 2) len <<= 1;
    for (int i = 0; i < len1; i++) x1[i] = Complex(str1[len1 - 1 - i]</pre>
    \rightarrow - '0', 0);
    for (int i = len1; i < len; i++) x1[i] = Complex(0, 0);</pre>
    for (int i = 0; i < len2; i++) x2[i] = Complex(str2[len2 - 1 - i]</pre>
    \rightarrow - '0', 0);
    for (int i = len2; i < len; i++) x2[i] = Complex(0, 0);
    fft(x1, len, 1);
    fft(x2, len, 1);
    for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
    fft(x1, len, -1);
    for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
    for (int i = 0; i < len; i++) {
      sum[i + 1] += sum[i] / 10;
      sum[i] %= 10;
    }
    len = len1 + len2 - 1;
    while (sum[len] == 0 \&\& len > 0) len--;
    for (int i = len; i >= 0; i--) printf("%c", sum[i] + '0');
    printf("\n");
 }
 return 0;
```

3.9.2 NTT

```
inline int addMod(int a, int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}

inline int quickPow(int a, int b) {
    int ans = 1, base = a;
    while(b) {
        if(b & 1) {
            ans = (ll)ans * base % MOD;
        }
        base = (ll)base * base % MOD;
        b >>= 1;
    }
    return ans;
}

void change(vector<int>& y, int len) {
```

```
for(int i = 1, j = len / 2; i < len - 1; i++) {
        if(i < j) {
            swap(y[i], y[j]);
        int k = len / 2;
        while(j >= k) {
            j = j - k;
            k = k / 2;
        if(j < k) {
            j += k;
        }
    }
}
void ntt(vector<int>& y, int len, int on) {
    change(y, len);
    for(int h = 2; h <= len; h <<= 1) {
        int gn = quickPow(3, (MOD - 1) / h);
        for (int j = 0; j < len; <math>j += h) {
            int g = 1;
            for (int k = j; k < j + h / 2; k++) {
                int u = y[k];
                int t = (11)g * y[k + h / 2] % MOD;
                y[k] = addMod(u, t);
                y[k + h / 2] = addMod(u, MOD - t);
                g = (11)g * gn % MOD;
            }
        }
    if(on == -1) {
        reverse(y.begin() + 1, y.begin() + len);
        for(int i = 0, inv = quickPow(len, MOD - 2); i < len; i++) {</pre>
            y[i] = (11)y[i] * inv % MOD;
        }
    }
}
inline void mul(vector<int> a, vector<int> b, vector<int>& res, int
→ alen, int blen) {
    int len = rpow2[alen + blen];
    ntt(a, len, 1);
    ntt(b, len, 1);
    for(int i = 0; i < len; i++) {</pre>
        res[i] = (ll)a[i] * b[i] % MOD;
    ntt(res, len, -1);
```

}

3.10 生成函数

3.10.1 普通型

```
// 有无数种硬币, 为 2, 4, 8, 16, ... 各两个, 问组成 n 的方案数
// (1 + x^2 + x^4)(1 + x^4 + x^8)...
void solve(){
    int lim = 2:
    memset(c1, 0, sizeof(c1));
    memset(c2, 0, sizeof(c2));
    c1[0] = c1[1] = c1[2] = 1;
    for(int i = 2; i < N; i <<= 1){
        for(int k = 0; k <= (i << 1); k += i){
            for(int j = 0; j <= lim && j + k < N; j++){</pre>
                c2[j + k] += c1[j];
            }
            lim += k;
        }
        for(int j = 0; j <= lim && j < N; j++){</pre>
            c1[j] = c2[j];
            c2[j] = 0;
        }
    }
}
```

3.11 BSGS

```
int bsgs(int a, int b) {
    unordered map<int, int> mp;
    int sqrtP = ceil(sqrt(MOD));
    for(int y = 0, sum = b; y <= sqrtP; y++, sum = 1LL * sum * a %</pre>
     \rightarrow MOD) {
        mp[sum] = y;
    }
    int z = quickPow(a, sqrtP);
    for(int x = 1, sum = z; x <= sqrtP; x++, sum = 1LL * sum * z %</pre>
     \rightarrow MOD) {
        if(mp.count(sum)) {
             return x * sqrtP - mp[sum];
        }
    }
    return -1;
}
```

3.12 自适应辛普森积分

```
double a, b, c, d;
inline double f(double x) {
    return (c * x + d) / (a * x + b);
}
inline double simpson(double 1, double r) {
    double mid = (1 + r) / 2;
    return (r - 1) * (f(1) + f(r) + 4 * f(mid)) / 6;
}
inline double calc(double 1, double r, double eps, double ans) {
    double mid = (1 + r) / 2;
    double lres = simpson(1, mid), rres = simpson(mid, r);
    if(fabs(lres + rres - ans) \le 15 * eps) {
        return lres + rres + (lres + rres - ans) / 15;
   return calc(1, mid, eps / 2, lres) + calc(mid, r, eps / 2, rres);
}
int main() {
   double 1, r;
   while(~scanf("%lf%lf%lf%lf%lf", &a, &b, &c, &d, &l, &r)) {
        printf("%.6f\n", calc(l, r, 1e-6, simpson(l, r)));
    }
}
```

3.13 扩展欧几里德

```
ll extgcd(ll a, ll b, ll& x, ll& y){
    ll d = a;
    if(!b){
        x = 1, y = 0;
    }else{
        d = extgcd(b, a%b, y, x);
        y -= (a/b) * x;
    }
    return d;
}
```

3.14 反素数

```
void dfs(int depth, ull cnt, ull num, ull& upper, ull& max_num, ull&

→ ans){ //传入的 n 作为上界

if(cnt > max_num || (cnt == max_num && ans > num)){ //因子数大

→ 于 或 因子数相同但值小则更新
```

3.15 康托展开

```
// 康托展开, 从末位为第 1 位, 首位为第 n 位
//X = a[n]*(n-1)! + a[n-1]*(n-2)! + ... + a[1]*0!
const int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
int cantor(int a[N]){
   int sum = 0;
   for(int i = 0; i < N; i++){</pre>
       int cnt = 0;
       for(int j = i + 1; j < N; j++){
          if(a[j] < a[i]) cnt++; //后面的数比 a[i] 小的有几
           → ↑
       }
       }
   return sum;
}
void inv cantor(int num, int a[]){
   bool used [N + 1] = \{0\};
   for(int i = 0; i < N; i++){
       int cnt = num/fac[N - i - 1]; //比 a[i] 小且未用过的数有
       \hookrightarrow cnt \uparrow
       num \%= fac[N - i - 1];
       int j;
       for(j = 0; j < N; j++){ //回推该位数字是几
          if(!used[j]){
              if(cnt == 0) break;
              cnt--;
          }
       }
       a[i] = j;
       used[j] = true;
```

```
}
```

3.16 杜教筛

3.16.1 求积性函数前缀和

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<ll, ll> pii;
const int N = 3e6 + 5;
bool used[1005];
bool isprime[N];
int tot;
int prime[N];
int mu[N], phi[N];
11 arr_sum_mu[N], arr_sum_phi[N];
ll mp mu[1005], mp phi[1005];
pii getAns(int n, int lim) {
    if(n < N)
                           return make_pair(arr_sum_mu[n],
    → arr sum phi[n]);
    if(used[lim / n]) {
        return make_pair(mp_mu[lim / n], mp_phi[lim / n]);
    }
    used[lim / n] = true;
    mp_mu[lim / n] = 1;
    mp phi[lim / n] = (ll)n * ((ll)n + 1) / 2;
    for(11 1 = 2, r; 1 \le n \&\& 1 > 0; 1 = r + 1) {
        r = n / (n / 1);
        pair<11, 11> tmp = getAns(n / 1, lim);
        11 \text{ sum } g = (11)r - 1 + 1;
        mp_mu[lim / n] -= sum_g * tmp.first;
        mp_phi[lim / n] -= sum_g * tmp.second;
    }
    return make_pair(mp_mu[lim / n], mp_phi[lim / n]);
}
inline void init() {
    memset(isprime, true, sizeof(isprime));
    isprime[0] = isprime[1] = false;
    mu[1] = 1, phi[1] = 1;
    arr_sum_mu[1] = 1, arr_sum_phi[1] = 1;
    tot = 0;
```

```
for(int i = 2; i < N; i++) {</pre>
        if(isprime[i]) {
            prime[tot++] = i;
            phi[i] = i - 1;
            mu[i] = -1;
        }
        for(int j = 0; j < tot && prime[j] * i < N; j++) {
            isprime[i * prime[j]] = false;
            if(i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                mu[i * prime[j]] = 0;
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            mu[i * prime[j]] = -mu[i];
        }
        arr_sum_mu[i] = arr_sum_mu[i - 1] + mu[i];
        arr_sum_phi[i] = arr_sum_phi[i - 1] + phi[i];
}
int main() {
    init();
    int t;
    scanf("%d", &t);
    while(t--) {
        memset(used, false, sizeof(used));
        int n;
        scanf("%d", &n);
        pair<11, 11> tmp = getAns(n, n);
        printf("%lld %lld\n", tmp.second, tmp.first);
    }
}
```

3.17 Min 25 筛

3.17.1 求积性函数前缀和

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = (int)1e6 + 15;
const ll MOD = (ll)1e9 + 7;
```

```
const ll inv6 = 166666668;
bool isNotPrime[N];
int prime[N], tot;
int sum1[N], sum2[N], g1[N], g2[N];
ll w[N];
int idx1[N], idx2[N];
int gTot;
int sqrtN;
inline void init(int n) {
    tot = 0;
    for(int i = 2; i <= n; i++) {
        if(!isNotPrime[i]) {
            prime[++tot] = i;
            sum1[tot] = (sum1[tot - 1] + i) % MOD;
            sum2[tot] = (sum2[tot - 1] + (l1)i * i) % MOD;
        }
        for(int j = 1; i * prime[j] <= n; j++) {</pre>
            isNotPrime[i * prime[j]] = true;
            if(i % prime[j] == 0) {
                break;
            }
        }
    }
}
inline void initG(ll n) {
    // calculate q1[qTot] = 1 + 2 + 3 + ...
    // calculate g2[gTot] = 1^2 + 2^2 + 3^3 + ...
    gTot = 0;
    for(11 i = 1, r; i \le n; i = r + 1) {
        w[++gTot] = n / i;
        r = n / (n / i);
        if(n / i <= sqrtN) {</pre>
            idx1[n / i] = gTot;
        } else {
            idx2[n / (n / i)] = gTot;
        }
        ll x = w[gTot] \% MOD;
        g1[gTot] = (x * (x + 1) / 2 + MOD - 1) % MOD;
        g2[gTot] = (x * (x + 1) % MOD * (2 * x + 1) % MOD * inv6 +
        \rightarrow MOD - 1) % MOD;
    // enumerate j, then enumerate n
    // g(i, j-1) can be calculated before g(n, j)
    for(int i = 1; i <= tot; i++) {
```

```
for(int j = 1; j <= gTot && (ll)prime[i] * prime[i] <= w[j];</pre>
                                       j++) {
                                        ll k = w[j] / prime[i] \le sqrtN ? idx1[w[j] / prime[i]] :
                                         \rightarrow idx2[n / (w[j] / prime[i])];
                                       g1[j] = (g1[j] - (l1)prime[i] * (g1[k] - sum1[i - 1] +
                                         → MOD) % MOD + MOD) % MOD;
                                       g2[j] = (g2[j] - (11)prime[i] * prime[i] % MOD * (g2[k] - (g2[k]
                                         \rightarrow sum2[i - 1] + MOD) % MOD + MOD) % MOD;
             }
}
inline ll calcS(ll x, int j, ll n) {
              if(prime[j] >= x) {
                          return 0;
             11 k = x \le sqrtN ? idx1[x] : idx2[n / x];
             ll ans = ((11)g2[k] - g1[k] - (sum2[j] - sum1[j]) + 2LL * MOD) %
              \rightarrow MOD;
             for(int i = j + 1; i <= tot && (ll)prime[i] * prime[i] <= x; i++)</pre>
                          for(ll e = 1, pie = prime[i]; pie <= x; pie *= prime[i], e++)</pre>
                            → {
                                       11 xx = pie % MOD;
                                        ans = (ans + xx * (xx - 1) \% MOD * (calcS(x / pie, i, n))
                                         \rightarrow + (e != 1))) % MOD;
                          }
             return ans;
}
int main() {
             11 n;
             while(~scanf("%lld", &n)) {
                          sqrtN = sqrt(n);
                          init(sqrtN);
                          initG(n);
                          printf("\frac{n}{n}, (calcS(n, 0, n) + 1) % MOD);
             }
}
```

4 树

4.1 树状数组

```
ll tree[N];
```

```
inline int lowbit(int x) {
    return x & -x;
}

inline ll query(int x) {
    ll ret = 0;
    for(; x > 0; x -= lowbit(x)) {
        ret += tree[x];
    }
    return ret;
}

inline void update(int x, ll val) {
    for(; x < N; x += lowbit(x)) {
        tree[x] += val;
    }
}</pre>
```

4.2 线段树

4.2.1 线段树合并

```
int merge(int o1, int o2, int fa, int 1, int r){
    if(o1 == 0 || o2 == 0)         return o1 ^ o2;
    if(l == r){
        ans[fa] = max(ans[fa], l);
        return o1;
    }
    int m = (l + r) >> 1;
    ls[o1] = merge(ls[o1], ls[o2], fa, lson);
    rs[o1] = merge(rs[o1], rs[o2], fa, rson);
    return o1;
}
```

4.3 主席树

4.3.1 主席树

```
o = tot++;
    ls[o] = ls[pre];
    rs[o] = rs[pre];
    sum[o] = sum[pre] + 1;
    if(l == r) return;
    int m = (1 + r) >> 1;
    if(pos \ll m) {
        update(ls[o], ls[pre], pos, lson);
    } else {
        update(rs[o], rs[pre], pos, rson);
    }
}
int query(int o, int qr, int l, int r) {
    if(r <= qr) {
        return sum[o];
    int m = (1 + r) >> 1;
    int ans = query(ls[o], qr, lson);
    if(m < qr) {
        ans += query(rs[o], qr, rson);
    return ans;
}
```

4.3.2 在 $[x_1, x_2]$ 中 lower_bound(y)

```
int sum[N * 40], ls[N * 40], rs[N * 40], root[N], a[N];
int tot;
inline void build(int& x, int 1, int r) {
    x = tot++;
    sum[x] = 0;
    if(1 == r) {
        return;
    int m = (1 + r) >> 1;
    build(ls[x], lson);
    build(rs[x], rson);
}
inline void update(int& x, int pre, int pos, int 1, int r) {
    x = tot++;
    ls[x] = ls[pre], rs[x] = rs[pre];
    sum[x] = sum[pre] + 1;
    if(1 == r) {
        return;
```

```
}
    int m = (1 + r) >> 1;
    if(pos \ll m) {
        update(ls[x], ls[pre], pos, lson);
    } else {
        update(rs[x], rs[pre], pos, rson);
    }
}
inline int querySum(int x, int pre, int pos, int 1, int r) {
    if(r \le pos) {
        return sum[x] - sum[pre];
    }
    int m = (1 + r) >> 1;
    int ret = querySum(ls[x], ls[pre], pos, lson);
    if(m < pos) {</pre>
        ret += querySum(rs[x], rs[pre], pos, rson);
    return ret;
}
inline int findK(int x, int pre, int k, int l, int r) {
    if(1 == r) {
        return 1;
    int tmp = sum[ls[x]] - sum[ls[pre]];
    int m = (1 + r) >> 1;
    if(tmp >= k) {
        return findK(ls[x], ls[pre], k, lson);
    } else {
        return findK(rs[x], rs[pre], k - tmp, rson);
    }
}
```

4.4 平衡树

4.4.1 Treap

```
struct Treap{
   int key[N], weight[N], sz[N], pre[N], ch[N][2];
   int tot, root;

void newNode(int& x, int pkey){
        x = ++tot;
        key[x] = pkey;
        weight[x] = rand();
        ch[x][0] = ch[x][1] = pre[x] = 0;
        sz[x] = 1;
```

```
}
    void pushUp(int x){
        sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
    }
    void rotate(int x, int p){
        int y = pre[x], z = pre[y];
        ch[y][p^1] = ch[x][p];
        pre[ch[x][p]] = y;
        pre[x] = z;
        if(z) ch[z][ch[z][1] == y] = x;
                root = x;
        else
        ch[x][p] = y;
        pre[y] = x;
        pushUp(y);
        pushUp(x);
    }
    void insert(int x, int pkey, int fa = 0){
        if(x == 0){
            newNode(x, pkey);
            if(fa) ch[fa][!(pkey < key[fa])] = x;
            pre[x] = fa;
            return;
        insert(ch[x][!(pkey < key[x])], pkey, x);</pre>
        pushUp(x);
        int y = ch[x][!(pkey < key[x])];
        if(weight[y] > weight[x]) rotate(y, (key[y] < key[x]));</pre>
    }
    void init(){
        tot = 0, root = 1;
        insert(0, inf);
        insert(root, -inf);
    }
    void query(int x, int pkey, int& ans){
        if(x == 0)
                       return;
        if(key[x] <= pkey){</pre>
            ans = max(ans, key[x]);
            query(ch[x][1], pkey, ans);
        }else{
            query(ch[x][0], pkey, ans);
        }
    }
};
```

Treap tp;

4.4.2 Splay

```
struct SplayTree{
    int ch[N][2], pre[N];
    11 sum[N], lzy[N], key[N], val[N], sz[N];
    int root, tot;
   void color(int o, ll delta){
        lzy[o] += delta;
        sum[o] += sz[o] * delta;
        val[o] += delta;
    }
    void pushUp(int o){
        sz[o] = 1, sum[o] = val[o];
        if(~ch[o][0]){
            sz[o] += sz[ch[o][0]];
            sum[o] += sum[ch[o][0]];
        if(~ch[o][1]){
            sz[o] += sz[ch[o][1]];
            sum[o] += sum[ch[o][1]];
        }
    }
   void pushDown(int o){
        if(lzy[o]){
                            color(ch[o][0], lzy[o]);
            if(~ch[o][0])
            if(~ch[o][1])
                             color(ch[o][1], lzy[o]);
            lzy[o] = 0;
        }
    }
    void rotate(int x, int p){
        int y = pre[x], z = pre[y];
        pushDown(y), pushDown(x);
        ch[y][p^1] = ch[x][p];
        pre[ch[x][p]] = y;
        pre[x] = z;
        if(~z) ch[z][ch[z][1] == y] = x;
        ch[x][p] = y;
        pre[y] = x;
        pushUp(y), pushUp(x);
   }
```

```
void splay(int x, int goal){
    while(pre[x] != goal){
        if(pre[pre[x]] == goal) rotate(x, ch[pre[x]][0] ==
        \rightarrow x);
        else{
            int y = pre[x], z = pre[y];
            int p = (ch[z][0] == y);
            if(ch[y][p^1] == x) rotate(y, p), rotate(x, p);
                                     rotate(x, p^1), rotate(x, p);
            else
        }
    }
    if(goal == -1)
                       root = x;
    else
                         pushUp(goal);
}
void newNode(int& o, int pkey, ll pval){
    o = tot++;
    ch[o][0] = ch[o][1] = pre[o] = -1;
    lzy[o] = 0;
    key[o] = pkey;
    sum[o] = val[o] = pval;
    sz[o] = 1;
}
void insert(int& o, int pkey, ll pval, int fa){
    if(o == -1){
        newNode(o, pkey, pval);
        pre[o] = fa;
        splay(o, -1);
        return;
    }
    if(key[o] == pkey){
        pushDown(o);
        splay(o, -1);
        return;
    }
    pushDown(o);
    if(pkey < key[o])</pre>
                         insert(ch[o][0], pkey, pval, o);
                          insert(ch[o][1], pkey, pval, o);
    else
}
void init(){
    root = -1, tot = 0;
    insert(root, inf, 0, -1);
    insert(root, -inf, 0, -1);
}
```

```
int findPrev(int o, int pkey){
        if(o == -1) return -1;
        if(key[o] < pkey){</pre>
            int ret = findPrev(ch[o][1], pkey);
            return ret == -1 ? o : ret;
        }else{
            return findPrev(ch[o][0], pkey);
        }
    }
    int findSucc(int o, int pkey){
        if(o == -1) return -1;
        if(key[o] > pkey){
            int ret = findSucc(ch[o][0], pkey);
            return ret == -1 ? o : ret;
            return findSucc(ch[o][1], pkey);
        }
    }
    void splayLR(int lkey, int rkey){
        int 1 = findPrev(root, lkey), r = findSucc(root, rkey);
        splay(1, -1);
        splay(r, root);
    }
    11 query(int lkey, int rkey){
        splayLR(lkey, rkey);
        return sum[ch[ch[root][1]][0]];
    }
    void changeInterval(int lkey, int rkey, ll pval){
        splayLR(lkey, rkey);
        color(ch[ch[root][1]][0], pval);
    }
    void delInterval(int lkey, int rkey){
        splayLR(lkey, rkey);
        ch[ch[root][1]][0] = -1;
        pushUp(ch[root][1]);
    }
};
SplayTree spt;
```

4.4.3 可持久化 FHQ Treap

```
int ch[N << 7][2], w[N << 7], pri[N << 7], sz[N << 7];</pre>
int root[N];
int tot;
inline int mrand() {
    static int seed = 123456;
    return seed = (1LL * seed * 2333 + 1234567891) % 998244353;
}
inline int newNode(int v) {
    int x = ++tot;
    pri[x] = mrand();
   sz[x] = 1;
    v = v
    return x;
inline int copyNode(int v) {
    if(!v) {
        return 0;
    int x = ++tot;
    pri[x] = pri[v];
    sz[x] = sz[v];
    w[x] = w[v];
    ch[x][0] = ch[v][0];
    ch[x][1] = ch[v][1];
    return x;
}
inline void pushUp(int x) {
    sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
inline int merge(int x, int y) {
    if(!x || !y) {
        return x | y;
    if(pri[x] < pri[y]) {</pre>
        ch[x][1] = merge(ch[x][1], y);
        pushUp(x);
        return x;
    } else {
        ch[y][0] = merge(x, ch[y][0]);
        pushUp(y);
```

```
return y;
    }
}
inline void split(int rt, int k, int& x, int& y) {
    if(!rt) {
        x = y = 0;
        return;
    rt = copyNode(rt);
    if(w[rt] <= k) {
        x = rt;
        split(ch[rt][1], k, ch[x][1], y);
    } else {
        y = rt;
        split(ch[rt][0], k, x, ch[y][0]);
    pushUp(rt);
}
inline int kth(int rt, int k) {
    if(sz[ch[rt][0]] + 1 == k) {
        return rt;
    } else if(sz[ch[rt][0]] >= k) {
        return kth(ch[rt][0], k);
    } else {
        return kth(ch[rt][1], k - sz[ch[rt][0]] - 1);
}
int main() {
    root[0] = merge(newNode(-2147483647), newNode(2147483647));
    int m;
    scanf("%d", &m);
    for(int i = 1; i <= m; i++) {
        int op, v, x;
        scanf("%d%d%d", &v, &op, &x);
        if(op == 1) {
            int 1, r;
            split(root[v], x, 1, r);
            root[i] = merge(1, merge(newNode(x), r));
        } else if(op == 2) {
            int p, q, r;
            split(root[v], x, q, r);
            split(q, x - 1, p, q);
            q = merge(ch[q][0], ch[q][1]);
            root[i] = merge(p, merge(q, r));
```

```
}
    // ...
}
return 0;
}
```

4.4.4 带 pushdown 的可持久化 FHQ Treap

```
int ch[N << 7][2], w[N << 7], pri[N << 7], sz[N << 7], f[N << 7];</pre>
11 sum[N << 7];
int root[N];
int tot;
inline int mrand() {
    static int seed = 123456;
    return seed = (1LL * seed * 2333 + 1234567891) % 998244353;
}
inline int newNode(int v) {
    int x = ++tot;
    pri[x] = mrand();
    sz[x] = 1;
    sum[x] = w[x] = v;
    return x;
}
inline int copyNode(int v) {
    if(!v) {
        return 0;
    int x = ++tot;
    sum[x] = sum[v];
    pri[x] = pri[v];
    sz[x] = sz[v];
    w[x] = w[v];
    ch[x][0] = ch[v][0];
    ch[x][1] = ch[v][1];
    f[x] = f[v];
    return x;
}
inline void pushUp(int x) {
    sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
    sum[x] = sum[ch[x][0]] + sum[ch[x][1]] + w[x];
}
inline void pushDown(int x) {
    if(f[x]) {
```

```
ch[x][0] = copyNode(ch[x][0]);
        ch[x][1] = copyNode(ch[x][1]);
        swap(ch[x][0], ch[x][1]);
        f[ch[x][0]] ^= 1;
        f[ch[x][1]] ^= 1;
        f[x] = 0;
    }
}
inline int merge(int x, int y) {
    if(!x || !y) {
        return x | y;
    if(pri[x] < pri[y]) {</pre>
        pushDown(x);
        ch[x][1] = merge(ch[x][1], y);
        pushUp(x);
        return x;
    } else {
        pushDown(y);
        ch[y][0] = merge(x, ch[y][0]);
        pushUp(y);
        return y;
    }
}
inline void split(int rt, int k, int& x, int& y) {
    if(!rt) {
        x = y = 0;
        return;
    }
    pushDown(rt);
    rt = copyNode(rt);
    if(sz[ch[rt][0]] < k) {</pre>
        x = rt;
        split(ch[rt][1], k - sz[ch[rt][0]] - 1, ch[x][1], y);
    } else {
        y = rt;
        split(ch[rt][0], k, x, ch[y][0]);
    pushUp(rt);
}
```

4.5 LCA

4.5.1 倍增法

```
void dfs(int u, int pre){
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(v == pre)
                        continue;
        dpt[v] = d[u] + 1;
        d[v] = d[u] + e[i].w;
        fa[v][0] = u;
        dfs(v, u);
    }
}
void getFa(int n){
    for(int j = 1; j <= BASE; j++){</pre>
        for(int i = 1; i <= n; i++){
            if(fa[i][j-1] == -1) continue;
            fa[i][j] = fa[fa[i][j-1]][j-1];
        }
    }
}
int getLca(int u, int v){
    if(dpt[u] > dpt[v])
                          swap(u, v);
    for(int j = BASE; j \ge 0; j--){
        if(fa[v][j] == -1 \mid \mid dpt[fa[v][j]] < dpt[u]) continue;
        v = fa[v][j];
    if(u == v) return u;
    for(int j = BASE; j >= 0; j--){
        if(fa[u][j] == -1 \mid | fa[v][j] == -1 \mid | fa[u][j] == fa[v][j])

→ continue;

        u = fa[u][j], v = fa[v][j];
    return fa[u][0];
}
```

4.5.2 Tarjan

```
used[v] = true;
}
for(int i = qhead[u]; ~i; i = qe[i].nxt){
    int v = qe[i].v;
    if(used[v])    pa[qe[i].w] = find(v);
}
}
```

4.5.3 RMQ

```
const int N = 40000 + 5;
struct edge{
    int v, w, nxt;
};
edge e[N << 1];
int head[N], tot;
int dp[N << 1][21], mp[N << 1], pos[N], d[N], dfn, totDp;</pre>
inline void init(){
    memset(head, -1, sizeof(head));
    d[1] = tot = dfn = totDp = 0;
}
inline void addEdge(int u, int v, int w){
    e[tot] = edge{v, w, head[u]};
    head[u] = tot++;
}
void dfs(int u, int pre){
    int curDfn = ++dfn;
    dp[++totDp][0] = curDfn;
    mp[dfn] = u;
    pos[u] = totDp;
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(v == pre) {
            continue;
        d[v] = d[u] + e[i].w;
        dfs(v, u);
        dp[++totDp][0] = curDfn;
    }
}
void rmqInit(){
    for(int j = 1; (1 << j) <= totDp; j++){</pre>
```

4.6 带权并查集

4.7 DFS 序

4.8 树的直径

```
void dfs1(int u, int d, int& ansu, int& ansd) {
    if(d > ansd) {
        ansd = d;
        ansu = u;
    used[u] = true;
    for(int i = head[u]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        if(used[v]) {
            continue;
        }
        dfs1(v, d + e[i].w, ansu, ansd);
    }
}
void dfs2(int u, int pre, int d, int& ansd) {
    ansd = max(ansd, d);
    used[u] = true;
    for(int i = head[u]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        if(used[v]) {
            continue;
        }
        dfs2(v, u, d + e[i].w, ansd);
    }
}
```

4.9 树链剖分

```
int query(int ql, int qr, int l, int r, int rt){
    if(q1 \le 1 \&\& r \le qr){
        return seg[rt];
    int ans = 0, m = (1 + r) >> 1;
    if(ql <= m)
                  ans = max(ans, query(ql, qr, lson));
    if(m < qr)
                   ans = max(ans, query(ql, qr, rson));
    return ans;
}
void dfs(int u){
    son[u] = -1, sz[u] = 1;
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(v == fa[u]) continue;
        fa[v] = u;
        preew[v] = e[i].w;
        dpt[v] = dpt[u] + 1;
        dfs(v);
        sz[u] += sz[v];
        if(son[u] == -1 \mid \mid sz[son[u]] < sz[v]) son[u] = v;
    }
}
void buildTree(int u, int rt, int n){
    mp[u] = ++mptot, top[u] = rt;
    update(mp[u], preew[u], 1, n, 1);
                  buildTree(son[u], rt, n);
    if(~son[u])
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(v == fa[u] || v == son[u]) continue;
        buildTree(v, v, n);
    }
}
void solveUpdate(int idx, int val){
    int v = dpt[input[idx][0]] > dpt[input[idx][1]] ? input[idx][0] :
    \rightarrow input[idx][1];
    update(mp[v], val, 1, mptot, 1);
}
int solveQuery(int u, int v, int n){
    int fu = top[u], fv = top[v], ret = 0;
    while(fu != fv){
        if(dpt[fu] < dpt[fv]){</pre>
            swap(fu, fv);
            swap(u, v);
        }
```

```
ret = max(ret, query(mp[fu], mp[u], 1, n, 1));
    u = fa[fu], fu = top[u];
}
if(u == v) return ret;
if(dpt[u] > dpt[v]) swap(u, v);
// 最后是 mp[u] + 1 而不是 mp[u] 是因为维护的是父边,故 mp[u] 不
    → 在 (u,v) 路径上
return max(ret, query(mp[u] + 1, mp[v], 1, n, 1));
}
```

4.10 ODT

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct Node {
    int 1, r;
    mutable int val;
    inline int len() const {
        return r - 1 + 1;
    bool operator < (const Node& b) const {</pre>
        return 1 < b.1;
    }
};
set<Node> st;
inline set<Node>::iterator split(int pos) {
    auto it = st.lower_bound(Node{pos, 0, 0});
    if(it != st.end() && it->1 == pos) {
        return it;
    --it;
    11 v = it->val;
    int l = it->1, r = it->r;
    st.erase(it);
    st.insert(Node{1, pos - 1, v});
    return st.insert(Node{pos, r, v}).first;
}
inline void assignVal(int 1, int r, int v) {
    auto itr = split(r + 1), itl = split(l);
    st.erase(itl, itr);
    st.insert(Node{1, r, v});
}
```

```
inline void reverse(int 1, int r) {
    auto itr = split(r + 1), itl = split(l);
    for(auto it = itl; it != itr; it++) {
        it->val ^= 1;
    }
}
inline int sum(int 1, int r) {
    auto itr = split(r + 1), itl = split(l);
    int res = 0;
    for(auto it = itl; it != itr; it++) {
        res += (it->val == 1) * it->len();
    return res;
}
inline int calc(int 1, int r) {
    auto itr = split(r + 1), itl = split(l);
    int res = 0, cnt = 0;
    for(auto it = itl; it != itr; it++) {
        if(it->val) {
            cnt += it->len();
        } else {
            cnt = 0;
        res = max(res, cnt);
    }
    return res;
}
int main() {
    ios::sync with stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, m;
    while(cin >> n >> m) {
        st.clear();
        for(int i = 1, val; i <= n; i++) {
            cin >> val;
            st.emplace(Node{i, i, val});
        }
        while(m--) {
            // ...
    }
```

}

4.11 点分治

4.11.1 点分治

```
void getRoot(int u, int pre, int size, int& rt){
    sum[u] = 1, maxsum[u] = 0;
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(used[v] || v == pre)
                                     continue;
        getRoot(v, u, size, rt);
        sum[u] += sum[v];
        maxsum[u] = max(maxsum[u], sum[v]);
    maxsum[u] = max(maxsum[u], size - sum[u]);
    if(rt == -1 || maxsum[u] < maxsum[rt]) rt = u;</pre>
}
void getDis(int u, int pre, int w){
    d[pd++] = w;
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(used[v] || v == pre)
                                    continue;
        getDis(v, u, w + e[i].w);
    }
}
int calc(int u, int w, int k){
    pd = 0;
    getDis(u, -1, w);
    sort(d, d + pd);
    int ret = 0;
    int head = 0, tail = pd - 1;
    while(head < tail){</pre>
        while(d[head] + d[tail] >= k \&\& head < tail){
            if(d[head] + d[tail] == k) ret++;
            tail--;
        }
        head++;
    return ret;
int dfs(int u, int n, int k){
    int rt = -1;
    getRoot(u, -1, n, rt);
```

4.11.2 动态点分治

```
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100100;
const int inf = 0x3f3f3f3f;
typedef long long 11;
struct edge{
    int v, w, nxt;
};
int head[N], rthead[N], tot, rttot;
int sum[N], par[N];
int dpt[N], d[N], fa[N][20], maxsum[N];
bool used[N];
edge e[N \ll 1];
edge rte[N << 1];</pre>
11 ans[N][2], val[N];
inline void init(){
    tot = rttot = 1;
}
inline int read(){
    char ch = getchar(); int x = 0, f = 1;
    while(ch < '0' \mid \mid ch > '9') {if(ch == '-') f = -1; ch =

→ getchar();}
    while('0' \le ch \&\& ch \le '9') {x = x * 10 + ch - '0'; ch =

→ getchar();}
   return x * f;
}
```

```
inline void addEdge(int u, int v, int w){
    e[tot] = edge{v, w, head[u]};
    head[u] = tot++;
}
inline void addRootEdge(int u, int v, int w){
    rte[rttot] = edge{v, w, rthead[u]};
    rthead[u] = rttot++;
}
void initLCA(int u, int pre){
    fa[u][0] = pre;
    for(int j = 1; j <= 19; j++){
        if(fa[u][j - 1] == 0) break;
        fa[u][j] = fa[fa[u][j-1]][j-1];
    for(int i = head[u]; i; i = e[i].nxt){
        int v = e[i].v;
        if(v == pre)
                      continue;
        dpt[v] = dpt[u] + 1;
        d[v] = d[u] + e[i].w;
        initLCA(v, u);
    }
}
inline int lca(int u, int v) {
    if(dpt[u] < dpt[v])</pre>
                            swap(u, v);
    int tmp = dpt[u] - dpt[v];
    for(int k = 0, j = 1; j \le tmp; j \le 1, k++)
        if(tmp \& j) u = fa[u][k];
    while(u != v) {
        int j = 0;
        while(fa[u][j] != fa[v][j]) j++;
        if(j)
               j--;
        u = fa[u][j], v = fa[v][j];
    return u;
}
int getDist(int u, int v){
    return d[u] + d[v] - (d[lca(u, v)] << 1);
}
void getRoot(int u, int pre, int size, int& rt){
    sum[u] = 1, maxsum[u] = 0;
    for(int i = head[u]; i; i = e[i].nxt){
        int v = e[i].v;
```

```
if(v == pre || used[v]) continue;
        getRoot(v, u, size, rt);
        sum[u] += sum[v];
        maxsum[u] = max(maxsum[u], sum[v]);
    maxsum[u] = max(maxsum[u], size - sum[u]);
    if(rt == 0 || maxsum[u] < maxsum[rt])</pre>
}
void initTree(int u){
    used[u] = true;
    for(int i = head[u]; i; i = e[i].nxt){
        int v = e[i].v;
        if(used[v])
                        continue;
        int rt = 0;
        getRoot(v, u, sum[v], rt);
        par[rt] = u;
        addRootEdge(u, v, rt);
        initTree(rt);
    }
}
11 query(int u){
    11 ret = ans[u][0];
    for(int i = u; par[i]; i = par[i]){
        int d = getDist(u, par[i]);
        ret += ans[par[i]][0];
        ret -= ans[i][1];
        ret += (ll)d * (val[par[i]] - val[i]);
    return ret;
}
void update(int u, int x){
    val[u] += x;
    for(int i = u; par[i]; i = par[i]){
        int d = getDist(u, par[i]);
        ans[par[i]][0] += (11)x * d;
        ans[i][1] += (l1)x * d;
        val[par[i]] += x;
    }
}
11 work(int u){
    11 ret = query(u);
    for(int i = rthead[u]; i; i = rte[i].nxt){
        int v = rte[i].v;
        11 tmp = query(v);
```

```
if(tmp < ret){</pre>
            ret = min(ret, work(rte[i].w));
        }
   return ret;
}
int main(){
    int n, q;
    while(~scanf("%d%d", &n, &q)){
        init();
        for(int i = 1; i <= n - 1; i++){</pre>
            int u = read(), v = read();
            addEdge(u, v, w);
            addEdge(v, u, w);
        initLCA(1, 0);
        int rt = 0;
        getRoot(1, 0, n, rt);
        par[rt] = 0;
        initTree(rt);
        while (q--) {
            int u = read(), x = read();
            update(u, x);
            printf("%lld\n", work(rt));
        }
    }
    return 0;
```

4.12 LCT

4.12.1 LCT

```
lcol[x] = lcol[lson];
        if(rcol[lson] == col[x]) sum[x]--;
    }
    if(rson){
        rcol[x] = rcol[rson];
        if(lcol[rson] == col[x]) sum[x]--;
    }
}
void pushR(int x){
    swap(lson, rson);
    swap(lcol[x], rcol[x]);
    lzy[x] ^= 1;
}
void updateColor(int x, int c){
    sum[x] = lzy_col[x] = 1;
    col[x] = lcol[x] = rcol[x] = c;
}
void pushDown(int x){
    if(lzy[x]){}
        if(lson)
                    pushR(lson);
                    pushR(rson);
        if(rson)
        lzy[x] = 0;
    if(lzy col[x]){
        if(lson)
                   updateColor(lson, col[x]);
        if(rson)
                    updateColor(rson, col[x]);
        lzy col[x] = 0;
    }
}
void rotate(int x){
    int y = fa[x], z = fa[y];
    int p = (ch[y][1] == x), w = ch[x][p^1];
    if(nRoot(y)) ch[z][ch[z][1] == y] = x;
    ch[x][p^1] = y, ch[y][p] = w;
    if(w) fa[w] = y;
    fa[y] = x, fa[x] = z;
    pushUp(y);
}
void splay(int x){
    int pstk = 0, y = x;
    for(y = x; nRoot(y); y = fa[y]){
        stk[++pstk] = y;
    }
```

```
stk[++pstk] = y;
    while(pstk) pushDown(stk[pstk--]);
    while(nRoot(x)){
        int y = fa[x], z = fa[y];
                        rotate((ch[y][0] == x) ^ (ch[z][0] == y)
        if(nRoot(y))
        \rightarrow ? x : y);
        rotate(x);
    pushUp(x);
}
void access(int x){
    for(int y = 0; x; y = x, x = fa[x]){
        splay(x);
        rson = y;
        pushUp(x);
    }
}
void makeRoot(int x){
    access(x);
    splay(x);
    pushR(x);
}
int findRoot(int x){
    access(x);
    splay(x);
    while(lson){
        pushDown(x);
        x = lson;
    }
    return x;
}
void split(int x, int y){
    makeRoot(x);
    access(y);
    splay(y);
}
void link(int x, int y){
    makeRoot(x);
    if(findRoot(y) != x) fa[x] = y;
void cut(int x, int y){
```

```
makeRoot(x);
    if(findRoot(y) == x && fa[x] == y && !rson){
        fa[x] = ch[y][0] = 0;
        pushUp(y);
    }
};
```

4.12.2 可维护子树信息的 LCT

```
struct LinkCutTree{
    int fa[N], ch[N][2], sum[N], val[N], lzy[N];
    int stk[N];
    int si[N];
    inline bool nRoot(int x){
        return ch[fa[x]][0] == x \mid\mid ch[fa[x]][1] == x;
    }
    void pushUp(int x){
        sum[x] = sum[lson] + sum[rson] + si[x] + 1;
    }
    void pushR(int x){
        swap(lson, rson);
        lzy[x] = 1;
    }
    void pushDown(int x){
        if(lzy[x]){
            if(lson)
                        pushR(lson);
            if(rson)
                        pushR(rson);
            lzy[x] = 0;
        }
    }
    void rotate(int x){
        int y = fa[x], z = fa[y];
        int p = (ch[y][1] == x), w = ch[x][p^1];
        if(nRoot(y)) ch[z][ch[z][1] == y] = x;
        ch[x][p^1] = y, ch[y][p] = w;
        if(w) fa[w] = y;
        fa[y] = x, fa[x] = z;
        pushUp(y);
    }
    void splay(int x){
        int pstk = 0, y = x;
```

```
for(y = x; nRoot(y); y = fa[y]){
        stk[++pstk] = y;
    stk[++pstk] = y;
    while(pstk) pushDown(stk[pstk--]);
    while(nRoot(x)){
        int y = fa[x], z = fa[y];
        if(nRoot(y))
                       rotate((ch[y][0] == x) ^ (ch[z][0] == y)
        \rightarrow ? x : y);
        rotate(x);
    pushUp(x);
}
void access(int x){
    for(int y = 0; x; y = x, x = fa[x]){
        splay(x);
        si[x] += sum[rson];
        si[x] -= sum[y];
        rson = y;
        pushUp(x);
    }
}
void makeRoot(int x){
    access(x);
    splay(x);
    pushR(x);
}
int findRoot(int x){
    access(x);
    splay(x);
    while(lson){
        pushDown(x);
        x = lson;
    return x;
}
void split(int x, int y){
    makeRoot(x);
    access(y);
    splay(y);
void link(int x, int y){
```

```
makeRoot(x);
    if(findRoot(y) != x){
        si[y] += sum[x];
        fa[x] = y;
    }
}

void cut(int x, int y){
    makeRoot(x);
    if(findRoot(y) == x && fa[x] == y && !rson){
        fa[x] = ch[y][0] = 0;
        pushUp(y);
    }
};
LinkCutTree lct;
```

4.13 左偏树

4.13.1 左偏树

```
const int N = 100000 + 15;
int ch[N][2], val[N], d[N], ft[N];
inline void init(int n) {
    for(int i = 1; i <= n; i++) {</pre>
        ft[i] = i;
        d[i] = 1;
        ch[i][0] = ch[i][1] = 0;
    }
}
inline int find(int x) {
    return ft[x] == x ? x : ft[x] = find(ft[x]);
}
inline int merge(int x, int y) {
    if(!x || !y) {
        return x | y;
    if(val[x] < val[y]) {</pre>
        swap(x, y);
    ch[x][1] = merge(ch[x][1], y);
    if(d[ch[x][0]] < d[ch[x][1]]) {</pre>
        swap(ch[x][0], ch[x][1]);
    }
```

```
d[x] = d[ch[x][1]] + 1;
    return x;
}
int main() {
    int n, m;
    while(~scanf("%d", &n)) {
        init(n);
        for(int i = 1; i <= n; i++) {</pre>
            scanf("%d", &val[i]);
        scanf("%d", &m);
        while(m--) {
            int u, v;
            scanf("%d%d", &u, &v);
            u = find(u), v = find(v);
            if(u == v) {
                puts("-1");
            } else {
                for(int k = 0; k < 2; k++) {
                     val[u] >>= 1;
                     int x = merge(ch[u][0], ch[u][1]);
                     ch[u][0] = ch[u][1] = 0;
                     int y = merge(u, x);
                     ft[u] = ft[x] = y;
                     swap(u, v);
                 }
                u = find(u), v = find(v);
                 int x = merge(u, v);
                ft[u] = ft[v] = x;
                printf("%d\n", val[x]);
            }
        }
    }
}
```

4.13.2 带 pushdown 的左偏树

```
}
}
inline int merge(int x, int y) {
    if (!x || !y) {
        return x | y;
    if (val[x] > val[y]) {
        swap(x, y);
    }
    pushDown(x);
    ch[x][1] = merge(ch[x][1], y);
    if (d[ch[x][0]] < d[ch[x][1]]) {</pre>
        swap(ch[x][0], ch[x][1]);
    d[x] = d[ch[x][1]] + 1;
    return x;
}
inline void dfs(int u) {
    int rt = mp[u];
    for (int v : graph[u]) {
        dpt[v] = dpt[u] + 1;
        dfs(v);
        rt = merge(rt, mp[v]);
    // printf("u = %d \setminus n", u);
    while (rt && val[rt] < h[u]) {</pre>
        // printf("rt = %d, val = %lld\n", rt, val[rt]);
        cnt[u]++;
        ed[rt] = u;
        pushDown(rt);
        rt = merge(ch[rt][0], ch[rt][1]);
    // printf("rt = %d, val = %lld\n", rt, val[rt]);
    mp[u] = rt;
    if (a[u] == 0) {
        val[rt] += v[u];
        lzyAdd[rt] += v[u];
    } else {
        val[rt] *= v[u];
        lzyMul[rt] *= v[u];
        lzyAdd[rt] *= v[u];
    }
}
```

5 图论

5.1 最短路

5.1.1 SPFA (带 SLF 优化)

```
void spfa(int src){
    que.push back(src);
    inque[src] = true;
    while(!que.empty()){
        int u = que.front();
        inque[u] = false;
        que.pop_front();
        for(int i = head[u]; ~i; i = e[i].next){
            int v = e[i].v;
            if(d[v] > d[u] + e[i].val){
                d[v] = d[u] + e[i].val;
                if(!inque[v]){
                     inque[v] = true;
                     if(!que.empty() \&\& d[v] \le d[que.front()]) {
                         que.push_front(v);
                    } else {
                         que.push back(v);
                    }
                }
            }
        }
    }
}
```

5.1.2 Dijkstra

```
}
}
```

5.2 最小生成树

5.2.1 Prim

```
int prim(int n){
    int ans = 0;
    mincost[1] = 0;
    que.push(node(0, 1));
    while(!que.empty()){
        int u = que.top().u;
        int cost = que.top().cost;
        que.pop();
        if(used[u] || mincost[u] < cost) continue;</pre>
        used[u] = true;
        mincost[u] = cost;
        ans += cost;
        for(int v = 1; v <= n; v++){</pre>
            if(u == v) continue;
            if(!used[v] && mincost[v] > G[u][v]){
                mincost[v] = G[u][v];
                que.push(node(G[u][v], v));
            }
        }
    }
    return ans;
}
```

5.2.2 Kruskal

```
int Kruskal(int m){
    int ans = 0;
    sort(e, e + m);
    for(int i = 0; i < m; i++){
        int p = find(e[i].u), q = find(e[i].v);
        if(p != q){
            ans += e[i].val;
            merge(p, q);
        }
    }
    return ans;
}</pre>
```

5.3 拓扑排序 - BFS

5.4 极大团

```
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long 11;
const int N = 128 + 15;
int some[N][N], all[N][N], none[N][N];
int G[N][N];
int dfs(int d, int an, int sn, int nn, int sum) {
    if(!sn && !nn) {
        return sum;
    int ans = 0;
    int u = some[d][0];
    for(int i = 0; i < sn; i++) {
        int v = some[d][i];
        if(G[u][v]) {
            continue;
        }
        for(int j = 0; j < an; j++) {
            all[d + 1][j] = all[d][j];
        all[d + 1][an] = v;
        int tsn = 0, tnn = 0;
```

```
for(int j = 0; j < sn; j++) {
            if(!G[v][some[d][j]]) {
                continue;
            }
            some[d + 1][tsn++] = some[d][j];
        for(int j = 0; j < nn; j++) {
            if(!G[v][none[d][j]]) {
                continue;
            none[d + 1][tnn++] = none[d][j];
        }
        ans = max(ans, dfs(d + 1, an + 1, tsn, tnn, sum + 1));
        some[d][i] = 0;
        none[d] [nn++] = v;
    return ans;
}
inline int solve(int n) {
    for(int i = 1; i <= n; i++) {
        some[0][i-1]=i;
    }
    return dfs(0, 0, n, 0, 0);
}
int main() {
    int n;
    while(~scanf("%d", &n) && n) {
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                scanf("%d", &G[i][j]);
            }
        }
        printf("%d\n", solve(n));
    }
}
```

5.5 最大团

```
#include <bits/stdc++.h>
const int N = 50 + 15;

int G[N][N];
int num[N]; //维护 V[i] ... v[n] 的最大团
```

```
bool dfs(int adj[], int an, int cnt, int& ans) {
    if(an == 0) {
        if(cnt > ans) {
            ans = cnt;
            return true;
        return false;
    }
    int tmp[N];
    for(int i = 0; i < an; i++) {</pre>
        //剪枝
        if(cnt + an - i <= ans || cnt + num[adj[i]] <= ans) {
            return false;
        }
        int k = 0;
        for(int j = i + 1; j < an; j++) {
            if(!G[adj[i]][adj[j]]) {
                continue;
            }
            tmp[k++] = adj[j];
        if(dfs(tmp, k, cnt + 1, ans)) {
            return true;
        }
    return false;
}
int solve(int n) {
    int adj[N];
    int ans = 0;
    //从后往前枚举, 利用 num[i]
    for(int i = n; i >= 1; i--) {
        int k = 0;
        for(int j = i + 1; j <= n; j++) {</pre>
            if(!G[i][j]) {
                continue;
            }
            adj[k++] = j;
        dfs(adj, k, 1, ans);
        num[i] = ans;
    return ans;
}
```

```
int main() {
    int n;
    while(~scanf("%d", &n) && n) {
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                 scanf("%d", &G[i][j]);
            }
        }
        printf("%d\n", solve(n));
    }
}</pre>
```

5.6 最大流

5.6.1 ISAP

```
struct edge{
    int v, val, nxt;
};
int d[N], head[N], gap[N], cur[N], pre[N];
edge e[M << 1];
int tot;
inline void init(){
    memset(head, -1, sizeof(head));
    memset(d, 0, sizeof(d));
    memset(gap, 0, sizeof(gap));
    tot = 0;
}
void addEdge(int u, int v, int val){
    e[tot].v = v;
    e[tot].val = val;
    e[tot].nxt = head[u];
    head[u]
             = tot++;
}
int ISAP(int n, int src, int des){
    memcpy(cur, head, sizeof(head));
    int sum = 0;
    int u = pre[src] = src;
    gap[0] = n;
    while(d[src] < n){</pre>
        if(u == des){
```

```
int aug = inf, v;
            for(u = pre[des], v = des; v != src; v = u, u = pre[u])

    aug = min(aug, e[cur[u]].val);

            for(u = pre[des], v = des; v != src; v = u, u = pre[u]){
                e[cur[u]].val -= aug;
                e[cur[u]^1].val += aug;
            }
            sum += aug;
            continue;
        }
        bool flag = false;
        for(int& i = cur[u]; ~i; i = e[i].nxt){
            int v = e[i].v;
            if(d[u] == d[v] + 1 \&\& e[i].val){
                pre[v] = u;
                u = v;
                flag = true;
                break;
            }
        }
        if(!flag){
            int mind = n;
            for(int i = head[u]; ~i; i = e[i].nxt){
                int v = e[i].v;
                if(e[i].val && d[v] < mind){</pre>
                    mind = d[v];
                    cur[u] = i;
                }
            }
            if((--gap[d[u]]) == 0)
                                    break;
            d[u] = mind + 1;
            gap[d[u]]++;
            u = pre[u];
        }
    return sum;
}
```

5.6.2 HLPP

```
const int N = (int)1200 + 15;
const int M = (int)120000 + 15;
const int inf = 0x3f3f3f3f;

struct edge {
   int v, nxt, flow;
```

```
};
edge e[M * 2];
int head[N], tot, ht[N], ex[N], gap[N << 1];</pre>
struct cmp {
    inline bool operator () (int a, int b) const {
        return ht[a] < ht[b];</pre>
};
priority_queue<int, vector<int>, cmp> que;
bool inq[N];
inline void init() {
    memset(head, -1, sizeof(head));
    tot = 0;
}
inline void addEdge(int u, int v, int flow) {
    e[tot] = edge{v, head[u], flow};
    head[u] = tot++;
    e[tot] = edge{u, head[v], 0};
    head[v] = tot++;
}
inline bool bfsInit(int src, int des, int n) {
    memset(ht, 0x3f, sizeof(ht));
    queue<int> que;
    que.push(des);
    ht[des] = 0;
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        for(int i = head[u]; ~i; i = e[i].nxt) {
            int v = e[i].v;
            if(e[i ^ 1].flow && ht[v] > ht[u] + 1) {
                ht[v] = ht[u] + 1;
                que.push(v);
            }
        }
    }
    return ht[src] != inf;
}
inline bool push(int u, int src, int des) {
    for(int i = head[u]; ~i; i = e[i].nxt) {
        int v = e[i].v, w = e[i].flow;
        if(!w || ht[u] != ht[v] + 1) {
```

```
continue;
        int k = min(w, ex[u]);
        ex[u] -= k;
        ex[v] += k;
        e[i].flow -= k;
        e[i ^1].flow += k;
        if(v != src && v != des && !inq[v]) {
            que.push(v);
            inq[v] = true;
        }
        if(!ex[u]) {
            return false;
        }
    }
    return true;
}
inline void relabel(int u) {
    ht[u] = inf;
    for(int i = head[u]; ~i; i = e[i].nxt) {
        if(e[i].flow) {
            ht[u] = min(ht[u], ht[e[i].v] + 1);
        }
    }
}
inline int hlpp(int src, int des, int n) {
    if(!bfsInit(src, des, n)) {
        return 0;
    }
    ht[src] = n;
    memset(gap, 0, sizeof(gap));
    for(int i = 1; i <= n; i++) {
        if(ht[i] != inf) {
            gap[ht[i]]++;
        }
    for(int i = head[src]; ~i; i = e[i].nxt) {
        int v = e[i].v, w = e[i].flow;
        if(!w) {
            continue;
        }
        ex[src] -= w;
        ex[v] += w;
        e[i].flow -= w;
        e[i ^1].flow += w;
        if(v != src && v != des && !inq[v]) {
```

```
que.push(v);
            inq[v] = true;
        }
    }
    while(!que.empty()) {
        int u = que.top();
        que.pop();
        inq[u] = false;
        if(push(u, src, des)) {
            if((--gap[ht[u]]) == 0) {
                 for(int v = 1; v \le n; v++) {
                     if(v != src && v != des && ht[v] > ht[u] && ht[v]
                     \rightarrow < n + 1) {
                         ht[v] = n + 1;
                     }
                }
            }
            relabel(u);
            gap[ht[u]]++;
            que.push(u);
            inq[u] = true;
        }
    return ex[des];
}
```

5.7 费用流

5.7.1 EK+SPFA 算法

```
bool spfa(int src, int des){
    memset(d, 0x3f, sizeof(d));
    memset(inq, false, sizeof(inq));
    d[src] = 0, pre[src] = src;
    que.push(src);
    inq[src] = true;
    while(!que.empty()){
        int u = que.front();
        que.pop();
        inq[u] = false;
        for(int i = head[u]; ~i; i = e[i].next){
            int v = e[i].v;
            if(d[v] > d[u] + e[i].cost && e[i].val){
                d[v] = d[u] + e[i].cost;
                pre[v] = u;
                cur[v] = i;
                if(!inq[v]){
                    que.push(v);
```

```
inq[v] = true;
                }
            }
        }
    return d[des] != inf;
}
int solve(int src, int des){
    int ans = 0;
    while(spfa(src, des)){
        int aug = inf;
        for(int v = des; v != src; v = pre[v]) aug = min(aug,

→ e[cur[v]].val);
        for(int v = des; v != src; v = pre[v]){
            e[cur[v]].val -= aug;
            e[cur[v]^1].val += aug;
        ans += d[des] * aug;
    return ans;
}
```

5.7.2 Primal-dual Dijkstra 方法

```
const int N = (int)5000 + 3;
const int M = (int)50000 + 3;
struct Node {
    int u;
    bool operator < (const Node& b) const {</pre>
        return d > b.d;
    }
};
struct edge {
    int v, nxt, flow;
    11 cost;
};
int flow[N];
int pre[N], cur[N];
11 dis[N], h[N];
edge e[M * 4];
int head[N], tot;
inline void init() {
    memset(head, -1, sizeof(head));
```

```
tot = 0;
}
inline void addEdge(int u, int v, int flow, ll cost) {
    e[tot] = edge{v, head[u], flow, cost};
    head[u] = tot++;
    e[tot] = edge{u, head[v], 0, -cost};
    head[v] = tot++;
}
bool dijkstra(int src, int des, int n) {
    priority_queue<Node> que;
    fill(dis + 1, dis + n + 1, 1LL << 30);
    fill(flow + 1, flow + n + 1, 1LL << 30);
    dis[src] = 0, pre[src] = src;
    que.push(Node{src, 0});
    while(!que.empty()) {
        Node ele = que.top();
        que.pop();
        int u = ele.u;
        11 d = ele.d;
        if(d > dis[u]) {
            continue:
        for(int i = head[u]; ~i; i = e[i].nxt) {
            int v = e[i].v;
            if(e[i].flow \&\& dis[v] > dis[u] + e[i].cost + h[u] -
             \rightarrow h[v]) {
                dis[v] = dis[u] + e[i].cost + h[u] - h[v];
                flow[v] = min(flow[u], e[i].flow);
                pre[v] = u;
                cur[v] = i;
                que.push(Node{v, dis[v]});
            }
        }
    return dis[des] != (1LL << 30);</pre>
}
pair<int, ll> solve(int src, int des, int n) {
    int maxFlow = 0;
    11 minCost = 0;
    while(dijkstra(src, des, n)) {
        int aug = flow[des];
        maxFlow += aug;
        minCost += aug * (dis[des] - h[src] + h[des]);
```

```
for(int u = pre[des], v = des; v != src; v = u, u = pre[u]) {
        e[cur[v]].flow -= aug;
        e[cur[v] ^ 1].flow += aug;
}
for(int i = 1; i <= n; i++) {
        h[i] += dis[i];
}
return make_pair(maxFlow, minCost);
}</pre>
```

5.7.3 带 Primal-dual Dijkstra 的多路增广方法

```
// 时间复杂度为 O(n*m*f)
const int N = (int)5000 + 3;
const int M = (int)50000 + 3;
const int inf = 1LL << 30;</pre>
struct Node {
    int u;
    11 d;
    bool operator < (const Node& b) const {</pre>
        return d > b.d;
    }
};
struct edge {
    int v, nxt, flow;
    11 cost;
};
int G[N][N];
edge e[M * 4];
int head[N], tot;
int cur[N];
bool used[N];
11 dis[N], h[N];
inline void init() {
    memset(head, -1, sizeof(head));
    tot = 0;
}
inline void addEdge(int u, int v, int flow, ll cost) {
    e[tot] = edge{v, head[u], flow, cost};
    head[u] = tot++;
    e[tot] = edge{u, head[v], 0, -cost};
    head[v] = tot++;
}
```

```
bool dijkstra(int src, int des, int n) {
    priority_queue<Node> que;
    fill(dis + 1, dis + n + 1, inf);
    memcpy(cur, head, sizeof(head));
    dis[des] = 0;
    que.push(Node{des, 0});
    while(!que.empty()) {
        Node ele = que.top();
        que.pop();
        int u = ele.u;
        11 d = ele.d;
        if(d > dis[u]) {
            continue;
        }
        for(int i = head[u]; ~i; i = e[i].nxt) {
            int v = e[i].v;
            if(e[i^1].flow \&\& dis[v] > dis[u] - e[i].cost + h[u] -
             \rightarrow h[v]) {
                dis[v] = dis[u] - e[i].cost + h[u] - h[v];
                que.push(Node{v, dis[v]});
            }
        }
    return dis[src] != inf;
}
int dfs(int u, int des, int low, ll& totalCost) {
    if(u == des) {
        return low;
    used[u] = true;
    int sum = 0;
    for(int& i = cur[u]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        ll du = (dis[u] - h[des] + h[u]);
        ll dv = (dis[v] - h[des] + h[v]);
        if(!used[v] \&\& e[i].flow \&\& du - e[i].cost == dv) {
            int aug = dfs(v, des, min(e[i].flow, low - sum),

→ totalCost);
            if(aug) {
                e[i].flow -= aug;
                e[i ^1].flow += aug;
                sum += aug;
                totalCost += 1LL * aug * e[i].cost;
            }
```

```
if(sum == low) {
                break;
            }
        }
    used[u] = false;
    return sum;
}
inline void initH(int src, int des, int n) {
    static bool inq[N];
    fill(dis + 1, dis + n + 1, inf);
    dis[des] = 0;
    queue<int> que;
    que.push(des);
    inq[des] = true;
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        inq[u] = false;
        for(int i = head[u]; ~i; i = e[i].nxt) {
            int v = e[i].v;
            if(e[i^1].flow \&\& dis[v] > dis[u] - e[i].cost) {
                dis[v] = dis[u] - e[i].cost;
                if(!inq[v]) {
                    inq[v] = true;
                    que.push(v);
                }
            }
        }
    for(int i = 1; i <= n; i++) {
        h[i] = dis[i];
    }
}
inline pair<int, ll> solve(int src, int des, int n) {
    initH(src, des, n);
                          //非负权图可不执行
    pair<int, 11> pr(0, OLL);
    while(dijkstra(src, des, n)) {
        while(true) {
            int x = dfs(src, des, inf, pr.second);
            pr.first += x;
            if(!x) {
                break;
            }
        }
    }
```

```
return pr;
}
```

5.8 欧拉路

5.8.1 **无向图** - Fluery 算法

```
int getSrc(int n){
    for(int i = 1; i <= n; i++){
        if(dg[i]&1){
            return i;
        }
    }
    return 1;
}
void dfs(int u){
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(used[i])
                      continue;
        used[i] = used[i^1] = true;
        dfs(v);
    ans[pp++] = u;
}
```

5.8.2 有向图

```
int getSrc(int n){
    for(int i = 1; i <= n; i++){</pre>
        if(dg[i]&1){
            return i;
        }
    }
    return 1;
}
void dfs(int u){
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(used[i])
                      continue;
        used[i] = used[i^1] = true;
        dfs(v);
    ans[pp++] = u;
}
```

5.9 图的匹配

5.9.1 二分图最大权匹配 - KM 算法 BFS 版

```
const int N = (int)400 + 15;
const ll inf = 1LL << 60;</pre>
bool vx[N], vy[N];
11 lx[N], ly[N], slack[N], w[N][N];
int ml[N], mr[N], pre[N];
int que[N];
inline void setCrossRoad(int& v) {
    for(; v; swap(v, mr[pre[v]])) {
        ml[v] = pre[v];
    }
}
inline void bfs(int u, int n) {
    int head = 0, tail = 0;
    que[tail++] = u;
    vx[u] = true;
    while(true) {
        while(head != tail) {
            int u = que[head++];
            for(int v = 1; v <= n; v++) {
                 if(vy[v]) {
                     continue;
                 }
                11 d = 1x[u] + 1y[v] - w[u][v];
                 if(d > slack[v]) {
                     continue;
                }
                pre[v] = u;
                 if(d == 0) {
                     if(!ml[v]) {
                         setCrossRoad(v);
                         return;
                     }
                     vy[v] = vx[ml[v]] = true;
                     que[tail++] = ml[v];
                } else {
                     slack[v] = d;
                }
            }
        }
        11 d = inf;
        int to = 1;
        for(int v = 1; v <= n; v++) {</pre>
```

```
if(!vy[v] && d > slack[v]) {
                d = slack[v];
                to = v;
            }
        for(int i = 1; i <= n; i++) {
            if(vx[i]) {
                lx[i] = d;
            }
            if(vy[i]) {
                ly[i] += d;
            } else {
                slack[i] -= d;
            }
        }
        if(!ml[to]) {
            setCrossRoad(to);
            return;
        }
        head = tail = 0;
        que[tail++] = ml[to];
        vx[ml[to]] = vy[to] = true;
}
inline ll KM(int n) {
    for(int i = 1; i <= n; i++) {</pre>
        ly[i] = 0;
        ml[i] = mr[i] = 0;
        lx[i] = *max element(w[i] + 1, w[i] + 1 + n);
    for(int i = 1; i <= n; i++) {
        fill(vx, vx + 1 + n, false);
        fill(vy, vy + 1 + n, false);
        fill(slack, slack + 1 + n, inf);
        bfs(i, n);
    return accumulate(lx + 1, lx + 1 + n, OLL) + accumulate(ly + 1,
    \rightarrow ly + 1 + n, OLL);
}
int main() {
    int n, m, k;
    scanf("%d%d%d", &n, &m, &k);
    while(k--) {
        int u, v, val;
        scanf("%d%d%d", &u, &v, &val);
        w[u][v] = val;
```

```
}
    11 ans = KM(max(n, m));
}
```

5.9.2 一般图最大匹配 - 带花树

```
const int N = (int)500 + 3;
const int M = (int)124750 + 3;
const int inf = 1LL << 30;</pre>
struct edge {
    int v, nxt;
};
edge e[M \ll 1];
int head[N], tot;
int match[N], pre[N], type[N];
int que[N], qhead, qtail;
int ft[N];
inline void init() {
    memset(head, -1, sizeof(head));
    tot = 0;
}
inline void addEdge(int u, int v) {
    e[tot] = edge{v, head[u]};
    head[u] = tot++;
}
inline int find(int x) {
    return ft[x] == x ? x : ft[x] = find(ft[x]);
}
inline int getLca(int u, int v) {
    static int ss[N], tim;
    tim++;
    while(ss[u] != tim) {
        if(u) {
            ss[u] = tim;
            u = find(pre[match[u]]);
        swap(u, v);
    }
    return u;
}
inline void flower(int x, int y, int p) {
```

```
while(find(x) != p) {
        pre[x] = y;
        y = match[x];
        ft[x] = ft[y] = p;
        if(type[y] == 1) {
            que[qtail++] = y;
            type[y] = 2;
        }
        x = pre[y];
    }
}
inline bool blossom(int u, int n) {
    qhead = qtail = 0;
    for(int i = 1; i <= n; i++) {</pre>
        type[i] = 0;
        ft[i] = i;
    que[qtail++] = u;
    type[u] = 2;
    while(qhead != qtail) {
        u = que[qhead++];
        for(int i = head[u]; ~i; i = e[i].nxt) {
            int v = e[i].v;
            if(type[v] == 0) {
                type[v] = 1;
                pre[v] = u;
                if(!match[v]) {
                    while(u) {
                         u = match[pre[v]];
                         match[v] = pre[v];
                         match[match[v]] = v;
                         v = u;
                     }
                    return true;
                } else {
                     que[qtail++] = match[v];
                    type[match[v]] = 2;
            } else if(type[v] == 2 \&\& find(u) != find(v)) {
                int p = getLca(u, v);
                flower(u, v, p);
                flower(v, u, p);
            }
        }
    return false;
}
```

```
int main() {
    init();
    int n, m, ans = 0;
    scanf("%d%d", &n, &m);
    while(m--) {
        int u, v;
        scanf("%d%d", &u, &v);
        addEdge(u, v);
        addEdge(v, u);
        if(!match[u] && !match[v]) {
            match[v] = u;
            match[u] = v;
            ans++;
        }
    for(int i = 1; i <= n; i++) {</pre>
        if(!match[i] && blossom(i, n)) {
            ans++;
        }
    printf("%d\n", ans);
    for(int i = 1; i <= n; i++) {
        printf("%d ", match[i]);
    puts("");
```

5.10 连通分量

5.10.1 点双连通分量 - Tarjan

```
int st[N], low[N], cnt[N], nodeChildNums[N];
int dfn;
bool isCut[N], isRoot[N], used[N];

inline void read(int& x) {
    scanf("%d", &x);
}

inline void addEdge(int u, int v) {
    e[tot] = edge{v, head[u]};
    head[u] = tot++;
}

void Tarjan(int u, int pre) {
    st[u] = low[u] = ++dfn;
```

```
int childNums = 0;
    for(int i = head[u]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        if(st[v] == 0) {
            childNums++;
            Tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if(low[v] >= st[u]) {
                 nodeChildNums[u]++;
                isCut[u] = true;
            }
        } else if(v != pre && st[v] < st[u]) {</pre>
            low[u] = min(low[u], st[v]);
        }
    if(pre == -1 && childNums == 1) {
        isCut[u] = false;
    }
}
int main() {
    int u, v, csn = 1;
    while(true) {
        tot = dfn = 0;
        for(int i = 1; i < N; i++) {</pre>
            head[i] = -1;
            st[i] = nodeChildNums[i] = 0;
            isRoot[i] = isCut[i] = false;
        }
        v = -1;
        while(scanf("%d", &u) && u) {
            scanf("%d", &v);
            addEdge(u, v);
            addEdge(v, u);
        }
        if(v == -1) {
            break;
        }
        if(csn != 1) {
            puts("");
        printf("Network #%d\n", csn++);
        for(int i = 1; i < N; i++) {</pre>
            if(st[i] == 0) {
                 isRoot[i] = true;
                 Tarjan(i, -1);
```

```
}
        }
        bool flag = true;
        for(int i = 1; i <= 1000; i++) {
            if(isCut[i]) {
                flag = false;
                printf(" SPF node %d leaves %d subnets\n", i,
                 → nodeChildNums[i] + (isRoot[i] == false));
            }
        }
        if(flag) {
            puts(" No SPF nodes");
        }
    }
    return 0;
}
```

5.10.2 强连通分量(有向图)

```
struct edge {
    int u, v, nxt;
};
edge e[N];
int head[N], tot;
bool instk[N];
int mp[N], out[N], cnt[N];
int low[N], st[N], dfn;
stack<int> stk;
inline void read(int& x) {
    scanf("%d", &x);
}
inline void addEdge(int u, int v) {
    e[tot] = edge{u, v, head[u]};
    head[u] = tot++;
}
void Tarjan(int u) {
    low[u] = st[u] = ++dfn;
    stk.push(u);
    instk[u] = true;
    for(int i = head[u]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        if(st[v] == 0) {
            Tarjan(v);
```

```
low[u] = min(low[u], low[v]);
        } else if(instk[v]){
            low[u] = min(low[u], st[v]);
        }
    if(low[u] == st[u]) {
        while(true) {
            int v = stk.top();
            stk.pop();
            instk[v] = false;
            mp[v] = u;
            cnt[u]++;
            if(u == v) {
                break;
            }
        }
    }
}
int main(){
    int n, m;
    while(~scanf("%d%d", &n, &m)){
        memset(head, -1, sizeof(head));
        dfn = 0;
        for(int i = 1; i <= n; i++) {</pre>
            cnt[i] = out[i] = st[i] = 0;
        }
        while(m--){
            int u, v;
            read(u), read(v);
            addEdge(u, v);
        }
        for(int i = 1; i <= n; i++){
            if(st[i] == 0) {
                Tarjan(i);
            }
        }
        for(int i = 0; i < tot; i++){</pre>
            int u = e[i].u, v = e[i].v;
            if(mp[u] == mp[v]) {
                continue; //在同一个连通分量的不统计出度
            out[mp[u]]++;
        }
```

5.11 全局最小割

```
const ll inf = 0x3f3f3f3f3f3f3f3f1LL;
const int N = 300 + 5;
bool used[N];
int v[N];
11 dis[N], G[N][N];
11 storeWagner(int n) {
    11 res = inf;
    for(int i = 0; i < n; i++) {</pre>
        v[i] = i;
    while(n > 1) {
        used[v[0]] = 1;
        for(int i = 1; i < n; i++) {</pre>
             used[v[i]] = 0;
            dis[v[i]] = G[v[0]][v[i]];
        }
        int last = 0;
        for(int i = 1; i < n; i++) {
             int maxs = -1;
             for(int j = 1; j < n; j++) {</pre>
                 if(used[v[j]] == false \&\& (maxs == -1 \mid | dis[v[j]] >
                 \rightarrow dis[v[maxs]])) {
                     maxs = j;
                 }
             }
            used[v[maxs]] = 1;
             if(i == n - 1) {
                 res = min(res, dis[v[maxs]]);
                 for(int j = 0; j < n; j++) {
                     G[v[last]][v[j]] += G[v[maxs]][v[j]];
```

```
G[v[j]][v[last]] += G[v[j]][v[maxs]];
                v[maxs] = v[--n];
                break;
            }
            last = maxs;
            for(int j = 1; j < n; j++) {
                if(used[v[j]] == false) {
                    dis[v[j]] += G[v[maxs]][v[j]];
                }
            }
        }
    }
    return res;
}
int main() {
    int n, m, s;
    while (-scanf("%d%d%d", &n, &m, &s) && (n && m && s)) {
        memset(G, 0, sizeof(G));
        while(m--) {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            G[u - 1][v - 1] += w;
            G[v - 1][u - 1] += w;
        printf("%lld\n", storeWagner(n));
    }
}
```

5.12 k 短路

```
int d[N];
struct Node {
   int u, w;

bool operator < (const Node& b) const {
    if(d[u] + w != d[b.u] + b.w) {
        return d[u] + w > d[b.u] + b.w;
    }
    return w > b.w;
}
struct edge{
   int v, w, nxt;
```

```
};
struct Graph {
    edge e[N];
    int head[N], tot;
    inline void init() {
        tot = 0;
        memset(head, -1, sizeof(head));
    }
    inline void addEdge(int u, int v, int w) {
        e[tot] = edge{v, w, head[u]};
        head[u] = tot++;
    }
};
Graph g, ginv;
bool inque[N];
int cnt[N];
void solveD(int des) {
    memset(d, 0x3f, sizeof(d));
    memset(inque, false, sizeof(inque));
    queue<int> que;
    d[des] = 0;
    que.push(des);
    inque[des] = true;
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        inque[u] = false;
        for(int i = ginv.head[u]; ~i; i = ginv.e[i].nxt) {
            int v = ginv.e[i].v;
            if(d[v] > d[u] + ginv.e[i].w) {
                d[v] = d[u] + ginv.e[i].w;
                if(inque[v] == false) {
                    que.push(v);
                    inque[v] = true;
                }
            }
        }
    }
}
int solve(int src, int des, int k) {
```

```
memset(cnt, 0, sizeof(cnt));
    priority queue<Node> que;
    que.push(Node{src, 0});
    while(!que.empty()) {
        int u = que.top().u;
        int w = que.top().w;
        que.pop();
        cnt[u]++;
        if(cnt[u] == k \&\& u == des) {
            return w;
        }
        for(int i = g.head[u]; ~i; i = g.e[i].nxt) {
            int v = g.e[i].v;
            que.push(Node{v, w + g.e[i].w});
        }
    }
    return false;
}
```

5.13 2-SAT - 爆搜法

```
int head[N * 2], tot;
bool mark[N * 2];
int stk[N * 2], pstk;
inline void addEdge(int u, int v) {
    e[tot] = edge{v, head[u]};
    head[u] = tot++;
}
inline void addClause(int x, int xval, int y, int yval) {
    x = x \ll 1 \mid xval;
    y = y \ll 1 \mid yval;
    addEdge(x^1, y);
    addEdge(y^1, x);
}
bool dfs(int x) {
    if(mark[x^1]) {
        return false;
    if(mark[x]) {
        return true;
    mark[x] = true;
```

```
stk[pstk++] = x;
    for(int i = head[x]; ~i; i = e[i].nxt) {
        int v = e[i].v;
        if(!dfs(v)) {
            return false;
        }
    }
    return true;
}
bool solve() {
    for(int i = 0; i < 2 * N; i += 2) {
        if(!mark[i] && !mark[i + 1]) {
            pstk = 0;
            if(!dfs(i)) {
                while(pstk > 0) {
                    mark[stk[--pstk]] = false;
                }
                if(!dfs(i + 1)) {
                    return false;
                }
            }
        }
    }
    return true;
}
```

6 计算几何

6.1 半平面交

```
const int N = 1500 + 15;
const double eps = 1e-8;

struct Point{
    double x, y;
    Point() {}
    Point(double x, double y): x(x), y(y) {}
    Point operator - (const Point& b) {
        return Point(x - b.x, y - b.y);
    }
};
typedef Point Vector;

struct Line{
    Point a, b;
    double angle;
```

```
void getAngle() {angle = atan2(b.y - a.y, b.x - a.x);}
    Line(){}
    Line(Point a, Vector b): a(a), b(b) {}
};
vector<Line> hp;
vector<Point> pt;
vector<Point> ans;
Line que[N];
int dcmp(double x) {
    return x < -eps ? -1 : x > eps;
}
double cross(Vector a, Vector b){
    return a.x * b.y - a.y * b.x;
double area(Point a, Point b, Point c) {
    return cross(b - a, c - a);
}
// 点是否在线的右边 (不含在线上的情况)
bool isOnLineRight(Line u, Point v){
    return dcmp(cross(u.b - u.a, v - u.a)) < 0;</pre>
}
// 按极角顺时针排序
bool cmp(Line u, Line v) {
    int d = dcmp(u.angle - v.angle);
    if(d) return d > 0;
    return dcmp(cross(u.b - u.a, v.b - u.a)) < 0;</pre>
}
Point getLineIntersection(Line u, Line v){
    Point ret = u.a;
    double t = ((u.a.x-v.a.x) * (v.a.y-v.b.y)
              -(u.a.y-v.a.y) * (v.a.x-v.b.x))
             / ((u.a.x-u.b.x) * (v.a.y-v.b.y)
               -(u.a.y-u.b.y) * (v.a.x-v.b.x));
    ret.x += (u.b.x-u.a.x) * t, ret.y += (u.b.y-u.a.y) * t;
    return ret;
}
// 判断 12,13 的交点时候在 11 的右边
bool judge(Line 11, Line 12, Line 13) {
    Point p = getLineIntersection(12, 13);
    return isOnLineRight(11, p);
```

```
}
void hpi(){//half-plane intersection
    ans.clear();
    sort(hp.begin(), hp.end(), cmp);
    int m = 0;
    // 平行的取第一个,与排序函数的写法有关,反正是取最左边的(严格的
    → 说,应该是向量的左边)
    for(int i = 0; i < hp.size(); i++){</pre>
        if(i && dcmp(hp[i].angle - hp[m - 1].angle) == 0) continue;
        hp[m++] = hp[i];
   hp.erase(hp.begin() + m, hp.end());
    que[1] = hp[0], que[2] = hp[1];
    int head = 1, tail = 2;
    for(int i = 2; i < hp.size(); i++){</pre>
        while(head < tail && judge(hp[i], que[tail - 1], que[tail]))</pre>

→ tail--;

        while(head < tail && judge(hp[i], que[head + 1], que[head]))</pre>
        → head++;
        que[++tail] = hp[i];
    while(head < tail && judge(que[head], que[tail - 1], que[tail]))</pre>

    tail--;

    while(head < tail && judge(que[tail], que[head + 1], que[head]))</pre>
    → head++;
    if(tail <= head + 1){ //若半平面交退化为点或线
        return:
    }
    // 为了方便记录,直接把最后一条线放到最前面,避免最后还要保存头尾两
    → 条线的交点
    que[head - 1] = que[tail];
    for(int i = head; i <= tail; i++){</pre>
        ans.push back(getLineIntersection(que[i], que[i - 1]));
    }
}
int main(){
    int t;
    scanf("%d", &t);
   while(t--){
       hp.clear();
        pt.clear();
        int n;
        scanf("%d", &n);
```

```
for(int i = 0; i < n; i++){
        double x, y;
        scanf("%lf%lf", &x, &y);
        pt.push_back(Point(x, y));
        if(i){
            hp.push_back(Line(pt[i], pt[i - 1]));
            hp[hp.size() - 1].getAngle();
        }
    hp.push_back(Line(pt[0], pt[n - 1]));
    hp[hp.size() - 1].getAngle();
    hpi();
    double res = 0;
    for(int i = 2; i < ans.size(); i++){</pre>
        res += area(ans[0], ans[i - 1], ans[i]);
    printf("%.2f\n", fabs(res / 2) + eps);
return 0;
```

6.2 **凸包 -** Andrew 算法

```
bool used[N];
Point pt[N], resPt[N];
void Andrew(int n, Point* resPt, int& m) {
    memset(used, false, sizeof(used));
    sort(pt + 1, pt + 1 + n);
    pstk = 0;
    stk[++pstk] = 1;
    for(int i = 2; i <= n; i++) {
        while(pstk > 1 && dcmp(cross(pt[stk[pstk]] - pt[stk[pstk -
         → 1]], pt[i] - pt[stk[pstk]])) <= 0) {</pre>
            used[stk[pstk--]] = false;
        used[i] = true;
        stk[++pstk] = i;
    }
    int tmp = pstk;
    for(int i = n - 1; i >= 1; i--) {
        if(used[i]) {
            continue;
        while(pstk > tmp && dcmp(cross(pt[stk[pstk]] - pt[stk[pstk -
            1]], pt[i] - pt[stk[pstk]])) <= 0) {
            used[stk[pstk--]] = false;
        }
```

```
used[i] = true;
    stk[++pstk] = i;
}
m = pstk;
for(int i = 1; i <= m; i++) {
    resPt[i] = pt[stk[i]];
}
</pre>
```

6.3 线段相交

```
struct Point {
   double x, y;
};
int dcmp(double d) {
   if(fabs(d) < eps) return 0;</pre>
   return (d > 0) ? 1 : -1;
}
double cross(const Point &A, const Point &B, const Point &C) {
   return (B.x - A.x) * (C.y - A.y) - (B.y - A.y) * (C.x - A.x);
}
int xycmp(double p, double mini, double maxi) {
   return dcmp(p - mini) * dcmp(p - maxi);
}
/*
前提条件: a 在 bc 直线上
返回:
1 表示 a 不在线段 bc 上
0表示 a 在 b 点或者 c 点上
-1 表示 a 在线段 bc 上
int betweencmp(const Point &a, const Point &b, const Point &c) {
   if(fabs(b.x - c.x) > fabs(b.y - c.y)) return xycmp(a.x, min(b.x,
    \rightarrow c.x), max(b.x, c.x));
   else return xycmp(a.y, min(b.y, c.y),max(b.y, c.y));
}
//判断线段 ab 是否与 cd 相交,交点记在 p
//返回值: 0 表示不相交; 1 表示规范相交; 2 表示非规范相交
//p 为交点
int segcross(const Point &a, const Point &b, const Point &c, const
→ Point &d, Point &p) {
   double s1, s2, s3, s4;
   int d1, d2, d3, d4;
```

```
d1 = dcmp(s1 = cross(a, b, c));
   d2 = dcmp(s2 = cross(a, b, d));
   d3 = dcmp(s3 = cross(c, d, a));
   d4 = dcmp(s4 = cross(c, d, b));
   //判断规范相交:交点不会在端点上
   if((d1 ^ d2) == -2 \&\& (d3 ^ d4) == -2)
       p.x = (c.x * s2 - d.x * s1) / (s2-s1);
       p.y = (c.y * s2 - d.y * s1) / (s2-s1);
       return 1;
   }
   // 判断非规范相交:交点在端点上
   if(d1 == 0 \&\& betweencmp(c, a, b) <= 0) {
       p = c;
       return 2;
   if(d2 == 0 && betweencmp(d, a, b) <= 0) {
       p = d;
       return 2;
   if(d3 == 0 \&\& betweencmp(a, c, d) <= 0) {
       p = a;
       return 2;
   if(d4 == 0 \&\& betweencmp(b, c, d) <= 0) {
       p = d;
       return 2;
   }
   return 0;
}
```

7 数据结构与其他

7.1 单调队列求定长 RMQ

7.2 单调栈求最小值所在区间

7.3 模拟退火

```
#include <cstdio>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
using namespace std;
const int N = 1000 + 15;
struct Point{
    double x, y;
    int w;
};
Point pt[N];
const int dx[] = \{1, 0, -1, 0\};
const int dy[] = \{0, 1, 0, -1\};
inline double sqr(double x){
    return x * x;
}
inline double getDis(const Point& a, const Point& b){
    return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}
double getSum(Point p, int n){
    double ret = 0;
    for(int i = 1; i <= n; i++){
```

```
ret += (getDis(p, pt[i]) * pt[i].w);
               return ret;
}
void solve(Point& ansu, int n){
                const double delta = 0.998;
                const double eps = 1e-17;
               double tp = 10000;
                double ans = getSum(ansu, n);
               Point u = ansu;
               while(tp > eps){
                               Point v = Point\{u.x + (rand()*2-RAND_MAX)*tp, u.y + (rand()*2-RA
                                  double tmp = getSum(v, n);
                                if(tmp < ans){</pre>
                                                ansu = v;
                                               u = v;
                                                ans = tmp;
                                }else if(exp(-(tmp - ans)/tp) * RAND_MAX > rand()){
                               tp *= delta;
               }
}
int main(){
                srand(time(0));
                int n;
               while(~scanf("%d", &n)){
                               for(int i = 1; i <= n; i++){
                                                scanf("%lf%lf%d", &pt[i].x, &pt[i].y, &pt[i].w);
                                }
                               Point ansu = pt[1];
                                solve(ansu, n);
                                solve(ansu, n);
                                solve(ansu, n);
                               printf("%.3f %.3f\n", ansu.x, ansu.y);
               return 0;
```

7.4 RMQ

```
void build(int n){
  for(int j = 1; (1 << j) <= n; j++){
    for(int i = 1; i + (1 << j) - 1 <= n; i++){</pre>
```

7.5 SG 函数

```
void solve(){
    int lim = 2;
    memset(c1, 0, sizeof(c1));
    memset(c2, 0, sizeof(c2));
    c1[0] = c1[1] = c1[2] = 1;
    for(int i = 2; i < N; i <<= 1){
        for(int k = 0; k <= (i << 1); k += i){
            for(int j = 0; j \le \lim \&\& j + k < N; j++){
                 c2[j + k] += c1[j];
            }
            lim += k;
        for(int j = 0; j <= lim && j < N; j++){</pre>
            c1[j] = c2[j];
            c2[j] = 0;
        }
    }
}
```

7.6 悬线法求 01 矩阵

```
int maxx[2];
char G[N][N];
int l[N][N], r[N][N], up[N][N];
bool used[N][N];
int main() {
   int n, m;
```

```
scanf("%d%d", &n, &m);
for(int i=1; i<=n; i++) {</pre>
    scanf("%s", G[i] + 1);
    for(int j = 1; j <= m; j++) {
        G[i][j] = (G[i][j] == '1');
    }
}
for(int i=1; i<=n; i++)</pre>
    for(int j=1; j<=m; j++)</pre>
        if(G[i][j])
             up[i][j]=1,r[i][j]=1[i][j]=j;
for(int i=1; i<=n; i++)</pre>
    for(int j=2; j<=m; j++)</pre>
        if(G[i][j]==1&&G[i][j-1]==1)
             l[i][j]=l[i][j-1];
for(int i=1; i<=n; i++)</pre>
    for(int j=m-1; j>0; j--)
        if(G[i][j]==1&&G[i][j+1]==1)
             r[i][j]=r[i][j+1];
for(int i=1; i<=n; i++) {</pre>
    for(int j=1; j<=m; j++) {</pre>
        if(i>1&&G[i][j]==1&&G[i-1][j]==1) {
             r[i][j]=min(r[i][j],r[i-1][j]);
             l[i][j]=max(l[i][j],l[i-1][j]);
             up[i][j]=up[i-1][j]+1;
        }
    }
}
stack<pair<int, int> > stk;
for(int i = 1; i <= n; i++) {</pre>
    for(int j = 1; j <= m; j++) {
        if(!G[i][j]) {
             continue;
        if(used[l[i][j]][r[i][j]]) {
             continue;
        }
        used[l[i][j]][r[i][j]] = true;
        stk.push(make pair(l[i][j], r[i][j]));
        int res;
        res = (r[i][j]-l[i][j]+1)*up[i][j];
        if(res > maxx[0]) {
             \max[1] = \max[0];
            \max[0] = res;
```

```
} else if(res > maxx[1]) {
            \max[1] = res;
        res = max(0, (r[i][j]-l[i][j])*up[i][j]);
        if(res > maxx[0]) {
            \max [1] = \max [0];
            \max[0] = res;
        } else if(res > maxx[1]) {
            \max[1] = res;
        }
        res = \max(0, (r[i][j]-l[i][j])*(up[i][j]-1));
        if(res > maxx[0]) {
            \max[1] = \max[0];
            \max[0] = res;
        } else if(res > maxx[1]) {
            \max[1] = res;
        }
    }
    while(!stk.empty()) {
        pair<int, int> pr = stk.top();
        stk.pop();
        used[pr.first][pr.second] = false;
    }
printf("%d\n", maxx[1]);
```

7.7 双端队列

```
template <typename T>
struct Deque {
    int head, tail;
    T que[N << 1];

    void clear() {head = tail = N;}
    void push_back(T x) { que[tail++] = x; }
    void push_front(T x) { que[--head] = x; }
    void pop_front() { head++; }
    void pop_back() { tail--; }
    T front() { return que[head]; }
    T back() { return que[tail]; }
    bool empty() { return head == tail; }
};</pre>
```

7.8 全排列生成 - 迭代法

```
bool next_permutation(char* s, int len) {
    int x = -1, y = len - 1;
    for(int i = len - 1; i - 1 >= 0; i--) {
        if(s[i - 1] < s[i]) {
            x = i - 1;
            break;
        }
    }
    if(x == -1) {
        return false;
    for(int i = x + 1; i < len; i++) {
        if(s[x] >= s[i]) {
            y = i - 1;
            break;
        }
    }
    swap(s[x], s[y]);
    reverse(s + x + 1, s + len);
    return true;
}
```

7.9 动态 DP

7.9.1 序列上的 ddp

```
#include bits / stdc++.h>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
typedef long long ll;
const int N = (int)5e4 + 15;
const int MOD = 10000000007;

struct Matrix {
    static int n;
    int mat[11][11];

    inline void init() {
        for(int i = 0; i < 11; i++) {
            mat[i][0] = 0;
        }
    }
}</pre>
```

```
};
int Matrix::n;
Matrix m0, seg[N << 2];</pre>
bool a[N][11];
inline void mulMatrix(const Matrix& a, const Matrix& b, Matrix& ret)
    for(int i = 0; i < Matrix::n; i++) {</pre>
        for(int j = 0; j < Matrix::n; j++) {</pre>
             ret.mat[i][j] = 0;
            for(int k = 0; k < Matrix::n; k++) {</pre>
                 ret.mat[i][j] = (ret.mat[i][j] + (ll)a.mat[i][k] *
                 → b.mat[k][j] % MOD) % MOD;
            }
        }
    }
}
inline void updateMatrix(int pos, int m, int rt) {
    for(int i = 0; i < m; i++) {</pre>
        bool ok = true;
        for(int j = i; j >= 0; j--) {
             ok &= a[pos][j];
             seg[rt].mat[i][j] = ok;
        ok = true;
        for(int j = i; j < m; j++) {</pre>
             ok &= a[pos][j];
             seg[rt].mat[i][j] = ok;
        }
    }
}
inline void build(int n, int mm, int l, int r, int rt) {
    if(1 == r) {
        int pos = n - 1 + 1;
        updateMatrix(pos, mm, rt);
        return;
    int m = (1 + r) >> 1;
    build(n, mm, lson);
    build(n, mm, rson);
    mulMatrix(seg[rt << 1], seg[rt << 1 | 1], seg[rt]);</pre>
}
inline void update(int pos, int y, int n, int mm, int l, int r, int
→ rt) {
```

```
if(1 == r) {
        pos = n - pos + 1;
        a[pos][y] = !a[pos][y];
        updateMatrix(pos, mm, rt);
        return;
    int m = (1 + r) >> 1;
    if(pos \ll m) {
        update(pos, y, n, mm, lson);
    } else {
        update(pos, y, n, mm, rson);
    mulMatrix(seg[rt << 1], seg[rt << 1 | 1], seg[rt]);</pre>
}
int main() {
    int n, m, q;
    while(\simscanf("%d%d%d", &n, &m, &q)) {
        Matrix::n = m;
        for(int i = 1, tmp; i <= n; i++) {</pre>
            for(int j = 0; j < m; j++) {
                 scanf("%1d", &tmp);
                a[i][j] = !tmp;
            }
        }
        Matrix res;
        if(n > 1) {
            build(n, m, 1, n - 1, 1);
        }
        while(q--) {
            int op, x, y;
            scanf("%d%d%d", &op, &x, &y);
            if(op == 1) {
                 if(x == 1) {
                     a[x][y - 1] = !a[x][y - 1];
                 } else {
                     update(n - x + 1, y - 1, n, m, 1, n - 1, 1);
                 }
            } else {
                m0.init();
                x--;
                 y--;
                 for(int i = x; i >= 0; i--) {
                     if(!a[1][i]) {
                         break;
                     }
```

```
m0.mat[i][0] = 1;
}
for(int i = x; i < m; i++) {
    if(!a[1][i]) {
        break;
    }
    m0.mat[i][0] = 1;
}
if(n > 1) {
    mulMatrix(seg[1], m0, res);
    printf("%d\n", res.mat[y][0]);
} else {
    printf("%d\n", m0.mat[y][0]);
}
}
}
}
}
```

7.9.2 树上最大权独立集

```
#include<bits/stdc++.h>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
const int N = (int)1e5 + 15;
const int inf = 0x3f3f3f3f;
struct Matrix {
    int mat[2][2];
    inline Matrix operator * (const Matrix& b) const {
        Matrix ret;
        for(int i = 0; i < 2; i++) {
            for(int j = 0; j < 2; j++) {
                ret.mat[i][j] = 0;
                for(int k = 0; k < 2; k++) {
                    ret.mat[i][j] = max(ret.mat[i][j], mat[i][k] +
                     \rightarrow b.mat[k][j]);
                }
            }
        }
        return ret;
    }
};
struct edge {
    int v, nxt;
};
```

```
int val[N];
int son[N], sz[N], dpt[N], fa[N];
int mptot, mp[N \ll 2], top[N \ll 2], belong[N \ll 2], ed[N];
Matrix seg[N << 2], upVal[N];</pre>
int head[N], tot;
edge e[N \ll 1];
int dp[N][2], ldp[N][2];
inline void init() {
    memset(head, -1, sizeof(head));
    tot = 0;
}
inline void addEdge(int u, int v) {
    e[tot] = edge{v, head[u]};
    head[u] = tot++;
}
inline void dfs(int u){
    sz[u] = 1;
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
        if(v == fa[u]) continue;
        fa[v] = u;
        dpt[v] = dpt[u] + 1;
        dfs(v);
        sz[u] += sz[v];
        if(son[u] == 0 \mid \mid sz[son[u]] < sz[v]) {
            son[u] = v;
        }
    }
}
inline void buildTree(int u, int rt, int n){
    mp[u] = ++mptot;
    belong[mptot] = u;
    top[u] = rt;
    ed[rt] = mptot;
    ldp[u][1] = val[u];
    if(son[u]) {
        buildTree(son[u], rt, n);
        dp[u][0] += max(dp[son[u]][0], dp[son[u]][1]);
        dp[u][1] += dp[son[u]][0];
    }
    for(int i = head[u]; ~i; i = e[i].nxt){
        int v = e[i].v;
```

```
if(v == fa[u] || v == son[u]) continue;
        buildTree(v, v, n);
        ldp[u][0] += max(dp[v][0], dp[v][1]);
        ldp[u][1] += dp[v][0];
    dp[u][0] += ldp[u][0];
    dp[u][1] += ldp[u][1];
}
inline void build(int 1, int r, int rt) {
    if(1 == r) {
        int u = belong[1];
        upVal[u].mat[0][0] = upVal[u].mat[0][1] = ldp[u][0];
        upVal[u].mat[1][0] = ldp[u][1];
        upVal[u].mat[1][1] = -inf;
        seg[rt] = upVal[u];
        return;
    int m = (1 + r) >> 1;
    build(lson);
    build(rson);
    seg[rt] = seg[rt << 1] * seg[rt << 1 | 1];
}
inline void update(int pos, int 1, int r, int rt) {
    if(1 == r) {
        seg[rt] = upVal[belong[1]];
        return;
    int m = (1 + r) >> 1;
    if(pos <= m) {
        update(pos, lson);
    } else {
        update(pos, rson);
    seg[rt] = seg[rt << 1] * seg[rt << 1 | 1];
}
inline Matrix query(int ql, int qr, int l, int r, int rt) {
    if(ql <= 1 && r <= qr) {
        return seg[rt];
    int m = (1 + r) >> 1;
    if(m < ql) {
        return query(ql, qr, rson);
    } else if(qr <= m) {</pre>
        return query(ql, qr, lson);
    } else {
```

```
return query(ql, qr, lson) * query(ql, qr, rson);
    }
}
inline void change(int u, int x) {
    upVal[u].mat[1][0] += x - val[u];
    val[u] = x;
    while(u) {
        int now = top[u];
        Matrix pre = query(mp[now], ed[now], 1, mptot, 1);
        update(mp[u], 1, mptot, 1);
        Matrix cur = query(mp[now], ed[now], 1, mptot, 1);
        u = fa[now];
        upVal[u].mat[0][0] += (max(cur.mat[0][0], cur.mat[1][0]) -

→ max(pre.mat[0][0], pre.mat[1][0]));
        upVal[u].mat[1][0] += (cur.mat[0][0] - pre.mat[0][0]);
        upVal[u].mat[0][1] = upVal[u].mat[0][0];
    }
}
int main() {
    int n, m;
    while(~scanf("%d%d", &n, &m)) {
        init():
        for(int i = 1; i <= n; i++) {
            scanf("%d", &val[i]);
        for(int i = 1; i <= n - 1; i++) {
            int u, v;
            scanf("%d%d", &u, &v);
            addEdge(u, v);
            addEdge(v, u);
        }
        dfs(1);
        buildTree(1, 1, n);
        build(1, mptot, 1);
        while(m--) {
            int u, x;
            scanf("%d%d", &u, &x);
            change(u, x);
            Matrix mat = query(mp[1], ed[1], 1, mptot, 1);
            printf("%d\n", max(mat.mat[0][0], mat.mat[1][0]));
    }
}
```

7.10 CDQ 分治

7.10.1 求解二维 LIS 问题

```
#include <bits/stdc++.h>
using namespace std;
const int N = (int)5e4 + 15;
struct info {
    int h, v, idx, dp;
    double cnt;
};
struct Tree {
    int len;
    double sum;
    Tree(): len(0), sum(0) {}
    Tree(int len, double sum): len(len), sum(sum) {}
};
info a[N], b[N];
int mph[N], mpv[N];
Tree tree[N];
inline bool cmp(const info& a, const info& b) {
    return a.idx < b.idx;</pre>
}
inline bool cmp1 (const info& a, const info& b) {
    return a.h != b.h ? a.h < b.h : a.v < b.v;
}
inline int lowbit(int x) {
    return x & -x;
inline void update(int x, int len, double sum) {
    for(; x < N; x += lowbit(x)) {
        if(tree[x].len < len) {</pre>
            tree[x] = Tree{len, sum};
        } else if(tree[x].len == len) {
            tree[x].sum += sum;
        }
    }
}
inline Tree getSum(int x) {
    Tree ret;
    for(; x > 0; x = lowbit(x)) {
        if(tree[x].len > ret.len) {
            ret = tree[x];
        } else if(tree[x].len == ret.len) {
```

```
ret.sum += tree[x].sum;
        }
    }
    return ret;
}
inline void clearTree(int x) {
    for(; x < N; x += lowbit(x)) {
        tree[x] = Tree{0, 0};
    }
}
inline void cdq(int 1, int r, info* a) {
    if(r <= 1) {
        return;
    int mid = (1 + r) >> 1;
    cdq(1, mid, a);
    sort(a + 1, a + mid + 1, cmp1);
    sort(a + mid + 1, a + r + 1, cmp1);
    int st = 1;
    for(int i = mid + 1; i <= r; i++) {
        while(a[st].h \leq a[i].h && st \leq mid) {
            update(a[st].v, a[st].dp, a[st].cnt);
            st++;
        }
        Tree res = getSum(a[i].v);
        if(res.len == 0) {
            continue;
        if(res.len + 1 > a[i].dp) {
            a[i].dp = res.len + 1;
            a[i].cnt = res.sum;
        } else if(res.len + 1 == a[i].dp) {
            a[i].cnt += res.sum;
    }
    for(int i = 1; i < st; i++) {</pre>
        clearTree(a[i].v);
    }
    sort(a + mid + 1, a + r + 1, cmp);
    cdq(mid + 1, r, a);
}
```

```
int main() {
    int n;
    while(~scanf("%d", &n)) {
        for(int i = 1; i <= n; i++) {
            scanf("%d%d", &a[i].h, &a[i].v);
            a[i].idx = i, b[i].idx = n - i + 1;
            a[i].dp = b[i].dp = 1;
            a[i].cnt = b[i].cnt = 1;
            mph[i] = a[i].h;
            mpv[i] = a[i].v;
        }
        sort(mph + 1, mph + n + 1);
        sort(mpv + 1, mpv + n + 1);
        int toth = unique(mph + 1, mph + n + 1) - mph - 1;
        int totv = unique(mpv + 1, mpv + n + 1) - mpv - 1;
        for(int i = 1; i <= n; i++) {
            a[i].h = lower bound(mph + 1, mph + toth + 1, a[i].h) -
             \rightarrow mph;
            a[i].v = lower bound(mpv + 1, mpv + totv + 1, a[i].v) -
            \hookrightarrow mpv;
        }
        for(int i = 1; i <= n; i++) {
            b[i].h = a[i].h;
            b[i].v = a[i].v;
            a[i].h = toth - a[i].h + 1;
            a[i].v = totv - a[i].v + 1;
        }
        reverse(b + 1, b + n + 1);
        cdq(1, n, a);
        sort(a + 1, a + n + 1, cmp);
        int maxLen = 0;
        for(int i = 1; i <= n; i++) {
            maxLen = max(maxLen, a[i].dp);
        double sumCnt = 0;
        for(int i = 1; i <= n; i++) {
            if(a[i].dp == maxLen) {
                sumCnt += a[i].cnt;
            }
        }
        cdq(1, n, b);
        sort(b + 1, b + n + 1, cmp);
        printf("%d\n", maxLen);
```

7.11 斜率 DP

7.11.1 Codeforces 1083E

```
struct Node {
    11 x, y, w;
    bool operator < (const Node& b) const {</pre>
        return x < b.x;
    }
};
Node a[N];
int que[N];
11 f[N];
inline ll calc(int i, int j) {
    return f[j] + 1LL * (a[i].x - a[j].x) * a[i].y - a[i].w;
}
inline double cmp(int i, int j) {
    11 dy = f[i] - f[j];
    11 dx = a[i].x - a[j].x;
    return (double)dy / dx;
}
int main() {
    int n;
    while(~scanf("%d", &n)) {
        for(int i = 1; i <= n; i++) {
            scanf("%lld%lld", &a[i].x, &a[i].y, &a[i].w);
        sort(a + 1, a + 1 + n);
        que[1] = 0;
        for(int i = 1, 1 = 1, r = 1; i <= n; i++) {
```

7.12 莫队算法

7.12.1 不带修改

```
bool cmp(const node& a, const node& b){
    if(a.l/block_size == b.l/block_size){
        return a.r < b.r;
    }else{
        return a.l/block_size < b.l/block_size;
    }
}

int l = 0, r = -1;
int answer = 0;
for(int i = 0; i < q; i++){
    while(que[i].l < l) { add(--l, answer); }
    while(l < que[i].l) { del(l++, answer); }
    while(que[i].r < r) { del(r--, answer); }
    while(r < que[i].r) { add(++r, answer); }
    ans[que[i].id] = answer;
}</pre>
```

7.12.2 带修改

```
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 10000 + 5;
```

```
const int M = 1e6 + 5;
struct QQuery{
    int 1, r, tim, idx;
};
struct QModify{
    int pos, val, pre;
};
int BLOCK SIZE;
int ans[N];
int cnt[M];
int a[N];
QQuery queq[N];
QModify queu[N];
bool cmp(const QQuery& a, const QQuery& b){
    if(a.1/BLOCK_SIZE != b.1/BLOCK_SIZE)
                                                   return a.l < b.l;</pre>
    else if(a.r/BLOCK_SIZE != b.r/BLOCK_SIZE)
                                                   return a.r < b.r;
    return a.tim/BLOCK SIZE < b.tim/BLOCK SIZE;</pre>
}
void moveTimeForward(int tim, int 1, int r, int& ans){
    QModify& qcur = queu[tim];
    qcur.pre = a[qcur.pos];
    a[qcur.pos] = qcur.val;
    if(1 <= qcur.pos && qcur.pos <= r){</pre>
        if((--cnt[qcur.pre]) == 0) ans--;
        if((++cnt[qcur.val]) == 1) ans++;
    }
}
void moveTimeBack(int tim, int 1, int r, int& ans){
    QModify& qcur = queu[tim];
    a[qcur.pos] = qcur.pre;
    if(1 <= qcur.pos && qcur.pos <= r){</pre>
        if((--cnt[qcur.val]) == 0) ans--;
        if((++cnt[qcur.pre]) == 1) ans++;
    }
}
void add(int pos, int& ans){
    if((++cnt[a[pos]]) == 1) ans++;
}
void del(int pos, int& ans){
    if((--cnt[a[pos]]) == 0)
                                 ans--;
}
```

```
int main(){
    int n, q;
    while(~scanf("%d%d", &n, &q)){
        memset(cnt, 0, sizeof(cnt));
        BLOCK SIZE = (int)pow(n, 2.0/3);
        for(int i = 1; i <= n; i++){
             scanf("%d", &a[i]);
        }
        int ppq = 0, ppu = 0;
        while (q--) {
             char s[2];
             int x, y;
             scanf("%s%d%d", s, &x, &y);
             if(s[0] == 'Q'){}
                 queq[ppq] = QQuery{x, y, ppu, ppq};
                 ppq++;
            }else{
                 queu[++ppu] = QModify{x, y, 0};
        }
        sort(queq, queq + ppq, cmp);
        int r = -1, l = 0, tim = 0, curans = 0;
        for(int i = 0; i < ppq; i++){</pre>
             QQuery& q = queq[i];
             while(tim < q.tim)</pre>
                                     moveTimeForward(++tim, 1, r,

    curans);
             while(tim > q.tim)
                                     moveTimeBack(tim--, 1, r, curans);
            while(1 < q.1)
                                     del(1++, curans);
            while(1 > q.1)
                                     add(--1, curans);
            while(r < q.r)</pre>
                                     add(++r, curans);
                                     del(r--, curans);
            while(r > q.r)
             ans[q.idx] = curans;
        }
        for(int i = 0; i < ppq; i++){</pre>
            printf("%d\n", ans[i]);
        }
    }
}
```

7.12.3 树上莫队

```
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
```

```
using namespace std;
const int N = 1e5 + 5;
typedef long long ll;
struct squery{
    int u, v, tim, idx;
};
struct supdate{
    int u, val, preval;
};
struct edge{
    int v, next;
};
squery query[N];
supdate update[N];
int w[N], v[N], c[N];
edge e[N \ll 1];
int head[N], tot;
int belong[N];
int stk[N], pstk;
int fa[N][18];
int dpt[N];
bool used[N];
int cnt[N]:
11
     ans[N];
int BLOCK_SIZE;
bool cmp(const squery& a, const squery& b){
    if(belong[a.u] != belong[b.u])
                                             return belong[a.u] <
    → belong[b.u];
    else if(belong[a.v] != belong[b.v])
                                             return belong[a.v] <</pre>
    → belong[b.v];
    else
                                             return a.tim/BLOCK_SIZE <</pre>
    → b.tim/BLOCK SIZE;
}
inline void init(){
    memset(head, -1, sizeof(head));
    memset(fa, -1, sizeof(fa));
    memset(cnt, 0, sizeof(cnt));
    memset(used, 0, sizeof(used));
    tot = 0;
}
inline void addEdge(int u, int v){
    e[tot] = edge{v, head[u]};
    head[u] = tot++;
}
```

```
void dfs(int u, int pre, int depth){
    int bottom = pstk;
    dpt[u] = depth;
    for(int i = head[u]; ~i; i = e[i].next){
        int v = e[i].v;
        if(v == pre)
                        continue;
        fa[v][0] = u;
        dfs(v, u, depth + 1);
        if(pstk - bottom >= BLOCK_SIZE){
            while(pstk != bottom){
                belong[stk[pstk--]] = u;
            }
        }
    }
    stk[++pstk] = u;
}
void initLCA(int n){
    for(int j = 1; j <= 17; j++){
        for(int u = 1; u <= n; u++){
            if(fa[u][j-1] == -1) continue;
            fa[u][j] = fa[fa[u][j-1]][j-1];
        }
    }
}
void initBlockAndLCA(int n){
    BLOCK_SIZE = (int)pow(n, 2.0/3);
    pstk = 0;
    dfs(1, -1, 0);
    while(pstk >= 1){
        belong[stk[pstk--]] = 1;
    initLCA(n);
}
int getFa(int u, int v){
    for(int j = 17; j \ge 0; j--){
        if(fa[v][j] == -1 \mid \mid dpt[fa[v][j]] < dpt[u]) continue;
        v = fa[v][j];
    if(u == v) return u;
    for(int j = 17; j \ge 0; j--){
        if(fa[v][j] == -1 \mid \mid fa[u][j] == -1 \mid \mid fa[u][j] == fa[v][j])

→ continue;

        u = fa[u][j], v = fa[v][j];
```

```
}
    return fa[u][0];
}
void reverse(int u, ll% ans){
    if(used[u]){
        ans -= (ll)v[c[u]] * w[cnt[c[u]]];
        cnt[c[u]]--;
    }else{
        cnt[c[u]]++;
        ans += (11)v[c[u]] * w[cnt[c[u]]];
    used[u] ^= 1;
}
void change(int u, int val, ll& ans){
    if(used[u]){
        reverse(u, ans);
        c[u] = val;
        reverse(u, ans);
    }else{
        c[u] = val;
    }
}
void moveTimeForward(int tim, ll& ans){
    int u = update[tim].u;
    update[tim].preval = c[u];
    change(u, update[tim].val, ans);
}
void moveTimeBack(int tim, ll& ans){
    int u = update[tim].u;
    change(u, update[tim].preval, ans);
}
void moveNode(int u, int v, ll& ans){
    while(u != v){
        if(dpt[u] < dpt[v]){</pre>
            reverse(v, ans);
            v = fa[v][0];
        }else{
            reverse(u, ans);
            u = fa[u][0];
        }
    }
}
```

```
int main(){
   int n, m, q;
   while(~scanf("%d%d%d", &n, &m, &q)){
       init();
       for(int i = 1; i <= n - 1; i++){
          int u, v;
          scanf("%d%d", &u, &v);
          addEdge(u, v);
          addEdge(v, u);
       }
       for(int i = 1; i <= n; i++) scanf("%d", &c[i]);</pre>
       initBlockAndLCA(n);
       int pp = 0, pq = 0;
       while(q--){
          int type, x, y;
          scanf("%d%d%d", &type, &x, &y);
          if(type == 0){
              update[++pq] = supdate\{x, y, -1\};
          }else{
              query[pp] = squery{x, y, pq, pp};
              pp++;
          }
       sort(query, query + pp, cmp);
       int u = query[0].u, v = query[0].v, tim = 0;
       11 \text{ curans} = 0:
       while(tim < query[0].tim) moveTimeForward(++tim, curans);</pre>
       moveNode(u, v, curans);
       reverse(getFa(u, v), curans);
       ans[query[0].idx] = curans;
       reverse(getFa(u, v), curans);
       for(int i = 1; i < pp; i++){

    curans);

    curans);

          int nu = query[i].u, nv = query[i].v;
          moveNode(u, nu, curans);
          moveNode(v, nv, curans);
          int lca = getFa(nu, nv);
          reverse(lca, curans);
          ans[query[i].idx] = curans;
          reverse(lca, curans);
          u = nu, v = nv;
```

```
}
    for(int i = 0; i < pp; i++){
        printf("%lld\n", ans[i]);
    }
}</pre>
```

7.13 分块

7.13.1 区间正偶数次数的个数(动态查询)

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = (int)100000 + 3;
int belong[N], st[N], ed[N], sz[N];
int a[N], buc[N];
int f[320][320], cnt[320][N];
inline void init(int n) {
    int num = sqrt(n);
    for(int i = 1, m = n / num; i <= num; i++) {</pre>
        st[i] = m * (i - 1) + 1;
        ed[i] = m * i;
        sz[i] = m;
    ed[num] = n;
    sz[num] = n - st[num] + 1;
    for(int i = 1; i <= num; i++) {</pre>
        for(int j = st[i]; j <= ed[i]; j++) {</pre>
             belong[j] = i;
        }
    }
}
int main() {
    int n, c, m;
    scanf("%d%d%d", &n, &c, &m);
    for(int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
    init(n);
    for(int i = 1, m = belong[n]; i <= m; i++) {</pre>
        memset(buc + 1, 0, c * sizeof(int));
        for(int j = 1; j <= c; j++) {</pre>
             cnt[i][j] = cnt[i - 1][j];
```

```
}
    for(int k = st[i]; k <= ed[i]; k++) {</pre>
        cnt[i][a[k]]++;
    for(int j = i; j <= m; j++) {
        int& res = f[i][j];
        res = f[i][j - 1];
        for(int k = st[j]; k <= ed[j]; k++) {</pre>
             res += (buc[a[k]] == 0 ? 0 : (buc[a[k]] & 1 ? 1 :
             \rightarrow -1));
            buc[a[k]]++;
        }
    }
}
int ans = 0;
while(m--) {
    int 1, r;
    scanf("%d%d", &1, &r);
    1 = (1 + ans) \% n + 1;
    r = (r + ans) \% n + 1;
    if(1 > r) {
        swap(1, r);
    }
    int x = belong[1], y = belong[r];
    ans = 0;
    if(y - x \le 1) {
        for(int i = 1; i <= r; i++) {
            buc[a[i]] = 0;
        for(int i = 1; i <= r; i++) {
            ans += (buc[a[i]] == 0 ? 0 : (buc[a[i]] & 1 ? 1 :
             \rightarrow -1));
            buc[a[i]]++;
        }
    } else {
        ans = f[x + 1][y - 1];
        for(int i = 1; i <= ed[x]; i++) {
            buc[a[i]] = 0;
        }
        for(int i = st[y]; i <= r; i++) {
            buc[a[i]] = 0;
        for(int i = 1; i <= ed[x]; i++) {
             int tmp = buc[a[i]] + cnt[y - 1][a[i]] -
             \rightarrow cnt[x][a[i]];
             ans += (tmp == 0 ? 0 : (tmp & 1 ? 1 : -1));
            buc[a[i]]++;
```

7.13.2 区间众数(动态查询)

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = (int)500000 + 15;
int belong[N], st[N], ed[N], sz[N];
int a[N], pos[N], buc[N];
int f[1005][1005];
vector<int> vec[N];
inline void init(int n) {
    int num = sqrt(n);
    for(int i = 1, m = n / num; i <= num; i++) {</pre>
        st[i] = m * (i - 1) + 1;
        ed[i] = m * i;
        sz[i] = m;
    }
    ed[num] = n;
    sz[num] = n - st[num] + 1;
    for(int i = 1; i <= num; i++) {</pre>
        for(int j = st[i]; j <= ed[i]; j++) {</pre>
            belong[j] = i;
        }
    }
}
int main() {
    int n, q;
    scanf("%d%d", &n, &q);
    for(int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        buc[i] = a[i];
```

```
}
init(n);
sort(buc + 1, buc + 1 + n);
int mptot = unique(buc + 1, buc + 1 + n) - buc - 1;
for(int i = 1; i <= n; i++) {
    a[i] = lower_bound(buc + 1, buc + 1 + mptot, a[i]) - buc;
    pos[i] = vec[a[i]].size();
    vec[a[i]].push back(i);
for(int i = 1, m = belong[n]; i <= m; i++) {</pre>
    memset(buc, 0, sizeof(buc));
    for(int j = i; j <= m; j++) {
        int& res = f[i][j];
        res = f[i][j - 1];
        for(int k = st[j]; k <= ed[j]; k++) {</pre>
            res = max(res, ++buc[a[k]]);
        }
    }
}
int lstAns = 0;
while(q--) {
    int 1, r;
    scanf("%d%d", &1, &r);
    1 ^= lstAns;
    r ^= lstAns;
    lstAns = 0;
    int x = belong[1], y = belong[r];
    if(x == y) {
        for(int i = 1; i <= r; i++) {
            while(lstAns + pos[i] < (int)vec[a[i]].size() &&</pre>
                vec[a[i]][lstAns + pos[i]] \ll r) {
                 lstAns++;
            }
        }
    } else {
        lstAns = f[x + 1][y - 1];
        for(int i = 1; i <= ed[x]; i++) {
            while(lstAns + pos[i] < (int)vec[a[i]].size() &&</pre>
             \rightarrow vec[a[i]][lstAns + pos[i]] <= r) {
                lstAns++;
            }
        for(int i = st[y]; i <= r; i++) {
            while(pos[i] - lstAns \geq= 0 && vec[a[i]][pos[i] -
             \rightarrow lstAns] >= 1) {
                 lstAns++;
            }
```

8 Note

8.1 Prime Table

Hash 常用质数

8.2 Formula And Equations

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^{3} + 2^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{a|i} \sum_{b|j} f(a,b) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left\lfloor \frac{n}{i} \right\rfloor \left\lfloor \frac{m}{j} \right\rfloor f(i,j)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \left\lfloor \frac{n}{i} \right\rfloor \left\lfloor \frac{m}{j} \right\rfloor \sum_{x|(i,j)} f(x)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \left\lfloor \frac{n}{i} \right\rfloor \left\lfloor \frac{m}{j} \right\rfloor \sum_{d|i,d|j} f(d)$$

$$= \sum_{d=1}^{\min(n,m)} f(d) \sum_{i=1}^{j} \sum_{j=1}^{m} \left\lfloor \frac{n}{id} \right\rfloor \left\lfloor \frac{m}{jd} \right\rfloor$$

$$b^{2} - a^{2} = \sum_{i=a}^{b-1} (2i+1)$$

8.3 Facts

- Number of possible values for $\left\lceil \frac{a}{b} \right\rceil$ is $O(\sqrt{n})$. Those numbers are $1, 2, \dots, \sqrt{x}$ and $\left\lceil \frac{x}{1} \right\rceil, \left\lceil \frac{x}{2} \right\rceil, \dots, \left\lceil \frac{x}{\sqrt{x}} \right\rceil$, here x can be the result or denominator.
- Manhattan Distance: $\sum_{k} |a_k b_k| = \sum_{k} c_k (a_k b_k) = \max_{c_1, c_2, \dots, c_k} \sum_{k} c_k (a_k b_k)$
- d(n): $d(nm) = \sum_{i|n} \sum_{j|m} [(i,j) = 1]$
- Mobius Function μ : $\sum_{x|n} \mu(x) = [n=1]$
- Dirichlet Convolution: $(f*g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$

8.4 Catalan Number

Basic

$$C_n = C_{2n}^n - C_{2n}^{m-1} = \frac{1}{n+1} C_{2n}^n$$

$$C_n = \frac{1}{n+1} \sum_{i=0}^n (C_n^i)^2$$

$$C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \quad C_0 = 1$$

$$C_{n+1} = \sum_{i=0}^n C_i C_{n-i}, \quad C_0 = 1$$

DP and Extra

We construct a sequence only contains -1 and 1. It satisfys the maximal prefix sum is less than or equal to 0, i.e.

$$\max_{j} \left\{ \sum_{i=1}^{j} a_i \right\} \le 0$$

We define f(x,y) is using the number of -1 is x, and the number of 1 is y. Then

$$f(x,y) = f(x-1,y) + f(x,y-1) (x >= y)$$

$$f(x,y) = 0 (x < y)$$

$$f(x,y) = 1 (x > 0, y = 0)$$

It can be regarded as appending a new 1 to the ending or a new -1, and they cannot increase the maximal prefix sum because of the condition x >= y. After appending, the new prefix sum is y - x, which is less than or equal to 0.

In addition,
$$f(x, y) = C_{x+y}^x - C_{x+y}^{x+1} \quad (x \ge y)$$

8.5 Combination

Property

$$C_{n}^{k} = \frac{k}{n}C_{n-1}^{k-1}$$

$$C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1}$$

$$\sum_{i=0}^{n} C_{n}^{i} = 2^{n}$$

$$\sum_{i=0}^{n} (-1)^{i}C_{n}^{i} = 0$$

$$C_{m+n}^{m} = \sum_{i=0}^{m} C_{n}^{i}C_{m}^{m-i} = \sum_{i=0}^{m} C_{n}^{i}C_{m}^{i} \quad (n \ge m)$$

$$\sum_{i=0}^{n} (C_{n}^{i})^{2} = C_{2n}^{n}$$

$$\sum_{i=0}^{n} iC_{n}^{i} = n2^{n-1}$$

$$\sum_{i=0}^{n} i^{2}C_{n}^{i} = n(n+1)2^{n-2}$$

$$\sum_{i=0}^{r} C_{l}^{k} = C_{n+1}^{k+1}$$

$$C_{n}^{r}C_{r}^{k} = C_{n}^{k}C_{n-k}^{r-k}$$

$$\sum_{i=0}^{n} C_{n-i}^{i} = Fib(n+1)$$

8.6 Sum of GCD

Mobius Reversion

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (i, j)$$

$$= \sum_{d=1}^{n} d \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} [(i, j) = d]$$

$$= \sum_{d=1}^{n} d \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\left(\frac{i}{d}, \frac{j}{d} \right) = 1 \right]$$

$$= \sum_{d=1}^{n} d \cdot \sum_{\frac{i}{d}=1}^{n/d} \sum_{\frac{j}{d}=1}^{m/d} \sum_{x \mid (\frac{i}{d}, \frac{j}{d})} \mu(x)$$

$$= \sum_{d=1}^{n} d \cdot \sum_{k=1}^{n/d} \mu(k) \left\lfloor \frac{n}{kd} \right\rfloor \left\lfloor \frac{m}{kd} \right\rfloor$$

Euler Function

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (i, j)$$

$$= \sum_{d=1}^{n} d \cdot \sum_{k=1}^{n/d} \mu(k) \left\lfloor \frac{n}{kd} \right\rfloor \left\lfloor \frac{m}{kd} \right\rfloor$$

$$= \sum_{d=1}^{n} d \cdot \sum_{k=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \mu(\frac{T}{d}) \quad (let \ T = kd)$$

$$= \sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \sum_{d \mid T} d \cdot \mu(\frac{T}{d})$$

$$= \sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \sum_{d \mid T} \mu(d) \cdot \frac{T}{d}$$

$$= \sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \varphi(T)$$

Dirichlet Convolution

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (i, j)$$

$$= \sum_{T=1}^{n} \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \varphi(T)$$

let
$$\phi(n) = \sum_{T=1}^{n} \varphi(T)$$
, according to

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} S\left(\left\lfloor \frac{n}{i} \right\rfloor\right)$$

then

$$\phi(n) = \sum_{i=1}^{n} \sum_{d|i} \varphi(d) - \sum_{i=2}^{n} \phi\left(\left\lfloor \frac{n}{i} \right\rfloor\right)$$
$$= \sum_{i=1}^{n} i - \sum_{i=2}^{n} \phi\left(\left\lfloor \frac{n}{i} \right\rfloor\right)$$
$$= \frac{n(n+1)}{2} - \sum_{i=2}^{n} \phi\left(\left\lfloor \frac{n}{i} \right\rfloor\right)$$

8.7 Sum of LCM

Problem

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j)$$

Mobius Reversion

We assume that $n \leq m$, then

$$\begin{split} \sum_{i=1}^{n} \sum_{i=1}^{m} lcm(i,j) &= \sum_{i=1}^{n} \sum_{i=1}^{m} \frac{ij}{gcd(i,j)} \\ &= \sum_{i=1}^{n} \sum_{i=1}^{m} \sum_{d} \frac{ij}{[(i,j) = d] \cdot d} \\ &= \sum_{i=1}^{n} \sum_{i=1}^{m} \sum_{d} \frac{ij}{[(i,j) = d] \cdot d^{2}} \cdot d \\ &= \sum_{d=1}^{n} d \sum_{i=1}^{n/d} \sum_{j=1}^{m/d} [(i,j) = 1] \cdot ij \end{split}$$

let $g(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} [(i,j) = 1] \cdot ij$, then

$$g(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} [(i,j) = 1] \cdot ij$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i,j)} \mu(d) \cdot ij$$

$$= \sum_{d=1}^{n} \sum_{i=1}^{n/d} \sum_{j=1}^{m/d} \mu(d) \cdot id \cdot jd$$

$$= \sum_{d=1}^{n} d^{2}\mu(d) \sum_{i=1}^{n/d} \sum_{j=1}^{m/d} ij$$

let $h(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} ij$, then

$$h(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} ij = \frac{n(n+1)}{2} \cdot \frac{m(m+1)}{2}$$

Therefore,

$$h(n,m) = \frac{n(n+1)}{2} \cdot \frac{m(m+1)}{2}$$
$$g(n,m) = \sum_{d=1}^{n} d^{2}\mu(d) \cdot h\left(\left\lfloor \frac{n}{d} \right\rfloor, \left\lfloor \frac{m}{d} \right\rfloor\right)$$
$$f(n,m) = \sum_{d=1}^{n} d \cdot g\left(\left\lfloor \frac{n}{d} \right\rfloor, \left\lfloor \frac{m}{d} \right\rfloor\right)$$

8.8 Sum of d(i, j)

Problem

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} d(ij)$$

Mobius Reversion

We assume that $n \leq m$, then we have

$$d(ij) = \sum_{x|i} \sum_{y|j} \sum_{p|(x,y)} \mu(p)$$

$$= \sum_{x|i} \sum_{y|j} \sum_{p|(x,y)} \mu(p)$$

$$= \sum_{p=1}^{\min(i,j)} \sum_{x|i} \sum_{y|j} [p|(x,y)] \mu(p)$$

$$= \sum_{p|i,p|j} \mu(p) \sum_{x|i} \sum_{y|j} [p|(x,y)]$$

$$= \sum_{p|i,p|j} \mu(p) \sum_{x|\frac{i}{p}} \sum_{y|\frac{j}{p}} 1$$

$$= \sum_{p|i,p|j} \mu(p) d\left(\frac{i}{p}\right) d\left(\frac{j}{p}\right)$$

Therefore,

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p|i,p|j} \mu(p) d\left(\frac{i}{p}\right) d\left(\frac{j}{p}\right)$$

$$= \sum_{p=1}^{n} \sum_{i=1}^{n/p} \sum_{j=1}^{m/p} \mu(p) d(i) d(j)$$

$$= \sum_{p=1}^{n} \mu(p) \sum_{i=1}^{n/p} d(i) \sum_{j=1}^{m/p} d(j)$$

8.9 Sum of lcm(i, n)

Problem

$$f(n) = \sum_{i=1}^{n} lcm(i, n)$$

Mobius Reversion

$$f(n) = \sum_{i=1}^{n} \frac{in}{(i,n)}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n-1} \frac{in}{(i,n)} + \sum_{i=1}^{n-1} \frac{(n-i)n}{(i,n)} \right) + n$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \frac{n^2}{(i,n)} + n$$

$$= n + \frac{1}{2} \sum_{d=1}^{n-1} \sum_{i=1}^{n-1} \frac{n^2}{d} \left[(i,n) = d \right]$$

$$= n + \frac{1}{2} \sum_{d|n,d < n} \sum_{d|i,i < n} \frac{n^2}{d} \left[(\frac{i}{d}, \frac{n}{d}) = 1 \right]$$

$$= n + \frac{1}{2} \sum_{d|n,d < n} \frac{n^2}{d} \varphi(\frac{n}{d})$$

$$= n + \frac{1}{2} n \sum_{d|n,d > 1} d\varphi(d)$$

We let $g(n) = \sum_{d|n} d\varphi(d)$, and it is multiplicative obviously. Therefore, we can get it in O(n), and we have

$$f(n) = n + \frac{1}{2}n\left[g(n) - \varphi(1)\right]$$

8.10 Lagrange polynomial

Basic

$$f(x) = \sum_{i=0}^{k} y_i l_i(x)$$

$$l_i(x) = \prod_{j=0, i \neq j}^{k} \frac{x - x_j}{x_i - x_j} = \begin{cases} 1, & x = x_i \\ 0, & x \neq x_i \end{cases}$$
(1)

 $\mathbf{Sum}\ \mathbf{of}\ i^k$

let
$$f(n) = \sum_{i=1}^{n} i^{k}$$
, $d = k + 1$, then

$$f(n) = \sum_{i=0}^{k+1} f(i)l_i(n)$$

$$= \sum_{i=0}^{k+1} \left(\prod_{j=0, i \neq j}^{k+1} \frac{n - x_j}{x_i - x_j} \right)$$

$$= \sum_{i=0}^{k+1} f(i) \cdot \frac{n(n-1) \cdots (n-i+1)(n-i-1) \cdots (n-d)}{i(i-1) \cdots 1 \cdot (-1)(-2) \cdots (i-d)}$$

$$= \sum_{i=0}^{k+1} f(i) \cdot (-1)^{i+k+1} \cdot \frac{n(n-1) \cdots (n-i+1) \cdot (n-i-1) \cdots (n-d)}{i! \cdot (d-i)!}$$

8.11 Min25 Sieve

Prerequisite

f is multiplicative function, and f(p) is a low-degree polynomial, which can be calculated in quick time when p is a prime.

Formula

$$prime = \{p_1, p_2, \dots, p_j\}$$

$$sum_j = \sum_{i=1}^j f(p_i)$$

$$g(n, j) = \sum_{i=2}^n f(i) \cdot [i \in prime \text{ or } min(p) > p_j, p | i, p \in prime]$$

$$= g(n, j - 1) - f(p_j) \cdot \left(g\left(\left\lfloor \frac{n}{p_j} \right\rfloor, j - 1\right) - sum_{j-1}\right)$$

$$S(n, j) = \sum_{i=2}^n f(i) \cdot [min(p) > p_j, p | i, p \in prime]$$

$$= g(n, \infty) - sum_j + \sum_e \sum_{k=j+1} f(p_k^e) \cdot \left(S\left(\left\lfloor \frac{n}{p_k^e} \right\rfloor, k\right) + [e \neq 1]\right)$$

$$ans = \sum_{i=1}^n f(i) = S(n, 0) + f(1)$$

8.12 Matrix Tree

Illustration

Kirchhoff Matrix Tree is used to calculate the number of the spanning tree in a graph.

BEST is used to calculate the number of the Euler circuit in a Euler graph.

Undirected Graph

Define A is the adjacent matrix, D is the degree matrix, then

$$L(G) = D(G) - A(G)$$

$$t(G) = \det L(G) \begin{pmatrix} 1, 2, \dots, i - 1, i + 1, \dots, n \\ 1, 2, \dots, i - 1, i + 1, \dots, n \end{pmatrix}$$

Directed Graph

Define A is the adjacent matrix, D^{out} is the out degree matrix, D^{in} is the in degree matrix, then

$$L^{out}(G) = D^{out}(G) - A(G)$$

$$L^{in}(G) = D^{in}(G) - A(G)$$

$$t^{root}(G) = \det L^{out}(G) \begin{pmatrix} 1, 2, \dots, i - 1, i + 1, \dots, n \\ 1, 2, \dots, i - 1, i + 1, \dots, n \end{pmatrix}$$

$$t^{leaf}(G) = \det L^{in}(G) \begin{pmatrix} 1, 2, \dots, i - 1, i + 1, \dots, n \\ 1, 2, \dots, i - 1, i + 1, \dots, n \end{pmatrix}$$

BEST

$$ec(G) = t^{root}(G, k) \prod_{v \in V} (deg(v) - 1)!$$