Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-4703 Señales y Sistemas Profesores: M.Sc. José Miguel Barboza Retana

Lic. Daniel Kohkemper Granados M.Sc. Javier Rivera Alvarado Dr. Pablo Alvarado Moya

I Semestre, 2019 Examen Final

Total de Puntos:	105
Puntos obtenidos:	
Porcentaje:	
Nota:	

Nombre:		Carné:		

Advertencias:

- Resuelva el examen en forma individual, ordenada y clara.
- Cada ejercicio debe indicar el procedimiento o justificación completa de la solución.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe marcar su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **total**mente apagado durante el examen.
- No se permite el uso de **ningún tipo** de calculadora electrónica.
- El instructivo de examen debe ser devuelto junto con su solución.
- El incumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.

Preguntas 1-10	de 13
Pregunta 11	de 4
Pregunta 12	de 5
Pregunta 13	de 4
Pregunta 14	de 4
Problema 1	de 30
Problema 2	de 15
Problema 3	de 30

Preguntas

30 Pts

Debe justificar sus respuestas a las preguntas. Para ello basta un esbozo de la idea o concepto requerido, y si necesita más espacio puede utilizar el cuaderno de examen indicando claramente la pregunta correspondiente con su solución.

- 1. Un mapeo de variable compleja de la forma $w = \alpha z + \beta$, con $\alpha, \beta \in \mathbb{C}$ se denomina degenerado \sin 1 Pt
 - a) α y β son differentes de cero
 - b) α es diferente de cero y β es cero
 - c) α es cero
 - d) β es cero
- 2. La expresión $j^{-j\frac{4}{\pi}}$ equivale al valor:

1 Pt

- a) -1
- b) je^2
- c)
- 3. Una condición necesaria para que la función de variable compleja f(z) no sea conforme es que 1 Pt
 - a) f(z) sea analítica
 - b) la derivada de f(z) sea cero
 - c) la derivada de f(z) no sea cero
 - f(z) cumpla las ecuaciones de Cauchy-Riemann
- 4. Para una integral de variable compleja existe independencia de trayectoria si 1 Pt
 - la trayectoria cerrada encierra un polo de primer orden
 - b) la trayectoria es cerrada
 - el integrando es analítico c)
 - está expresada como funciones de variable real
- 5. Sean las funciones periódicas de variable y valor real x(t) e y(t) con coeficientes de serie de Fourier de exponenciales complejos c_k y d_k respectivamente. Si se cumple la relación $y(t) = -x\left(t - \frac{T_p}{2}\right)$ con T_p el periodo de las señales, entonces los coeficientes d_k se pueden expresar como:
 - $\bigcirc \quad a) \quad d_k = c_{-k}(-1)^k$

 - $\begin{array}{ccc}
 & c_{k} & c_{-k}(-1) \\
 & b) & d_{k} = c_{-k}e^{-j\frac{\pi}{2}k} \\
 & c) & d_{k} = -c_{k}(-1)^{k} \\
 & d) & d_{k} = c_{k}j^{k}
 \end{array}$

6. La magnitud del ángulo entre dos funciones ortogonales es

1 Pt

- \bigcirc a) $\pi/3$
- \bigcirc b) $\pi/4$
- \bigcirc c) π
- O (1) 11/2
- 7. Sea un sistema causal en tiempo continuo expresado por la función de transferencia:

2 Pts

$$H(s) = \frac{s^2 + s}{s^2 + s - 6}$$

Si este sistema se pone en cascada con otro sistema causal de función de transferencia G(s), indique con cuál de las siguientes funciones de transferencia el sistema total resultante sería estable:

- $\bigcirc \quad a) \quad G(s) = \frac{s+2}{s-1}$
- $\bigcirc b) \quad G(s) = \frac{s-2}{s+1}$
- $\bigcirc \quad c) \quad G(s) = \frac{s+2}{s+1}$
- $\bigcirc d) \quad G(s) = \frac{s-2}{s-1}$
- 8. Indique cuál de las siguientes regiones de convergencia en el plano s correspondería a la función de transferencia de un sistema anticausal y estable:
 - \bigcirc a) $\sigma > 2$
 - \bigcirc b) $\sigma < -1$
 - \bigcirc c) $-1 < \sigma < 2$
 - \bigcirc d) $\sigma < 2$
- 9. Se desean obtener muestras homogéneamente distribuidas de dos señales analógicas con espectros limitados en banda de anchos 4 kHz y 10 kHz. Indique con cuál de las siguientes tasas de muestro se asegura una representación digital que permitiría teóricamente reconstruir sin pérdida de información la señal original, y que a su vez garantiza el menor uso de memoria computacional si dichas señales tuviesen que ser almacenadas:

 - () b) 22,050 kHz
 - () c) 44,100 kHz
 - () d) 98,200 kHz

10. La función de variable compleja $f(z)=ze^z$ puede expresarse en funciones de valor y variables reales $u(x,y)+jv(x,y),\ u,v:\mathbb{R}^2\to\mathbb{R}$, como:

- $\bigcirc a) \quad e^x(y\cos y + x\sin x) je^x(y\sin y x\cos y)$
- \bigcirc b) $e^x(x\cos y y\sin y) + je^x(x\sin y + y\cos y)$
- \bigcirc c) $e^x(x\cos x y\sin x) je^x(y\sin x y\cos x)$
- \bigcirc d) $e^x(y\cos y + x\sin y) + je^x(x\sin y + x\cos y)$

11. Construya series de potencias con las características dadas en cada uno de los siguientes casos, considerando que dichas series corresponden a desarrollos de una función f(z), que deben ser válidos en regiones de convergencia que contienen al punto z_0 (donde la serie se centra) como punto límite y que k está asociado al término $(z-z_0)^k$.

a. Polo de orden 3 en z = 1 con coeficientes $a_k = (-1)^k$

b. Singularidad esencial en z=0 con $b_k=\frac{j^k}{|k|!}$, con tres términos en la parte de Taylor.

- c. Cero de orden 2 en z = -1 con $c_k = \left(\frac{1}{2}\right)^k$
- d. Punto regular en z=j con $d_k=\frac{k+1}{2^k}$

12. Un sistema LTI responde ante la entrada $\delta(t)$ con la salida $y(t) = e^{-t}u(t)$. Utilizando el formulario, especifique concretamente a qué funciones corresponden:

Respuesta al impulso:	
Respuesta en frecuencia:	
Función de transferencia:	
Respuesta en magnitud:	
Respuesta en fase:	

13. Las siguientes figuras representan las respuestas al impulso de cuatro sistemas LTI en tiempo discreto:

Ante la entrada u[n] (escalón unitario):

indique dentro de las cuadros marcados en las siguientes figuras, cuál es la respuesta al impulso $(h_1[n], h_2[n], h_3[n]$ ó $h_4[n])$ correspondiente con la salida del sistema ilustrada en cada figura: 4 Pts

14. Durante el funcionamiento de un sistema invariante en el tiempo se han observado las siguientes parejas de entrada-salida:4 Pts

$$x_1[n] = \begin{cases} 1, 0, 2 \end{cases} \xrightarrow{\mathcal{T}} y_1[n] = \begin{cases} 0, 1, 2 \end{cases}$$
$$x_2[n] = \begin{cases} 0, 0, 3 \end{cases} \xrightarrow{\mathcal{T}} y_2[n] = \begin{cases} 0, 1, 0, 2 \end{cases}$$
$$x_3[n] = \begin{cases} 0, 0, 0, 1 \end{cases} \xrightarrow{\mathcal{T}} y_3[n] = \begin{cases} 1, 2, 1 \end{cases}$$

- a) Determine si el sistema propuesto es lineal o no. Justifique su respuesta a partir de los resultados propuestos.
- b) Encuentre la respuesta al impulso h(n) del sistema a partir de los resultados mostrados sin utilizar la transformada z.

Problemas

Problema 1 Análisis de Fourier

30 Pts

Sea el impulso rectangular unitario centrado

$$\operatorname{rect}(t) = u\left(t + \frac{1}{2}\right)u\left(\frac{1}{2} - t\right)$$

- 1.1. Grafique la función rect $\left(\frac{t}{\tau}\right)$. Indique claramente los valores alcanzados en los ejes. 2 Pts Advertencia: Note que el argumento de rect solicitado es t/τ y no solo t.
- 1.2. Utilizando la tabla de transformadas del formulario, encuentre la transformada de Fourier $R_{\tau}(j\omega) = \mathscr{F}\left\{\operatorname{rect}\left(\frac{t}{\tau}\right)\right\}$ 2 Pts
- 1.3. Una ventana de Hanning centrada se define como

$$h(t) = \frac{1}{2} \left(1 + \cos \left(\frac{2\pi}{\tau} t \right) \right) \operatorname{rect} \left(\frac{t}{\tau} \right)$$
 (1.1)

Esboce gráficamente dicha función, etiquetando claramente los ejes

2 Pts

1.4. Utilizando las propiedades de multiplicación, convolución, modulación y/o linealidad, demuestre que $H(j\omega) = \mathscr{F}\{h(t)\}$ está dado por 5 Pts

$$H(j\omega) = \underbrace{\frac{\tau}{2} \operatorname{sa}\left(\frac{\omega\tau}{2}\right)}_{H_a(j\omega)} + \underbrace{\frac{\tau}{4} \operatorname{sa}\left(\frac{\omega\tau}{2} - \pi\right)}_{H_b(j\omega)} + \underbrace{\frac{\tau}{4} \operatorname{sa}\left(\frac{\omega\tau}{2} + \pi\right)}_{H_c(j\omega)}$$
(1.2)

1.5. La respuesta en frecuencia del sistema se ilustra en la figura 1.1, así como sus partes. 4 Pts

Figura 1.1: Respuesta en frecuencia de una ventana de Hanning centrada.

Indique en dicha figura a qué trazas corresponden los términos $H(j\omega)$, $H_a(j\omega)$, $H_b(j\omega)$ y $H_c(j\omega)$ de (1.2).

1.6. La función x(t) ilustrada en la figura 1.2, tiene como transformada de Fourier:

$$X(j\omega) = \frac{\tau}{4} \operatorname{sa}^{2} \left(\frac{\tau}{8} \omega \right) \tag{1.3}$$

Figura 1.2: Función x(t) cuya transformada de Fourier debe calcularse en el punto 1.6.

Sea $\hat{x}(t)$ la continuación periódica de la función x(t) (figura 1.2):

$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} x(t - k\tau)$$
(1.4)

Grafique $\hat{x}(t)$ para $t \in [-2\tau, 2\tau]$.

3 Pts

- 1.7. Encuentre los coeficientes de la serie de Fourier de $\hat{x}(t)$ a partir de $X(j\omega)$, y con ellos la transformada de Fourier $\mathscr{F}\{\hat{x}(t)\}$.
- 1.8. Si un sistema LTI responde ante el impulso con la ventana de Hanning h(t), encuentre entonces la respuesta en el tiempo de dicho sistema ante la entrada periódica $\hat{x}(t)$.

Problema 2 Análisis de Sistemas en Tiempo Continuo

15 Pts

Acerca de la función de transferencia de un sistema LTI en tiempo continuo causal, se conoce lo siguiente:

a. Posee el diagrama de polos y ceros ilustrado en la figura 2.1.

Figura 2.1: Diagrama de polos y ceros del sistema causal del problema 2.

- b. La respuesta del sistema ante un escalón tiende a 2 cuando $t \to \infty$
- 2.1. Indique gráficamente y con una expresión algebraica cuál es la región de convergencia del sistema 2 Pts

2.2. Indique si el sistema es estable. Justifique.

2.3. Determine la función de transferencia del sistema.

2.4. Determine el valor de K. Considere la información conocida para el sistema.

4 Pts

2.5. Determine la respuesta al impulso del sistema.

6 Pts

Problema 3 Análisis de sistemas en tiempo discreto

30 Pts

Considere el sistema en tiempo discreto causal $y[n] = \mathcal{T}[x[n]]$ descrito por el diagrama de bloques mostrado en la Figura 3.1, donde todas las constantes del sistema son reales.

Figura 3.1: Diagrama de bloques del sistema en tiempo discreto $y[n] = \mathcal{T}[x[n]]$

3.1. Realizando un análisis del diagrama de bloques del sistema mostrado en la figura 3.1, demuestre que la expresión algebraica de la función de transferencia del mismo está dada por:

[6 Pts]

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$
(3.1)

3.2. Determine la ecuación de diferencias que permite describir la salida del sistema y(n). 2 Pts

3.3. Determine el rango de valores que puede tomar la constante a_1 del sistema H(z) de forma que este tenga un comportamiento estable considerando que: $a_2 = -1/2$, $b_0 = 1$, $b_1 = 1$ y $b_2 = -2$.

3.4. Obtenga la respuesta forzada del sistema con función H(z) para la entrada

$$x[n] = 2^n u[-n] + u[n-1]$$

Para ello considere que $b_0=1,\ b_1=1,\ b_2=-2,\ a_1=0\ {\rm y}\ a_2=-1/4.$

3.5. Considere el sistema inverso del sistema H(z) definido por $H_I(z)=1/H(z)$. Si $b_0=1$, $b_1=1, b_2=-2, \ a_1=0$ y $a_2=-1/4$, determine si el sistema inverso $H_I(z)$ es estable o no para un comportamiento causal del mismo.