Exercice 1 (Nilpotent) Soit E de dimension n > 0, f dans L(E) nilpotent d'indice de nilpotence p (ie $f^p = 0$ et $f^{p-1} \neq 0$).

- 1. Donner un exemple.
- 2. Adapter cette définition pour une matrice carrée.
- 3. Soit $x_0 \notin \ker(f^{p-1})$. Montrer que $B = (x_0, f(x_0), ..., f^{p-1}(x_0))$ est libre, en déduire une majoration de l'indice de nilpotence.
- 4. Donner un exemple montrant que cette majoration est optimale.
- 5. Soit A, B dans $M_n(\mathbb{K})$ telles que $(AB)^n = 0$, montrer que $(BA)^n = 0$.
- 6. Existe-t-il $A \in M_2(\mathbb{R})$ telle que $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$?

Exercice 2 (Polynômes de Hilbert) Notons $H_0 = 1, H_1 = X$ et pour n > 1:

$$H_n = \frac{X(X-1)(X-2)...(X-n+1)}{n!}$$

- 1. Calculer $H_{10}(4)$, $H_{10}(-4)$ et $H_{10}(13)$.
- 2. Montrer que $(H_0, H_1, ..., H_n)$ est une base de $\mathbb{R}_n[X]$ puis que $(H_n)_{n \in \mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- 3. Montrer que $\phi: P(X) \mapsto P(X+1) P(X)$ est un endomorphisme de $\mathbb{R}_n[X]$.
- 4. Former sa matrice dans la base $(H_0, H_1, ..., H_n)$. On pourra montrer que pour $k > 0, \phi(H_k) = H_{k-1}$.

Exercice 3 (Nilpotent cyclique) Soit E de dimension n > 0, u dans L(E) nilpotent d'indice n.

- 1. Soit $x_0 \notin \ker(f^{n-1})$. Montrer que $B = (x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E et donner la matrice de u dans B.
- 2. Soit $v \in L(E)$. Montrer que u et v commutent ssi $v \in \text{Vect}(Id_E, u, u^2, ..., u^{n-1})$.
- 3. Exhiber un tel x_0 pour l'endomorphisme de \mathbb{R}^3 de matrice dans la base canonique : $A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 4 Soit E de dimension finie et p un projecteur. Montrer que la trace de p est égale à son rang.

Exercice 5 Existe-t-il deux matrices A, B de $M_n(\mathbb{K})$ avec n > 0 telles que $AB - BA = I_n$?

Exercice 6 (Suites récurrentes linéaires) Soit a, b deux scalaires et

$$E = \{u \in \mathbb{K}^n, \forall n \in \mathbb{N}, u_{n+1} + au_{n+1} + bu_n = 0\}$$

- 1. Montrer que E est un \mathbb{K} -ev et que $\phi: u \mapsto (u_0, u_1)$ est un isomorphisme.
- 2. On suppose que l'équation caractéristique $r^2 + ar + b = 0$ a deux racines distinctes r_1, r_2 . Donner la forme des éléments de E.
- 3. Recommencer avec une racine double pour l'équation caractéristique.
- 4. Déterminer le terme général de la suite vérifiant $u_0 = 0, u_1 = 1$ et pour tout $n \ge 0, u_{n+1} = u_{n+1} + u_n$.
- 5. Déterminer le terme général de la suite vérifiant $u_0 = 1$, $u_1 = 1$ et pour tout $n \ge 0$, $u_{n+1} + u_{n+1} + u_n = n$.

Exercice 7 Montrer que les matrices suivantes ne sont pas semblables :

1.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
2. $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
4. $A = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Exercice 8 Montrer que $A = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$ sont semblables.

Exercice 9 Soit $A \in M_{3,2}(\mathbb{R})$, $B \in M_{2,3}(\mathbb{R})$ telles que $AB = \begin{pmatrix} 1 & 1 & 2 \\ -2 & x & 1 \\ 1 & -2 & 1 \end{pmatrix}$. Déterminer x. Construire ensuite deux matrices convenant.

Exercice 10 On travaille dans $E = \mathbb{R}^{\mathbb{R}}$ le \mathbb{R} -ev des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que l'application $s: f \mapsto f$ avec f(x) = f(-x) est une symétrie de E.
- 2. Déterminer $\ker f$, $\operatorname{Im} f$, $\ker (f id)$ et $\ker (f + id)$
- 3. Montrer que $\mathbb{R}^{\mathbb{R}}$ est somme directe des sevs des fonctions paires et des fonctions impaires. Préciser les projecteurs sur ces sevs et les exprimer à l'aide de s.

Exercice 11

- 1. Montrer que $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ vérifient $g \circ f = 0$ ssi Im $f \subset \ker g$.
- 2. Soit $f \in L(E)$ vérifiant $f^2 + f 2id_E = 0$.
 - (a) Calculer $(f id_E) \circ (f + 2id_E)$ et $(f + 2id_E) \circ (f id_E)$.
 - (b) En déduire que $\operatorname{Im}(f id_E) \subset \ker(f + 2id_E)$ et $\operatorname{Im}(f + 2id_E) \subset \ker(f id_E)$.
 - (c) Montrer que $E = \ker(f + 2id_E) \oplus \ker(f id_E)$

Exercice 12 On note $\mathbb{C}_{\mathbb{R}}$ l'ensemble \mathbb{C} considéré comme \mathbb{R} -ev. Soit $a=e^{i\alpha}$ et $f:z\in\mathbb{C}\mapsto z-a\overline{z}$.

- 1. Assurez vous que vous avez bien compris ce qu'est $\mathbb{C}_{\mathbb{R}}$.
- 2. Montrez que f est un endomorphisme de $\mathbb{C}_{\mathbb{R}}$.
- 3. Montrez que $\frac{1}{2}f$ est un projecteur puis que $\mathbb{C}_{\mathbb{R}} = \ker f \oplus \operatorname{Im} f$.
- 4. Décrire $\ker f$ et $\operatorname{Im} f$.

Exercice 13 Soit $u, v \in L(E, F)$ montrer que $\operatorname{Im}(u+v) \subset \operatorname{Im} u + \operatorname{Im} v$ et $\ker u \cap \ker v \subset \ker (u+v)$, montrer par des exemples que les inclusions peuvent être strictes.

Exercice 14 Démontrer que, pour tout $n \ge 0$, pour tout $P \in \mathbb{R}_n[X]$, il existe un unique $Q \in \mathbb{R}_n[X]$ tel que $P = \sum_{k=0}^n Q^{(k)}$

Exercice 15 En dim finie montrer que : $|rg(u) - rg(v)| \le rg(u + v) \le rg(u) + rg(v)$.

Exercice 16 Soit E de dimension 3 et $f \in L(E)$ tel que $f \neq 0$ et $f^2 = 0$. Rang de f?

Exercice 17 Soit E un espace vectoriel de dimension finie. Montrer qu'il existe $f \in \mathcal{L}(E)$ tel que $\ker(f) = \operatorname{Im}(f)$ si et seulement si E est de dimension paire.

Exercice 18 Soit f, g deux endomorphismes de E (avec dim E quelconque) tels que $f \circ g = id_E$. Montrer que :

1.
$$\ker(g \circ f) = \ker(f)$$

2.
$$\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$$

3.
$$E = \ker(f) \oplus \operatorname{Im}(g)$$

Exercice 19 Soit E un ev de dimension finie $n, f, g \in L(E)$ tels que : $E = \ker f + \ker g = \operatorname{Im} f + \operatorname{Im} g$. Montrez que les sommes sont directes.

Exercice 20 Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'.$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u) et de ker(u).
- 3. Montrer que ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 21 Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; x = y = z = t\}$. Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 22 (Noyaux et images itérés) Soit u un endomorphisme d'un \mathbb{K} -ev E.

- 1. Montrer que la suite des noyaux itérés $\left(\ker(u^k)\right)_{k\in\mathbb{N}}$ est croissante et que la suite des images itérées $\left(\operatorname{Im}(u^k)\right)_{k\in\mathbb{N}}$ est décroissante.
- 2. Les déterminer quand $E = \mathbb{K}[X]$ et $u : P \mapsto P'$.
- 3. Montrer que s'il existe p dans \mathbb{N} tel que $\ker(u^p) = \ker(u^{p+1})$ alors pour tout k supérieur à p on a $\ker(u^k) = \ker(u^p)$.
- 4. Montrer que si E est de dimension finie alors il existe $p \in \mathbb{N}$ tel que $\ker(u^p) = \ker(u^{p+1})$. Comparer alors $\operatorname{Im}(u^p) = \operatorname{Im}(u^{p+1})$ et montrer que $E = \ker(u^p) \oplus \operatorname{Im}(u^p)$.