МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

Графики функций

Учебно-методическое пособие

Рекомендовано методической комиссией факультета ВМК для студентов ННГУ, обучающихся по направлениям подготовки 01.03.02 «Прикладная математика и информатика, 09.03.03 «Прикладная информатика» 02.03.02 «Фундаментальная информатика и информационные технологии»

Нижний Новгород 2015 УДК 517.5(075.8) ББК 22..16я73

Г-78. Графики функций: учебно-метод. пособие/ сост. Т.П.Киселева, И.И.Олюнина. - Нижний Новгород: Изд-во ННГУ, 2015. - 43с.

Рецензент: к. ф.-м. н., доцент А.Г. Коротченко

В учебно-методическом пособии содержатся задания для самостоятельной работы по разделу «Графики функций» курса «Математический анализ» с указаниями по анализу функций и построению их графиков.

Работа будет полезна преподавателям при проведении практических занятий, а студентам первого курса факультета ВМК при подготовке к контрольным и зачетным работам по математическому анализу.

Ответственный за выпуск: заместитель председателя методической комиссии факультета ВМК ННГУ, к.т.н., доцент **В.М. Сморкалова**

УДК 517.5(075.8) ББК 22.16я73

Содержание

Введен	ие	4
1.	Построение графиков путем преобразования	
	графиков известных функций	5
1.1.	Построение графиков в декартовых	
	координатах	5
1.2.	Построение графиков в полярных	
	координатах	8
2.	Построение графика функции по результатам	
	её исследования	13
2.1.	Этапы исследование функции	13
2.2.	Построение графиков функций, заданных	
	явно	15
2.3.	Построение графиков функций, заданных в	
	параметрической форме	25
3.	Задания для самостоятельной работы	37
Литера	тура	43

Введение

Настоящее учебно-методическое пособие написано на основе многолетнего опыта проведения практических занятий по математическому анализу в Нижегородском госуниверситете на факультете Вычислительной математики и кибернетики. Тематика самостоятельных работ определяется содержанием лекций курса «Математический анализ» по теме «Функции одной переменной». Подобранные в учебно-методическом пособии задания будут полезны преподавателям при проведении практических занятий по курсу математического анализа по теме «Графики функций», а студентам для самостоятельной работы при подготовке к коллоквиумам, зачетам и экзаменам

Цель работы:

- 1. Проведение аналитического исследования функций (заданных явно или параметрически).
- 2. Построение графика с использованием результата исследования.

1. Построение графиков путем преобразования графиков известных функций

В случае, когда заданная функция есть сумма, или произведение известных функций, то для построения её графика достаточно графически складывать и перемножать графики этих известных функций.

1.1.Построение графиков в декартовых координатах

Покажем на примере построения графика функции y = shx, как складываются графики известных функций.

Гиперболический синус
$$shx = \frac{e^x - e^{-x}}{2} = \frac{e^x}{2} + \left(-\frac{e^{-x}}{2}\right).$$

Нанесем пунктиром на координатную плоскость известные графики слагаемых. Затем для каждого x надо сложить ординаты исходных графиков. (Рис. 1).

Учитывая, что $\frac{e^x}{2} \xrightarrow[x \to -\infty]{} 0$, $\frac{e^{-x}}{2} \xrightarrow[x \to +\infty]{} 0$ и sh(-x) = -shx, окончательно строим график функции y = shx.

Аналогично строится график функции y = chx. (Рис. 2).

Гиперболический косинус
$$chx = \frac{e^x + e^{-x}}{2} = \frac{e^x}{2} + \frac{e^{-x}}{2}$$
.

На примере построения графика функции y = thx, покажем, как умножать графики известных функций.

Гиперболический тангенс
$$thx = \frac{shx}{chx} = \frac{e^x - e^{-x}}{2} \cdot \frac{2}{e^x + e^{-x}}$$
.

Построение его графика сводится к перемножению известного графика функции $y_1 = shx$ и графика функции $y_2 = \frac{1}{chx}$, который надо построить. Заметим, что $ch0 = \frac{e^0 + e^{-0}}{2} = 1$, $\frac{1}{ch0} = 1$, $chx \underset{x \to \pm \infty}{\to} + \infty$, $\frac{1}{chx} \underset{x \to \pm \infty}{\to} + 0$. Учитывая, что $y_2' = -\frac{shx}{ch^2x}$ и $y_2'(0) = -\frac{sh0}{ch^20} = 0$, получаем: касательная к графику функции $y_2 = \frac{1}{chx}$ в точке x = 0 существует и параллельна оси Ox.

В силу нечетности $thx = \frac{shx}{chx}$ достаточно построить его график для x>0, а затем отобразить симметрично относительно начала координат. Перемножим теперь графики функций $y_1 = shx$ и $y_2 = \frac{1}{chx}$. Для уточнения поведения на бесконечности найдем предел нашего гиперболического тангенса при $x \to +\infty$: $\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{1 - 0}{1 + 0} = 1 - 0$.

Кроме того, отметим, что $(thx)' = \frac{1}{ch^2x} > 0$, т.е. функция монотонно возрастает.

Рис.3

Рис.4

Аналогично строится график гиперболического котангенса $cthx = \frac{chx}{shx} = \frac{e^x + e^{-x}}{2} \cdot \frac{2}{e^x - e^{-x}}$ (Рис. 6).

Pис.5 $y_2 = \frac{1}{shx}$

Рис.6

1.2. Построение графиков в полярных координатах

Полярными координатами точки M на плоскости являются длина радиус-вектора r - расстояние от точки M до точки O (полюса) и полярный угол φ - угол наклона радиусвектора к полярной оси.

Рис.7.

Если совместить ось Ox с полярной и через полюс провести ось Oy, то из прямоугольного $\triangle OAM$ получим формулы связи прямоугольных и полярных координат.

$$\begin{cases} x = r \cdot \cos \varphi \\ y = r \cdot \sin \varphi \end{cases} \Leftrightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \varphi = \pm arctg \frac{y}{x} + \pi n, n \in Z \end{cases}$$

По определению r - величина неотрицательная: $0 \le r < +\infty$. Таким образом, из формул связи, учитывая, что кривая в полярной системе координат задается уравнением $r = r(\varphi)$, получим параметрическое задание кривой:

$$\begin{cases} x = r(\varphi)\cos\varphi \\ y = r(\varphi)\sin\varphi \end{cases}, \quad \alpha \le \varphi \le \beta, \text{ где } \varphi \text{ - параметр.}$$

Способ построения таких кривых с полным исследованием см. в п. 2.3. Но, если $r=r(\phi)$ - известная функция, то задача построения её графика не требует детального исследования функции.

Пример.

Покажем, как строится график кривой, заданной в полярных координатах на примере Лемнискаты Бернулли $r^2 = 2\cos 2\varphi$.

 $\frac{\text{Решение.}}{4} \quad \Phi \text{ункция} \quad r = \sqrt{2\cos 2\varphi} \quad \text{- периодическая, c}$ периодом π . Она определена, если $\cos 2\varphi \geq 0$: $-\frac{\pi}{4} \leq \varphi \leq \frac{\pi}{4}$ и $\frac{3\pi}{4} \leq \varphi \leq \frac{5\pi}{4}$. В силу периодичности и четности её график симметричен относительно лучей $\varphi = 0$, $\varphi = \pi$, $\varphi = \frac{\pi}{2}$, $\varphi = \frac{3\pi}{2}$. Следовательно, достаточно взять таблицу значений на промежутке $0 \leq \varphi \leq \frac{\pi}{4}$.

φ	r
0	$\sqrt{2}$
$\frac{\pi}{12}$	4√3
$\frac{\pi}{8}$	$\sqrt[4]{2}$
$\frac{\pi}{6}$	1
$\frac{\pi}{4}$	0

Рис. 8. Лемниската Бернулли.

Построение ведется следующим образом: на полярной оси $(\varphi=0)$ откладывается отрезок OA длиной $\mathit{r}(0)=\sqrt{2}$. Затем проводим луч под углом $\varphi=\frac{\pi}{12}$ и на нем откладываем отрезок OB длиной $\mathit{r}(\frac{\pi}{12})=\sqrt[4]{3}$. На луче $\varphi=\frac{\pi}{8}$ откладываем отрезок OC длиной $\mathit{r}(\frac{\pi}{8})=\sqrt[4]{2}$, на луче $\varphi=\frac{\pi}{6}$ - отрезок OD длиной $\mathit{r}(\frac{\pi}{6})=1$, на луче $\varphi=\frac{\pi}{4}$ -точку O , т.к. $\mathit{r}(\frac{\pi}{4})=0$. Точки O , B , C , D , O соединяем плавной линией. Остальную часть кривой проводим, учитывая симметрию (Рис. 8).

Пример.

 $r = \sqrt{2} \sin 3\varphi$ - трехлепестковая роза.

φ	r
0	0

$\frac{\pi}{18}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{12}$	1
$\frac{\pi}{9}$	$\frac{\sqrt{6}}{2}$
$\frac{\pi}{6}$	$\sqrt{2}$

При построении на полярной оси $(\varphi=0)$ отмечается точка 0, на луче $\varphi=\frac{\pi}{18}$ - отрезок длиной $\frac{\sqrt{2}}{2}$, на луче $\varphi=\frac{\pi}{12}$ -откладываем отрезок OC длиной $r(\frac{\pi}{8})=\sqrt[4]{2}$, на луче $\varphi=\frac{\pi}{6}$ - 1, и т.д. отмеченные точки соединяем плавной линией. Остальную часть кривой дорисовываем, учитывая периодичность (Рис.9).

Пример.

$$r = \frac{p}{1 - \cos \omega}$$
, $p > 0$ - парабола.

Решение. Область определения функции $\varphi \neq 2\pi k$. Учитывая периодичность и четности $\cos \varphi$, достаточно взять таблицу значений на промежутке $0 < \varphi \leq \pi$ и найти $\lim_{\varphi \to 0} r(\varphi)$ (т.к. в нуле функция не определена).

$$\lim_{\varphi \to 0} r(\varphi) = \lim_{\varphi \to +0} \frac{p}{1 - \cos \varphi} = +\infty$$

φ	r
0	+ ∞
$\frac{\pi}{6}$	$2(2+\sqrt{3})p$
$\frac{\pi}{3}$	2 <i>p</i>
$\frac{\pi}{2}$	p
π	$\frac{p}{2}$

Рис.10. Парабола

Замечание. Подставив
$$r=\sqrt{x^2+y^2}$$
 , $\cos \varphi=\sqrt{\frac{x^2}{x^2+y^2}}$ в уравнение $r=\frac{p}{1-\cos \varphi}$, получим каноническое уравнение параболы $y^2=2p(x+\frac{p}{2})$

2. Построение графика функции по результатам её исследования

В более сложном случае, когда заданная функция не может быть представлена суммой или произведением известных функций, для построения её графика необходимо провести исследование функции.

2.1. Этапы исследование функции

Исследование функции, заданной явно, проводится по схеме:

- 1. Поиск области определения функции.
- 2. Выяснение симметрии графика.
- 3. Определение периодичности функции.
- 4. Поиск точек пересечения кривой с осями координат.
- 5. Исследование поведения функции на границе области определения.
- 6. Поиск точек разрыва с исследованием характера разрыва.
 - 7. Поиск асимптот.
 - 8. Поиск экстремумов.
- 9. Поиск точек перегиба и исследование выпуклости графика функции.
 - 10. Указание дополнительных особенностей графика.

Вспомним, как находятся асимптоты графика функции y = f(x).

Прямая x=a является вертикальной асимптотой графика функции y=f(x), если выполняется хотя бы одно из следующих условий: $\lim_{x\to a+0} f(x) = +\infty$, или $\lim_{x\to a-0} f(x) = -\infty$, или $\lim_{x\to a-0} f(x) = -\infty$.

Для существования наклонной асимптоты y = kx + b графика функции y = f(x) необходимо и достаточно, чтобы существовали два предела:

$$\lim_{x\to +\infty} \frac{f(x)}{x} = k \quad \text{и} \quad \lim_{x\to +\infty} (f(x)-kx) = b \,, \ \text{или}$$

$$\lim_{x\to -\infty} \frac{f(x)}{x} = k \quad \text{и} \quad \lim_{x\to -\infty} (f(x)-kx) = b \,.$$

В частном случае при k=0 получим горизонтальную асимптоту.

Исследование функции на экстремум проводится следующим образом. На первом этапе находим подозрительные на экстремум точки функции y = f(x). Это точки, в которых y' = f'(x) равна $0, \pm \infty$ или не существует. На втором этапе определяем, действительно ли это точки экстремума. Для чего анализируем знак производной слева и справа от найденной точки. Если производная меняет знак с плюса на минус, то это — точка максимума. Если производная меняет знак с минуса на плюс, то это — точка минимума. Если же производная знака не меняет, то экстремума нет.

Аналогично, с помощью второй производной находятся точки перегиба.

На основе полученных результатов исследования выполняется построение графика функции.

2.2. Построение графиков функций, заданных явно

Пример.

Исследовать функцию y = x - 5 arct g x и построить её график.

Решение.

- 1. Функция определена на всей действительной оси $x \in (-\infty, +\infty)$.
- 2. Функция нечетная (y(-x) = -x + 5arctgx = -y(x)) график симметричен относительно начала координат. Поэтому исследование функции и построение её графика можно проводить в области $x \ge 0$.
- 3. График функции пересекает ось Ox в точках $x_1 = 0$, $x_2 \approx 7.2$; ось Oy в точке y = 0.
- 4. Функция непрерывна на всей области определения. Точек разрыва нет. Значение на границе определения есть $\lim_{x\to +\infty}(x-5arctgx)=\pm\infty$
 - 5. Исследуем наличие асимптот:

$$\lim_{x \to +\infty} \frac{x - 5arctgx}{x} = 1 = k , \quad \lim_{x \to +\infty} ((x - 5arctgx) - 1 \cdot x) = -\frac{5\pi}{2} = b .$$

Следовательно, $y = x - \frac{5\pi}{2}$ является наклонной асимптотой.

Вертикальных асимптот нет (нет точек разрыва второго рода, бесконечных).

6. Найдем точки экстремума функции.

$$y' = 1 - \frac{5}{1+x^2} = \frac{x^2 - 4}{1+x^2} = 0$$

Точка x=2 - стационарная точка. Для определения того, является ли эта точка экстремальной, исследуем знак производной $y'=\frac{(x-2)(x+2)}{1+x^2}$

Итак, x = 2 - точка минимума (тогда, в силу симметрии x = -2 точка максимума).

7. Анализируя вторую производную, найдем точки перегиба и участки выпуклости функции $y'' = \frac{10x}{(1+x^2)^2}$.

Т.к. y''(0) = 0, то точка x = 0 - точка перегиба, y''(x) > 0 при x > 0 - $(0; +\infty)$ - область выпуклости вниз.

8. Найдем значение функции, а также её производной для некоторых значений аргумента и построим график функции сначала для $x \ge 0$, а потом отобразим его симметрично относительно начала координат на область $(-\infty;0)$.

х	У	y'
0	0	-4
1	$1 - 5\frac{\pi}{4} \approx -2.93$	$-\frac{3}{2}$
2	$2 - 5arctg 2 \approx -3.5$	0

Пример.

Исследовать функцию $y = \sqrt[3]{(x^2 - 4)^2}$ и построить её график.

Решение.

- 1. Функция определена на всей действительной оси $x \in (-\infty, +\infty)$.
- 2. Функция четная ($y(-x) = \sqrt[3]{((-x)^2 4)^2} = y(x)$) график симметричен относительно оси Oy. Поэтому исследование функции и построение её графика можно проводить в области $x \ge 0$.
- 3. График функции имеет с осью Ox одну общую точку x=2, ось Oy пересекает в точке $y=2\sqrt[3]{2}$.
- 4. Функция непрерывна на всей области определения. Точек разрыва нет. Значение на границе определения есть $\lim_{x\to +\infty} \sqrt[3]{(x^2-4)^2} = +\infty$
 - 5. Исследуем наличие асимптот:

$$\lim_{x \to +\infty} \frac{\sqrt[3]{(x^2 - 4)^2}}{x} = \lim_{x \to +\infty} \frac{x^{\frac{4}{3}} \cdot \sqrt[3]{(1 - \frac{4}{x^2})^2}}{x} = \lim_{x \to +\infty} \frac{x^{\frac{1}{3}} \cdot \sqrt[3]{(1 - \frac{4}{x^2})^2}}{1} = = \infty \neq k, .$$

Следовательно, наклонных асимптот у графика нет. Вертикальных асимптот тоже нет, т.к. нет точек разрыва второго рода, бесконечных.

6. Найдем точки экстремума функции.

$$y' = \frac{4x}{3 \cdot \sqrt[3]{x^2 - 4}}$$

Производная не существует в точке x = 2 и равна нулю в точке x = 0. Это точки подозрительные на экстремум.

Знаки производной показывают, что x=0 - точка максимума, x=2 - точка минимума. Т.к. в точке x=2 производная не существует, найдем в этой точке односторонние производные.

$$y'_{-}(2) = \lim_{x \to 2-0} \frac{\sqrt[3]{(x^2 - 4)^2} - \sqrt[3]{(2^2 - 4)^2}}{x - 2} = \lim_{x \to 2-0} \frac{\sqrt[3]{(x - 2)^2} \cdot \sqrt[3]{(x + 2)^2}}{x - 2} = \lim_{x \to 2-0} \frac{\sqrt[3]{(x + 2)^2}}{\sqrt[3]{x - 2}} = -\infty$$

$$y'_{+}(2) = \lim_{x \to 2+0} \frac{\sqrt[3]{(x^2 - 4)^2} - \sqrt[3]{(2^2 - 4)^2}}{x - 2} = \lim_{x \to 2+0} \frac{\sqrt[3]{(x + 2)^2}}{\sqrt[3]{x - 2}} = +\infty$$

Следовательно, в точке x = 2 имеем точку возврата функции, причем график функции касается прямой x = 2 с двух сторон

7. Анализируя вторую производную, найдем точки перегиба и участки выпуклости функции.

$$y'' = \frac{4(x^2 - 12)}{9 \cdot \sqrt[3]{(x^2 - 4)^4}}$$

y'' не существует при x = 2 и $y''(\sqrt{12}) = 0$.

Точка $x=\sqrt{12}$ - точка перегиба, потому что y''(x)>0 при $x>\sqrt{12}$ и y''(x)<0 при $x<\sqrt{12}$ - $(\sqrt{12};+\infty)$ - область выпуклости вниз.

8. Найдем значение функции, а также её производной для некоторых значений аргумента и построим график функции сначала для $x \ge 0$, а потом отобразим его симметрично относительно оси Oy на область $(-\infty;0)$.

х	У	y'
0	$2\cdot\sqrt[3]{2}$	0
2-0	0	- &
2+0	O	+ ∞
$2\sqrt{3}$	4	$\frac{4}{\sqrt{3}}$

Пример.

Исследовать функцию $y = \arcsin \frac{2x}{1+x^2}$ и построить её график.

Решение.

1. Функция определена на всей действительной оси, т.к. $\left|\frac{2x}{1+x^2}\right| \le 1 \quad \text{при} \quad x \in (-\infty, +\infty) \ .$

2. Функция четная
$$(y(-x) = \arcsin \frac{2(-x)}{1 + (-x)^2} = -y(x))$$

график симметричен относительно начала координат. Поэтому исследование функции и построение её графика можно проводить в области $x \ge 0$.

- 3. График функции пересекает оси координат в точке (0,0).
- 4. Функция непрерывна на всей области определения. Точек разрыва нет. Значение на границе определения есть

$$\lim_{x \to +\infty} \arcsin \frac{2x}{1+x^2} = +0$$

5. Исследуем наличие асимптот:

$$\lim_{x \to +\infty} \frac{\arcsin \frac{2x}{1+x^2}}{x} = 0 = k , \quad \lim_{x \to +\infty} ((\arcsin \frac{2x}{1+x^2}) - 0 \cdot x) = 0 = b .$$

Следовательно, y = 0 является горизонтальной асимптотой. Вертикальных асимптот тоже нет, т.к. нет точек разрыва второго рода, бесконечных.

6. Найдем точки экстремума функции.

$$y' = \frac{2}{\text{sgn}(1 - x^2)(1 + x^2)}$$

В точке x=1 производная не существует — это точка подозрительная на экстремум. Для определения того, действительно ли эта точка экстремальная, исследуем знак производной.

Итак, x = 1 - точка максимума.

Для уточнения графика функции, исследуем, чему равны левая $y_{-}^{\prime}(1)$ и правая $y_{+}^{\prime}(1)$ производные в точке x=1.

$$y'_{-}(1) = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \arcsin \frac{2 \cdot 1}{1+1^2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\sqrt{1 - \frac{(2x)^2}{(1+x^2)^2}}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\frac{|1-x^2|}{1+x^2}}{x-1} = \lim_{x \to 1-0} \frac{-\frac{|1-x^2|}{1+x^2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)}$$

$$= \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\left|(1-x)(1+x)\right|}{(x-1)(1+x^2)} =$$

$$= \lim_{x \to 1-0} \frac{\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}}{\sin \left(\arcsin \frac{2x}{1+x^2} - \frac{\pi}{2}\right)} \cdot \frac{-\left|(1-x)\right|}{(x-1)} \cdot \frac{\left|1+x\right|}{1+x^2} = 1 \cdot 1 \cdot \frac{2}{2} = 1,$$

$$y'_{+}(1) = \lim_{x \to 1+0} \frac{\arcsin \frac{2x}{1+x^2} - \arcsin \frac{2 \cdot 1}{1+1^2}}{x-1} = -1.$$

Т.о. точка x=1 является угловой точкой, причем тангенс угла наклона левой касательной 1 (угол $\frac{\pi}{4}$), справа тангенс угла наклона -1 (угол $-\frac{\pi}{4}$).

7. Анализируя вторую производную, найдем точки перегиба и участки выпуклости функции.

$$y'' = \frac{4x}{\operatorname{sgn}(1 - x^2)(1 + x^2)^2},$$

Т.о. y''(0) = 0, а y''(1) не существует. Т.к. y''(x) < 0 при x > 1 - $(1;+\infty)$ - область выпуклости вниз; y''(x) > 0 при 0 < x < 1 - (0;1) - области выпуклости вверх. Точки x = 0, x = 1 - точки перегиба, причем $y'(0) = 2 \approx tg 63,5^{0}$.

8. Найдем значение функции, а также её производной для некоторых значений аргумента и построим график функции сначала для $x \ge 0$, а потом отобразим его симметрично относительно начала координат на область $(-\infty;0)$.

Х	у	y'
0	0	2
1-0		1
1+0	$\frac{\pi}{2}$	-1

Пример.

Исследовать функцию $y = \sqrt[3]{(x-3)(x-6)^2}$ и построить её график.

Решение.

- 1. Функция определена на всей действительной оси $x \in (-\infty, +\infty)$.
- 2. Функция общего вида, отрицательная при x < 3, положительная при x > 3.
- 3. График функции имеет с осью Ox две общие точки x=3 и x=6, ось Oy пересекает в точке $y=3\cdot\sqrt[3]{4}$.
- 4. Функция непрерывна на всей области определения. Точек разрыва нет. Значение на границе определения есть $\lim_{x\to +\infty} \sqrt[3]{(x-3)(x-6)^2} = \pm \infty$
 - 5. Исследуем наличие асимптот:

$$\lim_{x \to \pm \infty} \frac{\sqrt[3]{(x-3)(x-6)^2}}{x} = \lim_{x \to \pm \infty} \frac{x \cdot \sqrt[3]{(1-\frac{3}{x})(1-\frac{6}{x})^2}}{x} = 1 = k$$

$$\lim_{x \to \pm \infty} (\sqrt[3]{(x-3)(x-6)^2} - 1 \cdot x) = -5 = b.$$

Следовательно, y = x - 5 наклонная асимптота графика. Вертикальных асимптот нет, т.к. нет точек разрыва второго рода, бесконечных.

6. Найдем точки экстремума функции
$$y' = \frac{x-4}{\sqrt[3]{(x-3)^2(x-6)}}$$

В точках x = 3,6 производная не существует, в точке x = 4 производная равна нулю — это точки подозрительные на экстремум. Для определения того, действительно ли эти точки экстремальные, исследуем знак производной.

Итак, x = 4 - точка максимума, x = 6 - точка минимума.

Т.к. в точке x = 6 производная не существует, найдем в этой точке односторонние производные.

$$y'_{-}(6) = \lim_{x \to 6-0} \frac{\sqrt[3]{(x-3)(x-6)^2} - \sqrt[3]{(6-3)(6-6)^2}}{x-6} =$$

$$= \lim_{x \to 6-0} \frac{\sqrt[3]{(x-3)} \cdot \sqrt[3]{(x-6)^2} - 0}{x-6} = \lim_{x \to 6-0} \frac{\sqrt[3]{(x-3)}}{\sqrt[3]{x-6}} = -\infty$$

$$y'_{+}(6) = \lim_{x \to 6+0} \frac{\sqrt[3]{(x-3)(x-6)^2} - \sqrt[3]{(6-3)(6-6)^2}}{x-6} = +\infty$$

Следовательно, в точке x=6 имеем точку возврата функции, причем график функции касается прямой x=6 с двух сторон. Производная не существует и в точке x=3. Найдем и в этой точке односторонние производные.

$$y'_{-}(3) = \lim_{x \to 3-0} \frac{\sqrt[3]{(x-3)(x-6)^2} - \sqrt[3]{(3-3)(3-6)^2}}{x-3} = \lim_{x \to 3-0} \frac{\sqrt[3]{(x-3)} \cdot \sqrt[3]{(x-6)^2} - 0}{x-3} = \lim_{x \to 3-0} \frac{\sqrt[3]{(x-6)^2}}{\sqrt[3]{(x-3)^2}} = +\infty$$

$$y'_{+}(3) = \lim_{x \to 3+0} \frac{\sqrt[3]{(x-3)(x-6)^2} - \sqrt[3]{(3-3)(3-6)^2}}{x-3} = +\infty$$

График функции имеет в точке x = 3 касательную параллельную оси O_{Y} .

7. Анализируя вторую производную, найдем точки перегиба и участки выпуклости функции $y'' = \frac{2}{\sqrt[3]{(x-3)^5(x-6)^4}}$

Знаки второй производной показывают, что x = 3 есть точка перегиба.

8. Найдем значение функции, а также её производной для некоторых значений аргумента и построим график функции.

X	У	y'	≜ Υ
0	$-3\cdot\sqrt[3]{4}$	$-\frac{2}{3}\cdot\sqrt[3]{2}$	34
3	0	+ 8	
4	₃ √4	0	2 4 6 8
6-0		- 8	-2 /: '
6+0	0	+ ∞	Рис.14.

2.3. Построение графиков функций, заданных в параметрической форме

Уравнения вида
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
, устанавливающие зависимость

текущих координат точки от некоторого параметра кривую на плоскости. Подобные уравнения определяют называются параметрическими, они дают параметрическое кривой. В параметрической форме удобно представление представлять кривые, имеющие точки пересечения, точки возврата. А также легче построить график заданной неявно функции, если представит функцию в параметрической форме. Например, уравнение, которым задаётся астроида

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}},$$

можно параметризовать следующим образом:

$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases} \quad (0 \le t \le 2\pi).$$

Наклонные кривых, асимптоты заданных В параметрической форме, находятся по формулам:

1.
$$k = \lim_{t \to t_1} \frac{\psi(t)}{\varphi(t)}$$
 и $b = \lim_{t \to t_1} (\psi(t) - k\varphi(t))$, если $\lim_{t \to t_1} \varphi(t) = +\infty$;

$$\begin{aligned} &1. \ k = \lim_{t \to t_1} \frac{\psi(t)}{\varphi(t)} \quad \text{и} \quad b = \lim_{t \to t_1} (\psi(t) - k \varphi(t)) \ , \ \text{если} \quad \lim_{t \to t_1} \varphi(t) = +\infty \ ; \\ &2. \ k = \lim_{t \to t_2} \frac{\psi(t)}{\varphi(t)} \quad \text{и} \quad b = \lim_{t \to t_2} (\psi(t) - k \varphi(t)) \ , \ \text{если} \quad \lim_{t \to t_2} \varphi(t) = -\infty \ . \end{aligned}$$

Уравнение асимптоты: y = kx + b

Пример.

Построить график кривой
$$\begin{cases} x = te^t \\ y = te^{-t} \end{cases}$$

Решение.

1. Функции x(t) и y(t) определены и непрерывны при $-\infty < t < +\infty$. Графики этих функций можно построить исследованием, показанным в п.1.

На рисунках 15 и 16, показаны их графики. Используя рисунки, определяем области существования и изменения функции y = y(x).

- 2. Кривая y = y(x) проходит через точку (0,0) при t = 0.
- 3. Из рисунков видно, что кривая y=y(x) имеет вертикальную (при $t \to -\infty$ $x \to -0$ $y \to -\infty$) и горизонтальную (при $t \to +\infty$ $x \to +\infty$ $y \to +0$) асимптоты. Других асимптот здесь нет, т.к. x и y одновременно к бесконечности не стремятся.
 - 4. Найдем первую и вторую производные y = y(x).

$$\begin{cases} x = te^{t} \\ y'_{x} = \frac{1-t}{e^{2t}(1+t)}, \end{cases} \begin{cases} x = te^{t} \\ y''_{x^{2}} = \frac{2(t-\sqrt{2})(t+\sqrt{2})}{e^{3t}(1+t)^{3}}. \end{cases}$$

Подозрительные на экстремум точки:
$$\begin{cases} x_1 = x(1) = e \\ y_1 = y(1) = e^{-1} \end{cases} \begin{cases} x_2 = x(-1) = -e^{-1} \\ y_2 = y(-1) = -e \end{cases}$$

Подозрительные на перегиб точки:
$$\begin{cases} x_2 = x(-1) = -e^{-1} \\ y_2 = y(-1) = -e \end{cases}, \qquad \begin{cases} x_3 = x(-\sqrt{2}) = -\sqrt{2} \cdot e^{-\sqrt{2}} \\ y_3 = y(-\sqrt{2}) = -\sqrt{2} \cdot e^{\sqrt{2}} \end{cases}, \\ \begin{cases} x_4 = x(\sqrt{2}) = \sqrt{2} \cdot e^{\sqrt{2}} \\ y_4 = y(\sqrt{2}) = \sqrt{2} \cdot e^{-\sqrt{2}} \end{cases}.$$

Дальнейшее исследование необходимо проводить на двух интервалах изменения параметра $t: -\infty < t \le -1$ и $-1 < t < +\infty$. Т.к. x на интервале $(-\infty < t < 0)$ дважды пробегает промежуток $(-e^{-1},0)$, и $x=-e^{-1}$ - точка возврата кривой y(x), у которой две однозначные ветви.

4.1. Рассмотрим промежуток $-\infty < t \le -1$.

На этом промежутке $0 > x \ge -e^{-1}$, $y_x^{/} < 0$ и, следовательно, в точке $x_2 = x(-1) = -e^{-1}$ имеем краевой максимум $y_2 = -e$.

$$\begin{array}{c|c}
\hline
1/e & y' < 0 \\
\hline
X_2(t=-1) & 0(t \to \infty)
\end{array}$$

При этом $\lim_{x \to -e^{-1}+0} y'_x = \lim_{t \to -1-0} \frac{1-t}{e^{2t}(1+t)} = -\infty$.

Т.е. в точке $x_2 = -e^{-1}$ имеем вертикальную касательную к кривой.

Для наглядности сведем в таблицу полученные результаты и построим график кривой на промежутке изменения параметра $-\infty < t \le -1$.

t	$-\infty < t < t_3 = -\sqrt{2}$	$t_3 < t < t_2 = -1$
x(t)	$0 > x > x_3 = -\sqrt{2} \cdot e^{-\sqrt{2}}$	$x_3 > x > x_2 = -e^{-1}$
y(t)	$-\infty < y < y_3 = -\sqrt{2} \cdot e^{\sqrt{2}}$	$y_3 < y < y_2 = -e$
y_x^{\prime}	-	-
$y_{x^2}^{\prime\prime}$	+	-

4.2. Рассмотрим промежуток $-1 < t < +\infty$.

На этом промежутке $-e^{-1} < x < +\infty$, $y_x' > 0$ при $x_2 < x < x_1$ и $y_x' < 0$ при $x_1 < x < +\infty_1$, следовательно, в точке $x_1 = x(1) = e$ имеем максимум $y_1 = e^{-1}$, в точке $x_2 = x(-1) = -e^{-1}$ - краевой минимум $y_1 = -e$.

$$y'(x) > 0$$
 $y'(x) < 0$
 $X_2(t=-1)$ $X_1(t=1)$ X

При этом $\lim_{x \to -e^{-1}+0} y'_x = \lim_{t \to -1+0} \frac{1-t}{e^{2t}(1+t)} = +\infty$.

Т.е. в точке $x_2 = -e^{-1}$ имеем вертикальную касательную к кривой.

$$y''(x) < 0$$
 $y''(x) > 0$ $X_2(t=-1)$ $X_1(t=\sqrt{2})$ X

При этом $\lim_{x \to -e^{-1}+0} y'_x = \lim_{t \to -1+0} \frac{1-t}{e^{2t}(1+t)} = +\infty$.

Знаки второй производной показывают, что $x_4 = x(\sqrt{2}) = \sqrt{2}e^{\sqrt{2}}$ - точка перегиба.

Рис.18.

Для наглядности сведем в таблицу полученные результаты и построим график кривой на промежутке изменения параметра $-1 < t < +\infty$.

t	$t_2 < t < 0 \\ (-1 < t < 0)$	$0 < t < t_1 \\ (0 < t < 1)$	$t_1 < t < t_4$ $(1 < t < \sqrt{2})$	$t_4 < t < +\infty$ $(\sqrt{2} < t < +\infty)$
x(t)	$x_2 < x < x_1 (-e^{-1} < x < 0)$	$0 < x < x_1$ $(0 < x < e)$	$x_1 < x < x_4$ $(e < x < \sqrt{2} \cdot e$	$x_4 < x < +\infty$ $\sqrt{2}(\sqrt{2} \cdot e^{\sqrt{2}} < x < +\infty)$
y(t)	$y_2 < y < 0$ (-e < y < 0)	$0 < y < y_1 (0 < y < e^{-1})$	$y_1 > y > y_4$ $(e^{-1} > y > \sqrt{2} \cdot e^{-\sqrt{2}})$	$y_4 > y > 0$ $(\sqrt{2} \cdot e^{-\sqrt{2}} > y > 0)$
y_x^{\prime}	+	+	-	-
$y_{x^2}^{\prime\prime}$	-	-	-	+

Окончательный график имеет вид:

Рис.19

Пример.

Исследовать функцию $x^3 + y^3 = 3a x$; (Лист Декарта) и построить график.

Решение.

- 1. Функция задана неявно. В этом случае для построения графика рекомендуется либо ввести параметризацию, либо перейти к полярным координатам.
- 1.1. Введем параметр t следующим образом: пусть

$$y = tx$$
,

тогда уравнение принимает вид

$$x^3 + t^3 x^3 = 3ax^2t$$
,

откуда получаем параметрическое задание кривой

$$\begin{cases} x = \frac{3at}{t^3 + 1} \\ y = \frac{3at^2}{t^3 + 1} \end{cases}.$$

Функции x(t) и y(t) определены и непрерывны при $-\infty < t < -1$ и $-1 < t < +\infty$. Графики этих функций можно построить исследованием, показанным в п.1.

На рисунках 20 и 21, показаны их графики.

1.2. У функции $x(t) = \frac{3at}{t^3 + 1}$ t = -1 есть вертикальная асимптота, x = 0 - горизонтальная асимптота.

Т.к.
$$x'(t) = \frac{3a(1-2t^3)}{(t^3+1)^2}$$
, то $t = \frac{1}{\sqrt[3]{2}}$ - точка максимума, а

$$x_{\text{max}} = x(\frac{1}{\sqrt[3]{2}}) = a \cdot \sqrt[3]{4};$$

Т.к.
$$x''(t) = -18at^2 \frac{2-t^3}{(t^3+1)^3}$$
, то $t=-1$ и $t=\sqrt[3]{2}$ - точки перегиба ($x(\sqrt[3]{2})=a\sqrt[3]{2}$).

Рис.20

1.3. У функции $y(t) = \frac{3at^2}{t^3 + 1}$ t = -1 есть вертикальная асимптота, y = 0 - горизонтальная асимптота.

Т.к. $y'(t)=\frac{3at(2-t^3)}{(t^3+1)^2}$, то t=0 - точка минимума и $y_{\min}=y(0)=0$, $t=\sqrt[3]{2}$ - точка максимума и $y_{\max}=y(\sqrt[3]{2})=\sqrt[3]{4}$.

Т.к. $y''(t)=6a\frac{t^6-7t^3+1}{\left(t^3+1\right)^3}$, то $t=\frac{7-3\sqrt{5}}{2}$ и $t=\frac{7+3\sqrt{5}}{2}$ точки перегиба.

- 1.4. Из анализа функций x = x(t) и y = y(t) вытекает, что кривая y = y(x) определена при $-\infty < x < +\infty$ и её область изменения $(-\infty; +\infty)$.
- 2. Начало координат кривая y = y(x) проходит при t = 0 и при $t \to \pm \infty$. Т.е. (0;0) точка самопересечения.
- 3. Поскольку при $t \to -1 \pm 0$ и x = x(t) и y = y(t) стремятся к бесконечности, то встает вопрос о наклонной асимптоте графика y = y(x).

$$k = \lim_{t \to -1} \frac{y(t)}{x(t)} = \lim_{t \to -1} \frac{3at^2 \cdot (t^3 + 1)}{(t^3 + 1) \cdot 3at} = \lim_{t \to -1} t = -1,$$

$$b = \lim_{t \to -1} (y(t) - kx(t)) = \lim_{t \to -1} (\frac{3at^2}{t^3 + 1} - (-1)\frac{3at}{t^3 + 1}) = \lim_{t \to -1} \frac{3at(t + 1)}{t^3 + 1} =$$

$$= \lim_{t \to -1} \frac{3at}{t^2 - t + 1} = -a.$$

Итак, y=-x-a - наклонная асимптота кривой y=y(x) при $x\to\pm\infty$

4. Найдем первую и вторую производные y = y(x).

$$\begin{cases} x = \frac{3at}{t^3 + 1} \\ y'_x = \frac{t(2 - t^3)}{1 - 2t^3} \end{cases}, \quad \begin{cases} x = \frac{3at}{t^3 + 1} \\ y''_{x^2} = \frac{2(t^3 + 1)^4}{3a(1 - 2t^3)^3} \end{cases}.$$

Анализ первой производной дает следующие результаты.:

при
$$t_1 = 0$$
 $\begin{cases} x_1 = 0 \\ y_1 = 0 \end{cases}$ - минимум,

при
$$t_2 = \sqrt[3]{2} \begin{cases} x_2 = a \cdot \sqrt[3]{2} \\ y_2 = a \cdot \sqrt[3]{4} \end{cases}$$
 - максимум,

при
$$t_3 = \frac{1}{\sqrt[3]{2}}$$
 $\begin{cases} x_3 = a \cdot \sqrt[3]{4} \\ y_2 = a \cdot \sqrt[3]{2} \end{cases}$ - точка возврата, т.к. здесь $x(t)$

принимает максимальное значение. Кроме того, в этой точке

кривая имеет вертикальную касательную, потому что $y_x^{'}$ в ней бесконечна.

Анализ второй производной показывает, что $(x_3; y_3)$ ещё и точка смены выпуклости:

при
$$t < t_3 = \frac{1}{\sqrt[3]{2}}$$
 $y_{x^2}^{/\prime} > 0$ - кривая выпукла вниз, при $t > t_3 = \frac{1}{\sqrt[3]{2}}$ $y_{x^2}^{/\prime} < 0$ - кривая выпукла вверх.

Построение графика кривой y(x) удобно разбить на три участка, соответствующие трем интервалам изменения параметра $t: -\infty < t < -1 - 0$, $-1 + 0 < t \le \frac{1}{\sqrt[3]{2}}$ и $\frac{1}{\sqrt[3]{2}} < t < +\infty$.

4.1. Рассмотрим промежуток $-\infty < t < -1 - 0$.

Для наглядности сведем в таблицу полученные результаты и построим график кривой на промежутке изменения параметра $-\infty < t < -1 - 0$.

4.2. Рассмотрим промежуток
$$-1 + 0 < t < \frac{1}{\sqrt[3]{2}}$$
.

Для наглядности сведем в таблицу полученные результаты и построим график кривой на промежутке изменения параметра $-1+0 < t < \frac{1}{\sqrt[3]{2}} \, .$

	V 2	
t	(-1+0; 0)	$(0; \frac{1}{\sqrt[3]{2}})$
x(t)	(-∞; -0)	$(+0; a \cdot \sqrt[3]{4})$
y(t)	(+∞; +0)	$(+0; a \cdot \sqrt[3]{2})$
y_x'	-	+
$y_{x^2}^{\prime\prime}$	+	+

4.3. Рассмотрим промежуток $\frac{1}{\sqrt[3]{2}} < t < +\infty$.

Для наглядности сведем в таблицу полученные результаты и построим график кривой на промежутке изменения параметра $\frac{1}{\sqrt[3]{2}} < t < +\infty \,.$

v_					
	t	$(\frac{1}{\sqrt[3]{2}}; \sqrt[3]{2})$	$(\sqrt[3]{2}; +\infty)$		
	x(t)	$(a\sqrt[3]{4};a\sqrt[3]{2})$	$(a\sqrt[3]{2}; +0)$		
	y(t)	$(a\sqrt[3]{2}; a\sqrt[3]{4})$	$(a\sqrt[3]{4}; +0)$		
	y_x'	-	+		
	$y_{x^2}^{\prime\prime}$	-	-		

Окончательный график кривой изображен на рис.25.

3. Задания для самостоятельной работы

Построить графики функций, заданных явно:

1	$y = \frac{(x+1)^3}{(x-1)^2}$	2	$y = \frac{x^4 + 8}{x^3 + 1}$
1	$y = (1 - x) \cdot \sqrt[3]{x^2}$	<i>L</i>	$y = \sqrt[3]{(x+2)^2} - \sqrt[3]{(x-2)^2}$
3	$y = \frac{x^3 - 8}{2x^2}$	4	$y = \frac{x^3 - x + 1}{x^3}$

	$y = \frac{\sqrt[3]{x^2}}{\sqrt[3]{x^2 - 1}}$		$y = -(x-1) \cdot \sqrt[3]{(2-x)^2}$
5	$y = \frac{x^2 \sqrt{x^2 - 1}}{2x^2 - 1}$	6	$y = \frac{1 - x^2}{x}$
	$y = \sqrt[3]{\frac{x^2}{x+2}}$		$y = \sqrt[3]{x^2(3-x)}$
7	$y = \sin x + \cos^2 x$	8	$y = \frac{\sin x}{\sin(x + \frac{\pi}{4})}$
	$y = \frac{\sqrt[3]{x^2}}{x+2}$		$y = x \cdot \sqrt[3]{(x-2)^2}$
9	$y = \frac{\cos x}{\cos 2x}$	10	$y = \frac{x}{2} + arctgx$
	$y = (x-3) \cdot \sqrt[3]{(x+1)^2}$		$y = x^{\frac{2}{3}}e^{-x}$
11	$y = \frac{\ln x}{\sqrt{x}}$	12	$y = \ln \frac{x^2 - 3x + 2}{x^2 + 1}$
	$y = \sqrt[3]{x^2(6-x)}$		$y = x \cdot \sqrt[3]{(x-5)^2}$
13	$y = (x+2)e^{\frac{1}{x}}$	14	$y = 2^{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$
	$y = \sqrt[3]{(6-x)(x-1)^2}$		$y = (x-1) \cdot \sqrt[3]{(x-2)^2}$

15	$y = \frac{x}{\sqrt[3]{x^2 - 1}}$	16	$y = \frac{2x^3 - x + 2}{2x^3}$
	$y = \sqrt[3]{(x-1)^2} - \sqrt[3]{(x+1)^2}$		$y = -\sqrt[3]{(x^2 - 9)^2}$
17	$y = \frac{2x}{4+x^3}$	18	$y = -x^2 \cdot \sqrt{x+1}$
	$y = (x-2) \cdot \sqrt[3]{(1+x)^2}$		$y = \frac{\sqrt[3]{(x-1)^2}}{\sqrt[3]{x^2 - 4}}$
19	$y = \frac{x-3}{\sqrt[3]{x+1}}$	20	$y = \frac{x-1}{\sqrt[3]{x^2-4}}$
	$y = \sqrt[3]{(x+1)^2(x-2)}$		$y = \frac{10\sqrt[3]{(x-1)^2}}{x^2 + 9}$
21	$y = \frac{1}{x^2} \frac{1}{(x-1)^2}$	22	$y = \frac{2}{(3-x^2)(5-x^2)}$
	$y = \sqrt[3]{(x+1)^2} + \sqrt[3]{(x-1)^2}$		$y = -\frac{x}{\sqrt{x+1}}$
23	$y = \frac{3x - 2}{5x^2}$	24	$y = \sin x \cdot \sin 3x$
	$y = (x+1) \cdot \sqrt[3]{x^2}$		$y = \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$
25	$y = \frac{x^2}{2} + \frac{1}{x}$	26	$y = \frac{\ln x}{\sqrt{1 - x}}$

	$y = -\sqrt[3]{(x+2)^2} - \sqrt[3]{(x-2)^2}$	$y = \sqrt[3]{x^2} \cdot e^x$
27	$y = (7 + 2\cos x)\sin x$	
	$y = -\frac{\sqrt[3]{x^2}}{x+2}$	

Построить графики функций, заданных в параметрической форме:

1	$\begin{cases} x = \frac{2+t^2}{1+t^2} \\ y = t - \frac{t}{1+t^2} \end{cases}$	2	$\begin{cases} x = \frac{1+t^2}{4(1-t)} \\ y = \frac{t}{1+t} \end{cases}$
3	$\begin{cases} x = \frac{1+t^2}{t^2 - 1} \\ y = \frac{t}{1+t^4} \end{cases}$	4	$\begin{cases} x = \frac{t^2}{t^2 - 1} \\ y = \frac{t^2 + 1}{2 + t} \end{cases}$
5	$\begin{cases} x = \frac{1 - t^2}{1 + t^2} \\ y = \frac{t^2 - t^3}{1 + t^2} \end{cases}$	6	$\begin{cases} x = \frac{(2+t)^2}{1+t} \\ y = \frac{(t-2)^2}{t-1} \end{cases}$

7	$\begin{cases} x = \frac{t}{1 - t^2} \\ y = \frac{t(1 - 2t^2)}{1 - t^2} \end{cases}$	8	$\begin{cases} x = \frac{t^2 - 3}{t^2 + 1} \\ y = \frac{t(t^2 - 3)}{1 + t^2} \end{cases}$
9	$\begin{cases} x = \frac{t^2}{t - 1} \\ y = \frac{t}{t^2 - 1} \end{cases}$	10	$\begin{cases} x = \frac{2t - 1}{t^3(t - 1)} \\ y = \frac{2t - 1}{t^2(t - 1)} \end{cases}$
11	$\begin{cases} x = \frac{t^2}{1 - t^2} \\ y = \frac{1}{1 + t^2} \end{cases}$	12	$\begin{cases} x = t \cdot \ln t \\ y = \frac{\ln t}{t} \end{cases}$
13	$\begin{cases} x = a \cdot \cos^3 t, \\ y = a \cdot \sin t \end{cases} (a > 0)$	14	$\begin{cases} x = t^2 - 2t \\ y = t^3 + 2t \end{cases}$
15	$\begin{cases} x = a(sht - t), \\ y = a(cht - 1) \end{cases} (a > 0)$	16	$\begin{cases} x = \frac{(t+1)^2}{4} \\ y = \frac{(t-1)^2}{4} \end{cases}$

$$\begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases}$$

Построить графики кривых, заданных неявно, представив их уравнения в параметрическом виде (положив y = tx):

18	$x(x^2 + y^2) = a(x^2 - y^2)$	19	$(x+y)^2 = a(x-y)$
20	$(x+y)^3 = axy$	21	$(x+y)^3 = a^2(x-y)$
22	$(x+y)^4 = ax^2y$	23	$(x+y)^4 = a^2(x^2+y^2)$
24	$(2a-x)y^2 = x^3$	25	$X^3 + y^3 = 3x^2$
26	$X^4 - y^4 = 4x^2y$	27	$X^3 - 2x^2y - y^2 = 0$

а – произвольное положительное число.

Литература

- 1. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. М.: Издательство МГУ, 1988.
- 2. Демидович В.П. Сборник задач и упражнений по математическому анализу. М.:АСТ: Астрель, 2006.
- 3. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. М.: ФИЗМАТЛИТ, 2003.
- 4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Наука, 1969

ГРАФИКИ ФУНКЦИЙ

Составители: Татьяна Петровна **Киселева** Ирина Игоревна **Олюнина**

Учебно-методическое пособие

Федеральное государственное автономное образовательное учреждение высшего образования «Нижегородский государственный университет им. Н И Лобачевского» 603950, Нижний Новгород, пр. Гагарина, 23