武汉大学计算机学院 2018 - 2019 学年第一学期 2016 级弘毅班《编译原理》(期末考试参考答案 A)

一、(1)

start
$$\longrightarrow 0$$
 $\stackrel{\varepsilon}{\longrightarrow} 1$ $\stackrel{1}{\longrightarrow} 1$ $\stackrel{0}{\longrightarrow} 4$ $\stackrel{\varepsilon}{\longrightarrow} 3$ $\stackrel{1}{\longrightarrow} 1$ $\stackrel{0}{\longrightarrow} 4$ $\stackrel{\varepsilon}{\longrightarrow} 3$ $\stackrel{1}{\longrightarrow} 1$

(2)

$$A = \{0,1\}, B = \{3,4\}, C = \{1\}, D = \{1,2,5\}.$$

状态转换图为:

(3) 最小 DFA 如下所示:

- (4) 连续的 0 出现偶数次, 奇数次出现必须接 1.
- (5) $r = (00 \mid 01 \mid 1)^*$.
- 二、 (1) 语句 "[a; a[a]]" 的最左推导如下:

$$\begin{array}{cccc} L & \underset{lm}{\Longrightarrow} & \lambda a.L & & \underset{lm}{\Longrightarrow} & \lambda a.aL \\ & \underset{lm}{\Longrightarrow} & \lambda a.LL & & \underset{lm}{\Longrightarrow} & \lambda a.aa \end{array}$$

(2) 消除左递归后的文法如下:

$$\begin{array}{ccc} L & \rightarrow & \lambda a.LL' \mid aL' \\ L' & \rightarrow & LL' \mid \varepsilon \end{array}$$

- (3) First(L) = { a, λ }; First(L') = { a, λ , ε }. Follow(L) = Follow(L') = { a, λ , \$ }.
- (4) LL(1) 分析表如下所示

	а	λ	\$
L	$L \rightarrow aL'$	$L \rightarrow \lambda a.LL'$	
L'	$L' \to LL' \mid \varepsilon$	$L' \to LL' \mid \varepsilon$	$L' \to \varepsilon$

(5) 语句 "λa.a" 的分析过程如下所示:

剩余串	分析栈	分析动作
λa.a\$	L\$	$L \rightarrow \lambda a.LL'$
λa.a\$	$\lambda a.LL'$ \$	match-advance
<i>a.a</i> \$	a.LL'\$	match-advance
.a\$.LL'\$	match-advance
a\$	LL'\$	$L \rightarrow aL'$
a\$	LL'L'\$	match-advance
\$	L'L'\$	L' o arepsilon
\$	L'\$	$L' o \varepsilon$
\$	\$	分析成功

三、 (1) 语句 "λa.aa" 的两颗不同的语法树为: 语法树 1:

语法树 2:

(2) 无二义文法:

$$\begin{array}{ccc}
L & \to & \lambda a.L \mid A \\
A & \to & Aa \mid a
\end{array}$$

四、 (1) 状态 I_6 的 LR(0) 项目集为

$$\begin{split} & \overline{\{\,L \to L \bullet L, L \to \lambda a. L \bullet \,\}} \\ = & \{\,L \to L \bullet L, L \to \lambda a. L \bullet, \, L \to \bullet a, \, L \to \bullet \lambda a. L, \, L \to \bullet LL \,\}. \end{split}$$

- (2) 识别活前缀的自动在吃进 $(\lambda a.)^*L^*a$ 进入状态 I_2 , 而状态 I_2 无 L 出边,因此仅 $(\lambda a.)^*L^*a$ 为活前缀, $(\lambda a.)^*L^*aL^+$ 不是活前缀.
- (3) $\operatorname{Follow}(L) = \{\$, \lambda, a\}, \operatorname{Follow}(L) = \{\,;,\,]\}.$ 状态 I_4 和状态 I_7 有移进/归约冲突,状态 I_4 面对 a 和 λ 选归约;状态 I_7 选移进. 故 SLR 分析表如下所示:

	action			goto	
状态	7.0	a	λ	\$	L
0		s2	s3		1
1		s2	s3	acc	4
2		r3	f3	r3	
3		s5			
4		r2	r2	r2	4
5	s6				
6		s2	s3		7
7		s2	s3	r1	4

(4) 语句 " $\lambda a.aa$ " 的分析过程如下所示:

剩余串	分析栈	分析动作
λa.aa\$	0	shift
a.aa\$	0λ3	shift
.aa\$	$0\lambda 3a5$	shift
aa\$	$0\lambda 3a5.6$	shift
a\$	$0\lambda 3a5.6a2$	reduce $L \rightarrow a$
a\$	$0\lambda 3a5.6L7$	shift
a\$	$0\lambda 3a5.6L7a2$	/ reduce $L \rightarrow a$
a\$	$0\lambda 3a5.6L7L4$	reduce $L \to LL$
a\$	$0\lambda 3a5.6L7$	reduce $L \rightarrow \lambda a.L$
a\$	0L1	分析成功

产生式	语义规则	
$L' \to L$	$L.is_abs = False$	
$L \rightarrow \lambda a.L_1$	L_1 .is_abs = True	
	if $(L_1.last_op = App)$ then	
	$L.code = [PUT(L_1.code ++ [TAIL])]$	
	else	
	$L.code = [PUT(L_1.code ++ [RET])]$	
	$L.last_op = Abs$	
$L \to L_1 L_2$	L_1 .is_abs = False	
	L_2 .is_abs = False	
	if (L.is_abs) then	
	$L.\text{code} = L_1.\text{code} ++ L_2.\text{code}$	
	else	
	$L.code = L_1.code ++ L_2.code ++ [APPLY]$	
	$L.last_op = App$	
$L \rightarrow (L_1)$	L_1 .is_abs = L .is_abs	
	$L.code = L_1.code$	
	$L.\mathrm{last_op} = L_1.\mathrm{last_op}$	
$L \rightarrow a$	$L.\text{code} = [GET \ a.lexval]$	
	$L.last_op = Atom$	

(2) [PUT[PUT[GET x;RET];GET y;TAIL];PUT[GET y;RET];APP]

六、

七、 计算求和函数, 局部尾递归函数, 优化为循环.