	Classification of Trypanosomatids based on works [1, 2, 3]
African Trypanosome	Γ. Brucei : (TbruceigambienseDAL972, TbruceiLister427, TbruceiTREU927) Γ. Evansi: (TevansiSTIB805) Γ. congolense (TcongolenseIL3000) ΓνίναχΥ486
	T. Theileri (TtheileriEdinburgh)
American Trypanosome	T. Rangeli T. Cruzi (TcruziCLBrener, TcruziCLBrenerEsmeraldo-like, TcruziCLBrenerNon-Esmeraldo-like, TcruzicruziDm28c, TcruziDm28c, TcruziEsmeraldo, TcruziJRcl4, TcruzimarinkelleiB7, TcruziSylvioX10-1, TcruziSylvioX10-1-2012, TcruziTulacl2,) T. Grayi: (TgrayiANR4)
1	BayalaiB08-376
< 1	CfasciculataCfCl LseymouriATCC30220LpyrrhocorisH10 LspMARLEM2494
Leishmania 1	L major: (LmajorFriedlin, LmajorLV39c5, LmajorSD75) L donovani: (LdonovaniBHU1220, LdonovaniBPK282A1) LinfantumJPCM5 LturanicaLEM423 LarabicaLEM1108 L amazonensis: LamazonensisMHOMBR71973M2269 LmexicanaMHOMGT2001U1103 LtropicaL590 LaethiopicaL147 LgerbilliLEM452
Leishmania enrietti complex: {	LenriettiiLEM3045
Leishmania (Sauroleishmania)-	L tarentolae: LtarentolaeParrotTarII
paraleishmana {	EmonterogeiiLV88
Leishmania Viannia subgenus:	LbraziliensisMHOMBR75M2904 LbraziliensisMHOMBR75M2903 LpanamensisMHOMPA94PSC1 LpanamensisMHOMCOL81L13
1	PconfusumCUL13

1. Austin L Hughes, Helen Piontkivska: Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies, 2003		
2. de Souza, Pavoni, Krieger, Ludwig: Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization, 2018		
3. Pothirat T, Tantiworawit A, Chaiwarith R, Jariyapan N, Wannasan A, et al: First Isolation of Leishmania from Northern Thailand: Case Report,		
Identification as Leishmania martiniquensis and Phylogenetic Position within the Leishmania enriettii Complex, 2014		