

1

Agenda

- Data Analytics Concept & Power BI
- Dashboard Design Principle & Data Storytelling
- Business Dashboard Concept

What is data?

How is data stored?

5

Data Analytics Lifecycle

CRISP-DM (Cross-industry standard process for data mining)

 $https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining\#/media/File:CRISP-DM_Process_Diagram.png$

Business Understanding

- Identify business pain points
- · Define key business questions
- Choose key business areas of interest

https://www.sub-brain.com/business/business-model-canvas-sbc/

7

Data Understanding

- Identify data sources
- Understand limitation of each source
- Understand data relationships

Data Preparation

- Data layout design
- Formatting data
- · Validating and cleansing data
- · Aggregating data

https://www.sub-brain.com/business/business-model-canvas-sbc/

Modeling

- explores data to learn about relationships between variables and subsequently.
- selects key variables and the most suitable models.
- develop data sets for training, testing, and production purposes.
- builds and executes models based on the work done in the model planning phase.

https://www.geeksforgeeks.org/

From data to business insights with Power BI

https://learn.microsoft.com/

Different types of analysis

Data analysis is another form of storytelling with five categories:

• Descriptive : Summarize past data

• Diagnostic: Explain past data

• Predictive: Forecast future data

• Prescriptive: Optimize future data

• Cognitive: Learn from data

Tasks of a Data Analyst

https://learn.microsoft.com/

13

Microsoft Power BI

The flow of Power BI

https://learn.microsoft.com/

15

Power BI service

• Single-page dashboards can be derived from reports in the service.

• Combine all data into a single dataset

https://learn.microsoft.com/

Get data in Power BI

17

Data Source

- SharePoint Online List Microsoft Exchange Online Dynamics 365 Online (legacy) Dynamics 365 (Dataverse) → Dynamics NAV Dynamics 365 Business Central Dynamics 365 Business Central (on-premises) Azure DevOps (Boards only) Azure DevOps Server (Boards only) Salesforce Objects Salesforce Reports Google Analytics Adobe Analytics af appFigures (Beta) Data.World - Get Dataset (Beta) GitHub (Beta)
- Azure SQL database Azure Synapse Analytics SQL Azure Analysis Services database Azure Database for PostgreSQL Azure Blob Storage Azure Table Storage Azure Cosmos DB v1 Azure Data Explorer (Kusto) Azure Data Lake Storage Gen2 Azure Data Lake Storage Gen1

https://learn.microsoft.com/

Select a storage mode

Storage mode affects

- Available transformations
- Report performance

*Not all sources support all modes *

SQL Server database

Server ①
localhost
Database (optional)
AdventureWorksDW
Data Connectivity mode ①
○ Import
DirectQuery
Advanced options

https://learn.microsoft.com/

nttps://team.microsort.c

Implications of using DirectQuery

Benefits

- Frequently changing data
- Need near real-time
- Large data volumes
- Multi-dimensional data

Limitations

- Dependent on data source performance
- · Security between source and destination
- Limited modeling capabilities
- Limited transformation features

https://learn.microsoft.com/

Data profiling options in Power Query Editor

https://learn.microsoft.com/

Data import errors

- Query Timeout
- Couldn't find data formatted as a table
- · Could not find file
- Data type errors

Transform data with Power Query Editor

https://learn.microsoft.com/

Choose user-friendly values

Shaping table structure

https://learn.microsoft.com/

25

Evaluate and change column data types

GO1.

Combine multiple queries into one

https://learn.microsoft.com/

27

Unpivot or pivot columns

Performance recommendations

- Only keep necessary data
- Check data types
- Reduce cardinality
- Disable query load
- Use parameters

https://learn.microsoft.com/

Model data with Power BI Desktop

- Data types
- Star schema
- Create relationships
- Edit relationships
- Create hierarchies

https://learn.microsoft.com/

Relational tables

Customer MiddleName FirstName LastName Address City David joe@litware.com 1 Main St. Jones Seattle Samir Nadoy samir@northwind.com 123 Elm Pl. New York

	Product	
ID	Name	Price
123	Hammer	2.99
162	Screwdriver	3.49
201	Wrench	4.25

	Order	
OrderNo	OrderDate	Customer
1000	1/1/2022	1
1001	1/1/2022	2

Lineltem				
OrderNo	ItemNo	ProductID	Quantity	
1000	1	123	1	
1000	2	201	2	
1001	1	123	2	

https://learn.microsoft.com/

31

Normalization

Data is stored in tables

• All rows have the same

• Each column is assigned a

columns

columns

datatype

Tables consists of rows and

		Sales Data		
OrderNo	OrderDate	Customer	Product	Quantity
1000	1/1/2022	Joe Jones, 1 Main St, Seattle	Hammer (\$2.99)	1
1000	1/1/2022	Joe Jones- 1 Main St, Seattle	Screwdriver (\$3.49)	2
1001	1/1/2022	Samir Nadoy, 123 Elm Pl, New York	Hammer (\$2.99)	2

Other common database objects

https://learn.microsoft.com/

Data table types

Fact tables are activities or events.

Dimension tables provide the details.

https://learn.microsoft.com/

34

Understand star schemas

https://learn.microsoft.com/

35

Create relationships

Edit relationships

https://learn.microsoft.com/

How to use hierarchies for data fields

What is DAX?

- Data Analysis Expressions
- Library of functions and operators
- Build formulas and expressions
- Create calculated measures, columns, and tables

https://learn.microsoft.com/

Create calculated measures

- Defined with DAX definitions
- Computed on the fly.
- Not stored in data model.
- Responsive to interactions.
- Indicated by calculator icon.

https://learn.microsoft.com/

40

41

Quick measures

https://learn.microsoft.com/

Create calculated columns

- Defined using DAX expressions.
- Computed & stored in data model.
- Useful "helper/connector columns."
- Recalculated during data refresh.
- Table and Sigma icon.

Create calculated tables

- Defined using DAX expressions.
- Computed & stored in data model.
- Useful for aggregating data or creating custom tables.
- Table and calculator icon.

https://learn.microsoft.com/

DAX Data Types

- Whole Number (Integer)
- Decimal Number (Float)
- Currency (Currency), a fixed decimal number internally stored as an integer
- Date (DateTime)
- Boolean (TRUE/FALSE)
- Text (String)
- Binary large object (BLOB

DAX operators

Operator Type	Symbol	Use	Example
Parenthesis	()	Precedence order and grouping of arguments	(5 + 2) * 3
Arithmetic	+ - * /	Addition Subtraction/negation Multiplication Division	4 + 2 5 - 3 4 * 2 4 / 2
Comparison	= <> > >= <	Equal to Not equal to Greater than Greater than or equal to Less than Less than or equal to	[CountryRegion] = "USA" [CountryRegion] <> "USA" [Quantity] > 0 [Quantity] >= 100 [Quantity] < 0 [Quantity] <= 100
Text concatenation	&	Concatenation of strings	"Value is " & [Amount]
Logical	&& 	AND condition between two Boolean expressions OR condition between two Boolean expressions	[CountryRegion] = "USA" && [Quantity]>0 [CountryRegion] = "USA" [Quantity] > 0

dax.guide

[=] DAX GUIDE The DAX language All products Any attribute A-Z Groups Search The DAX language was created specifically for the handling of data models, through the use of formulas and expressions. DAX is used in several Microsoft Products such as Microsoft Power BI, Microsoft Analysis Services and Microsoft Power Pivot for Excel. These products all share the same internal engine, called Tabular. FUNCTIONS ABS ACCRINT ACCRINTM Browse DAX functions alphabetically from the sidebar or choose a category below: ACOSH Aggregation functions Information functions Aggregation functions return a scalar value applying an aggregation function to a column or to an expression evaluated by iterating a table expression. Information functions provide information about data type or filter context of the argument provided. ACOT ACOTH Statistical functions ADDCOLUMNS Logical functions Statistical aggregation functions. ADDMISSINGITEMS Date and Time functions Logical functions act upon an expression to return information about the values or sets in the expression. Date and time functions help creating calculations based on dates and time. Many of the functions in DAX are similar to the Table manipulation functions ALL [=] DAX **DAX** Bravo

Common DAX functions

- Aggregate functions
- Logical functions
- Information functions
- Mathematical functions
- · Text functions
- Conversion functions
- · Date and time functions
- Relational functions

Reference Resource

49

choosing an effective visual

\$8,658,484	\$8,650,000	\$8,484	0.10%
Sales	Target	Variance	Variance Margin

• Simple text

91%

choosing an effective visual

• Table

Subcategory	Color	Quantity	Sales	Profit Margin
Mountain Bikes	Black	12,371	\$14,219,696	6.13%
Mountain Bikes	Silver	10,083	\$11,660,457	5.91%
Road Bikes	Black	13,908	\$9,625,464	-3.36% 🔷
Road Bikes	Red	15,310	\$12,116,381	-3.01%
Road Bikes	Yellow	8,960	\$6,940,054	-5.25% 🔷
Touring Bikes	Blue	6,415	\$5,593,085	-5.58% 🔷
Touring Bikes	Yellow	4,833	\$3,913,896	-16.17% 🔷
Total		71,880	\$64,069,033	-0.68%

https://learn.microsoft.com/

51

choosing an effective visual

Horizontal bar

choosing an effective visual

https://learn.microsoft.com/

choosing an effective visual

https://learn.microsoft.com/

choosing an effective visual

Year ● 2008

Line

55

choosing an effective visual

• Scatterplot

Add visualizations to Power BI reports

https://learn.microsoft.com/

57

Import custom visuals from AppSource

https://learn.microsoft.com/

Format and configure visualizations

https://learn.microsoft.com/

Configure conditional formatting

Region	Sales
Australia	\$1,391,025
Canada	\$13,875,633
Central	\$7,633,387
France	\$4,527,840
Germany	\$1,877,743
Northeast	\$6,715,354
Northwest	\$12,004,822
Southeast	\$7,638,607
Southwest	\$18,001,116
United Kingdom	\$3,883,043
Total	\$77,548,570

https://learn.microsoft.com/

Use the Slicer visual to provide on-report filtering

https://learn.microsoft.com/

61

Key Performance Indicator visual

AI Insights for data preparation in Power Query Editor

• Leverage AI analysis of text, images, and use Azure Machine Learning models.

https://learn.microsoft.com/

63

AI in the Q&A feature

• Use natural language to ask questions about data and create visuals for insights.

https://learn.microsoft.com/

Key influencers visual

 Identify factors driving variations in a chosen target metric.

https://learn.microsoft.com/

Decomposition tree visual

 Visualize data hierarchies for in-depth exploration and pattern discovery.

https://learn.microsoft.com/

Sales and Profit Margin

Variance and Variance Margin

```
Variance =
IF(
    HASONEVALUE('Salesperson (Performance)'[Salesperson]),
    SUM(Sales[Sales]) - [Target]
)

Variance Margin =
DIVIDE([Variance], [Target])
```

Salesperson	Sales	Target	Variance	Variance Margin
Amy Alberts	\$10,288,626	\$19,450,000	(\$9,161,374)	-47.10%
Brian Welcker	\$77,548,570	\$221,700,000	(\$144,151,430)	-65.02%
David Campbell	\$12,004,822	\$19,625,000	(\$7,620,178)	-38.83%
Garrett Vargas	\$13,875,633	\$23,675,000	(\$9,799,367)	-41.39%
Jae Pak	\$8,410,883	\$13,575,000	(\$5,164,117)	-38.04%
Jillian Carson	\$7,633,387	\$13,675,000	(\$6,041,613)	-44.18%
José Saraiva	\$13,875,633	\$18,875,000	(\$4,999,367)	-26.49%
Linda Mitchell	\$25,634,503	\$40,850,000	(\$15,215,497)	-37.25%
Lynn Tsoflias	\$1,391,025	\$3,210,000	(\$1,818,975)	-56.67%
Michael Blythe	\$21,987,348	\$31,150,000	(\$9,162,652)	-29.41%
Pamela Ansman-Wolfe	\$30,005,939	\$53,850,000	(\$23,844,061)	-44.28%
Rachel Valdez	\$1,877,743	\$4,125,000	(\$2,247,257)	-54.48%
Ranjit Varkey Chudukatil	\$4,527,840	\$9,050,000	(\$4,522,160)	-49.97%
Shu Ito	\$18,001,116	\$59,850,000	(\$41,848,884)	-69.92%
Stephen Jiang	\$65,868,919	\$110,150,000	(\$44,281,081)	-40.20%
Syed Abbas	\$1,391,025	\$3,050,000	(\$1,658,975)	-54.39%
Tete Mensa-Annan	\$12,004,822	\$17,100,000	(\$5,095,178)	-29.80%
Tsvi Reiter	\$7,638,607	\$13,250,000	(\$5,611,393)	-42.35%
Total	\$77,548,570			

https://learn.microsoft.com/

69

Aggregate Price

```
Avg Price = AVERAGE(Sales[Unit Price])
Median Price = MEDIAN(Sales[Unit Price])
Max Price = MAX(Sales[Unit Price])
Min Price = MIN(Sales[Unit Price])
Orders = DISTINCTCOUNT(Sales[SalesOrderNumber])
Order Lines = COUNTROWS(Sales)
```

Year	Avg Price	Median Price	Min Price	Max Price	Orders	Order Lines
☐ FY2018	\$748.68	\$419.46	\$4.75	\$2,146.96	739	8,459
2017 Jul	\$655.59	\$419.46	\$5.19	\$2,146.96	38	352
2017 Aug	\$758.93	\$419.46	\$4.75	\$2,146.96	75	785
2017 Sep	\$741.85	\$419.46	\$5.19	\$2,146.96	60	593
2017 Oct	\$677.45	\$419.46	\$5.19	\$2,146.96	40	499
2017 Nov	\$752.31	\$419.46	\$5.01	\$2,146.96	90	1,106
2017 Dec	\$734.58	\$419.46	\$5.01	\$2,146.96	63	803
2018 Jan	\$808.94	\$419.46	\$5.19	\$2,146.96	40	377
2018 Feb	\$896.80	\$419.46	\$5.01	\$2,146.96	79	866
2018 Mar	\$863.54	\$419.46	\$5.19	\$2,146.96	64	653
2018 Apr	\$732.25	\$419.46	\$5.19	\$2,146.96	37	494
2018 May	\$761.30	\$419.46	\$4.75	\$2,146.96	85	1,112
2018 Jun	\$552.95	\$419.46	\$4.75	\$2,146.96	68	819

Sales Dashboard Example

Sales % All Region =
DIVIDE(
SUM(Sales[Sales]),
CALCULATE(
SUM(Sales[Sales]),
REMOVEFILTERS(Region)
)
)

Group	Country	Region	Sales	Sales % All Region
⊟ Europe	⊡ France	France	\$4,527,840	5.84 %
		Total	\$4,527,840	5.84 %
	□ Germany	Germany	\$1,877,743	2.42 %
		Total	\$1,877,743	2.42 %
	☐ United Kingdom	United Kingdom	\$3,883,043	5.01 %
		Total	\$3,883,043	5.01 %
	Total		\$10,288,626	13.27 %

https://learn.microsoft.com/

71

Sales Dashboard Example

YTD measure

```
Sales YTD =
TOTALYTD(SUM(Sales[Sales]), 'Date'[Date], "6-30")
```

Sales	Sales YTD	
\$16,429,043	\$16,429,043	
\$489,328	\$489,328	
\$1,540,072	\$2,029,400	
\$1,166,332	\$3,195,733	
\$844,833	\$4,040,566	
\$2,325,755	\$6,366,320	
\$1,703,435	\$8,069,756	
\$713,230	\$8,782,985	
\$1,900,794	\$10,683,780	
\$1,455,280	\$12,139,060	
\$883,011	\$13,022,071	
\$2,269,720	\$15,291,791	
\$1,137,252	\$16,429,043	
\$27,979,780	\$27,979,780	
\$2,411,559	\$2,411,559	
\$3,615,914	\$6,027,473	

https://learn.microsoft.com/

YoY growth measure

```
Sales YoY Growth =
VAR SalesPriorYear =
CALCULATE(
SUM(Sales[Sales]),
PARALLELPERIOD(
'Date'[Date],
-12,
MONTH
)
)
RETURN
DIVIDE(
(SUM(Sales[Sales]) - SalesPriorYear),
SalesPriorYear
)
```

Sales	Sales YTD	Sales YoY Growth
\$16,429,043	\$16,429,043	
\$489,328	\$489,328	
\$1,540,072	\$2,029,400	
\$1,166,332	\$3,195,733	
\$844,833	\$4,040,566	
\$2,325,755	\$6,366,320	
\$1,703,435	\$8,069,756	
\$713,230	\$8,782,985	
\$1,900,794	\$10,683,780	
\$1,455,280	\$12,139,060	
\$883,011	\$13,022,071	
\$2,269,720	\$15,291,791	
\$1,137,252	\$16,429,043	
\$27,979,780	\$27,979,780	70.31 %
\$2,411,559	\$2,411,559	392.83 %
\$3,615,914	\$6,027,473	134.79 %

https://learn.microsoft.com/

Sales Forecast

https://learn.microsoft.com/

Thank you