Random Matrix Analysis

Ali Taqi

```
bool_plot <- T
bool_loud <- F
M <- 20</pre>
```

Eigenmetrics of Various Random Matrices

Stochastic Matrix

```
P <- RM_stoch(M, sparsity = T)
if(bool_plot){eigen_plot(P, loud = bool_loud, "Stochastic")}</pre>
```

Eigenvectors: Stochastic Matrix


```
eigen_summary(eigen_frame(P))
```

[1] "Proportion of real-valued rows: 0" $\,$

Eigenvectors: Original Matrix

Symmetric Stochastic Matrix

```
set.seed(23)
P <- RM_stoch(M, symm = T, sparsity = T)
if(bool_plot){eigen_plot(P, loud = bool_loud, "Symmetric Stochastic")}</pre>
```

Eigenvectors: Symmetric Stochastic Matrix

[1] "Proportion of real-valued rows: 0"

Normal Symmetric Matrix

```
set.seed(23)
P <- RM_normal(M, symm = T)
if(bool_plot){eigen_plot(P, loud = bool_loud, "Normal Symmetric (Mu = 0)")}</pre>
```

Eigenvectors: Normal Symmetric (Mu = 0) Matrix

[1] "Proportion of real-valued rows: 0"

Normal Symmetric Matrix

```
set.seed(23)
P <- RM_normal(M, normal_args = c(1,2), symm = T)
if(bool_plot){eigen_plot(P, loud = bool_loud, "Normal Symmetric (Mu = 1)")}</pre>
```

Eigenvectors: Normal Symmetric (Mu = 1) Matrix

[1] "Proportion of real-valued rows: 0"

Tridiagonal Matrix

```
set.seed(23)
P <- RM_trid(M)
if(bool_plot){eigen_plot(P, loud = bool_loud, "Tridiagonal")}</pre>
```

Eigenvectors: Tridiagonal Matrix

[1] "Proportion of real-valued rows: 1"

