AREL ÜNİVERSİTESİ BİYOMEDİKAL GÖRÜNTÜ İŞLEME

GÖRÜNTÜ SIKIŞTIRMA

DR. GÖRKEM SERBES

Neden Sıkıştırmaya İhtiyaç Var?

İki saatlik bir film için, 720×480 standart çözünürlükte,

$$\left(30\frac{\text{çerçeve}}{\text{saniye}} \times (720 \times 480) \frac{\text{piksel}}{\text{çerçeve}} \times 3\frac{\text{bayt}}{\text{piksel}}\right) \times \left((60^2) \frac{\text{saniye}}{\text{saat}} \times 2\text{saat}\right) = 2.24 \times 10^{11} \text{bayt}$$

Nasıl sıkıştırma yapabiliriz?

a b c

FIGURE 8.1 Computer generated $256 \times 256 \times 8$ bit images with (a) coding redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit others as well.)

Veri Artıklığı ve Sıkıştırma Oranı

Veri Artıklığı

$$R_D = 1 - \frac{1}{C_R}$$

Sıkıştırma Oranı

$$C_R = \frac{n_1}{n_2}$$

Popüler Görüntü Sıkıştırma Standartları

popular image compression standards, file formats, and containers. Internationally sanctioned entries are shown in black; all others are grayed.

Genel Görüntü Sıkıştırma Sistemi

FIGURE 8.5

Functional block diagram of a general image compression system.

JPEG Görüntü Sıkıştırma Algoritması

a b

FIGURE 8.9 (a) A 512 × 512 8-bit image, and (b) its histogram.

Piksel yeğinlik değerleri aynı sayıda mıdır?

r_k	$p_r(r_k)$	Code 1	$l_I(r_k)$	Code 2	$I_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	-	8	_	0

Ne kadar sıkıştırma yapıldı?

Origina	al source	Source reduction						
Symbol	Probability	1	2	3	4			
a ₂ a ₆ a ₁ a ₄ a ₃ a ₅	0.4 0.3 0.1 0.1 0.06 0.04	0.4 0.3 0.1 0.1 -	0.4 0.3 → 0.2 0.1	0.4 0.3 - 0.3	→ 0.6 0.4			

FIGURE 8.7
Huffman source reductions.

FIGURE 8.8
Huffman code
assignment
procedure.

О	riginal source				S	ource red	ductio	n		
Symbol	Probability	Code	1	-	2	2	3	3	4	
a ₂ a ₆ a ₁ a ₄ a ₃ a ₅	0.4 0.3 0.1 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 —0.1	00		1 00 010 011	0.3	1 00 01	-0.6 0 0.4 1	

Prefix Free

FIGURE 8.8
Huffman code assignment procedure.

О	riginal source				S	ource red	ductio	n		
Symbol	Probability	Code	1	-	2	2	3	3	4	
a ₂ a ₆ a ₁ a ₄ a ₃ a ₅	0.4 0.3 0.1 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 —0.1	0100 ←		1 00 010 011	0.4 0.3 -0.3	1 00 - 01 -	-0.6 0 0.4 1	

JPEG - 8×8 Bloklar

Neden ihtiyaç var?

Formül

$$T(u,v) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$f(x,y) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$F(x,y) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$r(x,y, M, \pi) = S(x,y, M, \pi)$$

 $= \omega(M)\omega(v) \cos \frac{(2x+1)M^{2}}{2n}$
 $(M) = (\frac{1}{2}M = 0) \cos \frac{(2y+1)V^{2}}{2n}$
 $(M) = (\frac{1}{2}M + 0) \cos \frac{(2y+1)V^{2}}{2n}$

Discrete Cosine Transform

Neden Ayrık Kosinüs Dönüşümü?

Neden 8×8?

a b c d

FIGURE 8.27 Approximations of Fig. 8.27(a) using 25% of the DCT coefficients and (b) 2×2 subimages, (c) 4×4 subimages, and (d) 8×8 subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).

Sonuç?

a b c d

FIGURE 8.28

Approximations of Fig. 8.9(a) using 12.5% of the 8 × 8 DCT coefficients:
(a)—(b) threshold coding results;
(c)—(d) zonal coding results. The difference images are scaled by 4.

1	1	1	1	1	0	0	0	8	
1	1	1	1	0	0	0	0	7	
1	1	1	0	0	0	0	0	6	
1	1	0	0	0	0	0	0	4	
1	0	0	0	0	0	0	0	3	
0	0	0	0	0	0	0	0	2	
0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	
1	1	0	1	1	0	0	0	0	
1	1	1	1	0	0	0	0	2	
1	1	0	0	0	0	0	0	3	

8	7	6	4	3	2	1	0
7	6	5	4	3	2	1	0
6	5	4	3	3	1	1	0
4	4	3	3	2	1	0	0
3	3	3	2	1	1	0	0
2	2	1	1	1	0	0	0
1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0

1	1	0	1	1	0	0	0	0	1	5	6	14	15	27	28
1	1	1	1	0	0	0	0	2	4	7	13	16	26	29	42
1	1	0	0	0	0	0	0	3	8	12	17	25	30	41	43
1	0	0	0	0	0	0	0	9	11	18	24	31	40	44	53
0	0	0	0	0	0	0	0	10	19	23	32	39	45	52	54
0	1	0	0	0	0	0	0	20	22	33	38	46	51	55	60
0	0	0	0	0	0	0	0	21	34	37	47	50	56	59	61
0	0	0	0	0	0	0	0	35	36	48	49	57	58	62	63

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

a b

FIGURE 8.30

(a) A threshold coding quantization curve [see Eq. (8.2-29)]. (b) A typical normalization matrix.

FIGURE 8.31 Approximations of Fig. 8.9(a) using the DCT and normalization array of Fig. 8.30(b): (a) **Z**, (b) 2**Z**, (c) 4**Z**, (d) 8**Z**, (e) 16**Z**, and (f) 32**Z**.

a b c d e f

FIGURE 8.32 Two JPEG approximations of Fig. 8.9(a). Each row contains a result after compression and reconstruction, the scaled difference between the result and the original image, and a zoomed portion of the reconstructed image.

Kayıpsız Öngörücü Kodlama

JPEG

a b

FIGURE 8.33

A lossless predictive coding model:

- (a) encoder;
- (b) decoder.

Kayıpsız Öngörücü Kodlama

a b c d

FIGURE 8.34

(a) A view of the Earth from an orbiting space shuttle. (b) The intensity histogram of (a). (c) The prediction error image resulting from Eq. (8.2-34). (d) A histogram of the prediction error. (Original image courtesy of NASA.)

Kayıplı Öngörücü Kodlama

a b

FIGURE 8.41

A lossless predictive coding model:

- (a) encoder;
- (b) decoder.

Video Sıkıştırma

a b c d

FIGURE 8.35

(a) and (b) Two views of Earth from an orbiting space shuttle video. (c) The prediction error image resulting from Eq. (8.2-36). (d) A histogram of the prediction error. (Original images courtesy of NASA.)

Video Sıkıştırma

FIGURE 8.39

A typical motion compensated video encoder.