

Toward Precision Muon Tracking: Understanding the CMS Magnetic Field and Other Effects in CRAFT

Jim Pivarski

Texas A&M University

6 February, 2009

- ▶ We've all seen event displays, so we know that tracking basically works
- ▶ Now we need to use the millions of cosmic rays to test and correct tracking with high precision

Muon tracking Standalone Muon Segments Global Muon inhomogeneous field not completely understood track-fitting decouples from alignment Tracker track ► magnetic field well understood track-fitting and alignment are coupled. but solution is successful (see plot)

Jim Pivarski 3/26

CMS

Tracker alignment group: J. Drger, R. Castello, G. Flucke, A. Gritsan, E. Migliore, M. Musich, A. Bonato, N. Tran, M. Weber et al.

- Precision generally proceeds from the tracker outward
 - successful tracker alignment provides a good platform from which to resolve unknown $\vec{B}(\vec{x})$ in the muon system
- But also from local chamber segments outward
- ▶ In both cases, the reference has a uniform magnetic field...

Indication of a problem

0.004200

1.0556 ± 0.0052

4.0006 | 0.0060

.0065 : 0.0972

 $\Delta \phi$ (rad)

Solit Tracks

Split GLB muons

Solit Tracks

Split GLB muons

Black: tracker trackRed: global muon

Adding muon hits is not expected to help low-momentum tracks much, but it shouldn't hurt!

- Why not use
 - tracker for high-precision tracking
 - muon system for particle-id?
- Answer: because we care about high-momentum muons!

Physics TDR

- ▶ Solving muon tracking issues could make the difference between discovering $Z' \to \mu\mu$ in 2009/2010 and not having a significant peak
- ► Heavy Stable Charged Particle searches also depend on good muon tracking for completely different reasons

- ► Magnetic field map
 - exact shape of $\vec{B}(\vec{x})$ is difficult to model and depends on CMS's environment
- ► Alignment
 - ► for the chambers' intrinsic resolution to be useful, their positions must be known with at least equal precision
- Material budget
 - ightharpoonup dE/dx corrections are smaller, especially for high-momentum
 - treat as negligible for now
- ► Calibration
 - can be solved independently of global tracking issues

Outline for this talk

- 1. What \vec{B} -field errors do to tracks
 - 2. Aligning the muon system with an imperfectly-known field
 - 3. Measuring the field corrections with an imperfectly-known alignment

... inside the solenoid

▶ Magnetic field mapper, NMR probes's 2006 and 2008 data, and simulation all agree at the 0.1% level

...in the far reaches of the muon system

- ► Flux-loop measurements disagree with simulation as much as 20% (2006 and 2008)
- Forces on CASTOR were larger than expected
- ightharpoonup Evidence of B_z errors in CRAFT tracks
- \blacktriangleright Evidence of B_r errors in CRAFT DT calibration

Effect of B_7 errors on residuals

Jim Pivarski

8/26

- ightharpoonup Gap between propagted track and real muon grows quadratically in yoke when B_z is wrong
- Gap grows linearly elsewhere, dependent on history
 (This is like a Physics I displacement problem with regions of acceleration)

Jim Pivarski

9/26

- \triangleright Trajectory angle grows linearly in yoke when B_z is wrong (This is like a Physics I velocity problem with regions of acceleration)
- Difference in segment angles on the same track provides a direct measurement of B_{7} error
- Residuals method can provide a cross-check

What do we observe?

Jim Pivarski 10/26

Residuals

Sara Bolognesi, blue points: Jim Pivarski

Segment angles

Sara Bolognesi

- ▶ Plots show integrated effect from tracker to each station
- lacktriangle Also shown to be ϕ and z symmetric within each station
- ▶ Real magnetic field is *smaller* than what is used in the simulation

- \triangleright Residuals from B_z error are as large as 5 mm
- Residuals from chamber misalignment were 5-10 mm
- ▶ How can we disentangle them?
 - magnetic field effect depends on momentum and is antisymmetric with charge

residual =
$$(q/p_T) \frac{\ell^2}{600 \text{ cm}} \Delta B$$

- misalignment effect is independent of momentum
- ▶ Residuals versus curvature (q/p_T) :
 - \triangleright B_z error introduces slope
 - misalignment is the value at infinite momentum $(q/p_T \rightarrow 0)$

(magnetic field is a controlled systematic error)

Fact: Momentum spectra for positively-charged and negatively-charged cosmic rays are equal, though the number of each differ (used in Cosmic Charge Ratio Analysis)

Fact: Effect of \vec{B} on residuals flips sign with charge

- ► Find peak of residuals in two bins: R₊ (positively-charged) and R₋ (negative)
- ► Misalignment residual $\equiv \frac{R_+ + R_-}{2}$
 - effectively scales up negatively-charged population to cancel effect of positives
- Syst. = $\left(\frac{R_+ R_-}{2}\right)$ (charge confusion) $\times \frac{0.3}{2.3}$
 - ▶ Always plot $(R_+ R_-)/2$ to trace systematic error (times a large factor)

Demonstration in station 4

Jim Pivarski 13/26

- ▶ Station 4 has the largest \vec{B} -field errors: plot residuals across barrel
- ▶ The misalignment measure breaks cleanly at the chamber boundaries
- ▶ The tracer of \vec{B} -field errors is independent of chamber

grey background is the raw 2-D residuals distribution linear fits are only a guide for the eye: not used in alignment!

Jim Pivarski 14/26

Same story when viewed as a function of ϕ (wheel 0 shown for four stations)

- $(R_+ R_-)/2$ non-negligible in stations 3 and 4 only
- Flips sign in top of CMS ($\phi > 0$) because of direction of muon velocity
- Linear trend inside each chamber (sawtooth shape) is unexplained: early investigations indicate non-rigid distortion of DT chambers
- See "more information" at http://indico.cern.ch/conferenceDisplay.py?confId=51267

DT Alignment summary

Jim Pivarski 15/26

▶ Pattern of alignment corrections do not correspond to a rotation

- ▶ Estimated residual misalignments: 1–2 mm (a factor-of-five improvement)
- Residuals visibly improve, despite unresolved "sawtooth" pattern

 CSCs are next, but will require a different technique due to vertical distribution of cosmic rays

(misalignment is a controlled systematic error)

- Instead of residuals, plot segment angle difference between two stations on the same track
- ► Quantifies *B_z* in the yoke between them

Sample B_z measurements

Jim Pivarski 17/26

Sara Bolognesi

$\delta \phi$ (wheel 0, sector 4, p_T=10±1 GeV)

CMS/

Sara Bolognesi

18/26

$$\left(\left. B_z \right|_{\mathsf{data}} \right) / \left(\left. B_z \right|_{\mathsf{MC}} \right)$$

$$10 < p_T < 50 \,\, \mathrm{GeV}$$

Real B_z is generally smaller than simulated

Comparison with flux loops

Jim Pivarski 19/26

- "data/MC" is the fractional B_z error determined by segments
- ▶ The agreement is coarse at best

	MB1-2	MB2-3	MB3-4	same results for opposite wheels from cosmic data
data/MC $\begin{cases} wheel -2 \\ wheel +2 \end{cases}$	10% 7% 0.1%	26% 25% 11.5%	30% 30% 21.8%	deficit increasing toward outer stations in both cases rescaling is ~10% bigger in cavern (more iron in green structures and far endcap regions) (crazy flux-loop measurement: 2.4T) measurement from comsic data made on a population not flat in z
data/MC {wheel -1 wheel +1	4% 2%	27% 24%	30% 26%	
flux-loop wheel -1	15.2%	7.0%	15.4%	
data/MC wheel 0	7%	24%	25%	
flux-loop wheel 0	0.9%	6.0%	10.5%	

Inside of a DT drift cell:

- While muon momentum may be parallel with the radial direction, current of electrons drifting to wire is always perpendicular
- ▶ Path is distorted by field, yielding a reduction in the apparent drift velocity (when computed as distance between track and wire/drift time)
- ▶ Variations in v_{drift} are sensitive to B_r , including any error with respect to simulation
- ▶ Independent of misalignment, though not a cross-check (because this is B_r , not B_z)

Qualitatively reproduces B_r map Jim Pivarski 21/26

Field map:

Conversion to B_r (test beam):

B_r is also smaller than simulation Jim Pivarski

22/26

but only in high-field chambers

Initial B_z analysis in the endcap Jim Pivarski 23/26

- ► Compares p_T of endcap stand-alone muons with tracker tracks
- ▶ Sensitive to integral of B_z error over path of tracks
- Result: B_z is about 10% lower in data than in simulation (assuming correct tracker momentum scale)
- ▶ Work in progress!

Synthesis of measurements

Jim Pivarski

24/26

 B_z

 B_r

- ▶ If the field is at full strength in the tracker but smaller everywhere else, where are the field lines going?
 - ▶ close to the beamline? Maybe that explains the CASTOR forces. . . ?
- Ultimately, the field measurements must be understood in terms of an updated simulation

What went wrong?

Jim Pivarski

- The magnetic field was simulated with CMS in isolation; no surrounding green structure as is in the cavern
- Quick check: adding a conducting pillbox around CMS can overcorrect for the effect
- Magnitude of corrections are therefore in the right ballpark

Challenge will be to make the simulation more realistic

- ► Muon tracking is far from perfect, but we're finding and correcting the kinds of distortions one might expect
 - improvements to barrel alignment in second CRAFT re-processing
 - emerging picture of magnetic field map
- Tracking datasets are rich: many problems that appear to be entangled can be cleanly decoupled by considering the right variables
 - but comparisons with completely independent methods, such as the hardware alignment system and \vec{B} -field flux loops, is always helpful
- CRAFT has been a productive shakedown cruise so far