Mechanics of Machinery

2103322

Term Project

Finger gripper

เสนอ

รศ.ดร.รัชทิน จันทร์เจริญ

จัดทำโดย

นาย วิษณุพร พรหมสิรินิมิต 6532161321 (Part 2)

นาย วรปัญญ์ เดิมยิริง 6530352521 (Part 3)

นาย ชวิศ รัตนเพียรชัย 6532046921 (Part 4)

Objective

โครงการนี้มีวัตถุประสงค์เพื่อนำความรู้ที่ได้จากรายวิชา Mechanics of Machinery 2103322 มา ประยุกต์ใช้กับกลไกในชีวิตจริง ประเภท Robot gripper โดยสนใจใน 3 ด้านหลักๆ ได้แก่ 1. การวิเคราะห์ รูปแบบการทำงานและค่าต่างๆ ของกลไกที่จำเป็นด้วยฟังก์ชั่นของ Matlab Simscape Multibody 2. การ วิเคราะห์และสังเคราะห์เส้นทางการเคลื่อนที่ของกลไกด้วยฟังก์ชั่นของ Matlab Symbolic และ 3. การสร้าง แบบจำลองของกลไกขึ้นจริงด้วย 3D printer

Part 1: Basics

รูปที่ 1: แสดง Gripper ต้นแบบที่นำมาศึกษาในงานนี้

(a) Project Brief

กลุ่มของเราสนใจศึกษาระบบ Gripper ลักษณะคล้ายนิ้วมือซึ่งใช้ actuator แบบ Slider เพียงจุดเดียว ซึ่งถือเป็น Interest Mechanism โดยเริ่มต้นจากการกำหนด path การเคลื่อนที่ของนิ้วที่เราต้องการ จากการ ค้นหาข้อมูลพบว่านิ้วมือของมนุษย์นั้นประกอบด้วยข้อนิ้วสามท่อนซึ่งมีขีดจำกัดการเคลื่อนที่แตกต่างกันดังนี้

1. Metacarpophalangeal joints: 85° - 90°

2. Proximal interphalangeal joints: 100° - 115°

3. Distal interphalangeal joints: 80° - 90°

รูปที่ 2: แสดงกระดูกและข้อต่อของมือมนุษย์

และมีอัตราส่วนความยาวของนิ้วแต่ละข้อนิ้วเฉลี่ย 1 : 1.5 : 2.25 เมื่อวัดจากปลายนิ้วตามลำดับ ด้วยเงื่อนไข เหล่านี้ เราจึงกำหนด path ขอบเขตกลไกโดยให้ Link5 หมุนได้ 0° - 90°, Link7 หมุนได้ 0° - 100° เทียบจาก ขีดจำกัดของ Link5 และ Link9 หมุนได้ 0° - 90° เทียบจากขีดจำกัดของ Link7 พร้อมค่าเผื่อความผิดพลาด 5° ในส่วนของความยาว Link9: Link7: Link5 กำหนดอัตราส่วนเท่ากับ 1 : 2 : 4 เพื่อความสะดวกในการสร้าง ชิ้นงานจริง นอกจากนี้ยังกำหนดเพิ่มเติมให้ชิ้นสามเหลี่ยมหน้าจั่ว (link4) ขยับไป 120° เทียบกับจุดเริ่ม แล้ว ทำให้ชิ้นปลายนิ้ว (link9) ขยับไป 270° เทียบกับแนวราบ

(b) the kinematic diagram

รูปที่ 3: Schematic diagram ของ Gripper

ความยาวจริงของแต่ละ link มีขนาดดังนี้

- Link 2 มีขนาด 14 x 30 มิลลิเมตร จากด้านข้าง
- Link 3 มีความยาว 66 มิลลิเมตร
- Link 4 เป็นสามเหลี่ยมหน้าจั่ว ประกอบด้วยมุม 120° กับด้านประกอบมุม 22 มิลลิเมตร
- Link 5 มีความยาว 64 มิลลิเมตร และมีปลายที่ทำมุม 45° กับตัว link ยาว 16 มิลลิเมตร
- Link 6 มีความยาว 66 มิลลิเมตร
- Link 7 มีความยาว 30 มิลลิเมตร และมีปลายที่ทำมุม 45° กับตัว link ยาว 16 มิลลิเมตร
- Link 8 มีความยาว 32 มิลลิเมตร
- Link 9 มีความยาว 20 มิลลิเมตร และมีปลายที่ทำมุม 45° กับตัว link ยาว 13 มิลลิเมตร
- Slider Span ยาว 42 มิลลิเมตร

(c) A Degree of Freedom (DoF) analysis

ดังนั้นกลไกนี้จึงประกอบด้วย Links ทั้งหมด 9 ชิ้นและ Revolute joint ทั้งหมด 10 จุด เมื่อนำมา คำนวณหา Degree of Freedom ตาม Garshof's Law

$$DOF = 3(n-1) - 2j1 - j2$$
$$= 3(10-1) - 2(9)$$
$$= 2$$

อย่างไรก็ตามตัวกลไกนี้มีความพิเศษเมื่อ Link5 อยู่ที่ limit position เนื่องจากถูก Ground จำกัดการ เคลื่อนที่ไว้ ทำให้สามารถมองได้ว่า Joint D และ E ทำหน้าที่เป็น Ground pivot และเกิดเป็นกับกลไก Four-Bar linkage ย่อยๆ สองกลไกดังรูปที่ 2 กลไก Four-Bar linkage แรกประกอบด้วย O4, B, C และ D โดยมี Link O4B เป็นตัวขับ Four-Bar linkage ที่สองประกอบด้วย D, F, G และ E โดยมี Link DG เป็นตัวขับจึง พอจะคาดการณ์ได้ว่า ขณะที่ Link5 อยู่ใน limit position กลไกนี้จะมีองศาอิสสระเท่ากับ 1

รูปที่ 4: Schematic diagram ของ Gripper ณ ตำแหน่งสุดขีดของ Link 5

Part 1: Simscape Multibody and/or Fusion360 (วิษณุพร 6532161321)

รูปที่ 5:กราฟแสดงความสัมพันธ์ระหว่างตำแน่ง(Y) ของ Joint G และเวลา(X)

กราฟแสดงมุมในหน่วยเรเดียนของ Link9 เทียบกับ Link8 ซึ่งมีความสมเหตุสมผลเนื่องจากที่ ช่วงเวลาเข้าใกล้ 4 วินาทีกลไกถูกกำหนดให้อยู่ในจุดสูงสุดหรือ Link เรียงตัวกันเป็นเส้นตรง กราฟแสดงค่า 3.5 rad หรือประมาณ 200 องศา โดยพิจราณาให้กราฟที่มีความชั้น 90 องศาเป็นค่าผิดพลาดจากโปรแกรม ต่อมาที่เวลา 10 วินาทีกราฟแสดงค่า 1.75 rad หรือประมาณ 100 องศา

รูปที่ 6:กราฟแสดงความสัมพันธ์ระหว่างแรงที่กระทะ(Y) ต่อ Link1 และเวลา(X)

รูปที่ 7:Block diagram multibody of Mechanism

รูปที่ 8:Mechanic Explorer of Mechanism

Part 3: Symbolic Math to design and/or analyze (วรปัญญ์ เดิมยิริง 6530352521) กลไกแบ่งรูปแบบการเคลื่อนที่ของ fingers gripper ออกเป็น 2 ส่วนคือ

- 1. ช่วง 0° 90° Link 5,6,7,8 และ 9 จะขยับไปพร้อมกันในอัตราเร็วเชิงมุมที่เท่ากันจนกระทั่ง Link 5 ชนกับฐานแล้วกลายเป็น ground ให้กับการขยับของ Link 6,7,8 และ 9
- 2. ช่วง 90° 270° Link 6, 7 จะขยับด้วยอัตราเร็วเชิงมุมที่มากกว่าช่วงแรกประมาณ 3 เท่า เพื่อให้อยู่ในตำแหน่ง 180° ภายในการขยับเพียง 30° ที่เหลือจากช่วงแรก และ Link 8, 9 จะ ขยับด้วยอัตราเร็วเชิงมุมที่มากกว่าช่วงแรกประมาณ 6 เท่า เพื่อให้อยู่ในตำแหน่ง 270° ภายใน การขยับเพียง 30°

เมื่อได้ skeleton diagram แล้วเราทำการ synthesis โดยใช้ matlab code ออกมาได้รูปดังนี้

รูปที่ 9:แสดงการสังเคราะห์กลไกในขณะก่อนเคลื่อนที่

รูปที่ 10:แสดงการสังเคราะห์กลไกในขณะเคลื่อนที่ช่วง 0° - 90°

รูปที่ 11:แสดงการสังเคราะห์กลไกในขณะเคลื่อนที่ช่วง 90° - 270°

รูปที่ 12:แสดงการสังเคราะห์กลไกในขณะเคลื่อนที่กลับ

เพื่อความสะดวกในการสังเคราะห์ เราจึงอนุมานว่า หลังจากที่ link 5 กลายเป็น ground pivot การเคลื่อนที่ ของ link 4,5,6,7 และ link 5,7,8,9 เป็นการเคลื่อนที่แบบ four - bar linkage แต่พบว่าเป็นการเคลื่อนที่ แบบ Double – rocker เราจึงไม่สามารถสังเคราะห์การเคลื่อนที่ด้วย four – bar linkage ได้จาก error ของ คำตอบที่เป็นจำนวนจินตภาพ เราจึงเลือกให้ limit position อยู่ที่ 90° และหาวิธีให้อัตราเร็วเชิงมุมเร็วขึ้นด้วย การกำหนดความยาวของ link แทนเพื่อให้ link9 สามารถขยับไปถึง 270° ได้ แต่กลุ่มเราไม่สามารถหา ความสัมพันธ์ของความยาว link กับอัตราเร็วเชิงมุมได้ เราจึงเลือกใช้วิธีทำชิ้นงานจริงขึ้นมาลองทดสอบการ เคลื่อนที่จริงแล้วปรับความยาวของ link กับเพลา

Part 4: Building a wall mounted A4 size Model (ชวิศ 6532046921)

Prototype I

ปัญหาที่พบ : เกิดปัญหาในการใส่เพลาทำให้ประกอบเพลากับ slider ไม่ได้ สามารถเคลื่อนที่ตามที่คาดการณ์ ไว้แต่ปลาย link เคลื่อนที่ไม่ถึงจุด 270° ตามที่คาดหวังไว้ และพบว่าจำนวน link เยอะเกินจำนวนสีที่ร้าน Hans เหลือไว้

ทางแก้ไข : แก้ไข CAD ของฐานจากเดิม, ลดความยาวของ link 6 เพื่อให้ปลาย link ขยับไปจุดที่ 270° ได้ และจะใช้การปริ้น 3D สีขาวแล้วพ่นสเปรย์สีเพื่อแยก link ได้

รูปที่ 13: แสดงการสร้างต้นแบบกลไกครั้งที่ 1

Prototype II

ปัญหาที่พบ : ยังเกิดปัญหาในการใส่เพลา สามารถเคลื่อนที่ได้ถึงจุด 270° ตามที่คาดหวังไว้ แต่เคลื่อนที่ได้ ยากมากเนื่องจากความฝืดและ link 3 ไม่สามารถส่งแรงให้ link 4 เคลื่อนที่ได้

ทางแก้ไข : แก้ไข CAD ของฐานจากเดิม, เพิ่มความหนาของ link 3 เพื่อให้สามารถขยับ link 4 ได้และปรับ ขนาดรูปที่จะใส่ revolute joints ให้ใหญ่ขึ้นเล็กน้อยเพื่อให้ใส่ได้สะดวกและลดความฝืดในการขยับ

รูปที่ 14: แสดงกลไกต้นแบบครั้งที่ 2 ณ ตำแหน่งขีดสุด

Prototype III

ปัญหาที่พบ : พบว่าการให้จุด slider ตรงกับจุดหมุนทำให้เกิดจุดตายในการขยับขึ้นซึ่งส่งผลให้หลังจากขยับ กลับไปจุดเดิมกลไกจะอยู่ในตำแหน่งตกลงมาจากจุดเดิมเล็กน้อย, ตัวกลไกค่อนข้างหนักทำให้เวลาขยับกลไก จะดิ่งลง 90° ตามแรงโน้มถ่วง ไม่อยู่ในจุดตรงที่ตั้งใจไว้

ทางแก้ไข : แก้ไข CAD ของของจุด slider และจุดหมุนให้ไม่อยู่ในระนาบเดียวกันเพื่อไม่ให้เกิดจุดตาย, แก้ไข เรื่องน้ำหนักไม่ได้และไม่สามารถเพิ่มจุดถ่วงกลไกได้จึงเลือกที่จะให้ไม่ตั้งตรงตามที่ตั้งใจ

รูปที่ 15: แสดงการสร้างต้นแบบกลไกครั้งที่ 3

Final Prototype

รูปที่ 16:แสดงภาพกลไกชิ้นงานจริงที่ตำแหน่งต่ำสุด

รูปที่ 17:แสดงภาพกลไกชิ้นงานจริงที่ตำแหน่งสูงสุด

รูปที่ 18:แสดงภาพกลไกชิ้นงานจริงจากมุงมองด้านบน(Top View)

โดยนอกจากการปรับปรุงเบื้องต้นดัง prototype III เราเพิ่มฐานในการรองรับกลไกขึ้น ปัญหาที่พบและยัง แก้ไขไม่ได้คือเรื่องที่กลไกไม่สามารถตั้งตรงได้ด้วยตัวเองดังที่ตั้งใจไว้ กลุ่มของเราคิดว่าสามารถแก้ไขได้ด้วย การลดน้ำหนัก link บางชิ้นเพื่อให้เบาขึ้น แล้วเพิ่มน้ำหนักให้ link ที่ติดกับฐานเช่น link 4 เพื่อให้สามารถถ่วงl link อื่นได้ และกลุ่มของเรามองว่าเราสามารถปรับปรุงส่วนของ slider ให้มีการขยับที่แม่นยำขึ้นได้เช่นการใช้ motor แล้ว input ระยะทางที่จะให้ motor ขยับ ซึ่งกลุ่มของเราจะนำไปปรับปรุงและพัฒนาต่อในอนาคต

เพิ่มเติม:

https://chulamy.sharepoint.com/:f:/g/personal/6532046921_student_chula_ac_th/EuhhlLkfT_NDret5QMW5zdUBxiLN5cQsKjUTkDhcBQCnvg?e=OGMHaK