Komparasi Model Deep Learning untuk Klasifikasi Gambar dengan Transfer Learning

Disusun untuk memenuhi tugas mata kuliah Machine Leraning

Dosen Pengampu: Al-Ustadz Dr. Oddy Virgantara Putra, S.Kom., M.T.

Disusun Oleh:

- 1. Devianest Narendra 442023618087
 - 2. Zainab Ahmad 442023618107
 - 3. Naila Fatikhah 442023618086
- 4. Adya Rusmalillah 442023618093

TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS DARUSSALAM GONTOR KELAS C
2025/2026

ANGGOTA KELOMPOK DAN KONTRIBUSI

No	Nama Anggota	NIM	Kontribusi	Dataset/Model
1	Devianest Narendra	442023618087	Face Mask Classification, Implementasi PyTorch, Analisis Model	Face Mask + ResNet18
2	Adya Rusmalillah	442023618093	Apple vs Tomato Classification, Implementasi TensorFlow	Apple vs Tomato + MobileNetV2
3	Naila Fatikhah Parwanto	442023618086	Vehicle Classification, Optimisasi Performa	Vehicle + MobileNetV2
4	Zainab Ahmad	442023618107	Face Mask Classification, Implementasi VGG16, Penyusunan Laporan	Face Mask + VGG16

1. RINGKASAN EKSPERIMEN INDIVIDUAL

1.1 Devianest Narendra: Face Mask Detection (PyTorch + ResNet18)

• Tujuan: Klasifikasi gambar wajah dengan/ tanpa masker

• Dataset: Face Mask Classification (With-Mask vs Without-Mask)

• Arsitektur: ResNet18 pretrained di ImageNet

• Framework: PyTorch

• Parameter Kunci:

> Epochs: 10

➤ Batch Size: 32

Learning Rate: 1e-4 (Adam)

➤ Input Size: 224×224

> Transfer Learning: Full fine-tuning

• Hasil:

➤ Akurasi Uji Akhir: 97.0%

> Train Loss (Akhir): 0.3304

➤ Test Loss (Akhir): 0.5585

• **Analisis Kritis**: Model menunjukkan tanda-tanda overfitting (train loss << test loss). Penggunaan dataset yang sama untuk train/test merupakan kesalahan metodologis.

1.2 Adya Rusmalillah: Fruit Classification (TensorFlow + MobileNetV2)

• Tujuan: Klasifikasi biner antara apel dan tomat

- **Dataset**: Dataset custom (200 gambar, 100 per kelas)
- **Arsitektur**: MobileNetV2 pretrained + custom classifier
- Framework: TensorFlow/Keras
- Parameter Kunci:
 - > Epochs: 5
 - ➤ Batch Size: 32
 - > Train/Val Split: 80/20
 - Transfer Learning: Frozen base + classifier trainable
- Hasil:
 - ➤ Akurasi Validasi Akhir: 99.0%
 - ➤ Akurasi Uji Manual: 99.0%
 - Precision/Recall sempurna untuk kedua kelas
- Analisis Kritis: Ukuran dataset terbatas dapat menyebabkan overfitting. Namun, metodologi sudah sangat baik dengan pembagian train/validation yang tepat.

1.3 Naila Fatikhah: Vehicle Classification (TensorFlow + MobileNetV2)

- Tujuan: Klasifikasi biner antara mobil dan motor
- Dataset: Dataset kendaraan (200 gambar, 100 per kelas)
- Arsitektur: MobileNetV2 pretrained + custom classifier
- Framework: TensorFlow/Keras
- Parameter Kunci:
 - > Epochs: 5
 - ➤ Batch Size: 32
 - ➤ Train/Val Split: 80/20
 - > Transfer Learning: Frozen base + classifier trainable
- Hasil:
 - Akurasi Validasi Akhir: 100.0%
 - Klasifikasi sempurna di semua metrik
 - Confusion Matrix: [[100, 0], [0, 100]]
- Analisis Kritis: Akurasi sempurna mengindikasikan dataset terlalu mudah atau ada kebocoran data. Perlu verifikasi lebih lanjut.

1.4 Zainab Ahmad: Face Mask Detection (PyTorch + VGG16)

- Tujuan: Deteksi masker wajah dengan evaluasi komprehensif
- **Dataset**: Dataset masker wajah lebih besar (3.022 gambar total)

• Arsitektur: VGG16 pretrained + classifier dimodifikasi

• Framework: PyTorch

• Parameter Kunci:

> Epochs: 5

➤ Batch Size: 16

➤ Learning Rate: 0.001 (Adam)

➤ Train/Test Split: 80/20

➤ Transfer Learning: Frozen features + classifier trainable

• Hasil:

➤ Akurasi Uji Akhir: 99.47%

➤ Akurasi Latih: 99.26%

> Precision: 99% (kedua kelas)

> F1-Score: 99% (kedua kelas)

• **Analisis Kritis**: Implementasi paling robust dengan dataset terbesar dan metodologi evaluasi yang tepat.

2. KOMPARASI KOMPREHENSIF HASIL MODEL

2.1 Perbandingan Metrik Performa

Anggota	Model	Dataset Size	Akurasi Akhir	Precision	Recall	F1- Score	Skor Metodologi*
1	ResNet18	~100	97.0%	-	-	-	2/5
2	MobileNetV2	200	99.0%	99%	99%	99%	4/5
3	MobileNetV2	200	100.0%	100%	100%	100%	4/5
4	VGG16	3,022	99.47%	99%	99%	99%	5/5

Skor Metodologi berdasarkan: train/test split, metrik evaluasi, ukuran dataset, kualitas implementasi

2.2 Analisis Konvergensi Loss

- Anggota 1 (ResNet18): Gap besar antara train dan test loss → overfitting.
- Anggota 2 (MobileNetV2 Fruits): Loss konvergen stabil, tidak ada tanda overfitting.
- Anggota 3 (MobileNetV2 Vehicles): Konvergensi terlalu cepat, hasil 100% mencurigakan.
- Anggota 4 (VGG16): Performa latih dan validasi seimbang, kurva belajar sehat.

2.3 Kompleksitas Model vs Performa

Model	Parameters (M)	Kecepatan Inferensi	Penggunaan Memori	Akurasi	Efisiensi*
ResNet18	11.23	Cepat	Medium	97.0%	8.6

MobileNetV2	2.23	Sangat Cepat	Rendah	99.0%	44.4
MobileNetV2	2.23	Sangat Cepat	Rendah	100.0%	44.8
VGG16	134.3	Lambat	Tinggi	99.47%	0.74

Efisiensi = Akurasi / Parameters (M)

3. ANALISIS STRATEGI PEMBELAJARAN

- Fine-tuning penuh (Anggota 1) → fleksibel tapi rawan overfitting dataset kecil.
- Frozen base + classifier trainable (Anggota 2,3,4) → performa lebih stabil, cepat, dan efisien.
- **Preprocessing**: PyTorch (normalisasi ImageNet) lebih kaya, TensorFlow (rescale 1/255) lebih sederhana.
- Pemilihan Arsitektur:
 - ➤ ResNet18 → seimbang tapi butuh data cukup.
 - ➤ MobileNetV2 → ringan, efisien, cocok untuk deployment.
 - ➤ VGG16 → akurasi tinggi, tapi berat.

4. KELEBIHAN & AREA IMPROVEMENT

- Devianest Narendra: Implementasi PyTorch bersih, tapi metodologi salah (train/test sama).
- Adya Rusmalillah: Metodologi sangat baik, evaluasi lengkap.
- Naila Fatikhah: Implementasi efisien, tapi hasil terlalu sempurna → curiga kebocoran data.
- Zainab Ahmad: Implementasi paling lengkap, dataset besar, metodologi robust.

Kekurangan umum:

- Tidak ada data augmentation
- Tidak ada cross-validation
- Tidak ada early stopping atau LR scheduler
- Tidak ada ensemble

5. REKOMENDASI STRATEGI

- Dataset kecil (<1000) → MobileNetV2 + frozen base
- Dataset sedang (<10000) → ResNet18/34 + partial fine-tuning
- Dataset besar (>10000) → VGG16/ResNet50+ + full fine-tuning

Pipeline optimal: data augmentation, split dataset 70/15/15, optimizer Adam + LR scheduler, evaluasi dengan cross-validation dan metrik lengkap.

6. KESIMPULAN & REKOMENDASI FINAL

- Ranking Model:
 - 1. Zainab Ahmad (VGG16) → paling reliabel

- 2. Adya Rusmalillah (MobileNetV2) → efisiensi terbaik untuk deployment
- 3. Naila Fatikhah (MobileNetV2) → butuh verifikasi lebih lanjut
- 4. Devianest Narendra (ResNet18) → perlu reimplementasi
- Strategi Akademik: dataset besar + evaluasi komprehensif.
- Strategi Industri: MobileNetV2 untuk efisiensi + deployment real-time.
- **Arah Masa Depan**: ensemble, arsitektur modern (EfficientNet, ViT), hyperparameter search, benchmarking framework.

KONTRIBUSI ANGGOTA KELOMPOK

- Devianest Narendra: Eksperimen individu, analisis teknis, kritik metodologi
- Adya Rusmalillah: Eksperimen individu, analisis performa, visualisasi
- Naila Fatikhah: Eksperimen individu, analisis efisiensi, studi komparatif
- Zainab Ahmad: Eksperimen individu, evaluasi komprehensif, penyusunan laporan akhir