Week 11

Update the data before

1. L452R

$2.\ PrepViral Lineage Among Infection$

3. Mutation rate of different *

\$y=XW+b\$

Mutation rate of different variants

Mutation rate of different variants

4. Symptoms via *

Symptoms via Variants

Symptoms via Lineages_Omicron

5. dNdS by date

dNdS in Omicron

dNdS in BA.5

We can infer that dNdS in most proportion of Delta are much higher that those of Omicron, while in Delta there are also more with negative value, meaning dnds_delta smaller than dnds_beta. **While a strong stratification can be seen in point plot of Delta**

ModS in Omicron D\$col 0 100 Jan 2022 Apr 2022 Jul 2022 Oct 2022

rdNdS comparing to Delta

date

\$rdNdS=\frac{dNdS_L}{dNdS_\delta}\$

rdNdS: lineages / Delta

Next

- How to improve on dNdS analysis?
 In articles I read, they just used dnds and MK test, with checking p-value(by which test?).
 Other than this, I don't have idea. Can I implement it with neural network or machine learning?
- 2. Quantify on others?