

Mobile und Verteilte Datenbank Systeme -Zusammenfassung

Egemen Kaba

Seite: 1 von 7

Inhaltsverzeichnis

1 Kapitel 0 - Introduction			
2	Kapitel 1 - Trigger 2.1 Zweck 2.2 Konzepte 2.3 Struktur eines Triggers 2.4 Beispiel 2.5 Databaselinks	4 4 4 6 6	
3	Kapitel 2 - Distributed Design I		
4	Kapitel 3 - Distributed Design II		
5	Kapitel 4 - Distributed Query Processing	7	
6	Kapitel 5 - Distributed Transactions I	7	
7	Kapitel 6 - Distributed Transactions II	7	
8	Kapitel 7 - Replication I	7	
9	Kapitel 8 - Replication II	7	
10	Kapitel 9 - NoSQL	7	
11	Kapitel 10 - Cassandra	7	
12	Kapitel 11 - MapReduce	7	
13	Kapitel 12 - mongoDB	7	
14	Kapitel 13 - Neo4j	7	
15	Kanital 14 Samantic Wah	7	

Seite: 2 von 7

1 Kapitel 0 - Introduction

V - 11 D - 1 - 1 (DDD)	
Verteilte Datenbank (DDB)	Eine verteilte Datenbank ist eine Sammlung mehrerer, unter- einander logisch zusammengehöriger Datenbanken, die über ein Computernetzwerk verteilt sind.
Verteiltes Datenbankverwal-	Ein verteiltes Datenbankverwaltungssystem ist die Software, die
tungssystem (D-DBMS)	die verteilte Datenbank verwaltet und gegenüber den Nutzern einen transparenten Zugang erbringt.
Verteiltes Datenbank System	DDBS = DBS + D-DBMS
(DDBS)	
Nebenläufigkeit	
	Synchronisation konkurrierender Transaktionen
	Konsistenz und Isolation
	Deadlock Erkennung
Zuverlässigkeit	
	Robustheit gegenüber Fehler
	Atomarität und Dauerhaftigkeit
	7 / ttomaritat and Basemaring.
Architekturen	
	Shared Memory Architecture
	Shared Disk Architecture
	Shared Nothing Architecture
Mobile Datenbank Systeme	Verteilte Datenbank System mit zusätzlichen Eigenschaften und Einschränkungen
	beschränkte Ressource
	häufig nicht verbunden
	verlangt andere Transaktions Modelle
	verlangt andere Replikationsstrategien
	Ortsabhängigkeit

Date's 12 Regeln

- Lokale Autonomie
- Unabhängigkeit von zentralen Systemfunktionen
- Hohe Verfügbarkeit
- Ortstransparenz
- Fragmentierungstransparenz

Seite: 3 von 7

- Replikationstransparenz
- Verteilte Anfragebearbeitung
- Verteilte Transaktionsverarbeitung
- Hardware Unabhängigkeit
- Betriebssystem Unabhängigkeit
- Netzwerkunabhängigkeit
- Datenbanksystem Unabhängigkeit

2 Kapitel 1 - Trigger

2.1 Zweck

- Realisieren aktive Datenbanksysteme
- Berechnung abgeleiteter Attribute
- Überprüfen komplexer Integritätsbedingungen
- Implementierung von Geschäftsregeln
- Protokollierung, Statistiken
- Überprüfen von Integritätsbedingungen in verteilten Datenbanken
- Synchronisation von Replikaten

2.2 Konzepte

ECA Prinzip	Event: Ereignis tritt ein		
	Condition : Bedingung ist erfüllt		
	Action: Aktion wird ausgeführt		
Ereignis	DML: UPDATE, DELETE, INSERT		
	DDL: CREATE, ALTER, DROP,		
	Datenbank: SERVERERROR, LOGON, LOGOFF, STARTUP,		
	SHUTDOWN		
	(DML-Trigger können auf Tabellen oder Views definiert wer-		
	den)		
Timing	BEFORE, AFTER, INSTEAD OF Trigger		
	Der INSTEAD OF Trigger ersetzt den triggernden Befehl und		
	wird nur bei Views eingesetzt.		
Granulat	STATEMENT, ROW Trigger		

2.3 Struktur eines Triggers

Seite: 4 von 7

Syntax

```
1 CREATE [OR REPLACE] TRIGGER tname
2 {BEFORE | AFTER} events
3 [WHEN(condition)]
4 pl/sql_block
```

events

```
1 {DELETE|INSERT|UPDATE
2  [OF column [ , column ]...] }
3  [OR {DELETE|INSERT|UPDATE
4  [OF column [ , column ]...]}]...
5  ON table [FOR EACH ROW]
```

Prinzip

```
1 DECLARE
2 Deklarationsteil
3 BEGIN
4 Programmteil
5 EXCEPTION
6 Ausnahmebehandlung
7 END;
8 /
```

Bildschirmausgabe

```
1 dbms_output.put_line (item IN VARCHAR2);
2 dbms_output.put_line (item IN NUMBER);
3 dbms_output.put_line (item IN DATE);
4 dbms_output.put(item IN VARCHAR2);
5 dbms_output.put(item IN NUMBER);
6 dbms_output.put(item IN DATE);
7 dbms_output.new_line;
8 -- Ausführung
9 EXECUTE dbms_output.put_line('Hello world');
10 -- als Block
11 BEGIN
12 dbms_output.put_line('Hello world');
13 END;
```

Datentypen

- SQL: VARCHAR2, DATE, NUMBER, ...
- PL/SQL: BOOLEAN, PLS_INTEGER, ...
- Strukturierte Datentypen: TABLE, VARRAY, RECORD
- Datentypen für Spalten und Zeilen aus Tabellen: % ROWTYPE, %TYPE

Zuweisung


```
1 -- Syntax
2 variable := expression;
3 -- Beispiel im Deklarationsteil
4 name VARCHAR2(30) := 'Kaba';
```

if then else elsif

```
1 IF condition THEN ... END IF;
2 IF condition THEN ... ELSIF condition THEN ... ELSE ... END IF;
3 IF condition THEN ... ELSE ... END IF;
```

if then else elsif

```
1 IF condition THEN ... END IF;
2 IF condition THEN ... ELSIF condition THEN ... ELSE ... END IF;
3 IF condition THEN ... ELSE ... END IF;
```

schleifen

```
1 WHILE condition LOOP ... END LOOP;
2 FOR counter IN lower_bound..higher_bound LOOP ... END LOOP;
```

2.4 Beispiel

Trigger

```
1 CREATE OR REPLACE TRIGGER regdatum_test
2 BEFORE INSERT ON registrierungen
3 FOR EACH ROW
4
5 DECLARE
6 msg VARCHAR2(30) := 'Datum falsch';
7 BEGIN
8 IF :new.datum > SYSDATE THEN
9 RAISE_APPLICATION_ERROR(-20005, msg);
10 END IF;
11 END;
```

2.5 Databaselinks

Datenbanklinks werden benötigt, um Orts- und Namenstransparenz zu erreichen.

Databaselinks

```
1 -- View
2 CREATE OR REPLACE VIEW filme AS
3 SELECT *
4 FROM filme@ananke.hades.fhnw.ch;
5 -- Synonyme
6 CREATE SYNONYM film FOR filme@ananke.hades.fhnw.ch;
```

- 3 Kapitel 2 Distributed Design I
- 4 Kapitel 3 Distributed Design II
- 5 Kapitel 4 Distributed Query Processing
- 6 Kapitel 5 Distributed Transactions I
- 7 Kapitel 6 Distributed Transactions II
- 8 Kapitel 7 Replication I
- 9 Kapitel 8 Replication II
- 10 Kapitel 9 NoSQL
- 11 Kapitel 10 Cassandra
- 12 Kapitel 11 MapReduce
- 13 Kapitel 12 mongoDB
- 14 Kapitel 13 Neo4j
- 15 Kapitel 14 Semantic Web