

Documentation

Description of model for

SMA Sunny Central Storage

inverter in grid forming mode for power flow and stability studies in PSS®E

Please consider the environment before you print this document

Document Revision 8 July 29, 2024

Note

The following PSS®E versions are currently supported:

- version 33 compiled with Intel Visual Fortran Compiler Revision 11.1,
- versions 34.4 compiled with Intel Visual Fortran Compiler Revisions 15.0 (x86).
- versions 35.5 compiled with Intel Visual Fortran Compiler Revisions 19.1 (x86).

Please contact SMA if models for other simulation platforms are required. Currently, SMA supports

- DIgSILENT PowerFactory (rms models)
- Siemens Power Technologies International PSS®E (rms models)
- General Electric International PSLF (rms models)
- Manitoba Hydro International Ltd. PSCAD® (instantaneous value models)
- ATP-EMTP (instantaneous value models)
- EMTP-RV (instantaneous value models)
- The Mathworks Matlab/Simulink® (rms and instantaneous value models, SMA internal only)

SMA model support

In case you require support from SMA Solar Technology AG regarding questions of model handling, model parameterization, or interpretation of simulation results, please send all relevant files to SMA including:

- The models you were using, or a reference to the model versions,
- the network in *.raw or *.sav format,
- the dyr file,
- simulation scripts in *.idv or *.py (Python) format that exactly replicate the relevant scenario,
- information on the PSS/E version.

Model history

Model	Author	Description
version		
1.04	Oliver Glitza	First release of SMA SC grid forming model; this ver-
		sion represents SMA SC SW Release 8
2.06	Oliver Glitza	First release of SMA SC grid forming model represent-
		ing SMA SC SW Release 9
2.07	Oliver Glitza	Allows initialization with negative active power
2.08	Rahul Bhatia	1. BugFix: Writing of initial P & Q values to Hycon VARs
		2. Shifting of Subroutines and Functions to CONTAINS
		3. Using For loop for reading the plant controller VAR
		index
3.00	Rahul Bhatia	New release of SMA SC grid forming model; this ver-
		sion represents SMA SC SW Release 9. This is the sec-
		ond generation of the Grid forming model in PSS/E.
3.01	Rahul Bhatia	BugFix: Protection Settings not working
		BugFix: ICON(M+2) with CHRCIN not working with
		v33
3.02	Rahul Bhatia	1.BugFix: Filt1.ABControlDFilTm & ABControlQFilTm
		not initialized correctly
		2. Spike Mitigation Algorithm Implementation
		3. Hardware current limitation of StkAmpLimon
3.03	Rahul Bhatia	1.Introduced CON - Rtg.VarRtg to have adjustable re-
		active power rating
		2.Introduced CON - Filt.AvalPwrFilTm as a filter for
		available power (active and reactive)
		3. Communication of available active power to Hycon
		model.
3.04	Rahul Bhatia	1.Update to Firmware release R10
3.05	Rahul Bhatia	1.Addition of HiVolOnLim and DynVolOnLimEna to Vir-
		tlmp
		2. Addition of CONs for VARtg, WRtg, AmpRtg
		3. Addition of Setpoint filters and Rate limiter
		4. Addition of SoC logic and DcAmpLimit controller
		5. Bugfixes related to firmware release 10
3.06	Rahul Bhatia	1.Solving the base conversion issue
3.07	Rahul Bhatia	1.Addition of new parameter Rtg1.DrtFac
		2.BugFix: Initialization for voltage inertia

Description of model for SMA SCS Grid Forming inverters for power flow & sto	stability studies in F	² SS®E
--	------------------------	-------------------

SMA Solar Technology AG

	3.Changing of Resistance and Reactance values of
	generator

Model validity

The inverter model "SMAGF" described in this document is mainly intended for simulation of the SMA Sunny Central inverters in grid forming mode.

Contents

1	P	ower flo	w model	7
	1.1	Gene	rator data in PSS®E	8
2	D	ynamic	model	9
	2.1		zationzation	
	2.2	Mach	ine array variables	9
			e entry	
	2.4	Mode	l parameters	10
	2	2.4.1	ICONs	10
	2	2.4.2	CONs	11
	2	2.4.3	VARs	23
3	D	Disclaime	ır	32

1 Power flow model

An equivalence power plant utilizing SMA Sunny Central inverters may be modeled for power flow purposes as a generator connected to a P/V^1 bus (PSS®E type 2) with the appropriate nominal voltage. The

- aggregate MVA of the plant (MBASE),
- maximum active power (PT) and
- reactive power limits (QT and QB)

must be specified as integral multiple of the individual inverter unit ratings. However, the active power dispatch for the power flow simulation may be anywhere in the range of zero to (aggregate) PT.

 $^{^{\}scriptscriptstyle 1}$ The symbol U or u is used for voltage throughout the document.

1.1 Generator data in PSS®E

Figure 1 shows a typical data mask for the machine entry in the PSS®E load flow program. It is important that the "R Source" and "X Source" values are parameterized as given by Table 1.

Figure 1: Typical data mask for machine entry in the PSS®E load flow program.

Furthermore, it is very important that the active power (Pgen), the reactive power (Qgen) and MBASE always satisfy the equation

 $Pgen^2 + Qgen^2 \le MBASE^2$.

Otherwise, the model will not initialize correctly.

2 Dynamic model

The plant dynamic model has been implemented as a PSS®E user model called "SMAGFxxx", making use of PSS®E's "coordinated call model" technique.

2.1 Initialization

SMAGF initializes the active power dispatch from the steady-state solution and adjusts all internal variables and states accordingly.

Care must be taken that the reactive power limits of the inverter are not hit at initialization.

2.2 Machine array variables

Machine array variables are assigned as follows:

ETERM(I)	Measured Bus Voltage magnitude in p.u.
PELEC(I)	Measured Active power in p.u.
QELEC(I)	Measured Reactive power in p.u.
VOTHSG(I)	Measured Bus Frequency (Hz)
ANGLE (I)	Measured Bus angle
ECOMP(I)	Real component of current in p.u.
VUEL(I)	Imaginary component of current in p.u.
EFD(I)	Desired reactive power in p.u. (from plant control model)
XADIFD(I)	Desired active power in p.u. (from plant control model)

2.3 Dyr file entry

The model's dyr file entry is as follows:

```
BusNum 'USRMDL' 1 'SMAGF307' 1 1 4 222 0 324 ICON(M) ICON(M+1) ICON(M+2) ICON(M+3) CON(J) CON(J+1) ... CON(J+221)
```

2.4 Model parameters

In this section there is given a standard parameterization only.

Table 1 provides a guidance on how ICON(M+2) should be set up based on the Inverter Type. It also provides the value of "R Source" and "X Source" values 1 p.u. for different inverter types as well as based on the Grid frequency

Table 1: Model Setup based on Inverter Type

Inverter Type	Rated	Nominal	ICON(M+2)	Gen. Impedance	Gen.Impedance
	apparent	Voltage	InvType	R + jX p.u.	R + jX p.u.
	power	Line-Line		(50Hz)	(60Hz)
	(MVA)	(kV)			
SCS1900	1,900	0,337	1900	0.0084 + j0.2523	0.0084 + j0.3027
SCS2200	2,200	0,385	2200	0.00742 + j0.2238	0.00742 + j0.2686
SCS2475	2,475	0,434	2475	0.0066 + j0.1981	0.0066 + j0.2378
SCS2900	2,940	0,520	2940	0.0054 + j0.164	0.0054 + j0.1967
SCS2300UPXT	2,667	0,600	2667	0.0148 + j0.2118	0.0148 + j0.25415
SCS2400UPXT	2,800	0,630	2800	0.0141 + j0.2016	0.0141 + j0.22420
SCS2530UPXT	2,933	0,660	2933	0.0134 + j0.1924	0.0134 + j0.2310
SCS2630UPXT	3,067	0,690	3067	0.0128 + j0.1841	0.0128 + j0.2210
SCS3450UP	3,450	0,600	3450	0.0191 + j0.1926	0.0191 + j0.2312
SCS3600UP	3,620	0,630	3620	0.0182 + j0.1833	0.0182 + j0.2200
SCS3800UP	3,800	0,660	3800	0.0174 + j0.1753	0.0174 + j0.2104
SCS3950UP	3,960	0,690	3960	0.0166 + j0.1672	0.0166 + j0.2007
SCS3450UPXT	4,000	0,600	4000	0.0222 + j0.2234	0.0222 + j0.2680
SCS3600UPXT	4,200	0,630	4200	0.0211 + j0.2127	0.0211 + j0.2553
SCS3800UPXT	4,400	0,660	4400	0.0202 + j0.2030	0.0202 + j0.2437
SCS3950UPXT	4,600	0,690	4600	0.01934 + j0.1942	0.01934 + j0.2331

[•] Please set the ICON(M+2) and generator impedance in the load flow model based on the inverter used for the project

2.4.1 ICONs

Table 2: List of ICONs

ICON	Parameter	Description	Range	Default
М	PIntCtlType	1 = HyCon, 0 = no plant control (PSS/E Spe-	n/a	1
		cific)		
M+1	PIntCtlBus	Number of plant controller bus (PSS/E Specific)	n/a	n/a
M+2	InvType	InvType used. Refer Table 1 – Similar to Inverter	n/a	4600
		Type selection in mask of inverter model block in		
		PSCAD		
M+3	SCSOpCmd	21521: Grid Forming P/f and Q/V droop	n/a	21521

22321: Grid Forming angle inertia and Q/V	
droop	
22322: Grid Forming P/f droop and voltage In-	
ertia	
22323: Grid Forming angle inertia and voltage	
inertia	
(PSS/E Specific)	

2.4.2 CONs

Table 3: List of CONs

CON	Parameter	Description	Range	Default
			min-max	
J+0	Rtg.VARtg	Apparent power rating in kVA can be set using this parameter. If set to 0.0, then rated apparent power as per Inverter type (ICON(M+2)) will be used	n/a	0.0
J+1	Rtg.WRtg	Active power rating in kW can be set using this parameter. If set to 0.0, then rated Active power as per Inverter type (ICON(M+2)) will be used	n/a	0.0
J+2	Rtg.VarRtg	Reactive power rating in kVar can be set using this parameter. If set to 0.0, then rated reactive power as per Inverter type (ICON(M+2)) will be used	n/a	0.0
J+3	Rtg.AmpRtg	Current rating in A can be set using this parameter. If set to 0.0, then rated current rating as per Inverter type (ICON(M+2)) will be used	n/a	0.0
J+4	Rtg.VADrtPriMod	Prioritizing of control in case of derating 0: Q Priority, 1: P Priority	0 or 1	0
J+5	Rtg.DrtFac	Derating Factor to emulate the thermal derating of the device	0 to 1.0	1.0
J+6	Spt.WGraMod	Active power gradient, activation	0 or 1	0
J+7	Spt.VArGraMod	Reactive power gradient, activation	0 or 1	0
J+8	Spt.WGra	Gradient for active power p.u./s	n/a	100
J+9	Spt.VArGra	Gradient for reactive power p.u./s	n/a	100
J+10	Spt.WFilMod	Filter for active power setpoint, activation	0 or 1	0
J+11	Spt.VArFilMod	Filter for reactive power setpoint, activation	0 or 1	0
J+12	Spt.WFilTm	WSpt, filter time constant in s	3*timestep - n/a	0.02

J+13	Spt.VArFilTm	VArSpt, filter time constant in s	3*timestep -	0.02
J+14	Filt.VolDQFilTm	DQ Voltage, filter time constant in s	3*timestep -	0.46
J+15	Filt.VolPsFilTm	Voltage filter time constant for conversion VA to Amp in s	3*timestep -	0.005
J+16	Filt.AmpDFilTm	D axis current, filter time constant in s	3*timestep - n/a	0.01
J+17	Filt.AmpQFilTm	Q axis current, filter time constant in s	3*timestep - n/a	0.01
J+18	Filt.ABControlDFilTm	Filter time constant for D-axis voltage for AB Control in s (PSS/E Specific)	3*timestep - n/a	0.01
J+19	Filt.ABControlQFilTm	Filter time constant for Q-axis voltage for AB Control in s (PSS/E Specific)	3*timestep - n/a	0.01
J+20	Filt.AvalPwrFilTm	Filter time constant for calculated available active and reactive power in s	3*timestep - n/a	0.1
J+21	Filt.VolSptGra	Rate limiter in p.u/s over voltage setpoint (VAR(L+3)) applied to the inverter	n/a	5.0
J+22	AcCtl.WSptScal	AC current control, active power setpoint scaling factor	1 - n/a	1
J+23	AcCtl.VArSptScal	AC current control, reactive power set- point scaling factor	1 - n/a	1
J+24	AcCtl.DrpHz	Active power frequency droop	n/a	-2.0
J+25	AcCtl.DrpVol	Reactive power voltage droop	n/a	0.1
J+26	AcCtl.DrpTheta	Factor angle pre-control	n/a	-0.12
J+27	AcCtl.InertiaVolH	Inertia: Voltage magnitude inertia constant H_vol = 0.5 * (dQ/Snom) / (RoCoV/Vnom)	n/a	1.5
J+28	AcCtl. InertiaThetaH	Inertia: Voltage angle inertia constant H_theta = 0.5 * (dP/Snom) / (RoCoF/Fnom)	n/a	2.5
J+29	AcCtl.DrpThetaFilTm	AC current control, Time constant of low pass filter for bandwidth limitation of phase feed forward damping	3*timestep - n/a or 0	0.0
J+30	AcCtl.InertiaHzFbDmp	Inertia: Frequency feedback gain of voltage angle inertia control	n/a	0.0
J+31	AcCtl.InertiaHzFbFilTm	Inertia: Frequency feedback time constant of voltage angle inertia control	n/a	0.0
J+32	AcCtl.InertiaHzFbFil2Tm	Inertia: Frequency feedback time constant of voltage angle inertia control	n/a	0.0
J+33	AcCtl.InertiaHzFwdDmp	Inertia: Feed-forward damping gain of voltage angle inertia control	n/a	0.0

	AcCtl.InertiaVolFwdDmp	Inertia: Feed-forward damping gain of	n/a	0.0
J+34	AcCtl.InertiaVolFbDmp	voltage magnitude inertia control Inertia: Voltage feedback gain of voltage	n/a	0.0
J+35		magnitude inertia control		
	AcCtl.InertiaVolFbDmp-	Inertia: Voltage feedback time constant	n/a	0.0
J+36	FilTm	of voltage magnitude inertia control		
	AcCtl.InertiaVolFbDmp-	Inertia: Voltage feedback time constant	n/a	0.0
J+37	Fil2Tm	of voltage magnitude inertia control	,	
	AcCtl.AmpDLimKp	AC current control, proportional amplifi-	n/a	0.6
J+38		cation for active current limit	,	
J+39	AcCtl.AmpDLimKi	AC current control, integral amplification for active current limit	n/a	22.5
	AcCtl.InertiaAmpDLimKp	Inertia: AC current control, proportional	n/a	0.6
J+40		amplification for active current limit		
	AcCtl.InertiaAmpDLimKi	Inertia: AC current control, integral am-	n/a	22.5
J+41		plification for active current limit		
	AcCtl.AmpPsDLim_Ki2Fac	AC current control, double integral am-	n/a	0.00033
J+42		plification for active current limit		333
	Ac-	AC and DC limit control, minimum/maxi-	n/a	6.0
	Ctl.AmpPsDLim_I2RocofLi	mum range control signal		
J+43	m			
	Ac-	AC current control, additional double in-	n/a	3.0
	Ctl.AmpPsDLim_I2CtlDow	tegral amplification, if active current limit		
J+44	nGain	is not exceeded	,	
	AcCtl.AmpQLimKp	AC current control, proportional amplifi-	n/a	2.4
J+45	A C: LA C: L'	cation for reactive current limit	,	00.0
	AcCtl.AmpQLimKi	AC current control, integral amplification	n/a	90.0
J+46	A Cill ii A Cill ii	for reactive current limit	n/a	0.4
	AcCtl.InertiaAmpQLimKp	Inertia: AC current control, proportional	n/a	
J+47		· ·	117 4	2.4
J		amplification for reactive current limit		
	AcCtl.InertiaAmpQLimKi	amplification for reactive current limit Inertia: AC current control, integral am-	n/a	90.0
J+48	AcCtl.InertiaAmpQLimKi	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit	n/a	90.0
J+48	AcCtl.InertiaAmpQLimKi Ac-	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral am-		90.0
	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit	n/a n/a	90.0 0.00033 333
J+48	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac Ac-	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum	n/a	90.0
J+48 J+49	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit	n/a n/a	90.0 0.00033 333
J+48	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi m	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum range control signal	n/a n/a	90.0 0.00033 333 6.0
J+48 J+49	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi m Ac-	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum range control signal AC current control, additional double in-	n/a n/a	90.0 0.00033 333
J+48 J+49 J+50	Ac-Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi m Ac- Ctl.AmpPsQLim_I2CtlDow	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum range control signal AC current control, additional double integral amplification, if reactive current	n/a n/a	90.0 0.00033 333 6.0
J+48 J+49	AcCtl.InertiaAmpQLimKi Ac- Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi m Ac- Ctl.AmpPsQLim_I2CtlDow nGain	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum range control signal AC current control, additional double integral amplification, if reactive current limit is not exceeded	n/a n/a n/a	90.0 0.00033 333 6.0
J+48 J+49 J+50	Ac-Ctl.AmpPsQLim_Ki2Fac Ac- Ctl.AmpPsQLim_I2RocofLi m Ac- Ctl.AmpPsQLim_I2CtlDow	amplification for reactive current limit Inertia: AC current control, integral amplification for reactive current limit AC current control, double integral amplification for reactive current limit AC current control, minimum/maximum range control signal AC current control, additional double integral amplification, if reactive current	n/a n/a	90.0 0.00033 333 6.0

	AcCtl.InertiaThetaWCtlV-	Voltage limit for power regulation in	n/a	0.5
J+53	olLim	phase inertia		
J+54	AcCtl.InertiaVolVArCtlEna	Inertia: Enable reactive power inertia control	0 or 1	0
	AcCtl.InertiaVolVArCtlVol-	Voltage limit for power regulation in the	0 to 1	0.5
J+55	Lim	voltage inertia		
	AcCtl.Iner-	Inertia: Time constant for bandwidth limi-	3*timestep -	0.0
J+56	tiaThetaFwdDmpFilTm	tation of angle feed-forward damping	n/a or 0	
	AcCtl.Iner-	Inertia: Voltage angle feed-forward	n/a	-0.12
J+57	tiaThetaFwdDmp	damping gain of voltage angle inertia		
0107	AcCtl.AmpPsDFbEna	Inertia: Activation of inner active current	0 or 1	1
J+58	'	feedback of voltage angle inertia control		
0.00	AcCtl.AmpPsQFbEna	Inertia: Activation of inner reactive cur-	0 or 1	1
	'	rent feedback of voltage magnitude iner-		
J+59		tia control		
	Ac-	AC current control, active current limi-	0 to 1	1
	Ctl.AmpDLim_VolPsNomLi	ation, voltage limit for accurate active		
J+60	m	power limitation		
	Ac-	AC current control, reactive current limi-	0 to 1	1
	Ctl.AmpQLim_VolPsNomL	ation, voltage limit for accurate reactive		
J+61	im	power limitation		
	AcCtl.AmpDQLimEna	AC current control, limiting controller ac-	0 or 1	1
J+62		tivation		
	AcCtl.PriModPsRelEna	AC current control, Prioritization mode -	0 or 1	0
		positive sequence relative - for current		
J+63		limitation, activation		
J+64	AcCtl.VolABKi	AC voltage control integral gain	n/a	120
	AcCtl.VolABKp	AC voltage control Proportional gain	n/a	0.01
J+65		(PSS/E Specific)		
	AcCtl.AmpDQFilTm	AC current control, DQ current filter time	3*timestep -	0.02
J+66		constant	n/a or 0	
	AcCtl.ParamFilTm	Inertia: Low pass filter time constant for	3*timestep -	10.0
J+67		smooth inertia parameter change	n/a or 0	
1.00	AcCtl.PreFreezeDlTm	PreFreeze delay time [ms]	0 - 20	20.0
J+68	AcCtl.PreFreezeFilTm	PreFreeze filter time constant	3*timestep -	0.02
1.00	Accii.i lei leezei ii iii	116116626 IIII61 IIIII6 COIISIUIII	n/a or 0	0.02
J+69	AcCtl.InertiaHzDmp	Inertia: Voltage frequency damping gain	n/a	-1.0
1.70	Accii.iiieiiidi izbiiip	of voltage angle inertia control	ny u	-1.0
J+70	AcCtl.InertiaVolDmp	Inertia: Voltage magnitude damping	n/a	0.03
1.74	Accii.iiieiiia voibiiip	gain of voltage magnitude inertia control	ii) u	0.03
J+71		gain or vollage magnitude mema comfor		

J+72	AcCtl.PlantLevelInertia	Enable plant level inertia	0 or 1	0
J+73	Frt.Frt_Mod	Grid forming FRT: Mode 1: GRIFORM_FRT_MOD_DISABLE 2: GRIFORM_FRT_MOD_FULL_VI 3:GRIFORM_FRT_MOD_FULL_VI_K_FA C_BASIC 4:GRIFORM_FRT_MOD_FULL_VI_K_FA C_ADVANCED	1, 2, 3, 4	2
J+74	Frt.LoVolOnLim	Grid forming FRT: Lower voltage limit for entering FRT Mode (PSS/E Specific)	0 to 1	0.8
J+75	Frt. HiVolOnLim	Grid forming FRT: Upper voltage limit for entering FRT Mode (PSS/E Specific)	1 to n/a	1.1
J+76	Frt.LoVolOffLim	Grid forming FRT: Lower voltage limit for return to normal mode	0 to 1	0.9
J+77	Frt.HiVolOffLim	Grid forming FRT: Upper voltage limit for return to normal mode	1 to 2	1.1
J+78	Frt.DynVolOnLimEna	Grid forming FRT: Activation of dynamic offset voltage limits for entering FRT mode (PSS/E Specific)	0 or 1	0
J+79	Frt.DynVolOffLimEna	Grid forming FRT: Activation of dynamic offset voltage limits for return to normal mode	0 or 1	0
J+80	Frt.VirtImpSwDetLim	Grid forming FRT: Current threshold for activation of virtual impedance	1 to 2	1.4
J+81	Frt.VirtImpDITm	Grid forming FRT: Delay time for activation of virtual impedance	n/a	4
J+82	Frt.VirtImpLockTm	Grid forming FRT: Minimum duration time of virtual impedance	n/a	100
J+83	Frt.VirtImpWaitTm	Grid forming FRT: Minimum duration time for reactivation of virtual impedance	n/a	200
J+84	Frt.ResetTm	Time to jump back to initial state in FRT- Detection-Statemachine	n/a	30
J+85	Frt.AmpCtlEna	Grid forming FRT: Activation of adaptive current control	0 or 1	1.0
J+86	Frt.AMaxNomInit	Grid forming FRT: Init value of maximum short circuit current in the virtual impedance	n/a	1.0
J+87	Frt.AMaxNom	Grid forming FRT: maximum short circuit current	n/a	1.0
J+88	Frt.AmpCtlFilTm	Grid forming FRT: Adaptive current control, filter time constant	3*timestep - n/a or 0	0.004

	Frt.CtlDevLimMax	Grid forming FRT: Adaptive apparent current control, maximum control devia-	n/a	0.2
J+89 J+90	Frt.NegCtlDev_Gain	Amplification or reduction of the negative control deviation of the VI controller	n/a	1
J+91	Frt.AmpCtlKp	Grid forming FRT: Adaptive current control, proportional gain	n/a	0.0
J+92	Frt.AmpCtlKi	Grid forming FRT: Adaptive current control, integral gain	n/a	10.0
J+93	Frt.VirtImpReact	Grid forming FRT: Virtual impedance, reactance	n/a	0.167
J+94	Frt.VirtImpReactMin	Grid forming FRT: Virtual impedance, minimum reactance	n/a	0.167
J+95	Frt.VirtImpReactFFWEna	Activation of the pre-control of the virtual reactance of the difference	0 or 1	1
J+96	Frt.VirtImpReactFFWFac	Grid forming FRT: Virtual impedance, factor of feedforward of virtual reactance	n/a	0.68
J+97	Frt.VirtImpRis	Grid forming FRT: Virtual impedance, resistance	n/a	0
J+98	Frt.VirtImpRisInit	Grid forming FRT: Virtual impedance, resistance, init Value	n/a	0.3
J+99	Frt.VirtImpRisFilTm	Grid forming FRT: Virtual impedance, time constant for decaying resistance	3*timestep - n/a	0.008
J+100	Frt.VolPsQFilTm	Grid forming FRT: VolPsQ control during virtual impedance, filter time constant of VolPsQ voltage	3*timestep - n/a	0.004
J+101	Frt.VolPsQCtlKp	Grid forming FRT: VolPsQ control during virtual impedance, proportional gain	n/a	-4.0
J+102	Frt.VolPsQCtlDZn	Grid forming FRT: VolPsQ Control during virtual impedance, limit of proportional zone gain	n/a	0.25
J+103	Frt.VolPsQCtlDZnKp	Grid forming FRT: VolPsQ Control during virtual impedance, proportional zone gain	n/a	0.0
J+104	Frt.VolPsQCtlHzOfsMax	Grid forming FRT: VolPsQ control during virtual impedance, maximum actuating variable in Hz	n/a	1.0
J+105	Frt.VolPsQCtrlEna	Value of the VolPsQ P controller	0 or 1	1.0
J+106	Frt.AMaxNomInitTm	Grid forming FRT: Initialization time of maximum short circuit current in the virtual impedance	n/a	0.0

		T		
	Frt.ArmsMsMaxLim	Grid forming FRT: maximum limit for	n/a	1.3
		measured short circuit current in the vir-		
J+107		tual impedance		
	Frt.AmpCtlOfsKiFac	Grid forming FRT: Adaptive current con-	n/a	4.0
J+108		trol, factor of current control offset		
	Frt.AmpCtlOfsAMaxSpt	Grid forming FRT: Adaptive current con-	n/a	1.3
		trol, maximum short circuit current of cur-		
J+109		rent control offset		
	Frt.VirtImpReactFFWOfs	Grid forming FRT: Virtual impedance, off-	n/a	0.03
J+110		set of feedforward of virtual reactance		
J+111	Frt.KFacPs	Grid forming: K-Factor positive sequence	n/a	6.0
	Frt.FFWVolFilTm	Grid forming FRT: Virtual impedance,	n/a	0.001
		time constant of voltage adjustment of		
J+112		feedforward of virtual reactance		
	Frt.AmpPsQPrioEna	Grid forming FRT: Virtual impedance, ac-	0 or 1	1.0
J+113	'	tivation of the reactive current priority		
01110	Frt.PsDCtlRng	Grid forming FRT: Virtual impedance,	n/a	0.25
		amplification factor for limitation of the	,	
		active current with reactive current prior-		
J+114		ity		
JT114	Frt.AmpPsDFFWMin	Grid forming FRT: Virtual impedance,	n/a	0.18
	, , , , , , , , , , , , , , , , , , ,	minimum short circuit current of feedfor-	.,, G	0.10
J+115		ward of virtual reactance		
J+115	Frt.FFWAmpLimOfs	Grid forming FRT: Virtual impedance,	n/a	0.03
	THE TYAMPEMOS	short circuit current offset of feedforward	l liy d	0.00
1.440		of virtual reactance		
J+116	Frt.EnaAmpPsDSptMan	Enable Manual setpoint for active cur-	0 or 1	0.0
	Th.LiidAiiipi sDopiMaii	·	0 01 1	0.0
J+117	F-+ A D- D-C+A-A	rent component	/	0.0
	Frt.AmpPsDSptMan	Manual setpoint for active current com-	n/a	0.0
J+118	ELA DEST	ponent	2*:	0.2
	Frt.AmpPsDFilTm	Grid forming FRT: Virtual impedance,	3*timestep -	0.3
		time constant of the active current adjust-	n/a or 0	
J+119	F. 4 5 5 5 11	men Cilf i FDT V()	,	1.0
	Frt.AmpPsDMin	Grid forming FRT: Virtual impedance, cur-	n/a	-1.0
		rent d axis positive sequence, maximum		
J+120		charge limit	- 1	
	Frt.AmpPsQFilTm	Grid forming FRT: Virtual impedance,	3*timestep -	0.3
		time constant of the reactive current ad-	n/a or 0	
J+121		justment		
	OvAmp.AmpMaxNomSe	Overcurrent: Filter time constant of over-	n/a	0.02
J+122	cFilTm	current factors		

	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	76000
J+123	cOTm	sector 0		
	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	100
J+124	c1Tm	sector 1		
	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	900
J+125	c2Tm	sector 2	·	
C C	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	4000
J+126	c3Tm	sector 3	,	
01120	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	9000
J+127	c4Tm	sector 4	,	
01121	OvAmp.AmpMaxNomSe	Overcurrent: Duration in milliseconds for	n/a	13900
J+128	c4TransTm	sector 4 in transition mode	.,, =	
J+120	OvAmp.AmpMaxNomSe	Intermediate time within the fourth and	n/a	2000
	c4ThmDrtTm	last sector in the virtual impedance in mil-	, =	
J+129	G 11111112111111	liseconds		
J+129	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	1
1.420	c0	maximum apparent current in sector 0	ii) u	'
J+130	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	1.57
1:404	c1	maximum apparent current in sector 1	ii/ u	1.57
J+131		Overcurrent: Nominal current factor for	n /a	1.25
	OvAmp.AmpMaxNomSe		n/a	1.23
J+132		maximum apparent current in sector 2	/	1.17
	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	1.16
J+133	c3	maximum apparent current in sector 3	1	0.05
	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	0.95
J+134	c4	maximum apparent current in sector 4	,	
	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	1.0
J+135	c3Obs	current observation to move in sector 3		_
	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	1.0
J+136	c4Obs	current observation to move in sector 4		
	OvAmp.AmpMaxNomSe	Overcurrent: Nominal current factor for	n/a	0.03
	c4ObsHys	current Hysteresis observation to move in		
J+137		sector 4		
	OvAmp.AmpPsDMaxNo	Overcurrent: Nominal current factor for	n/a	1
J+138	mSec0	maximum active current in sector 0		
	OvAmp.AmpPsDMaxNo	Overcurrent: Nominal current factor for	n/a	1.57
J+139	mSec1	maximum active current in sector 1		
	OvAmp.AmpPsDMaxNo	Overcurrent: Nominal current factor for	n/a	1.25
J+140	mSec2	maximum active current in sector 2		
	OvAmp.AmpPsDMaxNo	Overcurrent: Nominal current factor for	n/a	1.16
J+141	mSec3	maximum active current in sector 3		
	OvAmp.AmpPsQMaxNo	Overcurrent: Nominal current factor for	n/a	1.0
J+142	mSec0	maximum reactive current in sector 0		

	OvAmp.AmpPsQMaxNo	Overcurrent: Nominal current factor for	n/a	1.57
J+143	mSec1	maximum reactive current in sector 1	, -	
01110	OvAmp.AmpPsQMaxNo	Overcurrent: Nominal current factor for	n/a	1.25
J+144	mSec2	maximum reactive current in sector 2	·	
01111	OvAmp.AmpPsQMaxNo	Overcurrent: Nominal current factor for	n/a	1.16
J+145	mSec3	maximum reactive current in sector 3	,	
01110	OvAmp.VirtImpEna	Overcurrent: Activation of overcurrent for	0 or 1	0
J+146		virtual impedance		
01110	OvAmp.AcCtlEna	Overcurrent: Activation of overcurrent for	0 or 1	0
J+147	·	grid forming		
	OvAmp.AmpMaxNomInit	Overcurrent: Init value of nominal current	n/a	1.57
	· ·	factor for maximum apparent current in	·	
J+148		the virtual impedance		
01110	OvAmp.TmpStkFilTm	Time constant of the low-pass filtering of	3*timestep -	0.5
J+149	' '	the stack temperature	n/a or 0	
01110	OvAmp.TmpLimNormal	Overcurrent: Temperature limit for nor-	n/a	142
J+150		mal mode	·	
01100	OvAmp.TmpLimTrans	Overcurrent: Temperature limit for transi-	n/a	147
J+151		tion mode	·	
0.101	OvAmp.Nor-	Overcurrent: Duration of hysteresis to	n/a	1000
	malModHysTm	move from normal mode to emergency	·	
J+152	,	mode		
	OvAmp.TransModHysTm	Time hysteresis in milliseconds for switch-	n/a	150
	,	ing between emergency and transition	·	
J+153		mode		
	OvAmp.Change-	Time hysteresis in milliseconds for switch-	n/a	125
J+154	ModHysTm	ing between modes	·	
	OvAmp.ArmsMsMaxLim	Overcurrent: Maximum limit for meas-	n/a	1.62
		ured short circuit current in the virtual im-		
J+155		pedance		
	OvAmp.StkAmpLimOn	Overcurrent: Hardware current limit at	n/a	3000
J+156		which the FPGA activates the FRT		
	OvAmp. AmpCt-	Overcurrent: Adaptive current control,	n/a	1.62
	lOfsAMaxSpt	maximum short circuit current of current		
J+157		control offset		
	Ctl.HzOutLim	AC and DC limit control, minimum/maxi-	n/a	5.0
J+158		mum range control signal [Hz]		
	Ctl.VolDQLim	Current setpoint calculation: voltage filter		
J+159		freeze limit, Grid forming modeGriF		
	HW.OvAmpLimEna	Hardware current limit: Activation of	0 or 1	0
J+160		overcurrent hardware current limits		

1.404	HW.StkAmpLimOnFac	Calibration Factor for HW_StkAmpLimOn (PSS/E Specific)	n/a	10
J+161 J+162	HzCtl.Hi1Lim	Monitoring the power frequency: upper switch-off limit 1	n/a	51
J+163	HzCtl.Hi 1 LimTm	Monitoring the power frequency: waiting time upper switch-off limit 1	n/a	1000
J+164	HzCtl.Hi2Lim	Monitoring the power frequency: upper switch-off limit 2	n/a	55
J+165	HzCtl.Hi2LimTm	Monitoring the power frequency: waiting time upper switch-off limit 2	n/a	10000
J+166	HzCtl.Hi3Lim	Monitoring the power frequency: upper switch-off limit 3	n/a	55
J+167	HzCtl.Hi3LimTm	Monitoring the power frequency: waiting time upper switch-off limit 3	n/a	10000
J+168	HzCtl.Hi4Lim	Monitoring the power frequency: upper switch-off limit 4	n/a	55
J+169	HzCtl.Hi4LimTm	Monitoring the power frequency: waiting time upper switch-off limit 4	n/a	10000
J+170	HzCtl.Hi5Lim	Monitoring the power frequency: upper switch-off limit 5	n/a	55
J+171	HzCtl.Hi5LimTm	Monitoring the power frequency: waiting time upper switch-off limit 5	n/a	10000
J+172	HzCtl.Hi6Lim	Monitoring the power frequency: upper switch-off limit 6	n/a	55
J+173	HzCtl.Hi6LimTm	Monitoring the power frequency: waiting time upper switch-off limit 6	n/a	10000
J+174	HzCtl.Lo1Lim	Monitoring the power frequency: lower switch-off limit 1	n/a	49
J+175	HzCtl.Lo1LimTm	Monitoring the power frequency: waiting time lower switch-off limit 1	n/a	1000
J+176	HzCtl.Lo2Lim	Monitoring the power frequency: lower switch-off limit 2	n/a	45
J+177	HzCtl.Lo2LimTm	Monitoring the power frequency: waiting time lower switch-off limit 2	n/a	10000
J+178	HzCtl.Lo3Lim	Monitoring the power frequency: lower switch-off limit 3	n/a	45
J+179	HzCtl.Lo3LimTm	Monitoring the power frequency: waiting time lower switch-off limit 3	n/a	10000
J+180	HzCtl.Lo4Lim	Monitoring the power frequency: lower switch-off limit 4	n/a	45
J+181	HzCtl.Lo4LimTm	Monitoring the power frequency: waiting time lower switch-off limit 4	n/a	10000

J+182	HzCtl.Lo5Lim	Monitoring the power frequency: lower switch-off limit 5	n/a	45
J+183	HzCtl.Lo5LimTm	Monitoring the power frequency: waiting time lower switch-off limit 5	n/a	10000
J+184	HzCtl.Lo6Lim	Monitoring the power frequency: lower switch-off limit 6	n/a	45
J+185	HzCtl.Lo6LimTm	Monitoring the power frequency: waiting time lower switch-off limit 6	n/a	10000
J+186	VCtl.Hi1Lim	Monitoring the grid voltage: upper switch-off limit 1	n/a	1.15
J+187	VCtl.Hi1LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 1	n/a	1000
J+188	VCtl.Hi2Lim	Monitoring the grid voltage: upper switch-off limit 2	n/a	1.3
J+189	VCtl.Hi2LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 2	n/a	100
J+190	VCtl.Hi3Lim	Monitoring the grid voltage: upper switch-off limit 3	n/a	2.0
J+191	VCtl.Hi3LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 3	n/a	10000
J+192	VCtl.Hi4Lim	Monitoring the grid voltage: upper switch-off limit 4	n/a	2.0
J+193	VCtl.Hi4LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 4	n/a	10000
J+194	VCtl.Hi5Lim	Monitoring the grid voltage: upper switch-off limit 5	n/a	2.0
J+195	VCtl.Hi5LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 5	n/a	10000
J+196	VCtl.Hi6Lim	Monitoring the grid voltage: upper switch-off limit 6	n/a	2.0
J+197	VCtl.Hi6LimTm	Monitoring the grid voltage: waiting time upper switch-off limit 6	n/a	10000
J+198	VCtl.Lo 1 Lim	Monitoring the grid voltage: lower switch-off limit 1	n/a	0.8
J+199	VCtl.Lo1LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 1	n/a	1000
J+200	VCtl.Lo2Lim	Monitoring the grid voltage: lower switch-off limit 2	n/a	0.45
J+201	VCtl.Lo2LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 2	n/a	300
J+202	VCtl.Lo3Lim	Monitoring the grid voltage: lower switch-off limit 3	n/a	0.0

J+203	VCtl.Lo3LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 3	n/a	1000
J+204	VCtl.Lo4Lim	Monitoring the grid voltage: lower switch-off limit 4	n/a	0.0
J+205	VCtl.Lo4LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 4	n/a	1000
J+206	VCtl.Lo5Lim	Monitoring the grid voltage: lower switch-off limit 5	n/a	0.0
J+207	VCtl.Lo5LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 5	n/a	1000
J+208	VCtl.Lo6Lim	Monitoring the grid voltage: lower switch-off limit 6	n/a	0.0
J+209	VCtl.Lo6LimTm	Monitoring the grid voltage: waiting time lower switch-off limit 6	n/a	1000
J+210	Spk.dVol	1-time step change in voltage to activa- tion entry and exit of spike mitigation logic (PSS/E Specific)	0.1 - 2.0	0.3
J+211	Spk.AmpHoldTm	Time in seconds during which the current is held to its [Pre-fault Value*Spk.AmpHoldFac(X)] (PSS/E Specific)	0 - 0.1	0.005
J+212	Spk.AmpHoldFacD	Factor to scale the active part of Pre-fault value between 0.0 and [Pre-fault value] (PSS/E Specific)	0 to 1.0	0.0
J+213	Spk.AmpHoldFacQ	Factor to scale the reactive part of Pre- fault value between 0.0 and [Pre-fault value] (PSS/E Specific)	0 to 1.0	0.0
J+214	SoC. DcVollni	SoC Model: Initial value of the DC voltage for battery in kV (PSS/E Specific)	n/a	1.1
J+215	SoC. DcVolMax	SoC Model: Maximum value of the DC voltage for battery in kV (PSS/E Specific)	n/a	1.3
J+216	SoC. DcVolMin	SoC Model: Minimum value of the DC voltage for battery in kV (PSS/E Specific)	n/a	0.8
J+217	SoC. DcAh	SoC Model: Capacity of the battery in Ah (PSS/E Specific)	n/a	le4
J+218	DcCtl.AmpKp	DC current control, proportional amplification, Grid forming mode	n/a	0.0
J+219	DcCtl.AmpKi	DC current control, integral amplification, Grid forming mode	n/a	5.0

	DcCtl.AmpKi2Fac	DC current control, double integral am-	n/a	0.00033
		plification for DC current limit, Grid form-		
J+220		ing mode		
	DcCtl.Ampl2CtlDownGai	DC current control, additional double in-	n/a	3.0
	n	tegral amplification, if DC current limit is		
J+221		not exceeded, Grid forming mode		

2.4.3 VARs

Table 4: List of VARs

VARs	Description
L+0	WSpt - Use this VAR to set active power setpoint when ICON(M) is set to 0
L+1	VarSpt - Use this VAR to set reactive power setpoint when ICON(M) is set to 0
L+2	FrqSpt - Use this VAR to set frequency setpoint
L+3	VolSpt - Use this VAR to set voltage setpoint
L+4	TmpStk - Use this VAR to set the temperature of stack - Default is 119 degrees
L+5	Xpu - X part of impedance for current injection - should be equal to X for gen. in LF
L+6	Rpu - R part of impedance for current injection – should be equal to R for gen. in LF
L+7	Unused
L+8	Unused
L+9	SetpointChangeFlag - Flag to detect setpoint change when ICON(M) is set to 0
L+10	Meas 1. Vinv_d - d-axis inverter terminal voltage
L+11	Meas 1. Vinv_q - q-axis inverter terminal voltage
L+12	Meas 1.linv_d - d-axis inverter current
L+13	Meas 1.linv_q - q - axis inverter current
L+14	Vth_r - real part of thevenin voltage applied in the current injection routine
L+15	Vth_i - imaginary part of thevenin voltage applied in the current injection routine
L+16	FRTDetect - Flag to Check whether FRT is enabled or not
L+17	VI_X - reactive part of Virtual impedance when in FRT
L+18	VI_R - real part of Virtual impedance when in FRT
L+19	Unused
L+20	AmpDQRtg
L+21	StkAmpLimOn
L+22	PreFaultCurrD
L+23	PreFaultCurrQ
L+24	SpikeFlagOn
L+25	SpikeFlagOff
L+26	SpikeTimer
L+27	Meas 1. Pinv_hold
L+28	Meas1.Qinv_hold

L+29	Unused
L+30	VCtlHi1Lim_Out - Flag to check whether High Voltage Protection 1 is activated
L+31	VCtlHi1Lim_timer
L+32	VCtlHi2Lim_Out - Flag to check whether High Voltage Protection 2 is activated
L+33	VCtlHi2Lim_timer
L+34	VCtlHi3Lim_Out - Flag to check whether High Voltage Protection 3 is activated
L+35	VCtlHi3Lim_timer
L+36	VCtlHi4Lim_Out - Flag to check whether High Voltage Protection 4 is activated
L+37	VCtlHi4Lim_timer
L+38	VCtlHi5Lim_Out - Flag to check whether High Voltage Protection 5 is activated
L+39	VCtlHi5Lim_timer
L+40	VCtlHi6Lim_Out - Flag to check whether High Voltage Protection 6 is activated
L+41	VCtlHi6Lim_timer
L+42	VCtlLo1Lim_Out - Flag to check whether Low Voltage Protection 1 is activated
L+43	VCtlLo1Lim_timer
L+44	VCtlLo2Lim_Out - Flag to check whether Low Voltage Protection 2 is activated
L+45	VCtlLo2Lim_timer
L+46	VCtlLo3Lim_Out - Flag to check whether Low Voltage Protection 3 is activated
L+47	VCtlLo3Lim_timer
L+48	VCtlLo4Lim_Out - Flag to check whether Low Voltage Protection 4 is activated
L+49	VCtlLo4Lim_timer
L+50	VCtlLo5Lim_Out - Flag to check whether Low Voltage Protection 5 is activated
L+51	VCtlLo5Lim_timer
L+52	VCtlLo6Lim_Out - Flag to check whether Low Voltage Protection 6 is activated
L+53	VCtlLo6Lim_timer
L+54	HzCtlHi1Lim_Out - Flag to check whether High Frequency Protection 1 is activated
L+55	HzCtlHi1Lim_timer
L+56	HzCtlHi2Lim_Out - Flag to check whether High Frequency Protection 2 is activated
L+57	HzCtlHi2Lim_timer
L+58	HzCtlHi3Lim_Out - Flag to check whether High Frequency Protection 3 is activated
L+59	HzCtlHi3Lim_timer
L+60	HzCtlHi4Lim_Out - Flag to check whether High Frequency Protection 4 is activated
L+61	HzCtlHi4Lim_timer
L+62	HzCtlHi5Lim_Out - Flag to check whether High Frequency Protection 5 is activated
L+63	HzCtlHi5Lim_timer
L+64	HzCtlHi6Lim_Out - Flag to check whether High Frequency Protection 6 is activated
L+65	HzCtlHi6Lim_timer
L+66	HzCtlLo1Lim_Out - Flag to check whether Low Frequency Protection 1 is activated
L+67	HzCtlLo1Lim_timer
L+68	HzCtlLo2Lim_Out - Flag to check whether Low Frequency Protection 2 is activated
L+69	HzCtlLo2Lim_timer

L+70 HzCtlLo3Lim_Out - Flag to check whether Low Frequency Protection 3 is ac L+71 HzCtlLo3Lim_time L+72 HzCtlLo4Lim_Out - Flag to check whether Low Frequency Protection 4 is ac L+73 HzCtlLo4Lim_timer L+74 HzCtlLo5Lim_Out - Flag to check whether Low Frequency Protection 5 is ac L+75 HzCtlLo5Lim_timer	
L+72 HzCtlLo4Lim_Out - Flag to check whether Low Frequency Protection 4 is as L+73 HzCtlLo4Lim_timer L+74 HzCtlLo5Lim_Out - Flag to check whether Low Frequency Protection 5 is as	ctivated
L+73 HzCtlLo4Lim_timer L+74 HzCtlLo5Lim_Out - Flag to check whether Low Frequency Protection 5 is ac	ctivated
L+74 HzCtlLo5Lim_Out - Flag to check whether Low Frequency Protection 5 is ac	
1+75 H-7Ctll o 51 im timer	ctivated
L173 TIZCIILOSLIIII_IIIIIeI	
L+76 HzCtlLo6Lim_Out - Flag to check whether Low Frequency Protection 6 is a	ctivated
L+77 HzCtlLo6Lim_timer	
L+78 Control_Angle	
L+79 Inverter_Voltage_Angle	
L+80 CosPhi	
L+81 SinPhi	
L+82 Meas1.Vinv_d	
L+83 Meas1.Vinv_q	
L+84 Meas1.Vth_d	
L+85 Meas1.Vth_q	
L+86 Meas1.linv_d	
L+87 Meas1.linv_q	
L+88 AmaxSpt	
L+89 Vmag_Filt	
L+90 Vmag.Filt	
L+91 Result_enaGoToSec2	
L+92 ErrorCounter1	
L+93 Result_enaGoToSec3	
L+94 ErrorCounter2	
L+95 Result_enaGoToSec4	
L+96 ErrorCounter3	
L+97 Result_enaGoToSec3FromSec0	
L+98 ErrorCounter4	
L+99 TempStk_Filt	
L+100 CounterSec0	
L+101 OvAmpStt	
L+102 SubStt	
L+103 noOvercurrentStt	
L+104 HWTresholdHi	
L+105 EnaThmDerating	
L+106 AmaxNom	
L+107 AmaxNomD	
L+108 AmaxNomQ	
L+109 AmaxNomInit	
L+110 HysMode	

L+111	HysMode_timer
L+112	TmpAcCtlOvAmpActive
L+113	Unused
L+114	disaOverCurrent_delay
L+115	AmaxNom_filt
L+116	AmaxNomD_filt
L+117	AmaxNomQ_filt
L+118	AMaxSpt
L+119	StkAmpLimOn
L+120	Vinv_d_filt
L+121	Vinv_q_filt
L+122	SW_FRT
L+123	SW_FRT_timer
L+124	VirtImpEna
L+125	FRT_States_timer
L+126	VirtImpEna_delay
L+127	Local_ResetTm_timer
L+128	AmaxSpt_Filt
L+129	AmpMax_Filt
L+130	Meas.linv_q_Filt
L+131	VI_X_PiCtrlWithLimit_Out
L+132	VI_X_PiCtrl_Integrator
L+133	VI_R_Filt
L+134	linv_d_filt
L+135	linv_q_filt
L+136	VI_X
L+137	VI_R
L+138	AmaxSpt_Filt2
L+139	AmaxSpt_timer
L+140	FFW_VolDiff_Filt
L+141	FFW_VI_X1_delay
L+142	VolPsDSpt_Ofs
L+143	VI_AmpPsDSpt
L+144	AWFFWAmpPsD
L+145	VolPsQSpt_Ofs
L+146	Soc_sat
L+147	DCVol
L+148	CtlOut_P_Dc
L+149	CtlOut_I_Dc
L+150	Ki_max_hold
L+151	Ki_min_hold

1.150	DiCa-NA/tal Limite Content
L+152	PiCtrlWithLimit_Output
L+153	PiCtrl_Integrator
L+154	PiCtrl_Integrator2
L+155	PiCtrl_Integrator3
L+156	PiCtrlWithLimit_Output
L+157	PiCtrl_Integrator
L+158	PiCtrl_Integrator2
L+159	PiCtrl_Integrator3
L+160	CtlOut_Dc
L+161	AmpDOfs_DcLim_Stt
L+162	linv_d_fil
L+163	linv_q_fil
L+164	Vmag_fil1
L+165	Vmag_fil2
L+166	CtlOut_P_D
L+167	CtlOut_I_D
L+168	Ki_max_hold
L+169	Ki_min_hold
L+170	PiCtrlWithLimit_Output
L+171	PiCtrl_Integrator
L+172	PiCtrl_Integrator2
L+173	PiCtrl_Integrator3
L+174	PiCtrlWithLimit_Output
L+175	PiCtrl_Integrator
L+176	PiCtrl_Integrator2
L+1 <i>77</i>	PiCtrl_Integrator3
L+178	CtlOut_D
L+179	CtlOut_P_Q
L+180	CtlOut_I_Q
L+181	Ki_max_hold
L+182	Ki_min_hold
L+183	PiCtrlWithLimit_Output
L+184	PiCtrl_Integrator
L+185	PiCtrl_Integrator2
L+186	PiCtrl_Integrator3
L+187	PiCtrlWithLimit_Output
L+188	PiCtrl_Integrator
L+189	PiCtrl_Integrator2
L+190	PiCtrl_Integrator3
L+191	CtlOut_Q
L+192	VirtImpEna_delay

L+193	WAval
L+194	VarAval
	IC1_Delay
	IC2_Delay
	IC1_Delay
	IC2_Delay
	AmpDOfs_DrtStt
	AmpQOfs_DrtStt
	WSptOut
	VarSptOut
	WSptFilt
	VarSptFilt
	Ud_filt
	Uq_filt
	AmpPsDSpt
	AmpPsQSpt
	dHz
	dTheta
	dVol
	linv_d_filt
	linv_q_filt
	Vmag.filt
	DrpAmpDFilTm_filt
	HPF_Filt_out_dHz
	dHz_HPF_delay
	DrpAmpDFilTm2_filt
L+219	HPF_Filt_out_dHz2
L+220	dHz2_HPF_delay
L+221	DrpAmpD_filt
L+222	InteriaPhsCtl_Kp_filt
L+223	InteriaPhsCtl_Ki_filt
L+224	AmpPsD_int
L+225	DrpAmpQFilTm_filt
L+226	HPF_Filt_out_dVol
L+227	dVol_HPF_delay
L+228	DrpAmpQFilTm2_filt
L+229	HPF_Filt_out_dVol2
L+230	dVol2_HPF_delay
L+231	DrpAmpQ_filt
L+232	InteriaVolCtl_Kp_filt
L+233	InteriaVolCtl_Ki_filt

L+234	AmpPsQ_int
L+235	dAmpD_filt
L+236	DrpHz_Filt
L+237	DrpTheta_Filt
L+238	DrpVol_Filt
L+239	Vinv_q_filt
L+240	VirtImpEna_delay
L+241	dHz_out
L+242	dHz_filt
L+243	dHz_Filt_delay1
L+244	dHz_Filt_delay2
L+245	dHz_Filt_delay3
L+246	dHz_Filt_delay4
L+247	dHz_Filt_delay5
L+248	dHz_Filt_delay6
L+249	dHz_Filt_delay7
L+250	dHz_Filt_delay8
L+251	dHz_Filt_delay9
L+252	dHz_Filt_delay10
L+253	dHz_Filt_delay11
L+254	dHz_Filt_delay12
L+255	dHz_Filt_delay13
L+256	dHz_Filt_delay14
L+257	dHz_Filt_delay15
L+258	dHz_Filt_delay16
L+259	dHz_Filt_delay17
L+260	dHz_Filt_delay18
L+261	dHz_Filt_delay19
L+262	dHz_Filt_delay20
L+263	dHz_Filt_delay21
L+264	dTheta_out
L+265	dTheta_filt
L+266	dTheta_Filt_delay1
L+267	dTheta_Filt_delay2
L+268	dTheta_Filt_delay3
L+269	dTheta_Filt_delay4
L+270	dTheta_Filt_delay5
L+271	dTheta_Filt_delay6
L+272	dTheta_Filt_delay7
L+273	dTheta_Filt_delay8
L+274	dTheta_Filt_delay9

1.075	
L+275	dTheta_Filt_delay10
L+276	dTheta_Filt_delay11
L+277	dTheta_Filt_delay12
L+278	dTheta_Filt_delay13
L+279	dTheta_Filt_delay14
L+280	dTheta_Filt_delay15
L+281	dTheta_Filt_delay16
L+282	dTheta_Filt_delay17
L+283	dTheta_Filt_delay18
L+284	dTheta_Filt_delay19
L+285	dTheta_Filt_delay20
L+286	dTheta_Filt_delay21
L+287	dVol
L+288	dVol_filt
L+289	dVol_Filt_delay1
L+290	dVol_Filt_delay2
L+291	dVol_Filt_delay3
L+292	dVol_Filt_delay4
L+293	dVol_Filt_delay5
L+294	dVol_Filt_delay6
L+295	dVol_Filt_delay7
L+296	dVol_Filt_delay8
L+297	dVol_Filt_delay9
L+298	dVol_Filt_delay10
L+299	dVol_Filt_delay11
L+300	dVol_Filt_delay12
L+301	dVol_Filt_delay13
L+302	dVol_Filt_delay14
L+303	dVol_Filt_delay15
L+304	dVol_Filt_delay16
L+305	dVol_Filt_delay17
L+306	dVol_Filt_delay18
L+307	dVol_Filt_delay19
L+308	dVol_Filt_delay20
L+309	dVol_Filt_delay21
L+310	VolPsDSpt
L+311	VolPsDSpt_rate
L+312	Vinv_d
L+313	Vinv_q
L+314	Vinv_d_FRT
L+315	Vinv_q_FRT

L+316	Vinv_d_filt
L+317	Vinv_q_filt
L+318	Vinv_d_int
L+319	Vinv_q_int
L+320	linv_d_filt
L+321	linv_q_filt
L+322	ur
L+323	υi

3 Disclaimer

This document and the associated models have been prepared to facilitate the behavioral simulation of the response of SMA Sunny Central inverters to grid and parameter disturbances. The modeling data presented herein are intended to produce simulation results that closely approximate the response of the inverters to these disturbances, and do not necessarily represent the physical implementation of the inverter or plant control algorithms.