DEVOIR MAISON 9 - RECHERCHE D'UN MINIMUM GLOBAL

On se place dans \mathbb{R}^3 muni de sa structure euclidienne.

PARTIE I

On considère la matrice

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

- 1. Pourquoi peut-on trouver une base orthonormée de vecteurs propres de A?

 La matrice A est symétrique, donc d'après le théorème spectral, elle est diagonalisable en base orthonormée, c'est-à-dire qu'il existe une base orthonormée de vecteurs propres.
- 2. Déterminer le spectre de A ainsi qu'une base orthonormée \mathcal{B} de vecteurs propres.

$$Sp(A) = \{2 - \sqrt{2}, 2, 2 + \sqrt{2}\}\$$

$$E_{2-\sqrt{2}} = \text{Vect}\left\{\left(\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}\right)\right\}, E_2 = \text{Vect}\left\{\left(\frac{\sqrt{2}}{2}, 0, \frac{-\sqrt{2}}{2}\right)\right\}, E_{2+\sqrt{2}} = \text{Vect}\left\{\left(\frac{-1}{2}, \frac{\sqrt{2}}{2}, \frac{-1}{2}\right)\right\}$$

3. Soit $u \in \mathbb{R}^3$ de coordonnées (x, y, z) dans la base canonique. Exprimer ses coordonnées (x', y', z') dans la base \mathcal{B} .

La matrice de passage de la base canonique à la base \mathcal{B} est :

$$P = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{2} & -1 \\ \sqrt{2} & 0 & \sqrt{2} \\ 1 & -\sqrt{2} & -1 \end{pmatrix}$$

On a:
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = {}^{t}P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \left(x + \sqrt{2}y + z \right) \\ \frac{\sqrt{2}}{2} \left(x - z \right) \\ \frac{1}{2} \left(-x + \sqrt{2}y - z \right) \end{pmatrix}$$

- **4.** Calculer (Au|u) en fonction de (x, y, z), puis en fonction de (x', y', z'). $(Au|u) = 2x^2 + 2y^2 + 2z^2 2xy 2yz$. $u = Pu', A = PD^tP$ avec $D = \text{diag}(2 \sqrt{2}, 2, 2 + \sqrt{2})$ donc $(Au|u) = {}^t(Au)u = {}^t(APu')Pu' = {}^tu' {}^tP {}^tAPu' = {}^tu'Du' = (2 \sqrt{2})x'^2 + 2y'^2 + (2 + \sqrt{2})z'^2$.
- 5. Soit λ la plus petite valeur propre de A. Déduire de ce qui précède que :

$$\forall u \in \mathbb{R}^3, (Au|u) \ge \lambda ||u||^2.$$

 $\lambda = 2 - \sqrt{2}$. P étant une matrice orthogonale, on a : $||u||^2 = x'^2 + y'^2 + z'^2$. En minorant chaque valeur propre par λ on obtient :

$$(Au|u) = (2 - \sqrt{2})x'^2 + 2y'^2 + (2 + \sqrt{2})z'^2 \ge \lambda(x'^2 + y'^2 + z'^2) = \lambda ||u||^2$$

PARTIE II

On considère un vecteur $b \in \mathbb{R}^3$; pour tout vecteur $u \in \mathbb{R}^3$, on pose :

$$J_b(u) = \frac{1}{2}(Au|u) - (u|b).$$

- 1. Quels sont les ensembles de départ et d'arrivée de J_b ? Que vaut $J_b(0)$? J_b est définie sur \mathbb{R}^3 , à valeurs dans \mathbb{R} , et $J_b(0) = 0$.
- **2.** Calculer le gradient de J_b . On note $b = (b_1, b_2, b_3)$; alors $J_b(u) = x^2 + y^2 + z^2 - xy - yz - (xb_1 + yb_2 + zb_3)$. On a donc:

$$\nabla J_b(u) = \begin{pmatrix} 2x - y - b_1 \\ -x + 2y - z - b_2 \\ -y + 2z - b_3 \end{pmatrix} = Au - b$$

3. Montrer que

$$J_b(u) \ge \frac{1}{2}\lambda ||u||^2 - ||b|| ||u||$$

où λ est la plus petite valeur propre de A.

D'après l'inégalité de Cauchy-Schwarz, on a $\forall u \in \mathbb{R}^3, (u|b) \leq |(u|b)| \leq ||u|| \, ||b||,$ donc

$$\forall u \in \mathbb{R}^3, \quad J_b(u) \ge \frac{1}{2} (Au|u) - ||u|| \, ||b|| \ge \frac{\lambda}{2} ||u||^2 - ||u|| \, ||b||$$

d'après la question 5 de la partie I.

4. En déduire que la fonction J_b est minorée et non majorée.

Soit f l'application définie sur \mathbb{R} par $f(t) = \frac{\lambda}{2}t^2 - \|b\|t$. C'est une fonction polynomiale qui s'annule pour t = 0 et $t = \frac{2\|b\|}{\lambda}$, avec $\frac{\lambda}{2} > 0$; elle admet un minimum pour $t = \frac{\|b\|}{\lambda}$.

D'après la question précédente : $\forall u \in \mathbb{R}^3, J_b(u) \geq f(\|u\|) \geq f\left(\frac{\|b\|}{\lambda}\right)$, ce qui montre que J_b est minorée.

D'autre part, $\lim_{t\to +\infty} f(t) = +\infty$, donc l'inégalité $J_b(u) \ge f(\|u\|)$, $\forall u \in \mathbb{R}^3$, montre que J_b n'est pas majorée.

5. Montrer que

$$\inf_{u \in \mathbb{R}^3} J_b(u) \le 0.$$

L'ensemble $\{J_b(u), u \in \mathbb{R}^3\}$ est une partie non vide et minorée de \mathbb{R} , elle admet donc bien une borne inférieure. De plus, $\inf_{u \in \mathbb{R}^3} J_b(u) \leq J_b(0) = 0$.

6. Montrer que si $||u|| > \frac{2||b||}{\lambda}$, alors $J_b(u) \ge 0$.

D'après l'inégalité de la question 3, si $||u|| > \frac{2||b||}{\lambda}$, on a :

$$J_b(u) \ge ||u|| \left(\frac{\lambda}{2}||u|| - ||b||\right) \ge 0$$

7. En déduire que

$$\inf_{u \in \mathbb{R}^3} J_b(u) = \inf_{u \in \overline{B}(O,r)} J_b(u)$$

où $\overline{B}(O,r)$ désigne la boule fermée de centre l'origine et de rayon $r=\frac{2\|b\|}{\lambda}$. Notons $T=\left\{J_b(u), u\in\mathbb{R}^3\right\}, I=\left\{J_b(u), u\in\overline{B}(O,r)\right\}$ et $E=\left\{J_b(u), u\in\mathbb{R}^3\setminus\overline{B}(O,r)\right\}$. On a : inf $I\leq 0$ car $0\in I$, inf $E\geq 0$ d'après la question précédente, et $T=I\cup E$ donc :

$$\inf_{u \in \mathbb{R}^3} J_b(u) = \inf(T) = \inf(I \cup E) = \min(\inf I, \inf E) = \inf I = \inf_{u \in \overline{B}(O,r)} J_b(u)$$

8. Montrer que la fonction J_b admet un minimum global sur \mathbb{R}^3 et qu'il est atteint au point

La fonction polynômiale J_b est continue sur la partie fermée et bornée $\overline{B}(O,r)$, elle atteint donc sa borne inférieure sur cet ensemble (qui est la borne inférieure sur \mathbb{R}^3 d'après la question

La borne inférieure sur \mathbb{R}^3 étant atteinte, c'est un minimum global.

Comme \mathbb{R}^3 est un ouvert de \mathbb{R}^3 et que J_b est de classe C^1 , J_b atteint son minimum en un point critique de J_b .

 $\nabla J_b(u) = Au - b$ donc $\nabla J_b(u) = 0 \Leftrightarrow Au - b = 0$; A n'admettant pas 0 pour valeur propre est inversible et $Au - b = 0 \Leftrightarrow u = A^{-1}b$.

Ainsi, l'unique point critique de J_b est $A^{-1}b$, c'est donc en ce point que le minimum global est atteint.