상권 분석 보고서

전처리 데이터 분석

restaurant_with_universities.csv 분석

- hdfs에서 파일을 읽으면 대학교 column에 두 개의 값이 들어있는 경우 "경희대학교, 한국외국어대학교" 형식으로 들어있어 미리 split했음
 - → trans_split_univ.csv

analysisData.csv 만들기

- trans_split_univ.csv와 university_info.csv를 hive를 사용해 join 및 변형
 - → analysisData.csv

analysisData 분석

	대학명	상권업종중분류명	상권업종소분류명	개수	밀도
0	가톨릭대학교 _제2캠퍼스	비알코올	카페	22	0.042807
1	가톨릭대학교 _제2캠퍼스	한식	백반/한정식	19	0.042807
2	가톨릭대학교 _제2캠퍼스	기타 간이	김밥/만두/분식	12	0.042807
3	가톨릭대학교 _제2캠퍼스	구내식당·뷔페	구내식당	11	0.042807
4	가톨릭대학교 _제2캠퍼스	기타 간이	빵/도넛	11	0.042807

→ analysisData.csv

데이터 각 column 데이터 개수 확인

```
is_unique_0 = data['대학명'].nunique() == len(data['대학명'])
print(f"대학명 columnol unique한가? {is_unique_0}")
print(data['대학명'].nunique())

대학명 columnol unique한가? False
46

is_unique_1 = data['상권업종중분류명'].nunique() == len(data['상권업종중분류명'])
print(f"상권업종중분류명 columnol unique한가? {is_unique_1}")
print(data['상권업종중분류명'].nunique())

상권업종중분류명 columnol unique한가? False
10

is_unique_2 = data['상권업종소분류명'].nunique() == len(data['상권업종소분류명'])
print(f"상권업종소분류명 columnol unique한가? {is_unique_2}")
print(data['상권업종소분류명'].nunique())

상권업종소분류명 columnol unique한가? False
43
```

→ '대학명': 46개, '상권업종중분류명': 10개, '상권업종소분류명': 43개

● 명지대 상권분포 plot

● 대학별 카페 개수

● 전체 가게 소분류명별 개수

● 개수가 가장 많은 카페와 백반/한정식 대학별 비율

● 삼육대의 비율이 이상하여 삼육대의 전체 소분류명 개수 plot 그려봄

→ 카페와 백반/한정식 밖에 없음

• 모든 대학의 중분류명별 개수 plot 그림

대학별 상권업종중분류 개수

```
for i in data['대학명'].unique():
    filtered_data = data[data['대학명'] == i]
    sns.barplot(data=filtered_data, x='상권업종중분류명', y='개수', estimator=sum, palette='Blues_d',ci=None)
    plt.xlabel('상권업종중분류명', fontsize=12)
    plt.ylabel('개수', fontsize=12)
    plt.title(i+' 상권업종중분류별 개수', fontsize=14)
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
```

가톨릭대학교 _제2캠퍼스 상권업종중분류별 개수

● 모든 대학의 소분류명별 개수 plot 그림

대학별 상권업종소분류명 당 개수 Plot

```
for i in data['대학명'].unique():
    filtered_data = data[data['대학명'] == i]
    sns.barplot(data=filtered_data, x='상권업종소분류명', y='개수', palette='Blues_d')
    plt.xlabel('생권업종소분류명', fontsize=12)
    plt.ylabel('개수', fontsize=12)
    plt.title(i+' 상권업종소분류명 개수', fontsize=14)
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
```

가톨릭대학교 _제2캠퍼스 상권업종소분류별 개수

● 모든 대학의 상위 15개의 소분류명 개수 plot 그림

대학별 소분류명 개수 상위 15개

```
import matplotlib.pyplot as plt
import seaborn as sns
# 대학명을 하나씩 순회하며 처리
for university in data['대학명'].unique():
   # 특정 대학 데이터를 필터링
   filtered_data = data[data['대학명'] == university]
   # 상위 15개 선택
   top_15_filtered_data = filtered_data.nlargest(15, '개수')
   # 데이터가 존재하면 플롯 생성
   if not top_15_filtered_data.empty:
       plt.figure(figsize=(8, 4))
       sns.barplot(
           data=top_15_filtered_data,
           x='상권업종소분류명',
           y='개수',
           palette='coolwarm'
       plt.title(f"'{university}' 개수 상위 15개", fontsize=14)
       plt.xlabel('상권업종소분류명', fontsize=12)
       plt.ylabel('개수', fontsize=12)
       plt.xticks(rotation=45, ha='right')
       plt.tight_layout()
       plt.show()
```


→ 하위 15개는 보고서에서 제외.

● 대학별 소분류명의 개수가 많은 순으로 정렬

대학명 :	소분류명_1	소분류명 2	소분류명_3 소분류명_4 소분류명_5 \
가톨릭대학교 제2캠퍼스	_	백반/한정식	김밥/만두/분식 구내식당 빵/도넛
가톨릭대학교 제3캠퍼스		백반/한정식	요리 주점 김밥/만두/분식 돼지고기 구이/찜
강서대학교	_ 백반/한정식	카페	요리 주점 치킨 김밥/만두/분식
건국대학교	카페	백반/한정식	요리 주점 돼지고기 구이/찜 김밥/만두/분식
경희대학교	카페	백반/한정식	요리 주점 김밥/만두/분식 중국집
고려대학교	백반/한정식	카페	요리 주점 돼지고기 구이/찜 김밥/만두/분식
광운대학교	카페	백반/한정식	김밥/만두/분식 치킨 중국집
국민대학교	백반/한정식	카페	요리 주점 일식 회/초밥 돼지고기 구이/찜
먹성여자대학교 -	백반/한정식	카페	요리 주점 돼지고기 구이/찜 김밥/만두/분식
동국대학교	백반/한정식	카페	요리 주점 경양식 일식 회/초밥
동덕여자대학교	카페	백반/한정식	김밥/만두/분식 빵/도넛 치킨
동양미래대학교	백반/한정식	카페	김밥/만두/분식 치킨 요리 주점
명지대학교	카페	백반/한정식	김밥/만두/분식 요리 주점 치킨
명지전문대학		김밥/만두/분식	백반/한정식 빵/도넛 요리 주점
배화여자대학교	카페	백반/한정식	경양식 요리 주점 빵/도넛
생육대학교 삼육대학교	카페	백반/한정식	None None None
삼육보건대학교	카페	백반/한정식	김밥/만두/분식 돼지고기 구이/찜 요리 주점
상명대학교	카페	백반/한정식	김밥/만두/분식 요리 주점 빵/도넛
성강대학교 서강대학교	카페	박반/한정식	김밥/만두/분식 요리 주점 빵/도넛
서경대학교	백반/한정식	카페	김밥/만두/분식 치킨 구내식당
서울과학기술대학교	,		돼지고기 구이/찜 요리 주점 치킨
서울기독대학교	카페	백반/한정식	돼지고기 구이/찜 김밥/만두/분식 빵/도넛
서울대학교	백반/한정식	카페	
서울시립대학교	카페	백반/한정식	
서울여자간호대학교		백반/한정식	
서울여자대학교	. 기-11 카페	백반/한정식	김밥/만두/분식 빵/도넛 경양식
서울한영대학교	카페	요리 주점	지킨 백반/한정식 생맥주 전문
서일대학교	카페	백반/한정식	김밥/만두/분식 요리 주점 국/탕/찌개류
성공회대학교	치킨	백반/한정식	국수/칼국수 요리 주점 돼지고기 구이/찜
성균관대학교	카페	백반/한정식	요리 주점 김밥/만두/분식 치킨
성신여자대학교	카페	백반/한정식	요리 주점 돼지고기 구이/찜 김밥/만두/분식
세종대학교	카페	백반/한정식	요리 주점 김밥/만두/분식 치킨
숙명여자대학교	카페	백반/한정식	김밥/만두/분식 경양식 빵/도넛
숭실대학교	카페	백반/한정식	김밥/만두/분식 치킨 요리 주점
숭의여자대학교	카페	백반/한정식	경양식 돼지고기 구이/찜 요리 주점
연세대학교	카페	백반/한정식	요리 주점 경양식 일식 회/초밥
이화여자대학교	카페	백반/한정식	김밥/만두/분식 요리 주점 빵/도넛
인덕대학교	카페	백반/한정식	치킨 김밥/만두/분식 돼지고기 구이/찜
중앙대학교	카페	백반/한정식	김밥/만두/분식 요리 주점 일식 회/초밥
총신대학교	카페	백반/한정식	치킨 김밥/만두/분식 피자
한국외국어대학교	카페	백반/한정식	요리 주점 피자 경양식
한국폴리텍대학	백반/한정식	카페	요리 주점 김밥/만두/분식 돼지고기 구이/찜
한성대학교	카페	백반/한정식	김밥/만두/분식 빵/도넛 경양식
한양대학교	카페	백반/한정식	요리 주점 돼지고기 구이/찜 김밥/만두/분식
한양여자대학교	카페		국/탕/찌개류 중국집 해산물 구이/찜
홍익대학교	카페	백반/한정식	국/탕/찌개류 중국집 해산물 구이/찜 요리 주점 일식 회/초밥 경양식
0 1 11 12	1 1	,	

→ 명지전문대를 제외한 모든 대학의 1등과 2등이 카페와 백반/한정식임

• 각 중분류명에 속하는 소분류명의 비율

각 상권업종중분류명에 속하는 상권업종소분류명의 비율

```
for i in data['상권업종중분류명'].unique():
       food_data = data[data['상권업종중분류명'] == i]
       food_count = food_data.groupby('상권업종소분류명')['개수'].sum()
food_ratio = (food_count / food_count.sum()) * 100 # 퍼센트 비율
       food_ratio_df = pd.DataFrame({'개수': food_count, '비율(%)': food_ratio})
       food_ratio_df = food_ratio_df.sort_values(by='비율(%)', ascending=False)
       print(i)
       print(food_ratio_df, "\n\n")
비알코올
                      개수 비율(%)
 상권업종소분류명
                    3770 100.0
카페
한식
                                            비율(%)
                            개수
상권업종소분류명
 백반/한정식
                            3236 51.389551
돼지고기 구이/찜
국/탕/찌개류

    대지고기 구이/쯤
    1052
    16.706368

    국/탕/짜개류
    506
    8.035572

    국/발국수
    352
    5.889963

    황집
    210
    3.134921

    급장 전골/구이
    20
    3.176116

    닭/오리고기 구이/쯤
    182
    2.858504

    작발/보쌈
    147
    2.334445

    소고기 구이/쯤
    96
    1.524535

    냉면/밀면
    81
    1.286327

    기타 한식 음식점
    28
    0.444656

    전/부취개
    21
    0.333492

    복 요리 전문
    6
    0.095283

                            1052 16.706368
```

재학생을 반경넓이로 나눠 정규화한 밀도를 이용해 분석

● 밀도 0 방지: 최소값 추가

• 개수 / 밀도 계산, 로그 변환, z-score 표준화 사용

	대학명	상권업종중분류명	상권업종소분류명	개수	밀도	개수_대비_밀도	로그_개수_대비_밀도	z_표준화_밀도
0	가톨릭대학교 _제2캠퍼스	비알코올	카페	22	0.042807	513.932391	6.244036	-0.08864
1	가톨릭대학교 _제2캠퍼스	한식	백반/한정식	19	0.042807	443.850701	6.097739	-0.08864
2	가톨릭대학교 _제2캠퍼스	기타 간이	김밥/만두/분식	12	0.042807	280.326759	5.639517	-0.08864
3	가톨릭대학교 _제2캠퍼스	구내식당·뷔페	구내식당	11	0.042807	256.966195	5.552829	-0.08864
4	가톨릭대학교 _제2캠퍼스	기타 간이	빵/도넛	11	0.042807	256.966195	5.552829	-0.08864
1362	홍익대학교	한식	족발/보쌈	3	0.496890	6.037554	1.951261	-0.08864
1363	홍익대학교	한식	기타 한식 음식점	2	0.496890	4.025036	1.614433	-0.08864
1364	홍익대학교	한식	냉면/밀면	2	0.496890	4.025036	1.614433	-0.08864
1365	홍익대학교	동남아시아	기타 동남아식 전문	1	0.496890	2.012518	1.102776	-0.08864
1366	홍익대학교	한식	전/부침개	1	0.496890	2.012518	1.102776	-0.08864

→ Plot으로 시각화해보니 로그가 가장 적절해보임

Z-score log

● 종소분류명별 평규을 구하고 평균보다 큰 대학교 plot

각 상권업종소분류명의 평균을 구하고 그 평균보다 큰 대학교

```
import matplotlib.pyplot as plt
import seaborn as sns
# 상권업종소분류명을 하나씩 순회하며 처리
for category in df['상권업종소분류명'].unique():
   # 특정 상권업종소분류명을 가진 데이터 필터링
   filtered_data = df[df['상권업종소분류명'] == category]
   # 로그 밀도의 평균 계산
   mean_log_density = filtered_data['로그_개수_대비_밀도'].mean()
   # 평균보다 큰 데이터 필터링
   above_mean = filtered_data[filtered_data['로그_개수_대비_밀도'] > mean_log_density]
   # 데이터가 존재하면 플롯 생성
   if not above_mean.empty:
      plt.figure(figsize=(8, 4))
       sns.barplot(
           data=above_mean,
           x='대학명',
           y='로그_개수_대비_밀도',
           palette='coolwarm'
       plt.title(f"'{category}' 평균보다 높은 대학교들의 로그밀도", fontsize=14)
       plt.xlabel('대학교', fontsize=12)
       plt.ylabel('로그 밀도', fontsize=12)
       plt.xticks(rotation=45, ha='right')
       plt.tight_layout()
       plt.show()
```


→ 가톨릭대학교 _제3캠퍼스를 제외하고 다시 그림.

가톨릭대학교 _제3캠퍼스때문에 분포를 파악하기 힘들어 제외했음

```
import matplotlib.pyplot as plt
import seaborn as sns
# 상권업종소분류명을 하나씩 순회하며 처리
for category in df['상권업종소분류명'].unique():
# 특정 상권업종소분류명을 가진 데이터 필터링
    filtered_data = df[df['상권업종소분류명'] == category]
    filtered_data = filtered_data[filtered_data['대학명'] != '가톨릭대학교 _제3캠퍼스'] # 특정 대학교 제외
    mean_log_density = filtered_data['로그_개수_대비_밀도'].mean()
    # 평균보다 큰 데이터 필터링
    above_mean = filtered_data[filtered_data['로그_개수_대비_밀도'] > mean_log_density]
   top_10_filtered_data = above_mean.nlargest(15, '로그_개수_대비_밀도')
    # 데이터가 존재하면 플롯 생성
    if not top_10_filtered_data.empty:
        plt.figure(figsize=(8, 4))
        sns.barplot(
           data=top_10_filtered_data,
            x='대학명',
y='로그_개수_대비_밀도',
           palette='coolwarm'
        plt.title(f"'{category}' 평균보다 높은 대학교들의 로그밀도 (상위 15개)", fontsize=14)
plt.xlabel('대학교', fontsize=12)
        plt.ylabel('로그 밀도', fontsize=12)
        plt.xticks(rotation=45, ha='right')
plt.tight_layout()
```


● 종소분류명별 평규을 구하고 평균보다 작은 대학교 plot

평균보다 낮은 하위 15개 대학교

```
: import matplotlib.pyplot as plt
  import seaborn as sns
  # 상권업종소분류명을 하나씩 순회하며 처리
  for category in df['상권업종소분류명'].unique():
      # 특정 상권업종소분류명을 가진 데이터 필터링
      filtered_data = df[df['상권업종소분류명'] == category]
      filtered_data = filtered_data[filtered_data['대학명'] != '가톨릭대학교 _제3캠퍼스'] # 특정 대학교 제외
      # 로그 밀도의 평균 계산
      mean_log_density = filtered_data['로그_개수_대비_밀도'].mean()
      # 평균보다 낮은 데이터 필터링
      below_mean = filtered_data[filtered_data['로그_개수_대비_밀도'] <= mean_log_density]
      # 하위 15개만 선택
      bottom_15_filtered_data = below_mean.nsmallest(15, '로그_개수_대비_밀도')
      # 데이터가 존재하면 플롯 생성
      if not bottom_15_filtered_data.empty:
          plt.figure(figsize=(8, 4))
          sns.barplot(
             data=bottom_15_filtered_data,
             x='대학명',
             y='로그_개수_대비_밀도',
             palette='coolwarm'
          plt.title(f"'{category}' 평균보다 낮은 대학교들의 로그밀도 (하위 15개)", fontsize=14)
         plt.xlabel('대학교', fontsize=12)
plt.ylabel('로그 밀도', fontsize=12)
          plt.xticks(rotation=45, ha='right')
         plt.tight_layout()
         plt.show()
```


● 대학별 로그밀도 높은 상위 15개의 소분류명

대학별 로그밀도 높은 15개의 소분류명

```
import matplotlib.pyplot as plt
import seaborn as sns
# 대학명을 하나씩 순회하며 처리
for university in df['대학명'].unique():
   # 특정 대학 데이터를 필터링
   filtered_data = df[df['대학명'] == university]
   # 상위 15개 선택
   top_15_filtered_data = filtered_data.nlargest(15, '로그_개수_대비_밀도')
   # 데이터가 존재하면 플롯 생성
   if not top_15_filtered_data.empty:
       plt.figure(figsize=(8, 4))
       sns.barplot(
           data=top_15_filtered_data,
           x='상권업종소분류명',
           y='로그_개수_대비_밀도',
           palette='coolwarm'
       plt.title(f"'{university}' 로그_개수_대비_밀도 상위 15개", fontsize=14)
       plt.xlabel('상권업종소분류명', fontsize=12)
       plt.ylabel('로그 밀도', fontsize=12)
       plt.xticks(rotation=45, ha='right')
       plt.tight_layout()
       plt.show()
```


● 대학별 로그밀도 낮은 하위 15개의 소분류명

대학별 로그밀도 하위 15개 소분류명

```
import matplotlib.pyplot as plt
import seaborn as sns
# 대학명을 하나씩 순회하며 처리
for university in df['대학명'].unique():
   # 특정 대학 데이터를 필터링
   filtered_data = df[df['대학명'] == university]
   # 상위 15개 선택
   bottom_15_filtered_data = filtered_data.nsmallest(15, '로그_개수_대비_밀도')
   # 데이터가 존재하면 플롯 생성
   if not bottom_15_filtered_data.empty:
       plt.figure(figsize=(8, 4))
       sns.barplot(
          data=bottom_15_filtered_data,
           x='상권업종소분류명',
           y='로그_개수_대비_밀도',
           palette='coolwarm'
       plt.title(f"'{university}' 로그_개수_대비_밀도 하위 15개", fontsize=14)
       plt.xlabel('상권업종소분류명', fontsize=12)
       plt.ylabel('로그 밀도', fontsize=12)
       plt.xticks(rotation=45, ha='right')
       plt.tight_layout()
       plt.show()
```

