

CAPACITIVE LIGHT EMITTING ELEMENT DISPLAY DEVICE AND ITS MANUFACTURE**Publication number:** JP2000206935**Publication date:** 2000-07-28**Inventor:** MINAGAWA NOBORU**Applicant:** PIONEER ELECTRONIC CORP**Classification:****- international:** G09G3/30; G02F1/133; G09F9/30; G09G3/20; G09G3/30; G02F1/13; G09F9/30; G09G3/20 (PC1-7); G09G3/30; G02F1/133; G09F9/30; G09G3/20**- european:****Application number:** JP19990003736 19990111**Priority number(s):** JP19990003736 19990111**Report a data error here****Abstract of JP2000206935**

PROBLEM TO BE SOLVED: To reduce reactive power and to reduce a power cost by making a drive source adjustable for a drive voltage applied to a drive line and making the higher potential adjustable of the first or second potential of a scanning line. **SOLUTION:** Only a scan switch S1 is thrown to a ground potential side of 0 V, and a cathode line B1 is scanned, and simultaneously other cathode lines B2-Bn are connected to a variable voltage source imparting an inverse bias voltage Vcc. Further, the drive source 21 imparts a maximum voltage to an anode line A1, and an element E1,1 light-emits with maximum luminance. At this time, since the inverse bias voltage Vcc is set in a minimum value, the both end voltage of the elements E1,2-E1,n, E2,2-E2,n which are not a scan object and whose drive lines are connected to the drive source are made to be the utmost in the range of a light emission threshold value voltage or below. Thus, when the scanning is switched to the cathode line B2, and the elements E1,2, E2,2 are light-emitted, invalid amount being reactive in a drive current supplied from the drive sources 21, 22 becomes minimal.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-206935

(P 2000-206935 A)

(43) 公開日 平成12年7月28日 (2000.7.28)

(51) Int. Cl.	識別記号	F I	マークド (参考)
G09G 3/30		G09G 3/30	J 2H093
G02F 1/133	505	G02F 1/133	5C080
G09F 9/30	360	G09F 9/30	5C094
G09G 3/20	611	G09G 3/20	A
	622		A

審査請求 未請求 請求項の数19 O L (全11頁) 最終頁に続く

(21) 出願番号 特願平11-3736

(22) 出願日 平成11年1月11日 (1999.1.11)

(71) 出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72) 発明者 皆川 登

埼玉県鶴ヶ島市富士見6丁目1番1号パイ
オニア株式会社総合研究所内

(74) 代理人 100079119

弁理士 藤村 元彦

F ターム(参考) 2H093 NA43 NA45 NC04 NC16 NC24

NC28 NC42 ND39 NE06

5C080 AA06 BB05 DD26 EE29 FF12

GG07 GG08 GG12 JJ01 JJ02

JJ03 JJ04 JJ05 JJ06

5C094 AA22 BA29 CA19 EA04 GA10

(54) 【発明の名称】容量性発光素子ディスプレイ装置及びその駆動方法

(57) 【要約】

【課題】 消費電力を抑制した容量性発光素子ディスプレイ装置及びその駆動方法を提供する。

【解決手段】 ドライブ線及び走査線の複数の交差位置に配置されかつ走査線及びドライブ線間に接続された複数の容量性発光素子と、走査線を異なる第1又は第2電位のいずれか一方に接続自在とする走査スイッチと、ドライブ線を駆動源に接続自在とする駆動スイッチと、駆動スイッチ及び走査スイッチを制御する発光制御回路と、からなり、走査スイッチが走査線を第1又は第2電位のいずれか低い方へ接続する走査期間に同期して駆動スイッチが選択的にドライブ線を駆動源へ接続して、選択された容量性発光素子を発光せしめると同時に、選択されていない容量性発光素子の走査線を第1又は第2電位のいずれか高い方へ接続する容量性発光素子ディスプレイ装置の駆動方法であって、駆動源はドライブ線に印加する駆動電圧が調整可能であり、第1又は第2電位のいずれか高い方の電位を逆バイアス電位として、走査期間における逆バイアス電位の大きさを調整自在とした。

【特許請求の範囲】

【請求項 1】 ドライブ線及び走査線の複数の交差位置に配置されかつ前記走査線及び前記ドライブ線間に接続された複数の容量性発光素子と、前記走査線を異なる第1又は第2電位のいずれか一方に接続自在とするとともに、前記ドライブ線を前記第1及び第2電位の低い方の電位又は駆動源のいずれか一方に接続自在とし、選択された前記走査線が前記第1又は第2電位のいずれか低い方の電位へ接続される走査期間に同期して、選択された前記ドライブ線を駆動源へ接続して容量性発光素子を発光せしめると同時に、選択されていない前記走査線を前記第1又は第2電位の低い方へ接続する容量性発光素子ディスプレイ装置の駆動方法であって、
前記駆動源は前記ドライブ線に印加する駆動電圧を調整可能とし、

前記第1又は第2電位の高い方の電位を調整可能としたことを特徴とする駆動方法。

【請求項 2】 前記第1電位又は第2電位の高い方の電位は、前記走査期間毎に調整可能とされ、一つの走査期間内においては一定電位を維持することを特徴とする請求項1記載の駆動方法。

【請求項 3】 前記第1又は第2電位の高い方の電位は、フィールド期間毎に調整可能とされ、一つのフィールド期間内においては一定電位を維持することを特徴とする請求項1記載の駆動方法。

【請求項 4】 前記第1又は第2電位の高い方の電位は、選択されていない前記走査線と選択された前記ドライブ線の間に接続されたすべての前記素子が発光せず、且つその両端電圧が最大となるように調整されることを特徴とする請求項1～3のいずれか1記載の駆動方法。

【請求項 5】 前記第1又は第2電位の高い方の電位は、選択されていない前記走査線と選択された前記ドライブ線の間に接続されたすべての前記素子の両端電圧が発光閾値電圧よりも小となる範囲の最大値となるように調整されることを特徴とする請求項1～3のいずれか1記載の駆動方法。

【請求項 6】 前記第1又は第2電位の低い方の電位はアース電位であることを特徴とする請求項1～5のいずれか1記載の駆動方法。

【請求項 7】 選択されていない前記ドライブ線は前記第1又は第2電位の低い方に接続されることを特徴とする請求項1～6のいずれか1記載の駆動方法。

【請求項 8】 前記容量性発光素子は有機エレクトロルミネッセンス素子であることを特徴とする請求項1～7のいずれか1記載の駆動方法。

【請求項 9】 ドライブ線及び走査線の複数の交差位置に配置されかつ前記走査線及びドライブ線間に接続された複数の容量性発光素子と、前記走査線を異なる第1又は第2電位のいずれか一方に接続自在とする走査スイッチ手段と、前記ドライブ線を前記第1及び第2電位の低

10

20

30

40

50

い方の電位又は駆動源のいずれか一方に接続自在とする駆動スイッチ手段と、前記駆動スイッチ手段及び前記走査スイッチ手段を制御する発光制御手段と、からなり、前記発光制御手段は、前記走査スイッチ手段が選択された前記走査線を前記第1又は第2電位の低い方へ接続する走査期間に同期して前記駆動スイッチ手段により選択的に前記ドライブ線を駆動源へ接続させて、選択された容量性発光素子を発光せしめると同時に、選択されていない前記走査線を前記第1又は第2電位の高い方へ接続する容量性発光素子ディスプレイ装置であって、
前記駆動源の駆動電圧を調整する駆動電圧調整手段と、前記第1又は第2電位の高い方の電位を調整する逆バイアス電圧調整手段を有することを特徴とする容量性発光素子ディスプレイ装置。

【請求項 10】 前記逆バイアス電圧調整手段は、前記第1又は第2電位の高い方の電位を前記走査期間毎に調整し、一つの走査期間内においては一定電位を維持することを特徴とする請求項9記載の容量性発光素子ディスプレイ装置。

【請求項 11】 前記逆バイアス電圧調整手段は、前記第1又は第2電位の高い方の電位をフィールド期間毎に調整し、且つ、一つのフィールド期間内においては一定電位を維持させることを特徴とする請求項9記載の容量性発光素子ディスプレイ装置。

【請求項 12】 前記発光制御手段は、発光データに基づいて、前記駆動電圧調整手段及び前記逆バイアス電圧調整手段を制御することを特徴とする請求項9～11のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項 13】 前記発光制御手段は、選択されていない前記走査線と前記駆動源に接続された前記ドライブ線との間に接続されたすべての前記素子が発光せず、且つその両端電圧が最大となるように、前記第1又は第2電位の高い方の電位を決定することを特徴とする請求項9～12のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項 14】 前記発光制御手段は、選択されていない前記走査線と前記駆動源に接続された前記ドライブ線との間に接続されたすべての前記素子の両端電圧が発光閾値電圧よりも小となる範囲において最大となるよう前に、前記第1又は第2電位の高い方の電位を決定し、前記第1又は第2電位の低い方の電位はアース電位であることを特徴とする請求項9～12のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項 15】 前記発光制御手段は、選択されていない前記走査線と最も駆動電圧の高い前記駆動源に接続された前記ドライブ線との間に接続された前記素子が発光せず、且つその両端電圧が最大となるように、前記第1又は第2電位の高い方の電位を決定することを特徴とする請求項9～12のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項16】 前記発光制御手段は、選択されていない前記走査線と最も駆動電圧の高い前記駆動源に接続された前記ドライブ線との間に接続された前記素子の両端電圧が、発光閾値電圧よりも小となる範囲において最大となるように、前記第1又は第2電位の高い方の電位を決定することを特徴とする請求項9～12のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項17】 前記前記第1又は第2電位の低い方の電位はアース電位であることを特徴とする請求項9～16のいずれか1記載の容量性発光素子ディスプレイ装置。
10

【請求項18】 選択されていない前記ドライブ線は前記第1又は第2電位の低い方に接続されることを特徴とする請求項9～17のいずれか1記載の容量性発光素子ディスプレイ装置。

【請求項19】 前記容量性発光素子は有機エレクトロルミネッセンス素子であることを特徴とする請求項9～18のいずれか1記載の容量性発光素子ディスプレイ装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、画像表示パネルの駆動方法及び駆動装置に関し、特に有機エレクトロルミネッセンス素子等の容量性発光素子ディスプレイの駆動方法及び駆動装置に関する。

【0002】

【従来の技術】 低消費電力及び高表示品質並びに薄型化が可能なディスプレイとして、有機エレクトロルミネッセンス素子の複数をマトリクス状に配列して構成されるエレクトロルミネッセンスディスプレイが注目されている。該有機エレクトロルミネッセンス素子は、図1に示すように、透明電極101が形成されたガラス板などの透明基板100上に、電子輸送層、発光層、正孔輸送層などからなる少なくとも1層の有機機能層102、及び金属電極103が積層されたものである。透明電極101の陽極にプラス、金属電極103の陰極にマイナスの電圧を加え、すなわち、透明電極及び金属電極間に直流を印加することにより、有機機能層102が発光する。良好な発光特性を期待することのできる有機化合物を有機機能層に使用することによって、エレクトロルミネッセンスディスプレイが実用に耐えうるものになってい

る。

【0003】 有機エレクトロルミネッセンス素子（以下、単に素子ともいう）は、電気的には、図2のような等価回路にて表すことができる。図から分かるように、素子は、容量成分Cと、該容量成分に並列に結合するダイオード特性の成分Eとによる構成に置き換えることができる。よって、有機エレクトロルミネッセンス素子は、容量性の発光素子であると考えられる。有機エレクトロルミネッセンス素子は、直流の発光駆動電圧が電極

間に印加されると、電荷が容量成分Cに蓄積され、続いて当該素子固有の障壁電圧又は発光閾値電圧を越えると、電極（ダイオード成分Eの陽極側）から発光層を担う有機機能層に電流が流れ初め、この電流に比例した強度で発光する。

【0004】かかる素子の電圧V-電流I-輝度Lの特性は、図3に示すように、ダイオードの特性に類似しており、発光閾値V_{th}以下の電圧では電流Iはきわめて小さく、発光閾値V_{th}以上の電圧になると電流Iは急激に増加する。また、電流Iと輝度Lはほぼ比例する。このような素子は、発光閾値V_{th}を超える駆動電圧を素子に印加すれば当該駆動電圧に応じた電流に比例した発光輝度を呈し、印加される駆動電圧が発光閾値V_{th}以下であれば駆動電流が流れず発光輝度もゼロに等しいままである。

【0005】かかる有機エレクトロルミネッセンス素子の複数を用いた表示パネルの駆動方法としては、単純マトリクス駆動方式が適用可能である。図4に単純マトリクス表示パネルの一例の構造を示す。n個の陰極線（金属電極）B₁～B_nを横方向に、m個の陽極線（透明電極）A₁～A_mを縦方向に平行に伸長して設けられ、各々の交差した部分（計n×m個）に有機エレクトロルミネッセンス素子E_{1,1}～E_{n,m}の発光層を挟む。画素を担う素子E_{1,1}～E_{n,m}は、格子状に配列され、垂直方向に沿う陽極線A₁～A_mと水平方向に沿う陰極線B₁～B_nとの交差位置に対応して一端（上記の等価回路のダイオード成分Eの陽極線側）が陽極線に、他端（上記の等価回路のダイオード成分Eの陰極線側）が陰極線に接続される。陰極線（走査線）は陰極線走査回路1に接続されてそれぞれ駆動される。陰極線走査回路1は、各陰極線の電位を個々に定める陰極線B₁～B_nに対応する走査スイッチ5₁～5_nを有し、個々が、電源電圧からなる逆バイアス電圧V_{cc}（例えば10V）及びアース電位(0V)のうちのいずれか一方を選択し、対応する陰極線に接続する。陽極線ドライブ回路2は、各陽極線（ドライブ線）を通じて駆動電流を素子個々に供給する陽極線A₁～A_mに対応したドライブスイッチ6₁～6_mを有し、個々が、駆動源2₁～2_m及びアース電位(0V)のうちのいずれか一方を選択し、対応する陽極線に接続する。すなわち、ドライブスイッチ6₁～6_mは画像データに対応して駆動電流を個々に陽極線に流すようオンオフ制御される。駆動源2₁～2_mは、電圧源（付与電圧を所定値に制御する電源回路）又は、電流源（供給電流を所定値に制御する電源回路）を用いる。電圧源を用いる場合は、素子の両端電圧が所望の瞬時輝度に対応した値となるように駆動電圧V_Aを制御し、電流源を用いる場合は、素子に対する供給電流が所望の瞬時輝度に対応した値となるように駆動電流を制御する。発光制御回路4は、図示せぬ画像データ発生系から供給された画像

データに応じて当該画像データが担う画像を表示させるべく、接続されている陰極線走査回路1を陽極線ドライブ回路2を制御する。すなわち発光制御回路4は、陰極線走査回路1に対して、走査線選択制御信号を発生し、画像データの水平走査期間に対応する陰極線のいずれかを選択してアース電位に設定し、その他の陰極線は逆バイアス電圧 V_{cc} が印加されるように走査スイッチ5、～5。を切り換える制御を行う。逆バイアス電圧 V_{cc} は、ドライブされている陽極線と走査選択がなされていない陰極線との交点に接続された素子がクロストーク発光することを防止するために、陰極線に接続される定電圧源によって印加されるものであり、素子が定常状態で発光する（所望の瞬時輝度で発光する）時の両端電圧（これを発光規定電圧 V_e と称する）に対して、逆バイアス電圧 $V_{cc} > V_e - V_t h$ の関係を満たす必要がある。なお、以下に述べる図4および図5に示す発光動作は、陰極線 B_1 を走査して素子 $E_{1,1}$ 及び $E_{2,1}$ を光らせた後、陰極線 B_2 に走査を移して素子 $E_{1,2}$ 及び $E_{2,2}$ を光せる場合を例に挙げたものである。

【0006】以下の説明は、駆動源が駆動電圧 V_{AA} を付与する可変電圧源であり、駆動電圧 V_{AA} を調整することで素子の瞬時輝度を調整し階調表現を行う場合の動作を示す。このような階調表現により発光規定電圧 V_e は可変値となるため、逆バイアス電圧 V_{cc} は、発光規定電圧 V_e の可変範囲において上記の関係を満たす値として設定される。また、説明を分かり易くするために、光っている素子はダイオード記号にて示され、光っていない発光素子はコンデンサ記号にて示される。

【0007】図4においては、走査スイッチ5₁のみが0Vのアース電位側に切り換えられ、陰極線 B_1 が走査されている。他の陰極線 B_2 ～ B_n には、走査スイッチ5₂～5_nにより逆バイアス電圧 V_{cc} が印加されている。同時に、陽極線 A_1 及び A_2 には、ドライブスイッチ6₁及び6₂によって駆動源2₁及び2₂が接続されている。また、他の陽極線 A_3 ～ A_m には、シャントスイッチによって0Vのアース電位側に切り換えられている。したがって、この場合、素子 $E_{1,1}$ と $E_{2,1}$ のみが順方向にバイアスされ、駆動源2₁及び2₂から矢印のように駆動電流が流れ込み、素子 $E_{1,1}$ 及び $E_{2,1}$ のみが発光することとなる。この状態においては、非発光のハッティングして示される素子C～E_{..n}は、それぞれ図示の如き極性に充電されることとなる。

【0008】この図4の発光状態から、今度は図5に示すように、陰極線 B_2 に対応する走査スイッチ5₂のみを0V側に切り換え、陰極線 B_2 の走査を行う。これと同時に、ドライブスイッチ6₂及び6₃を閉じて駆動源2₂及び2₃を対応の陽極線に接続せしめるとともに、他の陽極線 A_1 ～ A_m に0Vを与える。したがって、この場合、素子 $E_{1,2}$ 及び $E_{2,2}$ のみが順方向にバ

イアスされ、駆動源2₂及び2₃から矢印のように駆動電流が流れ込み、素子 $E_{1,2}$ 及び $E_{2,2}$ のみが発光することとなる。

【0009】このように、上記発光制御は、陰極線 B_1 ～ B_n のうちのいずれかをアクティブにする期間である走査モードの繰り返しである。かかる走査モードは、画像データの1水平走査期間（1H）毎に行われ、走査スイッチ5₁～5_nが水平走査期間毎に順次アース電位に切り換えられる。発光制御回路4は、画像データが示す画素情報に従って当該走査線に接続されている素子のどれをどのタイミングでどのような瞬時輝度で発光させるかについて示すドライブ制御信号を発生し、陽極線ドライブ回路2に供給する。陽極線ドライブ回路2は、このドライブ制御信号に応じて、駆動源の駆動電圧 V_{AA} を調整するとともに、ドライブスイッチ6₁～6_nのいくつかをオンオフ制御し、陽極線 A_1 ～ A_m を通じて画素情報に応じた該当素子への駆動電圧 V_{AA} の印加、すなわち駆動電流の供給を行う。これにより、駆動電流の供給された素子は、当該画素情報に応じた輝度で発光をなすこととなる。

【0010】この単純マトリクス表示パネルでは、図4および図5に示す動作における陰極線及び陽極線への印加電圧レベルをタイミングチャートで示すと図6となる。第1走査期間においては陰極線 B_1 と陽極線 A_1 、 A_2 の交点上の素子が一定電圧 V_{AA} に対応した輝度で発光し、第2走査期間においては陰極線 B_2 と陽極線 A_2 、 A_3 の交点上の素子が一定電圧 V_{AA} に対応した輝度で発光する。従って、第j走査期間（1 ≤ j ≤ n）においては陰極線 B_j と陽極線 A_j （1 ≤ i ≤ m）の交点上の素子が駆動電圧 V_{AA} に対応した輝度で発光する。

【0011】また、単純マトリクス表示パネルにおける上記発光駆動法では、素子の発光輝度を制御する方法として、陽極線 A_i への駆動電圧レベルを変化させることにより、各素子の発光輝度を制御する方法を行っている。これは、図7に示すように、任意のドライブ線 A_i に、例えば、第j走査期間、第j+1走査期間及び第j+2走査期間中のそれぞれの駆動電圧を V''_{AA} の中程度の電圧、 V'''_{AA} の高程度の電圧、及び V''''_{AA} の低程度の電圧を印加して、画像データに対応した電流を素子に供給する方法である。

【0012】

【発明が解決しようとする課題】しかし、上述した駆動電圧 V_{AA} レベルを調整して発光輝度を調整する場合、発光に寄与しない無効電力の消費という問題があり、特に、低輝度でパネルを発光させる場合において、走査の切換時に消費される無効電力が大きくなるという問題がある。すなわち、前回の走査期間において、走査対象ではなく且つドライブ線が駆動源に接続されており、今回の走査期間において、走査対象となり且つドライブ線が駆動源に接続されて発光する素子（図4、図5において

は $E_{2,2}$) は、前回の走査期間においては、その両端電圧は、クロストーク発光がなさないように発光閾値電圧 V_{th} より小さくされるが、このときのパネルが低輝度で発光されているとすると、ドライブ線に付与される駆動電圧 V_{dd} が低いことから、該素子の両端電圧も低下し、逆方向となる場合（素子の寄生容量に逆方向電荷が充電される場合）も生じる。ところが、この逆方向電荷は、今回の走査期間に切り換わった際に、駆動源から流れ込む順方向電流によってキャンセルされるため、発光に寄与しない無効電力となる。従って、電力コストに問題があり、また、無効電力はパネルを低輝度で発光させるときに大となるため、例えば、電力節約のための低輝度発光モードといった、機能の実現にも不向きであった。

【 0013 】本発明は上述した事情に鑑みてなされたものであり、その目的は、無効電力を少なくすることによって電力コストを低減させた容量性発光素子ディスプレイを提供することにある。

【 0014 】

【課題を解決するための手段】本発明の方法は、ドライブ線及び走査線の複数の交差位置に配置されかつ前記走査線及び前記ドライブ線間に接続された複数の容量性発光素子と、前記走査線を異なる第 1 又は第 2 電位のいずれか一方に接続自在とするとともに、前記ドライブ線を前記第 1 及び第 2 電位の低い方の電位又は駆動源のいずれか一方に接続自在とし、選択された前記走査線が前記第 1 又は第 2 電位のいずれか低い方の電位へ接続される走査期間に同期して、選択された前記ドライブ線を駆動源へ接続して容量性発光素子を発光せしめると同時に、選択されていない前記走査線を前記第 1 又は第 2 電位の低い方へ接続する容量性発光素子ディスプレイ装置の駆動方法であって、前記駆動源は前記ドライブ線に印加する駆動電圧を調整可能とし、前記第 1 又は第 2 電位の高い方の電位を調整可能としたことを特徴とする。

【 0015 】上記容量性発光素子ディスプレイ装置の駆動方法において、前記第 1 電位又は第 2 電位の高い方の電位は、前記走査期間毎に調整可能とされ、一つの走査期間内においては一定電位を維持することを特徴とする。上記容量性発光素子ディスプレイ装置の駆動方法において、前記駆動源の出力電圧又は電流を変化させ、前記駆動源の出力電圧又は電流の変化に応じて前記逆バイアス電位を変化させることを特徴とする。

【 0016 】上記容量性発光素子ディスプレイ装置の駆動方法において、前記第 1 又は第 2 電位の高い方の電位は、フィールド期間毎に調整可能とされ、一つのフィールド期間内においては一定電位を維持することを特徴とする。上記容量性発光素子ディスプレイ装置の駆動方法において、前記第 1 又は第 2 電位の高い方の電位は、選択されていない前記走査線と選択された前記ドライブ線の間に接続されたすべての前記素子が発光せず、且つそ

の両端電圧が最大となるように調整されることを特徴とする。

【 0017 】上記容量性発光素子ディスプレイ装置の駆動方法において、前記第 1 又は第 2 電位の高い方の電位は、選択されていない前記走査線と選択された前記ドライブ線の間に接続されたすべての前記素子の両端電圧が発光閾値電圧よりも小となる範囲の最大値となるように調整されることを特徴とする。上記容量性発光素子ディスプレイ装置の駆動方法において、前記第 1 又は第 2 電位の低い方の電位はアース電位であることを特徴とする。

【 0018 】上記容量性発光素子ディスプレイ装置の駆動方法において、選択されていない前記ドライブ線は前記第 1 又は第 2 電位の低い方に接続されることを特徴とする。上記容量性発光素子ディスプレイ装置の駆動方法において、前記容量性発光素子は有機エレクトロルミネッセンス素子であることを特徴とする。

【 0019 】本発明の容量性発光素子ディスプレイ装置は、ドライブ線及び走査線の複数の交差位置に配置されかつ前記走査線及びドライブ線間に接続された複数の容量性発光素子と、前記走査線を異なる第 1 又は第 2 電位のいずれか一方に接続自在とする走査スイッチ手段と、前記ドライブ線を前記第 1 及び第 2 電位の低い方の電位又は駆動源のいずれか一方に接続自在とする駆動スイッチ手段と、前記駆動スイッチ手段及び前記走査スイッチ手段を制御する発光制御手段と、からなり、前記発光制御手段は、前記走査スイッチ手段が選択された前記走査線を前記第 1 又は第 2 電位の低い方へ接続する走査期間に同期して前記駆動スイッチ手段により選択的に前記ドライブ線を駆動源へ接続させて、選択された容量性発光素子を発光せしめると同時に、選択されていない前記走査線を前記第 1 又は第 2 電位の高い方へ接続する容量性発光素子ディスプレイ装置であって、前記駆動源の駆動電圧を調整する駆動電圧調整手段と、前記第 1 又は第 2 電位の高い方の電位を調整する逆バイアス電圧調整手段を有することを特徴とする。

【 0020 】上記本発明の容量性発光素子ディスプレイ装置においては、前記逆バイアス電圧調整手段は、前記第 1 又は第 2 電位の高い方の電位を前記走査期間毎に調整し、一つの走査期間内においては一定電位を維持することを特徴とする。上記本発明の容量性発光素子ディスプレイ装置においては、前記逆バイアス電圧調整手段は、前記第 1 又は第 2 電位の高い方の電位をフィールド期間毎に調整し、且つ、一つのフィールド期間内においては一定電位に維持させることを特徴とする。

【 0021 】上記本発明の容量性発光素子ディスプレイ装置においては、前記発光制御手段は、発光データに基づいて、前記駆動電圧調整手段及び前記逆バイアス電圧調整手段を制御することを特徴とする。上記本発明の容量性発光素子ディスプレイ装置においては、前記発光制

御手段は、選択されていない前記走査線と前記駆動源に接続された前記ドライブ線との間に接続されたすべての前記素子が発光せず、且つその両端電圧が最大となるよう前記第1又は第2電位の高い方の電位を決定することを特徴とする。

【0022】上記本発明の容量性発光素子ディスプレイ装置においては、前記発光制御手段は、選択されていない前記走査線と前記駆動源に接続された前記ドライブ線との間に接続されたすべての前記素子の両端電圧が発光閾値電圧よりも小となる範囲において最大となるように、前記第1又は第2電位の高い方の電位を決定し、前記第1又は第2電位の低い方の電位はアース電位であることを特徴とする。

【0023】上記本発明の容量性発光素子ディスプレイ装置においては、前記発光制御手段は、選択されていない前記走査線と最も駆動電圧の高い前記駆動源に接続された前記ドライブ線との間に接続された前記素子が発光せず、且つその両端電圧が最大となるように、前記第1又は第2電位の高い方の電位を決定することを特徴とする。

【0024】上記本発明の容量性発光素子ディスプレイ装置においては、前記発光制御手段は、選択されていない前記走査線と最も駆動電圧の高い前記駆動源に接続された前記ドライブ線との間に接続された前記素子の両端電圧が、発光閾値電圧よりも小となる範囲において最大となるように、前記第1又は第2電位の高い方の電位を決定することを特徴とする。

【0025】上記本発明の容量性発光素子ディスプレイ装置においては、前記第1又は第2電位の低い方の電位はアース電位であることを特徴とする。上記本発明の容量性発光素子ディスプレイ装置においては、選択されていない前記ドライブ線は前記第1又は第2電位の低い方に接続されることを特徴とする。

【0026】上記本発明の容量性発光素子ディスプレイ装置においては、前記容量性発光素子は有機エレクトロルミネッセンス素子であることを特徴とする。

【0027】

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて詳細に説明する。容量性発光素子ディスプレイ装置において、前回の走査期間において、走査対象ではなく且つドライブ線が駆動源に接続された素子の両端電圧は、ドライブ線に接続された駆動源の駆動電圧 V_{AA} と走査線に接続された逆バイアス電圧 V_{cc} とによって決められる。従って、駆動電圧 V_{AA} と逆バイアス電圧 V_{cc} との電位が常に同一であれば、素子の寄生容量に逆方向電荷は充電されず、無効電力も発生しない。また、駆動電圧 V_{AA} と逆バイアス電圧 V_{cc} との電位差が常に最小であれば、無効電力も最小となる。そこで、本発明では、駆動源が画像データに応じて可変であるのと同様に、逆バイアス電圧源を可変とする。すなわち、本実施例では

逆バイアス電圧 V_{cc} の値を固定せず、走査毎にその V_{cc} 値を変える構成とするのである。

【0028】次に、本発明における逆バイアス電圧 V_{cc} の調整条件について説明する。駆動源が接続されたドライブ線の電位は、駆動源から付与される駆動電圧 V_{AA} となるから、走査対象ではなく且つドライブ線が駆動源に接続された素子がクロストーク発光しないように、逆バイアス電圧 V_{cc} は、 $V_{cc} > \text{駆動電圧 } V_{AA} - \text{発光閾値電圧 } V_{th}$ を満たす範囲で選ばれることが第1条件となる。

さらに、同一走査期間において発光する素子毎に発光輝度が異なる場合は、駆動電圧 V_{AA} がドライブ線毎に異なって付与されるので、クロストーク発光防止のために逆バイアス電圧 V_{cc} は、

【0029】

【数1】 $V_{cc} > V_{AA_{max}} - V_{th}$ (1)
を満たす範囲で選ばなければならない。ここで逆バイアス電圧 V_{cc} を式(1)を満たす範囲での最小値にすると、走査対象ではなく且つドライブ線が駆動源に接続された素子は、同一走査線上の素子がすべてクロストーク発光しない範囲で両端電圧を極力大とできるので、素子の寄生容量に充電される逆方向電荷を減らし無効電力を少なくできる。また、素子によっては、その両端電圧が発光閾値電圧 V_{th} 以下の順方向電圧となるが、この順方向電荷は、次回の走査において発光される場合に発光の立上りを早めるべく寄与することとなり、有効電力として活用できる。

【0030】本発明においては、画像データに応じて V_{AA} が変化すると、これに応じて逆バイアス電圧 V_{cc} も上述した範囲で調整することで、ディスプレイの無効電力を低減させている。具体的に図8に本実施例の単純マトリクス表示パネルの一例の構造を示す。なお、図4に同一符号で示す要素は上述したものと同一であるので、その説明は省略する。逆バイアス電圧 V_{cc} が、図4に示すパネルとは異なり可変電圧源となっている。また、説明を分かり易くするために、ダイオード記号の大きさは発光輝度がに対応しており、大きく描かれた素子は印加される駆動電圧 V_{AA} が最大で、小さく描かれた素子は印加される駆動電圧がそれより低いことを示す。

【0031】図8においては、走査スイッチ S_5 のみが0Vのアース電位側に切り換えられ、陰極線 B_1 が走査されて、同時に、他の陰極線 $B_2 \sim B_n$ は逆バイアス電圧 V_{cc} を付与する可変電圧源に接続されている。また、陽極線 A_1, A_2 は駆動源 $2_1, 2_2$ に接続されて素子 $E_{1,1}, E_{2,1}$ を発光させると同時に、陽極線 $A_1 \sim A_n$ はアース電位に接続されている。また、駆動源 2_1 は最大駆動電圧 $V_{AA_{max}}$ を陽極線 A_1 に付与しており、素子 $E_{1,1}$ は最大輝度で発光している。このとき、逆バイアス電圧 V_{cc} は、式(1)を満たす範囲での最小値に設定されているので、走査対象ではなく且つドライブ線が駆動

源に接続された素子 $E_{1,1} \sim E_{1,n}$ 、 $E_{2,1} \sim E_{2,n}$ は、その両端電圧が、発光閾値電圧 V_{th} 以下の範囲で極力大なる値とされる。特に、最大駆動電圧 V_{Amax} が付与された陽極線 A_1 上の素子 $E_{1,1} \sim E_{1,n}$ は、その両端電圧が発光閾値電圧 V_{th} 以下の範囲で最大となる。これにより、走査が陰極線 B_1 に切換わり素子 $E_{1,1}$ 、 $E_{2,1}$ が発光される場合、駆動源 $2_1 \sim 2_n$ から供給される駆動電流のうち無効となる量は最小限となる。また、素子 $E_{1,1}$ の寄生容量に充電された順方向電荷は、走査が陰極線 B_2 に切換わった際には、発光の立上りに寄与する有効電力として活用される。また、走査対象ではなく且つドライブ線が駆動源に接続されていない素子 $E_{3,1} \sim E_{3,n} \cdots E_{m,1} \sim E_{m,n}$ においては、走査線が逆バイアス電圧 V_{cc} に接続され、ドライブ線がアース電位に接続されるため、寄生容量に逆バイアス電圧 V_{cc} の電位に応じた逆方向電荷が充電されることとなるが、上述したように逆バイアス電圧 V_{cc} は式(1)を満たす範囲の最小値として設定されるため、これらの素子に充電される逆方向電荷は極力少なくすることができる。すなわち、走査対象ではなく且つドライブ対象でもない素子においても、発光に寄与しない無効電力の消費を最小限にすることができる。

【0032】図9は、容量性発光素子の有機エレクトロルミネッセンス素子を用いた本発明の一実施例によるディスプレイ装置の概略的な構成を示す。ディスプレイ装置は、容量性発光パネル120と発光制御部40とを有する。発光パネル120は、走査線を異なる電位例えはアース電位及び逆バイアス電位のいずれか一方に接続自在とする走査スイッチ手段である陰極線走査回路1と、ドライブ線をアース電位及び逆バイアス電位の少なくとも一方又は駆動源に接続自在とする駆動スイッチ手段である陽極線ドライブ回路2と、逆バイアス電位の大きさを調整する逆バイアス調整回路30と、を含む。発光パネル120において、図4に示したものと同様に、複数の有機エレクトロルミネッセンス素子 $E_{i,j}$ ($1 \leq i \leq m$, $1 \leq j \leq n$) は、ドライブ線の陽極線 $A_1 \sim A_m$ 及び走査線の陰極線 $B_1 \sim B_n$ の複数の交差位置にマトリクス状に配置されかつ走査線及びドライブ線間に接続されている。すなわち、有機エレクトロルミネッセンス素子は、略平行に伸長した複数のドライブ線及び各々がドライブ線に略垂直で略平行に伸長した複数の走査線の各交差位置に配置されかつ走査線及びドライブ線に接続されている。

【0033】図9に示すように、陰極線走査回路1は、陰極線 $B_1 \sim B_n$ に対応する走査スイッチ $5_1 \sim 5_n$ を有し、個々が、電源電圧からなる逆バイアス電圧 V_{cc} 及びアース電位のうちのいずれか一方を、対応する陰極線に接続する。陽極線ドライブ回路2は、陽極線 $A_1 \sim A_m$ に対応した駆動源 $2_1 \sim 2_n$ の駆動電圧 V_{Amax} の電位及びアース電位に切り替えるドライブスイッチ $6_1 \sim 6_n$ を

10

20

30

40

50

有し、ドライブスイッチが電流を個々に陽極線に流すようにオンオフ制御する。駆動源 $2_1 \sim 2_n$ の駆動電圧 V_{Amax} は、後述するように出力処理回路46から供給された輝度信号に応じて適宜設定される。

【0034】陰極線 $B_1 \sim B_n$ は、走査スイッチにより、水平走査期間毎に順次アース電位に切り換えられ、それ以外は逆バイアス電圧 V_{cc} に切り換えられる、いわゆる線順次走査に従った切換制御が行われる。また、線順次走査の代わりに、陰極線走査回路1はインターレース走査で制御されてもよい。陽極線ドライブ回路2のドライブスイッチを介して陽極線 $A_1 \sim A_m$ に画像データが供給される。

【0035】発光制御部40は陰極線走査回路1及び陽極線ドライブ回路2に接続され、これらを制御する発光制御手段である。発光制御部40は、陰極線走査回路1がいずれかの走査線をアース電位へ周期的に接続する走査期間に同期して陽極線ドライブ回路2が選択的にドライブ線を駆動源へ接続して、選択された素子を発光せしめる。

【0036】発光制御部40内において、同期分離回路41は、供給された入力ビデオ信号中から水平及び垂直同期信号を抽出してこれらをタイミングパルス発生回路42に供給する。タイミングパルス発生回路42は、これら抽出された水平及び垂直同期信号に基づいた同期信号タイミングパルスを発生してこれをA/D変換器43、制御回路45及び走査タイミング信号発生回路47の各々に供給する。A/D変換器43は、上記同期信号タイミングパルスに同期して入力ビデオ信号を1画素毎に対応したデジタル画素データに変換し、これをメモリ44に供給する。制御回路45は、後述する駆動方法に基づいて逆バイアス電位制御信号を逆バイアス調整回路30に供給するとともに、上記同期信号タイミングパルスに同期した書込信号及び読出信号をメモリ44に供給する。メモリ44は、書込信号に応じて、A/D変換器43から供給された各画素データを順次取り込む。また、メモリ44は、読出信号に応じて、このメモリ44内に記憶されている画素データを順次読み出して次段の出力処理回路46へ供給する。走査タイミング信号発生回路47は、走査スイッチ及びドライブスイッチを制御するための各種タイミング信号を発生してこれらを陰極線走査回路1及び出力処理回路46の各々に供給する。出力処理回路46は、走査タイミング信号発生回路47からのタイミング信号に同期させて、メモリ44から供給された画素データを陽極線ドライブ回路2に供給する。制御回路45は、出力処理回路46を介して画素データから、クシ型フィルタや輝度レベル制御回路などを経て輝度信号を生成し、陽極線ドライブ回路2の駆動源に供給する。また、制御回路45は、ユーザによる手動調整又は外部フォトセンサの出力に応じた電気信号をも外部信号線45aから受付け、該信号に応じても逆バイ

アス電位制御信号を設定する。

【0037】図10に、発光パネル120の要部を示す。逆バイアス電位の大きさを調整する逆バイアス調整回路30は全体として可変電圧電源であり、異なる電位の複数の定電圧源 $1V_{cc} \sim nV_{cc}$ にそれぞれスイッチSW1～SWnを介して接続された加算部31を含む。スイッチSW1～SWnは制御回路45からの逆バイアス電位制御信号に応じて、選択的にオンオフ制御される。加算部31は陰極線走査回路1のバスラインに接続されている。加算部31はその加算された定電圧源の選択された合計出力を逆バイアスとして陰極線走査回路1へ出力する。スイッチSW1～SWnにより選択された幾つかの定電圧源 $1V_{cc} \sim nV_{cc}$ の合計の逆バイアス電圧 V_{cc} は、走査線の陰極線B₁～B_nの全走査すなわち画像フレームごとに定められた値のレベルとして設定される。このように、逆バイアス調整回路30は、制御回路45から信号に応じて逆バイアス電位レベルを設定する。なお、図10においては、ドライブ線及び走査線並びに対応スイッチは本来複数あるが、簡略化するためにドライブ線A₁及び走査線B₁に関するもの仅代表して示してある。

【0038】発光制御回路40における容量性発光パネルの駆動方法を、図11に基づいて説明する。まず、制御回路45はメモリ44に1フィールドを示す水平

(H) 同期パルスが到来したか否かを判断する(ステップ1)。次に、制御回路45は今回の1フィールド分の画像データをメモリ44から取り込み記憶する(ステップ2)。

【0039】次に、制御回路45は今回に記憶した1フィールド分の画像データの各素子の輝度信号レベルを比較して、最大発光輝度の素子の駆動電圧 $V_{A...}$ を求め、これに応じて $V_{cc} = V_{A...} - V_{th}$ から V_{cc} の値を算出して逆バイアス電位制御信号を生成する(ステップ3)。すなわち、逆バイアス電圧 V_{cc} が発光素子の駆動電圧のうちの最大値 $V_{A...}$ と発光閾値電圧 V_{th} との差分に等しくする逆バイアス電位制御信号を生成する。

【0040】次に、逆バイアス電位制御信号を逆バイアス調整回路30に供給するとともに、制御回路45は今回の1フィールド分の画像データをメモリ44へ返し、出力処理回路46を介して、陽極線ドライブ回路2のドライブスイッチによりドライブ線を駆動する。(ステップ4)。次に、以上のモードの終了後、陰極線走査回路1は、今回1フィールド期間内にわたって、上記逆バイアス電位制御信号に応じた逆バイアス電圧 V_{CC} を走査対象でない陰極線B₁～B_nに対して付与する。また、陽極線ドライブ回路2は、今回1フィールド期間内にわたって、画素データに応じて駆動源の駆動電圧 $V_{A...}$ を設定し、これにより駆動電流を各1水平走査期間毎に順次供給する(ステップ5)。なお、駆動電圧 $V_{A...}$ は輝度信号に応じた電圧とされている。

【0041】上記実施例では、陰極線を横方向に、陽極線を縦方向に設けたが、陽極線を横方向に、陰極線を縦方向に設けてもよい。また、横方向に設けた電極で走査し、縦方向に設けた電極で輝度を制御したが、縦方向に設けた電極で走査し、横方向に設けた電極で輝度を制御してもよい。また、上記実施例では、逆バイアス電圧 V_{CC} を1フィールド毎に切り換えるようにしたが、これに限られることはなく、1水平走査期間毎に切り換えるようにしてもよい。この場合、逆バイアス電圧 V_{CC} は、1水平走査期間内における最大の駆動電圧 $V_{A...}$ に応じて、式(1)に基づいて決定される。また、上記実施例では、逆バイアス電圧 V_{CC} を式(1)を満たす最小値として設定したが、これに限られることはなく、式(1)を満たす範囲であれば、適用可能である。

【0042】

【発明の効果】以上詳述したように、本発明によれば、ドライブ線及び走査線の複数の交差位置に配置されかつ走査線及びドライブ線間に接続された複数の容量性発光素子と、走査線を異なる第1又は第2電位のいずれか一方に接続自在とするとともに、ドライブ線を第1及び第2電位の低い方の電位又は駆動源のいずれか一方に接続自在とし、選択された走査線が第1又は第2電位の何れか低い方の電位へ接続される走査期間に同期して、選択された前記ドライブ線を駆動源へ接続して容量性発光素子を発光せしめると同時に、選択されていない前記走査線を第1又は第2電位の低い方の電位へ接続する容量性発光素子ディスプレイ装置において、駆動源はドライブ線に印加する駆動電圧が調整可能であり、第1又は第2電位の高い方の電位を調整可能としたので、走査対象ではない走査線上の素子の寄生容量に充電される無効電力を少なくすることが可能となり、電力効率の良い容量性発光素子ディスプレイを提供することができる。

【図面の簡単な説明】

【図1】有機エレクトロルミネセンス素子の断面図である。

【図2】有機エレクトロルミネセンス素子の等価回路を示す図である。

【図3】有機エレクトロルミネセンス素子の駆動電圧-電流-発光輝度特性を概略的に示すグラフである。

【図4】従来の有機エレクトロルミネセンス素子を用いた表示装置の構成を説明するためのブロック図である。

【図5】従来の有機エレクトロルミネセンス素子を用いた表示装置の構成を説明するためのブロック図である。

【図6】ドライブ線及び走査線に印加される電圧の変化を示すタイミングチャートである。

【図7】ドライブ線に印加される駆動電圧の変化を示すタイミングチャートである。

【図8】有機エレクトロルミネセンス素子を用いた本発明による実施例のディスプレイ装置の構成を説明するためのブロック図である。

【図9】有機エレクトロルミネセンス素子を用いた本発明による実施例のディスプレイ装置の構成を説明するためのブロック図である。

【図10】図9の有機エレクトロルミネセンス素子を用いたディスプレイ装置の要部を示すブロック図である。

【図11】本発明によるディスプレイ装置のリセット駆動法による様態を示すフローチャートである。

【符号の説明】

- 1 陰極線走査回路
- 5₁ ~ 5_n 走査スイッチ
- 2 陽極線ドライブ回路
- 2₁ ~ 2_m 駆動源
- 6₁ ~ 6_n ドライバースイッチ
- 3 陽極線リセット回路
- 7₁ ~ 7_m シャントスイッチ

A₁ ~ A_n 陽極線

E_{1,1} ~ E_{n,n} 有機エレクトロルミネセンス素子

B₁ ~ B_m 陰極線

3 0 逆バイアス調整回路

3 1 加算部

4 0 発光制御回路

4 1 同期分離回路

4 2 タイミングパルス発生回路

4 3 A/D変換器

10 4 4 メモリ

4 5 制御回路

4 6 出力処理回路

4 7 走査タイミング信号発生回路

1 2 0 容量性発光パネル

【図1】

【図2】

【図3】

【図7】

【図4】

【図5】

【図 6】

【図 8】

【図 10】

【図 9】

【図 11】

フロントページの続き

(51) Int. Cl.

G 09 G 3/20

識別記号

6 2 2

F I

G 09 G 3/20

テーマコード (参考)

6 2 2 G