Solution Section 3.1 – Increasing and Decreasing Functions

Exercise

Find the critical numbers and decide on which the function $f(x) = x - 4\ln(3x - 9)$ is increasing or decreasing.

Solution

$$3x-9>0 \Rightarrow \boxed{x>3}$$

$$f'(x) = 1 - 4\frac{3}{3x - 9}$$

$$= 1 - \frac{12}{3x - 9}$$

$$= \frac{3x - 9 - 12}{3x - 9}$$

$$= \frac{3x - 21}{3x - 9} = 0$$

$$3x - 21 = 0$$

$$3x = 21$$

$$x = 7$$

$$CN: x = 3, 7$$

Increasing: $(7, \infty)$

Decreasing: (3, 7)

$$\begin{array}{c|cccc} 3 & 7 & \infty \\ \hline f'(4) < 0 & f'(8) > 0 \\ \hline \textit{Decreasing} & \textit{Increasing} \\ \end{array}$$

Exercise

Find the open intervals on which the function $f(x) = x^3 - 12x$ is increasing or decreasing

Solution

$$f'(x) = 3x^2 - 12 = 0$$
$$\Rightarrow 3x^2 = 12$$

$$x^2 = 4$$

$$\Rightarrow x = \pm 2$$
 (Critical Numbers - *CN*)

$$\begin{array}{c|ccccc} -\infty & \textbf{-2} & \textbf{2} & \infty \\ \hline f'(-3) > 0 & f'(1) < 0 & f'(3) > 0 \\ \hline \textit{Increasing} & \textit{Decreasing} & \textit{Increasing} \\ \end{array}$$

Increasing: $(-\infty, -2)$ and $(2, \infty)$

 $\textbf{\textit{Decreasing}}$: (-2, 2)

Find the open intervals on which the function $f(x) = x^{2/3}$ is increasing or decreasing

Solution

$$f'(x) = \frac{2}{3}x^{-1/3}$$
$$= \frac{2}{3x^{1/3}} = 0$$

 \Rightarrow *Undefined* x = 0 (CN)

-∞	∞ ∞
f'(-1) < 0	f'(1) > 0
Decreasing	Increasing

Decreasing: $(-\infty, 0)$

Increasing: $(0, \infty)$

Exercise

Find the critical numbers and the open intervals on which the function is increasing or decreasing.

$$f(x) = x\sqrt{x+1}$$

Solution

$$f'(x) = \sqrt{x+1} + \frac{1}{2}x(x+1)^{-1/2}$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}}$$

$$= \frac{2x+2+x}{2\sqrt{x+1}}$$

$$= \frac{3x+2}{2\sqrt{x+1}}$$

Critical numbers are $x = -\frac{2}{3}$ and x = -1, but the domain is $[-1, \infty)$.

2

Interval(s) (-1,-2/3) $(-2/3,\infty)$

Sign of f' f'(-0.9) < 0 f'(0) > 0

Conclusion for f decreasing increasing

The function is decreasing on $\left(-1, -\frac{2}{3}\right)$

The function is increasing on $\left(-\frac{2}{3}, \infty\right)$

Find the critical numbers and the open intervals on which the function is increasing or decreasing.

$$f(x) = \frac{x}{x^2 + 4}$$

Solution

$$f'(x) = \frac{(1)(x^2 + 4) - x(2x)}{(x^2 + 4)^2}$$

$$= \frac{x^2 + 4 - 2x^2}{(x^2 + 4)^2}$$

$$= \frac{-x^2 + 4}{(x^2 + 4)^2}$$

$$-x^2 + 4 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$$

Critical numbers are $x = \pm 2$.

Interval(s)

$$(-\infty, -2)$$

$$(-2, 2)$$

$$(2, \infty)$$

Sign of f'

$$(-\infty, -2)$$
 $(-2, 2)$ $(2, \infty)$
 $f'(-2) < 0$ $f'(0) > 0$ $f'(0) < 0$

$$f'(0) < 0$$

Conclusion for f decreasing increasing decreasing

Decreasing:
$$(-\infty, -2) \cup (2, \infty)$$
.

Increasing: (-2, 2).

$$(-2, 2)$$

Exercise

Find the critical numbers and the open intervals on which the function is increasing or decreasing.

$$f(x) = \frac{x}{x^2 + 1}$$

Solution

$$f'(x) = -\frac{(x-1)(x+1)}{(x^2+1)^2}$$

Critical numbers are x = 1, and x=-1.

Interval(s)

$$(-\infty, -1) \qquad (-1, 1) \qquad (1, \infty)$$

$$(-1,1)$$

$$(1,\infty)$$

Sign of f'

$$f'(-2) < 0$$
 $f'(0) > 0$ $f'(0) < 0$

3

Conclusion for f decreasing increasing decreasing

Decreasing:
$$(-\infty,-1) \cup (1,\infty)$$
.

Increasing: (-1, 1).

$$(-1, 1)$$
.

Find the critical numbers and the open intervals on which the function is increasing or decreasing.

$$f(x) = x\sqrt{x+1}$$

Solution

$$f'(x) = \frac{3x+2}{2\sqrt{x+1}}$$

Critical numbers are $x = -\frac{2}{3}$ and x = -1, but the domain is $[-1, \infty)$.

Interval(s)

$$(-1,-2/3)$$
 $(-2/3,\infty)$

Sign of f'

$$f'(-0.9) < 0$$
 $f'(0) > 0$

Conclusion for f decreasing increasing

The function is decreasing on (-1,-2/3)

The function is increasing on $(-2/3, \infty)$

Exercise

A county realty group estimates that the number of housing starts per year over the next three years will

$$H(r) = \frac{300}{1 + 0.03r^2}$$

Where *r* is the mortgage rate (in percent).

- a) Where is H(r) increasing?
- b) Where is H(r) decreasing?

Solution

$$H'(r) = \frac{-300(0.06r)}{\left(1 + 0.03r^2\right)^2}$$

$$H'(r) = \frac{-18r}{\left(1 + 0.03r^2\right)^2}$$

$$-18r = 0 \Rightarrow \boxed{r = 0}$$
 (CN)

- a) H(r) is increasing on the interval $(-\infty, 0)$
- b) H(r) is decreasing on the interval $(0, \infty)$

Suppose the total cost C(x) to manufacture a quantity x of insecticide (in hundreds of liters) is given by $C(x) = x^3 - 27x^2 + 240x + 750$. Where is C(x) decreasing?

Solution

$$C'(x) = 3x^2 - 54x + 240 = 0$$

 $\Rightarrow x = 8, 10$

0 8	3 1	0
C'(1) = 189 > 0	C' < 0	C' > 0
Increasing	Decreasing	Increasing

C(x) is decreasing (8, 10)

Exercise

A manufacturer sells telephones with cost function $C(x) = 6.14x - 0.0002x^2$, $0 \le x \le 950$ and revenue function $R(x) = 9.2x - 0.002x^2$, $0 \le x \le 950$. Determine the interval(s) on which the profit function is increasing.

Solution

$$P(x) = R(x) - C(x)$$

$$= 9.2x - 0.002x^{2} - \left(6.14x - 0.0002x^{2}\right)$$

$$= 9.2x - 0.002x^{2} - 6.14x + 0.0002x^{2}$$

$$= -0.0018x^{2} + 3.06x$$

$$P'(x) = -0.0036x + 3.06 = 0$$

$$-0.0036x = -3.06$$

$$x = \frac{-3.06}{-0.0036} = 850$$

The profit function is increasing on the interval (850, 950]

The cost of a computer system increases with increased processor speeds. The cost C of a system as a function of processor speed is estimated as $C(x) = 14x^2 - 4x + 1200$, where x is the processor speed in MHz. Determine the intervals where the cost function C(x) is decreasing.

Solution

$$C'(x) = 28x - 4 = \mathbf{0}$$
$$\Rightarrow x = \frac{4}{28} = \frac{1}{7}$$

<u>1</u>	<u>1</u>
C'(0) = -4 < 0	C' > 0
Decreasing	Increasing

The cost function C(x) is decreasing $\left(0, \frac{1}{7}\right)$

Exercise

The percent of concentration of a drug in the bloodstream t hours after the drug is administered is given by $K(t) = \frac{t}{t^2 + 36}$. On what time interval is the concentration of the drug increasing?

Solution

$$f = t f' = 1$$

$$g = t^{2} + 36 g' = 2t$$

$$K'(t) = \frac{1(t^{2} + 36) - 2t(t)}{(t^{2} + 36)^{2}} K = \frac{f}{g} \Rightarrow K' = \frac{f'g + g'f}{g^{2}}$$

$$= \frac{t^{2} + 36 - 2t^{2}}{(t^{2} + 36)^{2}}$$

$$= \frac{36 - t^{2}}{(t^{2} + 36)^{2}}$$

$$K'(t) = 0$$

$$\frac{36 - t^{2}}{(t^{2} + 36)^{2}} = 0 \Rightarrow 36 - t^{2} = 0$$

$$t^{2} = 36$$

$$|\underline{t} = \pm \sqrt{36} = \pm 6$$

$$\Rightarrow |\underline{t} = 6|$$

0 6	6	
$K'(1) = \frac{35}{37^2} > 0$	K'(7) < 0	
Increasing	Decreasing	

The concentration of the drug is increasing over (0, 6)

A probability function is defined by $f(x) = \frac{1}{\sqrt{6\pi}}e^{-x^2/8}$. Give the intervals where the function is increasing and decreasing.

Solution

$$f'(x) = \frac{1}{\sqrt{6\pi}} e^{-x^2/8} \left(-\frac{2x}{8} \right)'$$
$$= -\frac{x}{4\sqrt{6\pi}} e^{-x^2/8}$$
$$f'(x) = 0 \implies x = 0$$

$$f'(-1) = -\frac{-1}{4\sqrt{6\pi}}e^{-(-1)^2/8} > 0 \qquad f'(1) = -\frac{1}{4\sqrt{6\pi}}e^{-(1)^2/8} < 0$$
Increasing
Decreasing

The function is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$

