Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization

Zi-Hao, Qiu; Quanqi, Hu; Zhuoning, Yuan; Denny, Zhou; Lijun, Zhang; Tianbao, Yang

Texas A&M, Nanjing U, U of Iowa, Google Research

Jan, 2025

Presented by Scott Sun from Duke B&B

Introduction

The authors developed a thoroughly-analyzed methodological approach to optimize InfoNCE-like contrastive loss with individualized temperature. They proposed the idea that "not all semantics are created equal": samples with frequent semantics should be assigned with a **large** τ , while samples with infrequent semantics should be assigned with a **small** τ .

Goal: allow individualized temperature to address representation learning problems that arise in long-tail data distribution, where semantics with low frequencies can be extremely diverse. Therefore, address the hard negatives in a long-tail data distribution.

- semantics harmonizing effect: for global τ achieve the a sweet spot is hard; large τ is better at capturing local semantic structures in more frequent classes (but can be excessively forgiving for semantic difference); small τ is better at capturing more discriminative and separable features (but can result in fragmented semantic stuctures)
- **iSogCLR**: a stochastic optimization algorithm inspired by DRO for robust contrastive learning with temperature individualization

Background: Current Methods

Contrastive Learning (CL) methods are nowadays very popular for Self-supervised Learning (SSL). Various great works have been made for both unimodal and bimodal tasks, including SimCLR, MoCo, CLIP, etc. Optimizing τ in CL can be challenging. Currently, there are 2 different ways to incorporate learnable temperature:

- universal learnable hyperparameter (i.e., CLIP)
- fixed values/input-dependent functions (i.e., TaU)

Both are not justified in theory and have obvious drawbacks. CLIP is based on a universal temperature, so it still ignores the imbalanced semantics problem. TaU, by taking input-dependent temperatures as uncertainty measures, is effective in OOD detection but sacrifice downstream performance.

Background: Notations

Notation	Description
$\mathcal{D} = \{x_1,, x_n\}$	entire training set
\mathcal{P}	set of augmentation operator
$\mathcal{S}_{i}^{-} = \{\mathcal{A}(x) : \forall \mathcal{A} \in \mathcal{P}, \forall x \in \mathcal{D} \setminus \{x_{i}\}\}$	negative set with anchor image x_i
$E(\cdot)$	modality encoder
$\Delta_n = \{oldsymbol{ ho}: \sum_j ho_j = 1, orall j, ho_j \geq 0\}$	simplex of dim <i>n</i>

Table: Notation and their descriptions.

Following the same manner, we have similar notations for bimodal tasks: $\mathcal{I}_i^-, \mathcal{T}_i^-, \mathcal{E}_I(\cdot), \mathcal{E}_T(\cdot)$

Background: Global Contrastive Loss (GCL)

Let's recall the NT-Xent loss's gradient w.r.t. latent embedding of x_i .

$$\nabla I_{\mathsf{NT-Xent}} = \frac{1}{\tau} \left[\left(1 - \frac{\exp\left(E(\mathcal{A}(x_i))^{\top} E(\mathcal{A}'(x_i))/\tau\right)}{Z(x_i)} \right) \cdot E(\mathcal{A}'(x_i)) + \sum_{z \in S_i^{\top} \cup \{\mathcal{A}'(x_i)\}} \frac{\exp\left(E(\mathcal{A}(x_i))^{\top} E(z)/\tau\right)}{Z(x_i)} \cdot E(z) \right]$$

$$(1)$$

where $Z(x_i) = \sum_z \exp\left(E(\mathcal{A}(x_i))^\top E(z)/\tau\right)$. The gradient can be illy scaled by extreme values of τ , especially when we considering individualized temperatures. A more robust contrastive loss called GCL is then defined by Yuan et al. (2022).

$$I_{GCL}(x_i) = -\tau \log \frac{E(\mathcal{A}(x_i))^{\top} E(\mathcal{A}'(x_i))/\tau}{\sum_{z \in S_i^{-}} E(\mathcal{A}(x_i))^{\top} E(z)/\tau}$$
(2)

which rescales the $I_{\rm NT-Xent}$ by au and remove positive sample from the denominator.

Background: Global Contrastive Loss (GCL) cont'd

Let $h_i(z) := E(A(x_i))^{\top} E(z) - E(A(x_i))^{\top} E(A'(x_i))$ (which can be seen as measure for the hardness of sample z). Then,

$$I_{GCL}(x_i) = \tau \log \sum_{z \in S_i^-} \exp(h_i(z)/\tau)$$
(3)

A hard negative sample closely resembles positive samples in its latent representation, making it more challenging to distinguish from them. Therefore, a high $h_i(z)$ (i.e. 0) means its almost identical to the anchor sample in the latent space.

Why we want to use a global loss? Mini-batch-based algorithms (i.e. SimCLR) are vulnerable to the choice batch size. For ImageNet-like datasets with hundreds of classes, the batch size is suggested to be 8,192 in order to achieve a satisfied performance. A global loss can be more robust to the batch size. Still, we have to convert GCL to a stochastic algorithm that can be run over mini-batches.

Background: DRO

General DRO formulation is given by Levy et al., 2020:

$$\underset{\boldsymbol{w}}{\operatorname{minmax}} \sum_{\boldsymbol{p} \in \mathcal{U}}^{n} p_{i} l_{i}(\boldsymbol{w}) - \lambda D(\boldsymbol{p}, \boldsymbol{1}/n) \tag{4}$$

where $\mathcal{U} \subset \Delta_n$ is the uncertainty set of DRO.

In this setting, we optimize a weighted aggregated loss that is robust to distribution uncertainy.

Maximizing the objective over p leads to larger weights on samples with larger losses, which finds the worst-case loss (say, hard to contrast). DRO then minimizes the worst-case loss to make models achieve the robustness against potential distribution shifts.

Method: From DRO to Robust Global Contrastive Loss (RGCL)

Formulating under the previous DRO setup,

$$I_{\mathsf{RGCL}}(x_i) = \max_{\boldsymbol{p} \in \Delta_m} \sum_{z_i \in \mathcal{S}_i^-} p_j h_i(\boldsymbol{z}_j) - \tau_0 \mathsf{KL}(\boldsymbol{p}, \mathbf{1}/m) \quad \text{s.t.} \quad \mathsf{KL}(\boldsymbol{p}, \mathbf{1}/m) \le \rho$$
 (5)

where it can be shown that ${m p}_j^* \propto \exp\left(h_i({m z}_j)/ au\right)$ in our context.

Applying Lagrangian multiplier (λ) and Lagrangian duality theory, we can achieve the dual objective

$$\min_{\tau \ge \tau_0} \log \mathbb{E}_{\mathbf{z} \in \mathcal{S}_i^-} \left[\exp(h_i(\mathbf{z})/\tau) \right] + (\tau - \tau_0) \rho \tag{6}$$

where $\tau = \lambda + \tau_0$. Ultimately,

$$I_{\mathsf{RGCL}}^*(x_i) = F(\boldsymbol{w}, \boldsymbol{\tau}) = \frac{1}{n} \sum_{x_i \in \mathcal{D}} \left\{ \tau_i \log \mathbb{E}_{\boldsymbol{z} \in \mathcal{S}_i^-} \left[\exp \left(\frac{h_i(\boldsymbol{z})}{\tau} \right) \right] + \tau_i \rho \right\}$$
(7)

where τ_i is the individualized temperature in CL (implicitly, λ_i becomes individualized).

Method: RGCL is hardness-awaring

Figure 2. Contours of $\ell_{\text{RGCL}}(\mathbf{x}_i)$ ($|\mathcal{S}_i^-| = 2$) in (6) for two $h_i = [h_i(\mathbf{z}_1), h_i(\mathbf{z}_2)]$ vectors: [0.0, -1.0] and [-0.5, -0.5]. One can observe that $\ell_{\text{RGCL}}(\mathbf{x}_i)$ is hardness-aware, harder sample ($h_i(\mathbf{z}_1)$ on the left) has larger weight ($\mathbf{p}_1 = 0.8$). Moreover, ρ affects the degree of hardness-awareness. Larger ρ means higher degree of hardness-awareness.

Method: RGCL is hardness-awaring

For samples with frequent semantics, p will tend to be non-uniform (see the left panel), the restriction will lead to a large λ and thus a large τ_i .

For samples with rare semantics, p will tend to be uniform (see the right panel), we do not need a large λ to obey the restriction. Hence, we have a small τ_i .

Figure 3. For the anchor images of cat and bridge, we select 1000 negative samples and solve (6) for the optimal \mathbf{p}^* by using h_i values of iSogCLR with learned τ_i and CLIP with learned τ .

Method: Stochastic Optimization iSogCLR algorithm

Although RGCL is developed for global optimization instead of mini-batch optimization, we have to adapt it to a mini-batch algorithm for practical implementation. We will not use mini-batch estimator for the loss function, since this will reduce the algorithm back to the mini-batch-based SimCLR format (requiring large batch size). Instead, we use moving average estimator.

Let $g_i(\mathbf{w}, \mathbf{\tau}; \mathcal{S}_i^-) = \exp(h_i(z)/\tau)$, then the moving average estimator of g_i is

$$s_i^{(t+1)} = (1 - \beta_0)s_i^{(t)} + \beta_0 g_i(\mathbf{w}^{(t)}, \tau_i^{(t)}; \mathcal{B}_i)$$
(8)

The new mini-batch gradients become

$$G(\tau_i^{(t)}) = \frac{1}{n} \left[\frac{\tau_i^{(t)}}{s_i^{(t)}} \nabla_{\tau_i} g_i(\boldsymbol{w}^{(t)}, \tau_i^{(t)}; \mathcal{B}_i) + \log(s_i^{(t)}) + \rho \right]$$
(9)

$$G(\boldsymbol{w}^{(t)}) = \frac{1}{B} \sum_{\boldsymbol{x}_i \in \mathcal{B}} \frac{\tau_i^{(t)}}{s_i^{(t)}} \nabla_{\boldsymbol{w}^{(t)}} g_i(\boldsymbol{w}^{(t)}, \tau_i^{(t)}; \mathcal{B}_i)$$

$$\tag{10}$$

Experiment: Unimodal

Table 1. Linear evaluation results with 400 pretraining epochs on six unimodal image datasets. We report the average top-1 accuracies (%) and standard deviation over 3 runs with different random seeds. Full results are provided in Table 3 and 4 in Appendix C.3.

METHOD	CIFAR10	CIFAR100	IMAGENET100	CIFAR10-LT	CIFAR100-LT	iNaturalist
SIMCLR	88.74±0.18	62.34±0.09	79.96 ± 0.20	77.09±0.13	49.33±0.12	91.52±0.17
Barlow Twins	87.39 ± 0.14	62.28 ± 0.13	79.16 ± 0.13	75.94 ± 0.08	48.39 ± 0.14	91.89 ± 0.21
FLATCLR	88.61 ± 0.10	63.27 ± 0.07	80.24 ± 0.16	77.96 ± 0.12	52.61 ± 0.06	92.54 ± 0.09
SPECTRAL CL	88.77 ± 0.09	63.06 ± 0.18	80.48 ± 0.08	76.38 ± 0.21	51.86 ± 0.16	92.13 ± 0.16
SogCLR	88.93 ± 0.11	63.14 ± 0.12	80.54 ± 0.14	77.70 ± 0.07	52.35 ± 0.08	92.60 ± 0.08
VICREG	88.96 ± 0.16	62.44 ± 0.13	80.16 ± 0.22	75.05 ± 0.09	48.43 ± 0.13	93.03 ± 0.14
SIMCO	88.86 ± 0.12	62.67 ± 0.06	79.73 ± 0.17	77.71 ± 0.13	51.06 ± 0.09	92.10 ± 0.12
ISOGCLR	89.24 ± 0.15	63.82 ± 0.14	81.14 ± 0.19	78.37 ± 0.16	53.06 ± 0.12	93.08 ± 0.19

Experiment: Unimodal Temp Analysis

Figure 5. The class distributions and t-SNE projection for samples with large and small τ values in CIFAR100-LT. Left: The green dashed line and left axis denote the number of samples in each class, the red/blue bars and right axis denote the proportions of samples with large/small τ values in each class. Right: Each color represents a *superclass* in CIFAR100-LT.

Clinical concerns: rare but severe disease might be misclassified as some commonly observed illness

Experiment: Bimodal

Table 2. Results on two bimodal downstream tasks. For image-text retrieval on Flickr30K and MSCOCO, we compute IR@1 and TR@1 for the Recall@1 on image-retrieval (IR) and text-retrieval (TR). For classification tasks, we compute top-1 accuracy (%). We report the average of scores and standard deviation over 3 runs with different random seeds. Full results are in Table 5, 6, and 7 in Appendix C.3.

Метнор	FLICKR30K RETRIEVAL		MSCOCO RETRIEVAL		ZERO-SHOT CLASSIFICATION TOP-1 ACC		
	IR@1	TR@1	IR@1	TR@1	CIFAR10	CIFAR100	IMAGENET1K
CLIP CYCLIP SOGCLR ISOGCLR	40.98 ± 0.22 42.46 ± 0.13 43.32 ± 0.18 44.36 ± 0.12	50.90 ± 0.17 51.70 ± 0.23 57.18 ± 0.20 60.20 ± 0.26	21.32 ± 0.12 21.58 ± 0.19 22.43 ± 0.13 23.27 ± 0.18	26.98 ± 0.21 26.18 ± 0.24 30.08 ± 0.22 32.72 ± 0.13	$ \begin{array}{c c} 60.63 \pm 0.19 \\ 57.19 \pm 0.20 \\ \textbf{61.09} \pm 0.24 \\ 58.91 \pm 0.15 \end{array} $	30.70 ± 0.11 33.11 ± 0.14 33.26 ± 0.12 33.81 ± 0.18	36.27 ± 0.17 36.75 ± 0.21 37.46 ± 0.19 40.72 ±0.23

Experiment: Temp Analysis

t-SNE projection of image-text pairs

Experiment: Ablation Study

Figure 7. Effect of τ and τ_{init} on SimCLR/SogCLR and iSogCLR.

Figure 8. Final distributions of learned temperatures.

Recommendation

Is it worth reading? Yes.

- the math/framework is thorough and elegant; the experimental interpretation is straightforward
- the paper gives clear illustration of how the new RGCL is developed from DRO

Is it worth implementing? Yes.

- they have a public github repo which includes the code to reproduce all the results, but the documentation is minimal
- would love to see how this would improve my current project about semantic disentanglement