$12n_{0083} \ (K12n_{0083})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -7.39937 \times 10^{54} u^{61} - 7.95828 \times 10^{55} u^{60} + \dots + 9.36658 \times 10^{54} b + 4.21903 \times 10^{55}, \\ &- 4.20292 \times 10^{54} u^{61} - 2.34926 \times 10^{55} u^{60} + \dots + 4.68329 \times 10^{54} a + 1.31817 \times 10^{55}, \ u^{62} + 5u^{61} + \dots - 7u - 10^{52} u^{52} = \langle u^2 + b + u, \ a, \ u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle b^2 + 3u^2 + b + 5u + 4, \ a, \ u^3 + u^2 - 1 \rangle \\ I_4^u &= \langle b, \ a + 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 72 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -7.40 \times 10^{54} u^{61} - 7.96 \times 10^{55} u^{60} + \dots + 9.37 \times 10^{54} b + 4.22 \times 10^{55}, \ -4.20 \times 10^{54} u^{61} - 2.35 \times 10^{55} u^{60} + \dots + 4.68 \times 10^{54} a + 1.32 \times 10^{55}, \ u^{62} + 5u^{61} + \dots - 7u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.897429u^{61} + 5.01625u^{60} + \cdots - 31.2394u - 2.81463 \\ 0.789976u^{61} + 8.49647u^{60} + \cdots + 33.8636u - 4.50435 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.284554u^{61} + 1.83768u^{60} + \cdots - 2.18948u + 3.46404 \\ -0.353321u^{61} - 0.129700u^{60} + \cdots - 1.33250u - 0.387951 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.873580u^{61} + 3.94211u^{60} + \cdots - 25.2656u - 4.12853 \\ 1.29842u^{61} + 10.9238u^{60} + \cdots + 41.7471u - 5.56745 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.834045u^{61} + 3.97405u^{60} + \cdots - 11.3813u + 4.68603 \\ 0.196170u^{61} + 2.00667u^{60} + \cdots - 10.5243u + 0.834045 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.897429u^{61} + 5.01625u^{60} + \cdots - 31.2394u - 2.81463 \\ 0.271747u^{61} + 6.65168u^{60} + \cdots + 36.6699u - 5.03346 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.835301u^{61} - 3.12639u^{60} + \cdots + 14.5834u + 4.37470 \\ -5.11158u^{61} - 24.5806u^{60} + \cdots - 4.66960u + 0.596938 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.88576u^{61} + 15.7183u^{60} + \cdots + 14.2886u - 2.18510 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $6.52357u^{61} + 48.3926u^{60} + \cdots + 104.147u 23.8150$

Crossings	u-Polynomials at each crossing
c_1	$u^{62} + 35u^{61} + \dots + 141u + 1$
c_2, c_4	$u^{62} - 5u^{61} + \dots + 7u + 1$
c_3, c_6	$u^{62} - 4u^{61} + \dots + 10u - 2$
c_5, c_9	$u^{62} + 4u^{61} + \dots + 512u + 512$
c_7	$u^{62} - 3u^{61} + \dots + 26312u - 2116$
c_8, c_{11}	$u^{62} + 5u^{61} + \dots + 11u - 1$
c_{10}, c_{12}	$u^{62} + 23u^{61} + \dots + 261u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{62} - 11y^{61} + \dots - 18829y + 1$
c_2, c_4	$y^{62} - 35y^{61} + \dots - 141y + 1$
c_{3}, c_{6}	$y^{62} + 18y^{61} + \dots - 459y^2 + 4$
c_5, c_9	$y^{62} + 48y^{61} + \dots + 1703936y + 262144$
	$y^{62} - 47y^{61} + \dots - 1209188200y + 4477456$
c_8, c_{11}	$y^{62} - 23y^{61} + \dots - 261y + 1$
c_{10}, c_{12}	$y^{62} + 37y^{61} + \dots - 59949y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.174819 + 1.015820I		
a = 1.39308 + 0.32509I	-0.70247 - 10.05410I	-8.00000 + 0.I
b = -0.169145 + 0.123365I		
u = -0.174819 - 1.015820I		
a = 1.39308 - 0.32509I	-0.70247 + 10.05410I	-8.00000 + 0.I
b = -0.169145 - 0.123365I		
u = -0.180060 + 0.947177I		
a = -1.40332 - 0.28966I	0.58990 - 4.34695I	-4.42907 + 2.23582I
b = 0.218716 - 0.044373I		
u = -0.180060 - 0.947177I		
a = -1.40332 + 0.28966I	0.58990 + 4.34695I	-4.42907 - 2.23582I
b = 0.218716 + 0.044373I		
u = 0.008820 + 0.960888I		
a = 1.46292 + 0.33775I	-5.70261 - 3.52968I	-11.39023 + 3.16583I
b = -0.0127547 - 0.0398138I		
u = 0.008820 - 0.960888I		
a = 1.46292 - 0.33775I	-5.70261 + 3.52968I	-11.39023 - 3.16583I
b = -0.0127547 + 0.0398138I		
u = -0.925664 + 0.154080I		
a = 1.55623 + 0.95238I	-3.09925 + 0.70693I	-5.36300 - 9.97003I
b = 1.16403 + 0.90014I		
u = -0.925664 - 0.154080I		
a = 1.55623 - 0.95238I	-3.09925 - 0.70693I	-5.36300 + 9.97003I
b = 1.16403 - 0.90014I		
u = -0.961954 + 0.456687I		
a = -0.996485 - 0.482853I	1.77868 + 2.87670I	0
b = -0.773429 - 0.351449I		
u = -0.961954 - 0.456687I		
a = -0.996485 + 0.482853I	1.77868 - 2.87670I	0
b = -0.773429 + 0.351449I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.072360 + 0.027388I		
a = 0.302091 + 0.387550I	-2.88487 - 0.32439I	0
b = -0.44401 + 2.52455I		
u = 1.072360 - 0.027388I		
a = 0.302091 - 0.387550I	-2.88487 + 0.32439I	0
b = -0.44401 - 2.52455I		
u = 1.026130 + 0.340287I		
a = -0.816921 + 0.074019I	-0.058930 + 1.340430I	0
b = 0.010122 + 1.005580I		
u = 1.026130 - 0.340287I		
a = -0.816921 - 0.074019I	-0.058930 - 1.340430I	0
b = 0.010122 - 1.005580I		
u = 0.263341 + 0.858285I		
a = 1.45496 + 0.37428I	-2.48962 + 3.11257I	-8.69664 - 2.35415I
b = 0.129842 - 0.231061I		
u = 0.263341 - 0.858285I		
a = 1.45496 - 0.37428I	-2.48962 - 3.11257I	-8.69664 + 2.35415I
b = 0.129842 + 0.231061I		
u = -0.799508 + 0.362955I		
a = 0.895892 - 0.982033I	3.99898 + 4.77294I	-4.23166 - 6.20197I
b = -0.36497 - 1.79872I		
u = -0.799508 - 0.362955I		
a = 0.895892 + 0.982033I	3.99898 - 4.77294I	-4.23166 + 6.20197I
b = -0.36497 + 1.79872I		
u = 0.871772 + 0.018873I		
a = -0.012598 + 0.371703I	1.75714 - 2.86066I	-51.0320 + 5.8085I
b = 0.29638 + 4.67077I		
u = 0.871772 - 0.018873I		
a = -0.012598 - 0.371703I	1.75714 + 2.86066I	-51.0320 - 5.8085I
b = 0.29638 - 4.67077I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.896158 + 0.689044I		
a = -0.409815 - 0.214201I	2.20517 + 2.65821I	0
b = -0.330845 - 0.132174I		
u = -0.896158 - 0.689044I		
a = -0.409815 + 0.214201I	2.20517 - 2.65821I	0
b = -0.330845 + 0.132174I		
u = 1.129020 + 0.261697I		
a = 0.757928 - 0.225431I	-0.33332 - 3.49089I	0
b = -0.024907 - 1.263230I		
u = 1.129020 - 0.261697I		
a = 0.757928 + 0.225431I	-0.33332 + 3.49089I	0
b = -0.024907 + 1.263230I		
u = -1.097400 + 0.397924I		
a = 1.239460 + 0.321056I	0.08735 + 7.90185I	0
b = 0.994156 + 0.243940I		
u = -1.097400 - 0.397924I		
a = 1.239460 - 0.321056I	0.08735 - 7.90185I	0
b = 0.994156 - 0.243940I		
u = 0.819617		
a = -0.307172	-1.19404	-8.40790
b = 0.434770		
u = -0.847597 + 0.872677I		_
a = 0.347460 - 0.563753I	5.15087 + 0.64514I	0
b = 0.206725 - 0.482515I		
u = -0.847597 - 0.872677I		
a = 0.347460 + 0.563753I	5.15087 - 0.64514I	0
b = 0.206725 + 0.482515I		
u = -0.680841 + 0.367855I		
a = -1.112590 + 0.853351I	4.31390 - 1.39878I	-2.91240 + 0.35592I
b = 0.40199 + 1.42776I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.680841 - 0.367855I		
a = -1.112590 - 0.853351I	4.31390 + 1.39878I	-2.91240 - 0.35592I
b = 0.40199 - 1.42776I		
u = -0.915257 + 0.866442I		
a = -0.468319 + 0.452475I	4.96004 + 5.72433I	0
b = -0.323390 + 0.408101I		
u = -0.915257 - 0.866442I		
a = -0.468319 - 0.452475I	4.96004 - 5.72433I	0
b = -0.323390 - 0.408101I		
u = -1.208710 + 0.423576I		
a = 0.149684 - 1.293320I	-4.51527 + 5.72958I	0
b = -0.07945 - 2.58390I		
u = -1.208710 - 0.423576I		
a = 0.149684 + 1.293320I	-4.51527 - 5.72958I	0
b = -0.07945 + 2.58390I		
u = -1.240470 + 0.336251I		
a = -0.16206 + 1.41432I	-7.10231 + 0.65623I	0
b = 0.04078 + 2.56231I		
u = -1.240470 - 0.336251I		
a = -0.16206 - 1.41432I	-7.10231 - 0.65623I	0
b = 0.04078 - 2.56231I		
u = 1.176840 + 0.522272I		
a = 0.189318 + 1.049630I	-3.81660 - 2.96163I	0
b = 0.70577 + 2.17746I		
u = 1.176840 - 0.522272I		
a = 0.189318 - 1.049630I	-3.81660 + 2.96163I	0
b = 0.70577 - 2.17746I		
u = 0.067472 + 0.687187I		
a = -1.57662 - 0.37750I	-0.89271 - 1.62585I	-5.09936 + 3.39490I
b = 0.048649 + 0.283986I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.067472 - 0.687187I		
a = -1.57662 + 0.37750I	-0.89271 + 1.62585I	-5.09936 - 3.39490I
b = 0.048649 - 0.283986I		
u = 1.289650 + 0.343544I		
a = 0.359603 + 0.917247I	-4.20310 + 0.00438I	0
b = 0.58072 + 2.17986I		
u = 1.289650 - 0.343544I		
a = 0.359603 - 0.917247I	-4.20310 - 0.00438I	0
b = 0.58072 - 2.17986I		
u = 1.204210 + 0.581904I		
a = -0.199785 - 1.111010I	-5.30672 - 8.46798I	0
b = -0.70126 - 2.14987I		
u = 1.204210 - 0.581904I		
a = -0.199785 + 1.111010I	-5.30672 + 8.46798I	0
b = -0.70126 + 2.14987I		
u = -1.247410 + 0.558996I		
a = -0.008282 - 1.191920I	-2.68389 + 9.79746I	0
b = -0.03995 - 2.65434I		
u = -1.247410 - 0.558996I		
a = -0.008282 + 1.191920I	-2.68389 - 9.79746I	0
b = -0.03995 + 2.65434I		
u = 0.433777 + 0.453147I		
a = -1.191930 - 0.656817I	-1.02754 - 1.38144I	-8.05413 + 4.71760I
b = -0.050682 + 0.450591I		
u = 0.433777 - 0.453147I		
a = -1.191930 + 0.656817I	-1.02754 + 1.38144I	-8.05413 - 4.71760I
b = -0.050682 - 0.450591I		
u = -1.293820 + 0.477820I		
a = -0.023615 + 1.302060I	-9.73955 + 8.61640I	0
b = 0.04451 + 2.61060I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.293820 - 0.477820I		
a = -0.023615 - 1.302060I	-9.73955 - 8.61640I	0
b = 0.04451 - 2.61060I		
u = -0.315761 + 0.523302I		
a = -0.18061 - 1.62642I	3.48000 + 1.09960I	-1.12389 - 2.21841I
b = -0.419756 - 0.854977I		
u = -0.315761 - 0.523302I		
a = -0.18061 + 1.62642I	3.48000 - 1.09960I	-1.12389 + 2.21841I
b = -0.419756 + 0.854977I		
u = 1.303730 + 0.481258I		
a = -0.318337 - 1.050310I	-9.72761 - 1.62399I	0
b = -0.65397 - 2.15550I		
u = 1.303730 - 0.481258I		
a = -0.318337 + 1.050310I	-9.72761 + 1.62399I	0
b = -0.65397 + 2.15550I		
u = -1.274470 + 0.579615I		
a = 0.050317 + 1.202790I	-4.1048 + 15.7750I	0
b = 0.01989 + 2.64791I		
u = -1.274470 - 0.579615I		
a = 0.050317 - 1.202790I	-4.1048 - 15.7750I	0
b = 0.01989 - 2.64791I		
u = 1.369400 + 0.350028I		
a = -0.430304 - 0.959677I	-5.80592 + 5.27823I	0
b = -0.58989 - 2.12605I		
u = 1.369400 - 0.350028I		
a = -0.430304 + 0.959677I	-5.80592 - 5.27823I	0
b = -0.58989 + 2.12605I		
u = -0.109124 + 0.515994I		
a = -0.17301 + 1.83308I	2.76743 - 4.27360I	-2.53028 + 4.40261I
b = 0.531901 + 0.923027I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.109124 - 0.515994I		
a = -0.17301 - 1.83308I	2.76743 + 4.27360I	-2.53028 - 4.40261I
b = 0.531901 - 0.923027I		
u = 0.0853866		
a = -6.04151	-1.41710	-6.18580
b = 0.733691		

II.
$$I_2^u = \langle u^2 + b + u, \ a, \ u^3 + u^2 - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u + 1 \\ -2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 1 \\ u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 1 \\ u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^2 11u 10$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$u^3 - u^2 + 2u - 1$
c_2, c_8	$u^3 + u^2 - 1$
c_4, c_{11}	$u^3 - u^2 + 1$
c_5,c_9	u^3
c_6, c_{12}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_{10}, c_{12}$	$y^3 + 3y^2 + 2y - 1$
c_2, c_4, c_8 c_{11}	$y^3 - y^2 + 2y - 1$
c_5, c_9	y^3

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0	6.04826 + 5.65624I	-0.77833 - 5.57920I
b = 0.662359 + 0.562280I		
u = -0.877439 - 0.744862I		
a = 0	6.04826 - 5.65624I	-0.77833 + 5.57920I
b = 0.662359 - 0.562280I		
u = 0.754878		
a = 0	-2.22691	-19.4430
b = -1.32472		

III.
$$I_3^u = \langle b^2 + 3u^2 + b + 5u + 4, \ a, \ u^3 + u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2}b - bu \\ 2u^{2}b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2}b - 2bu - u^{2} + 2b - u + 1 \\ -2bu + u^{2} + 2b + u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 1 \\ -u^{2}b + 2u^{2} + b + 3u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^2b + 12bu + 9u^2 10b + 14u 9$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_{10}	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_8	$(u^3 + u^2 - 1)^2$
c_4, c_{11}	$(u^3 - u^2 + 1)^2$
c_5, c_9	u^6
c_6, c_{12}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_{10}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4, c_8 c_{11}	$(y^3 - y^2 + 2y - 1)^2$
c_{5}, c_{9}	y^6

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0	6.04826	-1.68265 + 0.98317I
b = -0.807599 - 0.320410I		
u = -0.877439 + 0.744862I		
a = 0	1.91067 + 2.82812I	-17.1302 - 8.6725I
b = -0.192401 + 0.320410I		
u = -0.877439 - 0.744862I		
a = 0	6.04826	-1.68265 - 0.98317I
b = -0.807599 + 0.320410I		
u = -0.877439 - 0.744862I		
a = 0	1.91067 - 2.82812I	-17.1302 + 8.6725I
b = -0.192401 - 0.320410I		
u = 0.754878		
a = 0	1.91067 + 2.82812I	6.31282 + 2.33391I
b = -0.50000 + 3.03873I		
u = 0.754878		
a = 0	1.91067 - 2.82812I	6.31282 - 2.33391I
b = -0.50000 - 3.03873I		

IV.
$$I_4^u = \langle b, a+1, u-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \\ c_7, c_8, c_{10}$	u-1
c_3, c_6	u
c_4, c_9, c_{11} c_{12}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	y-1
c_3, c_6	y

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u^3-u^2+2u-1)^3(u^{62}+35u^{61}+\cdots+141u+1)$
c_2	$(u-1)(u^3+u^2-1)^3(u^{62}-5u^{61}+\cdots+7u+1)$
<i>c</i> ₃	$u(u^3 - u^2 + 2u - 1)^3(u^{62} - 4u^{61} + \dots + 10u - 2)$
C ₄	$(u+1)(u^3-u^2+1)^3(u^{62}-5u^{61}+\cdots+7u+1)$
<i>C</i> ₅	$u^{9}(u-1)(u^{62}+4u^{61}+\cdots+512u+512)$
<i>C</i> ₆	$u(u^3 + u^2 + 2u + 1)^3(u^{62} - 4u^{61} + \dots + 10u - 2)$
C ₇	$(u-1)(u^3-u^2+2u-1)^3(u^{62}-3u^{61}+\cdots+26312u-2116)$
c ₈	$(u-1)(u^3+u^2-1)^3(u^{62}+5u^{61}+\cdots+11u-1)$
<i>C</i> 9	$u^{9}(u+1)(u^{62}+4u^{61}+\cdots+512u+512)$
c_{10}	$(u-1)(u^3-u^2+2u-1)^3(u^{62}+23u^{61}+\cdots+261u+1)$
c_{11}	$(u+1)(u^3-u^2+1)^3(u^{62}+5u^{61}+\cdots+11u-1)$
c_{12}	$(u+1)(u^3+u^2+2u+1)^3(u^{62}+23u^{61}+\cdots+261u+1)$ 24

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^3+3y^2+2y-1)^3(y^{62}-11y^{61}+\cdots-18829y+1)$
c_2, c_4	$(y-1)(y^3-y^2+2y-1)^3(y^{62}-35y^{61}+\cdots-141y+1)$
c_3, c_6	$y(y^3 + 3y^2 + 2y - 1)^3(y^{62} + 18y^{61} + \dots - 459y^2 + 4)$
c_5, c_9	$y^{9}(y-1)(y^{62}+48y^{61}+\cdots+1703936y+262144)$
<i>C</i> ₇	$(y-1)(y^3 + 3y^2 + 2y - 1)^3$ $\cdot (y^{62} - 47y^{61} + \dots - 1209188200y + 4477456)$
c_8, c_{11}	$(y-1)(y^3-y^2+2y-1)^3(y^{62}-23y^{61}+\cdots-261y+1)$
c_{10}, c_{12}	$(y-1)(y^3+3y^2+2y-1)^3(y^{62}+37y^{61}+\cdots-59949y+1)$