Raju Hazari

Department of Computer Science and Engineering National Institute of Technology Calicut

September 28, 2020

- A language is regular if and only if there exists some deterministic finite automata.
- Another way of describing regular language is by means of certain grammars.
- Grammars are often an alternative way of specifying languages.
- So, regular grammars are associated with regular languages and that for every regular language there is regular grammar.

• A grammar G = (N, T, S, P) is said to be **right-linear** if all productions are of the form

$$A \to xB$$

$$A \to x$$

where $A, B \in N$, and $x \in T^*$.

• A grammar is said to be **left-linear** if all the productions are of the form

$$A \to Bx$$

$$A \to x$$

• A grammar G = (N, T, S, P) is said to be **right-linear** if all productions are of the form

$$\begin{array}{c} A \to xB \\ A \to x \end{array}$$

where $A, B \in N$, and $x \in T^*$.

• A grammar is said to be **left-linear** if all the productions are of the form

$$\begin{array}{c} A \to Bx \\ A \to x \end{array}$$

- A **regular grammar** is one that is either right-linear or left linear.
 - ▶ In a regular grammar, at most one non-terminal appears on the right side of any production.
 - ▶ The non-terminal must consistently be either the rightmost or leftmost symbol of the right side of any production.

Example 1:

• The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \to abS|a$$

So, it is a right-linear grammar.

Example 1:

• The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \to abS|a$$

So, it is a right-linear grammar.

• The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 given as

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab | S_2,$
 $S_2 \rightarrow a$

So, it is a left-linear grammar.

Example 1:

• The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \to abS|a$$

So, it is a right-linear grammar.

• The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 given as

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab | S_2,$
 $S_2 \rightarrow a$

So, it is a left-linear grammar.

• Both G_1 and G_2 are regular grammars.

Example 1:

• The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \to abS|a$$

So, it is a right-linear grammar.

• The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 given as

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab | S_2,$
 $S_2 \rightarrow a$

So, it is a left-linear grammar.

- Both G_1 and G_2 are regular grammars.
- The sequence $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababa$ is a derivation with G_1 . So, the language generated by the grammar $L = \{(ab)^n a | n \geq 0\}$.

Example 1:

• The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \to abS|a$$

So, it is a right-linear grammar.

• The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 given as

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab | S_2,$
 $S_2 \rightarrow a$

So, it is a left-linear grammar.

- Both G_1 and G_2 are regular grammars.
- The sequence $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababa$ is a derivation with G_1 . So, the language generated by the grammar $L = \{(ab)^n a | n \geq 0\}$.

Example 2:

• The grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \to A,$$

 $A \to aB|a,$
 $B \to Ab$

Example 2:

• The grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \to A,$$

 $A \to aB|a,$
 $B \to Ab$

So, it is not regular.

Example 2:

• The grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \to A,$$

 $A \to aB|a,$
 $B \to Ab$

So, it is not regular.

• Although every production is either in right-linear or left-linear form, the grammar itself is neither right-linear nor left-linear, and therefore is not regular.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- $Q = N \cup \{q_f\}$
 - \triangleright Each non-terminal will correspond to a state in Q, apart from that there is one more final state.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- $Q = N \cup \{q_f\}$
 - \triangleright Each non-terminal will correspond to a state in Q, apart from that there is one more final state.
- $\Sigma = T$
 - ▶ Terminal symbols are the input symbols for the automaton.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- $Q = N \cup \{q_f\}$
 - \triangleright Each non-terminal will correspond to a state in Q, apart from that there is one more final state.
- $\Sigma = T$
 - ▶ Terminal symbols are the input symbols for the automaton.
- $q_0 = S$
 - ▶ Initial state corresponds to the start symbol.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- $Q = N \cup \{q_f\}$
 - \triangleright Each non-terminal will correspond to a state in Q, apart from that there is one more final state.
- $\Sigma = T$
 - ▶ Terminal symbols are the input symbols for the automaton.
- $q_0 = S$
 - ▶ Initial state corresponds to the start symbol.
- $F = \{q_f\}$
 - ightharpoonup F consists of just q_f .

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- $Q = N \cup \{q_f\}$
 - \triangleright Each non-terminal will correspond to a state in Q, apart from that there is one more final state.
- \bullet $\Sigma = T$
 - ▶ Terminal symbols are the input symbols for the automaton.
- $q_0 = S$
 - ▶ Initial state corresponds to the start symbol.
- $F = \{q_f\}$
 - ightharpoonup F consists of just q_f .
- δ is define as follows:
 - ▶ If $A \to aB$ is a rule in P, then $\delta(A, a)$ contains B.
 - If $A \to a$ is in P, then $\delta(A, a)$ contains q_f .

• Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ with productions

$$S \to aS,$$

 $S \to aA,$
 $A \to bA,$
 $A \to b$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ with productions

$$\begin{split} S &\to aS, \\ S &\to aA, \\ A &\to bA, \\ A &\to b \end{split}$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• The language generated by the grammar:

• Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow aS, \\ S \rightarrow aA, \\ A \rightarrow bA, \\ A \rightarrow b$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• The language generated by the grammar: $L = \{a^n b^m | n, m \ge 1\}$

• Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ with productions

$$S \to aS, S \to aA, A \to bA, A \to b$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- The language generated by the grammar: $L = \{a^n b^m | n, m \ge 1\}$
- Use the construction, we can construct the NFA

• Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ with productions

$$S \to aS,$$

$$S \to aA,$$

$$A \to bA,$$

$$A \to b$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- The language generated by the grammar: $L = \{a^n b^m | n, m \ge 1\}$
- Use the construction, we can construct the NFA

It is also accept the same language L.

- Let us consider a string aaabb. How this string is generated by the grammar G and accept by the NFA M?
- The sequence $S \Rightarrow aS \Rightarrow aaA \Rightarrow aaabA \Rightarrow aaabb$
- The state sequence for NFA

• So, the way it generated, it is accepted in the same sequence.

- Let us consider a string aaabb. How this string is generated by the grammar G and accept by the NFA M?
- The sequence $S \Rightarrow aS \Rightarrow aaA \Rightarrow aaabA \Rightarrow aaabb$
- The state sequence for NFA

• So, the way it generated, it is accepted in the same sequence.

• Consider the grammar $G = (\{S,A,B\},\{a,b\},S,P)$ with productions $S \to aA,$ $S \to bA,$ $A \to aB.$

 $A \rightarrow aB$, $A \rightarrow bB$, $B \rightarrow aS$, $B \rightarrow bS$,

 $B \to a$,

 $B \rightarrow b$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• Consider the grammar $G=(\{S,A,B\},\{a,b\},S,P)$ with productions $S\to aA,$ $S\to bA,$ $A\to aB,$

 $S \rightarrow bA$, $A \rightarrow aB$, $A \rightarrow bB$, $B \rightarrow aS$, $B \rightarrow bS$, $B \rightarrow a$, $B \rightarrow b$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• The language generated by the grammar:

• Consider the grammar $G=(\{S,A,B\},\{a,b\},S,P)$ with productions $S\to aA,$ $S\to bA,$ $A\to aB,$ $A\to bB,$ $B\to aS,$

 $B \to bS$, $B \to a$,

 $B \rightarrow b$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• The language generated by the grammar: $L = \{w | w \in \{a, b\}^*$, length of w is multiple of $3\}$

• Consider the grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow aA,$$

$$S \rightarrow bA,$$

$$A \rightarrow aB,$$

$$A \rightarrow bB,$$

$$B \rightarrow aS,$$

$$B \rightarrow bS,$$

$$B \rightarrow a,$$

$$B \rightarrow b$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- The language generated by the grammar: $L = \{w | w \in \{a, b\}^*, \text{ length of } w \text{ is multiple of } 3\}$
- Use the construction, we can construct the NFA

• Consider the grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \to aA,$$

$$S \to bA,$$

$$A \to aB,$$

$$A \to bB,$$

$$B \to aS,$$

$$B \to bS,$$

$$B \to a,$$

$$B \to b$$

Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

- The language generated by the grammar: $L = \{w | w \in \{a, b\}^*, \text{ length of } w \text{ is multiple of } 3\}$
- Use the construction, we can construct the NFA

From this, it is clear that the language generated by the grammar and the language accepted by the NFA are same.

Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$. Construct a regular grammar G = (N, T, S, P), such that L(G) = L(M)

Given a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$
. Construct a regular grammar $G = (N, T, S, P)$, such that $L(G) = L(M)$

- \bullet N=Q
 - ▶ For each state, there is a non-terminal.

Given a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$
. Construct a regular grammar $G = (N, T, S, P)$, such that $L(G) = L(M)$

- \bullet N=Q
 - ▶ For each state, there is a non-terminal.
- $T = \Sigma$
 - ▶ Set of terminal symbols are the same as the set of input symbols.

Given a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$
. Construct a regular grammar $G = (N, T, S, P)$, such that $L(G) = L(M)$

- \bullet N=Q
 - ▶ For each state, there is a non-terminal.
- $T = \Sigma$
 - ▶ Set of terminal symbols are the same as the set of input symbols.
- $S = q_0$
 - ▶ S corresponds to the initial state.

Given a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$
. Construct a regular grammar $G = (N, T, S, P)$, such that $L(G) = L(M)$

- \bullet N=Q
 - ▶ For each state, there is a non-terminal.
- $T = \Sigma$
 - ▶ Set of terminal symbols are the same as the set of input symbols.
- $S = q_0$
 - ▶ S corresponds to the initial state.
- P is define as follows:
 - If $\delta(A, a) = B$, then $A \to aB \in P$.
 - If $\delta(A, a) = B \wedge B \in F$, then $A \to a$.

• Consider the DFA

Construct a regular grammar G = (N, T, S, P), such that L(G) = L(M).

• Consider the DFA

Construct a regular grammar G = (N, T, S, P), such that L(G) = L(M).

• The language accepted by the DFA $L = \{a^n b^m | n, m \ge 1\}$

Consider the DFA

Construct a regular grammar G = (N, T, S, P), such that L(G) = L(M).

- The language accepted by the DFA $L = \{a^n b^m | n, m \ge 1\}$
- The corresponding grammar $N = \{q_0, q_1, q_2, D\}$, $T = \{a, b\}$, $S = q_0$ and P:

$$q_0 \rightarrow aq_1$$

$$q_0 \rightarrow bD$$

$$q_1 \rightarrow aq_1$$

$$q_1 \rightarrow bq_2$$

$$q_2 \rightarrow bq_2$$

$$q_2 \rightarrow aD$$

$$D \rightarrow aD$$

$$D \rightarrow bD$$

These are non-terminal rules. Now, whenever you have q_2 , you have terminal rule. So, here $q_1 \to b$ and $q_2 \to b$ are the terminal rules.

• From D you cannot drive a terminal string. So, all these D is a useless non-terminal, all these rules can be removed. So we will end with only six rules.

$$q_0 \rightarrow aq_1$$

$$q_1 \rightarrow aq_1$$

$$q_1 \rightarrow bq_2$$

$$q_2 \rightarrow bq_2$$

$$q_1 \rightarrow b$$

$$q_2 \rightarrow b$$

- You can generate one a by $q_0 \to aq_1$ and any number of a by $q_1 \to aq_1$. Similarly, you can generate one b by $q_1 \to bq_2$ and any number of b by $q_2 \to bq_2$.
- So, the language generated by the grammar is a same as the language accepted by the machine.

Now we consider ϵ , means $\epsilon \in L$

- For any grammar, to include ϵ in a language do the following:
 - ▶ The rule $S \to \epsilon$ can be applied in the first step only and make sure S does not appear on the right hand side of the any production.

Now we consider ϵ , means $\epsilon \in L$

- For any grammar, to include ϵ in a language do the following:
 - ▶ The rule $S \to \epsilon$ can be applied in the first step only and make sure S does not appear on the right hand side of the any production.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

Now we consider ϵ , means $\epsilon \in L$

- For any grammar, to include ϵ in a language do the following:
 - ▶ The rule $S \to \epsilon$ can be applied in the first step only and make sure S does not appear on the right hand side of the any production.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• For any string $L - \epsilon$, will be accepted the usual way we constructed earlier. For ϵ , make initial state a final state. So, ϵ will be accepted.

Now we consider ϵ , means $\epsilon \in L$

- For any grammar, to include ϵ in a language do the following:
 - ▶ The rule $S \to \epsilon$ can be applied in the first step only and make sure S does not appear on the right hand side of the any production.

Given a regular grammar G = (N, T, S, P). Construct an NFA $M = (Q, \Sigma, \delta, q_0, F)$, such that L(M) = L(G).

• For any string $L - \epsilon$, will be accepted the usual way we constructed earlier. For ϵ , make initial state a final state. So, ϵ will be accepted.

Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$. Construct a regular grammar G = (N, T, S, P), such that L(G) = L(M)

• You have just add the rule $q_0 \to \epsilon$. When you add this rule, you have to make sure that q_0 does not appear on the right hand side of any production. If it is happen, you have to make a slight adjustment.

Consider the DFA

•
$$N=\{q_0,q_1,D\},\ T=\{a,b\},\ S=q_0,\ P:$$

$$q_0\to aq_1$$

$$q_0\to bD$$

$$q_1\to bq_0$$

$$q_1\to aD$$

$$D\to aD$$

$$D\to bD$$

$$q_1\to b$$

$$q_0\to \epsilon$$

- From D we can not drive a terminal string. So, all these D is a useless non-terminal, all these rule can be removed.
- So, we get only four rules

$$q_0 \rightarrow aq_1$$

$$q_1 \rightarrow bq_0$$

$$q_1 \rightarrow b$$

$$q_0 \rightarrow \epsilon$$

• Now, the start symbol q_0 and $q_0 \to \epsilon$, but it is occurring on the right hand side. In order to avoid that, add a new start symbol S and $S \to \epsilon$ and remove $q_0 \to \epsilon$. Then, whatever is there with q_0 , also have with S.

$$q_0 \rightarrow aq_1$$

$$q_1 \rightarrow bq_0$$

$$q_1 \rightarrow b$$

$$S \rightarrow \epsilon$$

$$S \rightarrow aq_1$$