Исследование плавления и затвердевания малых кластеров:результаты и выводы

Этап 4: Защита проекта

Гэинэ Андрей

17 мая 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Гэинэ Андрей
- студент группы НФИбд-02-22
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов
- · 1032219249@pfur.ru

Вводная часть

Обзор проекта

Цель:

Цель работы 4-го этапа (защита проекта) — обобщить и представить результаты моделирования плавления и затвердевания малых кластеров, доказав соответствие поставленным задачам, а также проанализировать физические закономерности и ограничения исследования.

Методы:

- 1. Моделирование на основе потенциала Леннарда-Джонса.
- 2. Алгоритм Верле для интегрирования уравнений движения.
- 3. Анализ термодинамических параметров (температура, теплоемкость, флуктуации связей).

Результаты для кластера N = 7

Результаты для кластера N = 7

Гистерезис:

Рис. 2: Гистерезис N=7

Теплоемкость:

Рис. 3: Теплоемкость N=7

Флуктуации связей:

Рис. 4: Флуктуации N=7

Сравнение кластеров N = 7, 19, 37

Сравнение кластеров N = 7, 19, 37

Параметр	N = 7	N = 19	N = 37
Температура плавления	0.20	0.25	0.28
Температура затвердевания	0.18	0.23	0.26
Гистерезис (ΔТ)	0.02	0.02	0.02
Число оболочек	2	3	4
Энергия плавления (E/N)	0.15	0.18	0.21

Рис. 5: Сравнение кластеров

Зависимость энергии от температуры для всех кластеров.

Рост Т плавления с увеличением размера.

Из этого следует, что чем больше кластер, тем выше температура плавления и стабильнее структура.

Зависимость Т плавления от

размера

Зависимость Т плавления от размера

Теоретическая модель:

$$T \sim N^{-1/3}$$

Экстраполяция к объёмному материалу дала Т ≈ 0.35.

Физические эффекты

Оболочечное плавление (N = 19)

Рис. 7: Внешние оболочки теряют порядок раньше внутренних (анализ подвижности частиц).

Динамика парной корреляционной функции

Рис. 8: Размытие пиков при плавлении → переход в жидкую фазу.

Выводы. Самооценка проекта

Достижения

Подтверждены:

- 1. Зависимость T(N)
- 2. Гистерезис и оболочечное плавление.

Создана воспроизводимая модель на Python.

Ограничения

- 1. Не учтены квантовые эффекты.
- 2. Упрощенный потенциал Леннарда-Джонса.

Направления дальнейшей работы

Направления дальнейшей работы

- 1. Расширить диапазон размеров (N = 55, 61).
- 2. Оптимизирование кода для больших кластеров.

Литература

1. Медведев Д. А., Куперштох А. Л., Прууэл Э. Р., Сатонкина Н. П., Карпов Д. И. Моделирование физических процессов и явлений на ПК: Учеб. пособие / Новосибирск: Новосиб. гос. ун-т., 2010. — 101 с.