Lab Meetings

GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning. C Mavromatis, G Karypis. University of Minnesota.

CAU Junseo, Yu

DMAIS Lab Meeting 1.22.2025

Contents

01 Introduction

- RAG
- Graph RAG
- Existing Methods

03 ExperimentsSetup

Results

02 Methodology

- Overview
- Environment
- Detailed Methodology

04 Conclusion

- Contributions
- Future Directions

Weekly Meetings

1. Introduction

- RAG
- Graph RAG
- Existing Methods

Introduction RAG

Why Do we need RAG?

- - LLMs are the SOTA in many NLP tasks.
 - However, LLMs cannot easily adapt to new or in-domain knowledge.
 - Because pretraining process is costly and time-consuming.
 - Moreover, LLM prone to hallucinations.

Introduction RAG

Why Do we need RAG?

- □ RAG, Retrieval-augmented generation
 - RAG RAG retrieves relevant external information.
 - RAG can alleviate LLM hallucinations by enriching the input context with accurate information
 - E.g., Knowledge from RAG: Jamaica → language_spoken → English

Question: Which language do Jamaican people speak?

Introduction Graph RAG

Why Do we need Graph RAG?

- □ Unlike the textual or visual data, It is beneficial to use **graph structure** to represent the **heterogeneous and relational information.**
 - E.g., KG(Knowledge Graph), Social Graph, and Document Graph
- Especially, KG is powerful resource to assist the LLM
- ☐ Retrieving the right information from graph requires distinctive graph processing.
 - Due to their diverse0formatted, interdependent, and domain-specific information.

Introduction

Graph RAG

- ☐ KBQA, Knowledge Base Question Answering
 - Finding answers to questions expressed in natural language from a given knowledge base
 - E.g., Which language do Jamaican people speak?
- Multi-hop KGQA
 - require a multi-hop reasoning procedure
 - E.g., What is nationality of Katherine Corri Harris's couple's children

Introduction

GNN-RAG

Existing Methods

- □ LLM Based Graph RAG
 - Did not perform well in multi-hop KBQA.
- ☐ GNN Based Graph RAG
 - Can handle complex graph structure

Weekly Meetings

2. Methodology

- Overview
- Environment
- Detailed Methodology

Methodology

Overview

Overview

- 1. Retrieve the subgraph
- Derive the candidate answer entities by GNN
- 3. Union with the other candidate answer entities by **LLM**
- 4. Textualize the reasoning path and then feed them to the **LLM**

Methodology Environments

Datasets

- Question-answer pairs
 - Not the ground-truth paths that lead to the answer
 - Answerable using a subset of specific KG

• The questions require multiple-hops of reasoning over the KG (2-4 hops)

Knowledge Graphs

• Freebase KG [Bollacker et al, 2008]

Methodology Detailed Methodology

Retrieve the subgraph

- □ Linked Entities
 - Entity Recognition: Identify and extract relevant entity from text
 - Entity Linking: Connect identified entities in text with their corresponding entities in KG
 - Lexical Matching & Disambiguation: Comparing text with entities name and resolve ambiguities
- □ PageRank algorithm
 - PageRank-Nibble: To identify the important entities from topic entities

Caution

- The correct answer may not exist in the subgraph.
- ☐ This method could be changed (Option)

Derive the candidate answer entities by GNN - What

- ☐ Define the problem as **node classification** problem
 - All nodes in the subgraph are **scored** as answers vs non-answers based on their final GNN representations
 - The nodes above a probability threshold are returned as candidate answers along with the shortest paths
 - They are used as in put for LLM-based RAG (next step)

Derive the candidate answer entities by GNN - How

- □ h_v: the representation of node v
- \square $\omega(q, r)$: Measure how relevant the relation is to the question.
 - GNN reasoning depends on the question-relation matching operation $\omega(q, r)$.
 - A common implementation: $\phi(\boldsymbol{q}^{(k)}\odot\boldsymbol{r})$ $\boldsymbol{q}^{(k)}=\gamma_k\big(\mathrm{LM}(q)\big),$ $\boldsymbol{r}=\gamma_c\big(\mathrm{LM}(r)\big),$
 - The choice of LM plays an important role regarding which answer nodes are retrieved.
 - It depends on how the relationship between the question and the relation is viewed.
 - Nevertheless, the performance was good regardless of the model used.

$$\boldsymbol{h}_{v}^{(l)} = \psi \Big(\boldsymbol{h}_{v}^{(l-1)}, \sum_{v' \in \mathcal{N}_{v}} \omega(q, r) \cdot \boldsymbol{m}_{vv'}^{(l)} \Big),$$

Derive the candidate answer entities by GNN - Why

- □ Experimental Evidence
 - Answer Coverage: whether the retriever is able to fetch at least one correct answer for RAG
 - RoG: the LLM based retriever
- Conclusion
 - GNN based retriever can retrieve useful multi-hop information more effectively
 - On the other hand, the LLM based retriever is better at 1-hop questions.
 - The authors explain this situation as accurate question-relation matching is more important than deep graph search

Retriever	1-hop q	uestions	2-hop questions		
Ketriever	#Input Tok.	#Input Tok. %Ans. Cov.		%Ans. Cov.	
RoG [Luo et al., 2024]	150	87.1	435	82.1	
GNN (L = 1)	112	83.6	2,582	79.8	
GNN (L=3)	105	82.4	357	88.5	

Union with the other candidate answer entities by LLM

- □ Retrieval augmentation (RA)
 - Combines the retrieved KG information from different approaches to increase diversity
 - Complements the GNN retriever with an LLM-based retriever to combine their strengths
 - Experiment with the RoG retrieval
 - Take the union of the reasoning paths retrieved by the two retrievers.
 - A downside of LLM-based retrieval: Requires multiple generations (beam-search decoding) to retrieve diverse paths

Union with the other candidate answer entities by LLM

- □ Cheaper Alternative
 - By combining the outputs of different GNNs, which are equipped with different LMs in below equation.
 - → GNN-RAG+Ensemble
 - The union of the retrieved paths of the two different GNNs as input for RAG.
 - GNN with SBERT (Sentence-BERT)
 - GNN with LM_{SR} (LM for Structured Retrieval)

Methodology Detailed Methodology

Textualize the reasoning path and then feed them to the LLM

- Verbalize the obtained reasoning paths
- ☐ LLM model is fine-tuned based on the training question-answer pairs to generate correct answers
- □ Prompts
 - "{Reasoning Paths} \n Question: {Question}"
 - The reasoning paths are verbalised as "{question entity} → {relation} → {entity} → ... → {relation} → {answer entity} \n"

Weekly Meetings

3. Experiments

- Setup
- Results

ExperimentsSetup

□ Datasets

- WebQuestionsSP (WebQSP)
- Complex WebQuestions 1.1 (CWQ)

☐ Implementation

- GNN-RAG model: ReaRev (SOTA)
- LM making embeddings: SBERT and LM_{SR}
- Prompt Tunning: RoG for RAG-based prompt tunning

☐ Metrics

- Hit: If any of the true answers is found in the generated response
- H@1
- F1

Experiments

Results

Туре	Method	WebQSP			CWQ		
		Hit	H@1	F1	Hit	H@1	F1
	KV-Mem Miller et al [2016]	_	46.7	38.6	_	21.1	_
Embedding	EmbedKGQA Saxena et al [2020]	_	66.6	_	_	_	_
	TransferNet Shi et al [2021]	_	71.4	_	_	48.6	_
	Rigel Sen et al [2021]	_	73.3	-	_	48.7	_
	GraftNet Sun et al [2018]	_	66.7	62.4	_	36.8	32.7
	PullNet Sun et al [2019]	_	68.1	_	_	45.9	_
	NSM He et al [2021]	_	68.7	62.8	_	47.6	42.4
GNN	SR+NSM(+E2E) [Zhang et al, 2022a]	_	69.5	64.1	_	50.2	47.1
GIVIN	NSM+h He et al [2021]	_	74.3	67.4	_	48.8	44.0
	SQALER Atzeni et al [2021]	_	76.1	_	_	_	_
	UniKGQA [Jiang et al], 2023t]	_	77.2	72.2	_	51.2	49.1
	ReaRev Mavromatis and Karypis, 2022]	_	76.4	70.9	_	52.9	47.8
	ReaRev + LM _{SR}	_	77.5	<u>72.8</u>	_	53.3	49.7
	Flan-T5-xl Chung et al, 2024]	31.0	_	-	14.7	_	_
	Alpaca-7B [Taori et al , 2023]	51.8	_	_	27.4	_	_
LLM	LLaMA2-Chat-7B [Touvron et al , 2023]	64.4	_	_	34.6	_	_
	ChatGPT	66.8	_	_	39.9	_	_
	ChatGPT+CoT	75.6	_	_	48.9	_	
KG+LLM	KD-CoT Wang et al, 2023	68.6	_	52.5	55.7	_	_
	StructGPT [Jiang et al], 2023a]	72.6	_	_	_	_	_
	KB-BINDER [Li et al , 2023]	74.4	_	_	_	_	_
	ToG+LLaMA2-70B Sun et al, 2024	68.9	_	_	57.6	_	_
	ToG+ChatGPT [Sun et al., 2024]	76.2	_	_	58.9	_	_
	ToG+GPT-4 [Sun et al], 2024]	82.6	_	_	69.5	_	_
	RoG [Luo et al], 2024]	<u>85.7</u>	80.0	70.8	62.6	57.8	56.2
GNN+LLM	G-Retriever [He et al], 2024]	_	70.1	_	_	_	_
	GNN-RAG (Ours)	<u>85.7</u>	80.6	71.3	66.8	<u>61.7</u>	<u>59.4</u>
	GNN-RAG+RA (Ours)	90.7	82.8	73.5	<u>68.7</u>	62.8	60.4

Method	WebQSP		CWQ		
	multi-hop	multi-entity	multi-hop	multi-entity	
LLM (No RAG) RoG	48.4 63.3	61.5 65.1	33.7 59.3	32.3 58.3	
GNN-RAG GNN-RAG+RA	69.8 71.1	82.3 88.8	68.2 69.3	64.8 65.6	

- GNN-RAG achieve SOTA
- GNN-RAG is an effective retrieval method when deep graph search is important for successful KGQA.

Experiments

Results

Retriever	KGQA Model	Input/Gr #LLM Calls	aph Statistics #Input Tokens WebQSP / CWQ	KGQA Performance F1 (%) WebQSP / CWQ
a) Dense Subgraph b) Dense Subgraph	(i) GNN + SBERT (Eq. (3)) (ii) GNN + LM _{SR} (Eq. (3))	0 0	-	70.9 / 47.8 72.8 / 49.1
c) None d) (iii) RoG (LLM-based; Eq. 2) e) GNN-RAG (default): (i) f) GNN-RAG: (ii)	LLaMA2-Chat-7B (tuned)	0 3 0 0	59 / 70 202 / 325 144 / 207 124 / 206	49.7 / 33.8 70.8 / 56.2 71.3 / 59.4 71.5 / 58.9
g) GNN-RAG+Ensemble: (i) + (ii) h) GNN-RAG+RA (default): (i) + (iii) i) GNN-RAG+RA: (ii) + (iii) j) GNN-RAG+All: (i) + (ii) + (iii)	LLaMA2-Chat-7B (tuned)	0 3 3 3	156 / 281 299 / 540 267 / 532 330 / 668	71.7 / 57.5 73.5 / 60.4 73.4 / 61.0 72.3 / 59.1

- GNN-based retrieval is more efficient and effective than LLM-based retrieval.
- Combining GNN-induced reasoning paths with LLM-induced reasoning paths is better.
- Augmenting all retrieval approaches does not necessarily cause improved performance

Experiments

Results

Weekly Meetings

4. Conclusion

- Contributions
- Future Directions

Contributions

- ☐ Effective Integration of GNN and LLM
- Achieving State-of-the-Art Performance on KGQA Benchmarks
- Introduction of Retrieval Augmentation

Future Directions

- ☐ Apply similar method into other fields not QA
- Assumption of a situation where the correct entity does not exist
- □ Risks of the shortest path assumption