

Universidade Federal do Espírito Santo Centro de Ciências Agrárias e Engenharias Departamento de Ciências Florestais e da Madeira

CAPÍTULO VIII Amostragem por Conglomerados

Professor Gilson Fernandes da Silva

1 - Introdução

A amostragem em conglomerados é uma variação da amostragem em dois estágios, onde o segundo estágio é sistematicamente organizado dentro do primeiro estágio de amostragem. Por esta razão, este processo pode ser classificado como amostragem mista quanto a estrutura organizacional na população amostrada.

Esquema de Amostragem em Dois Estágios.

- ✓ É um processo que pode oferecer vantagem substancial em precisão e custos, comparado com a amostragem inteiramente aleatória, quando a população a ser inventariada for extensa e apresentar grande até razoável homogeneidade da variável de interesse.
- ✓ A sistematização das unidades secundárias dentro das unidades primárias produz a maior redução dos custos de amostragem, devido a flexibilidade e facilidade operativa de localização, instalação e medição.
- ✓ Os conglomerados são organizados das mais diversas formas, tamanhos e arranjo espacial. A literatura é farta neste aspecto.

2 - Notação

N = número total potencial de conglomerados da população;

M = número de subunidades cabíveis no conglomerado;

n = número de conglomerados amostrados;

m = número de subunidades amostradas por conglomerado;

 X_{ii} = variável de interesse.

3 - Estimadores dos parâmetros

a) Média geral por subunidade

$$\overline{X} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij}}{nm}$$

b) Média das subunidades por conglomerado

$$\overline{X}_i = \sum_{j=1}^m \frac{X_{ij}}{m}$$

c) <u>Variância total por subunidade</u>

$$S_x^2 = \frac{1}{nm-1} \sum_{i=1}^n \sum_{j=1}^m (X_{ij} - \overline{X})^2$$

Na amostragem em conglomerado é possível dividir a variância total em dois componentes de variação, ou seja, entre e dentro dos conglomerados, podendo-se realizar uma análise de variância para obter as estimativas isoladas desses dois componentes da variância.

Por meio da análise de variância, pode-se dizer que:

$$S_x^2 = S_e^2 + S_d^2$$

em que:

 S_e^2 = variância entre os conglomerados;

 S_d^2 = variância dentro dos conglomerados, ou entre as subunidades.

As estimativas são obtidas por meio de análise de variância, cujos estimadores possuem as seguintes esperanças matemáticas:

$$E(QM_{entre}) = s_d^2 + ms_e^2$$
$$E(QM_{dentro}) = s_d^2$$

em que:

$$QM_{dentro} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} \left(X_{ij} - \overline{X}_{i}\right)^{2}}{n(m-1)} = s_{d}^{2}$$

que é uma estimativa sem tendência de S_d^2

$$QM_{entre} = \frac{\sum_{i=1}^{n} m(\overline{X}_i - \overline{X})^2}{n-1}$$

que é uma estimativa tendenciosa de S_e^2 . A estimativa sem tendência da variância entre conglomerados é dada por:

$$S_e^2 = \frac{QM_{entre} - QM_{dentro}}{m}$$

Assim, a estimativa da variância total resulta:

$$s_x^2 = s_e^2 + s_d^2 = \frac{QM_{entre} + (m-1)QM_{dentro}}{m}$$

d) Coeficiente de correlação intraconglomerados

O coeficiente de correlação intraconglomerados é definido como o grau de similaridade entre subunidades dentro dos conglomerados.

Este coeficiente foi definido por COCHRAN (1963) e implementado por PELLICO NETTO(1979), como se segue:

$$\rho = \frac{\sigma_e^2}{\sigma_e^2 + \sigma_d^2} \quad \text{ou} \quad r = \frac{s_e^2}{s_e^2 + s_d^2} \quad \text{para} \quad 0 \le \rho \le 1$$

Para efeito prático, em inventários florestais, o limite aceitável do coeficiente de correlação para aplicação da amostragem em conglomerados é: $0 \le \rho \le 0,4$.

Quando o coeficiente de correlação for maior que o limite aceitável ($\rho = 0.4$), certamente a amostragem estratificada será mais eficiente que a amostragem em conglomerados.

e) Variância da Média

$$s_{\bar{x}}^2 = \frac{N - n}{N} \frac{s_e^2}{n} + \frac{s_d^2}{nm}$$
 (população finita)

$$s_{\bar{x}}^2 = \frac{s_e^2}{n} + \frac{s_d^2}{nm}$$
 (população infinita)

ou

$$S_{\overline{x}}^2 = \frac{S_x^2}{nm} (1 + r(m-1))$$
A variancia da media e afetada pelo coeficiente de

A variância da média é correlação !!!!!!

f) Erro Padrão da Média

$$S_{\bar{x}} = \pm \sqrt{S_{\bar{x}}^2}$$

- g) Erro de Amostragem
 - Erro Absoluto

$$E_a = \pm ts_{\bar{x}}$$

- Erro Relativo

$$E_r = \pm \frac{ts_{\bar{x}}}{\bar{x}} 100$$

Obs.: $t(\alpha; nm - 1 g.l.)$

h) Intervalo de Confiança para a Média

$$IC = \left[\overline{x} - ts_{\overline{x}} \le \mu \le \overline{x} + ts_{\overline{x}}\right] = P$$

i) <u>Intervalo de Confiança por Hectare</u>

$$IC = [(\overline{x} - ts_{\overline{x}})f_c \le \mu \le (\overline{x} + ts_{\overline{x}})f_c] = P \text{ em que } f_c = \frac{A_h}{a_p}$$

j) <u>Total da População</u>

$$\hat{X} = NM \ \overline{x}$$

k) Intervalo de Confiança para o Total

$$IC = [\hat{X} - NMts_{\bar{x}} \le X \le \hat{X} + NMts_{\bar{x}}] = P$$

1) Estimativa Mínima de Confiança

$$EMC[\bar{x} - ts_{\bar{x}} \le \mu] = P$$

4 - Intensidade de amostragem

A existência de duas variáveis (n) e (m) exigem duas equações e, portanto, um sistema de equações, tendo-se:

a) Número ótimo de subunidades por conglomerado

em que:

$$\sqrt{\frac{C_1}{C_2} \frac{1-r}{r}}$$
 C_1 = custo médio de deslocamento; C_2 = custo médio de medição; r = coeficiente de correlação.

b) <u>Número de ótimo de conglomerados</u>

$$n = \frac{t^2 s_x^2}{E^2 m} [1 + r(m-1)]$$

5 - Estrutura do conglomerado

Já é tradição a aplicação deste processo de amostragem nas condições da floresta tropical intocada. PELLICO NETTO (1993) sugeriu uma estrutura de cruz com quatro subunidades, cada uma delas com ¼ de hectare, como mostram as Figura 1 e 2.

Esta unidade vem permitindo obter bons resultados práticos e apresenta facilidade operativa em campo. Contudo, mesmo que tenha sido muito utilizada em trabalhos práticos, este tipo de estrutura carece de mais estudos, devendo-se avaliar também outras alternativas.

6 - Aplicação da amostragem em conglomerados

6.1 – Exemplo aplicativo 1

Inventariar a população de Pinus *sp*. de 45 ha apresentada na Figura 3, por meio da amostragem em conglomerados, admitindo um erro de amostragem máximo de 10% da média estimada, com 90% de confiabilidade.

O conglomerado utilizado é a cruz de malta e foi estruturado sobre as unidades primárias da população tal como mostra a Figura 3. De acordo com esta estrutura, cada subunidade possui 1.000 m² de superfície e o conglomerado 0,4 ha.

Solução:

I – Inventário piloto

Considerando-se a inexistência de informações básicas sobre a população, realizou-se um inventário piloto constituído de 6 conglomerados (arbitrado), cujas unidades sorteadas foram as seguintes:

Conglomerado n	Localiz.	Volume	\overline{x}_i			
		I	II	III	IV	
1	IIA	6,3	11,6	8,0	10,2	9,03
2	IIB	9,5	21,3	24,0	11,4	16,55
3	IIIC	24,0	20,9	30,5	21,0	24,10
4	IID	24,6	25,9	31,7	23,9	26,53
5	ΙE	32,3	26,9	29,0	22,6	27,70
6	IIF	22,8	31,1	22,4	26,6	25,73

Fonte: PELLICO NETTO e BRENA (1996)

a) Média geral por subunidade

$$\overline{X} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij}}{nm} \qquad \overline{X} = \frac{518,5}{6.4} = 21,6042 \text{ m}^3/0,1 \text{ ha}$$

b) Média das subunidades por conglomerado

$$\overline{X}_i = \sum_{j=1}^m \frac{X_{ij}}{m}$$

$$\overline{X}_1 = 9,03; \overline{X}_2 = 16,55; ...; \overline{X}_6 = 25,73$$

(ver tabela anterior)

c) Variância total por subunidade

$$S_x^2 = \frac{1}{nm-1} \sum_{i=1}^n \sum_{j=1}^m (X_{ij} - \overline{X})^2$$

$$S_x^2 = \frac{1441,59}{6.4-1} = 62,6778 \text{ (m}^3/0,1 \text{ ha)}^2$$

ou por meio da análise de variância

$$S_x^2 = S_e^2 + S_d^2$$

sendo

$$QM_{dentro} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} \left(X_{ij} - \overline{X}_{i}\right)^{2}}{n(m-1)} = s_{d}^{2}$$

$$QM_{dentro} = \frac{368,1300}{6(4-1)} = 20,4518$$

$$s_d^2 = 20,4518 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$QM_{entre} = \frac{\sum_{i=1}^{n} m(\overline{X}_i - \overline{X})^2}{n-1}$$

$$QM_{entre} = \frac{4(268,3643)}{6-1} = 214,6914$$

$$S_e^2 = \frac{QM_{entre} - QM_{dentro}}{m}$$
 $S_e^2 = \frac{214,6914 - 20,4518}{4}$

$$S_e^2 = 48,5599 \text{ (m}^3/0,1 \text{ ha)}^2$$

$$S_x^2 = S_e^2 + S_d^2 = 48,5599 + 20,4518$$

 $S_x^2 = 69,0117 \text{ (m}^3/0,1 \text{ ha)}^2$

d) Coeficiente de correlação intraconglomerado

$$r = \frac{S_e^2}{S_e^2 + S_d^2} = \frac{48,5599}{48,5599 + 20,4518} = 0,70$$

O coeficiente de correlação é superior a 0,4; indicando que a população não é homogênea ou razoavelmente homogênea. Portanto, a amostragem em conglomerados não é recomendada para esta população.

e) Intensidade de amostragem

$$n = \frac{t^2 s_x^2}{E^2 m} \left[1 + r(m-1) \right] \qquad t_{(0,10; 23)} = 1,71$$

$$E = (0,1 . 21,6042) = 2,1604 \text{ m}^3/0,1 \text{ ha}$$

$$n_1 = \frac{1,71^269,0117}{2,1604^24} \left[1 + 0,70(4-1) \right] \qquad \qquad n_1 = 33,51 \cong 34$$

$$t_{(0,10;\ 135)} = 1,65$$

$$n_2 = \frac{1,65^269,0117}{2,1604^24} [1+0,70(4-1)] \qquad \qquad n_2 = 31,50 \cong 32$$

$$t_{(0,10;\ 127)} = 1,65$$

$$n_3 = \frac{1,65^269,0117}{21604^24} \left[1 + 0,70(4 - 1)\right]$$
 $n_3 = 31,50 \approx 32$

6.2 – Exemplo aplicativo 2

No inventário de uma área de floresta tropical com 4.000 ha localizada no Amapá, realizou-se inicialmente um inventário piloto, por meio da amostragem em conglomerados, utilizando-se como unidade amostral a cruz de malta.

A partir dos dados de volumes comerciais obtidos com casca acima de 30,0 cm de *DAP*, mostrados a seguir, calcular a intensidade de amostragem necessária para estimar os parâmetros da população, admitindo-se um erro de amostragem máximo de 10% da média, com 95% de probabilidade de confiança.

Fonte: PELLICO NETTO e BRENA (1996)

Conglomerado	Vol	Volume das subunidades (m³/0,25 ha)						
n	I	II	III	IV	x_i			
1	84,70	78,20	63,00	88,50	78,60			
2	70,10	65,40	59,60	58,10	63,30			
3	75,60	77,70	66,10	43,50	65,73			
4	81,30	38,70	62,80	31,10	53,48			
5	99,50	47,00	82,10	77,40	76,50			
6	97,30	66,10	57,40	113,90	83,68			
7	70,20	43,50	48,30	69,30	57,83			
8	81,70	68,80	22,60	78,20	62,83			
9	60,90	71,40	75,20	81,10	72,15			
10	67,30	90,50	72,60	67,10	74,38			
11	75,40	88,50	104,60	105,50	93,50			
12	71,00	57,00	79,30	71,80	69,78			
13	61,80	100,90	69,40	61,00	73,28			
14	116,90	91,00	36,90	57,30	75,53			
15	56,00	22,90	94,80	130,20	75,98			
16	68,20	32,50	68,20	58,60	56,88			
17	55,40	61,30	76,30	40,00	58,25			
18	55,00	63,00	56,80	36,80	52,90			
19	78,80	59,60	68,10	46,80	63,33			
20	33,60	44,40	34,10	79,60	47,93			
21	48,80	26,60	67,50	51,00	48,48			
22	82,40	61,80	23,40	60,20	56,95			
23	69,80	49,50	53,90	0,00	43,30			
24	58,40	61,50	45,50	50,20	53,90			
25	27,40	63,60	69,40	60,80	55,30			

a) Média geral por subunidade

$$\overline{X} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij}}{nm} \longrightarrow \overline{X} = \frac{6454,80}{25.4} = 64,55 \text{ m}^3/0,25 \text{ ha}$$

b) Média das subunidades por conglomerado

$$\overline{X}_i = \sum_{j=1}^m \frac{X_{ij}}{m}$$

$$\overline{X}_1 = 78,60$$
; $\overline{X}_2 = 63,30$; ...; $\overline{X}_{25} = 55,30$

(ver tabela anterior)

c) Variância total por subunidade

$$S_x^2 = \frac{1}{nm-1} \sum_{i=1}^n \sum_{j=1}^m (X_{ij} - \overline{X})^2$$

$$S_x^2 = \frac{47265,83}{25,4-1} = 477,43 \text{ (m}^3/0,25 \text{ ha)}^2$$

ou por meio da análise de variância

$$S_x^2 = S_e^2 + S_d^2$$

sendo

$$QM_{dentro} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} \left(X_{ij} - \overline{X}_{i}\right)^{2}}{n(m-1)} = s_{d}^{2}$$

$$QM_{dentro} = \frac{32443,83}{25(4-1)} = 432,58$$

$$s_d^2 = 432,58 \text{ (m}^3/0,25 \text{ ha})^2$$

$$QM_{entre} = \frac{\sum_{i=1}^{n} m(\overline{X}_i - \overline{X})^2}{n-1}$$

$$QM_{entre} = \frac{4(3705,49)}{25-1} = 617,58$$

$$S_e^2 = \frac{QM_{entre} - QM_{dentro}}{m}$$

$$S_e^2 = \frac{617,58 - 432,58}{4}$$

$$S_e^2 = 46,25 \text{ (m}^3/0,25 \text{ ha)}^2$$

$$S_x^2 = S_e^2 + S_d^2 = 46,25 + 432,58$$

 $S_x^2 = 478,8341 \text{ (m}^3/0,25 \text{ ha)}^2$

d) Coeficiente de correlação intraconglomerado

$$r = \frac{S_e^2}{S_e^2 + S_d^2} = \frac{46,25}{46,25 + 432,58} = 0,0966$$

O coeficiente de correlação é inferior a 0,4; indicando que a população é homogênea ou razoavelmente homogênea. Portanto, a amostragem em conglomerados é recomendada para esta população.

f) Variância da média

$$1-f = 0.99 > 0.95 \rightarrow \text{população infinita}$$

$$s_{\bar{x}}^2 = \frac{s_e^2}{n} + \frac{s_d^2}{nm}$$
 $s_{\bar{x}}^2 = \frac{46,25}{25} + \frac{432,58}{25.4}$

$$s_{\bar{x}}^2 = 6,1758 \text{ (m}^3/0,25 \text{ ha)}^2$$
 ou

$$s_{\bar{x}}^2 = \frac{s_x^2}{nm} (1 + r(m-1))$$
 $\Longrightarrow s_{\bar{x}}^2 = \frac{478,8341}{25.4} (1 + 0,0966(4-1))$

$$s_{\bar{x}}^2 = 6,1759 \text{ (m}^3/0,25 \text{ ha)}^2$$

g) Erro Padrão da Média

$$s_{\overline{x}} = \pm \sqrt{s_{\overline{x}}^2} \longrightarrow s_{\overline{x}} = \pm \sqrt{6,1758}$$

$$s_{\bar{x}} = \pm 2,4851 \text{ m}^3/0,25 \text{ ha}$$

h) Erro de Amostragem

h₁) Erro de Amostragem Absoluto

$$E_a = \pm ts_{\bar{x}}$$

$$t_{(0,05;99)} = 1,99$$
 $E_a = \pm 1,99.2,4851 = \pm 4,9454 \text{ m}^3/0,25 \text{ ha}$

h₂) Erro de Amostragem Relativo

$$E_r = \pm \frac{ts_{\bar{x}}}{\bar{x}} 100 \implies E_r = \pm \frac{1,99.2,4851}{64,55} 100 = 7,66\%$$

i) Intervalo de Confiança para a Média

$$IC[\bar{x} - ts_{\bar{x}} \le \mu \le \bar{x} + ts_{\bar{x}}] = P$$

$$IC[64,55 - 1,99(2,4851) \le \mu \le 64,55 + 1,99(2,4851)] = 95\%$$

$$IC[59,60 \text{ } m^3/0,25 \text{ } ha \le \mu \le 69,50 \text{ } m^3/0,25 \text{ } ha] = 95\%$$

j) <u>Intervalo de Confiança por Hectare</u>

$$IC \left[\left(\overline{x} - t s_{\overline{x}} \right) f_c \le \mu \le \left(\overline{x} + t s_{\overline{x}} \right) f_c \right] = P$$

$$IC \left[(64,55 - 1,99.2,4851)(10000/2500) \le \mu \le (64,55 + 1,99.2,4851)(10000/2500) \right] = 95\%$$

$$IC \left[238,42 \ m^3/ha \le \mu \le 277,98 \ m^3/ha \right] = 95\%$$

k) Total da População

$$\hat{X} = Nm \bar{x}$$

 $\hat{X} = 4000.4.64.55 = 1.032.800 \text{ m}^3$

1) Intervalo de Confiança para o Total

$$IC = [\hat{X} - Nmts_{\bar{x}} \le X \le \hat{X} + Nmts_{\bar{x}}] = P$$

$$IC[1032800 - 4000(4)4,9454 \le X \le 1032800 + 4000(4)4,9454] = 95\%$$

$$IC[953674,41 \text{ } m^3 \le X \le 1111926,4 \text{ } m^3] = 95\%$$

m) Estimativa Mínima de Confiança para a Média

$$EMC[\bar{x} - ts_{\bar{x}} \le \mu] = P$$

 $EMC[64,55 - 1,658 (2,4851) \le \mu] = 95\%$
 $EMC[60,43 \ m^3/0,25 \ ha \le \mu] = 95\%$

n) <u>Estimativa Mínima de Confiança por Hectare</u>

$$EMC[(\bar{x} - ts_{\bar{x}})f_C \le \mu] = P$$

 $EMC[(64.55 - 1,658 (2,4851))(10000/2500) \le \mu] = 95\%$
 $EMC[241.72 \text{ m}^3/\text{ha} \le \mu] = 95\%$

o) Estimativa Mínima de Confiança para o Total

$$EMC[\widehat{X} - Nmts_{\overline{x}} \le X] = P$$

 $EMC[1032800-4000(4).1,658(2.4851) \le X] = 95\%$
 $EMC[966875,27 \text{ m}^3 \le X] = 95\%$

A título de curiosidade!!!!!!!

O cálculo da Intensidade de amostragem

$$n = \frac{t^2 s_x^2}{E^2 m} \left[1 + r(m-1) \right] \quad t_{(0,05; 99)} = 1,99$$

$$E = (0,1 . 64,55) = 6,4550 \text{ m}^3/0,25 \text{ ha}$$

$$n_1 = \frac{1,99^2 478,8341}{6,4550^2 4} \left[1 + 0,0966 \left(4 - 1 \right) \right] \qquad \qquad n_1 = 14,63 \cong 15$$

$$t_{(0,05;59)} = 2,00$$

$$n_2 = \frac{2,00^2 478,8341}{6.4550^2 4} [1 + 0,0966(4 - 1)] \longrightarrow \boxed{n_2 = 14,82 \cong 15}$$

FIM

Referências

COCHRAN, W. G. **Sampling techniques**. 2. ed., New York, John Wiley & Sons, Inc., 1963. 413 p.

PÉLLICO NETTO, S. Die Forstinventuren in Brasilien - Neue Entwicklungen und ihr Beitrag für eine geregelte Forstwirtschaft. Mitteilungen aus dem Arbeitskreis für Forstliche Biometrie. Freiburg, 1979. 232 p. (Tese de Doutorado).

PÉLLICO NETTO, S., BRENA, D.A. **Inventário florestal**. Curitiba: Universidade Federal do Paraná / Universidade Federal de Santa Maria, 1993. 245p.

PÉLLICO NETO, S.; BRENA, D.A. **Inventário florestal**. Curitiba:Editorado pelos autores, 1997.

Figura 1 - Unidade conglomerado cruz de malta.

Figura 2 - Unidade dos conglomerados em inventários na Floresta Nacional do Tapajós (1977 e 1983).

	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	
1	80	92	96	94	90	85	73	63	83	101	115	156	87	109	111	
2	99	69	102	103	91	123	83	128	68	98	86	88	95	97	74	
3	86	69	85	127	98	102	98	179	71	116	98	101	88	125	110	Α
4	81	89	122	110	80	99	184	81	85	114	191	132	122	110	156	
5	131	115	92	76	136	157	95	80	89	85	126	106	104	144	116	
6	162	100	118	90	116	83	163	95	107	125	145	162	87	225	255	
7	166	164	191	190	165	155	186	188	156	108	116	177	229	149	127	
8	185	227	171	239	185	114	138	186	232	213	147	125	159	170	197	В
9	216	101	148	151	149	159	158	184	142	180	159	126	162	199	156	
10	189	197	132	137	160	190	165	240	125	258	205	214	204	157	284	
11	236	269	172	237	243	213	233	205	244	230	229	238	240	310	284	
12	273	176	217	194	314	221	201	193	239	184	162	173	216	211	254	
13	197	279	225	184	237	169	228	204	253	271	210	232	195	322	209	С
14	246	256	249	180	231	229	188	199	200	242	221	274	307	272	191	
15	306	281	248	294	187	196	278	241	272	287	263	229	305	241	244	
16	267	223	284	213	239	235	203	246	307	264	236	199	227	219	176	
17	204	256	273	246	279	259	192	221	294	282	291	232	199	259	256	
18	253	228	259	263	292	239	223	335	359	259	319	244	307	351	295	D
19	280	256	292	386	289	327	283	219	232	349	326	262	229	253	331	
20	324	273	365	268	232	266	249	317	298	292	246	358	226	305	338	
21	301	268	323	276	289	347	231	278	205	284	213	243	214	339	296	
22	402	241	360	399	278	346	247	279	253	366	248	335	283	249	229	
23	226	255	229	247	269	242	267	207	233	317	336	225	287	207	229	E
24	305	255	257	210	265	270	337	307	318	228	314	321	224	297	238	
25	267	239	298	248	309	279	269	253	261	318	271	322	218	234	280	
26	318	306	327	320	255	258	242	228	266	292	309	263	262	379	322	
27	318	329	248	287	267	273	339	345	272	283	348	221	307	262	280	
28	292	415	287	259	255	266	384	336	363	311	267	313	330	232	235	F
29	255	314	335	331	273	339	351	325	257	301	286	285	283	278	342	
30	320	377	337	400	370	379	269	224	345	269	368	312	367	358	348	
	I						II					III				

Figura 3 - Volume, em m³ por unidade de amostra de 0,1 ha, obtidos pelo inventário 100% de um bosque *Pinus* sp (PELLICO NETTO e BRENA, 1993).

