Raytracer 3D

Generated by Doxygen 1.8.12

Contents

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Blade_surface .												 									?'
Bounding_box .												 									??
Point3D												 									??
Ray3D																					
Receiver												 									?1
Rib												 									?1
Rotor																					
Scene																					
Sphere																					
Transmitter																					
Triangle												 									?
Vector3D												 									?1

2 Class Index

Chapter 2

Class Documentation

2.1 Blade_surface Class Reference

Collaboration diagram for Blade_surface:

- Blade_surface (const int id, const double length, const int Rib_count, Rib &origin_Rib)
- void create_surface ()
- void update_surface ()
- void update_bounding_box ()
- void rotate surface Z (double angle)
- void pitch_surface_X (const double angle)
- void height_surface_Z (const double height)
- bool hit (const Ray3D &ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint)

std::vector< Rib > getRibs ()
 std::vector< Triangle > getSurface ()
 std::vector< Point3D > getPoints ()
 Bounding_box getBox ()

Public Attributes

- int id
- · double length
- double delta I
- int Rib_count
- Rib origin_Rib

The documentation for this class was generated from the following files:

- Raytracer3D/Raytracer3D/Blade_surface.hpp
- Raytracer3D/Raytracer3D/Blade_surface.cpp

2.2 Bounding_box Class Reference

Collaboration diagram for Bounding_box:

Public Member Functions

- Bounding_box (std::vector < Point3D > &points)
- bool hit (const Ray3D &ray, Point3D &hit_point) const
- bool hit (const Ray3D &ray) const

Public Attributes

- Point3D min_point
- Point3D max_point

The documentation for this class was generated from the following files:

- Raytracer3D/Raytracer3D/Bounding box.hpp
- Raytracer3D/Raytracer3D/Bounding_box.cpp

2.3 Point3D Class Reference

Collaboration diagram for Point3D:

Point3D + Point3D() + Point3D() + Point3D() + operator-() + operator-() + operator-() + operator*() + operator==() + distance() and 6 more...

- Point3D (const double x, const double y, const double z)
- Point3D (const double y, const double z)
- Point3D operator- () const
- Vector3D operator- (const Point3D &p) const
- Point3D operator+ (const Vector3D &v) const
- Point3D operator- (const Vector3D &v) const

- Point3D operator* (const double a) const
- bool operator== (const Point3D &p) const
- double distance (const Point3D &p) const
- double x () const
- · double y () const
- · double z () const
- void rotate_Z (const double angle)
- void rotate X (const double angle)
- void translate_Z (const double height)

Friends

• void swap (Point3D &a, Point3D &b)

The documentation for this class was generated from the following files:

- Raytracer3D/Raytracer3D/Point3d.hpp
- Raytracer3D/Raytracer3D/Point3d.cpp

2.4 Ray3D Class Reference

Collaboration diagram for Ray3D:

Public Member Functions

• Ray3D (const Point3D &origin, const Vector3D &direction, const double power=1.0, const double frequency=0.0, const double distance=0)

Public Attributes

- Point3D origin
- Vector3D direction
- double **power**
- double frequency
- double distance

- Raytracer3D/Raytracer3D/Ray3d.hpp
- Raytracer3D/Raytracer3D/Ray3d.cpp

2.5 Receiver Class Reference

Collaboration diagram for Receiver:

- Receiver (const int id, const double Bandwidth, const double center_freq, const Point3D ¢er, const double boundary_radius, const std::string &savefile_name, const std::string &dopplerfile_name)
- Sphere get_Boundary ()
- double get_sampling_rate ()
- std::vector< Ray3D > get_frame_data ()
- void save_ray_toFrame (Ray3D &ray)
- void save_to_file ()

Public Attributes

- int id
- · double Bandwidth
- · double center_freq
- · double Resolution
- double boundary_radius
- Point3D center

The documentation for this class was generated from the following files:

- Raytracer3D/Raytracer3D/Receiver.hpp
- Raytracer3D/Raytracer3D/Receiver.cpp

2.6 Rib Class Reference

Collaboration diagram for Rib:

Public Member Functions

- Rib (int id, Rib &x, const double delta_l)
- Rib (int id, const std::string &filename)
- std::vector< Point3D > getRibPoints ()
- void pitch (double angle)
- void rotate (double angle)
- void **height** (const double height)

Public Attributes

int id

- Raytracer3D/Raytracer3D/Rib.hpp
- Raytracer3D/Raytracer3D/Rib.cpp

2.7 Rotor Class Reference 11

2.7 Rotor Class Reference

Collaboration diagram for Rotor:

Rotor + id + get_RPM() + get_num_blades() + get_height() + get_constant_pitch() + get_Rib_count() + get_blade_length() + get_Blades() + rotate() + hit() + Rotor() + Rotor()

Public Member Functions

- double get_RPM ()
- int get_num_blades ()
- double get_height ()
- double get_constant_pitch ()
- double get_Rib_count ()
- double get_blade_length ()
- std::vector< Blade_surface > get_Blades ()
- void rotate (const double angle)
- bool hit (const Ray3D &ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint)
- Rotor (const int id, const int num_blades, const double RPM, const double height, const double constant_

 pitch, const double blade_length, const int Rib_count)

Public Attributes

int id

- Raytracer3D/Raytracer3D/Rotor.hpp
- Raytracer3D/Raytracer3D/Rotor.cpp

2.8 Scene Class Reference

Collaboration diagram for Scene:

Scene + Scene() + Scene() + get_rotor() + get_transmitter() + get_receiver() + trace_scene() + trace_vect() + update() + getDistancePower() + getDoppler()

Public Member Functions

- Scene (double rx_x, double rx_y, double rx_z, double Bandwidth, double rx_fc, double tx_x, double tx_y, double tx_fc, double tx_power, int num_blades, double RPM, double altitude, double pitch, double blade_← length, int num_ribs, const std::string &filename)
- Rotor get_rotor ()
- Transmitter get_transmitter ()
- Receiver get_receiver ()
- void trace_scene (int num_rays)
- void trace_vect (Ray3D &test_ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint)
- void **update** (double angle)
- double **getDistancePower** (const double frequency, const double power, const double distance) const
- double getDoppler (Ray3D &test_ray, Vector3D &hitNormal, Point3D &hitPoint, double RPM) const

2.8.1 Member Function Documentation

2.8.1.1 getDoppler()

!!!! doppler does not get affected by the normal, need to check this. not sure if this is correct.

- Raytracer3D/Raytracer3D/Scene.hpp
- Raytracer3D/Raytracer3D/Scene.cpp

2.9 Sphere Class Reference

Collaboration diagram for Sphere:

Public Member Functions

- Sphere (const double radius, const Point3D ¢er)
- bool hit (const Ray3D &ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint) const

Public Attributes

- · double radius
- Point3D center
- int num_points

- Raytracer3D/Raytracer3D/Sphere.hpp
- Raytracer3D/Raytracer3D/Sphere.cpp

2.10 Transmitter Class Reference

Collaboration diagram for Transmitter:

- Transmitter (const int id, const double frequency, const double power, const Point3D ¢er, const double I)
- void **setPower** (const double power)
- double getPower () const
- Ray3D makeRay ()
- Ray3D makeRay_disk (const double height)
- Ray3D makeRay (const Vector3D &rayDirection)

Public Attributes

- int id
- · double frequency
- Point3D center
- · double power

The documentation for this class was generated from the following files:

- · Raytracer3D/Raytracer3D/Transmitter.hpp
- Raytracer3D/Raytracer3D/Transmitter.cpp

2.11 Triangle Class Reference

Collaboration diagram for Triangle:

Triangle + Triangle() + ~Triangle() + Triangle() + hit() + hitNoCull() + operator==() + getVertex0() + getVertex1() + getVertex2() + getNormal() + setNormal() + flipNormal() + centroid() + centroidXY() + updateNormal()

- Triangle (Point3D &v0, Point3D &v1, Point3D &v2)
- bool hit (const Ray3D &ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint) const
- bool hitNoCull (const Ray3D &ray, double &hitDistance, Vector3D &hitNormal, Point3D &hitPoint) const
- bool **operator**== (Triangle &Tri)
- Point3D getVertex0 ()
- Point3D getVertex1 ()
- Point3D getVertex2 ()
- Vector3D getNormal () const

- void setNormal (const Vector3D &normal)
- void flipNormal ()
- Point3D centroid () const
- Point3D centroidXY () const
- void updateNormal ()

The documentation for this class was generated from the following files:

- Raytracer3D/Raytracer3D/Triangle.hpp
- Raytracer3D/Raytracer3D/Triangle.cpp

2.12 Vector3D Class Reference

Collaboration diagram for Vector3D:

+ Vector3D() + Vector3D() + Vector3D() + operator-() + operator/() + operator+() + operator-() + operator*() + operator^*() + operator^*() + and 8 more...

- Vector3D (const double x, const double y, const double z)
- Vector3D operator- (void) const
- Vector3D operator* (const double a) const
- Vector3D operator/ (const double a) const
- Vector3D operator+ (const Vector3D &v) const
- Vector3D operator- (const Vector3D &v) const
- double operator* (const Vector3D &b) const
- Vector3D operator[∧] (const Vector3D &v) const
- · double x () const
- double y () const
- double z () const
- double dotProduct (const Vector3D &v) const

- Vector3D crossProduct (const Vector3D &v) const
- double length () const
- Vector3D normalized () const
- Vector3D rotatedAboutZ (const double angle) const
- bool isNormal () const

- Raytracer3D/Raytracer3D/Vector3d.hpp
- Raytracer3D/Raytracer3D/Vector3d.cpp