

GAN-Tree: An Incrementally Learned Hierarchical Generative Framework for Multi-Modal Distributions

Jogendra Nath Kundu* Maharshi Gor*

(*equal contribution)

Dakshit Agrawal Video Analytics Lab, Indian Institute of Science, Bangalore, India

R. Venkatesh Babu

Motivation

- GANs are limited in the following aspects:
- Choice of latent variable setting (dimension, type of prior etc.)
- Not great at mapping discontinuities (computational limitation)
- Previous proposed solutions for the above problem:
- Single generator with multi-modal prior or Multi-generator n/w
- Limitations of available solutions:
- Relies on an assumption of initial number of modes
- Lack of flexibility for the user while generating new images
 - ■More modes → good Quality, but lacks Generalizability
 - ■Less modes → lacks Quality but good Generalizability

Our Contributions

- We propose a novel generative modeling framework which:
- o allows flexible choice of the number of modes to be considered
- o allows flexibility in generation of new samples based on varied preference of quality versus diversity
- o allows incremental addition of new samples from similar but different classes introduced later in the absence of initial data samples

Training Algorithm

- 1: Starts with one GAN which is trained to model the whole dataset
- 2: Iterates over the following two algorithms until desired flexibility
- 3: Mode Split Procedure
 - Top-down divisive clustering by leveraging the highly discriminative semantic characteristics in a fully-unsupervised manner

4: Bi-Modal GAN Training

o ensure matching of the generated distribution with the expected target distribution (after unsupervised clustering of true images into two children groups) for faithful image generation

Experiments

GAN-Tree generation for mixed datasets:

• Incremental GAN-Tree iGAN-Tree

Quantitative comparison

Table 3: Inception (IS) and FID scores on CIFAR-10 and Imagenet dataset computed on 5K with varied number of generators.

ethod	#Gen	CIFAR-10		ImageNet		
		IS↑	FID↓	IS↑	FID ↓	#Param
MVAE [9]	1	6.89	39.2	-	=	-
lusterGAN [28]	1	7.02	37.1	-	-	-
FGAN [3] (root-node)	1	6.87	38.0	20.01	46.4	50M
igGAN (w/o label)	1	7.19	36.7	20.89	42.5	50M
ADGAN [13]	10	7.33	35.1	20.92	38.3	205M
MWGAN-PL [21]	10	7.41	33.1	21.57	37.8	205M
urs GAN-Set (ALI)	3	7.42	32.5	-	-	-
urs GAN-Set (ALI)	5	7.63	28.2	-	-	-
urs GAN-Set (RFGAN)	3	7.60	28.3	21.97	34.0	65M
urs GAN-Set (RFGAN)	5	7.91	27.8	24.84	29.4	105M
urs GAN-Set (BigGAN)	3	8.12	25.2	22.38	31.2	130M
urs GAN-Set (BigGAN)	5	8.60	21.9	25.93	27.1	210M

Acknowledgements: This work was supported by a WIPRO PhD Fellowship (Jogendra) and a grant from ISRO, India. We also thank Google Inc for the travel grant support.