學號:R06922048系級:資工所碩一姓名:陳柏堯

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

模型架構:

首先讀入 data, 去掉 stop words('is', 'are', 'a', 'the', 'm', 'was', 'were), 再利用 gensim 的 word2vec 將每一個 word 轉成 80 維、windows size 5 的 vector,變成 vector sequence 之後再丟入 RNN Model。架構中有兩層 bidirection 的 RNN model,然後接 dropout 及輸出到 2 元分類。

Layer (type)	Output	Shape	Param #	bidirectional_1_input: InputLayer	
bidirectional_1 (Bidirection	(None,	35, 256)	214016	bidirectional 1(lstm 1): Bidirectional(LSTM)	
bidirectional_2 (Bidirection	(None,	128)	164352	bullectional_I(isin_1). Bullectional(ESTiv)	
dropout_1 (Dropout)	(None,	128)	0	bidirectional_2(lstm_2): Bidirectional(LSTM)	
dense_1 (Dense)	(None,	2)	258	<u> </u>	
Total params: 378,626 Trainable params: 378,626 Non-trainable params: 0				dropout_1: Dropout dense_1: Dense	

訓練過程:

因為往往 5~10 個 epoch 左右之後,RNN 的 training 就會 overfitting,我認為這個 過程中可能會錯過 acc_val 的高點,所以我自己實作了 data_generator,他每次吐 出 batch128 的 training data,以一次 30 個 steps 作為 epoch 來 train。這樣 model 真正看過所有 data 一次實際大概是 60 個 epoch 左右。 如下圖,大概再 100 個 epoch 左右,val acc 就會在 0.81~0.82 左右振動。

(validation data 是從 training data 中 10%隨機切出來的)

準確率:

在第 224 個 epoch 處,得到最好的 validation acc 0.824100,上傳到 Kaggle 得到

public acc 0.82327

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

模型架構:

前處理的做法和 RNN 第一題差不多,只是 tokenizer 是用助教範例的 keras.texts_to_matrix 來 count 詞語的出現次數作為 vector 來 embedding。最後再放入到 DNN 中來 training。

ayer (type)	Output Shape	Param #
ense_1 (Dense)	(None, 4096)	40964096
opout_1 (Dropout)	(None, 4096)	0
ise_2 (Dense)	(None, 2048)	8390656
opout_2 (Dropout)	(None, 2048)	0
se_3 (Dense)	(None, 1024)	2098176
oout_3 (Dropout)	(None, 1024)	0
se_4 (Dense)	(None, 521)	534025
pout_4 (Dropout)	(None, 521)	0
se_5 (Dense)	(None, 128)	66816
oout_5 (Dropout)	(None, 128)	0
se_6 (Dense)	(None, 32)	4128
out_6 (Dropout)	(None, 32)	0
se_7 (Dense)	(None, 8)	264
pout_7 (Dropout)	(None, 8)	0
se_8 (Dense)	(None, 2)	18
cal params: 52,058,179 sinable params: 52,058 n-trainable params: 0		

訓練過程:

因為覺得 BOW 的 performance 不會太好,所以並沒有寫 data generator,直接 train下去,training data 很快就上去到 0.9,而 val acc 大概再 0.79 左右振動。

準確率:

在第 1 個 epoch 處,得到最好的 validation acc 0.795100, 上傳到 Kaggle 得到 public acc 0.79747

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is

hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators: 無)

答:

如下圖,分別將兩句話作前處理再分別丟入兩個 model,RNN 會考慮句子前後 出現順序的影響,如果 but 後面是 hot 則預測負面情緒的分數較大,如果 but 後 面是 good day,則預測正面情緒的分數較大。而 BOW 的預測結果,或許只考慮 單詞出現與否,可能對於出現 "good" 這個詞,model 都給正面情緒較大的分 數。因此,就 Sequence 的 word 前後順序,RNN 表現較好。

	RNN (Word2Vec)		BOW	
	0	1	0	1
today is a good day, but it is hot	0.80578971	0.19421022	0.30266365	0.69733632
today is hot, but it is a good day	0.08541219	0.91458774	0.18986592	0.81013411

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

(Collaborators: 無)

答:

在第 1 題的 RNN 中,我本來就有去掉部分標點符號(#\$%&()*+-

/:;<=>@[\\]^_`{|}),但是保留一些符號(!.?,),因為我覺得驚歎號之類的符號有表達一種情緒,而在本題中我在第一題的基礎上再去掉了(!.?,)這些符號,也就是說完全沒有符號了。架構和第一題一樣下去 train,得到 performance 如圖:

可以發現有無標點符號的兩個版本,訓練過程非常相似,但是保留驚歎號、問號的版本無論在 training data 還是 validation data 都有比較好的表象。去掉所有符號的 model 的 validation acc 在 100 個 epoch 之後大概在 0.80~0.81 左右振動,略低于 Strong baseline。因此,保留有一些符號的 tokenize 方式較好。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label, 並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators: 無)

答:

我使用的 Semi-supervised 方法是老師上課說的 self-training, 首先依然是先切出 10%的 validation data, 架構和第一題的 RNN、word2vec 一樣, 然後 training 的方法是:

- * train 一遍所有的 labeled data (因為是自己實作 data generator,所以 train 一遍是 60 個 epoch)
- * 分 4 次從 unlabeled data 抓出 sentence
- * 用目前的 model 去 predict 目前抓出來的 sentences
- * predict 好的結果再回去 train model, 設定的 threshold 是 0.25

Train 一遍 labeled data 和抓 4 次 unlabed 作為一個 round,總共 repeat 10 round。 (分成 4 次抓出 unlabeled data 是為了使用較少的記憶體,如果全部 100 萬筆資料 抓出來做 word2vector 會出現 memory error).

如上圖,使用 semi-supervised learning ,我覺得 performance 和沒有使用是差不多的,但如果長遠下來多一些 epoch ,semi-supervised 會較好一點。

沒有使用 self-training 的 model, training data 的 acc 很快就會爬上去, 會容易 overfitting, 而使用 self-training 的話, training-acc 會爬得比較慢.

這樣可以多跑幾個 epoch 讓 validation acc 再進一步往上升。我認為 semi-supervised learning 對於 model 的穩定度有一些幫助。

結果:

沒有使用 semi-supervied learning 的第一題中我最好的 validation acc 是 0.824100,這題中使用 semi-supervised learning 我最好的 validation acc 是 0.824150,semi 的 準確率略高一些,但其實差不多。