Zusammenfassung Funktionalanalysis

© Tim Baumann, http://timbaumann.info/uni-spicker

Notation. Sei im Folgenden $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition. Sei X ein \mathbb{K} -Vektorraum. Eine **Halbnorm** ist eine Abb. $\|-\|: X \to \mathbb{R}, x \mapsto \|x\|$, sodass für alle $x, y \in X$ und $\alpha \in \mathbb{K}$ gilt:

- ||x|| > 0 (Positivität)
- $\|\alpha x\| = |\alpha| \cdot \|x\|$ (Homogenität)
- ||x+y|| < ||x|| + ||y|| (\triangle -Ungleichung)

Eine Norm ist eine Halbnorm, für die zusätzlich gilt:

$$||x|| = 0 \iff x = 0.$$

Definition. Sei X ein \mathbb{K} -Vektorraum.

• Eine Abbildung $f: X \times X \to \mathbb{K}$ heißt Sesquilinearform, wenn für alle $x, x_1, x_2, y, y_1, y_2 \in X$ und $\alpha \in \mathbb{K}$ gilt:

 $f(\alpha x_1 + x_2, y) = \alpha f(x_1, y) + f(x_2, y)$ (Linearität im 1. Arg) $f(x, \alpha y_1 + y_2) = \overline{\alpha} f(x, y_1) + f(x, y_2)$ (Antilinearität im 2. Arg)

• Eine Hermitische Form f ist eine Sesquilinearform, für die gilt:

$$\forall x, y \in X : f(x, y) = \overline{f(y, x)}$$
 (Symmetrie)

Für alle $x \in X$ gilt dann $f(x,x) = \overline{f(x,x)}$, also ist f(x,x) reell.

- Eine Sesquilinearform f heißt positiv semidefinit, falls f(x,x) > 0 für alle $x \in X$ gilt. Falls zusätzlich f(x,x) = 0 genau dann gilt, wenn x = 0, dann heißt f positiv definit.
- Ein Skalarprodukt ist eine positiv definite Hermitische Form

$$(-|-): X \times X \to \mathbb{K}, \quad (x,y) \mapsto (x|y).$$

Satz. Für eine positiv semidefinite Hermitische Form (-|-|) ist durch $x \mapsto \sqrt{(x|x)}$ eine Halbnorm definiert. Ist die Form auch positiv definit, also ein Skalarprodukt, handelt es sich dabei um eine Norm, die sogenannte induzierte Norm.

Satz. Für ein Skalarprodukt (-|-) auf einem \mathbb{K} -VR X und die davon induzierte Norm gilt für alle $x, y \in X$:

- $|(x|y)| \le ||x|| \cdot ||y||$ (Cauchy-Schwarzsche Ungleichung)
- $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$ (Parallelogrammidentität)

Gleichheit gilt bei CS genau dann, wenn x und y gleichgerichtet sind.

Definition. Ein K-VR mit einer Norm heißt normierter Raum, mit einem Skalarprodukt **Prähilbertraum**.

Definition. Sei X ein Prähilbertraum. Zwei Vektoren $x, y \in X$ heißen zueinander orthogonal, notiert $x \perp y$, wenn $(x \mid y) = 0$.

Satz. Für zwei orthogonale Vektoren $x, y \in X$ gilt

$$||x - y||^2 = ||x + y||^2 = ||x||^2 + ||y||^2.$$
 (Pythagoras)

Lemma. Seien Y und Z Unterräume eines VR X, dann ist auch $Y + Z := \{y + z \mid y \in Y, z \in Z\}$ ein Unterraum von X.

Definition. Für Unterräume Y und Z eines VR X mit $Y \cap Z = \{0\}$ heißt $Y \oplus Z := Y + Z$ direkte Summe von Y und Z. **Definition.** Zwei Unterräume Y und Z von X heißen orthogonal. notiert $Y \perp Z$, falls $\forall y \in Y, z \in Z : y \perp z$.

Definition. Für einen \mathbb{K} -VR X und einen Unterraum $Y \subset X$ heißt

$$Y^{\perp} := \{x \in X \mid \text{span}\{x\} \perp Y\}$$
 orthog. Komplement von Y.

Definition. Ein metrischer Raum ist ein Paar (X, d) mit einer Mange X und einer **Metrik** $d: X \times X \to \mathbb{R}$, d. h. für $x, y, z \in X$ gilt:

- d(x,y) > 0 und $d(x,y) = 0 \iff x = y$ (Positivität)
- d(x, y) = d(y, x) (Symm.) $d(x, z) \le d(x, y) + d(y, z)$ (\triangle -Ungl.)

Definition. Sei V ein \mathbb{K} -Vektorraum. Eine **Fréchet-Metrik** ist eine Funktion $\rho: V \to \mathbb{R}_{>0}$, sodass für alle $x, y \in V$ gilt:

• $\rho(x) = \rho(-x)$ • $\rho(x) = 0 \iff x = 0$ • $\rho(x+y) < \rho(x) + \rho(y)$

Beispiel. Auf dem \mathbb{R}^n ist $x \mapsto \frac{\|x\|}{1+\|x\|}$ eine Fréchet-Metrik.

Definition. Sei (X, d) ein metrischer Raum und $A, B \subset X$, so heißt

 $\operatorname{dist}(A_1, A_2) := \inf\{d(x, y) \mid x \in A_1, y \in A_2\}$ **Abstand** zw. A und B.

Bemerkung. Für $A \subset X$ ist die Abbildung $x \mapsto \text{dist}(x, A)$ Lipschitz-stetig mit Lipschitz-Konstante ≤ 1 .

Definition. Sei (X, d) metrischer Raum, $A \subset X$, $\epsilon > 0$, dann heißt

$$B_{\epsilon}(A) := \{ y \in X \mid \text{dist}(\{y\}, A) < A \} \quad \epsilon\text{-Umgebung von } A.$$

Für $x \in X$ ist $B_{\epsilon}(x) := B_{\epsilon}(\{x\})$ die ϵ -Kugel um x.

Definition. Der Durchmesser von $A \subset X$ ist definiert durch $\operatorname{diam}(\emptyset) := 0$, $\operatorname{diam}(A) := \sup\{d(x, y) \mid x, y \in A\}$ für $A \neq \emptyset$.

Definition. $A \subset X$ mit diam $(A) < \infty$ heißt beschränkt.

Definition. Sei (X, d) ein normierter Raum und $A \subset X$, dann heißt

- int $A := A^{\circ} := \{x \in X \mid \exists \epsilon > 0 : B_e(x) \subset A\}$ das Innere von A,
- $\operatorname{clos} A := \overline{A} := \{x \in X \mid \forall \epsilon > 0 : B_{\epsilon}(x) \cap A \neq \emptyset\}$ **Abschluss** von A,
- bdry $A := \partial A := \overline{A} \setminus A^{\circ}$ Rand von A,
- $A^c := \mathcal{C}A := X \setminus A$ Komplement von A.

Definition. Eine Menge $A \subset X$ heißt offen, falls $A = A^{\circ}$, und abgeschlossen, falls $A = \overline{A}$.

Definition. Ein topologischer Raum ist ein Paar (X, τ) , wobei X eine Menge und $\tau \subset \mathcal{P}(X)$ ein System von Teilmengen von X, den sogenannten offenen Mengen, ist, sodass gilt:

$$\bullet \ \ \emptyset \in \tau, X \in \tau \quad \bullet \ \ \forall \widetilde{\tau} \subset \tau \ : \bigcup_{U \in \widetilde{\tau}} U \in \tau \qquad \bullet \ \ \forall U_1, U_2 \in \tau \ : U_1 \cap U_2 \in \tau$$

Definition. Sei (X, τ) ein topolischer Raum. Eine Menge $A \subset X$ heißt abgeschlossen, wenn das Komplement offen ist, also $A^c \in \tau$.

Definition. Ein **Hausdorff-Raum** ist ein topologischer Raum (X,τ) , der folgendes Trennungsaxiom erfüllt:

$$\forall x_1, x_2 \in X : \exists U_1, U_2 \in \tau : x_1 \in U_1 \land x_2 \in U_2 \land U_1 \cap U_2 = \emptyset$$

Definition. Ist (X,τ) ein topologischer Raum und $A\subset X$, dann ist auch (A, τ_A) ein topologischer Raum mit der sogenannten Relativtopologie $\tau_A := \{U \cap A \mid U \in \tau\}.$

Definition. Sei (X, τ) ein topol. Raum und $A \subset X$, dann heißt

- $A^{\circ} := \{x \in X \mid \exists U \in \tau : x \in U \text{ und } U \subset A\} \text{ das Innere von } A$,
- $\overline{A} := \{x \in X \mid \forall U \in \tau \text{ mit } x \in U : U \cap A \neq \emptyset\}$ Abschluss von A.

Definition. Sei (X, d) ein metrischer Raum. Dann ist

$$(X, \tau)$$
 mit $\tau := \{A \subset X \mid \text{int } A = A\}$

ein topol. Raum, wobei τ die von d induzierte Topologie heißt.

Bemerkung. Die direkte Definitionen des Abschlusses, des Inneren, usw. für metrische Räume stimmen mit den Definitionen dieser Begriffe über die induzierte Topologie überein.

Definition. Sei (X, τ) ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt **dicht** in X, falls $\overline{A} = X$.

Definition. Ein topologischer Raum (X, τ) heißt separabel, falls X eine abzählbare dichte Teilmenge enthält. Eine Teilmenge $A \subset X$ heißt separabel, falls (A, τ_A) separabel ist.

Definition. Seien τ_1, τ_2 zwei Topologien auf einer Menge X. Dann heißt τ_2 stärker (oder feiner) als τ_1 bzw. τ_1 schwächer (oder gröber) als τ_2 , falls $\tau_1 \subset \tau_2$.

Definition. Seien d_1 und d_2 Metriken auf einer Menge X und τ_1 und τ_2 die induzierten Topologien. Dann heißt d_1 stärker als d_2 , falls τ_1 stärker ist als τ_2 . Ist $\tau_1 = \tau_2$, so heißen d_1 und d_2 äquivalent.

Satz. Seien $\|-\|_1$ und $\|-\|_2$ zwei Normen auf dem K-VR X. Dann:

- $\|-\|_2$ ist stärker als $\|-\|_1 \iff \exists \, C>0 \, : \, \forall \, x \in X \, : \, \|x\|_1 \leq C \|x\|_2$
- $\begin{array}{l} \bullet \ \, \| \|_1 \text{ und } \| \|_2 \text{ sind "aquivalent} \iff \\ \exists \, c, C > 0 \, : \, \forall \, x \in X \, : \, c \| x \|_1 \leq \| x \|_2 \leq C \| x \|_1 \\ \end{array}$

Definition. Die *p*-Norm auf dem \mathbb{K}^n ist definiert für $p \in [1, \infty]$ als

$$\|x\|_p \coloneqq \left(\sum_{i=1}^n |x_j|^p\right)^{\frac{1}{p}} \text{ für } 1 \leq p < \infty, \quad \|x\|_\infty \coloneqq \max_{1 \leq i \leq n} |x_i|.$$

Bemerkung. Alle p-Normen auf dem \mathbb{K}^n sind zueinander äquivalent.

Definition. Seien (X, τ_X) und (Y, τ_Y) Hausdorff-Räume, $S \subset X$, sowie $x_0 \in S$. Eine Funktion $f: S \to Y$ heißt stetig in x_0 , falls gilt:

$$\forall V \in \tau_V : f(x_0) \in V \implies \exists U \in \tau_X \text{ mit } x_0 \in U : f(U \cap S) \subset V$$

Ist X = S, so heißt $f: X \to Y$ stetige Abbildung, falls f stetig in allen Punkten $x_0 \in X$ ist. Das ist genau dann der Fall, wenn das Urbild offener Mengen offen ist, d. h. $\forall V \in \tau_V : f^{-1}(V) \in \tau_V$.

Bemerkung. In metrischen Räumen ist diese Definition äquivalent zur üblichen Folgendefinition.

Definition. Sei (X,d) ein metrischer Raum und $(x_k)_{k\in\mathbb{N}}$ eine Folge in X. Die Folge heißt Cauchy-Folge, falls

$$d(x_k, x_l) \xrightarrow{k, l \to \infty} 0.$$

Ein Punkt $x \in X$ heißt **Häufungspunkt** der Folge, falls es eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$ gibt mit $x_{k_i} - x \xrightarrow{i\to\infty} 0$.

Definition. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchy-Folge in X einen Häufungspunkt (den Grenzwert) hat.

Definition. • Ein normierter K-Vektorraum heißt Banachraum, wenn er vollständig bezüglich der induzierten Metrik ist.

- Ein Banachraum X heißt **Banach-Algebra**, falls er eine Algebra ist mit $||x \cdot y||_X \le ||x||_X \cdot ||y||_X$.
- Ein Hilbertraum ist ein Prähilbertraum, der vollständig bzgl. der vom Skalarprodukt induzierten Norm ist.

Lemma. Ist (X,d) ein vollständiger metrischer Raum und $Y\subset X$ abgeschlossen, so ist auch $(Y,d|_Y)$ ein vollständiger metrischer Raum.

Bemerkung. Ein normierter Raum X ist genau dann ein Prähilbertraum, falls die Parallelogrammidentität

$$\forall x, y \in X : ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

gilt. Folglich ist ein Banachraum genau dann ein Hilbertraum, falls die Parallelogrammidentität gilt.

Definition. Sei $\mathbb{K}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} \text{ Folge in } \mathbb{K} \}$. Die Fréchet-Metrik

$$\rho(x) := \sum_{i=1}^{\infty} 2^{-i} \frac{|x_i|}{1 + |x_i|} < 1$$

macht $\mathbb{K}^{\mathbb{N}}$ zu einem metrischen Raum, dem Folgenraum.

Satz. Sei $(x^k)_{k\in\mathbb{N}}$ eine Folge in $\mathbb{K}^{\mathbb{N}}$ mit $x^k = (x_i^k)_{i\in\mathbb{N}}$ und $x = (x_i)_{i\in\mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, so gilt

$$\rho(x^k - x) \xrightarrow{k \to \infty} 0 \iff \forall i \in \mathbb{N} : x_i^k \xrightarrow{k \to \infty} x_i.$$

Satz. Der Folgenraum $\mathbb{K}^{\mathbb{N}}$ ist vollständig.

Definition. Für $p \in [1, \infty]$ und $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ heißt die Norm

$$\begin{split} \|x\|_{\ell^p} &:= \left(\sum_{i=1}^\infty |x_i|^p\right)^\frac{1}{p} \in [0,\infty]\,, \text{ für } 1 \leq p < \infty \\ \|x\|_{\ell^\infty} &:= \sup_{i \in \mathbb{N}} |x_i| \in [0,\infty] \end{split}$$

 ℓ^p -Norm auf dem Raum $\ell^p(\mathbb{K}) := \{x \in \mathbb{K}^{\mathbb{N}} \mid ||x||_{\ell^p} < \infty \}$

Satz. Der Raum $(\ell^p(\mathbb{K}), ||-||_{\ell^p})$ ist ein Banachraum.

Bemerkung. Im Fall p=2 ist $\ell^2(\mathbb{K})$ ein Hilbertraum mit Skalarprodukt $(x\,|\,y)_{\ell^2}:=\sum\limits_{i=0}^\infty x_i\overline{y_i}$ für $x=(x_i)_{i\in\mathbb{N}},\ y=(y_i)_{i\in\mathbb{N}}\in\ell^2(\mathbb{K}).$

Satz (Vervollständigung). Sei (X, d) ein metrischer Raum. Betrachte die Menge $X^{\mathbb{N}}$ aller Folgen in X und definiere

$$\widetilde{X} := \{x \in X^{\mathbb{N}} \mid x \text{ ist Cauchy-Folge in } X\} / \sim$$

mit der Äquivalenzrelation $x \sim y$ in $\widetilde{X} : \iff d(x_j, y_j) \xrightarrow{j \to \infty} 0$. Diese Menge wird mit der Metrik

$$\widetilde{d}(x,y) := \lim_{i \to \infty} d(x_i, y_i)$$

zu einem vollständigen metrischen Raum. Die injektive Abbildung $J:X\to \tilde{X}$, welche $x\in X$ auf die konstante Folge $(x)_{i\in\mathbb{N}}$ abbildet, ist isometrisch, d. h. $\forall\,x,y\in X\,:\, \widetilde{d}(J(x),J(y))=d(x,y).$ Wir können also X als einen dichten Unterraum von \widetilde{X} auffassen.

Definition. Man nennt \widetilde{X} **Vervollständigung** von X.

Notation. Sei im Folgenden Y ein Banachraum.

Definition. Sei S eine Menge. Dann ist

$$B(S,Y) := \{ f : S \to Y \mid f(S) \text{ ist beschränkt in } Y \}$$

der Raum der beschränkten Funktionen von B nach Y. Diese Menge ist ein \mathbb{K} -Vektorraum und wird mit der Supremumsnorm $\|f\|_{B(S)} \coloneqq \sup_{x \in S} \|f(x)\|$ zu einem Banachraum.

Definition. Sei $S \subset \mathbb{R}^n$ kompakt, dann ist

$$\mathcal{C}^0(S,Y) := \mathcal{C}(S,Y) := \{ f : S \to Y \mid f \text{ ist stetig } \}$$

der Raum der stetigen Funktionen von S nach Y. Er ist ein abgeschlossener Unterraum von B(S,Y) mit der Supremumsnorm, also ein Banachraum.

Bemerkung. Für $Y = \mathbb{K}$ ist $C^0(S; \mathbb{K}) = C(S)$ eine kommutative Banach-Algebra mit dem Produkt $(f \cdot g)(x) := f(x) \cdot g(x)$.

Definition. Sei $S \subset \mathbb{R}^n$ und $(K_n)_{n \in \mathbb{N}}$ eine Folge kompakter Teilmengen des \mathbb{R}^n . Dann heißt (K_n) eine **Ausschöpfung** von S, falls:

- Für alle $x \in S$ gibt es ein $\delta > 0$ und $i \in \mathbb{N}$, sodass $B_{\delta}(x) \subset K_i$.
- $S = \bigcup_{n \in \mathbb{N}} K_n$ $\emptyset \neq K_i \subset K_{i+1} \subset S$ für alle $i \in \mathbb{N}$

Bemerkung. Zu $S \subseteq \mathbb{R}^n$ und $S \subseteq \mathbb{R}^n$ existiert eine Ausschöpfung.

Definition. Es sei $S \subset \mathbb{R}^n$ so, dass eine Ausschöpfung $(K_i)_{i \in \mathbb{N}}$ von S existiert. Dann ist

$$C^0(S;Y) := \{ f: S \to Y \mid f \text{ ist stetig auf } S \}$$

der Raum der stetigen Funktionen von S nach Y. Er ist ein vollständiger metrischer Raum mit der Fréchet-Norm

$$\varrho(f) := \sum_{i \in \mathbb{N}} 2^{-i} \frac{\|f\|_{C^0(K_i)}}{1 + \|f\|_{C^0(K_i)}}.$$

Bemerkung. • Die von dieser Metrik erzeugte Topologie ist unabhängig von der Wahl der Ausschöpfung.

• Ist $S \subset \mathbb{R}^n$ kompakt, so stimmt die Topologie mit der von $\|-\|_{B(S,Y)}$ überein.

 ist S ⊂ Rⁿ offen, so gibt es auf C⁰(S) keine Norm, die dieselbe Topologie wie die Fréchet-Metrik ρ erzeugt.

Definition. Sei
$$S \subset \mathbb{R}^n$$
. Für $f: S \to Y$ heißt supp $f := \overline{\{x \in S \mid f(x) \neq 0\}} \subset \overline{S}$ **Träger** von f .

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Dann ist $\mathcal{C}_0^0(S;Y) := \{ f \in \mathcal{C}^0(S;Y) \mid \text{supp } f \text{ ist kompakt in } \mathbb{R}^n \}$ die Menge der stetigen Fktn. mit kompaktem Träger von S nach Y.

Definition. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und $m \in \mathbb{N}$. Dann ist $\mathcal{C}^m(\overline{\Omega},Y) \coloneqq \{f: \Omega \to Y \mid f \text{ ist } m\text{-mal stetig differenzierbar in } \Omega \text{ und für } k \leq m \text{ und } s_1,...,s_k \in \{1,...,n\} \text{ ist } \partial_{s_1} \cdots \partial_{s_k} f \text{ auf } \overline{\Omega} \text{ stetig fortsetzbar } \}$

der Raum der differenzierbaren Funktionen von Ω nach Y und mit folgender Norm ein Banachraum:

$$||f||_{\mathcal{C}^m(\overline{\Omega})} = \sum_{|s| < m} ||\partial^s f||_{\mathcal{C}^0(\overline{\Omega})}$$

Bemerkung. In obiger Norm wird die Summe über alle k-fache partielle Ableitungen mit k < m gebildet.

Defn. Sei $S \subset \mathbb{R}^n$ und $f: S \to Y$. Für $\alpha \in]0,1]$ heißt

$$\operatorname{H\"ol}_{\alpha}(f,S) \coloneqq \sup_{x,y \in S} \frac{\|f(y) - f(x)\|}{\|y - x\|^{\alpha}} \in [0, \infty]$$

Hölder-Konstante von f auf S zum Exponenten α . Im Fall α =1 heißt Lip(f,S) := Höl $_1(f,s)$ Lipschitz-Konstante.

Defn. Ist Ω offen und beschränkt und $m \in \mathbb{N}$, so ist $\mathcal{C}^{m,\alpha}(\overline{\Omega},Y) := \{ f \in \mathcal{C}^m(\overline{\Omega},Y) \mid \forall s \text{ mit } |s| = m : \text{H\"ol}_{\alpha}(\partial^s f,\overline{\Omega}) < \infty \}$ ein sogenannter **H\"older-Raum**. Er ist ein Banachraum mit Norm

$$||f||_{\mathcal{C}^{m,\alpha}} \coloneqq \sum_{|s| \le m} ||\partial^s f||_{\mathcal{C}^0(\Omega)} + \sum_{|s| = m} \text{H\"ol}_{\alpha}(\partial^s f, \overline{\Omega}).$$

Defn. Funktionen aus $C^{0,\alpha}(\overline{\Omega}, Y)$ heißen **Hölder-stetig** (zum Exponenten α), Funktionen aus $C^{0,1}(\overline{\Omega}, Y)$ **Lipschitz-stetig**.

Defn. Der Vektorraum der unendlich oft diff'baren Fktn und dessen Unterraum der Fktn mit kompakten Träger sind

$$\mathcal{C}^{\infty}(\Omega,Y) \coloneqq \bigcap_{m \in \mathbb{N}} \mathcal{C}^m(\Omega,Y) \quad \text{bzw.} \quad \mathcal{C}^{\infty}_0(\Omega,Y) \coloneqq \bigcap_{m \in \mathbb{N}} \mathcal{C}^m_0(\Omega,Y).$$

Defn. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und Y ein Banachraum. Eine Funktion $f:\Omega \to Y$ heißt **elementare Funktion**, wenn f die Form

$$f = \sum_{i=1}^{n} \mathbb{1}_{E_i} b_i \quad \text{mit } n \in \mathbb{N}, E_1, ..., E_n \in \mathfrak{A}, b_1, ..., b_n \in Y$$

und $\mu(E_i) < \infty$ für i=1,...,n besitzt. Für eine solche Funktion heißt

$$\int\limits_{\Omega} \! f \, \mathrm{d} \mu = \sum_{i=1}^n \mu(E_i) b_i \quad \text{Bochner-Integral}.$$

Eine messbare Funktion $f: \Omega \to Y$ heißt Bochner-integrierbar, wenn es eine Folge $(f_n)_{n \in \mathbb{N}}$ elementarer Funktionen gibt, sodass

$$\int_{\Omega} ||f - f_n|| \, \mathrm{d}\mu \xrightarrow{n \to \infty} 0,$$

wobei links das gewöchnliche Lebesgue-Integral steht. Dann heißt

$$\iint\limits_{\Omega} \mathrm{d}\mu \coloneqq \lim_{n \to \infty} \iint\limits_{\Omega} f_n \, \mathrm{d}\mu \quad \mathbf{Bochner-Integral} \, \, \mathrm{von} \, \, f.$$

Notation. $L(\mu, Y) := L(\mu) := \{f : \Omega \to Y \mid f \text{ Bochner-integrierbar}\}$

Satz (Bochner-Kriterium). Für $f: \Omega \to Y$ gilt:

$$f \in L(\mu, Y) \iff f\mu$$
-messbar und $|f| \in L(\mu, \mathbb{R})$.

Satz (Majoranten-Kriterium). Sei $f: \Omega \to Y$ μ -messbar und $g \in L(\mu, \mathbb{R})$ mit $||f|| \leq g$ μ -fast-überall. Dann ist $f \in L(\mu, Y)$.

Satz. Sei $f: \Omega \to Y$ μ -messbar und $(f_n)_{n \in \mathbb{N}}$ eine Folge μ -messbarer Funktionen von Ω nach Y. Angenommen, es gilt $||f_n(\omega)|| \leq g(\omega)$ für alle $n \in \mathbb{N}$ und μ -fast-alle $\omega \in \Omega$ und ein $g \in L(\mu, \mathbb{R})$. Dann gilt:

$$f_n \xrightarrow{n \to \infty} f \implies f \in L(\Omega, Y) \min \int_{\Omega} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Definition. Eine Teilmenge $A \subset X$ heißt **präkompakt**, falls es für jedes $\epsilon > 0$ eine Überdeckung von A mit endlich vielen ϵ -Kugeln $A \subset B_{\epsilon}(x_1) \cup ... \cup B_{\epsilon}(x_{n_{\epsilon}})$ mit $x_1, x_{n_{\epsilon}} \in X$ gibt.

Definition. Eine Teilmenge $A \subset X$ eines metrischen Raumes (X, d) heißt **kompakt**, falls eine der folgenden äquivalenten Bedinungen erfüllt ist:

- A ist **überdeckungskompakt**: Für jede Überdeckung $A \subset \bigcup_{i \in I} A_i$ mit $A_i \odot X$, gibt es eine endl. Teilmenge $J \subset I$ mit $A \subset \bigcup_{i \in I} A_i$.
- A ist folgenkompakt: Jede Folge in A besitzt eine konvergente Teilfolge mit Grenzwert in A.
- $(A, d|_A)$ ist vollständig und A ist **präkompakt**.

Satz. Sei (X, d) ein metrischer Raum. Dann gilt:

- A präkompakt $\implies A$ beschränkt,
- $A \text{ kompakt} \implies A \text{ abgeschlossen und präkompakt}$,
- Falls X vollständig, dann A präkompakt $\iff \overline{A}$ kompakt.

Satz. Sei $A \subset \mathbb{K}^n$. Dann gilt:

- A präkompakt $\iff A$ beschränkt,
- $A \text{ kompakt} \iff A \text{ abgeschlossen und beschränkt (Heine-Borel)}.$

Satz. Sei (X,d) ein metrischer Raum und $A\subset X$ kompakt. Dann gibt es zu $x\in X$ ein $a\in A$ mit $d(x,a)=\mathrm{dist}(x,A)$.

Satz. Sei X ein normierter Raum und $Y \subset X$ ein abgeschlossener echter Teilraum. Für $0 < \Theta < 1$ (falls X Hilbertraum, geht auch $\Theta = 1$) gibt es ein $x_{\Theta} \in X$ mit

$$||x_0|| = 1 \quad \text{und}\Theta \le \text{dist}(x_{\Theta}, Y) \le 1.$$

Satz. Für jeden normierten Raum X gilt:

$$\overline{B_1(0)}$$
 kompakt \iff dim $(X) < \infty$.

Definition. Sei $S \subset \mathbb{R}^n$ kompakt, Y ein Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann heißt A gleichgradig stetig, falls

$$\sup_{f \in A} |f(x) - f(y)| \xrightarrow{|x-y| \to 0} 0.$$

Definition (Arzelà-Ascoli). Sei $S \subset \mathbb{R}^n$ kompakt, Y ein endlichdimensionaler Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann gilt

A präkompakt \iff A ist beschränkt und gleichgradig stetig.

Satz (Fundamentallemma der Variationsrechnung). Sei $\Omega \subset \mathbb{R}^n$ und Y ein Banachraum. Für $g \in \mathcal{L}^1(\Omega, Y)$ sind dann äquivalent:

- Für alle $\xi \in \mathcal{C}_0^{\infty}$ gilt $\int_{\Omega} (\xi \cdot g) dx = 0$.
- Für alle beschränkten $E\in\mathfrak{B}(\Omega)$ mit $\overline{E}\subset\Omega$ gilt $\int\limits_E g\,\mathrm{d}x=0.$
- Es gilt $g \stackrel{\text{f.ü.}}{=} 0$ in Ω .

Satz. Sei $T: X \to Y$ eine lineare Abbildung zwischen Vektorräumen X und Y. Dann sind äquivalent:

- ullet T ist stetig. ullet T ist stetig
- $\exists C > 0 : \forall x \in X : ||Tx|| < C \cdot ||x||$.

• T ist stetig in 0. • $\sup_{\|x\| \le 1} \|Tx\| < \infty$.

Definition. Seien X, Y Vektorräume mit einer Topologie. Dann ist

$$\mathcal{L}(X,Y) = \{T : X \to Y \mid X \text{ ist linear und stetig } \}$$

die Menge aller **linearen Operatoren** zwischen X und Y. Falls die Stetigkeit nicht nur topologisch, sondern bezüglich einer Norm gilt, so redet man von **beschränkten Operatoren**.

Satz. Seien $X \neq \{0\}$, $Y \neq \{0\}$ Banachräume und $T, S \in \mathcal{L}(X, Y)$. Dann gilt: Falls T invertierbar ist und $||S - T|| < \frac{1}{||T^{-1}||}$, dann ist auch S invertierbar.

Bemerkung. Die Menge aller invertierbaren Operatoren in $\mathcal{L}(X,Y)$ ist somit eine offene Teilmenge.

Definition. Seien X und Y Banachräume über \mathbb{K} . Eine lineare Abbildung $T: X \to Y$ heißt **kompakter** (linearer) **Operator**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:

- $\overline{T(B_1(0))}$ ist kompakt. $T(B_1(0))$ ist präkompakt.
- Für alle beschränkten $M \subset X$ ist $T(M) \subset Y$ präkompakt.
- Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in X besitzt $(Tx_n)_{n\in\mathbb{N}}$ eine in Y konvergente Teilfolge.

Definition. Sei X ein Vektorraum über \mathbb{K} . Dann ist $X' := \mathcal{L}(X, \mathbb{K})$ der **Dualraum** von X. Elemente von X' werden **lineare Funktionale** genannt.

 \mathbf{Satz} (Rieszscher Darstellungssatz). Ist X ein Hilbertraum, so ist

$$J: X \to X', \quad x \mapsto y \mapsto (y, x)_X$$

ein isometrischer konjugiert linearer Isomorphismus.

Satz (Lax-Milgram). Sei X ein Hilbertraum über \mathbb{K} und $a: X \times X \to \mathbb{K}$ sesquilinear. Es gebe Konstanten c_0 und C_0 mit $0 < c_0 \le C_0 < \infty$, sodass für alle $x, y \in X$ gilt:

- $|a(x,y)| \le C_0 \cdot ||x|| \cdot ||y||$ (Stetigkeit)
- $Rea(x,x) \ge c_0 \cdot ||x||^2$ (Koerzivität)

Dann existiert genau eine Abbildung $A: X \to X$ mit

$$a(y,x) = (y,Ax)$$
 für alle $x,y \in X$.

Außerdem gilt: $A \in \mathcal{L}(X)$ ist ein invertierbarer Operator mit

$$||A|| \le C_0$$
 und $||A^{-1}|| \le \frac{1}{c_0}$.

Satz (Hahn-Banach). Sei X ein \mathbb{R} -VR und

• $p: X \to \mathbb{R}$ sublinear, d. h. für alle $x, y \in X$ und $\alpha \in \mathbb{R}_{\geq 0}$ gelte

$$p(x+y) \le p(x) + p(y)$$
 und $p(\alpha x) = \alpha p(x)$,

- $f: Y \to \mathbb{R}$ linear auf einem Unterraum $Y \subset X$ und
- $f(x) \le p(x)$ für $x \in Y$.

Dann gibt es eine lineare Abbildung $F:X\to\mathbb{R}$ mit

$$F(x) = f(x)$$
 für $x \in Y$ und $F(x) \le p(x)$ für $x \in X$.

Satz. (Hahn-Banach für lineare Funktionale) Sei X ein \mathbb{R} -VR, $Y \subset X$ ein Unterraum, $p: X \to \mathbb{R}$ linear und $f: Y \to \mathbb{R}$ linear, sodass $f(x) \leq p(x)$ für alle $x \in Y$. Dann existiert eine lineare Abbildung $F: X \to \mathbb{R}$ mit $f = F|_Y$ und $F \leq p$.

Satz. Sei $(X, \|\cdot\|_X)$ ein normierter \mathbb{K} -Vektorraum und $(Y, \|\cdot\|_Y)$ ein Unterraum. Dann gibt es zu $y \in Y'$ ein $x' \in X'$ mit $x'|_Y = y'$ und $\|x'\|_{X'} = \|y'\|_{Y'}$.

Satz. Sei Y abgeschlossener Unterraum des normierten Raumes X und $x_0 \in X \setminus Y$. Dann gibt es ein $x' \in X'$ mit $x'|_Y = 0$, $||x'||_{X'} = 1$, $\langle x', x_0 \rangle = \operatorname{dist}(x_0, Y)$.

Bemerkung. Dann gibt es auch ein $x' \in X'$ mit $x'|_{Y} = 0$,

$$||x'||_{X'} = (\operatorname{dist}(x_0, Y))^{-1} \quad \text{und} \quad \langle x', x_0 \rangle = 1.$$

Satz. Seien X normierter Raum und $x_0 \in X$. Dann gilt

- Ist $x_0 \neq 0$, so gibt es $x'_0 \in X'$ mit $||x'_0||_{X'} = 1$ und $\langle x'_0, x_0 \rangle_{X' \times X} = ||x_0||_X$.
- Ist $\langle x', x_0 \rangle_{X' \times X} = 0$ für alle $x' \in X'$, so ist $x_0 = 0$.
- Durch $Tx' = \langle x', x_0 \rangle_{X' \times X}$ für $x' \in X'$ ist ein $T \in \mathcal{L}(X', \mathbb{K}) = X''$, dem Bidualraum, definiert mit $||T|| = ||x_0||_X$.

Satz (Baire'scher Kategoriensatz). Es sei $X \neq \emptyset$ ein vollständiger metrischer Raum und $X = \bigcup_{k \in \mathbb{N}} A_k$ mit abgeschlossenen Mengen

 $A_k \subset X$. Dann gibt es ein $k_0 \in \mathbb{N}$ mit $\operatorname{int}(A_{k_0}) \neq \emptyset$.

Korollar. Jede Basis eines ∞ -dimensionalen Banachraumes ist überabzählbar.

Satz (Prinzip der gleichmäßigen Beschränktheit). Es sei X ein nichtleerer vollständiger metrischer Raum und Y ein normierter Raum. Gegeben sei eine Menge von Funktionen $F \subset \mathcal{C}^0(X,Y)$ mit $\forall \, x \in X \, : \, \sup_{f \in F} \|f(x)\|_Y < \infty$. Dann gibt es ein $x_0 \in X$ und ein

$$\epsilon > 0$$
, sodass $\sup_{B_{\epsilon}(x_0)} \sup_{f \in F} ||f(x)||_Y < \infty$.

Satz (Banach-Steinhaus). Es sei X ein Banachraum und Y ein normierter Raum, $\mathcal{T} \subset \mathcal{L}(X,Y)$ mit $\forall x \in X$: $\sup_{x \in \mathcal{T}} ||Tx||_Y < \infty$.

DAnn ist \mathcal{T} eine beschränkte Menge in $\mathcal{L}(X,Y)$, d. h. $\sup_{T \in \mathcal{T}} \|T\|_{\mathcal{L}(X,Y)}$.

Definition. Seien X und Y topologische Räume, so heißt eine Abbildung $f: X \to Y$ offen, falls für alle offenen $U \subseteq X$ das Bild $f(U) \subseteq Y$ offen ist.

Bemerkung. Ist f bijektiv, so ist f genau dann offen, wenn f^{-1} stetig ist. Sind X, Y normierte Räume und ist $T: X \to Y$ linear, so gilt: T ist offen $\iff \exists \delta > 0: B_{\delta}(0) \subset T(B_1(0)).$

Satz (von der offenen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$. Dann ist T genau dann surjektiv, wenn T offen ist.

Satz (von der inversen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$ bijektiv, so ist T^{-1} stetig, also $T^{-1} \in \mathcal{L}(Y, X)$.

Satz (vom abgeschlossenen Graphen). Seien X,Y Banachräume und $T:X\to Y$ linear. Dann ist $\operatorname{Graph}(T)=\{(x,Tx)\,|\,x\in X\}$ genau dann abgeschlossen, wenn T stetig ist. Dabei ist $\operatorname{Graph}(T)\subset X\times Y$ mit der **Graphennorm** $\|(x,y)\|_{X\times Y}=\|x\|_X+\|y\|_Y$.

Definition. Sei X ein Banachraum.

• Eine Folge $(x_k)_{k \in \mathbb{N}}$ in X konvergiert schwach gegen $x \in X$ (notiert $x_k \xrightarrow{k \to \infty} x$), falls für alle $x' \in X'$ gilt:

$$\langle x', x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

• Eine Folge $(x'_k)_{k\in\mathbb{N}}$ in X' konvergiert schwach* gegen $x'\in X'$ (notiert $x'_k \xrightarrow{k\to\infty} x'$), falls für alle $x\in X$ gilt:

$$\langle x'_k, x \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

- Analog sind schwache und schwache* Cauchyfolgen definiert.
- Eine Menge $M \subset X$ (bzw. $M \subset X'$) heißt schwach folgenkompakt bzw. schwach* folgenkompakt, falls jede Folge in der Menge M eine schwach (bzw. schwach*) konvergente Teilfolge besitzt deren Grenzwert wieder in M liegt.

Bemerkung. Der schwache bzw. schwache* Grenzwert einer Folge ist eindeutig bestimmt. Starke Konvergenz impliziert schwache Konvergenz.

Satz. Es gilt für $x, x_k \in X, x', x'_k \in X'$:

$$x_k \xrightarrow{k \to \infty} x \text{ in } X \iff J_x x_k \xrightarrow{k \to \infty} J_x x \text{ in } X''$$

$$x'_k \xrightarrow{k \to \infty} x' \text{ in } X' \implies x'_k \xrightarrow{k \to \infty} x' \text{ in } X'$$

Lemma. • Aus $x'_k \xrightarrow{k \to \infty} x'$ in X' folgt $||x'||_{X'} \le \liminf_{k \to \infty} ||x'_k||_{X'}$, aus $x_k \xrightarrow{k \to \infty} x$ in X folgt $||x||_X \le \liminf_{k \to \infty} ||x_k||_X$.

• Schwach bzw. schwach* konvergente Folgen sind beschränkt.

• Aus $x_k \xrightarrow{k \to \infty} x$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X' folgt $\langle x'_k, x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$. Dasselbe folgt mit $x_k \xrightarrow{k \to \infty} x$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X'.

Achtung. In der letzten Behauptung müssen wir vorraussetzen, dass mindestens eine Folge stark konvergiert. Für beidesmal schwache/schwache* Konvergenz ist die Aussage i. A. falsch.

Satz (Banach-Alaoglu). Sei X ein separabler Banachraum. Dann ist die abgeschl. Einheitskugel $\overline{B_1(0)} \subset X'$ schwach* folgenkompakt.

Beispiel. Sei $\Omega \subset \mathbb{R}^n$ beschränkt und offen. Dann ist $L^1(\Omega)$ separabel (Approximation durch Treppenfunktionen und der Satz besagt: Ist $(f_k)_{k \in \mathbb{N}}$ in $L^{\infty}(\Omega)$ beschränkt, so gibt es eine Teilfolge $(f_{k_l})_{l \in \mathbb{N}}$ und ein $f \in L^{\infty}(\Omega)$, sodass

$$\int_{\Omega} f_{k_l} x \cdot \overline{g} \, \mathrm{d} \xrightarrow{l \to \infty} \int_{\Omega} f \cdot \overline{g} \, \mathrm{d} x \quad \text{für alle } g \in L^1(\Omega)$$

Bemerkung. Schwach*-Konvergenz impliziert eine sogenannte Schwach*-Topologie in dem Sinne, dass man sagt, eine Folge $(x_k')_{k\in\mathbb{N}}$ in X' ist bzgl. dieser Topologie konvergent, wenn sie punktweise für alle $x\in X$ konvergiert.

Definition. Sei X ein Banachraum und J_X die Isometrie bzgl. des Bidualraumes. Dann heißt X reflexiv, falls J_X surjektiv ist.

Lemma. • Ist X reflexiv, so stimmen schwache* und schwache konvergenz in X' überein.

- $\bullet\,$ Ist X reflexiv, so ist jeder abgeschlossene Unterraum von X reflexiv.
- Ist $T: X \to Y$ ein Isomorphismus, so gilt:

$$X$$
 reflexiv $\iff Y$ reflexiv

• Es gilt: X reflexiv $\iff X'$ reflexiv.

Lemma. Für jeden Banachraum X gilt: X' separabel $\implies X$ separabel.

Bemerkung. Die Umkehrung gilt i. A. nicht! Gegenbeispiel: $X = L^1$.

Satz (Eberlein-Shmulyan). Sei X reflexiver Banachraum. Dann ist die abgeschlossene Einheitskugel $\overline{B_1(0)} \subset X$ schwach folgenkompakt.

Beispiel. • Hilberträume X sind reflexiv (folgt direkt aus dem Riesz'schen Darstellungssatz; im Reellen $J_X = (R_X R_{X'})^{-1}$, wobei $R_X : X \to X'$ der zugehörige isomorphismus). Daher: Ist $(x_k)_{k \in \mathbb{N}}$ eine beschränkte Folge in X, so existiert eine Teilfolge $(x_k)_{k \in \mathbb{N}}$ und $x \in X$, sodass

$$(y|x_{k_l})_X \xrightarrow{l \to \infty} (y|x)_X$$

für alle $u \in X$

- Sei $\Omega \subset \mathbb{R}^n$ beschränkt, $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$. Dann ist $L^p(\Omega)$ reflexiv.
- L¹ und L[∞] sind genau dann nicht reflexiv, wenn sie unendlich-dimensional sind.

Bemerkung. Analog zur schwach*-Topologie kann man auch eine schwache Topologie einführen.

Satz (Trennungssatz). Seien X ein normierter Raum, $M \subset X$ nicht leer, abgeschlossen, konvex und $x_0 \in X \setminus M$. Dann gibt es ein $x' \in X'$ und ein $\alpha \in \mathbb{R}$ mit

$$Re\langle x', x_0 \rangle_{X' \times X} > \alpha$$
 und $Re\langle x', x \rangle_{X' \times X} \le \alpha$ für $x \in M$.

Satz. Sei X ein normierter Raum, $M \subset X$ konvex und abgeschlossen. Dann ist M schwach folgenabgeschlossen, d. h. sind $x_k, x \in X$ für $k \in \mathbb{N}$, so gilt

$$\forall k \in \mathbb{N} : x_k \in M, x_k \xrightarrow{k \to \infty} x \text{ in } X \implies x \in M$$

Lemma (Mazur). Sei X normierter Raum und $(x_k)_{k\in\mathbb{N}}$ Folge in X mit $x_k \xrightarrow{k\to\infty} x$. Dann gilt $x\in\operatorname{conv}\{x_k\mid k\in\mathbb{N}\}$

Satz. Sei X ein reflexiver Banachraum und $M\subset X$ nicht leer, konvex, abgeschlossen. Dann gibt es zu \tilde{x} ein $x\in M$ mit $\|x-\tilde{x}\|=\mathrm{dist}(\tilde{x},M)$.

Beispiel. • Sei $M=W_0^{1,2}(\Omega)$. Dann ist die eindeutige Lösbarkeit des zugehörigen (schwachen) Dirichlet-Problems gesichert.

- Sei $M = \{u \in W^{1,2}(\Omega) \mid \int_{\Omega} u \, \mathrm{d}x = 0\}$ und gelte $\int_{\Omega} f \, \mathrm{d}x = 0$. Dann sichern Punkt 3, 4 die eindeutige Lösbarkeit des zugehörigen Neumann-Problems.
- Seien $u_0, \psi_0 \in W^{1,2}(\Omega)$ gegeben und $u_0(x) \geq \phi_0(x)$ für fast alle $x \in \Omega$. Definiere $M = \{v \in W^{1,2}(\Omega) \mid v = u_0 \text{ auf } \partial\Omega, v \geq \psi \text{ in } \Omega\}$ Dann sichern die Punkte 1 bzw. 2 und 4 die eindeutige Existenz einer Lösung dieses Hindernis-Problems.

Lemma. Ist $X \infty$ -dimensionaler Raum, so sind äquivalent:

- \bullet X ist separabel
- $\exists X_n \subset X$ endlich-dim. Unterräume : $\forall n \in \mathbb{N} : X_n \subset X_{n+1}$ und $\bigcup_{n \in \mathbb{N}} X_n$ ist dicht in X.
- $\exists X_n \subset X$ endlich-dim. Unterräume : $E_n \cap E_m = \{0\}$ für $n \neq m$ und $\bigcup_{n \in \mathbb{N}} (E_0 \oplus \ldots \oplus E_n)$ ist dicht in X.
- \exists linear unabhängige Menge $\{e_n \mid n \in \mathbb{N}\}$ mit span $\{e_n \mid n \in \mathbb{N}\}$ ist dicht in X.

Definition. Sei X normierter Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Schauder-Basis von X, falls:

 $\forall \, x \in X \, : \, \exists \, \text{eindeutige bestimmte} \, \, \alpha_k \in \mathbb{K} \, : \, \sum_{k=0}^n \alpha_n e_k \xrightarrow{n \to \infty} x \, \, \text{in} \, \, X.$

S ist also eindeutig bestimmt durch die "unendliche Matrix" $(a_{k,l})_{k,l\in\mathbb{N}}.$

Definition. Sei X ein Prähilbertraum. Eine Folge $(e_k)_{k \in \mathbb{N}}$, $N \subset \mathbb{N}$ in X heißt **Orthogonalsystem**, falls $(e_k|e_l) = 0$ für $k \neq l$ und $e_k \neq 0$ für alle $k \in \mathbb{N}$ und **Orthonormalsystem**, falls zusätzlich $||e_k|| = 1$ für alle $k \in \mathbb{N}$ gilt.

Lemma (Besselsche Ungleichung). Sei $(e_k)_{k\in\mathbb{N}}$ ein (endliches) Orthonormalsystem des Prähilbertraumes X. Dann gilt für alle $x\in X$: $0\leq \|x\|^2-\sum\limits_{k=0}^n|(x|e_k)|^2=\|x-\sum\limits_{k=0}\infty(x|e_k)e_k\|^2=$ dist $(x,\operatorname{span}\{e_0,...,e_n\})^2$.

Satz. Sei $(e_k)_{k\in\mathbb{N}}$ ein Orthonormalsystem des Prä-Hilbertraumes X. Dann sind äquivalent:

- span $\{e_k \mid k \in \mathbb{N}\}$ liegt dicht in X
- $(e_k)_{k\in\mathbb{N}}$ ist eine Schauder-Basis von X.
- Für alle $x \in X$ $x = \sum_{k=0}^{\infty} (x|e_k)e_k$ (Darstellung)
- Für alle $x, y \in X$ gilt $(x|y) = \sum_{k=0}^{\infty} (x|e_k) \overline{(y|e_k)}$ (Parseval-Identität)
- Für alle $x \in X$ gilt $||x||^2 = \sum_{k=0}^{\infty} |(x|e_k)|^2$

Definition. Ist eine dieser Bedingungen erfüllt, nennen wir die $(e_k)_{k\in\mathbb{N}}$ Orthonormalbasis.

Satz. Jeder ∞ -dim. Hilbertraum über $\mathbb K$ ist genau dann X separabel, wenn X eine Orthonormalbasis besitzt.

Bemerkung. In diesem Fall ist X isometrisch isomorph zu $\updownarrow^2(\mathbb{K})$ (Übergang zu Koeffizienten bzgl. Basis)

Beispiel. Betrachte $L^2(]-\pi,\pi[\,,\mathbb{K})$. Dann ist durch $e_k(x)=\frac{1}{\sqrt{2\pi}}e^{ikx}$ für $k\in\mathbb{Z}$ eine Orthonormalbasis von

 $L^2(]-\pi,\pi[\,,\mathbb{C})$ gegeben. Weiter ist durch $\widetilde{e}_0(x)=\frac{1}{\sqrt{2\pi}},$

 $\widetilde{e}_k(x) = \frac{1}{\sqrt{2\pi}}\sin(kx)$ für k > 0 und $\widetilde{e}_k(x) = \frac{1}{\sqrt{2\pi}}\cos(kx)$ für k < 0 eine ONB von $L^2(]-\pi,\pi[\,,\mathbb{R}]$ gegeben.

Lemma. Zu $f \in L^2(]-\pi,\pi[\,,\mathbb{C})$ sei $P_n f = \sum\limits_{|k| \leq n} (f|e_k)_{L^2} e_k$ mit e_k wie im Beispiel die **Fourier-Summe** von f. Ist f Lipschitz-stetig, gilt $f(x) = \lim_{n \to \infty} P_n f(x)$.

Die Fourier-Summe erlaubt die explizite Approximation von f im Unterraum $X = \text{span}\{e_k \mid |k| < n\}$. Allgemein führt man ein:

Definition. Sei Y Unterraum des Vektorraums X. Eine lineare Abbildung $P: X \to X$ heißt (lineare) **Projektion auf** Y, falls $P^2 = P$ und Bild(P) = Y.

Lemma. • P ist Projektion auf $Y \iff P: X \to Y$ und $P = \operatorname{Id}$ auf Y.

- $P: X \to X$ ist Projektion $\implies X = \ker(P) \oplus \operatorname{im}(P)$
- $P: X \to X$ ist Projektion $\Longrightarrow \operatorname{Id} P$ ist Projektion und $\ker(\operatorname{Id} P) = \operatorname{im}(P)$, $\operatorname{im}(\operatorname{Id} P) = \ker(P)$.
- \bullet Zu jedem Unterraum Y von X gibt es eine Projektion auf Y.

Lemma. Für $P \in \mathcal{P}(X)$ gilt:

• $\ker(P)$ und $\operatorname{im}(P)$ sind abgeschlossen

• ||P|| > 1 oder ||P|| = 0

 ${\bf Satz}$ (vom abgeschlossenen Komplement). Sei Xein Banachraum. Gegeben sei ein abgeschlossener Unterraum Ysowie ein Unterraum Zmit $X=Y\oplus Z.$ Dann gilt:

 \exists stetige Projektion P auf Y mit $Z = \ker(P:\iff Z$ ist abgeschlossen

Bemerkung. Ist Y abgeschlossener Unterraum eines Banachraumes X, so besitzt Y ein abeschlossenes Komplement genau dann, wenn es eine stetige Projektion auf Y gibt.

Zwei wichtige Klassen von Unterräumen, die ein abgeschlossenes Komplement besitzen, sind endlich-dimensionale Unterräume beliebiger Banachräume sowie abgeschlossene Unterräume von Hilberträumen.

Satz. Sei X ein normierter Vektorraum, E ein n-dimensionaler Unterraum mit Basis $\{e_i \mid i=1,...,n\}$ und Y ein abgeschlossener Unterraum mit $Y \cap E = \{0\}$. Dann gilt:

- $\exists e'_1, ..., e'_n \in X' : e'_j = 0 \text{ auf } Y \text{ und } \langle e'_j, e_i \rangle = \delta_{ij}.$
- $X_{n+1} = X_n \perp E_n$ set Q_n die orthogonale Projektion auf E_n . Ist \exists stetige Projektion P auf E mit $Y = \ker(P)$, nämlich $P_X = \sum_{j=1}^n \langle e'_j, x \rangle e^{\text{preziell } X_n} = \text{span}\{e_i \mid 0 \leq i \leq n\}$ mit einer ONB $(e_i)_{i \in \mathbb{N}}$, so ist

Lemma. Ist Y abgeschlossener Unterraum eines Hilbertraums X und P die orthogonale Projektion aus Abschnitt 2.1, so gilt

- $P \in \mathcal{P}(X)$
- $\operatorname{im}(P) = Y$ und $\ker(P) = Y^{\perp}$
- \bullet $X = Y \perp Y^{\perp}$
- Ist $Z \subset X$ Unterraum mit $X = Z \perp Y$, so gilt $Z = Y^{\perp}$.

Als Alternative zum Zugang in Abschnitt 2.1 lässt sich festhalten:

Lemma. Seien X Hilbertraum und $P:X\to X$ linear. Dann sind äquivalent:

- P ist die orthogonale Projektion auf im(P), d. h. $\forall x, y \in X : ||x Px|| \le ||x Py||$
- $\forall x, y \in X : (x Px|Py) = 0$
- $P^2 = P$ und $\forall x, y \in X$: (Px|y) = (x|Py)
- $P \in \mathcal{P}(X)$ mit ||P|| < 1

Sei X Banachraum und X_n endlich-dimensionale Unterräume wie in (2) des ersten Lemmas des Kapitels. Dann gibt es nach Aussage (2) des obigen Satzes also $P_n \in \mathcal{P}(X)$ mit $X_n = \operatorname{im}(P_n)$. Eine stärkere Eigenschaft als (2) des ersten Lemmas ist:

(P1)
$$\forall x \in X : P_n x \xrightarrow{n \to \infty} x$$

(P1) impliziert nach dem Satz von Banach-Steinhaus $C = \sup_{n \in \mathbb{N}} ||P_n|| < \infty.$

Wir forden noch:

$$(P2) \ \forall m, n : P_n \circ P_m = \P_{\min(n,m)}$$

Man rechnet leicht nach, dass zu einer Folge $(P_n)_{n\in\mathbb{N}}$ mit (P1), (P2) mittels $Q_n := P_n - P_{n-1}$ (wobei $P_1 = 0$) bzw. $P_n = \sum_{i=0}^n Q_i$ eine Folge $(Q_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(X)$ mit

(Q1)
$$\forall x \in X : \sum_{i=0}^{n} Q_i x \xrightarrow{n \to \infty} x$$
 (Q2) $\forall m, n : Q_n \circ Q_m = \delta_{mn} Q_n$

Die Unterräume $E_n = \operatorname{im}(Q_n)$ erfüllen dann (3) aus dem ersten Lemma und (2) mit $X_n = E_0 \oplus ... \oplus E_n$.

• Ist X Hilbertraum und $X = \overline{\bigcup_{n \in \mathbb{N}} X_n}$ mit $\dim X_n < \infty$, $X_n \subset X_{n+1}$, so sei P_n die orthogonale Projektion auf X_n und mit $X_{n+1} = X_n \perp E_n$ sei Q_n die orthogonale Projektion auf E_n . Ist $X_n = \operatorname{speziell} X_n = \operatorname{span}\{e_i \mid 0 \le i \le n\}$ mit einer ONB $(e_i)_{i \in \mathbb{N}}$, so ist

$$Q_n x = (x|e_n)e_n$$
 und $P_n x = \sum_{i=0}^n (x|e_i)e_i$

• Ist $(e_i)_{i\in\mathbb{N}}$ Schauder-Basis eines Banachraumes X, definiere die duale Basis $(e_i')_i$ durch $e_i'=\alpha_i$ für $i\in\mathbb{N}$, falls $\sum_{i=1}^n \alpha_k e_k \xrightarrow{n\to\infty} x.$ Man kann zeigen, dass für alle $i\in\mathbb{N}$ diese $e_i'\in X'$ eindeutig bestimmt sind. Damit ist

$$Q_n = \langle e'_n, x \rangle e_n, \quad P_n x = \sum_{i=0}^n \langle e'_i, x \rangle e_i$$

• Zerlege [0,1] in Punkte $M_n = \{x_{n,i} \mid i=0,....,m_n\}$ mit $0 = x_{n,0} < ... < x_{n,m} = 1$ und $h_n = \max_i |x_{n_i,i} - x_{n_i,i-1}| \xrightarrow{n \to \infty} 0$ sowie $\forall n \in \mathbb{N} : M_n \subset M_{n+1}$. Sei $A_{n_i,i} = (x_{n_i,i},x_{n_i,i}), h_{n_i,i} = x_{n_i,i} - x_{n_i,i-1}$. Dann ist der Raum der stückweise konstanten Funktionen bzgl. dieser Zerlegung auf Level n:

$$X_n = \{ \sum_{i=1}^m \alpha_i \chi_{A_{n_i,i}} \mid \alpha_i \in \mathbb{K} \}, \dim(X_n) = m_n$$

Für $f \in L^1(]0,1[)$ definiere $P_n f = \sum_{i=1}^{m_n} (\frac{1}{n_{n_i,i}} \int_{A_{n_i,i}} f(s) \, ds) \chi_{A_{n_i,i}}$.

Es ist $\operatorname{im}(P_1) = X_n$ und für die Standardzerlegung $x_{n_i,i} = i2^{-n}$ ist $E_n = \operatorname{span}\{e_{n_i} \mid 1 \leq i \leq 2^{n-1}\}$ mit $e_0 = \chi_{]0,1[}, e_{n,i} = \chi_{A_{n,2i-1}} - \chi_{A_{n,2i}}.$

Für normierte \mathbb{K} -Vektorräume X,Y hatten wir im Abschnitt 3 die Menge der kompakten linearen Operatoren von X nach Y

$$\mathcal{K}(X,Y) = \{ T \in \mathcal{L}(X,Y) \mid \overline{T(B_1(0))} \text{ ist kompakt} \}$$

Wir hatten aber schon festgestellt, dass wir, wenn Y vollständig, " $\overline{T(B_1(0))}$ ist kompakt" durch " $T(B_1(0))$ ist präkompakt" ersetzen können. Außerdem gilt:

Lemma. Seien X, Y Banachräume über \mathbb{K} . Dann sind äquivalent:

- $T \in \mathcal{K}(X,Y)$
- $M \subset X$ beschränkt $\implies T(M)$ ist präkompakt
- Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ besitzt $(Tx_n)_{n\in\mathbb{N}}$ eine in Y konvergente Teilfolge.

Lemma. Seien X, Y Banachräume. Dann gilt:

- Für jede lineare Abbildung $T: X \to Y$ gilt: T kompakt $\Longrightarrow T$ vollständig. Ist X zudem reflexiv, gilt auch die Rückrichtung.
- K(X,Y) ist abgeeschlossener Unterraum von $\mathcal{L}(X,Y)$
- Ist $T \in L(X,Y)$ mit $\dim \operatorname{im}(T) < \infty$, so ist $T \in K(X,Y)$
- Ist Y Hilbertraum, so gilt für $T \in \mathcal{L}(X,Y)$

$$T \in K(X,Y) \iff \exists (T_n)_{n \in \mathbb{N}} \text{ Folge in } \mathcal{L}(X,Y) \text{ mit im}(T_n) < \infty :$$

• Für $P \in \mathcal{P}(X)$ gilt: $P \in K(X) \iff \dim \operatorname{im}(P) < \infty$

Lemma. Für $T_1 \in \mathcal{L}(X,Y)$ und $T_2 \in \mathcal{L}(X,Y)$ gilt: T_1 oder T_2 kompakt $\implies T_2T_1$ kompakt

Definition. Die Resolventenmenge von T ist definiert als

$$\rho(T) := \{\lambda \in \mathbb{C} \mid \ker(\lambda \operatorname{Id} - T) = \{0\}\} \text{ und } \operatorname{im}(\lambda \operatorname{Id} - T) = X,$$

das Spektrum von T durch $\sigma(T) := \mathbb{C} \setminus \rho(T)$. Das Spektrum zerlegen wir in das Punktspektrum

$$\sigma_p(T) := \{ \lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) \neq \emptyset \},$$

das kontinuierliche Spektrum

 $\sigma_c(T) := \{\lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) = \{0\} \text{ und } \operatorname{im}(\lambda \operatorname{Id} - T) \neq X, \text{ aber } \overline{\operatorname{im}(\lambda \operatorname{Id} \overline{\operatorname{im}} \operatorname{Reg} A)} \neq 1. \text{ Das Bild von } A \text{ ist } \operatorname{im}(A) = \{F \in Y \mid \langle F, 1 \rangle_{W^{1,2}(\Omega)} = 0 \text{ sowie das } \operatorname{Restspektrum} \text{ (Residual spektrum)}$

$$\sigma_r(T) := \{ \lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) = \{ 0 \} \text{ und } \overline{\operatorname{im}(\lambda \operatorname{Id} - T)} \neq X \}.$$

Offenbar ist $\lambda \in \rho(T)$ genau dann, $\lambda \mathrm{Id} - T: X \to X$ bijektiv ist. Nach dem Satz von der inversen Abbildung ist dies äquivalent zur Existenz von

$$R(\lambda, T) = (\lambda \operatorname{Id} - T)^{-1} \in \mathcal{L}(X),$$

der sogenannten **Resolvente** von T in λ . Als Funktion von λ heißt sie auch **Resolventenfunktion**. Weiterhin ist $\lambda \in \sigma_p(T)$ offenbar äquivalent zu $\exists \, x \neq 0 \, \colon \, Tx = \lambda x$, dann heißt λ **Eigenwert** und x **Eigenvektor** (oder **Eigenfunktion**). Der Unterraum ker(Id $\lambda - T$) ist der **Eigenraum** von T zum Eigenwert λ . Er ist T-invariant.

Satz. $\rho(T)$ ist offen und $\lambda \mapsto R(\lambda, T)$ ist eine komplex-analytische Abbildung von $\rho(T)$ nach $\mathcal{L}(X)$. Es gilt für $\lambda \in \rho(T)$: $\|R(\lambda, T)\|^{-1} < \operatorname{dist}(\lambda, \rho(T))$

Satz. Das Spektrum $\sigma(T)$ ist kompakt und nichtleer (falls $X \neq \{0\}$) mit

$$\sup_{\lambda \in \sigma(T)} = \lim_{m \to \infty} ||T^m||^{\frac{1}{m}} \le ||T||.$$

Der Wert heißt Spektralradius.

Lemma. • Ist dim $X < \infty$, so ist $\sigma(T) = \sigma_p(T)$.

• Ist dim $X = \infty$ und $T \in K(X)$, so ist $0 \in \sigma(T)$.

Bemerkung. Im Punkt 2 ist i. A. 0 kein Eigenwert, also $0 \notin \sigma_p(T)$.

 $\|T - T_n\|_{n \to \infty} \stackrel{n \to \infty}{\text{tion.}} 0$ being Abbildung $A \in \mathcal{L}(X, Y)$ heißt Fredholm-Operator, falls gilt:

- $\dim \ker(A) < \infty$
- im(A) ist abgeschlossen
- $\operatorname{codim}\operatorname{im}(A) < \infty$

Der Index eines Fredholm-Operators ist ind(A) = dim ker(A) - codim im(A).

Beispiele. • Sei $X=W^{1,2}(\Omega),\,Y=(W^{1,2}(\Omega))'$. Dann ist $A:W^{1,2}(\Omega)\to (W^{1,2}(\Omega))'$ definiert durch

$$\langle Au,v\rangle\coloneqq\int\limits_{\Omega}\sum\limits_{i,j}\partial_{i}v\cdot a_{ij}\partial_{j}u\,\mathrm{d}x$$
 für $u,v\in W^{1,2}(\Omega),$ der der

schwache elliptische Differentialoperatoren mit

Neumann-Randbedingungen. Aus Kapitel 4.1 und 6 wissen wir: Der Kern ker(A) besteht aus den konstanten Funktionen, also ist

 $\operatorname{im}(A) = \{F \in Y \mid \langle F, 1 \rangle_{W^{1,2}(\Omega)} = 0\}, \text{ also abgeschlossen mit } \operatorname{codim}\operatorname{im}(A) = 1. \text{ Es ist } Y = \operatorname{im}(A) \oplus \operatorname{span}\{F_0\}, \text{ wenn}$

 $\langle F_0,v\rangle=\int\limits_\Omega\!\!v\,\mathrm{d}x.$ Also ist A ein Fredholm-Operator mit Index 0.

• Für das homogene Dirichlet-Problem ist der Operator $A:W_0^{1,2}(\Omega) \to (W_0^{1,2}(\Omega))'$ ein Isomorphismus.

Eine wichtige Klasse von Fredhom-Operatoren sind kompakte Störungen von Id. Es gilt (ohne Beweis):

Satz. Sei $T \in K(X)$. Dann gilt für $A = \mathrm{Id} - T$:

- dim ker $T < \infty$
- im(A) ist abgeschlossen
- $\ker A = \{0\} \implies \operatorname{im}(A) = X$
- $\operatorname{codim} \operatorname{im}(A) = \dim \ker(A)$

Insbesondere ist A also ein Fredholm-Operator mit Index 0.

 \mathbf{Satz} (Riesz-Schauder – Spektralsatz für kompakte Operatoren). Für $T \in K(X)$ gilt:

- Die Menge $\sigma(T)\setminus\{0\}$ besteht aus höchstens abzählbar vielen Elementen mit 0 als einzig möglichem Häufungspunkt. Falls $|\sigma(T)|=\infty$, ist $\overline{\sigma(T)}=\sigma_p(T)\cup\{0\}$
- Für $\lambda \in \sigma(T) \setminus \{0\}$ ist $1 \le n_{\lambda} = \max\{n \in \mathbb{N}_{+} \mid \ker(\lambda \operatorname{Id} T)^{n-1} \neq \ker(\lambda \operatorname{Id} T)^{n}\} < \infty$. Die Zahl n_{λ} heißt **Ordnung** von λ , dim($\ker(\lambda \operatorname{Id} T)$) heißt **Vielfachheit** von λ .
- Für $\lambda \in \sigma(T) \setminus \{0\}$ gilt $X = \ker(\lambda \mathrm{Id} T)^{n_{\lambda}} \oplus \operatorname{im}(\lambda \mathrm{Id} T)^{n_{\lambda}}$

Beide Unterräume sind abgeschlossen und T-invariant und der **charakteristische Unterraum** $\ker(\lambda \mathrm{Id} - T)^{n_{\lambda}}$ ist endlich-dimensional.

- Für $\lambda \in \sigma(T) \setminus \{0\}$ ist $\sigma(T|_{\operatorname{im}(\lambda \operatorname{Id} T)^n \lambda}) = \sigma(T) \setminus \{\lambda\}$
- Ist E_{λ} für $\lambda \in \sigma(T) \setminus \{0\}$ die Projektion auf ker $(\lambda \operatorname{Id} T)^{n_{\lambda}}$ gemäß der Zerlegung in Punkt 3, so gilt $E_{\lambda}E_{\mu} = \delta_{\lambda\mu}E_{\lambda}$ für $\lambda, \mu \in \sigma(T) \setminus \{0\}$