Homework Assignment #6

Note: You must provide sufficient detail in your derivations or proofs to earn full credit. No late homework will be graded.

- 1. Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$ where $\mu \geq 0$ and $\sigma \geq 1$. If $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$, are $\hat{\mu} = \max\{\bar{X}_n, 0\}$ and $\hat{\sigma}^2 = \max\{S^2, 1\}$ the maximum likelihood estimators of μ and σ^2 ?
- 2. Let X be the number of successes from n independent Bernoulli trials with success probability p.
- (a) If we impose a prior distribution on p as the uniform distribution on (0,1), find the Bayes estimator of p.
- (b) If the prior distribution on $\theta = p^2$ is uniform on (0,1), what is the posterior mean of p?
- (c) The uniform prior is sometimes viewed as a prior that carries no prior information about the parameter. From this exercise, what do you learn about the uniform prior?
- 3. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from a bivariate normal distribution, where X_i is distributed as N(0, 1), and $Y_i \beta X_i$ is independent of X_i and distributed as N(0, 1). Find the best unbiased estimator of β for any given values of X_1, \dots, X_n .
- 4. Suppose that $X=(X_1,\ldots,X_k)$ is Multinomial with $X\mid\theta\sim M_k(n;\theta_1,\theta_2,\ldots,\theta_k)$, where $\theta=(\theta_1,\cdots,\theta_k)$ and $\sum_{i=1}^k\theta_i=1$. Now assume that θ has a prior distribution with the density

$$\pi(\theta) \propto \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \cdots \theta_k^{\alpha_k - 1},$$

with the (prior) expectation $E[\theta_i] = \frac{\alpha_i}{\alpha_1 + \dots + \alpha_k}$. This prior distribution is often called the Dirichlet Distribution. Given a vector observation $\mathbf{X} = \mathbf{x}$,

- (a) calculate the posterior distribution of θ .
- (b) What is the Bayes estimator for θ_i $(i = 1, \dots, k)$ under the squared error loss?