ESERCIZI DI MATEMATICA DISCRETA E PROBABILITÀ DEL **22 NOVEMBRE 2018**

Studenti nati in Emilia-Romagna: esercizio (1) e quello che riesci a fare del (4). Studenti nati in Marche o Abruzzo: esercizio (2) e quello che riesci a fare del (6). Altri studenti nati a nord di Roma: esercizio (3). Altri studenti nati a sud di Roma: esercizio (5).

- (1) Supponiamo che la probabilità che nessun bambino nato a Cesena in questo mese diventi un dottore di ricerca sia e^{-1} .
 - (a) Qual è la probabilità che almeno due bambini nati in questo mese a Cesena diventino dottori di ricerca?
 - (b) Qual è la probabilità che in un anno nascano almeno 4 bambini che diventeranno dottori di ricerca?
- (2) Si considerino 2 variabili aleatorie indipendenti X ed Y. Sono noti i seguenti valori della densità congiunta

X^{Y}	0	2
0		<u>1</u> 5
-1		$\frac{4}{15}$
3	$\frac{1}{12}$	

(a) Detto $t = p_{X,Y}(3,2)$ giustificare il fatto che t soddisfa la seguente

$$\left(\frac{1}{12} + t\right)\left(\frac{1}{5} + \frac{4}{15} + t\right) = t$$
(b) Calcolare i possibili valori per t .

- (c) Scelto uno di questi valori completare la tabella a doppia entrata della densità congiunta delle variabili X ed Y.
- (3) Un'urna contiene 4 palline numerate 1,2,3,4. Effettuiamo 6 estrazioni con rimpiazzo. Consideriamo le variabili aleatorie X_1, X_2, X_3, X_4 date da $X_i =$ 1 se la pallina con il numero i è stata estratta almeno una volta e $X_i = 0$
 - Stabilire se X_1 e X_3 sono indipendenti.
 - Determinare la densità congiunta delle variabili (X_1, X_2, X_3, X_4) ,
- (4) Novanta palline numerate vengono tutte estratte a caso senza rimpiazzo. Vengono poi riestratte tutte nuovamente senza rimpiazzo una seconda volta. Consideriamo le variabili X_i = numero della i-esima pallina estratta nella prima sequenza di estrazioni, e Y_i = numero della i-esima pallina estratta nella seconda sequenza di estrazioni, dove $i = 1, \dots, 90$.
 - (a) Descrivere uno spazio di probabilità che modellizzi questo fenomeno aleatorio.
 - (b) Determinare $P(X_i = Y_i)$.

- (c) Stabilire se X_i e Y_j sono indipendenti, dove $i \neq j$.
- (d) Stabilire se X_i e X_j sono indipendenti, dove $i \neq j$.
- (e) Determinare la densità della variabile $X = X_1 + X_2 + \cdots + X_{90}$.
- (f) Sia ora $Z = |\{i = 1, ..., 90 : X_i = Y_i\}|$. Determinare E[Z].
- (5) Un'urna contiene 2 palline bianche e 2 palline rosse. Le palline vengono estratte successivamente una ad una dall'urna rimpiazzando nell'urna le rosse e NON rimpiazzando le bianche. Poniamo

$$X_i = \begin{cases} 1 & \text{se la i-esima estrazione dà una pallina bianca} \\ 0 & \text{se la i-esima estrazione dà una pallina rossa} \end{cases}$$

e T = "numero dell'estrazione in cui viene pescata l'ultima pallina bianca"

- (a) Descrivere uno spazio di probabilità che modellizzi questo fenomeno aleatorio.
- (b) Determinare la densità di X_1 e di X_2 ;
- (c) Stabilire se X_1 e X_2 sono indipendenti;
- (d) Determinare la densità di X_i per ogni i > 0;
- (e) Esprimere T come somma di due variabili geometriche modificate;
- (f) Determinare il valore atteso per T.
- (6) Due dadi, uno rosso e uno blu, vengono lanciati simultaneamente per 3 volte. Si considerino le seguenti variabili aleatorie:
 - X = Numero di volte in cui un dado ha dato come risultato 1 o 6;
 - Y = Numero di lanci in cui il dado rosso ha dato risultato minore o uguale a 3;
 - Z = Numero di lanci in cui la somma dei dadi ha dato 7.
 - (a) Determinare la densità delle variabili $X, Y \in Z$;
 - (b) Stabilire se X ed Y sono indipendenti;
 - (c) Stabilire se Y e Z sono indipendenti;
 - (d) Stabilire se X e Z sono indipendenti.