Physical modelling: laboratory models

Physical Modelling of Shell Cove Boat Harbour Entrance (NSW)

Scaling problems - Buckingham Pi theorem

$$\frac{Inertia\ force}{Gravity\ force} = \frac{F_i}{F_g} \propto \frac{\rho U^2 L^2}{\rho g L^3} = \frac{U^2}{g L}$$

Dynamic similarity requirement between model and full scale:

$$\frac{U_{M}}{\sqrt{gL_{M}}} = \frac{U_{F}}{\sqrt{gL_{F}}} = Fn$$

- Equality in Fn in model and full scale will ensure that gravity forces are correctly scaled
- Surface waves are gravity-driven ⇒ equality in Fn will ensure that wave resistance and other wave forces are correctly scaled

Physical modelling: laboratory models

Wa	Physical Parameter	Unit	Multiplication factor
	Length	[m]	λ
	Structural mass:	[kg]	$\lambda^3 \cdot ho_{\scriptscriptstyle F}/ ho_{\scriptscriptstyle M}$
100 May 10 10 10 10 10 10 10 10 10 10 10 10 10	Force:	[N]	$\lambda^3 \cdot ho_{\scriptscriptstyle F}/ ho_{\scriptscriptstyle M}$
	Moment:	[Nm]	$\lambda^4 \cdot ho_{\scriptscriptstyle F}/ ho_{\scriptscriptstyle M}$
	Acceleration:	[m/s ²]	$a_F = a_M$
	Time:	[s]	$\sqrt{\lambda}$
	Pressure:	[Pa=N/m ²]	$\lambda \cdot ho_{\scriptscriptstyle F}/ ho_{\scriptscriptstyle M}$

$$\frac{U_{M}}{\sqrt{gL_{M}}} = \frac{U_{F}}{\sqrt{gL_{F}}} = Fn$$

Froude scaling:

$$U_F = U_M \sqrt{\frac{L_F}{L_M}} = U_M \sqrt{\lambda}$$

Using the geometrical similarity requirement:

$$\lambda = L_F/L_M$$