Свойства оценок. Задача 2

Ильичёв А.С., 693

```
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Сгенерируем выборку X_1, \dots, X_N из экспоненциального распределения с параметром heta=1 для $N=10^4$.

```
N = 10 ** 4
ns = np.arange(1, N + 1)
theta = 1
sample = np.random.exponential(theta, N)
```

2. Для всех $n \leq N$ посчитаем оценку параметра $\left(k!/\overline{X^k}\right)^{1/k}$ для разных k.

```
ks = [1, 2, 3, 4, 5, 6, 8, 10, 13, 15, 20]

def make_estimators(ks): # функция построения массива оценок
    est = []
    for k in ks:
        est.append([(np.math.factorial(k)/(sample[:i]**k).mean())**(1/k) for i in
ns])
    return np.array(est)

est = make_estimators(ks)
```

3. Построим на одном графике для всех оценок функции модуля разности оценки и истинного значения θ в зависимости от k

```
def make_plot(exclude=set(), low_limit=True):
    plt.figure(figsize=(10, 5))
    est_nums = list(set(np.arange(len(est))) - exclude) # set difference
    for est_num in est_nums:
        plt.plot(ns, np.abs(est[est_num] - theta), label=str(ks[est_num]))
    plt.xlabel('n')
    plt.ylabel(r'$|\hat \theta_n - \theta|$')
    plt.legend(title=r'k')
    plt.title(r'$\theta = $'+str(theta))
```

```
plt.ylim(0, 1)
if low_limit:
    plt.ylim(0, 0.15)
```

```
make_plot(low_limit=False)
```


Как видно, при больших k оценки сильно отличаются от истинного значения. Кроме того, у графиков при больших k одинаковые изломы. Это можно объяснить следующим образом. Предположим, в выборке появилось значение, сильно отклоняющееся от среднего по выборке, тогда, чем больше k, тем сильнее это значение повлияет на статистику $\overline{X^k}$. Эти резкие изменения мы и видим на изломах. Для демонстрации построим зависимость максимального значения в выборке X_1,\ldots,X_n от n, и рядом график модуля разности оценки и истинного значения θ для k=20, умноженного на 10 (тут важна только форма кривых).

```
maxs = [np.max(sample[:i]) for i in ns]
plt.figure(figsize=(10, 5))
plt.plot(ns, 10 * np.abs(est[len(est) - 1] - theta), label='k = 20')
plt.plot(ns, maxs, label='max по выборке')
plt.legend()
plt.ylim(0, 15)
plt.show()
```


Предположение оказалось верным. Исключим теперь большие k из рассмотрения (оставим первые 5) и ограничим масштаб.

4. Сделаем выводы.

Как видно из графиков, чем меньше k, тем лучше ведет себя оценка. Действительно, асимптотическая дисперсия этой оценки, как следует из решения теоретической задачи, является возрастающей по k функцией (в числителе факториалы k), а чем меньше дисперсия, тем ближе к нулю будет модуль разности оценки и истинного значения параметра.