Kamil Świerad

Aproksymacja MOwNiT 2

Do obliczeń użyłem języka python, na systemie operacyjnym Ubuntu. Procesor komputer to Intel® Core™ i5-6300HQ CPU @ 2.30GHz × 4, a ilość pamięci RAM to 16GB.

Program wykorzystany do przeprowadzenia eksperymentów był napisany przez mnie. Do rysowania wykresów wykorzystałem bibliotekę matplotlib, a dokładniej, pyplot, do liczenia normy z różnicy wektorów wykorzystałem bibliotekę numpy.

Otrzymana przeze mnie funkcja do analizy to:

$$f(x) = sin(x) * sin(\frac{x^2}{\pi})$$
 w przedziale: $[-\pi, 2\pi]$

Eksperymenty polegały na uruchomieniu programu który wykonywał obliczenia dla liczby węzłów $\in \{5, 10, 15, 20, 25, 50, 100, 250, 500\}$, oraz liczby funkcji bazowych $\in \{2, 3, 4, 5, 6, 7, 8\}$ Rysowanie wykresów było na podstawie 1000 równoodległych punktów w podanym przedziale, dla których liczyłem wartość aproksymowaną. Każde uruchomienie programu zapisywało uzyskany wykres oraz błąd, który był zgodnie z podanym wzorem. Na każdym z wykresów jest funkcja aproksymowana (kolorem niebieskim), funkcja aproksymująca (kolorem czerwonym), oraz węzły aproksymacji (kolorem żółtym).

Tabela 1. Błędy otrzymane dla wykonanych eksperymentów z wielomianami jako funkcjami bazowymi.

Liczba węzłów	Liczba funkcji bazowych	unkcji bazowych Wyliczony błąd	
5	2	0.531656	
5	3	0.539711	
5	4	0.456533	
10	2	0.410424	
10	3	0.404141	
10	4	0.306500	
10	5	0.306530	
10	6	0.339430	
10	7	0.365589	
10	8	0.711294	
15	2	0.405081	
15	3	0.400129	
15	4	0.295758	
15	5	0.296369	
15	6	0.296568	
15	7	0.290671	
15	8	0.275685	
20	2	0.402251	
20	3	0.397587	
20	4	0.293497	
20	5	0.293643	
20	6	0.293572	
20	7	0.287220	
20	8	0.273351	
25	2	0.400748	
25	3	0.396223	
25	4	0.292415	
25	5	0.292379	
25	6	0.291878	
25	7	0.285691	
25	8	0.272927	
50	2	0.398491	
50	3	0.394128	
50	4	0.290700	
50	5	0.290298	
50	6	0.288279	
50	7	0.282641	
50	8	0.272651	

		-	
100	2	0.397862	
100	3	0.393524	
100	4	0.290154	
100	5	0.289560	
100	6	0.286619	
100	7	0.281288	
100	8	0.272539	
250	2	0.397685	
250	3	0.393349	
250	4	0.289973	
250	5	0.289288	
250	6	0.285928	
250	7	0.280759	
250	8	0.272476	
500	2	0.397662	
500	3	0.393326	
500	4	0.289942	
500	5	0.289237	
500	6	0.285793	
500	7	0.280668	
500	8	0.272462	

Można zauważyć że zwiększenie liczby funkcji bazowych zwiększa dokładność, oraz że liczba węzłów aproksymacji nie ma zbytniego wpływu na dokładność

Wykres 1. Aproksymacja dla 5 węzłów oraz wielomianu 3 stopnia.

Wykres 2. Aproksymacja dla 15 węzłów oraz wielomianu 8 stopnia.

Wykres 3. Aproksymacja dla 25 węzłów oraz wielomianu 5 stopnia.

Tabela 2. Błędy otrzymane dla wykonanych eksperymentów z funkcjami tryg. jako funkcjami bazowymi.

Liczba węzłów	Liczba funkcji bazowych	Wyliczony błąd		
5	2	0.588521		
5	3	0.587457		
5	4	0.611633		
10	2	0.448513		
10	3	0.432524		
10	4	0.464033		
10	5	0.421466		
10	6	0.440669		
10	7	0.471506		
10	8	0.469841		
15	2	0.371430		
15	3	0.385666		
15	4	0.384836		
15	5	0.388510		
15	6	0.483461		
15	7	0.510268		
15	8	0.518079		
20	2	0.369554		
20	3	0.361270		
20	4	0.373401		
20	5	0.305505		
20	6	0.308227		
20	7	0.394667		
20	8	0.390939		
25	2	0.367201		
25	3	0.356804		
25	4	0.351580		
25	5	0.269701		
25	6	0.257700		
25	7	0.268869		
25	8	0.268063		
50	2	0.366633		
50	3	0.353808		
50	4	0.345681		
50	5	0.260161		
50	6	0.231725		
50	7	0.259023		
50	8	0.260857		
100	2	0.366666		

100	3	0.353388	
100	4	0.344287	
100	5	0.256688	
100	6	0.224944	
100	7	0.250329	
100	8	0.253648	
250	2	0.366708	
250	3	0.353265	
250	4	0.343717	
250	5	0.255054	
250	6	0.221623	
250	7	0.245851	
250	8	0.249993	
500	2	0.366723	
500	3	0.353240	
500	4	0.343564	
500	5	0.254573	
500	6	0.220626	
500	7	0.244467	
500	8	0.248867	
500	2	0.397662	
500	3	0.393326	
500	4	0.289942	
500	5	0.289237	
500	6	0.285793	
500	7	0.280668	
500	8	0.272462	

W przypadku trygonometrycznych funkcji bazowych można zauwaćyć te same zależności jak w przypadku wielomianowych funkcji bazowych, czyli ilość węzłów nie ma wpływu na błąd, oraz liczba funkcji bazowych zmniejsza ten błąd.

Wykres 5.. Aproksymacja dla 15 węzłów oraz wielomianu trygonometrycznego 8 stopnia.

Wykres 6.. Aproksymacja dla 10 węzłów oraz wielomianu trygonometrycznego 3 stopnia.

Analizując powyższe wykresy można zauważyć różnicę między wyglądami wykresów funkcji, co jest oczywiste ponieważ w pierwszym przypadku funkcje są zwykłymi wielomianami, a w drugim są to wielomiany trygonometryczne, porównując oba wykresy w przypadku mojej funkcji wydaje się że aproksymacja trygonometryczna jest minimalnie lepsza, może to być spowodowane że, oryginalna funkcja jest zbudowana z funkcji trygonometrycznych.