대한민국의 새로운 도전 「제3차 우주개발 진흥 기본계획」

2018. 2.

순 서

I. 수립 배경 ···································	1
Ⅱ. 성과와 한계	3
Ⅲ. 글로벌 동향 분석	9
1. 우주개발 참여 확대	9
2. 우주 전략기술의 자립 추진	• 11
3. 우주자산을 활용한 공공수요 대응 강화	· 14
4. 경쟁력 있는 우주산업 생태계 구축 노력	· 16
Ⅳ. 시사점과 추진방향	····· 18
V. 비전과 목표 ···································	···· 20
∇. 비전과 목표Ⅵ. 중점 추진과제 ····································	
	···· 22
Ⅵ. 중점 추진 과제 ····································	···· 22 ·· 22
VI. 중점 추진과제 ····································	22 22 23
VI. 중점 추진과제 ····································	22 22 23 24
VI. 중점 추진과제 ····································	22 22 23 24 25
VI. 중점 추진과제 ····································	22 22 23 24 25

순 서

전략 3. 우주탐사 시작	32
3-1. 달 탐사 본격 착수	
3-2. 우주감시 고도화	35
3-3. 다양한 우주과학·탐사 연구 추진	36
전략 4. 한국형 위성항법시스템(KPS) 구축	38
4-1. 구축 타당성 예비검토 추진과 사양 확정	39
4-2. KPS 구축 전략 수립 및 추진체계 마련	40
전략 5. 산학연의 우주혁신 역량 강화	41
5-1. 다양한 혁신주체 육성	41
5-2. 우주 핵심기술 개발	42
5-3. 우주개발 추진체계 개선	43
5-4. 글로벌 우주협력 강화	44
전략 6. 우주산업 육성과 우주 일자리 창출	46
6-1. 우주개발에 민간기업 참여 확대	47
6-2. 우주기술 사업화와 융합 촉진	48
Ⅷ. 5년간 추진로드맵	··· 49
〈 참고 〉	
1. 주요 변경내용	50
2. 총괄 로드맵	51
3. 국가별 우주개발 현황	52
4. 해외 달 탐사 현황	53
5. 국내 인공위성 개발 현황	54

Ⅰ. 수립 배경

1 수립근거

o 「우주개발진흥법」제5조와 동법시행령 제2조에 따라, 우주개발의 체계적 진흥을 위한 '우주개발 진흥 기본계획'을 매 5년마다 수립

- < 수립 이력 > -

- ♦ (1996.04) 「우주개발 중장기 기본계획」(1996~2015)
 - ※ 수정·보완 이력: (1차) '98.11, (2차) '00.12, (3차) '05.5
- ◇ (2005.05)「우주개발진흥법」제정
- ◇ (2007.06)「제1차 우주개발진흥 기본계획」(2007~2016)
- ◇ (2011.12)「제2차 우주개발진흥 기본계획」(2012~2016)
- ◇ (2013.11)「우주개발 중장기계획」(2014-2040)
 - ※ 제2차 우주개발진흥 기본계획 수정·보완
- 그간 발생한 **대내·외 여건과 환경 변화**를 **반영**하여 「**우주개발 중장기** 계획('14~'40)」(제2차 우주개발진흥 기본계획 수정)을 **재검토**
 - 향후 5년('18년~'22년)간의 구체적 우주개발 계획 수립이 주요 목적
 - '40년까지의 비전과 목표도 함께 제시하여 정책의 일관성을 확보하고, 예측가능성을 제고하여 우주관련 투자유도와 연구 활성화에 기여

2 수립범위

- o 우주개발 정책 목표·방향
- o 우주개발 추진체계 및 추진계획·전략
- o 우주개발에 필요한 기반확충, 전문인력 양성, 투자계획, 국제협력
- ㅇ 우주개발을 위한 연구개발 및 결과 활용 등

3 수립체계

- o 산·학·연 전문가 등으로 구성된 기획위원회와 분과위원회 운영
 - ※ 우주수송분과, 위성분과, 위성활용분과, 우주탐사분과, 정책기반분과, 산업기반 분과, 과학기술기반분과의 7개 분과로 운영
- o 기획위원회에서 도출한 안을 기초로 관계부처 협의를 거친 후 국가 우주위원회(위원장: 과기정통부 장관)에서 최종 확정

4 수립경과

- ('17.3월~12월) 연구재단 주관으로 기획연구 추진
 - 5회의 기획위원회, 33회의 분과위원회 등 약 40회 개최
- ('17.10월~11월) 관계부처 의견수렴
- ('17.11.21.) 공청회 개최
- ('18.1.29.~2.1.) 우주개발진흥실무위원회 심의
- ('18.2월) 국가우주위원회 심의

Ⅱ. 성과와 한계

1 우주개발 투자 현황

- (절대 규모) '93년부터 위성중심의 투자를 시작, '01년부터는 발사체에 실질적으로 투자('13년부터 집중) 이후, 절대규모는 증가 추세
 - 위성개발, 한국형발사체 사업이 전체 예산의 대부분을 차지하고, 최근 달탐사 사업 착수에 따라 우주탐사 분야 비중이 일시적으로 증가
 - ※ '17년 분야별 투자비율: (위성) 46%, (발사체) 36%, (탐사) 12%, (기타) 6%

< 우주개발 예산의 연도별 투자분야 비율 추이 >

- (상대 규모) 정부 R&D예산 총액 대비 우주개발 예산 비율은 대략 1.5%~3.5%선에서 발사체 예산에 따라 큰 폭의 등락이 반복
 - 다른 첨단 기술 분야 투자규모 대비 우주개발 예산투입은 부족
 - ※ '17년 기술분야별 정부 투자규모(억원): (IT) 23,934 (BT) 26,083 (NT) 9,473 (ST) 6,703
 - 선진국 대비 투자규모('16)는 미국의 2%, 일본의 20%, 인도의 60% 수준이며, '90년 이후 누적투자액은 미국의 0.5%, 일본의 7.5%, 인도의 30% 수준에 불과
 - ※ '16년 국가R&D 중 대비 우주개발 예산비율(%): (한) 3.9%, (미) 25.8% (일) 7.9%

< 정부 R&D 예산 대비 우주개발 예산 추이 >

2 우주개발 분야 측면

□ 우주발사체 분야

- o (성과) '90년대 과학로켓을 시작으로 '01년부터는 실질적으로 투자를 확대 하여 실용위성급 발사체인 한국형발사체 독자개발 추진 단계까지 발전
 - 시스템·서브시스템 설계, 제작, 시험, 조립 등의 단계별 기술 검증을 통해 발사체 독자 개발을 위한 기술적 성과 달성
 - 국내 최초 터보펌프 방식 7톤 및 75톤급 액체로켓 관련 실물형(EDM) 엔진 개발 및 임무연소시간(Full Duration) 시험* 성공
 - * 7톤급2호기와 75톤급1호기의 연소 임무시간(각 502초, 143초) 최초 달성('16년 10월 및 7월)

- (한계) 독자기술로 최초 시도하는 개발과정에서의 기술문제 발생*,
 초기 예산투입 지연** 등으로 개발기간 단축에는 실패
 - * 연소기 연소불안정 현상('14.10 발생, '16.2 해결) 및 추진제탱크 제작 불량('15.8 발생, '16.7 해결)의 해결을 위해 계획 대비 개발기간 추가 소요
 - ** 나로호 성공 이후('13.1)에야 한국형발사체 개발에 본격적 예산 투입
 - 발사체 개발에만 집중하여 개발 이후의 국내·외 위성 동향을 고려한 구체적 활용, 성능개량, 발사서비스 단계의 로드맵 부재

< 연도별 발사체 예산 추이 >

□ 위성개발 분야

- (성과) 선진국 대비 늦은 착수('90년대부터 우주개발에 투자 시작)와 낮은 예산에도 불구, 위성 분야의 경쟁력은 상당 부분 확보
 - ※ 정부R&D 대비 우주개발 예산('16): (한국) 3.9%, (일본) 7.9%, (미국) 25.8%, (러시아) 29.3%
 - 국가수요의 사업단위로 계획·추진되어 다목적실용 3A·6·7호, 정지궤도 2A·2B호, 차세대중형 1호, 차세대소형 1호 등 다양한 위성 개발
 - ※ (다목적실용) 정밀광학 등을 활용한 정밀감시 목적, (차세대중형) 다양한 공공 광역관측 목적, (차세대소형) 우주핵심기술 검증 목적. (정지궤도) 기상예보 서비스 및 해양/환경 감시 목적

- 세계 최초의 고해상도 중적외선 센서 탑재 위성인 **다목적 3A호**를 통해 정밀광학위성 설계기술 100%, 주요 구성품 67% 국산화 달성

< 다목적 실용위성의 기술 국산화 추이 >

구분	1호 ('99)	2호 ('06)	3호 ('12)	3A호 ('15)	5호 (*13)	6호 ('20)
위성체설계	해외기술 습득	91%	100%	100%	100%	100%
탑재체설계	해외기술 습득	해외기술 습득	96%	98%	25%	83
위성체부품	해외구매	65%	64%	67%	62%	65%
탑재체부품	해외구매	해외기 술습득	65%	67%	해외술습득	41%

- o (한계) 공공수요 충족을 위해 특정 시한까지 위성개발을 완료해야 하는 체계사업의 특성으로 인해 핵심부품*의 수입 의존 지속
 - * 추력기 밸브, 자이로, 태양전지 배열기, 레이더 제어기 등
 - 국가 주요정보 획득 등을 위한 중장기 위성 구축·운영 전략이 부재
 - 실용위성 핵심 부품의 국산화가 미진한 상황에서 수출통제 등 관련 국제규정 따라 실용위성 자력발사는 어려운 상황
 - 기존 위성개발 시리즈는 광학, SAR, 적외선 등 위성 탑재체의 성능 향상에 주력하는 방식으로 선도형 위성 개발 관련 투자여력이 부족

□ 위성활용 분야

- (성과) 고성능 광학·레이더·중적외선 영상과 해양·기상 관측정보 등 다양한 위성정보 확보·제공으로 공공·상용 활용 확대
 - 고해상 저궤도위성(광학 0.55m~0.7m, 적외선 5.5m, 레이더 1m), 정지궤도 위성(해양·기상) 운영으로 24시간 한반도 관측정보 획득
 - 위성영상 제공(공공활용 4.2만, 상용판매4.4만, 국제협력 3천 등 약 9만장)으로 지도제작, 국토·자원관리, 해양·기상 관측, 재난통신·UHD방송 지원

< 우리나라 위성활용 추이 >

[2010년대] 민간분야 및 사회문제 해결

- 다목적실용위성 3호('12), 5호('13), 3A호('15) 운영
- 광학-레이더-적외선 등의 운영으로 전천후 관측 능력 확보

[2000년대] 공공분야 및 국가안보

- 다목적실용위성 2호 운영('06)
- 1m급 고해상도 광학위성영상 및 다중분광영상 활용

[1990년대] 지구관측

- 다목적용위성1호('99) 발사로 실용급 지구관측위성 운영 및 위성정보 획득 시작
- o (한계) 위성개발·활용 연계 미흡, 위성정보 활용 규제, 활용기술 개발· 확보 부족 등으로 수요자 맞춤형 서비스 제공에 한계
 - 다목적실용위성(좁은 관측 폭)으로 정밀 감시부터 해양, 기상, 지구관측 까지 지원하고 있어 광역 관측이 필요한 분야의 공공수요 대응에 한계
 - ※ 정밀감시 위주의 다목적 2호, 3호, 3A호 3개의 위성의 남는 가용범위로 최대한 영상을 확보해도 한반도 지역의 모자이크영상 취득률 상한선은 70%에 불과
 - 위성정보 보급·활용 기준 등에 국제기준 대비 높은 규제 적용
 - ※ 미국(해상도 0.25m이하 배포 제한) vs 한국(해상도 4m이하 배포 제한 등)
 - 위성정보 처리·활용·분석 기술과 **적기 활용지워 체계 미 확립**

□ 우주탐사 분야

- (성과) 미국 NASA와 국제협력 기반의 시험용 달 궤도선 개발 착수로
 우리나라의 미개척 분야인 우주탐사 분야의 기틀 마련
 - ※ 시험용 달궤도선 과학탑재체 선정/개발착수('16.4) → 시스템 기본설계('16.12) → 항우연-NASA 이행약정 협약 체결('16.12) → 시스템 예비설계('17.9)
 - 우주탐사 기구·협의체*의 국제동향 모니터링 차원의 활동 수행
 - * LPSC (Lunar & Planetary Science Conference), COSPAR (Committee on Space Research) 등

- (한계) 탐사임무의 최종과 단계별 목표와 국내 역량 고려 등이 다소 부족한 달탐사 사업을 기획·추진
 - 기술역량, 개발일정 등 현실을 고려하지 않은 1·2단계 달탐사 사업일정 단축(1단계: '20년 → '18년, 2단계: '25년 → '20년)으로 결국 사업일정 연기
 - 기술역량과 예산의 한계로 대규모 국제협력사업 참여는 어려운 상황이며, 소규모·저비용 우주탐사 프로그램 발굴을 통한 기반기술 확보노력도 부족

□ 산업생태계 분야

- (성과) 국가 우주기술 민간이전 본격 추진, 위성체·지상장비·위성 영상 수출 및 벤처창업·사업화 지원 등 우주산업 육성
 - 국내 민간기업(SI(주))을 통한 인공위성 시스템, 탑재체 수출 총 8기 ('09~'17), 위성영상(SIIS(주)) 3.6만여장('00~'17) 수출
 - ※ 우주 산업체수 / 시장규모: ('06) 39개 / 7,000억원 → ('16) 309개 / 2조7800억원
- o (한계) 우주산업 육성의 마중물인 정부투자의 규모부족과 큰 변동성에 기인하여 민간참여 유도를 통한 생태계 조성은 미흡
 - 선진국의 경우와 같이 대형 정부 우주 사업을 주관하거나, 자체 연구 개발 수행 역량이 충분한 **우주개발 체계종합기업**은 **부재**
 - 우주시장 규모 확대와 우주 산업체 수의 증가에도 불구, 대부분 영세 업체*로 우주분야 강소기업 육성에 한계 노출
 - * 309개 우주산업체 중 종업원 100인 미만 76%, 자본금 10억 미만 66%, 매출액 기준 10억 미만의 업체가 180개로 대부분 영세한 업체 위주 ('16년 우주산업실태조사)

Ⅲ. 글로벌 동향 분석

1 우주개발 참여 확대

□ 우주개발 투자 현황

- (참여국가) 전 세계적으로 우주개발 참여국은 '96년 28개 → '06년 47개
 → '16년 70개로 지속 증가 추세
 - 지구관측영상, 방송통신, 위치 등의 정보제공과 같은 우주기술의 활용이 교통·통신·안보·환경·에너지 등 다양한 현대 사회활동의 필수 요소로 인식
- (투자영역) 미국이 투자 중인 10대 우주개발 분야 중 6개 이상에 투자 중인 국가는 6개국에 불과하여 국가 간 역량에는 큰 격차 존재
 - 우주개발에 참여하고 있는 70개국 중 56개국이 지구관측에만 참여

< 글로벌 우주개발 투자 영역 (Government space programs (Euroconsult, 2017) >

		투자영역 수						
	구분	10	9	8	5	3	2	1
추진분야	지구관측위성 (공공수요) 기반기술 개발 발사체 기상위성 무인 우주탐사 군 위성 항법위성 항법위성 왕위성 우주인 우주의 양기성 우주기성 우주기성 우주기성	미국	러시아 유럽 중국 일본	인도 (기상위성 독자기술 미확보)	한국	이스라엘 인도네시아 브라질 아르헨티나 터키	대만 이란	기타개도국
	국가 수	1	4	1	1	5	2	56

※ (이란) 발사체와 지구관측에 투자 / (북한, 파키스탄) 발사체만 투자

- 우주선진국 대비 20~40년 늦게 착수한 우리나라의 경우, 미국이 투자 중인 10대 우주개발 분야 중 5개 분야에만 작은 규모로 투자
- ※ 최초 위성발사 시기: 러(57), 미(58), 불(65), 일(66), 중(70), 인도(75), 이스라엘(88), 한국(92)

< 우주개발 선진국과 우리의 투자현황 등 비교 (2016) >

항:	국가	미국	러시아	유럽	중국	일본	인도	한국
예	투자규모 (백만\$)	35,957	3,182	6,721	4,909	3,018	1,092	671
산	정부R&D 대비 (%)	25.8	79.4	_	_	9.5	-	3.9
인 력	우주개발 기관 (명)	(NASA) 17,310	_	(ESA) 2,290	-	(JAXA) 1,529	(ISRO) 16,902	(KARI) 844
덕	산업체 (명)	221,367	_	38,435	_	8,655	_	1,664
활동	발사체 발사횟수 (회)	22	17	11	22	4	7	0
동	운용 위성 (개)	594	136	91	191	60	45	9

※ 산업체 인력의 경우 2015년도 자료를 활용

□ 우주개발 추진 목적

- (선진국) '삶의 질 향상', '안전보장', '국격 제고', '신기술창출', '미래 성장동력', '국제사회 기여', '우주자원 확보', '지적호기심 충족', '인류 거주영역 확대'의 9가지를 우주개발 논리로 제시
 - 다양한 **발사체·위성 개발**, **위성활용 활성화**는 물론 우주탐사와 우주과학연구까지 **광범위한 분야**를 적극적으로 추진
- (개도국) 위성이 제공하는 지구관측 정보 획득을 통한 '국민의 삶의 질향상'을 우주개발 논리로 제시
 - 우주선진국과 경쟁하기 보다는 선진국의 위성정보 활용 또는 위성 공동개발 참여 등을 통해 경제적·실리적인 우주개발 추진
 - 그러나, 파키스탄, 이란 등 특수한 국제상황에 처한 일부 국가는 발사체 기술 등 전략기술 획득 목적의 우주개발을 추진

2 우주 전략기술의 자립 추진

□ 우주발사체 기술역량 확보·강화

- o (투자국가 현황) 개발 초기단계의 과학로켓을 포함한 발사체 관련 기술 개발에 투자한 국가는 '06년 20개국에서 '16년 30개국으로 증가
 - 자력발사 능력 보유국은 9개*로, 실용급(1t 이상) 위성 발사가 가능한 국가는 6개 (이스라엘, 이란, 북한은 300kg 이하 위성 자력발사 능력 보유)
 - * 러시아('57), 미국('58), 유럽(프랑스 등 '65), 중국·일본('70), 영국('71), 인도('80), 이스라엘('88), 이란('09), 북한('12)이 자력발사 성공 (영국: 현재 기술력 상실)
 - 아르헨티나, 브라질, 인도네시아, 터키 등은 500kg 이하의 위성 발사를 목표로 발사체 관련 기술 개발에 투자 중인 상황
 - < **발사체 개발 관련 추이** (출처: Government space programs (Euroconsult, 2017)) >

- o (기술개발 동향) 선진국에서는 민간기업이 발사체 개발에 주도적으로 참여하여 발사비용 절감을 위한 새로운 발사체 개발과 관련 기술 확보
 - 미국은 그간 활용(Atlas V의 RD-180엔진 사용)해 온 러시아 엔진을 대체할 새로운 엔진과 재사용기술(Space X사는 Falcon-9) 개발로 비용 절감 추진
 - ※ Aerojet(AR1), Blue Origin(BE-4), Space X(Raptor) 등 국방부를 중심으로 엔진개발에 많은 투자
 - 인도, 러시아, 중국은 발사체기술과 발사장활용에 대한 해외 의존을 탈피하고 자국 기술을 활용하기 위한 독자 역량 강화 중

< 인도/러시아/중국/일본의 발사체 개발 현황 >

국가	주요내용
인도	정지궤도발사체인 GSLV에서 사용하던 러시아 상단엔진을 자체 엔진으로 대체한 GSLV-MkIII 개발 성공
러시아	카자흐스탄 발시장을 대체하기 위한 보스토치니 발사장 구축·운영 추진 , 단일엔진 대량생산과 다양한 조합을 통해 여러 버전으로 재구성 가능 Angara개발 중
중국	새로운 친환경(액체산소 시용) 엔진 을 활용한 LM(장정)-5의 혁신으로 추력 60% 향상
일본	대형발사체 H-2A의 후속으로 H-3(액체)를 개발 중이며, 비용절감과 효율화를 위해 엡실론발사체(고체) 개발

□ 독자적 국가전략 위성시스템 개발·운영

- (정찰위성) 주요국은 정찰능력 강화를 위해 0.3m이하의 초고해상도
 광학위성을 경쟁적으로 개발
 - 미국은 0.3m급 이하 위성을 '14년 및 '16년에 발사, 유럽은 '17년에 발사
 - 일본은 0.4m급 위성을 '15년에 발사, 0.25m급 위성은 '21년 발사예정
- (항법위성) 주요국은 미국GPS 사용에 따른 불안정성을 최소화하고,
 자국의 안전 인프라 자산 확보를 위해 독자 위성항법시스템 구축 추진
 - 글로벌 위성항법시스템을 기 구축한 미국·러시아는 시스템을 지속 보완 하고 있으며, 유럽과 중국은 글로벌 위성항법시스템을 신규로 구축 중
 - 인도는 지역 위성항법시스템용 위성 7기의 발사를 완료한 상태이며, 일본은 '23년 서비스를 목표로 항법위성 개발을 지속 추진

< 해외 위성항법시스템 구축현황 ('17.11월 현재) >

항목	전지구 위성항법시스템				지역 위성형	항법시스템
국가	미국 (GPS)	러시아 (GLONASS)	유럽 (Galileo)	중국 (BeiDou)	인도 (IRNSS)	일본 (QZSS)
위성수 <운영/설계(발사)>	29/24(32)	24/24(25)	15/30(18)	20/35(23)	7/7(7)	4/7(4)
구축연도	'95	'96	'20 (예정)	'20 (예정)	'16 (발사완료)	'23 (예정)

- o (우주위험) 국제협력 기반의 공동대응체제 구축이 강화되는 추세이나, 타국에서 제공받는 정보가 제한적이므로 독자적 감시·대응 체계 구축 병행
 - 미국은 전 세계 29개소에 다양한 광학·레이더 감시시설을 운영 중이며, 감시능력 확대를 위해 지속적인 성능 개선을 추진
 - ※ 3cm급 우주잔해물 상시 감시를 위한 핵심 센서인 Space Fence 레이더 성능개량 추진
 - 러시아는 '13년 2월 소행성 충돌 이후, 우주위험감시의 중요성을 인식 하고 기존 시스템을 보강한 국가적 우주감시체계 구축(~'20)을 추진
 - 중국은 다수의 위상배열레이더와 광학감시, 레이저추적 시스템을 활용한 독자 국가 우주감시시스템을 운영

□ 달에서의 주도권 경쟁과 전략기술 획득

- o (주도권 경쟁) 주요국은 달을 미개발된 무한한 잠재력의 영역으로 인식 하고, 달에서의 주도권 상실을 방지하기 위해 달 탐사를 경쟁적으로 추진
 - 과거의 미국, 러시아 2강 구도경쟁에서 유럽, 일본, 중국, 인도 등이 참여함으로써 다극화 양상으로 변화
 - 미국의 달 궤도 우주정거장 구축 프로젝트인 「딥 스페이스 게이트웨이」 ('20~'25)에 러시아가 동참하기로 결정('17.9월)
 - 인도(찬드라얀 2호, '18)와 일본(SLIM, '20)은 달 착륙을 추진할 계획
 - 중국은 창어시리즈를 통해 달 탐사를 중점 추진 중이며, 창어 5호('19) ·6호('20)를 통해 달 귀환을 추진할 예정
- (기술확보) 선진국들은 단순히 국격 제고 목적으로만 우주 탐사를 추진 하는 것이 아니라, 개발과정에서 다양한 전략기술 획득을 추진
 - 탐사 과정에서 필요한 도킹 및 지구 재진입 기술 등은 국가 안보 측면 에서의 전략자산인 중요기술로 인식

우주자산을 활용한 공공수요 대응 강화 3

□ 위성정보 공공활용의 중요성 부상

o (효용성 증대) 환경·에너지·자원, 식량안보, 재난대응 등 다양한 사회문제 해결에 중요정보를 제공하는 필수 인프라로서 자리 매김

< 사회문제 해결의 핵심 인프라로서의 우주 >

곡물 생산 현황 모니터링을 통한 곡물 수급 및 시장 가격 안정화 → NASA, ESA 위성 등을 활용한 아프리카 곡물 작황모니터링

지속가능한 도시 및 생활을 위한 대기오염 모니터링 → 일본 Himawari-8를 이용한 미세먼지 대기분포 분석

대보초 지역의 수질 모니터링 → MODIS위성을 이용한 산호초

생태계 변화 관측

식량 안보/ 농업생산성

재난대응

공공보건 생물다양성지속가능한 생태계관리 도시 개발

도시화 지도 및 인구 정착 계획 및 관리를 위한 데이터 → 우간다 지역의 도시 범위 변화

→ Landsat 위성을 이용한 미국 호수 녹조 시각화

환경오염 감소로 수질 향상 및 물정화/재활용 향상 모니터링 글로벌 위성 강우량 지도(Global Satellite Map of Precipitation)를 이용한 홍수재난예측 → GSMaP지도 모습 → 맹그루나무 손실 지역 시각화

글로벌 맹그루나무 지역 변화 관측

- 기후변화 대응 대기관측, 해빙·해류 등 해양 정보 등 다양한 지구 관측 정보는 대부분 위성에 의존

< 세계기후변화관측기구가 지정한 기후핵심지표 >

관측영역		기후핵심지표 (Essential Climate Variables, ECV)		
지표		강우량, 대기온도, 기압, 지면복사에너지,풍향/풍속, 수증기		
대기	상층대기	지구복사에너지, 온도, 풍향/풍속, 수증기, 구름특성		
	구성물질	이산화탄소 , 오존 , 메탄, 온실가스, 에어로졸 특성		
해양	해수면 해표 온도, 염도, 해수면 높이, 해면 상태, 해빙, 해류 이산화탄소 부분압력			
	해저	온도, 염도 , 해류, 영양분, 탄소, 해양 추적 인자, 식물성 플랑크톤		
 육지	적설량, 빙하 및 만년설, 알베도, 토지피복, 바이오매스, 토양 수분 등			

- (활용증가) 위성정보를 활용한 에너지, 자원, 해상, 재해재난 서비스 분야의 부가가치 산업의 시장 규모는 확대 전망
 - ※ 위성정보 활용 세계 시장 전망: ('15) 2,722 백만 달러 → ('25) 4,637 백만 달러

□ 다양한 위성 개발을 위한 투자 활성화

- (위성종류) 지난 10년('06~'15)간 발사된 민간위성(군 위성 제외) 448기
 중 지구관측위성이 41%로 가장 많이 활용
 - 통신 22%(98기), 과학/탐사 18%(79기), 기술검증 8%(36기), 항법 6%(27기) 순
- (위성규모) 지구관측위성은 소형화, 대형인 통신·항법위성은 크기가 유지됨에 따라 위성 규모는 (초)소형과 대형으로 양극화되는 추세
 - ※ 지구관측위성 중 소형위성(50~500kg) 발사 수: ('07~'16) 62%(112기) → ('17~'26) 84%(504기)
 - 최근 (초)소형위성에 IoT와 같은 신기술을 도입한 저비용 위성망 확대
 - ※ 최대 5,000개에 달하는 위성으로 지구를 뒤덮는 대량 저궤도 초소형 위성군(Big LEO) 기반 인터넷 시스템이 '20년 출범 예상
- 이 (투자분야) 국가별 우주개발 수준에 따라 상이한 목적으로 투자 확대
 - 미국, 유럽, 일본은 지구관측 수준 향상을 목표로 지구 환경 및 기후 변화감시 등과 관련된 위성 개발 및 활용에 중점 투자
 - 러시아, 중국, 인도 등은 위성정보의 자급자족을 목표로 위성 국산화에 투자
 - UAE, 베트남 등 우주 개도국은 자국 산업 발전에 대한 기여와 지역 지구관측 위성정보 확보를 목표로 위성개발에 투자
- < 지구관측 위성 개발 관련 추이 (출처: Government space programs (Euroconsult, 2017)) >

4 경쟁력 있는 우주산업 생태계 구축 노력

□ 민간의 우주산업 참여 유도

- (1단계: 정부주도 지원) 수요와 공급 모두 정부에 크게 의존하는 단계로
 민간의 투자유도를 위해서는 정부 투자의 선행이 필요 (한국, 중국, 인도)
 - 국가 우주산업 기반조성을 위해 지속적 국가사업 발굴 등 물량 확보, 필요시 보조금 지급 등 산업체를 직·간접적으로 지원
 - ※ 예시: 발사체 운용을 위한 최소 발사 횟수 보장. 고정비용에 대한 보조금 지급 등
- (2단계: 민간의 우주산업 참여) 지속적 물량 제공 등에 따라 수요는 정부
 의존이 크나 민간의 투자가 발생하는 시기 (유럽, 일본, 러시아)
 - 정부 지원 아래 경쟁력 강화를 위한 성능향상 및 가격경쟁 시작
 - ※ (미국) ISS 화물·유인 수송에 사용할 상용 발사체 개발지원 프로그램인 COTS (2006년 시작)과 CCDev(2009년 시작)을 통해 발사서비스 상업화 지원
 - ※ (유럽) Space Strategy for Europe(2015)을 제정하여, Copernicus, Galileo, EGNOS를 통한 우주정보(영상·위치정보·통신 등) 및 관련 서비스시장 육성·창출 지원
- (3단계: 민간의 우주시장 개척) New Space로 불리우는 일부 기업의 자발적 투자와 기술혁신 등 산업체 중심의 우주 신산업 창출 (미국)
 - ※ 민간 발사체, 소형위성 메가군집, 궤도서비스, 우주자원 발굴, 우주관광 등
 - 정부도 민간 우주활동 관련 법규 마련, 기술자문·인프라·연구 자금 지원 등 민간의 우주개발 투자에 부응하는 다양한 정책 마련

□ 기술융합을 통한 신산업 창출

- o 타 분야 산업체의 우주개발 참여 확대로 **첨단 IT 기술과의 융합**을 통한 우주분야 혁신 사례 증가 등 **우주산업의 외연 확장**
 - 3D프린터를 이용한 위성·발사체 부품제작 등 개발 비용절감과 기간 단축 ※ Rocket Lab(소형위성발사체 제작기업, NZ)의 Rutherford 발사체엔진을 3D프린터로 제작
 - 우주탐사로버 개발에 로봇·AI기술, 위성영상 서비스에 빅데이터 기술 활용
 - ※ DigitalGlobe(미)사는 '지리공간 빅데이터 플랫폼'(GBDX, Geospatial Big Data platform)을 통해 도로, 자원분포 등 지리 변화 탐지 및 정부 행정서비스 지원

□ 경제적 우주탐사를 위한 국제협력 강화

- o 국제우주탐사조정그룹(ISECG)*을 통한 국가별 탐사임무 정보교환 및 임무 조정 등 독자개발보다는 국제협력을 통한 비용절감과 성공률 제고 추진
 - * ISECG (Internation Space Exploration Coodination Group) : 세계 Space Agency간의 우주탐사 조정그룹(14개 기관/기구 참여). 우리나라(KARI) 공식 참여
 - 중국은 우주정거장 '천궁 3호' 개발(~'22)에 UN COPUOS 회원국의 참여 제안
 - 미국은 '33년을 목표로 유인 화성탐사('19년 시험발사)를 추진 중이며, 중간 경유지로 달에 구축할 우주정거장을 활용할 계획
 - ※ 지구→달→화성→달→지구의 경로의 탐사 계획으로 러시아와 협력으로 추진

< 주요 우주탐사 국제협력 프로젝트 참여 현황 >

프로젝트명 (임무)	선도국	참여국
Curiosity (화성)	미국	프랑스, 캐나다, 독일, 러시아, 스페인
ExoMars (화성)	유럽·러시아	이탈리아, 벨기에, 프랑스, 독일, 러시아, 스페인, 스위스, 영국
InSight (화성)	미국	프랑스, 벨기에, 스위스, 영국
Hayabusa2 (소행성)	일본	프랑스, 독일
OSIRIS-REx (소행성)	미국	캐나다

Ⅳ. 시사점과 추진방향

□ 시사점

- o 선진국은 포괄적인 우주개발을, 개도국은 실용적인 활용 중심의 우주 개발을 추진하나 개별 국가의 국제 상황 등에 따라 활동영역 선택
 - 우리나라는 개도국과 같은 실리적인 우주활동 뿐만 아니라 동북아의 지정학적 위치 등을 고려한 **전략기술 획득 측면**도 **동시 고려**할 **필요**

< 선진국과 우리나라의 우주개발전략 논리 비교 >

우주개발 논리	선진국 적용 분야 (미국, 러시아, 중국 등)	우리나라 연관성	우리나라의 전략과 적용분야
안전보장	발사체, 정찰위성, 항법위성	*	우주접근 및 회복(resilience) 역량(발사체, 정찰위성, 항법위성)
삶의 질 향상	지구관측 (기상, 해양, 산림, 농업 등)	*	공공수요 위성개발 (관측위성-기상, 해양, 산림, 농업 등)
국격과 국민 자긍심 제고	우주탐사, 발사체 및 우주 일반		달 탐사, 발사체, 홍보
신기술 창출	우주태양광 발전, 재사용발사체, 4차 산업혁명과 연계 등	0	산업생태계 진흥 일부
고부가가치 미래성장 동력	Spin-off(전자레인지, 정수기 등), 우주관광, 초소형군집위성, 우주인터넷 등	0	Spin-off 등 일부
국제사회 기여	인류 공동 현안(재난관리 등) 해결	Δ	재난관리 등 일부
	우주탐사	Δ	무인 달탐사 기반 미래 우주자원 채굴역량 확보
지적 호기심 충족	우주과학, 우주탐사	Δ	우주과학 일부
인류 거주 영역의 확대	유인우주탐사	×	

[★] 매우 밀접, ◎ 밀접, ○ 보통, △ 연관성 미약, × 연관성 없음

- o 시장이 성숙할수록 선진국들은 **민간이 주도적으로 우주개발을 추진**하되, 민간기업의 혁신주도를 위한 다양한 지원방안도 병행
 - 현재의 유럽·일본 등의 모델을 참고하여 민간주도로 단계적으로 전환 하고 지속적 물량 제공과 지원을 통해 민간투자 확대 유도 필요
- o 행성탐사는 비용절감을 위해 우주선진국을 중심으로 국제협력을 통해 추진하고 있으며, 지구에 가장 근접한 달에 대한 탐사는 지속
 - 기 추진되고 있는 달탐사 사업을 **향후 선진국과의 행성탐사 협력을** 위**한** 발파으로 활용하여 비용 효율적인 우주탐사 추진 필요

□ 추진방향

- [도전과 실리의 조화] 국민의 삶의 질 향상에 실질적인 도움을 주는 우주 개발과 국민 안전을 위한 도전적인 우주활동도 동시 추진
 - 장기적인 활용 수요를 고려한 마스터플랜 하에서 개발사업 추진
 - 독자 위성항법시스템과 우주발사체 자립과 같은 전략기술에 투자
- o [전략분야 선택과 집중] 선진국이 투자하는 모든 분야가 아니라, 우리의 경제규모, 기술역량, 국민관심, 사회가치 등을 고려하여 선택과 집중
 - 위성·발사체에 우선 투자하되, 파급효과가 큰 기술분야에 선제 투자
 - 기술, 산업 역량에 대한 철저한 사전 점검 후 차기 단계 이행
- o [신산업과 일자리 창출] 발사물량 제공, 기술지원 등을 통해 우주개발에 대한 민간기업의 참여 확대를 유도하여 신산업과 일자리 창출
 - 항우연 조직 효율화 및 역할 재조정을 통해 민간지원 체계로 전환
- [국민의 공감 확보] 국민의 수요와 기대를 우선 고려하고, 추진과정에서 국민과 함께하는 우주개발을 통해 국민 체감도와 공감 제고

♡. 비전과 목표

도전적이고 신뢰성 있는 우주개발로 국민의 안전과 삶의 질 향상에 기여

중점 전략	추진 과제				
① 우주발사체 기술자립	1.1 한국형발사체 자력발사 성공 1.2 발사성공을 위한 지원체계 구축 1.3 발사체기술 지속 고도화				
② 인공위성 활용서비스 및 개발 고도화다양화	2.1 국민 생활·안전을 위한 위성서비스 고도화다양화 2.2 효율적인 국가위성 개발·활용 체계 구축				
③ 우주탐사 시작	3.1 달 탐사 본격 착수 3.2 우주감시 고도화 3.3 다양한 우주 과학탐사 활동 추진				
④ 한국형 위성항법시스템 (KPS) 구축	4.1 구축 타당성 예비검토 추진과 사양 확정 4.2 KPS(Korea Positioning System) 구축 전략수립과 추진체계 마련				
5 우주혁신 생태계 조성	5.1 다양한 혁신주체 육성 5.2 우주 핵심기술 개발 5.3 우주개발 추진체계 개선 5.4 글로벌 우주협력 강화				
6 우주산업 육성과 우주일자리 창출	6.1 우주개발에 민간참여 확대 6.2 우주기술 사업화와 융합 촉진				

문재인 정부의 주요 추진내용

- □ (발사체) 우주발사체 독자기술 확보 및 기술 고도화
 - 시험발사체 발사로 자력개발 75톤 엔진의 비행성능 확보·검증('18)
 - o 한국형발사체(3단형) 본발사 2회로 우주발사체 기술 자력확보(~'21)
 - o 후속 R&D프로그램 착수로 민간기업이 적극적으로 참여하는 우주산업 생태계와 상용위성 발사서비스 기반 구축('21~')
- □ (위성개발·활용) 민간주도 개발체계로 전환하고 공공서비스 고도화
 - 공공수요 대응, 국민생활향상, 우주과학 등을 위한 저궤도 위성(광학·IR·SAR) 6기와 기상·해양·환경 분야 정지궤도위성 2기 발사
 - 저궤도위성 6기(광학·IR·SAR 등), 정지궤도위성 2기(조기경보·항법) 신규개발 착수
 - o 초소형위성 약 10기와 다목적·중형위성을 연계하여 매 1시간 관측 주기 (현재 2일 주기)의 재난재해 대응체계 구축(~'22)
 - ㅇ 차세대중형위성 2호부터 산업체 주도의 위성개발 체계로 전환('18~)
- □ (위성항법) 위치정보 자립을 위한 한국형 위성항법시스템(KPS) 구축 착수
 - ㅇ 구체적인 사양 확정과 기본설계를 위한 기획연구 추진(~'19)
 - o 고유신호 제공을 위한 **주파수 확보 관련 국제협력**과 위성항법탑재체 기술개발을 위한 **지상시험장 구축** 등 **1단계 사업 착수('20~)**
- □ (우주탐사) 국내 최초 달 탐사선 발사 및 소행성 귀환을 위한 전략기술 개발
 - NASA와 협력하여 550kg급 달 궤도선 개발·발사('20)
 - o 도킹, 지구재진입 등 소행성귀환 관련 전략기술 조기확보 추진('21~)

Ⅵ. 중점 추진과제

전략 1 우주발사체 기술 자립

지향점과 5년간 로드맵

◇ 지향점

○ 1.5톤급 위성 저궤도 발사능력 확보 후, 3톤급 정지궤도 발사까지 확대

◇ 5년간 로드맵

-1 한국형발사체 자력발사 성공

□ 발사체 기술 자립

- o (개발내용) 1.5톤 위성을 지구저궤도에 투입하는 한국형발사체 개발(~21)
 - 3단 발사체 개발: 1단(75톤 엔진 4기 클러스터링)+2단(75톤 엔진 1기)+3단(7톤 엔진 1기)
- (독자개발) 3단 발사체의 제작·시험·발사운영 등 전 과정을 국내 주도로 추진하되, 필요시 개발기술 검증을 위한 국제협력 병행
 - 한국형 발사체 성공을 **한국 우주산업육성**과 **글로벌 우주협력**의 계기로 활용

□ 비행성능 검증

- (주엔진 시험발사) 한국형발사체의 발사성공률 제고를 위해, 주엔진인
 75톤 엔진(1기)으로 구성된 시험발사체 발사(18.10월)로 자력 개발 엔진의
 최초 비행검증(비행연소·비행절차 확인 등) 실시
 - 시험발사 결과 기술 검증이 미진할 경우, 한국형발사체 개발의 신뢰도 향상을 위한 2차 시험발사를 실시(119)하고 본발사 일정도 연동하여 조정
 ※ 1차 시험발사 실패를 대비하여 성능 고도화 등을 위한 추가시험 발사계획을 수립
- (3단 발사체 본발사) 독자 개발한 우주발사체 발사 성공으로 자주적
 우주역량을 확보하고 상용위성 발사서비스 제공을 위한 기반 마련
 - 주엔진 시험발사 이후, 발사체 개발사업의 추진상황을 종합 검토하여 3단 발사체의 본발사 2회* 실시(21)
 - * (1차) 시험(더미) 위성, (2차) 실험탑재체를 장착한 우주기술 검증 목적의 소형 과학위성
 - 개발 과정에서 발생 가능한 위험요소에 대한 사전 식별·대응을 위해 위험관리위원회 활동을 강화하고 외부 전문가(전담평가단) 추적 관리

1-2 발사성공을 위한 지원체계 구축

□ 발사 지원 조직 운영

- (진도점검) 시험발사 성공 후, '한국형발사체 성공발사 추진본부'를 구성 (18.11월)하여 진도점검, 정보제공과 국민참여이벤트 등 대국민 활동 수행
 - 개발·조립 등 진행사항을 **국민에게 실시간**(분기별) **공개**하고 명칭공모전, 국민염원 새기기 등으로 우주개발에 대한 **관심제고**와 도전의식 함양
- (기술점검) 발사시점에는 발사관리위원회, 비행시험위원회 등 기술
 점검을 위한 협의체를 본격 가동하여 발사 과정의 기술문제 중점 관리

□ 다양한 기술협력 병행

- (국제협력) 구성품 해외제작, 기술자문·협력개발 등 기술보유국과 협력 강화
 - 해외 제작이 효율적인 부품은 해외 직접구매*로 확보하고, 확보가 불투명한 부품은 국내개발과 해외제작을 병행**하여 실패에 대비
 - * (3단 고압 탱크) 해외 제작으로 기간 단축. (터보펌프 베어링) 기술. 가격 해외 유리
 - ** 3단 추진제 탱크 제작시. 원주 용접방식 개선과 돔부 해외 외주 동시 진행('18~)
 - 시험과정에서의 기술 검증과 위험도 저감 노하우 획득을 위한 기술 자문, 기술수준 미흡 분야에 대한 국제 기술협력 추진 등으로 기술완성도 제고
- (산·학·연 참여) 산업계·학계 기술지원과 출연연간 기술교류 활성화
 - 산업체의 발사체 기술 역량 강화를 위해 **항우연과의 협업과 기술지도 추진** ※ 발사체 개발 후, **산업체 주관**의 **발사서비스**를 위해 부품제작·조립에 **기업 비중 확대**
 - 설계 해석 및 시험 결과 분석 분야에 학계 연구진을 적극 참여시켜 국내 발사체 기술 저변 확대와 기초 기술 공고화
 - 기술문제 해결책 도출을 위한 분야별 출연연 전문가의 기술 자문, 기술 분야별 전문 연구기관의 발사체 개발 참여 등 국내 기술자원 최대한 활용

1-3 발사체 기술 지속 고도화

□ 자력발사서비스 기반 구축

- (1단계) 한국형발사체를 기반으로 발사서비스 생태계 육성(22~'25)
 - 체계종합 기업을 중심으로 산업체 컨소시엄 구성
 - 발사체의 성능·경제성 향상 및 제작 역량강화를 위한 R&D프로그램 신설
 - 최소 3회* 이상(22년 이후 매년 1회)의 한국형발사체 발사로 신뢰도 향상
 - * (1차) 시험위성 발사(22): 한국형발사체의 신뢰도 향상
 - (2차) 차중3호(검증위성) 발사('23): 실용급 위성 발사능력 실증 및 제작 기술 향상
 - (3차) 차소3호(과학위성) 발사('24): 제작비용을 절감 및 실제 임무 수행
- (2단계) 국내 위성발사 양산 체계를 통한 가격경쟁력 확보('26~'30)
 - 정부 주도 개발 위성 발사는 국내 발사서비스 전문기업이 담당
 - 우주개발 전문기관의 기술 검증을 통해 산업체의 기술 신뢰성 확보
- (3단계) 국내 발사서비스 역량을 토대로 해외시장 진출 모색('31~)

□ 한국형발사체 플랫폼 확장

- (발사영역 확장) 소형과 대형으로 양극화되는 발사 수요 등을 고려하여
 확보된 한국형발사체 기술을 다양한 크기의 발사체로 확장
 - 500kg이하의 소형 위성 수요증가에 대비, 한국형발사체(1.5t) 기술을 경제성을 갖춘 소형발사체 플랫폼으로 연계·확장('25~'30)
 - 저궤도 대형위성, 정지궤도위성(3t 이상) 등 다양한 우주임무 수행 관련 국내수요가 풍부할 경우 대형발사체 플랫폼 관련기술 확보('30~'40)
- o (발사장 확장) 다양한 발사 임무 및 추진기관 개발을 위한 발사장 확장·운용
 - 시험발사체·한국형발사체의 추진기관 성능·신뢰성 검증용 시험설비 및 발사대 구축, 우주센터 시설 확장(~21)
 - 소형·대형 발사체로의 플랫폼 확장과 연계한 시험시설 및 발사대 확장·운용

전략 2

인공위성 활용 서비스 및 개발 고도화

지향점과 5년간 로드맵

◇ 지향점

○ 다양한 첨단위성 개발·활용으로 국민생활 향상과 4차 산업혁명 견인

◇ 5년간 로드맵

·										
		2018	2019	2020	2021	2022				
위 성 개 발	소형위성	1호		्र 2च्चे						
	중형위성		1호 (국토)	2호 (국토)		★ 4호 5호 (산림) ★ (기상)				
	다목적 실용위성			6章 (SAR)	7호 (광학/IR)					
	정지궤도 위성	2A호 (기상)	2B호 (해양/환경)							
아 전혜!! 여	재난 · 재해 등 국가위기 대응 서비스	재난 재해 대응	응 위성활용 방안	재난재해 다	응(매시간 주기 관측)	시스템 구축				
	해양 · 환경 등 공공활용 서비스	해양(해상도 1km, 8		해양(해상도 작물 수급 안정 등 관련	- 0,25km, 16채널, 정당 서비스 제공	일도 250m)				
				한반도 주변	고정밀 환경 예ㆍ경보	서비스 제공				
	통신·항법 등 4차 산업혁명 서비스	차세대 위성항법보정시스템(SBAS) 기반 1m이내 위치정보서비스 제공 기반 구축								
	정밀 관측 · 감시		광학 · 적외선 · 레이더	관측위성 영상해상도	등 세계 수준 으로 제고					

2-1 국민생활·안전을 위한 위성서비스 고도화·다양화

□ 재난·재해 등 국가위기 대응 서비스 제공

- o (재난·재해 전반) 재난·재해대응 골든타임 확보, 실효성 제고 등을 위해 위성활용 긴급대응 및 실시간 지원 서비스 제공
 - 위성활용 대응가능 재난·재해 유형 도출, 위기대응 세부절차 등을 포함하는 '재난·재해대응 위성활용 방안' 범부처 합동 수립(~119)
 - 초소형위성(10기)·다목적(2기)·중형위성(4기) 연계로 매시간 **대응체계구축** (~22) → 첨단관제 운용, 초소형위성 추가(20기)로 **대응시간 단축**(~'25)
- o (기후변화 대응) 황사·미세먼지 등 대기오염물질 감시 및 가뭄·풍수해 등 수자원 재해 감시와 우주기상 및 기후변화 분석 등 기후재해 대응 강화
 - 태양풍, 우주전파, 우주자기활동 등 **우주기상 감시·분석**과 **지구 기후** 변화 분석·예측 등을 위한 차세대 소형위성(4기) 개발(~'26)

□ 해양·환경·농수산 등 공공활용 서비스 제공

- o (해양·환경) 한반도 주변 해양·환경 정밀 관측 및 오염물질 감시·분석 등을 통해 해양환경·자원관리 및 고정밀 환경 예·경보서비스 제공
 - 한반도 및 주변국 해양환경 관측, 해양 오염물질 이동상황 감시, 이상 파고 감지, 선박 추적·대응 등 해양 감시·예측·대응 서비스 실시(112~)
 - * 천리안2B호('19)의 해양탑재체: 해상도 4배(1→0.25km), 전송채널 1.6배(8→13ch) 개선
 - 이동성 **대기오염물** (SO₂, NO_x, CO_x 등) 발생·유입 조기탐지*, 지상관측 정보 연계 등을 통한 **대국민 환경 예·경보 서비스 정확도 향상**(119~)
 - * 미세먼지, 황사 등 대기오염 물질의 한반도 유입 8시간 전 감지
- o (농업·산림·수자원) 농업관측, 산림감시, 홍수·가뭄 예보 등 농림수자원 관리를 통해 작황 예측, 작물 수급 안정 등 대국민 서비스 제공('23~)
 - 작황분석, 농경지 현황 등 생산 환경관측과 통계산출 기술개발 및 산림생태계 변화, 산지 훼손·전용, 산림자원정보 등 감시서비스 제공

□ 통신·항법 등 4차 산업혁명 기반 서비스 제공

- (위성항법) 차세대 위성항법보정시스템(SBAS*)을 통해 항공, 항해 등 위치 측정 오차 1m이내의 초정밀 위치정보서비스 제공(♡♡~)
 - * Satellite Based Augmentation System: 정지궤도위성을 통한 GPS 좌표보정 데이터 송출 시스템
 - SBAS용 기준국, 위성통신국 등 지상시스템 구축(~20)을 통해 자율차 등에 적용가능한 공개서비스(20~) 및 항공용 서비스(22~) 제공 추진
 - 이동통신 기지국 시각동기, 위치서비스 등 정보통신 융합서비스 및 비행·선박 항로관리, 정밀접근·착륙 등 항공·해양 신규 서비스 개발
- (통신·방송) 지상망 손실, 전파방해(Jamming) 등 위기상황에 대비한 음영 없는 공공·국방 통신방송 환경 구축을 위해 독자 위성모델 개발(~'30)
 - 재해·재난, 비상사태 등 위기시 **통신환경 안정성 보장**, 위성통신방송 분야 **국제경쟁력 확보**를 위한 **통신방송 정지궤도위성* 확보** 추진
 - * 휴대폰형 통신위성, 통신방송위성, 광대역인터넷통신위성 등(~'40)

□ 한반도 정밀 감시 서비스 제공

- o 국가안전 등을 위한 전략정보 획득의 질적 도약을 위해 영상해상도를 세계 최고 수준으로 제고하고, 한반도 재방문 주기를 단축
 - 기 확보된 지구관측 탑재체기술(가시광선*, 중적외선**, 레이더***) 고도화로 세계 최상급 저궤도 관측위성 시스템 구축 및 국내 기술 자립도 제고 추진
 - * (가시광선) 다목적실용위성 7호(0.28m급, ~[21]) → 9호(0.1m급, ~'28)
 - ** (적외선) 다목적실용위성 7호(4.0m급, ~<mark>21</mark>) → 9호(1.0m급, ~′28)
 - *** (레이더) 다목적실용위성 6호(0.5m급, ~️ZZ) → 8호(0.2m급, ~′27)
 - 재방문주기 단축 등 **준실시간 관측체계** 구축을 위한 **초소형 위성** 개발 (기획연구, '18), **상시감시**를 위한 **조기경보 정지궤도** 위성 개발(~'24) 등 추진

□ 위성서비스 고도화를 위한 전략 수립

- 위성정보 배포·활용 체계 고도화, 위성정보 활용 공공서비스 확산 및 신산업 창출 촉진을 위한 '위성정보 활용 종합계획' 마련(18)
 - 위성정보활용지원센터(항우(연))의 기능을 강화하고, 위성정보를 활용한 고부가가치 창출 가능 분야의 서비스 고도화 추진

2-2 효율적인 국가위성 개발·활용 체계 구축

□ 위성개발 체계 효율화

- (종합전략 마련) 위성기술 수준의 체계적 도약 및 미래 신기술 선점, 위성 상용화 등을 위한 '대한민국 인공위성개발 중장기 전략' 수립·추진(118)
 - 미 확보기술 및 우주선진국과 경쟁 가능한 미래 **게임 체인저 기술***에 대한 도전적 연구전략 마련 및 기술 개발 추진
 - * 정지궤도 고해상도 상시관측 기술, 레이저 통신 기술, 고성능 친환경 추진제 추력기 기술, 우주태양광 발전용 송수신장치 기술, 우주정거장 이용 지구관측기술 등
 - 나노기술 활용 위성 구성품·구조체 경랑화 기술 개발, 레이저·양자 통신 기술 접목, ICT 부품·소자 기술 활용 위성부품 자립화 등 기술융합 추진
- (투자효율화) 우주개발 전문기관이 기 확보한 기술의 국내 산학연 확산 및 부처·기관별 위성 공동활용 등 효율적 협력체계 구축(~19)
 - 전문기관의 인프라(위성시험조립시설, 위성수신관제시설 등)의 국내 산학연 활용 및 기술 컨설팅 지원을 통해 유관 기관의 기술역량 강화 촉진
 - 위성수요를 제기하는 다양한 부처·기관 간 성능 중복여부, 빈도·적시성 등을 고려한 위성 공동활용 검토 등 기관 간 협력강화 체계 마련 ※ '위성정보활용위원회' 구성·운영(우주개발진흥법 제6조제5항) 등
- (부품 국산화) 우주기술로드맵을 토대로 한국형발사체와 연계하여 수입이 제한되는 위성탑재체 등 우주부품의 국산화 우선 추진
 - ※ 수입제한 품목: 추력기 밸브, 자이로, 태양전지 배열기, 레이더 제어기 등
 - 위성본체는 위성별 표준화 개념을 적용하여 개발 비용·기간을 단축
 - 우주핵심부품 전문기업 육성을 위한 상용부품 우주인증시험기술 개발(~'30)
 - 주요 위성부품에 대한 **수출규제**와 국내 발사체를 이용한 위성 발사에 적용되는 **국제규제 완화**를 위한 **외교적 노력 병행**

□ 위성정보 활용 촉진기반 구축

- o (기술·인프라 지원) 위성정보 분석의 전문성과 수요자 편의 제고를 위해 위성영상 처리·분석 기술개발 및 위성정보활용 인프라 구축
 - 국가 운용 정지궤도·저궤도위성 통합 관제·운영 시스템 개발·구축(118~)
 - 빅데이터·인공지능(AI) 적용 **위성분석 정보 생성기술** 개발(~<mark>22</mark>) 및 **해외 주요기관**(美 NASA, 獨 DLR, 日 JAXA 등)이 참여하는 **공동연구** 추진
 - 클라우드 저장 및 분석 SW 기반 위성정보 통합데이터센터 및 사용자 친화형 활용 플랫폼(~21), 위성정보 자동처리 시스템(~22) 등 구축
- (활용 지원) 위성정보의 활용 분야 확대 및 과학적·산업적 기회 창출
 지원을 위해 다양한 위성정보 활용 사용자 그룹 육성(118~)
 - 공공기관·대학 등의 위성정보 활용 학술·연구 활동 지원 및 우주개발 사업 참여 저변 확대 등을 통해 위성활용·서비스 중심의 우주개발 추진
 - 우주개발 분야와 타분야(ICT, 국방, 기상 등) 전문가 간 활용분야 연구 성과 공유, 최신 기술·동향 교류 기회 마련을 위한 협의체 구성·운영
- o (수출 지원) 위성활용 인프라 운용 및 영상 분석·활용 성과를 토대로 위성영상 등 수출 확대 및 전문 인력·기업의 해외 진출 등 적극 지원(118~)
 - 위성영상 수출국 대상 **위성정보 활용 전문가** 및 **산업체 진출*** 지원을 통해 **위성영상** 및 **위성**의 단계적 수출기회 확대(위성영상→직수신국→위성 수출)
 - * 개발도상국 대상 위성 활용(국토관리, 공공서비스 등) ODA사업 등 발굴
 - 위성영상 수출 및 영상 직수신 수출의 지속 확대와 더불어, 위성 영상 분석기술, 위성정보 융복합 및 공공활용 등 서비스* 수출 지원
 - * 재난·재해 대응, 해양·환경·기상 등 공공서비스, 한반도 포함 지구관측 등
 - 동남아시아, 남미, 중동 등 **국내외 위성활용 협력사업 확대** 추진을 위한 양국간 학술교류 행사 기획 및 글로벌 협의기구 구성·운영 추진

발사체와 위성개발 추진 로드맵

구	분	2018~2022	~30	~40	비고	
발 사 체		▶ 한국형발사체 개발	▶ 소형발시체 플랫폼 확장('25~)	▶대형발사체 플랫폼 확장		
		- 시험발사('18)	※ 소형위성 수요증가 대비	※ 우주임무 다양화 대비		
		- 본발사(2회. '21)				
		▶ 발사서비스 기반 구축	▶정부위성 발사 서비스 개시	▶정부위성 발사 서비스		
		※ 컨소시험 구성과 기술 이전(~'25)	※ 주관업체 중심 발사체 개발	※ 주관업체 중심 경쟁력 확보		
			- 차세대소형위성 2기 발사	- 차세대소형위성 4기 발사		
			(소형발사체 플랫폼 이용)	(소형발사체 플랫폼 이용)		
			- 차세대중형위성 2기 발사	- 차세대중형위성 3기 발사		
			(소형발사체 플랫폼 이용)	(소형발사체 플랫폼 이용)		
			- 다목적실용위성 2기 발사	- 다목적실용위성 3기 발사		
			(한국형발사체 이용)	(한국형발사체 이용)		
			- 달 착륙선 발사	- 소행성귀황선 발사		
			(한국형발사체 활용)	(한국형발사체 활용)		
	소형	▶차세대소형위성 <u>2기</u>	▶차세대소형위성 2기	▶차세대소형위성 4기		
		- 1호('18), 2호('20)	- 3호('24), 4호('26)	- 우주과학 및 핵심기술 검증 등	8개	
	9	(우주기술 검증과 우주과학)	(우주기술 검증과 우주과학)			
		▶차세대중형위성 <u>4기</u>	▶차세대중형위성 21기	▶ 차세대중형위성 43기		
		- 1호('19)·2호('20)	- 3호('23)	- 기 운용위성 임무승계,		
	중	(국토종합관리)	(한국형발사체 기술검증)	신규 수요 위성 등	וובסד	
	형	- 4호('22) (산림관측)	- 6호('25) (수자원관리)		737H 	
		- 5호('22) (기상관측)	- 그 외 18기			
위		▶정찰위성 <u>5기</u>				
위 성 개	다	▶ 다목적실용위성 <u>2기</u>	▶다목적실용위성 3기	▶ 다 목 적실용위성 4기		
	목 적	- 6호(SAR, '20),	- 7A호(광학/IR, '23),	- 10·12호(SAR),	0711	
· '' 발		7호(광학/IR, '21)	- 8호(SAR, '27),	11·13호(광학/IR)	8개	
	실 용		- 9호(광학/IR, '28)			
		▶천리안위성 <u>2기</u>	▶천리안(관측)위성 2기	▶천리안(관측)위성 2기		
	정	- 2A호('18) (기상관측)	('28, '29)	- 천리안위성2호 후속		
	지	- 2B호('19) (해양관측)		위성 및 신규 위성		
	궤		▶통신(방송)위성 1기	▶통신(방송)위성 3기	21개	
	도		▶조기경보위성 1기('24)	▶조기경보위성 2기	<u> </u>	
			▶자료중계위성 1기('27)			
			▶ 항법(경사)위성 1기	▶ 항법(경사)위성 3기		
			(검증용 경사궤도 위성)	▶ 항법(정지)위성 3기		

[※] 재난재해 대응을 위한 초소형위성(약 30기)에 대한 개발계획은 기획연구('18) 결과에 따라 추후 반영

전략 3

우주탐사 시작

지향점과 5년간 로드맵

◇ 지향점

o 한국형발사체를 이용한 달착륙, 소행성귀환 임무 완수와 전략기술 확보

◇ 5년간 로드맵

3-1 | 달 탐사 본격 착수

□ 1단계 달 탐사 임무 완수

○ (목표) 우주탐사 기반기술 확보·검증을 위한 국제협력 기반의 550kg급 시험용 달 궤도선 개발(~'20)

·총 중 량: 약 550kg급

< 시험용 달 궤도선 형상 >

·임무수명: 약 1년

·개발내용: 궤도선 시스템·본체 및 탑재체 개발, 심우주지상국 구축, NASA와 국제협력 등 추진

- ㅇ (핵심기술) 1단계 달 탐사 임무를 통해 국내 미확보 핵심기술 확보 추진
 - (궤도선 경량화) 향후 한국형발사체의 발사성능을 고려*하여, 궤도선 총 중량이 제한되므로, 경량화 기술 확보
 - * (1단계) 해외발사체를 활용하여 기술 검증 → (2단계) 한국형발사체를 활용하여 추진
 - (항행·추진기술) 궤도선의 추력기를 가동하여 달 궤도에 안착하기 위한 항행유도제어, 대용량 추진시스템 기술 확보
 - (심우주통신) 지구와 달의 거리(38만km)에 따른 신호감도 저하 극복을 위해, 궤도선 추적이 가능한 대형(26m 이상) 안테나 구축과 관련 통신·관제 기술 확보
- (추진체계) 항우연이 시스템, 본체, 지상국을 총괄하고 주요 6개 국내
 기관과 미국의 NASA가 참여하는 협력체계로 추진
 - ※ '16.12월 항우연-NASA 간 시험용 달 궤도선 협력 이행약정 체결

< 항우연과 NASA간의 역할 분담 >

한국항공우주연구원	미국 항공우주청(NASA)							
시험용 달 궤도선의 설계·제작·조립·	과학탑재체를 제공('17.4월 선정)하고,							
시험・발사 등 전반적 운용	심우주통신・임무설계・항행서비스 제공							

과학탑재체(한국 3, NASA 1)에 공동과학팀을 구성·연구

□ 후속 우주탐사 추진

- ㅇ (단계별 착수) 추진 중인 달 궤도선 개발을 성공적으로 마무리하고, 사업 임무성과 평가 후 차기단계 착수여부 결정
 - (달착륙선(2단계)) 한국형발사체 안정성 확보, 차질 없는 부품수급, 선행기술 확보의 조건 충족 후, 한국형발사체를 이용한 달 착륙선 자력 발사(~'30이전)
 - ※ 달 착륙선 임무 분석. 기술수준 검토 등을 위한 사전기획 조기 착수(10~)
 - (소행성귀환선(3단계)) 달 착륙 성공과 전략기술 확보를 전제로, 달 탐사를 통해 축적된 기술 인프라를 활용하여 소행성 샘플귀환선을 자력 발사(~'35)
- ㅇ (전략기술 연계) 각 단계별 개발과정에서 필요 전략 기술 도출 및 확보
 - (달 궤도·착륙) 정밀자세 및 심우주 항법, 대용량(30N 이상) 우주추진 기관, 고신뢰 통신, 우주인터넷, 극저온재료 등 전략기술 확보
 - (소행성귀환) 기획연구를 통해 도킹, 지구재진입 등 전략기술을 도출(~19) 하고, 개발 난이도·주기를 고려하여 귀환관련 전략기술 조기확보 추진(21~)

우주탐사 추진 로드맵

한국형발사체 안정성 확보 차질없는 부품 수급 3단계 선행기술 확보 소행성 샘플귀환선 자력 발사 2단계 · 한국형발사체 이용 달 착륙선 자력 발사 1단계 · 도킹, 재구재진입 등 행성탐사 전략기술 검증 · 한국형발사체 이용 시험용 달 궤도선 · 독자적 행성탐사 기술기반 확보/검증 해외발사체 이용 국제협력 기반 행성탐사 / 기술토대 마련 전략기술 조기확보 추진 도킹, 지구재진입 등 고난이도 전략기술의 조기 개발 착수 ▶ 1,2단계 사업을 통한 정밀자세 및 심우주 항법 등 전략기술 확보 35 연도 20 30

22

3-2 우주감시 고도화

□ 우주위험 감시 대응체계 및 기반확충

- o (대응체계) 우주위험 대응을 위한 국가 차원의 우주위험 관리체계 확립(118~)
 - 기술로드맵, 매뉴얼 수립, 정보 협력 네트워크 구축 등을 통해 국가 대응체계 확립 및 국내외 우주감시 체계와 병행한 우주위험 대응 강화
- ㅇ (기반확충) 지속적인 우주위험대비 역량 확보를 위한 기반확충
 - 우주위험감시 관련 기관의 기능 발전 및 유관기관 간 인력 교류 확대
 - 우주위험감시정보 독자획득의 한계 극복을 위해 **국가 간 우주감시 자료** 공유 및 기술협력 확대
 - ※ 국제 우주감시 연습 참가 등 미·EU 등과 우주감시 협력강화, UN 외기권평화적이용위 등의 국제기구와 관련 협의체 참여

□ 우주위험 감시 기술 확보

- (분석·평가기술) 국제협력 및 우주환경 감시·관측시스템으로부터 얻은 우주감시정보의 통합분석 및 우주위험도 평가 기술 확보
 - ※ 감시 정보 통합관리·분석시스템 개발(~'23) → 통합분석센터 구축(~'30) 및 운영(~'40)
- o (감시기술) 우주 및 태양위험 감시 고도화를 위한 기술 확보 추진
 - 조기·상시 탐지역량 확보를 위한 지상기반 우주감시레이다(핵심기술개발(~<mark>2</mark>) → 시스템개발(~'27))와 우주기반 우주감시 소형위성기술 확보(~'30)
 - 태양위험 감시를 강화하고, 국제협력 프로그램 참여로 태양관측 기반 기술 확보와 관련 탑재체 개발 추진
 - ※ 태양흑점 폭발에 따른 우주전파환경 변화 **관측·예경보 체계 고도화**(~'25) 및 태양 및 우주환경 감시 **광학·전파 네트워크구축**(~'30)
 - ※ NASA와 태양관측기 공동개발 후 ISS에 설치(~<mark>2</mark>1) → 태양관측기 국내주도 개발(~'25)

3-3 다양한 우주과학 탐사 연구 추진

□ 경제적 비용의 우주탐사 추진

- (우주탐사 기반조성) 산·학·연이 참여하는 '(가칭) 우주탐사협의체'를 구성(18)하여 해외와 차별화*된 탐사 임무와 기술을 발굴·개발
 - * 다수의 초소형위성을 이용한 근지구 우주환경 입체관측 연구, 우주기상 연구 등
 - (임무) 제안된 임무들의 혁신성과 실현가능성을 평가·선정하여 해당 임무 수행에 적합한 초소형위성을 활용하여 우주 궤도상에서 검증(~'27)
 - (기술) 국제 경쟁력 확보를 위해 로봇위성, 대형 군집비행* 등 우주 선진국에서도 시작단계인 미래 혁신기술·틈새기술 적극 발굴
 - * 초소형위성의 군집비행으로 1대의 대형위성으로는 곤란한 실시간 관측, 대량자료 확보 가능
- (초소형위성 활용) 기존 상용부품 활용으로 개발이 용이한 (초)소형위성 관련 기술 확보를 통해 소행성·화성·혜성 등의 경제적인 탐사 추진
 - ※ 최근 미국 NASA, ESA 등에서도 행성 간 심우주 관측임무에 초소형위성을 사용하는 등 저비용 우주탐사를 실현하기 위해 지속적인 초소형위성 관련기술 개발 진행
 - 달 탐사 사업을 통해 확보하게 되는 심우주 항법유도제어 기술, 비행 제적 최적화 기술 등을 연계 활용
- (국제협력 활용) 해외 탐사 프로그램 참여 및 해외발사체의 대형위성 발사시 저비용 발사기회 확보 등 국제 협력을 통한 탐사 추진
 - 달·소행성 탐사과정에서 확보한 기술과 국제협력 관계 등을 통해 NASA, ESA 등 우주개발 선진국들의 소행성, 화성 등 우주탐사 참여(22~)
 - ※ NASA의 국제협력 화성탐사(오리온 호) 프로젝트('33) 등에 참여 추진
 - ※ 소행성·화성 등의 탐사선의 탑재체 개발에 참여하여 탐사 데이터 공유
 - 해외 발사체 또는 해외 소행성, 화성 탐사선에 국내 초소형위성을 탑재하는 등 저비용 발사기회를 활용한 탐사 추진

□ 다양한 분야의 우주과학 연구 추진

- o (태양우주환경) (초)소형위성을 통한 태양, 자기권 및 전리층을 입체적으로 탐사하여 태양-지구계 간섭 물리과정과 지구기후 영향 등을 연구
 - NASA와 국제협력으로 태양 관측기 공동개발 후 국제우주정거장에 설치 및 태양 관측기 국내 주도 개발(~'25)
- o (심우주 관측) 우주기원 규명을 위한 심우주관측 우주망원경 개발
 - 차세대소형위성 1호 활용과 우주망원경 국제협력 프로젝트 참여로 **우주 망원경 기반기술* 확보**(~22)
 - * 차세대소형위성을 이용하여 적외선 우주망원경, 초경량 반사경 소재 기술 확보
 - 심우주 탐사 우주망원경 핵심기술* 확보(~'25) 및 **우주망원경(1m급) 개발** (~'30)을 통해 우주가속 팽창 등 우주과학 연구 추진
 - * 극저온 냉각기술, 태양-지구 중력 균형점(L2, 150만km) 궤도 운영기술 등
- (행성과학) 유관 출연(연) 사업을 활용한 달·소행성 자원(샘플) 채취 및 현지자원 활용을 위한 기초연구와 지질자원 탐사 기초기술* 확보(~22)
 - * 극한환경 생명유지지원 장치, 우주공간에서의 방사선 차폐 기술 등
 - 달 착륙에서 확보한 기술 및 관련 국제협력 프로그램 참여를 통해 달·화성 표면에서의 영구기지 건설 및 자원 활용 기술 확보(~'40)
- o (소행성 연구) 미래 에너지 및 광물자원 가능성이 높은 소행성 탐사를 통해 원천적 과학 연구, 지구충돌 위험 대비 및 희토류 활용연구 추진
 - 희귀자원을 포함한 소행성 탐색 및 현지자원 활용 연구 추진
 - 초소형위성을 통한 초근접 비행기술 개발 후, 중·소형위성을 활용한 현장 시료채취 추진

전략 4

한국형 위성항법시스템(KPS) 구축

지향점과 구축 필요성

◇ 지향점

○ 지역항법시스템 구축을 통한 위성기반 위치·시각 인프라 자립성 강화 및 초정밀 위치정보, 시각정보 제공

* EU, 중국, 인도, 일본은 5년내 서비스 예정

◇ 필요성

4차 산업혁명 시대 PNT 기반 부가가치 극대화 안정적 국가망 운영을 통한 국민 안전 보장 국민생활 • 국민이 사용하는 IT기반 기기들과 국가 기간시설이 • 성장동력과 직결되는 초고정밀 위치, 시각 정보 필요 미국 GPS 등 해외 항법위성에 의존하고 있어. • GPS 오차(10~15m) 보강을 위해 근본적 · 효율적 인프라로 국가 책임하의 안정적 인프라 구축 필요 독자 위성항법시스템 구축 필요 - GPS 장애시 경제, 사회, 안보 등 막대한 지장이 발생할 우려 경제 파급 효과 고용 효과 직접 • 생산 유발효과 1조 7,798억원 (R&D 18,000명 부가가치 유발효과 1조 1,295억원 투자) 교통망 관리 • 위성항법 관련 시장 편익 간접 57,349명 (운영) 10년간 6조 6,536억원 재해 · 재난, 긴급 구조 위치 추적 에너지/통신/금융 국가 기간망

4-1 기구축 타당성 예비검토 추진과 사양 확정

□ 구축 타당성 예비검토 추진

- o (선행기획) 위성항법 기반 산업·서비스 고도화 효과 및 기술수준, 소요 재원 등 검토를 통해 국제협력 및 개발계획 등 구체화 추진(18)
 - 산업계 등 수요자 중심의 위성항법신호, 초정밀 시각신호 등 설계를 통해 민간의 활용성을 제고하고, 개발 초기부터 국내 산업계 참여 확대
 - 기술수준 검토 등을 통해 국내 산학연 보유 기술 중심으로 개발을 추진하되, 적시 국내 확보가 곤란한 기술 등은 제한적 해외 도입 추진
 - 위성항법 주파수 및 항법위성 궤도 확보를 위한 국제협력 전략을 마련하고, 위성사양 및 항법 탑재체, 지상운영체계 등 모델개념 정립

KPS 구축(안)

- ◇ (구성) 3개의 정지궤도 항법위성 및 4개의 경사궤도 항법위성과 지상 감시국을 이용, 한반도 인근의 지역항법 시스템 구축
- ◇ (기능) 글로벌위성항법시스템(GNSS) 보강 신호 및 KPS 독자신호, 위성항법보정시스템(SBAS, ~'22년) 신호를 동시에 제공, 향상되고 안정된성능의 항법 서비스 공급
 - 위성과 지상의 보정정보를 결합하여 **미터급, 서브미터급 초정밀 위치정보 서비스 추가 제공**

4-2 KPS 구축 전략 수립 및 추진체계 마련

□ 난이도와 구축 기간을 고려한 단계별 구축전략 수립

- o 장기간과 막대한 예산이 필요한 사업으로 **국제협력 진행, 효율적 예산 투자, 선행기술 검증** 등을 고려하여 사업단계 구분 및 구축전략 수립(~115)
 - (1단계) 지상시험장을 구축(~'23)·활용하여 위성항법탑재체 기술을 개발 (~'24)하고 국제협력을 통해 고유신호 제공을 위한 주파수 확보 추진
 - ※ 1단계 주요 개발 기술: 항법신호 생성 알고리즘 및 데이터 생성 모듈, 위성 원자시계, 지상 관측소 운영 기술 등
 - (2단계) 국내 최초의 검증용 경사궤도 항법위성과 지상국 개발로 독자 항법위성 기술확보 및 경사궤도 위성 운용기술 확보(~'28)
 - ※ 2단계 주요 개발 기술 : 정밀 위성궤도 결정, 위성탑재 안테나·중계기, 전파지연 예측, 경사위성 관제 등
 - (3단계) 경사궤도위성 3기 및 정지궤도위성 3기를 발사하여 검증용 위성 1기와 함께 KPS 구축 완료(~'34)
 - ※ 3단계 주요 개발 기술 : 다중 시각계 동기화, 다중항법 신호처리 등

□ 효과적 추진체계 마련

- 효율적이며 정교한 추진전략 마련과 국내 산업체의 참여기회 확대를 위해 관련 전문가 중심의 '예비추진단' 구성·운영(118)
 - 산·학·연에 걸친 폭넓은 참여를 통해 **항법시스템 구축 체계, 소요 재원** 등을 검토*하며, 정보공유를 통해 관련 산업계에 참여 기회 확대 제공
 - * 항법 분야 연구, 국제협력 전략 마련, 인력양성, 산업 육성 등 검토
 - 국내외 동향 분석, 분야별 전략 마련 등을 위해 각 출연연(항우연, ETRI, 표준연 등) 및 관련 대학, 산업계 등으로 구성된 분야별 소위원회 운영

전략 5

산학연의 우주혁신 역량 강화

5-1

다양한 혁신주체 육성

□ 대학의 우주개발 역량 제고

- o (기술개발) 대학인력이 우주기술개발사업 참여를 통해 우주기술을 이해 하고 이를 실험실 수준의 실증단계로 발전시키도록 지원
 - ※ '16년 기준, 38개 대학에서 교수99명, 대학원생 292명이 우주 핵심·기초 연구에 참여
- (위성개발) 재난·재해 대응체계 구축, 우주탐사 등에 학·연·산 협력으로 개발된 (초)소형위성을 활용하여 수요 창출과 전문기업 성장 유도
 - 대학·산업체의 초소형위성 기술경쟁력 제고를 위해 창의적 위성임무 발굴과 기술개발을 지원하는 대학·산업체 컨소시엄 방식의 경연대회 운영
 - 신규 진입장벽 완화를 위해 우주환경시험설비 등 출연연 보유장비 공동 활용, 위성 제작·설계 교육 등 대학·산업체의 초기 기술력 확보 지원
- (발사체개발) 직접 기술이전이 어려운 분야에 대한 국내·외 대학, 연구기관의 간접협력 강화 등을 통해 대학·산업체의 기술력 확보 지원
 - 나로우주센터의 시험설비·발사운영시설 공동활용 지원 등 대학·산업체 주도의 **과학로켓 개발 지원**으로 체계적용 **기술력 강화**

□ 다양한 연구기관의 우주개발 참여 확대

- (융합기술) 타 분야 연구기관과의 협업이 가능하도록 다양한 연구기관이 컨소시움을 이룬 개방형 융합기술 개발 사업 추진
 - ※ NT를 적용한 우주시스템 경량화, 레이저·양자 기술을 활용한 우주통신 등
- o (위성개발) 천문연·지자연 등 유관 출연연 중심으로 관측 범위·주기 등 위성 특성을 고려한 분야별 활용방안을 마련하고 **탑재체 기술 개발 추진** ※ 활용방안 관련 알고리즘·솔루션의 선행개발, 필요정보 확보를 위한 위성기술 후속개발
- (발사체개발) ADD, 기계연, 표준연 등의 중복 개발 방지와 발사체 개발
 속도 제고를 위해 기술개발 전략 수립시 사전협의 강화
 - ※ 발사체 기술로드맵 공유와 공동 발전전략 수립을 위한 **발사체기술협력협의체 구성·운영**

5-2 우주 핵심기술 개발

□ 우주 핵심기술 정보체계 구축

- (기술로드맵 수립) 에너지 등 타 분야 의견을 수렴할 수 있는 산·학·연 협의체를 구성하여 우주기술로드맵을 주기적으로 업데이트(118~)
- (기술DB 구축) 위성, 발사체 등 영역별 국내 산·학·연의 기술보유 현황, 기술수준, 특징 등 우주기술 데이터베이스 구축(~22)
 - ※ 미확보 기술 현황, 기술 수준 등을 고려하여 발전 방향 제시가 가능하도록 구성

□ 우주기술 개발 프로세스 체계화

- ㅇ 우주 기초와 핵심기술, 체계선행개발의 성격을 명확화
 - (우주기초) 기술로드맵 상 우주핵심 연계 필요기술은 하향식으로 개발 하고, 자립기반이 취약한 우주 기반기술을 위해 상향식 지원 병행
 - (우주핵심) 체계활용 가능성이 높은 전략기술을 중심으로 기술성숙도에 따라 응용(TRL4~6)과 실용화(TRL7~8) 단계로 구분하여 지원
 - ※ 우주핵심기술개발사업 일몰('18) 이후 별도의 우주기술개발사업 기획·추진
 - (체계선행) 출연(연) 주요사업을 통해 차기에 수행할 체계개발을 위한 시스템 또는 서브시스템 단위의 선행개발* 추진
 - * 기술연구(차기 발사체 엔진 연구 등) 및 탐색연구(차기 체계 착수절차, 예산규모 파악 등)

5-3 우주개발 추진체계 개선

□ 우주개발 사업관리 및 정책결정 체계 개선

- (사업관리 체계개선) 사업관리모델 표준화, 외부의 점검기능과 내부의
 위험관리기능 강화 등을 통해 사업 추진의 신뢰성 제고
 - 국내·외 사례를 벤치마킹하여 사전기획을 포함한 프로젝트 전주기에 걸친 체계적인 사업관리모델 표준화(119)
 - ※ 외부검증과 전주기 사업관리 개선사항 도출을 위한 '발사체사업 효율적 프로젝트 경영기법 적용방안 연구' 추진(18)
 - 프로젝트의 마일스톤마다 객관적 점검·평가를 위해 외부 전문가로 구성된 전담평가단을 운영하고 '사업진도관리회의'를(매월 서면/분기별 대면) 개최(116~)
 - 사업책임자와 의사결정 관계자에 대한 실명제와 이력관리제 도입(18)
 - 우주개발 사업 추진 과정에서 발생가능한 위험요소와 문제점, 구체적 대응 시나리오를 포함하는 위험관리 매뉴얼 마련(~15)
- (정책결정 체계개선) 우주정책 수립 시, 사회 각층의 다양한 의견 반영과 전문성 제고를 위해 '국가우주위원회'의 민간참여 확대(18~)

□ 우주개발 전문기관의 역할조정

- (조직효율화) 기존 사업의 효율적 추진을 위한 조직 진단·정비 실시 후, 위성·발사체·항공 등 항우연 내 부서간 인적·물적 협력 강화방안 마련(18)
- o (역할조정) 우주개발 생태계 조성을 위한 산·학·연 연구 역량 결집에 집중
 - 기술성숙도가 높아져 기업 주도 양산체계가 더 효율적인 분야는 기업 으로 기능을 이관하고 기업이 수행하기 곤란한 핵심기술 확보에 주력
 - 다양한 부처와 개발주체의 우주개발 수요를 분석하여 국가 우주개발 정책에 반영할 수 있도록 우주정책 기획 지원기능 강화
 - 산업체에 대한 기술이전, 기술개발과 컨설팅 지원 등을 중점 추진
 - 우주 국제협력 총괄 지원과 창구로서의 역할 수행

5-4 글로벌 우주협력 강화

□ 국제협력 활성화를 위한 제도 정비

- (정책 개발) 협력대상국 다변화와 국가별·분야별 협력전략 도출을 위한 '글로벌 우주협력 촉진방안' 마련(18)
 - 우주부품 해외조달 수준의 협력에서 **우주탐사 및 신기술 분야 공동** 연구, 인력유치·교류 등으로 실질적 협력 확대
 - 해외 주요국과의 연계를 통해 경제성이 부족하고 공동활용이 가능한 부품·소자 등을 분석하고, 국제협력을 통한 공동개발 체계 구축
 - ICT 등 우리 강정분야의 융합기술을 발굴하여 전략적 협력방안 모색
 - 협력강화를 위해 '우주 국제협력 기반조성' 관련예산 확대 추진(19~)
- (협의체 운영) 우주개발 국제이슈 공유, 협력의제의 지속 발굴·논의 등을 위해 유관기관 전문가가 참여하는 우주협력 협의체 구성·운영(18~)

□ 국가별 차별화된 협력 전략 수립

○ (양자협력) 국가별 역량·수요 차이를 고려하여 각자 부족한 부분을 상호 보완할 수 있는 차별화된 전략을 바탕으로 전략적 협력동반자 관계 구축

< 글로벌 협력 대상국 분류 >

구분		투자 규모							
Т	正		저	고					
		필리핀, 베트	남, 카자흐스탄 등	UAE, 아르헨티나, 브라질,					
71	저	중앙여	아시아 국가	인도네시아, 태국					
<i>/</i> 1 →			우주개발 개도국	후발 우주개발국					
술 력			일부기술 선도국	우주개발 선진국					
4	고	우크라이나,		미국, 러시아, 중국,					
		이스라엘	, 호주, 캐나다	일본, 인도 등					

- (우주개발 선진국) 선진국 주도의 위성 자산·정보 공동활용, 우주과학 공동연구, 우주탐사 등에 적극 참여(18~)
- (일부기술 선도국) 발사체 개발 자문, 위성 탑재체 협력개발등 각 국가가 가진 특정분야 선도 기술 중심으로 협력
- (후발 우주개발국) 전문인력 교육협력(UAE) 추진, 기술 상용화 촉진과 해외시장 개척를 위한 공동 상용화 연구 추진 (예산, 기술 공동투자)
- (우주개발 개도국) 위성수출, 영상판매 등 잠재적 시장 확대를 위해 ODA(개발원조) 프로그램 추가 발굴 등 **협력 방안 다변화(19**~)
- (다자협력) 재난관리, 식량, 에너지 등 글로벌 현안 해결 노력 동참
 및 SSA(우주상황인식) 참여를 통해 국제사회 역할 강화(18~)
 - 범아시아 위성정보 공동활용·공동개발 협의기구를 구축하여 위성 및 서비스 개발 비용 감축 및 활용도 증대
 - 글로벌 현안 해결 노력 동참: UN COPUOS(평화적이용위), GEO(지구 관측그룹), OECD Space Forum, IAC(국제우주대회) 등 글로벌 현안 논의의 장에 적극 참여하여 국제사회에서의 역할 강화 및 국격 상향
 - SSA(Space Situational Awareness) 협력: 국제 우주안보체제로서 우호국 간에 우주폐기물, 우주물체 충돌예측 등 우주상황에 대한 정보교류 및 위성자산 상호지원 노력 수행
 - NASA*, JAXA** 등 ISS 운용 참여국과 우주실험, 관측장비 탑재 등의 연구협력으로 유인 우주탐사 분야의 실질적 협력강화(119~)
 - * ISS 활용 연소실험, 코로나그래프, 생명환경 유지 장치 등 협력
 - ** ISS 활용 생명과학 분야 우주실험 협력

전략 6

우주산업 육성과 우주 일자리 창출

지향점과 5년간 로드맵

◇ 지향점

이 민간의 참여를 유도하여 우주시장 형성 초기단계로 진입

◇ 5년간 로드맵

6-1 우주개발에 민간기업 참여 확대

□ 민간기업 주관 제작 체계로 단계적 전환

- o (전환방향) 발사체·위성 개발 사업은 산업체의 체계종합 기능이 갖추어진 분야부터 민간기업 주관 체계로 단계적으로 전환
 - 정부위성은 차세대중형위성 2호부터 부품 설계부터 부분체 설계·조립까지 모든 개발과정을 단계적으로 산업체가 총괄(18~)
 - 발사체는 체계종합 기업을 중심으로 컨소시엄을 구성하고 적극적 기술 이전을 통해 발사체 연관 산업 생태계 성공적 정착 추진('26~)
- (전략수립) 민간기업 참여 유도와 국내 우주시장 확대를 위한 구체적 로드맵인 '우주 산업화와 우주 일자리 창출 촉진' 마련(18)

□ 민간기업 참여 유도를 위한 기반 조성

- o (물량제시) 예측 가능한 국내 발사 물량 제시로 기업 투자 활성화 유도
 - 기본계획에서 제시된 정부위성 개발, 한국형발사체 후속사업 및 추가 3회 발사 등 사업에 대한 세부기획을 조기에 착수하여 구체화
 - 사업물량을 기반으로 **우주분야 신규채용 규모를 확대하여 고급 '우주 일자리' 창출**(신규채용: '17년 276명 → **'22년 1,500명 이상**)
- o (기술 지원) 산업체 주관 체계사업의 안정적 추진과 산업체 기술신뢰도 제고를 위한 기술지원 강화
 - 임무요구사항 확인, 기술검토회의 점검 등 산업체 주도의 체계개발 사업에 대한 기술검증 지원체계를 구성·운영(19~)
 - 우주부품시험센터를 통해 산업체 생산품의 우주환경 검증을 지원하고 출연연 보유 지상시험장비 이용 촉진(∰~)
- o (인력 지원) 산업체 인적기반 강화를 위해 산업체인력 대상의 출연연연수, 출연연·산업체 간 인력교류 등 전문성 강화 프로그램 운영(118~)

6-2 우주기술 사업화와 융합 촉진

□ 우주기술의 사업화 지원

- **(스핀오프 지원) 우주기술 스핀오프 활성화**를 위해 수요기술 개발부터 상용화까지 지원하는 우주기업 생애 **전주기 지원 프로그램* 운영(**18~)
 - * 출연연과 수요기술 공동개발, 기술이전, 상용화 기술지원, 시제품 제작, 제품 출시 지원
 - 사업화 유망기술에 대한 범부처 기술사업화 지원사업 연계, 출연연 보유 기술 마케팅 및 수요기업 발굴을 통한 기술사업화 활성화 추진(112~)
 - 대형 연구개발사업*을 통해 확보된 기술의 민간 이전을 활성화하기 위해 사업 개발단계부터 실제적인 상용화 방안 마련 추진(18~)
 - * 재난치안용 무인기 및 다목적실용위성 개발사업 등
- (판로 지원) 국내 위성 관련 중소기업이 기존 수출지원 프로그램*을 적극 활용하도록 해외공관·코트라 등과 협력하여 해외 마케팅 지원(18~)
 - * 해외수주지원, 수출 교육, 사업컨설팅, 디자인 · 브랜드 개발지원 등

□ 새로운 우주 융합산업 창출기반 조성

- (기술교류 확대) 우주와 연계 가능한 다분야 산·학·연 전문가로 기술 교류회 구성·운영(18)하여 신규 기술 융합분야 발굴
 - ※ 우주+에너지(우주태양광발전 등), 우주+건설·토목(우주거주 등), 우주+ICT(우주레이저 통신 등)
- (우주영역 확대) IT 등 우리 강점 분야와 우주기술 융합으로 신산업 창출 시도
 - 위성정보(영상·GPS·SBAS)와 ICT(AI·빅데이터) 융복합을 통해 위치기반 서비스(LBS), 사물인터넷서비스(IoT) 등 융합형 서비스 창출(~'27)
 - 빅데이터 활용 위성정보, AI 활용 탐사로봇, IoT 활용 통신(편대비행 위성간, 착륙선-로버) 등 IT신기술을 접목한 신규 사업영역 발굴
 - 무중력 등 **우주환경**을 **활용**한 각종 고부가가치 제품*생산 관련 기술 및 우주광물·우주태양광발전 등 **우주 자원·에너지 활용기술 검토**
 - * 정밀화학반응을 이용한 제약, 고순도 단백질 결정, 줄기세포를 이용한 인공장기 배양, 고성능 특수 반도체, 우주방사선 환경을 이용한 식물 육종개량

VII. 5**년간 추진로드맵**

전략		추진 과제	세부내용	18	19	20	21	22	계속
1	1	한국형발사체 자력발사 성공	한국형발사체 개발 비행성능 검증	시험발사			본발사		
우주 발사체 기술 자립	2	지의체계 그ㅈ	비행성능 검증 한국형발사체 성공발사 추진TF 기술점검 지원 체계 국제협력과 산학연 참여유도			발사관리위,	, 비행시험위		
	3	발사체 기술 지속 고도화	도세합니다 인식인 검여규모 발사서비스 기반 구축 한국형발사체 추가발사 발사장 확장	발시	사대 구축.	우주센터 :)프로그램 1회	신설
			한반도 정밀 감시·정찰 서비스		다목적 6호	호 적 7호		다목적 8호 7A호 ^년	
② 위성 활용 서비스	1	국민 생활· 안전을 위한 위성서비스 고도화 재난·재해 등 국가위기 대응 서비스 무주과학, 우주기상감시 등	해양·환경·농림 등 공공활용 서비스	천리안 차중1 <u>3</u>	호(국토) 등2호(국토	과리)	/ 차중5호(기	기상)	(수자원) 사체 검증)
및 개발 고도화			 F기 대응체 등을 위한 :	계 구축					
		÷010 71	통신·항법 등 4차 산업혁명 서비스		항법보정	성시스템(SB	(AS) 구축		·계위성
	2	요뮬직인 국가 위성 개발·활용 체계 구축	인공위성 개발 중장기 전략 마련 위성 분석정보 생성기술 개발 위성활용서비스 고도화 전략 마련 예비검토 추진						
③ KPS 구축	1	사양 확정과 선행연구 추진 전략 수립 및 추진체계 마련	l운용기반 검토	보강신호, 단 국제협력	는독신호 설계 방안 마련		 기술개발,	주 파 수 화 박	구 추지
	1	달 탐사 본격 착수	1단계 달 탐사 임무 완수 달 착륙선 사전기획 우주탐사 전략기술 도출 소행성 귀환 전략기술 조기확보	달 기획 타			운용 E검토 등	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
<u>4</u> 우주	2	우주감시 고도화	우주위험 감시 대응체계·기반확충 우주위험 감시 관련 기술확보		우주 인력교	위험 대응 류 확대, 우	체계 지속	운영 료 공유	
탐사 시작	3	다양한 우주 과학·탐사 연구 추진	우주탐사 협의체 구성 초소형위성 활용 국제협력활용 태양우주환경 연구 심우주 관측연구 행성과학 연구 소행성 연구	E	우 5	그래프 개 주망원경 7 행성탐사·지 자원 소행·	발 기반기술 혹 ŀ원활용 기	ţ보 초기술 연·	
	1	글로벌 우주협력 강화	양사 및 나사 업덕 삼어 강화		국가별	로 차별화	된 협력전력	약 추진	
5	2	다양한 혁신주체 육성	대학의 우주개발 역량 제고 출연연의 우주개발 참여 확대			위성개발 시 재체 기술 <i>7</i>		베기술협력	
우주 혁신	3	우주 핵심기술 개발	우주기술로드맵 수립/보완 우주기술DB 구축·운영 우주 핵심기술 개발		축 운영 추진 및		┃ 시 데이터 [:] ┃	보완 확보 운영. 우주기술개	
생태계 조성	4	우주개발 추진체계 개선	사업관리 모델 표준화 사업진도 관리회의 정례화 실명제와 이력관리제 도입 위험관리 매뉴얼 마련 항우연 조직진단과 역할조정 국가우주위 민간참여 확대	진단		지속적	적으로 역힐	: 조정	
6 우주 산업 육성과	1	우주개발에 민간기업 참여 확대	민간주도의 정부위성 개발체계 도입 우주산업화 전략 마련 기술검증 지원체계 구축·운영 이력 전무성 강화 프로그램		중형 2호투	부터 민간주	도로 중소	형 위성 가	발
우주 일자리 창출	2	우주기술 사업화와 융합 촉진	해외 공동개발사업 발굴과 미케팅 지원 기업 생애 전주기 스핀오프 지원 기술교류회 구성·운영						

참고 1 주요 변경내용

구분	우주개발 중장기계획('13.11월)	3차 우주개발 진흥 기본계획('18.2월)				
	ㅇ한국형발사체 본발사(2회): 19년, 20년	○한국형발사체 본발사(2회): <u>21년(2회)</u>				
	< 일정 현실화 >	- 시험발사('18) 실패 시, 시험발사 추가실시 후 본발사 일정 순연				
	< 추 가 >	○발사성공을 위한 지원체계 구축 - 한국형발사체 성공발사 추진TF 구성 - 발시관리위, 비행시험위 등 기술점검협의체 구성				
발 사 체	ㅇ시장진출 기반 구축 <u>(~'25)</u> - 산업체 주관 발사서비스	O 자력발사 서비스 기반 구축 - 1단계: 한국형발사체 성능·신뢰성·경제성				
	< 일정 구체화 및 세분화 >	향상 및 산업체 기술 이전 <u>('21~'25)</u> ※ 3회이상의 추가발사, 성능개량 실시				
	ㅇ대형(3t) 정지궤도발사체 개발 <u>(~'33)</u>	- 2단계: 산업체 주관 발사서비스 <u>('26~'30)</u> ㅇ500kg이하 소형발사체 플랫폼 확장<u>(</u>'25~'30) ※ '30년 이후 500kg 이하 위성은 47기 발사				
	< 수요를 고려한 전략 수정 >	○ 대형(3t) 정지궤도발사체 개발 <u>('30~'40)</u> ※ 대형 정지궤도위성은 14기 발사 예정				
위	ㅇ지역위성항법시스템 개발	이지역위성항법시스템 개발				
성항됍	< 일정 구체화 >	- 선행연구('19) → 탑재체기술개발('24) → 검증용위성과 지상국 개발('28) → 구축완료('34)				
위 성 개	< 전략 구체화 >	○'인공위성개발 중장기 전략'마련('18) ○위성기술개발 전략				
발	○ 위성기반 능동형 재난감시·대응체계 구축	 - 본체는 표준화 적용, 부품은 자급력 강화 ○ 초소형위성 활용 재난재해 대응체계 구축 - 기획연구('18) → 매시간 관측주기의 대응 				
할용	< 일정 및 방법 구체화 >	체계 구축('22) → 대응시간 단축('25)				
우주탐사	○달탐사 - (1단계) 시험용 달 궤도선 <u>('17)</u> - (2단계) 달 궤도선·착륙선 <u>('20)</u> - (3단계) 달 샘플귀환선 <u>('30)</u> < 일정 및 대상의 현실화 >	○행성탐사 - (1단계) 시험용 달 궤도선(<u>'20)</u> - (2단계) 달 착륙선(<u>'30년</u> 이전) ※ 발사체,부품수급, 선행기술 등 착수조건을 엄밀히 검토 후 다음 단계 착수 - (3단계) 소행성 귀환선(<u>'35)</u> ※ 지구귀환에 필요한 도킹·지구재진입 등 전략기술 조기개발 착수('21~)				
산 접 약 정	< 추 가 >	○ 우주기술 감리제도 도입 ○ 국내 정부위성 발사물량 확보 ※ 기술검증용 중형위성(~'23) 개발 이후 원칙적으로 국내 발사체 이용				
추 진 체	< 추 가 >	○사업관리모델 표준화, 전담평가단 운영, 실명제와 이력관리 등 사업관리 강화 ○ 항우연 조직 진단·정비 및 역할 조정				
추 진 체 계	< 추 가 >	실명제와 이력관리 등 사업				

참고 2

제3차 우주개발 진흥 기본계획 총괄 로드맵

참고 3

국가별 우주개발 현황 비교

		미국										
	구분		러시아	유럽	프랑스	독일	이태리	영국	일본	인도	중국	한국
예산 ('16) 1)	투자순위	1위	3위	-	5위	6위	8위	9위	4위	7위	2위	10위
	총액* (백만불)	35,957	3,182	6,721	2,792	1,984	945	743	3,018	1,092	4,909	671
	GDP대비 (%)	0.199	0.239	-	0.115	0.059	0.052	0.026	0.069	0.052	0.045	0.049
	정부 R&D 예산 대비 ('15년 기준, %)	25.8	29.3	-	12.5	5.2	6.2	5.2	7.9	-	-	3.3
	국민 1인당 (달러)	111.2	22.2	_	43.2	24.0	15.6	11.3	23.8	0.8	3.6	13.1
인력	우주전담 기구('16)	(NASA) 17,310	_	(ESA) 2,290	(CNES) 2,446	(DLR) 8,000	(ASI) 237	(UKSA) 70	(JAXA) 1,529	(ISRO) 16,902	_	(KARI) 844
2)	산업체** ('15)	221,367	_	38,435	13,393	7,293	5,019	3,535	8,655	-	-	1,664
우주 발사 활동 3)	'16 발사체 발사 횟수	22회	17회		11회			4회	7회	22회	0회	
	'16년 운용 중인 위성 수***	594	136	39	17	26	7	41	60	45	192	9

- * 유럽 예산은 EU, ESA, Eumetsat 예산 합계이며, 국가별(프랑스, 독일, 이태리, 영국) 예산은 유럽 공동 우주개발 사업 분담금 포함
- ** 한국의 산업체 인력은 기업체의 우주기기제작 인력 및 과학연구/우주탐사 분야 인력 합계
- *** 정부 및 민간(상업) 위성 전체 ('16.12 기준, 우리나라는 아리랑 2/3/3A/5호, 천리안, 무궁화 5호, 올레 1호, 나로과학위성, 과학기술위성 3호)

¹⁾ Government Space Programs: Benchmarks, Profiles & Forecasts to 2026 (Euroconsult, 2017) / OECD Government budget appropriations or outlays for RD /IMF World Economic Outlook Database 2017

²⁾ The Space Report 2017 (Space Foundation)/ 2016 우주산업실태조사

³⁾ The Annual Compendium of Commercial Space Transportation 2017 (FAA)/ USC Satellite Database (2017.1.1 기준)

참고 4 해외 달탐사 현황

국가	달 팀	 탁사선	주관기관	발사일	발사체	소요 예산	임무																		
중국	창어 4호		창어 4호		창어 4호		창어 4호		창어 4호		창어 4호		창어 4호		창어 4호				창어 4호		CAST (China Association for Science and Technology)	2018.5 (중계위성) 2018.12 (착륙선,로버)	LM 3B	N/A	·달 뒷편(far side) 착륙 ·중계위성 이용, L2지점 통신구현 ·로버 이용, 주변부 지형정보 획득 ·저주파 대역 자연방사 특성 확인
	창어	5호	CNSA (China National Space Administration)	2019	LM5	N/A	·달표면 2M 깊이 드릴링 ·달 샘플 채취 및 귀환(약 2kg) ·온도측정																		
	창어 6호		CNSA	2020 (미정)	LM5		·자원채취 ※ 5호와 임무가 유사하며, 5호 임무성공 여부 에 따라 6호 임무 변경가능성 있음.																		
러시아	Luna-Glob		Luna-Glob				RFSA (Russian Federal Space Agency)	2019	Soyuz 2		·천체물리학실험 ·먼지모니터링 ·플라즈마센서 및 초고에너지의 광선 연구														
Luna		na-Grunt RFSA		2020	Soyuz- Fregate		·달 샘플 채취 및 귀환																		
인도	챤드라얀 2호		ISRO (Indian Space Research Organization)	2018	GSLV		·달토양 분석 ·궤도선, 착륙선, 로버 구성																		
일본	SLIM		JAXA (Japan Aerospace Exploration Agency)	2020	Epsilon	\$164M	·달 착륙 기술 시연 (100m 이내)																		
미국		ource pector	NASA (National Aeronautics and Space Administration)	2020 이후	Not defined		·로버, ISRU 시험																		
		Hakuto (일본)			PSLV-XL																				
		Moon Express (미국)			Rocket Lab Electron		· 달 표면에 우주선 착륙 · 착륙 이후 500m 이상 이동 · 달 도착 직후 및 이동 완료 후																		
미국 (민간)	Lunar XPRIZE	Team Indus (인도)	GOOGLE	2018	PSLV-XL		달 표면의 고선명 비디오와 이미지 전송 · 지상에서 제공하는 데이터를																		
		SpaceIL (이스라엘)			Space X Falcon 9		수신하고 이를 다시 지구로 전송 · 탑재물(데이터 디스크 및 기념패																		
		Senergy Moon (다국적)			Interorbital Systems Neptune		등)을 달 표면으로 운송																		

참고 5

국내 인공위성 개발 현황 ('18.2월 현재)

(계 21기) 임무종료 9 임무수행중 4 개발 중

□ 소형위성

		우리별위성			과학기 [.]	술위성	차세대스	차세대소형위성	
구 분 	1호	2 <u>호</u>	3호	1호	2호	3호	나로과학위성	차세대소형1호	차세대소형2호
개발목적	위성개발 인력양성	위성개발 인력양성	지구관측 기술개발	원자외선 우주연구, 우주환경연구	발사체검증, 대기환경연구	근적외선 우주연구, 지구관측	발사체검증, 국내기술검증	·핵심기술검증 ·우주폭풍연구 ·별기원연구	핵심기술검증 소형 SAR 개발 우주방사능연구
사업기간	′90.1 ~ ′94.2	2(동시개발)	′95.10~′99.8	′98.10~′03.12	'02.10 ~ '10.12	'06.12 ~ '14.2	′11.1 ~ ′13.2	′12.6 ~ ′18.7	'17.3~'20.12
중 량	49kg	48kg	110kg	106kg	100kg	170kg	100kg	100kg	150kg
운용고도	1,300km	800km	720km	680km	300~1,500km	600km	300~1,500km	미정	미정
임무수명	5년	5년	3년	3년	2년	2년	1년	2년	2년
주요성능	전자광학 카메라 (해상도 400m,4km)	전자광학 카메라 (해상도 200m,2km)	전자광학 카메라 (칼라해상도 15m)	원자외선 카메라 우주물리센서	라디오미터 레이저 반사경	근적외선 카메라, 영상분광기 (해상도30m)	열영상카메라 (300m~2km) 펨토초 레이저 등	·핵심우주기술 우주검증(7개) ·우주폭풍관측 ·근적와선제라	·핵심우주기술 우주검증(4개) ·소형 SAR ·우주폭풍연구
총 비 용	38.2억	31.2억	80억	116.9억	136.5억	279억	20억	324.3억	297억
발 사 체	Ariane-4(<u>≖</u>)	Ariane-4(<u>≖</u>)	PSLV (인)	Cosmos(러)	나로호(한국)	Dnepr(러)	나로호(한국)	Falcon9(0)	미정
발 사 장	쿠르(프)	쿠르(프)	샤르(인)	플레세츠크(러)	고흥(한국)	야스니(러)	고흥(한국)	반덴버그(미)	미정
발 사 일	′92.8.11	'93.9.26	′99. 5.26	′03. 9.27	1차: '09.8.25 2차: '10.6.10	′13.11.21	′13.1.30	'18(예정)	'20.하(예정)
운용현황	임무종료('96.12) 운용종료('04.08)	임무종료('97.12) 운용종료('02.10)	임무종료('01.04) 운용종료('02.12)	임무종료('06.05) 운용종료('09.5)	1챠: 궤조입실패 2차: 발사실패	임무종료 ('15.11)	임무종료('14.01) 운용종료('14.4)	개발 중	개발 중

□ 다목적실용위성(아리랑위성) / 차세대중형위성 / 정지궤도위성

 구 분				무적실용위성	<u></u>			채내중향성	형위성 정지궤도위성		
구 분	1호	2호	3호	3A호	5호	6호	7호	1호/2호	찬만생호	천리안위성 2호	
개발목적	지구관측 (광학)	지구정밀관측 (광학)	지구정밀관측 (광학)	지구정밀관측 (광학+적외선)	전천후자 규관 축 (영상레이더)	전천후자 규관 축 (영상레이더)	지구정밀관측 (광학+적외선)	지구관측 (EOS전자광학)	공공통신/ 해양/기상관측	기상/해양/ 환경관측	
사업기간	′94.11 ~′00.1	′99.12 ~′06.11	′04.8 ~′12.8	′06.12 ~′15.12	′05.6 ~′15.6	′12.12 ~′20.12	16.8 ~ '21.12	′15~′20	′03.9 ~ ′10.12	′11.7 ~ ′19.9	
중량(kg)	470kg	800kg	980kg	1,100 내외	1,400 내외	1,750kg	1,500 ~1,800	500kg	2,500kg	기상(3,620) 해양환경(3,500)	
운용고도	685km	685km	685km	528km	550km	505km	561km	500km	36,000km	36,000km	
임무수명	3 년	3 년	4 년	4 년	5 년	5 년	5년	4 년	7년	10년	
주요성능 (해상도)	흑백 6.6m	흑백 1m 칼라 4m	흑백 0.7m 칼라 2.8m	흑백 0.55m 칼라 2.2m 적외선 5.5m	레이더 영상 1m/3m/20m	레이더 영상 0.5m/3m /20m	흑백 0.28m 칼라 1.2m 적외선 4.3m	흑백 0.5m 칼라 2m	기상 1km 해양 500m	기상 1km 해양 250m 환경 7km	
총 비 용	2,242억원	2,633억원	2,827억원	2,356억원	2,381억원	3,385억원	3,100억원	2,435억원	3,549억원	7,200억원	
부 처 별 예 산 (억원)	과기부 1,272 산자부: 628 정통부: 100 민 간: 242	과기부: 1,650 산자부: 735 정통부: 60 민 간: 188	교과부: 1,937 지경부: 890	미래부: 877 수요부차: (1단계) 239 (2단계) 1,239	미래부 632 산업부 589 수요부처 1,160	미래부: 875 산업부: 830 수요부처 1,680	미래부:1,310 수요처:1,790	과기정통부: 1,630 국토부: 805	교괴부: 1,309 방통위: 789 국토부: 702 기상청: 749	과기정통부: 3,354 해수부: 1,033 기상청: 1,575 환경부: 1,238	
발 사 체	Taurus(0)	Rockot(긤)	H2-A(일)	Dnepr(러)	Dnepr(러)	Angara1.2 (미/러)	미정	Soyuz-2(러)	Ariane-5(<u>≖</u>)	Ariane-5(<u>≖</u>)	
발 사 장	반덴버그(미)	Plesetsk(러)	일에서지버기	Yasny(긤)	Yasny(긤)	Plesetsk(러)	미정	Baikonur(카 자흐스탄)	꾸르(프.령)	꾸르(프.령)	
발 사 일	′99.12.21	′06.7.28	′12.5.18	′15.3.26	′13.8.22	′20하(예정)	'21하(예정)	1호 '19하(예정) 2호 '20하(예정)	′10.6.27	2A'18.하(예정) 2B'19예정)	
운용현황	임무종료(07.12) 운용종료('08.2)	임무종료(15.10)	임무수행 중	임무수행 중	임무수행중	개발 중	개발 중	2기 개발 중	임무수행 중	2기 개발중	

[※] 통신·방송용 민간위성 (해외에서 턴키방식으로 도입하여 서비스 제공)

⁻ KT : (종료) 무궁화1호('95.), 2호('96.), 3호('99.) / (운영중) 5호('06.), 6호(올레1호)('10.), 7호('17.), 5A호('17.) - SK텔레콤 : 한별위성을 일본과 공동으로 발사('04)했으나, DMB사업 철수로 위성임무 중단('12.8)