ZD1. Gracz podał nam częściowe informacje o swoich preferencjach w stosunku do a_1, a_2, a_3, a_4

- woli a_2 niż a_1 ,
- a_3 jest nie gorsze od a_4 ,
- a_5 jest tak samo dobre jak a_1 ,
- woli a_4 niż a_2 ,
- a_5 jest nie gorsze niż a_3 .

Czy jego relacja preferencji na A może być przechodnia?

ZD4. Załóżmy, że gracz ma taką funkcję użyteczności kardynalnej na zbiorze $A = \{0, 1, 2, 3\}$:

$$u(n) = n^2$$
 dla $n = 0, 1, 2, 3$.

Sprawdź, czy:

- (a) $[2] \prec \frac{1}{2}[1] + \frac{1}{2}[3]$.
- (b) $\frac{1}{2}L_1 + \frac{1}{2}L_3 \leq L_2$, gdzie $L_1 = \frac{2}{3}[0] + \frac{1}{3}[3], L_2 = \frac{1}{3}[0] + \frac{2}{3}[2], L_3 = \frac{3}{4}[2] + \frac{1}{4}[3].$

1. Rozważmy następującą grę. Dwóch graczy, A i B, wybiera równocześnie liczbę ze zbioru $\{1,2,3\}$. Oznaczmy ich wybory przez x_A , i x_B .

- Jeśli $x_A + x_B + 1$ jest podzielne przez 3, wygrywa gracz A.
- Jeśli $x_A + x_B 1$ jest podzielne przez 3, wygrywa gracz B.
- Jeśli $x_A + x_B$ jest podzielne przez 3, gracze rozgrywają kolejna grę, w której wybierają równocześnie liczbę ze zbioru $\{1,2\}$. Jeśli suma liczb wybranych w drugiej grze jest parzysta, wygrywa gracz A, jeśli nieparzysta, wygrywa gracz B.

Wypłata gracza zależy tylko od tego, czy wygrał (1), czy przegrał (-1).

Przedstaw powyższą grę w postaci rozwiniętej. Ile strategii ma gracz A w tej grze, a ile gracz B?

4. Kontrola pracownika.

Pracownik może albo pracować uczciwie (P), co kosztuje go e, albo obijać się w pracy (L). Jeśli pracownik będzie pracował uczciwie, wygeneruje przychód v dla swojego szefa. Szef może, ale nie musi, skontrolować wynik pracy. Kontrola wiąże się dla niego z kosztem c. W przypadku wykrycia nieuczciwej pracy, pracodawca za karę nie wypłaca pracownikowi jego pensji (w). W przeciwnym przypadku szef pensje wypłaca.

Przedstaw grę w postaci normalnej. Przy jakich warunkach pracodawca ma strategię zdominowaną? Przy jakich szef ma strategię zdominowaną?