Fundamentals of Artificial Intelligence and Knowledge Representation (Module 2)

Last update: 22 November 2023

Contents

1	Pro	positional and first order logic
2		ologies
	2.1	Categories
		2.1.1 Reification properties and operations
		2.1.2 Physical composition
		2.1.3 Measures
		2.1.4 Things vs stuff
	2.2	Semantic networks
	2.3	Frames

1 Propositional and first order logic

See Languages and Algorithms for AI (module 2).

2 Ontologies

Ontology Formal (non-ambiguous) and explicit (obtainable through a finite sound procedure) description of a domain.

Ontology

Category Can be organized hierarchically on different levels of generality.

Category

Object Belongs to one or more categories.

Object

Upper/general ontology Ontology focused on the most general domain.

Upper/general ontology

Properties:

- Should be applicable to almost any special domain.
- Combining general concepts should not incur in inconsistences.

Approaches to create ontologies:

- Created by philosophers/logicians/researchers.
- Automatic knowledge extraction from well-structured databases.
- Created from text documents (e.g. web).
- Crowd-sharing information.

2.1 Categories

Category Used in human reasoning when the goal is category-driven (in contrast to specific-instance-driven).

In first order logic, categories can be represented through:

Predicate A predicate to tell if an object belongs to a category (e.g. Car(c1) Predicate categories indicates that c1 is a car).

Reification Represent categories as objects as well (e.g. c1 ∈ Car).

2.1.1 Reification properties and operations

Membership Indicates if an object belongs to a category. (e.g. $c1 \in Car$).

Subclass Indicates if a category is a subcategory of another one. (e.g. Car ⊂ Vehicle). Subclass

,

Necessity Members of a category enjoy some properties (e.g. $(x \in Car) \rightarrow hasWheels(x)$).

œ·

Sufficiency Sufficient conditions to be part of a category (e.g. hasPlate(x) \land hasWheels(x) \rightarrow x \in Car).

Sufficiency

Necessity

Category-level properties Category themselves can enjoy properties

Category-level properties

 $(e.g. \ {\tt Car} \in {\tt VehicleType})$

Disjointness Given a set of categories S, the categories in S are disjoint iff they all have different objects:

Disjointness

$$disjoint(S) \iff (\forall c_1, c_2 \in S, c_1 \neq c_2 \rightarrow c_1 \cap c_2 = \emptyset)$$

Exhaustive decomposition Given a category c and a set of categories S, S is an exhaustive decomposition of c iff any element in c belongs to at least a category in S:

Exhaustive decomposition

exhaustiveDecomposition(S, c)
$$\iff$$
 $(\forall o \in c \iff \exists c_2 \in S : o \in c_2)$

Partition Given a category c and a set of categories S, S is a partition of c when:

Partition

$$partition(S, c) \iff disjoint(S) \land exhaustiveDecomposition(S, c)$$

2.1.2 Physical composition

Objects (meronyms) are part of a whole (holonym).

 $\textbf{Part-of} \ \ \text{If the objects have a structural relation (e.g. \ \texttt{partOf(cylinder1, engine1)})}.$

Part-of

Properties:

Transitivity part0f(x, y)
$$\land$$
 part0f(y, z) \rightarrow part0f(x, z) Reflexivity part0f(x, x)

Bunch-of If the objects do not have a structural relation. Useful to define a composition of countable objects (e.g. bunchOf(nail1, nail3, nail4)).

Bunch-of

2.1.3 Measures

A property of objects.

Quantitative measure Something that can be measured using some unit (e.g. length(table1) = cm(80)).

Quantitative measure

Qualitative measures propagate when using partOf or bunchOf (e.g. the weight of a car is the sum of its parts).

Qualitative measure Something that can be measured using terms with a partial or total order relation (e.g. {good, neutral, bad}).

Qualitative measure

Qualitative measures do not propagate when using partOf or bunchOf.

Fuzzy logic Provides a semantics to qualitative measures (i.e. convert qualitative to quantitative).

Fuzzy logic

2.1.4 Things vs stuff

Intrinsic property Related to the substance of the object. It is retained when the object is divided (e.g. water boils at 100°C).

Intrinsic property

Extrinsic property Related to the structure of the object. It is not retained when the object is divided (e.g. the weight of an object changes when split).

Extrinsic property

Substance Category of objects with only intrinsic properties.

Substance

Stuff The most general substance category.

Stuff

Count noun Category of objects with only extrinsic properties.

Count noun

Things The most general object category.

Things

- 2.2 Semantic networks
- 2.3 Frames