Investigating the global collapse of filaments using SPH

S. D. Clarke & A. P. Whitworth

Filaments are everywhere

Seamus Clarke, Cardiff University

Peretto & Fuller (2010)

Global collapse and fragmentation

Bastien (1983) Burkert & Hartmann (2004) $t_{1D} > t_{3D} = \left(\frac{3\pi}{32 G \Omega}\right)^{1/2}$ Pon et al. (2012) Bastien (1983) Pon et al. (2012)

$$t_{1D} > t_{3D} = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

Nagasawa (1987) Inutsuka & Miyama (1992) Pon et al. (2011)

Homologous collapse

Homologous collapse

Homologous collapse

$$t_{1D} \approx \frac{0.44 \, A}{\sqrt{G \, \rho}}$$

End-dominated collapse

End-dominated collapse

End-dominated collapse

$$t_{1D} \approx 0.98 \sqrt{\frac{A}{G\rho}}$$

Numerical set-up

Uniform density
Cylindrically symmetric
Stationary
Isothermal

- SPH code GANDALF
- Grad-h SPH
- Gravity and hydrodynamics
- T = 1 K as we wish to approximate free-fall
- Radial motion suppressed, $v_x = v_y = 0$
- 100,000 200,000 particles used

Numerical set-up

Aspect ratio, A Line-mass, µ Radius, R

$$2 \le A \le 20$$
 $2 \text{ M pc}^{-1} \le \mu \le 50 \text{ M pc}^{-1}$
 $0.05 \text{ pc} \le R \le 0.15 \text{ pc}$

Fiducial case:

$$A = 10, \mu = 10 \text{ M pc}^{-1},$$

 $R = 0.1 \text{ pc}$

No homologous collapse

Collapse time

Seamus Clarke, Cardiff University

End-clump velocity

Seamus Clarke, Cardiff University

How to explain this terminal velocity

How to explain this terminal velocity

Semi-analytical model

Gravitational acceleration outwards due to the end-clump

Semi-analytical model

$$\sqrt{R^2 + (z(t) + z_I(t))^2} \sqrt{R^2 + (z(t) - z_I(t))^2}$$

Seamus Clarke, Cardiff University

Testing the model

Testing the model

Seamus Clarke, Cardiff University

Observational evidence

Beuther et al. (2015)

Kainulainen et al. (2015)

Observational evidence

Seamus Clarke, Cardiff University

Conclusions

- Filaments collapse and fragment differently than higher dimensional objects.
- Global collapse occurs via the end-dominated mode, which produces high density end-clumps.
- The free-fall time of filaments is given by the equation:

$$t_{1D} = \frac{0.49 + 0.26 A}{\sqrt{G \rho}}$$

- Global collapse is much longer than in 3D, this makes filaments perfect sites for fragmentation.
- Observational examples of end-clumps in isolated filaments have been found.