

Appendix for the Report

Dosimetric Assessment of the Portable Device Datalogic Joya (Contains FCC ID: U4G004W) (Contains IC: 3862E-004W)

According to the FCC and IC Requirements SAR Distribution Plots

June 15, 2011

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer
7layers AG
Borsigstrasse 11
D-40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Table of Contents

1	SAR DISTRIBUTION PLOTS, IEEE 802.11 G	. 3
2	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5200 MHZ RANGE)	. 4
3	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5500 MHZ RANGE)	. 5
4	SAR DISTRIBUTION PLOTS, IEEE 802.11 A (5800 MHZ RANGE)	. 6
5	SAR Z-AXIS SCANS (VALIDATION)	. 7
6	SAR Z-AXIS SCANS (MEASUREMENTS)	. 9

1 SAR Distribution Plots, IEEE 802.11 g

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Joya_ywhm_g_CH6_dspl_down.da4

DUT: Datalogic; Type: Joya+ A; Serial: D10P00477

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.48, 7.48, 7.48); Calibrated: 16.09.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 17.09.2010
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.161 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.59 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.283 W/kg

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.089 mW/g

Maximum value of SAR (measured) = 0.165 mW/g

Fig. 1: SAR distribution for IEEE 802.11 g, channel 6, worst case body worn configuration, display towards the ground, 0 mm distance (May 26, 2011; Ambient Temperature: 21.5° C; Liquid Temperature: 21.3° C).

2 SAR Distribution Plots, IEEE 802.11 a (5200 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Joya_ywhm_a_CH36_dspl_down.da4

DUT: Datalogic; Type: Joya; Serial: D10P00477

Program Name: WiFi 5200 MHz

Communication System: 5 GHz; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; σ = 5.22 mho/m; ε_r = 48.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.36, 4.36, 4.36); Calibrated: 16.09.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 17.09.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (12x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.858 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 14.2 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.432 mW/g; SAR(10 g) = 0.113 mW/g Maximum value of SAR (measured) = 0.882 mW/g

Fig. 2: SAR distribution for IEEE 802.11 a, channel 36, worst case body worn configuration, display towards the ground, 0 mm distance (May 26, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.8° C).

3 SAR Distribution Plots, IEEE 802.11 a (5500 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: Joya_bwhm_ch104_dspl_down.da4

DUT: Datalogic; Type: Joya; Serial: D10P00477

Program Name: WiFi 5500 MHz

Communication System: 5 GHz; Frequency: 5520 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5520 MHz; $\sigma = 5.71 \text{ mho/m}$; $\varepsilon_r = 48$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(3.9, 3.9, 3.9); Calibrated: 16.09.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 17.09.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (12x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.278 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 7.73 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.069 mW/gMaximum value of SAR (measured) = 0.293 mW/g

Fig. 3: SAR distribution for IEEE 802.11 a, channel 104, worst case body worn configuration, display towards the ground, 0 mm distance (May 26, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.8° C).

4 SAR Distribution Plots, IEEE 802.11 a (5800 MHz Range)

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: <u>Joya_bwhm_ch161_dspl_down.da4</u>

DUT: Datalogic; Type: Joya; Serial: D10P00477

Program Name: WiFi 5800 MHz

Communication System: 5 GHz; Frequency: 5805 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5805 MHz; σ = 6.18 mho/m; ε_r = 47.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(4.1, 4.1, 4.1); Calibrated: 16.09.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 17.09.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (12x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.368 mW/g

Body Worn/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 8.73 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.695 W/kg

SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.088 mW/gMaximum value of SAR (measured) = 0.386 mW/g

SAR distribution for IEEE 802.11 a, channel 161, worst case body worn Fig. 4: configuration, display towards the ground, 0 mm distance (May 26, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.8° C).

5 SAR Z-axis Scans (Validation)

Fig. 5: SAR versus liquid depth, 2450 MHz, body (May 26, 2011; Ambient Temperature: 21.5° C; Liquid Temperature: 21.3° C).

Fig. 6: SAR versus liquid depth, 5200 MHz, body (May 26, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.8° C).

Fig. 7: SAR versus liquid depth, 5500 MHz, body (May 26, 2011; Ambient Temperature: 22.0° C; Liquid Temperature: 21.8° C).

Fig. 8: SAR versus liquid depth, 5800 MHz, body (May 26, 2011; Ambient Temperature: 22.1° C; Liquid Temperature: 21.8° C).

6 SAR Z-axis Scans (Measurements)

The following pictures show the plots of SAR versus liquid depth for the worst case values.

Fig. 9: SAR versus liquid depth, body: IEEE 802.11 g, channel 6, display towards the ground (May 26, 2011; Ambient Temperature: 21.5° C; Liquid Temperature: 21.3° C).

Fig. 10: SAR versus liquid depth, body: IEEE 802.11 a, channel 36, display towards the ground (May 26, 2011; Ambient Temperature: 22.0°C; Liquid Temperature: 21.8°C).