集合論(第8回)の解答

問題 8-1

商集合 X/\sim の要素は次の 4 つ.

$$C((0,0)) = \{(0,0), (1,0), (2,0), (0,1), (0,2)\},$$

$$C((1,1)) = \{(1,1)\},$$

$$C((2,1)) = \{(2,1), (1,2)\},$$

$$C((2,2)) = \{(2,2)\}.$$

よって $|X/\sim|=4$.

問題 8-2

(i) $C\in\mathbb{R}^2/\sim$ とすると, C=C((x,y)) $((x,y)\in\mathbb{R}^2)$ と表せる. $a=\sqrt{x^2+y^2}$ とおくと, $a^2+0^2=x^2+y^2$ より $(a,0)\sim(x,y)$. よって

$$C = C((x,y)) = C((a,0)) \in \{C(P) \mid P \in S\}.$$

従って $\mathbb{R}/\sim\subseteq\{C(P)\mid P\in S\}$. 逆の包含は明らかなので、 $\mathbb{R}/\sim=\{C(P)\mid P\in S\}$.

(ii) $(a,0),(b,0)\in S$ $(a,b\geq 0)$ とし、C((a,0))=C((b,0)) を仮定する. このとき、 $a^2+0^2=b^2+0^2$ かつ $a,b\geq 0$ より a=b. 従って (a,0)=(b,0). よって定義 8-2 の条件 (ii) の対偶が示せた.

以上 (i), (ii) より S は \mathbb{R}^2/\sim の完全代表系である.

問題 8-3

$$C(x),C(y)\in\mathbb{Z}/\sim$$
 とし、 $C(x)=C(y)$ と仮定する.このとき、 $x-y=nk\ (k\in\mathbb{Z})$ と表せるので、
$$x^2-y^2=(y+nk)^2-y^2=n(2ky+nk^2).$$

従って $C(x^2) = C(y^2)$. よって F は well-defied.

問題 8-4

- (1) 定義 7-2 の条件を確認する.
 - (i) 反射律. $(x,y) \in X$ とする. xy = yx より $(x,y) \sim (x,y)$.
- (iii) 対称律. $(x,y),(s,t) \in X$ とし, $(x,y) \sim (s,t)$ と仮定する. このとき, xt = ys より sy = tx. よって $(s,t) \sim (x,y)$.
- (iii) 推移律. $(x,y),(s,t),(u,v)\in X$ とし, $(x,y)\sim (s,t),\ (s,t)\sim (u,v)$ と仮定する. このとき, $xt=ys,\ sv=tu$. よって

$$xvt = ysv = ytu$$
.

 $t \neq 0$ より xv = yu. 従って $(x, y) \sim (u, v)$.

copyright ⓒ 大学数学の授業ノート

$$(2) \left(\frac{x_1}{y_1}, \frac{s_1}{t_1}\right), \left(\frac{x_2}{y_2}, \frac{s_2}{t_2}\right) \in \mathbb{Q} \times \mathbb{Q} \ \text{とし}, \\ \left(\frac{x_1}{y_1}, \frac{s_1}{t_1}\right) = \left(\frac{x_2}{y_2}, \frac{s_2}{t_2}\right) \ \text{と仮定する}. \ \text{このとき}, \\ x_1 y_2 = y_1 x_2, \\ s_1 t_2 = t_1 s_2. \ \text{従って}$$

$$(x_1s_1)(y_2t_2) = (y_1t_1)(x_2s_2).$$

よって
$$\frac{x_1s_1}{y_1t_1} = \frac{x_2s_2}{y_2t_2}$$
. 従って・は well-defined.