EXAMEN DE LMD

25 de junio de 2015

APELLIDOS, NOMBRE:		
DNI:	GRUPO:	

- 1. a) Determina un número natural n sabiendo que el conjunto $\mathrm{D}(n)$ de los divisores positivos de n es un álgebra de Boole con las operaciones usuales, y que 105 y 42 son dos coátomos. Obtén además todos los elementos $x \in \mathrm{D}(n)$ tales que $\overline{105} \vee x = 42$.
 - b) Representa la función booleana

$$f(x, y, z, t) = \overline{x} y z \overline{t} + y z \overline{t} + x \cdot (z \oplus t) + \overline{x} + y + z + y z t,$$

como suma de mintérminos, y halla una expresión mínima como suma de productos de literales.

Solución:

a) Para que el conjunto D(n) sea un álgebra de Boole es necesario que el número n sea libre de cuadrados. Es decir, en su descomposición como producto de factores primos no puede aparecer ningún número primo elevado a un exponente mayor que uno. Además, si x e y son coátomos, entonces $x \lor y = n$ (de la misma forma que si x e y son átomos, $x \land y = 1$). Entonces:

$$n = 105 \lor 42 = \text{mcm}(105, 42) = \text{mcm}(3 \cdot 5 \cdot 7, 2 \cdot 3 \cdot 7) = 2 \cdot 3 \cdot 5 \cdot 7 = 210$$

Y ahora $\overline{105} \lor x = \frac{210}{105} \lor x = 2 \lor x = \text{mcm}(2,x) = 42 = 2 \cdot 3 \cdot 7$. Es decir, tenemos que encontrar todos los números x tales que $\text{mcm}(2,x) = 2 \cdot 3 \cdot 7$. Por tanto, en la descomposición de x como producto de primos deben aparecer el 3 y el 7. El 2 puede estar o no. Las únicas posibilidades son entonces x = 21 y x = 42.

b) Escribimos la tabla de la función f.

				a	b		c		d	e	
x	y	z	t	$\overline{x}yz\overline{t}$	$yz\overline{t}$	$z \oplus t$	$x\cdot(z\oplus t)$	$\overline{x} + y + z$	$\overline{x} + y + z$	yzt	f = a + b + c + d + e
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	0	1	0	0	0
0	0	1	0	0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0
0	1	0	1	0	0	1	0	1	0	0	0
0	1	1	0	1	1	1	0	1	0	0	1
0	1	1	1	0	0	0	0	1	0	1	1
1	0	0	0	0	0	0	0	0	1	0	1
1	0	0	1	0	0	1	1	0	1	0	1
1	0	1	0	0	0	1	1	1	0	0	1
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	1	1	1	0	0	1
1	1	1	0	0	1	1	1	1	0	0	1
1	1	1	1	0	0	0	0	1	0	1	1

Y vemos que $f=m_6+m_7+m_8+m_9+m_{10}+m_{13}+m_{14}+m_{15}$. Y esta es la forma canónica disyuntiva. O si preferimos:

1

$$f(x, y, z, t) = \overline{x} y z \overline{t} + \overline{x} y z t + x \overline{y} \overline{z} \overline{t} + x \overline{y} \overline{z} t + x \overline{y} z \overline{t} + x y \overline{z} t + x y z \overline{t} + x y z \overline{t} + x y z \overline{t}$$

También podíamos haber llegado a esta expresión de f como sigue:

- $\bullet \ \overline{x} \, y \, z \, \overline{t} = m_6.$
- $yz\overline{t} = \overline{x}yz\overline{t} + xyz\overline{t} = m_6 + m_{14}.$
- $x \cdot (z \oplus t) = x(\overline{z}t + z\overline{t}) = x\overline{z}t + xz\overline{t} = x\overline{y}\overline{z}t + xy\overline{z}t + x\overline{y}z\overline{t} + xyz\overline{t} = m_9 + m_{13} + m_{10} + m_{14}.$
- $\overline{x+y+z} = \overline{\overline{x}}\,\overline{y}\,\overline{z} = x\,\overline{y}\,\overline{z} = x\,\overline{y}\,\overline{z}\,\overline{t} + x\,\overline{y}\,\overline{z}\,t = m_8 + m_9.$
- $yzt = \overline{x}yzt + xyzt = m_7 + m_{15}$.

Luego $f = m_6 + m_6 + m_{14} + m_9 + m_{13} + m_{10} + m_{14} + m_8 + m_9 + m_7 + m_{15} = m_6 + m_7 + m_8 + m_9 + m_{10} + m_{13} + m_{14} + m_{15}.$

Una vez calculada la forma canónica disyuntiva de f simplificamos esta expresión, y para eso nos valemos de los diagramas de Karnaugh.

	$\overline{x}\overline{y}$	$\overline{x}y$	xy	$x \overline{y}$
$\overline{z}\overline{t}$				1
$\overline{z} t$			1	1
z t		1	1	
$z\overline{t}$		1	1	1

	$\overline{x}\overline{y}$	$\overline{x}y$	xy	$x\overline{y}$
$\overline{z}\overline{t}$				
$\overline{z} t$			1	1
z t		1	1	
$z\overline{t}$		1	1	1

Y nos queda la siguiente expresión de f:

$$f(x, y, z, t) = y z + x \overline{z} t + x \overline{y} \overline{t}$$

que es la expresión reducida como suma de producto de literales.

2. Clasifica la proposición lógica siguiente:

$$\Big(\big(t\vee p\big) \wedge \neg q \to r\Big) \wedge \Big(\neg r \wedge \big(p\vee t\big)\Big) \to q \vee s.$$

Solución:

Vamos a llamar α a esta proposición lógica. Tenemos que decidir si α es tautología, satisfacible y refutable o contradicción.

Fácilmente vemos que α no es contradicción pues para una interpretación I en la que I(q) = 1 (o I(s) = 1) se tiene que $I(\alpha) = 1$.

Por tanto tenemos que decidir entre si α es tautología o α es refutable. Dicho de otra forma, tenemos que ver si $\vDash \alpha$ (α es tautología) ó $\not\vDash \alpha$ (α es refutable).

Por el teorema de la deducción sabemos que $\vDash \alpha$ es equivalente a

$$\Big(\big(t\vee p\big) \land \neg q \to r\Big) \land \Big(\neg r \land \big(p \lor t\big)\Big) \vDash q \lor s$$

Y esto último es equivalente a que el siguiente conjunto de fórmulas

$$\{((t \lor p) \land \neg q \to r) \land (\neg r \land (p \lor t)), \neg (q \lor s)\}$$

sea insatisfacible.

Calculamos la forma clausular de cada una de estas fórmulas.

$$\begin{array}{l} \bullet & ((t \vee p) \wedge \neg q \to r) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & (\neg ((t \vee p) \wedge \neg q) \vee r) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & ((\neg (t \vee p) \vee \neg \neg q) \vee r) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & (\neg (t \vee p) \vee \neg \neg q \vee r) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & ((\neg t \wedge \neg p) \vee q \vee r) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & ((\neg t \vee q \vee r) \wedge (\neg p \vee q \vee r)) \wedge (\neg r \wedge (p \vee t)) \\ \\ \equiv & (\neg t \vee q \vee r) \wedge (\neg p \vee q \vee r) \wedge \neg r \wedge (p \vee t) \\ \end{array}$$

$$\neg (q \lor s) \equiv \neg q \land \neg s$$

 $\bullet \qquad \neg (q \ \lor \ s) \equiv \neg q \land \neg s$ Luego hemos de comprobar si el conjunto de cláusulas

$$\{\neg t \lor q \lor r; \ \neg p \lor q \lor r; \ \neg r; \ p \lor t; \ \neg q; \ \neg s\}$$

es o no insatisfacible. Para ello, nos valemos del algoritmo de Davis-Putnam o del método de resolución.

Y al llegar a la cláusula vacía, el conjunto de cláusulas es insatisfacible, luego α es una tautología.

También podíamos haber llegado a esta conclusión calculando la tabla de verdad de α . Llamemos α_1 a la fórmula $(t \lor p) \land \neg q \to r, \ \alpha_2$ a la fórmula $\neg r \land (p \lor t)$ y β a la fórmula $q \lor s$. Entonces $\alpha = \alpha_1 \land \alpha_2 \to \beta$.

I							α_1	α_2		β	
p	q	r	s	t	$t \lor p$	$(t \lor p) \land \neg a$	$(t \lor p) \land \neg a \to r$	$\neg r \land (p \lor t)$	$\alpha_1 \wedge \alpha_2$	$q \lor s$	α
0	0	0	0	0	0	0	$ \begin{array}{c} \alpha_1 \\ (t \vee p) \wedge \neg q \to r \\ \hline 1 \end{array} $	0	0	0	1
0	0	0	0	1	1	1	0	1	0	0	1
0	0	0	1	0	0	0	1	0	0	1	1
0	0	0	1	1	1	1	0	1	0	1	1
0	0	1	0	0	0	0	1	0	0	0	1
0	0	1	0	1	1	1	1	0	0	0	1
0	0	1	1	0	0	0	1	0	0	1	1
0	0	1	1	1	1	1	1	0	0	1	1
0	1	0	0	0	0	0	1	0	0	1	1
0	1	0	0	1	1	0	1	1	1	1	1
0	1	0	1	0	0	0	1	0	0	1	1
0	1	0	1	1	1	0	1	1	1	1	1
0	1	1	0	0	0	0	1	0	0	1	1
0	1	1	0	1	1	0	1	0	0	1	1
0	1	1	1	0	0	0	1	0	0	1	1
0	1	1	1	1	1	0	1	0	0	1	1
1	0	0	0	0	1	1	0	1	0	1	1
1	0	0	0	1	1	1	0	1	0	0	1
1	0	0	1	0	1	1	0	1	0	0	1
1	0	0	1	1	1	1	0	1	0	1	1
1	0	1	0	0	1	1	1	0	0	1	1
1	0	1	0	1	1	1	1	0	0	0	1
1	0	1	1	0	1	1	1	0	0	0	1
1	0	1	1	1	1	1	1	0	0	1	1
1	1	0	0	0	1	0	1	1	1	1	1
1	1	0	0	1	1	0	1	1	1	1	1
1	1	0	1	0	1	0	1	1	1	1	1
1	1	0	1	1	1	0	1	1	1	1	1
1	1	1	0	0	1	0	1	0	0	1	1
1	1	1	0	1	1	0	1	0	0	1	1
1	1	1	1	0	1	0	1	0	0	1	1
1	1	1	1	1	1	0	1	0	0	1	1

Y vemos que α es tautología.

También podríamos haber razonado como sigue:

Imaginemos que hay una interpretación para la que $I(\alpha)=0$. Entonces $I(q\vee s)=0$ e $I((t\vee p)\wedge \neg q\to r)\wedge (\neg r\wedge (p\vee t))=1$.

- $I(q \lor s) = 0$ significa que I(q) = 0 e I(s) = 0.
- Si $I((t \lor p) \land \neg q \to r) \land (\neg r \land (p \lor t)) = 1$ entonces:
 - $I((t \lor p) \land \neg q \rightarrow r) = 1.$
 - $I(\neg r) = 1$, es decir, I(r) = 0.
 - $I(p \lor t) = 1$.

Puesto que $I(p \lor t) = 1$ e $I(\neg q) = 1$ se tiene que $I((p \lor t) \land \neg q) = 1$, con lo que $I((t \lor p) \land \neg q \to r) = 0$, pero acabamos de ver que el valor de verdad de esa fórmula debía ser 1. Por tanto, no existe esa interpretación para la que $I(\alpha) = 0$.

3. a) Sea α la siguiente fórmula:

$$\alpha = \forall y \Big(P(a, y) \to \forall y \exists x P(x, y) \Big)$$

Calcula el valor de verdad de α en cada una de las estructuras siguientes:

- Estructura \mathcal{E}_1 .
 - Dominio: N.
 - Asignación de constantes: a = 0.
 - Asignación de predicados: $P(x,y) \equiv y = x + 1$.
- Estructura \mathcal{E}_2 .
 - Dominio: \mathbb{Z}_9 .
 - Asignación de constantes: a = 0.
 - Asignación de predicados: $P(x, y) \equiv y = x + 1$.
- b) Traduce a un lenguaje de primer orden la frase

"Todo grupo de la asignatura LMD tiene más de un alumno"

usando los símbolos de predicado G^1, A^1, E^2, P^2 con los significados siguientes:

G(x): x es un grupo de la asignatura LMD;

A(x) : x es un alumno;

E(x,y): el objeto x es igual al objeto y;

P(x,y): x pertenece a y.

Solución:

- a) Calculamos el valor de verdad de α en ambas estructuras.
 - En la estructura \mathcal{E}_1 la fórmula $\forall y \exists x P(x,y)$ nos dice que en el conjunto de los números naturales, $\forall y \exists x (y = x + 1)$. Esta afirmación es falsa, pues cuando y = 0 no podemos encontrar ningún número natural x tal que x + 1 = y.

Sin embargo, la fórmula P(a,y) se interpreta como verdadera para y=1. Por tanto, cuando y=1 el valor de verdad de $P(a,y) \to \forall y \exists x P(x,y)$ es cero. Entonces, el valor de verdad de α es cero.

Puede ser que cree un poco de confusión el hecho de que se haya tomado el valor de y=1 para que la fórmula P(a,y) sea verdadera, mientras que para probar que $\forall y \exists x P(x,y)$ es falsa hayamos tomado otro valor de la variable y (concretamente y=0). Para evitar esta confusión podemos ver que la fórmula α es equivalente a $\forall y (P(a,y) \rightarrow \forall z \exists x P(x,z))$.

■ En la estructura \mathcal{E}_2 , la fórmula $\forall y \exists x P(x,y)$ se interpreta como verdadera, pues para cualquier $y \in \mathbb{Z}_9$ podemos encontrar $x \in \mathbb{Z}_9$ (concretamente x = y - 1 = y + 8) tal que x + 1 = y.

En tal caso es fácil comprobar que el valor de verdad de α es uno.

b) Vamos a escribir la frase e ir transformándola hasta que quede expresada en un lenguaje de primer orden:

Todo grupo de la asignatura LMD tiene más de un alumno

Si x es un grupo de la asignatura LMD entonces x tiene más de un alumno Si x es un grupo de la asignatura LMD entonces x tiene al menos dos alumnos

Si x es un grupo de la asignatura LMD entonces x tiene ai menos dos atumnos Si x es un grupo de la asignatura LMD entonces existen y, z, que son alumnos del grupo x y son distintos

Para cualquier x, si x es un grupo de LMD entonces existen y, z, que son alumnos, que son distintos y que pertenecen al grupo x.

 $\forall x \ (x \ \text{grupo de LMD}) \rightarrow \exists y \exists z \ (y, z \ \text{alumnos}; \ y \neq z; \ y, z \ \text{pertenecen a} \ x)$ $\forall x (G(x) \rightarrow \exists y \exists z (A(y) \land A(z) \land P(y, x) \land P(z, x) \land \neg E(y, z)))$ 4. Consideramos las fórmulas siguientes de un lenguaje de primer orden:

$$\alpha_1 = \forall x \Big(\exists y Q(y, x) \to \neg P(x) \Big),$$

$$\alpha_2 = \forall x \Big(Q(x, f(x)) \land \forall y Q(y, g(y)) \Big),$$

$$\alpha_3 = \forall x \Big(P(x) \to P(f(x)) \lor P(g(x)) \Big),$$

$$\beta = \forall x \neg P(x).$$

Estudia si β es o no consecuencia lógica del conjunto $\{\alpha_1, \alpha_2, \alpha_3\}$.

Solución:

Vamos a ver si el conjunto $\{\alpha_1, \alpha_2, \alpha_3, \neg \beta\}$ es o no insatisfacible. Para ello, calculamos la forma clausular de estas fórmulas y tratamos de deducir por resolución la cláusula vacía.

• Cálculo de la forma clausular de cada fórmula.

$$\begin{array}{rcl} \alpha_1 & = & \forall x (\exists y Q(y,x) \to \neg P(x)) \\ & \equiv & \forall x (\neg \exists y Q(y,x) \vee \neg P(x)) \\ & \equiv & \forall x (\forall y \neg Q(y,x) \vee \neg P(x)) \\ & \equiv & \forall x \forall y (\neg Q(y,x) \vee \neg P(x)) \\ \\ \alpha_2 & = & \forall x (Q(x,f(x)) \wedge \forall y Q(y,g(y))) \\ & \equiv & \forall x \forall y (Q(x,f(x)) \wedge Q(y,g(y))) \\ \\ \alpha_3 & = & \forall x (P(x) \to P(f(x)) \vee P(g(x))) \\ & \equiv & \forall x (\neg P(x) \vee P(f(x)) \vee P(g(x))) \\ \\ \neg \beta & = & \neg \forall x \neg P(x) \\ & \equiv & \exists x \neg \neg P(x) \\ & \equiv & \exists x P(x) \\ & P(a) \end{array}$$

Deducción de la cláusula vacía.
 A partir del conjunto de cláusulas:

$$\{ \neg Q(y,x) \lor \neg P(x); \ Q(x,f(x)); \ Q(y,g(y)); \ \neg P(x) \lor P(f(x)) \lor P(g(x)); \ P(a) \}$$
 vamos a encontrar una deducción de la cláusula vacía.

Al obtener la cláusula vacía concluimos que β es consecuencia lógica del conjunto de fórmulas $\{\alpha_1,\alpha_2,\alpha_3\}$.

Notemos que si hubiéramos empezado como sigue:

Llegamos a una cláusula de la que no podemos obtener ninguna resolvente. Pero eso no significa que el conjunto de cláusulas sea satisfacible.

5. Sea la sucesión de números enteros definida para $n \geq 0$ mediante la recurrencia

$$\begin{cases} x_0 = 4, \ x_1 = 14, \\ x_n = 6x_{n-1} - 9x_{n-2} + 2^n \ \text{para } n \ge 2. \end{cases}$$

- a) Basándose en la recurrencia anterior, demuestra por inducción que para cualquier $n \ge 0$, x_n es un número par.
- b) Encuentra una expresión no recurrente para el término x_n .

Solución:

- a) Vamos a utilizar el segundo principio de inducción para demostrar que x_n es par para cualquier $n \in \mathbb{N}$.
 - Casos base: $x_0 = 4$, que es par y $x_1 = 14$ que también es par. Luego el resultado es cierto para n = 0 y n = 1.
 - Hipótesis de inducción: Si $n \ge 2$ entonces para k < n se tiene que x_k es par. En particular, x_{n-1} y x_{n-2} son números pares.
 - Paso inductivo: Sea $n \ge 2$. Probemos que el término x_n es par. Esto último es fácil de probar, pues $x_n = 6x_{n-1} 9x_{n-2} + 2^n$, y tanto $6x_{n-1}$ es par (esto lo sabemos, bien por la hipótesis de inducción, bien porque es múltiplo de 6) como $-9x_{n-2}$ (por la hipótesis de inducción) como también 2^n (pues es múltiplo de 2). Como la suma de números pares es un número par concluimos que x_n es un número par.

Con esto hemos demostrado que para cualquier $n \in \mathbb{N}$, x_n es par.

b) Vemos que la sucesión x_n satisface una relación de recurrencia lineal no homogénea con coeficientes constantes. La relación de recurrencia lineal homogénea asociada es $x_n = 6x_{n-1} - 9x_{n-2}$ cuya ecuación característica es $x^2 - 6x + 9 = 0$, mientras que el término no homogéneo es 2^n .

De aquí sacamos que la sucesión x_n satisface una relación de recurrencia lineal homogénea de grado 3 y cuya ecuación característica es $(x^2-6x+9)(x-2)=0$. Esta ecuación tiene como raíces $\alpha_1=2$ (simple) y $\alpha_2=3$ (doble) pues $x^2-6x+9=(x-3)^2$. Una vez calculadas estas raíces sabemos que el término x_n puede escribirse de la forma $x_n=a\cdot 2^n+b\cdot 3^n+c\cdot n\cdot 3^n$. Puesto que tenemos 3 incógnitas necesitamos tres términos de la sucesión. Conocemos los dos primeros, así que calculamos el tercero: $x_2=6x_1-9x_0+2^2=6\cdot 14-9\cdot 4+4=84-36+4=52$.

El sistema que tenemos que resolver es:

$$n = 0$$
 $a + b = 4$
 $n = 1$ $2a + 3b + 3c = 14$
 $n = 2$ $4a + 9b + 18c = 52$

Calculamos la forma normal de Hermite de la matriz ampliada:

$$\begin{pmatrix} 1 & 1 & 0 & 4 \\ 2 & 3 & 3 & 14 \\ 4 & 9 & 18 & 52 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 1 & 3 & 6 \\ 0 & 5 & 18 & 36 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 3 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Luego la solución del sistema es $a=4,\,b=0,\,c=2.$ Entonces, el término general de la sucesión x_n es:

$$x_n = 4 \cdot 2^n + 2n \cdot 3^n = 2^{n+2} + 2n \cdot 3^n$$

6. Sea G el grafo cuyo conjunto de vértices es $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y cuya matriz de adyacencia es

- a) ¿Hay algún camino o circuito de Euler en G? Si la respuesta es afirmativa, muestra uno
- b) ¿Hay algún ciclo de Hamilton en G? Si la respuesta es afirmativa, muestra uno.
- c)¿Es G un grafo plano? Si la respuesta es afirmativa, obtén una representación plana de G.
- d) Calcula el número cromático de G. ¿Es G un grafo bipartido?

Solución:

La matriz de adyacencia nos indica los vértices que están unidos por un lado de la siguiente forma: si $a_{ij}=1$ significa que hay un lado que une el vértice i con el vértice j. Si $a_{ij}=0$ ese lado no existe.

Basándonos en esto vamos en primer lugar a dibujar el grafo. Para esto, vamos a llamar a los vértices v_i , y los colocamos como los vértices de un polígono de 10 lados. Dibujamos los lados entre estos vértices:

Vamos a cambiar la distribución de los vértices para que se vea más claro:

Y ahora respondemos a las cuestiones.

1. Puesto que el grafo es conexo y todos los vértices tienen grado par (el grado de cada vértice es 4), el grafo es tiene un circuito de Euler. Un ejemplo de uno:

 $v_1 \ v_6 \ v_8 \ v_{10} \ v_5 \ v_2 \ v_4 \ v_8 \ v_3 \ v_4 \ v_9 \ v_6 \ v_3 \ v_9 \ v_7 \ v_2 \ v_{10} \ v_1 \ v_5 \ v_7 \ v_1$

2. El grafo también tiene un ciclo de Hamilton:

$$v_1\ v_6\ v_8\ v_{10}\ v_2\ v_4\ v_3\ v_9\ v_7\ v_5\ v_1$$

- 3. La segunda representación que hemos hecho es una representación plana. Por tanto el grafo es un grafo plano.
- 4. Vemos como en el grafo hay ciclos de longitud 3 $(v_2 \ v_5 \ v_7 \ v_2)$. Eso nos dice, por una parte, que el grafo no es bipartido, y por otra, que el número cromático es al menos 3 (pues esos tres vértices deben tener colores diferentes). Al ser plano, el número cromático no puede ser mayor que 4. Nos quedan dos posibilidades: que valga 3 o que valga 4. Vamos a ver que es igual a 3 dando una 3-coloración.

Bien porque el número cromático no es 2, bien porque hay ciclos de longitud impar, vemos que el grafo no es bipartido.