Lecture 1 - Graph Matrices

Konstantinos Ameranis

September 26, 2023

Overview

- Admin
- ② Graphs
- Mathematical Formulation
- Matrices for Graphs

Admin

- ► Lectures: TR 9:30am-10:50am, TBA
- ▶ Instructors: Lorenzo Orecchia, Konstantinos Ameranis
- **▶** Office Hours:
 - Lorenzo Orecchia: Tuesday 11am-12n, JCL 315
 - Konstantinos Ameranis: Thursday 1:00-3:00pm, JCL
- Grading:
 - Homework: 35%
 - Project: 10%
 - Participation: 5%
 - **Final**: 50%
- Resources:
 - Spielman's Spectral Graph Theory Course
 - Spectral Graph Theory by Fan Chung

Graphs

Graphs are used to represent "relations" or "connections" between "things". We will call the "things" *vertices* or *nodes* and their "connections" *edges*

Examples of graphs:

Graphs

Graphs are used to represent "relations" or "connections" between "things". We will call the "things" *vertices* or *nodes* and their "connections" *edges*

Examples of graphs:

- Social media: Accounts are vertices, friends/messages/interactions are edges
- Networks: Devices (routers/computers/servers) are vertices, connections are edges
- ► Circuits: Wires are edges
- ► Road network: Intersections are nodes, roads are edges
- Meshes: Nodes are sampling a surface or volume, edges connect nearby nodes

Mathematical Formulation

Scalars, Vectors and Matrices

- ▶ x an unboldened literal represents a scalar
- **x** a boldened lower case represents a *vector*
- ▶ X a boldened upper case represents a matrix

Graphs

- ightharpoonup G = (V, E, w)
- ▶ V is called the vertex set, typically |V| = n
- ▶ $E \subseteq V \times V$ is called the edge set |E| = m
- $lackbrack w \in \mathbb{R}^{|E|}_{>0}$ are the weights associated with the edges

If w is omitted, then it is assumed that it is 1 for all edges

Prerequisites

This is a high level Computer Science course. At this point we expect you to have some background knowledge.

- ► Linear Algebra Vectors, Matrices, Eigenvectors/Eigenvalues
- ► Multivariate Calculus Partial derivatives, Hessian
- Mathematical Proof Techniques Induction, Proof by Contradiction, etc
- ► Algorithms BFS, DFS, Shortest Path, Maximum Flow

There is an **UNGRADED** quiz that will help me better understand your strengths and weaknesses

Matrices for Graphs

Theory of Algorithms \rightarrow Edges described as a set This course \rightarrow Graph described with matrices Important matrices:

Symbol	Matrix	Dimension	Definition
Α	Adjacency	$n \times n$	$\mathbf{A}_{ij} = \begin{cases} w_{ij} & \{i,j\} \in E \\ 0 & \text{o.w.} \end{cases}$
W	Weights	$m \times m$	$\hat{\mathbf{W}} = diag(\mathbf{w})$
D	Degree	$n \times n$	$\mathbf{D} = extit{diag}(\mathbf{d}) = extit{diag}(\sum_{i \sim i} w_{ij})$
В	Incidence	$m \times n$	$\mathbf{B}_{ij} = \mathbf{e}_j - \mathbf{e}_i$
L	Laplacian	$n \times n$	$L = D - A = B^T WB$
\mathcal{L}	Normalized Laplacian	$n \times n$	$\mathcal{L} = D^{-1/2}LD^{-1/2}$

Linear operator $G(\mathbf{x}) = \mathbf{A}\mathbf{x}$

Figure: Electrical Network

Figure: Network as a graph

Linear operator $G(\mathbf{x}) = \mathbf{A}\mathbf{x}$

Figure: Electrical Network

Figure: Network as a graph

Ohm's Law: $i_{uv} = \frac{v_v - v_u}{R_{uv}}$

 $\mathbf{w} = 1/R$ & "stacking" Ohm's law in a vector we get $\mathbf{i} = \mathbf{WBv}$ Kirchhof's Current Law: $\mathbf{i}_{ext} = \mathbf{B}^T \mathbf{i} \Rightarrow \mathbf{i}_{ext} = \mathbf{B}^T \mathbf{WBv} = \mathbf{Lv}$

$$\begin{bmatrix} i_{AB} \\ i_{BC} \\ i_{BD} \\ i_{CE} \\ i_{DE} \end{bmatrix} = \begin{bmatrix} -1/20 & 1/20 & 0 & 0 & 0 \\ 0 & -1/40 & 1/40 & 0 & 0 \\ 0 & -1/70 & 0 & 1/70 & 0 \\ 0 & 0 & -1/20 & 0 & 1/20 \\ 0 & 0 & 0 & -1/20 & 1/20 \end{bmatrix} \begin{bmatrix} v_A \\ v_B \\ v_C \\ v_D \\ v_E \end{bmatrix} = \begin{bmatrix} \frac{v_B - v_A}{20} \\ \frac{v_C - v_B}{40} \\ \frac{v_C - v_B}{70} \\ \frac{v_E - v_C}{20} \\ \frac{v_E - v_D}{20} \end{bmatrix}$$

Quadratic form $G(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x}$ What physical interpretation does this have?

Quadratic form $G(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x}$

What physical interpretation does this have?

What is the stored mechanical energy in the following spring network?

$$E = \sum_{uv} k_{uv} (x_v - x_u)^2$$

Quadratic form $G(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x}$

What physical interpretation does this have?

What is the stored mechanical energy in the following spring network?

$$E = \sum_{uv} k_{uv} (x_v - x_u)^2 = \mathbf{x}^T \mathbf{L} \mathbf{x}$$