CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Lecture 21: Turing machines, computability

March 07, 2017

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Context-free grammars: Recursive programs.

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode relations.

2DFA: DFA + two-way head movement. They recognize exactly regular languages.

Pushdown automata: NFA + Stack. The class of languages recognized by these is called Context-free languages (CFLs).

Context-free grammars: Recursive programs. The class of languages generated by these grammars is CFLs.

What is a Turing machine? (Informal description.)

What is a Turing machine? (Informal description.)

Read and write on the input tape.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

What is a Turing machine? (Informal description.)

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

Special states for accepting and rejecting.

$$L_{a,b}=\left\{a^nb^n\mid n\geq 0\right\}.$$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet q_0 : start state Γ : tape alphabet

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$,

then p is the new state of the machine

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$, then p is the new state of the machine,

b is the letter with which a gets overwritten

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

Q: set of states Σ : input alphabet

 q_0 : start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, $\& \in \Gamma$

 q_{acc} : accept state q_{rej} : reject state

$$\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R\}.$$

Understanding δ

For a $q \in Q$, $a \in \Gamma$ if $\delta(q, a) = (p, b, L)$,

then p is the new state of the machine,

b is the letter with which a gets overwritten,

the head moves to the left of the current position.

Turing machine for a non-context free language

Example

Turing machine for a non-context free language

Example

$$\mathsf{EQ} = \{ w \cdot \# \cdot w \mid w \in \Sigma^* \}.$$

Turing machine for a non-context free language

Example

$$\mathsf{EQ} = \{ w \cdot \# \cdot w \mid w \in \Sigma^* \}.$$

Give a full description of a Turing machine for the above language.

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Let $u, v \in \Gamma^*$, $a, b, c \in \Gamma$ and $q, q' \in Q$.

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Let $u, v \in \Gamma^*$, $a, b, c \in \Gamma$ and $q, q' \in Q$.

Suppose $(q', c, L) \in \delta(q, b)$ is a transition in M

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Let $u, v \in \Gamma^*$, $a, b, c \in \Gamma$ and $q, q' \in Q$.

Suppose $(q', c, L) \in \delta(q, b)$ is a transition in M, then starting from $u \cdot a \cdot q \cdot b \cdot v$ in one step we get $u \cdot q' \cdot a \cdot c \cdot v$.

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Let $u, v \in \Gamma^*$, $a, b, c \in \Gamma$ and $q, q' \in Q$.

Suppose $(q', c, L) \in \delta(q, b)$ is a transition in M, then starting from $u \cdot a \cdot q \cdot b \cdot v$ in one step we get $u \cdot q' \cdot a \cdot c \cdot v$.

We say that $u \cdot a \cdot q \cdot b \cdot v$ yields $u \cdot q' \cdot a \cdot c \cdot v$.

Definition

The configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ is given by

$$\Gamma^* \times Q \times \Gamma^*$$

A configuration need not include blank symbols.

Let $u, v \in \Gamma^*$, $a, b, c \in \Gamma$ and $q, q' \in Q$.

Suppose $(q', c, L) \in \delta(q, b)$ is a transition in M, then starting from $u \cdot a \cdot q \cdot b \cdot v$ in one step we get $u \cdot q' \cdot a \cdot c \cdot v$.

We say that $u \cdot a \cdot q \cdot b \cdot v$ yields $u \cdot q' \cdot a \cdot c \cdot v$.

We denote it by $u \cdot a \cdot q \cdot b \cdot v \mapsto u \cdot q' \cdot a \cdot c \cdot v$.

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

Start configuration

We assume that the head is on the left of the input in the beginning.

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Any configulation that contains q_{acc} is an accepting configuration.

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Any configulation that contains q_{acc} is an accepting configuration.

Rejecting configuration

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Any configulation that contains q_{acc} is an accepting configuration.

Rejecting configuration

Any configulation that contains q_{rej} is a rejecting configuration.

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Any configulation that contains q_{acc} is an accepting configuration.

Rejecting configuration

Any configulation that contains q_{rej} is a rejecting configuration.

Halting configurations: if a configuration is accepting or rejecting then it is called a halting configuration.

Start configuration

We assume that the head is on the left of the input in the beginning. Therefore, $q_0 \cdot w$ is the start configuration.

Accepting configuration

Any configulation that contains q_{acc} is an accepting configuration.

Rejecting configuration

Any configulation that contains q_{rej} is a rejecting configuration.

Halting configurations: if a configuration is accepting or rejecting then it is called a halting configuration.

A TM may not halt!

A TM M is said to accept a word $w \in \Sigma^*$ if there exists a sequence of configurations C_0, C_1, \ldots, C_k such that

 C_0 is a start configuration

A TM M is said to accept a word $w \in \Sigma^*$ if there exists a sequence of configurations C_0, C_1, \ldots, C_k such that

 C_0 is a start configuration,

$$C_i \mapsto C_{i+1}$$
 for all $0 \le i \le k-1$

A TM M is said to accept a word $w \in \Sigma^*$ if there exists a sequence of configurations C_0, C_1, \ldots, C_k such that

 C_0 is a start configuration,

$$C_i \mapsto C_{i+1}$$
 for all $0 \le i \le k-1$,

 C_k is an accepting configuration.

A TM M is said to accept a word $w \in \Sigma^*$ if there exists a sequence of configurations C_0, C_1, \ldots, C_k such that

 C_0 is a start configuration,

$$C_i \mapsto C_{i+1}$$
 for all $0 \le i \le k-1$,

 C_k is an accepting configuration.

The notion of rejection by TM is not as straightforward!

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in *L*the machine may run forever

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

the machine may run forever,

or may reach q_{rej}

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

the machine may run forever,

or may reach q_{rej} ,

both are valid outcomes

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

the machine may run forever,

or may reach q_{rej} ,

both are valid outcomes,

and the machine is allowed to do either of the two.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

We say that M decides L.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

L is also Turing recognizable.

Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$, M reaches the accepting configuration on w.

 $\forall w \notin L$, M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

L is also Turing recognizable.

Turing decidable languages form a subclass of Turing recognizable languages.

Comparing decidability and recognizability

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Comparing decidability and recognizability

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.