

Class. moduli finitamente generati

Pusceddu Gianfrancesco

uclidei

/loduli

Teorema di class.

Relatore:

Candidato:

Prof. Andrea Loi

Gianfrancesco Pusceddu

Università degli Studi di Cagliari

31 Marzo 2015_

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Teorema di

Obiettivo:

Sia M un E-modulo finitamente generato.

 $\Rightarrow M$ è somma diretta di moduli ciclici

Schema della presentazione

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Feorema di

📵 Definizioni e proprietà sui domini euclidei

Definizioni e proprietà sui moduli

Teorema di classificazione

Definizione

D dominio sse D anello commutativo unitario e vale la ldc

Definizione

Data $a \in D^*, b \in D$

• a divide b sse $\exists c$ tc ac = b

Sia D un dominio e $a, b \in D$, $c, d \in D^*$:

- a associato a b sse a|b e b|a
- a primo sse $a|bc \Rightarrow a|b \lor a|c$
- d = (a, b) MCD sse $d|a \wedge d|b \wedge (\forall c)(c|a \wedge c|b \Rightarrow c|d)$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

D dominio sse D anello commutativo unitario e vale la ldc

Definizione

Data $a \in D^*, b \in D$

• a divide b sse $\exists c \text{ tc } ac = b$

Sia D un dominio e $a,b\in D$, $c,d\in D^*$:

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

D dominio sse D anello commutativo unitario e vale la ldc

Definizione

Data $a \in D^*, b \in D$

• a divide b sse $\exists c \text{ tc } ac = b$

Sia D un dominio e $a,b\in D$, $c,d\in D^*$:

- a associato a b sse a|b e b|a
 - a primo sse $a|bc \Rightarrow a|b \lor a|c$
 - d = (a, b) MCD sse $d|a \wedge d|b \wedge (\forall c)(c|a \wedge c|b \Rightarrow c|d)$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

D dominio sse D anello commutativo unitario e vale la ldc

Definizione

Data $a \in D^*, b \in D$

• a divide b sse $\exists c \text{ tc } ac = b$

Sia D un dominio e $a,b\in D$, $c,d\in D^*$:

- a associato a b sse a|b e b|a
 - a primo sse $a|bc \Rightarrow a|b \lor a|c$
 - d = (a, b) MCD sse $d|a \wedge d|b \wedge (\forall c)(c|a \wedge c|b \Rightarrow c|d)$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

D dominio sse D anello commutativo unitario e vale la ldc

Definizione

Data $a \in D^*, b \in D$

• a divide b sse $\exists c \text{ tc } ac = b$

Sia D un dominio e $a, b \in D$, $c, d \in D^*$:

- a associato a b sse a b e b a
- a primo sse $a|bc \Rightarrow a|b \lor a|c$
- d = (a, b) MCD sse $d|a \wedge d|b \wedge (\forall c)(c|a \wedge c|b \Rightarrow c|d)$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Vari tipi di domini e loro proprietà

Definizione

E dominio euclideo sse $\exists \delta : E^* \to \mathbb{N}$ t.c.,dati $a, b \in E^*$:

- $\delta(ab) \geq \delta(a)$
- $\exists q, r \text{ t.c. } a = qb + r \text{ con } r = 0 \lor \delta(r) < \delta(b)$

Proprietà

Dato $d \in E^*$

• ha scomposizione unica in prodotto di prim

Dati $a, b \in E^*$

• $\exists ! d \in E \text{ tc } d = (a, b))$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Vari tipi di domini e loro proprietà

Definizione

E dominio euclideo sse $\exists \delta : E^* \to \mathbb{N}$ t.c.,dati $a, b \in E^*$:

- $\delta(ab) \geq \delta(a)$
- $\exists q, r \text{ t.c. } a = qb + r \text{ con } r = 0 \lor \delta(r) < \delta(b)$

Proprietà

Dato $d \in E^*$

• ha scomposizione unica in prodotto di primi

Dati $a, b \in E^*$ $\exists ! d \in E \text{ to } d = (a, b)$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Vari tipi di domini e loro proprietà

Definizione

E dominio euclideo sse $\exists \delta : E^* \to \mathbb{N}$ t.c.,dati $a, b \in E^*$:

- $\delta(ab) \geq \delta(a)$
- $\exists q, r \text{ t.c. } a = qb + r \text{ con } r = 0 \lor \delta(r) < \delta(b)$

Proprietà

Dato $d \in E^*$

• ha scomposizione unica in prodotto di primi

Dati $a,b\in E^*$

• $\exists ! d \in E \text{ tc } d = (a, b))$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Esempi di domini euclidei

Esempio 1

 \mathbb{Z} è un dominio euclideo

Esempio

 $\mathbb{Z}[i] = \{a + ib | a, b \in \mathbb{Z}\}$ è un dominio euclideo

Esempio :

 $\mathbb{K}[x]$ è un dominio euclideo

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Esempi di domini euclidei

Esempio 1

Z è un dominio euclideo

Esempio 2

 $\mathbb{Z}[i] = \{a+ib|a,b\in\mathbb{Z}\}$ è un dominio euclideo

Esempio 3

 $\mathbb{K}[x]$ è un dominio euclideo

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Esempi di domini euclidei

Esempio 1

 \mathbb{Z} è un dominio euclideo

Esempio 2

 $\mathbb{Z}[i] = \{a+ib|a,b\in\mathbb{Z}\}$ è un dominio euclideo

Esempio 3

 $\mathbb{K}[x]$ è un dominio euclideo

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione di modulo

Definizione

 $(M,+,\cdot)$ A - modulo sse (M,+) gruppo abeliano , (A,\oplus,\odot) anello commutativo unitario e \cdot : $A\times M\to M$ t.c.

Dati $a, b \in A$ e $x, y \in M$:

2
$$(a \oplus b)x = a \cdot x + b \cdot x$$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema di

Definizione

 $N \leq M$ sottomodulo sse N è un A-modulo

Definizione

Se $x \in N$

 \bullet < x > sottomodulo ciclico

Se $\{N_i\}_{i\in\mathcal{I}}$ con $|\mathcal{I}|<\infty$ sottomoduli di M,

- $\langle N_i \rangle_{i \in \mathcal{I}}$ sottomodulo generato
- $\bigoplus_{i \in \mathcal{I}} N_i$ somma diretta

Se N sottomodulo di M

• M/N modulo quoziente

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Definizione

 $N \leq M$ sottomodulo sse N è un A-modulo

Definizione

Se $x \in M$

• < x > sottomodulo ciclico

Se $\{N_i\}_{i\in\mathcal{I}}$ con $|\mathcal{I}|<\infty$ sottomoduli di M,

- $\langle N_i \rangle_{i \in T}$ sottomodulo generato
- \bullet $\bigoplus_{i \in \mathcal{I}} N_i$ somma diretta

Se N sottomodulo di M

M/N modulo quoziente

Class moduli finitamente generati

Pusceddu Gianfrancesco

euciidei

Moduli

Definizione

 $N \leq M$ sottomodulo sse N è un A-modulo

Definizione

Se $x \in M$

• < x > sottomodulo ciclico

Se $\{N_i\}_{i\in\mathcal{I}}$ con $|\mathcal{I}|<\infty$ sottomoduli di M,

- \bullet $\langle N_i \rangle_{i \in \mathcal{I}}$ sottomodulo generato
- $\bigoplus_{i \in \mathcal{I}} N_i$ somma diretta

Se N sottomodulo di M

M/N modulo quoziente

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Definizione

 $N \leq M$ sottomodulo sse N è un A-modulo

Definizione

Se $x \in M$

< x > sottomodulo ciclico

Se $\{N_i\}_{i\in\mathcal{I}}$ con $|\mathcal{I}|<\infty$ sottomoduli di M,

- $\langle N_i \rangle_{i \in \mathcal{T}}$ sottomodulo generato
- $\bullet \bigoplus_{i \in \mathcal{I}} N_i$ somma diretta

Se N sottomodulo di M

M/N modulo quoziente

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Definizione

 $N \leq M$ sottomodulo sse N è un A-modulo

Definizione

Se $x \in M$

< x > sottomodulo ciclico

Se $\{N_i\}_{i\in\mathcal{I}}$ con $|\mathcal{I}|<\infty$ sottomoduli di M,

- $\langle N_i \rangle_{i \in \mathcal{I}}$ sottomodulo generato
- $\bullet \bigoplus_{i \in \mathcal{I}} N_i$ somma diretta

Se N sottomodulo di M

M/N modulo quoziente

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Definizione

Dati gli A-moduli $M, M', \varphi : M \to M'$ omomorfismo

Sia $\varphi \in Hom(M, M')$

- $Ker(\varphi)$ nucleo di φ
- $Im(\varphi)$ immagine di φ

Definizione

- $\{x_i\}_{i=1}^s \subset M$ base sse sono linearmente indipendenti e generano M
- L libero sse $\exists s \in \mathbb{N}$ t.c. $M \simeq A^s$

Sia $x \in M$

• $0:_A < x >= 0:_A x = \{a \in A | ax = 0\}$ annullatore di x

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

class.

Definizione

Dati gli A-moduli $M, M', \varphi : M \to M'$ omomorfismo

Sia $\varphi \in Hom(M, M')$:

- $Ker(\varphi)$ nucleo di φ
- $\mathit{Im}(\varphi)$ immagine di φ

Definizione

- $\{x_i\}_{i=1}^s \subset M$ base sse sono linearmente indipendenti e generano M
- L libero sse $\exists s \in \mathbb{N}$ t.c. $M \simeq A^s$

Sia $x \in M$

• $0:_A < x >= 0:_A x = \{a \in A | ax = 0\}$ annullatore di x

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

class.

Definizione

Dati gli A-moduli $M, M', \varphi : M \to M'$ omomorfismo

Sia $\varphi \in Hom(M, M')$:

- $Ker(\varphi)$ nucleo di φ
- $\mathit{Im}(\varphi)$ immagine di φ

Definizione

- $\{x_i\}_{i=1}^s \subset M$ base sse sono linearmente indipendenti e generano M
- L libero sse $\exists s \in \mathbb{N} \text{ t.c. } M \simeq A^s$

Sia $x \in M$

• $0:_A < x >= 0:_A x = \{a \in A | ax = 0\}$ annullatore di x

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

Dati gli A-moduli $M, M', \varphi : M \to M'$ omomorfismo

Sia $\varphi \in Hom(M, M')$:

- $Ker(\varphi)$ nucleo di φ
- $\mathit{Im}(\varphi)$ immagine di φ

Definizione

- $\{x_i\}_{i=1}^s \subset M$ base sse sono linearmente indipendenti e generano M
- L libero sse $\exists s \in \mathbb{N}$ t.c. $M \simeq A^s$

Sia $x \in M$

• $0:_A < x >= 0:_A x = \{a \in A | ax = 0\}$ annullatore di x

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Definizione

Dati gli A-moduli $M, M', \varphi : M \to M'$ omomorfismo

Sia $\varphi \in Hom(M, M')$:

- $Ker(\varphi)$ nucleo di φ
- $\mathit{Im}(\varphi)$ immagine di φ

Definizione

- $\{x_i\}_{i=1}^s \subset M$ base sse sono linearmente indipendenti e generano M
- L libero sse $\exists s \in \mathbb{N}$ t.c. $M \simeq A^s$

Sia $x \in M$

• $0:_A < x >= 0:_A x = \{a \in A | ax = 0\}$ annullatore di x

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini uclidei

Moduli

Teorema di

Teorema

- $\varphi \in Hom(M, M') \Rightarrow M/Ker(\varphi) \simeq Im(\varphi)$
- L libero $\Leftrightarrow \exists$ una base \Leftrightarrow
 - / libero ⇒ basi equipotenti

• L libero \Rightarrow basi equipotenti

Definizione

Se L è un A-modulo libero, rg(L) è la cardinalità delle bas

Class. moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Teorema

- $\varphi \in Hom(M, M') \Rightarrow M/Ker(\varphi) \simeq Im(\varphi)$
- L libero $\Leftrightarrow \exists$ una base $\Leftrightarrow \exists \{x_i\}_{i=1}^s \subset L$ to $L = \bigoplus_{i=1}^s < x_i > \text{con } 0 : x_i = (0)$
- L libero ⇒ basi equipotenti

Definizione

Se L è un A-modulo libero, rg(L) è la cardinalità delle bas

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema

- $\varphi \in Hom(M, M') \Rightarrow M/Ker(\varphi) \simeq Im(\varphi)$
- L libero $\Leftrightarrow \exists$ una base $\Leftrightarrow \exists \{x_i\}_{i=1}^s \subset L$ to $L = \bigoplus_{i=1}^s < x_i > \text{con } 0 : x_i = (0)$
- L libero \Rightarrow basi equipotenti

Definizione

Se L è un A-modulo libero, rg(L) è la cardinalità delle bas

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema di

Teorema

- $\varphi \in Hom(M, M') \Rightarrow M/Ker(\varphi) \simeq Im(\varphi)$
- L libero $\Leftrightarrow \exists$ una base $\Leftrightarrow \exists \{x_i\}_{i=1}^s \subset L$ to $L = \bigoplus_{i=1}^s < x_i > \text{con } 0 : x_i = (0)$
- L libero \Rightarrow basi equipotenti

Definizione

Se L è un A-modulo libero, rg(L) è la cardinalità delle basi

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Esempi di moduli finitamente generati

Esempio 1

I gruppi abeliani finitamente generati

Esempio :

Es con E euclided

Esempio 3

Gli spazi vettoriali a dimensione finita

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema di

Esempi di moduli finitamente generati

Esempio 1

I gruppi abeliani finitamente generati

Esempio 2

 E^s con E euclideo

Esempio 3

Gli spazi vettoriali a dimensione finita

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Esempi di moduli finitamente generati

Esempio 1

I gruppi abeliani finitamente generati

Esempio 2

 E^s con E euclideo

Esempio 3

Gli spazi vettoriali a dimensione finita

Class moduli finitamente generati

Pusceddu Gianfrancesco

uclidei

Moduli

Ultimi preliminari

Teorema delle due basi

Siano L un E-modulo t.c. rg(L) = s e N un E-sottomodulo, $\exists \{v_i\}_{i=1}^s$ base di L e $\{d_i\}_{i=1}^t \subset E$ to $\{d_iv_i\}_{i=1}^t$ base di N

$$L/N = \bigoplus_{i=1}^{s} < \overline{e_i} >$$

$$0: \overline{e_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

Class. moduli finitamente generati

Pusceddu Gianfrance-SCO

Ultimi preliminari

Teorema delle due basi

Siano L un E-modulo t.c. rg(L) = s e N un E-sottomodulo, $\exists \{v_i\}_{i=1}^s$ base di L e $\{d_i\}_{i=1}^t \subset E$ to $\{d_iv_i\}_{i=1}^t$ base di N

Teorema

Sia L un A-modulo e $\{e_i\}_{i=1}^s$ una sua base.

Posto
$$N=<\{d_ie_i\}_{i=1}^t> {\sf con}\ t\le s\ {\sf e}\ \{d_i\}_{i=1}^t\subset E$$
 Allora

$$L/N = \bigoplus_{i=1}^{s} < \overline{e_i} >$$

con

$$0: \overline{e_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

Class. moduli finitamente generati

Pusceddu Gianfrance-SCO

Teorema di class.

4日ト 4億ト 4億ト 4億ト 億 99℃

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E$$
-modulo
 $\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$

Dimostrazione

- ① $\varphi: E^s \to M$ epimorfismo con $\varphi(e_i) = m_i, \ \forall i = 1, ..., s$
- $E^s/Ker(\varphi) \simeq M$
- $\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$
- $E^{s}/Ker(\varphi) = \bigoplus_{i=1}^{s} \langle \overline{v_i} \rangle \text{ con }$

$$0: \overline{v_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i > t + 1 \end{cases}$$

$$M = \bigoplus_{i=1}^{s} \langle \varphi(v_i) \rangle$$
 con

$$0: \varphi(v_i) = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E\text{-modulo}$$

$$\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$$

Dimostrazione

$$\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$$

$$\bullet E^s / Ker(\varphi) = \bigoplus_{i=1}^s < \overline{v_i} > con$$

 $j_{i=1} < v_i > ext{con}$ $se \ i \le t$

 (d_i) se $i \leq t$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E\text{-modulo}$$

$$\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$$

Dimostrazione

$$oldsymbol{\circ} \varphi: E^s
ightarrow M$$
 epimorfismo con $\varphi(e_i) = m_i, \ \forall i = 1,...,s$

$$E^s/Ker(\varphi) \simeq M$$

$$\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$$

$$0: \overline{v_i} = \begin{cases} (d_i) & \text{se } i \leq t \end{cases}$$

$$M - \Phi^{s} < \omega(v) > con$$

$$\int (d_i) se i \leq t$$

$$(0)$$
 se $i \geq t+1$

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E\text{-modulo}$$

$$\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$$

Dimostrazione

- \bullet $\varphi: E^s \to M$ epimorfismo con $\varphi(e_i) = m_i, \ \forall i = 1, ..., s$
- $E^s/Ker(\varphi) \simeq M$
- $\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$
- $\mathbf{E}^{s} / Ker(\varphi) = \bigoplus_{i=1}^{s} \langle \overline{v_i} \rangle \text{ cor}$ $0 : \overline{v_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$
 - $M = \bigoplus_{i=1}^{s} \langle \varphi(v_i) \rangle = \text{con}$ $0 + c(v_i) = \int (d_i) \quad \text{se } i \leq t$

moduli finitamente generati

Class.

Gianfrancesco

euclidei

Moduli

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E\text{-modulo}$$

$$\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$$

Dimostrazione

$$oldsymbol{\circ} \varphi: E^s
ightarrow M$$
 epimorfismo con $\varphi(e_i) = m_i, \ \forall i = 1,...,s$

$$E^s/Ker(\varphi) \simeq M$$

$$\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$$

•
$$E^s/Ker(\varphi) = \bigoplus_{i=1}^s < \overline{v_i} > con$$

$$0: \overline{v_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

$$M = \bigoplus_{i=1}^{s} \langle \varphi(v_i) \rangle \text{ con}$$

$$0: \varphi(v_i) = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i > t + s \end{cases}$$

Class moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Teorema

$$M = \sum_{i=1}^{s} \langle m_i \rangle E$$
-modulo
 $\Rightarrow (\exists \{b_i\}_{i=1}^{s})(M = \bigoplus_{i=1}^{s} \langle b_i \rangle)$

Dimostrazione

$$oldsymbol{\circ} \varphi: E^s
ightarrow M$$
 epimorfismo con $\varphi(e_i) = m_i, \ \forall i = 1,...,s$

$$E^s/Ker(\varphi) \simeq M$$

$$\exists \{d_i v_i\}_{i=1}^t \text{ base di } Ker(\varphi)$$

$$\bullet E^{s}/Ker(\varphi) = \bigoplus_{i=1}^{s} \langle \overline{v_i} \rangle \text{ con}$$

$$0: \overline{v_i} = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

$$M = \bigoplus_{i=1}^{s} \langle \varphi(v_i) \rangle$$
 con

$$0: \varphi(v_i) = \begin{cases} (d_i) & \text{se } i \leq t \\ (0) & \text{se } i \geq t+1 \end{cases}$$

Class moduli finitamente generati

Pusceddu Gianfrancesco

Domini euclidei

Moduli

Ultimi teoremi

Teorema

Se $M = \langle x \rangle$ è un E-modulo con 0 : x = (ab) e (a, b) = 1 $\Rightarrow M = \langle ax \rangle \oplus \langle bx \rangle$ con 0 : ax = (b) e 0 : bx = (a)

Corollario

Se M=<x> è un E-modulo con 0:x=(d) e $d=\prod_{i=1}^s p_i^r$ $\Rightarrow M=\bigoplus_{i=1}^s < d_i x>$ e $0:d_i x=(p_i^{r_i})$ con $d_i=d/p_i^{r_i}$

Teorema

Se M=<x>è un E-modulo t.c. 0:x=(0) o $0:x=(p^r)$ con p primo $\Rightarrow \exists N_1, N_2$ t.c. $M=N_1\oplus N_2$

Class moduli finitamente generati

Pusceddu Gianfrancesco

euciidei

Moduli

Ultimi teoremi

Teorema

Se $M = \langle x \rangle$ è un E-modulo con 0 : x = (ab) e (a, b) = 1 $\Rightarrow M = \langle ax \rangle \oplus \langle bx \rangle$ con 0 : ax = (b) e 0 : bx = (a)

Corollario

Se $M = \langle x \rangle$ è un E-modulo con 0: x = (d) e $d = \prod_{i=1}^s p_i^{r_i}$ $\Rightarrow M = \bigoplus_{i=1}^s \langle d_i x \rangle$ e $0: d_i x = (p_i^{r_i})$ con $d_i = d/p_i^{r_i}$

Teorema

Se M=<x>è un E-modulo t.c. 0:x=(0) o $0:x=(p^r)$ con p primo $\Rightarrow \exists N_1, N_2$ t.c. $M=N_1\oplus N_2$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

euclidei

Moduli

Ultimi teoremi

Teorema

Se $M = \langle x \rangle$ è un E-modulo con 0 : x = (ab) e (a, b) = 1 $\Rightarrow M = \langle ax \rangle \oplus \langle bx \rangle$ con 0 : ax = (b) e 0 : bx = (a)

Corollario

Se M=<x>è un E-modulo con 0:x=(d) e $d=\prod_{i=1}^s p_i^{r_i}$ $\Rightarrow M=\bigoplus_{i=1}^s < d_ix>$ e $0:d_ix=(p_i^{r_i})$ con $d_i=d/p_i^{r_i}$

Teorema

Se M=<x>è un E-modulo t.c. 0:x=(0) o $0:x=(p^r)$ con p primo $\Rightarrow \not\exists N_1, N_2$ t.c. $M=N_1\oplus N_2$

Class. moduli finitamente generati

Pusceddu Gianfrancesco

uclidei

Moduli

Teorema di