

Concours d'accès en 1ère année des ENSA Maroc

Juillet 2023

Q1. Voici une suite logiq Le nombre suivant	que de nombres : 6 ; 4 ; 8 ; 5 ; est :	15,	
A) 17	B) 20	C) 11	D) 40
Q2. Soit x un nombre de chiffre de x. Le reste de	e 6 chiffres divisible par 9 et 3 la division de y par 9 est égal	y le nombre obtenu en dépl à :	açant à la fin le premier
A) 0	B) 1 .	C) 2	D) 3
Q3. Le nombre de coupl	es d'entiers premiers entre e	ux dont le produit vaut 150	est égal à :
A) 4	B) 6	C) 8	D) 10
Q4. L'équation à variable	s réelles $9x^5 - 12x^4 + 6x -$	5 = 0 :	
A) admet une seule solution entière	B) admet trois solutions entières	C) admet cinq solutions entières	D) n'admet pas de solution entière
Q5. Soit la suite (u_n)	définie par : $u_n = \sqrt{n} - \left[\sqrt{n}\right]$ $\lim_{n \to +\infty} u$	$n \in IN$. ([x] désigne la par $u_{(n^2+2n)} = \frac{1}{n}$	tie entière de x).
A) 0	B) 1	C) 2	D) 3

Q6. $\lim_{x\to+\infty}e^x\sin(e^{-x})=$				
A) 0	B) 1	C) — 1	D) n'a pas de limite	
Q7.	$\lim_{x\to+\infty}\frac{\cos(x)}{x}$	$\frac{(x^2+x-1)}{x} =$		
A) 0	B) 1	C) — 1	D) n'a pas de limite	
Q8 . Soit f une fonction	continue de IR à valeurs dan	ns Z. Alors:	dne	
A) f n'est pas constante	B) f est une constante	C) f est strictement croissante	D) f est strictement décroissante	
Q9. Soit f une fonction	10. San 10. Sa	$(1 - f(x)f(y)) = f(x) + f$ $\frac{f'(x)}{1 + f(x)^2} =$	(y)	
A) f'(0)	B) f'(0) - 1	C) $f'(0) + \frac{1}{2}$	D) $f'(0) - \frac{1}{2}$	
Q10. Pour tout réel α	$> 0;$ $\int_{\frac{1}{\alpha}}^{\alpha} \overline{1}$	$\frac{\ln x}{1+x^2} \mathrm{d}x =$,	
A) ln α	B) 2 ln α	c) 0	D) $\alpha \frac{\pi}{2}$	

Q11. On considère les deux intégrales suivantes :

$$I = \int_0^{\frac{\pi}{2}} x^2 \sin^2(x) dx$$
 et $J = \int_0^{\frac{\pi}{2}} x^2 \cos^2(x) dx$

La valeur de I vaut :

A)
$$\frac{\pi^3}{48}$$

B)
$$\frac{\pi^3}{24} + \frac{\pi}{4}$$

C)
$$-\frac{\pi}{8}$$

D)
$$\frac{\pi^3}{48} + \frac{\pi}{8}$$

Q12.

$$\int_0^{\frac{\pi}{2}} (\cos x)^{1445} \sin x \, dx \doteq$$

A)
$$\frac{1}{1445}$$

B)
$$\frac{1}{1446} - \frac{\pi}{2}$$
 C) $\frac{1}{1446}$

C)
$$\frac{1}{1446}$$

D)
$$\frac{1}{1447} + \frac{\pi}{2}$$

Q13. Soient z₁ et z₂ les solutions complexes de l'équation :

$$z^2 - 4iz - 4(1+i) = 0$$

Alors: $Im(z_1) + Im(z_2)$

Q14. Le nombre complexe

$$(1+i)^{2000} =$$

Q15. Le nombre complexe

$$\left(\frac{7-15i}{15+7i}\right)^{2023} =$$

$$B) - i$$

$$D)i+1$$

Q16. La somme

$$(1 + e^{\frac{i2\pi}{5}} + e^{\frac{i4\pi}{5}} + e^{\frac{i6\pi}{5}} + e^{\frac{i8\pi}{5}})^{1000} =$$

A) 0

B) 1

C) i

D) - i

Q17. La solution f(x) de l'équation différentielle y'' - 7y' + 12y = 0 vérifiant f(0) = 0, f'(0) = 1

A) $e^{-4x} - e^{3x}$

B) $e^{5x} - e^{3x}$

C) $e^{4x} - e^{3x}$

D) $e^{5x} - e^{4x}$

Q18. Soient d_A la distance du point A(1,0,2) au plan (P): 2x + y + z + 4 = 0; et d_B la distance du point B(3,2,1) au plan (Q): -x + 5y - 4z = 5. Alors le produit des distances $d_A d_B$ est:

A) $\frac{8}{3\sqrt{7}}$

B) $\frac{10}{3\sqrt{7}}$

C) $\frac{11}{3\sqrt{7}}$

D) $\frac{13}{3\sqrt{7}}$

Q19. L'aire sous la cloche d'équation $y = \frac{1}{1+x^2}$ et au-dessus de la parabole d'équation $y = \frac{x^2}{2}$ est :

A) $\frac{1}{3}$

B) $-\frac{1}{3} + \frac{\pi}{2}$ C) $\frac{\pi}{2}$

D) $\frac{\pi}{2} + \frac{1}{3}$

Q20. On considère le cercle (C) d'équation $x^2 + y^2 + 2 - 3y - 3 = 0$ et (D) la droite passant par le point A de coordonnées (1,-2) et tangent à (C) au point M.

La longueur du segment [AM] est égale à :

A) 1

B) 2

C) 3

D)4