$9_{49} (K9n_8)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u,\ a-1,\ u^3-3u^2+2u+1\rangle \\ I_2^u &= \langle b+u,\ a^2-au+2u+4,\ u^2+u-1\rangle \\ I_3^u &= \langle u^3-3u^2+2b+3u-4,\ -u^3+2u^2+2a-2u+3,\ u^4-3u^3+5u^2-6u+4\rangle \\ I_4^u &= \langle b^2-bu+b+2,\ a-1,\ u^2+u-1\rangle \\ I_5^u &= \langle b+u,\ a+1,\ u^3+u^2+1\rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, \ a-1, \ u^3-3u^2+2u+1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u+1 \\ 2u^{2} - 3u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 2u \\ -u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + u + 1 \\ u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + u + 1 \\ u^{2} - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3u^2 15$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$u^3 - 3u^2 + 2u + 1$
c_2, c_3, c_5 c_6, c_8, c_9	$u^3 + 2u^2 + 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$y^3 - 5y^2 + 10y - 1$
c_2, c_3, c_5 c_6, c_8, c_9	$y^3 + 2y^2 + 5y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.324718		
a = 1.00000	-0.674976	-14.6840
b = 0.324718		
u = 1.66236 + 0.56228I		
a = 1.00000	-1.30745 - 9.42707I	-7.65816 + 5.60826I
b = -1.66236 - 0.56228I		
u = 1.66236 - 0.56228I		
a = 1.00000	-1.30745 + 9.42707I	-7.65816 - 5.60826I
b = -1.66236 + 0.56228I		

II.
$$I_2^u = \langle b+u, a^2-au+2u+4, u^2+u-1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a - u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a - u \\ au - a + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au + a - 2u - 2 \\ au - a + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u - 2 \\ au - a + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au + a + 3 \\ 2au - a + 2u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au + a + 3 \\ 2au - a + 2u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4au 4a + 4u 10

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^2+u-1)^2$
c_2, c_5, c_6 c_9	$(u^2 - u + 1)^2$
c_3, c_8	$u^4 + 3u^3 + 5u^2 + 6u + 4$
c_7	$u^4 - 3u^3 + 5u^2 - 6u + 4$

Crossings	Riley Polynomials at each crossing		
c_1, c_4	$(y^2 - 3y + 1)^2$		
$c_2, c_5, c_6 \ c_9$	$(y^2+y+1)^2$		
c_3, c_7, c_8	$y^4 + y^3 - 3y^2 + 4y + 16$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.30902 + 2.26728I	3.94784 + 2.02988I	-8.00000 - 3.46410I
b = -0.618034		
u = 0.618034		
a = 0.30902 - 2.26728I	3.94784 - 2.02988I	-8.00000 + 3.46410I
b = -0.618034		
u = -1.61803		
a = -0.809017 + 0.330792I	-3.94784 + 2.02988I	-8.00000 - 3.46410I
b = 1.61803		
u = -1.61803		
a = -0.809017 - 0.330792I	-3.94784 - 2.02988I	-8.00000 + 3.46410I
b = 1.61803		

$$III. \\ I_3^u = \langle u^3 - 3u^2 + 2b + 3u - 4, \ -u^3 + 2u^2 + 2a - 2u + 3, \ u^4 - 3u^3 + 5u^2 - 6u + 4 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} + u - \frac{3}{2} \\ -\frac{1}{2}u^{3} + \frac{3}{2}u^{2} - \frac{3}{2}u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{2} - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{3} + \frac{3}{2}u^{2} - \frac{3}{2}u + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{2} - \frac{1}{2}u + \frac{1}{2} \\ -\frac{3}{2}u^{3} + \frac{7}{2}u^{2} - \frac{9}{2}u + 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{4}u^{3} + \frac{7}{4}u^{2} - \frac{9}{4}u + 3 \\ \frac{1}{2}u^{3} - \frac{3}{2}u^{2} + \frac{5}{2}u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} + \frac{1}{4}u \\ \frac{1}{2}u^{3} - \frac{3}{2}u^{2} + \frac{5}{2}u - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{3}{4}u + 1 \\ \frac{1}{2}u^{3} - \frac{3}{2}u^{2} + \frac{3}{2}u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{3} + \frac{1}{4}u^{2} - \frac{3}{4}u + 1 \\ \frac{1}{2}u^{3} - \frac{3}{2}u^{2} + \frac{3}{2}u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^3 2u^2 + 2u 10$

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 3u^3 + 5u^2 - 6u + 4$
c_{2}, c_{6}	$u^4 + 3u^3 + 5u^2 + 6u + 4$
c_3, c_5, c_8 c_9	$(u^2 - u + 1)^2$
c_4, c_7	$(u^2+u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$y^4 + y^3 - 3y^2 + 4y + 16$
c_3, c_5, c_8 c_9	$(y^2 + y + 1)^2$
c_4, c_7	$(y^2 - 3y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.30902 + 0.53523I		
a = -1.059020 + 0.433013I	-3.94784 - 2.02988I	-8.00000 + 3.46410I
b = 1.61803		
u = 1.30902 - 0.53523I		
a = -1.059020 - 0.433013I	-3.94784 + 2.02988I	-8.00000 - 3.46410I
b = 1.61803		
u = 0.19098 + 1.40126I		
a = 0.059017 - 0.433013I	3.94784 + 2.02988I	-8.00000 - 3.46410I
b = -0.618034		
u = 0.19098 - 1.40126I		
a = 0.059017 + 0.433013I	3.94784 - 2.02988I	-8.00000 + 3.46410I
b = -0.618034		

IV.
$$I_4^u = \langle b^2 - bu + b + 2, \ a - 1, \ u^2 + u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b + 1 \\ b \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} b + 1 \\ bu + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ bu + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} bu + 2u \\ bu + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b + u \\ u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b + u \\ u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4bu + 4u 10

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^2 + u - 1)^2$
$c_2, c_3, c_6 \ c_8$	$(u^2 - u + 1)^2$
c_4	$u^4 - 3u^3 + 5u^2 - 6u + 4$
c_5, c_9	$u^4 + 3u^3 + 5u^2 + 6u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^2 - 3y + 1)^2$
c_2, c_3, c_6 c_8	$(y^2+y+1)^2$
c_4, c_5, c_9	$y^4 + y^3 - 3y^2 + 4y + 16$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.00000	3.94784 - 2.02988I	-8.00000 + 3.46410I
b = -0.19098 + 1.40126I		
u = 0.618034		
a = 1.00000	3.94784 + 2.02988I	-8.00000 - 3.46410I
b = -0.19098 - 1.40126I		
u = -1.61803		
a = 1.00000	-3.94784 + 2.02988I	-8.00000 - 3.46410I
b = -1.30902 + 0.53523I		
u = -1.61803		
a = 1.00000	-3.94784 - 2.02988I	-8.00000 + 3.46410I
b = -1.30902 - 0.53523I		

V.
$$I_5^u = \langle b + u, a + 1, u^3 + u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u - 1 \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u - 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 2u \\ u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - u + 1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - u + 1 \\ -u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -3u^2 3$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$u^3 + u^2 + 1$
c_2, c_5, c_8	$u^3 + u - 1$
c_3, c_6, c_9	$u^3 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$y^3 - y^2 - 2y - 1$
c_2, c_3, c_5 c_6, c_8, c_9	$y^3 + 2y^2 + y - 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.232786 + 0.792552I		
a = -1.00000	5.50124 + 1.58317I	-1.27815 - 1.10697I
b = -0.232786 - 0.792552I		
u = 0.232786 - 0.792552I		
a = -1.00000	5.50124 - 1.58317I	-1.27815 + 1.10697I
b = -0.232786 + 0.792552I		
u = -1.46557		
a = -1.00000	-4.42273	-9.44370
b = 1.46557		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$((u^{2} + u - 1)^{4})(u^{3} - 3u^{2} + 2u + 1)(u^{3} + u^{2} + 1)(u^{4} - 3u^{3} + \dots - 6u + 4)$
c_2, c_5, c_8	$((u^{2}-u+1)^{4})(u^{3}+u-1)(u^{3}+2u^{2}+3u+1)(u^{4}+3u^{3}+\cdots+6u+4)$
c_3, c_6, c_9	$((u^{2}-u+1)^{4})(u^{3}+u+1)(u^{3}+2u^{2}+3u+1)(u^{4}+3u^{3}+\cdots+6u+4)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$(y^2 - 3y + 1)^4(y^3 - 5y^2 + 10y - 1)(y^3 - y^2 - 2y - 1)$ $\cdot (y^4 + y^3 - 3y^2 + 4y + 16)$
c_2, c_3, c_5 c_6, c_8, c_9	$(y^2 + y + 1)^4(y^3 + 2y^2 + y - 1)(y^3 + 2y^2 + 5y - 1)$ $\cdot (y^4 + y^3 - 3y^2 + 4y + 16)$