### ECN 6338 Cours 1

Introduction

William McCausland

2025-09-05

### Quelques observations

- L'économie et la recherche des implications des modèles.
- La difficulté d'exprimer ces implications en forme analytique.
- L'importance de l'optimisation et des espérances mathématiques
  - dans les problèmes d'agents économiques,
  - dans les problèmes économétriques.
- L'apport de l'analyse numérique en microéonomie, macroéconomie et économétrie.
- ► Le site web QuantEcon donne une bonne idée de la diversité d'applications.

### L'optimisation

#### Par les agents des modèles économiques

- 1. Maximisation de l'utilité (avec ou sans contraintes)
  - a. choix de panier (statique)
  - b. choix travail/loisir/consommation/placements (dynamiques)
  - c. choix d'action dans les jeux (enchères, négociation, signalisation)
- 2. Maximisation du profit (choix des quantités de production)
  - a. choix de panier d'intrants (statique)
  - b. choice d'investissement, de niveau de R&D (dynamiques)
  - c. choix d'action dans les jeux
    - i. jeux d'oligopole : cournot, bertrand, stackelberg
    - ii. jeux en organisation industrielle : d'entrée

# L'optimisation (suite)

#### Par les économètres

- 1. Estimation par Extremum
  - a. maximum de vraisemblance
  - b. moindres carrés non linéaires
  - c. méthode des moments généralisés
  - d. régression quantile

### L'intégration

#### Par les agents

- 1. Évaluation de l'espérance de l'utilité, du profit
- 2. Évaluation de l'utilité dans les modèles macro en temps continu
- 3. Évaluation des fonctions d'enchère

#### Par les économètres

- 1. Inférence bayésienne : calcul des moyennes a posteriori
- 2. Simulation Monte Carlo : des estimateurs, du couvrage, ...
- 3. Simulation bootstrap

### D'autres opérations

#### D'autres opérations numériques jouent souvent un rôle de soutien

- Résolution de systèmes d'équation
  - reliée à l'optimisation, à la recherche des racines
  - recherche d'un équilibre
- Approximation de fonctions
- Résolution d'équations différentielles
- Simulation de variables aléatoires
  - pour l'intégration (méthodes Monte Carlo)
  - pour l'optimisation (recuit simulé = simulated annealing)

### Ce cours, relatif au livre classique de Judd

#### Relatif au livre de Judd, je mets un accent sur

- l'économétrie (cependant, ce n'est pas un cours d'économétrie)
  - exemples dans le domaine de choix discret
  - maximum de vraisemblance
  - inférence bayésienne
- la simulation
  - intégration par simulation (utile en grandes dimensions)
  - optimisation par recuit simulé
  - applications en inférence bayésienne

Je mets moins d'emphase sur l'optimisation dynamique. Le but ici est de présenter les cas les plus simples pour vous préparer pour la matière plus avancée.

# Évaluation

| Type                              | Date                                              | Pondération |
|-----------------------------------|---------------------------------------------------|-------------|
| $\sim$ 10 interrogations (10 min) | début de cours                                    | 20%         |
| 4 exercices computationnels       | 26 septembre, 17 octobre, 14 novembre, 5 décembre | 40%         |
| Examen final                      | 20 avril                                          | 40%         |

### Documents et Communication

#### Site GitHub du cours

- 1. Diapositives (code source en R Markdown, pdf)
- 2. Démonstrations (en R)
- 3. Lectures, exercices
- 4. Devoirs avec computation
- 5. Liens vers les enregistrements des cours à distance
- 6. README.md comme page d'acceuil

#### Site StudiUM du cours

- 1. Messages aux étudiants
- 2. Documents avec droit d'auteur
- 3. Téléversement de vos devoirs computationnels

# Logiciels (pour les travaux pratiques, votre choix)

- graticiel, accent sur la statistique, beaucoup d'applications
- utilisé pour les démonstrations du cours
- recommandé, introduction pendant la première séance TP

### Python

graticiel, général, beaucoup d'applications

#### Julia

- graticiel, général, moins utilisé que les autres
- très rapide, élégant

#### Matlab

- commercial mais disponible à l'université, général, beaucoup d'applications
- ▶ son importance diminue en faveur de R et python

### Notation pour les dérivées multivariées

- Soit x un vecteur  $n \times 1$ , y = f(x) un vecteur  $m \times 1$ .
- ► La matrice jacobienne (m × n) contient toutes les dérivées de première ordre:

$$f_x = \frac{\partial y}{\partial x},$$
 où  $\left[\frac{\partial y}{\partial x}\right]_{ij} = \frac{\partial y_i}{\partial x_j}.$ 

- Le gradient est un cas spécial du Jacobien où y est scalaire, un vecteur ligne  $1 \times n$ .
- ▶ La matrice hessienne (n × n) contient toutes les dérivées de deuxième ordre pour y scalaire:

$$f_{xx} = \frac{\partial}{\partial x} \left( \frac{\partial y}{\partial x} \right)^{\top} = \frac{\partial^2 y}{\partial x \partial x^{\top}}.$$

La notation ci-haut suit la convention "numerator layout" ici

### Quelques propriétés des dérivées multivariées

À la même page il y a des tableaux de propriétés, telles que :

▶ Pour une matrice constante A,  $m \times n$ ,

$$\frac{\partial Ax}{\partial x} = A.$$

▶ Règle du produit : pour les vecteurs u(x) et v(x),  $m \times 1$ ,

$$\frac{\partial u^{\top} v}{\partial x} = u^{\top} \frac{\partial v}{\partial x} + v^{\top} \frac{\partial u}{\partial x}.$$

Règle des fonctions composées, de la chaîne : pour z = g(y); y = f(x); x, y et z multivariés,

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial g(y)}{\partial y} \frac{\partial f(x)}{\partial x}.$$

### Analyse de l'erreur

### Deux sources d'erreur numérique :

- Précision finie des nombres réels
- Troncation de calculs séquentiels infinis

Les erreurs se propagent à travers les computations.

### La représentation virgule flottante

L'ordinateur représente un nombre réel x comme

$$x = \pm m \times 2^{\pm e}$$
,

οù

- $ightharpoonup m \in \mathbb{N}$  est la mantisse et
- ▶  $e \in \mathbb{N}$  est l'exposant.

Le nombre de bits pour représenter *m* détermine la précision numérique.

Le nombre de bits pour représenter e détermine les points de dépassement et soupassement numérique (overflow/underflow).

### Quatre constantes méchanique

Pour une machine donnée, les constantes suivantes décrivent les points de dépassement et soupassement, ainsi que la précision.

| Constante      | description                                              |
|----------------|----------------------------------------------------------|
| double.xmax    | $x > 0$ le plus grand distinct de $\infty$ .             |
| double.xmin    | x > 0 le plus petit distinct de 0.                       |
| double.eps     | x > 0 le plus petit tel que $1 + x$ et 1 sont distincts. |
| double.neg.eps | x>0 le plus petit tel que $1-x$ et $1$ sont distincts.   |

#### On appele

- double.xmax l'infini de la machine,
- double.eps l'epsilon de la machine.

### Trouver ces constantes avec R

```
m = .Machine
m$double.xmax
## [1] 1.797693e+308
m$double.xmin
## [1] 2.225074e-308
m$double.eps
## [1] 2.220446e-16
m$double.neg.eps
## [1] 1.110223e-16
```

### Propogation de l'erreur

- ▶ L'erreur relative du résultat d'un calcul peut être très différente de l'erreur relative des intrants.
- Supposez qu'on évalue la dérivée numérique suivante, pour approximer la dérivée de la fonction  $f(x) = e^x$  à x = 0:

$$d_h = \frac{f(0+h) - f(0-h)}{2h} = \frac{e^h - e^{-h}}{2h},$$

où h > 0 est très petit.

- ▶ Mettons que les erreurs relatives maximales de  $e^h$  et  $e^{-h}$  sont  $\epsilon$ .
- ▶ Puisque  $e^x = 1$  à x = 0, les erreurs absolues sont pareilles.
- ▶ Par une expansion de Taylor,

$$d_h \approx \frac{2h \pm 2\epsilon}{2h} = 1 \pm \frac{\epsilon}{h} = f'(0) + \frac{\epsilon}{h}$$

L'erreur (relative et absolue) du résultat peut être aussi grande que  $\epsilon/h$ .

# Expansions de Taylor et de Mercator de la fonction $\log x$

L'expansion de Taylor de  $\log x$  autour de x = 1:

$$\log x = \sum_{k=1}^{\infty} \frac{(-1)^k (x-1)^k}{k} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots$$

L'expansion de Mercator :

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^k x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

- Si on veux évaluer log(1+x) pour |x| petit, ne calcule pas 1+x comme résultat intermédiaire.
- La fonction log1p en R (et autres langages) évalue la fonction  $f(x) = \log(1+x)$  directement avec l'expansion de Mercator.
- ▶ Exemple économique : pour le rendement net simple R, le rendement continument composé est log(1 + R).

# La fonction log1p

```
x = seq(-2e-15, 2e-15, length.out=1000)
plot(x, log1p(x), 'l')
lines(x, log(1+x), col='red')
```



### Troncation mathématique

La deuxième source d'erreur est la troncation mathématique.

La valeur exacte de la fonction exponentielle est

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!},$$

mais on pratique il faut tronquer et utiliser un nombre fini  ${\it N}$  de termes :

$$\sum_{n=0}^{N} \frac{x^n}{n!}.$$

### Troncation mathématique, plus généralement

- Souvent un algorithme iteratif génére une suite de vecteurs  $x^k$ , k = 1, 2, ..., qui converge au résultat voulu  $x^* \equiv \lim_{k \to \infty} x^k$ .
- ▶ Il faut accepter une valeur approximative  $x^k$ , pour k fini.
- Évaluer l'erreur  $||x^k x^*||$  est infaisable.
- ▶ On peut utiliser  $||x^{k+1} x^k||$ , ...
- ... mais prudemment, parce que (par exemple) pour

$$x^k = \sum_{j=1}^k \frac{1}{j}$$

- $|x^k x^{k-1}| = 1/k \to 0$ ,
- ightharpoonup mais  $x^k$  diverge.

# Exemple, maximisation de f(x)



### Règles d'arrêt

- ► En pratique, on veut arreter quand  $||x^k x^{k+1}||$  est petit relatif et à  $||x^k||$  et à zéro.
- Par exemple, arreter quand :

$$\frac{\|x^k - x^{k+1}\|}{1 + \|x^k\|} \le \epsilon.$$

▶ Si on peut trouver un  $\beta$  < 1 tel que

$$\forall k, \ \|x^{k+1} - x^*\| \le \beta \|x^k - x^*\|,$$

on a un garantie que  $||x^k - x^*|| \le ||x^k - x^{k+1}||/(1 - \beta)$ .

lacktriangle Des fois, la convergence est *linéaire* : il existe eta tel que

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \le \beta < 1,$$

auquel cas, on peut estimer  $\beta$  et espérer que cela marche.

# Analyse (de la complexité) d'algorithmes

### Notation $O(\cdot)$

- ▶ Pour des fonctions f et g sur  $\mathbb{N}$ , on écrit f(n) = O(g(n)) s'il existe M > 0 tel que  $|f(n)| \le Mg(n)$  pour chaque n.
- Par exemple  $f(n) = 6n^2 + 8n + 2 = O(n^2)$

#### La complexité de certains algorithmes

- ► O(1) : nombre d'opérations pour trouver le i-ième élément dans un n-vecteur;
- ►  $O(\log n)$ : nombre de comparaisons pour trouver un élément donnée dans un n-vecteur trié, par recherche binaire;
- ► O(n) : pour trouver un élément donnée dans un n-vecteur, par recherche exhaustive;
- ▶  $O(n^2)$ : nombre de multiplications scalaires pour multiplier une matrice  $n \times n$  et un vecteur  $n \times 1$ ;
- ▶  $O(n^3)$  : multiplier deux matrices  $n \times n$  (méthode évidente);
- $ightharpoonup O(n^{2.81})$ : même chose, algorithme de Strassen

# L'évaluation des polynomes avec la méthode de Horner

### Trois méthodes pour évaluer $a_0 + a_1x + \cdots + a_nx^n$ :

1. Évaluation naïve,  $O(n^2)$  multiplications, O(1) registres :

$$a_0 + a_1 * x + a_2 * x * x + a_3 * x * x * x + \cdots$$

- 2. Meilleure, avec 2n multiplications, O(n) registres :
  - a. Calculer  $x^{i} = x^{i-1} * x$ , i = 2, ..., n.
  - b. Calculer  $a_0 + a_1 * x + \cdots + a_n * x^n$ .
- 3. La méthode de Horner, n multiplications, O(1) registres :

$$a_0 + x * (a_1 + x * (a_2 + x * (a_3 + \cdots + x * (a_{n-1} + x * a_n) \cdots)))$$

#### Parallélisme

Deux types de problème où vous pouvez profitez des processeurs en parallèle :

- problèmes avec l'embarras du parallélisme (embarrassingly parallel problems) où il n'y a pas de communication entre processeurs avant la fin des computations.
- 2. problèmes SIMD (single instruction multiple data)

#### Questions pratiques en commun :

- Les tâches individuelles doivent être suffisamment grandes relatif aux coûts fixes de communication entre processeurs.
- Ces couts fixes varient beaucoup :
  - coeurs multiples d'un processeur
  - processeurs multiples d'une machine
  - machines multiples d'un cluster

### L'embarras du parallelisme

### Problèmes avec l'embarras du parallelisme

- 1. Évaluation d'une fonction sur une grille de points
- 2. Intégration numérique
- 3. Simulation Monte Carlo indépendant
- 4. Évaluation d'une fonction de log vraisemblance (souvent)

$$L(\theta; y) = \sum_{t=1}^{T} \log f(y_t | \theta).$$

5. Multiplication des matrices

### Problèmes sans l'embarras du parallelisme

- 1. Méthodes itératives d'optimisation
- 2. Méthodes itératives pour trouver un point fixe
- 3. Simulation Markov chain Monte Carlo (MCMC)

# SIMD (Single Instruction, Multiple Data)

- Les GPUs (processeurs graphiques) peuvent executer les mêmes instructions pour plusieurs vecteurs différents de données.
- Convenable pour les problèmes où les boucles locales ont le même nombre d'itérations.
- Quand la structure de contrôle (control flow) est variable (if-else, do-while, etc.) les programmes marchent mais avec gaspillage.
- Prenons encore l'évaluation d'une fonction de log vraisemblance

$$L(\theta; y) = \sum_{t=1}^{T} \log f(y_t | \theta).$$

- Si l'évaluation de  $\log f(y_t|\theta)$  utilise les mêmes instructions, peu importe la valeur de  $y_t$ , le problème est disposé à SIMD.
- Si la suite des instructions dépend de y<sub>t</sub>, SIMD est moins intéressant.