Whole exome sequencing on a large cohort of severely-obese individuals to investigate pancreatic β -cell function related protein-coding variants potentially protective against type 2 diabetes in the metabolically healthy non-diabetic group

Dr Angela Moh¹, Miss Michelle Lian¹, Dr Su Fen Ang¹, Mr Melvin Wong¹, Dr Xiao Zhang¹, <u>Dr Su Chi Lim¹</u>

¹Khoo Teck Puat Hospital, Singapore, Singapore

Objective: A non-trivial population of individuals manages to maintain non-diabetic range euglycemia despite being severely obese i.e. metabolically healthy obese (MHO). Our objective is to investigate protein-coding variants related to β -cell function that are potentially protective against type 2 diabetes (T2D) in a large group of severely obese individuals with and without T2D.

Materials and methods: Whole exome sequencing was performed on 186 subjects (104 non-T2D and 82 T2D; Age:41 \pm 10 years; 54.3% females; BMI:42.3 \pm 9.2kg/m²). Mutations in 16 β -cell-related genes (HNF1 α , HNF1 β , HNF4 α , GCK, NEUROD1, PDX1, ABCC8, PPARG, KLF11, PAX4, INS, INSR, CEL, BLK, LMNA, and KCNJ11) known to cause monogenic diabetes were analyzed, stratified by diabetes status. Additionally, individual risk scores assigned to 8 variants in 5 β -cell genes encoding transcription factors (HNF1 α /HNF1 β /HNF4 α /PAX4/PDX1) were combined into a single genetic risk score. Test for association was performed using Chi-square and Mann-Whitney tests.

Results: Non-T2D obese subjects showed robust β -cell compensation with declining insulin sensitivity, accounting for the higher glucose disposition index (p<0.001) compared to their T2D counterparts. There was no significant difference in the frequency of mutations in the 16 genes between subjects with and without T2D (all p>0.05). Twenty-six non-T2D and 19 T2D subjects had at least one potentially functional variant in the 5 transcription factor genes (prevalence p=0.772), and produced an aggregate risk score of 16.5 and 11 (p=0.697), respectively.

Conclusion: Non-T2D subjects demonstrated robust β -cell compensation in face of deteriorating insulin sensitivity. However, this cannot be explained by difference in protein-coding variants related to β -cell function candidate genes.