Criptografia de chave pública, RSA

André Gustavo dos Santos¹

Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

1 / 18

Criptografia de chave pública Criptografia RSA Codificação RSA Decodificação RSA Assinatura digital Troca de chaves Segurança do RSA 000 00 00 000 0

Conteúdo

- 1 Criptografia de chave pública
- 2 Criptografia RSA
- 3 Codificação RSA
- 4 Decodificação RSA
- 5 Assinatura digital
- 6 Troca de chaves
- 7 Segurança do RSA

2/18

Os slides seguintes são baseados nas seções 4.6.3 a 4.6.8 do livro texto da disciplina:

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

3/18

Criptografia de chave públicaCriptografia RSACodificação RSADecodificação RSAAssinatura digitalTroca de chavesSegurança do RSA●OO○O○O○OOOOOOOOO

Criptografia de chave privada

- Os métodos vistos anteriormente são sistemas de criptografia de chave privada
- Sabendo-se a chave usada na codificação, é fácil descobrir a de decodificação
- Saber como codificar com uma certa chave permite decodificar com essa chave
- Por exemplo, na cifra de deslocamento com chave k
 - Um inteiro p é criptografado deslocando-se k, c = (p + k) mod 26
 - É descriptografado deslocando-se -k, $p = (c k) \mod 26$
- Quem envia e quem recebe a mensagem precisam combinar uma chave secreta
- Cada par de pessoas que se comunica precisa decidir e compartilhar uma chave
- Para evitar isso, nos anos 70 foi criada a criptografia de chave pública

 Criptografia de chave pública
 Criptografia RSA
 Codificação RSA
 Decodificação RSA
 Assinatura digital
 Troca de chaves
 Segurança do RSA

 0 ● 0
 ○ 0
 ○ 0
 ○ 0
 ○ 0
 ○ 0
 ○ 0
 ○ 0

Criptografia de chave pública

- Na criptografia de chave pública, saber como codificar uma mensagem não ajuda a saber como decodificá-la
- Nesse sistema, cada um tem uma chave de codificação conhecida publicamente
- E uma chave de decodificação mantida secreta
- Assim, qualquer um pode codificar uma mensagem para certo destinatário, mas somente o destinatário da mensagem pode decifrá-la
- Para isto funcionar deve existir alguma relação entre as chaves pública e secreta
- Isto é seguro se o fato de se conhecer a chave pública não permitir decifrar a mensagem, a não ser com uma quantidade extraordinária de trabalho
- O primeiro sistema foi criado nos anos 70 e muitos criados depois
- O mais usado atualmente é o RSA, que veremos em detalhes
- Outros serão usados futuramente, quando o RSA se tornar obsoleto

5 / 18

Criptografia de chave pública vs. de chave privada

- A grande vantagem dos sistemas de chave pública é que duas pessoas não precisam combinar uma chave para se comunicarem
- Uma desvantagem é que codificar/decodificar pode ser extremamente demorado
- Para muitas aplicações, isso torna a criptografia de chave pública impraticável
- Em tais situações, a criptografia de chave privada é usada
- Entretanto, a criptografia de chave pública ainda pode ser usada no processo de troca de chave

6/18

Criação do RSA

- O sistema foi apresentado em 1976 por Ronald Rivest, Adi Shamir, and Leonard Adleman, pesquisadores do MIT
- O nome RSA vem dos sobrenomes dos autores
- O sistema foi criado anos antes, em 1973, por Clifford Cocks, em uma pesquisa secreta do governo do Reino Unido, mantida como informação confidencial
- Isso só se tornou conhecido no final da década de 90, quando ele pode finalmente compartilhar a informação
- A ideia de Cocks, fundamental para segurança do RSA, é baseada no fato que é extremamente difícil reverter o processo de multiplicação de dois primos grandes
 - Dados dois primos grandes $p \in q$, é fácil calcular n = pq
 - Mas dado n, é difícil encontrar p e q

7/18

Chaves do RSA

- No sistema RSA, cada indivíduo possui uma chave de codificação (n, e)
- \blacksquare n é o módulo, com n=pq, sendo p e q dois primos grandes
- \bullet e é o expoente, um valor coprimo com (p-1)(q-1)

- Se p e q tem cerca de 300 dígitos, n terá 600, facilmente computado a partir deles
- Fatorar *n*, no entanto, não pode ser feito com o conhecimento e recursos atuais
- Veremos que esse é o motivo de não ser possível, hoje, decifrar uma mensagem

8 / 18

Codificação RSA

- Para codificar uma mensagem *M* usando a chave pública (*n*, *e*), a mensagem é transformada em uma sequência de números inteiros de dois dígitos
 - \blacksquare A = 00, B = 01, ..., Z = 25
- lacktriangle Esses números são agrupados em blocos formando inteiros grandes m_1,\dots,m_k
 - O tamanho desses blocos blocos deve ser o maior tal que 2525...25 não ultrapassa n
- A mensagem $M = m_1 m_2 \dots m_k$ é então codificada em $C = c_1 c_2 \dots c_k$
 - $c_i = m_i^e \mod n$
- A mensagem codificada C é enviada ao destinatário

9/18

¹Esse cálculo pode ser feito pelo método de potenciação modular rápida visto anteriormente

Codificação RSA

Codificar STOP com a chave pública (2537, 13)

- STOP = 18 19 14 15
- 2525 < 2537 < 252525 então os blocos terão tamanho 4
- A mensagem é então 1819 1415
- Esses números são codificados com $c = m^e \mod n$
 - 1819¹³ mod 2537 = 2081
 - 1415¹³ mod 2537 = 2182

- Essa chave foi gerada com p = 43 e q = 59
- Assim, $n = pq = 43 \cdot 59 = 2537$
- Note que $mdc(e, (p-1)(q-1)) = mdc(13, 42 \cdot 58) = 1$

Decodificação RSA

- \blacksquare A decodificação é feita com uma chave secreta d que é o inverso de e módulo (p-q)(q-1)
 - Este inverso existe porque mdc(e, (p-1)(q-1)) = 1
- Se $de \equiv 1 \pmod{(p-1(q-1))}$ então existe inteiro k tal que de = 1 + k(p-1)(q-1)
 - $c^d \equiv (m^e)^d = m^{de} = m^{1+k(p-1)(q-1)} \mod n$
- Se mdc(m, p) = 1, temos, pelo pequeno teorema de Fermat, que $m^{p-1} \equiv 1 \pmod{p}$
 - E então $c^d \equiv m^{1+k(p-1)(q-1)} = m \cdot (m^{p-1})^{k(q-1)} \equiv m \cdot 1 = m \mod p$
- Pelo mesmo motivo², se mdc(m, q) = 1, temos
 - $c^d \equiv m \mod q$
- \blacksquare Como mdc(p, q) = 1, pelo teorema chinês do resto, esses dois resultados implicam que
 - $c^d \equiv m \mod pq$
- Portanto, $m \equiv c^d \mod n$, a mensagem é decifrada corretamente

²Quase sempre mdc(m, p) = 1 e mdc(m, q) = 1, mas funciona mesmo se não for

Decodificação RSA

Decodificar a mensagem 0981 0641, que foi codificada com a chave pública (2537, 13)

- $n = 2537 = 43 \cdot 59$, então p = 43 e q = 59
- d = 937 é um inverso de e = 13 módulo $(p-1)(q-1) = 42 \cdot 58 = 2436$
- A mensagem pode ser decodificada com $m = c^d \mod n$
 - 0981⁹³⁷ mod 2537 = 0704 0641⁹³⁷ mod 2537 = 1115
- 0704 1115 = 07 04 11 15 = HELP

- A chave pública do destinatário, conhecida por todos, é (n, e) = (2637, 13)
- A chave d = 937 é a chave secreta do destinatário do destinatário
- \blacksquare É possível calculá-la sabendo-se p=43 e q=59 pois é o inverso de e módulo $42 \cdot 58$
- Não se conhece outro método de calculá-la e não se conhece método eficiente para fatorar n

Assinatura digital

- No sistema RSA, Alice tem uma chave pública (n, e) e uma chave secreta d
 - Uma mensagem enviada para Alice é codificada com $c = m^e \pmod{n}$ ■ Alice decodifica a mensagem com $m = c^d \pmod{n}$
 - Qualquer um pode enviar mensagem codificada para Alice, pois (n, e) é público
 - Mas só Alice pode decifrá-la, poid d é mantido secreto
- Mas como ter certeza da fonte de uma mensagem?
- Bob recebe uma mensagem de Alice, como se certificar que é mesmo de Alice?
- Suponha que Alice queira enviar uma mensagem assinada para Bob
 - Alice "assina" a mensagem codificando-a com $c = m^d \pmod{n}$
 - lacktriangle Quando Bob recebe a mensagem ele pode decodificá-la com $m=c^e \pmod n$
 - Bob pode ler *m* porque (*n*, *e*), de Alice, é conhecida publicamente
 - Mas só Alice pode ter gerado a mensagem c, pois só ela conhece d

Assinatura digital

Alice usa (n, e) = (2537, 13) e d = 937. Como enviar a mensagem MEET AT NOON para suas amigas de forma que elas tenham certeza que foi enviada por ela?

- MEET AT NOON = 1204 0419 0019 1314 1413
- Alice calcula m⁹³⁷ (mod 2537) para cada bloco: 0817 0555 1310 2173 1026
- Quando uma de suas amigas recebe essa mensagem, pode calcular c¹³(mod 2537) para cada bloco, chegando a MEET AT NOON
- Isto funciona se a mensagem recebida foi criada com d = 937, secreta de Alice

Assinatura digital

Alice usa (n, e) = (2537, 13) e d = 937. Como enviar a mensagem MEET AT NOON para suas amigas de forma que elas tenham certeza que foi enviada por ela?

- MEET AT NOON = 1204 0419 0019 1314 1413
- Alice calcula m^{937} (mod 2537) para cada bloco: 0817 0555 1310 2173 1026
- Quando uma de suas amigas recebe essa mensagem, pode calcular c¹³(mod 2537) para cada bloco, chegando a MEET AT NOON
- Isto funciona se a mensagem recebida foi criada com d = 937, secreta de Alice

- No exemplo de antes, qualquer um pode ler a mensagem de Alice, não apenas Bob.
- Como Alice pode mandar uma mensagem assinada que só Bob por ler?
 - Assinando com sua chave secreta e codificando com a chave pública de Bob

Protocolo para decidir chave privada

- Alice e Bob querem conversar por criptografia de chave privada, já que por chave pública é custoso computacionalmente
- Para isso precisam combinar uma chave secreta que só eles devem conhecer
- Como combinar uma chave secreta comum sem se encontrarem secretamente?
- Uma forma é usar o protocolo de troca de chaves descrito pelos americanos
 Whitfield Diffie e Martin Hellman in 1976
- O protocolo, na verdade, foi criado anos antes pelo britânico Malcolm Williamson, mas isso só foi tornado público no final dos anos 90

Troca de chaves de Diffie-Hellman

- Suponha que Alice e Bob querem decidir uma chave comum
- \blacksquare O protocolo de troca de chaves de Diffie-Hellman segue os passos em \mathbb{Z}_p
 - Alice e Bob decidem usar um primo p e uma base a (raiz primitiva de p)
 - 2 Alice escolhe um inteiro secreto k_1 e envia a^{k_1} mod p para Bob
 - Bob escolhe um inteiro secreto k_2 e envia a^{k_2} mod p para Alice
 - Alice calcula $(a^{k_2})^{k_1} \mod p$
 - **5** Boba calcula $(a^{k_1})^{k_2} \mod p$
 - Alice e Bob agora possuem uma chave secreta em comum $a^{k_2}{}^{k_1}=a^{k_1}{}^{k_2} \mod p$
- Segurança do protocolo
 - As mensagens enviadas nos passos 1, 2 e 3 podem ser interceptadas
 - Então alguém pode saber p, a, $a^{k_1} \mod p$ e $a^{k_2} \mod p$
 - Mas a forma conhecida de calcular k_1 , k_2 e a^{k_1} com isso é resolver logaritmo discreto
 - Isso é inviável se p e a são suficientemente grandes
 - Considerado inquebrável se p tem mais de 300 dígitos e k_1 e k_2 mais de 100

Troca de chaves de Diffie-Hellman - analogia com cores

Criptografia de chave pública Criptografia RSA Codificação RSA Decodificação RSA Assinatura digital Troca de chaves Segurança do RSA

Segurança

"Can the reader say what two numbers multiplied together will produce the number 8616460799? I think it unlikely that anyone but myself will ever know." - William Stanley Jevons. The Principles of Science. 1874

- Com o aumento do poder computacional, cresceu o tamanho recomendado de p e q
- Mas o aumento do tamanho de n aumenta o tempo de codificar e decodificar
- Deve-se fazer um balanço entre esses fatores de acordo com o número de anos que uma mensagem precisa permanecer secreta
- Pois uma vez que o poder computacional aumenta, pode-se decodificar mensagens antigas
- A Existem propostas de algoritmos rápidos de fatoração para computação quântica, então quando se tornar prática, outros sistemas de chave pública deverão ser usados

