1) Un coche se mueve por una carretera recta. Su posición en el instante t está dada por:

$$s(t) = 20.t^2$$
 siendo $0 \le t \le 2$

donde t se mide en horas y s(t) se mide en kilómetros.

- a) Graficar s(t).
- b) Calcular la velocidad media del coche entre t=0 y t=2. ¿Cómo se interpreta geométricamente este resultado?
- c) Calcular la velocidad instantánea del coche en t=1. ¿Cómo se interpreta geométricamente este resultado?
- 2) Si se lanza una roca hacia arriba en el planeta Marte con una velocidad de 10 m/s, su altura (en metros) después de t segundos se conoce por $H = 10t - 2t^2$.
 - a) Hallar la velocidad de la roca después de un segundo.
 - b) Hallar la velocidad de la roca cuando t = a.
 - c) ¿Cuándo tocará la superficie la roca?
 - d) ¿Con qué velocidad la roca tocará la superficie?
- 3) Justificar la verdad o falsedad de las siguientes proposiciones:
 - a) Una función continua siempre es derivable.
 - b) Si f'(2) existe y $\lim_{x\to 2} f(x) = 4$, ¿se puede concluir algo acerca de f(2)?
 - c) La derivada de la función y = f(x) en el intervalo $[x_1, x_2]$ está dada por la expresión: $\frac{f(x_2) f(x_1)}{x_2 x_1}$
 - d) La pendiente de la recta tangente a la función y = g(x) en el punto (x, g(x)) es
 - e) Si las derivadas laterales de una función existen en el punto de abscisa x = c, entonces la función es derivable en dicho punto.
 - f) Si f es derivable en x = a, entonces es continua en x = a.
- 4) Usando la definición, encontrar la expresión de la función derivada de las siguientes funciones:

- a) f(x) = 3 2x b) $f(x) = x^2 4$ c) $f(x) = \frac{3}{x}$ d) $f(x) = x + \sqrt{x}$
- 5) Análisis gráfico:

Identificar los intervalos donde cada función es derivable. Justificar.

6) Sabiendo que la función f(x) es derivable en todo su dominio, y g(x) = 2x. f(x) demostrar, usando la definición de derivada, que g'(x) = 2. [f(x) + x. f'(x)].

- 7) Comprobar que la función $f(x) = |x^2 4|$ es continua en el punto x = 2, pero no es derivable en dicho punto. Comprobar el resultado gráficamente. ¿En qué otro punto tampoco será derivable?
- 8) Comprobar que la función $f(x) = \sqrt[3]{x}$ es continua en el punto de abscisa x = 0, pero no es derivable en ese punto. Comprobar el resultado gráficamente.
- 9) Encontrar los puntos de $f(x) = x^3 3x + 5$ en los que la recta tangente es:
 - a) Paralela a la recta y = 24x
 - b) Perpendicular a la recta $y = -\frac{x}{a}$
 - c) Para los casos anteriores, ¿cuáles son las ecuaciones de dichas rectas?
 - d) ¿En qué punto/s la gráfica de f(x) posee recta tangente horizontal?
- **10)** Suponiendo que: f(5) = 4, g(5) = 2, f'(5) = -6 y g'(5) = 5, encontrar los valores de:

- a) (f+g)'(5) b) (f,g)'(5) c) (f/g)'(5) d) (g/f)'(5) e) $(\frac{f}{f-g})'(5)$
- 11) Hallar la ecuación de la recta tangente a la gráfica de f(x) en el punto que se indica:

 - a) $f(x) = \sqrt[3]{x}$ en P(1, f(1)) b) $f(x) = x + \frac{4}{x}$ en P(2, 4) c) $f(x) = \frac{1}{x+1}$ en P(0, 1)
- 12) Calcular las funciones derivadas de las siguientes funciones:

a)
$$f(x) = \sqrt{8\pi} - \frac{\pi^2}{3} + 2\pi^3$$

b)
$$f(x) = (6x+5)(x^3-2)$$

c)
$$f(x) = \sqrt[5]{x^3} - x^3 + 1 + \frac{1}{x^8}$$

d)
$$f(x) = \frac{x^3 + \sqrt{x} - \sqrt[3]{x}}{\sqrt[5]{x}}$$

e)
$$f(x) = x^3 \cdot \tan(x)$$

f)
$$f(x) = \frac{\sqrt[3]{x}}{x^3 + 1}$$

g)
$$f(x) = \sqrt{(2x-3)} \cdot (x^3-2)^3$$

h)
$$f(x) = sen(3x^3)$$

i)
$$f(x) = (a^3 + sen^3 x)^2$$

$$f(x) = sen(3x) - \cos(2x)$$

k)
$$f(t) = \sqrt{(3\cos(nt) - 2sen(nt))/nt}$$

$$f(x) = \ln\left(\frac{x}{x^2 + 1}\right)$$

m)
$$g(t) = \ln[(t-2)/(2t+1)]$$

n)
$$f(x) = e^{-2x} + 3^x$$

o)
$$f(x) = \ln \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right)$$

p)
$$f(x) = arcsen\left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)$$

q)
$$f(x) = \log_2(3x - x^2)$$

r)
$$f(x) = \log_2 \sqrt{x-4}$$

s)
$$f(x) = a^x + (\cos x)^x$$

t)
$$f(x) = (x-2)^{x+1}$$

$$u) f(x) = sen(x^{\cos x})$$

$$v) f(x) = \ln \left(\sqrt{\frac{1 + \cos x}{1 - \cos x}} \right)$$

- **13)** Encontrar una parábola que tenga la ecuación $f(x) = ax^2 + bx$, y cuya tangente en el punto (1,1) tenga ecuación y = 3x 2.
- **14)** Si $f: \mathbb{R} \to \mathbb{R}$ es derivable en x = -1. Probar que g(x) = f(x). sen(x+1) es derivable en x = -1.
- **15)** Analizar la derivabilidad de las siguientes funciones:

a)
$$f(x) = \begin{cases} x^2 + 4x + 2 & x < 2 \\ -x^2 - 4x + 1 & x \ge 2 \end{cases}$$

b)
$$f(x) = 4 - |x - 2|$$

c)
$$f(x) = \begin{cases} |2x - 6| + 1 & x \ge 0 \\ x & x < 0 \end{cases}$$

d)
$$f(x) = \begin{cases} 1 & si \ x \le 0 \\ x+1 & si \ 0 < x \le 2 \\ 2x-1 & si \ x > 2 \end{cases}$$

e)
$$f(x) = \begin{cases} x^2 - 2 & si \quad x \ge -1 \\ 4x + 1 & si \quad x < -1 \end{cases}$$

f)
$$f(x) = \begin{cases} e^{2x} + 1 & \text{si } x > 0 \\ x^2 + 2x & \text{si } x \le 0 \end{cases}$$

16) Hallar a y b para que la siguiente función sea derivable en todos sus puntos. Comprobar los resultados gráficamente.

$$f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$$

- 17) Determinar la ecuación de la recta tangente a la curva con ecuación $g(x) = e^{4f(x)-8}$ en el punto (1, f(1)), sabiendo que la recta tangente a la gráfica de f en (1, f(1)) es y = 4x 2.
- **18)** Sea $f(x) = (ax + 2)e^{-kx}$, hallar $a \neq k$, sabiendo que la función corta al eje x en $x = \frac{2}{3}$ y que la recta y = 5x + 2 es tangente a la gráfica de f en el punto (0,2).
- **19)** Considerar la siguiente función $f(x) = \sqrt{x} x^{2/3}$ en el intervalo [0,1]:
 - a) ¿Es f continua en [0,1]? Justificar.
 - b) $\angle Es f$ derivable en [0,1]? Justificar.

20) Sean las funciones f y g, probar que f es continua pero no derivable en x=0, y que g es derivable en 0.

$$f(x) = \begin{cases} x. sen\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \qquad g(x) = \begin{cases} x^2. sen\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

- 21) Justificar la verdad o falsedad de las siguientes proposiciones.
 - a) Si f'(x) = g'(x), entonces f(x) = g(x).
 - b) Si $y = \pi^2$, entonces $dy/dx = 2\pi$.
 - c) Si $h(x) = f(x) \cdot g(x)$, entonces $h'(x) = f'(x) \cdot g'(x)$.
 - d) Si $h(x) = f \circ g$, entonces $h'(x) = f'(g(x)) \cdot g'(x)$.
 - e) La función $f(x) = \frac{1}{|x|}$ es continua y derivable en todo su dominio.
 - f) Si f(x) = x. |x|, entonces f''(0) = 0.

Respuestas:

1) b) 40 km/h, pendiente de la recta secante c) 40 km/h, pendiente de la recta tangente

2) a) 6 m/seg. b) 10 - 4a c) 5 seg. d) -10 m/seg.

3) a) F b) V c) F d) V e) F f) V

4) a) f'(x) = -2 b) f'(x) = 2x c) $f'(x) = -\frac{3}{x^2}$ d) $f'(x) = 1 + \frac{1}{2\sqrt{x}}$

5) a) $(-\infty, -3) \cup (-3, +\infty)$ b) $(-\infty, -3) \cup (-3, 3) \cup (3, +\infty)$ c) $(-\infty, 1) \cup (1, +\infty)$

d) $(-\infty, 3) \cup (3, +\infty)$ e) $(-\infty, 0) \cup (0, +\infty)$ f) $(-\infty, 1) \cup (1, +\infty)$

9) a y c) R. T. en (3, 23): y = 24x - 49 R. T. en (-3, -13): y = 24x + 59

by c) R. T. en (2,7): y = 9x - 11 R. T. en (-2,3): y = 9x + 21

d) R. T. horizontal en (1, 3) y (-1, 7)

10) a) -1

b) 8

c) -8

d) 2

e) 8

11) a) $y = \frac{1}{2}x + \frac{2}{3}$ b) y = 4 c) y = -x + 1

12) a) f'(x) = 0 b) $f'(x) = 24x^3 + 15x^2 - 12$ c) $f'(x) = \frac{3}{5}x^{-2/5} - 3x^2 - 8x^{-9}$

d) $f'(x) = \frac{14}{5}x^{9/5} + \frac{3}{10}x^{-7/10} - \frac{2}{15}x^{-13/15}$

e) $f'(x) = 3x^2 t g x + \frac{x^3}{\cos^2 x}$

f) $f'(x) = \frac{1}{3x^{2/3}(x^3+1)} - \frac{3x^{7/3}}{(x^3+1)^2}$

g) $f'(x) = \left(\frac{1}{2x-3} + \frac{9x^2}{x^3-2}\right)(x^3-2)^3\sqrt{2x-3}$

h) $f'(x) = 9x^2\cos(3x^3)$

i) $f'(x) = 6(a^3 + sen^3x) \cdot sen^2x \cdot cosx$

j) $f'(x) = 3\cos(3x) + 2sen(2x)$ k) $f'(t) = \frac{1}{2} \cdot \left(\frac{-3n \, sen(nt) - 2n \, cos(nt)}{3\cos(nt) - 2sen(nt)} - \frac{1}{t}\right) \cdot \sqrt{\frac{3\cos(nt) - 2sen(nt)}{nt}}$

I) $f'(x) = \frac{1}{x} - \frac{2x}{x^2 + 1}$ m) $g'(t) = \frac{1}{t - 2} - \frac{2}{2t + 1}$ n) $f'(x) = -2e^{-2x} + 3^x \ln 3$

o) $g'(x) = \frac{4}{e^{2x} - e^{-2x}}$ p) $f'(x) = \frac{2}{e^{x} + e^{-x}}$ q) $f'(x) = \frac{3 - 2x}{(3x - x^{2})/n^{2}}$

r) $f'(x) = \frac{1}{2\ln(2)(x-4)}$

s) $f'(x) = a^x lna + [ln(cosx) - x tgx](cosx)^x$

t)
$$f'(x) = \left[\ln(x-2) + \frac{x+1}{x-2}\right] \cdot (x-2)^{x+1}$$

u)
$$f'(x) = [-senx \cdot \ln(senx) + cotgx \cdot cosx] \cdot (senx)^{cosx}$$
 v) $f'(x) = -\frac{1}{senx}$

13)
$$f(x) = 2x^2 - x$$

15) a) y b)
$$f$$
 es derivable en $\mathbb{R} - \{2\}$ c) f es derivable en $\mathbb{R} - \{0, 3\}$ d) f derivable en $\mathbb{R} - \{0, 2\}$

c) f es derivable en
$$\mathbb{R} - \{0, 3\}$$

d)
$$f$$
 derivable en $\mathbb{R} - \{0,2\}$

e)
$$f$$
 es derivable en $\mathbb{R} - \{-1\}$

f)
$$f$$
 es derivable en $\mathbb{R} - \{0\}$

16)
$$a = 1/3$$
 y $b = -4/3$

17)
$$y = 16x - 14$$

18)
$$a = -3$$
 y $k = -4$

b) No

b) F

d) F

f) F