

DARWIN-OP DRIVES

Jane Sun, Alex Alspach and Sean Mason Drexel University Autonomous Systems Lab

Outline

- Conception
 - Why have a humanoid drive?
- Simulation
 - Interface challenges
 - Algorithm prototyping
- Realization
 - The Robot and the Roomba

Concept

 Humans have developed countless tools to extend our capabilities. With the ability to use these same tools, humanoids can become our most versatile

Autonomous vehicles

- Why do we drive?
 - Go further, faster
 - Traverse the roughest terrains
 - Carry more stuff
- Why Autonomy?
 - Safety
 - Eliminate human error
 - Convenience
 - Drop-off, pick-up, chauffeur
 - Optimization
 - Traffic, time, gas

Current Efforts

DARPA Grand / Urban Challenge

- Google's driverless car, etc.
 - One car outfitted with many sensors
 - Tested and tuned
 - Car type chosen for specific application

Why have a humanoid drive?

- Adaptability
 - Form our world was built for us
 - Able to use our tools in our environment
 - Multi-use drive to a destination and perform a task
 - Learning adapt to different cars
 - Hardware changes to vehicle not necessary

Our Solution...

DARwin-OP Humanoid Application Challenge ICRA 2012

Brittany Killen, Sun Chunyang, Eric Johnsrud, Tae-Goo Kim

The real thing....

- DARwIn-OP remains unmodified
 - Vision Processing
 - Steering controller outputs arm movement
 - Foot puts the pedal to the metal
- iRobot Create (vehicle)
 - Differential Drive with Atmel
 - Digital I/O
 - A/D
 - Laser-cut acrylic steering wheel, seat & pedal
 - Potentiometer controls angular velocity
 - Gas pedal controls forward velocity (1/0)

The real thing....

- O DARwin's Arms
 - IK for movement in the steering plane
 - PD control
 - Elastic constraint to steering wheel
- DARwIn's Eyes
 - Road and Blob following
 - Image processing
 - HSV segmentation
 - Erode and dilate
 - Image projection

What's next?

- DARPAResearchChallenge
- SensoryAugmentation(e.g. Blind)

Thanks!

Questions?

Inspiration

