TACS EN VRAC (SPE)

(TAC : Théorème à citer)

ALGEBRE

1. Réduction

 $K = \mathbb{R}$ ou \mathbb{C} , E espace vectoriel sur K.

- $u \in L(E), a \neq 0, (a,b) \in K^2$. Si $v = au + bId_E$, alors $Sp_K(v) = \{\mu = a\lambda + b \mid \lambda \in Sp_K(v)\}$
- $u \in L(E), \lambda_1, ..., \lambda_p$ valeurs propres de u distinctes. Alors la somme des sous-espaces propres $E_{\lambda_i}(u)$ est directe.
- ullet Toute famille de vecteurs propres associés à des valeurs propres de u 2 à 2 distinctes est libre.
- $(u,v) \in (L(E))^2$, $u \circ v = v \circ u$. Alors Im(u), Ker(u) et les sous-espaces vectoriels propres de u sont stables par v.
- $0 \in Sp_{\kappa}(u) \Leftrightarrow u$ non injective et alors $E_0(u) = Ker(u)$.
- $\forall (u,v) \in (L(E))^2$, $Ker(u) \subset Ker(v \circ u)$ et $Im(v \circ u) \subset Im(v)$.
- $\bullet \text{ Soit } u \in L(E), R \in \mathrm{K}[\mathrm{X}]. \text{ Si } \lambda \in \mathit{Sp}_{\mathrm{K}}(u) \text{ , alors } R(\lambda) \in \mathit{Sp}_{\mathrm{K}}(R(u)) \text{ . C'est-\`a-dire } R(\mathit{Sp}_{\mathrm{K}}(u)) \subset \mathit{Sp}_{\mathrm{K}}(R(u)) \text{ .}$
- Théorème de décomposition des noyaux : Si $A_1,...,A_n \in K[X]$ et sont 2 à 2 premiers entre eux, alors

$$Ker((\prod_{i=1}^{n} A_i)(u)) = \bigoplus_{i=1}^{n} Ker(A_i(u)).$$

Dans la suite, E est de dimension finie sur K.

- 2 matrices semblables ont le même polynôme caractéristique.
- $u \in L(E)$ est diagonalisable
 - $\Leftrightarrow E$ est somme directe des sous-espaces propres de u
 - \Leftrightarrow La somme des dimensions des sous-espaces propres est égale à la dimension de E
 - $\Leftrightarrow \exists B$ base de E formée de vecteurs propres de u
 - \Leftrightarrow Le polynôme caractéristique de u est scindé dans K[X] et $\forall \lambda \in Sp_K(u)$ la dimension du sous-espace propre associé à λ est égale à sa multiplicité dans le polynôme caractéristique de u
 - \Leftrightarrow Il existe un polynôme scindé dans K[X], à racines simples et annulateur de u
- Si $\dim(E) = n$ et si $u \in L(E)$ a n valeurs propres toutes distinctes, alors u est simplement diagonalisable, donc diagonalisable. Ses sous-espaces propres sont alors des droites vectorielles.
- u est trigonalisable \Leftrightarrow Le polynôme caractéristique de u est scindé dans K[X].
- $M \in M_n(\mathbb{C})$ nilpotente $\Leftrightarrow Sp_{\mathbb{C}}(M) = \{0\}$ (FAUX si $\mathbb{K} = \mathbb{R}$).
- Théorème de Cayley-Hamilton : En dimension finie, le polynôme caractéristique d'un endomorphisme u de E est annulateur de u . Si $M \in M_n(\mathbb{K}), P_M(M) = 0$.

2. Espaces préhilbertiens réels

Dans cette partie, E est un espace préhilbertien réel.

• Inégalité de Cauchy-Schwarz : $\forall (x,y) \in E^2, |\langle x | y \rangle| \le ||x|| ||y||$. Egalité si $\{x,y\}$ est lié.

- Inégalité de Minkowski : $\forall (x, y) \in E^2, ||x + y|| \le ||x|| + ||y||$
- Théorème de Pythagore : Pour tout système orthogonal $(x_1,...,x_p)$, $\left\|\sum_{i=1}^p x_i\right\|^2 = \sum_{i=1}^p \left\|x_i\right\|^2$

On a l'équivalence : $x_i \perp x_j \Longleftrightarrow \left\|x_i + x_j\right\|^2 = \left\|x_i\right\|^2 + \left\|x_j\right\|^2$

- <u>Identité du parallélogramme</u>: $\forall (x, y) \in E^2, ||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$
- Formule de polarisation: $\forall (x,y) \in E^2, \langle x | y \rangle = \frac{1}{2} (\|x+y\|^2 \|x\|^2 \|y\|^2) = \frac{1}{4} (\|x+y\|^2 \|x-y\|^2)$
- Si F est un sous-espace de dimension finie de E, $E = F \oplus F^{\perp}$. Si de plus E est de dimension finie, $\dim(E) = \dim(F) + \dim(F^{\perp})$
- Théorème de la projection orthogonale sur un sous-espace F de dimension finie : Soit p la projection orthogonale sur F parallèlement à F^{\perp} .
 - 1) $F^{\perp} = Ker(p)$
 - 2) $y = p(x) \Leftrightarrow (y \in F \text{ et } x y \in F^{\perp})$
 - 3) La distance de $x \in E$ à F est atteinte en un et un seul point de F : p(x), et $||x p(x)|| = \inf_{x \in E} ||x y||$
 - 4) Si $(f_1,...,f_p)$ est une base orthonormée de F , $\forall x \in E, p(x) = \sum_{i=1}^p \langle x \mid f_i \rangle f_i$
- Inégalité de Bessel : Si $(x_i)_{i \in I}$ $(I \subset \mathbb{N}$, fini ou non) est un système orthonormé de E, alors $\forall x \in E, \sum_{i \in I} \langle x | x_i \rangle^2 \leq ||x||^2$

Dans la suite, E est de <u>dimension finie</u> sur K.

- Théorème d'orthonormalisation de Gram-Schmidt : Soit $B = (u_1, ..., u_n)$ une base quelconque de l'espace euclidien E . Il existe une unique base orthonormée $B' = (e_1, ..., e_n)$ telle que :
 - a) $\forall k \in [1, n], E_k = Vect(u_1, ..., u_k) = Vect(e_1, ..., e_k)$
 - b) $\forall k \in [1, n], \langle e_k | u_k \rangle > 0$
- $u \in O(E)$
 - $\Leftrightarrow u$ conserve le produit scalaire / la norme
 - $\Leftrightarrow u \in GL(E) \text{ et } u^* = u^{-1}$
 - \Leftrightarrow L'image par u d'une base orthonormée est une base orthonormée
- Si $M \in O(n)$, $Sp_{\mathbb{R}}(M) \subset \{-1, +1\}$ et $\det(M) = \pm 1$
- $\forall u \in L(E), \exists ! u^* \in L(E), \forall (x, y) \in E^2, \langle u(x) | y \rangle = \langle x | u^*(y) \rangle$. u^* est l'adjoint de u et on a dans une base orthonormée $B: M_R(u^*) = {}^tM_R(u)$.
- $\forall u \in L(E), Ker(u^*) = Im(u)^{\perp} \text{ et } Im(u^*) = Ker(u)^{\perp}.$
- Théorème spectral : E euclidien, $u \in L(E)$ symétrique ($u^* = u$). Alors u est diagonalisable, les sous-espaces propres de u sont 2 à 2 orthogonaux et il existe une base orthonormée de E formée des vecteurs propres de u. u peut être réduit dans une base diagonalisante orthonormée.

 $M \in M_n(\mathbb{R})$, ${}^tM = M$. Alors les valeurs propres de M sont toutes réelles, M est diagonalisable et $\exists P \in O(n), \exists D = Diag(\lambda_1, ..., \lambda_n) \ (\lambda_i \in \mathbb{R})$ telles que $M = PDP^{-1} = PD^tP$. On dit que M est orthodiagonalisable.

- Réduction des formes quadratiques en dimension finie :
 - 1) Soit φ une forme bilinéaire symétrique sur E, $B=(e_1,...,e_n)$ une base de E et $A=(a_{i,j})\in M_n(\mathbb{R})$ où $a_{i,j}=\varphi(e_i,e_j)$. Alors $\varphi(x,y)={}^tXAY={}^tYAX$ où X et Y sont les matrices colonnes des coordonnées respectives de X et Y dans la base B ($\Rightarrow \varphi(x,y)=\sum_{1\leq i,j\leq n}a_{i,j}x_iy_j$).

La matrice symétrique réelle A est la matrice de φ (ou de ϕ) dans la base B

- 2) Pour toute matrice symétrique réelle A, il existe une unique forme bilinéaire symétrique φ sur \mathbb{R}^n dont A est la matrice dans la base canonique de \mathbb{R}^n .
- 3) Si B et B' sont 2 bases de E avec $P: B \to B'$, alors $A' = {}^tPAP$.

3. Algèbre générale

- Les générateurs de $\mathbb{Z}/_{n\mathbb{Z}}$ sont les \overline{k} où $n \wedge k = 1$. Ce sont aussi les éléments inversibles de l'anneau $\left(\mathbb{Z}/_{n\mathbb{Z}}, +, \times\right)$. Il y en a $\varphi(n) = Card\{k \mid 1 \leq k \leq n \text{ et } k \wedge n = 1\}$.
- Théorème de Lagrange : Soit G un groupe fini et $a \in G$.
 - 1) L'ordre de a divise Card(G) = G
 - 2) L'ordre d'un sous-groupe de $\,G\,$ divise l'ordre de $\,G\,$
- Tout idéal de \mathbb{Z} est principal, c'est-à-dire de la forme $a\mathbb{Z}, a \in \mathbb{N}$. Idem dans K[X].
- $\mathbb{Z}/_{n\mathbb{Z}}$ est un corps $\Leftrightarrow n$ est premier.
- Théorème chinois : $(m,n) \in (\mathbb{N}^*)^2$, $m \wedge n = 1$. Alors $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/mn\mathbb{Z}$ sont isomorphes. D'où $\varphi(mn) = \varphi(m) \times \varphi(n)$.
- Petit théorème de Fermat : $n \in \mathbb{N}^*$
 - 1) Si $k \wedge n = 1, n \mid k^{\varphi(n)} 1$ ou encore $k^{\varphi(n)} \equiv 1 [n]$
 - 2) Si p est premier, $\forall k \in \mathbb{Z}, k^p \equiv k [p]$ ou $p \mid k^p k$

ANALYSE

1. Séries numériques

E est un espace vectoriel normé complet (tout espace vectoriel normé de dimension finie est complet). $u_n \in E$. Le plus souvent, $E = \mathbb{R}$ ou \mathbb{C} .

• Série géométrique :
$$q \in \mathbb{C}$$
 . $S_n = \sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ si $q \neq 1$ et $n+1$ si $q=1$

$$\sum q^k \text{ converge} \iff \left(S_n\right)_{n\in\mathbb{N}} \text{ converge} \iff \left|q\right| < 1 \text{ et alors } \sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \text{ et } R_n = \sum_{k=n+1}^{+\infty} q^k = \frac{q^{n+1}}{1-q}.$$

- Si $\sum u_n$ converge, alors $u_n \underset{n \to +\infty}{\longrightarrow} 0$.
- <u>Série de Riemann</u>: $\sum \frac{1}{n^{\alpha}}$ converge $\iff \alpha > 1$
- Si $\sum u_n$ est absolument convergente (i.e. $\sum |u_n|$ converge), alors $\sum u_n$ est convergente et $\left|\sum_{n=0}^{+\infty} u_n\right| \leq \sum_{n=0}^{+\infty} |u_n|$

- Si $u_n \in \mathbb{R}$ et $u_n \ge 0$ pour n assez grand, alors $\sum u_n$ absolument convergente $\iff \sum u_n$ convergente.
- Théorème de téléscopage : Si $u_n = a_{n+1} a_n$, $\sum u_n$ converge \iff (la suite $(a_n)_{n \in \mathbb{N}}$ est convergente). On a

$$\sum_{n=0}^{+\infty} u_n = -a_0 + \lim_{p \to +\infty} a_p$$

- Théorème de majoration : $\sum u_n$ est absolument convergente $\iff \exists M \geq 0, \forall r \in \mathbb{N}, \sum_{k=0}^r |u_k| \leq M$
- Critère de comparaison ou de domination : Si en $+\infty$, $u_n = O(v_n)$, alors :
 - 1) $\sum v_n$ absolument convergente $\Rightarrow \sum u_n$ absolument convergente
 - 2) $\sum |u_n|$ divergente $\Rightarrow \sum |v_n|$ divergente
- <u>Critère d'équivalence</u> : Si $\left|u_n\right|_{+\infty} \left|v_n\right|$, $\sum u_n$ absolument convergente $\iff \sum v_n$ absolument convergente.
- La somme de 2 séries convergentes est convergente. La somme d'une série convergente et d'une série divergente est divergente. On ne peut rien affirmer quant à la nature de la somme de 2 séries divergentes sans une étude plus détaillée.
- Règle de Riemann pour les séries :
 - 1) Si pour un $\alpha > 1$, $u_n = O(\frac{1}{n^{\alpha}})$ (ou $\lim_{n \to +\infty} (n^{\alpha}u_n) = 0$), alors $\sum u_n$ est absolument convergente, donc convergente.
 - 2) Si $\frac{1}{n} = O(u_n)$, alors $\sum |u_n|$ est divergente.
- Règle de D'Alembert pour séries numériques : $u_n \in \mathbb{C}$. S'il existe $n_0 \in \mathbb{N}$ et $l \in \mathbb{R}_+$ tels que $\forall n \geq n_0, u_n \neq 0$ et

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = l \ge 0 \text{ , alors :}$$

- 1) Si $0 \le l < 1$, $\sum u_n$ est absolument convergente. De plus, si l < k < 1, $u_n = O(k^n)$.
- 2) Si l > 1, $\lim_{n \to +\infty} \left| u_n \right| = +\infty$. De plus, si 1 < k < l, $k^n = O(u_n)$.
- 3) Si l=1, on ne peut conclure.
- \bullet Règle de sommation des relations de négligeabilité, de domination et d'équivalence :

On suppose $u_n \ge 0$, $v_n \in E$.

1)a) Si
$$\sum u_n$$
 converge et si $v_n = o(u_n)$, alors $\sum v_n$ est absolument convergente et $R_{n-1}(v) = \sum_{k \geq n} v_k = o(R_{n-1}(u))$

b) Si
$$\sum u_n$$
 diverge et si $v_n = o(u_n)$, alors $V_n = \sum_{k=0}^n v_k = o(U_n)$

- 2) Même chose avec $o \leftrightarrow O$
- On suppose $u_n \geq 0$ pour n assez grand et $v_n \in \mathbb{R}$
- 3)a) Si $\sum u_n$ converge et $u_n \sim v_n$, alors $R_n(u) \sim R_n(v)$ (tendent vers 0)
- b) Si $\sum u_n$ diverge et $u_n \sim v_n$, alors $U_n \sim V_n$ (tendent vers $+\infty$)
- Théorème des séries alternées : Si $u_n \in \mathbb{R}$, $u_n = (-1)^n |u_n|$ et si la suite $(|u_n|)_{n \in \mathbb{N}} \to 0$ en décroissant, alors $\sum u_n$ converge et :
 - 1) $\sum_{n=0}^{+\infty} u_n$ a le signe de u_0 (= $|u_0| \ge 0$)
 - 2) $\forall n \in \mathbb{N}, |R_n| = \left| \sum_{k=n+1}^{+\infty} u_k \right| \le |u_{n+1}|$
 - 3) $\forall (p,q) \in \mathbb{N}^2, U_{2p+1} \le U \le U_{2q} \text{ où } U = \sum_{k=0}^{+\infty} u_k$

On a le théorème analogue si $\forall n \in \mathbb{N}, u_n = (-1)^{n+1} |u_n|$. Alors $U = \sum_{n=0}^{+\infty} u_n \le 0$ a toujours le signe de u_0 et $U_{2p+1} \ge U_{2q}$.

• Théorème de comparaison série/intégrale : Si $f: \mathbb{R}_+ \to \mathbb{R}$ est continue par morceaux, positive et décroissante sur \mathbb{R}_+ , alors :

1)
$$\forall k \ge 1, \int_{k}^{k+1} f(t)dt \le f(k) \le \int_{k-1}^{k} f(t)dt$$

2)
$$\sum f(k)$$
 et $\int_0^{+\infty} f(t)dt$ sont de même nature, la série de terme général $w_n = -f(n) + \int_{n-1}^n f(t)dt$ $(n \in \mathbb{N}^*)$ est convergente et $\exists C \in \mathbb{R}, \forall n \in \mathbb{N}, \sum_{k=0}^n f(k) = \int_0^n f(t)dt + C + o(1)$

2. Fonctions intégrables

a > 0 fixé. Souvent a = 1 ou $\frac{1}{2}$ ou $e \dots$

- $\int_{a}^{+\infty} \frac{dt}{t^{\alpha}}$ converge $\Leftrightarrow \alpha > 1 \Leftrightarrow \frac{1}{t^{\alpha}} \in L^{1}([a, +\infty[)$
- $\int_0^a \frac{dt}{t^{\alpha}}$ converge $\Leftrightarrow \alpha < 1 \Leftrightarrow \frac{1}{t^{\alpha}} \in L^1(]0,a]$)
- $I(\lambda) = \int_0^{+\infty} e^{-\lambda t} dt$ converge $\iff \lambda > 0$. On a alors $I(\lambda) = \frac{1}{\lambda}$.
- Dans un espace vectoriel normé complet, si $\int_a^b \|f(t)\| dt$ converge, alors $\int_a^b f(t) dt$ converge et $\left\|\int_a^b f(t) dt\right\| \leq \int_a^b \|f(t)\| dt$.
- <u>Critère de comparaison positif</u>: Soient f et g continues par morceaux de [a,b[dans \mathbb{R}_+ telles que $\forall t \in [a,b[,0 \le f(t) \le g(t)]$.
 - 1) Si $\int_a^b g(t)dt$ converge, $\int_a^b f(t)dt$ converge et $0 \le \int_a^b f(t)dt \le \int_a^b g(t)dt$.
 - 2) Si $\int_a^b f(t)dt$ diverge, $\int_a^b g(t)dt$ diverge.
- Critère de domination : Soient f et g continues par morceaux de [a,b[dans $\mathbb R$.
 - 1) Si, au voisinage de b^- , f = O(g), alors g sommable sur [a,b[$\Rightarrow f$ sommable sur [a,b[.
 - 2) Si f et g sont positives, si f = O(g) et si f n'est pas sommable sur [a,b[, alors g n'est pas sommable sur [a,b[.
- <u>Critère d'équivalence positif</u>: Soient f et g continues par morceaux de [a,b[dans \mathbb{R} telles que $f \geq 0$ sur [a,b[et $f \sim g$. Alors g est positive au voisinage de b^- et les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature : $f \in L^1([a,b[) \Leftrightarrow g \in L^1([a,b[)$
- Règle de Riemann pour les intégrales, borne $+\infty$: Soit f continue par morceaux sur $[a,+\infty[$
 - 1) Si pour un $\alpha > 1$, $f(t) = O(\frac{1}{t^{\alpha}})$ en $+\infty$, alors f est sommable sur $[a, +\infty[: f \in L^1([a, +\infty[) .$
 - 2) Si $\frac{1}{t} = O(f(t))$ en $+\infty$, alors f n'est pas sommable sur $[a, +\infty[$: $f \notin L^1([a, +\infty[)$.
- Théorème d'intégration de la relation de négligeabilité : $I = [a, +\infty[, f \in CM(I, E), g \in CM(I, \mathbb{R}_+), g \ge 0 \text{ sur } I \text{ et } f(t) = o(g(t))$

- 1) Si $\int_{a}^{+\infty} g(t)dt$ converge (i.e. $g \in L^{1}(I)$), alors $\int_{a}^{+\infty} f(t)dt$ est absolument convergente (i.e. $f \in L^{1}(I)$) et on a $\int_{x}^{+\infty} f(t)dt = o(\int_{x}^{+\infty} g(t)dt)$.
- 2) Si $\int_{a}^{+\infty} g(t)dt$ diverge, alors $\int_{a}^{x} f(t)dt = o(\int_{a}^{x} g(t)dt)$.
- Théorème analogue avec $o \longleftrightarrow O$.
- Théorème d'intégration de la relation d'équivalence : $I = [a, +\infty[, (f, g) \in (CM(I, \mathbb{R}))^2, g \ge 0 \text{ sur I et } f(t) \underset{+\infty}{\sim} g(t)$
 - 1) Si $\int_a^{+\infty} g(t)dt$ converge (i.e. $g \in L^1(I)$), alors $f \in L^1(I)$ et $\int_x^{+\infty} f(t)dt \sim \int_x^{+\infty} g(t)dt$ (tendent vers 0 en $+\infty$).
 - 2) Si $\int_{a}^{+\infty} g(t)dt$ diverge (i.e. $g \notin L^{1}(I)$), alors $\int_{a}^{x} f(t)dt \sim \int_{a}^{x} g(t)dt$ (tendent vers $+\infty$ en $+\infty$).
- Théorème du changement de variable : Soit φ une bijection de classe C^1 de $]\alpha,\beta[$ sur]a,b[, $f\in CM(]a,b[$, $\mathbb C)$.
 - 1) $f \in L^1(]a,b[) \Leftrightarrow \varphi'.(f \circ \varphi) \in L^1(]\alpha,\beta[)$
 - 2) Les intégrales $\int_a^b f(u)du$ et $\int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$ sont de même nature et sont égales lorsqu'elles convergent.

3. Suites et séries de fonctions

I intervalle de \mathbb{R} , F espace vectoriel normé complet ou de dimension finie, le plus souvent $F = \mathbb{R}$ ou \mathbb{C} .

- Théorème de continuité d'une limite uniforme : E espace vectoriel normé de dimension finie, $X \subset E$. Une limite uniforme sur X de fonctions continues sur X est continue sur X, c'est-à-dire $\lim_{n \to +\infty} (\lim_{x \to a} f_n(x)) = \lim_{x \to a} (\lim_{n \to +\infty} (f_n(x))) = f(a) \quad (a \in X \text{ et } f_n \text{ continues au point } a).$
- Théorème d'intégration sur un segment d'une limite uniforme : X = [a,b] intervalle compact de \mathbb{R} , $f_n \in CM([a,b],F) \,, \; F \; \text{ espace de Banach. Si} \; f_n \xrightarrow{u} f \; \text{ sur } X \,, \; \text{alors } \lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt \;.$
- Théorème de dérivation d'une limite : I intervalle de \mathbb{R} , $f_n \in C^1(I,F)$, F espace de Banach. Si $f_n \xrightarrow{s} f$ sur I et si $\exists g: I \to F, f_n' \xrightarrow{u} g$ sur I, alors $f \in C^1(I,F)$ et $\lim_{n \to +\infty} \frac{d}{dx} f_n(x) = \frac{d}{dx} \lim_{n \to +\infty} f_n(x)$: f' = g.

Même conclusion si $f'_n \xrightarrow{u} g$ sur tout segment de I.

- Théorème de la double limite : $f_n: X \to F$, $X \subset E$, F espace vectoriel normé complet, $a \in \overline{X}$. Si $f_n \xrightarrow{u} f$ sur X et si $\forall n \in \mathbb{N}$, $\lim_{x \to a, x \in X} f_n(x)$ existe et vaut $l_n \in F$, alors la suite $(l_n)_{n \in \mathbb{N}}$ converge vers l dans F, f admet en a une limite égale à l. Autrement dit : $\lim_{n \to +\infty} (\lim_{x \to a, x \in X} f_n(x)) = \lim_{x \to a, x \in X} (\lim_{n \to +\infty} (f_n(x)))$.
- Théorème de convergence dominée : Soit $(f_n: I \to K)_{n \in \mathbb{N}}$ une suite d'applications telle que $f_n \xrightarrow{s} f$ sur I. Si $\forall n \in \mathbb{N}$, $(f_n, f) \in (CM(I, K))^2$ et si $\exists \varphi: I \to \mathbb{R}$ continue par morceaux, positive et intégrable sur I telle que $\forall n \in \mathbb{N}$, $|f_n| \leq \varphi$, alors $f \in L^1(I)$ et $\int_I f = \lim_{n \to +\infty} \int_I f_n$.

 $\forall t \in I, \forall n \in \mathbb{N}, \left|f_n(t)\right| \leq \varphi(t) \text{ est l'hypothèse de domination. } \varphi \in L^1(I) \text{ et ne dépend pas de } n \,.$

 $\sum u_n$ uniformément convergente sur X

 $\iff \forall n \in \mathbb{N}, R_n$ défini sur X et $R_n \overset{u}{---} 0$ sur X

ullet Soit $u_{\scriptscriptstyle n}:X o F$. Si F est complet, toute série normalement convergente sur X est uniformément convergente sur X .

- Théorème de continuité d'une somme uniforme : $u_n:I\to F$. Si les u_n sont continues sur I et si $\sum_{n\geq 0}u_n$ converge uniformément sur tout segment de I , alors $U=\sum_{n\geq 0}u_n$ est continue sur I .
- Théorème d'intégration terme à terme :
 - 1) Si I est un segment, $u_n, U \in CM(I, \mathbb{C})$ et $\sum u_n$ uniformément convergente sur I, alors $\int_I \sum_{n \geq 0} u_n = \sum_{n \geq 0} \int_I u_n$.
 - 2) Soit I intervalle quelconque, $u_n, U \in CM(I, \mathbb{C})$, $U = \sum_{n=0}^{+\infty} u_n$. Si $u_n \in L^1(I, \mathbb{C})$ et si $\sum_{n \geq 0} \int_I |u_n|$ converge, alors $U \in L^1(I, \mathbb{C})$ et $\int_I \sum_{n \geq 0} u_n = \sum_{n \geq 0} \int_I u_n$. De plus, $\left| \int_I U \right| \leq \sum_{n=0}^{+\infty} \int_I |u_n|$.
- Théorème de dérivation terme à terme : I intervalle de \mathbb{R} , $u_n \in C^1(I,F)$, F espace de Banach. Si $\exists x_0 \in I, \sum_{n \geq 0} u_n(x_0) \text{ converge et si } \sum_{n \geq 0} u_n^{'} \text{ est uniformément convergente sur } I \text{ ou sur tout segment de } I \text{ , alors } \sum_{n \geq 0} u_n \text{ est de classe } C^1 \text{ sur } I \text{ et } \forall x \in I, \frac{d}{dx} \left(\sum_{n \geq 0} u_n(x) \right) = \sum_{n \geq 0} \left(\frac{d}{dx} u_n(x) \right).$
- Théorème de la double limite : I intervalle de \mathbb{R} , $a \in \overline{I}$. Si $\sum_{n \geq 0} f_n$ converge uniformément sur I et si $\forall n \in \mathbb{N}, \lim_{x \to a} f_n(x) \text{ existe et vaut } l_n \text{ , alors la série } \sum_{n \geq 0} l_n \text{ est convergente et } \lim_{x \to a} \left(\sum_{n \geq 0} f_n(x) \right) = \sum_{n \geq 0} \left(\lim_{x \to a} f_n(x) \right).$

4. Intégrales paramétrées

- Soit $A \subset \mathbb{R}^m$, et soit $f: A \times [a,b] \to F$ continue. Alors la fonction $g: A \to F$ définie par $g(x) = \int_a^b f(x,t) dt$ est continue sur A.
- Soit A un intervalle, et soit $f: A \times [a,b] \to F$ continue et telle que $\frac{\partial f}{\partial x}$ existe et soit continue sur $A \times [a,b]$. Alors la fonction $g: A \to F$ définie par $g(x) = \int_a^b f(x,t)dt$ est de classe C^1 sur A et on a $\forall x \in A, g'(x) = \int_a^b \frac{\partial f}{\partial x}(x,t)dt$.
- Continuité sous le signe somme : Soit I un intervalle quelconque. Soit $A \subset \mathbb{R}^m$, et soit $f: A \times I \to \mathbb{C}$ continue par rapport à la première variable et telle que $\forall x \in A$ la fonction f(x,.) soit continue par morceaux sur I. On suppose de plus qu'il existe φ intégrable sur I telle que $\forall t \in I, \forall x \in A, |f(x,t)| \leq \varphi(t)$. Alors la fonction $g: A \to \mathbb{C}$ définie par $g(x) = \int_I f(x,t) dt$ est continue sur A.
- <u>Dérivation sous le signe somme</u>: Soit A un intervalle, $n \in \mathbb{N}^*$, et soit $f: A \times I \to \mathbb{C}$ vérifiant les hypothèses du théorème précédent et telle que $\forall k \in \{1,...,n\}, \frac{\partial^k f}{\partial x^k}$ existe et vérifie aussi les mêmes hypothèses. Alors la fonction $g: A \to \mathbb{C}$ définie par $g(x) = \int_I f(x,t) dt$ est de classe C^n sur A et on a : $\forall x \in A, \forall k \in \{1,...,n\}, g^{(k)}(x) = \int_I \frac{\partial^k f}{\partial x^k}(x,t) dt.$

Remarque : Pour les 2 théorèmes précédents et lorsque A est un intervalle de $\mathbb R$, il suffit d'établir les hypothèses de domination sur tout segment de A (domination locale). La dominatrice φ_k dépend du segment, de k mais pas de x.

• <u>Théorème de Fubini</u>: Soient I = [a,b] et J = [c,d] 2 segments. Soit $f: I \times J \to F$ continue. Alors $\int_a^b \left(\int_a^d f(x,y) dy \right) dx = \int_a^d \left(\int_a^b f(x,y) dx \right) dy$. • Fonction Gamma: Pour x > 0 et $n \in \mathbb{N}^*$, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$; $\Gamma(x+1) = x\Gamma(x)$; $\Gamma(n+1) = n!$; $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

5. Séries entières

- <u>Lemme d'Abel</u>: $(a_n)_{n\in\mathbb{N}}$ suite de complexes, $S(x) = \sum_{n\geq 0} a_n x^n$. Soit r>0 tel que la suite $(a_n r^n)_{n\in\mathbb{N}}$ soit bornée. Alors
 - 1) Si $|x| < r, \sum_{n \ge 0} a_n x^n$ est absolument convergente.
 - 2) La série de fonctions $S(x) = \sum_{n \geq 0} a_n x^n$ est normalement convergente, donc uniformément convergente, sur tout compact K du disque ouvert $D_r = \{z \in \mathbb{C} \mid |z| < r\}$ et sur tout disque fermé $D_a = \{z \in \mathbb{C} \mid |z| \leq a < r\} \subset D_r$.
- <u>Critère de D'Alembert pour séries entières</u>: Soit $S(x) = \sum_{n \geq 0} a_n x^n$ une série entière. Si $\exists N, \forall n \geq N, a_n \neq 0$ et si la suite $\left(\left| \frac{a_{n+1}}{a_n} \right| \right)_{n=1}$ converge, de limite l, alors le rayon de convergence de S vaut $\rho(S) = \frac{1}{l}$.
- Soit $S(x) = \sum_{n \ge 0} a_n x^n$ et $T(x) = \sum_{n \ge 0} b_n x^n$.
 - 1) Si $|a_n| \sim |b_n|$, alors $\rho(S) = \rho(T)$.
 - 2) S'il existe $P \in \mathbb{C}[X], P \neq 0$ tel que $\forall n \in \mathbb{N}, b_n = P(n)a_n$, alors $\rho(S) = \rho(T)$.
- $S(x) = \sum_{n \geq 0} a_n x^n$, $x \in \mathbb{R}, a_n \in \mathbb{C}$, $R = \rho(S) > 0$,]-R, R[l'intervalle ouvert de convergence de S(x). Alors :
 - 1) Sur $\left]-R,R\right[$, on peut dériver S terme à terme et la série dérivée S' a même rayon de convergence que S .
 - 2) S est de classe C^{∞} sur]-R,R[. On peut dériver S terme à terme sur]-R,R[à tout ordre.

On a
$$\forall k \in \mathbb{N}, S^{(k)}(0) = k! a_k$$
 et si $|x| < R, S^{(k)}(x) = \sum_{p=k}^{+\infty} a_p p(p-1)...(p-k+1)x^{p-k}$.

- 3) Pour |x| < R, on peut intégrer S terme à terme sur [0,x] et la série intégrée a même rayon de convergence que S: c'est l'unique primitive de S sur]-R,R[qui s'annule en 0.
- Toute fraction rationnelle n'admettant pas 0 comme pôle est DSE(0). On obtient le DSE(0) par décomposition en éléments simples sur \mathbb{C} , le rayon de convergence est le plus petit module des pôles.
- $\forall z \in \mathbb{C}, \cos(iz) = ch(z) \text{ et } \sin(iz) = ish(z)$.

6. Séries de Fourier

Dans cette partie, $\sum_{k \in \mathbb{Z}^*} u_k$ désigne, quand elle converge, la somme de la série de terme général $v_k = u_k + u_{-k}$ ($k \in \mathbb{N}^*$).

Alors
$$\sum_{k\in\mathbb{Z}}u_k=u_0+\sum_{k=1}^{+\infty}(u_k+u_{-k}).$$

- Théorème de Dirichlet : Si $f: \mathbb{R} \to \mathbb{C}$ est de période 2π et de classe C^1 par morceaux sur \mathbb{R} , alors la série de Fourier S(f) de f converge simplement sur \mathbb{R} et $\forall x \in \mathbb{R}, S(f)(x) = \frac{1}{2} \left(\lim_{t \to x^-} f(t) + \lim_{t \to x^+} f(t) \right)$.
- Théorème de convergence normale : Si $f: \mathbb{R} \to \mathbb{C}$ est de période 2π , continue et de classe C^1 par morceaux sur \mathbb{R} , alors la série de Fourier de f converge normalement sur \mathbb{R} et vaut f.

• Formule de Parseval: Si $f: \mathbb{R} \to \mathbb{C}$ est de période 2π , continue par morceaux sur \mathbb{R} (i.e. sur tout/un segment de longueur 2π), alors $\sum_{n=0}^{+\infty} \left| c_n(f) \right|^2 = \frac{1}{2\pi} \int_0^{2\pi} \left| f(x) \right|^2 dx$ ou encore $\frac{\left| a_0 \right|^2}{2} + \sum_{n=0}^{+\infty} \left(\left| a_n \right|^2 + \left| b_n \right|^2 \right) = \frac{1}{\pi} \int_0^{2\pi} \left| f(x) \right|^2 dx$.

7. Fonctions de plusieurs variables

$$D \text{ ouvert de } \mathbb{R}^n. \ f:D \to \mathbb{R}^p, \forall x=(x_1,...,x_n) \in D, f(x) = \begin{pmatrix} f_1(x)\\ ...\\ f_p(x) \end{pmatrix}.$$

- <u>Applications partielles</u>: Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ et $x \in \mathbb{R}^n$. La i-ème application partielle ϕ_i au point $x \in \mathbb{R}^n$ est définie par $\phi_i: \underset{t \mapsto f(x_1, \dots, x_{i-1}, t, x_{i+k}, \dots, x_n)}{\mathbb{R}^p}$. Si f est continue, il en est de même de ses applications partielles, mais la réciproque est fausse.
- f est dite de classe C^1 sur D si chacune de ses dérivées partielles existe et est continue sur D.
- <u>Différentielle</u>: Si f est de classe C^1 sur D, alors, $\forall x \in D, \forall h \in \mathbb{R}^n$ avec $x + h \in D$, on a: $f(x+h) = f(x) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(x) + o(\|h\|). \text{ Cette expression est le développement limité de } f \text{ en } x \text{ à l'ordre 1.}$

$$df(x) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) dx_i \text{ est l'application linéaire tangente (ou différentielle) de } f \text{ au point } x.$$

- Si $f = h \circ g \in C^1(D)$, alors $\forall x \in D, \forall i \in \{1, ..., p\}, \frac{\partial f}{\partial x_i}(x) = \sum_{k=1}^n \frac{\partial h}{\partial u_k}(g(x)) \frac{\partial u_k}{\partial x_i}(x)$.
- Théorème de Schwarz: Si $f \in C^2(D)$, alors $\forall x \in D, \forall (i,j) \in \{1,...n\}^2$, $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(x)$.
- Caractérisation des extrema : Soit f de classe C^1 sur D. Si un point a intérieur à D correspond à un extremum local de f, alors les dérivées partielles de f en a s'annulent. a est alors appelé un point critique de f. Dans le cas des fonctions de \mathbb{R}^2 dans \mathbb{R} , on note si a est un élément de \mathbb{R}^2 : $r = \frac{\partial^2 f}{\partial x^2}(a)$, $t = \frac{\partial^2 f}{\partial y^2}(a)$ et $s = \frac{\partial^2 f}{\partial y \partial x}(a)$. On a :
 - 1) Si $rt-s^2 > 0$ et r < 0, alors a est un maximum local de f.
 - 2) Si $rt-s^2 > 0$ et r > 0, alors a est un minimum local de f.
 - 3) Si $rt-s^2 < 0$, alors α n'est pas un extremum de f.
- Formule de Taylor-Young : Si $f \in C^2(U, \mathbb{R})$ où U est un ouvert de \mathbb{R}^2 , et (a,b) un point de U, alors on a pour h et k assez petits :

$$f(a+h,b+k) = f(a,b) + h\frac{\partial f}{\partial x}(a,b) + k\frac{\partial f}{\partial y}(a,b) + \frac{1}{2} \left[h^2 \frac{\partial^2 f}{\partial x^2}(a,b) + 2hk \frac{\partial^2 f}{\partial x \partial y}(a,b) + k^2 \frac{\partial^2 f}{\partial y^2}(a,b) \right] + o\left(\|h,k\|^2 \right).$$

- On appelle matrice jacobienne de f au point a la matrice de df(a), relativement aux bases canoniques de \mathbb{R}^p et \mathbb{R}^n . Elle est notée $J_f(a) = \left[\frac{\partial f_i}{\partial x_j}(a)\right]$ pour $1 \le i \le p$ et $1 \le j \le n$. Son déterminant est appelé le jacobien de f au point a et est noté $j_f(a)$.
- Théorème d'inversion : Si f est de classe C^1 sur D et injective , alors f est un C^1 -difféomorphisme de D sur f(D) si et seulement si, $\forall a \in D$, df(a) est un isomorphisme d'espaces vectoriels. Dans ce cas, $J_{f^{-1}}(f(a)) = (J_f(a))^{-1}$.

8. Espaces vectoriels normés

E espace vectoriel sur $K = \mathbb{R}$ ou \mathbb{C} , de dimension finie ou non.

• Une norme est une application $\|.\|: E \to \mathbb{R}^+$ telle que :

1)
$$\forall x \in E, ||x|| \ge 0 \text{ et } ||x|| = 0 \implies x = 0$$

2)
$$\forall x \in E, \forall \lambda \in K, ||\lambda x|| = |\lambda|||x||$$

3)
$$\forall (x, y) \in E^2, ||x + y|| \le ||x|| + ||y||$$
 (inégalité triangulaire)

$$d(x,y) = ||x-y||$$
 est la distance associée à ||.||

• Normes usuelles :

1) Sur
$$\mathbf{K}^{n}$$
: $\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|, \|x\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}}, \|x\|_{\infty} = \sup_{1 \le i \le n} |x_{i}|$

2) Sur
$$C([a,b],K)$$
 : $||f||_1 = \int_a^b |f(t)| dt$, $||f||_2 = \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$, $||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$

3) Sur
$$M_n(K)$$
: $||M||_1 = \sum_{1 \le i, j \le n} |m_{i,j}|, ||M||_2 = \left(\sum_{1 \le i, j \le n} |m_{i,j}|^2\right)^{\frac{1}{2}}, ||M||_{\infty} = \sup_{1 \le i, j \le n} |m_{i,j}|$

- 2 normes N_1 et N_2 de E sont équivalentes si et seulement si il existe $\alpha, \beta > 0$ tels que $\forall x \in E, \alpha N_1(x) \leq N_2(x) \leq \beta N_1(x)$.
- U partie de E est un ouvert si et seulement si U est voisinage de chacun de ses points (\Leftrightarrow $U=\overset{\circ}{U}$).
- U partie de E est un fermé si et seulement si $\overline{A} = A$ où \overline{A} est l'adhérence de A. x est adhérent à A si et seulement si on peut tendre vers x « en restant dans A ».
- A,B parties de E. A est dense dans B si et seulement si \overline{A} contient B.
- L'image réciproque continue d'un ouvert (resp. d'un fermé) est un ouvert (resp. un fermé).
- Compacité : Une partie A de E est dite compacte si et seulement si de toute suite de points de A on peut extraire une sous-suite convergente vers un point de A. Si A est compacte, A est fermée et bornée. La réciproque n'est vraie qu'en dimension finie. Si A est compacte et si $X \subset A$ est fermée, X est compacte. Si A est compacte, A est compacte (voir plus loin). Un produit de compacts est compact.
- L'image continue d'un compact est compacte.
- Toute application continue sur un compact y est bornée et atteint ses bornes.
- Théorème de Heine-Borel : Toute application continue sur un compact y est uniformément continue.
- Complétude : E est dit complet si et seulement si toute suite de Cauchy de points de E converge. Si E est complet, E est un espace de banach. Tout espace vectoriel normé de dimension finie est complet.