ГУАП

КАФЕДРА № 41

ОТЧЕТ			
ЗАЩИЩЕН С ОЦЕНКОЙ	Á		
ПРЕПОДАВАТЕЛЬ			
старший преподавате	ЭЛЬ		Е. К. Григорьев
должн., уч. степень, зва	ание	подпись, дата	инициалы, фамилия
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 3.			
OTAET O JIADOPATOPHOM PADOTE JE 5.			
		U	
МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН С ЗАДАННЫМ			
ЗАКОНОМ РАСПРЕДЕЛЕНИЯ МЕТОДОМ ОБРАТНОЙ ФУНКЦИИ			
по курсу: МОДЕЛИРОВАНИЕ.			
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. № 4	217		У. А. Мазориев
· ·		подпись, дата	инициалы, фамилия

Цель работы:

Получить навыки моделирования наиболее известных генераторов равномерно распределенных псевдослучайных чисел в программной среде Python, а также первичной оценки качества полученных псевдослучайных чисел.

Результат выполнения работы

Программный код можно посмотреть, перейдя по ссылке на GitHub: https://github.com/Mrx112426/Modelirovanie/tree/main

Ход выполнения работы

Распределение Рэлея — распределение вероятностей X случайной величины

$$f(x;\sigma) = rac{x}{\sigma^2} \expigg(-rac{x^2}{2\sigma^2}igg), x\geqslant 0, \sigma>0,$$

где — параметр масштаба. Соответствующая функция распределения имеет вид

$$\mathsf{P}(X\leqslant x)=\int\limits_0^x f(\xi)\,d\xi=1-\exp\Bigl(-rac{x^2}{2\sigma^2}\Bigr), x\geqslant 0.$$

На рисунке 1 показан график плотности распределения вероятностей распределение Рэлея.

Рисунок 1 - Плотность распределения вероятностей На рисунке 2 показан график функции распределения.

Рисунок 2 - График функции распределения

Метод обратной функции - метод для генерации случайных величин с заданным распределением на основе того, что функция распределения известна. Суть метода заключается в том, чтобы найти обратную функцию от распределения и применить её для получения случайных чисел с нужной функцией распределения.

Если U - случайная величина, распределенная равномерно на [0,1], то значение X, распределённое по $F_X(X) = U$ можно получить из уравнения:

$$F_X(X) = U$$

Здесь $F_X(X)$ - функция распределения случайной величины X.

$$X = F_X^{-1}(U)$$

После реализуется скрипт на Python, результаты для N = [1000, 5000, 10000], результаты показаны на рисунках 3 - 5.

Рисунок 3 - Визуализация графиков N=1000

Рисунок 4 - Визуализация графиков N = 5000

Рисунок 5 - Визуализация графиков N = 10000

Также выводятся основные характеристики (рис. 6).

```
Для N = 1000:
Среднее: 2.4955 (теор. 2.5066)
Дисперсия: 1.5350 (теор. 1.7168)
CKO: 1.2389 (Teop. 1.3103)
Медиана: 2.3471
Мода: 0.0993
Размах: 6.9795
Количество интервалов: 31
Длина интервала: 0.2251
Коэффициент асимметрии: 0.5836
Коэффициент эксцесса (без коррекции): 3.0946
\squareля N = 5000:
Среднее: 2.5086 (теор. 2.5066)
Дисперсия: 1.7113 (теор. 1.7168)
CKO: 1.3082 (Teop. 1.3103)
Медиана: 2.3766
Мода: 0.0723
Размах: 8.7211
Количество интервалов: 70
Длина интервала: 0.1246
Коэффициент асимметрии: 0.6125
Коэффициент эксцесса (без коррекции): 3.2596
Для N = 10000:
Среднее: 2.5128 (теор. 2.5066)
Дисперсия: 1.7518 (теор. 1.7168)
CKO: 1.3236 (Teop. 1.3103)
Медиана: 2.3551
Мода: 0.0507
Размах: 9.2040
Количество интервалов: 100
Длина интервала: 0.0920
Коэффициент асимметрии: 0.6809
Коэффициент эксцесса (без коррекции): 3.4134
```

Рисунок 6 - Подсчитанные характеристики для N = [1000, 5000, 10000]

Проделанная работа показывает, что генератор псевдослучайных чисел работает хорошо, с увеличением объёма выборки наблюдается сходимость выборочных характеристик к теоретическим значениям, что подтверждается уменьшением разницы между расчетными и ожидаемыми средними, дисперсией и стандартным отклонением. С ростом выборки увеличивается размах данных, что связано с большей вероятностью появления редких значений в более крупных выборках. Коэффициенты асимметрии и эксцесса остаются положительными, что свидетельствует о скошенности распределения вправо и его более вытянутой форме по сравнению с нормальным распределением.

Вывод

В ходе лабораторной работы были получены навыки моделирования случайных величин с заданным законом распределения методом обратной функции в программной среде Python, а также первичной оценки качества полученных псевдослучайных чисел.