INSTYTUT FIZYKI UNIWERSYTET ŚLĄSKI

I PRACOWNIA FIZYCZNA SPRAWOZDANIE

Wyznaczanie współczynnika lepkości cieczy metodą Stokesa

Nr ćwiczenia:

20

Data wykonania ćwiczenia: 08.05.2014

Imię i nazwisko osoby wykonującej ćwiczenie: Andrzej Więckowski

Rok studiów, kierunek: I, Fizyka Techniczna (MISMP)

Spis treści

1 Wstęp teoretyczny								
	1.1	Współczynnik lepkości	2					
	1.2	Wiskozymetr Stokesa	2					
	1.3	Poprawka ośrodka o ograniczonej szerokości	3					
	1.4	Aparatura	3					
	1.5	Wykonanie ćwiczenia	4					
2	Opi	cacowanie wyników	5					
	2.1	Masa kulek m i promień r	5					
	2.2	Prędkości poruszania się kulek v_k	6					
	2.3	Gęstość gliceryny ρ	8					
	2.4	Współczynnik lepkości η	8					
3	Wn	ioski	11					

1 Wstęp teoretyczny

1.1 Współczynnik lepkości

Ciecz zwilżająca pokrywa cienką warstwą ciała w niej zanurzone, na przykład kulkę metalową. Z tego powodu, gdy kulka jest w ruchu, unosi ze sobą warstwę przylegającego płynu, a ten na skutek zjawiska tarcia wewnętrz samego płynu wprawia w ruch następne warstwy (rysunek 1). Z omawianych powyzej powodów siła oporu F_r , z jaką płyn działa na poruszającą się kulkę, zależy od współczynnika lepkości płynu i wyraża się wzorem Stokesa:

$$F_r = 6\pi \eta r v \tag{1}$$

Jeżeli kulka wykonana jest z materiału o gęstości ρ , większej od gęstości ρ_p płynu, to ruch może następować na skutek działania siły ciężkości $F_G = mg = \frac{4}{3}\pi r \rho_p g$. Na kulkę działa również siła wyporu Archimedesa $F_w = -\frac{4}{3}\pi r^3 \rho_p g$. Sumujemy wszystkie siły działąjące na kulkę $\mathbf{F} = \mathbf{F}_T + \mathbf{F}_g + \mathbf{F}_w$ i mamy:

$$F = \frac{4}{3}\pi r^3 \rho_k g - \frac{4}{3}\pi r^3 \rho_p g - 6\pi \eta r v \tag{2}$$

Trzeci wyraz prawej strony ostatniego wyrażenia zależy od prędkości i istnieje taka prędkość v_0 , przy której siła F jest równa zeru, co oznacza, że kulka porusza się ruchem jednostajnym (I zasada dynamiki). Jeżeli prędkość jest różna od v_0 to kulka porusza się ruchem przyśpieszonym i jej prędkość wzrasta lub maleje do chwili osiągnięcia wartości v_0 . Równanie (1) jest ścisłe tylko wtedy, gdy kulka porusza się w ośrodku o nieograniczonej szerokości i gdy mamy do czynienia z ruchem laminarnym. Gdy kulka porusza się w rurze o promieniu R wypełnionej cieczą, wtedy równanie Stokesa przyjmuje postać:

$$F_T = -6\pi \eta r v \left(1 - \frac{r}{R}\right)^{-n} \tag{3}$$

Uwzględniamy tę poprawkę w równaniu (2) i zakładamy F = 0 oraz $v = \frac{l}{t}$, gdzie t - czas spadania kulki na drodze l. Otrzymujemy:

$$\eta = \frac{2(\rho_k - \rho_p)gr^2t}{\Omega I} \left(1 - \frac{r}{R}\right)^n \tag{4}$$

Założenie laminarności ruchu jest spełnione, gdy małą wartość ma liczba Reynoldsa, która w tym przypadku wyraża się wzorem Re = $\rho_p vr\eta$

1.2 Wiskozymetr Stokesa

Aparatura (rysunek 2) składa się z cylindra szklanego o wysokości około 50 cm i promieniu R>5 cm. Cylinder wypełniamy badaną cieczą. Kulki powinny spadać mniej więcej wzdłuż osi cylindra; można je dopowiednio kierować za pomocą lejka L. Omawiana metoda pomiaru nadaje się wyłącznie do cieczy o dużym współczynniku lepkości. Dla innych cieczy czas spadania kulki jest niemierzalnie mały. Wadą metody jest konieczność stosowania dużej ilości cieczy. W doświadczeniu mierzy się czas spadania każdej kulki na drodze l. Początek drogi powinnien znajdować

Rysunek 1: Opadanie kulki w ośrodku lepkim

się w odległości kilki centymetrów od powierzchni cieczy, gdyż w pierwszej chwili kulka nie porusza się jeszcze ruchem jednostajnym. Koniec drogi obieramy w pobliżu dna naczynia.

1.3 Poprawka ośrodka o ograniczonej szerokości

Pomiary należy wykonać dla dwóch kulek z tego samego materiału, lecz o różnym promieniu. Pomiary takie pozwalają nam określić wykładnik potęgowy n w równaniu (4). Wychodząc z założenia, że pomiary wykonane dla obydwu kulek muszą dać taką samą wartość współczynnika lepkości, mamy:

$$r_1^2 t_1 \left(1 - \frac{r_1}{R}\right)^n = r_2^2 t_2 \left(1 - \frac{r_2}{R}\right)^n \tag{5}$$

$$n = \frac{\log\left(\frac{r_2^2 t_2}{r_1^2 t_1}\right)}{\log\left(\frac{R - r_1}{R - r_2}\right)} \tag{6}$$

Jeżeli pomiary wykonywać można tylko dla jednego rodzaju kulek, to możemy uzyskać tylko przybliżony wynik, zakładając, że n=1.

W dalszej części sprawozdania w poprawce zakładamy, że n=2,4 oraz dodatkowo przybliżono z korzystająć z nierówności Bernoulliego:

$$\left(1 - \frac{r}{R}\right)^n \approx \left(1 - n\frac{r}{R}\right) \tag{7}$$

1.4 Aparatura

- Wiskozymetr Stokesa;
- Waga laboratoryjna;

Rysunek 2: Schematyczny układ doświadczalny - wizkozymetr Stokesa

- Stoper;
- Śruba mikrometryczna;
- Kulki pomiarowe (10 szt.);
- Łyżeczka do wrzucenia kulek.

1.5 Wykonanie ćwiczenia

- 1. Zważono, wagą elektroniczną w pokoju laborantów, wszystkie 10 kulek i określono średnią masę m pojedynczej kulki.
- 2. Śrubą mikrometryczną zmierzono wielokrotnie średnicę d każdej z 10 kulek i określono na tej podstawie średnią wartość promienia r.
- 3. Przed wrzuceniem każdej kolejnej kulki dopełniano zawartość gliceryny w rurze tak, aby jej poziom znajdował się powyżej czerwonej linii.
- 4. Wrzucano łyżeczką pojedynczo każdą kulkę (poprzez lejek) do rury wiskozymetru i stoperem mierzono czas t jej swobodnego spadku przy zadanej drodze S w rurze.

2 Opracowanie wyników

2.1 Masa kulek m i promień r

Zważone wszystkie kulki miały masę M=2,041 [g], a zatem średnia masa jednej kuli wynosi $\bar{m}=0,2041$ [g]. Niedokładność pomiaru wagi wynosi $\delta m=0,001$ [g], a zatem ostatecznie:

$$m = \bar{m} \pm \delta m = 2041 \pm 1 \,[\text{mg}] \tag{8}$$

Poniższa tabelka zawiera zebrane dane pomiarowe odnośnie średnic kulek. Obliczono na tej podstawie średnią artymetyczną średnicy kulek \bar{d} , odchylenie standardowe σ_d i odchylenie standardowe średniej $\sigma_{\bar{d}}$. Skorzystano przy tym z następujących wzorów:

$$\bar{x} = \frac{1}{N} \sum_{i}^{N} x_i \tag{9}$$

$$\sigma_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})}$$

$$\tag{10}$$

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{N}} \tag{11}$$

średnica kulek d [mm]							
1	6,48	11	6,42				
2	6,47	12	6,03				
3	5,83	13	6,42				
4	5,77	14	6,49				
5	5,92	15	$6,\!47$				
6	6,42	16	6,41				
7	6,41	17	6,4				
8	6,39	18	6,39				
9	6,44	19	5,86				
10	6,39	20	5,87				
\bar{d} [mm] 6 264							

$\bar{d} \; [\mathrm{mm}]$	6,264
σ_d [mm]	0,263507
$\sigma_{ar{d}} \ [ext{mm}]$	0,058922

Ostatecznie:

$$d = \bar{d} \pm \delta d = 6,26 \pm 0,06 \,[\text{mm}]$$
 (12)

Oraz promień kulki r:

$$r = \frac{1}{2}d \implies r = \bar{r} \pm \delta r = 3,13 \pm 0,03 \,[\text{mm}]$$
 (13)

2.2 Prędkości poruszania się kulek v_k

Najpierw policzono czasy średnie \bar{t} spadania kulek w każdej serii S. Policzono również odchylenia standardowe i odchylenia standardowe średniej korzystając przy tym z wcześniejszych wzorów (9), (10) i (11). Poniższa tabelka zawiera mówione wcześniej wielkości i zebrane dane czasów t.

	droga kulki S [cm]					
i	80	70	60	50	40	
	czas spadania kulki t [s]					
1	17,66	15,13	12,83	10,65	8,62	
2	17,83	15,01	12,87	10,87	8,51	
3	17,55	15,89	13,17	10,87	8,89	
4	17,3	15,48	12,96	11,05	8,83	
5	17,63	15,09	12,9	10,87	8,93	
6	17,64	14,88	13,06	10,88	8,77	
7	17,44	16,2	13,7	10,89	8,73	
8	17,49	16,18	13,79	10,92	8,66	
9	17,49	15,45	12,93	10,86	8,56	
10	17,4	15,47	13,05	11,29	8,59	
11	17,4	15,31	12,9	10,97	8,73	
12	17,5	15,44	12,95	10,73	8,58	
13	18,49	14,92	13,31	10,93	9,16	
14	18,51	14,97	13,22	10,84	9,18	
15	17,49	15,34	13,02	11,64	8,76	
16	17,6	15,14	13,09	11,54	8,82	
17	17,49	15,01	13,05	10,97	8,77	
18	17,33	15,45	13,06	11,06	8,73	
19	17,1	15,17	12,91	10,83	8,5	
20	17,09	15,22	12,88	11,09	8,45	
\bar{t} [s]	17,5715	15,3375	13,0825	10,9875	8,7385	
σ_t [s]	0,362916	0,380566	0,258475	0,246681	0,197545	
$\sigma_{ar{t}} \; [\mathrm{s}]$	0,081151	0,085097	0,057797	0,055159	0,044172	

Ostatecznie (czasy t_i , i=1,...,n indeksowane są zgodnie z kolejnością dróg S w tabelce – 80, 70, 60 ...):

$$t_1 = \bar{t}_1 \pm \delta t_1 = 17,57 \pm 0,08 \,[s]$$
 (14)

$$t_2 = \bar{t}_2 \pm \delta t_2 = 15,34 \pm 0,09 \,[s]$$
 (15)

$$t_3 = \bar{t}_3 \pm \delta t_3 = 13,08 \pm 0,06 \,[s]$$
 (16)

$$t_4 = \bar{t}_4 \pm \delta t_4 = 10,99 \pm 0,06 \,[s]$$
 (17)

$$t_5 = \bar{t}_5 \pm \delta t_5 = 8,74 \pm 0,04 [s]$$
 (18)

Dla danej kulki prędkość $v_{\mathbf{k}i}$ porusznia się w rurze wyraża się wzorem:

$$v_{\mathbf{k}i} = \frac{S_i}{t_i} \tag{19}$$

Stąd policzone najlepsze przybliżenia \bar{v}_{ki} :

$$\bar{v}_{k1} = 0,04552827 \left[\frac{m}{s} \right]$$
 (20)

$$\bar{v}_{k2} = 0,045639772 \left[\frac{m}{s}\right]$$
 (21)

$$\bar{v}_{k3} = 0,045862794 \left[\frac{m}{s}\right]$$
 (22)

$$\bar{v}_{k4} = 0,045506257 \left[\frac{m}{s}\right]$$
 (23)

$$\bar{v}_{k5} = 0,045774446 \left[\frac{m}{s}\right]$$
 (24)

Niepewności pomiarowe $\delta v_{\mathbf{k}i}$ obliczamy z reguł przenoszenia się niepewności dla iloczynu i ilorazu:

$$\frac{\delta v_{ki}}{\bar{v}_{ki}} = \frac{\delta t_i}{\bar{t}_i}$$

$$\delta v_{ki} = \frac{S_i}{\bar{t}_i^2} \delta t \tag{25}$$

$$\delta v_{\rm k1} = 0,000210263 \left[\frac{\rm m}{\rm s} \right]$$
 (26)

$$\delta v_{\rm k2} = 0,000253223 \left[\frac{\rm m}{\rm s} \right]$$
 (27)

$$\delta v_{\rm k3} = 0,000202616 \left[\frac{\rm m}{\rm s} \right]$$
 (28)

$$\delta v_{\rm k4} = 0,000228451 \left[\frac{\rm m}{\rm s} \right]$$
 (29)

$$\delta v_{\rm k5} = 0,000231386 \left[\frac{\rm m}{\rm s} \right]$$
 (30)

Ostatecznie:

$$v_{\rm k1} = \bar{v}_{\rm k1} \pm \delta v_{\rm k1} = 4,553 \pm 0,021 \left[\frac{\rm cm}{\rm s}\right]$$
 (31)

$$v_{k2} = \bar{v}_{k2} \pm \delta v_{k2} = 4,563 \pm 0,025 \left[\frac{\text{cm}}{\text{s}}\right]$$
 (32)

$$v_{k3} = \bar{v}_{k3} \pm \delta v_{k3} = 4,586 \pm 0,02 \left[\frac{\text{cm}}{\text{s}}\right]$$
 (33)

$$v_{k4} = \bar{v}_{k4} \pm \delta v_{k4} = 4,55 \pm 0,023 \left[\frac{\text{cm}}{\text{s}} \right]$$
 (34)

$$v_{k5} = \bar{v}_{k5} \pm \delta v_{k5} = 4,577 \pm 0,023 \left[\frac{\text{cm}}{\text{s}} \right]$$
 (35)

Wyniki zmierzonych prędkości są do siebie zbliżone. Najmniejszy błąd względny i bezwzględny przypada na środkowy pomiar, co może być spowodowane tym, że kulki poruszające się w początkowej fazie ruchu poruszają się ruchem jednostajnym przyśpieszonym, a dopiero później poruszają się ruchem jednostajnym.

2.3 Gęstość gliceryny ρ

Temperatura otoczenia wynosiła $T=20^{\circ}\mathrm{C}$. Dla takiej temperatury gęstość gliceryny i jej stężenia procentowego (88%) wynosi $\rho=1230,55\left[\frac{\mathrm{kg}}{\mathrm{m}^3}\right]$. Przy korzystaniu z programu Excel dokonano dopasowania najlepiej pasującej wartości stężenia procentowego gliceryny oraz odpowiadających tym danom lepkości tak, aby była najmniejsza różnica między lepkością tablicową, a lepkością otrzymną w wyniku doświadczenia. W późniejszej części sprawozdania zamieszczona jest tabelka ilusturjąca zmiany lepkości od temperatury i steżenia procentowego.

2.4 Współczynnik lepkości η

Następnie policzono współczynnik lepkości cieczy η dla każdej drogi S, korzystając przy tym ze wzoru:

$$\eta = \frac{m - V\rho}{6\pi r v_{k}} g \tag{36}$$

gdzie V to objętość kulki i wyraża się wzorem: $V = \frac{4}{3}\pi r^3$.

Poniżej zamieszczono tabelę z policzonymi najlepszymi przybliżeniami $\bar{\eta}$. Zamieszczono dane w dwóch jednostkach ze względu na późniejsze odwołanie się do danych tablicowych które są wyrażone w jednostce z poza SI – w jednostce miar CGS - pauz.

	S = 80 [cm]	S = 70 [cm]	S = 60 [cm]	S = 50 [cm]	S = 40 [cm]
$\bar{\eta} \; [\text{Pa·s}]$	0,166930112	0,166522	0,165713	0,167011	0,166032
$\bar{\eta}$ [cP]	166,9301121	166,5223	165,7125	167,0109	166,0324

Oczywiście w przypadku, gdy badana ciecz znajduje się w rurze o skończonym promieniu R należy uwzględnić efekt oddziaływania ścianek rury i skorzystać ze wzoru:

$$\eta' = \frac{(m - V\rho)g}{6\pi r v_{\rm k}(1 + 2, 4\frac{r}{B})}$$
(37)

	S = 80 [cm]	S = 70 [cm]	S = 60 [cm]	S = 50 [cm]	S = 40 [cm]
η' [Pa·s]	0,156252658	0,166522	0,165713	0,167011	0,166032
η' [cP]	156,2526578	166,5223	165,7125	167,0109	166,0324

Niepewności pomiarowe $\delta\eta$ policzono korzystając z metody różniczki zupełnej:

$$\delta \eta = \left| \frac{\partial \eta}{\partial m} \right| \delta m + \left| \frac{\partial \eta}{\partial r} \right| \delta r + \left| \frac{\partial \eta}{\partial v_{\mathbf{k}}} \right| \delta v_{\mathbf{k}} =$$

$$= \delta m \left| \frac{g}{6 \pi r v_{k}} \right| + \delta r \left| -\frac{2 g r \rho}{3 v_{k}} + \frac{(4 \pi r^{3} \rho - 3 m) g}{18 \pi r^{2} v_{k}} \right| + \delta v_{k} \left| \frac{(4 \pi r^{3} \rho - 3 m) g}{18 \pi r v_{k}^{2}} \right|$$
(38)

Indeksowanie η_i , $\delta \eta_i$ przebiegało podobnie jak w przypadku indeksowania v_k . Poniżej zamieszczono policzone błędy $\delta \eta_i$:

$$\delta \eta_1 \approx 0,0223 \left[\text{Pa} \cdot \text{s} \right] \tag{39}$$

$$\delta \eta_2 \approx 0,0224 \left[\text{Pa} \cdot \text{s} \right] \tag{40}$$

$$\delta \eta_3 \approx 0,0221 \,[\text{Pa} \cdot \text{s}] \tag{41}$$

$$\delta \eta_4 \approx 0,0224 \left[\text{Pa} \cdot \text{s} \right] \tag{42}$$

$$\delta \eta_5 \approx 0.0223 \, [\text{Pa} \cdot \text{s}] \tag{43}$$

Ostatecznie:

$$\eta_1 = \bar{\eta}_1 \pm \delta \eta_1 = 0,167 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
 (44)

$$\eta_2 = \bar{\eta}_2 \pm \delta \eta_2 = 0,167 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
(45)

$$\eta_3 = \bar{\eta}_3 \pm \delta \eta_3 = 0,166 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
(46)

$$\eta_4 = \bar{\eta}_4 \pm \delta \eta_4 = 0,167 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
(47)

$$\eta_5 = \bar{\eta}_5 \pm \delta \eta_5 = 0,166 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
(48)

Podobnie policzono niepewność dla $\delta \eta'_i$. Różniczka zupełna dla η' troszkę się komplikuje. Wszystkie obliczenia wykonano w programie SAGE.

$$\delta\eta' = \left|\frac{\partial\eta}{\partial m}\right|\delta m + \left|\frac{\partial\eta}{\partial r}\right|\delta r + \left|\frac{\partial\eta}{\partial v_{k}}\right|\delta v_{k} = \\ \delta m\left|\frac{g}{6\left(\frac{ar}{R}+1\right)\pi r v_{k}}\right| + \delta v_{k}\left|\frac{(4\pi r^{3}\rho - 3m)g}{18\left(\frac{ar}{R}+1\right)\pi r v_{k}^{2}}\right| \\ + \delta r\left|-\frac{2gr\rho}{3\left(\frac{ar}{R}+1\right)v_{k}} + \frac{(4\pi r^{3}\rho - 3m)g}{18\left(\frac{ar}{R}+1\right)\pi r^{2}v_{k}} + \frac{(4\pi r^{3}\rho - 3m)ag}{18\left(\frac{ar}{R}+1\right)^{2}\pi R r v_{k}}\right| +$$

gdzie a=2,4 to współczynnik znajdujący się przy poprawce na ciecz znajdującą się w rurze o skończonym promieniu R.

$$\delta \eta_1' \approx 0,02096 \left[\text{Pa} \cdot \text{s} \right] \tag{49}$$

$$\delta \eta_2' \approx 0,02106 \left[\text{Pa} \cdot \text{s} \right] \tag{50}$$

$$\delta \eta_3' \approx 0,02078 \left[\text{Pa} \cdot \text{s} \right] \tag{51}$$

$$\delta \eta_A' \approx 0.02104 \left[\text{Pa} \cdot \text{s} \right]$$
 (52)

$$\delta \eta_5' \approx 0,02092 \left[\text{Pa} \cdot \text{s} \right] \tag{53}$$

Ostatecznie:

$$\eta_1' = \bar{\eta}_1' \pm \delta \eta_1' = 0,156 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (54)

$$\eta_2' = \bar{\eta}_2' \pm \delta \eta_2' = 0,167 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (55)

$$\eta_3' = \bar{\eta}_3' \pm \delta \eta_3' = 0,166 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (56)

$$\eta_4' = \bar{\eta}_4' \pm \delta \eta_4' = 0,167 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (57)

$$\eta_5' = \bar{\eta}_5' \pm \delta \eta_5' = 0,166 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (58)

W celu przeanalizowania zebranych danych pomiarowych oraz wyników umieszczono dane tablicowe:

Gęstość	Stężenie gliceryny	Lepkość roztworu [cP]		
$[\mathrm{g/cm^3}]$	[%]	20°C	25°C	$30^{\circ}\mathrm{C}$
1,20925	80	62	45,86	34,92
1,2119	81	69,3	51,02	38,56
1,21455	82	77,9	56,9	42,92
1,2172	83	87,9	64,2	47,9
1,2199	84	99,6	72,2	53,63
1,22255	85	112,9	81,5	60,05
1,2252	86	129,6	92,6	68,1
1,2279	87	150,4	106,1	77,5
1,23055	88	174,5	122,6	88,8
1,2332	89	201,4	141,8	101,1
1,23585	90	234,6	163,6	115,3
1,2385	91	278,4	189,3	134,4
1,24115	92	328,4	221,8	156,5
1,2438	93	387,7	262,9	182,8
1,24645	94	457,7	308,7	212
1,2491	95	545	366	248,8
1,25165	96	661	435	296,7
1,25425	97	805	522,9	354
1,25685	98	974	629	424
1,25945	99	1197	775	511
1,26201	100	1499	945	624

Na koniec wzięto średną artymetyczną zmierzonych wielkości ze wszystkich serii otrzymując dwa wyniki:

$$\eta = 0,166 \pm 0,022 \,[\text{Pa} \cdot \text{s}]$$
(59)

$$\eta' = 0,164 \pm 0,021 \,[\text{Pa} \cdot \text{s}]$$
 (60)

3 Wnioski

W wyniku przeprowadzonego doświadczenia otrzymano wartość lepkości gliceryny η' :

$$\eta' = 0,164 \pm 0,021 \, [\text{Pa} \cdot \text{s}]$$

Wynik ten jest obarczony 4,9% błędem względem danych tablicowych. Wywnioskowano również, że zawartość gliceryny w rozstworze zawiera się między 87–88%. W celu zwiększenia dokładności pomiarów należałoby wcześniej ustalić dokładną wartość procentową gliceryny.

Literatura

- [1] S. Szczeniowski: Fizyka doświadczalna, część I: Mechanika i akustyka, Państwowe Wydawnictwo Naukowe, Warszawa
- [2] H. Szydłowski: *Pracownia fizyczna*, Państwowe Wydawnictwo Naukowe, Warszawa
- [3] Ch. Hodgman: *Handbook of Chemistry and Physics*, Chemical Rubber Publishing Co., Cleveland, Ohio