Optimization and Data Science

Lecture 13: Quasi-Newton Methods

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

- Quasi-Newton Methods
 - Recall: Globalized Newton method
 - Finite-Difference Approximation of the Hessian
 - Basis of Quasi-Newton Methods: Secant Method
 - Quasi-Newton methods: Hessian Updates

- Quasi-Newton Methods
 - Recall: Globalized Newton method
 - Finite-Difference Approximation of the Hessian
 - Basis of Quasi-Newton Methods: Secant Method
 - Quasi-Newton methods: Hessian Updates

Globalized Newton method

Algorithm (Globalized Newton method):

- Fix some parameter c > 0.
- ② Choose initial guess $x_0 \in \mathbb{R}^n$.
- **6** For $k = 0, 1, \dots$:
 - **1** Compute Newton direction d_k , i.e., solve

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k),$$

2 If Newton direction is not gradient-related, i.e., if

$$-\frac{\nabla f(x_k)^{\top} d_k}{\|\nabla f(x_k)\| \|d_k\|} < c,$$

set
$$d_k = -\nabla f(x_k)$$
.

- **3** Choose an efficient step-size $\rho_k > 0$.
- **3** Set $x_{k+1} = x_k + \rho_k d_k$.

until a stopping criterion is satisfied.

Properties of globalized Newton method

• Under some assumptions (see last lecture), we obtain Q-superlinear convergence of the sequence of iterates, i.e., there exists $(q_k)_{k\in\mathbb{N}}, q_k \to 0$, with

$$||x_{k+1} - x^*|| \le q_k ||x_k - x^*||$$
 for all $k \in \mathbb{N}$.

- But we have higher effort (than, e.g., for the gradient method):
- In every Newton step we have to ...
- evaluate the gradient:

$$\mathcal{O}(n) \times \text{Effort } (f).$$

- evaluate the Hessian matrix:

$$\mathcal{O}(n^2) \times \text{Effort } (f).$$

- solve the linear system:

 $\mathcal{O}(n^3)$ operations for a dense matrix (less for a sparse matrix).

- Quasi-Newton Methods
 - Recall: Globalized Newton method
 - Finite-Difference Approximation of the Hessian
 - Basis of Quasi-Newton Methods: Secant Method
 - Quasi-Newton methods: Hessian Updates

Finite-Difference Approximation of the Hessian

• Components of the gradient $\nabla f(x)$ can be approximated by

$$\frac{\partial f}{\partial x_i}(x) \approx \frac{f(x + he_i) - f(x)}{h}, \quad i = 1, \dots, n, \text{ with } h > 0 \text{ fixed.}$$

- \rightarrow n additional evaluations of f.
- Components of the Hessian $\nabla^2 f(x)$ can be approximated by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \approx \frac{f(x + he_j + he_i) - f(x + he_i) - f(x + he_j) + f(x)}{h^2}, \quad i, j = 1, \dots, n,$$

again with fixed h > 0.

- Hessian symmetric $\rightsquigarrow \frac{n(n+1)}{2}$ additional evaluations of f.
- Used approximation introduces a special direction in the derivative approximation ...
- ... maybe not good.

Better Finite-Difference Approximation of the Hessian

• Central approximation for gradient:

$$\frac{\partial f}{\partial x_i}(x) pprox \frac{f(x+he_i)-f(x-he_i)}{2h}.$$

- \rightarrow 2n additional evaluations of f.
- Same idea for the Hessian:

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \approx \frac{\partial}{\partial x_i} \frac{f(x + he_j) - f(x - he_j)}{2h}$$

$$\approx \frac{1}{2h} \left(\frac{f(x + he_j + he_i) - f(x - he_j + he_i)}{2h} - \frac{f(x + he_j - he_i) - f(x - he_j - he_i)}{2h} \right).$$

• Hessian symmetric $\rightsquigarrow 4\frac{n(n+1)}{2} = 2n(n+1)$ additional evaluations of f.

- Quasi-Newton Methods
 - Recall: Globalized Newton method
 - Finite-Difference Approximation of the Hessian
 - Basis of Quasi-Newton Methods: Secant Method
 - Quasi-Newton methods: Hessian Updates

There is a more efficient way to approximate a derivative

• Back to 1-D Newton: find zero of nonlinear function $F : \mathbb{R} \to \mathbb{R}$ using the tangent at x_k :

$$F(x_k) + F'(x_k)(x_{k+1} - x_k) = 0$$

$$\Leftrightarrow F'(x_k)d_k = -F(x_k).$$

• Tangent can be approximated by secant, 1-D:

$$F'(x_k) \approx \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}}$$

• ... or (also for $F: \mathbb{R}^n \to \mathbb{R}^n$):

$$F'(x_k)(x_k - x_{k-1}) \approx F(x_k) - F(x_{k-1}),$$

• ... where $F(x_k) \in \mathbb{R}^{n \times n}$ is now a matrix.

Approximation of the derivative using the secant equation

• Idea: In the Newton method

$$F'(x_k)d_k = -F(x_k)$$
$$x_{k+1} = x_k + d_k,$$

- ... replace $F'(x_k)$ by a matrix $B_k \in \mathbb{R}^{n \times n}$ that satisfies
- ... the secant or Quasi-Newton equation:

$$B_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1}).$$

• How to construct the matrices B_k , k = 1, ..., in an easy and efficient way?

Broyden update

• We want that the matrices B_k satisfy the Quasi-Newton or secant equation:

$$B_k(x_k - x_{k-1}) = F(x_k) - F(x_{k-1}), \quad k = 0, 1, ...$$

We realize this by an easily computable and cheap, additive update

$$B_k := B_{k-1} + U_k, \quad k = 1, 2, ..., \text{ with } B_0 \text{ given},$$

... with the Broyden update

$$U_k := \frac{(y_k - B_{k-1}s_k)s_k^\top}{s_k^\top s_k}$$
 where $y_k := F(x_k) - F(x_{k-1}), s_k := x_k - x_{k-1}.$

• A matrix $\mathbf{v}\mathbf{s}^{\top} = (v_i s_j)_{i,i=1}^n \in \mathbb{R}^{n \times n}$ is called **dyadic product** of v and s.

Dyadic product

• Broyden update

$$U_k := \frac{(y_k - B_{k-1}s_k)s_k^\top}{s_k^\top s_k}$$

• is a dyadic product

$$oldsymbol{vs}^{ op} = (v_i s_j)_{i,j=1}^n = \left(egin{array}{ccc} v_1 s_1 & \cdots & v_1 s_n \ dots & & dots \ v_n s_1 & \cdots & v_n s_n \end{array}
ight) \in \mathbb{R}^{n imes n}.$$

- It has rank = 1, thus the Broyden update is called a rank 1-update.
- Obviously, it is not necessarily symmetric.
- Evaluation requires only n^2 operations.

Broyden update satisfies secant equation

Broyden update

$$U_k := \frac{(y_k - B_{k-1}s_k)s_k^{\top}}{s_k^{\top}s_k}, \quad y_k := F(x_k) - F(x_{k-1}), s_k := x_k - x_{k-1}.$$

• Using the Broyden update, the matrix B_k satisfies the secant equation

$$B_k s_k = (B_{k-1} + U_k) s_k = \left(B_{k-1} + \frac{(y_k - B_{k-1} s_k) s_k^{\top}}{s_k^{\top} s_k} \right) s_k$$

$$= B_{k-1} s_k + \frac{(y_k - B_{k-1} s_k) s_k^{\top} s_k}{s_k^{\top} s_k} = B_{k-1} s_k + y_k - B_{k-1} s_k = y_k.$$

Minimizing property of Broyden update

• The Broyden update is the minimal change to B_{k-1} that preserves the secant equation:

$$U_k = \operatorname{argmin} \left\{ \|V\| : V \in \mathbb{R}^{n \times n}, (B_{k-1} + V)s_k = y_k \right\}$$

ullet where $\|\cdot\|$ is a matrix norm that satisfies

$$||AB|| \le ||A|| ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$$
 $\left\| \frac{xx^{\top}}{x^{\top}x} \right\| \le 1 \qquad \forall x \in \mathbb{R}^{n}.$

• If $V \in \mathbb{R}^{n \times n}$ is any other matrix with $(B_{k-1} + V)s_k = y_k$, then

$$\|U_k\| = \left\| \frac{(y_k - B_{k-1}s_k)s_k^\top}{s_k^\top s_k} \right\| = \left\| \frac{(Vs_k)s_k^\top}{s_k^\top s_k} \right\| = \left\| \frac{V(s_ks_k^\top)}{s_k^\top s_k} \right\| = \left\| V \frac{s_ks_k^\top}{s_k^\top s_k} \right\| \le \|V\| \left\| \frac{s_ks_k^\top}{s_k^\top s_k} \right\| \le \|V\|.$$

- Quasi-Newton Methods
 - Recall: Globalized Newton method
 - Finite-Difference Approximation of the Hessian
 - Basis of Quasi-Newton Methods: Secant Method
 - Quasi-Newton methods: Hessian Updates

Approximation of the Hessian using the secant equation

- We extend the above idea for optimization: $F := \nabla f$:
- In the Newton method

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$
$$x_{k+1} = x_k + d_k,$$

- ... replace $\nabla^2 f(x_k)$ by a matrix $H_k \in \mathbb{R}^{n \times n}$ that satisfies
- ... the secant or Quasi-Newton equation:

$$H_k(x_k - x_{k-1}) = \nabla f(x_k) - \nabla f(x_{k-1}).$$

• We realize this by an easily computable and cheap, additive update

$$H_k := H_{k-1} + U_k$$
, $k = 1, 2, ...$, with H_0 given,

Updates that preserve symmetry and positive-definiteness

- For the Hessian we want to preserve symmetry (since the Hessian is symmetric)
- ... and (under some assumptions) also positive-definiteness.
- For this purpose we need a rank 2-update.
- There are several update formulas.
- Most prominent: **BFGS** (Broyden-Fletcher-Goldfarb-Shanno) update:

$$U_k := \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_{k-1} s_k (H_{k-1} s_k)^\top}{s_k^\top H_{k-1} s_k}, \quad y_k := \nabla f(x_k) - \nabla f(x_{k-1}), s_k := x_k - x_{k-1}.$$

- Other well-known update formula: DFP update (Davidon-Fletcher-Powell).
- For H_0 , we may once evaluate or approximate the Hessian $\nabla^2 f(x_0)$...
- ... or even take $H_0 = I$.
- Under some assumptions, globalized Quasi-Newton methods (as the BFGS method) are superlinear convergent.

Globalized Quasi-Newton method

Algorithm (Globalized Quasi-Newton method):

- Fix some parameter c > 0.
- ② Choose initial guess $x_0 \in \mathbb{R}^n$ and initial matrix H_0 .
- **6** For $k = 0, 1, \dots$:
 - **1** Compute direction d_k , i.e., solve

$$H_k d_k = -\nabla f(x_k),$$

- **2** If direction is not gradient-related, ... (as above) set $d_k = -\nabla f(x_k)$.
- **3** Choose an efficient step-size $\rho_k > 0$.
- **3** Set $x_{k+1} = x_k + \rho_k d_k$.
- **5** Update Hessian approximation (e.g., by BFGS update):

$$H_{k+1} := H_k + U_{k+1}$$
, using $y_{k+1} = \nabla f(x_{k+1}) - \nabla f(x_k)$, $s_{k+1} = x_{k+1} - x_k$.

until a stopping criterion is satisfied.

Comparison: Effort of Newton vs. Quasi-Newton methods

In every step we have to ...

• evaluate the gradient:

$$\mathcal{O}(n) \times \text{Effort } (f).$$

• Newton: evaluate the Hessian matrix:

$$\mathcal{O}(n^2) \times \text{Effort } (f).$$

• Quasi-Newton: update the Hessian approximation:

$$\mathcal{O}(n^2)$$
 operations, independent of the effort for f .

• solve the linear system:

 $\mathcal{O}(n^3)$ operations for a dense matrix (less for a sparse matrix)

One step further: inverse updates

In the Newton method

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

• ... we could formally write

$$d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k).$$

• Idea: Update inverse matrix directly:

Lemma (Sherman-Morrison-Woodbury formula)

Let $B \in \mathbb{R}^{n \times n}$ be invertible and $u, v \in \mathbb{R}^n$. Then, B + U with $U = uv^{\top}$ is invertible if and only if

$$\sigma := 1 + \mathbf{v}^{\top} B^{-1} \mathbf{u} \neq 0.$$

Then, we have

$$(B+U)^{-1}=B^{-1}-\frac{1}{\sigma}B^{-1}UB^{-1}.$$

Inverse updates

- The above formula can be applied twice.
- We then get also a rank-2 update for the BFGS update (and other rank-2 update formulas).
- Setting $\hat{H}_k := H_k^{-1}$, these updates then satisfy

$$\hat{H}_k := \hat{H}_{k-1} + \hat{U}_k$$

• ... with, for the inverse **BFGS** update:

$$\hat{U}_{k} := \frac{(s_{k} - \hat{H}_{k-1}y_{k})s_{k}^{\top} + s_{k}(s_{k} - \hat{H}_{k-1}y_{k})^{\top}}{y_{k}^{\top}s_{k}} - \frac{(s_{k} - \hat{H}_{k}y_{k})^{\top}y_{k}}{(y_{k}^{\top}s_{k})^{2}}s_{k}s_{k}^{\top}, \tag{1}$$

with y_k, s_k as above.

Globalized Quasi-Newton method using inverse update

Algorithm (Globalized Quasi-Newton method, inverse update):

- Fix some parameter c > 0.
- ② Choose initial guess $x_0 \in \mathbb{R}^n$ and initial matrix H_0 .
- **6** For $k = 0, 1, \dots$:
 - Compute direction

$$d_k = -\hat{H}_k \nabla f(x_k),$$

- **2** If direction is not gradient-related, ... (as above) set $d_k = -\nabla f(x_k)$.
- **3** Choose an efficient step-size $\rho_k > 0$.
- **3** Set $x_{k+1} = x_k + \rho_k d_k$.
- **5** Update inverse Hessian approximation:

$$\hat{H}_{k+1} := \hat{H}_k + \hat{U}_{k+1}$$
, using $y_{k+1} = \nabla f(x_{k+1}) - \nabla f(x_k)$, $s_{k+1} = x_{k+1} - x_k$.

until a stopping criterion is satisfied.

Comparison: Effort of Newton vs. Quasi-Newton methods

In every step we have to ...

• evaluate the gradient:

$$\mathcal{O}(n) \times \text{Effort } (f).$$

• Newton: evaluate the Hessian matrix:

$$\mathcal{O}(n^2) \times \text{Effort } (f).$$

• Quasi-Newton: update the (inverse) Hessian approximation:

$$\mathcal{O}(n^2)$$
 operations, independent of the effort for f .

- solve the linear system:
 - $\mathcal{O}(n^3)$ operations for a dense matrix (less for a sparse matrix)
- or: use inverse update and matrix-vector multiplication:
 - $\mathcal{O}(n^2)$ operations for a dense matrix (less for a sparse matrix)

What is important

• The idea of Quasi-Newton methods is to approximate the Hessian (or inverse Hessian) iteratively by an additive rank-two update.

• The effort of $\mathcal{O}(n^2)$ function evaluations for an approximation of the Hessian by finite

- differences is avoided.
- The idea is to replace the tangent in the Newton method by a secant, using only already computed values.
- Inverse updates can even more reduce the effort of solving the linear system in every Quasi-Newton iteration.
- Quasi-Newton methods retain the superlinear convergence property of the Newton method under some assumptions.