ESTADÍSTICA

RESUMEN DE DISTRIBUCIONES DE MUESTREO

Parámetro a	RESUMEN DE DISTRIBUCIONES DE MUESTREO									
estimar	Estadístico	Media del estadístico	Varianza del estadístico	Variable aleatoria de apoyo	Distribución					
Media μ	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$		a) m.a.s. con reemplazo o población infinita $\sigma_X^2 = \frac{\sigma^2}{n}$ b) m.a.s. sin reemplazo	a.1) σ^2 conocida $Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}$ a.2) σ^2 desconocida $T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$ b.1) σ^2 conocida $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \left[\frac{N - n}{N - 1}\right]^{\frac{N}{2}}$	$Z\sim N(0,1)$ (Normal Estándar) $T\sim t_{v}$ (T-student) con $v=(n-1)$ grados de libertad $Z\sim N(0,1)$ (Normal Estándar)					
			$\sigma_X^2 = \frac{\sigma^2}{n} \left[\frac{N - n}{N - 1} \right]$	b.2) σ^2 desconocida $T = \frac{X - \mu}{\frac{S}{\sqrt{n}} \left[\frac{N - n}{N - 1} \right]^{\frac{1}{2}}}$ a) Varianzas poblacionales conocidas e iguales:	$T{\sim}t_{v}$ (T-student) con $v=(n-1)$ grados de libertad $Z{\sim}N(0,1)$					
Diferencia de Medias (Para m.a.s. con reemplazo) μ _X -μ _Y	<i>X</i> – <i>Y</i>	$\mu_{X-Y} = \mu_X - \mu_Y$	$\sigma_{\overline{X}-\overline{Y}}^2 = \frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}$	$Z = \frac{X - Y - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}}$ b) Varianzas poblacionales conocidas y diferentes $Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$ c) Varianzas poblacionales desconocidas pero iguales $T = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}}$ donde:	(Normal Estándar) $Z \sim N(0,1)$ (Normal Estándar) $T \sim t_{v}$ (T-student) con $v = (n_{x} + n_{y} - 2)$					
				$S_p^2 = \frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}$ d) Varianzas poblacionales desconocidas y diferentes: Problema de Behrens-Fisher. (No se estudia en este curso)	grados de libertad					

distmteo.doc-IPVA 1 de 2

Parámetro a estimar	Estadístico	Media del estadístico	Varianza del estadístico	Variable aleatoria de apoyo	Distribución
Varianza σ^2	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - X)^{2}$	$\mu_{S^2} = \sigma^2$	$\sigma_{S^2}^2 = \frac{2\sigma^4}{n-1}$	$Y = \frac{(n-1)S^2}{\sigma^2}$ donde: $E\{Y\} = (n-1)$ $Var\{Y\} = 2(n-1)$	$Y \sim \chi_{\nu}^{2}$ (Ji-cuadrada) $ \cos \nu = n - 1 $ grados de libertad
Relación entre Varianzas $\frac{\sigma_X^2}{\sigma_Y^2}$	$rac{S_X^2}{S_Y^2}$	$\mu_{\frac{S_X^2}{S_Y^2}} = E\left\{\frac{S_X^2}{S_Y^2}\right\}$	$\sigma_{\frac{S_X^2}{S_Y^2}}^2 = Var\left\{\frac{S_X^2}{S_Y^2}\right\}$	$F = \frac{S_X^2}{S_Y^2} \frac{\sigma_Y^2}{\sigma_X^2}$	$F \sim f_{1-\alpha,\nu_1,\nu_2}$ con $v_1 = n_x - 1$ $v_2 = n_y - 1$ grados de libertad $v_1 = \frac{1}{f_{1-\alpha,\nu_1,\nu_2}} = \frac{1}{f_{\alpha,\nu_2,\nu_1}}$
Proporción *	$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ donde: $\begin{cases} 1 & \text{si el elemento posee} \end{cases}$	$\mu_{\hat{p}} = p$	a) para m.a.s. con reemplazo $\sigma_{p}^{2}=\frac{pq}{n}$ b) para m.a.s.	$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$	Z~N(0,1) (Normal Estándar)
P	$x_i = \begin{cases} 1 & \text{el atributo de interés.} \\ 0 & \text{si el elemento no posee} \\ 0 & \text{el atributo de interés.} \end{cases}$		$n \mid N-1 \mid$	$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n} \left[\frac{N - n}{N - 1} \right]}}$	
Diferencia de proporciones $p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\mu_{\hat{p}_1-\hat{p}_2}$	para m.a.s. con reemplazo $\sigma_{\rho_1-\rho_2}^2 = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}$	$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}}$	Z~N(0,1) (Normal Estándar)

^{*} Nota: Debido a que p es el parámetro de una distribución binomial, si n es pequeña (n<30) debe usarse además un factor de corrección por continuidad, para obtener una mejor aproximación a la distribución normal. Cuando n es grande este factor es despreciable. FCC=1/2n

distmteo.doc-IPVA 2 de 2