Bitcoin Price Analysis

Objectives:

- Extract BTC prices from Yahoo Finance and key words frequency from Google Trends
- Manipulate, transform, and merge datasets to prepare variables
- · Run simple regression against the key words 'Bitcoin'
- · Analyze regression statistics and conlcude the significance

```
In [17]: import pytrends
   import numpy as np
   import pandas as pd
   import pandas_datareader.data as pdr
   from datetime import datetime, timedelta

from scipy import stats
   import statsmodels.api as sm

import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [18]: #Setting the end date to today
end = datetime.today()

#Start date set to one year back
start = datetime(end.year-5,end.month,end.day)

#using yahoo finance to grab cryptocurrency data
btc = pdr.get_data_yahoo('BTC-USD',start,end,interval='w')
# ETH = pdr.DataReader('ETH-USD', 'yahoo',start,end)
# LTC = pdr.DataReader('LTC-USD', 'yahoo',start,end)
```

```
In [3]: #Set the figure sizes
plt.rcParams['figure.figsize'] = (10,8)
```

In [4]: #Plot the Bitcoin price movements over the past 5 years
btc['Adj Close'].plot(legend = True);

Use Pytrend package to extract weekly google searches data

Combine Two Pandas Dataframes

8/3/2019

```
In [8]: btc_prices = btc['Adj Close'].iloc[1:-1]
In [9]: df = pd.concat([btc_prices.reset_index(drop=True),btc_searches.reset_index(drop=False)], axis=1)
In [19]: #df = df.set_index('date')
```


Simple Linear Regression Statistics

```
In [22]: #Apply statsmodel to run regression and conclude detailed stats
    x_hat = sm.add_constant(X1)
    reg = sm.OLS(Y1, x_hat).fit()
```

In [23]: reg.summary()

Out[23]:

OLS Regression Results

Dep. Variable:	Adj Close	R-squared:	0.681
Model:	OLS	Adj. R-squared:	0.680
Method:	Least Squares	F-statistic:	550.4
Date:	Sun, 24 Mar 2019	Prob (F-statistic):	6.19e-66
Time:	21:45:04	Log-Likelihood:	-2343.6
No. Observations:	260	AIC:	4691.
Df Residuals:	258	BIC:	4698.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	830.5498	147.943	5.614	0.000	539.221	1121.878
Bitcoin	220.5914	9.402	23.461	0.000	202.076	239.107

Omnibus:	47.274	Durbin-Watson:	0.413
Prob(Omnibus):	0.000	Jarque-Bera (JB):	98.681
Skew:	0.904	Prob(JB):	3.73e-22
Kurtosis:	5.416	Cond. No.	18.8

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [24]: #Or use scipy to run linear regression
    slope, intercept, r_value, p_value, std_err = stats.linregress(X1,Y1)
    stats.linregress(X1,Y1)
```

Out[24]: LinregressResult(slope=220.59141247124444, intercept=830.5497519919704, rvalue=0.8251438681435742, pvalue=6.1 88115567238563e-66, stderr=9.402385580504816)

Insights:

- 1. This univariate regression explains that 64.8% of the Bitcoin prices is explained by 'Bitcoin' frequencies in Google searches
- 2. p-values for the slope and intercept are both smaller than 0.01. The model has decent prediction power for future Bitcoin prices.