

North South University

Department of Electrical & Computer Engineering

Project Report (Part 1)

Submitted To: Syed Mahmud Husain (SMH2)

Course Code: CSE332

Course Name: Computer Organization & Architecture

Section: 9

Name & ID: Md. Rifat Ahmed ~ 1931725042

Date of Submission: 15/11/2021

目Objectives!

Our objective for project part 1 is to build a MIPS ALU meaning a 32-bit ALU that has 6 to 8 functions.

Truth Table:

ALUOp		Function field, Fx					ALUOp	Operation	
Binvert	Ainvert	F5	F4	F3	F2	F1	F0	02 01 00	
1	1	Х	Х	Х	Χ	X=1	0	000	NOR
1	1	Х	Х	Х	Х	X=1	1	001	NAND
0	0	Х	Х	Х	Χ	0	0	100	XOR
0	0	Х	Х	Х	Χ	0	1	010	Add
0	0	Х	Х	Х	Χ	1	0	011	Add with Carry
1	0	Х	Х	Х	Χ	X=1	0	110	Sub
1	0	Х	Х	Х	Х	X=1	1	101	Sub with Borrow
0	0	Χ	Х	Х	Χ	1	1	111	Multiply

Table: Truth Table for the Control Circuit

图K-Maps:

Since this is a SOP circuit we'll consider all the don't cases (X) as 1.

For 00,							
FIFO							
Birment Abovort	00	01	11	10			
00	O(xor)	0 (ALL)	1 (Multi)	1(A& C)			
01	1 (x)	1 (X)	1 (x)	1(8)			
11	(1(x)	1 (X)	1 (MAND)	O (NOR)			
10	(x)	1 (X)	1 (Sub B.)	0 (846)			

... 00 = Binvert FO + Binvert F1 + Binvert F1 + Binvert Ainvert

For O1,

FIFO							
Birrent Airvort	00	01	11	10			
00	0 (xor)	(1 (AU)	1 (Multi)	1 (AU.0)			
07	(X)	(x)	1 (X)	1 (8)			
41	(1(x)	1 (x)	O (NAND)	O (NOR)			
10	(X)	1 (×)	0 (Sub B.)	(1 (Sub)			

-1. 01 = Binvert F1 + Binvert F1 + Binvert F0 + Binvert Ainvert + Binvert Ainvert F0

\ F1 F0							
Birrost Sinvert	00	01	11	10			
O	1 (xox	0 (VM)	1 (Miti)	0 (AM C.)			
0	1 (1(X)	1(x)	1(x)	1(X)			
1	1 18	1(%)	O (NAND)	O (NOB)			
3	0 10	1(x)	1 (Sub B.)	1 (Sub)			

.'. 02 = F1 F0 + Binvert F1 + Binvert Ainvert + Binvert Ainvert + Binvert F1 F0

Circuit Diagram:

Figure 1: ALU Control Circuit

Figure 2: 1-bit ALU with 7 Functions

Figure 3: 32-bit ALU with 7 Functions

Figure 4: 16-bit by 16-bit Multiplication Unit

Figure 5: 32-bit ALU with 8 Functions

In this past of the project we had to build a MIPS ALV with 6 to 8 functions. I chose to do NAND, NOR, XOR from logic unit and Add, Add with Carry, Sub, Sub with Borrow from Arithmetic unit and the Multiplication total 8 bunctions. At first we built the truth table then from there using K-Map we calculated the functions for our ALU control circuit. Then using a splitter we connected the 3 % 00,01,02. Alter that we built the 1-bit ALU with 7 functions we excluded Multiplication because eascading it was too much complicated and we had already done a 16-bit by 16-bit Multiplication unit which we'll be using later on . So, using the 1-bit ALU we cascaded it into a SI-bit ALU with 7 functions than we also kept an output for overflow by connecting the last carry out with the last every in using a XOR gate. Then linally we took the 32-bit ALV with 7 functions and the Multiplier but here we had to split our input A and B as the input for the previous 7 functions were 32-bit but the input for Multiplication unit

was 16-bit by 16-bit nearing we only needed the 16 least eignificant bits from one input A and B. Then we connected the ALU Control to the select bits of the MUX and in the 7. functions ALU and we added the result of the 7 function ALU to the 7 input pins so that the result gets carried from the 7 function ALU to our MUX, the Final ALU. Then we split the regult added them to an OR gute bollowed by a NOT gote for our zero flag. And thus we get our MIPS ALU.