# sklearn.metrics.log\_loss

sklearn.metrics.log loss(y\_true, y\_pred, eps=1e-15, normalize=True, sample\_weight=None)

[source]

Log loss, aka logistic loss or cross-entropy loss.

This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is

 $-\log P(yt|yp) = -(yt \log(yp) + (1 - yt) \log(1 - yp))$ 

Parameters: y\_true : array-like or label indicator matrix

Ground truth (correct) labels for n\_samples samples.

y\_pred : array-like of float, shape = (n\_samples, n\_classes)

Predicted probabilities, as returned by a classifier's predict\_proba method.

eps: float

Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)).

normalize : bool, optional (default=True)

If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses.

sample\_weight : array-like of shape = [n\_samples], optional

Sample weights.

Returns:

loss: float

#### **Notes**

The logarithm used is the natural logarithm (base-e).

#### References

C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209.

### **Examples**

```
>>> log_loss(["spam", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...
```

## Examples using sklearn.metrics.log\_loss



Probability Calibration for 3-class classification



