Числовые последовательности и их пределы

Ученик 10-4 класса Паньков М.А. по лекции к.ф.-м.н. Протопоповой Т.В. от 16 марта 2021 г.

Лекция №21 1

Определение. Будем говорить, что x_n сходится к $a(\lim_{n\to\infty}x_n=a)$, если $\forall \varepsilon>0\ \exists\ N=N(\varepsilon): \forall n>0$ $N, |x_n - a| < \varepsilon$

Геометрический смысл:

а — предел
$$x_n, \, a-\varepsilon < x_n < a+\varepsilon$$
 $O_a = (a-\varepsilon, \, a+\varepsilon) - \varepsilon$ -окрестность т. а

Примеры:

1. Док-ть $\lim_{n\to\infty} \frac{1}{n} = 0$

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \forall n > N, \; \text{док-ть:} \; \left| \frac{1}{n} - 0 \right| < \varepsilon$$
 $\left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon, \; n > \frac{1}{\varepsilon} \Rightarrow N = \frac{1}{\varepsilon}$ $N = \left[\frac{1}{\varepsilon} \right] + 1 \in \mathbb{N}([\mathbf{x}] - \text{выделение целой части})$ $[x] \leq x < [x] + 1$

$$[x] \leq x < [x]+1$$

$$\frac{1}{[x]+1} < \frac{1}{x}$$

действительно:
$$\frac{1}{n}<\frac{1}{N}=\frac{1}{[\frac{1}{arepsilon}]+1}<\frac{1}{[\frac{1}{arepsilon}]+1}=arepsilon,$$
 ч.т.д.

2. Док-ть $\lim_{n\to\infty} \frac{n}{n+1} = 1$

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \forall n > N, \; \text{док-ть:} \; \left| \frac{n}{n+1} - 1 \right| < \varepsilon$$

$$\left| \frac{n}{n+1} - 1 \right| = \left| \frac{n-n-1}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n} < \varepsilon, \; \text{ч.т.д.} \; (N = [\frac{1}{\varepsilon} - 1] + 1)$$

3. α — б.д.д.

 α_n — приближение б.д.д. по недостатку с точностью до $\frac{1}{10^n}$

Покажем, что $\alpha_n \longrightarrow_{n\to\infty} \alpha$

$$\forall \varepsilon > 0 \ \exists \ N : \forall n > N, \ |\alpha_n - \alpha| < \varepsilon$$

$$|\alpha_n - \alpha| = |a, \ a_1, \ a_2, ..., \ a_n - a, \ a_1, \ a_2, ..., \ a_{n+1}, \ a_{n+2}| = 0, \underbrace{0 \ \ 0}_{=}, \ a_{n+1}, \ a_{n+2} < \frac{1}{10^n} < \frac{1}{9^n} < 0$$

$$<\varepsilon$$

 $10^n = (1+9)^n > 9n$ $n > \frac{1}{9\varepsilon}$
 $N = \left[\frac{1}{9\varepsilon}\right] + 1$

Сходимость может быть разной

$$x_n = \frac{1}{n}$$

$$x_n = -\frac{1}{n}$$

$$x_n = \frac{(-1)^n}{n}$$