

FORMATO DE SYLLABUS

Macroproceso: Direccionamiento Estratégico

Versión: 01

Código: AA-FR-003

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:			Tecnológica								
PROYECTO CUI				ectrónica Industrial		CÓDIGO PLAN DE ESTUDIOS:					
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO											
NOMBRE DEL ESPACIO ACADÉMICO: REDES DE CONVERGENCIA											
Código del espacio académico:			7411	Número de créditos académicos:			3				
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5			
Tipo de espacio académico:			Asignatura	х	Cátedra						
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:						
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco				
CARÁCTER DEL ESPACIO ACADÉMICO:											
Teórico		Práctico		Teórico-Práctico		Otros:		Cuál:			
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:											
Presencial		Presencial con incorporación de TIC		Virtual		Otros:		Cuál:			
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS											

Para abordar esta asignatura, el estudiante debe contar con conocimientos en redes de datos, protocolos de comunicación, direccionamiento IP, fundamentos de calidad de servicio (QoS), transmisión digital y telecomunicaciones. Además, se recomienda el manejo básico de plataformas de simulación de redes como GNS3, Cisco Packet Tracer o EVE-NG, y nociones de virtualización y redes definidas por software (SDN).

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

Las redes de convergencia constituyen la base de la infraestructura moderna de telecomunicaciones, integrando servicios de voz, datos y video sobre una misma red IP. Con la evolución hacia redes 5G, IoT, redes vehiculares y cloud networking, se hace indispensable que los estudiantes comprendan arquitecturas convergentes como MPLS, SD-WAN, redes virtualizadas y protocolos de señalización avanzada. Esta asignatura aporta al desarrollo de competencias para diseñar, analizar y administrar redes convergentes seguras, escalables y con garantías de calidad de servicio.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar, configurar y evaluar redes de convergencia modernas, integrando tecnologías y protocolos de voz, datos y video sobre IP, asegurando calidad, seguridad, escalabilidad y eficiencia en entornos reales y virtuales.

Objetivos Específicos:

Analizar arquitecturas de redes convergentes tradicionales y emergentes. Implementar redes privadas virtuales (VPN) y mecanismos de QoS sobre redes IP.

Comprender y aplicar tecnologías MPLS, SDN y NFV en escenarios de convergencia.

Evaluar mecanismos de señalización, virtualización y protección en redes convergentes.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Desarrollar competencias para el diseño e implementación de redes convergentes multi-servicio.

Promover el uso de protocolos modernos y arquitecturas de red escalables y seguras.

Impulsar el aprendizaje de herramientas de simulación y gestión de redes convergentes en entornos reales.

Resultados de Aprendizaje:

Implementa redes IP con servicios convergentes aplicando principios de QoS y seguridad.

Diseña soluciones de conectividad usando MPLS, VPNs y SDN.

Evalúa la eficiencia y fiabilidad de redes convergentes mediante simulación.

Aplica protocolos de señalización y mecanismos de virtualización para optimizar la red.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos y Evolución de las Redes de Convergencia

Arquitectura NGN y redes multiservicio.

Modelos OSI y TCP/IP extendido.

Convergencia de servicios sobre IP.

2. RDSI, Frame Relay y ATM

Introducción histórica.

Arquitecturas, protocolos y servicios.

Limitaciones y legado en redes actuales.

3. MPLS y QoS

Conceptos de MPLS, LSR, LSP, FEC.

QoS: IntServ, DiffServ, RSVP.

Técnicas de clasificación, marcado y colas (CBWFQ, LLQ, RED).

4. VPNs v Redes Seguras

Tipos de VPNs: IPsec, SSL, GRE.

Escenarios de aplicación.

Configuración y monitoreo de túneles.

5. IPv6 y Transición

Direccionamiento IPv6.

Protocolos de enrutamiento (RIPng. OSPFv3. BGP).

Mecanismos de transición (tunneling, dual stack, NAT64).

6. Redes de Nueva Generación

SDN y OpenFlow.

NFV (Network Function Virtualization).

Segment Routing y SRv6.

SD-WAN y arquitecturas cloud.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La metodología se basa en aprendizaje activo y por proyectos, combinando clases magistrales participativas, laboratorios con simuladores (GNS3, Packet Tracer, EVE-NG), casos de estudio, debates y exposiciones. Se estimula el trabajo en equipo, la investigación aplicada y el uso de plataformas colaborativas y virtuales para potenciar el aprendizaje autónomo.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorios de redes con switches y routers, simuladores (GNS3, Cisco Packet Tracer, EVE-NG), equipos de telecomunicaciones.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Comer, D. (2013). Internetworking with TCP/IP, Vol. 1. Pearson.									
Fanenbaum, A. (2011). Redes de computadoras. Pearson.									
Halabi, S., McPherson, D. (2001). Arquitecturas de enrutamiento en Internet. Pearson.									
Goralski, W. (2010). MPLS: Implementing the Technology. Morgan Kaufmann.									
Pfaff, B. (2015). The Open vSwitch Manual.									
Open Networking Foundation (2023). SDN Architecture Overview.									
IETF y RFC relevantes (RSVP, DiffServ, SRv6, etc.).									
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS									
Fecha revisión por Consejo Curricular:									
Fecha aprobación por Consejo Curricular:		Número de acta:							
		•							

XI. BIBLIOGRAFÍA

Se programarán visitas a centros de datos, proveedores de servicios de Internet, operadores de telecomunicaciones o eventos de tecnología donde se analicen infraestructuras

convergentes. Se incentivará la participación en semilleros de investigación y congresos del sector.