САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №4

«Проверка принципа эквивалентности масс»

Выполнил студент: Невзоров Никита Иванович группа: 23.Б12-мм

Проверил: Профессор Морозов Виктор Александрович

Содержание

1	Вве	дение	2					
	1.1	Цель работы	2					
	1.2	Задачи работы	2					
2	Основная часть							
	2.1	Теоретическая часть	2					
		2.1.1 Принцип эквивалентности масс	2					
		2.1.2 Свободное падение тел	2					
		2.1.3 Методика измерений	3					
		2.1.4 Статистическая обработка данных	3					
		2.1.5 Анализ погрешностей	3					
	2.2	Экспериментальная установка	4					
	2.3	Ход работы	4					
	2.4	Обработка данных	4					
	2.5	Таблицы	6					
3	Pac	чёты	6					
	3.1	Вычисление массы шариков	6					
	3.2	Расчёт среднего времени полёта	7					
4	Расчёт погрешностей 7							
	4.1	Дисперсия и стандартное отклонение	7					
	4.2	Средняя квадратичная погрешность среднего значения	7					
	4.3	Погрешность определения ускорения свободного падения	8					
5	Pac	чет ускорения свободного падения	8					
6	Вы	вод	9					

1 Введение

1.1 Цель работы

Экспериментальная проверка принципа эквивалентности масс путём измерения времени свободного падения тел различной массы и определения ускорения свободного падения g для каждого случая.

1.2 Задачи работы

- 1. Проверка принципа эквивалентности масс
- 2. Измерение ускорения свободного падения тел
- 3. Знакомство с методом измерения интервалов времени между импульсами частотомеромхронометром ЧЗ-32
- 4. Определение погрешности косвенных измерений

2 Основная часть

2.1 Теоретическая часть

2.1.1 Принцип эквивалентности масс

• Инертная масса $(M_{\text{ин}})$ - характеризует сопротивление тела изменению его скорости под действием силы:

$$F = M_{\text{MH}} \cdot a \tag{1}$$

• Гравитационная масса $(M_{\rm rp})$ - определяет силу гравитационного взаимодействия:

$$F = \gamma \frac{M_{\rm rp} \cdot M_{\rm 3em, Iu}}{r^2} \tag{2}$$

Принцип эквивалентности, сформулированный Эйнштейном, утверждает, что эти массы равны:

$$M_{\rm MH} = M_{\rm rp} \tag{3}$$

2.1.2 Свободное падение тел

Для тела массой m в поле тяжести Земли:

$$mg = \gamma \frac{m \cdot M_{\text{3емли}}}{R_{\text{3емли}}^2} \tag{4}$$

Отсюда следует, что ускорение свободного падения:

$$g = \gamma \frac{M_{\text{Земли}}}{R_{\text{Земли}}^2} \tag{5}$$

не зависит от массы падающего тела.

2.1.3 Методика измерений

В работе используется установка, где время падения t измеряется при прохождении шариком расстояния h между двумя лазерными лучами. Уравнение движения:

$$h = v_0 t + \frac{gt^2}{2} \tag{6}$$

где:

- $h = (0.272 \pm 0.001)$ м расстояние между лучами
- $v_0 = (1.050 \pm 0.005)\,\mathrm{m/c}$ начальная скорость шарика

Ускорение свободного падения:

$$g = \frac{2(h - v_0 t)}{t^2} \tag{7}$$

2.1.4 Статистическая обработка данных

Для анализа результатов измерений используются следующие статистические методы: Среднее значение:

$$\bar{f} = \frac{1}{n} \sum_{i=1}^{n} f_i \tag{8}$$

Дисперсия и средняя квадратичная погрешность:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (9)

где σ^2 — дисперсия, x_i — результаты измерений, \overline{x} — среднее арифметическое. Средняя квадратичная погрешность:

$$\sigma = \sqrt{\sigma^2} \tag{10}$$

Средняя квадратичная погрешность среднего значения:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \tag{11}$$

где $\sigma_{\overline{x}}$ — погрешность среднего значения, n — количество измерений.

2.1.5 Анализ погрешностей

Погрешность определения д вычисляется как погрешность косвенного измерения:

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h} \Delta h\right)^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0} \Delta v_0\right)^2 + \left(\frac{\partial g}{\partial t} \Delta t\right)^2}$$
 (12)

Где частные производные:

$$\frac{\partial g}{\partial h} = +\frac{2}{t^2},\tag{13}$$

$$\frac{\partial g}{\partial v_0} = -\frac{2}{t},\tag{14}$$

$$\frac{\partial g}{\partial t} = \frac{2(v_0 t - 2h)}{t^3}. (15)$$

2.2 Экспериментальная установка

- Лазерный генератор ЛГ с системой призм
- Фотодиод ФД с усилителем
- Частотомер Ч3-32
- Трубка с шариками (алюминий, латунь, сталь, дерево, плексиглас, свинец)

Рис. 1: Схема экспериментальной установки

2.3 Ход работы

- 1. Включение лазера, частотомера и усилителя
- 2. Проверка работоспособности установки
- 3. Проведение серии измерений (30 раз для каждого материала)
- 4. Фиксация времени падения в таблицу
- 5. Выключение оборудования

2.4 Обработка данных

Для обработки результатов измерений была разработана программа на С++:

Листинг 1: Вычисление среднего значения

```
double sum = 0.0;
for (int i = 0; i < n; i++) {
    sum += frequencies[i];
}
double mean_f = sum / n;</pre>
```

Листинг 2: Вычисление дисперсии

```
double variance = 0.0;
for (int i = 0; i < n; i++) {
    double dev = freq[i] - mean_f;
    variance += dev * dev;
}
variance /=(n-1);</pre>
```

Листинг 3: Вычисление средней квадратичной погрешности

```
double std_dev = sqrt(variance);
```

Листинг 4: Вычисление средней квадратичной погрешности среднего значения

```
double std_err = std_dev / sqrt(n);
```

Листинг 5: Вычисление ускорения свободного падения

```
for (int i = 0; i < n; ++i) {
    double t;
    std::cout << "Enter time t" << i+1 << endl;
    std::cin >> t;

double g = 2 * (h - v0 * t) / (t * t);

printf("| %2d | %9.3f | \n", i+1, t, g);
}
```

Листинг 6: Вычисление погрешности определения g

```
double dg_dh = 2.0 / (t * t);
double dg_dv0 = -2.0 / t;
double dg_dt = 2.0 * (1.050 * t - 2 * 0.272) / (t * t * t);

double term1 = (1.0 / 9.0) * (dg_dh * delta_h) * (dg_dh * delta_h);
double term2 = (1.0 / 9.0) * (dg_dv0 * delta_v0) * (dg_dv0 * delta_v0);

double term3 = (dg_dt * delta_t) * (dg_dt * delta_t);
double delta_g = sqrt(term1 + term2 + term3);
```

2.5 Таблицы

Таблица 1: Время падения шарика от верхнего луча до нижнего для различных материалов

Nº п/п	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
	t, мс	t, мс	t, мс	t, мс	t, мс	t, мс
1	153,192	152,821	153,121	155,177	153,990	153,692
2	153,631	153,164	153,010	154,119	153,843	152,736
3	153,175	153,062	152,926	154,383	153,959	153,207
4	152,782	153,217	152,666	153,796	153,970	153,666
5	153,228	153,255	152,636	153,752	153,593	154,070
6	153,265	153,687	152,708	154,313	153,735	153,190
7	153,344	153,432	152,727	154,138	153,874	154,205
8	153,246	154,067	152,630	154,283	153,601	152,034
9	152,601	153,468	152,747	154,148	153,567	152,680
10	153.977	152,873	152,653	154,230	153,737	153,402
11	152,915	152,726	152,752	154,498	154,155	153,633
12	152,988	153,048	152,612	154,429	153,980	154,105
13	153,580	153,115	153,783	153,834	154,013	154,038
14	152,962	153,345	152,952	154,638	154,010	153,091
15	152,589	153,443	154,063	154,184	153,898	153,579
16	153,284	153,060	152,769	154,888	154,392	152,579
17	152,690	152,897	153,088	155,121	153,559	153,734
18	152,881	153,067	152,649	155,344	153,951	152,956
19	152,682	153,143	152,777	154,119	155,011	153,204
20	153,003	153,056	152,774	152,762	153,935	153,806
21	152,846	153,358	153,694	155,029	154,337	153,717
22	154,139	152,686	153,256	154,500	153,800	154,463
23	152,717	153,393	152,704	154,004	153,103	153,150
24	153,182	153,341	152,598	154,212	153,402	152,903
25	153,444	152,997	152,748	153,979	153,517	153,415
26	152,854	153,269	152,736	153,906	152,659	153,221
27	153,312	153,137	152,982	154,257	153,291	152,936
28	152,818	153,137	153,754	154,902	153,415	152,844
29	152,928	153,099	152,761	154,557	153,825	153,241
30	153,818	153,934	152,856	153,049	153,516	153,310

3 Расчёты

3.1 Вычисление массы шариков

Масса шариков вычисляется по формуле:

$$m = V \cdot \rho \tag{16}$$

где:

- ρ плотность вещества шарика (из таблицы 2)
- \bullet V объём шарика, вычисляемый по формуле объёма шара:

$$V_{\text{mapa}} = \frac{4}{3}\pi R^3 \tag{17}$$

Радиус шарика $R = 0.5 \,\mathrm{MM} = 0.5 \times 10^{-3} \,\mathrm{M}$.

Таблица 2: Плотность материалов шариков

	1	1 1
$N_{ar{o}} \ \Pi/\Pi$	Вещество	Плотность, 10^3кг/м^3
1	Дерево (берёза)	0,7
2	Плексиглас	1,18
3	Дюралюминий	2,79
4	Сталь	7,9
5	Латунь	8,5
6	Свинец	11,34

3.2 Расчёт среднего времени полёта

Среднее значение времени полёта для каждого материала вычисляется как:

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i \tag{18}$$

где t_i – результаты отдельных измерений времени полёта и n - количество измерений (30).

4 Расчёт погрешностей

4.1 Дисперсия и стандартное отклонение

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (t_i - \bar{t})^2 \tag{19}$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (20)

Таблица 3: Среднее время полёта шариков

Материал	t, MC
Алюминий	153.100
Латунь	153.158
Сталь	152.942
Дерево	154.383
Плексиглас	153.793
Свинец	153.401

4.2 Средняя квадратичная погрешность среднего значения

$$\sigma_{\bar{t}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (21)

Таблица 4: Стандартное отклонение и погрешность среднего

Материал	σ (MC)	$\sigma_{\bar{t}}$ (MC)
Алюминий	0.295	0.054
Латунь	0.266	0.049
Сталь	0.233	0.042
Дерево	0.348	0.064
Плексиглас	0.363	0.066
Свинец	0.483	0.088

4.3 Погрешность определения ускорения свободного падения

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h} \Delta h\right)^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0} \Delta v_0\right)^2 + \left(\frac{\partial g}{\partial t} \Delta t\right)^2}$$
 (22)

Частные производные:

$$\frac{\partial g}{\partial h} = +\frac{2}{t^2},\tag{23}$$

$$\frac{\partial g}{\partial v_0} = -\frac{2}{t},\tag{24}$$

$$\frac{\partial g}{\partial t} = \frac{2(v_0 t - 2h)}{t^3}. (25)$$

Таблица 5: Погрешности ускорения свободного падения

Материал	$\Delta g~({ m M/c^2})$
Алюминий	0.038
Латунь	0.037
Сталь	0.037
Дерево	0.038
Плексиглас	0.038
Свинец	0.040

5 Расчет ускорения свободного падения

$$g = \frac{2(h - v_0 t)}{t^2} \tag{26}$$

где:

- $h = (0.272 \pm 0.001)\,\mathrm{m}$ расстояние между лучами
- $v_0 = (1.050 \pm 0.005)\,\mathrm{m/c}$ начальная скорость шарика

Таблица 6: Ускорение свободного падения

Материал	$g~({ m m/c^2})$
Алюминий	9.426
Латунь	9.466
Сталь	9.568
Дерево	9.318
Плексиглас	9.381
Свинец	9.438

Основной источник систематических ошибок эксперимента связан с влиянием сопротивления воздуха, величина которого зависит от массы шариков.

6 Вывод

В ходе выполнения работы мной был проверен принцип эквивалентности масс путём измерения времени свободного падения тел различной массы. Было проанализировано различие в ускорении свободного падения для тел одинакового размера, но разной плотности, определены погрешности косвенных измерений, также было проведено ознакомление с методом измерения временных интервалов между импульсами при помощи частотомера-хронометра ЧЗ-32.

Список литературы

[1] https://github.com/st117161/Workshop4