ТЕОРИЯ К КУРСУ «АНАЛИТИЧЕСКАЯ МЕХАНИКА II» ФОПФ

За авторством: Хоружего К. Примака Е.

От: 19 июня 2021 г.

Содержание

Устойчивость	
1.1	Устойчивость в принципе
1.2	Устойчивость консервативной системы (thr Лагранжа, thr Ляпунова)
Норма	альные колебания
2.3	Малые колебания консервативной системы
2.4	Вынужденные колебания
Канон	нические уравнения
	I Канонические уравнения Гамильтона и интеграл Якоби
5.12	2 Уравнения Уиттекера
5.17	4 Скобки {Лагранжа, Пуассона, Ли}

Устойчивость

1.1 Устойчивость в принципе

Возмущенное движение

Пусть уравнение движение представлено в виде:

$$\frac{dy_i}{dt} = Y_i(y_1, y_2, \dots, y_m, t) \quad (i = 1, 2, \dots, m).$$
(1.1)

Рассмотрим частное движение — частное решение этой системы с начальными условиями

$$y_i^* = f_i(t)$$
 $(i = 1, 2, ..., m),$
 $y_{i0} = f_i(t_0)$ $(i = 1, 2, ..., m).$ (1.2)

Нас будут интересовать движения системы при отклонении от начальных условий y_{i0} от значений $f_i(t_0)$.

Def 1.1. Движение системы, описываемое (1.2) называется *невозмущенным* движением. Все другие движения механической системы при тех же силах, что и движение (1.2) — возмущенные движения.

Def 1.2. Возмущениями назовём разности вида:

$$x_i = y_i - f_i(t) \quad (i = 1, 2, \dots, m).$$
 (1.3)

Def 1.3. Теперь, произведя замену по формулам (1.3) в уравнениях (1.1) получим дифференциальные уравнения возмущенного движения:

$$\frac{dx_i}{dt} = X_i(x_1, x_2, \dots, x_m, t)$$
 $(i = 1, 2, \dots, m).$

Это уравнение имеет частное решение $x_i \equiv 0$ отвечающее невозмущенному движению.

Def 1.4. Движение называется установившимся (система автономна), если $X_i \not\equiv X_i(t)$, в противном же случае движение неустановившееся.

Def 1.5 (Устойчивость по Ляпунову). Невозмущенное движение называется *устойчивым* по отношению к переменным y_i , если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon)$: \forall возмущенных движений, для которых

$$|x_i(t_0)| < \delta, \ \forall t > t_0$$
 выполняется $|x_i(t)| < \varepsilon.$ (1.4)

Def 1.6 (Асимптотическая устойчивость). Невозмущенное движение называется асимптотически устойчивым по отношению к переменным y_i , если оно устойчиво и $\exists \delta$ такие, что для возмущенных движений удовлетворяющим условиям (1.4) верно:

$$\lim_{t \to \infty} x_i(t) = 0 \ (i = 1, 2, \dots, m).$$

Усточивость по первому приближению (I)

Запишем уравнения установившегося возмущенного движения в виде

$$\frac{dx}{dt} = Ax + X(x). \tag{1.5}$$

Функции X_i будем считать аналитическими в окрестности начала координат, причем их разложения в ряды начинаются с членов не ниже второго порядка малости относительно x_1, x_2, \ldots, x_m .

Вопрос об устойчивости движения очень часто исследуется при помощи уравнений первого приближения:

$$\frac{dx}{dt} = Ax, (1.6)$$

которые получаются из полных уравнений возмущенного движения (1.5) при отбрасывании в последних нелинейных относительно x_1, x_2, \ldots, x_m членов.

Можно составить характеристическое уравнение

$$\det(A - \lambda E) = 0, (1.7)$$

которое в общем виде даст решение $\boldsymbol{x} = \sum_{j=1}^m c_j \boldsymbol{j}_j e^{\lambda_j t}$ (плюс квазимногочлены, но опустим).

Однако как правило уравнения возмущенного движения нелинейны. Поэтому возникает задача об определении условий, при которых выводы об устойчивости, полученные из анализа уравнений первого приближения (1.6), справедливы и для полных уравнений возмущенного движения (1.5) при любых нелинейных членах X_i . Эта задача была полностью решена Ляпуновым.

Устойчивость по первому приближению (II)

Thr 1.7. Пусть λ_i – корни уравнения $\det(A - \lambda E) = 0$:

- 1. Если $\forall \lambda_i \operatorname{Re} \lambda_i < 0$, то невозмущенное движение асимптотически устойчиво независимо от нелинейных членов.
- 2. Если же $\exists \lambda_i \colon \operatorname{Re} \lambda_i > 0$, то возмущенное движение неустойчиво тоже независимо от нелинейных членов.
- 3. Если же $\exists \lambda_i$: Re $\lambda_i = 0$, то подбирая нелинейные члены можно показать, что положение как устойчиво, так и неустойчиво.

Здесь появится доказательство.

Критерий Рауса-Гурвица

Запишем уравнение (1.7) в виде

$$a_0 \lambda^m + a_1 \lambda^{m-1} + \ldots + a_{m-1} \lambda + a_m = 0.$$

Коэффициенты a_0, a_1, \dots, a_m этого уравнения — вещественные числа. Без ограничения общности $a_0 > 0$. По теореме Виета имеем:

$$\frac{a_1}{a_0} = -(\lambda_1 + \lambda_2 + \dots + \lambda_m),$$

$$\frac{a_2}{a_0} = \lambda_1 \lambda_2 + \dots + \lambda_{m-1} \lambda_m,$$

$$\vdots$$

$$\frac{a_m}{a_0} = (-1)^m \lambda_1 \lambda_2 \dots \lambda_m.$$

Таким образом для отрицательности всех вещественных частей корней $\lambda_1, \lambda_2, \dots, \lambda_m$ необходимо чтобы все его коэффициенты были положительны.

Однако такого утверждения не достаточно. Необходимое и достаточное условие дается критерием Рауса-Гурвица.

Def 1.8. Назовем матрицей Гурвица:

$$\begin{pmatrix} a_1 & a_3 & a_5 & \dots & 0 \\ a_0 & a_2 & a_4 & \dots & 0 \\ 0 & a_1 & a_3 & \dots & 0 \\ 0 & a_0 & a_2 & \dots & 0 \\ \vdots & & & \ddots & \\ & & & & & a_m \end{pmatrix}$$

Рассмотрим главные миноры матрицы Гурвица (определители Гурвица):

$$\Delta_1 = a_1, \ \Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix}, \ \Delta_3 = \begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{vmatrix}, \ \dots \ \Delta_m = a_m \Delta_{m-1}.$$

Thr 1.9 (Критерий Рауса-Гурвица). Для того, чтобы все корни характерестического уравнения с вещественными коэффициентами и положительным старшим a_0 имели отрицательные вещественные части, необходимо и достаточно, чтобы выполнялись неравенства:

$$\Delta_1 > 0, \ \Delta_2 > 0, \ \dots \ \Delta_m > 0.$$

Если же хотя бы одно из неравенств имеет противоположный смысл, то характерестическое уравнение имеет корни, вещественные части которых положительны.

1.2 Устойчивость консервативной системы (thr Лагранжа, thr Ляпунова)

Теорема Лагранжа

Thr 1.10 (Теорема Лагранжа-Дирихле). Если в положении равновесия конесервативной системы $\Pi(q)$ имеет строгий локальный минимум, то это положение равновесия устойчиво.

Lem 1.11. При наличии гироскопических и диссипативных сил положение равновесия сохранится.

Теоремы Ляпунова о неустойчивости положения равновесия консервативной системы

Thr 1.12 (Теорема Ляпунова о неустойчивости I). Если в положении равновесия $\Pi(q)$ не имеет минимума и это определяется по квадратичной форме её разложения в ряд (в окрестности положения равновесия), то это положение равновесия неустойчиво.

Thr 1.13 (Теорема Ляпунова о неустойчивости II). Если в положении равновесия $\Pi(q)$ имеет строгий максимум и это определяется по наинизшей степени её разложения в ряд (в окрестности положения равновесия), то это положение равновесия неустойчиво.

Нормальные колебания

2.3 Малые колебания консервативной системы

Запишем уравнения Лагранжа для консервативной голономной системе:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad q \in M^n; \qquad q, \dot{q} \in TM^n.$$

Тогда можно сказать, что

$$L(q, \dot{q}, t) \colon TM^n \times \mathbb{R}^1 \mapsto \mathbb{R}^1.$$

Параллельным переносом выберем q=0 – положение равновесия. Тогда считаем, что $q(t), \dot{q}(t) \in \varepsilon$ – окрестности. В идеале мы хотим всё линеаризовать, тогда

$$T = T_2 + T_1 + T_0 = T_2 = \frac{1}{2} \dot{q}^i \dot{q}^j A_{ij}(q) \approx \frac{1}{2} \dot{q}^{\mathrm{T}} A(0) \dot{q} + \dots, \qquad A(0) = \frac{\partial^2 T(0)}{\partial \dot{q}^{\mathrm{T}} \partial \dot{q}}.$$

т. к. для консервативных систем $T_1 = T_0 = 0$.

Аналогично можем сделать для потенциальной энергии

$$\Pi = \Pi(0) + \frac{\partial \Pi(0)}{\partial q^{\mathrm{T}}} q + \frac{1}{2} q^{\mathrm{T}} \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q} q + \dots \approx \frac{1}{2} q^{\mathrm{T}} C(0) q, \qquad C(0) = \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q}.$$

Таким образом мы пришли к уравнениям вида

уравнениям вида
$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = -\frac{\partial \Pi}{\partial q} \qquad \Rightarrow \qquad \boxed{A\ddot{q} + Cq = 0.}$$

Последнее уравнение называется *уравнением малых колебаний*. Важно, что A – положительно определена, в силу невырожденности уравнений на \ddot{q} уравнений Лагранжа.

Из линейной алгебры понятно, что существуют координаты $\theta \in M^n$, а также невырожденная матрица перехода к новым координатам $U \colon q = U\theta$, и $U^{\mathrm{T}}AU = E$, $U^{\mathrm{T}}CU = \Lambda$ – диагональная матрица. Тогда верно, что

$$T = \frac{1}{2}\dot{\boldsymbol{q}}A\dot{\boldsymbol{q}} = \frac{1}{2}\dot{\boldsymbol{\theta}}^{\mathrm{T}}U^{\mathrm{T}}AU\dot{\boldsymbol{\theta}} = \frac{1}{2}\sum_{i=1}^{n}\dot{\theta}_{i}^{2}.$$

Аналогично для потенциальной энергии

$$\Pi = \frac{1}{2} \boldsymbol{q}^{\mathrm{T}} C q = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} U^{\mathrm{T}} C U \boldsymbol{\theta} = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \Lambda \boldsymbol{\theta} = \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \theta_{i}^{2}.$$

Это ещё сильнее упрощает уравнения Лагранжа:

$$A\ddot{q} + Cq = 0$$
 \rightarrow $\ddot{\theta}_i + \lambda_i \theta_i = 0, \quad i = 1, \dots, n.$

Здесь λ_i – действительные диагональные элементы Λ . При различных λ получаем, что

$$\lambda_{i} > 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \sin(\sqrt{\lambda_{i}} t + \alpha_{i});$$

$$\lambda_{i} = 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} t + \alpha_{i};$$

$$\lambda_{i} < 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \exp(\sqrt{-\lambda_{i}} t) + \alpha_{i} \exp(-\sqrt{-\lambda_{i}} t).$$

где последние два – уже не колебаниям.

Возвращаясь к удобной форме, получаем, что

$$q = U\theta = \sum_{i=1}^{n} c_i u_i \sin(\sqrt{\lambda_i} t + \alpha_i),$$

где u_i — амплитудный вектор i-го главного колебания. Таким образом консервативная система движется по суперпозиции некоторых главных колебаний (гармонических осцилляций).

Иначе мы можем интерпретировать это так, что кинетическая энергия¹ образует некоторую метрику, а амплитудные вектора образуют некоторый ортонормированный базис.

$$U^{\mathrm{T}}AU = E \quad \Rightarrow \quad \boldsymbol{u}_{i}^{\mathrm{T}}A\boldsymbol{u}_{j} = \delta_{ij}$$

Получив матрицы $A,\ C$ переходим к $[C-\lambda A]{m u}=0,$ получая

$$|C - \lambda A| = 0,$$

что называют вековым уравнением, или уравнением частот. Из него получим $\lambda_1, \ldots, \lambda_n$, и уже перейдём к системе уравнений вида $|C - \lambda_i A| u_i = 0$.

2.4 Вынужденные колебания

Давайте испортим консервативность так, чтобы

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} = -\frac{\partial \Pi}{\partial q^i} + Q_i(t).$$

Как выяснили раннее

$$q = U\theta$$
. $U^{T}AU = E, U^{T}CU = \Lambda$.

Посчитаем элементарную работу добавленной силы

$$\delta A = Q_i \delta q^i = \Theta^{\mathrm{T}} \delta \theta = Q^{\mathrm{T}} U \delta \theta,$$

тогда можно записать, что

$$\Theta = U^{\mathrm{T}}Q, \qquad Q = (U^{\mathrm{T}})^{-1}\Theta,$$

то есть преобразование обобщенных сил. То есть уравнение приходит к виду

$$A\ddot{q}+Cq=Q(t), \qquad \overset{\text{for c индексами}}{=} \qquad \ddot{q}_i+\lambda_i\theta_i=\Theta_i(t).$$

Тогда ответ запишется в виде

$$q = \sum_{i=1}^{n} c_i \mathbf{u}_i \sin\left(\sqrt{\lambda_i} t + \alpha_i\right) + \sum_{i=1}^{n} \mathbf{u}_i \theta_i^*(t),$$

где вторая сумма соотвествует *вынужденным колебаниям*, а первая свободным гармоническим колебаниям.

Пусть так вышло, что

$$\begin{cases} \theta_i^* = b_i \sin{(\Omega t)} \\ \Theta_i(t) = a_i \sin{(\Omega t)} \end{cases} \Rightarrow b_i (\lambda_i - \Omega^2) = a_i, \Rightarrow \theta_i^* = \frac{a_i}{\lambda_i - \Omega^2} \sin{(\Omega t)}.$$

В случае же резонанса ищем решение в виде

$$\theta_i^*(t) = b_i t \cos(\Omega t), \quad \Rightarrow \quad b_i = -\frac{a_i}{2\Omega}.$$

И здесь мы видим первые звоночки от Пуанкаре, о конце линейной теории.

Диссипативные системы

И снова испортим консервативную систему до диссипативной,

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} = -\frac{\partial \Pi}{\partial q^i} + \tilde{Q}_i(\dot{q}) = Q_i(q, \dot{q}).$$

С кинетической всё как обычно, тогда

$$T = \frac{1}{2}\dot{\boldsymbol{q}}^{\mathrm{T}}A\dot{\boldsymbol{q}}; \qquad \boldsymbol{Q} = \boldsymbol{Q}(0) + \frac{\partial \boldsymbol{Q}}{\partial \boldsymbol{q}^{\mathrm{T}}}\boldsymbol{q} + \frac{\partial \boldsymbol{Q}(0)}{\partial \dot{\boldsymbol{a}}^{\mathrm{T}}}\dot{\boldsymbol{q}} = -C\boldsymbol{q} - B\dot{\boldsymbol{q}}.$$

Где ввели матрицы вида

$$C = -\frac{\partial \mathbf{Q}(0)}{\partial \mathbf{q}^{\mathrm{T}}}; \qquad B = -\frac{\partial \mathbf{Q}(0)}{\partial \dot{\mathbf{q}}^{\mathrm{T}}}.$$

В таком случае уравнение примет вид

$$A\ddot{q} + B\dot{q} + Cq = 0,$$

получили линеаризация уравнений Лагранжа І. Но его сходу к каноническом виду не привести.

Вспомним, что энергия системы

$$E = \frac{1}{2}\dot{\boldsymbol{q}}\cdot A\dot{\boldsymbol{q}} + \frac{1}{2}\boldsymbol{q}\cdot C\boldsymbol{q}, \quad \Rightarrow \quad \frac{dE}{dt} = A\ddot{\boldsymbol{q}}\cdot\dot{\boldsymbol{q}} + C\boldsymbol{q}\cdot\dot{\boldsymbol{q}} = [A\ddot{\boldsymbol{q}} + C\boldsymbol{q}]\cdot\dot{\boldsymbol{q}} = -B\dot{\boldsymbol{q}}^2 = N.$$

 $^{^{1}}$ Переписать грамотнее.

И пошла классификация: если $N\equiv 0$, то силы называем $ho connurec \kappa u m u$. Если $N\leqslant 0$, то силы ho u ccunamu u u u u.

Def 2.14. Положение равновесия q^* называется асимптотически устойчивым, если оно устойчиво и

$$\exists \delta \colon \forall \, |\dot{\boldsymbol{q}}| < \delta, \, |\boldsymbol{q}| < \delta \quad \lim_{t \to \infty} \boldsymbol{q}(t) = 0, \, \lim_{t \to \infty} \dot{\boldsymbol{q}}(t) = 0.$$

Возвращаясь к уравнению, вспомним что решение ищется в виде²

$$q = \sum_{i=1}^{2n} C_i u_i \exp(\lambda_i t), \quad \Rightarrow \quad [A\lambda^2 + B\lambda + C] u = 0, \quad \Rightarrow \quad \det[A\lambda^2 + B\lambda + C] = 0,$$

тогда мы находим 2n решений $\lambda_1, \ldots, \lambda_{2n}$, и, соответственно, 2n амплитудных векторов.

Thr 2.15 (Достаточное условие асимптотической устойчивости). Для того, чтобы решение $q=q^*$ было асимптотически устойчиво достаточно, чтобы

Re
$$\lambda_i < 0, \quad \forall i \in \{1, \dots, 2n\}.$$

Если $\exists \lambda_i \colon \operatorname{Re} \lambda_i > 0$, тогда всё не так хорошо.

Канонические уравнения

5.11 Канонические уравнения Гамильтона и интеграл Якоби

Преобразование Лежандра

Def 5.16. В уравнениях Лагранжа второго рода движения голономной системы в потенциальном поле сил, функция Лагранжа зависит от q, \dot{q} , t – nepemenhue Лагранжа. Если в качестве параметров взять q, p, t, где p_i – obofueнные umnyльс u^3 , определяемые как $p_i = \partial L/\partial \dot{q}^i$. То получим набор q, p, t – nepemenhue Γ амильтона.

В силу невырожденности $\partial L/(\partial \dot{q}^i \partial \dot{q}^j) = J_p$, то есть по *теореме о неявной функции* эти равенства разрешимы относительно переменных \dot{q}^i . Через преобразование Лежандра естественно ввести функцию

$$H(q, p, t) = p_i \dot{q}^i - L(q, \dot{q}, t), \quad \dot{q} \equiv \dot{q}(q, p, t).$$

Уравнения Гамильтона

Полный дифференциал функции Гамильтона можем выразить двумя способами:

$$dH = \frac{\partial H}{\partial q^{i}} dq^{i} + \frac{\partial H}{\partial p_{i}} dp_{i} + \frac{\partial H}{\partial t} dt,$$

$$dH = \dot{q}^{i} dp_{i} - \frac{\partial L}{\partial q^{i}} dq^{i} - \frac{\partial L}{\partial t} dt.$$

$$\Rightarrow \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$

$$\frac{\partial H}{\partial p_{i}} = \dot{q}^{i}, \quad \frac{\partial H}{\partial q^{i}} = -\frac{\partial L}{\partial q^{i}}$$

$$\Rightarrow \begin{cases} \frac{dq^{i}}{dt} = \frac{\partial H}{\partial p_{i}}, \\ \frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q^{i}}. \end{cases}$$

Эти уравнения называются уравнениями Гамильтона, или каноническими уравнениями.

Физический смысл функции Гамильтона

Пусть система натуральна, тогда $L = L_2 + L_1 + L_0$, и, соотвественно,

$$H = \frac{\partial L}{\partial \dot{q}^i} \dot{q}^i - L.$$

По теореме Эйлера об однородных функциях

$$\frac{\partial L_2}{\partial \dot{q}^i} \dot{q}^i = 2L_2, \qquad \quad \frac{\partial L_1}{\partial \dot{q}^i} \dot{q}^i = L_1, \quad \Rightarrow \quad H = L_2 - L_0.$$

пусть $T = T_2 + T_1 + T_0$, если силы имеют обычный потенциал Π , то $L_0 = T_0 - \Pi$,

$$H = T_2 - T_0 + \Pi.$$

Если же силы имеют обобщенный потенциал $V = V_1 + V_0$, то $L_0 = T_0 - V_0$, и

$$H = T_2 - T_0 + V_0$$
.

В случае натуральных и склерономных систем $T_1=T_0=0$ и $T=T_2$, тогда $H=T+\Pi$. Т.е. для натуральных склерономных систем с обычным потенциалом сил функция Гамильтона H представляет собой полную механическую энергию.

 $[\]overline{\ \ ^{2}\mathrm{B}}$ общем случае решение системы вообще сложнее (при кратных λ), но качественно всё примерно в таком же духе, поэтому, ну, всё уорошо

³Обобщенный импульс p_i – ковектор, а не вектор!

Интеграл Якоби

Найдём полную производную H по времени,

$$\frac{dH}{dt} = \frac{\partial H}{\partial q^i} \dot{q}^i + \frac{\partial H}{\partial p_i} \dot{p}_i + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial q^i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q^i} + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}, \quad \Rightarrow \quad \frac{dH}{dt} = \frac{\partial H}{\partial t}.$$

Система называется обобщенно консервативной, если $\partial H/\partial t = 0$, т.е $H(q^i, p_i) = h$, собственно, H называют обобщенной полной энергией, а последнее равенство – обобщенным интегралом энергии.

Def 5.17. Для натуральной системы с обычным потенциалом сил, если $\partial H/\partial t = 0$, то

$$H = T_2 - T_0 + \Pi = h = \text{const.}$$

Соотношение, где h – произвольная постоянная, называют *интегралом Якоби*.

Есть и другая формулировка для интеграла Якоби голономной склерономной системы. Действительно, при $\partial L/\partial t=0$, интеграл Якоби перейдёт в

$$\frac{\partial H}{\partial t} = 0, \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \dot{q}^i \right) = 0, \Rightarrow \frac{\partial L}{\partial \dot{q}^i} \dot{q}^i = \text{const.}$$

5.12 Уравнения Уиттекера

Уравнения Уиттекера для консервативных и обобщенно консервативных систем. Время и энергия как канонически сопряженные переменные. Если $\partial H/\partial t=0$, то H(q,p)=h, где h= const определяемая из н.у. В 2n-мерном пространстве q,p интеграл Якоби задаёт гиперповерхность, рассмотрим движение с H=h.

Такое движение описывается системой с 2n-2 уравнений, причём она может быть записана в виде канонических уравнений. Пусть $\partial H/\partial p_1 \neq 0$, тогда

$$p_{1} = -K(q^{1}, \dots, q^{n}, p_{2}, \dots, p_{n}, h), \quad \Rightarrow \quad \begin{cases} \dot{q}^{i} = \frac{\partial H}{\partial p_{i}}, \\ \dot{p}_{j} = -\frac{\partial H}{\partial q^{j}} \end{cases} \quad \Rightarrow \quad \frac{dq^{j}}{dq^{1}} = \frac{\left(\frac{\partial H}{\partial p_{j}}\right)}{\left(\frac{\partial H}{\partial p_{1}}\right)}, \quad \frac{dp_{j}}{dq^{1}} = -\frac{\left(\frac{\partial H}{\partial q^{j}}\right)}{\left(\frac{\partial H}{\partial p_{1}}\right)},$$

для $j=2,\ 3,\ \dots,\ n.$ Подставляя p_1 получим

$$\frac{\partial H}{\partial q^{j}} - \frac{\partial H}{\partial p_{1}} \frac{\partial K}{\partial q^{j}} = 0, (j = 2, 3, ..., n);$$

$$\frac{\partial H}{\partial p_{j}} - \frac{\partial H}{\partial p_{1}} \frac{\partial K}{\partial p_{j}} = 0, (j = 2, 3, ..., n).$$

Допиливая до надлежащего вида, окончательно находим

$$\frac{dq^j}{dq^1} = \frac{\partial K}{\partial p_j}, \qquad \frac{dp_j}{dq^1} = -\frac{\partial K}{\partial q^j}, \qquad (j = 2, 3, \dots, n).$$

Эти уравнения описывают движения системы при $H=h={
m const.}$, и называются уравнениями Уиттекера.

Уравнения Якоби

Уравнения Уиттекера имеют структуру уравнений Гамильтона, соответственно их можно записать в виде уравнений типа Лагранжа, при гессиане K по p неравным 0. Пусть P – преобразование Лежандра функции K по p_j ($j=2,\ 3,\ \ldots,\ n$). Тогда

$$P = P(q^2, \dots, q^n, \tilde{q}^2, \dots, \tilde{q}^n, q^1, h) = \sum_{j=2}^n \tilde{q}^j p_j - K,$$

где $\tilde{q}^j = dq^j/dq^1$. Величины p_j выражаются через $\tilde{q}^2, \ldots, \tilde{q}_n$ из уравнений

$$\tilde{q}^j = \frac{\partial K}{\partial p_j}, \quad (j = 2, 3, \dots, n),$$

т.е. из первых n-1 уравнений Уиттекера. При помощи функции P эти уравнения могут быть записаны в эквивалентной форме:

$$\frac{d}{dq^1}\frac{\partial P}{\partial q_i'} - \frac{\partial P}{\partial q^j} = 0 \qquad (j = 2, 3, \dots, n).$$

Это уравнения типа Лагранжа, называются уравнениями Якоби.

Преобразовывая выражение для P найдём, что

$$P = \sum_{j=2}^{n} q_j \tilde{q}^j + p_1 = \sum_{i=1}^{n} p_1 \tilde{q}_i = \frac{1}{\dot{q}^1} \sum_{i=1}^{n} p_i \dot{q}^i = \frac{1}{\dot{q}^1} (L + H).$$

Тогда в случае консервативной системы $L=T-\Pi,\, H=T+\Pi,\,$ и

$$P = \frac{2T}{\dot{q}^{1}}, \quad T = \frac{1}{2}a_{ik}\dot{q}^{i}\dot{q}^{k} = (\dot{q}^{1})^{2}G(q^{1},\dots,q^{n},\tilde{q}^{2},\dots,\tilde{q}^{n}), \quad G = \frac{1}{2}a_{ik}\tilde{q}^{i}\tilde{q}^{k}. \quad \Rightarrow \quad \tilde{q}^{1} = \sqrt{\frac{h-\Pi}{G}}$$

Таким образом выражение для

$$P = 2\sqrt{(h - \Pi)G}.$$

5.14 Скобки {Лагранжа, Пуассона, Ли}

Скобки Пуассона

Def 5.18. Пусть $u, v \in C^2(q, p, t)$, тогда выражение

$$\{u, v\} = \frac{\partial u}{\partial q^i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q^i}$$

называют скобкой Пуассона функций и и v.

Вообще, можно было бы ввести алгебры Ли и показать, что пространство гладких функций f(t, x, p) является алгеброй Ли относительно скобки Пуассона. Выражается это в выполнение следующих свойств:

- 1. $\{y, x\} = -\{x, y\}, \forall x, y \in C^2$ (кососимметричность);
- 2. $\{\lambda_1 x_1 + \lambda_2 x_2, y\} = \lambda_1 \{x_1, y_1\} + \lambda_2 \{x_2, y\}, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$ (линейность по первому аргументу);
- 3. $\{x, \{y, z\} + \{y, \{z, x\}\} + \{z, \{x, y\}\} = 0$ (тождество Якоби).

Def 5.19. Производной функции f(t,q,p) в силу гамильтоновой системы в точке (t_0,x_0,p^0) называется

$$\frac{df(t_0,x_0,p^0)}{dt} \stackrel{\text{def}}{=} \frac{d}{dt} \left(f(t,q(t),p(t)) \big|_{t=t_0} \right),$$

где q(t) и p(t) – решения гамильтоновой системы с н.у. $q(t_0) = q_0$ и $p(t_0) = p^0$.

Выразим производную в силу системы через скобку Пуассона:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial q^i} \frac{dq^i}{dt} + \frac{\partial f}{\partial p_i} \frac{dp_i}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial q^i} \frac{\partial H}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q^i} = \frac{\partial f}{\partial t} + \{H, f\}, \quad \Rightarrow \quad \frac{df}{dt} = \frac{\partial f}{\partial t} + \{H, f\}.$$

Lem 5.20. Уравнение вида

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \{H, f\} = 0$$

является необходимым и достаточным условием того, что f(t,q,p) являлась бы первым интегралом гамильтоновой системы.

Thr 5.21 (теорема Пуассона). Если f и g – два интеграла движения, то $\{f,g\} = const$ также является интегралом движения⁴.

Def 5.22. Гамильтоновым полем для функции $f \in C^1$ называется векторное поле f, определяемое формулой $\omega[f(q,p), v] = df(q,p)[v], \ \ \forall v \in T_{q,p}, \qquad \omega = dq^i \wedge dp_i.$

В координатах это выразится в

$$m{f} = rac{\partial f}{\partial p_i} rac{\partial}{\partial q^i} - rac{\partial f}{\partial q^i} rac{\partial}{\partial p_i}.$$

Более того $f(\varphi) = \{f, \varphi\}$, где φ – некоторая гладкая функция.

Thr 5.23 (о связи скобки Пуассона и скобки Ли). Пусть $f, g \in C^2$. Тогда гамильтоново поле скобки Пуассона $\{f, g\}$ совпадает со скобкой Ли гамильтоновых полей g и f:

$$\overrightarrow{\{f,g\}} = [\boldsymbol{f}, \boldsymbol{g}].$$

⁴Докажи!

Канонические преобразования

Гамильтонова механика - это геометрия в фазовом пространстве. Гамильтонова механическая система задаётся чётномерным многообразием («фазовым пространством»), симплектической структурой на нём («интегральным инвариантом Пуанкаре») и функцией на многообразии («функция Гамильтона»). Каждая однопараметрическая группа диффеоморфизмов, сохраняющих функцию Гамильтона, связана с первым интегралом уравнения движения.

Def 6.24. Пусть M^{2n} -чётномерное дифференцируемое многообразие. Симплектической структурой на M^{2n} называется замкнутая невырожденная дифференциальная 2-форма ω^2 на M^{2n} :

$$d\omega^2 = 0, \quad \forall \xi \neq 0 \ \exists \eta \colon \omega^2(\xi, \eta) \neq 0 \ (\xi, \eta \in TM_x).$$

Пара (M^{2n}, ω^2) называется симплектическим многообразием.

Def 6.25. Симплектическая структура устанавливает изоморфизм между пространствами касательных векторов и 1-форм. Сопоставим (через изоморфизм I) вектору ξ , касательному к симплектическому многообразию в точке x, 1-форму ω_{ε}^1 на TM_x по формуле $\omega_{\varepsilon}^1(\eta) = \omega^2(\eta, \xi) \ \forall \eta \in TM_x$.

Тогда dH — дифференциальная 1-форма на M, и ей соответсвует в каждой точке некоторый касательный к M вектор. В частности, будет интересен изоморфизм $I\colon T^*M_x\mapsto TM_x$.

Так, например, если $M^{2n} = \{p, q\}$, то поле фазовой скорости канонических уравнений Гамильтона

$$\dot{\boldsymbol{x}} = I dH(\boldsymbol{x}) \quad \Leftrightarrow \quad \dot{\boldsymbol{p}} = -\partial_{\boldsymbol{q}} H, \quad \dot{\boldsymbol{q}} = \partial_{\boldsymbol{p}} H.$$

Def 6.26. Векторное поле $I\,dH$ – гамильтоново векторное поле, а H – функция Гамильтона.

Гамильтоновы фазовые потоки и их интегральные инварианты

Пусть H задаёт однопараметрическую группу диффеоморфизмов $g^t \colon M^{2n} \mapsto M^{2n}$,

$$\frac{d}{dt}\bigg|_{t=0}g^t\boldsymbol{x}=I\,dH(\boldsymbol{x}),$$

где q^t – гамильтонов фазовый поток с функий Гамильтона H.

Удобно ввести понятие цепи, как k-мерной поверхности. При этом g^t будет формировать k+1-цепь, которую обозначим за Jc, называемую $cnedom\ uenu\ «c»$ при гомотопии g^t . Граница следа цепи может быть найдена, как

$$\partial(Jc) = q^{\tau}c - c - J\partial c$$

что видно из рисунка 1.

Рис. 1: След цепи при гомотопии

Thr 6.27. Гамильтонов фазовый поток сохраняет симплектическую структуру $(q^t)^*\omega^2 = \omega^2$.

Lem 6.28. Пусть γ – 1-цепь в симплектическом многообразии (M^{2n}, ω^2) . Пусть g^t – фазовый поток на M с функцией Гамильтона H. Тогда

$$\frac{d}{d\tau} \int_{J\gamma} \omega^2 = -\int_{g^\tau \gamma} dH.$$

 \triangle . Рассмотрим цепь γ из одного куска $f \colon [0,1] \mapsto M$, пусть $f'(s,t) = g^t f(s), \ \xi = \partial_s f'$ и $\eta = \partial_t f' \in TM_{f'(s,t)}$. По определению интеграла

$$\int_{J\gamma} \omega^2 = \int_0^1 \int_0^\tau \omega^2(\xi, \eta) \, dt \, ds$$

Но, по определению фазового потока η – вектор гамильтонова поля в точке f', и снова по определению гамильтонова поля $\omega^2(\eta,\xi)=dH(\xi)$, тогда

$$\int_{J\gamma} \omega^2 = -\int_0^\tau \left(\int_{g^t \gamma} dH \right) d\tau.$$

Как некоторое следствие, можно выделить, что если γ замкнута ($\partial \gamma = 0$), то $\int_{J\gamma} \omega^2 = 0$, по теореме Стокса: $\int_{\gamma} dH = \int_{\partial \gamma} H = 0$.

△оказательство теоремы. Рассмотрим некоторую 2-цепь, тогда для неё

$$0 \stackrel{(1)}{=} \int_{Jc} d\omega^2 \stackrel{(2)}{=} \int_{\partial Jc} \omega^2 \stackrel{(3)}{=} \int_{g^{\tau}c} -\int_c -\int_{J\partial c} \omega^2 \stackrel{(4)}{=} \int_{g^{\tau}c} \omega^2 -\int_c \omega^2,$$

где (1) равенство верно по замкнутости ω^2 , второе по формуле Стокса, третье – расписали границу цепи, и последнее по предыдущему следствию.

Def 6.29. Дифференциальная k-форма ω называется *интегральным инвариантом* отображения g, если интегралы ω по любой k-мерной цепи c и по её образу при отображении g одинаковы: $\int_{q[c]} \omega = \int_x \omega$.

Thr 6.30 (аналог thr 6.27). Задающая симплектическую структуру форма ω^2 является интегральным инвариантом гамильтонова фазового потока.

Также $(\omega^2)^2 = \omega^2 \wedge \omega^2$, и друге «степени» являются интегральными инвариантами фазового потока.

Def 6.31. Отображение $g: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ называется *каноническим*, если оно имеет ω^2 интегральным инвариантом. Каждая из форм ω^4 , ω^6 , ..., ω^{2n} является интегральным инвариантом всякого канонического отображения. Следовательно, при каноническом отображении сохраняется сумма ориентированных площадей проекций на координтные плоскости (p_i, q^j) . В частности, *канонические отображения сохраняют объёмы*.

Def 6.32. Дифференциальная k-форма ω называется *относительным интегральным инвариантом* отображения $g \colon M \mapsto M$, если $\int_{ac} \omega = \int_{c} \omega$ для всякой замкнутой k-цепи c.

Thr 6.33. Пусть ω – относительный интегральный инвариант отображения g, тогда $d\omega$ – абсолютный абсолютный интегральный инвариант g.

 \triangle . Пусть c это k+1-цепь, тогда

$$\int_{c} d\omega = \int_{\partial c} \omega = \int_{g\partial c} \omega = \int_{gc} d\omega.$$

Например, каноническое отображение имеет относительный интегральный инвариант $\omega^1 = \boldsymbol{p} \, d\boldsymbol{q} = p_i \, dq^i$.

Thr 6.34 (закон сохранения энергии). Функция H является первым интегралом гамильтонова фазового потока с функцией Гамильтона H.

 \triangle . Производная H по направлению η равна значению dH на η . Тогда, по определению

$$dH(\eta) = \omega^2(\eta, I dH) = \omega^2(\eta, \eta) = 0.$$

Алгебра Ли векторных полей

Def 6.35. Алгеброй Πu называется линейной пространство L вместе с билинейной кососимметричной операцией (коммутатором) $L \times L \mapsto L$, удовлетворяющей тождеству Якоби

$$[[A, B], C] + [[B, C], A] + [C, A], B] = 0.$$

Со всяким гладким полем на многообразии связаны следующие два объекта:

- 1. Однопараметрическая группа диффеоморфизмов, или поток $A^t \colon M \mapsto M$, для которого A поле скоростей: $d_t|_{t=0}A^t(x) = A(x)$.
- 2. Производная по направленю поля **A**: дял всякой функции $\varphi M \mapsto \mathbb{R}$ производная по направлению **A** есть $L_A \varphi$ такая, что $(L_A \varphi)(x) = d_t|_{t=0} \varphi(A^t x)$.

Вполне естественно ввести коммутатор дифференцирования по направлениям A и B:

$$\left. \frac{\partial^2}{\partial s \ \partial t} \right|_{t=s=0} \varphi(A^t B^s x) - \varphi(B^s A^t x) = \left(L_B L_A - L_A L_B \varphi \right)(x),$$

где возникший коммутатор – дифференциальный оператор первого порядка, который соответсвует некотором векторному полю C.

Def 6.36. Скобкой Пуассона или коммутатором двух векторных полей A и B на многообразии M называется векторное поле C, для которого

$$L_C = L_B L_A - L_A L_B, \quad C = [A, B],$$

или, в компонентах:

$$[\mathbf{A}, \mathbf{B}]^j = B^i \partial_i A^j - A^i \partial_i B^j.$$

Thr 6.37. Скобка Пуассона превращает линейное пространство векторных полей на многообразии М в алгебру Ли, в частности выполняется тождество Якоби.

Thr 6.38. Два потока A^t и B^s коммутируют тогда и тоъко тогда, когда скобка Пуассона соответсвующих векторных полей [A, B] равна нулю.

Алгебра Ли функций Гамильтона

Вернемся к симплектическому многообразию, функции $H\colon M^{2n}\mapsto \mathbb{R}$ заданной на многообразие, и соответствующей однопараметрической группе $g_H^t\colon M^{2n}\mapsto M^{2n}$ канонических преобразований, M^{2n} — фазовый поток с функцией гамильтона H. Пусть $F\colon M^{2n}\mapsto \mathbb{R}$ — другая функция на многообразии M^{2n} .

Def 6.39. Скобкой Пуассона $\{F, H\}$ функций F и H, заданных на симплектическом многообразии, называется производная функции F по направлению фазового потока с функцией H:

$$\{F, H\}(x) = \frac{d}{dt} \Big|_{t=0} F(g_H^t(x)).$$

Con 6.40. Функция F тогда и только тогда является первым интегралом фазового потка c функцией Γa -мильтона H, когда её скобка Пуассона c H равна нулю: $\{F, H\} \equiv 0$.

Если вспомним про изоморфизм I между 1-формами и векторными полями вида $\omega^2(\eta, I\omega^1) = \omega^1(\eta)$. Вектор скорости фазового потока $g_H^t = I \, dH$.

Скобка Пуассона функций F и H равна равна значению 1-формы dF на векторе $I\,dH$ скорости фазового потка с функцией Гамильтона H:

$$\{F, H\} = dF(IdH) = \omega^2(IdH, IdF),$$

откуда очевидно, что скобка Пуассона кососимметрическая билинейная функция. Тогда можем обобщить теорему Э. Нётер:

Thr 6.41. Если функция Гамильтона H выдерживает группу канонических преобразований, заданную гамильтонианом F, то F есть первый интеграл системы c функцией Гамильтона H.

Стоит заметит, что в координатах $\{F, H\} = [I dH, I dF] = \operatorname{grad} H, \operatorname{grad} F = \partial_{p_i} H \partial_{q^i} F - \partial_{q^i} H \partial_{p_i} F$. Также стоит вспомнить, что в базисе (p, q) I имеет вид

$$\begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix}.$$