GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA Circuitos Eléctricos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	2042	119

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento, la habilidad y la aptitud en el análisis de los circuitos eléctricos en corriente directa y corriente alterna, que le permitan conocer los diferentes métodos y teoremas fundamentales para ser aplicados en la práctica.

TEMAS Y SUBTEMAS

1. Manejo y uso de equipo electrónico

- 1.1 Mediciones eléctricas básicas.
- 1.2 Introducción.
- 1.3 Galvanómetro.
- 1.4 Ohmetro, amperimetro y voltimetro A.C. y D.C.
- 1.5 Osciloscopio y generador de funciones.

2. Métodos de análisis de circuitos

- 2.1 Carga, corriente, voltaje y potencia.
- 2.2 Elementos de un circuito y tipos de circuitos.
- 2.3 Ley de Ohm y leyes de Kirchhoff.
- 2.4 Análisis de circuitos de una sola trayectoria y de un par de nodos.
- 2.5 Combinación de resistencias y fuentes.
- 2.6 Regla de división de voltaje y corriente.
- 2.7 Análisis de nodos.
- 2.8 Análisis de mallas.
- 2.9 Linealidad y superposición.
- 2.10 Transformaciones de fuentes.
- 2.11 Teoremas de Thévenin y Norton.

3. Inductancia y capacitancia

- 3.1 El inductor.
- 3.2 El capacitor.
- 3.3 Relaciones integrales.
- 3.4 Arreglos de inductancias y capacitancias.
- 3.5 Consecuencias de la linealidad en inductancias y capacitancias.

4. Análisis de circuitos RL y RC

- 4.1 Propiedades de la respuesta exponencial.
- 4.2 Circuitos RL y RC sin fuente.
- 4.3 La función forzadora con forma de escalón unitario.
- 4.4 Análisis de circuitos RL y RC con fuente constante.
- 4.5 La respuesta natural y la respuesta forzada en circuitos RL y RC.

5. Análisis de circuitos RLC

5.1 Circuitos RLC serie sin fuentes.

- 5.2 Circuitos RLC serie sobre amortiguado.
- 5.3 Circuitos RLC serie críticamente amortiguado.
- 5.4 Circuitos RLC serie subamortiguado.
- 5.5 Circuitos RLC paralelo sin fuentes.
- 5.6 Circuitos RLC serie y paralelo con fuentes.
- 5.7 Circuito LC sin pérdidas.

6. Respuesta senoidal en estado permanente

- 6.1 Respuesta senoidal en el dominio del tiempo y la frecuencia.
- 6.2 El concepto de Fasor.
- 6.3 Elementos pasivos de circuitos en la representación fasorial.
- 6.4 Leyes de Kirchhoff en la representación fasorial.
- 6.5 Técnicas de análisis de circuitos con fasores.
- 6.6 Potencia promedio y valores efectivos.

7. Resonancia en serie y paralelo

- 7.1 Introducción a la resonancia en serie.
- 7.2 Introducción a la resonancia en paralelo.
- 7.3 Ancho de banda y factor de calidad.
- 7.4 Normalización.

8. Circuitos Trifásicos

- 8.1 Voltajes trifásicos balanceados.
- 8.2 Análisis de circuitos estrella estrella, estrella delta balanceado.
- 8.3 Cálculo de potencia en un circuito trifásico balanceado.
- 8.4 Sistemas trifásicos desbalanceados.

ACTIVIDADES DE APRENDIZAJE

Investigación bibliográfica en libros de texto y otras fuentes de consulta. Asignación de tareas que refuerzan el material visto en el salón de clases. Diseño y simulación de circuitos usando paquetes computacionales. Prácticas de Laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales y un examen final.

Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y la documentación de problemas sobre los temas del curso y la asistencia a las asesorías.

La suma de todos los criterios y procedimientos de evaluación y acreditación deberán integrar el 100% de la calificación.

BIBLIOGRAFÍA

Bibliografía básica:

- Análisis de Circuitos en Ingeniería, Hayt William H. Jr., Kemmerly Jack E., Durban Steven M., McGraw Hill Interamericana, México 2003 (Traducido de: Engineering Circuit Analysis, 6a. Ed.).
- Circuitos Eléctricos, Nilsson James W., Riedel Susan A., Prentice Hall, Sexta Edición, México 2005.
- Instrumentación Electrónica Moderna y Técnicas de Medición, Helfrick Albert, William Cooper.
 Tercera Edición, Prentice Hall, 1996.
- Análisis de Circuitos en Ingeniería, Irwin David J., México: Limusa Wiley, 2003.

Bibliografía de consulta:

- Circuitos Eléctricos: Introducción al Análisis y Diseño, Dorf Richard C., AlfaOmega, México, Tercera Edición, 2000.
- Análisis Básico de Circuitos Eléctricos, Jonson David E., Hilburn John L. Scout Meter D., Pearson –
 Prentice Hall, Quinta Edición, México 1996.
- Circuitos Eléctricos, Alexander Charles K., Sadiku Matthew N.O., McGraw Hill 1600 americana, México 2006.

 GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica, Maestría en Electrónica o Doctorado en Electrónica ó Telecomunicaciones

