Routing beyond unicast

- Data forwarding between two endpoints
 - Unicast
 - · One-to-one
- Other modes of data forwarding?
 - Broadcast
 - · One-to-all
 - Multicast
 - One-to-many (a group)
 - Open and closed groups
 - Anycast
 - One-to-one-of-many
 - Geocast
 - · One-to-area

Applications

226

Mountains & Minds

Broadcast delivery

Design an algorithm to broadcast a packet from node u to the other nodes in the network

- Unicast
 - Source unicasts packet to all recipients
 - But, source duplication is inefficient
- Flooding
 - Routers forward packet on all outgoing links
 - But, multiple packets arrive at routers and are retransmitted! → broadcast storm
- Controlled flooding
 - Use sequence numbers, routers forward each packet only once (on all outgoing links)
 - But, still multiple arrivals at each router
- Minimum spanning tree
 - Spanning tree G' = (V, E'), where $E' \subseteq E$ and G' connected, acyclic
 - Controlled flooding over lower cost G'
 - Downsides?

MONTANA STATE UNIVERSITY

- Network model
 - Graph G = (V, E)
 - $V = \{u, v, w, x, y, z\}$
 - $E = \{(u, v), (u, x), (v, x), ...\}$
 - Link cost c(x, y)
 - c(x,y) = c(y,x)
 - If $(x, y) \notin E$ then $c(x, y) = \infty$

Mountains & Minds

1

Spanning tree construction

Design an algorithm to build a minimum cost spanning tree from node \boldsymbol{u} to the other nodes in the network

- LS approach
 - Source node knows network topology
 - Centralized calculation
- DV approach
 - Destination nodes unicast tree join message to source (also rendezvous point, or core)
 - Forwarded to core, or until arrives at node already in tree
 - Path of tree join messages define branches
 - Could be inefficient for asymmetric links!

- Network model
 - Graph G = (V, E)
 - $V = \{u, v, w, x, y, z\}$
 - $E = \{(u, v), (u, x), (v, x), ...\}$
 - Link cost c(x, y)
 - c(x,y) = c(y,x)
 - If $(x, y) \notin E$ then $c(x, y) = \infty$

Mountains & Minds

IP Multicast

- Challenges
 - How to identify group members (M)?
 - How to address packets?
 - How to build multicast spanning trees?
- Group membership maintenance
 - End hosts communicate with edge routers using Internet Group Management Protocol (IGMP)
 - IGMP coordinates with multicast routing protocols: DVMRP, PIM, SSM, MSDP
- Address indirection
 - Class D address space 224/4
 - Packets sent to a multicast address delivered to all group members

- Graph G = (V, E)
 - $V = \{u, v, w, x, y, z\}$
 - $E = \{(u, v), (u, x), (v, x), ...\}$
- Link cost c(x, y)
 - c(x,y) = c(y,x)
 - If $(x, y) \notin E$ then $c(x, y) = \infty$

Mountains & Minds 229

Multicast trees

- Group-based trees (Steiner tree)
 - Minimum cost tree connecting all routers with attached group members
 - Problem is NP-complete, heuristics exist, but too complex in practice
- Source trees (DVMRP)
 - Controlled network flood
 - Routers accept traffic only from shortest path to source upstream nodes
 - Routers reject traffic (prune) if no downstream recipients
 - Soft state: prune state times out
- Group-based trees (MSDP)
 - Edge routers send tree join requests
 - Forwarded between ISPs by BGP

- Graph G = (V, E)
 - $V = \{u, v, w, x, y, z\}$
 - $E = \{(u, v), (u, x), (v, x), ...\}$
- Link cost c(x, y)
 - c(x,y) = c(y,x)
 - If $(x, y) \notin E$ then $c(x, y) = \infty$

Mountains & Minds

230

Anycast

- Get routing to chose the closest cluster of content servers
- Assign the same IP to multiple servers
- Advertise reachability through BGP
- Router receiving an advertisements
 - Sees them as multiple routes to the same address
 - Picks the shortest one

4b
4a
4c
Client
As4

As2
2b
As3
Advertise
212.21.21.21

CDN Server A

CDN Server B

What path do packets take from the client to 212.21.21.21?

Mountains & Minds

Future of IP multicast

- Why is IP multicast not being adopted?
 - Higher load on routers
 - Difficulties in accounting for multicast traffic between ISPs
 - Cost of network complexity
 - Application layer solutions
 - Make load accounting easier

Source: Google Trends

Mountains & Minds

232

More Technology Trends

Mountains & Minds

4

More Technology Trends

Mountains & Minds