TO THE STATE OF TH

United International University School of Science and Engineering

Mid Assessment Trimester: Summer-2020

Course Title: Linear Algebra, Ordinary & Partial Differential Equations / Calculus and Linear Algebra

Course Code: Math 183/Math-2183 Marks: 20 Time: 1 Hour

Answer any one from 1 and 2, whereas 3 is mandatory. Figures are in the right hand margin indicating full marks. Answer all parts of a question together.

1.	For the functi	on $f(x) = x^3 - 18x^2 + 2$ find	[10]			
	(i) Its stationary and inflection points.					
	(ii)	The intervals on which $f(x)$ is increasing and decreasing.				
	(iii)	The intervals on which $f(x)$ is concave up and down.				
	(iv) Find the slope of the surface $z = f(x, y) = 2\sqrt{x^2 + y^2}$ in x -direction at the point $(3, 4)$.					
	(v) Using chain rule find $\frac{\partial w}{\partial p}$, where					
	W	$=z\sin(xy)+\sqrt{zy}, x=p+2r, y=\frac{r}{2p}, z=r^2$				
2.	For the functi	on $f(x) = x^3 - 9x^2 + 9$ find	[10]			
	(i)	Its critical points and intercepts.				
	(ii)	Its relative maximum and minimum by using 1 st derivative test.				
	(iii)	Its relative maximum and minimum by using 2^{nd} derivative test.				
	(iv)	Find the slope of the surface $z = f(x, y) = 4\sqrt{x^3 + y^3}$ in the				
		y-direction at the point (3, 3).				
İ	(vi)	Using chain rule find $\frac{\partial w}{\partial r}$, where				
		$z \cos(xz) + \sqrt{xy}, x = r + 2p, y = \frac{p}{2r}, z = r^2 + p^2$				
3.	(a) Find	the solution of the given differential equations	[6]			
	i)	$ty' + 3y = 4t^2 + t$				
	ii)	$ty' + 3y = 4t^2 + t$ $y' = \frac{e^{-x} - e^x}{3 + 4y}, \qquad y(0) = 1$				
			[4]			
	(b) Solve	$(x^2 + xy + y^2)dx - x^2dy = 0$				