Basics

Notations

• $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$

• $[n] := \{1, \dots, n\} \subset \mathbb{N}$ • Power set $2^X := \{A : A \subseteq X\}$

Graph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{\{u, v\} : u, v \in V\}$ $V, u \neq v$

• Vertex set: V(G)

Edge set: E(G)

- Isomorphic (G_1 to another graph G_2): if \exists bijection $f:V_1 \to V_2$ with $\{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2$

• Order: = |V(G)|, short |G|

• Size: = |E(G)|, short ||G||

• Complement: $\overline{G} = (V(G), (\frac{V}{2}) - E(G))$

• Degree sequence: multiset of degrees of vertices in V(G)

 \circ graphic: deg. seq. (d_1,\ldots,d_n) , iff

1. $d_1 + \cdots + d_n$ even

2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_i i = k+1^n \min(d_i,k) \quad (\forall 1 \le k \le n)$ • Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$ • Minimum degree: $\delta(G) = \deg \operatorname{ree} of v \in V(G)$ with smallest degree

• Maximum degree: $\Delta(G)$ = degree of $v \in V(G)$ with largest degree

• Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$

• Incidence graph of $G: IG = (V \cup E, \{\{v, e\} : v \in e, e \in E\})$

• Eulerian: if it contains an Eulerian tour

· Connected: for any two vertices there is a link between them

o spanning tree: if G is connected, then it has a spanning tree

 \circ peeling leaves: vertices can be ordered v_1, \ldots, v_n s.t. $G[\{v_1, \ldots, v_i\}]$ is connected for $i \in \{1, \ldots, n\}$

Digraph

- **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$ $V, u \neq v$

Multigraph

• **Definition**: G = (V, E) with vertex set V and multiset E of V-pairs

Hypergraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq V\}$

Vertex

• Incident to $e \in E(G)$ if $v \in e$

• Adjacent to $\tilde{v} \in V(G)$ if $\{v, \tilde{v}\} \in E(G)$

• Neighborhood: $N(v) = \{u : uv \in E(G)\}$

• Degree: deg(v) = d(v) = |N(v)|

• Isolated: vertex with deg(v) = 0

• Leaf: vertex with deg(v) = 1

Subgraph

• **Definition**: H subgraph of G (write $H \subseteq G$) if $V(H) \subseteq V(G) \land E(H) \subseteq$ E(G)

• Induced subgraph: H induced subgraph of G (write $H\subseteq G$), if $H\subseteq G$ and E(H) contains all edges from E(G) between vertices in V(H)

• Edge-induced subgraph: subgraph induced by $X \subseteq E(G)$, note G[X]

• Subgraph separation: $X \subset V(G)$ separates $A, B \subset V(G) \Leftrightarrow$ any A-B-path has vertex in X

Spanning graph

· Definition: Subgraph with same vertex set as supergraph

Line graph

• **Definition**: $L(G) = (E, \{\{e, e'\} : e \cap e' \neq \emptyset\})$

• Graphic: L is line graph of some G, if it doesn't contain one of 9 specific induced subgraphs

Vertex cover

• **Definition**: $V' \subseteq V(G)$ s.t. any $e \in E(G)$ is incident to a vertex in V'

Cycle

- Definition: $C_n \coloneqq (\{v_1, \dots, v_n\}, \{\{v_1, v_2\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\})$

• Shorthand: (v_1,\ldots,v_n,v_1)

• Length (of cycle): = $|V| \equiv |E|$

• Cyclic subgraph: If $\delta(G) \ge 2$, then G has cycle with length $\ge \delta + 1$

Path

• Definition: $(\{v_1, \dots, v_n\}, \{\{v_1, v_2\}, \dots, \{v_{n-1}, v_n\}\})$

• Shorthand: (v_1, \ldots, v_n)

• Length (of path): = $|E| \neq |V|$

• v_0v_k -path: path starting at v_0 and ending at v_k

• **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b

Walk

• Definition: non-empty alternating sequence of vertices and edges

 $v_0e_0\dots e_{k-1}v_k$ with $e_i = v_i v_{i+1}$, length $k \in \mathbb{N}$

 \circ closed: if $v_0 = v_k$ o even: if k is even

o odd: if k is odd

· Eulerian tour:

o Definition: closed walk with

– no edges of G are repeatedly used

all edges of G are used

• Even degrees: G connected has Euler tour $\Leftrightarrow \forall v \in V(G) : \deg(v)$ even

- v_0v_k -walk: walk starting at v_0 and ending at v_k

• Induces path: $\exists uv$ -walk $\Rightarrow \exists uv$ -path

• Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

Connected component

Definition: maximal connected subgraph (connected, but any supergraph isn't)

Block

· Block: maximal 2-connected subgraph or bridge

o share ≤ 1 vertices with one another

· Block-cut-vertex graph

 $\circ V = \text{set of blocks} \cup \text{set of vertices}$

 $\circ E = \{\{v, B\} : v \in V(B), \text{ cut-vertex } v, \text{ block } B\}$

o block-cut-vertex graph of connected graph is tree

Acyclic graph, Forest

· Definition: Graph with no cycle as subgraph

Tree

· Definition: Graph that is connected and acyclic

 $\circ \Leftrightarrow G$ is connected and $\forall e \in E(G) : G - e$ is disconnected (minimal-connected)

 $\circ \Leftrightarrow G$ is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)

 $\circ \Leftrightarrow G$ is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \le 1)$

 $\circ \iff G$ is connected and ||G|| = |G| - 1

 $\circ \iff G$ is acyclic and ||G|| = |G| - 1

 $\circ \iff \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$

· Special trees: path, star, spider, caterpillar, broom

• Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf

• Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n - 1$

k-regular graph

• **Definition**: Graph with $\deg(v) = k \in \mathbb{N}_0 \quad (\forall v \in V(G))$

Bipartite graph

- **Definition**: G is bipartite \iff G contains no cycles of odd length • complete bipartite: $K_{m,n} = (A \cup B, \{a,b\} : a \in A, b \in B)$
- Matchings:
- saturating: $G = (A \cup B, E)$ has matching saturating A $\Leftrightarrow \forall S \subseteq A : N(S) \geq |S| \ (N(S) \coloneqq \{b \in B : ab \in E, a \in S\})$
- \circ nearly: $G = (A \cup B, E), \forall S \subseteq A : |N(S)| \ge |S| d \quad (d \ge 1).$
 - ⇒ ∃ matching M saturating all but at most d vertices of A
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover

Matching

- **Definition**: graph with $\delta(G) = \Delta(G) = 1$
- Perfect matching: spanning + matching subgraph of G (aka 1-factor)
- existence: G has perfect matching $\Leftrightarrow \forall S \subseteq V(G) : q(G S) \leq S$ (q(G) = number of components in G with odd order)

Factors

- **k-factor**: spanning k-regular subgraph (easy to find)
- **f-factor**: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$, $f: V(G) \to \{0, 1, \dots\} \text{ with } f(v) \le \deg(v) \quad (\forall v \in V)$
- **H-factor** (aka perfect H-packing): spanning subgraph s.t. each component is $\cong H$ • existence: if $\delta(G) \ge \left(1 - \frac{1}{k}|V(G)|\right)$ and k divides |G|, then G has K_k -factor

Connectivity

- k-connected: if |G| > k and deleting < k vertices does not disconnect G
- k-linked: if for any 2k vertices $(s_1, \ldots, s_k, t_1, \ldots, t_k) \exists$ pairwise disjoint $s_i t_i$ paths (*note*: k-connected $\Rightarrow k$ -linked)
- **Vertex-connectivity**: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- l-edge-connected: if deleting < l edges does not disconnect G
- Edge-connectivity: $\kappa'(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Vertex- vs Edge-connectivity: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Three-connected + contraction: 3-connected $\iff \exists$ separate G_0, \dots, G_k with $G_0 = K_4, G_k = G, G_i = G_{i+1} \circ xy$
- with $deg(x), deg(y) \ge 3$ • Three-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of K_4
- Average degree ≥ 4: has k-connected subgraph (k ≥ 2)

Cuts

- Cut-Set: $X \subseteq V(G) \cup E(G)$ s.t. #components in (G X) greater than in G
- Cut-Vertex: Cut-Set consisting of single vertex
- Cut-Edge (or bridge): Cut-Set consisting of single edge
- Menger's theorem: for $A, B \subseteq V(G)$: \min # of vertices separating A and B = \max # of disjoint A-B-paths
- Menger global:
 - 1. k-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
- 2. k-edge-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise edge-disjoint ab-paths

Ear-decomposition

- **Definition**: G has ear-decomposition $\iff \exists$ sequence of graphs G_0, \ldots, G_k with $G_k = G$, $G_0 = \text{cycle}$, G_{i+1} obtained from G_i by attaching "ear" (path that shares only endpoints with G_i)
- 2-connected $\Leftrightarrow \forall$ cycles C in G there is ear-decomposition starting at C

Edge contraction

· Contraction:

 $G \circ xy = ((V \setminus \{x, y\}) \cup v_{xy},$ $(E \setminus \{e : x \in E \lor y \in e\}) \cup \{v_{xy}z : z \in (N_G(x) \cup N_G(y)) \setminus \{x, y\}\})$ with $xy \in E(G)$

• De-contraction: if $\exists xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)

Planar graph tools

- Homeomorphism: $f: \mathbb{R}^n \to \mathbb{R}^n$ continuous s.t. f^{-1} is also continuous
- Arc: homeomorphic image of [0,1] in \mathbb{R}^2 under f
- endpoints: f(0) and $f(1) \rightarrow arc$ "joins" endpoints
- o polynomial arc: arc that is union of finitely many straight line segments
- Region $Y \subseteq \mathbb{R}^2 \setminus X$: any two points $\in Y$ could be joined by arc and Y is maximal $(X \subseteq \mathbb{R}^2)$

- Boundary of $X \subseteq \mathbb{R}^2$:
- $\delta X = \{y \mid \forall \varepsilon > 0 : B(y,\varepsilon) \text{ contains points of } X \text{ and not of } X\}$ Jordan curve theorem: If $X \subseteq \mathbb{R}^2$ and homeomorphic to $\{\overline{x} : \operatorname{dist}(\overline{x},0) = 1\}$ (unit circle), then $\mathbb{R}^2 \setminus X$ has two regions R_1 , R_2 and $\delta R_1 = X = \delta R_2$.

Plane graph

- **Definition**: graph such that E(G) is set of arcs in \mathbb{R}^2 and endpoints of arcs in E(G) are vertices and:
- $\forall e, e' \in E, e \neq e' : e$ and e' have distinct sets of edge sets
- o $\forall e \in E, \mathring{e} = e \setminus \{\text{endpoints}\}\ \text{doesn't contain any vertices and points from}$
- Faces: regions of $\mathbb{R}^2 \setminus \left(\bigcup_{e \in E} e \cup V\right)$
- · Maximally plane: no edges can be added without breaking planarity
- \circ plane triangulation: every face is bounded by triangle \Leftrightarrow graph is maximally plane
- **Edge limitation 1**: Plane graph: $|G| \ge 3 \Rightarrow ||G|| \le 3n 6$
- Edge limitation 2: Plane graph with no \triangle : $||G|| \le 2|G| 4$
- **Properties**: Let G be plane graph and $H \subseteq G$.
- face inheritance: $\forall f \in F(G) \exists f' \in F(H) : f' \supseteq f$
- \circ border inheritance: $\delta f \subseteq H \Rightarrow f' = f$
- $\circ \ \textit{edge-border relations} : e \in E(G), f \in F(G) \Rightarrow e \subseteq \delta f \vee \delta f \cap \mathring{e} = \varnothing$
- o edges in circles:
 - $e \in E(G)$ is edge of a cycle $\Rightarrow e$ is on boundary of exactly 2 faces
 - not edge of a cycle $\Rightarrow e$ is on boundary of exactly 1 face
- faces in cycles: $f_1, f_2 \in F(G)$. $f_1 \neq f_2 \land \delta f_1 = \delta f_2 \Rightarrow G$ is cycle
- cyclic boundaries: $\kappa(G) \ge 2 \Rightarrow$ each face is bounded by cycle
- o plane forests: plane forests have exactly 1 face
- **Dual multigraph**: Given plane *G*:
- 1. Insert vertex in each face
- 2. Put edge \tilde{e} between vertices if respective faces share e (s.t. \tilde{e} and e cross once)
- 3. Result: Dual graph G' of G (plane multigraph)
- \leadsto faces of G properly k-colored $\iff \exists$ proper k-coloring of vertices of G'

Planar graph

- **Definition**: graph s.t. \exists plane graph G' and bijection $f:V(G)\to V(G')$ s.t. $\forall u, v \in V(G), uv \in E(G) : f(u), f(v)$ are endpoints of arc in G'
- Planar embedding of G: f from the definition
- Planar because of minors: The following statements are equivalent:
 - \circ G is planar
 - \circ $G \not\supseteq MK_5 \land G \not\supseteq MK_{3,3}$
- \circ $G \not\supseteq TK_5 \land G \not\supseteq TK_{3,3}$
- Euler's formula: If G is connected plane graph with f faces, then |G| - ||G|| + f = 2
- $\delta(G)$ **limitation**: Planar graph $\delta(G) \leq 5$
- Non-planar graphs: K_5 and $K_{3,3}$ are not planar
- · Kuratowski's lemmas:
 - 1. $(TK_5 \subseteq G \vee TK_{3,3} \subseteq G) \Longleftrightarrow MK_5 \subseteq G \vee MK_{3,3} \subseteq G$
 - 2. $\kappa(G) \ge 3 \land MK_5 \not\subseteq G \land MK_{3,3} \not\subseteq G \Rightarrow G$ is planar
- 3. $\kappa(G) \geq 3$, G edge-maximal wrt not containing TX. If S is vertex-cut of G, $|S| \leq 2 \land G = G_1 \cup G_2, S = V(G_1) \cap V(G_2)$, then G_i is edge-maximal with no TX and S induces an edge
- 4. $|G| \ge 3$, G edge-maximal wrt not containing TK_5 and $TK_{3,3} \Rightarrow \kappa(G) \ge 3$
- 2-cell (embedding of G on surface S): any closed simple curve in any region of S-G is continuously contractible into a point
- Euler characteristic: G embedded on surface $S \Rightarrow n-e+f$ = Euler characteristic is invariant
- Euler genus: $n-e+f=2-2\gamma \Rightarrow$ Euler genus 2γ of S
- Heawood's formula: $\chi(G) \leq$

(for G embedded on S with Euler char $2-2\gamma$)

• Klein bottle: $K_{f(\gamma)}$ is embeddable on S, unless S is klein bottle

Minors

- MH: $G \stackrel{(\star)}{=} MH$ is minor of H if
- $\circ \ V(G) = V_1 \stackrel{\cdot}{\cup} \cdots \stackrel{\cdot}{\cup} V_n \text{ with } n = |H|$
- \circ $G[V_i]$ connected $(\forall i = 1, \dots, n)$
- o If $V(H) = \{v_1, \dots, v_n\}$ and $v_i v_j \in E(H)$, then \exists edge between V_i and V_j (\star): Notation abuse: MH is class of graphs
- Branch sets: V_i 's from above
- Extended branch graph: Branch set together with incident edges
- Minor (H of G, noted $H \leq G$): $\iff MH \subseteq G$
 - \rightarrow $H \leq G \iff H$ can be obtained by edge/vertex deletions + contractions.
- Topological minor: H is topological minor if $TH \subseteq G$ where TH is built from H by subdividing edges

• Note: $TH \subseteq MH$

Coloring

- $\alpha(G)$ = size of largest independent set
- $\omega(G)$ = clique number
- Proper coloring: $= c : V(G) \to \lceil k \rceil$ with $c(u) \neq c(v) \quad (\forall uv \in E(G))$
- Equitable coloring: proper coloring + color classes have almost (±1) equal size
 existence: any graph has equitable coloring in (\(\Delta(G) + 1\)) colors
- 4-color-theorem: G planar $\Rightarrow \chi(G) \le 4$
- ij-flip: $c':V(G) \to [k]$ is ij-flip at $v \in V(G)$
- $\Leftrightarrow c^{j}$ obtained by flipping colors i and j in max. conn. component containing v

Chromatic number

- **Definition**: $\chi(G) = \min\{k : G \text{ has proper coloring with } k \text{ colors}\}$
- Examples: $\chi(C_{2n}) = 2$, $\chi(C_{2n+1}) = 3$
- · Properties:
 - $\circ \ \chi(G) \geq \omega(G)$
- $\circ \ \chi(G) \ge \frac{|G|}{\alpha(G)}$
- $\circ \ \chi(G) \le \Delta(G) + 1$ (greedy coloring)
- G connected, not complete, no odd cycles $\Rightarrow \chi(G) \leq \Delta(G)$

Posets

- **Definition**: antisymmetric, reflexive, transitive relation on X (write $x \le y$ instead of (x, y))
- Incidence poset of G: poset whose cover diagram is represented by IG with vertices all below the edges
- Poset dimension: $\dim(R)$ = smallest $k \in \mathbb{N}$: R is intersection of k total orders
- Poset dimension in planar graphs: G planar \Leftrightarrow dim(incidence poset) ≤ 3

List-colorings

- L-list-colorable: if $\exists \ c: V \to \mathbb{N} \ \forall v \in V: c(v) \in L(v)$ (for *list of colors* $L(v) \subseteq \mathbb{N}$ for each vertex, adjacent vertices receive different colors)
- **k-list-colorable**/-choosable: if G is L-list-colorable for each list L
- List chromatic number: $\chi_l(G) = \operatorname{ch}(G)$
 - $= \min \left\{ k : G \text{ is L-colorable } \forall L : V \to 2^{\mathbb{N}} : |L(v)| = k \, \forall v \in V(G) \right\}$
- $\chi_l(G) \ge \chi(G)$ because we can choose $L(v) = \{1, \dots, k\} (\forall v \in V(G))$
- $\circ \ \, \text{often} \ \chi_l(G) \gg \chi(G) \ \, (\text{see} \ K_{m,n} \colon \chi = 2, \chi_l \approx \log n)$
- Planar graphs: $\chi_l(G) \le 5$
- Locally planar graphs: $\chi_l(G) \le 5$