Regresja logistyczna – przewidywanie zwycięzcy meczu tenisowego na podstawie danych pośrednich zebranych w latach 2000-2020

Cel

Celem badania było oszacowanie dokładności modelu regresji logistycznej mającego na celu wskazanie zwycięzcy meczu tenisowego na podstawie historycznych danych pośrednich (warunki kortu, średnia kursu bukmacherskiego, ranking gracza, liczba rozegranych setów). Jeden wiersz danych reprezentuje jeden rozegrany mecz. Na potrzeby modelu wybrane zostały dane tylko dla jednego z graczy - Diego Schwartzman.

Załadowanie danych

Zmienna zależna data została rozdzielona na 2 grupy - miesiąc, rok. Zmienne jakościowe, przy pomocy funkcji pakietu pandas 'get.dummies' zostały przekształcone na zmienne ilościowe. Dane zostały ograniczone dla wyników dla jednego z graczy, w ten sposób mogliśmy precyzyjnie określić funkcję celu - y jako zwycięstwo lub przegrana tego gracza.

Pełny opis danych znajduje się na stronie: http://tennis-data.co.uk/notes.txt

Przekazanie danych z plików .xlsx do data frame - dane z każdego roku zostały zapisane w oddzielnych plikach.

```
all_data = pd.DataFrame()
for f in glob.glob("Data/*.xlsx"):
    df = pd.read_excel(f)
    all_data = all_data.append(df,ignore_index=False)
```

Określenie kolumn, które zostaną uwzględnione w modelu (rozdzielenie zmiennej data na rok i miesiąc, ograniczenie wyników dla jednego z graczy, zamiana zmiennych jakościowych na ilościowe, utworzenie zmiennej zależnej):

Analiza korelacji zmiennych zależnych wobec zmiennej zależnej:

Jednym z założeń regresji logistycznej jest to, aby w modelu uwzględnić tylko zmienne niezależne mające istotny wpływ na zmienną zależną.

Do sprawdzenia zależności użyjemy funkcji 'corr', która wykorzystuje współczynnik korelacji Kendalla.

	Class
WPts	-0.20421
WRank	-0.186278
MaxL	-0.118228
AvgL	-0.113364
LPts	-0.104966
Surface_Grass	-0.10148
Round_The Final	-0.0947006
Location_Bucharest	-0.0916841
Tournament_BRD Nastase Tiriac Trophy	-0.0916841
Tournament_AEGON Open	-0.0916841
Location_Nottingham	-0.0916841
Tournament_Grand Prix Hassan II	-0.0916841
Location_Eastbourne	-0.0916841
Location_Indian Wells	-0.0833025
Tournament_BNP Paribas Open	-0.0833025
Location_Shanghai	-0.0710771
Tournament_Shanghai Masters	-0.0710771
Location_Vina del Mar	-0.0647197
Tournament_VTR Open	-0.0647197
Tournament_German Open Tennis Championships	-0.0647197
Tournament_ATP Vegeta Croatia Open	-0.0647197
Location_Umag	-0.0647197
Location_Casablanca	-0.0647197
Tournament_bet-at-home Open	-0.0647197
Location_Houston	-0.0647197
Tournament_U.S. Men's Clay Court Championships	-0.0647197
Tournament_St. Petersburg Open	-0.0647197
Location_St. Petersburg	-0.0647197
Tournament_ASB Classic	-0.0647197
Location_Marrakech	-0.0647197
Tournament_Gazprom Hungarian Open	-0.0647197
Location_Budapest	-0.0647197
Tournament_Eastbourne International	-0.0647197
Location_Bastad	-0.0631706
Tournament_SkiStar Swedish Open	-0.0631706
Location_Miami	-0.0591872
Tournament_Sony Ericsson Open	-0.0591872

Class

	Class
Location_London	-0.0591872
Tournament_Wimbledon	-0.0591872
Court_Outdoor	-0.0558354
Round_3rd Round	-0.0555579
Series_Masters 1000	-0.0510395
Location_Auckland	-0.0444375
Tournament_Brisbane International	-0.0444375
Location_Brisbane	-0.0444375
Tournament_Open Banco Sabadell	-0.0444375
Location_Barcelona	-0.0444375
Location_Munich	-0.0444375
Tournament_BMW Open	-0.0444375
Tournament_Abierto Mexicano	-0.0399369
Location_Cincinnati	-0.0399369
Tournament_Western & Southern Financial Group Masters	-0.0384473
Round_Quarterfinals	-0.0271496
Lsets	-0.017509
Tournament_BNP Paribas Masters	-0.0171557
Location_Hamburg	-0.0171557
Location_Kitzbuhel	-0.0148056
Tournament_Sydney International	-0.012047
Location_Sydney	-0.012047
Tournament_Generali Open	-0.012047
Tournament_China Open	-0.00848927
Location_Beijing	-0.00848927
Tournament_Open de Nice Côte d'Azur	-0.00848927
Location_Nice	-0.00848927
Tournament_Heineken Open	-0.00848927
Tournament_Bet-At-Home Cup	-0.00848927
Tournament_Copa Claro	-0.00848927
Round_2nd Round	-0.00211318
Series_ATP500	8.14877e-18
Tournament_Monte Carlo Masters	0.00162029
Location_Monte Carlo	0.00162029
Round_Semifinals	0.0023285
AvgW	0.00557629
Location_Sao Paulo	0.00640789
Tournament_Brasil Open	0.00640789
Location_Madrid	0.00640789

Class

	Class
Tournament_Mutua Madrid Open	0.00640789
Location_Tokyo	0.0129525
Tournament_Rakuten Japan Open Tennis Championships	0.0129525
Location_Buenos Aires	0.0185355
Surface_Hard	0.0207028
MaxW	0.021308
Location_Melbourne	0.0228329
Tournament_Australian Open	0.0228329
Tournament_Argentina Open	0.0228329
Tournament_Queen's Club Championships	0.0236074
Location_Queens Club	0.0236074
Location_Toronto	0.0236074
Location_Chengdu	0.0236074
Tournament_Chengdu Open	0.0236074
Location_New York	0.0266047
ATP	0.029425
Tournament_US Open	0.0308526
Tournament_Cordoba Open	0.0335594
Location_Cordoba	0.0335594
Round_4th Round	0.0335594
Location_Montreal	0.0335594
Tournament_German Tennis Championships	0.0335594
Tournament_Winston-Salem Open at Wake Forest University	0.0335594
Location_Winston-Salem	0.0335594
Location_Rome	0.0412861
Tournament_Internazionali BNL d'Italia	0.0412861
Tournament_Rogers Masters	0.0413174
Tournament_Erste Bank Open	0.0413174
Location_Vienna	0.0413174
Location_Paris	0.0463362
Location_Cologne	0.0469832
Tournament_bett1HULKS Championship	0.0469832
Series_Grand Slam	0.0475534
Location_Rio de Janeiro	0.0479624
Tournament_Rio Open	0.0479624
Month	0.0512361
Location_Antwerp	0.0610976
Tournament_European Open	0.0610976
Wsets	0.0628266

	Class
Tournament_French Open	0.0644856
Location_Los Cabos	0.106013
Tournament_Abierto Mexicano Mifel	0.106013
Location_Istanbul	0.117085
Tournament_Istanbul Open	0.117085
Year	0.207803
LRank	0.242106
Class	1

Do ostatecznego modelu nie bierzemy pod uwagę poniższych zmiennych, ponieważ w bardzo małym stopniu wpływają na zmienną zależną (<0,1).

Dla wybranych lokalizacji i turniejów współczynnik korelacji jest większy od 0,1, zatem w modelu uwzględniamy wszyskie lokalizacje i turnieje.

	Współczynnik korelacji			
Lsets	-0.017509			
Wsets	0.0628266			
ATP	0.029425			
Month	0.0512361			

Dodatkowo odrzucamy wszyskie zmienne związane z serią turnieju - ich współczynik wynosi <= 0,05.

Przykładowe kilka wierszów ramki danych:

	Class	WRank	WPts	MaxW	AvgL	Year	Location_Antwerp	Tournament_AEGON Open	Round_Quarterfinals
300	0	73	708	1.77	2.18	2013	0	0	0
433	1	166	333	2.92	1.46	2013	0	0	0
453	0	95	545	1.62	2.42	2013	0	0	0
535	0	5	5755	1.04	12.79	2013	0	0	0
1609	0	104	538	2.16	1.74	2013	0	0	0

Analiza zbilansowania zmiennych zależnych:

O zbiorze możemy powiedzieć zbilansowany, kiedy liczba wystapień wszystkich jego stanów jest zbliżona do siebie.

Nasz zbiór danych jest bardzo dobrze zbilansownay, 162 stanów '1' do 131 stanów '0'.

Analiza korelacji zmiennych zależnych:

Kolejnym z założeń regresji logistycznej jest to, aby w modelu uwzględnić tylko zmienne niezależne w małym stopniu skorelowane ze sobą. W modelu przyjęto, że współczynnik korealacji Kendalla na poziomie >0,9 eliminuje zmienne z modelu.

	MaxW	/ MaxL		
AvgW	0.977610	-0.313740		
AvgL	-0.305728	0.970119		

Location_Buenos Aires

Tournament_Argentina Open

0.935964

Pary zmiennych niezaleznych (MaxW,AvgW), (MaxL, AvgL), (Lokalizacja, Turniej) są wysoce skorelowane ze sobą - uwzględnianie ich obu nie poprawia dokładności modelu. W ostatecznym modelu odrzucone zostaną zmienne związane z lokalizacją oraz MaxW i MaxL - maksymalny kurs bukmacherski na zwycięstwo przegranego i zwycięzcy.

Model Regresji Logistycznej:

Przypisanie zmiennych niezależnych do szeregu x oraz zmiennej zależnej do szeregu y:

```
x = df.drop(['Class'],axis=1).values
y = df['Class'].values
```

Podział na zbiór treningowy i zbiór testowy (25% danych będa stanowić zbiór testowy):

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

Utworzenie instancji modelu:

```
logreg = LogisticRegression(max_iter=10000)
```

Dopasowanie modelu do danych:

```
logreg.fit(x_train,y_train)
```

Przewidywanie wyniku zbioru testowego:

```
y_pred = logreg.predict(x_test)
```

Utworzenie macierzy pomyłek:

```
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
cnf matrix
```


40 z przypadków zostało prawidłowo zakfalifikowanych zaś, 24 błędnie.

4 z 23 wygranych meczów zostały błędnie zaklasyfikowane jako przegrane. 20 z 51 przegranych meczów zostało błędnie zaklasyfikowanych jako wygrane.

Precyzja, dokładność, czułość:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred)

	precision	recall	f1-score	support
0	0.83	0.49	0.61	39
1	0.61	0.89	0.72	35
accuracy			0.68	74
macro avg	0.72	0.69	0.67	74
weighted avg	0.72	0.68	0.66	74

Precyzja określa jaka część wyników wskazanych przez klasyfikator jako dodatnie jest faktycznie dodatnia.

Liczona jest ze wzoru:

$$\left(\frac{PP}{PP + FP}\right)$$

$$\left(\frac{19}{19+4}\right)$$

$$\left(\frac{31}{31+20}\right)$$

PP- PRAWDZIWIE POZYTYWNE FP - FAŁYSZWIE POZYTYWNE

Dla stanu 0 wynosi 0.83. Dla stanu 1 wynosi 0.61. Średnia wynosi 0.72.

Czułość dla klasy X, jest to stosunek poprawnie rozpoznanych elementów z X (PP) do wszystkich, które powinien rozpoznać, czyli do całej klasy X (PP+FN). Miara ta mówi, nam ile obserwacji 'zgubiliśmy dla danej klasy'.

$$\left(\frac{PP}{PP+FN}\right)$$

$$\left(\frac{19}{19+20}\right)$$

$$\left(\frac{31}{31+4}\right)$$

PP- PRAWDZIWIE POZYTYWNE FP - FAŁYSZWIE NEGATYWNE

Dla stanu 0 wynosi 0.49. Dla stanu 1 wynosi 0.89. Średnia wynosi 0.69.

W 69% przypadków nasz model prawidłowo zaklasyfikowuje przypadki.

Wykres ROC:

Interpretacja AUC (Area Under the ROC) to prawdopodobieństwo, że badany model predykcyjny oceni wyżej losowy element klasy pozytywnej od losowego elementu klasy negatywnej. W naszym przypadku, najlepszym dla nas wynikiem jest wartość równa 0.5 - wtedy mamy pewność, że są takie same szanse na predykcję meczu wygranego i przegranego.

Wnioski:

Najważniejszym wnioskiem, mówiącym o dokładności naszego modelu jest obliczona wartość czułości (ang. recall). Wartość ta w jak największym stopniu ocenia nasz model, którego zadaniem jest prawidłowa predykcja zwyciężenia/przegrania meczu tenisowego przez wybranego gracza. Możemy powiedzieć, że nasz model średnio w 69% prawidłowo 'przewiduje' wynik meczu na podstawie dostarczonych mu danych. Biorąc pod uwagę fakt, że użyte zmienne niezależne w bardzo małym stopniu wyjaśniały zmienną zależną (patrz rozdział 'Analiza korelacji zmiennych zależnych wobec zmiennej zależnej') możemy uznać to i tak za całkiem niezły wynik. W celu polepszenia naszego modelu musielibyśmy użyć innych zmiennych niezależnych - przychodzą mi na myśl np. testy medyczne, wyniki osiągane na treningach wybranych graczy.

←