

INSTITUTO POLITÉCNICO DE BEJA ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Laboratório 3 "Circuitos RC Série"

Relatório

Disciplina: Física Aplicada à Computação Docente: Prof. Nuno Pereira Discentes: Miguel Rosa (Nº 6219)

Pedro Serrano (№ 3958)

Beja, 12 Fevereiro 2016

Índice

Introdução	3
Experiência 1	4
Cálculos/Equações usadas na tabela	4
Experiência 2	5
Resultados e Discussões	7
Conclusão	5

Introdução

No âmbito da disciplina de Física Aplicada à Computação, na componente prática laboratorial foi-nos solicitado a realização de um relatório onde criássemos vários circuitos RC série para observar os processos de carga e descarga de um condensador ao longo do tempo.

Foram traçados vários objetivos, tais como:

- Observar o processo de carga e descarga de um condensador
- Manusear um osciloscópio para medições simples de tempos e de tensões
- Utilizar a plataforma Arduino para a aquisição de dados

Para além dos objetivos, o enunciado continha vários requisitos:

• Descrição adequada das observações do processo de carga/descarga

Experiência 1

A Experiência 1 consistia na observação no osciloscópio o processo de carga e descarga de um condensador a partir de uma onda quadrada gerada pelo Arduino. Esta experiência tira partido dos pinos digitais do Arduino controlados pela instrução "digitalWrite()" e do controlo de tempo através da instrução "Delay()".

Para gerar a onda quadrada foi criado o seguinte sketch em arduino:

```
// the setup function runs once when you press reset or power the board
void setup() {
    pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
    digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
    delay(30); // wait for a 30 milliseconds
    digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
    delay(30); // wait for a 30 milliseconds
}
```

Este código vai colocar, de 30 em 30 milisegundos, o pino 13 com 5v (se colocássemos um LED o efeito seria o de piscar).

Uma vez o sketch feito, procedemos à montagem do seguinte circuito:

Após a montagem do circuito, procedemos aos cálculos (valores teóricos):

V0(V)	R(Ohm)	C(uF)	tau	C:Vc/Vo(%)	Tc(ms)	Vc(V)	D:Vd/Vo(%)	Td(ms)	Vd(V)
5	330	22	0,00726	90	0,01672	4,5	10	0,01672	0,5
5	330	4,7	0,001551	90	0,00357	4,5	10	0,00357	0,5
5	390	4,7	0,001833	90	0,00422	4,5	10	0,00422	0,5
5	390	0,47	0,0001833	90	0,00042	4,5	10	0,00042	0,5
5	390	1000	0,3900	90	0,89801	4,5	10	0,89801	0,5

Nota: Os valores a negrito foram efetuados por nós, usando uma folha de cálculo.

Legenda da tabela:

V0: Tensão aplicada à série RCtau: Constante de tempo (τ = RC)R: Valor da ResistênciaTc: tempo para atingir V/Vo%C: Valor dos condensadoresTd: tempo para atingir V/Vo%

C:V/Vo%: razão entre tensão aos terminais do condensador e tensão aplicada em %, no final da carga

D:V/Vo%: razão entre tensão aos terminais do condensador e tensão aplicada em %, no final da descarga

Tc: tempo de aplicação de tensão para que o condensador carregue de modo a termos o valor relativo V/Vo%

Td: tempo de aplicação de tensão para que o condensador descarregue de modo a termos o valor relativo V/Vo%

Vc: valor final da tensão aos terminais do condensador no final da carga Vd: valor final da tensão aos terminais do condensador no final da descarga

Cálculos/Equações usadas na tabela

Coluna do tau: $tau = (R*C*10^-6)$

Coluna **Tc**:

$$V = V_0 \left(1 - e^{-\frac{t}{RC}} \right)$$

Coluna **Vc**: Vc = V0 * C

Coluna **Td**:

$$V = V_0 e^{-\frac{t}{RC}}$$

Coluna Vd: Vd = V0 * D

Com os cálculos prontos, procedemos a nova medição, mas desta vez usando um Arduino. Deixamos a tabela com os dados obtidos:

V0(V)	R(Ohm)	C(uF)	tau	C:Vc/Vo(%)	Tc(ms)	Vc(V)	D:Vd/Vo(%)	Td(ms)	Vd(V)
4,8	330	4,7	0,001551	90	0,00357	4,32	10	0,01672	0,48
4,8	330	22	0,00726	90	0,01672	4,32	10	0,00357	0,48
4,8	390	0,47	0,0001833	90	0,00042	4,32	10	0,00422	0,48
4,8	390	4,7	0,001833	90	0,00422	4,32	10	0,00042	0,48
4,8	390	1000	0,3900	90	0,89801	4,32	10	0,89801	0,48

Observando as duas tabelas podemos observar que os dados calculados de forma manual (embora usasse-mos uma folha de cálculo) não ficaram muito aquém dos dados obtidos pelo Arduino, uma vez que a diferença entre os dados é mínima (talvez a diferença seja justificada pelos arredondamentos e/ou componentes externas – pureza dos fios e/ou precisão dos aparelhos).

Experiência 2

A Experiência 2 consistia na observação e medição da constante de tempo do circuito RC dada pela expressão $\tau = R*C$, expressão essa que define o comportamento na carga e descarga do condensador. Para realizar esta segunda parte iremos ciar um sketch Arduino:

```
const int outputPin = 12;//Pin that will give current to the circuit
const int inputPin = 3; //Pin where the circuit is connected to in order to read
const long timer = 898; //milliseconds
const int nTests = 25;
void setup() {
 Serial.begin(250000);
 pinMode(inputPin, INPUT);
pinMode(outputPin, OUTPUT);
}
void loop() {
 digitalWrite(outputPin, HIGH);
 Serial.println("HIGH");
 delay(timer);
 digitalWrite(outputPin, LOW);
 Serial.println("LOW");
 for(int i = 0; i < nTests; i++) //delay(timer); but reads the voltage in equal time frames
 {
   Serial.println((analogRead(inputPin) * 5.0 / 1023));
   //Serial.println(" V");
   delay(timer / nTests);
}
```

Juntamente com o sketch Arduino, criamos também dois circuitos distintos:

A constante τ = RC é chamada de constante de tempo do circuito. τ é o tempo no qual a carga do condensador se reduz por um fator e, onde e é o número de Euler:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} \approx 2,718$$
.

Na prática não usaremos um gráfico Q versus t mas um gráfico da voltagem do condensador em função do tempo. Já que á voltagem do condensador é proporcional à sua carga, podemos determinar τ deste tipo de gráfico da mesma forma. A figura acima mostra um circuito que pode ser usado para determinar a constante de tempo de um circuito RC:

Depois de montados os gráficos de tensão versus tempo para os circuitos com o condensador em processo de carregamento e descarregamento, foi interpolado nos dois gráficos o instante onde t = RC com o intuito de obter os correspondentes valores de V nos processos de carga e descarga. Em seguida, compararam-se os resultados obtidos com o que era previsto teoricamente.

Resultados e Discussões

Nesta seção estão descritos os resultados das aferições e observações realizadas durante os processos de carga e descarga do condensador utilizado.

PROCESSO DE CARGA

Tabela 1: Carga do condensador.

VOLTAGEM (V)	TEMPO (s)
0	0
1	2,3
1,5	3,3
2,0	4,2
2,5	5,1
3,0	6,7
3,5	8,1
4,0	9,8
4,5	11,9
5,0	14,1
5,5	17,2
6,0	20,5
6,5	24,8
7,0	31,5
7,5	47,3
7,86	102,39

PROCESSO DE DESCARGA

Tabela 2: Descarga do condensador.

VOLTAGEM (V)	TEMPO (s)
7,86	0
7,0	1,93
6,5	3,0
6,0	3,95
5,5	5,36
5,0	6,32
4,5	8,16
4,0	9,68
3,5	12,04
3,0	13,84
2,5	16,35
2,0	20,34
1,5	24,74
1,0	31,20
0,5	42,31
0	112,55

Gráfico Tensão vs Tempo para o processo de carga.

Gráfico Tensão vs Tempo para o processo de descarga

Gráfico comparativo (Tensão vs Tempo) dos processos de carga e descarga.

Com os gráficos é possível perceber que, de fato, ambos os processos (carga e descarga) apresentam um padrão de comportamento exponencial, como era previsto e de acordo com as equações seguem um padrão exponencial.

Fazendo τ =RC obtém-se: τ = 4700*0,0022 = 10,34s. De posse deste valor, encontraram-se os correspondentes valores de V nos processos de carga e descarga. Para tanto foi utilizado o método de interpolação polinomial de Lagrange com os valores obtidos para ambos os processos (carga e descarga).

Conclusão

Com este trabalho pretendemos demonstrar, de uma forma mais prática a comparação entre os dados obtidos pelos cálculos numa folha (quer em papel e caneta, quer através de uma folha de cálculo) e os mesmos valores obtidos através de instrumentos de medição não diferem muito um do outro. As diferenças provêm de arredondamentos e/ou de componentes externas (tal como referimos na conclusão da experiência 1).

Após vários cálculos, medições e comparações, consolidamos os nossos conhecimentos sobre os circuitos RC e cargas/descargas de condensadores.