

Author Index

Abraham, D., see Tuan, R.S., 191
 Aggarwal, A., see Mowatt, M.R., 215
 Aikawa, M., see Borre, M.B., 119
 Allsopp, B.A., see Baylis, H.A., 133
 Alvarez, R.M., see Li, B.-W., 315
 Axelsen, N.H., see Borre, M.B., 119

Balfe, P., see Ranford-Cartwright, L.C., 239
 Baratte, B., see Duvaux-Miret, O., 337
 Baylis, H.A., Sohal, S.K., Carrington, M., Bishop, R.P. and Allsopp, B.A., An unusual repetitive gene family in *Theileria parva* which is stage-specifically transcribed, 133
 Beck, J.T. and Ullman, B., Biopterin conversion to reduced folates by *Leishmania donovani* promastigotes, 21
 Bishop, R.P., see Baylis, H.A., 133
 Blackman, M.J., Ling, I.T., Nicholls, S.C. and Holder, A.A., Proteolytic processing of the *Plasmodium falciparum* merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains, 29
 Blackman, M.J., Whittle, H. and Holder, A.A., Processing of the *Plasmodium falciparum* major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion, 35
 Borre, M.B., Dziegiel, M., Høgh, B., Peterson, E., Rieneck, K., Riley, E., Meis, J.F., Aikawa, M., Nakamura, K., Harada, M., Wind, A., Jakobsen, P.H., Cowland, J., Jepsen, S., Axelsen, N.H. and Vuust, J., Primary structure and localization of a conserved immunogenic *Plasmodium falciparum* glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle, 119
 Bostian, K.A., see El-Sherbeini, M., 83
 Brown, H.J. and Coppel, R.L., Primary structure of a *Plasmodium falciparum* rhoptry antigen, 99
 Bruchhaus, I., see Tannich, E., 61
 Bzik, D.J., see Fox, B.A., 289

Callahan, H.L., Crouch, R.K. and James, E.R., *Dirofilaria immitis* superoxide dismutase: purification and characterization, 245
 Capron, A., see Duvaux-Miret, O., 337
 Carrington, M., see Baylis, H.A., 133
 Carter, R., see Ranford-Cartwright, L.C., 239
 Cazzulo, J.J., see Raimondi, A., 341
 Chandrashekhar, R., see Li, B.-W., 315
 Chang, S. and Opperman, C.H., Characterization of acetylcholinesterase molecular forms of the root-knot nematode, *Meloidogyne*, 205
 Cheng, Q., Jones, G., Xiang Liu, E., Kidson, C. and Saul, A., Identification of a common *Plasmodium* epitope (CPE) recognised by a pan-specific inhibitory monoclonal antibody, 73
 Clark, C.G. and Diamond, L.S., Ribosomal RNA genes of 'pathogenic' and 'nonpathogenic' *Entamoeba histolytica* are distinct, 297
 Clarke, L.E., see Tomley, F.M., 277
 Clarke, M.W., see Karcz, S.R., 333
 Connors, V.A., see Lodes, M.J., 1
 Cooper, R., Inverso, J.A., Espinosa, M., Nogueira, N. and Cross, G.A.M., Characterization of a candidate gene for GP72, an insect stage-specific antigen of *Trypanosoma cruzi*, 45
 Coppel, R.L., see Brown, H.J., 99
 Cowland, J., see Borre, M.B., 119
 Crary, J.L., see Li, W.-L., 157
 Cross, G.A.M., see Cooper, R., 45
 Crouch, R.K., see Callahan, H.L., 245

Das, A., see Li, W.-L., 157
 De Jong-Brink, M., see Schallig, H.D.F.H., 169
 Dekaban, G.A., see Karcz, S.R., 333
 Diamond, L.S., see Clark, C.G., 297
 Dijkema, R., see Tomley, F.M., 277
 Dissous, C., see Duvaux-Miret, O., 337
 Donelson, J.E., see Erondu, N.E., 303
 Donelson, J.E., see Nafziger, D.A., 325
 Douglas, J.G., see Kanasa-Thasan, N., 11
 Duvaux-Miret, O., Baratte, B., Dissous, C. and Capron, A., Molecular cloning and sequencing of the α -tubulin gene from *Schistosoma mansoni* (Short Communication), 337
 Dziegiel, M., see Borre, M.B., 119

El-Sherbeini, M., Ramadan, N., Bostian, K.A. and Knopf, P.M., Cloning and sequence analysis of the *Schistosoma mansoni* membrane glycoprotein antigen gene GP22, 83
 Elmendorf, H.G., see Haldar, K., 143
 Erondu, N.E. and Donelson, J.E., Characterization of trypanosome protein phosphatase 1 and 2A catalytic subunits, 303
 Espinosa, M., see Cooper, R., 45

Fox, B.A. and Bzik, D.J., The primary structure of *Plasmodium falciparum* DNA polymerase δ is similar to drug sensitive δ -like viral DNA polymerases, 289

Ghori, N., see Haldar, K., 143

Haldar, K., Uyetake, L., Ghori, N., Elmendorf, H.G. and Li, W.-L., The accumulation and metabolism of a fluorescent ceramide derivative in *Plasmodium falciparum*-infected erythrocytes, 143
 Haldar, K., see Li, W.-L., 157
 Harada, M., see Borre, M.B., 119
 Harrison, R.A., see Wright, M.D., 177
 Hellman, U., see Raimondi, A., 341
 Herrera, M., see Snewin, V.A., 265
 Herrera, S., see Snewin, V.A., 265
 Holder, A.A., see Blackman, M.J., 29
 Holder, A.A., see Blackman, M.J., 35
 Horstmann, R.D., see Tannich, E., 61
 Hundt, E., see Nolte, D., 253
 Hunter, C.A., see Nafziger, D.A., 325
 Høgh, B., see Borre, M.B., 119

Inverso, J.A., see Cooper, R., 45

Jakobsen, P.H., see Borre, M.B., 119
 James, E.R., see Callahan, H.L., 245
 Jepsen, S., see Borre, M.B., 119
 Jones, G., see Cheng, Q., 73

Kanasa-Thasan, N., Douglas, J.G. and Kazura, J.W.,

Diethylcarbamazine inhibits endothelial and microfilarial prostanoid metabolism in vitro, 11

Karcz, S.R., Podesta, R.B., Siddiqui, A.A., Dekaban, G.A., Strejan, G.H. and Clarke, M.W., Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from *Schistosoma mansoni* (*Short Communication*), 333

Kawazoe, U., see Tomley, F.M., 277

Kazura, J.W., see Kanessa-Thasan, N., 11

Cidson, C., see Cheng, Q., 73

Knapp, B., see Nolte, D., 253

Knopf, P.M., see El-Sherbeini, M., 83

Kok, J.J., see Tomley, F.M., 277

Langsley, G., see Nolte, D., 253

Langsley, G., see Snewin, V.A., 265

Li, B.-W., Chandrashekhar, R., Alvarez, R.M., Liftis, F. and Weil, G.J., Identification of paramyosin as a potential protective antigen against *Brugia malayi* infection in jirds, 315

Li, W.-l., Das, A., Song, J.-y., Crary, J.L. and Haldar, K., Stage-specific expression of plasmodial proteins containing an antigenic marker of the intraerythrocytic cisternae, 157

Li, W.-l., see Haldar, K., 143

Liftis, F., see Li, B.-W., 315

Ling, I.T., see Blackman, M.J., 29

Lodes, M.J., Connors, V.A. and Yoshino, T.P., Isolation and functional characterization of snail hemocyte-modulating polypeptide from primary sporocysts of *Schistosoma mansoni*, 1

Magee, R.M., see Schallig, H.D.F.H., 169

McElwain, T.F., see Suarez, C.E., 329

McMahon-Pratt, D., see Rainey, P.M., 111

Meis, J.F., see Borre, M.B., 119

Melcher, A.M., see Wright, M.D., 177

Meshnick, S.R., Thomas, A., Ranz, A., Xu, C.-M. and Pan, H.-Z., Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action, 181

Mishra, V.S., see Suarez, C.E., 329

Mitchell, G.F., see Wright, M.D., 177

Mowatt, M.R., Aggarwal, A. and Nash, T.E., Carboxy-terminal sequence conservation among variant-specific surface proteins of *Giardia lamblia*, 215

Mulligan, M.M., see Tuan, R.S., 191

Nafziger, D.A., Recinos, R.F., Hunter, C.A. and Donelson, J.E., Patients infected with *Leishmania donovani chagasi* can have antibodies that recognize heat shock and acidic ribosomal proteins of *Trypanosoma cruzi* (*Short Communication*), 325

Nakamura, K., see Borre, M.B., 119

Nash, T.E., see Mowatt, M.R., 215

Newport, G.R., see Wright, M.D., 177

Nicholls, S.C., see Blackman, M.J., 29

Nogueira, N., see Cooper, R., 45

Nolte, D., Hundt, E., Langsley, G. and Knapp, B., A *Plasmodium falciparum* blood stage antigen highly homologous to the glycophorin binding protein GBP, 253

Opperman, C.H., see Chang, S., 205

Palmer, G.H., see Suarez, C.E., 329

Pan, A.A., see Rainey, P.M., 111

Pan, H.-Z., see Meshnick, S.R., 181

Perler, F.B., see Tuan, R.S., 191

Peterson, E., see Borre, M.B., 119

Podesta, R.B., see Karcz, S.R., 333

Raimondi, A., Wernstedt, C., Hellman, U. and Cazzulo, J.J., Degradation of oxidized insulin A and B chains by the major cysteine proteinase (cruzipain) for *Trypanosoma cruzi* epimastigotes (*Short Communication*), 341

Rainey, P.M., Spithill, T.W., McMahon-Pratt, D. and Pan, A.A., Biochemical and molecular characterization of *Leishmania pifanoi* amastigotes in continuous axenic culture, 111

Rajan, T.V., see Rothstein, N., 229

Ramadan, N., see El-Sherbeini, M., 83

Ranford-Cartwright, L.C., Balf, P., Carter, R. and Walliker, D., Genetic hybrids of *Plasmodium falciparum* identified by amplification of genomic DNA from single oocysts, 239

Ranz, A., see Meshnick, S.R., 181

Recinos, R.F., see Nafziger, D.A., 325

Rees, H.H., see Schallig, H.D.F.H., 169

Rieneck, K., see Borre, M.B., 119

Riley, E., see Borre, M.B., 119

Rothstein, N. and Rajan, T.V., Characterization of an hsp70 gene from the human filarial parasite *Brugia malayi* (Nematoda), 229

Sanchez, G., see Snewin, V.A., 265

Saul, A., see Cheng, Q., 73

Schallig, H.D.F.H., Young, N.J., Magee, R.M., De Jong-Brink, M. and Rees, H.H., Identification of free and conjugated ecdysteroids in cercariae of the schistosome *Trichobilharzia ocellata*, 169

Scherf, A., see Snewin, V.A., 265

Shepley, K.J., see Tuan, R.S., 191

Siddiqui, A.A., see Karcz, S.R., 333

Snewin, V.A., Herrera, M., Sanchez, G., Scherf, A., Langsley, G. and Herrera, S., Polymorphism of the alleles of the merozoite surface antigens MSA1 and MSA2 in *Plasmodium falciparum* wild isolates from Colombia, 265

Sohal, S.K., see Baylis, H.A., 133

Song, J.-y., see Li, W.-l., 157

Spithill, T.W., see Rainey, P.M., 111

Stephens, E.B., see Suarez, C.E., 329

Strejan, G.H., see Karcz, S.R., 333

Suarez, C.E., McElwain, T.F., Stephens, E.B., Mishra, V.S. and Palmer, G.H., Sequence conservation among merozoite apical complex proteins of *Babesia bovis*, *Babesia bigemina* and other apicomplexa (*Short Communication*), 329

Tannich, E., Bruchhaus, I., Walter, R.D. and Horstmann, R.D., Pathogenic and nonpathogenic *Entamoeba histolytica*: identification and molecular cloning of an iron-containing superoxide dismutase, 61

Thomas, A., see Meshnick, S.R., 181

Tomley, F.M., Clarke, L.E., Kawazoe, U., Dijkema, R. and Kok, J.J., Sequence of the gene encoding an immunodominant microneme protein of *Eimeria tenella*, 277

Tuan, R.S., Shepley, K.J., Mulligan, M.M., Abraham, D. and Perler, F.B., Histochemical localization of gene expression in *Onchocerca volvulus*: in situ DNA histoautoradiography and immunocytochemistry, 191

Ullman, B., see Beck, J.T., 21

Uyetake, L., see Haldar, K., 143

Vuust, J., see Borre, M.B., 119
 Walliker, D., see Ranford-Cartwright, L.C., 239
 Walter, R.D., see Tannich, E., 61
 Weil, G.J., see Li, B.-W., 315
 Wernstedt, C., see Raimondi, A., 341
 Whittle, H., see Blackman, M.J., 35
 Wind, A., see Borre, M.B., 119
 Wright, M.D., Harrison, R.A., Melcher, A.M., Newport, G.R.

and Mitchell, G.F., Another 26-kilodalton glutathione S-transferase of *Schistosoma mansoni* (*Short Communications*), 177
 Xiang Liu, E., see Cheng, Q., 73
 Xu, C.-M., see Meshnick, S.R., 181
 Yoshino, T.P., see Lodes, M.J., 1
 Young, N.J., see Schallig, H.D.F.H., 169

Subject Index

Acetylcholinesterase, 205
 African trypanosome, 303
 Allelic polymorphism, 265
 Amastigote, 111
 Anti-oxidant enzyme, 245
 Antigenic variation, 215
 Antimalarial, 181
 Artemisinin, 181
Biomphalaria glabrata, 1
Brugia malayi, 11, 229, 315
 Chagas' disease, 325
 Circumsporozoite antigen, 277
 Cisternal epitope, 157
 Consensus PCR, 289
 Conservation 119
 Cross-reacting epitope, 325
 Culture, 111
 Cysteine-rich protein, 215
 Developmental regulation, 111
 Diagnosis, 325
 Diethylcarbazine, 11
 Differentiation antigen, 45
Dirofilaria immitis, 245
 DNA sequence, 277
 DNA polymerase δ , 289
 cDNA sequence, 61
 Ecdysteroid, 169
 Eicosanoid, 11
Eimeria tenella, 277
Entamoeba histolytica, 61, 297
 Epidermal growth factor, 29
 Epitope, 73
 Excretory-secretory product, 1
 Exoantigen, 119
 Expression and chromosomal location, 289
 Filariasis, 191, 315
 Fluorescent sphingolipid, 143
 Folate biosynthesis, 21
 Gene family, 133, 353
 Gene regulation, 229
 Gene structure, 353
 Gene, 45
 Genomic DNA cloning, 289

Giardia lamblia, 215
 Glutamate-rich protein, 119
 Glycophorin binding protein, 353
 Glycoprotein, 45
 Haemocyte, 1
 Hemozoin, 181
 Hsp70, 229
 Immune response, 73
 Immunity, 315
 Immunoblot, 303
 Immunohistochemistry, 191
 Immunoscreen, 325
 In situ hybridization, 191
 Intron, 9
 Iron-containing superoxide dismutase, 61
 Jird, 315
Leishmania donovani, 21
Leishmania pifanoi, 111
 Leishmaniasis, 325
Lymnaea stagnalis, 169
 Malaria, 35, 181
 Malarial parasite, 143
Meloidogyne, 205
 Membrane protein, 157
 Membrane glycoprotein, 83
 Merozoite surface protein-1, 29, 35
 Merozoite surface antigen, 265
 Microfilaria, 11, 191
 Microneme, 277
 Monoclonal antibody, 73, 277
 Mosquito, 239
 MSA-1 gene, 239
 Multiple promoters, 83
 Nematicide, 205
 Nematode, 315
 Nucleotide and amino acid sequence, 289
 Oocyst, 239
 Oxidant, 181
 Paramyosin, 315
 Pathogenicity, 297
 Peroxide, 181

Plasmodium, 73, 181
Plasmodium falciparum, 29, 35, 99, 119, 157, 239, 265, 289, 353
Polymerase chain reaction, 45, 239, 297
Polypeptide synthesis, 1
Prostaglandin, 11
Protein phosphatase, 303
Protein sequence, 45
Protozoa, 303
Pterin metabolism, 21

Qinghaosu, 181

Recombinant protein, 303
Repeated sequences, 119
RhopH3, 99
Rhoptry antigen, 99
Riboprinting, 297
Ribosomal RNA gene, 297
mRNA localization, 191

Root-knot nematode, 205

Schistosoma mansoni, 1, 83, 177
Sequence analysis, 265
Sequencing, 73
Sporocyst, 1
Stage specificity, 133
Superoxide dismutase, 245

T- and B-cell sites, 119
Theileria parva, 133
Thrombospondin-related anonymous protein, 277
Trematode, 169
Trichobilharzia ocellata, 169
Trypanosoma cruzi, 45

Vaccine development, 83
Variant-specific surface protein, 215

