Chad McKell updated: 3/21

ABOUT

9500 Gilman Dr MC 0099Address

La Jolla, CA 92093-0099

Phone $+1\ 661\ 289\ 4215$ Email cmckell@ucsd.edu Website chadmckell.com

Summary I am a Ph.D. student at UC San Diego. In my research, I develop computational and

> mathematical tools for simulating acoustic phenomena. For my Ph.D. thesis, I study computational geometric techniques for sound synthesis. My research has applications in

computer music, computer graphics, augmented reality, and other fields.

EDUCATION

9/19-	University of California San Diego, Ph.D. in Computer Music
	GPA: 4.0. Coursework: acoustics, computer graphics, digital signal processing.
	Thesis topic: computational geometric techniques for sound synthesis.
	Mentors: Tamara Smyth, Shahrokh Yadegari, and Miller Puckette.
9/16-10/17	University of Edinburgh, M.S. in Acoustics and Music Technology
, ,	• • • • • • • • • • • • • • • • • • • •
8/09-12/15	Wake Forest University, M.S. in Physics
6/02 - 8/09	Brigham Young University, B.S. in Biophysics

ACADEMIC APPOINTMENTS

University of California San Diego, Teaching Assistant/Researcher (Music)
University of North Carolina School of the Arts, Adjunct Instructor (Physics)
Wake Forest University, Teaching Assistant (Physics)
Brigham Young University, Tutorial Lab Assistant (Physics)
Brigham Young University, Research Assistant (Philosophy)

PROFESSIONAL EMPLOYMENT

7/18-7/19	Applied	Research in	Acoustics,	R&D Scientist
-----------	---------	-------------	------------	---------------

Culpeper, Virginia. Developed physics-based signal processing algorithms for naval sonar systems. Processed acoustic signals using methods such as matched filtering, sparse estimation, and beamforming. Researched sound propagation and reverberation.

10/14-8/16 J.P. Morgan/Neovest, Software Development Engineer in Test

> Orem, Utah. Developed Java-based automation software for J.P. Morgan's investment trading platform, Neovest. Created object-oriented unit tests to validate new features

and locate software bugs.

9/12-12/12Bennett Aerospace, Engineering Intern

> Cary, North Carolina. Assisted in drafting a NASA SBIR solicitation. Helped design a crowd sourcing project for a biosensor device. Provided statistical analysis for a company

staffing report.

CONSULTING

5/18-5/18 Moog Mu	ic: Audio effects de	velopment in C++	for digital sound	synthesizers.
-------------------	----------------------	------------------	-------------------	---------------

4/17–9/17 **Lofelt**: Audio algorithm development and mathematical modeling for audio-haptic devices, including the Razer Nari Ultimate headsets.

ACADEMIC RESEARCH ACTIVITIES

1/20- University of California San Diego, Ph.D. Student

La Jolla, California. Research areas: acoustics, applied mathematics, digital signal processing. Study computational geometric techniques for sound synthesis. Topics of interest include binaural room modeling, structural acoustics, fluid dynamics, and discrete differential geometry.

1/17–8/17 University of Edinburgh, Master's Student

Edinburgh, Scotland. Research areas: acoustics, digital signal processing. Developed physics-based numerical simulations of speech sounds and structural vibrations with Stefan Bilbao. Simulation methods included modal synthesis and FDTD schemes.

1/10–9/13 Wake Forest University, Master's Student

Winston-Salem, North Carolina. Research areas: optics, fluid dynamics. Achieved the first known realization of transverse particle tracking in surface-isolated laser traps. Study topics included laser beam characterization, fluid diffusion, fluorescence microscopy, and particle tracking.

8/07–8/09 Brigham Young University, Undergraduate Student

Provo, Utah. Research areas: biophysics, condensed matter physics. Studied structural properties of biological materials using atomic force microscopy.

TEACHING EXPERIENCE

$\underline{\mathbf{U}}$	$\overline{\text{CSD}}$	
Μ	IUS 5	Sound in Time—TA. Spring 2020 (1 term). Student approval: 100%.
Μ	IUS 6	Electronic Music—TA. Fall 2020 (1 term). Student approval: 100%.
Μ	IUS 15	Popular Music: David Bowie—TA. Winter 2021 (1 term). Student approval: 92%.
Μ	IUS 15	Popular Music: Video Game Music—TA. Winter 2020 (1 term). Student approval: 100%.
Μ	IUS 172	Computer Music II—TA. Spring 2021 (1 term).
U	INCSA	
	CI 1100	General Physics—Instructor. Fall 2012 (1 term).
		v ,
	$\overline{\text{VFU}}$	
	HY 113	General Physics I (Mechanics)—TA. 2009–2011 (4 terms).
Ρ.	HY 114	General Physics II (E&M)—Tutor. Fall 2010 (1 term).
\mathbf{B}	\mathbf{YU}	
P	HSCS 105	General Physics 1 (Mechanics)—Tutor. 2008–2009 (2 terms).
P	HSCS 106	General Physics 2 (E&M)—Tutor. Winter 2009 (1 term).
P	HSCS 121	Principles of Physics 1 (Mechanics)—Tutor. 2008–2009 (2 terms).
P	HSCS 123	Principles of Physics 2 (Waves/Thermo)—Tutor. W/Sp 2009 (2 terms).
P	HSCS 220	Principles of Physics 3 (E&M)—Tutor. W/Sp 2009 (2 terms)

PH.D. COURSEWORK

CSE 167	Computer Graphics I (Jürgen Schulze)
CSE 169	Computer Animation—audit (Steve Rotenberg)
CSE 274	Discrete Differential Geometry (Albert Chern)
CSE 291	Physical Simulation—audit (Steve Rotenberg)
CSE 299	Discrete Differential Geometry Research (Albert Chern)
MUS 270A	Digital Audio Processing (Tamara Smyth)
MUS 270B	Analysis of Musical Sound (Miller Puckette)
MUS 270C	Compositional Algorithms (Miller Puckette)
MUS 270D	Advanced Projects in Computer Music (Puckette/Smyth)
MUS 206	Deep Learning for Music Generation (Shlomo Dubnov)
MUS 206	Computational Acoustic Modeling (Tamara Smyth)
MUS 206	Spatial Audio (Shahrokh Yadegari)
MUS 298	Spatial Audio Research (Puckette/Smyth/Dubnov)

PUBLICATIONS

Journal Articles

(1) C. McKell and K. Bonin, "Optical corral using a standing-wave Bessel beam," *Journal of the Optical Society of America B*, Vol. 35, No. 8, 1910–1920, 2018.

Conference Proceedings

(2) C. McKell, "Sonification of Optically-Ordered Brownian Motion," In Proceedings of the International Computer Music Conference (ICMC), Utrecht, Netherlands, September 2016.

Master's Theses

- (3) C. McKell, Real-Time Physical Modeling for Haptic Feedback Rendering, Final Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (4) C. McKell, Finite-Difference Simulations of Speech with Wall Vibration Losses, Special Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (5) C. McKell, Confinement and Tracking of Brownian Particles in a Bessel Beam Standing Wave, Master's Thesis, Wake Forest University, Department of Physics, 2015. (Advisor: Keith Bonin).

Technical Reports

(6) C. McKell, H. Conley, and D. Busath, "AFM Study of Structural Changes in Supported Planar DPPC Bilayers Containing General Anesthetic Isoflurane," Brigham Young University, Paper 827, 2010.

Conference Abstracts

(7) K. Bonin and C. McKell, "Tracking Brownian Particles in a Standing-Wave Bessel Beam 2D Optical Trap," SPIE: Optical Trapping and Optical Micromanipulation, XIV Meeting, 2017.