Chapter 2

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.1 Sets and Functions

Definition 2.1.1.

- Fix an universal set U. Set operations: union \cup , intersection \cap , complement \overline{A} .
- Set inclusion: $A \subseteq B$ iff for all $a \in A$ it holds $a \in B$. A = B iff $A \subseteq B$ and $B \subseteq A$.
- Given a set S, the power set of S is the set of all subsets of the set S. The power set is denoted by $\mathcal{P}(S)$, or 2^{S} .
- The Cartesian product of sets A_1, A_2, \ldots, A_n is defined by: $A_1 \times \cdots \times A_n := \{(a_1, \ldots, a_n) \mid a_i \in A_i \text{ for } i = 1, \ldots, n\}.$
- The cardinality of finite set A, denoted by |A|, is the number of its elements. The principle of inclusion-exclusion:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Definition 2.1.2. Let A and B be nonempty sets. A function $f: A \to B$ from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if $b \in B$ is assigned by f to the element $a \in A$. We say that

- A is the domain of f,
- B is the codomain of f.
- If f(a) = b, we say that b is the image of a and a is a preimage of b.
- The range, or image, of f is the set of all images of elements of A.

Definition 2.1.3. Let A and B be two sets. The function $f: A \rightarrow B$ is called

- one-to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.
- onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.
- one-to-one correspondence, or a bijection, if it is both oneto-one and onto.

Definition 2.1.4. Let A, B, and C be three sets.

- Let $f: A \to B$ be bijective. The inverse function of f, denoted by f^{-1} , is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b.
- Let $g: A \to B$ and let $f: B \to C$. The composition of the functions f and g, denoted $f \circ g$, is defined by

$$(f \circ g)(a) = f(g(a))$$

Definition 2.1.5 (Some Notations). Let A and B be two sets.

- For a function $f: A \to B$, and a set $D \subseteq A$, we use $f|_D: D \to B$ to denote the function f with domain restricted to the set D.
- A partial function f from a set A to a set B is an assignment to each element $a \in D \subseteq A$, called the domain of definition of f, of a unique element $b \in B$. We say that f is undefined for elements in $A \setminus D$. When D = A, we say that f is a total function.

Definition 2.1.6. Consider the set $U = 2^{AP}$ of all assignments. The semantic bracket is a function $[\cdot]: WFF \to 2^U$ defined by:

- $\bullet \ \llbracket p \rrbracket = \{ \sigma \in U \mid p \in \sigma \},\$
- $\bullet \ \llbracket \neg \varphi \rrbracket = \overline{\llbracket \varphi \rrbracket},$
- $\llbracket \varphi \to \psi \rrbracket = \overline{\llbracket \varphi \rrbracket} \cup \llbracket \psi \rrbracket$.

Is $[\![\cdot]\!]$ injective, surjective, or bijective?

2.2 Cardinality, Diagonalization Argument

Definition 2.2.1. Let A and B be two sets.

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.
- If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

Definition 2.2.2. A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable. When an infinite set S is countable, we denote the cardinality of S by \aleph_0 . We write $|S| = \aleph_0$ and say that S has cardinality aleph null.

Lemma 2.2.3. • If $A \subseteq B$, then $|A| \leq |B|$.

• If $A \subset B$, then $|A| \leq |B|$.

Assuming $B \subset A$, can it be the case that $|A| \leq |B|$?

Theorem 2.2.4 (SCHRÖDER-BERNSTEIN THEOREM). If A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Lemma 2.2.5. If |A| = |B|, and $|A| \le |C| \le |B|$, then |A| = |C|.

Lemma 2.2.6. Prove that

- 1. The union, intersection of countable sets is countable.
- 2. The set \mathbb{Z} of integer numbers is countable.
- 3. The set \mathbb{N}^2 is countable.
- 4. The set \mathbb{Q} of rational numbers is countable.
- 5. The set \mathbb{N}^c with $c \in \mathbb{N}$ is countable.
- 6. The countable union of countable sets is countable.
- 7. The set \mathbb{N}^* is countable.

For a set Σ , define Σ^{ω} the set of infinite strings $\{a_0a_1a_2... \mid a_i \in \Sigma, i \in \mathbb{N}\}.$

Lemma 2.2.7. Prove that

1.
$$|[0,1]| = |(0,1]| = |[0,1)| = |(0,1)|$$
.

2.
$$|(0,1]| = |[1,\infty)|$$
.

3.
$$|[0,1]| = |[0,k]| = |[0,\infty)| = |\mathbb{R}|$$
.

4.
$$|2^{\mathbb{N}}| = |\{ f \mid f \colon \mathbb{N} \to \{0, 1\} \}|.$$

5.
$$|\{0,1\}^{\omega}| = |[0,1]|$$
.

6.
$$|2^{\mathbb{N}}| = |\{0,1\}^{\omega}|$$
.

Lemma 2.2.8 (Cantor diagonalization argument).

- The set \mathbb{R} of real numbers is uncountable.
- For a set A, it holds: $|A| < |2^A|$.