CANopen之LSS Node-ID节点管理

CANopen之 LSS Node -ID节点管理

- 1.区分CAN-ID和节点ID
- 2.节点ID的分配
- 3.层设置服务LSS
 - 3.1 服务内容
 - 3.2 LSS用到的CAN-ID
 - 3.3 LSS的寻址模式
 - 3.4 LSS状态切换
 - 3.5 点对点配置 (Point to Point)
 - 3.5.1 切换全局状态
 - 3.5.2 配置节点地址 (Node-ID) 协议
 - 3.5.2 存储配置协议
 - 3.6 多节点配置 (Multipe Node Address)
 - 3.6.1 LSS地址
 - 3.6.2 切换选中节点状态协议
 - 3.7 LSS地址查询协议
 - 3.7.1 查询Vendor-ID标识协议
 - 3.7.2 查询product-code标识协议
 - 3.7.3 查询revision-number标识协议
 - 3.7.4 查询Serial-number标识协议

1.区分CAN-ID和节点ID

- 在CANopen中,CAN-ID是通信的标识符,范围不同,对应的应用不同。
- 而节点ID是设备的身份ID,在NMT网络管理中,用到CS(Command Spefifier指令说明符)+Node-ID的对网络中的节点进行管理。
- SDO通道具有2个CAN标识符,其中发送方向的标识符为"580+Node-ID",接收方向的为"600h+节点ID";

2.节点ID的分配

- 在项目中涉及主站的开发, 其中很重要的一点是对节点的管理。由于Slave节点无法用DIP开关的方式去配置节点(密封性的需求),所以只能使用动态节点分配的方法。这里就 涉及到LSS协议。
- 使用动态分配方法的目的,就是要明确的标识一个CANopen Slave设备,因此,该设备至少具备2个基本的特征参数,一个是制造商ID,另一个是序列号,这2个参数都一个通过 对象1018h来设置。
- 这里先买个关子,为什么至少具备2个基本的特征参数?

3.层设置服务LSS

LSS的全称是Layer Setting Service,层设置服务。

3.1 服务内容

- 配置Node-ID
- 配置CAN网络的传输速率

3.2 LSS用到的CAN-ID

- 7E4 = 2020d ----- Repsonse from LSS slave(CANopen Slave Device)
- 7E5 = 2021d ----- Response from LSS master(CANopen Master/configuration tool)
- 两条报文的总长度总是为8字节。第一个字节通常为识别符,用来识别所涉及的指令或状态信息

3.3 LSS的寻址模式

- 点对点
- 广播通信模式

3.4 LSS状态切换

具有LSS功能但没有有效Node-ID的CANopen Slave设备,在上电之后会进入LSS等待状态。 LSS状态机与NMT(Network managerment)网络管理之间其实没有什么联系。仅仅由LSS主机控制(即使设备处于NMT停止状态时)。

代码(hex)	功能
04h	进入LSS等待状态
11h	配置新的节点ID
13h	配置新的位速率
15h	启动新的为速率
17h	保存LSS配置

3.5 点对点配置 (Point to Point)

下面是一个设置Node-ID的例子。 假设出厂默认Node-ID:127d = 7Fh 现在想要配置Node-ID:05d = 05h

此处只有一个LSS从机。

该节点模式用到了LSS中的LSS switch mode global 命令。

LSS swtich mode global 命令包含上述的等待(waiting), 配置(configuration)。

No	DIR	ID (hex)	DLC	Data (hex) Comment
1	Tx	000	2	80 7F Preop. node-ID 127
2	Tx	7E5	8	04 01 00 00 00 00 00 00 configuration state
3	Tx	7E5	8	11 05 00 00 00 00 00 00 set node-ID 5
4	Rx	7E4	8	11 00 00 00 00 00 00 00 response: OK
5	Tx	7E5	8	17 00 00 00 00 00 00 00 store configuration
6	Rx	7E4	8	17 00 00 00 00 00 00 00 response: OK
7	Tx	7E5	8	04 00 00 00 00 00 00 waiting state
8	Tx	000	2	81 7F reset node-ID 127
9	Rx	705	1	00 boot-up/message/wijonihew

- 000h 80 7F: 该指令为NMT网络管理, push Node-127 to Pre-opeartional state
- 7E5h 04 01 00 00 00 00 00 00: 配置模式
- 7E5h 11 05 00 00 00 00 00 00: 配置新的节点Node-ID为05
- 7E4h 11 00 00 00 00 00 00 00: Slave节点反馈:配置成功
- 7E5h 17 00 00 00 00 00 00 00: 保存LSS配置
- 7E4h 17 00 00 00 00 00 00 00: Slave节点反馈:配置成功
- 000h 81 7F: NMT指令: 重启Node-ID 127 (Application Reset)
- 705h 00: NMT指令: Boot-up message, 进入Pre-opertional(进入NMT预操作阶段)
- 注意: 新的节点地址在复位该节点后生效 (valid after a reset of the device) 或者是Power Up重启.

3.5.1 切换全局状态

该协议用于执行'Switch Mode Global'服务

3.5.2 配置节点地址 (Node-ID) 协议

3.5.2 存储配置协议

该协议用于执行'Store Configured Parameters'服务

3.6 多节点配置 (Multipe Node Address)

上述描述的当网络中只有一个节点的情况,可以使用LSS Switch State Global协议进行状态切换和配置。但是多Slave节点的情况下,情况较复杂一些。LSS switch mode selective命令来选择配置模式。

3.6.1 LSS地址

记得在通用通信对象(General communication objects)中的1018h

Index索	Object对象	Name名字
1018h	RECORD记录	Identity Object厂商ID标识对象

1018h子索引	项目	含义	位数
sub-idx 1	Vendor-ID	厂商ID	32
sub-idx 2	Product Code	产品代码	32
sub-idx 3	Revision Version	软件版本	32
sub-idx 4	Serial Number	序列号	32

在多Slave编址时,我们需要依靠这些信息标识没每一个设备。这个地址相当于信封上的邮寄地址一样,邮寄地址中包含姓名(Vendor-ID),街道(Product Code),地址(Software Version),门牌号(Serival Number)。至于收件人是否居住在在哪个楼层不重要。这里楼层就相当于CANopen设备的Node-ID。 用户可以通过上述4个32位的值获得一个128位密钥,该密钥即可以理解为LSS地址。

上图所示为LSS主机和LSS从机之间的Switch Mode Selective协议。只有当4个传输参数与LSS从机一致时,才进行肯定应答。 厂商ID由CiA统一分配和管理,其他参数由设备制造商分配。

No	DIR	ID (hex)	DLC	Data	(he	x)					Comment
1	Tx	000	2	80 7F	,						Preop. node-ID 127
2	Tx	7E5	8	40 OE	00	00	00	00	00	00	vendor ID
3	Tx	7E5	8	41 51	4B	14	00	00	00	00	product code
4	Тx	7E5	8	42 00	02	02	03	00	00	00	software version
5	Tx	7E5	8	43 04	03	02	01	00	00	00	serial number
6	Rx	7E4	8	44 00	00	00	00	00	00	00	response og OK In nei/wijjontheway

当选中某个Node后,接下来的配置过程就和之前的配置节点报文一样。如下所示。

No	DIR	ID (hex)	DLC	Data	(hex)			Comment
1	Tx	7E5	8	11 05	00 00	00 00	00 00	set node-ID 5
2	Rx	7E4	8	11 00	00 00	00 00	00 00	response: OK
3	Tx	7E5	8	17 00	00 00	00 00	00 00	store configuration
4	Rx	7E4	8	17 00	00 00	00 00	00 00	response: OK
5	Tx	7E5	8	04 00	00 00	00 00	00 00	waiting state
6	Tx	000	2	81 7F	1			reset node-ID 127
7	Rx	705	1	00				boot mup/message/wjjonineway

3.7 LSS地址查询协议

- 1 | 该协议用于执行"Inquire LSS Address Service"服务。
- 2 既然上面要对网络中的某个CANopen Slave节点编址,那么CANopen Master需要记住每个节点的LSS地址,从而才能在对某个Slave进行编址时通过LSS Address进行选择。

3.7.1 查询Vendor-ID标识协议

3.7.2 查询product-code标识协议

3.7.3 查询revision-number标识协议

3.7.4 查询Serial-number标识协议

