Bangabandhu Sheikh Mujibur Rahman Science and Technology University Department of Computer Science and Engineering 1st Year 1st Semester B.Sc. Engineering Examination-2014

Course No: MAT 104 Full Marks: 70

Course Title: Algebra, Trigonometry and Vector Analysis

Time: 4 hours

N.B.

- i) Answer SIX questions, taking any THREE from each section.
- ii) All questions are of equal values.
- iii) Use separate answer script for each section.

	SECTION-A				
Q.1	(a)	Define Power set, Complement set and Disjoint sets with an example.	3		
	(b)	If $A = \{x x \text{ is a multiple of 3}\}$ and $B = \{x x \text{ is even}\}$ are subsets of the universal set $U = \{x x \text{ are natural number} \le 15\}$ then $\text{verify}(A \cap B')' \cup B = A' \cup B$.	3		
	(c)	Prove that if R is a relation on A, then $(R^{-1})^{-1} = R$.	$2\frac{2}{3}$		
	(d)	If R be the set of real numbers, then in $R \times R$ draw the graph of the relation $G = \{(x,y) x,y \in R \text{ and } x^2 + y^2 \ge 4\}$ and $S = \{(x,y) x,y \in R \text{ and } y \ge \frac{4}{9}x^2\}$	3		
Q.2	(a)	Define domain and range of a function. If $f(x) = \frac{x}{x-1}$ then find its domain and range. Also find its inverse function.	4		
	(b)	Prove that the inverse of an invertible function is invertible.	3		
	(c)	Prove that every polynomial of degree n has exactly n roots.	$4\frac{2}{3}$		
Q.3	(a)	Solve the equation $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ given that one roots is $(-1 + i)$.	$3\frac{2}{3}$		
	(b)	Using DeMoiver's theorem solve the equation $x^4 + x^2 + 1 = 0$.	4		
	(c)	Prove that $\left[\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right]^n = (\sin\theta+i\cos\theta)^n$	4		
Q.4	(a)	State and prove DeMoiver's theorem of trigonometry for positive integers.	4		
	(b)	What do you mean by Gudermanian function? If $\cos^{-1}(u+iv) = \alpha + i\beta$, then prove that $(\cos \alpha)^2$ and $(\cosh \beta)^2$ are roots of the equation $x^2 - (1 + u^2 + v^2)x + u^2 = 0$.	4		
	(c)	Define Hyperbolic function. Expand $\cos n\theta$ in term of $\cos \theta$.	$3\frac{2}{3}$		

Bangabandhu Sheikh Mujibur Rahman Science and Technology University Department of Computer Science and Engineering 1st Year 1st Semester B.Sc. Engineering Examination-2014

Course No: MAT 104 Full Marks: 70

Course Title: Algebra, Trigonometry and Vector Analysis

Time: 4 hours

N.B.

- i) Answer SIX questions, taking any THREE from each section.
- ii) All questions are of equal values.
- iii) Use separate answer script for each section.

	SECTION-B					
Q.5	(a)	State Gregory's series. Show that $\frac{\pi}{8} = \frac{1}{1.3} + \frac{1}{5.7} + \frac{1}{9.11} + \cdots$	4			
	(b)	Sum to infinity the series: $1 + \cos x + \frac{\cos 2x}{2!} + \frac{\cos 3x}{3!} + \cdots + \cos x + \frac{\cos 3x}{3!} + \cdots + \cos 3x$	4			
	(c)	Find the sum of the following series: $\frac{3}{2.4} + \frac{3.4}{2.4.6} + \frac{3.4.5}{2.4.6.8} + \cdots \infty$	$3\frac{2}{3}$			
Q.6	(a)	Define collinear and coplanar vectors. Examine whether the vectors $5\underline{a} + 6\underline{b} + 7\underline{c}$, $7\underline{a}$, $-8\underline{b} + 9\underline{c}$ and $3\underline{a} + 20\underline{b} + 5\underline{c}$ (\underline{a} , \underline{b} , \underline{c} being non-coplanar vectors) are linearly independent or dependent.	4			
	(b)	A Force $\vec{F} = 3i + 2j - 4k$ is applied at the point $(1, -1, 2)$. Find the moment of the force about the point $(2, -1, 3)$.	3			
	(c).	Define cross product with physical interpretation. Prove that $(\vec{A} \times \vec{B}) \cdot (\vec{B} \times \vec{C}) \times (\vec{C} \times \vec{A}) = (\vec{A} \cdot \vec{B} \times \vec{C})^2$	$4\frac{2}{3}$			
Q.7	(a)	If the vector $\vec{V} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational then find the values of constants a, b, c .	4			
	(b)	The position vector of a particle at time t is $\vec{r} = \cos(t-1)\hat{\imath} + \sinh(t-1)\hat{\jmath} + \alpha t^3\hat{k}$. Find the condition imposed on α by requiring that at time $t = 1$, the acceleration normal to the position vector.	$3\frac{2}{3}$			
	(c)	Define Directional derivative and Divergence. Write down the Geometrical interpretation of curl	4			
Q.8	(a)	State and prove Green's theorem.	4			
	(b)	Verify the divergence theorem $\vec{A} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ taken over the region bounded by $x^2 + y^2 = 4$, $z = 0$, $z = 3$.	4			
	(c)	Define surface integrals. Evaluate $\int_s \int \vec{A} \cdot \hat{n} ds$ where $\vec{A} = 18z\hat{i} - 12\hat{j} + 3y\hat{k}$ and s is the part of the plane $2x + 3y + 6z = 12$ which is located in the first octant.	$3\frac{2}{3}$			