Programmierung, Algorithmen, Datenstrukturen 2

a.o. Univ.-Prof. Dr. Martin Welk

Dipl.-Ing. Elias Tappeiner

Institut für Biomedizinische Bildanalyse

Mech-BSc/ET-BSc

Hausübung 1

Abgabe: 22. März 2022, 23.55 Uhr in Moodle

Es wird empfohlen, die Übungen in Gruppen (max. 3 Studierende) zu bearbeiten und gemeinsam abzugeben.

Abzugeben ist von diesem Blatt die Aufgabe 1.1, die übrigen Aufgaben sind zur selbstständigen Bearbeitung sowie zur Vorbereitung der abgabepflichtigen Aufgaben des nächsten Blattes.

Hinweise zur Abgabe

• Gruppenarbeiten werden von **einer/m** Studierenden in Moodle eingereicht; die Namen **aller** Beteiligten sind bei der Abgabe zu vermerken! (Empfehlung: Kommentar im Quelltextfile)

Aufgabe 1.1 (Abgabe)

Entscheiden Sie für die folgenden Folgen (a_n) und (b_n) jeweils, welche der Beziehungen $a_n = O(b_n)$, $a_n = o(b_n)$, $a_n = \Theta(b_n)$ gelten. Begründen Sie Ihre Antworten.

(a)
$$a_n = 2n^3 - 5n$$
, $b_n = n^3$

(b)
$$a_n = \frac{n^4+1}{n+4}$$
, $b_n = n$

(c)
$$a_n = \sqrt{n^2 + 1} \log_3 n$$
, $b_n = n^2 \log_2 n$

2

Aufgabe 1.2 (ohne Abgabe)

Beantworten Sie die folgenden Übungsfragen aus dem Vorlesungsskript (Abschnitt T2):

- **TÜF 2.1:** Warum ist es sinnvoll, einen Addierer für drei Ziffern als grundlegende Operation zu wählen (statt des *Halbaddierers* für zwei Ziffern)?
- **TÜF 2.2:** Beweisen Sie, dass für jede Basis *B* die Ergebnisse der beiden Operationen (Addition dreier Ziffern, Multiplikation zweier Ziffern) nicht mehr als zwei Stellen haben.
- **TÜF 2.4:** Zeigen Sie, dass man in der Multiplikation mehrstelliger Zahlen zum Zusammenfassen der Teilprodukte $a_i \cdot b$ nur $n^2 1$ elementare Additionen benötigt.
- **TÜF 2.5:** Weshalb ist das Ergebnis der Multiplikation zweier *n*-stelliger Zahlen maximal 2*n*-stellig?
- TÜF 2.6: Notieren Sie die Volksschulmultiplikation für zwei *n*-stellige Zahlen *a*, *b* als Algorithmus **Multiplikation** (*a*, *b*, *n*) analog zu den im Skript ausformulierten Algorithmen für die Addition zweier *n*-stelliger Zahlen sowie für die Multiplikation einer einstelligen mit einer *n*-stelligen Zahl. Die letzteren beiden sollen dabei als **Addition** (*a*, *b*, *n*) bzw. **Multiplikation1** (*a*, *b*, *n*) aufgerufen werden.