CS3350B Computer Organization Chapter 2: Synchronous Circuits Part 1: Gates, Switches, and Boolean Algebra

Iqra Batool

Department of Computer Science University of Western Ontario, Canada

Monday January 29, 2024

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

Layers of Abstraction

After looking at high-level CPU and Memory we will now go down to the lowest level (that we care about).

Circuit Design vs Digital (Logic) Design

□ Design of individual circuits vs Using circuits to implement some logic.

Circuit Design

Why do we care?

- Appreciate the limitations of hardware.
- Understand why some things are fast and some things are slow.
- Need circuit design to understand logic design.
- Need logic design to understand CPU Datapath.

If you are ever working with:

- Assembly, ISAs,
- Embedded Systems and circuits,
- Specialized computer/logic systems,

you will need circuit and logic design.

Digital Circuits

Everything is digital: represented by discrete, individual values.

No gray areas or ambiguity.

Must convert an analog – continuously variable – signal to digital.

For us, the analog signal is electricity (voltage).

- \vdash "High" voltage $\Rightarrow 1$
- \rightarrow "Low" voltage $\Rightarrow 0$

Physicality of Circuits

In the end, everything is a switch.

"Input"
$$\Rightarrow$$
 A "Output" \Rightarrow Z

If A is 0/false then switch is open. If A is 1/true then switch is closed.

This circuit implements:

$$A \equiv Z$$

Transistors: Electrically Controlled Switches

MOS-FET: Metal-Oxide-Semiconductor Field-Effect Transistor

- Has a source (S), a drain (D), and a gate (G).
- Applying voltage to G allows current to flow between S and D.
- In reality, transistors, logic gates, SRAM, use CMOS (Complimentary-MOS). But we don't care about transistors really...

n-channel p-channel opens when voltage at G is low, closes when voltage at G is low, closes when voltage at G is high

Flipping a transistor is *much faster* than moving a physical switch.

Speed of switching a transistor directly related to speed of a CPU

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

Logic as Circuits

Propositional Logic: A set of propositions (truth values) combined by some logical connectives.

- Truth values = Binary digital signal
- Logical connectives ≡ Logic gates

Logic Gate: A circuit implementing some logical expression/function.

The basics: **AND** (\land) , **OR** (\lor) , **NOT** (\neg) .

Arity of a function/gate is the number of inputs.

Gates as Switches

■ Both A and B must be true/1 to get the circuit to complete.

■ Either A or B can be true/1 to get the circuit to complete.

Logic Gates In Detail: AND

$$A \wedge B \equiv C$$

$$A \cdot B \equiv C$$

Truth Table for AND

A	В	$A \wedge B \equiv C$
0	0	0
0	1 0	0
1	0	0
1	$\mid 1 \mid$	1

Logic Gates In Detail: OR

$$A \vee B \equiv C$$

$$A + B \equiv C$$

Truth Table for OR

A	В	$A \vee B \equiv C$
0	0	0
0	$\mid 1 \mid$	1
1	0	1
1	$\mid 1 \mid$	1

Logic Gates In Detail: NOT

$$\neg A \equiv C$$

$$\overline{A} \equiv C$$

Truth Table for NOT

$$\begin{array}{c|cccc} A & \neg & A & \equiv & C \\ \hline 0 & & 1 & \\ 1 & & 0 & \\ \end{array}$$

More Interesting Logic Gates: NAND

$$\neg(A \land B) \equiv C$$

$$\overline{A \cdot B} \equiv C$$

$$A \mid B$$

Truth Table for NAND

В	Α	•	$B \equiv C$
0			1
1			1
0			1
1			0
	B 0 1 0 1	0 1 0	0 1 0

More Interesting Logic Gates: NOR

$$\neg(A \lor B) \equiv C$$

$$\overline{A + B} \equiv C$$

Truth Table for NOR

A	В	$A + B \equiv C$			
0	0	1			
0	1 0 1	0			
1 1	0	0			
1	$\mid 1 \mid$	0			

More Interesting Logic Gates: XOR (Exclusive OR)

Truth Table for XOR

$$A \oplus B \equiv C$$

A	В	$A \oplus B \equiv C$
0	0	0
0	$\mid 1 \mid$	1
1	1 0 1	1
1	$\mid 1 \mid$	0

Outline

- 1 Introduction
- 2 Logic Gates
- 3 Boolean Algebra

The Algebra of Logic Gates

Due to the equivalence of truth values and binary digital signals, **Boolean Algebra** is heavily used discussing circuitry.

Associativity:

$$(A+B)+C \equiv A+(B+C)$$
$$(A\cdot B)\cdot C \equiv A\cdot (B\cdot C)$$

Identity:

$$A + 0 \equiv A$$
$$A \cdot 1 \equiv A$$

Commutativity:

$$A + B \equiv B + A$$
$$A \cdot B \equiv B \cdot A$$

Annihilation:

$$A + 1 \equiv 1$$
$$A \cdot 0 \equiv 0$$

Distributivity:

$$A + (B \cdot C) \equiv (A + B) \cdot (A + C)$$
$$A \cdot (B + C) \equiv (A \cdot B) + (A \cdot C)$$

Idempotence:

$$A + A \equiv A$$
$$A \cdot A \equiv A$$

Boolean Algebra: More Interesting Laws

Absorption:

$$A \cdot (A + B) \equiv A$$
$$A + (A \cdot B) \equiv A$$

Double Negation

$$\overline{\overline{A}} \equiv A$$

Complementation:

$$A + \overline{A} \equiv 1$$
$$A \cdot \overline{A} \equiv 0$$

De Morgan's Laws:

$$\overline{A + B} \equiv \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} \equiv \overline{A} + \overline{B}$$

Look familiar?

→ Definitions of NOR and NAND.

Proving De Morgan's Laws

Proof by Exhaustion:

The easiest way to prove something is to write out each expression's truth table.

$$\overline{A+B} \equiv \overline{A} \cdot \overline{B}$$

Α	В	A + B	$\overline{A+B}$
0	0	0	1
0	$\mid 1 \mid$	1	0
1	0	1	0
1	$\mid 1 \mid$	1	0

A	В	$\mid \overline{A} \mid$	\overline{B}	$\mid \overline{A} \cdot \overline{B} \mid$
0	0	1	1	1
0	$\mid 1 \mid$	1	0	0
1	0	0	1	0
1	$\mid 1 \mid$	0	0	0

Simplifying Expressions with Boolean Algebra (1/2)

$$\overline{xyz} + \overline{xy}z$$

$$\overline{xyz} + \overline{xy}z \equiv \overline{xy}(\overline{z} + z)$$
 Factor \overline{xy}
$$\equiv \overline{xy}(1)$$
 Complementation of z
$$\equiv \overline{xy}$$
 Identity with \overline{xy}

	\boldsymbol{x}	$\mid y \mid$	$\mid z \mid$	$ \overline{xyz} $	$\overline{xy}z$	$\overline{xyz} + \overline{xy}z$
•	0	0	0	1	0	1
	0	0	$\mid 1 \mid$	0	1	1
	0	1	0	0	0	0
4	0	1	$\mid 1 \mid$	0	0	0
	1	0	0	0	0	0
	1	0	$\mid 1 \mid$	0	0	0
	1	1	0	0	0	0
	1	1	$\mid 1 \mid$	0	0	0

Note: $\overline{AB} \implies \overline{A} \cdot \overline{B}$; otherwise use $\overline{A \cdot B}$ or $\overline{(AB)}$ for $A \mid B$.

Simplifying Expressions with Boolean Algebra (2/2)

Sometimes a truth table is too challenging...

 $\,\,\,\,\,\,\,\,\,\,\,$ For v variables a truth table has 2^v rows.

$$\overline{(\overline{x} + \overline{z})} (abcd + xz) \implies 6 \text{ variables, 64 rows}$$

Instead we can simplify using the laws of Boolean algebra:

$$\overline{(\overline{x}+\overline{z})}\,(abcd+xz)\equiv \overline{\overline{xz}}\,(abcd+xz)$$
 De Morgan's Law
$$\equiv xz\,(abcd+xz)$$
 Double negation of x and z Absorption

Simplifying Expressions for Simplified Circuits

$$y = ((ab) + a) + c$$

$$y \equiv (ab + a) + c$$

 $\equiv a(b+1) + c$ Factor a
 $\equiv a(1) + c$ Annihilaltion
 $\equiv a + c$ Identity

Canonical Forms

Different standard or canonical forms.

- Conjunctive Normal Form (CNF) ⇒ AND of ORs
- Disjunctive Normal Form (DNF) \Rightarrow ORs of ANDs

CNF
$$(a+b)\cdot(\overline{a}+b)\cdot(\overline{a}+\overline{b})$$

DNF
$$ab + \overline{a}b + \overline{a}\overline{b}$$

- Every variable should appear in every sub-expression.
 - → Products for DNF, Sums for CNF.
 - → Some authors call this "Full DNF" or "Full CNF".
- Every boolean expression can be converted to a canonical form.
- DNF more useful and practical \Rightarrow truth tables.

Truth Tables and Disjunctive Normal Forms

We can get a DNF expression directly from a truth table.

- \blacksquare a, b, c are inputs, f is output.
- Create one product term for every entry in the table with $f \equiv 1$.
- lacksquare Put \overline{x} in product if x is false in that row.
- \blacksquare Put x in product if x is true in that row.
- OR all products together.

a	b	$\mid c \mid$	$\mid f \mid$		
0	0	0	1		
0	0	$\mid 1 \mid$	0		
0	1	0	1		
0	1	$\mid 1 \mid$	0		
1	0	0	1	\Longrightarrow	$\overline{abc} + \overline{a}b\overline{c} + a\overline{bc} + abc$
1	0	1	0		
1	1	0	0		
1	1	$\mid 1 \mid$	1		

Functional Completeness

Functional Completeness - A set of functions (operators) which can adequately describe every operation and outcome in an algebra.

- For Boolean algebra the classical set of operators: $\{+,\cdot,\neg\}$ is functionally complete but not **minimal**.
- Thanks to De Morgan's Law we only need one of AND or OR.
- The sets $\{+,\neg\}$ and $\{\cdot,\neg\}$ are both functionally complete and minimal.
 - → **minimal** removing any one of the operators would make the set functionally *incomplete*.
- NAND alone is functionally complete; so is NOR alone.

NAND is Functionally Complete

NAND alone is functionally complete.

- NAND = |
- To prove functional completeness simply show that the operators of the set can mimic the functionality of the set $\{+,\cdot,\neg\}$.

$$\neg X \equiv X \mid X$$

$$X \cdot Y \equiv \overline{X|Y} \equiv (X|Y) \mid (X|Y)$$

$$X + Y \equiv \overline{\overline{X + Y}} \equiv \overline{\overline{X} \cdot \overline{Y}} \equiv (X|X) \mid (Y|Y)$$

$X \mid$	$ \overline{X} $	$X \cdot X$	$\overline{X \cdot X}$
0	1	0	1
1	0	1	0

X	$\mid Y \mid$	$A \equiv X Y $	A A
0	0	1	0
0	$\mid 1 \mid$	1	0
1	0	1	0
1	$\mid 1 \mid$	0	1

X	Y	\overline{X}	$\mid \overline{Y} \mid$	$ \overline{X} \overline{Y}$
0	0	1	1	0
0	$\mid 1 \mid$	1	0	1
1	0	0	1	1
1	$\mid 1 \mid$	0	0	1

Summary

Boolean algebra can simplify circuits.

- Remove variables that the output does not depend on.
- Simplifies expression, removing needless gates.
- Space and time complexity improved!

Truth tables, canonical forms, functional completeness.

Help generating truth tables:

https:
//web.stanford.edu/class/cs103/tools/truth-table-tool/