SEQUENCE LISTING

	<110	B C	> Lorantis Limited Briend, Emmanuel CP Champion, Brian R Solari, Roberto CE															
	<120)>																
	<130)>	674525-2011															
			PCT/			90												
	<141	L>																
	<150) >	GB 0123379.0															
	<151	L>	2001-09-28															
	<160)>	9 .															
	<170)>	PatentIn version 3.1															
	<210)>	1															
	<211	L>	24															
	<212																	
	<213	3>	Artificial sequence															
	<220)>																
	<223		Oligonucleotide															
	<400> 1 tcgtcgtttt gtcgttttgt cgtt															24		
	Logi	.cgc	ددد ي	gudgi	دددر	שני כי	guu											24
	<210		2															
	<211		864															
	<212 <213		PRT Arti:	ficia	ചിട	eaner	nce											
					A1 D1	-que.												
	<220		_															
<223> hDelta1-IgG4Fc fusion protein																		
	<400)>	2															
					•													
		Gly	Ser	Arg	_	Ala	Leu	Ala	Leu		Val	Leu	Ser	Ala		Leu		
	1				5					10					15			
(Cys	Gln	Val	Trp	Ser	Ser	Gly	Val	Phe	Glu	Leu	Lys	Leu	Gln	Glu	Phe		
				20					25					30				
7	/al	Asn	Lys	Lys	Gly	Leu	Leu	Gly	Asn	Ara	Asn	Cvs	Cvs	Ara	Glv	Glv		
			35	•	-			40		_		•	45	,	•	4		
7	Ala	Glv	Pro	Pro	Pro	Cve	Δla	Cve	Δra	Thr	Ph≏	Phe	Δνα	Val	Cve	T _i eu	ı	
_		50	- 10			- 75	55	J 2	9			60	*** 9	-41	Cys	u		

Lys 65	His	Tyr	Gln	Ala	Ser 70	Val	Ser	Pro	Glu	Pro 75	Pro	Суѕ	Thr	Tyr	Gly 80
Ser	Ala	Val	Thr	Pro 85	Val	Leu	Gly	Val	Asp 90	Ser	Phe	Ser	Leu	Pro 95	Asp
Gly	Gly	Gly	Ala 100	Asp	Ser	Ala	Phe	Ser 105	Asn	Pro	Ile	Arg	Phe 110	Pro	Phe
Gly	Phe	Thr 115	Trp	Pro	Gly	Thr	Phe 120	Ser	Leu	Ile	Ile	Glu 125	Ala	Leu	His
Thr	Asp 130	Ser	Pro	Asp	Asp	Leu 135	Ala	Thr	Glu	Asn	Pro 140	Glu	Arg	Leu	Ile
Ser 145	Arg	Leu	Ala	Thr	Gln 150	Arg	His	Leu	Thr	Val 155	Gly	Glu	Glu	Trp	Ser 160
Gln	Asp	Leu	His	Ser 165	Ser	Gly	Arg	Thr	Asp 170	Leu	Lys	Tyr	Ser	Tyr 175	Arg
Phe	Val	Cys	Asp 180	Glu	His	Tyr	Tyr	Gly 185	Glu	Gly	Cys	Ser	Val 190	Phe	Cys
Arg	Pro	Arg 195	Asp	Asp	Ala	Phe	Gly 200	His	Phe	Thr	Cys	Gly 205	Glu	Arg	Gly
Glu	Lys 210	Val	Cys	Asn	Pro	Gly 215	Trp	Lys	Gly	Pro	Tyr 220	Cys	Thr	Glu	Pro
Ile 225	Cys	Leu	Pro	Gly	Cys 230	Asp	Glu	Gln	His	Gly 235	Phe	Cys	Asp	Lys	Pro 240
Gly	Glu	Cys	Lys	Cys 245	Arg	Val	Gly	Trp	Gln 250	Gly	Arg	Tyr	Cys	Asp 255	Glu
Cys	Ile	Arg	Tyr 260	Pro	Gly	Cys	Leu	His 265	Gly	Thr	Cys	Gln	Gln 270	Pro	Trp
Gln	Cys	Asn 275	Cys	Gln	Glu	Gly	Trp 280	Gly	Gly	Leu	Phe	Cys 285	Asn	Gln	Asp

Leu Asn Tyr Cys Thr His His Lys Pro Cys Lys Asn Gly Ala Thr Cys 290 295 300

Thr Asn Thr Gly Gln Gly Ser Tyr Thr Cys Ser Cys Arg Pro Gly Tyr 305 310 315 320

Thr Gly Ala Thr Cys Glu Leu Gly Ile Asp Glu Cys Asp Pro Ser Pro 325 330 335

Cys Lys Asn Gly Gly Ser Cys Thr Asp Leu Glu Asn Ser Tyr Ser Cys 340 345 350

Thr Cys Pro Pro Gly Phe Tyr Gly Lys Ile Cys Glu Leu Ser Ala Met 355 360 365

Thr Cys Ala Asp Gly Pro Cys Phe Asn Gly Gly Arg Cys Ser Asp Ser 370 · 375 380

Pro Asp Gly Gly Tyr Ser Cys Arg Cys Pro Val Gly Tyr Ser Gly Phe 385 390 395 400

Asn Cys Glu Lys Lys Ile Asp Tyr Cys Ser Ser Ser Pro Cys Ser Asn 405 410 415

Gly Ala Lys Cys Val Asp Leu Gly Asp Ala Tyr Leu Cys Arg Cys Gln
420 425 430

Ala Gly Phe Ser Gly Arg His Cys Asp Asp Asp Val Asp Asp Cys Ala 435 440 445

Ser Ser Pro Cys Ala Asn Gly Gly Thr Cys Arg Asp Gly Val Asn Asp 450 455 460

Phe Ser Cys Thr Cys Pro Pro Gly Tyr Thr Gly Arg Asn Cys Ser Ala 465 470 475 480

Pro Val Ser Arg Cys Glu His Ala Pro Cys His Asn Gly Ala Thr Cys 485 490 495

His Glu Arg Gly His Gly Tyr Val Cys Glu Cys Ala Arg Gly Tyr Gly 500 505 510

Gly	Pro	Asn 515	Cys	Gln	Phe	Leu	Leu 520	Pro	Glu	Leu	Pro	Pro 525	Gly	Pro	Ala
Val	Val 530	Asp	Leu	Thr	Glu	Lys 535	Leu	Glu	Ala	Ser	Thr 540	Lys	Gly	Pro	Ser
Val 545	Phe	Pro	Leu	Ala	Pro 550	Cys	Ser	Arg	Ser	Thr 555	Ser	Glu	Ser	Thr	Ala 560
Ala	Leu	Gly	Cys	Leu 565	Val	Lys	Asp	Tyr	Phe 570	Pro	Glu	Pro	Val	Thr 575	Val
Ser	Trp	Asn	Ser 580	Gly	Ala	Leu	Thr	Ser 585	Gly	Val	His	Thr	Phe 590	Pro	Ala
Val	Leu	Gln 595	Ser	Ser	Gly	Leu	Tyr 600	Ser	Leu	Ser	Ser	Val 605	Val	Thr	Val
Pro	Ser 610	Ser	Ser	Leu	Gly	Thr 615	Lys	Thr	Tyr	Thr	Cys 620	Asn	Val	Asp	His
Lys 625	Pro	Ser	Asn	Thr	Lys 630	Val	Asp	Lys	Arg	Val 635	Glu	Ser	Lys	Tyr	Gly 640
Pro	Pro	Cys	Pro	Ser 645	Cys	Pro	Ala	Pro	Glu 650	Phe	Leu	Gly	Gly	Pro 655	Ser
Val	Phe	Leu	Phe 660	Pro	Pro	Lys	Pro	Lys 665	Asp	Thr	Leu	Met	Ile 670	Ser	Arg
Thr	Pro	Glu 675	Val	Thr	Cys	Val	Val 680	Val	Asp	Val	Ser	Gln 685	Glu	Asp	Pro
Glu	Val 690	Gln	Phe	Asn	Trp	Tyr 695	Val	Asp	Gly	Val	Glu 700	Val	His	Asn	Ala
Lys 705	Thr	Lys	Pro	Arg	Glu 710	Glu	Gln	Phe	Asn	Ser 715	Thr	Tyr	Arg	Val	Val 720
Ser	Val	Leu	Thr	Val 725	Leu	His	Gln	Asp	Trp 730	Leu	Asn	Gly	Lys	Glu 735	Tyr
Lys	Cys	Lys	Val	Ser	Asn	Lys	Gly	Leu	Pro	Ser	Ser	Ile	Glu	Lys	Thr

740 745 750

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
755 760 765

Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 770 780

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 785 790 795 800

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 805 810 815

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser 820 825 830

Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 835 840 845

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 850 855 860

<210> 3

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Adenovirus major late promoter TATA-box motif with BglII and Hind III cohesive ends

<400> 3

gatctggggg gctataaaag ggggta

26

<210> 4

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Adenovirus major late promoter TATA-box motif with BglII and Hind III cohesive ends

<400> 4

agcttacccc cttttatagc ccccca

```
<210> 5
<211> 50
<212> DNA
<213> Artificial sequence
<220>
<223> TP1 promoter sequence with BamH1 and BglII cohesive ends
gatcccgact cgtgggaaaa tgggcggaag ggcaccgtgg gaaaatagta
                                                                     50
<210> 6
<211> 50
<212> DNA
<213> Artificial sequence
<220>
<223> TP1 promoter sequence with BamH1 and BglII cohesive ends
<400> 6
gatctactat tttcccacgg tgcccttccg cccattttcc cacgagtcgg
                                                                     50
<210> 7
<211> 43
<212> PRT
<213> Artificial sequence
<220>
<223> DSL domain
<220>
<221> MISC_FEATURE
<222> 2..4, 7..9, 11..13, 20, 24, 25, 27..29, 31..33
<223> Xaa may be any amino acid
<220>
<221> MISC FEATURE
<222> 35, 36, 38, 39, 41, 42
<223> Xaa may be any amino acid
<220>
<221> MISC FEATURE
<222> 5, 6, 21, 23
<223> Xaa may be any amino acid, preferably an aromatic amino acid residue,
      such as Tyr, Phe, Trp or His
<220>
<221> MISC FEATURE
<222> 16, 22, 30, 37, 40
<223> Xaa may be any amino acid, preferably a non polar amino acid
      residue, such as Gly, Ala, Pro, Leu, Ile or Val
```

```
<221> MISC FEATURE
<222>
      (15, 17)
<223> Xaa may be any amino acid, preferably a basic amino acid residue
       such as Arg or Lys
<220>
<221>
      MISC FEATURE
<222>
      (18, 19)
<223> Xaa may be any amino acid, preferably an acid or amide amino acid
       residue such as Asp, Glu, Asn or Gln
<400> 7
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa
                                   10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
           20
                               25
Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys
       35
<210> 8
<211>
      43
<212>
      PRT
<213> Artificial sequence
<220>
<223> DSL domain
<220>
<221> MISC_FEATURE
      2..4, 7..9, 11..13, 20, 24, 25, 27..29, 31..33
<222>
<223> Xaa may be any amino acid
<220>
<221> MISC FEATURE
      35, 36, 39, 41, 42
<222>
<223> Xaa may be any amino acid
<400> 8
Cys Xaa Xaa Xaa Tyr Tyr Xaa Xaa Cys Xaa Xaa Xaa Cys Arg Pro
               5
                                   10
                                                       15
Arg Asx Asp Xaa Phe Gly His Xaa Xaa Cys Xaa Xaa Xaa Gly Xaa Xaa
```

25

30

<220>

20

```
Xaa Cys Xaa Xaa Gly Trp Xaa Gly Xaa Xaa Cys
<210> 9
<211> 175
<212> PRT
<213> Artificial sequence
<220>
<223> Typical EGF-like domain
<220>
<221> DISULFID
<222> (5)..(67)
<223>
<220>
<221> DISULFID
<222> (54)..(138)
<223>
<220>
<221> DISULFID
<222> (145)..(174)
<223>
<220>
<221> MISC_FEATURE
<222> 1..4, 6..53, 55..66, 68..137, 139..144, 146, 147
<223> Xaa is any residue
<220>
<221> MISC_FEATURE
<222> 150..170, 172, 173
<223> Xaa is any residue
<220>
<221> MISC FEATURE
<222> (149)..(149)
<223> Xaa is an often conserved aromatic amino acid
<220>
<221> MISC FEATURE
<222> 6..53, 150..170
<223> Xaa may be present or absent
<220>
<221> MISC_FEATURE
```

<222> 55..66

:

<223	3 > 2	Any !	9 Xaa	as ma	ay be	e ab	sent	- i	ndica	ates	a ra	ange	of :	3 - :	12 amino acids	}
<223 <223	220> 221> MISC_FEATURE 222> 68137 223> Any 69 Xaas may be absent - indicates a range of 1 - 70 amino acids															
<220> <221> MISC_FEATURE <222> 139144 <223> Any 5 Xaas may be absent - indicates a range of 1 - 6 amino acids																
<400> 9																
Xaa 1	Xaa	Xaa	Xaa	Cys 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xaa	
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Xaa	Xaa 30	Xaa	Xaa	
Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Xaa	Xaa	Xaa	
Xaa	Xaa 50	Xaa	Xaa	Xaa	Cys	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Xaa	
Xaa 65	Xaa	Cys	Xaa	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Xaa	Xaa	Xaa 80	
Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa	
Xaa	Xaa	Xaa				Xaa						Xaa	Xaa 110	Xaa	Xaa	
Xaa	Xaa	Xaa 115	Xaa	Xaa	Xaa	Xaa	Xaa 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa	
Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Xaa 135	Xaa	Xaa	Cys	Xaa	Xaa 140	Xaa	Xaa	Xaa	Xaa	
Cys 145	Xaa	Xaa	Gly	Xaa	Xaa 150	Xaa	Xaa	Xaa	Xaa	Xaa 155	Xaa	Xaa	Xaa	Xaa	Xaa 160	
Xaa	Xaa	Xaa	Xaa	Xaa 165	Xaa	Xaa	Xaa	Xaa	Xaa 170	Gly	Xaa	Xaa	Cys	Xaa 175		