Разработка программы для расчета спекл-интерферограмм поверхности при повороте системы регистрации.

Дипломник: Манташева М.Ш. Руководитель: Бажанов В.И.

Установка:

Схема эксперимента в случае недеформированной поверхности:

Формулы расчета интенсивности.

$$I_1 = |A_0 + A_1|^2 \tag{1}$$

$$A_0 = A_{00} \exp[i(\omega t + \frac{2\pi}{\lambda}(|\overrightarrow{KM_1}| + |\overrightarrow{M_1N_1}|) + \frac{\pi}{2})], \qquad (2)$$

$$A_{1} = A_{10} \exp[i(\omega t + \frac{2\pi}{\lambda}(|\overrightarrow{KT_{1}}| + |\overrightarrow{T_{1}N_{1}}|) + \frac{\pi}{2})]$$
 (3)

где A_{00} - случайное число от 0 до 1, $A_{10}=1-A_{00}$.

$$I_1 = A_{00}^2 + A_{10}^2 + 2A_{00}A_{10}\cos\triangle\varphi_1 \tag{4}$$

$$\triangle \varphi_1 = \frac{2\pi}{\lambda} ((|\overrightarrow{KT_1}| + |\overrightarrow{T_1N_1}|) - (|\overrightarrow{KM_1}| + |\overrightarrow{M_1N_1}|))$$
 (5)

Схема получения интерференционной картины от деформированной поверхности $z=C\exp(-\alpha_1\sqrt{(x-r)^2+y^2}).$

Формулы расчета интенсивностей.

$$I_2 = A_{00}^2 + A_{10}^2 + 2A_{00}A_{10}\cos\triangle\varphi_2 \tag{6}$$

где A_{00} - случайное число от 0 до 1, $A_{10}=1-A_{00}$.

$$\triangle \varphi_2 = \frac{2\pi}{\lambda} ((|\overrightarrow{KT_1}| + |\overrightarrow{T_1N_1}|) - (|\overrightarrow{KM_1}| + |\overrightarrow{M_1N_1}|))$$
 (7)

$$I_3(t) = |I_1(t) - I_2(t)|.$$
 (8)

Сравнение результатов с экспериментом.

экспериментальная I_3 .

теоретическая I_3 .

Разностная интенсивность интерференционных картин для $\beta{=}45^{\circ}$ и $\beta{=}90^{\circ}$.

при β =45°.

при β =90°.

Разностная интенсивность интерференционных картин до и после деформации при $\sigma=8$ МПа. $F(r,\varphi)=\frac{1+cos(2\varphi)}{2}C_1\exp(-\alpha_1 r)+\frac{1-cos(2\varphi)}{2}C_2\exp(-\alpha_2 r)$

при β =45°.

при β =90°.

Обратная задача. Результат эксперимента

Разностная интенсивность I_3 для 5 деформационных параметров: 1) 0.4 МПа 2) 4.4 МПа 3) 5 МПа 4) 6.2 МПа 5) 8 МПа

Минимальное расхождение теоретического и экспериментального распределения разностной интенсивности I_3

Сравнение картин теоретической и экспериментальной разностной интенсивности I_3 при $\sigma = 8$ МПа

Выводы

- Выведены формулы для расчета интенсивностей интерференционных картин при наклоне установки на угол β =45° до и после деформации поверхности исследуемого объекта, а так же формула для расчета разностной интенсивности.
- Приведены несколько вариантов задания деформированной поверхности и соответствующие им распределения разностной интенсивности.
- Решена обратная задача (метод нахождения минимальной невязки).
- При наклоне системы регистрации изменяется число полос.