Date: Dec 2, 2021 Page No : 1

1. Write and explain with examples the Knapsack problem. Answer:

Here the knapsack is like a container or a bag. Suppose we have given some items which have some weights or profits. We have to put some items in the knapsack in such a way that total value produces a maximum profit.

For example, the weight of the container is 20 kg. We have to select the items in such a way that the sum of the weight of items should be either smaller than or equal to the weight of the container, and the profit should be maximum. It is a combinational optimization problem.

There are two types of knapsack problems:

- 0/1 knapsack problem
- Fractional knapsack problem

Let us consider that the capacity of a knapsack is w = 60 and the list of the provided items are shown in the following table:

Item	A	В	C	D
Profit	280	100	120	120
Weight	40	10	20	24
Ratio (piwi)	7	10	6	5

The provided items are sorted into decreasing order of the ratio or piwi, where piwi=Profit/Weight

After sorting the table as per piwi:

Item	В	A	С	D
Profit	100	280	120	120
Weight	10	40	20	24
Ratio (piwi)	10	7	6	5

Date: Dec 2, 2021 Page No : 2

At first B is chosen because the weight of B is less than the capacity of the knapsack. Remaining capacity = 60-10=50

Next A is chosen as the remaining capacity is greater than the weight of A. Remaining capacity = 50-40=10

Now the next item is C. But it cannot be chosen according to the 0/1 knapsack problem, as the weight of C is greater than the remaining capacity.

If we introduce fractional knapsack here, then item C is taken after making the partition. So we take 10kg from C.

Now the knapsack is full.

Profit for B=100 Profit for A=280 Profit for C=10*6=60 Therefore, **net profit = 100+280+60 = 440**

Date: Dec 2, 2021 Page No : 3

2. Find the step by step solution of 5 queens. (any three solutions). Answer:

Step 1: At first we choose the 1st cell according to the backtracking algorithm and put 1 there. Then put X along the diagonal and vertical cells. Move for the next row.

1				
Х	Χ			
Х		Χ		
Х			Х	
Х				Χ

Step 2: In this row the first empty cell is 3, put 1 there. Next fill vertical and diagonal cells with X. Move to the next row.

1				
Х	Χ	1		
Х	Х	Х	Х	
Х		Χ	Χ	Χ
Х		X		Х

Step 3: In this row the first empty cell is 5, put 1 there. Vertical and diagonal cells are already filled with X. Move to the next row.

1		

Date: Dec 2, 2021 Page No : 4

Х	Х	1		
Х	Х	Х	Х	1
Х		Х	Х	Х
Х		X		Χ

Step 4:In this row the first empty cell is 2, put 1 there. Fill vertical and diagonal cells with X. Move to the next row.

1				
Χ	Χ	1		
Х	Х	Х	Х	1
Х	1	Х	Χ	Χ
Х	Х	Х		Χ

Step 5: Fill the last empty cell and there comes a successful solution.

1				
Х	Χ	1		
Х	Χ	Х	Χ	1
Х	1	Х	X	Χ
Χ	Χ	X	1	Χ

Date: Dec 2, 2021 Page No : 5

SOLUTION 1: [x1=1, x2=3, x3=5, x4=2, x5=4]

Another Solution

Step 1:At first we choose the 1st cell according to the backtracking algorithm and put 1 there. Then put X along the diagonal and vertical cells. Move for the next row.

1				
Х	X			
Х		Χ		
Х			Х	
Х				X

Step 2:In this row the second empty cell is 4,(1st empty cell was used for solution 1) put 1 there. Next fill vertical and diagonal cells with X. Move to the next row.

1				
Х	Χ		1	
Х		Χ	Х	
Х	X		Х	
Х			Х	Χ

Step 3: In this row the first empty cell is 2, put 1 there. Fill vertical and diagonal cells with X. Move to the next row.

1		

Date: Dec 2, 2021 Page No : 6

Х	Х		1	
Х	1	Х	Х	
Х	Х	Х	Х	
Х	Χ		Х	Χ

Step 4: In this row the first empty cell is 5, put 1 there. Vertical and diagonal cells are already filled with X. Move to the next row.

1				
Х	Х		1	
Х	1	Х	Х	
Х	X	X	Х	1
Х	X		X	Χ

Step 5: Fill the last empty cell and there comes a successful solution.

1				
Х	Х		1	
Х	1	Х	Х	
Х	Х	X	Х	1

Date: Dec 2, 2021 Page No : 7

х х	1	Х	Х
-----	---	---	---

Solution 2: [x1=1, x2=4, x3=2, x4=5, x5=3]

Another Solution

Step 1:At first we choose the second cell (1st empty cell was used for the previous solution) according to the backtracking algorithm and put 1 there. Then put X along the diagonal and vertical cells. Move for the next row.

	1			
Х	Х	Х		
	Χ		Χ	
	Х			Х
	Х			

Step 2: In this row the first empty cell is 4, put 1 there. Next fill vertical and diagonal cells with X. Move to the next row.

	1			
X	X	X	1	
	Х	Х	Х	Х
	Х		Х	Х
Χ	Χ		Χ	

Step 3: In this row the first empty cell is 1, put 1 there. Next fill vertical and diagonal cells with X. Move to the next row.

Date: Dec 2, 2021 Page No : 8

	1			
Х	X	X	1	
1	Χ	Χ	Х	Χ
Х	Χ		X	Χ
Х	X	Х	Х	

Step 4: In this row the first empty cell is 3, put 1 there. Vertical and diagonal cells are already filled with X. Move to the next row.

	1			
Х	Х	Х	1	
1	Χ	Χ	Χ	Χ
Х	X	1	Х	Х
Х	X	Х	X	

Step 5: Fill the last empty cell and there comes a successful solution.

	1			
Х	Χ	Χ	1	
1	Χ	Χ	X	Χ

Date: Dec 2, 2021 Page No : 9

Х	Х	1	Х	Х
Х	Χ	Х	Χ	1

Solution 3: [x1=2, x2=4, x3=1, x4=3, x5=5]

For these 3 solutions no backtracking was required.

3. Write and explain Prim's algorithm with examples.

Answer:

Prim's Algorithm-

- Prim's Algorithm is a famous greedy algorithm.
- It is used for finding the Minimum Spanning Tree (MST) of a given graph.
- To apply Prim's algorithm, the given graph must be weighted, connected and undirected.

Prim's Algorithm Implementation-

The implementation of Prim's Algorithm is explained in the following steps-

Step-01: Randomly choose any vertex.

Step-02: The vertex connecting to the edge having least weight is usually selected.

Step-03:Find all the edges that connect the tree to new vertices.

Step-04:Find the least weight edge among those edges and include it in the existing tree.

Step-05:If including that edge creates a cycle, then reject that edge and look for the next least

weight edge.

Step-06:Keep repeating step-02 until all the vertices are included and Minimum Spanning Tree (MST) is obtained.

Example:

Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm-

Date: Dec 2, 2021 Page No : 10

Solution:

The above discussed steps are followed to find the minimum cost spanning tree using Prim's Algorithm-

Step-01:

Step-02:

Step-03:

Date: Dec 2, 2021 Page No : 11

Step-04:

Step-05:

Step-06:

Date: Dec 2, 2021 Page No : 12

Since all the vertices have been included in the MST, so, we stop. Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 10 + 25 + 22 + 12 + 16 + 14

= 99 units