Naı	me :						
Rol	l No. :						
Inv	igilato	r's Signature :					
		CS/B.TECH(NEW)/SEM-1/ME-101/2011-12					
		2011					
		ENGINEERING MECHANICS					
Tim	ne Allo	etted: 3 Hours Full Marks: 70					
		The figures in the margin indicate full marks.					
C	andid	ates are required to give their answers in their own words					
C	лиш	as far as practicable.					
		7					
		GROUP – A					
		(Multiple Choice Type Questions)					
1.	Cho	Choose the correct alternatives for any <i>ten</i> of the following :					
		$10 \times 1 = 10$					
	i)	Coloumn friction is between					
		a) solids and liquids					
		b) dry surfaces					
		c) between bodies having relative motion					
		d) none of these.					
	ii)	The velocity of a simple wheel and axle, with D and d as					
		the diameters of effort respectively is					

1215 [Turn over

a)

c)

(D+d)

b) (D-d)

d)

CS/B.TECH(NEW)/SEM-1/ME-101/2011-12

iii)	For	stable equilibrium the potential energy will be					
	a)	maximum					
	b)	minimum					
	c)	zero					
	d)	equal to kinetic energy.					
iv)	The centroid of a semicircular area of radius r from						
	bas	e is					
	a)	$\frac{4r}{3\pi}$	b)	$\frac{2r}{3\pi}$			
				3π			
	c)	$\frac{3r}{2\pi}$	d)	r.			
v)	Materials having same elastic properties in all directions						
	are called						
	a)	Isotropic	b)	Orthotropic			
	c)	Composite	d)	Elastic.			
.,	m)	1.1					
vi)	Ç ,						
	in the body in the form of						
	a)	energy		potential energy			
	c)	elastic energy	d)	strain energy.			
vii)	A pair of a force and a couple in the same plane upon a						
,		rigid body					
	a) balance each other						
	b)						
	b) cannot modify each otherc) produce a moment						
	d)	none of these .					
1015	,	_					
1215		2					

⁄iii)	A particle inside a hollow sphere of radius r , having							
	co-efficient of friction $\frac{1}{\sqrt{3}}$, can be in rest up to a height							
	of							
	a)	$\frac{\frac{r}{2}}{3}$ $\frac{3r}{8}$	b)	$\frac{r}{4}$				
	c)	$\frac{3r}{8}$	d)	none of these.				
ix)	Hooke's law is valid up to							
	a)	yield point	b)	elastic limit				
	c)	proportional limit	d)	ultimate stress.				
x)	A jet engine works on he principle of conservation of							
	a)	energy						
	b)	angular momentum						
	c)	linear momentum						
	d)	none of these.						
xi)	Moment of inertia of a triangle of base b and height h							
	about the centroidal axis parallel to base is							
	a)	$bh\frac{3}{36}$	b)	$\frac{bh^3}{12}$				
	c)	$bh\frac{3}{3}$	d)	none of these.				
xii)	Couple is a							
	a)	bound vector	b)	free vector				
	c)	sliding vector	d)	none of these.				
xiii)	Angle between the vectors $(i + j)$ and $(i - j)$ is							

90°

a)

c)

b) 45°

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Define moment.
 - b) In the given figure 1 weight of the block is 1600N and $\mu = 0.2$. Find the value of *P* for impending motion. 2 + 3

Figure 1

3. The position co-ordinate of a particle which is confined to move in a straight line is given by $S = 2t^3 - 24t + 6$, where S is in m and t is in sec.

Determine,

- a) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0.
- b) the acceleration of the particle when v = 30 m/s.
- c) the net displacement of the particle during the interval from t = 1 sec to t = 4 sec.
- 4. Define (i) Malleability (ii) Resilience (iii) Toughness (iv) Ductility and (v) Proof Resilience.
- 5. A force F = 3i 4j + 12k acts at a point A whose co-ordinates are (1, -2, 3). Compute,
 - a) moment of force about origin,
 - b) moment of force about point (2,1,2)

1215

- 6. a) State & Prove Lame's theorem.
 - b) Two equal loads of 2500 N are supported by a flexible string ABCD at points B and D as shown in figure 2. Find the tensions in the portions AB, BC, CD of the string.

2 + 3

Figure 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) A block of weight $W_1 = 200\,\mathrm{kgf}$ rests on a horizontal surface and supports on top of it another block of weight $W_2 = 50\,\mathrm{kgf}$. The block W_2 is attached to a vertical wall by the inclined string AB. Find the magnitude of the horizontal force P applied to the lower block as shown, that will be necessary to cause slipping to impend. The coefficient of static friction for all contiguous surfaces is $\mu = 0.3$

Figure 3

A shot is fired with a bullet with an initial velocity of b) 40m/s from a point 20m in front of a vertical wall 10m high. Find the angle of projection with horizontal to enable the shot to just clear the wall.

Figure 4

8. The bar shown in fig. 5 is subjected to a tensile load a) 152kN. Find the diameter of the middle portion if the stress there is to be limited to $140 \text{ N/M}\,\text{m}^2$. Find also the length of the middle portion of the total elongation of the bar is to be 0.16mm. Take $E = 2 \times 2 \times 10^5 \text{mm}^2$. 10

Figure 5

Determine the co-ordinate of the centroid with respect b) to the given axis of the shaded area as shown in figure 6.

Figure 6

- 9. a) State principle of transmissibility.
 - b) Given a force F = 10i + 5j + A kN. If this force is to have a rectangular component of 8N along a line having unit vector r = 0.6i + 0.8 k, what should be the value of A? What is the angle between F and r?

Figure 7

- c) Two identical blocks A and B each having weight W are connected by rigid link and supported by a vertical wall and a horizontal plane having same co-efficient of friction (μ) as shown in figure. If sliding impends for θ = 45^0 , calculate μ . 2+5+8
- 10. a) If the string AN is horizontal, find the angle that the string AC makes with the horizontal when the ball is in a position of equilibrium. Also find the pressure R between the ball and the plane.

Figure 8

A roller of radius r = 12 cm and Q = 500 kgf is to be rolled over a curb of height h = 6 cm by a horizontal force P applied to the end of a string wound around the circumference of the roller. Find the magnitude of P required to start the roller over the curb. There is sufficient friction between the roller surface and the edge of the curb to prevent slip at A.

Figure 9

7 + 8

- 11. a) State parallel axis and perpendicular axis theorem for moment of inertia.
 - b) Define radius of gyration. How is it related to mass moment of inertia?
 - c) Determine the centre of a quarter circular arc of radius 'r'. (2+2)+(2+1)+8

1215 8