группа 10-геом

Тебо + Саваяма

- 1. К окружностям с центрами в точках O_1 и O_2 провели общую внутреннюю касательную A_1A_2 и общую внешнюю касательную B_1B_2 (точки A_1 и B_1 принадлежат окружности с центром O_1). На отрезках A_1A_2 и B_1B_2 как на диаметрах построили окружности 1 и 2.
 - (a) Докажите, что прямая O_1O_2 радикальная ось этих окружностей.
 - **(b)** Пусть точка пересечения A_1B_1 и A_2B_2 лежит на прямой O_1O_2 .
- **2.** (Лемма Саваямы) На стороне BC треугольника ABC выбрали произвольную точку X. Окружность касается описанной окружности треугольника ABC в точке T, отрезка XB в точке Q, P точка касания окружности и прямой AX. Докажите, что I (центр вписанной окружности треугольника ABC) лежит на прямой QP.
- **3. (Теорема Тебо)** На стороне BC треугольника ABC выбрана произвольная точка X. В криволинейные треугольники AXB и AXC вписано по окружности. Докажите, что линия центров этих окружностей содержит центр вписанной окружности треугольника ABC.

Такие окружности называются окружностями Тебо для точки Х.

- **4. (а)** Докажите, что окружности Тебо касаются тогда и только тогда, когда X основание биссектрисы треугольника ABC.
 - **(b)** Докажите, что окружности Тебо равны тогда и только тогда, когда X точка касания вневписанной окружности треугольника ABC со стороной BC.
- **5.** Вневписанная окружность треугольника ABC, соответствующая вершине C, касается продолжения стороны AC в точке P. Рассмотрим окружность, касающуюся AC в точке P и прямой, проходящей через B параллельно AC. Докажите, что касается описанной окружности треугольника ABC.
- **6.** В окружность вписан четырехугольник ABCD. Докажите, что четыре точки: центры вписанных окружностей I_1, I_2 треугольников ABD и ACD, центры вневписанных окружностей I_3, I_4 треугольников ABC и BCD, соответствующие вершине C и B соответственно, лежат на одной прямой.
- 7. К окружностям Тебо проводится общая внешняя касательная, отличная от BC. Она пересекает отрезок AX в точке K. Докажите, что прямая, параллельная BC и проходящая через K, касается вписанной окружности треугольника ABC.