

Econométrie 2

Chapitre 2 : données de panel.

ENSAE 2021-2022

Michael Visser

CREST-ENSAE

Plan

Introduction

Exogénéité des résidus mais autocorrélation

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0,\; orall (t,t')$ (exogénéité stricte)

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0, \ orall t'\geq t$ (exogénéité faible)

Exemple : effet de la police sur la criminalité

Définition et intérêt

- ► Panel = échantillon d'unités (individus, entreprises...) suivies dans le temps.
- Deux intérêts principaux :
 - 1. résoudre (ou limiter) le problème d'endogénéité;
 - étudier la dynamique et séparer la dépendance d'état de l'hétérogénéité inobservée.
- Un problème : l'attrition endogène. Cf. chapitre sur le problème de sélection.
- On notera Y_{it} la variable expliquée et X_{it} le vecteur (dimension $K \times 1$) des variables explicatives de l'unité i en t.
- ▶ On supposera toujours $(Y_{i1}, X_{i1}, ..., Y_{iT}, X_{iT})_{i=1...n}$ i.i.d. Mais (Y_{is}, X_{is}) sera en général corrélé à (Y_{it}, X_{it}) , pour $s \neq t$.

Le modèle étudié

► Modèle de base :

$$Y_{it} = X'_{it}\beta_0 + \nu_{it}$$

pour i = 1...n et t = 1...T.

- Asymptotique en n, pas en T. Hypothèse pas toujours évidente (en macroéconomie, on peut avoir n = 70 pays et T = 50 périodes).
- Le résidu sera souvent décomposé en deux termes : $\nu_{it} = \alpha_i + \varepsilon_{it}$.
- $ightharpoonup lpha_i$ est l'« effet individuel ». Agrège les facteurs inobservés constant dans le temps. .
- \triangleright ε_{it} , souvent appelé « choc idiosyncratique », agrège les facteurs inobservés variables dans le temps.
- On supposera dans la suite au moins l'exogénéité faible :

$$E(X_{it}\varepsilon_{it'}) = 0, \ \forall t' \ge t. \tag{1}$$

Le modèle étudié

- $ightharpoonup lpha_i$ est souvent appelé « effet fixe » ou « effet aléatoire ».
- Dans la littérature économétrique on considère α_i soit comme un paramètre fixe, comme β_0 , soit comme une variable aléatoire, comme ε_{it} .
- ➤ Souvent plus simple de le supposer aléatoire : c'est l'approche adoptée dans ce cours.
- La question essentielle est alors : α_i est-il corrélé à X_{it} ?
- ▶ Si l'on suppose $E(X_{it}\alpha_i) = 0$, alors il n'y a pas d'endogénéité et les MCO sont convergents.
- Mais les estimateurs habituels des écarts-types ne sont pas convergents (à cause de l'autocorrélation des résidus) ⇒ correction nécessaire sinon inférence incorrecte.
- ▶ Si, $E(X_{it}\alpha_i) \neq 0$, les panels peuvent permettre de résoudre le problème d'endogénéité.
- Mais on ne pourra pas inclure dans X_{it} des variables constantes dans le temps car on ne pourra séparer leur effet de α_i .

Plan

Introduction

Exogénéité des résidus mais autocorrélation

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0,\; orall (t,t')$ (exogénéité stricte)

$$E(X_{it}\alpha_i) \neq 0$$
 mais $E(X_{it}\varepsilon_{it'}) = 0, \ \forall t' \geq t$ (exogénéité faible

Exemple : effet de la police sur la criminalité

Discussion sur l'hypothèse et MCO

- Exemple : i = classe, t = élève, $Y_{it} = \text{note à un examen}$, $X_{it} = \text{âge}$, sexe, diplôme des parents...
- ▶ Probablement $E(\nu_{is}\nu_{it}) \neq 0$, du fait par exemple d'« effet profs ».
- ▶ Mais $E(X_{it}\nu_{it}) = 0$ reste crédible, en particulier si les professeurs sont affectés aléatoirement aux classes.
- On a:

$$\widehat{\beta}_{MCO} = \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X'_{it} \right]^{-1} \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} Y_{it} \right]$$

$$= \beta_0 + \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X'_{it} \right]^{-1} \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} \nu_{it} \right].$$

► Il s'agit de l'estimateur standard obtenu à partir des *nT* observations (en anglais : pooled OLS estimator).

- Sous la seule hypothèse $E(X_{it}\nu_{it})=0$ et d'échantillonnage i.i.d. d'unités, l'estimateur est convergent et asymptotiquement normal mais il faut adapter l'estimateur des écarts-types.
- ▶ Soit (en omettant l'indice i) $J = E\left[\frac{1}{T}\sum_{t=1}^{T}X_{t}X_{t}'\right]$. Alors :

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{MCO} - \boldsymbol{\beta}_{\mathbf{0}}\right) \overset{d}{\longrightarrow} \mathcal{N}\left(\mathbf{0}, \boldsymbol{J}^{-1}\boldsymbol{E}\left[\left(\frac{1}{\tau}\sum_{t=1}^{T}\boldsymbol{X}_{t}\boldsymbol{\nu}_{t}\right)\left(\frac{1}{\tau}\sum_{t=1}^{T}\boldsymbol{X}_{t}\boldsymbol{\nu}_{t}\right)'\right]\boldsymbol{J}^{-1}\right).$$

Preuve : on a

$$\begin{split} \sqrt{n} \left(\hat{\beta}_{MCO} - \beta_{\mathbf{0}} \right) &= \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X_{it}' \right]^{-1} \left[\frac{1}{\sqrt{n}T} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} \nu_{it} \right] \\ &= J^{-1} \left[\frac{1}{\sqrt{n}T} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} \nu_{it} \right] + \left[\left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X_{it}' \right]^{-1} - J^{-1} \right] \left[\frac{1}{\sqrt{n}T} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} \nu_{it} \right]. \end{split}$$

D'après le TCL on a

$$\frac{1}{\sqrt{n}T}\sum_{i=1}^{n}\sum_{t=1}^{T}X_{it}\nu_{it}\stackrel{d}{\longrightarrow}\mathcal{N}\left(0,B\right)$$

$$B = V \left(\frac{1}{T} \sum_{t=1}^{T} X_{it} \nu_{it} \right)$$
$$= E \left[\left(\frac{1}{T} \sum_{t=1}^{T} X_{it} \nu_{it} \right) \left(\frac{1}{T} \sum_{t=1}^{T} X_{it} \nu_{it} \right)' \right].$$

Donc

οù

$$\frac{1}{\sqrt{n}T}\sum_{i=1}^{n}\sum_{t=1}^{I}X_{it}\nu_{it}=O_{p}(1)$$

ce qui donne

$$\sqrt{n}\left(\widehat{\beta}_{MCO} - \beta_0\right) = J^{-1}\left[\frac{1}{\sqrt{n}T}\sum_{i=1}^n\sum_{t=1}^TX_{it}\nu_{it}\right] + o_p(1)O_p(1)$$

$$= J^{-1}\left[\frac{1}{\sqrt{n}T}\sum_{i=1}^n\sum_{t=1}^TX_{it}\nu_{it}\right] + o_p(1).$$

On en déduit finalement que

$$\sqrt{n}\left(\widehat{\beta}_{MCO} - \beta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, J^{-1}BJ^{-1}\right).$$

Dans cette preuve, nous avons utilisé plusieurs définitions et propriétés de la théorie asymptotique en stat/proba (voir par exemple Wooldridge, chapitre 3) :

- 1. Une séquence de variables aléatoires (scalaires) $\{a_n\}_{n=1}^{\infty}$ converge en probabilité vers une constante a si pour tout $\varepsilon > 0$ on a $P(|a_n a| > \varepsilon) \to 0$ lorsque $n \to \infty$. On écrit alors $a_n \stackrel{P}{\longrightarrow} a$ ou plim $(a_n) = a$. Lorsque a = 0, on dit que $\{a_n\}$ est $o_p(1)$, noté $a_n = o_p(1)$.
- 2. Une séquence $\{a_n\}_{n=1}^{\infty}$ est bornée en probabilité si pour tout $\varepsilon > 0$ il existe un nombre réel $b_{\varepsilon} < \infty$ et un nombre entier n_{ε} tel que $P(|a_n| \geq b_{\varepsilon}) < \varepsilon$ pour tout $n > n_{\varepsilon}$. On écrit alors $a_n = O_p(1)$.
- 3. Lorsque une séquence $\{a_n\}_{n=1}^{\infty}$ converge en loi vers une variable aléatoire a, noté $a_n \stackrel{d}{\longrightarrow} a$, on a $a_n = O_p(1)$.
- 4. Lorsque les séquences $\{a_n\}_{n=1}^{\infty}$ et $\{b_n\}_{n=1}^{\infty}$ sont telles que $a_n = o_p(1)$ et $b_n = O_p(1)$, alors $a_nb_n = o_p(1)$.
- 5. Si $a_n \xrightarrow{d} a$ et $b_n a_n \xrightarrow{P} 0$, alors $b_n \xrightarrow{d} a$.
- 6. Ces différentes définitions et propriétés s'appliquent également lorsque $\{a_n\}_{n=1}^{\infty}$ et $\{b_n\}_{n=1}^{\infty}$ sont des séquences de vecteurs ou matrices aléatoires.

L'élément de la (I+1)—ème ligne et (j+1)—ème colonne de B s'écrit

$$B_{l+1,j+1} = E\left[\left(\frac{1}{T}\sum_{t=1}^{T}X_{ilt}\nu_{it}\right)\left(\frac{1}{T}\sum_{t=1}^{T}X_{ijt}\nu_{it}\right)\right]$$

où X_{ilt} (resp. X_{ijt}) est le I-ème (resp. j-ème) élément de X_{it} .

On n'impose aucune restriction sur $B_{l+1,j+1}$. En particulier on ne fait pas l'hypothèse d'homoscédasticité, c'est à dire

$$E\left(X_{ilt}X_{ijt}\nu_{it}^{2}\right) = E\left(X_{ilt}X_{ijt}\right)E\left(\nu_{it}^{2}\right) = E\left(X_{ilt}X_{ijt}\right)\sigma^{2}$$

ni l'hypothèse de non-corrélation entre les termes d'erreur (conditionnellement aux variables explicatives), c'est à dire

$$E\left(X_{ilt}\nu_{it}X_{ijs}\nu_{is}\right)=0$$

pour tout $s \neq t$.

La variance asymptotique $J^{-1}BJ^{-1}$ peut s'estimer de manière convergente par

$$\widehat{V} = \widehat{J}^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{T} \sum_{t=1}^{T} X_{it} \widehat{\nu}_{it} \right) \left(\frac{1}{T} \sum_{t=1}^{T} X_{it} \widehat{\nu}_{it} \right)' \right] \widehat{J}^{-1},$$

avec
$$\widehat{J} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X'_{it}$$
 et $\widehat{\nu}_{it} = Y_{it} - X_{it} \widehat{\beta}_{MCO}$.

- Cet estimateur est convergent et robuste (i) à l'hétéroscédasticité, et (ii) à l'autocorrélation de ν (i.e., $Cov(\nu_{is}, \nu_{it}) \neq 0$).
- On peut obtenir de tels écarts-types avec l'option cluster de Stata (voir l'application à la fin de ce chapitre).

Plan

Introduction

Exogénéité des résidus mais autocorrélation

$$E(X_{it}\alpha_i) \neq 0$$
 mais $E(X_{it}\varepsilon_{it'}) = 0$, $\forall (t,t')$ (exogénéité stricte)

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0, \ orall t'\geq t$ (exogénéité faible)

Exemple : effet de la police sur la criminalité

Discussion sur l'hypothèse

Jusqu'à la fin de ce chapitre on enlève explicitement la constante de X_{it} . Donc $X_{it} = (X_{i1t}, ..., X_{iK-1t})'$ est maintenant de dimension $(K-1) \times 1$. Le modèle s'écrit alors comme

$$Y_{it} = \delta_0 + X'_{it}\beta_0 + \alpha_i + \varepsilon_{it},$$

où δ_0 est la constante et β_0 est un vecteur de dimension $(K-1)\times 1$.

- Supposons que $E(X'_{it}\alpha_i) \neq 0$ mais que l'hypothèse d'exogénéité stricte est vérifiée, i.e. $E(X_{it}\varepsilon_{it'}) = 0 \ \forall (t,t') \in \{1,...,T\}^2$.
- Les 2 exemples suivants montrent que l'exogénéité stricte est parfois restrictive.
- ▶ 1er exemple : Y_{it} = salaire, X_{it} = expérience spécifique (temps passé dans la dernière entreprise), α_i = capacités inobservées de l'individu.
- ➤ X_{it} a priori non corrélé aux chocs futurs, non anticipables, de salaire

 ⇒ exogénéité faible crédible.
- Mais X_{it} peut être corrélé aux chocs passés, si l'on décide de rester en fonction de son salaire passé.

Discussion sur l'hypothèse

▶ 2ème exemple : $X_{it} = Y_{it-1}$. Dans ce cas, on a, par exemple si ε_{it} i.i.d. et $E(\alpha_i \varepsilon_{it}) = 0 \ \forall t$,

$$E(X_{it}\varepsilon_{it-1}) = E(Y_{it-1}\varepsilon_{it-1}) = E[(\delta_0 + \beta_{01}Y_{it-2} + \alpha_i + \varepsilon_{it-1})\varepsilon_{it-1}]$$
$$= E(\varepsilon_{it-1}^2) \neq 0$$

et de même $E(X_{it'}\varepsilon_{it-1}) \neq 0$ en général pour t' > t. En revanche, l'exogénéité faible est bien satisfaite :

$$E(X_{it}\varepsilon_{it'}) = E(Y_{it-1}\varepsilon_{it'}) = 0, \ \forall t' \geq t$$

car Y_{it-1} ne dépend que de α_i et des termes d'erreur passés ε_{it} pour t < t'.

Estimateur des différences premières : idée

- ▶ Deux estimateurs classiques : l'estimateur within et l'estimateur par différences premières.
- lacktriangle Idée commune : obtenir une équation où l'on s'est débarrassé du $lpha_i$.
- ▶ Différences premières : on a, en notant $\Delta U_{it} = U_{it} U_{it-1}$ pour toute variable U,

$$\Delta Y_{it} = \Delta X'_{it} \beta_0 + \Delta \varepsilon_{it}. \tag{2}$$

Remarquons que sous l'hypothèse d'exogénéité stricte :

$$E\left[\Delta X_{it}\Delta\varepsilon_{it}\right] = E\left[X_{it}\varepsilon_{it}\right] - E\left[X_{it}\varepsilon_{it-1}\right] - E\left[X_{it-1}\varepsilon_{it}\right] + E\left[X_{it-1}\varepsilon_{it-1}\right] = 0.$$

Dans (2), les régresseurs sont exogènes et on peut les estimer de manière convergente par les MCO des données empilées (en utilisant n(T-1) observations car on perd la première observation pour chaque unité i).

Estimateur des différences premières : propriétés Omettons l'indice i. On a $E\left[\Delta X_t \Delta Y_t\right] = E\left[\Delta X_t \Delta X_t'\right] \beta_0$ donc, si

• Omettons l'indice i. On a $E[\Delta X_t \Delta Y_t] = E[\Delta X_t \Delta X_t'] \beta_0$ donc, s $J_{FD} = E\left[\frac{1}{T-1}\sum_{t=2}^{T}\Delta X_t \Delta X_t'\right]$ est de plein rang,

$$\beta_0 = J_{FD}^{-1} E \left[\frac{1}{T-1} \sum_{t=0}^{T} \Delta X_t \Delta Y_t \right].$$

► Comme les MCO, l'estimateur des différences premières vérifie

$$\widehat{\beta}_{FD} = \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta X'_{it} \right]^{-1} \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta Y_{it} \right]$$

$$= \beta_{0} + \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta X'_{it} \right]^{-1} \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta \varepsilon_{it} \right].$$

Sous les hypothèses d'exogénéité stricte et d'échantillonnage i.i.d. d'unités, l'estimateur est convergent et (preuve identique à la preuve page 8/9):

$$\sqrt{n}\left(\widehat{\beta}_{FD} - \beta_{\mathbf{0}}\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, J_{FD}^{-1} E\left[\left(\frac{1}{T-1}\sum_{t=2}^{T} \Delta X_{t} \Delta \varepsilon_{t}\right) \left(\frac{1}{T-1}\sum_{t=2}^{T} \Delta X_{t} \Delta \varepsilon_{t}\right)'\right] J_{FD}^{-1}\right).$$

Estimateur des différences premières : propriétés

On peut estimer la matrice de variance asymptotique par

$$\begin{split} \widehat{V} &= \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta X_{it}'\right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{T-1} \sum_{t=2}^{T} \Delta X_{it} \widehat{\Delta \varepsilon}_{it}\right) \left(\frac{1}{T-1} \sum_{t=2}^{T} \Delta X_{it} \widehat{\Delta \varepsilon}_{it}\right)'\right] \\ &\times \left[\frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it} \Delta X_{it}'\right]^{-1}. \end{split}$$

avec
$$\widehat{\Delta \varepsilon}_{it} = \Delta Y_{it} - \Delta X_{it}' \widehat{\beta}_{FD}$$
.

- Cet estimateur est convergent et robuste (i) à l'hétéroscédasticité, (ii) à l'autocorrélation de $\Delta \varepsilon$ (i.e., $Cov(\Delta \varepsilon_s, \Delta \varepsilon_t) \neq 0$).
- \widehat{eta}_{FD} est efficace asymptotiquement sous l'hypothèse beaucoup plus forte que i) $E(\Delta X_t \Delta \varepsilon_t^2 \Delta X_t') = E(\Delta \varepsilon_t^2) E(\Delta X_t \Delta X_t')$ avec $E(\Delta \varepsilon_t^2)$ indépendant de t (hypothèse d'homoscédasticité); ii) $E(\Delta X_t \Delta \varepsilon_t \Delta \varepsilon_s \Delta X_s') = 0$ pour tout $s \neq t$ (hypothèse de non-corrélation entre $\Delta \varepsilon_s$ et $\Delta \varepsilon_t$ conditionnellement à ΔX_t et ΔX_s).

Estimateur des différences premières : propriétés

Sous ces deux hypothèses on obtient

$$E\left[\left(\frac{1}{T-1}\sum_{t=2}^{T}\Delta X_t\Delta\varepsilon_t\right)\left(\frac{1}{T-1}\sum_{t=2}^{T}\Delta X_t\Delta\varepsilon_t\right)'\right]=E[(\Delta\varepsilon_t)^2]E\left[\frac{1}{(T-1)^2}\sum_{t=2}^{T}\Delta X_t\Delta X_t'\right].$$

- lacktriangle Dans ce cas, la variance asymptotique de $\sqrt{n}\left(\widehat{eta}_{ extsf{FD}}-eta_0
 ight)$ se simplifie en $V = E[(\Delta \varepsilon_t)^2]J_{FD}^{-1}/(T-1)$.
- lacktriangle La non-corrélation entre $\Delta arepsilon_s$ et $\Delta arepsilon_t$ est satisfaite si $(arepsilon_t)_t$ suit une marche aléatoire :

$$\varepsilon_{t+1} = \varepsilon_t + \eta_{t+1},$$

où les $(\eta_t)_t$ sont indépendants et $E(\eta_t) = 0$ pour tout t. En effet, dans ce cas $E(\Delta \varepsilon_s \Delta \varepsilon_t | \Delta X_s, \Delta X_t) = E(\eta_{s+1} \eta_{t+1} | \Delta X_s, \Delta X_t) = 0.$ Mais si les $(\varepsilon_t)_t$ sont indépendants,

$$E(\Delta \varepsilon_t \Delta \varepsilon_{t+1} | \Delta X_t, \Delta X_{t+1}) = E((\varepsilon_t - \varepsilon_{t-1})(\varepsilon_{t+1} - \varepsilon_t) | \Delta X_t, \Delta X_{t+1})$$

=
$$-E(\varepsilon_t^2 | \Delta X_t, \Delta X_{t+1}) < 0.$$

Estimateur within: idée

Deuxième estimateur classique : l'estimateur within. On a, en notant, pour toute v.a. U, $\overline{U}_i = \frac{1}{T} \sum_{t=1}^T U_{it}$ et $\tilde{U}_{it} = U_{it} - \overline{U}_i$,

$$\overline{Y}_i = \delta_0 + \overline{X}_i' \beta_0 + \alpha_i + \overline{\varepsilon}_i$$

et donc

$$\tilde{Y}_{it} = \tilde{X}'_{it}\beta_0 + \tilde{\varepsilon}_{it}. \tag{3}$$

Là aussi, de par l'exogénéité stricte,

$$E\left[\tilde{X}_{it}\tilde{\varepsilon}_{it}\right]=0.$$

Donc les régresseurs de (3) sont exogènes et β_0 peut être estimé de manière convergente par les MCO empilés : estimateur within.

Estimateur within : propriétés

Comme pour les différences premières, on a, en notant $J_W = E\left[\frac{1}{T}\sum_{t=1}^T \tilde{X}_t \tilde{X}_t'\right]$ (supposée de plein rang),

$$\beta_0 = J_W^{-1} E \left[\frac{1}{T} \sum_{t=1}^T \tilde{X}_t \tilde{Y}_t \right].$$

► Et l'estimateur within vérifie

$$\widehat{\beta}_{W} = \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \widetilde{X}'_{it}\right]^{-1} \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \widetilde{Y}_{it}\right]$$

$$= \beta_{0} + \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \widetilde{X}'_{it}\right]^{-1} \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \varepsilon_{it}\right].$$

N.B.: on a remplacé $\tilde{\varepsilon}_{it}$ par ε_{it} car $\frac{1}{\tau} \sum_{t=1}^{T} \tilde{X}_{it} \overline{\varepsilon}_{i} = 0$.

► Ainsi (preuve similaire à celle de la page 8/9) :

$$\sqrt{n}\left(\widehat{\beta}_W - \beta_0\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, J_W^{-1} \mathcal{E}\left[\left(\frac{1}{T}\sum_{t=1}^T \tilde{X}_t \varepsilon_t\right) \left(\frac{1}{T}\sum_{t=1}^T \tilde{X}_t \varepsilon_t\right)'\right] J_W^{-1}\right).$$

Estimateur within : propriétés

 Comme pour les différences premières, on peut estimer de manière robuste cette matrice de variance par

$$\begin{split} \widehat{V} &= \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \widetilde{X}_{it}' \right]^{-1} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{T} \sum_{t=1}^{T} \widetilde{X}_{it} \widehat{\varepsilon}_{it} \right) \left(\frac{1}{T} \sum_{t=1}^{T} \widetilde{X}_{it} \widehat{\varepsilon}_{it} \right)' \right] \\ &\times \left[\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \widetilde{X}_{it} \widetilde{X}_{it}' \right]^{-1} . \end{split}$$

avec $\widehat{\varepsilon}_{it} = \widetilde{Y}_{it} - \widetilde{X}'_{it}\widehat{\beta}_W$.

 $ightharpoonup\widehat{eta}_W$ est efficace asymptotiquement sous l'hypothèse beaucoup plus forte que

$$E\left[\left(\frac{1}{T}\sum_{t=1}^{T}\tilde{X}_{t}\varepsilon_{t}\right)\left(\frac{1}{T}\sum_{t=1}^{T}\tilde{X}_{t}\varepsilon_{t}\right)'\right]=E[\varepsilon_{t}^{2}]E\left[\frac{1}{T^{2}}\sum_{t=1}^{T}\tilde{X}_{t}\tilde{X}_{t}'\right],$$

qui combine homoscédasticité et non corrélation entre ε_s et ε_t (conditionnellement aux variables explicatives).

lacksquare La variance asymptotique s'écrit alors $V=E[arepsilon_t^2]J_W^{-1}/T$.

Estimateur within : propriétés

Pour estimer $E[\varepsilon_t^2] = \sigma_\varepsilon^2$ on utilise que

$$E(\tilde{\varepsilon}_{it}^2) = E(\varepsilon_{it}^2) + E(\bar{\varepsilon}_i^2) - 2E(\varepsilon_{it}\bar{\varepsilon}_i)$$

= $\sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2/T - 2\sigma_{\varepsilon}^2/T = \sigma_{\varepsilon}^2(1 - 1/T).$

sous l'hypothèse de non-corrélation entre ε_{it} et ε_{is} .

- ▶ Donc on a $\frac{1}{T-1} \sum_{t=1}^{T} E(\tilde{\varepsilon}_{it}^2) = \sigma_{\varepsilon}^2$.
- ▶ Un estimateur convergent (et sans biais) de σ_{ε}^2 est alors (comme il n'y pas de constante dans le modèle (3), le nombre de paramètres à estimer vaut K-1)) :

$$\widehat{\sigma}_{\varepsilon}^2 = \frac{\sum_{i=1}^n \sum_{t=1}^T \widehat{\varepsilon}_{it}^2}{(n(T-1) - K + 1)}.$$

Attention, cet estimateur diffère de l'estimateur habituel de la variance (du terme d'erreur) qu'on obtient à l'issue de MCO de \tilde{Y}_{it} sur $\tilde{X}_{it}: \frac{\sum_{i=1}^{n}\sum_{t=1}^{T}\hat{\varepsilon}_{it}^{2}}{(p_{i}T-K+1)t}$ (voir Econométrie 1, Chapitre 3).

Comparaison entre les différences premières et le with no mattre les différences premières et le mattre les

- $ightharpoonup \widehat{eta}_{FD}$ et \widehat{eta}_W coïncident quand T=2 mais pas quand T>2 .
- $\widehat{\beta}_W$ sera plus précis lorsque les $(\varepsilon_t)_t$ sont très peu corrélés, $\widehat{\beta}_{FD}$ sera meilleur lorsque les $(\varepsilon_t)_t$ sont très corrélés.
- Les deux estimateurs sont tous deux convergents et asymptotiquement normaux sous l'hypothèse d'exogénéité stricte.
- Mais ils sont en général non convergents sous la seule hypothèse d'exogénéité faible, et convergent vers des limites en général différentes.
- ⇒ s'ils sont très différents, l'hypothèse d'exogénéité stricte est suspecte.

Un test simple de la condition d'exogénéité stricte

ldée : considérons T=2 et le modèle en différence première :

$$\Delta Y_2 = \Delta X_2' \beta_0 + \Delta \varepsilon_2
= \Delta X_2' \beta_0 + X_2' \gamma_0 + \Delta \varepsilon_2,$$
(4)

avec $\gamma_0 = 0$.

- ▶ Sous l'exogénéité stricte, $E[\Delta X_2 \Delta \varepsilon_2] = 0$ et $E[X_2 \Delta \varepsilon_2] = 0$.
- ▶ Donc si l'on régresse ΔY_2 sur ΔX_2 et X_2 , les coefficients de X_2 devraient être non significatifs.
- Mais sous la seule hypothèse d'exogénéité faible, $E[X_2\Delta\varepsilon_2]=-E[X_2\varepsilon_1]\neq 0$ en général.
- \Rightarrow X_2 endogène dans (4) et $\widehat{\gamma}_{MCO}$ ne convergera pas vers 0.
- ▶ Il suffit donc de tester $\gamma_0 = 0$ dans (4).
- ▶ Idem si T > 2: on inclut $X_2, ..., X_T$ (ou un sous-ensemble de ces régresseurs) dans l'équation en différences premières et on teste leur significativité.

Approche par les GMM

Sous l'hypothèse d'exogénéité stricte, on a :

$$E\left[X_{t'}\left(\Delta Y_{t}-\Delta X_{t}'\beta_{0}\right)\right]=E\left[X_{t'}\Delta\varepsilon_{t}\right]=0$$

$$\forall (t, t') \in \{2, ..., T\} \times \{1, ..., T\}.$$

- Cette écriture permet (i) de construire l'estimateur optimal de β_0 sous la condition d'exogénéité stricte et (ii) de tester le modèle, puisqu'on a (K-1)(T-1)T > (K-1) conditions de moment.
- Cette approche est peu utilisée en pratique, car l'estimateur en deux étapes peut être instable quand le nombre de conditions de moments est grand p/r aux nombres de paramètres, comme ici dès que $T \geq 5$.

Plan

Introduction

Exogénéité des résidus mais autocorrélation

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0, \; orall (t,t')$ (exogénéité stricte)

$$E(X_{it}\alpha_i) \neq 0$$
 mais $E(X_{it}\varepsilon_{it'}) = 0, \ \forall t' \geq t$ (exogénéité faible)

Exemple : effet de la police sur la criminalité

Définition et exemples

On suppose maintenant seulement l'exogénéité faible :

$$E(X_{it}\varepsilon_{it'})=0 \quad \forall t'\geq t.$$

Exemple 1 : modèles dynamiques :

$$Y_{it} = W'_{it}\gamma_0 + Y_{it-1}\rho_0 + \alpha_i + \varepsilon_{it},$$

avec $X_{it} = (W'_{it}, Y_{it-1})'$. Dans ce modèle, par construction l'exogénéité stricte n'est pas vérifiée car $E(X_{it}\varepsilon_{it-1}) \neq 0$.

- Mais l'exogénéité faible l'est si :
 - 1. les $(W_{it})_t$ sont faiblement exogènes;
 - 2. les $(\varepsilon_{it})_t$ sont non corrélés entre eux, et non corrélés à (α_i, Y_{i0}) .
- ▶ Dans ce cas en effet, on a, pour $t \ge 2$,

$$Y_{it-1} = \left(\sum_{j=0}^{t-2} \rho_0^j W'_{it-1-j}\right) \gamma + Y_{i0} \rho_0^{t-1} + \alpha_i \left(\frac{1-\rho_0^{t-1}}{1-\rho_0}\right) + \sum_{j=0}^{t-2} \rho_0^j \varepsilon_{it-1-j}.$$

Par conséquent,

$$E[Y_{it-1}\varepsilon_{it'}] = 0 \quad \forall t' \ge t.$$

Définition et exemples

- Le modèle précédent permet de distinguer l'hétérogénéité inobservée (α_i) de la dépendance d'état (effet de Y_{it-1}).
- Exemple 2 : modèle statique avec effets de retour. $X_{it} = (V_{it}, W'_{it})'$ avec :

$$Y_{it} = W'_{it}\gamma_0 + V_{it}\delta_0 + \alpha_i + \varepsilon_{it}$$

$$V_{it} = W'_{it}\lambda_0 + Y_{it-1}\rho_0 + \zeta_i + \eta_{it}.$$

- V_{it} peut par exemple représenter le taux de SIDA dans une ville et Y_{it} les ventes individuelles de préservatifs. Les ventes passées ont a priori un effet sur le taux de SIDA en t.
- Dans ce modèle, l'exogénéité stricte n'est pas satisfaite sauf si $\rho_0=0$ et W_{it} est strictement exogène. Mais l'exogénéité faible l'est toujours sous les mêmes conditions que précédemment.

La faillite des within et différences premières

L'estimateur des différences premières vérifie :

$$\mathsf{plim}\widehat{\beta}_{FD} = \beta_0 + \left[\frac{1}{T-1}\sum_{t=2}^T E\left(\Delta X_t \Delta X_t'\right)\right]^{-1} \left[\frac{1}{T-1}\sum_{t=2}^T E\left(\Delta X_t \Delta \varepsilon_t\right)\right].$$

On a par ailleurs :

$$E\left(\Delta X_t \Delta \varepsilon_t\right) = E(X_t \varepsilon_t) - E(X_t \varepsilon_{t-1}) - E(X_{t-1} \varepsilon_t) + E(X_{t-1} \varepsilon_{t-1}) = -E(X_t \varepsilon_{t-1}).$$

▶ Si (X_t, ε_t) est stationnaire (dans ce cas $E(\Delta X_t \Delta X_t')$ et $E(\Delta X_t \Delta \varepsilon_t)$ ne dépendent pas de t), on a alors

$$\mathsf{plim}\widehat{\beta}_{FD} = \beta_0 - E\left(\Delta X_t \Delta X_t'\right)^{-1} E\left(X_t \varepsilon_{t-1}\right) \neq \beta_0$$
 en général.

 \triangleright N.B. : le biais est indépendant de T.

La faillite des within et différences premières

L'estimateur within vérifie quant à lui :

$$\mathsf{plim} \widehat{\beta}_W = \beta_0 + \left[\frac{1}{T} \sum_{t=1}^T E\left(\tilde{X}_t \tilde{X}_t' \right) \right]^{-1} \left[\frac{1}{T} \sum_{t=1}^T E\left(\tilde{X}_t \varepsilon_t \right) \right].$$

► On a par ailleurs :

$$E\left(\widetilde{X}_{t}\varepsilon_{t}\right)=E[(X_{t}-\overline{X})\varepsilon_{t}]=-E[\overline{X}\varepsilon_{t}].$$

▶ Donc, si (X_t, ε_t) est stationnaire,

$$\operatorname{plim}\widehat{\beta}_W = \beta_0 - E\left(\widetilde{X}_t\widetilde{X}_t'\right)^{-1}E[\overline{X}\overline{\varepsilon}] \neq \beta_0$$
 en général.

- ▶ Cette fois le biais dépend de T. Par Cauchy-Schwartz, $|E[\overline{X}\overline{\varepsilon}]| = |E[(\overline{X} E(\overline{X}))\overline{\varepsilon}]| \le (V(\overline{X})V(\overline{\varepsilon}))^{1/2} = O(1/T)$.
- ▶ Dans ce cas, le biais tend vers 0 quand $T \to \infty$. Mais il peut être grand à distance finie.

Estimateurs convergents basés sur des instruments

Principe : par exogénéité faible on a $E(X_s \Delta \varepsilon_t) = 0$ pour s < t donc on peut utiliser les conditions de moments :

$$E\left[X_s\left(\Delta Y_t - \Delta X_t'\beta_0\right)\right] = 0, \quad \forall s < t. \tag{5}$$

- Exemple simple : pour T=2 on instrumente, dans l'équation de différences premières, ΔX_2 par X_1 .
- N.B.: pour le modèle dynamique, il faut au moins observer Y_t sur 3 périodes : on estime l'effet de Y_2-Y_1 sur Y_3-Y_2 , en utilisant Y_1 comme instrument de Y_2-Y_1 .
- ▶ Pour T > 2, on peut utiliser des GMM basés sur (5). Comme précédemment l'estimateur des GMM basé sur l'ensemble des conditions de moment peut être difficile à calculer et n'est pas toujours très fiable à distance finie.
- ► En pratique, on utilise souvent certaines conditions de moment seulement, pour se ramener à des 2MC sur les données empilées.

Choix des instruments

- ightharpoonup Première possibilité : utiliser X_{t-1} comme instrument de ΔX_t .
- ▶ Deuxième possibilité : utiliser ΔX_{t-1} comme instrument de ΔX_t (N.B. : on perd alors une date!).
- ► Pour choisir, on peut s'appuyer sur la qualité de la régression de 1ère étape et la variance estimée des 2MC.

Plan

Introduction

Exogénéité des résidus mais autocorrélation

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0,\;orall(t,t')$ (exogénéité stricte)

$$E(X_{it}lpha_i)
eq 0$$
 mais $E(X_{it}arepsilon_{it'})=0, \ orall t'\geq t$ (exogénéité faible)

Exemple : effet de la police sur la criminalité

Problématique

- Une augmentation des forces de police permet-elle de réduire la criminalité?
- ▶ On se focalise ici sur les crimes violents. On considère la régression :

$$\log(\textit{crime}_{\textit{it}}) = \log(\textit{police}_{\textit{it}})\beta_1 + \textit{unem}_{\textit{it}}\beta_2 + \textit{incpc}_{\textit{it}}\beta_3 + \textit{black}_{\textit{it}}\beta_4 + \theta_t + \alpha_i + \varepsilon_{\textit{it}}.$$

où $crime_{it} = \text{nb}$ de crimes violents pour 10^5 hab. dans l'état i à la date t, $police_{it} = \text{nb}$. de policiers pour 10^5 hab., $unem_{it} = \text{taux}$ de chômage, $incpc_{it} = \text{revenu moyen}$, $black_{it} = \text{proportion}$ de noirs.

- Problème potentiel : un niveau de criminalité élevé en t peut amener les autorités à augmenter le nombre de policiers après $t \Rightarrow$ corrélation positive entre ε_{it} et $police_{it+1}$.
- Modèle estimé sur un sous-échantillon des données de Levitt (1996), PRISON.DTA, utilisé par Wooldridge : 51 états américains entre 1980 et 1993.

Code Stata


```
gen log police = log(polpc)
* Command xtset: for panel data, to indicate that state=i, year=t
xtset state year
foreach x of varlist lcriv log_police unem incpc black y81-y93{
    gen d `x'= d. `x'
* Pooled OLS without clusters
regress lcriv log police unem incpc black v81-v93
* Pooled OLS with clusters
regress lcriv log_police unem incpc black y81-y93, cluster(state)
* Within estimator
* Without the cluster option
xtreg lcriv log police unem incpc black y81-y93, fe
* With the cluster option
xtreg lcriv log police unem incpc black v81-v93, fe cluster(state)
* First difference estimator
```

reg d lcriv d log police d unem d incpc d black d y82-d y93, cluster(state)

Résultats : MCO empilés

Source	SS	df	MS
Model Residual	173.192926 132.384693	17 696	10.1878192
Total	305.577619	713	.428580111

Number of obs	=	71
F(17, 696)	=	53.5
Prob > F	=	0.000
R-squared	=	0.566
Adj R-squared	=	0.556
Root MSE	=	.4361

lcriv	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_police	1.095963	.101124	10.84	0.000	.8974189	1.294508
unem	7.100307	.9282458	7.65	0.000	5.277809	8.922804
incpc	.0000402	8.68e-06	4.63	0.000	.0000232	.0000573
black	1.716159	.1661151	10.33	0.000	1.390013	2.042306

(Std. Err. adjusted for **51** clusters in state)

lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
log_police	1.095963	.3639663	3.01	0.004	.3649157	1.827011
unem	7.100307	2.761588	2.57	0.013	1.553494	12.64712
incpc	.0000402	.0000257	1.57	0.124	0000114	.0000918
black	1.716159	.6635824	2.59	0.013	.383315	3.049004

- ► Différence entre les deux?
- Quid du signe des coefficients? Intérêt des méthodes à effets fixes p/r aux MCO?

Résultats : estimateur within

Fixed-effects (within) regression

rixed-effects (Within) regression	Number of obs = /.	14
Group variable: state	Number of groups =	51
R-sq: within = 0.4676	Obs per group: min =	14
between = 0.0031	avg = 14	. 0
overall = 0.0253	max =	14
	F(17,646) = 33.3	38
corr(u_i, Xb) = -0.0540	Prob > F = 0.000	00
lcriv Coef. Std. Err	r. t P> t [95% Conf. Interval]	_
log police .3695031 .07204	16 5.13 0.000 .228039 .51096	71
unem -1.548982 .41384	84 -3.74 0.000 -2.361632736333	14
incpc 9.75e-07 5.63e-0	06 0.17 0.8630000101 .00003	12
black6217821 1.267	68 -0.49 0.624 -3.111052 1.86748	88
Fixed-effects (within) regression	Number of obs =	714
Group variable: state	Number of groups =	51
R-sq: within = 0.4676	Obs per group: min =	14
between = 0.0031	avg = 1	4.0
overal1 = 0.0253	max =	14
	F(17,50) = 36	
$corr(u_i, Xb) = -0.0540$	Prob > F = 0.00	000

(Std. Err. adjusted for 51 clusters in state)

lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
log_police	.3695031	.1567384	2.36	0.022	.0546847	. 6843214
unem	-1.548982	.6720916	-2.30	0.025	-2.898918	1990462
incpc black	9.75e-07 6217821	.0000115 1.835126	0.08	0.933	0000222 -4.307742	.0000241 3.064178

Résultats : différences premières

		(Std. E	Err. adju	sted for	51 clusters in state)		
d_lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]	
d_log_police	.0542456	.0538304	1.01	0.318	0538758	.1623671	
d_unem	0163343	.3722453	-0.04	0.965	7640111	.7313424	
d_incpc	.0000319	.0000115	2.79	0.007	8.92e-06	.0000549	
d black	-1.743021	2.704599	-0.64	0.522	-7.175368	3.689325	

- ► Les valeurs estimées sont assez différents du within ⇒ exogénéité stricte suspecte.
- On considère alors la régression :

$$\Delta \log(\text{crime}_{it}) = \Delta \log(\text{police}_{it})\beta_1 + \log(\text{police}_{it})\gamma + \text{controls} + \Delta \varepsilon_{it}.$$

		(Stu. E	arr. auju	sted for	51 Clusters	In State)
d_lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
d_log_police log_police d_unem d_incpc d_black	.0726276 0255225 .0883762 .0000382 -3.763961	.0511293 .0145134 .3927475 .000013 2.337207	1.42 -1.76 0.23 2.93 -1.61	0.162 0.085 0.823 0.005 0.114	0300685 0546736 7004804 .000012 -8.45838	.1753238 .0036286 .8772328 .0000644 .9304588

► Conclusion?

Estimation avec exogénéité faible

▶ Instruments = $log(police_{it-1})$ ou $\Delta log(police_{it-1})$.

```
by state: gen lag_log_police = log_police[_n-1]
gen d lag log police = d.lag log police
```

ivreg d lcriv d unem d incpc d black (d log police = lag log police), first robust ivreg d lcriv d unem d incpc d black (d log police = d lag log police), first robust

First-stage regressions

Source	SS	df	MS	Number of obs =	663
Model Residual	.014473114 1.90863889	4 658	.003618278	F(4, 658) = Prob > F = R-squared = Adi R-squared =	1.25 0.2895 0.0075 0.0015
Total	1.923112	662	.002905003	Root MSE =	.05386

d_log_police	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
d unem d incpc d black lag log police _cons	233953	.1839071	-1.27	0.204	5950686	.1271626
	1.21e-06	6.47e-06	0.19	0.852	0000115	.0000139
	-3.516948	2.484921	-1.42	0.157	-8.396278	1.362381
	0127569	.0097783	-1.30	0.192	0319574	.0064436
	.0786864	.0532305	1.48	0.140	0258358	.1832086

Instrumental	variables	(2SLS)	regression	Number of	f obs = , 658)	_	663 2.89
				Prob	> F	-	0.0217
				R-squ	ared	=	
				Poot	MSE	=	1137

d_lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
d_log_police	1.476505	1.723324	0.86	0.392	-1.907372	4.860382
d unem	.2405441	.5399006	0.45	0.656	8195917	1.30068
d incpc	.0000481	.0000154	3.12	0.002	.0000178	.0000783
d black	1.994339	5.937232	0.34	0.737	-9.663866	13.65254
_cons	0351123	.0241679	-1.45	0.147	0825678	.0123431

Instrumented: d log police

Instruments: d_unem d_incpc d_black lag_log_police

Estimation avec exogénéité faible

First-stage regressions

Source	SS	df	MS
Model Residual	.02569767 1.83956165	4 607	.006424418
Total	1.86525932	611	.003052798

Number of obs =		612
F(4, 607)	=	2.12
Prob > F	=	0.0769
R-squared	=	0.0138
Adj R-squared	=	0.0073
Root MSE	=	.05505

d_log_police	Coef.	Std. Err.	t	P> t	[95% Conf. In	nterval]
d_unem d_incpc d_black d_lag_log_police _cons	1549976	.1923305	-0.81	0.421	5327116	.2227164
	2.12e-06	6.63e-06	0.32	0.749	0000109	.0000152
	-3.365325	2.517615	-1.34	0.182	-8.309618	1.578967
	1136732	.0466006	-2.44	0.015	2051911	0221552
	.0094642	.0057333	1.65	0.099	0017954	.0207238

Instrumental variables (2SLS) regression

Number of obs =		612
F(4, 607)	=	5.38
Prob > F	=	0.0003
R-squared	=	
Root MSE	=	.08771

d_lcriv	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	Interval]	
d_log_police d_unem d_incpc d_black _cons	3505592	.6220623	-0.56	0.573	-1.572215	.8710963	
	1251975	.3083298	-0.41	0.685	7307201	.4803252	
	.0000485	.000011	4.41	0.000	.0000269	.0000701	
	-2.543389	4.749559	-0.54	0.593	-11.87095	6.784174	
	0162598	.0114898	-1.42	0.158	0388243	.0063047	

Instrumented: d log police

Instruments: d_unem d_incpc d_black d_lag_log_police

L'essentiel

- Estimation de variance des MCO avec *clustering*.
- Exogénéité stricte.
- Estimateur des différences premières et estimateur within.
- ► Test de l'exogénéité stricte.
- Exogénéité faible.
- Estimateur des variables instrumentales sous l'exogénéité faible.