Technische Universität Dresden Fachrichtung Physik

L.Jahn, B.Wehner, J.Pöthig, J.Stelzer06/1997 bearbeitet $03/\ 2004$

Physikalisches Praktikum

versuch: KA

Spezifische Wärmekapazität

Inhaltsverzeichnis

1	Auf	fgabenstellung	2			
2	Allgemeine Grundlagen					
	2.1	Spezifische und molare Wärmekapazität	2			
	2.2	Regel von Dulong und Petit				
3	Kal	orimeter	3			
	3.1	Ideales Mischungskalorimeter	3			
	3.2	Reales Mischungskalorimeter				
	3.3	Elektrisches Aufheizkalorimeter				
4	Experimente mit automatisiertem Kalorimeter 5					
	4.1	Arbeitsgänge	5			
	4.2	Hinweise				
5	Anl	hang	7			
	5.1	Zur Bedienung des Programms	7			
	5.2	Zum Fehlerrechnungs-Programm				
	5.3	Beweis für die Gleichheit der Flächen	7			
	5.4	C_{mol} bei tiefen Temperaturen				
6	Frag	${f gen}$	9			

1 Aufgabenstellung

- 1. Bestimmung der Wärmekapazität C_1 eines Kalorimeters;
- 2. Bestimmung der spezifischen und molaren Wärmekapazität eines festen Körpers mit einem Aufheizkalorimeter.

2 Allgemeine Grundlagen

2.1 Spezifische und molare Wärmekapazität

Bei konstantem Volumen bewirkt die einem Körper der Masse m zugeführte Wärmeenergie ΔQ entsprechend dem 1. Hauptsatz der Wärmelehre eine Temperaturerhöhung ΔT . Diese ist der spezifischen Wärmekapazität c umgekehrt proportional und dem Zuwachs an innerer Energie (ΔU) proportional:

$$\Delta Q = m c \Delta T = \Delta U \quad (a) \quad ; \text{ mit } \quad c = \frac{1}{m} \frac{\Delta Q}{\Delta T} (b) \quad .$$
 (1)

Unter molarer Wärmekapazität versteht man

$$C_{mol} = \frac{1}{\nu} \frac{\Delta Q}{\Delta T} = \frac{m}{\nu} c = Mc \quad . \tag{2}$$

 ν =Stoffmenge=Anzahl der Mole; M = rel. Molekül- bzw. Atom-Masse.

Maßeinheiten:
$$[c] = \frac{J}{kg K}$$
; $[C_{mol}] = \frac{J}{kmol K} = \frac{J}{M kg K}$

2.2 Regel von Dulong und Petit

Die spezifische Wärmekapazität c fester Stoffe ist temperaturabhängig

(s. Abb. 1). Bei höheren Temperaturen ist jedoch

die maximale Anzahl von näherungsweise 6 Freiheitsgraden, 3 für E_{kin} und 3 für E_{pot} , zu Schwingungen angeregt. Damit wird c temperaturunabhängig.

Abb. 1: c(T) für einige Metalle (Einsatz: Näherungen für tiefe Temperaturen)

Nach dem Gleichverteilungssatz wird dann pro Teilchen (Atom, Molekül) und pro Freiheitsgrad die thermische Energie kT/2 aufgenommen. Das bedeutet pro Atom

$$U_A \approx 6 \cdot \frac{kT}{2} = 3 \cdot k T \quad . \tag{3}$$

Mit L (= 6,02·10²³) Atomen nimmt ein Mol des festen Körpers die Energie $U_{mol} \approx L \cdot 3 \cdot k T = 3 R T$ auf.

Das bedeutet für die molare Wärmekapazität, Regel von Dulong-Petit:

$$C_{\text{mol}} = c M = \frac{\Delta U_{\text{mol}}}{\Delta T} \approx \frac{3 \text{ R}}{\text{mol}} = \frac{3 \cdot 8,315 \text{ kJ}}{\text{M kg K}} \approx 25 \frac{\text{kJ}}{\text{kmol K}}.$$
 (4)

So ist im Rahmen dieses Modells C_{mol} für alle Festkörper gleich (s. Tab. 1).

Tab. 1: Beispiele für molare Wärmekapazitäten bei 20°C

Stoff	$c / \frac{kJ}{kg K}$	Molmasse M / kg	$c M / \frac{kJ}{kmolK}$
Aluminium	0,888	27,0	24,0
Eisen	0,460	55,9	25,7
Blei	0,130	207,2	26,9

3 Kalorimeter

3.1 Ideales Mischungskalorimeter

In möglichst ideal wärmeisolierten Gefäßen, die selbst eine geringe Wärmekapazität C_W besitzen (Kalorimeter), wird z. B. nach der Mischungsmethode oder nach der Aufheizmethode die spezifische Wärmekapazität von flüssigen und festen Körpern bestimmt.

Bestimmung von C_W :

Im Kalorimeter befindet sich die Wassermenge m_{w1} mit der Wärmekapazität m_{w1} c_w und der Anfangstemperatur T_1 . Es wird die bekannte Wassermenge m_{w2} mit der (z.B. geringeren) Temperatur T_2 hinzugefügt und die Mischtemperatur T_M (s. Abb. 2) gemessen. Vernachlässigt man Verluste, so folgt C_W aus der Energiebilanz, $\Delta Q_{auf} = \Delta Q_{zu}$, d.h.

$$(c_w m_{w1} + C_W)(T_1 - T_M) = c_w m_{w2} (T_M - T_2) . (5)$$

Bestimmung von c_k :

Der Körper (oder die Flüssigkeit) der Masse m_k wird auf die Temperatur T_1 aufgeheizt und in das mit Wasser der Masse m_w teilweise gefüllte Kalorimeter mit der Ausgangstemperatur T_2 gebracht. Analog zu Gl. (5) folgt c_k aus

$$(c_w m_w + C_W)(T_M - T_2) = c_k m_k (T_1 - T_M) . (6)$$

3.2 Reales Mischungskalorimeter

Die Verluste in realen Kalorimetern können berücksichtigt werden, wenn sie die linken Seiten der Gln. (5;6) betreffen im Gegensatz zu Verlusten, die ein Körper vor und während des Einbringens in das Kalorimeter erfährt. (Letztere entfallen bei einer elektrischen Heizung). Infolge einer endlichen Mischungszeit t_M nd Wärmeableitung nach außen kommt es bei der vom Kalorimeter aufgenommenen Wärme zu Verlusten. Man erkennt sie an fallenden oder steigenden Kurven T(t) in den stationären Bereichen (A...C, Vorversuch) bzw. (E...F, Nachversuch) (s. Abb. 2).

Abb. 2: Temperaturverlauf bei der Mischung mit Verlusten

Zur Korrektur dieser Verluste extrapoliert und verbindet man die Vor- und Nach-Versuchs-Kurven dergestalt, daß die in Abb. 2 schraffierten Flächen gleich sind (s. Anhang). Der senkrechte Abstand ist die Temperaturdifferenz ΔT . T_1^* ist die maßgebliche Anfangstemperatur und tritt an die Stelle von T_1 in den Gln. (5,6). Die exakte Mischungstemperatur ergibt sich zu $T_M = T_1^* - \Delta T$.

3.3 Elektrisches Aufheizkalorimeter

Beim elektrischen Aufheizkalorimeter erfolgt die Energiezufuhr allmählich durch elektrisches Heizen. Während des Haupt-Versuchs fließt für die Zeit Δt (Abb. 3) durch die Heizspirale im Gefäß der elektrische Strom I. Die elektrische Arbeit $\Delta W_{el} = P_{el} \Delta t$ wird in Form von Wärmeenergie vollständig an das Kalorimeter abgegeben.

1. Bestimmung von C_1 :

Im Gefäß befindet sich die Wassermenge m_w . Für die Zeit Δt_1 fließt der Gleichstrom I_1 , der den Temperaturanstieg ΔT_1 zur Folge hat. Wegen $I_1 U_1 \Delta t_1 = (m_w c_w + C_W) \Delta T_1 = C_1 \Delta T_1$ folgt für die Wärmekapazität C_1 der Anordnung (mit Wasser)

$$C_1 = \frac{I_1 U_1 \Delta t_1}{\Delta T_1} \tag{7}$$

2. Bestimmung von c_k :

Im Gefäß befindet sich neben der gleichen Wassermenge m_w auch der Körper K mit der Masse m_k .

Abb. 3: Prinzip eines Heizkalorimeters (Einsatz c); schematische T(t)-Verläufe im Vor-, Haupt- und Nach-Versuch; a mit, b ohne Verluste

Die Energiebilanz lautet jetzt mit der Temperaturerhöhung ΔT_2

$$I_2 U_2 \Delta t_2 = (m_w c_w + m_k c_k + C_W) \Delta T_2 = C_2 \Delta T_2$$
(8)

mit C_2 als Wärmekapazität von Gefäß, Wasser und Körper. Mit ΔT_1 aus Gl. (7) folgt für c_k

$$c_k = \frac{1}{m_k} (C_2 - C_1) = \frac{1}{m_k} \left[\frac{I_2 U_2 \Delta t_2}{\Delta T_2} - \frac{I_1 U_1 \Delta t_1}{\Delta T_1} \right]$$
 (9)

Mit Verlusten muß man entsprechend Abb. 3 a die ΔT - Werte durch graphische (oder rechnerische) Extrapolation ermitteln.

Bei zu vernachlässigenden Verlusten

kann auch die Steigung der T (t)-Kurven ausgewertet werden: Dann ergibt sich bei gleicher elektrischer Leistung

$$c_k = \frac{IU}{m_k} \left[\frac{dt}{dT_2} - \frac{dt}{dT_1} \right] \quad . \tag{10}$$

4 Experimente mit automatisiertem Kalorimeter

4.1 Arbeitsgänge

Die rechnergeführte Meßwertaufnahme der Meßtemperatur und der Zeit (T(t)-Kurven) erfordert bestimmte Schritte bzw. ermöglicht folgende Berechnungen:

- 1. Start des Rechners mit "login KA". Anschließend starten des Programms mit "KA"; weiterhin:
- 2. im Menüpunkt "Einführung": Planung, Aufbau des Kalorimeters;
- 3. im Menüpunkt "Vorbereitung": Probemessung zur Bestimmung von I, U; Wägung des Probekörpers (m_k) ; Bestimmen und Einfüllen der Wassermenge $(m_w$ ca. 150 g); vorläufige Berechnung von Δm , ΔI , ΔU ; Festlegung der Zeitintervalle (t_1, t_2, t_3) ;
- 4. im Menüpunkt "Messung": Prüfen der Checkliste, Messung 1: mit Wasser, ohne Probekörper; T(t) rechnergestützt; U(t) und I(t) manuell (mitschreiben);
- 5. Messung 2: mit gleicher Wassermenge und Probekörper T(t) rechnergestützt; U(t) und I(t) manuell;

6. manuelle Auswertung:

Bestimmung der Mittelwerte für U und I;

Berechnung der endgültigen Werte von ΔI und ΔU ;

Druck beider Meßwertdiagramme über den Rechner und anhand der Grafiken:

Bestimmung von C_1 aus Messung 1 mit beiden Methoden;

Bestimmung von c_k aus Messung 1 und 2 nach Methode freier Wahl (physikalische Begründung);

- 7. Übertragung der manuell bestimmten Ergebnisse in den Rechner;
- 8. Abfrage der vom Rechner ermittelten Ergebnisse und Vergleich;
- 9. Zusammenstellung aller Ergebnisse inclusive der Fehler.

4.2 Hinweise

Aus Gründen der Zeitökonomie sollte während der rechnergeführten T(t)-Aufnahme (Punkte 4,5) mit Teilen der Auswertung begonnen werden. Die endgültigen Fehler ΔU und ΔI können erst am Ende der Auswertung bestimmt werden.

5 Anhang

5.1 Zur Bedienung des Programms

Das Programm hat eine Standard-Benutzer-Oberfläche (SAA) mit folgenden Bedienungsregeln:

- In die Menüleiste gelangt man mit F10; Steuerung des Menüs mit Cursor- und Return-Taste.
- 2. Schließen des Textfensters (blauer Hintergrung) mit Alt-F3; Dialogfenster mit Ok oder Abbruch oder ESC bzw. Ja oder Nein. beenden.
- 3. Zwischen Eingabezeilen des Dialogfensters springen mit **Tabulatortaste** oder mit **hervorgehobenen Buchstaben**.
- 4. Beenden mit Alt-X.

5.2 Zum Fehlerrechnungs-Programm

Was macht das Rechenprogramm:

Es wird eine Ausgleichsrechnung auf der Basis zeitlich äquidistanter fehlerbehafteter Meßpunkte $T \pm \Delta T$ durchgeführt, wobei die Zeitspanne t^* fehlerfrei ist [4].

Dazu werden für die drei zeitlichen Abschnitte von T(t) (Vor-, Haupt- und Nach-Versuch) vom Programm durchgeführt:

- 1. Berechnung gemittelter Temperaturmesswerte T(t) aus 100 Einzelwerten $(T(t) = \frac{1}{100} \Sigma_i(T_i(t));$
- 2. Berechnung der Regressions-Geraden der Form T(t) = a + b t und damit der Größen a und b für alle drei Zeitabschnitte;
- 3. für die n äquidistanten Zeitintervalle t^* werden die Standard-Abweichungen für die Temperatur sowie die Konstanten a und b berechnet nach den Vorschriften [3] [4]

$$s_T^2 = \frac{\Sigma(\Delta T)^2}{(n-2)} \quad ; \quad s_a^2 = s_T^2 \frac{2(2n+1)}{n(n-1)} \quad ; \quad s_b^2 = \frac{s_T^2}{t^{*2}} \frac{12}{n(n^2-1)} \; ; \tag{11}$$

4. Ermittlung der fiktiven mittleren Zeit t_m , die einer sprunghaften Energiezufuhr entspricht. Berechnung der Flächengleichheit entsprechend Abb. 3 sowie der zugehörigen Temperaturdifferenz ΔT und ihrer Standardabweichung $s_{\Delta T}$:

$$\Delta T = a_2 - a_1 + t_m (b_2 - b_1)$$
; bzw. $s_{\Delta T} = \left[s_{a1}^2 + s_{a2}^2 + t_m^2 (s_{b1}^2 + s_{b2}^2) \right]^{1/2}$, (12)

5. Anhand von Gl. (9) werden c_k und der Fehler $\Delta c_k(\Delta m, \Delta U, \Delta I, s_{\Delta T})$ errechnet.

5.3 Beweis für die Gleichheit der Flächen

Es geht um die Berechnung der vom Kalorimeter aufgenommenen (oder abgegebenen) Wärmeenergie, z.B. der linken Seite von Gl. (5), worin die Temperaturdifferenz verfälscht ist. Dies gelingt bei Berücksichtigung der an die Umgebung mit der Temperatur T_u während der endlichen Mischungszeit t_M abgeleiteten Wärmenenergie Q^u , die sich mit der Konstanten für die Kalorimeterverluste K (s. Versuch KW) aus

$$\Delta Q^u = K(T - T_u) \tag{13}$$

berechnet. Es werden zwei Abkühlungskurven (Abb. 2) verglichen:

1. Ohne Mischungsvorgang würde die Kurve $T_1(t)$ von A über B C F .. verlaufen und die dabei verloren gegangene Wärme wäre nach Gl. (13)

$$Q_1^u = K \int_0^\infty (T_1 - T_u) dt \quad . {14}$$

2. Bei dem Mischungsexperiment läuft die Kurve von A über B E und die dabei an die Umgebung abgegebene Wärme ist

$$Q_m^u = K \int_0^\infty (T_m - T_u) dt \quad . \tag{15}$$

Die Differenz beider Beträge nach Gln. (14,15)

$$Q_1^u - Q_m^u = K \int_0^\infty (T_1 - T_m) dt$$
 (16)

stellt als Fläche die zu messende Wärmemenge (linke Seite von Gl.(5) dar. Sie muß unabhängig von Δt_m sein, also auch für den Idealfall $\Delta t_m \to 0$ (Kurve A B C D E), gelten. Damit ist zu fordern, daß die Flächen (Integrale), die zu den Kurven A B E und A B C D E gehören, identisch sind. Das bedeutet aber, daß die schraffierten Flächen in Abb. 2 gleich sein müssen.

5.4 C_{mol} bei tiefen Temperaturen

Für tiefe Temperaturen (s. Einsatz in Abb. 1) liefert die Debye-(Quanten-) Theorie für $C_{mol}(T)$ mit $\Theta_D = \frac{h f_d}{k}$ als Debye-Temperatur (h Planksche, k Boltzmann-Konstante; f_d oberere Gitterschwingungsfrequenz):

1. Für
$$0 < T \le 0, 1 \Theta_D$$
 gilt $C_{mol} = 233, 8 R \left(\frac{T}{\Theta_D}\right)^3$

2. Für
$$T > 0.5 \Theta_D$$
 gilt $C_{mol} = 3 R - \frac{3}{20} \left(\frac{\Theta_D}{T}\right)^2$; (s. Einsätze in Abb. 1).

6 Fragen

- 1. Wie unterscheiden sich ein ideales und ein reales Kalorimeter?
- 2. Wie bestimmt man Wärmemengen, spezifische und molare Wärmekapazitäten?
- 3. Erläutern Sie die Energiebilanz bei der Mischungsmethode zur Bestimmung von c_k !
- 4. Erläutern Sie die Energiebilanz bei der Aufheiz-Methode zur Bestimmung von c_k !
- 5. Wie kann man welche Wärmeverluste reduzieren?
- 6. Was besagt die Regel von Dulong-Petit? Wo gilt sie nicht mehr?
- 7. Welche Maßeinheiten hat die Wärmekapazität, die spezifische Wärmekapazität, die molare Wärmekapazität und die spezifische Schmelzwärme?
- 8. Leiten Sie die Gln. (6 bis 10) her!
- 9. Was kann man allgemein aussagen über c_p und c_v bei Gasen, Flüssigkeiten und festen Körpern?
- 10. Nennen und erläutern Sie 5 Möglichkeiten zur Temperatur-Messung.
- 11. Wie lautet der 1. Hauptsatz der Wärmelehre?

Literatur

- [1] F. Kohlrausch, Praktische Physik, Bd. 2, Verl. Teubner 1996
- [2] W. Walcher, Praktikum der Physik, Suttgart 1989
- [3] W. Ilberg, Physikalisches Praktikum, Stuttgart 1994
- [4] W. H. H. Gränicher, Messung beendet was nun? Stuttgart 1996