Sudoku Solver

This Python program implements a Sudoku solver using a backtracking algorithm. It provides functionality to solve one or multiple Sudoku puzzles and visualize them using matplotlib.

```
In [ ]: # Import required libraries
import matplotlib.pyplot as plt
# Function to solve sudoku based on backtracking algorithm
def solve_sudoku(board):
     def is_valid(row, col, num):
         # Check if the number is already in the current row
         if num in board[row]:
             return False
         # Check if the number is already in the current column
         if num in [board[i][col] for i in range(9)]:
             return False
         # Check if the number is already in the current 3x3 subgrid
         start_row, start_col = 3 * (row // 3), 3 * (col // 3)
         for i in range(start_row, start_row + 3):
             for j in range(start col, start col + 3):
                 if board[i][j] == num:
                      return False
         return True
     # Backtracking algorithm
     def backtrack():
         for row in range(9):
             for col in range(9):
                 if board[row][col] is None:
                      for num in range(1, 10):
                          if is_valid(row, col, num):
                              board[row][col] = num
                              if backtrack():
                                  return True
                              board[row][col] = None # Backtrack
                      return False
         return True
     # Return
     if backtrack():
         return board
     else:
         return None
# Function to visualize a single sudoku using matplotlib
def visualize_sudoku(board, ax):
     # Draw the main lines of the grid
     for i in range(10):
         if i % 3 == 0:
             linewidth = 3 # Line thickness for 3x3 divisions
         else:
             linewidth = 1
         ax.axhline(i, linewidth=linewidth, color='black')
         ax.axvline(i, linewidth=linewidth, color='black')
     # Add numbers to the board
     for i in range(9):
         for j in range(9):
             if board[i][j] is not None:
                 ax.text(j + 0.5, i + 0.5, str(board[i][j]), fontsize=12,
                          ha='center', va='center')
     # Set axis limits to show only Sudoku
     ax.set_xlim(0, 9)
     ax.set_ylim(0, 9)
     # Remove axis ticks and invert y axis
     ax.set_xticks([])
     ax.set_yticks([])
    ax.invert_yaxis()
def visualize_multiple_sudokus(boards, status):
     # Determine the dimension of the Sudoku boards
     num_boards = len(boards)
     num_cols = 2
     num_rows = (num_boards + 1) // num_cols
     fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, 3 * num_rows))
     # Iterate through each subplot and visualize the Sudoku board or turn off empty s
     for i, ax in enumerate(axes.flat):
         if i < num_boards: # If there's a Sudoku board to visualize</pre>
             visualize_sudoku(boards[i], ax)
             ax.set_title(f'Sudoku {i+1}')
         else: # If there's no Sudoku board to visualize
             ax.axis('off') # Turn off empty subplot
     # Add a title and adjust the layout of the plot
     plt.suptitle(f'{status} Sudokus', fontweight='bold')
     plt.tight_layout()
     plt.show()
 def main():
     # Define board with empty cells as None type
     board1 = [
         [9,3,6,None,2,5,None,1,4],
         [None, 1, 7, None, 3, 4, 9, 2, 8],
         [8, None, None, None, 9, 7, None, None, None],
         [None, None, 3, 4, None, None, 5, 9, None],
         [6, None, None, None, None, None, None, None],
         [None, None, None, 3, 8, None, None, 7, 1],
         [None, None, None, None, None, None, None, 5],
         [None, 5, 1, None, 4, None, None, None, None],
         [4,6,None,None,None,1,8,None]
     # Define board with empty cells as None type
     board2 = [
         [None, None, None, 8, None, 7, 9, 1, None],
         [9, None, None, 3, 4, None, 2, None, None],
         [None, None, 5, None, None, None, 7, None],
         [5,9,3,7,None,2,None,6,4],
         [None, None, 1, None, None, None, None, 3, 8],
         [8,7,None,6,3,1,None,9,2],
         [7,4,None,None,None,None,2,None],
         [None, None, None, None, 4, 3, None, None],
         [None, 5, 2, 1, 7, None, None, None, None]
     # Define board with empty cells as None type
     board3 = [
         [5, None, None, 6, 9, 4, None, 3, 2],
         [9,3,6,None,1,2,None,4,None],
         [None, None, None, 3, None, 7, None, None, None],
         [None, None, 5, 2, None, None, None, 7, None],
         [None, None, None, None, 1, None, None, 9],
         [2, None, 8, None, None, 3, 5, None, None],
         [None, 6, 2, None, 3, None, None, None, 4],
         [3,8,1,None,4,6,None,5,None],
         [4, None, None, 7, None, 8, 6, 1, None]
     # Define board with empty cells as None type
     board4 = [
         [8,7,None,None,4,2,9,1,5],
         [1,3,None,5,None,8,None,2,None],
         [5, None, 2, None, None, None, 8, 3],
         [4, None, 3, None, None, None, 8, 7, None],
         [None, 6, 7, None, None, 1, 3, None, None],
         [None, None, None, None, None, 2, 5, None],
         [None, None, 4, 6, None, 5, None, 3, None],
         [6, None, 1, None, None, 4, 5, None, 8],
         [None, 8, None, 2, None, None, None, None, 4]
     # Make a list with all the unsolved boards
     boards = [board1, board2, board3, board4]
     # Visualize multiple unsolved Sudoku boards
     visualize_multiple_sudokus(boards, 'Unsolved')
     # Solve each Sudoku board
     for board in boards:
         solve_sudoku(board)
     # Visualize multiple solved sudokus
     visualize_multiple_sudokus(boards, 'Solved')
if __name__ == "__main__":
```

Unsolved Sudokus

main()

Sudoku 1										Sudoku 2										
9	3	6		2	5		1	4					8		7	9	1			
	1	7		3	4	9	2	8		9			3	4		2				
8				9	7				П			5					7			
		3	4			5	9		П	5	9	3	7		2		6	4		
6				1					П			1					3	8		
			3	8			7	1	П	8	7		6	3	1		9	2		
			9					5	П	7	4						2			
	5	1		4					П						4	3				
4	6					1	8		Ш		5	2	1	7						
	Sudoku 3										Sudoku 4									
5			6	9	4		3	2	П	8	7			4	2	9	1	5		
9	3	6		1	2		4		П	1	3		5		8		2			
			3		7				П	5		2					8	3		
		5	2				7		П	4		3				8	7			
					1			9	Ш		6	7			1	3				
2		8			3	5			П							2	5			
	6	2		3				4	П			4	6		5		3			
3	8	1		4	6		5			6		1			4	5		8		
4			7		8	6	1				8		2					4		

Solved Sudokus

	Solved Sudokus																			
Sudoku 1										Sudoku 2										
9	3	6	8	2	5	7	1	4		4	3	6	8	2	7	9	1	5		
5	1	7	6	3	4	9	2	8		9	1	7	3	4	5	2	8	6		
8	4	2	1	9	7	6	5	3		2	8	5	9	1	6	4	7	(1)		
1	8	3	4	7	2	5	9	6		5	9	3	7	8	2	1	6	4		
6	7	4	5	1	9	8	3	2		6	2	1	4	5	9	7	3	8		
2	9	5	3	8	6	4	7	1		8	7	4	6	3	1	5	9	2		
7	2	8	9	6	1	3	4	5		7	4	9	5	6	3	8	2	1		
3	5	1	7	4	8	2	6	9		1	6	8	2	9	4	3	5	7		
4	6	9	2	5	3	1	8	7		З	5	2	1	7	8	6	4	9		
	Sudoku 3										Sudoku 4									
5	1	7	6	9	4	8	3	2		8	7	6	3	4	2	9	1	5		
9	3	6	8	1	2	7	4	5		1	3	9	5	6	8	4	2	7		
8	2	4	3	5	7	1	9	6		5	4	2	1	9	7	6	8	(1)		
1	4	5	2	6	9	3	7	8		4	5	3	9	2	6	8	7	1		
6	7	3	5	8	1	4	2	9		2	6	7	8	5	1	3	4	9		
_			4	7	_	_		-	1		-		4	7	_	_	-			

5

8

6

6

8

5

2

9