```
In [1]: import numpy as np
    import scipy
    import pandas as pd
    import math
    import random
    import sklearn
    from nltk.corpus import stopwords
    from scipy.sparse import csr_matrix
    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.metrics.pairwise import cosine_similarity
    from scipy.sparse.linalg import svds
    from sklearn.preprocessing import MinMaxScaler
    import matplotlib.pyplot as plt
```

```
In [2]: articles_df = pd.read_csv('../input/shared_articles.csv')
    articles_df = articles_df[articles_df['eventType'] == 'CONTENT SHARED']
    articles_df.head(10)
```

Out[2]:

	contentType	authorCountry	authorRegion	authorUserAgent	authorSessionId
http://www.nytimes.com/	HTML	NaN	NaN	NaN	341205206233829
http://cointelegraph.c	HTML	NaN	NaN	NaN	341205206233829
https://cloudplatform.gc	HTML	NaN	NaN	NaN	532940883382585
https://bitcoinmagazin	HTML	NaN	NaN	NaN	341205206233829
http://www.coindesk.coi	HTML	NaN	NaN	NaN	341205206233829
http://www.newsbtc.coi	HTML	NaN	NaN	NaN	341205206233829
https://bitcoinmagaziı	HTML	NaN	NaN	NaN	341205206233829
https://news.bitcoin.ce	HTML	NaN	NaN	NaN	341205206233829
https://www.cryptocoinsi	HTML	NaN	NaN	NaN	341205206233829
http://economia.ig.com	HTML	NaN	NaN	NaN	441319395545950

```
In [3]: interactions_df = pd.read_csv('../input/users_interactions.csv')
    interactions_df.head(10)
```

Out[3]:

	timestamp	eventType	contentId	personId	sessionId	
0	1465413032	VIEW	-3499919498720038879	-8845298781299428018	1264196770339959068	
1	1465412560	VIEW	8890720798209849691	-1032019229384696495	3621737643587579081	7)
2	1465416190	VIEW	310515487419366995	-1130272294246983140	2631864456530402479	
3	1465413895	FOLLOW	310515487419366995	344280948527967603	-3167637573980064150	
4	1465412290	VIEW	-7820640624231356730	-445337111692715325	5611481178424124714	
5	1465413742	VIEW	310515487419366995	-8763398617720485024	1395789369402380392	
6	1465415950	VIEW	-8864073373672512525	3609194402293569455	1143207167886864524	
7	1465415066	VIEW	-1492913151930215984	4254153380739593270	8743229464706506141	M Ap _l
8	1465413762	VIEW	310515487419366995	344280948527967603	-3167637573980064150	
9	1465413771	VIEW	3064370296170038610	3609194402293569455	1143207167886864524	

```
In [4]: event_type_strength = {
    'VIEW': 1.0,
    'LIKE': 2.0,
    'BOOKMARK': 2.5,
    'FOLLOW': 3.0,
    'COMMENT CREATED': 4.0,
}
interactions_df['eventStrength'] = interactions_df['eventType'].apply(lambd)
```

```
In [5]: users_interactions_count_df = interactions_df.groupby(['personId', 'content
    print('# users: %d' % len(users_interactions_count_df))
    users_with_enough_interactions_df = users_interactions_count_df[users_inter
    print('# users with at least 5 interactions: %d' % len(users_with_enough_in
```

```
# users: 1895
# users with at least 5 interactions: 1140
```

```
In [6]: print('# of interactions: %d' % len(interactions df))
        interactions from selected users df = interactions df.merge(users with enou
                         how = 'right',
                         left_on = 'personId',
                         right_on = 'personId')
        print('# of interactions from users with at least 5 interactions: %d' % len
        # of interactions: 72312
        # of interactions from users with at least 5 interactions: 69868
In [7]: def smooth user_preference(x):
             return math.log(1+x, 2)
         interactions full df = interactions from selected users df \
                              .groupby(['personId', 'contentId'])['eventStrength'].su
                              .apply(smooth user preference).reset index()
        print('# of unique user/item interactions: %d' % len(interactions_full_df))
        interactions_full_df.head(10)
        # of unique user/item interactions: 39106
Out[7]:
                      personId
                                        contentId eventStrength
                                                     1.000000
         0 -9223121837663643404 -8949113594875411859
         1 -9223121837663643404 -8377626164558006982
                                                     1.000000
         2 -9223121837663643404 -8208801367848627943
                                                     1.000000
         3 -9223121837663643404 -8187220755213888616
                                                     1.000000
         4 -9223121837663643404 -7423191370472335463
                                                     3.169925
         5 -9223121837663643404 -7331393944609614247
                                                     1.000000
         6 -9223121837663643404 -6872546942144599345
                                                     1.000000
         7 -9223121837663643404 -6728844082024523434
                                                     1.000000
         8 -9223121837663643404 -6590819806697898649
                                                     1.000000
                                                     1.584963
         9 -9223121837663643404 -6558712014192834002
In [8]: interactions_train_df, interactions_test_df = train_test_split(interactions
                                              stratify=interactions full df['personId'
                                              test size=0.20,
                                              random state=42)
        print('# interactions on Train set: %d' % len(interactions train df))
        print('# interactions on Test set: %d' % len(interactions_test_df))
        # interactions on Train set: 31284
        # interactions on Test set: 7822
In [9]: #Indexing by personId to speed up the searches during evaluation
        interactions full indexed df = interactions full df.set index('personId')
        interactions train indexed df = interactions train df.set index('personId')
        interactions test indexed df = interactions test df.set index('personId')
```

```
In [10]: def get_items_interacted(person_id, interactions_df):
    # Get the user's data and merge in the movie information.
    interacted_items = interactions_df.loc[person_id]['contentId']
    return set(interacted_items if type(interacted_items) == pd.Series else
```

```
In [11]: | EVAL_RANDOM_SAMPLE_NON_INTERACTED ITEMS = 100
         class ModelEvaluator:
             def get not interacted items sample(self, person id, sample size, seed=
                 interacted items = get_items_interacted(person_id, interactions_ful
                 all items = set(articles df['contentId'])
                 non interacted items = all items - interacted items
                 random.seed(seed)
                 non_interacted_items_sample = random.sample(non_interacted_items, s
                 return set(non_interacted_items_sample)
             def _verify hit top n(self, item_id, recommended_items, topn):
                     try:
                         index = next(i for i, c in enumerate(recommended items) if
                     except:
                         index = -1
                     hit = int(index in range(0, topn))
                     return hit, index
             def evaluate model for user(self, model, person_id):
                 #Getting the items in test set
                 interacted values testset = interactions test indexed df.loc[person
                 if type(interacted_values_testset['contentId']) == pd.Series:
                     person interacted items testset = set(interacted values testset
                 else:
                     person interacted items testset = set([int(interacted values te
                 interacted items count testset = len(person interacted items testse
                 #Getting a ranked recommendation list from a model for a given user
                 person recs df = model.recommend items(person id,
                                                         items to ignore=get items in
                                                         topn=10000000000)
                 hits at 5 count = 0
                 hits at 10 count = 0
                 #For each item the user has interacted in test set
                 for item_id in person_interacted_items_testset:
                     #Getting a random sample (100) items the user has not interacte
                     #(to represent items that are assumed to be no relevant to the
                     non interacted items sample = self.get not interacted items sam
                                                                                    s
                     #Combining the current interacted item with the 100 random item
                     items_to_filter_recs = non_interacted_items_sample.union(set([i]))
                     #Filtering only recommendations that are either the interacted
                     valid recs df = person recs df[person recs df['contentId'].isin
                     valid_recs = valid_recs_df['contentId'].values
                     #Verifying if the current interacted item is among the Top-N re
                     hit at 5, index at 5 = self. verify hit top n(item id, valid re
                     hits at 5 count += hit at 5
```

```
hit at 10, index at 10 = self. verify hit top n(item id, valid
            hits at 10 count += hit at 10
        #Recall is the rate of the interacted items that are ranked among t
        #when mixed with a set of non-relevant items
        recall_at_5 = hits_at_5_count / float(interacted_items count testse
        recall at 10 = hits at 10 count / float(interacted items count test
        person_metrics = {'hits@5 count':hits at 5 count,
                          'hits@10 count':hits at 10 count,
                          'interacted count': interacted items count testse
                          'recall@5': recall_at_5,
                          'recall@10': recall at 10}
        return person metrics
    def evaluate model(self, model):
        #print('Running evaluation for users')
        people metrics = []
        for idx, person_id in enumerate(list(interactions_test_indexed_df.i
            #if idx % 100 == 0 and idx > 0:
                 print('%d users processed' % idx)
            person_metrics = self.evaluate_model_for_user(model, person_id)
            person_metrics['_person_id'] = person_id
            people metrics.append(person metrics)
        print('%d users processed' % idx)
        detailed results df = pd.DataFrame(people metrics) \
                            .sort values('interacted count', ascending=Fals
        global recall at 5 = detailed results df['hits@5 count'].sum() / fl
        global recall at 10 = detailed results df['hits@10 count'].sum() /
        global metrics = {'modelName': model.get model name(),
                          'recall@5': global recall at 5,
                          'recall@10': global recall at 10}
        return global metrics, detailed results df
model evaluator = ModelEvaluator()
```

In [12]: item_popularity_df = interactions_full_df.groupby('contentId')['eventStreng
 item_popularity_df.head(10)

Out[12]:

0	-4029704725707465084	307.733799
1	-6783772548752091658	233.762157
2	-133139342397538859	228.024567
3	-8208801367848627943	197.107608
4	-6843047699859121724	193.825208
5	8224860111193157980	189.044680
6	-2358756719610361882	183.110951
7	2581138407738454418	180.282876
8	7507067965574797372	179.094002
9	1469580151036142903	170.548969

contentId eventStrength

```
In [13]: class PopularityRecommender:
             MODEL_NAME = 'Popularity'
             def init (self, popularity df, items df=None):
                 self.popularity df = popularity df
                 self.items_df = items_df
             def get model name(self):
                 return self.MODEL NAME
             def recommend_items(self, user_id, items_to_ignore=[], topn=10, verbose
                 # Recommend the more popular items that the user hasn't seen yet.
                 recommendations df = self.popularity df[-self.popularity df['conten
                                        .sort values('eventStrength', ascending = Fa
                                         .head(topn)
                 if verbose:
                     if self.items df is None:
                         raise Exception('"items df" is required in verbose mode')
                     recommendations df = recommendations df.merge(self.items df, ho
                                                                    left on = 'conten
                                                                    right on = 'conte
                 return recommendations df
         popularity_model = PopularityRecommender(item_popularity_df, articles_df)
```

```
In [14]: print('Evaluating Popularity recommendation model...')
    pop_global_metrics, pop_detailed_results_df = model_evaluator.evaluate_mode
    print('\nGlobal metrics:\n%s' % pop_global_metrics)
    pop_detailed_results_df.head(10)
```

Evaluating Popularity recommendation model...
1139 users processed

Global metrics:

{'modelName': 'Popularity', 'recall@5': 0.2418818716440808, 'recall@10': 0.3725389925850166}

Out[14]:

	hits@5_count	hits@10_count	interacted_count	recall@5	recall@10	_person_id
76	28	50	192	0.145833	0.260417	3609194402293569455
17	12	25	134	0.089552	0.186567	-2626634673110551643
16	13	23	130	0.100000	0.176923	-1032019229384696495
10	5	9	117	0.042735	0.076923	-1443636648652872475
82	26	40	88	0.295455	0.454545	-2979881261169775358
161	12	18	80	0.150000	0.225000	-3596626804281480007
65	20	34	73	0.273973	0.465753	1116121227607581999
81	17	23	69	0.246377	0.333333	692689608292948411
106	14	18	69	0.202899	0.260870	-9016528795238256703
52	21	28	68	0.308824	0.411765	3636910968448833585

Out[25]: <3047x5000 sparse matrix of type '<class 'numpy.float64'>'
with 638928 stored elements in Compressed Sparse Row format>

```
In [26]: def get_item_profile(item_id):
             idx = item ids.index(item id)
             item_profile = tfidf_matrix[idx:idx+1]
             return item profile
         def get item profiles(ids):
             item_profiles_list = [get_item_profile(x) for x in ids]
             item profiles = scipy.sparse.vstack(item profiles list)
             return item profiles
         def build users profile(person id, interactions indexed df):
             interactions_person_df = interactions_indexed_df.loc[person_id]
             user item profiles = get item profiles(interactions person df['contentI
             user item strengths = np.array(interactions person df['eventStrength'])
             #Weighted average of item profiles by the interactions strength
             user item strengths weighted avg = np.sum(user item profiles.multiply(u
             user profile norm = sklearn.preprocessing.normalize(user item strengths
             return user profile norm
         def build users profiles():
             interactions indexed df = interactions train_df[interactions train_df['
                                                             .isin(articles_df['conte
             user profiles = {}
             for person id in interactions indexed df.index.unique():
                 user_profiles[person_id] = build_users_profile(person_id, interacti
             return user profiles
```

```
In [27]: user_profiles = build_users_profiles()
len(user_profiles)
```

Out[27]: 1140

Out[28]:

	token	relevance
0	learning	0.298732
1	machine learning	0.245992
2	machine	0.237843
3	google	0.202839
4	data	0.169776
5	ai	0.156203
6	algorithms	0.115666
7	like	0.097744
8	language	0.087609
9	people	0.082024
10	deep	0.081542
11	deep learning	0.080979
12	research	0.076020
13	algorithm	0.074905
14	apple	0.074050
15	intelligence	0.072663
16	use	0.072597
17	human	0.072494
18	models	0.072388
19	artificial	0.072062

```
In [29]: edRecommender:
          'Content-Based'
         (self, items_df=None):
         m ids = item ids
         ms df = items df
         l name(self):
         elf.MODEL NAME
         ilar_items to user profile(self, person_id, topn=1000):
         s the cosine similarity between the user profile and all item profiles
        imilarities = cosine similarity(user profiles[person id], tfidf matrix)
         e top similar items
        indices = cosine_similarities.argsort().flatten()[-topn:]
         e similar items by similarity
         items = sorted([(item ids[i], cosine similarities[0,i]) for i in similar ind
         imilar_items
         d items(self, user_id, items_to_ignore=[], topn=10, verbose=False):
         items = self._get_similar_items_to_user_profile(user_id)
         items the user has already interacted
         items_filtered = list(filter(lambda x: x[0] not in items_to_ignore, similar_
         dations_df = pd.DataFrame(similar_items_filtered, columns=['contentId', 'rec
                             .head(topn)
         se:
         elf.items df is None:
         raise Exception('"items_df" is required in verbose mode')
         mmendations df = recommendations df.merge(self.items df, how = 'left',
                                                   left on = 'contentId',
                                                   right on = 'contentId')[['recStrer
         ecommendations df
         commender model = ContentBasedRecommender(articles df)
```

In [30]: print('Evaluating Content-Based Filtering model...')
 cb_global_metrics, cb_detailed_results_df = model_evaluator.evaluate_model(
 print('\nGlobal metrics:\n%s' % cb_global_metrics)
 cb_detailed_results_df.head(10)

Evaluating Content-Based Filtering model...
1139 users processed

Global metrics:

{'modelName': 'Content-Based', 'recall@5': 0.16287394528253643, 'recall@1 0': 0.2614420864229097}

Out[30]:

	hits@5_count	hits@10_count	interacted_count	recall@5	recall@10	_person_id
76	15	24	192	0.078125	0.125000	3609194402293569455
17	18	29	134	0.134328	0.216418	-2626634673110551643
16	20	33	130	0.153846	0.253846	-1032019229384696495
10	32	47	117	0.273504	0.401709	-1443636648652872475
82	6	15	88	0.068182	0.170455	-2979881261169775358
161	11	23	80	0.137500	0.287500	-3596626804281480007
65	8	13	73	0.109589	0.178082	1116121227607581999
81	8	19	69	0.115942	0.275362	692689608292948411
106	3	9	69	0.043478	0.130435	-9016528795238256703
52	3	8	68	0.044118	0.117647	3636910968448833585

```
In [31]: #Creating a sparse pivot table with users in rows and items in columns
         users_items pivot_matrix df = interactions train_df.pivot(index='personId',
                                                                    columns='contentI
                                                                    values='eventStre
         users_items_pivot_matrix_df.head(10)
```

Out[31]:

contentId -9222795471790223670		-9216926795620865886	-9194572880052200111	-919254
personId				
-9223121837663643404	0.0	0.0	0.0	
-9212075797126931087	0.0	0.0	0.0	
-9207251133131336884	0.0	2.0	0.0	
-9199575329909162940	0.0	0.0	0.0	
-9196668942822132778	0.0	0.0	0.0	
-9188188261933657343	0.0	0.0	0.0	
-9172914609055320039	0.0	0.0	0.0	
-9156344805277471150	0.0	0.0	0.0	
-9120685872592674274	0.0	0.0	0.0	
-9109785559521267180	0.0	0.0	0.0	

10 rows × 2926 columns

```
In [32]: users_items_pivot_matrix = users_items_pivot_matrix_df.to_numpy()
         users items pivot matrix[:10]
Out[32]: array([[0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.]
                [0., 2., 0., ..., 0., 0., 0.]
                [0., 0., 0., ..., 0., 0., 0.]
                [0., 0., 0., ..., 0., 0., 0.],
                [0., 0., 0., ..., 0., 0., 0.]]
```

```
In [33]: users_ids = list(users_items_pivot_matrix_df.index)
         users ids[:10]
Out[33]: [-9223121837663643404,
          -9212075797126931087,
          -9207251133131336884,
          -9199575329909162940,
          -9196668942822132778,
          -9188188261933657343,
          -9172914609055320039,
          -9156344805277471150,
          -9120685872592674274,
          -9109785559521267180]
In [34]: users_items_pivot_sparse_matrix = csr_matrix(users_items_pivot_matrix)
         users_items_pivot_sparse_matrix
Out[34]: <1140x2926 sparse matrix of type '<class 'numpy.float64'>'
                 with 31284 stored elements in Compressed Sparse Row format>
In [35]: #The number of factors to factor the user-item matrix.
         NUMBER OF FACTORS MF = 15
         #Performs matrix factorization of the original user item matrix
         #U, sigma, Vt = svds(users items pivot matrix, k = NUMBER OF FACTORS MF)
         U, sigma, Vt = svds(users items pivot sparse matrix, k = NUMBER OF FACTORS
In [36]: U.shape
Out[36]: (1140, 15)
In [37]: Vt.shape
Out[37]: (15, 2926)
In [38]: sigma = np.diag(sigma)
         sigma.shape
Out[38]: (15, 15)
```

```
In [39]: all user predicted ratings = np.dot(np.dot(U, sigma), Vt)
          all user predicted ratings
Out[39]: array([[ 0.01039915,
                                  0.00081872, -0.01725263, ..., 0.00140708,
                    0.0110647 , 0.00226063],
                  [-0.00019285, -0.00031318, -0.00264624, ..., 0.00251658,
                    0.00017609, -0.00189488
                  [-0.01254721, 0.0065947, -0.00590676, ..., 0.00698975,
                   -0.01015696, 0.01154572],
                  [-0.02995379, 0.00805715, -0.01846307, ..., -0.01083078,
                   -0.00118591,
                                  0.0096798 ],
                  [-0.01845505,
                                  0.00467019, 0.01219602, ..., 0.00409507,
                    0.00019482, -0.00752562
                  [-0.01506374, 0.00327732, 0.13391269, ..., -0.01191815,
                    0.06422074, 0.0130324411)
In [40]: all user predicted ratings norm = (all user predicted ratings - all user pr
In [41]: #Converting the reconstructed matrix back to a Pandas dataframe
          cf preds df = pd.DataFrame(all user predicted ratings norm, columns = users
          cf preds df.head(10)
Out[41]:
                              -9223121837663643404 -9212075797126931087 -9207251133131336884 -91995
                     contentId
                                         0.139129
           -9222795471790223670
                                                            0.137930
                                                                               0.136531
           -9216926795620865886
                                         0.138044
                                                            0.137916
                                                                               0.138698
                                                            0.137652
                                                                               0.137283
           -9194572880052200111
                                         0.135998
                                         0.141924
                                                            0.137996
                                                                               0.134663
           -9192549002213406534
           -9190737901804729417
                                         0.140209
                                                            0.137408
                                                                               0.138708
                                         0.138932
                                                            0.138699
                                                                               0.138117
           -9189659052158407108
           -9176143510534135851
                                         0.143208
                                                            0.138673
                                                                               0.139514
           -9172673334835262304
                                         0.138527
                                                            0.138021
                                                                               0.138274
                                                                               0.138061
           -9171475473795142532
                                         0.140720
                                                            0.137865
                                         0.138989
                                                            0.137725
                                                                               0.136520
           -9166778629773133902
          10 rows × 1140 columns
In [42]: len(cf preds df.columns)
```

Out[42]: 1140

```
In [43]: der:
          'Collaborative Filtering'
         (self, cf_predictions_df, items_df=None):
         predictions df = cf predictions df
         ms_df = items_df
         l_name(self):
         elf.MODEL NAME
         d_items(self, user_id, items_to_ignore=[], topn=10, verbose=False):
         d sort the user's predictions
         ser predictions = self.cf predictions df[user id].sort values(ascending=Fals
                             .reset_index().rename(columns={user_id: 'recStrength'})
         end the highest predicted rating movies that the user hasn't seen yet.
         dations df = sorted user_predictions[~sorted user predictions['contentId'].i
                        .sort_values('recStrength', ascending = False) \
                        .head(topn)
         se:
        elf.items_df is None:
         raise Exception('"items_df" is required in verbose mode')
         mmendations_df = recommendations_df.merge(self.items_df, how = 'left',
                                                   left on = 'contentId',
                                                   right on = 'contentId')[['recStrer
         ecommendations df
        odel = CFRecommender(cf preds df, articles df)
```

In [44]: print('Evaluating Collaborative Filtering (SVD Matrix Factorization) model.
 cf_global_metrics, cf_detailed_results_df = model_evaluator.evaluate_model(
 print('\nGlobal metrics:\n%s' % cf_global_metrics)
 cf_detailed_results_df.head(10)

Evaluating Collaborative Filtering (SVD Matrix Factorization) model... 1139 users processed

Global metrics:

{'modelName': 'Collaborative Filtering', 'recall@5': 0.33392994119151115, 'recall@10': 0.46803886474047557}

Out[44]:

	hits@5_count	hits@10_count	interacted_count	recall@5	recall@10	_person_id
76	21	46	192	0.109375	0.239583	3609194402293569455
17	30	56	134	0.223881	0.417910	-2626634673110551643
16	16	34	130	0.123077	0.261538	-1032019229384696495
10	38	51	117	0.324786	0.435897	-1443636648652872475
82	39	48	88	0.443182	0.545455	-2979881261169775358
161	22	34	80	0.275000	0.425000	-3596626804281480007
65	24	32	73	0.328767	0.438356	1116121227607581999
81	16	21	69	0.231884	0.304348	692689608292948411
106	20	28	69	0.289855	0.405797	-9016528795238256703
52	23	30	68	0.338235	0.441176	3636910968448833585

```
In [45]: HybridRecommender:
        DDEL NAME = 'Hybrid'
         init (self, cb rec model, cf rec model, items df, cb ensemble weight=1
           self.cb rec model = cb rec model
           self.cf rec model = cf rec model
           self.cb ensemble weight = cb ensemble weight
           self.cf_ensemble_weight = cf_ensemble_weight
           self.items_df = items_df
        ef get model name(self):
           return self.MODEL NAME
        # recommend items(self, user_id, items_to_ignore=[], topn=10, verbose=False
           #Getting the top-1000 Content-based filtering recommendations
           cb_recs_df = self.cb_rec_model.recommend_items(user_id, items_to_ignore=i
                                                               topn=1000).rename(colu
           #Getting the top-1000 Collaborative filtering recommendations
           cf recs df = self.cf rec model.recommend items(user id, items to ignore=i
                                                               topn=1000).rename(colu
           #Combining the results by contentId
           recs df = cb recs df.merge(cf recs df,
                                      how = 'outer',
                                      left on = 'contentId',
                                      right on = 'contentId').fillna(0.0)
           #Computing a hybrid recommendation score based on CF and CB scores
           #recs_df['recStrengthHybrid'] = recs_df['recStrengthCB'] * recs_df['recSt
           recs df['recStrengthHybrid'] = (recs df['recStrengthCB'] * self.cb ensemb
                                        + (recs df['recStrengthCF'] * self.cf ensemb
           #Sorting recommendations by hybrid score
           recommendations df = recs df.sort values('recStrengthHybrid', ascending=F
           if verbose:
               if self.items df is None:
                   raise Exception('"items df" is required in verbose mode')
               recommendations df = recommendations df.merge(self.items df, how = 'l
                                                              left_on = 'contentId',
                                                              right on = 'contentId')
           return recommendations df
         recommender model = HybridRecommender(content based recommender model, cf
                                                cb ensemble weight=1.0, cf ensemble
```

In [46]: print('Evaluating Hybrid model...')
 hybrid_global_metrics, hybrid_detailed_results_df = model_evaluator.evaluat
 print('\nGlobal metrics:\n%s' % hybrid_global_metrics)
 hybrid_detailed_results_df.head(10)

Evaluating Hybrid model...
1139 users processed

Global metrics:

{'modelName': 'Hybrid', 'recall@5': 0.34262336998210174, 'recall@10': 0.4 796727179749425}

Out[46]:

	hits@5_count	hits@10_count	interacted_count	recall@5	recall@10	_person_id
76	22	46	192	0.114583	0.239583	3609194402293569455
17	31	58	134	0.231343	0.432836	-2626634673110551643
16	21	37	130	0.161538	0.284615	-1032019229384696495
10	40	51	117	0.341880	0.435897	-1443636648652872475
82	38	50	88	0.431818	0.568182	-2979881261169775358
161	23	35	80	0.287500	0.437500	-3596626804281480007
65	23	32	73	0.315068	0.438356	1116121227607581999
81	16	21	69	0.231884	0.304348	692689608292948411
106	20	27	69	0.289855	0.391304	-9016528795238256703
52	22	29	68	0.323529	0.426471	3636910968448833585

recall@5 recall@10

Hybrid 0.342623 0.479673

Out[47]:

modelName		
Content-Based	0.162874	0.261442
Popularity	0.241882	0.372539
Collaborative Filtering	0.333930	0.468039

```
In [48]: %matplotlib inline
ax = global_metrics_df.transpose().plot(kind='bar', figsize=(15,8))
for p in ax.patches:
    ax.annotate("%.3f" % p.get_height(), (p.get_x() + p.get_width() / 2., p
```


In [50]: inspect_interactions(-1479311724257856983, test_set=False).head(20)

Out[50]:

	eventStrength	contentId	title	
115	4.285402	7342707578347442862	At eBay, Machine Learning is Driving Innovativ	https://www.ebayinc.com/stories/news/at-el
38	4.129283	621816023396605502	Al Is Here to Help You Write Emails People Wil	http://www.wired.com/2016/08/boomerang-us
8	4.044394	-4460374799273064357	Deep Learning for Chatbots, Part 1 - Introduction	http://www.wildml.com/2016/04/deep-learning-
116	3.954196	-7959318068735027467	Auto-scaling scikit-learn with Spark	https://databricks.com/blog/2016/02/08/auto-
10	3.906891	2589533162305407436	6 reasons why I like KeystoneML	http://radar.oreilly.com/2015/07/6-reasons-w
28	3.700440	5258604889412591249	Machine Learning Is No Longer Just for Experts	https://hbr.org/2016/10/machine-learning-is-
6	3.700440	-398780385766545248	10 Stats About Artificial Intelligence That Wi	http://www.fool.com/investing/2016/06/19/10-
113	3.643856	-6467708104873171151	5 reasons your employees aren't sharing their	http://justcuriousblog.com/2016/04/5-reasons
42	3.523562	-4944551138301474550	Algorithms and architecture for job recommenda	https://www.oreilly.com/ideas/algorithms-and
43	3.459432	-8377626164558006982	Bad Writing Is Destroying Your Company's Produ	https://hbr.org/2016/09/bad-writing-is-destr
41	3.459432	444378495316508239	How to choose algorithms for Microsoft Azure M	https://azure.microsoft.com/en-us/documenta
3	3.321928	2468005329717107277	How Netflix does A/B Testing - uxdesign.cc - U	https://uxdesign.cc/how-netflix-does-a-b-te

	eventStrength	contentId	title	
101	3.321928	-8085935119790093311	Graph Capabilities with the Elastic Stack	https://www.elastic.co/webinars/sneak-peek-c
107	3.169925	-1429167743746492970	Building with Watson Technical Web Series	https://w 304.ibm.com/partnerworld/wps/se
16	3.169925	6340108943344143104	Text summarization with TensorFlow	https://research.googleblog.com/2016/08/text
49	3.169925	1525777409079968377	Probabilistic Programming	http://probabilistic-programming.org/wiki/H
44	3.169925	-5756697018315640725	Being A Developer After 40 - Free Code Camp	https://medium.freecodecamp.com/bein deve
97	3.087463	2623290164732957912	Creative Applications of Deep Learning with Te	https://www.kadenze.com/courses/creative-ap
32	3.000000	279771472506428952	5 Unique Features Of Google Compute Engine Tha	http://www.forbes.com/sites/janakirammsv/201
78	2.906891	-3920124114454832425	Worldwide Ops in Minutes with DataStax & Cloud	http://www.datastax.com/2016/01/datastax-en

In [51]: hybrid_recommender_model.recommend_items(-1479311724257856983, topn=20, ver

Out[51]:

	recStrengthHybrid	contentId	title	
0	25.436876	3269302169678465882	The barbell effect of machine learning.	http://techcrunch.com/2016/06/02/the-barl
1	25.369932	-8085935119790093311	Graph Capabilities with the Elastic Stack	https://www.elastic.co/webinars/sneak-pee
2	24.493428	1005751836898964351	Seria Stranger Things uma obra de arte do algo	https://www.linkedin.com/pulse/seria-stra
3	24.382997	-8377626164558006982	Bad Writing Is Destroying Your Company's Produ	https://hbr.org/2016/09/bad-writing-is-de
4	24.362064	-6727357771678896471	This Super Accurate Portrait Selection Tech Us	http://petapixel.com/2016/06/29/super-acc
5	24.190327	-8190931845319543363	Machine Learning Is At The Very Peak Of Its Hy	https://arc.applause.com/2016/08/17/gartr
6	24.172285	7395435905985567130	The Al business landscape	https://www.oreilly.com/ideas/the-ai-busi
7	23.932289	5092635400707338872	Power to the People: How One Unknown Group of	https://medium.com/@atduskgreg/power-
8	23.865716	-5253644367331262405	Hello, TensorFlow!	https://www.oreilly.com/learning/hello-ten
9	23.811519	1549650080907932816	Spark comparison: AWS vs. GCP	https://www.oreilly.com/ideas/spark-compa
10	23.537832	621816023396605502	Al Is Here to Help You Write Emails People Wil	http://www.wired.com/2016/08/boomerang
11	23.195716	-1901742495252324928	Designing smart notifications	https://medium.com/@intercom/designing-
12	23.101347	882422233694040097	Infográfico: Algoritmos para Aprendizado de Má	https://www.infoq.com/br/news/2016/07/inf

	recStrengthHybrid	contentId	title	
13	22.725769	2468005329717107277	How Netflix does A/B Testing - uxdesign.cc - U	https://uxdesign.cc/how-netflix-does-a-b
14	22.561032	-5756697018315640725	Being A Developer After 40 - Free Code Camp	https://medium.freecodecamp.com/b
15	22.448418	-4944551138301474550	Algorithms and architecture for job recommenda	https://www.oreilly.com/ideas/algorithms-a
16	22.342822	1415230502586719648	Machine Learning Is Redefining The Enterprise	http://www.forbes.com/sites/louiscolumbus/
17	22.311658	-8771338872124599367	Funcionários do mês no CoolHow: os Slackbots	https://medium.com/coolhow-creative-lab/fi
18	22.278853	5258604889412591249	Machine Learning Is No Longer Just for Experts	https://hbr.org/2016/10/machine-learning-
19	22.239822	-5027816744653977347	Apple acquires Turi, a machine learning company	https://techcrunch.com/2016/08/05/apple-a

	[]:	In
In []:	[]:	In