FENÔMENOS DOS TRANSPORTES

FENÔMENOS DOS TRANSPORTES

O processo de transporte é caracterizado pela tendência ao equilíbrio, que é uma condição onde não ocorre nenhuma variação. Os fatos comuns a todos processos de transporte são :

A Força Motriz	O movimento no sentido do equilíbrio é causado por uma diferença de potencial		
O Transporte	Alguma quantidade física é transferida		
O Meio	A massa e a geometria do material onde as variações ocorrem afetam a velocidade e a		
	direção do processo		

Como exemplos podemos citar:

- Os raios solares aquecem a superfície externa de uma parede e o processo de <u>transferência de calor</u> faz com que energia seja transferida através da parede, tendendo a um estado de equilíbrio onde a superfície interna será tão quente quanto à externa.
- Quando um fluido está entre duas placas paralelas e uma delas se movimenta, o processo de <u>transferência de quantidade de movimento</u> faz com que as camadas de fluido adjacentes à placa se movimentem com velocidade próxima à da placa, tendendo a um estado de equilíbrio onde a velocidade do fluido varia de *V* na superfície da placa em movimente até *0* na superfície da placa estacionária.
- Uma gota de corante é colocada em recipiente com água e o processo de <u>transferência de massa</u> faz com que o corante se difunda através da água, atingindo um estado de equilíbrio, facilmente detectado visualmente.

1. TRANSFERÊNCIA DE CALOR

1.1. INTRODUÇÃO

1.1.1. O QUE É e COMO SE PROCESSA?

<u>Transferência de Calor</u> (ou Calor) é energia em trânsito devido a uma diferença de temperatura. **Sempre** que existir uma diferença de temperatura em um meio ou entre meios ocorrerá transferência de calor.

Por exemplo, se dois corpos a diferentes temperaturas são colocados em contato direto, como mostra a figura 1.1, ocorrera uma transferência de calor do corpo de temperatura mais elevada para o corpo de menor temperatura até que haja equivalência de temperatura entre eles. Dizemos que o sistema tende a atingir o equilíbrio térmico.

Está implícito na definição acima que um corpo nunca contém calor, mas calor é indentificado com tal quando cruza a fronteira de um sistema. O calor é portanto um fenômeno transitório, que cessa quando não existe mais uma diferença de temperatura.

Os diferentes processos de transferência de calor são referidos como <u>mecanismos de transferência de calor</u>. Existem três mecanismos, que podem ser reconhecidos assim :

• Quando a transferência de energia ocorrer em um meio estacionário, que pode ser um sólido ou um fluido, em virtude de um gradiente de temperatura, usamos o termo transferência de calor por condução. A figura 1.2 ilustra a transferência de calor por condução através de uma parede sólida submetida à uma diferença de temperatura entre suas faces.

• Quando a transferência de energia ocorrer entre uma **superfície e um fluido** em movimento em virtude da diferença de temperatura entre eles, usamos o termo <u>transferência de calor por convecção</u>. A figura 1.3 ilustra a transferência de calor de calor por convecção quando um fluido escoa sobre uma placa aquecida.

• Quando, na ausência de um meio interveniente, existe uma troca líquida de energia (emitida na forma de ondas eletromagnéticas) entre duas superfícies a diferentes temperaturas, usamos o termo <u>radiação</u>. A figura 1.4 ilustra a transferência de calor por radiação entre duas superfícies a diferentes temperaturas.

2.4. MECANISMOS COMBINADOS

Na maioria das situações práticas ocorrem ao mesmo tempo dois ou mais mecanismos de transferência de calor atuando ao mesmo tempo. Nos problemas da engenharia, quando um dos mecanismos domina quantitativamente, soluções aproximadas podem ser obtidas desprezando-se todos, exceto o mecanismo dominante. Entretanto, deve ficar entendido que variações nas condições do problema podem fazer com que um mecanismo desprezado se torne importante.

Como exemplo de um sistema onde ocorrem ao mesmo tempo vários mecanismo de transferência de calor consideremos uma garrafa térmica. Neste caso, podemos ter a atuação conjunta dos seguintes mecanismos esquematizados na figura 1.5 :

[figura 1.5]

q₁ : convecção natural entre o café e a parede do frasco plástico

q2 . condução através da parede do frasco plástico

q3: convecção natural do frasco para o ar

q₄ : convecção natural do ar para a capa plástica

q₅ : radiação entre as superfícies externa do frasco e

interna da capa plástica

q6: condução através da capa plástica

q₇ : convecção natural da capa plástica para o ar ambiente

q₈ : radiação entre a superfície externa da capa e as

vizinhanças

Melhorias estão associadas com (1) uso de superfícies aluminizadas (baixa emissividade) para o frasco e a capa de modo a reduzir a radiação e (2) evacuação do espaço com ar para reduzir a convecção natural.

1.1.3. SISTEMAS DE UNIDADES

As dimensões fundamentais são quatro : tempo, comprimento, massa e temperatura. Unidades são meios de expressar numericamente as dimensões.

Apesar de ter sido adotado internacionalmente o sistema métrico de unidades denominado sistema internacional (S.I.), o sistema inglês e o sistema prático métrico ainda são amplamente utilizados em todo o mundo. Na tabela 1.1 estão as unidades fundamentais para os três sistemas citados:

Tabela 1.1 - Unidades fundamentais dos sistemas de unidades mais comuns

SISTEMA	TEMPO, t	COMPRIMENTO,L	MASSA ,m	TEMPERATURA
S.I.	Segundo,s	metro,m	quilograma,kg	Kelvin,k
INGLÊS	Segundo,s	pé,ft	libra-massa,lb	Farenheit, ^O F
MÉTRICO	Segundo,s	metro,m	quilograma,kg	celsius, ^o C

 $[1 \text{ p\'e} = \overline{12 \text{ polegadas}} \text{ ou } 1 \text{ ft (foot)} = 12 \text{ in (inch)} \text{ ou } 1' = 12'']$

Unidades derivadas mais importantes para a transferência de calor, mostradas na tabela 1.2, são obtidas por meio de definições relacionadas a leis ou fenômenos físicos:

- Lei de Newton : Força é igual ao produto de massa por aceleração (F = m.a), então :
 - 1 Newton (N) é a força que acelera a massa de 1 Kg a 1 m/s²
- Pressão é força aplicada por unidade de área (P = F / A), então:
 - 1 Pascal (Pa) é a pressão resultante quando uma força de 1 N é aplicada em uma área de 1 m²
- Trabalho (Energia) é o produto da forca pela distância ($\tau = F.x$), então :
 - 1 Joule (J) é a energia dispendida por uma força de 1 N em 1 m
- Potência é trabalho na unidade de tempo ($\wp = \tau / t$), então :
 - 1 Watt (W) é a potência dissipada por uma força de 1 J em 1 s

Tabela 1.2 - Unidades derivadas dos sistemas de unidades mais comuns

SISTEMA	FORÇA, F	PRESSÃO, P	ENEGIA, E	POTÊNCIA, 🔊
S.I.	Newton,N	Pascal, Pa	Joule,J	Watt,W
INGLÊS	libra-força,lbf	lbf/pol ²	lbf-ft (Btu)	Btu/h
MÉTRICO	kilograma-força,kgf	Kgf/cm ²	kgm (kcal)	kcal/h

As unidades mais usuais de energia (Btu e Kcal) são baseadas em fenômenos térmicos, e definidas como:

- Btu é a energia requerida na forma de calor para elevar a temperatura de 11b de água de 67,5 °F a 68,5 °F
- Kcal é a energia requerida na forma de calor para elevar a temperatura de 1kg de água de 14,5 °F a 15,5 °F

Em relação ao calor transferido, as seguintes unidades que são, em geral, utilizadas:

```
\dot{q} - fluxo de calor transferido (potência) : W, Btu/h, Kcal/h (potência)
Q- quantidade de calor transferido (energia): J, Btu, Kcal (energia)
```

Algumas relações de conversão dasnidades :

```
1 N = 0.102 \text{ kgf} = 0.2249 \text{ lbf}
1 \text{ Pa} = 0.102 \text{ kgf/m}^2 = 0.000145 \text{ lbf/pol}^2
1J = 0.0009478 Btu = 0.00023884 Kcal
1 W = 3,41214 Btu/h = 0,85984 Kcal/h = 0,001359 CV = 0,001341 HP
```

1.2. CONDUÇÃO

1.2.1. LEI DE FOURIER

A lei de Fourier foi desenvolvida a partir da observação dos fenômenos da natureza em experimentos. Imaginemos um experimento onde o fluxo de calor resultante é medido após a variação das condições experimentais. Consideremos, por exemplo, a transferência de calor através de uma barra de ferro com uma das extremidades aquecidas e com a área lateral isolada termicamente, como mostra a figura 1.6:

Com base em experiências, variando a área da seção da barra, a diferença de temperatura e a distância entre as extremidades, chega-se a seguinte relação de proporcionalidade:

$$\dot{q} \alpha A. \frac{\Delta T}{\Delta x}$$

A proporcionalidade pode se convertida para igualdade através de um coeficiente de proporcionalidade e a Lei de Fourier pode ser enunciada assim: A quantidade de calor transferida por condução, na unidade de tempo, em um material, é igual ao produto das seguintes quantidades:

$$\dot{q} = -k \cdot A \cdot \frac{dT}{dx}$$
 (eq. 1.1)

onde,

 \dot{q} , fluxo de calor por condução (Kcal/h no sistema métrico);

k, condutividade térmica do material;

A, área da seção através da qual o calor flui, medida perpendicularmente à direção do fluxo (m²);

dT/dx, razão de variação da temperatura T com a distância, na direção x do fluxo de calor (${}^{\circ}\text{C/h}$)

→ A razão do sinal menos na equação de Fourier é que a direção do aumento da distância x deve ser a direção do fluxo de calor positivo. Como o calor flui do ponto de temperatura mais alta para o de temperatura mais baixa (gradiente negativo), o fluxo só será positivo quando o gradiente for positivo (multiplicado por -1).

O fator de proporcionalidade *k* (condutividade térmica) que surge da equação de Fourier é uma propriedade de cada material e vem exprimir maior ou menor facilidade que um material apresenta à condução de calor. Sua unidade é facilmente obtida da própria equação de Fourier, por exemplo, no sistema prático métrico temos :

$$\dot{q} = -k.A.\frac{dT}{dx} \Rightarrow k = -\frac{\dot{q}}{A.\frac{dT}{dx}} \left(\frac{Kcal/h}{m^2 \frac{{}^{\circ}C}{m}} = \frac{Kcal}{h.m.{}^{\circ}C} \right)$$

No sistema internacional (SI), fica assim : $\frac{W}{m^2 \cdot \frac{K}{m}} = \frac{W}{m.K}$

Os valores numéricos de k variam em extensa faixa dependendo da constituição química, estado físico e temperatura dos materiais. Quando o valor de k é elevado o material é considerado **condutor térmico** e, caso contrário, **isolante térmico**. Com relação à temperatura, em alguns materiais como o alumínio e o cobre, o k varia muito pouco com a temperatura, porém em outros, como alguns aços, o k varia significativamente com a temperatura. Nestes casos, adota-se como solução de engenharia um valor médio de k em um intervalo de temperatura.

1.2.2. CONDUÇÃO DE CALOR EM UMA PAREDE PLANA

Consideremos a transferência de calor por condução através de uma **parede plana** submetida a uma diferença de temperatura. Um bom exemplo disto é a transferência de calor através da parede de um forno, como pode ser visto na figura 1.7, que tem espessura L, área transversal A e foi construído com material de condutividade térmica k. Do lado de dentro do forno uma fonte de calor mantém a temperatura na superficie interna da parede constante e igual a T_1 enquanto que a temperatura da superfície externa permaneça igual a T_2 .

Aplicado a equação de Fourier, tem-se:

$$\dot{q} = -k.A.\frac{dT}{dx}$$

Fazendo a separação de variáveis, obtemos:

$$\dot{q}.dx = -k.A.dT \tag{eq. 1.2}$$

Na figura 1.7 vemos que na face interna (x=0) a temperatura é T_1 e na face externa (x=L) a temperatura é T_2 . Para a transferência em <u>regime permanente</u> o calor transferido não varia com o tempo. Para a área transversal da parede "A" e a condutividade "k" constantes, a integração da equação 1.2, fica assim:

$$\dot{q} \cdot \int_0^L dx = -k \cdot A \cdot \int_{T_1}^{T_2} dT \qquad \dot{q} \cdot (L - 0) = -k \cdot A \cdot (T_2 - T_1)$$

$$\dot{q} \cdot L = k \cdot A \cdot (T_1 - T_2)$$

Considerando que (T_1 - T_2) é a diferença de temperatura entre as faces da parede (ΔT), o fluxo de calor a que atravessa a parede plana por condução é :

$$\dot{q} = \frac{k.A}{L}.\Delta T \tag{eq. 1.3}$$

Para melhor entender o significado da equação 1.3 consideremos um exemplo prático. Suponhamos que o engenheiro responsável pela operação de um forno necessita reduzir as perdas térmicas pela parede de um forno por razões econômicas. Considerando a equação 1.3, o engenheiro tem as opções listadas na tabela 1.3:

Tabela 1.3- Possibilidades para redução de fluxo de calor em uma parede plana.

OBJETIVO	VARIÁVEL	AÇÃO
	Reduzir k	trocar a parede por outra de menor condutividade térmica
Reduzir \dot{q}	Reduzir A	reduzir a área superficial do forno
	Aumentar L	aumentar a espessura da parede
	Reduzir ΔT	reduzir a temperatura interna do forno

OBS : Trocar a parede ou reduzir a temperatura interna podem ser ações de difícil implementação; porém, a colocação de isolamento térmico sobre a parede cumpre ao mesmo tempo as ações de redução da condutividade térmica e aumento de espessura da parede.

Exercício R.1.2.1. Um equipamento condicionador de ar deve manter uma sala, de 15 m de comprimento, 6 m de largura e 3 m de altura a 22 °C. As paredes da sala, de 25 cm de espessura, são feitas de tijolos com condutividade térmica de 0,14 Kcal/h.m.°C e a área das janelas são consideradas desprezíveis. A face externa das paredes pode estar até a 40 °C em um dia de verão. Desprezando a troca de calor pelo piso e teto, que estão bem isolados, pede-se o calor a ser extraído da sala pelo condicionador (em HP). Dado: 1HP = 641,2 Kcal/h

$$T_1 = 40 \, ^{\circ}C$$
 $T_2 = 22 \, ^{\circ}C$
 $k = 0,14 \, Kcal/h.m.^{\circ}C$
 $L = 25 \, cm = 0,25 \, m$

sala: $6 \times 15 \times 3m$

Desconsiderando a influência de janelas, a área lateral das paredes, desprezando o piso e o teto, é :

$$A = 2 \times (6 \times 3) + 2 \times (15 \times 3) = 126m^2$$

Utilizando a equação 1.3, temos :

$$\dot{q} = \frac{k.A}{L} \cdot (T_1 - T_2) = \frac{0.14 \left(\frac{Kcal}{h.m.^{\circ}C} \right) \times 126m^2}{0.25m} \times (40 - 22)^{\circ}C = 1270 \frac{Kcal}{h}$$

$$\dot{q} = 1270 \frac{Kcal}{h} \times \frac{1}{641,2} \frac{HP}{Kcal} = 1,979 HP$$

Portanto a potência requerida para o condicionador de ar manter a sala refrigerada é : $\dot{q} \cong 2HP$

1.2.3. ANALOGIA ENTRE RESISTÊNCIA TÉRMICA E RESISTÊNCIA ELÉTRICA

Dois sistemas são análogos quando eles obedecem a equações semelhantes. Por exemplo, a equação 1.3 que fornece o fluxo de calor através de uma parede plana pode ser colocada na seguinte forma:

$$\dot{q} = \frac{\Delta T}{\frac{L}{k A}}$$
 (eq. 1.4)

O denominador e o numerador da equação 1.4 podem ser entendidos assim :

- (ΔT), a diferença entre a temperatura é o potencial que causa a transferência de calor
- (L/k.A) é equivalente a uma <u>resistência térmica</u> (R) que a parede oferece à transferência de calor

Portanto, o fluxo de calor através da parede pode ser expresso da seguinte forma :

$$\dot{q} = \frac{\Delta T}{R}$$
 onde, ΔT é o potencial térmico e

 R é a resistência térmica da parede

Se substituirmos na equação 1.5 o símbolo do potencial de temperatura ΔT pelo de potencial elétrico, isto é, a diferença de tensão ΔU , e o símbolo da resistência térmica R pelo da resistência elétrica R_e , obtemos a equação 1.6 (lei de Ohm) para i, a intensidade de corrente elétrica :

$$i = \frac{\Delta U}{R_{\rho}} \tag{eq. 1.6}$$

Dada esta analogia, é comum a utilização de uma notação semelhante à usada em circuitos elétricos, quando representamos a resistência térmica de uma parede. Assim, uma parede de resistência R, submetida a um potencial ΔT e atravessada por um fluxo de calor \dot{q} , pode ser representada como na figura 1.8 :

1.2.4. ASSOCIAÇÃO DE PAREDES PLANAS EM SÉRIE

Consideremos um sistema de paredes planas **associadas em série**, submetidas a uma diferença de temperatura. Assim, haverá a transferência de um fluxo de calor contínuo no regime permanente através desta parede composta. Como exemplo, analisemos a transferência de calor através da parede de um forno, que pode ser composta de uma camada interna de refratário (condutividade k_1 e espessura L_1), uma camada intermediária de isolante térmico (condutividade k_2 e espessura L_2) e uma camada externa de chapa de aço (condutividade k_3 e espessura L_3). A figura 1.9 ilustra o perfil de temperatura ao longo da espessura desta parede composta :

O fluxo de calor que atravessa a parede composta pode ser obtido em cada uma das paredes planas individualmente :

$$\dot{q} = \frac{k_1 \cdot A_1}{L_1} \cdot (T_1 - T_2); \quad \dot{q} = \frac{k_2 \cdot A_2}{L_2} \cdot (T_2 - T_3); \quad \dot{q} = \frac{k_3 \cdot A_3}{L_3} \cdot (T_3 - T_4)$$
(eq. 1.7)

Colocando em evidência as diferenças de temperatura nas equações acima e somando membro a membro, obtemos:

$$(T_1 - T_2) = \frac{\dot{q}.L_1}{k_1.A_1}$$

$$(T_2 - T_3) = \frac{\dot{q}.L_2}{k_2.A_2}$$

$$(T_3 - T_4) = \frac{\dot{q}.L_3}{k_3.A_3}$$

$$T_1 - T_2 + T_2 - T_3 + T_3 - T_4 = \frac{\dot{q}.L_1}{k_1.A_1} + \frac{\dot{q}.L_2}{k_2.A_2} + \frac{\dot{q}.L_3}{k_3.A_3}$$
ou,
$$T_1 - T_4 = \frac{\dot{q}.L_1}{k_1.A_1} + \frac{\dot{q}.L_2}{k_2.A_2} + \frac{\dot{q}.L_3}{k_3.A_3}$$
(eq. 1.8)

Colocando em evidência o fluxo de calor \dot{q} e substituindo os valores das resistências térmicas em cada parede na equação 1.8, obtemos o fluxo de calor pela parede do forno:

$$\dot{q} = \frac{T_1 - T_4}{R_1 + R_2 + R_3}$$
 \Rightarrow $\dot{q} = \frac{T_1 - T_4}{R_1 + R_2 + R_3}$ (eq. 1.9)

Portanto, para o caso geral em que temos uma associação de paredes **n** planas associadas em série o fluxo de calor é dado por :

$$\dot{q} = \frac{(\Delta T)_{total}}{R_t}, onde R_t = \sum_{i=1}^n R_i = R_1 + R_2 + \dots + R_n$$
 (eq. 1.10)

1.2.5. ASSOCIAÇÃO DE PAREDES PLANAS EM PARALELO

Consideremos um sistema de paredes planas **associadas em paralelo**, como na figura 1.10, submetidas a uma diferença de temperatura constante e conhecida. Assim, haverá a transferência de um fluxo de calor contínuo no regime permanente através da parede composta. Faremos as seguintes considerações :

- Todas as paredes estão sujeitas a mesma diferença de temperatura;
- As paredes podem ser de materiais e/ou dimensões diferentes;

[figura 1.10]

O fluxo de calor que atravessa a parede composta pode ser obtido em cada uma das paredes planas individualmente :

$$\dot{q}_1 = \frac{k_1 \cdot A_1}{L_1} \cdot (T_1 - T_2); \qquad \dot{q}_2 = \frac{k_2 \cdot A_2}{L_2} \cdot (T_1 - T_2)$$
 (eq. 1.11)

O fluxo de calor total é igual a soma dos fluxos da equação 1.11 :

$$\dot{q} = \dot{q}_1 + \dot{q}_2 = \left[\frac{k_1.A_1}{L_1}.(T_1 - T_2)\right] + \left[\frac{k_2.A_2}{L_2}.(T_1 - T_2)\right] = \left[\frac{k_1.A_1}{L_1} + \frac{k_2.A_2}{L_2}\right].(T_1 - T_2) \quad (\text{eq. } 1.12)$$

Como
$$R = \frac{L}{k A} \implies \frac{1}{R} = \frac{k A}{L}$$
 (eq. 1.13)

Substituindo a equação 1.13 na equação 1.12, obtemos :

$$\dot{q} = \left[\frac{1}{R_1} + \frac{1}{R_2}\right] \cdot (T_1 - T_2) = \frac{(T_1 - T_2)}{R_t}$$
 onde, $\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2}$

Portanto, para o caso geral em que temos uma associação de $\bf n$ paredes planas associadas em paralelo o fluxo de calor é dado por :

$$\dot{q} = \frac{(\Delta T)_{total}}{R_t}, onde \frac{1}{R_t} = \sum_{i=1}^n \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$
 (eq. 1.14)

Exercício R.1.2.2. Uma camada de material refratário (k=1,5 kcal/h.m.ºC) de 50 mm de espessura está localizada entre duas chapas de aço (k = 45 kcal/h.mºC) de 6,3 mm de espessura. As faces da camada refratária adjacentes às placas são rugosas de modo que apenas 30 % da área total está em contato com o aço. Os espaços vazios são ocupados por ar (k=0,013 kcal/h.m.ºC) e a espessura média da rugosidade de 0,8 mm. Considerando que as temperaturas das superfícies externas da placa de aço são 430 °C e 90 °C, respectivamente; calcule o fluxo de calor que se estabelece na parede composta. OBS : Na rugosidade, o ar está parado (considerar apenas a condução)

$$k_{aco} = 45Kcal/h.m.^{\circ}C$$
 $k_{ref} = 1,5Kcal/h.m.^{\circ}C$ $k_{ar} = 0,013Kcal/h.m.^{\circ}C$ $L_{ref} = 50mm$ $L_{aco} = 6,3mm = 0,0063m L_{rug} = 0,8mm = 0,0008m$ $L'_{ref} = 50 - (2 \times 0,8) = 48,4mm = 0,0483m$ $T_{1} = 430 \,^{\circ}C$ $T_{2} = 90 \,^{\circ}C$

Cálculo das resistências térmicas (para uma área unitária) :

$$R_{1} = \frac{L_{aço}}{k_{aço}.A} = \frac{0,0063}{45 \times 1} = 0,00014h.^{\circ}C/Kcal \qquad R_{3} = \frac{L_{rug}}{k_{ref}.A} = \frac{0,0008}{1,5 \times (0,3 \times 1)} = 0,0018h.^{\circ}C/Kcal \\ R_{2} = \frac{L_{rug}}{k_{ar}.A} = \frac{0,0008}{0,013 \times (0,7 \times 1)} = 0,08791h.^{\circ}C/Kcal \\ R_{1} = \frac{L_{ref}}{k_{ref}.A} = \frac{0,0484}{1,5 \times 1} = 0,0323h.^{\circ}C/Kcal$$

A resistência equivalente à parede rugosa (refratário em paralelo com o ar) é :

$$\frac{1}{R_{2//3}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{0.08791} + \frac{1}{0.0018} \implies R_{2//3} = 0.00176 \ h.^{\circ} C/Kcal$$

A resistência total, agora, é obtida por meio de uma associação em série :

$$R_t = R_1 + R_{2//3} + R_4 + R_{2//3} + R_1 = 0,0361 \, h.^{o} \, C / Kcal$$

Um fluxo de calor é sempre o $(DT)_{total}$ sobre a R_t , então :

$$\dot{q} = \frac{(\Delta T)_{total}}{R_t} = \frac{T_1 - T_2}{R_t} = \frac{430 - 90}{0,0361}$$

1.2.6. CONDUÇÃO DE CALOR ATRAVÉS DE CONFIGURAÇÕES CILÍNDRICAS

Consideremos um cilindro vazado submetido à uma diferença de temperatura entre a superficie interna e a superficie externa, como pode ser visto na figura 1.11.

O fluxo de calor que atravessa a parede cilíndrica poder ser obtido através da equação de Fourier, ou seja :

$$\dot{q} = -k \cdot A \cdot \frac{dT}{dr}$$
 onde $\frac{dT}{dr}$ é o gradiente de temperatura na direção radial

Para configurações cilíndricas a área é uma função do raio :

$$A = 2.\pi r.L$$

Substituindo na equação de Fourier, obtemos:

$$q = -k.(2.\pi.r.L).\frac{dT}{dr}$$

Fazendo a separação de variáveis e integrando entre T_1 em r_1 e entre T_2 em r_2 , chega-se a:

$$q \int_{r_1}^{r_2} \frac{dr}{r} = -k.2.\pi.L.\int_{T_1}^{T_2} dT$$

$$q \cdot [\ln r_2 - \ln r_1] = -k \cdot 2 \cdot \pi \cdot L \cdot (T_2 - T_1)$$

Aplicando-se propriedades dos logaritmos, obtemos:

$$q \left[\ln \frac{r_2}{r_1} \right] = k.2.\pi.L.(T_1 - T_2)$$

O fluxo de calor através de uma parede cilíndrica será então :

$$\dot{q} = \frac{k.2.\pi.L}{\left(\ln\frac{r_2}{r_1}\right)}.(T_1 - T_2)$$
(eq. 1.15)

O conceito de resistência térmica também pode ser aplicado à parede cilíndrica. Devido à analogia com a eletricidade, um fluxo de calor na parede cilíndrica também pode ser representado como :

 $\dot{q} = \frac{\Delta T}{R}$ onde, ΔT é o potencial térmico e R é a resistência térmica da parede cilíndrica

Então para a parede cilíndrica, obtemos:

$$\dot{q} = \frac{k \cdot 2 \cdot \pi \cdot L}{\left(\ln \frac{r_2}{r_1}\right)} \cdot \Delta T = \frac{\Delta T}{R}$$

$$R = \frac{\ln \left(\frac{r_2}{r_1}\right)}{k \cdot 2 \cdot \pi \cdot L}$$
(eq. 1.16)

Para o caso geral em que temos uma associação de paredes n cilíndricas associadas em paralelo, por analogia com paredes planas, o fluxo de calor é dado por :

$$\dot{q} = \frac{(\Delta T)_{total}}{R_t}$$
 onde, $R_t = \sum_{i=1}^n R_i = R_1 + R_2 + \dots + R_n$ (eq. 1.17)

1.2.7. CONDUÇÃO DE CALOR ATRAVÉS DE UMA CONFIGURAÇÃO ESFÉRICA

Consideremos uma esfera oca submetida à uma diferença de temperatura entre a superficie interna e a superficie externa, como pode ser visto na figura 3.12.

[figura 1.12]

O fluxo de calor que atravessa a parede esférica poder ser obtido através da equação de Fourier, ou seja :

$$\dot{q} = -k \cdot A \cdot \frac{dT}{dr}$$
 onde $\frac{dT}{dr}$ é o gradiente de temperatura na direção radial

Para configurações cilíndricas a área é uma função do raio : $A = 4\pi r^2$

Substituindo na equação de Fourier, obtemos :

$$q = -k.(4.\pi r^2) \frac{dT}{dr}$$

Fazendo a separação de variáveis e integrando entre T_1 em r_1 e entre T_2 em r_2 , chega-se a :

$$q \int_{r_1}^{r_2} r^{-2} . dr = -4.k.\pi . \int_{T_1}^{T_2} . dT \qquad q \left(-r^{-1} \Big|_{r_1}^{r_2} \right) = -4.k.\pi . \left(T \Big|_{T_1}^{T_2} \right)$$

$$q \left[-\frac{1}{r_1} - \left(-\frac{1}{r_2} \right) \right] = -4.k \pi \cdot (T_2 - T_1)$$

$$q \left[\frac{1}{r_1} - \frac{1}{r_2} \right] = 4.k \pi \cdot (T_1 - T_2)$$

O fluxo de calor através de uma parede esférica será então :

$$\dot{q} = \frac{4.k.\pi}{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)} \cdot (T_1 - T_2)$$
(eq. 1.18)

O conceito de resistência térmica também pode ser aplicado à parede esférica:

onde, ΔT é o potencial térmico; e R é a resistência térmica da parede

Então para a parede esférica, obtemos:

$$\dot{q} = \frac{4.k.\pi}{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)} \Delta T = \frac{\Delta T}{R}$$

$$R = \frac{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)}{4.k.\pi}$$
(eq. 1.19)

Para o caso geral em que temos uma associação de paredes n esféricas associadas em paralelo, por analogia com paredes planas, o fluxo de calor é dado por :

$$\dot{q} = \frac{(\Delta T)_{total}}{R_t}$$
 onde, $R_t = \sum_{i=1}^n R_i = R_1 + R_2 + \dots + R_n$ (eq. 1.20)

Exercício R.1.2.3. Uma parede de um forno é constituída de duas camadas : 0,20 m de tijolo refratário (k = 1,2 kcal/h.m.°C) e 0,13 m de tijolo isolante (k = 0,15 kcal/h.m.°C). A temperatura da superfície interna do refratário é 1675 °C e a temperatura da superfície externa do isolante é 145 °C. Desprezando a resistência térmica das juntas de argamassa, calcule :

- a) o calor perdido por unidade de tempo e por m2 de parede;
- b) a temperatura da interface refratário/isolante.

parede de refratário :

$$L_{\rm l}=0,20\,m$$
 $k_{\rm l}=1,2\;Kcal/h.m.^{o}C$ parede de isolante :

$$L_2 = 0.13 \, m$$
 $k_2 = 0.15 \, K cal/h.m.^{\circ} C$ $T_1 = 1675^{\circ} C$ $T_3 = 145^{\circ} C$

a) Considerando uma área unitária da parede (A=A₁=A₂=1 m2), temos :

$$\dot{q} = \frac{\left(\Delta T\right)_{total}}{R_{t}} = \frac{T_{1} - T_{3}}{R_{ref} + R_{iso}} = \frac{T_{1} - T_{3}}{\frac{L_{1}}{k_{1}.A} + \frac{L_{2}}{k_{2}.A}} = \frac{1675 - 145}{\frac{0.20}{1.2 \times 1} + \frac{0.13}{0.15 \times 1}}$$

$$\boxed{q = 1480.6Kcal/h(p/m^{2})}$$

b) O fluxo de calor também pode ser calculado em cada parede individual. Na parede de refratário, obtemos :
$$\dot{q} = \frac{T_1 - T_2}{R_{ref}} = \frac{T_1 - T_2}{\frac{L_1}{k_1 \cdot A}} = \frac{k_1 \cdot A}{L_1} \cdot (T_1 - T_2) \qquad 1480, 6 = \frac{1,2 \times 1}{0,20} \times (1675 - T_2)$$

$$\boxed{T_2 = 1428, 2^{\circ}C}$$

Exercício R.1.2.4. Um tanque de aço (k = 40 Kcal/h.m.oC), de formato esférico e raio interno de 0,5 m e espessura de 5 mm, é isolado com 1½" de lã de rocha (k = 0,04 Kcal/h.m.oC). A temperatura da face interna do tanque é 220 oC e a da face externa do isolante é 30 oC. Após alguns anos de utilização, a lã de rocha foi

substituída por outro isolante, também de 1½" de espessura, tendo sido notado então um aumento de 10% no calor perdido para o ambiente (mantiveram-se as demais condições). Determinar:

- a) fluxo de calor pelo tanque isolado com lã de rocha;
- b) o coeficiente de condutividade térmica do novo isolante;
- c) qual deveria ser a espessura (em polegadas) do novo isolante para que se tenha o mesmo fluxo de calor que era trocado com a lã de rocha.

$$r_1 = 0.5 m$$

 $r_2 = 0.5 + 0.005 = 0.505 m$
 $r_3 = 0.505 + 1.5 \times 0.0254 = 0.5431 m$
 $k_1 = 40 \text{ Kcal/h.m.}^{\circ} C$ $k_2 = 0.04 \text{ Kcal/h.m.}^{\circ} C$
 $T_1 = 220 {\circ} C$ $T_3 = 30 {\circ} C$

a)
$$R_t = \frac{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)}{k_1.4\pi} + \frac{\left(\frac{1}{r_2} - \frac{1}{r_3}\right)}{k_2.4\pi} = \frac{\frac{1}{0.5} - \frac{1}{0.505}}{40 \times 4\pi} + \frac{\frac{1}{0.505} - \frac{1}{0.5431}}{0.04 \times 4\pi} = 0,000039 + 0,276364 = 0,2764 h.° C/Kcal$$

$$\vec{q} = \frac{\left(\Delta T\right)_{total}}{R_t} = \frac{220 - 30}{0.2764} = 687,41Kcal/h$$

b) Levando em conta a elevação do fluxo de calor : $\dot{q}' = 1, 1 \times \dot{q} = 1, 1 \times 687, 41 = 756, 15 Kcal/h$

$$\dot{q} = 756,15 = \frac{T_1 - T_3}{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)} + \frac{\left(\frac{1}{r_2} - \frac{1}{r_3}\right)}{k_{iso}.4\pi} = \frac{220 - 30}{0,000039 + \frac{\left(\frac{1}{0,505} - \frac{1}{0,5431}\right)}{k_{iso} \times 4\pi}}$$

$$k_{iso} = 0.044 \, Kcal/h.m.^{\circ}C$$

 $\frac{k_{iso} = 0,044 \, K cal/h.m.^{\circ} \, C}{\text{c) Para manter o fluxo de calor deve ser usada uma maior espessura isolante :}}$

$$\dot{q} = 687,41 = \frac{T_2 - T_3}{\left(\frac{1}{r_2} - \frac{1}{r_3}\right)} = \frac{220 - 30}{\left(\frac{1}{0,505} - \frac{1}{r_3'}\right)} \implies r_3' = 0,5472m$$

$$e = r_3' - r_2 = 0,5472 - 0,505 = 0,0422 m = 4,22 cm$$

$$e = 4,22 cm = 1,66''$$

$$e = r_3' - r_2 = 0.5472 - 0.505 = 0.0422 m = 4.22 cm$$

$$e = 4,22 \, cm = 1,66$$
"

Exercício R.1.2.5. Um tubo de aço (k = 35 kcal/h.m.°C) tem diâmetro externo de 3", espessura de 0,2", 150 m de comprimento e transporta amônia a -20 °C (convecção na película interna desprezível). Para isolamento do tubo existem duas opções : isolamento de borracha (k = 0,13 kcal/h.m.°C) de 3" de espessura ou isolamento de isopor (k = 0,24 kcal/h.m.°C) de 2" de espessura. Por razões de ordem técnica o máximo fluxo de calor não pode ultrapassar 7000 Kcal/h. Sabendo que a temperatura na face externa do isolamento é 40 °C, pede-se :

- a) As resistências térmicas dos dois isolamentos;
- b) Calcule o fluxo de calor para cada opção de isolante e diga qual isolamento deve ser usado;
- c) Para o que não deve ser usado, calcule qual deveria ser a espessura mínima para atender o limite.

$$k_a = 35Kcal/h.m.^{\circ}C$$
 $T_e = 40 \,^{\circ}C$
 $k_e = 0.13 \, Kcal/h.m.^{\circ}C$ $T_i = -20 \,^{\circ}C$
 $k_i = 0.24 \, Kcal/h.m.^{\circ}C$ $L = 150m$
 $r_2 = 1.5'' = 1.5 \times 0.0254 = 0.0381m$
 $r_1 = 1.5'' - 0.2'' = 1.3'' = 0.03302m$
 $r_3 = r_e = 1.5'' + 3'' = 4.5'' = 0.1143m$
 $r_3 = r_i = 1.5'' + 2'' = 3.5'' = 0.0889m$

a) cálculo das resistências:

$$R_{e} = \frac{\ln\left(\frac{r_{e}}{r_{2}}\right)}{k_{e}.2.\pi.L} = \frac{\ln\left(\frac{0,1143}{0,0381}\right)}{0,13\times2\times\pi\times150} = 0,00897h.^{\circ}C/Kcal \quad R_{i} = \frac{\ln\left(\frac{0,0889}{0,0381}\right)}{0,24\times2\times\pi\times150} = 0,00375h.^{\circ}C/Kcal$$

b) cálculo dos fluxos de calor:

$$\dot{q}_e = \frac{T_e - T_i}{R_e + R_a} = \frac{40 - (-20)}{\ln\left(\frac{0.0381}{0.03302}\right)} \Rightarrow \dot{q}_e = 6685.7 \, Kcal/h$$

$$\dot{q}_i = \frac{T_e - T_i}{R_i + R_a} = \frac{40 - (-20)}{0.00375 + 0.0000043} \Rightarrow \dot{q}_e = 15981.7 \, Kcal/h$$

$$\dot{q}_{exig} = \frac{T_e - T_i}{R_i + R_a} = \frac{40 - (-20)}{\ln\left(\frac{r_i'}{0,0381}\right)} \Rightarrow 7000 = \frac{60}{\ln\left(\frac{r_i'}{0,0381}\right)} = 1,93784 \Rightarrow e^{1,93784} = \frac{r_i'}{0,0381} \qquad r_i' = 0,265m = 10,4" \Rightarrow e = 10,4" - 1,5" = 8,9"$$

EXERCÍCIOS PROPOSTOS:

Exercício P.1.2.1. Em uma indústria farmacêutica, pretende-se dimensionar uma estufa. Ela terá a forma cúbica de 1 m de lado e será construída de aço (k = 40 kcal/h.m. °C), com 10 mm de espessura, isolada com lã de vidro (k= 0,08 kcal/h.m. °C) e revestida com plástico (k= 0,2 kcal/h.m. °C) de 10 mm de espessura. O calor será inteiramente gerado por resistências elétricas de 100 Ω , pelas quais passará uma corrente de 10 A ($P = R \cdot i^2$). Não pode ser permitida uma perda de calor superior a 10 % do calor gerado. Sabendo-se que as temperatura nas faces das paredes, interna e externa, são respectivamente 300 °C e 20 °C, pede-se :

- a) a resistência térmica exigida na parede da estufa;
- b) a espessura da lã de vidro.

DADO: 1 W = 0.86 Kcal/h

DAD **Respostas :** 0,326 h.°C/Kcal ; 152,1 mm

Exercício P.1.2.2. Um tubo de aço (k = 35 kcal/h.m. °C) tem diâmetro externo de 3", espessura de 0,2", 150 m de comprimento e transporta amônia a -20 °C (convecção desprezível). Para isolamento do tubo existem duas opções : isolamento de espuma de borracha (k = 0,13 kcal/h.m. °C) de 3" de espessura e isolamento de isopor (k = 0,24 kcal/h.m.oC) de 2" de espessura. Por razões de ordem técnica o máximo fluxo de calor não pode ultrapassar 7000 Kcal/h. Sabendo que a temperatura na face externa do isolamento é 40 °C, pede-se :

- a) As resistências térmicas dos isolantes;
- b) Calcule o fluxo de calor para cada opção e diga qual isolamento deve ser usado;

c) Para o que não servir, calcule qual deveria ser a espessura mínima para atender o limite de fluxo de calor. **Respostas :** 0,00897 h. °C/Kcal e 0,00375 h. °C/Kcal ; 6685,7 Kcal/h 15981,7 Kcal/h ; 8,9"

Exercício P.1.2.3. Um forno de 6 m de comprimento, 5m de largura e 3 m de altura tem sua parede constituída de 3 camadas. A camada interna de 0,4 m é de tijolos refratários (k=1,0 kcal/h.m.°C). A camada intermediária de 0,30 m tem a metade inferior de tijolos especiais (k=0,20 kcal/h.m°C) e a metade superior de tijolos comuns (k=0,40 kcal/h.m.oC). A camada externa de 0,05m é de aço (k=30 kcal/hm °C). Sabendo-se que a superfície interna está a 1700 °C e a superfície externa está a 60 °C . Pede-se :

a) o fluxo de calor pela parede

b) considerando que após, alguns anos o fluxo de calor aumentou 10 % devido ao desgaste da camada de refratários. Calcular este desgaste supondo que o mesmo foi uniforme em todo o forno.

Respostas: 77222 Kcal/h ; 12,7 cm

Exercício P.1.2.4. Um reservatório metálico (k=52~W/m.K), de formato esférico, tem diâmetro interno 1,0 m , espessura de 5 mm, e é isolado com 20 mm de fibra de vidro (k=0.034~W/m.K). A temperatura da face interna do reservatório é 200 °C e a da face externa do isolante é 30 °C. Após alguns anos de utilização, a fibra de vidro foi substituída por outro isolante, mantendo a mesma espessura de isolamento. Após a troca do isolamento, notou-se uma elevação de 15% na transferência de calor, bem como uma elevação de 2,5 °C na temperatura da face externa do isolante. Determinar :

- a) o fluxo de calor antes da troca do isolamento;
- b) o coeficiente de condutividade térmica do novo isolante;
- c) qual deveria ser a espessura do novo isolamento para que as condições de temperatura externa e fluxo voltassem a ser as mesmas de antes.

Respostas: 871,6 W ; 0,042 W/m.K ; 29,4 mm

Exercício P.1.2.5. Uma longa camada isolante de 9 mm de espessura é utilizada como isolante térmico de um equipamento. A camada isolante é composta de borracha e possui um grande número de vazios internos de seção quadrada e preenchidos com ar parado, conforme mostra o esquema na figura abaixo. A condutividade térmica da borracha é 0,097 W/m.K e a condutividade térmica do ar parado é 0,022 W/m.K. Considerando que a temperatura da face quente da camada é 120 °C e a da face fria é 45 °C, determine:

- a) a fluxo de calor transferido por unidade de área da camada isolante;
- b) a percentagem de variação do fluxo de calor caso a camada isolante seja substituída por outra de borracha maciça de mesma espessura.

Respostas: 667,96 W ; +21%

1.3. CONVEÇÇÃO

1.3.1. LEI BÁSICA

O calor transferido por <u>convecção</u>, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado através da relação proposta por Isaac Newton :

$$\dot{q} = h.A.\Delta T$$
 onde, (eq. 1.21)

q = fluxo de calor transferido por convecção (kcal/h);

A =área de transferência de calor (m²);

 ΔT = diferença de temperatura entre a superfície (T_S) e a do fluido em um local longe da superfície (T_∞) (0 C); h = coeficiente de transferência de calor por convecção ou coeficiente de película.

A figura 1.13 ilustra o perfil de temperatura para o caso de um fluido escoando sobre uma superficie aquecida.

A simplicidade da equação de Newton é ilusória, pois ela não explícita as dificuldades envolvidas no estudo da convecção. O coeficiente de película é, na realidade, uma função complexa do escoamento do fluido, das propriedades físicas do meio fluido e da geometria do sistema. A partir da equação 1.21, podem ser obtidas as unidades do coeficiente de película. No sistema métrico, temos:

$$h = \frac{\dot{q}}{A \cdot \Delta T} \qquad \left(\frac{Kcal}{h \cdot m^2 \cdot {}^o C}\right) \tag{eq. 1.22}$$

Analogamente, nos sistemas Inglês e Internacional, temos :

Sistema Iinternacional $\rightarrow \frac{W}{m^2.K}$

1.3.2. CAMADA LIMITE

Quando um fluido escoa ao longo de uma superficie, seja o escoamento em regime <u>laminar</u> ou <u>turbulento</u>, as partículas na vizinhança da superficie são desaceleradas em virtude das forças viscosas. A porção de fluido contida na região de variação substancial de velocidade, ilustrada na figura 1.14, é denominada de <u>camada limite hidrodinâmica</u>.

Consideremos agora o escoamento de um fluido ao longo de uma superfície quando existe uma diferença de temperatura entre o fluido e a superfície. Neste caso, O fluido contido na região de variação substancial de temperatura é chamado de <u>camada limite térmica</u>. Por exemplo, analisemos a transferência de calor para o caso de um fluido escoando sobre uma superfície aquecida, como mostra a figura 1.15. Para que ocorra a transferência de calor por convecção através do fluido é necessário um gradiente de temperatura (camada limite térmica) em uma região de baixa velocidade (camada limite hidrodinâmica).

O mecanismo da convecção pode então ser entendido como a ação combinada de condução de calor na região de baixa velocidade onde existe um gradiente de temperatura e movimento de mistura na região de alta velocidade. Portanto :

- região de baixa velocidade → a condução é mais importante
- região de alta velocidade → a mistura entre o fluido mais quente e o mais frio é mais importante

1.3.3. DETERMINAÇÃO DO COEFICIENTE DE PELÍCULA (h)

Como visto anteriormente, o coeficiente h é uma função complexa de uma série de variáveis relacionadas com as seguintes características. Logo, h é uma função do tipo :

$$h = f(D, \mu, \rho, c_p, k, \delta, V, g, \Delta T)$$
 onde, (eq. 1.23)

D: é a dimensão que domina o fenômeno da convecção. Ex: diâmetro de um tubo, altura de uma placa, etc

 μ : viscosidade dinâmica do fluido; ρ : densidade do fluido;

 C_n : calor específico do fluido; k: condutividade térmica do fluido;

 δ : coeficiente de expansão volumétrica V : velocidade do fluido;

g : aceleração da gravidade; ΔT : diferença de temperatura entre a superfície e o fluido

Uma fórmula que levasse em conta todos estes parâmetros seria extremamente complexa. O problema é, então, contornado dividindo-se o estudo em casos particulares. Para cada caso são obtidas equações empíricas através da técnica de <u>análise dimensional combinada com experiências</u>, onde os coeficientes de película são calculados a partir de equações empíricas obtidas correlacionando-se os dados experimentais com o auxílio da análise dimensional. Os resultados são obtidos na forma de equações dimensionais conforme o regime de escoamento:

• Para Convecção Forçada a equação é do tipo:

$$Nu = \Phi(Re, Pr)$$

onde,
$$Nu(Nusselt) = \frac{h.D}{k}$$
; $Re(Reynolds) = \frac{D.V.\rho}{\mu}$ $Pr(Prandt) = \frac{c_p.\mu}{k}$ (eq. 1.24)

• Para Convecção Natural a equação é do tipo:

$$Nu = \Phi(Gr, \Pr)$$
 onde, $Gr(Grashof) = \frac{D^3 \cdot \delta \cdot g \cdot \Delta T}{\mu^2}$ (eq. 1.25)

Exercício R.1.3.1. Em uma placa plana de 150 mm de comprimento e 100 mm de largura, eletricamente aquecida, a máxima temperatura permissível no centro da placa é 135 °C. Para este caso específico o número de Grashof é 2,2 x 10⁷ e o número de Prandt é 0,7. Sabendo que a equação empírica, obtida com o auxílio da análise dimensional, que descreve a convecção natural (regime laminar) em uma placa plana é dada pela equação abaixo:

$$Nu = 0.555 \times Gr^{1/4} \times Pr^{1/4}$$
 onde, $Nu = \frac{h.L}{k}$ (L:comprimento da placa)

Calcular o fluxo de calor por transferido por convecção, por ambos lados da placa, para o ar atmosférico a 25 °C ($k_{ar} = 0.026 \text{ Kcal/h.m.}$ °C).

A dimensão característica (L) é comprimento da placa : L =0,15 m

O de coeficiente de película do ar em volta da placa é calculado a partir da equação dimensional

Nu =
$$\frac{h.L}{k_{ar}}$$
 = 0.555 × Gr^{1/4} × Pr^{1/4}

$$\frac{h \times 0.15}{0.026} = 0.555 \times (2.2 \times 10^7)^{1/4} \times (0.7)^{1/4} \implies h = 6.03 K cal/h.m^2.^{\circ} C$$

O fluxo de calor por convecção é obtido pela equação de Newton (equação 1.21) :

$$\dot{q} = h.A.\Delta T = 6.03 \times [2 \times (0.10 \times 0.15)] \times (135 - 25)$$

 $\dot{q} = 19.86 \ Kcal/h$

Exercício R.1.3.2. Em uma instalação industrial, ar quente a 300 °C flui sobre uma placa fina metálica plana, com velocidade de 36 km/h. Como a placa contém alguns sensores, a mesma deve ser mantida a uma temperatura de 27 °C. Para isto, utiliza-se um sistema de refrigeração composto por tubos sob a placa, por onde circula água de refrigeração. Considerando que a placa é quadrada, com 1,5 m de lado, determine o fluxo de calor a ser extraído pelo sistema de refrigeração para manter a placa na temperatura de 27 °C.

Dados/Informações Adicionais para o Exercício:

- Considere regime permanente e despreze os efeitos da radiação e da condução.
- Para fluxo <u>laminar</u> (*Re* < 500000) seguinte correlação adimensional é apropriada:

$$Nu = 0.664 \cdot Re_L^{1/2} \cdot Pr^{1/2}$$

- Para fluxo <u>turbulento</u> (*Re* > 500000) seguinte correlação adimensional é apropriada:

$$Nu = 0.0296 \cdot \text{Re}^{4/5} \cdot \text{Pr}^{\frac{1}{3}}$$
, onde:

- Número de Nulsselt : $Nu_L = \frac{h \cdot L}{k}$

onde: h: coeficiente de película ($W/m^2.K$)

L: largura da placa (m)

k : condutividade térmica do ar (W/m.K)

- Número de Reynolds : $Re_L = \frac{v_{\infty} L}{D}$

onde: v_{∞} : velocidade do fluxo de ar (m/s)

v: viscosidade cinemática do ar (m2/s)

- Número de Prandt : *Pr (função da temperatura da película)*
- As propriedades do ar e o número de Prandt são tabelados em função temperatura da película. Calculando a temperatura da película (média entre a superfície o fluxo de ar), obtemos os dados em uma tabela de propriedades do ar :

$$T_f = \frac{T_S + T_\infty}{2} = \frac{27 + 300}{2} = 163.5$$
°C

- condutividade térmica do ar : k = 0.0364 W/m.K

- viscosidade cinemática do ar : $v = 3.13 \times 10-5 \text{ m2/s}$

- Número de Prandt : Pr = 0.687

$$v_{\infty} = 36 \text{ km/h} = 10 \text{ m/s}$$
 $L = 1.5 \text{ m}$
 $v = 3.13E-05 \text{ m}^2/\text{s}$
 $k = 3.64E-02 \text{ W/m.K}$
 $T_{ar} = 300 \text{ }^{\circ}\text{C}$
 $T_{chapa} = 27 \text{ }^{\circ}\text{C}$
 $Pr = 0.687$

Ar Ouente

Cálculo do número de Reynolds:

$$Re = \frac{v_{\infty} L}{v} = \frac{10 \times 1.5}{3.13 \times 10^{-5}} = 478522,00$$

Portanto, a equação escolhida é:

$$Nu = 0,664 \cdot \text{Re}_L^{\frac{1}{2}} \cdot \text{Pr}^{\frac{1}{2}}$$

 $Nu = 0,664 \cdot 478522^{\frac{1}{2}} \cdot 0,687^{\frac{1}{2}}$
 $Nu = 380,71$

Com o número de Nulsselt, calculamos o coeficiente de película

$$Nu = \frac{h \cdot L}{k} \implies h = \frac{Nu \times k}{L} = \frac{380,71 \times 0,0364}{1,5} = 9,24 W/m^2.K$$

O fluxo de calor transferido por convecção para a placa é obtido pela equação de Newton e é também o fluxo de calor que tem que ser extraído pelo sistema de refrigeração :

$$\dot{q} = h \cdot A \cdot (T_S - T_\infty)$$

$$\dot{q} = 9.24 \{ W/m^2 \cdot K \} \times (1.5 \times 1.5) \{ m^2 \} \times [(300 + 273) - (27 + 273)] \{ K \}$$

$$\dot{q} = 5674,83 W$$

1.3.4. RESISTÊNCIA TÉRMICA NA CONVECÇÃO

Como visto anteriormente, a expressão para o fluxo de calor transferido por convecção é :

$$\dot{q} = h.A.\Delta T$$
 ou $\dot{q} = \frac{\Delta T}{1/h_A}$

Um fluxo de calor é também uma relação entre um potencial térmico e uma resistência :

$$q = \frac{\Delta T}{R}$$

Igualando as equações obtemos a expressão para a resistência térmica na convecção :

$$R = \frac{1}{h.A}$$
 (eq. 1.26)

1.3.5. MECANISMOS COMBINADOS DE TRANSFERÊNCIA DE CALOR (CONDUÇÃO-CONVECÇÃO)

Consideremos uma parede plana situada entre dois fluidos a diferentes temperaturas. Um bom exemplo desta situação é o fluxo de calor gerado pela combustão dentro de um forno, que atravessa a parede por condução e se dissipa no ar atmosférico.

[figura 1.16]

Utilizando a equação de Newton (equação 1.21) e a equação para o fluxo de calor em uma parede plana (equação 1.3), podemos obter as seguintes equações para o fluxo de calor transferido pelo forno :

$$\dot{q} = h_1.A.(T_1 - T_2)$$
 $\dot{q} = \frac{k.A}{I}(T_2 - T_3)$ $\dot{q} = h_2.A.(T_3 - T_4)$

Colocando as diferenças de temperatura em evidência e somando membro a membro, obtemos :

$$(T_1 - T_2) = \frac{\dot{q}}{h_1.A}$$

$$(T_2 - T_3) = \frac{\dot{q}.L}{k.A}$$

$$(T_3 - T_4) = \frac{\dot{q}}{h_2.A}$$

$$T_1 - T_2 + T_2 - T_3 + T_3 - T_4 = \dot{q}.\left(\frac{1}{h_1.A} + \frac{L}{k.A} + \frac{1}{h_2.A}\right)$$

Substituindo as expressões para as resistências térmicas à convecção e à condução em parede plana na equação acima, obtemos fluxo de calor transferido pelo forno :

$$\dot{q} = \frac{T_1 - T_4}{\frac{1}{h_1 \cdot A} + \frac{L}{k \cdot A} + \frac{1}{h_2 \cdot A}} = \frac{T_1 - T_4}{R_1 + R_2 + R_3} \Rightarrow \dot{q} = \frac{(\Delta T)_{total}}{R_t}$$
 (eq. 1.27)

Portanto, também quando ocorre a ação combinada dos mecanismos de condução e convecção, a analogia com a eletricidade continua válida; sendo que a resistência total é igual à soma das resistências que estão em série, não importando se por convecção ou condução.

Exercício R.1.3.3. A parede de um edifício tem 30,5 cm de espessura e foi construída com um material de k = 1,31 W/m.K. Em dia de inverno as seguintes temperaturas foram medidas : temperatura do ar interior = 21,1 °C; temperatura do ar exterior = -9,4 °C; temperatura da face interna da parede = 13,3 °C; temperatura da face externa da parede = -6,9 °C. Calcular os coeficientes de película interno e externo à parede.

$$T_1 = 21,1 \, {}^{0}C \ k = 1,31 \, W \ / m . K$$
 $T_2 = 13,3 \, {}^{0}C \ A = 1 m^{2}$
 $T_3 = -6,9 \, {}^{0}C \ L = 0,305 \ m$
 $T_4 = -9,4 \, {}^{0}C$

O fluxo de calor pode ser obtido considerando a condução através da parede :

$$q = \frac{\Delta T}{R_2} = \frac{T_2 - T_3}{\frac{L}{k.A}} = \frac{13.3 - (-6.9)}{\frac{0.305}{1.31 \times 1}}$$

$$\dot{q} = 86,76 W \quad p / m^2$$

Considerando agora a convecção na película externa:

$$q = \frac{T_1 - T_2}{R_1} = \frac{T_1 - T_2}{\frac{1}{h_1 \cdot A}} \implies 86,76 = \frac{21,1 - 13,3}{\frac{1}{h_1 \times 1}}$$

$$h_i = 11,12 W/m^2 \cdot k$$

Agora, na película externa:

$$86,76 = \frac{-6,9 - (-9,4)}{\frac{1}{h \times 1}}$$

$$\boxed{h_e = 34,72 \ W/m^2 \cdot K}$$

Exercício R.1.3.4. Um reator de paredes planas foi construído em aço inox e tem formato cúbico com 2 m de lado. A temperatura no interior do reator é 600 °C e o coeficiente de película interno é 45 kcal/h.m².°C. Tendo em vista o alto fluxo de calor, deseja-se isola-lo com lã de rocha (k=0,05 kcal/h.m.ºC) de modo a reduzir a transferência de calor. Considerando desprezível a resistência térmica da parede de aço inox e que o ar ambiente está a 20°C com coeficiente de película 5 kcal/h.m².°C, calcular :

- a) O fluxo de calor antes da aplicação da isolamento;
- b) A espessura do isolamento a ser usado, sabendo-se que a temperatura do isolamento na face externa deve ser igual a 62 °C;
- c) A redução (em %) do fluxo de calor após a aplicação do isolamento.

$$h_{ar} = 5Kcal/h.m^2.^{\circ}C$$
 $h_i = 45Kcal/h.m^2.^{\circ}C$
 $k_{iso} = 0.05Kcal/h.m.^{\circ}C$ $A = 6 \times (2 \times 2) = 24m^2$
 $T_i = 600 ^{\circ}C$ $T_{ar} = 20 ^{\circ}C$ $T_s = 62 ^{\circ}C$

a) Desprezando a resistência do inox e a variação da área devido à espessura do isolante, o fluxo antes do

$$\dot{q} = \frac{(\Delta)_{total}}{R_t} = \frac{T_i - T_{ar}}{\frac{1}{h_i . A} + \frac{1}{h_{ar} . A}} = \frac{600 - 20}{\frac{1}{45.24} + \frac{1}{5.24}}$$

$$\dot{q} = \frac{62640, 4 \ Kcal/h}{\frac{1}{45.24} + \frac{1}{5.24}}$$

$$\dot{q} = 62640, 4 \ Kcal/h$$

b) Após o isolamento o fluxo pode ser calculado na camada limite externa :

$$\dot{q}' = \frac{T_s - T_{ar}}{\frac{1}{h_{ar} \cdot A}} = \frac{62 - 20}{\frac{1}{5.24}} = 5040 \ Kcal/h$$

A espessura do isolamento é calculada levando em conta as resistências da película interna e do isolante :

c) %Redução =
$$\frac{\dot{q} - \dot{q}'}{\dot{q}} \times 100 = \frac{62640, 4 - 5040}{62640} \times 100$$
 Þ [%Redução = 91,95%]

Exercício R.1.3.5. Um tanque de formato cúbico é utilizado para armazenar um produto químico a 210 $^{\circ}$ C, com coeficiente de película de 80 W/m². $^{\circ}$ C. A parede do tanque é constituída de uma camada interna à base de carbono (k = 22 W/m.K) de 40 mm de espessura, uma camada intermediária de refratário (k = 0,212 W/m.K) e um invólucro de aço (k = 60 W/m.K) com 10 mm de espessura. Por motivo de segurança dos trabalhadores, a temperatura da superfície externa do aço não deve ser maior que 60 $^{\circ}$ C. Considerando que a temperatura ambiente é 30 $^{\circ}$ C, com coeficiente de película externo de 20 W/m².K, determine:

- a) a espessura mínima do refratário para atender a condição de segurança;
- b) a temperatura da superfície externa do aço se a camada de refratário for substituída por uma de isolante (k = 0,0289 W/m.K) de mesma espessura.

$$\begin{split} L_1 &= 40 \, mm = 0,04 \, m \\ L_2 &= 10 \, mm = 0,01 \, m \\ k_1 &= 22 \, W/m. \, K \\ k_2 &= 0,212 \, W/m. \, K \quad k'_2 = 0,0289 \, W/m. \, K \\ k_3 &= 60 \, W/m. \, K \\ h_i &= 80 \, W/m^2. \, K \\ h_e &= 20 \, W/m^2. \, K \\ T_1 &= 210 \, ^oC \quad T_5 = 60 \, ^oC \quad T_6 = 30 \, ^oC \end{split}$$

a) Para uma área unitária de parede (A = 1 m2), o fluxo de calor poder ser calculado na película externa:

$$\dot{q} = \frac{T_4 - T_5}{\frac{1}{h \cdot A}} = \frac{60 - 30}{\frac{1}{20 \times 1}} = 600 \ W \ \left(p/m^2 \right)$$

De posse do fluxo, e considerando as resistências térmicas entre 210 e 60 °C, podemos fazer :

$$\dot{q} = \frac{T_1 - T_5}{\frac{1}{h_i \cdot A} + \frac{L_1}{k_1 \cdot A} + \frac{L_2}{k_2 \cdot A} + \frac{L_3}{k_3 \cdot A}} \Rightarrow 600 = \frac{210 - 60}{\frac{1}{80 \times 1} + \frac{0.04}{22 \times 1} + \frac{L_2}{0.212 \times 1} + \frac{0.01}{60 \times 1}}$$

$$\boxed{L_2 = 0.05m = 50mm}$$

b) O novo fluxo de calor, menor devido ao uso do isolante de baixa condutividade (k = 0.0289 W/m.K), é obtido considerando as duas únicas temperaturas que não variam :

$$\dot{q}' = \frac{T_1 - T_6}{\frac{1}{h_i \cdot A} + \frac{L_1}{k_1 \cdot A} + \frac{L_2}{k_2' \cdot A} + \frac{L_3}{k_3 \cdot A} + \frac{1}{h_e \cdot A}} = \frac{210 - 30}{\frac{1}{80 \times 1} + \frac{0.04}{22 \times 1} + \frac{0.05}{0.0289 \times 1} + \frac{0.01}{60 \times 1} + \frac{1}{20 \times 1}}$$

$$\dot{q} = 100.3 \ W \ (p/m^2)$$

Novamente, na película externa, podemos obter a temperatura da superfície do aço :

$$\dot{q}' = \frac{T_5' - T_6}{\frac{1}{h_e \cdot A}} \quad \Rightarrow \quad 100,3 = \frac{T_5' - 30}{\frac{1}{20 \times 1}} \quad \Rightarrow \quad \boxed{T_5' = 35 \, {}^{\circ}C}$$

Exercício R.1.3.6. Um recipiente esférico é usado para armazenar nitrogênio líquido a 77 K (ponto de ebulição). O recipiente tem 0,5m de diâmetro interno e é isolado com uma camada de pó de sílica (k = 0,0017 W/m.K). A isolação tem 25 mm de espessura e sua superfície externa está exposta ao ar a 300 K. O coeficiente de película externo é 20 W/m².K. O calor latente de vaporização e a densidade do nitrogênio são 2x10⁵ J/Kg e 804 Kg/m³, respectivamente. Desprezando as resistências térmicas da película interna e das paredes metálicas do recipiente, calcular :

a) Fluxo de calor transferido para o nitrogênio

b) Taxa de evaporação do nitrogênio em litros/dia (existe um respiro para a saída dos gases)

$$T_{N_2} = 77K \ T_{ar} = 300K$$

 $k_{si} = 0.0017W/m^2 \ .K$
 $\Delta H_v = 2 \times 10^5 \ J/Kg$
 $\rho_{N_2} = 804Kg/m^3$
 $r_1 = 0.25m$
 $r_2 = 0.25 + 0.025 = 0.275m$

a) O fluxo de calor transferido pode ser calculado assim:

$$q = \frac{(\Delta T)_{total}}{R_t} = \frac{T_{ar} - T_{N_2}}{R_{ar}^{conv} + R_{Si}^{cond} + R_{aco}^{cond} + R_{N_2}^{conv}}$$

Desprezando: $R_{aco}^{cond} \approx 0eR_{N_2}^{conv} \approx 0$, temos:

$$q = \frac{T_{ar} - T_{N_2}}{\frac{1}{h_{ar} \times 4 \times \pi \times r_2^2} + \frac{1}{4 \times \pi} \left[\frac{1}{k_{Si}} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \right]}$$

$$\dot{q} = 13,06 W$$

b) A energia recebida pelo N_2 , utilizada na evaporação, é o produto da massa pelo calor latente de vaporização $Q=m.\Delta H_v$

Conhecendo a taxa de transferência de energia (calor), podemos obter a taxa de evaporação :

$$q = m.\Delta H_{v} \Rightarrow m = \frac{q}{\Delta H_{v}} = \frac{13,06J/s}{2 \times 10^{5} J/Kg} = 6,53 \times 10^{-5} Kg/s$$

$$m = 6,53 \times 10^{-5} \frac{Kg}{s} \times 3600 \frac{s}{h} \times 24 \frac{h}{dia} = 5,64 Kg/dia$$

$$V = \frac{m}{\rho} = \frac{5,64 Kg/dia}{804 Kg/m^{3}} = 0,007 m^{3}/dia$$

$$V = 7 litros/dia$$

Exercício R.1.3.7. Um copo de refrigerante pode ser considerado como um cilindro de 20 cm de altura e 7 cm de diâmetro. As paredes do copo são de um plástico muito fino e com resistência térmica desprezível. Dentro do copo são colocados 2 cubos de gelo com 3 cm de lado, de modo que o mesmo fica cheio até a borda com a mistura gelo-refrigerante que permanece a 0 °C até a fusão completa do gelo. O copo está depositado sobre uma superfície bem isolada, de modo que devem ser consideradas apenas as transferências de calor pelas áreas laterais e superior. Considerando que o ar ambiente está a 25 °C, com coeficiente de película de 25 Kcal/h.m².°C, e que a densidade e o calor latente de fusão do gelo são 935 Kg/m³ e 80,6 Kcal/Kg, respectivamente, calcular :

a) O fluxo de calor transferido entre o ambiente e a mistura gelo-refrigerante; ③

a) O tempo necessário para a fusão completa do gelo. ②

$$r = 4.5cm = 0.045m L = 20cm = 0.2m$$

$$T_{ar} = 35$$
 °C $h = 35$ Kcal/h.m².°C

temp. da mistura gelo/água $ightarrow T_p$ =0 °C

$$\rho_g = 935 Kg/m^3 \Delta H_f = 80.6 Kcal/Kg$$

lado do cubo de gelo $\rightarrow d = 3cm = 0.03m$

Cálculo do fluxo de calor para o copo (desprezando a área da base):

Área superior
$$\rightarrow A_1 = \pi . r = \pi \times (0.045)^2 = 0.006362 \, m^2$$

Área lateral →
$$A_2 = 2.\pi . r. L = 2 \times \pi \times 0.045 \times 0.2 = 0.05655 m^2$$

$$\dot{q} = \dot{q}_1 + \dot{q}_2 = h. A_1. \Big(T_{ar} - T_p \Big) + h. A_2. \Big(T_{ar} - T_p \Big)$$

$$\dot{q} = \dot{q}_1 + \dot{q}_2 = 35 \times 0.006362 \times (35 - 0) + 35 \times 0.05655 \times (35 - 0)$$

$$\dot{q} = 77.0672 \ Kcal/h$$

Cálculo do calor necessário para a fusão do gelo :

Volume dos cubos
$$\rightarrow V = 2.(L)^3 = 2 \times (0.03)^3 = 0.000054 \, m^3$$

Massa da placa
$$\rightarrow m = \rho_g.V = 935(Kg/m^3) \times 0.000054 m^3 = 0.05049 Kg$$

$$Q = \Delta H_f.m = 80,6 \ Kcal/Kg \times 0,05049 \ Kg = 4,0695 \ Kcal$$

$$\dot{q} = \frac{Q}{t} \implies t = \frac{Q}{\dot{q}} = \frac{4,0695 \, Kcal}{77,0672 \left(Kcal/h \right)} = 0,0528 \, h$$

Exercício R.1.3.8. Um cabo elétrico de 10 mm de diâmetro tem resistência elétrica por unidade de comprimento de 0,001 Ω/m. e é revestido por uma camada de material plástico de 1 mm de espessura e condutividade térmica 0,20 W/m.K. O cabo vai ser utilizado em uma ambiente cujo ar está na temperatura de 27 °C, com coeficiente de película de 10 W/m².K. Se o plástico usado suporta no máximo 177 °C sem se derreter, determine a máxima corrente elétrica que pode passar pelo cabo.

$$r_2$$

$$r_1 = 5 \text{ mm} = 0,005 \text{ m}$$

 $r_2 = 5 \text{ mm} + 1 \text{ mm} = 6 \text{ mm} = 0,006 \text{ m}$
 $k = 0,20 \text{ W/m.K}$
 $h = 10 \text{ W/m}^2.\text{K}$
 $L = 1 \text{ m} \implies R = 0,001 \Omega$

Cálculo do calor transferido na temperatura máxima (177 °C)

$$q = \frac{T_{\text{max}} - T_{ar}}{R_p + R_{ar}} = \frac{T_{\text{max}} - T_{ar}}{\frac{\ln(r_2/r_1)}{k.2.\pi.L} + \frac{1}{h.(2.\pi.r_2.L)}} = \frac{177 - 27}{\frac{\ln(0.006/0,005)}{0.20.2.\pi.1} + \frac{1}{10.(2.\pi.0,006.1)}} = 53.62 \, W/m$$

Determinação da corrente máxima

$$P = R.i^2 \rightarrow 53,62 = 0,001.i^2 \rightarrow i = 231,6 A$$

EXERCÍCIOS PROPOSTOS:

Exercício P.1.3.1. Uma parede de um forno é constituída de duas camadas : 0,20 m de tijolo refratário (k =1,2 kcal/h.m.°C) e 0,13 m de tijolo isolante (0,15 kcal/h.m.°C). A temperatura dos gases dentro do forno é 1700°C e o coeficiente de película na parede interna é 58 kcal/h.m^{2.o}C. A temperatura ambiente é 27 °C e o coeficiente de película na parede externa é 12,5 kcal/h m² °C. Calcular :

- a) o fluxo de calor por m² de parede;
- c) a temperatura nas superfícies interna e externa da parede.

Respostas: $1480.6 \text{ Kcal/h} (\text{p/m}^2)$; $145 \,^{\circ}\text{C}$

Exercício P.1.3.2. Um forno retangular de uma fábrica de cerâmica está isolado com duas camadas, sendo a primeira , que está em contato com a carga do forno, de refratário especial (k= 0,6 kcal/h.m.^oC) e a outra de um bom isolante (k= 0,09 kcal/h.m.^oC). Sabe-se que a temperatura da face interna do forno é 900 °C e que a temperatura do ar ambiente é 20 °C (h = 20 kcal/hm °C). O fluxo de calor através da parede do forno, de 40 cm de espessura, é igual a 800 kcal/h m . Pede-se :

- a) A espessura de cada camada que forma a parede do forno
- b) A temperatura da interface das camadas

c) Se for especificada uma temperatura máxima de 30 °C na parede externa do forno, qual a nova espessura isolante necessária?

Respostas: 0,359 m e 0,0405 m ; 420 °C ; 0,337 m

Exercício P.1.3.3. Um submarino deve ser projetado para proporcionar uma temperatura agradável à tripulação não inferior a 20 °C. O submarino pode ser idealizado como um cilindro de 10 m de diâmetro e 70 m de comprimento. O coeficiente de película interno é cerca de 12 kcal/h.m².°C, enquanto que, no exterior, estimase que varie entre 70 kcal/h.m².°C (submarino parado) e 600 kcal/h.m².°C (velocidade máxima). A construção das paredes do submarino é do tipo sanduíche com uma camada externa de 19 mm de aço inoxidável (k=14 Kcal/h.m.°C), uma camada de 25 mm de fibra de vidro (k=0,034 Kcal/h.m.°C) e uma camada de 6 mm de alumínio (k=175 Kcal/h.m.°C) no interior. Determine a potência necessária (em kW) da unidade de aquecimento requerida se a temperatura da água do mar varia entre 7 °C e 12 °C. DADO : 1 KW = 860 Kcal/h **Resposta :** 40,2 KW ; 50 mm ; 35 °C

Exercício P.1.3.4. Um reservatório esférico (k = 1,65 kcal/h.m.°C) de diâmetro externo 1,2 m e interno 1,1 m é aquecido internamente por resistência elétrica de modo a manter a temperatura da superfície externa a 90 °C. Quando água de chuva a 25 °C flui pelo lado externo do reservatório, durante uma tempestade, a potência requerida na resistência é 140 KW. Quando ar atmosférico a 25 °C flui pelo lado externo do reservatório, durante uma ventania, a potência requerida é 20 KW.

- a) Calcular os coeficientes de película para os fluxos de água e ar.
- b) Calcular a temperatura da superficie interna do reservatório em ambos casos.

DADO: 1 KW = 860 kcal/h

Resposta: 58,5 e 409,5 Kcal/h.m².°C; 215,7°C e 969,8 °C

Exercício P.1.3.5. Um tanque de formato cúbico, com 1 m de lado, é utilizado para armazenar um produto químico a 210 $^{\circ}$ C, com coeficiente de película interno de 80 W/m².K. A parede do tanque é constituída de uma camada interna de carbono (k = 22 W/m.K) de 40 mm de espessura, uma camada intermediária de refratário (k = 0.212 W/m.K) e um invólucro de aço (k = 60 W/m.K) de 10 mm de espessura. Por motivo de segurança dos trabalhadores, a temperatura da superfície externa do aço não deve ser maior que 60 $^{\circ}$ C. Considerando que a temperatura ambiente é 30 $^{\circ}$ C, com coeficiente de película externo de 20 W/m².K, determine:

- a) o fluxo de calor na condição de segurança, ou seja, 60°C na superfície externa do aço
- b) a espessura do refratário para atender a condição de segurança

a temperatura da superfície externa do aço se a camada de refratário for substituída por de uma de isolante (k = 0.0289 W/m.K) de mesma espessura.

Resposta: 3600 W

Exercício P.1.3.6. Ar na pressão de 6 kN/m² e temperatura de 300 °C , fluí com velocidade de 10 m/s sobre uma placa plana de comprimento 0,5 m e 0,25 m de largura. Determine a taxa de transferência de calor necessária para manter a superfície da placa na temperatura de 27 °C. Dados:

- Considere regime permanente e despreze os efeitos da radiação.
- Para fluxo laminar ($Re < 5 \times 10^5$) seguinte correlação adimensional é apropriada para este tipo de escoamento:

$$Nu = 0.664 \cdot Re_L^{\frac{1}{2}} \cdot Pr^{\frac{1}{2}}$$
, onde: $Nu_L = \frac{h \cdot L}{k}$ e $Re_L = \frac{v_{\infty} L}{D} \left(L = comprimento da placa \right)$

- As propriedades estimadas do ar e o número de Prandt são:

$$v = 5.21 \times 10^{-4} \, m^2 / s$$
 $k = 0.0364 \, W / m.K$ $Pr = 0.687$

Resposta: 142,65 W

Exercício P.1.3.7. Água a T = 40 °C, flui sobre uma placa de alumínio de 10 mm de espessura. A placa é eletricamente aquecida do lado oposto ao da água. A superfície sob a água esta a T = 59.8 °C e a superfície oposta está a 60 °C. Para as condições de regime permanente, determine o coeficiente de transferência de calor (coeficiente de película) entre a água e a placa. A condutividade térmica do alumínio é k = 204.1 W/m.K (a 60 °C)

Resposta: $206.1 \text{ W/m}^2.\text{K}$

1.4. ALETAS

1.4.1. CONCEITO

Para um melhor entendimento do papel desempenhado pelas aletas na transferência de calor consideremos um exemplo prático. Consideremos um sistema de aquecimento que utiliza água quente que escoa por uma tubulação. O fluxo de calor transferido para o ambiente pode ser obtido pela seguinte expressão:

$$\dot{q} = \frac{T_i - T_e}{R_1 + R_2 + R_3} = \frac{T_i - T_e}{\frac{1}{h_i \cdot A_i} + \frac{\ln(\frac{r_2}{r_1})}{k \cdot 2\pi \cdot L} + \frac{1}{h_e \cdot A_e}}$$
 (eq. 1.28)

Analisemos os meios de elevar a transferência de calor através da redução das resistências térmicas

$$R_1 = \frac{1}{h_i.A_i} \begin{cases} \text{aumentar } A_i \to \text{necess\'ario mudança de dimens\~oes} \\ \text{aumentar } h_i \to \text{necess\'ario aumento de velocidade de escoamento} \end{cases}$$

$$R_{1} = \frac{\ln\left(\frac{r_{1}}{r_{2}}\right)}{k.2.\pi.L} \begin{cases} \operatorname{reduzir}\left(\frac{r_{1}}{r_{2}}\right) \to \operatorname{necess\acute{a}rio} \text{ reduzir a espessura da parede} \\ \operatorname{aumentar} k \to \operatorname{necess\acute{a}rio} \text{ troca do material da parede} \end{cases}$$

$$R_{1} = \frac{1}{h_{i}.A_{i}} \begin{cases} \operatorname{aumentar} h_{e} \to \operatorname{necess\acute{a}rio} \text{ aumento de velocidade de escoamento} \\ \operatorname{aumentar} A_{e} \to \operatorname{mudança} \text{ de dimensões ou COLOCAÇÃO DE ALETAS} \end{cases}$$

$$R_1 = \frac{1}{h_i \cdot A_i} \begin{cases} \text{aumentar } h_e \to \text{necess\'ario aumento de velocidade de escoamento} \\ \text{aumentar } A_e \to \text{mudança de dimens\~oes ou COLOCAÇÃO DE ALETAS} \end{cases}$$

O aumento da superfície externa de troca de calor pode ser feito através de expansões metálicas denominadas aletas, como mostra a figura 1.16

1.4.2. EFICIÊNCIA DE UMA ALETA

Consideremos uma superficie base sobre a qual estão fixadas aletas de seção transversal uniforme, como mostra a figura 1.17. As aletas tem espessura e, altura l e largura b. A superfície base está na temperatura T_s maior que a temperatura ambiente T_{∞}

O fluxo de calor total transferido através da superfície com as aletas é igual ao fluxo transferido pela área exposta das aletas (A_A) mais o fluxo transferido pela área exposta da superfície base (A_R):

$$\dot{q} = q_R + q_A$$
, onde $\begin{cases} \dot{q}_R = h.A_R.(T_S - T_\infty) \\ \dot{q}_A = h.A_A.(T_P - T_\infty) \end{cases}$ (eq. 1.29)

A diferença de temperatura para a área das aletas $(T_? - T_\infty)$ é desconhecida. A temperatura T_S é da base da aleta, pois à medida que a aleta perde calor, a sua temperatura diminui, ou seja, A_A não trabalha com o mesmo potencial térmico em relação ao fluido.

Por este motivo \dot{q}_A , calculado com o potencial (T_S-T_∞) , deve ser corrigido, multiplicando este valor pela eficiência da aleta (η) . A eficiência da aleta pode ser definida assim :

calor realmente trocado pela aleta

 $A = \frac{1}{\text{calor que seria trocado se}} A_A \text{ estivesse na temperatura } T_S$

Portanto,

$$\eta = \frac{\dot{q}_A}{h.A_A.(T_S - T_\infty)}$$

Da equação 6.18 obtemos o fluxo de calor trocado pela área das aletas :

$$\dot{q}_A = h.A_A.(T_S - T_\infty)\eta$$
 (eq. 1.30)

Partindo de um balanço de energia em uma aleta de seção uniforme, pode ser obtida uma expressão para o fluxo de calor realmente transferido pela aleta, o que permite o cálculo da eficiência conforme a expressão abaixo :

$$\eta = \frac{tagh(m.l)}{m.l}$$
 (eq. 1.31) onde, $m = \sqrt{\frac{h.P}{k.A_t}}$ (coeficiente da aleta) e $tagh(m.L) = \frac{e^{m.L} - e^{m.L}}{e^{m.L} + e^{m.L}}$

A equação 1.31 indica que a eficiência da aleta é uma função do produto "m.l". Observando uma tabela de funções hiperbólicas nota-se que a medida que o produto "m.l" aumenta a eficiência da aleta diminui, pois o numerador aumenta em menor proporção.

De volta à equação 1.29, o fluxo de calor trocado em uma superfície aletada por ser calculado assim :

$$\dot{q} = \dot{q}_R + \dot{q}_A$$

$$\dot{q} = h.A_R.(T_s - T_{\infty}) + h.A_A.(T_s - T_{\infty}).\eta$$

Colocando o ΔT e o coeficiente de película em evidência, obtemos :

$$\dot{q} = h.(A_R + \eta.A_A)(T_s - T_{\infty})$$
 (eq. 1.32)

1.4.3. TIPOS DE ALETAS

Vários tipos de aletas estão presentes nas mais diversas aplicações industriais. A seguir veremos alguns dos tipos mais encontrados industrialmente e aproveitaremos também para calcular o coeficiente da aleta (m).

Aletas de Seção Retangular

Na figura 1.18, considerando que a aleta tem espessura **b** e largura **e** (espessura pequena em relação à largura), o coeficiente da aleta **m** pode ser calculado assim :

$$m = \sqrt{\frac{h \cdot P}{k \cdot A_{t}}}$$

$$P = 2 \times b + 2 \times e \cong 2 \times b$$

$$A_{t} = b \times e$$

$$m = \sqrt{\frac{h \times 2 \times b}{k \times b \times e}}$$

$$\Rightarrow \qquad m = \sqrt{\frac{2 \times h}{k \times e}}$$

$$(eq. 1.33)$$

➤ Aletas Curvas

$$m = \sqrt{\frac{h.P}{k.A_t}}$$

$$P = 2 \times (2 \times \pi \times r) + 2 \times e \cong 4 \times \pi \times r$$

$$A_t = 2 \times \pi \times r \times e$$

$$m = \sqrt{\frac{h \times 4 \times \pi \times r}{k \times 2 \times \pi \times r \times e}} \implies \boxed{m = \sqrt{\frac{2 \times h}{k \times e}}}$$
 (eq. 1.34)

Aletas Pino

Em certas aplicações aletas tipo pino são necessárias para não prejudicar demasiadamente o coeficiente de película. A figura 1.20 mostra uma aleta pino de seção circular. Neste caso o cálculo do coeficiente **m** é feito assim:

$$m = \sqrt{\frac{h \cdot P}{k \cdot A_t}} \qquad P = 2 \times \pi \times r$$

$$A_t = \pi \times r^2$$

$$m = \sqrt{\frac{h \times 2 \times \pi \times r}{k \times \pi \times r^2}} \implies m = \sqrt{\frac{2 \times h}{k \times r}}$$
(eq. 1.35)

Exercício R.1.4.1. A dissipação de calor em um transistor de formato cilindrico pode ser melhorada inserindo um cilindro vazado de alumínio (k = 200 W/m.K) que serve de base para 12 aletas axiais. O transistor tem raio externo de 2 mm e altura de 6 mm, enquanto que as aletas tem altura de 10 mm e espessura de 0,7 mm. O cilindro base, cuja espessura é 1 mm, está perfeitamente ajustado ao transistor e tem resistência térmica desprezível. Sabendo que ar fluindo a 20 °C sobre as superfícies das aletas resulta em um coeficiente de película de 25 W/m².K, calcule o fluxo de calor dissipado quando a temperatura do transistor for 80 °C.

n = 12 aletas

$$k_{Al} = 200 W/m.K$$

 $l = 10mm = 0,01m$
 $r_t = 2mm = 0,002m$
 $e_c = 1mm = 0,001m$
 $r_c = r_t + e_c = 2 + 1 = 3mm = 0,003m$
 $b = 6mm = 0,006m$
 $e = 0,7mm = 0,0007m$
 $T_S = 20^{\circ}C$ $T_{\infty} = 80^{\circ}C$
 $h = 25 W/m^2.K$

Cálculo de A_R:

$$\begin{split} A_S &= 2.\pi.r_c.b = 2\times\pi\times0,003\times0,006 = 1,13\times10^{-4}\,m^2\\ A_t &= b.e = 0,006\times0,0007 = 0,42\times10^{-5}\,m^2\\ A_R &= A_S - n.\,A_t = 1,13\times10^{-4} - 12\times0,42\times10^{-5} = 6,26\times10^{-5}\,m^2\\ \text{Cálculo de A}_{\text{A}}\text{ (desprezando as áreas laterais) :}\\ A_A &= n.(l.b).2 = 12\times(0,01\times0,006)\times2 = 0,00144\,m^2 \end{split}$$

Cálculo da eficiência da aleta :

$$m = \sqrt{\frac{2.h}{k.e}} = \sqrt{\frac{2 \times 25}{200 \times 0,0007}} = 18,898m^{-1}$$

$$m.l = 18,898 \times 0,01 = 0,18898$$

$$tgh(m.l) = tgh(0,18898) = 0,18676$$

$$\eta = \frac{tgh(m.l)}{m.l} = \frac{0,18676}{0.18898} = 0,9883 \quad (98,83\%)$$

Cálculo do fluxo de calor:

Desprezando as resistências de contato entre o transistor e o cilindro e do próprio cilindro, a temperatura da base das aletas pode ser considerada como 80 °C.

$$\dot{q} = h.(A_R + \eta.A_A)(T_S - T_\infty) = 25 \times (6.26 \times 10^{-5} + 0.9883 \times 0.00144) \times (80 - 20)$$

$$\dot{q} = 2.22 W$$

Exercício R.1.4.2. Um dissipador de calor consiste de uma placa plana de alumínio (k = 175 Kcal/h.m.^oC) de resistência térmica desprezível com aletas retangulares de 1,5 mm de espessura e 12 mm de altura, espaçadas entre si de 12 mm, ocupando toda a largura da placa. O lado com aletas está em contato com ar a 40 °C e coeficiente de película 25 Kcal/h.m².oC. O lado sem aletas está fixado sobre uma superfície a 150 °C. Calcule por unidade de área da placa o fluxo de calor.

Placa →
$$1 m^2$$
 ⇒ $L = 1 m$ e $b = 1 m$
 $e = 1,5 mm = 0,0015 m$
 $\Delta = 12 mm = 0,012 m$
 $h_o = 225 Kcal/h.m^2.° C$ $h = 25 Kcal/h.m^2.° C$
 $T_0 = 150 °C$ $T_{ar} = 40 °C$
 $k = 175 Kcal/h.m.° C$

Cálculo do número de aletas:

$$L = (e + \Delta).n \implies n = \frac{L}{e + \Delta} = \frac{1}{0,0015 + 0,012} \cong 74$$
 aletas

Cálculo da eficiência da aleta:

$$m = \sqrt{\frac{2.h}{k.e}} = \sqrt{\frac{2 \times 25}{175 \times 0.0015}} = 13,801$$

$$ml = 13,801 \times 0,012 = 0,1656$$

$$tagh(m.l) = tagh(0,1656) = \frac{e^{0,1656} - e^{-0,1656}}{e^{0,1656} + e^{-0,1656}} = 0,1641$$

$$\eta = \frac{tagh(m.l)}{m.l} = \frac{0,1641}{0.1656} = 0,9909 \qquad (99,09\%)$$

Cálculo da área não aletada:

$$A_R = A_S - n.A_t = A_S - n.(b.e) = 1 - 74 \times (1 \times 0.0015) = 0.889m^2$$

Cálculo da área das aletas (desprezando as áreas laterais):

$$A_4 = 2.(b.l)n = 2 \times (1 \times 0.012) \times 74 = 1.776m^2$$

Cálculo do fluxo de calor:

$$\dot{q} = h.(A_R + \eta.A_A)(T_S - T_\infty) = 25 \times (0.889 + 0.99 \times 1.776) \times (150 - 40) = 7279.91 Kcal/h$$

Exercício R.1.4.3. A parte aletada do motor de uma motocicleta é construída de uma liga de alumínio (k=186 W/m.K) e tem formato que pode ser aproximado como um cilindro de 15 cm de altura e 50 mm de diâmetro externo. Existem 5 aletas transversais circulares igualmente espaçadas com espessura de 6 mm e altura de 20 mm. Sob as condições normais de operação a temperatura da superfície externa do cilindro é 500 K e está exposta ao ambiente a 300 K, com coeficiente de película de 50 W/m².K quando a moto está em movimento. Quando a moto está parada o coeficiente cai para 15 W/m².K. Qual é a elevação percentual da transferência de calor quando a moto está em movimento. (OBS : desprezar as áreas laterais)

$$H = 15cm = 0.15m$$
 $\phi_e = 50mm \rightarrow r_e = 0.025m$
 $n = 5aletas$ $l = 20mm = 0.02m$
 $e = 6mm = 0.006m$
 $k_{aleta} = 186W/m.K$ $T_S = 500K$ $T_{\infty} = 300K$
 $h_m = 50W/m^2.K$ $h_p = 15W/m^2.K$

Cálculo da área não aletada:

$$A_R = A_s - n.A_t = 2 \times \pi \times 0.025 \times 0.15 - 5 \times (2 \times \pi \times 0.025 \times 0.006) = 0.01885m^2$$

Cálculo da área das aletas:

$$r_a = r_e + l = 0.025 + 0.02 = 0.045 m$$

$$A_A = 2 \cdot \left[\pi \cdot r_a^2 - \pi \cdot r_e^2\right] n = 2 \times \left[\pi \cdot (0.045)^2 - \pi \cdot (0.025)^2\right] \times 5 = 0.04398 m^2$$
 Cálculo da eficiência da aleta (para a moto em movimento) :

$$m = \sqrt{\frac{2.h}{k.e}} = \sqrt{\frac{2 \times 50}{186 \times 0,006}} = 9,466 \, m^{-1} \rightarrow m.l = 9,466 \times 0,02 = 0,1893$$

$$\eta = \frac{tgh(m.l)}{m.l} = \frac{tgh(0,1893)}{0,1893} = \frac{0,1871}{0,1893} = 0,9884 \quad (98,84\%)$$

$$\eta = \frac{tgh(m.l)}{m.l} = \frac{tgh(0.1893)}{0.1893} = \frac{0.1871}{0.1893} = 0.9884 \quad (98.84\%)$$

$$m = \sqrt{\frac{2.h}{k.e}} = \sqrt{\frac{2 \times 15}{186 \times 0,006}} = 5,1848 \, m^{-1} \qquad m.l = 5,1848 \times 0,02 = 0,1037$$

$$\eta = \frac{tgh(m.l)}{m.l} = \frac{tgh(0,1037)}{0,1037} = \frac{0,1036}{0,1037} = 0,999 \qquad (99,90\%)$$

Cálculo do fluxo de calor (para a moto em movimento):

$$\dot{q}_m = h_m \cdot (A_R - \eta \cdot A_A) \cdot (T_S - T_\infty) = 50 \times (0.01885 + 0.9884 \times 0.04398) \times (500 - 300) = 623,198W$$

Cálculo do fluxo de calor (para a moto parada) :
$$\dot{q}_p = h_p . (A_R - \eta . A_A) . (T_S - T_{\infty}) = 15 \times (0.01885 + 0.999 \times 0.04398) \times (500 - 300) = 188,358W$$

Cálculo da percentagem de elevação do fluxo de calor para a moto em movimento :

%
$$Elev = \frac{\dot{q}_m - \dot{q}_p}{\dot{q}_p} \times 100 = \frac{623,198 - 188,358}{188,358} \times 100 = 230,86\%$$

Exercício R.1.4.4. Determinar o aumento do calor dissipado por unidade de tempo que poderia ser obtido de uma placa plana usando-se por unidade de área 6400 aletas de alumínio (k = 178 Kcal/h.m.ºC), tipo pino, de 5 mm de diâmetro e 30 mm de altura. Sabe-se que na base da placa a temperatura é 300 °C, enquanto que o ambiente está a 20 °C com coeficiente de película de 120 Kcal/h.m².°C.

$$n = 6400$$
 aletas

$$k = 178 \, Kcal/h.m.^{\circ} C$$

$$\emptyset = 5 mm = 0.005 m$$

$$r = \frac{\emptyset}{2} = 0,0025m$$

$$l = 30 mm = 0.03 m$$

$$T_{\rm s} = 300 \, {}^{\circ}C$$
 $T_{\rm s} = 20 \, {}^{\circ}C$

$$h = 120 K cal/h.m^2.^{\circ}C$$

Cálculo da eficiência:

$$m = \sqrt{\frac{2.h}{k.r}} = \sqrt{\frac{2 \times 120}{178 \times 0.0025}} = 23,17 \text{ m}^{-1}$$

$$m.l = 23,17 \times 0,03 = 0,6951 tagh(m.l) = \frac{e^{0,695} - e^{-0,695}}{e^{0,695} + e^{-0,695}} = 0,6012$$

$$\eta = \frac{tagh(m.l)}{m.l} = \frac{0,6012}{0,6951} = 0,8649 (86,49\%)$$

Cálculo da área não aletada:

$$A = A_S - nA_t = A_S - n(\pi r^2) = 1 - [\pi \times (0.0025)^2] = 0.875m^2$$

Cálculo da área das aletas (desprezando as áreas laterais):

$$A_A = 2\pi r.l.n = 2 \times \pi \times 0,0025 \times 0,03 \times 6400 = 3,015m^2$$

Cálculo do fluxo de calor :

$$\dot{q}_{c/a} = h(A_R + \eta A_A)(T_S - T_\infty) = 12 \times (0.875 + 0.8649 \times 3.015) \times (300 - 20) = 116926 Kcal/h$$

Antes da colocação das aletas o fluxo é:

$$\dot{q}_{s/a} = h.A_s.(T_S - T_{\infty}) = 120 \times 1 \times (300 - 20) = 33600Kcal/h$$

%Aumento =
$$\frac{\dot{q}_{c/a} - \dot{q}_{s/a}}{\dot{q}_{s/a}} \times 100 = \frac{116926 - 33600}{33600} \times 100$$

EXERCÍCIOS PROPOSTOS:

Exercício P.1.4.1. Numa indústria deseja-se projetar um dissipador de calor para elementos transistores em um local onde o coeficiente de película é 3 Kcal/h.m².°C. A base do dissipador será uma placa plana, de 10 cm x 10 cm, sobre a qual estarão dispostas 8 aletas, de seção transversal retangular, com espaçamento constante, de 2 mm de espessura e 40 mm de altura. Sob a placa deve ser mantida uma temperatura de 80 °C, com temperatura ambiente de 30 °C. Considerando a condutividade térmica das aletas igual a 35 Kcal/h.m.°C, pede-se :

a) a eficiência da aleta:

b) calor dissipado pela placa aletada;

Respostas: 95,7%; 10,44 Kcal/h

Exercício P.1.4.2. Um tubo de diâmetro 4" e 65 cm de comprimento deve receber aletas transversais, circulares, de 1,5 mm de espessura, separadas de 2 mm uma da outra. As aletas tem 5 cm de altura. No interior do tubo circula um fluido a 135°C. O ar ambiente está a 32 °C, com coeficiente de película 12 kcal/h.m².o_C. A condutividade térmica do material da aleta é 38 kcal/hm² o_C. Determinar o fluxo de calor pelo tubo aletado.

Resposta: 8369 Kcal/h

Exercício P.1.4.3. Um tubo de aço de 0,65 m de comprimento e 10 cm de diâmetro, com temperatura de 60 °C na superficie externa, troca calor com o ar ambiente a 20 °C e com coeficiente de película de 5 Kcal/h.m².°C, a uma razão de 40 kcal/h. Existem 2 propostas para aumentar a dissipação de calor através da colocação de aletas de condutividade térmica 40 Kcal/h.m.ºC. A primeira prevê a colocação de 130 aletas longitudinais de 0,057 m de altura e 0,002 m de espessura. A segunda prevê a colocação de 185 aletas circulares de 0,05m de altura e 0,0015 m de espessura. Calculando o fluxo de calor para os dois casos, qual das propostas você adotaria, considerando os custos de instalação iguais.

Resposta: a primeira proposta (1708 Kcal/h) é mais vantajosa que a segunda (1563 Kcal/h)

Exercício P.1.4.4. Um tubo horizontal de diâmetro 4" conduz um produto a 85°C, com coeficiente de película 1230 kcal/h.m^{2.o}C. O tubo é de aço, de condutividade térmica 40 kcal/h.m.^oC, tem 0,8 m de comprimento e está mergulhado em um tanque de água a 20 °C, com coeficiente de película 485 Kcal/h.m².°C. O tubo deve ter 1,5 aletas por centímetro de tubo. As aletas circulares são feitas de chapa de aço de 1/8" de espessura e 2" de altura. Pede-se:

a) o fluxo de calor pelo tubo sem considerar as aletas;

b) o fluxo de calor pelo tubo aletado.

Respostas: 5773 Kcal/h; 32857 Kcal/h

1.5. PRINCÍPIOS DA RADIAÇÃO TÉRMICA

5.1. DEFINIÇÃO

Radiação Térmica é o processo pelo qual calor é transferido de um corpo sem o auxílio do meio interveniente, e em virtude de sua temperatura. Ao contrário dos outros dois mecanismos, a radiação ocorre perfeitamente no vácuo, não havendo, portanto, necessidade de um meio material para a colisão de partículas como na condução ou transferência de massa como na convecção. Isto acontece porque a radiação térmica se propaga através de ondas eletromagnéticas de maneira semelhante às ondas de rádio, radiações luminosas, raio-X, raios- γ , etc, diferindo apenas no comprimento de onda (λ). Este conjunto de fenômenos de diferentes comprimentos de ondas, representado simplificadamente na figura 1.21, é conhecido como espectro eletromagnético.

A intensidade de radiação térmica depende da temperatura da superficie emissora. A faixa de comprimentos de onda englobados pela radiação térmica fica entre 0,1 e 100 μ (1 m = 10⁻⁶ m). Essa faixa é subdividida em ultravioleta, visível e infravermelha. O sol, com temperatura de superficie da ordem de 10000 °C emite a maior parte de sua energia abaixo de 3 μ , enquanto que um filamento de lâmpada, a 1000 °C, emite mais de 90 % de sua radiação entre 1 μ e 10 μ . Toda superficie material, com temperatura acima do zero absoluto emite continuamente radiações térmicas. Poder de emissão (E) é a energia radiante total emitida por um corpo, por unidade de tempo e por unidade de área (Kcal/h.m² no sistema métrico).

5.2. CORPO NEGRO e CORPO CINZENTO

<u>Corpo Negro</u>, ou irradiador ideal, é um corpo que emite e absorve, a qualquer temperatura, a máxima quantidade possível de radiação em qualquer comprimento de onda. O corpo negro é um conceito teórico padrão com o qual as características de radiação dos outros meios são comparadas.

<u>Corpo Cinzento</u> é o corpo cuja energia emitida ou absorvida é uma fração da energia emitida ou absorvida por um corpo negro. As características de radiação dos corpos cinzentos se aproximam das características dos corpos reais, como mostra esquematicamente a figura 1.22.

Emissividade (ε)é a relação entre o poder de emissão de um corpo cinzento e o do corpo negro.

$$\varepsilon = \frac{E_c}{E_n} \quad onde, E_c = poder \ de \ emissão \ de \ um \ corpo \ cinzento \\ E_n = poder \ de \ emissão \ de \ um \ corpo \ negro$$
 (eq. 1.36)

Para os corpos cinzentos a emissividade (ϵ) é, obviamente, sempre menor que 1. Pertencem à categoria de corpos cinzentos a maior parte dos materiais de utilização industrial, para os quais em um pequeno intervalo de temperatura pode-se admitir ϵ constante e tabelado em função da natureza do corpo.

5.3. LEI DE STEFAN-BOLTZMANN

A partir da determinação experimental de <u>Stefan</u> e da dedução matemática de <u>Boltzmann</u>, chegou-se a conclusão que a quantidade total de energia emitida por unidade de área de um <u>corpo negro</u> e na unidade de tempo, ou seja, o seu poder de emissão (E_n), é proporcional a quarta potência da temperatura absoluta

$$E_n = \sigma.T^4 \quad onde, \sigma = 4.88 \times 10^{-8} \; Kcal/h.m^2.K^4 \; (constante \; de \; Stefan - Boltzmann) \; (eq. 1.37)$$

$$T = temperatura \; absoluta \; (em \; graus \; Kelvin)$$

No sistema internacional a constante de Stefan-Boltzmann é: $\sigma = 5,6697 \times 10^{-8} \ W/m^2 \ K^4$

5.4. FATOR FORMA

Um problema-chave no cálculo radiação entre superfícies consiste em determinar a fração da radiação difusa que deixa uma superfície e é interceptada por outra e vice-versa. A fração da radiação distribuída que deixa a superfície A_{j} é denominada de **fator forma para radiação** F_{ij} . O primeiro índice indica a superfície que emite e o segundo a que recebe radiação. Consideremos duas <u>superfícies negras</u> de áreas A_{1} e A_{2} , separadas no espaço (figura 1.23) e em diferentes temperaturas ($T_{1} > T_{2}$) :

Em relação às superfícies A₁ e A₂ temos os seguintes fatores forma :

 $F_{12}=fração\ da\ energia\ que\ deixa\ a\ superficie\ (1)\ e\ atinge\ (2)$

 $F_{21} = fração da energia que deixa a superfície (2) e atinge (1)$

A energia radiante que deixa A₁ e alcança A₂ é :

$$\dot{q}_{1\to 2} = E_{n1}.A_1.F_{12}$$
 $\left[\frac{Kcal}{h.m^2}.m^2.(-) = \frac{Kcal}{h}\right]$ (eq. 1.38)

A energia radiante que deixa A2 e alcança A1 é :

$$\dot{q}_{2\to 1} = E_{n2}.A_2.F_{21}$$
 $\left[\frac{Kcal}{h.m^2}.m^2.(-) = \frac{Kcal}{h}\right]$ (eq. 1.39)

A troca líquida de energia entre as duas superfícies será:

$$\dot{q} = \dot{q}_{12} - \dot{q}_{21} = E_{n1}.A_1.F_{12} - E_{n2}.A_2.F_{21}$$
 (eq. 1.40)

Consideremos agora a situação em que as duas superfícies estão na mesma temperatura. Neste caso, o poder de emissão das duas superfícies negras é o mesmo ($E_{n1}=E_{n2}$) e não pode haver troca líquida de energia ($\dot{q}=0$). Então a equação 1.40 fica assim:

$$0 = E_{n1} \cdot A_1 \cdot F_{12} - E_{n2} \cdot A_2 \cdot F_{21}$$

Como $E_{n1}=E_{n2}$ (corpos negros), obtemos:

$$A_1.F_{12} = A_2.F_{21}$$
 (eq. 1.41)

Como tanto a área e o fator forma não dependem da temperatura, a relação dada pela equação 1.41 é válida para qualquer temperatura. Substituindo a equação 1.41 na equação 1.40, obtemos:

$$\dot{q} = E_{n1} \cdot A_{1} \cdot F_{12} - E_{n2} \cdot A_{1} \cdot F_{12}$$

$$\dot{q} = A_{1} \cdot F_{12} \cdot (E_{n1} - E_{n2})$$

Pela lei de Stefan-Boltzmann, temos que :

$$E_{n1} = \bullet$$
 . T_1^4 e $E_{n2} = \bullet$. T_2^4 , portanto : $\dot{q} = A_1 . F_{12} \left(\sigma . T_1^4 - \sigma . T_2^4 \right)$ Obtemos assim a expressão para o fluxo de calor transferido por radiação entre duas superfícies a diferentes

temperaturas:

$$\dot{q} = \sigma A_1 F_{12} (T_1^4 - T_2^4)$$
 (eq. 1.42)

O Fator Forma depende da geometria relativa dos corpos e de suas emissividades (ε). Nos livros e manuais, encontramos para diversos casos, tabelas e ábacos para o cálculo do fator forma para cada situação (placas paralelas, discos paralelos, retângulos perpendiculares, quadrados, círculos, etc).

Um caso bastante como em aplicações industriais é quando a superfície cinzenta que irradia é muito menor que superfície cinzenta que recebe a radiação (por exemplo uma resistência elétrica irradiando calor para o interior de um forno). Para este caso específico, o Fator Forma é simplesmente a emissividade da superficie emitente:

$$F_{12} = \varepsilon_1 \tag{eq. 1.43}$$

Exercício R.1.5.1. Um duto de ar quente, com diâmetro externo de 22 cm e temperatura superficial de 93 °C, está localizado num grande compartimento cujas paredes estão a 21°C. O ar no compartimento está a 27°C e o coeficiente de película é 5 kcal/h.m².oC. Determinar a quantidade de calor transferida por unidade de tempo, por metro de tubo, se:

- a) o duto é de estanho ($\varepsilon = 0,1$)
- b) o duto é pintado com laca branca ($\varepsilon = 0.9$)

$$T_{t} = 93 \, ^{o}C = 366 \, K$$

$$T_{ar} = 27 \, ^{o}C$$

$$T_{p} = 21 \, ^{o}C = 294 \, K$$

$$h = 5 \, Kcal/h.m^{2.o}C$$

$$\varnothing = 22 \, cm = 0,22 \, m \implies r = 0,11 \, m$$

a) Para um comprimento unitário do duto de estanho (sem pintura), temos :

$$L=1 m \quad \varepsilon=0,1$$

Como o tubo atravessa um grande compartimento, ou seja, a superfície do tubo é muito menor que a superfície do compartimento, o fator forma é calculado através da equação 5.10, assim:

$$F_{12} = \varepsilon_1 = 0.1$$
 (superf. 1 (\langle \langle superf. 2)

O fluxo de calor é composto de duas parcelas: $\dot{q} = \dot{q}_{rad} + \dot{q}_{cond}$ $\dot{q}_{cond} = h.A. (T_t - T_{ar}) = h. (2.\pi.r.L) (T_t - T_{ar}) = 5 \times (2 \times \pi \times 0,11 \times 1) \times [93 - 27] = 228,1 K cal/h (p/m)$ $\dot{q}_{rad} = \sigma.A. F_{12} (T_t^4 - T_{ar}^4) = \sigma.(2.\pi.r.L) \varepsilon (T_t^4 - T_{ar}^4) = 4,88 \times 10^{-8} \times 0,1 \times (2 \times \pi \times 0,11 \times 1) \times \left[(360)^4 - (294)^4 \right] = 35 K cal/h (p/m)$ $\dot{q} = 228,1 + 35 = 263,1 K cal/h (p/m)$

b) Quando o tubo é pintado com laca branca (e = 0,9) apenas a transferência de calor por radiação é afetada :

$$\dot{q} = \dot{q}'_{rad} + \dot{q}_{cond} \qquad F_{12} = \varepsilon_1 = 0.9 \text{ (superf. 1 (((superf. 2)))}$$

$$\dot{q}_{rad} = \sigma.AF_{12} \left(T_t^A - T_{ar}^A\right) = \sigma.(2\pi r.L)\varepsilon' \left(T_t^A - T_{ar}^A\right) = 4.88 \times 10^{-8} \times (2 \times \pi \times 0.11 \times 1) \times 0.9 \times \left[(366)^4 - (294)^4\right] = 315Kcalh(p/m)$$

$$\dot{q} = 228.1 + 315 = 543.1Kcal/h(p/m)$$

Exercício R.1.5.2. Uma tubulação atravessa uma grande sala conduzindo água a 95 °C, com coeficiente de película 20 kcal/h.m².°C. O tubo, de diâmetro externo 4" e resistência térmica desprezível, está isolado com lã de rocha (k = 0,035 kcal/h.m.°C) de 2" de espessura. Sabendo-se que a temperatura da face externa do isolamento do tubo é 22 °C, determinar:

- a) o fluxo de calor transferido através da tubulação; ③
- b) a emissividade da superfície do isolamento, sabendo-se que a metade do fluxo de calor transferido da tubulação para o ambiente se dá por radiação e que a temperatura da face interna das paredes da sala é 5 °C

$$r_{1} = 2" = 0,0508 \, m$$

$$r_{2} = 2" + 2" = 4" = 0,1016 \, m$$

$$L = 1 \, m$$

$$T_{i} = 95 \, {}^{\circ}C \qquad T_{e} = 22 \, {}^{\circ}C \qquad T_{p} = 5 \, {}^{\circ}C$$

$$h_{i} = 20 \, Kcal/h.m.^{\circ}C$$

$$k_{iso} = 0,035 \, Kcal/h.m^{2}.^{\circ}C$$

$$\frac{1}{h_{i}.(2.\pi.r_{1}.L)} + \frac{\ln(r_{2}/r_{1})}{k_{iso} \times 2 \times \pi \times L} = \frac{95 - 22}{20 \times (2 \times \pi \times 0,0508 \times 1,0)} + \frac{\ln(0,1016/0,0508)}{0,035 \times 2 \times \pi \times 1,0}$$

$$\frac{1}{q} = 22,06 \, Kcal/h \, (p/m)$$

$$\frac{1}{q} = 3.4 \, R_{12}. \left[T_{1}^{4} - T_{2}^{4}\right] \qquad \text{como } A_{1} < << A_{2} \qquad \Rightarrow F_{12} = \varepsilon_{1}$$

$$\frac{1}{q} = 3.4 \, R_{12}. \left[T_{1}^{4} - T_{2}^{4}\right]$$

$$\frac{1}{22,06/2} = 4,88 \times 10^{-8} \times (2 \times \pi \times 0,1016 \times 1,0) \times \varepsilon_{1} \times \left[(22 + 273)^{4} - (5 + 273)^{4}\right]$$

$$\frac{1}{\varepsilon_{1}} = 0,22$$

Exercício R.1.5.3. Um reator em uma indústria trabalha a 600 °C em um local onde a temperatura ambiente é 27 °C e o coeficiente de película externo é 40 Kcal/h.m².°C. O reator foi construído de aço inox ($\varepsilon = 0.06$) com 2 m de diâmetro e 3 m de altura. Tendo em vista o alto fluxo de calor, deseja-se aplicar uma camada de isolante (k= 0,05 kcal/h m $^{\circ}$ C e ϵ = 0,65) para reduzir a transferência de calor a 10 % da atual. Desconsiderando as resistências térmicas que não podem ser calculadas, pede-se :

- a) O fluxo de calor antes da aplicação do isolamento;
- b) A parcela transferida por convecção após o isolamento;

$$T_{1} = 600 \, ^{\circ}C \qquad T_{2} = 27 \, ^{\circ}C$$

$$T_{1} = 600 \, ^{\circ}C \qquad T_{2} = 27 \, ^{\circ}C$$

$$\varepsilon = 0,06(inox) \quad h = 40 \, Kcal/h.m^{2}.^{\circ}C$$

$$L = 3m \qquad \varnothing = 2m \Rightarrow r = 1m$$

Desprezando as resistências térmicas de convecção interna e condução na parede de aço do reator, a temperatura da superfície externa pode ser considerada a mesma do fluido.

a) Cálculo da área de transferência de calor :

$$A = 2.\pi r \cdot L + 2.(\pi r^2) = 2 \times \pi \times 1 \times 3 + 2 \times (\pi \times 1^2) = 25.14m^2$$
.

O fluxo de calor total é a soma das parcelas por convecção e por radiação. A parcela por convecção é : $\dot{q}_{conv} = h.A.(T_1 - T_2) = 40 \times 25,14 \times (600 - 27) = 576208,80 Kcal/h$ A parcela transferida por radiação, considerando a superfície do reator bem menor que o ambiente, é :

$$\dot{q}_{conv} = h.A.(T_1 - T_2) = 40 \times 25,14 \times (600 - 27) = 576208,80 Kcal/h$$

$$\begin{split} \dot{q}_{rad} &= \sigma.A_1.F_{12}.\left(T_1^4 - T_2^4\right) \text{ , onde } \quad F_{12} = \varepsilon \left(superf.\ 1\ \left<\left<\left< \text{ superf.}\ 2\right.\right.\right.\right) \\ \dot{q}_{rad} &= \sigma.A_1.\varepsilon.\left(T_1^4 - T_2^4\right) = 4,88 \times 10^{-8} \times 25,14 \times 0,06 \times \left[\left(600 + 273\right)^4 - \left(27 + 273\right)^4\right] = 42159,39 Kcal/h \\ \text{Portanto, } \quad \dot{q} &= \dot{q}_{conv} + \dot{q}_{rad} = 576208,80 + 42159,39 \\ \hline \dot{q} &= 618368,19\ Kcal/h \end{split}$$

b) O isolamento deve reduzir a transferência de calor a 10% da atual :

$$\dot{q}' = 0.1 \times \dot{q} = 0.1 \times 618368.19 = 61836.82 \, Kcal/h$$

Além disto, a temperatura externa do isolamento deve ser 62 °C, então:

O novo fluxo de calor continua sendo composto das parcelas de convecção e radiação: $\dot{q}' = \dot{q}'_{conv} + \dot{q}'_{rad}$ A parcela transferida por radiação foi alterada devido à emissividade do isolante ser diferente da emissividade do inox e também devido à nova temperatura externa do isolamento.

$$\dot{q}_{rad} = \sigma.A_1.\varepsilon.\left(T_1^4 - T_2^4\right) = 4.88 \times 10^{-8} \times 25.14 \times 0.75 \times \left[\left(62 + 273\right)^4 - \left(27 + 273\right)^4\right] = 4135.4Kcal/h$$

A parcela que pode ser transferida por convecção, devido à restrição dos 10% de redução do fluxo de calor, é obtida por diferença e permite o cálculo da espessura do isolante:

obtida por diferença e permite o cálculo da espessura do isolante:
$$\dot{q}'_{conv} = \dot{q}' + \dot{q}'_{rad} = 61836,82 - 4135,4$$
 \Rightarrow $\boxed{\dot{q}' = 57701,4 \, Kcal/h}$

EXERCÍCIOS PROPOSTOS:

Exercício P.1.5.1. Os gases quentes do interior de uma fornalha são separados do ambiente a 25 °C (h = 17,2 Kcal/h.m².°C) por uma parede de tijolos de 15 cm de espessura. Os tijolos tem uma condutividade de 1,0 kcal/h.m.°C e uma emissividade de 0,8 . A temperatura da superfície externa da parede da fornalha é 100 °C. Considerando que a fornalha está em um grande compartimento cuja temperatura da superfície é igual a temperatura ambiente, qual é a temperatura da superfície interna da parede da fornalha ?

Resposta: 360,7 °C

Exercício P.1.5.2. Um reator de uma indústria trabalha à temperatura de $600\,^{\circ}\text{C}$. Foi construído de aço inoxidável (ϵ = 0,06) com 2,0 m de diâmetro e 3,0 m de comprimento. Tendo em vista o alto fluxo de calor, deseja-se isola-lo com uma camada de lã de rocha (k = 0,05 Kcal/h.m. $^{\circ}\text{C}$ e e = 0,75) para reduzir a transferência de calor a 10% da atual. Calcular :

- a) o fluxo de calor (radiação e convecção) antes do isolamento;
- b) a espessura de isolante a ser usada nas novas condições, sabendo que a temperatura externa do isolamento deve ser igual a 62 °C.

Resposta: 42400 Kcal/h ; 12,8 cm

Exercício P.1.5.3. Vapor d'água saturado a 255 °C escoa por um tubo de parede fina de diâmetro externo igual a 20 cm. A tubulação atravessa um amplo salão de 10 m de comprimento e cujas paredes estão à mesma temperatura de 25°C do ambiente (h_{ar} = 5 kcal/h.m².°C). Deseja-se pintar a superfície do tubo de maneira que ao sair do recinto, o vapor no interior do tubo se encontre com apenas 5% de sua massa não condensada. No almoxarifado da indústria dispõe-se de 3 tintas cujas emissividade são : tinta A - ϵ_a =1; tinta B - ϵ_b =0,86 e tinta C - ϵ_c = 0,65. Sabendo que o calor latente de vaporização nestas condições é 404 Kcal/Kg, determinar:

- a) a tinta com a qual devemos pintar o tubo, sabendo-se que a vazão de vapor é 55,2 kg/h
- b) a energia radiante por unidade de comprimento após a pintura

Resposta: Tinta C; 1392 Kcal/h (p/m de tubo)

2. MECÂNICA DOS FLUIDOS

2.1. DEFINIÇÕES e PROPRIEDADES DOS FLUIDOS

2.1.1. DEFINIÇÃO DE FLUIDO

Fluido é uma substância que <u>não possui forma própria</u> (assume o formato do recipiente) e que, se em repouso, não resiste a tensões de cizalhamento (deforma-se continuamente).

<u>Tensão de Cizalhamento</u> é a razão entre a o módulo da componente tangencial da força é a área da superfície sobre a qual a força está sendo aplicada.

pressão : $P = \frac{F_n}{A}$

→ A Experiência das Placas

- Consideremos um fluido em repouso entre duas placas planas. Suponhamos que a placa superior em um dado instante passe a se movimentar sob a ação de uma força tangencial
- A força F_t, tangencial ao ao fluido, gera uma tensão de cizalhamento.
- O fluido adjacentes à placa superior adquirem a mesma velocidade da placa (princípio da aderência)
- As camadas inferiores do fluido adquirem velocidades tanto menores quanto maior for a distância da placa superior (surge um perfil de velocidades no fluido). Também pelo princípio da aderência, a velocidade do fluido adjacente à placa inferior é zero.
- Como existe uma diferença de velocidade entre as camadas do fluido, ocorrerá então uma <u>deformação contínua</u> do fluído sob a ação da tensão de cizalhamento.

2.1.2. VISCOSIDADE ABSOLUTA OU DINÂMICA

A definição de viscosidade está relacionada com a Lei de Newton :

"A tensão de cisalhamento é diretamente proporcional à variação da velocidade ao longo da direção normal às placas"

$$\tau \alpha \frac{dv}{dv}$$

A relação de prporcionalidade pode ser transformada em igualdade mediante uma constante, dando origem à equação 2.1 (Lei de Newton).

$$\tau = \mu \cdot \frac{dv}{dy}$$
 (eq 2.1)

A viscosidade dinâmica (µ) é o coeficiente de proporcionalidade entre a tensão de cizalhamento e o gradiente de velocidade. O seu significado físico é a propriedade do fluido através da qual ele oferece resistência às tensões de cizalhamento. Os fluidos que apresentam esta relação linear entre a tensão de cizalhamento e a taxa de deformação são denominados newtonianos e representam a maioria dos fluidos.

O valor da viscosidade dinâmica varia de fluido para fluido e, para um fluido em particular, esta vicosidade depende muito da temperatura. Os gases e líquidos tem comportamento diferente com relação à dependência da temperatura, conforme mostra a tabela 2.1 :

Tabela 2.1. Comportamento dos fluidos com relação à viscosidade

Fluido	Comportamento	Fenômeno			
Líquidos	A viscosidade diminui com a	Tem espaçamento entre moléculas pequeno e ocorre a redução			
	temperatura	da atração molecular com o aumento da temperatura.			
Gases	A viscosidade aumenta com a	Tem espaçamento entre moléculas grande e ocorre o aumento			
	temperatura	do choque entre moléculas com o aumento da temperatura.			

→ Análise dimensional da viscosidade (sistema [F][L][T]):

$$\tau = \frac{F}{A} = \frac{F}{L^{2}} = F.L^{-2} \qquad \frac{dv}{dy} = \frac{LT^{-1}}{L} = T^{-1}$$

$$\tau = \mu \cdot \frac{dv}{dy} \implies \mu = \frac{\tau}{dv/dy} = \frac{F.L^{-2}}{T^{-1}} = \frac{F.T}{L^{2}}$$

Portanto, as unidades de viscosidade nos sistemas de unidades mais comuns são :

CGS:
$$[\mu] = \frac{dina \times s}{cm^2} = poise$$
 { poise = 100 cetipoise (cp) }

Métrico Gravitacional (MK*S): $[\mu] = \frac{kgf \times s}{m^2}$

Sistema Internacional (SI):
$$\left[\mu\right] = \frac{N \times s}{m^2} = Pa \times s \quad \left\{1 \frac{N}{m^2} = 1 Pa \left(Pascal\right)\right\}$$

→ <u>Simplificação Prática</u>: a velocidade varia linearmente com y (para distâncias entre placas pequenas)

$$\frac{dv}{dy} = \frac{v_0 - 0}{e - 0} = \frac{v_0}{e}$$

Neste caso, a equação 2.1 fica assim:

$$\tau = \mu . \frac{v_0}{e}$$

2.1.3. MASSA ESPECÍFICA e PESO ESPECÍFICO

Massa Específica (ρ) é a massa de fluido contida em uma unidade de volume do mesmo :

$$\boxed{\rho = \frac{m}{V}} \qquad [\rho] = \frac{M}{L^3} \begin{cases}
CGS: [\rho] = \frac{g}{cm^3} \\
SI: [\rho] = \frac{kg}{m^3} \\
MK^*S: [\rho] = \frac{utm}{m^3}
\end{cases}$$
(eq 2.3)

Peso Específico (γ) é o peso (G) de uma unidade de volume de um fluido

$$\gamma = \frac{G}{V} = \frac{m \cdot g}{V} \quad \boxed{\gamma = \rho \cdot g} \qquad [\gamma] = \frac{M \times L \times T^{-2}}{L^{3}} = \frac{F}{L^{3}} \begin{cases} CGS : [\gamma] = \frac{dina}{cm^{3}} \\ SI : [\gamma] = \frac{N}{m^{3}} \\ MK^{*}S : [\gamma] = \frac{Kgf}{m^{3}} \end{cases}$$
(eq 2.4)

<u>Densidade</u> é a relação entre o peso específico de uma substância e o peso específico da água a uma determinada temperatura. A densidade não depende do sistema de unidades

$$\gamma_r = \frac{\gamma}{\gamma_{H_2O}} \tag{eq 2.5}$$

2.1.4. VISCOSIDADE CINEMÁTICA

É frequente, nos problemas de mecânica dos fluidos, a viscosidade dinâmica aparecer combinada com a massa específica, dando origem à <u>viscosidade cinemática</u>.

$$\frac{1}{|v|} = \frac{\mu}{\rho}$$

$$[v] = \frac{M \times L^{-1} \times T^{-1}}{M \times L^{-3}} = \frac{L^{2}}{T}$$

$$\begin{cases}
CGS: [\gamma] = \frac{cm^{2}}{s} \text{ (stoke-st)} \\
SI: [\gamma] = \frac{m^{2}}{s} \\
MK^{*}S: [\gamma] = \frac{m^{2}}{s}
\end{cases}$$
(eq 2.6)

EXERCÍCIOS RESOLVIDOS

Exercício R.2.1.1. A massa específica de um combustível leve é 805 kg/m³. Determinar o peso específico e a densidade deste combustível. (considerar g=9,8 m/s²)

$$\gamma = \rho g = 805 \frac{kg}{m^3} \times 9.8 \frac{m}{s^2} = 7889 \frac{N}{m^3}$$
 $(N = kg. \frac{m}{s^2})$

A massa específica da água é aproximadamente 1000 kg/m³. Portanto, o peso específico será :

$$\gamma_{H_2O} = \rho.g = 1000 \frac{kg}{m^3} \times 9.8 \frac{m}{s^2} = 9800 \frac{N}{m^3}$$

A densidade é calculada a partir da relação

$$\gamma_r = \frac{\gamma}{\gamma_{H,O}} = \frac{7889}{9800} = 0.805$$

Exercício R.2.1.2 Um reservatório graduado contém 500 ml de um líquido que pesa 6 N. Determine o peso específico, a massa específica e a densidade do líquido (considerar g=9,8 m/s²)

$$V = 500 \, ml = 0.5 \, l = 0.5 \times 10^{-3} \, m^3$$

$$\gamma = \frac{G}{V} = \frac{6 \, N}{0.5 \times 10^{-3} \, m^3} = 12000 \, \frac{N}{m^3}$$

$$\gamma = \rho.g \implies \rho = \frac{\gamma}{g} = \frac{12000 \, N / m^3}{9.8 \, m / s^2} = \frac{6 \, (kg. \frac{m}{s^2}) / m^3}{9.8 \, m / s^2} = 1224.5 \, \frac{Kg}{m^3}$$

$$\gamma_r = \frac{\gamma}{\gamma_{H,0}} = \frac{12000 \, N / m^3}{9800 \, N / m^3} = 1.22$$

Exercício R.2.1.3 Os tanques da figura estão totalmente preenchidos com um óleo leve cuja densidade é 0,82. Calcule a pressão sobre a base em cada um dos casos.

$$\begin{array}{lll} \gamma_r = 0.82 & \Rightarrow & \gamma = \gamma_r \; . \; \gamma_{H2O} = 0.82 \; . \; 9800 = \; 8036 \; N/m^3 \\ V_1 = 2 \times 2 \times 2 = 8 \; m^3 & V_2 = 2 \times 2 \times 6 = 24 \; m^3 \\ \gamma = \frac{G}{V} & \Rightarrow & G = \gamma.V & G_1 = \gamma.V_1 = 8036.8 = 64288 \; N & G_2 = \gamma.V_2 = 8036.24 = 192864 \; N \end{array}$$

Tanque 1
$$\Rightarrow P_1 = \frac{G}{A_{base}} = \frac{64288}{2.2} = 16072 \ N/m^2$$

Tanque 1 $\Rightarrow P_1 = \frac{G}{A_{base}} = \frac{192864}{2.6} = 16072 \ N/m^2$

As pressões exercidas na base são iguais. Pelo teorema de Stevim também podemos comprovar, pois os dois tanques tem a mesma altura :

$$P_1 = \gamma . h_1 = 8036.2 = 16072 \ N/m^2$$

 $P_2 = \gamma . h_2 = 8036.2 = 16072 \ N/m^2$

Exercício R.2.1.4. A viscosidade cinemática de um óleo leve é 0,033 m²/s e a sua densidade é 0,86. Determinar a sua viscosidade dinâmica em unidades dos sistemas Métrico.

A peso específico da água é aproximadamente 1000 kgf/m³.

$$\gamma_{r} = \frac{\gamma}{\gamma_{H_{2}O}} \implies \gamma = \gamma_{r} \times \gamma_{H_{2}O} = 0.86 \times 1000 \frac{kgf}{m^{3}} = 860 \frac{kgf}{m^{3}}$$

$$\gamma = \rho.g \implies \rho = \frac{\gamma}{g} = \frac{860 \, kgf \, / \, m^{3}}{9.8 \, m \, / \, s^{2}} = 87.75 \frac{Kgf.s^{2}}{m^{4}} \left(\frac{utm}{m^{3}}\right)$$

$$v = \frac{\mu}{\rho} \implies \mu = v.\rho = 0.033 \frac{m^{2}}{s} \times 87.75 \frac{kgf.s^{2}}{m^{4}} = 2.86 \frac{kgf.s}{m^{2}}$$

Exercício R.2.1.4. Duas placas planas paralelas estão situadas a 3 mm de distância. A placa superior move-se com velocidade de 4m/s, equanto que a inferior está imóvel. Considerando que um óleo (v = 0.15 stokes e $\rho = 905 \text{ kg/m}^3$) ocupa o espaço entre elas, determinar a tensão de cizalhamento que agirá sobre o óleo.

$$v = 0.15 \text{ stokes} = 0.15 \text{ cm}^2 / s = 0.15 \frac{\text{cm}^2}{\text{s}} \times 10^{-4} \frac{\text{m}^2}{\text{cm}^2} = 1.5 \times 10^{-5} \frac{\text{m}^2}{\text{s}}$$

$$\mu = v \cdot \rho = 1.5 \times 10^{-5} \times 905 = 0.0136 \frac{N \cdot \text{s}}{m^2}$$

$$\tau = \mu \cdot \frac{v_0}{e} = 0.0136 \frac{N \cdot \text{s}}{m^2} \times \frac{4 \text{ m/s}}{0.003 \text{ m}} = 18.1 \frac{N}{m^2} = 18.1 \text{ Pa}$$

Exercício R.2.1.5. Uma placa retangular de 4 m por 5 m escorrega sobre o plano inclinado da figura, com velocidade constante, e se apoia sobre uma película de óleo de 1 mm de espessura e de $\mu = 0.01 \text{ N.s/m}^2$. Se o peso da placa é 100 N, quanto tempo levará para que a sua parte dianteira alcance o fim do plano inclinado.

$$sen 30^{\circ} = \frac{10}{\Delta S} \implies \Delta S = \frac{10}{0.5} = 20 \, m \qquad A = 5 \times 4 = 20 \, m^{2}$$

$$F_{T} = G \cdot \cos 60^{\circ} = 100 \times 0.5 = 50 \, N$$

$$\tau = \mu \cdot \frac{v_{0}}{e} \quad e \quad \tau = \frac{F_{T}}{A} , \text{ então} : \quad \mu \cdot \frac{v_{o}}{e} = \frac{F_{T}}{A}$$

$$v_{o} = \frac{F_{T} \cdot e}{A \cdot \mu} = \frac{50 \times 0.001}{20 \times 0.01} = 0.25 \, m/s$$

$$v_{o} = \frac{\Delta S}{\Delta t} \implies \Delta t = \frac{\Delta S}{v_{o}} = \frac{20 \, m}{0.25 \, m/s} \implies \Delta t = 80 \, s$$

EXERCÍCIOS PROPOSTOS

Exercício P.2.1.1. A massa específica de um fluido é 610 kg/m³. Determinar o peso específico e a densidade. **Respostas :** 5978 N/m³ e 0,610

Exercício P.2.1.2. A viscosidade cinemática de um óleo é 0,028 m²/s e sua densidade é 0,9. Determinar a viscosidade dinâmica no sistema métrico.

Resposta: 2,58 Kgf.s/m

Exercício P.2.1.3. Um tanque de ar comprimido contém 6 kg de ar a 80 °C, com peso específico de 38,68 N/m³. Determine o volume do tanque.

Resposta: $1,52 \text{ m}^3$

Exercício P.2.1.4. O peso de 3 dm³ de uma substância é 2,7 Kgf. A viscosidade cinemática é 10⁻⁵ m²/s. Se g é 10 m/s², determine a viscosidade dinâmica no sistema métrico.

Resposta: $9 \times 10^{-4} \text{ Kgf.s/m}^2$

Exercício P.2.1.5. Uma placa quadrada de 1 m de lado e 20 N de peso, desliza sobre uma película de óleo em plano inclinado de 30⁰. A velocidade da é placa é constante e igual a 2 m/s. Qual é a viscosidade dinâmica do óleo se a espessura da película é 2 mm?

Resposta : 0.01 N.s/m^2

Exercício P.2.1.6. Um tanque cilíndrico, de massa 50 kg, tem diâmetro igual a 0,5 m e altura igual a 2,5 m. Este tanque é totalmente preenchido com um líquido de peso específico 8600 N/m3. Determine a força necessária para imprimir uma aceleração de 2,5 m/s2 ao conjunto tanque+líquido.

Resposta: 1201,9 N

Exercício P.2.1.7. Um recipiente contém 30 kg de água ($\gamma = 9800 \text{ N/m}^3$) e está completamente cheio. Após algum tempo 2/3 (dois terços) da água do recipiente é consumida e o recipiente é novamente completado, desta vez com um óleo leve ($\gamma = 7742 \text{ N/m}^3$) que, evidentemente, sobrenada sobre a água. Para estas novas condições, determine a massa total de fluido (óleo + água) presente no recipiente.

Resposta: 25,8 Kg

Exercício P.2.1.8. Uma placa quadrada de 1 m de lado e 20 N de peso, desliza sobre uma película de óleo em plano inclinado de 30°. A partir da posição indicada na figura, é necessário um intervalo de tempo de 20 segundos para que a placa atinja o final do plano. Considerando que a espessura da película de óleo é 2 mm, determine a viscosidade dinâmica do óleo.

Resposta: 0.02 N.s/m^2

Exercício P.2.1.9. Duas placas de grandes dimensões são paralelas. Considerando que a distância entre as placas é de 5 mm e que este espaço está preenchido com um óleo de viscosidade dinâmica 0,02 N.s/m², determine a força necessária para arrastar uma chapa quadrada de 1 m de lado, de espessura 3 mm, posicionada a igual distância das duas placas, a uma velocidade constante de 0,15 m/s

Resposta: 6 N

2.2.ESTÁTICA DOS FLUIDOS

2.2.1. CONCEITO DE PRESSÃO

$$P = \frac{Força\ aplicada\ perpendicular\ ao\ plano}{\acute{A}rea\ do\ plano}$$

$$P = \frac{F_N}{A} \qquad \left(\frac{Kgf}{cm^2} \; ; \; \frac{N}{m^2} = Pa\right)$$

2.2.2. TEOREMA DE STEVIN

Consideremos uma coluna de fluido de peso específico y e altura h

$$\begin{split} \gamma &= \frac{G}{V} \quad \Longrightarrow \quad G = \gamma \cdot V \\ P &= \frac{G}{A_{base}} = \frac{\gamma \cdot V}{A_{base}} \qquad \text{como} \quad V = A_{base} \cdot h \text{ , temos} : \\ P &= \frac{\gamma \cdot A_{base} \cdot h}{A_{base}} \quad \Longrightarrow \quad \boxed{P = \gamma \cdot h} \end{split}$$

> "A pressão em um ponto do fluido é diretamente proporcional à profundidade deste ponto e ao peso específico do fluido"

Com base neste teorema, temos duas considerações importantes a fazer :

- 1) O fluido deve estar em repouso. Se o fluido estiver em movimento o teorema não é válido;
- 2) Devemos notar que a pressão em um ponto de um fluido em repouso depende a apenas da profundidade do ponto e independe do formato do recipiente, conform mostra a figura abaixo.

$$P_1 = P_2 = P_3$$

$$P_1$$

$$P_2$$

- → Pelo teorema de Stevin, podemos concluir que a pressão é a mesma em qualquer ponto situado em um mesmo nível em um fluido em equilíbrio.
- → Para o caso de dois líquidos imissíveis, como óleo e água em um tubo U de seção uniforme, consideremos a pressão sobre as áreas S1 e S2, situadas no plano AB, que passa pela interface entre os fluidos. Se o fluido está equilíbrio, temos que F1 = F2. Como S1 = S2, temos que :

$$\frac{F1}{S1} = \frac{F2}{S2} \quad \Rightarrow \quad P1 = P2$$

Exemplo: Determine a distância x na figura, considerando que o peso específico da água e 9800 N/m³ e que o peso específico do óleo é 7350 N/m³.

$$h = 30 cm = 0.3 m$$

 $Como: P1 = P2, temos$
 $\gamma_{H2O} \times h = \gamma_{\acute{O}leo} \times X$
 $9800 \times 0.3 = 7350 \times X$
 $X = 0.4 = 40 cm$

2.2.3. LEI DE PASCAL

"A pressão aplicada em um ponto de um fluido incompressível (líquidos) em repouso é transmitida integralmente a todos os pontos do fluido."

$$P = \frac{F_1}{A_1} \qquad P = \frac{F_2}{A_2}$$

$$\frac{F_1}{A_1} = \frac{F_2}{A_2} \quad \Rightarrow \quad F_2 = F_1 \cdot \left(\frac{A_2}{A_1}\right)$$

 \rightarrow A Força F_2 será tantas vezes maior que a Força F_1 quantas vezes for a área A_2 maior que a área A_1 . Por exemplo, em uma prensa hidráulica cuja área do cilindro maior for 10 vezes maior que a área do menor cilindro, consegue-se multiplicar a força aplicada por 10.

2.2.3. ESCALAS DE PRESSÃO

$$P_{atm} = \gamma_{ar} \cdot h_{ar}$$

→ Experiência de Torricelli

A carga de pressão (h = 760 mm) da coluna de mercúrio, multiplicada pelo peso específico do mercúrio (γ_{Hg}), equilibra a pressão atmosférica.

$$P_{atm} = 1$$
 atm = 760 mmHg = 101234 N/m² = 1,033 Kgf/cm² = 10,33 m.c.a. (m de coluna d'água)

- ightharpoonup Escala de pressão absoluta ightharpoonup é aquela que adota como referência a pressão do vácuo ($P_v = 0$)
- ➤ Escala de pressão efetiva → é aquela que adota como referência a pressão atmosférica (P_{atm} = 0)

2.2.5. APARELHOS MEDIDORES DE PRESSÃO

a) Piezômetro

$$P_A = \gamma \cdot h$$
 ($P_{atm} = 0$)

Desvantagens:

- Não serve para depressões
- Não serve para gases
- Não serve para pressões elevadas

b) Manômetro com tubo em "U"

$$P_A = \ \gamma_2$$
 . h_2 - γ_1 . h_1

Se o fluido ① for gás : $P_A = \gamma_2$. h_2

$$P_m = P_i - P_e$$

P_i: pressão interna P_e: pressão atmosférica P_m: pressão do manômetro

Geralmente : $P_e = 0$ (escala efetiva), então :

$$P_m\!=P_i$$

A figura abaixo ilustra alguns aspectos internos de um manômetro metálico.

Exercício R.2.2.1. A figura mostra um tanque de gasolina com infiltração de água. Se a densidade da gasolina é 0,68 determine a pressão no fundo do tanque ($\gamma_{H2O} = 9800 \text{ N/m}^3$).

$$P = \gamma_{H2O} \cdot h_1 + \gamma_g \cdot h_2$$

$$P = \gamma_{H2O} \cdot h_1 + d_g \cdot \gamma_{H2O} \cdot h_2$$

 $P = 9800 \times 1 + 0.68 \times 9800 \times 5$

$$P = 9800 \times 1 + 0.68 \times 9800 \times 5$$

$$P = 43120 \text{ N/m}^2 = 43,12 \text{ KPa} = 4,4 \text{ m.c.a.}$$

 $h_2=5 m$

 $\frac{1}{h_1} = 1$ m

Gasolina

Água

Exercício R.2.2.2. O Edifício "Empire State" tem altura de 381 m. Calcule a relação entre a pressão no topo e na base (nível do mar), considerando o ar como fluido incompressível ($\gamma_{Ar} = 12,01 \text{ N/m}^3$).

$$P_{2} = P_{atm} = 101234 \text{ N/m}^{2}$$

$$P_{2} - P_{1} = \gamma_{Ar} \cdot (h_{2} - h_{1})$$

$$P_{1} = P_{2} - \gamma_{Ar} \cdot (h_{2} - h_{1})$$

$$\frac{P_{1}}{P_{2}} = 1 - \frac{\gamma_{Ar} \cdot (h_{2} - h_{1})}{P_{2}} = 1 - \frac{12,01 \times 381}{101234} = 0,955$$

$$P_{2}$$

Exercício R.2.2.3. A água de um lago localizado em uma região montanhosa apresenta uma profundidade máxima de 40 m. Se a pressão barométrica local é 598 mmHg, determine a pressão <u>absoluta</u> na região mais profunda ($\gamma_{Hg} = 133 \text{ KN/m}^3$).

```
P_{fundo} = P_o + \gamma_{H2O}. h_{lago} onde, P_o = \gamma_{Hg}. h_{Hg} é a pressão na superficie do lago P_{fundo} = \gamma_{Hg}. h_{Hg} + \gamma_{H2O}. h_{lago} = 133 \, (KN/m^2) \, x \, 0,598 \, (m) + 9,8 \, (KN/m^2) \, x \, 40 \, (m) P_{fundo} = 472 \, KN/m^2 = 472 \, KPa \, (abs)
```

Exercício R.2.2.4. Um tanque fechado contém ar comprimido e um óleo que apresenta densidade 0,9. O fluido utilizado no manômetro em "U" conectado ao tanque é mercúrio (densidade 13,6). Se $h_1 = 914$ mm, $h_2 = 152$ mm e $h_3 = 229$ mm, determine a leitura do manômetro localizado no topo do tanque.

$$\begin{array}{l} P_{1} = P_{arcomp} \ + \ \gamma_{Oleo} \ . \ (h_{1} + h_{2}) \\ P_{2} = \ \gamma_{Hg} \ . \ h_{3} \\ P_{1} = P_{2} \ \ \, \Longrightarrow \ \ \, P_{arcomp} \ + \ \gamma_{Oleo} \ . \ (h_{1} + h_{2}) \ = \ \gamma_{Hg} \ . \ h_{3} \\ P_{arcomp} = \ \, \gamma_{Hg} \ . \ h_{3} \ - \ \gamma_{Oleo} \ . \ (h_{1} + h_{2}) \\ P_{arcomp} = \ \, d_{Hg} \ . \ \gamma_{H2O} \ . \ h_{3} \ - \ d_{Oleo} \ . \ \gamma_{H2O} \ . \ (h_{1} + h_{2}) \\ P_{arcomp} = \ \, 13,6 \ x \ 9800 \ x \ 0,229 \ - \ 0,9 \ x \ 9800 \ x \ (0,914 + 0,152) \\ P_{arcomp} = \ \, 21119 \ N/m^{2} \ = \ 21,119 \ KPa \end{array}$$

Exercício R.2.2.5. No piezômetro inclinado da figura, temos $\gamma_1 = 800 \text{ Kgf/m}^2$ e $\gamma_2 = 1700 \text{ Kgf/m}^2$, $L_1 = 20 \text{ cm}$ e $L_2 = 15 \text{ cm}$, $\alpha = 30 \,^{\circ}\text{C}$. Qual é a pressão em P_1 ?

```
h_1 = L_1.sem \ \alpha h_2 = L_2.sem \ \alpha

P_1 = h_1.\gamma_1 + h_2.\gamma_2 = L_1.sem \ \alpha.\gamma_1 + L_2.sem \ \alpha.\gamma_2

P_1 = 0.20 \ x \ sen \ 30^\circ \ x \ 800 + 0.15 \ x \ sen \ 30^\circ \ x \ 1700

P_1 = 207.5 \ Kgf/m^2
```


Exercício R.2.2.6. Dois tanques de combustível pressurizados estão interconectados por uma tubulação conforme mostra a figura abaixo. Dado que o manômetro metálico M1 indica uma pressão de 40 KPa e que o peso específico do combustível é 7000 N/m³, determine :

- a) a pressão indicada pelo manômetro M2;
- b) a pressão indicada pelo manômetro M3.

$$P_{MI} = 40 \text{ kPa} = 40000 \text{ N/m}^2$$
 $\gamma_{comb} = 7000 \text{ N/m}^3$

a) A pressão ao longo do plano AA' é constante, portanto podemos fazer :

$$P_{M1} + \gamma_{comb}$$
 . $10 = P_{M2} + \gamma_{comb}$. 6 $40000 + 7000$. $10 = P_{m2} + 7000$. $6 \Rightarrow P_{M2} = 68000 \text{ N/m}^2 = 68 \text{ kPa}$

b) O manômetro M3 mede a pressão no plano AA', então :

$$P_{M3} = P_{M1} + \gamma_{comb}$$
 . $10 = 40000 + 7000$. $10 \Rightarrow P_{M3} = 110000 \text{ N/m}^2 = 110 \text{ kPa}$

Exercício R.2.2.6. Na figura abaixo são conhecidas as seguintes medidas : $h_1 = 180$ cm e $h_2 = 250$ cm.. Considerando que o peso específico do mercúrio é 133280 N/m³ e que o sistema está em equilíbrio, determine: a) a pressão do **Gás A**

b) a indicação do manômetro (1), considerando que o manômetro (2) indica uma pressão de 115000 N/m² para o **Gás B**

Considerando o manômetro em U com mercúrio do lado esquerdo, temos :

$$\gamma_{Hg} \; . \; h_1 \; = \; P_{GasA} \; + \; \gamma_{H2O} \; . \; h_2 \quad \Rightarrow \quad P_{GasA} \; = \; \gamma_{Hg} \; . \; h_1 \; - \; \gamma_{H2O} \; . \; h_2 \; = 133280 \times \; 1, 8 \; - \; \; 9800 \times \; 2, 5 \; = \; 215404 \; N / m^2$$

O manômetro metálico (2) indica a pressão do Gás B : $P_{GasB} = P_{M2} = 115000 \, N/m^2$

O manômetro Metálico (1) indica a diferença de pressão entre os Gases (A – B):

$$P_{M1} = P_{GasA} - P_{GasB} = 215404 - 115000 = 100404 N/m^2 = 100,4 kPa$$

Exercício R.2.2.7. O sistema da figura está em equilíbrio e a massa m sobre o pistão é de 10 kg. Sabendo que a altura h é 100 cm, determinar a pressão do Gás 2.

Dados/Informações Adicionais:

- $\gamma_{\rm H2O} = 9800 \text{ N/m}^3$
- Desprezar o peso do pistão

A pressão do gás 1 pode ser calculada pelo delocamento da água (h) :

$$h = 100 \, cm = 1 \, m$$

$$P_{Gas1} = \gamma_{H2O}$$
. $h = 9800 \frac{N}{m^3} \times 1 \ m = 9800 \frac{N}{m^2}$

A força exercida pelo gás 1 no pistão é:

$$A = 400 \, cm^2 = 400 \times 10^{-4} \, m^2$$

$$P_{Gas1} = \frac{F_{G\acute{a}s1}}{A} \implies F_{G\acute{a}s1} = P_{G\acute{a}s1} \cdot A = 9800 \frac{N}{m^2} \times 400 \times 10^{-4} \ m^2 = 392 \ N$$

A força peso da massa sobre o pistão é:

$$G = m.g = 10 \, kg \, x \, 9.8 \, \frac{m}{s^2} = 98 \, N$$

O balanço de forças do sistema é o seguinte : a força exercida pelo gás 1 mais o peso da massa sobre o pistão é quilibrado pela força exercida pelo gás 2.

$$F_{G\acute{a}s2} = F_{G\acute{a}s1} + G$$

$$F_{G\acute{a}s2} = 392 + 98 = 490 \, N$$

A pressão do gás 2 é então :

$$P_{Gas2} = \frac{F_{G\acute{a}s2}}{A} = \frac{490}{400 \times 10^{-4}} \implies P_{G\acute{a}s2} = 12250 \frac{N}{m^2} = 12,25 \ kPa$$

EXERCÍCIOS PROPOSTOS

Exercício P.2.2.1. A pressão sanguínea das pessoas é usualmente especificada pela relação entre a pressão máxima (pressão sistólica) e a pressão mínima (pressão diastólica). Por exemplo, um valor típico de um ser humano adulto é 12 x 7, ou seja máxima de 12 cm de Hg e mínima de 7 cm de Hg. Determine o valor destas pressões em Pascal. Dado : $\gamma_{Hg} = 133280 \text{ N/m}^3$

Resposta: 15993,6 Pa e 9329,6 Pa

Exercício P.2.2.1. A pressão do ar preso no tanque da figura é 41,4 kPa. Sabendo eu a massa específica da glicerina é 1260 kg/m³, calcule a pressão no fundo do tanque.

Resposta: 79 kPa

Exercício P.2.2.2. A figura mostra um tanque fechado que contém água. O manômetro indica que a pressão do ar é 48,3 kPa. Determine :

- a) a altura h da coluna aberta;
- b) a pressão no fundo do tanque;
- c) a pressão absoluta do ar no topo do tanque se a pressão atmosférica for 101,13 kPa

Respostas: 5,53 m; 60 kPa; 149,4 kPa

Exercício P.2.2.3. No manômetro da figura, o fluido A é água (peso específico de 1000 Kgf/m³) e o fluido B e mercurio (peso específico de 13600 Kgf/m³). As alturas são $h_1 = 5$ cm, $h_2 = 7,5$ cm e $h_3 = 15$ cm. Qual é a

pressão P₁

Resposta: 1335 kgf/m³

Exercício P.2.2.4. Dado o dispositivo da figura, onde $h_1 = 25$ cm, $h_2 = 10$ cm e $h_3 = 25$ cm, $h_4 = 25$ cm, calcular:

- a) A pressão do Gás 2
- b) A pressão do **Gás 1**, sabendo que o manômetro metálico indica uma pressão de 15000 N/m²
- c) A pressão absoluta do Gás 1, considerando que a pressão atmosférica local é 730 mmHg

 $\textbf{Resposta}:\ 32970\ N/m^2 - 17970\ N/m^2 - 115265\ N/m^2$

Exercício P.2.2.5. No dispositivo da figura o manômetro indica 61600 N/m2 para a diferença de pressão entre o Gás 2 e o Gás 1. Dados γ água = 9800 N/m3 e γ Hg = 133000 N/m3, determinar :

- a) A pressão do Gás 2
- b) A distância x na figura.

Resposta: 1233200 N/m^2 ; 0,5 m

Exercício P.2.2.6. O sistema da figura está em equilíbrio e o peso do porquinho é 200 N. Sabendo que a altura h é 50 cm, determinar a pressão do Gás 2.

<u>Dados/Informações Adicionais</u>:

- Desprezar o peso do pistão e da plataforma.

Resposta: 106,64 kPa

Exercício P.2.2.6. Considerando que o peso específico do óleo é 7000 N/m³ e que o sistema da figura está em equilíbrio, determine a altura x na figura.

Resposta: 35,7 cm

2.3. CINEMÁTICA DOS FLUIDOS

2.3.1. VAZÃO EM VOLUME

<u>Vazão em Volume</u> é o volume de fluido que escoa através de uma certa seção em um intervalo de tempo

$$Q = \frac{volume \, que \, passou \, pela \, seção}{tempo} = \frac{V}{t} \qquad \left(\frac{m^3}{s}, \frac{l}{s}, \frac{m^3}{h}, \frac{cm^3}{s}\right)$$

$$como \quad V = A.s \quad \Rightarrow \quad Q = \frac{A.x}{t} = A.x$$

$$Q = v.A$$

onde, v é a velocidade média do fluido A é a área da seção

2.3.2. VAZÃO EM MASSA

Vazão em Massa é a massa de fluido que escoa através de uma certa seção em um intervalo de tempo

$$Q_{m} = \frac{m}{t} \qquad \left(\frac{kg}{s}, \frac{kg}{h}, \frac{utm}{h}, \frac{utm}{s}\right)$$

$$como \quad \rho = \frac{m}{V} \implies m = \rho.V \text{ , portanto : } \qquad Q_{m} = \frac{\rho.V}{t} = \rho.\frac{V}{t} = \rho.Q$$

$$Q_{m} = \rho.Q \quad \text{e como } Q = v.A \text{ , temos : }$$

$$\boxed{Q_{m} = \rho.v.A}$$

2.3.3. VAZÃO EM PESO

<u>Vazão em peso</u> é o peso de fluido que escoa através de uma certa seção em um intervalo de tempo

$$Q_G = \frac{G}{t} \qquad \left(\frac{N}{s}, \frac{N}{h}, \frac{Kgf}{h}, \frac{Kgf}{s}\right)$$

$$\text{como} \quad G = m.g \quad \Rightarrow \quad Q_G = \frac{m.g}{t} = Q_m \cdot g = \rho \cdot Q \cdot g = \rho \cdot g \cdot Q = \gamma \cdot V \cdot A \text{, portanto :}$$

$$\boxed{Q_G = \gamma \cdot V \cdot A}$$

2.3.4. EQUAÇÃO DA CONTINUIDADE PARA REGIME PERMANENTE

Consideremos um fluido escoando por uma tubulação no regime permanente. O regime permanente se caracteriza por não haver variações das propriedades do fluido em cada ponto, ou seja, as propriedades na seção [1] (v_1 , ρ_1 , etc.) são constante e as propriedades na seção [2] (v_2 , ρ_2 , etc.) também são constantes.

Como as propriedades ficam constantes, não pode haver acúmulo de massa entre [1] e [2], pois neste caso, pelo menos a massa específica variaria. Portanto, concluímos que no <u>regime permanente</u> a massa em cada seção é a mesma, ou seja :

$$\boxed{\begin{array}{l} Q_m^1 = Q_m^2 = \text{constante} \\ (\rho.v.A) = k \text{ (equação da continuidade)} \\ \rho_1.v_1.A_1 = \rho_2.v_2.A_2 \end{array}}$$

<u>Fluido incompressível</u>: No caso em que o fluido é incompressível, como a sua massa específica é constante, a equação da continuidade poderá então ser escrita :

Portanto, se o fluido é incompressível a vazão em volume á a mesma em qualquer seção. A partir desta equação pode-se obter a relação de velocidades em qualquer seção do escoamento.

$$v_1 \cdot A_1 = v_2 \cdot A_2 \qquad \Rightarrow \qquad v_2 = v_1 \cdot \frac{A_1}{A_2}$$

Portanto, a velocidade é maior nas seções de menor área.

EXERCÍCIOS RESOLVIDOS:

Exercício R.2.3.1. Na tubulação convergente da figura, calcule a vazão em volume e a velocidade na seção 2 sabendo que o fluido é incompressível.

$$Q_1 = Q_2$$

 $v_1 \cdot A_1 = v_2 \cdot A_2 \implies v_2 = v_1 \cdot \frac{A_1}{A_2} = 5 \cdot \frac{10}{5} = 10 \, \text{m/s}$

A vazão em volume é:

$$Q_1 = v_1 \cdot A_1 = 5 \left(\frac{m}{s}\right) \cdot 10 \left(cm^2\right) \cdot 10^{-4} \left(\frac{m^2}{cm^2}\right) = 5 \cdot 10^{-3} \, m^3 / s = 5 \, dm^3 / s = 5 \, l / s$$

Exercício R.2.3.2. Ar escoa em regime permanente num tubo convergente. A área da maior seção do tubo é 20 cm² e a da menor seção é 10 cm². A massa específica do ar na seção (1) é 0,12 utm/m³ enquanto que na seção (2) é 0,09 utm/m³. Sendo a velocidade na seção (1) 10 m/s, determine:

- a) a velocidade na seção (2):
- b) a vazão em massa de ar nas seções (1) e (2);
- c) a vazão em volume de ar nas seções (1) e (2).
- a) Como o ar é um fluido compressível, a equação da continuidade é :

$$Q_{m}^{1} = Q_{m}^{2} \Rightarrow \rho_{1}.v_{1}.A_{1} = \rho_{2}.v_{2}.A_{2}$$

$$v_{2} = \frac{\rho_{1}.v_{1}.A_{1}}{\rho_{2}.A_{2}} = \frac{0.12\left(\frac{utm}{m^{3}}\right).10\left(\frac{m}{s}\right).20(cm^{2})}{0.09\left(\frac{utm}{m^{3}}\right).10(cm^{2})} = 26.7 \, m/s$$
(1)

b) As vazões em massa em (1) e (2) são iguais (regime permanente):

(2)

$$Q_m = \rho_1 . v_1 . A_1 = 0.12 \left(\frac{utm}{m^3}\right) . 10 \left(\frac{m}{s}\right) . 20 \left(cm^2\right) 10^{-4} \left(\frac{m^2}{cm^2}\right) = 2.4 . 10^{-3} \frac{utm}{s}$$

c) As vazões em volume em (1) e (2) são são diferentes (fluido compressível):

$$Q_1 = v_1 \cdot A_1 = 10 \left(\frac{m}{s}\right) \cdot 20 \times 10^{-4} \left(m^2\right) = 20 \times 10^{-3} \ m^3/s \implies Q_1 = 20 \ l/s$$

$$Q_{21} = v_2 \cdot A_2 = 26.7 \left(\frac{m}{s}\right) \cdot 10 \times 10^{-4} \left(m^2\right) = 26.7 \times 10^{-3} \, m^3 / s \implies Q_1 = 26.7 \, l/s$$

Exercício R.2.3.3. No tanque misturador da figura 20 l/s de água ($\rho = 1000 \text{ Kg/m}^3$) são misturados com 10 l/s de um óleo ($\rho = 800 \text{ Kg/m}^3$) formando uma emulsão. Determinar a massa específica e a velocidade da emulsão formada.

$$Q_e = Q_a + Q_o = 20 + 10 = 30 l/s$$

$$Q_{m}^{e} = Q_{m}^{a} + Q_{m}^{o} \implies \rho_{e}.Q_{e} = \rho_{a}.Q_{a} + \rho_{o}Q_{o}$$

$$\rho_{e}.30\left(\frac{l}{s}\right) = 1000\left(\frac{kg}{m^{3}}\right).20\left(\frac{l}{s}\right) + 800\left(\frac{kg}{m^{3}}\right).10\left(\frac{l}{s}\right) \implies \rho_{e} = 933,33\left(\frac{kg}{m^{3}}\right)$$

$$Q_{e} = v_{e}.A \implies 30\left(\frac{l}{s}\right).10^{-3}\left(\frac{m^{3}}{l}\right) = v_{e}.30\left(cm^{2}\right).10^{-4}\left(\frac{m^{2}}{cm^{2}}\right)$$

$$v_{e} = 10 \, m/s$$

Exercício R.2.3.4. Os dois tanques cúbicos com água são esvaziados ao mesmo tempo, pela tubulação indicada na figura, em 500 s. Determinar a velocidade da água na seção A, supondo desprezível a variação de vazão com a altura.

$$Q^{t1} + Q^{t2} = Q^{tubo}$$

$$\frac{V_1}{t} + \frac{V_2}{t} = v.A$$

$$\frac{2.2.2}{500} \left(\frac{m^3}{s}\right) + \frac{4.4.4}{500} \left(\frac{m^3}{s}\right) = v.45.10^{-4} \left(m^2\right)$$

$$v = 32 \ m/s$$

$$2 \ m$$

$$(A)$$

EXERCÍCIOS PROPOSTOS:

Exercício P.2.3.1. Água é descarregada de um tanque cúbico de 5 m de aresta por um tubo de 5 cm de diâmetro localizado na base. A vazão de água no tubo é 10 l/s. Determinar a velocidade de descida da superfície livre da água do tanque e, supondo desprezível a variação de vazão, determinar o tempo que o nível da água levará para descer 20 cm.

Respostas: 4. 10-4 m/s ; 500 s

Exercício P.2.3.2. Dois reservatórios cúbicos de 10 m e 5 m de aresta, são enchidos por água proveniente de uma mesma tubulação em 500 s e 100 s, respectivamente. Determinar a velocidade da água na tubulação sabendo que o seu diâmetro é 1,0 m.

Resposta: 4,13 m/s

Exercício P.2.3.3. O avião esboçado na figura voa a 971 km/h. A área da seção frontal de alimentação de ar da turbina é igual a 0,8 m2 e o ar, neste local, apresenta massa específica de 0,736 kg/m3. Um observador situado no avião detecta que a velocidade dos gases na exaustão da turbina é igual a 2021 km/h. A área da seção transversal da exaustão da turbina é 0,558 m2 e a massa específica dos gases é 0,515 kg/m3. Determine a vazão em massa de combustível utilizada na turbina.

Resposta: 2,51 kg/s

Exercício P.2.3.4. Ar escoa em um tubo divergente, conforme a figura abaixo. A área da menor seção do tubo é 50 cm² e a da maior seção é 100 cm². A velocidade do ar na seção (1) é 18 m/s enquanto que na seção (2) é 5 m/s. Sendo a massa específica do ar na seção (1) é 0,026 kg/m³, determine:

- a) a massa específica do ar na seção (2);
- b) a vazão em massa de ar nas seções (1) e (2);
- c) a vazão em volume de ar nas seções (1) e (2).

Dados/Informações Adicionais:

• Considere regime permanente e lembre-se que o ar é um fluido compressível

Resposta: 0.0468 kg/m^3 ; 0.00234 kg/s e 0.00234 kg/s; $0.09 \text{ m}^3/\text{s}$ e $0.05 \text{ m}^3/\text{s}$

2.4. EQUAÇÃO DE BERNOULLI

<u>Premissas Simplificadoras</u>:

- Fluido ideal ($\mu = 0$, escoa sem perda de energia)
- Regime permanebte
- Fluidos incompressíveis (líquidos)

2.4.1. FORMAS DE ENERGIA MECÂNICA

> Energia Potencial de Posição (EPPo)

Energia (trabalho) = Força x Deslocamento

 $EEPo = G \cdot z$, como $G = m \cdot g$

$$EEPo = m.g.z$$
 onde, $m: massa$ $g: aceleração da gravidade$ $z: altura$

➤ Energia Potencial de Pressão (EPPr)

Energia (trabalho) = Força x Deslocamento

$$P = \gamma . h \implies h = \frac{P}{\gamma}$$

$$EPPr = G \cdot h$$

$$EE \operatorname{Pr} = G.\frac{P}{\gamma}$$
 onde, $G: peso$ $P: pressão$ $\gamma: peso específico$

> Energia Cinética (Ec)

$$Ec = \frac{1}{2}.m.v^2$$
 onde, $m: massa$ $v: velocidade$

Como exemplo ilustrativo das três forma da energia, consideremos o escoamento de água em uma seringa, conforme mostra a figura abaixo. A força aplicada aplicada no êmbolo produz uma pressão maior que a atmosférica no ponto (1) do escoamento. A água escoa pela agulha, ponto (2), em alta

velocidade e atinge o ponto (3) onde para antes volta a cair. Portanto, a energia que foi passada para o líquido através do êmbolo se manisfeta no ponto (1), principalmente na forma de pressão. No ponto (2) a energia está preponderante na forma cinética e no ponto (3) a energia está essencialmente na forma potencial.

	Tipo de Energia			
Ponto	Cinética	Potencial	Pressão	
(1)	Pequena	Zero	Grande	
(2)	Grande	Pequena	Zero	
(3)	Zero	Grande	Zero	

→ Energia Total (E)

A energia total do fluido é a soma das parcelas.

E = EPPo + EPPr + Ec

2.4.2. PRINCÍPIO DE CONSERVAÇÃO DA ENERGIA

"No escoamento de um fluido ideal, sua energia total permanece constante"

$$E_1 = E_2$$
 ou

$$EPPo_1 + EPPr_1 + Ec_1 = EPPo_2 + EPPr_2 + Ec_2$$
 ou

$$m.g.z_1 + G.\frac{P_1}{\gamma} + \frac{1}{2}.m.v_1^2 = m.g.z_2 + G.\frac{P_2}{\gamma} + \frac{1}{2}.m.v_2^2$$

2.4.3. EQUAÇÃO DE BERNOULLI PARA FLUIDO IDEAL

Pelo princípio de conservação da energia, temos :

$$m.g.z_1 + G.\frac{P_1}{\gamma} + \frac{m.v_1^2}{2} = m.g.z_2 + G.\frac{P_2}{\gamma} + \frac{m.v_2^2}{2}$$

Como, G = m.g, temos:

$$G.z_1 + G.\frac{P_1}{\gamma} + \frac{G.v_1^2}{2.g} = G.z_2 + G.\frac{P_2}{\gamma} + \frac{G.v_2^2}{2.g}$$

Dividindo ambos membros por G, temos :

$$z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2 \cdot g} = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2 \cdot g}$$
 ou $\mathbf{H_1} = \mathbf{H_2}$

onde,

$$z \equiv \text{carga de posição (m)}$$

$$\frac{P}{\gamma} \equiv \text{carga de pressão (m)}$$

$$\frac{V^2}{2.g} \equiv \text{carga de velocidade (m)}$$

Exercício R.2.4.1. O tanque da figura tem grandes dimensões e descarrega água pelo tubo indicado. Considerando o fluido ideal, determinar a vazão em volume de água descarregada, se a seção do tubo é 10 cm².

Para aplicar a equação de Bernoulli adotamos como seção (1) a superfície livre da água e (2) a saída do tubo. Portanto, temos que :

$$H_1 = H_2$$

$$z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2 \cdot g} = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2 \cdot g}$$

Como adotamos a escala efetiva de pressão, as pressões P_1 e P_2 são nulas pois são iguais à pressão atmosférica. Em relação ao plano de referência, temos que :

$$z_1 = 10$$
 e $z_2 = 2$

Como o tanque tem grandes dimensões, a velocidade da superfície livre da água pode ser considerada desprezível. Portanto :

$$v_1 = 0$$

Logo, a equação de Bernoulli fica reduzida à :

$$z_1 = z_2 + \frac{v_2^2}{2.g}$$
 \Rightarrow $v_2 = \sqrt{2 \cdot g \cdot (z_1 - z_2)} = \sqrt{2 \times 9.8 \left(\frac{m}{s^2}\right) \times (10 - 2)(m)}$ \Rightarrow $v_2 = 12.5 \, m/s$

A vazão em volume será:

$$Q = v_2 \cdot A_2 = 12,5 \left(\frac{m}{s}\right) \times 10 \times 10^{-4} \left(m^2\right) = 0,0125 \, m^3/s$$
 \Rightarrow $Q = 12,5 \, l/s$

2.4.4. O TUBO VENTURI

O venturi consiste de uma tubulação cuja seção varia até um minímo e, novamente, volta a ter a mesma seção inicial. Este tipo de estrangulamento é denominado de garganta. A equação de Bernoulli aplicada entre as seções (1) e (2) na figura abaixo fornece:

$$z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2.g} = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2.g}$$
 \Rightarrow $\frac{v_2^2 - v_1^2}{2g} = \frac{P_1 - P_2}{\gamma}$

Como $v_2 > v_1$, temos que $P_1 > P_2$, pode-se avaliar a velocidade medindo-se a diferença de pressão entre as seções (1) e (2). Portanto, medindo-se a diferença de pressão e conhecendo-se as áreas da seções, pode-se calcular a vazão com este dispositivo, pois pela equação da continuidade, temos :

$$Q = v_1 . A_1 = v_2 . A_2$$

Exercício R.2.4.2. No Venturi da figura água escoa como fluido ideal. A área na seção (1) é 20 cm² enquanto que a da seção (2) é 10 cm². Um manômetro cujo fluido manométrico é mercúrio ($\gamma_{Hg} = 13600 \text{ kgf/m}^3$) é ligado entre as seções (1) e (2) e indica um desnível "h" de 10 cm. Pede-se a vazão em volume de água ($\gamma_{H2O} = 1000 \text{ kgf/m}^3$)

Como os centros geométricos das seções (1) e (2) estão na mesma altura : $z_1 = z_2$, portanto :

$$\frac{P_1}{\gamma} + \frac{v_1^2}{2.g} = \frac{P_2}{\gamma} + \frac{v_2^2}{2.g} \implies \frac{P_1}{\gamma} - \frac{P_2}{\gamma} = \frac{v_2^2}{2.g} - \frac{v_1^2}{2.g} \implies \frac{P_1 - P_2}{\gamma} = \frac{v_2^2 - v_1^2}{2.g} \oplus$$

Como $A_2 < A_1 \implies v_2 > v_1$ (energia cinética aumenta) \implies energia de pressão diminui ($P_2 < P_1$)

A pressão em (a) é igual a pressão em (b) : $P_a = P_b$, ou :

$$P_{1} \; + \; \gamma_{H2O} \; . \; x \; + \; \gamma_{H2O} \; . \; h \; = \; P_{2} + \gamma_{H2O} \; . \; x \; + \; \gamma_{Hg} \; . \; h$$

$$P_1 - P_2 = (\gamma_{Hg} - \gamma_{H2O})$$
. $h = (13600 - 1000)$. $0.10 = 1260 \text{ kgf/m}^2$

Substituíndo ② em ①, temos:

$$\frac{P_1 - P_2}{\gamma} = \frac{v_2^2 - v_1^2}{2.g} \implies \frac{1260}{1000} = \frac{v_2^2 - v_1^2}{2 \times 9.8} \implies v_2^2 - v_1^2 = 24.7 \frac{m^2}{s^2}$$

Pela equação da continuidade, temos:

$$Q_1 = Q_2 \implies v_1 \cdot A_1 = v_2 \cdot A_2 \implies v_1 = v_2 \cdot \frac{A_2}{A_1} = v_2 \cdot \frac{10(cm^2)}{20(cm^2)} \implies v_1 = \frac{v_2}{2}$$
 (3)

Substituíndo 3 em 2, temos:

$$v_2^2 - \left(\frac{v_2}{2}\right)^2 = 24.7 \implies v_2 = 5.7 \, m/s$$

Portanto, a vazão em volume será:

$$Q = v_2 \cdot A_2 = 5.7 \times 10 \times 10^{-4} = 5.7 \times 10^{-3}$$

$$Q = 5.7 l/s$$

2.4.5. EQUAÇÃO DE BERNOULLI PARA FLUIDO IDEAL COM MÁQUINA NO ESCOAMENTO

<u>Máquina</u> é qualquer elemento, que introduzido no escoamento, é capaz de fornecer ou retirar energia do fluido na forma de trabalho. Podemos ter dois casos :

- **Bomba** : qualquer máquina que fornece energia ao fluido
- <u>Turbina</u>: qualquer máquina que retira energia do fluido

Consideremos um escoamento de um fluido. Se não houver máquina no escoamento, sabemos que :

Caso haja uma máquina no escoamento, teremos o seguinte

a) Se for bomba: $H_1 + H_B = H_2$ ($H_1 < H_2$)

onde, $H_B = \text{carga manométrica da bomba (m)}$

a) Se for turbina :
$$H_1 - H_T = H_2$$
 ($H_1 > H_2$)

onde, H_T = carga manométrica da turbina (m) Portanto, a equação de Bernoulli ficará assim :

$$\mathbf{H_1} + \mathbf{H_M} = \mathbf{H_2}$$
 ou $z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2.g} + H_M = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2.g}$

onde $H_M = +H_B$ (se bomba) ou $H_M = -H_T$ (se turbina)

Potência Retirada ou Fornecida e Rendimento

Da definição de trabalho, temos:

Trabalho = Força x Deslocamento

$$W = G \times H_{\scriptscriptstyle M}$$
 como: $\gamma = \frac{G}{V} \implies G = \gamma \times V$, então:

$$W = \gamma \times V \times H_{\scriptscriptstyle M}$$

dividindo pelo tempo, obtemos:

$$\frac{W}{t} = \frac{\gamma \times V \times H_M}{t} \quad \text{como} : \quad \wp = \frac{W}{t} \quad (potencia) \quad e \quad Q = \frac{V}{t}, \text{ obtemos} :$$

$$\wp = \gamma \times Q \times H_{\scriptscriptstyle M}$$

Unidades de Potência:

Sistema Internacional
$$\rightarrow [\wp] = \frac{N}{m^3} \times \frac{m^3}{s} \times m = \frac{N \times m}{s} = \frac{J}{s} = W$$

Sistema Métrico $\rightarrow [\wp] = \frac{kgf}{m^3} \times \frac{m^3}{s} \times m = \frac{kgf \times m}{s} = \frac{kgm}{s}$ (1 $CV = 75 \frac{kgm}{s}$)

O Rendimento (
$$\eta$$
) é definido como : $\eta = \frac{potência \ útil}{potência \ realmente \ fornecida}$

No caso da bomba a potência útil fornecida ao fluido é menor que a potência da máquina, assim :

Na **Bomba** :
$$\eta_B = \frac{\wp}{\wp_B}$$
 \Rightarrow $\wp_B = \frac{\wp}{\eta_B}$

onde $\eta_{\scriptscriptstyle B}$ é o rendimento da bomba.

No caso da turbina a potência útil da máquina é menor que a potência fornecida pelo fluido, assim :

Na **Turbina**:
$$\eta_T = \frac{\wp_T}{\wp}$$
 \Rightarrow $\wp_T = \wp \times \eta_T$

onde η_T é o rendimento da turbina.

Exercício R.2.4.3. O reservatório de grandes dimensões da figura descarrega água pelo tubo a uma vazão de 10 l/s. Considerando o fluido ideal, determinar se a máquina instalada é bomba ou turbina e determinar sua potência se o rendimento for de 75%. A área da seção do tubo é 10 cm².

A velocidade na saída do tubo pode ser obtida através da vazão

$$Q = v_2 \cdot A \rightarrow v_2 = \frac{Q}{A} = \frac{10 \times 10^{-3} (m^3 / s)}{10 \times 10^{-4} (m^2)} = 10 \, m / s$$

Na equação de Bernoulli adotamos como seção (1) a superfície da água ($v_I=0$) e (2) a saída do tubo.

$$H_I + H_M = H_2$$
 $z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2.g} + H_M = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2.g}$

Como as pressões P₁ e P₂ são nulas pois são iguais à pressão atmosférica, temos que :

$$20 + 0 + 0 + H_M = 5 + 0 + \frac{10^2}{2 \times 9.8}$$
 \rightarrow $Hm = -9.9 m$

Como no sentido do escoamento o H_M ficou negativo, então a máquina é uma turbina. A potência é:

$$\wp = \gamma \times Q \times H_M = 9800 \frac{N}{m^3} \times (10 \times 10^{-3}) \frac{m^3}{s} \times 9.9 \, m = 970.2 \frac{N \times m}{s} = 970.2 \frac{J}{s} = 970.2 W$$

Nem toda potência posta em jogo pelo fluido é aproveitada pela turbina, assim :

$$\eta_T = \frac{\wp_T}{\wp} \qquad \Rightarrow \qquad \wp_T = \wp \times \eta_T = 970.2 \times 0.75 = 727.6 W$$

Exercício R.2.4.4. Uma empresa de energia utiliza um sistema de "armazenamento" de energia conforme mostra a figura. A noite, quando sobra energia, é feito um bombeamento de água de um lago para um reservatório elevado e, durante o dia esta água é utilizada para gerar energia em uma turbina. Considerando que a vazão de água é sempre 500 litros/s e que os rendimentos da bomba e da turbina são 70%, calcule:

- a) a potência (em kW) necessária na bomba;
- b) a potência (em kW) recuperada na turbina

a) Tomando a seção (1) como a superfície livre do lago e a seção (2) como a superfície livre do reservatório e aplicando Bernoulli para máquina no escoamento, temos:

$$z_{1} + \frac{P_{1}}{\gamma} + \frac{v_{1}^{2}}{2.g} + H_{M} = z_{2} + \frac{P_{2}}{\gamma} + \frac{v_{2}^{2}}{2.g} \quad onde:$$

$$z_{1} = 0 \quad (nivel \ de \ referência) \qquad \qquad z_{2} = 80 \, m$$

$$P_{1} = 0 \quad (pressão \ atmosférica \ efetiva) \qquad \qquad P_{2} = 0 \quad (pressão \ atmosférica \ efetiva)$$

$$v_{1} = 0 \quad (lago \ de \ grandes \ dim \ ensões) \qquad \qquad v_{2} = 0 \quad (reservatório \ de \ grandes \ dim \ ensões)$$

$$0 + 0 + 0 + H_{M} = 80 + 0 + 0 \quad \Rightarrow \qquad H_{M} = 80 \, m \quad (\'e \ uma \ Bomba)$$

$$H_{M} = +H_{B} \quad \Rightarrow H_{B} = 80 \, m$$

A vazão de 500 litros/s, correspode a 0,5 m³/s. Portanto, a potência requerida para o bombeamento é:

$$\wp = \gamma \times Q \times H_B = 9800 \frac{N}{m^3} \times (0.5) \frac{m^3}{s} \times 80 \, m = 392000 \frac{N \times m}{s} = 392000 \frac{J}{s} = 392000 \, W$$

A potência requerida na bomba deve levar em conta o rendimento, assim :

$$\eta_B = \frac{\wp}{\wp_B} \qquad \Rightarrow \qquad \wp_B = \frac{\wp}{\eta_B} = \frac{392000}{0.70} = 560000 \, W \qquad \Rightarrow \qquad \wp_B = 560 \, KW$$

b) Tomando a seção (2) como a superfície livre do reservatório e a seção (3) como a superfície livre do lago e aplicando Bernoulli para máquina no escoamento, temos:

$$z_{2} + \frac{P_{2}}{\gamma} + \frac{v_{2}^{2}}{2.g} + H_{M} = z_{3} + \frac{P_{3}}{\gamma} + \frac{v_{3}^{2}}{2.g} \quad onde:$$

$$z_{2} = 80 \, m \qquad \qquad z_{3} = 0 \quad (\text{nivel de referência})$$

$$P_{2} = 0 \quad (\text{pressão atmosférica efetiva}) \qquad \qquad P_{3} = 0 \quad (\text{pressão atmosférica efetiva})$$

$$v_{2} = 0 \quad (\text{reservatório de grandes dim ensões}) \qquad \qquad v_{3} = 0 \quad (\text{lago de grandes dim ensões})$$

$$80 + 0 + 0 + H_{M} = 0 + 0 + 0 \quad \Rightarrow \quad H_{M} = -80 \, m \quad (\text{é uma Turbina})$$

$$H_{M} = -H_{T} \quad \Rightarrow H_{T} = 80 \, m$$

A potência fornecida pelo fluido é:

$$\wp = \gamma \times Q \times H_T = 9800 \frac{N}{m^3} \times (0.5) \frac{m^3}{s} \times 80 \, m = 392000 \frac{N \times m}{s} = 392000 \frac{J}{s} = 392000 \, W$$

A potência aproveitada na turbina deve levar em conta o rendimento, assim :

$$\eta_T = \frac{\wp_T}{\wp} \qquad \Rightarrow \qquad \wp_T = \wp \times \eta_T = 39200 \times 0.70 = 274400 W \qquad \Rightarrow \qquad \wp_T = 274.4 KW$$

Portanto, levando em conta as perdas nas máquinas, a energia aproveitada é bem menor que a energia utilizada para o "armazenamento".

2.4.6. EQUAÇÃO DE BERNOULLI PARA FLUIDO REAL COM MÁQUINA NO ESCOAMENTO

Se o fluido não for ideal, devido ao efeito do <u>atrito</u>, ocorrerá uma dissipação da energia do fluido entre as seções (1) e (2).

Neste caso, temos que : $H_1 > H_2$

Para restabelecer a igualdade, deve ser computado em (2) a energia dissipada entre (1) e (2). Portanto, a equação de Bernoulli ficará assim :

$$\mathbf{H_1} = \mathbf{H_2} + \mathbf{H_P}$$

onde, $\mathbf{H_P} =$ energia dissipada entre (1) e (2) ou "perda de carga"

Levando em conta a presença de uma máquina no escoamento, teremos :

$$\mathbf{H_1} + \mathbf{H_M} = \mathbf{H_2} + \mathbf{H_P}$$
 ou $z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2.g} + H_M = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2.g} + H_P$

Exercício R.2.4.5. Na instalação da figura a máquina é uma bomba e o fluido é água. A bomba tem potência de 3600 W e seu rendimento é 80%. A água é descarregada na atmosfera a uma velocidade de 5 m/s pelo tubo, cuja área da seção é 10 cm². Determinar a perda de carga entre as seções (1) e (2).

A vazão de água pelo tubo é:

$$Q = v. A = 5 \times (10 \times 10^{-4}) = 0.005 \, m^3 / s$$

A altura manométrica da bomba é obtida considerando que :

$$\wp = \gamma \times Q \times H_B \quad \text{e} \quad \eta_B = \frac{\wp}{\wp_B} \quad \text{ou} \quad \wp = \wp_B \times \eta_B \qquad \rightarrow \qquad H_B = \frac{\wp_B \times \eta_B}{\gamma \times Q}$$

$$H_B = \frac{3600 \times 0.80}{9800 \times 0.005} = 58.8 \text{ m}$$

Na equação de Bernoulli adotamos como seção (1) a superfície da água ($v_I=0$) e (2) a saída do tubo.

$$\mathbf{H_1} + \mathbf{H_M} = \mathbf{H_2} + \mathbf{H_P}$$
 ou $z_1 + \frac{P_1}{\gamma} + \frac{v_1^2}{2.g} (+ H_B) = z_2 + \frac{P_2}{\gamma} + \frac{v_2^2}{2.g} + H_P$
 $5 + 0 + 0 + 58.8 = 0 + 0 + \frac{5^2}{2 \times 9.8} + H_P \implies H_P = 62.5 m$

EXERCÍCIOS PROPOSTOS

Exercício P.2.4.1. Uma caixa d'água de 1,0 m de altura está apoiada sobre uma lage de 4,0 m de altura e alimenta a tubulação de um chuveiro. Considerando que o diâmetro da tubulação próximo ao chuveiro na seção (2) é ½ polegada e que esta seção está a 2,0 m do solo, determinar para fluido ideal:

- a) A vazão em volume de água;
- b) A vazão em volume de água considerando que a altura da lage é 10 m.

Respostas: 0,97 l/s ; 1,7 l/s

Exercício P.2.4.2. Em uma indústria de engarrafamento de água mineral, a água de um reservatório de grandes dimensões situado no piso inferior, deve ser recalcada, conforme mostra a figura, para limentar a linha de engarrafamento. O diâmetro da tubulação de recalque é 1,6 cm. Considerando que a altura manométrica (HB) da bomba é 13 m e que a água se comporta como um fluido ideal, determine:

- a) a vazão de água recalcada
- b) o número de garrafões de 20 litros que podem ser enchidos por hora.

Respostas: 12,52 m/s ; 454 garrafões

Exercício P.2.4.3. No Venturi da figura querosene (densidade: $\gamma r = 0.85$) escoa como fluido ideal. A área na seção (1) é 24 cm2 enquanto que a da seção (2) é 12 cm2. As velocidades médias do querosene nas seções (1) e (2) são 4,5 m/s e 9 m/s, respectivamente. Um manômetro cujo fluido manométrico é mercúrio ($\gamma = 133280 \text{ N/m3}$) é ligado entre as seções (1) e (2) e indica um desnível "h". Pede-se desnível "h" indicado.

Resposta: 0,206 m

Exercício P.2.4.4. A água contida em um reservatório elevado, de grandes dimensões, alimenta por gravidade a linha de engarrafamento, em uma fábrica de água mineral gasosa, conforme mostra a figura. O reservatório é pressurizado e o manômetro no topo indica uma pressão de 50 kPa. O diâmetro da tubulação de descarga é 1,6 cm. Considerando a água um fluido ideal, determine :

- a) a velocidade da água mineral na saída da tubulação de descarga
- b) o número de garrafões de 20 litros que podem ser enchidos por hora.

Respostas : 17,2 m/s e 622 garrafões

Exercício P.2.4.5. Na instalação da figura a máquina é uma turbina e o fluido é água. A turbina tem potência de 500 W e seu rendimento é 85%. A água é descarregada na atmosfera a uma velocidade de 3 m/s pelo tubo, cuja área da seção é 10 cm². Determinar a perda de carga entre as seções (1) e (2).

Resposta: 14,5 m

Exercício P.2.4.6. Água escoa através da instalação esboçada na figura. A canalização que conduz a água tem um diâmetro interno de 10 cm.

- a) Dado que a vazão de água é 126,33 litros/s, determinar a potência fornecida (ou recebida) pela água pela máquina M, indicando se é uma bomba ou uma turbina.
- b) Determine a potência da máquina se o seu rendimento for 65%.

Dados/Informações Adicionais:

O tanque da figura tem grandes dimensões

Resposta: 7675,93 W (é bomba); 11809,12 W

Exercício P.2.4.7. Em um pequeno edificio, uma bomba é utilizada para recalcar água de um reservatório subterrâneo para uma caixa d'agua situada no topo do edificio. A tubulação de recalque, conforme mostra a figura, tem diâmetro de ½" (0,5 polegadas) e a vazão de água é 3 litros/s. Considerando a água um fluido ideal, determine :

- a) a altura manométrica da bomba
- b) a potência da bomba (em HP), considerando que o seu rendimento é 65%

Dados/Informações Adicionais

- reservatório subterrâneo tem grandes dimensões e está aberto para a atmosfera
- g = 9.8 m/s 1"=2,54 cm 1 HP =745,7 W

Resposta: 46,7 m ; 2,8 HP