HCC4060B HCF4060B

14-STAGE RIPPLE CARRY BINARY COUNTER/DIVIDER AND OSCILLATOR

- MEDIUM-SPEED OPERATION
- COMMON RESET
- FULLY STATIC OPERATION
- BUFFERED INPUTS AND OUTPUTS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V. 10V AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 1005 TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF 'B 'SERIES CMOS DEVICES"

DESCRIPTION

The HCC4060B (extended temperature range) and HCF4060B (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in line plastic or ceramic package and plastic micropackage. The HCC/HCF4060B consist of an oscillator section and 14 ripple carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which reset the counter to the all 0's state and disables oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of ϕ_1 (and ϕ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the clock lin permits unlimited clock rise and fall time.

September 1988

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V V
V_{i}	Input Voltage	-0.5 to V _{DD} + 0.5	V
П	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package Temperature Range	200	mW mW
T _{op}	Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	°C

^{*} All voltage values are referred to Vss pin voltage.

LOGIC DIAGRAM

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

						Value								
Symbol	Parame	Parameter		Vo	lo	V _{DD}	T _{LOW} * 25 °C				T _{HIGH} *		Unit	
			(V) (V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
I _L Quiescent Current	Quiescent		0/5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	^
			0/20			20		100		0.08	100		3000	μΑ
		шог	0/5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04 40 300				
		Typos	0/15			15		80		0.04	80		600	
V _{OH}	Output High		0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
Іон	Output		0/5	2.5		5	-2		-1.6	-3.2		-1.15		
	Drive	HCC	0/5	4.6		5	-0.64		-0.51	-1		-0.36		
	Current	Types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4		mΑ
			0/5	2.5		5	-1.53		-1.36	-3.2		-1.1		
		HCF	0/5	4.6		5	-0.52		-0.44	-1		-0.36		
		Types	0/10	9.5		10	-1.3		-1.1	-2.6		-0.9		
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4		
l _{OL}	Output	нсс	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	,,,,,,	0/15	1.5		15	4.2		3.4	6.8		2.4		mΑ
		LICE	0/5	0.4		5	0.52		0.44	1		0.36		
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		1
		, , , , ,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakag	 је	0/18	A J	nut	18		±0.1		±10 ⁻⁵	±0.1		±1	μΑ
	Current		0/15	Any In	pul ———	15		±0.3		±10 ⁻⁵	±0.3		±1	μA
Cı	Input Capaci	tance		Any In	put					5	7.5			pF

^{*} T_{LOW} = -55 °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Condi	tions		Value		Unit	
Jyllibol	raiailietei		V _{DD} (V)	Min.	Тур.	Max.	Oili	
t _{PLH}	Propagation Delay Time		5		370	740		
t _{PHL}	(φ to Q4 out)		10		150	300	ns	
			15		100	200		
t _{PLH}	Propagation Delay Time		5		100	200		
t _{PHL}	(Qn to Q _{n+1})		10		50	100	ns	
			15		40	80		
t _{TLH}	Transition Time		5		100	200		
t _{THL}			10		50	100	ns	
			15		40	80		
tw	Input Pulse Width	f = 100KHz	5		50	100		
	·		10		20	40	ns	
			15		15	30		
t _r , t _f	Input Pulse Rise and Fall Time		5	1.5				
	·		10		Unlimited	t	μѕ	
			15					
f _{max} N	Maximum Clock Input Frequency		5	3.5	7			
	, ,		10	8	16		МН	
			15	12	24			
RESET	OPERATION	•						
t _{PHL}	Propagation Delay Time		5		180	360		
	, ,		10		80	160	ns	
			15		50	100		
tw	Reset Pulse Width		5		60	120		
			10		30	60	ns	
			15		20	40		
RC OPE	RATION	•						
	Variation of Frequency (Unit-to-Unit)	C _X = 200pF	5	18	21.5	25		
	, ,	$R_S = 560 K\Omega$	10	20	23	26		
		$R_X = 50 \text{ K}\Omega$	15	21.1	24	27	KHz	
	Variation of Frequency With Voltage Change	C _X = 200pF	5 to 10			2		
	(Same Unit)	$R_S = 560K\Omega$ $R_X = 50 K\Omega$	10 to 15			1		
Rx		C _X = 10μF	5			20		
		$C_X = 50\mu F$	10			20	MΩ	
		$C_X = 10\mu F$	15			10		
Cx		$R_X = 500 \text{ K}\Omega$	5			1000		
.		R _X = 300 KΩ	10			50	mF	
		R _X = 300 KΩ	15			50		
	Maximum Oscillator Frequency *	$R_X = 5K\Omega$	10	530	650	810		
	- 1 7	$C_X = 15pF$	15	690	800	94	pF	

^{*} RC oscillator applications are not recommended at supply voltages below 7V for $R_X = 50 K\Omega$

Typical Output Low (sink) Current Characteristics

Typical Output High (source) Current Characteristics

Minimum Output Low (sink) Current Characteristics

Minimum Output High (source) Current Characteristics

DETAIL OF TYPICAL FILP-FLOP STAGE

TYPICAL RC OSILLATOR CIRCUIT

TYPICAL CRYSTAL OSCILLATOR CIRCUIT

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch		
5	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

