

Clasificador de Gestos de la Mano

Pablo F. Torres Gutiérrez

Pipeline del Proyecto

Procesar datos

- Con el fin de obtener una muestra representativa de la señal analizada, se seleccionan fragmentos de la señal, a las que se le extraen características.
- Se probaron tres configuraciones distintas:

$$W = 200, S = 200$$

$$W = 400, S = 200$$

$$W = 400, S = 500$$

Selección de Características

- Curtosis
- Media
- Desviación Estándar
- Asimetría Estadística (Skew)
- Rango
- Valor cuadrático medio (rms)

Feature	Size	Formula
Mean	9	$\mu_{X^j} = rac{1}{\ell} \sum_{i=1}^\ell X_i^j$
Variance	9	$\sigma_{Xj}^2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (X_i^j - \mu)^2$
Minimum	9	$min_{X^j} = minimum(X_i^j)$
Maximum	9	$max_{X^j} = maximum(X_i^j)$
Range	9	$range_{X^j} = max_{X_i^j} - min_{X_i^j}$
Mean Crossing Rate	9	$mcr_{X^j} = \frac{1}{\ell-1} \sum_{i=\ell}^{N-1} \Upsilon\{(X_i^j - \mu_{X^j})(X_{i+1}^j - \mu_{X^j}) < 0\},$ where Υ is the indicator
		function
Root Mean Square	9	$rms_{X^j} = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} X_i^{j^2}}$
Skew	9	$skew_{X^j} = \frac{1}{\ell \sigma_{X^j}^3} \sum_{i=1}^{\ell} (X_i^j - \mu_{X^j})^3$
Average Entropy	9	$H_{X^j} = -\frac{1}{\ell} \sum_{i=1}^{\ell} p(X_i^j)$ $\log(p(X_i^j))$
Kurtosis	9	$kurt_{Xj} = \frac{1}{\ell\sigma_{Xj}^4} \sum_{i=1}^{\ell} (X_i^j - \mu_{Xj})^4$
Correlation	9	$corr_{X^{ab}} = \frac{1}{\ell \sigma_{X^a} \sigma_{X^b}} \sum_{i=1}^{\ell} (X_i^a - \mu_{X^a})(X_i^b - \mu_{X^b}),$ for [a,b]={[1,2],[1,3],[2,3]}
Average Magnitude Area	3	$SMA_X = \frac{1}{\ell} \sum_{i=1}^{\ell} (X_i^1 + X_i^2 + X_i^3)$
Average Energy Expenditure	3	$EE_{X} = \frac{1}{\ell} \sum_{i=1}^{\ell} \sqrt{X_{i}^{12} + X_{i}^{22} + X_{i}^{32}}$

μ1	σ1	krt1	range1	skew1	rms1	:	rms8	label
-9.250000e-06	0.000014	-1.119068	0.00004	-0.260835	0.000017		0.000012	1.0

Clasificadores utilizados

- Support Vector Machine (Linear)
- Decision Tree
- Gaussian Naive Bayes
- KNN
- Multilayer Perceptron

Clasificadores utilizados

Support Vector Machine (Linear)
 Accuracy: 0.854

Decision TreeAccuracy: 0.890

 Gaussian Naive Bayes Accuracy: 0.786

• KNN Accuracy: 0.903

 Multilayer Perceptron Accuracy: 0.936

Resultados del Mejor Clasificador

Parámetros MLP

```
parameter_space = {
  'hidden_layer_sizes': [(5,5,5),(10,10,10,10)],
  'activation': ['tanh', 'relu'],
  'solver': ['sgd', 'adam', 'lbfgs'],
  'alpha': [0.0001, 0.05, 1e-5],
  'learning_rate': ['constant','adaptive'],
```


Parámetros MLP

- Función de Activación : RELU
- α = 1e-05 (índice de penalización)
- Batch_size = 'auto'
- Solver = 'lbfgs' (método de optimización)
- Tolerance = 0.0001
- ϵ = 1e-08
- Learning rate = 'constant'

Métricas MLP sobre Conj. de Validación

Matriz de Confusión Clasificador de Gestos Accuracy: 0.936 Matriz de Confusión Detector de Gesto Accuracy: 0.767

Métricas MLP sobre Conj. de Validación

Matriz de Confusión Clasificador Combinado Accuracy: 0.753

Conclusiones

- Necesidad de saber del área de estudio, para así seleccionar las mejores características para describir las señales.
- Los métodos de clústering pueden ser utilizados para realizar labores de clasificación con buenos resultados.