LP/tableau is degenerate if some	basic
variables equal 0 in its basic feas	ible
Solution.	
Example: max x, +4x2	
Example: $\max_{X_1, X_2 \in R} X_1 + 4X_2$ S.t. $X_1 + X_2 \leq 0$	
χ_{i} - 3 $\chi_{i} \leq 0$	
$-2 \times 1 + \times_2 \leq 0$	
$\Delta V = 20$	
All ineg 20 or 60	
* all moves away from orign are	Cut off
* can move, LP is unbounded.	
7, 72 S, S2 S3	
S. 111000	
Sz / -3 0 / 0 0	
53 -2 1 0 0 1 0	
-2 140000	
Pivot on X, remove S,	

Pivot on XI, remove S;

=) (0,0,0,0,0) is opt sol

With opt val Z=0.

Pivoting Rule: Strategy to make decisions on which vars enter/exit basis.

(1) Entering vars: Simplex method says

: Choose var with reduced cost of correct sign: negative for min, positive for max.

(2) Exiting vars: Simplex methods says choose var with Smallest ratio, that is not negative (often more than one). tie.

*(1) Common to Pick entering var with largest abs values (correct sign).

* Can lead to cycling if (2) is not addressed

Bland's pivoting rule: Give vars an order $(X_1, X_2, X_3, ..., X_n, S_1, ..., S_m)$, whenever there is a tie for entering/exiting variable always choose earlier variable.

Avoid eyeling, Very Slow.

Random Pivoting rule: Break all ties randomly. Statistically avoid cycling, Very Slow.

Lexicographic pivoting: prevent cycling!!!
/ >> &, >> &, >> & m > 0.
Means "this ineq stays true up to mult either side
by factor of any number in our Problem."
Add Ei to the RHS of the ith constraint.
Prevent ties from occuring.
For entering choose var w/ largest abs
value (Correct Sign)
Example: $\max_{X_1, X_2 \in R} X_1 + 4X_2$ S.t. $X_1 + X_2 \leq C_1$
χ_{i} - ζ_{i} $\zeta_{i} \leq \varepsilon_{i}$
$-2\times, + \times_2 \leq \epsilon_3$
$X_1, X_1 \geq 0$

	γ,	7/2	S,	Sz	S,	
S,	1	/	/	0	0	E,
Sz	/	-3	1	1	0	$\epsilon_{\rm r}$
53	-2	/	0	0	/	€;
-5	1	4	0	0	0	0

Pivot c	ph '	χ,				
	γ,	7/2	S,	Si	S;	
S,	3	0	/	0	-/	E1-t3
Sz	-5	0	0	/	3	E1-C3 E2+3E7
			0			
-2	9	0	0	0	-4	-4E3

Pivot on X, remove S,

$$X_1, X_2, S_1, S_2, S_3$$
 $X_1, I, 0, \frac{1}{3}, 0, -\frac{1}{3}(E_1-E_3)\frac{1}{3}$
 $S_2, 0, 0, \frac{5}{3}, I, \frac{4}{3}(5E_1+3E_2+4E_3)\frac{1}{3}$
 $X_2, 0, I, \frac{2}{3}, 0, \frac{1}{3}(2E_1+E_3)\frac{1}{3}$
 $-2, 0, 0, -3, 0, -1, -3E_1-E_3$

Opt value is Z=3t,+E, ~ 0.