回帰分析

モデルの評価

村田 昇

講義の内容

- 第1回: 回帰モデルの考え方と推定
- ・ 第 2 回: モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

- 目的変数 を 説明変数 で説明する関係式を構成
 - 説明変数: $x_1, ..., x_p$ (p 次元)
 - 目的変数: y(1 次元)
- 回帰係数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\mathbf{y}$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{\mathbf{v}} = X\hat{\boldsymbol{\beta}}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

実データによる例

• 気象庁より取得した東京の気候データ

	month	day	day_of_week	temp	rain	solar	snow	wdir	wind	press	humid	cloud
213	8	1	Sun	28.7	0.0	26.58	0	SSE	3.2	1000.2	76	2.3
214	8	2	Mon	28.6	0.5	19.95	0	SE	3.4	1006.1	80	7.0
215	8	3	Tue	29.0	3.0	19.89	0	S	4.0	1009.9	80	6.3
216	8	4	Wed	29.5	0.0	26.52	0	S	3.0	1008.2	76	2.8
217	8	5	Thu	29.1	0.0	26.17	0	SSE	2.8	1005.1	74	5.8
218	8	6	Fri	29.1	0.0	24.82	0	SSE	2.9	1004.2	75	4.0
219	8	7	Sat	27.9	2.0	11.43	0	NE	2.5	1003.1	85	9.0
220	8	8	Sun	25.9	90.5	3.43	0	N	3.0	998.0	97	10.0
221	8	9	Mon	28.1	2.0	13.34	0	S	6.1	995.4	84	6.0
222	8	10	Tue	31.0	0.0	22.45	0	SSW	4.7	996.3	58	4.8
223	8	11	Wed	29.2	0.0	21.12	0	SE	2.9	1008.0	61	9.3
224	8	12	Thu	26.0	0.5	8.34	0	SSE	2.4	1008.8	84	9.5
225	8	13	Fri	22.5	20.5	4.36	0	NE	2.7	1008.0	97	10.0
226	8	14	Sat	22.3	77.0	2.76	0	N	2.7	1003.6	100	10.0

• 関連するデータの散布図

図 1: 散布図

- 気温を説明する5つの線形回帰モデルを検討する
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)
- モデル1の推定結果

図 2: モデル 1

- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較
- 決定係数・自由度調整済み決定係数
 - モデル1: 気温 = F(気圧)
 - [1] "R2: 0.0483; adj. R2: 0.0155"
 - モデル2: 気温 = F(日射)
 - [1] "R2: 0.663; adj. R2: 0.651"
 - モデル 3: 気温 = F(気圧, 日射)
 - [1] "R2: 0.703 ; adj. R2: 0.681"
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - [1] "R2: 0.83 ; adj. R2: 0.811"
 - モデル 5: 気温 = F(気圧, 日射, 雲量)
 - [1] "R2: 0.703; adj. R2: 0.67"

残差の性質

あてはめ値

• さまざまな表現

図 3: モデル 2

図 4: モデル 3

図 5: モデルの比較

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は **誤差項** の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は **誤差の重み付けの和** で表される

ハット行列

定義

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

• ハット行列 H による表現

$$\hat{\mathbf{y}} = H\mathbf{y}$$

$$\hat{\boldsymbol{\epsilon}} = (I - H)\boldsymbol{\epsilon}$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_j = (H)_{jj} y_j + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい:他のデータでも予測が可能
- テコ比が大きい:他のデータでは予測が困難

演習

問題

- ハット行列 H について以下を示しなさい
 - H は対称行列であること
 - H は冪等であること

$$H^2 = H$$
, $(I - H)^2 = I - H$

- 以下の等式が成り立つこと

$$HX = X$$
, $X^{\mathsf{T}}H = X^{\mathsf{T}}$

ヒント

• いずれも *H* の定義にもとづいて計算すればよい

$$H^{\mathsf{T}} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})^{\mathsf{T}}$$

$$H^{2} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})(X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})$$

$$(I - H)^{2} = I - 2H + H^{2}$$

$$HX = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})X$$

$$X^{\mathsf{T}}H = (HX)^{\mathsf{T}}$$

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- 誤差の仮定:独立、平均0分散 σ^2 の正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$
$$Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^\mathsf{T} X)^{-1}$$
$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

演習

問題

- 誤差が独立で、平均0分散 σ^2 の正規分布に従うとき、最小二乗推定量 $\hat{\beta}$ について以下を示しなさい
 - 平均は **β**(真の母数) となること
 - 共分散行列は $\sigma^2(X^\mathsf{T}X)^{-1}$ となること

解答例

• 定義にもとづいて計算する

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta}$$

- 定義にもとづいて計算する

$$Cov(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}]$$

$$= \mathbb{E}[(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}]$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}]X(X^{\mathsf{T}}X)^{-1}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(\sigma^{2}I)X(X^{\mathsf{T}}X)^{-1}$$

$$= \sigma^{2}(X^{\mathsf{T}}X)^{-1}$$

誤差の評価

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - **β**の分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

- * p+1 変量正規分布
- $-\hat{\beta}_i$ の分布

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2)$$

- *1変量正規分布
- $*(A)_{jj}$ は行列 A の (j,j) (対角) 成分

標準誤差

• 標準誤差 (standard error) : $\hat{\beta}_i$ の標準偏差の推定量

$$\hat{\sigma}\zeta_j = \sqrt{\frac{1}{n - p - 1}\sum_{i = 1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^\mathsf{T}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- β_i の精度の評価指標

演習

問題

- 以下を示しなさい
 - 不偏分散 $\hat{\sigma}^2$ が母数 σ^2 の不偏な推定量となる 以下が成り立つことを示せばよい

$$\mathbb{E}\left[\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}\right] = (n-p-1)\sigma^{2}$$

解答例

• ハット行列 H を用いた表現を利用する

$$\hat{\boldsymbol{\epsilon}} = (I_n - H)\boldsymbol{\epsilon}$$

$$\mathbb{E}\left[\sum_{i=1}^n \hat{\boldsymbol{\epsilon}}_i^2\right] = \mathbb{E}[\hat{\boldsymbol{\epsilon}}^T \hat{\boldsymbol{\epsilon}}]$$

$$= \mathbb{E}[\operatorname{tr}(\hat{\boldsymbol{\epsilon}} \hat{\boldsymbol{\epsilon}}^T)]$$

$$= \mathbb{E}[\operatorname{tr}(I_n - H)\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T (I_n - H)]$$

$$= \operatorname{tr}(I_n - H)\mathbb{E}[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T](I_n - H)$$

$$= \operatorname{tr}(I_n - H)(\sigma^2 I_n)(I_n - H)$$

$$= \sigma^2 \operatorname{tr}(I_n - H)$$

- *I_n* は *n*×*n* 単位行列
- さらに以下が成立する

$$trH = trX(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$
$$= tr(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X$$
$$= trI_{p+1}$$
$$= p+1$$

- 行列のサイズに注意

係数の評価

t 統計量

• 回帰係数の分布 に関する定理

t 統計量

$$t = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - $\hat{\sigma}^2$ と $\hat{\boldsymbol{\beta}}$ は独立となる
 - $-(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定:
 - 帰無仮説 H_0 : $\beta_i = 0$ (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値: 確率変数の絶対値が |t| を超える確率

$$(p \ \mbox{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

- f(x) は自由度 n-p-1 の t 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

モデルの評価

F 統計量

・ばらつきの比に関する定理:

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F 統計量

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - S_r と S は独立となる
 - S_r/σ^2 は自由度 p の χ^2 分布に従う
 - S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- ・説明変数のうち1つでも役に立つか否かを検定:
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0$ (S_r が χ^2 分布になる)
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率

$$(p \ \mbox{\'e}) = \int_{F}^{\infty} f(x) dx \quad (片側検定)$$

- -f(x) は自由度 p,n-p-1 の F 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

解析の事例

データについて

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• 気候 (気温, 降雨, 日射, 降雪, 風速, 気圧, 湿度, 雲量) に関するデータ (の一部)

	month	day	day_of_week	temp	rain	solar	snow	wdir	wind	press	humid	cloud
213	8	1	Sun	28.7	0.0	26.58	0	SSE	3.2	1000.2	76	2.3
214	8	2	Mon	28.6	0.5	19.95	0	SE	3.4	1006.1	80	7.0
215	8	3	Tue	29.0	3.0	19.89	0	S	4.0	1009.9	80	6.3
216	8	4	Wed	29.5	0.0	26.52	0	S	3.0	1008.2	76	2.8
217	8	5	Thu	29.1	0.0	26.17	0	SSE	2.8	1005.1	74	5.8
218	8	6	Fri	29.1	0.0	24.82	0	SSE	2.9	1004.2	75	4.0
219	8	7	Sat	27.9	2.0	11.43	0	NE	2.5	1003.1	85	9.0
220	8	8	Sun	25.9	90.5	3.43	0	N	3.0	998.0	97	10.0
221	8	9	Mon	28.1	2.0	13.34	0	S	6.1	995.4	84	6.0
222	8	10	Tue	31.0	0.0	22.45	0	SSW	4.7	996.3	58	4.8
223	8	11	Wed	29.2	0.0	21.12	0	SE	2.9	1008.0	61	9.3
224	8	12	Thu	26.0	0.5	8.34	0	SSE	2.4	1008.8	84	9.5
225	8	13	Fri	22.5	20.5	4.36	0	NE	2.7	1008.0	97	10.0
226	8	14	Sat	22.3	77.0	2.76	0	N	2.7	1003.6	100	10.0

- 作成した線形回帰モデルを検討する
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

• 観測値とあてはめ値の比較

図 6: モデルの比較

• モデル1:係数とモデルの評価

Call:

lm(formula = tw_model1, data = tw_subset, y = TRUE)

Residuals:

Min 1Q Median 3Q Max -7.858 -0.680 1.183 1.922 3.235

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 161.9708 110.9113 1.460 0.155
press -0.1336 0.1101 -1.213 0.235

Residual standard error: 2.846 on 29 degrees of freedom Multiple R-squared: 0.0483, Adjusted R-squared: 0.01548 F-statistic: 1.472 on 1 and 29 DF, p-value: 0.2348

• モデル2:係数とモデルの評価

Call:

lm(formula = tw_model2, data = tw_subset, y = TRUE)

Residuals:

```
Min
             1Q Median
                             30
                                   Max
 -4.0385 -1.2347 0.1714 1.1857 3.3124
 Coefficients:
     Estimate Std. Error t value Pr(>|t|)
                       0.72144 31.154 < 2e-16 ***
 (Intercept) 22.47596
                        0.04108 7.552 2.52e-08 ***
 solar
             0.31026
 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 1.694 on 29 degrees of freedom
 Multiple R-squared: 0.6629, Adjusted R-squared: 0.6513
 F-statistic: 57.03 on 1 and 29 DF, p-value: 2.521e-08
• モデル3:係数とモデルの評価
 Call:
 lm(formula = tw_model3, data = tw_subset, y = TRUE)
 Residuals:
     Min
             1Q Median
                             3Q
                                   Max
 -3.8296 -1.0254 0.2546 1.0629 3.5691
 Coefficients:
      Estimate Std. Error t value Pr(>|t|)
 (Intercept) 144.53120 63.13599 2.289 0.0298 *
 press
            -0.12116
                         0.06267 -1.933 0.0634 .
              0.30833
                         0.03928 7.849 1.5e-08 ***
 solar
 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
 Residual standard error: 1.619 on 28 degrees of freedom
 Multiple R-squared: 0.7026, Adjusted R-squared: 0.6814
 F-statistic: 33.08 on 2 and 28 DF, p-value: 4.232e-08
• モデル4:係数とモデルの評価
 Call:
 lm(formula = tw_model4, data = tw_subset, y = TRUE)
 Residuals:
             1Q Median
     Min
                             30
                                   Max
 -3.0251 -0.6246 0.1873 0.9281 1.8950
 Coefficients:
      Estimate Std. Error t value Pr(>|t|)
 (Intercept) 147.00793  48.67327  3.020 0.005466 **
             -0.10823
                         0.04839 -2.236 0.033783 *
 press
 solar
              0.13429
                         0.04922 2.728 0.011058 *
                         0.03532 -4.485 0.000121 ***
 humid
             -0.15840
 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
 Residual standard error: 1.248 on 27 degrees of freedom
 Multiple R-squared: 0.8296, Adjusted R-squared: 0.8107
 F-statistic: 43.81 on 3 and 27 DF, p-value: 1.649e-10
```

• モデル 5:係数とモデルの評価

```
Call:
```

lm(formula = tw_model5, data = tw_subset, y = TRUE)

Residuals:

Min 1Q Median 3Q Max -3.8230 -1.0230 0.2534 1.0684 3.5829

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 144.90781 64.97793 2.230 0.0342 * press -0.12161 0.06481 -1.876 0.0715 . solar 0.31025 0.06243 4.969 3.31e-05 *** cloud 0.00686 0.17144 0.040 0.9684

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1.649 on 27 degrees of freedom Multiple R-squared: 0.7026, Adjusted R-squared: 0.6696 F-statistic: 21.27 on 3 and 27 DF, p-value: 2.809e-07

- 決定係数と F 統計量
 - モデル1
 - [1] "R2: 0.0483; adj. R2: 0.0155; F-statistic: 1.47"
 - モデル2
 - [1] "R2: 0.663; adj. R2: 0.651; F-statistic: 57"
 - モデル3
 - [1] "R2: 0.703; adj. R2: 0.681; F-statistic: 33.1"
 - モデル4
 - [1] "R2: 0.83; adj. R2: 0.811; F-statistic: 43.8"
 - モデル5
 - [1] "R2: 0.703; adj. R2: 0.67; F-statistic: 21.3"

次回の予定

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・第3回: モデルによる予測と発展的なモデル