8.1 More Number Theory

Number theory: branch of pure mathematics concerned with properties of numbers in general, and integers in particular

Concepts from number theory are essential to public-key cryptographic algorithms

- Fermat's theorem
- Euler's theorem
- Discrete logarithms

Prime Factorization

To factor a number n is to write it as a product of other numbers

$$n = a \times b \times c$$

• Note: factoring a number is relatively hard compared to multiplying the factor together to generate the number

The **prime factorization** of a number n is when it's written s a product of primes

Any integer a > 1 can be factored uniquely as:

$$\mathbf{a} = \prod_{p \in \mathbf{p}} \mathbf{p}^{\mathbf{a}_{\mathbf{p}}} = \mathbf{p}_1^{a_1} \times \mathbf{p}_2^{a_2} \times \ldots \times \mathbf{p}_t^{a_t}$$

- $p_1 < p_2 < \dots < p_t$ are prime numbers
- a_i is a positive integer

Integer multiplication:

• Given:

- k = ab
- k can be expressed as the product of powers of primes:

$$\begin{split} &-k = \prod_{p \in p} p^{k_p} \\ &-k_p = a_p + b_p \text{ for all } p \in P \end{split}$$

Relatively Prime Numbers & GCD

Relatively Prime: two numbers a, b are **relatively prime** if they have no common divisors apart from 1.

If a divides b then:

• Given:
$$a = \prod_{p \in p} p^{a_p}$$
, $b = \prod_{p \in p} p^{b_p}$
• Then: $a_p \le b_p$ for all p

Determining the GCD of two numbers

- If k = GCD(a,b), then $k_p = min(a_p, b_p)$ for all p
- Not practical for large numbers due to difficulty of factoring
- Example:

$$\begin{array}{l} -300 = 2^1 \times 3^1 \times 5^2 \\ -18 = 2^1 \times 3^2 \\ -\text{GCD}(18,300) = 2^1 \times 3^1 \times 5^0 = 6 \end{array}$$

Fermat's Theorem

Fermat's theorem: If p is prime and a is a positive integer not divisible by p, then

- $a^{p-1} \equiv 1 \pmod{p}$
- Requires that a be relatively prime to p

Alternative form

- $a^p \equiv a \pmod{p}$
- a doesn't have to be relatively prime to p (a can be divisible by p)

Fermat's Theorem Proof (Assume Basic True, Formulate Alternative)

- 1. Assume $a^{p-1} \equiv 1 \pmod{p}$
- 2. From (1) can write: $a^p \cdot a^{-1} \equiv 1 \pmod{p}$
- 3. Multiple a¹ on both sides

$$\mathbf{a^1} \cdot \mathbf{a^p} \cdot \mathbf{a^{-1}} \equiv 1 \pmod{p} \ \mathbf{a^1}$$

$$a^p \equiv a^1 \pmod{p}$$
 Proof Complete

Fermat's Theorem Proof (Basic Form)

- 1. Construct set X
 - $X = \{1,2,...,p-1\}$
- 2. Construct set X' by multiplying X with (a mod p)
 - $X' = \{a \mod p, 2a \mod p, ..., (p-1)a \mod p\}$
- 3. Show p does divide a.
 - a. Show no element in X' is equal to zero
 - Assume $(a^*i) \equiv (a^*p) \pmod{p} \rightarrow i \equiv p \pmod{p} \equiv 0 \pmod{p}$
 - But 0 < i < p
 - b. Show elements in X' are unique
 - Assume $(a^*i) \equiv (a^*j) \pmod{p} \rightarrow i \equiv j \pmod{p}$
 - But $0 < i, j < p, and i \neq j$
 - c. Show X' is equivalent to X thus...
 - $(a * 2a * ... * (p-1)a) \equiv (1 * 2 * ... * p-1) \pmod{p}$
 - $(p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$, thus
 - $\mathbf{a}^{\mathbf{p-1}} \equiv 1 \pmod{\mathbf{p}}$

Euler Totient Function $\phi(n)$

Totient Function - $\phi(n)$: The number of positive integers less than n and relative prime to n

• Professors definition: computing $\phi(n)$ counts the number of residues to be excluded

For prime numbers p and q:

- $\phi(p) = p-1$
- $\phi(p \cdot q) = (p 1) \cdot (q 1)$

Proof for $\phi(p \cdot q) = (p - 1) \cdot (q - 1)$

- 1. The integers in the complete set $\{1, \ldots, (pq-1)\}$ that aren't relative prime to n can be taken out. They are:
 - $\{p, 2p, ..., (q-1)p\}$
 - $\{q, 2q, \ldots, (p-1)q\}$
- 2. From that you can rewrite the equation to:

$$\phi(n) = (pq - 1) - [(q - 1) + (p - 1)]$$

$$= pq - (p + q) + 1$$

$$= (p - 1) \times (q - 1)$$

$$= \phi(p) \times \phi(q)$$

Euler's Theorem

Euler's Theorem: A generalization of Fermat's theorem:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

• If a and n are relatively prime

Proof:

- 1. n being prime is true due to Fermat's theorem
- 2. For any n:
 - Consider the reduced set of residues $R = \{x_1, x_2, \dots, x_{\phi(n)}\}$
 - Consider R' = { $(ax_1 \mod n), (ax_2 \mod n), \ldots, (ax_{\phi(n)} \mod n)$ }
 - R' is equivalent to R, ..., similar to proof of Fermat's theory

Alternate Euler's Theorem: $a^{\hat{}}\phi(n) + 1^{\hat{}} \equiv a \pmod{n}$

• Like Fermat's, this form doesn't require a and n to be relatively prime

Primality Testing

Primality testing is needed because finding large prime numbers is useful (There's no simple way to do this though)

- Traditionally used **trial division**
 - Divide by all numbers(primes) in turn less than the square root of the number)
 - Only works for small numbers
- Alternatively can use **statistical primality testing** based on the necessary properties of primes for which all prime numbers satisfy property
 - Some composite numbers called pseudo-primes, can also satisfy the properties
- $\bullet\,$ Can use a slower deterministic primality test

Two properties of Prime Numbers

First property

• If p is prime and a is a positive integer less than p, then

$$a^2 \mod p = 1$$
 iff either $[a \mod p = 1]$ or $[a \mod p = p - 1]$

Second property

- Let p be a prime number greater than 2. We can write $p 1 = 2^k q$ with k > 0, q odd. Let a be any integer in the range 1 < a < p 1. Then one of the following conditions is true:
 - 1. $a^q \mod p = 1$
 - 2. One of the numbers a^q , a^{2q} , a^{4q} , ..., $a^{2^{k-1}q}$ mod p = p-1

Miller Rabin Algorithm

A test based on prime properties that result from Fermat's Theorem

Algorithm:

- TEST(n) is:
 - 1. Find integers k, q, k > 0, q odd, so that $(n 1) = 2^k q$
 - 2. Select a random integer a, 1 < a < n 1
 - 3. if $a^q \mod n = 1$ then return ("inconclusive")
 - 4. For j = 0 to k 1 do \rightarrow if $(a^{2^{j}q} \mod n = n 1)$ then return("inconclusive")
 - 5. return("composite")

Probabilistic considerations:

- If Miller-Rabin returns "composite", the number is definitely not prime
- Otherwise, is a prime or a pseudo-prime
- Probability it returns "inconclusive" is $<\frac{1}{4}$
- Hence, if ran repeated test with different random a, then chance n is prime after t test is:
 - $Pr(n \text{ prime after t tests}) = 1 4^{-t}$

Prime Distribution

Prime number theorem states that primes near n occur roughly one every (ln n) integers

- Can immediately ignore even numbers
- Therefore, in practice we only need to test $0.5\ln(n)$ numbers of size n to locate a prime
 - This is only the average
 - Sometimes primes are close together
 - Other times are quite far apart

Primitive Roots

From Euler's theorem ($a^{\phi(n)}$ mod n = 1), consider the general case:

```
a^m \bmod n = 1
```

- if GCD(a,n) = 1, there must exist a $m = \phi(n)$
- Smaller m may exist
- Once powers reach m, mod results will repeat

If smallest $m = \phi(n)$ then a is called a primitive root of n

- Successive powers of a "generate" $\phi(n)$ distinct integers relatively prime to n $(a, a^2, a^3, \ldots, a^{\phi(n)})$
- For a prime number p, successive powers of a "generate" p-1 distinct integers relatively prime to p: $(a, a^2, a^3, \ldots, a^{p-1})$
- The only integers with primitive roots are those of the form 2, 4, pa, and 2pa
 - p is any odd prime
 - a is a positive integer

a	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	-11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	-11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	-11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Figure 1: Example of Powers mod 19 (n = 19), all a less than 19

Logarithms

Ordinary Logarithms

 $y = x^{\log_x(y)}$

Properties:

- $\log_{x}(1) = 0$
- $\log_{\mathbf{x}}(\mathbf{x}) = 1$
- $log_x(yz) = log_x(y) + log_x(z)$
- $log_x(y^r) = r \times log_x(y)$

Discrete Logarithms

The inverse problem to exponentiation modulo p is to find the **discrete logarithm** of a number modulo p.

- Similar to saying find i such that $b = a^i \pmod{p}$
 - i is the **discrete logarithm** of the number b for the base a (mod p)
 - written as $\mathbf{i} = \mathbf{dlog_{a,p}b}$
- If a is a primitive root of p then i always exist, otherwise it may not exist or be unique
 - Example:
 - * i = dlog_{5,19} 3 has no answer, i = dlog_{5,19}11 has no unique answers
 - * $i = dlog_{10,19} \ 3 = 5$ by trying successive powers
- Whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

				(a) I														
а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
$\log_{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9
				(b) I	Discre	te log	arith	ms to	the b	ase 3	, mod	ulo 1	9					
а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
$\log_{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	
				(c) D	iscret	te loga	arithr	ns to	the b	ase 10	, moo	iulo 1	9					
a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
1 (-)																		_
log _{10,19} (a)	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	_
	18			(d) D	iscre	te log	arithı	ns to	the b	ase 13	, mo	dulo 1	19					
a	18 1 18	2	3 17											11 14 5	7 15 13	14 16 8	17 2	1
	1	2	3 17	(d) D	iscret	te log	arithi	ns to	the b	ase 13	11 6	dulo 1 12 3 dulo 1	13 1	14 5	15	16 8	17 2	1
a log _{13,19} (a)	1 18	2 11	3 17	(d) D	iscret	te log	arithi 7 12 arithi	ns to 8 15 ns to	the b	ase 13 10 7 ase 14	3, moo	dulo l	13 1 9 13	14 5	15 13	16 8	17 2	1
a log _{13,39} (a)	1	2	3 17	(d) D	iscret	te log	arithi	ns to	the b	ase 13	11 6	dulo 1 12 3 dulo 1	13 1	14 5	15	16 8	17 2	1
a log _{13,19} (a)	1 18	2 11	3 17	(d) D 4 4 (e) D	iscret	6 10 te log	7 12 arithr	8 15 ns to	9 16 the b	ase 13 10 7 ase 14	11 6 , mod	12 3 dulo 1 12 15	13 1 9	14 5	15 13	16 8	17 2	1
a log _{13,19} (a)	1 18	2 11	3 17	(d) D 4 4 (e) D	iscret	6 10 te log	7 12 arithr	8 15 ns to	9 16 the b	ase 13 10 7 ase 14	11 6 , mod	12 3 dulo 1 12 15	13 1 9	14 5	15 13	16 8	17 2	1

Figure 2: Example of discrete logarithms with mod 19

Properties of discrete logarithms

- $\begin{array}{l} \bullet \ dlog_{a,p}(1)=0, \ because \ a^0 \ mod \ p=1 \ mod \ p=1 \\ \bullet \ dlog_{a,p}(a)=1, \ because \ a^1 \ mod \ p=a \ mod \ p=a \\ \bullet \ dlog_{a,p}(xy)=[dlog_{a,p}(x)+dlog_{a,p}(y)](mod \ \phi(p)) \\ \bullet \ dlog_{a,p}(y^r)=[r \cdot dlog_{a,p}(y)](mod \ \phi(p)) \end{array}$