Logical consequence.

For $X \subseteq \overline{\Psi}$ and $\emptyset \in V$, $\emptyset \models X$ denotes $\emptyset \models \beta$ for all $\beta \in X$.

 $X \models \mathcal{L}$ if for all $\forall \in V$ b.t. $\forall \neq X$, it also holds that $\forall \neq X$ d is a logical consequence of $X \subseteq \overline{\mathcal{D}}$

d is a logical consequence of $X \subseteq \overline{\Phi}$ Theorem ((ompactness). Let $X \subseteq \overline{\Phi}$ and $A \in \overline{\Phi}$, then

XEX IF BYEFINX S.+ YEX.

Finite Satisfiability. Let X = \$\Phi\$ x is sotisfiable iff every Y=FINX is satisfiable. (=>)Trivial Suppose X is Schstiable. Then 3 46 V s.t 4 £X Then 4 £Y for every Y=FIN X as well. (4) Suppose X is not Satisfiable. We show: 345FINX S.t Y is not satisfiable.

Let P= 2P,, P2, -- 3. Let Po= \$ and Pi= {P,, P2, -Pi} for iz1

Let Φ_i - Set of formulas generated using only the atomic propositions from Pi for $i \ge 1$.

Define $Xi = X \cap \Phi_i$

Construct a tree T: nodes are valuations over He set Pi, $i \ge 0$ Set of nodes: $\{ 12 \mid \exists i \in \{0,1,2,-3,\nu:Pi \to \{7,1\} \} \}$ Consider any $\nu: Pi \to \{7,1\}$. Thus 2 children

Consider any V: Pi - 2TILS. Vhas 2 Children
V'and V' both functions Pi+1 -> 2T, 13.
V'extends V to Pi+1 by Setting pi+1 to T and

P'extends & to Piti by Setting piti to T and v" Piti to I.

That is, $\forall p \in P_i$, $\forall (p) = \forall (p) = \forall (p)$ $\forall (p \in P_i) = T$, $\forall (p \in P_i) = L$ Observation. T is a complete binary tree.

Level i in T consists of all possible valuations over Pi.

Infinite paths in Tare in 1-1 correspondence with

Valuations over P. Let $T = V_0 V_1 V_2 - - Iten V_T : P \to \mathcal{E}T_1 I_3$, $p_i \mapsto V_i(P_i)$ Given a valuation, we can find a unique path $T_i v_i$ in T_i The Complete binary tree T

A node \forall in T is bad if $\forall(B) = \bot$ for some $p \in X$ prune T by deleting all bad nodes which also have

hat is, on any path in T retain only the nodes upto and including the first bad node.

In subtree T'of T, - all leaf nodes are bad - all non-leaf nodes are not bad.

Claim 1. T'is binite -

Suppose Claim 1 is true. Let set of led nodes be $\{v_1, v_2, - , v_m\}$.

Every it is bad $\Rightarrow \exists \beta_i \in X \text{ s.t. } \forall_i (\beta_i) = \bot$. Claim 2. $\{\beta_i, \beta_2, \dots, \beta_m\} \subseteq_{FIN} X \text{ is not satisfiable.}$

Consider any valuation \forall , the path $\pi \forall$ should pass through some node $\forall j \in \{\forall_1, \forall_2, -- \forall m\}$.

By definition, $\forall \pi_{\mathcal{V}}(\beta_j) = \forall_j(\beta_j) = 1$

Therefore V # & B1, B2, -- , Bm3.

Claim 1. T' is binite.

Proof. Suppose T'is not finite. By König's Lemma, it contains an infinite patt

T=VoV, ... s.t none of the nodes on T is bod.

By definition, Tis also an infinite path in T. Consider UT and a BEX. We have BEX; for some je

So VI(B) = Vi(B)=T. Thus VI = X - a Contradiction.

König's Lemma. Let T be a finitely branching tree if T has infinitely many nodes, Hen Thas an infinite path.

*- (every node has a finite number of children).

Finite Satisfiability. Let $X \subseteq \overline{\Phi}_{,} X$ is satisfiable iff every $Y \subseteq_{FIN} X$ is satisfiable.

Theorem ((ompactness). Let $X \subseteq \Phi$ and $A \in \Phi$, then $X \models A$ iff $\exists Y \subseteq_{FIN} X$ s.t $Y \models A$.

Proof.

 (\Leftarrow) if $Y \subseteq_{FIN} X$ and $Y \models X$ then $X \models X$ if $V \models X$ then $V \models Y$. By assumption $Y \models X$ so $V \models X$.

(⇒) For all Z ⊆ \$\overline{\P}, \PS = \overline{\P}, \ZFB iff Z U \{\pi_B\} is not so his fiable.

Suppose XF d. Then XU { 7 d} is not satisficiable.

By finite satisficiality Lemma,

∃Y = FIN XU {72} s.t Y is not satisfiable. ∴ (Y \ {72}) U {72} is not satisfiable.

Shere fore, Y\ \(\frac{2}{2} \rightarrow \delta \)