Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

10.12.2018

10. Vorlesung

- Berechnung von Determinanten für *n*-reihige Matrizen
 - Entwicklungssatz
 - Umformungsregeln für Determinanten Reduzierung des Rechenaufwands
- Multiplikationssatz f
 ür Determinanten

Determinante der nxn - Matrizen (A) gibt den faktor an, um den sich das, Volumen einer Figur andert, wenn de Figur de Lineure Abs. 8-2 anwendet.

Definition der Determinante

Für jede quadratische Matrix $A \in K^{n \times n}$ und $i, j \in \{1, ..., n\}$ bezeichne

$$A_{ii} \in K^{(n-1)\times(n-1)}$$

<u>diejenige Matrix</u>, <u>die aus A durch Streichen der i-ten Zeile und der j-ten Spalte entsteht</u>.

Es sei $\underline{A} = (a_{ij}) \in K^{n \times n}$.

- Für n = 1, d.h. $A = (a_{11})$, ist $det(A) := a_{11}$.
- Für $n \ge 2$ ist

$$\bullet \ \det(A) := \sum_{i=1}^n (-1)^{i+1} a_{i1} \, \det(A_{i1}) \, .$$

Entwicklungssatz

Für $A = (a_{ij}) \in K^{n \times n}$ und beliebige $i, j \in \{1, ..., n\}$ gilt:

• Entwicklung nach der i-ten Zeile:

$$\det(A) = \sum_{i=1}^n \left(-1\right)^{i+j} a_{ij} \, \det(A_{ij})$$

Entwicklung nach der j-ten Spalte:

$$\det(A) = \sum_{i=1}^n \left(-1\right)^{i+j} a_{ij} \, \det(A_{ij})$$

Die Vorzeichen ergeben sich nach der <u>Schachbrettregel</u>:

$$\begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ - & + & - & + & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Ulrike Baumann

Lineare Algebra

Die Berechungsvorschrift aus der Def. nennt man Entwicklig nach der 1. Sparte objet Matrion, die eine o-seite oder eine o-spilte enthabter, haben die Tetermontes

Rechenregeln für Determinanten

Für
$$\underline{A = (z_1, \dots, z_n)}^T = (s_1, \dots, s_n)$$
 und $k \in K$ gilt:

$$\frac{det}{det}\begin{pmatrix} z_1 \\ \vdots \\ kz_i \\ \vdots \\ z_n \end{pmatrix} = \frac{k \cdot \det}{det}\begin{pmatrix} z_1 \\ \vdots \\ z_i \\ \vdots \\ z_n \end{pmatrix}$$

$$\frac{det}{det}\begin{pmatrix} z_1 \\ \vdots \\ z_i \\ \vdots \\ z_n \end{pmatrix}$$

$$\frac{det}{det}(A) = |A| \cdot det(A)$$

- $\bullet \det(s_1,\ldots,ks_i,\ldots,s_n) = k \cdot \det(s_1,\ldots,s_i,\ldots,s_n)$
- Entsteht A' aus A durch Vertauschen zweier Zeilen (bzw. Spalten), dann gilt det(A') = - det(A).
- Entsteht A' aus A durch Addition eines Vielfachen einer Zeile (bzw. einer Spalte) zu einer anderen, dann gilt $\det(A') = \det(A)$.

Sonderfälle für Determinanten

$$det \left(\begin{array}{c|c} A & * \\ \hline 0 & B \end{array} \right) = \det(A) \cdot \det(B)$$

Multiplikationssatz und Folgerungen

• Multiplikationssatz:

Gilt
$$A, B \in K^{n \times n}$$
, so gilt:

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

- Für Matrizen $A \in K^{n \times n}$ sind folgende Aussagen äquivalent:
 - (1) Die Matrix A ist invertierbar.
 - (2) Es gilt $det(A) \neq 0$.
- Es gilt $\det(A^{-1}) = \frac{1}{\det(A)}$.

Außerdem gilt:
$$\underline{\det(A^T)} = \underline{\det(A)} = \frac{1}{\det(A^{-1})}$$
.

Ulrike Baumann

Lineare Algebra

Berechnung inverser Matrizen

• Es sei $A \in K^{n \times n}$ und $\det(A) \neq 0$.

Dann gilt:

$$A^{-1} = \frac{1}{\det(A)} \cdot (\underbrace{(-1)^{i+j} \det(A_{ji})}_{Stelle\ (i,j)}),$$

wobei A_{ji} aus A durch Streichen von Zeile j und Spalte i entsteht.

• Beispiel: Sei
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 und $det(A) = ad - bc \neq 0$.

Dann gilt:

$$A^{-1} = \frac{1}{ad - bc} \cdot \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Ulrike Baumann

Lineare Algebra