Module 4: Implementing Decision Tree classifier

# Import the necesary packages. import pandas as pd import numpy as np	
import matplotlib.pyplot as plt import seaborn as sns	
import warnings	In []:
warnings.filterwarnings('ignore')	In []:
data = pd.read_csv('brain_stroke.csv')	
data.head()	In []:
df = data.dropna()	In []:
<pre>from sklearn.preprocessing import LabelEncoder le = LabelEncoder()</pre>	In []:
<pre>var = ['gender','smoking_status']</pre>	
<pre>for i in var: df[i] = le.fit_transform(df[i]).astype(int)</pre>	
df.columns	In []:
df.head()	In []:
	In []:
df['stroke'].unique()	In []:
<pre>del df['ever_married'] del df['work_type']</pre>	
del df['Residence_type']	In []:
df.head()	
<pre>#preprocessing, split test and dataset, split response variable X = df.drop(labels='stroke', axis=1)</pre>	In []:

```
#Response variable
Y = df.loc[:,'stroke']
                                                                          In [ ]:
import imblearn
from imblearn.over_sampling import RandomOverSampler
from collections import Counter
ros =RandomOverSampler(random_state=1)
x_{ros,y_{ros}=ros.fit_{resample}(X,Y)}
print("OUR DATASET COUNT
                                      : ", Counter(Y))
print("OVER SAMPLING DATA COUNT : ", Counter(y_ros))
                                                                          In [ ]:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_ros, y_ros, test_size=0.30,
random state=1, stratify=y ros)
print("Number of training dataset : ", len(x_train))
print("Number of test dataset : ", len(x_test))
print("Total number of dataset : ", len(x_train)+len(x_test))
Implementing the DecisionTree classifier
                                                                          In [ ]:
from sklearn.metrics import confusion_matrix, classification_report,
accuracy_score,plot_confusion_matrix
from sklearn.tree import DecisionTreeClassifier
                                                                          In [ ]:
Dt = DecisionTreeClassifier()
Dt.fit(x train,y train)
predictDt =Dt.predict(x_test)
Finding the accuracy of Decision Tree classifier.
                                                                          In [ ]:
accuracy = accuracy_score(y_test, predictDt)
print("Accuracy of DecisionTree classifier:", accuracy *100)
Finding the classification Report Decision tree classifier.
                                                                          In [ ]:
cr = classification_report(y_test, predictDt)
print("Classification report \n\n:", cr)
Finding the Confusion matrix Decision tree classifier.
                                                                          In [ ]:
cm = confusion_matrix(y_test, predictDt)
print("Confusion matrix:\n", cm)
```

<pre>import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(6,6)) plot_confusion_matrix(Dt, x_test, y_test, ax=ax) plt.title('Confusion matrix of Decision Tree classifier') plt.show()</pre>	In []:
<pre>import joblib joblib.dump(Dt,'Dt.pkl')</pre>	In []:
	In []:
	In []: