Efficient Key Management Scheme for Health Blockchain

Paper review

https://youtu.be/NXwijDHKAYU

- Is consists of
 - Consensus Mechanism
 - Digital Signature
 - Hash Chains
 - Shared Database

- Provides
 - Non-Repudiation
 - Integrity
 - Distributed Storage
 - Time-based Traceability

- Can be used in
 - Healthcare
 - Fintech
 - Computational Law
 - Audit
 - Notarization

- Has
 - Speed of recording Issue
 - Efficiency of consensus Issue
 - Privacy of data Issue

Privacy of Data

Zero-Knowledge Proof

- Encrypt and Store
 - Key Management Issue

Key Management Issue

One key for all blocks

One key for a block

Considering application scenario

Health Blockchain

Blockchain handling health data

Has a number of private data

→ Must solve privacy issue

Body Sensor Networks (BSNs)

BAN, WBAN, MBAN

Wearable Wireless Body Area Network

Original BSNs Problems

- Monopoly Problem
- Vulnerability Problem
- Privacy Problem
- Integrity Problem

Proposed BSNusing Blockchain

Monopoly Problem

Vulnerability Problem

Privacy Problem

Integrity Problem

Fuzzy Vault

Fuzzy Vault using PPG (photoplethysmography) signal

Production of PPG vector.

- I. Collect PPG signals
- II. Encoding signals into vectors using FFT (fast Fourier transform)

$$F_S = \langle f_S^1, f_S^2, \dots, f_S^a \rangle, F_r = \langle f_r^1, f_r^2, \dots, f_r^a \rangle$$

II. Creating Polynomial.

- I. Create p(x) with a public order a
- II. Coefficients are produced from a random number \rightarrow common key

$$Coef. = e_a, e_{a-1}, \dots, e_1, e_0$$
, $Key = e_a \parallel e_{a-1} \parallel, \dots, \parallel e_1 \parallel e_0$

Fuzzy Vault using PPG (photoplethysmography) signal

III. Vault Production.

- I. Compute a set $D = \{f_S^i, p(f_S^i)\}, 1 \le i \le a$ predefined
- II. Build a chaff points set $C = \{c_i, d_i\}, 1 \le i \le W$ using random numbers
- III. Vault $R = D \cup C$

IV. Vault Transmission.

I. Send $R \parallel T(K,R)$ where T is MAC function

V. Opening Vault.

- I. Reconstruct p(x) using f_r^i , Lagrangian Interpolation
- II. Recovery K'
- III. Validate K' using T

Fuzzy Vault using PPG signal problem

• v+1 feature points for vth-order polynomial

Relation between parameters

- Revised.
 - Key encoding
 - LOTR (Lower-order twice reconstruction)

Proposed BSNagain

I. Initialization period

- I. Some biosensor can generate key
- II. Set specific node A

II. When gateway device needs to encrypt

- I. Gateway gives order and asks A to generate key
- II. A makes pre-key $k_a \parallel k_{a-1} \parallel$, ..., $\parallel k_1$, $\parallel k_0$ and encodes it into codeword e_i
- III. A uses e_i as a coefficients to construct ath order p(x)

Proposed BSNagain

III. Making Vault

- A collects PPG signals from adjacent nodes.
- A encodes these signals into a vector F_s using FFT
- III. A makes vault $R = D \cup C$

IV. Encrypting Vault Random function Pre-distributed key

- A calculates $K^* = F(k^*, K)$ as the encryption key
- A generates random number r
- III. Do $M = E(r \oplus k^*, R)$

Proposed BSNagain

V. Sending to G

I. A sends $K^* \parallel M \parallel r \parallel H(K^*) \parallel ID_A$ to Gateway device G

VI. Broadcasting

- I. G uses K^* to encrypt physiological data Mp
- II. G broadcasts e(Mp) and $M \parallel r \parallel H(K^*) \parallel ID_A \parallel B_A$
- III. G deletes the K^*

Proposed BSNagain (Recovering)

e(Mp) and $M \parallel r \parallel H(K^*) \parallel ID_A \parallel B_A$

I. Searching block

- I. User uses gateway to point out block on chain
- II. G searches block by index B_A
- III. G sends $M \parallel r \parallel H(K^*)$ to A

II. Once A received

- I. Decrypt M using r, k^* to get vault R
- II. Collect signals from adjacent biosensors
- III. Encoding these signals and recovery p(x) using LOTR and interpolation

III. Verifying

- I. A decodes coefficients from p(x) using RS code
- II. A checks $H(K^*) = H(K^{*'})$

Security and performance analysis

I. Attacking the blockchain

$$e(Mp)$$
 and $M \parallel r \parallel H(K^*) \parallel ID_A \parallel B_A$
 $R = D \cup C$

- II. Attacking the BSN
 - I. On or into the human body
 - II. Increase order

- III. Performance
 - I. BSN nodes are in charge of generation, backup, recovery