Decognize: Prescription Digitization Using Knowledge Graphs

Group Members:

Muhammad Sherjeel Akhtar (P20-0101)

Mahad Ashraf(P20-0563)

Supervisor:

Mr. Muhammad Shoaib Khan

Table of contents

- 1. Project Objective
- 2. Problem Statement
- 3. Architecture Diagram
- 4. Structured Use Case Diagram
- 5. Activity Diagram
- 6. Swimlane Diagram
- 7. Layer Diagram
- 8. Flow Diagram
- 9. Implementation
- 10. Business Opportunity
- 11.Project Scope
- 12.UI Design
- 13.Gantt Chart
- 14.References

1.Project Objective

Project Objective

- To reduce error percentage in prescriptions readability.
- To create an improved OCR system which could later on deployed on other real-life-domains as well.
- To allow user to save and access their prescription data conveniently.
- Generate a user-friendly output that provides a clear and organized list of recognized medications with recommended dosages.
- Utilize deep learning techniques, including TensorFlow, Keras, and OpenCV, to process and detect characters in illegible handwritten texts.

2.Problem Statement

Problem Statement

- Problem: Inefficient healthcare data management for prescriptions.
- Challenge: Illegible handwriting, medical jargon and Knowledge Graph
- Consequence: Errors in healthcare due to traditional OCR systems.
- Goal: Develop NLP-based system for accurate prescription transcription

3. Architecture Design

System Diagram

Figure 1: Architecture Diagram of DeCognize

4. Activity Diagram

Activity Diagram

Figure 3: Activity Diagram of DeCognize

5. Swimlane Diagram

Swimlane Diagram

Figure 3: Swimlane Diagram of DeCognize

6. Layered Diagram

Layered Diagram

Figure 3: Layered Diagram of DeCognize

7. Flow Diagram

Flow Diagram

Figure 3: Flow Diagram of DeCognize

8. Use Case Diagram

Structured Use Case Diagram

Figure 2: Structured Use Case Diagram of DeCognize

9. Implementation

Implementation Code

```
import cv2
import pytesseract
                                                                               # Use pytesseract to get bounding boxes
                                                                               boxes = pytesseract.image to boxes(img rgb,
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-
                                                                               config=custom config)
OCR\tesseract.exe"
                                                                               # Draw bounding boxes on the image
                                                                               for b in boxes.splitlines():
# Reading image
img = cv2.imread("sample.png")
                                                                                 b = b.split()
                                                                                 x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
# Convert to RGB
                                                                                 img rgb = cv2.rectangle(img rgb. (x.
img rgb = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
                                                                               img_rgb.shape[0] - v), (w, img_rgb.shape[0] - h), (0,
                                                                               255, 0), 2)
# Use pytesseract to detect and print text
custom config = r'-oem 3 -psm 6'
                                                                               # Show the image with bounding boxes
texts = pytesseract.image to string(img rgb, config=custom config)
                                                                               cv2.imshow("Output", img_rgb)
print("Texts:", texts)
                                                                               cv2.waitKev(0)
                                                                               cv2.destrovAllWindows()
# Save the text to a file
                                                                               print(f"Texts saved to {output_file_path}")
output file path = "output.txt"
with open(output file path, "w", encoding="utf-8") as text file:
  text file.write(texts)
```

Figure 4: Sample Code

Sample Output

Figure 4: Sample Output

Technologies Used

10. Business Opportunity

Business Opportunity

- Efficient Data Digitization: Streamline conversion of handwritten medical notes to digital records for time savings and reduced errors.
- Enhanced Decision-Making: Improve data accuracy to facilitate quicker, informed healthcare decisions, ultimately enhancing patient care.
- **3.** Research and Efficiency: Utilize biomedical knowledge graphs to enable advanced research and analytics, driving innovation in the medical field.
- Cost Savings Automate: Manual data entry, leading to significant operational cost reductions for healthcare institutions.

11.Project Scope

Project Scope

- Global Market Growth: The global OCR market is experiencing rapid growth, showcasing its significance in addressing diverse industry needs. OCR market was valued at USD 8.93 billion A Compound Annual Growth Rate (CAGR) of 15.4% is anticipated between 2022 and 2030
- Recent Projects: Automated doctor prescription by Nano Net Technologies Inc and Neurodata Group.
- OCR in Healthcare in Pakistan: Active research by Seerat Rani, Abd Ur Rehman, Beenish Yousaf, Hafiz Tayyab Rauf, Emad Abouel Nasr, and Seifedine Kadry.
- **Summary:** OCR enhancing healthcare in Pakistan through innovation and integration.

12. Poster

OUR METHODOLOGY INCLUDES EXTRACTING TEXT FROM DOCUMENTS AND THEN PARSING CRUCIAL ENTITIES TO ORGANIZE INFORMATION IN A STRUCTURED MANNER. THIS STRUCTURED FORMAT EMPOWERS ORGANIZATIONS TO ANALYZE THE DATA EFFECTIVELY, FACILITATING DATA-DRIVEN DECISIONS BASED ON THE DOCUMENT INFORMATION.

ARCHITECTURE

FLOW

GOAL

"DECOGNIZE" AIMS TO SIMPLIFY HEALTHCARE DATA MANAGEMENT BY USING ADVANCED TECHNOLOGIES TO STREAMLINE THE DIGITIZATION OF PRESCRIPTIONS, ENSURING ENHANCED EFFICIENCY AND IMPROVED PATIENT SAFETY.

13. UI Design

Welcome to Decognize Your Prescription Manager

Upload Document

The only charges accrued for this period is the Weekly Service Charge.

text. awe345 IRIS INC. DELRAY BEACH FL 33445-3897 Billing Account Shipping Address: IRISING. 4731 W ATI ANTIC AVE DELRAY BEACH FL 33445-3897 US title Invoice Summary Sep 1, 2014 text cst101 (0)

Dogo!

Ground Services Other Charges Total Charges USD \$ TOTAL THIS INVOICE USD \$

pro177 /8

wed420 6

11.00

14. Gantt Chart

Gantt Chart

FYP-1 :Fall-2023																
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Project Proposal																
Project Defence																
Literature Review																
Scope																
Tools Testing																
First Prototype																
Documentation																

Figure 5: Gantt Chart

15. Literature Review

Literature Review									
Sr. no	Year	Basic Idea	Methodologies	Results	Limitations				
ш	2023	OCR with Open CV and tesseract	Implemented Tesseract OCR with Open CV in python. Focusing on image pre-processing for optimal results integrated text detection and recognition components	Achieved satisfactory OCR accuracy with well- preprocessed images. However, Tesseract struggled with complex backgrounds and artifacts, yielding suboptimal outputs.	Tesseracts accuracy is hindered by poor image quality. Requiring meticulous preprocessing . Challenges arise in handling artifacts handwriting and diverse languages				
[2]	2021	Optical Character Recognition Using TensorFlow	Implemented OCR with TensorFlow Enhanced model robustness with data augmentation technique. Implemented a custom ResNet architecture for OCR	These results showcase the effectiveness of the OCR model, particularly in accurately recognizing characters within the test et, demonstrating its robustness and suitability for the specified task.	Our Model can fall if the image is complex . E.g cursive writing images or images with Continous Characters Currently our model is trained only on digits and English language				
크	2021	Construct a Bio Medical Knowledge Graph with NLP	Extracted text from biomedical document using OCR and applied BERN and utilized zero relation extractor.	Successfully established a Neo4j knowledge graph, showcasing versatility through demonstrated applications such as search engine, co-occurrence analysis and author expertise inspection. While emphasizing its utility for diverse biomedical machine learning applications.	Limitations include persistent NER challenges with BERN, potential inaccuracie in the zero shot relation extractor and the need for expert validation with external database enrichment reliant on data consistency				
[4]	2018	Build a Handwritten Text Recognition System using TensorFlow	Implemented HTR using TensorFlow, with NN trained on IAM word-images, including CNN, RNN and CTC layers. Preprocessed data with resizing normalization and potential augmentation. Utilized RMSProp for training and explored enhancements like data augmentation, input see adjustments and decoding strategies.	Implemented successfulHTR on IAM word - images, enabling flexible NN customization and identifying ar easfor accuracy improvements.	Limited Diversity due to reliance on IAM dataset Potential recognition errors especially for non-dictionary words CPU based training may be slower: GPU recommended				
घ	2022	Doctor Handwritten Prescription recognition system in multilanguage using deep learning	Implemented a system employing machine learning techniques such as CNNs, RNNs, LSTMs for recognizing and translating handwritten prescription notes in diverse language	Successful recognition and translation of handwritten prescriptions in various languages. Demonstrated the efficiency of CNNs, RNNs, and LSTMS in multilingual handwritten text processing.	Sensitivity to variations in handwriting styles. Reliance on quality and diversity of training data for optimal performance				

References [1]

- **1.** Filip Zelic and Anuj Sable. A review on on OCR with Tesseract OpenCV and Python. Nanonets, 2023.
- **2.** Kamlesh Solanki . A review on optical character recognition using tensor flow. Medium, 10:39154–39176, 2021.
- **3.** Tomaz Bratanic , D. Kim *et al.*, "A Neural Named Entity Recognition and Multi-Type Normalization Tool for Biomedical Text Mining," in *IEEE Access*, Medium vol. 7, pp. 73729–73740, 2019, doi:10.1109/ACCESS.2019.2920708., 2021

References [3]

- **4.** Harald Scheidl. Artide on Build handwritten text recognition using tensorflow. Medium, 9:87643–87662, 2018.
- **5.** Kamalanaban, E., M. Gopinath, and S. Premkumar. "Medicine box: Doctor's prescription recognition using deep machine learning." International Journal of Engineering and Technology (UAE) 7 (2018): 114-117.
- **6.** Sandhya, P., and K. P. Rama Prabha. "Comparison Of Various Machine Learning Algorithms For Recognizing Text On The Medical Prescriptions." Journal of Pharmaceutical Negative Results (2022): 2083-2091.

References [2]

- 7. Tabassum, Shaira, Nuren Abedin, Md Mahmudur Rahman, Md Moshiur Rahman, Mostafa Taufiq Ahmed, Rafiqul Islam, and Ashir Ahmed. "An online cursive handwritten medical words recognition system for busy doctors in developing countries for ensuring efficient healthcare service delivery." Scientific reports 12, no. 1 (2022): 1-13
- **8.** Hassan, Esraa, Habiba Tarek, Mai Hazem, Shaza Bahnacy, Lobna Shaheen, and Walaa H. Elashmwai. "Medical prescription recognition using machine learning." In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0973-0979. IEEE, 2021.
- **9.** Wijewardena, W. R. A. D. "Medical Prescription Identification Solution." PhD diss., 2021