Równania różniczkowe

Równania różniczkowe zwyczajne I-go rzędu to równaie postaci

y'=f(x,y) gdzie y'=dy/dx, a f jest funkcję dwóch zmiennych x oraz y

Szukamy rozwiązania czyli funkcji postaci y=y(x), która jest różniczkowalna na przedziale $\langle a,b \rangle$ (bo tylko taka moze być rozwiazaniem równania rózniczkowego). Takich rozwiazań jest nieskończenie wiele (jeśli mamy y(x) to również funkcja g(x)=y(x)+stała bedzie rozwiązaniem równania różniczkowego.

Numerycznie nie znajdziemy wzoru na y(x), ale możemy znaleźć wartości y odpowiadające x-som z przedziału <a,b>. W analitycznym rozwiazaniu równań różniczkowych zawsze pojawia nam sie stała całkowania, którą wyznaczamy w oparciu o warunek początkowy (czyli mamy daną wartość $y(a)=y_a$). Podobnie w numerycznym rozwiązaniu potrzebujemy warunku początkowego albo tzw warunków brzegowych czyli z(y(a),y(b))=0

Metoda Rungego-Kutta

Wartości funkcji y (x) w punktach kolejnych [zaczynając od początku przedziału "a", gdzie mamy warunek poczatkowy y(a) czyli znana wartość] wyznaczamy w oparciu o wartości funkcji f(x,y) w kilku punktach (podobnie jak w poprawionej metodzie Eulera czy też Heuna).

Zakładamy, że wartości funkcji bedziemy szukać w punktach $x_{i+1} = a+(i+1)*h$ (dla i=0,1,2,..., N-1). Wartość h=(b-a)/N

Ogólnie rozwiązanie w metodzie rzędu (M-1) możemy zapisac w postaci:

$$y_{i+1} = y_i + h \left(\sum_i (c_i k_i) \right) - suma od j = 1 do M$$

Gdzie

$$k_1 = f(x,y)$$

. .

 $k_j = f(x+a_j h, y+a_j k_{j-1})$ są funkcjami określonymi przez równanie różniczkowe

Do rozwiązania potrzebna jest więc tylko znajomość współczynników a_j, c_j

Metoda Rungego-Kutta 3-go rzędu

Wartości współczynników a oraz c podaje się najcześciej w postaci macierzy Butchera.

Dla M=4 mamy macierz postaci

Stąd wartości k

$$k_1 = f(x, y)$$

$$k_2 = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hk_1\right)$$

$$k_3 = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hk_2\right)$$

$$k_4 = f(x + h, y + hk_3)$$

Metoda Rungego-Kutty – 4tego i 5-go rzędu

Wartości współczynników a_j oraz c_j podaje się najcześciej w postaci macierzy Butchera. Dla M=5 oraz M=6 mamy macierz/e postaci

		1						
	0	0						
	$\frac{1}{4}$	$\frac{1}{4}$						
a	$\frac{3}{8}$	$\frac{3}{32}$	$\frac{9}{32}$					
	$\frac{12}{13}$	$\frac{1932}{2197}$	$-\frac{7200}{2197}$	$\frac{7296}{2197}$				
	1	$\frac{439}{216}$	-8	$\frac{3680}{513}$	$-\frac{845}{4104}$			
	$\frac{1}{2}$	$-\frac{8}{27}$	2	$-\frac{3544}{4104}$	$\frac{1859}{4104}$	$-\frac{11}{40}$		_
		$\frac{25}{216}$	0	$\frac{1408}{2565}$	$\frac{2197}{4104}$	$-\frac{1}{5}$		C do 5-go rzedu
		$\frac{16}{135}$	0	$\frac{6656}{12825}$	$\frac{28561}{56430}$	— <mark>9</mark> 50	$\frac{2}{55}$	C do 6-go rzedu
		16		2565 6656	4104 28561	9	$\frac{2}{55}$	-

Metoda RKF45

Metoda Rungego-Kutta-Fehlberga wykorzystywana w MATLAB. Najpierw liczymy y_{i+i} z metody niższego rzędu (np.4) i tę wartość traktujemy jako yi prz podstawieniu do metody wyższego rzędu

Zaleta – prosty wzór na błąd pozwala szybko skorygować wybrana wartośc kroku h

$$\varepsilon = \frac{1}{36}k_1 - \frac{128}{4275}k_3 - \frac{2197}{75240}k_4 + \frac{1}{50}k_5 + \frac{2}{55}k_6$$