Proyecto 2: El Problema de la Mochila

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 19, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

Bounded Knapsack Se resuelve con programación dinámica considerando las cantidades límite de cada objeto:

$$dp[i][w] = \max_{k=0}^{\min(q_i, \lfloor w/w_i \rfloor)} (dp[i-1][w-k \cdot w_i] + k \cdot v_i)$$

donde q_i es la cantidad máxima del objeto i.

Tipo de problema: Bounded Knapsack

Capacidad máxima: 10 Número de objetos: 3

Formulación Matemática

Función objetivo:

Maximizar $Z = 11x_A + 7x_B + 12x_C$

Restricción:

 $4x_A + 3x_B + 5x_C \le 10$

Restricciones de variables:

 $x_i \in Z^+ \quad \forall i \in \{A, B, C\}$

Datos del Problema

Objeto	Costo	Valor	Cantidad	
A	4,00	11,00	1	
В	3,00	7,00	1	
\mathbf{C}	5,00	12,00	1	

Tabla de Programación Dinámica Detallada

Capacidad	Inicial	A	В	C
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0		7(1)	7
4	0	11(1)	11	11
5	0	11(1)	11	12(1)
6	0	11(1)	11	12(1)
7	0	11(1)	18(1)	18
8	0	11(1)	18(1)	19(1)
9	0	11(1)	18(1)	23(1)
10	0	11(1)	18(1)	23(1)

Solución Óptima

Valor máximo obtenido: 23 Objetos seleccionados: C:1, A:1

Capacidad utilizada: 9 Capacidad restante: 1