1 Probabilidade

A probabilidade é o estudo das experiências aleatórias.

Espaço amostral: denotado por Ω , é o conjunto de todos os resultados possíveis em uma experiência.

Evento: é um subconjunto de Ω ao qual é associado uma probabilidade em uma amostragem aleatória.

1.1 Famílias de Eventos

Uma família de eventos é um conjunto de eventos.

A maior família de eventos é o conjunto potência de Ω , denotado $\mathcal{P}(\Omega)$.

Propriedades das famílias de eventos:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- $A, B \in \mathcal{F} \implies (A \cup B) \in \mathcal{F}$

1.2 Função Probabilidade

Uma função probabilidade é uma função do tipo $P: \mathcal{F} \to [0,1]$.

Propriedades de uma função probabilidade:

- $0 \le P(A) \le 1$
- $P(\Omega) = 1, P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A^c) = 1 P(A)$
- $A \subseteq B \implies P(A) < P(B)$

1.3 Espaço de Probabilidade

Um espaço de probabilidade é uma tripla da forma (Ω, \mathcal{F}, P) . O espaço é associado à uma experiência aleatória.

1.3.1 Espaços Equiprováveis

Um espaço de probabilidade (Ω, \mathcal{F}, P) é equiprovável quando

$$\forall a, b \in \Omega : P(a) = P(b) = \frac{1}{|\Omega|}$$

1.4 Probabilidade Clássica

A função de probabilidade clássica para espaços equiprováveis é

$$P(A) = \frac{\mid A \mid}{\mid \Omega \mid}$$

1.5 Probabilidade Condicional

A probabilidade de um evento B acontecer dado um evento A é

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Teorema de Bayes:

$$P(B|A) = \frac{P(B)}{P(A)} \cdot P(A|B)$$

1.6 Probabilidade Total

1.6.1 Partição

Sejam os eventos A_1, \ldots, A_n . O conjunto $\{A_1, A_n\}$ forma uma partição de Ω se e somente se

- Os eventos são disjuntos entre si: $\forall i \neq j : A_i \cap A_j = \emptyset$
- $A_1 \cup \cdots \cup A_n = \Omega$

Teorema:

$$P(B) = \sum_{k=1}^{n} P(A_k) \cdot P(B|A_k)$$

1.6.2 Independência

Dois eventos A e B são independentes se e somente se

$$P(A \cap B) = P(A) \cdot P(B)$$

Portanto, elementos disjuntos não são independentes, pois não podem ocorrer simultaneamente.

Corolário: Se A e B são independentes, então P(A|B) = P(A).

Propriedade: Se A e B são independentes, então os seguintes conjuntos são independentes entre si:

- $A \in B^c$
- \bullet $A^c \in B$
- $A^c \in B^c$

1.7 Variáveis Aleatórias

Uma variável aleatória é uma função que associa alguma propriedade de dado resultado à um número real.

$$X:\Omega\to\mathbb{R}$$

A probabilidade de uma variável aleatória assumir um valor $c \in \mathbb{R}$ é

$$P(X=c)$$

Se a imagem de X é um conjunto enumerável, dizemos que esta variável é discreta.

Se a imagem de X é um conjunto não enumerável, dizemos que esta variável é contínua.

1.7.1 Distruibuição

A distribuição de uma variável aleatória é definida por

$$P(X = x_k) \mid k \in \mathbb{N}^*$$

Propriedades:

- $0 \le P(X = x_k) \le 1$
- $\bullet \ \sum_{k} P(X = x_k) = 1$

•

1.8 Densidade

A probabilidade de uma variável contínua estar em um invervalo [a,b] é

$$P(a \le X \le b) = \int_{b}^{a} f(x)dx, \qquad f: \mathbb{R} \to \mathbb{R}^{+}$$

onde f é a função de densidade de probabilidade associada a X.

Uma função de densidade de probabilidade satisfaz as propriedades:

- $\forall x \in \mathbb{R} : f(x) \ge 0$.
- $\bullet \int_{-\infty}^{\infty} f(x)dx = 1.$

1.8.1 Distribuição Uniforme

A função densidade para uma ditribuição uniforme é

$$f(x) = \begin{cases} \frac{1}{\omega} & 0 \le x \le \omega \\ 0 & \text{caso contrário} \end{cases}$$

Já para uma distribuição uniforme reduzida a um intervalo $[a,b]\subset\mathbb{R}$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{caso contrário} \end{cases}$$

$$P(m \le x \le n) = f(n) - f(m)$$