DEFINITION. (Wronskian)

Let $y=f_1(x)=y1(x)$ and $y=f_2(x)=y2(x)---(1)$ be solutions of (1). The function W defined by

 $w(f_1, f_2) = f_1 f_2' - f_1' f_2$ is called the Wronskian of f_1, f_2

$$w(f_1, f_2) = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix}$$

Note:

There are three variables means $w(f_1, f_2, f_3)$

$$w(f_1, f_2, f_3) = \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1^{'} & f_2^{'} & f_3^{'} \\ f_1^{''} & f_2^{''} & f_3^{''} \end{vmatrix}$$

Expand the determinant.

Important note:

Determinant ≠ 0 Linearly Independent

Determinant=0 Linearly dependent.

Problems:

1. Use wornskian to show that $\{cosx, sinx, \}$ are linearly independent.

Solutions:

Here,
$$f_1 = cosx$$
 $f_2 = sinx$ $f_1' = -sinx$ $f_2' = cosx$

$$w(f_1, f_2) = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix}$$

and
$$f_1 f_2' - f_1' f_2 = \cos^2 x + \sin^2 x = 1$$

 $Determinant \neq 0$

Therefore, the given functions linearly independent.

2. Use wornskian to check that $\{\sin(x), \cos(x)e^x\}$ are linearly independent or not.

Solution:

There are three variables means $w(f_1, f_2, f_3)$

$$w(f_1, f_2, f_3) = \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1^{'} & f_2^{'} & f_3^{'} \\ f_1^{''} & f_2^{''} & f_3^{''} \end{vmatrix}$$

Here,
$$f_1 = sinx$$
 $f_2 = cosx$ $f_3 = e^x$ $f_3' = e^x$ $f_3'' = -sinx$ $f_3'' = e^x$ $f_3'' = e^x$

$$w(f_1, f_2, f_3) = \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1^{'} & f_2^{'} & f_3^{'} \\ f_1^{''} & f_2^{''} & f_3^{''} \end{vmatrix}$$

$$= \begin{vmatrix} sinx & cosx & e^x \\ cosx & -sinx & e^x \\ -sinx & -cosx & e^x \end{vmatrix} = -2e^x$$

 $Determinant \neq 0$

Therefore, the given functions linearly independent

Do it your self

- 1. Use wornskian to show that $\{x, e^x, e^{-x}\}$ are linearly independent.
- 2. Use wornskian to check that $\{x, sinx, cosx\}$ are linearly independent or not.