Inteligência Artificial

Redes Neurais Artificiais Self-Organizing Map

José Luis Seixas Junior

Índice

- Introdução;
- Aprendizado Competitivo;
- Matriz-U;
- Mapa Auto-Organizável;
- Atividade;

Introdução

- Estrutura proposta por Teuvi Kohonen (1984);
- Foco em agrupamentos e identificação de padrões;
- Grade bidimensional de neurônios;
- Cada neurônio é um vetor de n características;
- Inicialmente com valores aleatórios;
 - Podem ser feitos com valores não aleatórios, desde que, demonstrem uma pré-disposição dos dados.

Introdução

- Aprendizado competitivo;
- Não supervisionado;
- Generalização do conhecimento;
- Capacidade de aprendizado através da detecção de similaridades, correlações e regularidades;

Arquituetura de uma única camada;

- Cada neurônio tem um vetor de pesos das características de entradas;
- Objetivo é "vencer a concorrência" de semelhança com os valores de entradas:
 - Reafirmando a proximidade da classe;
- O neurônio vencedor reajusta seus pesos de acordo com as entradas;
- A priori somente o vencedor tem pesos ajustados;

- É recomendada a normalização dos vetores de entrada para o aprendizado;
- Divisão de cada valor do vetor pelo seu módulo;

$$|v| = \sqrt{(v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2)}$$

A atualização normalizada altera apenas a direção do vetor;

Quem é o neurônio vencedor?!

$$dist_{j}^{(k)} = \sqrt{\sum_{i=1}^{n} (x_{i}^{(k)} - w_{i}^{(j)})^{2}}$$

- dist é a distância (Norma Euclidiana) entre x (entrada) e w (pesos) do neurônio j para amostra k;
- O vetor com a menor distância da entrada será o vencedor!
- O prêmio é a atualização;

$$dist_{j}^{(k)} = \sqrt{\sum_{i=1}^{n} (x_{i}^{(k)} - w_{i}^{(j)})^{2}}$$

Cada neurônio possui a característica "cor";

Novo dado para treinamento comparado;

• O neurônio mais semelhante é o vencedor;

 O aprendizado competitivo convencional elege o vencedor e este será atualizado;

No SOM, os vizinhos têm pesos recalculados;

Aplicação de uma função de suavização de

distância;

 O aprendizado competitivo convencional elege o vencedor e este será atualizado;

No SOM, os vizinhos têm pesos recalculados;

Aplicação de uma função de suavização de

distância;

- O processo é repetido para todos os k dados;
- Resultado é a grade (mapa) treinado;

- O processo é repetido para todos os k dados;
- Resultado é a grade (mapa) treinado;

- O processo é repetido para todos os k dados;
- Resultado é a grade (mapa) treinado;

- O processo é repetido para todos os k dados;
- Resultado é a grade (mapa) treinado;

• TREINADO!

- O processo é repetido para todos os k dados;
- Resultado é a grade (mapa) treinado;

 Agrupamentos separáveis:

- Fácil perceber uma separação com um única característica (cor);
- Difícil com muitas características e classes;
- A separabilidade é demonstrada com demonstração de proximidade;

Exemplo (Aplicação Real)

Mapa Auto-Organizável

- SOM Self-Organizing Map;
- Arquitetura de redes neurais artificiais articuladas;
- Aprendizado competitivo;
- Aprendizado competitivo com organização topológica entre neurônios;

Mapa Auto-Organizável (SOM)

Critério de vizinhança definido por um raio R de abrangência.

SOM

SOM

Atualização do neurônio vencedor:

Regra para o Vencedor
$$w_{atual}^{(v)} = w_{anterior}^{(v)} + \eta (x^{(k)} - w_{anterior}^{(v)})$$
 Regra para o Vizinho
$$w_{atual}^{(v)} = w_{anterior}^{(v)} + \frac{\eta}{2} (x^{(k)} - w_{anterior}^{(v)})$$

SOM

$$\alpha^{(\Omega)} = e^{-\frac{\|w^{(v)} - w^{(\Omega)}\|^2}{2\sigma^2}}$$

Regra para o Vencedor

$$w_{atual}^{(v)} = w_{anterior}^{(v)} + \eta (x^{(k)} - w_{anterior}^{(v)})$$

Regra para o Vizinho

$$w_{atual}^{(v)} = w_{anterior}^{(v)} + \eta.\alpha.(x^{(k)} - w_{anterior}^{(v)})$$

Atividade

 Implementar o mapa auto-organizável de Kohonen;

Amostra	X ₁	X ₂	X 3	Classe
1	0,2471	0,1778	0,2905	
2	0,8240	0,2223	0,7041	
3	0,4960	0,7231	0,5866	
4	0,2923	0,2041	0,2234	
5	0,8118	0,2668	0,7484	
6	0,4837	0,8200	0,4792	
7	0,3248	0,2629	0,2375	
8	0,7209	0,2116	0,7821	
9	0,5259	0,6522	0,5957	
10	0,2075	0,1669	0,1745	
11	0,7830	0,3171	0,7888	
12	0,5393	0,7510	0,5682	

Obrigado.

Dúvidas?