Automatic Differentiation

Mark van der Wilk

Department of Computing Imperial College London

y@markvanderwilk
m.vdwilk@imperial.ac.uk

October 17, 2022

Directional derivatives motivate partial derivatives.

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.
- ► Can always work derivatives out with index notation.

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.
- ► Can always work derivatives out with index notation.
 - All functions of vectors/matrices/arrays are just multivariate functions, just with reshaped inputs.

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.
- Can always work derivatives out with index notation.
 - All functions of vectors/matrices/arrays are just multivariate functions, just with reshaped inputs.
 - Regardless of shape, e.g. deriv of matrix by vector, matrix by matrix, or weirder ones!

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.
- Can always work derivatives out with index notation.
 - All functions of vectors/matrices/arrays are just multivariate functions, just with reshaped inputs.
 - Regardless of shape, e.g. deriv of matrix by vector, matrix by matrix, or weirder ones!
- Vector chain rule leads to matrix multiplication if we only take derivative of vector w.r.t. vector.

- Directional derivatives motivate partial derivatives.
- Conditions for minimum: df/dx = 0, $\lambda_i(H) > 0$, $\forall i$.
- Can always work derivatives out with index notation.
 - All functions of vectors/matrices/arrays are just multivariate functions, just with reshaped inputs.
 - Regardless of shape, e.g. deriv of matrix by vector, matrix by matrix, or weirder ones!
- Vector chain rule leads to matrix multiplication if we only take derivative of vector w.r.t. vector.
- We can still use chain rule notation when dealing with matrix derivatives, but we need to separately keep track what summation is meant with this.

Overview

Introduction

Forward Mode Automatic Differentiation

Reverse Mode Automatic Differentiation

Backpropagation in Neural Networks

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

Today we will discuss a method with the following wishlist:

▶ specify how to compute an objective function *in code*,

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

- ▶ specify how to compute an objective function *in code*,
- automatically get the gradient vector for a particular parameter,

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

- ▶ specify how to compute an objective function *in code*,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

- ▶ specify how to compute an objective function *in code*,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

Today we will discuss a method with the following wishlist:

- ▶ specify how to compute an objective function *in code*,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Automatic Differentiation

In the last lectures, you learned how to differentiate anything, which is helpful for **optimisation**.

Today we will discuss a method with the following wishlist:

- specify how to compute an objective function *in code*,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Automatic Differentiation

Will roughly be following the review article by Baydin et al. (2018).

What we studied so far:

▶ Define a function $f(\mathbf{x})$, that we can evaluate for any \mathbf{x}

What we studied so far:

- Define a function $f(\mathbf{x})$, that we can evaluate for any \mathbf{x}
- Find a new function df/dx, that we can evaluate for any x

What we studied so far:

- Define a function $f(\mathbf{x})$, that we can evaluate for any \mathbf{x}
- Find a new function df/dx, that we can evaluate for any x
- Many ways to differentiate a function

What we studied so far:

- Define a function $f(\mathbf{x})$, that we can evaluate for any \mathbf{x}
- Find a new function df/dx, that we can evaluate for any x
- Many ways to differentiate a function
- ► Can be very inefficient, if done carelessly

$$f: \mathbb{R}^{N \times N} \to \mathbb{R}, \quad K: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}, \quad D: \mathbb{R}^{P} \to \mathbb{R}^{N \times N}.$$

$$\frac{\mathrm{d}L}{\mathrm{d}\theta} = \underbrace{\frac{\partial L}{\partial K}}_{1 \times (N \times N)} \underbrace{\frac{\partial K}{\partial D}}_{(N \times N) \times (N \times N)} \underbrace{\frac{\partial D}{\partial \theta}}_{(N \times N) \times P}$$

Procedure: 1) Compute each array. Computational cost?

$$L(\theta) = f(\mathbf{K}(\mathbf{D}(\theta))),$$

$$f: \mathbb{R}^{N \times N} \to \mathbb{R}, \quad \mathbf{K}: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}, \quad \mathbf{D}: \mathbb{R}^{P} \to \mathbb{R}^{N \times N}.$$

$$\frac{\mathrm{d}L}{\mathrm{d}\theta} = \underbrace{\frac{\partial L}{\partial \mathbf{K}}}_{1 \times (N \times N)} \underbrace{\frac{\partial \mathbf{K}}{\partial \mathbf{D}}}_{(N \times N) \times (N \times N)} \underbrace{\frac{\partial \mathbf{D}}{\partial \theta}}_{(N \times N) \times P}$$

Procedure: 1) Compute each array. Computational cost? Scales with elements, so at least $N^2 + N^4 + N^2P$.

- **2)** Then we have two options:
 - $\blacktriangleright \frac{\partial L}{\partial K} \left(\frac{\partial K}{\partial D} \frac{\partial D}{\partial \theta} \right) : N^4 P + N^2 P$

$$L(\theta) = f(\mathbf{K}(\mathbf{D}(\theta))),$$

$$f: \mathbb{R}^{N \times N} \to \mathbb{R}, \quad \mathbf{K}: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}, \quad \mathbf{D}: \mathbb{R}^{P} \to \mathbb{R}^{N \times N}.$$

$$\frac{\mathrm{d}L}{\mathrm{d}\theta} = \underbrace{\frac{\partial L}{\partial \mathbf{K}}}_{1 \times (N \times N)} \underbrace{\frac{\partial \mathbf{K}}{\partial \mathbf{D}}}_{(N \times N) \times (N \times N)} \underbrace{\frac{\partial \mathbf{D}}{\partial \theta}}_{(N \times N) \times P}$$

Procedure: 1) Compute each array. Computational cost? Scales with elements, so at least $N^2 + N^4 + N^2P$.

- 2) Then we have two options:

 - $\qquad \qquad \left(\frac{\partial L}{\partial K} \frac{\partial K}{\partial D} \right) \frac{\partial D}{\partial \theta} : N^4 + N^2 P$

$$\begin{split} L(\theta) &= f(\boldsymbol{K}(\boldsymbol{D}(\theta)))\,,\\ f: \mathbb{R}^{N\times N} \to \mathbb{R}\,, & \boldsymbol{K}: \mathbb{R}^{N\times N} \to \mathbb{R}^{N\times N}\,, & \boldsymbol{D}: \mathbb{R}^P \to \mathbb{R}^{N\times N}\,.\\ \frac{\mathrm{d}L}{\mathrm{d}\theta} &= \underbrace{\frac{\partial L}{\partial \boldsymbol{K}}}_{1\times (N\times N)} \underbrace{\frac{\partial \boldsymbol{K}}{\partial \boldsymbol{D}}}_{(N\times N)\times (N\times N)} \underbrace{\frac{\partial \boldsymbol{D}}{\partial \theta}}_{(N\times N)\times P} \end{split}$$

Procedure: 1) Compute each array. Computational cost? Scales with elements, so at least $N^2 + N^4 + N^2P$.

- 2) Then we have two options:
 - $ightharpoonup \frac{\partial L}{\partial K} \left(\frac{\partial K}{\partial D} \frac{\partial D}{\partial \theta} \right) : N^4 P + N^2 P$
 - $\blacktriangleright \left(\frac{\partial L}{\partial K}\frac{\partial K}{\partial D}\right)\frac{\partial D}{\partial \theta}: N^4 + N^2 P$

Problems:

► Cannot take advantage of structure (e.g. zero elements)

$$\begin{split} L(\theta) &= f(\boldsymbol{K}(\boldsymbol{D}(\theta)))\,,\\ f: \mathbb{R}^{N\times N} \to \mathbb{R}\,, & \boldsymbol{K}: \mathbb{R}^{N\times N} \to \mathbb{R}^{N\times N}\,, & \boldsymbol{D}: \mathbb{R}^P \to \mathbb{R}^{N\times N}\,.\\ \frac{\mathrm{d}L}{\mathrm{d}\theta} &= \underbrace{\frac{\partial L}{\partial \boldsymbol{K}}}_{1\times (N\times N)} \underbrace{\frac{\partial \boldsymbol{K}}{\partial \boldsymbol{D}}}_{(N\times N)\times (N\times N)} \underbrace{\frac{\partial \boldsymbol{D}}{\partial \theta}}_{(N\times N)\times P} \end{split}$$

Procedure: 1) Compute each array. Computational cost? Scales with elements, so at least $N^2 + N^4 + N^2P$.

- 2) Then we have two options:
 - $ightharpoonup \frac{\partial L}{\partial K} \left(\frac{\partial K}{\partial D} \frac{\partial D}{\partial \theta} \right) : N^4 P + N^2 P$
 - $\qquad \qquad \left(\frac{\partial L}{\partial K} \frac{\partial K}{\partial D} \right) \frac{\partial D}{\partial \theta} : N^4 + N^2 P$

Problems:

- ► Cannot take advantage of structure (e.g. zero elements)
- ▶ Not clear which order to compute in to be efficient.

Our wishlist:

- specify how to compute an objective function in code,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Our wishlist:

- specify how to compute an objective function in code,
- ▶ automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Autodiff provides:

a data structure for specifying mathematical functions,

Our wishlist:

- specify how to compute an objective function in code,
- ▶ automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Autodiff provides:

- a data structure for specifying mathematical functions,
- different methods for automatically finding gradients,

Our wishlist:

- specify how to compute an objective function in code,
- ▶ automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Autodiff provides:

- a data structure for specifying mathematical functions,
- different methods for automatically finding gradients,
- provides guarantees of the computational complexity,

Our wishlist:

- specify how to compute an objective function in code,
- ▶ automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Autodiff provides:

- a data structure for specifying mathematical functions,
- different methods for automatically finding gradients,
- provides guarantees of the computational complexity,
- rules of thumb for when to use each method.

Our wishlist:

- specify how to compute an objective function in code,
- automatically get the gradient vector for a particular parameter,
- understand the computational complexity of doing so,
- ▶ ideally have the "best" computational complexity.

Autodiff provides:

- a data structure for specifying mathematical functions,
- different methods for automatically finding gradients,
- provides guarantees of the computational complexity,
- rules of thumb for when to use each method.

Although unfortunately finding the optimal gradient in general (optimal jacobian accumulation problem) is NP-complete:(

Today: Answers / Topics

- Symbolic differentiation, and its problem
- Computational graphs (describing computation)
- ► Forward mode autodiff
- ► Reverse mode autodiff (backpropagation)
- Computational considerations

- A graph is a data structure that can be used to represent a computation.
- Each intermediate result is a node.
- ► Edges indicate a dependency in a computation.

- A graph is a data structure that can be used to represent a computation.
- Each intermediate result is a node.
- ► Edges indicate a dependency in a computation.

Example: $f(x_1, x_2) = f(x_1, g(x_1, x_2))$

- A graph is a data structure that can be used to represent a computation.
- Each intermediate result is a node.
- ► Edges indicate a dependency in a computation.

Example: $f(x_1, x_2) = f(x_1, g(x_1, x_2))$

- A graph is a data structure that can be used to represent a computation.
- Each intermediate result is a node.
- ► Edges indicate a dependency in a computation.

- ► To find the output, **traverse** the graph from the inputs.
- Gradient computation traverses the graph in various ways.

Overview

Introduction

Forward Mode Automatic Differentiation

Reverse Mode Automatic Differentiation

Backpropagation in Neural Networks

We want to compute the gradient w.r.t. x_i .

► Initialise each input node j with $\frac{\partial x_j}{\partial x_i}$.

We want to compute the gradient w.r.t. x_i .

- ► Initialise each input node j with $\frac{\partial x_j}{\partial x_i}$.
- ► Traverse the nodes of the graph, indexed by *j*, in the same way as computing the output.

We want to compute the gradient w.r.t. x_i .

- ► Initialise each input node j with $\frac{\partial x_j}{\partial x_i}$.
- ► Traverse the nodes of the graph, indexed by *j*, in the same way as computing the output.
 - For the input value x = a, compute the numerical value of

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (1)

We want to compute the gradient w.r.t. x_i .

- ► Initialise each input node j with $\frac{\partial x_j}{\partial x_i}$.
- ► Traverse the nodes of the graph, indexed by *j*, in the same way as computing the output.
 - For the input value x = a, compute the numerical value of

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (1)

• We end up with $\partial \text{out}/\partial x_i$.

We want to compute the gradient w.r.t. x_i .

- ► Initialise each input node j with $\frac{\partial x_j}{\partial x_i}$.
- ► Traverse the nodes of the graph, indexed by *j*, in the same way as computing the output.
 - For the input value x = a, compute the numerical value of

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (1)

• We end up with $\partial \text{out}/\partial x_i$.

Repeat for all i to find all gradients.

Forward mode Autodiff: Example

Computational graph for $f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$

Forward Primal Trace

 $= v_{5}$

orward Frimal Trace
$$v_{-1} = x_1 = 2$$

$$v_0 = x_2 = 5$$

$$v_1 = \ln v_{-1} = \ln 2$$

$$v_2 = v_{-1} \times v_0 = 2 \times 5$$

$$v_3 = \sin v_0 = \sin 5$$

$$v_4 = v_1 + v_2 = 0.693 + 10$$

$$v_5 = v_4 - v_3 = 10.693 + 0.959$$

= 11.652

Forward Tangent (Derivative) Trace

► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).

13

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

13

- ▶ For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).
- ► All algorithms are composed of simple functions (+, *, pow, ...).

You can differentiate anything you implement!

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

You can differentiate anything you implement!

• v_i and x_i can be vectors: the vector chain rule holds!

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

You can differentiate anything you implement!

- v_i and x_i can be vectors: the vector chain rule holds!
- ▶ Implementation can take advantage of any sparsity in $\partial v_i/\partial v_k$.

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (1).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

You can differentiate anything you implement!

- v_i and x_i can be vectors: the vector chain rule holds!
- ▶ Implementation can take advantage of any sparsity in $\partial v_j/\partial v_k$.

The procedure above is efficient for vector inputs too!

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

Consider the scalar case (remember, vector funcs are a special case):

► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ► Only a constant difference in cost between the deriv and func.

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ► No memory overhead.

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ► No memory overhead.
- However,

Remember the key equation:

$$\frac{\partial v_j}{\partial x_i} = \sum_{k \in \text{inputs}(i)} \frac{\partial v_j}{\partial v_k} \frac{\partial v_k}{\partial x_i}$$
 (2)

14

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ► No memory overhead.
- ► **However**, cost scales linearly with the number of gradients!

Fun exercise

Prove the product rule using forward mode autodiff.

Board

15

Overview

Introduction

Forward Mode Automatic Differentiation

Reverse Mode Automatic Differentiation

Backpropagation in Neural Networks

We want to compute the gradient w.r.t. x_i .

► Traverse the graph to compute the value of all the nodes, *and store them*.

We want to compute the gradient w.r.t. x_i .

- ► Traverse the graph to compute the value of all the nodes, *and store them*.
- ▶ Initialise the output node with ∂ out/ ∂ v_{final} = 1.

17

We want to compute the gradient w.r.t. x_i .

- ► Traverse the graph to compute the value of all the nodes, *and store them*.
- ▶ Initialise the output node with ∂ out/ ∂ v_{final} = 1.
- ► Traverse the nodes of the graph, indexed by *j*, *backwards*, starting from the output.

We want to compute the gradient w.r.t. x_i .

- ► Traverse the graph to compute the value of all the nodes, *and store them*.
- ▶ Initialise the output node with ∂ out/ ∂ v_{final} = 1.
- ► Traverse the nodes of the graph, indexed by *j*, *backwards*, starting from the output.
 - At the numerically computed values of v_j , compute the numerical value of

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(3)

We want to compute the gradient w.r.t. x_i .

- ► Traverse the graph to compute the value of all the nodes, *and store them*.
- ▶ Initialise the output node with ∂ out/ $\partial v_{\text{final}} = 1$.
- ► Traverse the nodes of the graph, indexed by *j*, *backwards*, starting from the output.
 - At the numerically computed values of v_j , compute the numerical value of

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(3)

• We end up with $\partial \text{out}/\partial x_i$.

We want to compute the gradient w.r.t. x_i .

- ► Traverse the graph to compute the value of all the nodes, *and store them*.
- ▶ Initialise the output node with ∂ out/ $\partial v_{\text{final}} = 1$.
- ► Traverse the nodes of the graph, indexed by *j*, *backwards*, starting from the output.
 - At the numerically computed values of v_j , compute the numerical value of

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(3)

• We end up with $\partial \text{out}/\partial x_i$.

Repeat for all i to find all gradients.

Reverse mode Autodiff: Example

Computational graph for $f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$

Forward Primal Trace

$$v_{-1} = x_1 \qquad = 2$$

$$v_0 = x_2 \qquad = 5$$

$$v_1 = \ln v_{-1} \qquad = \ln 2$$

$$v_2 = v_{-1} \times v_0 = 2 \times 5$$

$$v_3 = \sin v_0 = \sin 5$$

 $v_4 = v_1 + v_2 = 0.693 + 10$

$$v_5 = v_4 - v_3 = 10.693 + 0.959$$

$$y = v_5 = 11.652$$

Reverse Adjoint (Derivative) Trace

$$egin{array}{lll} ar{x}_1 &= ar{v}_{-1} &= 5.5 \\ ar{x}_2 &= ar{v}_0 &= 1.716 \end{array}$$

$$\bar{v}_{-1} = \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_1} = \bar{v}_{-1} + \bar{v}_1 / v_{-1} = 5.5$$

$$v_{-1} = v_{-1} + v_1 \frac{\partial v_{-1}}{\partial v_{-1}} = v_{-1} + v_1 / v_{-1} = 3.3$$

$$\bar{v}_0 = \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0} = \bar{v}_0 + \bar{v}_2 \times v_{-1} = 1.716$$

$$\bar{v}_{-1} = \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}} \qquad = \bar{v}_2 \times v_0 \qquad = 5$$

$$v_0 = v_3 \frac{\partial v_0}{\partial v_0} = v_3 \times \cos v_0 = -\frac{\partial v_0}{\partial v_0}$$

$$\bar{v}_1 = \bar{v}_1 \frac{\partial v_2}{\partial v_4} = \bar{v}_1 \times 1 = 1$$

$$\begin{array}{llll} \bar{v}_0 &= \bar{v}_3 \frac{\partial v_3}{\partial v_0} &= \bar{v}_3 \times \cos v_0 &= -0.284 \\ \bar{v}_2 &= \bar{v}_4 \frac{\partial v_4}{\partial v_2} &= \bar{v}_4 \times 1 &= 1 \\ \bar{v}_1 &= \bar{v}_4 \frac{\partial v_4}{\partial v_1} &= \bar{v}_4 \times 1 &= 1 \\ \bar{v}_3 &= \bar{v}_5 \frac{\partial v_5}{\partial v_3} &= \bar{v}_5 \times (-1) &= -1 \end{array}$$

$$v_3 = v_5 \frac{\partial}{\partial v_3} = v_5 \times (-1) = -1$$

$$\bar{v}_4 = \bar{v}_5 \frac{\partial v_5}{\partial v_4} = \bar{v}_5 \times 1 = 1$$

$$\bar{v}_5 = \bar{y} = 1$$

► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).

19

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).
- ► All algorithms are composed of simple functions (+, *, pow, ...).

You can differentiate anything you implement!

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).
- ► All algorithms are composed of simple functions (+, *, pow, ...).

You can differentiate anything you implement!

• v_i and x_i can be vectors: the vector chain rule holds!

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

You can differentiate anything you implement!

- v_i and x_i can be vectors: the vector chain rule holds!
- ▶ Implementation can take advantage of any sparsity in $\partial v_j/\partial v_k$.

- ► For each intermediate function $v_j(\{v_k\}_{k \in \text{inputs}(j)})$, you need to implement the equation eq. (3).
- ► All algorithms are composed of simple functions (+, *, pow, . . .).

You can differentiate anything you implement!

- v_i and x_i can be vectors: the vector chain rule holds!
- ▶ Implementation can take advantage of any sparsity in $\partial v_j/\partial v_k$.

The procedure above is efficient for vector inputs too!

Reverse mode: Computational complexity

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

Consider the scalar case (remember, vector funcs are a special case):

► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ▶ Only a constant difference in cost between the deriv and func.

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ▶ Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ▶ Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ► Need to store **all** intermediate results (or recompute).

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

20

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ▶ Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ▶ Need to store **all** intermediate results (or recompute).
- ► However,

Remember the key equation:

$$\frac{\partial \text{out}}{\partial v_j} = \sum_{k \in \text{outputs}(j)} \frac{\partial \text{out}}{\partial v_k} \frac{\partial v_k}{\partial v_j}$$
(4)

20

- ► The derivative of all elementary functions has the same cost as the computation itself. E.g. +, ×, sin, pow,
- ▶ Only a constant difference in cost between the deriv and func.
- ► ⇒ same computational complexity.
- ▶ Need to store **all** intermediate results (or recompute).
- ► **However**, cost of computing all derivatives is same as fwd pass.

Overview

Introduction

Forward Mode Automatic Differentiation

Reverse Mode Automatic Differentiation

Backpropagation in Neural Networks

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^M}) \in \mathbb{R}^M, \quad x \in \mathbb{R}^N, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^M$$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^M}) \in \mathbb{R}^M, \quad x \in \mathbb{R}^N, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^M$$

$$\frac{\partial f}{\partial b} =$$

$$\frac{\partial f}{\partial A} =$$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^{M}}) \in \mathbb{R}^{M}, \quad x \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^{M}}) \in \mathbb{R}^{M}, \quad x \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial A}}_{M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)}$$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^{M}}) \in \mathbb{R}^{M}, \quad x \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial A}}_{M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)}$$

$$\frac{\partial f}{\partial z} = \underline{\text{diag}(1 - \tanh^{2}(z))}$$

$$f = \tanh(\underbrace{Ax + b}) \in \mathbb{R}^{M}, \quad x \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial A}}_{M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)}$$

$$\frac{\partial f}{\partial z} = \operatorname{diag}(1 - \tanh^{2}(z)) \quad \frac{\partial z}{\partial b} = \underbrace{I}_{C \in \mathbb{R}^{M \times M}}$$

$$f = \tanh(\underbrace{Ax + b}) \in \mathbb{R}^{M}, \quad x \in \mathbb{R}^{N}, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}}_{M \times M}$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z} \underbrace{\frac{\partial z}{\partial b}}_{M \times M \times M \times (M \times N)}}_{M \times M \times M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)}$$

$$\frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^{2}(z))}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial b} = \underbrace{I}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial A} = \underbrace{\begin{bmatrix} x^{\top} & \cdot & \mathbf{0}^{\top} & \cdot & \mathbf{0}^{\top} \\ \cdot & \cdot & \cdot & \cdot \\ \mathbf{0}^{\top} & \cdot & x^{\top} & \cdot & \mathbf{0}^{\top} \\ \cdot & \cdot & \cdot & \cdot \\ \mathbf{0}^{\top} & \cdot & \mathbf{0}^{\top} & \cdot & x^{\top} \end{bmatrix}}_{\in \mathbb{R}^{M \times (M \times N)}}$$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^M}) \in \mathbb{R}^M, \quad x \in \mathbb{R}^N, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^M$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial \boldsymbol{b}}[i,j] = \sum_{l=1}^{M} \frac{\partial f}{\partial \boldsymbol{z}}[i,l] \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}[l,j]$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial A}}_{M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)}$$

$$\frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^2(z))}_{\text{SPM} \times M}$$

$$= \underbrace{\boldsymbol{I}}_{\in \mathbb{R}^{M \times M}}$$

$$\frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^2(z))}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial b} = \underbrace{I}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial A} \quad = \underbrace{\begin{bmatrix} x^\top & \cdot & 0^\top & \cdot & 0^\top \\ \cdot & \cdot & \cdot & \cdot \\ 0^\top & \cdot & x^\top & \cdot & 0^\top \\ \cdot & \cdot & \cdot & \cdot \\ 0^\top & \cdot & 0^\top & \cdot & x^\top \end{bmatrix}}_{c}$$

 $\in \mathbb{R}^{M \times (M \times N)}$

$$f = \tanh(\underbrace{Ax + b}_{=:z \in \mathbb{R}^M}) \in \mathbb{R}^M, \quad x \in \mathbb{R}^N, A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^M$$

$$\frac{\partial f}{\partial b} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial b}}_{M \times M} \in \mathbb{R}^{M \times M}$$

$$\frac{\partial f}{\partial \boldsymbol{b}}[i,j] = \sum_{l=1}^{M} \frac{\partial f}{\partial \boldsymbol{z}}[i,l] \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}}[l,j]$$

$$\frac{\partial f}{\partial A} = \underbrace{\frac{\partial f}{\partial z}}_{M \times M} \underbrace{\frac{\partial z}{\partial A}}_{M \times (M \times N)} \in \mathbb{R}^{M \times (M \times N)} \qquad \frac{\partial f}{\partial A}[i, j, j]$$

$$\frac{\partial f}{\partial A}[i,j,k] = \sum_{l=1}^{M} \frac{\partial f}{\partial z}[i,l] \frac{\partial z}{\partial A}[l,j,k]$$

$$\frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^2(z))}_{\text{2-DM} \times M}$$

$$= \underbrace{\mathbf{I}}_{\in \mathbb{R}^N}$$

$$\frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^{2}(z))}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial b} = \underbrace{I}_{\in \mathbb{R}^{M \times M}} \quad \frac{\partial z}{\partial A} \quad = \begin{bmatrix} x^{\top} & \cdot & 0^{\top} & \cdot & 0^{\top} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0^{\top} & \cdot & x^{\top} & \cdot & 0^{\top} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0^{\top} & \cdot & 0^{\top} & \cdot & x^{\top} \end{bmatrix}$$

▶ Inputs $x \in \mathbb{R}^N$

- ▶ Inputs $x \in \mathbb{R}^N$
- Observed outputs $y = f_{\theta}(x) + \epsilon \in \mathbb{R}^{M}$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$

24

- Inputs $x \in \mathbb{R}^N$
- Observed outputs $y = f_{\theta}(x) + \epsilon \in \mathbb{R}^{M}$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$
- ► Train single-layer neural network with

$$f_{\theta}(x) = \tanh(z(x)) \in \mathbb{R}^{M}, \quad z = Ax + b \in \mathbb{R}^{M}, \quad \theta = \{A, b\}$$

- ▶ Inputs $x \in \mathbb{R}^N$
- Observed outputs $y = f_{\theta}(x) + \epsilon \in \mathbb{R}^{M}$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$
- ► Train single-layer neural network with

$$f_{\theta}(x) = \tanh(z(x)) \in \mathbb{R}^{M}, \quad z = Ax + b \in \mathbb{R}^{M}, \quad \theta = \{A, b\}$$

• Find A, b, such that the squared loss

$$L(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{e}\|^2 \in \mathbb{R}$$
, $\boldsymbol{e} = \boldsymbol{y} - \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}) \in \mathbb{R}^M$

is minimized

Partial derivatives:

$$\begin{array}{ll} \frac{\partial L}{\partial \boldsymbol{A}} & = \frac{\partial L}{\partial \boldsymbol{e}} \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{f}} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{A}} \\ \frac{\partial L}{\partial \boldsymbol{b}} & = \frac{\partial L}{\partial \boldsymbol{e}} \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{f}} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}} \end{array}$$

$$\frac{\partial L}{\partial e} = \underbrace{e^{\top}}_{\in \mathbb{R}^{1 \times M}} \qquad \frac{\partial e}{\partial f} = \underbrace{-I}_{\in \mathbb{R}^{M \times M}} \qquad \frac{\partial f}{\partial z} = \underbrace{\operatorname{diag}(1 - \tanh^{2}(z))}_{\in \mathbb{R}^{M \times M}}$$

$$\frac{\partial z}{\partial A} = \underbrace{\begin{bmatrix} x^{\top} & 0^{\top} & 0^{\top} \\ & \cdot & \cdot \\ 0^{\top} & x^{\top} & 0^{\top} \\ & \cdot & \cdot \\ 0^{\top} & 0^{\top} & x^{\top} \end{bmatrix}}_{\in \mathbb{R}^{M \times (M \times N)}} \qquad \frac{\partial z}{\partial b} = \underbrace{I}_{\in \mathbb{R}^{M \times M}}$$

25

- ► Inputs *x*, observed outputs *y*
- ► Train multi-layer neural network with

$$f_0 = x$$

 $f_i = \sigma_i(A_{i-1}f_{i-1} + b_{i-1}), \quad i = 1, ..., K$

- ► Inputs *x*, observed outputs *y*
- ► Train multi-layer neural network with

$$f_0 = x$$

 $f_i = \sigma_i(A_{i-1}f_{i-1} + b_{i-1}), \quad i = 1, ..., K$

► Find A_i , b_j for j = 0, ..., K - 1, such that the squared loss

$$L(\boldsymbol{\theta}) = \|\boldsymbol{y} - \boldsymbol{f}_{K\boldsymbol{\theta}}(\boldsymbol{x})\|^2$$

is minimized, where $\theta = \{A_i, b_i\}$, j = 0, ..., K - 1

$$L(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}) = ||\mathbf{y} - f_{\boldsymbol{\theta}_{3}}(f_{\boldsymbol{\theta}_{2}}(f_{\boldsymbol{\theta}_{1}}(\mathbf{x})))||^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_K} = \frac{\partial L}{\partial \boldsymbol{f}_K} \frac{\partial \boldsymbol{f}_K}{\partial \boldsymbol{\theta}_K}$$

$$L(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}) = ||\mathbf{y} - f_{\boldsymbol{\theta}_{3}}(f_{\boldsymbol{\theta}_{2}}(f_{\boldsymbol{\theta}_{1}}(\mathbf{x})))||^{2}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial \boldsymbol{\theta}_{K}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial f_{K}} \left[\frac{\partial f_{K}}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial \boldsymbol{\theta}_{K-1}} \right]$$
(6)

$$L(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}) = ||\mathbf{y} - f_{\boldsymbol{\theta}_{3}}(f_{\boldsymbol{\theta}_{2}}(f_{\boldsymbol{\theta}_{1}}(\mathbf{x})))||^{2}$$

$$A_{1}, b_{1} \qquad A_{2}, b_{2} \qquad A_{K-1}, b_{K-1} \qquad A_{K}, b_{K}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial \boldsymbol{\theta}_{K}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial f_{K}} \left[\frac{\partial f_{K}}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial \boldsymbol{\theta}_{K-1}} \right]$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-2}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial f_{K-1}} \left[\frac{\partial f_{K-1}}{\partial f_{K-2}} \frac{\partial f_{K-2}}{\partial \boldsymbol{\theta}_{K-2}} \right]$$

$$(6)$$

$$L(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}) = ||\mathbf{y} - f_{\boldsymbol{\theta}_{3}}(f_{\boldsymbol{\theta}_{2}}(f_{\boldsymbol{\theta}_{1}}(\mathbf{x})))||^{2}$$

$$(6)$$

$$A_{1}, b_{1} \qquad A_{2}, b_{2} \qquad A_{K-1}, b_{K-1} \qquad A_{K}, b_{K}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial \boldsymbol{\theta}_{K}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial \boldsymbol{\theta}_{K-1}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-2}} = \frac{\partial L}{\partial f_{K}} \frac{\partial f_{K}}{\partial f_{K-1}} \frac{\partial f_{K-1}}{\partial f_{K-2}} \frac{\partial f_{K-2}}{\partial \boldsymbol{\theta}_{K-2}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{i}} = \frac{\partial L}{\partial f_{V}} \frac{\partial f_{K}}{\partial f_{V-1}} \cdots \frac{\partial f_{i+1}}{\partial f_{i}} \frac{\partial f_{i}}{\partial \boldsymbol{\theta}_{i}}$$

27

$$L(\theta_{1}, \theta_{2}, \theta_{3}) = ||\mathbf{y} - f_{\theta_{3}}(f_{\theta_{2}}(f_{\theta_{1}}(\mathbf{x})))||^{2}$$

$$(6)$$

$$\mathbf{x} \qquad \mathbf{f}_{1} \qquad \mathbf{f}_{L} \qquad \mathbf{f}_{K} \qquad \mathbf{f$$

▶ Intermediate derivatives are stored during the forward pass

Summary: Differentiation

- Computational graphs
- ▶ Flavours of automatic differentiation
- Computational cost analysis of automatic differentiation
- ► Application: Backpropagation in NNs

Summary: Differentiation

- Computational graphs
- ► Flavours of automatic differentiation
- Computational cost analysis of automatic differentiation
- ► Application: Backpropagation in NNs

If you have a spare 1.5 hours, and want to see how **minimal** an implementation of this can be, I **highly** recommend Conal Elliott's talk on *The Simple Essence of Automatic Differentiation*: https://www.youtube.com/watch?v=ne99laPUxN4

References I

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research, 18(153):1–43, 2018. URL http://jmlr.org/papers/v18/17-468.html.

29