데이터 모델

데이터베이스시스템 구성도

배을 내용

- □ 개체-관계 데이터 모델
 - □ 개체 / 관계 / 제약조건
 - □ 개체-관계 모델/다이어그램
- □ 관계형 데이터 모델
 - □ 관계형 데이터 구조

□ 개체-관계 모델을 관계 모델로 변환

컴퓨터가 관리하는 데이터베이스는 계속적으로 변화하는 현실 세계를 표현

GIOIS TE

데이터 : 현실세계 vs. 컴퓨터

데이터베이스: 현실세계 vs. 컴퓨터

데이터 모델(Data Model) - I

- □ 다음 사항들을 기술하기 위한 개념적 표현
 - □ 데이터
 - □ 데이터들 간의 관계
 - □ 데이터의 의미
 - □ 일관성 제약 조건
- □ 데이터 모델 : D = < S, O, C >
 - S: 데이터의 구조(Structure)
 - □ 정적 성질 (추상적 개념) <u>개체타입</u>과 이들 간의 <u>관계</u>를 명세
 - □ 0: 연산(Operations)
 - □ 동적 성질 개체 인스턴스를 처리하는 작업(데이터 조작)에 대한 명세
 - □ C: 제약 조건(Constraints)
 - □ 데이타의 논리적 제약 개체 인스턴스의 허용 조건
 - □ 데이타 조작의 한계를 표현한 규정

데이터 모델(Data Model) - II

배을 내용

□ 데이터 모델의 개념

- □ 개체-관계 데이터 모델
 - □ 개체 / 관계 / 제약조건
 - □ 개체-관계 모델/다이어그램
- □ 관계형 데이터 모델
 - □ 관계형 데이터 구조
- □ 개체-관계 모델을 관계 모델로 변환

TH MI

- □ 개체(Entity)
 - □ 독립적으로 존재하며 다른 모든 개체와 구별되는 객체
- □ 개체 타입(Entity Type)
 - □ 이름과 속성들(attributes)로 정의
 - □ 속성의 유형
 - □ 단순(simple) 속성과 복합(composite) 속성
 - □ 단일값(single-valued) 속성과 다중값(multi-valued) 속성 동(면) 번지 아파트번호

2.10

- □ 저장된(stored) 속성과 유도된(derived) 속성
- □ 널(null) 속성
- □ 개체 집합(Entity Set)
 - □ 특정 개체 타입에 대한 인스턴스 집합

- 관계(Relationship)
 - □ 여러 개체들 사이의 연관성
- 관계 타입(Relationship type)
 - □ 개체 집합들 간의 대응성(correspondence), 사상(mapping)
 - □ 설명 속성(descriptive attribute)을 가질 수 있음

- □ 관계 집합(Relationship Set)
 - □ 개체 집합 간에 실제로 이루어진 관계 인스턴스 집합
 - □ { (e₁, e₂, ..., e_n) | e₁ ∈ E₁, e₂, ∈ E₂, ..., e_n ∈ E_n}, 여기서 (e₁, e₂, ..., e_n) = relationship

제약조건(1)

- □ 관계 타입의 유형 대응수(mapping cardinality)
 - \square 1:1(일 대 일) $f_x: x \rightarrow y$ and $f_y: y \rightarrow x$
 - \square 1:n(일 대 다) not $f_x: x \rightarrow y$ but $f_y: y \rightarrow x$

- \square n:1(다대일) $f_x:x \rightarrow y$ not $f_y:y \rightarrow x$
- \square n:m (\square h \square h or \square not \square not f_x:x \rightarrow y and not f_y:y \rightarrow x

2.12

제약조건(II)

- □ 관계 타입의 특성 참가 제약조건
 - 전체 참여(total participation)
 - □ A-B 관계에서 개체 집합 B의 모든 개체가 A-B 관계에 참여
 - □예: 학과-교수
 - □ 부분 참여(partial participation)
 - □ A-B 관계에서 개체 집합 B의 일부 개체만 A-B 관계에 참여
 - □예: 과목-학생(휴학생 허용 시)
- 존재 종속(existence dependency)
 - □ 어떤 개체 b의 존재가 개체 a의 존재에 좌우됨
 - □ b는 a에 존재 종속
 - □ a: 주 개체(dominant entity), b: 종속 개체(subordinate entity)

제약조건(III)

- 개체(관계) 집합에서 특정 개체(관계)를 구별하는 방법 → 키(key)
- 키 지정: 모델링하는 실세계의 제약 조건중의 하나임
- □ 개체 집합에서의 키
 - □ 수퍼 키(super key)
 - □ 개체 집합에서 한 개체를 유일하게 식별할 수 있도록 해 주는 하나 이상의 속성들 의 집합
 - □ 후보 키(candidate key)
 - □최소 길이로 이루어진 수퍼 키
 - □ 주 키(primary key)
 - □ 여러 개의 후보 키 중에서 데이터베이스 설계자에 의해 선택된 후보 키

2.14

- □ 관계 집합에서의 키
 - □ 후보 키(candidate key)
 - □ 관계에 참여하는 각 엔티티 집합의 주 키의 결합
 - □ 주 키(primary key)
 - □ 대응 수와 관계 집합의 의미를 고려하여 결정해야 함

배올 내용

- □ 데이터 모델의 개념
- □ 개체-관계 데이터 모델

- □ 개체 / 관계 / 제약조건
- □ 개체-관계 모델/다이어그램
- □ 관계형 데이터 모델
 - □ 관계형 데이터 구조

□ 개체-관계 모델을 관계 모델로 변환

개체-관계 모델(E-R Model)

- □ 1976년 Peter Chen이 제안
- □ 개체 타입과 이들 간의 관계 타입을 이용해서 현실 세계를 개념적으로 표현하는 방법 → 개념적 데이터 모델
 - □ 개체 집합: 한 개체 타입에 속하는 모든 개체 인스턴스
 - □ 관계 집합: 한 관계 타입에 속하는 모든 관계 인스턴스
- □ E-R 다이어그램
 - □ 개체-관계 모델을 그래프 방식으로 표현한 것
- □ 개념적 모델링
 - □ 인간의 이해를 위해 현실 세계에 대한 인식을 추상적 개념으로 표현하는 과 정
 - → 결과: E-R Diagram

E-R 디이어그램

notation

개체 타입

애트리뷰트

약한 개체 타입

키 애트리뷰트

관계 타입

부분키 애트리뷰트

다중값 애트리뷰트

식별 관계 타입

복합 애트리뷰트

전체 참여 개체 타입

유도 애트리뷰트

E-R 디이어그램의 예(I)

□ 은행업무

- □ <u>고객(customer)</u>과 고객의 <u>계좌(account</u>)에 대한 정보 관리
- □ 구성요소
 - □ 사각형: 개체 집합(고객, 계좌)을 나타냄
 - □ 타원: 개체 집합, 또는 관계(예: deposit) 를 특징짓는 속성을 나타냄
 - □ 마름모: 개체 집합 간의 관계를 나타냄
 - □ 선: 속성과 개체 집합, 개체 집합과 관계 사이를 연결

E-R 디이어그램의 예(II)

E-R 다이어그램의 예(III)

□ 복합, 다중, 유도 속성으로 구성된 E-R Diagram

E-R 디이어그램의 예(IV)

☐ 역할 표시자가 있는 E-R Diagram

□전체적 참가

E-R 다이어그램의 예(V)

□ 관계 집합에서의 대응수 제약조건

□약 개체 집합

E-R 모델의 확장 - 세분화/일반화

E-R 디이어그램의 예 - 은행기관

배을 내용

- □ 데이터 모델의 개념
- □ 개체-관계 데이터 모델
 - □ 개체 / 관계 / 제약조건
 - □ 개체-관계 모델/다이어그램
- □ 관계형 데이터 모델 □ 관계형 데이터 구조
 - □ 개체-관계 모델을 관계 모델로 변환

릴레이션(Relation) R

□ 수학적 정의

□ 릴레이션 R : 카티션 프러덕트의 부분집합

 $R \subseteq D_1 \times D_2 \times ... \times D_n$ 즉, n-투플 $< v_1, v_2, ..., v_n > 의 집합$

 D_i : i번째 도메인 $v_i \in D_i$, i = 1, 2, ..., n

n: R의 차수(degree:일차, 이차, 삼차, ..., n차)

투플의 수: 카디날리티(cardinality)

□ 개념적 정의

릴레이션 스키마 + 릴레이션 사례

릴레이션 스키마와 사례

릴레이션의 특성

- □ 투플의 유일성
 - □ 릴레이션 = 서로 다른 투플들의 "집합"
- □ 투플들의 무순서
 - □ 릴레이션: 추상적 개념
 - □ 테이블 : 구체적 개념
- □ 애트리뷰트들의 무순서
 - □ 릴레이션 스킴 → 애트리뷰트들의 "집합"
 - 투플 : <attr:value>쌍의 집합
- □ 애트리뷰트의 원자값(atomic value) 분해 불가능

¬|(key) − |

- □ 릴레이션 R(A₁, A₂, ..., A_n)의 속성집합 K={A_i, A_j, ..., A_k}
 - ☐ 유일성(uniqueness)
 - □ 각 투플의 K (= { A_i, A_j, ..., A_k }) 의 값(< V_i, V_j, ..., V_k >)은 유일
 - 최소성(minimality)
 - □ K는 투플을 유일하게 식별하기 위해 필요한 애트리뷰트로만 구성
- □ 수퍼키 (super key)
 - □ 유일성은 만족하지만 최소성은 만족하지는 않는 애트리뷰트의 집합
- □ 후보키(candidate key)
 - □ 유일성과 최소성을 모두 만족하는 애트리뷰트의 집합
- □ 기본키 (primary key)
 - □ 후보키(candidate key)중 데이타베이스 설계자가 지정한 하나의 키
 - □ 각 투플에 대한 기본키 값은 항상 유효(no null value)해야 함
- ☐ 대체키 (alternate key)
 - □ 후보키 중에 기본키를 제외한 나머지 후보키

¬|(key) - ||

- □ 외래키(foreign key)
 - 릴레이션 R₁에 속한 애트리뷰트 집합 FK가 릴레이션 R₂의 기본키일 때 FK는 R₁의 외래키
 - □ (FK의 도메인) = (R₂의 기본키의 도메인)
 - □ FK의 값은 R₂에 존재하는 값이거나 null이다.
 - □ R₁ ≠ R₂인 경우

교수 (교수번호, 교수이름, 학과번호, 직급)

학과 (<u>학과번호</u>, 학과이름, <u>학과장교수번호</u>, 학생수) PK

학생 (<u>학번</u>, 이름, 학년, 학과)

과목 (과목번호, 과목이름, 학점, 학과, 담당교수)

등록 (<u>학번</u>, <u>과목번호</u>, 성적)

□ R₁ = R₂인 경우
교수1 (교수번호, 교수이름, 학과번호, <u>학장교수번호</u>)
PK

무결성 제약(Integrity Constraints)

- ☐ null 값
 - □ 정보 부재를 명시적으로 표현하는 특수한 데이터 값
 - □ 알려지지 않은 값(unknown value) 또는 해당 없음(inapplicable)
- □ 개체 무결성(entity integrity)
 - □ 기본키 값은 언제 어느 때고 null값을 가질 수 없음
- □ 참조 무결성(referential integrity)
 - □ 외래키의 값은 참조된 릴레이션의 기본키 값이거나 null임
- □ 데이타베이스 상태 (database state)
 - □ 어느 한 시점에 데이타베이스에 저장된 데이타 값 인스턴스
 - □ 데이타베이스 상태 변화: 삽입, 삭제, 변경 연산
 - □ DBMS는 데이타베이스 상태의 변화에도 항상 무결성 제약을 만족 시켜야 함

배을 내용

□ 데이터 모델의 개념

- □ 개체-관계 데이터모델
 - □ 개체 / 관계 / 제약조건
 - □ 개체-관계 모델/다이어그램
- □ 관계형 데이터모델
 - □ 관계형 데이터 구조

관계형 스키미로의 변환(I)

- □ E-R 스키마를 테이블로 변환
 - □ 주 키는 엔티티 집합과 관계 집합이 데이터베이스의 내용을 표현하는 테이블로 균일하게 나타나도록 함
 - □ E-R도에 상응하는 데이터베이스는 테이블의 모임으로 표현
 - □ 각 엔티티 집합과 관계 집합에 대해 그에 상응하는 이름이 할당된 유일한 테이블이 존재
 - □ 각 테이블에는 고유한 이름을 가진 여러 개의 열(일반적으로 애트리뷰트에 대응함)을 가진다.
 - □ E-R도를 테이블 형식으로 변환하는 것이 E-R도로 부터 관계형 데이터베이스 설계를 유도하는 기본

관계형 스키미로의 변환(II)

- □ 개체 집합을 테이블로 표현
 - □ 강 엔티티 집합은 같은 애트리뷰트를 가진 테이블로 변환

customer-name	social-security	c-street	c-city
Jones	321-12-3123	Main	Harrison
Smith	019-28-3746	North	Rye
Hayes	677-89-9011	Main	Harrison

customer 테이블

□ 약 엔티티 집합은 강 엔티티 집합을 식별하는 주 키의 행을 포함한 테이블로 변환

loan-number	payment-number	payment-date	payment-amount
L-17	5	10 May 1996	50
L-23	11	17 May 1996	75
L-15	22	23 May 1996	300

Payment 테이블

E-R 디이어그램의 예 - 은행기관

관계형 스키미로의 변환(III)

- □ 관계 집합을 테이블로 표현
 - □ 다 대 다 관계 집합은 참여하는 두 엔티티 집합의 주 키와 관계 집합의 어떤 설명 애트리뷰트에 대한 열을 가진 테이블로 표현

social-security	account-number	access-date
•••	•••	•••

depositor 테이블

- □ 약 엔티티 집합에 그를 식별하고 있는 강 엔티티 집합을 연결하는 관계 집합에 상응하는 테이블은 중복
 - □ payment 테이블에는 loan-payment 테이블에 나타난 정보 (즉, loan- number와 payment-number 열)를 이미 가지고 있음

관계형 스키미로의 변환(IV)

□ 일반화의 테이블 표현

□ 방법1 : 일반화 엔티티 account에 대한 테이블 작성

테이블

테이블 애트리뷰트

account savings-account checking-account

account-number, balance, account-type account-number, interest-rate account-number, overdraft-amount

□ 방법2 : 일반화되는 각 엔티티 집합에 대한 테이블 작성

테이블

테이블 애트리뷰트

savings-account checking-account

account-number, balance, interest-rate account-number, balance, overdraft-amount

E-R 집합으로부터 키의 결정

- □ 강 엔티티 집합
 - □ 엔티티 집합의 주 키는 릴레이션의 주 키
- □ 약 엔티티 집합
 - □ 릴레이션의 주 키는 강 엔티티 집합의 주 키와 약 엔티티 집합의 구별자의 합 집합으로 구성
- □ 관계 집합
 - □ 관련된 엔티티 집합의 주 키의 합집합은 릴레이션의 수퍼 키
- □ 이진 다 대 다 관계 집합에서는 수퍼 키가 또한 주 키
- □ 이진 다 대 일 관계 집합에서는 "다"쪽 엔티티 집합의 주 키가 릴 레이션의 주 키
- □ 일 대 일 관계 집합에서는 어떤 쪽의 엔티티 집합의 주 키도 릴레이션의 주 키가 될 수 있음

요약

- □ 데이터 모델의 개념
- □ 개체-관계 데이터모델
 - □ 개체 / 관계 / 제약조건
 - □ 개체-관계 모델/다이어그램
- □ 관계형 데이터모델
 - □ 관계형 데이터 구조
- □ 개체-관계 모델을 관계 모델로 변환

다음 배울 내용 : 관계형 데이터 모델 [관계 대수]