H3 Part 2: Practice Questions (Set 2)

- 1. The built-in voltage of an abrupt, uniformly doped p^+n junction diode is 0.75 V. At 0 V bias, the junction capacitance is 10 pF. The cross-sectional area of the diode is 2×10^{-4} cm² and the relative permittivity of the semiconductor is 10.5.
 - (a) Sketch, with reasonable accuracy, a *labelled* energy band diagram of the junction diode at thermal equilibrium.
 - (b) Determine the maximum *built-in* electric field across the junction.
 - (c) If the maximum allowable junction electric field is 3.2×10^5 V/cm to ensure proper operation of the junction diode, determine the maximum voltage that may be applied. Assume the width of the space charge region in the p⁺ region, x_p to be negligibly small.

 $[8.06 \times 10^4 \text{ V/cm}; 11.0 \text{ V}]$

- 2. An abrupt Ge p-n junction diode has moderately doped p and n regions. The doping concentration on the p-side is twice that of the n-side. The desired built-in voltage is 0.32 V. The intrinsic carrier concentration is $2.4 \times 10^{13} \text{ cm}^{-3}$ and the critical electric field is $1 \times 10^5 \text{ Vcm}^{-1}$. Assume kT = 0.0259 eV.
 - (a) Determine the required doping concentration of the p- and n-side.
 - (b) A reverse bias voltage of -2 V is applied across the diode. Sketch, to reasonable accuracy, a *labelled* energy band diagram of the diode under this biasing condition. Calculate and write down clearly the position of the Fermi energy, relative to the center of the bandgap, on the p- and n-side.
 - (c) Further increasing the reverse bias voltage will eventually result in a large current flowing through the diode. Give a possible explanation for this observation.

$$[8.18 \times 10^{15} \text{ cm}^{-3}; 1.64 \times 10^{16} \text{ cm}^{-3}]$$

- 3. An Ohmic contact is formed on an n-type semiconductor doped to a concentration of $5\times10^{16}~\text{cm}^{-3}$. The bandgap of the semiconductor is 1.2 eV; intrinsic carrier concentration at 300 K is $1\times10^{10}~\text{cm}^{-3}$; electron affinity is 4.1 eV.
 - (a) Determine the maximum allowable work function of the metal.
 - (b) A metal of work function smaller than that in part (a) is used. Sketch, to reasonable accuracy, a *labelled* energy band diagram of the contact under thermal equilibrium.
 - (c) What potential barrier must electrons in the metal overcome before they can get to the semiconductor side?

[4.30 eV; 0.201 eV]

4. A metal contact is to be formed on an n-type semiconductor, doped moderately to a concentration of 1×10^{16} cm⁻³. The work function of the semiconductor is 3.80 eV. Assume $N_C = 1.2\times10^{19}$ cm⁻³; kT = 0.0259 eV.

The following are available choices of metals:

Metal	Work function (eV)
Aluminum	4.1
Silver	4.5
Titanium	4.3

- (a) Determine the electron affinity of the semiconductor.
- (b) If it is desired to have a Schottky contact with the lowest reverse saturation current density, which metal would you choose? Briefly justify your choice.
- (c) Determine the reverse saturation current density for the metal chosen in part (b). The Richardson constant for this contact is 120 A K⁻²cm⁻².

 $[3.62 \text{ eV}; 18.9 \text{ nA/cm}^2]$

5. The figure below shows the energy band diagram of a metal to n-semiconductor contact at 300 K. The semiconductor is uniformly doped to a concentration of 7×10^{15} cm⁻³. The intrinsic carrier concentration is 1.5×10^{10} cm⁻³ and the electron affinity is 4.1 eV.

- (a) Is the contact Schottky or Ohmic? Explain your answer very briefly.
- (b) Determine the work function of the metal and the metal-to-semiconductor potential barrier.

[4.83 eV; 0.73 eV]

- 6. An AlGaAs n⁺p light emitting diode, of cross-sectional 5×10^{-2} cm², is doped uniformly to a concentration of 5×10^{15} cm⁻³ on the lightly doped side. A 10-mA current flows through the diode when it is forward biased at 1.1 V. The mobility of the electrons and holes are $8500 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ and $400 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$, respectively. The intrinsic carrier concentration is $2\times10^5 \text{ cm}^{-3}$. Assume kT = 0.0259 eV.
 - (a) Determine the lifetime of the electrons. State clearly any assumption(s) made.

- (b) If the optical power output of the LED at the said bias condition is 7 mW, determine the bandgap energy of AlGaAs. The radiative recombination efficiency is 42%.
- (c) What is the color of the light emitted?

[70 ns; 1.67 eV]

- 7. An N⁺P light-emitting diode (LED) is fabricated using a direct bandgap semiconductor ($E_g = 1.7 \text{ eV}$), doped uniformly to a concentration of $6.2 \times 10^{15} \text{ cm}^{-3}$ on the p-side. The intrinsic carrier concentration is $1.8 \times 10^4 \text{ cm}^{-3}$. The LED is forward biased with a 1.25 V battery at 300 K. The electron and hole mobility are 8500 cm²V⁻¹s⁻¹ and 400 cm²V⁻¹s⁻¹, respectively. The corresponding lifetimes are 0.01 and 0.05 μ s. The diode cross-sectional area is $5 \times 10^{-3} \text{ cm}^{-3}$.
 - (a) Calculate the current flowing through the LED.
 - (a) Determine the optical power output if the radiative recombination efficiency is 0.4.
 - (b) The optical power measured is usually lower than the value determined in part (b). Give a very brief explanation.

[6.09 mA; 4.14 mW]