Chi-Square Hypothesis Test

- Step 3: Calculate the Test Statistic
 - This is chi-square test statistic

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

- where
 - *f_o* represents observed frequencies
 - *f_e* represents expected frequencies

Degrees of Freedom

- The degrees of freedom for the chi-square goodness-of-fit test are k-1
 - k is the number of levels of the discrete variable
- The degrees of freedom for the chi-square test for independence is found by multiplying the df for each factor
 - $df = (k_1 1)(k_2 1)$

Expected Frequencies

Computing expected frequencies:

ас	<i>bc</i>	
$\frac{\overline{n}}{n}$	$\frac{}{n}$	C
ad	bd	_7
${n}$	$\frac{}{n}$	d
\overline{a}	b	•

Odds

Odds of event occurrence are determined by

$$\frac{p}{1-p}$$

- where p is the probability of event occurrence
- Odds range from 0 to infinity, the greater the probability of event occurrence, the larger the odds

Odds Ratio

• The odds ratio (OR) is a measure of effect size for a significant χ^2 test for independence. It is computed by taking the ratio of the odds for each group