السنة الجامعية : 2019/2018

جامعة 20 أوت 1955 سكيكدة

في 2019/06/22

كلية العلوم - قسم الرياضيات

المدة: ساعة و نصف

السنة الأولى MI

إمتحان السداسي الثاني في مادة مدخل إلى الإحتمالات و الإحصاء الوصفي

التمرين الأول: (9 نقاط)

لخصت شركة توصيل الوقود، في عام، عدد عمليات التسليم التي تتم وفقًا للكمية التي يتم تسليمها. منحني التوزيع التكراري المجمع الصاعد التالي يعكس ذلك.

1) أتمم الجدول التالى:

كميات الوقود (L)	[0,500[[500, 1000[[1000, 2000[[2000, 3000[
c_l مراكزالقنة				
التكرار المجمع الصاعد(FCA)	15			100
التكرار المطلق			52	

- 2) ما هو المتغير الإحصائي المدروس؟ حدد طبيعة المتغير.
 - 3) أحسب الكمية المتوسطة للوقود التي تم تسليمها.
 - 4) أحسب الإنحراف المعياري للمتغير المدروس.
 - أحسب قيم الوسيط و الربيعيين.

التمرين الثاني: (5 نقاط)

- I. أوجد الإجابة الصحيحة فيما يلي علما أنه واحدة فقط هي الصحيحة. (الإجابة بدون تعليل).
 - 1) شخص له 11 صديق بكم طريقة يمكن أن يدعو خمسة أصدقاء إلى العشاء.

- a) 462 b) 11 c) 55440
- d) 48828125
- 2) كم عدد الكلمات المكونة من 3 أحرف مأخوذة من مجموعة مكونة من 8 حروف (بشرط عدم تكرار الحرف)

41)	50	b) 550	C) 512	u) 0	
تكرار الحرف)	ىروف (مع إمكانية	مجموعة مكونة من 8 ح	3 احرف ماخوذة من	كم عدد الكلمات المكونة من 3	(3
a)	56	b) 336	c) 512	d) 8	
			"MODE"	بكم طريقة يمكن ترتيب كلمة	(4
a)	24 1) 12	c) 6	d) 256	
ch	c. 1 - 2 1	Little Record of Table	11 -1 1		

P) 336

0156

II. يحتوي كيس على b كرات بيضاء و n كرات السوداء. نسحب عشوانيا و في وقت واحد كرتين من الكيس.

بين أن X_n عدد حالات لسحب كرتين من نفس اللون هو:

A) Q

c) 512

$$X_n = \frac{b(b-1) + n(n-1)}{2}$$

بين أن إحتمال p_n لسحب كرتين من نفس اللون هو:

$$p_n = \frac{b(b-1) + n(n-1)}{(b+n)(b+n-1)}$$

التمرين الثالث: (6 نقاط)

في مجتمع من المواليد، % 51 من المواليد هم من الذكور. نسبة المصابين بعمى الألوان (Daltonisme) لدى الذكور هي 5% ولدى الإناث هي %0.25. أختير عشوائيا مولودا من هذا المجتمع.

- 1) ما هو إحتمال أن يكون المولود الذي تم إختياره مصاب بعمى الألوان ؟
- 2) نلاحظ أن المولود الذي تم إختياره عشوائيا من هذا المجتمع مصاب بعمى الألوان.
 - a. ما هو إحتمال أن يكون المولود ذكرا.
 - b. إستنتج إحتمال أن يكون المولود أنثى.

بالتوفيق

جامعة 20 أوت 1955 سكيكدة المجامعية : 2019/2018

السنة الأولى MI

الحل النمودجي لإمتحان السداسي الثاني في مادة مدخل إلى الإحتمالات و الإحصاء الوصفي

حل التمرين الأول: (5 نقاط)

T

العلامة	الإجابة	الأسنلة
(ن 0.5)	а	1
(ن 0.5)	b	2
(ن 0.5)	с	3
(ن 0.5)	а	4

الدينا توفيقة.

1) عدد حالات لسحب كرتين من نفس اللون هو إما كرتين سودويتين أو كرتين بيضويتين أي: X_n

$$X_n = C_n^2 + C_b^2(0.5) = \frac{n!}{2!(n-2)!} + \frac{b!}{2!(b-2)!}(0.5)$$

$$= \frac{n(n-1)(n-2)!}{2!(n-2)!} + \frac{b(b-1)(b-2)!}{2!(b-2)!}(0.5)$$

$$= \frac{b(b-1) + n(n-1)}{2}$$

(2) إحتمال p_n لسحب كرتين من نفس اللون هو:

$$p_{n} = \frac{X_{n}}{C_{b+n}^{2}} (0.5) = \frac{\frac{b(b-1)+n(n-1)}{2}}{\frac{(b+n)!}{2!(b+n-2)!}} (0.5)$$

$$= \frac{\frac{b(b-1)+n(n-1)}{2}}{\frac{(b+n)(b+n-1)(b+n-2)!}{2!(b+n-2)!}} (0.5) = \frac{b(b-1)+n(n-1)}{(b+n)(b+n-1)}$$

حل التمرين الثاني: (6 نقاط)

نرمز (25.00) ب F للحادثة: المولود المختار أنثى.

G للحادثة : المولود المختار ذكر.

D للحادثة : المولود المختار مصاب بعمى الألوان.

من المعطيات لدينا:

$$P(F) = 0.49(\begin{subarray}{l} \begin{subarray}{l} P(F) = 0.49(\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$$

 $\{F,G\}$ في يكون المولود الذي تم إختياره مصاب بعمى الألوان هو (بتطبيق قانون الإحتمال الكلي على الهود $\{F,G\}$

$$P(D) = P(D/F)P(F) + P(F/G)P(G)(01) = 0.49 \times 0.0025 + 0.51 \times 0.05(00.5)$$

= 0.0267 (ou 0.027 ou 0.03)(00.5)

. (2

(a) إحتمال أن يكون المولود ذكرا مع العلم أنه مصاب يعمى الألوان هو:
$$P_D(G) = P(G/D) = \frac{P(G \cap D)}{P(D)} = \frac{P(G)P(D/G)}{P(D)} = \frac{0.51 \times 0.05}{0.0267}$$

= 0.9551 (ou 0.96)(0.5)

$$\left(P(G \mid D) = \frac{P(D \mid G)P(G)}{P(D \mid G)P(G) + P(D \mid F)P(F)}\right)$$

$$P_D(F) = 1 - P_D(G)(0.75) = 1 - 0.9551 = 0.0449(0.5)$$

حل التمرين الثالث: (9 نقاط) 1) إنمام الجدول

التنقيط	Σ	[2000, 3000[[1000, 2000[[500, 1000[[0,500[كميات الوقود (L)
(10)	×	2500	1500	750	250	مراكزالفنة ٢٠
(0.5)	×	100	88	36	15	التكرار المجمع الصاعد (FCA)
(ú1)	100	12	52	21	15	التكرار المطلق
(0.5)	127500	30000	78000	15750	3750	$n_i c_i$

2) المتغير الإحصائي : كمية الوقود (0.5 ن) طبيعته : كمي مستمر (0.25 ن)

3) المتوسط الحسابي هو:

$$\bar{x} = \frac{\sum_{i=1}^{4} n_i c_i}{\sum_{i=1}^{4} n_i} (0.5) = \frac{127500}{100} = 1275(0.25)$$

لدينا رتبة الوسيط هي 50 ← الغنة الوسيطية هي [1000,2000] . (0.25)

$$M_d = A_1 + \frac{\frac{N}{2} - N_{M_d-1}^{\dagger}}{n_{M_d}} \times L_{M_d}(0.5) = 1000 + \frac{50 - 36}{52} \times 1000(0.5) = 1269,231(0.25)$$

(0.25) $Q_1 \in [500,1000] \iff 25$ هي $Q_1 \in [500,1000]$

$$Q_1 = A_{Q_1} + \frac{\frac{N}{4} - N_{Q_1-1}^{\dagger}}{n_{Q_1}} \times L_{Q_1}(0.5) = 500 + \frac{25 - 15}{21} \times 500(0.5) = 738.095(0.25)$$

لَيْنَا رَبَةَ Q3 في 75 ⇒ [1000,2000] (0.25) .Q3 € [1000,2000]

$$Q_3 = A_{Q_3} + \frac{\frac{3N}{4} - N_{Q_3-1}^{\dagger}}{n_{Q_3}} \times L_{Q_3}(0.5) = 1000 + \frac{75 - 36}{52} \times 1000(0.5) = 1750 \quad (0.25)$$