1

Assignment 2

KARTHIK RAVULA AI21BTECH11024

Question 2.15a): Consider the system illustrated in figure given below . The output of an LTI system with an impulse response $h[n] = (\frac{1}{4})^n u[n+10]$ is multiplied by a unit step function u[n] to yield the output of the overall system. Answer the following question, and briefly justify your answer:

 \therefore The given system is not an LTI system since inputs $\delta[n]$ and $\delta[n-1]$ violate TI.

Fig. 1. Framework from input to output of a system

a) Is the overall system LTI?

SOLUTION:

Linear time-invariant system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance.

Linearity: A system is linear, if it only consists of linear operations, such as: scaling, time-shift, summations of scaled and time-shifted input signals.

Time invariance: A system is time invariant if a time shift in the input signal results in an identical time shift in the output signal. That is, if y[n] is the output of a discrete time, time invariant system when x[n] is the input, then $y[n-n_0]$ is the output when $x[n-n_0]$ is applied.

Properties of LTI system:

$$y[n] = \sum_{-\infty}^{\infty} x[k]h[n-k] \text{(discrete LTI)}$$

$$y[n] = \int_{-\infty}^{\infty} x[k]h[n-k] \text{(continuous LTI)}$$

h[n] is the response of the Linear system to the shifted unit impulse $\delta[n-k]$.

where

$$\delta[n-k] = \begin{cases} 1, n=k \\ 0, \text{else} \end{cases} \tag{1}$$