

Source: http://www.easynotecards.com/notecard_set/24151 - downloaded on 14 November 2014. See # 48 - 50

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dissolved $O_2 \approx 0.003 \text{ ml } O_2/100 \text{ ml blood/mmHg } O_2$

Figure 23-8 Mechanisms of CO_2 transport in blood. The predominant mechanism by which CO_2 is transported from tissue cells to the lung is in the form of HCO_3^- . RBC, red blood cell.

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Figure 23-4 Oxyhemoglobin dissociation curve showing the relationship between the partial pressure of O_2 in blood and the percentage of Hgb binding sites that are occupied by oxygen molecules (percent saturation). Adult hemoglobin (HgbA) is about 50% saturated at a PO_2 of 27 mm Hg, 90% saturated at 60 mm Hg, and about 98% saturated at 100 mm Hg. The P50 is the partial pressure at which Hgb is 50% saturated with O_2 . When the O_2 dissociation curve shifts to the right, P50 increases. When the curve shifts to the left, P50 decreases.

$$[O_2] = K \times [Hb] \times (\%Hb_{sat}/100) + 0.003 \cdot P_{O_2}$$

Where:

- • $[O_2]$ = amount of O_2 in blood, in ml $O_2/100$ ml blood
- •1.34 \leq K \leq 1.39 ml O₂/g Hb
- •[Hb] = amount of Hb in blood, in g/100 ml of blood
- •% Hb_{sat} = % Hb saturation with O₂
- $\bullet P_{O2}$ = partial pressure of O_2 in blood

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

This effect of CO₂ partial pressure on dissociation of O₂ from Hb (the Böhr effect) is advantageous.

E.g. an increase in CO₂ partial pressure locally during tissue activity causes Hb to part more readily with its O₂ to the active tissues.

Similarly, an increase in temperature, H⁺ and DPG move the curve to the right. DPG is formed from glucose in the RBCs. Its presence favours the dissociation of oxygen from HbO₂

Source: http://pex.referata.com/wiki/CO2_Carriage_and_Storage

END

Video 2, Module 13