Lecture 9 Public-Key Encryption II

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

7.11.16 version 1.0

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

The situation

question:

can we construct
PKE based on the
"factoring
assumption"

Yes: Rabin encryption

factoring RSA moduli is hard

RSA assumption holds

public-key encryption exists

Rabin encrypion

Michael O. Rabin (Wrocław 1931 -)

One of the founding fathers of computer science.

- introduced non-determinism
- decidability of the monadic second order logic
- efficient primality testing
- · oblivious transfer,
- •

received Turing Award in 1976

- introduced by
 Michael O. Rabin in 1979
- based on squaring in Z_N^*
- security equivalent to factoring

On **Lecture 7** we proven the following

Fact

Let N be a random RSA modulus.

The problem of computing square roots (modulo N) of random elements in QR_N is poly-time equivalent to the problem of factoring N.

In other words

"squaring in \mathbb{Z}_{N}^{*} " is a one-way function (assuming the **factoring RSA moduli** is hard).

Define:

Rabin: $Z_N^* \rightarrow Z_N^*$

as

 $Rabin(x) := x^2 \mod N$

A fact about squaring modulo N = pq?

This function "glues" 4 elements together.

Example for N = 15

QR₁₅:

 Z_{15}^{*}

How to base encryption on this?

Idea:

public key: N = pq

private key: (p, q)

encryption: $Enc_N(x) = x^2 \mod N$

decryption: $Dec_{(p,q)}(y) = \sqrt{y} \mod N$

can be computed efficiently if one knows **p** and **q** (see **Lecture 7**)

Problem: there are 4 square roots.

Solution: "make the inversion unique".

How to do it?

An ad-hoc method: add an encoding (like in the "real **RSA** encryption").

In such a way that only **1** out of the **4** square roots "make sense".

Another approach

Fact

Such an **N** is called a "Blum integer"

Suppose
$$N = pq$$
 where $p = q = 3 \pmod{4}$

Then the function

$$Rabin_N(x) = x^2 \mod N$$

is a permutation when restricted to QR_N

$$Rabin_N: QR_N \rightarrow QR_N$$

How does it look?

Rabin restricted to **QR**_N is a permutation

Proof that $Rabin_N(x) = x^2 \mod N$ restricted to QR_N is a permutation

$$(N = pq, \text{ where } p = q = 3 \text{ mod } 4)$$

We prove that **Rabin** is injective, i.e. for every $x, y \in QR_N$ we have that

$$x^2 = y^2 \implies x = y$$

Observation: by **CRT** it is enough to show that

- $x^2 = y^2 \implies x = y \mod p$ and
- $x^2 = y^2 \implies x = y \mod q$.

By symmetry it's also enough to show it just for p.

Proof

Suppose we have $x, y \in \mathbb{QR}_{\mathbb{N}}$ such that $x^2 = y^2$

Let
$$p = 4k + 3$$
, where $k \in \mathbb{N}$

$$x^2 = y^2 \bmod p$$

Let
$$i, j \in \mathbb{N}$$
 be such that

$$g^{4i} = g^{4j} \bmod p$$

•
$$x = g^{2i} \mod p$$
 and

$$g^{4(i-j)} = 1 \bmod p$$

•
$$y = g^{2j} \mod p$$

$$p-1 | 4(i-j)$$

where
$$g$$
 is a generator of Z_p^* and

$$4k + 2 | 4(i - j)$$

$$0 \le j \le i < \frac{p-1}{2}$$

$$= \frac{4k+2}{2}$$

$$= 2k+1$$

$$2k + 1 | 2(i - j)$$

$$2k + 1 | i - j$$

$$i = j$$

$$x = y \mod p$$

QED

How to encrypt a one-bit message **b**?

Fact: the least significant bit is a hard-core bit for the Rabin permutation.

a Blum integer

N – public key (p, q) – private key

 $Rabin_N(x) = x^2 \mod N$ $Rabin_N: QR_N \to QR_N$

$$\operatorname{Enc}_N(b) = (\operatorname{LSB}(x) \oplus b, \operatorname{Rabin}_N(x)),$$
 where $x \in \operatorname{QR}_N$ is random.

this can be computed if one knows p and q

$$\operatorname{Dec}_{p,q}(b',y) = \operatorname{LSB}\left(\operatorname{Rabin}_{N}^{-1}(y)\right) \oplus b'$$

Moral

factoring RSA moduli is hard

public-key encryption exists

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
 - 1. a tool: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

Remember the exponentiation modulo a prime?

x	2 ^x mod 11
0	1
1	2
2	4
3	8
4	5
5	10
6	9
7	7
8	3
9	6

2 is a generator of Z_{11}^*

Discrete log

X	\mathbf{g}^{x}
0	1
1	2
2	4
3	8
4	5
5	10
6	9
7	7
8	3
9	6

Function

$$f(x) = g^x \bmod p$$

easy to compute

believed to be **hard to compute** for large **p**

Discrete log is hard in many other groups!

 f^{-1} is also denoted \log_g and called the **discrete** logarithm

How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was quite easy...

In case of the **discrete log**, we just have a one-way function.

Diffie and Hellman constructed something weaker than PKE: a **key exchange protocol** (also called key **agreement** protocol).

We'll not describe it. Then, we'll show how to "convert it" into a **PKE**.

Plan

- 1. a tool: Diffie-Hellman key exchange
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

Key exchange

The Diffie-Hellman Key exchange

- G a group, where discrete log is believed to be hard
- q := |G|
- g a generator of G

Security of the Diffie-Hellman key exchange

Eve should have no information about g^{yx} .

Is it secure?

If the **discrete log in** *G* is easy then the **DH key exchange** is **not secure**.

(because the adversary can compute x and y from g^x and g^y)

If the discrete log in *G* is hard, then...

it may also not be secure

Example for $G = Z_p^*$

We use the facts that:

- quadratic residues in \mathbb{Z}_p^* are even powers of the generator, and
- testing membership in QR_p is computationally easy (even for large p).

Suppose $G = Z_p^*$

 $= a^{xy \mod p - 1}$

Therefore:

 $g^{xy} \in QR_p$ iff $(h_1 \in QR_p \text{ or } h_2 \in QR_p)$

So, Eve can compute some information about g^{xy} (namely: if it is a **QR**, or not).

Solution (see Lecture 7)

Instead of working in \mathbb{Z}_p^* work in its subgroup: \mathbb{QR}_p

How to find a generator of QR_p ?

A practical method: Choose **p** that is a **strong prime**, which means that:

$$p = 2 \cdot q + 1$$
, with q prime.

Hence: QR_p has a prime order (q).

Every element (except of 1) of a group of a prime order is its **generator**!

Therefore: every element of QR_p is a generator.

The DH Key exchange over QR group

Take a prime $p = 2 \cdot q + 1$, with q prime.

Take any $h \in \mathbb{Z}_p$ such that $h \neq \pm 1$ and let $g = h^2 \mod p$.

But is the partial information leakage really a problem?

We need to

1. **formalize** what we mean by secure key exchange,

 identify the assumptions needed to prove the security.

Informal definition

(A, B) is secure if no "efficient adversary" can distinguishk from random, given T, with a "non-negligible advantage".

How to formalize it?

We say (A, B) is secure a secure key-exchange protocol if: the output of A and B is always the same, and

$$\bigvee_{\substack{\text{poly-time} \\ M}} |P(M(1^n, T, k) = 1) - P(M(1^n, T, r) = 1)| \le \text{negl}(n)$$

How to make G dependent on 1^n ?

In **practice** often a fixed group is used.

In **theory** we need to have a **new group** G for every value of 1^n .

So, we need to define an algorithm that generates G and its generator g.

Group generating algorithm GenG

Example of GenG

How does the protocol look now?

If such a key exchange protocol is secure, we say that: the Decisional Diffie-Hellman (DDH) problem is hard with respect to GenG)

Formally

Decisional Diffie-Hellman (DDH) problem is hard relative to **GenG** if for every poly-time algorithm **A** we have that

$$|P(A(G,q,g,g^x,g^y,g^z)=1) - P(A(G,q,g,g^x,g^y,g^{xy})=1)|$$

$$\leq \operatorname{negl}(n)$$

where

$$(G,q,g) \leftarrow \operatorname{GenG}(1^n)$$

and

$$x, y, z \leftarrow Z_q$$

Examples

DDH is believed to be hard relative to **GenG**_{QR}

Other examples: elliptic curves

How does DDH compare to the discrete log assumption

The opposite implication is unknown in most of the cases

A problem

The protocols that we discussed are secure only against a **passive adversary** (that only eavesdrop).

What if the adversary is **active**?

She can launch a "man-in-the-middle attack".

Man in the middle attack

A very realistic attack!

So, is this thing totally useless?

No! (it is useful as a building block)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
 - 1. tool: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

ElGamal encryption

ElGamal is another popular public-key encryption scheme.

Introduced in:

[Taher ElGamal "A Public key Cryptosystem and A Signature Scheme based on discrete Logarithms". *IEEE Transactions on Information Theory*. 1985]

It is based on the **Diffie-Hellman** key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to any group G?

$$\mathcal{K} = \mathcal{M} = C = G$$

$$\operatorname{Enc}(k, m) = m \cdot k$$

$$\operatorname{Dec}(k, m) = m \cdot k^{-1}$$

So, if k is the key agreed in the DH key exchange, then Alice can send a message $M \in G$ to Bob "encrypting it with k" by setting: $c := m \cdot k$

Note: this is essentially the **KEM/DEM** method from **Lecture 8**.

How does it look now?

The last two messages can be sent together

ElGamal encryption

ElGamal encryption

Let **GenG** be such that **DDH** is hard with respect to **GenG**.

Gen(1ⁿ) first runs **GenG** to obtain G, g and q. Then, it chooses $x \leftarrow Z_q$ and computes $h_1 := g^x$.

The public key is (G, g, q, h_1) . The private key is (G, g, q, x).

Enc($(G, g, q, h_1), m$) := $(m \cdot h_1^y, g^y)$,
where $m \in G$ and y is a random element of G(note: it is randomized by definition)

$$Dec((G, g, q, x), (c_1, h_2)) := c_1 \cdot h_2^{-x}$$

Correctness

$$h = g^x$$

$$\operatorname{Enc}((G,g,q,h),m)=(m\cdot h^y,g^y)$$

$$Dec((G, g, q, x), (c_1, h_2)) = c_1 \cdot h_2^{-x}$$

$$= m \cdot h^y \cdot (g^y)^{-x}$$

$$= m \cdot (g^x)^y \cdot (g^y)^{-x}$$

$$= m \cdot g^{xy} \cdot g^{-yx}$$

$$= m$$

ElGamal – implementation issues

Which group to choose?

E.g.: \mathbf{QR}_{p} , where p is a strong prime, i.e.: $q = \frac{p-1}{2}$ is also prime.

Plaintext space is a set of integers $\{1, ..., q\}$.

How to map an integer $i \in \{1, ..., q\}$ to QR_p ?

Just square:

$$f(i) = i^2 \bmod p.$$

Why is it **one-to-one**?

Remember this picture (from Lecture 7)?

The mapping

So

$$f(i) = i^2 \bmod p$$

is **one-to-one** (on $\{1, ..., q\}$).

Is it also efficiently invertible?

Yes (this was discussed on Lecture 7)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption

- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

ElGamal has an interesting property

homomorphism with respect to multiplication:

A "product of two ciphertexts" decrypts to a product of their corresponding messages.

Why?

- public key: (*G*, *g*, *q*, *h*)
- private key: (G, g, q, x)

$$c \coloneqq \operatorname{Enc}((G, g, q, h), m) := (m \cdot h^y, g^y)$$
, where $y \leftarrow G$
 $c' \coloneqq \operatorname{Enc}((G, g, q, h), m') := (m' \cdot h^{y'}, g^{y'})$, where $y' \leftarrow G$

product of \boldsymbol{c} and \boldsymbol{c}' :

$$(\boldsymbol{m} \cdot \boldsymbol{m}' \cdot \boldsymbol{h}^{y} \cdot \boldsymbol{h}^{y'}, \boldsymbol{g}^{y} \cdot \boldsymbol{g}^{y'})$$

= $(\boldsymbol{m} \cdot \boldsymbol{m}' \cdot \boldsymbol{h}^{y+y'}, \boldsymbol{g}^{y+y'})$

this is an encryption of $m \cdot m'$ with randomness y + y'

Homomorphism – good or bad?

Sometimes homomorphism is a security weakness (think of the CCA security).

On the other hand: it can also be a plus.

One example: cloud computing

Example: outsourcing computation

has a large set $\{x_1, ..., x_n\} \subseteq Z_p^*$ and wants to learn $x = x_1 \cdot \cdots \cdot x_n \mod p$

generated a key pair $pk = (Z_p, g, p - 1, h)$ $sk = (Z_p, g, p - 1, x)$

Observe: the server doesn't learn the x_i 's!

This can be generalized!

The example on the previous slide was a bit artificial. But think about the following.

has some data $x_1, ..., x_n$ and wants to learn $x = f(x_1, ..., x_n)$ for some function f.

Fully homomorphic encryption (FHE)

Constructing encryption scheme that would allow "homomorphic computation" of any function *f* was an **open problem** until **2009**.

The first such construction was given in:

Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. ACM Symposium on Theory of Computing (STOC), 2009.

Working towards construction of **practical FHE** is an active research area.

A natural (but much simpler) question

Can we construct an encryption scheme that is homomorphic with respect to addition?

Answer: Yes, Paillier cryptosystem

[Pascal Paillier "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes". EUROCRYPT 1999]

Paillier cryptosystem works over $\mathbb{Z}_{N^2}^*$, where \mathbb{N} is an **RSA** modulus

```
Let N := pq.

public key: N

private key: (p, q)
```

How does $\mathbb{Z}_{N^2}^*$ look like?

Observe:

$$\varphi(N^2) = p(p-1) \cdot q(q-1)$$

$$= pq \cdot (p-1)(q-1)$$

$$= N \cdot \varphi(N)$$

Fact

 $Z_{N^2}^*$ is isomorphic to $Z_N \times Z_N^*$ with the following isomorphism

$$f: \mathbb{Z}_N \times \mathbb{Z}_N^* \to \mathbb{Z}_{N^2}^*$$

$$f(a,b) = (1+N)^a \cdot b^N \bmod N^2$$

If x = f(a, b) then we will also write: $x \leftrightarrow (a, b)$

[proof: exercise]

Another fact

Fact: for any integer *a* we have that

$$(1+N)^a = 1 + a \cdot N \pmod{N^2}$$

Proof:

$$(1+N)^{a} = 1 + {a \choose 1}N^{1} + {a \choose 2}N^{2} + \dots + {a \choose 1}N^{a}$$

$$= 1 + {a \choose 1}N \pmod{N^{2}}$$

$$= 1 + a \cdot N \pmod{N^{2}}$$

QED

A consequence of this fact

Fact: for any integer a we have that $(1 + N)^a = 1 + a \cdot N \pmod{N^2}$

Consequence: order of 1 + N in $Z_{N^2}^*$ is N.

why?

because:

- for 0 < a < N we have $1 < 1 + a \cdot N < N^2$
- and $1 + N \cdot N = 1 \pmod{N^2}$

Structure of $\mathbf{Z}_{N^2}^*$

Multiplication in $\mathbb{Z}_{N^2}^*$

Nth residues in $Z_{N^2}^*$

A number $y \in \mathbb{Z}_{N^2}^*$ is called an Nth residue modulo N^2 if there exists $x \in \mathbb{Z}_{N^2}^*$ such that

$$y = x^N \bmod N^2$$

How do the Nth residues look like?

A form of every Nth residue

```
Suppose x \leftrightarrow (a, b).

Then
x^N \leftrightarrow (N \cdot a \mod N, b^N \mod N)
= (0, b^N \mod N)
```

So every Nth residue is of a form

$$y \leftrightarrow (0, c)$$

Is every element of this form an Nth residue?

A proof that every element (0, c) is an \mathbb{N} th residue

Take
$$y \leftrightarrow (0, c)$$
. Let $d = N^{-1} \mod \varphi(N)$.

For an arbitrary $a \in Z_N$ let x be such that $x \leftrightarrow (a, c^d)$

this is possible because $N \perp \varphi(N)$

[exercise]

We have:

$$x^{N} \leftrightarrow (Na \mod N, c^{dN} \mod N)$$

$$= (0, c^{dN \mod \varphi(N)})$$

$$= (0, c^{1})$$

$$= (0, c)$$

Observe: this also shows that every Nth residue y has exactly N roots $\sqrt[N]{y}$.

The Nth residues pictorially

Also

The Nth roots of every (0, c) have a form (a, c^d) :

Corollary

It's easy to choose a random Nth residue:

Just take a random element $x \leftarrow Z_{N^2}^*$ and compute $y = x^N \mod N^2$.

Which problem is $\frac{\mathbf{Z}_{N^2}^*}{\mathbf{p}}$ (if one doesn't know \mathbf{p} and \mathbf{q})?

Decisional composite residuosity (DCR) assumption

Informally:

It is hard to distinguish random element of $Res(N^2)$ from a random element of $Z_{N^2}^*$.

How to encrypt?

Main idea: messages are elements $x \leftrightarrow (a, 1)$ (for $a \in Z_N$)

To encrypt a message m multiply it by a random $r \leftarrow \text{Res}(N^2)$:

$$\operatorname{Enc}_N(m) = m \cdot r$$

Pictorially

Two questions

- 1. Is this **secure**?
- 2. How to **decrypt**?

Security follows from the **DCR** assumption

Proof (sketch):

Take the original scheme

$$\operatorname{Enc}_N(m) = m \cdot r$$
 where $r \leftarrow \operatorname{Res}(N^2)$

and modify it as follows:

$$\operatorname{Enc}_N(m) = m \cdot r$$
 where $r \leftarrow Z_{N^2}^*$

Easy to see:

- 1. the **modified scheme hides the message completely** (it's a "generalized one-time pad")
- 2. if these two schemes can be distinguished then the DCR assumption is broken.

How to decrypt?

$$\operatorname{Enc}_N(m) = m \cdot r$$
 where $r \leftarrow \operatorname{Res}(N^2)$

Let's view encryption as a function in $\mathbb{Z}_N \times \mathbb{Z}_N^*$:

Enc_N
$$(a, 1) = (a + 0, 1 \cdot b)$$
 where $b \leftarrow Z_N^*$
= (a, b)

Problem:

the receiver can only see f(a, b). How can he "extract" a from it?

Observation

$$(f(a,b))^{\varphi(N)} \leftrightarrow (\varphi(N) \cdot a \mod N, b^{\varphi(N)} \mod N)$$

$$= (\varphi(N) \cdot a \mod N, 1)$$

$$\leftrightarrow f(\varphi(N) \cdot a \mod N, 1)$$

$$= (1+N)^{\varphi(N) \cdot a \mod N} \cdot 1^n \mod N^2$$

$$= (1+N)^{\varphi(N) \cdot a \mod N} \mod N^2$$

$$= (1+N)^{\varphi(N) \cdot a \mod N} \mod N^2$$

$$= 1+(\varphi(N) \cdot a \mod N) \cdot N \mod N^2$$

$$= 1+(\varphi(N) \cdot a \mod N) \cdot N$$

So:
$$\varphi(N) \cdot a \mod N = \frac{\left(f(a,b)\right)^{\varphi(N)} - 1}{N}$$

Continued:

denote it z

We got that

$$\varphi(N) \cdot a \mod N = \frac{\left(f(a,b)\right)^{\varphi(N)} - 1}{N}$$

Therefore

$$a = z \cdot (\varphi(N))^{-1} \bmod N$$

Paillier encryption

Key generation: let N := pq like in RSA

public key: N

private key: (p, q)

Encryption:

$$\operatorname{Enc}_N(m) = (1+N)^m \cdot r^N \mod N^2 \text{ where } r \leftarrow Z_N^*$$

Decryption:

$$\operatorname{Dec}_{p,q}(c) = \frac{(c^{\varphi(N)} \operatorname{mod} N^2) - 1}{N} \cdot \varphi(N)^{-1} \operatorname{mod} N$$

Why is this additively homomorphic?

$$c = \operatorname{Enc}_N(m) = (m, r)$$
 where $r \leftarrow Z_N^*$
 $c' = \operatorname{Enc}_N(m') = (m', r')$ where $r' \leftarrow Z_N^*$

We have:

```
c \cdot c' = (m, r) \cdot (m, r)
= (m + m', r \cdot r')
= Enc_N(m + m') with randomness r \cdot r'
```

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem

- 4. Practical considerations
- 5. Theoretical overview

ElGamal vs. RSA

In practice RSA and ElGamal (in \mathbb{Z}_p^*) have similar security for equivalent key lengths.

- RSA is slightly more efficient
- ElGamal has a ciphertext twice as long as the plaintext
- But ElGamal can be generalized to other groups (e.g. the elliptic curves) where it is much more efficient!

NIST recommendations

bits of security	RSA modulus length	discrete log in order q subgroups of Z_p^*	discrete log in elliptic curves of order:
≤ 80	1024	p = 1024 $ q = 160$	160
112	2048	p = 2048 $ q = 224$	224
128	3072	p = 3072 $ q = 256$	256
192	7680	p = 7680 $ q = 384$	384
256	15360	p = 15360 q = 512	512

[NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key Management]

Quantum attacks

All the schemes presented so far can be broken by quantum computers using Shor's algorithm.

[Peter W. Shor "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer" 1995]

There exists public-key encryption schemes that are believed to be secure against quantum computers (see **post-quantum cryptography**)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations

5. Theoretical overview

A natural question

Is public-key encryption a member of Minicrypt?

Answer: NO (as far as we know).

More precisely: nobody knows how to construct **PKE** from **one-way functions**.

However, the following implication is known:

This is proven using the hardcore predicates.

Hard-core predicates

Hard-core **predicates** are a generalization of hard-core **bits**.

Definition (informal)

```
\pi: \{0,1\}^n \to \{0,1\} is a hard core predicate for a trap-door permutation f: \{0,1\}^n \to \{0,1\}^n if it is hard to guess \pi(f^{-1}(y)) from y (with probability significantly better than 1/2).
```

A fact

Does every trap-door permutation have a hard-core predicate?

Almost:

Suppose that **f** is a trap-door permutation.

It can be used to build a trap-door permutation *g* that has a hard-core predicate.

How to encrypt with such an g?

Encryption for messages of length 1:

public key: description of *g*

private key: trapdoor **t** for **g**

$$\operatorname{Enc}_g(b) = (\pi(x) \oplus b, g(x))$$
 where $x \in \mathbb{Z}_N^*$ is random.

$$\operatorname{Dec}_t(b',y) = \pi(g^{-1}(y)) \oplus b$$

The general picture

