Exercice 1.

- (i) Montrer que si $Q \in M_{n \times n}(\mathbb{R})$ est une matrice orthogonale alors il en est de même pour Q^T .
- (ii) Montrer que si $U, V \in M_{n \times n}(\mathbb{R})$ sont des matrices orthogonales alors il en est de même pour UV.
- (iii) Soit u un vecteur unitaire de \mathbb{R}^n (||u|| = 1). Montrer que la matrice $Q = I 2uu^T \in M_{n \times n}(\mathbb{R})$ est orthogonale.
- (iv) Montrer que toute valeur propre réelle λ d'une matrice orthogonale $Q \in M_{n \times n}(\mathbb{R})$ vérifie $\lambda = \pm 1$.
- (v) Soit $Q \in M_{n \times n}(\mathbb{R})$ une matrice orthogonale et soit (u_1, \ldots, u_n) une base orthogonale de \mathbb{R}^n . On doit montrer que (Qu_1, \ldots, Qu_n) est aussi une base orthogonale de \mathbb{R}^n .

Solution 1. Rappel. Une matrice $A \in M_{n \times n}(\mathbb{R})$ est orthogonale si et seulement si $AA^T = I$.

(i) On suppose que $Q \in M_{n \times n}(\mathbb{R})$ est une matrice orthogonale. On doit montrer que Q^T est aussi une matrice orthogonale.

Comme Q est orthogonale, on a $QQ^T = I$. En particulier, $\det(Q)$ et $\det(Q^T)$ sont non nuls, et donc Q et Q^T sont inversibles. Ainsi $Q^T = Q^{-1}$ et $Q = (Q^T)^{-1}$. On a donc

$$(Q^T)^T Q^T = QQ^T = I$$

et Q^T est orthogonale.

Autrement, on peut argumenter de la façon suivante. Comme Q est orthogonale, on a $QQ^T=I$. Aussi

$$(QQ^T)^T = ((Q^T)^T)Q^T = QQ^T.$$

Comme $QQ^T = I$, on obtient $(Q^T)^TQ^T = I$ et donc Q est orthogonale.

(ii) On suppose que $U, V \in M_{n \times n}(\mathbb{R})$ sont orthogonales. On doit montrer que UV est aussi orthogonale. Comme U et V sont orthogonales, on a $UU^T = U^TU = VV^T = V^TV = I$. Aussi

$$(UV)^T(UV) = (V^TU^T)(UV) = V^T(U^TU)V = V^TIV = V^TV = I.$$

Donc UV est bien orthogonale.

(iii) Soit $u \in M_{n \times 1}(\mathbb{R})$ tel que ||u|| = 1, et $Q = I - 2uu^T$. On doit montrer que Q est orthogonale. Comme ||u|| = 1 on a $u^T u = 1$. On a

$$QQ^{T} = (I - 2uu^{T})(I - 2uu^{T})^{T}$$

$$= (I - 2uu^{T})(I^{T} - 2(uu^{T})^{T})$$

$$= (I - 2uu^{T})(I - 2(u^{T})^{T}u^{T})$$

$$= (I - 2uu^{T})(I - 2uu^{T})$$

$$= I - 4uu^{T} + 4u(u^{T}u)u^{T}$$

$$= I - 4uu^{T} + 4uIu^{T}$$

$$= I - 4uu^{T}(1 - 1)$$

$$= I.$$

- (iv) Soit $Q \in M_{n \times n}(\mathbb{R})$ une matrice orthogonale et λ une valeur propre réelle de Q. On doit montrer que $\lambda = \pm 1$. Soit $v \in \mathbb{R}^n$ un vecteur propre de Q associé à λ . On a $Qv = \lambda v$ et donc $||Qv||^2 = ||\lambda v||^2 = (\lambda v)^T (\lambda v) = \lambda^2 v^T v = \lambda^2 ||v||^2$. Comme Q est orthogonale, on a ||Qv|| = ||v||. On en déduit que $\lambda^2 = 1$ et $\lambda = \pm 1$.
- (v) Soit $Q \in M_{n \times n}(\mathbb{R})$ une matrice orthogonale et (u_1, \ldots, u_n) une base orthogonale de $V = \mathbb{R}^n$. On doit montrer que (Qu_1, \ldots, Qu_n) est aussi une base orthogonale de V. Montrons dans un premier temps que Qu_1, \ldots, Qu_n sont linéairement indépendants. Supposons que

$$\lambda_1 Q u_1 + \dots + \lambda_n Q u_n = 0$$
 où $\lambda_1, \dots, \lambda_n \in \mathbb{R}$.

On obtient alors

$$\lambda_1 Q^T Q u_1 + \dots + \lambda_n Q^T Q u_n = 0.$$

Comme Q est orthogonale, on a $Q^TQ = I$, et donc

$$\lambda_1 u_1 + \dots + \lambda_n u_n = 0.$$

Comme u_1, \ldots, u_n sont linéairement indépendants, on a $\lambda_i = 0$ pour tout $1 \leq i \leq n$. Ainsi Qu_1, \ldots, Qu_n sont linéairement indépendants.

Autrement, pour montrer que Qu_1, \ldots, Qu_n sont linéairement indépendants, on peut tout simplement utiliser le fait que Q est inversible (en effet Q est orthogonale et en particulier inversible). En effet, supposons que

$$\lambda_1 Q u_1 + \dots + \lambda_n Q u_n = 0$$
 où $\lambda_1, \dots, \lambda_n \in \mathbb{R}$.

Alors

$$Q(\lambda_1 u_1 + \dots + \lambda_n u_n) = 0.$$

Comme Q est inversible, cela donne

$$\lambda_1 u_1 + \dots + \lambda_n u_n = 0$$

et on conclut comme ci dessus que Qu_1, \ldots, Qu_n sont linéairement indépendants.

Comme dim V = n, on en déduit que (Qu_1, \ldots, Qu_n) est une base de V. Finalement, comme Q est une matrice orthogonale, pour tout $u, v \in V$ on a

$$\langle Qu, Qv \rangle = \langle u, v \rangle$$

Comme u_1, \ldots, u_n sont orthogonaux deux à deux, on obtient donc $\langle Qu_i, Qu_j \rangle = 0$ pour tous $1 \leq i, j \leq n, i \neq j$. Ainsi (Qu_1, \ldots, Qu_n) est aussi une base orthogonale de V.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. Trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.

Solution 2. Soit $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. On doit trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.

(a) On détermine le polynôme caractéristique $c_A(t)$ de A. On a

$$c_A(t) = \det \begin{pmatrix} 1-t & 1 & 3 \\ 1 & 3-t & 1 \\ 3 & 1 & 1-t \end{pmatrix}$$

$$= (1-t)\det \begin{pmatrix} 3-t & 1 \\ 1 & 1-t \end{pmatrix} - \det \begin{pmatrix} 1 & 1 \\ 3 & 1-t \end{pmatrix} + 3\det \begin{pmatrix} 1 & 3-t \\ 3 & 1 \end{pmatrix}$$

$$= (1-t)((3-t)(1-t)-1) - ((1-t)-3) + 3(1-3(3-t))$$

$$= (1-t)(t^2 - 4t + 2) - (-t-2) + (9t - 24)$$

$$= -(t^3 - 5t^2 + 6t - 2) + 10t - 22$$

$$= -(t^3 - 5t^2 - 4t + 20)$$

$$= -(t+2)(t-2)(t-5).$$

- (b) On détermine toutes les racines λ de $c_A(t)$. Ici il est clair que les racines de $c_A(t)$ sont $\lambda_1 = -2$, $\lambda_2 = 2$ et $\lambda_3 = 5$. (Note. Le polynôme caractéristique d'une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$ est un produit de polynôme de degré 1 à coefficients réels.)
- (c) Pour $1 \leq i \leq 3$, on cherche une base \mathcal{B}_i de l'espace propre E_{λ_i} associé à λ_i . Comme la multiciplicité algébrique de λ_i vaut 1, on a dim $E_{\lambda_i} = 1$ pour tout $1 \leq i \leq 3$. (En effet pour une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$ ayant valeur propre λ , la multiplicité algébrique de λ est égale à la multiplicité géométrique de λ .)

On a $E_{\lambda_i} = \{ v \in \mathbb{R}^3 : (A - \lambda_i)v = 0 \}.$

Supposons $\lambda = \lambda_1 = -2$. On a $(A - \lambda_1 I) = \begin{pmatrix} 3 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 3 \end{pmatrix}$. Les éléments de E_{λ_1} sont les solutions

du système correspondant à la matrice augmentée suivante :

$$B_1 = \begin{pmatrix} 3 & 1 & 3 & 0 \\ 1 & 5 & 1 & 0 \\ 3 & 1 & 3 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L'_1 = L_1 - 3L_2$ et $L'_3 = L_3 - L_1$, on obtient :

$$B_1' = \begin{pmatrix} 0 & -14 & 0 & 0 \\ 1 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_1'' = L_2'$ et $L_2'' = -L_1'/14$, on obtient :

$$B_1'' = \begin{pmatrix} 1 & 5 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On déduit que $E_{\lambda_1} = \{(t, 0, -t) : t \in \mathbb{R}\}$ et $\mathcal{B}_1 = ((1, 0, -1))$ est une base de E_{λ_1} .

Supposons $\lambda = \lambda_2 = 2$. On a $(A - \lambda_2 I) = \begin{pmatrix} -1 & 1 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -1 \end{pmatrix}$. Les éléments de E_{λ_2} sont les solutions

du système correspondant à la matrice augmentée suivante :

$$B_2 = \begin{pmatrix} -1 & 1 & 3 & 0 \\ 1 & 1 & 1 & 0 \\ 3 & 1 & -1 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2'=(L_2+L_1)/2$ et $L_3'=(L_3+3L_1)/4$, on obtient :

$$B_2' = \begin{pmatrix} -1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_3''=L_3'-L_2',$ on obtient :

$$B_2'' = \begin{pmatrix} -1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On déduit que $E_{\lambda_2} = \{(t, -2t, t) : t \in \mathbb{R}\}\$ et $\mathcal{B}_2 = ((1, -2, 1))$ est une base de E_{λ_2} .

Supposons $\lambda = \lambda_3 = 5$. On a $(A - \lambda_3 I) = \begin{pmatrix} -4 & 1 & 3 \\ 1 & -2 & 1 \\ 3 & 1 & -4 \end{pmatrix}$. Les éléments de E_{λ_3} sont les solutions du système correspondant à la matrice augmentée suivante :

$$B_3 = \begin{pmatrix} -4 & 1 & 3 & 0 \\ 1 & -2 & 1 & 0 \\ 3 & 1 & -4 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L'_1 = -(L_1 + 4L_2)/7$ et $L'_3 = (L_3 - 3L_2)/7$, on obtient :

$$B_3' = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_3'' = L_3' - L_1'$, $L_2'' = L_1'$ et $L_1'' = L_2'$, on obtient :

$$B_3'' = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On déduit que $E_{\lambda_3} = \{(t, t, t) : t \in \mathbb{R}\}$ et $\mathcal{B}_3 = ((1, 1, 1))$ est une base de E_{λ_3} .

(d) Soient $u_1 = (1, 0, -1)$, $u_2 = (1, -2, 1)$ et $u_3 = (1, 1, 1)$. Alors (u_i) est une base de E_{λ_i} pour $1 \le i \le 3$ et (u_1, u_2, u_3) est une base de \mathbb{R}^3 . Comme A est symétrique et $\lambda_1 \ne \lambda_2 \ne \lambda_3 \ne \lambda_1$, (u_1, u_2, u_3) est en fait une base orthogonale de \mathbb{R}^3 . Soient

$$w_1 = \frac{u_1}{||u_1||} = \left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right), w_2 = \frac{u_2}{||u_2||} = \left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), w_3 = \frac{u_3}{||u_3||} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

Alors $\mathcal{B}' = (w_1, w_2, w_3)$ est une base orthonormée de \mathbb{R}^3 et (w_i) est une base orthonormée de E_{λ_i} pour $1 \le i \le 3$.

(e) Soit $P = [id]_{\mathcal{CB}'}$ où \mathcal{C} est la base canonique de \mathbb{R}^3 . On a

$$P = [id]_{\mathcal{CB}'}$$

$$= \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \end{pmatrix}.$$

Alors P est orthogonale.

(f) Soit $D = P^T A P = P^{-1} A P$. Alors

$$D = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 0 & -\sqrt{3} \\ 1 & -2 & 1 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} -2\sqrt{3} & 0 & 2\sqrt{3} \\ 2 & -4 & 2 \\ 5\sqrt{2} & 5\sqrt{2} & 5\sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \end{pmatrix}$$
$$= \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Exercice 3. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.

Solution 3. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. On doit trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.

(a) On détermine le polynôme caractéristique $c_A(t)$ de A. On a

$$c_A(t) = \det \begin{pmatrix} -t & 1 & 0 \\ 1 & -t & 0 \\ 0 & 0 & 1 - t \end{pmatrix}$$

$$= (-t)\det \begin{pmatrix} -t & 0 \\ 0 & 1 - t \end{pmatrix} - \det \begin{pmatrix} 1 & 0 \\ 0 & 1 - t \end{pmatrix}$$

$$= (-t)((-t)(1 - t)) - (1 \cdot (1 - t))$$

$$= (1 - t)(t^2 - 1)$$

$$= -(t + 1)(t - 1)^2$$

- (b) On détermine toutes les racines λ de $c_A(t)$. Ici il est clair que les racines de $c_A(t)$ sont $\lambda_1 = -1$ et $\lambda_2 = 1$. (Note. Comme $A \in M_{n \times n}(\mathbb{R})$ est une matrice symétrique, $c_A(t)$ est un produit de polynômes de degré à coefficients réels.)
- (c) Pour $1 \leq i \leq 2$, on cherche une base \mathcal{B}_i de l'espace propre E_{λ_i} associé à λ_i . Comme la multiciplicité algébrique de λ_1 vaut 1 et celle de λ_2 vaut 2, on a dim $E_{\lambda_1} = 1$ et dim $E_{\lambda_2} = 2$. (En effet pour une matrice symétrique $A \in M_{n \times n}(\mathbb{R})$ ayant valeur propre λ , la multiplicité algébrique de λ est égale à la multiplicité géométrique de λ .) On a $E_{\lambda_i} = \{v \in \mathbb{R}^3 : (A \lambda_i)v = 0\}$.

Supposons $\lambda = \lambda_1 = -1$. On a $(A - \lambda_1 I) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Les éléments de E_{λ_1} sont les solutions du système correspondant à la matrice augmentée suivante :

$$B_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}$$

Avec les opérations élémentaires $L_2' = L_2 - L_1$ et $L_3' = L_3/2$, on obtient :

$$B_1' = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L_2''=L_3'$ et $L_3''=-L_2',$ on obtient :

$$B_1'' = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On déduit que $E_{\lambda_1} = \{(t, -t, 0) : t \in \mathbb{R}\}$ et $\mathcal{B}_1 = ((1, -1, 0))$ est une base de E_{λ_1} .

Supposons $\lambda = \lambda_2 = 1$. On a $(A - \lambda_2 I) = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Les éléments de E_{λ_2} sont les solutions

du système correspondant à la matrice augmentée suivante :

$$B_2 = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Avec l'opération élémentaire $L'_2 = L_2 + L_1$, on obtient :

On déduit que $E_{\lambda_2} = \{(t, t, s) : s, t \in \mathbb{R}\}$ et $\mathcal{B}_2 = ((1, 1, 0), (1, 1, 1))$ est une base de E_{λ_2} .

(d) On utilise maintenant le procédé de Gram-Schmidt afin de trouver une base orthogonale \mathcal{B}_2' (u_2, u_3) de E_{λ_2} . $(Rappel. Si \ u \ et \ v \ sont \ des éléments de <math>\mathbb{R}^n$, alors $\operatorname{proj}_u(v) = \frac{u \cdot v}{u \cdot u} u$, où · dénote le produit scalaire usuel dans \mathbb{R}^n .)

Prenons $v_2 = (1, 1, 0)$ et $v_3 = (1, 1, 1)$. Alors (v_2, v_3) est une base de E_{λ_2} .

Prenons:

$$u_2 = v_2 = (1, 1, 0)$$

et
$$u_3 = v_3 - \text{proj}_{u_3}(v_3) = v_3 - \frac{u_2 \cdot v_3}{v_3 \cdot v_3} u_2 = (1, 1, 1) - \frac{2}{2}(1, 1, 0) = (0, 0, 1)$$

et $u_3 = v_3 - \text{proj}_{u_2}(v_3) = v_3 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2 = (1, 1, 1) - \frac{2}{2}(1, 1, 0) = (0, 0, 1)$ (*Note.* Bien sur, on aurait pu prendre $\mathcal{B}_2 = ((1, 1, 0), (0, 0, 1))$, ce qui nous aurait donné de suite une base orthogonale de E_{λ_2} et évité de devoir utiliser le procédé de Gram-Schmidt afin de trouver une base orthogonale de E_{λ_2} . Nous avons décidé ici d'illustrer le procédé de Gram-Schmidt mais il n'est bien sur pas nécessaire ici.)

(e) Soient $u_1 = (1, -1, 0), u_2 = (1, 1, 0)$ et $u_3 = (0, 0, 1)$. Alors (u_1) est une base (orthogonale) de E_{λ_1} et (u_2, u_3) est une base orthogonale de E_{λ_2} . Comme A est symétrique et $\lambda_1 \neq \lambda_2$, (u_1, u_2, u_3) est en fait une base orthogonale de \mathbb{R}^3 . Soient

$$w_1 = \frac{u_1}{||u_1||} = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right), w_2 = \frac{u_2}{||u_2||} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), w_3 = \frac{u_3}{||u_3||} = (0, 0, 1)$$

Alors $\mathcal{B}' = (w_1, w_2, w_3)$ est une base orthonormée de \mathbb{R}^3 , (w_1) est une base orthonormée de E_{λ_1} et (w_2, w_3) est une base orthonormée de E_{λ_2} .

(f) Soit $P = [id]_{\mathcal{CB}'}$ où \mathcal{C} est la base canonique de \mathbb{R}^3 . On a

$$\begin{array}{rcl} P & = & [\mathrm{id}]_{\mathfrak{CB'}} \\ & = & \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}. \end{array}$$

Alors P est orthogonale.

(g) Soit $D = P^T A P = P^{-1} A P$. Alors

$$D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$