Работа с адресами ІР сетей

Цель работы: получить практические навыки по работе с пространством IP-адресов, масками и управления адресацией в IP сетях.

Необходимо: знание двоичной системы счисления и навык по переводу чисел из десятичной в двоичную систему и наоборот.

Краткие теоретические сведения:

Все пространство IP адресов делится на логические группы — IP-сети предназначенные для организации иерархической адресации в составной IP-сети, например Интернете. Каждой локальной сети присваивается своя IP-сеть. Маршрут до IP-узлов, находящихся в этой локальной сети, строится на маршрутизаторах как маршрут до их IP-сети. Только после того, как пакет попал в конкретную IP-сеть, решается задача его доставки на отдельный узел.

В IP-адресе выделяются две части — адрес сети и адрес узла. Деление происходит с помощью маски — 4-х байтного числа, которое поставлено в соответствие IP-адресу. Макса содержит двоичные 1 в тех разрядах IP-адреса, которые определяют адрес сети и двоичные 0 в тех разрядах IP адреса, которые определяют адрес узла.

Адресом IP-сети считается IP-адрес из этой сети, в котором в поле адреса узла содержатся двоичные 0. Этот адрес обозначает сеть целиком в таблицах маршрутизации. Есть еще служебный IP-адрес — адрес ограниченного широковещания — в поле адреса узла он содержит двоичные 1. Оба эти адреса не используются для адресации реальных узлов сети, однако входят в диапазон адресов IP-сети.

Рассмотрим пример: есть адрес 192.168.170.15 с маской 255.255.252.0. Определим адрес сети, адрес широковещания и допустимый для данной IP-сети диапазон адресов.

DEC IP	192	168	170	15	
DEC MASK	255	255	252	0	
BIN IP	11000000	10101000	10101010	00001111	
BIN MASK	11111111	11111111	11111100	0000000	
	С фоном – адрес сети, без фона – адрес узла				
BIN IP сети	11000000	10101000	10101000	00000000	
	скопируем сетевую часть IP и заполним узловую часть 0				
DEC IP сети	192	168	168	0	
BIN IP	11000000	10101000	10101011	11111111	
	Адрес широковещания (скопируем сетевую часть IP и заполним узловую часть 1)				
DEC IP широковещания	192	168	171	255	
Начало диапазона IP-	192	168	168	1	
адресов для узлов	(значение поля узла +1 к IP адресу сети)				
Окончание диапазона IP-	192	168	171	254	
адресов для узлов	(значение поля узла -1 от IP-адреса широковещания)				

Таблица 1. Пример вычисления адреса

Если имеется сеть, составленная из нескольких локальных сетей, соединенных между собой маршрутизаторами, то нужно каждой из этих локальных сетей назначить отдельную IP-сеть. В случае, если для такой сети выдается большая IP-сеть в управление (например, такую сеть может назначить провайдер Интернет), то эту сеть необходимо разделить с помощью масок на части.

Порядок выполнения работы:

В работе даны 4 варианта задания (таблица 2). Необходимо сделать все варианты. На приведенной схеме представлена составная локальная сеть. Отдельные локальные сети соединены маршрутизаторами. Для каждой локальной сети указано количество компьютеров. Провайдер выдал IP-сеть (данные о сети представлены в таблице 2). Необходимо установить IP-

адрес сети и допустимый диапазон адресов. Разделить сеть на части, используя маски. Маску надо выбирать так, чтобы в отделяемой IP подсети было достаточно адресов.

Примечание: порт маршрутизатора, подключенный к локальной сети, имеет IP адрес!

Выделять диапазоны следует, начиная с самой большой сети. Некоторые маски представлены в таблице 3.

Рис. 1 Схема сети

Вар.	IP- адрес из сети	Количество компьютеров в сети				
	маска	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
1	194.85.32.19	10	6	1	18	100
	255.255.255.0					
2	10.12.12.15	25	16	240	117	1
	255.255.254.0					
3	212.24.15.199	7	0	0	11	10
	255.255.255.192					
4	120.13.120.120	5	2	2	1	1
	255.255.255.224					

Маска	Количество двоичных 0	Количество всех адресов в IP сети с такой маской
255.255.255.252	00	4
255.255.255.248	000	8
255.255.255.240	0000	16
255.255.255.224	00000	32
255.255.255.192	000000	64
255.255.255.128	0000000	128
255.255.255.0	00000000	256
255.255.254.0	0.00000000	512

Таблица 3. Примеры масок ІР сетей

В отчет. В качестве отчета предоставить результаты расчетов в табличной форме

Вариант:					
Сеть	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
ІР-сети, маска					
Количество IP адресов в IP-сети					
Начальный и конечный адреса сети, пригодные для адресации портов маршрутизаторов и компьютеров.					