Cheat Sheet for LATEX

Wenqiang Feng

E-mail: von198@gmail.com, Web: http://web.utk.edu/~wfeng1/

1 LATEXSymbols

1.1 package

\usepackage{amssymb,amsmath,amsthm,amsfonts}
\usepackage{multicol,multirow,calc,ifthen}
\usepackage{tikz,graphicx,color}
\usepackage[]{algorithm,algpseudocode}
\usepackage[landscape]{geometry}

1.2 The basics

description	command	output
plus or minus	\pm	±
multiplication (times)	\times	×
multiplication (dot)	\cdot	•
division symbol	\div	÷
backslash	\backslash	\
division (slash)	/	/
circle plus	\oplus	\oplus
circle times	\otimes	\otimes
equal	\equiv	=
not equal	\neq	≠
less than or equal to	\leq	≤ ≥
greater than or equal to	\geq	\geq
approximately equal to	\approx	\approx
infinity	\infty	∞
fraction	$frac{a}{b}$	$\frac{a}{b}$
square root	\sqrt{x}	\sqrt{x}
nth root	$\sqrt[n]{x}$	$\sqrt[n]{x}$
exponentiation	a^b	a^b
subscript	a_b	a_b
absolute value	x	x
natural log	$\ln(x)$	ln(x)
logarithms	\log_{a}b	$\log_a b$
exponential function	e^x	e^x
pi	\pi	π
degree	90^\circ	90°
dim	\dim(x)	$\dim(x)$
det	\det(x)	det(x)
sin	$\sin(x)$	$\sin(x)$
arcsin	\arcsin(x)	$\arcsin(x)$
liminf	\liminf(x)	$\lim \inf(x)$
dots	\ldots	
dots	\cdots	
diagonal data	\ddots	٠.
diagonal dots		•
underset	\overset{x}{\to}	\xrightarrow{x}
overset	\underset{f}{\to}	\overrightarrow{f}
All Rights Reserved by Dr.Wenqiang Fen	g. Powered by IATEX. von198@gmail.	

1.3 Define your own function

\newcommand{\norm}[1]{\left\|#1\right\|} % norm
\newcommand{\abs}[1]{\left\|#1\right\|} %abs
\newcommand{\lap}{\Delta } % laplace
\newcommand{\tr}[1]{\operatorname{tr}(#1)}%trace
\newcommand{\tribint}[2]
{\left<#1\right>_{\mathcal{E}^{#2}_{h}}}

description	command	output
norm	\norm{u}	u
absolute value	\abs{u}	u
laplace	\lap u	Δu
trace	\tr{u}	$\operatorname{tr}(u)$
edge integral	\tribint{f,\psi}{I}	$\langle f, \psi \rangle_{\mathcal{E}_{h}^{I}}$

1.4 Greek and Hebrew letters

command	output	command	output
\alpha	α	\tau	au
\beta	β	\theta	θ
\chi	χ	\upsilon	v
\delta	δ	\xi	ξ
\epsilon	ϵ	\zeta	ζ
\varepsilon	ε	\Delta	Δ
\eta	η	\Gamma	Γ
\gamma	γ	\Lambda	Λ
\iota	ι	\Omega	Ω
\kappa	κ	\Phi	Φ
\lambda	λ	\Pi	П
\mu	μ	\Psi	Ψ
\nu	ν	\Sigma	Σ
\omega	ω	\Theta	Θ
\phi	ϕ	Υ	Υ
\varphi	φ	\Xi	Ξ
\pi	π	\aleph	×

1.5 Geometry and trigonometry

description	command	output
angle	\angle ABC	$\angle ABC$
degree	90^{\circ}	90°
triangle	\triangle ABC	$\triangle ABC$
segment	\overline{AB}	\overline{AB}
sine	\sin	\sin
cosine	\cos	cos
tangent	\tan	tan
cotangent	\cot	cot
secant	\sec	sec
cosecant	\csc	csc
inverse sine	\arcsin	arcsin
inverse cosine	\arccos	arccos
inverse tangent	\arctan	arctan

1.6 Calculus

description	command	output
derivative	$\frac{df}{dx}$	$\frac{df}{dx}$
derivative	\f'	f''
partial derivative	<pre>\frac{\partial f} {\partial x}</pre>	$\frac{\partial f}{\partial x}$
integral	\int	\int
double integral	\iint	
triple integral	\iiint	\iiint
limits	$\lim_{x\to \infty} x \to \inf_{x\to \infty}$	$\lim_{x \to \infty}$
summation	$\sum_{n=1}^{\left(n+1\right) } a_n$	$\sum_{n=1}^{\infty} a_n$

1.7 Linear algebra

vector \vec{v} \vec{v} vector \mathbf{v} v norm \norm{\vec{v}} \vec{v} \logsin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \\ 7 & 8 & 0 \\ \text{Possion} \t	description	command	output
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vector	\vec{v}	$ec{v}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vector	\mathbf{v}	v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	norm	<pre>\norm{\vec{v}}</pre>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	matrix	1 & 2 & 3 \\ 4 & 5 & 6\\ 7 & 8 & 0 \end{bmatrix}	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	matrix	1 & 2 & 3 \\ 4 & 5 & 6\\ 7 & 8 & 0	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{pmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	border matrix	{~ & x & r \cr A & 1 & 0 \cr	$ \begin{array}{ccc} A & \begin{pmatrix} x & r \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \end{array} $
trace $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	determinant	1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0	$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{vmatrix}$
inverse \inv{A} A^{-1} transpose \trsp{A} A^{T}	determinant	\det(A)	$\det(A)$
transpose \transpose A^T	trace	\tr{A}	$\operatorname{tr}(A)$
	inverse	\inv{A}	
$\texttt{dimension} \texttt{\dim}(\texttt{V}) \qquad \qquad \dim(V)$	•	-	
	dimension	\dim(V)	$\dim(V)$

1.8 Logic

description	command	output
not	\sim	~
and	\land	\wedge
or	\lor	V
ifthen	\to	\rightarrow
if and only if	\leftrightarrow	\leftrightarrow
logical equivalence	\equiv	=
therefore	\therefore	·:.
there exists	\exists	3
for all	\forall	\forall
implies	\Rightarrow	\Rightarrow
equivalent	\Leftrightarrow	\Leftrightarrow

1.9 Set theory

description	command	output
element of	\in	\in
not an element of	\not\in	∉
subset of	\subset	\subset
subset of	\subseteq	\subseteq
not a subset of	\not\subset	¢
contains	\supset	\supset
contains	\supseteq	\supseteq
union	\cup	U
intersection	\cap	\cap
big union	\bigcup_{n=1}^{10}A_n	$\bigcup_{n=1}^{10} A_n$
big intersection	\bigcap_{n=1}^{10}A_n	$\bigcap_{n=1}^{10} A_n$
empty set	\emptyset	Ø
power set	\mathbf{P}	\mathcal{P}

2 Figure

2.1 Insert figure

\begin{figure}[H]
\begin{center}
\includegraphics[width=0.2\textwidth]{fig.eps}
\caption{simulation result }\label{fig:pro2}
\end{center}
\end{figure}

Figure 1: simulation result

2.2 draw figure with TikZ

\begin{figure}[H] \begin{center} \begin{tikzpicture}[scale=0.5,>=latex] \shade[ball color=gray,opacity=0.50] (0,0) circle (2cm); $\frac{-}{0,0,0}$ -- (3,0,0) node (xaxis) [right] {\$x\$}; \draw[->] (0,0,0) -- (0,3,0) node (zaxis) [right] {\\$z\$}; $\draw[->] (0,0,0) -- (0,0,5) node (yaxis) [left] {y};$ $\frac{-}{0,0,0}-(2,0,2)$ node [right] ${\frac{s_{r\pi}}{s}};$ \draw [blue,->] (0,0,0)-- (2,2,2)node[right] {\$r\$}; \draw [blue,->] (0.5,0.5,0.5)to[bend right](0,0.5,0); $\node[] at (0.3,0.6,0) { {_\phi}};$ $\frac{1}{2}$ (2,0,2)-- (2,2,2)--(0,1.8,0); $\frac{1}{2}$ \draw[blue,densely dashed](2,0,2)--(1.7,0,0)node[above]{\\$x\$}; $\displaystyle \frac{(2,0,2)-(0,0,1.9)}{(2,0,2)} = \frac{(3,0,2)-(0,0,1.9)}{(3,0,2)} = \frac{(3,0,2)-(0,0,1.9)}{(3,0,$ \coordinate (x0) at (2,0,2); \draw [blue,->] (0,0,0.5)to[bend right](0.4,0,0.4); $\node[] at (0.3,0,1) { {_{\text{theta}}};}$ \end{tikzpicture} \caption{Spherical coordinate in \$\mathbb{R}^3\$} \end{center} \end{figure}

Figure 2: Spherical coordinate in \mathbb{R}^3

3 Table

```
\begin{table}[H]
\caption{Errors of FEM for Poisson Equation}\label{tab:p2}
\begin{center}
\begin{tabular}{ccc}
\hline h&$\norm{u-u_h}_{L^2}$ & $\abs{u-u_h}_{H^1}$\\
\hline 1/4 $7.62\times 10^{-3} &$1.02\times 10^{-1}$
\1/8 $2.02\times 10^{-3}$ &$5.58\times10^{-2}$
\  \  1/16 & $5.32\times 10^{-4}$ &$3.01\times10^{-2}$
\ \1/32 $1.37\times 10^{-4}$ &$1.60\times10^{-2}$
\ \1/64 $3.52\times 10^{-5}$ &$8.51\times10^{-3}$
\ \1/128 $ 8.87\times 10^{-6}$ &$4.48\times10^{-3}$
\ \1/256 $2.20\times 10^{-6}$ &$2.35\times 10^{-3}$
\\\hline
\end{tabular}
\end{center}
\end{table}
```

Table 1: Errors of FEM for Poisson Equation

h	$ u - u_h _{L^2}$	$ u-u_h _{H^1}$
-1/4	7.62×10^{-3}	1.02×10^{-1}
1/8	2.02×10^{-3}	5.58×10^{-2}
1/16	5.32×10^{-4}	3.01×10^{-2}
1/32	1.37×10^{-4}	1.60×10^{-2}
1/64	3.52×10^{-5}	8.51×10^{-3}
1/128	8.87×10^{-6}	4.48×10^{-3}
1/256	2.20×10^{-6}	2.35×10^{-3}

4 Algorithm

```
\begin{algorithm} [H]
\caption{Bisection method}
\begin{algorithmic}[1]
\State $a_0\gets a, b_0\gets b$
<text> \mathbb{k} > 0
  \state $c_k\gets \frac{a_{k-1}+b_{k-1}}{2}
\ \f (a_k)f(c_k)<0$
   State a_k \ge a_{k-1}
   \State $b_k\gets c_k$
 \EndIf
\If \{f(b_k)f(c_k)<0\}
   \State $a_k \gets c_k$
   State b_k\neq b_{k-1}
\ $x^k\gets c^k\gets \frac{a_{k}+b_{k}}{2}$
\EndWhile
\end{algorithmic}
\end{algorithm}
```

Algorithm 1 Bisection method

```
1: a_0 \leftarrow a, b_0 \leftarrow b
 2: while k > 0 do
            c_k \leftarrow \frac{a_{k-1} + b_{k-1}}{2} if f(a_k) f(c_k) < 0 then
                  a_k \leftarrow a_{k-1}
 5:
                  b_k \leftarrow c_k
 6:
 7:
            end if
            if f(b_k)f(c_k) < 0 then
 8:
                  a_k \leftarrow c_k
                  b_k \leftarrow b_{k-1}
10:
            end if
11:
            x^k \leftarrow c^k \leftarrow \frac{a_k + b_k}{2}
12:
13: end while
```