

Факультет компьютерных наук Департамент программной инженерии Отчет по преддипломной практике Реализация и оценка качества эвристических алгоритмов для смешанной задачи китайского почтальона

Место прохождения практики: НИУ ВШЭ

Научный руководитель: Профессор ДПИ, к.т.н. Авдошин С.М.

Выполнила студентка группы БПИ131 образовательной программы 09.03.04 «Программная инженерия» Горденко М.К.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

- Полустепень исхода $d^-(v)$
- Полустепень захода $d^+(v)$
- Дивергенция $div(v) = d^{-}(v) d^{+}(v)$
- Если div(v) = 0 то вершина v сбалансирована
- Эйлеров граф

$$D^{+} = \{v | div(v) > 0\}$$

 $D^{-} = \{v | div(v) < 0\}$

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

Задача китайского почтальона заключается в том, чтобы пройти все улицы заданного маршрута с определенной длиной каждой дороги, входящей в маршрут, и вернуться в начальную точку, пройдя при этом как можно меньшее расстояние

ОБЪЕКТ И ПРЕДМЕТ ИССЛЕДОВАНИЯ

Объектом исследований является задача поиска маршрута китайского почтальона в смешанном мультиграфе.

Предметом исследования является теория и алгоритмы решения задачи китайского почтальона в смешанном мультиграфе.

ОБОСНОВАНИЕ АКТУАЛЬНОСТИ РАБОТЫ

Verify link broken

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы

Исследование и разработка эвристических и приближенных алгоритмов решения СРР в смешанном мультиграфе.

Задачи работы

- Анализ существующих исследований в области решения СРР в смешанном мультиграфе;
- Анализ существующих алгоритмов решения СРР в смешанном мультиграфе;
- Разработка эвристических и приближенных алгоритмов решения СРР в смешанном мультиграфе;
- Экспериментальное исследование найденных и разработанных алгоритмов СРР в смешанном мультиграфе с целью сравнительной оценки рациональности изученных решений.

Оглавление ВКР

- Глава 1. Обзор источников 90%
- Глава 2. Выбранные алгоритмы и подходы 70%
- Глава 3. Экспериментальные исследования 70%
- Глава 4. Интерпретация результатов 20%

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Подход 1.

Преобразовать существующие алгоритмы решения задачи в ориентированном, неориентированном смешанном графе.

Подход 2.

Использовать преобразование проблемы в эквивалентные

(MCPP -> GTSP -> ATSP -> STSP)

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Дан взвешенный смешанный сильно связный мультиграф $G = \langle V, E \cup A, C \rangle$, где V - множество вершин мультиграфа,

E – мультимножество ребер,

A - мультимножество дуг,

 $C: E \cup A \to R_+$ - функция стоимости, задающая не отрицательные веса дуг и ребер между вершинами.

Пусть
$$I = \{1, 2, ..., |E + A|\}, L = \{1, 2, ..., |V|\}.$$

На множестве вершин графа V зададим индексацию $inv=V\to L$, $\forall v_i\in V\ \forall v_i\in V\ v_i\neq v_i=>i\neq j.$ Здесь $i=inv(v_i).$

На множестве $E \cup A$ графа зададим индексацию $inea = E \cup A \rightarrow I$, $\forall e_i \in E \cup A \forall e_i \in E \cup A e_i \neq e_i => i \neq j$. Здесь $i = inea(e_i)$.

Решение ЗКП представляет собой маршрут $\mu = (e_{p_1}, e_{p_2}, ..., e_{p_k})$, удовлетворяющий следующим соотношениям:

- $1)\ v^-(e_{p_1})=v^+(e_{p_k})\ , \quad \forall i\in\{1,2,...,k-1\}\ v^+(e_{p_i})=v^-(e_{p_{i+1}})\ , \$ где $\ v^-(e)$ начало дуги или ребра $e,\ v^+(e)$ конец дуги или ребра e.
 - 2) $\mathsf{E} \cup \mathsf{A} \setminus \{e_{p_1}, e_{p_2}, \dots, e_{p_k}\} = \emptyset.$

Обозначим через $C(\mu) = \sum_{i=1}^k C(e_i)$ - стоимость маршрута.

Пусть \mathcal{M} - множество решений ЗКП. Требуется найти маршрут $\mu_0 \in \mathcal{M}$, такой что $\forall \mu \in \mathcal{M}$ $C(\mu_0) \leq C(\mu)$ или

$$C(\mu_0) = \min_{\mu \in \mathcal{M}} (C(\mu))$$

ОПИСАНИЕ ВЫБРАННОЙ МОДЕЛИ

ОПИСАНИЕ ВЫБРАННОЙ МОДЕЛИ

ATSP

		1	2	3	4	5	6	7	8
		v_{12}^{1}	v_{13}^{1}	v_{13}^{2}	v_{21}^{1}	v_{23}^{1}	v_{23}^{2}	v_{31}^{1}	v_{32}^{1}
1	v_{12}^{1}	-	5	6	0	3	4	7	6
2	v_{13}^{1}	5	-	10	4	5	6	4	3
3	v_{13}^{2}	5	9	-	4	5	6	4	3
4	v_{21}^{1}	0	6	7	-	2	3	6	5
5	v_{23}^{1}	5	9	10	4	•	6	4	3
6	v_{23}^2	2	6	7	1	2	-	6	0
7	v_{31}^{1}	1	5	6	2	3	4	-	6
8	v_{32}^{1}	5	9	10	4	5	0	4	_

ОПИСАНИЕ ВЫБРАННОЙ МОДЕЛИ

	v_{12}^{1}	v_{13}^{1}	v_{13}^{2}	v_{21}^{1}	v_{23}^{1}	v_{23}^{2}	v_{31}^{1}	v_{32}^{1}	v_{12}^{1}	v_{13}^{1}	v_{13}^{2}	v_{21}^{1}	v_{23}^{1}	v_{23}^{2}	v_{31}^{1}	v_{32}^{1}
v_{12}^{1}	+∞	+∞	+∞	+∞	+∞	+∞	+∞	8+	8	5	5	0	5	2	1	5
v_{13}^{1}	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	5	$-\infty$	9	6	9	6	5	9
v_{13}^{2}	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	6	10	$-\infty$	7	10	7	6	10
v_{21}^{1}	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	+∞	$+\infty$	0	4	4	$-\infty$	4	1	2	4
v_{23}^{1}	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	+∞	$+\infty$	3	5	5	2	$-\infty$	2	3	5
v_{23}^{2}	$+\infty$	+∞	+∞	$+\infty$	+∞	+∞	+∞	+∞	4	6	6	3	6	$-\infty$	4	0
v_{31}^{1}	$+\infty$	+∞	+∞	$+\infty$	+∞	+∞	+∞	+∞	7	4	4	6	4	6	$-\infty$	4
v_{32}^{1}	+∞	+∞	+∞	+∞	+∞	$+\infty$	+∞	+∞	6	3	3	5	3	0	6	$-\infty$
v_{12}^{1}	$-\infty$	5	6	0	3	4	7	6	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞
v_{13}^{1}	5	$-\infty$	10	4	5	6	4	3	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞
v_{13}^{2}	5	9	$-\infty$	4	5	6	4	3	+8	+∞	+∞	$+\infty$	+∞	+∞	+∞	+∞
v_{21}^{1}	0	6	7	-∞	2	3	6	5	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
v_{23}^{1}	5	9	10	4	$-\infty$	6	4	3	+8	+∞	+∞	+8	+∞	+∞	+∞	+∞
v_{23}^{2}	2	6	7	1	2	$-\infty$	6	0	+	+∞	8	+	8	+∞	+∞	+∞
v_{31}^{1}	1	5	6	2	3	4	$-\infty$	6	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞
v_{32}^{1}	5	9	10	4	5	0	4	$-\infty$	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞

ОПИСАНИЕ ВЫБРАННЫХ АЛГОРИТМОВ

MCPP -> GTSP -> ATSP -> STSP

- 1. NN
- **2. RNN**
- **3. INN**
- 4. RINN
- 5. DENN
- **6. NLN**
- 7. DENLN

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

- язык C++;
- NET Framework 4.0;
- Microsoft Visual Studio 2015.

АПРОБАЦИЯ РАБОТЫ

International Journal of Open Information Technologies

ОСНОВНЫЕ РЕЗУЛЬТАТЫ практики

Задачи работы

- Анализ существующих исследований в области решения СРР в смешанном мультиграфе;
- Анализ существующих алгоритмов решения СРР в смешанном мультиграфе;
- Разработка эвристических и приближенных алгоритмов решения СРР в смешанном мультиграфе;
- Экспериментальное исследование найденных и разработанных алгоритмов СРР в смешанном мультиграфе с целью сравнительной оценки рациональности изученных решений

Ожидаем от ВКР

Роспатент

- Улучшить существующие решения;
- Оформить новые алгоритмы в виде статей и патентов;
- Увеличить точность работы алгоритмов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) G. Laporte, «The undirected Chinese postman problem,» в *Arc Routing: Problems, Methods, and Applications*, т. 20, MOS-SIAM Series on Optimization, 2014, pp. 53-64.
- 2) H. Thimbleby, «The directed chinese postman problem,» *Software: Practice and Experience*, т. 33, № 11, pp. 1081-1096, 2003.
- 3) J. Edmonds и E. L. Johnson, «Matching, Euler tours and the Chinese postman,» *Mathematical programming*, т. 5, № 1, pp. 88-124, Johnson.
- 4) T. Ralphs, «On the mixed Chinese postman problem,» *Operations Research Letters*, т. 14, № 3, pp. 123-127, 1993.
- 5) M. Guan, «On the windy postman problem,» *Discrete Applied Mathematics*, т. 9, № 1, pp. 41-46, 1984.
- 6) A. M. Rodrígues и J. S. Rodrígues, «MIC'2001 4th Metaheuristics International Conference,» в Solving the Rural Postman Problem by Memetic Algorithms, Porto, Portugal, 2001.
- 7) G. Ghiani и G. Improta, «An algorithm for the hierarchical Chinese postman problem,» *Operations Research Letters*, т. 26, № 1, pp. 27-32, 2000.
- 8) U. Derigs, «Routing problems,» Optimization and Operations Research, T. 2.
- 9) T. Harju, Lecture Notes on Graph Theory, pp. 29-31.
- 10) L. Xu, Graph Planning for Environmental Coverage, Pittsburgh, Pennsylvania: Carnegie Mellon University, 2011, pp. 95-96.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 11) K. Yaoyuenyong, P. Charnsethikul и V. Chankong, «A Heuristic Algorithm for the Mixed Chinese Postman Problem,» *Optimization and Engineering*, т. 3, № 2, р. 157–187, June 2002.
- 12) F. Javier и Z. Mart inez, Postman Problems on Mixed Graphs, 2003, pp. 59-61.
- 13) G. Laporte и A. Corberan, Arc Routing: Problems, Methods, and Applications, SIAM, 2015, pp. 112-114.
- 14) D. Ben-Arieh, G. Gutin, M. Penn и A. Zverovitch, «Transformations of generalized ATSP into ATSP,» *Operations Research*, т. 31, № 5, pp. 357-365, 2003.
- 15) R. Kumar и H. Li, «On Asymmetric TSP: Transformation to Symmetric TSP and Performance Boundy,» *Journal of Operations Research*, 1996.
- 16) K. Helsgaun, «Solving Arc Routing Problems Using the Lin-Kernighan-Helsgaun Algorithm,» Roskilde University, 2014.
- 17) Á. Corberán, I. Plana и J. M. Sanchis, «Arc Routing Problems: Data Instances,» 20 November 2015. [В Интернете]. Available: http://www.uv.es/corberan/data/. [Дата обращения: 20 April 2017].
- 18) S. Bönisch, «Implementierung der Edmonds-Johnson Heuritik für das Mixed Chinese Postman Problem,» 21 December 1999. [В Интернете]. Available: http://comopt.ifi.uni-heidelberg.de/teaching/praktikum/projekte/mcppHeuristikSebastianBoenisch.tar.gz. [Дата обращения: 20 April 2017].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 19) А. В. Левитин, Алгоритмы: введение в разработку и анализ, Издательский дом Вильямс, 2006, pp. 349-353.
- 20) G. Laporte и M. Blais, «Exact solution of the generalized routing problem through graph transformations,» *Journal of the Operational Research Society*, т. 54, № 8, pp. 906-910, 2003.
- 21) G. Laporte, M. Gendreau и H. Eiselt, «Arc routing problems, part I: The Chinese postman problem,» *Operations Research*, т. 43, № 2, pp. 231-242, 1995.
- 22) С. E. Noon и J. C. Bean, «An efficient transformation of the generalized traveling salesman problem,» *INFOR: Information Systems and Operational Research*, т. 31, № 1, pp. 39-44, 1993.
- 23) M. Hahsler и K. Hornik, «TSP-Infrastructure for the traveling salesperson problem,» *Journal of Statistical Software*, т. 23, № 2, pp. 1-21, 2007.
- 24) F. G. S. L. Pimentel, «Double-ended nearest and loneliest neighbour—a nearest neighbour heuristic variation for the travelling salesman problem,» *Revista de Ciências da Computação*, т. 6, № 6, 2016.
- 25) C. Nilsson, «Heuristics for the traveling salesman problem,» Sweden, 2003.
- 26) D. S. Johnson и L. A. McGeoch, «The traveling salesman problem: A case study in local optimization,» *Local search in combinatorial optimization*, т. 1, pp. 215-310, 1997.
- 27) J. L. Bentley, «Fast algorithms for geometric traveling salesman problems,» *ORSA J. Computing*, т. 4, pp. 387-411, 1992.

Спасибо за внимание!

Горденко М.К. mkgordenko@edu.hse.ru

Москва - 2017