1 Apprentissage supervisé

1.1 Introduction à l'apprentissage supervisé

Étant donné un ensemble de points $\{x^{(1)},...,x^{(m)}\}$ associés à un ensemble d'issues $\{y^{(1)},...,y^{(m)}\}$, on veut construire un classifieur qui apprend à prédire y depuis x.

 $\hfill \Box$ Type de prédiction – Les différents types de modèle prédictifs sont résumés dans le tableau ci-dessous :

	Régression	Classifieur
Issue	Continu	Classe
Exemples	Régression linéaire	Régression logistique, SVM, Naive Bayes

□ Type de modèle – Les différents modèles sont présentés dans le tableau ci-dessous :

	Modèle discriminatif	Modèle génératif
But	Estimer directement $P(y x)$	Estimer $P(x y)$ puis déduire $P(y x)$
Ce qui est appris	Frontière de décision	Distribution de proba des données
Illustration		
Exemples	Régressions, SVMs	GDA, Naive Bayes

1.2 Notations et concepts généraux

 \square Hypothèse – Une hypothèse est notée h_{θ} et est le modèle que l'on choisit. Pour une entrée donnée $x^{(i)}$, la prédiction donnée par le modèle est $h_{\theta}(x^{(i)})$.

□ Fonction de loss – Une fonction de loss est une fonction $L:(z,y) \in \mathbb{R} \times Y \longmapsto L(z,y) \in \mathbb{R}$ prennant comme entrée une valeur prédite z correspondant à une valeur réelle y, et nous renseigne sur la ressemblance de ces deux valeurs. Les fonctions de loss courantes sont récapitulées dans le tableau ci-dessous :