The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Solutions Assignment #7

(Functions of several variables: Continuity, Differentiability, Directional derivatives, Maxima, Minima and Lagrange Multipliers)

Q1. Examine the following functions for continuity at the point (0,0) where f(0,0)=0 and f(x,y) for $(x,y)\neq (0,0)$ is given by

and f(x,y) for $(x,y) \neq (0,0)$ is given by $(a) |x| + |y|, \quad (b) \frac{-x}{\sqrt{x^2 + y^2}}, \quad (c) \frac{2x}{x^2 + x + y^2}, \quad (d) \frac{x^4 - y^2}{x^4 + y^2}, \quad (e) \frac{x^4}{x^4 + y^2}.$

Ans. (a) Given that f(0,0) = 0. Let $\epsilon > 0$ be given then $\left| (|x| + |y|) - 0 \right| = \left| |x| + |y| \right| \le |x| + |y| < \epsilon$, whenever $|x| < \delta = \epsilon/2$ and $|y| < \delta = \epsilon/2$. Therefore the function is continuous at (0,0).

Alternatively, the given function is continuous being the sum of two continuous functions.

(b) Let y = mx. Then $\lim_{(x,y)\to(0,0)} \frac{-x}{\sqrt{x^2+y^2}} = \frac{-1}{\sqrt{1+m^2}}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).

(c) Let $x = r \cos \theta$, $y = r \sin \theta$. Then

$$\frac{2x}{x^2 + x + y^2} = \frac{2r\cos\theta}{r^2\cos^2\theta + r\cos\theta + r^2\sin^2\theta} = \frac{2\cos\theta}{r + \cos\theta}.$$

Now, $\lim_{(x,y)\to(0,0)} \frac{2x}{x^2+x+y^2} = \lim_{r\to 0} \frac{2\cos\theta}{r+\cos\theta} = 2$. Therefore the function is continuous at (0,0).

- (d) Let $y = mx^2$. Then $\lim_{(x,y)\to(0,0)} \frac{x^4-y^2}{x^4+y^2} = \frac{1-m^2}{1+m^2}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).
- (e) Let $y = mx^2$. Then $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} = \frac{m}{1+m^2}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).
- Q2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ or if } y = 0 \\ 0, & \text{otherwise.} \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y) \right]$ and $\lim_{y\to 0} \left[\lim_{x\to 0} f(x,y) \right]$ exist and equals 0,
- (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist,
- (c) f(x,y) is not continuous at (0,0),
- (d) the partial derivatives exist at (0,0).

Ans. (a) Let $x \neq 0$, then $\lim_{y \to 0} f(x, y) = 0$.

Similarly, if $y \neq 0$, then $\lim_{x \to 0} f(x, y) = 0$.

Therefore, $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y)\right] = \lim_{y\to 0} \left[\lim_{x\to 0} f(x,y)\right] = 0.$ (b) Along the line x=0, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 1.$

Along the line y = x, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Hence, the limit does not exist.

- (c) From above, the function is not continuous.
- (d) Easy. Leave it to the students.
- Q3. Let

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that

- (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y,
- (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and
- (c) f(x,y) is differentiable at (0,0).

Ans. Discussed in the class.

(a) Note that

$$f_x(0,k) = \lim_{h \to 0} \frac{f(0+h,k) - f(0,k)}{h} = \lim_{h \to 0} \frac{f(h,k) - f(0,k)}{h} = \lim_{h \to 0} k \left(\frac{h^2 - k^2}{h^2 + k^2}\right) = -k.$$

Thus $f_x(0, y) = -y$.

Similarly, $f_{\nu}(x,0) = x$.

- (b) Note that $f_{xy}(0,0) = \lim_{h\to 0} \frac{f(h,0) f(0,0)}{h} = -1$ and $f_{xy}(0,0) = 1$.
- (c) We need to show that

$$f(\Delta x, \Delta y) - f(0, 0) = f_x(0, 0)\Delta x + f_y(0, 0)\Delta y + \epsilon_1(\Delta x, \Delta y)\Delta x + \epsilon_2(\Delta x, \Delta y)\Delta y,$$

where $\epsilon_1, \epsilon_2 \to 0$ as Δx and $\Delta y \to 0$. Since $f_x(0,0) = 0$ and $f_y(0,0) = 0$ we will show that

$$f(\Delta x, \Delta y) - f(0, 0) = \epsilon_1(\Delta x, \Delta y)\Delta x + \epsilon_2(\Delta x, \Delta y)\Delta y$$

Now
$$f(\Delta x, \Delta y) - f(0,0) = f(\Delta x, \Delta y) = \Delta x \Delta y \left(\frac{(\Delta x)^2 - (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \right) = \frac{(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2} \Delta x - \frac{\Delta x (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \Delta y = \epsilon_1 \Delta x + \epsilon_2 \Delta y.$$

Here $\epsilon_1(\Delta x, \Delta y) = \frac{(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2}$, $\epsilon_2(\Delta x, \Delta y) = \frac{\Delta x(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \to 0$ as Δx and $\Delta y \to 0$. So f is differentiable at (0,0).

Q4. Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f is constant.

Ans. This follows immediately from the MVT for functions of several variables.

Q5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{otherwise.} \end{cases}$$

Show that f is continuous at (0,0), it has all directional derivatives at (0,0) but not differentiable at (0,0).

Ans. Using polar coordinates, we see that

$$\frac{y^3}{x^2 + y^2} = \frac{r^3 \sin^3 \theta}{r^2} = r \sin^3 \theta.$$

Therefore,

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{y^3}{x^2 + y^2} = \lim_{r\to 0} r \sin^3 \theta = 0.$$

 $\implies f$ is continuous at (0,0).

Let $U = (u_1, u_2)$ be a unit vector. Now $D_{(0,0)}f(U) = \lim_{t \to 0} \frac{f((0,0) + t(u_1, u_2)) - f(0,0)}{t} = 0$

 $\lim_{t\to 0} \frac{f(tu_1,tu_2)}{t} = 0.$ Therefore directional derivatives in all directions exist. Note that $f_x(0,0) = 0$ and $f_y(0,0) = 1$. If f is differentiable at (0,0) then f'(0,0) = 1.

(0,1). Now

$$f(\Delta x, \Delta y) - f(0,0) = f(\Delta x, \Delta y) = \Delta x + \frac{(\Delta y)^3}{(\Delta x)^2 + (\Delta y)^2} - \Delta x$$
$$= \Delta x + \frac{(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \Delta y - \Delta x.$$

Here $\epsilon_1 = -1$, $\epsilon_2 = \frac{(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \to 0$ as $\Delta x, \Delta y \to 0$. Therefore the function is not differentiable at (0,0).

Q6. Examine the following functions for local maxima, local minima and saddle points: (i) $4xy - x^4 - y^4$, (ii) $x^3 - 3xy$, (iii) $(x^2 + y^2) \exp^{-(x^2 + y^2)}$.

Ans. (i) For $f(x,y) = 4xy - x^4 - y^4$, $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ for $(x_0, y_0) = (0, 0)$, (1, 1)or (-1,-1). These are the critical points. By second derivative test, (0,0) ia a saddle point and (-1,1) and (1,1) are local maxima.

- (ii) $f(x,y) = x^3 3xy^2$, $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$ for $(x_0,y_0) = (0,0)$. So (0,0) is the only critical point. Second derivative fails here. Along y = 0, $f(x,y) = x^3$, hence (0,0) is a saddle point.
- (iii) Similar, leave it to the students as an exercise.
- Q7. Let $f(x,y) = 3x^4 4x^2y + y^2$. Show that f has a local minimum at (0,0) along every line through (0,0). Does f have a minimum at (0,0)? Is (0,0) a saddle point for f?
- Ans. Let $f(x,y) = 3x^4 4x^2y + y^2$. Along, the x-axis, the local minimum of the function is at (0,0). Let $x = r\cos\theta$ and $y = r\sin\theta$, for a fixed $\theta \neq 0, \pi$ (or let y = mx). Then, $f(r\cos\theta, r\sin\theta) = 3r^4\sin^4\theta 4r^3\cos2\theta\sin\theta + r^2\sin^2\theta$ which is function of one variable. By the second derivative test (for functions of one variable), we see that (0,0) is a local minima.

Since $f(x,y) = (3x^2 - y)(x^2 - y)$, we see that in the region between the parabolas $3x^2 = y$ and $y = x^2$, the function takes negative values and is positive everywhere else. Thus, (0,0) is a saddle point for f.

- Q8. Find the absolute maxima of f(x,y) = xy on the unit disc $\{f(x,y) : x^2 + y^2 \le 1\}$.
- Ans. Given that f(x,y) = xy. Clearly, f is differentiable so f can assume extreme values at the points where $f_x = 0$, $f_y = 0$ and boundary points on the disk. $f_x = 0$, $f_y = 0 \Longrightarrow (x,y) = (0,0)$. The value of f at (0,0) is f = 0. On the boundary of the disk we have $f(x,y) = g(x) = x\sqrt{1-x^2}$, $-1 \le x \le 1$. For maxima/minima we have g'(x) = 0. This gives $x = \pm \frac{1}{\sqrt{2}}$ and for this value of x, we have $y = \pm \frac{1}{\sqrt{2}}$. Moreover, $g''(x) = -\frac{1}{2} < 0$ at $x = \frac{1}{\sqrt{2}}$ and $g''(x) = \frac{1}{2}$ at $x = -\frac{1}{\sqrt{2}}$. Therefore, the function function f(x,y) takes values $-\frac{1}{2}$ and $\frac{1}{2}$ at the points $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ respectively. Thus all maxima/minima for f are $-\frac{1}{2}$, 0, $\frac{1}{2}$. Hence, the maximum of f(x,y) is $\frac{1}{2}$ which occur at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and the minimum is $-\frac{1}{2}$ which occur at

 $\frac{1}{2}$ which occur at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and the minimum is $-\frac{1}{2}$ which occur at $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$.

- Q9. Find the equation of the surface generated by the normals to the surface $x + 2yz + xyz^2 = 0$ at all points on the z-axis.
- Ans. $f(x, y, z) = x + 2yz + xyz^2 = 0$. Any point P_0 on the z-axis is of the form $(0, 0, z_0)$. The gradient is

$$\nabla f|_{P_0} = ((1+yz^2)\overrightarrow{i} + (2z+xz^2)\overrightarrow{j} + 2(y+xyz)\overrightarrow{k})_{(0,0,z_0)} = \overrightarrow{i} + 2z_0\overrightarrow{j}.$$

Equation of the normal lines is given by

$$\frac{x-0}{1} = \frac{y-0}{2z_0} = \frac{z-z_0}{0}$$

Solving, we get

$$y = 2xz_0, z = z_0.$$

Eliminating z_0 , we get equation of the surface as

$$2xz - y = 0.$$

- Q10. Given n positive numbers a_1, a_2, \ldots, a_n , find the maximum value of the expression the function $a_1x_1 + a_2x_2 + \ldots + a_nx_n$ where $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$.
- Ans. Note that here $f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$ and $g(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$ $x_1^2 + x_2^2 + \ldots + x_n^2 - 1.$

Using the method of lagrange multipliers let λ be such that $\nabla f = \lambda \nabla g$. This gives,

$$a_1 = \lambda x_1, a_2 = \lambda x_2, \dots, a_n = \lambda x_n$$
 and $x_1^2 + x_2^2 + \dots + x_n^2 - 1 = 0$.

Therefore, $a_1^2 + a_2^2 + \ldots + a_n^2 = 4\lambda^2$. This gives $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$. Since the continuous function f achieves its minimum and maximum on the closed and bounded set $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$, $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$ leads to the maximum value $f\left(\frac{a_1}{2\lambda}, \frac{a_2}{2\lambda}, \ldots, \frac{a_n}{2\lambda}\right) = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$ and $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$ leads to the minimum value of fmum value of f.

- Q11. Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.
- Ans. Let the box have sides of length x, y, z > 0. Then V(x, y, z) = xyz and xy + yz + xz = 010. Using the method of lagrange multipliers, we see that $yz = \lambda(y+z), xz = \lambda(x+z)$ and $xy = \lambda(x+y)$. It is easy to see that x, y, z > 0. Now, we can see that x = y = zand therefore, $x = y = z = \sqrt{\frac{10}{3}}$.
- Q12. Minimize the function $x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.
- Ans. Let $F(x, y, z) = x^2 + y^2 + z^2$, g(x, y, z) = x + 2y + 3z and h(x, y, z) = x + 3y + 9z, where x + 2y + 3z = 6 and x + 3y + 9z = 9.

Using the method of lagrange multipliers let λ and μ be such that $\nabla F = \lambda \nabla h + \mu \nabla g$. We get

$$\lambda + \mu = 2x, 2\lambda + 3\mu = 2y \quad \text{and} \quad 3\lambda + 9\mu = 2z. \tag{1}$$

From here, using x + 2y + 3z = 6 and x + 3y + 9z = 9, we get $7\lambda + 17\mu = 6$ and $34\lambda + 91\mu = 18.$

Hence, $\mu = -\frac{78}{59}$ and $\lambda = \frac{240}{59}$. From equation (1), we get $2(x^2 + y^2 + z^2) = 6\lambda + 9\mu$, hence the minimum value of of f is $\frac{369}{50}$.