CHAPTER 6

GRAPHS

GRAPHS

- 6.1 The Graph Abstract Data Type
- 6.2 Elementary Graph Operations
- 6.3 Minimum Cost Spanning Trees

6.1.1 Introduction

Königsberg bridge problem

Figure 6.1: (a) Section of the river Pregel in Königsberg; (b) Euler's graph

6.1.2 Definitions

- Graph G=(V, E)
 - V is a finite, nonempty set of vertices
 - E is a set of *edges*
 - An edge is a pair of vertices
 - V(G) is the set of vertices of G
 - E(G) is the set of edges of G

Undirected graph

- The pair of vertices in an edge is unordered
 - (u,v) and (v,u): the same edge
- -Ex

$$V(G_1)=\{0,1,2,3\}$$

$$E(G_1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

Directed graph (digraph)

- Each edge is represented by $\langle u, v \rangle$
 - *u*: tail, *v*: head

- < v, u > and < u, v > represent two different edges
- -Ex

$$V(G_3) = \{0,1,2\}$$

 $E(G_3) = \{<0,1>, <1,0>, <1,2>\}$

(c) G_3

Hee 2059 2011

Figure 6.2: Three sample graphs

•
$$V(G_1) = \{0,1,2,3\}$$

 $E(G_1) = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

•
$$V(G_2) = \{0,1,2,3,4,5,6\}$$

 $E(G_2) = \{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$

•
$$V(G_3) = \{0,1,2\}$$

 $E(G_3) = \{<0,1>,<1,0>,<1,2>\}$

吧 深 对的 站

Restrictions on Graphs

- NOT self edges or self loops
 - (v, v) and $\langle v, v \rangle$: Not legal
- NOT multiple occurrences of the same edge

Figure 6.3: Examples of graphlike structures

Complete graph

- Has the maximum number of edges;
- An *n*-vertex, undirected graph with exactly n(n-1)/2 edges is said to be *complete*

Complete directed graph

- The max # of edges is n(n-1)

• If (u,v) is an edge in E(G)

- Vertices u and v are adjacent
- Edge (u, v) is *incident* on vertices u and v
- -Ex
 - Edges incident in vertex 2 in G₂: ...

- Vertex u is adjacent to v, and v is adjacent from u
- Edge $\langle u, v \rangle$ is incident on u and v.
- -Ex
 - Edges incident to vertex 1 in G_3 : ...

(c) G_3

Subgraph of G

- A graph G' such that $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$

- A path from vertex u to vertex v in graph G
 - A sequence of vertices u, i_1 , i_2 , ..., i_k , v such that (u,i_1) , (i_1,i_2) , ..., (i_k,v) are edges in E(G)
 - path (0, 2), (2, 1), (1, 3) is also written as 0, 2, 1, 3

- The *length* of a path
 - The number of edges on it

• Simple path

 A path in which all vertices, except possibly the first and the last, are distinct

- $Ex) G_1$
 - path 0, 1, 2, 0: simple path
 - path 0, 1, 3, 2: simple path
 - path 0, 1, 3, 1: NOT simple path

• path 0, 1, 2: simple directed path

Cycle

- A simple path in which the first and the last vertices are the same
- -Ex
 - path 0, 1, 2, 0 (G_1), path 0, 1, 0 (G_3)

- An undirected graph is said to be *connected*
 - iff for every pair of distinct vertices u and v in V(G) there is a path from u to v in G
 - A tree is a connected acyclic (no cycles) graph

- (Connected) *component* of an undirected graph
 - A maximal connected subgraph

Connected & 만든 1장 Z Sulgraph

15

A directed graph is strongly connected

- iff for every pair of distinct vertices u and v in V(G), there is a directed path from u to v and also from v to u
- -Ex) $G_3:...$ Not stringly corrected

(c) G_3

Strongly connected component

- A maximal subgraph that is strongly connected

Figure 6.6: Strongly connected components of G_3

- degree of vertex
 - The # of edges incident to that vertex
 - For directed graph, in-degree and out-degree

undTrocted

- The # of edges in G with n vertices: $e = (\sum_{i=0}^{n-1} d_i)/2$
 - $-d_i$: degree of vertex i

ADT Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices.

functions:

```
for all graph \in Graph, v, v_1, and v_2 \in Vertices
```

Graph Create() → Java 대서 생성과	::=	return an empty graph.
Graph InsertVertex(graph, v)	::=	return a graph with v inserted. v has no incident edges.
Graph InsertEdge(graph, v_1 , v_2)	::=	return a graph with a new edge between v_1 and v_2 .
Graph DeleteVertex(graph, v)	::=	return a graph in which v and all edges incident to it are removed.
$Graph$ DeleteEdge($graph$, v_1 , v_2)	::=	return a graph in which the edge (v_1, v_2) is removed. Leave the incident nodes in the graph.
Boolean IsEmpty(graph)	::=	if (graph == empty graph) return TRUE else return FALSE.
List Adjacent(graph, v)	::=	return a list of all vertices that are adjacent to v .

ADT 6.1: Abstract data type Graph

6.1.3 Graph Representation

6.1.3.1 Adjacency Matrix

- Adjacency matrix a of G
 - two dimensional $n \times n$ array
 - -a[i][j]=1 iff edge(i, j) is in E(G)
 - -a[i][j]=0 iff there is no edge(i, j) in E(G)

Space for adjacency matrix: ...

Figure 6.7: Adjacency matrices

Properties of Adjacency Matrix

- For a graph, degree of vertex i is its row sum: $\sum_{j=0}^{n-1} a[i][j]$
- For a *digraph*, the *row sum* is the out-degree, and the *column sum* is the in-degree
- Time complexity: O(...)
 - How many edges are there in G?
 - Is G connected?

6.1.3.2 Adjacency Lists

- Chain Representation
 - The *n* rows of the adjacency matrix are represented as *n* chains

thing re

- Graph with n vertices and e edges
 - Requires *n* head nodes and 2*e* list nodes
- For a digraph: e nodes

Figure 6.8: Adjacency lists

At the 23 advacency list Fertugat

- Sequential Representation
 - The adjacency lists may be packed into an integer array node[n + 2e + 1]
 - -node[i]: the starting point of the list for vertex i
 - 0 <= i < n
 - node[n] = n+2e+1
 - The vertices adjacent from vertex i
 - Stored in node[node[i]], ..., node[node[i+1]-1]

Figure 6.9: Sequential representation of graph G_4 \Rightarrow \exists \exists

- The degree of any vertex
 - In undirected graph
 - Determined by just counting the # of nodes in its adjacency list
 - In digraph
 - Out-degree: the # of nodes on its adjacency list
 - In-degree: the # of nodes on its inverse adjacency list

Figure 6.10: Inverse adjacency lists for G_3 (Figure 6.2(c))

- Alternate node structure of adjacency lists
 - Each node
 - edge(head/tail)
 - link for column chain, link for row chain

Figure 6.11: Orthogonal list representation for G_3 of Figure 6.2(c)

6.1.3.3 Adjacency Multilists

- An edge (u, v) in an undirected graph
 - Represented by two nodes in adjacency list representation;
 - One on the list for u and the other on the list for v
- Adjacency multilists
 - There is exactly one node for each edge
 - Lists in which nodes may be shared among several lists (an edge is shared by two different paths)

Node structure

- -m: whether or not the edge has been examined
- link1: the next edge of vertex1
- link2: the next edge of vertex2

28

6.1.3.4 Weighted Edges

- The edges of a graph have weights assigned to them
- These weights may represent as
 - the distance from one vertex to another
 - cost of going from one vertex to an adjacent vertex.
- Adjacency matrix: a[i][j] would keep the weights.
- Adjacency lists
 - Add a weight field to the node structure
- Network
 - A graph with weighted edges

GRAPHS

- 6.1 The Graph Abstract Data Type
- 6.2 Elementary Graph Operations
- 6.3 Minimum Cost Spanning Trees