Examenul național de bacalaureat 2024 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(00 uo p ui	
1.	$a_2 = \frac{a_1 + a_3}{2} \Rightarrow 12 = \frac{2 + a_3}{2}$	3p
	$a_3 = 22$	2p
2.	f(1+m) = m-7, pentru orice număr real m	2p
	m-7=1-m, de unde obținem $m=4$	3p
3.	$x^{2}-3x+5=5$, de unde obținem $x^{2}-3x=0$	3p
	x = 0 sau $x = 3$, care convin	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 7 numere n pentru care numărul $\sqrt{n+1}$	
	este natural, deci sunt 7 cazuri favorabile, de unde obținem $p = \frac{7}{90}$	3 p
5.	$m_{OA} = 2$	2p
	$m_{BC} = \frac{a}{2}$ și, cum $m_{OA} = m_{BC}$, obținem $a = 4$	3p
6.	$tgB = \frac{AB}{AB}$, deci $\sqrt{3} = \frac{3}{AB}$	3p
	$AB = \frac{9}{\sqrt{3}} = 3\sqrt{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.0)	(1 2 2)	
1.a)	$A(2) = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \\ 2 & 1 & 1 \end{vmatrix} =$	
	$A(2) = 0 0 1 \Rightarrow \det(A(2)) = 0 0 1 = 0$	2p
	=0+0+4-0-1-0=3	3 p
b)	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, A(x) \cdot A(1) = \begin{pmatrix} 1+x & 1+x & 1+x \\ x-1 & x-1 & x-1 \\ x+1 & x+1 & x+1 \end{pmatrix}, \text{ pentru orice număr real } x$	
	$A(1) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$, $A(x) \cdot A(1) = \begin{bmatrix} x-1 & x-1 & x-1 \end{bmatrix}$, pentru orice număr real x	3 p
	$ \begin{pmatrix} 1+x & 1+x & 1+x \\ x-1 & x-1 & x-1 \\ x+1 & x+1 & x+1 \end{pmatrix} = \begin{pmatrix} 2 & 2x & 2x \\ 0 & 0 & 2x-2 \\ 2x & 2 & 2 \end{pmatrix}, \text{ de unde obținem } x=1 $	
	$\begin{vmatrix} x-1 & x-1 & x-1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 2x-2 \end{vmatrix}$, de unde obținem $x=1$	2p
	$\begin{pmatrix} x+1 & x+1 & x+1 \end{pmatrix} \begin{pmatrix} 2x & 2 & 2 \end{pmatrix}$	
c)	$\det(A(x)) = (x-1)^2 (x+1) \text{ si } \det(A(x)) \neq 0, \det x \in \mathbb{R} \setminus \{-1,1\}$	3 p
	Cum $-x \in \mathbb{R} \setminus \{-1,1\}$, obținem $\det(A(-x)) \neq 0$, deci $A(-x)$ este inversabilă	2p
2.a)	$1 \circ 1 = 1 \cdot 1 + \frac{2 \cdot 1 + 2 \cdot 1 - 1}{2 \cdot 1 + 2 \cdot 1} = 1$	3р
	4	o p
	$=1+\frac{3}{-}=\frac{7}{-}$	2р
	4 4	-P

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

b)	$x \circ \frac{1}{2} = x \cdot \frac{1}{2} + \frac{2x + 2 \cdot \frac{1}{2} - 1}{4} = \frac{x}{2} + \frac{x}{2} = x$, pentru orice număr real x	2p
	$\frac{1}{2} \circ x = \frac{1}{2} \cdot x + \frac{2 \cdot \frac{1}{2} + 2x - 1}{4} = \frac{x}{2} + \frac{x}{2} = x$, pentru orice număr real x , deci $e = \frac{1}{2}$ este elementul neutru al legii de compoziție "°"	3р
c)	$\left[\left(\frac{1}{2} - x \right) \circ \left(\frac{1}{2} + x \right) = \frac{1}{2} - x^2, \left(\frac{1}{2} - x \right) \circ \left(\frac{1}{2} + x \right) \circ \left(\frac{1}{2} + x^2 \right) = \frac{1}{2} - x^4, \text{ pentru orice număr real } x$	2p
	$\frac{1}{2} - x^4 = \frac{1}{2} - x^2$, de unde obținem $x = -1$ sau $x = 0$ sau $x = 1$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$12^{2}(1)^{2} + \frac{3}{2} + \frac{3}{2} = \frac{1}{2}$	
1000)	$f'(x) = \frac{12x^2(x-1)^2 - 4x^3 \cdot 2(x-1)}{(x-1)^4} =$	3р
	,	
	$-12x^3 - 12x^2 - 8x^3 - 4x^2(x-3)$	2
	$-\frac{1}{(x-1)^3} - \frac{1}{(x-1)^3}$	2p
b)	$= \frac{12x^3 - 12x^2 - 8x^3}{(x-1)^3} = \frac{4x^2(x-3)}{(x-1)^3}, \ x \in (1, +\infty)$ $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{4x^2}{(x-1)^2} = 4$	2p
	$\lim_{x \to +\infty} (f(x) - 4x) = \lim_{x \to +\infty} \frac{8x^2 - 4x}{(x-1)^2} = 8$, deci dreapta de ecuație $y = 4x + 8$ este asimptota	3 p
	oblică spre $+\infty$ la graficul funcției f	
c)	$f'(x) = 0 \Rightarrow x = 3$; $f'(x) < 0$, pentru orice $x \in (1,3)$, deci f este strict descrescătoare pe	2p
	$(1,3)$ și $f'(x) > 0$, pentru orice $x \in (3,+\infty)$, deci f este strict crescătoare pe $(3,+\infty)$	2p
	$\lim_{x\to 1} f(x) = +\infty$, $f(3) = 27$, $\lim_{x\to +\infty} f(x) = +\infty$ și f este continuă, deci ecuația $f(x) = m$ are	3р
	exact două soluții pentru orice $m \in (27, +\infty)$	•
2.a)	$\int_{1}^{3} (f(x) - x \ln x) dx = \int_{1}^{3} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{1}^{3} =$	3 p
	$=\frac{15}{2} - \frac{3}{2} = 6$	2p
b)	$\int_{1}^{e} (f(x) - x - 1) dx = \int_{1}^{e} \left(\frac{x^{2}}{2}\right) \ln x dx = \frac{x^{2}}{2} \ln x \Big _{1}^{e} - \frac{x^{2}}{4} \Big _{1}^{e} =$	3p
	$=\frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2p
c)	$g(x) = \frac{1}{(x+1)^2}, \ x \in [1,3], \ \text{deci} \ V = \pi \int_{1}^{3} g^2(x) dx = \pi \int_{1}^{3} \frac{1}{(x+1)^4} dx = \pi \left(-\frac{1}{3(x+1)^3} \right) \Big _{1}^{3} = \frac{7\pi}{192}$	3 p
	$\frac{7\pi}{192} = \frac{7\pi}{24a}$, de unde obținem $a = 8$	2p