MET-348-3 Previsão Numérica de Tempo e Clima Docente Responsável: Saulo Freitas

Introdução;

- Equações governantes;
- 2. Solução numérica das equações: conceitos básicos, métodos: diferenças finitas, espectral, elementos finitos, volumes finitos;
- 3. Parametrizações dos processos físicos: convecção e microfísica, turbulência, radiação, nebulosidade;
- 4. Modelagem dos processos na superfície e subsuperfície: continente, oceano, lagos, urbana, orográfica, gelo.
- 5. Inicialização: física, dinâmica;
- 6. Previsibilidade;
- 7. Métodos de previsão por conjuntos;
- 8. Modelagem climática e regionalização;
- 9. Modelos acoplados oceano-atmosfera: desenho, uso e aplicações;
- 10. Métricas de avaliação: tempo e clima;
- 11. Modelos operacionais.

Bibliografia:

Kalnay, E. 2003: Atmospheric modeling: data assimilation and predictability. Cambridge, UK. Cambridge University Press. Warner, T. T. 2011: Numerical Weather and Climate Prediction, 512pp.

Washington, W.M.; Parkinson, Cl. L. 1986: An introduction to three-dimensional climate modeling. Oxford University Press. 422pp.

Trenberth, K. 1995: Climate system modeling. Cambridge University Press.

07. Independência do Brasil

data	Numero de tópicos	
04/06	1	Introdução;
06/06	2	Equações governantes;
11/06	2	Solução numérica das equações: conceitos básicos, métodos: diferenças finitas;
13/06	2	Solução numérica das equações: conceitos básicos, métodos: volumes finitos
18/06	3	Solução numérica das equações: conceitos básicos, métodos: elementos finitos, espectral;
20/06	4	Modelagem dos processos dos processos físicos: radiação, nebulosidade;
25/06	4	Modelagem dos processos dos processos físicos: turbulência;
27/06	4	Modelagem dos processos dos processos físicos: convecção;
01/07	4	Modelagem dos processos dos processos físicos: microfísica;
03/07	4	Modelagem dos processos na superfície e subsuperfície: continente, urbana.
08/07	4	Modelagem dos processos na superfície e subsuperfície: oceano, lagos.
10/07	5	Modelagem dos processos na superfície e subsuperfície: urbana, gelo.
15/07	6	Modelagem dos processos na superfície e subsuperfície: orográfica.
17/07	7	Assimilação de Dados; Inicialização: física, dinâmica;
22/07	8	Previsibilidade; Métodos de previsão por conjuntos;
24/07	9	Modelagem climática e regionalização;
29/07	10	Modelos acoplados oceano-atmosfera: desenho, uso e aplicações;
31/07	11	Modelos operacionais. Métricas de avaliação: tempo e clima;

Turma 2023

Grupo	
364558/2023	Bárbara Regina dos Santos Souza
201913/2023	Bianca Fusinato
635465/2023	Demmily Falcão Fernandes
311258/2023	Emily Amaro Pires
865873/2023	Jessika Martins de Souza Lima
245037/2023	Letícia Stachelski
614006/2023	Lucijacy Pereira Javarini
174430/2023	Matheus Henrique de Freitas Leite
844809/2023	Patrick dos Santos Câmara
911817/2023	William Masayoshi Kuriyama

Turma 2023

- Alunos (10)
- Enviar as seguintes informações:
 - Nome, e-mail
 - Mestrando
 - Doutorando
 - Outros
 - Área de formação/Faculdade
 - Meteorologia
 - Física
 - Outro
 - Área de interesse

Áreas de interesse

- Modelagem numérica
- Estudos observacionais
- Modelo/observações
- Não definido (?)

Avaliação:

- 1 Exercícios em sala ou homework (30% da nota final)
- 2 Avaliação (40% da nota final)
- 3 Trabalho de Conclusão de Curso. Máximo 12 páginas (30% da nota final)
 Faça a previsão com até 4 dias de antecedência para um determinado evento (ex: o dia 19/02/2023).
 Use os dados presente no site:

http://ftp.cptec.inpe.br/modelos/tempo/WRF/ams_07km/brutos

http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/

http://ftp.cptec.inpe.br/modelos/tempo/SAMeT/

Grupo	Membros (organizem-se em grupo de 2) exemplo
Grupo 1	364558/2023 Bárbara Regina dos Santos Souza 201913/2023 Bianca Fusinato
Grupo 2	635465/2023 Demmily Falcão Fernandes 311258/2023 Emily Amaro Pires
Grupo 3	865873/2023 Jessika Martins de Souza Lima 245037/2023 Letícia Stachelski
Grupo 4	614006/2023 Lucijacy Pereira Javarini 174430/2023 Matheus Henrique de Freitas Leite
Grupo 5	844809/2023 Patrick dos Santos Câmara 911817/2023 William Masayoshi Kuriyama

Finalidade das Listas

- Vários tipos de modelos atmosféricos:
 - Simplificados: Modelos filtrados (BVE ENIAC); Modelos baroclínicos (Eq. Primitivas-Richardson)
 - Modelos de PNTC: Circulação geral da atmosfera CPTEC, regionais (Eta, WRF, BRAMS)
- Artigos: revisões, modelos CPTEC: BAM, BESM, Eta, BRAMS, WRF, outros)
- Para compreender os métodos/processos envolvidos em PNTC e/ou analisar algum fenômeno meteorológico de interesse

Regras

- Os alunos desenvolverão um projeto (dados, documento e apresentação)
- Apresentação ao final do curso (10-15 min.), onde todos serão arguidos
- A nota final levara em conta o documento, apresentação e respostas (contribuição dos membros)
- Classe: concorda, esta errado, pode ser?

Ética

- Trabalho em equipe é bem-vinda
- Listas e provas individuais, suas interpretações e palavras
- Referenciar as fontes de dados e pesquisa
- Copia implicará desaprovação no curso

Aos Alunos

•Duvidas, perguntas?

An Introduction to Global Spectral Modeling

2nd Revised and Enlarged Edition

T.N. Krishnamurti H.S. Bedi

V.M. Hardiker

L. Ramaswamy

Atmospheric and Oceanographic Sciences Library

