Classification of COVID-19 from chest X-ray images using Deep Neural Networks

Presenter: DAO THI TRUC LOAN

JULY 26, 2022

COVID-19 was first reported in late 2019 in Wuhan, China, and has since spread throughout China and around the world, posing a serious threat to global public health.

Introduction

COVID-19 was first reported in late 2019 in Wuhan, China, and has since spread throughout China and around the world, poses a serious threat to global public health.

Introduction

COVID-19 is a respiratory disease that especially reaches your respiratory tract, including your lungs.

Doctors can see signs of respiratory inflammation on a chest X-ray or CT scan. X-ray imaging is a low-cost, easily accessible, and fast method that can be an excellent alternative to conventional diagnostic methods such as RT-PCR and CT scans.

- COVID-19 is a respiratory disease, one that especially reaches into your respiratory tract, which includes your lungs.
- Doctors can see signs of respiratory inflammation on a chest X-ray or CT scan. X-ray imaging is a low-cost, easily accessible, and fast method that can be an excellent alternative for conventional diagnostic methods such as RT-PCR and CT scans.

https://www.webmd.com/lung/ss/slideshow-signs-had-covid

Results of chest X-Rays, detected as Covid-19. Images courtesy of IEEE

Introduction

- The first is the task of classifying covid-19
- The second is the task of classifying covid-19 combine lung segmentation

Related works

The Qatar university research team has constructed a large benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples, where the annotation of ground-truth lung segmentation masks is performed on CXRs by an elegant human-machine collaborative approach.

Segmentation

The Qatar university research team have constructed the large benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples, where the annotation of ground-truth lung segmentation masks is performed on CXRs by an elegant human-machine collaborative approach.

Related works

Classification

the lungs

Experiment diagram:

a is the first classification task,

b is the lung segmentation task,

c is a covid prediction with standard images,

d is a covid prediction with only lungs part in the images,

e is covid prediction without lungs in images.

Part	Accuracy	Sensitivity	Specificity	F1 Score
С	0.939	0.972	0.883	0.965
d	0.933	0.968	0.871	0.961
e	0.956	0.967	0.917	0.969

Schematic representation of the pipeline of the proposed system

Phase 1:
-Classification on CovidX

Phase 1: Lung segmentation

1. *Image Preprocessing and Augmentation:* resize all images to 256x256 pixels, compute mean and std, Horizontal Flip, Elastic Transform, Rotate, Normalize, ...

what's it? Package, Lib or API. And refence?

- **1.** *Image Preprocessing and Augmentation:* resize all images to 256x256 pixels, compute mean and std, Horizontal Flip, Elastic Transform, Rotate, Normalize, ...
- 2. *Train:* using segmentation_model_pytorch (FPN (DenseNet121) pretrained on ImageNet. Use comboloss (Dice + BCE + Focal) to compare the output and ground truth

- **1.** *Image Preprocessing and Augmentation:* resize all images to 256x256 pixels, compute mean and std, Horizontal Flip, Elastic Transform, Rotate, Normalize, ...
- **2.** *Train:* using segmentation_model_pytorch (FPN (DenseNet121) pretrained on ImageNet. Use comboloss (Dice + BCE + Focal) to compare the output and ground truth
- **3.** *Inference:* using FPN (DenseNet121) pretrained on COVID_QU_Ex dataset to create lung mask for COVIDx dataset

- **1.** *Image Preprocessing and Augmentation:* resize all images to 256x256 pixels, compute mean and std, Horizontal Flip, Elastic Transform, Rotate, Normalize, ...
- **2.** *Train:* using segmentation_model_pytorch (FPN (DenseNet121) pretrained on ImageNet. Use comboloss (Dice + BCE + Focal) to compare the output and ground truth
- **3.** *Inference:* using FPN (DenseNet121) pretrained on COVID_QU_Ex dataset to create lung mask for COVIDx dataset
- 4. PosProcessing: remove small objects and remove small holes

Phase 2: Covid-19 Classification

Phase 2: Covid-19 Classification

1. Segmented Lungs: First apply **bitwise AND** to the **original CXR** and **lung mask** images to **extract only the lung part** in the original CXR image. Then classify covid-19 on this **segmented lungs**.

Phase 2: Covid-19 Classification

- **1. Segmented Lungs:** First apply **bitwise AND** to the **original CXR** and **lung mask** images to **extract only the lung part** in the original CXR image. Then classify covid-19 on this **segmented lung**.
- 2. *CXR* without Lungs: First apply bitwise AND to the original CXR and inverting mask images to produce a CXR without Lungs. Then classification covid-19 on this output.

Phase 2: Covid-19 Classification

- **1.** Segmented Lungs: First apply bitwise AND to the original CXR and lung mask images to extract only the lung part in the original CXR image. Then classify covid-19 on this segmented lung.
- 2. *CXR without Lungs:* First apply bitwise AND to the original CXR and inverting mask images to produce a CXR without Lungs. Then classification covid-19 on this output.
- 3. *CXR original*: Covid-19 classification

Datasets should be put before Methods

Datasets

- TRAIN LUNG SEGMENTATION:
 - <u>COVID QU Ex</u> consists of 33,920 chest X-ray (CXR) images including:
 - 11,956 COVID-19
 - 11,263 Non-COVID infections (Viral or Bacterial Pneumonia)
 - 10,701 Normal

Ground-truth lung segmentation masks are provided for the entire dataset.

- INFERENCE LUNG SEGMENTATION and CLASSIFICATION COVID-19:
 - COVIDx CXR-3 Dataset (update 06/02/2022) contains 29,986 CXR images

Туре	COVID-19 Negative	COVID-19 Positive	Total
Train	13992	15994	29986
Test	200	200	400

1. Lung Segmentation

1. Lung Segmentation

1. Lung Segmentation

Inference on COVIDx CXR3 dataset

1. Lung Segmentation

Inference: filter out images whose segmented area is less than 15% area of the whole image (30 images Covid-19 Positive)

name

2. Covid-19 Classification: normalize with different mean and std

name

2. Covid-19 Classification: Classification on Grayscale / RGB images

2. Covid-19 Classification: Classification on CXR Original / Segmented Lung / CXR without Lung images

Conclusions

- Generate lung segmentation for COVIDx CXR3 dataset with high confidence
- Perform 3 covid-19 classification experiments on the COVIDx CXR3 dataset with the best results with normalize using mean and std of COVIDx CXR3 dataset, CXR_RGB images, as follows: precision 0.97, recall: 0.96, f1-score 0.96, accuracy 0.96

Should be use Sensitivity and Specificity

Hank You