3) Analyze the following two FSM circuits.

の沃奈がる $P_{inext} = CP_i'P_o' + C'P_i'P_o$ $Q_{onext} = P_i'P_o' + CP_o'$

豆次忘表

当前状态	The Orners			
2,20,	C = 0	C= 1		
0 0	0 1	<i>I</i> 1		
0 1	10	0 0		
/ 0	0 0	0		
1 1	0 0	0 0		

④ 斯公惠

中产 工 与所知						
当前状态		а		Ь		
	Q.	100	C=1	C=o	C=	C=0
51	0	0	ט	v	0	O
دک	0	1	1	0	1	D
53	J	D	0	O	0	0
Śψ	J	J	0	0	I	0

3) Analyze the following two FSM circuits.

0次底流移

Q = next =
$$Q_1'Q_0 + Q_1'$$

Q = next = $Q_1'Q_0' + Q_2'Q_1'Q_0 + Q_2Q_1'Q_0'$ Start'
Q = next = $Q_1Q_0' + Q_1'Q_0'$ Start' + Q_2Q_0 Start

@ 水	To be	次怎	
	Mr. v	Ornext Ornert Ocnest	Oznemio Qinezzo Qonezzo Staro =0
	020,00	Start=1	5 tan -0
SI	0 0 0	110	1 1 1
52	001	110	110
53	0 1 0	0 1 1	0 1 1
Sy	0 1 1	100	1 0 0
55	100	100	1 1 1
Sb.	101	101	100
57	1 1 0	001	0 0 1
58	1 1 1	001	0 0 0

3 FM \times \times \times Load $N = Q_2Q_1Q_0$ Load $M = Q_1'Q_1Q_0'$

田新兴表

当所冰点	新	英丽知		
Q2Q1Q0	LoadN	LoadM		
0 0 0	0	0		
001	0	0		
0 / 0	0	1		
0 1 1	0	0		
100	0	0		
101	O	С		
1 1 0	0	0		
1 1 1	1	J		

图状态图

4) Synthesize FSM circuits for the following two state diagrams, respectively.

3) 综合第一个 FSM 淋漓 次志表: Q1Q0 0 0 1 1 0 1 1 2 cnext Q1Q0 0 1 1 1 1 0 Q1next =	Qinext G A=0 1 1 0 1 0 1 0 0 QiQo+G	10	
Qonext, Q1Q0 00 01	00000	Qonex+=0	2'A'+Q'Q0 Q.Qo'

4) Synthesize FSM circuits for the following two state diagrams, respectively.

次太表: Q.Q.Q0	Queent Qinext Qonext		
汉龙龙: (4) (4)	(=0		(=1
000	100		001
001	100		100
010	011		010
011	001		001
100	010		011
101	000		000
110	000	,	000
1 1 1	000)	000
次志方程:Qunext			
220,00	0		
000		0	
001	10	D	Quext = (Q2Q1
011	0	0	+ Q2'Q1'Q0
010	0	0	
110	0	0	
111	0	0	
101	0	0	
100	0	0	

输出表 风 风。	X
00	0
0 1	1
0 1 0	
011	
.00	0
.01	0
110	0
111	0
117	= Q'2 Q0 + Q'2 Q1

In class we discussed the design and synthesis of a controller for an elevator of a two floor building. In this problem we want to extend the design to a four floor building. Draw the state diagrams of the Moore FSM and Mealy FSM. Write the corresponding Verilog module of the two FSMs, respectively.

输入:

- f1,f2,f3,f4:指示电梯去往哪层,如f4(1000)即去往第四层,f3(0100)即去往第三层;
- at1,at2,at3,at4: 指示电梯目前在哪层,如0000 表示哪层都不在,at4=1(1000)表示在第四层;

输出:

- g2:指示电梯运动状态,1表示运动中,0表示 静止中(可以从这个信号入手理解状态图);
- g1-0:指示电梯运动时的运动目的地,可理解 为当g2==1时有效,如g1-0=00,表示运动目的 地为第一楼;
- led4-1: 指示电梯目前在哪层,如0000表示哪 层都不在,led4-1==1000表示在第四层。

输入:

- f1,f2,f3,f4:指示电梯去往哪层,如
 f4(1000)即去往第四层,f3(0100)即去往
 第三层;
- at1,at2,at3,at4: 指示电梯目前在哪层, 如0000表示哪层都不在, at4=1(1000)表 示在第四层;

输出:

- g2:指示电梯运动状态,1表示运动中, 0表示静止中(可以从这个信号入手理 解状态图);
- g1-0:指示电梯运动时的运动目的地,可理解为当g2==1时有效,如g1-0=00,表示运动目的地为第一楼;
- led4-1: 指示电梯目前在哪层,如0000 表示哪层都不在,led4-1==1000表示在 第四层。

