Indian Institute of Technology Guwahati Statistical Inference and Multivariate Analysis (MA324) Problem Set 08

1. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with usual assumptions on ε . Show that

$$Cov\left(\widehat{\beta}_{0}, \ \widehat{\beta}_{1}\right) = -\frac{\overline{x}\sigma^{2}}{S_{xx}} \quad \text{and} \quad Cov\left(\overline{y}, \ \widehat{\beta}_{0}\right) = \frac{\sigma^{2}}{n}.$$

2. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$ with usual assumptions on ε . Show that

$$E(MS_R) = \sigma^2 + \beta_1^2 S_{xx}$$
 and $E(MS_{Res}) = \sigma^2$.

- 3. Suppose that we have fit a simple linear regression model $\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$, but the response is affected by a second variable x_2 such that the true regression is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$. Is the least square estimator $\widehat{\beta}_1$ in the simple linear regression model unbiased?
- 4. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, where ε 's are independent and identicall $N(0, \sigma^2)$ random variables. Find the MLEs of β_0, β_1 , and σ^2 . Is the MLE of σ^2 UE?
- 5. Suppose that we are fitting a straight line and wish to make standard error of the slope as small as possible. Suppose that the region of interest for x is $-1 \le x \le 1$. Where should the observations x_1, x_2, \ldots, x_n be taken?
- 6. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with usual assumptions on ε . Also assume that β_0 is known. Find the LSE of β_1 and its' variance.