Amendments to the Specification:

On page 6, lines 4-13, please amend the paragraph as follows:

A SBox92 (S92) operator 350 generates a 9-bit signal y0, y1, . . ., y8 from the signal RL₂ by Eq. (1). A ZE2 unit 360 receives the signal RR₁ RR₂, adds two zeroes to the MSB of the signal RR₄ RR₂, and outputs a 9-bit signal. An Exclusive-OR operation is performed to logically "exclusive OR" the outputs of the S92 operator 350 and the ZE2 unit 360 to provide a 9-bit signal RL₃. A TR2 unit 370 removes two zero bits from the MSBs of the 9-bit signal RL₃. A SBox72 (S72) operator 380 generates a 7-bit signal y0, y1, . . ., y6 from the input signal RR₂ (=RR₃) using Eq. (2). Another Exclusive-OR operation is performed to logically "exclusive OR" the outputs of the TR2 370 and the S72 operator 380 to provide a 7-bit signal RR₄.

On page 12, lines 9-30, please amend the paragraph as follows:

The 32-bit signal R₀ which was divided from the 64-bit signal in FIG. 4 is further divided into a 16-bit signal L₀ and a 16-bit signal R₀ in the FO2 cipher 502. A signal L₆ is generated by performing a logical exclusive-OR operation on the signal L_0 using the 16-bit signal L_5 . Meanwhile, a signal R₄ is generated by performing a logical exclusive-OR operation on the signal R₀ using the 16-bit signal R₃. A signal R₅ is generated by performing a logical exclusive-OR operation on the signal R₄ using a sub-encryption key KO_{2,1}. An Fl_{2,1} sub-cipher 514 generates a signal R_{5D} by encrypting the signal R₅ with a sub-encryption key KI_{2,1}. A signal R₆ is generated by performing a logical exclusive-OR operation on the signals R_{5D} and L₆. That is, the Fl_{1,3} sub-cipher 513 and the Fl_{2,1} sub-cipher 514 synchronize the signal L₆ to the signal R₆ without using delays. A signal L₇ is generated by performing a logical exclusive-OR operation on the signal L₆ with a 16-bit sub-encryption key KO_{2,2}. An FL_{2,2} Fl_{2,2} sub-cipher 515 generates a signal L_{7D} by encrypting the signal L₇ with a 16-bit sub-encryption key KI_{2,2}. A delay (D8) 640 delays the signal R₆ and outputs a delayed signal R_{6D}. A signal L₈ is generated by performing a logical exclusive-OR operation on the signals L_{7D} and R_{6D}. A signal R₇ is generated by performing a logical exclusive-OR operation on the signal R₆ with a 16-bit sub-encryption key KO_{2,3}. An Fl_{2,3} sub-cipher 516 generates a signal R_{7D} by encrypting the signal R₇ with a 16-bit sub-encryption key KI_{2,3}. A signal R₈ is generated by performing a logical exclusive-OR operation on the signals R_{7D} and L_8 . Consequently, a 32-bit ciphertext $L_8 \| R_8$ is generated by operating the 16-bit signal L_8 with the 16-bit signal R_8 .

On page 13, line 22 – page 14, line 9, please amend the paragraph as follows:

That is, the S91 operator 710 generates the 9-bit signal y+y0, y2, . . ., y8 by performing parallel logical AND operations and then performing a logical exclusive-OR operation of a 9-bit signal x0, x1, . . ., x8 in parallel. A ZE1 unit 720 receives the signal RR_0 , adds two zeroes to the MSB of the signal RR_0 , and outputs a 9-bit signal. An Exclusive-OR operation is performed to logically "exclusive OR" the outputs of the S91 operator 710 and the ZE1 unit 720 to provide a 9-bit signal RL_1 . Another Exclusive-OR operation is performed to logically "exclusive OR" the signal RL_1 and a 9-bit sub-encryption key $KI_{1,1,2}$, to provide a 9-bit signal RL_2 . The signal RL_2 is temporarily stored in a first register (register 1) 800.

On page 14, line 17 – page 15, line 4, please amend the paragraph as follows:

That is, the S71 operator 740 generates the $9\underline{7}$ -bit signal $y1\underline{y0}$, y2, . . ., y6 by performing parallel logical AND operations and then performing a logical exclusive-OR operation of a 7-bit signal x0, x1, . . ., x6 in parallel. A TR1 unit 730 removes two zeroes from the MSBs of the 9-bit signal RL₁ and outputs the resulting 7-bit signal. A 7-bit signal RR₂ is generated by performing a logical exclusive-OR operation on the outputs of the TR1 730 and the S71 operator 740 with a subencryption key $KI_{1,1,1}$. The signal RR₂ is temporarily stored in the first register 800. Upon receipt of a first clock signal CLK1 from a controller (not shown), the register 800 simultaneously outputs the 9-bit signal RL₂ and the 7-bit signal RR₂. Thus the register 800 functions to synchronize the output timings of signals according to delay involved with encryption in the S91 operator 710, the ZE1 unit 720, the TR1 unit 730, and the S71 operator 740.