

Задание 2. Капельница Кельвина.

Капельница Кельвина — электростатический генератор, изобретённый Уильямом Томсоном (лордом Кельвином) в 1867 году. Простая конструкция позволяет, тем не менее, получить напряжения порядка 10 кВ.

В настоящее время имеется много различных модификаций этого прибора, который в настоящее время рассматривается как забавная

игрушка.

В данном задании рассмотрим следующую упрощенную модель этого устройства.

Цилиндрический сосуд 1, заполненный водой, снабжен двумя небольшими трубочками — капельницами 2 и 3, из которых с некоторым интервалом падают капли. Капли пролетают через проводящие кольца 4 и 5 и попадают в проводящие сферические сосуды 6 и 7 с небольшими отверстиями. Сосуды соединены с кольцами «крест-накрест».

Принцип работы этого электростатического генератора очевиден:

- изначально сосудам 6 и 7 сообщают небольшие электрические заряды противоположного знака
- +Q и -Q; радиусы этих сосудов равны R. Электростатическим воздействием одного сосуда на другой следует пренебречь;
- часть этих зарядов $\pm Q_1$ перетекает на кольца 4 и 5; два кольца служат обкладками конденсатора, электрическая емкость которого равна C; так как эта емкость мала, то следует считать, что $|Q_1| << |Q|$; Радиусы колец равны r, они находятся на расстоянии h от концов трубок с каплями, толщина колец значительно меньше из радиусов;
- электрическое поле колец индуцирует на каплях заряды $\pm q$, радиусы капель равны a; расстояние от сосудов 6 и 7 до капель достаточно велико, поэтому влиянием поля сосудов на капли можно пренебречь; Расстояние между каплями также значительно больше радиусов капель; сосуд с водой 1 заземлен;

Таким образом, капли приобретают электрический заряд, который при попадании капли в сосуд передается соответствующему сосуду, увеличивая его заряд.

- **1.** Пусть заряды каждого сосуда равны $\pm Q$. Найдите, какие заряды $\pm Q_1$ возникают на кольцах.
- **2.** Рассчитайте электрические заряды капель $\pm q$. Величину этого заряда можно представить в виде $q = \alpha Q$, где α некоторый безразмерный коэффициент. Запишите формулу для этого коэффициента.
- **3.** Обозначим заряды сосудов до падения первых капель $\pm Q_0$. Найдите заряды этих сосудов, после того, как в них упало по N капель. Ответ выразите через коэффициент α .

