SQL Case study 1

Business Case: Target SQL

https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order_items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv
- 1.Get the time range between which the orders were placed.

Query:

#Get the time range between which the orders were placed.
select min(order_purchase_timestamp) Minimum_time_range,
max(order_purchase_timestamp) Maximum_time_range,
from
`SQL.orders`;

2. Count the Cities & States of customers who ordered during the given period.

#Count the Cities & States of customers who ordered during the given period.

```
select
  count(distinct c.customer_city) customer_city,
  count(distinct c.customer_state) customer_state
from `SQL.customers` c
inner join `SQL.orders` o on c.customer_id = o.customer_id;
```


2.In-depth Exploration:

1)Is there a growing trend in the no. of orders placed over the past years?

```
SELECT
  EXTRACT(YEAR FROM order_purchase_timestamp) AS `YEAR`,
  COUNT(*) AS `ORDERS_PLACED`
FROM
  `SQL.orders`
GROUP BY `YEAR`
ORDER BY `YEAR` ASC;
```

JOB IN	NFORMATION		RESULTS	CHA	RT PREVIEW	JSC
Row	YEAR ▼	h	ORDERS_PL	ACED >		
1	2	016		329		
2	2	017		45101		
3	2	018		54011		

1. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
SELECT
  FORMAT_DATE('%B',(order_purchase_timestamp)) AS SEASONALITY_OF_ORDERS,
  COUNT(*) AS ORDER_COUNT
FROM
  `.SQL.orders`
GROUP BY
  SEASONALITY_OF_ORDERS
ORDER BY
  ORDER_COUNT DESC;
```

JOB IN	IFORMATION R	ESULTS	CHART PREVIE	W JSON
Row	SEASONALITY_OF_ORD	DERS ▼	ORDER_COUNT ▼	
1	August		10843	
2	May		10573	
3	July		10318	
4	March		9893	

- 1. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)
 - 0-6 hrs: Dawn
 - 7-12 hrs : Mornings
 - Can we see some kind of monthly seasonality in terms of the no. of orders being placed?13-18 hrs: Afternoon
 - 19-23 hrs : Night

```
WITH OrderCounts AS (
 SELECT
    EXTRACT(HOUR FROM order_purchase_timestamp) AS hour_of_day,
   CASE
      WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn'
      WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'Morning'
      WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN
'Afternoon'
      WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN 'Night'
    END AS time_of_day_category,
    EXTRACT(MONTH FROM order_purchase_timestamp) AS month,
   COUNT(*) AS order_count
 FROM
    `SQL.orders`
 GROUP BY
   hour_of_day, time_of_day_category, month
)
SELECT
 hour_of_day,
 time_of_day_category,
 month,
 order_count
FROM (
 SELECT
   hour_of_day,
   time_of_day_category,
   month,
   order_count,
   ROW_NUMBER() OVER (PARTITION BY month ORDER BY order_count DESC) AS row_num
 FROM
   OrderCounts
) AS ranked
WHERE row_num = 1 ORDER BY month, order_count DESC;
```

JOB IN	IFORMATION	RESULTS CHART	PREVIEW	JSON	EXECUTION DETAILS
Row /	hour_of_day ▼	time_of_day_category	- /4	month ▼	order_count ▼
1	14	Afternoon		1	560
2	14	Afternoon		2	607
3	14	Afternoon		3	719
4	20	Night		4	628
5	16	Afternoon		5	761
6	11	Morning		6	695
7	13	Afternoon		7	707
8	14	Afternoon		8	736
9	15	Afternoon		9	304
10	14	Afternoon		10	346

JOB IN	IFORMATION	RESULTS	CHART PREVIE	W JSON	EXECUTION DETAIL
Row	hour_of_day ▼	time_of_day_cat	tegory ▼	month ▼	order_count ▼
3	14	Afternoon		3	719
4	20	Night		4	628
5	16	Afternoon		5	761
6	11	Morning		6	695
7	13	Afternoon		7	707
8	14	Afternoon		8	736
9	15	Afternoon		9	304
10	14	Afternoon		10	346
11	13	Afternoon		11	527
12	11	Morning		12	396

- 3) Evolution of E-commerce orders in the Brazil region:
 - 1. Get the month on month no. of orders placed in each state.
 - 2. How are the customers distributed across all the states?

SELECT

```
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS Months,
    c.customer_state,
    COUNT(*) AS orders_placed_on_the_mentioned_month
FROM
    `SQL.orders` AS o
INNER JOIN `SQL.customers` AS c ON o.customer_id = c.customer_id
GROUP BY
    Months,
    customer_state;
```

Query results

JOB IN	IFORMATION		RESULTS	CHART	PREVIEW	JSON	EXECUTION DETAILS	EXECU.
Row /	Months ▼	11	customer_state	•	1.	orders_placed_on_t	the_mentioned_month 🔻	1.
1		11	RJ					1048
2		12	RS					283
3		12	SP					2357
4		2	DF					196
5		11	PR					378
6		4	MT					92
7		7	MA					79
8		7	AL					40
9		7	SP					4381
10		7	MT					85

JOB IN	FORMATION		RESULTS	CHART	PREVIEW	JSON	EXECUTION DETAILS	EXE
Row	Months ▼	li	customer_state	•	1	orders_placed_on	_the_mentioned_month	h
11		7	MG					1111
12		5	MG					1190
13		5	SP					4632
14	,	5	PE					174
15	1	0	SP					1908
16		1	RJ					990
17		1	SP					3351
18		1	DF					151
19		1	RS					427
20		6	PE					140

Quer	y results								
JOB IN	FORMATION		RESULTS	CHART	PREVIEW	1	JSON	EXECUTION DETAILS	EX
Row /	Months ▼	9	customer_state	•	h	orders_p	olaced_on_the	e_mentioned_month 🔻	97
22		2	SP						3357
23		7	SE						42
24	1	2	RJ						783
25	1	2	PR						271
26		3	RS						569
27		2	PA						83
28		3	RJ						1302
29		3	MG						1237
30	1	0	PE						87

JOB IN	IFORMATION		RESULTS	CHART	PREVIEW	JSON	EXECU	TION DETAILS	EXE
Row //	Months ▼	1	customer_state	•	1	orders_placed_c	n_the_mention	ed_month ▼	/,
31		4	SP						3967
32		4	RJ						1172
33		4	RS						488
34		4	BA						318
35		1	CE						99
36		1	PE						113
37		5	DF						208
38		5	GO						226
39		5	BA						368
40		5	RJ						1321

JOB IN	FORMATION		RESULTS	CHART	PREVIEW	JSON	EXECUTION DETA	AILS EXI
Row	Months ▼	/	customer_state	•	/	orders_placed_o	n_the_mentioned_month	~
41		6	MG					1080
42		6	RJ					1128
43		6	SP					4104
44		4	CE					143
45		3	PA					109
46		3	MT					71
47		1	PR					443
48		6	CE					121
49		6	DF					220
50		6	SE					37

- 1. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).
 You can use the "payment_value" column in the payments table to get the cost of orders.
 - 2. Calculate the Total & Average value of order price for each state.
 - 3. Calculate the Total & Average value of order freight for each state.

```
WITH OrderCosts AS (
 SELECT
    EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
   EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
    FORMAT_DATE('%B', DATE_TRUNC(o.order_purchase_timestamp, MONTH)) AS month_name,
   SUM(p.payment_value) AS total_cost
 FROM
    `SOL.orders` o
   INNER JOIN `SQL.payments` p ON o.order_id = p.order_id
 WHERE
   EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
   AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
 GROUP BY
   year, month, month_name
)
SELECT
 OC.month,
 OC.month_name,
 COALESCE(MAX(CASE WHEN OC.year = 2017 THEN OC.total_cost END), 0) AS total_cost_2017,
 COALESCE(MAX(CASE WHEN OC.year = 2018 THEN OC.total_cost END), 0) AS total_cost_2018,
 COALESCE(MAX(CASE WHEN OC.year = 2017 THEN OC.percent_increase END),0) AS
percent_increase_2017,
 COALESCE(MAX(CASE WHEN OC.year = 2018 THEN OC.percent_increase END), 0) AS
percent_increase_2018
FROM (
 SELECT
   year,
   month,
   month_name,
```

```
total_cost,
    100 * (total_cost - LAG(total_cost) OVER (PARTITION BY year ORDER BY month)) /
        COALESCE(NULLIF(LAG(total_cost) OVER (PARTITION BY year ORDER BY month), 0), 1)

AS percent_increase
    FROM
        OrderCosts
) OC
WHERE
        OC.year IN (2017, 2018)
GROUP BY
        OC.month, OC.month_name
ORDER BY
        OC.month;
```


- 2. Calculate the Total & Average value of order price for each state.
- 3. Calculate the Total & Average value of order freight for each state

```
SELECT
  SUM(o.price) AS `Sum_of_ordered_goods`,
  AVG(o.price) AS `Average_on_ordered_goods`,
  c.customer_state
FROM
  `SQL. order_items` as o cross join `SQL.customers` as c
group by
  customer_state;
```

JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	N EXECUTION DETAILS	
Row	Sum_of_ordered	_goods ▼	Average_on_ordered_goods	· /	customer_state ▼	11
1	5	67396757896.372	120.653739014647	714	SP	•••
2	158	138774450.79514	120.65373901464	472	MG	
3	742	91924463.776169	120.653739014647	726	RS	
4	4	5939755705.8117	120.65373901464	472	ВА	
5	3438	3685856.0993176	120.653739014647	12	RO	-
6	6856	59842466.070885	120.653739014647	73	PR	
7	1746	579804833.92853	120.6537390146472	24	RJ	
8	1325	51852607.516779	120.6537390146472	24	PA	
9	728	5121023.2029791	120.653739014647	13	PB	
10	494	32808136.662361	120.6537390146	47	SC	
11	181	58435983.226513	120.653739014647	13	CE	
12	274	55120274.019539	120.653739014647	17	GO	
13	6591	947194.5013847	120.65373901464707	RN		
14	6727	863631.5017891	120.65373901464714	PI		
15	9718	025245.5079918	120.6537390146471	MS	S	
16	123	27620835.91456	120.6537390146474	M	Т	
17	FC10	0.400.40.10001.00	100.65070001464710			
17	561	3348848.1002169	120.653739014647	712	AL	
18	276	31811642.122162	120.653739014647	736	ES	
19	38	05660235.999382	120.653739014647	717	TO	
20	924	231771.60001433	120.653739014647	706	AP	
21	2	011563267.59974	120.653739014647	704	AM	
22	101	52957843.909266	120.653739014647	712	MA	
23	22	453395392.43071	120.653739014647	714	PE	
24	475	7075294.9995852	120.653739014647	729	SE	
25	290	086117518.011196	120.653739014647	29	DF	
26	110	0923139.6999643	120.653739014647	36	AC	
27	625	215610.19999051	120.653739014647	26	RR	

3. Calculate the Total & Average value of order freight for each state

SELECT

```
c.customer_state,
  AVG(o.freight_value) AS `AVERAGE_FREIGHT_VALUE`
FROM
  `SQL. order_items` o
CROSS JOIN
  `SQL.customers` c
GROUP BY
  C.customer_state;
```

Row	customer_state ▼	AVERAGE_FREIGHT_VALUE ▼
1	SP	19.99031992898362
2	MG	19.9903199289836
3	RS	19.990319928983574
4	BA	19.990319928983592
5	MA	19.990319928983549
6	PE	19.99031992898357
7	RJ	19.9903199289836
8	PA	19.990319928983556
9	PB	19.990319928983588
10	SC	19.99031992898356
11	PI	19.990319928983595
12	CE	19.990319928983592

PR MT	19.990319928983645 19.990319928983563
	19.990319928983563
ES	19.990319928983588
RN	19.990319928983578
GO	19.990319928983574
RO	19.990319928983553
AP	19.990319928983631
AL	19.990319928983574
AM	19.990319928983585
TO	19.990319928983535
SE	19.99031992898356
MS	19.990319928983542
	RN GO RO AP AL AM TO SE

- 4). Analysis based on sales, freight and delivery time.
 - 1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

```
select
  order_id,
  timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
`delivery_time`,
  timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,day) as
`delivery_delay`
from
`SQL.orders`;
```

JOB IN	NFORMATION	RESULTS	CHART F	REVIEW	JSON		EXECUTION
Row	order_id ▼	11	delivery_time	¥ /1	delivery_delay	· /	
1	1950d777989f6a	877539f5379		30		12	
2	2c45c33d2f9cb8	ff8b1c86cc28		30	-	28	
3	65d1e226dfaeb8	cdc42f66542		35	-	16	
4	635c894d068ac3	37e6e03dc54e		30		-1	

(4.2) Find out the top 5 states with the highest & lowest average freight value.

```
WITH OrderedValues AS (
 SELECT
   freight_value,
   ROW_NUMBER() OVER (ORDER BY freight_value DESC) AS rank_desc
    `SQL. order_items`
)
SELECT
 AVG(freight_value) AS Average_top_5
FROM
 OrderedValues
WHERE
  rank_desc <=5</pre>
GROUP BY
   rank_desc
ORDER BY
  rank_desc
LIMIT 5;
```

Row	Average_top_5 ▼ //
1	409.68
2	375.28
3	375.28
4	339.59
5	338.3


```
WITH OrderedValues AS (
 SELECT
   freight_value,
   ROW_NUMBER() OVER (ORDER BY freight_value ASC) AS rank_asc
 FROM
   `SQL. order_items`
)
SELECT
 AVG(freight_value) AS Average_bottom_5_lowest
  OrderedValues
WHERE
   rank_asc <=5
GROUP BY
  rank_asc
ORDER BY
  rank_asc
LIMIT 5;
```

JOB INFORMATION RESULTS

Row	Average_bottom_5_lowest 🔻
1	0.0
2	0.0
3	0.0
4	0.0
5	0.0

Find out the top 5 states with the highest & lowest average delivery time.

SELECT

```
c.customer_state,
```

o.order_approved_at,

o.order_estimated_delivery_date,

 $\label{eq:avg_date_day} AVG(DATE_DIFF(o.order_approved_at,o.order_estimated_delivery_date,day)) \ as $$`AVERAGE_OF_DIFFERENCE_IN_DAYS`$$$

FROM

```
`SQL.orders` o INNER JOIN `SQL.customers` c ON o.customer_id = c.customer_id GROUP BY
```

 ${\tt customer_state}, {\tt order_approved_at}, {\tt order_estimated_delivery_date}$ ${\tt ORDER\ BY}$

AVERAGE_OF_DIFFERENCE_IN_DAYS DESC

LIMIT 5;

Quer	y results					
JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	N EXECUTION DETAILS	EXECUTION GRAPH
Row	customer_state	•	order_approved_at ▼	11	order_estimated_delivery_date 🔻	AVERAGE_OF_DIFFEI
1	SP customer	r_state	2017-04-11 15:17:38 UTC		2016-11-17 00:00:00 UTC	145.0
2	SP		2016-10-07 13:16:46 UTC		2016-09-30 00:00:00 UTC	7.0
3	SP		2018-08-20 15:56:29 UTC		2018-08-14 00:00:00 UTC	6.0
4	RJ		2018-02-20 12:05:54 UTC		2018-02-14 00:00:00 UTC	6.0
5	PR		2018-08-20 15:59:18 UTC		2018-08-15 00:00:00 UTC	5.0

6. Analysis based on the payments:

- 1. Find the month on month no. of orders placed using different payment types.
- 2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
SELECT
  EXTRACT(MONTH FROM o.order_purchase_timestamp) AS MONTH_OF_ORDER,
  FORMAT_DATE('%B',o.order_purchase_timestamp ) AS MONTH_NAME_OF_ORDER,
  P.payment_type,
  COUNT(*) AS MOST_USED_PAYMENT_WINDOW
FROM
  `SQL.orders` AS o
INNER JOIN
  `SQL.payments` AS P ON o.order_id = P.order_id
GROUP BY
  MONTH_OF_ORDER,
  MONTH_NAME_OF_ORDER,
  P.payment_type
```

ORDER BY

MONTH_OF_ORDER,
MONTH_NAME_OF_ORDER,
MOST_USED_PAYMENT_WINDOW DESC;

Quer	Query results									
JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	EXECUTIO	N DETAILS	EXECUTION GRAF	РΗ		
Row	MONTH_OF_ORDER	MONTH_NA	ME_OF_ORDER ▼	payment_type ▼	h	MOST_USED_P	AYMENT_WINDOY			
1	1	January		credit_card			6103			
2	1	January		UPI			1715			
3	1	January		voucher			477			
4	1	January		debit_card			118			