Disciplina: Geometria Analítica (IME0345)

 1^a Lista de Exercícios - 05/04/2024

Vetores no Plano.

Exercícios

Ex.1 Verifique se é verdadeira (V) ou falsa (F) cada afirmação e justifique sua resposta:

a) ()
$$\overrightarrow{AB} \equiv \overrightarrow{CD} \Longleftrightarrow \overrightarrow{AB} = \overrightarrow{CD}$$
.

b) ()
$$\overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow A = C \ e \ B = D.$$

c) ()
$$\overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow \overline{AB} = \overline{CD}$$
.

d) ()
$$\overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow AC \cap BD = \emptyset$$
.

e) ()
$$|\overrightarrow{AB}| = |\overrightarrow{CD}| \Longrightarrow \overrightarrow{AB} = \overrightarrow{CD}$$
.

$$\mathbf{f)} \ (\) \ \overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow |\overrightarrow{AB}| = |\overrightarrow{CD}|.$$

h) ()
$$\overrightarrow{AB} \equiv \overrightarrow{CD} \Longrightarrow |\overrightarrow{AB}| = |\overrightarrow{CD}|$$
.

Ex.2 Na figura abaixo, todos os paralelogramos menores são congruentes. $\overrightarrow{AD} = \overrightarrow{x} e \overrightarrow{AK} = \overrightarrow{y}$, escreva os vetores \overrightarrow{GJ} , \overrightarrow{RQ} , \overrightarrow{SI} , \overrightarrow{HC} , \overrightarrow{AN} , \overrightarrow{KD} , \overrightarrow{PH} , \overrightarrow{AT} e \overrightarrow{OC} em função de \overrightarrow{x} e \overrightarrow{y} .

Ex.3 Em cada uma das figuras abaixo, escreva o vetor \overrightarrow{z} em função dos demais.

Ache Ex.4dosindicasoma vetores dos das emcada figuras abaixo: uma

1

Ex.5 Sendo $\overrightarrow{a} = \overrightarrow{OA}$ e $\overrightarrow{b} = \overrightarrow{OB}$ dois vetores não paralelos, escreva $\overrightarrow{v} = \overrightarrow{OP}$ em função de \overrightarrow{a} e \overrightarrow{b} , sabendo que $\overrightarrow{AP} = \frac{2}{3}\overrightarrow{AB}$.

Ex.6 Considere um quadrilátero ABCD, onde $\overrightarrow{AD} = 3\overrightarrow{v}$, $\overrightarrow{BC} = 2\overrightarrow{v}$ e $\overrightarrow{AB} = \overrightarrow{w}$. Que tipo de quadrilátero é \overrightarrow{ABCD} ? Determine o lado \overrightarrow{CD} e as diagonais \overrightarrow{BD} e \overrightarrow{CA} em função de \overrightarrow{v} e \overrightarrow{w} .

Ex.7 Considere um trapézio ABCD, onde $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{DC} = 2\overrightarrow{a}$ e $\overrightarrow{DA} = \overrightarrow{b}$. O ponto E é tal que $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BC}$. Escreva \overrightarrow{AC} e \overrightarrow{DE} em função de \overrightarrow{a} e de \overrightarrow{b} .

Ex.8 Calcule a soma de seis vetores que têm por representantes segmentos orientados com origem em cada um dos vértices, e extremidade no centro de um mesmo hexágono regular.

Ex.9 Dados $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$ e $\overrightarrow{CD} = \overrightarrow{c}$, seja X o ponto ilustrado na figura abaixo. Escreva os vetores \overrightarrow{AX} e \overrightarrow{FX} em função de \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , sabendo que $\overrightarrow{EX} = \frac{1}{4}\overrightarrow{EB}$.

Ex.10 Seja ABCD um paralelogramo como na figura abaixo. Os pontos E e G são tais que $\overrightarrow{AE} = \frac{2}{5}\overrightarrow{AB}$ e $\overrightarrow{DG} = \frac{3}{4}\overrightarrow{DC}$. F é o ponto de encontro de \overrightarrow{AG} e \overrightarrow{DE} . Escreva \overrightarrow{AF} em função de \overrightarrow{AB} e \overrightarrow{AD} .

Ex.11 No trapézio ABCD com $\overrightarrow{BC} = \overrightarrow{v}$, $\rightarrow AD = 2\overrightarrow{v}$, seja E o ponto de intersecção das diagonais AC e BD. Sendo $\overrightarrow{BE} = \lambda \overrightarrow{BD}$, determine λ .

Ex.12 Num triângulo ABC, faça uma figura, temos $3\overrightarrow{BP} = 4\overrightarrow{PC}$ e $3\overrightarrow{PQ} = 4\overrightarrow{QA}$.

- a) Localize na figura os pontos P e Q, justifique sua resposta.
- **b)** Expresse \overrightarrow{AP} e \overrightarrow{BQ} em função de \overrightarrow{AB} e \overrightarrow{AC} .

Ex.13 Seja ABCD um paralelogramo de diagonais AC e BD.Faça uma figura. O ponto R é tal que $3\overrightarrow{DR} = 2\overrightarrow{CD}$ e S é tal que $2\overrightarrow{BS} = \overrightarrow{SC}$.

- a) Marque R e S na figura.
- **b)** Escreva \overrightarrow{RS} em função de \overrightarrow{AB} e \overrightarrow{AD} .

Ex.14 Demonstre que o segmento que une os pontos médios dos lados não-paralelos de um trapézio é paralelo às bases, e sua medida é a semi-soma das medidas das bases. (Atenção: não é suficiente provar que $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{DC})$, mas isso ajuda bastante).

Ex.15 Demonstre que o segmento que une os pontos médios das diagonais de um trapézio é paralelo às bases, e sua medida é a semi-diferença das medidas das bases. (Atenção: não é suficiente provar que $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} - \overrightarrow{DC})$, mas isso ajuda bastante).

Ex.16 Prove que as medianas de um triângulo são concorrentes em um ponto que as divide na razão de 2 para 1. (O ponto de encontro das medianas chama-se baricentro do triângulo.)

Ex.17 Prove que um quadrilátero é um paralelo-

gramo se, e somente se, suas diagonais se cortam ao meio.

Ex.18 No triângulo ABC, P, Q e R são os pontos médios, respectivamente, de AB, BC e AC. O ponto O é um ponto qualquer do espaço. Demonstre que

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}.$$

(Sugestão: escreva $\overrightarrow{OP}, \overrightarrow{OQ}$ e \overrightarrow{OR} em função de $\overrightarrow{OA}, \overrightarrow{OB} \in \overrightarrow{OC}.$

Gabarito

Ex.1 a (V), b (F), c (F), d (F) (considere o caso $\overrightarrow{Ex.7} \overrightarrow{AC} = 2 \rightarrow -\overrightarrow{b}; \overrightarrow{DE} = \frac{2}{3}(2\overrightarrow{a} + \overrightarrow{b})$ B = C), e (F), f (V), g (F) (considere o caso onde Ex.8

AB e CD são colineares), h (V).

Ex.2
$$\overrightarrow{RQ} = -\frac{1}{3}\overrightarrow{x}, \overrightarrow{AN} = \overrightarrow{x} + \overrightarrow{y}, \overrightarrow{KD} = \overrightarrow{x} - \overrightarrow{y}, \overrightarrow{AT} = \frac{4}{3}\overrightarrow{x} + \frac{3}{3}\overrightarrow{y}.$$

Ex.3
$$\overrightarrow{z} = -\overrightarrow{a} + \overrightarrow{b}$$
, $\overrightarrow{z} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{d}$, $\overrightarrow{z} = -\overrightarrow{a} + \overrightarrow{b}$

Ex.4

Ex.5
$$\overrightarrow{OP} = \frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$$
.

$$\mathbf{Ex.5} \overrightarrow{OP} = \frac{1}{3} \overrightarrow{a} + \frac{2}{3} \overrightarrow{b}.$$

$$\mathbf{Ex.6} \overrightarrow{CD} = \overrightarrow{v} - \overrightarrow{w}; \overrightarrow{AC} = \overrightarrow{w} + 2\overrightarrow{v}; \overrightarrow{BD} = 3\overrightarrow{v} - \overrightarrow{w} \qquad \mathbf{Ex.13} \overrightarrow{RS} = \frac{5}{3} \overrightarrow{AB} - \frac{2}{3} \overrightarrow{AD}$$

Ex.7
$$\overrightarrow{AC} = 2 \rightarrow -\overrightarrow{b}$$
; $\overrightarrow{DE} = \frac{2}{3}(2\overrightarrow{a} + \overrightarrow{b})$

$$\mathbf{Ex.2} \overrightarrow{RQ} = -\frac{1}{3}\overrightarrow{x}, \overrightarrow{AN} = \overrightarrow{x} + \overrightarrow{y}, \overrightarrow{KD} = \overrightarrow{x} - \mathbf{Ex.9} \overrightarrow{AX} = \frac{1}{4}\overrightarrow{a} + \frac{3}{4}\overrightarrow{b} + \frac{3}{4}\overrightarrow{c}, \overrightarrow{FX} = \frac{1}{4}\overrightarrow{a} - \frac{1}{4}\overrightarrow{b} + \frac{3}{4}\overrightarrow{c}
\overrightarrow{y}, \overrightarrow{AT} = \frac{4}{3}\overrightarrow{x} + \frac{3}{2}\overrightarrow{y}. \qquad \mathbf{Ex.10} \overrightarrow{AF} = \frac{8}{23}\overrightarrow{AD} + \frac{6}{23}\overrightarrow{AB}$$

$$\mathbf{Ex.3} \overrightarrow{z} = -\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{z} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{d}, \overrightarrow{z} = \mathbf{Ex.11}\lambda = \frac{1}{3}$$

$$\mathbf{Ex.11}\lambda = \frac{1}{3}$$

Ex.12
$$\overrightarrow{AP} = \frac{3}{7}\overrightarrow{AB} + \frac{4}{7}\overrightarrow{AC}, \overrightarrow{BQ} = -\frac{40}{49}\overrightarrow{AB} + \frac{12}{49}\overrightarrow{AC}$$

Ex.13
$$\overrightarrow{RS} = \frac{5}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$$