Discovering Implicit Discourse Relations Through Brown Cluster Pair Representation and Coreference Pattern

Attapol Rutherford, Nianwen Xue Brandeis University, USA

Discourse relations influence interpretation.

- (1) I want to go home for the holiday. So I will book a flight to Boston.
- (2) I want to go home for the holiday.

 Nonetheless, I will book a flight to Boston.
- (3) I want to go home for the holiday. I will book a flight to Boston.

Applications

- Discourse relation information improves summarization. (Louis et al, 2010)
- Discourse relations help assess text readability.
 (Pitler, 2008)
- Discourse relation transitions can evaluate and rerank coherence. (Lin, 2011)

Implicit discourse relations in the Penn Discourse Treebank

	Explicit %	Implicit %
Comparison	42.71%	15.11%
Contingency	28.59%	25.68%
Expansion	0.55%	53.48%
Temporal	28.15%	5.73%
Total Count	13086	16569

Implicit discourse relations in the Penn Discourse Treebank

	Explicit %	Implicit %	Explicit F1 (Pitler et al, 2008)	Implicit F1 (Park and Cardie, 2012)
Comparison	42.71%	15.11%	95.44	31.32
Contingency	28.59%	25.68%	83.28	49.82
Expansion	0.55%	53.48%	96.54	79.22
Temporal	28.15%	5.73%	88.50	26.57
Total Count	13086	16569		

Task formulation and paradigm

- Input: e.g.
 When the deal ran into trouble, the stock tumbled.
 It closed at \$ 198 yesterday. (WSJ2057)
- Train 4 classifiers from the same feature set

Brown clustering

Brown et al, 1992

Brown cluster pair representation

When the deal ran into trouble, the stock tumbled.

It closed at \$ 198 yesterday.

Brown cluster pair representation

When the deal ran into trouble, the stock tumbled.

It closed at \$ 198 yesterday.

When-It

When-closed

When-at

When-\$

When-198

When-yesterday

Brown cluster pair representation

When the deal ran into trouble, the stock tumbled.

Brown clusterize

When-It When-closed

When-at

When-\$

When-198

When-yesterday

Cluster12-Cluster3

Cluster12-Cluster86

Cluster12-Cluster41

Cluster12-Cluster135

Cluster12-Cluster94

Cluster12-Cluster23

Coreference features

- Number of coreferential pairs
- Does the coreferential entity or similar nouns have similar predicates?
- Does the argument pair have similar main predicates?
- Does the argument pair have similar subject?

Previous features

- Numerical, time expressions
- Production rules used by Arg1, Arg2, and both
- General inquirer tags, verb classes, polarity scores
- etc.

Experimental setup

- Stanford CoreNLP for parsing and coreference
- Brown clusters from Turian et al., 2010
- Data split is the same as Park and Cardie, 2012

Results

Ablation study

COMPARISON			EXPANSION		
Feature set	F1 9	% change	Feature set	F1	% change
All features	39.70		All features	70.23	
Ablated Brown cluster pairs	35.71	-10.05%	Ablated Brown cluster pairs	67.48	-3.92%
Ablated Production rules	37.27	-6.80%	Ablated First, last, and First 3	69.43	-1.14%
Ablated First, last, and First 3	39.18	-1.40%	Ablated Inquirer tags	69.73	-0.71%
Ablated Polarity	39.39	-0.79%	Ablated Polarity	69.92	-0.44%
CONTINGENCY			TEMPORAL		
Feature set	F1 9	% change	Feature set	F1	% change
All features	54.42		All features	28.69	
Ablated Brown cluster pairs	51.50	-5.37%	Ablated Brown cluster pairs	24.53	-14.50%
Ablated First, last, and First 3	53.56	-1.58%	Ablated Production rules	26.51	-7.60%
Ablated Polarity	53.82	-1.10%	Ablated First, last, and First 3	26.56	-7.42%
Ablated Coreference	53.92	-0.92%	Ablated Polarity	27.42	-4.43%

Finding useful pairs

- Mutual information $I(X_i, Y) = \sum_{y} \sum_{x=0,1} \hat{p}(x, y) \log \frac{\hat{p}(x, y)}{\hat{p}(x)\hat{p}(y)}$
- Brown cluster bipartite graph

cluster5-cluster9 cluster5-cluster4 cluster5-cluster3 cluster7-cluster4 cluster2-cluster10

Finding useful pairs

- Mutual information $I(X_i, Y) = \sum_{y} \sum_{x=0,1} \hat{p}(x, y) \log \frac{\hat{p}(x, y)}{\hat{p}(x)\hat{p}(y)}$
- Brown cluster bipartite graph

cluster5-cluster9 cluster5
cluster5-cluster4 cluster5
cluster5-cluster3 cluster7
cluster7-cluster4
cluster2-cluster10

cluster3 cluster4 cluster9 cluster10

Finding useful pairs

- Mutual information $I(X_i, Y) = \sum_{y} \sum_{x=0,1} \hat{p}(x, y) \log \frac{\hat{p}(x, y)}{\hat{p}(x)\hat{p}(y)}$
- Brown cluster bipartite graph

cluster5-cluster4 cluster5-cluster3 cluster5-cluster3 cluster5-cluster4 cluster5-cluster4 cluster7-cluster4 cluster4 cluster5-cluster4 cluster5-cluster5 cluster5 clu

Other useful pairs

- semantic similarity between the two arguments are indicative of Contingency relations e.g.
 - {analysts, pundits} {actual, exact, aggregate}
- generality-specific shift is indicative of Expansion relations e.g.
 - {Life, Chemical, Automotive} {GM, Ford, Barrick}

Coreferential rate comparison

Coreference influences discourse relations

- (1) **He** also asserted that exact questions weren't replicated.
 - When referred to the questions that match, **he** said it was coincidental. (WSJ0045)
- (2) **He** also asserted that exact questions weren't replicated.
 - When referred to the questions that match, **she** said it was coincidental

Conclusion

- State-of-the-art implicit discourse relation identification (online demo soon available)
- Features for this task have to go beyond words.

Results

		Current		Park and Cardie (2012)
	Precision	Recall	F1	F1
Comparison	27.34	72.41	39.70	31.32
Contingency	44.52	69.96	54.42	49.82
Expansion	69.26	95.92	80.44	79.22
Temporal	18.52	63.64	28.69	26.57