Lecture 06: Continuous Distributions

Mathematical Statistics I, MATH 60061/70061

Thursday September 16, 2021

Reference: Casella & Berger, 3.3

Normal distribution

The **Normal distribution** is a famous continuous distribution with a bell-shaped PDF.

It is extremely widely used in statistics because of the **central limit theorem**: "Under very weak assumptions, the sum of a large number of **independent and identically distributed** (i.i.d.) random variables has an approximately Normal distribution, regardless of the distribution of the individual random variables."

Standard Normal distribution

A continuous random variable Z is said to have the **standard** Normal distribution if its PDF φ is given by

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad -\infty < z < \infty.$$

We write this as $Z \sim \mathcal{N}(0,1)$. Z has mean 0 and variance 1.

The standard Normal CDF Φ is the accumulated area under the PDF:

$$\Phi(z) = \int_{-\infty}^{z} \varphi(t)dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt.$$

Standard Normal PDF and CDF

Standard Normal PDF and CDF

- Symmetry of PDF: $\varphi(z) = \varphi(-z)$.
- Symmetry of tail areas: $\Phi(z) = 1 \Phi(-z)$.
- Symmetry of Z and -Z: if $Z \sim \mathcal{N}(0,1)$, then $-Z \sim \mathcal{N}(0,1)$

$$P(-Z \le z) = P(Z \ge -z) = 1 - \Phi(-z) = \Phi(z).$$

Validity of the standard Normal PDF

Show
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = 1.$$

Validity of the standard Normal PDF

Show
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = 1.$$

$$\begin{split} \left(\int_{-\infty}^{\infty}e^{-z^2/2}dz\right)\left(\int_{-\infty}^{\infty}e^{-z^2/2}dz\right) &= \left(\int_{-\infty}^{\infty}e^{-x^2/2}dx\right)\left(\int_{-\infty}^{\infty}e^{-y^2/2}dy\right) \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-\frac{x^2+y^2}{2}}dxdy \\ &= \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2/2}rdrd\theta \\ &= \int_{0}^{2\pi}\left(\int_{0}^{\infty}e^{-r^2/2}rdr\right)d\theta \\ &= \int_{0}^{2\pi}1d\theta = 2\pi. \end{split}$$

Therefore,

$$\int_{-\infty}^{\infty} e^{-z^2/2} dz = \sqrt{2\pi}.$$

Expectation and variance of $Z \sim \mathcal{N}(0,1)$

Expectation: $E(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-z^2/2} dz = 0$ [odd function]

By LOTUS,

$$Var(Z) = E(Z^{2}) - (EZ)^{2} = E(Z^{2})$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^{2} e^{-z^{2}/2} dz \qquad [\text{even function}]$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} z^{2} e^{-z^{2}/2} dz$$

Using integration by parts with u=z and $dv=ze^{-z^2/2}dz$, so du=dz and $v=-e^{-z^2/2}$:

$$\operatorname{Var}(Z) = \frac{2}{\sqrt{2\pi}} \left(-ze^{-z^2/2} \Big|_0^{\infty} + \int_0^{\infty} e^{-z^2/2} dz \right)$$
$$= \frac{2}{\sqrt{2\pi}} \left(0 + \frac{\sqrt{2\pi}}{2} \right)$$
$$= 1.$$

Normal distribution

If $Z \sim \mathcal{N}(0,1)$, then $X = \mu + \sigma Z$ is said to have the **Normal** distribution with mean μ and variance σ^2 , for any real μ and σ^2 with $\sigma > 0$. We denote this by $X \sim \mathcal{N}(\mu, \sigma^2)$.

Expectation and variance of X:

$$E(\mu + \sigma Z) = E(\mu) + \sigma E(Z) = \mu,$$

$$Var(\mu + \sigma Z) = Var(\sigma Z) = \sigma^{2} Var(Z) = \sigma^{2}.$$

The standardized version of X is

$$\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1).$$

Normal CDF and PDF

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then the CDF of X is

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right),\,$$

and the PDF of X is

$$f(x) = \varphi\left(\frac{x-\mu}{\sigma}\right)\frac{1}{\sigma}.$$

Normal CDF and PDF

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then the CDF of X is

$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right),\,$$

and the PDF of X is

$$f(x) = \varphi\left(\frac{x-\mu}{\sigma}\right)\frac{1}{\sigma}.$$

CDF:

$$F(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

PDF:

$$\begin{split} f(x) &= \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) = \varphi\left(\frac{x-\mu}{\sigma}\right) \frac{1}{\sigma} \qquad \text{[chain rule]} \\ &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \end{split}$$

68-95-99.7% rule

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then

$$P(|X - \mu| < \sigma) \approx 0.68,$$

$$P(|X - \mu| < 2\sigma) \approx 0.95,$$

$$P(|X - \mu| < 3\sigma) \approx 0.997.$$

After standardization,

$$P(|Z| < 1) \approx 0.68,$$

 $P(|Z| < 2) \approx 0.95,$
 $P(|Z| < 3) \approx 0.997.$

Log-Normal distribution

Let $X \sim \mathcal{N}(0,1)$. The distribution of $Y = e^X$ is the **Log-Normal**.

Log-Normal distribution

Let $X \sim \mathcal{N}(0,1)$. The distribution of $Y = e^X$ is the **Log-Normal**.

Since $g(x)=e^x$ is strictly increasing, we can use the change of variables formula to find the PDF of Y. Let $y=e^x$, so $x=\log y$ and $dy/dx=e^x$. Then

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \varphi(x) \frac{1}{e^x} = \varphi(\log y) \frac{1}{y}, \quad y > 0.$$

Log-Normal distribution

Let $X \sim \mathcal{N}(0,1)$. The distribution of $Y = e^X$ is the **Log-Normal**.

Since $g(x)=e^x$ is strictly increasing, we can use the change of variables formula to find the PDF of Y. Let $y=e^x$, so $x=\log y$ and $dy/dx=e^x$. Then

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \varphi(x) \frac{1}{e^x} = \varphi(\log y) \frac{1}{y}, \quad y > 0.$$

Alternatively, the CDF of Y is

$$F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \log y) = \Phi(\log y),$$

so the PDF is

$$f_Y(y) = \frac{d}{dy}\Phi(\log y) = \varphi(\log y)\frac{1}{y}, \quad y > 0.$$

Chi-Square distribution

Let $X \sim \mathcal{N}(0,1), \ Y = X^2.$ The distribution of Y is an example of a **Chi-Square distribution**.

Chi-Square distribution

Let $X \sim \mathcal{N}(0,1)$, $Y = X^2$. The distribution of Y is an example of a **Chi-Square distribution**.

The event $X^2 \leq y$ is equivalent to the event $-\sqrt{y} \leq X \leq \sqrt{y}$, so the CDF of Y is

$$F_Y(y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$

= $\Phi(\sqrt{y}) - \Phi(-\sqrt{y})$
= $2\Phi(\sqrt{y}) - 1$,

so

$$f_Y(y) = 2\varphi(\sqrt{y}) \cdot \frac{1}{2} y^{-1/2} = \varphi(\sqrt{y}) y^{-1/2}, \quad y > 0.$$

Cauchy distribution

Let X and Y be i.i.d. $\mathcal{N}(0,1)$, and let T=X/Y. The distribution of T is called the **Cauchy distribution**.

Cauchy distribution

Let X and Y be i.i.d. $\mathcal{N}(0,1)$, and let T=X/Y. The distribution of T is called the **Cauchy distribution**.

To find the CDF of T:

$$\begin{split} F_T(t) &= P(T \le t) \\ &= P(\frac{X}{Y} \le t) \\ &= P(X \le tY \mid Y > 0) + P(X \ge tY \mid Y < 0) \\ &= P(X \le tY \mid Y > 0) + P(X \le t(-Y) \mid Y < 0) \\ &= P(X \le t|Y|) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{t|y|} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dx dy. \end{split}$$

Cauchy distribution

$$F_T(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \left(\int_{-\infty}^{t|y|} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \right) dy$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \Phi(t|y|) dy$$
$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-y^2/2} \Phi(ty) dy$$

Differentiating the CDF with respect to t gives the PDF:

$$f_T(t) = F'_T(t) = \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{\partial}{\partial t} \left(e^{-y^2/2} \Phi(ty) \right) dy$$

$$= \sqrt{\frac{2}{\pi}} \int_0^\infty y e^{-y^2/2} \varphi(ty) dy$$

$$= \frac{1}{\pi} \int_0^\infty y e^{-\frac{(1+t^2)y^2}{2}} dy$$

$$= \frac{1}{\pi(1+t^2)}. \quad [u = (1+t^2)y^2/2, du = (1+t^2)y dy]$$

Cauchy PDF

Cauchy PDF (dark) and $\mathcal{N}(0,1)$ PDF (light).

- The Cauchy distribution has much heavier tails than the Normal distribution.
- The expected value of a Cauchy random variable does not exist.
 - For large t, $\frac{t}{1+t^2} pprox \frac{1}{t}$, and $\int_1^\infty \frac{1}{t} dt = \infty$.

Exponential distribution

The **Exponential distribution** is the continuous counterpart to the Geometric distribution.

- Geometric random variable counts the *number of failures* before the first success in a sequence of Bernoulli trials.
- Exponential random variable represents the waiting time until the first arrival of a success.
 - Successes arrive at a rate of λ successes per unit of time.
 - The average # of successes in a time interval of length t is λt .

Exponential PDF and CDF

A continuous random variable X is said to have the **Exponential** distribution with parameter λ , $X \sim \operatorname{Expo}(\lambda)$, where $\lambda > 0$, if its PDF is

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

The corresponding CDF is

$$F(x) = 1 - e^{-\lambda x}, \quad x > 0.$$

Exponential mean and variance

Let $X \sim \text{Expo}(1)$, then $f(x) = e^{-x}$, for x > 0.

E(X) and $\mathrm{Var}(X)$ can be obtained using standard integration by parts:

$$E(X) = \int_0^\infty x e^{-x} dx = 1, \quad [u = x, dv = e^{-x} dx]$$

$$E(X^2) = \int_0^\infty x^2 e^{-x} dx = 2, \quad [u = x^2, dv = e^{-x} dx]$$

$$Var(X) = E(X^2) - (EX)^2 = 1.$$

Exponential mean and variance

Let $X \sim \text{Expo}(1)$, then $f(x) = e^{-x}$, for x > 0.

E(X) and $\mathrm{Var}(X)$ can be obtained using standard integration by parts:

$$E(X) = \int_0^\infty x e^{-x} dx = 1, \quad [u = x, dv = e^{-x} dx]$$

$$E(X^2) = \int_0^\infty x^2 e^{-x} dx = 2, \quad [u = x^2, dv = e^{-x} dx]$$

$$Var(X) = E(X^2) - (EX)^2 = 1.$$

The expected value and variance of $Y = X/\lambda \sim \text{Expo}(\lambda)$:

$$E(Y) = \frac{1}{\lambda} E(X) = \frac{1}{\lambda}, \quad \operatorname{Var}(Y) = \frac{1}{\lambda^2} \operatorname{Var}(X) = \frac{1}{\lambda^2}.$$

Memoryless property

A continuous distribution is said to have the **memoryless property** if a random variable X from that distribution satisfies

$$P(X \ge s + t \mid X \ge s) = P(X \ge t)$$

for all $s, t \geq 0$.

Exponential distribution has the memoryless property. Let $X \sim \operatorname{Expo}(\lambda)$, then

$$P(X \ge s + t \mid X \ge s) = \frac{P(X \ge s + t)}{P(X \ge s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X \ge t).$$

In fact, no other continuous distribution on $(0,\infty)$ is memoryless.

The importance of the Exponential

- The Exponential distribution is an important model in its own right, since some physical phenomena, such as radioactive decay, do exhibit the memoryless property.
- The Exponential distribution is well-connected to other named distributions, such as Geometric and Poisson.
- The Exponential distribution serves as a building block for more flexible distributions, such as Weibull.

Minimum of independent Exponentials

Let X_1, \ldots, X_n be independent with $X_j \sim \text{Expo}(\lambda_j)$. Let $L = \min(X_1, \ldots, X_n)$. What is the distribution of L?

Gamma distribution

The Gamma distribution is a continuous distribution on the positive real line, which generalizes the Exponential distribution.

A random variable Y is said to have the **Gamma distribution** with parameters a and λ , $Y \sim \operatorname{Gamma}(a,\lambda)$, where a>0 and $\lambda>0$, if its PDF is

$$f(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0.$$

where Γ is the **gamma function**, defined by

$$\Gamma(a) = \int_0^\infty x^a e^{-x} \frac{dx}{x},$$

for real numbers a > 0.

Gamma function

Two important properties of the gamma function.

• $\Gamma(a+1)=a\Gamma(a)$ for all a>0. This follows from integration by parts:

$$\Gamma(a+1) = \int_0^\infty x^a e^{-x} dx = -x^a e^{-x} \Big|_0^\infty + a \int_0^\infty x^{a-1} e^{-x} dx = a\Gamma(a)$$

• $\Gamma(n)=(n-1)!$ if n is a positive integer. This can be proved by induction, starting with n=1 and using the recursive relation $\Gamma(a+1)=a\Gamma(a)$.

The Gamma(a, 1) distribution

Dividing both sides of the $\Gamma(a)$ definition by $\Gamma(a)$ gives

$$1 = \int_0^\infty \frac{1}{\Gamma(a)} x^a e^{-x} \frac{dx}{x},$$

where the function under the integral is a valid PDF supported on $(0,\infty)$. This is the PDF of the Gamma distribution with parameters a and 1, i.e., $X \sim \operatorname{Gamma}(a,1)$ if its PDF is

$$f_X(x) = \frac{1}{\Gamma(a)} x^a e^{-x} \frac{1}{x}, \quad x > 0.$$

The $Gamma(a, \lambda)$ distribution

From the $\operatorname{Gamma}(a,1)$ distribution, we can obtain the general Gamma distribution by a scale transformation: if $X \sim \operatorname{Gamma}(a,1)$ and $\lambda > 0$, then $Y = X/\lambda \sim \operatorname{Gamma}(a,\lambda)$.

By the change of variables formula with $x=\lambda y$ and $dx/dy=\lambda$, the PDF of Y is

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{\lambda y} \lambda = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}$$

for y > 0.

Parameters of the Gamma distribution

The PDF of the $Gamma(a, \lambda)$ is

$$f(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0.$$

- The Gamma(1, λ) PDF is $f(y) = \lambda e^{-\lambda y}$, so the Gamma(1, λ) and Expo(λ) distributions are the same.
- For small values of a, the PDF is skewed, but as a increases, the PDF starts to look more symmetrical and bell-shaped.
- ullet Increasing λ compresses the PDF toward smaller values.

Gamma PDFs

Mean and variance of $Gamma(a, \lambda)$

Mean of $X \sim \text{Gamma}(a, 1)$:

$$\begin{split} E(X) &= \int_0^\infty x \cdot \frac{1}{\Gamma(a)} x^a e^{-x} \frac{dx}{x} = \frac{1}{\Gamma(a)} \int_0^\infty x^{a+1} e^{-x} \frac{dx}{x} \\ &= \frac{\Gamma(a+1)}{\Gamma(a)} = a. \end{split}$$

Variance of $X \sim \text{Gamma}(a, 1)$:

$$E(X^{2}) = \int_{0}^{\infty} \frac{1}{\Gamma(a)} x^{a+2} e^{-x} \frac{dx}{x} = \frac{\Gamma(a+2)}{\Gamma(a)} = (a+1)a,$$

$$Var(X) = (a+1)a - a^2 = a.$$

For $Y = X/\lambda \sim \text{Gamma}(a, \lambda)$,

$$E(Y) = \frac{1}{\lambda}E(X) = \frac{a}{\lambda}, \quad Var(Y) = \frac{1}{\lambda^2}Var(Y) = \frac{a}{\lambda^2}.$$

Sum of Exponential RVs and sum of Gamma RVs

Let X_1, \ldots, X_n be i.i.d. $\operatorname{Expo}(\lambda)$. What is the distribution of $X_1 + \cdots + X_n$?

Let X_1, \ldots, X_n be independent with $X_j \sim \operatorname{Gamma}(a_j, \lambda)$. What is the distribution of $X_1 + \cdots + X_n$?

Beta distribution

A random variable X is said to have the **Beta distribution** with parameters a and b, where a>0 and b>0, if its PDF is

$$f(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, \quad 0 < x < 1,$$

where the constant $\beta(a,b)$ is chosen to make the PDF integrate to 1. We write this as $X \sim \mathrm{Beta}(a,b)$.

The Beta distribution is a continuous distribution on the interval (0,1). It is a generalization of the $\mathrm{Unif}(0,1)$ distribution, allowing the PDF to be non-constant on (0,1)

Beta integral

By definition, the constant $\beta(a,b)$ satisfies

$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx.$$

An integral of this form is called a **beta integral**.

The beta integral is related to the gamma function through the following identity:

$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

Beta distribution

The parameters a and b determine the shape of a Beta distribution.

- If a=b=1, the $\mathrm{Beta}(1,1)$ PDF is constant on (0,1), so the $\mathrm{Beta}(1,1)$ and $\mathrm{Unif}(0,1)$ distributions are the same.
- If a = b, the PDF is symmetric about 1/2.
- If a > b, the PDF favors values larger than 1/2; if a < b, the PDF favors values smaller than 1/2.
- If a < 1 and b < 1, the PDF is U-shaped and opens upward.
- If a > 1 and b > 1, the PDF opens down.

Beta PDFs

