GNE.3230R1C39 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Eaton, et al.

Appl. No.

10/063,557

Filed

May 2; 2002

For

SECRETED AND

TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC

ACIDS ENCODING THE SAME

Examiner

David J. Blanchard

Group Art Unit

1642

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 CFR §1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

- I, J. Christopher Grimaldi, declare and state as follows:
- 1. I am a Senior Research Associate in the Molecular Biology Department of Genentech, Inc., South San Francisco, CA 94080.
- 2. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).
- 3. I joined Genentech in January of 1999. From 1999 to 2003, I directed the Cloning Laboratory in the Molecular Biology Department. During this time I directed or performed numerous molecular biology techniques including semi-quantitative Polymerase Chain Reaction (PCR) analyses. I am currently involved, among other projects, in the isolation of genes coding for membrane associated proteins which can be used as targets for antibody therapeutics against cancer. In connection with the above-identified patent application, I personally performed or directed the semi-quantitative PCR gene expression analyses in the assay entitled "Tumor Versus Normal Differential Tissue Expression Distribution," which is described in EXAMPLE 18 in the specification. These studies were used to identify differences in gene expression between tumor tissue and their normal counterparts.
- 4. EXAMPLE 18 reports the results of the PCR analyses conducted as part of the investigating of several newly discovered DNA sequences. This process included developing

Appl. No.

10/063,557

Filed

May 2, 2002

primers and analyzing expression of the DNA sequences of interest in normal and tumor tissues. The analyses were designed to determine whether a difference exists between gene expression in normal tissues as compared to tumor in the same tissue type.

- 5. The DNA libraries used in the gene expression studies were made from pooled samples of normal and of tumor tissues. Data from pooled samples is more likely to be accurate than data obtained from a sample from a single individual. That is, the detection of variations in gene expression is likely to represent a more generally relevant condition when pooled samples from normal tissues are compared with pooled samples from tumors in the same tissue type.
- 6. In differential gene expression studies, one looks for genes whose expression levels differ significantly under different conditions, for example, in normal versus diseased tissue. Thus, I conducted a semi-quantitative analysis of the expression of the DNA sequences of interest in normal versus tumor tissues. Expression levels were graded according to a scale of +, -, and +/- to indicate the amount of the specific signal detected. Using the widely accepted technique of PCR, it was determined whether the polynucleotides tested were more highly expressed, less expressed, or whether expression remained the same in tumor tissue as compared to its normal counterpart. Because this technique relies on the visual detection of ethidium bromide staining of PCR products on agarose gels, it is reasonable to assume that any detectable differences seen between two samples will represent at least a two fold difference in cDNA.
- 7. The results of the gene expression studies indicate that the genes of interest can be used to differentiate tumor from normal. The precise levels of gene expression are irrelevant; what matters is that there is a relative difference in expression between normal tissue and tumor tissue. The precise type of tumor is also irrelevant; again, the assay was designed to indicate whether a difference exists between normal tissue and tumor tissue of the same type. If a difference is detected, this indicates that the gene and its corresponding polypeptide and antibodies against the polypeptide are useful for diagnostic purposes, to screen samples to differentiate between normal and tumor. Additional studies can then be conducted if further information is desired.
- 8. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

By: ____

Date: 8 10/2004

Christopher Grimald

S:\DOCS\AOK\AOK 5591.DOC/081004

J. Christopher Grimaldi

1434-36th Ave. San Francisco, CA 94122 (415) 681-1639 (Home)

EDUCATION

University of California, Berkeley Bachelor of Arts in Molecular Biology, 1984

EMPLOYMENT EXPERIENCE

SRA

Genentech Inc., South San Francisco; 1/99 to present

Previously, was responsible to direct and manage the Cloning Lab. Currently focused on isolating cancer specific genes for the Tumor Antigen (TAP), and Secreted Tumor Protein (STOP) projects for the Oncology Department as well as Immunologically relevant genes for the Immunology Department. Directed a lab of 6 scientists focused on a company-wide team effort to identify and isolate secreted proteins for potential therapeutic use (SPDI). For the SPDI project my duties were, among other things, the critically important coordination of the cloning of thousands of putative genes, by developing a smooth process of communication between the Bioinformatics, Cloning, Sequencing, and Legal teams. Collaborated with several groups to discover novel genes through the Curagen project, a unique differential display methodology. Interacted extensively with the Legal team providing essential data needed for filing patents on novel genes discovered through the SPDI, TAP and Curagen projects. My group has developed, implemented and patented high throughput cloning methodologies that have proven to be essential for the isolation of hundreds of novel genes for the SPDI, TAP and Curagen projects as well as dozens of other smaller projects.

Scientist

DNAX Research Institute, Palo Alto; 9/91 to 1/99

Involved in multiple projects aimed at understanding novel genes discovered through bioinformatics studies and functional assays. Developed and patented a method for the specific depletion of eosinophils in vivo using monoclonal antibodies. Developed and implemented essential technical methodologies and provided strategic direction in the areas of expression, cloning, protein purification, general molecular biology, and monoclonal antibody production. Trained and supervised numerous technical staff.

Facilities Manager

Corixa, Redwood City; 5/89 - 7/91.

Directed plant-related activities, which included expansion planning, maintenance, safety, purchasing, inventory control, shipping and receiving, and laboratory management. Designed and implemented the safety program. Also served as liaison to regulatory agencies at the local, state and federal level. Was in charge of property leases, leasehold improvements, etc. Negotiated vendor contracts and directed the purchasing department. Trained and supervised personnel to carry out the above-mentioned duties.

SRA University of California, San Francisco Cancer Research Institute; 2/87-4/89.

Was responsible for numerous cloning projects including: studies of somatic hypermutation, studies of AIDS-associated lymphomas, and cloning of t(5;14), t(11;14), and t(8;14) translocations. Focused on the activation of hemopoietic growth factors involved in the t(5;14) translocation in leukemia patients..

Research Technician

Berlex Biosciences, South San Francisco; 7/85-2/87.

Worked on a subunit porcine vaccine directed against Mycoplasma hyopneumoniae. Was responsible for generating genomic libraries, screening with degenerate oligonucleotides, and characterizing and expressing clones in E. coli. Also constructed a general purpose expression vector for use by other scientific teams.

PUBLICATIONS

- 1. Hilary F. Clark, et al. "The Secreted Protein Discovery Initiative (SPDI), a Large-scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: a bioinformatics assessment." Genome Res. Vol 13(10), 2265-2270, 2003
- 2. Sean H. Adams, Clarissa Chui Sarah L. Schilbach, Xing Xian Yu, Audrey D. Goddard, J. Christopher Grimaldi, James Lee, Patrick Dowd, David A. Lewin, & Steven Colman "BFIT, a Unique Acyl-CoA Thioesterase Induced in Thermogenic Brown Adiopose Tissue: Cloning, organization of the humanb gene and assessment of a potential link to obesity" Biochemical Journal, Vol 360, 135-142, 2001
- 3. Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL, Pham T, Yansura D, Wong TA, Grimaldi JC, Corpuz RT, Singh JS, Frantz GD, , Devaux B, Crowley CW, Schwall RH, Eberhard DA, Rastelli L, Polakis P, and Rennica D. "Overexpression of the Retenoic Acid-Responsive Gene Stra6 in Human Cancers and its Synergistic Activation by Wnt-1 and Retinoic Acid." Cancer Research Vol. 61(10), 4197-4205, 2001
- 4. Jeanne Kahn, Fuad Mehraban, Gladdys Ingle, Xiaohua Xin, Juliet E. Bryant, Gordon Vehar, Jill Schoenfeld, J. Christopher Grimaldi (incorrectly named as "Grimaldi, CJ"), Franklin Peale, Aparna Draksharapu, David A. Lewin, and Mary E. Gerritsen. "Gene Expression Profiling in an in Vitro Model of Angiogenesis." American Journal of Pathology Vol 156(6), 1887-1900, 2000.
- 5. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, Robinson DS, Hosken N, Ferlin WG, Wu X, Soto H, O'Garra A, Howard MC, Coffman RL. "Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). Journal of Leukocyte Biology; Vol. 65(6), 846-53, 1999
- 6. Oliver AM, Grimaldi JC, Howard MC, Kearney JF. "Independently ligating CD38 and Fc gammaRIIB relays a dominant negative signal to B cells." Hybridoma Vol. 18(2), 113-9, 1999

- Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, Murray R, Schuber F, Howard MC. "Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses." Blood Vol. 92(4), 1324-33, 1998
- Frances E. Lund, Nanette W. Solvason, Michael P. Cooke, Andrew W. Heath, J. Christopher Grimaldi, Troy D. Randall, R. M. E. Parkhouse, Christopher C Goodnow and Maureen C. Howard. "Signaling through murine CD38 is impaired in antigen receptor unresponsive B cells." European Journal of Immunology, Vol. 25(5), 1338-1345, 1995
- M. J. Guimaraes, J. F. Bazan, A. Zolotnik, M. V. Wiles, J. C. Grimaldi, F. Lee, T. McClanahan. "A new approach to the study of haematopoietic development in the yolk sac and embryoid body." Development, Vol. 121(10), 3335-3346, 1995
- 5 10. J. Christopher Grimaldi, Sriram Balasubramanian, J. Fernando Bazan, Armen Shanafelt, Gerard Zurawski and Maureen Howard. "CD38-mediated protein ribosylation." Journal of Immunology, Vol. 155(2), 811-817, 1995
- 11. Leopoldo Santos-Argumedo, Frances F. Lund, Andrew W. Heath, Nanette Solvason, Wei Wei Wu, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regulator of CD38 induced signal transduction." International Immunology, Vol 7(2), 163-170, 1995
- Frances Lund, Nanette Solvason, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "Murine CD38: An immunoregulatory ectoenzyme." Immunology Today, Vol. 16(10), 469-473, 1995
- Maureen Howard, J. Christopher Grimaldi, J. Fernando Bazan, Frances E. Lund, Leopoldo Santos-Argumedo, R. M. E. Parkhouse, Timothy F. Walseth, and Hon Cheung Lee.
 "Formation and Hydrolysis of Cyclic ADP-Ribose Catalyzed by Lymphocyte Antigen CD38." Science, Vol. 262, 1056-1059, 1993
- 14. Nobuyuki Harada, Leopoldo Santos-Argumedo, Ray Chang, J. Christopher Grimaldi, Frances Lund, Camilynn I. Brannan, Neal G. Copeland, Nancy A. Jenkins, Andrew Heath, R. M. E. Parkhouse and Maureen Howard. "Expression Cloning of a cDNA Encoding a Novel Murine B Cell Activation Marker: Homology to Human CD38." The Journal of Immunology, Vol. 151, 3111-3118, 1993
- 15. David J. Rawlings, Douglas C. Saffran, Satoshi Tsukada, David A. Largaespada, J. Christopher Grimaldi, Lucie Cohen Randolph N. Mohr, J. Fernando Bazan, Maureen Howard, Neal G. Copeland, Nancy A. Jenkins, Owen Witte. "Mutation of Unique Region of Bruton's Tyrosine Kinase in Immunodeficient XID Mice." Science, Vol. 261, 358-360, 1993
- J. Christopher Grimaldi, Raul Torres, Christine A. Kozak, Ray Chang, Edward Clark, Maureen Howard, and Debra A. Cockayne. "Genomic Structure and Chromosomal Mapping of the Murine CD40 Gene." The Journal of Immunology, Vol 149, 3921-3926, 1992
- 17. Timothy C. Meeker, Bruce Shiramizu, Lawrence Kaplan, Brian Herndier, Henry Sanchez, J. Christopher Grimaldi, James Baumgartner, Jacab Rachlin, Ellen Feigal, Mark Rosenblum and Michael S. McGrath. "Evidence for Molecular Subtypes of HIV-Associated Lymphoma:

Division into Peripheral Monoclonal, Polyclonal and Central Nervous System Lymphoma." AIDS, Vol. 5, 669-674, 1991

- 18. Ann Grimaldi and Chris Grimaldi. "Small-Scale Lambda DNA Prep." Contribution to Current Protocols in Molecular Biology, Supplement 5, Winter 1989
- J. Christopher Grimaldi, Timothy C. Meeker. "The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene." Blood, Vol. 73, 2081-2085, 1989
- Timothy C. Meeker, J. Christopher Grimaldi, et al. "An Additional Breakpoint Region in the BCL-1 Locus Associated with the t(11;14) (q13;q32) Translocation of B-Lymphocytic Malignancy." Blood, Vol. 74, 1801-1806, 1989
- 21 Timothy C. Meeker, J. Christopher Grimaldi, Robert O'Rourke, et al. "Lack of Detectable Somatic Hypermutation in the V-Region of the Ig H Chain Gene of a Human Chronic B Lymphocytic Leukemia." The Journal of Immunology, Vol. 141, 3994-3998, 1988

MANUSCRIPTS IN PREPARATION

 Sriram Balasubramanian, J. Christopher Grimaldi, J. Fernando Bazan, Gerard Zurawski and Maureen Howard. "Structural and functional characterization of CD38: Identification of active site residues"

PATENTS

- 1. "Methods for Eosinophil Depletion with Antibody to CCR3 Receptor" (US 6,207,155 B1).
- 2. "Amplification Based Cloning Method." (US 6,607,899)
- 3. Ashkenazi et al., "Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same." (this patent covers several hundred genes)
- "IL-17 Homologous Polypeptides and Therapeutic Uses Thereof"
- "Method of Diagnosing and Treating Cartilaginous Disorders."

MEMBERSHIPS AND ACTIVITIES

Editor

Frontiers in Bioscience

Member

DNAX Safety Committee 1991-1999

Biological Safety Affairs Forum (BSAF) 1990-1991 Environmental Law Foundation (ELF) 1990-1991 GNE.3230R1C39 PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Eaton, et al.

Appl. No.

10/063,557

Filed

May 2, 2002

For

SECRETED AND

TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

Examiner

David J. Blanchard

Group Art Unit

1642

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

- I, J. Christopher Grimaldi, declare and say as follows:
- 1. I am a Senior Research Associate in the Molecular Biology Department of Genentech, Inc., South San Francisco, CA 94080.
- 2. I joined Genentech in January of 1999. From 1999 to 2003, I directed the Cloning Laboratory in the Molecular Biology Department. During this time I directed or performed numerous molecular biology techniques including qualitative Polymerase Chain Reaction (PCR) analyses. I am currently involved in, among other projects, the isolation of genes coding for membrane associated proteins which can be used as targets for antibody therapeutics against cancer. In connection with the above-identified patent application, I personally performed or directed the semi-quantitative PCR analyses in the assay entitled "Tumor Versus Normal Differential Tissue Expression Distribution" which is described in EXAMPLE 18 in the specification that were used to identify differences in gene expression between tumor tissue and their normal counterparts.
- 3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).
- 4. In differential gene expression studies, one looks for genes whose expression levels differ significantly under different conditions, for example, in normal versus diseased tissue.

Appl. No. : 10/063,557 Filed : May 2, 2002

Chromosomal aberrations, such as gene amplification, and chromosomal translocations are important markers of specific types of cancer and lead to the aberrant expression of specific genes and their encoded polypeptides, including over-expression and under-expression. For example, gene amplification is a process in which specific regions of a chromosome are duplicated, thus creating multiple copies of certain genes that normally exist as a single copy. Gene under-expression can occur when a gene is not transcribed into mRNA. In addition, chromosomal translocations occur when two different chromosomes break and are rejoined to each other chromosome resulting in a chimeric chromosome which displays a different expression pattern relative to the parent chromosomes. Amplification of certain genes such as Her2/Neu [Singleton et al., Pathol. Annu., 27Pt1:165-190], or chromosomal translocations such as t(5;14), [Grimaldi et al., Blood, 73(8):2081-2085(1989); Meeker et al., Blood, 76(2):285-289(1990)] give cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy. When the chromosomal aberration results in the aberrant expression of a mRNA and the corresponding gene product (the polypeptide), as it does in the aforementioned cases, the gene product is a promising target for cancer therapy, for example, by the therapeutic antibody approach.

- Comparison of gene expression levels in normal versus diseased tissue has important implications both diagnostically and therapeutically. For example, those who work in this field are well aware that in the vast majority of cases, when a gene is over-expressed, as evidenced by an increased production of mRNA, the gene product or polypeptide will also be over-expressed. It is unlikely that one identifies increased mRNA expression without associated increased protein expression. This same principle applies to gene under-expression. When a gene is under-expressed, the gene product is also likely to be under-expressed. Stated in another way, two cell samples which have differing mRNA concentrations for a specific gene are expected to have correspondingly different concentration of protein for that gene. Techniques used to detect mRNA, such as Northern Blotting, Differential Display, in situ hybridization, quantitative PCR, Taqman, and more recently Microarray technology all rely on the dogma that a change in mRNA will represent a similar change in protein. If this dogma did not hold true then these techniques would have little value and not be so widely used. The use of mRNA quantitation techniques have identified a seemingly endless number of genes which are differentially expressed in various tissues and these genes have subsequently been shown to have correspondingly similar changes in their protein levels. Thus, the detection of increased mRNA expression is expected to result in increased polypeptide expression, and the detection of decreased mRNA expression is expected to result in decreased polypeptide expression. detection of increased or decreased polypeptide expression can be used for cancer diagnosis and treatment.
- 6. However, even in the rare case where the protein expression does not correlate with the mRNA expression, this still provides significant information useful for cancer diagnosis and treatment. For example, if over- or under-expression of a gene product does not correlate with over- or under-expression of mRNA in certain tumor types but does so in others, then identification of both gene expression and protein expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over- or

Appl. No.

10/063,557

Filed

May 2, 2002

under-expression of the gene product in the presence of a particular over- or under-expression of mRNA is crucial information for the practicing clinician. For example, if a gene is over-expressed but the corresponding gene product is not significantly over-expressed, the clinician accordingly will decide <u>not</u> to treat a patient with agents that target that gene product.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

 $\mathbf{R}\mathbf{v}$

. Christopher Grimaldi

S:\DOCS\AOK\A\DK-5479.DOC

J. Christopher Grimaldi

1434-36th Ave. San Francisco, CA 94122 (415) 681-1639 (Home)

EDUCATION

University of California, Berkeley

Bachelor of Arts in Molecular Biology, 1984

EMPLOYMENT EXPERIENCE

SRA

Genentech Inc., South San Francisco; 1/99 to present

Previously, was responsible to direct and manage the Cloning Lab. Currently focused on isolating cancer specific genes for the Tumor Antigen (TAP), and Secreted Tumor Protein (STOP) projects for the Oncology Department as well as Immunologically relevant genes for the Immunology Department. Directed a lab of 6 scientists focused on a company-wide team effort to identify and isolate secreted proteins for potential therapeutic use (SPDI). For the SPDI project my duties were, among other things, the critically important coordination of the cloning of thousands of putative genes, by developing a smooth process of communication between the Bioinformatics, Cloning, Sequencing, and Legal teams. Collaborated with several groups to discover novel genes through the Curagen project, a unique differential display methodology. Interacted extensively with the Legal team providing essential data needed for filing patents on novel genes discovered through the SPDI, TAP and Curagen projects. My group has developed, implemented and patented high throughput cloning methodologies that have proven to be essential for the isolation of hundreds of novel genes for the SPDI, TAP and Curagen projects as well as dozens of other smaller projects.

Scientist

DNAX Research Institute, Palo Alto; 9/91 to 1/99

Involved in multiple projects aimed at understanding novel genes discovered through bioinformatics studies and functional assays. Developed and patented a method for the specific depletion of eosinophils in vivo using monoclonal antibodies. Developed and implemented essential technical methodologies and provided strategic direction in the areas of expression, cloning, protein purification, general molecular biology, and monoclonal antibody production. Trained and supervised numerous technical staff.

Facilities

Manager

Corixa, Redwood City; 5/89 - 7/91.

Directed plant-related activities, which included expansion planning, maintenance, safety, purchasing, inventory control, shipping and receiving, and laboratory management. Designed and implemented the safety program. Also served as liaison to regulatory agencies at the local, state and federal level. Was in charge of property leases, leasehold improvements, etc. Negotiated vendor contracts and directed the purchasing department. Trained and supervised personnel to carry out the above-mentioned duties.

SRA University of California, San Francisco Cancer Research Institute; 2/87-4/89.

Was responsible for numerous cloning projects including: studies of somatic hypermutation, studies of AIDS-associated lymphomas, and cloning of t(5;14), t(11;14), and t(8;14) translocations. Focused on the activation of hemopoietic growth factors involved in the t(5;14) translocation in leukemia patients..

Research Technician

Berlex Biosciences, South San Francisco; 7/85-2/87.

Worked on a subunit porcine vaccine directed against Mycoplasma hyopneumoniae. Was responsible for generating genomic libraries, screening with degenerate oligonucleotides, and characterizing and expressing clones in E. coli. Also constructed a general purpose expression vector for use by other scientific teams.

PUBLICATIONS

- 1. Hilary F. Clark, et al. "The Secreted Protein Discovery Initiative (SPDI), a Large-scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: a bioinformatics assessment." Genome Res. Vol 13(10), 2265-2270, 2003
- 2. Sean H. Adams, Clarissa Chui Sarah L. Schilbach, Xing Xian Yu, Audrey D. Goddard, J. Christopher Grimaldi, James Lee, Patrick Dowd, David A. Lewin, & Steven Colman BFIT, a Unique Acyl-CoA Thioesterase Induced in Thermogenic Brown Adiopose Tissue: Cloning, organization of the humanb gene and assessment of a potential link to obesity" Biochemical Journal, Vol 360, 135-142, 2001
- 3. Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL, Pham T, Yansura D, Wong TA, Grimaldi JC, Corpuz RT, Singh JS, Frantz GD, , Devaux B, Crowley CW, Schwall RH, Eberhard DA, Rastelli L, Polakis P, and Pennica D. "Overexpression of the Retenoic Acid-Responsive Gene Stra6 in Human Cancers and its Synergistic Activation by Wnt-1 and Retinoic Acid." Cancer Research Vol. 61(10), 4197-4205, 2001
- 4. Jeanne Kahn, Fuad Mehraban, Gladdys Ingle, Xiaohua Xin, Juliet E. Bryant, Gordon Vehar, Jill Schoenfeld, J. Christopher Grimaldi (incorrectly named as "Grimaldi, CJ"), Franklin Peale, Aparna Draksharapu, David A. Lewin, and Mary E. Gerritsen. "Gene Expression Profiling in an in Vitro Model of Angiogenesis." American Journal of Pathology Vol 156(6), 1887-1900, 2000.
- 5. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, Robinson DS, Hosken N, Ferlin WG, Wu X, Soto H, O'Garra A, Howard MC, Coffman RL. "Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). Journal of Leukocyte Biology; Vol. 65(6), 846-53, 1999
- Oliver AM, Grimaldi JC, Howard MC, Kearney JF. "Independently ligating CD38 and Fc gammaRIIB relays a dominant negative signal to B cells." Hybridoma Vol. 18(2), 113-9, 1999

- Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, Murray R, Schuber F, Howard MC. "Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses." Blood Vol. 92(4), 1324-33, 1998
- 8. Frances E. Lund, Nanette W. Solvason, Michael P. Cooke, Andrew W. Heath, J. Christopher Grimaldi, Troy D. Randall, R. M. E. Parkhouse, Christopher C Goodnow and Maureen C. Howard. "Signaling through murine CD38 is impaired in antigen receptor unresponsive B cells." European Journal of Immunology, Vol. 25(5), 1338-1345, 1995
- 9. M. J. Guimaraes, J. F. Bazan, A. Zolotnik, M. V. Wiles, J. C. Grimaldi, F. Lee, T. McClanahan. "A new approach to the study of haematopoietic development in the yolk sac and embryoid body." Development, Vol. 121(10), 3335-3346, 1995
- J. Christopher Grimaldi, Sriram Balasubramanian, J. Fernando Bazan, Armen Shanafelt,
 Gerard Zurawski and Maureen Howard. "CD38-mediated protein ribosylation." Journal of Immunology, Vol. 155(2), 811-817, 1995
- 11. Leopoldo Santos-Argumedo, Frances F. Lund, Andrew W. Heath, Nanette Solvason, Wei Wei Wu, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regulator of CD38 induced signal transduction." International Immunology, Vol 7(2), 163-170, 1995
- 12. Frances Lund, Nanette Solvason, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "Murine CD38: An immunoregulatory ectoenzyme." Immunology Today, Vol. 16(10), 469-473, 1995
- Maureen Howard, J. Christopher Grimaldi, J. Fernando Bazan, Frances E. Lund, Leopoldo Santos-Argumedo, R. M. E. Parkhouse, Timothy F. Walseth, and Hon Cheung Lee.
 "Formation and Hydrolysis of Cyclic ADP-Ribose Catalyzed by Lymphocyte Antigen CD38." Science, Vol. 262, 1056-1059, 1993
- 14. Nobuyuki Harada, Leopoldo Santos-Argumedo, Ray Chang, J. Christopher Grimaldi, Frances Lund, Camilynn I. Brannan, Neal G. Copeland, Nancy A. Jenkins, Andrew Heath, R. M. E. Parkhouse and Maureen Howard. "Expression Cloning of a cDNA Encoding a Novel Murine B Cell Activation Marker: Homology to Human CD38." The Journal of Immunology, Vol. 151, 3111-3118, 1993
- 15. David J. Rawlings, Douglas C. Saffran, Satoshi Tsukada, David A. Largaespada, J. Christopher Grimaldi, Lucie Cohen Randolph N. Mohr, J. Fernando Bazan, Maureen Howard, Neal G. Copeland, Nancy A. Jenkins, Owen Witte. "Mutation of Unique Region of Bruton's Tyrosine Kinase in Immunodeficient XID Mice." Science, Vol. 261, 358-360, 1993
- J. Christopher Grimaldi, Raul Torres, Christine A. Kozak, Ray Chang, Edward Clark, Maureen Howard, and Debra A. Cockayne. "Genomic Structure and Chromosomal Mapping of the Murine CD40 Gene." The Journal of Immunology, Vol 149, 3921-3926, 1992
- 17. Timothy C. Meeker, Bruce Shiramizu, Lawrence Kaplan, Brian Herndier, Henry Sanchez, J. Christopher Grimaldi, James Baumgartner, Jacab Rachlin, Ellen Feigal, Mark Rosenblum and Michael S. McGrath. "Evidence for Molecular Subtypes of HIV-Associated Lymphoma:

Division into Peripheral Monoclonal, Polyclonal and Central Nervous System Lymphoma." AIDS, Vol. 5, 669-674, 1991

- 18. Ann Grimaldi and Chris Grimaldi. "Small-Scale Lambda DNA Prep." Contribution to Current Protocols in Molecular Biology, Supplement 5, Winter 1989
- J. Christopher Grimaldi, Timothy C. Meeker. "The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene." Blood, Vol. 73, 2081-2085, 1989
- Timothy C. Meeker, J. Christopher Grimaldi, et al. "An Additional Breakpoint Region in the BCL-1 Locus Associated with the t(11;14) (q13;q32) Translocation of B-Lymphocytic Malignancy." Blood, Vol. 74, 1801-1806, 1989
- 21 Timothy C. Meeker, J. Christopher Grimaldi, Robert O'Rourke, et al. "Lack of Detectable Somatic Hypermutation in the V Region of the Ig-H-Chain Gene of a Human Chronic B. Lymphocytic Leukemia." The Journal of Immunology, Vol. 141, 3994-3998, 1988

MANUSCRIPTS IN PREPARATION

 Sriram Balasubramanian, J. Christopher Grimaldi, J. Fernando Bazan, Gerard Zurawski and Maureen Howard. "Structural and functional characterization of CD38: Identification of active site residues"

PATENTS

- 1. "Methods for Eosinophil Depletion with Antibody to CCR3 Receptor" (US 6,207,155 B1).
- 2. "Amplification Based Cloning Method." (US 6,607,899)
- 3. Ashkenazi et al., "Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same." (this patent covers several hundred genes)
- 4. "IL-17 Homologous Polypeptides and Therapeutic Uses Thereof"
- 5. "Method of Diagnosing and Treating Cartilaginous Disorders."

MEMBERSHIPS AND ACTIVITIES

Editor

Frontiers in Bioscience

Member

DNAX Safety Committee 1991-1999

Biological Safety Affairs Forum (BSAF) 1990-1991 Environmental Law Foundation (ELF) 1990-1991

The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene

By J. Christopher Grimaldi and Timothy C. Meeker

Chromosomal translocations have proven to be important markers of the genetic abnormalities central to the pathogenesis of cancer. By cloning chromosomal breakpoints one can identify activated proto-oncogenes. We have studied a case of B-lineage acute lymphocytic leukemia (ALL) that was associated with peripheral blood eosinophilia. The chromosomal translocation t(5:14) (q31:q32) from this sample was cloned and studied at the molecular level. This

ARYOTYPIC STUDIES of leukemia and lymphoma have identified frequent nonrandom chromosomal translocations. Some of these translocations juxtapose the immunoglobulin heavy chain (IgH) gene with important

Fig 1. DNA blots of the leukemia sample. The restriction fragment pattern of normal human DNA (N) and the leukemia sample (L) were compared using a human Jh probe. Rearranged bands are indicated by arrows. Sample L exhibits a single rearranged band with both Hind III/EcoRI and Sau3A restriction digests. The rearranged bands are less intense than the other bands because the majority of cells in the sample represent normal bone marrow elements.

translocation joined the immunoglobulin heavy chain joining (Jh) region to the promotor region of the interleukin-3 (IL-3) gene in opposite transcriptional orientations. The data suggest that activation of the IL-3 gene by the enhancer of the immunoglobulin heavy chain gene may play a central role in the pathogenesis of this leukemia and the associated eosinophilia.

o 1989 by Grune & Stratton, Inc.

protooncogenes, such as c-myc and bcl-2.^{1,2} In this way, the IgH gene can activate proto-oncogenes, resulting in disordered gene expression and a step in the development of cancer. The investigation of additional nonrandom translocations into the IgH locus allows us to identify new genes promoting the generation of leukemia and lymphoma.

A distinct subtype of acute lymphocytic leukemia (ALL) has been characterized by B-lineage phenotype, associated eosinophilia in the peripheral blood, and a t(5;14)(q31;q32) chromosomal translocation.^{3,4} This syndrome probably occurs in <1% of all patients with ALL. We hypothesized that the cloning of the translocation characteristic of this leukemia might allow the identification of an important gene on chromosome 5 that plays a role in the evolution of this disease. In this report we demonstrate that the interleukin-3 gene (IL-3) and the IgH gene are joined by this translocation.

MATERIALS AND METHODS

Sample and DNA blots. A bone marrow aspirate from a representative patient with ALL (L1 morphology by French-American-British [FAB] criteria), peripheral eosinophilia (up to 20,000 per microliter with a normal value of <350 per microliter) and a t(5;14)(q31;q32) translocation was studied. Using published methods, genomic DNA was isolated and DNA blots were made. Briefly, 10 µg of high molecular weight (mol wt) DNA were digested using an appropriate restriction enzyme and electrophoresed on a 0.8% agarose gel. The gel was stained with ethidium bromide, photographed, denatured, neutralized, and transferred to Hybond (Amersham, Arlington Heights, IL). After treatment of the filter with ultraviolet light, hybridization was performed. The filter was washed to a final stringency of 0.2% saturated sodium citrate (SSC) and 0.1% sodium lauryly sulfate (SDS) and exposed to film. The human Jh probe has been previously reported.

Genomic library. The genomic library was made using pub-

From the Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco.

Submitted February 22, 1989; accepted March 8, 1989.

Supported by NIH Grant No. CA01102.

Address reprint requests to Timothy C. Meeker, MD, UCSF/ VAMC 111H, 4150 Clement St, San Francisco, CA 94121.

Dr Grimaldi's current address is Biostan Inc, 440 Chesapeake Dr, Seaport Centre, Redwood City, CA 94063.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc. 0006-4971/89/7308-0031\$3.00/0

lished methods.⁵ Approximately 100 µg of high mol wt genomic DNA were partially digested with the Sau3A restriction enzyme. Fragments from 9 to 23 kilobases (kb) in size were isolated on a sucrose gradient and ligated into phage EMBL3A (Strategene, San Diego). Recombinant phage were packaged, plated, and screened as previously reported.⁵

DNA sequencing. Fragments for sequencing were cloned into M13 vectors and sequenced by the chain termination method using Sequenase (United States Biochemical, Cleveland). All sequence data were derived from both strands.

RESULTS

We studied a bone marrow sample from a patient with ALL and associated peripheral eosinophilia. Karyotypic analysis showed the characteristic t(5;14)(q31;q32) translocation. These features define a distinctive subtype of ALL.^{3,4} The leukemic cells were analyzed for cell surface phenotype by immunofluorecence. They were positive for B1 (CD20), B4. (CD19), cALLA* (CD10), HLA-DR, and terminal deoxynucleotidyl transferase (Tdt), but negative for surface immunoglobulin. This phenotypic profile describes an immature cell from the B-lymphocytic lineage.⁸

The leukemia DNA was analyzed by Southern blotting for rearrangements of the IgH gene. Using a human immunoglobulin Jh probe, a single rearranged band was detected by EcoRI, HindIII, SstI, Sau3A, and EcoRI plus HindIII restriction digests, suggesting rearrangement of one allele (Fig 1). The immunoglobulin Jh region from the other allele was presumably either deleted or in the germline configuration.

We hypothesized that the t(5;14)(q31;q32) juxtaposed a

growth-promoting gene on chromosome 5 with the immunoglobulin Jh region on chromosome 14. Therefore, a genomic library was made from the leukemic sample and screened with a Jh probe. Fifteen distinct positive clones were isolated and screened for the presence of the rearranged Sau3A fragment that was detected by DNA blotting. By this analysis, five clones appeared to represent the rearranged allele identified by DNA blots. One of these clones (clone no. 4) was chosen for further study and a detailed restriction map was generated. The EcoRI, HindIII/EcoRI, and SstI fragments from clone no. 4 that hybridized to the human Jh probe were also identical in size to the rearranged fragments from the leukemia sample, confirming that clone no. 4 represented the rearranged leukemic allele.

Phage clone no. 4 contained 3.7 kb of unknown origin joined to the IgH gene in the region of Jh4 (Fig 2). The IgH gene from Jh4 to the Cmu region appeared to be in germline configuration. Previously, the gene encoding hematopoietic growth factor IL-3 had been mapped to chromosome 5q31 so it was suspected that clone no. 4 might contain part of this gene. 9-12 When the restriction map of human IL-3 and clone no. 4 were compared, they were identical for more than 3 kb (Fig 2).

We confirmed the juxtaposition of the IL-3 gene and the IgH gene by nucleic acid sequencing of the subcloned BstEII/HpaI fragment (Fig 2). The sequence of this fragment showed no disruption of the protein coding region or the messenger RNA of the IL-3 gene. The break in the IL-3 gene occurred in the promotor region, 452 base pairs (bp) upstream of the transcriptional start site (position 64, Fig

Fig 2. Breakpoint region: t(5;14)(q31;q32). Comparative mapping of phage clone no. 4, the germline IgJh region, and the germline IL-3 gene. The map of clone no. 4 is identical to that of IgH until it diverges in the region of Jh4 (at the dashed line), after which it is identical to the map of IL-3. The two genes are positioned in a head-to-head orientation. The Ig μ chain constant region (C μ), switch region (S μ), enhancer (E), and Jh segments are indicated (open symbols). The five exons (dark boxes) and four introns of the IL-3 gene are shown. The

A

3A). The break in the IgH gene occurred 2 bp upstream of the Jh4 region. Between the two breaks, 25 bp of uncertain origin (putative N sequence) were inserted. ^{13,14} No sequences homologous to the immunoglobulin heptamer and nonamer could be identified in the IL-3 sequence (Fig 3B). Therefore, nucleic acid sequencing confirmed the juxtaposition of the IL-3 gene and the IgH gene. The sequence data clearly showed that the genes were positioned in opposite transcriptional orientations (head-to-head).

Available data also allowed us to determine the normal positions of the IL-3 gene and the GM-CSF gene in relation to the centromere of chromosome 5 (Fig 4). The IgH gene is known to be positioned with the variable regions toward the telomere on chromosome 14q.^{2,15} It has also been shown that

GM-CSF maps within 9 kb of IL-3 in the same transcriptional orientation. ¹⁶ Using this information and assuming a simple translocation event in our sample, we can conclude that the IL-3 gene is normally more centromeric, and the GM-CSF gene more telomeric on chromosome 5q (Fig 4). Furthermore, both are transcribed with their 5' ends toward the centromere.

DISCUSSION

In this report we have cloned a unique chromosomal translocation that appears to be a consistent feature of a rare, yet distinct, clinical form of acute leukemia. This translocation joined the promotor of the IL-3 gene to the IgH gene. Except for the altered promotor, the IL-3 gene appeared

	5! GGTGACCAG	GGGTTCCCTGGCCCCAGTAGTCAAAG CCCAAGGGACCGGGGTCATCAGTTTC	TAGTAGAGGT <u>AT</u> CAT <u>C</u> TCCA	AATTCATCATAGCT(TABAGTAGTATCGA(CGCCTAATCGTCGCACTGACCCCCCCCCCCCCCCCCCCC	GCCG	80
•	A:	* 1	•	· · · · · · · · · · · · · · · · · · ·	. see Linear	_	.44
	5'TACCAGAC 3'ATGGTCTG	AAACTCTCATC [†] GTTCCAGTGGCCTC TTTGAGAGTAGACAAGGTCACCGGAG	CTGGCCACCC GACCGGTGGG	ACCAGGACCAAGCA TGGTCCTGGTTCGT	GGCGGCCAGAGAGGGC CCCGCCGTCGTCTCCCG	CAGG GTCC	160
		******	_		•	•	
	5'GTAGTCCA 3'CATCAGGT	GGTGATGGCAGATGAGATCCCACTGG CCACTACCGTCTACTCTAGGGTGACC	GCAGGAGGCC CGTCCTCCGG	TCAGTGAGCTGAGT AGTCACTCGACTCA	CAGGCTTCCCCTTCCTGC GTCCGAAGGGGAAGGACG	CACA	240
	5'GGGGTCCT 3'CCCCAGGA	CTCACCTGCTGCCATGCTTCCCATCI GAGTGGACGACGGTACGAAGGGTAGA	CTCATCCTC(GAGTAGGAG(TTGACAAGATGAAG AACTGTTCTACTTC	TGATACCGTTTAAGTAAT ACTATGGCAAATTCATTA	CTTT AGAAA	320
					****	*	
	5 'TTTCTTGT 3 'AAAGAAC	TTCACTGATCTTGAGTACTAGAAAG AAAGTGACTAGAACTCATGATCTTTC	CATGGATGA AGTACCTACT	ATAATTACGTCTGT(FATTAATGCAGACA(GTTTTCTATGGAGGTTC CAAAAGATACCTCCAAG	CATGT	400
		•		•	•	· •	
	5 CAGATAAI 3 GTCTATT	AGATCCTTCCGACGCCTGCCCCACAC CCTAGGAAGGCTGCGGACGGGTGTG	CACCACCTCC GTGGTGGAGG	CCCGCCTTGCCCG(GGGGCGGAACGGGC(CCAACACCCGTGGAACG.	TGCTG ACGAC	480
	5'CACA <u>TAT.</u> 3'GTGTATA	TTOTOAAOOTTOTTOAAOOOOOAA	c <u>a</u> gagccca Cagggotte	CGAAGGACCAGAAC GCTTCCTGGTCTTG	AAGACAGAGTGCCTCCTG TTCTGTCTCACGGAGGAC	CCGAT GGCTA	566
		4.6		·	4.4		
	5 CCAAAC <u>A</u> 3 GGTTTGT	TGAGCCGCCTGCCCCTGCTCCTGCTCCTGCTCCTGCTCCTGCTCCTGCTCCTGCTCCTGCTCCTGCTCTGCTCCTGCTG	CTCAACTČO GAGGTTGAGG	APPÓÓOPOO TEÓPT TOOPOPOO POO TE	CTCCAAGCTCCCATGACC GAGGTTCGAGGGTACTGG	CAGAC GTCTG	640
	5 AACGTCC	SAACTTCTGTTCGACCCAATTG 5.	668				
В	IgJh4	5'TGGCCCCAGTAGTCAAAGTAGT 3'ACCGGGGTCATCAGTTTCATCA	TCACATTGTO A <u>GTGTAAC</u> AC	GGAGGCCCCATTA CCTCCGGGGTAAT	AGGGGTGCACAAAAACC TCCCCACG <u>TGTTTTTGC</u>	TGACT GACTGA	CTC AGAG
		++++++++++++++++++	+				
	C1.#4	5 TGGCCCCAGTAGTCAAAGTAG 3 ACCGGGGTCATCAGTTTCATC		TTCATCATAGCTGC AAGTAGTATCGACC	CCIMMICOLOGO		-
					++++++++++++	+++++	++++
					MCMMMACCACCCTGAC	ന്ദരവ	ACCA
	11-3	5 GGCACCAAGAGATGTGCTTCT 3 CCGTGGTTCTCTACACGAAGA	GTCTCGGAC	ICCGACI IGCACC	Includit concession		
	Fin 3. Sequen	ce of t(5;14)(q31;q32) breakpoint regi	on. (A) Nucleo	tide sequence of the	BstEll/Hpsl fragment indi	cated o	n Fig 2.

Fig 3. Sequence of t(5:14)(q31;q32) breakpoint region. (A) Nucleotide sequence of the *BstEll/Hpat* tragment malcated on Fig 2. Nucleotides 1 to 36 represent the Jh4 coding region underlined on the coding strand. Nucleotides 39 to 63 are a putative N region. The sequence from position 64 to 668 is that of the germline IL-3 gene. The IL-3 TATA box (485), transcription start (515), and initiation sequence from position 64 to 668 is that of the germline IL-3 gene. The IL-3 TATA box (485), transcription start (515), and initiation sequence (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) methionine (567) are underlined. Two proposed regulatory sequences in the promotor are underlined.

Fig 4. Diagram of the translocation. The normal chromosome 5q31 is shown with the GM-CSF gene telomeric to the IL-3 gene in the transcriptional orientation shown. On normal chromosome 14q32 the Vh regions are telomeric. The t(5:14)(q31;q32) translocation results in the head-to-head orientation of these genes. Symbols are defined in Fig 2. BP, breakpoint position.

intact as no deletions, insertions, or point mutations were detected by restriction mapping of the entire gene and sequencing of part of the gene. The IgH gene has been truncated at the Jh4 region, which places the immunoglobulin enhancer within 2.5 kb of the IL-3 gene. This leads to the hypothesis that the enhancer is increasing transcription of a structurally normal IL-3 gene. The same mechanism is important for activation of the c-myc gene in some cases of Burkitt's lymphoma. An alternate hypothesis is that the elimination of an upstream IL-3 promotor element is crucial to the activation of the IL-3 gene.

The proposed activation of the IL-3 gene suggests that an autocrine loop is important for the pathogenesis of this leukemia.²⁰ Over-expression of the IL-3 gene coupled with

the presence of the IL-3 receptor in these cells could account for a strong stimulus for proliferation. In this regard, there are data indicating that immature B-lineage lymphocytes and B-lineage leukemias may express the IL-3 receptor. ^{21,22}

An additional feature of this type of leukemia is the dramatic eosinophilia, consisting of mature forms. It has been hypothesized that the eosinophils do not arise from the malignant clone, but are stimulated by the tumor. ^{23,24} Because of the known effect of IL-3 on eosinophil differentiation, secretion of high levels of IL-3 by leukemic cells might have a role in the eosinophilia in this type of leukemia. ¹²

The data suggest that the recombination mechanism that is active in the IgH gene during normal differentiation has a role in this translocation. This is supported by the breakpoint location at the 5' end of Jh4 and the presence of putative N-region sequences. On the other hand, no recombination signal sequences (heptamer and nonamer) was found in this region on chromosome 5, suggesting that additional factors also played a role. Further studies will elucidate the mechanism of this and other translocations.

In the leukemia we studied, it is possible that the immunoglobulin enhancer also activates the GM-CSF gene, since this gene is probably positioned only 14 kb away (Fig 4). This is known to be within the range of enhancer activation.²⁵ The interleukin-5 (IL-5) gene maps to chromosome 5q31.²⁶ Deregulation of the IL-5 gene by this translocation would act synergistically with IL-3 in the stimulation of eosinophil proliferation and differentiation.²⁷ These and other questions will be answered by the study of more patient samples. We plan to determine whether the t(5;14)(q31;q32) translocation is capable of activating multiple lymphokines simultaneously and whether they cooperate in the generation of this leukemia.

REFERENCES

- 1. Klein G, Klein E: Evolution of tumours and the impact of molecular oncology. Nature 315:190, 1985
- 2. Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. Annu Rev Immunol 5:253, 1987
- 3. Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanScoy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. J Clin Oncol 5:382, 1987
- 4. Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). Med Pediatr Oncol 12:33, 1984
- 5. Meeker T, Grimaldi JC, O'Rourke R, Loeb J, Juliusson G, Einhorn S: Lack of detectable somatic hypermutation in the V region of the IgH gene of a human chronic B-lymphocytic leukemia. J Immunol 141:3394, 1988
- Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Leder P: Structure of the human immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583, 1981
- 7. Norrander U, Kempe T, Messing J, Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101, 1983
- 8. Foon K, Todd R: Immunologic classification of leukemia and lymphoma. Blood 68:1, 1986
- LeBeau M, Epstein N, O'Brien SJ, Nienhuis AW, Yang Y-C, Clark S, Rowley J: The interleukin-3 gene is located on human

chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci USA 84:5913, 1987

10. LeBeau M, Chandrasekharappi S, Lemons R, Schwartz J, Larson R, Arai N, Westbrook C: Molecular and cytogenetic analysis of chromosome 5 abnormalities in myeloid disorders, in cancer cells, in Proceedings of Molecular Diagnostics of Human Cancer. Cold Spring Harbor Laboratory, NY, 1989 (in press)

11. Ihle J, Weinstein Y: Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin-3. Adv

Immunol 39:1, 1986

12. Clark S, Kamen R: The human hematopoietic colonystimulating factors. Science 236:1229, 1987

13. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14,18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396, 1987

14. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14,18) and the t(11,14) translocations involved in B-cell neoplasms are rearranged by the same mechanism.

Oncogene 2:347, 1988

15. Erikson J, Finan J, Nowell P, Croce C: Translocation of immunoglobulin VH genes in Burkitt lymphoma. Proc Natl Acad Sci USA 80:810, 1982

- 16. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Nienhuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958, 1988
- 17. Gillies S, Morrison S, Oi V, Tonegawa S: A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717, 1983
- 18. Banerji J, Olson L, Schaffner W: A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729, 1983
 - 19. Hayday A, Gillies S, Saito H, Wood C, Wiman K, Hayward

- W, Tonegawa S: Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307:334, 1984
- 20. Sporn M, Roberts A: Autocrine growth factors and cancer. Nature 313:745, 1985
- 21. Palacios R, Steinmetz M: IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ line configuration, and generate B lymphocytes in vivo. Cell 41:727, 1985
- 22. Uckun F, Gesner T, Song C, Myers D, Mufson A: Leukemic B-cell precursors express functional receptors for human interleukin-3. Blood 73:533, 1989
- 23. Spitzer G, Garson O: Lymphoblastic leukemia with marked eosinophilia: A report of two cases. Blood 42:377, 1973
- 24. Catovsky D, Bernasconi C, Verkonck P, Postma A, Howss J, Berg A, Rees J, Castelli G, Morra E, Galton D: The association of eosinophilia with lymphoblastic leukemia or lymphoma: A study of seven patients. Br J Haematol 45:523, 1980
- 25. Wang X-F, Calame K: The endogenous immunoglobulin heavy chain enhancer can activate tandem Vh promoters separated by a large distance. Cell 43:659, 1985
- 26. Sutherland G, Baker E, Callen D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at 5q31 and is deleted in the 5q-syndrome. Blood 71:1150, 1988
- 27. Warren D, Moore M: Synergism among interleukin-1, interleukin-3, and interleukin-5 in the production of eosinophils from primitive hemopoietic stem cells. J Immunol 140:94, 1988
- 28. Yang Y-C, Clark S: Molecular cloning of a primate cDNA and the human gene for interleukin-3. Lymphokines 15:375, 1988
- 29. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Witek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3, 1986

RAPID COMMUNICATION

Activation of the Interleukin-3 Gene by Chromosome Translocation in Acute Lymphocytic Leukemia With Eosinophilia

By Timothy C. Meeker, Dan Hardy, Cheryl Willman, Thomas Hogan, and John Abrams

The t(5;14)(q31;q32) translocation from B-lineage acute lymphocytic leukemia with eosinophilia has been cloned from two leukemia samples. In both cases, this translocation joined the lgH gene and the interleukin-3 (IL-3) gene. In one patient, excess IL-3 mRNA was produced by the leukemic cells. In the second patient, serum IL-3 levels were measured and shown to correlate with disease

A NUMBER OF chromosome translocations have been associated with human leukemia and lymphoma. In many cases the study of these translocations has led to the discovery or characterization of proto-oncogenes, such as bcl-2, c-abl, and c-myc, that are located adjacent to the translocation.¹² It is now widely understood that cancer-associated translocations disrupt nearby proto-oncogenes.

A distinct subtype of acute leukemia is characterized by the triad of B-lineage immunophenotype, eosinophilia, and the t(5;14)(q31;q32) translocation.^{3,4} Leukemic cells from such patients have been positive for terminal deoxynucleotidyl transferase (Tdt), common acute lymphoblastic leukemia antigen (CALLA), and CD19, but negative for surface or cytoplasmic immunoglobulin. In previous work, we cloned the t(5;14) breakpoint from one leukemic sample (Case 1) and determined that the IgH and interleukin-3 (IL-3) genes were joined by this abnormality.⁵ In this report, we extend those findings by showing that the t(5;14)(q31;q32) translocation from a second leukemia sample (Case 2) has a similar structure, and we report our study of growth factor expression in these patients.

MATERIALS AND METHODS

Samples and Southern blots. Case 1 has been described. Solinical features of Case 2 have been described in detail. DNA isolation and Southern blotting was done using previously described methods. Filters were hybridized with an immunoglobulin Jh probe, a 280 bp BamHI/EcoRI genomic IL-3 fragment, and an IL-3 cDNA probe. 73

Northern blots. RNA isolation and Northern blotting have been described. Briefly, Northern blots were done by separating $9\mu g$ total RNA on 1% agarose-formaldehyde gels. Equal RNA loading in each lane was confirmed by ethidium bromide staining. Blots were hybridized with an IL-3 cDNA probe extending to the Xho I site in exon 5, a 720 bp Sst I/Kpn I probe derived from intron 2 of the IL-3 gene, a 600 bp Nhe I/Hpa I IL-5 cDNA probe, and a 500 bp Pst I/Nco I granulocyte-macrophage colony stimulating factor (GM-CSF) cDNA probe. $^{10-12}$

Polymerase chain reaction. Primers were designed with BamHI sites for cloning. One primer hybridized to the Jh sequences from the IgH gene (Primer 144:5'-TAGGATCCGACGGTGACCAGGGT), and the other hybridized to the region of the TATA box in the IL-3 gene (Primer 161: 5'-AACAGGATCCCGCCTTATATGTGCAG). Polymerase chain reaction (PCR) (95°C for 1 minute, 61°C for 30 seconds, and 72°C for 3 minutes) was done using 500 ng genomic DNA and 50 pmol of each primer in 100μ L containing 67 mmol/L Tris-HCl pH 8.8, 6.7 mmol/L MgCl₂, 10% dimethyl sulfoxide (DMSO), 170μ g/mL bovine serum albumin (BSA) (fraction V),

activity. There was no evidence of excess granulocyte/macrophage colony stimulating factor (GM-CSF) or IL-5 expression. Our data support the formulation that this subtype of leukemla may arise in part because of a chromosome translocation that activates the IL-3 gene, resulting in autocrine and paracrine growth effects.

© 1990 by The American Society of Hematology.

16.6 mmol/L ammonium sulfate, 1.5 mmol/L each dNTP and Taq polymerase (Perkin-Elmer, Norwalk, CT).¹³

Sequencing. Sequencing was done by chain termination in M13 vectors. As part of this study, we sequenced a subclone of a normal IL-3 promotor, covering 598 base pairs from a Sma I site at position—1240 (with respect to the proposed site of transcription initiation) to an Nhe I site at position—642. The plasmid containing this region was a gift from Naoko Arai of the DNAX Research Institute.

Expression in Cos7 cells. A genomic IL-3 fragment from Case 1 was cloned into the pXM expression vector. ¹⁰ Briefly, the *HindIII/Sal* I fragment containing the IL-3 gene was subcloned from the previously described phage clone 4 into pUC18. ⁵ The 2.6 kb fragment extending from the *Sma* I site 61 bp upstream of the IL-3 transcription start to the *Sma* I site in the polylinker was cloned into the blunted *Xho* I site of pXM. The negative control construct was the pXM vector without insert. Plasmids were introduced into Cos7 cells by electroporation, and supernatant was collected after 48 hours in culture.

TF1 bloassay. TF-1 cells were passaged in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum, 2 mmol L-glutamine, and 1 ng/mL human GM-CSF. Samples and antibodies were diluted in this same medium lacking GM-CSF but containing penicillin and streptomycin. A 25 μ L volume of serial dilutions of patient serum was added to wells in a flat bottom 96-well microtiter plate. Rat anti-cytokine monoclonal antibody in a volume of 25 μ L was added to appropriate wells and preincubated for 1 hour at 37°C. Fifty microliters of twice washed TF-1 cells were added to each well, giving a final cell-concentration of 1 \times 10⁴ cells per well (final volume, 100 μ L). The plate was incubated for 48 hours. The remaining cell viability was determined metabolically by the colori-

From the Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, San Francisco, CA; the Center for Molecular and Cellular Diagnostics, Department of Pathology and Cell Biology, University of New Mexico, Albuquerque, NM; the Division of Hematology/Oncology, Department of Medicine, West Virginia University, Morgantown, WV; and DNAX Research Institute, Palo Alto, CA.

Submitted March 27, 1990; accepted April 19, 1990.

Supported in part by the University of California Cancer Research Coordinating Committee and University of New Mexico Cancer Center funding from the state of New Mexico. The DNAX Research Institute is supported by Schering-Plough.

Address reprint requests to Timothy C. Meeker, MD, Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, 4150 Clement St, San Francisco, CA 94121.

© 1990 by The American Society of Hematology. 0006-4971/90/7602-0022\$3.00/0

Fig 1. Breakpoint sequences for Case 2. The germline IgJh5 region sequence (protein coding region and recombination signal sequences are underlined) is on top, the translocation sequence from Case 2 (PCR primer sequences and putative N region are underlined) is in the middle, and the germline IL-3 sequence, which we derived from a normal IL-3 clone, is on the bottom.⁷ + Indicates that each sequence has the same nucleotide. The sequence documents the head-to-head joining of the IL-3 and IgH genes. The breakpoint in the IL-3 gene occurred at position —934 (*).

metric method of Mosmann using a VMax microtiter plate reader (Molecular Devices, Menlo Park, CA) set at 570 and 650 nm. ¹⁶

Cytokine immunoassays. These assays used rat monoclonal anti-cytokine antibodies (10 ug/mL) to coat the wells of a PVC = microtiter plate. The capture antibodies used were BVD3-6G8 JES1-39D10, and BVD2-23B6, for the IL-3, IL-5, and GM-CSF assays, respectively. Patient sera were then added (undiluted and diluted 1:2 for IL-3, undiluted for IL-5, and undiluted and diluted 1:5 for GM-CSF). The detecting immunoreagents used were either mouse antiserum to IL-3 or nitroiodophenyl (NIP)-derivatized rat monoclonal antibodies JES1-5A2 and BVD2-21C11, specific for IL-5 and GM-CSF, respectively. Bound antibody was subsequently detected with immunoperoxidase conjugates: horseradish peroxidase (HRP)-labeled goat anti-mouse Ig for IL-3, or HRP-labeled rat (J4 MoAb) anti-NIP for IL-5 and GM-CSF. The chromogenic substrate was 3-3'azino-bis-benzthiazoline sulfonate (ABTS: Sigma, St Louis, MO). Unknown values were interpolated from standard curves prepared from dilutions of the recombinant factors using Softmax software available with the VMAX microplate reader (Molecular Devices).

RESULTS

Leukemic DNA from Case 2 was studied by Southern blotting. When digested with the *HindIII* restriction enzyme and hybridized with a human immunoglobulin heavy chain joining region (Jh) probe, a rearranged fragment at approximately 14 kb was detected (data not shown). When reprobed with either of two different IL-3 probes, a rearranged 14 kb

fragment, comigrating with the rearranged Jh fragment, was identified. When leukemic DNA was digested with *HindIII* plus *EcoRI*, a rearranged Jh fragment was detected at 6 kb. The JL-3 probes also identified a comigrating fragment of this size. These experiments indicated that the leukemic sample studied was clonal and that a single fragment contained both Jh and IL-3 sequences, suggesting a translocation had occurred.

To characterize better the joining of the IL-3 gene and the immunoglobulin heavy chain (IgH) gene, the polymerase chain reaction (PCR) was used to clone the translocation. A Jh primer and an IL-3 primer were designed to produce an amplified product in the event of a head-to-head translocation. While control DNA gave no PCR product, Case 2 DNA yielded a PCR-derived fragment of approximately 980 bp, which was cloned and sequenced.

The DNA sequence of the translocation clone from Case 2 confirmed the joining of the Jh region with the promotor of the IL-3 gene in a head-to-head configuration (Fig 1). Sequence analysis indicated that the breakpoint on chromosome 14 was just upstream of the Jh5 coding region. The breakpoint on chromosome 5 occurred 934 bp upstream of the putative site of transcription initiation of the IL-3 gene. We also determined that a putative N sequence of 17 bp was inserted between the chromosome 5 and chromosome 14 sequences during the translocation event. 17.18 Figure 2 shows

Fig 2. Relationship of chromosome 5 breakpoints to the IL-3 gene. This figure shows the two cloned breakpoints (arrows) in relation to the normal IL-3 gene. 8.10 One breakpoint occurred at position —462 and the other at —934 (arrows). In both circumstances, the translocations resulted in a head-to-head joining of the IgH gene and the IL-3 gene, leaving the mRNA and protein coding regions of the IL-3 gene intact. Boxes denote the five IL-3 exons; restriction enzymes are (B) BamHI, (P) Pst I, (H) Hpa I, (E) EcoRI, and (X) Xho I.

Fig 3. Documentation of IL-3 mRNA over-expression. A Northern blot was prepared and hybridized with a probe for IL-3. Lane 1 contained RNA from unstimulated peripheral blood lymphocytes (PBL) as a negative control. Lane 2 contained RNA from PBL stimulated for 4 hours with concanavalian A (ConA), and lane 3 contained RNA from PBL stimulated with ConA for 48 hours. As in the positive control lanes (2 and 3), a 1 kb band was identified in the leukemic sample from Case 1 (lane 4, lower arrow), suggesting aberrant expression of the IL-3 gene. In addition, the leukemic sample showed over-expression of an unspliced 2.9 kb IL-3 transcript (lane 4, upper arrow). We documented that this represented an unspliced precurser of the mature 1 kb transcript by showing that this band hybridized to a probe from intron 2 of the IL-3 gene. A similar 2.9 kb band was detected in lane 2, suggesting that an IL-3 mRNA of this size is sometimes detectable in normal mitogen-stimulated cells. Lane 5 through 10 represent RNA from six samples of B-lineage acute lymphocytic leukemia without the t(5;14) translocation, indicating that only the sample with the translocation exhibited IL-3 over-expression. Case 2 could not be analyzed by Northern blot because too few cells were available for study.

the locations of the two cloned breakpoints in relation to the IL-3 gene. The two chromosome 5 breakpoints were separated by less than 500 bp.

The genomic structure in Cases 1 and 2 suggested that a normal IL-3 gene product was over-expressed as a result of the altered promotor structure. This would predict that the IL-3 gene on the translocated chromosome was capable of making IL-3 protein. This prediction was tested by expressing a genomic fragment from the translocated allele of Case 1 containing all five IL-3 exons under the control of the SV40 promotor/enhancer in the Cos7 cell line. Cell supernatants were studied in a proliferation assay using the factor dependent erythroleukemic cell line, TF-1. The supernatants derived from transfections using the vector plus insert supported TF-1 proliferation, while supernatants from transfections using the vector alone were negative in this assay (data not shown). Furthermore, the biologic activity could be blocked by an antibody to human IL-3 (BVD3-6G8). This result showed that the translocated allele retained the ability to make IL-3 mRNA and protein.

The level of expression of IL-3 mRNA in leukemic cells from Case 1 was assessed. Northern blotting showed that the mature IL-3 mRNA (approximately 1 kb) and a 2.9 kb unspliced IL-3 mRNA were excessively produced by the leukemia (Fig 3). The 2.9 kb form of the mRNA is also present at low levels in normal peripheral blood T lymphocytes after mitogen activation (Fig 3). Several B-lineage acute leukemia samples without the t(5;14) translocation had undetectable levels of IL-3 mRNA in these experiments. In addition, although genes for GM-CSF and IL-5 map close to the IL-3 gene and might have been deregulated by the translocation, no IL-5 or GM-CSF mRNA could be detected in the leukemic sample (data not shown). 19,20

Three serum samples from Case 2 were assayed by immunoassay for levels of IL-3, GM-CSF, and IL-5 (Table 1). Serum IL-3 could be detected and correlated with the clinical course. When the patient's leukemic cell burden was

highest, the IL-3 level was highest. No serum GM-CSF or IL-5 could be detected.

Since the IL-3 immunoassay measured only immunoreactive factor, we confimed that biologically active IL-3 was present by using the TF-1 bioassay. This bioassay can be rendered monospecific using appropriate neutralizing monoclonal antibodies specific for IL-3, IL-5, or GM-CSF. We observed that sera from 1-16-84 and 3-14-84 contained TF-1 stimulating activity that could be blocked with anti-IL-3 MoAb (BVD3-6G8), but not with MoAbs to IL-5 (JES1-39D10) or GM-CSF (BVD2-23B6) (Fig 4; GM-CSF data not shown). The amount of neutralizable bioactivity in these two samples correlated very well with the difference in IL-3 levels obtained by immunoassay for these samples. Furthermore, the failure to block TF-1 proliferating activity with either anti-IL-5 or anti-GM-CSF was consistent with the inability to measure these factors by immunoassay and

Table 1. Peripheral Blood Counts and Growth Factor Levels at Different Times in Case 2

		Sample Date	
	11/15/83	1/16/84	3/14/84
Peripheral blood counts (cells/µL)			
WBC	81,800	116,500	12,300
Lymphoblasts	0	33,785	0
Eosinophils	46,626	73,080	615
Serum growth factor levels (pg/mL)			
1L-3	<444	7,995	1,051
GM-CSF	<15	<15	<15
(L-5	<50	<50	<50

Peripheral blood counts from Case 2 at three different time points with the corresponding growth factor levels quantified by immunoassay. The patient received chemotherapy between 1/16/84 and 3/14/84 to lower his leukemic burden.³ No serum samples were available for a similar analysis of Case 1.

Abbreviation: WBC, white blood cells.

Fig 4. Bioassay of serum IL-3. Leukemic patient sera were tested for bioactive IL-3 and IL-5 in the TF-1 proliferation assay. The reciprocal of the dilution is indicated on the horizontal axis and the optical density indicating the amount of proliferation is indicated on the vertical axis. Serum from all three time points was assayed simultaneously. The assay was rendered monospecific by using a 1-μg/mL final concentration of monoclonal ret anti-IL-3, BVD3-6G8 (III), or anti-IL-5, JES1-39D10 (Δ); □ indicates no MoAb. Onal /16/84 and 3/14/84, inhibition of proliferation was evident in the presence of anti-IL-3 antibody, documenting serum levels of IL-3 on those days. Serum IL-5 was not detected in this assay, as anti-IL-5 did not alter TF-1 proliferation.

indicated that these other myeloid growth factors were not detectably circulating in the serum of this patient.

DISCUSSION

In this report, we have extended our analysis of acute lymphocytic leukemia and eosinophilia associated with the t(5;14) translocation. In both cases we have studied, we have documented the joining of the IL-3 gene from chromosome 5 to the IgH gene from chromosome 14. The breakpoints on chromosome 5 are within 500 bp of each other, suggesting that additional breakpoints will be clustered in a small region of the IL-3 promotor. The PCR assay we have developed will be useful in the screening of additional clinical samples for this abnormality.

The finding of a disrupted IL-3 promotor associated with an otherwise normal IL-3 gene implied that this translocation might lead to the over-expression of a normal IL-3 gene product. In this work, we have documented that this is true. In addition, neither GM-CSF nor IL-5 are over-expressed by the leukemic cells. Furthermore, in one patient, serum IL-3 could be measured and correlated with disease activity. To our knowledge, this is the first measurement of human IL-3 in serum and its association with a disease process. The measurement of serum IL-3 in this and other clinical settings may now be indicated.

The finding of the IL-3 gene adjacent to a cancer-associated translocation breakpoint suggests that its activation is important for oncogenesis. It is our thesis that an autocrine loop for IL-3 is important for the evolution of this leukemia. The excessive IL-3 production that we have documented would be one feature of such an autocrine loop. The final proof of our thesis must await additional data. In particular, from the study of additional clinical samples, it will be necessary to document that the IL-3 receptor is present on the leukemic cells and that anti-IL-3 antibody decreases proliferation of the leukemia in vitro.

An important aspect of this work is the suggestion of a therapeutic approach for this disease. If an autocrine loop for IL-3 can be documented in this disease, attempts to lower circulating IL-3 levels or block the interaction of IL-3 with its receptor may prove useful. Because it is also possible that the eosinophilia in these patients is mediated by the paracrine effects of leukemia-derived IL-3, similar interventions may improve this aspect of the disease. Antibodies or engineered ligands to accomplish these goals may soon be available.

ACKNOWLEDGMENT

We thank Naoko Arai, Ken-ichi Arai, R. O'Rourke, J. Grimaldi, and T. O'Connell for technical assistance and/or helpful discussions.

REFERENCES

- 1. Klein G, Klein E: Evolution of tumours and the impact of molecular oncology. Nature 315:190, 1985
- Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. Ann Rev Immunol 5:253, 1987
- 3. Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanScoy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. J Clin Oncol 5:382, 1987
- 4. Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). Med Ped Oncol 12:33, 1984
- 5. Grimaldi J, Meeker T: The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 73:2081, 1989
- 6. McConnell T, Foucar K, Hardy W, Saiki J: Three-way reciprocal chromosomal translocation in an acute lymphoblastic leukemia patient with hypereosinophilia syndrome. J Clin Oncol 5:2042, 1987
- 7. Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Leder P: Structure of the human immunoglobulin m locus: Characterization of embryonic and rearranged J and D genes. Cell 27:583, 1981
- 8. Otsuka T, Miyajima A, Brown N, Otsu K, Abrams J, Saeland S, Caux C, Malefijt R, Vries J, Meyerson P, Yokota K, Gemmel L,

Rennick D, Lee F, Arai N, Arai K, Yokota T: Isolation and characterization of an expressible cDNA encoding human IL-3. J Immunol 140:2288, 1988

- 9. Sambrook J, Fritsch E, Maniatis T: Molecular Cloning. Cold Spring Harbor, NY, Cold Spring Harbor Press, 1989
- 10. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Witek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3, 1986
- 11. Yokota T, Coffman R, Hagiwara H, Rennick D, Takebe Y, Yokota K, Gemmell L, Shrader B, Yang G, Meyerson P, Luh J, Hoy P, Pene J, Briere F, Spits H, Banchereau J, Vries J, Lee F, Arai N, Arai K: Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: Relationship to interleukin 5. Proc Natl Acad Sci USA 84:7388, 1987
- 12. Wong G, Witek J, Temple P, Wilkens K, Leary A, Luxenberg D, Jones S, Brown E, Kay R, Orre E, Shoemaker C, Golde D, Kaufman R, Hewick R, Wang E, Clark S: Human GM-CSE: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228:810, 1985
- 13. Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N: Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350, 1985
 - 14. Norrander U, Kempe T, Messing J: Construction of improved

- M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101, 1983
- 15. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao Y, Miyazono K, Urabe A, Takaku F: Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 140:323, 1989
- Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55, 1983
- 17. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14;18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396, 1987
- 18. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14;18) and the t(11;14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene 2:347, 1988
- 19. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Nienhuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958, 1988
- 20. Sutherland G, Baker E, Callen D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at 5q31 and is deleted in the 5q syndrome. Blood 71:1150, 1988
- 21. Sporn M, Roberts A: Autocrine growth factors and cancer. Nature 313:745, 1985

Clinical and Pathologic Significance of the c-erbB-2 (HER-2/neu) Oncogene

Timothy P. Singleton and John G. Strickler

The c-erbB-2 oncogene was first shown to have clinical significance in 1987 by Slamon et al, who reported that c-erbB-2 DNA amplification in breast carcinomas correlated with decreased survival in patients with metastasis to axillary lymph nodes. Subsequent studies, however, of c-erbB-2 activation in breast carcinoma reached conflicting conclusions about its clinical significance. This oncogene also has been reported to have clinical and pathologic implications in other neoplasms. Our review summarizes these various studies and examines the clinical relevance of c-erbB-2 activation, which has not been emphasized in recent reviews. 37,38,55 The molecular biology of the c-erbB-2 oncogene has been extensively reviewed 37,38,55 and will be discussed only briefly here.

BACKGROUND

The c-erbB-2 oncogene was discovered in the 1980s by three lines of investigation. The neu oncogene was detected as a mutated transforming gene in neuroblastomas induced by ethylnitrosurea treatment of fetal rats. 6.73,74.76 The c-erbB-2 was a human gene discovered by its homology to the retroviral gene v-erbB. 33,49,76 HER-2 was isolated by screening a human genomic DNA library for homology with v-erbB. 24 When the DNA sequences were determined subsequently, c-erbB-2, HER-2, and neu were found to represent the same gene. Recently, the c-erbB-2 oncogene also has been referred to as NGL.

The c-erbB-2 DNA is located on human chromosome 17q21^{24,33,66} and codes for c-erbB-2 mRNA (4.6 kb), which translates c-erbB-2 protein (p185). This

166 T.P. SINGLETON AND J.G. STRICKLER

protein is a normal component of cytoplasmic membranes. The c-erbB-2 oncogene is homologous with, but not identical to, c-erbB-1, which is located on chromosome 7 and codes for the epidermal growth factor receptor. The c-erbB-2 protein is a receptor on cell membranes and has intracellular tyrosine kinase activity and an extracellular binding domain. Electron microscopy with a polyclonal antibody detects c-erbB-2 immunoreactivity on cytoplasmic membranes of neoplasms, especially on microvilli and the non-villous outer cell membrane. In normal cells, immunohistochemical reactivity for c-erbB-2 is frequently present at the basolateral membrane or the cytoplasmic membrane's brush border. E2.62

There is experimental evidence that c-erbB-2 protein may be involved in the pathogenesis of breast neoplasia. Overproduction of otherwise normal c-erbB-2 protein can transform a cell line into a malignant phenotype. Also, when the new oncogene containing an activating point mutation is placed in transgenic mice with a strong promoter for increased expression, the mice develop multiple independent mammary adenocarcinomas. In other experiments, monoclonal antibodies against the new protein inhibit the growth (in nude mice) of a new-transformed cell line, 26-28 and immunization of mice with new protein protects them from subsequent tumor challenge with the new-transformed cell line. Some authors have speculated that the use of antagonists for the unknown ligand could be useful in future chemotherapy. Further review of this experimental evidence is beyond the scope of this article.

The c-erbB-2 activation most likely occurs at an early stage of neoplastic development. This hypothesis is supported by the presence of c-erbB-2 activation in both in situ and invasive breast carcinomas. In addition, studies of metastatic breast carcinomas usually demonstrate uniform c-erbB-2 activation at multiple sites in the same patient, 11,12,39,41,52 although c-erbB-2 activation has rarely been detected in metastatic lesions but not in the primary tumor. 57,00,107 Even more rarely, c-erbB-2 DNA amplification has been detected in a primary breast carcinoma but not in its lymph node metastasis. 5 In patients who have bilateral breast neoplasms, both lesions have similar patterns of c-erbB-2 activation, but only a few such cases have been studied. 11

MECHANISMS OF c-erbB-2 ACTIVATION

The most common mechanism of c-erbB-2 activation is genomic DNA amplification, which almost always results in overproduction of c-erbB-2 mRNA and protein. 17,24,65,81 The c-erbB-2 amplification may stabilize the overproduction of mRNA or protein through unknown mechanisms. Human breast carcinomas with c-erbB-2 amplification contain 2 to 40 times more c-erbB-2 DNA. 3 and 4 to 128 times more c-erbB-2 mRNA. Then found in normal tissue. Most human breast carcinomas with c-erbB-2 amplification have 2 to 15 times more c-erbB-2 DNA. Tumors with greater amplification tend to have greater overproduction. 17,52,65 The non-mammary neoplasms that have been studied tend to have

o-erbB-2 ONCOGENE

167

similar levels of c-erbB-2 amplification or overproduction relative to the corresponding normal tissue.

The second most common mechanism of c-erbB-2 activation is overproduction of c-erbB-2 mRNA and protein without amplification of c-erbB-2 DNA.⁸¹ The quantities of mRNA and protein usually are less than those in amplified cases and may approach the small quantities present in normal breast or other tissues.^{17,50,52} The c-erbB-2 protein overproduction without mRNA overproduction or DNA amplification has been described in a few human breast carcinoma cell lines.⁴⁷

Other rare mechanisms of c-erbB-2 activation have been reported. Translocations involving the c-erbB-2 gene have been described in a few mammary and gastric carcinomas, although some reported cases may represent restriction fragment length polymorphisms or incomplete restriction enzyme digestions that mimic translocations. 31,65,75,84,80,108 A single point mutation in the transmembrane portion of neu has been described in rat neuroblastomas induced by ethylnitrosurea. 3,55 The mutated neu protein has increased tyrosine kinase activity and aggregates at the cell membrane. 10,83,86 Although there has been speculation that some of the amplified c-erbB-2 genes may contain point mutations, 46 none has been detected in primary human neoplasms. 41,53,61

TECHNIQUES FOR DETECTING 6-erbB-2 ACTIVATION

Detection of c-erbB-2 DNA Amplification

Amplification of c-erbB-2 DNA is usually detected by DNA dot blot or Southern blot hybridization. In the dot blot method, the extracted DNA is placed directly on a nylon membrane and hybridized with a c-erbB-2 DNA probe. In the Southern blot method, the extracted DNA is treated with a restriction enzyme, and the fragments are separated by electrophoresis, transferred to a nylon membrane, and hybridized with a c-erbB-2 DNA probe. In both techniques, c-erbB-2 amplification is quantified by comparing the intensity (measured by densitometry) of the hybridization bands from the sample with those from control tissue.

Several technical problems may complicate the measurement of c-erbB-2 DNA amplification. First, the extracted tumor DNA may be excessively degraded or diluted by DNA from stromal cells.⁸¹ Second, the c-erbB-2 DNA probe must be carefully chosen and labeled. For example, oligonucleotide c-erbB-2 probes may not be sensitive enough for measuring a low level of c-erbB-2 amplification, because diploid copy numbers can be difficult to detect (unpublished data). Third, the total amounts of DNA in the sample and control tissue must be compensated for, often with a probe to an unamplified gene. Many studies have used control probes to genes on chromosome 17, the location of c-erbB-2, to correct for possible alterations in chromosome number. Identical results, however, are obtained by using control probes to genes on other chromosomes, 5.65.80 with rare exception. 17 Studies using control probes to the beta-

And the second s

globin gene must be interpreted with caution, because one allele of this gene is deleted occasionally in breast carcinomas.³

Amplification of c-erbB-2 DNA was assessed by using the polymerase chain reaction (PCR) in one recent study.³² Oligoprimers for the c-erbB-2 gene and a control gene are added to the sample's DNA, and PCR is performed. If the sample contains more copies of c-erbB-2 DNA than of the control gene, the c-erbB-2 DNA is replicated preferentially.

Detection of c-erbB-2 mRNA Overproduction

Overproduction of c-erbB-2 mRNA usually is measured by RNA dot blot or Northern blot hybridization. Both techniques require extraction of RNA but otherwise are analogous to DNA dot blot and Southern blot hybridization. Use of PCR for-detection of c-erbB-2 mRNA has been described in two recent abstracts. 58,102

Overproduction of c-erbB-2 mRNA can be measured by in situ hybridization. Sections are mounted on glass slides, treated with protease, hybridized with a radiolabeled probe, washed, treated with nuclease to remove unbound probe, and developed for autoradiography. Silver grains are seen only over tumor cells that overproduce c-erbB-2 mRNA. Negative control probes are used 65,06,106 Our experience indicates that these techniques are relatively insensitive for detecting c-erbB-2 mRNA overproduction in routinely processed tissue. Although the sensitivity may be increased by modifications that allow simultaneous detection of c-erbB-2 DNA and mRNA, in situ hybridization still is cumbersome and expensive (unpublished data).

All of the above c-erbB-2 mRNA detection techniques have several problems that make them more difficult to perform than techniques for detecting DNA amplification. One major problem is the rapid degradation of RNA in tissue that is not immediately frozen or fixed. In addition, during the detection procedure, RNA can be degraded by RNase, a ubiquitous enzyme, which must be eliminated meticulously from laboratory solutions. Third, control probes to genes that are uniformly expressed in the tissue of interest need to be carefully selected.

Detection of c-erbB-2 Protein Overproduction

The most accurate methods for detecting c-erbB-2 protein overproduction are the Western blot method and immunoprecipitation. Both techniques can document the binding specificity of various antibodies against c-erbB-2 protein. In Western blot studies, protein is extracted from the tissue, separated by electrophoresis (according to size), transferred to a membrane, and detected by using antibodies to c-erbB-2. In immunoprecipitation studies, antibodies against c-erbB-2 are added to a tumor lysate, and the resulting protein—antibody precipitate is separated by gel electrophoresis and stained for protein. Both Western blot and immunoprecipitation are useful research tools but currently are not practical for diagnostic pathology. Two recent abstracts have described an enzyme-linked immunosorbent assay (ELISA) for detection of c-erbB-2 protein. 19,45

169

Overproduction of c-erbB-2 protein is most commonly assessed by various immunohistochemical techniques. These procedures often generate conflicting results, which are explained at least partially by three factors. First, various studies have used different polyclonal and monoclonal antibodies. Because some polyclonal antibodies recognize weak bands in addition to the c-erbB-2 protein band on Western blot or immunoprecipitation, the results of these studies should be interpreted with caution. \$2,36,47,61 Even some monoclonal antibodies immunoprecipitate protein bands in addition to c-erbB-2 (p185). 30,59,86 Second, tissue fixation contributes to variability between studies. For example, some antibodies detect c-erbB-2 protein only in frozen tissue and do not react in fixed tissue. In general, formalin fixation diminishes the sensitivity of immunohistochemical methods and decreases the number of reactive cells. 81,86 When Bouin's fixative is used, there may be a higher percentage of positive cases. 22 Third, minimal criteria for interpreting immunohistochemical staining are generally lacking. Although there is general agreement that distinct crisp cytoplasmic membrane staining is diagnostic for c-erbB-2 activation in breast carcinoma, the number of positive cells and the staining intensity required to diagnose c-erbB-2 protein overproduction varies from study to study and from antibody to antibody. Degradation of c-erbB-2 protein is not a problem because it can be detected in intact form more than 24 hours after tumor resection without fixation or freezing.64

ACTIVATION OF c-erbB-2 IN BREAST LESIONS

Incidence of c-erbB-2 Activation

Most studies of c-erbB-2 oncogene activation do not specify histological subtypes of infiltrating breast carcinoma. Amplification of c-erbB-2 DNA was found in 19.1 percent (519 of 2715) of invasive carcinomas in 25 studies (Table 1), and c-erbB-2 mRNA or protein overproduction was detected in 20.9 percent (566 of 2714) of invasive carcinomas in 20 studies. Twelve studies have documented c-erbB-2 mRNA or protein overproduction in 15 percent (88 of 604) of carcinomas that lacked c-erbB-2 DNA amplification.

The incidence of c-erbB-2 activation in infiltrating breast carcinoma varies with the histological subtype. Approximately 22 percent (142 of 650) of infiltrating ductal carcinomas have c-erbB-2 activation, as expected from the above data. Other variants of breast carcinoma with frequent c-erbB-2 activation are inflammatory carcinoma (62 percent, 54 of 87), Paget's disease (82 percent, 9 of 11), and medullary carcinoma (22 percent, 5 of 23). In contrast, c-erbB-2 activation is infrequent in infiltrating lobular carcinoma (7 percent, 5 of 73) and tubular carcinoma (7 percent, 1 of 15).

The c-erbB-2 protein overproduction is present in 44 percent (44 of 100) of ductal carcinomas in situ and especially comedocarcinoma in situ (68 percent, 49 of 72). The micropapillary type of ductal carcinoma in situ also tends to have c-erbB-2 activation, 40,54,68 especially if larger cells are present. The greater fre-

TABLE 1. CerbB-2 ACTIVATION IN MALIGNANT HUMAN BREAST NEOPLASMS

Gverproduction 42/180,ss 49/126,ss 5 7 19/62,ss 19/57,∞ 3/11,sg 6/10,ss 3/831 18/136,st 14/73,st 11/136,st 1	7	A100 0 0 4		1
146/528, in 28/176, in 28/176, in 28/176, in 28/176, in 28/176, in 22/141, is 19/162, in 19/62, in 19/62, in 19/62, in 19/62, in 19/62, in 19/62, in 19/103, in 15/95, in 19/103, in 15/95, in 17/73, in 16/66, a 6/61, an 11/67, ar 10/63, ar 12/36, ar 10/38, ar 12/36, ar 10/38, ar 12/36, ar 14/32, comedocarchroma)** 21/118, ar 23/107, ar 23/107, ar 14/33 (comedocarchroma)** 35/95** 14/53 (comedocarchroma)** 33/3 (hubuloductal carchroma)***	Diagnosis	O-erbit-z una Amplification	Cherproduction	Overproduction
52/291, ivo 28/176, iro 19/62, iii 17/167, iii 22/141, iii 6/10, iii 3/11, iii 6/10, iii 3/11, iii 6/10, iii 3/11, iii 6/10, iii 3/11, iii 6/10, iii 17/13, iii 17/13, iii 17/13, iii 17/13, iii 17/13, iii 17/15, iii 17/10, iii 17/16, iii 17/10, iii 17/16, iii 17/160, iii 17/160, iii 17/160, iii 17/160, iii 17/160, ii 17/160, iii 17/160, ii 17/	Cardinoma, not otherwise specified	146/528,# 52/310,17	42/180, to 49/126, 36	118/728,88
177157, 113 22/141, 35 14/136, 37 12/122, 19/103, 70 15/95, 30 15/96, 11 17/73, 77 16/66, 12 6/61, 30 11/57, 32 10/57, 85 13/51, 13 6/49, 31 11/57, 32 12/36, 34 11/55, 13 7/10, 30 2/10'07 2/		52/291,109 28/176,87	19/62 tt 19/57, to	58/330,770 47/313,88
14/136,37 12/122,4 19/103,79 15/95,30 16/66,42 6/61,40 11/67,42 10/67,45 13/61,13 6/49,47 10/39,42 12/38,49 17/25,13 7/16,49 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/1118,42 23/107,34 17/50,44 7/3774 14/53 (comedocarchroma) ¹⁰ 3/33 (hubuloductal		17/157,113 22/141,35	3/11.99.6/10.46.3/931	17/195,11 32/191,58
19/103,** 15/95,** 16/66,** 6/61,** 11/57,** 10/57,** 10/38,** 12/36,** 17/15,** 7/24,** 2/10'or 2/10'or 2/10'or 2/1/118,** 23/107,** 18/138,** 14/73,** 8/16,** 0/8,** 1/4,** 0/3** ** 18/138,** 14/73,** 18/138,** 14/73,** 17/50,** 7/37* 17/50,** 7/37* 35/95** 14/53 (comedocarcinoma)** 33/33 (hubuloductal carcinoma)**	Marie 1	14/136,57 12/122.4		31/185,101 34/102,42
16/86, *** 17/73, *** 16/66, *** 6/61, *** 11/57, *** 10/57, *** 10/38, *** 12/36, *** 17/15, *** 7/12, *** 2/10'or 2/10'or 2/10'or 2/10'or 2/10'or 2/10'or 2/10'or 18/138, *** 14/73, *** 8/16, *** 0/3** 1/50, *** 7/37* 35/85** 14/53 (comedocarcinoma)** 33/33 (hubuloductal carcinoma)**	201	19/103,79 15/95,90		24/53,52b 23/47,13
16/66, 42 6/61, 40 11/57, 42 10/57, 45 13/51, 13 12/36, 41 17/15, 11 7/10, 49 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/10 ¹⁰⁸ 2/10 ¹⁰⁹ 2/10 ¹⁰⁹ 3/33 (comedocarcinoma) ¹⁰ 3/33 (hbuloductal	,	15/86,111 17/73,77	بد	22/45, 11/36, 94
1157, 10 10,57, 15 13/51, 15 12/4, 11 10/39, 22 12/36, 14 7/15, 17 7/10, 16 2/10 10 2/10 10 2/10 118, 22 23/107, 14 17/50, 47 7/379 14/53 (comedocarcinoma) 19 3/33 (hubuloducial carcinoma) 19		16/66,42 6/61,50		7/24, ⁹¹ 1/10 ⁸¹
13/51,13 8/49,21 10/39,22 12/36,41 7/15,31 7/10,99 2/10107 2/10107 2/10118,52 23/107,34 17/50,47 7/379 14/53 (comedocarcinoma)19 3/33 (hubuloducial carcinoma)19	پ- آ	11/57,12 10/57,15	ন ব	
10/38, ²² 12/38, ²⁴ 1/25, is 7/24, ³¹ 7/15, ³¹ 7/10, ³² 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 2/10 ¹⁰⁷ 18(136, ³¹ 14/73, ³⁴ 8/16, ³² 0/73, ³⁴ 17/50, ⁴⁴ 7/37, ³⁴ 14/53 (comedocarchioma) ¹⁹ 3/33 (htbuloductal	-	13/51.13 8/49.21		
1/25,15 7/24,91 7/15,31 7/10,99 2/101σ1 2/101σ1 2/101σ1 2/101σ1 2/101σ1 2/101σ1 2/101σ1 2/101σ1 3/39 (comedo-carchroma)19 3/33 (htbuloductal carchroma)19		10/38,22 12/36,94		
7/15,31 7/10,39 2/10'07 2/10'07 18(136,51 14/73,34 18/16,55 0/18,50 1/4,51 0/396 \$\frac{1}{12}\$ 17/50,47 7/379 14/53 (comedocarchioma)18 3/33 (tubuloductal carcinoma)18	e:-~	1/25,15 7/24,91		
2/0'or 18/136 or 14/73,34 8/16,50 0/8,50 1/4,31 0/356 \$\frac{1}{2}\$ 17/50,44 7/3756 14/53 (comedocarcinoma)19 3/33 (hubuloductal carcinoma)19	The state of the s	7/15,31 7/10,98	₩.	
18(136,81 14,73,34 8/16,45 0/8, 10/4,31 0/376 \$\frac{1}{7}\$ 0/370 17/50,47 7/3770 14/53 (comedo-carcinoma)19 3/33 (tubuloductal	• 4:	2/10/9		
21/118, ^{sc} 23/107, ³⁴ 35/85 ³⁴ 17/50, ⁴⁴ 7/37 ³⁵ 14/53 (comedocarchroma) ¹⁸ 3/33 (ubuloductal carchroma) ¹⁸	suchoma, type not specified but lacking c-erbB-2	i	18(136,** 14/73,** 8/16 @ OR 90 1/4 31	16/231,170 18/136,91 13/35,13 14/29,820
21/116, ²² 23/107, ³⁴ 35/85 ³⁴ 17/50, ⁴⁴ 7/37 ³⁵ 14/53 (comedo- carcinoma) ¹⁶ 3/33 (tubuloductal carcinoma) ¹⁶	DIAA ampaineanon		泰金600	1/28, æ 3/24, ⁹⁴ 0/17**
17/50,47/37% 14/53 (comedo- carchioma) ¹⁶ 3/33 (tubuloductal carchioma) ¹⁸	emonimos interior	21/118.02.23/107.34	35/95*	22/137,40 14/93,00
14/53 (comedo- carchroma) ¹⁶ 3/33 (tubuloductal carcinoma) ¹⁶		17/50,47/37		9/3488
carchroma) ¹⁶ 3/33 (tubuloductal carcinoma) ¹⁶		14/53 (comedo-		
3/33 (htbuloductal carcinoma)**	-	carcinoma)16	-	
carcinoma) ¹⁶		3/33 (tubuloductal		
	•	carcinoma) ¹⁸		

: <u>:</u> .

		33/80 æ 3/62	46.75%	2/6250
Inflammatory cardinoma	· ·			5/6,40 2/3,44 2/242
Tayler somioons		0/5.14 0/159		1/940
Library cardinates	N	2/4,18 0/134	0/w.	1,12,40 1/3,88 1/2,82
wedniedy carcinoma				0/139
Minimum companie		0/1 10 0/185	1	1/208
		0/289		1
invasive papiliary carcinoma		1/15 18 0/634	1/54	2/27,82 0/12,40 0/9,39
mitraining lobulal calcirollia				1/50
o Moure o could be a company	· ·	0/150		ļ
Wallutay income				0/168
Denign cyslusarchina		0.68	1	
Ductal CIS° with minimal invasion			1/284	33/74.40 10/2439
Ductal CIS	*	U.S.V.		20,000 61 40,000 50
Ductal CIS, solid or cornedo type	**	ر ا	 	10/105
Durdal CIS micropapillary type		1	l	
Outside Olo, marketine, or other	6			1(focal)/1454
Ductal CIS, meropaphiary of criminality type				0/16.92 1/9.68 0/340
Ductal CIS, papillary or cribriform type	6	i		0,48,60
Lobular CIS				0/10=
scheme as reinner of cases with activation/number of cases studied; reference is given as a supersoripi	on/number of cases studied; refere	moe is given as a superscript.	· .	
These protein studies used Western blots; the rest used immunohistochemical methods.	the rest used immunohistochem	nical methods.		
CIS = carcinoma in situ.			150 27	

172 T.P. SINGLETON AND J.G. STRICKLER

quency of c-erbB-2 protein overproduction in comedocarcinoma in situ, compared with infiltrating ductal carcinoma, could be explained by the fact that many infiltrating ductal carcinoma arise from other types of intraductal carcinoma, which show c-erbB-2 activation infrequently. Others have speculated that carcinoma in situ with c-erbB-2 activation tends to regress or to lose c-erbB-2 activation during progression to invasion. 40,88,92 Infiltrating and in situ components of ductal carcinoma, however, usually are similar with respect to c-erbB-2 activation, 11,39 although some authors have noted more heterogeneity of the immunohistochemical staining pattern in invasive than in in situ carcinoma. 40,49,88 Activation of c-erbB-2 is infrequent in lobular carcinoma in situ. If lesions contain more than one histological pattern of carcinoma in situ, the c-erbB-2 protein overproduction tends to occur in the comedocarcinoma in situ but may include other areas of carcinoma in situ: 42,868 Overproduction of c-erbB-2 protein in ductal carcinoma in situ correlates with larger cell size and a periductal lymphoid infiltrate.68

Activation of c-erbB-2 has not been identified in benign breast lesions, including fibrocystic disease, fibroadenomas, and radial scars (Table 2). Strong membrane immunohistochemical reactivity for c-erbB-2 has not been described in atypical ductal hyperplasia, although weak accentuation of membrane staining has been noted infrequently. 39,42,54 In normal breast tissue, c-erbB-2 DNA is diploid, and c-erbB-2 is expressed at lower levels than in activated tumors. 34,35,65,88

These preliminary data suggest that c-erbB-2 activation may not be useful for resolving many of the common problems in diagnostic surgical pathology. For example, c-erbB-2 activation is infrequent in tubular carcinoma and radial scars. In addition, because c-erbB-2 activation is unusual in atypical ductal hyperplasia, cribriform carcinoma in situ, and papillary carcinoma in situ, detection of c-erbB-2 activation in these lesions may not be helpful in their differential diagnosis. The histological features of comedocarcinoma in situ, which commonly overproduces c-erbB-2, are unlikely to be mistaken for those of benign lesions. Activation of

TABLE 2. c-crbB-2 ACTIVATION IN BENIGN HUMAN BREAST LESIONS

1982			(ii) .
Histological Diagnosis	c-erbB-2 DNA Amplifications	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
Fibrocystic disease	0/1093		0/32,39.0/9,68 0/895
Atypical ductal hyperplasia	Minima		2(weak)/21,54 1(cytoplasmio)/133
Benign ductal hyperplasia	_	_	0/1238
Scierosing adenosis			0/439
Fibroadenomas	0/16,34 0/6,55 0/2,21 0/191	0/6,35 0/334	0/21,39 0/10,68 0/8,98 0/342
Radial scars	_	_	0/2239
Blunt duct adenosis			0/1438
"Breast mastosis"		0/335	_

Shown as number of cases with activation/number of cases studied; reference is given as a superscript.

c-erbB-2, however, does favor infiltrating ductal carcinoma over infiltrating lobular-carcinoma. Further studies of these issues would be useful.

Correlation of c-erbB-2 Activation With Pathologic Prognostic Factors Multiple studies have attempted to correlate c-erbB-2 activation with various pathologic prognostic factors (Table 3). Activation of c-erbB-2 was correlated with lymph node metastasis in 8 of 28 series, with higher histological grade in 6 of 17 series, and with higher stage in 4 of 14 series. Large tumor size was not associated with c-erbB-2 activation in most studies (11 of 14). Tetraploid DNA content and low proliferation, measured by Ki-67, have been suggested as prognostic factors and may correlate with c-erbB-2 activation.^{6,7}

Correlation of c-erbB-2 Activation With Clinical Prognostic Factors

Various studies have attempted also to correlate c-erbB-2 activation with clinical features that may predict a poor outcome (Table 4). Activation of c-erbB-2 correlated with absence of estrogen receptors in 10 of 28 series and with absence of progesterone receptors in 6 of 18 series. In most studies, patient age did not correlate with c-erbB-2 activation, and, in the rest of the reports, c-erbB-2 activation was associated with either younger or older ages.

Correlation of c-erbB-2 Activation With Patient Outcome

Slamon et al^{79,81} first showed that amplification of the c-erbB-2 oncogene independently predicts decreased survival of patients with breast carcinoma. The correlation of c-erbB-2 amplification with poor outcome was nearly as strong as the correlation of number of involved lymph nodes with poor outcome. Slamon et al also reported that c-erbB-2 amplification is an important prognostic indicator only in patients with lymph node metastasis. ^{79,81}

A large number of subsequent studies also attempted to correlate c-erbB-2 activation with prognosis (Table 5). In 12 series, there was a correlation between c-erbB-2 activation and tumor recurrence or decreased survival. In five of these series, the predictive value of c-erbB-2 activation was reported to be independent of other prognostic factors. In contrast, 18 series did not confirm the correlation of c-erbB-2 activation with recurrence or survival. Four possible explanations for this controversy are discussed below.

One problem is that c-erbB-2 amplification correlates with prognosis mainly in patients with lymph node metastasis. As summarized in Table 5, most studies of patients with axillary lymph node metastasis showed a correlation of c-erbB-2 activation with poor outcome. In contrast, most studies of patients without axillary metastasis have not demonstrated a correlation with patient outcome. Table 6 summarizes the studies in which all patients (with and without axillary metastasis) were considered as one group. There is a trend for studies with a higher percentage of metastatic cases to show an association between c-erbB-2 activation and poor outcome. Thus, most of the current evidence suggests that c-erbB-2 activation has prognostic value only in patients with metastasis to lymph nodes.

	١	
	ı	
_	١	
3	Į	
9	١	
℧	ĺ	
5	ı	
3		
15		
S		
Œ		
2		ĺ
5		ĺ
ğ	1	
E		l
å		
Į,		l
Ë		l
Ų)	l
ž	•	l
۶	7	١
ğ	É	ı
2		l
ē	5	İ
שייון טפוני פפטט	?	
ζ	ַ	l
F		I
8	Č	ı
2	_	1
	Ē	
	2	
Ş	5	
	7	
Ì	≥.	
į	و	
ì	Š	
(Ď	
٠	Ë	
•	S	•
- 1	片	
	ž	
-	Ö	
į		
	ᇜ	
	Œ	
	ö	
	ت	•
	ď	
	٣	
	TABLE	١
	F	

TABLE 3. COMMELATION	IN OT CELUDA TO NO			
Prognostic Factor	å	c-erbB-2 DNA Amplification ⁶	o-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
	50.0>	(118)25 (105)34 (49)21	(104)36 (92)24 (9)31	(3E) ess (3E) 13
wetastasts to axillary lymph	0.05-0.15	(103)79 (88)79 (58)111	5.02	(189)** (261)** (195)**
nodes	>0.15	$(279)^{1/2}(176)^{1/2}(137)^{1/2}$ $(122)^4(85)^{20}(50)^{22}$	-(nc)	(185) m (102) 2 (50) sz
		(50)44 (47)13 (41)50		8000
l amer size	<0.05			(330),,, (188)
	0.05-0.(15)		:a	(35)195c (185)10 (34)82
	>0.15	(178)57 (157)12 (103)75		(1) (1)
		(04)** (30)*** (40)*** (300)\7 (64)\7 (58)\11	1	(349)'70
Higher stage	<0.05	(cc) (co) (cos)	·	l
	0.09	(176) (157) (13 (84) 90		(102)39 (56)520
	* ±:	(61)50 (53)21 (52)67		
		(41)83		61(00) 1(00) 11
Higher bistological	<0.05	(47)13 (15)31	(53)	-/65) ::(99): (1
grade	0.05-0.15	00(30) 5(5+1) NCC11	(86) ³⁴⁵	(290)#6 (189) ⁵² (102) ³⁹
	>0.15	(52) (13) (53) (50)11 (50)44 (41)80		
	•	(11) (20) (20)		

*A correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically eignificant at >0.15.

*Numbers inside parentheses are the number of patients in an individual study; superscript is the reference. Some studies enabyzed more than one group of patients.

*By Western blot method; all other protein studies used immunohistochemical methods.

PAPER & COUNTY OF				
Prognostic Factor	å	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
Absence of estrogen receptors	<0.05	(253)109 (141)36 (109)34 (86)78 (50)44 (47)13	(104)35	(350) ⁸⁵⁶ (330) ¹⁷⁰ (185) ¹⁰¹
	0.05-0.15 >0.15	(157)***22)** (103)*** (155)*** (103)***	(180) ⁸³ (62) ⁸⁵ (62) ⁸⁵ (57) ⁸⁹	(290) ⁶⁸ (172) ¹¹ (51) ⁶²⁶ (38) ¹³
	चर्1 अमेदिः ः	(58)111 (53)21 (51)52 (41)59	ie.	
Absence of progester-	<0.05	(253) ¹⁰⁸ (141) ³³ (109) ³⁴ (50) ⁴⁴	. , ,	(350) ^{65e} (306) ^{17e}
soxia a co	0.05-0:15 >0.15	(157)113 (122)* (103)73.	(180) ⁸⁹ (103) ⁸⁵ (62) ⁸³	(90) 11 (49)
Age (meconaiseal efattis)	<0.05	- (46)		(younger: 330)''? (older: 56)'5°
(menoparasa surra)	0.05-0.15 >0.15	(younger: 86)** (230)** (176)** (157)**3 (230)** (145)**	(62)65	(350)*** (290)*** (189)*** (162)** (45)**
4.	version in the second s	(95) ²⁰ (64)7 (58) ¹¹ (95) ²⁰ (53)7 (49) ¹³	di.	
	*	(41) ⁵⁰ (15) ³¹	-	

*A correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically significant at >0.15

PNumbers inside parentheses are the number of patients in an individual study; superscript is the reference. Some studies analyzed more than one group of patients.

By Western blot method; all other protein studies used immunohistochemical methods.

176 T.P. SINGLETON AND J.G. STRICKLER

TABLE 5. CORRELATION OF c-erbB-2 ACTIVATION WITH OUTCOME IN PATIENTS WITH BREAST CARCINOMA

			Number of Pati	ents		
ρι	Type of c-erbB-2 Activation	Total	With Metastastis to Axillary Lymph Nodes	No Metastasis	Statistical Analysis	Reference
<0.05	DNA	176			М	87
<0.06	DNA	61			υ	50
<0.05	DNA	57	•		U	65
<0.05	DNA	41			Ų	93
<0.05 €	mRNA	62	 		· · · U··	65
<0.05 ~	Protein	102	Ý 🐔 *	\$-	M	101
<0.05	DNA		345		. M	81
<0.05	DNA		120		υ	· 17
< 0.05	DNA		91		U	87
< 0.05	DNA		86	,	. M	79.
<0.05	Protein-WB		350		. M	85
<0.05	Protein		62	44	U .	101
0.05-0.15	DNA	57			Ų	111
0.05-0.15	Protein	189			M	92
0.05-0.15	Protein		. 120	•	U	86
>0.15	DNA	130			U ·	113
>0.15	DNA .	122			М	4
>0.15	DNA	50			U	44
>0.15	mRNA	57			U	50
>0.15	Protein	290			M	86
>0.15	Protein	195		•	U	11
>0.15	Protein	102		•	Ū	39
>0.15	Protein	•	137		U	17
>0.15::=	CE DNA	1.50	Ç,	• 181≔;	M -	=
>0.15	DNA "			159	U	. 17
>0.15	DNA			73	U	87
>0.15	Protein-WB			378	U	85
>0.15	Protein-WB			192	U	17
>0.15	Protein			141	υ	86
>0.15	Protein			41	U	40

The endpoints of these studies were tumor recurrence or decreased survival or both. Correlation between oerbB-2 activation and a poorer patient outcome is statistically significant at <0.05, is of equivocal significance at 0.05 to 0.15, and is not significant at >0.15.

⁶Shown as variable measured. Letters "WB" indicate assay by Western blot; the other protein studies used immunohistochemical methods.

^cM = multivariate statistical analysis; U = univariate statistical analysis.

TABLE 6. PERCENTAGE OF BREAST CARCINOMAS WITH METASTASIS COMPARED WITH PROGNOSTIC SIGNIFICANCE OF G-076B-2 ACTIVATION

P for correlation of c-erbB-2 activation with patient outcome.

Each study's percentage of breast carcinomas with metastasis is compared with the correlation between c-erbB-2 activation and outcome. These data include only those studies that considered, as one group, all breast cancer patients, whether or not they had axitiary metastasis. Superscripts are the references. In parentheses are the types of c-erbB-2 activation. P values are interpreted as in Table 3.

A second problem is that various types of breast carcinoma are grouped together in many survival studies. Because the current literature suggests that c-erbB-2 activation is infrequent in lobular carcinoma, studies that combine infiltrating ductal and lobular carcinomas may dilute the prognostic effect of c-erbB-2 activation in ductal tumors. In addition, most studies do not analyze inflammatory breast carcinoma separately. This condition frequently shows c-erbB-2 activation and has a worse prognosis than the usual mammary carcinoma, but it is an uncommon lesion.

A third potential problem is the paucity of studies that attempt to correlate c-erbB-2 activation with clinical outcome in subsets of breast carcinoma without metastasis. Two recent abstracts reported that in patients without lymph node metastasis who had various risk factors for recurrence (such as large tumor size and absence of estrogen receptors), c-erbB-2 overexpression predicted early recurrence. ^{22,67} In patients with ductal carcinoma in situ, one small study found no association between tumor recurrence and c-erbB-2 activation. ⁴⁰

A fourth problem is the lack of data regarding whether the prognosis correlates better with c-erbB-2 DNA amplification or with mRNA or protein overproduction. Most studies that find a correlation between c-erbB-2 activa-

178 T.P. SINGLETON AND J.G. STRICKLER

tion and poor patient outcome measure c-erbB-2 DNA amplification (Table 5), and breast carcinoma patients with greater amplification of c-erbB-2 may have poorer survival. The Recent studies suggest that amplification has more prognostic power than overproduction, 17,34,35 but the clinical significance of c-erbB-2 overproduction without DNA amplification deserves further research. 17,52 Few studies have attempted to correlate patient outcome with c-erbB-2 mRNA overproduction, and many studies of c-erbB-2 protein overproduction use relatively less reliable methods such as immunohistochemical studies with polyclonal antibodies.

Comparison of c-erbB-2 Activation With Other Oncogenes in Breast Carcinoma

Other oncogenes that may have prognostic implications in human breast cancer are reviewed clscwhere. 71,106 This section will be restricted to a comparison between the clinical relevance of c-erbB-2 and these other oncogenes.

The c-myc gene is often activated in breast carcinomas, but c-myc activation generally has less prognostic importance than c-erbB-2 activation. \$1.54,77.87,50 One study found a correlation between increased mRNAs of c-erbB-2 and c-myc, although other reports have not confirmed this. 54.106 Subsequent research, however, could demonstrate a subset of breast carcinomas in which c-myc has more prognostic importance than c-erbB-2.

The gene c-erbB-1 for the epidermal growth factor receptor (EGFR) is homologous with c-erbB-2 but is infrequently amplified in breast carcinomas. 79 Overproduction of EGFR, however, occurs more frequently than amplification and may correlate with a poor prognosis. In studies that have examined both c-erbB-2 and EGFR in the same tumor, c-erbB-2 has a stronger correlation with poor prognostic factors. 35.52 Studies have tended to show no correlation between amplification of c-erbB-2 and c-erbB-1 or overproduction of c-erbB-2 and EGFR, although at the molecular level EGFR mediates phosphorylation of c-erbB-2 protein. 51.52,51,68,100 Recent reviews describe EGFR in breast carcinoma, 49,100

The genes c-erbA and ear-1 are homologous to the thyroid hormone receptor, and they are located adjacent to c-erbB-2 on chromosome 17. These genes are frequently coamplified with c-erbB-2 in breast carcinomas. The absence of c-erbA expression in breast carcinomas, however, is evidence against an important role for this gene in breast neoplasia. Amplification of c-erbB-2 can occur without ear-1 amplification, and these tumors have a decreased survival that is similar to tumors with both c-erbB-2 and ear-1 amplification. Consequently, c-erbB-2 amplification seems to be more important than amplification of c-erbA or ear-1.

Other genes also have been compared with c-erbB-2 activation in breast carcinomas. One study found a significant correlation between increased c-erbB-2 mRNA and increased mRNAs of fos, platelet-derived growth factor chain A, and Ki-ras. ¹⁰⁶ Allelic deletion of c-Ha-ras may indicate a poorer prognosis in breast carcinoma. ²¹ but it has not been compared with c-erbB-2 activation. Some studies have suggested a correlation between advanced stage or recurrence of breast carcinoma and activation of any one of several oncogenes. ^{21,113}

ACTIVATION OF c-erbB-2 IN NON-MAMMARY TISSUES

Incidence of c-erbB-2 Activation in Non-Mammary Tissues

Table 7 summarizes the normal tissues in which c-erbB-2 expression has been detected, usually with immunohistochemical methods using polyclonal anti-

TABLE 7. PRESENCE OR ABSENCE OF C-erbB-2 mRNA OR C-erbB-2 PROTEIN IN NORMAL HUMAN TISSUES

Tissues With c-erbB-2 mRNA	Tissues Producing c-erbB-2 Protein	Tissues Lacking c-erbB-2 mRNA	Tissues Lacking c-erbB-2 Protein
Skin ²⁴	Epidemis ⁵⁵ External root sheath ⁵⁵ Ecorine sweat gland ⁵⁶	in the second	
	Fetal oral mucosa ^{ez} Fetal esophagus ^{ez}		Postnatal oral mucosa ⁶² Postnatal esophagus ⁶²
Stomach ²⁴	Stomach ^{22,52} Fetal intestine ^{52s}		
Jejunum ²⁴	Small intestine22,82	•	
Colon24	Colon ^{22,62}		
Kidney ²⁴	Fetal kidney ^{eza} Fetal proximal tubule ^{e2} Distal tubule ^{e2}	Kidneys ¹⁰⁴	Glomerulus ^{ee} Postnatal Bowman's capsule ^{ee} Postnatal proximal tubule ^{ee}
·	Fetal collecting duct ⁶² Fetal renal pelvis ⁶² Fetal ureter ⁶²		Postnatal collecting ductes Postnatal renal pelvises Postnatal fetal ureteres
Liver ²⁴	Hepatocytes ²² Pancreatic acini ²² Pancreatic ducts ^{22,52} Endocrine cells of islets of Langerhans ²²	·	Liverezes Pancreatic isletses
Lung ²⁴	Fetal tracheae " Fetal bronchlolesez Bronchiolesee	7/2 ·	Postnatal trachea® Postnatal bronchiolea® Postnatal alveole®®
Fetal brain ²⁴			Postnatal brain ^{e2}
, car brain	Fetal ganglion cells62		Postnatal ganglion cellses
Thyroid			• •
Uterus ²⁴			
	Ovary ¹²		
	Blood vessels42		Endothelium ⁵²
Placenta ²⁴	•		
			Adrenocortical cells ⁶² Postnatal thymus ⁶² Fibroblasts ⁶² Smooth muscle cells ⁶²
			Cardiac muscle cells

This protein study used Western blots; the rest used immunohistochemical methods.

180 T.P. SINGLETON AND J.G. STRICKLER

bodies. Only a few studies have been performed, and some of these do not demonstrate convincing cell membrane reactivity in the published photographs. The interpretations in these studies, however, are listed, with the caveat that these findings should be confirmed by immunoprecipitation or Western or RNA blots. Production of c-erbB-2 has been identified in normal epithelium of the gastrointestinal tract and skin. Discrepancies regarding c-erbB-2 protein in other tissues could be due, at least in part, to differences in techniques.

The data on c-erbB-2 activation in various non-mammary neoplasms should be interpreted with caution, because only small numbers of tumors have been studied, usually by immunohistochemical methods using polyclonal antibodies. Studies using cell lines have been excluded, because cell culture can induce amplification and overexpression of other genes, although this has not been documented for c-erbB-2.

Activation of c-erbB-2 has been identified in 32 percent (64 of 203) of ovarian carcinomas in eight studies (Table 8). One abstract 5 stated that ovarian carcinomas contained significantly more c-erbB-2 protein than ovarian non-epithelial malignancies. Another report 5 showed that 12 percent of ovarian carcinomas had c-erbB-2 overproduction without amplification.

Activation of c-erbB-2 has been identified in 20 percent (40 of 198) of gastric adenocarcinomas in seven studies, including 33 percent (21 of 64) of

TABLE 8. c-erbB-2 ACTIVATION IN HUMAN GYNECOLOGIC TUMORS*

Turnor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over- production	c-erbB-2 Protein Over- production
Ovary—carcinoma, not otherwise specified	31/120,81 1/11,87 0/6,107 0/6,84 0/3,112 0/2,72 0/1110	23/67 ⁸¹	23/73, ¹² 36/72 ⁵¹
Ovary—serous (papillary) carcinoma	2/7,110 1/7,112 0/672	_	
Ovary-endometrioid carcinoma	0/3110		
Ovary—mucinous cardnoma	1/2,110 0/172		_
Ovary—clear cell carcinoma	0/2,112 0/172		·
Ovary-mixed epithelial carcinoma	0/272	_	
Ovary—endometrioid borderline tumor	0/172	_	
Ovary-mucinous borderline tumor	0/372	_	
Ovary-serous cystadenoma	0/472		
Ovary-mucinous cystadenoma	0/272	<u> </u>	
Ovary—sclerosing stromal tumor	0/172		
Ovary—fibrothecoma	0/172	_	
Uterus-endometrial adenocarcinoma	0/4,84 0/1110		

Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as supersoript. All protein studies used immunohistochemical methods.

intestinal or tubular subtypes and 9 percent (4 of 47) of diffuse or signet ring cell subtypes (Table 9). Activation of c-erbB-2 has been detected in 2 percent (6 of 281) of colorectal carcinomas, although an additional immunohistochemical study detected c-erbB-2 protein in seven of eight tissues fixed in Bouin's solution. One study found greater immunohistochemical reactivity for c-erbB-2 protein in colonic adenomatous polyps than in the adjacent normal epithelium, using Bouin's fixative. Lesions with anaplastic features and progression to invasive carcinoma tended to show decreased immunohistochemical reactivity for c-erbB-2 protein. Hepatocellular carcinomas (12 of 14 cases) and cholangiocarcinomas (46 of 63 cases) reacted with antibodies against c-erbB-2 in one study, but some of these "positive" cases showed only diffuse cytoplasmic staining, which

TABLE 9. C-676B-2 ACTIVATION IN HUMAN GASTROINTESTINAL TUMORS-

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 Protein Over- production
Esophagus—squamous cell carcinoma	0/1107	0/181
Stomach—carcinoma, poorly differentiated	0/22100	_
Stomach—adenocarcinoma	2/24,84 2/9,107 2/8,111 2/8,87 0/1108	4/27,29 3/1061
Stomach—carcinoma, intestinal or tubular type	5/10108	16/5429
Stomach-carcinoma, diffuse or signet ring cell	type 0/2 ¹⁰⁸	4/4529
Colorectum-carcinoma	2/49,84 1/45,111 1/45,87 1/45,60 0/40,81 0/32,107 0/382	1/22,58 7/8226
Colon-villous adenoma	0/160	
Colon—tubulovillous adenoma	0/560	_
Colon—tubular adenoma	0/760	19/19*20
Colon-hyperplastic polyp	0/160	
Intestine—lelomyosarcoma	A	0/161
Hepatocellular carcinoma	0/12111	12/14.95 0/261
Hepatoblastoma	0/157	***
Cholanglocardnoma		46/6395
Pancreas—adenocarcinoma	-	2/80,410 0/261
Pancreas—acinar carcinoma		0/141
Pancreasclear cell carcinoma		0/241
Pancreas—large cell carcinoma	· —	0/341
Pancreas—signet ring carcinoma		0/141
Pancreas—chronic inflammation		0/14416

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for c-erbB-2 mRNA.

Tissues fixed in Bouin's solution.

COnly cases with distinct membrane staining are interpreted as showing c-erbB-2 overproduction.

T.P. SINGLETON AND J.G. STRICKLER

TABLE 10. 6-erbB-2 ACTIVATION IN HUMAN PULMONARY TUMORS

Tumor Type	o-erbB-2 DNA Amplification	c-erbB-2 Protein Overproduction	
Non-small cell carcinoma	2/60,75 0/6081	1/8459	
Epidermoid cardnoma	0/13,52 0/10,57 0/620	3/589	
Adenocarcinoma	0/21,52 1/13,50 0/7,111 0/7,57 0/3107	4/1299	
Large cell carcinoma	0/9.62 0/620		
Small cell carcinoma		0/26,58 0/399	
Carcinoid tumor	0/152	.0/399	

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for o-erbB-2 mRNA.

does not indicate c-erbB-2 activation in breast neoplasms. Also, some pancreatic carcinomas and chronic pancreatitis tissue had cytoplasmic immunohistochemical reactivity for c-erbB-2 protein, in addition to the rare case of pancreatic adenocarcinoma with distinct cell membrane staining.

Tables 10 through 14 summarize the studies of c-erbB-2 activation in other neoplasms. The c-erbB-2 oncogene is not activated in most of these tumors. Activation of c-erbB-2 has been detected in 1 percent (4 of 299) of pulmonary non-small cell carcinomas in nine studies, although one additional report⁶⁰ found c-erbB-2 protein overproduction in 41 percent (7 of 17). Renal cell carcinoma had c-erbB-2 activation in 7 percent (2 of 30) in four studies. Overproduction of c-erbB-2 protein was described in one transitional cell carcinoma of the urinary bladder, a grade 2 papillary lesion. Squamous cell carcinoma and basal cell carcinoma of the skin may contain c-erbB-2 protein, but it is not clear

TABLE 11. c-erbB-2 ACTIVATION IN HUMAN HEMATOLOGIC PROLIFERATIONS

en de la companya della companya della companya de la companya della companya del	\$5.5°5 € 10.00°5	c-erbB-2 mRNA	c-erbB-2 Protein
Tumor Type	c-erbB-2 DNA Amplification	Over- production	Over- production
Hematologic malignancies	0/23111	_	
Mailgnant lymphoma	0/9,57 0/3107	0/11	0/15*1
Acute leukemla	0/1457		
Acute lymphoblastic leukemia	0/1 107	_	******
Acute myeloblastic leukernia	0/3107		_
Chronic leukemia	0/1957		· _
Chronic lymphocytic leukemia	0/6107	 .	
Chronic myelogenous leukemia	0/8107	_	
Myeloproliferative disorder	0/167		_

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

c-erbB-2 ONCOGENE

183

TABLE 12. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF SOFT TISSUE AND BONE

	Tumor Type	c-erbB-2 DNA Amplification	
	Sarcoma	0/10,111 0/867	
	Malignant fibrous histiocytoma	0/1107	
	Liposarcoma	0/3107	•
	Pleomorphic sarcoma	0/1 107	
	Rhabdomyosarcoma	0/1 107	•
	Osteogenio sarcoma	0/2,107 0/257	
•	Chondrosarcoma	0/1107	·
	Ewing's sarcoma	0/167	
	Schwannoma	0/157 4=	

[&]quot;Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. No studies analyzed for c-erbB-2 mRNA or c-erbB-2 protein.

whether the protein level is increased over that of normal skin. Thyroid carcinomas and adenomas can have low levels of increased c-erbB-2 mRNA. One abstract described low-level c-erbB-2 DNA amplification in one of ten salivary gland pleomorphic adenomas. 48

Correlation of c-erbB-2 Activation With Patient Outcome

Very few studies have attempted to correlate c-erbB-2 activation in non-mammary tumors with outcome. Slamon et al⁵¹ showed that c-erbB-2 amplification or overexpression in ovarian carcinomas correlates with decreased survival, especially when marked activation is present. However, they did not report the stage, histological grade, or histological subtype of these neoplasms. Another study of stages III and IV ovarian carcinomas found a correlation between decreased survival and c-erbB-2 protein overproduction, but not between survival and histological grade. One abstract stated that c-erbB-2 protein overproduction in 10 of 16 pulmonary adenocarcinomas correlated with decreased disease-free interval. Another abstract described a tendency for immunohisto-

TABLE 13. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF THE URINARY TRACT*

Tumor Type	c-erbB-2 DNA Amplification	o-erbB-2 mRNA Over- production	c-erbB-2 Protein Over- production
Kidney-renal cell carcinoma	1/5,67 1/4,107 0/584	0/16104	1
Wilms' tumor	0/457	·	
Prostate-adenocarcinoma		-	0/2358
Urinary bladder—carcinoma			1/4850

^{*}Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

184 T.P. SINGLETON AND J.G. STRICKLER

TABLE 14. C-8/DB-2 ACTIVATION IN MISCELLANEOUS HUMAN TUMORS

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Over- production
Skin-malignant melanoma	_		0/1058
Skin, head and neck—squamous cell carcinoma	0/7107	_	_
Site not stated—squamous cell carcinoma	0/8,57 0/276	***	_
Salivary gland—adenocarcinoma	1/176	· <u></u>	•
Parotid gland—adenoid cystic carcinoma	Tipes to	-	0/161
Thyrold—anaplastic carcinoma	0/11	0/11	_
Thyrold—papillary carcinoma	0/51	3(low levels)/51	
Thyroid—adenocarcinoma	0/184	-	_
Thyroid—adenoma	0/21	1(low levels)/21	
Neuroblastoma	0/35,81 0/9,57 0/176	- Con lovelajiz	_
Meningioma	0/257	_	

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

chemical reactivity for c-erbB-2 protein to correlate with higher grades of prostatic adenocarcinoma. Additional prognostic studies of ovarian carcinomas and other neoplasms are needed.

SUMMARY

Activation of the c-erbB-2 oncogene can occur by amplification of c-erbB-2 DNA and by overproduction of c-erbB-2 mRNA-and c-erbB-2 protein. Approximately 20 percent of breast carcinomas show evidence of c-erbB-2 activation, which correlates with a poor prognosis primarily in patients with metastasis to axillary lymph nodes. Studies that have attempted to correlate c-erbB-2 activation with other prognostic factors in breast carcinoma have reported conflicting conclusions. The pathologic and clinical significance of c-erbB-2 activation in other neoplasms is unclear and should be assessed by additional studies.

REFERENCES

- Aasland R; Lillehaug JR, Male R, et al. Expression of oncogenes in thyroid tumors: Coexpression of c-erbB2/neu and c-erbB. Br J Cancer. 57:358, 1988
- Akiyama T, Sudo C, Ogawara H, et al. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science. 232:1644, 1986

c-erbB-2 ONCOGENE

185

 Ali IU, Lidereau R, Theillet C, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science. 238:185, 1987

4. Ali IU, Campbell G, Lidereau R, Callahan R. Amplification of c-erbB-2 and aggressive human breast tumors. Science. 240:1795, 1988

- Ali IU, Campbell G, Lidereau R, Callahan R. Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res. 3:139, 1988
- Bacus SS, Bacus JW, Slamon DJ, Press MF. HER-2/neu oncogene expression and DNA ploidy analysis in breast cancer. Arch Pathol Lab Med. 114:164, 1990
- Bacus SS, Ruby SG, Weinberg DS, et al. HER-2/neu oncogene expression and proliferation in breast cancers. Am J Pathol. 137:103, 1990
- 8. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 319:226, 1986
- Bargmann CI, Hung-MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell. 45:649, 1986
- Bargmann CI, Weinberg RA. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J. 7:2043, 1988
- 11. Barnes DM, Lammie GA, Millis RR, et al. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer. 58:448, 1988
- Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50:4087, 1990
- Berger MS, Locher GW, Saurer S, et al. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res. 48:1238, 1988
- Bernards R, Destree A, McKenzie S, et al. Effective tumor immunotherapy directed against an oncogene-encoded product using a vaccinia virus vector. Proc Natl Acad Sci USA. 84:6854, 1987
- 15. Biunno I, Pozzi MR, Pierotti MA, et al. Structure and expression of oncogenes in surgical specimens of human breast carcinomas. Br J Cancer. 57:464, 1988
- 16. Borg Å, Linell F, Idvall I, et al. Her2/neu amplification and comedo type breast carcinoma. Lancet. 1:1268, 1989
- 17. Borg Å, Tandon AK, Sigurdsson H, et al. HER-2/neu amplification predicts poor survival in pode-positive breast cancer. Cancer Res. 50:4332, 1990.
- Bouchard L, Lamarre L. Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell. 57:931, 1989
- 19. Carney WP, Retos C, Petit D, et al. Quantitation of the neu oncogene protein using a monoclonal antibody based immunoassay (abstract). Mod Pathol. 3:15A, 1990
- 20. Cline MJ, Battifora H. Abnormalities of protooncogenes in non-small cell lung cancer: Correlations with tumor type and clinical characteristics. Cancer. 60:2669, 1987
- Cline MJ, Battifora H, Yokota J. Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of disease. J Clin Oncol. 5:999, 1987
- 22. Cohen JA, Weiner DB, More KF, et al. Expression pattern of the neu (NGL) geneencoded growth factor receptor protein (p185^{neu}) in normal and transformed epithelial tissues of the digestive tract. Oncogene. 4:81, 1989
- Colnaghi MI, Miotti S, Andreola S, et al. New prognostic factors in breast cancer (abstract). Am Assoc Cancer Res Ann Meeting. 30:230A, 1989

186 T.P. SINGLETON AND J.G. STRICKLER

- Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 230:1132, 1985
- 25. Di Fiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 237:178, 1987
- Drebin JA, Link VC, Weinberg RA, Greene MI. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acad Sci USA. 83:9129, 1986
- Drebin JA, Link VC, Greene MI. Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene. 2:273, 1988
- 28. Drebin JA, Link VC, Greene MI. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene. 2:387, 1988
- 29. Falck VG, Gullick WJ. c-erbB-2 oncogene product staining in gastric adenocarcinoma. An immunohistochemical study. J Pathol. 159:107, 1989
- Fendly BM, Winget M, Hudziak RM, et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/ neu gene product. Cancer Res. 50:1550, 1990
- 31. Fontaine J. Tesseraux M. Klein V. et al. Gene amplification and expression of the neu (c-erbB-2) sequence in human mammary carcinoma. Oncology. 45:360, 1988
- 32. Frye RA, Benz CC, Liu E. Detection of amplified oncogenes by differential polymerase chain reaction. Oncogene. 4:1153, 1989
- 33. Fukushige SI, Matsubara KI, Yoshida M, et al. Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol. 6:955, 1986
- 34. Guerin M, Barrois M, Terrier MJ, et al. Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: Correlation with poor prognosis. Oncogene Res. 3:21, 1988
- Guerin M, Gabillot M, Mathieu MC, et al. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: Prognostic significance. Int J Cancer. 43:201, 1989
- 36. Gullick WJ, Berger MS, Bennett PLP, et al. Expression of the c-erbB-2 protein in normal and transformed cells. Int J Cancer. 40:246, 1987
- 37. Gullick WJ, Venter DJ. The c-erbB2 gene and its expression in human cancers. In: Waxman J, Sikora K, eds. The Molecular Biology of Cancer. Boston, Blackwell Sci Publ; 1989: 38-53
- 38. Gullick WJ. Expression of the c-erbB-2 proto-oncogene protein in human breast cancer. Recent Results Cancer Res. 113:51, 1989
- Gusterson BA, Machin LG, Gullick WJ, et al. c-erbB-2 expression in benign and malignant breast disease. Br J Cancer. 58:453, 1988
- Gusterson BA, Machin LG, Gullick WJ, et al. Immunohistochemical distribution of c-erbB-2 in infiltrating and in situ breast cancer. Int J Cancer. 42:842, 1988
- 41. Hall PA, Hughes CM, Staddon SL, et al. The c-erbB-2 proto-oncogene in human pancreatic cancer. J Pathol. 161:195, 1990
- Hanna W, Kahn HJ, Andrulis 1, Pawson T. Distribution and patterns of staining of neu oncogene product in benign and malignant breast diseases. Mod Pathol. 3:455, 1990
- 43. Harris AL, Nicholson S. Epidermal growth factor receptors in human breast cancer.

In: Lippman ME, Dickson RB, eds. Breast Cancer: Cellular and Molecular Biology. Boston, Kluwer Academic Publ; 1988: 93-118

- 44. Heintz NH, Leslie KO, Rogers LA, Howard PL. Amplification of the c-erbB-2 oncogene and prognosis of breast adenocarcinoma. Arch Pathol Lab Med. 114:160, 1990
- 45. Huettner P, Carney W, Delellis R, et al. Quantification of the neu oncogene product in ovarian neoplasms (abstract). Mod Pathol. 3:46A, 1990
- Hung MC, Yan DH, Zhao X. Amplification of the proto-neu oncogene facilitates oncogenic activation by a single point mutation. Proc Natl Acad Sci USA. 86:2545, 1989
- 47. Hynes NE, Gerber HA, Saurer S, Groner B. Overexpression of the c-erhB-2 protein in human breast tumor cell lines. J Cell Biochem. 39:167, 1989
- 48. Kahn HJ, Hanna W, Auger M, Andreulis I. Expression and amplification of neu oncogene in pleomorphic adenoma of salivary glands (abstract). Mod Pathol. 3:50A, 1990
- King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 229:974, 1985
- King CR, Swain SM, Porter L, et al. Heterogeneous expression of erhB-2 messenger RNA in human breast cancer. Cancer Res. 49:4185, 1989
- Kokai Y, Dobashi K, Weiner DB, et al. Phosphorylation process induced by epidermal growth factor receptor alters the oncogenic and cellular neu (NGL) gene products. Proc Natl Acad Sci USA. 85:5389, 1988
- 52. Lacroix H, Iglehart JD, Skinner MA, Kraus MH. Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. Oncogene. 4:145, 1989
- 53. Lemoine NR, Staddon S, Dickson C, et al. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene. 5:237, 1990
- Lodato RF, Maguire HC, Greene MJ, et al. Immunohistochemical evaluation of cerbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Mod Pathol. 3:449, 1990
- 55. Maguire HC, Greene MI. The neu (c-erbB-2) oncogene. Semin Oncol. 16:148, 1989
- 56. Maguire HC, Jaworsky C, Cohen JA, et al. Distribution of neu (c-erbB-2) protein in human skin. J Invest: Dermatol. 89:786, 1989
- Masuda H, Battifora H, Yokota J, et al. Specificity of proto-oncogene amplification in human malignant diseases. Mol Biol Med. 4:213, 1987
- 58. McCann A, Dervan PA, Johnston PA, et al. c-erbB-2 oncoprotein expression in primary human tumors. Cancer. 65:88, 1990
- McKenzie SJ, Marks PJ, Lam T, et al. Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185. Oncogene. 4:543, 1989
- 60. Meltzer SJ, Ahnen DJ, Battifora H, et al. Protooncogene abnormalities in colon cancers and adenomatous polyps. Gastroenterology. 92:1174, 1987
- 61. Mori S, Akiyama T, Morishita Y, et al. Light and electron microscopical demonstration of c-erbB-2 gene product-like immunoreactivity in human malignant tumors. Virchows Arch [B]. 54:8, 1987
- Mori S, Akiyama T, Yamada Y, et al. C-erbB-2 gene product, a membrane protein commonly expressed in human fetal epithelial cells. Lab Invest. 61:93, 1989
- 63. Muller WJ, Sinn E, Pattengale PK, et al. Single-step induction of mammary

T.P. SINGLETON AND J.G. STRICKLER

- adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 54:105, 1988
- 64. Ong G, Gullick W, Sikora K. Oncoprotein stability after tumor resection. Br J Cancer. 61:538, 1990
- 65. Parks HC, Lillycrop K, Howell A, Craig RK. C-erbB2 mRNA expression in human breast tumors: Comparison with c-erbB2 DNA amplification and correlation with prognosis. Br J Cancer. 61:39, 1990
- 66. Popescu NC, King CR, Kraus MH. Localization of the erbB-2 gene on normal and rearranged chromosomes 17 to bands q12-21.32. Genomics. 4:362, 1989
- Press MF, Pike MC, Paterson MC, et al. Overexpression of HER-2/neu. protooncogene in node negative breast cancer: Correlation with increased risk of early recurrent disease (abstract). Mod Pathol. 3:80A, 1990
- Ramachandra S, Machin L, Ashley S, et al. Immunohistochemical distribution of eerbB-2-in in situ breast carcinoms: A detailed morphological analysis. J Pathol. 161:7, 1990
- 69. Rio MC, Bellocq JP, Gairard B, et al. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci USA. 84:9243, 1987
- Robinson R, Kern J, Weiner D, et al. p185^{new} expression in human lung non-small cell carcinomas: An immunohistochemical study with clinicopathologic correlation (abstract). Mod Pathol. 3:85A, 1990
- Rochlitz CF, Benz CC. Oncogenes in human solid tumors. In: Benz C, Liu E, eds. Oncogenes. Boston, Kluwer Academic Publ; 1989: 199-240
- Sasano H, Garret CT, Wilkinson DS, et al. Protooncogene amplification and tumor ploidy in human ovarian neoplasms. Hum Pathol. 21:382, 1990
- Schechter AL, Stern DF, Vaidyanathan L, et al. The new oncogene: An erb-Brelated gene encoding a 185,000-M, tumor antigen. Nature. 312:513, 1984
- Schechter AL, Hung MC, Vaidyanathan L, et al. The neu gene: An erbBhomologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science. 229:976, 1985
- Schneider PM, Hung MC, Chiocca SM, et al. Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res. 49:4968, 1989
- Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA. 82:6497, 1985
- 77. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ. The significance of oncogene amplification in primary breast cancer. Int J Cancer. 43:270, 1989
- Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 290:261, 1981
- Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177, 1987
- 80. Slumon DJ, Clark GM. Amplification of c-erbB-2 and aggressive human breast tumors. Science. 240:1795, 1988
- Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science. 244:707, 1989

- 189
- 82. Slebos RJC, Evers SG, Wagenaar SS, Rodenhuis S. Cellular protooncogenes are infrequently amplified in untreated non-small cell lung cancer. Br J Cancer. 59:76, 1989
- 83. Stern DF, Kamps MP, Cao H. Oncogenic activation of p185^{new} stimulates tyrosine phosphorylation in vivo. Mol Cell Biol. 8:3969, 1988
- 84. Tal M, Wetzler M, Josefberg Z, et al. Sporadic amplification of the HER2/neu protooncogene in adenocarcinomas of various tissues. Cancer Res. 48:1517, 1988
- 85. Tandon AK, Clark GM, Chamness GC, et al. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol. 7:1120, 1989
- 86. Thor AD, Schwartz LH, Koerner FC, et al. Analysis of c-erbB-2 expression in breast carcinomas with clinical follow-up. Cancer Res. 49:7147, 1989
- 87. Tsuda H, Hirohashi S, Shimosato Y, et al. Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res. 49:3104, 1989
- 88. Tsutsumi Y, Naber SP, DeLellis RA, et al. Neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. Hum Pathol. 21:750, 1990
- Tsutsumi Y, Stork PJ, Wolfe HJ. Detection of DNA amplification and mRNA overexpression of the neu oncogene in breast carcinomas by polymerase chain reaction (abstract). Mod Pathol. 3:101A, 1990
- 90. Van de Vijver M, van de Bersselaar R, Devilee P, et al. Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol. 7:2019, 1987
- 91. Van de Vijver MJ, Mooi WJ, Wisman P, et al. Immunohistochemical detection of the neu protein in tissue sections of human breast tumors with amplified neu DNA. Oncogene. 2:175, 1988
- Van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer: Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 319:1239, 1988
- Varley JM, Swallow JE, Brammar WJ, et al. Alterations to either c-erbB-2 (neu) or cmyc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene. 1:423, 1987
- 94. Venter DJ, Tuzi NL, Kumar S, Gullick WJ. Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. Lancet. 2:69, 1987
- 95. Voravud N, Foster CS, Gilbertson JA, et al. Oncogene expression in cholangiocarcinoma and in normal hepatic development. *Hum Pathol.* 20:1163, 1989
- 96. Walker RA, Senior PV, Jones JL, et al. An immunohistochemical and in situ hybridization study of c-myc and c-erbB-2 expression in primary human breast carcinomas. J Pathol. 158:97, 1989
- 97. Ware JL, Maygarden SJ, Koontz WW, Strom SC. Differential reactivity with anti-c-erbB-2 antiserum among human malignant and benign prostatic tissue (abstract). Am Assoc Cancer Res Ann Meeting. 30:437A, 1989
- 98. Weiner DB, Liu J, Cohen JA, et al. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 339:230, 1989
- 99. Weiner DB, Nordberg J, Robinson R, et al. Expression of the neu gene-encoded protein (p185^{neu}) in human non-small cell carcinomas of the lung. Cancer Res. 50:421, 1990

T.P. SINGLETON AND J.G. STRICKLER

- Wells A. The epidermal growth factor receptor and its ligand. In: Benz C, Liu E, eds. Oncogenes. Boston, Kluwer Academic Pub; 1989: 143–168
- 101. Wright C, Angus B, Nicholson S, et al. Expression of c-erbB-2 oncoprotein: A prognostic indicator in human breast cancer. Cancer Res. 49:2087, 1989
- Wu A, Colombero A, Low J, et al. Analysis of expression and mutation of the erbB-2 gene in breast carcinoma by the polymerase chain reaction (abstract). Mod Pathol. 3:108A, 1990
- 103. Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. Nature. 319:230, 1986
- 104. Yao M, Shuin T, Misaki H, Kubota Y. Enhanced expression of c-myc and epidermal growth factor receptor (C-erhB-1) genes in primary human renal cancer. Cancer Res. 48:6753, 1988
- 105. Yarden Y, Weinberg RA. Experimental approaches to hypothetical hormones: Detection of a candidate ligand of the new protooncogene. Proc Natl Acad Sci USA. 86:3179, 1989
- 106. Yee LD, Kacinski BM, Carter D. Oncogene structure, function and expression in breast cancer. Semin Diagn Pathol. 6:110, 1989
- Yokota J, Yamamoto T, Toyoshima K, et al. Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet. 1:765, 1986
- 108. Yokota J, Yamamoto T, Miyajima N, et al. Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. Oncogene. 2:283, 1988
- 109. Zeillinger R, Kury F, Czerwenka K, et al. HER-2 amplification, steroid receptors and epidermal growth factor receptor in primary breast cancer. Oncogene. 4:109, 1989
- Zhang X, Silva E, Gershenson D, Hung MC. Amplification and rearrangement of c-erbB proto-oncogenes in cancer of human female genital tract. Oncogene. 4:985, 1989
- 111. Zhou D, Battifora H, Yokota J, et al. Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. Cancer Res. 47:6123, 1987
- 112. Zhou D, Gonzalez-Cadavid N, Ahuja H, et al. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. Cancer. 62:1573, 1988
- 113. Zhou D, Ahuja H, Cline MJ. Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. Oncogene. 4:105, 1989.

GNB2930R1C3

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Botstein, et al.

Appl. No.

10/032,996

Filed

December 27, 2001

For

SECRETED AND

TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC

ACIDS ENCODING THE SAME

Examiner

Fredman, J.

Group Art Unit

1634

DECLARATION OF PAUL POLAKIS, PH.D. UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Attached is the Declaration of Paul Polakis, Ph.D.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: June 16 200

AnneMarie Kaiser

Registration No. 37,649

Attorney of Record

Customer No. 30,313

(619) 235-8550

S:\DOCS\BSG\BSG-1215.DOC 061404

DECLARATION OF PAUL POLAKIS, Ph.D.

I, Paul Polakis, Ph.D., declare and say as follows:

- 1. I was awarded a Ph.D. by the Department of Biochemistry of the Michigan State University in 1984. My scientific Curriculum Vitae is attached to and forms part of this Declaration (Exhibit A).
- 2. I am currently employed by Genentech, Inc. where my job title is Staff Scientist. Since joining Genentech in 1999, one of my primary responsibilities has been leading Genentech's Tumor Antigen Project, which is a large research project with a primary focus on identifying tumor cell markers that find use as targets for both the diagnosis and treatment of cancer in humans.
- As part of the Tumor Antigen Project, my laboratory has been analyzing differential expression of various genes in tumor cells relative to normal cells. The purpose of this research is to identify proteins that are abundantly expressed on certain tumor cells and that are either (i) not expressed, or (ii) expressed at lower levels, on corresponding normal cells. We call such differentially expressed proteins "tumor antigen proteins". When such a tumor antigen protein is identified, one can produce an antibody that recognizes and binds to that protein. Such an antibody finds use in the diagnosis of human cancer and may ultimately serve as an effective therapeutic in the treatment of human cancer.
- In the course of the research conducted by Genentech's Tumor Antigen Project, we have employed a variety of scientific techniques for detecting and studying differential gene expression in human tumor cells relative to normal cells, at genomic DNA, mRNA and protein levels. An important example of one such technique is the well known and widely used technique of microarray analysis which has proven to be extremely useful for the identification of mRNA molecules that are differentially expressed in one tissue or cell type relative to another. In the course of our research using microarray analysis, we have identified approximately 200 gene transcripts that are present in human tumor cells at significantly higher levels than in corresponding normal human cells. To date, we have generated antibodies that bind to about 30 of the tumor antigen/proteins expressed from these differentially expressed gene transcripts and have used these antibodies to quantitatively determine the level of production of these tumor antigen proteins in both human cancer cells and corresponding normal cells. We have then compared the levels of mRNA and protein in both the tumor and normal cells analyzed.
- 5. From the mRNA and protein expression analyses described in paragraph 4 above, we have observed that there is a strong correlation between changes in the level of mRNA present in any particular cell type and the level of protein

expressed from that mRNA in that cell type. In approximately 80% of our observations we have found that increases in the level of a particular mRNA correlates with changes in the level of protein expressed from that mRNA when human tumor cells are compared with their corresponding normal cells.

- 6. Based upon my own experience accumulated in more than 20 years of research, including the data discussed in paragraphs 4 and 5 above and my knowledge of the relevant scientific literature, it is my considered scientific opinion that for human genes, an increased level of mRNA in a tumor cell relative to a normal cell typically correlates to a similar increase in abundance of the encoded protein in the tumor cell relative to the normal cell. In fact, it remains a central dogma in molecular biology that increased mRNA levels are predictive of corresponding increased levels of the encoded protein. While there have been published reports of genes for which such a correlation does not exist, it is my opinion that such reports are exceptions to the commonly understood general rule that increased mRNA levels are predictive of corresponding increased levels of the encoded protein.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

Dated: 5/07/04

Paul Polakis, Ph.D.

SV 2031808 v1

CURRICULUM VITAE

PAUL G. POLAKIS Staff Scientist Genentech, Inc 1 DNA Way, MS#40 S. San Francisco, CA 94080

EDUCATION:

Ph.D., Biochemistry, Department of Biochemistry, Michigan State University (1984)

B.S., Biology. College of Natural Science, Michigan State University (1977)

PROFESSIONAL EXPERIENCE:

2002-present		Staff Scientist, Genentech, Inc S. San Francisco, CA
1999- 2002		Senior Scientist, Genentech, Inc., S. San Francisco, CA
1997 -1999		Research Director
	. :	Onyx Pharmaceuticals, Richmond, CA
1992- 1996		Senior Scientist, Project Leader, Onyx Pharmaceuticals, Richmond, CA
1991-1992		Senior Scientist, Chiron Corporation, Emeryville, CA.
1989-1991		Scientist, Cetus Corporation, Emeryville CA.
1987-1989	· ·	Postdoctoral Research Associate, Genentech, Inc., South SanFrancisco, CA.
1985-1987		Postdoctoral Research Associate, Department of Medicine, Duke University Medical Center, Durham, NC

1984-1985

Assistant Professor, Department of Chemistry, Oberlin College, Oberlin, Ohio

1980-1984

Graduate Research Assistant, Department of Biochemistry, Michigan State University East Lansing, Michigan

PUBLICATIONS:

- 1. Polakis, P G. and Wilson, J. E. 1982 Purification of a Highly Bindable Rat Brain Hexokinase by High Performance Liquid Chromatography. Blochem. Biophys. Res. Commun. 107, 937-943.
- 2. Polakis, P.G. and Wilson, J. E. 1984 Proteolytic Dissection of Rat Brain Hexokinase: Determination of the Cleavage Pattern during Limited Digestion with Trypsin. Arch. Biochem. Biophys. 234, 341-352.
- 3. Polakis, P. G. and Wilson, J. E. 1985 An Intact Hydrophobic N-Terminal Sequence is Required for the Binding Rat Brain Hexokinase to Mitochondria. Arch. Biochem. Biophys. 236, 328-337.
- 4. Uhing, R.J., **Polakis, P.G.** and Snyderman, R. 1987 Isolaton of GTP-binding Proteins from Myeloid HL60 Cells. **J. Biol. Chem.** 262, 15575-15579.
- **5. Polakis, P.G.**, Uhing, R.J. and Snyderman, R. 1988 The Formylpeptide Chemoattractant Receptor Copurifies with a GTP-binding Protein Containing a Distinct 40 kDa Pertussis Toxin Substrate. **J. Biol. Chem.** 263, 4969-4979.
- **6.** Uhing, R. J., Dillon, S., **Polakis, P. G.**, Truett, A. P. and Snyderman, R. 1988 Chemoattractant Receptors and Signal Transduction Processes in Cellular and Molecular Aspects of Inflammation (Poste, G. and Crooke, S. T. eds.) pp 335-379.
- 7. Polakis, P.G., Evans, T. and Snyderman 1989 Multiple Chromatographic Forms of the Formylpeptide Chemoattractant Receptor and their Relationship to GTP-binding Proteins. Biochem. Biophys. Res. Commun. 161, 276-283.
- 8. Polakis, P. G., Snyderman, R. and Evans, T. 1989 Characterization of G25K, a GTP-binding Protein Containing a Novel Putative Nucleotide Binding Domain. Biochem. Biophys. Res. Comun. 160, 25-32.
- **9. Polakis, P.**, Weber,R.F., Nevins,B., Didsbury, J. Evans,T. and Snyderman, R. 1989 Identification of the ral and rac1 Gene Products, Low Molecular Mass GTP-binding Proteins from Human Platelets. **J. Biol. Chem**. 264, 16383-16389.
- 10. Snyderman, R., Perianin, A., Evans, T., Polakis, P. and Didsbury, J. 1989 G Proteins and Neutrophil Function. In ADP-Ribosylating Toxins and G Proteins: Insights into Signal Transduction. (J. Moss and M. Vaughn, eds.) Amer. Soc. Microbiol. pp. 295-323.

- 11. Hart, M.J., Polakis, P.G., Evans, T. and Cerrione, R.A. 1990 The Identification and Charaterization of an Epidermal Growth Factor-Stimulated Phosphorylation of a Specific Low Molecular Mass GTP-binding Protein in a Reconstituted Phospholipid Vesicle System. J. Biol. Chem. 265, 5990-6001.
- 12. Yatani, A., Okabe, K., Polakis, P. Halenbeck, R. McCormick, F. and Brown, A. M. 1990 ras p21 and GAP Inhibit Coupling of Muscarinic Receptors to Atrial K⁺ Channels. Cell. 61, 769-776.
- 13. Munemitsu, S., Innis, M.A., Clark, R., McCormick, F., Ullrich, A. and Polakis, P.G. 1990 Molecular Cloning and Expression of a G25K cDNA, the Human Homolog of the Yeast Cell Cycle Gene CDC42. Mol. Cell. Biol. 10, 5977-5982.
- 14. Polakis, P.G. Rubinfeld, B. Evans, T. and McCormick, F. 1991 Purification of Plasma Membrane-Associated GTPase Activating Protein (GAP) Specific for rap-1/krev-1 from HL60 Cells. Proc. Natl. Acad. Sci. USA 88, 239-243.
- 15. Moran, M. F., Polakis, P., McCormick, F., Pawson, T. and Ellis, C. 1991 Protein Tyrosine Kinases Regulate the Phosphorylation, Protein Interactions, Subcellular Distribution, and Activity of p21ras GTPase Activating Protein. Mol. Cell. Biol. 11, 1804-1812
- 16. Rubinfeld, B., Wong, G., Bekesi, E. Wood, A. McCormick, F. and Polakis, P. G. 1991 A Synthetic Peptide Corresponding to a Sequence in the GTPase Activating Protein Inhibits p21^{ras} Stimulation and Promotes Guanine Nucleotide Exchange. Internatl. J. Peptide and Prot. Res. 38, 47-53.
- **17.** Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W., McCormick, F., and **Polakis**, **P**. 1991 Molecular Cloning of a GTPase Activating Protein Specific for the Krev-1 Protein p21^{rap1}. **Cell** 65, 1033-1042.
- 18. Zhang, K. Papageorge, A., G., Martin, P., Vass, W. C., Olah, Z., Polakis, P., McCormick, F. and Lowy, D, R. 1991 Heterogenous Amino Acids in RAS and Rap1A Specifying Sensitivity to GAP Proteins. Science 254, 1630-1634.
- **19.** Martin, G., Yatani, A., Clark, R., **Polakis, P.**, Brown, A. M. and McCormick, F. 1992 GAP Domains Responsible for p21^{ras}-dependent Inhibition of Muscarinic Atrial K⁺ Channel Currents. **Science** 255, 192-194.
- **20.** McCormick, F., Martin, G. A., Clark, R., Bollag, G. and **Polakis, P**. 1992 Regulation of p21ras by GTPase Activating Proteins. Cold Spring Harbor **Symposia on Quantitative Biology**. Vol. 56, 237-241.
- **21.** Pronk, G. B., **Polakis**, **P.**, Wong, G., deVries-Smits, A. M., Bos J. L. and McCormick, F. 1992 p60^{v-src} Can Associate with and Phosphorylate the p21^{ras} GTPase Activating Protein. **Oncogene** 7,389-394.
- **22. Polakis P.** and McCormick, F. 1992 Interactions Between p21^{ras} Proteins and Their GTPase Activating Proteins. In <u>Cancer Surveys</u> (Franks, L. M., ed.) 12, 25-42.

- **23.** Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M., **Polakis,P.** and McCormick, F. 1992 Molecular coloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. **Cell** 69, 551-558.
- **24. Polakis, P.**, Rubinfeld, B. and McCormick, F. 1992 Phosphorylation of rap1GAP in vivo and by cAMP-dependent Kinase and the Cell Cycle p34^{cdc2} Kinase in vitro. **J. Biol. Chem**. 267, 10780-10785.
- **25.** McCabe, P.C., Haubrauck, H., **Polakis, P.**, McCormick, F., and Innis, M. A. 1992 Functional Interactions Between p21^{rap1A} and Components of the Budding pathway of *Saccharomyces cerevisiae*. **Mol. Cell. Biol.** 12, 4084-4092.
- **26.** Rubinfeld, B., Crosier, W.J., Albert, I., Conroy,L., Clark, R., McCormick, F. and **Polakis, P.** 1992 Localization of the rap1GAP Catalytic Domain and Sites of Phosphorylation by Mutational Analysis. **Mol. Cell. Biol.** 12, 4634-4642.
- 27. Ando, S., Kaibuchi, K., Sasaki, K., Hiraoka, T., Nishiyama, T., Mizuno, T., Asada, M., Nunoi, H., Matsuda, I., Matsuura, Y., Polakis, P., McCormick, F. and Takai, Y. 1992 Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J. Biol. Chem. 267, 25709-25713.
- 28. Janoueix-Lerosey, I., Polakis, P., Tavitian, A. and deGunzberg, J. 1992 Regulation of the GTPase activity of the ras-related rap2 protein. Biochem. Biophys. Res. Commun. 189, 455-464.
- **29.** Polakis, P. 1993 GAPs Specific for the rap1/Krev-1 Protein. in <u>GTP-binding Proteins: the *ras*-superfamily.</u> (J.C. LaCale and F. McCormick, eds.) 445-452.
- **30. Polakis, P.** and McCormick, F. 1993 Structural requirements for the interaction of p21^{ras} with GAP, exchange factors, and its bological effector target. **J. Biol Chem.** 268, 9157-9160.
- 31. Rubinfeld, B., Souza, B. Albert, I., Muller, O., Chamberlain, S., Masiarz, F., Munemitsu, S. and Polakis, P. 1993 Association of the APC gene product with beta-catenin. Science 262, 1731-1734.
- **32.** Weiss, J., Rubinfeld, B., **Polakis, P.**, McCormick, F. Cavenee, W. A. and Arden, K. 1993 The gene for human rap1-GTPase activating protein (rap1GAP) maps to chromosome 1p35-1p36.1. **Cytogenet. Cell Genet**. 66, 18-21.
- **33.** Sato, K. Y., **Polakis**, P., Haubruck, H., Fasching, C. L., McCormick, F. and Stanbridge, E. J. 1994 Analysis of the tumor suppressor acitvity of the K-rev gene in human tumor cell lines. **Cancer Res**. 54, 552-559.
- **34.** Janoueix-Lerosey, I., Fontenay, M., Tobelem, G., Tavitian, A., **Polakis, P.** and DeGunzburg, J. 1994 Phosphorylation of rap1GAP during the cell cycle. **Biochem. Biophys. Res. Commun.** 202, 967-975
- **35.** Munemitsu, S., Souza, B., Mueller, O., Albert, I., Rubinfeld, B., and **Polakis**, **P.** 1994 The APC gene product associates with microtubules in vivo and affects their assembly in vitro. **Cancer Res**. 54, 3676-3681.

- **36.** Rubinfeld, B. and **Polakis, P.** 1995 Purification of baculovirus produced rap1GAP. **Methods Enz.** 255,31
- **37. Polakis, P.** 1995 Mutations in the APC gene and their implications for protein structure and function. **Current Opinions in Genetics and Development** 5, 66-71
- 38. Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S. and Polakis P. 1995 The APC protein and E-cadherin form similar but independent complexes with α -catenin, β -catenin and Plakoglobin. J. Biol. Chem. 270, 5549-5555
- **39.** Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and **Polakis**, **P.** 1995 Regulation of intracellular β-catenin levels by the APC tumor suppressor gene. **Proc. Natl. Acad. Sci.** 92, 3046-3050.
- 40. Lock, P., Fumagalli, S., Polakis, P. McCormick, F. and Courtneidge, S. A. 1996 The human p62 cDNA encodes Sam68 and not the rasGAP-associated p62 protein. Cell 84, 23-24.
- 41. Papkoff, J., Rubinfeld, B., Schryver, B. and Polakis, P., 1996 Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol. Cell. Biol. 16, 2128-2134.
- **42.** Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. and **Polakis**, **P**. 1996 Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. **Science** 272, 1023-1026.
- **43.** Munemitsu, S., Albert, I., Rubinfeld, B. and **Polakis, P.** 1996 Deletion of aminoterminal structure stabilizes β-catenin in vivo and promotes the hyperphosphorylation of the APC tumor suppressor protein. **Mol. Cell. Biol**.16, 4088-4094.
- 44. Hart, M. J., Callow, M. G., Sousa, B. and Polakis P. 1996 IQGAP1, a calmodulin binding protein with a rasGAP related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997-3005.
- **45.** Nathke, I. S., Adams, C. L., **Polakis**, P., Sellin, J. and Nelson, W. J. 1996 The adenomatous polyposis coli (APC) tumor suppressor protein is localized to plasma membrane sites involved in active epithelial cell migration. **J. Cell. Biol.** 134, 165-180.
- **46.** Hart, M. J., Sharma, S., elMasry, N., Qui, R-G., McCabe, P., **Polakis, P.** and Bollag, G. 1996 Identification of a novel guanine nucleotide exchange factor for the rho GTPase. **J. Biol. Chem.** 271, 25452.
- 47. Thomas JE, Smith M, Rubinfeld B, Gutowski M, Beckmann RP, and Polakis P. 1996 Subcellular localization and analysis of apparent 180-kDa and 220-kDa proteins of the breast cancer susceptibility gene, BRCA1. J. Biol. Chem. 1996 271, 28630-28635
- 48. Hayashi, S., Rubinfeld, B., Souza, B., Polakis, P., Wieschaus, E., and Levine, A. 1997 A Drosophila homolog of the tumor suppressor adenomatous polyposis coli

- down-regulates β -catenin but its zygotic expression is not essential for the regulation of armadillo. **Proc. Natl. Acad. Sci.** 94, 242-247.
- **49**. Vleminckx, K., Rubinfeld, B., **Polakis, P.** and Gumbiner, B. 1997 The APC tumor suppressor protein induces a new axis in Xenopus embryos. **J. Cell. Biol.** 136, 411-420.
- **50.** Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, P. and **Polakis, P.** 1997 Stabilization of β-catenin by genetic defects in melanoma cell lines. **Science** 275, 1790-1792.
- **51.** Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. 1997 Biochem. Biophys. Acta, 1332, F127-F147.
- **52**. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and **Polakis**, **P** 1997 Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. **Cancer Res**. 57, 4624-4630.
- **53**. Porfiri, E., Rubinfeld, B., Albert, I., Hovanes. K., Waterman, M., and **Polakis**, P. 1997 Induction of a β -catenin-LEF-1 complex by wnt-1 and transforming mutants of β -catenin. **Oncogene** 15, 2833-2839.
- **54**. Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, and **Polakis P.**, 1997 Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. **Cell Growth Differ**. 8, 801-809.
- **55**. Hart, M., de los Santos, R., Albert, I., Rubinfeld, B., and **Polakis P.**, 1998 Down regulation of β -catenin by human Axin and its association with the adenomatous polyposis coli (APC) tumor suppressor, β -catenin and glycogen synthase kinase 3 β . **Current Biology 8**, 573-581.
- 56. Polakis, P. 1998 The oncogenic activation of β-catenin. Current Opinions in Genetics and Development 9, 15-21
- 57. Matt Hart, Jean-Paul Concordet, Irina Lassot, Iris Albert, Rico del los Santos, Herve Durand, Christine Perret, Bonnee Rubinfled, Florence Margottin, Richard Benarous and Paul Polakis. 1999 The F-box protein β -TrCP associates with phosphorylated β -catenin and regulates its activity in the cell. Current Biology 9, 207-10.
- **58.** Howard C. Crawford, Barbara M. Fingleton, Bonnee Rubinfeld, **Paul Polakis** and Lynn M. Matrisian 1999 The metalloproteinase matrilysin is a target of β–catenin transactivation in intestinal tumours. **Oncogene** 18, 2883-91.
- 59. Meng J, Glick JL, Polakis P, Casey PJ. 1999 Functional interaction between Galpha(z) and Rap1GAP suggests a novel form of cellular cross-talk. J Biol Chem. 17, 36663-9

- **60**. Vijayasurian Easwaran, Virginia Song, **Paul Polakis** and Steve Byers 1999 The ubiquitin-proteosome pathway and serine kinase activity modulate APC mediated regulation of β -catenin-LEF signaling. **J. Biol. Chem**. 274(23):16641-5.
- 61 Polakis P, Hart M and Rubinfeld B. 1999 Defects in the regulation of betacatenin / in colorectal cancer. Adv Exp Med Biol. 470, 23-32
- 62 Shen Z, Batzer A, Koehler JA, **Polakis P**, Schlessinger J, Lydon NB, Moran MF. 1999 Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. **Oncogene**. 18, 4647-53
- 64. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. 1999 A GSK3- binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett. 458, 247-51.
- 65. Peifer M, Polakis P. 2000 Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287,1606-9.
- 66. Polakis P. 2000 Wnt signaling and cancer. Genes Dev;14, 1837-1851.
- 67. Spink KE, **Polakis P**, Weis WI 2000 Structural basis of the Axin-adenomatous polyposis coli interaction. **EMBO J** 19, 2270-2279.
- 68. Szeto, W., Jiang, W., Tice, D.A., Rubinfeld, B., Hollingshead, P.G., Fong, S.E., Dugger, D.L., Pham, T., Yansura, D.E., Wong, T.A., Grimaldi, J.C., Corpuz, R.T., Singh J.S., Frantz, G.D., Devaux, B., Crowley, C.W., Schwall, R.H., Eberhard, A..
- Rastelli, L., Polakis, P. and Pennica, D. 2001 Overexpression of the Retinoic Acid-
- Responsive Gene Stra6 in Human Cancers and its Synergistic Induction by Wnt-1 and

Retinoic Acid. Cancer Res 61,4197,4204.

- 69. Rubinfeld B, Tice DA, Polakis P. 2001 Axin dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1 epsilon. J Biol Chem
 - 276, 39037-39045.
 - 70. Polakis P. 2001 More than one way to skin a catenin. Cell 2001 105, 563-566.
- 71. Tice DA, Soloviev I, **Polakis P**. 2002 Activation of the Wnt Pathway Interferes withSerum Response Element-driven Transcription of Immediate Early Genes. **J Biol.**

Chem. 277, 6118-6123.

- Williams PM, Wieand D, Smith V, Schwall RH, Pennnica D, Polakis P. 2002 Synergistic activation of tumor antigens by wnt-1 signaling and retinoic acid revealed by gene expression profiling. J Biol Chem. 277,14329-14335.
- 73. Polakis, P. 2002 Casein kinase I: A wnt'er of disconnect. Curr. Biol. 12, R499.
- 74. Mao, W., Luis, E., Ross, S., Silva, J., Tan, C., Crowley, C., Chui, C., Franz, G., Senter, P., Koeppen, H., Polakis, P. 2004 EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 64, 781-788.
- 75. Shibamoto, S., Winer, J., Williams, M., Polakis, P. 2003 A Blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells. Exp. Cell Res. 29211-20.
- 76. Zhang Y, Eberhard DA, Frantz GD, Dowd P, Wu TD, Zhou Y, Watanabe C, Luoh SM, Polakis P, Hillan KJ, Wood WI, Zhang Z. 2004 GEPIS--quantitative gene expression profiling in normal and cancer tissues. **Bioinformatics**, April 8

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Ashkenazi et al.

App. No. : 09/903,925

Filed : July 11, 2001

For : SECRETED AND

TRANSMEMBRANE

POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

Examiner: Hamud, Fozia M

Group Art Unit 1647

CERTIFICATE OF EXPRESS MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to Commissioner of Patents, Washington D.C. 20231 on:

(Date)

Commissioner of Patents P.O. Box 1450 Alexandria, VA 22313-1450

DECLARATION OF AVI ASHKENAZI, Ph.D UNDER 37 C.F.R. § 1.132

I, Avi Ashkenazi, Ph.D. declare and say as follows: -

- 1. I am Director and Staff Scientist at the Molecular Oncology Department of Genentech, Inc., South San Francisco, CA 94080.
- 2. I joined Genentech in 1988 as a postdoctoral fellow. Since then, I have investigated a variety of cellular signal transduction mechanisms, including apoptosis, and have developed technologies to modulate such mechanisms as a means of therapeutic intervention in cancer and autoimmune disease. I am currently involved in the investigation of a series of secreted proteins over-expressed in tumors, with the aim to identify useful targets for the development of therapeutic antibodies for cancer treatment.
- 3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).
- 4. Gene amplification is a process in which chromosomes undergo changes to contain multiple copies of certain genes that normally exist as a single copy, and is an important factor in the pathophysiology of cancer. Amplification of certain genes (e.g., Myc or Her2/Neu)

gives cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy.

- 5. If gene amplification results in over-expression of the mRNA and the corresponding gene product, then it identifies that gene product as a promising target for cancer therapy, for example by the therapeutic antibody approach. Even in the absence of over-expression of the gene product, amplification of a cancer marker gene as detected, for example, by the reverse transcriptase TaqMan® PCR or the fluorescence in situ hybridization (FISH) assays -is useful in the diagnosis or classification of cancer, or in predicting or monitoring the efficacy of cancer therapy. An increase in gene copy number can result not only from intrachromosomal changes but also from chromosomal aneuploidy. It is important to understand that detection of gene amplification can be used for cancer diagnosis even if the determination includes measurement of chromosomal aneuploidy. Indeed, as long as a significant difference relative to normal tissue is detected, it is irrelevant if the signal originates from an increase in the number of gene copies per chromosome and/or an abnormal number of chromosomes.
- 6. I understand that according to the Patent Office, absent data demonstrating that the increased copy number of a gene in certain types of cancer leads to increased expression of its product, gene amplification data are insufficient to provide substantial utility or well established utility for the gene product (the encoded polypeptide), or an antibody specifically binding the encoded polypeptide. However, even when amplification of a cancer marker gene does not result in significant over-expression of the corresponding gene product, this very absence of gene product over-expression still provides significant information for cancer diagnosis and treatment. Thus, if over-expression of the gene product does not parallel gene amplification in certain tumor types but does so in others, then parallel monitoring of gene amplification and gene product over-expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over-expression is crucial information for the practicing clinician. If a gene is amplified but the corresponding gene product is not over-expressed, the clinician accordingly will decide not to treat a patient with agents that target that gene product.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

By: Avi Ashkenazi, Ph.D.

Date: 9/15/03

SV 455281 v1 9/12/03 3:06 PM (39780.7000)

CURRICULUM VITAE

Avi Ashkenazi

July 2003

Personal:

Date of birth:

29 November, 1956

Address:

1456 Tarrytown Street, San Mateo, CA 94402

Phone:

(650) 578-9199 (home); (650) 225-1853 (office)

Fax:

(650) 225-6443 (office)

Email:

aa@gene.com

Education:

1983:

B.S. in Biochemistry, with honors, Hebrew University, Israel

1986:

Ph.D. in Biochemistry, Hebrew University, Israel

Employment:

1983-1986:

Teaching assistant, undergraduate level course in Biochemistry

1985-1986:

Teaching assistant, graduate level course on Signal Transduction

1986 - 1988:

Postdoctoral fellow, Hormone Research Dept., UCSF, and

Developmental Biology Dept., Genentech, Inc., with J. Ramachandran

1988 - 1989:

Postdoctoral fellow, Molecular Biology Dept., Genentech, Inc.,

with D. Capon

1989 - 1993:

Scientist, Molecular Biology Dept., Genentech, Inc.

1994 -1996:

Senior Scientist, Molecular Oncology Dept.; Genentech, Inc.

1996-1997:

Senior Scientist and Interim director, Molecular Oncology Dept.,

Genentech, Inc.

1997-1990:

Senior Scientist and preclinical project team leader, Genentech, Inc.

1999 -2002:

Staff Scientist in Molecular Oncology, Genentech, Inc.

2002-present:

Staff Scientist and Director in Molecular Oncology, Genentech, Inc.

Awards:

1988:

First prize, The Boehringer Ingelheim Award

Editorial:

Editorial Board Member: Current Biology
Associate Editor, Clinical Cancer Research.
Associate Editor, Cancer Biology and Therapy.

Refereed papers:

- 1. Gertler, A., <u>Ashkenazi, A.</u>, and Madar, Z. Binding sites for human growth hormone and ovine and bovine prolactins in the mammary gland and liver of the lactating cow. *Mol. Cell. Endocrinol.* 34, 51-57 (1984).
- 2. Gertler, A., Shamay, A., Cohen, N., Ashkenazi, A., Friesen, H., Levanon, A., Gorecki, M., Aviv, H., Hadari, D., and Vogel, T. Inhibition of lactogenic activities of ovine prolactin and human growth hormone (hGH) by a novel form of a modified recombinant hGH. *Endocrinology* 118, 720-726 (1986).
- 3. <u>Ashkenazi, A.</u>, Madar, Z., and Gertler, A. Partial purification and characterization of bovine mammary gland prolactin receptor. *Mol. Cell. Endocrinol.* **50**, 79-87 (1987).
- 4. <u>Ashkenazi, A.</u>, Pines, M., and Gertler, A. Down-regulation of lactogenic hormone receptors in Nb2 lymphoma cells by cholera toxin. *Biochemistry Internatl.* 14, 1065-1072 (1987).
- 5. <u>Ashkenazi, A.</u>, Cohen, R., and Gertler, A. Characterization of lactogen receptors in lactogenic hormone-dependent and independent Nb2 lymphoma cell lines. *FEBS Lett.* **210**, 51-55 (1987).
- 6. <u>Ashkenazi, A.</u>, Vogel, T., Barash, I., Hadari, D., Levanon, A., Gorecki, M., and Gertler, A. Comparative study on in witro and in vivo modulation of lactogenic and somatotropic receptors by native human growth hormone and its modified recombinant analog. *Endocrinology* 121, 414-419 (1987).
- 7. Peralta, E., Winslow, J., Peterson, G., Smith, D., <u>Ashkenazi, A.</u>, Ramachandran, J., Schimerlik, M., and Capon, D. Primary structure and biochemical properties of an M2 muscarinic receptor. *Science* 236, 600-605 (1987).
- 8. Peralta, E. Ashkenazi, A., Winslow, J., Smith, D., Ramachandran, J., and Capon, D. J. Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. *EMBO J.* 6, 3923-3929 (1987).
- 9. <u>Ashkenazi, A.</u>, Winslow, J., Peralta, E., Peterson, G., Schimerlik, M., Capon, D., and Ramachandran, J. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. *Science* 238, 672-675 (1987).

- Pines, M., <u>Ashkenazi, A.</u>, Cohen-Chapnik, N., Binder, L., and Gertler, A. Inhibition of the proliferation of Nb2 lymphoma cells by femtomolar concentrations of cholera toxin and partial reversal of the effect by 12-o-tetradecanoyl-phorbol-13-acetate. *J. Cell. Biochem.* 37, 119-129 (1988).
- 11. Peralta, E. <u>Ashkenazi, A.</u>, Winslow, J. Ramachandran, J., and Capon, D. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. *Nature* 334, 434-437 (1988).
- 12. <u>Ashkenazi., A.</u> Peralta, E., Winslow, J., Ramachandran, J., and Capon, D. Functionally distinct G proteins couple different receptors to PI hydrolysis in the same cell. *Cell* 56, 487-493 (1989).
- 13. Ashkenazi, A., Ramachandran, J., and Capon, D. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic acetylcholine receptor subtypes. *Nature* 340, 146-150 (1989).
- 14. Lammare, D., Ashkenazi, A., Fleury, S., Smith, D., Sekaly, R., and Capon, D. The MHC-binding and gp120-binding domains of CD4 are distinct and separable. Science 245, 743-745 (1989).
- 15. <u>Ashkenazi., A.,</u> Presta, L., Marsters, S., Camerato, T., Rosenthal, K., Fendly, B., and Capon, D. Mapping the CD4 binding site for human immunodefficiency virus type 1 by alanine-scanning mutagenesis. *Proc. Natl. Acad. Sci. USA.* 87, 7150-7154 (1990).
- 16. Chamow, S., Peers, D., Byrn, R., Mulkerrin, M., Harris, R., Wang, W., Bjorkman, P., Capon, D., and Ashkenazi, A. Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. *Biochemistry* 29, 9885-9891 (1990).
- 17. Ashkenazi, A., Smith, D., Marsters, S., Riddle, L., Gregory, T., Ho, D., and Capon, D. Resistance of primary isolates of human immunodefficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity. *Proc. Natl. Acad. Sci. USA.* 88, 7056-7060 (1991).
- 18. Ashkenazi, A., Marsters, S., Capon, D., Chamow, S., Figari., I., Pennica, D., Goeddel., D., Palladino, M., and Smith, D. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. *Proc. Natl. Acad. Sci. USA.* 88, 10535-10539 (1991).
- 19. Moore, J., McKeating, J., Huang, Y., Ashkenazi, A., and Ho, D. Virions of primary HIV-1 isolates resistant to sCD4 neutralization differ in sCD4 affinity and glycoprotein gp120 retention from sCD4-sensitive isolates. J. Virol. 66, 235-243 (1992).

- Jin, H., Oksenberg, D., <u>Ashkenazi, A.</u>, Peroutka, S., Duncan, A., Rozmahel., R.,
 Yang, Y., Mengod, G., Palacios, J., and O'Dowd, B. Characterization of the
 human 5-hydroxytryptamine1B receptor. J. Biol. Chem. 267, 5735-5738 (1992).
- 21. Marsters, A., Frutkin, A., Simpson, N., Fendly, B. and <u>Ashkenazi, A.</u>
 Identification of cysteine-rich domains of the type 1 tumor necrosis receptor involved in ligand binding. *J. Biol. Chem.* 267, 5747-5750 (1992).
- 22. Chamow, S., Kogan, T., Peers, D., Hastings, R., Byrn, R., and <u>Ashkenazi, A.</u>
 Conjugation of sCD4 without loss of biological activity via a novel carbohydrate-directed cross-linking reagent. *J. Biol. Chem.* 267, 15916-15922 (1992).
- Oksenberg, D., Marsters, A., O'Dowd, B., Jin, H., Havlik, S., Peroutka, S., and Ashkenazi, A. A single amino-acid difference confers major pharmacologic variation between human and rodent 5-HT_{1B} receptors. *Nature* 360, 161-163 (1992).
- 24. Haak-Frendscho, M., Marsters, S., Chamow, S., Peers, D., Simpson, N., and Ashkenazi, A. Inhibition of interferon γ by an interferon γ receptor immunoadhesin. *Immunology* 79, 594-599 (1993).
- 25. Penica, D., Lam, V., Weber, R., Kohr, W., Basa, L., Spellman, M., <u>Ashkenazi</u>, Shire, S., and Goeddel, D. Biochemical characterization of the extracellular domain of the 75-kd tumor necrosis factor receptor. *Biochemistry* 32, 3131-3138. (1993).
- Barfod, L., Zheng, Y., Kuang, W., Hart, M., Evans, T., Cerione, R., and Ashkenazi, A. Cloning and expression of a human CDC42 GTPase Activating Protein reveals a functional SH3-binding domain. J. Biol. Chem. 268, 26059-26062 (1993).
- 27. Chamow, S., Zhang, D., Tan, X., Mhtre, S., Marsters, S., Peers, D., Byrn, R., Ashkenazi, A., and Yunghans, R. A humanized bispecific immunoadhesin-antibody that retargets CD3+ effectors to kill HIV-1-infected cells. *J. Immunol.* 153, 4268-4280 (1994).
- 28. Means, R., Krantz, S., Luna, J., Marsters, S., and <u>Ashkenazi, A.</u> Inhibition of murine erythroid colony formation in vitro by iterferon γ and correction by interferon γ receptor immunoadhesin. *Blood* 83, 911-915 (1994).
- 29. Haak-Frendscho, M., Marsters, S., Mordenti, J., Gillet, N., Chen, S., and Ashkenazi, A. Inhibition of TNF by a TNF receptor immunoadhesin: comparison with an anti-TNF mAb. J. Immunol. 152, 1347-1353 (1994).

- 30. Chamow, S., Kogan, T., Venuti, M., Gadek, T., Peers, D., Mordenti, J., Shak, S., and Ashkenazi, A. Modification of CD4 immunoadhesin with monomethoxy-PEG aldehyde via reductive alkilation. *Bioconj. Chem.* 5, 133-140 (1994).
- Jin, H., Yang, R., Marsters, S., Bunting, S., Wurm, F., Chamow, S., and <u>Ashkenazi, A.</u> Protection against rat endotoxic shock by p55 tumor necrosis factor (TNF) receptor immunoadhesin: comparison to anti-TNF monoclonal antibody. J. Infect. Diseases 170, 1323-1326 (1994).
- 32. Beck, J., Marsters, S., Harris, R., <u>Ashkenazi, A.</u>, and Chamow, S. Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage. *Mol. Immunol.* 31, 1335-1344 (1994).
- 33. Pitti, B., Marsters, M., Haak-Frendscho, M., Osaka, G., Mordenti, J., Chamow, S., and Ashkenazi, A. Molecular and biological properties of an interleukin-1 receptor immunoadhesin. *Mol. Immunol.* 31, 1345-1351 (1994).
- 34. Oksenberg, D., Havlik, S., Peroutka, S., and Ashkehazi, A. The third intracellular loop of the 5-HT2 receptor specifies effector coupling. J. Neurochem. 64, 1440-1447 (1995).
- 35. Bach, E., Szabo, S., Dighe, A., <u>Ashkenazi, A.</u>, Aguet, M., Murphy, K., and Schreiber, R. Ligand-induced autoregulation of IFN-γ receptor β chain expression in T helper cell subsets. *Science* 270, 1215-1218 (1995).
- 36. Jin, H., Yang, R., Marsters, S., <u>Ashkenazi, A.</u>, Bunting, S., Marra, M., Scott, R., and Baker, J. Protection against endotoxic shock by bactericidal/permeability-increasing protein in rats. *J. Clin. Invest.* **95**, 1947-1952 (1995).
- 37. Marsters, S., Penica, D., Bach, E., Schreiber, R., and <u>Ashkenazi, A.</u> Interferon γ signals via a high-affinity multisubunit receptor-complex that contains two types of polypeptide chain. *Proc. Natl. Acad. Sci. USA.* 92, 5401-5405 (1995).
- Van Zee, K., Moldawer, L., Oldenburg, H., Thompson, W., Stackpole, S., Montegut, W., Rogy, M., Meschter, C., Gallati, H., Schiller, C., Richter, W., Loetcher, H., <u>Ashkenazi, A.</u>, Chamow, S., Wurm, F., Calvano, S., Lowry, S., and Lesslauer, W. Protection against lethal E. coli bacteremia in baboons by pretreatment with a 55-kDa TNF receptor-Ig fusion protein, Ro45-2081. J. Immunol. 156, 2221-2230 (1996).
- 39. Pitti, R., Marsters, S., Ruppert, S., Donahue, C., Moore, A., and <u>Ashkenazi, A.</u> Induction of apoptosis by Apo-2 Ligand, a new member of the tumor necrosis factor cytokine family. *J. Biol. Chem.* 271, 12687-12690 (1996).

- 40. Marsters, S., Pitti, R., Donahue, C., Rupert, S., Bauer, K., and Ashkenazi, A. Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr. Biol. 6, 1669-1676 (1996).
- Marsters, S., Skubatch, M., Gray, C., and <u>Ashkenazi, A</u>. Herpesvirus entry mediator, a novel member of the tumor necrosis factor receptor family, activates the NF-κB and AP-1 transcription factors. *J. Biol. Chem.* 272, 14029-14032 (1997).
- 42. Sheridan, J., Marsters, S., Pitti, R., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C., Baker, K., Wood, W.I., Goddard, A., Godowski, P., and Ashkenazi, A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821 (1997).
- 43. Marsters, S., Sheridan, J., Pitti, R., Gurney, A., Skubatch, M., Balswin, D., Huang, A., Yuan, J., Goddard, A., Godowski, P., and Ashkenazi, A. A novel receptor for Apo2L/TRAIL contains a truncated death domain. *Curr. Biol.* 7, 1003-1006 (1997).
- Marsters, A., Sheridan, J., Pitti, R., Brush, J., Goddard, A., and <u>Ashkenazi, A.</u>
 Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525-528 (1998).
- 45. Rieger, J., Naumann, U., Glaser, T., <u>Ashkenazi, A.</u>, and Weller, M. Apo2 ligand: a novel weapon against malignant glioma? *FEBS Lett.* 427, 124-128 (1998).
- 46. Pender, S., Fell, J., Chamow, S., <u>Ashkenazi, A.</u>, and MacDonald, T. A p55 TNF receptor immunoadhesin prevents T cell mediated intestinal injury by inhibiting matrix metalloproteinase production. *J. Immunol.* 160, 4098-4103 (1998).
- 47. Pitti, R., Marsters, S., Lawrence, D., Roy, Kischkel, F., M., Dowd, P., Huang, A., Donahue, C., Sherwood, S., Baldwin, D., Godowski, P., Wood, W., Gurney, A., Hillan, K., Cohen, R., Goddard, A., Botstein, D., and <u>Ashkenazi, A.</u> Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. *Nature* 396, 699-703 (1998).
- 48. Mori, S., Marakami-Mori, K., Nakamura, S., <u>Ashkenazi, A.</u>, and Bonavida, B. Sensitization of AIDS Kaposi's sarcoma cells to Apo-2 ligand-induced apoptosis by actinomycin D. *J. Immunol.* 162, 5616-5623 (1999).
- 49. Gurney, A. Marsters, S., Huang, A., Pitti, R., Mark, M., Baldwin, D., Gray, A., Dowd, P., Brush, J., Heldens, S., Schow, P., Goddard, A., Wood, W., Baker, K., Godowski, P., and <u>Ashkenazi, A.</u> Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol. 9, 215-218 (1999).

- 50. <u>Ashkenazi, A.</u>, Pai, R., Fong, s., Leung, S., Lawrence, D., Marsters, S., Blackie, C., Chang, L., McMurtrey, A., Hebert, A., DeForge, L., Khoumenis, I., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. Safety and anti-tumor activity of recombinant soluble Apo2 ligand. *J. Clin. Invest.* 104, 155-162 (1999).
- 51. Chuntharapai, A., Gibbs, V., Lu, J., Ow, A., Marsters, S., Ashkenazi, A., De Vos, A., Kim, K.J. Determination of residues involved in ligand binding and signal transmission in the human IFN-α receptor 2. *J. Immunol.*, 163, 766-773 (1999).
- Johnsen, A.-C., Haux, J., Steinkjer, B., Nonstad, U., Egeberg, K., Sundan, A., Ashkenazi, A., and Espevik, T. Regulation of Apo2L/TRAIL expression in NK cells—involvement in NK cell-mediated cytotoxicity. Cytokine 11, 664-672 (1999).
- 53. Roth, W., Isenmann, S., Naumann, U., Kugler, S., Bahr, M., Dichgans, J., Ashkenazi, A., and Weller, M. Eradication of intradranial human malignant glioma xenografts by Apo2L/TRAIL. *Biochem. Biophys. Res. Commun.* 265, 479-483 (1999).
- 54. Hymowitz, S.G., Christinger, H.W., Fuh, G., Ultsch, M., O'Connell, M., Kelley, R.F., <u>Ashkenazi, A.</u> and de Vos, A.M. Triggering Cell Death: The Crystal Structure of Apo2L/TRAIL in a Complex with Death Receptor 5. *Molec. Cell* 4, 563-571 (1999).
- Hymowitz, S.G., O'Connel, M.P., Utsch, M.H., Hurst, A., Totpal, K., <u>Ashkenazi</u>, A., de Vos, A.M., Kelley, R.F. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. *Biochemistry* 39, 633-640 (2000).
- Zhou, Q., Fukushima, P., DeGraff, W., Mitchell, J.B., Stetler-Stevenson, M., <u>Ashkenazi, A.</u>, and Steeg, P.S. Radiation and the Apo2L/TRAIL apoptotic pathway preferentially inhibit the colonization of premalignant human breast cancer cells overexpressing cyclin D1. *Cancer Res.* 60, 2611-2615 (2000).
- 57. Kischkel, F.C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, J., and Ashkenazi, A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and Caspase-8 to death receptors 4 and 5. *Immunity* 12, 611-620 (2000).
- Yan, M., Marsters, S.A., Grewal, I.S., Wang, H., *Ashkenazi, A., and *Dixit, V.M. Identification of a receptor for BlyS demonstrates a crucial role in humoral immunity. *Nature Immunol.* 1, 37-41 (2000).

- Marsters, S.A., Yan, M., Pitti, R.M., Haas, P.E., Dixit, V.M., and <u>Ashkenazi, A.</u> Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. *Curr. Biol.* 10, 785-788 (2000).
- 60. Kischkel, F.C., and <u>Ashkenazi</u>, <u>A</u>. Combining enhanced metabolic labeling with immunoblotting to detect interactions of endogenous cellular proteins.

 Biotechniques 29, 506-512 (2000).
- 61. Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D. Mounho, B., Hillan, K., Totpal, K. DeForge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C., Strom, S., Kelley, S., Fox, J., Thomas, D., and Ashkenazi, A. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7, 383-385 (2001).
- 62. Chuntharapai, A., Dodge, K., Grimmer, K., Schroeder, K., Martsters, S.A., Koeppen, H., <u>Ashkenazi, A.</u>, and Kim, K.J. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. *J. Immunol.* 166, 4891-4898 (2001).
- 63. Pollack, I.F., Erff, M., and Ashkenazi, A. Direct stimulation of apoptotic signaling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. *Clin. Cancer Res.* 7, 1362-1369 (2001).
- 64. Wang, H., Marsters, S.A., Baker, T., Chan, B., Lee, W.P., Fu, L., Tumas, D., Yan, M., Dixit, V.M., *Ashkenazi, A., and *Grewal, I.S. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nature Immunol. 2, 632-637 (2001).
- 65. Kischkel, F.C., Lawrence, D. A., Tinel, A., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639-46646 (2001).
- 66. LeBlanc, H., Lawrence, D.A., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and <u>Ashkenazi, A Tumor cell resistance to death receptor induced apoptosis through mutational inactivation of the proapoptotite Bel-2 homolog Bax. Nature Med. 8, 274-281 (2002).</u>
- 67. Miller, K., Meng, G., Liu, J., Hurst, A., Hsei, V., Wong, W-L., Ekert, R., Lawrence, D., Sherwood, S., DeForge, L., Gaudreault., Keller, G., Sliwkowski, M., <u>Ashkenazi, A.</u>, and Presta, L. Design, Construction, and analyses of multivalent antibodies. *J. Immunol.* 170, 4854-4861 (2003).

68. Varfolomeev, E., Kischkel, F., Martin, F., Wanh, H., Lawrence, D., Olsson, C., Tom, L., Erickson, S., French, D., Schow, P., Grewal, I. and <u>Ashkenazi, A.</u>
Immune system development in APRIL knockout mice. Submitted.

Review articles:

- 1. <u>Ashkenazi, A.,</u> Peralta, E., Winslow, J., Ramachandran, J., and Capon, D., J. Functional role of muscarinic acetylcholine receptor subtype diversity. *Cold Spring Harbor Symposium on Quantitative Biology*. **LIII**, 263-272 (1988).
- 2. <u>Ashkenazi, A.</u>, Peralta, E., Winslow, J., Ramachandran, J., and Capon, D. Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. *Trends Pharmacol. Sci.* Dec Supplement, 12-21 (1989).
- 3. Chamow, S., Duliege, A., Ammann, A., Kahn, J., Allen, D., Eichberg, J., Byrn, R., Capon, D., Ward, R., and <u>Ashkenazi</u>, A. CD4 immunoadhesins in anti-HIV therapy: new developments. *Int. J. Cancer* Supplement 7, 69-72 (1992).
- 4. Ashkenazi, A., Capon, and D. Ward, R. Immunoadhesins. Int. Rev. Immunol. 10, 217-225 (1993).
- 5. Ashkenazi, A., and Peralta, E. Muscarinic Receptors. In Handbook of Receptors and Channels. (S. Peroutka, ed.), CRC Press, Boca Raton, Vol. I, p. 1-27, (1994).
- 6. Krantz, S. B., Means, R. T., Jr., Lina, J., Marsters, S. A., and <u>Ashkenazi, A.</u>
 Inhibition of erythroid colony formation in vitro by gamma interferon. In

 Molecular Biology of Hematopoiesis (N. Abraham, R. Shadduck, A. Levine F.
 Takaku, eds.) Intercept Ltd. Paris, Vol. 3, p. 135-147 (1994).
- 7. Ashkenazi, A. Cytokine neutralization as a potential therapeutic approach for SIRS and shock. J. Biotechnology in Healthcare 1, 197-206 (1994).
- 8. <u>Ashkenazi, A.</u>, and Chamow, S. M. Immunoadhesins: an alternative to human monoclonal antibodies. *Immunomethods: A companion to Methods in Enzimology* 8, 104-115 (1995).
- 9. Chamow, S., and Ashkenazi, A. Immunoadhesins: Principles and Applications. Trends Biotech. 14, 52-60 (1996).
- 10. Ashkenazi, A., and Chamow, S. M. Immunoadhesins as research tools and therapeutic agents. Curr. Opin. Immunol. 9, 195-200 (1997).
- 11. Ashkenazi, A., and Dixit, V. Death receptors: signaling and modulation. Science 281, 1305-1308 (1998).
- 12. <u>Ashkenazi, A.</u>, and Dixit, V. Apoptosis control by death and decoy receptors. *Curr. Opin. Cell. Biol.* 11, 255-260 (1999).

- 13. Ashkenazi, A. Chapters on Apo2L/TRAIL; DR4, DR5, DcR1, DcR2; and DcR3. Online Cytokine Handbook (www.apnet.com/cytokinereference/).
- 14. <u>Ashkenazi, A.</u> Targeting death and decoy receptors of the tumor necrosis factor superfamily. *Nature Rev. Cancer* 2, 420-430 (2002).
- 15. LeBlanc, H. and Ashkenazi, A. Apoptosis signaling by Apo2L/TRAIL. Cell Death and Differentiation 10, 66-75 (2003).
- 16. Almasan, A. and <u>Ashkenazi, A</u>. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews 14, 337-348 (2003).

Book:

Antibody Fusion Proteins (Chamow, S., and Ashkenazi, A., eds., John Wiley and Sons Inc.) (1999).

Talks:

- Resistance of primary HIV isolates to CD4 is independent of CD4-gp120 binding affinity. UCSD Symposium, HIV Disease: Pathogenesis and Therapy. Greenelefe, FL, March 1991.
- 2. Use of immuno-hybrids to extend the half-life of receptors. IBC conference on Biopharmaceutical Halflife Extension. New Orleans, LA, June 1992.
- 3. Results with TNF receptor Immunoadhesins for the Treatment of Sepsis. IBC conference on Endotoxemia and Sepsis. Philadelphia, PA, June-1992.
- 4. Immunoadhesins: an alternative to human antibodies. IBC conference on Antibody Engineering. San Diego, CA, December 1993.
- 5. Tumor necrosis factor receptor: a potential therapeutic for human septic shock.

 American Society for Microbiology Meeting, Atlanta, GA, May 1993.
- 6. Protective efficiacy of TNF receptor immunoadhesin vs anti-TNF monoclonal antibody in a rat model for endotoxic shock. 5th International Congress on TNF. Asilomar, CA, May 1994.
- Interferon-γ signals via a multisubunit receptor complex that contains two types of polypeptide chain. American Association of Immunologists Conference. San Franciso, CA, July 1995.
- 8. Immunoadhesins: Principles and Applications. Gordon Research Conference on Drug Delivery in Biology and Medicine. Ventura, CA, February 1996.

- Apo-2 Ligand, a new member of the TNF family that induces apoptosis in tumor cells. Cambridge Symposium on TNF and Related Cytokines in Treatment of Cancer. Hilton-Head, NC, March 1996.
- 10. Induction of apoptosis by Apo2 Ligand. American Society for Biochemistry and Molecular Biology, Symposium on Growth Factors and Cytokine Receptors. New Orleans, LA, June, 1996.
- 11. Apo2 ligand, an extracellular trigger of apoptosis. 2nd Clontech Symposium, Palo Alto, CA, October 1996.
- 12. Regulation of apoptosis by members of the TNF ligand and receptor families.

 Stanford University School of Medicine, Palo Alto, CA, December 1996.
- 13. Apo-3: anovel receptor that regulates cell death and inflammation. 4th International Congress on Immune Consequences of Trauma, Shock, and Sepsis. Munich, Germany, March 1997.
- 14. New members of the TNF ligand and receptor families that regulate apoptosis, inflammation, and immunity. UCLA School of Medicine, LA, CA, March 1997.
- 15. Immunoadhesins: an alternative to monoclonal antibodies. 5th World Conference on Bispecific Antibodies. Volendam, Holland, June 1997.
- Control of Apo2L signaling. Cold Spring Harbor Laboratory Symposium on Programmed Cell Death. Cold Spring Harbor, New York. September, 1997.
- 17. Chairman and speaker, Apoptosis Signaling session. IBC's 4th Annual Conference on Apoptosis. San Diego, CA., October 1997.
- 18. Control of Apo2L signaling by death and decoy receptors. American Association for the Advancement of Science. Philladelphia, PA, February 1998.
- Apo2 ligand and its receptors. American Society of Immunologists. San Francisco, CA, April 1998.
 - Death receptors and ligands. 7th International TNF Congress. Cape Cod, MA, May 1998.
 - Apo2L as a potential therapeutic for cancer. UCLA School of Medicine. LA,
 CA, June 1998.
 - 22. Apo2L as a potential therapeutic for cancer. Gordon Research Conference on Cancer Chemotherapy. New London, NH, July 1998.
 - Control of apoptosis by Apo2L. Endocrine Society Conference, Stevenson, WA, August 1998.
 - Control of apoptosis by Apo2L. International Cytokine Society Conference,
 Jerusalem, Israel, October 1998.

- 25. Apoptosis control by death and decoy receptors. American Association for Cancer Research Conference, Whistler, BC, Canada, March 1999.
- 26. Apoptosis control by death and decoy receptors. American Society for Biochemistry and Molecular Biology Conference, San Francisco, CA, May 1999.
- 27. Apoptosis control by death and decoy receptors. Gordon Research Conference on Apoptosis, New London, NH, June 1999.
- 28. Apoptosis control by death and decoy receptors. Arthritis Foundation Research Conference, Alexandria GA, Aug 1999.
- 29. Safety and anti-tumor activity of recombinant soluble Apo2L/TRAIL. Cold Spring Harbor Laboratory Symposium on Programmed Cell Death. Cold Spring Harbor, NY, September 1999.
- 30. The Apo2L/TRAIL system: therapeutic potential. American Association for Cancer Research, Lake Tahoe, NV, Feb 2000.
- 31. Apoptosis and cancer therapy. Stanford University School of Medicine, Stanford, CA, Mar 2000.
- 32. Apoptosis and cancer therapy. University of Pennsylvania School of Medicine, Philladelphia, PA, Apr 2000.
- 33. Apoptosis signaling by Apo2L/TRAIL. International Congress on TNF. Trondheim, Norway, May 2000.
- 34. The Apo2L/TRAIL system: therapeutic potential. Cap-CURE summit meeting. Santa Monica, CA, June 2000.
- 35. The Apo2L/TRAIL system: therapeutic potential. MD Anderson Cancer Center. Houston, TX, June 2000.
- 36. Apoptosis signaling by Apo2L/TRAIL. The Protein Society, 14th Symposium. San Diego, CA, August 2000.
- 37. Anti-tumor activity of Apo2L/TRAIL. AAPS annual meeting. Indianapolis, IN Aug 2000.
- 38. Apoptosis signaling and anti-cancer potential of Apo2L/TRAIL. Cancer Research Institute, UC San Francisco, CA, September 2000.
- 39. Apoptosis signaling by Apo2L/TRAIL. Kenote address, TNF family Minisymposium, NIH. Bethesda, MD, September 2000.
- 40. Death receptors: signaling and modulation. Keystone symposium on the Molecular basis of cancer. Taos, NM, Jan 2001.
- 41. Preclinical studies of Apo2L/TRAIL in cancer. Symposium on Targeted therapies in the treatment of lung cancer. Aspen, CO, Jan 2001.

- 42. Apoptosis signaling by Apo2L/TRAIL. Wiezmann Institute of Science, Rehovot, Israel, March 2001.
- 43. Apo2L/TRAIL: Apoptosis signaling and potential for cancer therapy. Weizmann Institute of Science, Rehovot, Israel, March 2001.
- 44. Targeting death receptors in cancer with Apo2L/TRAIL. Cell Death and Disease conference, North Falmouth, MA, Jun 2001.
- 45. Targeting death receptors in cancer with Apo2L/TRAIL. Biotechnology Organization conference, San Diego, CA, Jun 2001.
- 46. Apo2L/TRAIL signaling and apoptosis resistance mechanisms. Gordon Research Conference on Apoptosis, Oxford, UK, July 2001.
- 47. Apo2L/TRAIL signaling and apoptosis resistance mechanisms. Cleveland Clinic Foundation, Cleveland, OH, Oct 2001.
- 48. Apoptosis signaling by death receptors: overview. International Society for Interferon and Cytokine Research conference, Cleveland, OH, Oct 2001.
- 49. Apoptosis signaling by death receptors. American Society of Nephrology Conference. San Francisco, CA, Oct 2001.
- 50. Targeting death receptors in cancer. Apoptosis: commercial opportunities. San Diego, CA, Apr 2002.
- 51. Apo2L/TRAIL signaling and apoptosis resistance mechanisms. Kimmel Cancer Research Center, Johns Hopkins University, Baltimore MD. May 2002.
- 52. Apoptosis control by Apo2L/TRAIL. (Keynote Address) University of Alabama Cancer Center Retreat, Birmingham, Ab. October 2002.
- 53. Apoptosis signaling by Apo2L/TRAIL. (Session co-chair) TNF international conference. San Diego, CAs October 2002.
- 54. Apoptosis signaling by Apo2L/TRAIL. Swiss Institute for Cancer Research (ISREC). Lausanne, Swizerland. Jan 2003.
- 55. Apoptosis induction with Apo2L/TRAIL. Conference on New Targets and Innovative Strategies in Cancer Treatment. Monte Carlo. February 2003.
- 56. Apoptosis signaling by Apo2L/TRAIL. Hermelin Brain Tumor Center Symposium on Apoptosis. Detroit, MI. April 2003.
- 57. Targeting apoptosis through death receptors. Sixth Annual Conference on Targeted Therapies in the Treatment of Breast Cancer. Kona, Hawaii. July 2003.
- Targeting apoptosis through death receptors. Second International Conference on Targeted Cancer Therapy. Washington, DC. Aug 2003.

Issued Patents:

- 1. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,329,028 (Jul 12, 1994).
- 2. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,605,791 (Feb 25, 1997).
- 3. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,889,155 (Jul 27, 1999).
- 4. Ashkenazi, A., APO-2 Ligand. US patent 6,030,945 (Feb 29, 2000).
- 5. Ashkenazi, A., Chuntharapai, A., Kim, J., APO-2 ligand antibodies. US patent 6, 046, 048 (Apr 4, 2000).
- 6. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 6,124,435 (Sep 26, 2000).
- 7. Ashkenazi, A., Chuntharapai, A., Kim, J., Method for making monoclonal and cross-reactive antibodies. US patent 6,252,050 (Jun 26, 2001).
- 8. Ashkenazi, A. APO-2 Receptor. US patent 6,342,369 (Jan 29, 2002).
- 9. Ashkenazi, A. Fong, S., Goddard, A., Gurney, A., Napier, M., Tumas, D., Wood, W. A-33 polypeptides. US patent 6,410,708 (Jun 25, 2002).
- 10. Ashkenazi, A. APO-3 Receptor. US patent 6,462,176 B1 (Oct 8, 2002).
- 11. Ashkenazi, A. APO-2LI and APO-3 polypeptide antibodies. US patent 6,469,144 B1 (Oct 22, 2002).
- 12. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 6,582,928B1 (Jun 24, 2003).

```
GenBank (Release 142, jun 2004)
494 100
P AAF92072 Human PRO831 cDNA. 494 bp, cDNA, PAT 15-MAY-2001
ACCESSION
          P AAF92072
KEYWORDS
            GENESEQ; Human; PRO protein; mapping; patent; patentdb (v200414,
          01-JUL-2004).
SOURCE
            Homo sapiens.
  ORGANISM Homo sapiens.
REFERENCE
            1
                (bases 1 to 494)
  AUTHORS
            Eaton, D.L., Filvaroff, E., Gerritsen, M.E., Goddard, A.,
          Godowski, P.J. Grimaldi, C.J., Gurney, A.L., Watanabe, C.K.,
          Wood, W.I.
  TITLE
            Eighty four nucleic acids encoding PRO polypeptides, useful in
          molecular biology, including use as hybridization probes, and in
          chromosome and gene mapping.
  JOURNAL
            Patent: WO200116318-A2; Filing Date: 24-AUG-2000; 2000WO-US023328;
          Publication Date: 08-MAR-2001; Priority: 01-SEP-1999;
          99WO-US020111. 15-SEP-1999;
                                         99WO-US021090. 07-DEC-1999;
          99US-0169495P. 09-DEC-1999;
                                         99US-0170262P. 11-JAN-2000;
          2000US-0175481P. 18-FEB-2000; 2000WO-US004341. 18-FEB-2000;
          2000WO-US004342. 22-FEB-2000; 2000WO-US004414. 01-MAR-2000;
          2000WO-US005601. 03-MAR-2000; 2000US-0187202P. 21-MAR-2000; 2000US-0191007P. 30-MAR-2000; 2000WO-US008439. 25-APR-2000;
          2000US-0199397P. 22-MAY-2000; 2000WO-US014042. 05-JUN-2000;
          2000US-0209832P; Assignee: (GETH ) GENENTECH INC; Cross Reference:
          WPI; 2001-183260/18. P-PSDB; AAB87540; Patent Format: Claim 2; Fig
          29; 278pp; English.
COMMENT
            The present sequence is the coding sequence for a human PRO
          polypeptide (secreted and transmembrane). The PRO protein, and PRO
          agonists, PRO antagonists or anti-PRO antibodies are useful for
          preparation of a medicament useful in the treatment of a condition
          which is responsive to the PRO protein, agonists, antagonists or
          anti-PRO antibodies. The PRO protein may also be employed as
          molecular weight markers for protein electrophoresis. The PRO
          coding sequence has applications in molecular biology, including
          use as hybridisation probes, and in chromosome and gene mapping
FEATURES
                     Location/Qualifiers
BASE COUNT
                128 a
                          111 c
                                   120 g
                                             135 t
ORIGIN
494 100
AX092298
            Sequence 29 from Patent WO0116318. 494 bp,
          DNA, linear, PAT 21-MAR-2001
ACCESSION
            AX092298
VERSION
            AX092298.1 GI:13444463
KEYWORDS
SOURCE
            Homo sapiens (human)
  ORGANISM Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
            Eaton, D.L., Filvaroff, E., Gerritsen, M.E., Goddard, A.,
          Godowski, P.J., Grimaldi, C.J., Gurney, A.L., Watanabe, C.K. and
          Wood, W.I.
            Secreted and transmembrane polypeptides and nucleic acids encoding
 TITLE
```

the same

```
JOURNAL
            Patent: WO 0116318-A 29 08-MAR-2001;
          Genentech, Inc. (US)
FEATURES
                     Location/Qualifiers
                     1..494
     source
                   organism="Homo sapiens"
                   /mol type="unassigned DNA"
                   /db xref="taxon:9606"
BASE COUNT
ORIGIN
493 100
          0.0
P AAA37028
            Human PRO831 (UNQ471) cDNA sequence SEQ ID NO:21. 493 bp,
          cDNA, PAT 08-AUG-2000
ACCESSION
            P AAA37028
KEYWORDS
            GENESEQ; Human; PRO polypeptide; membrane bound protein; receptor;
          diagnosis; transmembrane; secretion; immunoadhesion; pharmaceutical;
          screening; patent; patentdb (v200414, 01-JUL-2004).
SOURCE
            Homo sapiens.
  ORGANISM
            Homo sapiens.
REFERENCE
               (bases 1 to 493)
  AUTHORS -
            Baker, K., Goddard, A., Gurney, A.L.,
                                                 Smith, V.,
                                                              Watanabe, C.K.,
          Wood, W.I.
  TITLE
            New mammalian DNA sequences encoding transmembrane, receptor or
          secreted PRO polypeptides, useful for screening of potential
          peptide or small molecule inhibitors of the relevant
          receptor/ligand interactions.
  JOURNAL
            Patent: WO200012708-A2; Filing Date: 01-SEP-1999;
                                                                 99WO-US020111;
          Publication Date: 09-MAR-2000; Priority: 01-SEP-1998;
                                         98US-0098749P. 01-SEP-1998;
          98US-0098716P. 01-SEP-1998;
          98US-0098750P. 02-SEP-1998;
                                         98US-0098803P. 02-SEP-1998;
          98US-0098821P. 02-SEP-1998;
                                         98US-0098843P. 09-SEP-1998;
          98US-0099536P. 09-SEP-1998;
                                         98US-0099596P. 09-SEP-1998;
          98US-0099598P. 09-SEP-1998;
                                         98US-0099602P. 09-SEP-1998;
          98US-0099642P. 10-SEP-1998;
                                         98US-0099741P. 10-SEP-1998;
          98US-0099754P. 10-SEP-1998;
                                         98US-0099763P. 10-SEP-1998;
          98US-0099792P. 10-SEP-1998;
                                         98US-0099808P. 10-SEP-1998;
          98US-0099812P. 10-SEP-1998;
                                         98US-0099815P. 10-SEP-1998;
                                         98US-0100385P. 15-SEP-1998;
          98US-0099816P. 15-SEP-1998;
          98US-0100388P. 15-SEP-1998;
                                         98US-0100390P. 16-SEP-1998;
          98US-0100584P. 16-SEP-1998;
                                         98US-0100627P. 16-SEP-1998;
          98US-0100661P. 16-SEP-1998;
                                         98US-0100662P. 16-SEP-1998;
          98US-0100664P. 17-SEP-1998;
                                         98US-0100683P. 17-SEP-1998;
          98US-0100684P. 17-SEP-1998;
                                         98US-0100710P. 17-SEP-1998;
          98US-0100711P. 17-SEP-1998;
                                         98US-0100919P. 17-SEP-1998;
          98US-0100930P. 18-SEP-1998;
                                         98US-0100848P. 18-SEP-1998;
          98US-0100849P. 18-SEP-1998;
                                         98US-0101014P. 18-SEP-1998;
          98US-0101068P. 18-SEP-1998;
                                         98US-0101071P. 22-SEP-1998;
          98US-0101279P. 23-SEP-1998;
                                         98US-0101471P. 23-SEP-1998;
          98US-0101472P. 23-SEP-1998;
                                         98US-0101474P. 23-SEP-1998;
          98US-0101475P. 23-SEP-1998;
                                         98US-0101476P. 23-SEP-1998;
          98US-0101477P. 23-SEP-1998;
                                         98US-0101479P. 24-SEP-1998;
                                         98US-0101741P. 24-SEP-1998;
          98US-0101738P. 24-SEP-1998;
          98US-0101743P. 24-SEP-1998;
                                         98US-0101915P. 24-SEP-1998;
          98US-0101916P. 29-SEP-1998;
                                         98US-0102207P. 29-SEP-1998;
                                         98US-0102307P. 29-SEP-1998;
          98US-0102240P. 29-SEP-1998;
                                         98US-0102331P. 30-SEP-1998;
          98US-0102330P. 29-SEP-1998;
          98US-0102484P. 30-SEP-1998;
                                         98US-0102487P. 30-SEP-1998;
```

```
98US-0102571P. 01-OCT-1998;
          98US-0102570P. 30-SEP-1998;
          98US-0102684P. 01-OCT-1998;
                                         98US-0102687P. 02-0CT-1998;
          98US-0102965P. 06-OCT-1998;
                                         98US-0103258P. 06-OCT-1998;
          98US-0103449P. 07-OCT-1998;
                                         98US-0103314P. 07-OCT-1998;
          98US-0103315P. 07-OCT-1998;
                                         98US-0103328P. 07-OCT-1998;
          98US-0103395P. 07-OCT-1998;
                                         98US-0103396P. 07-OCT-1998;
          98US-0103401P. 08-OCT-1998;
                                         98US-0103633P. 08-OCT-1998;
          98US-0103678P. 08-OCT-1998;
                                         98US-0103679P. 08-OCT-1998;
          98US-0103711P. 14-OCT-1998;
                                         98US-0104257P. 20-OCT-1998;
          98US-0104987P. 20-OCT-1998;
                                         98US-0105000P. 20-OCT-1998;
          98US-0105002P. 21-OCT-1998;
                                         98US-0105104P. 22-OCT-1998;
          98US-0105169P. 22-OCT-1998;
                                         98US-0105266P. 26-OCT-1998;
          98US-0105693P. 26-OCT-1998;
                                         98US-0105694P. 27-OCT-1998;
          98US-0105807P. 27-OCT-1998;
                                         98US-0105881P. 27-OCT-1998;
          98US-0105882P. 27-OCT-1998;
                                         98US-0106062P. 28-OCT-1998;
          98US-0106023P. 28-OCT-1998;
                                         98US-0106029P. 28-OCT-1998;
          98US-0106030P. 28-OCT-1998;
                                         98US-0106032P. 28-OCT-1998;
          98US-0106033P. 28-OCT-1998;
                                         98US-0106178P. 29-OCT-1998;
          98US-0106248P. 29-OCT-1998;
                                         98US-0106384P. 29-OCT-1998;
          98US-0108500P. 30-OCT-1998;
                                         98US-0106464P. 03-NOV-1998;
          98US-0106856P. 03-NOV-1998;
                                         98US-0106902P. 03-NOV-1998;
          98US-0106905P. 03-NOV-1998;
                                         98US-0106919P. 03-NOV-1998;
          98US-0106932P. 03-NOV-1998;
                                         98US-0106934P. 10-NOV-1998;
          98US-0107783P. 17-NOV-1998;
                                         98US-0108775P. 17-NOV-1998;
          98US-0108779P. 17-NOV-1998;
                                         98US-0108787P. 17-NOV-1998;
          98US-0108788P. 17-NOV-1998;
                                         98US-0108801P. 17-NOV-1998;
                                         98US-0108806P. 17-NOV-1998;
          98US-0108802P. 17-NOV-1998;
          98US-0108807P. 17-NOV-1998;
                                         98US-0108867P. 17-NOV-1998;
          98US-0108925P. 18-NOV-1998;
                                         98US-0108848P. 18-NOV-1998;
          98US-0108849P. 18-NOV-1998;
                                         98US-0108850P. 18-NOV-1998;
          98US-0108851P. 18-NOV-1998;
                                         98US-0108852P. 18-NOV-1998;
          98US-0108858P. 18-NOV-1998;
                                         98US-0108904P; Assignee: (GETH )
          GENENTECH INC; Cross Reference: WPI; 2000-237871/20. P-PSDB;
          AAY99346; Patent Format: Claim 2; Fig 13; 773pp; English.
            AAA37022 to AAA37144 encode the new isolated human transmembrane,
          receptor or secreted PRO polypeptides given in AAY99340 to AAY99462.
          The transmembrane and receptor PRO proteins can be used for
          screening of potential peptide or small molecule inhibitors of the
          relevant receptor/ligand interactions. The polypeptides and
          nucleotide sequences encoding then have various industrial
          applications, including uses as pharmaceutical and diagnostic
          agents. AAA37145 to AAA37330 represent PCR primers and
          hybridisation probes used in the isolation of the PRO polypeptides
          from the present invention
                     Location/Qualifiers
BASE COUNT
                127 a
                          111 c
                                   120 q
                                            135 t
            Homo sapiens apelin, AGTRL1 ligand, mRNA (cDNA clone MGC:31846
          IMAGE: 4586949), complete cds. 2673 bp,
          mRNA, linear, PRI 30-JUN-2004
ACCESSION
            BC021104
            BC021104.1 GI:18088893
            Homo sapiens (human)
```

COMMENT

FEATURES

ORIGIN

486 100 BC021104

VERSION

KEYWORDS SOURCE

ORGANISM

Homo sapiens

```
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
                (bases 1 to 2673)
  AUTHORS
            Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G.,
          Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D.,
          Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K.,
          Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F.,
          Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L.,
          Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L.,
          Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S.,
          Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J.,
          Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J.,
          McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S.,
          Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W.,
          Villalon, D.K., Muzny, D.M., Sodergren, E.J., Lu, X., Gibbs, R.A.,
          Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodriques, S.,
          Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y.,
          Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D.,
          Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M.,
          Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E.,
          Schnerch, A., Schein, J.E., Jones, S.J. and Marra, M.A.
  TITLE
            Generation and initial analysis of more than 15,000 full-length
          human and mouse cDNA sequences
  JOURNAL
            Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002)
REFERENCE
                (bases 1 to 2673)
  AUTHORS
            Strausberg, R.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (03-JAN-2002) National Institutes of Health, Mammalian
          Gene Collection (MGC), Cancer Genomics Office, National Cancer
          Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,
          USA
  REMARK
            NIH-MGC Project URL: http://mgc.nci.nih.gov
COMMENT
            Contact: MGC help desk
          Email: cgapbs-r@mail.nih.gov
          Tissue Procurement: DCTD/DTP
          cDNA Library Preparation: Rubin Laboratory
          cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
          DNA Sequencing by: Genome Sequence Centre,
          BC Cancer Agency, Vancouver, BC, Canada
          info@bcqsc.bc.ca
          Steve Jones, Sarah Barber, Mabel Brown-John, Yaron Butterfield,
          Andy Chan, Steve S. Chand, William Chow, Alison Cloutier, Ruth
          Featherstone, Malachi Griffith, Obi Griffith, Ran Guin, Nancy Liao,
          Kim MacDonald, Amara Masson, Mike R. Mayo, Josh Moran, Ryan Morin,
          Teika Olson, Diana Palmquist, Anca Petrescu, Anna Liisa Prahbu,
          Parvaneh Saeedi, JR Santos, Angelique Schnerch, Ursula Skalska,
          Duane Smailus, Jeff Stott, Miranda Tsai, George Yang, Jacquie
          Schein, Asim Siddiqui, Rob Holt, Marco Marra.
```

Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Series: IRAL Plate: 40 Row: f Column: 18 This clone was selected for full length sequencing because it passed the following selection criteria: matched mRNA gi: 21314667.

FEATURES

Location/Qualifiers

1..2673

source

/organism="Homo sapiens"

```
/db xref="taxon:9606"
                   /clone="MGC:31846 IMAGE:4586949"
                   /tissue type="Kidney, renal cell adenocarcinoma"
                   /clone lib="NIH MGC 14"
                   /lab host="DH10B-R"
                   /note="Vector: pOTB7"
                     1..2673
     gene
                   /gene="APLN"
                   /note="synonyms: XNPEP2, apelin"
                   /db xref="LocusID:8862"
                   /db xref="MIM:300297"
     CDS
                     308..541
                   /gene="APLN"
                   /codon start=1
                   /product="apelin, preproprotein"
                   /protein id="AAH21104.2"
                   /db_xref="GI:45946592"
                   /db_xref="LocusID:8862"
                   /db_xref="MIM:300297"
BASE COUNT
ORIGIN
468 100
P_AAX235184Human kidney aminopeptidase P genomic DNA fragment 2. 998 bp,
          DNA, PAT 23-JUN-1999
ACCESSION
            P_AAX23518
KEYWORDS
            GENESEQ; Aminopeptidase; human; AmP; gene therapy; treatment;
          AmP-deficiency; prenatal diagnosis; angioedema; antihypertensive
          agent; atherosclerosis; arterial stenosis; industrial protein feed;
          malabsorption syndrome; proteinaceous waste degradation; additive;
          immunohistochemistry; patent; patentdb (v200414, 01-JUL-2004).
SOURCE
            Homo sapiens.
  ORGANISM
            Homo sapiens.
REFERENCE
               (bases 1 to 49998)
  AUTHORS
            Ryan, J.W., Sprinkle, T.J.C., Venema, R.C.
  TITLE
            Nucleic acid encoding human aminopeptidase P.
  JOURNAL
            Patent: WO9911799-A2; Filing Date: 02-SEP-1998;
                                                               98WO-US018426;
          Publication Date: 11-MAR-1999; Priority: 02-SEP-1997;
          97US-0057854P; Assignee: (MEDI-) MEDICAL COLLEGE GEORGIA RES INST;
          Cross Reference: WPI; 1999-205193/17; Patent Format: Claim 13; Page
          109-139; 201pp; English.
COMMENT
            This invention describes the isolation of a novel human
          aminopeptidase P (AmP). This protein is used to produce recombinant
          AmP and can be used for gene therapy for treating AmP-deficiency
          conditions. Its fragments are used as primers and probes to
          identify patients with homozygous and heterozygous AmP deficiency,
          including prenatal diagnosis (patients defective in AMP are at risk
          of developing angioedema if treated with angiotensin-converting
          enzyme inhibitors), also as antisense inhibitors in cases of
          excessive AmP expression. The product of the invention is also used
          to identify AmP-expressing sequences in other animals and to
          generate transgenic animals, and comparisons of genomic sequences
          are used to detect mutations. AmP inhibitors are potentially useful
          as antihypertensive agents and to prevent or treat arterial
          (re)stenosis or atherosclerosis. The structure of AMP is used to
          design synthetic substrates, e.g. for use in AmP assays. AmP, which
```

/mol type="mRNA"

hydrolyzes N-terminal imido bonds, can be used to degrade industrial protein feeds to free amino acids, to degrade proteinaceous wastes, as additives in enzyme formulations used to treat malabsorption syndrome and for studying its biological role. Antibodies against AmP are used in immunohistochemical methods to study AmP distribution

FEATURES

Location/Qualifiers

BASE COUNT

12605 a 11725 c 11351 g 14317 t

ORIGIN

468 100 0.0

HS454M7

Human DNA sequence from clone RP3-454M7 on chromosome Xq25-26.3, complete sequence. 151152 bp, DNA, linear, PRI 05-JUN-2003

ACCESSION

AL022162

VERSION

AL022162.1 GI:3171881

KEYWORDS

HTG.

SOURCE

Homo sapiens (human)

ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE

(bases 1 to 151152)

AUTHORS

Pavitt, R.

TITLE

Direct Submission

JOURNAL

Submitted (05-JUN-2003) Wellcome Trust Sanger Institute, Hinxton,

Cambridgeshire, CB10 1SA, UK. E-mail enquiries:

humquery@sanger.ac.uk Clone requests: clonerequest@sanger.ac.uk

On Jun 2, 1998 this sequence version replaced gi:2969945.

COMMENT

----- Genome Center

Center: Wellcome Trust Sanger Institute Center code: SC

Web site: http://www.sanger.ac.uk Contact: humquery@sanger.ac.uk

During sequence assembly data is compared from overlapping clones. Where differences are found these are annotated as variations together with a note of the overlapping clone name. Note that the variation annotation may not be found in the sequence submission corresponding to the overlapping clone, as we submit sequences with only a small overlap as described above.

This sequence was finished as follows unless otherwise noted: all regions were either double-stranded or sequenced with an alternate chemistry or covered by high quality data (i.e., phred quality }= 30); an attempt was made to resolve all sequencing problems, such as compressions and repeats; all regions were covered by at least one plasmid subclone or more than one M13 subclone; and the assembly was confirmed by restriction digest, except on the rare occasion of the clone being a YAC.

The following abbreviations are used to associate primary accession numbers given in the feature table with their source databases: Em:, EMBL; Sw:, SWISSPROT; Tr:, TREMBL; Wp:, WORMPEP; Information on the WORMPEP database can be found at

http://www.sanger.ac.uk/Projects/C elegans/wormpep This sequence was generated from part of bacterial clone contigs of human chromosome X, constructed by the Sanger Centre Chromosome X Mapping Further information can be found at

http://www.sanger.ac.uk/HGP/ChrX

RP3-454M7 is from the library RPCI-3 constructed by the group of

```
Pieter de Jong. For further details see
          http://www.chori.org/bacpac/home.htm
          VECTOR: pCYPAC2
          This sequence is the entire insert of clone RP3-454M7.
FEATURES
                     Location/Qualifiers
     source
                     1..151152
                   /organism="Homo sapiens"
                   /mol_type="genomic DNA"
                   /db_xref="RZPD:RPCIP704M07454"
                   /db xref="taxon:9606"
                   /chromosome="X"
                   /map="q25-26.3"
                   /clone="RP3-454M7"
                   /clone_lib="RPCI-3"
                     767..35998
     gene
                   /gene="OCRL1"
     mRNA
                     join(<767..877,1303..1392,2075..2195,2282..2443,
                   3992..4093,4621..4735,5826..5942,6041..6228,9214..9325,
                   10696..10805;12706..12841,18582..18692,19339..19504,
                   19759..19994,30444..30560,31621..31705,32328..32455,
                   33287..33398,33588..35998)
                   /gene="OCRL1"
                   /product="dJ454M7.1.1 (Lowe Oculocerebrorenal Syndrome)"
                   /note="variant 1
                   match: cDNAs: Em:M88162 Em:U57627 Em:M74161 Em:AF040094
                   match: ESTs: Em:AA368192 Em:AA704671 Em:AA515789
                   Em:AA102623 Em:AA126320 Em:T63686 Em:AA884344 Em:N92504
                   Em:AA044611 Em:AA188493 Em:AA743649 Em:AA836673 Em:R67320
                   Em:AA100629 Em:AA085500 Em:R94403 Em:AA056506 Em:AA034375
                   Em:AA142870 Em:AA150871 Em:T84251 Em:AA122020 Em:AA906612
                   Em:F07337 Em:AA628152 Em:AA878369 Em:AA640853 Em:AA189134
                   Em:AA044666 Em:AA740555 Em:R18793 Em:AA844284 Em:AA904845
                   Em:AA042798 Em:AA122019 Em:H53971 Em:W38961 Em:AA805220
                   Em:AA868822 Em:AA032176 Em:AA034374 Em:T84250 Em:N56932
                   Em:AA169401 Em:AA188849 Em:N46002 Em:AA056392 Em:H87857
                   Em: W52373 Em: AA587050 Em: AA100630 Em: T88888 Em: H27722
                   Em: AA186750 Em: R66483 Em: T28294"
                   /evidence=not experimental
     CDS
                     join(<769..877,1303..1392,2075..2195,2282..2443,
                   3992..4093,4621..4735,5826..5942,6041..6228,9214..9325,
                   10696..10805,12706..12841,18582..18692,19339..19504,
                   19759...19994;27786...27809,30444...30560,31621...31705,
                   32328..32455,33287..33398,33588..33712)
                   /gene="OCRL1"
                   /codon start=1
                   /evidence=not_experimental
                   /product="dJ454M7.1.2 (variant 2)"
                   /protein id="CAA18150.1"
                   /db xref="GI:3171882"
     CDS
                     join(<769..877,1303..1392,2075..2195,2282..2443,
                   3992..4093,4621..4735,5826..5942,6041..6228,9214..9325,
                   10696..10805,12706..12841,18582..18692,19339..19504,
                   19759..19994,30444..30560,31621..31705,32328..32455,
                   33287...33398,33588...33712)
                   /gene="OCRL1"
                   /note="variant 1"
                   /codon start=1
```

```
/evidence=not_experimental
               /product="dJ454M7.1.1 (Lowe Oculocerebrorenal Syndrome)"
              /protein id="CAA18151.1"
              /db xref="GI:4160528"
repeat region
                1586..1847
              /note="MIR repeat: matches 2..262 of consensus"
repeat region
                2642..2940
               /note="AluJb repeat: matches 1..302 of consensus"
repeat_region
                6639..6933
              /note="MER33 repeat: matches 1..323 of consensus"
repeat region
                7178..8315
              /note="L1PA2 repeat: matches 5000..6146 of consensus"
repeat_region
                11225..11294
             /note="MER5B repeat: matches 109..178 of consensus"
repeat_region
                11345..11657
              /note="AluYb8 repeat: matches 1..310 of consensus"
repeat region 11736..11797
              /note="31 copies 2 mer tt 72% conserved"
repeat region
                12436..12562
              /note="L2 repeat: matches 2579..2710 of consensus"
repeat region
                13276..13457
              /note="AluSg/x repeat: matches 129..310 of consensus"
repeat region
                13679..13873
              /note="MIR repeat: matches 5..213 of consensus"
repeat region
                14132..14206
              /note="MIR repeat: matches 163..233 of consensus"
repeat_region
                14207..14413
              /note="MER8 repeat: matches 2..239 of consensus"
repeat region
                14414..14548
              /note="MIR repeat: matches 12..163 of consensus"
repeat region
                14793..15073
              /note="AluY repeat: matches 1..311 of consensus"
repeat region
                15383..15589
              /note="MER3 repeat: matches 1..209 of consensus"
repeat region
                16139..16279
              /note="MER5B repeat: matches 29..178 of consensus"
repeat region
                16317..16466
              /note="MIR repeat: matches 52..212 of consensus"
repeat region
                16667..17000
              /note="L1PA9 repeat: matches 5829..6163 of consensus"
repeat region
                17001..17301
              /note="AluYb8 repeat: matches 1..302 of consensus"
repeat region
                17302..17642
              /note="L1PA9 repeat: matches 5491..5829 of consensus"
repeat region
                18285..18620
              /note="2 copies 168 mer 78% conserved"
repeat region
                18772..18981
              /note="MIR repeat: matches 6..242 of consensus"
repeat region
                18945..19005
              /note="L2 repeat: matches 2648..2702 of consensus"
repeat_region
                20349..20489
              /note="MIR repeat: matches 1..150 of consensus"
repeat region
                20543..20697
              /note="MER5A repeat: matches 22..188 of consensus"
repeat_region
                21496..21830
              /note="L1MC4 repeat: matches 7477..7849 of consensus"
repeat region
                22420..22650
```

```
/note="MER46A repeat: matches 1..236 of consensus"
repeat region
                22894..22965
              /note="3 copies 24 mer 83% conserved"
repeat_region
                24309...24606
              /note="AluSx repeat: matches 1..299 of consensus"
repeat region
                25081..25134
              /note="27 copies 2 mer ta 70% conserved"
repeat region
                25168..25193
              /note="13 copies 2 mer tg 100% conserved"
repeat region
                25262..25301
              /note="20 copies 2 mer tc 90% conserved"
repeat_region
               25302..25642
              /note="L2 repeat: matches 2078..2419 of consensus"
repeat_region
                26542..26704
              /note="MIR repeat: matches 1..160 of consensus"
repeat region :
                26822..27057
              /note="MIR repeat: matches 8..255 of consensus"
repeat region
                28330..28399
              /note="MIR repeat: matches 82..151 of consensus"
repeat region
                30715..30819
              /note="MIR repeat: matches 35..138 of consensus"
                31196..31319
repeat region
              /note="AluJb repeat: matches 2..125 of consensus"
repeat_region
               37202..37675
              /note="L2 repeat: matches 1597..2041 of consensus"
repeat_region
                37676..37990
              /note="AluJb repeat: matches 1..312 of consensus"
repeat_region
               37991..38142
              /note="L2 repeat: matches 2041..2182 of consensus"
repeat_region
                38143..38316
              /note="MER5A repeat: matches 3..189 of consensus"
repeat region
                38317..38464
              /note="L2 repeat: matches 2182..2419 of consensus"
repeat_region 38676..38801
              /note="MIR repeat: matches 11..134 of consensus"
repeat region
                38858..38984
              /note="MIR repeat: matches 123..257 of consensus"
repeat region
                39284..39886
              /note="L2 repeat: matches 2147..2748 of consensus"
repeat_region
                39913..40014
              /note="MIR repeat: matches 175..262 of consensus"
repeat region
                40015..40311
              /note="AluSg repeat: matches 1..297 of consensus"
repeat region
                40312..40428
              /note="MIR repeat: matches 14..175 of consensus"
repeat_region 40667..40774
              /note="L2 repeat: matches 2616..2702 of consensus"
repeat region
                40776..41088
              /note="AluSx repeat: matches 1..305 of consensus"
repeat_region
                41528..41936
              /note="L2 repeat: matches 2267..2709 of consensus"
repeat_region
                42180..42713
              /note="L1MB3 repeat: matches 5584..6153 of consensus"
repeat region
                42714..43014
              /note="AluJb repeat: matches 1..312 of consensus"
repeat region
                43015..43042
              /note="L1MB3 repeat: matches 6153..6178 of consensus"
```

```
repeat_region
                43197..43238
              /note="5S repeat: matches 1..42 of consensus"
repeat region
                43282..43574
              /note="L2 repeat: matches 2405..2677 of consensus"
repeat region
                45284..45741
              /note="MLT1C repeat: matches 1..466 of consensus"
repeat region
                45835..45905
              /note="L2 repeat: matches 1139..1203 of consensus"
repeat_region
                45906..46207
              /note="AluSq repeat: matches 12..313 of consensus"
repeat region
                46208..46584
              /note="L2 repeat: matches 1203..1621 of consensus"
repeat_region
                46714..47015
             /note="AluSg repeat: matches 1..302 of consensus"
repeat region
                47016..47159
              /note="MER58B repeat: matches 196..341 of consensus"
repeat region
                47168..47374
              /note="MER30 repeat: matches 1..230 of consensus"
repeat region 47427...47581
              /note="MER61A repeat: matches 4..158 of consensus"
repeat region
                47611..47774
              /note="AluSx repeat: matches 12..175 of consensus"
repeat_region
                48682..48987
              /note="AluY repeat: matches 1..306 of consensus"
repeat_region
                49541..49678
              /note="L2 repeat: matches 1906..2046 of consensus"
repeat region 49698..49898
              /note="MER53 repeat: matches 1..188 of consensus"
repeat region
                49909..49978
              /note="LTR19B repeat: matches 59..140 of consensus"
repeat region
                50220..50423
              /note="L2 repeat: matches 2518..2730 of consensus"
repeat region
                50421..50492
              /note="3 copies 24 mer 93% conserved"
                50846..50915
repeat region
              /note="MIR repeat: matches 48..117 of consensus"
repeat_region
                50914..51068
              /note="MIR repeat: matches 34..211 of consensus"
repeat_region
                51124..51292
              /note="AluSg/x repeat: matches 130..300 of consensus"
repeat region
                51517..51587
              /note="MER96 repeat: matches 105..175 of consensus"
repeat_region
                52716..52853
              /note="MIR repeat: matches 68..213 of consensus"
repeat region
                52994...53224
              /note="MIR repeat: matches 2..258 of consensus"
repeat_region
                54036..54154
              /note="MLT11 repeat: matches 292..410 of consensus"
repeat region
                54234..54586
              /note="MLT1A2 repeat: matches 1..373 of consensus"
repeat region
                54612..54704
              /note="MLT1J repeat: matches 106..200 of consensus"
                54708..54755
repeat_region
              /note="L2 repeat: matches 2691..2738 of consensus"
                55103..55409
              /note="AluYb8 repeat: matches 1..314 of consensus"
repeat region 55876..56326
```

```
/note="L2 repeat: matches 2225..2658 of consensus"
repeat_region
               56404..56697
             /note="AluSg repeat: matches 1..292 of consensus"
repeat region
                56760..56882
              /note="L2 repeat: matches 2605..2730 of consensus"
repeat region
                57036..57226
              /note="MIR repeat: matches 73..262 of consensus"
repeat region
                57448..57579
              /note="L1PA16 repeat: matches 6025..6157 of consensus"
repeat region
                57817..58128
             /note="L2 repeat: matches 2434..2746 of consensus"
repeat region
                58772..59030
              /note="MIR repeat: matches 1..262 of consensus"
repeat region
                59040..59091
              /note="MIR repeat: matches 206..257 of consensus"
repeat region
               59050..59118
              /note="L2 repeat: matches 2626..2729 of consensus"
repeat_region
               59465..59797
             7-note="Alusx repeat: matches 1..301 of consensus"
repeat region
                61554..61833
              /note="AluSx repeat: matches 6..286 of consensus"
repeat_region
                62011..62239
              /note="MIR repeat: matches 2..242 of consensus"
               62265..62379
repeat_region
              /note="L2 repeat: matches 2430..2545 of consensus"
repeat_region
                63472..63529
              /note="MIR repeat: matches 185..242 of consensus"
repeat_region
                64262..64313
              /note="MIR repeat: matches 92..143 of consensus"
repeat_region
                64330..64409
              /note="MER33 repeat: matches 241..324 of consensus"
repeat region
                64459..64631
              /note="L1MA10 repeat: matches 5999..6322 of consensus"
repeat region
                64637..64862
              /note="MER33 repeat: matches 5..225 of consensus"
                65788..66082
repeat region
              /note="AluJo repeat: matches 6..304 of consensus"
repeat region
                66968..66991
              /note="L2 repeat: matches 2470..2493 of consensus"
                67036..67653
repeat region
              /note="L2 repeat: matches 1882..2511 of consensus"
repeat_region
                67654..67700
              /note="L1PA16 repeat: matches 4148..4193 of consensus"
repeat region
                67701..67998
              /note="AluY repeat: matches 1..296 of consensus"
repeat region
                67999..68463
              /note="L1PA16 repeat: matches 4193..4655 of consensus"
repeat region
                68464..68826
              /note="THE1B repeat: matches 1..364 of consensus"
repeat_region
                68827..70335
              /note="L1PA16 repeat: matches 4655..6143 of consensus"
                70349..70538
repeat_region
              /note="L2 repeat: matches 1697..1895 of consensus"
repeat region
                70565..70865
              /note="AluY repeat: matches 1..305 of consensus"
repeat region
                70932..71126
              /note="L1ME3 repeat: matches 5734..5939 of consensus"
```

```
repeat region
                 71385..71690
               /note="AluYa5 repeat: matches 1..310 of consensus"
 repeat region
                 71717..72253
               /note="MLT1F repeat: matches 11..513 of consensus"
 repeat_region
                72615..72631
               /note="MIR repeat: matches 196..212 of consensus"
 repeat region
                 72632..72870
               /note="MER8 repeat: matches 1..239 of consensus"
 repeat_region 72871..73028
               /note="MIR repeat: matches 45..196 of consensus"
 repeat region
                 73892..73979
               /note="MIR repeat: matches 59..147 of consensus"
 repeat region
                 74431..74484
               /note="27 copies 2 mer ca 96% conserved"
 repeat region
                 74436..74483
               /note="2 copies 24 mer 100% conserved"
 repeat region
                 74504..74671
               /note="MIR repeat: matches 2..171 of consensus"
 repeat region -- 75019...75185
               /note="L2 repeat: matches 2517..2704 of consensus"
 repeat region
                 75149..75249
               /note="MIR repeat: matches 28..137 of consensus"
 repeat_region
                75397..75588
              /note="MLT1A1 repeat: matches 1..194 of consensus"
 repeat_region
                75646..75831
               /note="MLT1A1 repeat: matches 171..365 of consensus"
 repeat_region
                76554..76826
               /note="AluSg1 repeat: matches 1..308 of consensus"
 repeat_region
                 76863..76903
               /note="L2 repeat: matches 2652..2693 of consensus"
 repeat region
                77089..77189
               /note="MIR repeat: matches 41..144 of consensus"
 repeat_region
                 77359..77679
               /note="AluSx repeat: matches 1..301 of consensus"
 repeat region
                 78584..78722
               /note="L2 repeat: matches 2615..2750 of consensus"
 repeat region
                 79058..79304
               /note="MIR repeat: matches 8..262 of consensus"
 repeat region
                 81458..81515
               /note="MIR repeat: matches 95..154 of consensus"
 repeat region
                 81526..81665
               /note="L2 repeat: matches 2352..2503 of consensus"
 repeat_region
                 81793..81843
               /note="L2 repeat: matches 2706..2750 of consensus"
 repeat region
                 82019..82082
               /note="MIR repeat: matches 90..153 of consensus"
 repeat region
                 82664..82739
               /note="L2 repeat: matches 2647..2722 of consensus"
 repeat region
                 82740..83045
               /note="AluSx repeat: matches 1..312 of consensus"
 repeat_region
                 83046..83071
               /note="L2 repeat: matches 2722..2747 of consensus"
 repeat region
                 83813..83946
               /note="MIR repeat: matches 89..250 of consensus"
                 83904..83954
 repeat region
               /note="L2 repeat: matches 2648..2698 of consensus"
 repeat region 83963..84024
```

```
/note="MIR repeat: matches 77..140 of consensus"
repeat region
                84133..84258
              /note="MIR repeat: matches 7..136 of consensus"
repeat region
                84602..84697
              /note="MIR repeat: matches 49..135 of consensus"
repeat region
                85012..85350
              /note="MLT1A2 repeat: matches 1..340 of consensus"
repeat region
                85365..85456
              /note="MIR repeat: matches 33..128 of consensus"
repeat_region
                85526..85776
              /note="MIR repeat: matches 7..262 of consensus"
repeat region
                85935..86011
              /note="MER58A repeat: matches 42..121 of consensus"
repeat region
                86101..86173
              /note="MER58A repeat: matches 143..219 of consensus"
repeat region
                87299..87643
              /note="AluYb8 repeat: matches 1..310 of consensus"
repeat_region
                88003..88303
        -----/note="Alusx repeat: matches 1..301 of consensus"
repeat_region
                92655..92799
              /note="L1MC5 repeat: matches 7720..7866 of consensus"
repeat_region
                99017..99109
              /note="L2 repeat: matches 2388..2488 of consensus"
repeat region
                99392..99521
              /note="L2 repeat: matches 2576..2710 of consensus"
                99694..99834
repeat_region
              /note="L2 repeat: matches 2610..2750 of consensus"
repeat region
                100051...100090
              /note="20 copies 2 mer tt 80% conserved"
                100093..100400
repeat region
              /note="AluSx repeat: matches 3..312 of consensus"
repeat region
                100764..100931
              /note="MER3 repeat: matches 3..207 of consensus"
repeat_region
                101144..101446
              /note="AluJo repeat: matches 1..292 of consensus"
                101798..101867
repeat region
              /note="L2 repeat: matches 2672..2744 of consensus"
                101952..102471
repeat_region
              /note="MER1A repeat: matches 6..527 of consensus"
repeat region
                102850..103006
              /note="MIR repeat: matches 20..168 of consensus"
repeat_region
                103007..103052
              /note="MLT1A1 repeat: matches 1..51 of consensus"
repeat region
                103053..103356
              /note="AluSp repeat: matches 1..303 of consensus"
repeat region
                103357..103729
              /note="MLT1A1 repeat: matches 51..365 of consensus"
repeat region
                103730..103791
              /note="MIR repeat: matches 168..231 of consensus"
repeat_region
                103886..103998
              /note="MSTA repeat: matches 1..114 of consensus"
repeat_region
                103996..104323
              /note="MSTA repeat: matches 1..388 of consensus"
repeat region
                104372..104503
              /note="AluY repeat: matches 166..297 of consensus"
repeat region
                104594..104824
              /note="MIR repeat: matches 10..259 of consensus"
```

```
repeat_region
               104874..104954
              /note="L2 repeat: matches 2624..2709 of consensus"
repeat_region
               105235..105332
              /note="MIR repeat: matches 47..145 of consensus"
                107333..107459
repeat region
              /note="MLT1C repeat: matches 340..466 of consensus"
repeat_region
                107460..107589
              /note="L1MA7 repeat: matches 6159..6288 of consensus"
                107590..107718
repeat_region
             /note="MLT1C repeat: matches 211..340 of consensus"
repeat region
                107755..108017
              /note="AluJo repeat: matches 18..277 of consensus"
repeat region
               108019...108208
              /note="MLT1C repeat: matches 1..192 of consensus"
repeat_region
               108326..108922
              /note="L2 repeat: matches 2080..2710 of consensus"
repeat region
                109592..109635
              /note="22 copies 2 mer gg 75% conserved"
repeat_region 110302..110511
              /note="L1MA10 repeat: matches 5970..6317 of consensus"
repeat region
                110589..111071
              /note="L1ME1 repeat: matches 5477..5952 of consensus"
repeat_region
                111077..111135
              /note="L1MB4 repeat: matches 6124..6183 of consensus"
repeat region
                111153..111414
              /note="L1MB3 repeat: matches 5909..6182 of consensus"
repeat_region - 111419..111617
              /note="L1ME1 repeat: matches 5283..5487 of consensus"
repeat region
              111622..112876
              /note="L1MB8 repeat: matches 4877..6173 of consensus"
repeat region
               112873..114198
              /note="L1M4 repeat: matches 3073..4391 of consensus"
repeat region
                114206..115694
              /note="L1PA2 repeat: matches 4656..6144 of consensus"
repeat region
                115723..116219
              /note="MLT2CA repeat: matches 1..489 of consensus"
                116220..116291
repeat_region
              /note="3 copies 24 mer 81% conserved"
repeat_region
                116283..116348~
              /note="MLT2CA repeat: matches 444..508 of consensus"
repeat region
                116377..118409
              /note="L1MEc repeat: matches 1212..2985 of consensus"
repeat_region
                118410..118683
              /note="AluY repeat: matches 1..298 of consensus"
repeat region
                118684..118923
              /note="L1MEc repeat: matches 983..1212 of consensus"
repeat region
                118955..119117
              /note="MER20 repeat: matches 51..218 of consensus"
repeat region
                119118..119284
              /note="L1MEc repeat: matches 802..988 of consensus"
repeat_region
                119285..119682
              /note="MLT1A1 repeat: matches 1..365 of consensus"
                119683..119810
repeat_region
              /note="L1MEc repeat: matches 681..802 of consensus"
                119830..120493
repeat region
              /note="L2 repeat: matches 1734..2603 of consensus"
repeat_region 120522..120894
```

```
/note="MLT1B repeat: matches 1..426 of consensus"
repeat_region
                120923..121042
              /note="5 copies 24 mer 68% conserved"
repeat region 121180..121227
              /note="2 copies 24 mer 95% conserved"
repeat region
                121184..121227
              /note="22 copies 2 mer gt 100% conserved"
repeat_region
                122617..122772
              /note="MER5A repeat: matches 4..188 of consensus"
repeat region
                122787..122900
              /note="MER5B repeat: matches 91..173 of consensus"
repeat region
                122901..123193
              /note="AluJo repeat: matches 4..298 of consensus"
repeat region
                123194..123275
              /note="MER5B repeat: matches 1..91 of consensus"
                123437..124087
repeat region
              /note="L2 repeat: matches 1555..2750 of consensus"
                124164..124586
repeat_region
              /note="L2 repeat: matches 57..485 of consensus"
repeat_region
                125405..125535
              /note="Charlie4a repeat: matches 369..495 of consensus"
                125536..125695
repeat region
              /note="FRAM repeat: matches 2..161 of consensus"
repeat_region
                125696..126026
              /note="Charlie4a repeat: matches 19..369 of consensus"
repeat region
                126098..126459
             /note="MLT1A1 repeat: matches 1..365 of consensus"
repeat_region
                126630..126693
              /note="L2 repeat: matches 2641..2704 of consensus"
                126784..127362
repeat_region
              /note="L2 repeat: matches 2176..2750 of consensus"
                127366..127489
repeat region
              /note="MIR repeat: matches 46..185 of consensus"
                127679..127826
repeat region
              /note="L2 repeat: matches 2552..2691 of consensus"
                127827..128126
repeat region
              /note="AluJo repeat: matches 4..302 of consensus"
                128127..128405
repeat region
              /note="L2 repeat: matches 2241..2552 of consensus"
                128518..128663
repeat region
              /note="L2 repeat: matches 1873..2021 of consensus"
repeat_region
                128674..129015
              /note="MLT1A1 repeat: matches 1..358 of consensus"
repeat region
                129016..129205
              /note="L2 repeat: matches 1672..1868 of consensus"
repeat region
                129216..129297
              /note="L2 repeat: matches 2639..2710 of consensus"
repeat region
                129340..129554
              /note="MIR repeat: matches 53..260 of consensus"
repeat_region
                129661..129924
              /note="MIR repeat: matches 2..261 of consensus"
                131041..131232
repeat_region
              /note="AluSg/x repeat: matches 135..292 of consensus"
repeat region
                131267..131548
              /note="AluY repeat: matches 18..311 of consensus"
                131743..132226
repeat region
              /note="MLT1G repeat: matches 31..496 of consensus"
```

```
repeat region
                132996..133294
              /note="AluSx repeat: matches 1..298 of consensus"
repeat region
                133642..133701
              /note="MIR repeat: matches 69..128 of consensus"
repeat region
                134184..134313
              /note="L1P3 repeat: matches 5682..5809 of consensus"
repeat region
                134373..134437
              /note="L1MA7 repeat: matches 6224..6288 of consensus"
repeat_region
                134438..134744
              /note="MER2 repeat: matches 34..345 of consensus"
repeat_region
                134748..134835
              /note="L1MA6 repeat: matches 6154..6241 of consensus"
repeat region
                134878..135187
              /note="AluSx repeat: matches 1..310 of consensus"
repeat region
                135493..135866
              /note="L1MD2 repeat: matches 5962..6340 of consensus"
repeat region
                135888..136007
              /note="L1ME1 repeat: matches 6026..6135 of consensus"
repeat region
                136270. £136561
              /note="AluSx repeat: matches 21..312 of consensus"
repeat_region
                136598..136661
             /note="MIR repeat: matches 69..132 of consensus"
repeat region
                136902..137090
              /note="MIR repeat: matches 12..206 of consensus"
repeat_region
                137099..137227
              /note="MLT1D repeat: matches 1..130 of consensus"
repeat region
                137228..137524
              /note="AluSx repeat: matches 1..296 of consensus"
repeat region
                137525..137870
              /note="MLT1D repeat: matches 130..471 of consensus"
repeat region
                137893..138056
              /note="AluJo repeat: matches 123..301 of consensus"
repeat_region
                138057..138345
              /note="AluSx repeat: matches 5..292 of consensus"
repeat region
                138346..138472
              /note="AluJo repeat: matches 1..123 of consensus"
repeat region
                138474..138539
              /note="MLT1D repeat: matches 440..505 of consensus"
repeat_region
                138554. ·138675
              /note="L2 repeat: matches 2066..2187 of consensus"
repeat region
                138694..139033
              /note="L2 repeat: matches 2362..2692 of consensus"
repeat region
                138993..139044
              /note="MIR repeat: matches 210..261 of consensus"
repeat region
                139737..139807
              /note="MLT1C repeat: matches 393..464 of consensus"
repeat region
                139808..139873
              /note="L1PA8 repeat: matches 6097..6162 of consensus"
repeat region
                139874..140272
              /note="MLT1C repeat: matches 1..393 of consensus"
repeat region
                140332..140461
              /note="MER5A repeat: matches 26..189 of consensus"
                140611..140903
repeat_region
              /note="LTR16C repeat: matches 61..387 of consensus"
repeat region
                141410..141594
              /note="MIR repeat: matches 25..210 of consensus"
repeat region 142664..142699
```

```
/note="18 copies 2 mer tc 100% conserved"
     repeat_region
                     142714..142995
                   /note="AluSc repeat: matches 1..278 of consensus"
     repeat region
                     143097..143180
                   /note="L2 repeat: matches 2643..2749 of consensus"
     repeat region
                     143339..143662
                   /note="MLT1A1 repeat: matches 6..365 of consensus"
     repeat_region
                     143783..143885
                   /note="L2 repeat: matches 2593..2702 of consensus"
                     145806..145889
     repeat_region
                   /note="MIR repeat: matches 37..130 of consensus"
     repeat region
                     145957..146261
                   /note="AluSq repeat: matches 1..308 of consensus"
     repeat region
                     146264..146376
                   /note="MIR repeat: matches 117..235 of consensus"
     repeat region
                     147583..147657
                   /note="L2 repeat: matches 2422..2502 of consensus"
                     147859..147978 .
     repeat_region
                   /note="L2 repeat: matches 2616..2750 of consensus"
                                                                              The office "
     repeat_region
                     148013..148084
                   /note="L2 repeat: matches 2636..2707 of consensus"
                     148687..149141
     repeat_region
                   /note="LTR16B repeat: matches 1..461 of consensus"
     repeat region
                     150442..151102
                   /note="L2 repeat: matches 1490..2109 of consensus"
BASE COUNT
ORIGIN
468 100
            Homo sapiens membrane-bound aminopeptidase P (XNPEP2) gene,
AF195953
          complete cds. 206618 bp, DNA, linear, PRI 26-MAR-2002
            AF195953
ACCESSION
VERSION
            AF195953.2 GI:19718557
KEYWORDS
SOURCE
            Homo sapiens (human)
  ORGANISM
            Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
               (bases 1 to 206618)
  AUTHORS
            Ryan, J.W., Jin, L., Horvath, I. and Sprinkle, T.J.C.
  TITLE
            Human membrane-bound aminopeptidase P genomic DNA
  JOURNAL
            Unpublished
REFERENCE
               (bases 1 to 206618)
  AUTHORS
            Ryan, J.W., Jin, L., Horvath, I. and Sprinkle, T.J.C.
  TITLE
            Direct Submission
            Submitted (18-OCT-1999) Vascular Biology Center, Medical College of
  JOURNAL
          Georgia, 1120 15th Street, Augusta, GA 30912, USA
REFERENCE
                (bases 1 to 206618)
 AUTHORS
            Ryan, J.W., Jin, L., Horvath, I. and Sprinkle, T.J.C.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (26-MAR-2002) Vascular Biology Center, Medical College of
          Georgia, 1120 15th Street, Augusta, GA 30912, USA
  REMARK
            Sequence update by submitter
COMMENT
            On Mar 26, 2002 this sequence version replaced gi:11066156.
FEATURES
                     Location/Qualifiers
     source
                     1..206618
                   /organism="Homo sapiens"
```

```
/mol type="genomic DNA"
                    /db xref="taxon:9606"
                     144189..176791
     gene
                    /gene="XNPEP2"
     mRNA
                     join(144189..144502,147348..147421,149203..149313,
                    150445..150508,151478..151582,151837..151923,
                    152849..152995,155710..155811,156987..157068,
                    157392..157587,158401..158490,159714..159823,
                    160536..160613,161726..161797,164422..164482,
                    165754..165823,166414..166518,167248..167307,
                    167936..168012,172845..172934,173533..176791)
                    /gene="XNPEP2"
                    /product="membrane-bound aminopeptidase P"
     5'UTR
                      144189..144453
                    /gene="XNPEP2"
                      join(144454..144502,147348..147421,149203..149313,
     CDS
                    150445..150508,151478..151582,151837..151923,
                    152849..152995,155710..155811,156987..157068,
                    157392..157587,158401..158490,159714..159823,
                    160536..160613,161726..161797,164422..164482,
                    165754..165823,166414..166518,167248..167307,
                    167936..168012,172845..172934,173533..173727)
                    /gene="XNPEP2"
                    /codon start=1
                    /product="membrane-bound aminopeptidase P"
                    /protein id="AAG28480.1"
                    /db_xref="GI:11066157"
     misc feature
                      160606..160608
                    /gene="XNPEP2"
                    /note="putative proton shuttle; unclassified site"
     misc_feature
                      161778..161780
                    /gene="XNPEP2"
                    /note="divalent metal ligand; metal-binding site"
     misc feature
                      164435..164437
                    /gene="XNPEP2"
                    /note="divalent metal ligand; metal-binding site"
     misc feature
                      166473..166475
                    /gene="XNPEP2"
                    /note="divalent metal ligand; metal-binding site"
     misc feature
                      join(167307,167936..167937)
                    /gene="XNPEP2"
                    /note="divalent metal ligand; metal-binding site"
     misc_feature
                      167977..167979
                    /gene="XNPEP2"
                    /note="divalent metal ligand; metal-binding site"
     3'UTR
                      175728..176791
                    /gene="XNPEP2"
BASE COUNT
ORIGIN
467 99
            Human cDNA sequence SEQ ID NO:12589. 243 bp, cDNA, PAT 26-JUN-2001
P AAH14799
ACCESSION
            P AAH14799
KEYWORDS
            GENESEQ; Human; primer; detection; diagnosis; antisense therapy;
          gene therapy; patent; patentdb (v200414, 01-JUL-2004).
SOURCE
            Homo sapiens.
 ORGANISM
           Homo sapiens.
```

REFERENCE 1 (bases 1 to 2243)

AUTHORS Ota, T., Isogai, T., Nishikawa, T., Hayashi, K., Saito, K., Yamamoto, J. Ishii, S., Sugiyama, T., Wakamatsu, A., Nagai, K., Otsuki, T.

TITLE Primer sets for synthesizing polynucleotides, particularly the 5602 full-length cDNAs defined in the specification, and for the detection and/or diagnosis of the abnormality of the proteins encoded by the full-length cDNAs.

JOURNAL Patent: EP1074617-A2; Filing Date: 28-JUL-2000; 2000EP-00116126; Publication Date: 07-FEB-2001; Priority: 29-JUL-1999; 99JP-00248036. 27-AUG-1999; 99JP-00300253. 11-JAN-2000; 2000JP-00118776. 02-MAY-2000; 2000JP-00183767. 09-JUN-2000; 2000JP-00241899; Assignee: (HELI-) HELIX RES INST; Cross Reference: WPI; 2001-318749/34; Patent Format: Claim 8; SEQ ID NO 12589; 2537pp + Sequence Listing; English.

COMMENT

ice will be

The present invention describes primer sets for synthesising 5602 full- length cDNAs defined in the specification. Where a primer set comprises: (a) an oligo-dT primer and an oligonucleotide complementary to the complementary strand of a polynucleotide which comprises one of the 5602 nucleotide sequences defined in the specification, where the oligonucleotide comprises at least 15 nucleotides; or (b) a combination of an oligonucleotide comprising a sequence complementary to the complementary strand of a polynucleotide which comprises a 5'-end sequence and an oligonucleotide comprising a sequence complementary to a polynucleotide which comprises a 3'-end sequence, where the oligonucleotide comprises at least 15 nucleotides and the combination of the 5'-end sequence/3'-end sequence is selected from those defined in the specification. The primer sets can be used in antisense therapy and in gene therapy. The primers are useful for synthesising polynucleotides, particularly full-length cDNAs. The primers are also useful for the detection and/or diagnosis of the abnormality of the proteins encoded by the full-length cDNAs. The primers allow obtaining of the full-length cDNAs easily without any specialised methods. AAH03166 to AAH13628 and AAH13633 to AAH18742 represent human cDNA sequences; AAB92446 to AAB95893 represent human amino acid sequences; and AAH13629 to AAH13632 represent oligonucleotides, all of which are used in the exemplification of the present invention

FEATURES

Location/Qualifiers

BASE COUNT 467 a 630 c 637 g 509 t ORIGIN

467 99 0.0

AK001855 Homo sapiens cDNA FLJ10993 fis, clone PLACE1002140. 2243 bp, mRNA, linear, PRI 30-JAN-2004

ACCESSION AK001855

VERSION AK001855.1 GI:7023382

KEYWORDS oligo capping; fis (full insert sequence).

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1

AUTHORS Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H., Sekine, M., Obayashi, M., Nishi, T., Shibahara, T., Tanaka, T.,

```
Ishii, S., Yamamoto, J., Saito, K., Kawai, Y., Isono, Y., Nakamura, Y.,
          Nagahari, K., Murakami, K., Yasuda, T., Iwayanagi, T., Wagatsuma, M.,
          Shiratori, A., Sudo, H., Hosoiri, T., Kaku, Y., Kodaira, H., Kondo, H.,
          Sugawara, M., Takahashi, M., Kanda, K., Yokoi, T., Furuya, T.,
          Kikkawa, E., Omura, Y., Abe, K., Kamihara, K., Katsuta, N., Sato, K.,
          Tanikawa, M., Yamazaki, M., Ninomiya, K., Ishibashi, T., Yamashita, H.,
          Murakawa, K., Fujimori, K., Tanai, H., Kimata, M., Watanabe, M.,
          Hiraoka, S., Chiba, Y., Ishida, S., Ono, Y., Takiguchi, S., Watanabe, S.,
          Yosida, M., Hotuta, T., Kusano, J., Kanehori, K., Takahashi-Fujii, A.,
          Hara, H., Tanase, T., Nomura, Y., Togiya, S., Komai, F., Hara, R.,
          Takeuchi, K., Arita, M., Imose, N., Musashino, K., Yuuki, H., Oshima, A.,
          Sasaki, N., Aotsuka, S., Yoshikawa, Y., Matsunawa, H., Ichihara, T.,
          Shiohata, N., Sano, S., Moriya, S., Momiyama, H., Satoh, N., Takami, S.,
          Terashima, Y., Suzuki, O., Nakagawa, S., Senoh, A., Mizoguchi, H.,
          Goto, Y., Shimizu, F., Wakebe, H., Hishigaki, H., Watanabe, T.,
          Sugiyama, A., Takemoto, M., Kawakami, B., Yamazaki, M., Watanabe, K.,
          Kumaqai, A., Itakura, S., Fukuzumi, Y., Fujimori, Y., Komiyama, M.,
          Tashiro, H., Tanigami, A., Fujiwara, T., Ono, T., Yamada, K., Fujii, Y.,
          Ozaki, K., Hirao, M., Ohmori, Y., Kawabata, A., Hikiji, T., Kobatake, N.,
          Inagaki, H., Ikema, Y., Okamoto, S., Okitani, R., Kawakami, T.,
          Noguchi, S., Itoh, T., Shigeta, K., Senba, T., Matsumura, K.,
          Nakajima, Y., Mizuno, T., Morinaga, M., Sasaki, M., Togashi, T.,
          Oyama, M., Hata, H., Watanabe, M., Komatsu, T., Mizushima-Sugano, J.,
          Satoh, T., Shirai, Y., Takahashi, Y., Nakagawa, K., Okumura, K.,
          Nagase, T., Nomura, N., Kikuchi, H., Masuho, Y., Yamashita, R.,
          Nakai, K., Yada, T., Nakamura, Y., Ohara, O., Isogai, T. and Sugano, S.
  TITLE
             Complete sequencing and characterization of 21,243 full-length
          human cDNAs
            Nat. Genet. 36 (1), 40-45 (2004)
  JOURNAL
   PUBMED
             14702039
REFERENCE
             Isogai, T., Ota, T., Hayashi, K., Sugiyama, T., Otsuki, T., Suzuki, Y.,
  AUTHORS
          Nishikawa, T., Nagai, K., Sugano, S., Takahashi-Fujii, A., Hara, H.,
          Tanase, T., Nomura, Y., Togiya, S., Komai, F., Hara, R., Takeuchi, K.,
          Arita, M., Nabekura, T., Ishii, S., Kawai, Y., Saito, K., Yamamoto, J.,
          Wakamatsu, A., Nakamura, Y., Nagahari, K., Masuho, Y. and Oshima, A.
  TITLE
             NEDO human cDNA sequencing project
  JOURNAL
             Unpublished
               (bases 1 to 2243)
REFERENCE
  AUTHORS
             Isogai, T. and Otsuki, T.
  TITLE
             Direct Submission
  JOURNAL
             Submitted (16-FEB-2000) Takao Isogai, Helix Research Institute,
          Genomics Laboratory; 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan
           (E-mail:genomics@hri.co.jp, Tel:81-438-52-3975, Fax:81-438-52-3986)
             NEDO human cDNA sequencing project supported by Ministry of
COMMENT
          International Trade and Industry of Japan; cDNA full insert
          sequencing: Research Association for Biotechnology; cDNA library
          construction, 5'- & 3'-end one pass sequencing and clone selection:
          Helix Research Institute (supported by Japan Key Technology Center
          etc.) and Department of Virology, Institute of Medical Science,
          University of Tokyo.
FEATURES
                      Location/Qualifiers
                      1..2243
     source
                    /organism="Homo sapiens"
                    /mol type="mRNA"
                    /db xref="taxon:9606"
```

/clone="PLACE1002140"

O. Water

```
/tissue type="placenta"
                   /clone lib="PLACE1"
                   /note="cloning vector: pME18SFL3"
     CDS
                   /note="unnamed protein product"
                   /codon_start=1
                   /protein_id="BAA91944.1"
                   /db_xref="GI:7023383"
BASE COUNT
ORIGIN
449 98
AX332625
            Sequence 3134 from Patent WO0194629. 458 bp,
          DNA, linear, PAT 09-JAN-2002
            AX332625
ACCESSION
VERSION
            AX332625.1 GI:18123259
KEYWORDS
SOURCE
            Homo sapiens (human)
  ORGANISM Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
            1
  AUTHORS
            Young, P.E., Augustus, M., Carter, K.C., Ebner, R., Endress, G.,
          Horrigan, S., Soppet, D.R. and Weaver, Z.
  TITLE
            Cancer gene determination and therapeutic screening using signature
          gene sets
            Patent: WO 0194629-A 3134 13-DEC-2001;
  JOURNAL '
          Avalon Pharmaceuticals (US)
FEATURES
                     Location/Qualifiers
     source
                     1..458
                   /organism="Homo sapiens"
                   /mol type="unassigned DNA"
                    /db xref="taxon:9606"
BASE COUNT
ORIGIN
449 98 - 0.0
AX332852
            Sequence 3361 from Patent WO0194629. 458 bp,
          DNA; linear, PAT 09-JAN-2002
ACCESSION
            AX332852-
VERSION
            AX332852.1 GI:18123486
KEYWORDS
SOURCE \
            Homo sapiens (human)
  ORGANISM Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
            Young, P.E., Augustus, M., Carter, K.C., Ebner, R., Endress, G.,
          Horrigan, S., Soppet, D.R. and Weaver, Z.
  TITLE
            Cancer gene determination and therapeutic screening using signature
          gene sets
  JOURNAL
            Patent: WO 0194629-A 3361 13-DEC-2001;
          Avalon Pharmaceuticals (US)
FEATURES
                     Location/Oualifiers
     source
                     1..458
                    /organism="Homo sapiens"
                    /mol type="unassigned DNA"
```

/db_xref="taxon:9606"

BASE COUNT ORIGIN

```
P AAB87540 Human PRO831 - Homo sapiens.
Length: 73 aa
Accession: P AAB87540;
Species: Homo sapiens.
Keywords: Human; PRO protein; mapping; patent; GENESEQ patentdb.
Patent number: W0200116318-A2.
Publication date: 08-MAR-2001.
Filing date: 24-AUG-2000; 2000WO-US023328.
Priority: 01-SEP-1999; 99WO-US020111. 15-SEP-1999; 99WO-US021090.
      07-DEC-1999; 99US-0169495P. 09-DEC-1999; 99US-0170262P.
      11-JAN-2000; 2000US-0175481P. 18-FEB-2000; 2000WO-US004341.
      18-FEB-2000; 2000WO-US004342. 22-FEB-2000; 2000WO-US004414.
      01-MAR-2000; 2000WO-US005601. 03-MAR-2000; 2000US-0187202P.
      21-MAR-2000; 2000US-0191007P. 30-MAR-2000; 2000WO-US008439.
      25-APR-2000; 2000US-0199397P. 22-MAY-2000; 2000WO-US014042.
      05-JUN-2000; 2000US-0209832P.
Assignee: (GETH ) GENENTECH INC.
Inventors: Eaton DL, Filvaroff E, Gerritsen ME, Goddard A, Godowski PJ;
      Grimaldi CJ, Gurney AL, Watanabe CK, Wood WI;
Cross reference: WPI; 2001-183260/18. N-PSDB; AAF92072.
Title: Eighty four nucleic acids encoding PRO polypeptides, useful in
      molecular biology, including use as hybridization probes, and in
      chromosome and gene mapping.
Patent format: Claim 12; Fig 30; 278pp; English.
Comment: The present sequence is a human PRO polypeptide (secreted and
      transmembrane). The PRO protein, and PRO agonists, PRO antagonists
      or anti-PRO antibodies are useful for preparation of a medicament
      useful in the treatment of a condition which is responsive to the
      PRO protein, agonists, antagonists or anti-PRO antibodies. The PRO
      protein may also be employed as molecular weight markers for
      protein electrophoresis. The PRO coding sequence has applications
      in molecular biology, including use as hybridisation probes, and in
      chromosome and gene mapping
Database: GENESEQ patent database (v200414, 01-JUL-2004).
P AAY99346 Human PRO831 (UNQ471) amino acid sequence SEQ ID NO:22 - Homo
            sapiens.
Length: 73 aa
Accession: P AAY99346;
Species: Homo sapiens.
Keywords: Human; PRO polypeptide; membrane bound protein; receptor;
      diagnosis; transmembrane; secretion; immunoadhesion;
      pharmaceutical; screening; patent; GENESEQ patentdb.
Patent number: W0200012708-A2.
Publication date: 09-MAR-2000.
Filing date: 01-SEP-1999; 99WO-US020111.
Priority: 01-SEP-1998; 98US-0098716P. 01-SEP-1998; 98US-0098749P.
      01-SEP-1998; 98US-0098750P.18-NOV-1998; 98US-0108858P. 18-NOV-1998;
      98US-0108904P. plus 119 more dates.
Assignee: (GETH ) GENENTECH INC.
Inventors: Baker K, Goddard A, Gurney AL, Smith V, Watanabe CK, Wood WI;
Cross reference: WPI; 2000-237871/20. N-PSDB; AAA37028.
Title: New mammalian DNA sequences encoding transmembrane, receptor or
      secreted PRO polypeptides, useful for screening of potential
      peptide or small molecule inhibitors of the relevant
```

Dayhoff Protein Database (Rel 78, Mar 2004)

receptor/ligand interactions.

Patent format: Claim 12; Fig 14; 773pp; English.

Comment: AAA37022 to AAA37144 encode the new isolated human transmembrane, receptor or secreted PRO polypeptides given in AAY99340 to AAY99462. The transmembrane and receptor PRO proteins can be used for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interactions. The polypeptides and nucleotide sequences encoding then have various industrial applications, including uses as pharmaceutical and diagnostic agents. AAA37145 to AAA37330 represent PCR primers and hybridisation probes used in the isolation of the PRO polypeptides from the present invention

Database: GENESEQ patent database (v200414, 01-JUL-2004).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.