

60016 OPERATIONS RESEARCH

Extensions of linear programming

Last Lecture

- Initial BFS
 - "All slack basis"
 - Artificial variables
- ► Two phase simplex algorithm
 - Systematically finding initial BFS's
 - Detecting infeasibility

This Lecture

Linearization methods

- ► Min-max problems
- ► Min-min problems
- ► Fractional linear programming

Linearization methods

- Linear programming is useful, but often fairly restrictive.
- Nonlinear optimisation problems arise very commonly in applications.
 - Euclidean distance, chemical reactions, queueing problems, ...
- Nonlinearities can affect objective, constraints, or both.
 - $z = x_1^2, z = x \mod 2, ...$
 - $|x_1-x_2| \le 3$, $x_1x_2+x_3 \le 5$, ...
- Nonlinear programs can sometimes be reformulated
 - as a single LP problem
 - or as a sequence of LP problems
- ► We see the following cases:
 - min-max models (important for game theory!)
 - min-min models
 - fractional linear programming

Min-Max Problems

Consider a family of linear functions: $y_i(x) = c(i)^T x + d(i)$.

Set
$$\underline{\phi(x)} = \max_{i=1,...,l} \left\{ c(i)^T x + d(i) \right\}$$
 for $c(\underline{i}) \in \mathbb{R}^{\underline{n}}$, $d(i) \in \mathbb{R}$.

Then,

min
$$\phi(x)$$

s.t. $Ax = b, x \ge 0$ (MM)

is called a min-max problem.

Min-Max Problems (cont)

Perhaps surprisingly, Min-Max problems can be solved by LPs.

Theorem. Consider the following linear program:

min
$$z$$

s.t. $z \ge c(i)^T x + d(i) \ \forall i = 1, ..., I$
 $Ax = b$
 $x \ge 0, z \text{ free}$ (LP)

If (x_{LP}^*, z_{LP}^*) is an optimal solution of this LP, then x_{LP}^* is also an optimal solution of MM, and MM has optimal value $\phi(x_{LP}^*) = z_{LP}^*$.

Min-Max Problems (cont)

Proof by contradiction:

- 1. Let (x_{LP}^*, z_{LP}^*) be optimal in LP. x_{LP}^* is *feasible* in MM since in LP it is $Ax_{LP}^* = b$ and $x_{LP}^* \ge 0$.
- 2. Assume that x_{LP}^* is not *optimal* in MM, then there exist a x_{MM}^* such that $\phi(x_{MM}^*) < \phi(x_{LP}^*)$.
- 3. But then $(x_{MM}^*, \phi(x_{MM}^*))$ must be *feasible* in LP, since in MM we require $Ax_{MM}^* = b$, $x_{MM}^* \ge 0$, and for all i = 1, ..., I

$$\phi(x_{MM}^*) = \max_{j=1,...,l} \left\{ c(j)^T x_{MM}^* + d(j) \right\} \ge c(i)^T x_{MM}^* + d(i)$$

4. By the constraints in LP

$$z_{LP}^* \ge \max_{i=1,...,l} \{c(i)^T x_{LP}^* + d(i)\} \implies z_{LP}^* \ge \phi(x_{LP}^*)$$

and since $z_{LP}^* \geq \phi(x_{LP}^*) > \phi(x_{MM}^*)$, x_{MM}^* would achieve in LP a better objective than z_{LP}^* . Thus x_{MM}^* cannot exist and x_{LP}^* must be optimal also for MM.

 $mim \phi(x)$ Z7, ((i) X+ d (i) ¥; s.t. Axab Ax=b X710 x>10, 2 free Xir is femille (XLP, ZLP) $\exists x_{nn}^* : \phi(x_{nn}^*) < \phi(x_{i}^*)$ (\times_n^*, ϕ_n^*) $\phi_{\text{nn}}^{*} = \max_{j \in I_{\text{nn}}} \int ((j)^{\mathsf{T}} \times \hat{\mathbf{n}}_{n} + d(j)) \} > 1$ $C(i)^T \times_{hn}^{\dagger} + d(i) \qquad \forall i$ BCP > max 1 { ((i) T x + d(i)} $= \phi \left(X_{+}^{*} \right)$ $= \phi \left(X_{+}^{*} \right) + \phi \left(X_{+}^{*} \right) + \phi \left(X_{+}^{*} \right)$

$$\phi(x)$$

$$5.T. A \times = b$$

$$\phi(x) = \max_{i=1,...,L} \left\{ c^{T}(i) \times \right\}$$
 $C(i) \in \mathbb{R}^{m}$ $A \in \mathbb{R}^{m \times n}$ $b \in \mathbb{R}^{m}$

$$C(i) \in \mathbb{R}^{^{n}}$$

$$A = \begin{bmatrix} 10 & 5 \\ 5 & 9 \end{bmatrix} \quad b = \begin{bmatrix} -2 \\ 5 \end{bmatrix} \quad C(i) = \begin{bmatrix} 5-i \\ 3-i \end{bmatrix}$$

Min-Min Problems

Set
$$\psi(x) = \min_{i=1,...,I} \left\{ c(i)^T x + d(i) \right\}$$
 for $c(i) \in \mathbb{R}^n$, $d(i) \in \mathbb{R}$. Then,

min
$$\psi(x)$$

s.t. $Ax = b, x \ge 0$ (MM')

is called a min-min problem.

Min-Min Problems (cont)

Theorem: Consider the following linear programs.

min
$$z_i = c^T(i)x(i) + d(i)$$

s.t. $Ax(i) = b$ (LP(i))
 $x(i) \ge 0$

Let z_i^* be the optimal solution to LP(i). Let LP(j) be the LP that has the minimal objective, i.e.,

$$z_j^* = \min_{i=1,\dots,I} z_i$$

and let $x^*(j)$ be its optimal solution. Then $x^*(j)$ is optimal in MM' and $\psi^* = \psi(x^*(j)) = z_i^*$.

Interchangeability of Min-Operations

Lemma: Let X and Y be arbitrary sets, and let $f: X \times Y \to \mathbb{R}$ be an arbitrary function defined on $X \times Y$. Then,

$$\min_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \min_{x \in X} f(x, y) \tag{1}$$

Proof of Min-Min Theorem: The Lemma implies that

$$\begin{vmatrix}
\min_{i=1,\dots,l} & \min_{x} & c(i)^{T}x + d(i) \\
s.t. & Ax = b \\
& x \ge 0
\end{vmatrix} = \min_{i=1,\dots,l} LP(i)$$

is equal to

$$\begin{vmatrix}
\min_{\substack{x & i=1,\dots,I\\ s.t. & Ax = b\\ x \ge 0}
\end{vmatrix} = MM'.$$

Thus, the claim follows.

Fractional Linear Programming

Consider the fractional linear program

$$\min \left\{ \frac{\alpha_0 + \alpha_1 x_1 + \ldots + \alpha_n x_n}{\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n} \mid Ax = b; \ x \ge 0 \right\}.$$
 (FLP)

We assume that

the feasible set of FLP is bounded, i.e.,

$$\exists L > 0$$
 with $||x|| \le L$ $\forall x : Ax = b, x \ge 0$;

▶ the denominator of the objective function is strictly positive, i.e., $\beta_0 + \beta_1 x_1 + ... + \beta_n x_n > 0$ for all feasible x.

Homogenisation

- Introduce new variables $y_i \ge 0$, i = 1, ..., n and $y_0 > 0$.
- Setting $\underline{x_i} = \frac{y_i}{y_0}$, i = 1, ..., n, we can homogenise the fractional linear program as follows.

$$\min \frac{\alpha_{0}y_{0} + \alpha_{1}y_{1} + \alpha_{2}y_{2} + \ldots + \alpha_{n}y_{n}}{\beta_{0}y_{0} + \beta_{1}y_{1} + \beta_{2}y_{2} + \ldots + \beta_{n}y_{n}}$$
s.t.
$$b_{i}y_{0} - \sum_{j=1}^{n} a_{ij}y_{j} = 0 \quad \forall i = 1, \ldots, m$$

$$y_{0} > 0, y_{1} \geq 0, \ldots, y_{n} \geq 0$$
(HFLP)

Homogenisation

- For any (y_0, y_1, \ldots, y_n) feasible in HFLP, $\lambda(y_0, y_1, \ldots, y_n)$ with $\lambda > 0$ is also feasible and has the same objective value.
- ▶ For each $(y_0, y_1, ..., y_n)$ we can then find a λ such that

$$\beta_0 y_0 + \ldots + \beta_n y_n = 1.$$

and the scaled point will have identical objective. Thus we can restrict our attention to these points and still find an optimal solution. In other words:

⇒ The denominator in the objective of HFLP can always be normalised to unity.

Normalised Problem

Solve the normalised problem

$$\min \quad \alpha_0 y_0 + \alpha_1 y_1 + \alpha_2 y_2 + \ldots + \alpha_n y_n$$

s.t.
$$\beta_0 y_0 + \sum_{j=1}^n \beta_j y_j = 1$$

 $b_i y_0 - \sum_{j=1}^n a_{ij} y_j = 0 \quad \forall \ i = 1, \dots, m$
 $y_0 > 0, y_1 \ge 0, \dots, y_n \ge 0$

where the first constraint forces the denominator of the objective of HFLP to be equal to 1.

 \Rightarrow This is an LP!

Constructing a Solution for FLP

- ▶ Denote by $(y_0^*, y_1^*, \dots, y_n^*)$ the optimal solution of the normalised problem.
- ▶ Then, $(\frac{y_1^*}{y_0^*}, \dots, \frac{y_n^*}{y_0^*})$ is an optimal solution for FLP.
- Note: this construction only works if $y_0^* \neq 0$.
- Nowever, we can show that under the assumptions y_0 cannot be zero at optimality.

Relaxing the Lower Bound on y_0

- Let us now assume to use in HFLP $y_0 \ge 0$ instead of $y_0 > 0$.
- ▶ Suppose $y_0^* = 0$ and set $y^* = (y_1^*, ..., y_n^*)^T$. Since $b_i y_0^* = 0$

$$Ay^* = 0, \ y^* \ge 0$$

- ► Here $y^* \neq 0$ since otherwise the denominator of the objective in both HFLP and FLP is not strictly positive as assumed.
- We now note that, if x is feasible in FLP, then $x + \lambda y^*$ is also feasible in FLP $\forall \lambda > 0$ since given that $Ay^* = 0$ it is

$$A(x + \lambda y^*) = Ax + \lambda Ay^* = b,$$

This would contradict that FLP has a bounded feasible set, so y_0^* cannot be zero and we can use $y_0 \ge 0$ in HFLP.

Relaxing the Lower Bound on y_0

- Let us now assume to use in HFLP $y_0 \ge 0$ instead of $y_0 > 0$.
- ▶ Suppose $y_0^* = 0$ and set $y^* = (y_1^*, ..., y_n^*)^T$. Since $b_i y_0^* = 0$

$$Ay^* = 0, \ y^* \ge 0$$

- ► Here $y^* \neq 0$ since otherwise the denominator of the objective in both HFLP and FLP is not strictly positive as assumed.
- We now note that, if x is feasible in FLP, then $x + \lambda y^*$ is also feasible in FLP $\forall \lambda > 0$ since given that $Ay^* = 0$ it is

$$A(x + \lambda y^*) = Ax + \lambda Ay^* = b,$$

This would contradict that FLP has a bounded feasible set, so y_0^* cannot be zero and we can use $y_0 \ge 0$ in HFLP.

$$\frac{x_1 + 2x_2}{4x_1 + 3x_2 + 3}$$

$$\begin{array}{ccc} \times_{1} + \times_{2} & \leq 2 \\ - \times_{1} + \times_{2} & \leq 1 \\ \times_{i} \times_{2} & \approx 0 \end{array}$$

BOUNDED

$$X_1 = \frac{y_1}{y_0} \qquad X_2 = \frac{y_2}{y_0}$$

$$X^* = \left(\frac{\gamma_1}{70^*}, \frac{\gamma_2}{70^*}\right)$$