9K3AMEH 2021

Во всех задачах w — винеровский процесс, $\Lambda_t = t$.

1. Покажите, что процесс $B_t = w_1 - w_{1-t}$ — винеровский на отрезке [0,1].

Решение. Утверждение очевидно, поскольку $B_0 = 0$, а приращения B совпадают с приращениями винеровского процесса w.

2. Выпишите решение СДУ $dX_t = -(1/2)X_t dt + dw_t$, $X_0 = 0$, и покажите, что $X_{\ln(t+1)}\sqrt{t+1}$ — винеровский процесс. Пользуясь законом повторного логарифма вычислите $\limsup_{t\to\infty} X_t/\sqrt{t}$.

Решение. Из формулы Ито следует, что процесс $X_t = e^{-t/2} \int_0^t e^{s/2} dw_s$ удовлетворяет данному уравнению. Но тогда $\tilde{w}_t := X_{\ln(t+1)} \sqrt{t+1} = \int_0^{\ln(t+1)} e^{r/2} dw_r$. Стохастический интеграл от детерминированной функции — гауссовский процесс с независимыми приращениями. Так как $\mathbb{E} \tilde{w}_t = 0$, $\mathbb{E} (\tilde{w}_t - \tilde{w}_s)^2 = \int_{\ln(s+1)}^{\ln(t+1)} e^r dr = t-s$, то \tilde{w} — винеровский процесс. Поскольку $X_t = e^{-t/2} w_{e^t-1}$, то закон повторного логарифма влечет

$$\limsup_{t \to \infty} X_t / \sqrt{t} = \limsup_{t \to \infty} e^{-t/2} w_{e^t - 1} / \sqrt{t} = 0.$$

3. Докажите, что w — мартингал относительно фильтрации (\mathcal{F}_{t+}^o) , где $\mathcal{F}_t^o := \sigma\{w_s, \ s \leq t\}$.

Решение. Имеем: $\mathbb{E}(w_t - w_{s+1/n}|\mathcal{F}_{s+}^o) = E(\mathbb{E}(w_t - w_{s+1/n}|\mathcal{F}_{s+1/n}^o)|\mathcal{F}_{s+}^o) = 0$ (меньшая σ -алгебра "ест" большую, а винеровский процесс w — мартингал относительно фильтрации (\mathcal{F}_t^o)). Остаётся сделать предельный переход при $n \to \infty$.

4. Пусть (Ω, \mathcal{F}) — измеримое пространство с фильтрацией $\mathbf{F} = (\mathcal{F}_t)_{t \geq 0}$. На множестве $\Omega \times \mathbb{R}_+$ определены σ -алгебры $\mathcal{P} := \sigma\{A \times [s, \infty[, A \in \mathcal{F}_s, s \geq 0, B \times \{0\}, B \in \mathcal{F}_0\}$ (предсказуемая) и $\mathcal{O} := \sigma\{A \times [s, \infty[, A \in \mathcal{F}_s, s \geq 0\}$ (опциональная). Какая из них включает другую?

Решение. Заметим, что множество $A \times [s+1/n, \infty[\in \mathcal{O}, \text{ когда } A \in \mathcal{F}_s, \text{ и, значит,}$ множество $A \times]s, \infty[= \cap_n A \times [s+1/n, \infty[\in \mathcal{O}, \text{ и, значит,} B \times \{0\} = B \times [0, \infty[\setminus B \times]0, \infty[\in \mathcal{O}, \text{ и. } A \times [s+1/n, \infty[\in \mathcal{O}, \text{ u. } A \times [s+$

5. Пусть $M^n \in \mathcal{M}_0^{2,c}$, $\langle M^n \rangle \leq C = \text{const} \ \text{и} \ \langle M^n \rangle_t \to t \ \text{при} \ n \to \infty$. Показать, что распределения случайных величин M_t^n слабо сходятся к гауссовскому распределению с нулевым средним и дисперсией t.

Решение. Пользуясь тем, что $\mathbb{E}e^{i\lambda M_t^n+(1/2)\lambda^2\langle M^n\rangle_t}$ и $|e^{i\lambda M_t^n}|=1$ имеем:

$$\begin{split} |\mathbb{E}e^{i\lambda M_t^n} - e^{-\lambda^2 t}| &= |\mathbb{E}e^{i\lambda M_t^n} - e^{-(1/2)\lambda^2 t} \mathbb{E}e^{i\lambda M_t^n + (1/2)\lambda^2 \langle M^n \rangle_t}| = |\mathbb{E}e^{i\lambda M_t^n} (1 - e^{-(1/2)\lambda^2 t} e^{(1/2)\lambda^2 \langle M^n \rangle_t}| \\ &\leq \mathbb{E}|e^{i\lambda M_t^n}||1 - e^{-(1/2)\lambda^2 t} e^{(1/2)\lambda^2 \langle M^n \rangle_t}| = \mathbb{E}|1 - e^{-(1/2)\lambda^2 t} e^{(1/2)\lambda^2 \langle M^n \rangle_t}| \to 0. \end{split}$$

7. По теореме о предсказуемом представлении $w_1^4 = Ew_1^4 + \varphi \cdot w_1$, где $\varphi \in L^{2,2}$. Найти φ .

Решение. Ищем решение задачи $u_t + (1/2)u_{xx} = 0$, $u(1,x) = x^4$, предполагая, что её решение имеет вид $\sum_{j=1}^4 a_j(t)x^j$. Приравнивая нулю коэффициенты при степенях x, получаем систему дифференциальных уравнений с граничными условиями:

$$a_4' = 0$$
, $a_4(T) = 1$, $a_3' = 0$, $a_3(T) = 0$, $a_2' + 6a_4 = 0$, $a_2(T) = 0$, $a_1' + 3a_3 = 0$, $a_0' + a_2 = 0$.

Её решение: $a_4(t) = 1$, $a_3 = 0$, $a_2(t) = 6(1-t)$, $a_1(t) = 0$, $a_0 = 3t^2 - 6t + 3$. Таким образом, $u(t,x) = x^4 + 6(1-t)x^2 + 3t^2 - 6t + 3$ и $\varphi_t = u_x(t,w_t) = w_t^3 + 12(1-t)w_t$.

9. Цена рискового актива $S = x + a\Lambda + \sigma w$. Процентная ставка равна нулю. Получить формулу для цены опциона колл.

Решение. Относительно меры $\tilde{P} = e^{-(a/\sigma)w_T - (1/2)(a/\sigma)^2T}P$ процесс $\tilde{w}_t + (a/\sigma)t$ — винеровский. Цена опциона колл равна (ниже $\xi \sim \mathcal{N}(0,1)$)

$$\tilde{\mathbb{E}}(S_T - K)^+ = \tilde{\mathbb{E}}(x + \sigma \tilde{w}_T - K)^+ = \mathbb{E}(\sigma \sqrt{T} \xi + x - K) I_{\{\xi \ge (K - x)/\sigma \sqrt{T}\}}
= \sigma \sqrt{\frac{T}{2\pi}} \int_{(K - x)/\sqrt{T}}^{\infty} y e^{-y^2/2} dy + (x - K) \Phi((x - K)/\sigma \sqrt{T})
= \sigma \sqrt{\frac{T}{2\pi}} e^{-(x - K)^2/2\sigma^2 T} + (x - K) \Phi((x - K)/\sigma \sqrt{T}).$$

10. Определить цену опциона колл с погашением через 180 дней по модели BS. Цена акции 95, страйк 105, волатильность 11, процентная ставка 2.

Решение. Пользуясь, например, https://vindeep.com/Derivatives/OptionPriceCalc.aspx , находим, что цена опциона колл равна 0,46.