CS 412

FEB 13TH SVM

HTF - CHAPTER 12

Linear Separators

Binary classification can be viewed as the task of separating classes in feature space:

Sigmoid (Logistic) Function

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

= sigmoid(a), where
$$a = \mathbf{w}^T \mathbf{x} + w_0$$
 $\frac{dy}{da} = y(1-y)$

lonest evor for liver ryrssion

Gradient-Descent

 $E(w \mid X)$ is error with parameters w on sample X

$$w^* = \arg\min_w E(w \mid X)$$

Gradient

Gradient-descent:

Starts from random *w* and updates *w* iteratively in the negative direction of gradient

Gradient-Descent

Logistic regression and overfitting

Overfitting

Occurs when very few instances and feature space is high dimensional

To avoid, a common approach is defining a prior on w

- Corresponds to Regularization
- Helps with avoiding large weights
- "Pushes" parameters to zero

Overfitting

Model Complexity

Need to prevent complex hypotheses

Overfitting

Occurs when very few instances and feature space is high dimensional

Idea #1: Restrict the number of features considered

Cross-validation

Idea #2: Penalize complex hypotheses in the model search

Regularization!

Subset selection Feature extrach

Regularization

Recall the objective of logistic regression:

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_t r^t \log y^t + (1 - r^t) \log (1 - y^t)$$

L2 regularization

argmin
$$E(\mathbf{w}, w_0|X) + \lambda \sum_i w_i^2$$

L1 regularization

argmin
$$E(\mathbf{w}, w_0|X) + \lambda \sum_i |w_i|$$

 $\lambda > 0$ is a weight, chosen by, e.g., cross validation

Regularization

Kernel Machines

Discriminant-based: No need to estimate densities first

Define the discriminant in terms of support vectors

The use of kernel functions, application-specific measures of similarity

No need to represent instances as vectors

Convex optimization problems with a unique solution

Hyperplane that correctly separates

$$\mathcal{X} = \left\{ \mathbf{x}^t, r^t \right\}_t \text{ where } r^t = \begin{cases} +1 & \text{if } \mathbf{x}^t \in C_1 \\ -1 & \text{if } \mathbf{x}^t \in C_2 \end{cases}$$

find w and w_0 such that

$$\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0} \ge 0$$
 for $r^{t} = +1$
 $\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0} \le 0$ for $r^{t} = -1$
which can be rewritten as

$$r^t (\mathbf{w}^\mathsf{T} \mathbf{x}^t + \mathbf{w}_0) \ge +1$$

- Usually no solutions (not linearly separable)
- But...assume there is a solution, then what?

Linear classifiers: Which hyperplane is best?

(Cz if +>0

"Confidence" of Predictions

High confidence!

"Confidence" =
$$r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0)$$

What about multiplying \mathbf{w} and w_0 by 2 or 100?

Pick the one with the largest margin!

Points on the margin boundary have the lowest "confidence" over

Let's maximize this!

boundaries

 $\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0 = \mathbf{0}$ separation boundary

Pick the one with the largest margin! $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{\mathsf{t}} + \mathbf{w}_0 = 0$

Points on the margin boundary have the lowest "confidence" over all points

Let's maximize this!

Naturally, we want the margin to be the same for pos and neg

Classification Margin

Distance from example x_i to the separator is

Examples closest to the hyperplane are *support vectors*.

Margin ρ of the separator is the distance between support vectors.

$$r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$$

Maximum Margin Classification

Maximizing the margin is good according to intuition and PAC theory.

Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -\rho/2 \quad \text{if } y_{i} = -1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge \rho/2 \quad \text{if } y_{i} = 1$$

$$\iff \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge \rho/2$$

For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is

$$r = \frac{\mathbf{y}_{s}(\mathbf{w}^{T}\mathbf{x}_{s} + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

Then the margin can be expressed through (rescaled) **w** and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVMs Mathematically

Then we can formulate the *quadratic optimization problem*:

Find w such that $\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized} \qquad \text{biggest boundary}$ and for all (\mathbf{x}_i, y_i) , $i=1..n: y_i(\mathbf{w}^T\mathbf{x}_i) \ge 1$ coweff; classified

Supposes a mer separator

Which can be reformulated as:

Find w such that

 $\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i) \ge 1$

The Optimization Problem Solution

Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

Each non-zero
$$\alpha_i$$
 indicates that corresponding \mathbf{x}_i is a support vector.

Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

For any $\alpha_k > 0$

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Here $\alpha_i y_i \mathbf{x}_i \mathbf{$

Notice that it relies on an *inner product* between the test point x and the support vectors x_i – we will return to this later.

Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^T \mathbf{x}_j$ between all training points.

Hard margin SVM (linearly separable)

- Distance from the discriminant to the closest instances on either side
- Distance of x to the hyperplane is $\frac{\left|\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0}\right|}{\left\|\mathbf{w}\right\|}$
- We require $\frac{r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0)}{\|\mathbf{w}\|} \ge \rho, \forall t$
 - ρ : margin of the dataset (invariant to scaling of w)
- For a unique sol'n, fix $\rho ||w||=1$
 - Maximize margin ρ minimize ||w||

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1, \forall t$$

Margin and support vector

- Support vectors: points lying on the marginal hyperplanes
- NO change of solution does if: remove all other points and retrain
- Margin $\min_{t} \frac{r^{t} \left(\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0}\right)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Marginal hyperplanes

$$\mathbf{W}^{T}\mathbf{X}^{t} + \mathbf{W}_{0} = -\mathbf{K}_{0}$$

$$\mathbf{W}^{T}\mathbf{X}^{t} + \mathbf{W}_{0} = \mathbf{1}$$

Separating hyperplane

$$\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0} = \mathbf{0}$$

Soft Margin Hyperplane

• Linear separable:

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1, \forall t$$

Not linearly separable

$$r^t \left(\mathbf{w}^\mathsf{T} \mathbf{x}^t + \mathbf{w}_0 \right) \ge 1 - \xi^t$$

- Soft error $\sum_{t} \xi^{t}$
- New (primal) objective is

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t} \xi^{t} \quad \text{subject to } r^{t} \left(\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0}\right) \ge 1 - \xi^{t} \qquad \xi^{t} \ge 0$$

0-

Soft Margin Classification Mathematically

The old formulation:

Find w such that

 $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i) \ge 1$

Modified formulation incorporates slack variables:

Find w such that
$$\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i}$$
 is minimized

and for all
$$(\mathbf{x}_i, y_i)$$
, $i=1..n$: $y_i(\mathbf{w}^T\mathbf{x}_i) \ge 1 - \xi_i$, $\xi_i \ge 0$

Parameter *C* can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

- Support vectors: $r^t(w^Tx^t + w_0) \le 1$
 - Positive points lying on the side of $w^T x^t + w_0 \le 1$
 - Negative points lying on the side of $w^T x^t + w_0 \ge -1$
 - NO change of solution if: remove all other points and retrain
- Margin? $\frac{1}{||\mathbf{w}||} \neq \min_{t} \frac{r^{t}(\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0})}{\|\mathbf{w}\|}$
- Marginal hyperplanes $\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0} = -1 \text{ or } \mathbf{1}$ $\mathbf{w}^{T}\mathbf{x}^{t} + \mathbf{w}_{0} = -1$

Support vectors of SVMs

Which examples influence the margin and decision boundaries?

Hinge Loss

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t} \xi^{t} \quad \text{subject to} \quad r^{t} \left(\mathbf{w}^{T} x^{t} + w_{0}\right) \ge 1 - \xi^{t}$$

$$\xi^{t} \ge 0$$
The value of ξ^{t} is called hinge loss:
$$= \begin{cases} 0 & \text{if } r^{t} \left(w^{T} x^{t} + w_{0}\right) \ge 1 \\ 1 - r^{t} \left(w^{T} x^{t} + w_{0}\right) & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0 & \text{if } r^{t} \left(w^{T} x^{t} + w_{0}\right) \ge 1 \\ 1 - r^{t} \left(w^{T} x^{t} + w_{0}\right) & \text{otherwise} \end{cases}$$

Linear SVMs: Overview

The classifier is a separating hyperplane.

Most "important" training points are support vectors; they define the hyperplane.

Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i .

Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_1 ... \alpha_N$ such that

Q(**α**) =Σ α_i - ½ΣΣ $\alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$