COMPUTER NETWORKS

- Review

王昊翔 WANG Haoxiang hxwang@scut.edu.cn

School of Computer Science & Engineering 国家双语教学试点项目 广东省精品课

Chapter 1 Introduction

- What is computer network?
- Network category
- □ Reference model
 - TCP/IP VS. OSI
 - Benefits of layered structure
 - PDU names
- ☐ Service VS. Protocol

Chapter 2 Physical Layer

- ☐ Bandwidth Fourier Series
 - Hz and bps
- **□** Nyquist theorem

 $MaxDataRate = 2H \log_2 V \ bits / sec$

☐ Shannon theory

$$SNR_{dB} = 10\log_{10}(\frac{S}{N}) dB$$

$$MaxDataRate = H \log_2(1 + \frac{S}{N}) bits / sec$$

Chapter 2 Physical Layer(cont'd)

- **UTP**
- ☐ Copper wires and Optical fiber
- ☐ Understand modem
 - **■** Amplitude modulation(AM)
 - **■** Frequency modulation(FM)
 - Phase modulation(PM)
 - Quadrature Phrase shift keying (QPSK)

Chapter 2 Physical Layer(cont'd)

- Master trunk multiplex technology
 - Frequency Division Multiplexing
 - **Time Division Multiplexing**
- Master circuit-switching ,message switching and packet switching
- understand mobile-phone system
 - **■** Code division multiple Access (CDMA)

Chapter 3 data link layer

- Master framing
 - Character count(字符计数法)
 - Flag bytes with byte stuffing(带字符填充的首尾 界符法)
 - Starting and ending flags, with bit stuffing(带位填充的首尾标志法)
 - Physical layer coding violations(物理层编码违例法)

Chapter 3 data link layer(cont'd)

- Master error detection and correction
 - Haimming distance (definition)
 - Error correction: hamming code
 - \square Correct one bit error: $m+r+1 \le 2^r$
 - **■** Error detection:CRC
- □ The error-detecting and error-correcting properties of a code depend on its Hamming distance.
 - In order to detect d errors, we need a distance of d+1.
 - In order to *correct* d errors, we need a distance of 2d+1

Error correcting and detecting

☐ Hamming code

 \Box CRC

Chapter 3 data link layer(cont'd)

- Master 6 dll's basic protocol
 - Utopia
 - Stop and wait
 - PAR (positive acknowledgement with retransmission) or ARQ (automatic repeat request)
 - One-bit sliding window
 - Go back n
 - Selective repeat
 - Max window sizes!

Chapter 4 MAC sublayer(cont'd)

- ☐ Multiple Access Protocols
 - ALOHA
 - □ Pure ALOHA
 - ☐ Slotted ALOHA
 - Carrier Sense Multiple Access Protocols
 - ☐ 1-persistent CSMA
 - **□** Non-persistent CSMA
 - □ p-persistent CSMA
 - □ CSMA/CD (CSMA with Collision Detection)("先听后发、边发边听")
 - Ethernet and IEEE802.3
 - Min frame length!

Chapter 4 MAC sublayer(cont'd)

- ☐ Bit stream encoding methods
 - Manchester Encoding
 - Differential Manchester Encoding
 - Question Bit stream is 1001101001, sketch three waves:

MAC sublayer

- **□** MAC address
- ☐ Ethernet & IEEE802.3

Working principle of switching

- □ Flooding
- □ Backward learning

Chapter 5 network layer

- □ Routing Protocol
 - IGP
 - □ DV:RIP
 - □ LS:OSPF
- □ Routed Protocol
 - IPv4
 - IPv6
- \square BGP

Routing algorithm

- Routing algorithm
 - Static routing algorithm
 - □ Dijkstra
 - flooding
 - Dynamic routing algorithms
 - \square DV

 - **□** Comparisons

IPv4

- ☐ Main function of router
- ☐ Learn IP
 - IP packet format
 - IP address and it's classification
- ☐ Reserved IPv4 address

Other protocol and technology

- □ Subnet and subnetting
- ☐ The idea of CIDR
- **☐** The principle of NAT/PAT

Sup.: IPv6

- ☐ Advantage of IPv6
- ☐ Differences with IPv4

Chapter 6 transport layer

Comparation

- ☐ UDP (segment)
- ☐ TCP (segment)
- ☐ Pseudo header. (why?)
- □ Socket
- ☐ Transport layer and network layer (why?)

Chapter 7 Application layer

- \square DNS
 - Working principle
 - Using UDP(why?)

Lab sessions

- **□** Router operations
- □ Networking
- □ Socket

- ☐ THANKS!
- □ BEST of LUCK!

□ hxwang@scut.edu.cn

