3D GEOMETRY FORMULAS

CUBE

s = side

Volume: $V = s^3$

Surface Area: $S = 6s^2$

GENERAL CONE OR PYRAMID

A =area of base, h =height Volume: $V = \frac{1}{3}Ah$

RECTANGULAR SOLID

l = length, w = width,

h = height

Volume: V = lwh

Surface Area:

S = 2lw + 2lh + 2wh

RIGHT CIRCULAR CONE

r = radius, h = height

Volume: $V = \frac{1}{3}\pi r^2 h$

Surface Area:

 $S = \pi r \sqrt{r^2 + h^2} + \pi r^2$

SPHERE

r = radius

Volume: $V = \frac{4}{3}\pi r^3$

Surface Area: $S = 4\pi r^2$

FRUSTUM OF A CONE

r = top radius, R = base radius,h = height, s = slant height

Volume: $V = \frac{\pi}{3}(r^2 + rR + R^2)h$

Surface Area:

 $S = \pi s(R+r) + \pi r^2 + \pi R^2$

RIGHT CIRCULAR **CYLINDER**

r = radius, h = height

Volume: $V = \pi r^2 h$

Surface Area: $S = 2\pi rh + 2\pi r^2$

SQUARE PYRAMID

s = side, h = height

Volume: $V = \frac{1}{3}s^2h$ Surface Area:

 $S = s(s + \sqrt{s^2 + 4h^2})$

TORUS

r =tube radius, R = torus radius

Volume: $V = 2\pi^2 r^2 R$

Surface Area: $S = 4\pi^2 rR$

REGULAR TETRAHEDRON

s = side

Volume: $V = \frac{1}{12}\sqrt{2}s^3$

Surface Area: $S = \sqrt{3}s^2$

- pi = 2 * acos(0.0);
- Convert **Radian** to **Degree**: **sin(**val * (**pi / 180.0)**); asin(val) * (180.0 / pi);