Работа 16

ОПРЕДЕНИЕ ОМИЧЕСКОГО СОПРОТИВЛЕНИЯ ПРИ ПОМОЩИ МОСТА УИТСТОНА

Цель работы: экспериментальное определение сопротивления проводников и проверка закона Ома с помощью моста постоянного тока.

Приборы и принадлежности: потенциометр (или реохорд), магазин сопротивлений, гальванометр, источник ЭДС, неизвестные сопротивления, ключи, провода.

Объект измерений: неизвестные сопротивления.

Средства измерений: потенциометр (или реохорд), магазин сопротивлений, гальванометр.

1. Теоретическая часть

Сопротивление проводника — это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока. Она зависит от свойств материала и его геометрических размеров.

Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

$$R = \rho \frac{l}{S}$$
,

где ρ – коэффициент пропорциональности, характеризующий материал проводника и называемый *удельным электрическим сопротивлением*.

Физический смысл сопротивления раскрывается в рамках классической электронной теории металлов Друде согласно которой электроны в металле подчиняются законам молекулярно-кинетической теории и образуют «электронный газ». Двигаясь в металле, электроны соударяются друг с другом и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника).

Основные положения теории металлов сводятся к следующим.

- 1. Каждый металл характеризуется определенной упорядоченной кристаллической структурой.
- 2. В металле валентные электроны атомов отрываются и становятся свободными. Металл представляет собой совокупность неподвижных положительно заряженных ионов, погруженных в электронный газ.
- 3. Электронный газ в металле подобен идеальному газу классической физики.
- 4. В интервале между столкновениями электроны не взаимодействуют ни с друг с другом, ни с ионами кристаллической решетки.
- 5. Скорость электрона после столкновения направлена случайным образом, а ее величина определяется температурой той области, в которой произошло столкновение.

Электроны обладают такой же тепловой энергией движения, так и молекулы одноатомного идеального газа. Тепловое движение является хаотичным и не может привести к возникновению электрического тока.

При наложении внешнего электрического поля все свободные электроны приобретают определенную скорость упорядоченного движения, направленную против вектора напряженности внешнего поля. В результате действия двух противоположных факторов (хаотического теплового движения и упорядоченного дрейфового движения под действием электрического поля) устанавливается стационарный процесс, который определяет среднюю скорость упорядоченного перемещения свободных электронов в металле. Плотность постоянного электрического тока **j** определяется из дифференциальной формы записи закона Ома:

$$\mathbf{j} = \mathbf{\sigma} \mathbf{E}$$
,

где σ – удельная электропроводность, которая обратно пропорциональна удельному сопротивлению, $\sigma=1/\rho;\; E$ – вектор напряженности электрического поля.

В интегральной форме закон Ома имеет вид

$$I = \frac{U}{R}$$
,

где I — сила тока, текущего через проводник, U — напряжение на концах проводника.

В электрических схемах сопротивления могут быть соединены последовательно или параллельно.

Последовательное соединение проводников — это соединение, при котором конец предыдущего проводника соединяется с началом только одного — последующего (рис. 1).

Рис. 1. Последовательное соединение проводников

В этом случае через оба проводника течет один и тот же ток, а напряжение на концах участка равно сумме падений напряжений на каждом из проводников:

$$I_1 = I_2,$$
 $U_{AB} = U_1 + U_2.$

Поэтому эквивалентное сопротивление последовательно соединенных проводников вычисляется по формуле:

$$R_{\text{посл}} = R_1 + R_2.$$

Параллельное соединение проводников — это соединение, при котором все проводники подключены между собой одной и той же парой точек (узлами) (рис. 2).

Рис. 2. Параллельное соединение проводников

В этом случае ток, текущий в цепи, разветвляется на токи, каждый из которых течет через один из проводников, а падения напряжений на обоих проводниках равны:

$$I = I_1 + I_2,$$
 $U_{AB} = U_1 = U_2.$

При параллельном соединении эквивалентное сопротивление вычисляется по формуле:

$$\frac{1}{R_{\text{nap}}} = \frac{1}{R_1} + \frac{1}{R_2}$$

или

$$R_{\text{nap}} = \frac{R_1 R_2}{R_1 + R_2} \,.$$

2. Методика проведения измерений и описание установки

Мостиковая схема постоянного тока (мост Уитстона) составлена из сопротивлений R, $R_{\rm x}$, $r_{\rm 1}$, $r_{\rm 2}$, источника электродвижущей силы и чувствительного гальванометра (рис. 3).

При произвольном соотношении сопротивлений, составляющих всю мостиковую схему, через гальванометр при замыкании ключа K должен идти ток.

Однако, существует одно определенное соотношение между сопротивлениями, составляющими схему, при котором ток, идущий через гальванометр, обращается в нуль, хотя при этом во всех других звеньях схемы ток не равен нулю.

Для того, чтобы в гальванометре отсутствовал ток, потенциалы в точках C и D должны быть одинаковы:

$$\varphi_C = \varphi_D$$
.

Но это, как видно из схемы, будет иметь место только лишь в том случае, если равны друг другу разности потенциалов между точками A и C, и точками A и D:

Рис. 3. Мост Уитстона

$$\varphi_A - \varphi_C = \varphi_A - \varphi_D. \tag{1}$$

Как видно из схемы, это условие будет выполняться, если равны друг другу разности потенциалов между точками C и B, и точками D и B:

$$\varphi_C - \varphi_R = \varphi_D - \varphi_R. \tag{2}$$

Ток I, текущий от батареи, разветвляется в точке A на ток I_1 , текущий от точки A к точке C, и ток I_2 , текущий от A к D. Если на участке CD ток отсутствует, то по закону сохранения заряда ток в проводнике AC равен току в проводнике CB, а ток в проводнике AD равен току в проводнике DB. Тогда по закону Ома для AC, AD, CB и DB можно записать соответственно:

$$I_1 R_x = \varphi_A - \varphi_C,$$

 $I_2 r_2 = \varphi_A - \varphi_D,$
 $I_1 R = \varphi_C - \varphi_B,$
 $I_2 r_2 = \varphi_D - \varphi_B.$

С учетом соотношений (1) и (2) получим:

$$I_1 R_x = I_2 r_1, \tag{3}$$

$$I_1 R = I_2 r_2. (4)$$

Разделив уравнение (3) на уравнение (4), получим формулу для вычисления неизвестного сопротивления:

$$R_x = R \frac{r_1}{r_2} \,. \tag{5}$$

Мостовая схема реализуется следующим образом. В одно из плеч моста включается известное сопротивление R, например магазин сопротивлений, в другое плечо — неизвестное сопротивление R_x . Третье r_1 и четвертое r_2 плечи схемы реализуются в виде металлического проводника (реохорда), однородного по химическому составу с постоянным поперечным сечением. Соединение гальванометра с реохордом осуществляется с помощью контактного движка D, скользящего по реохорду. Таким образом, сопротивлениями r_1 и r_2 служат отрезки проводника, расположенные по разные стороны от движка D. Такая система скользящего контакта мостика позволяет легко изменять величины сопротивлений r_1 и r_2 . Ввиду однородности реохорда отношение сопротивлений r_1 и r_2 можно заменить отношением длин соответствующих

отрезков реохорда l_1 и l_2 . Тогда уравнение (5) будет представлено в следующем виде:

$$R_{x} = R \frac{l_{1}}{l_{2}}.$$
 (6)

Процесс измерения на мостиковой схеме заключается в экспериментальном подборе величин R, r_1 , r_2 , при которых ток, текущий через гальванометр, обращается в нуль.

<u>Примечание</u>. В данной работе металлический проводник (реохорд) заменен на потенциометр, который представляет собой однородный по химическому составу металлический проводник с постоянным поперечным сечением, но свитый спиралью с двумя выводами на концах A и B и металлическим движком D, скользящим вдоль спирали. Все полученные соотношения справедливы и для потенциометра.

Лабораторная установка представлена на рис. 4.

Рис. 4. Внешний вид лабораторной установки

Переключатели K_1 , K_2 , K_3 и K_4 предназначены для включения неизвестных сопротивлений R_{x1} , R_{x2} , R_{x3} по отдельности, последовательно или параллельно. Положение ключа «вверх» соответствует разомкнутому ключу. Указатель потенциометра служит для установления левого и правого плеч реохорда. Магазин со-

противлений (МС) позволяет устанавливать известное сопротивление. Ключ в нижней части лабораторной установки необходим для замыкания в цепь гальванометра. Показания тока проверяют по микроамперметру.

Внешний вид MC показан на рис. 5. Поворотом шести регуляторов можно устанавливать требуемое значение сопротивления. Положение каждого регулятора соответствует определенной степени десяти: отдельные регуляторы устанавливают тысячи, сотни, десятки, единицы и т.п.

Рис. 5. Внешний вид магазина сопротивлений

Например, если повернуть средний в верхнем ряду регулятор (он соответствует числу сотен) на значение 4 (цифра должна совпадать со стрелкой под регулятором), то это соответствует сопротивлению магазина 400 Ом. Если при этом еще установить правый в верхнем ряду регулятор (соответствует числу десятков) на значение 3, то это будет соответствовать сопротивлению 430 Ом. И так лалее.

Электрическая схема лабораторной установки показана на рис. 6.

Рис. 6. Электрическая схема лабораторной установки

В работе проводятся пять опытов:

- 1) определение сопротивления R_{x1} ;
- 2) определение сопротивления R_{x2} ;
- 3) определение сопротивления R_{x3} ;
- 4) определение последовательно соединенных R_{x1} , R_{x2} , R_{x3} ;
- 5) определение параллельно соединенных R_{x1} , R_{x2} , R_{x3} .

Для этого на схеме (см. рис. 6) устанавливают переключатели (ключи) K_1 , K_2 , K_3 и K_4 для проведения одного из пяти опытов в соответствии с таблицей 1.

Tаблица I Положение ключей на схеме для различных опытов (O- открыто, т.е. «вверх», 3- закрыто, т.е. «вниз»)

No	Определяемая величина	Положение ключей			
опыта		K_1	K_2	К3	K4
1	Сопротивление R_{x1}	3	3	О	О
2	Сопротивление R_{x2}	О	3	3	О
3	Сопротивление R_{x3}	О	О	3	3
4	Последовательное соединение	3	O	О	3
5	Параллельное соединение	3	3	3	3

Для каждого опыта нужно провести три измерения при различных величинах плеч реохорда (левое l_1 и правое l_2), например:

- если указатель потенциометра поставлен строго вертикально, то плечи равны: $l_1 = l_2 = 5$;
- если указатель потенциометра отклонен от вертикали на одно деление влево, то: $l_1 = 4, \, l_2 = 6;$
- если указатель потенциометра отклонен от вертикали на одно деление вправо, то: $l_1 = 6, l_2 = 4.$

На рис. 7 изображено положение плеч соответствующее $l_1 = 7$, $l_2 = 3$.

Рис. 7. Положение плеч реохорда соответствует $l_1 = 7$, $l_2 = 3$

Значения плеч можно выбирать любые, главное, чтобы они были различны для трех измерений в опыте.

3. Порядок выполнения работы

- 1. Проверить правильность работы схемы.
- 1.1. Установить указатель потенциометра на середину шкалы. Плечи реохорда в этом случае будут равны между собой.
 - 1.2. Установить на МС сопротивление 1 Ом.
- 1.3. Нажать на клавишу «Ключ». Посмотреть, в какую сторону отклонилась при этом стрелка микроамперметра.
 - 1.4. Установить сопротивление магазина 1000 Ом.
- 1.5. Нажать на клавишу «Ключ». Стрелка микроамперметра должна отклониться в другую сторону.
- 1.6. Если оба раза стрелка отклонилась в одну сторону, значит где-то в цепи имеется разрыв или плохой контакт.
- 2. Опыты проводятся в соответствии с таблицей 1. Порядок проведения всех пяти опытов одинаковый и состоит в следующем.

- 2.1. Установить ключи K_1 , K_2 , K_3 и K_4 для соответствующего опыта (см. таблицу 1).
- 2.2. Установить указатель потенциометра в выбранное положение и определить величины плеч реохорда.
- 2.3. Подобрать на МС сопротивление, при котором отклонение стрелки микроамперметра будет минимальным (близким к нулю). Для этого установить сопротивление и нажать клавишу «Ключ». Подбор сопротивлений на МС начинать с больших и двигаться в сторону меньших. Если величина установленного на МС сопротивления очень велика, то переходят к меньшему разряду. Как только при нажатии на клавишу «Ключ» стрелка микроамперметра будет находиться практически без движений, определить по шкалам МС величину неизвестного сопротивления и записать в таблицу 2, 3, ... 6 в соответствии с номером опыта.
- 2.4. Установить указатель потенциометра в другое положение и повторить п. 2.3. И так два раза. Результаты занести в соответствующую таблицу 2, 3, ... 6 в зависимости от номера опыта.
- 2.5. Перейти к следующему опыту и повторить для него п.п. 2.1–2.4.

Замечание. Держать под током длительное время даже уравновешенную схему нельзя, так как нагревание всех частей схемы током вызывает изменение их сопротивлений, и мостик перестает быть уравновешенным.

 $\begin{tabular}{l} \it Tаблица~2 \\ \it Oпыт~1.~ Определение сопротивления R_{x1} \\ \end{tabular}$

№ опыта	R, Om	l_{I} , дел шк.	l_2 , дел шк.	R_{x1} , Om
1				
2				
3				
Среднее значение $\left\langle R_{_{x1}} \right angle$				

Таблица 3

Опыт 2. Определение сопротивления R_{x2}

№ опыта	R, Om	l_1 , дел шк.	l_2 , дел шк.	R_{x2} , Om
1				
2				
3				

Tаблица 4 Опыт 3. Определение сопротивления R_{x3}

№ опыта	R, Om	l_1 , дел шк.	l_2 , дел шк.	R_{x3} , Om
1				
2				
3				
Среднее значение $\langle R_{x3} \rangle$				

Таблица 5 Опыт 4. Определение сопротивления последовательно соединенных проводников

№ опыта	R, Om	l_{I} , дел шк.	l_2 , дел шк.	$R_{\text{посл}}$, Ом
1				
2				
3				
Среднее значение $\langle R_{\text{посл}} \rangle$				

Таблица 6 Опыт 5. Определение сопротивления параллельно соединенных проводников

№ опыта	R, Om	l_1 , дел шк.	l_2 , дел шк.	$R_{\text{пар}}$, Ом
1				
2				
3				
Среднее значение $\left\langle R_{\text{пар}} \right\rangle$				

4. Обработка результатов измерений

- 1. Для каждого опыта вычислить по формуле (6) три значения неизвестного сопротивления для различных длин плеч реохорда и записать в соответствующую таблицу 2, 3, ...6.
- 2. Для каждого опыта по трем значениям неизвестного сопротивления найти среднее значение и записать в соответствующую таблицу 2, 3, ...6.
- 3. Вычислить расчетные значения сопротивлений при последовательном и параллельном соединении по формулам:

$$R_{\text{посл-расч}} = \langle R_{x1} \rangle + \langle R_{x2} \rangle + \langle R_{x3} \rangle, \tag{7}$$

$$R_{\text{пар-расч}} = \frac{\langle R_{x1} \rangle \langle R_{x2} \rangle \langle R_{x3} \rangle}{\langle R_{x1} \rangle \langle R_{x2} \rangle + \langle R_{x1} \rangle \langle R_{x3} \rangle + \langle R_{x2} \rangle \langle R_{x3} \rangle}.$$
 (8)

4. Вычислить относительную погрешность при последовательном соединении проводников:

$$\delta_{R_{\rm HOCR}} = \frac{\left\langle R_{\rm nocr} \right\rangle - R_{\rm nocr-pac^{\rm u}}}{\left\langle R_{\rm nocr} \right\rangle} \; .$$

5. Вычислить абсолютную погрешность при последовательном соединении проводников:

$$\Delta R_{\text{посл}} = \delta_{R \text{посл}} \left\langle R_{\text{посл}} \right\rangle$$
 .

6. Записать окончательный результат в следующем виде:

$$R_{\text{посл}} = \langle R_{\text{посл}} \rangle \pm \Delta R_{\text{посл}}$$
.

7. Вычислите относительную погрешность при параллельном соединении проводников:

$$\delta_{R_{\text{пар}}} = \frac{\left\langle R_{\text{пар}} \right\rangle - R_{\text{пар-расч}}}{\left\langle R_{\text{пар}} \right\rangle}$$

8. Вычислить абсолютную погрешность при параллельном соединении проводников:

$$\Delta R_{\text{nap}} = \delta_{R_{\text{nap}}} \langle R_{\text{nap}} \rangle$$

9. Записать окончательный результат в следующем виде:

$$R_{\text{nap}} = \langle R_{\text{nap}} \rangle \pm \Delta R_{\text{nap}}$$
.

5. Контрольные вопросы

- 1. Сформулируйте физический смысл и приведите формулу сопротивления проводника.
- 2. Сформулируйте основные положения электронной теории Друде.
- 3. Дайте определение электрического тока и удельной электропроводности.
- 4. Дайте определение последовательного соединения проводников. Как изменяются токи и напряжения при последовательном соединении?
- 5. Дайте определение параллельного соединения проводников. Как изменяются токи и напряжения при параллельном соединении?
- 6. Выведите самостоятельно формулы (7) и (8) для расчета сопротивлений при последовательном и параллельном соединениях трех проводников.
- 7. Объясните принципиальные особенности работы мостиковой схемы при определении неизвестного сопротивления.

6. Рекомендуемая литература

По теме «Постоянный электрический ток» рекомендуется [1, гл. V; 2, гл. 12: § 96, § 98], по теме «Классическая теория электропроводности металлов» – [1, гл. XI].

- 1. Савельев И. В. Курс общей физики. В 3 т. Том 2. Электричество. Волны. Оптика. С.-Пб.: Лань, 2022. 468 с.
- 2. Трофимова Т. И. Курс физики. М.: Издательский центр «Академия», 2006. 560 с.