Real-time Particle-based

Snow Simulation with Vulkan

Qiaosen Chen, CGGT, <u>LinkedIn</u> Haoyu Sui, CGGT, <u>LinkedIn</u>

Contents

- Brief Description
- Technical Overview
- Results & Analysis
- Credits

Brief Description

- A real-time particle-based snow simulator
- Use Vulkan for acceleration and visualization
- Compare performance of using CPU, CUDA and Vulkan

Why Vulkan

- Interested in learning a new graphics API
- Vulkan offers higher performance and more balanced CPU/GPU usage

```
Vulkan. F12, PrtScrn to capture. Frame: 883. 1.97 ms (0.86 .. 292.88) (508. FPS) 0 Captures saved.
```

Technical Overview

It is a discrete element method and captures compression and bonding between snow particles to model the realistic behavior of snow.

Advantages:

- It is real-time, computationally inexpensive to simulate snow dynamics.
- It can be easily incorporated in the existing unified particle-based frameworks.

Compute pipelines

Show particles as points

Show particles as sphere models

Sphere

Tanglecube

Torus & Heart

Big Cube

CPU + Houdini

CUDA + OpenGL (only render points)

Vulkan

	CPU (without rendering)	CUDA + OpenGL	Vulkan
Computing time per frame (ms)	29,600	29.9	2.3

1K Particles (180K Vertices), 740fps

8K Particles (1.44M Vertices), 299fps

27K Particles (4.86M Vertices), 115fps

64K Particles (11.52M Vertices), 54ps

125K Particles (22.5M Vertices), 28ps

Shortcomings

For simulation methods:

- Cannot handle interaction of snow with other material points.
- Only simulate soft dry snow.

For implementation in Vulkan:

- The code can be refactored and encapsulated further.
- Efficiency can be improved further.
- We learnt Vulkan from the scratch, which took us too much time.

Credits

- Real-time particle-based snow simulation on the GPU
 - https://www.diva-portal.org/smash/get/diva2:1320769/FULLTEXT01.pdf
 - https://www.diva-portal.org/smash/get/diva2:1118073/FULLTEXT02
- A material point method for snow simulation
 - https://www.math.ucla.edu/~jteran/papers/SSCTS13.pdf
- Vulkan Tutorial
 - https://vulkan-tutorial.com/Introduction
- Vulkan API
 - https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html
- Nvidia: use GPU to simulate fluid\
 - https://developer.nvidia.com/gpugems/gpugems/part-vi-beyond-triangles/chapter-38-fast-fluid-dynamics-simulation-gpu
- tinyobjloader
 - https://github.com/tinyobjloader/tinyobjloader
- RenderDoc
 - https://renderdoc.org/

Thank For Listening!