A highly ionized stellar bow shock in the Small Magellanic Cloud

WILLIAM J. HENNEY, S. JANE ARTHUR, AND M. VALERDI²

¹Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michaoacán, Mexico

²Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, 72840 Puebla, México

Abstract

We report the discovery of a parsec-scale stellar bow shock associated with the O2 III(f) star Walborn 3 in the cluster NGC 346 of the Small Magellanic Cloud. The bow shock is most clearly detected in optical He II and [Ar IV] emission lines but is also seen at mid-infrared wavelengths between $12 \,\mu m$ and $24 \,\mu m$. There is no evidence that the star is a runaway, rather the bow shock is likely due to interaction of the stellar wind with streaming motions of the photoionized gas within the N66 H II region.

Keywords: Atomic physics; Circumstellar matter; Stars: winds, outflows

1. INTRODUCTION

The interaction of a star's wind with the surrounding medium can result in an arc-shaped circumstellar emission nebula, frequently referred to as a bow shock (Gull & Sofia 1979; van Buren & McCray 1988). Stellar bow shocks are found around a wide variety of different stars, including premain sequence stars (Bally & Reipurth 2001; Henney et al. 2013), neutron stars (Cordes et al. 1993), and cool giants and supergiants (Sahai & Chronopoulos 2010; Cox et al. 2012), but they are most commonly associated with hot luminous OB stars (van Buren et al. 1995; Kobulnicky et al. 2016). Bow shocks are most frequently observed via their infrared continuum emission (Meyer et al. 2016), which arises from dust grains that are heated by the stellar radiation field (Draine & Li 2007), but specific classes of bow shock have also been identified via multiple thermal and non-thermal emission mechanisms that trace gas and plasma components. The emission arcs are most commonly interpreted as due to the hydrodynamic interaction induced by supersonic relative motion of the star with respect to the ambient material (Wilkin 1996), but models involving a subsonic interaction have also been proposed (Mackey et al. 2015, 2016). Also, the role of the stellar wind ram pressure in supporting the arc may be replaced by radiation pressure in some cases, see Henney & Arthur (2019a,b,c).

Stellar bow shocks can be used to estimate stellar wind mass loss rates by applying momentum-balance arguments (Gvaramadze et al. 2012; Kobulnicky et al. 2018, 2019; Henney & Arthur 2019c). These provide an important check on more traditional spectroscopic methods (Hillier 2020), since the systematic uncertainties and biases are different. Linedriven wind theory for hot stars predicts that momentum-loss rates should increase with metallicity, Z, as $\dot{M}V_{\rm w} \propto Z^n$ with n=0.6–0.8 (Vink et al. 2001; Krtička & Kubát 2018; Vink & Sander 2021; Björklund et al. 2021) for the most luminous stars ($L>10^6\,{\rm L}_\odot$).

The closest low-metallicity stellar populations (Z=0.1 to $0.2Z_{\odot}$, Narloch et al. 2021) are found in the Small Magellanic Cloud (SMC) at a distance of 62 kpc (Graczyk et al. 2020). A small number of stellar bow shocks have been previously identified in the SMC (Gvaramadze et al. 2011; Sheets et al. 2013) by means of their mid-infrared dust emission. The majority of these sources are found far from the cores of dense clusters and are probably runaways (Blaauw 1961), which have been ejected from a binary system or stellar cluster (Hoogerwerf et al. 2001; Renzo et al. 2019). In the Milky Way, a second class of stellar bow shocks are found inside young massive star clusters: $weather\ vanes$ (Povich et al. 2008), which have low space velocities and are interacting with streaming motions of the local interstellar medium, such as champagne flows (Tenorio-Tagle 1979).

In this paper, we report the discovery of just such a bow shock inside the massive stellar cluster NGC 346, which excites the H II region N66 (Henize 1956). The bow shock is associated with the very early-type star Walborn 3 (W 3) (Walborn & Blades 1986), also known as MPG 355 (Massey et al. 1989) with spectral type ON2 III(f*) (Heydari-Malayeri & Selier 2010).

Atmosphere models of Rivero González et al. (2012)

w.henney@irya.unam.mx

Corresponding author: William J. Henney

2. OBSERVATIONS

The main observational data used in this paper comprise an archival integral field spectral cube of NGC 346 obtained with the MUSE spectrograph (Bacon et al. 2010, 2014) on the VLT as part of program 098.D-0211(A) (PI: W.-R. Hamann). The usable field of view is approximately 64 arcsec times 60 arcsec with spaxel size of 0.2 arcsec and estimated seeing full-width half maximum (FWHM) width of 0.961 arcsec. The spectral range is 4595 Å to 9366 Å sampled at 1.25 Å pix⁻¹ and the spectral resolving power varies from $R \approx 2000$ in the blue to $R \approx 4000$ in the red. We use reduced data from the standard ESO pipeline processing (Weilbacher et al. 2020), co-added across multiple observations obtained on 2016-08-22 with a total effective exposure time of 12 600 s.

We divide the spectral range into sections of width 800 Å and fit a 6th order polynomial to the continuum in line-free wavelengths of each section, using an independent fit for each spaxel. We then extract individual emission lines (or close blends) from the continuum-subtracted spectra using 5 Å windows, centered on the expected wavelength of each line in the systemic frame of the nebula (heliocentric velocity $V \approx 160 \, \mathrm{km \, s^{-1}}$). We correct for an over-subtraction of the sky background, which is apparent in the pipeline-processed data cube. We establish accurate zero points for all lines by checking that multiple line ratios tend towards physically reasonable asymptotes as the brightness tends towards zero.

We use the observed Balmer decrement between $H\alpha$ and $H\beta$ to correct all lines for foreground dust extinction, assuming an SMC-appropriate reddening law with $R_V=2.74$ (Fitzpatrick & Massa 1990; Bouret et al. 2003). The reddening is low over most of the field $(E(B-V)\approx 0.1)$ but reaches $E(B-V)\approx 1$ along the southern edge (labeled "foreground filament" in Figure 1b).

3. RESULTS

An east-facing bow shock structure is detected around the star Walborn 3, as illustrated in Figure 1a. The inner edge of the bow shock is traced by a sharp ridge of He II $\lambda 4686$ emission (red), while [Ar IV] $\lambda 4740$ emission (green) is more extended with a diffuse outer boundary. Nebular emission of the same field in moderate and low ionization lines is shown in Figure 1b and there is no evidence of the bow shock in these lines. Instead, the low ionization lines ([O I], red, and [S II], green) trace the ionization fronts at the surface of dense filaments and globules, while the moderate ionization line ([S III], blue) traces diffuse ionized gas in the interior of the nebula that is largely unrelated to the bow shock.

Figure 1c shows the position of the MUSE field (orange box) on a wider scale *HST* image of the N66 H II region (Nota et al. 2006). The head of the bow shock is oriented towards

the bright filament outside of the MUSE field to the West, which represents a large scale ionization front at the edge of the H $\scriptstyle\rm II$ region. The supernova remnant SNR J59.4–7210 is centered roughly 1 arcmin to the East of the H $\scriptstyle\rm II$ region, but based on the X ray emission (Maggi et al. 2019) it does not overlap the MUSE field.

Figure 1d shows a zoomed view of the HST H α image around W 3, compared with contours of the bow shock emission. The H α brightness does appear to be slightly higher within the bow shock contours than just outside it, but the effect is very subtle compared with larger unrelated variations in the H α brightness.

Figure 2 shows surface brightness profiles in multiple emission lines along an East–West cut along the bow shock axis. The He II emission peaks at about 4 arcsec from the star with a width (FWHM) of about 2 arcsec (note that 1 arcsec ≈ 0.3 pc at the distance of the SMC).

4. LONGSLIT OBSERVATIONS

Apart from the inner rim of the bow shock, there is no diffuse He II emission in the core of NGC 346, or in the western side of the N66 region. The eastern side of N66, on the other hand, shows extensive He II λ 4686 emission, as can be seen at offsets from -200 to -50 arcsec in Figure 5b. The eastern side of N66 also shows a ten times higher [Fe III] / H β ratio and disturbed kinematics in low-ionization lines such as [S II]. All these are probably due to a foreground supernova remnant SNR B0057-72.2 (Ye et al. 1991) that overlaps with this part of the nebula (Chu & Kennicutt 1988; Nazé et al. 2002; Danforth et al. 2003; Maggi et al. 2019; Matsuura et al. 2022).

5. MID-INFRARED EMISSION

6. DISCUSSION

Is there any possibility it might be a runaway?

What is the reason that we detect this bow shock at optical wavelengths, which is not typical? Probably due to the presence of the high ionization stages, which allow the weak bow shock emission to be separated from the background hii region. This is similar to the argument of (Danforth et al. 2003) as to why it is better to use UV observations to find SNR in bright hii regions.

7. CONCLUSIONS

Thank you.

Facilities: VLT:Yepun (MUSE)

Figure 1. MUSE emission line images of the core of NGC 346. (a) High-ionization emission from the bow shock. Red shows He II λ 4686, green shows [Ar IV] λ 4740, blue shows continuum emission at 4700 Å (mainly starlight). Star symbols indicate the positions of the most luminous ionizing stars in the cluster: Walborn 1, 2, and 3. (b) Medium to low-ionization emission from the surrounding N66 H II region. Red shows [O I] λ 6300, green shows [S II] λ 6731, blue shows [S III] λ 9069. (c) Location of the MUSE field within the wider nebula against a background Hα image from HST-ACS in the F658N filter. The yellow dashed ellipse shows the maximum extent of the X-ray emission from the supernova remnant SNR J59.4–7210, while star symbols indicate more distant luminous ionizing stars. (d) Zoom of panel c showing detail of the bow shock region in the light of Hα emission, with superimposed contours of He II (red) and [Ar IV] (green).

REFERENCES

Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Proc. SPIE, 773508, doi: 10.1117/12.856027
Bacon, R., Vernet, J., Borisova, E., et al. 2014, The Messenger, 157, 13
Bally, J., & Reipurth, B. 2001, ApJ, 546, 299
Björklund, R., Sundqvist, J. O., Puls, J., & Najarro, F. 2021, A&A, 648, A36

Blaauw, A. 1961, BAN, 15, 265

Bouret, J. C., Lanz, T., Hillier, D. J., et al. 2003, ApJ, 594, 279, doi: 10.1086/376774
Chu, Y.-H., & Kennicutt, Robert C., J. 1988, AJ, 95, 1111
Cordes, J. M., Romani, R. W., & Lundgren, S. C. 1993, Nature, 362, 133
Cox, N. L. J., Kerschbaum, F., van Marle, A.-J., et al. 2012, A&A, 537, A35

Danforth, C. W., Sankrit, R., Blair, W. P., Howk, J. C., & Chu, Y.-H. 2003, ApJ, 586, 1179

Figure 2. Continuum-subtracted and extinction-corrected line surface brightness profiles along an East–West cut along the bow shock axis of width 4 arcsec, derived from MUSE integral field spectra. Thickest lines show the high ionization emission from He II λ 4686 (blue) and [Ar IV] λ 4740 (orange). Progressively thinner lines show medium ionization emission from [O III] λ 5007 (green), [Ar III] λ 7136 (red), He I λ 5875 (purple), and Hβ λ 4861 (brown). Vertical scale gives brightness in instrument units, for conversion to cgs multiply by 1.489 × 10⁻⁸ erg s⁻¹ cm⁻² sr⁻¹. The brightness of medium ionization lines have been scaled by factors given in the key, so as to make all the lines approximately coincide at the edges of the graph. The gray box indicates the brightest region of bow shock emission for comparison with following figures.

Figure 3. More profiles

Draine, B. T., & Li, A. 2007, ApJ, 657, 810

Fitzpatrick, E. L., & Massa, D. 1990, ApJS, 72, 163,

doi: 10.1086/191413

Figure 4. Temperature and density diagnostics of the bow shock from [Ar IV] line ratios.

Graczyk, D., Pietrzyński, G., Thompson, I. B., et al. 2020, ApJ, 904, 13

Gull, T. R., & Sofia, S. 1979, ApJ, 230, 782

Figure 5. Emission line surface brightness profiles and line ratios along a large-scale East–West cut across the entire region, based on FORS1 longslit spectra. The slit is close to the symmetry axis of the bow shock. (a) Temperature-sensitive line ratio [O III] 4363/5007. The gray box shows the same inner rim region of the bow shock that is highlighted by a gray box in Fig. 2. (b) Selected emission lines from a wide range of ionization stages.

Figure 6. Derived temperature of nebula and bow shock from FORS longslit observations.

Gvaramadze, V. V., Langer, N., & Mackey, J. 2012, MNRAS, 427, L50

Gvaramadze, V. V., Pflamm-Altenburg, J., & Kroupa, P. 2011, A&A, 525, A17

Henize, K. G. 1956, ApJS, 2, 315

Henney, W. J., & Arthur, S. J. 2019a, MNRAS, 486, 3423

- -.. 2019b, MNRAS, 486, 4423
- -.. 2019c, MNRAS, 489, 2142

Henney, W. J., García-Díaz, M. T., O'Dell, C. R., & Rubin, R. H. 2013, MNRAS, 428, 691

Heydari-Malayeri, M., & Selier, R. 2010, A&A, 517, A39

Hillier, D. J. 2020, Galaxies, 8, 60

Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2001, A&A, 365, 49

Kobulnicky, H. A., Chick, W. T., & Povich, M. S. 2018, ApJ, 856, 74 (K18)

—. 2019, AJ, 158, 73

Kobulnicky, H. A., Chick, W. T., Schurhammer, D. P., et al. 2016, ApJS, 227, 18

Krtička, J., & Kubát, J. 2018, A&A, 612, A20

Mackey, J., Gvaramadze, V. V., Mohamed, S., & Langer, N. 2015, A&A, 573, A10

Mackey, J., Haworth, T. J., Gvaramadze, V. V., et al. 2016, A&A, 586, A114

Maggi, P., Filipović, M. D., Vukotić, B., et al. 2019, A&A, 631, A127, doi: 10.1051/0004-6361/201936583

Massey, P., Parker, J. W., & Garmany, C. D. 1989, AJ, 98, 1305Matsuura, M., Ayley, V., Chawner, H., et al. 2022, MNRAS, 513, 1154, doi: 10.1093/mnras/stac583

Meyer, D. M.-A., van Marle, A.-J., Kuiper, R., & Kley, W. 2016, MNRAS, 459, 1146

Narloch, W., Pietrzyński, G., Gieren, W., et al. 2021, A&A, 647, A135

Nazé, Y., Hartwell, J. M., Stevens, I. R., et al. 2002, ApJ, 580, 225Nota, A., Sirianni, M., Sabbi, E., et al. 2006, ApJL, 640, L29, doi: 10.1086/503301

Povich, M. S., Benjamin, R. A., Whitney, B. A., et al. 2008, ApJ, 689, 242

Renzo, M., Zapartas, E., de Mink, S. E., et al. 2019, A&A, 624, A66

Rivero González, J. G., Puls, J., Massey, P., & Najarro, F. 2012, A&A, 543, A95

Sahai, R., & Chronopoulos, C. K. 2010, ApJL, 711, L53 Sheets, H. A., Bolatto, A. D., van Loon, J. T., et al. 2013, ApJ, 771,

111 Tenorio-Tagle, G. 1979, A&A, 71, 59

van Buren, D., & McCray, R. 1988, ApJL, 329, L93

van Buren, D., Noriega-Crespo, A., & Dgani, R. 1995, AJ, 110,

Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574

Vink, J. S., & Sander, A. A. C. 2021, MNRAS, 504, 2051

Walborn, N. R., & Blades, J. C. 1986, ApJL, 304, L17

Weilbacher, P. M., Palsa, R., Streicher, O., et al. 2020, A&A, 641, A28, doi: 10.1051/0004-6361/202037855

Wilkin, F. P. 1996, ApJL, 459, L31

Ye, T., Turtle, A. J., & Kennicutt, R. C., J. 1991, MNRAS, 249, 722

Figure 7. Panoramic view of the NGC 346/N66 region at infrared wavelengths: (a) Short wavelength mid-infrared (3.6 to 8 μ m); (b) Longer wavelength mid-infrared (12 to 100 μ m); (c) Far-infrared (70 to 150 μ m); (d) Zoomed view of panel b. Images are from satellite observatories as follows: *Spitzer* IRAC 3.6, 4.5, 8 μ m); *WISE* 12 μ m; *Spitzer* MIPS 24, 70 μ m; *Herschel* PACS 100, 150 μ m.

Figure 8. East—west brightness profile cuts in various infrared bands.

Figure 9. Spectral energy distribution of bow shock (large symbols and downward arrows) and background nebula small symbols joined by dashed line.