

CSCI 3022, Intro to Data Science Summer 2018 Tony Wong

Lecture 7: Discrete Random Variables and Their Distributions

Announcements and reminders

HW 2 due Friday at 5 PM

· Quizlet 3 due Thursday at 1 PM

Previously, on CSCI 3022...

Definition: A <u>discrete random variable</u> (r.v.) X is a function that maps the elements of the sample space Ω to a finite number of values a_1, a_2, \ldots, a_n or an infinite number of values a_1, a_2, \ldots

Definition: A **probability mass function** (pmf) is the map between the random variable's values and the probabilities of those values

$$f(a) = P(X=a)$$

Definition: A <u>cumulative distribution function</u> (cdf) is a function whose value at a point *a* is the cumulative sum of probability masses up until *a*

$$F(a) = P(X \le a)$$

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice. Some questions:

X = 1, 2, 3, 4, 5, 6

 $\searrow S = \left\{ (1,1), (1,2) \dots \right\}$ (ω_1, ω_2)

- **Q1:** What are the possible values that X can take?
- Q2: Which elements of the sample space map to which values of X?
- **Q3:** What is the pmf of the random variable X?

		[2	[3	14	[5	16	Wz
							_
2	2	2	3	4	5	6	
3	3	3	3	4	5	6	
4	4	Ч	4	4	5	6	~~X
5	5	5	5	5	5	6	
6	6	6	6	6	4	4	
	2 3 4 5	1 1 2 2 3 3 4 4 5 5	1 1 2 2 2 2 3 3 3 4 4 4 5 5 5	1 1 2 3 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5	1 1 2 3 4 2 2 2 3 4 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5	1 1 2 3 4 5 2 2 2 3 4 5 3 3 3 3 4 5 4 4 4 4 4 5 5 5 5 5 5	5 5 5 5 5 6

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice. Some questions:

Q1: What are the possible values that X can take?

Q2: Which elements of the sample space map to which values of X?

Q3: What is the pmf of the random variable X?

	1	2	3	4	5	6
1	1	(2)	3.⁄	4	5	6
2	(2)	(2)	3./	4	5	6
3	3	3~	3	4	5	6
4	4	4	4	4	5	6
5	5	5	5	5	5	6
6	6	6	6	6	6	6

а	1	2	3	4	5	6
f(a)	136	3/36	5 36	36	936	1/36

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice. Some questions:

			<u> </u>					
а	1	2	3	4	5	6		
f(a)	1/36	3/36	5/36	7/36	9/36	11/36		

Q4: What is the probability that X is an even number?
$$P(E) = P(K=2 \cup X=4 \cup X=6)$$
 $A = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$
 $f(a) \quad 1/36 \quad 3/36 \quad 5/36 \quad 7/36 \quad 9/36 \quad 11/36$
 $= P(K=2) + P(K=4) + P(K=6)$
 $= \frac{3}{36} + \frac{7}{36} + \frac$

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice. Some questions:

Q5: What is the probability that X is 3 or smaller?

$$= F(3) = P(x \le 3)$$

$$= \frac{1}{36} + \frac{3}{36} + \frac{5}{36}$$

$$= \frac{9}{36}$$

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the maximum of the two dice. Some questions:

Q6: What is the complete cdf of X?

а	1	2	3	4	5	6
f(a)	1/36	3/36	5/36	7/36	9/36	11/36

а	1	2	3	4	5	6
F(a)	36	36	9/36	19/36	25	36
۲(* * 1 \	T P(!	K(2)			

Visualizing pmfs and cdfs

Example: S'pose you roll two fair, six-sided dice. Let X be a random variable representing the

Common discrete r.v. distributions

Discrete r.v.'s can be categorized into different types or classes that each **model** different real-world situations

The Bernoulli distribution

The Bernoulli distribution is used to model experiments with only two possible outcomes.

Often referred to as "success" and "failure", and encoded as 1 and 0, respectively.

Definition: A discrete random variable X has a **Bernoulli distribution** with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$f(1) = \rho_X(1) = P(X=1) = \rho$$
 and $\rho_X(0) = P(X=0) = 1-\rho$

We denote this distribution by Ber(p)

The Bernoulli distribution

The Bernoulli distribution is used to model experiments with only two possible outcomes.

Often referred to as "success" and "failure", and encoded as 1 and 0, respectively.

Definition: A discrete random variable X has a <u>Bernoulli distribution</u> with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$f(1) = p_{X}(1) = P(X=1) = p$$
 and $p_{X}(0) = P(X=0) = 1-p$

We denote this distribution by Ber(p)

Question: Wouldn't it be nice if we could describe the pmf with a single equation?

$$4(x) = p^{x} (1-p)^{-x}$$

The Bernoulli distribution

The Bernoulli distribution is used to model experiments with only two possible outcomes.

Often referred to as "success" and "failure", and encoded as 1 and 0, respectively.

Definition: A discrete random variable X has a <u>Bernoulli distribution</u> with parameter p, where $0 \le p \le 1$, if its probability mass function is given by

$$f(1) = p_{x}(1) = P(X=1) = p$$
 and $p_{x}(0) = P(X=0) = 1-p$

We denote this distribution by Ber(p)

Question: Wouldn't it be nice if we could describe the pmf with a single equation?

 \rightarrow if we have $p_X(1)=p$, and $p_X(0)=1-p$, then for x in $\{0, 1\}$, we have $p_X(x)=p^x(1-p)^{1-x}$

A counting interlude

We'll come back to the Bernoulli distribution in a minute. First... we *count!*

Counting comes up all over the place in probability (and therefore in data science, comp sci, math, physics, etc...)

Some counting is easy: how many integers are there in the interval [0, 9]?

But we're interested in counting problems that require a bit more thought:

- Dan, Chris, Rhonda and Tony line up at the coffee stand. How many different orders could they stand in?
- If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

A counting interlude

We'll talk about two important kinds of counting problems today:

1) Counting <u>permutations</u> means counting the number of ways that a set of objects can be ordered (or *permuted!*) elements are bistingly by the counting the number of ways that a set of objects can be

Example: Dan, Chris, Rhonda and Tony line up at the coffee stand. How many different orders could they stand in?

 Counting <u>combinations</u> means counting the number of ways that a set of objects can be combined into subsets

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

A counting interlude

We'll talk about two important kinds of counting problems today:

1) Counting **permutations** means counting the number of ways that a set of objects can be ordered (or *permuted!*)

Example: Dan, Chris, Rhonda and Tony line up at the coffee stand. How many different orders could they stand in?

2) Counting <u>combinations</u> means counting the number of ways that a set of objects can be combined into subsets

NDISTINGUISH (BLE demots

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

Permutations

Questions:

- How many ways are there to order a set of 1 object?
- How many ways are there to order a set of 2 objects? Z = 2!
- How many ways are there to order a set of 3 objects? Thank also a shired object

2=1

The Big Question: What is a formula for the number of ways you can order n objects?

for n objects,
there are n!
Permutations of them

convention

Permutations

Question: What if we have *n* objects, but want to count permutations of only *r* of them?

Example: How many 3-character strings can we make if each character is a distinct letter from the English alphabet?

$$= \frac{26 \times 25 \times 24}{23!} \times \frac{23 \times 22 \times 22}{23!}$$

Question: What is the general formula for *r*-permutations of *n* objects?

$$b(u'L) = \frac{(u-L)i}{ui}$$

Permutations

Question: What if we have *n* objects, but want to count permutations of only *r* of them?

Example: How many 3-character strings can we make if each character is a distinct letter from the English alphabet?

Answer: $26 \times 25 \times 24$

Question: What is the general formula for *r*-permutations of *n* objects?

Answer: $P(n,r) = \frac{n!}{(n-r)!}$

Counting **combinations** means counting the number of ways a set of objects can be combined into subsets

Key difference: When counting combinations, order does not matter.

Example: How many 3-character **combinations** can we make if each character is a distinct letter from the English alphabet?

If we care about order, then we'd have
$$P(26,3)$$

Now need to treat abc same as bac, cab,...

But only count to perms. of count one $3c.a.b.$?

Example: How many 3-character **combinations** can we make if each character is a distinct letter from the English alphabet?

→ Start with the number of 3-permutations of 26 letters:

$$P(26.3) = \frac{26!}{23!}$$

→ But if order doesn't matter, we are counting combinations multiple times

we're over-country by a factor of
$$6 = 3!$$
 \Rightarrow divide out by $3!$ to account for over-country

 $C(26,3) = \frac{26!}{23! 3!}$

There are many different notations for combinations. You can write the number of ways to choose r objects from a set of n objects as:

$$C(n, r)$$
 or $C_{n, r}$ or $\binom{n}{r}$ $=$ $\binom{n}{n-r}! r!$

#ways to pick 7 out of 10 problems to set correct; order doesn't maker

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

There are many different notations for combinations. You can write the number of ways to choose r objects from a set of n objects as:

$$C(n, r)$$
 or $C_{n, r}$ or $\binom{n}{r}$

Example: If there are 10 problems on an exam, and you need 7 correct to pass, how many different ways are there to pass?

Answer: # ways = C(10, 7) + C(10, 8) + C(10, 9) + C(10, 10) = ...

Example: A coin is flipped 10 times. How many possible outcomes have exactly 2 Heads?

$$\binom{10}{2}$$

Example: A coin is flipped 10 times. How many possible outcomes have 2 Heads or fewer?

$$= \frac{\binom{10}{2}}{8! \ 2!} + \frac{\binom{0}{1}}{9! \ 1!} + \frac{\binom{0}{0}}{\binom{0}{0}!}$$

Example: S'pose you show up to a quiz completely unprepared. Oh no! The quiz has 5 questions, each with 4 multiple choice options. You decide to guess each answer in a completely random way. What is the probability that you get 3 questions correct?

Example: S'pose you show up to a quiz completely unprepared. Oh no! The quiz has 5 questions, each with 4 multiple choice options. You decide to guess each answer in a completely random way. What is the probability that you get 3 questions correct?

For
$$i = 1, 2, 3, 4, 5$$
 let $R_i = \begin{cases} 1 & \text{if the } i^{th} \text{ answer is correct} \\ 0 & \text{if the } i^{th} \text{ answer is incorrect} \end{cases}$

Question: What can you say about R_i ?

Example: S'pose you show up to a quiz completely unprepared. Oh no! The quiz has 5 questions, each with 4 multiple choice options. You decide to guess each answer in a completely random way. What is the probability that you get 3 questions correct?

$$\rightarrow$$
 Let r.v. $X = \#$ correct answers. $\rightarrow X = R_1 + R_2 + R_3 + R_4 + R_5$

Question: What values can X take?

Question: What is the probability that you get 0 problems correct? :(

$$P = 0.25$$
 to get one correct
 $\rightarrow (1-p)(1-p)(1-p)(1-p) = 0.75$

(Example, cont.)

Question: What is the probability that you get 0 problems correct? :(

Answer:
$$P(X=0) = P(R_1=0, R_2=0, R_3=0, R_4=0, R_5=0)$$

= $P(R_1=0)P(R_2=0)P(R_3=0)P(R_4=0)P(R_5=0)$

$$=\left(\frac{3}{4}\right)$$

Question: What is the probability that you get 0 problems correct? :(

Answer:
$$P(X=0)=P(R_1=0,R_2=0,R_3=0,R_4=0,R_5=0)$$
 $=P(R_1=0)P(R_2=0)P(R_3=0)P(R_4=0)P(R_5=0)$ $=\left(\frac{3}{4}\right)^5$

Question: What is the probability that you get exactly 1 problem correct?

$$\rightarrow$$
 P(X=1) = ???

- \rightarrow Could have gotten Q1 correct \rightarrow P(R₁=1, others = 0) = (1/4)(3/4)⁴
- → Could have gotten Q2 correct → $P(R_2=1, others = 0) = (\frac{3}{4})(\frac{1}{4})(\frac{3}{4})^3 = (\frac{1}{4})(\frac{3}{4})^4$
- \rightarrow ... and so on ... **P(X=1)** = $5 \cdot (\frac{1}{4}) \cdot (\frac{3}{4})^4$

Question: What is the probability that you get k problems correct out of n problems total?

$$(k \text{ some } \ge 0, \text{ integer})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Where the combination (or binomial coefficient) is
$$\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$$

Question: What is the probability that you get k problems correct out of n problems total? (k some ≥ 0, integer)

Answer:
$$p_X(k) = \binom{n}{k} \ p^k \ (1-p)^{n-k}$$

Definition: A discrete r.v. X has a <u>binomial distribution</u> with parameters n and p, where n = 1, 2, ... and $0 \le p \le 1$, if its probability mass function is given by

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, 2, \dots, n$

We denote this distribution by Bin(n, p)

What **assumptions** did we make in going from Ber(p) to Bin(n, p)?

What **assumptions** did we make in going from Ber(p) to Bin(n, p)?

- Each of the n Bernoulli trials are independent
- Each of the Bernoulli trials has the same probability of success p

The Most Boring (but Common) Distribution of Them All

What is the distribution of a fair die?

The Most Boring (but Common) Distribution of Them All

What is the distribution of a fair die?

$$P(1) = P(2) = ... = P(6) = \frac{1}{6}$$

Definition: A discrete r.v. X has a <u>discrete uniform distribution</u> with parameters a, b, and n=b-a+1 if

Okay! Let's get to work!

Get in groups, get out laptops, and open **nb07** notebook

Lets...

- See some more examples of computing pmfs and dfs
- Look at some more examples of the Binomial distribution
- Learn how to sample from the Bernoulli and Binomial distributions in Numpy