

Sistema de monitoreo de servicios de planta

Autor:

Marcelo Roberto García

Director:

Mg. Ing. Gonzalo Nahuel Vaca (INVAP)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	 5
2. Identificación y análisis de los interesados	 7
3. Propósito del proyecto	 7
4. Alcance del proyecto	 7
5. Supuestos del proyecto	 8
6. Requerimientos	 8
7. Historias de usuarios (<i>Product backlog</i>)	 9
8. Entregables principales del proyecto	 9
9. Desglose del trabajo en tareas	 10
10. Diagrama de Activity On Node	 10
11. Diagrama de Gantt	 11
12. Presupuesto detallado del proyecto	 14
13. Gestión de riesgos	 14
14. Gestión de la calidad	 15
15. Procesos de cierre	 16

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	21 de junio de 2022
1	Se completa hasta el punto 5 inclusive	05/06/2022

Acta de constitución del proyecto

Buenos Aires, 21 de junio de 2022

Por medio de la presente se acuerda con el Ing. Marcelo Roberto García que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Sistema de monitoreo de servicios de planta", consistirá esencialmente en la implementación de un servidor y una red de dispositivos distribuidos en planta para la lectura del estado de los servicios, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y USD 150, con fecha de inicio 21 de junio de 2022 y fecha de presentación pública 15 de mayo de 2023.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Ing Guillermo Horacio Vidal ROEMMERS SAICF

Mg. Ing. Gonzalo Nahuel Vaca Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El proyecto a realizar es un sistema de monitoreo de servicios de planta. La empresa ROEMMERS elabora medicamentos en distintas presentaciones bajo las normas BPF (Buenas Practicas de Fabricación), normas que son exigidas por la A.N.M.A.T para autorizar su comercialización.

Para el cumplimiento de las reglamentaciones, se cuenta con los siguientes sistemas de control:

- Sistema de control HVAC (Heating and Ventilating Air Conditioned)
- Sistema de control de agua purificada, agua destilada y agua WFI (Water For Inyection)
- Sistema de control de vapor sanitario
- Sistema de control de tratamiento de efluentes

Los sistemas de control se operan mediante SCADAS, la operación es llevada a cabo por el departamento de mantenimiento de servicios, que también tiene como tarea asegurar los suministros de vapor, aire comprimido, agua potable, electricidad y gas natural para el funcionamiento de los sistemas.

Los SCADAS se encuentran distribuidos en 2 salas de control denominadas DDC1 y DDC2. La conexión con los sistemas de control se realiza por medio de una red de FO compuesta por 7 switches conectados en anillo. En la Figura 1 se observa un diagrama conceptual de la red.

En la actualidad, los suministros no se encuentran monitoreados por un SCADA, esto se debe a la distribución física de los servicios en la planta y a la escasa cantidad de variables requeridas en comparación a los sistemas de control. Estas características vuelven inviable el despliegue de una red cableada y su hardware, motivo por el cual, la lectura del estado de los servicios se realiza in situ mediante la implementación de un calendario de revisiones diarias. Dichas revisiones son realizadas por los técnicos de mantenimiento de servicios.

En una tarea conjunta del departamento de mantenimiento de servicios y del departamento de mantenimiento electrónico, se propone la creación de un sistema de monitoreo de servicios de planta. El sistema utilizará la red de FO actual, a la cual se accederá con tecnología de tipo inalámbrica, esta tecnología permitirá reducir significativamente los costos de implementación.

En la Figura 2, se observa el diagrama en bloques de una interfaz de conexión a la red, mientras que en la Figura 3 se observa el diagrama en bloques de una interfaz de adquisición, ambas interfaces conforman el enlace entre la red y los puntos de servicio.

Se espera que el proyecto agregue valor de la siguiente manera:

- Optimizando el tiempo empleado en el relevamiento de los servicios
- Aumentando la productividad del sector
- Suministrando datos que aporten el desarrollo de estrategias de mantenimiento predictivo
- Fomentando la iniciativa de ambos departamentos mediante equipos de trabajo

Figura 1. Diagrama de la red

Figura 2. Diagrama en bloques de la interfaz de conexión

Figura 3. Diagrama en bloques de la interfaz de adquisición

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto		
Cliente	Ing Guillermo Horacio	ROEMMERS SAICF	Jefe de Servicios		
	Vidal				
Responsable	Marcelo Roberto García	FIUBA	Alumno		
Orientador	Mg. Ing. Gonzalo Nahuel	INVAP	Director Trabajo final		
	Vaca				
Usuario final	Supervisor y técnicos de	ROEMMERS SAICF	-		
	manatenimiento de ser-				
	vicios				

• Cliente: cumple también el rol de usuario final.

3. Propósito del proyecto

El propósito de este proyecto es:

- Implementar la lectura de estado y variables criticas de los servicios utilizados para el funcionamiento de los sistemas.
- Incorporar el uso de nuevas tecnologías para el despliegue de red utilizando la red FO actual
- Brindar herramientas al departamento de mantenimiento de servicios para poder implementar estategias de mantenimiento predictivo.
- Reducir la frecuencia de chequeo in situ de las instalaciones

4. Alcance del proyecto

El proyecto incluye en su alcance:

- Instalación de un servidor en sala de control DDC1
- Diseño e instalación de las bases de datos
- Desarrollo de una API para la comunicación con los dispositivos
- Desarrollo de una SPA para el monitoreo de las variables
- Desarrollo de una interfaz de conexión y una interfaz de adquisición capaces de transmitir información de manera inalámbrica utilizando los sigueintes protocolos: LoRa, LoRaWAN, Wi-Fi o ZigBee

El proyecto no incluye en su alcance:

- Conexión del sistema a internet
- Desarrolo de App movil

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se tendrá acceso a un punto de servicio designado sobre el cual se realizará la instalación de la interfaz
- Se dispondrá de recursos para la instalación de un servidor en la sala DDC1
- Se tendrá acceso irrestricto al instrumental de laboratorio del departamento de mantenimiento electrónico
- Se contará con la participación activa del personal de mantenimento de servicios y de un integrante del departamento de mantenimiento electrónico durante el desarrollo del proyecto

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 4. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 5, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 5. Diagrama de gantt de ejemplo

Figura 6. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS						
Descripción	Valor total					
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.