Complexidade e Busca

NP, coNP, ..., PSPACE

Marcelo Finger

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

1° Semestre 2020

Tópicos

- Busca Cega
- 2 Hierarquia Polinomial
- 3 Lógica Booleana Quantificada

Tópicos

- BUSCA CEGA
- 2 HIERARQUIA POLINOMIAL
- 3 Lógica Booleana Quantificada

Espaço de busca exponencial

Espaço de busca exponencial

Espaço de busca exponencial

Espaço de busca exponencial

Caminho "testemunha" é pequeno: problema em NP (Σ_1^p)

Encontrar Todos Estados Meta

Espaço de busca igualmente exponencial

Contraexemplo "testemunha" é pequeno: problema em coNP (Π_1^p) .

ALTERNÂNCIA OU-E

Espaço de busca exponencial

Encontrar caminho "testemunha" em que todos ramos são metas: problema em Σ_2^p

ALTERNÂNCIA E-OU

Espaço de busca exponencial

Encontrar todos os ramos em que há uma "testemunha" metas: problema em co $\Sigma_2^p=\Pi_2^p$

ALTERNÂNCIA OU-E-OU

Espaço de busca exponencial

Existe caminho em que todas sub-árvores possuem um caminho para meta: Σ_3^p

Tópicos

- Busca Cega
- 4 HIERARQUIA POLINOMIAL
- 3 Lógica Booleana Quantificada

HIERARQUIA DE CLASSES DE COMPLEXIDADE

$$\Sigma_0^p = \Pi_0^p = P$$

$$\Sigma_{i+1}^p = \exists^p \Pi_i^p$$

$$\Pi_{i+1}^p = \forall^p \Sigma_i^p = \mathrm{co} \Sigma_{i+1}^p$$

PROPRIEDARES

$$\Sigma_{i}^{p} \subseteq \Sigma_{i+1}^{p}$$
$$\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p}$$

$$\Pi_{i}^{p} \subseteq \Pi_{i+1}^{p}$$

$$\Pi_{i}^{p} \subseteq \Sigma_{i+1}^{p}$$

EM ABERTO: COLAPSO DA HIERARQUIA POLINOMIAL

Existe algum *i* tal que $\Sigma_i^p = \Pi_i^p$?

Tópicos

- Busca Cega
- 2 Hierarquia Polinomiai
- 3 Lógica Booleana Quantificada

LÓGICA BOOLEANA

Temos um conjunto de símbolos/variáveis proposicionais:

$$X = \{x_1, \ldots, x_n\}$$

Conectivos Booleanos: $\neg, \land, \lor, \rightarrow$

Fórmulas construídas com esses conectivos

Semântica: valorações $v:X \to \{0,1\}$

Dados v e fórmula φ , calcular $v(\varphi)$ é fácil

Satisfatibilidade e Validade

Dada uma fórmula φ

- φ é satisfazível se existe v, $v(\varphi) = 1$ (NP)
- φ é válida se para todo v, $v(\varphi) = 1$ (coNP)

Compare com

- $\exists x_1 \dots \exists x_n \varphi$ é válida (NP)
- $\forall x_1 \dots \forall x_n \varphi$ é válida (coNP)

Fórmulas da Lógica Booleana Quantificada (LBQ)

FÓRMULAS DA LBQ

Seja φ uma fórmula booleana.

Então as fórmulas da LBQ tem a forma:

$$\exists x_1 \dots x_{a_1} \forall x_{a_1+1} \dots x_{a_2} \dots Q x_{a_{m-1}+1} \dots x_{a_m} \varphi$$

ou

$$\forall x_1 \dots x_{a_1} \exists x_{a_1+1} \dots x_{a_2} \dots Q x_{a_{m-1}+1} \dots x_{a_m} \varphi$$

m é o grau de alternância da fórmula.

$$Q \in \{\exists, \forall\}.$$

COMPLEXIDADE

- Decidir a validade de uma fórmula LBQ é PSPACE-completo.
- Se fixarmos o grau de alternância, obtemos a Hierarquia **Polinomial**

LÓGICA BOOLEANA QUANTIFICADA

0000000

Equivalência entre LBQ e BQ

THEOREM

Para cada fórmula A da LBQ existe uma fórmula B sem quantificadores tal que A é valida sse B é satisfatível.

- B em geral é exponencialmente maior que A
- A transformação de *B* em *A* é o processo de **determinização** de uma busca não determinística.

EXEMPLOS

- $\exists x \varphi$ é válido se φ é sat sse $(x \land \varphi) \lor (\neg x \land \varphi)$ é sat
- $\forall x \varphi$ é válido se $(x \to \varphi) \land (\neg x \to \varphi)$ é sat
- A tradução é feita algoritmicamente:

$$bool(\exists xA) = (x \land bool(A)) \lor (\neg x \land bool(A))$$

$$bool(\forall xA) = (x \to bool(A)) \land (\neg x \to bool(A))$$

Como fica esta tradução em termos de árvores E-OU?