問題F:風呂がオーバーフロー

問題文:井上

解說:栗田

解答:井上、栗田、鈴木

問題概要

- * 頂点数101以下の無向グラフが与えられる.
- * ソースが複数、シンクが1個存在する、
- * 辺の容量を1つだけ無限にして、流量を最大化せよ」も し流量が無限になる時は"overfuro"を出力せよ。

考察1

- * 見るからに最大流問題を解けと言っている. しかし、最大流問題ではグラフは有向グラフである.
- *無向グラフを有効グラフにするテクニックとして、無向 辺が存在する頂点間にはお互いに有向辺でつなぐ方法が ある

考察2

- * 最大流問題ではソースは1つであるが、今回の問題は ソースがK個ある。
- * このような場合はノードを1つ加えてソースをまとめて 考えれば良い。

想定TLE解法

- * あとは、この単一ソースの有向グラフ上で最大流問題を解けば 良い.
- * 単純にはグラフ中の辺を1つ選んで、その辺の容量を無限に し、最大流を解けば良い。
- E回最大流を解くのでO(E*最大流アルゴリズムの計算量)で解ける。FordFulkersonならO(E²F), DinicならO((VE)²)になる。F
 は答えになる最大流の値。
- ※ どちらも10¹⁰くらいになる。これは間に合わない。

考察3

- * すべての辺をオーバーフローさせる必要はない.
- *最大流最小カット定理より、最小カットに含まれない辺 の容量を増加させても意味がないことがわかる.
- * なので、カットに含まれる辺についてのみ考えれば良い.

この辺をオーバーフローさせるとs-aと d-tの最大流の小さい分の流量が流せる.

想定解法

- *最小カットを求めて、カットに含まれるそれぞれの辺の端点への最大流を解いて、両端点の流量の最小値が最大になる辺をオーバーフローさせればいい。
- * これにより、V回だけ最大流問題を解けば良い.
- * よって, O(V*最大流アルゴリズムの計算量)になる.
- * ここで、O(V²E)のDinic法や、O(V³)のPush-Relabel法などの高速なフローアルゴリズムを用いると解ける.

(Ford-Fulkersonでは遅い)

余談 (Dinicは速い)

- * Dinic法は最悪計算量がO(V²E)のアルゴリズムだが、最悪ケース以外のグラフではメチャメチャ速い.
- * 今回の問題はDinic法を使ったナイーブ解法でも、最悪ケース以外では余裕でACする.
- *他にもグラフの制約によってはDinic法は理論的に計算量が改善するらしい。

参考サイト: http://topcoder.g.hatena.ne.jp/Mi_Sawa/20140311/
1394730337

Writer解

- ※ 井上 (C++) :119行
- * 鈴木 (C++) : 134行
- * FordFulkersonは遅いのでDinicを覚えるといいことあるかも

解答状況

* FA

-オンライン: tanzaku

-オンサイト: energy_star

- Accept/Submit
 - 4/41(9.76%)