Universidade Federal de São Paulo – UNIFESP

Segurança Computacional

Aula 03: Criptografia, Algoritmos e Criptoanálise Prof. Valério Rosset

Criptografia

Categorias de cifra

 Cifras de Bloco: dividem o texto original em partes iguais chamadas de blocos. Cada bloco é cifrado separadamente, ao final juntam-se os blocos em um único texto cifrado.

Criptografia

Categorias de cifra

• Cifras Sequenciais ou de fluxo:

codificam um fluxo de dados por bit ou bytes de cada vez. Sua qualidade esta ligada ao tamanho da chave que deve, quanto maior a chave maior a dificuldade de revelar a mensagem.

Criptografia Cifras de Bloco

Cifra de Feistel

- Feistel propôs uma cifra que combina substituições com permutações.
- Esse modelo é utilizado pela maioria das cifras de bloco simétrico utilizados.

Criptografia

Cifras de Feistel

- Entrada de 2w bits e uma chave
 K
- Bloco de Texto claro é dividido em 2 metades (L₀, R₀).
- Duas metades passam por n rodadas e são combinados para formar o texto cifrado.
- A realimentação de cada rodada é feita com L e R da rodada anterior + uma chave Ki derivada da chave K.
- F é a função complexa que é aplicada a metade direita dos dados R e depois realiza um OU exclusivo com L.

Criptografia Cifras de Feistel

Parâmetros:

- Tamanho do Bloco: quanto maior mais seguro porém mais lento. 128 bits ideal
- Tamanho da chave: quanto maior mais seguro porém mais lento. Também usase 128 bits, mas não ideal.
- Numero de rodadas: esse é o fator crítico desse tipo de cifra. N=16 no DES.
- Função F: quanto mais complexa geralmente poderá ser mais resistente.

- O S-DES foi criado pelo professor Edward
 Shaefer da Universidade de Santa Clara com o objetivo de simplificar o ensino do funcionamento do DES.
- O algoritmo de encriptação envolve cinco funções:
 - permutação inicial (IP);
 - a função complexa chamada de fk, que envolve permutação e substituição dependente da chave;
 - a simples permutação de troca de duas metade dos dados (SW);
 - a função₁fk novamente
 - finalmente é aplicada a função inversa da permutação inicial (IP).

- Esquema do S-DES :
 - IP-Permutação Incial, fk Função complexa, SW Permutação simples

• Fórmulas:

```
texto cifrado = IP<sup>-1</sup> (f_{k_2} (SW(f_{k_1}(IP(texto claro)))))

texto claro = IP<sup>-1</sup> (f_{k_1} (SW(f_{k_2}(IP(texto cifrado)))))

Onde:
\begin{cases} K_1 = P8(Shift(P10(Key))) \\ K_2 = P8(Shift(Shift(P10(Key)))) \end{cases}
```

Geração da chave

Chave = (k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)

P10(Chave) = (k3,k5,k2,k7,k4,k10,k1,k9,k8,k6)

P10 35274101986 P8 637485109

Exemplo de geração de chaves

P10	P8
35274101986	637485109

- Chave K: 1010000010
- K1:
 - Permutação inicial (P10) 1000001100
 - Separação 10000 01100
 - Rotação a esquerda LS-1: 00001 11000
 - Aplicação da tabela P8
 - O resultado é a sub-chave K1 10100100

Exemplo de geração de chaves

P10	P8
35274101986	637485109

- Para K2,
- pega-se o resultado de LS-1

00001 11000

Rotação a esquerda LS-2 duas posições

00100 00011

- Aplicação da tabela P8
- O resultado é a sub-chave K2 é

01000011

- O componente complexo do S-DES é a função Fk,
- Combinação de funções de permutação e substituição.
- L e R são os quatro bits a esquerda e os quatro bits a direita dos 8 bits que entraram na função
- F é a função que executa as operações com os dados R e a sub-chave SKn.

•A permutação inicial (IP) e final (IP-1) que ocorre durante o processo de cifragem e decifragem, dos 8 bits processados, obedece a seguinte tabela:

IP							
2	6	3	1	4	8	5	7
	•			2024	-	-	
IP^{-1}							
4	1	3	5	7	2	8	6

- A função F(R,SK).
- Ocorre uma operação de expansão/permutação nos 4 bit de R, transformando-o em 8 bits;
- É realizada uma operação de OU exclusivo com a sub-chave (K1);
- 3. É então separado em dois grupos de 4 bits cada, que passam por uma operação na caixa S (S0 e S1). A caixa S tem uma entrada de 4 bits e uma saída de 2 bits.
- O produto da caixa S é concatenado e sofre uma permutação, de acordo com a régua P4.

Função Fk

1) 0101

$$E/P = 10101010$$

2) XOR

$$K1 = 10000001$$

$$R = 00101011$$

3) 0010 1011

S0 = 3	3 2	3 1 1	0
	3 1	3	2
S1 = 2			3 0
2	2 1	0	3

XOR	1	0
1	0	1
0	1	0

3)	0010	1011

$$00 = 0$$
 $11 = 3$

$$01 = 1$$
 $01 = 1$ $s_0 = 3 \ 2 \ 1 \ 0$

$$0 = 3 \ 4 \ 1 \ 0$$

0001

$$S1 = 2 \ 0 \ 1 \ 3$$
 $S1 = 2 \ 0 \ 1 \ 0$
 $S1 = 2 \ 0 \ 1 \ 0$

4) Entra: 0001

Saída(P4) = 0100

- O resultado de P4 sofre uma operação de OU exclusivo com L.
- 6. A função fk somente altera os 4 bits a esquerda, deixando inalterado os 4 bits da direita.
- 7. O próximo passo é a função Switch. A função SW executa uma transposição, onde os 4 bits da direita serão os quatro bits da esquerda e vice versa.
- 8. Estas mesmas operações são realizadas novamente, utilizando desta vez a chave K2.

Tarefa (em duplas)

- Implemente o algoritmo de criptografia S-DES para decifrar um texto (cifrado.seg) fornecido pelo professor. A chave K também será fornecida.
- A linguagem deve ser C, C++,Java ou python.
 Deverá rodar no laboratório e ser apresentado ao professor.
- Entrega: a definir