Devoir à la maison n° 6

À rendre le 12 novembre

Soient E un ensemble et A et B deux parties de E. On note φ l'application

$$\varphi : \left\{ \begin{array}{ccc} \mathscr{P}(E) & \to & \mathscr{P}(A) \times \mathscr{P}(B) \\ X & \mapsto & (X \cap A, X \cap B) \end{array} \right..$$

- A. On veut montrer que φ est injective si et seulement si $A \cup B = E$.
 - 1. On suppose que φ est injective, mais que $A \cup B \neq E$.
 - a. Calculer $\varphi(\emptyset)$.
 - b. Montrer qu'il existe $x \in E$ tel que $x \notin A$ et $x \notin B$.
 - c. Que vaut $\varphi(\lbrace x \rbrace)$? Conclure.
 - 2. On suppose que $A \cup B = E$. Soit $X, Y \in \mathscr{P}(E)$ tel que $\varphi(X) = \varphi(Y)$.
 - a. Soit $x \in E$. Montrer que $x \in A$ ou $x \in B$.
 - b. Soit $x \in X$. Montrer que si $x \in A$, on a aussi $x \in Y$, et qu'il en est de même si $x \in B$. Que peut-on en conclure?
 - c. Achever la démonstration en montrant que X = Y.
- B. On veut maintenant montrer que φ est surjective si et seulement si $A \cap B = \emptyset$.
 - 3. On suppose que φ est surjective. En utilisant que (A, \emptyset) a un antécédent par φ , montrer que $A \cap B = \emptyset$.
 - 4. On suppose maintenant que $A \cap B = \emptyset$. Soient $A' \subset A$ et $B' \subset B$. Trouver un antécédent de (A', B') par φ s'exprimant de manière très simple en fonction de A' et B', et conclure.

— FIN —