Практика по алгоритмам

^{*}Составители сборника не являются авторами самих задач. Авторы не указаны в учебных целях.

1 Практика 1. Асимптотика

1.1 Практика

Напомним определения:

- $f(n) \in \mathcal{O}(g(n)) \equiv \exists N, C > 0 : \forall n \ge N : f(n) \le C \cdot g(n)$
- $f(n) \in \Omega(g(n)) \equiv \exists N, C > 0 : \forall n \ge N : C \cdot g(n) \le f(n)$
- $f(n) \in \Theta(g(n)) \equiv \exists N, C_1 > 0, C_2 > 0 : \forall n \ge N : C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$
- $f(n) \in o(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : f(n) < C \cdot g(n)$
- $f(n) \in \omega(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : C \cdot g(n) < f(n)$

Все функции здесь $\mathbb{N} \to \mathbb{N}$ или $\mathbb{N} \to \mathbb{R}_{>0}$ (далее будет ясно из контекста, какой класс функций используется). В дальнейшем, когда речь идет о принадлежности функций вышеопределенным множествам, мы будем использовать знак "=" вместо " \in ", т.к. в литературе обычно используются именно такие обозначения.

- 1. Докажите, что:
 - (a) $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$
 - (b) $f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$
 - (c) $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \land f(n) = \Omega(g(n))$
- 2. Контекст имеет значение

Правда ли, что $f(n) = \mathcal{O}(f(n)^2)$?

- 3. Асимметрия
 - (a) Правда ли, что $\min(f(n), g(n)) = \Theta(f(n) + g(n))$?
 - (b) Правда ли, что $\max(f(n), g(n)) = \Theta(f(n) + g(n))$?

4. Классы

Определим отношение " \sim ". Будем говорить, что $f\sim g$, если $f=\Theta(g)$. Покажите, что \sim отношение эквивалентности, т.е. оно

- Рефлексивное: $\forall f: f \sim f$,
- Симметричное: $\forall f, g : f \sim g \Leftrightarrow g \sim f$,
- Транзитивное: $\forall f, g, h : (f \sim g) \land (g \sim h) \Rightarrow f \sim h$.

5. Порядки

Определим отношение " \leq ". Будем говорить, что $f \leq g$, если $f = \mathcal{O}(g)$.

Определим отношение $f \leq g \equiv f = \mathcal{O}(g)$.

- (а) Правда ли, что ≤ отношение предпорядка (рефлексивное и транзитивное)?
- (b) Правда ли, что \preceq отношение частичного порядка (+ антисимметричность)?
- (c) Правда ли, что \leq отношение частичного порядка на классах эквивалентности по \sim ?
- 6. Правда ли, что если y(n) монотонная неограниченная функция, и $f(n) = \mathcal{O}(g(n))$, то $f(y(n)) = \mathcal{O}(g(y(n)))$?
- 7. Требуется реализовать очередь с амортизированным временем работы всех операций $\mathcal{O}(1)$, используя $\mathcal{O}(1)$ стеков.

- 8. Придумайте стек, в котором можно узнавать минимум за $\mathcal{O}(1)$. Все остальные операции стека также должны работать за $\mathcal{O}(1)$).
- 9. Придумайте очередь, в которой можно узнавать минимум за амортизированное $\mathcal{O}(1)$. Все остальные операции очереди также должны работать за амортизированное $\mathcal{O}(1)$.

```
10. (a) f(n) = \Omega(f(n/2))?
```

```
(b) f(n) = \mathcal{O}(g(n)) \Rightarrow \log f(n) = \mathcal{O}(\log g(n))?
```

(c)
$$f(n) = \mathcal{O}(g(n)) \Rightarrow 2^{f(n)} = \mathcal{O}(2^{g(n)})$$
?

(d)
$$f(n) = o(g(n)) \Rightarrow \log f(n) = o(\log g(n))$$
?

(e)
$$f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$$
?

- (f) $\sum_{k=1}^{n} \frac{1}{k} = \Omega(\log n)$?
- 11. Оцените время работы следующих программ:

```
(a) for (a = 1; a < n; a++) for (b = 0; b < n; b += 1) {}
```

(c) Найти такие $a,b,c\in\mathbb{N}:abc=n,a+b+c=\min$. Решение:

(d) Еще одно решение (c):

```
 \begin{array}{|c|c|c|c|c|c|} \hline \textbf{for} & (a = 1; \ a * a * a <= n; \ +\!\!\!\!+\!\!\!\!\! a) \\ \hline \textbf{for} & (b = 1; \ b * b <= n; \ +\!\!\!\!\!\!+\!\!\!\! b) \\ \hline & c = N \ / \ a \ / \ b, \ \dots \ ; \end{array}
```

(е) И еще одно решение (с):

(f) Дополнительный вопрос: что делает этот код?

(g) Дополнительный вопрос: а если бы вместо 2 было бы 1?

```
while (a >= 2)
a = sqrt(a);
```

(h) Решето Эратосфена (пользуемся, что: $p_n \approx n \ln n$)

```
for (p = 2; p < n; p++)
  if (min_divisor[p] == 0) // is prime
  for (x = p + p; x < n; x += p)
    if (min_divisor[x] == 0)
        min_divisor[x] = p;</pre>
```

Дополнительные задачи

- 12. Дан массив целых чисел от 1 до n длины n+1, который нельзя модифицировать. Используя $\mathcal{O}(\log n)$ битов дополнительной памяти, найдите в массиве пару одинаковых чисел за $\mathcal{O}(n)$.
- 13. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n] = \{1, 2, \cdots, n\}$. Обозначим частоту появления элемента x через $f_{\sigma}[x] = |\{i|a_i = x\}|$. Известно, что $\exists_x f_{\sigma}[x] = 1$ и для всех остальных значений $y \neq x, f_{\sigma}[y] \equiv 0 \mod 2$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 14. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_{n-1} \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_{\sigma}[x] = 0$ и для всех остальных значений $y \neq x, f_{\sigma}[y] = 1$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n)$ бит памяти.
- 15. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_{\sigma}[x] > \frac{m}{2}$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 16. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Требуется проверить, правда ли, что $\exists_x f_{\sigma}[x] > \frac{m}{2}$, и если такой x есть, то найти его за один проход по последовательности. Докажите, что любое решение потребует $\Omega(m \cdot (\log n \log m + 1))$ бит памяти.
- 17. Разрешим сделать два прохода по последовательности. Решите прошлую задачу за $\mathcal{O}(\log n + \log m)$ бит памяти.
- 18. Даны число k и последовательность $\sigma = < a_1, a_2, \cdots, a_m >$, где каждый $a_i \in [n]$. Назовем элемент x k-частым, если $f_{\sigma}[x] > \frac{m}{k}$. Придумайте, как найти все k-частые элементы за два прохода и $\mathcal{O}(k \cdot (\log n + \log m))$ бит памяти.
- 19. Даны число k последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Требуется отсортировать данную последовательность за k проходов и $\mathcal{O}(\frac{m}{k}\log n)$ бит памяти. Докажите, что ее нельзя отсортировать ее за $o(\frac{m}{k}\log n)$ бит памяти и k проходов.

1.2 Домашнее задание

- 1. Эквивалентны ли следующие факты:
 - $f = \Theta(g)$
 - $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathcal{O}(1)$
- 2. Дайте ответ для двух случаев $\mathbb{N} \to \mathbb{N}$ и $\mathbb{N} \to \mathbb{R}_{>0}$:
 - (a) Если в определении \mathcal{O} опустить условие про N (т.е. оставить просто $\forall n$), будет ли полученное определение эквивалентно исходному?
 - (b) Тот же вопрос про o.
- 3. Продолжим отношение " \leq " на функциях до отношения на классах эквивалентности по отношению эквивалентности " \sim ", введённому на паре. Правда ли, что получится отношение *линейного порядка*? То есть $\forall x, y : (x \leq y) \lor (y \leq x)$.
- 4. Покажите, что: $g(n) = o(f(n)) \Rightarrow f(n) + g(n) = \Theta(f(n))$
- 5. Считайте здесь, что $\forall n : f(n) > 1 \land g(n) > 1$.
 - (a) Правда ли, что $f(n) = o(g(n)) \Rightarrow \log f(n) = o(\log g(n))$?
 - (b) Правда ли, что $f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$?
- 6. Заполните табличку и поясните (особенно строчки 4 и 7):

A	B	0	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$ \begin{vmatrix} \log^k n \\ n^k \end{vmatrix} $	n^{ϵ}					
n^k	c^n					
\sqrt{n}	$n^{\sin n}$					
	$2^{n/2}$					
$n^{\log m}$	$m^{\log n}$					
$\log(n!)$	$\log(n^n)$					

Здесь все буквы, кроме n, — константы.

1.3 Дополнительные задачи

7. Упорядочите функции по скорости роста и обозначьте неравенства между соседями. Укажите, в каких неравенствах f = o(g), а в каких $f = \Theta(g)$

Примечание: $\log^*(n) = \left\{ \begin{array}{ll} 0 & \text{если } n \leq 1; \\ 1 + \log^*(\log n) & \text{иначе.} \end{array} \right.$

8. Дан массив целых чисел от 1 до n длины n+1, который нельзя модифицировать. Используя $\mathcal{O}(\log n)$ битов дополнительной памяти, найдите в массиве пару одинаковых чисел за $\mathcal{O}(n)$.

5

- 9. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n] = \{1, 2, \cdots, n\}$. Обозначим частоту появления элемента x через $f_{\sigma}[x] = |\{i|a_i = x\}|$. Известно, что $\exists_x f_{\sigma}[x] = 1$ и для всех остальных значений $y \neq x, f_{\sigma}[y] \equiv 0 \mod 2$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 10. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_{n-1} \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_{\sigma}[x] = 0$ и для всех остальных значений $y \neq x, f_{\sigma}[y] = 1$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n)$ бит памяти.
- 11. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_\sigma[x] > \frac{m}{2}$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 12. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Требуется проверить, правда ли, что $\exists_x f_{\sigma}[x] > \frac{m}{2}$, и если такой x есть, то найти его за один проход по последовательности. Докажите, что любое решение потребует $\Omega(m \cdot (\log n \log m + 1))$ бит памяти.
- 13. Разрешим сделать два прохода по последовательности. Решите прошлую задачу за $\mathcal{O}(\log n + \log m)$ бит памяти.
- 14. Даны число k и последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Назовем элемент x k-частым, если $f_{\sigma}[x] > \frac{m}{k}$. Придумайте, как найти все k-частые элементы за два прохода и $\mathcal{O}(k \cdot (\log n + \log m))$ бит памяти.
- 15. Даны число k последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Требуется отсортировать данную последовательность за k проходов и $\mathcal{O}(\frac{m}{k}\log n)$ бит памяти. Докажите, что ее нельзя отсортировать ее за $o(\frac{m}{k}\log n)$ бит памяти и k проходов.