Engineering Statistics

Week 6: Sampling distributions

Introduction

The concepts of statistical inference

Population

A population is the complete set of all items that interest an investigator.

Sample

A sample is an observed subset of a population.

The concepts of statistical inference

Sample

A sample is an observed subset of a population.

The concepts of statistical inference

Parameter: A numerical feature of a population is called a parameter.

- The true value of a population parameter is an unknown constant.
- It can be correctly determined only by a complete study of the population.
- However, studying on a population is not practical because of time and cost restrictions.
- Therefore, a proper sample from the population should ve drawn and inferences about a parameter should be based on this sample.

The concepts of sampling distribution

The observations X_1, X_2, \ldots, X_n are a random sample of size n from the population distribution if they result from independent selections and each observation has the same distribution as the population.

Therefore, a random sample is a collection of independent and identically distributed (iid) random variables.

A statistic is a numerical valued function of the sample observations.

Let X_1, X_2, \ldots, X_n be a sample from a population having a parameter θ . Any function of the sample is called **statistic or point estimator*** of θ , i.e.,

$$\hat{\theta} = T(X_1, X_2, \dots, X_n)$$

- Statistic or point estimator are used in same manner.
- A statistic or point estimator is also a random variable.
- A value that the point estimator takes called as point estimate and denoted by lower case letters, i.e. while T is point estimator of the parameter θ , t is point estimate.

Example: Normal distribution case

Let X_1, X_2, \ldots, X_n be a sample from $N(\mu, \sigma^2)$ distribution,

- The statistic $\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a point estimator of population mean μ .
- . The statistic $\hat{\sigma}^2=s^2=\frac{1}{n-1}\sum_{i=1}^n{(X_i-\bar{X})^2}$ is a point estimator of population variance σ^2 .

Example: Binomial distribution case

Let X_1, X_2, \ldots, X_n be a sample from Binom(n, p) distribution. The statistic,

$$\hat{p} = \frac{\text{number of success in the sample}}{n}$$

is a point estimator of population proportion p.

List of population parameters and their point estimators

	Population parameter	Point estimator
Mean	μ	$ar{X}$
Variance	σ^2	s^2
Standard deviation	σ	S
Proportion	p	\hat{p}

Sampling distribution

- Since any statistic (point estimator) is a random variable, it has its own probability distribution.
- The distribution of a statistic is called its sampling distribution.
- The sampling distribution of a statistic is determined from the distribution of the population, and it also depends on the sample size *n*.

Sampling distribution

- Populations for various statistical studies are modeled as random variables whose probability distributions have a mean and variance, which are generally not known as we conduct our statistical sampling and analysis.
- We will select a sample of observations-realizations of a random variable from our population and compute **sample statistics** that will be used to obtain inferences about the population, such as the population mean and variance.
- To make inferences we need to know the sampling distribution of the observations and the computed sample statistics.

In a single toss of a fair coin, let x equal the number of heads observed. Now consider a sample of n=2 tosses. Find the sampling distribution of \bar{x} , the sample mean.

Outcome	Probability	$ar{\mathcal{X}}$
HH	1/4	1
HT	1/4	0.5
TH	1/4	0.5
TT	1/4	0

Take H = 1 and T = 0

$ar{\mathcal{X}}$	0	0.5	1
$p(\bar{x})$	0.25	0.50	0.25

Properties of sampling distributions

Unbiasedness

If the expected value of a sample statistic is equal to the population parameter, the statistic is said to be an unbiased estimator of the parameter, i.e.

$$E(T) = \theta \rightarrow T$$
 is unbiased estimator of θ

If the expected value of the sampling distribution is not equal to the parameter, the statistic is said to be a biased estimator of the parameter.

Properties of sampling distributions

Standard error

The standard deviation of a statistic is called standard error (SE) of the statistic.

$$SE(T) = \sqrt{Var(T)}$$

In a single toss of a fair coin, let x equal the number of heads observed. Now consider a sample of n=2 tosses. Find the standard errors of the sample mean.

Sampling distribution of X

Sampling from a normal distribution

Let the random variables X_1, X_2, \ldots, X_n denote a random sample from a normal distribution with mean μ and variance σ^2 . Then, sampling distribution of the \bar{X} is normal with mean μ and variance $\frac{\sigma^2}{n}$, i.e.

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$, $SE(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

Sampling from a normal distribution

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \rightarrow Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

The weight of a pepperoni and cheese pizza from a local provider is a random variable whose distribution is normal with mean 16 ounces and standard deviation 1 ounce. You intend to purchase four pepperoni and cheese pizzas. What is the probability that:

- (a) The average weight of the four pizzas will be greater than 17.1 ounces?
- (b) The total weight of the four pizzas will not exceed 61 ounces?

(a) The average weight of the four pizzas will be greater than 17.1 ounces?

$$P(\bar{X} > 17.1) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > \frac{17.1 - 16}{1/\sqrt{4}}\right) = P(Z > 2.2)$$

(b) The total weight of the four pizzas will not exceed 61 ounces?

$$P(X_1 + X_2 + X_3 + X_4 \le 61) = P(\bar{X} \le 15.25)$$

$$P(\bar{X} \le 15.25) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{15.25 - 16}{1/\sqrt{4}}\right) = P(Z \le -1.5)$$

A manufacturer of automobile batteries claims that the distribution of the lengths of life of its best battery has a mean of 54 months and a standard deviation of 6 months. Suppose a consumer group decides to check the claim by purchasing a sample of 50 batteries and subjecting them to test that estimate the battery's life.

- (a) Assuming that the manufacturer's claim is true, describe the sampling distribution of the mean lifetime of a sample of 50 batteries.
- (b) Assuming that the manufacturer's claim is true, what is the probability that the consumer group's sample has a mean life of 52 or fewer months?

(a) Assuming that the manufacturer's claim is true, describe the sampling distribution of the mean lifetime of a sample of 50 batteries.

X: lifetime of a battery

 \bar{X} : mean lifetime of the batteries

$$\bar{X} \sim N(54, \frac{6^2}{50})$$

(b) Assuming that the manufacturer's claim is true, what is the probability that the consumer group's sample has a mean life of 52 or fewer months?

$$P(\bar{X} \le 52) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{52 - 54}{6/\sqrt{50}}\right) = P(Z \le -2.357023)$$

Course materials

You can download the notes and codes from:

https://github.com/mcavs/ESTUMatse_2022Fall_EngineeringStatistics

Contact

Do not hesitate to contact me on:

https://twitter.com/mustafa_cavus

https://www.linkedin.com/in/mustafacavusphd/

mustafacavus@eskisehir.edu.tr