

I Fair and **Efficient**

Social Decision-Making

CSCI 699

Voting: Committee Selection

Evi Micha

Credit for the slides: Nisarg Shah and Dominik Peters' Tutorial

Voting

- Set of n agents $N = \{1, ..., n\}$
- Set of m candidates M

Votes

- > Ranked ballots $>_i$ (e.g., $a >_i b >_i c$)
- \succ Cardinal utilities $u_i: M \to \mathbb{R}_{\geq 0}$ (less prominent)
- \triangleright Approval ballots $A_i \subseteq M$
 - \circ Equivalent to binary cardinal utilities $c \in A_i \Leftrightarrow u_i(c) = 1$

Goal

- > Single-winner voting: choose $c^* \in M$
- \triangleright Multiwinner voting: choose $S \subseteq M$ with $|S| \le k$ (for given k)

"ABC" Voting

Fairness

- > Difficult to define non-trivial fairness notions for single-winner voting
 - Can't give each individual/group "proportionally deserved" utility
- > Much more interesting for multiwinner voting
 - We'll focus on approval ballots, but many of the notions we'll see have been extended to ranked ballots and cardinal utilities

Approval-Based Multiwinner Voting

- \succ Each voter i approves a subset of candidates $A_i \subseteq M$
- \triangleright A subset of candidates $W \subseteq M$, $|W| \le k$ is selected
- Figure Each voter i gets utility $u_i(W) = |W \cap A_i|$

"ABC" Voting

Prominent Rules

- Thiele's Methods [1895]
 - > Given a sequence $s=(s_1,s_2,...s_k)$, select a committee W that maximizes $\sum_{i\in N} s_1 + s_2 + \cdots + s_{u_i(W)}$
- Examples
 - \triangleright Approval voting (AV): s = (1,1,1,...1)
 - \circ Selects the k candidates with the highest total approvals

Approval Voting

Prominent Rules

- Thiele's Methods [1895]
 - > Given a sequence $s=(s_1,s_2,...s_k)$, select a committee W that maximizes $\sum_{i\in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

Examples

- \rightarrow Approval voting (AV): s = (1,1,1,...1)
 - \circ Selects the k candidates with the highest total approvals
- \triangleright Chamberlin-Courant (CC): s = (1,0,0,...0)
 - Maximizes the number of voters for whom at least one approved candidate is selected

Chamberlin-Courant

Prominent Rules

- Thiele's Methods [1895]
 - > Given a sequence $s=(s_1,s_2,...s_k)$, select a committee W that maximizes $\sum_{i\in N} s_1 + s_2 + \cdots + s_{u_i(W)}$

Examples

- > Approval voting (AV): s = (1,1,1,...1)
 - \circ Selects the k candidates with the highest total approvals
- \triangleright Chamberlin-Courant (CC): s = (1,0,0,...0)
 - Maximizes the number of voters for whom at least one approved candidate is selected
- > Proportional Approval Vorting (PAV): $s = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k})$
 - o In between AC and CC, but why exactly harmonic scores?

Proportional Approval Voting

Why Harmonic Numbers?

k = 11

- "Proportionality"
 - ➤ We should select 3 , 2 , 5 , 1

Party-List PR

- Party-list instances
 - > For all $i, j \in N$: either $A_i = A_j$ or $A_i \cap A_j = \emptyset$
 - \triangleright For all $i \in N$: $|A_i| \ge k$
- Lower quota for party-list instances
 - > For every party-list instance, $u_i(W) \ge \left\lfloor k \cdot {^{n_i}}/{_n} \right\rfloor$ for all $i \in N$, where $n_i = \left| \left\{ j \in N : A_j = A_i \right\} \right|$

Party-List PR

- AV violates lower quota for party-list instances
 - > 4 candidates $\{a, b, c, d\}$, k = 3
 - \triangleright 2 voters approve $\{a, b, c\}$ and 1 voter approves d

Party-List PR

- CC violates lower quota for party-list instances
 - > 6 candidates $\{a, b, c, d\}, k = 3$
 - \gt 2 voters approve $\{a,b\}$, 1 voter approves $\{c\}$, 1 voter approves $\{d\}$

Intuition Behind PAV

k = 11

Party-list PR

- ➤ We should select 3 , 2 , 5 , 1
- > PAV would have the desired result because:
 - 3rd , 2nd , 5th , 1st have the same marginal contribution = 2
 - We'll see a formal proof of PAV satisfying something stronger later
 - PAV known to be the only Thiele's method (and subject to additional axioms the only ABC rule) achieving this

Fairness for General Instances

- Issues
 - No well-separated "groups" of voters
 - A subset of voters may not be "fully cohesive" (having identical approval sets)
- We want to provide a utility guarantee to
 - ...every possible subset (group) of voters that is...
 - ...sufficiently large and cohesive and...
 - > ...their guarantee scales with their size and cohesiveness

Fairness for General Instances

- \triangleright For all $S \subseteq N$
- > If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- > Then $|W \cap_{i \in S} A_i| \ge \ell$
- Question: Is this property always satisfiable?

First Attempt

- \succ For all S ⊆ N
- \Rightarrow If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
- \rightarrow Then $|W \cap_{i \in S} A_i| \ge \ell$

$$> A_1 \cap A_2 = a$$

$$> A_2 \cap A_4 = b$$

$$> A_1 \cap A_3 = c$$

$$> A_3 \cap A_4 = d$$

Justified Representation (JR)

- Definition: W satisfies JR if
 - \triangleright For all $S \subseteq N$
 - > If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ➤ Then $u_i(W) \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
 - \triangleright Question: Find all the committees that satisfy JR for k=2

Justified Representation (JR)

- Definition: W satisfies JR if
 - \triangleright For all $S \subseteq N$
 - \rightarrow If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ➤ Then $u_i(W) \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
 - ▶ Question: Can we ask $u_i(W) \ge 1$ for all $i \in S$?
 - > k = 2

Justified Representation (JR)

Approval Voting violates JR

Justified Representation

- Theorem: Chamberlin-Courant satisfies JR
- Proof:
- Suppose CC selects W, which violates JR
- Then, there is a group $S \subseteq N$ such that
 - $> |S| \ge n/k$
 - > No $i \in S$ is "covered" $(u_i(W) = 0 \ \forall i \in S)$
 - > There is a candidate $c^* \in \cap_i A_i$
- Since W covers less than n voters in total, some $c \in W$ covers (is approved by) less than n/k voters
- Replacing c with c^* gives a new committee that covers strictly more voters, a contradiction to W already maximizing this metric!

- Definition: W satisfies EJR if
 - \triangleright For all $S \subseteq N$ and $\ell \in \{1, ..., k\}$
 - \Rightarrow If $|S| \ge \ell \cdot n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge \ell$ (cohesive)
 - \triangleright Then $u_i(W) \ge \ell$ for some $i \in S$
 - \succ "If a group deserves ℓ candidates and has ℓ commonly approved candidates, then not every member should get less than ℓ utility"
 - > JR imposes this but only for $\ell=1$, so EJR \Rightarrow JR

 Question: What is a committee that satisfies EJR? Is there a committee that satisfies EJR but not JR?

- Question: What is the relationship between JR, EJR and proportionality in the case of party lists?
- 1. $JR \Longrightarrow party-list PR$
- 2. EJR \Longrightarrow party-list PR
- 3. None
- 4. Both

Chamberlin-Courant violates EJR

- Theorem [Aziz et al. (2016)]: PAV satisfies EJR
- Proof:
- Suppose PAV selects W, which violates EJR

>
$$PAV(W) = \sum_{i \in N} 1 + \frac{1}{2} + \dots + \frac{1}{u_i(W)}$$

- Then, there is a group $S \subseteq N$ and $\ell \in \{1, ..., k\}$ such that
 - $|S| \ge \ell \cdot n/k$
 - $> u_i(W) < \ell, \ \forall i \in S$
 - $|\cap_{i\in S} A_i| \ge \ell \Rightarrow \text{there exists } c^* \in \cap_{i\in S} A_i \setminus W \text{ (Why?)}$
- Consider $\widetilde{W} = W \cup \{c^*\}$
 - $> PAV(\widetilde{W}) \ge PAV(W) + |S| \cdot \frac{1}{\ell} \ge PAV(W) + \frac{n}{k}$
- Claim: Can remove some $c \in \widetilde{W}$ and lower score by $< \frac{n}{k}$

• Claim: Can remove some $c \in \widetilde{W}$ and lower score by $< \frac{n}{k}$

• Proof:

- > Suffices to prove that average reduction across $c \in \widetilde{W}$ is less than $\frac{n}{k}$
- > Reduction when removing $c \in \widetilde{W} = \sum_{i:c \in A_i} \frac{1}{u_i(\widetilde{W})}$
- > Average reduction:

$$\frac{1}{k+1} \cdot \sum_{c \in \widetilde{W}} \sum_{i:c \in A_i} \frac{1}{u_i(\widetilde{W})} = \frac{1}{k+1} \cdot \sum_{i \in N} \sum_{c \in A_i \cap \widetilde{W}} \frac{1}{u_i(\widetilde{W})}$$
$$= \frac{1}{k+1} \cdot \sum_{i \in N} 1$$
$$= \frac{n}{k+1} < \frac{n}{k}$$

Computation of PAV

- Computing PAV is NP-complete
- What about a greedy approximation?
 - > Sequential PAV
 - $\circ W \leftarrow \emptyset$
 - \circ while |W| < k do
 - Find c which maximizes $PAV(W \cup \{c\})$
 - $W \leftarrow W \cup \{c\}$
 - \gt Achieves at least $\left(1-\frac{1}{e}\right)$ fraction of optimal PAV score
 - PAV score is a submodular function
 - > But fails to satisfy EJR

Computation of PAV

- In practice, exact PAV solution can be computed via a BILP
- Binary variables:
 - > $y_c \rightarrow$ Is candidate c selected?
 - $\Rightarrow x_{i,\ell} \rightarrow \text{Is } u_i(\{c: y_c = 1\}) \ge \ell$?
- Maximize $\sum_{i \in N} \sum_{\ell=1}^k \frac{1}{\ell} \cdot x_{i,\ell}$

subject to
$$\sum_{\ell=1}^k x_{i,\ell} = \sum_{c \in A_i} y_c$$
 for all i

← Why does this work?

$$\sum_{c} y_{c} = k$$

$$y_c, x_{i,\ell} \in \{0,1\}$$
 for all i, ℓ, c

Is EJR enough?

$$k = 12$$

Fully Justified Representation (FJR)

- Definition: W satisfies FJR if
 - \triangleright For all $S \subseteq N, T \subseteq M$ and $\beta \in \{1, ..., k\}$
 - \Rightarrow If $|S| \ge |T| \cdot n/k$ (large) and $u_i(T) \ge \beta$, $\forall i \in S$ (cohesive)
 - \succ Then $u_i(W) ≥ β$ for some i ∈ S
 - > "If a group deserves ℓ candidates and can propose a set of ℓ candidates from which each member gets at least β utility, then not every member should get less than β utility"
 - \triangleright EJR imposes this but only for $\beta = |T|$, which would imply $T \subseteq \bigcap_{i \in S} A_i$, so we just wrote $|\bigcap_{i \in S} A_i| \ge \ell$
 - \gt FJR \Rightarrow EJR
- Bad news: PAV (and every other known "natural" rule)
 violates FJR

Fully Justified Representation (FJR)

- FJR is satisfiable via a simple polynomial-time greedy rule
- Greedy Cohesive Rule (GCR):

 \triangleright return W

```
> W \leftarrow \emptyset

> N^a \leftarrow N ("active voters")

> while \exists \beta > 0, S \subseteq N^a, T \subseteq M \setminus W

s.t. |S| \geq |T| \cdot \frac{n}{k} and \min_{i \in S} u_i(T) \geq \beta do

O Pick such (\beta, S, T) with the highest \beta (break ties arbitrarily)

O W \leftarrow W \cup T, N^a \leftarrow N^a \setminus S
```

 Greedily find the most cohesive group of voters and add their suggested group of candidates

Fully Justified Representation (FJR)

- Theorem[Peters et al. (2022)]: Greedy Cohesive Rule satisfies FJR
- Proof:
- Suppose for contradiction that Greedy Cohesive Rule does not satisfy FJR
 - \rightarrow Then, there is a group $S \subseteq N, T \subseteq M$ and $\beta \in \{1, ..., k\}$ such that
 - $|S| \ge |T| \cdot n/k$ and $u_i(T) \ge \beta$, $\forall i \in S$
 - $> u_i(W) < \beta, \ \forall i \in S$
- Let i^* be the first agent in S that was removed from N^a as part of the group S' and subcommittee T', with $\min_{i \in S'} u_i(T') \ge \beta'$
- Just before S' is chosen, S was available since i^* is the first agent in S that that was removed from N^a
- From the definition of the algorithm, this means $\min_{i \in S'} u_i(T') \ge \min_{i \in S} u_i(T) \Longrightarrow \beta' \ge \beta$
- But since $T' \subseteq W$, we get $\beta > u_{i^*}(W) \ge u_{i^*}(T') \ge \beta'$ which is a contradiction

Is FJR enough?

$$k = 12$$

Core

- Definition: W satisfies core if
 - \rightarrow For all $S \subseteq N$ and $T \subseteq M$
 - > If $|S| \ge |T| \cdot n/k$ (large)
 - From $u_i(W) \ge u_i(T)$ for some $i \in S$
 - "If a group can afford T, then T should not be a strict Pareto improvement for the group"
 - > FJR only imposes $\max_{i \in S} u_i(W) \ge \min_{i \in S} u_i(T)$, so core \Rightarrow FJR
- Major open question
 - > For ABC voting, does there always exist a committee in the core?

Notes

- Other fairness definitions
 - > EJR+, SJR, AJR, PJR, PRJ+, UJR, CS, proportionality degree, ...
 - > See <u>Justified Representation wiki</u> for more details

