UNCLASSIFIED

AD NUMBER AD860080 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAY 1969. Other requests shall be referred to Air Force Materials Laboratory, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFSC/USAF ltr, 2 Mar 1972

PROPERTIES OF TWO CAST ALUMINUM ALLOYS

A. W. GUNDERSON

TECHNICAL REPORT AFML-TR-69-100

MAY 1969

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory (MAAE), Wright-Patterson Air Force Base, Ohio 45433.

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of MAAE, Air Force Materials Laboratory.

Information in this report is embargoed under the Department of State ITIAR. This report may be released to foreign governments by department or agencies of the U. S. Government subject to approval of Air Force Materials Laboratory, Materials Applications Division or higher authority within the Air Force. Private individuals or firms require a Department of State Export license.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

ELEVATED TEMPERATURE MECHANICAL PROPERTIES OF TWO CAST ALUMINUM ALLOYS

A. W. GUNDERSON

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory (MAAE), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This report was prepared by Allen W. Gunderson of the Materials Engineering Pranch, Materials Support Division, Air Force Materials Laboratory, Gright-Patterson Air Force Base, Ohio. This program was conducted under Project No. 7381 "Materials Applications," Task No. 738106 "Engineering and Design Data." This report covers work conducted from September 1967 to December 1968. The manuscript was released by the author in February 1969 for publication as a technical report.

The testing portion of the program was accomplished by Richard J. Marton and the computer data reduction by Robert Smith of the University of Dayton Research Institute.

The items tested in this program were commercial items that were not developed or manufactured to meet any government specifications, to withstand the tests to which they were subjected, or to operate as applied during this study. Any failure to meet the objectives of this study is no reflection on any of the commercial items discussed herein or on any manufacturer.

This technical report has been reviewed and is approved.

ille it Olevitch
ALBERT OLEVITCH

Chief, Materials Engineering Branch Materials Support Division Air Force Materials Laboratory

ABSTRACT

A test program was conducted to obtain mechanical properties data on two aluminum casting alloys. Work included tensile, creep, and rupture tests at room temperature, 300, 400, 500, and 600°F. The alloy Hiduminium RR-350 was developed as a high temperature alloy. Its room temperature properties were moderate but it held its strength quite well up to 600°F. The alloy CH-70 was developed as a high strength, high performance alloy in the 60,000 ultimate tensile strength, 50,000 yield strength, and 5% elongation range. Tensile properties of CH-70 held up well at the 300° test temperature but decreased rapidly at higher temperatures.

THE PROPERTY OF THE PROPERTY O

This abstract is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory (MAAE), Wright-Patterson Air Force Base, Ohio 45433.

ILLUSTRATIONS

A STATE STATE OF STAT

FIGURE		PAGE
1	Smooth Cast Test Bar Specimen	26
2	Notched (Kt=3.0) Cast Test Bar Specimen	26
3	Component Part Flat Specimen	27
4	CH-70 Wing Spar Casting Specimen	27
5	Typical Load-Strain Record for RR-350 Cast Test Bar Specimen A-23 550°F Age Temperature	28
6	Hiduminium RR-350 Cast Test Bar Specimens, Effect of Age Temperature on Tensile Properties	29
7	Hiduminium RR-350 Cast Test Bar Specimens, Effect of 1000-Hour Exposure on Tensile Properties	30
8	Hiduminium RR-350 Cast Test Bar Specimens, Effect of 1000-Hour Exposure on Tensile Properties	31
9	Hiduminium RR-350, Stress Vs. Rupture Time	32
10	Hiduminium RR-350 Vendor B Cast Test Bar Specimens, 400°F Time to Deformation	33
11	Hiduminium RR-350, 300°F Creep Deformation Vs. Time	34
12	Hiduminium RR-350, 400°F Creep Deformation Vs. Time	35
13	Hiduminium RR-350, 400°F Creep Deformation Vs. Time	36
14	Hiduminium RR-350, 500°F Creep Deformation Vs. Time	37
15	Hiduminium RR-350, 600°F Creep Deformation Vs. Time	38
16	Hiduminium RR-350, 600°F Creep Deformation Vs. Time	39
17	CH-70 Wing Spar Casting Specimens, Effect of 1000- Hour Exposure on Tensile Properties	40
18	CH-70 Wing Spar Casting Specimens, 400°F Creep Deformation Vs. Time	41
19	CH-70 Wing Spar Casting Specimens, 600°F Creep Deformation Vs. Time	42
20	Hiduminium RR-350 and Cr-70, Comparison of Ultimate Tensile Strength Vs. Temperature for 1000-Hour Exposure	43
21	Hiduminium RR-350 and CH-70, Comparison of Tensile Yield Strength Vs. Temperature for 1000-Hour Exposure	ĻЦ

ILLUSTRATIONS

TABLES		PAGE
I	Nominal Chemical Compositions for RR-350 and CH-70	7
II	Test Plan for Aluminum Castings	8
III	Hiduminium RR 350 Cast Test Bar Specimens, Effect of Age Temperature on Room Temperature Tensile Properties	9
IV	Hiduminium RR-350 Vendor B Cast Test Bar Specimens, Effect of Temperature Exposure on Tensile Proparties	10
v	Hiduminium RK-350 Cast Test Bar Specimens, Effect of Temperature Exposure on Tensile Properties	11
YI.	Hiduminium RR-350 Component Castings, Standard Age Room Temperatus Tensile Properties	12
VII	Hiduminium Ph-350 Component Castings, Effect of Temperatur Exposure on Tensile Properties	13
VIII	CH-70 Wing Spe Casting Specimens, Standard Age Room Temperations Tensile Properties	Τή
IX	CH-70 Ving Spar Casting Specimens, Effect of Temper. The Exposure on Tensile Properties	15
Х	Hiduminium RR-350 Cast Test Bers, Notched (Kt=3.0) Rupture Tests	16
XI	Hiduminium RR-350 Vendor A Cast Test Bar Specimens, 400 and 600°F Time Vs. Total Deformation in Percent	17
XII	Hiduminium RR-350 Vendor B Cast Test Bar Specimens, 300 and 500°F Time Vs. Total Deformation in Percent	18
XIII	Hiduminium RR-350 Vendor B Cast Test Bar Specimens, 400°F Time Vs. Total Deformation in Percent	19
XIV	Hiduminium RR-350 Vendor B Cast Test Bar Specimens, 600°F Time Vs. Total Deformation in Percent	20
vx	Hiduminium RR-350 Component Casting Specimens, 300 and 500°F Time Vs. Total Deformation in Percent	21
XVI	Hiduminium RR-350 Component Casting Specimens, 400°F Time Vs. Total Deformation in Percent	22
IIVX	Hiduminium RR-350 Component Casting Specimens, 600°F Time Vs. Total Deformation in Percent	23

ILLUSTRATIONS (Cont'd)

TABLE		PAGE
XVIII	CH-70 Wing Spar Casting Specimens, 400°F Time Vs. Total Deformation in Percent	24
XIX	Cd-70 Wing Spar Casting Specim s, 600°F Time Vs. Total Deformation in Percent	25

INTRODUCTION

The emergence of high strength and temperature resistant aluminum casting alloys in recent years has led to their increased usage in aerospace systems. The castable alloys provide a design flexibility and economy not attainable by wrought products and processes.

The two allcys tested in this program are of a new generation of aluminum casting alloys. The major portion of the test program was conducted on Hiduminium RR-350 alloy. Hiduminium RR-350 is a sand-casting alloy specifically developed for high temperature applications and is jointly patented by High Duty Alloy and Rolls-Royce Limited of England. The Hidiminium specimens were furnished the Air Force Materials Laboratory by the General Electric Company Flight Propulsion Division. The material has been used as a scavenge pump housing material on the J-93 engine, and is scheduled for use in controls and accessory systems in the GE-4 engine (SST).

Month . M. W. C. S. C. S

The second alloy evaluated was CH-70, a high performance alloy developed by Aluminum Company of America. The specimens of CH-70 were furnished by Northrup Corporation Norair Division. Norair recently completed a room temperature mechanical property evaluation of several high strength aluminum castings alloys, including CH-70, and the results are to be published as an Air Force Materials Laboratory Technical Report AFML-TR-68-8.

The present effort was conducted to establish the properties of the RR-350 alloy, particularly for extended periods of exposure, and to establish the elevated temperature capabilities of the CH-70 alloy.

EXPERIMENTAL PROGRAM

The Hiduminium RR-350 alloy is used in jet engine components, such as housings and cover boxes for accessory drives. In such locations, the ambient temperatures may exceed 400°F. RR-350 in limited testing previously conducted by High Duty Alloys had shown attractive high temperature strength. This test program, outlined in Table II, was designed to determine the effect of high temperature environments on the RR-350 alloy, particularly over extended periods of time, and to establish a comparison with the elevated temperature properties of the CH-70 alloy.

The CH-70 test program, Table II, followed the same temperature levels as the RR-350, but because of the limited number of specimens available and the availability of mechanical property data from other sources, its evaluation was primarily for comparison only.

SPECIMEN INFORMATION

The RR-350 alloy was from three sources. Separately cast test bars from two vendors were machined to the 2-inch gage section threaded specimen configuration shown in Figures 2 and 3. Also, flat specimens were machined from actual component castings (one is shown in Figure 4).

All of the CH-70 specimens were taken from wing span castings such as shown in Figure 5. Flat specimens with a 1-inch gage length were machined.

The nominal chemical compositions for the two alloy; are given in Table I.

The standard heat treatment of the Hiduminium RR-350 allor was:

5 hours at 1004-1012°F Quench in boiling water Age 16 hours @ 414-424°F.

For the portion of the test program investigating the effect of age temperature on tensile properties, the listed temperature was used instead on the standard.

The vendor "B" specimens listed as overaged were aged 16 hours at 500°F in addition to the standard age.

The CH-70 alloy was heat treated to the T-6 conditon by the following procedure:

2 hours at 975°F 4 hours at 985°F 12 hours at 995°F 1 hour at 985°F Water quench (less than 10 seconds delay) Age 18 hours at 310°F

The test plan for both alloys is given in Table II.

TEST METHODS

Tensile testing was done on a 50,000-lb Baldwin Weidemann Universal Testing Machine. Autographic load-strain data was recorded as shown in Figure 5. For the room temperature tests the strain was measured by a Baldwin Microformer transducer. The elevated temperature test used an Arcweld extensometer which also utilizes a linear variable differential transformer.

Creep and creep rupture testing were accomplished on Satec-Arcweld test frames with temperature control by either a Leeds and Northrup or an Arcweld controller. Data was recorded automatically by the MAAE Data-Logger unit.

RESULTS

The tensile properties of Hiduminium RR-350 held up fairly well to the 600°F temperature level. As can be seen from the data, the cast test bars are noticeably stronger than specimens machined from component castings. The overage condition of some vendor "P" specimens did not improve the tensile properties. The vendor "A" specimens gave slightly higher tensile values than the vendor "B" specimens. The tensile properties of RR-350 are listed in Tables IV through VII and show graphically in Figures 6 through 8. Test temperatures to 600°F were used to characterize these properties. Tensile properties of CH-70 are given in Tables VII, IX, and X.

The creep rupture and creep tess for RR-350 are presented as one group of data because of the overlapping values obtained. The creep rupture tests were originally designed to anticipate rupture in 500 hours and the creep tests anticipated deformation in the 0.1 to 0.2% range. The curves shown are for representative specimens from each temperature. The creep and creep rupture specimens were also tested at temperatures up to 600°F. This data is presented in Tables XI through XVII and Figures 9 through 16.

In both the tensile property tests and the creep tests, the component specimens were lower in values than the cast test bar specimens.

The CH-70 alloy was not designed specifically for elevated temperature applications and the values obtained in this program should not affect its major usage as a high strength casting alloy for use at low temperatures. As shown in Figure 17, the tensile properties withstood 300°F fairly well, but then decreased rapidly.

The creep test results for the CH-70 at 400°F show that temperature to be near the upper limit for the material's usefulness (Figure 19).

Comparison data is given in Figures 20 and 21.

CONCLUSIONS

- 1. Hiduminium RR-350 exhibits fair tensile properties up to 600°F.
- 2. Hiduminium RR-350 creep strength drops rapidly after 500°F.
- 3. The CH-70 alloy has good tensile properties up to $300^{\rm o}F$. At $400^{\rm o}F$, the tensile values are about one-half room temperature values.
- 4. CH-70 creep specimens show little elongation before fracture.

TABLE I

NOMINAL CHEMICAL COMPOSITIONS FOR RR-350 AND CH-70

ELEMENT	PERCENT	
	HIDUMINIUM RR-350	CH-70
COPPER	5	4.5
NICKEL	1.5	*****
SILVER		0.7
MANGANESE	0.25	0.30
MAGNESIUM		0.27
TITANIUM	0.2	0.29
COBALT	0.25	
ANTIMONY	0.25	₩#
ZIRCONIUM	0.25	
SILICON	***	0.06
IRON	Alle See See	0.02
ALUMINUM	Remainder	Remainder

TABLE II
TEST PLAN FOR ALUMINUM CASTINGS

HIDUMINIUM RR-350

CH-70

EFFECT OF AG		VENDOR		est bars vendor		COMPO CASTI		WING ST	
ON TEHSILE P.	ROPERTIES	smooth	K _t =3	smooth	K _t =3	smooth	K _t =3	smooth	K _t =3
TEST TEMPERATURE ROOM	AGE TEM- PERATURE 414-424	3	1	1	1	3	3	3	3
ROOM	500	3	1	1	1				
ROOM	550	3	1	1	1				
ROOM-	600	3	1	. 1	1			-	
EFFECT OF TE TENSILE PROP TEST TEMPERATURE	ERTIES HOLD TEM-		smooth over- age						
300	1000	3	1	1		3		3	
400	1000	3	1	1		3		3	
- 500	1000	3			,	3		3	
600	1000	3	1	1.		3		3	
400	1/2	3		-				3	
400	500	3				3		3	
STRESS RUPTU TEST TEMPERA			notch- ed K _t =3					·	
300	:	1			-	1			
400		3	1	ı		3		3	
500	!	1			·	1			
600		3	1	Т		3		3	
CREEP (.1 to			smooth over- age						
300		1				1		,	
400		3	1	1		3		3	
500		1				1	: 		
600		3	1	1		3		3	

TABLE 111

HIDUMINIUM RR-350 CAST TEST BARS,
EFFECT OF AGE TEMPERATURE ON ROOM TEMPERATURE TENSILE PROPERTIES

SPEC.	ULT.	0.2% Y.S.	8	AGE		VERAGES	
NO.	KSI	ksi	ELONG.	or	ULT.	Y.S.	ELONG.
B25	39.99	32.31	1.5	STD	41.64	32.93	1.3
B39	43.31	33.27	1.15	STD			
B49	41.61	32.92	1.25	STD			
B115	36.69	24.31	1.85	500	37.65	24.11	1.95
B127	38.45	25.59	2.1	500			
B135	37.81	22.44	1.9	500			
B107	37.05	21.83 \	2.65	600	36.53	22.07	2.33
B119	36.49	21.97	2.05	600			
B131	36.04	22.40	2.3	600		-	
B111	37.70	21.30	2.8	550	36.83	22.21	2.43
B139	35.12	22.64	1.95	550			
B143	37.67	22.70	2.55	550			
A132	42.89	34.03	1.35	STD			
A8	38.19	27.00	1.85	500			
A52	38.57	24.20	2.35	600			
A23	38.55	25.42	2.3	550			
B80	39.34	1		STD			
B95	39.95	1		STD			
B103	34.13	1		500		_	
B123	33.06	TO		600		•	
B147	32.27	Notched		550			
A57	40.83	Not		STD			
A3	36.24	ī		500			
A43	34.08			600			
A15	33.92	1 *		550			

TABLE IV

HIDUMINIUM RR-350 VENDOR B CAST TEST BAR SPECIMENS,
EFFECT OF TEMPERATURE EXPOSURE ON TENSILE PROPERTIES

							AVERAGES	
SPEC	ULT.	Y.S.	ELONG.	TEMP	TIME	ULT.	Y.S.	ELONG.
B31	39.50	29.71	2.05	300	1000	39.68	30.45	1.9
B37	39.55	31.11	1.95	300	1000			
B55	39.99	30.52	1.70	300	1000			
B88	33.97	23.37	2.65	400	1/2	33.64	25.06	2.63
B92	33.63	26.53	2.55	400	1/2			
B96	33.31	25.27	2.7	400	1/2			
B21	34.72	24.24	2.6	400	500	33.69	23.95	2.33
B57	33.22	23.73	2.5	400	500			
B77	33.14	23.77	1.9	400	500			
B23	33.61	25.77	2.45	400	1000	34.12	25.02	2.53
B43	33.63	22.86	2.40	400	1000	,		
B83	35.11	26.44	2.7	400	1000	,		
B18	30.465	22.75	3.45	500	1000	30.09	22.5	3.5 3
B62	30.465	22.94	3.7	500	1000			
B99 .	29.34	21.81	3.45	500	1000			
B59	23.04	16.96	4.85	600	1000	23.17	17.1	5,62
B64	23.00	17.19	6.5	600	1000			
B73	23.48	17.15	5.5	600	1000			

TABLE V
HIDUMINIUM RR-350 (AST TEST BAR SPECIMENS,
EFFECT OF TEMPERATURE EXPOSURE ON TENSILE PROPERTIES

SPEC.	ULTIHATE STRENGTH	YIELD STRENGTH	ELONGATION	HOLD AND TEST TEMP.	HOLD TIME
A60	38.97	32.21	1.7	300	1000
A105	34.02	27.65	2.7	400	1000
A159	23.06	17.52	7.8	600	1000
*B136	36.06	25,86	2.8	300	1000
DI30	30.00	23.60	2.0	300	1000
*B128	33.10	24.98	2.8	400	1000
*B116	22.59	16.37	4.8	600	1000

^{*} STANDARD HEAT TREATMENT AND AGE PLUS 16 HOURS AT 500°F PRIOR TO TEST EXPOSURE.

TABLE VI

HIDUMINIUM RR-350 COMPONENT CASTINGS STANDARD AGE ROOM TEMPERATURE TENSILE PROPERTIES

SPEC.	ULTIMATE KSI	YIELD KSI	ELONGATION %	SPEC. TYPE
2A	37.17	28.79	1.9	Smooth
6A	37.46	29.49	1.2	Smooth
6B	35.45	29.09	1.2	Smooth
AVERAGE	36.69	29.12	1.4	·
22	30.44			Notched K _t =3.0
23	32.37			Notched K _t -3.0
24	31.46			Notched Kt=3.0
AVERAGE	31.42			
		NOTCHED UNNOTCHED	RATIO = .85	

TABLE VII'

HIDUMINIUM RR-350 COMPONENT CASTINGS,
EFFECT OF TEMPERATURE EXPOSURE ON TENSILE PROPERTIES

SPEC.	ULTIMATE STRENGTH KSI	YIELD STRENGTH KSI	ELONGATION %	HOLD AND TEMP. TEST °F	HOLD TIME (Hrs)
8	31.94	25.99	1.8	300	1000
14	30.09	23.75	2.4	300	1000
57	33.03	26.11	1.7	300	1000
AVERAGE	31.68	25.28	2.0	300	1000
12	25.46	20.01	2.4	ή00	1000
29	31.84	23.66	6.4	400	1000
71	27.21	20.79	2.8	400	1000
AVERAGE	28.17	21.45	3.9	400	1000
11	21.10	17.53	3.1	500	1000
39	24.44	19.41	2,6	500	1000
72	24.73	19.62	2.8	500	1000
AVERAGE	23.42	18.85	2.8	500	1000
13	15.5	13.12	3.1	600	1000
34	18.57	14.84	3.1	600	1000
70	17.21	13.25	2.6	€00	1000
AVERAGE	17.09	13.74	2.92	600	1000
15	25.27	19.62	2,3	400	500
42	27.39	21.35	2.5	400	500
65	27.08	19.99	2.6	400	500
AVERAGE	26.58	20.32	2.5	400	500

TABLE VIII CH-70 WING SPAR CASTING SPECIMENS, STANDARD AGE ROOM TEMPERATURE TENSILE PROPERTIES

SPEC.	ULTIMATE KSI	YIELD KSI	ELONGATION %	SPEC. TYPE
C6-1-2	66.16	54.64	7.8	Smooth
C26-1-2	63.90	47.4	10.2	Smooth
C27-1-1	67.85	54.47	10.1	Smooth
AVERAGE	65.97	52.17	9.4	
C5-1-1	70.53			Notched Kt=3.0
C26-1-1	66.79			Notched Kt=3.0
C27-1-1	67.02			Notched Kt=3.0
AVERAGE	68.11	-		
		NOTCHED	RATIO = 1.03	

UNNOTCHED

TABLE IX

CH-70 WING SPAR CASTING SPECIMENS,

EFFECT OF TEMPERATURE EXPOSURE ON TENSILE PROPERTIES

SPEC.	ULTIMATE STRENGTH KSI	YIELD STRENGTH KSI	ELONGATION %	HOLD AND TEMP. TEST °F	HOLD TIME (Hrs)
C6-2-1	58.86	54.24	8.6	300	1000
C26-2-1	59.60	57 . 59	5.0	300	1000
C27-1-2	55.90	52.80	6.1	300	1000
AVERAGE	57.45	54.87	6.56	000	1000
C6-4-1	47.62	46.03	12.2	400	1/2
C26-4-1	47.81	45.78	9,4	400	1/2
C27-3-1	50.3	47.0	2.2*	400	1/2
AVERAGE	48.58	46.27	7.2	100	-/
*	Fractured at ga	age mark.			
C6-4-2	36.53	32.96	13.2	400	500
C26-4-2	36.08	32.02	10.0	400	500
C27-3-2	38.92	36.12	8.7	400	500
AVERAGE	37.18	33.70	10.6		
C6-2-2	36,62	32.48	15.6	400	1000
C26-2-2	34.38	30.32	11.9	490	1000
C27-1-2	35.20	30.37	9.7	400	1000
AVERAGE	35.40	31.06	12.4		
C6-3-1	· 21.21	17.55	18.2	500	1000
C26-3-1	20.77	18.29	21.1	500	1000
C27-2-1	24.92	20.93	10.4	500	1000
AVERAGE	22.30	18.92	16.6		
C6-3-2	10.71	8.54	46	600	1000
C26-3-2	11.14	8.83	28.2	600	1000
C27-2-2	11.17	9.14	35.9	600	1000
AVERAGE	11.0	8.83	36.7		2000

TABLE X

HIDUMINIUM RR-350 CAST TEST BARS,
NOTCHED (Kt=3.0) RUFTURE TESTS

SPECIMEN NO.	TEST TEMPERATURE °F	STRESS KSI	HOURS TO RUPTURE
B29	300	28	1868 Did Not Fail
B69	400	23	682.2
B100	500	15.5	561.6
B67	600	7	1110.3

TABLE XI

TIME IN HOURS VS. TOTAL SPECIMEN DEFORMATION IN PERCENT

MATERIAL: TEMPERATURE:	Hiduminium RR-350 400°F	Vendor "A"	" Cast Test Bar 600°F	Specimens 600°F
STRESS KSI:	23,0	16.0	7.5	3.5
SPECIMEN TIME (HRS)	£72	A141	A66	A114
0.01	0.17	0.19	0.09	0,04
0,02	0.31	0.20	0.10	0.04
0.05	0.35	0.20	0.12	0.04
0.1	0.38	0.22	0.17	0.04
0.2	0.40	0.23	0.17	0.04
0.5	0.43	0.23	0.17	0.04
1.0	0.47	0.23	0.17	0.04
2.0	0.52	0.23	0.17	0.04
5.0	0.60	0.24	0.17	0.05
10.0	0.67	0.24	0.17	0.05
20.0	0.73	0.27	0.17	0.05
50.0	0.84	0.27	0.20	0.06
100.0	0.92	0.31	0.23	0.06
200.0	1.03	0.32	0.26	0.08
500.0	1.17	0.32	0.44	0.12
1000.0	1.33	0.34	0,93	0.21

TABLE XII

MATERIAL: TEMPERATURE: STRESS KSF:	Hiduminium RR-350 300°F 25.0	Vendor "I 300°F 23.0	B" Cast Test Bar 500°F 14.0	Specimens 500°F 8.0
SPECIMEN TIME (HRS)	B85	B9	· B74	B34
0.01	0.16	0.19	0.14	0.06
0.02 0.05	0.19 0.20	0.19 0.19	0.15 0.15	0.06 0.06
0.1	0.21	0.19	0.15	0.06
0.2	0.22	0.19	0.15	0.06
0.5	0.23	0.19	0.16	0.06
1.0	0.23	9.20	0.17	0.06
2.0	0.24	0.21	0.18	0.06
.5.0	0.25	0.22	0.18	0.07
10.0	0.26	0.23	0.20	0.07
20.0	0.29	0.24	0.22	0.07
50.0	0.33	0.26	0.25	0.08
100.0	0.35	0.27	0.30	0.10
200.0	0.51	0.30	0.35	0.11
500.0	0.57	0.34	0.48	0.16
1000.0	0.60	0.38	0.72	0.18

LABLE XIII

MATERIAL: Hiduminiam RR-350 Vendor "B" Cast Test Bar Specimens TEMPERATURE: 400°F STECKEN KSI 25.66 SPECIMEN TIME (HRS) B68 B53 B120 SPECIMEN C010 0.01 0.02 0.05																						_
Hiduminium RR-350 Vendor "B" Cast Test Bar Specimens Hiduminium RR-350 Vendor "B" Cast Test Bar Specimens E 25.66 25.0 23.0 23.0 20.0 17.0 16.0 B68 B53 B120 B24 B4 B46 B1 0.45 0.52 0.68 0.46 0.23 0.16 0.12 0.54 0.58 0.87 0.51 0.26 0.17 0.12 0.70 0.69 0.87 0.59 0.17 0.12 0.70 0.63 0.87 0.58 0.17 0.12 0.70 0.63 0.87 0.58 0.17 0.18 0.92 0.81 0.98 0.63 0.18 0.14 1.01 0.87 0.98 0.67 0.31 0.18 0.14 1.01 0.97 1.03 0.81 0.38 0.19 1.02 1.06 1.07 0.88 0.45 0.20 0.14 1.19 1.09 0.98 0.45 0.25 0.17 1.14 1.19 1.09 0.98 0.45 0.25 0.18 1.72 1.45 1.17 1.14 0.51 0.25 0.18 1.72 1.45 1.17 1.14 0.51 0.25 0.18 1.72 1.45 1.17 1.14 0.51 0.25 0.18 1.74 1.19 1.19 1.19 1.19 0.98 0.45 0.25 0.18 1.75 1.45 1.17 1.14 0.51 0.58 0.25 1.76 0.38 0.38 0.45 0.28 ((1143 Hrs (134 Hrs (1518 Hrs (1518 0.74 Hrs (1518 1.54 0.74 0.75 0.74 0.73		16.0	ከተርፀ	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.19	0.21	0.23	0.23	•	•	•				ć	2000
Hiduminium RR-350 Vendor "B" Cast Test Bar Specimens E: 400°F L 25.66		16.0	B16	0.14		0.14			0.15	0.16		•			•	•	Ç		•		, ,	05.0
Hiduminium RR-350 Vendor "B" Cast Test Bar Specimens et 400°F		16.0	B.1	0.12	0.12	0.12	-	•	0.13	0.14	0.14	0.14	0.14	0.15	0.17	0.18	•		0.23		ć	0.23
Hiduminium RR-350 Vendor "B" Cast Test Bar 400°F E 25.66 25.0 23.0 23.0 20.0 B68 B53 B120 B24 E 0.45 0.52 0.68 0.46 0.60 0.64 0.58 0.87 0.51 0.60 0.71 0.63 0.87 0.58 0.67 0.90 0.92 0.81 0.98 0.67 0.90 1.01 0.87 0.98 0.67 0.90 1.16 0.97 1.03 0.81 0.98 0.67 0.90 1.16 1.29 1.06 1.07 0.98 0.09 1.14 1.19 1.09 0.98 0.09 1.72 1.45 1.00 0.98 0.98 1.72 1.45 1.30 0.98 1.72 1.45 1.30 0.98 1.72 1.45 1.30 0.98 1.72 1.45 1.45 1.30 0.98 1.74 1.45 1.45 1.30 0.98 1.75 1.82 1.24 1.30 0.98 (0.143 Hrs @134 Hrs @158Hrs 0.88)	imens	17.0	B46	0.16	0.16	0.17	0.17	0.17	0.18	0.18	0.18	0.19	0.20	0.22	0.22	0.25	•		Fracture	@332 Hrs		
Hiduminium RR-350 Vendor "B" Cast Test 400°F L 25.66	3ar Spec	20.0	Bţ	0.21	0.23	0.25	0.26	0.28	0.30	0.31	±6.0	0.38	0.42	0.45	0.51	0.54	•				Ē	*\.o
Hiduminium RR-350 Vendor "B" E: 400°F C 25.66 C 25.0 C 25.66 C 25.0 C 36 C 45 C 25.0 C 36 C 45 C 25.0 C 36 C 45 C 45 C 54 C 55 C 56 C 57 C 68 C 68 C 70 C 63 C 70 C 63 C 68 C 87 C 98 C 97 C 98 C 98 C 99 C 90	Test	23.0	B24	0.42	94.0	0.51	0.54	0.58	0.63	0.67	0.73	0.81	0.88	96.0	1.14	1,30	1,61		2.22		Fracture	GOV4 NES
Hiduminium E: 400°F 25.66 0.45 0.54 0.54 0.71 0.76 0.92 1.01 1.16 1.29 1.44 1.72 2.08 Fracture E(143 Hrs		23.0	B120	0.36	0.68	0.87	0.87	0.87	0.88	86.0	0.99	1.03	1.07	1.09	1.17	1.24	Fracture	@158Hrs				
Hid (1 25. 25. 0 0. 0 0.		25.0	B53	0.45	0.52	0.58	0.63	0.67	0.74	0.81	0.87	0.97	1.06	1.19	1.45	1.82	Fracture					
MATERIAL: TEMPERATURE STRESS KSI SPECIMEN 0.01 0.02 0.05 0.05 0.05 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	PiH CO4		B68	0.45	0.54	19.0	0.71	0.76	0.86	0.92	1.01	1.16	1.29	1.44	1.72	2.08	Practure					
	MATERIAL: TEMPERATURE	STRESS KSI	SPECIMEN TIME (HRS)	[0	0.02	0.05	0,1	0.2	0.5	1.0	2.0	5.0	0.01	20.0	50.0	100.0	200.0		500°C		1000.0	

TABLE XIV

MATERIAL: Hiduminium RR-350 Vendor "B" Cast Test Bar Specimens TEMPÉRATURE: 600°F

ITWLTKWI OKT:	6000 F						
STRESS KSI:	7.0	7.5	7.0	3.5	3.5	4.0	4.0
SPECIMEN		-		`	,	Ì	
TIME (HRS)	B13	B60	B140	B10	B28	B78	B124
0.01	0.09	0.07	0.07	0.03	0.03	0.05	0.06
0.02	0.09	0.07	0.07	0.03	0.04	0.05	0.06
0.05	0.09	0.08	0.08	0.03	0.04	0.05	0.06
0.1	0.09	0.08	0.08	0.03	0.04	0.05	0.06
0.2	0.10	. 0.08	0.08	0.03	0.04	0.05	0.06
0.5	0.11	0.09	0.08	0.03	0.04	0.06	0.06
1.0	0.11	0.10	0.09	0.04	0.04	0.06	0.06
2.0	0.12	0.13	0.09	0.04	0.04	0.06	0.07
5.0	0.14	0.14	0.11	0.04	0.04	0.06	0.03
10.0	0.16	0.17	0.12	0.04	0.05	0.06	0.09
20.0	0.19	0.20	0.14	0.04	0.05	0.07	0.10
50.0	0.32	0.30	0.19	0.06	0.06	0.09	0.13
100.0	0.41	0.43	0.27	0.07	0.06	0.13	0.16
200.0	0.56	0.70	0.38	0.11	0.06	0.25	0.19
500.0	1.15	Fracture	0.80	0.20	0.15	0.36	0.27
~		@446 Hrs				}	}
1000.0	Fracture		Fracture	0.25	0.20	0.40	0.42
	@815 Hrs		0871 Hrs			}	
							

TABLE XV

MATERIAL:	Hiduminium R	R-350 Comp	onent Parts S	Specimens
TEMPERATURE:	300°F	300°F	500°F	500°F
STRESS KSI	26.0	23.0	12.0	8.0
SPECIMEN TIME (HRS)	30	28	. 37	53
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0	0.37 0.39 0.41 0.42 0.44 0.49 0.50 0.53 0.55 0.58 0.62 0.73 0.84 0.88	0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.34 0.34	0.36 0.36 0.38 0.39 0.40 0.43 0.45 0.46 0.51 0.53 0.58 0.63 0.69	0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.09 0.09 0.09 0.09
500.0	0.96	0.45	0.77	0.21
1000.0	1.02	0.54	0.77	0.27

TABLE XVI

Hiduminium RR-350 Component Parts Specimens 400°F MATERIAL: TEMPERATURE:

STRESS KSI:	23.0	20	16	16	15	15
SPECIMEN TIME (HRS)	. 21	41	61	27	45	56
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0	0.61 0.72 0.83 0.94 1.10 1.47 Fracture @0.51 Hrs	0.14 0.31 0.40 0.44 0.50 0.59 0.68	0.21 0.21 0.21 0.21 0.22 0.24 0.24 0.26 0.29 0.31 0.36 0.38 0.42 0.48	0.19 0.19 0.20 0.21 0.24 0.29 0.34 0.38 0.44 0.46 0.51 0.54	0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.11 0.12 0.12 0.12 0.12 0.12	0.10 0.10 0.10 0.10 0.11 0.12 0.13 0.13 0.13 0.13 0.13
500.0			1.11	0.60 Fracture @694 Hrs	0.26 0.26	0.35 0.39
		J				

TABLE XVII

MATERIAL: Hiduminium RR-350 Component Parts Specimens
TEMPERATURE: 600°F
STRESS KSI: 7.0 7,0 6.0 4.0

STRESS KSI:	7.0	7,0	6.0	4.0	3.5	3.0
SPECIMEN TIME (HRS)	26	43	59	50	32	51
0,01	0.08	0.02	0.03	0.01	0.01	0.04
0.02	0.09	0.02	0,03	0.01	0.01	0.04
0.05	0.09	0.02	0.03	-0.91	0.01	0.04
0.1	0.09	0.02	0.03	0.01	0.01	0.06
0.2	0,09	C.02	0.03	0.01	0.01	Ó.06
0.5	0.26	0.02	0.04	0.02	0.01	0.06
1.0	0.26	0.02	0.04	0.02	0.01	0.07
2.0	0.26	0.03	0.04	0.02	0.01	0.07
5.0	Controller	0.05	0.05	0.02	0.01	0.07
10.0	Caused	0.09	0.05	0.02	0.01	0.07
	Failure @					
20.0	3.5	0.16	0.05	Ð.03	0.02	0.07
50.0		0.32	0.13	0.01	0.02	0.07
100.0		0.73	0.20	0.07	0.03	0.07
200.0		1.74	Fracture	0.10	0.07	0.09
i			@175 Hrs			
500.0		Fracture		0.43	0.11	0.11
		@208 Hrs				
1000.0				1.18	0.15	0.11

是一个,这个人,这个人的人,这个人的人,我们们也是这种人的人,我们们也是一个人的人,我们们们的人的人,这个人的人的人,也不是一个人的人的人,我们们也会会会会会

TABLE XVIII

TIME IN HOURS VS. TOTAL SPECIMEN DEFORMATION IN PERCENT

16.0	C6-1:2-1	60.0	0.10	0.10	0.10	0.10	07.0	0.10	0.10	0.11		0.11	0.11	0.12	0.13	0.16	0.23	·	0.30
16.0	C26-8-2	0.13	0.13	0.13	0.13	0.13	0.14	0.14	0.14	9.74		0.15	0.15	0.20	0.21	0.25	0.29		0.34
16.0	C6-12-1	0.27	0.30	0.37	0.47	0.54	0.68	0.83	0.95	Fracture	@3.7 Hrs								
23.0	C27-8-2	0.20	0.20	0.20	0.20	0.20	0.20	0.22	0.22	0.23		0.24	0.25	0.30	0.30	0.47	Fracture	@225 Hrs	
23.0	C27-8-1	0.39	0.39	0,40	0.42	44.0	0.47	0.47	0.48	0.52		0.53	0.54	0.61	49. 0	0.71	Fracture	@379 Hrs	
23.0	C6-8-1	0.18	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.20		0.21	0.22	0.26	0.31	Failed in Grip @127	Machining	Fault	
CH-70 +000°F 27.0	C26-8-1	0.30	0.30	0.30	0.30	0.30	0.31	0.32	0.32	0.34		0.38	0.41	64.0	Fracture @93 Hrs				
MATERIAL: TEMPERATURE: STRESS KSI:	SPECIMEN TIME (HRS)	0.01	0.02	0.05	0.1	0.2	0.5	1.0	2.0	0.0		10.0	20.0	50.0	100.0	200.0	500.0		1000.0

TABLE XIX

MATERIAL: CH-70 TEMPERATURE: 600°F

STRESS KSI: 4.0 4.0 3.5 3.0 3.0

SPECIMEN TIME (HRS)	C6-8-2	C6-12-2	C26-12-2	C27-12-1	C27-12-2
0.01	0.05	0.05	0.02	0.08	0.04
0.02	0.65	0.05	0.02	0.08	0.04
0.05	0.05	0.05	0.02	0.08	0.04
0.1	0.05	0.05	0.02	0.08	0.04
0.2	0.05	0.05	0.02	0.08	0.04
0.5	0.05	0.05	0.02	0.08	0.0 4
1.0	0.05	0.07	0.03	0.08	0.05
2.0	0.05	0.08	0.05	0.08	0.05
5.0	0.05	0.08	0.04	0.11	0.05
10.0	0.06	0.08	0.06	0.11	0.05
20.0	0.10	0.12	0.08	0.11	0.06
50.0	0.21	0.18	0.14	0.16	0.13
100.0	0.40	0.32	0.25	0.22	0.18
200.0	0.96	0.60	0.57	0.46	0.41
500.0	3.25	2.45	2.29	1.37	1.29
1000.0	Fracture	Fracture	Fracture	Fracture	Fracture
	@546 Hrs	@502 Hrs	@ 521 Hrs	@882 Hrs	@556 Hrs

FIGURE 1 SMOOTH CAST TEST BAR SPECIMEN

FIGURE 2 NOTCHED ($K_{\mbox{\scriptsize t=3.0}}$) CAST TEST BAR SPECIMEN

FIGURE 3
COMPONENT PART FLAT SPECIMEN

FIGURE 4
CH-70 WING SPAR CASTING SPECIMEN

747 Million Control

FIGURE 5. TYPICAL LOAD-STRAIN RECORD FOR RR-350 CAST TEST BAR SPECIMEN A-23 550°F AGE TEMPERATURE

FIGURE 7. HIDUMINIUM RR-350 CAST TEST BAR SPECIMENS, EFFECT OF 1000-HOUR EXPOSURE ON TENSILE PROPERTIES

FIGURE 9. HIDUMINIUM RR-350, STRESS VS. RUPTURE TIME

FIGURE 10. HIDUMINIUM RR-350 VENDOR B CAST TEST BAR SPECIMENS, 400°F TIME TO DEFORMATION

And the state of t

FIGURE 11. HIDUMINIUM RR-350, 300°F CREEP DEFORMATION VS. TIME

FIGURE 12. HIDUMINIUM RR-350, 400°F CREEF DEFORMATION VS. TIME

FIGURE 13. HIDUMINIUM RR-350, 400°F CREEP DEFORMATION VS. TIME

THE REPORT OF THE PROPERTY OF

FIGURE 14. HIDUMINIUM RR-350, 500°F CREEP DEFORMATION VS. TIME

FIGURE 15. HIDUMINIUM RR-350, 600°F CREEP DEFORMATION VS. TIME

FIGURE 16. HIDUMINIUM RR-350, 600° F CREEP DEFORMATION VS. TIME

A CONTRACTOR OF THE PROPERTY O

FIGURE 17. CH-70 WING SPAR CASTING SPECIMENS, EFFECT OF 1000-HOUR EXPOSURE ON TENSILE PROPERTIES

FIGURE 18. CH-70 WING SPAR CASTING SPECIMENS, 400°F CREEP DEFORMATION VS. TIME

FIGURE 19. CH-70 WING SPAR CASTING SPECIMENS, 600°F CREEP DEFORMATION VS. TIME HIDUMINIUM RR-350 and CH-70

FIGURE 20. COMPARISON OF ULTIMATE TENSILE STRENGTH VS. TEMPERATURE FOR 1000-HOUR EXPOSURE

FIGURE 21. HIDUMINIUM RP 350 and CH-70, COMPARISON OF TENSILE YIELD STRENGTH VS. TEMPFRATURE FOR 1000-HCUR EMPOSURE

בכתו	\mathbf{L}	3D

Security Classification								
DOCUMENT CONT			:					
(Security classification of title, body of abstract and indexing	ennotation must be er	stered when the	overall seport is classified)	`*				
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SE	CURITY CLASSIFICATION	3				
Air Force Materials Laboratory (MAAE)		IIn	classified :	1				
Wright-Patterson Air Force Base, Ohio 454	33							
, , , , , , , , , , , , , , , , , , , ,		2b. SROUP		,				
	•							
3. REPORT TITLE								
Diameter Management of Sanitary Descention	C Then Owni		A22					
Elevated Temperature M. hanical Properties	s or two cast	r wramina	Alloys	•				
/								
				,				
4. DESCRIPTIVE NOTES (Type of report and inclusive detea)								
				~				
Final Report								
5. AUTHOR(5) (First name, middle initial, last name)		-						
Allan W. Gunderson								
niidi #. Guidergon								
6. REPORT DATE	74. TOTAL NO. OF	PAGES	76. NO. OF REFS					
April 1969	56		.ione					
MA. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT WILL	P P (6)					
	Se. ORIGINATOR'S	REPORT NUME	SER(2)					
b. FROJECT NO. 738]	Aral-TH-6	9-100						
	l							
c. Task No. 738106	A			<u> </u>				
182 NO. 130100	this report;	T 40(3) (Athy of	het numbers that may be assigne	a				
			-					
d,								
10. DISTRIBUTION STATEMENT	L		····					
This document is subject to special expor-	t controle ar	nt does be	anemittal to fombie	n				
				11				
government or foreign nationals may be made	ie outh mitu	prior app	roval of the Air					
Force Materials Laboratory (MAAM), Wright-	-Patterson AI	B. Ohio 4	5433.					
11. SUPPLEMENTARY NOTES	12. SPONSORING M							
THE STATE OF THE S	12. SPORSORING M	ILCIANT ACTIV	/13 Y					
	Air Force	Materials	Labonatomy (MAAE)					
Air Force Materials Laboratory (MAAE) Wright-Patterson AFB, Ohio 45433.								
, ·	wright-rat	terson Ar.	B, Unio 45433.					
3. ABSTRACT	L							
3. JABSTRACT								
A test program was conducted to obtain med	chanical moor	entice de	to on two aliminim					
in cool program was conducted to obtain men	manrear brot	ercies da	ra on two aluminum					
casting alloys. Work included tensile, or	reep, and rup	ture test	s at room temperatu:	re,				
300, 400, 500, and 600°F. The alloy, Hid	uminium RR-35	0 was dev	eloped as a high	-				
temperature alloy. Its room temperature	monenties we	mo modomo:	to hit it hald it-					
etweenth and to and I want cook my	probeticies we	ire modexa	re par it hera its					
strength quite well up to 600% The allo	by CH-70 was	developed	as a high strength	,				
high performance alloy in the 60,000 ultim	nate tensile	strength.	50,000 vield	-				
strength, and 5% elongation range. Tensi	le propenties	of CH-70	hold up coll of the	_				
3000 test temponature but decrees and the	re brobereres	5 OI CII-/U	HETG OF MENT OF THE	3				
300° test temperature but decreased rapid	Ly at nigher	temperatu	res.,					
			()					
			· • • • • • • • • • • • • • • • • • • •					
			7					
			j					

This Abstract may be distributed without limitation

DD . FORM .. 1473

UNCLASSIFIED
Security Classification

UNCLASSIFIED

j.

Security Classificatio	n	-	Ligi		LIN		LINI	
** ·	KEY WERDS	.,	ROLE	WT	ROLE	WT	ROLE	WT
A,								
Aluminum		1						
	•	-						
Castings			-					
•								
)			-			_
					`			
	•							
	14.1							
			-					
•								
	-							
				l				
				ĺ				
			Ì					
				1			 	
				1				
	•			}			1	
	·			l				
				1				
	•	, ,,		ĺ				
		٠.		}				
				Į .				
					ĺ		l	
				1		İ		
				}				
				 				
]	
	() and the state of	ندور در المالية المالي مناسبة المالية						

UNCLASSIFIED
Security Classification