Juergen Hess (Uni Freiburg)

Caroline Pantofaru (Willow Garage)

Schedule

- Monday: Tutorials, guided tour through Freiburg 6pm
- Tuesday: Hackathon
- Wednesday: Hackathon, 5pm leave for the reception
- Thursday: Hackathon
- Friday: Hackathon, I-5pm presentation of the results
- Begin in the morning: 9:15am

The ICRA Sushi Challenge

http://mobilemanipulationchallenge.org/

Meet new people

Learn

• Have fun!

The Sushi Tutorial

Sachin Chitta
Caroline Pantofaru
Jenny Barry
Ioan Sucan
Vincent Rabaud
Jon Binney
Steve Cousins

The Willow Team

- Sachin Chittta
- Caroline Pantofaru
- Jenny Barry
- Ioan Sucan
- Jon Binney
- Bhaskara Marthi
- Vincent Rabaud

- Ben Cohen
- Michael Phillips
- Daniel Benamy
- Steve Cousins

In collaboration with the whole PR2 and ROS development teams at Willow Garage and the PR2-Beta and ROS Community

Tutorial Program

- Introduction
 - current state
 - challenges
- Tutorial
 - setup, logistics
 - basic tutorials

Introduction

Approach

• Results - initial hackathon at Willow

Both videos are 4x

Current State

- Simple Python API for mobile pick and place
 - mobility/navigation
 - manipulation
 - perception
 - world-state

Mobility/Navigation

2D + 3D maps (using Octomap)

Advanced Tutorial - we have already done this for you

Fast full 3D collision checking - Find base pose given object location

Mobility/Navigation

Fast full 3D collision checking + SBPL Lattice Planner - 3D navigation

- No use of live sensor data robot won't stop for you!
- Not optimized code planning can be a little slow sometimes
- Simple Python API

Manipulation

Manipulation Pipeline + Escape behaviors (for robustness)

- Manipulation picks up and puts down objects from known locations
 - wrapped nicely in a python API
 - if given an object label (optional), will pick up corresponding object from location

Manipulation

- Manipulation integrates
 - pick and place for cups, bowls, glasses
 - experimental behaviors for plates
 - experimental behaviors for silverware
- Teams can choose to work on (Jenny, Ioan and Sachin can help)
 - manipulation for plates (e.g. pickup individual plates from stacks)
 - pick and place for silverware
 - manipulation from turntable
 - two-handed behaviors
 - constrained planning
 - better use of live sensor data

MoveIt! - Coming Soon

• MoveIt!

- new effort to develop core C++ libraries for manipulation
- lightweight ROS wrappers
- plugin API for planners
 - planning in parallel
 - run multiple planners,
- planning with constraints
- fast pick and place
- better introspection
- more collision checking capabilities
- motion planning benchmarks
- better visualization
- expected to land with ROS Groovy

Perception

- Assumes known approximate locations of objects and place locations (in map frame)
 - you will have to provide these
 - no semantic notion of tables
- Currently only integrates capability to detect rotationally symmetric objects (same as manipulation pipeline)
- Teams are welcome to integrate more advanced perception capabilities, e.g. (Caroline, Vincent and Jon will help you with this)
 - detecting silverware, plates
 - build up world-state using perception
 - locations of tables/objects
 - Tracking/Recognition of objects on turntable

World-State

- Ability to maintain world-state
 - adding surfaces (tables/shelves)
 - adding objects
 - basic data association

Teams

Team	1:	TITIT	Rob	ot.
	_			

Christian Dornhege (Freiburg)

Dejan Pangeric (TUM)

Georg Bartels (TUM)

Jihoon Lee (Brown)

Steven Gray (Penn)

John Schulmann (Berkeley)

Team 2: TUM Robot

Jan Wulfing (Freiburg)

Nicolas Engelhard (Freiburg)

Lorenz Mosenlechner (TUM)

Rebecca Pierce (Penn)

Yohei Kakiuchi (JSK)

Team 3: Freiburg Robot

Felix Endres (Freiburg)

Thomas Ruhr (TUM)

Jonathan Mace (Brown)

Dan Lazewatsky (WashU)

Guido Manfredi (LAAS)

Inaba Masayuki (JSK)

Team 4: Leuven Robot

Juergen Hess (Freiburg)

Moritz Tenorth (TUM)

Andreas Hertle (Freiburg)

Stephen Brawner (Brown)

Agata Kargol (WashU)

Koen Buys (Leuven)

Team 5: Freiburg Robot

Armin Hornung (Freiburg)

Gheorge Lisca (TUM)

Trevor Jay (Brown)

Yiannis Gatsoulis (Ulster)

Enea Scioni (Leuven)

David Lu (WashU)

Team 6: Leuven Robot

Tobias Spingenberg (Freiburg)

Mehmet Isik (TUM)

Christopher Crick (Brown)

Lorenzo Riano (Ulster)

Dominick Vanthienen (Leuven)

Andrew Dornbush (CMU)

- Wiki page https://kforge.ros.org/Sushi/trac/
- If you have your own computer
 - set it up now (follow instructions on the Wiki)
 - use Freiburg ROS repository mirror to speed things up
- Robots are already setup
 - you will need to setup the Sushi repo under your own login
- All desktops are setup
 - you will need to setup the Sushi repo under your own login here as well

- Some tutorials can be run in simulation navigation
- Others need to be run on the robot
- Run basic tutorials in the following order
 - Navigation
 - Perception
 - includes world-state tutorial
 - Manipulation
- Octomap + 2D map has already been created for you
 - takes some time to do

- By the end of the day all teams can do
 - mobile pick and place of one object from a table to table, or shelf to table

- Best of Luck!!

