Discretized Word Representations Meet Knowledge Graphs

Gábor Berend

09/11/2017 GraphNLP meetup

Semantics

• What is in the meaning of a word?

- What is in the meaning of a word?
- How shall we represent it for computers?

- What is in the meaning of a word?
- How shall we represent it for computers?
- Distributional hypothesis
 - Words with similar meaning tend to be present in similar contexts
 - The dog chased the cat.
 - The predator pursued the prey.
 - A cheetah catched an antilop.

- What is in the meaning of a word?
- How shall we represent it for computers?
- Distributional hypothesis
 - Words with similar meaning tend to be present in similar contexts
 - The dog chased the cat.
 - The predator pursued the prey.
 - A cheetah catched an antilop.
 - $> \frac{1}{2}$ a century old theory

- What is in the meaning of a word?
- How shall we represent it for computers?
- Distributional hypothesis
 - Words with similar meaning tend to be present in similar contexts
 - The dog chased the cat.
 - The predator pursued the prey.
 - A cheetah catched an antilop.
 - $> \frac{1}{2}$ a century old theory
 - $< \frac{1}{2}$ decade extreme enthusiasm around it

Competing paradigms

Increased awareness since 2013 (word2vec)

Competing paradigms

- Increased awareness since 2013 (word2vec)
 - 2014

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski

Competing paradigms

- Increased awareness since 2013 (word2vec)
 - 2014

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski

- 2015
 Rehabilitation of Count-based Models for Word Vector
 Representations

The (implicit) goal of word embeddings

 Map word forms to such vectors that they reflect their co-occurrence statistics

The (implicit) goal of word embeddings

- Map word forms to such vectors that they reflect their co-occurrence statistics
 - Let vectors of words with (dis)similar meaning point to (dis)similar directions

The (implicit) goal of word embeddings

- Map word forms to such vectors that they reflect their co-occurrence statistics
 - Let vectors of words with (dis)similar meaning point to (dis)similar directions

$$dog^{T} \overrightarrow{cat} \gg dog^{T} \overrightarrow{train}$$

word2vec variants

CBOW

Skip-gram

word2vec variants

quick brown X jumps over

CBOW

Skip-gram

word2vec variants

quick brown X jumps over

U V fox Y Z

CBOW

Skip-gram

The goal of word2vec

• The NN view: given an input word **x** 'predict' an output word which fits in its context

$$y(x) = softmax(V(W1_x))$$

 The more similar two input vectors, the more similar their predictions tend to be

Continuous word representations

apple
$$[1\ 0\ 0\ 0\ ...\ 0\ 0\ 0\ 0\ 0\ ...\ 0] \longrightarrow [3.2\ -1.5]$$
...
banana $[0\ 0\ 0\ 0\ ...\ 1\ 0\ 0\ 0\ 0\ ...\ 0] \longrightarrow [2.8\ -1.6]$
...
door $[0\ 0\ 0\ 0\ ...\ 0\ 0\ 1\ 0\ 0\ ...\ 0] \longrightarrow [-1.1\ 12.6]$
...
zebra $[0\ 0\ 0\ 0\ ...\ 0\ 0\ 0\ 0\ 0\ ...\ 1] \longrightarrow [0.8\ 0.5]$

Word analogies

• a:b::c:?

RepEval 2016

Analysis Track

- Problems With Evaluation of Word Embeddings Using Word Similarity Tasks [pdf]
 Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer
- Intrinsic Evaluations of Word Embeddings: What Can We Do Better? [pdf]
 Anna Gladkova, Aleksandr Drozd
- Issues in Evaluating Semantic Spaces Using Word Analogies [pdf]
 Tal Linzen
- Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance [pdf]
 Billy Chiu, Anna Korhonen, Sampo Pyysalo
- A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models [pdf]
 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, David Weir

RepEval 2016

Analysis Track

- Problems With Evaluation of Word Embeddings Using Word Similarity Tasks [pdf]
 Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer
- Intrinsic Evaluations of Word Embeddings: What Can We Do Better? [pdf]
 Anna Gladkova, Aleksandr Drozd
- Issues in Evaluating Semantic Spaces Using Word Analogies [pdf]

 Tal Linzen
- Intrinsic Evaluation of Word Vectors Fails to Billy Chiu, Anna Korhonen, Sampo Pyysalo
- A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models [pdf]

 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, David Weir

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Word analogies revisited

• a:b:?:?

Word analogies revisited

• a:b:?:?

Word analogies revisited

• a:b:?:?

Limitations of word embeddings

 The quality of the embedding is determined by the corpus it is trained on

Limitations of word embeddings

- The quality of the embedding is determined by the corpus it is trained on
 - Potential recall issues (esp. for agglutinative languages)
 - Character level models
 - Polisemy (e.g. bank)
 - Multilinguality
 - Difficulties of evaluation
 - PCness (e.g. man : programmer :: women : X)
 - Limited interpretability

Sparse & continuous representations

```
apple [3.2 -1.5] \longrightarrow [0 1.7 0 0 -0.2 0]
banana [2.8 -1.6] ---- [ 0 1.1 0 0 -0.4 0 ]
door [-1.1 \ 12.6] \longrightarrow [1.7 \ 0 \ -2.1 \ 0 \ 0 \ -0.8]
zebra [0.8 	0.5] \longrightarrow [0 	0 	1.3 	0 -1.2 	0]
```


"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_i
 - φ_j could check for capitalization, suffixes, prefixes, neighboring words, etc.

"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_i
 - $-\phi_j$ could check for capitalization, suffixes, prefixes, neighboring words, etc.

"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_i
 - $-\phi_{j}$ could check for capitalization, suffixes, prefixes, neighboring words, etc.

Sequence labeling using sparse word representation

Rely on the sparse coefficients from α

$$-\phi(w_i) = \{ sign(\alpha_i[j]) j | \alpha_i[j] \neq 0 \}$$

Sequence labeling using sparse word representation

• Rely on the sparse coefficients from α

$$-\phi(w_i) = \{ sign(\alpha_i[j]) j | \alpha_i[j] \neq 0 \}$$

• E.g. $\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d}_{28} - 0.4 \cdot \overrightarrow{d}_{171}$

Sequence labeling using sparse word representation

• Rely on the sparse coefficients from α

$$-\phi(w_i) = \{ sign(\alpha_i[j]) j | \alpha_i[j] \neq 0 \}$$

• E.g. $\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d}_{28} - 0.4 \cdot \overrightarrow{d}_{171}$

Sequence labeling using sparse word representation

• Rely on the sparse coefficients from α

$$-\phi(w_i) = \{ sign(\alpha_i[j]) j | \alpha_i[j] \neq 0 \}$$

• E.g. $\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d}_{28} - 0.4 \cdot \overrightarrow{d}_{171}$

Experimental setup

- Linear chain CRF (CRFsuite implementation)
- Part of Speech tagging
 - 12 languages from the CoNLL-X shared task
 - Google Universal Tag Set (12 tags)

Experimental setup

- Linear chain CRF (CRFsuite implementation)
- Part of Speech tagging
 - 12 languages from the CoNLL-X shared task
 - Google Universal Tag Set (12 tags)
- Hyperparameter settings
 - polyglot/w2v/Glove
 - m = 64
 - k=1024
 - Varying λs

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)

$$\mathsf{FR}_{\mathsf{w+c}} \! \supset \! \mathsf{FR}_{\mathsf{w}}$$

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)
- Brown clustering
 - Derive features from prefixes of Brown cluster IDs

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)
- Brown clustering
 - Derive features from prefixes of Brown cluster IDs
- Features from dense embeddings

$$-\phi(w_i) = \{j : \alpha_i[j] | \forall j \in 1, \dots, 64\}$$

Continuous vs. sparse embeddings

Results averaged over 12 languages

	Dense	Sparse	
CBOW	88.30%	93.74%	
SG	86.89%	93.63%	

- Key inspections
 - polyglot > CBOW > SG > Glove

Continuous vs. sparse embeddings

Results averaged over 12 languages

	Dense	Sparse	Improvement
CBOW	88.30%	93.74%	+5.4
SG	86.89%	93.63%	+6.7

- Key inspections
 - polyglot > CBOW > SG > Glove
 - Sparse embeddings >> dense embeddings

Experiments on generalization

- Training data artificially decreased
 - First 150 and 1500 sentences

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, $\lambda=0.1$)
- biLSTM results from *Plank et al. (2016)*

Method	Avg. accuracy		
biLSTM _w	92.40%		
SC-CRF	93.15%		

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, $\lambda=0.1$)
- biLSTM results from *Plank et al. (2016)*

Method	Avg. accuracy
biLSTM _w	92.40%
SC-CRF	93.15%
SC+WI-CRF	93.73%

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, $\lambda=0.1$)
- biLSTM results from *Plank et al. (2016)*

Method	Avg. accuracy		
biLSTM _w	92.40%		
SC-CRF	93.15%		
SC+WI-CRF	93.73%		
biLSTM _{w+c}	95.99%		

- Does the discrete features (aka. the indices used in the reconstruction of a word) align with commonsense knowledge?
- Using the ConceptNet (CN) knowledge graph we quantified the extent to which certain discretized features co-occur with words of certain traits

- Does the discrete features (aka. the indices used in the reconstruction of a word) align with commonsense knowledge?
- Using the ConceptNet (CN) knowledge graph we quantified the extent to which certain discretized features co-occur with words of certain traits
 - E.g. house → {4, 31, 91} and IsA('house', 'shelter')
 and hut → {7, 31, 52, 91} and IsA('hut', 'shelter')

- Does the discrete features (aka. the indices used in the reconstruction of a word) align with commonsense knowledge?
- Using the ConceptNet (CN) knowledge graph we quantified the extent to which certain discretized features co-occur with words of certain traits
 - E.g. house \rightarrow {4, 31, 91} and IsA('house', 'shelter') and hut \rightarrow {7, 31, 52, 91} and IsA('hut', 'shelter')
 - The presence of base 31 and/or 91 seems to be a good indicator that something can be used as a shelter

Basis	Top-1	Top-2	Top-3	Top-4	Top-5	Most associated ConcepNet relation
P381	village	neighbourhood	neighborhood	fort	township	AtLocation/house
P238	amendment	decision	inquiry	obligation	petition	HasContext/law
P574	stability	coherence	sensitivity	separation	efficiency	lsA/act
P898	harden	darken	pierce	flatten	loosen	lsA/change
P953	coal	oil	food	cotton	grain	AtLocation/house

Conclusion

- Simple to implement, yet accurate analyzers
- Robustness across many languages (and tasks)
- Good generalization properties
- Encouraging results towards interpretability

Thank you for your attention!

berendg@inf.u-szeged.hu