Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Практическое занятие №4 «Интервальное оценивание»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б		(Сафронов Н.С.	
	(подпись)		(Ф.И.О.)	
Проверил:		_ (_	Никитенко У.В.	
	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
Результаты сдачи (защиты):				
- Балльная оценка:				
- Оценка:				

Постановка задачи

- 1. Для обеих выборок построить точный доверительный интервал уровня доверия q_0 для параметра σ^2 , считая:
 - а) а неизвестным,
 - б) а известным и равным a_0 .
- 2. В одной системе координат построить графики зависимости длины доверительного интервала от уровня доверия q для всех четырех случаев (объем выборки равен n_1 , а неизвестно; объем выборки равен n_2 , а известно; объем выборки равен n_2 , а известно). При этом q придать минимум 50 разных значений через равные промежутки.

Вариант 14

$$a_0 = 4, q_0 = 0.8$$

Ход выполнения практического задания

Примем размеры малой и большой выборок $n_1=15, n_2=70\cdot n_1=1050,$ соответственно.

Формула доверительного интервала для σ^2 при известном а:

$$P_{a,\sigma^2}\left(\frac{n\cdot s_1^2}{g_2} < \sigma^2 < \frac{n\cdot s_1^2}{g_1}\right) = 1 - \varepsilon, \, \varepsilon \partial \varepsilon$$

 s_1^2 — выборочная дисперсия,

 g_1 и g_2 —

квантили распределения χ^2 с n степенями свободы уровня $\alpha=\frac{\varepsilon}{2}$ и $\alpha=1-\frac{\varepsilon}{2}$.

Формула доверительного интервала для σ^2 при неизвестном а:

$$P_{a,\sigma^2}\left(\frac{(n-1)\cdot s_0^2}{g_2} < \sigma^2 < \frac{(n-1)\cdot s_0^2}{g_1}\right) = 1 - \varepsilon, \, \varepsilon \partial e$$

 s_0^2 — несмещенная выборочная дисперсия,

 g_1 и g_2 —

квантили распределения χ^2 с n степенями свободы уровня $\alpha=\frac{\varepsilon}{2}$ и $\alpha=1-\frac{\varepsilon}{2}$.

```
Математическое ожидание неизвестно:
Доверительный интервал для σ^2 при малой выборке и при уровне доверия 0.8: (0.35, 0.95)
Доверительный интервал для σ^2 при большой выборке и при уровне доверия 0.8: (0.88, 0.99)

Математическое ожидание равно a_0 = 4:
Доверительный интервал для σ^2 при малой выборке и при уровне доверия 0.8: (0.33, 0.87)
Доверительный интервал для σ^2 при малой выборке и при уровне доверия 0.8: (0.88, 0.99)
```

Рисунок 1 – Полученные доверительные интервалы

Рисунок 2 - Графики зависимости длины доверительного интервала от уровня доверия q

Длина доверительного интервала, характеризующая точность интервального оценивания, зависит от объема выборки n и уровня доверия: объема при увеличении выборки длина доверительного интервала уменьшается, а при приближении уровня доверия к единице – увеличивается. Также при известном значении a и в случае большой выборки, длина доверительного интервала стабильна независимо от уровня доверия.

ПРИЛОЖЕНИЯ

Листинг программы

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
def trust interval with unknown mean(
        sample: np.array,
        q: float
) -> tuple[float, float]:
    alpha = 1 - q
    data = np.array(sample)
    n = len(sample)
    sample variance = np.var(data, ddof=1)
    chi2 lower = stats.chi2.ppf(alpha / 2, df=n - 1)
    chi2 upper = stats.chi2.ppf(1 - alpha / 2, df=n - 1)
    lower bound = (n - 1) * sample variance / chi2 upper
    upper bound = (n - 1) * sample variance / chi2 lower
    return lower bound, upper bound
def trust_interval_with_known_a(
        sample: np.array,
        q: float
) -> tuple[float, float]:
    alpha = 1 - q
    sample variance = np.var(sample, ddof=0)
    degrees of freedom = n = len(sample)
    chi2 lower = stats.chi2.ppf(alpha / 2, df=degrees of freedom)
    chi2 upper = stats.chi2.ppf(1 - alpha / 2, df=degrees of freedom)
    lower bound = (n * sample variance) / chi2 upper
    upper bound = (n * sample variance) / chi2 lower
    return lower bound, upper bound
if name == ' main ':
   mean, sigma = 4, 1
    q = 0.8
    first count = 15
    second count = first count * 70
    first_sample = np.random.normal(mean, sigma, first_count)
    second sample = np.random.normal(mean, sigma, second count)
   print('Математическое ожидание неизвестно:')
    lower bound SPA, upper bound SPA = trust interval with unknown mean(
        first sample, q
    print(
```

```
"\tДоверительный интервал для о^2 при малой выборке и при уровне "
        f"доверия {q}: ({lower bound SPA:.2f}, {upper bound SPA:.2f})"
    )
    lower bound BPA, upper bound BPA = trust interval with unknown mean(
        second sample, q
    print(
        "\tДоверительный интервал для σ^2 при большой выборке и при уровне "
        f"доверия {q}: ({lower bound BPA:.2f}, {upper bound BPA:.2f})"
    print(f"\nMaтeмaтическое ожидание равно а 0 = {mean}:")
    lower bound SPB, upper bound SPB = trust interval with known a(
        first sample, q
   print(
        "\tДоверительный интервал для о^2 при малой выборке и при уровне
        f"{q}: ({lower bound SPB:.2f}, {upper bound SPB:.2f})"
    lower bound BPB, upper bound BPB = trust interval with known a(
        second sample, q
   print(
        "\tДоверительный интервал для о^2 при малой выборке и при уровне
доверия "
        f"{q}: ({lower bound BPB:.2f}, {upper bound BPB:.2f})"
    new_q = np.linspace(0.1, 0.99, 50)
    first y = []
    second_y = []
    third y = []
    fourth y = []
    for i in range (50):
        left, right = trust interval with unknown mean(first sample,
new q[i]
        first y.append(right - left)
        left, right = trust interval with unknown mean(second sample,
new q[i]
        second y.append(right - left)
        left, right = trust interval with known a(first sample, new q[i])
        third y.append(right - left)
        left, right = trust interval with known a(second sample, new q[i])
        fourth y.append(right - left)
   plt.figure(figsize=(8, 6))
    plt.plot(
        new_q, first_y, 'r', label='$n_1$, мат. ожидание '
                                    'неизвестно'
   plt.plot(
        new q, second y, 'g', label='$n 2$, мат. ожидание '
                                    'неизвестно'
   plt.plot(
        new q, third y, 'b', label='$n 1$, мат. ожидание '
                                   'известно ($a 0=4$)'
    plt.plot(
```

```
new_q, fourth_y, 'c', label='$n_2$, мат. ожидание '
'известно ($a_0=4$)'

plt.ylabel('Длина доверительного интервала')
plt.xlabel('q')
plt.legend()
plt.show()
```