Moment of Random Variable

The moments of a random variable (or its distribution)
are expected values of powers or related of
the random variable.

The 9th moment of X is $M_{q} = E(X^{q})$ 1st moment $\rightarrow N_{1} = E(X) = E(X)$ $= \sum x^{n} p(x) = X$ $= \sum x^{n} p(x)$ $= \sum x^{n} p(x)$

Moment Generating Function

The moment generating f^n (m.g. b.) of a R.V. \times having the psubability f^n f(n) is given by

$$=\int e^{tx} f(m) dn \in Conf. R.V.$$

Here I is sual const.

$$(N_{\chi}(t)) = E(0^{t\chi}) = E[1+t\chi + \frac{(t\chi)^{2}}{2!} + \dots + \frac{(t\chi)^{N}}{9!} + \dots)$$

$$= E[1+t\chi + \frac{t^{2}\chi^{2}}{2!} + \dots + \frac{t^{N}\chi^{N}}{n!} + \dots)$$

$$= 1+tE(\chi] + \frac{t^{2}}{2!}E(\chi^{2}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{2}}{2!}E(\chi^{2}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{2}}{2!}E(\chi^{2}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi] + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi) + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots$$

$$= 1+tE(\chi) + \frac{t^{N}\chi^{N}}{2!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!}E(\chi^{N}) + \dots + \frac{t^{N}\chi^{N}}{n!$$

Moment generaling f^n of X about the point $n=\alpha$ $M_X(t) \text{ (about } n=\alpha\text{)} = \text{E}\left[e^{t(X-\alpha)}\right]$ $M_X(t) \text{ (about man)} = \text{E}\left[e^{t(X-\overline{X})}\right]$ $M_X(t) \text{ (about man)} = \text{E}\left[e^{t(X-\overline{X})}\right]$ $M_X(t) \text{ (about man)}$

Properties

O M_{cx} (t) = M_x (ct)

9. Find m.g.t. of a standom variable whose moments are $M'_{\eta} = (\pi + 1)!$ 27

$$M_{\chi}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} |u|_{\infty}^{1} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (n+1)! |u|_{\infty}^{1}$$

$$= \sum_{n=0}^{\infty} \frac{+^{n}}{\pi!} (94+1) \cdot n! \cdot 2^{n}$$

$$= \sum_{n=0}^{\infty} \frac{+^{n}}{\pi!} (n+1) \cdot 2^{n} = \sum_{n=0}^{\infty} (94+1) (2+1)^{n}$$

$$M_{\chi}(t) = \left[(0+1)(2+)^{\circ} \right] + \left[(1+1)(2+)^{\circ} \right] + \left[(2+1)(2+)^{\circ} \right] + \cdots$$

$$= 1 + 2 \cdot (2+) + 3(2+)^{\circ} + \cdots$$

$$= (1-2+)^{-2}$$

2nd moment = $H_2^1 = E(X^2) = EXP(y)$

3rd moment = $H_3^1 = E[X^3] = \sum x^3 p(x)$

-> of central moment = May = E[X-Mx]T

2nd central moment = $M_2 = E(x-M_x)^2$

327 $y = H_3 = (-7x - Mx)^3$

a. The 2rd central moment is : a mean & variance @ S.D. a none

The 7th central moment of X is the = $E(X - \mu_X)^{31}$

S. Let X be a discrete random variable having probability mass on

$$P_{X}(X) = \begin{cases} \frac{1}{2}, & X = 1\\ \frac{1}{3}, & X = 2\\ \frac{1}{6}, & X = 3\\ 0, & \text{otherwise} \end{cases}$$

Find 3rd moment of x

and moment is given by $H_3' = E[x^3]$ $= \sum n^3 p(n)$ $= \frac{1}{2}(n)^3 \times (\frac{1}{2}) + \frac{1}{2}(2)^3 \times \frac{1}{3} + \frac{1}{2}(3)^3 \times \frac{1}{3} + \frac{1}{2}(3)^$

٠

let X de a discrute R.V. with p.m.f.

$$P_{\chi}(\chi) = \begin{cases} 3/4 & , & \chi = 1 \\ 1/4 & , & \chi = 2 \\ 0 & , & \text{otherwise} \end{cases}$$

Find the 3rd central moment of X.

3rd central moment à given by $(3 = E[X - M_X]^3)$

Now,
$$P_{X} = E[X] = \sum_{x} x p(x) = (1 \times \frac{3}{4}) + (2 \times \frac{1}{4}) + 0$$

= $\frac{3}{4} + \frac{2}{4} = \frac{3}{4}$

9. Show that mgt of a R.V. × having the powbability density to

$$y(x) = \begin{cases} y_3, -1 < x < 2 \end{cases}$$
of sewhere

$$e^{2t} - e^{-t}$$
 $e^{2t} - e^{-t}$
 $e^{2t} - e^{-t}$

Sub.
$$t = 0$$
 in 0 we get

 $N_{x}(t) = \int_{-1}^{2} e^{0.x} (\frac{1}{3}) dx$
 $= \frac{3}{3} \int_{-1}^{2} dx$
 $= \frac{1}{3} \left[x \right]_{-1}^{2}$
 $= \frac{1}{3} \left[x - (-1) \right]$

$$= \frac{1}{3} \left[x \right]_{-1}^{2}$$

$$= \frac{1}{3} \left[x - (-1) \right]$$

$$= \frac{3}{3} \left[x - (-1) \right]$$

9. Find the myst of the R.V. X having the pseubodoility density y^n $y^n = \begin{cases} 2 & x \\ 2-x \\ 0 & \text{otherwise} \end{cases}$

Also find the mean and variance of X using mgt.

 $M_{x}(t) = E \left\{ e^{tx} \right\}$ $= \int e^{tx} \left\{ w \right\} dn + \int e^{tx} \left\{ (x) \right\} dn$

$$M_{x}(t) = \left[\frac{e^{t} n \cdot \eta}{t} \right]_{0}^{1} - \frac{e^{t} \eta}{t} \left(\frac{e^{t} \eta}{t} \right)_{1}^{2} - \frac{e^{t} \eta}{t} \left(\frac{e^{t} \eta}{t} \right)_{1}^{2}$$

$$= \frac{e^{t}}{t} - \left[\frac{e^{t} \eta}{t^{2}} \right]_{0}^{1} - \frac{e^{t}}{t} + \left[\frac{e^{t} \chi}{t^{2}} \right]_{1}^{2}$$

$$= \frac{e^{t}}{t} - \left[\frac{e^{t}}{t^{2}} - \frac{1}{t^{2}} \right] - \frac{e^{t}}{t} + \left[\frac{e^{2t}}{t^{2}} - \frac{e^{t}}{t^{2}} \right]$$

$$= \frac{e^{t}}{t^{2}} - \frac{2e^{t}}{t^{2}} + \frac{1}{t^{2}}$$

$$= \frac{1}{t^{2}} \left(e^{2t} - 2e^{t} + 1 \right) = \frac{(e^{t} - 1)^{2}}{t^{2}}$$

Expanding
$$M_{\chi}(t)$$
 in (1) we get

 $M_{\chi}(t) = \frac{1}{4^{2}} \left[(1+2t+\frac{(2t)^{2}}{2!} + \frac{(2t)^{3}}{3!} + - ...) - 2(1+t+\frac{t^{2}}{2!} + ...) \right]$
 $\frac{1}{4^{2}} \left(\frac{(2t)^{3}}{3!} + \frac{1}{4^{2}} + ... \right)$
 $\frac{1}{4^{2}} \left(\frac{(2t)^{3}}{3!} + \frac{1}{4^{2}} + ... \right)$

Mean,
$$M_1' = \text{coefficient}$$
 of t in $M_X(t)$

$$= 1$$

$$M_2' = \text{coefficient}$$
 of $\frac{t^2}{2!}$ in $M_X(t) = \frac{7}{12} \times 2! = \frac{7}{6}$

Variance (M2)= $\frac{7}{6} - (41)^{2} = \frac{7}{6} - (1)^{2} = \frac{1}{6}$