Ideals

Definition

Let R be a ring and I an additive subgroup of R:

• To say that I is a *left ideal* in R means:

$$\forall r \in R, \forall i \in I, ri \in I$$

• To say that I is a *right ideal* in R means:

$$\forall r \in R, \forall i \in I, ir \in I$$

• To say that I is a (two-sided) *ideal* in R, denoted $I \subseteq R$, means that I is both a left ideal and a right ideal in R.

Definition

 $I = \{0\}$ is called the zero ideal.

Theorem

Let R be a ring and I be an ideal in R:

$$I \leq R$$

Proof

By definition, ${\cal I}$ is an additive subgroup of ${\cal R}$

Assume $r, s \in I$

By definition, $rs \in I$

Therefore, by the subring test, $I \leq R$.

Theorem: Ideal Test

Let R be a ring and I a non-empty subset of R. $I \subseteq R$ iff $\forall x, y \in I$ and $\forall z \in R$:

- 1). $x y \in I$
- 2). $zx \in I$
- 3). $xz \in I$

<u>Proof</u>

Assume $x, y \in I$

 \implies Assume $I \leq R$

I is an additive subgroup of R, so $(-y) \in I$ By closure, $x-y \in I$

Assume $z \in R$

I is a left ideal, so $zx \in I$

I is a right ideal, so $xz \in I$

Therefore, the three conditions hold.

Assume the three conditions hold

By condition 1, I is an additive subgroup of R

 $I \subseteq R$ so $x, y \in R$

So by condition 2 (or 3), $xy \in I$

Thus, by the subring test, $I \leq R$

Moreover, condition 2 implies that I is a left ideal of R and condition 3 implies that I is a right ideal of R

$$\therefore I \trianglelefteq R$$

Theorem

Let R be a ring and $\{I_a \mid a \in A\}$ be a family of ideals in R:

$$I = \bigcap_{a \in A} I_a \le R$$

Proof

 $I \leq R$

Assume $x \in I$ and $z \in R$

Assume $a \in A$

 $x \in I_a$

But $I_a \leq R$, so $zx \in I_a$ and $xz \in I_a$

 $zx \in I \text{ and } xz \in I$

Therefore, by the ideal test, $I \subseteq R$.

Unions of ideals are not generally ideas, except in the following condition:

Theorem

Let R be a ring with a chain of ideals $I_1 \subseteq I_2 \subseteq I_2 \subseteq \ldots$:

$$\bigcup_{k=1}^{\infty} I_k \le R$$

Proof

Clearly, I is a non-empty subset of R

```
Assume a,b\in I \exists\,i,j\in\mathbb{Z}^+,a\in I_i\text{ and }b\in I_j AWLOG: I_i\subseteq I_j a\in I_j (-b)\in I_j a-b\in I_j a-b\in I
```

Therefore, by the subgroup test, I is a subgroup of R. Furthermore, since R is an additive abelian group, so is I.

 $a \in I$ Assume $r \in R$ $ar \in I_i$ and thus $ar \in I$ Likewise, $ra \in I$

Therefore, $I \subseteq R$.

Theorem

$$\forall n \in \mathbb{Z}, n\mathbb{Z} \leq Z$$

<u>Proof</u>

Assume $n \in \mathbb{Z}$

Case 1:
$$n = 0$$

$$0\mathbb{Z} = \{0\} \le \mathbb{Z}$$

Case 2:
$$n > 0$$

Assume
$$m \in n\mathbb{Z}$$
 $\exists \, k \in \mathbb{Z}, m = kn$ Assume $h \in= Z$ $hm = h(kn) = (hk)n \in n\mathbb{Z}$, so nZ is a left ideal in \mathbb{Z} $mh = (kn)h = (kh)n \in n\mathbb{Z}$, so nZ is a right ideal in \mathbb{Z} $\therefore n\mathbb{Z} \leq \mathbb{Z}$

Case 3:
$$n < 0$$

$$(-n) > 0$$

$$\operatorname{Assume} m \in n\mathbb{Z}$$

$$\exists \, k \in \mathbb{Z}, \, m = kn$$

$$m = kn = (-k)(-n)$$

$$m \in (-n)\mathbb{Z}$$

$$\operatorname{Assume} m \in (-n)\mathbb{Z}$$

$$\exists \, k \in \mathbb{Z}, \, m = k(-n)$$

$$m = k(-n) = (-k)n$$

$$m \in n\mathbb{Z}$$

$$\operatorname{Thus} \, n\mathbb{Z} = (-n)\mathbb{Z}$$

Theorem

$$I \trianglelefteq \mathbb{Z} \implies \exists \, n \in \mathbb{Z}, I = n\mathbb{Z}$$

 $\therefore n\mathbb{Z} \leq Z$

Proof

Case 1:
$$I = \{0\}$$

 $I = 0Z$

Case 2:
$$\exists i \in I, i \neq 0$$

I is an additive group, so $(-i) \in I$ Thus I contains a least positive element Let the least positive element be nAssume $m \in I$ By the DA, m = qn + r, where $0 \le r < n$ r = m - qnBut I is an ideal, so $qn \in I$ So by closure, $r \in I$ But by the minimality of n, r = 0m = qn $\therefore I = n\mathbb{Z}$