PRELIMINARII	ES	i
CHAPTER 1	Introductions	1
Fundamental physic	s, mathematical methods, and physical parameterizat	ions4
CHAPTER 2	Basic Concepts	9
Difference quotients Extension to two dir An example of a fine Accuracy and trunca Discretization error Stability The effects of increas Summary	of higher accuracy nensions Ite difference-approximation to a differential equation and convergence Ite number of grid points A Survey of Time-Differencing Schemes for the Oscillation and Decay Equations	
Introduction		45
Non-iterative schem Explicit scher Implicit scher Iterative schemes	es. nes()nes	45 49 51 53
Non-iterative Iterative two- The leapfrog The second-or oscillation equ	two-level schemes for the oscillation equation	56 59 60
=	me differencing schemes for the oscillation equation nemes for the decay equation	

	orth-Order Range-Kutta Scheme has	
	ccuracy	
Problems		85
CHAPTER 4	A closer look at the advection equation	<i>87</i>
Introduction		87
Conservative finite-c	lifference methods	90
Examples of scheme	s with centered space differencing	95
Computational dispe	rsion	102
The effect of fourth-	order space differencing on the phase speed	108
Space-uncentered sch	hemes	109
Hole filling		113
Flux-corrected transp	port	114
Lagrangian schemes		117
Semi-Lagrangian sch	nemes	118
Two-dimensional ad	vection	121
Summary		123
Problems		124
CHAPTER 5	Boundary-value problems	127
Introduction		127
	ensional boundary-value problems	
	ion	
	ction implicit method	
•		
C		
CHAPTER 6	Diffusion	141
Introduction		141
	neme	
An implicit scheme		144
_	scheme	
Summary		147
Problems		148

CHAPTER 7	Making Waves	149
Classification of sec	ond-order partial differential equations	149
Hyperbolic systems	of first-order partial differential equations	154
Numerical simulation	on of geostrophic adjustment	160
Time differencing so	chemes for the shallow-water equations	166
Conservation of mas	s, kinetic energy, and potential energy nal divergent flow	
Problems 179		
CHAPTER 8	Boundary conditions and nested	grids 183
Introduction		183
Inflow Boundaries .		183
Outflow boundaries		189
Advection on nested	l grids	195
	y conditions for the advection equation using od	202
•	tational reflection of gravity waves at a wall	
•	s for the gravity wave equations with an advection to	
=	as a guide in choosing boundary conditions	
		209
<i>C</i> ,		
•		
CHAPTER 9	Aliasing instability	213
Aliasing error		213
•	able, non-divergent current	
•		
Kinetic energy and e	enstrophy conservation in two-dimensional	
_	conservation	
_	es for the two-dimensional shallow water	270
	otation	241
=	lifferencing on energy conservation	
•		

CHAPTER 10	Finite Differences on the Sphere	<i>251</i>
Introduction		251
Coordinate systems and map projections		
Latitude-longitude grids and the "pole problem"		
Kurihara's grid ' The Wandering Electron Grid		
	rids	
CHAPTER 11	Spectral Methods	271
Introduction		271
Spectral methods on	the sphere	279
The "equivalent grid	resolution" of spectral models	284
Semi-implicit time di	ifferencing	285
Conservation propert	ies and computational stability	286
Moisture advection		286
Physical parameteriza	ations	287
Summary		287
Problems		289
CHAPTER 12	Vertical Differencing for Quasi-Static Models	291
Introduction		291
General vertical coor	dinate	291
Vertical coordinate sy	ystems	294
Height		294
	aten -coordinates	
	pressure coordinates	
	pressure coordinates	
	erature	
Hybrid $\sigma - \theta c$	oordinates	309
•	ertical coordinate systems	
	ties of vertically discrete models using σ -coordinates	
Summary and conclu	sions	323

ix

List of Tables	325
List of figures	327

١		