

6. Stunde

Klangfarben

Definition

- Schwierig zu definieren
- Unterscheidung von Instrumenten
- Eigenschaften wie hell, dunkel, hohl, spitz, reich, dünn
- Diese Qualitäten lassen oft anhand des Spektrums nachvollziehen

Spektrum

- Globale Eigenschaften eines Spektrums
 - O Spektrale Hüllkurve
 - Zentroid
 - **Formanten**

Zentroid eines lauten Trompetentons

Zentroid eines leisen Trompetentons

Formanten

-	Formant	heed	head	had	hod	haw'd	who'd
Männer	F1	270	530	660	730	570	300
-	F2	2290	1840	1720	1090	840	870
-	F3	3010	2480	2410	2440	2410	2240
Frauen	F1	310	610	860	850	590	370
-	F2	2790	2330	2050	1220	920	950
-	F3	3310	2990	2850	2810	2710	2670
Kinder	F1	370	690	1010	1030	680	430
-	F2	3200	2610	2320	1370	1060	1170
-	F3	3730	3570	3320	3170	3180	3260

Formanten bei Vokalen

- Quelle-Filter-Modell
 - Stimmquelle (Anregung):
 Stimmbänder
 - Filter (Sprachformung): Mund, Zunge, Lippen
- Vibrato lässt synthetische
 Stimmen menschlich erscheinen.

Klangbeispiel: a, e, u:

Formanten bei Vokalen

- Quelle-Filter-Modell
 - Stimmquelle (Anregung):
 Stimmbänder
 - Filter (Sprachformung): Mund, Zunge, Lippen
- Vibrato lässt synthetische
 Stimmen menschlich erscheinen.

Klangbeispiel: a, e, u:

Lokale Eigenschaften

- Einsatz von Teiltönen
- Transienten
- Balance von geraden/ungeraden
 Teiltönen
- Sensorische Konsonanz/Dissonanz

Klangfarbe und Orchestration

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.00 0.0

Spektren von Klarinette und Cello im Vergleich

Zwei Fagotte im Abstand einer großen Terz

Zwei Celli im Abstand einer großen Terz

Verschmelzung

- Warum hören wir Spektren nicht als Akkorde?
- Harmonisches Spektrum
- Einsatz der Teiltöne dicht beieinander
- Teiltöne bewegen sich gemeinsam

Beispiel: Trennung eines Glockenklangs in drei Stimmen

Verschmelzung

- Warum hören wir Spektren nicht als Akkorde?
- Harmonisches Spektrum
- Einsatz der Teiltöne dicht beieinander
- Teiltöne bewegen sich gemeinsam

Beispiel: Trennung eines Glockenklangs in drei Stimmen

Hüllkurve

- ADSR-Modell (z.B. bei Bläsern)
 - Attack
 - Decay
 - Sustain
 - Release

Expontieller Decay (z.B. bei Klavier u. Schlaginstrumenten)

- Die ersten Millisekunden der Attacke entscheiden in höherem Maße über den Klangeindruck
- Attacken unter 30 Millisekunden klingen perkussiv

 Der Einsatz von Teiltönen bestimmt instrumentalten Charakter

Klarinette mit abgeschnittener Attacke ähnelt Glocke

 Der Einsatz von Teiltönen bestimmt instrumentalten Charakter

Klarinette mit abgeschnittener Attacke ähnelt Glocke

 Der Einsatz von Teiltönen bestimmt instrumentalten Charakter

Klarinette mit abgeschnittener Attacke ähnelt Glocke

- Klangfarbe als Strukturelement
 - Klangfarbenraum
 - Stream Segregation

- Klangfarbe als Strukturelement
 - Klangfarbenraum
 - Stream Segregation

- Klangfarbe als Strukturelement
 - Klangfarbenraum
 - Stream Segregation

Klangfarbenraum

Abbreviations for stimulus points: 01, 02 = oboes, FH = French horn, BN = bassoon, C1 = E-flat clarinet, C2 = bass clarinet, FL = flute, X1 X2, X3 = saxophones, TP = trumpet, EH = English horn, S1 = cello played sul ponticello, S2 = cello played normally, S3 = cello played muted sul tasto, FHZ = modified FH with spectral envelope, BNZ = modified BN with FH spectral envelope, S1Z = modified S1 with S2 spectral envelope, S2Z = modified S2 with S1 spectral envelope, TMZ = modified TM with TP spectral envelope, BCZ = modified C2 with 01 spectral envelope, 01Z modified 01 with C2 spectral envelope.

Zweidimensionaler Klangfarbenraum

Klangfarbenraum

Dreidimensionaler Klangfarbenraum