# Electronic VAΩmeter PM2505

9447 025 050.1

# Service Manual

9499 475 01411 · 800301





Scientific & Industrial Equipment

**PHILIPS** 

# Electronic VAΩmeter PM2505

9447 025 050.1

# Service Manual

9499 475 01411 800301





**PHILIPS** 

#### **IMPORTANT**

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

#### WICHTIG

Bei Schriftwechsel über dieses Gerät wird gebeten, die genaue Typenbezeichnung und die Gerätenummer anzugeben. Diese befinden sich auf dem Leistungsschild.

#### **IMPORTANT**

#### RECHANGE DES PIECES DETACHEES (Réparations)

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez TOUJOURS indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

Note: The design of this instrument is subject to continuous development and improvement.

Consequently, this instrument may incorporate minor changes in detail from the information

contained in this manual.

Bemerkung: Die Konstruktion und Schaltung dieses Geräts wird ständig weiterentwickelt und verbessert.

Deswegen kann dieses Gerät von den in dieser Anleitung stehenden Angaben abweichen.

Remarques: Cet appareil est l'objet de développements et améliorations continuels. En conséquence, certains

détails mineurs peuvent différer des informations données dans la présente notice d'emploi

et d'entretien.

| CONTENTS                                                            | Pag |
|---------------------------------------------------------------------|-----|
| 1. Introduction                                                     | 5   |
| 2. Technical data                                                   | 5   |
| 2.1. Measuring performance                                          | 5   |
| 2.1.1. D.c. voltage measurements                                    | 5   |
| 2.1.2. A.c. voltage measurements                                    | 6   |
| 2.1.3. D.c. current measurements                                    | 6   |
| 2.1.4. A.c. current measurements                                    | 7   |
| 2.1.5. Resistance measurements                                      | 8   |
| 2.1.6. Semiconductor testing $\pm$                                  | 8   |
| 2.1.7. Continuity check (BUZZER mode)                               | 9   |
| 2.1.8. dB measurements                                              | 9   |
| 2.2. General data –                                                 | 9   |
| 2,2,1. Conversion characteristics                                   | . 9 |
| 2.2.2. Display                                                      | 9   |
| 2.2.3. Warm-up time                                                 | 9   |
| 2.2.4. Operating conditions                                         | 10  |
| 2.2.5. Mechanical data                                              | 10  |
| 2.2.6. Power requirements                                           | 10  |
| 2.2.7. Input terminals arrangement                                  | 10  |
| 2.2.8. Calibration                                                  | 11  |
| 2,2,9, Safety                                                       | 11  |
| 3. Accessories                                                      | 12  |
| 3.1. Accessories delivered with the PM2505                          | 12  |
| 3.2. Optional accessories                                           | 12  |
| 3.2.1. HF probe PM9210 and accessory set PM9212                     | 12  |
| 3.2.2. EHT probe PM9246                                             | 13  |
| 3.2.3. Current transformer PM9245                                   | 13  |
| 3,2,4. Shunt PM9244                                                 | 13  |
| 3.2.5. RF probe PM9213                                              | 16  |
| 3.2.6. Carrying case PM9278                                         | 16  |
| 4. Circuit description                                              | 17  |
| 4.1. Introduction                                                   | 17  |
| 4.2. Principle of operation                                         | 17  |
| 4.2.1. $V = -$ , $V \sim$ , + BATT and $-$ BATT measurements        | 17  |
| 4.2.2. A $===$ , and A $\sim$ measurements                          | 17  |
| 4.2.3. $\Omega$ , $lacktriangle$ and BUZZER measurements            | 17  |
| 4.2.4. Amplifier                                                    | 17  |
| 4.3. Detailed circuit description                                   | 19  |
| 4.3.1. $V = -$ , $V \sim$ , BATT and $-$ BATT attenuator            | 19  |
| 4.3.2. A $===$ ,, and A $\sim$ shunts                               | 20  |
| 4.3.3. $\Omega$ , $\star$ and BUZZER measurements                   | 21  |
| 4.3.4. Amplifier and guard circuit                                  | 23  |
| 4.3.5. Protection                                                   | 24  |
| 5. Acces                                                            | 29  |
| 5.1. General                                                        | 29  |
| 5.2. Dismantling the PM2505                                         | 29  |
| 5.3. Replacing parts                                                | 29  |
| 5.3.1. Slide switch ON/OFF or $\Longrightarrow$ , $\sim$ , $\Omega$ | 29  |
| 5.3.2. Range switch                                                 | 29  |
| 5.3.3. Polarity indicator                                           | 30  |
| 6. Checking and adjusting                                           | 31  |
| 6.1. General                                                        | 31  |
| 6.2. Adjusting table                                                | 32  |
| 7. Parts list                                                       | 34  |
| 7.1. Mechanical                                                     | 34  |
| 7.2. Electrical                                                     | 36  |
| 7.2.1. Capacitors                                                   | 36  |
| 7.2.2. Resistors                                                    | 37  |
| 7.2.3. Semiconductors                                               | 39  |
| 7.2.4 Integrated circuits                                           | 20  |

## LIST OF FIGURES

|     |                                                   | Page |
|-----|---------------------------------------------------|------|
| 1.  | Measuring leads with test pins PM9262             | 12   |
| 2.  | HF-probe PM9210                                   | 14   |
| 3.  | Accessory set PM9212                              | 14   |
| 4.  | HT-probe PM9246                                   | 14   |
| 5.  | Current transformer PM9246                        | 14   |
| 3.  | Shunt PM9244                                      | 14   |
| 7.  | RF-probe PM9213                                   | 16   |
| 3.  | Blockdiagram                                      | 18   |
| 9.  | V = V - V - V + BATT and $V = BATT$ attenuators   | 19   |
| 10. | $A = -$ , and $A \sim \text{shunts}$              | 20   |
| 11. | $\Omega$ , $\psi$ , BUZZER measurements principle | 21   |
| 12. | Ω ≠ , BUZZER current source                       | 22   |
| 13. | Feed back circuitry                               | 23   |
| 14. | Amplifier and buffer circuit                      | 26   |
| 15. | Protection                                        | 24   |
| 16. | Full scale deflection values                      | 28   |
| 17. | Measuring system                                  | 30   |
| 18. | Replacing the polarity indicator                  | 30   |
| 19. | Adjusting elements                                | 31   |
| 20. | P.c. board component side                         | 40   |
| 21. | P.c. board conductor side                         | 41   |
| 22. | Function switch lay-out component side            | 42   |
| 23. | Function switch lay-out conductor side            | 42   |
| 24. | List of used components                           | 45   |
| 25. | Circuit diagram                                   | 45   |

#### 1. INTRODUCTION

The analog electronic multimeter PM 2505 is a universal measuring instrument with 62 measuring ranges. With the optional accessories the measuring ranges can be extended up to 77.

The PM 2505 measures:

- ac and dc voltages from 100mV f.s.d. to 1000V f.s.d.
- resistances with a linear scale from  $100\Omega$  f.s.d. to  $30M\Omega$  f.s.d.
- ac and dc currents from 1 μA f.s.d. to 10A f.s.d..

The ranges in the voltage, resistance and current functions are divided in 1-3-10 steps.

Separate ranges are available for testing semiconductors  $\psi$ , and for continuity check with the aid of an internal buzzer  $\blacksquare$ .

The instrument is powered by two 9V batteries which enable continuous measuring for at least 1000 hours.

#### 2. TECHNICAL DATA

This apparatus has been designed and tested in accordance with IEC publication 348, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe cordilion. The present instruction manual contains some information and warnings which have to be followed by the user to ensure safe operation and to retain the apparatus in safe condition.

All values mentioned in this description are nominal; those given with tolerances are binding and guaranteed by the manufacturer.

Manufacturer

N.V. Philips MIG S&I

Typenumber

PM 2505

Designation

, Electronic VA $\Omega$ -meter

Measuring quantities:

Vdc, Vac, Adc, Aac, Ω, ★ , ¶ , dB

#### 2.1. MEASURING PERFORMANCE

## 2.1.1. Dc voltage measurements

Ranges mV 100 - 300

(full scale deflection) V 1 - 3 - 10 - 30 - 100 - 300 - 1000

Sensitivity 1mV in 100mV range

Accuracy  $\pm$  1.5% f.s.d.

Temperature coëfficient  $\pm$  0.1% f.s.d. /°C. Input impedance  $\pm$  10 M $\Omega$ //75pF

SMRR > 60 dB at 50/60Hz

Maximum Series Mode signal 2 times full scale

CMRR with 1 K $\Omega$  unbalance 100dB for ac (48 - 62Hz))

120dB for dc

As common is used a grounded metal plate.

Max. voltage between:

Hi and Lo 1000V peak, on all ranges

 $\text{Hi and earth} \\
 \text{Lo and earth} \\
 \text{1000V rms}, 1400V peak - V test 6kV} \\
 \text{400V rms}, 580V peak - V test 4kV}$ 

Recovery time 20s within specification in the 100mV range, after measuring

1000V in the 1000V range

#### 2.1.2. Ac voltage measurements

Ranges

(full scale deflection)

mV 100 - 300

V 1 - 3 - 10 - 30 - 100 - 300 - 1000

Sensitivity

1mV in 100mV range

Accuracy

| Range         | Frequency    | Acc.        |
|---------------|--------------|-------------|
| 100mV - 1000V | 50 - 60Hz    | ± 2.5%      |
| 100mV - 300 V | 10Hz - 30kHz | ± 5% f.s.d. |
| 1000V         | 10Hz - 1kHz  | ± 5% f.s.d. |

Temperature coëfficient

± 0.1% f.s.d. /°C

Input impedance

 $10M\Omega//75pF$ 

CMRR with 1k $\Omega$  unbalance

100dB for ac (48 - 62Hz)

Max. VHz product

 $< 1.10^7$ 

Max. voltage between:

Hi and Lo

600V rms, 1000V peak on all ranges

Hi and earth

1400V peak - V test 6kV

Lo and earth

400V rms, 580V peak - V test 4kV

#### 2.1.3. Dc current measurements

Ranges

(full scale deflection)

| μΑ | 1 - 3 - 10 - 30 - 100 - 300 |
|----|-----------------------------|
| mA | 1 - 3 - 10 - 30 - 100 - 300 |
| Α  | 1 - 3 - 10                  |

Sensitivity

10nA in 1 µA range

Accuracy

± 1.5% f.s.d.

Temperature coëfficient

± 0.1% f.s.d. /°C.

Voltage drop over shunt f.s.d.

| Range |       |       | Voltage drop |
|-------|-------|-------|--------------|
| 1μΑ   | 10μΑ  | 100μΑ | 31.6mV       |
| ЗμА   | 30μΑ  | 300μΑ | 100 mV       |
| 1mA   | 30mA  | 1 A   | 10 mV        |
| 3mA   | 100mA | 3 A   | 31.6mV       |
| 10mA  | 300mA | 10 A  | 100 mV       |

Voltage drop over input sockets f.s.d.

| Range      | Voltage drop |
|------------|--------------|
| 1μA – 30mA | < 100mV      |
| 100mA      | < 150mV      |
| 300mA      | < 450mV      |
| 1 A        | < 50mV       |
| 3 A        | < 100mV      |
| 10 A       | < 250mV      |

Protection:

Range  $1\mu A - 300mA$ 

Ceramic or glass fuse 20x5mm, 400mm, 400mA fast 250V

IEC 127/1 High breaking capacity.

Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of make shift fuses and the short circuiting of fuseholders are prohibited. Range 1A - 10A

Not protected.

Maximum current 16A for 1 minute

Max. overload voltage

250V rms (40 - 400Hz)

Max. voltage between:

Hi and earth

400V rms

Lo and earth

400V rms

#### 2.1.4. Ac current measurements

Ranges

(full scale deflection)

| μΑ | 1 - 3 - 10 - 30 - 100 - 300 |
|----|-----------------------------|
| mA | 1 - 3 - 10 - 30 - 100 - 300 |
| Δ  | 1 - 3 - 10                  |

Sensitivity

10nA in 1µA range

Accuracy

| Range         | Frequency      | Acc. |
|---------------|----------------|------|
| 1μΑ - 10 Α    | 50 - 60 Hz     | ± 3% |
| 1μΑ - 30μΑ    | 10 - 70 Hz     | ± 3% |
| 100μA - 10 mA | 10 Hz - 20 kHz | ± 3% |
| 30mA - 10 A   | 10 Hz - 10 kHz | ± 3% |

Temperature coëfficient

± 0.1% f.s.d. /°C.

Voltage over shunt at f.s.d.

| Range |       |       | Voltage drop |
|-------|-------|-------|--------------|
| 1μΑ   | 10μΑ  | 100μΑ | 31.6mV       |
| 3μΑ   | 30μΑ  | 300μΑ | 100 mV       |
| 1mA   | 30mA  | 1 A   | 10 mV        |
| 3mA   | 100mA | 3 A   | 31.6mV       |
| 10mA  | 300mA | 10 A  | 100 mV       |

Voltage drop over input sockets at f.s.d.

| Range           | Voltage drop |
|-----------------|--------------|
| $1\mu A - 30mA$ | < 100mV      |
| 100mA           | < 150mV      |
| 300mA           | < 450mV      |
| 1 A             | < 50mV       |
| 3 A             | < 100mV      |
| 10 A            | < 250mV      |

Protection:

Range  $1\mu A - 300 mA$ 

Ceramic or glass fuse 20x5mm 400mA Fast, 250V.

IEC 127/1 High breaking capacity

Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of make shift fuses and the short circuiting of fuseholders are prohibited.

Range 1 A - 10 A

Not protected. Max. current 16A for 1 minute.

Max. overload voltage

250V rms (40 - 400Hz).

Max. voltage between:

Hi and earth

400V rms

Lo and earth

400V rms

#### 2.1.5. Resistance measurements

Ranges

| Ω  | 100 - 300                   |
|----|-----------------------------|
| kΩ | 1 - 3 - 10 - 30 - 100 - 300 |
| мΩ | 1 - 3 - 10 - 30             |

Sensitivity

Linear-scale 1  $\Omega$  in 100  $\Omega$  range

Accuracy

 $\pm$  3% f.s.d. for 100  $\Omega$  to 10M  $\!\Omega$  range

 $\pm$  10% f.s.d. for 30M  $\Omega$  range

Temperature coëfficient

± 0.1% f.s.d. /°C

Measuring voltage and measuring current

| Range                     | Measuring Voltage f.s.d. | Measuring current |
|---------------------------|--------------------------|-------------------|
| $\Omega$ 001 $\Omega$ 008 | 31.6mV<br>100 mV         | 316μΑ             |
| 1kΩ<br>3kΩ                | 31.6mV<br>100 mV         | 31.6µA            |
| 10k $\Omega$              | 31.6mV<br>100 mV         | 3.16µA            |
| $100$ k $\Omega$          | 31.6mV<br>100 mV         | 316nA             |
| 1ΜΩ                       |                          | 1μΑ               |
| ЗМΩ                       | 11/                      | 316nA             |
| 10ΜΩ                      | 1V                       | 100nA             |
| ЗОМΩ                      |                          | 31.6nA            |

Protection

With semi-conductor protection devices

Maximum overload voltage

250V rms (40 - 400Hz).

Maximum voltage between:

Hi and earth

400V rms

Lo and earth

400V rms

#### 2.1.6. Semi-conductor testing .

Range

Semi-conductor 🛊

Measuring current

316µA

Measuring voltage f.s.d.

| 1V | Meter indication |          |  |  |  |  |
|----|------------------|----------|--|--|--|--|
|    | Conducting       | Reversed |  |  |  |  |
| Si | 50 - 80          | 100      |  |  |  |  |
| Ge | 10 – 30          | 100      |  |  |  |  |

Polarity for conducting

Anode on VΩ ◀ socket

Cathode on 0 socket

Maximum reverse voltage

7.5V

Protection

With semi-conductor protection devices

Maximum overload voltage

250V rms (40 - 400Hz)

Max. voltage between:

Hi and earth

400V rms

Lo and earth

400V rms

#### 2.1.7. Continuity check (BUZZER - RANGE)

BUZZER **■** Range

Audible tone from  $0\Omega$  ...  $20\Omega$ Shortcircuit Resistance  $> 20\Omega$ , no tone Isolation

Protection With semi-conductor protection devices

250V rms (40 - 400Hz). Maximum overload voltage

Max. voltage between:

Hi and earth 400V rms Lo and earth 400V rms

#### 2.1.8. dB measurements

Ranges -20, -10, 0, +10, +20, +30, +40

0 dB reference  $0dB = 1mW 600\Omega 0,775V$ 

#### 2.2. **GENERAL DATA**

#### 2.2.1. Conversion characteristics

Linear by means of FET and IC. Kind of conversion

The IC consists of an amplifier and current source for

resistance measurement.

Current moving coil with taut band, driven by Operating principle

integrated circuit.

Basic mode of operation Continuous indication on moving coil

Range setting Manual with mono-knob

Function setting Manual with slideswitch --,  $\sim$ ,  $\Omega$ .

Polarity setting Automatic on separate moving coil system Polarity indication + - ~ on separate moving coil system

Zeroing Mechanical zero of moving coil Electrical zero of amplifier

#### 2.2.2. Display

Visual representation: 3 scales: (0 - 100) (0 - 31.6) (-20 - +2 dB)

Battery OK scale, mirror for parrellax free reading.

Means of representation of Position of needle on the scale of the measuring

measured value

system.

Means of polarity

Position of needle of polarityindicator  $-\sim$  + representation

Means of function representation Position of function switch:  $\longrightarrow$ ,  $\sim$ ,  $\Omega$ .

#### 2.2.3. Warm-up time

Warm-up time None.

#### Operating conditions in accordance with IEC 68 - 2. 2.2.4.

Acc IEC 359 Class 1 Climatic conditions

 $23^{0}C \pm 2^{0}C$ . Ambient temperature 0°C ... +55°C Rated range of use

> The apparatus has been designed for indoor use it may occasionally be subjected to temperatures between 0°C and -10°C without degradation of its safety.

Limit range of storage and

-40°C ... +70°C transport

10% ... 90% at  $\leq$  35<sup>0</sup>C Relative humidity

10% ... 70% at 35° to 55°C

Mechanical conditions Acc IEC 68-2-6 FC

Acc IEC 359 M2 Vibration test

Fields and radiation

 $\left. \begin{array}{c} \text{Electric} \\ \text{Magnetic} \end{array} \right\} \ \ \text{fields acc. MIL std 461A} \ \ \ -\text{R303}$ From external origin

Electric Magnetic fields acc. MIL std 461A From internal origin

#### 2.2.5. Mechanical data

Material ABS

Use of instrument In three positions, horizontal, vertical and with stand-up

172 x 118 x 60mm. Dimensions Weight Approx. 750 gr.

#### 2.2.6. Power requirements

Two 9V batteries 49 x 26 x 17.2mm **Batteries** 

dimensions acc. to IEC publ. 86

e.g. Philips 6F 22 TR

Approx. 1000 hours Battery life

Life-time in  $\Omega$ ,  $\bigstar$  and BUZZER  $\blacktriangleleft$  mode is lower.

Battery check Two separate positions on the range switch for

+ and -battery check.

Battery is OK when pointer is within battery scale.

#### 2.2.7. Input terminals arrangement

Inputs **Floating** 

Number of input sockets O Common socket for voltage, current, resistance,

diode and BUZZER measurements.

 $V\Omega$   $\P$  High socket for voltage and resistance, diode and BUZZER measurements.

μA-mA High socket for low current-measurement

from  $1\mu A$  ... 300mA f.s.d.

A High socket for high current-measurement from 1A ... 10A f.s.d.

Impedance between input-sockets

Between  $\boxed{ V\Omega \ \P }$  and  $\boxed{ 0 }$  : 10M $\Omega /\!/$  75pF

Between  $\mu$ A-mA and 0: 1.8 $\Omega$  in 300mA range.

to 31.6K $\Omega$  in 1 $\mu$ A range.

Between A and 0:  $20m\Omega$ 

## 2.2.8. Calibration

Calibration interval

Every 6 months.

## 2.2.9. Safety

Safety class II acc IEC 348 and VDE 0411

#### 3. ACCESSORIES

## 3.1. ACCESSORIES SUPPLIED WITH THE PM 2505

- 2 Fuses 400mA fast
- Measuring-leads with testpins PM 9260



Fig. 1. Measuring leads with testpins PM 9262

#### 3.2. OPTIONAL ACCESSORIES

## 3.2.1. HF probe type PM 9210 (Fig. 2) Accessory set for the probe type PM 9212 (Fig. 3).

|                               | PM 9210        | PM 9210 + PM 9212                  |
|-------------------------------|----------------|------------------------------------|
| Frequency range               | 100kHz to 1GHz | 100kHz to 1GHz                     |
| Straight line within 5%       | 100kHz to 6MHz | 100kHz to 6MHz                     |
| Maximum deviation             | 3dB            | 3.5dB                              |
| Voltages ranges               | 150mV to 15V   | 15V to 200V                        |
| Max. voltage a.c.             | 30V            | 200V                               |
| Max. voltage d.c.             | 200V           | 500V                               |
| Input capacitance             | 2pF            | 2pF                                |
| T-piece (included in PM 9212) |                |                                    |
| Impedance                     |                | $50\Omega$                         |
| Standing wave ratio           |                | 1.25 at 700MHz and<br>1.15 at 1GHz |

Probe type PM 9210, in combination with the probe accessories (adjustable earthing pin and dage adaptor), is suitable for measurements up to a frequency of 100MHz.

For measurements beyond this frequency it is advisable to use the  $50\Omega$  T-piece and the 50 terminating resistance which are included in the PM 9212 probe accessories set.

## 3.2.2. EHT probe type PM 9246 (Fig. 4.)

The EHT probe PM 9246 is suitable for measuring dc voltages up to 30kV. The PM 9246 can be used for measuring instruments having an input impedance of 100M $\Omega$ , 10M $\Omega$  or 1.2M $\bar{\Omega}$  (selectable on the probe).

Maximum voltage

30kV

Attenuation

1000x

Input impedance

 $600M\Omega \pm 5\%$ 

Accuracy

± 3%

Relative humidity

20% to 80%

Note: Check that earth connections are made correctly.

# 3.2.3. Current transformer type PM 9245 (Fig. 5)

With this transformer it is possible to measure alternating currents over 10A up to 100A.

Transfer factor

1000x (100A = 100mA)

Transfer error

± 3%

Frequency range

45Hz to 1kHz

Max. permissible secundary voltage

200mV

Max. voltage with respect to earth

400V a.c.

Before measuring, connect the current transformer to the instrument.

Avoid contamination of the core parts.

## 3.2.4. Shunt type PM9244 (fig. 6)

With this shunt it is possible to measure direct- and alternating currents (max. 1kHz) up to 31.6A.

Current range

10A and 31.6A

Output voltage

100mV and 31.6mV

Accuracy

100mV : ± 1%

31.6mV: ± 2%

Dissipation

Max. 3.16W

Dimensions

Height 55mm

Width 140mm Depth 65mm







Fig. 3. Accessory set PM 9212



Fig. 4. HT-probe PM 9246



Fig. 5. Current transformer PM 9245



Fig. 6. Shunt PM 9244

# 3.2.5. RF probe PM 9213 (Fig. 7)





Fig. 7. RF-probe PM 9213

# 3.2.6. Carrying case PM 9278

The PM 9278 is a hard-plastic case carrying the PM 2505 and the accessories.

#### 4. CIRCUIT DESCRIPTION

## **SERVICE DATA**

#### 4.1. INTRODUCTION

The circuitry of the PM 2505 is built-up of a complete integrated amplifier part, preceded by attenuators for the various voltage, current and resistance ranges. The integrated amplifier part consists of an operational amplifier (V201/A) together with the rectifier diodes for the measuring system and a reference amplifier (V201/B) for the resistance ranges.

The high input impedance of the PM 2505 is obtained by a FET-input stage.

The high sensitivity of the moving-coil system has been achieved by tautbandsuspension.

If sinusoidal voltages or currents are applied, the moving coil instrument measures the average value of the signal. With the aid of a formfactornetwork (x 1.11) the instrument indicates the rms value.

#### 4.2. PRINCIPLE OF OPERATION (Fig. 8)

#### 4.2.1. V ==== , V ~, + BATT and − BATT measurements

The unknown direct or alternating voltage is connected to the voltage attenuator. Dependent on the selected range the unknown voltage is attenuated 3.16, 31.6, 3160 or 31.600 times. From the attenuator the voltage is supplied to the amplifier, converted in to a current and measured.

At +BATT and -BATT measurements the +9V and -9V battery voltages are connected to a special voltage attenuator. From this attenuator the voltages are supplied to the amplifier and measured.

#### 4.2.2. A $\longrightarrow$ and A $\sim$ measurements

The unknown direct or alternating currents are supplied to the shunts. For the 1A, 3A and 10A ranges a special shunt is built-in. Dependent on the range corresponding shunts are connected to the input. The resulting voltages are supplied to the amplifier, converted into a current and measured.

#### 4.2.3. $\Omega$ , $\star$ and measurements with BUZZER ( (continuity-check)

At resistance measurements a constant current flows through the unknown resistance. The constant current is generated by the current source. Dependent on the range selected different constant currents are generated. The voltage-drop over the unknown resistance is supplied to the amplifier, converted into a current and measured.

At diode measurements a constant current of  $316\mu$ A (V measuring is 1V f.s.d.) is generated by the current source. The current flowing through the diode causes a voltage drop which is supplied to the amplifier, converted into a current and measured.

In the BUZZER mode a constant current of  $316\mu\text{A}$  is generated by the current source. This current will flow for example through a wire which has a certain resistance value (Rx). The voltage drop over Rx is supplied to the amplifier and measured. At the same time the BUZZER will produce a tone. If Rx is greater than  $20\Omega$  the BUZZER is blocked. The BUZZER is coupled to the output of the amplifier.

#### 4.2.4. Amplifier

The direct and alternating voltages from the attenuators, shunts, or unknown resistances are converted in to a current of  $50\mu A$  f.s.d. by the amplifier.

The output of the amplifier, with internal full-wave rectifier, is connected to the measuring system. For + and — direct output voltages the internal full-wave rectifier ensures that the current through the measuring system flows in one direction and that the polarity indicator shows + or —.

Alternating output voltages are rectified by the full-wave rectifier. As a measuring system indicates the average value, a form-factor network is included in the feedback circuit of the amplifier. The network attenuates the feedback signal by 1,11 Vrms = V average so that the measuring system will indicate the rms-value of the

1,11

input signal. This only applies for sinusoidal input signals.

To avoid leakage currents to influence the measuring result an internal buffer circuit is built-in.



Fig. 8. Blockdiagram

#### 4.3. DETAILED CIRCUIT-DESCRIPTION (Fig. 25)

## 4.3.1. V = V + BATT and V = BATT attenuators (Fig. 9)

#### V===, V~.

The input attenuator for dc voltages consists of R101 upto R110. For ac voltages also the frequency compensation capacitors C101 up to C116 are in use.

Capacitor C107 is used to block a dc component in V~ mode.

Trimmer C105 and cut-away adjusting capacitors C106 and C116 are used to calibrate the 300mV~ range.

Trimmer C108 is used to calibrate the 3V~ range.

Capacitor C115 is only used in the 100mV~ range.

#### + Batt and - Batt.

To attenuate the +9V and -9V from the batteries resistors R401 and R402 are used.

At +BATT, +9V is connected to R401 via the  $\Omega$ /17 deck contact. From the attenuator R401/R402 the voltage is supplied to the amplifier via the A/17 and the V/17 deck-contacts.

At —BATT, —9V is connected to R401 via the A/18 deck-contact. From the attenuator R401/R402 the voltage is supplied to the amplifier via the V/18 deck-contact.



Fig. 9.  $V === , V \sim , +BATT$  and -BATT attenuators

## 4.3.2. A ==== and A~ shunts (Fig. 10)

The shunts for the ranges  $1\mu A$  up to 300mA consists of the resistors R105 up to R110. The shunts are selected by the A and the V deck.

In the ranges 1,3 and 10A the current is supplied to shunt R110 (metal strip) via the A input socket. From the shunts the voltage is supplied to the amplifier and measured.

Fuse F101, resistor R211 and bridge rectifier V101 serve for protection of the current ranges. For detailed information refer to chapter 4.3.5., page 24 PROTECTION



Fig. 10. A = ---, and  $A \sim shunts$ 

#### 4.3.3. $\Omega$ , $\neq$ and BUZZER measurements

#### 4.3.3.1. Principle (Fig. 11)

When a unknown resistance Rx (resistor, diode or wire) is connected to the PM 2505, a constant current generated by the constant current source will flow through it. The constant current causes a voltage drop Vx which is supplied to the amplifier (+) and measured. When the voltage is in balance on the — input of the amplifier and the + input of the current source Vx will be available. The amplifier A201/B of the current-source has an internal voltage source of 1.2V.

At the output of the amplifier A201/B Vx +1.2V will be available. On one side of series resistor R5,Vx is available and on the other side Vx + 1.2V. This means that over series resistor R5, 1.2V is available. Independent of the value of Vx (value of Rx) there always will be 1.2V across R5. This means that a constant current flows through Rx and R5.

The constant current can be influenced by changing series resistor R5. In case of  $\Omega$  measurements R5 is changed with the aid of the range selector.

At  $\ \pm$  measurements a fixed range is selected with a constant current of 316 $\mu$ A. At BUZZER measurements a fixed range is selected with a constant current of 316 $\mu$ A. At the same time the BUZZER circuit is switched to the output of amplifier A201/A. If the measured Rx is  $\ > 20\Omega$  the BUZZER is cut-off.



Fig. 11.  $\Omega$  ,  $\bigstar$  , BUZZER measurements principle

## 4.3.3.2. Ω, **‡** and BUZZER **◀** current source (Fig. 12)

The series resistors R301 up to R309 for the constant current source are switched with the  $\Omega$  range switch. The internal voltage source (1.2V) of OQ0051 can be adjusted with potentiometer R314 and cut-away resistor R316. At the input of the constant current source (A201/B) the feedback voltage of the amplifier (Vx) is available. At full scale deflection Vx is 10mV, 31.6mV, 100mV or 1V dependent to the range selected (refer to the gain table fig. 16). From the  $\Omega$  range switch the constant current is supplied to the input sockets via the protection PTC R301 and the  $\Omega$   $\Omega$  function-switch.

The unknown voltage Vx over Rx is supplied to the amplifier via filter R318/C301 and the  $\Omega$  ① function-switch.

In BUZZER mode (function  $\Omega$  and position 18 of the range-selector) the -9V supply voltage is connected to the BUZZER-circuit via the A/18 range switch contact, by which the buzzer is switched-on. The baise of transistor V302 is connected to the output of amplifier A301/A.

If the output of the amplifier exceeds  $\approx 600 \text{mV}$  then the buzzer is cut-off. In position 18 of the range selector the constant current source delivers  $316\mu\text{A}$  to the input sockets (Rx).

The buzzer is switched off in case of  $\sim$  measurements with the ② function switch. In case of  $\sim$  measurements with the function selector in position 18 the buzzer will also be switched on.

PTC R301 and zener diode V301 serve for protection. Refer to chapter 4.3.5. PROTECTION.



Fig. 12. Ω \(\psi\) , BUZZER current source

#### 4.3.4. Amplifier and buffer - ciruit (fig. 14)

#### 4.3.4.1. Amplifier

The total amplifier consists of a FET input stage (V204), an operational amplifier (A201/A,  $\frac{1}{2}$  OQ0051) and the feedback circuitry. The amplifier ensures that the unknown input voltage, 1V, 100mV, 31.6mV or 10mV at full scale is converted into a current flowing through the measuring system of  $50\mu$ A.

The attenuated voltage from the attenuators, shunts or Rx is first supplied to a filter (R201//C203, C204). At dc measurements the filter connects the ac component to zero.

From the filter the unknown input voltage is supplied to the dual FET-stage of the amplifier. On one side of the dual FET the input voltage is available. On the other side the feedback voltage is available.

In fig. 13 the feedback circuitry is given with the different sensitivities. Also refer to fig. 16.



Fig. 13. Feedback circuitry

In the feedback circuit of the amplifier formfactor network is incorperated for ac voltages. If sinusoidal voltages or currents are measured the measuring system measures the average value. With the formfactor network the feedback of the total amplifier is raised by 1,11, so the measuring system measures the rms value of the ac signal.

The output current of the amplifier is supplied to the measuring system via the internal rectifier diodes of the OCO051

Transistors V201, V202 and diode V206 serve for protection. Refer to chapter 4.3.5. PROTECTION.

#### 4.3.4.1. Buffer circuit (Fig. 14)

To prevent leakage currents through the protection devices (V101, V201, V202) and the switch in FET V203 to influence the measuring result, the leakage currents are compensated.

The compensation is made with the aid of the BUFFER-circuit.

The Buffer circuit is an impedance converter with a high input impedance (baise V211) and a low output impedance (collector V210).

#### 4.3.5. Protection (Fig. 15)

Function V is protected by means of the protection transistors V201 and V202. If the input voltage of the amplifier exceeds 1.2V the transistors start conducting

Function  $\Omega$   $\updownarrow$  and  $\blacksquare$  are protected by a PTC R301. Range  $100\Omega$  and  $300\Omega$  and  $\blacksquare$  are additional protected with zener diode V301.

Function  $\mu$ A and mA are protected by Fuse F101, R111 and the diodes of bridge rectifier V101. The measuring system is protected by diode V206



Fig. 15. Protection



Fig. 14. Amplifier and buffer circuit

| 2 | o |
|---|---|
| _ | o |



Fig. 16. Full scale deflection values

#### 5. ACCESS

#### 5.1. GENERAL

The opening of covers or removal of parts, except those which access can be gained by hand, is likely to expose live parts and also accessible terminals may be live.

The instrument shall be disconnected from all voltage sources before any adjustment, replacement or repair during which the instrument will be opened.

If afterwards any adjustment or repair of the opened instrument under voltage is inevitable, it shall be carried out only by a skilled person who is aware of the danger involved.

Bear in mind that capacitors inside the instrument may still be charged, even if the instrument has been separated from all voltage sources.

#### 5.2. DISMANTLING THE PM 2505

- Remove the battery cover.
- Remove the batteries.
- Loosen the two screws situated under the battery cover. The rear cover can be pulled off now.
- Remove the two screws which are situated in the rear of the measuring system.
- The printed circuit board together with clip-on measuring system can be pulled out of the top cover now.
   The measuring system is clipped on the p.c. board and can be pulled off.

#### 5.3. REPLACING PARTS

#### 5.3.1. Slide switch ON/OFF or ---, $\sim$ , $\Omega$ .

#### 5.3.1.1. Printed circuit board part

Remove the two retaining rings from the slide bodies. The slide switch consists of two bodies. In the bodies the switch contacts are situated. A switch contact consists of a spring and a slider.

Note: All parts of slide switch are in stock separately.

When a complete switch has to be replaced all parts should be ordered. When mounting the slide switch again, push both bodies slightly on the p.c. board and slide the retaining rings on the pins again.

#### 5.3.1.2. Topcover part

The topcover part consists of a locking spring, two ball-bearings and a knob.

Remove the locking spring by bending out the two lips.

The ball-bearings, the knob and the locking spring can be replaced now.

#### 5.3.2. Range switch

#### 5.3.2.1. Topcover part

Remove the screening plate situated inside the topcover. The function switch and the two leaf springs are accessible now.

#### 5.3.2.2. Printed circuit board part

The p.c. board part of the range switch consists of:

- 2 slide bodies
- 4 springs
- 4 switch contacts

Remove the screws and nuts from the slide bodies. The bodies can be lifted from the p.c. board now.

Note: From function switch only the separate parts are in stock. When the complete switch has to be replaced all parts should be ordered.

#### 5.3.3. Polarity indicator (fig.'s 17 and 18)

- Take the measuring system from the p.c. board (Refer to 5.2.).
- Unsolder the wires from the polarity indicator.
   Before removing the window ensure that you do not touch the inside of the window as it is treated with anty static liquid.
- Lever the window from the container by putting e.g. a screwdriver in the lever point (item 4).
- Unsolder the screen-wire (item 2).
- Remove the two screws (item 1) which fix the measuring system to the container.
- Take the measuring system out of the container, place it on the container (Fig. 18).
- Remove the mirror.
- Take the polarity indicator out of the container and replace it. Use the piece of self glueing foam again.
- Place the mirror in the container again.
- Place the measuring system in the container.
  - Take care that the counter-balance assembly (item 5) is not touched.
- Fix the measuring system to the container with the two fixing screws. Ensure that the top of the scale
  is fitted under the two fixing clips (item 3).
- Solder the screen-wire to the measuring system again (item 2)
- Fit the window on the container again.



Fig. 17. Measuring system



Fig. 18. Replacing the polarity indicator

## 6. CHECKING AND ADJUSTING

## 6.1. GENERAL

The tolerances in this chapter correspond to the factory data, which only apply to a completely re-adjusted instrument. These tolerances may deviate from those mentioned in the Technical Data (Chapter 2).

For a complete re-adjustment of the instrument the sequence in this chapter should be adhered too. When individual components, especially semi-conductors are replaced, the relevant section should be completely re-adjusted.

To calibrate this measuring instrument only reference voltages and measuring equipment with the required accuracy should be applied. If such equipment is not available, comparative measurements can be made with another calibrated PM 2505. However, theoretically the tolerances may be doubled in the extreme case.

The measuring arrangement should be such that the measurement cannot be affected by external influences. Protect the circuit against temperature variations (fans, sun).

With all the measurements the cables should be kept as short as possible; at higher frequencies co-axial leads should be used.

Non-screened measuring cables act as serials so that the measuring instrument will measure HF voltage values or hum voltages.



Fig. 19. Adjusting elements

## 6.2. ADJUSTING TABLE

31

| No.  | Adjustment .*                                                                                              | Adjusting element                                             | Preparations                                                                                                          | Measuring points                                                         | Adjustment data                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1.   | Mechanical zero-setting                                                                                    | Adjusting screw above the range selector knob.                | Instrument switched OFF                                                                                               | Visible on measuring system                                              | Adjust the pointer to zero                                                                                         |
| 2.   | Battery check.                                                                                             |                                                               | Select: + BATT ( $\Longrightarrow$ ) and ( $\Omega$ ) -BATT ( $\Longrightarrow$ ).                                    | Visible on measuring system                                              | The meter indication should be in the BATT region (lowest scale).                                                  |
| 3.   | Electrical zero-setting. If this adjustment cannot be made, carry out first adjustment 4 and then 3 again. | Potentiometer "0" (R207)                                      | Select: Range 1mA                                                                                                     | Visible on the polarity indicator                                        | Adjust the pointer to the middle of the ~ sign.                                                                    |
| . 4. | Offset When adjustment 3 cannot be made first carry out this adjustment and then adjustment 3 again        | Potentiometer R206<br>R207<br>Cut away resistor R205          | Select: Range 1mA POTE<br>Set potentiometer R207<br>in its mid-position.                                              | Visible on the polarity indicator                                        | Adjust the pointer to the middle of the ~ sign with R208  If the adjustment cannot be made, remove cutaway         |
| 5.   | Offset buffer circuit                                                                                      | Potentiometer R227<br>Cut away resistors R229<br>R230<br>R231 | Select: Range 1mA                                                                                                     | Accross R230 (Factory adj.)  Hi = coll V211 Lo = 0 socket (Service adj.) | resistor R205  -Factory adjustment (R229, R230, R231) refer to table below.  -Service adjustment (227)  0V ± 1mV   |
| 6.   | 1.2V internal voltage<br>source of OQ0051                                                                  | Potentiometer R314<br>Cut-away resistor R316                  | Select: Range 1k $\Omega$<br>Short circuit the V $\Omega$ $\P$ and 0 socket                                           | Hi = 000051/10 or R314  R218  R211  R314                                 | 1190mV ± 2mV  If the adjustment cannot be made, remove cutaway resistor R316.                                      |
| 7.   | Calibration of range<br>100mV                                                                              | Potentiometer R215                                            | Select: Range 100mV $\frac{1}{100}$ Supply: 100mV $\pm$ 0,1% to the V $\Omega$ $\P$ and 0 socket                      | Visible on measuring system                                              | 100 scale divisions ± 0.2<br>± 0.2 scale divisions                                                                 |
| 8.   | Calibration of range                                                                                       | Wire on shunt R110                                            | Select: Range 1A<br>Supply: 1A ± 0.2%<br>to the A and II socket                                                       | Visible on measuring system                                              | 100 scale divisions ± 0.2<br>± 0.2 scale divisions.                                                                |
| 9.   | Calibration of range<br>3V~                                                                                | Trimmer C108                                                  | Select: Range 3V~<br>Supply: 3V~ ± 0.2% 10kHz to<br>R101 and the 0-socket.                                            | Visible on measuring system                                              | 100 scale divisions ± 0.2<br>± 0.2 scale divisions                                                                 |
| 10.  | Calibration of fange<br>300mV∼                                                                             | Trimmer C105<br>Cut-away capacitors C106<br>C116              | Select: Range 300mV $\sim$<br>Supply: 300mV $\sim$ $\pm$ 0.2% 10kHz<br>to the V $\Omega$ $\triangleleft$ and 0 socket | Visible on measuring system                                              | 100 scale divisions ± 0.2 scale divisions.  If the adjustment cannot be made remo cutaway capacitors C106 and C118 |

32

#### ADJUSTING TABLE R229, R230, R231.

| Voltage accross R230 |          | Actions (start adjustment with R299, R230 and R231 mounted)                             |  |
|----------------------|----------|-----------------------------------------------------------------------------------------|--|
| < 520mV              |          | Replace V212                                                                            |  |
| > 520mV              | < 675mV  | _                                                                                       |  |
| ≥ 675mV              | ≤ 900mV  | Cutaway R229                                                                            |  |
| > 900mV              | ≤ 1200mV | Cutaway R229 and R230                                                                   |  |
| ≥ 1200mV             | ≤ 1500mV | Cutaway R231                                                                            |  |
| ≥ 1500mV             | ≤ 2300mV | Cutaway R229, R229 ,R230 and replace them by a resistor of 61 kg, metalfilm MR25 series |  |
| ≥ 2300mV             | < 2800m∨ | Cutaway R229 and R231                                                                   |  |
| ≥ 2800mV             | ≤3500mV  | Cutaway R230 and R231                                                                   |  |
| ≥ 3500mV             |          | Replace V212                                                                            |  |

| 0.4 |
|-----|
| -54 |

# 7. PARTS LIST

# 7.1. MECHANICAL

| Description                                   | Ordering number            | Qty |
|-----------------------------------------------|----------------------------|-----|
| TOPCOVER                                      |                            |     |
| Topcover                                      | 5322 456 94088             | 1   |
| RANGE SWITCH                                  |                            |     |
| Knob for range switch                         | 5322 414 64099             | 1   |
| Leaf spring                                   | 5322 492 64676             | 2   |
| , ~, Ω switch                                 |                            |     |
| Knob                                          | 5322 414 64098             | 1   |
| Lock spring                                   | 5322 492 64742             | 1   |
| Ball-bearing                                  | 4822 520 40012 <sup></sup> | 2   |
| ON/OFF SWITCH                                 |                            |     |
| Knob                                          | 5322 414 64119             | 1   |
| Lock spring                                   | 5322 492 64742             | 1   |
| Ball-bearing                                  | 4822 520 40012             | 2   |
| BOTTOM COVER                                  |                            |     |
| Bottom cover assy                             | 5322 447 94572             | 1   |
| (incl. screening, feet and stand-up bracket). |                            |     |
| Stand-up bracket                              | 5322 405 94164             | 1   |
| Rubber foot                                   | 5322 462 44148             | 2   |
| BATTERY COVER                                 |                            |     |
| Battery cover assy                            | 5322 447 94573             | . 1 |
| (incl. feet).                                 |                            |     |
| Rubber foot                                   | 5322 462 44148             | 2   |
| MEASURING SYSTEM                              |                            | •   |
| Measuring system assy                         | 5322 694 54011             | 1   |
| (incl. polarity indicator                     |                            |     |
| window and correction                         |                            |     |
| screw)                                        |                            |     |
| Window                                        | 5322 459 24098             | 1   |
| Correction screw                              | 5322 500 14213             | i   |
| Polarity indicator                            | 5322 347 10061             | 1   |
| PRINTED CIRCUIT BOARD                         |                            |     |
| Printed circuit board assy                    | 5322 216 74054             | 1   |
| (incl. range and function switch)             |                            |     |
| RANGE SWITCH                                  |                            |     |
| Body                                          | 5322 405 94155             | 2   |
| Switch segment                                | 5322 492 64628             | 4   |
| Spring                                        | 5322 492 54291             | 4   |

| Description                | Ordering number | Qty |
|----------------------------|-----------------|-----|
| , $\sim$ , $\Omega$ switch |                 |     |
| Body                       | 5322 278 54001  | 2   |
| Switch segment             | 5322 492 64628  | 4   |
| Spring                     | 5322 492 54291  | 4   |
| Retaining ring             | 4822 530 70122  | 2   |
| ON/OFF SWITCH              |                 |     |
| Body                       | 5322 278 54001  | 2   |
| Switch segment             | 5322 492 64628  | 2   |
| Spring                     | 5322 492 54291  | 2   |
| Retaining ring             | 4822 530 70122  | 2   |
| Buzzer                     | 5322 280 14026  | 1   |
| Fuse holder                | 5322 256 34097  | 1   |
| Fuse 400mA FAST            | 5322 253 30016  | 1   |
|                            |                 |     |
| IC foot 16p                | 5322 255 44218  | 1   |
| Input socket               | 5322 268 24109  | 4   |
| Battery cable              | 4822 290 80013  | 2   |
| Testpin RED                | 5322 264 24013  | 1   |
| Testpin BLACK              | 5322 264 24014  | 1   |

## 7.2. ELECTRICAL

## 7.2.1. Capacitors

| Item | Ordering number | Farad        | Tol (%)         | Volts | Remarks       |
|------|-----------------|--------------|-----------------|-------|---------------|
| C101 | 4822 122 31081  | 100p         | 2               | 500   | Ceramic plate |
| C102 | 4822 122 31081  | 100p         | 2               | 500   | Ceramic plate |
| C103 | 4822 122 31205  | 47p          | 2               | 500   | Ceramic plate |
| C104 | 4822 122 31205  | 47p          | 2               | 500   | Ceramic plate |
| C105 | 5322 125 54027  | 5p5          |                 | 400   | Trimmer       |
| C106 | 4822 122 31195  | 10p          | 2               | 500   | Ceramic plate |
| C107 | 5322 121 44025  | 33n          | 10              | 400   | Polyester     |
| C108 | 4822 125 50045  | 22p          |                 | 250   | Trimmer       |
| C109 | 4822 122 31081  | 100p         | 2               | 500   | Ceramic plate |
| C110 | 4822 121 50566  | 1n           | 1               | 160   | Polystyrene   |
| C111 | 4822 122 31081  | 100p         | 2               | 500   | Ceramic plate |
| C112 | 4822 121 50602  | 10n          | 1               | 160   | Polystyrene   |
| C113 | 4822 122 30034  | 470p         | 2               | 100   | Ceramic plate |
| C114 | 4822 122 31174  | 2, 7n        | 10              | 500   | Ceramic plate |
| C115 | 4822 122 31192  | 6, 8p        | <u>+</u> 0,25pF | 500   | Ceramic plate |
| C201 | 4822 122 31166  | 560p         | 10              | 100   | Ceramic plate |
| C202 | 4822 122 31166  | 560p         | 10              | 100   | Ceramic plate |
| C203 | 4822 122 30103  | <b>22</b> n  | -20+80          | 40    | Ceramic plate |
| C204 | 4822 122 30103  | 22n          | -20+80          | 40    | Ceramic plate |
| C205 | 4822 122 31166  | 560p         | 10              | 100   | Ceramic plate |
| C206 | 4822 122 31174  | 2, 7n        | 10              | 100   | Ceramic plate |
| C207 | 4822 122 31177  | 470p         | 10              | 100   | Ceramic plate |
| C208 | 4822 12231054   | 10p          | 2               | 100   | Ceramic plate |
| C209 | 4822 122 30103  | 22n          | -20+80          | 40    | Ceramic plate |
| C210 | 4822 122 31072  | 47p          | 2               | 100   | Ceramic plate |
| C211 | 4822 122 30103  | 22n          | -20+80          | 40    | Ceramic plate |
| C212 | 4822 121 40232  | <b>220</b> n | 10              | 100   | Polyester     |
| C301 | 4822 122 31175  | 1n           | 10              | 500   | Ceramic plate |
| C401 | 4822 124 20459  | 22μ          | 10+50           | 10    | Electrolytic  |
| C402 | 4822 124 20459  | 22μ          | -10+50          | 10    | Electrolytic  |

7.2.2. Resistors

| Item | Ordering number                | Ohm          | Tol(%) | Туре         | Remarks                 |  |
|------|--------------------------------|--------------|--------|--------------|-------------------------|--|
| R101 | 5322 116 64106                 | 6,81M        | 1      | VR37         | High voltage            |  |
| R102 | 5322 116 54595                 | 5,11k        | 1      | MR25         | Metal film              |  |
| R103 | 5322 116 64107                 | 2,87M        | 0,5    | SPEC         | High voltage            |  |
| R104 | 5322 116 55463                 | 287k         | 0,5    | MR25         | Metal film              |  |
| R105 | 5322 116 55462                 | 28,7k        | 0,5    | MR25         | Metal film              |  |
| R106 | 5322 116 55279                 | 2,87k        | 0,5    | MR25         | Metal film              |  |
| R107 | 5322 116 55464                 | 309          | 0,5    | MR25         | Metal film              |  |
| R108 | 5322 116 54423                 | 9,76         | 1      | MR25         | Metal film              |  |
| R109 | 5322 113 44229                 | 0,301        | 1      | 2W           | Pot, meter              |  |
| R111 | 4822 113 60056                 | 1            | 10     | 2W           | Pot. meter              |  |
| R201 | 4822 110 63192                 | 1,5M         | 10     | CR25         | Carbon                  |  |
| R202 | 5322 116 54513                 | 332          | 1      | MR25         | Metal film              |  |
| R203 | 4822 110 63187                 | 1M           | 5      | CR25         | Carbon                  |  |
| R204 | 5322 116 54696                 | 100k         | 1      | MR25         | Metal film              |  |
| R205 | 5322 116 54519                 | 402          | 1      | MR25         | Metal film              |  |
| Booo | 4000 400 40000                 | 470          | 20     | O OEW        | Dat mater               |  |
| R206 | 4822 100 10038                 | 470          | 20     | 0.05W        | Pot.meter Pot.meter     |  |
| R207 | 5322 101 24173                 | 100k         | 20     | 0.1W         | Metal film              |  |
| R208 | 5322 116 50481                 | 22.6k        | 1      | MR25<br>CR25 | Carbon                  |  |
| R209 | 4822 110 63214                 | 10M          | 10     |              |                         |  |
| R211 | 5322 116 54655                 | 30,1k        | 1      | MR25         | Metal film              |  |
| R212 | 5322 116 54738                 | 274k         | 1      | MR25         | Metal film              |  |
| R213 | 4822 110 63212                 | 8,2M         | 10     | CR25         | Carbon                  |  |
| R214 | 4822 110 63212                 | 8,2M         | 10     | CR25         | Carbon                  |  |
| R215 | 4822 100 10035                 | 10k<br>15,4k | 20     | 0.05W        | Pot.meter<br>Metal film |  |
| R216 | 5322 116 50479                 | 15,48        | 1      | MR25         | Metal IIIII             |  |
| R217 | 5322 116 54637                 | 17,8k        | 1      | MR25         | Metal film              |  |
| R218 | 5322 116 55459                 | 15,4k        | 0,5    | MR25         | Metal film              |  |
| R219 | 5322 116 54502                 | 261          | 1      | MR25         | Metal film              |  |
| R220 | 5322 116 50572                 | 12,1k        | 1      | MR25         | Metal film              |  |
| R221 | 5322 116 50926                 | 40,2         | 1      | MR25         | Metal film              |  |
| R222 | 5322 116 55465                 | 1,15k        | 0,1    | MR24C        | Metal film              |  |
| R223 | 5322 116 50451                 | 21,5k        | 1      | MR25         | Metal film              |  |
| R224 | 5322 116 54163                 | 383          | 0,1    | MR24C        | Metal film              |  |
| R225 | 532 <b>2</b> 11 <b>6</b> 55461 | 174          | 0,5    | MR25         | Metal film              |  |
| R226 | 5322 116 50483                 | 38,3k        | 1      | MR25         | Metal film              |  |
| R227 | 4822 100 10036                 | 4,7k         | 20     | 0.05W        | Pot.meter               |  |
| R228 | 5322 116 54683                 | 68,1k        | 1      | MR25         | Metal film              |  |
| R229 | 5322 116 54696                 | 100k         | 1      | MR25         | Metal film              |  |
| R230 | 5322 116 54689                 | 82k5         | 1      | MR25         | Metal film              |  |
| R231 | 5322 116 50872                 | 61k9         | 1      | MR25         | Metal film              |  |
| R232 | 4822 110 63192                 | 1,5M         | 10     | CR25         | Carbon                  |  |
| R233 | 4822 111 30265                 | 22k          | 5      | CR25         | Carbon                  |  |
| R301 | 4822 116 40006                 | 100          | 20     | 265V         | PTC                     |  |
| R302 | 5322 116 54587                 | 3,65k        | 1      | MR25         | Metal film              |  |
| R303 | 5322 116 54663                 | 37,4k        | 1      | MR25         | Metal film              |  |
| R304 | 5322 116 55457                 | 374k         | 1      | MR25         | Metal film              |  |
|      |                                |              |        |              |                         |  |

| ltem - | Ordering number | Ohm   | Tol(%) | Туре  | Remarks      |  |
|--------|-----------------|-------|--------|-------|--------------|--|
| R305   | 5322 116 64104  | 3,74M | 1      | VR37  | High voltage |  |
| R306   | 5322 116 64101  | 1,18M | 1      | VR37  | High voltage |  |
| R307   | 5322 116 64102  | 11,8M | 1      | VR37  | High voltage |  |
| R308   | 5322 116 64103  | 31,6M | 1      | VR37  | High voltage |  |
| R309   | 5322 116 64105  | 5,9M  | 1      | VR37  | High voltage |  |
| R310   | 5322 116 54704  | 121k  | 1      | MR25  | Metal film   |  |
| R311   | 4822 110 63214  | 10M   | 10     | CR25  | Carbon       |  |
| R312   | 5322 116 50481  | 22,6k | 1      | MR25  | Metal film   |  |
| R313   | 5322 116 54632  | 14,7k | 1      | MR25  | Metal film   |  |
| R314   | 4822 100 10107  | 470k  | 20     | 0.05W | Pot.meter    |  |
| R315   | 5322 116 55458  | 442k  | 1      | MR25  | Metal film   |  |
| R316   | 5322 116 54696  | 100k  | 1      | MR25  | Metal film   |  |
| R317   | 5322 116 54696  | 100k  | 1      | MR25  | Metal film   |  |
| R318   | 5322 116 54696  | 100k  | 1      | MR25  | Metal film   |  |
| R401   | 5322 116 54743  | 301k  | 1      | MR25  | Metal film   |  |
| R402   | 5322 116 50506  | 154   | 1      | MR25  | Metal film   |  |

## 7.2.3. Semi conductors

| Item | Ordering number       | Type/Description |                  |  |  | dering number Type/Description |  |  |  |
|------|-----------------------|------------------|------------------|--|--|--------------------------------|--|--|--|
| V101 | 5322 130 34761        | BY224-600        | Bridge rectifier |  |  |                                |  |  |  |
| V201 | 4822 130 40938        | BC548            | Transistor       |  |  |                                |  |  |  |
| V202 | 4822 130 40938        | BC548            | Transistor       |  |  |                                |  |  |  |
| V203 | 5322 130 44418        | BF256A           | Transistor       |  |  |                                |  |  |  |
| V204 | 5322 130 44405        | ON528            | Dual FET         |  |  |                                |  |  |  |
| V205 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
| V206 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
| V207 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
| V208 | 5322 130 44418        | BF256A           | FET              |  |  |                                |  |  |  |
| V209 | 4822 130 40941        | BC558            | Transistor       |  |  |                                |  |  |  |
| V210 | 4822 130 44246        | BX545C           | Transistor       |  |  |                                |  |  |  |
| V211 | 4822 130 <b>44246</b> | BC549C           | Transistor       |  |  |                                |  |  |  |
| V212 | 5322 130 44418        | BF256A           | FET              |  |  |                                |  |  |  |
| V301 | 5322 130 34123        | BZX61 - C7V5     | Zener diode      |  |  |                                |  |  |  |
| V302 | 4822 130 40964        | BC549            | Transistor       |  |  |                                |  |  |  |
| V303 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
| V304 | 4822 130 40963        | BC559            | Transistor       |  |  |                                |  |  |  |
| V305 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
| V306 | 4822 130 30613        | BAW62            | Diode            |  |  |                                |  |  |  |
|      |                       |                  |                  |  |  |                                |  |  |  |

# 7.2.4. Integrated circuits

| /tem | Ordering number | Type/Description |
|------|-----------------|------------------|
| A201 | 5322 209 84444  | OQ0051           |





Fig. 21. P.c. board conductor side



Fig. 22. Function switch lay-out component side



Fig. 23. Function switch lay-out conductor side

ST2782



Fig. 24. List of used components





| F                                       | RANGE SW            | ITCH          |             |               |  |
|-----------------------------------------|---------------------|---------------|-------------|---------------|--|
| SWITCH CONTACTS                         | A OR ~              | V == OR ~     | Ω           | SENS          |  |
| 1                                       |                     | 100mV         | 100Ω        | 31,6 mV       |  |
| 2                                       |                     | 300mV         | 300Ω        | 100 mV        |  |
|                                         |                     | X/////        | 1///        | 1////         |  |
| /////////////////////////////////////// | <i>\\\\\\</i>       | <i>X/////</i> |             | ////          |  |
| 3                                       | /////               | 11/           | 1k          | 31,6 m V      |  |
| 4                                       |                     | 3٧            | 3k          | 100 m V       |  |
|                                         |                     | <i>}/////</i> | <i>\///</i> |               |  |
| 5                                       | 1µA                 | 10V           | 10k         | 31,6mV        |  |
| 6                                       | 3µA                 | 30v           | 30k         | 100mV         |  |
|                                         |                     | 1/////        | ////        |               |  |
| /////////////////////////////////////// | <i>\/////</i>       |               | <i>VIII</i> |               |  |
| 7                                       | 10µA                | 100¥          | 100k        | 31,6mV        |  |
| 8                                       | 30 <sub>/-1</sub> A | 300V          | 300k        | 100 m V       |  |
|                                         |                     |               |             |               |  |
| 9                                       | 100µA               | 1000V         | 1M          | 1V/31,6mV     |  |
| 10                                      | 300µA               | //////        | 3М          | 1V/100mV      |  |
|                                         |                     |               |             | /////         |  |
| /////////////////////////////////////// | //////              |               |             |               |  |
| 11                                      | lmA                 |               | 10M         | 1V / 10mV     |  |
| 12                                      | 3mA                 |               | MOE         | 1V/31,6 mV    |  |
| 13                                      | 10mA                |               | ¥           | 1 V / 100 m V |  |
| 14                                      | 30mA 1A             |               |             | 10 m V        |  |
| 15                                      | 100mA 3A            |               | 22          | 31,6mV        |  |
| 16                                      | 300mA 10A           |               |             | 100mV         |  |
| 17                                      |                     | +BATT         |             | 10mV          |  |
| 18                                      | •<                  | -BATT         |             | 10mV          |  |

ST2750

Fig. 25. Circuit diagram

#### CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

| ① ②                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Country Day Month Year                                                                                                                                                                                                                                                                                                                           | Typenumber /Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Factory/Serial no.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 3 2 1 5 0 4 7 5                                                                                                                                                                                                                                                                                                                                  | 0 P M 3 2 6 0 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D O 0 0 7 8 3                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| CODEL                                                                                                                                                                                                                                                                                                                                            | FAILURE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| . (5)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Nature of call Location                                                                                                                                                                                                                                                                                                                          | Component/sequence no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Category                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Installation  Pre sale repair  Preventive maintenance Corrective maintenance Other                                                                                                                                                                                                                                                               | R 0 0 6 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Job completed  Working time B  Hrs                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Detailed description of the information  Country: 3 2 = Switzerland                                                                                                                                                                                                                                                                              | on to be entered in the various boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                  | 5 = 15 April 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Type number/Version OPM326002 = Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 4 Factory/Serial number D 0 0 0                                                                                                                                                                                                                                                                                                                  | D 7 8 3 = DO 783 These data are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e mentioned on the type plate of                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Nature of call: Enter a cross in the     Coded failure description                                                                                                                                                                                                                                                                               | e relevant box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Location                                                                                                                                                                                                                                                                                                                                         | Component/sequence no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Category                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual).  Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet. | These six boxes are intended to pinpoint the faulty component.  A. Enter the component designation as used in the circuit diagram. If the designation is alfa-numeric, the letters must be written (starting from the left) in the two left-hand boxes and the figures must be written (in such a way that the last digit occupies the right-most box) in the four right-hand boxes.  B. Parts not identified in the circuit diagram: 990000 Unknown/Not applicable 990001 Cabinet or rack (text plate, emblem, grip, rail, graticule, etc.) 990002 Knob (incl. dial knob, cap, etc.) 990003 Probe (only if attached to instrument) 990004 Leads and associated plugs 990005 Holder (valve, transistor, fuse, board, etc.) 990006 Complete unit (p.w. board, h.t. unit, etc.) 990007 Accessory (only those without type number) | O Unknown, not applicable (fault not present, intermittent or disappeared) Software error Readjustment Electrical repair (wiring, solder joint, etc.) Mechanical repair (polishing, filing, remachining, etc.) Replacement (of transistor, resistor, etc.) Cleaning and/or lubrication Operator error Missing items (on pre-sale test) Environmental requirements are not met |  |  |  |  |  |

- ① Job completed: Enter a cross when the job has been completed.
  ③ Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

|  | 1 | 2 | = | 1.2 | working | hours | (1 | h | 12 | min. |
|--|---|---|---|-----|---------|-------|----|---|----|------|





Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Rediction Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

# equipment for science and industry

800904

PM 2505

**SME 86** 

Already issued: - - -

Re

- : 1. Modification of the technical data
  - 2. Corrections of the service manual

This service note is intended to be used in combination with the service manual of the PM 2505, ordering number 9499 475 01411.

#### 1. MODIFICATION OF THE TECHNICAL DATA

The frequency range of the a.c. current accuracy has been modified. Page 7 2.1.4. A.c. current measurements, Accuracy

| Former design                             |                                             |     |  |
|-------------------------------------------|---------------------------------------------|-----|--|
| Range                                     | Frequency                                   | Acc |  |
| 1 μΑ - 10Α                                | 50-60Hz                                     |     |  |
| 1μA - 30μA<br>100 μA - 10mA<br>30mA - 10A | 10Hz - 70Hz<br>10Hz - 20kHz<br>10Hz - 10kHz | ±3% |  |

| Present design             |                            |      |  |
|----------------------------|----------------------------|------|--|
| Range                      | Frequency                  | Acc. |  |
| 1 μA-10A                   | 50-60Hz                    |      |  |
| 1μΑ - 30μΑ<br>100 μΑ - 10Α | 10Hz - 70Hz<br>10Hz - 2kHz | ±3%  |  |

#### 2. CORRECTIONS OF THE SERVICE MANUAL

Page 12

3.1. ACCESSORIES SUPPLIED WITH THE PM 2505

Add: Directions for use

Fig. 1. Measuring leads with testpins PM 9262

Change: PM 9262 into PM 9260

Page 23

4.3.4.1. Amplifier

At ac measurements the FET is non conductive ( ----------).

Page 24

Fig. 15 Protection

Change: Vg into Vb

#### Page 32

#### 6.2. ADJUSTING TABLE

In the adjustment data of the adjustments 7, 8 and 9,  $\pm$  0.2 is mentioned twice. Omit one time  $\pm$  0.2

#### ADJUSTIGE TABLE R229, R230, R231

Change: Cut away R229, R229, R230 and replace them

by a resistor of 61 kg. metal film MR25 series

Into: Cut away R229, R231, R230 and replace them

by a resistor of 61 k9 metal film MR 25 series

Page 35

7.1. MECHANICAL parts list

Change: Fuse 400 mA FAST

5322 253 30016

Into

Fuse 400 mA FAST SAND FILLED 4822 255 20013

Page 36

7.2.1. Capacitors parts list

Omit:

C115

Add:

C116 4822 122 31217 3 p9 2 500 Ceramic plate

Page 39

7.2.3. Semiconductors parts list

Change: V210 4822 130 44246 BX 545C Transistor

Into:

V210 4822 130 44246 BC 549C Transistor

Page 43

Fig. 25 Circuit diagram

Change: C114 4n7 Into: C114 2n7

Change:

3V~CAL Into: 3V~CAL

Interchange: 1 and 2 of the POWER SUPPLY

Interchange: the + and - of the measuring system P201

Change: Vg on R228 into Vb





Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding Scientific & Industrial Equipment Division

820702

#### PM2505

**SME96** 

Already issued:

**SME86** 

Reason:

- 1. Modification of the Technical Data
- 2. Modification of the parts list and the circuit diagram

This service note is intended to be used in combination with the service manual of the PM2505, ordering number 9499 475 01411.

#### 1. MODIFICATION OF THE TECHNICAL DATA

The Technical Data, chapter 2 is modified as follows:

2.1.3. DC current measurements

2.1.4. AC current measurements

Voltage drop over the input sockets f.s.d., should be changed into:

| Range    | Voltage drop |  |  |
|----------|--------------|--|--|
| 1μA 30mA | < 135mV      |  |  |
| 100mA    | < 350mV      |  |  |
| 300mA    | < 1050mV     |  |  |
| 1A 10A   | < 250mV      |  |  |

#### 2.2.6. Power requirements

Add: Current consumption at 2 x 9V batteries  $< 600 \mu A$  in all ranges except  $\Omega$  (< 1,5 mA) and  $\mathbb{K}$  (< 6 mA).

#### 2. MODIFICATIONS TO THE PARTS LIST AND CIRCUIT DIAGRAM

C213 is added: 3,3µF 20% 16V, Electrolytic, 4822 124 20947

C213 is placed in parallel to the polarity indicator P201 and diode V206.

+ to anode and - to cathode of V206.

Reason: To prevent resonance of the pointer at 50Hz input signals.

R318 is modified to:  $1M\Omega 1\%$  MR25, 5322 151 54188

Reason: To prevent oscillation in the lowest ohm ranges when measuring the ohmic

value of large self inductions.

R215 is modified to: 22k 20% 0,05W potentiometer, 4822 100 10051

R216 is modified to: 14k7 1% MR25 , 5322 151 54632

Reason: Adaption of the circuitry to the measuring system.

R310 is modified to: 1M2 VR25 high voltage 5322 110 72189 R312 is modified to: 226k MR25 5322 151 54729

Reason: Reduce of current consumption from the + battery with  $90\mu$ A.





Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding Scientific & Industrial Equipment Division

830801

PM2505/03/04/..

**SME 105** 

Already issued

: SME 86, SME 96

Re

- : 1. Cracking of the stand-off lugs in the top-cover PM2505/03
  - 2. Too small creeping distance between battery cover and batteries in PM2505/03
  - 3. Brown version PM2505/04
  - 4. Oscillation when measuring the ohmic value of high inductions

1. Problem

: Cracking of stand-off lugs in the top-cover

Cause

- Chemical reaction of oil on the metal screening (should have been cleaned) with the topcover can affect the stand-off lugs, causing cracking of the plastic.
- Serial numbers involved

PM2505/03 DM13067 - DM14317 (grey version)

Remedy

: New topcover assembly (with screening, knobs und function selector) if the above instruments are returned for repair with this problem.

The topcovers can be obtained free of charge from:

Mr. J. Stegeman Service Voltmeters

**Test & Measuring Instruments** 

Nederlandse Philips Bedrijven B.V.

Scientific & Industrial Equipment Division

Lelyweg 1

7602 EA Almelo, The Netherlands Tel. 0(internat.-31)5490-18291

Telex 36591 nlxalsu

If possible please indicate how many topcovers are needed in total, so that they can be sent at once.

9499 478 13611

PRINTED IN THE NETHERLANDS

2 Problem

: Too small creeping distance between batteries and the stand-up bracket holes in the PM2503/03.

Cause

: PM2503/03 is equipped with old version battery covers without the piece of distance





Serial numbers

: PM2503/03

DM13474 - DM14554 (Grey version)

involved

Remedy

: Stick a piece of selfadhesive foam (ordering number 5322 446 60953) on the inside of the battery cover.



It is advised to modify all instruments which are returned for repair.

#### 3 Brown version PM2505/04

The following parts have been modified from grey to brown

 Topcover
 brown
 5322 447 70074

 Bottom cover assy
 brown
 5322 447 70073

 Battery cover assy
 brown
 5322 447 70072

 Measuring system
 brown
 5322 694 54021

4 Problem

: Oscillation of the OQ0051 when measuring the ohmic value of high inductions.

Remedy

: Modify R318 from 100 k $\Omega$  to 1 M $\Omega$  (5322 116 54188)





Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems Welding

Scientific & Industrial Equipment Division

840116

PM2505/..

SME110

Already issued: SME86, SME96, SME105

: 1. Erratum SME86

2. Modifications in the service manual of the PM2505 (9499 475 01411)

This service-note should be used in combination with the service manual of the PM2505 (9499 475 01411) and the service-notes SME86, SME96 and SME105.

- 1. Erratum SME86
  - -The correct ordering number for FUSE 400mA FAST SANDFILLED is 4822 253 20013.
  - -Page 43, Change: 3V~CAL Into: 3V~CAL

should be modified into:

Interchange: 300mV CAL and 3V CAL

- 2. Modifications in the Service Manual (9499 475 01411)
- -Chapter 6. CHECKING AND ADJUSTING page 32, Adjustment No 9.

Under heading PREPARATIONS, Supply: 3V, ±0.2%

should be changed into: Supply: 11/4 ±0.2%

-Chapter 7. PARTS LIST page 34.

The following items have been modified:

C101/C102 to 4822 122 31626 100p 2% 500V Ceramic plate. C103/C104 to 4822 122 31199 22p 2% 500V 6p8 2% 500V 4822 122 31192 C106 V210 4822 130 40938 BC548

-CIRCUIT-DIAGRAMS AND BLOCK-DIAGRAMS

The arrows of transistors V201/V202 should be reversed (NPN BC548)

### Sales and service all over the world

Alger: Bureau de Liaison Philips, 24 bis, Rue Bougainville, El Mouradia, Alger; tel.: 565672

Argentina: Philips Argentina S.A., Cassila de Correo 3479, (Central), 1430 Buenos Aires; tel. 542-2411/51 and 41-4071/78

Australia: Philips Scientific & Industrial Equipment Division, Centre Court, 25 - 27 Paul Street, P.O. Box 119, North Ryde/NSW 2113; tel. (2)888-8222

Bangla Desh: Philips Bangla Desh Ltd., P.O. Box 62; Ramna, Dacca; tel. 234280

België/Belgique: Philips & MBLE associated S.A., Scientific and Industrial Equipment Division, 80 Rue des Deux Gares 1070 Bruxelles; tel. (2) 523.00.00

Bolivia: Industrias Bolivianas Philips S.A., Cajón Postal 2964, La Paz; tel.: 351581

Brasil: Philips do Brasil Ltda,
Avenida 9 de Julho 5229, Caixa Postal 8681,
CEP 01407 - Sao Paulo (S.P.);
tel. 2821611
Service Centre:
Sixtemas Profissionals
Rua Amador Bueno, 474,
Caixa Postal 3159 - S. Amaro,
CEP 04752 - Sto Amaro (S.P.);
tel. (11) 2476522

Canada: Phillips Test and Measuring Instruments Inc., 2375 Steeles Avenue West, Unit 126, Downsview (Ontario) M3J-3A8; tel. (416) 685-8470

Chile: Philips Chiléna S.A., Division Professional, Avda. Santa Maria 0760, Casilla Postal 2687, Santiago de Chile; tel. 770038

Colombia. Industrias Philips de Columbia S.A., Calle 13 no. 51—39, Apartado Aereo 4282, Bogota; tel. 2600600

Danmark: Philips Elektronik-Systemer A/S, Afd. for Industri og Forskning, Strandlodsvej 4, P.O. Box 1919, 2300 København S; tel. (1) 572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenschaft und Industrie, Miramstrasse 87, Postfach 310 320; 35 Kassel-Bettenhausen;

Ecuador: Philips Ecuador S.A., Casilla 4607, Quito; tel. 396100

Egypt: Resident Delegate Office of Philips Industries, 5 Sherif Street, Corner Eloui, P.O. Box 1687, Cairo; tel. 754039/754257

Eire: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel. (1) 693355

España: Philips Ibérica S.A.E.,
Dpto Aparatos de Medida, Martinez Villergas 2,
Aparado 2066, Medrid 27;
tel (1) 4042200
Service Centre:
Dpto Tco. de Instrumentación,
Calle de Albasanz 75, Medrid 17;
tel. (1) 2047100

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenue, P.O.B. 2565, Addis Ababa; tel. 448300

Finland: See Suom

France: S.A. Philips industrielle et Commerciale, Science et Industrie, 105 Rue de Paris, 93 002 Bobigny; tel. (1) 8301111

Great Britain: Pye Unicam Ltd., York Street, Cambridge CB1-2PX; tel. (223) 358866 Service Centre: Beddington Lane, Croydon, Surrey CR9-4EN; tel. (1) 8843670

Greece: See Hellas

Helfas: Philips S.A. Hellénique, 54 Avenue Syngrou, P.O. Box 153, Athens 403; tel. (1) 9215311

Hong Kong: Philips Hong Kong Ltd., Hopewell Centre, 27-29th floor, No. 17, Kennedy Road, P.O. Box 2108, Wanchai, Hong Kong; tel. (5) 283298 Service Centre: Hopewell Centre, 16th floor; tel. (5) 283575

India: Philips India, Peico Electronics & Electrical Ltd., S&I Equipment, Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O. 6598, Worli, Bombay 400 018 (WB); tel. 391431 Indonesia: P.T. Philips Development Corporation, Department for Science and Industry Wisma PeDe, Jalan Let. Jen. Haryono M.T. Kav. 17, P.O.B. 2287, Jakarta-Selatan; tel. (21) 820808

Iran: Philips Iran Ltd., P.O.B. 1297, Teheran; tel. 372081/5

Iraq: Philips Iraq W.L.L., Munir Abbas Building, 4th floor, South Gate, P.O. box 5749, Baghdad; tel. 8880409

Island: Heimilisteaki SF, Saetún 8, Reykjavík; tel. 24000

Islas Canarias: Philips Ibérica S.A.E., Triana 132, Las Palmas, Casilla 39-41, Santa Cruz de Tenerife

Italia: Philips S.p.A., Sezione S&I/T&M, Viale Elvezia 2, 20052 Monža; tel. (39) 36351

Jamaica: Philips (Jamaica) Ltd., Savannah Av. & Washington Blvd., P.O. Box 61, Kingston - 6; tel. 92 - 53041

Japan: See Nippon

Jordan: Philips Delegate Office, P.O. Box 35268, Amman; tel. 43998

Kenya. Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel. 557999

Kuwait: Delegate Office of Philips Industries, P.O. Box 3801, Safat, Kuwait; tel. 428678

Lebanon: Philips Middle East S.A.R.L., P.O. Box 11670, Beirut; tel. 285748/9

Malaysia: Philips Malaysia Snd Bhd. Professional Division, Lot 2, Jalan 222, Section 14, P.O. Box 2163, Petaling Jaya, Selangor; tel. 774411/562144

México: Philips Mexicana S.A. de C.V., Div. Cientifico Industrial, Calle Durango 167, Apartado Postal 24-328, Mexico 7 (D.F.); tel. 544-91-99/525-15-40

Moroeco: S.A.M.T.E.L., Casa Bandoeng, B.P. 10896, Casabianca 05; tel. 303192/302992

Nederland: Philips Nederland, Hoofdgroep PPS, Boschdijk 525, Gebouw VB, 5600 PB Eindhoven; tel. 793333 Service centre; Technische Service Prof. Activiteiten, Hurksestraat 42, Gebouw HBK, 5652 AL Eindhoven; tel. 723094/722295

Ned. Antillen: Philips Antillana N.V., Postbus 523, Willemstad, Curação; tel. 414071/74

New Zealand: Philips Electrical Industries of N.Z. Ltd., Scientific and Industrial Equipment Division, 68-86 Jervois Quay, P.O. Box 2097, Wellington C1; tel. 735735

Nigeria: Associated Electronic Products (Nigeria) Ltd., ikorodu Road, P.O.B. 1921, Lagos; tel. 900160/61

Nippon: NF Trading Co. Ltd., Kirimoto Bidg. 11-2, Tsunashima Higashi 1 - Chome, Kohoku-ku, Yokohama

Norge: Norsk A.S. Philips, Dept. Industry and Telecommunication Postboks 1, Manglerud, Oslo 6; tel. (2) 680200

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Parttartgasse 34, A-1230 Wien; tel. (222)-841611/15.

Pakistan: Philips Electrical Co. of Pakistan Ltd., El-Markz, M.A. Jinnach Road, P.O.B. 7101, Karachi 3; tel. 70071

Paraguay: Philips del Paraguay S.A., Av. Artigas 1497, Casilla de Correo 605, Asunción; tel. 291924

Perú: Philips Peruana S.A., Av. Alfonso Ugarte 1268, Apartado Aereo 1841, Lima 100; tel. 326070

Philippines. Philips Industrial Development Inc., 2246 Pasong Tamo, P.O.B. M.C.C. 911, Makati, Metro, Manila; tel. 868951/868959

Portugal: Philips Portuguesa S.A.R.L., Av. Eng.<sup>o</sup> Duarte Pacheco 6, Apartado 1331, Lisboa 1000; tel. (19) 6831. Service Centre: Servicos Técnicos Profissionais, Outurela, 2795 L inda-y-Uelha; tel. (19) 683121

Saoudi Arabia: Delegate Office Philips Industries, Sabreen Blgd., Airport Road, P.O. Box 9844, Riyadh; tel. 4777808/4778463 Schweiz-Suisse-Svizzera: Philips A.G., Allmendstrasse 140, Postfach, CH-8027 Zürich; tel. (1) 4882211/4882629

Singapore: Philips Singapore Private Ltd., Lorong 1, Tao Payoh, 1st floor, P.Ø. 8ox 340, Toa Payoh Central Post Office, Singapore 1231; tel. (2) 538811/537622

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, New Doornfontein, P.O.B. 7703, Johannesburg 2000; tel. (11) 6140411

South-Korea: Philips Electronics (Korea) Ltd., G.P.O. Box 3680, Seoul; tel. 794 5011/5

Suomi: Oy Philips AB., Kaivokatu 8, P.O. Box 10255, SF-00101 Helsinki 10; tel. 17271 Service Centre: P.O. Box 11, SF-02631 Espoo 63; tel. (0) 523122

Sverige: Philips Försäljning AB, Div. Industrielektronik, Lidingövägen 50, Fack, S11584 Stockholm; tel. (8) 635000

Syria: Philips Moyen-Orient S.A.R.L., Rue Fardoss 79, Immeuble Kassas and Sadate, B.P. 2442, Damas; tel. 118605/221650

Taiwan: Philips Taiwan Ltd., San Min Building, 57-1 Chung Shan North Rd., Sec. 2, P.O. Box 22978, Taipei; tel. (2) 5531717

Tenzenia: Philips (Tanzania) Ltd., P.O. Box. 20104, Dar es Salaam; tel. 29571

Thailand: Philips Electrical Co. of Thailand Ltd., 283 Silom Road, P.O. Box 961, Bangkok 5; tel. 233-6330/9

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel. 244268

Türkiye: Türk Philips Ticaret A.S., Posta Kutusu 504, Beyoglu, Istanbul 1; tel. 435910

United Arab Emirates: Philips Middle East B.V., Dubai International Trade Centre, Level 11, P.O. Box 2969, Dubai; tel. 475267

Uruguay: Industrias Philips del Uruguay S.A., Avda Uruguay 1287, Casilla de Correo 294, Montevideo; tel. 915641

U.S.A.:
Philips Test and Measuring Instruments Inc.,
California, Garden Grove 92645
12882 Valley View Street, Suite 9;
tel.: (213) 594-8741/(714) 898-5000
California, Milipitas 95035
489 Valley Way;
tel. (408) 946-5722
Florida, Winter Park 32789
1850 Lee Road, Suite 229;
tel. (305) 628-1717
Georgia, Norcross 30071
7094 Peachtree Industrial Bird., Suite 220;
tel. (404) 586-0238
Illinois, Itasca 60143
500 Park Bird., Suite 1170;
tel. (312) 773-0616
Massachusetts, Woburn 01801
21 Olympia Avenue;
tel. (617) 935-3972
Minnesota, Minneapolis 55420
7801 Metro Parkway, Suite 109;
tel. (612) 854-2426
New Jersey, Mahwah 07430
85 McKee Drive;
tel. (201) 529-3800, Toll-free (800) 631-7172

Venezuela: Industrias Venezolanas Philips S.A., Av. Ppai de los Ruicas, Apartado Aereo 1167, Caracas 107; tel. (2) 393811/353533

Zaire: S.A.M.E./S.Z.A.R.L., B.P. 16636, Kinshasa; tel. 31693

Zambia: Philips Electrical Zambia Ltd., Mwenbeshi Road, P.O.B. 31878, Lusaka;

Zimbabwe: Philips Electrical (PVT) Ltd., 62 Umtali Road, P.O. Box 994, Beverley/Harare; tel. 47211

For information on change of address:
Phillips Export B.V.,
Scientific and Industrial Equipment Division,
Test and Measuring Instruments, Building TQ III.4, P.O. Box 218,
5600 MD Eindhoven - The Netherlands

For countries not listed here:
Philips Export B.V., S&I Export,
Test and Measuring Instruments, Building TQIII-3, P.O. Box 218,
500 MD Eindhoven - The Netherlands;
Tel. (40) 782285