SIEMENS

SFH600 SERIES

TRIOS®* PHOTOTRANSISTOR OPTOCOUPLER

FEATURES

- High Current Transfer Ratios SFH600-0, 40 to 80% SFH600-1, 63 to 125% SFH600-2, 100 to 200% SFH600-3, 160 to 320%
- Isolation Test Voltage (1 Sec.), 5300 VACRMS
- VCEsat 0.25 (£0.4) V, IF=10 mA, IC=2.5 mA
- High Quality Premium Device
- Long Term Stability
- Storage Temperature, -55∞ to +150∞C
- Underwriters Lab File #E52744
- VDE 0884 Available with Option 1

DESCRIPTION

The SFH600 is an optocoupler with a GaAs LED emitter which is optically coupled with a silicon planar phototransistor detector. The component is packaged in a plastic plug-in case, 20 AB DIN 41866.

The coupler transmits signals between two electrically isolated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible insulating voltage.

Maximum Ratings

Emitter

Emitter
Reverse Voltage 6 \
DC Forward Current 60 m/s
Surge Forward Current (t _p =10 μs)2.5 A
Total Power Dissipation 100 mV
Detector
Collector-Emitter Voltage 70 \
Emitter-Base Voltage 7 \
Collector Current 50 mA
Collector Current (t=1 ms) 100 mA
Power Dissipation 150 mV
Package
Isolation Test Voltage (between emitter and
detector referred to climate DIN 40046,
part 2, Nov. 74) (t=1 sec.)5300 VAC _{RMS}
Creepage≥7 mm
Clearance
Isolation Thickness between Emitter &
Detector≥0.4 mm
Comparative Tracking Index per
DIN IEC 112/VDE0303, part 1175
Isolation Resistance
$V_{IO} = 500 \text{ V, } T_A = 25^{\circ}\text{C}$
V _{IO} =500 V, T _A =100°C≥10 ¹¹ Ω
Storage Temperature Range –55°C to +150°C
Ambient Temperature Range –55°C to +100°C
Junction Temperature100°C

Soldering Temperature (max. 10 s, dip soldering: distance to seating plane

≥1.5 mm)......260°C

Characteristics (T_A=25°C)

Characteristics (1 _A =20-0)						
	Symbol		Unit	Condition		
Emitter						
Forward Voltage	V _F	1.25 (≤1.65)	V	I _F =60 mA		
Breakdown Voltage	V _{BR}	≥6	V	I _R =10 μA		
Reverse Current	I _R	0.01 (≤10)	μА	V _R =6 V		
Capacitance	C _O	25	pF	V _F =0 V, f=1 MHz		
Thermal Resistance	R _{THJamb}	750	°C/W			
Detector						
Capacitance Collector-Emitter Collector-Base Emitter-Base	C _{CE} C _{CB} C _{EB}	5.2 6.5 9.5	pF	f=1 MHz V _{CE} =5 V V _{CB} =5 V V _{EB} =5 V		
Thermal Resistance	R _{THJamb}	500	°C/W			
Package						
Saturation Voltage, Collector-Emitter	V _{CEsat}	0.25 (≤0.4)	V	I _F =10 mA, I _C =2.5 mA		
Coupling Capacitance	C _{IO}	0.6	pF	V _{IO} =0, f=1 MHz		

*TRIOS—TRansparent IOn Shield

Current Transfer Ratio and Collector-Emitter Leakage Current by dash number

	-0	-1	-2	-3	Unit
$I_{\rm C}/I_{\rm F}$ at $V_{\rm CE}$ =5 V ($I_{\rm F}$ =10 mA)	40-80	63- 125	100- 200	160- 320	%
$I_{\rm C}/I_{\rm F}$ at $V_{\rm CE}$ =5 V ($I_{\rm F}$ =1 mA)	30 (>13)	45 (>22)	70 (>34)	90 (>56)	%
Collector-Emitter Leakage Current (V _{CE} =10 V) (I _{CEO})	2 (≤ 35)	2 (≤ 35)	2 (≤ 35)	5 (≤ 70)	nA

Figure 1. Linear operation (without saturation)

 I_F =10 mA, V_{CC} =5 V, T_A =25 °C, Typical

Load Resistance	R _L	75	Ω
Turn-On Time	t _{ON}	3.2	με
Rise Time	t _R	2.0	μs
Turn-Off Time	t _{OFF}	3.0	μs
Fall Time	t _f	2.5	μs
Cut-off Frequency	F _{CO}	250	kHz

Figure 2. Switching operation (with saturation)

Typical

.)						
		-0 (I _F =20 mA)	-1 and -2 (I _F =10 mA)	-3 (I _F =5 mA)		
Turn-On Time	t _{ON}	3.7	4.5	5.8	μs	
Rise Time	t _R	2.5	3.0	4.0	μs	
Turn-Off Time	t _{OFF}	19	21	24	μs	
Fall Time	t _F	11	12	14	μs	
	V _{CESAT}	0.25 (≤0.4)			٧	

Figure 3. Current transfer ratio versus diode current

Figure 4. Current transfer ratio versus diode current (T_A =0°C, V_{CE} =5 V)

Figure 5. Current transfer ratio versus diode current (TA=25°C, V_{CE} =5 V) I_{C} / I_{F} =f (I_{F})

Figure 6. Current transfer ratio versus diode current (T_A =50°C) V_{CE} =5 V_{CE} =6 (I_F)

Figure 7. Current transfer ratio versus diode current ($T_A=75^{\circ}C$) $V_{CE}=5V$ $I_{C}/I_{E}=f$ (I_{E})

Figure 8. Current transfer ratio versus temperature (I_F=10 mA, V_{CE} =5 V)

Figure 9. Transistor characteristics (HFE =550) SFH600-2, -3 $\rm I_C=f(V_{CE})$ $\rm (T_A=25^{\circ}C,\ I_F=0)$

Figure 10. Output characteristics SFH600-2, -3 (T_A =25°C) I_C =f(V_{CE})

Figure 11. Forward voltage $V_F=f(I_F)$

Figure 12. Collector emitter off-state current $I_{CEO}=f$ (V, T) $(T_A=25^{\circ}C, I_F=0)$

Figure 13. Saturation voltage versus collector current and modulation depth SFH600-0

Figure 14. Saturation voltage versus collector current and modulation depth SFH600-1 $V_{CEsa}t=f(I_C)$ ($T_A=25^{\circ}C$)

Figure 15. Saturation voltage versus collectorcurrent and modulation depth SFH600-2 V_{CEsat} =f (I_C) (T_A =25°C)

Figure 16. Saturation voltage versus collectorcurrent and modulation

Figure 17. Permissible pulse load D=parameter, T_A =25°C, I_F =f (t_p)

Figure 18. Permissible power dissipation for transistor and diode $P_{tot} = f(T_A)$

Figure 19. Permissible forward current diode P_{tot} =f (T_A)

Figure 20. Transistor capacitance $C=f(V_O)$ ($T_A=25^{\circ}C$, f=1 MHz)

