收敛阶定义:

设迭代过程 $x_{k+1}=\varphi(x_k)$ 收敛于方程 $x=\varphi(x)$ 的根 x^* ,若 迭代误差 $e_k=x_k-x^*$ 当 $k\to\infty$ 时成立下列渐近关系式:

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^r}=c\qquad (c为常数, 且c\neq 0)$$

则称迭代过程是r阶收敛的.

特别地, r=1时称线性收敛; r=2时称平方收敛; r>1时称超线性收敛. 且r 越大, 收敛越快. 例:求解方程 $x^3+10x-20=0$ 的根.取 $x_0=1.5$,证明 迭代法 $x_{n+1}=20/(x_n^2+10)$ 是线性收敛的.

证: $\diamondsuit f(x) = x^3 + 10x - 20$,

首先绘出 y = f(x) 图形:

可知方程的根 $x*\approx 1.5$, 令

$$\varphi(x) = 20 / (x^2 + 10)$$

$$|\varphi'(x)| = 40x / (x^2 + 10)^2$$

$$|\varphi'(x^*)| \approx |\varphi'(1.5)| = 0.3998$$

显然,在x*附近

$$|\varphi'(x)| < 1$$
 $\varphi'(x) \neq 0$

利用Lagrange中值定理,有

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = |\varphi'(\xi_n)| |x_n - x^*|$$

其中, ξ_n 介于 x_n 和x*之间.所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} |\varphi'(\xi_n)| = |\varphi'(x^*)|$$

由此可知,这一序列的收敛阶数为1,即迭代法是线性收敛。

定理: 设x*为 $x=\varphi(x)$ 的不动点,若 $\varphi(x)$ 满足:

- (1) $\varphi(x)$ 在x*附近是p次连续可微的(p>1);
- (2) $\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0, \varphi^{(p)}(x^*) \neq 0$ 则迭代过程 $x_{n+1} = \varphi(x_n)$ 在点 x^* 邻近是p阶收敛的.

证: 由Taylor公式

$$\varphi(x_n) = \varphi(x^*) + \varphi'(x^*)(x_n - x^*) + \frac{1}{2!}\varphi''(x^*)(x_n - x^*)^2 + \cdots + \frac{1}{p!}\varphi^{(p)}(\xi_n)(x_n - x^*)^p$$

得
$$|x_{n+1}-x^*|=|\varphi(x_n)-\varphi(x^*)|=\frac{|x_n-x^*|^p}{p!}\varphi^{(p)}(\xi_n)$$

所以
$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = \lim_{n\to\infty} \frac{1}{p!} |\varphi^{(p)}(\xi_n)| = \frac{1}{p!} |\varphi^{(p)}(x^*)|$$

故迭代过程 $x_{n+1} = \varphi(x_n) p$ 阶收敛.

2.3.3 迭代收敛的加速方法

一、Aitken加速收敛方法:

由微分中值定理,有

$$x_1 - x^* = \varphi(x_0) - \varphi(x^*) = \varphi'(\xi)(x_0 - x^*)$$

假定 $\varphi(x)$ 改变不大,近似取某个近似值L,则有

$$x_1 - x^* \approx L(x_0 - x^*)$$

同理

$$x_2 - x^* \approx L(x_1 - x^*)$$

两式相比,得
$$\frac{x_1 - x^*}{x_2 - x^*} \approx \frac{x_0 - x^*}{x_1 - x^*}$$

故

$$x^* \approx \frac{x_0 x_2 - x_1^2}{x_2 - 2x_1 + x_0} = x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0} = \tilde{x}_0$$

类推可得

$$\tilde{x}_{k} = x_{k+2} - \frac{(x_{k+2} - x_{k+1})^{2}}{x_{k+2} - 2x_{k+1} + x_{k}}$$

上式即为Aitken加速收敛方法的迭代格式.

例:分析数列
$$x_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$
 收敛于 $\frac{\pi}{4}$ 的速度快慢.

$$x0=1; f=1; n=1; \\ k=0; error=1; \\ while error>0.00001 \\ f=-f; n=n+2; \\ x=x0+f/n; \\ error=abs(x-x0); \\ x0=x; k=k+1; \\ end \\ k=50000 \\ ans=3.1416$$

k, 4*x

Aitken加速方法:
$$y_{k+2} = x_{k+2} - \frac{(x_{k+2} - x_{k+1})^2}{x_{k+2} - 2x_{k+1} + x_k}$$

二、Steffensen迭代法:

将Aitken加速技巧与不动点结合可得

$$y_k = \varphi(x_k)$$
 $z_k = \varphi(y_k)$

$$x_{k+1} = z_k - \frac{(z_k - y_k)^2}{z_k - 2y_k + x_k}$$

或将其写为
$$x_{k+1} = \Psi(x_k)$$

$$\Psi(x) = \varphi(\varphi(x)) - \frac{\left[\varphi(\varphi(x)) - \varphi(x)\right]^2}{\varphi(\varphi(x)) - 2\varphi(x) + x}$$

例 求方程 $3x^2 - e^x = 0$ 在[3,4]中的解.

解 由 $e^x = 3x^2$

取对数 $x = \ln 3x^2 = 2 \ln x + \ln 3 = \varphi(x)$

构造迭代格式 $x_{k+1} = 2\ln x_k + \ln 3$

故 $\varphi'(x) = \frac{2}{x}$

当x ∈ [3,4]时, $\varphi(x)$ ∈ [3,4], 且

 $\max |\varphi'(x)| \le \frac{2}{3} < 1$ 故迭代格式收敛.

取 x_0 =3.5, 经计算可得迭代16次后 x_{16} =3.73307, 有6位有效数字.

若用steffensen迭代法加速,结果如下:

k	x_k	y_k	z_k
0	3.5	3.60414	3.66202
1	3.73444	3.73381	3.73347
2	3.73307		

说明steffensen迭代法的收敛速度比不动点迭代快得多。

例:用steffensen迭代法求解方程 $x^3 - x - 1 = 0$.

解:由前知,迭代格式 $x_{k+1}=x_k^3-1$ 是发散的.现用steffensen迭代法计算.取 $\varphi(x)=x^3-1$,结果如下:

k	x_k	y_k	z_k
0	1.5	2.37500	12.3965
1	1.41629	1.84092	5.23888
2	1.35565	1.49140	2.31728
3	1.32895	1.34710	1.44435
4	1.32480	1.32518	1.32714
5	1.32472		

表明即使不动点迭代法不收敛,用steffensen迭代法仍可能收敛。

2.4 Newton选代法

- Newton迭代法及其收敛性
- · 简化Newton迭代法(平行弦法)
- 弦截法
- Newton下山法
- 重根情形

2.4.1 Newton迭代法及其收敛性

基本思想:将非线性方程逐步归结为某种线性方程求解.

设方程f(x)=0有近似根 x_k ($f`(x_k)\neq 0$),将f(x)在 x_k 展开:(ξ 在x和 x_k 之间)

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(\xi)}{2!}(x - x_k)^2$$

可设

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

故f(x)=0可近似表示为

$$f(x_k) + f'(x_k)(x - x_k) = 0$$

记该线性方程的根为 x_{k+1} ,则

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k=0,1,....)$

即为Newton法迭代格式.

例:用Newton选代法求方程 $x^3-3x-1=0$ 在 $x_0=2$ 附近的近似实根.

解:
$$f(x) = x^3 - 3x - 1, f'(x) = 3x^2 - 3$$

迭代公式为
$$x_{k+1} = x_k - \frac{x_k^3 - 3x_k - 1}{3x_k^2 - 3}$$

计算步骤如下:

- (1) 取初值x0=2;
- (2) 按照迭代公式计算x1;
- (3) 若|x1-x0|<=0.00001,终止迭代;否则,x0=x1;转(2);
- (4) 输出迭代次数和近似根.

MATLAB求解程序:

1. 方程及一阶导函数计算:

function [fun,dfun]=fun0(x)
fun=x^3-3*x-1;%求原函数的值
dfun=3*x^2-3;%求一阶导数的值

```
2.计算主程序:
                  clear
                  x0=2;
                  [fun,dfun]=fun0(x0);
                  x1=x0-fun/dfun;i=1;
                  while abs(x1-x0)>1e-8
                       x0=x1;
                       [fun,dfun]=fun0(x0);
                       x1=x0-fun/dfun;
                       i=i+1;
                  end
                  disp('the solution is x1=')
                  \mathbf{x}\mathbf{1}
                  disp('the iter time is ')
```

计算结果为:
the solution is x1=
x1 =
1.8794
the iter time is
i =

可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.8794.

· Newton迭代法的几何意义: (亦称切线法)

切线方程

$$y = f(x_k) + f'(x_k)(x - x_k)$$

故

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

应用——求正数平方根算法

设
$$C > 0$$
, $x = \sqrt{C}$ \Longrightarrow $x^2 - C = 0$

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n}$$

$$x_{n+1} = \frac{1}{2} [x_n + \frac{C}{x_n}]$$

例: 设C>0, 证明由迭代格式 $x_{n+1}=\frac{1}{2}\left(x_n+\frac{C}{x_n}\right)$ $(n=0,1,\ldots)$ 产生的迭代序列 $\{x_n\}$, 对任意的 $x_0>0$, 均收敛于 \sqrt{C} ;且具有 2 阶收敛速度.

分析: 由迭代格式, 有 $x_{n+1} = \frac{1}{2x_n} (x_n^2 + C)$ $x_{n+1} - \sqrt{C} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right) - \sqrt{C}$ $= \frac{1}{2x_n} \left(x_n^2 - 2x_n \sqrt{C} + C \right) = \frac{1}{2x_n} \left(x_n - \sqrt{C} \right)^2$

$$\frac{x_{n+1} - \sqrt{C}}{\left(x_n - \sqrt{C}\right)^2} = \frac{1}{2x_n}$$

$$\lim_{n \to \infty} x_n = ?$$

证明: 由迭代格式, 有

$$x_{n+1} = \frac{1}{2x_n} \left(x_n^2 + C \right)$$

等式两端同减 \sqrt{C} , 配方得

$$x_{n+1} - \sqrt{C} = \frac{1}{2x_n} \left(x_n - \sqrt{C} \right)^2$$

同理有

$$x_{n+1} + \sqrt{C} = \frac{1}{2x_n} \left(x_n + \sqrt{C} \right)^2$$

将上面两式相除有

$$\frac{x_{n+1} - \sqrt{C}}{x_{n+1} + \sqrt{C}} = \left(\frac{x_n - \sqrt{C}}{x_n + \sqrt{C}}\right)^2$$

反复递推, 得

$$\frac{x_{n+1} - \sqrt{C}}{x_{n+1} + \sqrt{C}} = \left(\frac{x_n - \sqrt{C}}{x_n + \sqrt{C}}\right)^2 = \left(\frac{x_{n-1} - \sqrt{C}}{x_{n-1} + \sqrt{C}}\right)^{2 \times 2} = \dots = \left(\frac{x_0 - \sqrt{C}}{x_0 + \sqrt{C}}\right)^{2^{n+1}}$$

令
$$q = \frac{x_0 - \sqrt{C}}{x_0 + \sqrt{C}}$$
 则有 $\left(\frac{x_n - \sqrt{C}}{x_n + \sqrt{C}}\right) = q^{2^n}$

化简得

$$x_n = \sqrt{C} \frac{1 + q^{2^n}}{1 - q^{2^n}} \qquad \lim_{n \to \infty} x_n = \sqrt{C}$$

$$x_{n+1} - \sqrt{C} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right) - \sqrt{C}$$

$$= \frac{1}{2x_n} \left(x_n^2 - 2x_n \sqrt{C} + C \right) = \frac{1}{2x_n} \left(x_n - \sqrt{C} \right)^2$$

$$\frac{x_{n+1} - \sqrt{C}}{\left(x_n - \sqrt{C} \right)^2} = \frac{1}{2x_n} \qquad \lim_{n \to \infty} x_n = \sqrt{C}$$

$$\lim_{n \to \infty} \frac{\left| x_{n+1} - \sqrt{C} \right|}{\left| x_n - \sqrt{C} \right|^2} = \frac{1}{2\sqrt{C}}$$

由此可知,平方根迭代具有2阶收敛速度.

·Newton迭代法的收敛性:

迭代函数:
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

设 $f(x^*)=0$, $f`(x^*)\neq 0$, 则 $\varphi`(x^*)=0$, 故Newton迭代法在 x^* 附近至少平方收敛.

定理: 假设f(x)在x*的某邻域内具有连续的二阶导数,且设f(x*)=0, $f`(x*)\neq 0$, 则对充分靠近x*的初始值 x_0 , Newton迭代法产生的序列 $\{x_n\}$ 至少平方收敛于x*.

例:用Newton迭代法解方程 $xe^x-1=0$.

解: $f(x)=e^x+xe^x$, 故Newton迭代公式为

$$x_{k+1} = x_k - \frac{x_k e^{x_k} - 1}{e^{x_k} + x_k e^{x_k}} \quad \text{Pp} \qquad x_{k+1} = x_k - \frac{x_k - e^{-x_k}}{1 + x_k}$$

取迭代初值 $x_0=0.5$, 结果如下:

\boldsymbol{k}	$\boldsymbol{x_k}$	迭代3次即可得到精度为 10-5的近似解0.56714. 若用 不动点迭代, 达到同一精 度需17次.	
0	0.5		
1	0.57102		
2	0.56716		
3	0 56714	及而1/人。	

Newton迭代法的缺陷:

1.被零除错误

方程: $f(x)=x^3-3x+2=0$

在重根x*=1附近, f'(x)近似 为零.

2.程序死循环

对 $f(x) = \arctan x$

存在 x_0 , Newton迭代 法陷入死循环.

 $= \arctan x$