Chapter 2

Cell Cycle and Cell Division

Solutions

	SECTION - A
	Objective Type Questions
1.	I Cycle, Phases of Cell Cycle, Interphase, M-Phase) The sequence of events by which cells duplicate their genome, synthesize the other components of cell which eventually distribute into two daughter cells is called (1) Quiescent stage (2) Generation time (3) Cell cycle (4) Kinetochore Answer (3) While: Quiescent stage → In this phase cell remains metabolically active but do not proliferate unless they are called on to do so. Generation time → Time between two consecutive cell cycles i.e., Time taken by the number of cells to be doubled. Kinetochore → Trilamellar proteinaceous structure present at centromere.It is attachment site for spindle fibers.
2. Sol.	DNA replication occurs in (1) S phase (2) G ₁ phase (3) G ₂ phase (4) M phase Answer (1) While G ₁ phase – Organelles duplicate in this phase G ₂ phase – Tubulin protein synthesis M phase – Mitotic phase The phase between the two successive M phase is called as
0.	The phase between the two successive M phase is called as (1) Metaphase (2) Anaphase (3) Prophase (4) Interphase Answer (4) At interphase cell undergo growth.
4. Sol.	A biosynthetic phase where cell organelle duplicate itself is (1) Interphase (2) Anaphase (3) Prophase (4) Telophase Answer (1) While Prophase: Condensation of chromatin begin.

Anaphase: Centromere splits and chromatid separation

Metaphase: Condensed chromosome align themselves at equator.

two chromatids.

5.	Yeast can progress through	gh the cell cycle in about		
	(1) 90 sec	(2) 90 min	(3) 90 hrs	(4) 90 yrs
Sol.	Answer (2)			
	Yeast cell completes its of	cell cycle in 90 min.		
6.	represents the	e most active stage of the ce	ll cycle.	
	(1) Metaphase	(2) Anaphase	(3) Telophase	(4) Interphase
Sol.	Answer (4)			
	Because in this phase ce	Il prepares itself for cell divi	sion.	
7.	Interphase is called the re	esting phase because		
	(1) It is the most active p	hase of the cell cycle		
	(2) There is no apparent	activity related to cell division		
	(3) It does not prepare ce	ell for cell division		
	(4) It is the phase where	cell rests before entering into	o mitosis	
Sol.	Answer (2)			
	Interphase stage of cell cy	ycle involves growth of cell a	nd does not involves divis	sion of cell.
8.	phase synthes	sizes enzymes required durin	g S phase.	/
	(1) G ₂	(2) M	(3) S	(4) G ₁
Sol.	Answer (4)			21
	While		131	1.64
	M o Mitotic phase		ing Illi	· ·
	G ₂ → Organelle duplication	on like Mitochondria	LO Jices	
	S → DNA duplication		1581	
9.	Non-dividing cells enter the	e //	g S phase. (3) S (3) Gophase	
	(1) G ₂ phase	(2) M phase	(3) G ₀ phase	(4) S phase
Sol.	Answer (3)		AKAST	
		escent phase.	5 Page	
40	The collectible auton	escent phase phase start differenti		6 II
10.	(1) G ₁	phase start differenti (2) G ₂	ating into specific types of (3) S	(4) G ₀
Sol	Answer (4)	(2) G_2	(3) 3	(4) G ₀
00	G_0 phase is the phase of	cell differentiation.		
44	v		Observation C DATA	L .
11.	(1) 4 C	A is 8 C, then after S phase (2) 8 C	tne amount of DNA would (3) 64 C	(4) 16 C
.	Answer (4)	(2) 8 C	(3) 04 C	(4) 10 C
SOL	Because DNA duplicates	during S phase		
501.				
	The second second second			0 !:
		mes in G ₁ phase is 36, the n		
12.	The number of chromosor (1) 36 Answer (1)	mes in G ₁ phase is 36, the note (2) 18	umber of chromosomes in (3) 22	S phase is (4) 37

Μ

	(1) Prophase Answer (2)	which lasts more than 95% o (2) Interphase If for division during this pha	(3)	e total duration is Anaphase	(4)	Telophase
	Most dramatic period of ce (1) G ₁ phase Answer (4)			S phase	(4)	M phase
	` ,	ase movement of chromosor	nes	is visible.		
15.	Major check point of cell c	ycle is				
	(1) $G_1 \rightarrow S$ transition	(2) $S \rightarrow G_1$ transition	(3)	$G_2 \rightarrow M$ transition	(4)	$M \rightarrow G_2$ transition
Sol.	Answer (1)					
	Cell cycle is controlled by cyclins.	two restriction points also o	alle	d check points \Rightarrow G_1	\rightarrow 5	S transition and ${\rm G_2}$ –
16.	$G_1 \rightarrow S$ transition is regulated	ted by				
	(1) Cyclins only		(2)	Cyclin independent k	inas	es
	(3) Mitotic cyclin and cdc2	2 kinase	(4)	G ₁ cyclin and cdc2 k	inas	e
Sol.	Answer (4)					
	$G_1 \rightarrow S$ transition controlled	ed by G ₁ cyclins + cdc2 kina	ses		05	
17.	Two daughter cells formed (1) Non-identical to each of (3) Non-identical to parents Answer (2) Identical to each other becomes	after mitosis are other	(4)	Identical to each othe Irregular in size	er	
18.	A cell division in which a d	iploid somatic cell divides in	to tw	vo identical daughter	cells	is called
Sol.	(1) Meiosis IAnswer (3)Mitosis (equational division	(2) Meiosis II n) occurs in somatic cells.	28/	Mitosis	(4)	Cytokinesis
19.		is called somatic cell division				
	(1) Meiosis I	(2) Meiosis II	(3)	Reduction division	(4)	Mitosis
Sol.	Answer (4) Mitosis cell division is also	called somatic cell division				
20.	Mitosis occurs in					
	(1) Meristematic cells		(2)	Undifferentiated germ	n cel	ls
	(3) Somatic cells		(4)	More than one option	n is	correct
Sol.	Answer (4) Mitosis occurs in both som	natic cells and undifferentiate	ed g	erm cells of both plar	ıts a	nd animals.
21.	The first phase of mitosis v	which follows interphase is				
	(1) Metaphase	(2) Prophase	(3)	Telophase	(4)	Anaphase
Sol.	Answer (2)					

Prophase is the first phase of mitosis.

22.	Initiation of condensation of (1) Prophase (2)	chromatin material occurs i 2) Anaphase		Telophase	(4)	Metaphase
Sol.	Answer (1) Chromatin condenses to form	n chromosome in prophase	٠.			
23. Sol.	Mitotic spindle initiates during (1) Telophase (2) Answer (3) In late prophase mitotic spind	2) Anaphase	(3)	Prophase	(4)	Metaphase
24.	Nucleolus and nuclear memb	rane disappear during				
Sol.	(1) Anaphase (2)Answer (4)At the end of prophase (late)	2) Interphase	` '	Telophase	(4)	Prophase
25.	The chromosomes are shorte	·	COIL	із цізарреаі.		
		2) Metaphase	(3)	Telophase	(4)	Interphase
	Reasonable to the second			iatio	id.	
200	Because condensation is co		1	THUE BY.		
26.		e equator during 2) Prophase	(3)	Metaphase	(4)	Telophase
301.	Answer (3) In Metaphase all chromosom	e arrange at equator of ce	ll to	form equitorial or mel	taph	asic plate.
27.	Read the following statement (a) Complete disintegration (b) Metaphase chromosome (1) Only (b) is correct	of the nuclear envelope ma	chro	matid.		
Sol.	(3) Only (a) is correct Answer (3) Complete disintegration of nu Metaphasic chromosome ha	·	(2) (4) star	Both (a) & (b) are ind Both (a) & (b) are co	rrec	t
28.	The morphology of the chron					
	(1) Metaphase (2) Answer (1)	2) Interphase	, ,	Prophase	. ,	Telophase
	Because chromosomes are	completed condensed, sho	ortes	st and thickest in this	stag	ge.
29.	The point of attachment of m (1) Centromere (2	icrotubules on the chromo 2) Kinetochore		e is called as Chromatid	(4)	Spindle
Sol.	Answer (2) Kinetochore which is a trilam	ellar proteinaceous structu	ıre p	oresent at centromere		

30.	Chromosomes move toward	ards t	he pole during				
	(1) Prophase	(2)	Metaphase	(3)	Telophase	(4)	Anaphase
Sol.	Answer (4)						
31.	Poleward movement is a The centromere splits du		alled anapnasio	movement.			
	(1) Anaphase Answer (1)	_	Telophase	(3)	Interphase	(4)	Prophase
	At anaphase centromere	splits	and the chror	matids move to	owards opposite po	les.	
32.	The chromosomes cluste	er at c	opposite poles	and their ident	ity is lost as discret	e elen	nents during
Sol.	(1) Telophase Answer (1)	(2)	Anaphase	(3)	Metaphase	(4)	Prophase
	Because chromosomes	start o	decondensing i	into chromatin	network.		
			()		Folindar Folindar	Ons	
33.	The mitotic spindle disap	pears	in		Service		
	(1) Prophase	(2)	Metaphase	(3)	Anaphase	(4)	Telophase
Sol.	Answer (4)				Edul		
	Because proper division appratus.	and	distribution of	DNA has been	done, so now the	re is r	no further use of spindl
34.	Decondensation of chrom	noson	nes occurs duri	ing wisions			
	(1) Prophase	(2)	Metaphase	(3)	Anaphase	(4)	Telophase
Sol.	Answer (4)						
	Telophase shows decond	lensat	tion of chromos	some, and reap	pperance of chroma	tin.	
35.	The nuclear envelope rea	ssem	bles during				
	(1) Prophase	(2)	Telophase	(3)	Anaphase	(4)	Metaphase
Sol.	Answer (2)						
	Telophase is marked by r	easse	embling of nucl	ear envelope.			
36.	phase marks						
Sol.	(1) Karyokinesis Answer (3)		Prophase	, ,	Cytokinesis	(4)	Telophase
	M-phase begins with kar	yokin	esis and ends	with cytokines	IS.		

- 37. If karyokinesis is not followed by cytokinesis, then gives rise to
 - (1) Zygote

Fertilised egg

(3) Multinucleate condition

(4) Embryo

Sol. Answer (3)

Because Karyokinesis means division of nucleus and cytokinesis means division of cytoplasm, So, if nucleus divides and cytoplasm does not divide, then more than one nucleus will be there in a single cell i.e., multinucleate condition. $(\cdot) \rightarrow (:) \rightarrow (::)$

- 38. A single cell containing large number of nuclei is called
 - (1) Syncytium
- (2) Cell plate
- (3) Monad
- (4) Bivalent

Sol. Answer (1)

Multinucleate cell

Cell plate forms cell wall in plant cell.

- 39. A type of cell division which reduces chromosome number to half is
 - (1) Mitosis
- (2) Multiple fission
- (3) Fragmentation
- (4) Meiosis

Sol. Answer (4)

Meiosis also known as reductional division one diploid cell divides to form 4 haploid cells.

- 40. What will be the total number of mitotic divisions in the formation of 64 daughter cells?
 - (1) 6

(2) 32

(3) 63

- Agglutination of chromosomes is caused by a mitotic poison called

 (1) Mustard gas

 (2) Ribonuclease

 (3) A=i-1.

 Sol. Answer (1)

 Mustard

- (4) Chalones

Mustard gas causes clumping of chromosomes.

(Meiosis, Significance of Meiosis, Amitosis)

- 42. In meiosis-I, condensation and coiling of chromatin fibres started during
 - (1) Metaphase
- (2) Leptotene
- (3) Diakinesis
- (4) Diplotene

Sol. Answer (2)

Leptotene which is the first stage of prophase I.

- 43. In pachytene, each tetrad contains
 - (1) Two chromatids
- (2) One chromatid
- (3) Four chromatids
- (4) Three chromatids

Sol. Answer (3)

Two homologus (i.e., homologus pair) chromosome each having 2 chromatids.

- 44. Crossing over occurs during
 - (1) Anaphase I

(2) Leptotene

(3) Diplotene

(4) Pachytene

Sol. Answer (4)

Prophase I of meiosis I shows exchange of genetic segments between non-sister chromatids of homologus chromosomes which results in recombination.

- 45. The homologous chromosomes move towards the opposite poles during
 - (1) Anaphase I
- (2) Anaphase II
- (3) Leptotene
- (4) Pachytene

Sol. Answer (1)

Segregation or seperation of homologous chromosome at

Anaphase-I results in reduction in chromosomes no.

- (3) Anaphase-I _____ marks the site where crossing over had occurred.
 - (1) Diakinesis
- (2) Synapsis
- Leptotene

Sol. Answer (3)

(x-shaped structure)

- 47. Terminalisation of chiasmata occurs during
 - (1) Prophase-I
- (2) Metaphase-
- (4) Telophase-I

In Diplotene stage terminalisation of chiasmata occurs.

- Bivalent chromosomes align themselves at the equator during
 - (1) Metaphase I
- (2) Prophase I
- (3) Metaphase II
- (4) Anaphase II

Sol. Answer (1)

Pair of homologus chromosomes are termed as bivalents.

- 49. If there are 30 chromosomes in G₁ phase then what will be number of bivalents in zygotene stage?

(2) 15

(3) 45

Sol. Answer (2)

Number of bivalents i.e., no. of pair of chromosome in Zygotene = 15

- 50. What will be the amount of DNA in meiosis II products if meiocyte contains 30 pg DNA in G, phase?
 - (1) 30 pg
- (2) 60 pg

- (3) 15 pg
- (4) 120 pg

Sol. Answer (3)

Meiocyte (2n, 2c) = 30 pg
$$\xrightarrow[l]{\text{meiosis}} \left(\begin{array}{c} n \\ 2c \end{array} \right) \xrightarrow[l]{\text{meiosis}} \left(\begin{array}{c} n \\ C \end{array} \right) \xrightarrow$$

Therefore, 15 pg

SECTION - B

Objective Type Questions

(Cell Cycle, Phases of Cell Cycle, Interphase, M-Phase)

- Select an incorrect statement w.r.t. cell cycle
 - (1) Duplication of genes occurs twice in meiosis
 - (2) Karyokinesis occurs twice during meiotic division
 - (3) Cyclins are proteins that activate protein kinases to regulate the cell cycle
 (4) After telephases, chromosome number is reduced to both
 - (4) After telophase-I, chromosome number is reduced to half.

Sol. Answer (1)

Duplication of genes or chromosome occurs only once during S-phase of interphase.

- Maturation promoting factor formation triggers the cell to cross
 - (1) $G_1 \rightarrow S$
- (2) $S \rightarrow G_2$
- (4) $M \rightarrow G_1$

Sol. Answer (3)

It is formed by mitotic cyclin and cdc 2 kinase.

- Cyclin Dependent Kinases (CDKs) 3.
 - (1) Act as mitotic poisons

- (2) Cause disassembly of the microtubules
- (3) Control various phases of cell cycle
- (4) Arrest cell division due to non-formation of spindle

Sol. Answer (3)

CDKs are responsible for controlling cell cycle.

- What is **not** true about cell cycle?
 - a. During G₄ phase there is active synthesis of RNA and proteins but no change in its DNA content
 - b. In synthesis or S phase, each chromosome carries a duplicate set of genes
 - c. During G, phase, a cell contains double the amount (4C) of DNA present in the original diploid cell (2C)
 - d. In S-phase a cell doubles the original diploid (2n) chromosome number
 - (1) c & d
- (2) b & c

- (3) d only
- (4) b, c & d

Sol. Answer (3)

Chromosome number remains same only DNA content doubles in S-phage of cell cycle.

- 5. Which phase of interphase is the most important point in regulation of the cell cycle, during which it must decide whether the cell will start a new cycle or will enter in G phase?
 - (1) G₁ phase
- (2) S phase
- (3) G, phase
- (4) Quiescent stage

C

Sol. Answer (1)

During this phase if cell is signalled not to divide further then it enters quiescent stage where cell remains metabolically active but do not proliferate unless they are called to do so.

- 6. Identify the mismatched pair
 - (1) A Starts with karyokinesis and ends with cytokinesis
 - (2) B Stage where cells are inactive metabolically
 - (3) C Cell grows and carries out normal metabolism
 - (4) D Period of cytoplasmic growth

Sol. Answer (2)

A - M-phase

C - G₁ phase

B − G₀ phase

D - G₂ phase

7. Chromatin fibres duplication, Genetic material - 4C, Histone protein synthesis, Membranous organelle duplication, DNA replication, centriole duplication.

Sol. Answer (2)

Four

In nucleus

- (4) G₂-phase

Sol. Answer (1)

(Mitosis, Significance of Mitosis)

- The two daughter cells formed during mitosis contains
 - (1) The same amount of DNA but a set of chromosomes different from those of parental cells
 - (2) The same amount of DNA and the same set of chromosomes as those of the parent cell
 - (3) Half the amount of DNA and the same set of chromosomes as those of the parent cell
 - (4) Double the amount of DNA and a set of chromosomes different from those of the parent cell

Sol. Answer (2)

Because mitosis is equational division occuring in somatic cells.

- 10. Higher plants differ from animals in having
 - (1) Spindle microtubule

(2) Anastral mitosis

(3) Kinetochores

(4) Disappearance of nucleolus during prophase

Sol. Answer (2)

Because plant cell lack centriole and centrioles are responsible for formation of astral rays.

- 11. Which of the following phases are longest and shortest in mitosis?
 - (1) Metaphase, Anaphase

(2) Prophase, Anaphase

(3) Telophase, Anaphase

(4) Prophase, Telophase

Sol. Answer (2)

Longest phase - Prophase

Shortest phase - Anaphase

- 12. How many generations are required by a cell of meristem to produce 128 cells?
 - (1) 127

(2) 64

- (3) 32
- (4) 7

Sol. Answer (4)

Because meristem cell will undergo mitosis and each mitotic division will yield 2 equal daughter cell from one diploid cell.

$$\therefore 1 \xrightarrow{(1)} 2 \xrightarrow{(2)} 4 \xrightarrow{(3)} 8 \xrightarrow{(4)} 16 \xrightarrow{(5)} 32 \xrightarrow{(6)} 64 \xrightarrow{(7)} 128$$

- 13. Select the correct match
 - (1) Reformation of ER and golgi complex Telophase
 - (3) Polar movement of chromatids S-phase
- (2) Invisible phase of cell cycle Metaphase
- (4) Recombination nodules formation Zygotene

Sol. Answer (1)

Invisible phase of cell cycle - Interphase

Polar movement of chromatids - Anaphase

Recombination nodules formation – Pachytene

- 14. Phragmoplast is formed by golgi complex and grows
 - (1) Centripetally to form cell plate

- (2) Centrifugally to form cell plate
- (3) Centripetally to produce a cleavage furrow
- (4) Centrifugally to form a cleavage furrow

Sol. Answer (2)

In plant cell, cytoplasm divides by cell plate formation.

- 15. Spireme stage of chromosomes is associated with
 - (1) Early prophase
- (2) Late prophase
- (3) Metaphase
- (4) Telophase

Sol. Answer (1)

Early prophase when chromosome appear as fall of wool is known as spireme stage.

- 16. Which one of the following is correct for mitosis in most of the plants member?
 - (1) Amphiastral, anastral and eumitosis
- (2) Anastral, acentric and premitosis

(3) Anastral, acentric and eumitosis

(4) Astral, centric and eumitosis

Sol. Answer (3)

Spindle apparatus without astral fibers and centrioles is called anastral and acentric.

- 17. Spindle fibres are made up of
 - (1) Actin
- (2) Myosin
- (3) Alpha & beta tubulin (4) Flagellin

Sol. Answer (3)

Spindle fibres → Microtubules → Tubulin proteins

- 18. Cytokinesis in a plant cell is achieved by the formation of cell plate instead of a cleavage furrow, which is formed in
 - (1) Centripetal manner

- (2) Centrifugal manner
- (3) Both centripetal and centrifugal manner
- (4) Equational manner

Sol. Answer (2)

- 19. Select an **incorrect** statement w.r.t. metaphase
 - (1) Spindle fibres are attached to small disc shaped structures at the surface of centromeres called kinetochores
 - (2) The plane of alignment of the homologous pair of chromosomes at metaphase is referred to as the metaphasic plate
 - (3) Chromosome appears to be made up of two sister chromatids
 - (4) The size of chromosomes can be studied in this phase
- Sol. Answer (2)

Homologous pair of chromosome forms double metaphasic plate.

- 20. Best stages to study morphology and shape of chromosome are respectively
 - (1) Metaphase, Telophase

(2) Prophase, Anaphase

(3) Telophase, Anaphase

(4) Metaphase, Anaphase

Sol. Answer (4)

Morphology of chromosome → Metaphase

Shape of chromosome → Anaphase

(Meiosis, Significance of Meiosis, Amitosis)

- 21. All are the essential stages that take place during meiosis, except
 - (1) Two successive divisions without any DNA replication occuring between them
 - (2) Formation of chiasmata and crossing over
 - (3) Segregation of homologous chromosomes
 - (4) Number of chromosomes in daughter cells after meiosis II is reduced to half but the amount of DNA remains the same

Sol. Answer (4)

Amount of DNA is also reduced to half after meiosis II.

- 22. In the meiotic cell division, 56 daughter cells are produced by two successive divisions in which
 - (1) First division is equational, second is reductional
 - (2) First division is reductional, and second is equational
 - (3) Both divisions are reductional
 - (4) Both divisions are equational

Sol. Answer (2)

First division is reductional i.e., Meiosis I and second is equational division i.e., Meiosis II

- 23. If egg of an organism has 10 pg of DNA in its nucleus. How much DNA would a diploid cell of same organism have in G₂ phase of meiosis?
 - (1) 10 pg

(3) 20 pg

Sol. Answer (4)

...ount of DNA

Diploid cell = 2C after S-phase DNA contents doubles \therefore in G₂ phase = DNA content = 4C \therefore (4) = 4 × 10

= 40

i.e.,
$$(C) = 10 pg$$

$$\therefore$$
 (4) = 4 × 10 = 40 Pg

- 24. To produce 102 pollen grains, how many meiotic divisions are required?
 - (1) 25

(2) 25.5

(3) 26

(4) 27

Sol. Answer (3)

Because 1 meiotic division will produce 4 haploid cell

For 102 ⇒ Number of meiotic division (n)

 \Rightarrow But $\frac{102}{4}$ = 25.5. But a division cannot be 0.5 so it must be 26.

Find out the wrong stateme	25.	Find	out the	wrong	stateme
--	-----	------	---------	-------	---------

- (1) Each metaphasic plate in heterotypic division of meiosis contains half the number of diploid set of chromosomes.
- (2) Interkinesis is generally short lived
- (3) Synaptonemal complex and nuclear membrane completely disappear in diplotene
- (4) Homologous chromosomes move to respective poles in anaphase-I

Sol. Answer (3)

Synaptonemal complex and nuclear envelope completely disappear in the end of diakinesis.

26. What will be the content of DNA in a somatic cell at G₂ if its meiotic products have 20 picogram of DNA?

- (1) 40 pg
- (2) 20 pg

- (3) 80 pg
- (4) 160 pg

Sol. Answer (3)

Diploid cell will have 2C and after S phase it will become 4C

$$\therefore$$
 4 × 20 = 80 pg

- 27. All chromosomes of a cell are directed towards one side and are attached to the nuclear membrane, can be observed in
 - (1) Leptotene
- (2) Zygotene
- (3) Pachytene
- (4) Diplotene

Sol. Answer (1)

- c. Dictyotene stage
 d. Complete disappearance of nuclear membrane and nucleolit
 e. Complete development of astral rays and aster
 f. Longest phase of prophase-I
 1) a, b, c and e (2) b, d, e

 inswer (3)
 3., a → Desver 28. Diplotene phase of meiosis is also characterised by

- (4) b, d and f

Sol. Answer (3)

- - $c \rightarrow Dictyotene stage$
 - $f \rightarrow Longest phase of Prophase-I$
- 29. The recombination nodules which mediate for chromosome recombination appear at intervals on the synaptonemal complex during
 - (1) Zygotene stage
- (2) Meiosis
- (3) Pachytene stage
- (4) Diplotene stage

Sol. Answer (3)

Stage of crossing over → Pachytene stage

- In oocytes, which stage can last for months or years, since at this stage the chromosomes decondense and are engaged in RNA synthesis
 - (1) Diakinesis
- (2) Telophase-I
- (3) Diplotene
- (4) Intrameiotic interphase

Sol. Answer (3)

Longest phase of prophase I-Diplotene

- 31. When synapsis is complete all along the chromosome, the cells are said to have entered a stage of prophase I, where exchange of genetic material takes place between homologous chromosomes. The stage is called
 - (1) Zygotene
- (2) Pachytene
- (3) Diplotene
- (4) Diakinesis

Sol. Answer (2)

- The beginning of which stage of prophase is marked by complete terminalisation of chiasmata and inhibition of RNA synthesis?
 - (1) Pachytene

(2) Diplotene

(3) Diakinesis

(4) Zygotene

Sol. Answer (3)

Chiasmata slips towards the end of chromosome.

- 33. What will be the amount of DNA in a pollen grain if its mother cell has 32 picogram DNA in G₂ phase?

Sol. Answer (3)

$$\therefore \frac{32}{4} = 8 \text{ pg}$$

- 34. The paradox of meiosis is

Sol. Answer (1)

The paradox of meiosis is

(1) Conservation of specific chromosome number from generation to generation

(2) Produces four haploid cells after meiosis II

3) It is a double division

) Does not involve DNA replication
swer (1)

osis reduces chromosome number to half
ies.

orarily suspended starr
ptotene
tyotr Meiosis reduces chromosome number to half in gametes thus maintains same chromosome number in

- 35. Temporarily suspended stage of diplotene during meiosis-l is

(3) Dictyotene

(4) Pachytene

Sol. Answer (3)

Diplotene stage is stranded in oocytes of some vertebrates.

SECTION - C

Previous Year Questions

1. Which of the following options gives the correct sequence of events during mitosis? [NEET - 2017]

- (1) Condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
- (2) Condensation → nuclear membrane disassembly → arrangement at equator → centromere division → segregation → telophase
- (3) Condensation \rightarrow crossing over \rightarrow nuclear membrane disassembly \rightarrow segregation \rightarrow telophase
- (4) Condensation \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase

Sol. Answer (2)

The correct sequence of events during mitosis would be as follows

- (i) Condensation of DNA so that chromosomes become visible occurs during early to mid-prophase.
- (ii) Nuclear membrane disassembly begins at late prophase or transition to metaphase.
- (iii) Arrangement of chromosomes at equator occurs during metaphase, called congression.
- (iv) Centromere division or splitting occurs during anaphase forming daughter chromosomes.
- (v) Segregation also occurs during anaphase as daughter chromosomes separate and move to opposite poles.
- (vi) Telophase leads to formation of two daughter nuclei.
- 2. Anaphase promoting complex (APC) is a protein degradation machinery necessary for proper mitosis of animal cells. If APC is defective in a human cell, which of the following is expected to occur? [NEET 2017]
 - (1) Chromosomes will not condense

(2) Chromosomes will be fragmented

(3) Chromosomes will not segregate

(4) Recombination of chromosome arms will occur

Sol. Answer (3)

Anaphase Promoting Complex (APC) is a protein necessary for separation of daughter chromosomes during anaphase. If APC is defective then the chromosomes will fail to segregate during anaphase.

3. During cell growth, DNA synthesis takes place in

[NEET (Phase-2) 2016]

(1) S phase

(2) G₁ phase

(3) G₂ phase

(4) M phase

Sol. Answer (1)

DNA replication occurs in S-phase of cell cycle.

4. When cell has stalled DNA replication fork, which checkpoint should be predominantly activated?

[NEET (Phase-2) 2016]

(1) G_1/S

(2) G_2 / M

(3) M

(4) Both G_2 / M and M

Sol. Answer (1)

G₁ / S check point of cell cycle is a major check point.

 Match the stages of meiosis of Column-I to their characteristic features in Column-II and select the correct option using the codes given below: [NEET (Phase-2) 2016]

Column-I

Column-II

a. Pachytene

- (i) Pairing of homologous chromosomes
- b. Metaphase I
- (ii) Terminalization of chiasmata
- c. Diakinesis
- (iii) Crossing-over takes place
- d. Zygotene
- (iv) Chromosomes align at equatorial plate
- (1) a(iii), b(iv), c(ii), d(i)
- (2) a(i), b(iv), c(ii), d(iii)
- (3) a(ii), b(iv), c(iii), d(i) (4) a(iv), b(iii), c(ii), d(i)

(a) Synapsis (Zygotene)

(c) Terminalisation of chiasmata

Sol.	Answer (1)					
	Pachytene - Stage of crossing over					
	Metaphase-I - Chromosome align at equatorial plate					
	Diakinesis - Terminalisation of chiasmata					
	Zygotene - Pairing of homologous chromosome					
6.	In meiosis crossing over is initiated at				ı	[NEET - 2016]
	(1) Diplotene (2) Pachytenep	(3)	Leptotene	(4)	Zygotene	
Sol.	Answer (2)					
	Leptotene - Condensation of chromatin					
	Zygotene - Synapsis of homologous chromosomes					
	Pachytene - Crossing over					
	Diplotene - Dissolution of synaptonemal complex and	I арр	earance of chiasmata	а		
	Diakinesis - Terminalisation of chiasmata					
7.	Spindle fibres attach on to				1	[NEET - 2016]
	(1) Kinetosome of the chromosome	(2)	Telomere of the chro	omos	ome	
	(3) Kinetochore of the chromosome	(4)	Centromere of the c	hrom	osome	
Sol.	Answer (3)			25		
	Spindle fibres attach to kinetochores of chromosomes		C) di	2/11		
8.	A cell at telophase stage is observed by a student in this cell is not like other cells at telophase stage. There is more number of chromosomes as compared to other discontinuous compared to	s no	formation of cell plate	and	thus the ce	
	(1) Polyteny (2) Aneuploidy	(3)	Polyploidy	(4)	Somaclor	nal variation
Sol.	Answer (3)	//	C. P. ional			
	Polyploidy cells have a chromosome number that is mo	ore th	nan double the haplo	id nu	mber.	
9.	Which of the following is not a characteristic feature d	uring	mitosis in somatic c	ells?	-	NEET - 2016]
					•	
	(1) Synapsis(3) Disappearance of nucleolusAnswer (1)	(4)	Chromosome mover	nent		
Sol.	Answer (1)	()				
	Synapsis is pairing of homologous chromosomes. It or	ccurs	during zygotene sta	ge of	f meiosis.	
10.	Arrange the following events of meiosis in correct sequ	ence	:		[Re	-AIPMT-2015]
	(a) Crossing over					
	(b) Synapsis					
	(c) Terminalisation of chiasmata					
	(d) Disappearance of nucleolus					
	(1) (b), (c), (d), (a) (2) (b), (a), (d), (c)	(3)	(b), (a), (c), (d)	(4)	(a), (b), (d	c), (d)
Sol.	Answer (3)	. ,		. ,		
	The sequence of event during meiosis are					

(b) Crossing over (Pachytene)

(d) Disappearance of nucleolus

(i)

(ii)

(iii)

(iv)

11. Select the correct option

[AIPMT-2015]

Column I

- a. Synapsis aligns homologous chromosomes
- b. Synthesis of RNA and protein
- c. Action of enzyme recombinase
- d. Centromeres do not separate but chromatids move towards opposite poles

- (v) Pachytene

- (1) a(ii), b(iii), c(iv), d(v)
- (2) a(ii), b(i), c(iii), d(iv)
- (3) a(ii), b(iii), c(v), d(iv) (4) a(i), b(ii), c(v), d(iv)

Column II

Anaphase-II

Zygotene

G₂-phase

Anaphase-I

Sol. Answer (3)

- 12. During which phase(s) of cell cycle, amount of DNA in a cell remains at 4C level if the initial amount is denoted as [AIPMT-2014]
 - (1) G_0 and G_1
- (2) G₁ and S
- (3) Only G₂
- (4) G_2 and M

Sol. Answer (3)

$$\rm G_1 \rightarrow 2C$$
 ; S $\rightarrow 4C$; $\rm ~G_2 \rightarrow 4~C$; M $\rightarrow 2~C$

13. In 'S' phase of the cell cycle

[AIPMT-2014]

- (1) Amount of DNA doubles in each cell
- (2) Amount of DNA remains same in each cell
- (3) Chromosome number is increased
- (4) Amount of DNA is reduced to half in each cell

Sol. Answer (1)

Josis
(3) Diplotene S- phase \rightarrow Synthesis phase. DNA replication occurs in this phase.

14. The enzyme recombinase is required at which stage of meiosis

[AIPMT-2014]

- (1) Pachytene
- (2) Zygotene
- (4) Diakinesis

Sol. Answer (1)

Recombinase enzyme is responsible for crossing over.

15. A stage in cell division is shown in the figure. Select the answer which gives correct identification of the stage with its characteristics

[NEET-2013]

(1)	Late Anaphase	Chromosomes move away from equatorial plate, golgi complex not present.
(2)	Cytokinesis	Cell plate formed, mitochondria distributed between two daughter cells.
(3)	Telophase	Endoplasmic reticulum and nucleolus not reformed yet.
(4)	Telophase	Nuclear envelop reforms, golgi complex reforms.

Sol. Answer (4)

16. The complex formed by a pair of synapsed homologous chromosomes is called:

[NEET-2013]

- (1) Kinetochore
- (2) Bivalent
- (3) Axoneme
- (4) Equatorial plate

Sol. Answer (2)

17. Meiosis takes place in :

[NEET-2013]

(1) Conidia

(2) Gemmule

(3) Megaspore

(4) Meiocyte

Sol. Answer (4)

Reproductive cells or germ cells.

18. During gamete formation, the enzyme recombinase participates during

[AIPMT (Prelims)-2012]

(1) Prophase – I

(2) Prophase - II

(3) Metaphase – I

(4) Anaphase – II

Sol. Answer (1)

Given below is the representation of a certain event at a particular stage of a type of cell division. Which is the

[AIPMT (Prelims)-2012]

(1) Prophase of Mitosis

(2) Both prophase and metaphase of mitosis

(3) Prophase I during meiosis

(4) Prophase II during meiosis

Sol. Answer (3)

Because, representation is of exchange of genetic segment between non sister chromatids i.e., crossing over which occurs during Pachytene stage of Prophase I of meiosis.

20. Identify the meiotic stage in which the homologous chromosomes separate while the sister chromatids remain [AIPMT (Mains)-2012] associated at their centromeres:

(1) Metaphase I

(2) Metaphase II

(3) Anaphase I

(4) Anaphase II

Sol. Answer (3)

21. Select the **correct** option with respect to mitosis

[AIPMT (Prelims)-2011]

- (1) Chromosomes move to the spindle equator and get aligned along euatorial plate in metaphase
- (2) Chromatids separate but remain in the centre of the cell in anaphase
- (3) Choromatids start moving towards opposite poles in telophase
- (4) Golgi complex and endoplasmic reticulum are still visible at the end of prophase

Sol. Answer (1)

Poleward movement of chromosome \rightarrow Anaphase

22. At metaphase, chromosomes are attached to the spindle fibres by their

[AIPMT (Mains)-2011]

(1) Kinetochores

(2) Centromere

(3) Satellites

(4) Secondary constrictions

Sol. Answer (1)

23. During mitosis ER and nucleolus begin to disappear at

[AIPMT (Prelims)-2010]

(1) Early prophase

(2) Late prophase

(3) Early metaphase

(4) Late metaphase

Sol. Answer (1)

ER and nucleolus begin to disappear at early prophase where condensation of chromatin begins.

24. Which stages of cell division do the following figures A and B represent respectively?

[AIPMT (Prelims)-2010]

- (1) Prophase Anaphase
- (3) Telophase Metaphase

- (2) Metaphase Telophase
- (4) Late Anaphase Prophase

Sol. Answer (4)

- A Late Anaphase : because chromatids have reached to their respective poles.
- B Prophase : Chromatin material condensation and centriole movement begins.
- 25. Given below is a schematic break-up of the phases/stages of cell cycle:

Which one of the following is the correct indication of the stage/phase in the cell cycle?

[AIPMT (Prelims)-2009]

- (1) C-Karyokinesis
- (3) A-Cytokinesis
- Sol. Answer (2)

A-Karyokinesis, B-Anaphase, C-Cytokinesis

26. Synapsis occurs between

[AIPMT (Prelims)-2009]
(2) Spindle fibres and centromere
(4) A male and a female and

- (1) mRNA and ribosomes
- (3) Two homologous chromosomes
- Sol. Answer (3)

Homologous chromosomes are two similar chromosomes contributed by both parents.

27. At what stage of the cell cycle are histone proteins synthesized in a eukaryotic cell?

[AIPMT (Prelims)-2005]

- (1) During entire prophase
- (3) During S-phase
- (o) Barrigo priaco

(2) During telophase

(2) D-Synthetic phase

B-Metaphase

(4) During G₂ stage of prophase

Sol. Answer (3)

DNA replication and histone protein synthesis occurs in S-phase.

28. Centromere is required for

[AIPMT (Prelims)-2005]

- (1) Transcription
- (3) Cytoplasmic cleavage

- (2) Crossing over
- (4) Movement of chromosomes towards poles

Sol. Answer (4)

Movement of chromosomes towards poles, it provides site for attachment of spindle fiberes.

- 29. Comparing small and large cells, which statement is correct?
 - (1) Small cells have a small surface area per volume ratio
 - (2) Exchange rate of nutrients is fast with large cells
 - (3) Small cells have a large surface area per volume ratio
 - (4) Exchange rate of nutrients is slow with small cells
- Sol. Answer (3)

Small cells - Surface area to volume ratio high exchange rate of nutrients fast.

- 30. In a somatic cell cycle, DNA synthesis takes place in
 - (1) G₁ phase

(2) Prophase of mitosis

(3) S-phase

(4) G₂ phase

Sol. Answer (3)

In a cell cycle DNA synthesis occurs only in S-phase.

- 31. In the somatic cell cycle
 - (1) In G, phase, DNA content is double the amount of DNA present in the original cell
 - (2) DNA replication takes place in S-phase
 - (3) A short interphase is followed by a long mitotic phase
 - (4) G₂ phase followed by mitotic phase
- Sol. Answer (2)

Interphase occupies 95% time of cell cycle.

32. A stage of mitosis is shown in the diagram. Which stage is it and what are its characteristics?

- (1) Late prophase chromosomes move to spindle equator
- (2) Metaphase spindle fibres attached to kinetochores, centromeres split and chromatids separate
- (3) Metaphase chromosomes moved to spindle equator chromosomes made up of two sister chromatids
- (4) Anaphase centromeres split and chromatids separate and start moving away
- Sol. Answer (3)

Metaphase - Metaphasic plate

- 33. How many chromosomes will the cell have at G_1 , after S and after M phase respectively, if it has 14 chromosomes at interphase?
 - (1) 14, 14, 7

(2) 14, 14, 14

(3) 7, 7, 7

(4) 7, 14, 14

Sol. Answer (2)

Because number of chromosome remain same in mitosis :: it equational division.

- 34. Which of the following represents the best stage to view the shape, size and number of chromosomes?
 - (1) Prophase
- (2) Metaphase
- (3) Interphase
- (4) Telophase

Sol. Answer (2)

Because at this stage, chromosomes are completely condensed and clearly visible.

- Solutions of Assignment Cell Cycle and Cell Division 35. Each chromosome at the anaphase stage of a bone marrow cell in our body has (1) Two chromatids (2) Several chromatids (3) No chromatids (4) Only one chromatid Sol. Answer (4) Because centromere split and chromatid move towards respective poles. 36. Colchicine is an inhibitory chemical, which (1) Stops the functioning of centriole (2) Prevents attaching of centromeres with rays (3) Prevents the spindle formation in mitosis (4) Prevents the formation of equatorial plane Sol. Answer (3) Colchicine checks assembly of microtubules and prevents their polymerisation. 37. During cell division in apical meristem, the nuclear membrane appears in (1) Telophase (2) Cytokinesis (3) Metaphase (4) Anaphase Sol. Answer (1) Nuclear envelope reappears in telophase. 38. How many mitotic divisions are needed for a single cell to make 128 cells? (1) 28 (2) 32 (3) 127 (4) 14 Sol. Answer (3) Number of cells (n) = 128Number of division = (n - 1) = 128 - 1 = 12739. Which of the following structure will not be common to mitotic cell of a higher plant? (3) Cell plate (4) Centromere (2) Spindle fibre (1) Centriole Sol. Answer (1) Centriole is not present in plant cell. In 175 minutes $\rightarrow = \frac{175}{35} = 5$ time division will $(3)^{\circ}$ 175 × 10⁵ cells (4) 85 × 10⁵ cells (4) 85 × 10⁵ cells (4) 85 × 10⁵ cells (4) 8 × 10⁵ cells 40. A bacterium divides every 35 minutes. If a culture containing 10⁵ cells per ml is grown for 175 minutes, what Sol. Answer (2) 41. Spindle fibre unite with which structure of chromosomes? (1) Chromocentre (2) Chromomere (3) Kinetochore (4) Centriole Sol. Answer (3)

Kinetochore is a disc like structure present at centromere.

42. Best material for the study of mitosis in laboratory is

- (1) Anther
- (2) Root tip
- (3) Leaf tip
- (4) Ovary

Sol. Answer (2)

Because it is apical meristem where actively dividing cells are present.

- 43. If a diploid cell is treated with colchicine then it becomes
 - (1) Triploid
- (2) Tetraploid
- (3) Diploid
- (4) Monoploid

Sol. Answer (2)

Because colchicine affects microtubules synthesis

thus, arrest cell division at anaphase stage, $2n \rightarrow 4n$

- 44. If you are provided with root-tips of onion in your class and are asked to count the chromosomes, which of the following stages can you most conveniently look into?
 - (1) Metaphase
- (2) Telophase
- (3) Anaphase
- (4) Prophase

Sol. Answer (1)

Metaphase stage can be most conveniently looked because at this stage chromosomes are completely condensed.

- 45. Which one of the following precedes re-formation of the nuclear envelope during M phase of the cell cycle?
 - (1) Decondensation from chromosomes, and reassembly of the nuclear lamina
 - (2) Transcription from chromosomes, and reassembly of the nuclear lamina
 - (3) Formation of the contractile ring, and formation of the phragmoplast
 - (4) Formation of the contractile ring, and transcription from chromosomes
- Sol. Answer (3)

dce 100 pollk (4) 50 Microtubules form contractile ring which helps in invagination of plasma membrane at late anaphase.

- 46. In an angiosperm, how many microspore mother cells are required to produce 100 pollen grains?
 - (1) 75

(2) 100

Sol. Answer (3)

1 micro spore mother cell \rightarrow 4 pollen grain

- \therefore For 1 pollen grain = $\frac{1}{4}$ microsphere mother cell
- $\therefore \text{ For 100 pollen grain} = \frac{1}{4} \times 100 = 25$
- 47. If there are 4 pollen mother cells in anthers, what will be the number of pollen grains? (1) 16 (2) 12 (3) 8 (4) 4
 Sol. Answer (1) $1 \rightarrow 4$

$$1 \rightarrow 4$$

$$\therefore 4 \rightarrow 4 \times 4 = 16$$

- 48. A gymnospermic leaf carries 16 chromosomes. The number of chromosomes in its endosperm will be
 - (1) 12

(2) 8

(3) 16

(4) 24

Sol. Answer (2)

Leaf cell (2n) = 16

(diploid)

Endosperm of gymnosperm is haploid (n)

$$\therefore = \frac{16}{2} = 8$$

 $\therefore \rightarrow 8$

- 49. The term "Meiosis" was given by
 - (1) A. Flemming
- (2) Farmer and Moore
- (3) Johansen
- (4) Knoll and Ruska

Sol. Answer (2)

Farmer and Moore coined the term meiosis.

- 50. What will be DNA amount in Meiotic II products if DNA is 20 picogram in meiocyte at G₂-stage?
 - (1) 5 pg

(2) 10 pg

- (3) 20 pg
- (4) 40 pg

Sol. Answer (1)

Meiocyte = 2C

at G_2 stage = 4C = 20

Meiotic II products = $C = \frac{20}{4} = 5 \text{ pg}$

- ∴ 5 pg
- 51. In ferns, meiosis takes place at the time of
 - (1) Spore formation

(2) Spore germination

(3) Gamete formation

(4) Antheridia and archegonia formation

Sol. Answer (1)

Ferns show sporic meiosis.

- 52. Mitotic spindle is mainly composed of which protein?
 - (1) Actin

- (2) Myosin
- (3) Tubulin
- (4) Myoglobin

Sol. Answer (3)

Tubulin protein is composition of microtubules which in turn form mitotic spindle.

- 53. Crossing over that results in genetic recombination in higher organisms occurs between
 - (1) Sister chromatids of a bivalent

(2) Non-sister chromatids of a bivalent

(3) Two daughter nuclei

(4) Two different bivalents

Sol. Answer (2)

Homologous chromosomes

SECTION - D

Assertion-Reason Type Questions

- A: Endomitosis does not cause karyokinesis or cytokinesis.
 - R: In endomitosis, mitosis occurs within nucleus.
- Sol. Answer (1)

Endomitosis involves multiplication of chromosomes without karyokinesis and cytokinesis.

- 2. A: Synaptonemal complex develops between two synapsed homologous chromosomes.
 - R: Mitosis cannot be completed without the synaptonemal complex.
- Sol. Answer (3)

Meiosis can not be completed without the synaptonemal complex.

- 3. A: During anaphase-II, chromatids of a chromosome separate.
 - R: Centromere of a mitotic chromosome divides during anaphase.
- Sol. Answer (2)

Meiosis II and mitosis both are equational division and involve splitting of centromere at anaphase-II and anaphase respectively.

- 4. A: Dictyotene stage occurs in female only.
 - R: Gametogenesis rests for a long period at diplotene stage in female.
- Sol. Answer (1)

Dictyotene occurs in oocyctes.

- 5. A: Each chromosome of bivalent attaches with two spindles in metaphase.
 - R: In metaphase bivalents migrate towards metaphasic plate.
- Sol. Answer (4)

Each chromosomes of bivalent attaches with a single spindle in Metaphase I In metaphase I one chromosome from each homologus pair migrate towards pole.

- 6. A: G₂-phase is pre-mitotic phase.
 - R: Chromosomes undergo condensation in this phase.
- Sol. Answer (3)

Proteins and organelles like mitochondria and chloroplast duplicate in G₂-phase.

- 7. A: Anaphase-I is actual phase of reduction in number of chromosomes.
 - R: Homologous chromosomes move to the opposite poles with both their chromatids.
- Sol. Answer (1)

Anaphase-I involves splitting of homologous chromosome.

- 8. A: Golgi bodies and ER disappear in early prophase.
 - R: Their reorganisation stage is anaphase.
- Sol. Answer (4)

Golgi bodies and ER disappear in Late prophase.

Their reorganisation occurs in telophase

- 9. A: The complete disintegration of the nuclear envelope marks the start of metaphase.
 - R: Chromosomes are distinct with two chromatids at this stage.
- Sol. Answer (2)

Complete disintegration of the nuclear envelope marks begining of metaphase chromosomes at this phase have two distinct chromatids.

- 10. A: Chiasmata counting stage is diplotene.
 - R: Dissolution of the synaptonemal complex occurs except at the sites of cross overs.
- **Sol.** Answer (1)

Chiasmata represents the site of crossing over.

- 1		
_	_	_