Phylodynamics & Evolutionary Rates

Lessons from the Biocontrol of Australian Rabbits

John-Sebastian Eden

js.eden@sydney.edu.au

Viral phylodynamics

Fundamental part of Pathogen genomics

Based on the notion that epidemiological, immunological and evolutionary processes influence the <u>shape of viral phylogenies</u> (Grenfell & Holmes, 2004).

European rabbits in Australia

Spread of the 'Grey Blanket'

- Introduced by early settlers for food and sport in 18th-19th century
- When a few became many... over a billion rabbits by 1950
- Transformed Australian landscape, impacted on native species, and became main vertebrate pest

What do rabbits have to do with viral phylodynamics?

Viral biocontrol

The Australian Perspective...

"The only good rabbit is a dead one"

- Two viruses have been released into Australia to control rabbit populations
- In 1950, Myxoma Virus released but soon attenuated strains emerged
- Then, in 1995, Rabbit Haemorrhagic
 Disease Virus was released as alternative

The case study in viral emergence & virulence evolution

RHDV: A known history

Intentional release means you know source and timing of epidemics

A single release site?

"Unintentional" release

Virus 'escaped' off Wardang Island,
 South Australia during field trials

Phylodynamics would predict these

events are written in the genomic

history of the viruses

A single founder virus?

Sequencing original RHDV stocks

- Original Australian CSIRO/AAHL stocks
- Independent sources Australian 'release' stocks
- Early Australian source used in NZ

Master

| Working
| Release

All (Australian) viruses should share a single common ancestor

A robust phylogeny

Required for any phylodynamic inference

- 1. Sampling & Sequencing: Even through time and location
- 2. Gene alignment: Informative gene & homologous positions
- 3. Appropriate model & phylogenetic method: Statistically robust
- **4. Correct topology:** Where is the root?
- 5. Rates analysis with root-to-tip distances: Path-o-Gen (Tempest)

```
Basic formula =
```

Sequences + Alignment + ModelTest + ML tree

Phylogeny of founder viruses

Rates analysis using Path-o-Gen

Rates analysis using Path-o-Gen

Rates analysis using Path-o-Gen

With Czech-V351/1987

Without Czech-V351/1987

Dated Tips	
Date range	20
Slope (rate)	2.8516E-3
X-Intercept (TMRCA)	1993.1894
Correlation Coefficient	0.9578
R squared	0.9175
Residual Mean Squared	3.453E-5

- Rate of evolution increased: 2.63E-3 vs 2.85E-3 (subs/site/yr)
- TMRCA more recent: 1991 vs 1993
- Better correlation between date & divergence: 0.94 vs 0.96
- Correct founder = Better dating estimates!

Molecular epidemiology

Tracking the Spread and Evolution of RHDV in Australia & NZ

- A common founder virus?
- Unique opportunity to study evolution in parallel
- Genome sequencing of 28 new field isolates from both regions
- Characterised using a viral phylodynamic approach

Capsid phylogeny

Phylodynamic inference

- Evidence of clustering by regions (phylogeography):
 - AUS vs NZ
 - AUS East vs West
- South Australia as a known 'source' population
- No lineages from apparent 're-release' strains

Rates of evolution with Path-o-gen

Export the raw data for more detailed analyses

Best-fit values	Australia	New Zealand
Slope (rate)	$4.1 \times 10^{-3} \pm 2.1 \times 10^{-4}$	$2.6 \times 10^{-3} \pm 3.3 \times 10^{-4}$
X-intercept (TMRCA)	1995.49	1996.04
Correlation coefficient	0.92	0.93

- Linear regression of root-to-tip distances versus time
- Split by different lineages
- Strong temporal structure
- Apparent, lower rate of evolution in NZ compared to Australia

How else can you use Path-o-gen?

1. Quick assessment of temporal structure

Strict clock will have good correlation between dates and divergence

2. Spotting outliers

- Possible recombinant strains
- Mis-labelled sequences and dates
- Any artifacts likes vaccine strains

QUESTIONS?