Курс МАДМО продвинутый

Лекция 4 Оптимизация и регуляризация нейронных сетей

Владислав Гончаренко МФТИ, осень 2021

Outline

- Previous lecture recap: backpropagation, activations, intuition
- 2. Optimizers
- 3. Data normalization
- 4. Regularization

Once again: nonlinearities

$$f(a) = \frac{1}{1 + e^{-a}}$$
$$f(a) = \tanh(a)$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.

source: http://cs231n.github.

Optimizers

Stochastic gradient descent is used to optimize NN parameters.

source: http://cs231n.github.io/neural-networks-3/

Optimizers

There are much more optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs

source: link

Optimization: SGD

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

Averaging over mini batches => noisy gradient

First idea: momentum

Simple SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

SGD with momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Momentum update:

Nesterov momentum

Momentum update:

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Comparing momentums

10

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Problem: gradient fades with time

Second idea: different dimensions are different

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

RMSProp: SGD with cache with exp. Smoothing

$$cache_{t+1} = \beta cache_t + (1 - \beta)(\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Slide 29 Lecture 6 of Geoff Hinton's Coursera class

14

0.5

0.5

0.0

-0.5

 $1.0^{-1.0}$

-1.0

-0.5

0.0

Adam

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Actually, that's not quite Adam.

Adam full form involves bias correction term. See http://cs231n.github.io/neural-networks-3/ for more info.

Comparing optimizers

source:

17

3e-4 is the best learning rate for Adam, hands down.

6:01 AM · Nov 24, 2016 · Twitter Web Client					
108 Ret	weets 461	Likes			
	Q	t]	\bigcirc	\triangle	
	Andrej Karpathy @ @karpathy · Nov 24, 2016 Replying to @karpathy (i just wanted to make sure that people understand that this is a joke)				~
	Q 9	₹7 3	♡ 119	\triangle	

Once more: learning rate

Sum up: optimization

- Adam is great basic choice
- Even for Adam/RMSProp learning rate matters
- Use learning rate decay
- Monitor your model quality

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Data normalization

Data normalization

Before normalization: classification loss very sensitive to changes in weight matrix;

hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

Weights initialization

• Pitfall: all zero initialization

Weights initialization

- Pitfall: all zero initialization
- Small random numbers

Weights initialization

- Pitfall: all zero initialization
- Small random numbers
- Calibrated random numbers

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i})$$

$$= \sum_{i}^{n} \operatorname{Var}(w_{i}x_{i})$$

$$= \sum_{i=1}^{n} [E(w_i)]^2 \operatorname{Var}(x_i) + E[(x_i)]^2 \operatorname{Var}(w_i) + \operatorname{Var}(x_i) \operatorname{Var}(w_i)$$

$$= \sum_{i}^{n} \operatorname{Var}(x_{i}) \operatorname{Var}(w_{i})$$

$$= (nVar(w)) Var(x)$$

Problem:

- Consider a neuron in any layer beyond first
- At each iteration we tune it's weights towards better loss function
- But we also tune its inputs. Some of them become larger, some smaller
- Now the neuron needs to be re-tuned for it's new inputs

TL; DR:

- It's usually a good idea to normalize linear model inputs
 - (c) Every machine learning lecturer, ever

 Normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

• Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Original algorithm (2015)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Original algorithm (2015)

What is this?

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$

// scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// scale and shift

Original algorithm (2015)

What is this?

This transformation should be able to represent the identity transform.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

number of training steps

Problem: overfitting

Regularization

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

Adding some extra term to the loss function.

Common cases:

- L2 regularization:
- L1 regularization:
- Elastic Net (L1 + L2):

$$R(W) = ||W||_2^2$$

$$R(W) = ||W||_1$$

$$R(W) = \beta ||W||_2^2 + ||W||_1$$

Regularization: Dropout

Some neurons are "drop training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Regularization: Dropout

Some neurons are "dropped" during training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Actually, on test case output should be normalized. See sources for more info.

Regularization: data augmentation

Regularization: data augmentation

Sum up: regularization

Regularization:

- Add some weight constraints
- Add some random noise during train and marginalize it during test
- Add some prior information in appropriate form

Revise

- 2. Optimizers.
- 3. Data normalization.
- 4. Regularization.

Thanks for attention!

Questions?

