WHAT IS CLAIMED IS:

1	A method for making a thin film semi-conductor comprising
2	the steps of:
3	providing a semi-conductor substrate having a surface;
4	anodizing the semi-conductor substrate to provide a first porous layer
5	adjacent the surface having a first porosity;
6	anodizing the semi-conductor substrate to provide at least one second
7	porous layer adjacent the first porous layer opposite the surface, each said second
8	porous layer having a second porosity greater than said first porosity;
9	forming a semi-conductor film on the first porous layer; and
10	separating the semi-conductor film from the semi-conductor substrate
11	along a line of relative weakness defined in or adjacent one of said second porous
	layers.

Τ	μ . A method for making a thin film semi-conductor comprising
2	the steps of:
3	providing a semi-conductor substrate having a surface;
4	anodizing the semi-conductor substrate at a first current density to
5	provide a first porous layer adjacent the surface having a first porosity;
6	anodizing the semi-conductor substrate at a second current density
7	higher than said first current density to provide a second porous layer adjacent the
8	first porous layer opposite the surface, the second porous layer having a second
9	porosity greater than the first porosity;
10	anodizing the semi-conductor substrate at a third current density higher
11	than said second current density to provide a third porous layer in or adjacent the
12	second porous layer, the third porous layer having a third porosity higher than said
13	second porosity;
14	forming at least one semi-conductor film on the surface and first
15	porous layer; and
16	separating the semi-conductor film from the semi-conductor substrate
L 7	along a line of relative weakness defined in the third porous layer or at or adjacent an
	interface defined between said third porous layer and the second porous layer.
1	3. A method as defined in Claim 2, wherein in said anodizing
2	steps, the semi-conductor substrate is contacted by an electrolytic solution and
3	exposed to a flow of current at said first, second and third current density,
	respectively.
1	4: A method as defined in Claim 3, wherein the electrolytic
	solution comprises hydrogen fluoride and a hydrocarbon alcohol.
1	5. A method as defined in Claim 3, wherein in the anodizing
	steps, the electrolytic solution is the same.
1	6. A method/as/defined in Claim 3, wherein the electrolytic
	solution used in the anodizing steps varies.

65

1

1	7. A method as defined in Claim 2, further comprising the step of
2	annealing the semi-conductor substrate in a hydrogen atmosphere after the third
	anodizing step and before the forming step.
_	

- A method as defined in Claim 7, further comprising the step of oxidizing the anodized substrate after the third anodizing step and before the hydrogen annealing step.
- 9. A method as defined in Claim 2, wherein in the forming step the semi-conductor film is epitaxially grown.
- 1 10. A method as defined in Claim 2, wherein the semi-conductor substrate is a single crystal silicon substrate.
- 1 1. A method as defined in Claim 2, wherein the semi-conductor substrate is an impurity-doped semi-conductor substrate.
- 1 A method as defined in Claim 2, wherein the semi-conductor substrate is a compound semi-conductor substrate.
- 1 13. A method as defined in Claim 2, further comprising the step of attaching a support substrate to the semi-conductor film after the forming step and before the separating step.
 - 14. A method as defined in Claim 13, wherein the support substrate is a rigid substrate.
- 1 15. A method as defined in Claim 13, wherein the support substrate is a flexible substrate.
- 1 16. A method as defined in Claim 13, wherein the support substrate is attached to the semi-conductor film by adhesive bonding.

-	17 A mothed for molting a solar sell commission the stars of
1	17. A method for making a solar cell comprising the steps of:
2	providing a semi-conductor substrate having a surface;
3	forming a porous structure adjacent the surface of the substrate
4	including a first porous layer adjacent the surface having a first porosity, a second
5	porous layer adjacent the first porous layer opposite the surface having a second
6	porosity greater than said first porosity and a third porous layer in or adjacent to the
7	second porous layer having a third porosity greater than said second porosity;
8	forming an epitaxially grown thin film semi-conductor structure on the
9	surface including at least one hetero junction;
10	forming a SiO ₂ insulating layer on an exposed surface of the thin film
11	semi-conductor structure;
12	patterning and etching the insulating layer to define holes;
13	depositing a metal film on the insulating layer to form a metal film
14	layer;
15	patterning and etching the metal film layer to form electrodes disposed
16	in the holes;
17	attaching clongate conductors having at least one extending end
18	portion to the electrodes;
19	attaching a support substrate to the surface overlying the electrodes and
20	conductors with a binder material; and
21	thereafter, separating the thin film semi-conductor structure and
22	support substrate from the semi-conductor substrate along a line of relative weakness
23	defined in the third porous layer or at or adjacent an interface defined between said
	third porous layer and the second porous layer.
1	18. A method for making a solar cell as defined in Claim 17,
2	wherein the epitaxially grown thin film semi-conductor structure comprises a p ⁺ /p ⁻ /n ⁺
	thin film semi-conductor structure.
1	A method for making a solar cell as defined in Claim 17 further
2	comprising the step of applying a metal electrode to a surface of the separated thin
	film semi-conductor structure opposite the support substrate.

- 1 20. A method for making a solar cell as defined in Claim 17, wherein the support substrate comprises metal, glass, ceramic or polymer.
- 1 21. A method for making a solar cell as defined in Claim 17, wherein the support substrate is a flexible substrate.
- 1 22. A method for making a solar cell as defined in Claim 17, wherein the support substrate and binder are transparent.

	,
1	23. A method for making a light emitting diode, comprising the
2	steps of:
3	providing a single crystal semi-conductor substrate doped with a first
4	type of impurity having a surface;
5	introducing a second type of impurity into said surface to define a
6	surface layer doped with a second type of impurity adjacent the surface
7	anodizing the surface layer to define a first porous layer having a first
8	porosity along a surface of the surface layer;
9	anodizing the substrate to form a second porous layer adjacent the first
10	porosity layer and traversing the surface layer, and having a second porosity less than
11	said first porosity;
12	anodizing the substrate to form a third porous layer in the second
13	porous layer, the third porous layer having a third porosity greater than the second
14	porosity;
15	providing a plurality of parallel spaced electrodes on said first porous
16	layer;
17	attaching a transparent support substrate to the surface and electrodes
18	with a transparent binder material;
19	separating the second porous layer from the semi-conductor substrate
20	along a line of weakness defined in the third porous layer or at or adjacent and
21	interface defined between said second porous layer and the third porous layer to form
22	a separated LED substrate;
23	providing a like second plurality of parallel spaced electrodes on an
24	exposed surface of said second porous layer opposite the surface layer;
25	attaching a second transparent support substrate to the exposed surface
26	and electrodes with a transparent binder material to form an LED assembly; and
27	thereafter subdividing the LED assembly between the spaced
	electrodes to define a plurality of LED devices.

- 1 24. A method as defined in Claim 23, wherein the semi-conductor substrate comprises a p-type impurity
- 1 25. A method as defined in Claim 24, wherein the surface layer comprises an n-type impurity.

and