DDS₂

Les ptits devoirs du soir

Xavier Pessoles

Exercice 168 - Suspension automobile **

B2-14

C1-05

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Peut-on résoudre complètement le système? Pourquoi?*

Corrigé voir 168.

Exercice 167 - Parallélépipède*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

rayon
$$R$$
 et de hauteur H et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$ avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède de cotés a, b et c et de masse m est donnée en son centre d'iner-

tie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{(\vec{i}, \vec{j}, \vec{k})} \text{avec } A = m \frac{b^2 + c^2}{12},$$

12 , 0 = m 12 Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{2}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 167.

Exercice 166 - Suspension automobile ** C2-07 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort

Xavier Pessoles 1

extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Corrigé voir 166.

Exercice 165 - Parallélépipède percé* **B2-10** Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, k') de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1)=\begin{pmatrix}A&0&0\\0&B&0\\0&0&C\end{pmatrix}_{(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})}$$
 avec $A=m\frac{b^2+c^2}{12},\,B=m\frac{a^2+c^2}{12},\,C=m\frac{a^2+b^2}{12}.$ Soit la pièce suivante.

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 165.

Exercice 163 - Pèse camion **

C1-05 Pas de corrigé pour cet exercice.

On considère un bâti $\mathbf{0}$ auquel est attaché le repère $\mathcal{R} =$ $(O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$. Le champ de pesanteur est $g = -g \overrightarrow{y_0}$. La barre 1 est liée au bâti 0 par une liaison pivot parfaite d'axe $(A, \overrightarrow{z_0})$. Le plateau porte camion **2** est lié à la barre 1 par une liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$. Le levier 3 est lié au bâti 0 par une liaison pivot parfaite d'axe $(B, \overline{z_0})$. Ce levier est également lié au plateau **2** par une liaison pivot parfaite d'axe $(D, \overline{z_0})$. Le camion 4, de centre de masse G et de masse M inconnue, repose sur le plateau 2. L'action mécanique connue est caractérisée par :

$$\{\text{ext} \to 3\} = \left\{ \begin{array}{c} -F \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_F.$$

Question 1 Tracer le graphe de structure. Définir le nombre d'inconnues statiques.

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

Corrigé voir 163.

Exercice 159 - Banc Balafre *

B2-10 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175$ mm;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \, \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;

- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \,\overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{ \text{Joint(rotor)} + \text{Butée double} \}$ a une masse $M_{JR} = 100 \, \text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390 \, \text{mm}$. On notera $I_{G_{JR}}(JR) = 100 \, \text{kg}$

$$\begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathcal{B}_{JR}}$$
 la matrice d'inertie de

l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = (\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0})$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \text{mm}$ et $R_{CB} = 150 \, \text{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overline{z_0})$, simplifier la matrice d'inertie $I_{G_{IR}}(JR)$.

Corrigé voir 159.

Exercice 168 - Suspension automobile **

B2-14

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Peut-on résoudre complètement le système? Pourquoi?

Calculons le degré d'hyperstatisme :

- mobilités : m = 2 (rotations autour de \overrightarrow{a} et de \overrightarrow{z});
- inconnues statiques : $I_s = 3 \times 4 = 12$;
- équations : $E_s = 2 \times 6 = 12$.
- $h = m E_s + I_s = 2 12 + 12 = 2$.

On ne peut donc pas déterminer toutes les actions mécaniques.

Exercice 167 - Parallélépipède*

B2-10 Pas de corrigé pour cet exercice.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Exercice 166 – Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Exercice 165 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 *Déterminer la matrice d'inertie du solide en G, en A puis O.*

Exercice 163 - Pèse camion **

C1-05 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe de structure. Définir le nombre d'inconnues statiques.

Xavier Pessoles 4

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

Exercice 159 - Banc Balafre *

B2-10 Pas de corrigé pour cet exercice.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \,\mathrm{mm}$;
- la longueur du joint est $L_J = 150$ mm. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425$ mm;
- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \, \overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{ \text{Joint(rotor)} + \text{Butée double} \}$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie

$$G_{JR} \text{ est paramétrée par } \overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0} \text{ avec } L_{JR} = 390 \, \text{mm. On notera } I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathscr{B}_{JR}}$$

la matrice d'inertie de l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = (\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0})$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \mathrm{mm}$ et $R_{CB} = 150 \, \mathrm{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overrightarrow{z_0})$, simplifier la matrice d'inertie $I_{G_{IR}}(JR)$.