

Topología

Segundo examen parcial

Instrucciones: Esta es una evaluación individual de 90 minutos. Usted dispone de 30 minutos adicionales para escanear y enviar sus respuestas. Debe subir las respuestas en un archivo pdf en el aula virtual en la actividad destinada para tal fin. Justifique todos los pasos.

- 1. [1,25 ptos] Sean X Y espacios topológicos, X un espacio T_1 y $f: X \to Y$ una función sobreyectiva. Muestre que f es un homeomorfismo si y sólo si $Cl(A) = f^{-1}(Cl(f(A)))$
- 2. [1,25 ptos] Sea (X, d) un espacio métrico completo, $M \subset X$. Muestre que $(X, d|_{M \times M})$ si y sólo si M es cerrado en (X, d)
- 3. [1,25 ptos] Sea $f : \mathbb{R} \to \mathbb{R}$ una función continua. Demuestre que si f(x) = 0, para todo $x \in \mathbb{R} \setminus \mathbb{Q}$ entonces f es la función nula
- 4. [1,25 ptos] Sea (X,d) un espacio métrico, demuestre que para todo subconjunto cerrado F de X y para cualquier punto $x \in X \setminus F$ existen abierus U yV en X tales que $F \subset U$, $x \in V$ y $U \cap V = \emptyset$