Templates for MECSim input file: Master.inp

Gareth Kennedy, 14/11/2015

The following examples and associated input file templates will show the user how to set up a range of commonly used mechanisms. This should give the user a good idea of how to edit the Master.inp file to model any desired mechanism. To use one of these templates copy the file (e.g. Master_E.inp) into the same directory as MECSim.exe and rename it Master.inp to run it.

Mechanism 1 (E):

Master_E.inp

A + e = B

; $E^0 = 0.0 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

where [A] = 10^{-6} mol/cm³.

Mechanism 2 (EC):

Master_EC.inp

A + e = B

; $E^0 = 0.0 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

B = C

; $k_f = 10^4 \text{ s}^{-1}$, $k_f = 10^2 \text{ s}^{-1}$

where [A] = 10^{-6} mol/cm³.

Mechanism 3 (EE):

Master_EE.inp

A + e = B ; $E^0 = 0.15 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

B + e = C ; $E^0 = -0.15 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

A + C = 2B ; $k_f = 10^4$, $k_f = 10^2$

where [A] = 10^{-6} mol/cm³ and the rate constants are in units of cm³ mol⁻¹ s⁻¹.

Mechanism 4 (ECE):

Master_ECE.inp

A + e = B ; $E^0 = 0.15 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

B = C ; $k_f = 1 \text{ s}^{-1}$, $k_f = 10^{-6} \text{ s}^{-1}$

C + e = D ; $E^0 = -0.15 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

A + D = B + C; $k_f = 10^{-6}$, $k_f = 10^{-10}$

where [A] = 10^{-6} mol/cm³ and the second order rate constants are in units of cm³ mol⁻¹ s⁻¹.

Note that pre-equilibrium is turned off for this mechanism.

Mechanism 5 (Parent-child):

Master_PC.inp

A + e = B ; $E^0 = 0.0 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

A + B = AB ; $k_f = 10^{-6}$, $k_f = 10^{-10}$

AB + e = BB ; $E^0 = 0.1 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

where [A] = 10^{-6} mol/cm³ and the rate constants are in units of cm³ mol⁻¹ s⁻¹. In the code AB is the same as C and BB is the same as D. $\mathbf{R}_{\mathbf{u}} = \mathbf{100} \ \Omega$

Mechanism 6 (Surface confined catalytic):

Master_SCCat.inp

$$\begin{split} A+e&=B\\ C^*+e&=D^*\\ A+D^*&=B+C^*\;;\; E^0=1.0\;V\;,\; k_s=0\;s^{\text{-}1}\\ E^0&=0.0\;V\;,\; k_s=10^4\;s^{\text{-}1}\\ E^0&=1.0^{\text{-}1}\;\;\text{c}^{\text{-}1}\\ E^0&=1.0^{\text{-}1}\;\;\text{c}^{\text{-}1}\;\;\text{c}^{\text{-}1}\\ E^0&=1.0^{\text{-}1}\;\;\text{c}^{\text{-}1}\;\;\text{c}^{\text{-}1}\\ E^0&=1.0^{\text{-}1}\;\;\text{c}^{\text{-}1}\;\;\text{c}^{\text{-}1}$$

where [A] = 1 mol/cm^3 , [C*] = 10^{-9} mol/cm^3 and the rate constants are in units of cm³ mol⁻¹ s⁻¹. The first of these electron transfer reactions is used to ensure the correct total current, if not included MECSim will recommend one to use.

Mechanism 7 (EAC):

Master_EAC.inp

$$A + e = B$$
 ; $E^0 = 0.0 \text{ V}$, $k_s = 10^4 \text{ s}^{-1}$

same as the E mechanism above, but with an additional ac sinusoid with amplitude 50~mV and frequency 180~Hz.

