1 Preliminaries

Skipped due to triviality.

2 Categories

2.1 Basic definitions

1. Prove that sets (as objects) and injective functions (as arrows) form a category with functional composition as the composition operation c.

Solution. Take id_A to be $x \mapsto x$, then $\mathrm{id}_A \circ f = f$ and $g \circ \mathrm{id}_A = g$ is trivial. The last thing to check is that $g \circ f$ is injective, that is, whenever $s \neq s'$, then $g(f(s)) \neq g(f(s'))$. By injectivity of f, we have $f(s) \neq f(s')$ and by injectivity of g we have $g(f(s)) \neq g(f(s'))$.

2. Do the same as Exercise 1 for sets and surjective functions.

Solution. Let
$$f:A\to B,g:B\to C$$
 be injective functions. Then $f(A)=B,g(B)=C\Rightarrow g(f(A))=C.$

3. Show that composition of relations (2.1.14) is associative.

Solution. Let α, β, γ be relations from A to B, from B to C and from C to D.

$$\alpha \circ \beta \circ \gamma = \{(a,c) \mid \exists b : (a,b) \in \alpha, (b,c) \in \beta\} \circ \gamma$$
$$= \{(a,d) \mid \exists b,c : (a,b) \in \alpha, (b,c) \in \beta, (c,d) \in \gamma\}$$
$$= \alpha \circ (\beta \circ \gamma)$$

4. Prove the following for any arrow $u: A \to A$ of a category \mathcal{C} . It follows from these facts that C-3 and C-4 of 2.1.3. characterize the identity arrows of a category.

(a) If $g \circ u = g$ for every object B of C and arrow $g : A \to B$, then $u = id_A$.

(b) If $u \circ h = h$ for every object C of C and arrow $h : C \to A$, then $u = id_A$.

Solution.

(a) $id_A \circ u \stackrel{\text{def}}{=} u$, but also $id_A \circ u = id_A$ by assumption. $\Rightarrow u = id_A$.

(b) $u \circ id_A \stackrel{\text{def}}{=} u$, but also $u \circ id_A = id_A$ by assumption. $\Rightarrow u = id_A$.

2.2 Functional programming languages

1. nonzero : NAT \to BOOLEAN, subject to equations nonzero \circ succ = false and nonzero \circ succ = true.

2.3 Mathematical structures as categories

1. For which sets A is F(A) a commutative monoid?

Solution. F(A) is always a monoid, so the only property to check is commutativity. If $A = \{\}$, then $F(A) = \{\}$ and is vacuously commutative. If $A = \{a\}$, then $F(A) = \{(), (a), (a, a), \dots\}$ and is commutative. Otherwise, if A has at least two elements, a and b, (a)(b) = (a, b), but $(b)(a) = (b, a) \neq (a, b)$, therefore it is not commutative. All in all, $|A| \leq 1 \Leftrightarrow F(A)$ is commutative.

2. Prove that for each object A in a category C, hom(A,A) is a monoid with composition of arrows as the operation.

Solution. Take id_A as the identity element. Then $\mathrm{id}_A \circ f = f \circ \mathrm{id}_A = f$ by definition of id. $\mathrm{hom}(A,A)$ is closed under composition.

3. Prove that a semigroup has at most one identity element.

Solution. Let e_1, e_2 be identity elements. Then $e_2 = e_1 e_2 = e_1$, so the identity elements are equal. This is very similar to exercise 2.1.4.