Primeira lista de exercícios

"Na Europa está circulando um fantasma - o fantasma do comunismo."

(Karl Marx, filósofo alemão, 1818 - 1883)

1. Sejam A, B, C, D e E, pontos. Prove que:

(a)
$$\overrightarrow{AB} = \overrightarrow{CD} \implies \overrightarrow{AC} = \overrightarrow{BD}$$

(b)
$$\overrightarrow{BC} = \overrightarrow{AE} \implies \overrightarrow{EC} = \overrightarrow{AB}$$

2. Prove, usando as propriedades da soma entre vetores, que, para todos vetores \vec{u} , \vec{v} e \vec{w} no espaço, as seguintes propriedades são verdadeiras:

(a)
$$\vec{u} + \vec{v} = \vec{w} + \vec{v} \implies \vec{u} = \vec{w}$$
,

(b)
$$\vec{u} + \vec{v} = \vec{w} \implies \vec{u} = \vec{w} - \vec{v}$$
.

3. Dados representantes de vetores \overrightarrow{u} e \overrightarrow{v} conforme a figura:

Ache um representante de \vec{x} tal que $\vec{u} + \vec{v} + \vec{x} = \vec{0}$.

- 4. Justifique a seguinte regra. Para calcular $\vec{x} = \vec{u} + \vec{v} + \vec{w}$ tome um representante (A, B) de \vec{u} , um representante (B, C) de \vec{v} , um representante (C, D) de \vec{w} . Então \vec{x} tem como representante (A, D).
- 5. Ache a soma dos vetores indicados na figura nos casos:

(c) Quadrado:

(b) Cubo:

(d) Cubo:

¹Original: Ein Gespenst geht um in Europa - das Gespenst des Kommunismus, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- 6. Prove que, para todos vetores \vec{u} e \vec{v} no espaço e para todo escalar $k, m \in \mathbb{R}$, as seguintes propriedades são verdadeiras:
 - (a) $-(\vec{u} + \vec{v}) = -\vec{u} \vec{v}$,
 - (b) $k(\vec{u} \vec{v}) = k\vec{u} k\vec{v}$,
 - (c) $(k-m)\vec{u} = k\vec{u} m\vec{u}$,
 - (d) $k\vec{v} = \vec{0} \implies k = 0 \text{ ou } \vec{v} = \vec{0}$,
 - (e) $k\vec{u} = k\vec{v}$ e $k \neq 0 \implies \vec{u} = \vec{v}$,
 - (f) $(-1)\vec{v} = -\vec{v}$,
 - (g) $2\vec{v} = \vec{v} + \vec{v}$,
- 7. Resolva a equação na incognita \vec{x} :

$$2\vec{x} - 3\vec{u} = 10(\vec{x} + \vec{v})$$

- 8. Sejam $A \in B$ pontos, e \overrightarrow{u} e \overrightarrow{v} vetores. Prove que, se $A + \overrightarrow{u} = B + \overrightarrow{v}$, então $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{v}$.
- 9. Determine \overrightarrow{AB} em função de \overrightarrow{u} , sabendo que $A + (-\overrightarrow{u}) = B + \overrightarrow{u}$.
- 10. Determine a relação entre \vec{u} e \vec{v} , sabendo que, para um dado ponto A, $(A + \vec{u}) + \vec{v} = A$.
- 11. Dados os pontos A, B e C, determine X, sabendo que $(A + \overrightarrow{AB}) + \overrightarrow{CX} = C + \overrightarrow{CB}$.
- 12. Prove que, se $B=A+\overrightarrow{DC}$, então $B=C+\overrightarrow{DA}$.
- 13. Prove que $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$.
- 14. Prove que, se $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$, então A = B.
- 15. Seja ABCDEFGH o cubo:

Determine:

- (a) $A + \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$
- (b) $\overrightarrow{CD} \overrightarrow{DH} \overrightarrow{GH} + \overrightarrow{AH} + \overrightarrow{AB}$
- (c) $\overrightarrow{AB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{FG} + \overrightarrow{EH} + \overrightarrow{BF}$
- (d) $\overrightarrow{DF} \overrightarrow{EG} + \overrightarrow{FC} + \overrightarrow{BE} + \overrightarrow{AG} \overrightarrow{BH}$
- 16. (a) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$. Exprima \overrightarrow{CX} em função de \overrightarrow{CA} , \overrightarrow{CB} e λ .
 - (b) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$, $\overrightarrow{BY} = \mu \overrightarrow{YC}$ e $\overrightarrow{CZ} = \rho \overrightarrow{ZA}$. Exprima \overrightarrow{CX} , \overrightarrow{AY} e \overrightarrow{BZ} em função de \overrightarrow{CA} , \overrightarrow{CB} .

17. Sejam M, N e P os pontos médios respetivamente dos lados AB, BC e AC de um triângulo ABC. Mostre que

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}$$

- 18. Seja \overrightarrow{OABC} um tetraedro e X o ponto da reta \overrightarrow{BC} definido por $\overrightarrow{BX} = m\overrightarrow{BC}$ por um $m \in \mathbb{R}$. Exprima \overrightarrow{OX} e \overrightarrow{AX} em função de \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- 19. Seja \overrightarrow{ABC} um triângulo, X um ponto na reta \overrightarrow{AB} tal que $\overrightarrow{AX} = 2\overrightarrow{XB}$ e Y um ponto na reta \overrightarrow{BC} tal que $\overrightarrow{BY} = 3\overrightarrow{YC}$. Prove que as retas CX e AY se cortam num ponto.
- 20. Sejam A, B, C e D pontos quaisquer no espaço, M o ponto médio de AC e N o de BD. Exprima $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ em função de \overrightarrow{MN} .
- 21. Seja ABCD um quadrilátero e O um ponto qualquer no espaço. Seja P o ponto médio do segmento que une os pontos médios das diagonais AC e BD. Prove que

$$P = O + \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$$

22. Sejam A, B e C e D três pontos quaisquer com $A \neq B$. Prove que:

$$X$$
é um ponto do segmento $AB \iff \overrightarrow{CX} = \overrightarrow{aC}A + \overrightarrow{bC}B$
$$\text{com } a \geq 0, \ b \geq 0, \ \text{e} \ a+b=1.$$

- 23. Prove que, o conjunto $\{\vec{v}\}$ é LD, se e somente se a equação $x\vec{v}=\vec{0}$ admite solução não trivial.
- 24. Prove que, se o conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ é LI, então os conjuntos $\{\vec{u} + \vec{v} + \vec{w}, \vec{u} \vec{v}, 3\vec{v}\}$ e $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ também são LI.
- 25. Seja $\{\vec{u}, \vec{v}, \vec{w}\}$ um conjunto LI. Dado um vetor \vec{t} qualquer, sabemos que existem escalares $a, b, c \in \mathbb{R}$ tais que $\vec{t} = a\vec{u} + b\vec{v} + c\vec{w}$. Prove que:

$$\{\overrightarrow{u}+\overrightarrow{t},\overrightarrow{v}+\overrightarrow{t},\overrightarrow{w}+\overrightarrow{t}\} \text{ \'e LD } \iff a+b+c+1=0$$

26. Prove que, se o conjunto $\{\vec{u} + \vec{v}, \vec{u} - \vec{v}\}$ é LI, então o conjunto $\{\vec{u}, \vec{v}\}$ é LI.

Segunda lista de exercícios

"A burguesia tirou da relação familiar o seu véu sentimental e a reduziu a uma pura condição monetária." 2

(Karl Marx, filósofo alemão, 1818 - 1883)

- 27. Prove que, para qualquer base $\mathcal{B}, \vec{0} = (0,0,0)_{\mathcal{B}}$.
- 28. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u}=(1,-1,3)_{\mathcal{B}}, \ \overrightarrow{v}=(2,1,3)_{\mathcal{B}}$ e $\overrightarrow{w}=(-1,-1,4)_{\mathcal{B}}$. Ache as coordenadas de:
 - (a) $\sqrt{2}\vec{u}$,

(e) $5\vec{u} - \vec{v} - \frac{3}{7}\vec{w}$,

- (b) $\vec{u} + \vec{v}$,
- (c) $\vec{u} 2\vec{v}$,

(d) $\vec{u} + 2\vec{v} - 3\vec{w}$,

(f) $\sqrt{5}\vec{u} - \vec{v} + \frac{3}{2}\vec{w}$.

- 29. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u} = (1, -1, 3)_{\mathcal{B}}$, $\overrightarrow{v} = (2, 1, 3)_{\mathcal{B}}$ e $\overrightarrow{w} = (-1, -1, 4)_{\mathcal{B}}$. Verifique se \overrightarrow{u} é combinação linear de \overrightarrow{v} e \overrightarrow{w} .
- 30. Seja \mathcal{B} uma base de \mathbb{R}^3 e $\overrightarrow{u} = (1, -1, 3)_{\mathcal{B}}$, $\overrightarrow{v} = (2, 1, 3)_{\mathcal{B}}$ e $\overrightarrow{w} = (-1, -1, 4)_{\mathcal{B}}$. Escreva o vetor $\overrightarrow{t} = (4, 0, 13)_{\mathcal{B}}$ como combinação linear de \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .
- 31. O vetor $\vec{u}=(1,-1,3)$ pode ser escrito como combinação linear dos vetores $\vec{v}=(-1,1,0)$ e $\vec{w}=\left(2,3,\frac{1}{3}\right)$?

32. Seja $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ uma base de \mathbb{R}^3 e

$$\overrightarrow{u}_1 = \overrightarrow{v}_1 + \overrightarrow{v}_2 + \overrightarrow{v}_3,$$

$$\vec{u}_2 = \vec{v}_1 + \vec{v}_2,$$

$$\vec{u}_3 = \vec{v}_3$$
.

Decida se $C = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ é base de \mathbb{R}^3 .

- 33. Seja $\mathcal{B} = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base de \mathbb{R}^3 e $a, b, c \in \mathbb{R}$. Prove que $\mathcal{C} = \{a\vec{u}, b\vec{v}, c\vec{w}\}$ é base de \mathbb{R}^3 se e somente se a, b e c são não nulos.
- 34. Sejam OABC um tetraedro e M o ponto médio de BC:
 - (a) explique porque $\mathcal{B} = \{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}\$ é base de \mathbb{R}^3 ,

²Original: Die Bourgeoise hat dem Familienverhältnis seinen rührend sentimentalen Schleier abgerissen und es auf ein reines Geldverhältnis zurückgeführt, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- (b) determine as coordenadas de \overrightarrow{AM} , na base \mathcal{B} (dica: use o exercício ??).
- 35. Explique porque um conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ de vetores dois a dois ortogonais tem que ser LI.
- 36. Seja $\mathcal B$ uma base ortonormal. Calcule as normas dos seguintes vetores na base $\mathcal B$:
 - (a) (1,1,1),
 - (b) (1,0,0),
 - (c) (-1,1,1),
 - (d) $(3, 4, \sqrt{11}),$
 - (e) $(-3, -4, \sqrt{11}),$

- (f) $\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$,
- $(g) \ \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$
- (h) $\left(-\frac{3}{4}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right)$.
- 37. Normalize os vetores do Exercício anterior.
- 38. Explique porque o produto interno não pode ser associativo.
- 39. Sejam $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ e $k \in \mathbb{R}$. Prove as seguintes propriedades utilizando as propriedades básicas do produto escalar:
 - $(P4) \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w},$
 - $(P5) \ \vec{u} \cdot \vec{0} = \vec{0} \cdot \vec{u} = 0,$
 - (P6) $\vec{u} \cdot k \vec{v} = k(\vec{u} \cdot \vec{v}),$
 - (P7) $(\vec{u} \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} \vec{v} \cdot \vec{w}$,
 - (P8) $\vec{u} \cdot (\vec{v} \vec{w}) = \vec{u} \cdot \vec{v} \vec{u} \cdot \vec{w}$.
- 40. Sejam \vec{u} , $\vec{v} \in \mathbb{R}^3$ não nulos. Prove:
 - (a) $\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$,
 - (b) $\vec{u} \parallel \vec{v} \iff |\vec{u} \cdot \vec{v}| = ||\vec{u}|| \cdot ||\vec{v}||$.
- 41. Ache a medida (em radianos) dos ângulos entre \overrightarrow{u} e \overrightarrow{v} nos casos:
 - (a) $\vec{u} = (1, 0, 1), \ \vec{v} = (-2, 10, 2),$
 - (b) $\vec{u} = (3, 3, 0), \vec{v} = (2, 1, -1),$
 - (c) $\vec{u} = (-1, 1, 1), \vec{v} = (1, 1, 1),$
 - (d) $\vec{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right), \ \vec{v} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \sqrt{3}\right),$
 - (e) $\vec{u} = (300, 300, 0), \ \vec{v} = (-2000, -1000, 2000),$
- 42. Ache x de modo que \overrightarrow{u} e \overrightarrow{v} sejam ortogonais nos casos:
 - (a) $\vec{u} = (x, 0, 3), \vec{v} = (1, x, 3),$
 - (b) $\vec{u} = (x, x, 4), \vec{v} = (4, x, 1),$
 - (c) $\vec{u} = (x+1, 1, 2), \ \vec{v} = (x-1, -1, -2),$
 - (d) $\vec{u} = (x, -1, 4), \vec{v} = (x, -3, 1).$
- 43. Calcule $||2\vec{u}+4\vec{v}||^2$ sabendo que $||\vec{u}||=1$, $||\vec{v}||=2$ e a medida do ângulo entre \vec{u} e \vec{v} é $\frac{2}{3}\pi$.

5

- 44. Se A, B e C são os vértices de um triângulo equilátero de lado unitário, calcule $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}$.
- $45. \text{ Se } \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}, ||\overrightarrow{u}|| = \frac{3}{2}, ||\overrightarrow{v}|| = \frac{1}{2} \text{ e } ||\overrightarrow{w}|| = 2, \text{ calcule } \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}.$
- 46. Prove que se $\vec{u} \perp (\vec{v} \vec{w})$ e $\vec{v} \perp (\vec{w} \vec{u})$, então $\vec{w} \perp (\vec{u} \vec{v})$.
- 47. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule $\overrightarrow{u} \times \overrightarrow{v}$ e $\overrightarrow{v} \times \overrightarrow{u}$ nos casos seguintes:
 - (a) $\vec{u} = (6, -2, -4), \vec{v} = (-1, -2, 1),$
 - (b) $\vec{u} = (7, 0, -5), \vec{v} = (1, 2, -1),$
 - (c) $\vec{u} = (1, -3, 1), \vec{v} = (-4, 2, 4),$
 - (d) $\vec{u} = (2, 1, 2), \vec{v} = (4, 2, 4).$
- 48. A medida em radianos do ângulo entre \vec{u} e \vec{v} é $\frac{\pi}{6}$. Sendo $||\vec{u}|| = 1$ e $||\vec{v}|| = 7$, calcule $||\vec{u} \times \vec{v}||$ e $||\frac{1}{3}\vec{u} \times \frac{3}{4}\vec{v}||$.
- 49. Seja ABCD um tetraedro regular de lado unitário. Calcule $||\overrightarrow{AB} \times \overrightarrow{CD}||$.
- 50. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule a área do paralelogramo \overrightarrow{ABCD} sendo $\overrightarrow{AB} = (1, 1, -1)$ e $\overrightarrow{AD} = (2, 1, 4)$.
- 51. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule a área do triângulo \overrightarrow{ABC} sendo $\overrightarrow{AB} = (0, 1, 3)$ e $\overrightarrow{AC} = (-1, 1, 0)$.
- 52. Seja $\mathcal{B}=\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ uma base ortonormal positiva. Ache um vetor unitário ortogonal a $\overrightarrow{u}=(1,-3,1)$ e $\overrightarrow{v}=(-3,3,3)$.
- 53. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Ache \vec{x} tal que $\vec{x} \times (\vec{i} + \vec{k}) = 2(\vec{i} + \vec{j} \vec{k})$ e $||\vec{x}|| = \sqrt{6}$.
- 54. Prove:
 - (a) $||\vec{u} \times \vec{v}||^2 + (\vec{u} \cdot \vec{v})^2 = ||\vec{u}||^2 \cdot ||\vec{v}||^2$,
 - (b) $||\overrightarrow{u} \times \overrightarrow{v}||^2 \le ||\overrightarrow{u}||^2 \cdot ||\overrightarrow{v}||^2$,
 - (c) $||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 \cdot ||\vec{v}||^2 \iff \vec{u} \perp \vec{v},$
 - (d) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2(\vec{v} \times \vec{u}),$
 - (e) $(\vec{u} \vec{v}) \times (\vec{v} \vec{w}) = \vec{u} \times \vec{v} + \vec{v} \times \vec{w} + \vec{w} \times \vec{u}$,
 - $(\mathbf{f}) \ (\overrightarrow{u} \overrightarrow{t}) \times (\overrightarrow{v} \overrightarrow{w}) + (\overrightarrow{v} \overrightarrow{t}) \times (\overrightarrow{w} \overrightarrow{u}) + (\overrightarrow{w} \overrightarrow{t}) \times (\overrightarrow{u} \overrightarrow{v}) = 2(\overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{v} \times \overrightarrow{w} + \overrightarrow{w} \times \overrightarrow{u}).$
- 55. Prove que se $\vec{u} \times \vec{v} = \vec{w} \times \vec{t}$ e $\vec{u} \times \vec{w} = \vec{v} \times \vec{t}$ então $\vec{u} \vec{t}$ e $\vec{v} \vec{w}$ são vetores linearmente dependentes.

- 56. Prove que a altura do triângulo ABC relativa à base AB mede $h = \frac{||\overrightarrow{AB} \times \overrightarrow{AC}||}{||\overrightarrow{AB}||}$.
- 57. Expressa a distância do ponto C à reta r que passa por dois pontos A e B em termos dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- 58. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ sendo $\overrightarrow{u} = (-1, -3, 1)$, $\overrightarrow{v} = (1, 0, 1)$ e $\overrightarrow{w} = (2, 1, 1)$.
- 59. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Calcule o volume do paralelepípedo definido pelo vetores $\vec{u} = (2, -2, 0), \vec{v} = (0, 1, 0)$ e $\vec{w} = (-2, -1, -1)$.
- 60. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Calcule o volume do tetraedro \overrightarrow{ABCD} dados $\overrightarrow{AB} = (1, 1, 0), \overrightarrow{AC} = (0, 1, 1)$ e $\overrightarrow{AD} = (-4, 0, 0)$.
- 61. Seja $\mathcal{B} = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ uma base ortonormal positiva. Verifique:
 - (a) $[\vec{u}_1 + \vec{u}_2, \vec{v}, \vec{w}] = [\vec{u}_1, \vec{v}, \vec{w}] + [\vec{u}_2, \vec{v}, \vec{w}],$
 - (b) $[a\vec{u}, \vec{v}, \vec{w}] = a[\vec{u}, \vec{v}, \vec{w}],$
 - (c) $[\overrightarrow{u} + a\overrightarrow{v} + b\overrightarrow{w}, \overrightarrow{v} + c\overrightarrow{w}, \overrightarrow{w}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}].$
- 62. Seja $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ uma base ortonormal positiva. Calcule $[\vec{u}, \vec{v}, \vec{w}]$ sabendo $||\vec{u}|| = 1$, $||\vec{v}|| = 2$, $||\vec{w}|| = 3$ e que $\{\vec{u}, \vec{v}, \vec{w}\}$ é base negativa com $\vec{u}, \vec{v}, \vec{w}$ dois a dois ortogonais.
- 63. A medida em radianos do ângulo entre \overrightarrow{u} e \overrightarrow{v} é $\frac{\pi}{6}$ e \overrightarrow{w} é ortogonal a \overrightarrow{u} e \overrightarrow{v} . Sendo $||\overrightarrow{u}||=1$, $||\overrightarrow{v}||=1$. $||\overrightarrow{w}||=4$ e $\{\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\}$ base positiva, ache $[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]$.
- 64. Prove que:
 - (a) $|[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]| \le ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cdot ||\overrightarrow{w}||$,
 - (b) $|[\vec{u}, \vec{v}, \vec{w}]| \le ||\vec{u}|| \cdot ||\vec{v}|| \cdot ||\vec{w}||$ se e somente se algum dos vetores for nulo ou sendo todos não nulos, forem dois a dois ortogonais.
- 65. Prove que se $\vec{u} \times \vec{v} + \vec{v} \times \vec{w} + \vec{w} \times \vec{u} = \vec{0}$, então $\{\vec{u}, \vec{v}, \vec{w}\}$ é conjunto linearmente dependente.
- 66. Prove que a altura do tetraedro ABCD relativa à base ABC é:

$$h = \frac{|[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]|}{||\overrightarrow{AB} \times \overrightarrow{AC}||}.$$

Observe que o volume de um tetraedro é um terço da a área do triângulo base vezes a altura.

67. Sejam \overrightarrow{ABCD} um tetraedro, $P = A + 2\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$, $Q = B - \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{AD}$ e $R = C + \overrightarrow{AB} + \overrightarrow{AC}$. Mostre que PQRD forma tetraedro e determine a razão entre os volumes de PQRD e ABCD.

7