В каком виде искать <u>частное решение</u> линейного неоднородного дифференциального уравнения с постоянными коэффициентами y'' + py' + qy = f(x)?

После долгих раздумий я принял решение создать отдельную справочную таблицу для подбора частного решения неоднородного ДУ. В методический материал сведены практически все типовые ситуации, которые могут встретиться на практике, кроме того, приведены случаи подбора частного решения для уравнений повышенной сложности.

Как всегда объяснения ведутся на конкретных примерах с минимумом формул и параметров. Обязательно прочитайте выводы на последней странице!!!

I. Характеристическое уравнение имеет два различных действительных корня, отличных от нуля.

Пример: Рассмотрим неоднородное уравнение y'' + y' - 2y = f(x) Для соответствующего однородного уравнения y'' + y' - 2y = 0 составим характеристическое уравнение $\lambda^2 + \lambda - 2 = 0$ и найдём его корни: $\lambda_1 = -2$, $\lambda_2 = 1$

Итак, получены различные действительные корни, среди которых нет нуля.

Правая часть $f(x)$	В каком виде нужно искать частное решение \tilde{y} неоднородного уравнения?
1. $f(x) = 4$ (или другая ненулевая константа)	$\widetilde{y} = A$
2. $f(x) = 3x - 1$	$\widetilde{y} = Ax + B$
$3. \ f(x) = x^2 - x$	$\widetilde{y} = Ax^2 + Bx + C$
$4. \ f(x) = 4x^3 + 3x^2 + 1$	$\widetilde{y} = Ax^3 + Bx^2 + Cx + D$

Примечание: обратите внимание, что когда в правой части f(x) находится неполный многочлен, то частное решение подбирается <u>без пропусков степеней</u>, пример: f(x) = -5x Это многочлен первой степени, и в нём отсутствует константа. Однако при подборе частного

решения константу пропускать нельзя, то есть частное решение необходимо искать в виде $\tilde{y} = Ax + B$

$5. \ f(x) = 2e^{3x}$	Коэффициент в показателе экспоненты: e^{3x} не совпадает с корнем характеристического уравнения $\lambda_1 = -2$ или $\lambda_2 = 1$ Подбор выполняем очевидным образом: $\widetilde{y} = Ae^{3x}$
6. $f(x) = (2x-3)e^{-x}$	Коэффициент в показателе экспоненты: $e^{\frac{1}{2} \cdot x}$ не совпадает с корнем характеристического уравнения $\lambda_1 = -2$ или $\lambda_2 = 1$ Подбор выполняем очевидным образом: $\widetilde{y} = (Ax + B)e^{-x}$
7. $f(x) = \frac{x}{2}e^{-2x}$	Коэффициент в показателе экспоненты: совпал с корнем характеристического уравнения $\lambda_1 = -2$. В подобной ситуации «штатный» подбор $\widetilde{y} = (Ax + B)e^{-2x}$ нужно домножить на «икс»: $\widetilde{y} = x(Ax + B)e^{-2x}$, то есть, искать частное решение в виде: $\widetilde{y} = (Ax^2 + Bx)e^{-2x}$

$8. \ f(x) = e^x$	Коэффициент в показателе экспоненты: $e^{1 x}$ совпал с корнем характеристического уравнения $\lambda_2 = 1$. Аналогично: «штатный» подбор $\widetilde{y} = Ae^x$ домножаем на «икс»: $\widetilde{y} = x \cdot Ae^x$, то есть ищем частное решение в виде: $\widetilde{y} = Axe^x$
	y = Axe

Примечание: обратите внимание, что опять же в случае неполных многочленов <u>степени не</u> <u>теряются</u>, например, если $f(x) = 7x^2e^{5x}$ (в многочлене отсутствует «икс» в первой степени и константа), то частное решение следует искать в виде $\tilde{y} = (Ax^2 + Bx + C)e^{5x}$.

Если $f(x) = (1 - x^2)e^{-2x}$ (в многочлене отсутствует «икс» в первой степени), то частное решение ищем в виде $\tilde{y} = x(Ax^2 + Bx + C)e^{-2x} = (Ax^3 + Bx^2 + Cx)e^{-2x}$

$9. \ f(x) = \sin x$	$\widetilde{y} = A\cos x + B\sin x$
10. $f(x) = -3\cos 2x$	$\widetilde{y} = A\cos 2x + B\sin 2x$
11. $f(x) = 2\cos 3x - 4\sin 3x$	$\widetilde{y} = A\cos 3x + B\sin 3x$

Примечание: в подборе частного решения всегда должен присутствовать и синус и косинус (даже если в правую часть f(x) входит только синус или только косинус).

Редко, но встречаются следующие похожие случаи:

$12. \ f(x) = -x\sin 5x$	$\widetilde{y} = (Ax + B)\cos 5x + (Cx + D)\sin 5x$
13. $f(x) = (x-1)\cos\frac{x}{2}$	$\widetilde{y} = (Ax + B)\cos\frac{x}{2} + (Cx + D)\sin\frac{x}{2}$
$14. \ f(x) = x\cos x + 2\sin x$	$\widetilde{y} = (Ax + B)\cos x + (Cx + D)\sin x$

И заключительные примеры, здесь тоже всё прозрачно:

$15. \ f(x) = 2e^x \sin 2x$	$\widetilde{y} = e^x (A\cos 2x + B\sin 2x)$
16. $f(x) = \frac{1}{3}e^{-3x}\sin x$	$\widetilde{y} = e^{-3x} (A\cos x + B\sin x)$
17. $f(x) = e^{-2x} (5\sin 3x - \cos 3x)$	$\widetilde{y} = e^{-2x} (A\cos 3x + B\sin 3x)$

Примечание: в примерах 15-17 хоть и есть экспонента, но корни характеристического уравнения $\lambda_1 = -2$, $\lambda_2 = 1$ нас уже совершенно не волнуют – подбор частного решения идёт штатным образом без всяких домножений на «икс».

II. Характеристическое уравнение имеет два различных действительных корня, один из которых равен нулю.

Такой диффур имеет вид y'' + py' = f(x).

Пример: Рассмотрим подопытное неоднородное уравнение y'' + 3y' = f(x).

Для соответствующего однородного уравнения y'' + 3y' = 0 составим характеристическое уравнение $\lambda^2 + 3\lambda = 0$ и найдем его корни: $\lambda_1 = -3$, $\lambda_2 = 0$

Получены различные действительные корни, один из которых равен нулю.

Правая часть $f(x)$	В каком виде нужно искать частное решение \widetilde{y}
	неоднородного уравнения?

Правило: Если в правой части f(x) находится ненулевая константа или многочлен, и один из корней характеристического уравнения равен нулю, то «очевидный» подбор частного решения необходимо домножить на «икс»:

18. $f(x) = -10$	$\widetilde{y} = x \cdot A$, то есть частное решение ищем в виде $\widetilde{y} = Ax$
19. $f(x) = -2x$	$\widetilde{y} = x \cdot (Ax + B)$, т.е. частное решение ищем в виде $\widetilde{y} = Ax^2 + Bx$
20. $f(x) = x^2 + 3$	$\widetilde{y} = x \cdot (Ax^2 + Bx + C)$ или $\widetilde{y} = (Ax^3 + Bx^2 + Cx)$
21. $f(x) = x^3$	$\widetilde{y} = x \cdot (Ax^3 + Bx^2 + Cx + D)$ или $\widetilde{y} = (Ax^4 + Bx^3 + Cx^2 + Dx)$

Если **в правую часть входит экспонента или экспонента, умноженная на многочлен**, то подбор частного решения следует проводить по тем же принципам, по которым он проведён в примерах \mathbb{N}_2 5-8.

На всякий случай еще пара примеров:

22. $f(x) = (x^2 + 2x)e^{3x}$	Коэффициент в показателе экспоненты: e^{3x} не совпадает с корнем характеристического уравнения $\lambda_1 = -3$ $\widetilde{y} = (Ax^2 + Bx + C)e^{3x}$
23. $f(x) = (1-x)e^{-3x}$	Коэффициент в показателе экспоненты: e^{-3x} совпал с корнем характеристического уравнения $\lambda_1 = -3$. Поэтому «обычный» подбор $\widetilde{y} = (Ax + B)e^{-3x}$ нужно домножить на «икс»: $\widetilde{y} = x(Ax + B)e^{-3x}$, то есть, искать частное решение в виде: $\widetilde{y} = (Ax^2 + Bx)e^{-3x}$

Если правая часть f(x) имеет вид из примеров № 9-17, то подбор осуществляется точно так же, как уже разобрано – в штатном режиме см. Раздел I.

Дополнительный пример:

Рассмотрим дифференциальное уравнение третьего порядка: y''' - y'' = f(x). Для соответствующего однородного уравнения y''' - y'' = 0 составим характеристическое уравнение $\lambda^3 - \lambda^2 = 0$ и найдем его корни: $\lambda_{1,2} = 0$, $\lambda_3 = 1$.

Если получено два кратных нулевых корня и в правой части f(x) находится многочлен (аналогично примерам № 18-21), то «штатный» подбор нужно домножать уже на x^2 . Например, если f(x) = 3x, то частное решение следует искать в виде:

$$\widetilde{y} = x^2 \cdot (Ax + B) = (Ax^3 + Bx^2)$$

III. Характеристическое уравнение имеет два кратных действительных корня

Если эти корни равны нулю $\lambda_{1,2}=0$, то речь идёт об уравнении y''=f(x), которое проще решить двукратным интегрированием правой части:

http://mathprofi.ru/differencialnye_uravnenija_dopuskajushie_ponizhenie_poryadka.html

Если же корни ненулевые, то выполняем подбор.

Пример: Рассмотрим неоднородное уравнение y''-4y'+4y=f(x). Для соответствующего однородного уравнения y''-4y'+4y=0 составим характеристическое уравнение $\lambda^2-4\lambda+4=0$ и найдем его корни: $\lambda_{1,2}=2$

Получены кратные (совпавшие) действительные корни

Правая часть $f(x)$	В каком виде нужно искать частное решение \tilde{y}
праван часть ј (л)	неоднородного уравнения?
	Если $\lambda_{1,2} \neq 0$, то подбор частного решения следует осуществлять
f(x) — ненулевая константа	«штатным» способом точно так же, как в примерах № 1-4;
или многочлен	если $\lambda_{1,2} = 0$, то «очевидный» подбор следует домножить на x^2
	либо дважды проинтегрировать правую часть.
24. $f(x) = 5e^x$	Коэффициент в показателе экспоненты: $e^{\prod x}$ не совпадает с кратным корнем характеристического уравнения $\lambda_{1,2} = 2$
Z+. $f(x)=Se$	-,-
	$\widetilde{y} = Ae^x$
	Коэффициент в показателе экспоненты: e^{2x} совпал с кратным корнем характеристического уравнения $\lambda_{1,2} = 2$. Поэтому
25. $f(x) = -2e^{2x}$	очевидный подбор $\tilde{y} = Ae^{2x}$ следует домножить на x^2 :
	$\widetilde{y} = x^2 \cdot Ae^{2x}$ и искать частное решение в виде:
	$\widetilde{y} = Ax^2 e^{2x}$
26. $f(x) = (5x-1)e^{2x}$	Коэффициент в показателе экспоненты: e^{2x} совпал с кратным корнем характеристического уравнения $\lambda_{1,2} = 2$. Поэтому
	«штатный» подбор $\tilde{y} = (Ax + B)e^{2x}$ следует домножить на x^2 :
	$\widetilde{y} = x^2 \cdot (Ax + B)e^{2x}$, то есть искать частное решение в виде:
	$\widetilde{y} = (Ax^3 + Bx^2)e^{2x}$
· · · · · · · · · · · · · · · · · · ·	

Если правая часть f(x) имеет вид из примеров № 9-17, то подбор осуществляется обычным образом – см. Раздел I.

IV. Характеристическое уравнение имеет сопряженные комплексные корни: $\lambda_{1,2} = \alpha \pm \beta i$, причём $\alpha \neq 0, \ \beta \neq 0$

Пример: Рассмотрим неоднородное уравнение y'' + 6y' + 10y = f(x).

Для соответствующего однородного уравнения y'' + 6y' + 10y = 0 составим характеристическое уравнение $\lambda^2 + 6\lambda + 10 = 0$ и найдем его корни: $\lambda_{1,2} = -3 \pm i$

уравнение $\lambda^2 + 6\lambda + 10 = 0$ и найдем его корни: $\lambda_{1,2} = -3 \pm i$			
Получены сопряженные комплексные корни с ненулевой действительной частью α .			
Hanag wager f(n)	В каком виде нужно искать частное решение \tilde{y}		
Правая часть $f(x)$	неоднородного уравнения?		
Подбор частного решения осущ	Подбор частного решения осуществляется очевидным образом (см. примеры № <u>1-6</u> , <u>9-14</u>)		
за исключением следующих вид			
	Проще всего объяснить так, берём правую часть и составляем		
	сопряженные комплексные числа:		
$27. \ f(x) = 2e^{-3x} \sin 2x$	$2e^{-3x}\sin(2x)$ $-3\pm 2i$		
	Полученные сопряженные комплексные числа $-3 \pm 2i$ <u>не</u>		
	совпадают с корнями характеристического уравнения		
	$\lambda_{1,2} = -3 \pm i$, поэтому частное решение следует искать в обычном		
	виде: $\tilde{y} = e^{-3x} (A\cos 2x + B\sin 2x)$		
	Составляем сопряженные комплексные числа:		
	$2e^{\Im x}\cos(1\cdot x)$ $-3\pm 1\cdot i$		
$28. \ f(x) = 2e^{-3x} \cos x$	Составленные сопряженные комплексные числа $-3\pm i$ совпали		
	с корнями характеристического уравнения $\lambda_{1,2} = -3 \pm i$, поэтому		
	«обычный» подбор частного решения следует домножить на		
	«икс»: $\tilde{y} = x \cdot e^{-3x} (A\cos x + B\sin x)$ или:		
	$\widetilde{y} = e^{-3x} (Ax\cos x + Bx\sin x)$		
	$e^{0x}(5\cos(0\cdot x) - 3\sin(0\cdot x))$ $1 \pm 1 \cdot i$		
29. $f(x) = e^x (5\cos x - 3\sin x)$	Составленные сопряженные комплексные числа $1 \pm i$ не		
	совпадают с корнями характеристического уравнения		
	$\lambda_{1,2} = -3 \pm i$, поэтому частное решение ищем в виде:		
	$\widetilde{y} = e^x (A\cos x + B\sin x)$		

$$e^{-3x}(-\cos(1)\cdot x) + 2\sin(1)\cdot x)$$
30. $f(x) = e^{-3x}(-\cos x + 2\sin x)$ Составленные сопряженные комплексные числа $-3\pm i$ совпали с корнями $\lambda_{1,2} = -3\pm i$, поэтому: $\tilde{y} = x \cdot e^{-3x}(A\cos x + B\sin x) = e^{-3x}(Ax\cos x + Bx\sin x)$

V. Характеристическое уравнение имеет сопряженные, чисто мнимые комплексные корни: $\lambda_{1,2} = \pm \beta i$

В таком диффуре отсутствует первая производная: y'' + qy = f(x)

Пример: Рассмотрим неоднородное уравнение y'' + 4y = f(x). Для соответствующего однородного уравнения y'' + 4y = 0 составим характеристическое уравнение $\lambda^2 + 4 = 0$ и найдем его корни: $\lambda_{1,2} = \pm 2i$

Получены чисто мнимые сопряженные комплексные корни:

Правая часть $f(x)$	В каком виде нужно искать частное решение \tilde{y}
Полбор частного решения осущ	неоднородного уравнения? ествляется очевидным «штатным» образом, за исключением
следующих видов правой части:	=
	Коэффициент $\sin(\mathbf{l} \cdot x)$ не совпадает с коэффициентом при
$31. \ f(x) = \sin x$	характеристических сопряженных комплексных корнях $\pm 2i$,
	поэтому частное решение ищем в обычном виде: $\tilde{y} = A\cos x + B\sin x$
	Коэффициент $-3\sin 2x$ совпал с коэффициентом при
$32. \ f(x) = -3\sin 2x$	характеристических сопряженных комплексных корнях $\pm 2i$, поэтому при подборе «штатное» частное решение необходимо домножить на «икс»: $\tilde{y} = x \cdot (A\cos 2x + B\sin 2x)$, то есть искать
	частное решение в виде: $\widetilde{y} = Ax \cos 2x + Bx \sin 2x$
33. $f(x) = 2\cos 3x - 2\sin 3x$	Коэффициенты $2\cos 3x - 2\sin 3x$ не совпадают с коэффициентом при характеристических сопряженных комплексных корнях $\pm 2i$, поэтому частное решение ищем в
	комплексных корнях \rightarrow , поэтому частное решение ищем в обычном виде: $\widetilde{y} = A\cos 3x + B\sin 3x$
	Коэффициенты $2x\cos 2x - \sin 2x$ совпали с коэффициентом при характеристических сопряженных
$34. \ f(x) = 2x\cos 2x - \sin 2x$	комплексных корнях $\pm 2i$, поэтому при подборе очевидное частное решение опять же домножаем на «икс»: $\tilde{y} = x \cdot ((Ax + B)\cos 2x + (Cx + D)\sin 2x)$, или:
	$\widetilde{y} = (Ax^2 + Bx)\cos 2x + (Cx^2 + Dx)\sin 2x$

$35. \ f(x) = -3x\cos 4x$	Коэффициент $-3x\cos 4x$ не совпадает с коэффициентом при характеристических сопряженных комплексных корнях
	$\pm 2i$, поэтому частное решение ищем в «штатном» виде: $\tilde{y} = (Ax + B)\cos 4x + (Cx + D)\sin 4x$

Краткие итоги по пяти разделам:

Тип корней характеристического уравнения	Когда следует проявить ПОВЫШЕННОЕ ВНИМАНИЕ при подборе частного решения
I. Характеристическое уравнение имеет два различных действительных корня, отличных от нуля	Если в правой части $f(x)$ находится экспонента или экспонента, умноженная на многочлен (примеры 5-8)
II. Характеристическое уравнение имеет два различных действительных корня, один из которых равен нулю	Если в правой части $f(x)$ находится константа, многочлен, экспонента или экспонента, умноженная на многочлен (примеры 18-23)
III. Характеристическое уравнение имеет два кратных действительных корня	Если в правой части $f(x)$ находится экспонента или экспонента, умноженная на многочлен (примеры 24-26)
IV. Характеристическое уравнение имеет сопряженные комплексные корни: $\lambda_{1,2} = \alpha \pm \beta i$, причём $\alpha \neq 0$, $\beta \neq 0$	Если в уравнении есть правые части, разобранные в примерах 27-30: $f(x) = 2e^{-3x} \sin 2x$, $f(x) = 2e^{-3x} \cos x$, $f(x) = e^x (5\cos x - 3\sin x)$ и т.п.
V. Характеристическое уравнение имеет сопряженные, чисто мнимые комплексные корни: $\lambda_{1,2} = \pm \beta i$	Когда в правой части находится <u>синус</u> , <u>косинус</u> или <u>синус и косинус</u> одновременно; либо <u>данные функции, умноженные на многочлены</u> (многочлен) (<u>примеры 31-35</u>)