Recitation 1

DS-GA 1013 Mathematical Tools for Data Science

1. If a matrix $U \in \mathbf{R}^{n \times n}$ is orthogonal, must its transpose also be orthogonal?

Solution: Yes. As U is orthogonal, we have $U^TU = I$. Thus U, U^T are inverses of each other, so $UU^T = I$. This shows $(U^T)^TU^T = I$ proving U^T is orthogonal.

2. Suppose $A \in \mathbf{R}^{m \times n}$ with $trace(AA^T) = 0$. What can be said about A?

Solution: We must have A = 0.

Note that,

$$trace(AA^T) = \langle A^T, A^T \rangle = ||A^T||_F^2 = 0,$$

implying $A^T = 0$.

3. Prove or disprove: If $A, B \in \mathbf{R}^{n \times n}$ with trace(A) = 0 = trace(B) then trace(AB) = 0.

Solution: False. Let

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and note that trace(A) = 0 and $trace(A^2) = trace(I) = 2$.

4. Prove the converse to the Pythagorean theorem holds in a real inner product space: If $\|\vec{x}\|^2 + \|\vec{y}\|^2 = \|\vec{x} + \vec{y}\|^2$ then $\langle \vec{x}, \vec{y} \rangle = 0$.

Solution: Note that

$$\|\vec{x} + \vec{y}\|^2 = \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle = \langle \vec{x}, \vec{x} + \vec{y} \rangle + \langle \vec{y}, \vec{x} + \vec{y} \rangle$$
 (1)

$$= \langle \vec{x}, \vec{x} \rangle + \langle \vec{x}, \vec{y} \rangle + \langle \vec{y}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle \tag{2}$$

$$= \|\vec{x}\|^2 + 2\langle \vec{x}, \vec{y} \rangle + \|\vec{y}\|^2. \tag{3}$$

By assumption, the last line is equal to $\|\vec{x}\|^2 + \|\vec{y}\|^2$ proving $\langle \vec{x}, \vec{y} \rangle = 0$.

5. Prove Bessel's inequality: Let $\vec{x}, \vec{b}_1, \dots, \vec{b}_n \in V$ where V is a (real or complex) inner product space. Then

$$\sum_{i=1}^{n} |\langle \vec{x}, \vec{b}_i \rangle|^2 \le ||\vec{x}||^2$$

1

if \vec{b}_1, \ldots, n are orthonormal.

Solution: Let $S = \operatorname{span}(\vec{b}_1, \dots, \vec{b}_n)$. Then

$$\mathcal{P}_{\mathcal{S}}\vec{x} = \sum_{i=1}^{n} \langle \vec{x},_i \rangle_i.$$

By the Pythagorean theorem, we have

$$\|\mathcal{P}_{\mathcal{S}}\vec{x}\|^2 + \|\mathcal{P}_{\mathcal{S}^{\perp}}\vec{x}\|^2 = \|\vec{x}\|^2.$$

Thus

$$\|\vec{x}\|^2 \ge \|\mathcal{P}_{\mathcal{S}}\vec{x}\|^2 = \sum_{i=1}^n |\langle \vec{x},_i \rangle|^2.$$

6. For any $\vec{x} \in \mathbb{R}^n$ show that

$$\|\vec{x}\|_{\infty} \le \|\vec{x}\|_{2} \le \|\vec{x}\|_{1}.$$

Solution: For the first inequality, let m be such that $|\vec{x}[m]| = ||\vec{x}||_{\infty}$. Then

$$\|\vec{x}\|_2 = \sqrt{\sum_{i=1}^n \vec{x}[i]^2} \ge \sqrt{|\vec{x}[m]|^2} = |\vec{x}[m]| = \|\vec{x}\|_{\infty}.$$

For the second inequality, note that

$$\|\vec{x}\|_1^2 = \left(\sum_{i=1}^n |\vec{x}[i]|\right)^2 = \sum_{i=1}^n |\vec{x}[i]|^2 + \sum_{i \neq j} |\vec{x}[i]\vec{x}[j]| \ge \sum_{i=1}^n |\vec{x}[i]|^2 = \|\vec{x}\|_2^2.$$

For an alternative proof of the second inequality, let $|\vec{x}| \in \mathbb{R}^n$ be the vector with $|\vec{x}|[i] = |\vec{x}[i]|$. Then

$$\|\vec{x}\|_{2}^{2} = |\vec{x}|^{T} |\vec{x}| = \operatorname{trace}(|\vec{x}|^{T} |\vec{x}|) = \operatorname{trace}(|\vec{x}| |\vec{x}|^{T}) \le \vec{1}^{T} |\vec{x}| |\vec{x}|^{T} \vec{1} = \|\vec{x}\|_{1}^{2},$$

where $\vec{1} \in \mathbb{R}^n$ is the vector with 1 in every coordinate.

7. If $X \sim \mathcal{N}(0,1)$ then we say that $X^2 \sim \chi_1^2$ (called a chi-squared distribution). Give the pdf, mean, and variance of the χ_1^2 distribution.

Solution: Let $Y = X^2$. To compute the pdf we use the cdf $F_Y(y)$ of Y for $y \ge 0$:

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(X^2 \le y)$$

$$= \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \mathbb{P}(-\sqrt{y} < X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y}).$$

The pdf of Y is given by

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{f_X(\sqrt{y})}{2\sqrt{y}} - \frac{f_X(-\sqrt{y})}{-2\sqrt{y}} = \frac{f_X(\sqrt{y})}{\sqrt{y}} = \frac{e^{-y/2}}{\sqrt{2\pi y}},$$

for y > 0 and 0 otherwise.

- 8. Let $\vec{\mathbf{x}}$ denote the random vector in \mathbb{R}^n where each coordinate is i.i.d., taking the values -1, 0, +1 with equal probability (1/3 each).
 - 1. Compute $E[\|\vec{\mathbf{x}}\|_2^2]$.
 - 2. Compute $E[\|\vec{\mathbf{x}}\|_{\infty}]$.
 - 3. Compute the covariance matrix of $\vec{\mathbf{x}}$.

Solution:

- 1. $E[\|\vec{\mathbf{x}}\|_2^2] = \sum_{k=1}^n E[\vec{\mathbf{x}}[i]^2] = 2n/3.$
- 2. $E[\|\vec{\mathbf{x}}\|_{\infty}] = 1 1/3^n$.
- 3. Let $\Sigma = \text{Cov}(\vec{\mathbf{x}})$. Then $\Sigma[i, i] = 2/3$ and $\Sigma[i, j] = 0$ for $i \neq j$ by independence.
- 9. Below let \mathbf{x} be a random variable with finite mean $\mu = E[\mathbf{x}]$ and finite variance $\sigma^2 = \text{Var}(\mathbf{x})$. Define $\bar{\mathbf{x}}_n$ to be the sample mean of $\mathbf{x}_1, \dots, \mathbf{x}_n$:

$$\bar{\mathbf{x}}_n := \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i,$$

where $\mathbf{x}_1, \dots, \mathbf{x}_n$ are i.i.d. draws from the same distribution as \mathbf{x} .

- 1. Order the following quantities from smallest to largest: $E[\mu^2]$, $E[\bar{\mathbf{x}}_n^2]$, $E[\bar{\mathbf{x}}_n^2]$
- 2. (*) Order the following quantities from smallest to largest: $E[e^{\mu}]$, $E[e^{\mathbf{x}}]$, $E[e^{\bar{\mathbf{x}}}]$.
- 3. Prove that the sample variance $\hat{\sigma}_n^2$ defined by

$$\hat{\sigma}_n^2 := \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}_n)^2$$

is an unbiased estimator of the population variance σ^2 .

Solution:

1. We prove

$$E[\mu^2] \le E[\bar{\mathbf{x}}_n^2] \le E[\mathbf{x}^2].$$

For a random variable \mathbf{y} we have $E[\mathbf{y}^2] = E[\mathbf{y}]^2 + \text{Var}(\mathbf{y})$. Thus we can order them by their variance. Note that

$$Var(\mu) = 0$$
, $Var(\mathbf{x}) = \sigma^2$, and $Var(\bar{\mathbf{x}}_n) = \sigma^2/n$.

2. We prove

$$e^{\mu} \le E[e^{\bar{\mathbf{x}}_n}] \le E[e^{\mathbf{x}}].$$

Recall Jensen's inequality which states that if $f: \mathbb{R} \to \mathbb{R}$ is convex then

$$E[f(\mathbf{x})] \ge f(E[\mathbf{x}]).$$

Letting $f(t) = e^t$, which is convex, we obtain

$$E[e^{\bar{\mathbf{x}}_n}] = E[f(\bar{\mathbf{x}}_n)] \ge f(E[\bar{\mathbf{x}}_n]) = e^{\mu}.$$

For the other inequality, we use the same f and note

$$\begin{split} E[e^{\bar{\mathbf{x}}_n}] &= E[f(\bar{\mathbf{x}}_n)] \\ &= E\left[f\left(\frac{1}{n}\sum_{i=1}^n\mathbf{x}_i\right)\right] \\ &\leq E\left[\frac{1}{n}\sum_{i=1}^nf(\mathbf{x}_i)\right] \qquad \text{(Jensen on empirical distribution)} \\ &= \frac{1}{n}\sum_{i=1}^nE[f(\mathbf{x}_i)] \\ &= E[f(\mathbf{x})] \qquad \text{(Identical marginals)} \\ &= E[e^{\mathbf{x}}]. \end{split}$$

Our above proofs hold for any f that is convex.

3. Note that

$$E\left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}_{n})^{2}\right] = E\left[\sum_{i=1}^{n} \mathbf{x}_{i}^{2} + n\bar{\mathbf{x}}_{n}^{2} - 2\bar{\mathbf{x}}_{n}\sum_{i=1}^{n} \mathbf{x}_{i}\right]$$

$$= nE[\mathbf{x}^{2}] - nE[\bar{\mathbf{x}}_{n}^{2}]$$

$$= nE[\mathbf{x}^{2}] - Var(\mathbf{x}) + nE[\mathbf{x}]^{2}$$

$$= (n-1) Var(\mathbf{x}).$$

Dividing both sides by n-1 gives $E_n^{2} = \sigma^2$.

10. Let X be a random vector taking values in \mathbb{R}^n with mean $\vec{\mu} \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. If $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$ what are the mean and covariance matrix of $AX + \vec{b}$?

Solution: The mean is $A\vec{\mu} + \vec{b}$ and the covariance is given by $A\Sigma A^T$.

To see the mean, note that

$$E[A_{i,:}X] = E[\sum_{k=1}^{n} A_{ik}X[k]] = \sum_{k=1}^{n} A_{ik}E[X[k]] = A_{i,:}E[X],$$

by the linearity of expectation. Applying this to every row shows E[AX] = AE[X]. To see the covariance, recall that $Cov(X) = E[(X - \vec{\mu})(X - \vec{\mu})^T]$. Thus we have

$$\begin{aligned} \operatorname{Cov}(AX + \vec{b}) &= E[(AX + \vec{b} - (A\vec{\mu} + \vec{b}))(AX + \vec{b} - (A\vec{\mu} + \vec{b}))^T] \\ &= E[(A(X - \vec{\mu}))(A(X - \vec{\mu}))^T] \\ &= E[A(X - \vec{\mu})(X - \vec{\mu})^T A^T] \\ &= AE[(X - \vec{\mu})(X - \vec{\mu})^T]A^T \\ &= A\Sigma A^T, \end{aligned}$$

by linearity of expectation twice (for A on the left and A^T on the right).