Embedded Systems Design Workflow

- Step 1: System specification
- Step 2: Design two components: HW & SW
 - Can be performed in parallel
 - Room for optimization : effectively reduce the time to market
- Step 3: System Integration
 - o Combine both HW and SW
 - Often requires debugging
 - If necessary, go to **Step 1** to revise the system specification

Schematic Design

- Schematic : A logical representation of the circuit
 - Make a logical connection among I/O pins
 - No physical constraint is considered

PCB Design

- Physical level design
 - o PCB: Printed Circuit Board
- Physical Constraints
 - Clearance between lines
 - Number of layers in the PCB
 - Timing constraints(High-speed circuit design)

HW Assembly & Test

Motorola MPC860 communication controller board

HW Debugging

Embedded SW Development

- Host System: The place where an embedded application SW is developed
- Target System
 - The system being developed
 - The place where an embedded app is running
- Connection
 - o UART, ethernet, etc
 - Remote execution / debugging
- Cross compiler
 - Runs on host system
 - o Generates binary executable on the target system

ODROID-X2

Embedded HW Structure

Processor Structure

- Components
 - o Register
 - o Arithmetic Logic Unit (ALU)
 - Control Unit (CU)
 - o Processor Bus

Control Unit

Registers

- A small amount of storage as a part of a processor
 - Temporarily store input data and results
 - At the top of memory hierarchy
 - Faster than L1, L2 cache, and main memory
 - Flip-flop or latch is used
- Type of registers
 - o General-Purpose registers: Used by programs for data processing
 - Control registers : Control processors and/or program execution flows
 - Status registers : Represent the processor status

ALU (Arithmetic Logic Unit)

- Arithmetic operations: add / subtract / multiply / divide
- Logical operations : and / or / xor/ 1's complement
- Bit shift operations : Arithmetic shift, Logical shift, Rotate
- Signals
 - o Data
 - o Opcode : Set by instruction decoder
 - o Status: Carry-out / Zero / Negative / Overflow / Parity(even/odd)

Processor Bus

- Bus: A communication path to connect two or more devices on digital systems
- Internal Bus: A path between registers and an ALU
- External Bus: A path between a processor and external memory & I/O devices
 - Data bus: transfer data values between a processor and external memory & I/O devices (bidirectional)
 - Address bus: send address values (unidirectional)
 - Control bus: send control signals to control various types of devices (unidirectional)

Microprocessor vs. SoC

- Microprocessor
 - A single chip processor containing all CPU components
 - o Registers, ALU, control units
 - o L1 and L2 caches
- SoC (System on Chip)
 - A single chip containing various system components including a microprocessor

Assembler and Machine Language

- Assembler
 - A computer program which translates assembly language to machine language format
 - Machine language: recognizable by the instruction decoder of a processor

Instruction Set Architecture (ISA)

- Structure of an instruction
 - Opcode(Operation code): specifies the operation to perform
 - Operand : the object of the operation sepecified by opcode
 - Register value : values stored in a register
 - Memory value : values stored in external memory
 - Immediate value : values stored in the instruction itself

- Pipeline
 - Split each instruction into a sequence of steps
 - Execute different steps of different instructions concurrently and in parallel
 - Able to increase instruction throughput by increasing resource utilization in the processor

• Typical Processors

ARM Processors

Cortex-M3 Pipeline

- Cortex-M3 has 3-stage fetch-decode-execute pipeline
 - Similar to ARM7
 - Cortex-M3 does more in each stage to increase overall performance

6 stages Cortex-M7 Pipeline Load Store #2 Load Store #3 Load/Store Pipeline Retire ETM Decode (1× dec) Issue (2nd dec) Main / ALU Prefetch #I Pipeline #1 #2 Store Write / Store ALU #2 Execute Stage in order; superscalar pipeline Integer pipe;
 Dual shifters, dual ALUs, one MACcapable
 Floot pres. #2 Pipeline Multiply Accumulate Pipeline MAC #1 MAC #2 loat pipe:

• FI instrs can be dual issued with Branch Target Address Cache + branch predictor boosts performance Float Point F2

CISC vs. RISC

CISC: complex instruction set computer
 RISC: reduced instruction set computer

CISC	RISC
Complex instructions taking multiple cycles	Simple instructions taking 1 cycle
Any instruction may reference memory	Only LOADs/STOREs reference memory
Not or less pipelined	Highly pipelined
Instructions interpreted by the microprogram	Instructions executed by the hardware
Variable format instructions	Fixed format instructions
Many instructions and modes	Few instructions and modes
Complexity in the microprogram	Complexity in the compiler
Single register set	Multiple register sets

Von-Neumann vs. Havard Architecture

- Von-Neumann architecture
 - Unified memory interface for both instruction and data
 - o Cannot transfer instruction and data at the same time
 - o ex) Intel CPUs, ARM7 CPU

• Havard architecture

- Separated memory interfaces, one each for instruction and data
- Able to transfer instruction and data at the same time
- o ex) ARM9, ARM10, XScale, etc.

