Complex Network Theory Social Network Theory - Community Structure

Lecture delivered by Prof. Niloy Ganguly

Scribed by Lalit Narayan Paswan(02CS3004) lalit.paswan@gmail.com

March 17, 2006

1 Continued... from lecture on March 16,2006.

Consider the graph shown in figure 1 below.

Figure 1: Weighted undirected graph

 $Diagonal = \sum Edge$ weights incident

1.5	-0.8	-0.6	0	-0.1	0
-0.8	1.6	-0.8	0	0	0
-0.6	-0.8	1.6	-0.2	0	0
0	0	-0.2	1.7	-0.8	-0.7
-0.1	0	0	-0.8	1.7	-0.8
0	0	0	-0.7	-0.8	1.5

$$\lambda = (0.0 \ 0.4 \ 2.2 \ 2.3 \ 2.5 \ 3.0)$$

Eigen Values.

$$\lambda = \begin{pmatrix} 0.2\\ 0.2\\ 0.2\\ -0.4\\ -0.7\\ -0.7 \end{pmatrix}$$

Time Complexity for finding 2_{nd} Eigen value will be $O(\frac{m}{\lambda_3 - \lambda_2})$. This method is called **Lanzos Method**, where m is number of edges. This method will be fast if

- Sparce Matrix
- Distinct difference between 3_{rd} and 2_{nd} Eigen value i.e. $\lambda_3 \lambda_2$.

2 Kernighan-Lin Algorithm

- Number of elements in a community is fixed.
- Randomly divided
- Benefit Function: Q = Number of elements that lies within a group Number of edge that lies between a group.
- Consider all possible pair and calculate δQ i.e. change in cost function due to the swap.
- Swap the pair which has highest δQ

Figure 2: Q = 10 - 2 = 8

- Repeate this till all possible pair exhausted.
- Reswapping is prohibited in the future.

Figure 3: By swapping element 5 of n_1 with element 10 of n_2 , we get this graph

- Number of possible pairs = $n_1 \times n_2 = \mathbf{O}(n^2)$
- For calculating δQ we do not consider sign.
- \bullet Probe through all the steps and select the step where \mathbf{Q} is highest.

3 Hierarchical Clustering

- Based upon Threshiold weights i.e. increasing number of connection.
- WTS:Formulate or Define weights.
- Weight between two nodes(X,Y)
 - Number of Node independent path between two (X,Y)
 - Minimum number of nodes to be removed to make (X,Y) disconnected.
- Other method can be
 - Number of paths

$$W_{ij} = \sum_{l=0}^{\infty} (\alpha A_{ij})^l$$

Where α is small number.

$$\sum_{l=0}^{\infty} X^{l} = 1 + X + x^{2} + \dots + X^{\inf}$$

$$= \frac{1}{1 - X}$$

$$W = [1 - \alpha A]^{-1}$$