Формализация описания процессов

лекция

Техническая система

- H функциональное назначение [вектор]
- Φ функция системы [вектор, граф]
- C структура, состав [вектор, граф]
- *O* организация, компоновка, управление [вектор]
- *Э* показатели эффективности [*вектор*]

Под <u>системой</u> понимается некоторое сложное понятие, характеризующееся множеством различных описаний.

Для моделирования остановимся на двух понятиях: параметры \boldsymbol{q} системы и процесс \boldsymbol{z} в системе.

Под параметром \mathbf{q} будем понимать двойку: $\mathbf{q} = \langle \mathbf{a}, \mathbf{b} \rangle$ где \mathbf{a} - имя параметра, \mathbf{b} — его значение.

Всю совокупность параметров системы, определяющих процесс функционирования или участвующих в нем, назовем параметрическим множеством системы

 $m{Q} = \{ \, m{q_i} \, \}_{\, i=1} \,$, где $m{q_i}$ – некоторый параметр.

Каждый параметр q_i принимает множество значений, обозначаемое в дальнейшем как $\sigma \left(q_i \right)$

Пространство состояний системы - декартово произведение $S = \prod_{\forall i} (q_i)$

В этом пространстве каждый параметр q_i выступает в роли координаты, а размерность пространства равна мощности множества Q.

```
Пусть O1 - CPU, O2 - HDD
\sigma (q_1) = \{ KЯ, Пр, СП \} KЯ - кол-во ядер
\sigma (q_2) = \{ CЧ3, СД \} Пр - производительность
\sigma (KЯ) = \{1,2,3,4\} CЧ3 - скорость чт/зап
\sigma (Пр) = \{1,2,3\}
\sigma (СП) = \{ «занят», «свободен», «тест» \}
\sigma (СЧ3) = \{10, 20, 30, 40, 50\}
\sigma (СД) = \{ «работает», «простаивает», «сервис» \}
S = \sigma (KП) \times \sigma (Пр) \times \sigma (СП) \times \sigma (СЧ3) \times \sigma (СД)
S = <4,2, «занят», 40, «работает»>
```

Προцесс
$$Z = \langle S, T, F, \alpha \rangle$$

- *S* пространство состояний системы;
- Т множество моментов времени <u>изменения</u>состояний системы;
- F график процесса, как отображение T → S;
- α отношение линейного порядка на T

На практике так ->
$$Z = \langle S_0; T; F \rangle$$

фазовое пространство $\boldsymbol{\phi}$ процесса $\boldsymbol{Z} \rightarrow \boldsymbol{\phi} = \boldsymbol{T} \times \boldsymbol{S}$

Пример процесса обработки веб-запроса:

- 1) занять http-сервер
- 2) ждать окончания обработки http-сервером
- 3) занять сервер БД
- 4) ждать окончания поиска данных
- 5) занять сервер журналирования
- 6) ждать окончания логирования
- 7) отправить ответ http-серверу
- 8) занять http-сервер
- 9) ждать окончания обработки http-сервером
- 10) отправить ответ в сеть клиенту

Интервал времени [th; tk], где th =min{T}, tk =max{T}, назовем интервалом определения процесса Z.

Подпроцесс Z_i — плотное во времени подмножество процесса Z на интервале $[t_i;t_j]$ при условии, что $[t_i;t_j] \subset [t_H;t_K]$. Плотность по времени означает, что на интервале $[t_i;t_j]$ нет ни одной точки, принадлежащей T и не относящейся к подпроцессу Z_i . Это интервал определения подпроцесса.

Операция свертки процесса

Пусть задан процесс **Z** = \langle **S**, **T**, **F**, $\alpha \rangle$:

получим полное разбиение интервала определения процесса Z на n непересекающихся подинтервалов, т.е. на n подпроцессов Z^{j} (j=1..n);

поставим в соответствие каждому подпроцессу Z^{j} одно значение состояния из множества S_{1} и одно значение времени β^{j} из интервала $[\tau_{j}, \tau_{j+1}];$

получим: дискретное множество $T_1 = \{ \beta^j \}_{j+1}$ график F_1 ,

отношение $\alpha_1 \subset \alpha$;

получен новый процесс Z_1 (= свертка процесса Z)

S

Операция свертки процесса Z -> Z1

S1 = {ожидание, решение в CPU, работа с HDD} T1 = {0, t1, t7, t8, t10} F1 = {A, B, C, D, E}

Операция развертки процесса

Операция развертки обратна по отношению к операции свертки: процесс Z является разверткой процесса Z₁

При выполнении этой операции необходимо каждую точку процесса Z₁ развернуть в подпроцесс Z j.

Операция развертки неоднозначна и позволяет восстановить исходный процесс на основе *априорных* представлений о свернутых процессах.

Операция развертки относится к классу операций синтеза.

Операция проецирования

Процесс Z задан в пространстве {A, B}

S = $\sigma(A)$ x $\sigma(B)$, где $\sigma(A)$ = {g, h, k, m, n}, $\sigma(B)$ = {a, b, c, d} T = {1, 2, 3, 4, 5, 6, 7, 8, 9}

 $F = \{<1, <g,a>, <2, <h,c>, <3, <h,b>, <4, <k,a>, <5, <m,a>, <6, <m,d>, <7, <n,d>, <8, <n,b>, <9, <k,b>\}$

Процесс $Z_A = \Pi p_{SA} Z$

$$S_A = \{g, h, k, m, n\}$$

$$T_A = \{1, 2, 4, 5, 7, 9\}$$

$$F_A = \{<1,g>, <2,h>, <4,k>, <5,m>, <7,n>, <9,k>\}$$

Процесс $Z_B = \Pi p_{SB} Z$

$$S_B = \{a, b, c, d\}$$

$$T_B = \{1, 2, 3, 4, 6, 8\}$$

$$F_B = \{<1,a>, <2,c>, <3,b>, <4,a>, <6,d>, <8,b>\}$$

Пространство S_Q называется *склейкой* пространств S_{Q^1} и S_{Q^2} , если $Q = Q_1$ U Q_2 Процессы Z1 и Z2, допускающие операцию объединения, называются *согласованными*.

Два процесса - Z1 с пространством состояний SQ1 и Z2 с пространством состояний SQ2 — **согласованы**, если Q1 \cap Q2 = \emptyset .

Если $Z_1 = \Pi p_{SQ1} Z$ и $Z_2 = \Pi p_{SQ2} Z$, то процессы Z_1 и Z_2 **согласованы**.

Пусть заданы процесс Z_1 , определённый на интервале $[t_H^1; t_K^1]$, и Z_2 , определённый на интервале $[t_H^2; t_K^2]$. Если $[t_H^1; t_K^1] \cap [t_H^2; t_K^2] = \emptyset$, то процессы Z_1 и Z_2 согласованы.

Процесс W в двухпараметрическом пространстве

S = σ (A) x σ (C), где σ (A) = {g, h, k, m, n}, σ (C) = {p, q, f, x} T = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }

 $F = \{<1, < g, q>, <2, < h, x>, <3, < h, f>, <4, < m, q>, <5, < m, p>, <6, < m, f>, <7, < n, q>, <8, < n, x>, <9, < k, f>\}$

Процесс $W_A = \Pi p_{Sa} W$

$$S_A = \{g, h, k, m, n\}$$

$$T_A = \{ 1, 2, 4, 7, 8, 9 \}$$

$$F_A = \{<1,g>, <2,h>, <4,m>, <7,k>, <8,n>, <9,k>\}$$

Процесс $W_C = \Pi p_{Sc} W$

$$S_C = \{p, q, f, x\}$$

 $T_C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

$$F_C = \{<1,q>, <2,x>, <3,f>, <4,q>, <5,p>, <6,f>, <7,q>, <8,x>, <9,f>\}$$

Объединение процессов Z_B и $W_C \to Y$

S = $\sigma(B)$ x $\sigma(C)$, где $\sigma(B)$ = {a, b, c, d}, $\sigma(C)$ = {p, q, f, x} $T_Y = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$

$$F_Y = ?$$

Объединение процессов Z_A и W_A

$$S_A = \{g, h, k, m, n\}$$

$$T_A = \{ 1, 2, 4, 5, 7, 8, 9 \}$$

$$F_A = ?$$

Процессы Z и W - не согласованы

Процесс обработки запроса клиентом $Z\kappa = \Pi p Z$

Процесс обработки запроса Web-сервером $Zw = \Pi p Z$

Процесс обработки запроса сервером БД $Z_{DB} = \Pi p Z$

Процесс Z обработки запроса Web-сервером и сервером БД

Процессы Z1 и Z2 обработки запросов серверами

Алгоритмическая модель описания процессов

лекция

$$s = H^{\circ}(A^{\circ}, t, \omega)$$

$$s \in S^{o}$$
 $A^{o} \subseteq Q$ $t \in T^{o}$

множество A° в общем случае зависит от времени

Ѡ –случайное число

$$h_i = \langle h_i^c, h_i^y, h_i^H \rangle$$

$$h_{i}^{y} \in \{h_{i}^{t}, h_{i}^{\pi}, h_{i}^{t\pi}\}$$

h^c – оператор состояния

h^у – оператор условия продвижения инициатора

ht – оператор временного условия

 $h^{\scriptscriptstyle J}$ – оператор логического условия

h^{tл} – оператор комбинированного условия

h^н – навигационнный оператор

Инициатор - объект, обладающий следующими фундаментальными свойствами:

- а) независимостью: может существовать самостоятельно без операторов;
- б) динамичностью: инициатор имеет возможность перемещаться от оператора к оператору; будем называть попадание инициатора на оператор сцеплением инициатора с элементарным оператором;
- в) инициативностью: в момент сцепления инициатора с оператором происходит выполнение (инициирование) элементарного оператора, что соответствует вычислению нового состояния процесса.

$$AM\Pi = \{ \{h_i\}_{i=1}^n, \beta, I \}$$

$$AM\Pi = \langle TR, I \rangle$$

Пример процесса «светофор»

Операторно-параметрическая схема

Варианты графа процесса «светофор»

Диаграмма состояний

Варианты графа процесса «светофор»

Конечный автомат

Свертка трека в структуру

h1, h3 — класс эквивалентности 1

h2, h5, h6, h8 – класс эквивалентности 2

h4, h7 — класс эквивалентности 3

Пример структуры

h1, h2, h4 — операторы состояния h1^н, h2 ^н — навигационные операторы 1, 2, 3, 4 — альтернативные выходы

Пример полнодоступной структуры

h1, h2, h3 — операторы состояния h1^н, h2^н, h3^н — навигационные операторы 1, 2, 3 — альтернативные выходы

Свертка полнодоступной структуры

h1, h2, h3 — операторы состояния h^{H} — обобщенный навигационный оператор I — инициатор

Отношение параметра к оператору

h – оператор общего вида $[h^c, h^y, h^H]$

а – входной параметр

b – выходной параметр

с – рабочий параметр

Операторно-параметрическая схема

h1, h2, h3 – трек операторов

а – входной параметр

b, c – рабочие параметры

d, е – рабочие параметры

f – выходной параметр

Операторно-параметрическая схема модели ___ процесса управления записью на диск

Пример подобных описаний процессов

 $h1, h2 - операторы общего вида a, b, c, d, e - параметры <math>Z_A$ f, b, c, d, g - параметры Z_B $I1 - инициатор <math>Z_A$

I2 – инициатор Z_в

Объединённое описание процессов Z_A и Z_B


```
h1', h2' — объединенные операторы
P1, P2 — параметры локальной среды
b, c, d — рабочие параметры
I1 \rightarrow (a,e) _ локальные
I2 \rightarrow (f,g) _ среды инициаторов
```

Операторно-параметрическая схема описания процесса передачи пакетов данных в канале связи

Операторно-параметрическая схема описания процесса проезда на перекрёстке (П-1)

 Δ Тз, Δ Тж, Δ Тк -- константы

Операторно-параметрическая схема описания процесса проезда на перекрёстке (П-2)

Операторно-параметрическая схема описания процесса проезда на перекрёстке (А)

Операторно-параметрическая схема описания процесса ремонта оборудования (A)

Режим \in {отдых; работа } Мастер \in {занят; своб } Состояние \in {рабочий; сломан }

а) операторно-параметрическая схема

h1, h2, h3 — трек операторов a, f — внешние параметры b, c, d, e — внутренние параметры I — инициатор

б) блочная схема

Сервер1, Сервер2 — операторные блоки

а, f — внешние параметры

с, е – рабочие параметры

I – инициатор

Обозначения операторных блоков

Операция пассивизации переводит инициатор в класс обычных параметров. Операция активизации обычный параметр переводит в класс инициаторов. Если агрегат содержит операторы, выполняющие указанные операции, то такой агрегат назовем контроллером, или К-блоком.

Блочная П–схема модели перекрестка

Блочная А-схема модели перекрестка

Блочная П–схема модели управляющего комплекса

