

CHAPTER I

Dr Honey Sharma GGI, Ludhiana

OUTLINE

- Introduction
- Sets
- Universal Sets
- Empty Sets
- Set of Sets
- Set Operations
- Set cardinality
- Power Set
- Computer Representation of sets

WHAT IS A SET?

- A set is a group of "objects"
 - Students of CSE 4th semester: { Ram, Harish, Sita }
 - Subjects offered to CSE 4th semester: { BTCS 401, BTCS 402, BTCS 403}
 - Courses offered by GGI: { B. Tech, BBA, BCA, B Com, MBA }
 - Sets of even numbers: {2, 4, 6, 8.....}
 - States of matter: { solid, liquid, gas, plasma }

Although a set can contain (almost) anything, we will most often use sets of numbers

DEFINITION

A set is an <u>unordered</u> collection of (<u>unique</u>) objects.

OR

A Set is a <u>well-defined</u> collection of <u>distinct</u> objects.

- Order does not matter
- Sets do not have duplicate elements

The objects in a set are called <u>elements</u> or <u>members</u> of a set.

Notation

Usually we denote sets with upper-case letters, elements with lower-case letters.

- $x \in A$ means that x is a member of the set A
- $x \notin A$ means that x is not a member of the set A.

Set-builder method

$$A = \{ x \mid x \in S, P(x) \} \text{ or } A = \{ x \in S \mid P(x) \}$$

- A is the set of all elements x of S, such that x satisfies the property P
- Example:
 - If $X = \{2,4,6,8,10\}$, then in set-builder notation, X can be described as

$$X = \{n \in Z \mid n \text{ is even and } 2 \le n \le 10\}$$

- N: The set of all natural numbers (i.e., all positive integers)
- Z: The set of all integers
- Z+: The set of all positive integers
- E: The set of all even integers
- Q: The set of all rational numbers
- Q+: The set of all positive rational numbers
- R: The set of all real numbers
- R+: The set of all positive real numbers
- C: The set of all complex numbers
- C* : The set of all nonzero complex numbers

The universal set

- The universal set (U) the set of all of elements from which given any set is drawn
 - For $A = \{-2, 0.4, 2\}$, U would be the real numbers
 - For $A = \{0, 1, 2\}$, U could be the Whole numbers, the integers, the rational numbers, or the real numbers, depending on the context
 - For the set of the students in this class, *U* would be all the students in the University (or perhaps all the people in the world)
 - For the set of the vowels of the alphabet, *U* would be all the letters of the alphabet

THE EMPTY SET

- Empty (or null) set has zero elements
 - Empty sets are represented by symbol ∅
 - Thus, ∅ = { }
- □ VERY IMPORTANT

Example???????

Sets of sets

- Sets can contain other sets
 - $S = \{ \{1\}, \{2\}, \{3\} \}$
 - $T = \{ \{1\}, \{\{2\}\}, \{\{\{3\}\}\} \} \}$
 - $V = \{ \{\{1\}, \{\{2\}\}\}, \{\{\{3\}\}\}\}, \{\{\{1\}, \{\{2\}\}\}, \{\{\{3\}\}\}\} \} \}$
 - V has only 3 elements!
- Note that $1 \neq \{1\} \neq \{\{1\}\} \neq \{\{\{1\}\}\}$
 - They are all different
- - The first is a set of zero elements
 - The second is a set of 1 element (that one element being the empty set)

VENN DIAGRAMS

- A set can be represented graphically using a Venn Diagram
 - The box represents the universal set
 - Circles represent the set(s)
- Consider set S, which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram

SET EQUALITY

- Two sets are said to be equal if they have the same elements
 - $\{1, 2, 3, 4, 5\} = \{5, 4, 3, 2, 1\}$
 - Remember that order does not matter!

Subsets

- \square Set S is said to be subset of T (S \subseteq T), If all the elements of a set S are also elements of a set T
 - For example, $S = \{2, 4, 6\}, T = \{1, 2, 3, 4, 5, 6, 7\}$, then $S \subseteq T$
- Note that
 - Every set is a subset of itself
 - The empty set is a subset of *all* sets
 - All sets are subsets of the universal set

PROPER SUBSETS

- ☐ If S is a subset of T, and S is not equal to T, then S is a proper subset of T
 - Let $T = \{0, 1, 2, 3, 4, 5\}$
 - If $S = \{1, 2, 3\}$, S is not equal to T, and S is a subset of T
 - A proper subset is written as $S \subseteq T$
 - Let $R = \{0, 1, 2, 3, 4, 5\}$. R is equal to T, and thus is a subset (but not a proper subset) or T
 - □ Can be written as: $R \subseteq T$ and $R \nsubseteq T$ (or just R = T)
 - Let Q = {4, 5, 6}. Q is neither a subset or T nor a proper subset of T

Proper subsets: Venn diagram

SET OPERATIONS: UNION

Formal definition for the union of two sets:

$$A U B = \{ x \mid x \in A \text{ or } x \in B \}$$

- Further examples
 - $\{1, 2, 3\}$ U $\{3, 4, 5\}$ = $\{1, 2, 3, 4, 5\}$
 - {New York, Washington} U {3, 4} = {New York, Washington, 3, 4}
 - $\{1, 2\} \ U \varnothing = \{1, 2\}$

SET OPERATIONS: UNION 2

A U B

Properties of the union operation

 $\bullet \quad A \cup \emptyset = A$

Identity law

 $\bullet \quad \text{A U } \boldsymbol{U} = \boldsymbol{U}$

Domination law

 \bullet A U A = A

Idempotent law

 $\bullet \quad A \cup B = B \cup A$

Commutative law

• A U (B U C) = (A U B) U C

Associative law

SET OPERATIONS: INTERSECTION

- Formal definition for the intersection of two sets: $A \cap B$ = $\{x \mid x \in A \text{ and } x \in B \}$
- Further examples
 - $\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$
 - {New York, Washington} \cap {3, 4} = \emptyset
 - No elements in common
 - $\{1,2\} \cap \emptyset = \emptyset$
 - Any set intersection with the empty set yields the empty set

SET OPERATIONS: INTERSECTION

$A \cap B$

Properties of the intersection operation

 $\bullet \quad \mathbf{A} \cap \boldsymbol{U} = \mathbf{A}$

Identity law

 $A \cap \emptyset = \emptyset$

Domination law

 $\bullet \quad A \cap A = A$

Idempotent law

 \bullet A \cap B = B \cap A

Commutative law

 $\bullet \quad A \cap (B \cap C) = (A \cap B) \cap C$

Associative law

DISJOINT SETS

- Two sets are disjoint if their intersection is the empty set $(A \cap B = \emptyset)$
- Examples
 - {1, 2, 3} and {3, 4, 5} are not disjoint
 - {New York, Washington} and {3, 4} are disjoint
 - $\{1, 2\}$ and \emptyset are disjoint
 - Their intersection is the empty set
 - Ø and Ø are disjoint!
 - Their intersection is the empty set

SET OPERATIONS: DIFFERENCE

Difference of two sets:

$$A - B = \{ x \mid x \in A \text{ and } x \notin B \}$$

Elements of Set A which are not elements of B

- Examples
 - $\{1, 2, 3\}$ $\{3, 4, 5\}$ = $\{1, 2\}$
 - {New York, Washington} {3, 4} = {New York, Washington}
 - $\{1, 2\}$ $\emptyset = \{1, 2\}$
 - The difference of any set S with the empty set will be the set S

SET OPERATIONS: DIFFERENCE

B - **B**

GGI

SET OPERATIONS: SYMMETRIC DIFFERE Guizar Group of Institutes

The symmetric difference of two sets:

$$A \oplus B = \{ x \mid (x \in A \text{ or } x \in B) \text{ and } x \notin A \cap B \}$$

 $A \oplus B = (A \cup B) - (A \cap B) \quad \Box \text{ Important!}$
 $A \oplus B = (A - B) \cup (B - A)$

- Examples

 - {New York, Washington} ⊕ {3, 4} = {New York,
 Washington, 3, 4}
 - $\{1, 2\} \oplus \emptyset = \{1, 2\}$
 - The symmetric difference of any set S with the empty set will be the set S

Complement sets 2

COMPLEMENT SETS

A complement of a set is all the elements that are NOT in the set

$$A = \{ x \mid x \notin A \}$$

$$\overline{A} = U - A$$
Examples (assuming $U = \mathbb{Z}$)
$$\{1, 2, 3\} = \{ ..., -2, -1, 0, 4, 5, 6, ... \}$$

Complement sets 2

Complement sets 4

Properties of complement sets

$$\overset{=}{A} = A$$

• A U $\overline{A} = U$

• $A \cap \overline{A} = \emptyset$

Complementation law

Complement law

Complement law

SET CARDINALITY

- ☐ The cardinality of a set (|A|) is the number of elements in a set
- Examples
 - Let $R = \{1, 2, 3, 4, 5\}$. Then |R| = 5
 - $|\varnothing|=0$
 - Let $S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then |S| = 4

Power sets

- The power set of S(P(S)) is the set of all the subsets of S
- Given the set $S = \{0, 1\}$. What are all the possible subsets of S?
 - They are: \emptyset (as it is a subset of all sets), $\{0\}$, $\{1\}$, and $\{0, 1\}$
 - $P(S) = \{ \varnothing, \{0\}, \{1\}, \{0,1\} \}$
 - Note that |S| = 2 and |P(S)| = 4
- ☐ If a set has n elements, then the power set will have 2n elements

COMPUTER REPRESENTATION OF SETS

- \square Assume that U is finite (and reasonable!)
 - Let *U* be the alphabet
- \square Each bit represents whether the element in U is in the set
- The vowels in the alphabet: abcdefghijklmnopqrstuvwxyz 10001000100000100000100000

Consider the union of these two sets:

10001000100000100000100000

Consider the intersection of these two sets:

10001000100000100000100000

 \wedge 011101110111110111111

The cost of being wrong is less than the cost of doing nothing

THANKS!