浙江大学 20<u>13</u> - 20<u>14</u> 学年<u>春夏季</u>学期 《材料力学(乙)》课程期末考试试卷

课程号: 261	.C0031 , 5	开课学院:	航空航	天学院	_	
考试试卷: A	卷、B卷(请在选定	项上打 √)			
考试形式: 闭	l、开卷(i	青在选定项	页上打 √),	允许带_	A4 纸大小	一页纸入场
考试日期: 2	2014 年 6	月 <u>26</u> 日,	考试时间	: <u>120</u> 分	·钟	
		诚信考试	,沉着应	考,杜绝进	纪。	
考生姓名: _	学号:			所属院系:		
题序	_	二(1)	二(2)	二(3)	二(4)	总 分
得分						
评卷人						
杆两端受轴向	压力 <i>F</i> 作月 柔度杆,	目。当该压材 且一端固定	杆为小柔度	度杆时,纵向	可正应变值	材料弹性模量为 <i>E</i> . ,临,临
	螺栓直径	为 <i>d</i> ,板厚	度为 b, 如	果螺栓的	许用切应	全轴线的一对邻近平 力与许用挤压应力之
转。如果该扭	l转杆的横和 p原来的	載面外径增	曾大为 <i>D=</i> : 倍	3 <i>d</i> (内径7 。 如果	下变),则构 该扭转杆的	承受力偶作用产生扭 黄截面上的最大切应 的横截面外周为边长 。
4、简支第	架长为 <i>L</i> ,智 梁跨中(<i>x</i> =	弯曲刚度为 <i>=L/</i> 2)横截	EI,平面在面上的剪	弯曲的弯矩 力值为	巨方程为 M	M(x)=M ₀ sin(πx/L)(M ,梁跨中横截

5、由直径为 d 的圆木截取矩形截面杆,用作横梁。按照梁横截面上最大弯曲正

应力极小,确定矩形截面的高宽比 h/b=____。 如果按照梁横截面上最大切应力(横力弯曲)极小,则矩形截面的高宽比 h/b=____。

6、等直杆的横截面外边界为正方形、内边界为同心圆,如图所示,请在图上画 出该截面的截面核心边界(大致位置和形状)。

- 7、矩形截面直杆受平行于轴线的力 F 作用产生偏心拉伸,矩形横截面的长与宽分别为 b、h,力 F 偏离形心的距离为 e=b/4,如图所示,则该杆横截面上中性轴的方程为_____。
- 8、杆件发生扭弯组合变形时,横截面上危险点的正应力为 σ 、切应力为 τ ,则该点按最大切应力强度理论的相当应力 σ_{r3} =
- 9、水平简支梁受高处下落物体冲击作用时,其中弯曲应力的动效应可以通过动荷因素 K_d 描述。如果动荷因素 K_d =4,则物体下落高度与按其重量静作用的梁变形之比 $h/\Delta_{\rm st}$ =_____。 当构件中危险点应力交替变化时,应力的循环次数 N 越高,则疲劳破坏相应的应力幅值 $\sigma_{\rm max}$
- 10、请举出一个现实中构件受力产生组合变形的例子,并说明其组合变形的形式:

二、计算题(共4小题,计68分)

1、已知构件自由表面点在切平面内,0°方向的正应变 ϵ_0 =300×10⁻⁶,30°方向的正应变 ϵ_{30} =200×10⁻⁶,90°方向的正应变 ϵ_{90} =-100×10⁻⁶(角度按逆时针计)。材料的弹性模量 E=200GPa,泊松比 ν =0.3。

求: (1) 该点相应于三个正应变的 0° 方向、 90° 方向及 30° 方向的正应力 σ_0 、 σ_{90} 、 σ_{30} ; (2) 该点的主应力 σ_1 、 σ_2 与 σ_3 ; (3) 该点最大切应力。 (20 分)

2、图示矩形截面悬臂梁,长AB=L,矩形横截面的高与宽分别为2b、b。自由端受横向力F作用,该力过横截面形心而偏离y轴, $\alpha=30$ °。杆重不计。

求: (1) 梁 A 端横截面上的弯矩 M_y 、 M_z 与剪力 F_{Sy} 、 F_{Sz} ; (2) 该截面中性轴与y 轴的夹角; (3) 该截面上 D_1 与 D_2 点的正应力与切应力; (4) 比较 D_1 与 D_2 点按最大切应力强度理论的相当应力大小。

(18分)

3、图示刚架 ABC 位于水平面,杆长 AB=BC=L, $\alpha=60^\circ$,两杆的弯曲刚度均为 EI,扭转刚度均为 $GI_p=EI$ 。杆 B 端与 C 端分别受垂直力 F 作用。不计杆重与剪力的影响。

求: (1) 用能量法计算杆 C 端的垂直位移 Δ_{Cy} ; (2) 讨论杆 C 端可能存在的其它非零线位移或角位移,简要说明理由。

(15分)

4、图示平面超静定刚架,无初始内力,A 端与 D 端为固定铰支座,杆 AB 与 CD 垂直于 BC,长度 AB=BC=CD=L,各杆的弯曲刚度均为 EI。杆 BC 中点 G 处受刚架 平面的横向力 F 作用。不计杆重、轴力与剪力的影响。

求: (1) 支座 A 处的约束力 F_{Ax} 、 F_{Ay} ; (2) G 点的铅直位移 Δ_{Gy} ; (3) 如果 G 点作用力 F 的方向改为沿 BC 线,则支座 A 处的约束力将如何变化?请简要分析之。 (15 分)

