Name: Dave Mannion

Course: UCSD Machine Learning & Engineering

Date: October 22, 2022

Bootcamp Capstone Report

Gene Family Prediction & ML

Machine Learning and DNA Sequence Classification

Dave Mannion

Contents

1	Intr	oduction	3
	1.1	Motivation	3
	1.2	Exploratory Work	3
	1.3	Capstone Project Work	4
2	Data	a a	5
	2.1	Source	5
	2.2	Labeling	5
	2.3	Preprocessing: K-Mer vectorization	5
	2.4	Feature Extraction/Embedding	5
	2.5	Model Building	5
	2.6	Model Performance	5
	2.7	Model Deployment	5

Gene Family	Count	Class Label
G protein coupled receptors	531	1
Tyrosine kinase	534	2
Tyrosine phospotase	349	3
Synthetase	632	4
Synthase	711	5
Ion channel	240	6
Transcription factor	1341	7

Table 1: Gene Families represented by Human DNA coding sequences.

1 Introduction

Here we examine NLP algorithms to develop a Machine Learning model for making predictions on sequences of Nucleic Acid text. Specifically, we train a Multinomial Naïve Bayes classifier on Human DNA Coding Sequences to predict Gene Families. In addition to Human sequences, predictive testing was also performed in Chimpanzee and Dog DNA coding sequences. Table 1 above shows Gene Families in the dataset.

1.1 Motivation

This Capstone project was selected to provide an opportunity to explore NLP applications to biological text-based sequence data.

1.2 Exploratory Work

Prior to this Capstone project, recent work in ML applied to biological sequences was surveyed in order to identify the feasability and scope of a project appropriate for this course. Method feasability focused on LDA, NB and LSTM models. Some of this work is linked to Jupyter notebooks or original papers and includes protein classification¹, Sapien/Neandertal sequence classification², Neandertal DNA introgression³, CRISPR gRNA design tools⁴, Bacterial Classification with RNNs⁵, Bacteria taxonomic classifica-

 $^{^{1} \}verb|https://github.com/ai-dave/ml-gene-pub/blob/main/protein-classification.ipynb|$

 $^{^2 \}verb|https://github.com/ai-dave/ml-gene-pub/blob/main/Deep_Learning_on_Ancient_DNA.ipynb|$

 $^{^3 \}verb|https://github.com/ai-dave/ml-gene-pub/blob/main/Deep_Learning_Neanderthal_Introgression.ipynb|$

⁴https://pubmed.ncbi.nlm.nih.gov/31533522/

⁵https://github.com/lelugom/wgs_classifier

tion⁶, Ribosmal RNA analysis^{7,8,9,10,11}, Taxonomy classification^{12,13}, Wolf/Dhole classification^{14,15,16}.

1.3 Capstone Project Work

Jupyter notebook for the Capstone Project is is available from a github repo 17 .

⁶https://www.researchgate.net/publication/348432006_Bacteria_taxonomic_classification_using_Machine_
 learning_models
7https://github.com/ai-dave/ml-gene-pub/blob/main/gnb-rdp.ipynb
8https://github.com/ai-dave/ml-gene-pub/blob/main/lda-compare-silva.ipynb
9https://github.com/ai-dave/ml-gene-pub/blob/main/lda-rdp.ipynb
10https://github.com/ai-dave/ml-gene-pub/blob/main/lstm-random-noise.ipynb
11https://github.com/ai-dave/ml-gene-pub/blob/main/lstm-rdp.ipynb
12https://github.com/ai-dave/ml-gene-pub/blob/main/ncbi_lstm_poc.ipynb
13https://github.com/ai-dave/ml-gene-pub/blob/main/Eukaryota-Amoebozoa-Discosea.ipynb
14https://github.com/ai-dave/ml-gene-pub/blob/main/Dhole-Wolfe-LDA.ipynb
15https://github.com/ai-dave/ml-gene-pub/blob/main/Dhole-Wolfe-LSTM.ipynb
16https://github.com/ai-dave/ml-gene-pub/blob/main/Dhole-Wolfe-LSTM.ipynb
17https://github.com/ai-dave/ml-gene-pub/blob/main/Dhole-Wolfe.ipynb
17https://github.com/ai-dave/ml-gene-pub/blob/main/Dhole-Wolfe.ipynb

2 Data

2.1 Source

The data for this project came from a Kaggle notebook, DNA Sequencing with Machine Learning 18.

2.2 Labeling

2.3 Preprocessing: K-Mer vectorization

2.4 Feature Extraction/Embedding

Use CountVectorizer to convert k-merized sequences to a matrix of token counts¹⁹.

- 2.5 Model Building
- 2.6 Model Performance
- 2.7 Model Deployment

 $^{^{18} \}verb|https://www.kaggle.com/code/nageshsingh/demystify-dna-sequencing-with-machine-learning/data| + 100 \% to the control of the control$