Inteligência Artificial Aula 17- Agentes e Redes Neurais¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

October 25, 2018

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, introduzimos redes neurais.
- Este material foi construído com base nos livros de Russel & Norvig e Luger & Stubblefield.

Sumário

1 Introdução à Redes Neurais

2 Próxima Aula

Relembrando...

- Agentes Reativos
- Agentes Deliberativos (Cognitivos)
- Algoritmos de Busca
- Planejamento
- Aprendizado de Máquina
 - Agrupamento
 - Classificação

Redes Neurais: Cérebro Humano

- Redes Neurais Artificiais (RNA) são modelos matemáticos inspirados no cérebro humano.
- O cérebro humano é um "processador" com bilhões de neurônios.
- Os neurônios estão conectados uns aos outros através de sinapses, formando uma grande rede NEURAL.

Redes Neurais: Neurônio Biológico

- Os principais componentes:
 - Dentritos: recebem estímulos de outros neurônios;
 - Corpo celular : coleta e combina informações vindas de outros neurônios;
 - ..

Redes Neurais: Neurônio Biológico

- Os principais componentes:
 - ...
 - Axônio: fibra tubular (pode alcançar até alguns metros) responsável por transmitir os estímulos para outras células.
 - Sinapses: pontos onde as extremidades de neurónios vizinhos se encontram.
 - transmitem estímulos através de diferentes concentrações de Na+ (Sódio) e K+ (Potássio).

Redes Neurais: Neurônio Biológico

- Os neurônios se comunicam através de impulsos. O neurônio recebe e processa o impulso, disparando outro impulso, produzindo uma substância neurotransmissora que flui do corpo celular para o axônio.
- O neurônio que transmite o pulso pode controlar a freqüência de pulsos aumentando ou diminuindo a polaridade na membrana pós sináptica.

Redes Neurais: Definição

 "Uma rede neural é um processador paralelamente distribuído constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível para uso." (Haykin,2001)

Redes Neurais x Cérebro Humano

- Uma rede neural se assemelha ao cérebro em dois aspectos (Haykin,2001):
 - o conhecimento é adquirido pela rede a partir do ambiente através de um processo chamado de aprendizagem.
 - forças de conexão entre os neurônios, conhecidas como pesos sinápticos, são usados para armazenar o conhecimento adquirido.

Redes Neurais: Aplicações

- Reconhecimento de Padrões (visão, voz, imagens, texto, ...)
- Classificação
- Clusterização (agrupamento)
- Memorização ...

Redes Neurais: Aplicações (Trabalhos)

- Maeda, Anderson; MORAES, S.M.W. Chatbot baseado em Deep Learning: um Estudo para Lingua Portuguesa. KDMile/SBBD 2017.
- Susana de Azeredo; MORAES, S. M. W.; LIMA, V. L. S. . Keywords, k-NN and Neural Networks: A support for Hierarchical Categorization of Texts in Brazilian. In: The sixth international conference on Language Resources and Evaluation, LREC 2008.
- MORAES, S. M. W.; LIMA, V. L. S. . Um Estudo sobre Categorização Hierárquica de uma Grande Coleção de Textos em Língua Portuguesa.
 In: TIL - V Tecnologia da Informação e Linguagem Humana, 2007, Rio de Janeiro. XXVII Congresso da SBC, 2007. p. 1659-1668.
- SILVA, Rodrigo Borges da ; MORAES, S. M. W. Identificação
 Automática de Fraudes Contratuais em Telefonia Celular através de
 Redes Neurais Artificiais. In: WAAMD Workshop em Algoritmos e
 Aplicações de Mineração de Dados, 2006.
- BITTENCOURT, Ana Cristina; MORAES, S. M. W. . Identificação de Spam através de uma Rede Neural Backpropagation. In: CLEI, 2005..

Redes Neurais: Aplicações (Trabalhos)

- BITTENCOURT, Ana Cristina; GALHO, Thais Silva; MORAES, S. M.
 W. . Um estudo comparativo de uma Rede Backpropagation e de Similaridade Difusa para a Identificação de Spam. In: V ENIA -Encontro Nacional de Inteligência Artificial, 2005.
- Fernando Rodrigues Ferreira. Mecanismo de Orientação de robôs baseado em Reconhecimento de Padrões. 2008. Trabalho de Conclusão de Curso.
- Leandro Robaina. Reconhecimento de voz através de redes neurais.
 2008. Trabalho de Conclusão de Curso.
- Vladimir Medeiros Dias. Auxílio ao Diagnóstico de Cardiomiopatia
 Hipertrófica através de Redes Neurais. 2007. Trabalho de Conclusão de Curso.
- Reginaldo Souza Pereira. RECONHECIMENTO DE IMPRESSÕES DIGITAIS. 2006. Trabalho de Conclusão de Curso.
- Adriano dos Santos Coelho. Uma Ferramenta de Mineração de Dados para Análise de Crédito. 2006. Trabalho de Conclusão de Curso.
- Aldo Junior Carlos. Um estudo sobre redes SOM e mapeamento de Sammon para descoberta de conhecimento em uma base de dados acadêmicos. 2005. Trabalho de Conclusão de Curso.

Redes Neurais: Etapas de Construção

Fase de Treinamento

- Pré-processamento dos dados de Treino
- Treinamento da rede (uso de um algoritmo)

Fase de Generalização

- Pré-processamento dos dados Teste
- Pós-processamento
- Análise dos resultados

Redes Neurais: Aprendizagem

- Aprendizagem
 - A rede aprende a padrões a partir de amostras (exemplos).
 - Abordagens mais conhecidas:
 - Supervisionada
 - Não supervisionada
 - Por Reforço

Redes Neurais: Aprendizagem

- Aprendizagem
 - **Supervisionada**: recebe amostras rotuladas, pares (dado, classe) para que a rede aprenda a organizar os dados em classe pré-definidas. Aprende corrigindo o erro.
 - Não-supervisionada: as amostras não são rotuladas. A rede identifica similaridade entre os dados e os agrupa. Usa abordagens competitivas, nas quais os neurônios disputam os dados até não ocorrer mais mudanças nos grupos. Não há classes pré-definidas.
 - **Por reforço**: processo de punição e recompensa. A rede gera apenas saidas do tipo certo e errado, e tenta se corrigir. Não há erro.

Redes Neurais: Aprendizagem

- Aprendizagem Supervisionada
 - Em geral, os dados (amostras) são particionados em dois subconjuntos disjuntos: conjunto de treino e conjunto de teste.
 - O conjunto de treino é usado no treinamento da rede fase aprendizagem. (~80% das amostras)
 - O conjunto de teste é usado para validar a rede fase de generalização. (~20% das amostras)
 - Pode haver ainda um conjunto de configuração, na etapa de treinamento que tem como objetivo encontrar a melhorar configuração da rede (número de neurônios, número de camadas, ...)

Redes Neurais: Pré-processamento dos dados

Pré-processamento

- A rede trabalha apenas com valores de entrada numéricos, os quais devem pertencer ao intervalo [0;1].
- O valor médio de cada valor de entrada deve ser pequeno se compara ao desvio padrão.
- Algumas formas de transformar os dados:
 - Conversão de campos booleanos em 0 e 1, representando os valores verdadeiro e falso, respectivamente.
 - Dividir os padrões pelo maior valor do conjunto.
 - ..

Redes Neurais: Pré-processamento dos dados

- Pré-processamento
 - .
 - Algumas formas de transformar os dados:
 - •
 - Escalonamento dos campos numéricos para a faixa de 0 a 1.
 Devem ser reduzidos ou ampliados sem que se perca a proporção relativa entre seus itens de dados. Pode ser definido por:

$$c_i'' = \frac{c_i - c_{min}}{c_{max} - c_{min}}$$
, onde:

 $c_i^{"}$ é o valor transformado, c_i é o valor original, c_{min} é o valor mínimo e c_{max} , o valor máximo do intervalo.

Redes Neurais: Topologia

- Como determinar a topologia da rede ?
 - Exemplo:

cpf	nome	renda	dívida	classificação do cliente
111	João	2000	1000	bom
222	Maria	3000	2000	mau
333	Pedro	1000	500	mau
444	Carlos	3000	1500	bom

Entradas:

- Descrevem características significativas a partir dos quais a rede possa extrair padrões.
- Quais são as entradas da rede ?

Saídas :

- A quantidade de saídas determina o número de neurônios (para redes "alimentadas para frente" de uma única camada) .
- Quais são as saídas da rede ?

Redes Neurais: Pré-processamento dos dados

• Exemplo: (processamento simples: divisão pelo maior valor)

renda	dívida	classificação do cliente
0,66	0,5	1
1	1	0
0,33	0,25	0
1	0,75	1

Duas topologias são viáveis:

Redes Neurais: Perceptron

- Perceptron é uma rede muito simples.
 - Quando constituída de apenas um neurônio é chamada de perceptron elementar.
 - Possui apenas uma camada de neurônios.
 - Pode ter várias entradas e várias saídas.
 - Trabalha com valores discretos tanto para as entradas quanto para as saidas.
 - Quando há valores contínuos, as redes com essas características são ditas Adaline.

- Modelo desenvolvido por McCulloch & Pitts na década de 40.
- Elementos:
 - Entradas:
 - Simulam os dendritos.
 - x_1 , ..., x_n : valores do domínio.
 - x₀: entrada extra, é sempre 1 (bias).

- Elementos: (continuação)
 - Pesos sinápticos:
 - simulam as sinapses (os pesos correspondem aos estímulos, que podem ser variados em intensidade).
 - armazenam o conhecimento adquirido pela rede.
 - w_{kn} , onde k é o neurônio e o n, a entrada.
 - w_{k0}: peso do bias

- Elementos (continuação):
 - v_k : campo local induzido
 - simula o corpo celular
 - corresponde a uma soma ponderada (pelos pesos) das entradas do neurônio

- Elementos (continuação):
 - Q: função de transferência ou ativação
 - simula a polaridade da membrana pós sináptica
 - é uma função matemática que em domínios discretos gera os valores 0 (inibição) e 1 (ativação)
 - y_k: saída do neurônio k
 - simula o axônio

- $v_k = \sum_{i=0}^n w_{ki} \times x_i$
- $y_k = Q(v_k)$, onde a função de transferência pode ser:
 - limiar: $Q(v_k) = \begin{pmatrix} 1 & se v_k \ge 0 \\ 0 & caso contrário \end{pmatrix}$

- Os ciclos de treinamento de uma rede são medidos em épocas.
- Uma época corresponde a passagem de todos os padrões do conjunto de treino uma vez pela rede.
- Para treinar uma rede são necessárias várias épocas.

- Rede Perceptron (Adaline):
 - Algoritmo de Treinamento: Regra Delta
 - Sendo $X = \{(amostra_1, d_1), (amostra_2, d_2), ...\}$ o conjunto de treino e η , a taxa de aprendizagem (deve ser positiva).

```
Inicializa os pesos w da rede com zero
 Repetir até encontrar erro zero para todas as amostras{
     epocas = epocas + 1
      Para cada par de X {
          Para cada atributo x_i da amostra, onde i = 1 a n{
              Para cada neurônio k da rede{
                     V_{L} = W_{L} * X_{L}
                     y_{ij} = Q(v_{ij})
               erro_{i} = d_{i} - y_{i}
                  \Delta w_{ij} = \eta * erro_{ij} * x_{ij}
                  wki = w_{ki} + \Delta w_{ki}
```

- Rede Perceptron (Adaline):
 - Limitações:
 - A rede só consegue convergir quando os dados de entrada são linearmente separáveis.
 - Exemplo: OR

×1	x2	d
0	0	0
0	1	1
1	0	1
1	1	1

- Rede Perceptron (Adaline):
 - Limitações:
 - O XOR a rede não consegue resolver.
 - Não há como traçar uma linha (equação da reta) que separe as duas classes.

x1	x2	d
0	0	0
0	1	1
1	0	1
1	1	0

Leitura

- RUSSELL, S. J. & Norvig, P. Artificial Intelligence a Modern Approach
 - Capítulo 20