A Formal Analysis of Algorithms for Matroids and Greedoids

Mohammad Abdulaziz¹, <u>Thomas Ammer</u>¹, Shriya Meenakshisundaram¹, Adem Rimpapa²

 1 King's College London (KCL) 2 Technical University of Munich (TUM)

October 1, 2025

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

 formalisation of matroid and greedoid theory with focus on optimisation problems

- formalisation of matroid and greedoid theory with focus on optimisation problems
- ▶ in the Isabelle/HOL prover

- formalisation of matroid and greedoid theory with focus on optimisation problems
- ▶ in the Isabelle/HOL prover
- 3 executable and verified optimisation algorithms

- formalisation of matroid and greedoid theory with focus on optimisation problems
- in the Isabelle/HOL prover
- 3 executable and verified optimisation algorithms
- yields 3 executable algorithms for minimum spanning tree and maximum cardinality bipartite matching

- formalisation of matroid and greedoid theory with focus on optimisation problems
- in the Isabelle/HOL prover
- 3 executable and verified optimisation algorithms
- yields 3 executable algorithms for minimum spanning tree and maximum cardinality bipartite matching
- part of an Isabelle/HOL library on combinatorial optimisation (Abdulaziz, Ammer, Dordjonova, Koller, Madlener, Meenakshisundaram, Mehlhorn, Rimpapa)

- formalisation of matroid and greedoid theory with focus on optimisation problems
- ▶ in the Isabelle/HOL prover
- 3 executable and verified optimisation algorithms
- yields 3 executable algorithms for minimum spanning tree and maximum cardinality bipartite matching
- part of an Isabelle/HOL library on combinatorial optimisation (Abdulaziz, Ammer, Dordjonova, Koller, Madlener, Meenakshisundaram, Mehlhorn, Rimpapa)
- combinatorial optimisation: optimisation problems on discrete structures, e.g. graphs

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

Definition (Independence System)

A ground set E and a family of independent sets $\mathcal{F}\subseteq\mathcal{P}(E)$ is an independence system (E,\mathcal{F}) iff

M1. $\emptyset \in \mathcal{F}$

M2. $A \in \mathcal{F}$ and $B \subseteq A$ then $B \in \mathcal{F}$

Definition (Independence System)

A ground set E and a family of independent sets $\mathcal{F}\subseteq\mathcal{P}(E)$ is an independence system (E,\mathcal{F}) iff

M1. $\emptyset \in \mathcal{F}$

M2. $A \in \mathcal{F}$ and $B \subseteq A$ then $B \in \mathcal{F}$

Definition (Matroid)

An independence system (E, \mathcal{F}) is a matroid iff

M3.
$$A \in \mathcal{F}$$
 and $B \in \mathcal{F}$ and $|B| > |A|$ then $\exists x \in B \setminus A$. $A \cup \{x\} \in \mathcal{F}$

Definition (Independence System)

A ground set E and a family of independent sets $\mathcal{F}\subseteq\mathcal{P}(E)$ is an independence system (E,\mathcal{F}) iff

M1. $\emptyset \in \mathcal{F}$

M2. $A \in \mathcal{F}$ and $B \subseteq A$ then $B \in \mathcal{F}$

Definition (Matroid)

An independence system (E, \mathcal{F}) is a matroid iff

M3. $A \in \mathcal{F}$ and $B \in \mathcal{F}$ and |B| > |A| then $\exists x \in B \setminus A$. $A \cup \{x\} \in \mathcal{F}$

Definition (Basis)

A basis B of $A \subseteq E$ is an inclusion-maximal independent subset of A. A basis of the independence system $\mathcal{F} \subseteq \mathcal{P}(E)$ is a basis of E.

generalisation of linear independence

- generalisation of linear independence
- ▶ algebraic point of view for some optimisation problems

- generalisation of linear independence
- algebraic point of view for some optimisation problems
- weighted matroid optimisation: for costs c, find $X \in \mathcal{F}$ maximising $\sum_{x \in X} c(x)$. (or minimum weight basis)

- generalisation of linear independence
- algebraic point of view for some optimisation problems
- weighted matroid optimisation: for costs c, find $X \in \mathcal{F}$ maximising $\sum_{x \in X} c(x)$. (or minimum weight basis)

- undirected (multi-)graph with edges E and costs $c: E \to \mathbb{R}^+$
- ► forest = acyclic subgraph
- tree = forest with a single component
- spanning tree minimising/forest maximising accumulated costs

- ightharpoonup carrier set E
- ▶ independent sets: $T \subseteq E$ forming an acyclic subgraph

- \triangleright carrier set E
- ▶ independent sets: $T \subseteq E$ forming an acyclic subgraph

- ightharpoonup carrier set E
- ▶ independent sets: $T \subseteq E$ forming an acyclic subgraph

- carrier set E
- lacktriangle independent sets: $T\subseteq E$ forming an acyclic subgraph

- carrier set E
- ▶ independent sets: $T \subseteq E$ forming an acyclic subgraph
- matroid axioms satisfied

- carrier set E
- ▶ independent sets: $T \subseteq E$ forming an acyclic subgraph
- matroid axioms satisfied
- independent sets are forests
- bases are spanning trees

- carrier set E
- lacktriangle independent sets: $T\subseteq E$ forming an acyclic subgraph
- matroid axioms satisfied
- independent sets are forests
- bases are spanning trees
- maximum weight forest is maximum weight independent set
- minimum spanning tree is minimum weight basis

Theory of Matroids and Greedoids (Selection)

- ▶ Whitney (1935): introduction of matroids
- ► Tutte (1965): Lectures on Matroids, Homotopy Theorem
- Edmonds (1970, 1971): greedy algorithms, Matroid Intersection Theorem
- ► Lawler (1975): matroid intersection algorithms
- Seymour (1980): Decomposition Theorem for Regular Matroids
- Korte and Lovasz (1980): greedoids and greedy algorithms
- many concepts: set system, independence system, matroid, basis, circuit, rank, rank quotient, closure operator, greedoid, accessibility, etc. etc.

our main reference:

Combinatorial Optimization (6th Edition) by Korte and Vygen

Formalisation of Matroids

- ► Mizar: basic matroid theory [Bancerek and Shidama 2008]
- Coq/Rocq: projective geometry and Desargues theorem [Magaud et al. 2012]
- Isabelle/HOL: basic matroid theory [Keinholz 2018], basis for our work
- ▶ Isabelle/HOL: Kruskal's Algorithm [Haslbeck et al. 2018], most related
- ► Lean: matroid theory [Nelson et al. github, 2023 ongoing]
- Coq/Rocq: matroid-based automated prover [Magaud et al. 2024]

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

```
Sort E:=\{e_1,\ldots,e_n\} such that c(e_1)\geq c(e_2)\geq \ldots \geq c(e_n); F\leftarrow\emptyset; for i:=1 to n do \ \ \ \ \  if F\cup\{e_i\}\in\mathcal{F} then F\leftarrow F\cup\{e_i\}; return F:
```


Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

```
Sort E:=\{e_1,\ldots,e_n\} such that c(e_1)\geq c(e_2)\geq \ldots \geq c(e_n); F\leftarrow\emptyset; for i:=1 to n do \ \ \ \ \  if F\cup\{e_i\}\in\mathcal{F} then F\leftarrow F\cup\{e_i\}; return F:
```

sort elements in descending order of costs

Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

```
Sort E := \{e_1, \ldots, e_n\} such that c(e_1) \ge c(e_2) \ge \ldots \ge c(e_n);
F \leftarrow \emptyset:
for i := 1 to n do
 if F \cup \{e_i\} \in \mathcal{F} then F \leftarrow F \cup \{e_i\};
return F:
```

- - sort elements in descending order of costs
 - process them one by one

Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

```
Sort E := \{e_1, \ldots, e_n\} such that c(e_1) \ge c(e_2) \ge \ldots \ge c(e_n);
F \leftarrow \emptyset:
for i := 1 to n do
 if F \cup \{e_i\} \in \mathcal{F} then F \leftarrow F \cup \{e_i\};
return F:
```

- - sort elements in descending order of costs
 - process them one by one
 - add to solution if possible

Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

```
Sort E:=\{e_1,\ldots,e_n\} such that c(e_1)\geq c(e_2)\geq \ldots \geq c(e_n); F\leftarrow\emptyset; for i:=1 to n do \ \ \ \ \  if F\cup\{e_i\}\in\mathcal{F} then F\leftarrow F\cup\{e_i\}; return F:
```

- sort elements in descending order of costs
- process them one by one
- add to solution if possible
- ▶ blackbox independence oracle: if $e \in E \setminus F$ and $F \in \mathcal{F}$, is $F \cup \{e\} \in \mathcal{F}$?

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E, \mathcal{F}, c)

[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

```
Sort E:=\{e_1,\ldots,e_n\} such that c(e_1)\geq c(e_2)\geq \ldots \geq c(e_n); F\leftarrow\emptyset; for i:=1 to n do \ \ \ \ \  if F\cup\{e_i\}\in\mathcal{F} then F\leftarrow F\cup\{e_i\}; return F;
```

- sort elements in descending order of costs
- process them one by one
- add to solution if possible
- ▶ blackbox independence oracle: if $e \in E \setminus F$ and $F \in \mathcal{F}$, is $F \cup \{e\} \in \mathcal{F}$?
- concrete problem: focus on implementing oracle

Formalisation of Algorithm


```
locale Best-In-Greedy = matroid: Matroid-Specs
where set-empty = set-empty for set-empty :: 'set +
fixes carrier :: 'set and indep :: 'set ⇒ bool
  and sort-desc :: ('set ⇒ rat) ⇒ 'a list ⇒ 'a list
  and indep-oracle::'a ⇒ 'set ⇒ bool
```

Formalisation (Loop)


```
function BestInGreedy ::
    ('a, 'set) best-in-greedy-state
     ⇒ ('a, 'set) best-in-greedy-state
where
BestInGreedy state =
 (case (carrier-list state) of
  ] \Rightarrow state
  (x \# xs) \Rightarrow
  (if indep-oracle x (result state) then
      let new-result = (set-insert x (result state)) in
          BestInGreedy
           (state (carrier-list := xs, result := new-result))
   else BestInGreedy (state (carrier-list := xs))))
definition initial-state c order =
  (carrier-list = (sort-desc c order), result = set-empty)
```

Formalisation (Independence Oracle, simplified)

▶ if $e \in E \setminus F$ and $F \in \mathcal{F}$, is $F \cup \{e\} \in \mathcal{F}$?

- data structures to implement sets
- operations and behaviour specified by locale

```
locale Set = fixes empty :: 's fixes insert :: 'a \Rightarrow 's \Rightarrow 's fixes delete :: 'a \Rightarrow 's \Rightarrow 's ... fixes set :: 's \Rightarrow 'a set fixes invar :: 's \Rightarrow bool assumes set-empty: set empty = {} assumes set-insert: invar s \Rightarrow set(insert x s) = set s \cup {x} ...
```


- data structures to implement sets
- operations and behaviour specified by locale

```
locale Set =

fixes empty :: 's

fixes insert :: 'a \Rightarrow 's \Rightarrow 's

fixes delete :: 'a \Rightarrow 's \Rightarrow 's

...

fixes set :: 's \Rightarrow 'a set

fixes invar :: 's \Rightarrow bool

assumes set-empty: set empty = {}

assumes set-insert: invar s

\Rightarrow set(insert x s) = set s \cup {x}

...
```

▶ abstract data types [Wirth 1971, Hoare 1972, Liskov and Zilles 1974]

▶ same for other subprocedures, e.g. oracles

- same for other subprocedures, e.g. oracles
- instantiation to obtain executable algorithms for concrete problems, e.g. Kruskal's Algorithm (for MWF)

- same for other subprocedures, e.g. oracles
- instantiation to obtain executable algorithms for concrete problems, e.g. Kruskal's Algorithm (for MWF)
- generic for different implementations and matroids

- same for other subprocedures, e.g. oracles
- ▶ instantiation to obtain executable algorithms for concrete problems, e.g. Kruskal's Algorithm (for MWF)
- generic for different implementations and matroids
- ▶ stepwise refinement [Wirth 1971 + Hoare 1972]: replace instruction (e.g. $F \cup \{e\} \in \mathcal{F}$?) with more detailed instructions (e.g. does e add a cycle to F?)

Formalisation of the Oracle for Kruskal

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978]) Let (E,\mathcal{F}) be an independence system, with $c:E\to\mathbb{R}_+$. Let F be the output of BestInGreedy. Then $c(F)\!\geq\!q(E,\mathcal{F})\cdot\max_{X\in\mathcal{F}}c(X)$.

- $ightharpoonup q(E,\mathcal{F})$ is the *rank quotient*, a number associated with every independence system
- ▶ $q(E, \mathcal{F}) = 1$ iff (E, \mathcal{F}) is matroid

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])

Let (E,\mathcal{F}) be an independence system, with $c:E\to\mathbb{R}_+$. Let F be the output of BestInGreedy. Then $c(F){\ge}q(E,\mathcal{F})\cdot\max_{X\in\mathcal{F}}c(X)$.

- $ightharpoonup q(E,\mathcal{F})$ is the *rank quotient*, a number associated with every independence system
- ▶ $q(E, \mathcal{F}) = 1$ iff (E, \mathcal{F}) is matroid

Corollary

Let (E, \mathcal{F}) be a matroid, with $c: E \to \mathbb{R}_+$. BestInGreedy finds X with c(X) maximum.

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])

Let (E,\mathcal{F}) be an independence system, with $c:E\to\mathbb{R}_+$. Let F be the output of BestInGreedy. Then $c(F){\ge}q(E,\mathcal{F})\cdot\max_{X\in\mathcal{F}}c(X)$.

- $lackbox{ } q(E,\mathcal{F})$ is the *rank quotient*, a number associated with every independence system
- ▶ $q(E, \mathcal{F}) = 1$ iff (E, \mathcal{F}) is matroid

Corollary

Let (E, \mathcal{F}) be a matroid, with $c: E \to \mathbb{R}_+$. BestInGreedy finds X with c(X) maximum.

▶ different proof for Corollary 2 already formalised by Haslbeck, Lammich and Biendarra (2018, see AFP).

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978]) Let (E,\mathcal{F}) be an independence system. There exists a cost function $c:E\to\mathbb{R}_+$ s.t. for the output F of BestInGreedy, $c(F){=}q(E,\mathcal{F})\cdot\max_{X\in\mathcal{F}}c(X)$.

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978]) Let (E,\mathcal{F}) be an independence system. There exists a cost function $c:E\to\mathbb{R}_+$ s.t. for the output F of BestInGreedy, $c(F){=}q(E,\mathcal{F})\cdot\max_{X\in\mathcal{F}}c(X)$.

Theorem (Characterisation[Rado 1957, Edmonds 1971])

An independence system (E,\mathcal{F}) is a matroid if and only if BestInGreedy finds an optimal solution for the maximum weight independent set problem for (E,\mathcal{F},c) for all cost functions $c:E\to\mathbb{R}_+$.

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

Greedoids

Greedoids

Definition (Greedoid)

A ground set E and a family of independent sets $\mathcal{F}\subseteq\mathcal{P}(E)$ is a greedoid iff

M1. $\emptyset \in \mathcal{F}$

M3. $A \in \mathcal{F}$ and $B \in \mathcal{F}$ and |B| > |A| then $\exists x \in B \setminus A$. $A \cup \{x\} \in \mathcal{F}$

Properties of Greedoid Algorithm

Theorem (Korte and Vygen: Characterisation of Strong-Exchange Greedoids)

We fix a greedoid (E, \mathcal{F}) . GreedoidGreedy computes a maximum-weight basis in \mathcal{F} for any order of iteration $e_1, ..., e_n$ and any modular cost function $c: \mathcal{P}(E) \to \mathbb{R}$ iff (E, \mathcal{F}) has the strong exchange property (SEP).

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

lacktriangle two matroids (E,\mathcal{F}_1) and (E,\mathcal{F}_2)

- ▶ two matroids (E, \mathcal{F}_1) and (E, \mathcal{F}_2)
- ▶ find $X \in \mathcal{F}_1 \cap \mathcal{F}_2$ with maximum |X|

- ▶ two matroids (E, \mathcal{F}_1) and (E, \mathcal{F}_2)
- ▶ find $X \in \mathcal{F}_1 \cap \mathcal{F}_2$ with maximum |X|
- example: maximum cardinality bipartite matching

Optimality Criterion

Optimality Criterion

- ▶ for $X \in \mathcal{F}_1 \cap \mathcal{F}_2$, define G_X, S_X, T_X (omitted)
- use oracles

Optimality Criterion

- for $X \in \mathcal{F}_1 \cap \mathcal{F}_2$, define G_X, S_X, T_X (omitted)
- use oracles

Theorem (Optimality Criterion by Korte and Vygen)

X is a set of maximum cardinality in $\mathcal{F}_1 \cap \mathcal{F}_2$ iff G_X does not contain a path from some $s \in S_X$ to some $t \in T_X$.

```
definition is-max X = (indep1 X ∧ indep2 X ∧
  (∄ Y. indep1 Y ∧ indep2 Y ∧ card Y > card X))
theorem maximum-characterisation:
  is-max X ←→
  ¬ (∃ p x y. x ∈ S ∧ y ∈ T ∧
      (vwalk-bet (A1 ∪ A2) x p y ∨ x = y))
```


lacktriangle shortest S_X - T_X -paths in G_X of the form $x_0y_1x_1...y_ix_i$

- lacktriangle shortest S_X - T_X -paths in G_X of the form $x_0y_1x_1...y_ix_i$
- ▶ these are augmenting sequences: for $X \in \mathcal{F}_1 \cap \mathcal{F}_2$, $X \cup \{x_0, ..., x_i\} \setminus \{y_1, ..., y_i\} \in \mathcal{F}_1 \cap \mathcal{F}_2$

- lacktriangle shortest S_X - T_X -paths in G_X of the form $x_0y_1x_1...y_ix_i$
- ▶ these are augmenting sequences: for $X \in \mathcal{F}_1 \cap \mathcal{F}_2$, $X \cup \{x_0, ..., x_i\} \setminus \{y_1, ..., y_i\} \in \mathcal{F}_1 \cap \mathcal{F}_2$
- this is an augmentation

Intersection Algorithm: Idea

- lacktriangle shortest S_X - T_X -paths in G_X of the form $x_0y_1x_1...y_ix_i$
- ▶ these are augmenting sequences: for $X \in \mathcal{F}_1 \cap \mathcal{F}_2$, $X \cup \{x_0, ..., x_i\} \setminus \{y_1, ..., y_i\} \in \mathcal{F}_1 \cap \mathcal{F}_2$
- this is an augmentation

Algorithm 2: MaxMatroidIntersection(E, \mathcal{F}_1 , \mathcal{F}_2)

```
[Lawler 1975, Korte and Vygen]
```

```
Initialise X \leftarrow \emptyset:
while True do
   compute G_X: Initialise S_X \leftarrow \emptyset; T_X \leftarrow \emptyset; A_{X,1} \leftarrow \emptyset;
   A_{X,2} \leftarrow \emptyset;
   for y \in E \setminus X do
      if X \cup \{y\} \in \mathcal{F}_1 then S_X \leftarrow S_X \cup \{y\};
       else for x \in X do [ if X \setminus \{x\} \cup \{y\} \in \mathcal{F}_1 then
      A_{X,1} \leftarrow A_{X,1} \cup \{(x,y)\};
      if X \cup \{y\} \in \mathcal{F}_2 then T_X \leftarrow T_X \cup \{y\};
       else for x \in X do [ if X \setminus \{x\} \cup \{y\} \in \mathcal{F}_2 then
       A_{X,2} \leftarrow A_{X,2} \cup \{(y,x)\};
   if \exists path leading from S_X to T_X via the edges in
   A_{X,1} \cup A_{X,2} then
       find a shortest path P = x_0 y_1 x_1 ... y_s x_s leading from S_X to
       T_{\mathbf{Y}}:
       augment along P: X \leftarrow X \cup \{x_0, ..., x_s\} \setminus \{y_1, ..., y_s\};
   else return X as maximum cardinality set in \mathcal{F}_1 \cap \mathcal{F}_2;
```

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

greedoids formalised for the first time

- greedoids formalised for the first time
- maximum cardinality matroid intersection

- greedoids formalised for the first time
- maximum cardinality matroid intersection
- uses augmentation (common in combinatorial optimisation)

- greedoids formalised for the first time
- maximum cardinality matroid intersection
- uses augmentation (common in combinatorial optimisation)
- algorithmic characterisations of matroids and greedoids

executable algorithms obtained

- executable algorithms obtained
- integrated into an Isabelle/HOL library on combinatorial optimisation

- executable algorithms obtained
- integrated into an Isabelle/HOL library on combinatorial optimisation
- suitable for library: part of reasoning conducted at abstract level/algebraic point of view

- executable algorithms obtained
- integrated into an Isabelle/HOL library on combinatorial optimisation
- suitable for library: part of reasoning conducted at abstract level/algebraic point of view
- ▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs: 2.9K, instantiation: 3.5K)

- executable algorithms obtained
- integrated into an Isabelle/HOL library on combinatorial optimisation
- suitable for library: part of reasoning conducted at abstract level/algebraic point of view
- ▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs: 2.9K, instantiation: 3.5K)
- disadvantage: performance loss possible

methodology:

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
 - ► locales for stepwise refinement [Nipkow 2015, Abdulaziz, Mehlhorn and Nipkow 2019, Maric 2020]

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
 - ► locales for stepwise refinement [Nipkow 2015, Abdulaziz, Mehlhorn and Nipkow 2019, Maric 2020]
 - abstract data types by locales [Wirth 1971, Hoare 1972, Liskov and Zilles 1974]

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
 - ► locales for stepwise refinement [Nipkow 2015, Abdulaziz, Mehlhorn and Nipkow 2019, Maric 2020]
 - ▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov and Zilles 1974]
 - function package to model loops

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
 - ► locales for stepwise refinement [Nipkow 2015, Abdulaziz, Mehlhorn and Nipkow 2019, Maric 2020]
 - abstract data types by locales [Wirth 1971, Hoare 1972, Liskov and Zilles 1974]
 - function package to model loops
 - program states as records

- methodology:
 - ▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
 - ► locales for stepwise refinement [Nipkow 2015, Abdulaziz, Mehlhorn and Nipkow 2019, Maric 2020]
 - abstract data types by locales [Wirth 1971, Hoare 1972, Liskov and Zilles 1974]
 - function package to model loops
 - program states as records

THANK YOU!

Mohammad Abdulaziz Thomas Ammer

Shriya Meenakshisundaram Adem Rimpapa

