Séries numériques

Nature de séries à termes de signe constant

Exercice 1 [01020] [Correction]

Déterminer la nature des séries dont les termes généraux sont les suivants :

(a)
$$u_n = \frac{n}{n^2 + 1}$$

(c)
$$u_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$$

(b)
$$u_n = \frac{\operatorname{ch}(n)}{\operatorname{ch}(2n)}$$

(d)
$$u_n = e - \left(1 + \frac{1}{n}\right)^n$$

Exercice 2 [02353] [Correction]

Déterminer la nature des séries dont les termes généraux sont les suivants :

(a)
$$u_n = \left(\frac{n}{n+1}\right)^{n^2}$$
 (b) $u_n = \frac{1}{n\cos^2 n}$ (c) $u_n = \frac{1}{(\ln n)^{\ln n}}$

(b)
$$u_n = \frac{1}{n\cos^2 n}$$

(c)
$$u_n = \frac{1}{(\ln n)^{\ln n}}$$

Exercice 3 [03195] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \left(\frac{1}{n}\right)^{1 + \frac{1}{n}}.$$

Exercice 4 [02789] [Correction]

Nature de la série de terme général

$$\frac{e - \left(1 + \frac{1}{n}\right)^n}{n^{3/2} - \lfloor n^{3/2} \rfloor + n}.$$

Exercice 5 [03235] [Correction]

Soit $(u_n)_{n\geq 1}$ une suite de réels positifs. On considère la suite (v_n) définie par

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^{n} k u_k.$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature et qu'en cas de convergence

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n.$$

Exercice 6 [05025] [Correction]

Soit $\sum a_n$ une série convergente à termes strictement positifs. À quelle condition existe-t-il une suite (b_n) de réels strictement positifs telle que

$$\sum \frac{a_n}{b_n}$$
 et $\sum b_n$ convergent?

Nature de séries dépendant d'un paramètre

Exercice 7 [01081] [Correction]

Déterminer en fonction du paramètre $\alpha \in \mathbb{R}$ la nature des séries de termes généraux :

(a)
$$u_n = e^{-n^{\alpha}}$$

(b)
$$u_n = \frac{\ln n}{n^{\alpha}}$$

(b)
$$u_n = \frac{\ln n}{n^{\alpha}}$$
 (c) $u_n = \exp(-(\ln n)^{\alpha})$

Exercice 8 [01083] [Correction]

Soient $a, b \in \mathbb{R}$. Déterminer la nature de la série

$$\sum_{n\geq 1} (\ln(n) + a \ln(n+1) + b \ln(n+2)).$$

Calculer la somme lorsqu'il y a convergence.

Exercice 9 [01085] [Correction]

Déterminer une condition nécessaire et suffisante sur les réels a, b, c pour qu'il y ait convergence de la suite de terme général

$$\frac{a}{\sqrt{1}} + \frac{b}{\sqrt{2}} + \frac{c}{\sqrt{3}} + \frac{a}{\sqrt{4}} + \frac{b}{\sqrt{5}} + \frac{c}{\sqrt{6}} + \dots$$

Exercice 10 [01086] [Correction]

Soit λ un réel. Étudier la nature des séries de terme général

$$u_n = \frac{\lambda^n}{1 + \lambda^{2n}}, v_n = \frac{\lambda^{2n}}{1 + \lambda^{2n}}, w_n = \frac{1}{1 + \lambda^{2n}}.$$

Exercice 11 [02798] [Correction]

Soient $\alpha \in \mathbb{R}$ et $f \in \mathcal{C}^0([0;1],\mathbb{R})$ telle que $f(0) \neq 0$. Étudier la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha}} \int_0^{1/n} f(t^n) \, \mathrm{d}t.$$

Exercice 12 [02799] [Correction]

Soient $\alpha > 0$ et (u_n) une suite de réels strictement positifs vérifiant

$$u_n^{1/n} = 1 - \frac{1}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right).$$

La série de terme général u_n converge-t-elle?

Exercice 13 [01071] [Correction]

Soit a > 0.

(a) Déterminer la limite de la suite de terme général

$$u_n = \frac{a(a+1)\dots(a+n-1)}{n!}.$$

(b) Quelle est la nature de la série de terme général u_n ?

Exercice 14 [02429] [Correction]

On fixe $x \in \mathbb{R}_+^*$. Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \frac{n!}{x^n} \prod_{k=1}^n \ln\left(1 + \frac{x}{k}\right).$$

- (a) Étudier la suite de terme général $\ln(u_{n+1}) \ln(u_n)$. En déduire que la suite $(u_n)_{n\geq 1}$ converge et préciser sa limite.
- (b) Établir l'existence de $\alpha \in \mathbb{R}$ tel que la série de terme général :

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right)$$

converge.

- (c) Établir l'existence de $A \in \mathbb{R}^*$ tel que $u_n \sim An^{\alpha}$.
- (d) Étudier la convergence de la série de terme général u_n

Convergence de séries à termes positifs

Exercice 15 [03355] [Correction]

Soient $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs et $(v_n)_{n\in\mathbb{N}}$ la suite déterminée par

$$v_n = u_{2n} + u_{2n+1}.$$

Montrer:

$$\sum u_n$$
 converge $\iff \sum v_n$ converge.

Exercice 16 [01022] [Correction]

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs convergentes. Montrer que les suivantes sont aussi convergentes

$$\sum \max(u_n, v_n), \sum \sqrt{u_n v_n} \text{ et } \sum \frac{u_n v_n}{u_n + v_n}.$$

Exercice 17 [01023] [Correction]

Soit $\sum u_n$ une série à termes positifs convergente.

Montrer que
$$\sum \sqrt{u_n u_{n+1}}$$
 est aussi convergente.

Exercice 18 [03411] [Correction]

Soit a une suite de réels positifs. Comparer les assertions

- (i) la série de terme général a_n converge;
- (ii) la série de terme général $\sqrt{a_n a_{n+1}}$ converge.

Exercice 19 [01027] [Correction]

Soit (u_n) une suite de réels strictement positifs.

(a) Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{u_n}{1 + u_n}.$$

Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.

(b) Même question avec

$$v_n = \frac{u_n}{u_1 + \dots + u_n}.$$

On pourra étudier $ln(1-v_n)$ dans le cadre de la divergence.

Exercice 20 [03119] [Correction]

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ dans $(\mathbb{R}_+)^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, v_n = \frac{1}{1 + n^2 u_n}.$$

Montrer que si la série de terme général v_n converge alors la série de terme général u_n diverge.

Exercice 21 [03674] [Correction]

Soit $\sum a_n$ une série à termes strictement positifs convergente. Établir la convergence de la série $\sum a_n^{1-1/n}$.

Exercice 22 [02447] [Correction]

Soit $\sum a_n$ une série à termes positifs convergente. Peut-on préciser la nature de la série de terme général

$$u_n = a_0 a_1 \dots a_n$$
?.

Exercice 23 [02957] [Correction]

Soit (u_n) une suite réelle strictement positive, décroissante, de limite nulle. On suppose que la suite de terme général

$$\sum_{k=1}^{n} u_k - nu_n$$

est bornée.

Montrer que la série de terme général u_n converge.

Calcul de sommes

Exercice 24 [01048] [Correction]

Nature puis somme de la série

$$\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)}.$$

Exercice 25 [01047] [Correction]

On donne $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Calculer

$$\sum_{k=1}^{+\infty} \frac{1}{k^2(k+1)^2}$$

après en avoir justifié l'existence.

Exercice 26 [01050] [Correction]

Sachant $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$, calculer

$$\sum_{n=0}^{+\infty} \frac{n+1}{n!} \text{ et } \sum_{n=0}^{+\infty} \frac{n^2 - 2}{n!}.$$

Exercice 27 [02426] [Correction]

Calculer pour $x \in]-1;1[$

$$\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})}.$$

Exercice 28 [03448] [Correction]

Existence et valeur pour $m \ge 1$ de

$$S_m = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+m)}.$$

Exercice 29 [01057] [Correction]

Pour $p \in \mathbb{N}$, on pose

$$a_p = \sum_{n=0}^{+\infty} \frac{n^p}{2^n}.$$

- (a) Montrer que a_p existe puis exprimer a_p en fonction de a_0, \ldots, a_{p-1} .
- (b) En déduire que $a_p \in \mathbb{N}$.

Exercice 30 [05037] [Correction]

Soient $\alpha \in [2; +\infty[$ et (a_n) la suite définie par

$$a_0 = \alpha$$
 et $a_{n+1} = a_n^2 - 2$ pour tout $n \in \mathbb{N}$.

Montrer

$$\sum_{n=0}^{+\infty} \frac{1}{a_0 a_1 \dots a_n} = \frac{1}{2} \left(\alpha - \sqrt{\alpha^2 - 4} \right).$$

Quotient de deux termes successifs

Exercice 31 [01029] [Correction]

(Règle de Raabe-Duhamel) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs.

(a) On suppose qu'à partir d'un certain rang

$$\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

Montrer que $u_n = O(v_n)$.

(b) On suppose que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha > 1.$$

Montrer, à l'aide d'une comparaison avec une série de Riemann, que la série $\sum u_n$ converge.

(c) On suppose cette fois-ci que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha < 1.$$

Montrer que la série $\sum u_n$ diverge

Exercice 32 [02800] [Correction]

(a) Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites réelles, $\lambda\in\mathbb{R}$. On suppose :

$$\forall n \in \mathbb{N}, u_n \ge 0, \sum |v_n| \text{ converge et } \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + v_n.$$

Montrer que $(n^{\lambda}u_n)$ converge.

(b) Nature de la série de terme général

$$\frac{n^n}{n!\mathrm{e}^n}$$
 ?.

Exercice 33 [02516] [Correction]

Soient

$$u_n = \frac{1}{3^n n!} \prod_{k=1}^n (3k-2) \text{ et } v_n = \frac{1}{n^{3/4}}.$$

(a) Montrer que pour n assez grand,

$$\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}.$$

(b) En déduire que $\sum u_n$ diverge. (on pourra utiliser $\frac{u_n}{v_n}$)

Quotient terme sur somme

Exercice 34 [03750] [Correction]

Soit (u_n) une suite réelle strictement positive et convergeant vers 0. On pose

$$v_n = \frac{u_{n+1}}{S_n} \text{ avec } S_n = \sum_{k=0}^n u_k.$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature.

Exercice 35 [02956] [Correction]

Soit $(u_n)_{n\geq 1}$ une suite de réels strictement positifs.

On pose, pour $n \in \mathbb{N}^*$,

$$v_n = u_n/S_n$$
 où $S_n = u_1 + \dots + u_n$.

Déterminer la nature de $\sum v_n$.

Exercice 36 [02958] [Correction]

Soit (u_n) une suite réelle strictement positive telle que la série de terme général u_n converge.

On note le reste d'ordre n

$$R_n = \sum_{k=n+1}^{+\infty} u_k.$$

Étudier la nature des séries de termes généraux u_n/R_n et u_n/R_{n-1}

Exercice 37 [03716] [Correction]

Soit (a_n) une suite de réels strictement positifs et $S_n = \sum_{k=0}^n a_k$.

- (a) On suppose que la série $\sum a_n$ converge, donner la nature de $\sum a_n/S_n$.
- (b) On suppose que la série $\sum a_n$ diverge, montrer

$$\forall n \in \mathbb{N}^*, \frac{a_n}{S_n^2} \le \frac{1}{S_{n-1}} - \frac{1}{S_n}.$$

En déduire la nature de $\sum a_n/S_n^2$.

(c) On suppose toujours la divergence de la série $\sum a_n$. Quelle est la nature de $\sum a_n/S_n$?

Comportement asymptotique du terme d'une série convergente

Exercice 38 [03233] [Correction]

Soient (u_n) une suite décroissante de réels positifs et α un réel positif. On suppose la convergence de la série

$$\sum n^{\alpha}u_{n}.$$

Montrer

$$n^{\alpha+1}u_n \to 0.$$

Comparaison séries intégrales

Exercice 39 [00077] [Correction]

À l'aide d'une comparaison avec une intégrale, donner la nature de la série

$$\sum_{n\geq 2} \frac{1}{n\ln n}.$$

Exercice 40 [00664] [Correction]

Soit $a \in]0;1[$. Déterminer la nature de la série $\sum_{n\geq 0} a^{\sqrt{n}}$.

Exercice 41 [01068] [Correction]

Pour $\alpha > 1$ on pose

$$\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}.$$

Déterminer la limite de $(\alpha - 1)\zeta(\alpha)$ quand α tend vers 1⁺

Exercice 42 [01061] [Correction]

En exploitant une comparaison avec des intégrales, établir :

(a)
$$\sum_{k=1}^{n} \sqrt{k} \sim \frac{2}{3} n \sqrt{n}$$
 (b) $\ln(n!) \sim n \ln n$

(b)
$$\ln(n!) \sim n \ln n$$

(c)
$$\sum_{k=2}^{n} \frac{1}{k \ln k} \sim \ln(\ln n)$$

Exercice 43 [01069] [Correction]

En exploitant une comparaison série-intégrale, déterminer

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}.$$

Exercice 44 [02431] [Correction]

Soit a > 0, b > 0 et pour $n \in \mathbb{N}^*$,

$$A_n = \frac{1}{n} \sum_{k=1}^{n} (a+bk), B_n = \prod_{k=1}^{n} (a+bk)^{1/n}.$$

Trouver $\lim_{n\to+\infty} \frac{B_n}{A_n}$ en fonction de e.

Nature de séries dépendant d'un paramètre via comparaison intégrale

Exercice 45 [02792] [Correction]

Nature de la série de terme général

$$\frac{n^{\alpha}}{\sum_{k=2}^{n} \ln^2 k}$$

où α est réel

Exercice 46 [03104] [Correction]

On note a_n le nombre de chiffres dans l'écriture décimale de l'entier $n \geq 1$. Pour quelles valeurs de $x \in \mathbb{R}$ y a-t-il convergence de la série

$$\sum \frac{x^{a_n}}{n^3}?$$

Exercice 47 [01082] [Correction]

Étudier en fonction de $\alpha \in \mathbb{R}$ la nature de

$$\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln n}.$$

Exercice 48 [01062] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \frac{1}{n(\ln n)^{\alpha}}.$$

Exercice 49 [02795] [Correction]

Soit $\alpha \in \mathbb{R}^*$. On pose, pour $n \in \mathbb{N}^*$

$$u_n = \frac{1}{\sum_{k=1}^n k^{\alpha}}.$$

Nature de la série de terme général u_n ?

Etude asymptotique

Exercice 50 [01059] [Correction]

Soit $\alpha < 1.$ Déterminer un équivalent de

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}}.$$

Exercice 51 [01060] [Correction]

Soit $\alpha > 1$. Donner un équivalent simple à

$$R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^{\alpha}}.$$

Exercice 52 [01032] [Correction]

Montrer la convergence de

$$\sum_{k=0}^{+\infty} \frac{1}{k!}$$

puis la majoration du reste

$$\sum_{k=n+1}^{+\infty} \frac{1}{k!} \le \frac{1}{n \cdot n!}.$$

Série dont le terme est défini par récurrence

Exercice 53 [01097] [Correction]

Soit (u_n) la suite définie par $u_0 \in [0; \pi]$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 1 - \cos u_n.$$

Montrer que $u_n \to 0$ et déterminer la nature de la série de terme général u_n .

Exercice 54 [01098] [Correction]

Soit (u_n) la suite définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{1 + u_n}$$
.

Montrer que (u_n) converge vers un réel ℓ .

Quelle est la nature de la série de terme général $u_n - \ell$?

Exercice 55 [01099] [Correction]

Soient $u_0 \in]0; \pi/2[$ et $u_{n+1} = \sin u_n$ pour tout $n \in \mathbb{N}$.

- (a) Montrer que $u_n \to 0^+$.
- (b) Exploiter $u_{n+1} u_n$ pour montrer que $\sum_{n \geq 0} u_n^3$ converge.
- (c) Exploiter $\ln u_{n+1} \ln u_n$ pour montrer que $\sum_{n>0} u_n^2$ diverge.

Application à l'étude de suites

Exercice 56 [01070] [Correction]

Calculer la limite de

$$u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2}\right).$$

Exercice 57 [02809] [Correction]

On pose

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n}.$$

- (a) Montrer que la suite (a_n) converge et trouver sa limite λ .
- (b) Trouver un équivalent simple de $a_n \lambda$.

Exercice 58 [01072] [Correction]

Pour tout $n \in \mathbb{N}$, soit

$$u_n = \frac{(2n)!}{(2^n n!)^2}.$$

(a) Déterminer un équivalent de

$$\ln u_{n+1} - \ln u_n.$$

En déduire que $u_n \to 0$.

(b) En s'inspirant de ce qui précède, établir que $\sqrt{n}u_n \to C > 0$ (on ne cherchera pas expliciter la valeur de C).

Exercice 59 [01073] [Correction]

Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \frac{(2n)!}{(2^n n!)^2}.$$

- (a) Déterminer un équivalent de $\ln u_{n+1} \ln u_n$. En déduire que $u_n \to 0$.
- (b) Montrer que $nu_n \to +\infty$. En déduire la nature de la série $\sum u_n$.
- (c) On pose $v_n = \frac{u_n}{n+1}$. En observant et en sommant les égalités $(2k+4)v_{k+1} = (2k+1)v_k$ calculer $T_n = \sum_{k=0}^n v_k$ en fonction de n et v_{n+1} . En déduire la valeur de

$$\sum_{n=0}^{+\infty} \frac{u_n}{n+1}.$$

Exercice 60 [01078] [Correction]

Soient 0 < a < b et $(u_n)_{n \in \mathbb{N}}$ une suite strictement positive telle que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}.$$

- (a) Montrer que $u_n \xrightarrow[n \to +\infty]{} 0$. On pourra étudier $\ln(u_n)$
- (b) Soient $\alpha \in \mathbb{R}$ et $v_n = n^{\alpha}u_n$. En étudiant $(v_n)_{n\geq 1}$, montrer qu'il existe A>0 tel que

$$u_n \underset{n \to +\infty}{\sim} \frac{A}{n^{b-a}}.$$

(c) On suppose b-a>1. En écrivant

$$(n+1)u_{n+1} - nu_n = au_n + (1-b)u_{n+1}$$

donner la valeur de la somme

$$\sum_{n=0}^{+\infty} u_n.$$

Exercice 61 [01080] [Correction]

Soit (u_n) une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$$
, avec $\alpha \in \mathbb{R}$.

(a) Pour quel(s) $\beta \in \mathbb{R}$ y a-t-il convergence de la série de terme général

$$v_n = \ln \frac{(n+1)^{\beta} u_{n+1}}{n^{\beta} u_n}$$
?.

(b) En déduire qu'il existe $A \in \mathbb{R}_{+}^{*}$ pour lequel

$$u_n \sim An^{\alpha}$$
.

Exercice 62 [01079] [Correction]

Pour $\alpha \in \mathbb{R} \setminus \mathbb{Z}^{-*}$, on considère $(u_n)_{n \geq 1}$ définie par

$$u_1 = 1$$
 et $u_{n+1} = (1 + \alpha/n)u_n$.

(a) Pour quel(s) $\beta \in \mathbb{R}$ y a-t-il convergence de la série de terme général

$$v_n = \ln\left(\frac{(n+1)^{\beta} u_{n+1}}{n^{\beta} u_n}\right)?.$$

(b) En déduire qu'il existe $A \in \mathbb{R}_+^*$ pour lequel $u_n \sim An^{\alpha}$.

Exercice 63 [01074] [Correction]

Montrer que

$$u_n = \frac{n! e^n}{n^{n+1/2}}$$

a une limite non nulle.

Exercice 64 [02784] [Correction]

Soit $u_0 \in]0; 2\pi[$ puis

$$\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n/2).$$

- (a) Montrer que (u_n) tend vers 0.
- (b) Montrer que $\lim_{n \to \infty} (2^n u_n) = A$ pour un certain A > 0.
- (c) Trouver un équivalent simple de $(u_n A2^{-n})$.

Exercice 65 [03047] [Correction]

Soit (u_n) une suite complexe telle que pour tout $p \in \mathbb{N}^*$, $u_{pn} - u_n \to 0$. Peut-on affirmer que la suite (u_n) converge?

Exercice 66 [02949] [Correction]

Étudier la limite quand $n \to +\infty$ de

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n}.$$

Corrections

Exercice 1 : [énoncé]

(a) On a

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Par équivalence de séries à termes positifs, la série $\sum u_n$ diverge.

(b) On sait $ch(n) \sim e^n/2$ quand n tend vers $+\infty$ et donc

$$u_n \underset{n \to +\infty}{\sim} \frac{e^n}{e^{2n}} = e^{-n}.$$

Par équivalence de séries à termes positifs, la série $\sum u_n$ converge (la série de terme général e^{-n} est géométrique de raison $e^{-1} \in [0;1[)$.

(c) Après réduction au même dénominateur et multiplication par la quantité conjuguée,

$$u_n = \frac{2}{\sqrt{n^2 - 1} + \sqrt{n^2 + 1}} \cdot \frac{1}{\sqrt{n^2 - 1}\sqrt{n^2 + 1}} \underset{n \to +\infty}{\sim} \frac{1}{n^3}.$$

Par équivalence de séries à termes positifs, la série $\sum u_n$ converge.

(d) Par développement limité,

$$\left(1 + \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right) = e - \frac{1}{2} \cdot \frac{e}{n} + o\left(\frac{1}{n}\right).$$

On a donc

$$u_n \underset{n \to +\infty}{\sim} \frac{\mathrm{e}}{2n}.$$

Par équivalence de séries à termes positifs (au moins à partir d'un certain rang), la série $\sum u_n$ diverge.

Exercice 2: [énoncé]

- (a) $u_n = \exp(-n^2 \ln(1+1/n)) = \exp(-n + o(n))$ donc $n^2 u_n \xrightarrow[n \to +\infty]{} 0$ et la série est absolument convergente.
- (b) $u_n \ge 1/n$ donc par comparaison de séries à termes positifs, la série est divergente.
- (c) $n^2 u_n = \frac{n^2}{(\ln n)^{\ln n}} = e^{2\ln(n) \ln(n)\ln(\ln n)} \xrightarrow[n \to +\infty]{} 0$ donc la série est absolument convergente

Exercice 3: [énoncé]

On a

$$nu_n = \left(\frac{1}{n}\right)^{1/n} = \exp\left(-\frac{1}{n}\ln n\right) \to 1$$

donc pour n assez grand

$$u_n \ge \frac{1}{2n}$$

et par comparaison de série à termes positifs on peut affirmer que $\sum u_n$ diverge.

Exercice 4 : [énoncé]

On a

$$e - \left(1 + \frac{1}{n}\right)^n = O\left(\frac{1}{n}\right)$$

 $_{
m et}$

$$n^{3/2} - |n^{3/2}| + n = n + O(1) \sim n$$

 $_{
m donc}$

$$\frac{\mathrm{e} - \left(1 + \frac{1}{n}\right)^n}{n^{3/2} - \lfloor n^{3/2} \rfloor + n} = \mathrm{O}\left(\frac{1}{n^2}\right)$$

ce qui permet de conclure à une absolue convergence.

Exercice 5: [énoncé]

Par permutation de sommes

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} \sum_{n=k}^{N} \frac{ku_k}{n(n+1)}$$

donc

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} k u_k \sum_{n=k}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{k=1}^{N} \frac{N+1-k}{N+1} u_k$$

et donc

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} u_k - Nv_N.$$

Supposons que la série $\sum u_n$ converge

Puisque $\sum v_n$ est une série à termes positifs et que ses sommes partielles sont majorée car

$$\sum_{n=1}^{N} v_n \le \sum_{k=1}^{N} u_k \le \sum_{k=1}^{+\infty} u_k$$

la série $\sum v_n$ converge.

Supposons que la série $\sum v_n$ converge.

On a

$$nv_n = \sum_{k=1}^{n} u_k - \sum_{k=1}^{n} v_k$$

donc par croissance des sommes partielles d'une série à termes positifs, la suite (nv_n) admet une limite $\ell \in \mathbb{R} \cup \{+\infty\}$.

Si cette limite est non nulle, la série $\sum v_n$ diverge ce qui est contraire à l'hypothèse initiale. On en déduit

$$nv_n \to 0$$

donc

$$\sum_{k=1}^{N} u_k = \sum_{n=1}^{N} v_n + Nu_n \to \sum_{n=1}^{+\infty} v_n.$$

Ainsi $\sum u_n$ converge et

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n.$$

Exercice 6: [énoncé]

Supposons qu'une telle suite existe. On remarque

$$\sqrt{a_n} = \sqrt{\frac{a_n}{b_n}} \sqrt{b_n} \le \frac{1}{2} \left(\frac{a_n}{b_n} + b_n \right)$$

Par comparaison de séries à termes positifs, on peut affirmer la convergence de $\sum \sqrt{a_n}$.

Inversement, si $\sum \sqrt{a_n}$ converge, la suite $(b_n) = (\sqrt{a_n})$ résout le problème posé.

Exercice 7: [énoncé]

- (a) Si $\alpha \leq 0$, il y a divergence grossière. Si $\alpha > 0$ alors $n^2 u_n \to 0$ et la série est absolument convergente.
- (b) Si $\alpha \le 1$ alors $u_n \ge 1/n$ pour n assez grand et il y a divergence par comparaison de séries à termes positifs.

Si $\alpha > 1$ alors pour $\gamma \in [1; \alpha[$ on a $n^{\gamma}u_n \to 0$ et il y a absolue convergence.

(c) Si $\alpha \leq 1$ alors $u_n \geq 1$ et la série est grossièrement divergente. Si $\alpha > 1$ alors $n^2 u_n = \exp(2 \ln n - (\ln n)^{\alpha}) \to 0$ donc la série est absolument convergente.

Exercice 8 : [énoncé]

On a

$$\ln n + a \ln(n+1) + b \ln(n+2) = (1+a+b) \ln n + \frac{a+2b}{n} + O\left(\frac{1}{n^2}\right).$$

Il y a convergence si, et seulement si, 1+a+b=0 et a+2b=0 ce qui correspond à a=-2 et b=1.

Dans ce cas:

$$\sum_{n=1}^{N} \ln n + a \ln(n+1) + b \ln(n+2) = \sum_{n=1}^{N} \ln n - 2 \sum_{n=2}^{N+1} \ln n + \sum_{n=3}^{N+2} \ln n$$

puis

$$\sum_{n=1}^{N} \ln n + a \ln(n+1) + b \ln(n+2) = \ln 1 + \ln 2 - 2 \ln 2 - 2 \ln(N+1) + \ln(N+1) + \ln(N+2) \rightarrow -\ln 2 - 2 \ln 2 - 2 \ln(N+1) + \ln(N+2) \rightarrow -\ln 2 - 2 \ln(N+2) + \ln(N$$

Exercice 9: [énoncé]

Posons u_n le terme général de la suite étudiée.

$$u_{3n+3} = \sum_{k=1}^{n} \frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}}.$$

Or

$$\frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}} = \frac{a+b+c}{\sqrt{3k}} + o\left(\frac{1}{\sqrt{k}}\right)$$

donc a + b + c = 0 est une condition nécessaire pour la convergence de (u_{3n+3}) et donc a fortiori pour la convergence de (u_n) . Inversement si cette condition est satisfaite alors

$$\frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}} = O\left(\frac{1}{k\sqrt{k}}\right)$$

et donc (u_{3n+3}) converge.

De plus $u_{3n+1} = u_{3n+3} + o(1)$ et $u_{3n+2} = u_{3n+3} + o(1)$ donc les trois suites (u_{3n+1}) , (u_{3n+2}) et (u_{3n+3}) convergent vers une même limite, on peut donc conclure que (u_n) converge.

Exercice 10: [énoncé]

Si $|\lambda| = 1$ il y a divergence grossière dans les trois cas.

Si $|\lambda| > 1$ alors $u_n \sim \frac{1}{\lambda^n}$, $v_n \sim 1$ et $w_n \sim \frac{1}{\lambda^{2n}}$. Les séries $\sum u_n$ et $\sum w_n$ convergent et $\sum v_n$ diverge.

Si $|\lambda| < 1$ alors $u_n \sim \lambda^n$, $v_n \sim \lambda^{2n}$ et $w_n \sim 1$. Les séries $\sum u_n$ et $\sum v_n$ convergent tandis que $\sum w_n$ diverge.

Exercice 11: [énoncé]

Pour $t \in [0; 1/n]$, on peut affirmer $t^n \in [0; 1/n]$ donc

$$\left| \int_0^{1/n} f(t^n) \, \mathrm{d}t - \frac{1}{n} f(0) \right| \leq \frac{1}{n} \sup_{t \in [0; 1/n]} \left| f(t) - f(0) \right|.$$

Par continuité de f en 0, on peut affirmer,

$$\sup_{t \in [0;1/n]} |f(t) - f(0)| \to 0$$

et donc

$$\int_0^{1/n} f(t^n) \, \mathrm{d}t \sim \frac{1}{n} f(0).$$

Ainsi

$$u_n \sim \frac{f(0)}{n^{\alpha+1}}$$

et $\sum u_n$ converge si, et seulement si, $\alpha > 0$.

Exercice 12: [énoncé]

On a

$$u_n = \left(1 - \frac{1}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right)\right)^n = \exp\left(-\frac{1}{n^{\alpha - 1}} + o\left(\frac{1}{n^{\alpha - 1}}\right)\right).$$

Si $\alpha \geq 1$ alors (u_n) ne tend pas vers zéro et $\sum u_n$ est grossièrement divergente. Si $\alpha \in]0;1[$ alors $n^2u_n \to 0$ et $\sum u_n$ est convergente.

Exercice 13: [énoncé]

(a) $u_n > 0$ et

$$\ln u_n = \sum_{k=1}^n \ln \left(1 + \frac{a-1}{k} \right).$$

Si a = 1 alors $u_n = 1 \to 1$,.

Si a > 1 alors

$$\ln\left(1 + \frac{a-1}{k}\right) \sim \frac{a-1}{k}$$

donc $\ln u_n \to +\infty$ puis $u_n \to +\infty$.

Si a < 1 alors $\ln u_n \to -\infty$ et donc $u_n \to 0$.

(b) Si $a \ge 1$ il y a divergence grossière de la série. Si $a \in [0; 1[$ alors

$$\ln u_n \sim \sum_{k=1}^{n} \frac{a-1}{k} = (a-1) \ln n$$

et donc

$$\ln(ku_n) = \ln k + (a-1)\ln k + o(\ln k) \sim a\ln k \to +\infty.$$

Ainsi $ku_n \to +\infty$ et à partir d'un certain rang $u_n \ge 1/k$. La série de terme général u_n s'avère divergente

Exercice 14: [énoncé]

(a)

$$\ln u_{n+1} - \ln u_n \sim -\frac{1}{2} \frac{x}{n}$$

avec x > 0 donc

$$\sum_{k=1}^{n} \ln u_{k+1} - \ln u_k \to -\infty$$

puis $u_n \to 0$.

(b) Pour $\alpha = -x/2$,

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right) = O\left(\frac{1}{n^2}\right)$$

donc il y a convergence de

$$\sum \ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right).$$

(c) Puisque

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right) = \ln\frac{u_{n+1}}{(n+1)^{\alpha}} - \ln\frac{u_n}{n^{\alpha}}$$

la suite de terme général $\ln \frac{u_n}{n^{\alpha}}$ converge puis $\frac{u_n}{n^{\alpha}} \to A$ avec A > 0.

(d) Par comparaison de séries à termes positifs, $\sum u_n$ converge si, et seulement si, $\alpha < -1$ i.e. x > 2.

Exercice 15: [énoncé]

Supposons la convergence de la série $\sum u_n$.

Pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} v_k = \sum_{k=0}^{n} (u_{2k} + u_{2k+1}) = \sum_{k=0}^{2n+1} u_k \le \sum_{k=0}^{+\infty} u_k.$$

Puisque $\sum v_n$ est une série à termes positifs dont les sommes partielles sont majorées, celle-ci converge.

Supposons la convergence de la série $\sum v_n$. Pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} u_k \le \sum_{k=0}^{\lfloor n/2 \rfloor} v_k \le \sum_{k=0}^{+\infty} v_k.$$

Puisque $\sum u_n$ est une série à termes positifs dont les sommes partielles sont majorées, celle-ci converge. En substance, on observe aussi

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} v_n.$$

Exercice 16: [énoncé]

On exploite les comparaisons

$$\max(u_n, v_n) \le u_n + v_n, \sqrt{u_n v_n} \le \frac{1}{2}(u_n + v_n)$$

(obtenue par $2ab \le (a^2 + b^2)$)

et

$$\frac{u_n v_n}{u_n + v_n} = \frac{u_n}{u_n + v_n} v_n \le v_n.$$

Par comparaison de série à termes positifs on peut alors conclure.

Exercice 17: [énoncé]

Puisque $2ab < a^2 + b^2$ on a

$$\sqrt{u_n u_{n+1}} \le \frac{1}{2} (u_n + u_{n+1})$$

or $\sum u_n$ et $\sum u_{n+1}$ convergent donc, par comparaison de séries à termes positifs, $\sum \sqrt{u_n u_{n+1}}$ converge.

Exercice 18: [énoncé]

On a immédiatement (i) \Longrightarrow (ii) par comparaison de série à termes positifs sachant

$$\sqrt{a_n a_{n+1}} \le \frac{1}{2} (a_n + a_{n+1}).$$

La réciproque est fausse, il suffit pour l'observe de considérer la suite a donnée par

$$a_{2p} = 1 \text{ et } a_{2p+1} = \frac{1}{p^4}.$$

Exercice 19: [énoncé]

- (a) Si $\sum u_n$ converge alors $u_n \to 0$ et $v_n \sim u_n$ donc $\sum v_n$ converge par équivalence de série à termes positifs. Si $\sum v_n$ converge alors $v_n \to 0$ et aisément $u_n \to 0$ donc $v_n \sim u_n$ et on conclut comme ci-dessus.
- (b) Si $\sum u_n$ converge et est de somme S alors $v_n \sim u_n/S$ et on peut conclure. Si $\sum u_n$ diverge alors

$$\sum_{n=2}^{N} \ln(1 - v_n) = \ln\left(\frac{u_1}{u_1 + \dots + u_N}\right) \to -\infty.$$

Si $v_n \to 0$, $\ln(1-v_n) \sim -v_n$ donc $\sum v_n$ diverge car les séries sont de signe constant.

Si $v_n \not\to 0$, $\sum v_n$ diverge grossièrement.

Exercice 20 : [énoncé]

Supposons la série $\sum v_n$ convergente. On a $v_n \to 0^+$ donc $1 + n^2 u_n \to +\infty$ et on en déduit

 $v_n \sim \frac{1}{n^2 u_n}$

puis

$$\sqrt{u_n v_n} \sim \frac{1}{n}$$
.

Par comparaison de séries à termes positifs, il y a divergence de la série $\sum \sqrt{u_n v_n}$. Or, par l'inégalité de Cauchy-Schwarz

$$\left(\sum_{k=0}^{n} \sqrt{u_k v_k}\right)^2 \le \sum_{k=0}^{n} u_n \sum_{k=0}^{n} v_k \le \sum_{k=0}^{n} u_n \sum_{k=0}^{+\infty} v_k.$$

On en déduit la divergence de la série $\sum u_n$.

Exercice 21 : [énoncé]

Pour n > 2, on observe

$$a_n^{1-1/n} \le 2a_n \iff a_n \ge \frac{1}{2^n}$$

et donc

$$a_n^{1-1/n} \le \max(2a_n, \frac{1}{(2^n)^{1-1/n}}) \le 2\left(a_n + \frac{1}{2^n}\right).$$

Par comparaison de séries à termes positifs, on peut conclure à la convergence de $\sum a_n^{1-1/n}$

Exercice 22: [énoncé]

La série de terme général u_n est convergente.

En effet, puisque $\sum a_n$ converge, $a_n \to 0$ et donc il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geq N, a_n \leq 1.$$

En posant $M = a_0 a_1 \dots a_{N-1}$, on peut écrire pour tout n > N

$$0 \le u_n \le Ma_N \dots a_{n-1} a_n \le Ma_n.$$

Par comparaison de série à termes positifs, on obtient la convergence voulue.

Exercice 23 : [énoncé] Posons $v_n = \sum_{k=1}^n u_k - nu_n$. On a

$$v_{n+1} - v_n = n(u_n - u_{n+1}) \ge 0.$$

La suite (v_n) est croissante et majorée donc convergente. Posons ℓ sa limite. On a

$$u_n - u_{n+1} = \frac{1}{n}(v_{n+1} - v_n)$$

donc

$$\sum_{k=n}^{+\infty} (u_k - u_{k+1}) = \sum_{k=n}^{+\infty} \frac{1}{k} (v_{k+1} - v_k) \le \frac{1}{n} \sum_{k=n}^{+\infty} (v_{k+1} - v_k)$$

ce qui donne

$$u_n \le \frac{1}{n}(\ell - v_n).$$

On en déduit $0 \le nu_n \le \ell - v_n$ et donc $nu_n \to 0$ puis $\sum_{k=1}^n u_k \to \ell$. Finalement $\sum u_n$ converge.

Exercice 24 : [énoncé]

$$\frac{1}{n(n+1)(n+2)} \sim \frac{1}{n^3}$$

donc la série converge

Par décomposition en éléments simples

$$\frac{1}{n(n+1)(n+2)} = \frac{1/2}{n} - \frac{1}{n+1} + \frac{1/2}{n+2}$$

puis après télescopage

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}.$$

Exercice 25 : [énoncé]

On a

$$\frac{1}{k^2(k+1)^2} \sim \frac{1}{k^4}$$

donc la série converge.

Par décomposition en éléments simples

$$\frac{1}{k^2(k+1)^2} = \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{2}{k+1} - \frac{2}{k}$$

donc

$$\sum_{k=1}^{N} \frac{1}{k^2(k+1)^2} = \sum_{k=1}^{N} \frac{1}{k^2} + \sum_{k=1}^{N+1} \frac{1}{k^2} - 1 + 2\sum_{k=2}^{N+1} \frac{1}{k} - 2\sum_{k=1}^{N} \frac{1}{k} \xrightarrow[N \to +\infty]{} \frac{\pi^2}{3} - 3.$$

Exercice 26: [énoncé]

D'une part

$$\sum_{n=0}^{+\infty} \frac{n+1}{n!} = \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{1}{n!} = 2e.$$

D'autre part

$$\sum_{n=0}^{+\infty} \frac{n^2 - 2}{n!} = \sum_{n=0}^{+\infty} \frac{n(n-1) + n - 2}{n!} = \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} + \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} - 2\sum_{n=0}^{+\infty} \frac{1}{n!} = 0.$$

Exercice 27: [énoncé]

L'absolue convergence de la série est assurée par l'équivalent

$$\frac{x^n}{(1-x^n)(1-x^{n+1})} \underset{n \to +\infty}{\sim} x^n \quad \text{avec} \quad |x| < 1.$$

On a

$$(1-x)\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})} = \sum_{n=1}^{+\infty} \frac{x^n - x^{n+1}}{(1-x^n)(1-x^{n+1})}$$
$$= \sum_{n=1}^{+\infty} \left(\frac{1}{(1-x^n)} - \frac{1}{(1-x^{n+1})}\right).$$

Par télescopage,

$$\sum_{n=1}^{N} \left(\frac{1}{(1-x^n)} - \frac{1}{(1-x^{n+1})} \right) = \frac{1}{1-x} - \frac{1}{1-x^{N+1}} \xrightarrow[N \to +\infty]{} \frac{1}{1-x} - 1.$$

On obtient donc

$$\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})} = \frac{x}{(1-x)^2}.$$

Exercice 28: [énoncé]

On a

$$m \times \frac{1}{n(n+1)\dots(n+m)} = \frac{1}{n(n+1)\dots(n+m-1)} - \frac{1}{(n+1)\dots(n+m)}$$

Après télescopage

$$m\sum_{n=1}^{N} \frac{1}{n(n+1)\dots(n+m)} = \frac{1}{m!} - \frac{1}{(N+1)\dots(N+m)}$$

donc, sachant $m \geq 1$,

$$m\sum_{n=1}^{N} \frac{1}{n(n+1)\dots(n+m)} \xrightarrow[N \to +\infty]{} \frac{1}{m \cdot m!} = S_m.$$

Exercice 29: [énoncé]

(a) a_p existe car, par croissances comparées.

$$n^2 \times \frac{n^p}{2^n} = \frac{n^{p+2}}{2^n} \xrightarrow[n \to +\infty]{} 0.$$

Par glissement d'indice

$$a_p = \sum_{n=0}^{+\infty} \frac{(n+1)^p}{2^{n+1}} = \frac{1}{2} \left(a_p + \binom{p}{1} a_{p-1} + \dots + \binom{p}{p} a_0 \right)$$

donc

$$a_p = \binom{p}{1} a_{p-1} + \dots + \binom{p}{p} a_0.$$

(b) Par un récurrence aisée $a_p \in \mathbb{N}$ pour tout $p \in \mathbb{N}$.

Exercice 30: [énoncé]

Commençons par étudier brièvement la suite (a_n) .

Pour tout x > 2, on remarque $x^2 - 2 > 2$ de sorte que l'on vérifie par récurrence que tous les termes de la suite (a_n) appartiennent à $|2;+\infty[$. De plus,

$$a_{n+1} - a_n = a_n^2 - a_n - 2 = (a_n + 1)(a_n - 2) > 0$$
 pour tout $n \in \mathbb{N}$

ce qui assure la suite (a_n) est croissante. Par l'absurde, si celle-ci converge vers un réel ℓ , on obtient l'égalité $\ell=\ell^2-2$ en passant à la limite la relation de récurrence. On en déduit $\ell=-1$ ou $\ell=2$. Cependant, par croissance, on a aussi $\ell \geq a_0 = \alpha > 2$. C'est absurde.

En résumé, on peut affirmer que la suite (a_n) croît vers $+\infty$.

Exprimons ensuite les sommes partielles de la série étudiée. Pour $n \geq 1$, on observe

$$\frac{1}{a_0 a_1 \dots a_n} = \frac{1}{2} \cdot \frac{a_n^2 - a_{n+1}}{a_0 a_1 \dots a_n} = \frac{1}{2} \left(\frac{a_n}{a_0 a_1 \dots a_{n-1}} - \frac{a_{n+1}}{a_0 a_1 \dots a_n} \right).$$

Pour tout $N \geq 1$, on a alors après simplification

$$\sum_{n=0}^{N} \frac{1}{a_0 a_1 \dots a_n} = \frac{1}{a_0} + \frac{1}{2} \sum_{n=1}^{N} \left(\frac{a_n}{a_0 a_1 \dots a_{n-1}} - \frac{a_{n+1}}{a_0 a_1 \dots a_n} \right)$$

$$= \frac{1}{a_0} + \frac{1}{2} \left(\frac{a_1}{a_0} - \frac{a_{N+1}}{a_0 a_1 \dots a_N} \right) = \frac{\alpha}{2} - \frac{1}{2} \cdot \frac{a_{N+1}}{a_0 a_1 \dots a_N}.$$

Pour conclure, il suffit d'établir

$$\frac{a_{N+1}}{a_0 a_1 \dots a_N} \xrightarrow[N \to +\infty]{} \sqrt{\alpha^2 - 4}.$$

Après un peu de recherche inspirée par la limite souhaitée, on observe

$$a_{n+1}^2 - 4 = a_n^2 (a_n^2 - 4).$$

Pour tout $N \in \mathbb{N}$,

$$a_0^2 a_1^2 \dots a_N^2 = \frac{a_1^2 - 4}{a_0^2 - 4} \times \frac{a_2^2 - 4}{a_1^2 - 4} \times \dots \times \frac{a_{N+1}^2 - 4}{a_N^2 - 4} = \frac{a_{N+1}^2 - 4}{a_0^2 - 4}$$

et par conséquent

$$\frac{a_{N+1}}{a_0 a_1 \dots a_N} = \sqrt{a_0^2 - 4} \cdot \frac{a_{N+1}}{\sqrt{a_{N+1}^2 - 4}} \xrightarrow[N \to +\infty]{} \sqrt{\alpha^2 - 4}.$$

Exercice 31: [énoncé]

(a) Via télescopage, on obtient pour tout $n \geq N$

$$0 < u_n \le \frac{u_N}{v_N} v_n$$

donc $u_n = O(v_n)$.

(b) Soit $1 < \beta < \alpha$ et $v_n = \frac{1}{n^{\beta}}$

$$\frac{v_{n+1}}{v_n} = \frac{1}{\left(1 + \frac{1}{n}\right)^{\beta}} = 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right).$$

À partir d'un certain rang

$$\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$$

donc $u_n = O(v_n)$ or $\sum v_n$ converge absolument donc $\sum u_n$ aussi.

(c) Pour n assez grand

$$\frac{u_{n+1}}{u_n} \ge 1 - \frac{1}{n+1} = \frac{1/(n+1)}{1/n}$$

donc

$$\frac{1}{n} = \mathcal{O}(u_n).$$

Puisque la série $\sum 1/n$ est divergente, un argument de comparaison de séries à termes positifs permet de conclure que $\sum u_n$ est aussi divergente.

Exercice 32: [énoncé]

(a) Le rapport $\frac{u_{n+1}}{u_n}$ tend vers 1 donc la suite (u_n) est de signe constant à partir d'un certain rang; quitte à passer à l'opposé on peut supposer $u_n > 0$ pour n assez grand.

Posons

$$w_n = \ln((n+1)^{\lambda} u_{n+1}) - \ln(n^{\lambda} u_n).$$

On a

$$w_n = \lambda \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 - \frac{\lambda}{n} + v_n \right)$$

est le terme général d'une série absolument convergente. Par conséquent la suite $(\ln(n^{\lambda}u_n))$ converge et donc $(n^{\lambda}u_n)$ aussi.

(b) Posons $u_n = \frac{n^n}{n!e^n}$. On a

$$\frac{u_{n+1}}{u_n} = 1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right).$$

En reprenant l'étude qui précède on peut affirmer que $n^{1/2}u_n \to \ell > 0$ donc $\sum u_n$ diverge.

Ce résultat peut être confirmé par la formule de Stirling.

Exercice 33: [énoncé]

(a)

$$\frac{u_{n+1}}{u_n} = \frac{3n+1}{3(n+1)} = 1 - \frac{2}{3}\frac{1}{n+1} = 1 - \frac{2}{3n} + o\left(\frac{1}{n}\right)$$

 $_{
m et}$

$$\frac{v_{n+1}}{v_n} = \frac{1}{(1+1/n)^{3/4}} = 1 - \frac{3}{4n} + o\left(\frac{1}{n}\right)$$

donc pour n assez grand,

$$\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}.$$

(b) La suite de terme général $\frac{u_n}{v_n}$ est positive et croissante à partir d'un certain rang donc il existe $\alpha>0$ et $N\in\mathbb{N}$ tel que pour tout $n\geq N,\ u_n\geq \alpha v_n$. Or $\sum v_n$ diverge donc $\sum u_n$ aussi.

Exercice 34: [énoncé]

Puisque la suite (S_n) est croissante

$$0 \le v_n \le \frac{u_{n+1}}{S_0} \to 0$$

et donc $v_n \to 0$. On en tire

$$v_n \sim \ln(1 + v_n) = \ln \frac{S_{n+1}}{S_n} = \ln(S_{n+1}) - \ln(S_n).$$

La série $\sum u_n$ converge si, et seulement si, la suite $\ln(S_n)$ converge et donc si, et seulement si, la série télescopique $\sum (\ln S_{n+1} - \ln S_n)$ converge. Par équivalence de série à termes positifs, cela équivaut à affirmer la convergence de la série $\sum v_n$.

Exercice 35: [énoncé]

Si $\sum u_n$ converge alors en notant S sa somme (strictement positive), $v_n \sim u_n/S$ et donc $\sum v_n$ converge.

Supposons désormais que $\sum u_n$ diverge et montrons qu'il en est de même de $\sum v_n$. Par la décroissante de $t \mapsto 1/t$, on a

$$\int_{S_{n-1}}^{S_n} \frac{\mathrm{d}t}{t} \le \frac{S_n - S_{n-1}}{S_{n-1}} = \frac{u_n}{S_{n-1}}.$$

En sommant ces inégalités

$$\int_{S_1}^{S_n} \frac{\mathrm{d}t}{t} \le \sum_{k=2}^n \frac{u_k}{S_{k-1}}.$$

Or

$$\int_{S_1}^{S_n} \frac{\mathrm{d}t}{t} = \ln S_n - \ln S_1 \to +\infty$$

car $S_n \to +\infty$ donc par comparaison $\sum \frac{u_n}{S_{n-1}}$ diverge. Puisque

$$\frac{u_n}{S_{n-1}} = \frac{u_n}{S_n - u_n} = v_n \frac{1}{1 - v_n}.$$

Si $v_n \not\to 0$ alors $\sum v_n$ diverge.

Si $v_n \to 0$ alors $v_n \sim \frac{u_n}{S_{n-1}}$ et à nouveau $\sum v_n$ diverge.

Finalement $\sum u_n$ et $\sum v_n$ ont la même nature.

Exercice 36: [énoncé]

 $u_n = R_{n-1} - R_n$ et la décroissance de $t \to 1/t$,

$$\int_{R_n}^{R_{n-1}} \frac{\mathrm{d}t}{t} \le \frac{R_{n-1} - R_n}{R_n} = \frac{u_n}{R_n}.$$

On a

$$\int_{R_n}^{R_{n-1}} \frac{\mathrm{d}t}{t} = \ln R_{n-1} - \ln R_n$$

donc la série à termes positifs $\sum \int_{R_n}^{R_{n-1}} \frac{dt}{t}$ diverge car $\ln R_n \to -\infty$ puisque $R_n \to 0$.

Par comparaison de séries à termes positifs, $\sum u_n/R_n$ diverge.

$$\frac{u_n}{R_n} = \frac{u_n}{R_{n-1} - u_n} = \frac{u_n}{R_{n-1}} \frac{1}{1 - u_n / R_{n-1}}.$$

Si $u_n/R_{n-1} \not\to 0$ alors $\sum u_n/R_{n-1}$ diverge. Si $u_n/R_{n-1} \to 0$ alors $\frac{u_n}{R_{n-1}} \sim \frac{u_n}{R_n}$ et donc $\sum u_n/R_{n-1}$ diverge encore. Dans tous les cas, $\sum u_n/R_{n-1}$ diverge.

Exercice 37 : [énoncé]

(a) Puisque la série $\sum a_n$ converge, on peut introduire sa somme

$$\ell = \sum_{n=0}^{+\infty} a_n.$$

Les termes sommés étant strictement positifs, on a $\ell > 0$ et $S_n \to \ell$ donne alors $S_n \sim \ell$.

On en déduit

$$\frac{a_n}{S_n} \sim \frac{a_n}{\ell}$$
.

La série $\sum a_n$ converge, donc $\sum a_n/\ell$ converge aussi et par équivalence de séries à termes positifs, on peut conclure à la convergence de la série $\sum a_n/S_n$.

(b) Comme les termes sont positifs, on a $S_n \geq S_{n-1}$ et donc

$$\frac{a_n}{S_n^2} \le \frac{S_n - S_{n-1}}{S_n S_{n-1}} = \frac{1}{S_{n-1}} - \frac{1}{S_n}.$$

La série à termes positifs $\sum a_n$ étant supposée divergente, la suite (S_n) tend vers $+\infty$ et donc $1/S_n \to 0$.

La nature de la série $\sum u_n - u_{n-1}$ étant celle de la suite (u_n) , on peut affirmer la convergence de la série

$$\sum \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

puis celle de $\sum a_n/S_n^2$ par comparaison de séries à termes positifs.

(c) On peut écrire

$$\frac{a_n}{S_n} = \frac{S_n - S_{n-1}}{S_n} = 1 - \frac{S_{n-1}}{S_n}.$$

Si (S_{n-1}/S_n) ne tend pas vers 1, la série étudiée diverge grossièrement.

Si (S_{n-1}/S_n) tend vers 1 alors

$$\ln \frac{S_{n-1}}{S_n} \sim \frac{S_{n-1}}{S_n} - 1$$

et donc

$$\frac{a_n}{S_n} \sim \ln S_n - \ln S_{n-1}.$$

La suite ($\ln S_n$) diverge, donc la série $\sum \ln S_n - \ln S_{n-1}$ diverge aussi et, enfin, $\sum a_n/S_n$ diverge par argument de comparaison de séries à termes positifs.

Exercice 38: [énoncé]

Posons

$$S_n = \sum_{k=1}^n k^{\alpha} u_k.$$

Par la décroissance de la suite (u_n) , on a

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} k^{\alpha} u_k \ge \sum_{k=n+1}^{2n} n^{\alpha} u_{2n} = n^{\alpha+1} u_{2n} \ge 0.$$

Puisque la suite (S_n) converge, $S_{2n} - S_n \to 0$ et on en déduit $(2n)^{\alpha+1}u_{2n} \to 0$. Puisque

$$0 \le (2n+1)^{\alpha+1} u_{2n+1} \le \frac{(2n+1)^{\alpha+1}}{(2n)^{\alpha+1}} (2n)^{\alpha+1} u_{2n}$$

on a aussi $(2n+1)^{\alpha+1}u_{2n+1} \to 0$ et on peut donc conclure $n^{\alpha+1}u_n \to 0$.

Exercice 39: [énoncé]

On a

$$\left(\frac{1}{x\ln x}\right)' = -\frac{\ln x + 1}{(x\ln x)^2}.$$

La fonction $x \mapsto 1/x \ln x$ est décroissante sur]1; $+\infty$ [. On en déduit

$$\sum_{n=2}^{N} \frac{1}{n \ln n} \ge \int_{2}^{N+1} \frac{\mathrm{d}t}{t \ln t} = \ln \ln(N+1) - \ln \ln 2 \to +\infty.$$

Exercice 40: [énoncé]

Notons que les termes sommés sont positifs. La fonction $x \mapsto a^{\sqrt{x}}$ est décroissante donc

$$a^{\sqrt{n}} \le \int_{n-1}^n a^{\sqrt{x}} \, \mathrm{d}x$$

puis

$$\sum_{k=0}^{n} a^{\sqrt{k}} \le 1 + \int_{0}^{n} a^{\sqrt{x}} dx = 1 + 2 \int_{0}^{\sqrt{n}} u a^{u} du$$

or $\int_0^{+\infty} ua^u du$ est définie donc

$$\sum_{n>0} a^{\sqrt{n}} < +\infty.$$

Exercice 41 : [énoncé]

Puisque $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \le \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$$

donc

$$\frac{1}{\alpha - 1} \le \zeta(\alpha) \le 1 + \frac{1}{\alpha - 1}.$$

Par suite $(\alpha - 1)\zeta(\alpha) \xrightarrow[\alpha \to 1+]{} 1$

Exercice 42: [énoncé]

(a) Par croissance de la fonction $\sqrt{.}$

$$\int_{k-1}^{k} \sqrt{t} \, \mathrm{d}t \le \sqrt{k} \le \int_{k}^{k+1} \sqrt{t} \, \mathrm{d}t$$

donc

$$\int_0^n \sqrt{t} \, \mathrm{d}t \le \sum_{k=1}^n \sqrt{k} \le \int_1^{n+1} \sqrt{t} \, \mathrm{d}t$$

et on conclut aisément.

(b) On a

$$\ln n! = \sum_{k=1}^{n} \ln k$$

et, par croissance de la fonction ln,

$$\int_{k-1}^k \ln t \, \mathrm{d}t \le \ln k \le \int_k^{k+1} \ln t \, \mathrm{d}t$$

donc

$$\int_{1}^{n} \ln t \, \mathrm{d}t \le \ln n! \le \int_{1}^{n+1} \ln t \, \mathrm{d}t$$

puis on peut conclure.

(c) Par décroissance de la fonction $x \mapsto 1/x \ln x$ sur $[1/e; +\infty[$,

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t \ln t} \le \frac{1}{k \ln k} \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t \ln t}$$

donc

$$\int_{2}^{n+1} \frac{\mathrm{d}t}{t \ln t} \le \sum_{k=2}^{n} \frac{1}{k \ln k} \le \int_{1}^{n} \frac{\mathrm{d}t}{t \ln t}$$

puis on conclut via

$$\int \frac{\mathrm{d}t}{t \ln t} = \ln(\ln t) + C^{te} \to +\infty.$$

Exercice 43: [énoncé]

Notons que $\frac{a^1}{n^2+a^2} \sim \frac{a^1}{n^2}$ donc $\sum_{n=1}^{+\infty} \frac{a}{n^2+a^2}$ existe. La fonction $x \mapsto \frac{a}{x^2+a^2}$ est décroissante sur $[0;+\infty[$ donc par comparaison série-intégrale

$$\int_{1}^{N+1} \frac{a}{x^2 + a^2} \, \mathrm{d}x \le \sum_{r=1}^{N} \frac{a}{r^2 + a^2} \le \int_{0}^{N} \frac{a}{x^2 + a^2} \, \mathrm{d}x$$

puis sachant

$$\int \frac{a}{x^2 + a^2} = \arctan \frac{x}{a} + C^{te}$$

on obtient

$$\arctan \frac{N+1}{a} - \arctan \frac{1}{a} \le \sum_{n=1}^{N} \frac{a}{n^2 + a^2} \le \arctan \frac{N}{a}.$$

Quand $N \to +\infty$,

$$\frac{\pi}{2} - \arctan \frac{1}{a} \le \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} \le \frac{\pi}{2}.$$

Par le théorème des gendarmes,

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} = \frac{\pi}{2}.$$

Exercice 44 : [énoncé]

On a

$$A_n = a + \frac{b(n+1)}{2}, \ln B_n = \frac{1}{n} \sum_{k=1}^n \ln(a+bk).$$

Posons $f(t) = \ln(a + bt)$ function croissante.

À l'aide d'une comparaison série-intégrale

$$\sum_{k=1}^{n} f(k) = n \ln(a + bn) - n + o(n)$$

donc

$$\ln \frac{B_n}{A_n} = \ln B_n - \ln A_n = \ln \left(\frac{a + bn}{a + bn/2} \right) - 1 + o(1) \to \ln 2 - 1$$

puis

$$\frac{B_n}{A_n} \to \frac{2}{\mathrm{e}}$$
.

Exercice 45: [énoncé]

Par comparaison série intégral.

$$\sum_{k=2}^{n} \ln^2 k \sim n(\ln n)^2$$

donc

$$u_n = \frac{n^{\alpha}}{\sum_{k=2}^{n} \ln^2 k} \sim \frac{1}{n^{1-\alpha} (\ln n)^2}.$$

Par référence aux séries de Bertrand, $\sum u_n$ converge si, et seulement si, $\alpha \leq 0$.

Exercice 46: [énoncé]

Introduisons la somme partielle

$$S_N = \sum_{n=1}^N \frac{x^{a_n}}{n^3}.$$

On remarque que pour $n \in \{10^{p-1}, \dots, 10^p - 1\}$ on a $a_n = p$ En regroupant pertinemment les termes sommés

$$S_{10^q - 1} = \sum_{p=1}^q \sum_{n=10^{p-1}}^{10^p - 1} \frac{x^{a_n}}{n^3} = \sum_{p=1}^q \sum_{n=10^{p-1}}^{10^p - 1} \frac{x^p}{n^3} = \sum_{p=1}^q u_p x^p.$$

Puisque la fonction $t \mapsto 1/t^3$ est décroissante, on a la comparaison

$$\int_{10^{p-1}}^{10^p} \frac{\mathrm{d}t}{t^2} \le u_p = \sum_{n=10^{p-1}}^{10^p - 1} \frac{1}{n^3} \le \int_{10^{p-1} - 1}^{10^p - 1} \frac{\mathrm{d}t}{t^2}.$$

Après calculs, on obtient

$$u_p \sim \frac{99}{2} \frac{1}{100^p}$$
.

 $\operatorname{Cas} x > 0$

La série $\sum u_p x^p$ converge si, et seulement si, x < 100.

Puisque la série $\sum x^{a_n}/n^3$ est à termes positifs, sa convergence équivaut à la convergence d'une suite extraite de sommes partielles et donc $\sum x^{a_n}/n^3$ converge si, et seulement si, x < 100.

Cas x < 0.

Pour $x \in]-100;0[$, il y a absolue convergence de la série en vertu de l'étude qui précède.

Pour $x \le -100$, on peut écrire x = -y avec $y \ge 100$, on a alors

$$S_{10^q - 1} = \sum_{p=1}^{q} (-1)^q u_q y^q$$

avec $(u_a y^q)$ qui ne tend pas vers zéro.

Il y a alors divergence d'une suite extraite de sommes partielles et donc divergence de la série $\sum x^{a_n}/n^3$.

Exercice 47: [énoncé]

Si $\alpha < 1$ alors $n \frac{1}{n^{\alpha} \ln n} \xrightarrow{1} +\infty$ donc pour n assez grand $\frac{1}{n^{\alpha} \ln n} \ge \frac{1}{n}$. Par comparaison de séries à termes positifs, la série diverge

Si $\alpha > 1$ alors considérons $\beta \in [1; \alpha[$. On a $n^{\beta} \frac{1}{n^{\alpha} \ln n} \to 0$ donc la série est absolument convergente.

Si $\alpha = 1$ alors exploitons la décroissance de la fonction $x \mapsto \frac{1}{x \ln x}$ sur $]1; +\infty[$ Pour $k \geq 2$,

$$\frac{1}{k \ln k} \ge \int_{k}^{k+1} \frac{\mathrm{d}t}{t \ln t}$$

donc

$$\sum_{k=2}^{n} \frac{1}{k \ln k} \ge \int_{2}^{n+1} \frac{\mathrm{d}t}{t \ln t} = \left[\ln(\ln t) \right]_{2}^{n+1} \xrightarrow[n \to +\infty]{} + \infty.$$

Par suite, la série étudiée diverge.

Exercice 48: [énoncé]

Si $\alpha \leq 0$ alors à partir d'un certain rang $u_n \geq 1/n$ et la série diverge. Si $\alpha > 0$ alors la fonction $x \mapsto 1/x(\ln x)^{\alpha}$ est décroissante sur $]1; +\infty[$.

$$\int_{n}^{n+1} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}} \le u_n \le \int_{n-1}^{n} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}}$$

donc

$$\int_{3}^{N+1} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}} \le \sum_{n=3}^{N} u_n \le \int_{2}^{N} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}}$$

puis

$$\int_{\ln 3}^{\ln N+1} \frac{\mathrm{d}u}{u^{\alpha}} \le \sum_{n=3}^{N} u_n \le \int_{\ln 2}^{\ln N} \frac{\mathrm{d}u}{u^{\alpha}}$$

et on peut conclure qu'il y a convergence si, et seulement si, $\alpha > 1$.

Exercice 49 : [énoncé]

Par comparaison série intégrale :

Si $\alpha > 0$, $u_n \sim \frac{\alpha+1}{n^{\alpha+1}}$ est terme général d'une série absolument convergente. Si $-1 < \alpha < 0$, $u_n \sim \frac{\alpha+1}{n^{\alpha+1}}$ n'est pas le terme général d'une série convergente. Si $\alpha = -1$, $u_n \sim \frac{1}{\ln n}$ n'est pas le terme général d'une série convergente. Si $\alpha < -1$, $u_n \not \to 0$ et donc $\sum u_n$ est grossièrement divergente.

Exercice 50: [énoncé]

Selon que $\alpha<0$ ou $\alpha\geq 0,$ on encadre $1/k^{\alpha}$ en exploitant la monotonie de $x\mapsto 1/x^{\alpha}.$

Sachant que

$$\int \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{1-\alpha} t^{1-\alpha} + C^{te} \xrightarrow[t \to +\infty]{} + \infty$$

on obtient

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}.$$

Exercice 51: [énoncé]

Puisque la fonction $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante

$$\int_{n}^{n+1} \frac{\mathrm{d}x}{x^{\alpha}} \le \frac{1}{n^{\alpha}} \le \int_{n-1}^{n} \frac{\mathrm{d}x}{x^{\alpha}}$$

donc

$$\int_{N+1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \le R_N \le \int_{N}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$$

d'où l'on obtient

$$R_n \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

Exercice 52 : [énoncé]

La convergence de $\sum_{k=0}^{+\infty} \frac{1}{k!}$ s'obtient entre autre par le critère d'Alembert puisque

$$\left|\frac{1/(k+1)!}{1/k!}\right| = \frac{1}{k+1} \xrightarrow[k \to +\infty]{} 0 < 1.$$

On peut alors majorer le reste de la série en prenant appui sur une somme géométrique

$$\sum_{k=n+1}^{+\infty} \frac{1}{k!} \le \frac{1}{n!} \left(\frac{1}{n+1} + \frac{1}{(n+1)^2} + \cdots \right) = \frac{1}{n!} \frac{1}{n+1} \frac{1}{1-1/n+1} = \frac{1}{n \cdot n!}.$$

Notons que raisonner par récurrence ne marche pas.

Exercice 53: [énoncé]

La fonction $x \mapsto 1 - \cos x - x$ est négative sur $[0; +\infty[$ et ne s'annule qu'en 0. Par conséquent, la suite (u_n) est décroissante, or elle est clairement minorée par 0 donc elle converge. Sa limite annulant la précédente fonction ne peut être qu'être 0. Puisque

$$u_{n+1} = 2\sin^2\frac{u_n}{2}$$

on a

$$u_{n+1} \le \frac{1}{2}u_n^2.$$

Par suite $u_n = O(1/2^n)$ et donc la série $\sum u_n$ converge.

Exercice 54: [énoncé]

Par étude de point fixe de la relation de récurrence, la valeur

$$\ell = (1 + \sqrt{5})/2$$

est la seule limite possible de la suite (u_n) qui est clairement à termes positifs.

$$|u_{n+1} - \ell| = \frac{|u_n - \ell|}{\sqrt{1 + u_n} + \sqrt{1 + \ell}} \le \frac{1}{2} |u_n - \ell|$$

donc $u_n = O(1/2^n)$ et ainsi la série converge

Exercice 55 : [énoncé]

- (a) Aisément la suite est strictement positive, décroissante et de limite $\ell \in [0; \pi/2]$ vérifiant $\sin \ell = \ell$.
- (b) $u_{n+1}-u_n$ est le terme général d'une série télescopique convergente. Or $u_{n+1}-u_n\sim -\frac{1}{6}u_n^3$ donc par équivalence de suite de signe constant, on conclut
- (c) $\ln u_{n+1} \ln u_n$ est le terme général d'une série télescopique divergente. Or $\ln u_{n+1} \ln u_n \sim \ln \left(1 \frac{1}{6}u_n^2\right) \sim -\frac{1}{6}u_n^2$ donc par équivalence de suite de signe constant, on conclut.

Exercice 56: [énoncé]

Posons

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + o(1).$$

On observe

$$u_n = 2H_n - H_{n^2} = 2(\ln n + \gamma + o(1)) - \ln(n^2) - \gamma + o(1) \to \gamma.$$

Exercice 57: [énoncé]

(a) On sait

$$H_n = \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

donc

$$a_n = H_{3n} - H_n \to \ln(3) = \lambda.$$

(b) Si on sait

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

les choses vont assez vites...mais sans doute l'examinateur souhaitera la démonstration de ce résultat.

$$a_n = \sum_{k=1}^{3n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) - \sum_{k=1}^{n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) + \sum_{k=n+1}^{3n} \ln\left(\frac{k-1}{k}\right)$$

avec

$$\sum_{k=n+1}^{3n} \ln\left(\frac{k-1}{k}\right) = \ln 3$$

donc

$$a_n - \lambda = \sum_{k=1}^{3n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) - \sum_{k=1}^{n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right).$$

Or $\sum \frac{1}{k} + \ln \left(1 - \frac{1}{k} \right)$ est absolument convergente car

$$\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \sim -\frac{1}{2k^2}$$

donc $a_n - \lambda = R_n - R_{3n}$ avec

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right).$$

Or par sommation d'équivalent sur des restes de séries convergentes à termes de signe constant,

$$R_n \sim \sum_{k=n+1}^{+\infty} -\frac{1}{2k^2} \sim -\frac{1}{2n}$$

(le dernier équivalent s'obtenant, soit par comparaison série intégrale, soit par $\frac{1}{k^2} \sim \frac{1}{k(k-1)}$ et sommation télescopique).

Au final

$$a_n - \lambda = -\frac{1}{2n} + \frac{1}{6n} + o\left(\frac{1}{n}\right) \sim -\frac{1}{3n}.$$

Exercice 58: [énoncé]

(a) On a

$$\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{2n+1}{2n+2} = \ln \left(1 - \frac{1}{2n+2}\right) \sim -\frac{1}{2n}.$$

La série $\sum \ln u_{n+1} - \ln u_n$ tend vers $-\infty$ donc $\ln u_n \to -\infty$ puis $u_n \to 0$.

(b) Posons $v_n = \sqrt{n}u_n$

$$\ln v_{n+1} - \ln v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) + \ln u_{n+1} - \ln u_n = O\left(\frac{1}{n^2} \right).$$

La série $\sum \ln v_{n+1} - \ln v_n$ converge et donc la suite $\ln v_n$ aussi.

En posant ℓ sa limite, on obtient $\sqrt{n}u_n \to C$ avec $C = e^{\ell} > 0$.

Notons qu'évidemment, on aurait aussi pu résoudre cet exercice à l'aide de la formule de Stirling.

Exercice 59 : [énoncé]

- (a) $\ln u_{n+1} \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{2n+1}{2n+2} = \ln \left(1 \frac{1}{2n+2}\right) \sim -\frac{1}{2n}$. La série $\sum \ln u_{n+1} \ln u_n$ tend vers $-\infty$ donc $\ln u_n \to -\infty$ puis $u_n \to 0$.
- (b) $\ln(n+1)u_{n+1} \ln nu_n = \ln\left(\frac{2n+1}{2n}\right) \sim \frac{1}{2n}$. La série $\sum \ln(n+1)u_{n+1} \ln nu_n$ tend vers $+\infty$ donc $\ln nu_n \to +\infty$ puis $nu_n \to +\infty$. À partir d'un certain rang $nu_n \ge 1$ donc $\sum u_n$ diverge.
- (c) $(2k+4)v_{k+1} = 2u_{k+1} = \frac{2k+1}{k+1}u_k = (2k+1)v_k$ en sommant pour $k \in \{0,\ldots,n\}$ et en simplifiant, on obtient : $T_n = 2 (2n+6)v_{n+1}$ donc $T_n \to 2$.

Exercice 60 : [énoncé]

(a)

$$\ln u_{n+1} - \ln u_n = \ln \left(1 + \frac{a-b}{n} \right) \sim \frac{a-b}{n}$$

est le terme général d'une série divergeant vers $-\infty$. Par suite $\ln u_n \to -\infty$ et donc $u_n \to 0$.

(b)

$$\ln v_{n+1} - \ln v_n = \alpha \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 + \frac{a-b}{n} \right) = \frac{\alpha + a - b}{n} + O\left(\frac{1}{n^2} \right)$$

donc pour $\alpha = b - a$, la série des $\ln v_{n+1} - \ln v_n$ converge. Par suite v_n converge vers un réel A > 0 et alors

$$u_n \sim \frac{A}{n^{b-a}}$$
.

(c) On a

$$(b-a-1)u_n = (1-b)(u_{n+1}-u_n) - ((n+1)u_{n+1}-nu_n)$$

donc par télescopage

$$\sum_{n=0}^{+\infty} u_n = \frac{b-1}{b-a-1} u_0.$$

Exercice 61: [énoncé]

(a)

$$\frac{(n+1)^{\beta}u_{n+1}}{n^{\beta}u_n} = 1 + \frac{\alpha+\beta}{n} + O\left(\frac{1}{n^2}\right)$$

donc

$$v_n = \frac{\alpha + \beta}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

 $\sum v_n$ converge si, et seulement si, $\beta = -\alpha$.

(b)

$$\sum_{k=0}^{n-1} v_k = \ln(n^{-\alpha} u_n) \to \ell = \sum_{k=0}^{+\infty} v_k \in \mathbb{R}$$

donc $n^{-\alpha}u_n \to e^{\ell}$ puis $u_n \sim An^{\alpha}$ avec $A = e^{\ell} > 0$.

Exercice 62: [énoncé]

Notons que les termes de la suite (u_n) sont tous non nuls car $-\alpha \notin \mathbb{N}^*$.

- (a) $\frac{(n+1)^{\beta}u_{n+1}}{n^{\beta}u_n} = 1 + \frac{\alpha+\beta}{n} + O\left(\frac{1}{n^2}\right)$ donc $v_n = \frac{\alpha+\beta}{n} + O\left(\frac{1}{n^2}\right)$. $\sum v_n$ converge si, et seulement si, $\beta = -\alpha$.
- (b) $\sum_{k=0}^{n-1} v_k = \ln(n^{-\alpha}u_n) \to \ell = \sum_{k=0}^{+\infty} v_k \in \mathbb{R} \text{ donc } n^{-\alpha}u_n \to e^{\ell} \text{ puis } u_n \sim An^{\alpha}$ avec $A = e^{\ell} > 0$.

Exercice 63: [énoncé]

Après calculs

$$\ln u_{n+1} - \ln u_n = \mathcal{O}(1/n^2)$$

donc la suite $(\ln u_n)$ converge et on peut conclure. On peut aussi faire le lien avec la formule de Stirling...

Exercice 64: [énoncé]

- (a) Par récurrence $0 \le u_n \le u_0/2^n$.
- (b)

$$\ln(2^{n+1}u_{n+1}) - \ln(2^n u_n) = \ln\left(\frac{\sin(u_n/2)}{u_n/2}\right) \sim -\frac{1}{6}\left(\frac{u_n}{2}\right)^2$$

est terme général d'une série convergente donc la suite $(\ln(2^n u_n))$ converge et finalement $(2^n u_n)$ converge vers un réel A strictement positif.

(c)

$$u_n - A2^{-n} = 2^{-n} \sum_{k=n}^{+\infty} (2^k u_k - 2^{k+1} u_{k+1}).$$

Or

$$2^k u_k - 2^{k+1} u_{k+1} \sim \frac{2^{k+1}}{6} \left(\frac{u_k}{2}\right)^3 \sim \frac{A^3}{24 \cdot 2^{2k}}.$$

Par comparaison de restes de séries convergentes à termes positifs,

$$u_n - A2^{-n} \sim 2^{-n} \frac{A^3}{24} \sum_{k=n}^{+\infty} \frac{1}{2^{2k}} = \frac{A^3}{18 \cdot 2^{-3n}}.$$

Exercice 65 : [énoncé]

Non, en effet considérons

$$u_n = \sum_{k=2}^n \frac{1}{k \ln k}.$$

Pour tout $p \in \mathbb{N}^*$, on a $u_{np} - u_n = \sum_{k=n+1}^{np} \frac{1}{k \ln k}$ On en déduit

$$0 \le u_{np} - u_n \le \frac{np - (n+1) + 1}{n \ln n} = \frac{p-1}{\ln n} \to 0$$

alors que

$$u_n \ge \sum_{k=2}^n \int_k^{k+1} \frac{\mathrm{d}t}{t \ln t} = \int_2^{n+1} \frac{\mathrm{d}t}{t \ln t} = \left[\ln(\ln t) \right]_2^{n+1} \to +\infty.$$

Exercice 66: [énoncé]

On peut écrire

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right)^n = \sum_{k=0}^{n} u_k(n)$$

avec $u_k(n) \xrightarrow[n \to +\infty]{} e^{-k}$.

On peut alors présumer

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} e^{-k} = \frac{1}{1 - 1/e} = \frac{e}{e - 1}.$$

Il ne reste plus qu'à l'établir...

Puisque $\ln(1+x) \le x$ pour tout x > -1, on a

$$\left(1 - \frac{k}{n}\right)^n = \exp(n\ln(1 - k/n)) \le e^{-k}$$

et donc on a déjà

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \le \frac{1}{1 - 1/e}.$$

De plus, pour $N \in \mathbb{N}$, on a pour tout $n \geq N$

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \ge \sum_{k=0}^{N-1} \left(1 - \frac{k}{n}\right)^{n} \xrightarrow[n \to +\infty]{} \sum_{k=0}^{N-1} e^{-k}.$$

Pour $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que

$$\sum_{k=0}^{N-1} e^{-k} \ge \frac{e}{e-1} - \varepsilon$$

et pour ce N fixé, il existe $N' \in \mathbb{N}$ tel que pour $n \geq N'$,

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \ge \sum_{n=0}^{N-1} \left(1 - \frac{k}{n}\right)^{n} \ge \sum_{k=0}^{N-1} e^{-k} - \varepsilon.$$

On a alors pour tout $n \ge N'$

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \ge \frac{\mathrm{e}}{\mathrm{e} - 1} - 2\varepsilon.$$

On peut donc conclure

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \to \frac{\mathrm{e}}{\mathrm{e}-1}.$$