Appunti Fisica I

Luca Seggiani

11 Marzo 2024

1 Moto dei proiettili

Studiamo adesso il moto dei proiettili, ovvero corpi lanciati con una certa velocità iniziale $\vec{v_0}$ e da lì in poi soggetti all'accelerazione di gravità g. Il moto avviene nel piano individuato da g e $\vec{v_0}$, e può essere diviso nelle componenti:

$$\begin{cases} a_x = 0 \\ a_y = -g \end{cases} \begin{cases} v_x = v_{0x} = \text{const.} \\ v_y = v_{0y} - gt \end{cases} \begin{cases} x = x_0 + v_{0x}t \\ y = y_0 + v_{0y}t - \frac{1}{2}gt^2 \end{cases}$$

troviamo adesso dei risultati interessanti riguardo al moto dei proiettili. Possiamo innanzitutto determinare:

Traiettoria

Elminiamo t dalle equazioni della posizione ricavando t dalla prima e sostituendolo nella seconda:

$$x = x_0 + v_{0x}t, \quad t = \frac{x - x_0}{v_{0x}}$$

$$y = y_0 + v_{0y}(\frac{x - x_0}{v_{0x}}) - \frac{1}{2}g(\frac{x - x_0}{v_{0x}})^2$$

impostiamo un sistema di riferimento cartesiano centrato sul punto da dove viene lanciato il proiettile, ponendo quindi x_0 e y_0 coordinate iniziali uguali a zero. Inoltre, definiamo $\vec{v_0}$ in coordinate polari, ovvero in funzione dell'angolo di lancio θ e del suo modulo v_0 :

$$x_0, y_0 = 0, \quad \vec{v_0} = (v_0 \cos \theta, v_0 \sin \theta)$$

ottenendo l'equazione finale della traiettoria:

$$y = \tan \theta x - \frac{gx^2}{2(v_0 \cos \theta)^2}$$

Determinamo adesso la distanza percorsa dal proiettile, ovvero la:

Gittata

Cerchiamo il punto dove il proiettile tocca terra, ponendo la seconda equazione dello spostamento a 0:

$$0 = v_{0y}t - \frac{1}{2}gt^2, \quad \frac{1}{2}gt^2 = v_{0y}t$$

da cui, escludendo la soluzione triviale t=0 (sarebbe il punto da cui lo lanciamo, ch ovviamente coincide con terra), abbiamo:

$$t = 2\frac{v_{0y}}{q}$$

sostituendo nella prima equazione:

$$x = v_{0x}t, \quad x = 2\frac{v_{0x}v_{0y}}{g}$$

Notiamo che per la proprietà trigonometrica:

$$\sin 2x = 2\cos x \sin x$$

 $v_{0x}v_{0y}$ vale:

$$\frac{v_0^2 \sin{(2\theta)}}{2}$$

da cui la formula finale per la gittata:

$$\frac{v_0^2 \sin{(2\theta)}}{q}$$

da cui è tra l'altro ovvio che la gittata massima si otterrà ad un angolo $\theta=45^\circ~(\sin2\frac{\pi}{4}=1).$