矩阵论与凸优化第 6 课凸优化在机器学习中的 应用

管老师

七月在线

June, 2016

机器学习与优化

主要内容

凸优化应用举例

本节课介绍凸优化在机器学习以及图像处理的两个应用,准备过程中参考了 YouTube 上的如下资源.

- 支持向量机 (SVM)
 - MIT 公开课:人工智能第 16 课 SVM
- 压缩感知与图像处理
 - 陶哲轩演讲:Compressed Sensing

支持向量机是针对分类问题的一种线性分类算法

分类问题

通过样本的特征数据,对样本进行分类的问题。

- 医疗诊断
- 网络信息安全
- 图像识别
- ...

每一个样本都可以看成是特征空间 \mathcal{R}^n 中的一个点,一个分类算法则将空间分为若干部分、每部分都对应一个分类。

线性分类器

线性分类器泛指使用超平面来对特征空间进行分割的分类算法。

对于一些线性可分的例子来说,可以达到分类目的的线性分类器并不唯一,那么如何选择一个我们认为是"最好"的呢?

线性分类器的数学形式

空间 \mathbb{R}^n 中有可分的两个点集 C,D. 线性分类器构造一个超平面 $a^Tx=b$ 对空间进行分割,使得 C 和 D 分别位于这个超平面的 两侧.

$$a^T p > b, \quad a^T q < b$$

这等价于存在一个正数 t 使得 $a^Tp-b \ge t$, $a^Tq-b \le -t$, 而这个正数 t 一定程度上描述了两个集合被分开的程度. 所以一个比较好的想法就是希望当 a 是单位向量的时候, t 越大越好. 这样我们就得到了一个优化问题.

SVM 优化问题

最小化: - t

不等条件 1: $-a^T p_i + b \le -t$

不等条件 2: $a^T q_i - b \le -t$

不等条件 3: $-t \le 0$

等式条件: $|a|^2 = 1$

但是这里面 $|a|^2=1$ 并非凸条件,所以我们做一个变量代换 w=a/t,那么我们最大化 t 就等于最小化 $|w|^2$. 于是我们得到了下面的等价优化问题。

SVM 凸优化问题

最小化: $\frac{1}{2}|w|^2$

不等条件 1: $-w^T p_i + b \le -1$

不等条件 2: $w^T q_i - b < -1$

为了方便表述, 将 p_i, q_i 统一定义为 x_i , 并定义变量 y 使得如果 $x_i \in C$ 则 $y_i = -1$, 否则 $y_i = 1$

SVM 凸优化问题

最小化: $\frac{1}{2}|w|^2$

不等条件 1: $y_i(w^T x_i - b) + 1 \le 0$

SVM 凸优化对偶问题: 拉格朗日量

$$L(w, b, \lambda) = \frac{1}{2} |w|^2 + \sum_{i} \lambda_i (y_i(w^T x_i - b) + 1)$$

对偶函数为拉格朗日量在 w, b 上取到的极小值, 所以我们计算 L 的梯度:

$$\frac{\partial}{\partial w}L = w + \sum_{i} \lambda_{i} y_{i} x_{i}$$
$$\frac{\partial}{\partial b}L = \sum_{i} \lambda_{i} y_{i}$$

于是我们得到对偶函数

SVM 凸优化对偶问题: 对偶函数

$$g(\lambda) = \frac{1}{2} \left(\sum_{i} \lambda_{i} y_{i} x_{i} \right)^{T} \left(\sum_{i} \lambda_{i} y_{i} x_{i} \right)$$
$$+ \sum_{i} \lambda_{i} \left(y_{i} \left(\left(-\sum_{i} \lambda_{i} y_{i} x_{i} \right)^{T} x_{i} - b \right) + 1 \right)$$
$$= \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

进一步简化, 定义:

$$y = [y_1, y_2, \cdots, y_n]^T$$

$$Y = \text{diag}(y_1, y_2, \cdots, y_n)$$

$$X = [x_1, x_2, \cdots, x_n]$$

$$E = [1, 1, \cdots, 1]^T$$

$$K_0 = Y^T X^T X Y$$

于是

SVM 凸优化对偶问题: 对偶函数

$$g(\lambda) = \lambda^T E - \frac{1}{2} \lambda^T K_0 \lambda$$

SVM 凸优化对偶问题

最大化:
$$\lambda^T E - \frac{1}{2} \lambda^T K_0 \lambda$$

不等条件: $\lambda_i \geq 0$

定义域: $\lambda^T y = 0$

 K_0 集中包含了 x_i 的全部信息. 不同的分类问题对应着不同的 K_0 . 对于非线性 SVM 问题,所谓 kernel 技巧,就是针对 K_0 进行变换 (此处不再详述).

考虑 C 与 D 的凸包 \overline{C} 和 \overline{D}

SVM 凸集合思路

若 $p\in\overline{C},q\in\overline{D}$, 满足 $d(p,q)=d(\overline{C},\overline{D})$ 则,向量 \vec{pq} 即为所求支撑向量。

定义:

$$P = [p_1, \cdots, p_{n_c}]$$

$$Q = [q_1, \cdots, q_{n_D}]$$

于是: $X^T=[P^T,Q^T]$, 而对于 $\lambda^TP\in\overline{C}$ 与 $\mu^TQ\in\overline{D}$, 这两点之间的距离为

$$(\lambda^T P - \mu^T Q)^T (\lambda^T P - \mu^T Q) = [\lambda^T, \mu^T] K_0 [\lambda^T, \mu^T]^T$$

SVM 凸优化问题 (凸集合思路)

最小化:
$$[\lambda^T, \mu^T] K_0 [\lambda^T, \mu^T]^T$$

不等条件: $\lambda \ge 0$ 不等条件: $\mu \ge 0$

等式条件: $\lambda^T E = 1$

等式条件: $\mu^T E = 1$

再一次我们看到 K_0 集中包含了 x_i 的全部信息. 不同的分类问题对应着不同的 K_0 .

思考题:请证明凸集合思路的 SVM 优化问题与前面的 SVM 凸优化对偶问题等价

压缩感知 (compressive sensing) 是一个关于信号还原的理论, 其基本问题是如下的一个线性方程

线性代数问题

A 是一个 $m \times n$ 的矩阵, b 是一个 m 维向量, 求解方程 Ax = b.

其中 b 是接收到的信号, x 是待还原的信号。

线性方程经典结论

- i 如果 m=n, 而且 A 是可逆的,那么 $x=A^{-1}y$
- ii 如果 m > n,那么我们使用最小二乘进行估计 $x \sim (A^T A)^{-1} A^T b$
- iii 如果 m < n, 则通常解不唯一, $x = x_0 + l$, $l \in Null(A)$

压缩感知关心的正是第 iii 种情况!

压缩感知有可能实现吗?

一般情况下不可能

如果 b 的维数小于 x 的维数, 一般而言,方程 Ax = b 有无穷多解。所以不可能通过 b 来恢复 x.

当 x 具有稀梳性的时候, 可能实现压缩感知

如果已知原信号 x 中只有 S 个元素不为零,那么称 x 为 S-Sparse. 在这种情况下,Ax=b 有可能具有唯一一个满足 x 的稀梳性的解.

压缩感知的理论保障

如果 A 的任意 2S 列都线性无关,那么 Ax=b 的 S-sparse 解具有唯一性.

证明

压缩感知的适用范围

- 接收信号 b 维数小于原信号 x 的维数
- 原信号 x 具有稀梳性 (Sparsity)
- 医学图像 (核磁共振, CT 成像)
- 石油探测成像
- 单像素相机
- ...

压缩感知的实现

在 Ax = b 全部解中寻找满足稀梳性 S-sparse 的解。

稀梳性是x非零元素的个数,于是得到优化问题.

压缩感知优化问题

最小化: |x|0

等式条件: Ax - b = 0

优化函数 $|x|_0$ 并非凸函数, 很难求解。

压缩感知优化问题

最小化: $|x|_2$

等式条件: Ax - b = 0

优化函数 $|x|_2$ 很容易求解,但是不能得到原问题的解。

压缩感知优化问题

最小化: $|x|_1$

等式条件: Ax - b = 0

优化函数 $|x|_1$ 是凸函数, 可以求解, 并且保留了解的稀梳性。

数值实验结果

参考 sklearn 举例

SVM 分类器: sklearn SVM 举例

压缩感知: sklearn 压缩感知举例

谢谢大家!