1. Вля радиони мам ознид 2. проверия неоднорови. из-за сувина	чипомезы	тестовая стапистима	условия применения
Kanana Carragua	Ho: 0= My-Mx=0	$T = \frac{9 + \times}{S_{\times 9} \sqrt{\frac{1}{12} + \frac{1}{12}}} \sim t(N-2)$	Xm~N(m _{x,} x) y, ~N(m _y , <u>x</u>)
Критерий Стьюдента	Ha:0>0 0<0	$\frac{(2)}{S \times g} = \frac{(m-1)S_{x}^{2} - (n-1)S_{g}^{2}}{N-2}$	вибории нозавиши
	0 ≠0	$S_{x}^{2} = \sum_{i=1}^{m} (x_{i} - \overline{x})^{2} \qquad S_{y}^{2} = \sum_{i=1}^{m} (y_{i} - \overline{y})^{2}$	gunipam passes
(OL) paznocem rem ozene	Ha: 0<0 ////		V 50
2. проверка неодкородн. из-за сувила	Ha: 0>0	$W_{m,n} = \sum_{j=1}^{\infty} R_j - panth 31-mole y 6 objects.$ $E[W_{m,n}] = \frac{n}{2}(N+1)$	X, ~ F(+) 9, ~ F(+-0)
Критерий Вникоксона		$D[W_{m,n}] = m \cdot n (N+i)$	Busopun negabucun
		$W = \frac{W - E(W)}{\sqrt{D(W)}} \cdot W(O_f)$	$D_x = D_g$
		Do [Wm] = D[W] - Mn E; (tk (tk-1))	
+++++	++++	$\begin{array}{l} \text{Color of max} \text{chages} \\ D_{\text{ch}} \left[\text{UW}_{\text{m}} n \right] = \text{D[W]} \\ -\frac{\text{mn} \sum\limits_{k=1}^{N} \left(\pm_{k} \left(\pm_{k}^{k} - 1 \right) \right)}{12 N(N-1)} \\ t - \text{value chages} \xi_{\text{m}} - g_{\text{stans}} \text{chages} \end{array}$	
завишиость Ранговый крим Спириена	Ho: Ps=0 (Hezalencuma)	$\hat{\hat{y}}_{s} = 1 - \frac{6 \sum_{i=1}^{n} (R_{X_{i}} - R_{S_{i}})^{2}}{n^{s} - n}; \sqrt{n - 1} \hat{p}_{s} \sim N(0; i)$	coabrum go a nocie ogne a me sie cynnotma
anawa: Kengau, Tupon*	Ha: fs >0	eau ein ilongen:	сравнични до и посие одни и те те сучуности одна из выборок угне упорэдогена ми гётко знаем эк-ты выборок (в опличие от Лиргонь)
Pasmap busopon	Ha: 95 = 0 1114 11114	$\begin{array}{l} \mathcal{C}_{1} = \frac{1}{12}\sum_{k=1}^{3}\left(a_{1k}^{3} - a_{1k}\right) \\ \mathcal{U}_{1} = \frac{1}{12}\sum_{k=1}^{3}\left(a_{1k}^{3} - a_{1k}\right) \\ \mathcal{U}_{2} = \frac{1}{12}\sum_{k=1}^{3}\left(a_{1k}^{3} - a_{1k}\right) \\ \mathcal{U}_{1} = \frac{1}{12}\sum_{k=1}^{3}\left(a_{2k}^{3} - a_{2k}\right) \\ \mathcal{U}_{2} = \frac{1}{12}\sum_{k=1}^{3}\left(a_{2k}^{3} - a_{2k}\right) \\ \mathcal{U}_{3} = -p_{3} \text{ were constant.} \end{array}$	
	<u></u>	$u_1 = \frac{1}{12} \sum_{k=1}^{2} (u_{1k} - u_{1k})$ $u_2 = \frac{1}{12} \sum_{k=1}^{2} (u_{2k}^3 - u_{2k})$ $u_3 = -k\alpha_1 - 6\alpha_2 - 6\alpha_3 - 6\alpha_3 - 6\alpha_4 - 6\alpha_5 - 6$	
rabu cu vo one			
Kpimepun Kengawa		5 = 1 - 11 , K-число несочасованных з - 1	виборки довольно большие им темко значем этирома)
ernanor: Computery Tupton* *easy suffermen marsino passuap Endopose		$\frac{3}{2}\sqrt{n}\hat{\beta}_3 \sim N(q_1)$ $\hat{\beta}_5 = \underbrace{\sum sgn\left((x_1-x_3)(y_1-y_1)\right)}_{\left[\frac{1}{2}n(n-1)N_1, \frac{1}{\sqrt{2}n(n-1)U_2}\right]}$	
		$u_1 = \frac{1}{2} \underbrace{\sum_{i=1}^{N} u_{1k}(u_{1k} - 1)}_{1} \underbrace{u_{1k}(u_{1k} - 1)}_{1} \underbrace{u_{2k}(u_{2k} - 1)}_{1}$	
3abucu wocmb	H.: Pis = Pi P.s		нолинальная илього не знаем вл-мы выборок но знаем размер
Критерий Лирсона аналог: Стриен Кензал	Ha: ∃(i,i): Pi; ≠Pi.·P.;	ا ا اینا بیاما	are grant in the studying to grant Pagnicp
жели выборки небольшие и известны эл-ты выборок	K.O. Beerga Rpabo omo po una	$3^{2} = n (n_{44} n_{22} - n_{42} n_{24})^{2}$ $n_{4} \cdot n_{2} \cdot n_{4} \cdot n_{2}$	
Zabuchnooms	Ho: Ps=0 (negabucuma)	T=\n-2 \hat{9} xy \(\hat{h-2} \) Kobapuayus	
Критерий основанный на выборочном коэдерь корремули	Ha: 8 > 0	1-9×9 Pru= Kx9	
	Ha: Ps = 0 min minus	R _{mg} = \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar	
	1 2 1-2	AM gu Pry:	
		P×y-Eβ _{xy} ~N(0,1)	
		$ \begin{array}{c c} $	
1. для отношения зисперий	Ho: $\Delta = \frac{\delta g}{5} = 1$	$A_{m,n} = \sum_{i=1}^{m} (\frac{N+1}{2} - R_i - \frac{N+1}{2}), R_i - pain X_i = 0$	Xm~F(€-yi)
2. Rpolepus Heogropoguocomu uz-za <u>concanuus</u>	Ha: △ <1 (11/4)	$A_{m,n} = \sum_{i=1}^{m} \frac{\binom{N+1}{2} - R_i - \frac{N+1}{2} }{q}; R_i - \frac{pane}{strop} \times \frac{8}{strop}.$ $E[A_{m,n}] = \int_{m(N+2)}^{m(N+2)} q, N - \frac{1}{2} e^{mN}$	$y_n \sim F\left(\frac{\epsilon - \mu}{\Delta}\right)$
Критерий Ангари -	Ha: 0>1 (1111111)	$E[A_{m,n}] = \begin{cases} \frac{m(N+2)}{4}, N-12mn, \\ \frac{m(N+1)^2}{4N}, N-nexton. \end{cases}$	Basobar Helserania
ранговый	II . A March Thomas	D[Amn] = \(\begin{array}{c} m_N(N+2)(N-2) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	2 21-q 5 21-q	$ \begin{split} D \left[A_{M,N} \right] = & \begin{cases} \frac{m_{N}(N+2)(N-2)}{48(N-4)}, \ N - 128MM. \\ \frac{m_{N}(N^2+3)(N+1)}{48(N^2)}, \ N - 1426MM. \end{cases} $	
		$A^{+} = \frac{A - ECA}{\sqrt{DCA_{3}}} \sim_{N}(o;1)$	
1. gas omhowenus quonesc.	Ha: Δ<1		Man muranus patra
2. проверка неоднороди из-за <u>сэкамия</u>	$\widetilde{S}_{y}^{2} < \widetilde{S}_{y}^{2} \Rightarrow F_{m,n} = \frac{\widetilde{S}_{x}^{2}}{\widetilde{S}_{y}^{2}} \sim F(m-1)$	$F_{n,m} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - 5)^2 = \frac{\tilde{S}_5^2}{\tilde{S}_x^2} F(n-1, m-1)$	$X_{m} \sim N(m, \delta_{\kappa}^{\pm})$
Критерии Ришера	31-d		Jn 1/2 (17) 05/
ty brown to brown	$Ha: \triangle > 1$ $\widetilde{S}_{i}^{2} \Rightarrow \widehat{S}_{i}^{2} \Rightarrow F_{nm} + F(n-1,m-1)$		выбории педависим
The Part of Marie of Paper.	-3 x '''' ' ' '		

Оценка зависимости (Ли Козоро, коиментенции (для	иркон) сила свади: [со; [со; 202]	0,3) — слабая ;0,9) — умеренная	
$q_0 = \frac{n_M n_{22} - n_{12} n_{21}}{n_1 \cdot n_2 \cdot n_{11} \cdot n_{12}} \in [-1/1]$	(двусторонняя сила связи)	, , , , ,	
Коэрор. Ассоциации (зиз 2»			
$\frac{Q = \frac{n_{11} n_{22} - n_{12} n_{21}}{n_{11} n_{22} + n_{12} n_{21}} (\text{agnocomop})$ $\frac{Q}{n_{11} n_{22} + n_{12} n_{21}} (\text{agnocomop})$	онияя (ито свяда)		
Rospop. Tupcom (he 2×2) $p = \sqrt{\frac{\epsilon_H}{\epsilon_H f_H}} \in [0;1]$			
Коэрор. Крамера (умучинный $c = \sqrt{\frac{\epsilon_n}{n.\min\{m-1; k-1\}}} \in [0;1]$	Тирсон)		
Nn.min{M-1;k-1}			