Radiative Processes in Astrophysics / Problem Set #6 Due March 31, 2021

- 1. Rybicki & Lightman problem 4.3. Feel free to use the solutions to guide your work, but it is worth working this problem through fully!
- 2. The essential features of the synchrotron spectrum can be derived from the fact that for electrons with high energy ($\gamma \gg 1$) the "pulse shape" seen as the beamed emission sweeps by is defined by a function that depends on angle θ only in the combination $\gamma\theta$. This has the consequence that no matter the width of the pulse in time Δt_A , the shape is always the same. That means the spectrum of the emission is characterized purely by some critical frequency $\nu_c \sim 1/\Delta t_A \propto \gamma^2$, which has a number of important consequences described in class.

The scattered power can be written as:

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} \propto \frac{1}{\left(1 - \beta\cos\theta\right)^4} \left[1 - \frac{\sin^2\theta\cos^2\phi}{\gamma^2\left(1 - \beta\cos\theta\right)^2}\right] \tag{1}$$

Show in the limit that $\gamma \gg 1$ and for angles "in the beam", i.e. $\theta < 1/\gamma$ and $1/\gamma \ll 1$, that this power is a function of θ only through the combination $\gamma\theta$.