Due Date: 09-22-14

- 1. Given two vectors $u, v \in \mathbb{R}^n$, and real scalars α, β , let $A = I + \alpha u v^T$, $B = I + \beta u v^T$.
 - (a) If u, v, α are given, find β such that $B = A^{-1}$.
 - (b) For which values of α is A singular, if any? For that particular value of α , give a non-zero vector x in the right nullspace of A. Write x in terms of u, v, α .
 - (c) Prove of disprove: for any given pair of vector u, v, there always exists a value α such that A singular. To prove, show such an α always exists, giving a formula in terms of u, v. To disprove, give an example of a pair of non-zero vectors u, v for which no such α exists. In the latter case, what general property do u, v satisfy to prevent the existence of α ? You can illustrate your answer with a 2 × 2 example.
 - (d) Give a value of α (in terms of u, v) such that $A^2 = A$ (i.e., A is a projector).

[Hint: Multiply out $(I + \alpha uv^T)(I + \beta uv^T)$ and find value for β to reduce the product to the desired result.

- 2. Let $f_p(v) = \max_{\|u\|_p=1} |u^T v|$, where $\|v\|_p$ denotes the p-norm.
 - (a) Prove or disprove: f_p is a vector norm. (check each property, or show one is violated).
 - (b) Give a formula for f_p for p = 1, 2. Hint, the answers can be written in terms of $\|\cdot\|_2, \|\cdot\|_{\infty}$. For p=2, use the Cauchy-Schwartz inequality.
- 3. Define the inner product among square matrices by $\langle A, B \rangle = \operatorname{trace}(A^T B)$, where A, B are $n \times n$ matrices.
 - (a) What is the norm induced by this inner product: $||A||^2 = \langle A, A \rangle$? Answer this question for the general case for any A.
 - Now answer the remaining questions below using this specific matrix:

$$A = \begin{pmatrix} 6 & -2 & 1 \\ 7 & -7 & 3 \\ -4 & 5 & -2 \end{pmatrix}.$$

- (b) For this specific matrix A, what is the value of $\langle A, A \rangle$ and the corresponding induced norm $||A|| = \sqrt{\langle A, A \rangle}$ from part (a)?
- (c) What is the p norm of A, for p = 1? Find a vector x s.t. $||x||_p = 1$ and $||A||_p = 1$ $||Ax||_p$.
- (d) Repeat the above for p=2. Use Matlab and write the result to 4 decimal places. Show your Matlab commands.
- (e) Use Matlab to help solve this problem: Find a vector x achieving the minimum in $\min_{\|x\|_p=1} \|Ax\|_p$. Do this for p=1,2.

Note: in this exercise, you can use Octave instead of Matlab.