AI Bootcamp — NLP & LLM Dr Usman Zia

TRAINING LLMs

Dr. Troping of the Park of the

Transformers

Inputs

Transformers

Language Generation

AI Bootcamp – NLP & LLM

Dr Usman Zia

Next word (/token) prediction

Text sample:

LLMs learn to predict one word at a time

AI Bootcamp – NLP & LLM Dr Usman Zia

AI Bootcamp – NLP & LLM

Sample 1 LLMs learn to predict one word at a time

Sample 2 LLMs learn to predict one word at a time

Dr Usman Zia

AI Bootcamp - NLP & LLM

How do LLMs generate multi-word outputs?

LM Landscape pre GPT-3

AI Bootcamp – NLP & LLM Dr Usman Zia

Why Scale?

- Study conducted by OpenAI → Scaling Laws for Neural Language
 Models (Kaplan et al. 2020)
- A few key findings:
 - Performance depends strongly on scale, weakly on model shape
 - Smooth power laws (y = ax^k) b/w empirical performance & N parameters, D - dataset size, C - compute
 - Transfer improves with test performance
 - Larger models are more sample efficient

Bigger is Better!

AI Bootcamp – NLP & LLM

Bigger is Better!

AI Bootcamp — NLP & LLM Dr Usman Zia

$$GPT-3 \rightarrow GPT-2$$

- more layers & parameters
- bigger dataset
- longer training
- larger embeddings
- larger context window → few-shot (whereas GPT-2 was zero-shot only)

GPT-3 is MASSIVE!

- 96 decoder blocks (2x GPT-2)
- Context size: 2048 (2x GPT-2)
- Embedding size: 12288 (~8x
 GPT-2)
- Params: 175b (~117x GPT-2)

GPT-3 is MASSIVE!

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

- All models were trained on 300B tokens
- Follows power law argued in <u>Kaplan et al.</u>
- "GPT-3" → GPT-3 175B

In-Context Learning

No l	Prompt
110	LIUIIPU

Prompt

Zero-shot (os)

skicts = sticks

a word, and write that word: skicts = sticks

1-shot (1s) chiar = chair skicts = sticks Please unscramble the letters into a word, and write that word:

Please unscramble the letters into

chiar = chair skicts = sticks

Few-shot (FS) chiar = chair
[...]
pciinc = picnic
skicts = sticks

Please unscramble the letters into a word, and write that word:

chiar = chair
[...]
pciinc = picnic
skicts = sticks

GPT training pipeline

Reinforcement Learning Pretraining Supervised Finetuning Reward Modeling Stage Raw internet **Demonstrations** Comparisons **Prompts** text trillions of words 100K –1M comparisons ~10K-100K prompts Ideal Assistant responses, low-quality, large quantity written by contractors written by contractors Dataset ~10-100K (prompt, response) written by contractors low quantity, high quality low quantity, high quality low quantity, high quality V \downarrow 4 Language modeling **Binary classification** Language modeling Reinforcement Learning predict the next token predict the next token predict rewards consistent w generate tokens that maximize Algorithm preferences the reward init from init from SFT $\overline{\mathbf{V}}$ Model Base model SFT model RM model **RL** model 1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs months of training days of training days of training days of training Notes ex: GPT, LLaMA, PaLM ex: ChatGPT, Claude ex: Vicuna-13B can deploy this model can deploy this model can deploy this model

Credits: @karpathy

AI Bootcamp – NLP & LLM

Generative configuration parameters for inference

Generative configuration - inference parameters

AI Bootcamp – NLP & LLM Dr Usman Zia

Fine-tuning an LLM with instruction prompts

AI Bootcamp – NLP & LLM Dr Usman Zia

In-context learning (ICL)-zero shot inference

LLM fine-tuning at a high level

LLM pre-training

GB - TB - PB of unstructured textual data

LLM fine-tuning at a high level

LLM fine-tuning

GB - TB of labeled examples for a specific task or set of tasks

LLM fine-tuning at a high level

LLM fine-tuning

Al Bootcamp – NLP & LLM

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

Multi-task, instruction fine-tuning

