Section 10.2 - Polar Coordinates Section 10.3 - Tangent Lines, Arc Length & Area for Polar Curves

Find the rectangular coordinates of the points whose polar coordinates are given.

3. a.
$$(6, \pi/6)$$

b.
$$(7, 2\pi/3)$$

c.
$$(-6, -5\pi/6)$$

e.
$$(7, 17\pi/6)$$

6. In each part, find polar coordinates satisfying the stated conditions for the point whose rectangular coordinates are $(-\sqrt{3}, 1)$

a. r≥0 and
$$0 \le \theta < 2\pi$$

b. r≤0 and 0≤
$$\theta$$
<2 π

c.
$$r \ge 0$$
 and $-2\pi \le \theta < 0$

d. r≤0 and
$$-2\pi \le \theta < 0$$

Find the slope of the tangent line to the polar curve for the given value of θ .

1.
$$r = 2 \sin \theta$$
; $\theta = \frac{\pi}{6}$

1.
$$r = 2 \sin \theta$$
; $\theta = \frac{\pi}{6}$
5. $r = \sin 3\theta$; $\theta = \frac{\pi}{4}$

9. Find polar coordinates of all points at which the polar curve $r = a(1 + cos\theta)$ has a horizontal or vertical tangent line.

21. Calculate the arc length of the polar curve (cardioid) $r = a(1 - \cos \theta)$

Find the area of the region described.

29. The region that is enclosed by the cardioid $r = 2 + 2 \sin \theta$

31. The region enclosed by the rose $r = 4 \cos 3\theta$

33. The region enclosed by the inner loop of the limaçon $r = 1 + 2\cos\theta$. [Hint: r≤0 over the interval of integration]

Find the area of the shaded region.

35.

37.

Find the area of the region described.

39. The region inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

41. The region inside the cardioid $r=2+2\cos\theta$ and outside the circle r=3.

43. The region inside the loops of the limaçon $r = \frac{1}{2} + \cos \theta$.