	C	ST	RUZ	ion	Ē	Di	ME	TOD	ند	İTE	RAT	ivi	ME	DiA	NTE		DEC	OMF	ieos	2 i01	JE	D	ETT		1ATF	ice.	
	 \/	 1•								, ch o			ka di		:			41	a da	11° t		. (1	2) -		iaal.		_
il s		edia na A	_		_			-								re ui	ı ine	etoa	o de	па г	orm	a (4.	.2) p	er r	ISOIV	ere	
_											A =	M	- (A	И —	A).										(4	1.9)	_
- 001	M		$n \times n$:	MATE	81CE	← lo de	otto	mmoo	on d																(2.0)	_
_ con	IVI	$\in \mathbb{C}$	I	I	I	I			I	l .	I	I	I	I	I	I	I	I	I	I	I	I	I	I			
		A	x =	b																							
						\Rightarrow	Х	=	M	1 (M	1 —	<i>A</i>)3	x +	M^-	b		\Rightarrow		x =	x +	- M	r	$(\mathbf{x}),$				
													₹ X	= (M	M-'-	M ⁻¹ A)× -	- M ⁻¹	b =	x-1	1 ⁻¹ Ax	+M-'	ь = x	+ M ⁻¹	(- A×	+b)	
- 6	love	$\mathbf{r}(\mathbf{y})$	$= \mathbf{b}$)) — A	4 y è	il re	esidv	io in	$i \mathbf{y} \dot{\mathbf{c}}$	lel si	isten	ı na (4.1),	e si	defi	inisc	e il 1	 meto	odo							-	
		(0)																								-	
	$\mathbf{x}^{(0)} \in \mathbb{C}^n \text{ dato,}$ $\mathbf{x}^{(k+1)} = M^{-1}(M-A)\mathbf{x}^{(k)} + M^{-1}\mathbf{b} = \mathbf{x}^{(k)} + M^{-1}\mathbf{r}^{(k)}, k = 0, 1, 2, .$														2	(4.11)											
							- IVI	(1)		A)A		IVI	<u>_</u>			F2	_	<u>ッ '</u> □	· —	, 1,	۷,		l			I I	
-		(h)	-	(10)				(L)															1,				
		M = M = M = M = M = M = M = M = M = M =																									
		1a Ax											ı	1	ı	1	,	, ,	ı	1	,	,			, 1		
TE	ORI	EMF	<u> </u>	I	l me	etode	0 (4	.11)	per	r ris	solve	ere	Ax=b	è	conv	verg	ente	se	e se	olo s	$e \rho$	(I -	M	^{-1}A) <	1.	
α	3S1	ER'	VA	ZiO	NE	<u> </u>	\rightarrow	Il 1	polin	omi	o car	atte	ristic	co di	I -	M^{-}	¹ A è	date	da								
								$_{-}$ C_{j}	$I-M^{-1}$	$\mathfrak{1}_A(\lambda)$	$= d\epsilon$	$\operatorname{et}(\lambda I)$	- I +	$-M^{-1}$	$^{1}A) =$	= det((M^{-1})	(λM)	- M	+A) = d	$\det(M$	(-1) d	$\det(\lambda I)$	$M + \Delta$	A-M	(I), _
																det	(A	×	8)	E			→	Bin			_
								do	ve n	ell'ul	tima	ugu	uagli	anza	abb	iamo	usa	to il	teor	rema	di I	Binet	. Pe	rtan	to,		
											_ (C_{I-N}	$M^{-1}A$	(λ) =	= 0		\Rightarrow	de	$t(\lambda \Lambda$	I +	A –	M)	= 0.				
		-											<u> </u>		1			1	1			1		1	1	- >	
		nclus no es																									
		ivers												1	,				_		ı		1				
	ددا	-0 1	(A)	2 i C) NIE	· _	_	L'it	erazi	one l	k-esi	ma d	el me	etodo	(4.1	1) vi	ene i	orm	alme	ente c	alcol	ata 1	media	ante	la foi	mula	(F2)
		$= \mathbf{x}^{(i)}$																									
cale	colo	vier	e fa	tto 1	risol	vend	lo il	sist	ema	line	eare	$M\mathbf{z}$	$\mathbf{z}^{(k)}$ =	$= \mathbf{r}^{(i)}$	k) cł	ne d	eve	esse	re p	iù fa	acile	/rap	oido	da :	risol	vere	
_		o al s neto				nari	o A x	$\zeta = \dot{\zeta}$	b, a	ltrin	nent	i no	n c'	è ne	ssun	gua	adag	no r	iel r	isolv	ere	il si	sten	ia oi	rigin	ario	
COI	11 1	lieto	40 (.	1.11,) · 																						
*	e	non	calc	onela:	<i>p</i>	l'inve	ersa	M ⁻	' (c	osa	tip	icam	nente	. S		enie	nte.	dal	pun	b c	li vie	ala	com	puta	3i01	ale)	
									_										-								

Intuitivamente, quanto più il precondizionatore M "è vicino/assomiglia" alla matrice

A, tanto più il metodo (4.11) convergerà velocemente. Infatti, se $M \approx A$ allora intuitivamente $M - A \approx O$, $M^{-1}A \approx I$ e $M^{-1}(M-A) = I - M^{-1}A \approx O$, per cui ci si può aspettare che $\rho(I-M^{-1}A)$ sia piccolo. Il caso limite M = A è quello in cui $I - M^{-1}A = O$ e il metodo converge in un'iterazione alla soluzione esatta \mathbf{x} , ma al prezzo che tale iterazione costa come la risoluzione del sistema originario $A\mathbf{x} = \mathbf{b}$. Nella scelta del precondizionatore M occorre quindi mediare fra 2 cose:

- "qualità dell'approssimazione $M \approx A$ una buona approssimazione $M \approx A$ generalmente assicura un buona velocità di convergenza;
- la facilità/rapidità della risoluzione di un sistema lineare di matrice M assicura che ogni iterazione del metodo (4.11) è rapida.

N.B: & Significa ASSOMIGLIA

METODO DI JACOBI

Supponiamo che A abbia elementi diagonali non nulli. In tal caso, la parte diagonale di A, cioè la matrice diagonale D ottenuta ricopiando la parte diagonale di A, è invertibile e possiamo definire il metodo di Jacobi, cioè il metodo (4.11) con M = D:

$$\begin{bmatrix} \mathbf{x}^{(0)} \in \mathbb{C}^n \text{ dato,} \\ \mathbf{x}^{(k+1)} = D^{-1}(D-A)\mathbf{x}^{(k)} + D^{-1}\mathbf{b} = \mathbf{x}^{(k)} + D^{-1}\mathbf{r}^{(k)}, & k = 0, 1, 2, \dots \end{bmatrix}$$

Il metodo di Jacobi è convergente se e solo se $\rho(J) < 1$, dove $J = D^{-1}(D - A) = I - D^{-1}A$. L'iterazione k-esima del metodo di Jacobi richiede di calcolare il vettore $\mathbf{z}^{(k)} = D^{-1}\mathbf{r}^{(k)}$ risolvendo il sistema diagonale $D\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$, il che è facilissimo:

$$\begin{cases}
 a_{11}z_1^{(k)} & = r_1^{(k)} \\
 a_{22}z_2^{(k)} & = r_2^{(k)} \\
 & \ddots & \vdots \\
 a_{nn}z_n^{(k)} & = r_n^{(k)}
\end{cases}
\iff
\begin{cases}
 z_1^{(k)} = r_1^{(k)}/a_{11} \\
 z_2^{(k)} = r_2^{(k)}/a_{22} \\
 \vdots \\
 z_n^{(k)} = r_n^{(k)}/a_{nn}
\end{cases}$$
(4.14)

Il costo del calcolo di $\mathbf{z}^{(k)}$ è nD. ¹⁹

METODO DI GAUSS-SEIDEL

Supponiamo che A abbia elementi diagonali non nulli. In tal caso, la parte triangolare inferiore di A, cioè la matrice triangolare inferiore E ottenuta ricopiando la parte triangolare inferiore di A (inclusa la diagonale), è invertibile e possiamo definire il metodo di Gauss-Seidel, cioè il metodo (4.11) con M = E:

$$\mathbf{x}^{(0)} \in \mathbb{C}^{n} \text{ dato,}$$

$$\mathbf{x}^{(k+1)} = E^{-1}(E - A)\mathbf{x}^{(k)} + E^{-1}\mathbf{b} = \mathbf{x}^{(k)} + E^{-1}\mathbf{r}^{(k)}, \quad k = 0, 1, 2, \dots$$

$$(4.15)$$

Il metodo di Gauss-Seidel è convergente se e solo se $\rho(G) < 1$, dove $G = E^{-1}(E - A) = I - E^{-1}A$. L'iterazione k-esima del metodo di Gauss-Seidel richiede di calcolare il vettore $\mathbf{z}^{(k)} = E^{-1}\mathbf{r}^{(k)}$ risolvendo il

sistema triangolare inferiore $E\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$, il che è facile (la soluzione si ottiene per sostituzione in avanti):

$$\begin{cases} a_{11}z_1^{(k)} & = r_1^{(k)} \\ a_{21}z_1^{(k)} + a_{22}z_2^{(k)} & = r_2^{(k)} \\ a_{31}z_1^{(k)} + a_{32}z_2^{(k)} + a_{33}z_3^{(k)} & = r_3^{(k)} \\ \vdots & \vdots & \vdots \\ a_{n1}z_1^{(k)} + a_{n2}z_2^{(k)} + \dots + a_{nn}z_n^{(k)} & = r_n^{(k)} \end{cases}$$

$$\Leftrightarrow \begin{cases} z_1^{(k)} = r_1^{(k)}/a_{11} \\ z_2^{(k)} = (r_2^{(k)} - a_{21}z_1^{(k)})/a_{22} \\ z_3^{(k)} = (r_3^{(k)} - a_{31}z_1^{(k)} - a_{32}z_2^{(k)})/a_{33} \\ \vdots \\ z_n^{(k)} = (r_n^{(k)} - a_{n1}z_1^{(k)} - a_{n2}z_2^{(k)} - \dots - a_{n,n-1}z_{n-1}^{(k)}) \end{cases}$$

$$(4.16)$$

Per ogni $i = 1, \ldots, n$, il costo del calcolo di

$$z_i^{(k)} = \frac{r_i - a_{i1}z_1^{(k)} - a_{i2}z_2^{(k)} - \dots - a_{i,i-1}z_{i-1}^{(k)}}{a_{ii}}$$

è 1D + (i-1)M + (i-1)A, per cui il costo complessivo del calcolo di $\mathbf{z}^{(k)}$ è

$$\sum_{i=1}^{n} (1D + (i-1)M + (i-1)A) = nD + \frac{n(n-1)}{2}M + \frac{n(n-1)}{2}A.$$

Questo costo può ridursi se la parte triangolare inferiore E di A ha molti zeri.

CSSERVAZIONE \longrightarrow Confrontando i precondizionatori D ed E dei metodi di Jacobi e Gauss-Seidel, osserviamo quanto segue:

- L'approssimazione $E \approx A$ è migliore dell'approssimazione $D \approx A$ perché E A ha più zeri di D A. Questo spiega perché molto spesso il metodo di Gauss-Seidel converge più velocemente del metodo di Jacobi (cioè $\rho(G) < \rho(J)$, essendo J e G le matrici d'iterazione di Jacobi e Gauss-Seidel).
- \bullet La risoluzione di un sistema lineare di matrice E è più costosa della risoluzione di un sistema lineare di matrice D (cfr. (4.16) e (4.14)). Pertanto, un'iterazione di Gauss-Seidel costa di più di un'iterazione di Jacobi.