Amenability in inverse semigroups and C*-algebras

Diego Martínez

December 11, 2018

Instituto de Ciencias Matemáticas - Universidad Carlos III de Madrid lumartin@math.uc3m.es luisdiego.martinez@icmat.es

Overview

Introduction (→ group case)

Inverse semigroups

Introduction

A conjecture & a problem

Amenability as domain-measurability and localization

Domain-measures as traces

Conclusions and open problems

Disclaimer

Joint work with Pere Ara (UAB) & Fernando Lledó

Work in progress!

Introduction (→ group case)

 ${\it G}$ countable discrete group

G countable discrete group

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

1. G is amenable

$$(\equiv \mu : \mathcal{P}(G) \rightarrow [0,1] \text{ such that } \mu(gA) = \mu(A)).$$

G countable discrete group

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

1. G is amenable

$$(\equiv \mu: \mathcal{P}(G) \rightarrow [0,1]$$
 such that $\mu(gA) = \mu(A)$).

2. G is not paradoxical

$$\left(\equiv \text{ not } G=\left(\sqcup_{i=1}^n A_i\right)\sqcup \left(\sqcup_{j=1}^m B_j\right)=\sqcup_i g_i A_i=\sqcup_j h_j B_j\right).$$

G countable discrete group $\rightsquigarrow \mathcal{R}_G := \ell^{\infty}(G) \rtimes_r G$

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

- 1. G is amenable $(\equiv \mu : \mathcal{P}(G) \rightarrow [0,1]$ such that $\mu(gA) = \mu(A)$).
- 2. G is not paradoxical $\left(\equiv \text{ not } G = \left(\sqcup_{i=1}^n A_i\right) \sqcup \left(\sqcup_{j=1}^m B_j\right) = \sqcup_i g_i A_i = \sqcup_j h_j B_j\right).$

G countable discrete group $\rightsquigarrow \mathcal{R}_G := \ell^{\infty}(G) \rtimes_r G$

$$\mathcal{R}_{\mathcal{G}} = \mathsf{C}^*\left(\left\{\lambda_{\mathcal{g}} \mid \mathcal{g} \in \mathcal{G}\right\} \cup \ell^{\infty}\left(\mathcal{G}\right)\right) \subset \mathcal{B}\left(\ell^2\left(\mathcal{G}\right)\right).$$

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

1. *G* is amenable

$$(\equiv \mu : \mathcal{P}(G) \rightarrow [0,1] \text{ such that } \mu(gA) = \mu(A)).$$

2. G is not paradoxical

$$\left(\equiv \text{ not } G=\left(\sqcup_{i=1}^n A_i\right) \sqcup \left(\sqcup_{j=1}^m B_j\right)=\sqcup_i g_i A_i=\sqcup_j h_j B_j\right).$$

G countable discrete group $\rightsquigarrow \mathcal{R}_G := \ell^{\infty}(G) \rtimes_r G$

$$\mathsf{C}_{r}^{*}\left(\mathsf{G}\right)\subset\mathcal{R}_{\mathsf{G}}=\mathsf{C}^{*}\left(\left\{ \lambda_{\mathsf{g}}\mid\mathsf{g}\in\mathsf{G}\right\} \cup\ell^{\infty}\left(\mathsf{G}\right)
ight)\subset\mathcal{B}\left(\ell^{2}\left(\mathsf{G}\right)
ight).$$

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

1. G is amenable

$$(\equiv \mu : \mathcal{P}(G) \rightarrow [0,1] \text{ such that } \mu(gA) = \mu(A)).$$

2. *G* is not paradoxical

$$\left(\equiv \text{ not } G=\left(\sqcup_{i=1}^n A_i\right) \sqcup \left(\sqcup_{j=1}^m B_j\right)=\sqcup_i g_i A_i=\sqcup_j h_j B_j\right).$$

G countable discrete group $\rightsquigarrow \mathcal{R}_G := \ell^{\infty}(G) \rtimes_r G$

$$\mathsf{C}_{r}^{*}\left(\mathsf{G}\right)\subset\mathcal{R}_{\mathsf{G}}=\mathsf{C}^{*}\left(\left\{ \lambda_{\mathsf{g}}\mid\mathsf{g}\in\mathsf{G}\right\} \cup\ell^{\infty}\left(\mathsf{G}\right)
ight)\subset\mathcal{B}\left(\ell^{2}\left(\mathsf{G}\right)
ight).$$

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

- 1. G is amenable $(\equiv \mu : \mathcal{P}(G) \rightarrow [0,1]$ such that $\mu(gA) = \mu(A)$).
- 2. G is not paradoxical $\left(\equiv \text{ not } G = \left(\sqcup_{i=1}^n A_i\right) \sqcup \left(\sqcup_{j=1}^m B_j\right) = \sqcup_i g_i A_i = \sqcup_j h_j B_j\right).$
- 3. \mathcal{R}_G has a trace $(\equiv \phi : \mathcal{R}_G \to \mathbb{C} : \phi(ab) = \phi(ba) \ \forall a, b \in \mathcal{R}_G).$

G countable discrete group $\rightsquigarrow \mathcal{R}_G := \ell^{\infty}(G) \rtimes_r G$

$$\mathsf{C}_{r}^{*}(\mathsf{G}) \subset \mathcal{R}_{\mathsf{G}} = \mathsf{C}^{*}\left(\left\{\lambda_{\mathsf{g}} \mid \mathsf{g} \in \mathsf{G}\right\} \cup \ell^{\infty}\left(\mathsf{G}\right)\right) \subset \mathcal{B}\left(\ell^{2}\left(\mathsf{G}\right)\right).$$

Theorem (Tarski, von Neumann, Følner, Bartholdi, ...)

G countable discrete group. TFAE:

- 1. G is amenable $(\equiv \mu: \mathcal{P}(G) \rightarrow [0,1]$ such that $\mu(gA) = \mu(A)$).
- 2. G is not paradoxical $\left(\equiv \text{ not } G = \left(\sqcup_{i=1}^n A_i\right) \sqcup \left(\sqcup_{j=1}^m B_j\right) = \sqcup_i g_i A_i = \sqcup_j h_j B_j\right)$.
- 3. \mathcal{R}_G has a trace $(\equiv \phi : \mathcal{R}_G \to \mathbb{C} : \phi(ab) = \phi(ba) \ \forall a, b \in \mathcal{R}_G).$
- 4. \mathcal{R}_G is not properly infinite $(\equiv \nexists v, w \in \mathcal{R}_G \text{ with } 1 = v^*v = w^*w \ge vv^* + ww^*).$

Inverse semigroups

S inverse semigroup:

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

Actually: $S \subset \mathcal{I}(S)$ as inverse semigroups.

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

Actually: $S \subset \mathcal{I}(S)$ as inverse semigroups.

Notions/properties:

• $s, t \in S$ are composable if $s^*st = t$.

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

Actually: $S \subset \mathcal{I}(S)$ as inverse semigroups.

Notions/properties:

- $s, t \in S$ are composable if $s^*st = t$.
- $e \in S$ is a projection when $\underline{e = e^2 = e^*} \Leftrightarrow A = B$ and $e = id_A$.

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

Actually: $S \subset \mathcal{I}(S)$ as inverse semigroups.

Notions/properties:

- $s, t \in S$ are composable if $s^*st = t$.
- $e \in S$ is a projection when $e = e^2 = e^* \Leftrightarrow A = B$ and $e = id_A$.
- $E(S) := \{s^*s \mid s \in S\}$ is a <u>commutative</u> semigroup.

S <u>inverse</u> semigroup: for all $s \in S$ there is a unique $s^* \in S$ such that $\underline{ss^*s} = \underline{s}$ and $\underline{s^*ss^*} = \underline{s^*}$.

Example: $\mathcal{I}(X) = \{(A, B, s) : A, B \subset X \text{ and } s : A \leftrightarrow B\}.$

- A = domain of s.
- B = range of s.
- $(A, B, s) \circ (C, D, t) := (t^{-1}(D \cap A), s(D \cap A), st).$

Actually: $S \subset \mathcal{I}(S)$ as inverse semigroups.

Notions/properties:

- $s, t \in S$ are composable if $s^*st = t$.
- $e \in S$ is a projection when $\underline{e = e^2 = e^*} \Leftrightarrow A = B$ and $e = id_A$.
- $E(S) := \{s^*s \mid s \in S\}$ is a <u>commutative</u> semigroup.
- $e, f \in E(S) \rightsquigarrow \underline{e \leq f \Leftrightarrow ef = e}$.

Definition (Day - 1957)

S is amenable if there is a probability measure $\mu\colon\mathcal{P}\left(S\right)\to\left[0,1\right]$ such that for every $s\in S$ and $A\subset S$

$$\mu\left(s^{-1}A\right)=\mu\left(A\right),$$

where $s^{-1}A := \{ t \in S \mid st \in A \}.$

Definition (Day - 1957)

S is amenable if there is a probability measure $\mu\colon\mathcal{P}\left(S\right)\to\left[0,1\right]$ such that for every $s\in S$ and $A\subset S$

$$\mu\left(s^{-1}A\right) = \mu\left(A\right),\,$$

where $s^{-1}A := \{ t \in S \mid st \in A \}.$

Examples:

1. All amenable groups.

Definition (Day - 1957)

S is amenable if there is a probability measure $\mu\colon\mathcal{P}\left(S\right)\to\left[0,1\right]$ such that for every $s\in S$ and $A\subset S$

$$\mu\left(s^{-1}A\right) = \mu\left(A\right),\,$$

where $s^{-1}A := \{ t \in S \mid st \in A \}.$

Examples:

- 1. All amenable groups.
- 2. $0 \in S \leadsto \mu(\{0\}) = 1$.

Definition (Day - 1957)

S is amenable if there is a probability measure $\mu\colon\mathcal{P}\left(S\right)\to\left[0,1\right]$ such that for every $s\in S$ and $A\subset S$

$$\mu\left(s^{-1}A\right) = \mu\left(A\right),\,$$

where $s^{-1}A := \{ t \in S \mid st \in A \}.$

Examples:

- 1. All amenable groups.
- 2. $0 \in S \leadsto \mu(\{0\}) = 1$.
- 3. $S := \mathbb{F}_2 \sqcup \{1\}$ is *not* amenable.

Definition (Day - 1957)

S is amenable if there is a probability measure $\mu \colon \mathcal{P}\left(S\right) \to [0,1]$ such that for every $s \in S$ and $A \subset S$

$$\mu\left(s^{-1}A\right) = \mu\left(A\right),\,$$

where $s^{-1}A := \{ t \in S \mid st \in A \}.$

Examples:

- 1. All amenable groups.
- 2. $0 \in S \leadsto \mu(\{0\}) = 1$.
- 3. $S := \mathbb{F}_2 \sqcup \{1\}$ is *not* amenable.

Questions: Regular representation? Paradoxical decomposition?

Left regular representation: consider $\mathcal{B}\left(\ell^2\left(S\right)\right)$

Left regular representation: consider $\mathcal{B}\left(\ell^{2}\left(S\right)\right)\ni V_{s}$:

Left regular representation: consider $\mathcal{B}\left(\ell^{2}\left(S\right)\right)\ni V_{s}$:

$$V_s\delta_t := \left\{ egin{array}{ll} \delta_{st} & ext{if} & s^*st = t \ 0 & ext{otherwise} \end{array}
ight.$$

Thus $V_s \rightsquigarrow \text{partial traslation}$: $\ell^2(s^*sS) \mapsto \ell^2(ss^*S)$.

Left regular representation: consider $\mathcal{B}\left(\ell^{2}\left(S\right)\right) \ni V_{s}$:

$$V_s\delta_t := \left\{ egin{array}{ll} \delta_{st} & ext{if} & s^*st = t \ 0 & ext{otherwise} \end{array}
ight.$$

Thus $V_s \rightsquigarrow \text{partial traslation}$: $\ell^2(s^*sS) \mapsto \ell^2(ss^*S)$.

Definition

The Roe algebra:

$$\mathcal{R}_{S} := \mathsf{C}^{*}\left(\left\{V_{s} : s \in S\right\} \cup \ell^{\infty}\left(S\right)\right) \subset \mathcal{B}\left(\ell^{2}\left(S\right)\right).$$

Left regular representation: consider $\mathcal{B}\left(\ell^{2}\left(S\right)\right)\ni V_{s}$:

$$V_s\delta_t := \left\{ egin{array}{ll} \delta_{st} & ext{if} & s^*st = t \ 0 & ext{otherwise} \end{array}
ight.$$

Thus $V_s \rightsquigarrow \text{partial traslation}$: $\ell^2(s^*sS) \mapsto \ell^2(ss^*S)$.

Definition

The Roe algebra:

$$\mathcal{R}_{\mathcal{S}} := \mathsf{C}^*\left(\left\{V_s : s \in \mathcal{S}\right\} \cup \ell^{\infty}\left(\mathcal{S}\right)\right) \subset \mathcal{B}\left(\ell^2\left(\mathcal{S}\right)\right).$$

Questions:

- 1. When does \mathcal{R}_S have a trace?
- 2. When is \mathcal{R}_S properly infinite?

Consider: $\mathcal{T} := \langle a, a^* \mid a^*a = 1 \rangle$

$$\mathsf{Consider} \colon \, \mathcal{T} := \langle \mathsf{a}, \mathsf{a}^* \mid \mathsf{a}^* \mathsf{a} = 1 \rangle = \Big\{ \mathsf{a}^\mathsf{i} \left(\mathsf{a}^* \right)^\mathsf{j} \mid \mathsf{i}, \mathsf{j} \in \mathbb{N} \Big\}.$$

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}$$
.

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

• Left regular representation:

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) a^{i} \left(a^{*}\right)^{j} = a^{i} \left(a^{*}\right)^{j} \\ 0 & \text{otherwise} \end{cases}$$

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}\left(a^{*}\right)^{j}}=\left\{\begin{array}{ll}\delta_{a^{i+1}\left(a^{*}\right)^{j}} & \text{if} \quad \left(a^{*}a\right)a^{i}\left(a^{*}\right)^{j}=a^{i}\left(a^{*}\right)^{j}\\ 0 & \text{otherwise}\end{array}\right.=\delta_{a^{i+1}\left(a^{*}\right)^{j}},$$

7

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) \ a^{i} \ (a^{*})^{j} = a^{i} \ (a^{*})^{j} \\ 0 & \text{otherwise} \end{cases} = \delta_{a^{i+1}(a^{*})^{j}},$$

 V_a is the unilateral shift.

Therefore:

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^{i}\left(a^{*}\right)^{i} \mid i \in \mathbb{N}\right\} = \left\{1, aa^{*}, a^{2}\left(a^{*}\right)^{2}, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) a^{i} \left(a^{*}\right)^{j} = a^{i} \left(a^{*}\right)^{j} \\ 0 & \text{otherwise} \end{cases} = \delta_{a^{i+1}(a^{*})^{j}},$$

 V_a is the unilateral shift.

Therefore: $\mathcal{R}_{\mathcal{T}} \cong C^* (\{ \text{Shift } \} \cup \ell^{\infty} (\mathbb{N})).$

7

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^i \left(a^*\right)^i \mid i \in \mathbb{N}\right\} = \left\{1, aa^*, a^2 \left(a^*\right)^2, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) a^{i} \left(a^{*}\right)^{j} = a^{i} \left(a^{*}\right)^{j} \\ 0 & \text{otherwise} \end{cases} = \delta_{a^{i+1}(a^{*})^{j}},$$

 V_a is the unilateral shift.

Therefore: $\mathcal{R}_{\mathcal{T}} \cong C^* (\{ \text{Shift } \} \cup \ell^{\infty} (\mathbb{N})).$

$$\rightarrow$$
 Tracial: $\phi(V_a) = 0$

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^i \left(a^*\right)^i \mid i \in \mathbb{N}\right\} = \left\{1, aa^*, a^2 \left(a^*\right)^2, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) a^{i} \left(a^{*}\right)^{j} = a^{i} \left(a^{*}\right)^{j} \\ 0 & \text{otherwise} \end{cases} = \delta_{a^{i+1}(a^{*})^{j}},$$

 V_a is the unilateral shift.

Therefore: $\mathcal{R}_{\mathcal{T}} \cong C^* (\{ \text{Shift } \} \cup \ell^{\infty} (\mathbb{N})).$

$$\rightarrow$$
 Tracial: $\phi(V_a) = 0 \ (\rightsquigarrow \text{diagonal} = 0)$,

7

Consider:
$$\mathcal{T}:=\langle a,a^*\mid a^*a=1\rangle=\left\{a^i\left(a^*\right)^j\mid i,j\in\mathbb{N}\right\}.$$

• Projections: $\mathsf{E}\left(\mathcal{T}\right) = \left\{a^i \left(a^*\right)^i \mid i \in \mathbb{N}\right\} = \left\{1, aa^*, a^2 \left(a^*\right)^2, \dots\right\} \cong \mathbb{N}.$

Left regular representation:

$$V_{a}\delta_{a^{i}(a^{*})^{j}} = \begin{cases} \delta_{a^{i+1}(a^{*})^{j}} & \text{if} \quad (a^{*}a) a^{i} \left(a^{*}\right)^{j} = a^{i} \left(a^{*}\right)^{j} \\ 0 & \text{otherwise} \end{cases} = \delta_{a^{i+1}(a^{*})^{j}},$$

 V_a is the unilateral shift.

Therefore: $\mathcal{R}_{\mathcal{T}} \cong C^* (\{ \text{Shift } \} \cup \ell^{\infty} (\mathbb{N})).$

$$\rightarrow \text{Tracial: } \phi(V_a) = 0 \text{ (\leadsto diagonal } = 0$),}$$
$$\phi(P_A) = \lim_{\omega} \frac{|A \cap \{a^i(a^*)^j | i, j \le n\}|}{|\{a^i(a^*)^j | i, j \le n\}|}.$$

 \rightarrow Not properly infinite.

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. *S* is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. *S* is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Sketch:

Non-paradoxical $\xrightarrow{type\ sem.}$ amenable

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. S is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Sketch:

$$\begin{array}{c} \text{Non-paradoxical} \xrightarrow[cond.exp.]{type\ sem.} \text{amenable} \\ \xrightarrow[cond.exp.]{} \mathcal{R}_{\mathcal{S}} \text{ tracial} \end{array}$$

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. S is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Sketch:

$$\begin{array}{c} \text{Non-paradoxical} \xrightarrow{type \ sem.} \text{amenable} \\ \xrightarrow{cond.exp.} \mathcal{R}_{\mathcal{S}} \text{ tracial} \\ \xrightarrow{1 \not \geq 2} \mathcal{R}_{\mathcal{S}} \text{ non-properly infinite} \end{array}$$

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. S is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Sketch:

$$\begin{array}{c} \text{Non-paradoxical} \xrightarrow{type \ sem.} \text{amenable} \\ \xrightarrow{cond.exp.} \mathcal{R}_S \text{ tracial} \\ \xrightarrow{1 \not \geq 2} \mathcal{R}_S \text{ non-properly infinite} \\ \xrightarrow{\text{not} \Leftarrow \text{not}} S \text{ non-paradoxical}. \end{array}$$

Conjecture

S countable discrete inverse semigroup. TFAE:

- 1. S is amenable.
- 2. S is not paradoxical.
- 3. \mathcal{R}_S has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Sketch:

$$\begin{array}{c} \text{Non-paradoxical} \xrightarrow{type \ sem.} \text{amenable} \\ \xrightarrow{cond.exp.} \mathcal{R}_S \text{ tracial} \\ \xrightarrow{1 \not\geq 2} \mathcal{R}_S \text{ non-properly infinite} \\ \xrightarrow{\text{not} \Leftarrow \text{not}} S \text{ non-paradoxical}. \end{array}$$

Conjecture false... But almost true.

Goal: paradox. dec. \leadsto properly infinite behaviour in $V_s \in \mathcal{R}_S$.

Goal: paradox. dec. \leadsto properly infinite behaviour in $V_s \in \mathcal{R}_S$.

In groups: $\lambda_{a_i}^* P_{a_i A_i}$: $a_i A_i \mapsto A_i$ and these induce proper inf.

Goal: paradox. dec. \rightsquigarrow properly infinite behaviour in $V_s \in \mathcal{R}_S$.

In groups: $\lambda_{a_i}^* P_{a_i A_i} : a_i A_i \mapsto A_i$ and these induce proper inf.

Consider:
$$S = a_1^{-1} A_1 \sqcup \cdots \sqcup a_n^{-1} A_n = b_1^{-1} B_1 \sqcup \cdots \sqcup b_m^{-1} B_m$$

= $A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$. (*)

Goal: paradox. dec. \rightsquigarrow properly infinite behaviour in $V_s \in \mathcal{R}_S$.

In groups: $\lambda_{a_i}^* P_{a_i A_i} : a_i A_i \mapsto A_i$ and these induce proper inf.

Consider:
$$S = a_1^{-1} A_1 \sqcup \cdots \sqcup a_n^{-1} A_n = b_1^{-1} B_1 \sqcup \cdots \sqcup b_m^{-1} B_m$$

= $A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$. (*)

Pick
$$|S|=\infty$$
 and $0\in S$ and μ invariant $\left(\mu\left(s^{-1}A\right)=\mu\left(A\right)\right)$:
$$S=0^{-1}\left\{0\right\} \ \ \text{while} \ \ \emptyset=0^{-1}\left(S\setminus\left\{0\right\}\right).$$

Goal: paradox. dec. \rightsquigarrow properly infinite behaviour in $V_s \in \mathcal{R}_S$.

In groups: $\lambda_{a_i}^* P_{a_i A_i} : a_i A_i \mapsto A_i$ and these induce proper inf.

Consider:
$$S = a_1^{-1} A_1 \sqcup \cdots \sqcup a_n^{-1} A_n = b_1^{-1} B_1 \sqcup \cdots \sqcup b_m^{-1} B_m$$

= $A_1 \sqcup \cdots \sqcup A_n \sqcup B_1 \sqcup \cdots \sqcup B_m$. (*)

Pick
$$|S|=\infty$$
 and $0\in S$ and μ invariant $\left(\mu\left(s^{-1}A\right)=\mu\left(A\right)\right)$:
$$S=0^{-1}\left\{0\right\} \ \ \text{while} \ \ \emptyset=0^{-1}\left(S\setminus\left\{0\right\}\right).$$

A problem

(*) does <u>not</u> induce properly infinite behaviour in $V_s \in \mathcal{R}_S$... does <u>not</u> even induce maps $A_i \mapsto a_i^{-1} A_i$...

Conclussion: need a version of amenbility forwards...

Remark:

Pick S and μ invariant measure $\left(\mu\left(A\right)=\mu\left(s^{-1}A\right)\right)$. Then:

Remark:

(i)
$$\mu(A)$$

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(A \setminus ss^*S)$$

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S))$$

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

(ii)
$$\mu$$
 ($ss*A$)

Remark:

$$\text{(i)}\ \ \mu\left(A\right)=\mu\left(A\cap ss^{*}S\right)+\mu\left(s^{-1}\left(A\setminus ss^{*}S\right)\right)=\mu\left(A\cap ss^{*}S\right).$$

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

Remark:

$$\text{(i)}\ \ \mu\left(A\right)=\mu\left(A\cap ss^{*}S\right)+\mu\left(s^{-1}\left(A\setminus ss^{*}S\right)\right)=\mu\left(A\cap ss^{*}S\right).$$

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

= $\mu(s^*A) + \mu(s^{-1}ss^*A \setminus s^*A)$

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

= $\mu(s^*A) + \mu((s^*)^{-1}(s^{-1}ss^*A \setminus s^*A))$

Remark:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

= $\mu(s^*A) + \mu((s^*)^{-1}(s^{-1}ss^*A \setminus s^*A)) = \mu(s^*A).$

Remark:

Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

= $\mu(s^*A) + \mu((s^*)^{-1}(s^{-1}ss^*A \setminus s^*A)) = \mu(s^*A)$.

Proposition (Ara, Lledó, M. - 2018)

 μ is invariant $\Leftrightarrow \mu(s^*sA) = \mu(sA)$ and $\mu(A \cap s^*sS) = \mu(A)$.

Remark:

Pick S and μ invariant measure $(\mu(A) = \mu(s^{-1}A))$. Then:

(i)
$$\mu(A) = \mu(A \cap ss^*S) + \mu(s^{-1}(A \setminus ss^*S)) = \mu(A \cap ss^*S)$$
.

(ii)
$$\mu(ss^*A) = \mu(s^{-1}ss^*A)$$

= $\mu(s^*A) + \mu((s^*)^{-1}(s^{-1}ss^*A \setminus s^*A)) = \mu(s^*A)$.

Proposition (Ara, Lledó, M. - 2018)

 μ is invariant $\Leftrightarrow \mu(s^*sA) = \mu(sA)$ and $\mu(A \cap s^*sS) = \mu(A)$.

domain-measure and localization.

Examples of domain-measurable semigroups:

1. All amenable semigroups.

Examples of domain-measurable semigroups:

- 1. All amenable semigroups.
- 2. Non-invariant and domain-measure:

$$S = (\{0,1\},\cdot) \text{ and } \mu(\{1\}) = 1.$$

Examples of domain-measurable semigroups:

- 1. All amenable semigroups.
- 2. Non-invariant and domain-measure:

$$S = (\{0,1\},\cdot) \text{ and } \mu(\{1\}) = 1.$$

3. Non-amenable and domain-measurable semigroup:

$$S = \mathbb{F}_2 \sqcup \{1\}$$
 and $\mu(\{1\}) = 1$.

Examples of domain-measurable semigroups:

- 1. All amenable semigroups.
- 2. Non-invariant and domain-measure:

$$S = (\{0,1\},\cdot) \text{ and } \mu(\{1\}) = 1.$$

3. Non-amenable and domain-measurable semigroup:

$$S = \mathbb{F}_2 \sqcup \{1\}$$
 and $\mu(\{1\}) = 1$.

Definition

S is *domain-paradoxical* if there are $a_i \in S, A_i \subset S$ with

$$S = a_1 A_1 \sqcup \cdots \sqcup a_n A_n = b_1 B_1 \sqcup \cdots \sqcup b_m B_m$$
$$\supset a_1^* a_1 A_1 \sqcup \cdots \sqcup a_n^* a_n A_n \sqcup b_1^* b_1 B_1 \sqcup \cdots \sqcup b_m^* b_m B_m.$$

Domain-measures as traces & Theorem I

Theorem (Ara, Lledó, M. - 2018)

S countable, discrete inverse semigroup and $1 \in S$. TFAE:

- 1. *S* is domain-measurable.
- 2. *S* is not domain-paradoxical.
- 3. \mathcal{R}_S is has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Key ideas of the proof:

Domain-measures as traces & Theorem I

Theorem (Ara, Lledó, M. - 2018)

S countable, discrete inverse semigroup and $1 \in S$. TFAE:

- 1. *S* is domain-measurable.
- 2. S is not domain-paradoxical.
- 3. \mathcal{R}_S is has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Key ideas of the proof:

(1) Cond. exp. $E: \mathcal{B}\left(\ell^2(S)\right) \to \ell^\infty(S)$ and $\phi = \phi \circ E$.

Domain-measures as traces & Theorem I

Theorem (Ara, Lledó, M. - 2018)

S countable, discrete inverse semigroup and $1 \in S$. TFAE:

- 1. *S* is domain-measurable.
- 2. *S* is not domain-paradoxical.
- 3. \mathcal{R}_S is has a trace.
- 4. \mathcal{R}_S is not properly infinite.

Key ideas of the proof:

- (1) Cond. exp. $E: \mathcal{B}\left(\ell^2(S)\right) \to \ell^\infty(S)$ and $\phi = \phi \circ E$.
- (2) Domain-equidecomposability: for $A, B \subset S$

$$A \sim B \Leftrightarrow \left\{ \begin{array}{ll} A = & a_1^* a_1 A_1 \sqcup \cdots \sqcup a_n^* a_n A_n, \\ B = & a_1 A_1 \sqcup \cdots \sqcup a_n A_n. \end{array} \right.$$

Traces and amenability

The latter argument actually gives:

$$\left\{\mathsf{Traces} \,\,\mathsf{on}\,\,\mathcal{R}_{\mathcal{S}}\right\} \leftrightarrow \left\{\mathsf{Measures}\,\,\mathsf{on}\,\,\mathcal{S} \,\,|\,\,\mu\left(\mathit{s}^{*}\mathit{s}\mathit{A}\right) = \mu\left(\mathit{s}\mathit{A}\right)\right\}.$$

Traces and amenability

The latter argument actually gives:

$$\left\{\mathsf{Traces} \,\,\mathsf{on}\,\,\mathcal{R}_{\mathcal{S}}\right\} \leftrightarrow \left\{\mathsf{Measures}\,\,\mathsf{on}\,\,\mathcal{S} \,\,|\,\,\mu\left(\mathit{s}^{*}\mathit{s}\mathit{A}\right) = \mu\left(\mathit{s}\mathit{A}\right)\right\}.$$

Furthermore, should one add localization to the Theorem...

Traces and amenability

The latter argument actually gives:

$$\{\mathsf{Traces}\ \mathsf{on}\ \mathcal{R}_{\mathcal{S}}\} \leftrightarrow \{\mathsf{Measures}\ \mathsf{on}\ \mathcal{S}\ |\ \mu\left(\mathit{s}^*\mathit{sA}\right) = \mu\left(\mathit{sA}\right)\}.$$

Furthermore, should one add localization to the Theorem...

Theorem (Ara, Lledó, M. - 2018)

S is amenable

$$\Leftrightarrow \mathcal{R}_{\mathcal{S}} \text{ has a trace such that } \phi\left(V_{s^*s}\right) = 1$$

$$\Leftrightarrow \text{no projection } V_{s^*s} \in \mathcal{R}_{\mathcal{S}} \text{ is properly infinite.}$$

Conclusions and open problems

Open problems

Inverse semigroups:

- 1. Amenable \Rightarrow Følner \Rightarrow Domain measurable... domain-Følner?
- 2. {Traces in $C_r^*(S)$ } = {Traces in \mathcal{R}_S }?
- 3. Roe algebra?

$$\mathcal{R}_{\mathcal{S}} = \ell^{\infty}\left(S\right)
ightharpoonup S$$

$$= \mathsf{C}^{*}\left(\left\{T : \ell^{2}\left(S\right)
ightarrow \ell^{2}\left(S\right) \text{ bounded prop.}
ight\}\right).$$
 $\mathsf{d}_{\mathcal{S},\mathcal{K}}\left(u,v\right) := \left\{egin{array}{l} || vu^{*}|| & \text{if } u^{*}u = v^{*}v \\ \infty & \text{otherwise} \end{array}
ight.$

4. Theorem based on $E: \mathcal{R}_S \to \ell^\infty(S)$ and traces factor via E... Other C*-algebras whose trace space behave like this?

Open problems

Inverse semigroups:

- 1. Amenable \Rightarrow Følner \Rightarrow Domain measurable... domain-Følner?
- 2. {Traces in $C_r^*(S)$ } = {Traces in \mathcal{R}_S }?
- 3. Roe algebra?

$$\mathcal{R}_{\mathcal{S}} = \ell^{\infty}\left(S\right)
ightharpoonup S$$

$$= \mathsf{C}^{*}\left(\left\{T \colon \ell^{2}\left(S\right)
ightarrow \ell^{2}\left(S\right) \text{ bounded prop.}
ight\}\right).$$
 $\mathsf{d}_{\mathcal{S},\mathcal{K}}\left(u,v\right) := \left\{egin{array}{l} || vu^{*}|| & \text{if } u^{*}u = v^{*}v \\ \infty & \text{otherwise} \end{array}
ight.$

4. Theorem based on $E \colon \mathcal{R}_S \to \ell^\infty(S)$ and traces factor via E... Other C*-algebras whose trace space behave like this?

Question: Results → . . . grouopid context?

Bibliography & thanks

VON NEUMANN, Zur allgemeinen theorie des masses. Fundamenta Mathematica, 1929.

DAY, Amenable semigroups. Illinois Journal of Mathematics, 1957.

NAMIOKA, Følner's conditions for amenable semi-groups. Mathematica Scandinavica, 1965.

BARTHOLDI, On amenability of group algebras, I. Israel Journal of Mathematics, 2008.

RØRDAM AND SIERAKOWSKI, Purely infinite C*-algebras arising from crossed products, 2010.

ARA, et al, Amenability and uniform Roe algebras. Journal of Mathematical Analysis and Applications, 2018.

ARA, LLEDÓ AND M., Amenability in semigroups and C*-algebras, preprint, 2018.

Thank you for your attention! Questions?