MAGNETISM & MATTER

DDS ACADEMY

(d)

Zero

 $2\pi MH$

1.	An iron rod of length <i>I</i>	and magnetic momen	t <i>M</i> is be	nt in the fo	orm of a sen	nicircle. N	ow its mag	gnetic mo	ment will be
	(a) <i>M</i> (b)	$\frac{2M}{\pi}$		(c)	$\frac{M}{\pi}$		(d)	$M\pi$	
2.	A magnet of magnetic	moment <i>M</i> and pole st	rength <i>m</i>			al parts, t	hen magne	etic mome	ent of each part
	will be			(a)	M	(b)	M/2		
			(c)	M/4	(d) 2 <i>M</i>				
3.	A magnet of magnetic The amount of work d						tic field of	intensity	0.3 C.G.S. units.
	(a) 6	(b) $3\sqrt{3}$		(c)	3(2 –	$\sqrt{3}$		(d)	3
4.	A uniform magnetic fit bar of soft iron is place		to it, the l						
		(D)							
	(C) (a) Figure (A) (c) Figure (C)	(b) Figure (B) (d) Figure (D)							
5.	A magnetic needle is k (a) A force and a torq (b) A force but not a t (c) A torque but not a (d) Neither a torque n	ue corque a force	nagnetic	field. It ex	periences				
6.	A magnetic needle lying to maintain the needle			quires Wu	nits of wor	k to turn i	t through (60°. The t	orque required
	(a) $\sqrt{3} W$	(b) <i>W</i>		(c)	$\frac{\sqrt{3}}{2}W$,	(d)	2W	
7.	A magnet of magnetic	moment <i>M</i> is rotated t	hrough 3	60° in a m	agnetic fiel	d <i>H</i> , the w	ork done v	will be	

(b) 2*MH*

9.	The magnetic lines of for	ce inside a bar magnet					
	(a) Are from south-pole	to north-pole of the magnet					
		to south-pole of the magnet					
	(c) Do not exist						
	(d) Depend upon the are	ea of cross-section of the bar magnet					
10.	A magnet of magnetic mo	oment $2JT^{-1}$ is aligned in the direction of magnetic field of 0.1 T. What is the net work done					
	to bring the magnet normal to the magnetic field						
	(a) 0.1 <i>J</i>	(b) 0.2 <i>J</i>					
	(c) 1 <i>J</i>	(d) 2 <i>J</i>					
11							
11.	which of the following st	atements are true about the magnetic susceptibility $ \chi_m $ of paramagnetic substance					
	(a) Value of χ_m is inver	sely proportional to the absolute temperature of the sample					
	(b) χ_m is positive at all to	emperature					
	(c) χ_m is negative at all	temperature					
	(d) χ_m does not depend	d on the temperature of the sample					
12.		γ is represented by μ_r and the susceptibility is denoted by χ for a magnetic substance. Then for					
	(a) $\mu_r < 1, \chi < 0$	(b) $\mu_r < 1, \chi > 0$					
	(c) $\mu_r > 1, \chi < 0$	(d) $\mu_r > 1, \chi > 0$					
13.	If a magnetic substance is	s kept in a magnetic field, then which of the following is thrown out					
	(a) Paramagnetic	(b) Ferromagnetic					
	(c) Diamagnetic	(d) Antiferromagnetic					
14.	The magnetic susceptibility is negative for						
	(a) Paramagnetic materials						
	(b) Diamagnetic materials						
	(c) Ferromagnetic mate(d) Paramagnetic and fe						
15.		atements is incorrect about hysteresis					
10.	and the second	n to all ferromagnetic substances					
		area is proportional to the thermal energy developed per unit volume of the material					
		area is independent of the thermal energy developed per unit volume of the material					
	(d) The shape of the hys	teresis loop is characteristic of the material					
16.	Curie temperature is the	temperature above which					
		erial becomes ferromagnetic					
		erial becomes paramagnetic					
		erial becomes diamagnetic					
		erial becomes diamagnetic					
17.	The materials suitable for making electromagnets should have						
	(a) High retentivity and high coercivity						
	(b) Low retentivity and low coercivity						
	(c) High retentivity and low coercivity						
	(d) Low retentivity and high coercivity						
18.		al is inserted in a current carrying solenoid, the magnetic field of solenoid					
	(a) Largely increases	(b) Slightly increases					

- (c) Largely decreases
- (d) Slightly decreases
- 19. In the hysteresis cycle, the value of H needed to make the intensity of magnetisation zero is called
 - (a) Retentivity
- (b) Coercive force
- (c) Lorentz force
- (d) None of the above
- 20. When a ferromagnetic material is heated to temperature above its Curie temperature, the material
 - (a) Is permanently magnetized
 - (b) Remains ferromagnetic
 - (c) Behaves like a diamagnetic material
 - (d) Behaves like a paramagnetic material
- **21.** Two identical magnetic dipoles of magnetic moments $1.0 A-m^2$ each, placed at a separation of 2m with their axis perpendicular to each other. The resultant magnetic field at a point midway between the dipoles is
 - (a) $5 \times 10^{-7} T$
- (b) $\sqrt{5} \times 10^{-7} T$
- (c) $10^{-7} T$
- (d) None of these
- **22.** Two identical short bar magnets, each having magnetic moment M, are placed a distance of 2d apart with axes perpendicular to each other in a horizontal plane. The magnetic induction at a point midway between them is
 - (a) $\frac{\mu_0}{4\pi}(\sqrt{2})\frac{M}{d^3}$
- (b) $\frac{\mu_0}{4\pi} (\sqrt{3}) \frac{M}{d^3}$
- (c) $\left(\frac{2\mu_0}{\pi}\right)\frac{M}{d^3}$
- (d) $\frac{\mu_0}{4\pi} (\sqrt{5}) \frac{M}{d^3}$
- **23.** Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point P which gets deflected through an angle θ under the influence of magnets. The ratio of distance d_1 and d_2 will be
 - (a) $(2 \tan \theta)^{1/3}$
 - (b) $(2 \tan \theta)^{-1/3}$
 - (c) $(2 \cot \theta)^{1/3}$
 - (d) $(2 \cot \theta)^{-1/3}$

- **24.** Two short magnets of equal dipole moments *M* are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance *d* from the centre on the bisector of the right angle is
 - (a) $\frac{\mu_0}{4\pi} \frac{M}{d^3}$
 - (b) $\frac{\mu_0}{4\pi} \frac{M\sqrt{2}}{d^3}$
 - (c) $\frac{\mu_0}{4\pi} \frac{2\sqrt{2}N}{d^3}$
 - (d) $\frac{\mu_0}{4\pi} \frac{2M}{d^3}$

- **25.** An iron rod of volume $10^{-4} m^3$ and relative permeability 1000 is placed inside a long solenoid wound with 5 *turns/cm*. If a current of 0.5 *A* is passed through the solenoid, then the magnetic moment of the rod is
 - (a) $10 Am^2$
- (b) 15 Am²
- (c) $20 Am^2$
- (d) 25 Am²
- **26.** A bar magnet has coercivity 4×10^3 Am^{-1} . It is desired to demagnetise it by inserting it inside a solenoid 12 cm long and having 60 turns. The current that should be sent through the solenoid is
 - (a) 2*A*
- (b) 4 A
- (c) 6A
- (d) 8A
- **27.** For substances hysteresis (*B H*) curves are given as shown in figure. For making temporary magnet which of the following is best.

28. The variation of magnetic susceptibility (χ) with temperature for a diamagnetic substance is best represented by

29. The variation of magnetic susceptibility (χ) with magnetising field for a paramagnetic substance is

30. The variation of magnetic susceptibility (χ) with absolute temperature T for a ferromagnetic material is

31. The $\chi - 1/T$ graph for an alloy of paramagnetic nature is shown in Fig. The curie constant is, then

(b)
$$2.8 \times 10^{-3} K$$

(d)
$$17.5 \times 10^{-3} K$$

32. For ferromagnetic material, the relative permeability (μ_r) , versus magnetic intensity (H) has the following shape

ANSWER KEY

1. B	9. A	17. C	25. D
2. B	10. B	18. A	26. D
3. C	11. A&B	19. B	27. D
4. B	12. D	20. D	28. B
5. A	13. C	21. B	29. A
6. A	14. B	22. D	30. A
7. D	15. C	23. C	31. A
8. D	16. B	24. C	32. D

7