

FIT 3181/5215 Deep Learning

Quiz for:
Introduction to Machine Learning

Tutor Team

Department of Data Science and Al Faculty of Information Technology, Monash University

Content

The quizzes cover the material in Lecture 01 and Tutorial 02 which include:

- Machine learning pipeline
- □ Evaluation metric: precision, recall, F1-score

Consider the problem of predicting the house price in Melbourne. Which of the following statements are most likely true (MC).

- 💶 🛕. This problem should be approached from a supervised learning problem 🗡
- B. This problem is better to be addressed as a classification problem
- C. This problem is better to be addressed as a regression problem
- D. We should adopt abnormality detection methods for this prediction problem

John class has 50 students. He wants to build a machine learning model which helps to recognize students' face and automatically records their attendance in his class. He lists some must-do tasks as below. Choose the correct pipeline? (SC)

(1) Taking students' pictures and upload to internet	(2) Building a machine learning model
(3) Grouping student's pictures and their ID number (e.g. student ID 01: image A, B; student ID 02: image C, D, etc)	(4) Collecting student's ID number
(5) Splitting dataset into training set, testing set	(6) Download face images from internet
(7) Filtering, removing low quality images	(8) Training model on training set;
(9) Testing model on testing set	(10) Deploying model into a real hardware system

- □ A. (1) (6) (3) (4) (7) (5) (2) (8) (9) (10)
- □ B. (1) (6) (7) (4) (3) (2) (5) (8) (10) (9)
- □ C. (1) (6) (7) (4) (3) (5) (2) (8) (9) (10)

 3 cant come before 4
- □ D. (1) (6) (3) (4) (7) (5) (2) (8) (10) (9)

John's class has 50 students. He wants to build a machine learning model which helps to recognize students' face and automatically records their attendance in his class. John splits his students' images into two sets: training set and testing set. John trains three models A, B, C on training set and choose the model with the highest accuracy on training set as the final model. Which are correct statements? (SC)

- A. Join's model will be possibly experiencing an overfitting problem
- B. Join's model will be possibly experiencing a dataset biasing problem
- C. The dataset was used wrongly
- D. None of above

John wants to build a machine learning model which helps to recognize a strange student attending his class? The confusion table is as below. Choose the correct statement? (MC)

_								
	r	п			\sim	h	\sim	c
		U	_		а	IJ	e	
	•	•	_	•	~	_	_	•

as	
sted	
edic	
屲	

Stranger John's student

Stranger	John's student
2	5
3	40

- A. John's class has total 50 students
- B. John's model accuracy (2+40) / (2+3+5+40) = 84%
- C. John model's recall 2 / 5 = 40% $\frac{2}{(2+3)}$
- D. John model's precision 2/7

strange student is not John's student

John wants to build 2 models A, B which helps to recognize a strange student attending his class? The confusion as the tables below. Choose the correct statement? (SC)

		True labels				True labels		
as		Stranger	John's student	as		Stranger	John's student	
cted	Stranger	4	7	cted	Stranger	2	3	
Predi	John's student	1	88	Predi	John's student	3	92	
_		Model A		<u> </u>		Mod	el B	

- □ A. Model A is better than model B in prediction accuracy
- B. Model A is better than model B in recall
- □ C. Model A is better than model B in true negative rate
- □ D. Model A is better than model B in precision

□ Our dataset has 10 spam emails (label 1) and 50 non-spam emails (label -1). Given an email x, the classifier returns p(x) = P(y = 1|x) as the probability to assign x to the class 1. The classifier assigns x to the class 1 if $p(x) \ge 0$. Choose the correct statements. (MC)

 \bigcirc A Recall = 1 $\frac{10}{(10+0)}$

B. Precision = 1/6 10/(10+50)

Consider a threshold θ ∈ [0; 1]. Given a data point x, the ML model returns p(x) = P(y = 1|x) (i.e., the probability to predict x as the label 1). We predict x as the label 1 if p(x) = P(y = 1|x) ≥ θ and the label -1 otherwise.

C. True Positive Rate = 0 10/P = 10 / (10+0) = 1

D. False Positive Rate = 1

fp/(fp+tn) = 50 / (50+0)

10	50
0	0

Our dataset has 10 spam emails (label 1) and 50 non-spam emails (label -1). Given an email x, the classifier returns p(x) = P(y = 1|x) as the probability to assign x to the class 1. The classifier assigns x to the class -1 if $p(x) \le 1$. Choose the correct statements. (MC)

Referring to the segment of codes below, what is the number of data points return to variable train_X if there are 200 data points in X? (SC)

```
from sklearn.model_selection import train_test_split
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.3, random_state=2)
```

- □ A.60
- □ B. 70
- **C.** 140
- D. 200

Choose the possible solution If a model performs great on the training data but generalizes poorly to new instance. (MC)

- □ A. Selecting a more complicated algorithm, increasing the number of parameters
- B. Reducing the number of input features
- C. Increasing the amount of training data
- □ D. Increasing testing set and reducing training set

□ Assume that we have 4 classes in {cat = 1,dog = 2,lion = 3, monkey = 4}. What is one-hot label of categorical label "**lion**"?

- □ A. [1,0,0,0]
- B. [0,1,0,0]
- **C.** [0,0,1,0]
- □ D. [0,0,0,1]

Consider an image classification task as showing. Assume that the model give a prediction probabilities f(x) = [0.5,0.3,0.1,0.1] and categorial ground-truth label of x is car. What is the cross-entropy loss suffered by this prediction?

- \Box A. $-\log 0.5$
- □ B. log 0.3
- □ C. −log 0.3
- \Box D. $\log 0.5 + \log 0.1$

Assume that we have **4 classes** in **{cat = 1,dog = 2,lion = 3, monkey = 4}**. Given a data example x with **ground-truth label "dog"**, assume that a machine learning model gives **discriminative scores** to this x as $h_1 = -3$, $h_2 = 10$, $h_3 = 5$, $h_4 = 0$. Choose all correct answers. (MC)

- □ A. The model predicts x as lion
- B. The model predicts x as dog
- C. This is a correct prediction,
- □ D. This is an incorrect prediction

Assume that we have **4 classes** in **{cat = 1,dog = 2,lion = 3, monkey = 4}**. Given a data example x with **ground-truth label "dog"**, assume that a machine learning model gives **discriminative scores** to this x as $h_1 = -3$, $h_2 = 10$, $h_3 = 5$, $h_4 = 0$. What is the probability to predict x as lion or $p(y = lion \mid x)$?

A.
$$\frac{e^5}{e^{-3} + e^{10} + e^5 + e^0}$$

- □ B. 1
- \Box C. $\frac{e^0}{e^{-3}+e^{10}+e^5+e^0}$
- $\Box D. \frac{e^{10}}{e^{-3} + e^{10} + e^{5} + e^{0}}$

□ Assume that we have **4 classes** in **{cat = 1,dog = 2,lion = 3, monkey = 4}**. Given a data example x with **ground-truth label "cat"**, assume that a machine learning model gives **discriminative scores** to this x as $h_1 = -3$, $h_2 = 10$, $h_3 = 5$, $h_4 = 0$. What is the CE loss suffered by this prediction?

□ B.
$$\log \frac{e^{-3}}{e^{-3} + e^{10} + e^{5} + e^{0}}$$

C.
$$+\log \frac{e^{-3}}{e^{-3} + e^{10} + e^5 + e^0}$$

$$\Box D. - \log \frac{e^{10}}{e^{-3} + e^{10} + e^{5} + e^{0}}$$