## Data Mining and Machine Learning

Assignment Project Exam Help

*K*-Means

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Peter Jančovič



#### Objectives

- To explain the need for *K*-means clustering
- To understand the K-means clustering algorithm Assignment Project Exam Help
- To understa ween:
  - Clustering https://eduassistpro.githylogion/s
  - K-means clustering and Eat edu\_assist of GMMs



## Clustering so far

- Agglomerative clustering
  - Begin by assuming that every data point is a separate centroidssignment Project Exam Help
  - Combine cl esired number of clusters is r https://eduassistpro.github.io/
  - See agglom.con the cou Add WeChat edu\_assist\_pro
- Divisive clustering
  - Begin by assuming that there is just one centroid/cluster
  - Split clusters until the desired number of clusters is reached



## **Optimality**

- Neither agglomerative clustering nor divisive clustering is optimal
- In other words, the set of centroids which they give is <u>not</u> guaranhttps://eduassistpro.gith@b.io/



#### Optimality continued

- For example:
  - In agglomerative clustering, a dense cluster of data points will be Assistante Projecte Examiliately to minimise distortion, are many d https://eduassistpro.github.io/
  - A single 'outlited' was chaitedu\_assist\_pro
- Agglomerative clustering provides a useful starting point, but further refinement is needed



#### 12 centroids





#### K-means Clustering

- Suppose that we have decided how many centroids we need - denote this number by K
- Suppose that we have an initial estimate of suitable positions for https://eduassistpro.github.io/
- K-means clustering is an it edu\_assist\_pro moving these centroids to tortion



# Derivation of the *K*-means clustering algorithm

- Based on direct minimization of distortion
- Given a set of centroids  $C^0 = c_1, ..., c_K$ , and a set of data  $Y = y_1, ..., y$ , differentiating  $Dist(C^0)$  with respect to th https://eduassistpro.githus.tting the result to zero

 $c_k^d = \frac{1}{|Y(k)|} \sum_{y_n \in Y(k)}^{\text{MeChat edu\_assist\_pro}} y_n$ 

where Y(k) is the set of data points for which  $c_k$  is the closest centroid

# Derivation of the *K*-means clustering algorithm (continued)

The equation

Assignment Project Exam Help

is not closed https://eduassistpro.githalprisodepend on

 $c_k$  Add WeChat edu\_assist\_pro

Although this equation cannot give a direct solution for  $c_k^d$ , it can be used as the basis of an iterative algorithm



## *K*-means clustering - notation

Suppose there are T data points, denoted by:

$$Y = y_1, y_2, ..., y_t, ..., y_T$$

 $Y = y_1, y_2, ..., y_t, ..., y_T$ Assignment Project Exam Help
Suppose that the initial K clusters are denoted by:

$$C^0$$
 https://eduass/stpr.orgithub.io/

• One iteration of Kingenthal edu\_assistllproduce a new set of clusters

$$C^1 = c_1^1, c_2^1, ..., c_k^1, ..., c_K^1$$

Such that



#### K-means clustering (1)

- For each data point  $y_t$  let  $c_{i(t)}$  be the closest centroid
- In other words: d(y, c;(t)) = min<sub>m</sub>d(y, c<sub>m</sub>)
   Assignment Project Exam Help
   Now, for eac

https://eduassistpro.github.io/
$$Y^0 = \{y : i(t) = k\}$$
A'dd We'Chat edu\_assist\_pro

• In other words,  $Y_k^0$  is the set of data points which are closer to  $c^{0}_{k}$  than any other centroid



#### *K*-means clustering (2)

• Now define a new  $k^{th}$  centroid  $c_k^l$  by:

Assignment Project Exam Help https://eduassistpro.github.io/

where  $|Y_k^0|$  is Aldeln Wick beat edu\_assist n production of the contraction of the co

• In other words,  $c^l_k$  is the average value of the samples which were closer to  $c^0_k$  than to any other centroid



## *K*-means clustering (3)

Now repeat the same process starting with the new centroids:

Assignment Project Exam Help 
$$C_1, C_2, ..., C_k, ..., C_K$$

to create a n https://eduassistpro.github.io/

$$C^2 + C^2 + C^2$$

- ... and so on until the process converges
- Each new set of centroids has smaller distortion than the previous set



#### Initialisation

- An outstanding problem is to choose the initial centroid set  $C^0$
- Possibilities include:
  - Chooses Sprameon Project Exam Help
  - Choose C https://eduassistpro.github.io/
  - Choose *C*
- Choice of C<sup>0</sup> Add WeChat edu\_assist\_pro
  - K-means clustering is a "hill-climbing" algorithm
  - Finds a local minimum of the distortion function
    - This local minimum is determined by  $C^0$

## Local optimality





N.B: I've drawn the cluster set space as 1 dimensional for simplicity. In reality it is a very high dimensional space

UNIVERSITYOF BIRMINGHAM





#### Example - distortion





#### C programs on Canvas

- agglom.c
  - Agglomerative clustering
     Assignment Project Exam Help

agglom da https://eduassistpro.github.to/

- Runs agglomerative cluster edu\_assist\_pro ata in dataFile until the number of centroids is numCent. Writes the centroid (x,y) coordinates to centFile



#### C programs on Canvas

- k-means.c
  - K-means clustering
     Assignment Project Exam Help

k-means d https://eduassistpro.githfub.fo/

- Runs 10 iterations of *k*-mea on the data in dataFile starting with the centroids in centFile.
- After each iteration writes distortion and new centroids to opFile



## Relationship with GMMs

- The set of centroids in clustering corresponds to the set of means in a GMM
- Measuring Adistances and Interest of the Proposition of t
- k-means clustering tweepnal edu\_assist estimation part of the E-M algorithm, but:
  - In k-means samples are allocated 100% to the closest centroid
  - In E-M samples are shared between GMM components according to posterior probabilities

## K-means clustering - example





#### First iteration of *k*-means

|               |      |     | Distance to centroids |              |               |                | Closest centroid |          |          |  |  |
|---------------|------|-----|-----------------------|--------------|---------------|----------------|------------------|----------|----------|--|--|
|               |      |     | d(x(n),c(1))          | d(x(n),c(2)) | d(x(n),c(3))  | <b>c(1</b> )   | ) c(2)           |          | c(3)     |  |  |
| Data          | 1.2  | 1.7 | 0.92                  | 1.81         | 2.36          |                | 1                |          |          |  |  |
|               | 1    | 1.1 | 1.42                  | 2.04         | 3.00          |                | 1                |          |          |  |  |
|               | 1.5  | 2.5 | 0.75                  | 1.80         | 1.52          |                | 1                |          |          |  |  |
|               | 2    | 2.1 | 1.31                  | 1.17         | 1.92          |                |                  | 1        |          |  |  |
|               | 1.3  | 3.1 | 0.81                  | 2.33         | 1.01          |                | 1                |          |          |  |  |
|               | 1.8  | 1.9 | 1.21                  | 1.26         | 2.10          | TT 1           | 1                |          |          |  |  |
|               | 0.9  | AS  | signme                | nt Proj      | ect Ex        | am Hel         | <b>)</b> 1       |          |          |  |  |
|               | 0.2  | 1.2 | 1.41                  | 2.82         | 3.20          | •              | 1                |          |          |  |  |
|               | 2    | 1.1 | httpa                 | //adua       | aaiatar       | البطائم م      |                  | 1        |          |  |  |
|               | 2.5  | 3.7 | nups.                 | //eduas      | ssisipi       | o.githul       | J.10/            |          | 1        |  |  |
|               | 2.4  | 4.2 | 2.37                  | 2.77         |               |                |                  |          | 1        |  |  |
|               | 3.1  | 3.9 | Add <sup>.7</sup>     | <b>VeCha</b> | t edu         | _assist        | pro              |          | 1        |  |  |
|               | 2.8  | 4.5 | 2.86                  | 3.01         |               |                |                  |          | 1        |  |  |
|               | 1.6  | 2.1 | 0.94                  | 1.52         | 1.91          |                | 1                |          |          |  |  |
|               | 0.7  | 1.7 | 0.80                  | 2.31         | 2.53          |                | 1                |          |          |  |  |
|               |      |     |                       |              | ]             | <u> Totals</u> | <u>9</u>         | <u>2</u> | <u>4</u> |  |  |
| Centroids (0) | 0.75 | 2.5 |                       |              |               |                |                  |          |          |  |  |
|               | 3    | 1.5 |                       |              |               |                |                  |          |          |  |  |
| -0            | 1.75 | 4   |                       | D            | oistortion(0) | 15.52          |                  |          |          |  |  |



UNIVERSITY<sup>OF</sup> BIRMINGHAM

#### First iteration of *k*-means

|           |      |     | Distance to centroids |              |               |               | Closest centroid |          |          |     | c(1)        |             | c(2)     |            | c(3)        |             |
|-----------|------|-----|-----------------------|--------------|---------------|---------------|------------------|----------|----------|-----|-------------|-------------|----------|------------|-------------|-------------|
|           |      |     | d(x(n),c(1))          | d(x(n),c(2)) | d(x(n),c(3    | 3))           | c(1)             | c(2)     | c(3)     |     | x           | у           | x        | у          | x           | у           |
| Data      | 1.2  | 1.7 | 0.92                  | 1.81         | 2.36          |               | 1                |          |          |     | 1.20        | 1.70        |          |            |             |             |
|           | 1    | 1.1 | 1.42                  | 2.04         | 3.00          |               | 1                |          |          |     | 1.00        | 1.10        |          |            |             |             |
|           | 1.5  | 2.5 | 0.75                  | 1.80         | 1.52          |               | 1                |          |          |     | 1.50        | 2.50        |          |            |             |             |
|           | 2    | 2.1 | 1.31                  | 1.17         | 1.92          |               |                  | 1        |          |     |             |             | 2.00     | 2.10       |             |             |
|           | 1.3  | 3.1 | 0.81                  | 2.33         | 1.01          |               | 1                |          |          |     | 1.30        | 3.10        |          |            |             |             |
|           | 1.8  | 1.9 | 1.21                  | 1.26         | 2.10          |               | 1                |          |          |     | 1.80        | 1.90        |          |            |             |             |
|           | 0.9  | 1.5 | 1.01                  | 249 o        | n <b>n</b>    | nt P          | rhi              | ect      | Fx       | am  | 0 98        | 11.50       |          |            |             |             |
|           | 0.2  | 1.2 | 1.41                  | 2.82         | 3.20          |               | 10J              |          | LA       | am  | 0.20        | 1.20        |          |            |             |             |
|           | 2    | 1.1 | 1.88                  | 1.08         |               |               |                  |          |          |     |             |             | 2.00     | 1.10       |             |             |
|           | 2.5  | 3.7 | 2.12                  | 2.26         | ttps          | ·//ed         | وماا             | ecie     | etnr     | n 0 | ithu        | h ic        | /        |            | 2.50        | 3.70        |
|           | 2.4  | 4.2 | 2.37                  | 2.77         | ttps.         | .// CU        | iuu              | JJIC     | Jipi     | 0.9 | itiia       |             | "        |            | 2.40        | 4.20        |
|           | 3.1  | 3.9 | 2.74                  | 2.40         | 1.35          |               |                  |          |          |     |             |             |          |            | 3.10        | 3.90        |
|           | 2.8  | 4.5 | 2.86                  | 3.01         | <b>C</b> 1(16 | We(           | Cha              | t ea     | du       | ass | sist        | _prc        |          |            | 2.80        | 4.50        |
|           | 1.6  | 2.1 | 0.94                  | 1.52         | 1.91          |               | 1                |          |          | •   | .60         | 2.10        |          |            |             |             |
|           | 0.7  | 1.7 | 0.80                  | 2.31         | 2.53          |               | 1                |          |          |     | 0.70        | 1.70        |          |            |             |             |
|           |      |     |                       |              |               | <u>Totals</u> | <u>9</u>         | <u>2</u> | <u>4</u> |     | <u>10.2</u> | <u>16.8</u> | <u>4</u> | <u>3.2</u> | <u>10.8</u> | <u>16.3</u> |
| Centroids | 0.75 | 2.5 |                       |              |               |               |                  |          |          |     |             |             |          |            |             |             |
| (0)       | 0.75 | 2.5 |                       |              |               |               |                  |          |          |     |             |             |          |            |             |             |
|           | 3    | 1.5 |                       |              | D: ./ (6)     | 4= ==         |                  |          |          |     |             |             |          |            |             |             |
|           | 1.75 | 4   |                       |              | Dist'n(0)     | 15.52         |                  |          |          |     |             |             |          |            |             |             |



Slide 23 Data Mining and Machine Learning

UNIVERSITY<sup>OF</sup> BIRMINGHAM

#### First iteration of *k*-means





Slide 24

#### Second iteration of *k*-means

|      |     |      | Dista        | ance to centro | Clo                  | Closest centroid    |          |          |  |  |
|------|-----|------|--------------|----------------|----------------------|---------------------|----------|----------|--|--|
|      |     |      | d(x(n),c(1)) | d(x(n),c(2))   | d(x(n),c(3))         | c(1)                | c(2)     | c(3)     |  |  |
| Data | 1.2 | 1.7  | 0.18         | 0.81           | 2.81                 | 1                   |          |          |  |  |
|      | 1   | 1.1  | 0.78         | 1.12           | 3.43                 | 1                   |          |          |  |  |
|      | 1.5 | 2.5  | 0.73         | 1.03           | 1.98                 | 1                   |          |          |  |  |
|      | 2   | 2.1  | 0.90         | 0.50           | 2.10                 |                     | 1        | -        |  |  |
|      | 1.3 | 3.1  | 1.24         | 1.66           | 1.71                 | 1                   |          |          |  |  |
|      | 1.8 | 1.9  | 0.67         | t Dr 0.36      | Ct E <sup>2.35</sup> | m Help <sub>1</sub> | 1        | -        |  |  |
|      | 0.9 | A135 |              | t i iqje       |                      |                     |          |          |  |  |
|      | 0.2 | 1.2  |              |                |                      | 1                   |          |          |  |  |
|      | 2   | 1.1  | https://     | .github.id     | <b>)</b> / 1         | -                   |          |          |  |  |
|      | 2.5 | 3.7  | rittpo.//    | odddo          | 'igiti idbiit        |                     | 1        |          |  |  |
|      | 2.4 | 4.2  | 2.65         | 2.63           | م باد م              |                     | _        | 1        |  |  |
|      | 3.1 | 3.9  | Add 2.V3     | echai          | : eau_a              | assist_pro          | )        | 1        |  |  |
|      | 2.8 | 4.5  | 3.12         | 3.01           | 0.44                 |                     |          | 1        |  |  |
|      | 1.6 | 2.1  | 0.52         | 0.64           | 2.26                 | 1                   |          |          |  |  |
|      | 0.7 | 1.7  | 0.46         | 1.30           | 3.10                 | 1                   |          |          |  |  |
|      |     |      |              |                |                      | <u>8</u>            | <u>3</u> | <u>4</u> |  |  |

Centroids(1) 1.133333 1.866667

2 1.6

2.7 4.075



#### Second iteration of *k*-means



Slide 26

Data Mining and Machine Learning

UNIVERSITY<sup>OF</sup> BIRMINGHAM

- Three example 2-dimensional datasets
- For each data set, and for k=1,...,10:
   Assignment Project Exam Help
   Create k centroids using agglomerative clustering

  - Run k-mea https://eduassistpro.githsufbr.itb/ese initial centroid val
  - Plot distortion after 15 itera eans as a function of number of centroids



 Gaussian distributed data: single 2D Gaussian, centre (0,0), variance 16 in x and y directions

Assignment Project Exam Help

https://eduassistpro.github.io/



• Five 2D Gaussians, centres (0,0), (1,2), (4,4), (-2,-5) and (-3,1), variance 0.5 in *x* and *y* directions

Assignment Project Exam Help

https://eduassistpro.github.io/



 Two 2D Gaussians, centres (2,2), (-2,-2), variance 4 in x and y directions

Assignment Project Exam Help

https://eduassistpro.github.io/



#### Summary

- The need for k-means clustering
- The *k*-means clustering algorithm

  Assignment Project Exam Help

  Example of
- Choosing k ehttps://eduassistpro.github.io/

