Oaktree Manual

May 11, 2012

Contents

1	Introduction	2
2	Installation	3
3	Running	4
4	Input 4.1 SIMULATION 4.2 SPHERE 4.3 CYLINDER 4.4 CUBE 4.5 POLYGON 4.6 COPY 4.7 UNION 4.8 INTERSECTION 4.9 DIFFERENCE	5 5 5 6 6 6 7 7
ĸ	4.10 MOVE	7 7 8 9
Э	Output	9
6	Viewer	10
7	Tutorials	11
8	Theory	12

Introduction

Installation

Running

Input

Oaktree input language extends Python. Subroutines and objects related to input processing are listed below.

4.1 SIMULATION

SIMULATION object stores data specific to one distinct analysis.

obj = SIMULATION (outpath, duration, step, cutoff)

- outpath output directory path
- duration simulation duration
- step time step
- cutoff cutoff length below which geometrical details are not resolved

4.2 SPHERE

A sphere shape.

obj = SPHERE (center, r, scolor)

- \bullet **obj** SHAPE object
- center tuple (x, y, z) defining the center
- \bullet **r** radius
- scolor integer surface color

4.3 CYLINDER

A cylinder shape.

CHAPTER 4. INPUT 6

obj = CYLINDER (base, h, r, scolor)

- **obj** SHAPE object
- base tuple (x, y, z) defining the base center
- ullet h height along z
- \bullet **r** radius
- scolor integer tuple $(s_{base}, s_{side}, s_{top})$ of surface colors

4.4 CUBE

A cube shape.

obj = CUBE (corner, u, v, w, scolor)

- **obj** SHAPE object
- corner tuple (x, y, z) defining the minimum coordinate corner
- ullet u length along x
- ullet v length along y
- $\bullet\,$ w length along z
- scolor integer tuple $(s_{xmin}, s_{ymax}, s_{zmin}, s_{xmax}, s_{ymax}, s_{zmax})$ of surface colors

4.5 POLYGON

A shape extruded from a polygon.

obj = POLYGON (polygon, h, scolor)

- **obj** SHAPE object
- **polygon** list $[(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)]$ of vertices defining a closed polygon in counter clock-wise order when looking down from a positive z point
- \mathbf{h} height along z
- scolor integer tuple $(s_{base}, s_1, s_2, ..., s_n, s_{top})$ of surface colors

4.6 COPY

Copy shape.

obj = COPY (shape)

- **obj** SHAPE object
- shape input SHAPE

CHAPTER 4. INPUT 7

4.7 UNION

Set theoretic union of two shapes.

obj = UNION (shape1, shape2)

- **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.8 INTERSECTION

Set theoretic intersection of two shapes.

obj = INTERSECTION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.9 DIFFERENCE

Set theoretic difference of two shapes.

obj = DIFFERENCE (shape1, shape2)

- $\bullet \ \mathbf{obj}$ SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.10 MOVE

Move shape linearly.

MOVE (shape, vector)

- shape input SHAPE object
- vector tuple (u, v, w) defining the translation

4.11 ROTATE

Rotate shape about an axis.

CHAPTER 4. INPUT 8

ROTATE (shape, point, vector, angle)

- shape input SHAPE object
- ullet point tuple (x,y,z) defining axis point
- \bullet vector tuple (u,v,w) defining axis direction
- \bullet $\,$ angle oriented angle in degrees

4.12 SOLID

A solid is created in a simulation.

SOLID (simu, shape, label)

- $\bullet~\mathbf{simu}$ simulation in which the solid is created
- $\bullet \ \ {\bf shape}$ solid shape
- label solid label

Output

Viewer

Tutorials

Theory