ECE259H1: Electromagnetism

Homework Review Quiz – Friday February 3, 2023

- Make sure to *accurately* enter your first name, last name, and student number above.
- The quiz is worth 20 marks and has two questions. Question 1 is worth 5 marks, and Question 2 is work 15 marks.
- Show all of your work.
- The final page has some reference material that you might find helpful.
- Take a deep breath and relax \mathfrak{S} .

Question #1 (5 marks)

Four equally charged point charges, Q=-2 C, sit at the corners of a square that is centered about the z-axis, lies in the xy-plane and has a side length 1 m. The corners of the square are located at points: (x, y, z) = (0.5, 0.5, 0) m, (-0.5, 0.5, 0) m, (-0.5, -0.5, 0) m, and (0.5, -0.5, 0) m.

Consider the question below. Select the correct response and briefly justify your selection. No mathematics are required or needed for this justification, instead a clearly drawn figure with a brief description is sufficient.

At what point(s) will the electric force caused by these four point charges on a point charge $Q_B = +1$ C have only a non-zero +z-directed component? You may select more than one answer.

- (a) At the origin, (x, y, z) = (0,0,0)
- (b) At every point along the z-axis
- (c) On the z-axis, for positive values of z only (i.e., z > 0)
- (d)On the z-axis, for negative values of z only (i.e., z < 0)
- (e) Anywhere in the xy-plane (except the four corners of the square)
- (f) Everywhere
- (g) Nowhere

For $F_E = Q_R E_{TOT} = (+1C)E_R = +F_2 \hat{a}_2$, E_{TOT} must be the 2-directed.

Various example points are shown for E_{TOT} . This only occurs on the regative 2-axis. See point P_5 .

Question #2 (15 marks)

A partial circle is charged with a uniform linear charge distribution given by $\rho_l = -4$ [C/m]. The wire lies in the xy-plane (z=0), is centered about the z-axis, has a radius of r=2 m and extends from $0 \le \varphi \le \frac{5\pi}{4}$. You are to find the electric field intensity at an arbitrary point on the z-axis.

- (a) Draw a picture of this situation. Include the position vectors \mathbf{R} and \mathbf{R}' , in your figure. [4 marks]
- (b) Find the expression for the electric field intensity at an arbitrary point on the z-axis, by:
 - i. Stating the expressions for dQ', \mathbf{R} , and $\mathbf{R'}$. [4 marks]
 - ii. Integrating over this charge distribution to find $\mathbf{E}(0,0,z)$ [7 marks]

(b) (i) $dQ' = \int_{Q} dQ' = (-4)(2) dp' = -8 dp'$ $R = 2 \hat{a}_{2}$ $R' = 2 \hat{a}_{1} = 2 \cos(2) \hat{a}_{1} + 2 \sin(2) \hat{a}_{2}$ (ii) $JE = \frac{dQ'}{4\pi z_{0} |R - R'|^{3}} (R - R')$ $= \frac{-8 dp'}{4\pi z_{0}} (-2 \cos(2) \hat{a}_{1} - 2 \sin(2) \hat{a}_{2} + 2 \hat{a}_{2})$

Question #2 (continued)

$$\begin{split}
E &= \int dE = \int \frac{16}{4\pi s_0} \left[\frac{-8 \text{ db}'}{4\pi s_0} \left(\frac{1}{4 + 2^2} \right)^{3/2} \left(-2 \cos \beta' \hat{a}_{xx} - 2 \sin \beta \hat{a}_{y} + 2 \hat{a}_{2} \right) \right] \\
&= \frac{16}{4\pi s_0} \frac{1}{(4 + 2^2)^{3/2}} \int_{0}^{5\pi} \frac{1}{4\pi s_0} \frac{1}{(4 + 2^2)^{3/2}} \int_{0}^{5\pi} \frac{1}{(4 + 2^$$

This page is left intentionally blank. It can be used for rough work, and will not be marked unless you specifically direct the marker to this page.				

5 of 6

Reference Formulae

1. Coordinate Systems

1.1 Cartesian coordinates

Position vector: $\mathbf{R} = x\mathbf{a}_x + y\mathbf{a}_y + z\mathbf{a}_z$ Differential length elements: $\mathbf{dl}_x = \mathbf{a}_x dx$, $\mathbf{dl}_y = \mathbf{a}_y dy$, $\mathbf{dl}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_x = \mathbf{a}_x dy dz$, $d\mathbf{S}_y = \mathbf{a}_y dx dz$, $d\mathbf{S}_z = \mathbf{a}_z dx dy$

Differential volume element: dV = dxdydz

1.2 Cylindrical coordinates

Position vector: $\mathbf{R} = r\mathbf{a}_r + z\mathbf{a}_z$

Differential length elements: $d\mathbf{l}_r = \mathbf{a}_r dr$, $d\mathbf{l}_{\phi} = \mathbf{a}_{\phi} r d\phi$, $d\mathbf{l}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_r = \mathbf{a}_r r d\phi dz$, $d\mathbf{S}_{\phi} = \mathbf{a}_{\phi} dr dz$, $d\mathbf{S}_z = \mathbf{a}_z r d\phi dr$

Differential volume element: $dV = r dr d\phi dz$

1.3 Spherical coordinates

Position vector: $\mathbf{R} = R\mathbf{a}_R$

Differential length elements: $\mathbf{dl}_R = \mathbf{a}_R dR$, $\mathbf{dl}_\theta = \mathbf{a}_\theta R d\theta$, $\mathbf{dl}_\phi = \mathbf{a}_\phi R \sin\theta d\phi$

Differential surface elements: $d\mathbf{S}_R = \mathbf{a}_R R^2 \sin\theta d\theta d\phi$, $d\mathbf{S}_\theta = \mathbf{a}_\theta R \sin\theta dR d\phi$, $d\mathbf{S}_\phi = \mathbf{a}_\phi R dR d\theta$

Differential volume element: $dV = R^2 \sin \theta dR d\theta d\phi$

2. Relationship between coordinate variables

-	Cartesian	Cylindrical	Spherical
\overline{x}	x	$r\cos\phi$	$R\sin\theta\cos\phi$
y _z	$\begin{bmatrix} y \\ z \end{bmatrix}$	$r\sin\phi$	$R\sin\theta\sin\phi$ $R\cos\theta$
r	$\int x^2 + y^2$ $\tan^{-1} \frac{y}{x}$	r	$R\sin\theta$
φ		φ	φ
	z	z	$R\cos\theta$
R	$\sqrt{x^2 + y^2 + z^2}$	$\frac{r}{\sin \theta}$	R
θ	$\cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$	$\tan^{-1}\frac{r}{z}$	θ
ϕ		ϕ	ϕ

3. Dot products of unit vectors

	Protests								
	\mathbf{a}_x	\mathbf{a}_y	\mathbf{a}_z	\mathbf{a}_r	\mathbf{a}_{ϕ}	\mathbf{a}_z	\mathbf{a}_R	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_x	1	0	0	$\cos \phi$	$-\sin\phi$	0	$\sin \theta \cos \phi$	$\cos\theta\cos\phi$	$-\sin\phi$
\mathbf{a}_y	0	1	0	$\sin \phi$	$\cos \phi$	0	$\sin \theta \sin \phi$	$\cos\theta\sin\phi$	$\cos \phi$
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
\mathbf{a}_r	$\cos \phi$	$\sin \phi$	0	1	0	0	$\sin \theta$	$\cos \theta$	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
\mathbf{a}_R	$\sin \theta \cos \phi$	$\sin\theta\sin\phi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0
\mathbf{a}_{θ}	$\cos\theta\cos\phi$	$\cos\theta\sin\phi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1

4. Relationship between vector components

=	Cartesian	Cylindrical	Spherical
A_x	A_x	$A_r \cos \phi - A_\phi \sin \phi$	$A_R \sin \theta \cos \phi + A_\theta \cos \theta \cos \phi -$
			$A_{\phi}\sin\phi$
A_y	A_y	$A_r \sin \phi + A_\phi \cos \phi$	$A_R \sin \theta \sin \phi + A_\theta \cos \theta \sin \phi +$
			$A_{\phi}\cos\phi$
A_z	A_z	A_z	$A_R \cos \theta - A_\theta \sin \theta$
A_r	$A_x \cos \phi + A_y \sin \phi$	A_r	$A_R \sin \theta + A_\theta \cos \theta$
A_{ϕ}	$-A_x \sin \phi + A_y \cos \phi$	A_{ϕ}	A_{ϕ}
A_z	A_z	A_z	$A_R \cos \theta - A_\theta \sin \theta$
A_R	$A_x \sin \theta \cos \phi + A_y \sin \theta \sin \phi +$	$A_r \sin \theta + A_z \cos \theta$	A_R
	$A_z \cos \theta$		
A_{θ}	$A_x \cos \theta \cos \phi + A_y \cos \theta \sin \phi -$	$A_r \cos \theta - A_z \sin \theta$	A_{θ}
	$A_z \sin \theta$		
A_{ϕ}	$-A_x \sin \phi + A_y \cos \phi$	A_{ϕ}	A_{ϕ}