# AI-Driven Food Crisis Prediction Using Satellite and Climate Data

Sıla Akkaya Ahmet Bekir Arslanalp

#### 1. Introduction

This project aims to build an early warning system to predict global food crises using satellite imagery, climate data, deep learning, NLP, and time-series models. The system focuses on identifying drought-induced agricultural stress to support policymakers, farmers, and humanitarian organizations.

### 2. Technologies Used

• **Programming:** Python

• Development: Google Colab, VSCode

• Libraries/Tools: Google Earth Engine, Flask

• Web Stack: HTML, CSS, JavaScript

# 3. Data and Preprocessing

- Satellite Data (Sentinel-2): Applied cloud masking and divided images into 128×128 pixel tiles.
- Climate Data (ERA5): Temperature converted from Kelvin to Celsius; precipitation normalized and drought score computed as 1 NormalizedPrecipitation.
- Temporal Features: Month and week extracted from date; region one-hot encoded.
- News Data (NewsAPI): Title, description, and content combined, lowercased for consistent text processing.

# 4. NDVI Explained

NDVI (Normalized Difference Vegetation Index) is a measure of vegetation health, ranging from -1 to +1.

• 0.6 – 1.0: Dense, healthy vegetation

- 0.2 0.5: Sparse to moderate vegetation
- -1 0.1: Water, urban areas, or bare soil

# 5. Classification Model (ResNet-18)

Table 1: ResNet-18 Classification Metrics

| Class          | Precision | Recall | F1-Score |
|----------------|-----------|--------|----------|
| No Drought (0) | 0.9981    | 0.9991 | 0.9986   |
| Drought (1)    | 0.9849    | 0.9703 | 0.9775   |
| Accuracy       | 0.9973    |        |          |
| Macro Avg      | 0.9717    | 0.9415 | 0.9881   |
| Weighted Avg   | 0.9585    | 0.9127 | 0.9973   |

### 6. Time Series Models (LSTM)

### A. NDVI Forecasting

Table 2: LSTM Model Performance – NDVI Prediction

| Metric | Value  |
|--------|--------|
| MAE    | 0.0647 |
| MSE    | 0.0069 |
| $R^2$  | 0.8453 |

### B. Drought Score Forecasting (ERA5)

Table 3: LSTM Model Performance – Drought Score Prediction

| Metric | Train  | Val    |
|--------|--------|--------|
| MAE    | 0.069  | 0.0729 |
| MSE    | 0.0088 | 0.0104 |
| $R^2$  | 0.7194 | 0.7265 |

### 7. NLP-Based Media Analysis

• Source: NewsAPI

• Analysis: Sentiment analysis using TextBlob's PatternAnalyzer

• Status: Prototype stage – plans to improve with custom or deep learning models

### 8. Challenges and Future Work

- Large raw satellite data limited by local GPU capacity
- Difficulty integrating multiple models
- Hardware limits for processing wide areas
- Future improvements: better NLP and scalability for large regions

### 9. CNN Confusion Matrix



Figure 1: Confusion Matrix - CNN

#### Interpretation:

- True Positive: 436, False Positive: 120
- True Negative: 30,000+, False Negative: 17
- Low false negatives are crucial the model rarely misses true drought events.

# 10. Spatial Comparison: NDVI vs. Drought Heatmap



Figure 2: Spatial Comparison: NDVI vs. Drought Heatmap

#### Interpretation:

- The NDVI image (left) shows real vegetation health; red areas indicate weak vegetation.
- The drought score heatmap (right) highlights areas with high drought risk.
- High spatial overlap validates the relationship between vegetation stress and drought indicators.

#### 11. Conclusion

This project successfully integrates satellite, climate, and textual data to develop a robust early warning system for food crises. It demonstrates high accuracy in classification, effective time-series forecasting, and strong visual correlation between NDVI and drought scores, paving the way for real-world applications.