GriddingMachine.jl: A database and software for Earth system modeling

Yujie WANG

Why a new database?

Data owner experience

- Store the data somewhere
- Direct users to the URL on request
-
- Where is my data?

Data user experience

- 1. Online search
- 2. Read the paper just to find URL
- 3. (Register and) Download the data
- 4. Regrid the data if needed
- 5. Contact the data owner if steps above do not work...
 -
 - Repeat steps 1–5

Datasets for ESMs: Sources

- Various FTP sites
- Various HTTP sites

Datasets for ESMs: Formats

- Binary
- CSV
- Excel
- GeoTiff
- NetCDF
- Txt
- ...

- Byte
- Integer
- Float
- May be scaled (not mentioned in the dataset file itself)
- May have offset (not mentioned in the dataset file itself)

Datasets for ESMs: Map Orientations

- Some from S to N, and some from N to S
- Some from -180 to 180, and some from 0 to 360
- Some represent the middle point of a pixel (360 * 180)
- Some represent the edges of a pixel (361 * 181 or 360 * 181)

- Some exclude north pole
- Some exclude south pole

- Cylindrical (WGS84)
- Pseudo-cylindrical

Barriers and Challenges for Users

Repeatedly doing the following

- Download the data
- Rename and remember the file path
- Remember the data label in the dataset
- Use different tools to use the datasets
- Scale and convert the data and units
- What if they only need a point data?

Need for Standardized Datasets and Easier Access

Step 1: Collect the Datasets

GriddingMachine.jl is a byproduct CliMA Land

Acknowledgments:

- Myself
- Renato Braghiere
- Marcos Longo
- Russell Doughty
- Philipp Köhler
- Christian Frankenberg
- Dataset owners

Step 2: Reprocess the Datasets

- Download source: CaltechDATA, Fluo FTP, functions
- Format: NetCDF
- Number type: Float
- Orientations: 180W to 180E, 90S to 90N (center of a grid)
- Coverage: Global
- Projection: Cylindrical (WGS84)

Step 3: Julia Artifacts

A Julia artifact:

- Empty file: GRIDDINGMACHINE
- Data file: LABEL_EXTRALABEL_IX_JT_(YYYY)_VK.nc

Meta info in Artifacts.toml

- Artifact name, e.g., LAI_MODIS_2X_8D_2020_V1
- SHA1, SHA256
- Downloading urls
- ...

https://github.com/CliMA/GriddingMachine.jl/issues/62

These datasets are supposed to be updated on annually basis:									
Dataset type	LABEL	EXTRALABEL	IX	JT	YEAR	VK	Reference	Change logs	
Gross primary productivity	GPP	MPI_RS	2X	1M, 8D	2001-2019	V1	Tramontana et al. (2016)	4,9	
	GPP	VPM	5X, 12X	8D	2000-2019	V2	Zhang et al. (2017)	1,4	
Leaf area index	LAI	MODIS	2X, 10X, 20X	1M, 8D	2000-2020	V1	Yuan et al. (2011)	1,4,9	
Latent heat flux	LE	MPI_RS	2X	1M, 8D	2001-2015	V1	Jung et al. (2019)	4,9	
Solar induced chlorophyll fluorescence	SIF	TROPOMI_683, TROPOMI_683DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2020	V2	Köhler et al. (2020)	1,8	
	SIF	TROPOMI_740, TROPOMI_740DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2021	V1	Köhler et al. (2018)	1,8	
	SIF	OCO2_757, OCO2_757DC, OCO2_771, OCO2_771DC	5X	1M	2014-2020	V3	Sun et al. (2017)	1,8	

Dataset type	LABEL	EXTRALABEL			YEAR	vĸ	Reference	Change logs
Biomass	BIOMASS	ROOT	120X				Huang et al. (2021)	
	BIOMASS	SHOOT	120X				Santoro et al. (2021)	
Canopy height			20X				Simrad et al. (2021)	
							Boonman et al. (2020)	1,3,4,5
Clumping Index			240X				He et al. (2012)	1,3,4
								1,3,4,6
							Braghiere et al. (2019)	
Elevation	ELEV						Yamazaki et al. (2017)	
Land mask	LM		4X	1Y		V1	ERA5	
Leaf nitrogen content	LNC						Butler et al. (2017)	
	LNC						Boonman et al. (2020)	1,3,4,5
Leaf phosphorus content	LPC						Butler et al. (2017)	
Plant functional type	PFT						Lawrence and Chase (2007)	1,4,7
Solar induced luminescence			20X				Köhler et al. (2021)	1,3,4
Specific leaf area	SLA						Butler et al. (2017)	
	SLA						Boonman et al. (2020)	1,3,4,5
Soil color							Lawrence and Chase (2007)	1,4,6
Soil hydraulic parameters	SOIL	SWCR						1,3,6
	SOIL	SWCR	120X				Dai et al. (2019)	1,3
	SOIL	swcs					Dai et al. (2019)	1,3,6
	SOIL	swcs	120X			V1	Dai et al. (2019)	1,3
	SOIL	VGA						1,3,6
	SOIL	VGA	120X				Dai et al. (2019)	1,3
	SOIL	VGN						1,3,5,6
	SOIL	VGN	120X			V1	Dai et al. (2019)	1,3,5
	SOIL	KSAT	100X				Gupta et al. (2021)	1,2,3,4,5
Surface area	SA						Lawrence and Chase (2007)	1,4,6
							Lawrence and Chase (2007)	
Tree density							Crowther et al. (2017)	1,3,4,6
			120X				Crowther et al. (2017)	1,3,4
Maximum carboxylation rate	VCMAX						Smith et al. (2019)	1,2,4
	VCMAX						Luo et al. (2019)	
Wood density	WD						Boonman et al. (2020)	1,3,4,7

Step 4: Dataset Distribution

Traditional ways

- FTP
- HTTP

New ways

• Direct Julia, Matlab, Octave, Python, and R supports

User Interfaces to Datasets

FTP

HTTP (CaltechDATA 2129)

Artifacts of GriddingMachine.jl (v0.2) for land modeling

- Dataset
- 2021-09-27
- CaltechDATA

	•	
	Download	
Filename	Size	
CH_2X_1Y_V2.tar.gz	572.4 kB	≛ Download
CH_20X_1Y_V1.tar.gz	3.6 MB	≛ Download
CI_2X_1Y_V1.tar.gz	468.0 kB	≛ Download
CHL_2X_7D_V1.tar.gz	7.0 MB	≛ Download
CI_2X_1Y_V2.tar.gz	836.9 kB	≛ Download

What if the dataset gets updated?

Julia: GriddingMachine.jl

GriddingMachine.jl

Collections.jl

Tool to manage our collection of datasets locally

Indexer.jl

Tool to read the datasets locally

Requestor.jl

Tool to request data for a given latitude and longitude from the server

GriddedCollection

Data struct that contains information of the collection, such as supported data versions

query_collection

Function to locate the local dataset; if file does not exist, download it automatically

clean collection!

Function to clean up the collection, such as out-of-dated collections

read_LUT

Function to read the data full or in part data from local files

request_LUT

Function to requet data in part from a server, rather than from locally downloaded file

Julia: GriddingMachine.jl

https://github.com/CliMA/GriddingMachine.jl

```
# To install
using Pkg; Pkg.add("GriddingMachine");
# To use
using GriddingMachine.Collections;
file_path = query_collection("VCMAX_2X_1Y_V1");
```

https://github.com/CliMA/GriddingMachine.jl/issues/62

These datasets are supposed to be updated on annually basis:									
Dataset type	LABEL	EXTRALABEL	ıx	JT	YEAR	vĸ	Reference	Change logs	
Gross primary productivity	GPP	MPI_RS	2X	1M, 8D	2001-2019	V1	Tramontana et al. (2016)	4,9	
	GPP	VPM	5X, 12X	8D	2000-2019	V2	Zhang et al. (2017)	1,4	
Leaf area index	LAI	MODIS	2X, 10X, 20X	1M, 8D	2000-2020	V1	Yuan et al. (2011)	1,4,9	
Latent heat flux	LE	MPI_RS	2X	1M, 8D	2001-2015	V1	Jung et al. (2019)	4,9	
Solar induced chlorophyll fluorescence	SIF	TROPOMI_683, TROPOMI_683DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2020	V2	Köhler et al. (2020)	1,8	
	SIF	TROPOMI_740, TROPOMI_740DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2021	V1	Köhler et al. (2018)	1,8	
	SIF	OCO2_757, OCO2_757DC, OCO2_771, OCO2_771DC	5X	1M	2014-2020	V3	Sun et al. (2017)	1,8	

Dataset type	LABEL	EXTRALABEL		YEAR	vĸ	Reference	Change logs
Biomass	BIOMASS	ROOT	120X			Huang et al. (2021)	
	BIOMASS	SHOOT	120X			Santoro et al. (2021)	
Canopy height			20X			Simrad et al. (2021)	
						Boonman et al. (2020)	1,3,4,5
Clumping Index			240X			He et al. (2012)	1,3,4
							1,3,4,6
						Braghiere et al. (2019)	
Elevation	ELEV					Yamazaki et al. (2017)	
Land mask	LM		4X			ERA5	
Leaf nitrogen content	LNC					Butler et al. (2017)	
	LNC					Boonman et al. (2020)	1,3,4,5
Leaf phosphorus content	LPC					Butler et al. (2017)	
Plant functional type	PFT					Lawrence and Chase (2007)	1,4,7
Solar induced luminescence			20X			Köhler et al. (2021)	1,3,4
Specific leaf area	SLA					Butler et al. (2017)	
	SLA					Boonman et al. (2020)	1,3,4,5
Soil color						Lawrence and Chase (2007)	1,4,6
Soil hydraulic parameters	SOIL	SWCR					1,3,6
	SOIL	SWCR	120X			Dai et al. (2019)	
	SOIL	swcs	12X			Dai et al. (2019)	1,3,6
	SOIL	swcs	120X			Dai et al. (2019)	
	SOIL	VGA	12X			Dai et al. (2019)	1,3,6
	SOIL	VGA	120X			Dai et al. (2019)	
	SOIL	VGN				Dai et al. (2019)	1,3,5,6
	SOIL	VGN	120X		V1	Dai et al. (2019)	1,3,5
	SOIL	KSAT	100X			Gupta et al. (2021)	1,2,3,4,5
Surface area	SA					Lawrence and Chase (2007)	1,4,6
						Lawrence and Chase (2007)	
Tree density						Crowther et al. (2017)	1,3,4,6
			120X			Crowther et al. (2017)	1,3,4
Maximum carboxylation rate	VCMAX					Smith et al. (2019)	1,2,4
	VCMAX					Luo et al. (2019)	
Wood density	WD					Boonman et al. (2020)	1,3,4,7

Matlab

```
% To install
urlwrite('https://github.com/Yujie-W/octave-griddingmachine/raw/main/GriddingMachine.mltbx', 'GriddingMachine.mltbx');
matlab.addons.toolbox.installToolbox('GriddingMachine.mltbx');
delete('GriddingMachine.mltbx');
% To use
file path = query collection('VCMAX 2X 1Y V1');
```

Octave

```
% To install
pkg install "https://github.com/gnu-octave/pkg-json/archive/v1.5.0.tar.gz";
pkg install
"https://github.com/Yujie-W/octave-griddingmachine/archive/v0.1.0.tar.gz";
% To use
pkg load griddingmachine
file_path = query_collection('VCMAX_2X_1Y_V1');
```

Python

```
# To install
pip install python-griddingmachine
# To use
from griddingmachine import query_collection
file_path = query_collection("VCMAX_2X_1Y_V1");
```

R

```
# To install
library("devtools");
install_github("Yujie-W/r-griddingmachine");
# To use
library("griddingmachine");
file_path = query_collection("VCMAX_2X_1Y_V1");
```

User Interface to Request Point Data

GriddingMachine.jl

Collections.jl

Tool to manage our collection of datasets locally

GriddedCollection

Data struct that contains information of the collection, such as supported data versions

query_collection

Function to locate the local dataset; if file does not exist, download it automatically

clean collection!

Function to clean up the collection, such as out-of-dated collections

Indexer.jl

Tool to read the datasets locally

read_LUT

Function to read the data full or in part data from local files

Requestor.jl

Tool to request data for a given latitude and longitude from the server

request_LUT

Function to requet data in part from a server, rather than from locally downloaded file

GriddingMachine.jl framework

Step 1: GriddingMachine.jl as Web Host

Input parameters

- Mandatory
 - Artifact name
 - Latitude
 - Longitude
- Optional
 - User name (no wait time)
 - Cycle index (point or vector)
 - Interpolation

Step 2: Send Request to Server

Julia Example

```
using GriddingMachine.Requestor;
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5;
interpolation=true);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5, 8);
```

Step 3: Server Prepares Data

Julia server calls GriddingMachine to read the data and prepares a JSON file to return

GriddingMachine.jl

Collections.jl

Tool to manage our collection of datasets locally

GriddedCollection

Data struct that contains information of the collection, such as supported data versions

query_collection

Function to locate the local dataset; if file does not exist, download it automatically

clean_collection!

Function to clean up the collection, such as out-of-dated collections

Indexer.jl

Tool to read the datasets locally

Requestor.jl

Tool to request data for a given latitude and longitude from the server

read LUT

Function to read the data full or in part data from local files

request_LUT

Function to requet data in part from a server, rather than from locally downloaded file

Julia Example

using GriddingMachine.Requestor;

```
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5;
interpolation=true);
request LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5, 8);
```

Collections.jl

Tool to manage our collection of datasets locally

GriddingMachine.jl

GriddedCollection

Data struct that contains information of the collection, such as supported data versions

query collection

Function to locate the local dataset; if file does not exist, download it automatically

clean_collection!

Function to clean up the collection, such as out-of-dated collections

Indexer.jl read

Tool to read the datasets locally

Requestor.jl

Tool to request data for a given latitude and longitude from the server

read_LUT

Function to read the data full or in part data from local files

request_LUT

Function to requet data in part from a server, rather than from locally downloaded file

```
# Julia script
using GriddingMachine.Requestor;
# load FLUXCOM and VPM GPPs and TROPOMI DC SIF
gpp_mpi,_ = request_LUT("GPP_MPI_RS_2X_8D_2019_V1", 40.0329, -105.5464);
gpp_vpm,_ = request_LUT("GPP_VPM_12X_8D_2019_V2", 40.0329, -105.5464);
sif_dc,_ = request_LUT("SIF_TROPOMI_740DC_12X_8D_2019_V1", 40.0329, -105.5464);
                                                                                                        0.25
# plot the comparison
                                                                                      TROPOMI SIF
                          5
                                     MPI GPP
                                     VPM GPP
                                                                                                      - 0.20
                          4
                    day
                                                                                                       0.15
                          3
                    m^{-2}
                                                                                                       0.10
                                                                                                       0.05
                    (g
                                                                                                       0.00
                    GPP
                                                                                                        -0.05
                                                                                                        -0.10 O
                                     50
                                               100
                                                         150
                                                                   200
                                                                            250
                                                                                      300
                                                                                                350
                                                   Day of year 2019
```

Works for Other Languages as well

- Matlab
- Octave
- Python
- R

```
% Matlab script
                                                                                           % Octave script
% Install the toolbox
                                                                                           % Install the package
url = 'https://github.com/Yujie-W/octave-griddingmachine/raw/main/GriddingMachine.mltbx';
                                                                                          pkg install "https://github.com/gnu-octave/pkg-json/archive/v1.5.0.tar.gz";
urlwrite(url, 'GriddingMachine.mltbx');
                                                                                           pkg install "https://github.com/Yujie-W/octave-griddingmachine/archive/v0.1.1.tar.gz";
matlab.addons.toolbox.installToolbox('GriddingMachine.mltbx');
                                                                                           % Use the package
delete('GriddingMachine.mltbx');
                                                                                           pkg load griddingmachine;
% Use the toolbox
                                                                                           update_GM();
update_GM();
                                                                                           art_name = 'VCMAX_2X_1Y_V1';
                                                                                           file_path = query_collection(art_name);
art_name = 'VCMAX_2X_1Y_V1';
                                                                                           [vcmax,error] = request_LUT(art_name, 35.1, 115.2);
file_path = query_collection(art_name);
[vcmax,error] = request_LUT(art_name, 35.1, 115.2);
                                                                                           [vcmax,error] = request_LUT(art_name, 35.1, 115.2, 'interpolation', true);
[vcmax,error] = request_LUT(art_name, 35.1, 115.2, 'interpolation', true);
                                                                                           # R script
                                                                                           # Install the package
                                                                                           library(devtools);
                                                                                           install_github("Yujie-W/r-griddingmachine");
# Python script
                                                                                           # Use the Package
from griddingmachine import update_GM, query_collection, request_LUT;
                                                                                           library("griddingmachine");
                                                                                           update_GM();
update_GM();
                                                                                           art_name <- "VCMAX_2X_1Y_V1";
art_name = "VCMAX_2X_1Y_V1";
file_path = query_collection(art_name);
                                                                                           file_path <- query_collection(art_name);
vcmax,error = request_LUT(art_name, 35.1, 115.2);
                                                                                           results <- request_LUT(art_name, 35.1, 115.2);
vcmax,error = request_LUT(art_name, 35.1, 115.2, interpolation = True);
                                                                                           results <- request_LUT(art_name, 35.1, 115.2, interpolation = TRUE);
                                                                                                                                                                              38
```

scientific data

OPEN GriddingMachine, a database and **ARTICLE** software for Earth system modeling at global and regional scales

Yujie Wang name Philipp Köhler¹, Renato K. Braghiere²,³, Marcos Longo 2,⁴, Russell Doughty 1,5, A. Anthony Bloom² & Christian Frankenberg^{1,2}

Land and Earth system modeling is moving towards more explicit biophysical representations, requiring increasing variety of datasets for initialization and benchmarking. However, researchers often have difficulties in identifying and integrating non-standardized datasets from various sources. We aim towards a standardized database and one-stop distribution method of global datasets. Here, we present the Gridding Machine as (1) a database of global-scale datasets commonly used to parameterize or benchmark the models, from plant traits to vegetation indices and geophysical information and (2) a cross-platform open source software to download and request a subset of datasets with only a few lines of code. The Gridding Machine datasets can be accessed either manually through traditional HTTP, or automatically using modern programming languages including Julia, Matlab, Octave, Python, and R. The Gridding Machine collections can be used for any land and Earth modeling framework and ecological research at the regional and global scales, and the number of datasets will continue to grow to meet the increasing needs of research communities.

"Java" style: process once and use everywhere

The GriddingMachine packages, hopefully, will benefit the ESM and ecology communities

Planned Features for GriddingMachine.jl

From GriddingMachine v0.1

- Download and grid MODIS data (GEE as an alternative)
- Download and regrid ERA5 data
- Regrid the datasets

New Functionality (for v0.3+, TBD)

• Query ungridded "raw" data within an area of interest

Acknowledgments

- Christian Frankenberg
- Philipp Köhler
- Renato Braghiere
- Russell Doughty
- Marcos Longo
- Anthony Bloom
-
- Dataset owners