QCM Grande dimension

$\begin{array}{c} \text{Test} \\ \text{Examen du } 16/11/2022 \end{array}$

Instructions:

- Le sujet comprend 19 questions. Les questions faisant apparaître le symbole 🌲 peuvent présenter plusieurs bonnes réponses. Les autres ont une unique bonne réponse. Des points négatifs pourront être affectés à de mauvaises réponses.
- Seul le questionnaire de la page 5 est à rendre. Vous commencerez par renseigner votre nom et prénom dans la case prévue ainsi que le numéro d'étudiant.
- Il faut **colorier** les cases correspondants aux bonnes réponses (sur la page 5), mettre une croix dans la case n'est **pas suffisant**. Les cases devront être **coloriées avec un stylo noir** (pas de crayon papier, de stabilo...).
- Le barème sera effectué de la façon suivante :
 - Aucune case coloriée entrainera une note de 0 sur la question.
 - Pour les questions à une seule bonne réponse (sans le symbole ♣), un nombre de points sera affecté (par exemple +2) si la bonne case est cochée. Un nombre de points sera retranché (par exemple -1) si une mauvaise case est coloriée ou si plusieurs cases sont coloriées.
 - Pour les questions avec plusieurs bonnes réponses (avec le symbole ♣), un nombre de points (par exemple +0.5) sera affecté pour chaque bonne réponse coloriée et pour chaque mauvaise réponse non coloriée. Un nombre de points (par exemple -0.5) sera retranché pour chaque mauvaise réponse coloriée et pour chaque bonne réponse non coloriée.
- La correction étant automatique, un non respect des consignes aura forcément un impact sur la note finale.

Durée: 1 heure.

On se placera dans tout le devoir dans un modèle de régression : on dispose de n observations i.i.d. $(x_i, y_i), i = 1, ..., n$ où x_i est à valeurs dans \mathbb{R}^p et y_i dans \mathbb{R} avec

$$y_i = m(x_i) + \varepsilon_i = m(x_{i1}, \dots, x_{ip}) + \varepsilon_i.$$

Les termes d'erreur ε_i sont i.i.d.

Question 1 On suppose que les variables explicatives $X_j, j = 1, ..., p$ ne sont pas à la même échelle et on considère l'estimateur des MCO du modèle linéaire. Cocher la (ou les) assertion(s) vraie(s):

L'algorithme des MCO n'est pas sensible à la réduction des variables explicatives ables explicatives avant de calculer les estimateurs des MCO

B Il est très important de réduire les vari-

C aucune réponse n'est correcte

Question 2 On suppose que les variables explicatives X_j , j = 1, ..., p ne sont pas à la même échelle et on considère la distance euclidienne dans \mathbb{R}^p pour calculer l'estimateur des k plus proches voisins. Cocher la (ou les) assertion(s) vraie(s):

A L'algorithme des plus proches voisins n'est pas sensible à la réduction des données

explicatives pour calculer les plus proches voisins d'une nouvelle observation

Il est préférable de réduire les variables

|C| aucune réponse n'est correcte

Correction

Question 3 \clubsuit Lorsque p > n

A l'estimateur des MCO n'existe pas

la matrice $\mathbb{X}^t\mathbb{X}$ n'est pas inversible

C l'estimateur des MCO existe et est unique

l'estimateur des MCO existe et n'est pas unique

E Aucune de ces réponses n'est correcte.

Question 4 \clubsuit Soit k un entier plus petit que n. On désigne par \widehat{m}_k l'estimateur des k plus proches voisins. Cocher la (ou les) assertion(s) vraie(s):

 \widehat{m}_k est un estimateur non-paramétrique

 \widehat{m}_k possède généralement un biais faible pour de petites valeurs de k

 \widehat{m}_k possède généralement une variance faible pour de grandes valeurs de k

 $\stackrel{\textstyle oxed{\mbox{$\mathbb E$}}}{\textstyle \widehat m_k}$ aura tendance à surajuster si k est trop grand

 $\widehat{\mathbf{F}}$ \widehat{m}_k possède généralement un biais élevé pour de petites valeurs de k

 \widehat{m}_k aura tendance à surajuster si k est trop petit

 $\widehat{\mathbf{H}}$ \widehat{m}_k possède généralement une variance élevée pour de grandes valeurs de k

I Aucune de ces réponses n'est correcte.

Question 5 ♣

Soit \widehat{m}_h un estimateur à noyau dont

- le carré du biais est de l'ordre de C_1h^4 ;
- la variance est de l'ordre $C_2/(nh^p)$,

où C_1 et C_2 sont des constantes qui dépendent uniquement de la fonction m. On appelle fenêtre optimale la valeur de h qui minimise l'erreur quadratique (carré du biais + variance) et vitesse optimale l'erreur quadratique qui correspond à la fenêtre optimale. Cocher la (ou les) assertion(s) vraies (C_3 et C_4 désignent des constantes qui dépendent de C_1 et C_2):

- La vitesse optimale est de l'odre de $C_4 n^{-4/(p+4)}$
- $[\underline{\mathbf{B}}]$ La vitesse optimale est de l'odre de $C_4 n^{-2/(p+2)}$
- $\boxed{\mathbb{C}}$ La fenêtre optimale est de l'odre de $C_3 n^{-1/(p+1)}$
- \square La vitesse optimale est de l'odre de $C_4 n^{2/(p+1)}$
- $\stackrel{\textstyle f E}{}$ La fenêtre optimale est de l'odre de $C_3 n^{-1/(p+2)}$

- $\stackrel{\textstyle ext{F}}{\textstyle ext{F}}$ La fenêtre optimale est de l'odre de $C_3 n^{1/(p+1)}$
- $\boxed{\mathbf{G}}$ La vitesse optimale est de l'odre de $C_4 n^{2/p}$
- \fbox{H} La vitesse optimale est de l'odre de $C_4 n^{-2/(p+1)}$
- La fenêtre optimale est de l'odre de $C_3 n^{-1/(p+4)}$
- K Aucune de ces réponses n'est correcte.

Question $6 \clubsuit$ Les assertions suivantes sont liées au fléau de la dimension. Cocher la (ou les) assertion(s) vraies :

- [A] Les estimateurs paramétriques sont toujours efficaces lorsque p est grand
- B L'erreur quadratique des estimateurs non paramétrique tend vers 0 de plus en plus vite lorsque p augmente
- Les estimateurs non paramétriques sont généralement peu efficaces lorsque p est grand
- Il est difficile de trouver des observations

- proches du point où on cherche à estimer la fonction de régression lorsque p est grand
- E Les estimateurs paramétriques sont toujours meilleurs que les estimateurs non paramétriques
- F Les estimateurs non paramétriques sont peu efficaces en classification binaire mais très efficace en régression
- G Aucune de ces réponses n'est correcte.

CORRECTION

Question 7 \clubsuit On considère \widehat{m} un estimateur qui souffre de surapprentissage. Cocher la (ou les) assertion(s) vraie(s) :		
\widehat{m} possède un biais faible \widehat{B} \widehat{m} possède une variance faible \widehat{C} Les données d'un échantillon test seront très bien prédites par \widehat{m}	Les données d'apprentissage seront très bien ajustées par \widehat{m} E Aucune de ces réponses n'est correcte.	
Question $8 \clubsuit$ Cocher la (ou les) assertion(s) vraie(s):		
calculée par validation croisée Lorsque p est grand, un estimateur à p composantes PCR risque de surajuster les données	nombre de composantes PLS On doit toujours prendre le plus grand nombre de composantes PCR L'estimateur PCR à p composantes est semblable à l'estimateur des MCO F Aucune de ces réponses n'est correcte.	
Question 9 ♣ Cocher la (ou les) assertion(s) vraie(s) :		
D Les observations y_i sont utilisées pour calculer les poids de la première composante Question 10 Lors d'une régression PCR, la prem dont le produit scalaire avec $\mathbb{Y} = (y_1, \dots, y_n)$ est A maximum B minimum Question 11 \clubsuit On considère les estimateurs ridge	PCR L'estimateur PLS (de $m(x)$) à deux composantes s'écrit comme une combinaison linéaire des variables explicatives Les observations x_i sont utilisées pour calculer les poids de la première composante PCR L'estimateur PLS à une composante correspond à l'estimateur PCR à p composantes H Aucune de ces réponses n'est correcte. ière composante principale est la composante	
 14. Cocher la (ou les) assertion(s) vraie(s): L'AUC peut être utilisé pour choisir λ dans un problème de classification binaire B L'erreur de classification peut être utilisée pour choisir λ dans un problème de régression C L'AUC peut être utilisé pour choisir λ 	dans un problème de régression L'erreur quadratique de prévision peut être utilisée pour choisir λ dans un problème de régression Aucune de ces réponses n'est correcte.	

Question 12 On considère les estimateurs ridge définis par la pénalité proposée à la question 14. Cocher la (ou les) assertion(s) vraie(s) :

- $\boxed{\mathbf{A}}$ Il faut toujours choisir λ le plus grand possible
- \fbox{B} Il faut toujours choisir λ le plus petit possible
- Les estimateurs obtenus seront proches de 0 pour de très grandes valeurs de λ
- D Les estimateurs obtenus seront proches des estimateurs MCO pour de très grandes de

 λ

- Les estimateurs obtenus seront proches des estimateurs MCO pour de très petites valeurs de λ
- F Les estimateurs obtenus seront proches de 0 pour de très petites valeurs de λ
- G Aucune de ces réponses n'est correcte.

Question 13 Cocher la (ou les) assertion(s) vraie(s) :

- Les méthodes régularisées de type lasso/ridge permettent de réduire la variance des estimateurs MCO
- Le biais (au carré) des estimateurs ridge est supérieur ou égal à celui des MCO
- C Le biais (au carré) des estimateurs ridge est plus petit que celui des MCO
- D Les estimateurs ridge/lasso sont toujours

plus performants que les estimateurs des MCO

- E Les méthodes régularisées de type lasso/ridge permettent de réduire le biais des estimateurs MCO
- On utilise généralement les méthodes ridge/lasso lorsque p est grand
- G Aucune de ces réponses n'est correcte.

Question 14 Soit $\lambda \geq 0$ et $\beta_0, \beta_1, \dots, \beta_p$ les paramètres du modèle linéaire. Les estimateurs ridge s'obtiennent en pénalisant le critère des moindres carrés par

$$A$$
 $\lambda \sum_{j=1}^{p} |\beta_j|$

$$\boxed{\mathbf{B}} \lambda \sum_{j=1}^{p} \log(|\beta_j|)$$

 $\lambda \sum_{i=1}^p \beta_i^2$

$$\mathbb{E} \lambda \sum_{i=1}^{p} \log(\beta_i^2)$$

F aucune réponse n'est correcte

Question 15 Soit $\lambda \geq 0$ et $\beta_0, \beta_1, \dots, \beta_p$ les paramètres du modèle linéaire. Les estimateurs lasso s'obtiennent en pénalisant le critère des moindres carrés par

$$\boxed{\mathbf{A}} \ \lambda \sum_{j=1}^{p} \log(|\beta_j|)$$

$$\boxed{\mathbf{B}} \ \lambda \sum_{j=1}^{p} \log(\beta_j^2)$$

$$\bigcirc$$
 $\lambda \sum_{j=1}^{p} \beta_j$

$$\square$$
 $\lambda \sum_{j=1}^{p} \sqrt{\beta_j}$

$$\boxed{\mathbf{E}} \lambda \sum_{j=1}^{p} \beta_j^2$$

aucune réponse n'est correcte

Question 16 & Cocher la (ou les) assertion(s) vraie(s):

- A La norme 1 des estimateurs lasso est toujours plus grande que celle des MCO (lorsqu'on utilise les mêmes données)
- B Ridge permet de faire de la sélection de variables contrairement au lasso
- La norme 2 des estimateurs ridge est toujours plus petite que celle des MCO (lorsqu'on utilise les mêmes données)
- Ridge et Lasso permettent de réduire la complexité du modèle de régression

- et de répondre au problème du surapprentissage des MCO
- E Ridge permet d'augmenter la complexité du modèle de régression en cas de sousapprentissage
- F Le lasso permet d'augmenter la complexité du modèle de régression en cas de sousapprentissage
- G Aucune de ces réponses n'est correcte.

Question 17 🌲

La fonction **glmnet** permet de calculer les estimateurs des régressions ridge.

La fonction **glmnet** permet de calculer les estimateurs des régressions lasso.

C La fonction **glmnet** permet de sélectionner le paramètre de régularisation des régressions lasso.

D La fonction **glmnet** permet de faire des régressions PCR.

L'argument alpha de la fonction glmnet permet d'indiquer si on souhaite faire du ridge ou du lasso.

F La fonction **glmnet** permet de sélectionner le paramètre de régularisation des régressions ridge.

G L'argument lambda des fonctions glmnet et cv.glmnet permet d'indiquer si on souhaite faire du ridge ou du lasso.

La fonction **cv.glmnet** permet de sélectionner le paramètre de régularisation des régressions ridge.

La fonction **cv.glmnet** permet de sélectionner le paramètre de régularisation des régressions lasso.

J Aucune de ces réponses n'est correcte.

Question 18 \clubsuit On effectue une validation croisée pour sélectionner le paramètre λ de l'algorithme lasso avec **cv.glmnet**. Cette méthode permet d'obtenir 2 valeurs que l'on identifie dans $\mathbf R$ par lambda.min et lambda.1se. Cocher la (ou les) assertion(s) vraie(s) :

Utiliser lambda.1se permet d'obtenir un modèle plus parcimonieux qu'avec lambda.min

B Le nombre de variables dans le modèle utilisant lambda.min est toujours plus petit ou égal à au nombre de variables dans le modèle qui utilise lambda.1se

 $lambda.1se \ge lambda.min$

D L'erreur calculée par validation croisée est plus petite avec lambda.1se qu'avec lambda.min

 \fbox{E} lambda.1se \leq lambda.min

F Aucune de ces réponses n'est correcte.

Question 19 L'argument α (alpha) de la fonction **glmnet** correspond à la pénalité (on ne fait pas figurer la constante de régularisation λ dans les réponses, on s'intéresse uniquement à la partie qui concerne α):

$$\boxed{\mathbf{A}} (1-\alpha) \sum_{j=1}^{p} \beta_j + \alpha \sum_{j=1}^{p} \beta_j^2$$

$$\boxed{\mathbf{B}} \ \alpha \sum_{j=1}^{p} \beta_j + (1-\alpha) \sum_{j=1}^{p} \beta_j^2$$

$$\boxed{\mathbb{C}} \ \alpha \sum_{j=1}^{p} |\beta_j| + \alpha \sum_{j=1}^{p} \beta_j^2$$

$$\boxed{\mathbf{D}} \ \frac{\alpha}{1-\alpha} \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{\alpha} \sum_{j=1}^{p} \beta_j^2$$

$$\mathbb{E} \frac{(1-\alpha)}{2} \sum_{j=1}^{p} |\beta_j| + 2\alpha \sum_{j=1}^{p} \beta_j^2$$

$$\boxed{\mathbf{F}} \ 2\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} \beta_j^2$$

$$\boxed{\mathbf{G}} (1-\alpha) \sum_{j=1}^{p} |\beta_j| + \alpha \sum_{j=1}^{p} \beta_j^2$$

$$\alpha \sum_{j=1}^{p} |\beta_j| + (1-\alpha) \sum_{j=1}^{p} \beta_j^2$$

CORRECTION

Correction

Feuille de réponses :		
	← codez votre numéro d'étudiant ci-	
	contre, et inscrivez votre nom et prénom	
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	ci-dessous.	
[4] [4] [4] [4] [4] [4] [4] [5] [5] [5] [5] [5] [5] [5]	Nom et prénom :	
6 6 6 6 6 6 6		
7 7 7 7 7 7 7 7		
88888888		
99999999		
Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.		
QUESTION 1 : B C		
QUESTION $2:$ A \square C		
Question $3:$ A \square C \square E		
QUESTION 4: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	HI	
QUESTION 5: \blacksquare \blacksquare \blacksquare \square	H J K	
QUESTION 6 : A B \blacksquare E F G		
Question 7: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare		
Question $8:$ \blacksquare \blacksquare \square \square \square \square		
Question 9: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	$\overline{\mathrm{H}}$	
QUESTION 10: A B		
Question 11 : \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare		
QUESTION 12 : \boxed{A} \boxed{B} \boxed{D} \boxed{F} \boxed{G}		
Question 13 : \blacksquare \blacksquare \square \square \square \square \square \square \square \square \square		
QUESTION 14: \overline{A} \overline{B} \overline{C} $\overline{\blacksquare}$ \overline{E} \overline{F}		
QUESTION 15: \overline{A} \overline{B} \overline{C} \overline{D} \overline{E}		
QUESTION 16: \overline{A} \overline{B} $\overline{\blacksquare}$ \overline{E} \overline{F} \overline{G}		
QUESTION 17: \blacksquare \blacksquare \square	J	
Question 18: \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare		
QUESTION 19 : $\begin{tabular}{lll} A & B & C & D & E & F & G \end{tabular}$		

CORRECTION