

Romania Team Selection Test 2010

_	TST 1
1	Given an integer number $n \geq 3$, consider n distinct points on a circle, labelled 1 through n . Determine the maximum number of closed chords $[ij]$, $i \neq j$, having pairwise non-empty intersections. Juos Pach
2	Let n be a positive integer number and let a_1, a_2, \ldots, a_n be n positive real numbers. Prove that $f:[0,\infty)\to\mathbb{R}$, defined by $f(x)=\frac{a_1+x}{a_2+x}+\frac{a_2+x}{a_3+x}+\cdots+\frac{a_{n-1}+x}{a_n+x}+\frac{a_n+x}{a_1+x},$
	is a decreasing function. Dan Marinescu et al.
3	Two rectangles of unit area overlap to form a convex octagon. Show that the area of the octagon is at least $\frac{1}{2}$. Kvant Magazine
4	Two circles in the plane, γ_1 and γ_2 , meet at points M and N . Let A be a point on γ_1 , and let D be a point on γ_2 . The lines AM and AN meet again γ_2 at points B and C , respectively, and the lines DM and DN meet again γ_1 at points E and E , respectively. Assume the order E , E , E is circular around E , and the segments E and E are congruent. Prove that the points E , E , E and E are congruent on the position of the points E and E and E on the respective circles, subject to the assumptions above.
5	Let a and n be two positive integer numbers such that the (positive) prime factors of a be all greater than n . Prove that $n!$ divides $(a-1)(a^2-1)\cdots(a^{n-1}-1)$. AMM Magazine
_	TST 2

Art of Problem Solving

2010 Romania Team Selection Test

Given a positive integer number n, determine the minimum of

$$\max \left\{ \frac{x_1}{1+x_1}, \frac{x_2}{1+x_1+x_2}, \cdots, \frac{x_n}{1+x_1+x_2+\cdots+x_n} \right\},\,$$

as x_1, x_2, \ldots, x_n run through all non-negative real numbers which add up to 1. Kvant Magazine

- 2 (a) Given a positive integer k, prove that there do not exist two distinct integers in the open interval $(k^2, (k+1)^2)$ whose product is a perfect square.
 - (b) Given an integer n > 2, prove that there exist n distinct integers in the open interval $(k^n, (k+1)^n)$ whose product is the n-th power of an integer, for all but a finite number of positive integers k.

 $AMM\ Magazine$

Let γ_1 and γ_2 be two circles tangent at point T, and let ℓ_1 and ℓ_2 be two lines through T. The lines ℓ_1 and ℓ_2 meet again γ_1 at points A and B, respectively, and γ_2 at points A_1 and B_1 , respectively. Let further X be a point in the complement of $\gamma_1 \cup \gamma_2 \cup \ell_1 \cup \ell_2$. The circles ATX and BTX meet again γ_2 at points A_2 and B_2 , respectively. Prove that the lines TX, A_1B_2 and A_2B_1 are concurrent.

- Let n be an integer number greater than or equal to 2, and let K be a closed convex set of area greater than or equal to n, contained in the open square $(0,n)\times(0,n)$. Prove that K contains some point of the integral lattice $\mathbb{Z}\times\mathbb{Z}$.

 Marius Cavachi
- TST 3
- Let n be a positive integer and let x_1, x_2, \ldots, x_n be positive real numbers such that $x_1 x_2 \cdots x_n = 1$. Prove that

$$\sum_{i=1}^{n} x_i^n (1+x_i) \ge \frac{n}{2^{n-1}} \prod_{i=1}^{n} (1+x_i).$$

IMO Shortlist

Let ABC be a triangle such that $AB \neq AC$. The internal bisector lines of the angles ABC and ACB meet the opposite sides of the triangle at points B_0 and

	C_0 , respectively, and the circumcircle ABC at points B_1 and C_1 , respectively. Further, let I be the incentre of the triangle ABC . Prove that the lines B_0C_0 and B_1C_1 meet at some point lying on the parallel through I to the line BC . Radu Gologan
3	Given a positive integer a , prove that $\sigma(am) < \sigma(am+1)$ for infinitely many positive integers m . (Here $\sigma(n)$ is the sum of all positive divisors of the positive integer number n .) Vlad Matei
4	Let X and Y be two finite subsets of the half-open interval $[0,1)$ such that $0 \in X \cap Y$ and $x+y=1$ for no $x \in X$ and no $y \in Y$. Prove that the set $\{x+y-\lfloor x+y \rfloor: x \in X \text{ and } y \in Y\}$ has at least $ X + Y -1$ elements.
_	TST 4 (All Geometry)
1	Let P be a point in the plane and let γ be a circle which does not contain P . Two distinct variable lines ℓ and ℓ' through P meet the circle γ at points X and Y , and X' and Y' , respectively. Let M and N be the antipodes of P in the circles PXX' and PYY' , respectively. Prove that the line MN passes through a fixed point. Mihai Chis
2	Let ABC be a scalene triangle. The tangents at the perpendicular foot dropped from A on the line BC and the midpoint of the side BC to the nine-point circle meet at the point $A'\setminus$; the points B' and C' are defined similarly. Prove that the lines AA' , BB' and CC' are concurrent. Gazeta Matematica
3	Let \mathcal{L} be a finite collection of lines in the plane in general position (no two lines in \mathcal{L} are parallel and no three are concurrent). Consider the open circular discs inscribed in the triangles enclosed by each triple of lines in \mathcal{L} . Determine the number of such discs intersected by no line in \mathcal{L} , in terms of $ \mathcal{L} $. B. Aronov et al.
_	TST 5

 $\verb|www.artofproblemsolving.com/community/c4465||$

1	Each point of the plane is coloured in one of two colours. Given an odd integer number $n \geq 3$, prove that there exist (at least) two similar triangles whose similar train is n , each of which has a monochromatic vertex-set. Vasile Pop
2	Let ℓ be a line, and let γ and γ' be two circles. The line ℓ meets γ at points A and B , and γ' at points A' and B' . The tangents to γ at A and B meet at point C , and the tangents to γ' at A' and B' meet at point C' . The lines ℓ and CC' meet at point P . Let λ be a variable line through P and let X be one of the points where λ meets γ , and X' be one of the points where λ meets γ' . Prove that the point of intersection of the lines CX and $C'X'$ lies on a fixed circle. Gazeta Matematica
3	Let p be a prime number, let n_1, n_2, \ldots, n_p be positive integer numbers, and let d be the greatest common divisor of the numbers n_1, n_2, \ldots, n_p . Prove that the polynomial $\frac{X^{n_1} + X^{n_2} + \cdots + X^{n_p} - p}{X^d - 1}$
	is irreducible in $\mathbb{Q}[X]$.
	Beniamin Bogosel
_	TST 6
1	A nonconstant polynomial f with integral coefficients has the property that, for each prime p , there exist a prime q and a positive integer m such that $f(p) = q^m$. Prove that $f = X^n$ for some positive integer n . AMM Magazine
2	Let ABC be a scalene triangle, let I be its incentre, and let A_1 , B_1 and C_1 be the points of contact of the excircles with the sides BC , CA and AB , respectively. Prove that the circumcircles of the triangles AIA_1 , BIB_1 and CIC_1 have a common point different from I . Cezar Lupu & Vlad Matei
	Cezai Dapa & viaa maiei
3	Let n be a positive integer number. If S is a finite set of vectors in the plane, let $N(S)$ denote the number of two-element subsets $\{\mathbf{v}, \mathbf{v}'\}$ of S such that
	$4(\mathbf{v} \cdot \mathbf{v}') + (\mathbf{v} ^2 - 1)(\mathbf{v}' ^2 - 1) < 0.$

www.artofproblemsolving.com/community/c4465

Determine the maximum of N(S) when S runs through all n-element sets of vectors in the plane.

www.artofproblemsolving.com/community/c4465 Contributors: mavropnevma