Tema 2 Microcontrolador PIC. Generalidades

Elección de un microcontrolador

- Decisión multivariable. No hay un óptimo evidente
- Factores:
 - Herramientas de desarrollo
 - Base de conocimientos
 - Precio y disponibilidad
 - Familia versátil y en desarrollo
 - Cantidad de memoria y periféricos
 - Solidez del fabricante y posibilidad de segundas fuentes
- Muchos fabricantes, no todos populares
- ¿Cuáles son los 3 mayores vendedores de MC ?
 - NXP, Renesas, Microchip (2016)

Elección de un microcontrolador

Datos de mercado: Arquitecturas

Mercado global de microcontroladores

Arquitecturas más populares:

Intel (8051)
Renesas
Atmel AVR
ARM
Microchip
Freescale
ST
Infineon

Source: IC Insights

Fabricantes de microcontroladores y familias

- Texas Instruments.
 - MSP430 (16bit)
 - F2xxx (32 bit)

- HCS08 (8 bit)
- Coldfire (32 bit)
- Renesas (+ NEC)
 - 740, 78K0S (8 bit)
 - R32C, RX (32 bits)

RENESAS

ST

- STM8 (8 bit)
- STM32 (32 bit ARM)
- Atmel (parte de Microchip)

- AVR (8 y 32 bit)
- AT91SAM (32 bit ARM)
- Microchip

- Pic16F, Pic18F (8 bit)
- Pic24F (16 bit)

Decisión final

Familia PIC de Microchip

- Arquitectura emergente
- Muy implantado en electrónica de consumo
- Gran base de datos de conocimiento
- Herramientas gratuitas o muy baratas
- Familias compatibles con periféricos y cantidad de memoria muy diversas.

Algunos datos

- Microchip Technology nació en 1989, como una escisión de General Instruments
- Fabricante de memorias, microcontroladores, dispositivos analógicos, de potencia, RF, interfaz, y de señal mixta.
- 43% de ventas en Asia, 29% América, 28% Europa
- Sectores PIC: 35% electrónica de consumo, 18% automoción

Interfaces de los PICs

Generalidades PICs

- Familias de microcontroladores dependiendo de
 - Tipo de memoria: Flash, OTP, ROM, ninguna
 - Pines E/S: 4-18, 20-28, 32-44, >44
 - Tamaño de memoria: 0.5-1K, 2-4K, 8-16K, 24-32K, 48-64K, 96-128K
 - Periféricos: CAN, USB, LCD, motor, RF, ...
 - Tensión de alimentación: normal, LV....

Generalidades PICs

Características comunes

- Arq. Harvard
- RISC
- Puertos E/S digital
- Timer con prescaler
- Reset on-chip
- Watchdog
- Modo Sleep
- Alta corriente de salida
- Modos direccionamiento directo, indirecto y relativo
- Memoria RAM para datos
- Memoria programa ROM o flash

Características opcionales

- Entradas analógicas
- Comparadores analógicos
- Timers adicionales
- EEPROM
- Interrupciones externas o internas
- Oscilador interno
- Salida PWM
- Interfaz serie (USART)
- Bus CAN, I2C o USB
- Interfaz SPI
- Control de motores

Familias PICs

Clasificación según el *ancho* de las instrucciones

Serie básica: ancho de 12 bits

Serie media: ancho de 14 bits

Serie avanzada: ancho de 16 bits

Instrucciones de 12 bits

Instrucciones de 14 bits

Instrucciones de 16 bits

M	icrocontroller	Program	Data	Max Speed	I/O	A/D
	Microcontroller	Program	Data	Max Speed	I/O	A/D
-		Memory	RAM	(MHz)	Ports	Converter
-	16C554	512 × 14	80	20	13	-
-	16C64	2048 × 14	128	20	33	-
					1	†

	Microcontroller	Program	Data	Max Speed	I/O	A/D
_		Memory	RAM	(MHz)	Ports	Converter
	17C43	4096 × 16	454	33	33	-
_	17C752	8192 × 16	678	33	50	12
,	18C242	8192 × 16	512	40	23	5
,	18C252	16384 × 16	1536	40	23	5
	18F4520	32768 × 16	1536	40	36	13

Nomenclatura

PIC 16F88

18 pines DIP (20 SSOP)
2 puertos de 8 bits
CAD, Timers,
comunicaciones
Alimentación/oscilador

PIC 16F88

4k Flash programa (14 bits)

368 bytes RAM de datos (8bit)

256 bytes de EEPROM (8bit)

ALU con acumulador (W)

P.O.R. y WDOG

Oscilador interno

Timer0, 1 y 2

Puertos de E/S

Línea de int. Ext.

CAD, USART, SSP, CCP

ALU del PIC

Particularidad: el registro W es similar pero NO es un acumulador :

Posibilidad de almacenar directamente el resultado en un registro / memoria.

Memoria

4k de memoria de programa (14bits). Flash 368 bytes de datos (8 bits). SRAM volátil 256 Bytes de EEPROM (8 bits). EEPROM no volátil Pila Hardware (8 x 13b). SRAM

Mapa de memoria de programa

Bancos de memoria de datos

La memoria de datos está organizada en 4 *bancos*

Cada *banco* tiene 128 posiciones

Con 2 bits del registro STATUS se selecciona el banco

En total, *hasta* 512 posiciones accesibles (9 bits)

Una vez elegido el banco, sólo necesitamos 7 bits para especificar una posición.

En esta memoria, datos y registros de configuración

Bancos de memoria de datos

Д	File ddress	А	File ddress	A	File Address	,	File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h	0		Canaral	
CCP1CON	17h		97h	General Purpose		General Purpose	
RCSTA	18h	TXSTA	98h	Register		Register	
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes	
RCREG	1Ah		9Ah				
	1Bh	ANSEL	9Bh				
	1Ch	CMCON	9Ch				
	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General		General Purpose	
Comerci		Purpose Register		Purpose Register		Register	
General Purpose		80 Bytes		80 Bytes		80 Bytes	
Register			EFh		16Fh		1EFh
96 Bytes			F0h		170h		1F0h
		accesses		accesses		accesses	
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Instrucciones

Cuatro tipos:

De Byte:

6bit de código, 1 de destino, 7 de dirección (+2 de banco)

De Bit:

4bit de código, 3 de nº de bit, 7 de dirección (+2 de banco)

Literales y de control:

6bit de código, 8 de operando (inmediato)

CALL / GOTO:

3bit de código, 11 de dirección de salto (+2 de banco)

Instrucciones

Pipeline de dos niveles:

Se ejecutan dos instrucciones simultáneamente, excepto con los saltos.

Ciclo de instrucción: 4 veces menor que la velocidad del reloj.

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Clock Frequency	Instruction Cycle						
	Frequency	Period					
20 MHz	5 MHz	200 ns					
4 MHz	1 MHz	1μs					
1 MHz	250 kHz	4μs					
32.768 kHz	8.192 kHz	122.07μs					

Registro OPTION

Configuración de los periféricos:

- Flanco de la INT
- Funcionamiento del

TIMER

- Prescaler
 - Para quién
 - Cuánto

REGISTER 2-2:

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2-0

OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

RBPU: PORTB Pull-up Enable bit

- 1 = PORTB pull-ups are disabled
- 0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

- 1 = Interrupt on rising edge of RB0/INT pin
- 0 = Interrupt on falling edge of RB0/INT pin

T0CS: TMR0 Clock Source Select bit

- 1 = Transition on RA4/T0CKI/C2OUT pin
- 0 = Internal instruction cycle clock (CLKO)

T0SE: TMR0 Source Edge Select bit

- 1 = Increment on high-to-low transition on RA4/T0CKI/C2OUT pin
- 0 = Increment on low-to-high transition on RA4/T0CKI/C2OUT pin

PSA: Prescaler Assignment bit

- 1 = Prescaler is assigned to the WDT
- 0 = Prescaler is assigned to the Timer0 module

PS<2:0>: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

Registro STATUS

Bits de configuración

REGISTER 15-1: CONFIG1: CONFIGURATION WORD 1 REGISTER (ADDRESS 2007h)

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	ССРМХ	DEBUG	WRT1	WRT0	CPD	LVP	BOREN	MCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0
bit 13													bit 0

Configuración del PIC.

Sólo accesible al programar (no en t.ejec)

CP, WRT, CPD: protección de código y memorias

CCPMX: pin de CCP1

LVP: programación con tensiones bajas

PWRTE: Timer de encendido (72ms)

WDTE:habilita WD. Sólo para versión final

FOSC: Selección oscilador

bit 13 CP: Flash Program Memory Code Protection bits

1 = Code protection off

0 = 0000h to 0FFFh code-protected (all protected)

bit 12 CCPMX: CCP1 Pin Selection bit

1 = CCP1 function on RB0 0 = CCP1 function on RB3

bit 11 DEBUG: In-Circuit Debugger Mode bit

1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger

bit 10-9 WRT<1:0>: Flash Program Memory Write Enable bits

11 = Write protection off

10 = 0000h to 00FFh write-protected, 0100h to 0FFFh may be modified by EECON control 01 = 0000h to 07FFh write-protected, 0800h to 0FFFh may be modified by EECON control

00 = 0000h to 0FFFh write-protected

bit 8 CPD: Data EE Memory Code Protection bit

1 = Code protection off

0 = Data EE memory code-protected

bit 7 LVP: Low-Voltage Programming Enable bit

1 = RB3/PGM pin has PGM function, Low-Voltage Programming enabled

0 = RB3 is digital I/O, HV on \overline{MCLR} must be used for programming

Bits de configuración

REGISTER 15-1: CONFIG1: CONFIGURATION WORD 1 REGISTER (ADDRESS 2007h)

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	ССРМХ	DEBUG	WRT1	WRT0	CPD	LVP	BOREN	MCLRE	FOSC2	PWRTEN	WDTEN	FOSC1	FOSC0
bit 13													bit 0

BOREN:

MCLRE: habilitación de reset externo

PWRTEN: Timer de encendido (72ms)

WDTE:habilita WD. Sólo para versión final

FOSC: Selección oscilador

bit 7 LVP: Low-Voltage Programming Enable bit

1 = RB3/PGM pin has PGM function, Low-Voltage Programming enabled 0 = RB3 is digital I/O, HV on \overline{MCLR} must be used for programming

bit 6 BOREN: Brown-out Reset Enable bit

1 = BOR enabled 0 = BOR disabled

bit 5 MCLRE: RA5/MCLR/VPP Pin Function Select bit

 $1 = RA5/\overline{MCLR}/VPP$ pin function is \overline{MCLR}

 $0 = RA5/\overline{MCLR}/VPP$ pin function is digital I/O, \overline{MCLR} internally tied to VDD

bit 3 PWRTEN: Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 4, 1-0 FOSC<2:0>: Oscillator Selection bits

111 = EXTRC oscillator; CLKO function on RA6/OSC2/CLKO

110 = EXTRC oscillator; port I/O function on RA6/OSC2/CLKO

101 = INTRC oscillator; CLKO function on RA6/OSC2/CLKO pin and port I/O function on RA7/OSC1/CLKI pin

100 = INTRC oscillator; port I/O function on both RA6/OSC2/CLKO pin and RA7/OSC1/CLKI pin

011 = ECIO; port I/O function on RA6/OSC2/CLKO

010 = HS oscillator

001 = XT oscillator

000 = LP oscillator

Oscilador

Oscilador interno

Cuatro modos:

LP: (32kHz-200kHz)

XT: (100kHz-4MHz)

HS: (4MHz-20MHz)

RC: baja precisión

En LP, XT y HS, también se puede usar un oscilador externo.

Recommended values: $5 \text{ k}\Omega \le \text{REXT} \le 100 \text{ k}\Omega$ CEXT > 20 pF

Watchdog

Contador de 16 bits (prescaler), frecuencia fija 31.25kHz Período por defecto: 16.38ms Máximo sin postescalado 2.097s (=65536/31.25kHz)

Con postescalado, máximo período hasta 268s

Reset

Múltiples fuentes

Power-on

Externo (en modo SLEEP o normal)

WatchDog (en modo SLEEP o normal)

Brown-out (Vdd baja de 4V durante 100us)

PWRT controla el ancho del POR y el BOR

EEPROM

Tanto la EEPROM de datos como la Flash de programa se pueden leer/escribir en el funcionamiento normal.

No están mapeadas en memoria, para acceder hay que usar registros:

- EECON1
- EECON2
- EEDATA
- EEDATH (para Flash)
- EEADR
- EEADRH (para Flash)

Leer de EEPROM: configurar EEADR, EECON1. El dato aparece en EEDATA Escribir en EEPROM: configurar EEADR, EEDATA, EECON1. Escribir 55h en EECON2 pasando por W. Escribir AAh en EECON2 pasando por W. Escribir.

EEPROM. Registro EECON1

REGISTER 3-1: EECON1: EEPROM ACCESS CONTROL REGISTER 1 (ADDRESS 18Ch)

R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-0	R/S-0	R/S-0	
EEPGD	_	_	FREE	WRERR	WREN	WR	RD	
bit 7							bit 0	

- bit 7 **EEPGD**: Program/Data EEPROM Select bit
 - 1 = Accesses program memory
 - 0 = Accesses data memory
- bit 6-5 Unimplemented: Read as '0'
- bit 4 FREE: EEPROM Forced Row Erase bit
 - 1 = Erase the program memory row addressed by EEADRH:EEADR on the next WR command
 - 0 = Perform write only
- bit 3 WRERR: EEPROM Error Flag bit
 - 1 = A write operation is prematurely terminated (any MCLR or any WDT Reset during normal operation)
 - 0 = The write operation completed
- bit 2 WREN: EEPROM Write Enable bit
 - 1 = Allows write cycles
 - 0 = Inhibits write to the EEPROM
- bit 1 WR: Write Control bit
 - 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.
 - 0 = Write cycle to the EEPROM is complete
- bit 0 RD: Read Control bit
 - 1 = Initiates an EEPROM read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software.
 - 0 = Does not initiate an EEPROM read

Ejercicios

- ¿Cuál es el máximo teórico para el número de instrucciones distintas que soporta un PIC16F88?
- ¿De dónde sale el valor máximo de 268s para el timer del watchdog?
- ¿Cuál debe ser la configuración adecuada de EECON1 para realizar una escritura de la EEPROM?
- ¿Cómo crees que se podrán implementar saltos largos (de 13 bits) en las instrucciones CALL/GOTO? ¿Dónde están los dos bits restantes de la dirección?
- ¿Por qué hay que escribir precisamente 55h y AAh en EECON2 para programar la EEPROM?