Medical Image Analysis Lecture 05

Image Segmentation & Deformable Models

Definition of Image Segmentation

- Very important but very hard Computer Vision problem
- Separation of an image into (disjoint) meaningful pieces
 - Potential features: intensity, gradients, texture measures, shape information

Image Segmentation Overview

- Basic Low-Level Methods (BVME)
 - Thresholding, Class Labeling,
 Edge-based, Region-based,
 Watersheds, ...

- Active Contours
- Level Set Methods
- Shape Prior based Deformable Models
 - Shape Template Matching
 - Active Shape/Appearance Model
 - Vascular Structures

High-Level Deformable Models

- Active Contours Method Overview
 - Snakes, Gradient Vector Flow Snakes
 - Level Sets in general and used for Geodesic Active Contours
 - Weighted Total Variation used for Geodesic Active Contours

High-Level Deformable Models

- Motivation
 - Given: image & initial contour
 - Task: compute segmentation

Deformable Models

- Ideas of deformable model segmentation was made popular by Kass et al. in 1988
 - The "Snakes" model, a.k.a. the "Active Contour" algorithm

Images taken from Xu, Prince: Website on "Gradient Vector Flow Snakes"

Deformable Models - Snakes

Parameterized Curve C(s):

$$\vec{C}(s) = \begin{pmatrix} x(s) \\ y(s) \end{pmatrix} \qquad \vec{C}(s) : [0,1] \to \Re^2$$

Example:

$$\vec{C}(s) = \sum_{j=1}^{n} \vec{x}_j B_j(s)$$

n control points

basis functions e.g. B-Splines

Deformable Models - Snakes

Explicitly Modeled Contour C:

$$\vec{C}(s) = \begin{pmatrix} x(s) \\ y(s) \end{pmatrix}$$

Find curve that minimizes energy functional defined by

internal forces: elasticity and bending

external forces: image information (e.g. gradient strength)

$$\min_{\vec{C}} \left\{ E(\vec{C}(s)) = \int_{0}^{1} E_{\text{int}}(\vec{C}(s)) ds + \int_{0}^{1} E_{\text{ext}}(\vec{C}(s)) ds \right\}$$

$$E_{\text{int}}(\vec{C}) = \frac{1}{2}\alpha |\vec{C}'(s)|^2 + \frac{1}{2}\beta |\vec{C}''(s)|^2$$

Penalize negative gradient magnitude -> move towards edges

Snakes - Active Contour Models

$$E(\vec{C}) = \frac{1}{2} \alpha \int_{0}^{1} |\vec{C}'(s)|^{2} ds + \frac{1}{2} \beta \int_{0}^{1} |\vec{C}''(s)|^{2} ds + \frac{1}{2} \int_{0}^{1} (-|\nabla I(\vec{C}(s))|^{2}) ds$$

Minimizer can be found by Euler-Lagrange equations

$$\nabla E_{ext} - \nabla \left| \nabla I(\vec{C}(s)) \right|^2 - \alpha \vec{C}''(s) + \beta \vec{C}''''(s) = 0$$

 E_{ext}

Solve by introducing artificial time dependency -> gradient descent evolution scheme

$$\vec{C}_t(s,t) = -\frac{dE(\vec{C})}{d\vec{C}} = \nabla \left| \nabla I(\vec{C}(s,t)) \right|^2 + \alpha \vec{C}''(s,t) - \beta \vec{C}''''(s,t)$$

Snakes – Active Contour Models

External Energies

Image gradient

$$E_{ext}(\vec{C}) = -\frac{1}{2} \gamma \left| \nabla I(\vec{C}(s)) \right|^2$$

- Distance transform of e.g. Canny edges
 - Improves capture range
- Gradient vector flow field [1]
 - Concavities, capture range

[1] Xu, Prince. Snakes, Shapes and Gradient Vector Flow. IEEE Transactions on Image Processing, 1998.

Gradient Vector Flow Snake

External Forces

Streamlines

Deformable Models – Properties of Snakes

- Efficient to calculate (restricted to contour points)
- Easy incorporation of prior shape models (ASM)
- Number of control points? Reparameterization necessary when curve shrinks or expands!
- Initialization necessary and critical!
 - Optimization is not convex, so we converge to a local minimum
- How to handle topology changes?
 - What should happen if we have one initial contour and want to segment two independent structures?
- Fourth derivative in Euler Lagrange equation
- Parameter Tuning (alpha, beta)

CT of left ventricle

Geodesic Active Contours

Snake Model introduced by Caselles et al. (1997)

Initial Contour

Final Contour

Geodesic Active Contours

Ignoring beta and generalizing the external energy to g!

$$E(C) = \alpha \int_{0}^{1} \left| \vec{C}'(s) \right|^{2} ds + \int_{0}^{1} g \left(\nabla I \left(\vec{C}(s) \right) \right)^{2} ds$$

e.g.
$$g(x) = \frac{1}{1 + \left|\nabla I_{\sigma}(x)\right|^2}$$

g is monotonic & high for low gradients!

- Caselles showed that energy minimization of E can be regarded as finding a geodesic curve in a Riemannian space using a metric derived from the image gradient.
- Closed curves (surfaces) which evolve to minimize the weighted length (area) with weight derived from image

$$\min_{\vec{C}} \left\{ E_{GAC}(\vec{C}) = \int_{0}^{L(\vec{C})} g(\nabla I(\vec{C}(s'))) ds' \right\}$$

$$L(\vec{C}) = \oint ds'$$

L(C) ... euclidean length of C, ds' ... Euclidean length element

Example for g
Medical Image Analysis 2015 / 15

GAC Solution – Level Sets

May be implemented using Level Set Framework

Euler-Lagrange eq. of GAC model:

$$\frac{\partial \vec{C}}{\partial t} = (g\kappa - \nabla g \cdot \vec{N})\vec{N} \iff \frac{\partial \phi}{\partial t} = |\nabla \phi|g\kappa + \nabla g \cdot \nabla \phi$$
curvature normal to contour

So, what is the Level Set Framework?

Mean Curvature Flow

Flow according to external gradient field

Level Set Framework

Deformable Models – Level Sets

- Explicitly defined active contours have some problems
 - Shrinking and Growing -> Reparameterization
 - Changes in Topology -> Contours (dis)appear
 - Extension from Contours to Surfaces

$$\vec{C}(s) = (x(s) \quad y(s))^T$$

 Standard trick: Go to higher dimensional representation by embedding e.g. a 2D contour in a 3D implicit function

Deformable Models – Level Sets

Implicit Representation of Active Contours (Osher, Sethian)

Hypersurface C: zero level set of higher dimensional function

$$\vec{C} = {\{\vec{x} \in \Omega \mid \phi(\vec{x}) = 0\}, \phi : \Omega \subset \Re^2 \to \Re}$$

Deformable Models – Level Sets

$$\vec{C} = \{\vec{x} \in \Omega(\phi(\vec{x}) = 0)\}, \phi: \Omega \subset \Re^N \to \Re$$

- Implicit, Analytic Representation:
 - No Reparameterization Necessary -> Always investigate Points where Implicit Function equals Zero
 - Evolving and Modifying Implicit Function leads to contour (i.e. interface) motion
 - We Model Motion using Partial Differential Equations (PDE)
 - Topology Changes for free How does motion work?
 - Upgrade from 2D to 3D simple
- Problems & Difficulties:
 - Discretization and Numerical Solvers of PDEs

Level Set Motion

We are interested in evolving curves (or interfaces)

 Snakes model had explicitly defined curve C(s) which evolved over time while minimizing energy E(C)

General normal motion of a hypersurface $ec{C} \subset \mathfrak{R}^n$

$$\frac{d\vec{C}}{dt} = \vec{F}\vec{N}_{\vec{C}} \qquad E(\vec{C}) \to \min$$

Level Set Analogon for Normal Motion:

$$\frac{\partial \phi}{\partial t} = F |\nabla \phi|$$

$$\overrightarrow{N} = -rac{
abla \phi}{|
abla \phi|}$$

N ... normal direction to interface

Level Set Motion

- We represent ϕ as a signed distance function (Euclidean Distance Transformation)
- Critical question: How to choose speed function F?
 - e.g. we want to stop motion at edges
 - e.g. we want to include region properties
 - e.g. we want to minimize curvature
 - **–** ...

$\frac{\partial \phi}{\partial t} = F |\nabla \phi|$

- Three types
 - Normal Flow
 - Mean Curvature Flow
 - Flow according to external velocity field

Level Set Motion - Examples

Normal Flow

$$\frac{\partial \phi}{\partial t} + a |\nabla \phi| = 0$$

Normal Flow

Level Set Motion Examples

Mean Curvature Flow

$$\frac{\partial \phi}{\partial t} = \kappa |\nabla \phi|$$

Mean Curvature Flow

Level Set Motion Examples

• External Velocity Field

$$\frac{\partial \phi}{\partial t} = -\vec{V} \cdot \nabla \phi$$

Matlab!

Full-Grown Level Set Equation

- Numerical Implementation
 - Depending on terms, parabolic/hyperbolic PDE
 - Discretization in time and space critical!
- Matlab Toolbox for download:
 - http://barissumengen.com/level_set_methods/index.html

Level-Set Segmentation Example

Multiscale Level-Set 3D Segmentation

Back to GAC Solution

May be implemented using Level Sets

$$\frac{\partial C}{\partial t} = \left(g\kappa - \nabla g \cdot \vec{N}\right) \vec{N} \qquad \longleftrightarrow \qquad \frac{\partial \phi}{\partial t} = \left|\nabla \phi\right| g\kappa + \nabla g \cdot \nabla \phi$$
Euler-Lagrange eq.

Mean Curvature Flow Flow according to external gradient field

- Problem with Level Sets:
 - Gradient descent in level set framework usually converges to local minimum
 - It would be great if we could formulate this problem as a convex functional, i.e. we can locate a global minimum!

GAC Solution – Weighted TV

 Looking for a convex functional for GAC, finally our Total Variation framework comes back into play!

GAC Solution – Weighted TV

Bresson 2007: Weighted Total Variation

$$E_{wTV} = \int_{\Omega} g(x) |\nabla u| dx \qquad TV(u) = \int_{\Omega} |\nabla u| dx = \int_{\Omega} \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2} dx$$

- In binary case $(u \in \{0,1\})$ equals the GAC energy!
- If u is allowed to vary continuously between [0,1]:
 - Energy is convex, so we can find a global optimum!
- Unfortunately: C = 0 is always the globally optimal solution -> additional constraints necessary!
- We need to threshold u for binary segmentation

Geodesic Active Contours

Snake Model introduced by Caselles et al. (1997)

Curve Evolution
Using Gradient

Initial Contour

Final Contour

Matlab!

Medical Image Analysis 2015 / 36

GAC Solution – Weighted TV

- Specify Constraints:
- Use weighted TV with spatially varying data fidelity term:

$$\min_{u} \left\{ \int_{\Omega} g(x) |\nabla u| dx + \lambda \int_{\Omega} (u \cdot f) dx \right\} \qquad f = \begin{cases} -\infty & \text{force foreground} \\ - & \text{likely foreground} \\ 0 & \text{undetermined} \\ + & \text{likely background} \\ \text{color distribution (histogram/Gauss model)} \end{cases}$$

 Minimization of this model is very similar to the minimization of TV-L2 and TV-L1 Denoising!

Solve Weighted TV Segmentation

$$\min_{u} \left\{ \int_{\Omega} g(x) |\nabla u| dx + \lambda \int_{\Omega} (u \cdot f) dx \right\}$$

Corresponding Euler-Lagrange equation:

$$-\nabla \cdot \left(g(x) \frac{\nabla u}{|\nabla u|} \right) + \lambda f = 0$$

Again: Problem with Derivative!

-> Primal-Dual Formulation:

$$\min_{u} \max_{\|\mathbf{p}\| \le g} \left\{ \int_{\Omega} \mathbf{p} \cdot \nabla u dx + \lambda \int_{\Omega} (u \cdot f) dx \right\}$$
 Reprojection to hypersphere of radius g!

Solve Weighted TV Segmentation

$$\min_{u} \max_{\|\mathbf{p}\| \leq g} \left\{ \int_{\Omega} \mathbf{p} \cdot \nabla u \, dx + \lambda \int_{\Omega} (u \cdot f) \, dx \right\}$$

Optimization problem in 2 variables

- Alternating optimization in u,p

1.
$$\frac{\partial}{\partial u} \left\{ -\int_{\Omega} u \nabla \cdot \mathbf{p} dx + \lambda \int_{\Omega} (u \cdot f) dx \right\} = -\nabla \cdot \mathbf{p} + \lambda f$$

$$u^{n+1} = u^n + \tau_P (\nabla \cdot \mathbf{p} - \lambda f)$$

Additionally make sure that $u \in [0,1]$

$$u^{n+1} = \min(1, \max(0, u^n + \tau_P(\nabla \cdot \mathbf{p} - \lambda f)))$$

Gradient Descent

Solve Weighted TV Segmentation

2.
$$\frac{\partial}{\partial \mathbf{p}} \left\{ \int_{\Omega} \mathbf{p} \cdot \nabla u dx + \lambda \int_{\Omega} (u \cdot f) dx \right\} = \nabla u \qquad ||\mathbf{p}|| \le \mathbf{g}$$

$$\widetilde{\mathbf{p}}^{n+1} = \mathbf{p}^n + \tau_D \nabla u$$

$$\mathbf{p}^{n+1} = \frac{\widetilde{\mathbf{p}}^{n+1}}{\max \left\{ 1, \frac{\|\widetilde{\mathbf{p}}^{n+1}\|}{g} \right\}} \qquad \text{Gradient Ascent}$$

- Alternated updates over a number of iterations
- Discretization -> see ROF Primal-Dual

Weighted TV: Defining Constraints

iterations

Interactive Segmentation Using Weighted Total Variation

ICG Tool Available at: http://www.gpu4vision.org
Tools like Photoshop, Gimp have similar algorithms!

Interactive Segmentation Using Weighted Total Variation

