Assignment 15 sep

Perform Data preprocessing on Titanic dataset 1.Data Collection. Please download the dataset from https://www.kaggle.com/datasets/yasserh/titanic-dataset

2.Data Preprocessing o Import the Libraries. o Importing the dataset. o Checking for Null Values. o Data Visualization. o Outlier Detection o Splitting Dependent and Independent variables o Perform Encoding o Feature Scaling. o Splitting Data into Train and Test

1.Data Collection:

Data Set is collected from the kaggle website

▼ 2.Data Preprocessing :

▼ Importing the Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing the DataSet

df=pd.read_csv(r"C:\Users\nitin\Desktop\assignkeents - submissions\Datasets\Titanic-Datase
df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0
^	4	4	4	Futrelle, Mrs. Jacques		05.0	4	^

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Non-Null Count Column Dtype -----PassengerId 891 non-null

1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3

int64

891 non-null Name object 4 Sex 891 non-null object

5 Age 714 non-null float64 6 SibSp 891 non-null int64

7 Parch 891 non-null int64 8 object Ticket 891 non-null

9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.describe()

0

	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000
may (<u> </u>	1 000000	3 000000	80 000000	8 000000	6 000000	512 320

▼ Checking for Null Values

df.isnull().any()

PassengerId	False
Survived	False
Pclass	False
Name	False
Sex	False
Age	True
SibSp	False
Parch	False
Ticket	False
Fare	False
Cabin	True

```
Embarked
                    True
     dtype: bool
df.isnull().sum()
    PassengerId
                     0
    Survived
                     0
    Pclass
                     0
    Name
                     0
    Sex
                     0
                    177
    Age
    SibSp
                     0
    Parch
                     0
    Ticket
                     0
    Fare
                     0
    Cabin
                    687
     Embarked
                     2
    dtype: int64
print("Null percentage in columns : ")
for i in df.columns:
   c=df[i].count()
   n=df[i].isnull().sum()
   print(i," : ",(n/(n+c)) * 100)
    Null percentage in columns :
    PassengerId : 0.0
    Survived : 0.0
    Pclass : 0.0
    Name : 0.0
    Sex : 0.0
    Age : 19.865319865319865
    SibSp : 0.0
    Parch : 0.0
    Ticket: 0.0
    Fare : 0.0
    Cabin : 77.10437710437711
     Embarked : 0.22446689113355783
df.shape
     (891, 12)
df["Age"].fillna(df["Age"].median(),inplace=True)
df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
print(df["Age"].isnull().any())
print(df["Embarked"].isnull().any())
    False
    False
df.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2
4				,						•

print(df.shape)

(891, 12)

df.isnull().any()

PassengerId	False
Survived	False
Pclass	False
Name	False
Sex	False
Age	False
SibSp	False
Parch	False
Ticket	False
Fare	False
Cabin	True
Embarked	False
dtype: bool	

▼ Data Visualization

sns.pairplot(df)

sns.scatterplot(x="Embarked",y="Age",data=df)

<Axes: xlabel='Embarked', ylabel='Age'>

sns.barplot(x="Sex",y="Survived",data=df,hue="Pclass")

<Axes: xlabel='Sex', ylabel='Survived'>

sns.barplot(x="Sex",y="Survived",data=df,hue="Parch")

<Axes: xlabel='Sex', ylabel='Survived'>

sns.barplot(x="Sex",y="SibSp",data=df,hue="Pclass")

<Axes: xlabel='Sex', ylabel='SibSp'>

sns.barplot(x="Embarked",y="Survived",data=df)

<Axes: xlabel='Embarked', ylabel='Survived'>

sns.distplot(df["Survived"])

C:\Users\nitin\AppData\Local\Temp\ipykernel_17756\41727483.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df["Survived"])
<Axes: xlabel='Survived', ylabel='Density'>

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.034212	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.064910	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.339898	0.083081	0.018443	-0.54950C
Age	0.034212	-0.064910	-0.339898	1.000000	-0.233296	-0.172482	0.096688
SibSp	-0.057527	-0.035322	0.083081	-0.233296	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.172482	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096688	0.159651	0.216225	1.000000

sns.heatmap(corr,annot=True)

Outlier Detection

sns.boxplot(df)

sns.boxplot(data=df,x="Age",y="Embarked")

<Axes: xlabel='Age', ylabel='Embarked'>

sns.boxplot(data=df,x="Fare",y="Embarked")

<Axes: xlabel='Fare', ylabel='Embarked'>

sns.boxplot(df["Fare"])

df["Age"].skew()

0.5102446555756495

df["Fare"].skew() # as skewnwss should be -1 to +1 is normal range but here we are having

4.787316519674893

```
df["Fare"].median()
     14.4542
Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)
IQR = Q3 - Q1
width = 1.5
lower_limit = Q1 -(width*IQR)
upper limit = Q3 + (width*IQR)
df['Fare']=np.where(df['Fare']>upper_limit,14.4542,np.where(df['Fare']<lower_limit,14.4542</pre>
```

sns.boxplot(df["Fare"])

sns.boxplot(df.Age)

sns.boxplot(df)

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0
_		4	4	Futrelle. Mrs. Jacques		25.2	4	^

df.shape

(876, 12)

▼ Splitting Dependent and Independent variables

df.drop(["PassengerId","Name","Ticket","Cabin"],axis=1,inplace=True)
df.head()

Surviv	ed	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
iloc[:,1:] iloc[:,:1]								
		4		05.0	4	•	E0 4000	_

X.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.0	1	0	7.2500	S
1	1	female	38.0	1	0	14.4542	С
2	3	female	26.0	0	0	7.9250	S
3	1	female	35.0	1	0	53.1000	S
4	3	male	35.0	0	0	8.0500	S

y.head()

	Survived
0	0
1	1
2	1
3	1
4	0

```
y=y.squeeze()
```

type(X)

pandas.core.frame.DataFrame

type(y)

pandas.core.series.Series

y.head()

- 0012131
- Name: Survived, dtype: int64

▼ Perform Encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
X["Sex"]=le.fit_transform(X["Sex"])
mapping1=dict(zip(le.classes_,range(len(le.classes_))))
X["Embarked"]=le.fit_transform(X["Embarked"])
mapping2=dict(zip(le.classes_,range(len(le.classes_))))

print("For Sex Column :",mapping1)
print("For Embarked Column :",mapping2)

For Sex Column : {'female': 0, 'male': 1}
For Embarked Column : {'C': 0, 'Q': 1, 'S': 2}
```

Χ

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	1	22.0	1	0	7.2500	2
1	1	0	38.0	1	0	14.4542	0
2	3	0	26.0	0	0	7.9250	2
3	1	0	35.0	1	0	53.1000	2
4	3	1	35.0	0	0	8.0500	2
886	2	1	27.0	0	0	13.0000	2
887	1	0	19.0	0	0	30.0000	2
888	3	0	28.0	1	2	23.4500	2
889	1	1	26.0	0	0	30.0000	0
890	3	1	32.0	0	0	7.7500	1

876 rows × 7 columns

У

0	0
1	1
2	1
3	1
4	0
886	0
887	1

```
888 0
889 1
890 0
Name: Survived, Length: 876, dtype: int64
```

▼ Feature Scaling

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
X_Scale=pd.DataFrame(ss.fit_transform(X),columns=X.columns)
X_Scale.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0.821711	0.743768	-0.589744	0.430836	-0.467137	-0.793895	0.582594
1	-1.573693	-1.344504	0.719906	0.430836	-0.467137	-0.227705	-1.956472
2	0.821711	-1.344504	-0.262332	-0.472065	-0.467137	-0.740846	0.582594
3	-1.573693	-1.344504	0.474346	0.430836	-0.467137	2.809531	0.582594
4	0.821711	0.743768	0.474346	-0.472065	-0.467137	-0.731022	0.582594

Splitting Data into Train and Test

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X_Scale,y,test_size=0.2,random_state=0)
print(X_train,"\n",X_test,"\n","\n",y_train,"\n",y_test)
```

```
Pclass
                        Sex
                                  Age
                                         SibSp
                                                   Parch
                                                              Fare Embarked
    45
         0.821711 0.743768 -0.098626 0.430836 -0.467137 -0.145514 -0.686939
    172 0.821711 0.743768 -0.098626 2.236638 0.772900 0.637785
                                                                   0.582594
    492 0.821711 0.743768 -0.426038 -0.472065 -0.467137 -0.751000 0.582594
    820 0.821711 0.743768 -0.917157 -0.472065 -0.467137 -0.711374 0.582594
    651 -1.573693   0.743768   1.702144   1.333737 -0.467137 -0.227705   0.582594
              . . .
                        . . .
                                  . . .
                                           . . .
                                                     . . .
    835 -1.573693 -1.344504 -0.098626 0.430836 -0.467137 -0.227705 -1.956472
    192 0.821711 0.743768 -0.098626 -0.472065 -0.467137 -0.754599 -0.686939
    629 -0.375991 0.743768 0.146934 0.430836 0.772900 0.699346 0.582594
    559 0.821711 0.743768 -0.835304 -0.472065 -0.467137 -0.743141 0.582594
    684 -1.573693 0.743768 2.520675 -0.472065 -0.467137 0.722923 0.582594
    [700 rows x 7 columns]
            Pclass
                                                    Parch
                                                               Fare Embarked
                         Sex
                                  Age
                                          SibSp
    141 -0.375991 0.743768 -0.835304 0.430836 0.772900 1.524558
                                                                   0.582594
    113 -0.375991 0.743768 -0.016772 0.430836 -0.467137 0.286740
                                                                   0.582594
    730 -1.573693  0.743768 -0.098626 -0.472065 -0.467137  0.994065
                                                                   0.582594
    294 -1.573693 0.743768 -0.098626 -0.472065 -0.467137
                                                         1.033360
                                                                   0.582594
    261 -0.375991 0.743768 0.556200 -0.472065 -0.467137 -0.538472
                                                                   0.582594
              . . .
                        . . .
                                           . . .
    578 -1.573693 -1.344504 -0.917157 -0.472065
                                               2.012937 -0.227705
                                                                   0.582594
    522 -0.375991 0.743768 -0.507891 1.333737 0.772900 -0.459881
                                                                   0.582594
    780 0.821711 -1.344504 -0.098626 6.751142 2.012937 -0.227705
                                                                   0.582594
    54 -1.573693 0.743768 -0.098626 -0.472065 -0.467137 1.426319
                                                                   0.582594
    [176 rows x 7 columns]
     46
            0
    176
           0
    499
           0
    834
           0
    660
           1
    849
           1
    196
           0
    637
           a
    566
           0
    694
    Name: Survived, Length: 700, dtype: int64
     145
            0
    117
           0
    740
           1
    298
           1
    265
           0
    585
           1
    785
           0
    529
           0
    792
           0
    55
           1
    Name: Survived, Length: 176, dtype: int64
print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
    (700, 7) (176, 7) (700,) (176,)
```

Preprocessing Done

▼ Testing for accuracy