Math40002 Analysis 1

Problem Sheet 6

- 1. Let $a_1 = 1$ and $a_{n+1} = \sqrt{2a_n}$. Prove that (a_n) converges and compute the limit.
- 2. Fix r > 1. By the ratio test prove that $n/r^n \to 0$ as $n \to \infty$. Conclude that $n^{1/n} < r$ for sufficiently large n. Hence prove $n^{1/n} \to 1$ as $n \to \infty$.
- 3. Fix $M \in \mathbb{R}$. Prove $M^n/n! \to 0$. Hence show the sequence $(n!)^{1/n}$ is unbounded.
- 4.* Which of the statements (a)–(d) imply (*) and which are implied by (*)?

$$\exists a \in \mathbb{R} \text{ such that } \forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \ge N, \ |a_n - a| < \epsilon.$$
 (*)

- (a) $\exists a \in \mathbb{R}$ such that $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n \geq N, \ |a_n a| < \epsilon$.
- (b) $\exists a \in \mathbb{R} \text{ and } \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \ \forall n \geq N, \ |a_n a| < \epsilon.$
- (c) $\forall a \in \mathbb{R} \ \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \ \forall n \geq N, \ |a_n a| < \epsilon.$
- (d) $\exists a \in \mathbb{R}$ such that $\exists N \in \mathbb{N}$ such that $\forall \epsilon > 0, \forall n \geq N, |a_n a| < \epsilon$.
- 5. We saw in lectures that the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ diverges. What about $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$? Prove your answer.
- 6.† Let $\sum_{n\geq 1} a_n$ be the series obtained from $\sum_{n\geq 1} \frac{1}{n}$ deleting all the terms $\frac{1}{n}$ such that the base 10 expansion of n contains the digit 4. Prove this series converges.
- 7. Prove from first principles that you can multiply a series by a constant $c \in \mathbb{R}$ term by term, i.e. if $\sum_{n=1}^{\infty} a_n$ is convergent then $\sum_{n=1}^{\infty} ca_n$ is convergent to $c \sum_{n=1}^{\infty} a_n$.
- 8. Given a real sequence (a_n) , define a new sequence $b_n := \frac{1}{n} \sum_{i=1}^n a_i$ by averaging.
 - (a) For any $a \in \mathbb{R}$, N > 1 and $n \ge N$, let $A(N) := \sum_{i=1}^{N-1} |a_i a|$. Show that $|b_n a| \le \frac{A(N)}{n} + \frac{\sum_{i=N}^{n} |a_i a|}{n}$.
 - (b) Suppose that $a_n \to a$. Prove carefully that $b_n \to a$.
 - (c) Give (without proof) an example with a_n divergent but b_n convergent.
 - (d) Suppose $\sum_{n=1}^{\infty} a_n$ is convergent, does it follow that $\sum_{n=1}^{\infty} b_n$ is also convergent, and to the same value? Hint: consider the sequence $a_n = \begin{cases} 1 & n=1, \\ 0 & n>1. \end{cases}$
- 9. For which values of $a, b \in \mathbb{R}$ does $\sum_{n=1}^{\infty} n^a/b^n$ converge or diverge? (Give a proof in the MATH40004 sense, and a proof in the proof sense when $a \in \mathbb{Z}$, $b \in \mathbb{R}$.)
- 10. **MATH40004 question for fun.** Write down the unique degree d+1 polynomial p(x) with roots $0, \lambda_1, \lambda_2, \ldots, \lambda_d$ and p'(0) = 1.

"Apply" your formula to $d = \infty$ and $p(x) = \sin x$, and compare coefficients of x^3 or x^5 on both sides to evaluate

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (b) \dagger $\sum_{n=1}^{\infty} \frac{1}{n^4} = ?$

You should prepare starred questions * to discuss with your personal tutor. Questions marked † are slightly harder (closer to exam standard), but good for you.