Honours Algebra: Eigenpictures

Junchen Hu, Lawrence He, Loana Gericke & Sebastian Müksch

University of Edinburgh

April 16, 2019

What are Eigenpictures?

Figure 1: Stroboscopic Photography by Gjon Mili [4]

What are Eigenpictures?

Figure 1: Stroboscopic Photography by Gjon Mili [4]

We will construct an Eigenpicture step-by-step for the matrix

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

STEP 1: Draw unit vectors around the origin.

STEP 2: Draw each transformed unit vector from the head of the unit vector.

STEP 3: Draw each eigenvector.

EXTRA: Draw in vectors with most and least expansion by A.

Finished Eigenpicture - Distinct Eigenvalues

Matrix	Eigenvalues	Eigenvectors
$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$	1,2	$\begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}$

One Zero Eigenvalue

Matrix	Eigenvalues	Eigenvectors
$\begin{pmatrix} -6 & 3 \\ 2 & -1 \end{pmatrix}$	-7,0	$\begin{pmatrix} -3\\1\end{pmatrix},\begin{pmatrix} 1\\2\end{pmatrix}$

Complex Eigenvalues and Eigenvectors

Mat	rix	Eigenvalues	Eigenvectors
$ \begin{pmatrix} \cos(\frac{\pi}{6}) \\ -\sin(\frac{\pi}{6}) \end{pmatrix} $	$ \sin\left(\frac{\pi}{6}\right) $ $ \cos\left(\frac{\pi}{6}\right) $	$\frac{1}{2}(\sqrt{3}\pm i)$	$\begin{pmatrix} \pm i \\ 1 \end{pmatrix}$

Repeated Eigenvalue - Independent Eigenvectors

Matrix	Eigenvalue	Eigenvectors
$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	2	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Repeated Eigenvalue - Dependent Eigenvectors

Matrix	Eigenvalue	Eigenvector
$\begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix}$	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Open Questions

How did we find vectors of most and least expansion?

Will there always be an ellipse?

Singular Value Decomposition

By **Singular Value Decomposition (SVD)** (derived from both [2, section 7.4] and [3]), *A* can be rewritten as:

$$A = U\Sigma V^T$$

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$

- The columns of U are eigenvectors of AA^T .
- The rows of V^T are eigenvectors of A^TA .
- The diagonal of $\Sigma^T \Sigma$ stores the corresponding eigenvalues.

Proposition

Suppose $A \in \mathsf{Mat}(2;\mathbb{R})$, let $\vec{v_1}$ and $\vec{v_2}$ be the normalised eigenvectors of A^TA , then they are the unit vectors subject to the **most and least expansion** by A.

Proposition

Suppose $A \in Mat(2; \mathbb{R})$, let $\vec{v_1}$ and $\vec{v_2}$ be the normalised eigenvectors of A^TA , then they are the unit vectors subject to the **most and least expansion** by A.

- $\{\vec{v_1}, \vec{v_2}\}$ an orthogonal basis.
- $\vec{x} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2}.$
- $\lambda_1^2 + \lambda_2^2 = 1$.

Proof.

With **standard inner product** we have:

$$\begin{aligned} ||A\vec{x}||^2 &= (A\vec{x})^T (A\vec{x}) \\ &= \vec{x}^T (A^T A) \vec{x} \\ &= (\lambda_1 \vec{v}_1^T + \lambda_2 \vec{v}_2^T) (A^T A) (\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2) \\ &= (\lambda_1 \vec{v}_1^T + \lambda_2 \vec{v}_2^T) (\lambda_1 (A^T A) \vec{v}_1 + \lambda_2 (A^T A) \vec{v}_2) \\ &= (\lambda_1 \vec{v}_1^T + \lambda_2 \vec{v}_2^T) (\lambda_1 \sigma_1^2 \vec{v}_1 + \lambda_2 \sigma_2^2 \vec{v}_2) \\ &= \lambda_1^2 \sigma_1^2 + \lambda_2^2 \sigma_2^2 \end{aligned}$$

Proof Continued.

WLOG, suppose $\sigma_1^2 \ge \sigma_2^2$:

$$||A\vec{x}||^2 = \lambda_1^2\sigma_1^2 + \lambda_2^2\sigma_2^2 = (1-\lambda_2^2)\sigma_1^2 + \lambda_2^2\sigma_2^2 = \sigma_1^2 + \lambda_2^2(\sigma_2^2 - \sigma_1^2) \le \sigma_1^2$$

- Case 1: $\sigma_1^2 = \sigma_2^2$, then every unit vector is **expanded equally**;
- Case 2: $\sigma_1^2 \neq \sigma_2^2$, then $\lambda_2 = 0$. Hence, $||A\vec{x}|| = |\sigma_1|$ and $\vec{x} = \vec{v}_1$.

Recall the Raleigh Quotient $R: V \setminus \{\vec{0}\} \to \mathbb{R}$:

$$ec{v}
ightarrow \mathsf{R}(ec{v}) = rac{((A^TA)ec{v}, ec{v})}{(ec{v}, ec{v})}$$

It retains an extreme value at the eigenvector of A^TA (subject to $||\vec{v}||=1$).

Always an Ellipse?

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$

Always an Ellipse?

NO!

Always an Ellipse?

Matrix	Eigenvalues	Eigenvectors
$\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$	-1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

References

- [1] David Poole (2014)
 'Linear Algebra: A Modern Introduction'.
 US: Cengage Learning Publishers.
- [2] MIT OpenCourseWare (2016, May 6)
 'Singular Value Decomposition (the SVD)' [online].

 Available at: https://www.youtube.com/watch?v=mBcLRGuAFUk.
- [3] Steven Schonefeld (1995, September) Eigenpictures: Picturing the Eigenvector Problem The College Mathematics Journal, Vol. 26, No. 4
- [4] Stroboscopic Photography by Gjon Mili Available at: http://albania.al/article/42/gjon_mili_/
- [5] The University of Edinburgh (2019, March 20) 'Honours Algebra Skills Project 1: Eigenpictures' [online]. Available at: Learn, Myed.