Problem Statement

- We have a set of Electric Vehicles (EVs) that are allocated to Electric Vehicle Supply Equipment (EVSE), commonly known as charging ports.
- Each EV i has a specific energy requirement (e_i) and a required charging duration (τ_i^{end})

Objective:

Over a defined time horizon **T** with discrete time steps, establish a charging schedule that:

- Ensures each EV meets its energy requirement within the specified deadline.
- Minimizes the energy consumption at each time step.

t_0	t_1	t_2	t_3 t	t_4	- 5	t_6 t	\overline{z}_7 T
		e_1			$ au_1^{end}$		
			e_2				$ au_2^{end}$
		e_3		$ au_3^{end}$			

Toy Example

- Let's assume we are optimizing for a time horizon T = 4 hours, with a timestep $\Delta T = 1$ hour, a constant voltage V = 240V, and a set of allowable charging rate currents $\rho = \{8,16,32,48,64\}$ A
- Consider that we have **4 EVs** where EV 1, 2, and 3 each have an energy requirement $e_1 = e_2 = e_3 = 26880 \, kWh$ and a required charging duration of **3 hours**. EV 4 has an energy requirement $e_4 = 7680 kWh$ and a required charging duration of **1 hour**.

t_0	t_1 t	t_2 t	·3	T
16 A	48 A	48 A	0	26880/26880 kWh
32A	48A	32A	0	26880/26880 <i>kWh</i>
32A	32A	48A	0	26880/26880 kWh
32A	0	0	0	7680/7680 kWh

Let $r_i(t_k)$ be the charging current rate for EV i at time t_k , N the number of currently plugged EVs and t_n the last time step of the Horizon

Optimization Variables

$$\boldsymbol{r} = \begin{bmatrix} r_1(t_1) & \cdots & r_1(t_n) \\ \vdots & \ddots & \vdots \\ r_n(t_1) & \cdots & r_n(t_n) \end{bmatrix}$$

Let $r_i(t_k)$ be the charging current rate for EV i at time t_k , N the number of currently plugged EVs and t_n the last time step of the Horizon

Optimization Variables

$$\boldsymbol{r} = \begin{bmatrix} r_1(t_1) & \cdots & r_1(t_n) \\ \vdots & \ddots & \vdots \\ r_n(t_1) & \cdots & r_n(t_n) \end{bmatrix}$$

Cost Function

Non – Completion Penalty

$$Q^{NC}(\mathbf{r}) = \sum_{i=1}^{N} \left(\sum_{t_k=t_1}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

Load Variation

$$Q^{LV}(\boldsymbol{r}) = \sum_{k=0}^{T} \left(\sum_{i=1}^{N} r_i(t_k) \right)^2$$

$$minimize \ C(\mathbf{r}) := w^{LV} \sum_{t_k = t_1}^{T} \left(\sum_{i=1}^{N} r_i(t_k) \right)^2 + w^{NC} \sum_{i=0}^{N} \left(\sum_{t_k = t_1}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

$$\begin{aligned} & \textit{minimize } C(\boldsymbol{r}) := w^{LV} \sum_{t_k = t_1}^T \left(\sum_{i=1}^N r_i(t_k) \right)^2 + w^{NC} \sum_{i=0}^N \left(\sum_{t_k = t_1}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2 & \text{Let } \delta_{ik} = 1 \text{ if } t_k \leq \tau_i^{end} \\ & \text{Else } \delta_{ik} = 0 \end{aligned}$$

Let
$$\delta_{ik} = 1$$
 if $t_k \le \tau_i^{end}$
Else $\delta_{ik} = 0$

$$\begin{aligned} & \textit{minimize } C(\boldsymbol{r}) := w^{LV} \sum_{t_k = t_1}^T \left(\sum_{i=1}^N r_i(t_k) \right)^2 + w^{NC} \sum_{i=0}^N \left(\sum_{t_k = t_1}^{\tau_i^{end}} (V \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2 & \text{Let } \delta_{ik} = 1 \text{ if } t_k \leq \tau_i^{end} \\ & \text{Else } \delta_{ik} = 0 \end{aligned}$$

$$& \text{minimize } C(\boldsymbol{r}) := w^{LV} \sum_{t_k = t_1}^T \left(\sum_{i=1}^N r_i(t_k) \right)^2 + w^{NC} \sum_{i=1}^N \left(\sum_{t_k = t_1}^T (V \cdot \delta_{ik} \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

$$minimize \ C(\mathbf{r}) := w^{LV} \sum_{t_k = t_1}^{T} \left(\sum_{i=1}^{N} r_i(t_k) \right)^2 + w^{NC} \sum_{i=1}^{N} \left(\sum_{t_k = t_1}^{T} (V \cdot \delta_{ik} \cdot r_i(t_k) \cdot \Delta T) - e_i \right)^2$$

Subject to: $r_i(t_k) \in \{0, 8, 16, 32, 48, 64\}$

$$\sum_{i=1}^{N} V \cdot r_i(t_k) \le C \quad \forall t_k$$

Where C is the Network's power capacity

We have to find a binary encoding for the set {0, 8, 16, 32, 48, 68}

We have to find a binary encoding for the set {0, 8, 16, 32, 48, 68}

Simplest one I could think of
$$\longrightarrow r_i(t_k) = x_{i,k,2} \cdot 16 \cdot \sum_{q=0}^1 2^q x_{i,k,q} + (1 - x_{i,k,2}) \cdot 8 \cdot x_{i,k,1}$$

We have to find a binary encoding for the set {0, 8, 16, 32, 48, 68}

Increases the order

We have to find a binary encoding for the set {0, 8, 16, 32, 48, 68}

Increases the order

Instead, we simplify the set of allowable currents to : {0, 16, 32, 48 }

$$r_i(t_k) = 16 \cdot \sum_{q=0}^{1} 2^q x_{i,k,q}$$

Incorporating Inequality Constraints

Convert Inequality Constraint to Equality Constraint

$$\sum_{i=1}^{N} V \cdot r_i(t_k) \le C \quad \forall t_k$$

$$\sum_{i=1}^{N} V \cdot r_i(t_k) + s_k = C \quad \forall t_k$$

"Slack Variables" s_k are positive integers where $s_k \leq C$

To encode one of them we need $\lceil \log_2 C \rceil$ binary variables

For a n timestep Horizon we need additional $n[\log_2 C]$ binary variables

Circuit: HEA with 2 layers

Experimental Procedure: Toy Example

For the toy example with T=4 hours, Evs=4 and 2 layer HEA

Algorithm	#Classical Variables	#Qubits	#Shots	#parameters θ	#Ry gates	#CNOT gates	#gates	#iterations
VQE	16	32	5000	64	64	31	95	400+
Compressed VQE	16	6	10000	12	12	5	17	130

Toy Example

CompressedVQE					VQE	VQE				
32 32	48		0	26880/26880 26880/26880 26880/26880 7680/7680	32	32 32	48 32	0	26880/26880 26880/26880 26880/26880 7680/7680	

Large Scale Example

64 Evs 12 timestep Horizon → 1.536 binary variables , 12 qubits

Large Scale Example

128 Evs 12 timestep Horizon → 3.072 binary variables , 13 qubits

Noise Simulation

8 Evs 4 timestep Horizon → 64 binary variables , 7 qubits

Comparison with Classical Algorithms

Simulation of 100 Evs that arrives and depart in a timespan of 24 hours

