Future Tire Conference 2016 Essen, Germany, May 25, 2016

corresponding author: antoine.schmeitz@tno.nl

CONTENTS

- Introduction
- Smart tires
- Tire force estimation
- Results
- Concluding remarks
- > Q & A

VEHICLE AUTOMATION AND TIRES

- Vehicle capabilities determined by tyre-road friction potential (braking, steering)
- For safe automated driving, real-time friction potential estimation is required
- > Challenges:
 - Estimate tire-road friction in normal driving
 - Also at t+∆t s
 - Deal with inhomogeneous vehicles and bad weather conditions

Cooperative Adaptive Cruise Control (C-ACC)

EU ministers to try out self-driving cars - April 2016

European Truck Platooning Challenge - April 2016

3 | From TPMS to smart tire technology 25 May 2016

SLIP-BASED TYRE-ROAD FRICTION ESTIMATION

- Basic idea:
 - slope of tire slip characteristic:
 - reduces to zero when reaching the peak friction
 - many measurements show relation slip stiffness (slope at zero slip) and peak friction
- > So:
 - measure forces and slip
 - consider additional information:
 - > tire inflation pressure, temperatures, ...
 - > estimate the peak friction

Concluding remarks

FROM TPMS TO SMART TIRE

- Tire Pressure Monitoring System
- On valve or rim

- Tire Pressure Monitoring System
- On inner liner

- Smart Tire: additional sensors & functionality
- Example: accelerometer

SMART TIRES

- Smart/intelligent tire systems under development for more than a decade
-) Basic principle:
 - Measuring tire deformation and relate it to tire states or road conditions:

forces, slip angle, camber angle, ... aquaplaning, road condition (wet, snow,...)

- Sensors: strain, acceleration, distance, ...
- Most promising solution: accelerometer at the tire inner liner
- Feature extraction algorithms
 to estimate tire states
 (e.g. distance between peaks in signal)

MANY CHALLENGES

- Technology:
 - sensors
 - wireless communication
 - energy
 - algorithms
 - computation power

Accelerometers

Competing technologies:

- algorithms that use standard vehicle sensors (similar to indirect TPMS)
- > new vehicle sensors, e.g. wheel force bearings, optical sensors, cameras
- > I2V (infrastructure to vehicle) applications

TIRE FORCE ESTIMATION

Force estimation example:

- Challenges:
 - robust algorithm working under various/all operating conditions
 - accuracy, delay, ...
- Novel solution:
 - model-based force estimator

MEASUREMENT SETUP & EXPERIMENTS

VERTICAL TIRE BEHAVIOUR

inner liner accelerations

tire deformation

TIRE BEHAVIOUR WHILE BRAKING

inner liner accelerations

tire deformation

MODEL-BASED TIRE FORCE ESTIMATION

find forces that minimise

error between measurement and model

SOME RESULTS

Vertical load estimation during load and velocity changes Brake force estimation at constant vertical load

CONCLUDING REMARKS

- Future automated riving (AD) functions require real-time friction estimation
- Next step after inner liner TPMS is a smart tire that offers more functionality
- Opportunity for a smart tire that senses tire forces and eventually predicts friction
- > TPMS + accelerometer at inner liner is promising solution
- Novel model-based tire force estimator has been developed to estimate vertical and longitudinal tire forces

Future Tire Conference 2016 Essen, Germany, May 25, 2016

