Checking Executables

Robert M Flight 2018-01-22 12:14:26

Contents

```
3
 knitr::opts_chunk$set(echo = TRUE)
root_loc <- rprojroot::find_root("DESCRIPTION")</pre>
tmp_loc <- tempdir()</pre>
Sys.setenv(file_loc = root_loc)
Sys.setenv(exec_loc = file.path(root_loc, "inst/executables"))
Sys.setenv(test loc = file.path(root loc, "inst/extdata/test data"))
Sys.setenv(results_loc = tmp_loc)
test_loc <- file.path(root_loc, "inst/extdata/test_data")</pre>
Sys.chmod(dir(file.path(root_loc, "inst", "executables"), pattern = "*.R", full.names = TRUE), "0750")
library(categoryCompare2)
library(tools)
```

Purpose

Verify that the executables give the same results as running categoryCompare itself.

R Version

We will use our R programming to read in the data and generate the annotations.

```
get_feature_lists <- function(file_list){
   file_not_universe <- unlist(file_list[!(names(file_list) %in% "universe")])

condition_names <- basename(file_not_universe)
   condition_names <- gsub(paste0(".", file_ext(condition_names[1])), "", condition_names)

file_data <- lapply(file_not_universe, function(x){
   readLines(x)
})

names(file_data) <- condition_names

if (is.null(file_list$universe)) {
   file_data$universe <- unique(unlist(file_data))
} else {</pre>
```

```
file_data$universe <- readLines(file_list$universe)</pre>
  }
 file_data
file_list <- list(file1 = file.path(test_loc, "10_symbol.txt"), universe = file.path(test_loc, "univers
feature_list <- get_feature_lists(file_list)</pre>
feature_universe <- feature_list$universe</pre>
feature list$universe <- NULL
annotation_obj <- get_db_annotation("org.Hs.eg.db", feature_type = "SYMBOL", annotation_type = "CC")
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
##
       expand.grid
##
gene enrichments <- lapply(feature list, function(in genes){</pre>
  hypergeometric_feature_enrichment(
    new("hypergeom_features", significant = in_genes,
        universe = feature_universe, annotation = annotation_obj),
    p_adjust = "BH"
  )
})
combined_enrichments <- combine_enrichments(gene_enrichments)</pre>
p_cutoff_column <- "padjust"</pre>
p_cutoff_value <- 0.01</pre>
p_cutoff_direction <- "<="</pre>
count_cutoff_column <- "counts"</pre>
count_cutoff_value <- 2</pre>
count_cutoff_direction <- ">="
count_call_info <- list(fun = count_cutoff_direction, var_1 = count_cutoff_column, var_2 = count_cutoff</pre>
p_call_info <- list(fun = p_cutoff_direction, var_1 = p_cutoff_column, var_2 = p_cutoff_value)</pre>
significant_calls <- list(counts = count_call_info, pvalues = p_call_info)</pre>
combined_significant <- combined_significant_calls(combined_enrichments, significant_calls)</pre>
results_table <- generate_table(combined_significant)</pre>
```

Executable Version

```
$exec_loc/feature_files_2_json.R --json="$results_loc/features.json" \
    --file1="$test_loc/10_symbol.txt" \
    --universe="$test_loc/universe_symbol.txt"
```

```
$exec_loc/create_annotations.R --orgdb="org.Hs.eg.db" \
    --feature-type="SYMBOL" \
    --annotation-type="CC" \
    --json="$results_loc/annotations.json"

##
## Attaching package: 'S4Vectors'
##
## The following object is masked from 'package:base':
##
## expand.grid

$exec_loc/categoryCompare2.R --features="$results_loc/features.json" \
    --annotations="$results_loc/annotations.json" \
    --p-cutoff=0.01 \
    --count-cutoff=2 \
    --output-directory="$results_loc"
```

Comparison

```
exec_results <- read.table(file.path(tmp_loc, "full_table.txt"), sep = "\t", header = TRUE, stringsAsFa
both_results <- dplyr::full_join(results_table, exec_results)

## Joining, by = c("name", "description", "sig_data.sig", "meas_data.meas")
p_diff <- data.frame(diff = both_results$`10_symbol.p` - both_results$X10_symbol.p)
max(p_diff$diff)

## [1] 3.523657e-19
library(ggplot2)
sum(is.na(both_results$`10_symbol.p`))

## [1] 0
sum(is.na(both_results$X10_symbol.p))

## [1] 0
ggplot(p_diff, aes(x = -1*log10(diff))) + geom_histogram(bins = 100)

## Warning in fun(x, ...): NaNs produced

## Warning: Removed 27 rows containing non-finite values (stat_bin).</pre>
```


OK, so where there are both GO terms, the differences are on the order of machine precision, but there are 0 GO terms missing from the executable case. That is not good!

Missing GO terms

Lets read in the annotation object and see what GO terms are present there compared to the one we generated. json_annotations <- json_2_annotation(file.path(tmp_loc, "annotations.json"))

```
all.equal(json_annotations, annotation_obj)
```

[1] TRUE

Nope, supposedly have the exact same set of annotations.

Different Genes Measured

```
json_genes <- jsonlite::fromJSON(file.path(tmp_loc, "features.json"))
setdiff(json_genes$`10_symbol`, feature_list$`10_symbol`)
## character(0)
length(json_genes$`10_symbol`)
## [1] 666</pre>
```

```
length(feature_list$`10_symbol`)

## [1] 666
setdiff(json_genes$universe, feature_universe)

## character(0)
length(json_genes$universe)

## [1] 8595
length(feature_universe)

## [1] 8595
```