где $\varepsilon(\Delta y)$ - непрерывная в нуле функция и

$$\lim_{\Delta y \to 0} \varepsilon(\Delta y) = 0.$$

Разделив обе части равенства (9.22) на $\Delta x \neq 0$, получим

$$\frac{\Delta z}{\Delta x} = F'(y_0) \frac{\Delta y}{\Delta x} + \varepsilon (\Delta y) \frac{\Delta y}{\Delta x}.$$
 (9.23)

Функция y = f(x) имеет производную в точке x_0 , т. е. существует предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0). \tag{9.24}$$

Из существования прозводной $f'(x_0)$ следует непрерывность функции y = f(x) в точке x_0 :

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

При $\Delta x = 0$ имеем $\Delta y = 0$. Следовательно, приращение Δy , рассматриваемое как функция Δx , непрерывно в точке $\Delta x = 0$. Поэтому, согласно правилу замены переменных в предельных соотношениях, содержащих непрерывные функции (см. п. 5.16),

$$\lim_{\Delta x \to 0} \varepsilon(\Delta y) = 0. \tag{9.25}$$

Теперь из (9.23), переходя к пределу при $\Delta x \to 0$ в силу (9.24) и (9.25), получим формулу (9.21). З а м е ч а н и е 1. Формула (9.21) для производной сложной функции справедлива и в том случае, когда под произ-водными понимаются соотвествующие односторонние производные, если только предварительно потребовать, чтобы сложная функция, котороя необходима для определения рассматриваемой односторонней (или двусторонней) производной, стоящей в левой части формулы (9.21), имела смысл.

 $C \Pi E \Pi C T B M E$ (инвариантность формы первого дифференциала остносительно преобразования незавсисмой переменной):

$$dz = F'(y_0)dy = \Phi'(x_0)dx (9.26)$$

В этой формуле dy = f'(x)dx является дифференциалом функции, а dx – дифференциалом независимой переменной.

Таким образом, дифференицал функции имеет один и тот же вид: произведение производной по некоторой переменной на "дифференциал этой переменной— независимо от того, является эта переменная, в свою очередь, функцией или независимой переменной.

Докажем это. Согласно формуле (9.6), $dz = \Phi(x_0)dx$, отсюда, применив формулу (9.21) для производной сложной функции, получим $dz = F'(y_0)f'(x_0)dx$, но $f'(x_0)dx = dy$, поэтому $dz = F'(y_0)dy$.

Формулу (9.26) можно интерпретировать и несколько иначе, если вспомнить, что дифференциалом функции в точке является функция, линейная относительно дифференциала независимой переменной. Согласно (9.21), дифференциал функции $\Phi(x) = F(f(x))$ имеет вид $d\Phi(x) = F'(y)f'(x_0)dx$, т. е. является результатом подстановки линейной функции $dy = f'(x_0)dx$, с помощью которой задан дифференциал df (где y = f(x)), в линеную функцию $dz = F'(y_0)dy$, задающую дифференциал dF (где z = F(y)). Иначе говоря, дифференциал композиции $\Phi = F \circ f$ является композицией дифференциалов dF и df:

$$d(F \circ f) = dF \circ df$$
.

Отметим, что теорема 5 по индукции распространяется на суперпозицию любого конечного числа функций. Например, для сложной функции вида z(y(x(y))) в случае дифференцируемости функций $z(y),\,y(x)$ и x(t) в соответствующих точках имеет место формула

$$\frac{dz}{dt} = \frac{dz}{dy} \frac{dy}{dx} \frac{dx}{dt}.$$

Для обозначения производной z сложной функции z=z(y), y=y(x) употребляют также нижний индекс x или y, указывающий, по какой из переменных берется производная, т. е. пишут z_x' или z_y' . Часто для простоты штрих опускают, т. е. вместо z_x' пишут просто z_x . В этих обозначениях формула (9.21) имеет вид $z_x=z_yy_x$.

Примеры. 1. Пусть $y=x^a, x>0$, найдем $\frac{dy}{dx}$. Имеем $x^a=e^u$, где $u=a\ln x$. Замечая, что $\frac{du}{dx}=\frac{u}{x}$, получаем

$$\frac{dx^a}{dx} = \frac{de^u}{dx} = \frac{de^u}{du} \frac{du}{dx} = e^u \frac{a}{x} = e^{a \ln x} \frac{a}{x} = ax^{a-1}.$$