第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划问题的图解分析
- ▶线性规划问题的代数分析
- ▶单纯形法的原理与步骤
- ▶应用举例

线性规划问题举例

例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的电力消耗、对污染指数的影响、相关限制以及单位产品利润如下表:

	甲	乙	相关限制
耗 电 (千瓦)	1	1	6
污染指数	-1	2	8
利润 (万元)	3	1	

根据工艺要求,如果乙产品的产量必须是甲产品的2倍以上,问工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?

例1的数学表示

➤ 设变量x_{1、x₂}分别代表甲、乙两种产品的数量, z代表生产两种产品的利润总和。

• 目标函数:
$$\max$$
 $z=3x_1+x_2$

• 约束条件:
$$x_1 + x_2 \le 6$$

 $-x_1 + 2x_2 \le 8$
 $2x_1 - x_2 \le 0$
 $x_1 \ge 0, x_2 \ge 0$

一般情况下的数学模型

$$\max(\min)z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$s.t. \quad a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2$$

$$\dots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m$$

$$x_1, x_2, \dots, x_n \ge (\le) 0, free$$

简写形式

$$\max(\min)z = \sum_{j=1}^{n} c_j x_j$$

S.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i$$
 $(i = 1, \dots, m)$

$$x_j \ge (\le)0, free \qquad (j = 1, \dots, n)$$

矩阵形式

$$\max(\min)z = cx$$

s.t.
$$Ax \le (=, \ge)b$$

 $x \ge (\le)0$, free

其中:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad \mathbf{c} = [c_1, c_2, \cdots, c_n]$$

向量形式

$$\max(\min)z = cx$$

$$s.t. \quad \sum_{j=1}^{n} \boldsymbol{p}_{j} x_{j} \leq (=, \geq) \boldsymbol{b}$$

$$x \ge (\le)0$$
, free

其中:
$$A = [p_1 \quad p_2 \quad \cdots \quad p_n]$$

$$\boldsymbol{p}_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划问题的图解分析
- ▶线性规划问题的代数分析
- ▶单纯形法的原理与步骤
- ▶应用举例

线性规划的图解法

解的分析

- ▶ 有几种最优解的可能?
- >这些最优解的共同特点是什么?

1、单个最优解

2、无穷多个最优解

3、无界解

max
$$z=3x_1+x_2$$
 x_2 s.t. $-x_1+2x_2 \le 8$ $x_1 \ge 0, x_2 \ge 0$ 原因:遗漏了约束条件 4 可行域 6 x_1 目标函数等值线

4、无可行解

max
$$z=3x_1+x_2$$

s.t. $x_1+x_2 \ge 6$
 $2x_1+2x_2 \le 8$
 $x_1 \ge 0, x_2 \ge 0$
原因:约束矛盾

图解法启示

- 1。解的类型: 唯一最优解、无穷最优解、无界解、无可行解
- 2。可行域很可能是一个凸集
- 3。最优解若存在,很可能就是可行域的顶点
- 4。必须寻找一种代数方法,来解决高维的情况。

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划问题的图解分析
- ▶线性规划问题的代数分析
- ▶单纯形法的原理与步骤
- ▶应用举例

线性规划问题的代数分析

- ■线性规划模型的标准形式
- ■可行域的代数分析
- ■顶点的代数分析

线性规划问题的标准形式

线性规划模型的结构

目标函数: max, min

约束条件: ≥,=,≤

变量符号::≥0, unr,≤0

 $\max(\min)$ z = cx

s.t. $Ax \geq (=, \leq)b$

 $x \ge (\le)0$, free

线性规划的标准形式

目标函数: max

约束条件 :=

变量符号 : ≥0

 $\max z = cx$

s.t. Ax = b

 $x \ge 0$

标准形式的转化

变量条件的转化

$$x_j \ge 0$$

$$x_j \leq 0$$

$$\mathbb{R} \quad x_{j}^{'} = -x_{j}$$

$$X_i$$
 无约束

约束条件的转化

约束条件

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \qquad \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \qquad \sum_{j=1}^{n} a_{ij} x_{j} - x_{si} = b_{i}$$

 $x_{si} \ge 0$ 称为松弛变量

目标函数的转化

$$\max z = \sum_{j=1}^{n} c_j x_j$$
 不变

$$\min z = \sum_{j=1}^{n} c_j x_j \qquad \qquad \mathbb{Z}' = -z$$

加入松弛变量水。时

$$\max z = \sum_{j=1}^{n} c_j x_j + 0x_{si}$$

非齐次线性方程组解

标准形式:

$$\max \quad z = cx$$

$$s.t.$$
 $Ax = b$

$$x \ge 0$$

$$\Leftrightarrow$$
: $\overline{A} = [A \mid b]$

 $rank(A) = rank(\overline{A}) = n$: 唯一解

 $rank(A) = rank(\overline{A}) < n$: 无穷多个解

 $rank(A) < rank(\overline{A})$: 无解

一般情况

假定:

$$rank(A) = rank(\overline{A}) = m < n$$

- 1、没有冗余约束
- 2、解有无穷多个

直接求解约束方程不可行,需要寻找其他寻优的方法!

图解法启示

1。可行域很可能是一个凸集

2。最优解若存在, 很可能就是可行域 的顶点

目标函数等值线

可行域的定义与性质

- \bullet 可行解:同时满足两类所有约束条件的解x
- ●可行域:全部可行解的集合
- ●标准形式下的可行域:

$$\Omega = \left\{ \boldsymbol{x} \middle| \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge 0 \right\}$$

定理1:线性规划问题的可行域是凸集

凸集的定义

● 凸集: $\forall x_1, x_2 \in C$, 满足 $ax_1 + (1-a) x_2 \in C$, $0 \le a \le 1$ (凸组合)

定理1可根据凸集直接证明。

顶点的定义

● 顶点: 如果x是凸集C的顶点,则不存在 $x_1 \neq x_2 \in C$,使 $x = ax_1 + (1-a)x_2$, $0 \le a \le 1$ 满足 $x \in C$ 。

问题:可行域顶点在代数上如何表示?

可行域顶点的几何解释

标准形式:

 $\max z = cx$

s.t.

Ax = b

n-m维仿射超平面

$$x \ge 0$$

(a) 两个资源约束

(b) 一个资源约束

基与基解

④基解(重新排序): $[\mathbf{x}_{B}^{T}, \mathbf{x}_{N}^{T}]^{T} = [x_{1}, x_{2}, \dots, x_{m}, 0, \dots, 0]^{T}$

问题

- 1、非基变量有几个?
- 2、基变量有几个?
- 3、基解有几个?
- 4、基解是否一定是顶点?
- 5、如何保证基解是顶点?

基解与顶点

E

	О	A	В	С	D	Е
\mathbf{X}_1	0	6	4/3	0	0	-8
\mathbf{X}_2	0	0	14/3	4	6	0
X_3	6	0	0	2	0	14
X_4	8	14	0	0	-4	0

基可行解

■ 基可行解:满足可行解条件的基解。

基可行解判断

	\boldsymbol{x}_1	x_2	x_3	x_4	Z	基可 行解
O	0	0	6	8	0	Y
A	6	0	0	14	18	Y
В	4/3	14/3	0	0	4	Y
С	0	4	2	0	2	Y
D	0	6	0	-4	/	N
Е	-8	0	14	0	/	N

定理2: 顶点与基可行解彼此对应。

引理1: 基可行解的性质

- 引理1: 若rankA=m,则可行解x为基可行解 \Leftrightarrow 可行解x的正分量所对应的系数列向量线性独立。证明思路:
- 1) ⇒必要性证明: 基可行解的定义
- 2) ←充分性证明:

可行解x是基解 \leftarrow 构造x对应的基假设x正分量个数为k,可知 $k \le m$;

如果k=m,可直接视正分量对应的列向量为基;如果k<m,总可补充m-k个列向量构成基。

定理2证明

定理2: x是可行域顶点 $\Leftrightarrow x$ 是基可行解。

证明思路:

考察逆否命题: x不是可行域顶点 $\Leftrightarrow x$ 不是基可行解

- 1) x不是基可行解⇒x不是可行域顶点 可行解x不是基可行解
 - ⇒x正分量对应的系数列向量线性相关

- $\rightarrow x$ 为两可行点的凸组合
- ⇒x不是顶点

可行点的构造

设可行解 $\mathbf{x} = [x_1, \dots, x_r, 0, \dots, 0]^T$ 不是基可行解

$$\Rightarrow \sum_{i=1}^{r} \delta_{i} \mathbf{p}_{i} = 0 \quad \delta_{i}$$
不全为 0

可构造两个可行点:

$$\mathbf{x}^{(1)} = [(x_1 + \mu \delta_1), \dots, (x_r + \mu \delta_r), 0, \dots, 0]^T$$
$$\mathbf{x}^{(2)} = [(x_1 - \mu \delta_1), \dots, (x_r - \mu \delta_r), 0, \dots, 0]^T$$

其中 μ 足够小,满足 $\min_{i}(x_i \pm \mu \delta_i) \geq 0$

$$\Rightarrow x = \frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$$

2) 可行解X不是可行域顶点 $\Rightarrow X$ 不是基可行解

设
$$\mathbf{x} = [x_1, \dots, x_r, 0, \dots, 0]^T$$
不是可行域顶点

⇒x为两可行点的凸组合,设x=ay+(1-a)z, $y\neq z$,有

$$y = [y_1, \dots, y_r, 0, \dots, 0]^T$$
 $z = [z_1, \dots, z_r, 0, \dots, 0]^T$

问题: y和z的非零元素个数为什么最多为r?

$$\sum_{j=1}^{n} y_{j} \mathbf{p}_{j} = \sum_{j=1}^{r} y_{j} \mathbf{p}_{j} = \mathbf{b} \qquad \sum_{j=1}^{n} z_{j} \mathbf{p}_{j} = \sum_{j=1}^{r} z_{j} \mathbf{p}_{j} = \mathbf{b}$$

$$\Rightarrow \sum_{j=1}^{r} (y_j - z_j) \mathbf{p}_j = 0 \qquad y_j - z_j$$
不全为0

正分量对应的列向量线性相关

⇒x不是基可行解

几何概念与代数概念

几何概念

代数概念

约束超平面

满足一个等式约束的解

约束半平面

满足一个不等式约束的解

约束半平面的交集

满足一组不等式约束的解

约束超平面的交点

基解

可行域的顶点

基可行解

目标函数等值面

目标函数值相同的解

定理3: 最优解的性质

定理3: 若线性规划问题有最优解,一定存在一个基可行解是最优解。

证明:

若最优值x*不是顶点,则必存在某可行方向 δ 和足够小的正数 μ ,使x*± $\mu\delta$ 仍为可行解。因为

$$c(x^* \pm \mu \delta) \le cx^*$$

可知 $c\delta=0$,故 $x^*\pm \mu\delta$ 均为最优解。继续伸展,则必可到 达顶点。

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划问题的图解分析
- ▶线性规划问题的代数分析
- ▶单纯形法的原理与步骤
- ▶应用举例

单纯形法思路

1、初始基可行解

>含单位矩阵的初始基,有

$$(\overline{P}_1, \cdots, \overline{P}_m) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

方法:通过增加人工变量或松弛变量,可以使 A_a =[A \mathbb{I}]

人工变量法

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \qquad \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \qquad \sum_{j=1}^{n} a_{ij} x_{j} + x_{ai} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad \sum_{j=1}^{n} a_{ij} x_{j} - x_{si} + x_{ai} = b_{i}$$

价值系数如何选取?

$$\max z = \sum_{j=1}^{n} c_{j} x_{j} + 0 x_{si} - M x_{ai}$$

例2

max
$$z=3x_1+x_2$$

s.t. $x_1+x_2+x_3=6$
 $-x_1+2x_2+x_4=8$
 $2x_1-x_2+x_5=0$
 $x_1, x_2 \ge 0$ $x_3, x_4, x_5 \ge 0$

初始单纯形表

	c_{j}		3	1	0	0	0
C_B	基	b	x_1	x_2	x_3	\mathcal{X}_4	x_5
0	x_3	6	1	1	1	0	0
0	x_4	8	-1	2	0	1	0
0	x_5	0	2	-1	0	0	1
	$\sigma_{\!j}$		3	1	0	0	0

$$\mathbf{x}^{(0)} = [0, 0, 6, 8, 0]^{\mathrm{T}}$$

$$z^{(0)} = 0$$

$$\overline{x}_i^{(0)} = x_{si} = x_{m+i}$$

初始单纯形表特点

▶基矩阵为单位阵

$$\boldsymbol{B} = [\,\overline{\boldsymbol{p}}_1, \cdots, \overline{\boldsymbol{p}}_m\,] = \mathbf{I}$$

$$\overline{\boldsymbol{p}}_{i} = \mathbf{e}_{i} \qquad \overline{a}_{ii} = 1$$

$$\overline{a}_{ii} = 1$$

▶基变量为b

$$Ax^{(0)} = Bx_B^{(0)} = x_B^{(0)} = b$$
 $\overline{x}_i^{(0)} = b_i$

$$\overline{x}_i^{(0)} = b_i$$

2、最优性判断

◆ 性质1: 对于线性规划,有: x^* 是局部最优解 ⇔ x^* 是全局最优解

◆ 性质2: 若x*为线性规划问题的基可行解,其相邻基可行解的集合为N(x*),若 $cx* \ge cx, x \in N(x*)$,则x*是全局最优解。

问题:相邻基可行解如何定义?

相邻基可行解的几何关系

图: 含一个约束的三维线性规划问题

相邻基可行解的非基变量仅有一个不同!

 $\max z=3x_1+x_2$

s.t. $x_1 + x_2 \le 6$

 $-x_1 + 2x_2 \le 8$

 $x_1, x_2 \ge 0$

	x_1	x_2	x_3	x_4
O	0	0	6	8
A	6	0	0	14
В	4/3	14/3	0	0
С	0	4	2	0

■ 相邻基可行解: 只有一个 基变量不同的基可行解。

相邻基可行解的寻找

转换前
$$\overline{x}^{(0)} = [\overline{x}_1^{(0)}, \dots, \overline{x}_m^{(0)}, 0 \dots 0]^T \ge 0$$
 $B^{(0)} = [\overline{p}_1, \dots, \overline{p}_m] = I$

$$\sum_{j=1}^n x_j^{(0)} p_j = \sum_{i=1}^m \overline{x}_i^{(0)} \overline{p}_i = b$$

$$\sum_{i=1}^m a_{ij} \overline{p}_i - p_j = 0$$

$$\sum_{i=1}^m (\overline{x}_i^{(0)} - \theta a_{ij}) \overline{p}_i + \theta p_j = b$$

转换后 $\overline{x}^{(1)} = [\overline{x}_1^{(0)} - \theta a_{1i}, \dots, \overline{x}_m^{(0)} - \theta a_{mi}, 0 \dots, \theta, \dots, 0]^T$

相邻基可行解的构造

$$\overline{\boldsymbol{x}}^{(1)} = \left[\overline{x}_1^{(0)} - \theta a_{1j}, \cdots, \overline{x}_m^{(0)} - \theta a_{mj}, 0 \cdots, \theta, \cdots, 0\right]^T$$

1、可行解条件:

$$\overline{x}_i^{(0)} - \theta a_{ii} \ge 0 \quad i = 1, 2, \dots, m$$

$$\theta = x_j^{(1)} > 0$$

2、基解条件:

$$\min_{i} \{ \overline{x}_{i}^{(0)} - \theta a_{ij} \} = 0$$

$$\theta = \min_{i} \left\{ \frac{\overline{x}_{i}^{(0)}}{a_{ij}} \middle| a_{ij} > 0 \right\}$$
 所有 $a_{ij} \leq 0$ 会如何?

检验数

$$z^{(1)} = c\overline{x}^{(1)} = c[\overline{x}_{1}^{(0)} - \theta a_{1j}, \dots, \overline{x}_{m}^{(0)} - \theta a_{mj}, 0 \dots, \theta, \dots, 0]^{T}$$

$$= \sum_{i=1}^{m} c_{i}(\overline{x}_{i}^{(0)} - \theta a_{ij}) + c_{j}\theta$$

$$= \sum_{i=1}^{m} c_{i}\overline{x}_{i}^{(0)} - \theta \sum_{i=1}^{m} c_{i}a_{ij} + c_{j}\theta$$

$$= z^{(0)} + \theta \left(c_{j} - \sum_{i=1}^{m} c_{i}a_{ij}\right) \qquad \sigma_{j} \triangleq c_{j} - \sum_{i=1}^{m} c_{i}a_{ij}$$

$$= z^{(0)} + \theta\sigma_{j}$$

解的判别

- 若存在 $\sigma_i > 0$,存在 $a_{ij} > 0$ 继续迭代
- 所有 $\sigma_i \leq 0$,但有人工变量 x_{ai} 不为零 无可行解
- 所有 $\sigma_i \leq 0$,若存在非基变量的 $\sigma_i = 0$ 无穷个最优解
- 所有 $\sigma_i \leq 0$,且没有非基变量的 $\sigma_i = 0$ 唯一最优解

最优性检验流程

3、基可行解的迭代

- 基可行解的迭代思路:
- 1) 从检验数为(?)的非基变量中选择一个变量 作为入基变量(新的基变量);
- 2) 从当前基变量中选择一个变量作为出基变量 (新的非基变量):
- 3) 求解新基下的基可行解。

$$z^{(1)} = z^{(0)} + \theta \sigma_j \qquad \theta = \min_{i} \left\{ \frac{\overline{x}_i^{(0)}}{a_{ij}} \middle| a_{ij} > 0 \right\} \qquad \sigma_j \triangleq c_j - \sum_{i=1}^m c_i a_{ij}$$

$$\sigma_j \triangleq c_j - \sum_{i=1}^m c_i a_{ij}$$

问题: 如何选择入基变量和出基变量?

3、基可行解的迭代

- 基可行解的迭代思路:
- 1) 从检验数为(?)的非基变量中选择一个变量 作为入基变量(新的基变量);
- 2) 从当前基变量中选择一个变量作为出基变量 (新的非基变量):
- 3) 求解新基下的基可行解。

$$z^{(1)} = z^{(0)} + \theta \sigma_j \qquad \theta = \min_{i} \left\{ \frac{\overline{x}_i^{(0)}}{a_{ij}} \middle| a_{ij} > 0 \right\} \qquad \sigma_j \triangleq c_j - \sum_{i=1}^m c_i a_{ij}$$

$$\sigma_j \triangleq c_j - \sum_{i=1}^m c_i a_{ij}$$

问题: 如何选择入基变量和出基变量?

入基、出基变量的选取

。确定入基变量 x_k

$$\sigma_k = \max_j \{ \sigma_j \mid \sigma_j > 0 \}$$

。确定出基变量 x_l

$$\theta = \min_{i} \left\{ \frac{\overline{x}_{i}^{(0)}}{a_{ik}} \middle| a_{ik} > 0 \right\} = \frac{b_{l}}{a_{lk}}$$

单纯形表迭代

第
$$l$$
行: $a_{lj}^{'}=a_{lj}^{'}/\overline{a_{lk}}_{\underline{z} \pm \overline{z} \underline{x}}^{b_{l}^{'}}=\overline{a_{lk}}_{lk}$ 其他行: $a_{ij}^{'}=a_{ij}^{'}-\overline{a_{lk}}_{lk}^{'}a_{ik}$ $i \neq l$ 初等行变换 $b_{i}^{'}=b_{i}^{'}-\overline{b_{l}^{'}}a_{lk}$ $i \neq l$ 检验数迭代: $\sigma_{l}^{'}=-\overline{1}\sigma_{k}$

 $\sigma_{j}^{'} = \sigma_{j} - \frac{a_{lj}}{\sigma_{k}} \sigma_{k} \qquad j \neq l$

根据定义推导

更新单纯形表

			3	1	0	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
0	x_3	6	0	1.5	1	0	-0.5
0	x_4	8	0	1.5	0	1	0.5
3	x_1	0	1	-0.5	0	0	0.5
	$\sigma_{\!j}$		0	2.5	0	0	-1.5

最终单纯形表

			3	1	0	0	0
C_B	基	b	\boldsymbol{x}_1	x_2	x_3	x_4	x_5
1	x_2	4	0	1	2/3	0	-1/3
0	x_4	2	0	0	-1	1	1
3	x_1	2	1	0	1/3	0	1/3
	$\sigma_{\!j}$		0	0	-5/3	0	-2/3

退化与循环

退化: 基变量出现零的现象

影响:可能出现循环迭代

对策?

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划问题的图解分析
- ▶线性规划问题的代数分析
- ▶单纯形法的原理与步骤
- ▶应用举例

应用举例

- •套裁问题
- •配料问题
- •产品计划问题
- •投资问题
- •运输问题

例3投资问题

例:某投资者有50万元可以用于长期投资,可供 选择的投资项目包括购买国库卷、购买公司债卷、 投资房地产、购买股票、银行短期或长期储蓄, 各种投资方式的投资期限,年收益率,风险系数, 增长潜力的具体参数间下表。若投资者希望投资 组合的平均年限不超过5年,平均的期望收益率不 低于13%, 平均风险系数不超过4, 收益的平均增 长潜力不低于10%。问在满足上述要求的前提下, 投资者该如何选择投资组合使平均年收益率最高?

投资问题参数表

序号	投资方式	投资年限 (年)	年收益率 (%)	风险系 数	增长潜力(%)
1	国库卷	3	11	1	0
2	公司债卷	10	15	3	15
3	房地产	6	25	8	30
4	股票	2	20	6	20
5	短期储蓄	1	10	1	5
6	长期储蓄	5	12	2	10
——————————————————————————————————————	阴望指标	5	13	4	10

投资问题模型

设x_j为第j种投资方式在总投资方式中所占比例

max
$$z=11x_1+15x_2+25x_3+20x_4+10x_5+12x_6$$

s.t. $3x_1+10x_2+6x_3+2x_4+x_5+5x_6 \le 5$
 $11x_1+15x_2+25x_3+20x_4+10x_5+12x_6 \ge 13$
 $x_1+3x_2+8x_3+6x_4+x_5+2x_6 \le 4$
 $15x_2+30x_3+20x_4+5x_5+10x_6 \ge 10$
 $x_1+x_2+x_3+x_4+x_5+x_6=1$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

例4套裁问题

例:某车间接到制作100套钢架的订单,每套钢架要用长为2.9m,2.1m,1.5m的圆钢各一根,已知原料长7.4m,问应如何下料,可使所用原料最省。

套裁问题

先选择一些可行的方案:

方案	1	2	3	4	5
2.9	1	2	0	1	0
2.1	0	0	2	2	1
1.5	3	1	2	0	3
合计	7.4	7.3	7.2	7.1	6.6
料头	0	0.1	0.2	0.3	0.8

套裁问题模型

设x_j为按方案j下料的原料根数

min
$$z=0x_1+0.1x_2+0.2x_3+0.3x_4+0.8x_5$$

s.t. $x_1+2x_2+x_4=100$
 $2x_3+2x_4+x_5=100$
 $3x_1+x_2+2x_3+3x_5=100$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

结果: $X^* = [30, 10, 0, 50, 0]^T$ $z^* = 16$ m

例5配料问题

例:某糖果厂用原料A,B,C加工三种不同牌号的糖果甲、乙、丙。已知各种牌号糖果中A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如下表所示。问该厂每月生产这三种牌号的糖果各多少kg,使该厂获利最大。试建立这个问题的线性规划数学模型。

配料问题

	甲	Z	丙	原料成本	每月限用
				(元/kg)	量(kg)
A	≥60%	≥30%		2.00	2000
В				1.50	2500
C	≤20%	≤50%	≤60%	1.00	1200
加工费(元/kg)	0.50	0.40	0.30		
售价(元/kg)	3.40	2.85	2.25		

配料问题模型

设xii代表生产第j种产品耗用第i种原料的kg数

max
$$z=3.40(x_{11}+x_{21}+x_{31})$$

销售收入

$$+2.85(x_{12}+x_{22}+x_{32})$$

$$+2.25(x_{13}+x_{23}+x_{33})$$

$$-0.50(x_{11}+x_{21}+x_{31})$$

$$-0.40(x_{12}+x_{22}+x_{32})$$

$$-0.30(x_{13}+x_{23}+x_{33})$$

$$-2.0(x_{11}+x_{12}+x_{13})$$

$$-1.5 (x_{21} + x_{22} + x_{23})$$

$$-1.0(x_{31}+x_{32}+x_{33})$$

加工成本

原料 成本

配料问题模型

$$x_{11} + x_{12} + x_{13} \le 2000$$

$$x_{21} + x_{22} + x_{23} \le 2500$$

$$x_{31} + x_{32} + x_{33} \le 1200$$

$$x_{11} \ge 0.6(x_{11} + x_{21} + x_{31})$$

$$x_{31} \le 0.2(x_{11} + x_{21} + x_{31})$$

$$x_{12} \ge 0.3(x_{12} + x_{22} + x_{32})$$

$$x_{13} \le 0.5(x_{12} + x_{22} + x_{32})$$

$$x_{33} \le 0.6(x_{13} + x_{23} + x_{33})$$

$$x_{ij} \ge 0$$

月限用量

含量成份

例6: 最优跟踪控制问题

> 己知被控对象的输入输出模型为:

$$y(k+1) = 0.5y(k) + u(k)$$
 $k = 1, 2, \dots, 10$

▶ 控制输入约束:

$$|u(k)| \le M$$
 $|u(k+1) - u(k)| \le N$ $k = 1, 2, \dots, 10$

 \triangleright 求使下列目标最小的控制序列u(k)。

$$\min_{u(k),1 \le k \le 10} \max |y(k+1) - r(k+1)|$$

r(k)为需要跟踪的参考信号,是已知量