

Statistical Arbitrage Mining for Display Advertising

Weinan Zhang, Jun Wang
University College London
w.zhang@cs.ucl.ac.uk
11 Aug 2015, KDD

Survey

- If you have two potential deals, which one will you choose?
 - Deal A: You will surely earn 2 million dollars.
 - Deal B: By 50% chance you will earn 5 million dollars, by 50% chance you will earn nothing.

Display Advertising Intermediaries

This work: Intermediary arbitrage algorithms in RTB display advertising.

Intermediary's Statistical Arbitrage via RTB

Statistical arbitrage opportunity occurs, e.g., when

(CPM) cost per conversion < (CPA) payoff per conversion 1000 impressions * 5 cent < 8000 cent for 1 conversion

Bidding Strategy: Commoditising each ad display opportunity

Bidding Strategy

CTR/CVR, revenue

Statistical Arbitrage Mining

 Expected utility (net profit) and cost on multiple campaigns

$$\mathbb{E}[R(\boldsymbol{v},b(\theta,r))] = T \sum_{i=1}^{M} v_i \int_{\theta} \left(\overset{\circ}{\theta} r_i - b(\theta,r_i) \right) \overset{\circ}{w} (b(\theta,r_i)) p_{\theta}^i(\theta) d\theta$$
 bidding function
$$\mathbb{E}[C(\boldsymbol{v},b(\theta,r))] = T \sum_{i=1}^{M} v_i \int_{\theta} b(\theta,r_i) w(b(\theta,r_i)) p_{\theta}^i(\theta) d\theta$$
 Cost upper bound Prob. of selecting Campaign i

Statistical Arbitrage Mining

 Optimising net profit by tuning bidding function and campaign volume allocation

Solve it in an EM fashion

M-Step: Bidding function optimisation

Fix v and tune b()

$$\max_{b(i)} T \sum_{i=1}^{M} v_{i} \int_{\theta} \left(\theta r_{i} - b(\theta, r_{i})\right) w(b(\theta, r_{i})) p_{\theta}^{i}(\theta) d\theta$$
s.t.
$$T \sum_{i=1}^{M} v_{i} \int_{\theta} b(\theta, r_{i}) w(b(\theta, r_{i})) p_{\theta}^{i}(\theta) d\theta \leq B.$$

$$\frac{\mathcal{L}(b(i), \mathbf{v})}{b(i)} = 0 \Rightarrow \left(\frac{\theta r_{i}}{1 + \lambda} - b(\theta, r_{i})\right) \frac{\partial w(b(\theta, r_{i}))}{\partial b(\theta, r_{i})} = w(b(\theta, r_{i}))$$

$$\mathbf{v}$$

$$w(b(\theta, r)) = \frac{b(\theta, r)}{l} \Rightarrow b_{\text{sam1}}(\theta, r) = \frac{r\theta}{2(1 + \lambda)}$$

$$w(b(\theta, r)) = \frac{b(\theta, r)}{b(\theta, r) + l} \Rightarrow b_{\text{sam2}}(\theta, r) = \sqrt{\frac{rl\theta}{1 + \lambda} + l^{2}} - l$$

E-Step: Campaign volume allocation

Multi-campaign portfolio optimisation

Portfolio margin variance
$$\max_{\boldsymbol{v}} \quad \boldsymbol{v}^T \boldsymbol{\mu}(b) - \alpha \boldsymbol{v}^T \boldsymbol{\Sigma}(b) \boldsymbol{v},$$
 s.t. $\boldsymbol{v}^T \mathbf{1} = 1, \quad \mathbf{0} \leq \boldsymbol{v} \leq \mathbf{1}$ where
$$\boldsymbol{\mu}(b) = (\mu_1(b), \mu_2(b), \dots, \mu_M(b))^T$$
 Net profit margin on each campaign
$$\boldsymbol{\Sigma}(b) = \{\sigma_{i,j}(b)\}_{i=1...M, j=1...M}$$

$$\mu_i(b) = \mathbb{E}[\gamma_i] = \mathbb{E}\left[\frac{R_i(\boldsymbol{v}_{i=1},b)}{C_i(\boldsymbol{v}_{i=1},b)}\right], \ \sigma_i^2(b) = \mathbb{E}\left[\frac{R_i(\boldsymbol{v}_{i=1},b)^2}{C_i(\boldsymbol{v}_{i=1},b)^2}\right] - \mathbb{E}\left[\frac{R_i(\boldsymbol{v}_{i=1},b)}{C_i(\boldsymbol{v}_{i=1},b)}\right]^2$$

Campaign Portfolio Optimisation Results

	${f strategies}$		easy payoff		hard payoff	
	bid.	cam.	profit	$_{ m margin}$	profit	$_{ m margin}$
	algo.	select.	(CNY)		(CNY)	
_	lin	greedy	501.12	6.63	68.59	0.91
	lin	portfolio	925.45	13.11	181.54	2.50
	lin	uniform	747.00	9.53	127.14	1.62
	ortb	greedy	517.02	6.65	70.96	0.91
	ortb	portfolio	802.15	10.32	146.13	1.88
	ortb	uniform	765.12	9.89	133.16	1.72
	sam1	greedy	966.02	20.81	230.38	11.13
L	sam1	portfolio	1,037.98	15.84	240.63	7.96
	sam1	uniform	768.38	9.78	172.43	7.57
	sam2	greedy	961.68	28.73	235.31	24.00
	sam2	portfolio	983.01	17.21	248.65	13.61
	sam2	uniform	774.09	10.32	168.15	5.16
	truth	greedy	787.10	14.69	227.86	29.05
	truth	portfolio	787.10	14.69	242.07	18.34
	truth	uniform	326.57	4.14	101.12	5.36

$$\max_{\boldsymbol{v}} \quad \boldsymbol{v}^T \boldsymbol{\mu}(b) - \alpha \boldsymbol{v}^T \boldsymbol{\Sigma}(b) \boldsymbol{v},$$

s.t.
$$\boldsymbol{v}^T \mathbf{1} = 1, \quad \mathbf{0} \leq \boldsymbol{v} \leq \mathbf{1}$$

Dynamic Portfolio Optimisation

Online A/B Test on BigTree™ DSP

• 23 hours, 13-14 Feb. 2015, with \$60 budget each

- Statistical arbitrage mining algorithm
 - E-step: campaign portfolio optimisation
 - M-step: bidding function optimisation
- Dynamic arbitrage is more effective in practice

Thank You! Questions?

OpenBidder Project: www.openbidder.com