MAT02023 - Inferência A

Gabarito Lista 6 - Avaliação de Estimadores

Exercício 1

Exercício 2

Exercício 3

Exercício 4

Exercício 5 a)

b)

Exercício 6

$$E[(T(x) - \Theta)^{2}] = E[T(x)^{2} - 2\Theta T(x) - \Theta^{2}]$$

$$= E[T(x)^{2}] - 2\Theta E[T(x)] - \Theta^{2}$$

$$= Van [T(x)] + {E[T(x)]}^{2} - 2\Theta E[T(x)] - \Theta^{2}$$

$$= Van [T(x)] + [E[T(x)] - \Theta]^{2}$$

Exercício 7

(a) Neste caso

$$\mathbb{E}(\hat{\theta}_1) = \mathbb{E}(\hat{\eta}_1) = \frac{2n + \sqrt{n}}{2(n + \sqrt{n})}.$$
 (1)

(b) Como $\mathbb{E}(\hat{1}) =$, segue que

$$(\hat{1}) = Var(\hat{1}) = \frac{(1-)}{n}.$$

Para 2, temos

$$Var(\hat{2}) = \frac{1}{(n+\sqrt{n})^2} \sum_{j=1}^{n} Var(X_j) = \frac{n(1-)}{(n+\sqrt{n})^2}.$$

Com a ajuda de (1), podemos reescrever $bias(2)^2$ como

bias(2)² =
$$\left[\frac{2n + \sqrt{n}}{2(n + \sqrt{n})} - \right]^2 = \frac{n(1-2)^2}{4(n + \sqrt{n})^2}$$
,

de onde segue que

$$(2) = \frac{n(1-2)^2}{4(n+\sqrt{n})^2} + \frac{n(1-)}{(n+\sqrt{n})^2} = \frac{n}{4(n+\sqrt{n})^2}.$$

Exercício 8

(a) Integrando por partes, obtem-se $\mathbb{E}(X_j) = +1$, que implica $\mathbb{E}(1) = +1$ (viciado).

Para 2, lembre que se X_1, \dots, X_n são variáveis aleatórias contínuas, independentes e identicamente distribuídas com função de distribuição F e densidade f, então a densidade de $X_{(1)}$ é dada por

$$f_{X_{(1)}}(x) = n[1 - F(x)]^{n-1}f(x).$$

Neste caso temos $F(x) = 1 - e^{-(x-)}$, de onde segue que

$$f_{X_{(1)}}(x) = ne^{-n(x-)}$$
 e $\mathbb{E}(2) = \mathbb{E}(X_{(1)}) = +\frac{1}{n}$.

Ou seja, 2 é viciado para todo $n \ge 1$ (mas é assintóticamente não-viciado).

(b) Integrando por partes duas vezes, obtem-se $\mathbb{E}(X_i^2) = 2 + 2 + 2$, de onde segue que

$$(1) = bias(1)^2 + Var(1) = 1 + \mathbb{E}(1)^2 - \mathbb{E}(1)^2 = 2.$$

Para 2, integrando-se por partes obtem-se, após alguma álgebra

$$\mathbb{E}(X_{(1)}^2) = \left(\frac{1}{n} + \right)^2 + \frac{1}{n^2}, \quad \text{e} \quad Var(X_{(1)}) = \frac{1}{n^2}.$$

Disto segue que

$$(2) = \frac{2}{n^2} \underset{n \to \infty}{\longrightarrow} 0.$$

Note também que (2) < (1), para todo n > 1.

Exercício 9

(a) Por simples integração obtem-se $\mathbb{E}(1) = \mathbb{E}(X_i) = 2/3$ (viciado).

Para 2, lembre que se X_1, \dots, X_n são variáveis aleatórias contínuas, independentes e identicamente distribuídas com função de distribuição F e densidade f, então a densidade de $X_{(n)}$ é dada por

$$f_{X_{(n)}}(x) = nF(x)^{n-1}f(x).$$

Neste caso,

$$f_{X_{(n)}}(x) = \frac{2nx^{2n-1}}{2n} \implies \mathbb{E}(2) = \mathbb{E}(X_{(n)}) = \frac{2n}{2n+1},$$

ou seja 2 é viciado para todo $n \ge 1$ (mas é assintóticamente não-viciado). (Note que $\mathbb{E}(1) > \mathbb{E}(2), \forall n > 1$).

(b) Simples integração implica $\mathbb{E}(X_i^2) = ^2/2$ de onde seque que

$$(1) = \frac{2}{2} - \frac{4}{3}.$$

Para 2, simples integração e alguma álgebra implica

$$\mathbb{E}(X_{(n)}^2) = \frac{2n^2}{2n+1} \Longrightarrow Var(X_{(n)}) = \frac{n^2}{(n+1)(2n+1)^2} \Longrightarrow (2) = \frac{2}{(n+1)(2n+1)}.$$

Note que (2n+1)(n+1) > 2 para todo $n \ge 1$, assim (lembre que > 0)

$$(2) = \frac{1}{(2n+1)(n+1)} < \frac{1}{2} < \frac{1}{2} - \frac{4}{3} = (1),$$

para todo $n \ge 1$.

Exercício 10

(a) Dica:

$$X \sim N(0, \sigma^2) \implies \frac{X_j}{\sigma} \sim N(0, 1) \implies \left(\frac{X_j}{\sigma}\right)^2 \sim \chi^2_{(1)}.$$

aplicando a dica segue que

$$\mathbb{E}(\hat{\sigma}_c^2) = nc\sigma^2, \quad Var(\hat{\sigma}_c^2) = 2nc^2\sigma^4, \quad (\hat{\sigma}_c^2) = \underbrace{\left[(nc-1)^2 + 2nc^2\right]}_{:=Q(c)}\sigma^4.$$

(b) Para minimizar $(\hat{\sigma}_c^2)$, basta minimizar Q(c) em c. O valor de c tal que Q(c) é mínimo é a solução da equação

$$\frac{\partial Q(c)}{\partial c} = 0 \implies c = \frac{1}{n+2}.$$

Exercício 11 Este exercício apresenta problemas pois f_X será uma densidade se, e somente se, $\theta = 0$ ou $\theta = 1$.

Exercício 12 Simples integração implica $\mathbb{E}(\overline{X}) = \theta/(1+\theta)$.

Exercício 13

Exercício 14 A prova do teorema pode ser vista em "Notas de Aula", página 64.

Exercício 15 "Notas de Aula", página 65.

Exercício 16

Exercício 17 Faça os seguintes exercícios do livro Statistical Inference:

a) 7.9, 7.11 (a), 7.12 (b) e (c), 7.38, 7.40,

Exercício 18 Seja X uma única observação da distribuição Bernoulli(θ). Considere os estimadores $T_1(X) = X$ e $T_2(X) = 1/2$.

- a) Os estimadores $T_1(X)$ e $T_2(X)$ são estimadores não-viciados para θ ?
- b) Calcule o EQM para $T_1(X)$ e $T_2(X)$.

Exercício 19

Seja X_1, \ldots, X_n uma amostra aleatória da densidade $f(x|\theta) = \theta(1+x)^{-(1+\theta)}I_{0,\infty}(x)$, em que $\theta > 0$.

- a) Qual o estimador de máxima verossimilhança de $1/\theta$?
- b) Encontre o limite inferior de Cramér-Rao (LICR) para $e^{-\theta}$.
- c) Encontre o LICR para a variância de um estimador não-viciado de $1/\theta$.

Exercício 20 Seja X_1, \ldots, X_n uma amostra aleatória de uma $Exponencial(\lambda)$.

- (a) Encontre, se possível, um estimador não viciado de variância uniformemente mínima (ENV-VUM) para $1/\lambda$.
- (b) Encontre, se possível, um ENVVUM para λ .

Exercício 21 Seja X_1, \ldots, X_n uma amostra aleatória de uma Binomial(k, p), com k conhecido. Encontre, se possível, um ENVVUM para P(X = 1).

Exercício 22 Suponha que quando o raio de um círculo é medido, é cometido um erro que tem uma distribuição $N(0, \sigma^2)$. Se forem realizadas n medições independentes, encontre um estimador não viciado da área do círculo. É o melhor não viciado?

Exercício 23 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde $X_1 \sim Poisson(\lambda)$, e \overline{X} e S^2 estimadores da média e da variância amostral.

- a) Prove que \overline{X} é o melhor estimador não viciado de λ .
- b) Prove a identidade $\mathbb{E}(S^2|\overline{X}) = \overline{X}$ e utilize-a para demonstrar explicitamente que $Var(S^2) > Var(\overline{X})$.