EECS151/251A Introduction to Digital Design and ICs

Lecture 23: SRAM II

Robert Dennard

- Invented DRAM in 1968 at IBM
- Formulate Dennard's scaling: Maintain constant power density with improved frequency/performance
- The end of Dennard's scaling leads to the inability to further increase clock frequencies and multicore processors as an alternative way to improve processor performance

Review

- Flip-flop is typically a latch pair
- Setup and hold times are defined at constant percentage increases over clk-q delay
- SRAM has unique combination of density, speed, power

- SRAM
 - 6-T SRAM Cell
 - Sizing SRAM Cell
- Memory Decoder
 - Overview
 - Decoder Design
 - Pre-decoder
- Multi-Ported SRAM

SRAM Cell

6-transistor CMOS SRAM Cell

Write: BL and BL are inverted.

Read: BL and BL are Vdd

- Wordline (WL) enables read/write access for a row
- Data is written/read differentially through shared BL, BL

Sizing SRAM Cell

- Read stability: Cell should not change value during read
 - Q = 0: M_5 , M_1 both on
 - Voltage divider between M₅, M₁
 - V_Q should stay low, not to flip M₄-M₃ inverter
 - R1 < R5 => $(W/L)_1 > (W/L)_5$
- Typically $(W/L)_1 = 1.5 (W/L)_5$
 - In FinFETs: $(W/L)_1 = 2(W/L)_5$
- Read speed: Both M₅ and M₁

Sizing SRAM Cell

- Writeability: Cell should be writeable by pulling BL low
 - Q = 1, M_5 , M_2 both on
 - Voltage divider between M₅, M₂
 - V_Q should pull below the switching point of M_4 - M_3 inverter
 - R5 < R2 => $(W/L)_5 > (W/L)_2$
- Typically $(W/L)_5 = (W/L)_2$ in planar
 - In FinFETs: $(W/L)_5 = 2(W/L)_2$
 - Pull Up: Access: Pull Down:
 - 1:2:2 and 1:2:3 sizing

True or False

- 1. Transistor leakage doesn't affect SRAM read speed.
- 2. One should write into an SRAM cell by pulling BL high.
- 3. One can write into a part of a selected WL.

- SRAM
 - 6-T SRAM Cell
 - Sizing SRAM Cell
- Memory Decoder
 - Overview
 - Decoder Design
 - Pre-decoder
- Multi-Ported SRAM

Decoders

Intuitive architecture for N x M memory Decoder reduces the number of select signals Too many select signals: $K = log_2N$ N words = N select signals

Row Decoders

Collection of 2^N complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_0 = \overline{A_0}\overline{A_1}\overline{A_2}\overline{A_3}\overline{A_4}\overline{A_5}\overline{A_6}\overline{A_7}\overline{A_8}\overline{A_9}$$

$$WL_{511} = A_0A_1A_2A_3A_4A_5A_6A_7A_8\overline{A_9}$$

NOR Decoder

$$WL_{0} = \overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6} + A_{7} + A_{8} + A_{9}}$$

$$WL_{511} = \overline{\overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + \overline{A_{6} + A_{7} + A_{8} + A_{9}}}$$

Decoder Design Example

Look at decoder for 256x256 memory block (8KBytes)

Possible Decoder

- 256 8-input AND gates
 - Each built out of a tree of NAND gates and inverters

- Need to drive a lot of capacitance (SRAM cells)
 - What's the best way to do this?

8-Input AND

LE: 9/2 1 LE: 5/2 3/2 LE: 3/2 3/2 3/2 1
$$\Pi$$
LE = 9/2 Π LE = 15/4 Π LE = 27/8 P = 8 + 1 P = 4 + 2 P = 2 + 2 + 2 + 1

8-Input AND

- Using 2-input NAND gates
 - 8-input gate takes 6 stages
- Total LE is $(3/2)^3 \approx 3.4$

Decoder So Far

- 256 8-input AND gates
 - Each built out of tree of NAND gates and inverters
- Issue:
 - Every address line has to drive 128 gates (and wire) right away
 - Forces us to add buffers just to drive address inputs

Look Inside Each AND8 Gate

Predecoders

- Use a single gate for each of the shared terms
 - E.g., from A₀, A₀, A₁, and A₁, generate four signals: A₀A₁, A₀A₁, A₀A₁, A₀A₁
- In other words, we are decoding smaller groups of address bits first
 - And using the "predecoded" outputs to do the rest of the decoding

Predecoder and Decoder

Predecode Options

- Larger predecode usually better:
- More stages before the long wires
 - Decreases their effect on the circuit
- Fewer number of long wires switches
 - Lower power
- Easier to fit 2-input gate into cell pitch

- SRAM
 - 6-T SRAM Cell
 - Sizing SRAM Cell
- Memory Decoder
 - Overview
 - Decoder Design
 - Pre-decoder
- Multi-Ported SRAM

Multi-Ported Memory

- Motivation:
 - Consider CPU core register file:
 - 1 read or write per cycle limits processor performance.
 - Complicates pipelining. Difficult for different instructions to simultaneously read or write regfile.
 - Single-issue pipelined CPUs usually needs
 2 read ports and 1 write port (2R/1W).
 - Superscalar processors have more (e.g. 6R/3W)

Dual-Ported Memory Internals

 Add decoder, another set of read/write logic, bits lines, word lines:

Example cell: SRAM

- Repeat everything but cross-coupled inverters.
- This scheme extends up to a couple more ports, then need to add additional transistors.

1R/1W 8T SRAM

8-T SRAM

- Write:
 - RWL = 0
 - WWL = 1
- Read:
 - WWL = 0
 - RWL = 1, RBL = Vdd

- Dual-port read/write capability
- Single-cycle read and write, timed appropriately
- Often found in register files, first level (L1) of cache

Summary

- SRAM cells sized for stability and writeability.
- Memory decoder & pre-decoder:
 - Decoder is a series of AND gates that drive word lines.
 - One decoder per read/write port.
 - Broken into predecoder for better area and delay.
- Multi-ported SRAM
 - Improve bandwidth requirement
 - Typically lead to duplicate resources like decoders, access transistors.