4 1 ▶

Fonctions numériques de plusieurs variables. Extrémums locaux

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

L	Extrémuns locaux (ou relatifs)
2	Condition nécessaire d'existence
3	Condition suffisante
	3.1 Etude directe du signe : exemples
	3.1.1 Cas d'une fonction de deux variables
	3.1.2 Cas d'une fonction de trois variables
	3.2 Condition suffisante pour les fonctions de deux variables, de classe C^2
4	Applications, exemples
	4.1 Recherche du centre d'une conique, d'une quadrique
	4.2 Extremum global sur une partie
	4.3 Droite de régression des moindres carrés

Fonctions numériques de plusieurs variables, extrémums locaux.

Extrémuns locaux (ou relatifs)

Définition 1.0.1.

Une fonction f, de \mathbb{R}^p vers \mathbb{R} , définie sur une partie non vide Ω , admet

un minimum LOCAL (au sens large) au point m_0 de Ω si

$$\exists \eta > 0: \forall m \in \Omega, \ 0 < \|m - m_0\|_2 < \eta \Longrightarrow f(m) \geqslant f(m_0)$$

on définit de même

- un minimum local strict en $m_0: (f(m) > f(m_0))$
- un maximum local
 - (au sens large) en m_0 : $(f(m) \leq f(m_0))$
 - strict en $m_0 : (f(m) < f(m_0))$

Remarque. Par défaut, lorsque l'on ne précise pas "strict", il s'agit d'extrémums locaux au sens large.

Recherche d'extrémums globaux (ou absolus)

- Les extrémums globaux sont, à fortiori, des extrémums locaux, mais la réciproque est fausse (un extremum local est extremum seulement au voisinage de lui même)
- S'il n'y a pas d'extremum local dans Ω , il n'y aura pas d'extremum global dans Ω .

Condition nécessaire d'existence 2

Théorème 2.0.1.

Soit f, une fonction de \mathbb{R}^p vers \mathbb{R} , définie et de classe \mathcal{C}^1 sur un ouvert Ω .

Si f admet un extrémum local en $m_0 \in \Omega$, alors les dérivées partielles de f s'annulent en m_0 .

Un point où les dérivées partielles de f sont toute nulles est dit point critique ou point singulier de f.

<u>Preuve</u>.

Si f admet un extrémum en m_0 , alors, pour tout i, la i-ème fonction partielle de f en m_0 (fonction d'une seule variable) admet un extrémum en la i-ème coordonnée de m_0 et sa dérivée s'annule pour cette valeur.

Exemple 2.0.0.1. La condition n'est que nécessaire

Avec
$$\begin{cases} f: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & x^2-y^2 \end{cases}$$
, de classe \mathcal{C}^1 sur \mathbb{R}^2 ,
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 2x & \text{s'annule en } (0,0) \\ \frac{\partial f}{\partial y}(x,y) = -2y & \text{s'annule en } (0,0) \end{cases}$$
 mais $(0,0)$ n'est pas un extrémum, puisque :
$$\begin{cases} \forall \ x \in \mathbb{R}^*, \ f(x,0) = x^2 > 0 = f(0,0) \\ \forall \ y \in \mathbb{R}^*, \ f(0,y) = -y^2 < 0 = f(0,0) \end{cases}$$

mais
$$(0,0)$$
 n'est pas un extrémum, puisque :
$$\begin{cases} \forall \ x \in \mathbb{R}^*, \ f(x,0) = x^2 > 0 = f(0,0) \\ \forall \ y \in \mathbb{R}^*, \ f(0,y) = -y^2 < 0 = f(0,0) \end{cases}$$

Remarque. La surface d'équation $z = x^2 - y^2$ est un paraboloïde hyperbolique ... à représenter graphiquement (en perspective 3D).

3 Condition suffisante

La condition nécessaire, établie précédemment, permet de sélectionner les (quelques) points qui sont "candidats" à être des extrémums locaux, <u>uniquement dans un ouvert</u>. Il ne reste plus qu'à étudier la fonction au voisinage de ces points.

Remarque. La condition nécessaire précédente ne permet pas de détecter les extrémuns locaux à la frontière éventuelle de l'ouvert où f est de classe \mathcal{C}^1 .

3.1 Etude directe du signe : exemples

3.1.1 Cas d'une fonction de deux variables

Au voisinage d'un point $m_0 = (x_0, y_0)$, candidat à extremum local pour la fonction f, on peut passer en coordonnées polaires :

Pour un point
$$m=(x,y)$$
, voisin de m_0 , on pose
$$\begin{cases} x=x_0+r\cos\theta\\ y=y_0+r\sin\theta \end{cases}$$
 avec $r\geqslant 0$ et $\theta\in[0,2\pi[$.

Comme $m \to m_0$ équivivait à $r \to 0$ (indépendamment de θ), en calculant $f(m) - f(m_0)$ sous la forme :

$$f(m) - f(m_0) = g(r) \times h(r, \theta)$$
 avec $g(r) \xrightarrow[r \to 0]{} 0$

on pourra peut-être

- prouver que le signe de chaque terme g(r) et $h(r,\theta)$ est constant lorsque r est proche de 0
- $\bullet\,$ trouver des exemples prouvant que le signe n'est pas constant lorsque r est proche de 0

Exemple 3.1.1.1.

Rechercher les extrémuns locaux de
$$\begin{cases} f: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & y^2 \, x^2 - x \, y + y^2 + y \end{cases}$$

$$f \text{ est de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}^2 \text{ et} \qquad \begin{cases} \frac{\partial f}{\partial x}(x,y) = 2 \, y^2 \, x - y = y \, (2 \, x \, y - 1) \\ \\ \frac{\partial f}{\partial y}(x,y) = 2 \, y \, x^2 - x + 2 \, y + 1 \end{cases}$$

La résolution du système se fait ici facilement en distinguant les cas y = 0 et $y \neq 0$. On obtient, comme seuls candidats à extremum local, les points : (1,0) et (-1,-1/2).

• Examen du point (1,0):

$$f(1+r\cos\theta,0+r\sin\theta)-f(1,0)=r^2\big[-\sin(\theta)\,\left(-2\,\sin(\theta)+\cos(\theta)\right)\big]+o(r^2)$$

n'a pas un signe constant, ce qui prouve que (-1,0) n'est pas extremum local de f.

• Examen du point (-1, -1/2):

$$f\left((-1+r\cos\theta,\frac{-1}{2}+r\sin\theta\right)-f\left(-1,\frac{-1}{2}\right)=r^2\left[\frac{1}{4}\cos^2(\theta)+\cos(\theta)\sin(\theta)+2\sin^2(\theta)\right]+o(r^2)$$

et on vérifie aisément que : $\forall \theta \in [0, 2\pi], \frac{1}{4}\cos^2(\theta) + \cos(\theta)\sin(\theta) + 2\sin^2(\theta) > 0$, ce qui prouve que le point (-1, -1/2) est minimum local strict de f.

3.1.2 Cas d'une fonction de trois variables

Au voisinage d'un point $m_0 = (x_0, y_0, z_0)$, candidat à extrémum local pour la fonction f, on peut passer en coordonnées sphériques polaires :

Pour un point
$$m = (x, y, z)$$
 voisin de m_0 , on pose
$$\begin{cases} x = x_0 + r \sin \theta \cos \phi \\ y = y_0 + r \sin \theta \sin \phi \\ z = z_0 + r \cos \theta \end{cases}$$
 avec
$$\begin{cases} r \in [0, +\infty[$$
 $\theta \in [0, \pi]$ $\theta \in [0, 2\pi]$ pour appliquer un raisonnement analogue au précédent. FIGURE OBLIGATOIRE.

Exemple 3.1.2.1.

Rechercher les extrémums locaux de $\begin{cases} f: & \mathbb{R}^3 \longrightarrow \mathbb{R} \\ (x,y,z) \longmapsto & x^2 \, y^2 - x \, y + y^2 + y \, z + z^2 \end{cases}$ $f \text{ est de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}^2 \text{ et} \qquad \begin{cases} \frac{\partial f}{\partial x}(x,y,z) = 2 \, x \, y^2 - y = y \, (2 \, x \, y - 1) \\ \\ \frac{\partial f}{\partial y}(x,y,z) = 2 \, x^2 \, y - x + 2 \, y + z \\ \\ \frac{\partial f}{\partial z}(x,y,z) = y + 2 \, z \end{cases}$

On obtient, comme seul candidat à extremum local, le point : (0,0,0), que l'on examine plus précisément :

$$f(0+r\sin\theta\cos\phi,0+r\sin\theta\sin\phi,0+r\cos\theta) - f(0,0,0) =$$

$$r^{2}\left[\cos^{2}(\theta) - \sin^{2}(\theta)\cos(\phi)\sin(\phi) + \sin^{2}(\theta)\sin^{2}(\phi) + \sin(\theta)\sin(\phi)\cos(\theta)\right] + o(r^{2})$$

$$\begin{cases}
(\theta,\phi) = (0,\pi) & \text{cela donne } r^{2} + o(r^{2}) \\
(\theta,\phi) = (\frac{\pi}{2},\frac{\pi}{6}) & \text{cela donne } (-0.18\cdots) r^{2} + o(r^{2})
\end{cases}$$

ce qui prouve que (0,0,0) n'est pas extremum local de f

Remarques.

- on a eu de la chance de trouver deux exemples contradictoires . . .
- Sinon, il faut étudier le signe du facteur de r^2 et, comme c'est une expression de **deux** variables, on peut en chercher les extrémums locaux . . . (ce qui n'est pas suffisant!)

3.2 Condition suffisante pour les fonctions de deux variables, de classe C^2 Théorème 3.2.1.

Soit f, une fonction de \mathbb{R}^2 vers \mathbb{R} , de classe C^2 au voisinage d'un point m_0 tel que

$$\frac{\partial f}{\partial x}(m_0) = 0$$
 et $\frac{\partial f}{\partial y}(m_0) = 0$

 $\text{En notant}: \quad r = \frac{\partial^2 f}{\partial x^2}(m_0) \; ; \quad s = \frac{\partial^2 f}{\partial x \; \partial y}(m_0) \; ; \quad t = \frac{\partial^2 f}{\partial y^2}(m_0) \qquad \text{(notations de Monge)}$

- Si $s^2 rt < 0$ alors m_0 est un extremum local strict de f $\begin{cases} \text{minimum si } r > 0 \text{ ou } t > 0 \\ \text{maximum sinon} \end{cases}$
- Si $s^2 rt > 0$ alors m_0 n'est pas extremum local de f
- Si $s^2 rt = 0$, il n'y a pas de conclusion générale

\underline{Preuve} .

En posant $m_0 = (x_0, y_0)$ et $m = (x, y) = (x_0 + h, y_0 + k)$, avec la formule de Taylor à l'ordre 2 pour les fonctions de 2 variables en m_0 , on obtient :

$$f(m) - f(m_0) = h \frac{\partial f}{\partial x}(m_0) + k \frac{\partial f}{\partial y}(m_0) + \frac{1}{2} \left[h^2 \frac{\partial^2 f}{\partial x^2}(m_0) + 2hk \frac{\partial^2 f}{\partial x \partial y}(m_0) + k^2 \frac{\partial^2 f}{\partial y^2}(m_0) \right]$$

$$+ o(h^2 + k^2)$$

$$= 0 + \frac{1}{2} \left[h^2 \frac{\partial^2 f}{\partial x^2}(m_0) + 2hk \frac{\partial^2 f}{\partial x \partial y}(m_0) + k^2 \frac{\partial^2 f}{\partial y^2}(m_0) \right] + o(h^2 + k^2)$$

$$= \frac{1}{2} \left[h^2 r + 2hk s + k^2 t \right] + o(h^2 + k^2)$$

4 5 ▶

Ainsi, pour m voisin et distinct de m_0 ,

- si r = s = t = 0, alors $f(m) f(m_0) = o(r^2)$, ce qui est insuffisant pour conclure
- si r=0 ou t=0, par exemple avec r=0, on a $s^2-rt\geqslant 0$ et

$$f(m) - f(m_0) = 2hks + k^2t + o(h^2 + k^2)$$
 avec $(s, t) \neq (0, 0)$

 $2hks + k^2t$ n'est pas de signe strictement positif ou négatif lorsque $(h,k) \to (0,0)$

• sinon, $r \neq 0$ et $t \neq 0$. Comme $(h, k) \neq (0, 0)$, par exemple avec $k \neq 0$, en mettant k^2 en facteur :

$$f(m) - f(m_0)$$
 est du signe de $r\left(\frac{h}{k}\right)^2 + 2s\left(\frac{h}{k}\right) + t$,

trinôme du second degré en $\frac{h}{k}$ qui garde un signe constant sans s'annuler si et seulement si son discriminant est strictement négatif (ide, si et seulement si $4 \times (s^2 - rt) < 0$)

4 Applications, exemples

4.1 Recherche du centre d'une conique, d'une quadrique

Soit une conique (C), d'équation (générale) f(x,y) = 0 avec $f(x,y) = Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F$

La formule de taylor de f, à l'ordre 2, en un point $m_0 = (x_0, y_0)$ s'écrit :

$$f(x_0+h,y_0+k) = f(m_0) + h \frac{\partial f}{\partial x}(m_0) + k \frac{\partial f}{\partial y}(m_0) + \frac{1}{2} \left[h^2 \frac{\partial^2 f}{\partial x^2}(m_0) + 2hk \frac{\partial^2 f}{\partial x \partial y}(m_0) + k^2 \frac{\partial^2 f}{\partial y^2}(m_0) \right] + 0$$
(le terme complémentaire $o(h^2 + k^2)$ est nul dans ce cas)

- Si (C) est une conique à centre, de centre m_0 , pour un point $(x_0 + h, y_0 + k) \in (C)$, on aura aussi $(x_0 h, y_0 k) \in (C)$ et on en déduit que $\frac{\partial f}{\partial x}(m_0) = 0$ et $\frac{\partial f}{\partial y}(m_0) = 0$
- réciproquement, si $\frac{\partial f}{\partial x}(m_0) = 0$ et $\frac{\partial f}{\partial y}(m_0) = 0$, alors pour tout point $(x_0 + h, y_0 + k) \in (\mathcal{C})$, on a aussi $(x_0 h, y_0 k) \in (\mathcal{C})$, ce qui prouve que m_0 est centre de (\mathcal{C})

(\mathcal{C}) admet un centre m_0 si et seulement si les dérivées partielles de f s'annulent en m_0 .

Par exemple,

- La conique d'équation $5x^2 + 4xy + 8y^2 24x 24y = 0$ a un centre unique (1, 2) qui ne lui appartient pas. Il s'agit donc d'une ellipse (éventuellement vide) ou d'une hyperbole.
- La conique d'équation $x^2 2xy + y^2 + 5x y + 1 = 0$ n'a pas de centre. Il s'agit donc d'une parabole.
- La conique d'équation $2x^2 3xy 2y^2 + x + 3y 1 = 0$ a un centre unique $\left(\frac{1}{5}, \frac{3}{5}\right)$ qui lui appartient. Il s'agit donc de la réunion de deux droites non parallèles. En déterminant un autre point, pour chacune des droites, on en déduira la factorisation de $2x^2 3xy 2y^2 + x + 3y 1$.
- La conique d'équation $4x^2 12xy + 9y^2 + 4x 6y 3 = 0$ a une infinité de centres. Il s'agit donc de la réunion de deux droites parallèles (et parallèles à l'ensemble des centres). On en déduira la factorisation de $4x^2 12xy + 9y^2 + 4x 6y 3$.

On a un raisonnement analogue avec les quadriques ... (à condition de généraliser un peu la formule de Taylor à l'ordre 2 au cas d'une fonction de trois variables).

4.2 Extremum global sur une partie

Rechercher les extrémums globaux, sur $[0,1] \times [0,1]$ de la fonction $\begin{pmatrix} f: \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto & \frac{2x+2y-3xy}{1+xy} \end{pmatrix}$

f est définie et <u>continue</u> sur le <u>fermé borné</u> $[0,1] \times [0,1]$, donc y est continue et atteint ses bornes. (ce qui prouve l'existence d'au moins un maximum global et d'au moins un minimum global dans $[0,1] \times [0,1]$).

- La recherche d'extrémums locaux, dans <u>l'ouvert</u> $]0,1[\times]0,1[$, donne le candidat $\left(\frac{1}{2},\frac{1}{2},\right)$, pour lequel $s^2-r\,t>0$. Ce point n'étant pas extrémum local, n'est pas un extrémum global.
- Les extremuns de f sur $[0,1] \times [0,1]$ sont donc atteints sur la frontière. On recherche donc, à x fixé dans $\{0,1\}$, les extrémuns de la fonction $y \longmapsto f(x,y)$ et, à y fixé dans $\{0,1\}$, les extrémuns de la fonction $x \longmapsto f(x,y)$. Pour cela, on étudie les variations de chacune de ces quatre fonctions

En résumé,

- le maximum de f sur $[0,1] \times [0,1]$ est 2, atteint en (0,1) et en (1,0).
- le minimum de f sur $[0,1] \times [0,1]$ est 0, atteint en (0,0).

4.3 Droite de régression des moindres carrés

Soit une famille de n points, $\left(M_i=(x_i,y_i)\right)_{i=1\cdots n}$ du plan muni du repère orthonormé direct $(O,\overrightarrow{i},\overrightarrow{j})$.

On se propose de chercher la droite du plan qui passe globalement le plus près de ces n points, c'est à dire une droite d'équation y = a x + b dont les coefficients a et b sont tels que la quantité :

$$f(a,b) = \sum_{i=1\cdots n} (y_i - (ax_i + b))^2$$
 soit minimale.

Notations : pour des séquences $U=(u_1,u_2,\cdots,u_n)$ et $V=(v_1,v_2,\cdots,v_n)$, on note :

- $U \cdot V = (u_1 v_1, u_2 v_2, \dots, u_n v_n)$ et $U^2 = U \cdot U = (u_1^2, u_2^2, \dots, u_n^2)$
- $U + \alpha = (u_1 + \alpha, u_2 + \alpha, \dots, u_n + \alpha)$ lorsque α est une constante
- $\overline{U} = E(U) = \frac{1}{n} \sum_{i=1}^{n} u_i$
- $C(U, V) = E((U \overline{U}) \cdot (V \overline{V})) = E(U \cdot V) E(U)E(V)$
- $\mathcal{V}(U) = \mathcal{C}(U, U) = E((U \overline{U})^2) = E(U^2) (E(U))^2$

Les coefficients a et b cherchés sont solutions du système :

$$\begin{cases} \frac{\partial f}{\partial a}(a,b) = 0 & \text{qui s'écrit aussi} \qquad a\,E(X^2) + b\,E(X) = E(X\cdot Y) \\ \\ \frac{\partial f}{\partial b}(a,b) = 0 & \text{qui s'écrit aussi} \qquad a\,E(X) + b = E(Y) \end{cases}$$

on en déduit : $a = \frac{\mathcal{C}(X,Y)}{\mathcal{V}(X)}$ et $b = E(Y) - a\,E(X)$ (unique solution).

< \mathcal{FIN} >