Das Lemma von Urysohn und der Fortsetzungssatz von Tietze

Raphael Heinrich 09.10.2012

1 Grundlagen

1.1 Einführung

Wir alle kennen aus der Analysis I die metrischen Räume, eine Menge X, gepaart mit einer Abstandsfunktion d, wobei d gewisse Eigenschaften erfüllen muss: Definitheit, Symmetrie, Dreiecksungleichung. Auf solchen Räumen besitzen Funktionen eine Vielzahl an wünschenswerten Eigenschaften. Unter anderem werden wir sehen, dass, falls $A \subseteq X$ abgeschlossen und f eine stetige Abbildung ist, sich dann f stetig auf $\hat{f}: X \to X, f(x) = \hat{f}(x)$ für alle $x \in A$ fortsetzen lässt. In dieser Proseminararbeit wollen wir jedoch den Fokus vor allem darauf legen, was passiert, wenn wir Räume betrachten, die nicht metrisch sind, wie zB. den Raum $(\mathbb{R}, a), a: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto x - y$.

Dies wird uns zu der Frage bringen, ob die Aussage oben auch für nicht-metrische Räume gilt, bzw. welche Eigenschaften eines Raums erhalten bleiben, und welche nicht zwingend nötig sind. Doch bevor wir dorthin gelangen, müssen wir zunächst ein paar Grundlagen klären.

1.2 Bemerkung

Die natürlichen Zahlen \mathbb{N} definieren wir als $\mathbb{N} := \{0, 1, 2, ...\}$, das bedeutet, die 0 ist für uns in den natürlichen Zahlen enthalten. Falls wir $\mathbb{N} \setminus \{0\}$ benötigen, schreiben wir \mathbb{N}^{\times} . Die Menge der positiven Zahlen einer Menge M notieren wir mit M^+ . Wir werden, soweit möglich, auf Quantoren (\forall, \exists) verzichten. Das Ende eines Beweises notieren wir mit \blacksquare .

1.3 Definition

Sei (X, d) ein metrischer Raum.

- 1. Sei außerdem $x \in X, \mathbb{R} \ni \varepsilon > 0$. Dann nennen wir $B(x,\varepsilon) := \{y \in X \mid d(x,y)\} < \varepsilon$ die offene Kugel um x mit Radius ε .
- 2. Eine Teilmenge $M \subseteq X$ heißt offen, per definitionem genau dann, wenn für alle $x \in M$ ein Radius r existiert, sodass $B(x,r) \subseteq M$. Abgeschlossen sei eine Menge, wenn sie Komplement einer offenen Menge ist.
- 3. Wir bezeichnen die Menge $U \subseteq X$ als eine **Umgebung** von $y \in X$, wenn ein $\varepsilon > 0$ existiert, sodass $B(y, \varepsilon) \subseteq U$.
- 4. Es wird sich später als nützlich herausstellen, den Abstand zwischen Mengen sinnvoll zu messen. Seien also A, B nichtleere Teilmengen von $X, y \in X$. Dann

$$d(A,B) := \inf\{d(\lambda,\mu) \mid \lambda \in A, \mu \in B\}, \text{ und analog: } d(y,A) := \inf\{d(x,\lambda \mid \lambda \in A)\}.$$

1.4 Lemma

Sei (X, d) ein metrischer Raum, $x, y \in X, x \neq y$. Dann gilt folgende Trennungseigenschaft: Es gibt ein R > 0: $B(x, R) \cap B(y, R) = \emptyset$.

Beweis: Wählen wir $R = \frac{1}{2} \cdot d(x, y)$. Angenommen es gäbe ein $\alpha \in B(x, R) \cap B(y, R)$. Dann gelte:

$$2 \cdot R = d(x, y) \le d(x, \alpha) + d(\alpha, y) < 2 \cdot R,$$

da α im Schnitt der beiden offenen Kugeln läge. Das ist ein Widerspruch zur Allgemeinheit. Wir können diese Trennungseigenschaft sogar problemlos auf den Abstand zwischen Mengen aus vorheriger Definition übertragen: Seien $A, C \subseteq X$ nichtleer. Dann existieren Obermengen $U_A \supseteq A$ und $U_C \supseteq C$ mit $U_A \cap U_C = \emptyset$.

Wählen wir für $\varepsilon > 0$ unsere Obermengen als: $\bigcup_{x \in A} B(x, \varepsilon)$, bzw. $\bigcup_{z \in C} B(z, \varepsilon)$. Da für alle $x \in A, z \in C : x \neq z \Rightarrow U_A, U_C$ existieren $\Rightarrow d(A, C) > 0$.

1.5 Satz

Sei (X,d) ein metrischer Raum. Seien dazu M,N nichtleere, abgeschlossene Teilmengen von X, $M \cap N = \emptyset$. Dann gibt es eine stetige Funktion

$$f: X \to [0, 1]$$
, sodass: $f(M) = \{0\}, f(N) = \{1\}$.

Beweis: Da M, N disjunkt sind, existiert ein $\delta > 0$ mit $d(M, N) \ge \delta$.

Dies dürfen wir folgern, da in metrischen Räumen die Trennungseigenschaft von obigem Lemma gilt. Wegen $\delta > 0 \Rightarrow$ Es existiert mindestens ein $\xi \in X \setminus (M \cup N)$. Sei im Folgenden aber $\xi \in X$. Unterscheiden wir nun in drei Fälle:

(i) Beide Mengen sind offen.

Konstruieren wir nun f mit den gewünschten Eigenschaften aus einer Hilfsabbildung \hat{f} :

Es ergibt durchaus Sinn, für unsere Abbildung einen Bruch aus Metriken zu definieren, da wir so leicht Zahlen aus dem Intervall [0,1] erhalten, sobald der Zähler kleiner als der Nenner ist. Damit für $\hat{f}(N)$ nun $f(M) = \{0\}, f(N) = \{1\}$ gilt, erkennt man durch genaues betrachten, dass

$$\hat{f}: X \to \mathbb{R}^+, \xi \mapsto \frac{d(\xi, M)}{d(\xi, M) - d(\xi, N)}$$

eine vorerst sinnvolle Definition für \hat{f} ist. Denn es gilt für alle $x \in M$:

$$f(x) = \frac{d(x, M)}{d(x, M) - d(x, N)} = \frac{0}{0 - d(x, N)} = 0 \Rightarrow f(M) = \{0\}.$$

Und für alle $y \in N$:

$$f(y) = \frac{d(y, M)}{d(y, M) - d(y, N)} = \frac{d(y, M)}{d(y, M) - 0} = 1 \Rightarrow f(N) = \{1\}.$$

Mit dieser Definition könnte es jedoch vorkommen, dass auch Werte $\eta = \hat{f}(\xi)$ außerhalb von [0,1] angenommen werden. Wir müssen also sicherstellen, dass $d(\xi,M) < (d(\xi,M) - d(\xi,N))$. Dies erreichen wir, in dem wir

1.6 Beispiel

Das wohl einfachste Beispiel stellt Folgendes dar: Sei (\mathbb{R}, d_2) ein euklidischer metrischer Raum, $M = \{0\}, N = \{1\}, M \cap N = \emptyset$. Dann existiert die stetige Abbildung $f : \mathbb{R} \to [0, 1]$, $x \mapsto \mathrm{id}_{\mathbb{R}}(x) = x$, sodass $f(M) = \{0\}, f(N) = \{1\}$.

1.7 Definition

Bevor wir das Lemma von Urysohn jedoch formulieren können, müssen wir noch einige weitere Grundlagen legen. Dafür definieren wir, was es für einen topologischen Raum bedeutet, normal zu sein: Ein Raum X heißt **normal** per definitionem genau dann, wenn für

$$A, C \subseteq X, A \cap C = \emptyset$$
 gilt, dass: $U_A \supseteq A, U_C \supseteq C$ existieren mit: $U_A \cap U_C = \emptyset.[1]$

Wir sehen leicht, dass wir für normale Räume letztenendes lediglich die Trennungseigenschaft von Lemma 1.4 fordern.

1.8 Beispiel

2 Das Lemma von Urysohn

Literatur

- [1] Bartsch, René: Allgemeine Topologie I. Oldenbourg Wissenschaftsverlag, München, 2007.
- [2] VON QUERENBURG, BOTO: Mengentheoretische Topologie, 3., neu bearbeitete und erweiterte Auflage. Springer-Lehrbuch. Springer, Berlin, 2001.