Calibration of Single Phase Energy Meter

Exp. No: Date:

Aim: To Study the 1. Connections of 1-Phase Energy meter and

2. Measure electrical energy using given energy meter and also calculate the error present in the given energy meter

Apparatus required:

S.No	Name of the equipment	Range/	Type	Quantity	
		Specification			
1	Voltmeter	(0-300) V	MI	1	
2	Ammeter	(0-5) A	MI	1	
3	1- Phase Auto	I/P:1-φ, 230V	Core type	1	
	Transformer	O/P: (0-270)V,10A			
4	1- Phase Loading	230 V, 2.3 Kw	Resistive	1	
	Rheostat				
5	1-Phase Energy Meter	230V, 5-10 A	Induction	1	
6	Stop watch		Digital	1	
7	Connecting Wires	1.5 Sq.mm	Copper	Adequate	

Procedure:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Note down the energy meter constant, Voltage, and full load current of the energy meter.
- 3. Before switching ON the supply, ensure that the loading rheostat switches are in OFF position.
- 4. Switch ON the supply and set the desired load current to flow by selecting a suitable combination of Switches on the loading rheostat.
- 5. Wait for the red indicator of the energy meter disc to come in the front. At this moment start the stopwatch.
- 6. Measure the time (T) for 20 revolutions of the energy meter disc and tabulate the voltmeter and ammeter readings.

7.	Adjusting the load current to another desired value by turning the rheosta			
	selector switches to ON position.			
8.	Measure the time (T) for 20 revolutions of the energy meter disc and			
	tabulate the voltmeter and ammeter readings.			
9.	Repeat steps 7 and 8, for several values of load currents and tabulate the observations in table.			

Tabular column:

S.No	V	I_L	Time (T)	Actual energy consumed	Energy recorded	Percentage
	(v)	(A)	(Seconds)	during N revolutions	by the meter (E _m)	of relative
				(Ea)		Error
1						
2						
3						
4						
5						

Theoretical calculations:

Energy meter constant $(\mathbf{M}) = \frac{\text{Rev/Kwh}}{\text{Rev/Kwh}}$

No. Of revolutions (N) = Rev

Measured energy $(\mathbf{E_m}) = N/M$ Kwh

Actual energy consumed $(\mathbf{E_a}) = (V.I_L.T)/(3600x1000)$ Kwh

Time (T) in Seconds

Percentage of relative Error = $[(E_m-E_a)/E_a]*100$

Model graph:

% Error Vs Load Current curve

Precautions:

- **1.** Use proper ranges of the meters.
- **2.** Take the readings without parallax error
- **3.** All the connections should be tight.

Result: