Временные ряды: компоненты и наивные модели

Данные и задачи

Данные и задачи: план

- Временные ряды тип данных.
- Задачи для одного ряда.
- Задачи для множества рядов.

Заговор рептилоидов

Математический анализ:

Последовательность

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$

Ряд

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

Временные ряды — не ряды!

Что такое временной ряд?

Временной ряд

Последовательность наблюдений, упорядоченных во времени.

0, 0, 5, 7, 102, 53, 23.

Временной ряд

Последовательность случайных величин, упорядоченных во времени.

 $y_1, y_2, y_3, y_4, \ldots, y_T$.

Задачи для одного ряда

- Спрогнозировать следующие значения.
- Восстановить пропущенные значения в середине ряда.
- Восстановить отдельные наблюдения по агрегированным.
- Обнаружить момент разладки.
- Выделить составляющие ряда.
- •

Прогнозируем

Сезонный наивный прогноз числа свадеб на 2 года

Задачи для множества ряда

- Использовать дополнительные ряды при изучении целевого ряда.
- Понять, связаны ли ряды между собой.
- Измерить причинно-следственные связи.
- Классифицировать новый ряд в один из существующих классов.
- Понять, какие ряды близки к друг другу.
- Кластеризовать ряды на неизвестное множество кластеров.

•

Измеряем близость рядов

Близость регионов России по динамике числа свадеб

Модели и алгоритмы

Модели

- Явные предположения про величины $y_1, y_2, ..., y_T$.
- Метод оценивания: максимальное правдоподобие, байесовский подход.
- Точечные и интервальные прогнозы, проверка гипотез.

ETS, ARIMA, ORBIT, PROPHET, ...

Модели и алгоритмы

Алгоритмы

- Размытые предположения про величины $y_1, y_2, ..., y_T$.
- Особая инструкция.
- Точечные результаты без доверительных интервалов.

STL, градиентный бустинг, случайный лес, ...

Компоненты ряда

Компоненты ряда: план

- Тренд, цикличность и сезонность.
- Аддитивное и мультипликативное разложение.
- Откуда взять формальное определение?

Умение видеть единорогов

Аддитивное разложение ряда:

$$y_t = trend_t + seas_t + remainder_t$$
.

Тренд — плавно изменяющаяся составляющая ряда.

Сезонная составляющая — составляющая с чёткой периодичностью и стабильной интенсивностью.

Случайная компонента (остаток) — всё остальное.

Тренд, сезонность и остаток

STL разложение числа свадеб в России

Число свадеб = тренд + сезонность + остаток

Строгое определение?

Единого строгого определения не будет!

Некоторые модели и алгоритмы формально определяют данные составляющие.

Циклическая составляющая

Иногда ряд раскладывают дальше

$$y_t = trend_t + cycle_t + seas_t + remainder_t$$

Циклическая составляющая — составляющая с плавающей периодичностью и нестабильной интенсивностью.

Тренд (в узком смысле) — плавно изменяющаяся монотонная составляющая ряда.

Аддитивное и мультипликативное разложение

Аддитивное разложение ряда:

$$y_t = trend_t + seas_t + remainder_t$$
.

Мультипликативное разложение ряда:

$$y_t = trend_t \cdot seas_t \cdot remainder_t$$
.

Превращаем одно в другое:

$$\ln y_t = \ln trend_t + \ln seas_t + \ln remainder_t.$$

Какие единороги лучше?

Формальное определение составляющих зависит от модели.

Алгоритм STL: одно разложение

$$y_t = trend_t + seas_t + remainder_t$$
.

Модель ETS(AAA): другое разложение

$$y_t = trend_t + seas_t + remainder_t$$
.

Важно понимать цель построения разложения.

А зачем разложение?

- Интересно само по себе.
- Для прогнозирования ряда с помощью прогнозирования составляющих.
- Для получения характеристик ряда.

А характеристики зачем?

- Чтобы классифицировать новый ряд в один из заданных классов.
- Чтобы выявить в рядах неизвестные кластеры.

Компоненты ряда: итоги

- Тренд плавно меняется и включает цикличную составляющую.
- Сезонная составляющаю имеет чёткую периодичность и стабильную амплитуду.
- Точная формализация компонент зависит от модели.

Алгоритм STL

Алгоритм STL: план

- Локальная регрессия.
- Внешний цикл STL.
- Внутренний цикл STL.
- Параметры STL.

STL

STL — Seasonal Trend decompositon with Loess.

STL — разложение на сезонность и тренд с использованием LOESS.

LOESS — LOcal regrESSion.

LOESS — локальная линейная регрессия.

STL как чёрный ящик

На входе:

Ряд Y_t .

Параметры алгоритма n_p , n_i , n_o , n_l , n_s , n_t .

На выходе:

Разложение $Y_t = T_t + S_t + R_t$.

Чёрный ящик долго настраивали.

STL: результат

STL разложение числа свадеб в России

Число свадеб = тренд + сезонность + остаток

LOESS

- Хотим построить прогноз для точки x.
- Находим локальные оценки $\hat{eta}_1(x)$, $\hat{eta}_2(x)$.

$$\min \sum_{i} K_{h}(x_{i} - x)(y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}x_{i})^{2}$$

• Прогнозируем:

$$\hat{y} = \hat{\beta}_1(x) + \hat{\beta}_2(x)x.$$

Ядерная функция

- Функция $K_h(x_i x)$ убывает с увеличением расстояния $|x_i x|$;
- Параметр h отвечает за ширину окна сглаживания.

Например, h — количество точек x_i рядом с x, которые мы учитываем.

Нюансы локальной регрессии

• Выбор степени полинома.

$$\min \sum_{i} K_{h}(x_{i} - x)(y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}x_{i} - \hat{\beta}_{3}x_{i}^{2})^{2}$$

• Выбор ядерной функции.

$$K_h(d) = \frac{1}{\sqrt{2\pi}h} \exp\left(-d^2/2h^2\right)$$

• Выбор ширины окна h.

STL с высоты птичьего полёта

Цель: разложение $Y_t = T_t + S_t + R_t$.

Алгоритм содержит два цикла: внешний и внутренний.

- 1. Инициализируем $T_t = 0$, $R_t = 0$. Внешний цикл:
- 2. Посчитаем вес каждого наблюдения, ρ_t . На первом проходе $\rho_t=1$ у каждого наблюдения. На последующих проходах ρ_t отрицательно зависит от свежей величины R_t .
- 3. Обновим текущее разложение $Y_t = T_t + S_t + R_t$ с учётом весов ρ_t .

STL: внутренний цикл

Цель: обновить разложение $Y_t = T_t + S_t + R_t$.

1. Удалим из ряда ранее посчитанный тренд:

$$Y_t^{det} = Y_t - T_t.$$

- 2. Разобъём детрендированный ряд на 12 подрядов.
- 3. Сгладим каждый подряд по отдельности с помощью LOESS:

$$C^{jan} = LOESS_{\rho}(Y_{jan}^{det}), C^{feb} = LOESS_{\rho}(Y_{feb}^{det}), \dots$$

4. Выделяем низкочастотную составляющую (дважды скользящее среднее + LOESS):

$$L_t = LOESS(MA(MA(C_t)))$$

5-6. Получаем новые S_t^{new} и T_t^{new} .

STL: внутренний цикл

- 1-3. Удалим из ряда ранее посчитанный тренд, разобъём на подряды и сгладим каждый подряд с помощью LOESS.
 - 4. Выделяем низкочастотную составляющую.
 - 5. Удаляем низкочастотную составляющую, получаем новую сезонную компоненту:

$$S_t^{new} = C_t - L_t.$$

6. Удаляем новую сезонность из исходного ряда и сглаживаем с помощью LOESS:

$$T_t^{new} = LOESS_{\rho}(Y_t - S_t^{new}).$$

Уф!

Параметры STL

- n_p периодичность сезонности, например, $n_p = 12$.
- n_o число проходов внешнего цикла. Чем больше число n_o , тем слабее влияние выбросов. Значение $n_o=1$ часто достаточно.
- n_i число проходов внутреннего цикла. Значение $n_i=2$ часто достаточно для достижения сходимости.

Параметры сглаживания STL

- n_l сила сглаживания низкочастотного фильтра.
- n_s сила сглаживания сезонных подрядов.
- n_t сила сглаживания при выделении тренда на последнем шаге.

Что настроить?

- 1. Обязательно указать периодичность n_p .
- 2. Возможно, поиграться с n_s .

STL: итоги

- LOESS локальная регрессия.
- STL хорошо проверенный временем алгоритм без модели.
- При желании можно поиграться с силами сглаживания.

Характеристики рядов

Характеристики рядов: план

- Выборочная автокорреляция.
- Выборочная частная автокорреляция.
- STL-характеристики.

Задачи для множества рядов

- Классифицировать новый ряд в один из существующих классов.
- Понять, какие ряды близки к друг другу.
- Кластеризовать ряды на неизвестное множество кластеров.

Как решить?

- 1. Для каждого ряда сгенерировать признаки.
- 2. К полученным признакам применить алгоритм для перекрестных данных.

Классифицировать: с помощью случайного леса.

Измерить расстояние с помощью метрики Махаланобиса.

Кластеризовать с помощью иерархической кластеризации.

Создаём признаки

Два множества признаков:

- Выборочная АСF (автокорреляционная функция, AutoCorrelation Function).
- Выборочная PACF (частная автокорреляционная функция, Partial ACF).

Из одного ряд получим:

$$ACF_1$$
, ACF_2 , ACF_3 , ...
 $PACF_1$, $PACF_2$, $PACF_3$, ...

ACF

Выборочная АСБ

Оценим множество парных регрессий:

$$\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-1}, \quad ACF_1 = \hat{\beta}_2;$$

$$\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-2}, \quad ACF_2 = \hat{\beta}_2;$$

$$\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-k}, \quad ACF_k = \hat{\beta}_2;$$

Смысл ACF_2 : на сколько единиц в среднем y_t выше среднего, если y_{t-2} выше среднего на одну единицу.

Ряд и его АСБ

График числа свадеб в России и АСБ

Почему АСГ — корреляция?

Классическое определение

Выборочная АСБ

 ACF_k — выборочная корреляция между рядом y_t и рядом y_{t-k}

Различие между определениями мало.

PACF

Выборочная РАСБ

Оценим множество множественных регрессий:

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 y_{t-1}, \quad PACF_1 = \hat{\beta}_1;$$

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 y_{t-1} + \hat{\beta}_2 y_{t-2}, \quad PACF_2 = \hat{\beta}_2;$$

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 y_{t-1} + \ldots + \hat{\beta}_k y_{t-k}, \quad PACF_k = \hat{\beta}_k;$$

Смысл $PACF_2$: на сколько единиц в среднем y_t выше среднего, если y_{t-2} выше среднего на одну единицу, а y_{t-1} на среднем уровне.

Ряд и его PACF

График числа свадеб в России и РАСБ

Почему PACF — корреляция?

Классическое определение

Выборочная РАСБ

 $PACF_4$ — выборочная корреляция между остатками a_t и остатками b_t .

 a_t — остатки из регрессии

$$y_t$$
 Ha $1, y_{t-1}, y_{t-2}, y_{t-3}$.

 b_t — остатки из регрессии

$$y_{t-4}$$
 Ha $1, y_{t-1}, y_{t-2}, y_{t-3}$.

Различие между определениями мало.

STL-характеристики

На выходе:

$$y_t = T_t + S_t + R_t.$$

Измерим:

- Выраженность тренда F_{trend} .
- Выраженность сезонности F_{seas} .

Выраженность тренда и сезонности

Получили разложение:

$$y_t = trend_t + seas_t + remainder_t.$$

Идея определения: При идеальном разложении с некоррелированными компонентами:

$$F_{trend} = \frac{\text{sVar}(trend)}{\text{sVar}(trend) + \text{sVar}(remainder)},$$

$$F_{seas} = \frac{\text{sVar}(seas)}{\text{sVar}(seas) + \text{sVar}(remainder)},$$

Выраженность тренда и сезонности

Получили разложение:

$$y_t = trend_t + seas_t + remainder_t.$$

На практике:

• Выраженность тренда:

$$F_{trend} = \max \left\{ 1 - \frac{\text{sVar}(remainder)}{\text{sVar}(trend + remainder)}, 0 \right\}.$$

• Выраженность сезонности:

$$F_{seas} = \max \left\{ 1 - \frac{\text{sVar}(remainder)}{\text{sVar}(seas + remainder)}, 0 \right\}.$$

Выраженность тренда и сезонности

Близость регионов России по динамике числа свадеб

Характеристики рядов: итоги

- ACF коэффициенты в парных регрессиях или корреляции.
- PACF коэффициенты во множественных регрессиях или корреляции.
- STL позволяет измерить выраженность тренда и сезонности по сравнению с остаточной компонентой.

Простейшие модели

Простейшие модели: план

- Белый шум.
- Независимые наблюдения.
- Случайное блуждание.

Белый шум

Белый шум

Временной ряд u_t — белый шум, если:

- $\mathbb{E}(u_t) = 0$;
- $Var(u_t) = \sigma^2$;
- $Cov(u_s, u_t) = 0$ при $s \neq t$.
- Составная часть всех моделей. Чаще всего белый шум это, что отказались моделировать.
- Часто дополнительно предполагают независимость и нормальность.
- В белом шуме черти водятся. АRCH, GARCH модели волатильности основаны на том, что u_t и u_s могут быть зависимы!

Независимые наблюдения

Модель

$$y_t = \mu + u_t,$$

где u_t — белый шум, $u_t \sim \mathcal{N}(0; \sigma^2)$.

Оценки:

$$\hat{\mu}_{ML} = \bar{y}, \quad \hat{\sigma}_{ML}^2 = \frac{\sum (y_i - \bar{y})^2}{T}.$$

Интервальный прогноз на h шагов вперёд:

$$[\bar{y} - 1.96\hat{\sigma}; \bar{y} + 1.96\hat{\sigma}]$$

Случайное блуждание

Наивная модель

$$y_t = y_{t-1} + u_t,$$

где u_t — белый шум, $u_t \sim \mathcal{N}(0; \sigma^2)$, задано стартовое y_1 .

Переформулируем: $y_t - y_{t-1} = \Delta y_t = u_t$. Оценки:

$$\hat{\sigma}_{ML}^2 = \frac{\sum (\Delta y_i - \overline{\Delta y})^2}{T - 1}.$$

Интервальный прогноз на h шагов вперёд:

$$[y_T - 1.96\hat{\sigma}\sqrt{h}; y_T + 1.96\hat{\sigma}\sqrt{h}]$$

Первые прогнозы!

Сезонное случайное блуждание

Сезонная наивная модель

$$y_t = y_{t-12} + u_t,$$

где u_t — белый шум, $u_t \sim \mathcal{N}(0; \sigma^2)$, заданы $y_1, ..., y_{11}$.

Переформулируем: $y_t - y_{t-12} = \Delta_{12} y_t = u_t$. Оценки:

$$\hat{\sigma}_{ML}^2 = \frac{\sum (\Delta_{12}y_i - \overline{\Delta_{12}y})^2}{T - 12}.$$

Интервальный прогноз на h сезонов вперёд:

$$[y_T - 1.96\hat{\sigma}\sqrt{h}; y_T + 1.96\hat{\sigma}\sqrt{h}]$$

Уже неплохо!

Сезонный наивный прогноз числа свадеб на 2 года

Зачем нужны наивные модели?

- Идеи для сложных моделей.
 - Модели стационарных рядов похожи на модель независимых наблюдений.
 - Модели нестационарных рядов похожи на случайное блуждание.
- База для сравнения.
 - При оценке сложной модели очень важно иметь базу сравнения.
- Помощники других моделей.
 - Можно усреднить прогнозы сложной модели и наивной сезонной!

Наивные модели: итоги

- Белый шум то, что не охота моделировать.
- Независимые наблюдения и случайное блуждание.
- Идеи, составные части и помощники других моделей.
- База для сравнения.