When are trace ideals finite?

神代 真也 (大阪工業大学)

日本数学会 2024 年度秋季総合分科会

2024年9月4日

R: 可換ネーター環

● M: 有限生成 R-加群

とする。

定義.

$$\operatorname{tr}(M) := \sum_{f \in \operatorname{Hom}_R(M,R)} f(M)$$

を **M のトレースイデアル**という。 イデアル I が**トレースイデアル**であるとは I = tr(M) となる *R-*加 群 *M* が存在することをいう。

R: 可換ネーター環

M: 有限生成 R-加群

とする。

定義.

$$\operatorname{tr}(M) := \sum_{f \in \operatorname{Hom}_R(M,R)} f(M)$$

を M **のトレースイデアル**という。 イデアル I が**トレースイデアル**であるとは I = tr(M) となる R-加群 M が存在することをいう。

観察.

 $\exists n > 0$ s.t. M^n が自由加群を直和因子に持つ \iff $\operatorname{tr}(M) = R$

事実.

• R は CM 局所環で正準加群 ω_R を持つならば、

$$V(\mathsf{tr}(\omega_R)) = \{\mathfrak{p} \in \mathsf{Spec}\, R \mid R_\mathfrak{p}$$
は Gorenstein ではない $\}$

• ([Isobe-K.]) R が 1 次元解析的不分岐 Arf 局所整域のとき、

である。更に、#{トレースイデアル}<∞

観察.

 $\exists n > 0$ s.t. M^n が自由加群を直和因子に持つ \iff tr(M) = R

事実.

• R は CM 局所環で正準加群 ω_R を持つならば、

$$V(\operatorname{tr}(\omega_R)) = \{\mathfrak{p} \in \operatorname{\mathsf{Spec}} R \mid R_{\mathfrak{p}}$$
は Gorenstein ではない $\}$

● ([Isobe-K.]) R が 1 次元解析的不分岐 Arf 局所整域のとき、

$$\{$$
 直既約反射加群 $\}/\cong \stackrel{1 \text{ to } 1}{\longleftrightarrow} \{$ トレースイデアル $\}$

である。更に、#{トレースイデアル}<∞

問題 ([Dao-Maitra-Sridhar, Faber, Herzog-Rahimbeigi]).

ネーター局所環は、いつ有限個のトレースイデアルを持つか。

注意. I, Jをトレースイデアルとすると、 $I \cong J$ ならば I = Jである。

以下、 (R, \mathfrak{m}) はネーター局所環として、

- $Tr(R) = \{ \vdash V Z \land T \not = V \}$
- R: R の整閉包
- $H = H_{\mathfrak{m}}^{0}(R) = \bigcup_{i \geq 0} (0) :_{R} \mathfrak{m}^{i} : 0 次局所コホモロジー とする。$

問題 ([Dao-Maitra-Sridhar, Faber, Herzog-Rahimbeigi]).

ネーター局所環は、いつ有限個のトレースイデアルを持つか。

注意. I, Jをトレースイデアルとすると、 $I \cong J$ ならば I = Jである。

以下、(R, m) はネーター局所環として、

- Tr(R) = {トレースイデアル}
- R: R の整閉包
- $H = H_{\mathfrak{m}}^{0}(R) = \bigcup_{i>0} (0) :_{R} \mathfrak{m}^{i} : 0 次局所コホモロジー とする。$

定理 ([K.]).

R をネーター局所環とする。 $\# \operatorname{Tr}(R) < \infty$ ならば次が正しい。

- $\dim R \leq 2$ かつ、 \overline{R} は R-加群として有限生成である。
- 更に $\overline{R/H}$ の極大イデアルがすべて同じ高さを持つならば、 $\dim R < 1$ である。

系 ([K.]).

R は深さが正のネーター局所環で、 \overline{R} が局所環であるとする。 このとき、# Tr(R) < ∞ ならば dim R=1 である。

定理 ([K.]).

R をネーター局所環とする。# Tr(R) $< \infty$ ならば次が正しい。

- $\dim R < 2$ かつ、 \overline{R} は R-加群として有限生成である。
- 更に $\overline{R/H}$ の極大イデアルがすべて同じ高さを持つならば、 $\dim R < 1$ である。

系 ([K.]).

R は深さが正のネーター局所環で、 \overline{R} が局所環であるとする。 このとき、# $\operatorname{Tr}(R) < \infty$ ならば $\dim R = 1$ である。

具体例

例.

Kを体、K[[t]]を冪級数環とする。

•
$$R = K[[t^4, t^5, t^{11}]]$$
 のとき、

$$\mathsf{Tr}(R) = \{0, (t^8, t^9, t^{10}, t^{11}), (t^5, t^8, t^{11}), (t^4, t^5, t^{11}), R\}$$

•
$$R = K[[t^4, t^5, t^6]]$$
 のとき、

$$\mathsf{Tr}(R) = \{0, (t^8, t^9, t^{10}, t^{11}), (t^6, t^8, t^9), (t^5, t^6, t^8), (t^4, t^5, t^6), R\}$$
$$\cup \{(t^4 + at^5, t^6 \mid a \in K)\}$$

Arf 環再論

- R = R₀: 1 次元 CM 半局所環
- J(R): ジャコブソン根基

とする。

このとき、

$$R_1 := \bigcup_{i>1} \mathsf{J}(R)^i :_{Q(R)} \mathsf{J}(R)^i$$

を R の<mark>ブローアップ</mark>という。 n > 1 に対しても R_n を再帰的に定義する。

Arf 環再論

事実 ([Lipman]).

次は同値:

- RがArf
- $\forall n \geq 0, \forall m \in Max R_n$ に対して $(R_n)_m$ は極小重複度を持つ。
- すべての整閉イデアル I に対して $I^2 = xI$ となる $x \in I$ が存在する。

注意. 特に R が Arf 局所環ならば、 $R = R_0$ は極小重複度を持つ。 逆は成り立たない。

定理 ([K.]).

R は 1 次元 CM 局所環とする。このとき、R が極小重複度を持つならば

$$\operatorname{Tr}(R)\setminus\{R\} \stackrel{1 \text{ to } 1}{\longleftrightarrow} \operatorname{Tr}(R_1)$$

が成り立つ。

系

RはArf局所環で、 \overline{R} が局所環とする。このとき、

$\operatorname{Tr}(R)$ < $\infty \iff \overline{R}$ がR-加群として有限生成

である。

定理 ([K.]).

R は 1 次元 CM 局所環とする。このとき、R が極小重複度を持つならば

$$\operatorname{Tr}(R)\setminus\{R\} \quad \stackrel{1 \text{ to } 1}{\longleftrightarrow} \quad \operatorname{Tr}(R_1)$$

が成り立つ。

系.

R は Arf 局所環で、 \overline{R} が局所環とする。このとき、

#
$$\operatorname{Tr}(R)$$
< $\infty \iff \overline{R}$ が R -加群として有限生成

である。

ご清聴ありがとうございました