

# [2,7-Dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone

Toyokazu Muto, Kosuke Sasagawa, Akiko Okamoto,\*  
Hideaki Oike and Noriyuki Yonezawa

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan  
Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 17 November 2011; accepted 30 November 2011

Key indicators: single-crystal X-ray study;  $T = 193\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.002\text{ \AA}$ ;  $R$  factor = 0.041;  $wR$  factor = 0.121; data-to-parameter ratio = 13.9.

In the title compound,  $C_{32}H_{32}O_4$ , the dihedral angle between the two benzene rings of the 2,4,6-trimethylbenzoyl groups is  $71.43(7)^\circ$ . The dihedral angles between the two benzene rings and the naphthalene ring system are  $81.58(5)$  and  $84.92(6)^\circ$ . An intramolecular C—H···O interaction is observed.

## Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto *et al.* (2011). For the structures of closely related compounds, see: Muto *et al.* (2010, 2011a,b).



## Experimental

### Crystal data

|                              |                                          |
|------------------------------|------------------------------------------|
| $C_{32}H_{32}O_4$            | $V = 2541.57(8)\text{ \AA}^3$            |
| $M_r = 480.58$               | $Z = 4$                                  |
| Monoclinic, $P2_1/n$         | $\text{Cu } K\alpha$ radiation           |
| $a = 7.71685(14)\text{ \AA}$ | $\mu = 0.65\text{ mm}^{-1}$              |
| $b = 29.2344(5)\text{ \AA}$  | $T = 193\text{ K}$                       |
| $c = 11.5567(2)\text{ \AA}$  | $0.60 \times 0.40 \times 0.10\text{ mm}$ |
| $\beta = 102.879(1)^\circ$   |                                          |

### Data collection

|                                                                   |                                        |
|-------------------------------------------------------------------|----------------------------------------|
| Rigaku R-AXIS RAPID diffractometer                                | 45450 measured reflections             |
| Absorption correction: numerical ( <i>NUMABS</i> ; Higashi, 1999) | 4657 independent reflections           |
| $T_{\min} = 0.697$ , $T_{\max} = 0.938$                           | 4131 reflections with $I > 2\sigma(I)$ |
|                                                                   | $R_{\text{int}} = 0.054$               |

### Refinement

|                                 |                                               |
|---------------------------------|-----------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.041$ | 334 parameters                                |
| $wR(F^2) = 0.121$               | H-atom parameters constrained                 |
| $S = 1.09$                      | $\Delta\rho_{\max} = 0.26\text{ e \AA}^{-3}$  |
| 4657 reflections                | $\Delta\rho_{\min} = -0.26\text{ e \AA}^{-3}$ |

**Table 1**  
Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ ).

| $D-\text{H}\cdots A$ | $D-\text{H}$ | $\text{H}\cdots A$ | $D\cdots A$ | $D-\text{H}\cdots A$ |
|----------------------|--------------|--------------------|-------------|----------------------|
| C29—H29C···O2        | 0.98         | 2.33               | 3.1669 (19) | 143                  |

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2138).

## References

- Burla, M. C., Cagliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). *J. Appl. Cryst.* **38**, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Higashi, T. (1999). *NUMABS*. Rigaku Corporation, Tokyo, Japan.
- Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). *Acta Cryst.* **E66**, o2752.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). *Acta Cryst.* **E67**, o2813.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). *Acta Cryst.* **E67**, o3062.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). *Chem. Lett.* **40**, 1283–1284.
- Okamoto, A. & Yonezawa, N. (2009). *Chem. Lett.* **38**, 914–915.
- Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

## **supplementary materials**

Acta Cryst. (2012). E68, o23 [doi:10.1107/S1600536811051579]

## [2,7-Dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone

T. Muto, K. Sasagawa, A. Okamoto, H. Oike and N. Yonezawa

### Comment

In the course of our study on the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, *peri*-aroynaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto *et al.*, 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto *et al.*, 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the  $\beta$ -isomers of 3-monoaroylated derivatives have also been clarified such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto *et al.*, 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto *et al.*, 2011b).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, *peri*-aroynaphthalene bearing three methyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two 2,4,6-trimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings is 71.43 (7) $^{\circ}$ . On the other hand, the two interplanar angles between the best planes of the 2,4,6-trimethylphenyl rings and the naphthalene ring are 81.58 (5) and 84.92 (6) $^{\circ}$ , respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C2—C1—C11—O1 = -104.68 (15) $^{\circ}$  and C10—C9—C18—O2 = 52.5 (2) $^{\circ}$ ] are comparable with those between the carbonyl groups and 2,4,6-trimethylphenyl groups [O1—C11—C12—C17 = -141.08 (14) $^{\circ}$  and O2—C18—C19—C24 = -127.49 (14) $^{\circ}$ ].

In addition, an intramolecular C—H $\cdots$ O interaction between a methyl group and carbonyl group is observed (C29—H29c $\cdots$ O2 = 2.33 Å; Fig. 2 and Table 1).

### Experimental

To a 10 ml flask, 1,8-bis(2,4,6-trimethylbenzoyl)-2-hydroxy-7-methoxynaphthalene (0.20 mmol, 0.093 g), dimethyl sulfate (0.40 mmol, 0.050 g), 2 M aqueous NaOH (0.162 g) and acetone (0.50 ml) were placed and stirred at 0°C for 1 h. The pale yellow precipitates were collected with suction filtration after removal of acetone from the solution under reduced pressure. The crude product was purified by recrystallization from hexane and CHCl<sub>3</sub>(3:1 v/v, yield 65%).

<sup>1</sup>H NMR  $\delta$  (400 MHz, CDCl<sub>3</sub>): 2.23 (12H, s), 2.25 (6H, s), 3.45 (6H, s), 6.80 (4H, s), 7.16 (2H, d,  $J$  = 9.2 Hz), 7.92 (2H, d,  $J$  = 9.2 Hz) p.p.m..

<sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 21.08, 21.69, 56.84, 112.64, 125.31, 125.70, 129.06, 129.60, 132.79, 137.66, 138.74, 139.18, 158.30, 198.80 p.p.m..

## supplementary materials

---

IR (KBr); 1666 (C=O), 1608, 1512, 1460 (Ar, naphthalene), 1271 (=C—O—C)  $\text{cm}^{-1}$ .

HRMS (*m/z*):  $[M + H]^+$  Calcd for  $\text{C}_{32}\text{H}_{33}\text{O}_4$ , 481.2379; found, 481.2386.

m.p. = 531.5–535.0 K.

### Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with  $U_{\text{iso}}(\text{H}) = 1.2 U_{\text{eq}}(\text{C})$ .

### Figures



Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.



Fig. 2. Intramolecular C—H···O interaction shown as dashed line.

### [2,7-Dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone

#### Crystal data

|                                        |                                                                        |
|----------------------------------------|------------------------------------------------------------------------|
| $\text{C}_{32}\text{H}_{32}\text{O}_4$ | $F(000) = 1024$                                                        |
| $M_r = 480.58$                         | $D_x = 1.256 \text{ Mg m}^{-3}$                                        |
| Monoclinic, $P2_1/n$                   | $\text{Cu } K\alpha \text{ radiation, } \lambda = 1.54187 \text{ \AA}$ |
| Hall symbol: -P 2yn                    | Cell parameters from 38210 reflections                                 |
| $a = 7.71685 (14) \text{ \AA}$         | $\theta = 3.0\text{--}68.2^\circ$                                      |
| $b = 29.2344 (5) \text{ \AA}$          | $\mu = 0.65 \text{ mm}^{-1}$                                           |
| $c = 11.5567 (2) \text{ \AA}$          | $T = 193 \text{ K}$                                                    |
| $\beta = 102.879 (1)^\circ$            | Platelet, colorless                                                    |
| $V = 2541.57 (8) \text{ \AA}^3$        | $0.60 \times 0.40 \times 0.10 \text{ mm}$                              |
| $Z = 4$                                |                                                                        |

#### Data collection

|                                              |                                                                    |
|----------------------------------------------|--------------------------------------------------------------------|
| Rigaku R-AXIS RAPID<br>diffractometer        | 4657 independent reflections                                       |
| Radiation source: rotating anode<br>graphite | 4131 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.054$ |

|                                                             |                                                            |
|-------------------------------------------------------------|------------------------------------------------------------|
| Detector resolution: 10.000 pixels mm <sup>-1</sup>         | $\theta_{\max} = 68.2^\circ$ , $\theta_{\min} = 3.0^\circ$ |
| $\omega$ scans                                              | $h = -9 \rightarrow 9$                                     |
| Absorption correction: numerical<br>(NUMABS; Higashi, 1999) | $k = -35 \rightarrow 35$                                   |
| $T_{\min} = 0.697$ , $T_{\max} = 0.938$                     | $l = -13 \rightarrow 13$                                   |
| 45450 measured reflections                                  |                                                            |

### Refinement

|                                                                |                                                                                                                  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                                             |
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                                | H-atom parameters constrained                                                                                    |
| $wR(F^2) = 0.121$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0645P)^2 + 0.6531P]$                                                                |
| $S = 1.09$                                                     | where $P = (F_o^2 + 2F_c^2)/3$                                                                                   |
| 4657 reflections                                               | $(\Delta/\sigma)_{\max} = 0.001$                                                                                 |
| 334 parameters                                                 | $\Delta\rho_{\max} = 0.26 \text{ e } \text{\AA}^{-3}$                                                            |
| 0 restraints                                                   | $\Delta\rho_{\min} = -0.26 \text{ e } \text{\AA}^{-3}$                                                           |
| Primary atom site location: structure-invariant direct methods | Extinction correction: SHEXL97 (Sheldrick, 2008),<br>$F_c^* = kFc[1 + 0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$ |
|                                                                | Extinction coefficient: 0.0065 (4)                                                                               |

### Special details

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

### Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )

|    | $x$          | $y$         | $z$          | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|----|--------------|-------------|--------------|----------------------------------|
| O1 | 0.95452 (13) | 0.10635 (4) | 0.36709 (9)  | 0.0395 (3)                       |
| O2 | 0.76176 (14) | 0.18514 (4) | 0.40208 (9)  | 0.0422 (3)                       |
| O3 | 0.77613 (16) | 0.00902 (3) | 0.40754 (9)  | 0.0468 (3)                       |
| O4 | 0.79237 (15) | 0.22810 (4) | 0.69327 (9)  | 0.0442 (3)                       |
| C1 | 0.77923 (17) | 0.08017 (4) | 0.49609 (12) | 0.0308 (3)                       |
| C2 | 0.76256 (19) | 0.03309 (5) | 0.50610 (12) | 0.0358 (3)                       |
| C3 | 0.7396 (2)   | 0.01203 (5) | 0.61097 (14) | 0.0427 (4)                       |
| H3 | 0.7273       | -0.0202     | 0.6153       | 0.051*                           |
| C4 | 0.7356 (2)   | 0.03912 (5) | 0.70604 (14) | 0.0438 (4)                       |
| H4 | 0.7187       | 0.0254      | 0.7772       | 0.053*                           |

## supplementary materials

---

|      |              |              |               |            |
|------|--------------|--------------|---------------|------------|
| C5   | 0.75588 (19) | 0.08698 (5)  | 0.70228 (13)  | 0.0381 (3) |
| C6   | 0.7490 (2)   | 0.11343 (6)  | 0.80360 (14)  | 0.0465 (4) |
| H6   | 0.7339       | 0.0984       | 0.8735        | 0.056*     |
| C7   | 0.7631 (2)   | 0.15955 (6)  | 0.80389 (13)  | 0.0454 (4) |
| H7   | 0.7543       | 0.1767       | 0.8721        | 0.054*     |
| C8   | 0.79116 (19) | 0.18170 (5)  | 0.70152 (13)  | 0.0364 (3) |
| C9   | 0.80823 (17) | 0.15785 (5)  | 0.60088 (12)  | 0.0311 (3) |
| C10  | 0.78159 (17) | 0.10901 (5)  | 0.59634 (12)  | 0.0313 (3) |
| C11  | 0.80692 (18) | 0.09463 (4)  | 0.37597 (12)  | 0.0307 (3) |
| C12  | 0.65793 (18) | 0.08897 (4)  | 0.26807 (12)  | 0.0321 (3) |
| C13  | 0.6975 (2)   | 0.06856 (5)  | 0.16618 (13)  | 0.0387 (3) |
| C14  | 0.5607 (2)   | 0.06311 (5)  | 0.06553 (13)  | 0.0480 (4) |
| H14  | 0.5860       | 0.0482       | -0.0019       | 0.058*     |
| C15  | 0.3893 (2)   | 0.07852 (6)  | 0.06005 (14)  | 0.0503 (4) |
| C16  | 0.3537 (2)   | 0.09796 (5)  | 0.16122 (15)  | 0.0458 (4) |
| H16  | 0.2369       | 0.1088       | 0.1589        | 0.055*     |
| C17  | 0.48211 (19) | 0.10231 (5)  | 0.26663 (13)  | 0.0353 (3) |
| C18  | 0.85140 (18) | 0.18669 (4)  | 0.50261 (12)  | 0.0309 (3) |
| C19  | 1.00640 (18) | 0.21930 (4)  | 0.53521 (11)  | 0.0305 (3) |
| C20  | 0.97596 (19) | 0.26619 (5)  | 0.51092 (12)  | 0.0336 (3) |
| C21  | 1.1143 (2)   | 0.29681 (5)  | 0.54902 (12)  | 0.0359 (3) |
| H21  | 1.0922       | 0.3286       | 0.5369        | 0.043*     |
| C22  | 1.28434 (19) | 0.28241 (5)  | 0.60434 (12)  | 0.0357 (3) |
| C23  | 1.31281 (19) | 0.23591 (5)  | 0.62309 (12)  | 0.0357 (3) |
| H23  | 1.4293       | 0.2254       | 0.6579        | 0.043*     |
| C24  | 1.17612 (18) | 0.20406 (5)  | 0.59248 (11)  | 0.0317 (3) |
| C25  | 0.7598 (2)   | -0.03941 (5) | 0.40790 (15)  | 0.0455 (4) |
| H25A | 0.6384       | -0.0477      | 0.4123        | 0.055*     |
| H25B | 0.8440       | -0.0520      | 0.4768        | 0.055*     |
| H25C | 0.7858       | -0.0519      | 0.3349        | 0.055*     |
| C26  | 0.8348 (3)   | 0.25455 (6)  | 0.79970 (17)  | 0.0618 (5) |
| H26A | 0.9325       | 0.2399       | 0.8564        | 0.074*     |
| H26B | 0.7303       | 0.2566       | 0.8344        | 0.074*     |
| H26C | 0.8709       | 0.2854       | 0.7814        | 0.074*     |
| C27  | 0.8788 (2)   | 0.05058 (6)  | 0.16233 (15)  | 0.0494 (4) |
| H27A | 0.9196       | 0.0296       | 0.2290        | 0.059*     |
| H27B | 0.9623       | 0.0762       | 0.1681        | 0.059*     |
| H27C | 0.8725       | 0.0343       | 0.0874        | 0.059*     |
| C28  | 0.2463 (3)   | 0.07440 (8)  | -0.05266 (18) | 0.0767 (7) |
| H28A | 0.2448       | 0.1022       | -0.1003       | 0.092*     |
| H28B | 0.1304       | 0.0705       | -0.0324       | 0.092*     |
| H28C | 0.2711       | 0.0479       | -0.0982       | 0.092*     |
| C29  | 0.42200 (19) | 0.12170 (5)  | 0.37219 (13)  | 0.0398 (3) |
| H29A | 0.4376       | 0.0986       | 0.4352        | 0.048*     |
| H29B | 0.2963       | 0.1302       | 0.3485        | 0.048*     |
| H29C | 0.4931       | 0.1488       | 0.4014        | 0.048*     |
| C30  | 1.2171 (2)   | 0.15426 (5)  | 0.62151 (14)  | 0.0394 (3) |
| H30A | 1.1781       | 0.1462       | 0.6940        | 0.047*     |
| H30B | 1.3454       | 0.1491       | 0.6337        | 0.047*     |

|      |            |             |              |            |
|------|------------|-------------|--------------|------------|
| H30C | 1.1543     | 0.1352      | 0.5557       | 0.047*     |
| C31  | 1.4320 (2) | 0.31654 (5) | 0.64281 (15) | 0.0475 (4) |
| H31A | 1.4434     | 0.3239      | 0.7269       | 0.057*     |
| H31B | 1.4048     | 0.3445      | 0.5953       | 0.057*     |
| H31C | 1.5439     | 0.3035      | 0.6313       | 0.057*     |
| C32  | 0.7958 (2) | 0.28456 (5) | 0.45048 (15) | 0.0442 (4) |
| H32A | 0.7051     | 0.2718      | 0.4886       | 0.053*     |
| H32B | 0.7693     | 0.2758      | 0.3665       | 0.053*     |
| H32C | 0.7960     | 0.3180      | 0.4571       | 0.053*     |

*Atomic displacement parameters ( $\text{\AA}^2$ )*

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| O1  | 0.0345 (5)  | 0.0438 (6)  | 0.0404 (6)  | -0.0039 (4)  | 0.0090 (4)   | 0.0047 (4)  |
| O2  | 0.0482 (6)  | 0.0403 (6)  | 0.0350 (6)  | -0.0085 (4)  | 0.0023 (5)   | 0.0027 (4)  |
| O3  | 0.0756 (8)  | 0.0246 (5)  | 0.0426 (6)  | 0.0006 (5)   | 0.0183 (5)   | 0.0012 (4)  |
| O4  | 0.0570 (7)  | 0.0351 (5)  | 0.0450 (6)  | -0.0031 (5)  | 0.0210 (5)   | -0.0096 (4) |
| C1  | 0.0301 (7)  | 0.0292 (7)  | 0.0325 (7)  | -0.0001 (5)  | 0.0060 (5)   | 0.0036 (5)  |
| C2  | 0.0391 (8)  | 0.0315 (7)  | 0.0362 (7)  | 0.0001 (6)   | 0.0072 (6)   | 0.0024 (6)  |
| C3  | 0.0519 (9)  | 0.0318 (7)  | 0.0440 (8)  | -0.0024 (6)  | 0.0100 (7)   | 0.0091 (6)  |
| C4  | 0.0529 (9)  | 0.0416 (8)  | 0.0382 (8)  | -0.0021 (7)  | 0.0130 (7)   | 0.0128 (6)  |
| C5  | 0.0389 (8)  | 0.0414 (8)  | 0.0342 (7)  | -0.0010 (6)  | 0.0088 (6)   | 0.0051 (6)  |
| C6  | 0.0581 (10) | 0.0502 (9)  | 0.0340 (8)  | -0.0015 (7)  | 0.0162 (7)   | 0.0057 (6)  |
| C7  | 0.0535 (9)  | 0.0515 (9)  | 0.0342 (8)  | -0.0009 (7)  | 0.0161 (7)   | -0.0054 (6) |
| C8  | 0.0353 (7)  | 0.0374 (7)  | 0.0372 (7)  | -0.0014 (6)  | 0.0097 (6)   | -0.0032 (6) |
| C9  | 0.0286 (7)  | 0.0321 (7)  | 0.0324 (7)  | -0.0006 (5)  | 0.0062 (5)   | 0.0000 (5)  |
| C10 | 0.0289 (7)  | 0.0330 (7)  | 0.0318 (7)  | 0.0000 (5)   | 0.0061 (5)   | 0.0031 (5)  |
| C11 | 0.0344 (7)  | 0.0234 (6)  | 0.0349 (7)  | 0.0007 (5)   | 0.0092 (6)   | 0.0005 (5)  |
| C12 | 0.0383 (7)  | 0.0258 (6)  | 0.0321 (7)  | -0.0053 (5)  | 0.0076 (6)   | 0.0038 (5)  |
| C13 | 0.0527 (9)  | 0.0300 (7)  | 0.0351 (7)  | -0.0083 (6)  | 0.0130 (6)   | 0.0006 (6)  |
| C14 | 0.0721 (12) | 0.0388 (8)  | 0.0333 (8)  | -0.0163 (8)  | 0.0120 (7)   | -0.0025 (6) |
| C15 | 0.0599 (11) | 0.0436 (9)  | 0.0397 (8)  | -0.0170 (8)  | -0.0053 (7)  | 0.0063 (7)  |
| C16 | 0.0405 (8)  | 0.0410 (8)  | 0.0508 (9)  | -0.0075 (6)  | -0.0007 (7)  | 0.0079 (7)  |
| C17 | 0.0364 (7)  | 0.0298 (7)  | 0.0386 (8)  | -0.0059 (5)  | 0.0057 (6)   | 0.0059 (5)  |
| C18 | 0.0335 (7)  | 0.0264 (6)  | 0.0334 (7)  | 0.0027 (5)   | 0.0090 (6)   | -0.0021 (5) |
| C19 | 0.0354 (7)  | 0.0276 (6)  | 0.0299 (6)  | -0.0009 (5)  | 0.0105 (5)   | -0.0011 (5) |
| C20 | 0.0391 (8)  | 0.0301 (7)  | 0.0340 (7)  | 0.0015 (5)   | 0.0134 (6)   | 0.0001 (5)  |
| C21 | 0.0471 (8)  | 0.0257 (6)  | 0.0383 (7)  | -0.0007 (6)  | 0.0170 (6)   | -0.0013 (5) |
| C22 | 0.0411 (8)  | 0.0336 (7)  | 0.0352 (7)  | -0.0060 (6)  | 0.0147 (6)   | -0.0068 (6) |
| C23 | 0.0345 (7)  | 0.0368 (7)  | 0.0359 (7)  | -0.0008 (6)  | 0.0079 (6)   | -0.0038 (6) |
| C24 | 0.0358 (7)  | 0.0301 (7)  | 0.0300 (7)  | 0.0002 (5)   | 0.0089 (5)   | -0.0017 (5) |
| C25 | 0.0571 (10) | 0.0264 (7)  | 0.0514 (9)  | -0.0004 (6)  | 0.0084 (7)   | 0.0006 (6)  |
| C26 | 0.0659 (12) | 0.0492 (10) | 0.0612 (11) | 0.0019 (9)   | -0.0051 (9)  | -0.0211 (8) |
| C27 | 0.0612 (10) | 0.0424 (9)  | 0.0512 (9)  | -0.0043 (7)  | 0.0262 (8)   | -0.0096 (7) |
| C28 | 0.0904 (16) | 0.0686 (13) | 0.0539 (11) | -0.0208 (11) | -0.0208 (10) | 0.0034 (10) |
| C29 | 0.0332 (7)  | 0.0397 (8)  | 0.0472 (9)  | 0.0016 (6)   | 0.0105 (6)   | 0.0059 (6)  |
| C30 | 0.0392 (8)  | 0.0314 (7)  | 0.0456 (8)  | 0.0026 (6)   | 0.0051 (6)   | 0.0006 (6)  |
| C31 | 0.0489 (9)  | 0.0403 (8)  | 0.0551 (10) | -0.0114 (7)  | 0.0151 (7)   | -0.0115 (7) |

## supplementary materials

---

|     |            |            |            |            |            |            |
|-----|------------|------------|------------|------------|------------|------------|
| C32 | 0.0467 (9) | 0.0338 (7) | 0.0508 (9) | 0.0070 (6) | 0.0081 (7) | 0.0027 (6) |
|-----|------------|------------|------------|------------|------------|------------|

*Geometric parameters ( $\text{\AA}$ ,  $^{\circ}$ )*

|            |             |             |             |
|------------|-------------|-------------|-------------|
| O1—C11     | 1.2155 (17) | C19—C24     | 1.4020 (19) |
| O2—C18     | 1.2133 (17) | C19—C20     | 1.4085 (18) |
| O3—C2      | 1.3624 (17) | C20—C21     | 1.388 (2)   |
| O3—C25     | 1.4217 (17) | C20—C32     | 1.509 (2)   |
| O4—C8      | 1.3600 (18) | C21—C22     | 1.390 (2)   |
| O4—C26     | 1.4279 (19) | C21—H21     | 0.9500      |
| C1—C2      | 1.3895 (19) | C22—C23     | 1.387 (2)   |
| C1—C10     | 1.4297 (19) | C22—C31     | 1.505 (2)   |
| C1—C11     | 1.5111 (18) | C23—C24     | 1.3923 (19) |
| C2—C3      | 1.405 (2)   | C23—H23     | 0.9500      |
| C3—C4      | 1.360 (2)   | C24—C30     | 1.5115 (19) |
| C3—H3      | 0.9500      | C25—H25A    | 0.9800      |
| C4—C5      | 1.410 (2)   | C25—H25B    | 0.9800      |
| C4—H4      | 0.9500      | C25—H25C    | 0.9800      |
| C5—C6      | 1.414 (2)   | C26—H26A    | 0.9800      |
| C5—C10     | 1.4357 (19) | C26—H26B    | 0.9800      |
| C6—C7      | 1.353 (2)   | C26—H26C    | 0.9800      |
| C6—H6      | 0.9500      | C27—H27A    | 0.9800      |
| C7—C8      | 1.407 (2)   | C27—H27B    | 0.9800      |
| C7—H7      | 0.9500      | C27—H27C    | 0.9800      |
| C8—C9      | 1.3873 (19) | C28—H28A    | 0.9800      |
| C9—C10     | 1.4418 (19) | C28—H28B    | 0.9800      |
| C9—C18     | 1.5100 (18) | C28—H28C    | 0.9800      |
| C11—C12    | 1.5051 (19) | C29—H29A    | 0.9800      |
| C12—C17    | 1.408 (2)   | C29—H29B    | 0.9800      |
| C12—C13    | 1.413 (2)   | C29—H29C    | 0.9800      |
| C13—C14    | 1.395 (2)   | C30—H30A    | 0.9800      |
| C13—C27    | 1.504 (2)   | C30—H30B    | 0.9800      |
| C14—C15    | 1.385 (3)   | C30—H30C    | 0.9800      |
| C14—H14    | 0.9500      | C31—H31A    | 0.9800      |
| C15—C16    | 1.382 (3)   | C31—H31B    | 0.9800      |
| C15—C28    | 1.513 (2)   | C31—H31C    | 0.9800      |
| C16—C17    | 1.394 (2)   | C32—H32A    | 0.9800      |
| C16—H16    | 0.9500      | C32—H32B    | 0.9800      |
| C17—C29    | 1.509 (2)   | C32—H32C    | 0.9800      |
| C18—C19    | 1.5102 (18) |             |             |
| C2—O3—C25  | 119.24 (11) | C19—C20—C32 | 122.29 (13) |
| C8—O4—C26  | 118.92 (13) | C20—C21—C22 | 122.09 (13) |
| C2—C1—C10  | 120.10 (12) | C20—C21—H21 | 119.0       |
| C2—C1—C11  | 112.84 (12) | C22—C21—H21 | 119.0       |
| C10—C1—C11 | 126.90 (11) | C23—C22—C21 | 117.98 (13) |
| O3—C2—C1   | 114.59 (12) | C23—C22—C31 | 121.37 (14) |
| O3—C2—C3   | 122.87 (13) | C21—C22—C31 | 120.65 (13) |
| C1—C2—C3   | 122.51 (13) | C22—C23—C24 | 122.10 (13) |
| C4—C3—C2   | 118.13 (14) | C22—C23—H23 | 119.0       |

|             |             |               |             |
|-------------|-------------|---------------|-------------|
| C4—C3—H3    | 120.9       | C24—C23—H23   | 119.0       |
| C2—C3—H3    | 120.9       | C23—C24—C19   | 118.85 (12) |
| C3—C4—C5    | 122.03 (13) | C23—C24—C30   | 118.60 (12) |
| C3—C4—H4    | 119.0       | C19—C24—C30   | 122.55 (12) |
| C5—C4—H4    | 119.0       | O3—C25—H25A   | 109.5       |
| C4—C5—C6    | 119.49 (13) | O3—C25—H25B   | 109.5       |
| C4—C5—C10   | 120.59 (13) | H25A—C25—H25B | 109.5       |
| C6—C5—C10   | 119.92 (14) | O3—C25—H25C   | 109.5       |
| C7—C6—C5    | 121.95 (14) | H25A—C25—H25C | 109.5       |
| C7—C6—H6    | 119.0       | H25B—C25—H25C | 109.5       |
| C5—C6—H6    | 119.0       | O4—C26—H26A   | 109.5       |
| C6—C7—C8    | 118.95 (14) | O4—C26—H26B   | 109.5       |
| C6—C7—H7    | 120.5       | H26A—C26—H26B | 109.5       |
| C8—C7—H7    | 120.5       | O4—C26—H26C   | 109.5       |
| O4—C8—C9    | 116.04 (12) | H26A—C26—H26C | 109.5       |
| O4—C8—C7    | 121.52 (13) | H26B—C26—H26C | 109.5       |
| C9—C8—C7    | 122.33 (14) | C13—C27—H27A  | 109.5       |
| C8—C9—C10   | 119.26 (12) | C13—C27—H27B  | 109.5       |
| C8—C9—C18   | 115.35 (12) | H27A—C27—H27B | 109.5       |
| C10—C9—C18  | 125.38 (11) | C13—C27—H27C  | 109.5       |
| C1—C10—C5   | 116.56 (12) | H27A—C27—H27C | 109.5       |
| C1—C10—C9   | 126.13 (12) | H27B—C27—H27C | 109.5       |
| C5—C10—C9   | 117.31 (12) | C15—C28—H28A  | 109.5       |
| O1—C11—C12  | 121.21 (12) | C15—C28—H28B  | 109.5       |
| O1—C11—C1   | 118.92 (12) | H28A—C28—H28B | 109.5       |
| C12—C11—C1  | 119.47 (11) | C15—C28—H28C  | 109.5       |
| C17—C12—C13 | 119.60 (13) | H28A—C28—H28C | 109.5       |
| C17—C12—C11 | 122.37 (12) | H28B—C28—H28C | 109.5       |
| C13—C12—C11 | 118.02 (13) | C17—C29—H29A  | 109.5       |
| C14—C13—C12 | 118.63 (15) | C17—C29—H29B  | 109.5       |
| C14—C13—C27 | 118.13 (14) | H29A—C29—H29B | 109.5       |
| C12—C13—C27 | 123.19 (14) | C17—C29—H29C  | 109.5       |
| C15—C14—C13 | 122.58 (15) | H29A—C29—H29C | 109.5       |
| C15—C14—H14 | 118.7       | H29B—C29—H29C | 109.5       |
| C13—C14—H14 | 118.7       | C24—C30—H30A  | 109.5       |
| C16—C15—C14 | 117.59 (14) | C24—C30—H30B  | 109.5       |
| C16—C15—C28 | 121.12 (18) | H30A—C30—H30B | 109.5       |
| C14—C15—C28 | 121.29 (17) | C24—C30—H30C  | 109.5       |
| C15—C16—C17 | 122.69 (16) | H30A—C30—H30C | 109.5       |
| C15—C16—H16 | 118.7       | H30B—C30—H30C | 109.5       |
| C17—C16—H16 | 118.7       | C22—C31—H31A  | 109.5       |
| C16—C17—C12 | 118.71 (14) | C22—C31—H31B  | 109.5       |
| C16—C17—C29 | 116.99 (14) | H31A—C31—H31B | 109.5       |
| C12—C17—C29 | 124.30 (12) | C22—C31—H31C  | 109.5       |
| O2—C18—C9   | 121.68 (12) | H31A—C31—H31C | 109.5       |
| O2—C18—C19  | 120.87 (12) | H31B—C31—H31C | 109.5       |
| C9—C18—C19  | 117.39 (11) | C20—C32—H32A  | 109.5       |
| C24—C19—C20 | 120.01 (12) | C20—C32—H32B  | 109.5       |
| C24—C19—C18 | 121.45 (12) | H32A—C32—H32B | 109.5       |

## supplementary materials

---

|                |              |                 |              |
|----------------|--------------|-----------------|--------------|
| C20—C19—C18    | 118.50 (12)  | C20—C32—H32C    | 109.5        |
| C21—C20—C19    | 118.83 (13)  | H32A—C32—H32C   | 109.5        |
| C21—C20—C32    | 118.81 (13)  | H32B—C32—H32C   | 109.5        |
| C25—O3—C2—C1   | -179.58 (13) | C1—C11—C12—C13  | -132.32 (13) |
| C25—O3—C2—C3   | 2.5 (2)      | C17—C12—C13—C14 | 1.36 (19)    |
| C10—C1—C2—O3   | -175.05 (12) | C11—C12—C13—C14 | -179.99 (12) |
| C11—C1—C2—O3   | 0.71 (17)    | C17—C12—C13—C27 | -176.01 (13) |
| C10—C1—C2—C3   | 2.9 (2)      | C11—C12—C13—C27 | 2.63 (19)    |
| C11—C1—C2—C3   | 178.64 (13)  | C12—C13—C14—C15 | 2.6 (2)      |
| O3—C2—C3—C4    | 177.08 (14)  | C27—C13—C14—C15 | -179.89 (14) |
| C1—C2—C3—C4    | -0.7 (2)     | C13—C14—C15—C16 | -3.2 (2)     |
| C2—C3—C4—C5    | -0.8 (2)     | C13—C14—C15—C28 | 176.61 (15)  |
| C3—C4—C5—C6    | 179.44 (15)  | C14—C15—C16—C17 | -0.2 (2)     |
| C3—C4—C5—C10   | 0.1 (2)      | C28—C15—C16—C17 | 179.99 (15)  |
| C4—C5—C6—C7    | -178.31 (16) | C15—C16—C17—C12 | 4.0 (2)      |
| C10—C5—C6—C7   | 1.1 (2)      | C15—C16—C17—C29 | -176.53 (14) |
| C5—C6—C7—C8    | -2.0 (3)     | C13—C12—C17—C16 | -4.53 (19)   |
| C26—O4—C8—C9   | -159.31 (14) | C11—C12—C17—C16 | 176.88 (12)  |
| C26—O4—C8—C7   | 24.5 (2)     | C13—C12—C17—C29 | 176.08 (13)  |
| C6—C7—C8—O4    | 174.71 (15)  | C11—C12—C17—C29 | -2.5 (2)     |
| C6—C7—C8—C9    | -1.3 (2)     | C8—C9—C18—O2    | -126.39 (14) |
| O4—C8—C9—C10   | -170.79 (12) | C10—C9—C18—O2   | 52.54 (19)   |
| C7—C8—C9—C10   | 5.4 (2)      | C8—C9—C18—C19   | 50.95 (16)   |
| O4—C8—C9—C18   | 8.21 (18)    | C10—C9—C18—C19  | -130.12 (13) |
| C7—C8—C9—C18   | -175.61 (13) | O2—C18—C19—C24  | -127.50 (14) |
| C2—C1—C10—C5   | -3.44 (19)   | C9—C18—C19—C24  | 55.14 (17)   |
| C11—C1—C10—C5  | -178.55 (12) | O2—C18—C19—C20  | 54.91 (18)   |
| C2—C1—C10—C9   | 176.19 (13)  | C9—C18—C19—C20  | -122.46 (13) |
| C11—C1—C10—C9  | 1.1 (2)      | C24—C19—C20—C21 | -2.66 (19)   |
| C4—C5—C10—C1   | 2.0 (2)      | C18—C19—C20—C21 | 174.97 (12)  |
| C6—C5—C10—C1   | -177.33 (13) | C24—C19—C20—C32 | -179.48 (13) |
| C4—C5—C10—C9   | -177.62 (13) | C18—C19—C20—C32 | -1.85 (19)   |
| C6—C5—C10—C9   | 3.0 (2)      | C19—C20—C21—C22 | 3.7 (2)      |
| C8—C9—C10—C1   | 174.28 (13)  | C32—C20—C21—C22 | -179.37 (13) |
| C18—C9—C10—C1  | -4.6 (2)     | C20—C21—C22—C23 | -1.2 (2)     |
| C8—C9—C10—C5   | -6.08 (19)   | C20—C21—C22—C31 | 179.04 (13)  |
| C18—C9—C10—C5  | 175.03 (12)  | C21—C22—C23—C24 | -2.5 (2)     |
| C2—C1—C11—O1   | -104.69 (15) | C31—C22—C23—C24 | 177.31 (13)  |
| C10—C1—C11—O1  | 70.72 (18)   | C22—C23—C24—C19 | 3.4 (2)      |
| C2—C1—C11—C12  | 68.13 (16)   | C22—C23—C24—C30 | -177.05 (13) |
| C10—C1—C11—C12 | -116.46 (15) | C20—C19—C24—C23 | -0.79 (19)   |
| O1—C11—C12—C17 | -141.06 (14) | C18—C19—C24—C23 | -178.34 (12) |
| C1—C11—C12—C17 | 46.28 (17)   | C20—C19—C24—C30 | 179.71 (12)  |
| O1—C11—C12—C13 | 40.34 (18)   | C18—C19—C24—C30 | 2.15 (19)    |

*Hydrogen-bond geometry (Å, °)*

| D—H···A       | D—H  | H···A | D···A       | D—H···A |
|---------------|------|-------|-------------|---------|
| C29—H29C···O2 | 0.98 | 2.33  | 3.1669 (19) | 143     |

Fig. 1



## supplementary materials

---

Fig. 2

