Analisi II - quinta parte bis

Equazioni differenziali e modelli matematici

Modelli matematici

Esempi di modelli

• Decadimento radioattivo N(t)= numero di radionuclidi al tempo t. $\frac{1}{\tau}$ percentuale di radionuclidi che decadono nell'unità di tempo.

$$N(t+h) = N(t) - rac{h}{ au} N(t)$$

$$ullet \left\{ egin{aligned} N((n+1)h) &= N(nh)(1-rac{h}{ au}) \ N(0) &= N_0 \end{aligned}
ight.$$

$$ullet \lim_{h o 0}rac{N(1+h)-N(t)}{h}=-rac{1}{ au}N(t)$$
 , $egin{cases} N'(t)=-rac{1}{ au}N(t)\ N(0)=N_0 \end{cases}$

$$ullet$$
 Modello discreto $N(nh)=N_0(1-rac{h}{ au})$

ullet Modello continuo $N(t)=N_0e^{-rac{1}{ au}t}$

Dinamica delle popolazioni

Popolazione isolata

- 1. Risorse illimitate
- N(t) persone al tempo t (densità di popolazione al tempo t)
- ν natalità (tasso di natalità)
- μ mortalità (tasso di mortalità)

$$N(t+h)=N(t)+
u N(t)-\mu N(t) \ N(t+h)=N(t)+(
u-\mu)N(t)$$
 $\lim_{h o 0}rac{N(t+h)-N(t)}{h}=\sigma N(t) \ N'(t)=\sigma N(t) \ N(0)=N_0$ 2. Risorse limitate $\begin{cases} N'(t)=\sigma N(t)-\varepsilon N^2(t) \ N(0)=N_0 \end{cases}$

modello di Verhulst (o logistico)

3. Popolazioni non isolate con risorse limitate

3. Popolazioni non isolate con risorse limitate
$$\begin{cases} N'(t) = \sigma N(t) - \varepsilon N^2(t) + \pi(t) \begin{cases} \pi(t) > 0 \text{ immigrazione} \\ \pi(t) < 0 \text{ emigrazione} \end{cases} \\ N(0) = N_0 \end{cases}$$

Preda-predatore, Modello di Lotka-Volterra

x(t) è il numero di prede

y(t) è il numero di predatori

$$egin{cases} x'(t) = a \cdot x(t) - b \cdot x(t) y(t) ext{ a,b>0} \ y'(t) = -c \cdot y(t) + d \cdot x(t) y(t) ext{ c>0} \ x(0) = x_0 \ y(0) = y_0 \end{cases}$$

Modello di epidemie

Malattia non mortale che non consente l'immunità

I(t) numero di infetti

S(t) numero di suscettibili alla malattia

$$\begin{cases} I'(t)=\beta I(t)S(t)\\ S'(t)=-\beta I(t)S(t) \end{cases} \text{ Modello SIS, } S\to I\to S \text{, alternanza immunità/suscettibilità. } (\beta>0)\\ \begin{cases} I'(t)=\beta I(t)(N-I(t))\\ I(0)=I_0 \end{cases} \text{, Modello Logistico}$$

Malattria possibilmente mortale che comporta immunità

- I(t) numero di infetti
- S(t) numero di suscettibili alla malattia
- R(t) numero di recuperati/rimossi, non più suscettibili perchè immuni o morti

$$\begin{cases} S'(t)=\beta\cdot I(t)S(t)\\ I'(t)=\beta\cdot I(t)S(t)-\gamma I(t)\\ R'(t)=\gamma I(t)\\ I(0)=I_0,S(0)=S_0,R(0)=R_0 \end{cases} \text{, Modello SIR, } S\to I\to R$$

II legge della dinamica

$$egin{cases} m \cdot \gamma''(t) = F(t,\gamma(t),\gamma'(t)) \ \gamma(t) = (x(t),y(t),z(t))^T \ \gamma(t_0) = P_o \ \gamma'(t_0) = v_0 \end{cases}$$

Linee di campo

Fato un campo vettoriale $g:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$ si di ce che $\gamma:I(\subseteq\mathbb{R})\to A$, I intervallo, è una linea di campo di g se $\gamma?(t)=g(\gamma(t))$

(-- manca un'ora di venerdì 2019-11-08 --)

Odine di un'equazione differenziale

È l'ordine massimo di derivazione con cui la funzione incognita compare nell'equazione differenziale

EDO in forma normale

Sono EDO in cui la derivata di ordine massimo compare esplicitata

EDO del primo ordine scalari in forma normale

- Sia $f:E(\subseteq\mathbb{R}^2) o\mathbb{R}$. Un'EDO in \mathbb{R}^2 del tipo y'(x)=f(x,y(x)) (o, sinteticamente, y'=f(x,y)) si dice EDO del I ordine scalare in FN (forma normale), dove $y(\cdot)$ è la funzione incognita
- ullet Una funzione $y(\cdot):I(\subseteq\mathbb{R}^2) o\mathbb{R}$, I intervallo si dice soluzione di y'(x)=f(x,y(x)) in I se:
 - 1. $y(\cdot)$ è derivabile in I
 - 2. $(x,y(x))^T \in E, orall x \in I$, cioè $G(y(\cdot)) \subseteq E$
 - 3. y'(x) = f(x,y(x)), $\forall x \in I$

Interpretazione geometrica di un'EDO scalare del ${\it I}$ ordine in FN

Sia $f: E(\subseteq \mathbb{R}^2) \to \mathbb{R}$. Consideriamo l'EDO y' = f(x,y(x)) e associamo all'EDO il campo vettoriale $g: E(\subseteq \mathbb{R}^2) \to \mathbb{R}^2$, con $g(x,y) = \begin{pmatrix} 1 \\ f(x,y) \end{pmatrix}$. Sia $y(\cdot): I(\subseteq \mathbb{R}^2) \to \mathbb{R}$ la soluzione dell'EDO. Associamo a $y(\cdot)$ la curva in forma cartesiana $\gamma: I(\subseteq \mathbb{R}) \to \mathbb{R}^2$ con $\gamma(x) = \begin{pmatrix} x \\ y(x) \end{pmatrix}$. Risulta $sostg = G(y(\cdot))$. Poichè y'(x) = f(x,y(x)), $\forall x \in I$ e quindi $\gamma(x) = f(x,y(x)) = f(x,y(x))$, $\forall x \in I$. Dunque γ è una linea del campo del campo vettoriale g

Problema di Cauchy (PC)

Siano
$$f: E(\subseteq \mathbb{R}^2) o \mathbb{R}$$
 e $(x_0,y_0) \in E$. Il problema: $\begin{cases} y' = f(x,y) o ext{ EDO} \\ y(x_0) = y_0 o ext{ Condizione Iniziale (CI)} \end{cases}$ si dice Problema di Cauchy

Osservazione

Si cerca una linea di campo passante per $(x_0,y_0)^T$

Soluzione di un PC

una funzione $y(\cdot):I(\subseteq\mathbb{R}^2) o\mathbb{R}$ si dice soluzione del PC se:

1.
$$y(\cdot)$$
 è soluzione di $y'=f(x,y)$

2.
$$y_0 \in I$$

3.
$$y(x_0) = y_0$$

Questioni

Dato il PC $egin{cases} y' = f(x,y) \ y(x_0) = y_0 \end{cases}$ si pongono le seguenti questioni:

- 1. Esistenza di (almeno) una soluzione
- 2. Unicità o molteplicità della soluzione
- 3. Dipendenza continua del dato iniziale
- 4. Studio qualitativo delle soluzioni
- 5. Studio quantitativo delle soluzione (analisi numerica) Il PC è ben posto secondo Hadanard nei conronti di queste questioni

Esistenza di una soluzione per il PC

Osservazione

(L'esistenza di una soluzione di un PC non è in generale garantita)

Supponiamo che esista una soluzion $y(\cdot):[-\delta,+\delta]=I\to\mathbb{R}$, $\delta>0$. Si ha y'(0)=-1 (y decrecente in 0) e quindi esiste h>0 t.c. y(x)< y(0) se $0< x\le h$. Dall'equazione segue che y'(x)=f(x,y(x))=1 se $0< x\le h$ Dunque esiste $0=y(0)=\lim_{x\to 0^+}y(x)=y(x)<0$, il che è impossibile. f è discontinua in 0.

Teorema di Peano

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, è continua e $(x_o,y_0)^T\in A$ allora esistono un numero h>0 e una funzione $y(\cdot):]x_0-h,x_0+h[o\mathbb{R}$ soluzione del PC $egin{cases} y'=f(x,y)\ y(x_0)=y_0 \end{cases}$

Unicità della soluzione del PC

Il teorema di Peano non garantisce l'unicità della soluzione

Teorema di Cauchy-Lipschitz di esistenza e unicità locali

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, continua con $\dfrac{\partial f}{\partial y}$ continua, e $(x_0,y_0)\in A$ allora esiste un numero h>0 ed **una ed una sola** $y(\cdot)_I=]x_0-h, x_0+h[o\mathbb{R}$ soluzione del PC $\begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases}$

Osservazione

Nel teorema di Peano e nel teorema di Cauchy-Lipschitz si ha, poichè y'(x)=f(x,y(x)) in $]x_0-h,x_0+h[$ e $y(\cdot)$ e f sono continue, che $y'(\cdot)$ è continua e quindi $y(\cdot)$ è di classe C^1

Teorema di disuguaglianza continua del dato iniziale

Sia
$$f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$$
, A aperto, continua con $\dfrac{\partial f}{\partial y}$ continua. Se $(x_0,y_0)^T\in A$ e $y(\cdot):$ $]x_0-h,x_0+h[o\mathbb{R}$ è soluzione di $\begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases}$, allora per ogni $\varepsilon>0$ esiste $\delta>0$ t.c. $\forall z_0\in\mathbb{R}$, con $|z_0-y_0|<\delta$, la soluzione di $z(\cdot)$ di $\begin{cases} z'=f(x,z)\\ z(x_0)=z_0 \end{cases}$ è definita su $]x_0-h,x_0+h[$ e verifica $|z(x)-y(x)|<\varepsilon$, $\forall xi]x_0-h,x_0+h[$, $\Leftrightarrow (||z(\cdot)-y(\cdot)||_\infty<\varepsilon)$

Conseguenza

Sotto le ipotesi del teorema di Cauchy-Lipschitz il PC è ben posto

Legge del prolungamento

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, è continua e $y(\cdot):]a,b[o\mathbb{R}$ è una oluzione di y'=f(x,y) t.c. esiste un compatto $K\subseteq A$ per cui $G(y(\cdot))\subseteq K$, allora esiste $\delta>0$ t.c. $y(\cdot)$ esiste su $[a-\delta,b+\delta]$

Teorema dell'esistenza globale della soluzione del PC

Se
$$f:]a,b[imes\mathbb{R} o\mathbb{R}$$
 è continua, $a\geq -\infty$, $b\leq +\infty$, $(x_0,y_0)^T\in \underbrace{]a,b[imes\mathbb{R}}_{=A}$ e ogni compatto $H\subseteq]a,b[$ eistono $\alpha,\beta\in\mathbb{R}$ t.c. $|f(x,y)|\leq \alpha|y|+\beta$, $\forall (x,y)^T\in H\times\mathbb{R}$ (Condizione di sottolinearità), allora il PC $\begin{cases} y'=f(x,y)\\y(x_0)=y_0 \end{cases}$ ha almeno una soluzione $y(\cdot)$ definita su $]a,b[$

Equazioni a variabili separate

Siano $g:]a,b[o\mathbb{R}$, $a\geq -\infty$, $b\leq +\infty$, continua e $h:]c,d[o\mathbb{R}$, $c\geq -\infty$, $d\leq +\infty$, di classe C^1 .

Consideriamo il PC
$$egin{cases} y'=f(x,y) \ y(x_0)=y_0 \end{cases}$$
, dove $x_0\in]a,b[,y_0\in]c,d[$. Poniamo $A=]a,b[imes]c,d[$ e $f:A o \mathbb{R}$, $f(x,y)=g(x)h(y)$, f è continua con $\dfrac{\partial f}{\partial y}$ continua in A . Quindi vale il teorema di esistenza e unicità locale

Metodo risolutorio

Distinguiamo due casi.
$$egin{cases} y' = g(x)h(y) \ y(x_0) = y_0 \end{cases}$$

- 1. caso $h(y_0)=0$, la funzione $y(\cdot)=y_0$ è la soluzione del PC
- 2. caso $h(y_0)
 eq 0$, sia $y(\cdot):]x_0 h, x_0 + h[o \mathbb{R}$ la soluzione del PC. Poichè $h(y(x_0)) = h(y_0)
 eq 0$ e, per il teorema della permanenza del segno, possiamo supporre che $h(y(x)) \neq 0$ in $]x_0 - h, x_0 + h[$

$$\text{Da } y'(t) = g(t) \underbrace{h(y(t))}_{\neq 0} \text{, segue } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt, \, \forall x \in]x_0 - h, x_0 + h[\text{, sind } \int_{x_0}^x \frac{y'(t)}{h(y(t))} dt = \int_{x_0}^x y(t) dt.$$

Siano
$$G$$
 e K tali che $G'=g$ in $]a,b[$ e $K'(s)=rac{1}{h(s)}$ in $Im(y(\cdot))$

Si ottiene

$$K(y(x))-K(y_0)=G(x)-G(x_0) \text{ in }]x_0-h,x_0+h[$$

$$K(y(x))=G(x)+\underbrace{(K(y_0)-G(x_0))}_{\text{costante}}. \text{ Poichè K è invertibile in } Im(y(\cdot)). \text{ Si conclude che } y(x)=K^{-1}(G(x)+K(y_0)-G(x_0)) \text{ in }]x_0-h,x_0+h[$$

Difficoltà

- Trovare le primitive G e K
- ullet determinare K^{-1}

Equazioni lineari scalari del I ordine

Motivazioni

- teoria generale completa
- approssimazione di equazioni non lineari con equazioni lineari

Principio di linearizzazione

Sia $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 e $(x_0,y_0)^T\in A$. Si vuole approssimare $y(\cdot)$, soluzione del PC $egin{cases} y'=f(x,y) \ y(x_0)=y_0 \end{cases}$ con la soluzione $z(\cdot)$ del problema "linearizzato" in $(x_o,y_0)^T$, cioè la soluzione di $z'=f(x,z) \ z(x_0)=y_0 \end{cases}$, dove $\overline{f}(x,y)=f(x_0,y_0)+z(x_0)$

$$(x_o,y_0)^T$$
, cioè la soluzione di $egin{cases} z'=f(x,z)\ z(x_0)=y_0 \end{cases}$, dove $\overline{f}(x,y)=f(x_0,y_0)+1$

$$\underbrace{\frac{f_x(x_0,y_0)}{\beta}(x-x_0)+\underbrace{f_y(x_0,y_0)}_{\alpha}(y-y_0)}_{\beta}(y-y_0) \text{ è l'approssimazione di }f \text{ in }(x_0,y_0)^T. \text{ Si ha}}_{\beta}$$

$$\overline{f}(x,y)=\alpha y+\beta x+\gamma, \text{ con }\alpha,\beta,\gamma\in\mathbb{R}.$$

$$\begin{cases} z'=\alpha y+\beta x+\gamma\\ z(x_0)=z_0 \end{cases}$$
 dove l'quazione è lineare rispetto a z

Osservazione

 $y(\cdot)$ e $z(\cdot)$ sono di classe C^2 (in particolare $z(\cdot)$ è di classe C^∞). Calcoliamo $y(x_0)=y_0=z(x_0),$ $y'(x_0)=f(x_0,y_0)=\overline{f}(x_0,y_0)=z'(x_0).$ $y''(x_0)=f_x(x_0,y_0)+f_y(x_0,y_0)y'(x_0),$ $z''(x_0)=f_x(x_0,y_0)+f_y(x_0,y_0)z'(x_0)=z'(x_0).$ Quindi $y(\cdot)$ e $z(\cdot)$ hanno lo stesso polinomio di Taylor di ordine 2 relativo a x_0 cioè $y(x)=p_{2,x_0(x)+o_1((x-x_0)^2)}$ e $z(x)=p_{2,x_0(x)+o_2((x-x_0)^2)}.$ Si conclude allora che $|y(x)-z(x)|=|o_1((x-x_0)^2)-o_2((x-x_0)^2)|=o((x-x_0)^2)$

EDO lineare scalare del I tipo

Teoria

Siano $a(\cdot),b(\cdot):I\to\mathbb{R}$ con $I\subseteq\mathbb{R}$ intervallo aperto continuo. L'EDO (c) y'=a(x)y+b(x) si dice EDO lineare scalare del I ordine **completa** (o) y'=a(x)y si dice EDO lineare scalare del I ordine **omogenea**

NB

Qui $f(x,y) = a(x) \cdot y + b(x)$ è lineare rispetto a y, ma non necessariamente rispetto a x

Teorema

Per ogni $x_0\in I$ e $y_0\in\mathbb{R}$, il PC $egin{cases} y'=a(x)y+b(x) \ y(x_0)=y_0 \end{cases}$ ha una ed una sola soluzione definita su I.

Dimostrazione

Si ha che f(x,y)=a(x)y+b(x). $f:I imes\mathbb{R} o\mathbb{R}$ è continua con $\dfrac{\partial f}{\partial y}(x,y)=a(x)$ continua e cresce al più linearmente in y

Definizione

$$L:C^1(I) o C^0(I)$$
 ponendo $L(y(\cdot))=y'(\cdot)-a(\cdot)y(\cdot)$

Teorema 1

Dimostrazione

Se $\alpha, \beta \in \mathbb{R}$ e $y(\cdot), z(\cdot) \in C^1(I)$ allora $L(\alpha y(\cdot) + \beta z(\cdot)) = (\alpha y(\cdot) + \beta z(\cdot))' - a(\cdot)(\alpha y(\cdot) + \beta z(\cdot)) = \alpha(y'(\cdot) - a(\cdot)y(\cdot) + \beta(z'(\cdot) + a(\cdot)z(\cdot)) = \alpha L(y(\cdot)) + \beta L(z(\cdot)).$

Si ha

(c)
$$y'=a(x)y+b(x)\Leftrightarrow L(y(\cdot))=b(\cdot)\Leftrightarrow y(\cdot)\in L^{-1}(b(\cdot))=S_b$$
 (o) $y'=a(x)y+b(x)\Leftrightarrow L(y(\cdot))=0\Leftrightarrow y(\cdot)\in L^{-1}(0)=S_0=Ker(L)$

Teorema 2 - descrizione di S_b

Le soluzioni di (c) sono tutte e sole le funzioni del tipo $y(\cdot)=\overline{y}(\cdot)+z(\cdot)$, dove $\overline{y}(\cdot)$ è una particolare soluzione di (c) e $z(\cdot)$ è una generica soluzione di (o), cioè $S_b=\overline{y}(\cdot)+S_0$

Dimostrazione

- se $y(\cdot) = \overline{y}(\cdot) + z(\cdot)$, si ha $L(y(\cdot)) = L(\overline{y}(\cdot)) + L(z(\cdot)) = b(\cdot) + 0 = b(\cdot)$
- se $y(\cdot),\overline{y}(\cdot)$ sono soluzioni di (c), allora, posto $z(\cdot)=y(\cdot)-\overline{y}(\cdot)$. Si ha $L(z(\cdot))=L(y(\cdot))-L(\overline{y}(\cdot))=b(\cdot)-b(\cdot)=0$, cioè $z(\cdot)$ è soluzione di (o)

Teorema 3 (descrizione di $S_0=KerL$)

 $S_0=KerL=\{c\cdot e^{A(\cdot)}:c\in\mathbb{R}\}$ con $A(\cdot)$ una primitiva di $a(\cdot)$ su I (cioè A'(x)=a(x) in I)

Dimostrazione

$$\begin{array}{l} \{c\cdot e^{A(\cdot)}:c\in\mathbb{R}\}\subseteq KerL \\ \text{Posto }z(\cdot)=ce^{A(x)}\cdot A'(x)=a(x)z(x) \text{ in }I.\ z(\cdot) \text{ è soluzione di (o)}. \\ KerL\subseteq \{ce^{A(\cdot)}:c\in\mathbb{R}\}. \text{ Sia }z(\cdot) \text{ una soluzione di (o), cioè } \forall x\in I,\ z'(x)=a(x)z(x) \text{ equindi }\underline{z'(x)e^{-A(x)}-a(x)e^{-A(x)}z(x)}=0. \end{array}$$

Cioè $\frac{d}{dx}(z(x)e^{-A(x)})=0$. Dunque esiste $c\in\mathbb{R}$ t.c. $z(x)e^{-A(x)}=c$ in I. Si conclude così che $z(x)=ce^{A(x)}$ in I.

 $\operatorname{NB} \operatorname{dim} \operatorname{Ker} L = 1$

Teorema 4 (Determinazione di una soluzione particolare di (c))

Una soluzione particolare di (c) è $\overline{y}(x)=e^{A(x)}\int_{x_0}^x e^{-A(t)}b(t)dt$, con $x_0\in I$ finito

Dimostrazione (Metodo della variazione delle costanti)

Si cerca una soluzione particolare di (c) del tipo $\overline{y}(\cdot)=c(x)e^{A(x)}$, con $c(\cdot):I\to\mathbb{R}$, funzione di classe C^1 da determinare. Imponiamo che $y(\cdot)$ risolva (c), cioè $\overline{y}(\cdot)=a(x)\overline{y}(\cdot)+b(x)$ in $I\Leftrightarrow c'(x)e^{A(x)}+c(x)a(x)e^{A(x)}=a(x)c(x)e^{A(x)}+b(x)$ in $I\Leftrightarrow c'(x)=b(x)e^{-A(x)}$ in I. Fissiamo $x_0\in I$ e poniamo $c(x)=\int_{x_0}^x b(t)e^{-A(x)}dt$ in I. La funizione $\overline{y}(x)=e^{A(x)}|int_{x_0}^xe^{-A(t)}b(t)dt$ risolve (c)

Corollario 1

La generica soluzione di (c) è $y(x)=ce^{A(x)}+e^{A(x)}\int_{x_0}^x e^{-A(t)}b(t)dt$, $orall x\in I$, con $c\in\mathbb{R}$ e $x_0\in I$

Corollario 2

 $orall x_0\in I$ e $y\in\mathbb{R}$ il PC $egin{cases} y'=f(x,y) \ y(x_0)=y_0 \end{cases}$ ha una e una sola soluzione definita su \mathbb{R} data da $y(x)=y_0\exists+\int_{x_0}^x e^{A(x)-A(t)}b(t)dt$

Teorema 5 (Principio di sovrapposizione)

Se $y_1(\cdot)$ è una soluzione di $y'=a(x)y+b_1(x)$ e $y_2(\cdot)$ è una soluzione di $y'=a(x)y+b_2(x)$, allora $y_1(\cdot)+y_2(\cdot)$ è soluzione di $y'=a(x)y+[b_1(x)+b_2(x)]$

Dimostrazione

Si ha
$$L(y_1(\cdot)+y_2(\cdot))=L(y_1(\cdot))+L(y_2(\cdot))=b_1(\cdot)+b_2(\cdot)$$

L'EDO di Bernoulli

L'EDO $y'=a(x)y+b(x)y^{\gamma}$ con $a(\cdot),b(\cdot):I\to\mathbb{R}$, I intervallo aperto, continua e $\gamma\in\mathbb{R}\setminus\{0,1\}$, si dice equazione di Bernoulli. Si cercano le soluzioni $y(\cdot)$ con y(x)>0 in $Dom(y(\cdot))$

Sia $y(\cdot)$ una soluzione e si divida per $y(\cdot)^{\gamma}$. Si ottiene $\frac{y'(x)}{y(x)^{\gamma}}=a(x)y(x)^{1-\gamma}+b(x)$ cioè $\frac{d}{dx}(\frac{1}{1-\gamma}y(x)^{1-\gamma})=(1-\gamma)a(x)\left(\frac{1}{1-\gamma}y(x)^{1-\gamma}\right)+b(x)$, cambio di variabile (dipendente), si ponga $u(x)=\frac{1}{1-\gamma}y(x)^{1-\gamma}$. Allora l'EDO diventa: $u'(x)=(1-\gamma)a(x)u(x)+b(x)$ che è un EDO lineare del I ordine