Elemente de analiză matematică

Operații cu șiruri

Fie $(a_n)_n$ și $(b_n)_n$ șiruri convergente. Atunci:

- $\oint (a_n + b_n)_n \text{ este convergent } \sin \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.$
- lacktriangle Dacă $\alpha \in \mathbb{R}$, atunci $(\alpha \cdot a_n)_n$ e convergent și $\lim_{n \to \infty} \alpha a_n = \alpha \lim_{n \to \infty} a_n$.
- $\blacklozenge \ (a_n b_n)_n \text{ este convergent } \S i \ \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n.$

Suma șirurilor care au limită

Proprietatea cunoscută: *Suma a două șiruri convergente este un șir convergent și limita sumei este egală cu suma limitelor* se extinde, în cazul în care unul cel puțin din cele două șiruri are limita infinită, în felul următor:

- I) Dacă $a_n \ge \alpha$, $\alpha \in \mathbb{R}$ și $b_n \to +\infty$, atunci $a_n + b_n \to +\infty$.
- II) Dacă $a_n \le \alpha$, $\alpha \in \mathbb{R}$ și $b_n \to -\infty$, atunci $a_n + b_n \to -\infty$.

Dacă (a_n) este convergent sau dacă $a_n \to +\infty$, atunci există $\alpha \in \mathbb{R}$ astfel ca $a_n \ge \alpha$, pentru orice $n \in \mathbb{N}$. De asemenea, dacă (a_n) este convergent, sau dacă $a_n \to -\infty$, există $\alpha \in \mathbb{R}$ astfel ca $a_n \le \alpha$ pentru orice $n \in \mathbb{N}$. Din cele două proprietăți de mai sus rezultă următoarele patru propoziții:

- 1) Dacă $a_n \to +\infty$ și $b_n \to +\infty$, atunci $a_n + b_n \to +\infty$.
- 2) Dacă $a_n \to a$ și $b_n \to +\infty$, atunci $a_n + b_n \to +\infty$.
- 3) Dacă $a_n \to a$ și $b_n \to -\infty$, atunci $a_n + b_n \to -\infty$.
- 4) Dacă $a_n \to -\infty$ și $b_n \to -\infty$, atunci $a_n + b_n \to -\infty$.

Pentru a putea afirma și în aceste cazuri că limita sumei este egală cu suma limitelor, convenim ca:

$$\begin{array}{ll} \infty + \infty = \infty \\ a + \infty = \infty + a = \infty \\ a + (-\infty) = -\infty + a = -\infty \end{array} \qquad \begin{array}{l} \text{oricare ar fi } a \in \mathbb{R}; \\ \text{oricare ar fi } a \in \mathbb{R}; \\ -\infty + (-\infty) = -\infty. \end{array}$$

Nu se acordă nici un sens scrierii $\infty - \infty$.

Pentru a putea afirma în general că limita produsului a două șiruri este egală cu produsul limitelor, convenim că: $\infty \cdot \infty = \infty$; $\infty(-\infty) = (-\infty)\infty = -\infty$; $(-\infty)(-\infty) = \infty$.

Nu se acordă nici un sens scrierilor $0 \cdot \infty$ sau $0 \cdot (-\infty)$.

Dacă șirurile (a_n) și (b_n) au limită (finită sau infinită) și dacă produsul limitelor are sens, atunci șirul produs (a_nb_n) are limită și $\lim_{n\to\infty}(a_nb_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$.

Cazuri exceptate:
$$\lim_{n\to\infty} a_n = 0$$
 și $\lim_{n\to\infty} b_n = +\infty$; $\lim_{n\to\infty} a_n = 0$ și $\lim_{n\to\infty} b_n = -\infty$.

Fiecare din aceste două cazuri va fi denumit mai departe "cazul 0 · ∞".

Pentru a putea afirma în general că *limita raportului a două șiruri este egală cu raportul limitelor*, convenim că: $\frac{a}{+\infty} = 0$ și $\frac{a}{-\infty} = 0$, oricare ar fi $a \in \mathbb{R}$.

Nu se acordă nici un sens scrierilor $\frac{\infty}{\infty}, \frac{-\infty}{\infty}, \frac{\infty}{-\infty}, \frac{-\infty}{-\infty}, \frac{0}{0}, \frac{\pm \infty}{0}$.

Dacă șirurile (a_n) și (b_n) au limită și dacă raportul limitelor are sens, atunci șirul $\left(\frac{a_n}{b_n}\right)$ are limită și $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim b_n}$.

Pentru a putea calcula limite de tip $\lim_{n\to\infty} (a_n)^{b_n}$, $\forall n\in\mathbb{N}$, convenim că: $\infty^{\infty}=\infty$, $\infty^{-\infty}=0$, $0^{\infty}=0$. Nu se acordă nici un sens scrierilor: ∞^0 , 1^{∞} , 0^0 .

Limita unui polinom P(n) având gradul $k \ge 1$

$$l = \lim_{n \to \infty} (a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0) = \begin{cases} \infty, & a_k > 0 \\ -\infty, & a_k < 0 \end{cases}.$$

Limita unui raport de polinoame

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_1 n + b_0} = \begin{cases} \frac{a^k}{b_l}, & k = l \\ 0, & k < l \\ \infty \cdot \frac{a_k}{b_l}, & k > l \end{cases}$$

Limita unui șir al cărui termen general conține puteri

$$\lim_{n \to \infty} a^n = \begin{cases} \infty, & a > 1 \\ 1, & a = 1 \\ 0, & -1 < a < 1 \end{cases}.$$
nu există, $a \le -1$

Şirul $e_n = \left(1 + \frac{1}{n}\right)^n$, $n \ge 1$ este convergent. Limita sa, notată cu e, aparține intervalului (2, 3).

Dacă
$$(a_n)_n$$
 este un șir cu $\lim_{n\to\infty} |a_n| = \infty$, atunci $\lim_{n\to\infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e$.

Dacă $(a_n)_n$ este un șir nenul cu $\lim_{n\to\infty} a_n = 0$, atunci $\lim_{n\to\infty} (1+a_n)^{\frac{1}{a_n}} = e$.

Limite de funcții

Punctul $a \in \mathbb{R}$ este *punct de acumulare la dreapta* (*la stânga*) pentru $D \subseteq \mathbb{R}$ dacă, $\forall V \in \mathscr{V}(a)$, $V \cap D \cap (a, +\infty) \neq \emptyset$ (respectiv $V \cap D \cap (-\infty, a) \neq \emptyset$). Un punct de acumulare la stânga si la dreapta pentru D se numeste *punct de acumulare* (*bilateral*).

Fie $f: D \to \mathbb{R}$, a un punct de acumulare al lui D și $l \in \mathbb{R}$. Funcția f are limita l în punctul a dacă este îndeplinită una dintre următoarele condiții echivalente:

- 1) (Definiția cu vecinătăți) Pentru orice vecinătate U a lui l, există o vecinătate V a lui a astfel încât, oricare ar fi $x \in V \cap D$, $x \neq a$, să avem $f(x) \in U$.
 - 2) (Definitii cu ε si δ)
 - În cazul $a \in \mathbb{R}$ și $l = \infty$:

$$\forall \epsilon \in \mathbb{R}, \exists \delta > 0, \forall x \in D \setminus \{a\}, |x-a| < \delta \Longrightarrow f(x) > \epsilon.$$

• În cazul $a = -\infty$ și $l \in \mathbb{R}$:

$$\forall \epsilon > 0, \exists \delta \in \mathbb{R}, \forall x \in D \setminus \{a\}, x < \delta \Rightarrow |f(x) - l| < \epsilon.$$

• În cazul $a \in \mathbb{R}$ și $l \in \mathbb{R}$:

$$\forall \epsilon > 0, \exists \delta > 0$$
, astfel încât $\forall x \in D \setminus \{a\}$ cu $|x - a| < \delta$, rezultă $|f(x) - l| < \epsilon$.

• În cazul $a = \infty$ si $l = \infty$:

$$\forall \ \epsilon > 0, \exists \ \delta > 0$$
, astfel încât $\forall x \in D, x > \delta$, rezultă $f(x) > \epsilon$.

3) (Definiția cu șiruri)

$$\forall (a_n)_n, a_n \in D \setminus \{a\}, a_n \to a \Rightarrow f(a_n) \to l.$$

Vom scrie $\lim_{x\to a} f(x) = l$.

Fie $f: D \to \mathbb{R}$ o funcție și a un punct de acumulare la stânga pentru D.

Spunem că $l_s \in \mathbb{R}$ este *limita la stânga a funcției f în punctul a*, dacă pentru orice vecinătate U a lui l, există o vecinătate V a lui a astfel încât, oricare ar fi x < a din $V \cap D$ să avem $f(x) \in U$.

Se folosesc următoarele notații:
$$l_s = \lim_{x \nearrow a} f(x) = \lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = f(a-0)$$
.

Fie $f: D \to \mathbb{R}$ o funcție și a un punct de acumulare la dreapta pentru D.

Spunem că $l_d \in \mathbb{R}$ este limita la dreapta a funcției f în punctul a, dacă pentru orice vecinătate U a lui l_d , există o vecinătate V a lui a, astfel încât, oricare ar fi x > a din $V \cap D$, să avem $f(x) \in U$. Se folosesc următoarele notații:

$$l_d = \lim_{x \to a} f(x) = \lim_{\substack{x \to a \ r > a}} f(x) = \lim_{x \to a+} f(x) = f(a+0).$$

Fie $f: D \to \mathbb{R}$ și a un punct de acumulare bilateral pentru D. Funcția f are limită în a dacă și numai dacă f are limită la dreapta și la stânga în a și aceste limite sunt egale.

Limitele funcțiilor elementare

•
$$f: \mathbb{R} \to \mathbb{R}, f(x) = c, c \in \mathbb{R}; \lim_{x \to \alpha} f(x) = c, \forall \alpha \in \overline{\mathbb{R}}.$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x$; $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} x = \alpha = f(\alpha)$, $\forall \alpha \in \mathbb{R}$ și $\lim_{x \to \infty} x = \infty$,

 $\lim_{x \to -\infty} x = -\infty.$

•
$$f: \mathbb{R} \to (0, +\infty), \ f(x) = a^x, \ a \in (0, +\infty) \setminus \{1\}; \quad \lim_{x \to \alpha} a^x = a^\alpha, \ \forall \ \alpha \in \mathbb{R};$$

$$\lim_{x \to \infty} a^x = \begin{cases} \infty, \text{ dacă } a > 1 \\ 0, \text{ dacă } 0 < a < 1 \end{cases}$$
 şi $\lim_{x \to -\infty} a^x = \begin{cases} 0, \text{ dacă } a > 1 \\ \infty, \text{ dacă } 0 < a < 1 \end{cases}$

•
$$f: \mathbb{R} \to [-1, 1], f(x) = \sin x; \lim_{x \to \alpha} \sin x = \sin \alpha, \forall \alpha \in \mathbb{R}; \text{ nu există } \lim_{x \to \infty} \sin x \text{ și }$$

 $\lim_{x\to\infty}\sin x.$

• $f: \mathbb{R} \to [-1, 1], \ f(x) = \cos x, \ \lim_{x \to \alpha} \cos x = \cos \alpha, \ \forall \alpha \in \mathbb{R}; \ \text{nu există} \ \lim_{x \to \infty} \cos x \ \text{și}$ $\lim_{x \to \infty} \cos x.$

•
$$f: \mathbb{R} \to [0, +\infty), f(x) = \begin{cases} x, & \text{dacă } x \ge 0 \\ -x, & \text{dacă } x < 0 \end{cases}; \quad \lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} |x| = |\alpha| = f(\alpha);$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x = \infty; \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (-x) = \infty.$$

• Funcția putere cu exponent natural: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^n$, $n \in \mathbb{N}$, $n \ge 2$;

$$\lim_{x \to \alpha} x^n = (\lim_{x \to \alpha} x)^n = \alpha^n = f(\alpha), \forall \alpha \in \mathbb{R}; \quad \lim_{x \to \infty} x^n = (\lim_{x \to \infty} x)^n = \infty;$$

$$\lim_{x \to -\infty} x^n = (\lim_{x \to -\infty} x)^n = \begin{cases} \infty, n \text{ par} \\ -\infty, n \text{ impar} \end{cases}$$

• Funcțiile radical: $f:[0,\infty) \to [0,\infty)$, $f(x) = \sqrt[k]{x}$, $k \in \mathbb{N}, k \ge 2$, k par;

$$\lim_{x\to\alpha} \sqrt[k]{x} = \sqrt[k]{\alpha} , \forall \alpha \in [0,\infty); \quad \lim_{x\to\infty} \sqrt[k]{x} = \infty.$$

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt[k]{x}, \ k \in \mathbb{N}, \ k \ge 2, k \text{ impar};$$

$$\lim_{x \to \alpha} \sqrt[k]{x} = \sqrt[k]{\alpha} , \forall \alpha \in \mathbb{R}; \quad \lim_{x \to \infty} \sqrt[k]{x} = \infty ; \quad \lim_{x \to -\infty} \sqrt[k]{x} = -\infty .$$

• Funcția logaritmică: $f:[0,+\infty) \to \mathbb{R}$, $f(x) = \log_a x$, $a \in (0,+\infty) \setminus \{1\}$;

$$\lim_{x \to a} \log_a x = \log_a \alpha, \forall \alpha \in (0, +\infty);$$

dacă
$$a > 1$$
, atunci $\lim_{x \to \infty} \log_a x = \infty$ și $\lim_{x \to 0} \log_a x = -\infty$;

dacă
$$0 < a < 1$$
, atunci $\lim_{x \to \infty} \log_a x = -\infty$ și $\lim_{\substack{x \to 0 \\ x > 0}} \log_a x = +\infty$.

• Funcția putere cu exponent real: $f:(0,+\infty)\to(0,+\infty), f(x)=x^a, a\in\mathbb{R}^*$.

$$\lim_{x \to \alpha} f(x) = \alpha^{a} = f(\alpha); \quad \lim_{x \to \infty} f(x) = \begin{cases} \infty, \ a > 0 \\ 0, \ a < 0 \end{cases}; \quad \lim_{x \to 0} f(x) = \begin{cases} 0, \ a > 0 \\ \infty, \ a < 0 \end{cases}.$$

• Funcția tangentă: $f: \mathbb{R} \setminus \left\{ k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z} \right\} \rightarrow \mathbb{R}, \ f(x) = \operatorname{tg} x.$

Pentru
$$\alpha \in \mathbb{R} \setminus \left\{ k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}, \lim_{x \to \alpha} tgx = tg\alpha;$$

 $\lim_{x\nearrow k\pi+\frac{\pi}{2}}\operatorname{tg} x=\infty \ \, \mathrm{si} \lim_{x\searrow k\pi+\frac{\pi}{2}}\operatorname{tg} x=-\infty \, ; \ \, \mathrm{nu} \, \operatorname{exist\check{a}} \, \lim_{x\to\infty}\operatorname{tg} x \, \, \mathrm{si} \, \lim_{x\to-\infty}\operatorname{tg} x \, .$

• Funcția cotangentă: $f : \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\} \rightarrow \mathbb{R}, f(x) = \operatorname{ctg} x$.

 $\forall \alpha \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}, \ \lim_{x \to \alpha} \operatorname{ctg} x = \operatorname{ctg} \alpha; \ \lim_{x \nearrow k\pi} \operatorname{ctg} x = -\infty; \ \lim_{x \searrow k\pi} \operatorname{ctg} x = +\infty; \ \text{nu există} \\ \lim_{x \to \infty} \operatorname{ctg} x \not = \lim_{x \to -\infty} \operatorname{ctg} x.$

• Funcția arcsinus: $f:[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $f(x) = \arcsin x$.

 $\lim_{x \to \alpha} \arcsin x = \arcsin \alpha, \ \forall \alpha \in [-1, 1].$

• Funcția arccosinus: $f:[-1, 1] \rightarrow [0, \pi], f(x) = \arccos x$.

 $\lim_{x \to 0} \arccos x = \arccos \alpha, \quad \forall \alpha \in [-1, 1].$

• Funcția arctangentă: $f: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $f(x) = \operatorname{arctg} x$.

 $\forall \alpha \in \mathbb{R}, \lim_{x \to \alpha} \arctan x = \arctan \alpha; \lim_{x \to \infty} \arctan x = \frac{\pi}{2}, \lim_{x \to \infty} \arctan x = -\frac{\pi}{2}.$

Operații cu limite de funcții

Fie $f, g: D \to \mathbb{R}$, a punct de acumulare pentru D. Presupunem că f și g au limite în a.

1) Dacă suma limitelor are sens, atunci f+g are limită în a și $\lim_{x\to a}(f(x)+g(x))=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)$.

Propoziția se păstrează pentru p termeni, $p \in \mathbb{N}^*$.

2) Dacă produsul limitelor are sens, atunci fg are limită în a și $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$.

Propoziția se păstrează pentru p factori, $p \in \mathbb{N}^*$, prin urmare $\lim_{x \to a} (f(x))^p = (\lim_{x \to a} f(x))^p$.

În particular, $\lim_{x \to a} \alpha f(x) = \alpha \lim_{x \to a} f(x)$, $\alpha \in \mathbb{R}$.

3) Dacă raportul limitelor nu este un caz de nedeterminare, atunci funcția $\frac{f}{g}$ are

limită în a și $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$.

4) Dacă f > 0 și dacă puterea $\left[\lim_{x \to a} f(x)\right]_{x \to a}^{\lim g(x)}$ nu este un caz de nedeterminare, atunci funcția f^g are limită în a și $\lim_{x \to a} f(x)^{g(x)} = \left[\lim_{x \to a} f(x)\right]_{x \to a}^{\lim g(x)}$.

Fie două funcții $u: A \to B$, $f: B \to \mathbb{R}$. Fie $a \in \overline{\mathbb{R}}$ un punct de acumulare al mulțimii A și $b \in \overline{\mathbb{R}}$ punct de acumulare al mulțimii B. Dacă

1)
$$\lim_{x \to a} u(x) = b$$
 și $\lim_{y \to b} f(y) = \ell$; 2) $u(x) \neq b$ pentru $x \neq a$, atunci funcția compusă $f \circ u$ are limită în punctul a și $\lim_{x \to a} f(u(x)) = \lim_{y \to b} f(y) = \ell$.

Criteriul majorării. Fie $f, g: D \to \mathbb{R}$ și a un punct de acumulare pentru mulțimea D.

- i) Dacă $\lim_{x \to a} g(x) = 0$, $\exists l \in \mathbb{R}$, $\exists V \in \mathcal{V}(a)$ cu $|f(x) l| \leq g(x)$, $\forall x \in V \cap D \setminus \{a\}$, atunci $\exists \lim_{x \to a} f(x) = l$.
- ii) Dacă $\lim_{x\to a} f(x) = \infty$ și $\exists \ V \in \mathcal{V}(a)$, cu $f(x) \leq g(x)$, $\forall \ x \in V \cap D \setminus \{a\}$, atunci $\exists \lim_{x\to a} g(x) = \infty$.
- iii) Dacă $\lim_{x \to a} g(x) = -\infty$ și $\exists V \in \mathcal{V}(a)$ cu $f(x) \leq g(x)$, $\forall x \in V \cap D \setminus \{a\}$, atunci $\exists \lim_{x \to a} f(x) = -\infty$.

 $\begin{aligned} & \textit{Criteriul ,, cleṣtelui ``}. \ \text{Fie } f, g, h : \mathbf{D} \to \mathbb{R}, \ a \text{ un punct de acumulare pentru D ṣi V o} \\ & \text{vecinătate a lui } a. \ \mathbf{Dacă} \ \begin{cases} f(x) \leqslant g(x) \leqslant h(x), \ \forall \, x \in \mathbf{V} \cap \mathbf{D} \setminus \{a\} \\ \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l \in \overline{\mathbb{R}} \end{cases}, \ \text{atunci } \exists \lim_{x \to a} g(x) = l \ . \end{aligned}$

Limitele funcțiilor polinomiale.

Fie $f: \mathbb{R} \to \mathbb{R}, f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_k \in \mathbb{R}, k = \overline{0, n}, a_n \neq 0$ (funcția polinomială).

$$\oint \lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^n \left(a_n + a_{n-1} \frac{1}{x} + \dots + a_0 \frac{1}{x^n} \right) = \begin{cases} \infty, & \text{dacă } a_n > 0 \\ -\infty, & \text{dacă } a_n < 0 \end{cases}$$

$$\oint \lim_{x \to -\infty} f(x) = \begin{cases} \infty, & \text{dacă } n \text{ par şi } a_n > 0 \text{ sau } n \text{ impar şi } a_n < 0 \\ -\infty, & \text{dacă } n \text{ impar şi } a_n > 0 \text{ sau } n \text{ par şi } a_n < 0 \end{cases}.$$

Limitele funcțiilor raționale

$$\begin{split} \operatorname{Fie} f_1, f_2 : \mathbb{R} &\to \mathbb{R}, f_1(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, \ a_n \neq 0 \text{ și} \\ f_2(x) &= b_m x^m + b_{m-1} x^{m-1} + \ldots + b_0, \ b_m \neq 0. \text{ Funcția } f \colon D \to \mathbb{R}, \ f = \frac{f_1}{f_2}, \text{ unde } \\ D &= \{x \in \mathbb{R} \mid f_2(x) \neq 0\} \text{ se numește } \text{ funcție } \text{ rațională}. \end{split}$$

Asemănător se procedează pentru $\lim_{x \to -\infty} f(x)$.

♦ Fie $a \in \mathbb{R}$ cu proprietatea $f_1(a) = f_2(a) = 0$. Atunci există $g_1, g_2 : \mathbb{R} \to \mathbb{R}$, $g_1(a) \neq 0$ și $g_2(a) \neq 0$ și $i, j \in \mathbb{N}^*$ astfel încât $f_1(x) = (x - a)^i g_1(x)$ și $f_2(x) = (x - a)^j g_2(x)$. Astfel $\lim_{x \to a} f(x) = \frac{g_1(a)}{g_2(a)} \cdot \lim_{x \to a} (x - a)^{i-j}.$

Nedeterminările care apar în studiul limitelor funcțiilor iraționale se înlătură, de regulă, folosind "factorul comun forțat" sau raționalizarea.

Limita functiilor de forma $f(x)^{g(x)}$
$$\begin{split} \operatorname{Fie} f \colon \mathrm{D} &\to (0, +\infty), \, g \colon \mathrm{D} \to \mathbb{R}, \, a \in \mathrm{D}', \, \lim_{x \to a} f(x) = l_1, \lim_{x \to a} g(x) = l_2 \,. \\ \operatorname{Dac} \check{\mathrm{a}} & \exists \lim_{x \to a} g(x) \ln f(x) = b \quad \text{si } \exists \mathrm{V} \in \mathscr{V}(a) \, \text{ astfel încât} \\ \forall \, x \in \mathrm{V} \cap \mathrm{D} \setminus \{a\}, \, g(x) \ln f(x) \neq b, \, \mathrm{atunci} \, \lim_{x \to a} f(x)^{g(x)} = \begin{cases} e^b \,, \, \mathrm{dac} \check{a} \, b \in \mathbb{R} \\ \infty, \, \, \mathrm{dac} \check{a} \, b = \infty \end{cases} \,. \\ 0, \, \, \mathrm{dac} \check{a} \, b = -\infty \end{split}$$

$$\lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x)(f(x) - 1)}.$$

Funcții continue

Fie D $\subset \mathbb{R}$, $f: D \to \mathbb{R}$ o funcție numerică și $a \in D$. Dacă a este punct izolat al domeniului D, funcția se numește continuă în a. Dacă a este punct de acumulare al domeniului D, funcția f se numește continuă în a, dacă pentru orice șir (a_{r}) cu termeni din D, convergent la a, șirul $(f(a_n))_n$ este convergent la f(a).

Dacă a este punct de acumulare pentru D, continuitatea lui f în a este echivalentă cu oricare dintre următoarele propoziții:

- $1) \exists \lim_{x \to a} f(x) = f(a);$
- 2) Pentru orice $\varepsilon > 0$, există $\delta_{\varepsilon} > 0$, $\forall x \in E$, $|x a| < \delta_{\varepsilon} \Rightarrow |f(x) f(a)| < \varepsilon$. a se numește punct de discontinuitate dacă f nu e continuă în a.

Punctele de discontinuitate ale unei funcții f se împart în două categorii (spete):

- ♦ a se numeste punct de discontinuitate de prima spetă al funcției f dacă limitele laterale ale funcției f în punctul a există și sunt ambele finite.
- ♦ a se numeste punct de discontinuitate de speta a doua dacă nu este punct de discontinuitate de prima speță.

Spunem că o funcție f este continuă pe o submulțime a domeniului, dacă este continuă în fiecare punct al acesteia. Mulțimea punctelor din domeniul de definiție pe care o funcție este continuă se numește domeniul de continuitate al funcției.

Funcțiile elementare sunt funcții continue pe întreg domeniul lor de definiție.

Dacă funcțiile $f,g: D \to \mathbb{R}$ ($D \subset \mathbb{R}$) sunt continue în punctul $a \in D$, atunci funcțiile af + bg (cu $a, b \in \mathbb{R}$) și $f \cdot g$ sunt continue în a. Dacă, în plus, $g(a) \neq 0$, atunci există $V \in \mathcal{V}(a)$ astfel încât $g(x) \neq 0$, $\forall x \in V \cap D$ și $\frac{f}{g}$ este continuă în a.

Fie $f: \mathbf{E_1} \to \mathbf{E_2}$ și $g: \mathbf{E_2} \to \mathbb{R}$ ($\mathbf{E_1}, \mathbf{E_2} \subset \mathbb{R}$) și $h = g \circ f: \mathbf{E_1} \to \mathbb{R}$ funcția compusă. Dacă f este continuă în $a \in \mathbf{E_1}$ și g este continuă în $f(a) \in \mathbf{E_2}$, atunci h este continuă în a.

Teorema de mărginire a lui Weierstrass

Dacă $f: [a, b] \to \mathbb{R}$ este o funcție continuă, atunci:

- 1) f este mărginită;
- 2) f își atinge marginile, adică $\exists \alpha, \beta \in [a,b]$ cu $f(\alpha) = \min_{x \in [a,b]} f(x)$ și $f(\beta) = \max_{x \in [a,b]} f(x)$.

Dacă $f:[a,b] \to \mathbb{R}$ este funcție continuă și f(a) și f(b) au semne contrare, atunci există $c \in [a,b]$ astfel încât f(c) = 0.

Dacă o funcție continuă nu se anulează pe un interval, atunci funcția păstrează același semn pe acel interval.

Fie f o funcție continuă pe intervalul I și J=f(I). Funcția $f\colon I\to J$ este bijectivă dacă și numai dacă f este strict monotonă și, în acest caz, funcția inversă $f^{-1}\colon J\to I$ este continuă și strict monotonă.

Dacă
$$f:[a;b) \to \mathbb{R}$$
, $b \in \mathbb{R}$ și există $\lim_{x \nearrow b} f(x) = l \in \mathbb{R}$, atunci funcția $g:[a;b] \to \mathbb{R}$, $g(x) = \begin{cases} f(x), & x \in [a;b) \\ l, & x=b \end{cases}$ se numește $prelungirea\ prin\ continuitate\ a\ lui\ f\ la\ [a;b].$

Functii derivabile

Fie $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ o funcție și a un punct de acumulare din D. Se numește derivata funcției f în a, $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$, în cazul în care această limită există (finită sau infinită). În acest caz, notăm: $f'(a) = \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$. Spunem că funcția f este derivabilă în a dacă, în plus, $f'(a) \in \mathbb{R}$.

Considerăm funcția $f: D \to \mathbb{R}$. Mulțimea punctelor în care funcția f este derivabilă se numește *domeniul de derivabilitate al funcției*.

Fie $f: D \to \mathbb{R}$ o funcție și a un punct de acumulare din D; atunci următoarele afirmații sunt echivalente:

1)
$$\exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \in \overline{\mathbb{R}}$$
.

2)
$$\forall (x_n)_n \subset D \setminus \{a\}, \lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a} = f'(a).$$

Fie $f: D \to \mathbb{R}$ o funcție derivabilă pe submulțimea S a lui D. Se numește *derivata funcției* f funcția care asociază $a \in S$ cu $f'(a) \in \mathbb{R}$.

Derivata unei funcții f pe domeniul de derivabilitate se notează cu f' sau $\frac{df}{dx}$ sau cu Df.

Derivate laterale

Fie $f: D \to \mathbb{R}$ si $a \in D$.

Spunem că f are derivată la stânga în a, dacă a este punct de acumulare al mulțimii $D\cap (-\infty, a)$ și există $\lim_{x\nearrow a}\frac{f(x)-f(a)}{x-a}=f_s'(a)\in\overline{\mathbb{R}}$.

Spunem că f are derivată la dreapta în a, dacă a este punct de acumulare al mulțimii $D \cap (a, \infty)$ și există $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'_d(a) \in \overline{\mathbb{R}}$.

Fie I $\subset \mathbb{R}$ un interval, o funcție $f: I \to \mathbb{R}$ și $a \in I$ un punct interior al lui I. Atunci f are derivată în a dacă și numai dacă are derivate laterale egale în a. În acest caz, $f'(a) = f'_d(a)$.

Operații cu funcții derivabile

Fie funcțiile $f, g : D \to \mathbb{R}$ derivabile în a.

- Funcția f + g este derivabilă în a și (f+g)'(a) = f'(a) + g'(a).
- lacktriangle Funcția $c \cdot f$ este derivabilă în a și $(c \cdot f)'(a) = c \cdot f'(a)$.
- ♦ Funcția $f \cdot g : D \rightarrow \mathbb{R}$ este derivabilă în a și $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.
- ♦ Se consideră funcțiile $f: D \to E$, $g: E \to \mathbb{R}$, a punct de acumulare din D, $y_0 = f(a)$ punct de acumulare din E. Dacă f este derivabilă în a și g este derivabilă în y_0 , atunci funcția $g \circ f: D \to \mathbb{R}$ este derivabilă în a și $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$.

Derivabilitatea funcției inverse

Fie $I, J \subset \mathbb{R}$ două intervale și $f: I \to J$ o funcție strict monotonă cu f(I) = J. Dacă f este derivabilă în $a \in I$ și $f'(a) \neq 0$, atunci funcția inversă $f^{-1}: J \to I$ este derivabilă în $y_0 = f(a)$ și $(f^{-1})'(y_0) = \frac{1}{f'(a)}$.

Fie $f: D \to \mathbb{R}$ o funcție și a un punct de acumulare din D. Funcția f este derivabilă de două ori în a dacă:

- 1) f este derivabilă pe o vecinătate V a lui a.
- 2) funcția derivată f' este derivabilă în a, adică există $\lim_{x\to a} \frac{f'(x) f'(a)}{x-a}$ și este finită.

În acest caz, limita se notează cu f''(a) (sau $\frac{d^2 f(a)}{dx^2}$ sau $D^2 f(a)$) și se numește derivata a doua (sau derivata de ordinul 2) a funcției f în punctul a.

Functia $f: D \to \mathbb{R}$ este de (n + 1) ori derivabilă în a, dacă:

- 1) f este de n ori derivabilă pe o vecinătate a lui a;
- 2) funcția derivată $f^{(n)}$ este derivabilă în a, adică există $\lim_{x\to a} \frac{f^{(n)}(x) f^{(n)}(a)}{x-a}$ și este finită.

În acest caz, limita se notează cu $f^{(n+1)}(a)$ (sau $\frac{d^{n+1}f(a)}{dx^{n+1}}$ sau $D^{n+1}f(a)$) și se numește derivata de ordin (n+1) a funcției f în punctul a.

Prin convenție, $f^{(0)} = f$.

O funcție $f: D \to \mathbb{R}$ este indefinit derivabilă pe D dacă, $\forall n \in \mathbb{N}$, f este derivabilă de n ori în orice punct al lui D.

Regula lui Leibniz. Fiind date funcțiile $f,g:D\to\mathbb{R}$ de n ori derivabile,

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)}.$$

Diferențiala

Fie I $\subset \mathbb{R}$ un interval și $x_0 \in I$.

Funcția $f: I \to \mathbb{R}$ este diferențiabilă în x_0 dacă există $A \in \mathbb{R}$ și $\alpha: I \to \mathbb{R}$ o funcție continuă și nulă în x_0 (adică $\lim_{x \to x_0} \alpha(x) = \alpha(x_0) = 0$) astfel încât:

$$f(x) - f(x_0) = A(x - x_0) + \alpha(x)(x - x_0), \forall x \in I.$$

Cu notațiile anterioare, funcția liniară $h \mapsto A \cdot h$, $\forall h \in \mathbb{R}$ se numește *diferențiala funcției f în punctul x*₀ și se notează $df(x_0)$.

Dacă f este diferențiabilă în x_0 , atunci $df(x_0)$: $\mathbb{R} \to \mathbb{R}$, $df(x_0)(h) = f'(x_0) \cdot h$, $\forall h \in \mathbb{R}$. O funcție $f: I \to \mathbb{R}$ este diferențiabilă pe I dacă este diferențiabilă în orice punct din I.

Proprietăți generale ale funcțiilor derivabile

Fie $f: D \to \mathbb{R}$ o funcție; $a \in D$ se numește punct de minim absolut (sau global) al funcției f dacă: $f(a) \le f(x), \forall x \in D$. $a \in D$ se numește punct de maxim absolut (sau global) al funcției f dacă: $f(x) \le f(a), \forall x \in D$.

Fie $f: I \to \mathbb{R}$ o funcție și $a \in I$.

a se numește punct de maxim relativ (sau local) al funcției f, dacă există o vecinătate V a lui a astfel încât $f(x) \le f(a)$, $\forall x \in V \cap I$; f(a) se numește maxim relativ al funcției.

 x_0 se numește *punct de minim relativ* (sau *local*) al funcției f, dacă există V o vecinătate a lui x_0 astfel încât $f(x_0) \le f(x)$, $\forall x \in V \cap I$; $f(x_0)$ se numește *minim relativ al funcției*.

 $x_0 \in I$ este *punct de extrem relativ* (sau *local*) al lui f dacă este punct de minim sau de maxim relativ (sau local).

Teorema lui Fermat. Fie $I \subset \mathbb{R}$ un interval și $f: I \to \mathbb{R}$ o funcție derivabilă într-un punct de extrem local x_0 din interiorul intervalului $I(x_0 \in I$ și nu este capăt al intervalului); atunci $f'(x_0) = 0$.

Teorema lui Rolle. Fie $f: [a, b] \to \mathbb{R}$ o funcție cu următoarele proprietăți:

- 1) f este continuă pe [a, b].
- 2) f este derivabilă pe (a, b)
- 3) f(a) = f(b).

Atunci $\exists c \in (a, b)$ astfel încât f'(c) = 0.

Teorema lui Lagrange. Fie $f: [a, b] \to \mathbb{R}$ o funcție cu proprietățile:

- 1) f continuă pe [a, b];
- 2) f derivabilă pe (a, b).

Atunci există
$$c \in (a, b)$$
 astfel încât $\frac{f(b) - f(a)}{b - a} = f'(c)$.

Teorema lui Cauchy. Dacă funcțiile $f, g : [a, b] \to \mathbb{R}$ îndeplinesc condițiile:

- 1) f și g sunt continue pe intervalul închis [a, b];
- 2) f și g sunt derivabile pe intervalul deschis (a, b);
- 3) $g'(x) \neq 0, \forall x \in (a, b)$;

atunci
$$g(a) \neq g(b)$$
 și există $c \in (a, b)$ astfel încât $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Teorema l'Hospital. Fie $a, b \in \overline{\mathbb{R}}, a < b$ și $I \subset \mathbb{R}$ un interval cu $(a, b) \subset I \subset [a, b]$. Dacă $x_0 \in [a, b]$ și $f, g : I \setminus \{x_0\} \to \mathbb{R}$ sunt funcții cu proprietățile:

- 1) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (respectiv $\lim_{x \to x_0} |g(x)| = +\infty$);
- 2) f și g sunt derivabile și $g'(x) \neq 0$, $\forall x \in I \setminus \{x_0\}$;
- 3) există $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}$ finită sau infinită;

atunci există o vecinătate V a lui x_0 , astfel încât $g(x) \neq 0, \forall x \in I \cap V \setminus \{x_0\}$) și există $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$

Consecință a teoremei lui Lagrange. Fie $f: I \to \mathbb{R}$ o funcție derivabilă pe intervalul I.

- a) Dacă f'(x) > 0, $\forall x \in I$, atunci f este strict crescătoare pe I.
- b) Dacă f'(x) < 0, $\forall x \in I$, atunci f este strict descrescătoare pe I.

Convexitate

Fie funcția $f: I \to \mathbb{R}$, unde $I \subset \mathbb{R}$ este un interval.

Funcția f se numește convexă pe I, dacă $\forall x_1, x_2 \in I$ și $\forall \lambda \in [0, 1]$

$$f((1-\lambda)x_1 + \lambda x_2) \leq (1-\lambda)f(x_1) + \lambda \cdot f(x_2).$$

Funcția f se numește concavă pe I dacă, $\forall x_1, x_2 \in I$ și $\forall \lambda \in [0, 1]$

$$f((1-\lambda)x_1 + \lambda x_2) \ge (1-\lambda)f(x_1) + \lambda \cdot f(x_2)$$

Fie x_0 punct interior intervalului I. Spunem că x_0 este *punct de inflexiune* al funcției f dacă f are derivată în x_0 (finită sau infinită) și dacă pe o vecinătate a lui x_0 , funcția își schimbă convexitatea în x_0 , adică, de o parte a lui x_0 funcția este convexă, iar de cealaltă parte a lui x_0 funcția este concavă.

Asimptote

Fie $D \subset \mathbb{R}$ și $x_0 \in \mathbb{R}$ un punct de acumulare al lui D; fie $f: D \to \mathbb{R}$ o funcție.

Dreapta de ecuație $x = x_0$ este *asimptota verticală* la graficul funcției f, dacă cel puțin una dintre limitele laterale: $\lim_{x \nearrow x_0} f(x)$ sau $\lim_{x \searrow x_0} f(x)$ există și este infinită.

Fie o funcție $f: D \to \mathbb{R}$. Dacă D este o mulțime nemărginită la dreapta (∞ este punct de acumulare al mulțimii D), atunci dreapta de ecuație y = mx + n este *asimptotă oblică* $spre +\infty$ a graficului dacă $\lim_{n \to \infty} [f(x) - mx - n] = 0$, $m, n \in \mathbb{R}$ fixate.

Dacă D este o mulțime nemărginită la stânga ($-\infty$ este punct de acumulare al mulțimii D), atunci dreapta de ecuație y = m'x + n' este *asimptotă oblică spre* $-\infty$ a graficului dacă $\lim_{x \to \infty} [f(x) - m'x - n'] = 0$, m', $n' \in \mathbb{R}$ fixate.

Dreapta de ecuație y=a este *asimptotă orizontală spre* $\pm \infty$ la graficul funcției f dacă există $\lim_{x\to +\infty} f(x)$ și este egală cu a.