Section 12: Hypothesis testing

ARE 210

November 21, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section12" folder.

1 Definitions

- Hypothesis testing setup
 - $-X \sim P \in \mathbf{P}$
 - Two hypotheses: H: $P \in \mathbf{P}_H$ or K: $P \in \mathbf{P}_K$ (where $\mathbf{P}_H \cap \mathbf{P}_K = \emptyset$)
 - * Typically say H = null, K = alternative
 - * Typically parametrize $\mathbf{P}_H = \{P_\theta : \theta \in \Theta_H\}, \, \mathbf{P}_K = \{P_\theta : \theta \in \Theta_K\}$
 - Test $\delta: X \to [0,1]$
 - * δ takes data, says fail to reject null ($\delta(X) = 0$) or reject null ($\delta(X) = 1$)
 - * Allow δ to represent more general tests, e.g. $\delta(X) = \frac{1}{2} \forall X$ represents flipping a coin
 - Power function $B_{\delta}(\theta) \equiv \mathbf{E}_{\theta}[\delta(X)]$
 - Size $\sup_{\theta \in \Theta_H} B_{\delta}(\theta)$
 - A test is **level-** α if its size is at most α
 - A test ϕ^* is uniformly most powerful level- α if 1) ϕ^* is level- α , and 2) for all level α tests ϕ and all $\theta_K \in \Theta_K$, $B_{\phi^*}(\theta_K) \geq B_{\phi}(\theta_K)$.
 - For a family of tests δ_{α} , suppose there exists T, t_{α} such that $\delta_{\alpha}(X) = \mathbf{1}\{T(X) \geq t_{\alpha}\}$. Then the **p-value** is $\inf\{\alpha : \delta_{\alpha}(X) = 1\}$.
 - Neyman-Pearson Lemma Suppose $\Theta_H \equiv \{\theta_0\}$ and $\Theta_K \equiv \{\theta_1\}$ are singletons, and $p(x; \theta_i)$ is the pdf or pmf. Then define $\phi_{k,\epsilon}(x) = \mathbf{1}\{p(x,\theta_1)/p(x,\theta_0) > k\} + \epsilon \mathbf{1}\{p(x,\theta_1)/p(x,\theta_0) = k\}$ for some $\epsilon \in \{0,1\}$. Then 1) $\phi_{k,\epsilon}$ is the uniformly most powerful level- $\mathbf{E}_{\theta_0}[\phi_{k,\epsilon}(x)]$ test, 2) $\forall \alpha \in [0,1]$, \exists a most powerful level- α test of the form $\phi_{k,\epsilon}$, and 3) if ϕ is the most powerful level- α test, then $\exists k, \epsilon$ such that $\phi(\cdot) = \phi_{k,\epsilon}(\cdot)$.
 - $\{P_{\theta}: \theta \in \Theta\}$, where $\Theta \subset \mathbf{R}$, is an increasing monotone likelihood ratio family in T(X) if $\frac{p(x,\theta_2)}{p(x,\theta_1)}$ is increasing in T(X) for all (θ_1,θ_2)

- * For exponential family $p(x,\theta) = h(x) \exp(\eta(\theta)T(x) \beta(\theta))$, η is increasing $\Rightarrow p(\cdot,\theta)$ is increasing monotone likelihood ratio in $\frac{1}{n} \sum_{i=1}^{n} T(X_i)$
- * $\delta_t(X) = \mathbf{1}\{T(X) > t\}$ is the uniformly most powerful test of $H : \theta_H = \{\theta : \theta \leq \theta_0\}$ against $K : \theta_K = \{\theta : \theta > \theta_0\}$ of level- $\mathbf{E}_{\theta_0}[\delta_t(X)]$
- $-\delta$ is **unbiased** if $B_{\phi}(\theta) \leq \alpha \ \forall \ \theta \in \Theta_H$ and $B_{\phi}(\theta) \geq \alpha \ \forall \ \theta \in \Theta_K$
- δ is uniformly most powerful unbiased level-α if 1) δ is unbiased and level-α, and 2) \forall θ ∈ Θ_K, $B_{\delta}(\theta) \geq B_{\phi}(\theta)$ \forall unbiased level-α φ
- δ is α-similar on Θ* ⊂ Θ if $B_{\delta}(\theta) = \alpha \, \forall \, \theta \in \Theta^*$
- Suppose δ is unbiased level- α , and $B_{\delta}(\theta)$ is continuous $\forall \theta \in \text{bdry}(\Theta)$. Then 1) $B_{\delta}(\theta) = \alpha \ \forall \theta \in \text{bdry}(\Theta)$, and 2) if δ is uniformly most powerful among all α -similar tests, then ϕ^* is uniformly most powerful level- α .

2 Practice questions

- 1. Assume $\{X_i\}_{i=1}^n$ iid $P \in \mathbf{P} = \{P : V_P[X_i] = \sigma^2\}$. Let $\mathbf{P}_H = \{P : V_P[X_i] = \sigma^2, \mathbf{E}_P[X_i] = \mu\}$, representing the null hypothesis that the mean of X_i is μ .
 - (a) Calculate $V[\overline{X}]$, where $\overline{X} = \sum_{i=1}^{n} X_i/n$.
 - (b) Assume $P \in \mathbf{P}_H$. Place a lower bound on $P\left[\left|(\overline{X} \mu)/\sqrt{V[\overline{X}]}\right|\right]$.
 - (c) Let $\delta_{\alpha} = \mathbf{1} \left\{ \left| (\overline{X} \mu) / \sqrt{V[\overline{X}]} \right| > t_{1-\alpha/2} \right\}$. Derive the maximum threshold $t_{1-\alpha/2}$ such that δ_{α} is size α . Compare this threshold to $Z_{1-\alpha/2}$.
 - (d) δ_{α} is not unbiased, provide a counter example. What intuition does this give you about the set of possible unbiased tests in this context? Think about what $\mathrm{bdry}(\mathbf{P}_H)$ looks like.
 - (e) Construct a useful bound on $\inf_{P \in \mathbf{P}_{\mu+k}} \{ \mathbf{E}_P[\delta_{\alpha}] \}$, where $\mathbf{P}_{\mu+k} \equiv \{ P : \mathbf{E}_P[X_i] = \mu + k \}$.

¹Recall $Z_{.84} \approx 1$, $Z_{.97} \approx 2$, $Z_{.998} \approx 3$.