Corrigé des exercices

• Automates finis déterministes

Exercice 1

1. Le langage des mots contenant au moins une fois la lettre a:

2. Le langage des mots contenant au plus une fois la lettre *a* :

3. Le langage des mots contenant un nombre pair de fois la lettre a:

4. Le langage des mots admettant aba pour facteur :

5. Le langage des mots admettant *aba* pour sous-mot :

Exercice 2 Posons n = 2p + r avec $r \in \{0, 1\}$; alors :

$$p \equiv 0 \mod 5 \Longrightarrow n \equiv r \mod 5$$
 $p \equiv 3 \mod 5 \Longrightarrow n \equiv 1 + r \mod 5$ $p \equiv 1 \mod 5 \Longrightarrow n \equiv 2 + r \mod 5$ $p \equiv 4 \mod 5 \Longrightarrow n \equiv 3 + r \mod 5$

D'où l'automate:

4.2 option informatique

Pour lire les entiers à partir du bit de poids le plus faible, il suffit de considérer l'automate transposé, c'est-à-dire celui obtenu en inversant l'ordre des transitions et en échangeant états initiaux et états finaux. En général, la transposée d'un automate déterministe est non déterministe, mais l'automate ci-dessus fait exception.

Exercice 3 Il y a trois types de mots dans ce langage : ceux qui contiennent au moins un a et un b avant le dernier caractère (état q_6), ceux qui ne contiennent que des a et qui sont de longueur au moins 2 (état q_3), ceux qui ne contiennent que des b et qui sont de longueur au moins 2 (état q_5).

Exercice 4

1. Les mots de L' sont les mots qui commencent par 1 et qui comportent au moins un 0 dans leur écriture. D'où l'automate :

Corrigé des exercices 4.3

2. Les mots de E sont reconnus par l'automate :

3. Notons L_1 le langage dénoté par 01 et L_2 le langage dénoté par $(10)^*$. Alors $S = EL_1L_2$ donc S est reconnu par l'automate :

Exercice 5 On définit deux suites (R_i) et (S_i) de parties de Q en posant $R_0 = \{q_0\}$, $S_0 = F$ et pour tout $i \in \mathbb{N}$:

```
\begin{aligned} \mathbf{R}_{i+1} &= \mathbf{R}_i \cup \left\{ q \in \mathbf{Q} \mid \text{il existe une transition d'un élément de } \mathbf{R}_i \text{ à } q \right\} \\ \mathbf{S}_{i+1} &= \mathbf{S}_i \cup \left\{ q \in \mathbf{Q} \mid \text{il existe une transition de } q \text{ à un élément de } \mathbf{S}_i \right\} \end{aligned}
```

Ces deux suites sont croissantes dans Q fini donc sont stationnaires. Leurs limites R et S sont atteintes dès lors que deux termes consécutifs sont égaux et dans ce cas R est l'ensemble des états accessibles et S l'ensemble des états co-accessibles. Il suffit dès lors de supprimer les états qui n'appartiennent pas à $R \cap S$ ainsi que les transitions dans lesquelles ces états interviennent pour obtenir l'automate émondé demandé.

Commençons par une fonction qui détermine les états accessibles en suivant l'algorithme exposé ci-dessus :

On détermine de même les états co-accessibles :

4.4 option informatique

Il reste à émonder l'automate :

• Automates non déterministes

Exercice 6 La déterminisation du premier automate conduit au résultat :

δ'	а	b
$\{q_0\}$	$\{q_0\}$	$\{q_0, q_1\}$
$\{q_0, q_1\}$	$\{q_0, q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_1, q_2\}$

La déterminisation du second automate conduit au résultat :

δ΄	а	b
$\{q_0\}$	$\{q_1\}$	{q ₂ }
{ <i>q</i> ₁ }	$\{q_1\}$	$\{q_0, q_2\}$
{q ₂ }	$\{q_2\}$	$\{q_{0}\}$
$\{q_0, q_2\}$	$\{q_1, q_2\}$	$\{q_0, q_2\}$
$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_0, q_2\}$

Corrigé des exercices 4.5

Exercice 7 Seules quatre configurations sont possibles :

- les quatre verres sont tous dans le même sens (configuration q_0);
- trois verres sont dans un sens et le quatrième dans l'autre sens (configuration q_1);
- deux verres voisins sont dans un sens et les deux autres dans l'autre sens (configuration q_2);
- deux verres opposés sont dans un sens et les deux autres dans l'autre sens (configuration q_3).

On désigne par la lettre :

- a le fait de changer l'orientation d'un des quatre verres ;
- − *b* le fait de changer l'orientation de deux verres voisins ;
- − *c* le fait de changer l'orientation de deux verres opposés.

Le jeu peut alors être représenté par l'automate non déterministe suivant :

Sa déterminisation conduit à l'automate suivant :

On constate que la succession de mouvement *cbcacbc* conduit nécessairement à une position gagnante pour le barman.

Exercice 8 $\mathcal{T}(A)$ et donc $A' = \mathcal{D}(\mathcal{T}(A))$ reconnait l'image miroir du langage reconnu par A, donc A'' reconnait le même langage que A; il est équivalent à A.

On obtient pour A' l'automate :

4.6 option informatique

et pour A" l'automate :

Exercice 9 L'automate non déterministe :

se déterminise en :

δ'	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_3\}$
$\{q_0, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0\}$
$\{q_0, q_1, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_4\}$
$\{q_0, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0, q_4\}$

On notera que l'état q_5' peut être supprimé sans changer le langage reconnu par cet automate. L'algorithme KMP consiste à considérer les états et transitions suivants :

δ	а	b
3	а	3
а	а	ab
ab	а	abb
abb	abba	3
abba	а	ab

Corrigé des exercices 4.7

puis à transformer l'état acceptant (abba) en puit :

• Théorème de KLEENE

Exercice 10 On commence par se débarrasser du symbole ε : l'expression rationnelle est équivalente à $(a+c)^*abb+(a+c)^*$. On la linéarise pour obtenir un langage local : $(c_1+c_2)^*c_3c_4c_5+(c_6+c_7)^*$, avec $P = \{c_1, c_2, c_3, c_6, c_7\}$, $S = \{c_5, c_6, c_7\}$ et $F = \{c_1^2, c_2^2, c_1c_2, c_2c_1, c_1c_3, c_2c_3, c_3c_4, c_4c_5, c_6^2, c_7^2, c_6c_7, c_7c_6\}$.

On déduit de l'automate local qui en résulte l'automate de Glushkov de l'expression rationnelle en supprimant le marquage des transitions :

On notera que puisque ε appartient au langage c_0 est un état acceptant. Sa déterminisation fournit l'automate suivant :

Exercice 11 L'automate suivant reconnait le langage $L = \{m \in \Sigma^* \mid |m|_a \equiv 0 \mod 3\}$:

4.8 option informatique

On lui applique l'algorithme d'élimination des états en éliminant successivement q_2 , q_1 et q_0 :

L est donc dénoté par $(b + ab^*ab^*a)^*$.

Exercice 12 L'automate suivant reconnait le langage L :

On le rend complet en ajoutant un état puit :

En inversant les états acceptants on obtient un automate qui reconnait \overline{L} :

Exercice 13 Si L_1 et L_2 sont deux langages reconnus par des automates A_1 et A_2 nous savons calculer les automates reconnaissant l'intersection et le complémentaire donc des automates reconnaissant $L_1 \setminus L_2$ et $L_2 \setminus L_1$. Il reste à utiliser l'équivalence : $L_1 = L_2 \iff (L_1 \setminus L_2 = \emptyset)$ pour conclure.

Exercice 14 Considérons un automate fini déterministe $A = (\Sigma, Q, q_0, F, \delta)$ qui reconnait L, notons Ac (respectivement Co) l'ensemble des états accessibles (respectivement co-accessibles) et considérons les trois automates :

$$A_p = (\Sigma, Q, q_0, Co, \delta),$$
 $A_s = (\Sigma, Q, Ac, F, \delta),$ $A_f = (\Sigma, Q, Ac, Co, \delta)$

(les deux derniers sont non déterministes).

Alors A_p reconnait pref(L), A_f reconnait suff(L), A_f reconnait fact(L) (on peut aussi observer que fact(L) = pref(suff(L)).

Exercice 15 Soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate qui reconnait L. Pour tout $q \in Q$ on note I_q l'ensemble des mots qui étiquètent un chemin de q_0 à q et F_q l'ensemble des mots qui étiquètent un chemin de q à l'un des états finaux de F. Ces deux langages sont respectivement reconnus par $(\Sigma, Q, q_0, \{q\}, \delta)$ et $(\Sigma, Q, q, F, \delta)$ donc rationnels. L'égalité $\sqrt{L} = \bigcup_{q \in Q} I_q \cap F_q$ prouve alors que \sqrt{L} est aussi rationnel.

Exercice 16 Soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate qui reconnait le langage L. On note I l'ensemble des états accessibles à partir de q_0 en suivant un chemin étiqueté par un mot de K. On considère alors l'automate (non déterministe) $A' = (\Sigma, Q, I, F, \delta)$; nous allons montrer que A' reconnait $K^{-1}L$.

Considérons un mot $v \in K^{-1}L$ et $u \in K$ tel que $uv \in L$. Puisque $uv \in L$ le chemin $q_0 \stackrel{uv}{\leadsto} q_f$ mène à un état acceptant $q_f \in F$. Ce dernier se décompose en deux chemins $q_0 \stackrel{u}{\leadsto} q \stackrel{v}{\leadsto} q_f$ avec $q \in I$ ce qui montre que v étiquète un chemin menant d'un état $q \in I$ à un état $q_f \in F$. v est donc reconnu par A'.

Réciproquement, si v est reconnu par A' il existe $q \in I$, $q_f \in F$ et un chemin $q \stackrel{v}{\leadsto} q_f$ étiqueté par v. Par définition de I il existe $u \in K$ et un chemin $q_0 \stackrel{u}{\leadsto} q$ étiqueté par u ce qui prouve que uv est reconnu par A, donc que $uv \in L$.

• Lemme de l'étoile

Exercice 17 Supposons le lemme de l'étoile vérifié par le langage L_1 et posons $u = \varepsilon$, $v = a^k$ et $w = b^{k+1}$. Le mot uvw appartient à L_1 donc v se factorise en $v = a^{k_1}a^{k_2}a^{k_3}$ avec $k_2 \ge 1$ et pour tout $n \in \mathbb{N}$, $uv_1v_2^{n+1}v_3w = a^{k+nk_2}b^{k+1} \in L_1$, ce qui est absurde.

Supposons le lemme de l'étoile vérifié pour le langage L_2 et posons $u=a^k$, $v=b^k$, $w=\epsilon$. Alors il existe $k_2>1$ tel que pour tout $n\in\mathbb{N}$, $a^kb^{k+nk_2}\in L_2$, ce qui est absurde.

Supposons le lemme de l'étoile vérifié pour le langage L₃ et considérons un entier premier p tel que $p \ge k$. Alors a^p se factorise sous la forme $a^{k_1}a^{k_2}a^{k_3}$ avec $k_2 \ge 1$ et pour tout $n \in \mathbb{N}$, $a^{p+nk_2} \in L_3$. En particulier, pour n = p le nombre $p + pk_2$ doit être premier, ce qui est absurde.

Exercice 18 Si le langage de Dicκ était rationnel il existerait un automate reconnaissant les mots de la forme a^nb^n ; or nous avons vu que dans ce cas il existe $k_2 \ge 1$ tel que le mot $a^nb^{n+k_2}$ soit reconnu, et ce dernier mot n'est pas un mot de Dick.

4.10 option informatique

Exercice 19 Supposons L rationnel; d'après le second lemme de l'étoile il existe un entier k tel que pour tout palindrome m = uvw tel que $|v| \ge k$ se factorise sous la forme $m = uv_1v_2v_3w$ avec $|v_2| \ge 1$, $|v_1v_2| \le k$ et $\forall n \in \mathbb{N}$, $uv_1v_2^nv_3w$ est un palindrome. En considérant le mot $m = a^kba^k$ avec $u = \varepsilon$, $v = a^k$ et $w = ba^k$ on prouve l'existence d'un entier p > 0 tel que pour tout $n \in \mathbb{N}$, $a^{k+np}ba^k$ doive être un palindrome, ce qui est absurde.

[Exercice 20] Supposons L rationnel et notons k l'entier qui intervient dans la première version du lemme de l'étoile. Si la conjecture est vraie il existe $p \ge k$ tel que $2^p - 1$ soit un nombre premier et dans ce cas le mot 1^p appartient à L. D'après le lemme de l'étoile ce mot se factorise sous la forme uvw avec $|v| \ge 1$ et pour tout $n \in \mathbb{N}$, $uv^nw \in \mathbb{L}$. En posant $v = 1^j$ on prouve que pour tout $n \in \mathbb{N}$ le mot 1^{p+nj} appartient à L, autrement dit que $2^{p+nj} - 1$ est premier. Mais en prenant n = p on aboutit à une absurdité car $2^{p(j+1)} - 1$ est divisible par $2^{j+1} - 1 \ge 3$.