L	Т	Р	С
4	0	0	4

Course Code: CSE415R02

INTERNET OF THINGS

Course Objective:

This course will help the learner to describe the fundamental concepts of IoT, to create small low-cost embedded systems and illustrate the IoT concept in real world Scenarios.

UNIT - I 15 Periods

Foundational Aspects: Emergence of IoT: Background & Vision - IoT as a disruptive Technology - Standardization. Concept of Smart Things / Objects: Things - Need - Commonly used smart things. WSN: Introduction - Characteristics - Types of WSN and Architecture - Network Topologies - Communication Protocols - Security in WSN. IoT Standards and Protocols: Overview - IoT Network Level - LPWAN - Wireless Technologies - Network Layer and encapsulation Protocols.

UNIT - II 15 Periods

Domain Specific IoTs: Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health and Lifestyle.

IoT and M2M: M2M - Difference between IoT and M2M - Software Defined Networks - Network Function virtualization - Need for IoT systems management - SNMP - Network Operator requirements - NETCONF - YANG - IoT system Management with NETCONF - YANG. **Developing IoT:** IoT Design Methodology: Purpose & Requirements Specification - Process Specification - Domain Model Specification - Information Model Specification - Service Specifications - IoT Level Specifications - Functional View Specification - Operational View Specification - Device & Component Integration - Application Development - Case study on IoT for Weather Monitoring.

UNIT - III 15 Periods

IoT Hardware, **Software and Middleware:** Sensors and Actuators - **Open Hardware:** IoT hardware - Prototyping Boards for IoT - **IoT middleware:** Introduction - Architectures - State-of-the-art IoT Middleware - IoT software Platforms - **Prototyping IoT applications:** Benefits - Physical Design Considerations - Logical Design - API - Embedded Code Writing - Real World Prototype.

UNIT - IV 15 Periods

Big Data Science and Analytics: Big IoT Data Science - Data Lake/Swamp - Relation between IoT and Big data - Big data Analytics in IoT - Tools - IoT in the Cloud - **Edge Analytics**: Near Real Time Sensor Stream Processing.

Cyber Security and Privacy: Introduction - Issues - Requirements - Technologies - System Security Controls - Best Practices for Securing IoT devices.

TEXT BOOKS

- 1. Surya Durbha, Jyoti Joglekar, Internet of Things, Oxford University Press, First Edition, 2021.
- 2. Arshdeep Bahga, Vijay Madisetti, *Internet of Things: A Hands of Approach*, University Press, First Edition, 2015.

SASTRA Deemed to be University

REFERENCES

- 1. Pethuru Raj, Anupama C.Raman, *The Internet of Things: Enabling Technologies, Platforms, and use cases*, CRC Press, First Edition, 2017.
- 2. HonbaZhou, *The Internet of things in the Cloud : A Middleware Perspective*, CRC Press, First Edition, 2012.
- 3. Adrian McEwen, Hakim Cassimally, *Designing the Internet things*, John Wiley and Sons, First Edition, 2014.

UNITWISE LEARNING OUTCOMES

Upon successful completion of each unit, the learner will be able to

Unit I	 Explain the core components of an IoT 	
	 Overview of various Wireless technologies for IoT 	
Unit II	Describes a generic design methodology for IoT Platforms	
Unit III	 Gain Knowledge on various sensors for IoT applications 	
	Classify IoT Middleware	
Unit IV	 Assess Security issues for a given IoT application 	
	Gain Insight into data science aspects for IoT	

COURSE LEARNING OUTCOMES

Upon successful completion of this course, the learner will be able to

CO No.	Course outcomes	HCL
CO1	Narrate the core components of an IoT	K2
CO2	Describes a generic design methodology for IoT Platforms	K2
CO3	Acquire knowledge of various actuators, sensors and different middleware for IoT applications	КЗ
CO4	Ability to prototype an IoT Product Idea	K6
CO5	Gain Insight into data science aspects for IoT	K2
CO6	Assess Security issues for a given IoT application	K6