TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 05.11.-09.11.2018

3. Übung Analysis III für Mathematiker(innen)

(mehrdimensionales Riemann Integral)

Themen der großen Übung am 29.10.

Ist Q ein Quader im \mathbb{R}^n , so dass $Q = Q_1 \cup Q_2 \cup \ldots \cup Q_k$ für ein $k \in \mathbb{N}$ gilt, wobei die Q_i eine Familie von volumenfremden Quadern sind (d.h. $Q_j \cap Q_j$ hat leeres Inneres für alle $i \neq j$). Wir beweisen für stetiges $F: Q \to \mathbb{R}$ folgende Identität

$$\int_{Q} F \, \mathrm{d}x = \sum_{i=1}^{k} \int_{Q_i} F \, \mathrm{d}x.$$

Daraus schließen wir, dass die Definition des Integrals $\int_Q h \, dx$ für eine Funktion $h \in \mathcal{C}_c(\mathbb{R}^d)$ nicht von der Wahl des Quaders Q mit supp $h \subseteq Q$ abhängt.

Satz Seien a < b reelle Zahlen und $U \subseteq \mathbb{R}^n$ offen, $f: [a,b] \times U \to \mathbb{R}$ eine stetige Funktion, welche in U stetig partiell differenzierbar sei. Dann ist auch

$$F: U \to \mathbb{R}, \qquad v \mapsto \int_a^b f(t, v) \, \mathrm{d}t,$$

stetig differenzierbar mit $\frac{d}{dv}F = \int_a^b \frac{\partial}{\partial v} f(t,v) dt$.

Satz von Fubini für stetige Funktionen: Seien $Q = \prod_{i=1}^n [a_i, b_i]$ ein kompakter Quader in \mathbb{R}^n und $f: Q \to \mathbb{R}$ stetig. Dann gilt für jede Permutation i_1, \ldots, i_n der Zahlen $\{1, \ldots, n\}$, dass die folgenden Integrale gleich sind

$$\int_{a_n}^{b_n} \left(\cdots \left(\int_{a_1}^{b_1} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \right) \dots \right) \mathrm{d}x_n = \int_{a_{i_n}}^{b_{i_n}} \left(\cdots \left(\int_{a_{i_1}}^{b_{i_1}} f(x_1, \dots, x_n) \, \mathrm{d}x_{i_1} \right) \dots \right) \mathrm{d}x_{i_n}$$

Tutoriumsvorschläge

5. Aufgabe

Sind X, Y topologische Räume, dann definieren wir für eine stetige Funktion $f: X \to \mathbb{R}$ den Träger supp $f := \{x \in X \mid f(x) \neq 0\}$. Mit $\mathcal{C}_{c}(X)$ bezeichnen wir die Menge aller stetigen Funktionen $X \to \mathbb{R}$ mit kompaktem Träger. Beweisen Sie:

- (i) Für $f, g: X \to \mathbb{R}$ gilt $\operatorname{supp}(f+g) \subseteq \operatorname{supp} f \cup \operatorname{supp} g$.
- (ii) $C_{c}(X)$ ist ein Untervektorraum von C(X).
- (iii) Ist X kompakt so gilt $C_c(X) = C(X)$.
- (iv) Zeigen Sie, dass für $X = \mathbb{R}^n$ die Abbildung

$$F \mapsto ||F||_1 := \int_Q |F(x)| \, \mathrm{d}x, \quad \text{falls } Q \text{ ein Quader ist mit supp } F \subseteq Q,$$

eine Norm auf $\mathcal{C}_{c}(\mathbb{R}^{n})$ definiert.

6. Aufgabe

Berechnen Sie die folgenden Integrale

- (i) $I := \int_{\mathcal{Q}} (1 + x \cos(xy) \, dx \, dy$ mit $Q := [0, 1] \times [0, \pi]$,
- (ii) $J := \int_Q \frac{\mathrm{e}^z}{x+y} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$ mit $Q := [1,2] \times [0,1] \times [-1,1]$.

7. Aufgabe

Wir wollen zeigen, dass der normierte Raum $(C_c(\mathbb{R}), \|\cdot\|_1)$ aus Aufgabe 5 nicht vollständig ist. Gehen Sie dazu wie folgt vor: Für jedes $k \in \mathbb{N} \setminus \{0\}$ sei eine stetige Funktion $f_k \colon \mathbb{R} \to [0,1]$ mit folgenden Eigenschaften gewählt: $f_k(t) = 1$ für $|t| \leq 1 - \frac{1}{k}$ und $f_k(t) = 0$ für $|t| \geq 1$.

Machen Sie sich klar, dass eine solche Folge $(f_k)_k$ existiert (Zeichnung!). Zeigen Sie, dass

- (i) $(f_k)_k$ eine Cauchy-Folge bezüglich $\|\cdot\|_1$ bildet.
- (ii) es kein $f \in \mathcal{C}_{c}(\mathbb{R})$ mit $||f f_{k}||_{1} \to_{k \to \infty} 0$ geben kann.

Hausaufgaben

7. Aufgabe (6 Punkte)

(i) Seien X,Y topologische Räume, $(E,\|\cdot\|)$ ein normierter Raum und $f\colon X\times Y\to E$ eine stetige Abbildung. Sei $K\subseteq Y$ kompakt und r>0 gegeben. Zeigen Sie, dass für jedes $x\in X$ offene Mengen $U\subseteq X$ mit $x\in U$ und $V\subseteq Y$ mit $K\subseteq V$ existieren, so dass folgende Abschätzung gilt:

$$||f(u,v) - f(x,v)|| < r$$
 $\forall (u,v) \in U \times V.$

(ii) Sei P ein topologischer Raum und a < b reelle Zahlen, sowie $f: P \times [a, b] \to \mathbb{R}$ eine stetige Abbildung. Zeigen Sie, dass die Funktion

$$g \colon P \to \mathbb{R}, \quad g(p) := \int_a^b f(p,t) \, \mathrm{d}t$$

wohldefiniert und stetig ist.

8. Aufgabe (4 Punkte)

Es seien $\varphi_1, \ldots, \varphi_d \in \mathcal{C}_c(\mathbb{R})$ gegeben. Zeigen Sie, dass die Funktion

$$f := \varphi_1 \otimes \cdots \otimes \varphi_d \colon \mathbb{R}^d \to \mathbb{R}, \qquad (x_1, \dots, x_d) \mapsto \prod_{i=1}^d \varphi_i(x_i),$$

in $\mathcal{C}_{\mathrm{c}}(\mathbb{R}^d)$ liegt und dass gilt:

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \prod_{i=1}^d \int_{\mathbb{R}} \varphi_i(x_i) \, \mathrm{d}x_i.$$

9. Aufgabe (5 Punkte)

Zeigen Sie, dass die Abbildung

$$J \colon \mathcal{C}_{\mathrm{c}}(\mathbb{R}^d) \to \mathbb{R}, \quad J(f) := \sum_{z \in \mathbb{Z}^d} f(z),$$

wohldefiniert ist, und untersuchen Sie J auf Monotonie, Linearität und Translationsinvarianz.

10. Aufgabe (5 Punkte)

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} (x^3 - x^2)(y - 1)\sin(xy), & \text{falls } (x,y) \in [0,1]^2, \\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie, dass f in $\mathcal{C}_{c}(\mathbb{R}^{2})$ liegt, und berechnen Sie den Wert des Integrals $\int_{\mathbb{R}^{2}} f(x,y) d(x,y)$.

Gesamtpunktzahl: 20