Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, Hari Balakrishnan

M.I.T.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

November 7, 2013

Switch Data Planes today

Two key decisions on a per-packet basis:

- ► Scheduling: Which packet should be transmitted next?
- ► Queue Management: How long can queues grow? Which packet to drop?

The Data Plane is continuously evolving

▶ The long lineage of in-network algorithms:

- Each scheme wins in its own evaluation.
- ► Some believe in a "silver bullet" knobless in-network method.

We disagree: There is no silver bullet!

- ▶ Different applications care about different objectives.
- Applications use different transport protocols.
- Networks are heterogeneous.

Early symptoms

- Hard to configure wired AQM for wireless links
- Several distinct in-network schemes for datacenters
 - ▶ DCTCP, HULL, D3, DeTail, PDQ, pFabric
- ▶ No consensus on the "right metric"
 - Minimizing missed deadlines
 - ► Flow Completion Time
 - Latency
 - Throughput
 - Tail Latency
 - **.** . . .

Quantifying "No Silver Bullet": Network Configurations

Configuration	Description
CoDel+FCFS	One shared FCFS queue with CoDel
CoDel+FQ	Per-flow fair queueing with CoDel on each queue
Bufferbloat+FQ	Per-flow fair queueing with deep buffers on each queue

Quantifying "No Silver Bullet": Workloads and Objectives

Workload	Description	Objective
Bulk	Long-running TCP flow	Maximize throughput
Web	Switched TCP flow with ON and OFF periods	Minimize 99.9 %ile flow completion time
Interactive	Long-running real-time streaming app	Maximize throughput delay, i.e., "power"

Bufferbloat+FQ

Why is no single data plane configuration the best?

- Bufferbloat on variable-rate links helps throughput!
 - ▶ Variable-rate links have an inherent delay-throughput tradeoff
- ▶ FCFS is preferable to Fair Queuing in some cases
 - When equally aggressive flows compete, they don't need protection from each other
 - Helps reduce tail packet delay
- ► Fair Queuing is required in some cases
 - ▶ When competing flows aren't equally aggressive, isolation helps

So what should the network designer do?

Architect a flexible data plane

- Programmable queue management and scheduling
- Not just for selecting among pre-built choices, but to change behavior in the field
- ▶ Because there is no silver bullet and innovation will continue!

Controlled flexibility: Want performance, security, reliability

(Or, why this isn't the same as "active networks")

- ▶ Provide interfaces to the head and tail of queues
- Operators specify only queue-management/scheduling logic
- Code size limits constrain program sophistication
- ▶ No access to packet payloads (for now)

Building such a data plane in four parts

- Hardware gadgets (primitives)
 - ► Random number generators (RED, BLUE)
 - Binary tree of comparators (pFabric, SRPT)
 - EWMA estimators (RED, AVQ, CSFQ)
- ▶ I/O interfaces
 - Drop/mark head/tail of queue
 - Interrupts for enqueue/dequeue
 - Read packet headers
- State maintenance
 - Per-flow (WFQ, DRR)
 - Per-src address (PF)
 - ► For fastest flows alone (AFD)
- A domain-specific instruction set
 - Expresses control flow
 - ▶ Implements new functions unavailable in hardware

Example implementation: CoDel

Synthesis numbers on Xilinx Kintex-7:

Resource	Usage	Fraction of FPGA
Slice logic	1,256	1%
Slice logic dist.	1,975	2%
IO/GTX ports	27	2%
DSP slices	0	0%
Maximum speed	$12.9 \times 10^6 \text{ pkts/s}$	

Limitations and Practical Considerations:

- ► Cannot express several network functions that need payloads.
- ▶ How do applications signal objectives to the network?
- ► Feasibility at 10G on high port-density switches.
- Mechanism to map flows onto per-port queues.
- Energy and Area overheads.

Conclusion

- ► There is no silver bullet to in-network resource control because of application and network diversity
- ▶ Algorithms will continue to evolve: the data plane should help
- Extending SDN to the data plane in a thoughtful manner is a good research direction with potentially high real-world impact