Multiclass Authorship Attribution of Co-Authored Rap Lyrics

Vlad Pasca

Abstract

Authorship attribution tasks comprise labelling texts according to the likely author from viable candidates. Authorship attribution places more emphasis on stylometric analysis, rather than text topics author profiling. Multiclass classification (MC) concerns discrete classification tasks where more than two candidate classes are available. This study conducts MC upon the discographies of seven rap groups webscraped from AZLyrics: Wu-Tang Clan, Mobb Deep, Outkast, NWA, CunninLynguists, Gang Starr and A Tribe Called Quest. Experiments evaluated six extracted feature sets with linear Support-vector Machine (SVM) classifiers. Results, whilst better than random chance, highlighted the difficulty of MC, with the highest multiclass area under the curve achieved being 0.582. Exploratory k-means cluster analysis probed the differences between rap group discographies.

1 Introduction

000

001

002

003

004

005

006

007

800

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

Authorship attribution falls under stylometry, which analyses literary styles (Holmes, 1998), and comprises assignment of texts to predefined candidate authors. Howedi and Mohd (2014) depict previous applications of authorship attribution, namely detecting plagiarism identifying authors when identities pseudoanonymised or disputed (Mosteller and Wallace, 2012). As Zhao (2007) stresses, a critical assumption behind automated authorship attribution and stylometry analyses is that each author has recurring stylometric idiosyncrasies in the way they write which cannot be overridden, even by will. However, some have cautioned against this assumption (Grant, 2007).

Regardless, authorship attribution seeks to grasp unique literary styles through extracting features that are representative of the writing style of the text's author. 050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

069

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

090

091

092

093

094

095

096

097

098

099

2 Related Work

Previously, authorship attribution has used text from sources like Wikipedia editors (Macke and Hirshman, 2015), tweets (Anderson, et al., 2016; Day, 2018), novels (Gamon, 2004), SMS messages (Ishihara, 2011), Arabic texts (Howedi and Mohd, 2014; Sayoud, 2014; Al-Sarem and Emara, 2019), and English and Chinese online messages (Zheng, et al., 2006).

An example of lyrics being used for text classification tasks is Mayer, et al., (2008), who conducted music genre classification. Tarlin (2016) conducted authorship attribution on 20 musical artists, including rappers. Authorship attribution of rap lyrics specifically has previously been done by Mara (2014) for 12 rap artists. However, Mara (2014) utilised only one rap group (the duo Ying Yang Twins). This study aimed to build upon this by conducting multiclass authorship attribution for rap groups of varying sizes (members). One presumption this work had was that songs from rap could potentially reflect multiple stylometric styles due to the influence of multiple group members. Thus, the rationale behind this work was to investigate whether multiclass authorship classification of co-authored texts can achieve comparable results to literature given the potential noise from multiple co-authors.

3 Data

Discographies from the seven rap groups were web scraped from AZLyrics. Tarlin (2016), also extracted song lyrics from this website. Table 1 highlights the number of web scraped songs by rap group before and after manually removing

duplicate songs. Note, we categorised duplicate songs not by duplicate song name, but rather song content. Thus, remixes of songs with different lyrics were not excluded.

-	Number of Songs		
Rap Group	Before Duplicate Removal	After Duplicate Removal	
Wu-Tang Clan	246	246	
Mobb Deep	164	162	
NWA	44	43	
Outkast	134	134	
CunninLynguists	130	112	
Gang Starr	141	141	
A Tribe Called Ouest	157	150	

Table 1: Songs by rap group before and after duplicate removal

For the purpose of the MC task, each song line (as defined on AZLyrics) was a data instance.

4 Methodology

4.1 Feature Extraction

Six feature sets were extracted from texts: -

1. Part-of-Speech (POS) and Named Entities Frequencies

Named entities (person, money, date, organisation and locations) were extracted via the entity wrapper package (Rinker, 2017). POS frequencies were extracted via the spaCy wrapper available from Kleinberg (2018).

2. Shallow Text Features

These included the percent of characters that were numbers, punctuation, and alphabet letters. Furthermore, the number of tokens, syllables ¹ and sentences (via quanteda R package), text length, characters and syllables ¹ per word (texts were tokenised by whitespace tokenisation) were extracted.

3. Lexical Features

This included Flesch Reading Ease¹ and Maas Lexical Diversity¹ as other lexical diversity metrics are text-length sensitive (Torruella and Capsada 2013). The percent of words that were monosyllabic, disyllabic, trisyllabic and

more than 4 syllables were extracted. The qdapdictionaries R package was used to gather word lists from which the percent of function stopword, (Gamon. 2004: Stamatatos, 2009), contraction, interjection (Tarlin, (2016) used counts), power, strong, submission, amplification, deamplification, negation and common (as defined by Fry, 1997) words were extracted. The AFINN and bing word lists from the tidytext R package were used to construct positive and negative word lists (inspired by Bouazizi and Ohtsuki, 2016), from which the percent of words within lyrics that occurred within these lists were extracted.

These features were weighted with TF-IDF and sparsity corrected (0.99). These are common lexical features extracted for text classification tasks (e.g. Howedi and Mohd,

Word unigrams, bigrams, trigrams

classification tasks (e.g. Howedi and Mohd, 2014). Texts were preprocessed via lowercasing, removing stopwords, punctuation and word stemming. Mayer, et al., (2008) showed stemming improved SVM

5. Top 10 Word n-grams

These were filtered from feature set 4 via the topfeatures function from the quanteda R package.

accuracy for music genre classification.

6. Combined Feature Sets

Multiple feature set combinations were attempted: -

- Feature Sets 1 and 3
- Feature Sets 1 and 5
- Feature Sets 3 and 5
- Feature Sets 1, 3 and 5

Only feature sets 1, 3 and 5 were combined because of time constraints (larger feature vectors extend training time) and moreover, feature sets 2 and 4 were noisy, causing unsuccessful model convergence in isolation.

4.2 Feature Selection

Feature selection reduces data dimensionality (Ikonomakis, et al., 2005), which helps avoid model overfitting (Howedi and Mohd, 2014). Using the trainControl function from the caret R package, features with zero variance were

¹ Rows where these features returned non-numeric (NaN) values were excluded.

excluded, features were scaled and centered and finally, the resampling method of bootstrapping (Efron, 1983) for prediction error estimation was utilised. Bootstrapping was chosen over other methods, like k-fold cross validation due to time and computing constraints.

4.3 SVM Classifier

The SVM classifier was chosen due to its suitability for learning tasks with large datasets and high dimensionality (Elayidom, et al. 2013).

The SVM classifier was chosen due to its suitability for learning tasks with large datasets and high dimensionality (Elayidom, et al. 2013). Initially, training was attempted with all 60,702 data instances with k-fold cross validation (k=10). However, due to time constraints and class imbalances (see Table 2), this configuration was abandoned.

Rap Group	Number of data instances before downsampling
Wu-Tang Clan	16094
Mobb Deep	10765
NWA	3368
Outkast	6870
CunninLynguists	8772
Gang Starr	7558
A Tribe Called Quest	7275

Table 2: Data instances (song lines) by rap group before downsampling

Instead, each class was downsampled to 3368 randomly selected data instances (the number of samples in the minority class). Furthermore, 70-30 holdout validation was chosen.

4.3.1 Model Performance Evaluation

Model performance was evaluated with accuracy (macro average and one vs all), precision, recall and F1 (macro, micro and weighted average metrics). Additionally, multiclass area under the curve (AUC) was computed using the method proposed by Hand and Till (2001), which was available with the multiclass.roc function (pROC R package). Kappa statistics, which complement AUC (Ben-David 2008), are also reported.

5 Results

5.1 Multiclass Classification

For brevity, only the one vs all accuracy (Bleik and Gauher, 2016), multiclass AUC and Kappa statistics for SVM models are reported in Table 3. Appendix A reports the other performance metrics discussed in Section 4.3.1. As mentioned in Section 4.1, training with feature sets 2 and 4 was unsuccessful (models could not converge, and those models could not make predictions); the same was true for every combined feature set except for the combination of feature set 3 and 5. Thus, in Table 3 and Appendix A, only results from feature sets 1, 3, 5 and 3+5 are reported. Multiclass AUC results showed models achieved performance better than random chance. Contrastingly though, the low Kappa statistics suggests the accuracy of models were low compared to random chance. All four feature sets produced average one vs all accuracies above 75%.

		One vs All Accuracy	Multiclass AUC	Kappa
st	1	76.449	0.557	0.034
Set	3	76.945	0.574	0.059
Feature	5	76.274	0.525	0.031
Fea	3+5	77.171	0.582	0.068

Table 3: Multiclass AUC, Kappa and average one vs all accuracy by feature set

In agreeance with literature, Table 3 and micro, macro and weighted metric averages (Appendix A) highlighted that a combined feature set achieves best performance. Another insight was that, for example, in terms of F1 scores with feature set 3+5, classification of the rap groups with more members was marginally worse compared to smaller rap groups. One exception was the duo Outkast for which the lowest F1 was achieved with feature set 3+5, possibly due to having a more diverse literary style.

Overall, performance was nearly comparable to Tarlin (2016) and Mara (2014), although they both had a higher number of classes.

5.2 Cluster Analysis

Mara (2014) suggested class label reduction through clustering rap artists since increased classes increases error rate, which this study highlighted. To investigate the feasibility of class reduction, exploratory unsupervised learning (k-means cluster analysis) was conducted on the

downsampled dataset with feature sets 3 and 5 combined (as this produced the best multiclass authorship attribution performance in Section 5.1.)

The number of centres were probed with a scree plot and the silhouette method. The silhouette method suggested two clusters and the scree plot suggested between two to three (see Appendix B for figures). We decided upon two clusters. Note, if the cluster analysis was conducted on the full dataset and all features, perhaps a different number of clusters could have been detected.

Most features were nearly indistinguishable between clusters, but some lexical features differed more prominently between clusters. Relative to cluster 2, cluster 1 lyrics had easier readability, higher lexical diversity, percentage of monosyllabic words, stopwords, function, strong and common words and fewer polysyllabic words.

Based on these two clusters, a binary classification task was produced with an SVM model trained and tested on feature set 3+5, with the same settings as the previous experiments (see Appendix C for Confusion Matrix). Table 4 displays the performance metrics achieved. Table 4 highlights that class reduction via cluster analysis, and subsequent cluster classification improves performance (although of course, individual rap groups can no longer be distinguished).

	Performance Metrics					
	A	K	Pr	Re	F1	AUC
C1	99.788	99.530	99.849	99.828	99.838	1
C2			99 671	99 712	99 692	1

Table 4: Performance Metrics for Cluster Classification SVM model (C1=Cluster 1, C2=Cluster 2, A=Accuracy, K=Kappa, Pr=Precision, Re=Recall)

Future work could probe more sophisticated stylometric cluster analysis techniques, including dendrograms and consensus trees (Eder, 2017).

6 Discussion

The multiclass authorship attribution experiment had several goals. Firstly, one aim was to identify features which could represent rap lyrics from rap groups. Features were inspired by literature as well as exploration. Shallow text features (feature set 2) and n-grams (feature Set 4) proved to be too noisy to permit model convergence. But, the reduction to top 10 n-grams proved effective. As found in authorship attribution literature (Gamon, 2004), combining feature sets achieved best performance,

although most feature set combinations were too noisy to permit model convergence, highlighting the difficulty of multiclass classification. Next most effective were lexical features, then part-of-speech and named entity counts, followed by top 10 n-grams.

Secondly, we probed if authorship attribution on rap co-authored lyrics from rap groups could achieve comparable performance to previous studies with lyrics from single authors. The multiclass SVM performance in this study was mostly in line with such literature. Furthermore, larger rap groups worsened classification performance.

Thirdly, this study explored unsupervised rap group lyric clustering. Subsequent supervised cluster classification achieved higher performance relative to multiclass authorship attribution.

7 Limitations and Future Work

7.1 Sample Text Length

With 10,000 words per author being recognised as a reliable minimum for capturing author stylometry within a dataset intended authorship attribution (Burrows, 2006), the major shortcoming of this work may lie in having short sample texts. Authorship attribution literature has repeatedly shown that short text samples have a detrimental effect upon classifier performance (Eder, 2014; Luyckx 2010). One reason for this is because extracted text features from short texts may not be representative of an author's stylometry (Stamatatos, 2009), and could also be sensitive to producing extreme values. One exception may be Anderson, et al., (2016) who demonstrated up to 60% authorship attribution accuracy on tweets. Howedi and Mohd (2014), Sanderson and Guenter (2006), Koppel, et al. (2007), Ouamour and Sayoud (2012) showed promising results with using relatively short text samples (above 300 words).

However, increasing sample text length to that amount here would effectively have meant each song would be one data instance, resulting in an extremely small dataset (e.g. NWA had only 43 songs after duplicate song removal). This would also have meant using a different classifier more suited to small datasets, like Naïve Bayes (Varghese, 2018).

7.2 Feature Sets

Other additional features could have been extracted, like swear count (Tarlin, 2016). Gamon (2004) extracted deeper syntactic and semantic dependency information. Howedi and Mohd (2014) and Sayoud (2014) extracted character-level unigrams, bigrams, trigrams and tetragrams (as well as word tetragrams). Furthermore, Howedi and Mohd (2014) also experimented with the impact of including punctuation for q-gram extractions. Similarly, this study could have explored other n-gram extractions, as this study used lowercase text, removed punctuation and stopwords and used word stemming.

Additionally, instead of using TF-IDF, other feature weighting methods could have been probed, like Information Gain (Mazyad, et al., 2018) or simply feature presence (Xia, et al., 2011; Pang, et al., 2002). Furthermore, for frequency-based features, like POS counts, frequency thresholds could have been employed as this has been shown to impact performance (Gamon 2004).

7.3 Training Set Size

More samples can moderately increase model performance in text classification tasks, like sentiment classification (Abdelwahab, et al., 2015) and authorship attribution (Mara, 2014). However, we believed that downsampling was more appropriate in this context due to the potential negative impacts of class imbalances (Hensman and Masko, 2015). Class imbalances cause biased predictions due to skewed class distributions and cost sensitivity – unequal cost of misclassification errors – (Brownlee, 2020). Alternatively, utilising algorithms more robust to imbalanced classes, like random forest vote ensemble classifiers may have improved performance (Elite Data Science, 2019).

7.4 Data

AZLyrics is a community curated lyrics website. During web scraping, there were inconsistencies noticed between webpages, like punctuation usage (e.g. "[]" sometimes containing names of the artist speaking and other times words and expressions being said). This made web scraping and data cleaning more complicated, likely resulting in texts that are not exactly ground truth lyrics. Perhaps data from other lyrics website like Genius, as Mara (2014) used, may have been cleaner.

Furthermore, a key assumption was made that each song had all rap group members (co-authors)

contributing to the song. This was likely a false assumption. Not every song had every group member feature on it (and it is unknown if the absent members influenced other artist's lyrics) and some songs had other external artists featuring on songs. Future work could exclude such songs from datasets and explore the impact on performance. Additionally, as Mara (2014) pointed out, investigating ghost-written rap songs could be an interesting follow-up.

7.5 Classifier

The SVM classifier displayed relatively low performance, although still better than random chance. One reason for this may be that the extracted feature vectors were likely not linearly separable (Tarlin, 2016; Kotsiantis, 2007). SVM performance could have been investigated with other feature selection methods like bootstrapping variants (e.g. 0.632 and 0.632+). Furthermore, other validation methods beyond holdout could have achieved higher classification performance, like k-fold cross validation (Yadav and Shukla, 2016). Other examples include repeated holdout and repeated k-fold cross validation.

Future work could further trial the usage of other classifiers like Naïve Bayes, Power Mean SVM, random forest and neural classifiers for authorship attribution tasks; the latter two seem particularly promising based on Tarlin (2016) and Anderson, et al., (2016), and Macke and Hirshman (2015) respectively.

8 Conclusion

This work set out to explore whether performance achieved on multiclass authorship attribution of co-authored (collaborative) rap lyrics was comparable to previous authorship attribution literature on single author lyrics. The discographies of seven rap groups were web scraped. Six features sets were extracted, and performance was nearly comparable to literature. Unsupervised cluster analysis spotlighted rap group literary style overlaps, which may rationalise the decreased multiclass task performance and failure of some models to converge. Future work could employ other classifiers, features, feature selection methods, validation methods and data, alongside exploring disputed ghost-written songs and sophisticated hierarchical stylometric clustering.

500		
501	References	Day, Siobahn Caroline . 2018. A Natural Language
502	Abdelwahab, Omar, Mohamed Bahgat, Christopher	Processing and Machine-Learning Based
503	J. Lowrance, and Adel Elmaghraby. 2015.	Approach to Authorship Attribution of
504	"Effect of Training Set Size on SVM and	Tweets. Dissertation, Greensboro: North
	Naïve Bayes for Twitter Sentiment	Carolina Agricultural and Technical State
505	Analysis." ISSPIT 2015 : 15th IEEE	University. Accessed April 25, 2020. https://search-proquest-
506	International Symposium on Signal	com.libproxy.ucl.ac.uk/docview/210070055
507	Processing and Information Technology. Abu Dhabi: IEEE. 46-51.	8?pq-origsite=primo.
508	Adu Diladi. ILLL. 40-31.	11 0 1
509	Al-Sarem, Mohammed , and Abdel-Hamid Emara.	Eder, Maciej . 2014. "Does size matter? Authorship
510	2019. "The effect of training set size in	attribution, small samples, big problem."
511	authorship attribution: application on short	Digital Scholarship in the Humanities Advance Access 30(2):167-182. Accessed
512	Arabic texts." International Journal of	April 25, 2020.
513	Electrical and Computer Engineering (IJECE) 9(1):652-659.	http://citeseerx.ist.psu.edu/viewdoc/downloa
514	(IJECE) $9(1).032-039.$	d?doi=10.1.1.687.5771&rep=rep1&type=pdf
515	Anderson, Rocha, Walter J. Scheirer, Christopher W.	
516	Forstall, Thiago Cavalcante, Antonio	E1 M ' 2017 BY' 1' ' 1 1
517	Theophilo, Bingyu Shen, Ariadne R. B.	Eder, Maciej . 2017. "Visualization in stylometry:
518	Carvalho, and Efstathios Stamatatos. 2016.	Cluster analysis using networks." <i>Digital Scholarship in the Humanities</i> 32(1), 50-64.
519	"Authorship Attribution for Social Media Forensics." <i>IEEE Transactions on</i>	Accessed April 2, 2020.
520	Information Forensics and Security 12(1):5-	https://watermark.silverchair.com/fqv061.pd
521	33.	f?token=AQECAHi208BE49Ooan9kkhW_E
522		rcy7Dm3ZL_9Cf3qfKAc485ysgAAAmswg
523	Ben-David, Arie. 2008. "About the relationship	gJnBgkqhkiG9w0BBwagggJYMIICVAIBA
524	between ROC curves and Cohen's kappa."	DCCAk0GCSqGSIb3DQEHATAeBglghkg
525	Engineering Applications of Artificial	BZQMEAS4wEQQMyy6qnK_XC8aFSxcfA
526	Intelligence 21(6):874-882.	gEQgIICHtAD5nv6ZJGNQRGVlskTbYp0s
527	Bleik, Said, and Shaheen Gauher. 2016. Computing	0z_vdU19qfPLgyL3mMhgs9O.
528	Classification Evaluation Metrics in R.	Efron, Bradley. 1983. "Estimating the error rate of a
529	March 11. Accessed April 26, 2020.	prediction rule: improvement on cross-
530	https://blog.revolutionanalytics.com/2016/03	validation." Journal of the American
531	/com_class_eval_metrics_r.html#kappa.	Statistical Association 78(382):316-331.
	Bouazizi, Mondher, and Tomoaki Ohtsuki. 2016.	Accessed April 25, 2020.
532	"Sentiment Analysis: from Binary to Multi-	https://people.eecs.berkeley.edu/~jordan/sail/readings/archive/efron-improve_cv.pdf.
533	Class Classification; A Pattern-Based	readings/archive/enon-improve_cv.pdr.
534	Approach for Multi-Class Sentiment	Elayidom, M. Sudheep, Chinchu Jose, Anitta
535	Analysis in Twitter." ICC 2016 : IEEE	Puthussery, and Neenu K Sasi. 2013. "Text
536	International Conference on	Classification for Authorship Attribution."
537	Communications. Kuala Lumpur: IEEE. 1-6.	arXiv preprint arXiv:1310.4909. Accessed
538	Brownlee, Jason. 2020. Why Is Imbalanced	April 25, 2020.
539	Classification Difficult? February 17.	https://arxiv.org/ftp/arxiv/papers/1310/1310. 4909.pdf.
540	Accessed April 25, 2020.	4909.pui.
541	https://machinelearningmastery.com/imbalan	Elite Data Science. 2019. How to Handle Imbalanced
542	ced-classification-is-hard/.	Classes in Machine Learning. Accessed
543	Burrows, John. 2006. "All the way through: testing	April 25, 2020.
544	for authorship in different frequency strata."	https://elitedatascience.com/imbalanced-
545	Literary and Linguistic Computing 22(1):27-	classes.
546	47. Accessed April 25, 2020.	Fry, E. B. 1997. Fry 1000 instant words.
547	http://citeseerx.ist.psu.edu/viewdoc/downloa	Lincolnwood, IL: Contemporary Books.
548	d?doi=10.1.1.872.4886&rep=rep1&type=pdf	
549	•	

600	Gamon, Michael . 2004. "Linguistic correlates of	https://www.aclweb.org/anthology/U11-
601	style: authorship classification with deep	1008.pdf.
602	linguistic analysis features." Proceedings of the 20th International Conference on	Kleinberg, Bennett Aaron Ruben . 2018.
603	Computational Linguistics. Geneva:	r_helper_functions. April 6. Accessed April
604	Association for Computational Linguistics.	25, 2020. https://github.com/ben-
605	611–617. Accessed April 25, 2020.	aaron188/r_helper_functions.
606	https://www.aclweb.org/anthology/C04-	Koppel, Moshe, Jonathan Schler, and Elisheva
607	1088.pdf.	Bonchek-Dokow. 2007. "Measuring
608	Creat Tim 2007 "Overtifying syidenes in forensis	differentiability: Unmasking
609	Grant, Tim. 2007. "Quantifying evidence in forensic authorship analysis." <i>International Journal</i>	pseudonymous." Journal of Machine
610	of Speech, Language & the Law 14(1):1-25.	Learning Research 8:1261-1276. Accessed
611		April 25, 2020.
612	Hand, David J., and Robert J. Till. 2001. "A Simple	http://www.jmlr.org/papers/volume8/koppel
613	Generalisation of the Area Under the	07a/koppel07a.pdf.
	ROCCurve for Multiple Class Classification	Kotsiantis, Sotiris B. 2007. "Supervised Machine
614	Problems." <i>Machine Learning</i> 45, 171–186.	Learning: A Review of Classification
615	Accessed April 18, 2020. https://link.springer.com/content/pdf/10.102	Techniques." In Emerging Artificial
616	3/A:1010920819831.pdf.	Intelligence Applications in Computer
617	3/A.1010/2001/031.pui.	Engineering, by Ilias G. Maglogiannis, 249-
618	Hensman, Paulina, and David Masko. 2015. The	268. Amsterdam: IOS Press.
619	Impact of Imbalanced Training Data for	Luyckx, Kim. 2010. Scalability Issues in Authorship
620	Convolutional Neural Networks. Stockholm:	Attribution. Antwerp: PhD Thesis, Faculty of
621	KTH Royal Institute of Technology.	Arts and Philosophy, Dutch UPA University.
622	Accessed April 25, 2020. http://www.diva-	Accessed April 25, 2020.
623	portal.org/smash/get/diva2:811111/FULLTE XT01.pdf.	https://www.researchgate.net/profile/Kim_L
624	A101.pui.	uyckx/publication/233759606_Scalability_is
625	Holmes, David I. 1998. "The Evolution of Stylometry	sues_in_authorship_attribution/links/0fcfd50
626	in Humanities Scholarship." Literary and	b4b1b4e6723000000/Scalability-issues-in-
627	Linguistic Computing 13(3):111-117.	authorship-attribution.pdf.
628	Howedi, Fatma, and Masnizah Mohd. 2014. "Text	Macke, Stephen, and Jason Hirshman. 2015. "Deep
629	Classification for Authorship Attribution	Sentence-Level Authorship Attribution." 1-
630	Using Naive Bayes Classifier with Limited	17. Accessed April 25, 2020.
631	Training Data." Computer Engineering and	https://pdfs.semanticscholar.org/4ba3/75450
632	Intelligent Systems 5(4):48-56.	cf7bbe4f0941abcb9fc0dac10b8217b.pdf.
633	Ikonomakis, M., S. Kotsiantis, and V. Tampakas.	Mara, Michael. 2014. "Artist Attribution via Song
634	2005. "Text Classification Using Machine	Lyrics." Accessed April 25, 2020.
635	Learning Techniques." WSEAS Transactions	http://cs229.stanford.edu/proj2014/Michael
636	on Computers 4(8):966-974. Accessed April	%20Mara,%20Artist%20Attribution%20via
637	25, 2020.	%20Song%20Lyrics.pdf.
	https://www.researchgate.net/profile/V_Tam	Mayer, Rudolf, Robert Neumayer, and Andreas
638	pakas/publication/228084521_Text_Classifi	Rauber. 2008. "Rhyme and Style Features
639	cation_Using_Machine_Learning_Techniqu	for Musical Genre Classification by Song
640	es/links/0c96051ee1dfda0e74000000.pdf.	Lyrics." ISMIR 2008 - Ninth International
641	Ishihara, Shunichi . 2011. "A Forensic Authorship	Conference on Music Information Retrieval.
642	Classification in SMS Messages: A	Philadelphia. 337-342. Accessed April 25,
643	Likelihood Ratio Based Approach Using N-	2020.
644	gram." Proceedings of Australasian	https://archives.ismir.net/ismir2008/paper/00
645	Language Technology Association	0235.pdf.
646	Workshop. Canberra: ACL. 47-56. Accessed	Mazyad, Ahmad, Fabien Teytaud, and Cyril Fonlupt.
647	April 25, 2020.	2018. "Information gain based term
648		weighting method for multi-label text
649		

700			750
700	classification task." Proceedings of SAI	Tarlin, Lee. 2017. "Authorship Attribution of Song	750 751
701	Intelligent Systems Conference. London:	Lyrics." Accessed April 25, 2020.	
702	Springer, Cham. 607-615. Accessed April	https://scholarship.tricolib.brynmawr.edu/bit	752
703	25, 2020. https://hal.archives-ouvertes.fr/hal-	stream/handle/10066/19067/Tarlin_thesis_2	753
704	01859697/document.	017.pdf?sequence=1.	754
705	Mosteller, Frederick, and David L. Wallace. 2012.	Torruella, Joan, and Ramon Capsada. 2013. "Lexical	755
706	Applied Bayesian and classical inference:	Statistics and Tipological Structures: A	756
707	the case of the Federalist papers. New York:	Measure of Lexical Richness." Procedia -	757
708	Springer Science & Business Media.	Social and Behavioral Sciences 95, 447–454.	758
709	Ouamour, Siham, and Halim Sayoud. 2012.	Accessed March 2, 2020.	759
710	"Authorship Attribution of Ancient Texts	https://core.ac.uk/download/pdf/82620241.p	760
711	Written by Ten Arabic Travelers Using."	df.	761
712	ICCIT 2012 : International Conference on	Varghese, Danny. 2018. Comparative Study on	762
713	Communications and Information.	Classic Machine Learning Algorithms.	763
714	Hammamet: IEEE. 44-47.	December 6. Accessed April 25, 2020.	764
715	Pang, Bo, Lillian Lee, and Shivakumar	https://towardsdatascience.com/comparative-	765
716	Vaithyanathan. 2002. "Thumbs up?	study-on-classic-machine-learning-	766
717	Sentiment Classification using Machine	algorithms-24f9ff6ab222.	767
718	Learning." Proceedings of the Conference on	Xia, R., C. Zong, and S. Li. 2011. "Ensemble of	768
719	Empirical Methods in Natural Language	feature sets and classification algorithms for	769
720	Processing (EMNLP). Philadelphia:	sentiment classification." Information	770
721	Association for Computational Linguistics.	Sciences 181(6), 1138–1152.	771
722	79-86.	Yadav, Sanjay, and Sanyam Shukla. 2016. "Analysis	772
723	Rinker, Tyler. 2017. Easy named entity extraction;	of k-fold cross-validation over hold-out	773
724	entity. October 1. Accessed April 25, 2020.	validation on colossal datasets for quality	774
725	https://github.com/trinker/entity.	classification." IEEE 6th International	775
726	G 1 G 1 1 G' G	Conference on Advanced Computing	776
727	Sanderson, Conrad, and Simon Guenter. 2006. "Short text authorship Attribution via Sequence	(IACC). Bhimavaram: IEEE. 78-83.	777
728	Kernels, Markov Chains and Author	Zhao, Ying. 2007. Effective authorship attribution in	778
729	Unmasking: An investigation." <i>Proceedings</i>	Large Document Collections. Melbourne,	779
730	of the 2006 Conference on Empirical	Victoria, Australia: PhD Thesis, School of	780
731	Methods in Natural Language Processing	Computer Science and Information	781
	(EMNLP 2006). Sydney: Association for	Technology, RMIT University.	
732	Computational Linguistics. 482–491.	Zheng, Rong, Jiexun Li, Hsinchun Chen, and Zan	782
733	Accessed April 25, 2020.	Huang. 2006. "A framework for authorship	783
734	https://www.aclweb.org/anthology/W06-	identification of online messages: Writing-	784
735	1657.pdf.	style features and classification techniques."	785
736	Sayoud, Halim . 2014. "Automatic Authorship	Journal of the American Society for	786
737	Classification of Two Ancient Books: Quran	Information Science and Technology	787
738	and Hadith." 2014 IEEE/ACS 11th	57(3):378-393.	788
739	International Conference on Computer		789
740	Systems and Applications (AICCSA). Doha:		790
741	IEEE. 666-671.		791
742	Stamatatos, Efstathios . 2009. "A Survey of Modern		792
743	Authorship Attribution Methods." Journal of		793
744	the American Society for information		794
745	<i>Science and Technology</i> 60(3):538-556.		795
746	Accessed April 25, 2020.		796
747	https://www.aflat.org/~walter/educational/m		797
748	aterial/Stamatatos_survey2009.pdf.		798
749			799

Appendices

Appendix A: Performance Metric Table For Feature Sets (FS1 = Feature Set 1, FS3 = Feature Set 3, FS5 = Feature Set 5, FS3+5 = Feature Set 3 + Feature Set 5)

	Performance Metric			
	Macro Average	Precision	Recall	F1
	Accuracy			
CunninLynguists	-	FS1= 18.689	FS1= 7.623	FS1= 10.830
(N=3368)		FS3 = 20.434	FS3 = 27.030	FS3 = 23.274
		FS5 = 16.167	FS5 = 77.426	FS5 = 26.749
		FS3+5=19.425	FS3+5=33.465	FS3+5=24.582
Gang Starr		FS1= 17.440	FS1= 27.525	FS1= 21.352
(N=3368)		FS3 = 20.204	FS3 = 23.564	FS3 = 21.755
		FS5=0	FS5=0	FS5=0 (NaN)
		FS3+5=20.939	FS3+5=22.970	FS3+5=21.907
Mobb Deep		FS1= 16.384	FS1 = 2.871	FS1 = 4.886
(N=3368)		FS3 = 19.539	FS3 = 26.040	FS3 = 22.326
		FS5 = 21.858	FS5 = 23.762	FS5 = 22.770
		FS3+5=22.647	FS3+5=25.248	FS3+5=23.876
NWA (N=3368)		FS1= 16.923	FS1= 15.248	FS1= 16.042
	777 17 107	FS3 = 19.882	FS3 = 16.634	FS3 = 18.113
	FS1= 17.185	FS5 = 16.162	FS5 = 11.089	FS5 = 13.153
	FS3= 19.307 FS5= 16.959	FS3+5=22.717	FS3+5=19.208	FS3+5=20.815
Outkast (N=3368)	FS3+5=20.099	FS1= 14.447	FS1 = 9.901	FS1= 11.758
(, , , , , , , , , , , , , , , , , , ,		FS3= 12.968	FS3= 5.149	FS3= 7.371
		FS5= 19.388	FS5 = 3.762	FS5 = 6.302
		FS3+5=16.820	FS3+5=7.228	FS3+5=10.108
A Tribe Called		FS1= 15.372	FS1= 18.020	FS1= 16.591
Quest (N=3368)		FS3 = 12.968	FS3 = 9.406	FS3 = 12.717
		FS5 = 8.421	FS5 = 0.792	FS5 = 1.448
		FS3+5=18.277	FS3+5=8.614	FS3+5=11.709
Wu-Tang Clan		FS1= 18.792	FS1= 39.109	FS1= 25.386
(N=3368)		FS3 = 18.649	FS3 = 27.327	FS3 = 22.169
		FS5 = 12.752	FS5 = 1.881	FS5 = 3.279
		FS3+5=18.168	FS3+5=23.960	FS3+5=20.666
		FS1= 16.867	FS1= 17.185	FS1= 15.263
	Macro Average	FS3= 18.758	FS3= 19.307	FS3= 18.246
	Metrics	FS5= 13.535	FS5= 16.959	FS5= 10.529
		FS3+5=19.856	FS3+5=20.099	FS3+5=19.095
	Miran A		FS1= 17.185	
	Micro Average		FS3= 19.307	
	Metrics		FS5= 16.959	
	(Precision=Recall=F1)		FS3+5=20.099	
		FS1= 16.867	FS1= 17.185	FS1= 15.263
	Weighted Average	FS3= 18.758	FS3= 19.307	FS3= 18.246
	Metrics	FS5= 13.535	FS5= 16.959	FS5= 10.529
	1.141140	FS3+5=19.856	FS3+5=20.099	FS3+5=19.095
			- 3.032	

Appendix B: Plots for determining K-means centroid value

K-Means Cluster Analysis Scree Plot

K-Means Cluster Analysis Silhouette Method

Appendix C: Confusion Matrix for Cluster Classification (Section 5.2)

		Actual Cluster	
		1	2
Predicted	1	4631	8
Cluster	2	7	2425