The Rational Zero Test

We can summarize our method for finding possible rational zeroes:

The Rational Zero Test

If
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

then every rational zero has the form $\frac{p}{q}$

where

p is a factor of a_0

and

q is a factor of a_n

For example:

with

$$h(x) = 3x^3 - 4x^2 + 6x - 6$$

Any rational zero of this function must be of the form $\frac{p}{q}$

Where p is a factor of 3 and q is a factor of -6

Which gives the following possible zeros:

$$\pm \frac{1}{3}$$
, $\pm \frac{2}{3}$, $\pm \frac{3}{3}$, $\pm \frac{6}{3}$ duplicates $\pm \frac{1}{1}$, $\pm \frac{2}{1}$, $\pm \frac{3}{1}$, $\pm \frac{6}{1}$

Eliminating the duplicates, we get:

$$\pm \frac{1}{3}$$
, $\pm \frac{2}{3}$, ± 1 , ± 2 , ± 3 , ± 6

Another example: find the possible rational zeroes of

$$p(x) = 4x^4 - 12x^3 - 2x^2 + 5x - 10$$

We are creating possible fractions in which ...

- √ factors of the leading coefficient (4) go in the denominator
- ✓ factors of the constant term (-10) go in the numerator

Here are the factors of 4:

Here are the factors of 10:

This gives us many possibilities initially:

$$\pm \frac{1}{4}, \pm \frac{2}{4}, \pm \frac{5}{4}, \pm \frac{10}{4}$$

$$\pm \frac{1}{2}, \pm \frac{2}{2}, \pm \frac{5}{2}, \pm \frac{10}{2}$$

$$\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{5}{1}, \pm \frac{10}{1}$$

Which after eliminating duplicates gives us:

$$\pm \frac{1}{4}$$
, $\pm \frac{1}{2}$, $\pm \frac{5}{4}$, $\pm \frac{5}{2}$, ± 1 , ± 2 , ± 5 , ± 10

Let's try a whole problem now:

Find the zeroes and graph:

$$g(x) = 2x^3 + 9x^2 - 6x - 18$$

First, since we need to graph g(x), we will get all the points we need for plotting the graph (which will also help our search for zeroes):

	2	9	-6	-18
0				-18
1	2	11	5	-13 = Zero alert,
2	2	13	20	22
3	2	15	39	99
0				-18
-1	2	7	-13	-5 last)
-2	2	5	-16	-34 Zero alert
-3	2	3	-15	27
-4	2	1	-10	22 Zero alerti
-5	2	-1	-1	-13
-6	2	-3	12	-90

Let's first go ahead and plot these points.

This will give us a visual sense of what's going on.

It will also help us to identify any mistakes in our computations!

Looking at my points, there's one that definitely seems not right.

Can you see which one?

If not, maybe I will go ahead and plot the two points that I was unsure about plotting because they were two big or two small:

$$g(3) = 99$$

$$g(-6) = -90$$

Of course here I must change the scale on my y-axis. I will go from -100 to 100 on the vertical axis.

Now the wrong point is more obvious . . .

So I go back to my synthetic substitution table and try x = -2 again:

	2	9	-6	-18
0				-18
1	2	11	5	-13
2	2	13	20	22
3	2	15	39	99
0				-18
-1	2	7	-13	⁻⁵ ► 14
-2	2	5	-16	-34
-3	2	3	-15	27
-4	2	1	-10	22
-5	2	-1	-1	-13

And then fix my graph:

Now the points can be seen as belonging to a smooth cubic curve, so I will draw the curve over them:

Now let's find the zeroes!

From the graph we can see that the g(x) crosses the x-axis three times . . .

. . . giving us three zeroes for the function:

teroes!

However, since none of these were integers . . .

... we can only hope that at least one is rational ...

... so we can find it using the

Rational Zero Test

Our function is

$$g(x) = 2x^3 + 9x^2 - 6x - 18$$

So any rational zero $x=rac{p}{q}$ must be such that

p is a factor of 18: {1, 2, 3, 6, 9, 18}

and

q is a factor of 2: $\{1, 2\}$

We have the following possibilities:

Which after simplifying and eliminating duplicates becomes:

$$\pm \frac{1}{2}$$
, $\pm \frac{3}{2}$, $\pm \frac{9}{2}$, ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18

But we know from both our table and graph that . . .

... our zeroes are not integers!

So those can be eliminated:

$$\pm \frac{1}{2}$$
, $\pm \frac{3}{2}$, $\pm \frac{9}{2}$, ± 1 , ± 2 , ± 3 , ± 6 , ± 18

Leaving:

$$\pm \frac{1}{2}$$
, $\pm \frac{3}{2}$, $\pm \frac{9}{2}$

Now let's look closely at our table to see which of the above could work:

	2	9	-6	-18
0				-18
1	2	11	5	-13 Zero
2	2	13	20	22
3	2	15	39	99
0				-18
-1	2	7	-13	-5 d - 2em
-2	2	5	-16	14
-3	2	3	-15	27
-4	2	1	-10	22 zero
→ -5	2	-1	-1	-13
-6	2	-3	12	-90

The table shows three zeroes:

of these are the flowers

- between 1 and 2between −1 and −2
- between -4 and -5

Thus we can now eliminate all possible rational zeroes except:

$$\frac{3}{2}$$
 and $-\frac{5}{2}$

We need to try them: Let's use synthetic substitution:

We find a zero at $x = \frac{3}{2}$. So we don't need to try $-\frac{5}{2}$!

Now we have that our function can be factored:

$$g(x) = (x - \frac{3}{2})(2x^2 + 12x + 12)$$

So to find our remaining zeroes we must solve:

$$2x^2 + 12x + 12 = 0$$

$$x^2 + 6x + 6 = 0$$

Which I will solve using the quadratic formula:

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(6)}}{2(1)}$$

$$x = \frac{-6 \pm \sqrt{36 - 24}}{2}$$

$$x = \frac{-6 \pm \sqrt{12}}{2}$$

$$x = \frac{-6 \pm 2\sqrt{3}}{2}$$

$$x = \frac{2\left(-3 \pm \sqrt{3}\right)}{2}$$

$$x = -3 \pm \sqrt{3}$$

 $x = \frac{2(-3 \pm \sqrt{3})}{2}$ From the numerator $x = -3 \pm \sqrt{3}$

So our zeroes to the function are: