

Six-Tube Freezable Radiator Testing and Model Correlation

Sean Lillibridge

NASA Johnson Space Center

Moses Navarro

Jacobs Engineering (ESCG)

ABSTRACT

Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft's surroundings and because of different thermal loads rejected during different mission phases.

However, freezing and thawing (recovering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop™ model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested, namely MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.