Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования Кафедра «Компьютерные технологии»

Геращенко А. С. Отчет по лабораторной работе «Использование метода имитации отжига для построения управляющих автоматов»

Вариант №7

Оглавление

B	ведение	3
	. Постановка задачи	
	1.1 Задача «Умный муравей — 1»	
2	. Автомат Мили	5
	2.1 Описание автомата Мили	
	2.2 Представление автомата	
3	. Метод имитации отжига	<u>5</u>
	3.1 Описание метода имитации отжига	<u>5</u>
	3.2 Алгоритм имитации отжига в общем виде	6
	3.3 Больцмановский отжиг	
	3.4 Отжиг Коши	
	3.5 Реализация отжига в рассматриваемой задаче	
	3.6 Функция приспособленности	
4	. Результаты	
	4.1 Результаты измерений функции приспособленности	
	4.2 Полученные автоматы	10
3	4.2 Полученные автоматыаключение	12
	сточники	

Введение

Цель лабораторной работы — сравнить эффективность работы Больцмановского отжига и отжига Коши. В данной работе эффективность работы алгоритмов рассматривается на примере построения конечного автомата Мили, решающего задачу об «Умном муравье – 1».

При выполнении лабораторной работы использовалась программа «Виртуальная лаборатория GlOpt» [1], разработанная студентами кафедры «Компьютерные технологии» НИУ ИТМО, которая позволяет реализовать генетические алгоритмы и особи для них в виде плагинов.

1. Постановка задачи

Целью настоящей работы является сравнение эффективности работы Больцмановского отжига и отжига Коши при решении задачи «Умный муравей – 1» с использованием автомата Мили.

1.1. Задача «Умный муравей - 1»

В задаче об «Умном муравье -1» рассматривается поле, располагающееся на поверхности тора и имеющее размер 32 на 32 клетки (рис. 1). В некоторых, заданных условием задачи, клетках поля находятся яблоки.

Рис. 1— Игровое поле

Муравей видит только одну клетку перед собой и может выполнять одно из следующих действий:

- 1. повернуть налево;
- 2. повернуть направо;
- 3. сделать шаг вперед и съесть яблоко, если оно есть в новой клетке;

Число действий, которые позволено совершить муравью по условию задачи, равняется двумстам.

Решением задачи является автомат с фиксированным числом состояний, с помощью которого муравей сможет съесть максимальное число яблок за 200 шагов.

2. Автомат Мили

В этом разделе описывается автомат Мили [2] и его представление в программе.

2.1. Описание автомата Мили

Автомат Мили — конечный автомат, выходная последовательность которого зависит и от состояния автомата и от входных сигналов.

В данной работе автомат для управления муравьем является автоматом Мили, то есть совокупностью пяти объектов $A = \{S, X, Y, \delta, \mu\}$, где S — множество вершин, X — множество входных воздействий, Y — множество выходных воздействий, δ — функция переходов $S \times X \to S$, μ — функция выходных воздействий $S \times X \to Y$.

Автомат Мили можно изобразить графически (рис. 2).

Рис. 2 — Графическое изображение автомата Мили

2.2 Представление автомата

В данной работе рассматривались автоматы с постоянным количеством состояний.

Автомат представлялся в виде двумерного массива переходой *transitions*, который хранит переход (новое состояние и выходное воздействие) для каждой пары, состоящей из текущего состояния автомата и входного сигнала. В задаче об умном муравье значениями входной переменной являются 0 и 1 – присутствие или отсутствие еды в клетке перед муравьем.

3. Метод имитации отжига

В данном разделе описывается алгоритм имитации отжига в общем виде, а также особенности Больцмановского отжига и отжига Коши.

3.1 Описание метода имитации отжига

Метод отжига служит для решения задачи глобальной оптимизации — поиска глобального минимума некоторой функции f(x), заданной из некоторого пространства S, дискретного или непрерывного. Элементы множества S представляют собой состояния воображаемой физической системы («энергетические уровни»), а значение функции f в этих точках используется как энергия системы E = f(x) (в нашем случае f(x) является функцией приспособленности).

В каждый момент времени предполагается заданной температура системы, как правило, уменьшающаяся с течением времени. Находясь в состоянии при температуре T, следующее состояние системы выбирается в соответствии с заданным распределением вероятностей Q(x; T), которое и задает новый случайный элемент $x^l = G(x; T)$. После генерации x^l система с вероятностью $h(\Delta E; T)$ переходит к следующему шагу в состояние x^l . Если переход не произошел, процесс генерации x^l повторяется. Здесь ΔE обозначает приращение функции энергии $f(x^l) - f(x)$. Величина $h(\Delta E; T)$ называется вероятностью принятия нового состояния. То есть на каждом шаге алгоритма от

текущей температуры T зависит как новый случайный элемент, так и вероятность его принятия как текущего.

Итак, конкретная схема метода отжига задается следующими параметрами:

- 1. выбором закона изменения температуры T(k), где k номер шага;
- 2. выбором вероятностного распределения Q(x; T);
- 3. выбором функции вероятности принятия $h(\Delta E; T)$.

3.2 Алгоритм имитации отжига в общем виде

- 1. Случайным образом выбирается начальная точка $x = x_0$; $x_0 \in S$. Текущее значение энергии E устанавливается в значение $f(x_0)$.
 - 2. к-я итерация основного цикла состоит из следующих шагов:
- (a) Сравнить энергию системы E в состоянии x с найденным на текущий момент глобальным минимумом. Если E = f(x) меньше, то изменить значение глобального минимума.
 - (b) Сгенерировать новую точку $x^l = G(x; T(k))$.
 - (c) Вычислить значение функции в ней $E^l = f(x^l)$.
 - (d) Сгенерировать случайное число α из интервала [0; 1]
- (e) Если $\alpha < h(E^l E; T(k))$, то установить $x \leftarrow x^l; E \leftarrow E^l$ и перейти к следующей итерации. Иначе повторить шаг (b), пока не будет найдена подходящая точка x^l .

3.3 Больцмановский отжиг

Исторически первой схемой метода отжига является так называемая схема Больцмановского отжига. Именно эта схема использовалась Н. Метрополисом для вычисления многомерных интегралов пути в задачах статистической физики, а также С. Киркпатриком для решения задачи нахождения оптимальной разводки микросхем. В Больцмановском отжиге изменение температуры задается формулой:

$$T(k) = T_0 / \ln(1 + k); k > 0$$

Вероятностное распределение Q(x; T) выбирается как нормальное распределение (рис. 3) с математическим ожиданием $\mu = t(x)$ и дисперсией $\sigma^2 = T$, то есть задается плотностью:

$$g(x^{l}; x, T) = (2\pi T)^{-D/2} \cdot \exp(\frac{-|x^{l} - x|^{2}}{2T})$$

где D — размерность пространства состояний.

3.4 Отжиг Коши

Основным недостатком Больцмановского отжига является медленное убывание температуры. Ввиду этого Цу и Хартли предложили алгоритм, позволяющий использовать для изменения температуры схему

$$T(k) = T_0 / (1 + k); k > 0$$

без потери гарантии нахождения глобального минимума. Это достигается за счет использования в качестве Q(x;T) распределений Коши с плотностью

$$g(x^{l};x,T) = \frac{T}{(|x^{l}-x|^{2}+T^{2})^{(D+1)/2}}$$

соответствующим образом нормированных. В случае D=1 приходим к плотности

$$g(x^{l}; x, T) = \frac{1}{\pi} \frac{T}{|x^{l} - x|^{2} + T^{2}}$$

3.5 Реализация отжига в рассматриваемой задаче

Для простоты рассматривалось одномерное пространство состояний, в котором в качестве формулы расстояния между автоматами $|x^l-x|$ использовалось количество различных переходов в двумерном масссиве transitions.

Нормальное распределение моделировалось с помощью центральной предельной теоремы [3]. Распределение Коши моделировалось как частное двух нормальных распределений [5].

Для моделирования убывания температуры использовались непосредственно формулы для отжига Коши или Больцмановского отжига.

Для вычисления вероятности принятия нового состояния использовалась формула, подробнее описанная в [6]

$$h(\Delta E;T)=e^{(\Delta E/T)}$$

Из формулы видно, что если $E^l-E>0$ (новая функция приспособленности больше старой), то функция вероятности принятия h>1, следовательно, новый автомат обязательно заменит старый. Если же $E^l-E<0$ (то есть старый автомат лучше), то новый автомат имеет шанс заменить старый с тем меньшей вероятностью, чем больше разность функций приспособленности.

3.6 Функция приспособленности

В качестве функции приспособленности использовалась следующая формула f(n, t) = n - t/200, где n — количество яблок съеденных муравьем за 200 ходов, а t — номер хода на котором муравей съел последнее яблоко.

4. Результаты

По итогам измерений отжиг Коши показал лучший результат, достигнув максимального результата в 89 яблок. Лучшим результатом Больцмановского отжига было 88 съеденных яблок, то есть Больцмановский отжиг не нашел решения поставленной задачи.

4.1 Результаты измерений функции приспособленности

Ниже представлен усредненный по ста запускам график зависимости числа съеденных яблок от числа поколений метода имитации отжига (рис. 4). В каждом запуске число итераций равняется полумиллиону.

Средние значения функции приспособляемости

Рис.4 — Усредненный график функции приспособляемости, 100 запусков, 500 000 итераций Из графика видно, что в среднем Отжиг Коши дает результаты лучше, чем Больцмановский отжиг. На последующих графиках (рис. 5 и рис. 6) показаны отдельные графики максимума, минимума и среднего значения функции приспособляемости для каждого из отжигов по отдельности.

Отжиг Коши

Рис. 5 — Отжиг Коши, 100 запусков, 500 000 итераций

Больцмановский Отжиг

Рис. 6 — Больцмановский отжиг, 100 запусков, 500 000 итераций

Как видно из графиков, в данной задаче Отжиг Коши дает лучший средний и максимальный результаты. Но наихудший результат работы Отжига Коши хуже, чем наихудший результат работы Больцмановского отжига.

4.2 Полученные автоматы

В результате работы Больцмановского отжига было найдено 3 автомата из 8 состояний съедающих все яблоки. Значения функций приспособленности для них равны 88.01, 88.04 и 88.06 соответственно (табл. 1, 2 и 3).

Таблица 1 — автомат Мили, стартовое состояние 8, приспособленность 88.01

Номер состояния	Переход если спереди яблоко	Переход если спереди нет яблока
1	(F, 5)	(L,3)
2	(F, 4)	(F, 6)
3	(F, 8)	(F, 7)
4	(F, 5)	(R, 8)
5	(F, 6)	(F, 3)
6	(F, 3)	(F, 3)
7	(F, 2)	(L, 4)
8	(F, 7)	(R, 1)

Таблица 2 — автомат Мили, стартовое состояние 2, приспособленность 88.04

Номер состояния	Переход если спереди яблоко	Переход если спереди нет яблока
1	(F, 8)	(F, 5)
2	(F, 7)	(L, 4)
3	(F, 4)	(R, 2)
4	(F, 6)	(L, 8)
5	(F, 3)	(R, 2)
6	(F, 3)	(F, 1)
7	(F, 4)	(F, 1)
8	(F, 7)	(R, 1)

Таблица 3 — автомат Мили, стартовое состояние 5, приспособленность 88.06

Номер состояния	Переход если спереди яблоко	Переход если спереди нет яблока
1	(F, 2)	(R, 7)
2	(F, 5)	(F, 4)
3	(F, 8)	(R, 3)
4	(F, 1)	(R, 3)
5	(F, 1)	(F, 2)
6	(R, 8)	(R, 5)
7	(F, 8)	(L, 2)
8	(F, 2)	(F, 5)

Заметим, что в последнем автомате нет ни одного перехода в состояние 6 и это состояние не является стартовым, то есть на самом деле это автомат из 7 состояний.

Заключение

В данной работе рассмотрено использование метода имитации отжига для решения задачи «Умный муравей -1». Эксперименты дали понять, что Отжиг Коши дает лучшие результаты при разумном количестве итераций алгоритма. Также были приведены примеры автоматов Мили, решающих данную задачу.

Источники

- 1. Тяхти А. С., Чебатуркин А. А. Описание виртуальной лаборатории на языке С# // НИУ ИТМО, кафедра компьютерных технологий, 2010. http://is.ifmo.ru/genalg/labs_2010-2011/GlOpt_instruction.pdf
- 2. Поликарпова Н. И., Шалыто А. А. Автоматное программирование // СПб.: Питер, 2009. http://is.ifmo.ru/books/_book.pdf
- 3. Метод имитации отжига. Конспект лекций А. Лопатина. http://rain.ifmo.ru/~buzdalov/lab-2011/books/annealing.pdf
- 4. Luke Sean "Essentials of Metaheuristics" // Online Version 1.0, 2010. http://rain.ifmo.ru/~buzdalov/lab-2011/books/metaheuristics.pdf
- 5. Wolfram MathWorld, Cachy Distribution http://mathworld.wolfram.com/CauchyDistribution.html