

Tipos de Simulação

Paulo Radatz Mestrando EPUSP - Enerq

1º Encontro do Grupo de Usuários do OpenDSS Brasil 05/09/2017

Visão Geral

- Descrição do Circuito Utilizado
- Modo SnapShot
- Elemento Fault no Modo SnapShot
- Modo FaultStudy
- Modo Harmonic
- Modo QSTS(Daily)
- Referências

// Dados de Fronteira

New Circuit. Equivalente bus1=A pu=1.02 basekv=138

 $\mathbf{Z0} = [0.025862916, 0.077588748] \mathbf{Z1} = [0.023094242, 0.092376969]$

Descrição do

D

CargaD

// Dados do Transformador
New Transformer.Trafo phases=3 windings=2 %loadloss=0.15 xhl=5 %noloadloss=0.015 %imag=2
~ wdg=1 bus=A kv=138 kva=3000 conn=delta
~ wdg=2 bus=B kv=13.8 kva=3000 conn=wye


```
// Dados dos Arranjos
New Linecode MeuArranjo4 nphases=4 basefreq=60 units=km

~ rmatrix = [0.249 | 0.059 | 0.249 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.427] | !ohm/km

~ xmatrix = [0.878 | 0.529 | 0.878 | 0.451 | 0.484 | 0.878 | 0.467 | 0.488 | 0.476 | 0.960] | !ohm/km

~ cmatrix = [9.353 | -3.028 | 9.858 | -1.160 | -1.928 | 8.891 | -1.393 | -1.772 | -1.782 | 8.809] | !nF/km

~ neutral=4 | kron=No

// Dados dos Trechos
New Line LinhaBC | bus1=B.1.2.3.0 | bus2=C.1.2.3.4 | length=0.8 | units=km | linecode=MeuArranjo4
```



```
// Dados dos Arranjos
New Linecode MeuArranjo3 nphases=3 basefreq=60 units=km
~ rmatrix = [0.249 | 0.059 | 0.249 | 0.059 | 0.059 | 0.249] | !ohm/km
~ xmatrix = [0.878 | 0.488 | 0.488 | 0.488 | 0.488 | 0.878] | !ohm/km
~ cmatrix = [8.932 | -2.290 | 8.932 | -2.290 | -2.290 | 8.932] | !nF/km

// Dados dos Trechos
New Line LinhaCD bus1=C.1.2.3 bus2=D.1.2.3 length=0.6 units=km linecode=MeuArranjo3
```



```
// Dados das Cargas

// Model=1 -> Potencia Constante

New Load.CargaC phases=1 bus1=C.1.4 kv=7.9674 kw=500 pf=0.92 model=1

New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1
```


- Realiza o fluxo de potência para uma condição especifica de carga
- Comandos para a simulação:

```
/ Medidor
New EnergyMeter. MedidorSub element=Transformer. Trafo terminal=1
// Definindo Tensoes de base
Set voltagebases = [138 \ 13.8]
Calcuoltagebases
// SnapShot Mode
Set mode=SnapShot
Solve
// Coordenadas
BusCoords Coordenadas.csv
```


- Realiza o fluxo de potência para uma condição especifica de carga
- Comandos para a simulação:

- Realiza o fluxo de potência para uma condição especifica de carga
- Comandos para a simulação:

```
/ Medidor
New EnergyMeter. MedidorSub element=Transformer. Trafo terminal=1
// Definindo Tensoes de base
Set voltagebases = [138 \ 13.8]
Calcuoltagebases
// SnapShot Mode
Set mode=SnapShot
Solve
// Coordenadas
BusCoords Coordenadas.csv
```


- Realiza o fluxo de potência para uma condição especifica de carga
- Comandos para a simulação:

```
// Medidor
New EnergyMeter. MedidorSub element=Transformer. Trafo terminal=1
// Definindo Tensoes de base
Set voltagebases = [138 \ 13.8]
Calcuoltagebases
// SnapShot Mode
Set mode=SnapShot
                                      Coordenadas.csv 🔣
Solve
// Coordenadas
BusCoords Coordenadas.csv
```


• Alguns resultados:

```
// Arquivos de Resultados
Show Voltage LN Nodes
Show Power Elements
Show Currents Elements
Show Losses

// Perfil de Tensao
Plot Profile

// Plot o Circuito
Plot circuit power max=2200 dots=n labels=n subs=y C1=Blue
```


• Alguns resultados:

Modo SnapShot A LinhaCDB \boldsymbol{A}

Plot

LINE-G	ROUND and LINE-L	INE VOLT	AGES BY BUS	& NODE				
Bus N	ode VLN (kV)	Angle	pu	Base kV	Node-Node	VLL (kV) Angle	pu	Blue
A 1	81.267 /	0.0	1.02	138.000	1-2	140.76 / 30.	0 1.02	
- 2	81.267 /	-120.0	1.02	138.000	2-3	140.76 / -90.	0 1.02	
- 3	81.267 /	120.0	1.02	138.000	3-1	140.76 / 150.	0 1.02	
В 1	7.8864 /	-33.3	0.98982	13.800	1-2	13.65 / -2.	3 0.98915	
- 2	7.9921 /	-151.8/	1.0031	13.800	2-3	13.843 / -121.	8 1.0031	
- 3	7.9921 /	88.2	1.0031	13.800	3-1	13.85 / 117.	2 1.0036	
C 1	7.8375 /	-33.6	0.9837	13.800	1-2	13.585 / -2.	5 0.98445	
- 2	7.9743 /	-152.0	1.0009	13.800	2-3	13.81 / -122.	0 1.0007	
- 3	7.9708 /	88.0	1.0004	13.800	3-1	13.795 / 116.	9 0.99967	
- 4	0.033702 /	-0.5	0.0042299	13.800		_		
D 1	7.8184 /	-33.7	0.9813	13.800	1-2	13.554 /2.	6 0.98218	
- 2	7.9568 /	-152.1	0.99867	13.800	2-3	13.779 / -122.	1 0.99846	
- 3	7.9533 /	87.9	0.99822	13.800	3-1	13.764 / 116.	8 0.9974	

• Alguns resultados:

TERMINAL TOTAL -2510.8 +i -1085.3

2735.3

0.9179

• Alguns resultados:

```
// Arquivos de Resultados
Show Voltage LN Nodes
Show Power Elements
Show Currents Elements
Show Losses

// Perfil de Tensao
Plot Profile

// Plot o Circuito
Plot circuit power max=2200 dots=n labels=n subs=y C1=Blue
```


• Alguns resultados:

```
Power Delivery Elements
 Bus Phase Magnitude, A Angle (Real) +j (Imag)
ELEMENT = "Vsource.SOURCE"
               12.878 / 143.6 = -10.368 +j 7.6373
               9.212 / 33.4 = 7.6897 +j 5.0723
                12.989 / -78.1 = 2.6786 + j -12.71
               12.878 / -36.4 = 10.368 +j -7.6373
                9.212 / -146.6 = -7.6897 + j -5.0723
Α
                12.989 / 101.9 = -2.6786 +j 12.71
ELEMENT = "Transformer.TRAFO"
                12.878 / -36.4 = 10.368 + j -7.6373
                9.212 / -146.6 = -7.6897 +j -5
                                                Power Conversion Elements
                12.989 / 101.9 = -2.6786 +j
                     0.0 =
                                   0 +j
                                                 Bus Phase Magnitude, A Angle (Real) +j (Imag)
               162.25 /_ 123.3 = -88.999 +j 1: ELEMENT = "Load.CARGAC" 91.054 / 4.8 = 90.73 +j 7.0 1 69
                                                              69.593 / -56.8 = 38.149 +j -58.205
               91.095 / -115.2 = -38.738 +j -8; C 4
                                                          69.593 / 123.2 = -38.149 +j
                                                                                       58.205
                71.259 / -58.7 = 37.008 + j
                                                ELEMENT = "Load.CARGAD"
                                                               92.682 / -56.7 = 50.831 +j -77.5
ELEMENT = "Line.LINHABC"
               91.071 / -175.2 = -90.751 +j -7.6353
                                                             91.112 /_ 64.8 = 38.784 +j 82.445
                                                               2.92 / 67.1 = 1.1362 +j 2.6898
                91.095 / 64.8 = 38.738 +j 81
                69.593 / 123.2 =
                                 -38.147 +j 58.206
                162.27 / 123.3 =
                                 -88.988 +j 135.69
                91.064 /_ 4.8 = 90.742 +j 7.6533
               91.104 / -115.2 = -38.763 +j -82.446
```

69.592 / -56.8 = 38.147 +j -58.205

• Alguns resultados:

 Alguns resultado Edit View About

L-N Voltage Profile

// Arquivos de Re Show Voltage LN N Show Power Elemen Show Currents Elei Show Losses

<u>Perfil de</u> Tens

Plot o Circuito Plot circuit powe

Alguns resultados

// Arquivos de Resu Show Voltage LN Nod Show Power Elements Show Currents Eleme Show Losses

// Perfil de Tensao Plot Profile

// Plot o Circuito
Plot circuit power

Elemento Fault no Modo SnapShot

// Definindo Tensoes de base

- Curto-circuitos podem ser aplicados através do elemento Fault
- Comandos necessários para a simulação:

```
Set voltagebases = [138 \ 13.8]
Calcvoltagebases
// Dados da Falta monofasica na Barra C
New Fault.1 Fase bus1=C.2 phases=1 r=0.0001
// SnapShot Mode
Set mode=SnapShot
Solve
                                                                           CargaD
                                                               LinhaCD
                                     Trafo-DY
                         Equivalente
                                                  LinhaBC
                                                               CargaC
```


Elemento Fault no

• Alguns resultados:


```
LINE-GROUND and LINE-LINE VOLTAGES BY BUS & NODE
Bus Node VLN (kV) Angle pu Base kV Node-Node VLL (kV) Angle
A .. 1 81.256 /_ 0.0 1.0199 138.000
- 2 81.259 /_ -120.0 1.0199 138.000
                                          1-2 140.74 /_ 30.0 1.0198
2-3 140.76 /_ -90.0 1.02
 - 3 81.267 / 120.0 1.02 138.000 3-1 140.75 / 150.0 1.0199
     7.9188 / -33.2 0.99389 13.800 1-2 8.9558 / -25.7 0.64897
1.5122 / -162.7 0.18979 13.800 2-3 8.5894 / -101.3 0.62242
в.. 1
      7.9768 / 88.3 1.0012 13.800 3-1 13.872 / 117.4 1.0052
 - 3
C .. 1 8.3534 / -28.3 1.0484 13.800 1-2 8.3536 / -28.3 0.60533 
- 2 0.00020966 / 124.6 2.6314E-005 13.800 2-3 8.3488 / -96.7 0.60499
 - 3 8.349 / 83.3 1.0479 13.800 3-1 13.815 / 117.5 1.0011
 D .. 1
 - 2 0.028513 / -93.0 0.0035787 13.800 2-3 8.3316 / -96.8 0.60374
      8.3031 / 83.2 1.0421 13.800 3-1 13.787 / 117.4
                                                                     0.99903
```


Elemento Fault no

• Alguns resultados:

Elemento Fault no Modo SnapShot

 Curto-circuitos podem ser aplicados através do elemento Fault

Comandos para a simulação:

```
// Definindo Tensoes de base
Set voltagebases = [138 \ 13.8]
Calcvoltagebases
// Dados da Falta Trifasica na Barra D
New Fault.3 Fases bus1=D phases=3 r=0.0001
   SnapShot Mode
Set mode=SnapShot
Solve
                                                                           CargaD
                                                              LinhaCD
                        Equivalente
                                    Trafo - DY
                                                 LinhaBC
                                                              CargaC
```


Elemento Fault no

Alguns resultados:

LINE-GROUND and LINE-LINE VOLTAGES BY BUS & NODE

Bus	Node	≥ VLN (kV)	Angle	pu	Base kV	Node-Node	VLL (kV) Angle p	a
Α	1	81.247 /_	0.0	1.0197	138.000	1-2	140.72 /_ 30.0 1.0	0197
-	2	81.247 /	-120.0	1.0197	138.000	2-3	140.72 /90.0 1.0	0197
-	3	81.248 /	120.0	1.0197	138.000	3-1	140.72 / 150.0 1.0	0197
в	1	1.3608 /	-53.8	0.1708	13.800	1-2	2.22 / -22.9 0.10	6087
-	2	1.2641 /	-169.3	0.15866	13.800	2-3	2.2394 /137.8 0.10	6228
-	3	1.3368 /	71.9	0.16778	13.800	3-1	2.4004 / 99.3 0.1	7394
с	1	0.56152 /	-49.3	0.070477	13.800	1-2	0.98725 / -20.2 0.0	7154
-	2	0.56708 /	-171.3	0.071175	13.800	2-3	0.98031 /141.0 0.073	1037
-	3	0.56845 /	69.3	0.071346	13.800	3-1	0.97156 / 99.8 0.07	0403
-	4	0.031911 /	-3.8	0.0040052	13.800		_	
D	1	0.00021696 /	-113.8	2.723E-005	13.800	1-2 0	.00037922 /84.2 2.748	8E-005
_	2	0.00021865 /	125.2	2.7443E-005	13.800	2-3	0.00037656 /_ 155.0 2.72	287E-005
-	3	0.00021621 /_	5.2	2.7137E-005	13.800	3-1	0.00037319 /_ 35.8 2.70	043E-005

ELEMENT	r = "Faul	t.3FASES"		
D	1	2169.6 /113.8 =	-874.86 +j	-1985.4
D	2	2186.5 / 125.2 =	-1259.5 +j	1787.3
D	3	2162.1 /_ 5.2 =	2153.3 +j	195.89
D	0	2169.6 /_ 66.2 =	874.86 +j	1985.4
D	0	2186.5 /54.8 =	1259.5 +j	-1787.3
D	0	2162.1 /174.8 =	-2153.3 +j	-195.89

Elemento Fault no

Alguns resultados:

LINE-GROUND and LINE-LINE VOLTAGES BY BUS & NODE Node−Not L-N Voltage Profile Base kV Bus Node VLN (kV) Angle File Edit View About % 📭 🗈 R ∼ 🚺 🗯 🖺 📮 🔁 ÷ 81.247 / 0.0 1-2 0 0 0 0 1.0197 138.000 81.247 / -120.0 1.0197 138.000 2-3 L-N Voltage Profile 81.248 / 120.0 1.0197 138.000 p.u. Voltage 3-1 1.3608 / -53.8 0.1708 13.800 1-2 1.2641 /_ -169.3 0.15866 13.800 2-3 1.3368 / 71.9 0.16778 13.800 3-1 0.56152 / -49.3 0.070477 13.800 1-2 0.56708 / -171.3 0.071175 13.800 2-3 0.80 - 3 0.56845 / 69.3 0.071346 13.800 3-1 0.031911 / -3.8 0.0040052 13.800 D .. 1 0.00021696 / -113.8 2.723E-005 13.800 0.60 - 2 0.00021865 / 125.2 2.7443E-005 13.800 - 3 0.00021621 / 5.2 2.7137E-005 13.800 0.40 ELEMENT = "Fault.3FASES" 2169.6 /_ -113.8 = -874.86 +j -1985. 0.20 2186.5 / 125.2 = -1259.5 +j 1787. 2162.1 / 5.2 = 2153.3 +1 195.8 2169.6 /_ 66.2 = 874.86 +j 1985. 2186.5 / -54.8 = 1259.5 +j -1787. 0.00 0.40 0.60 2162.1 / -174.8 = -2153.3 + j-195.8Distance (km)

Modo FaultStudy

- Calcula as correntes de falta em todas as barras do sistema
- Comandos para a simulação:

```
// Definindo Tensoes de base
Set voltagebases = [138 13.8]
Calcvoltagebases
// FaultStudy Mode
Set mode=FaultStudy
Solve
// Coordenadas
BusCoords Coordenadas.csv
// Arquivos de Resultados
Export SeqZ
Show fault
Export FaultStudy
```


Modo FaultStudy

- Calcula as correntes de falta em todas as barras do sistema
- Comandos para a simulação:

Modo FaultSt

- Calcula as co
- Comandos pa

Modo FaultSt

- Calcula as co
- Comandos pa

Comparação entre FaultStudy e Fault (SnapShot)

FaultStudy

Fault (SnapShot)

Comparação entre FaultStudy e Fault (SnapShot)

FaultStudy

ONE-	Node to	ground Faults		pu N	ode Voltages	(L-N Vo
Bus	Node	Amps	Node 1	Node	2 Node 3	• • • • •
"A"	1	896144		0.000	0.974	1.018
"A"	2	896146		1.018	0.000	0.974
"A"	3	896147		0.974	1.018	0.000
"B"	1	2562		0.000	1.004	1.003
"B"	2	2561		0.992	0.000	1.004
"B"	3	2561		0.992	1.003	0.000
"C"	1	2094		0.000	1.052	1.057
"C"	2	2099		1.048	0.000	1.047
"C"	3	2098		1.030	1.061	0.000
"C"	4	38		0.985	1.003	1.001
"D"	1	1840		0.000	1.078	1.087
"D"	2	1848		1.077	0.000	1.074
"D"	3	1848		1.058	1.090	0.000

It Study.dss 🗵 📙 Equivalente_Fault Study.Txt 🗵 📙 Equivalente_EXP_SEQZ.CSV 🗵 📙 Equivalente_E FAULT STUDY REPORT ALL-Node Fault Currents Node 1 X/R Node 2 X/R Node 3 X/R 853475, 4.0, 853475, 4.0, 853475, 4.0 2561, 11.7, 2560, 16.1, 2560, 16.1 "B", "C". 6.9, 2343, 10.2, 9.9, 2325, 2313, 2172. 2189, 2164. 5.8, 7.8, 7.8

Fault (SnapShot)

ELEME	NT = "Fault	.3FASES"		
D	1	2169.6 /113.8 =	-874.86 +j	-1985.4
D	2	2186.5 / 125.2 =	-1259.5 +j	1787.3
D	3	2162.1 / 5.2 =	2153.3 +j	195.89
D	0	2169.6 /_ 66.2 =	874.86 +j	1985.4
D	0	2186.5 /54.8 =	1259.5 +j	-1787.3
D	0	2162.1 /174.8 =	-2153.3 +j	-195.89

- Realiza o fluxo de potência para as harmônicas selecionadas
- Comandos para a simulação:

```
// Dados dos Espectros Harmonicos das Cargas
New Spectrum.spCargaC NumHarm=3 harmonic=(1 3 5) %mag=(100 5 1) angle=(0 180 90)
New Spectrum.spCargaD NumHarm=2 harmonic=(1 5) %mag=(100 2) angle=(0 30)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 kv=7.9674 kw=500 pf=0.92 model=1 spectrum=spCargaC
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 spectrum=spCargaD
```

```
// Monitores na Sub (deve ser conectado em um elemento e nao em uma barra)
New Monitor. PotenciaSub element=Transformer. Trafo terminal=1 mode=1 ppolar=no
New Monitor, TensaoSub element=Transformer, Trafo terminal=1 mode=0
// Definindo Tensoes de base
Set voltagebases = [138 13.8]
Calcvoltagebases
                                                                            LinhaCD
                                                                                         CargaD
// Harmonics Mode
                                                   Trafo - DY
                                       Equivalente
                                                                LinhaBC
Set mode=SnapShot
Solve
Set mode=Harmonic
                                                                             CaraaC
Solve
```


• Alguns resultados:

```
// Arquivos dos Monitores
Show Monitor PotenciaSub
Show Monitor TensaoSub

// Arquivos de Resultados
Show Voltage LN Nodes
Show Currents Elements
```

```
      valente_Mon_tensaosub.csv ☑
      Equivalente_VLN_Node.Txt ☑
      Equivalente_Cur_Elem.Txt ☑
      Equivalente_Mon_potenciasub.csv ☑

      Freq, Harmonic, P1 (kW), Q1 (kvar), P2 (kW), Q2 (kvar), P3 (kW), Q3 (kvar), P4 (kW), Q4 (kvar)

      60, 1.00000, 842.611, 620.651, 669.451, 335.087, 1003.34, 327.903, 0, 0

      180, 3.00000, -7.85529E-007, -9.42635E-006, -1.28291E-012, -1.5395E-011, -7.8446E-007, -9.41352E-006, 0, 0

      300, 5.00000, -7.89661E-007, -1.57932E-005, -6.72664E-007, -1.34533E-005, -8.44831E-007, -1.68966E-005, 0, 0
```


• Alguns resultados:

```
// Arquivos dos Monitores
Show Monitor PotenciaSub
Show Monitor TensaoSub

// Arquivos de Resultados
Show Voltage LN Nodes
Show Currents Elements
```


• Alguns resultados:

```
// Arquivos dos Monitores
Show Monitor PotenciaSub
Show Monitor TensaoSub

// Arquivos de Resultados
Show Voltage LN Nodes
Show Currents Elements
```

```
Power Conversion Elements

Bus Phase Magnitude, A Angle (Real) +j (Imag)

ELEMENT = "Load.CARGAC"

C 1 0.69593 /_ 166.2 = -0.67586 +j 0.16592

C 4 0.69593 /_ -13.8 = 0.67586 +j -0.16592

ELEMENT = "Load.CARGAD"

D 1 1.8536 /_ 106.3 = -0.5203 +j 1.7791

D 2 1.8214 /_ -126.0 = -1.0694 +j -1.4744

D 3 1.8222 /_ -6.0 = 1.8124 +j -0.18938

D 0 0.25073 /_ -152.6 = -0.22264 +j -0.11531
```

```
LINE-GROUND and LINE-LINE VOLTAGES BY BUS & NODE
           VLN (kV) Angle
                                     Base kV
                                               Node-Node
                                                        VLL (kV) Angle
       8.5515E-005 / -10.2 1.0733E-006 138.000
                                                     1-2 0.00013878 / -41.2 1.0057E-006
      7.8927E-005 / 104.9 9.9061E-007 138.000
                                                     2-3 0.0001442 / 72.4 1.0449E-006
     8.8452E-005 / -136.3 1.1102E-006 138.000
                                                     3-1 0.00015506 / -162.7 1.1236E-006
       0.032462 / 20.9 0.0040744 13.800
                                                  1-2 0.050844 / -7.7 0.0036844
       0.027185 / 137.5 0.003412 13.800
                                                  2-3 0.046927 / 107.4 0.0034005
       0.027109 / -102.9 0.0034025
                                   13.800
                                                  3-1 0.05259 / -133.7 0.0038109
      0.035694 / 20.3 0.00448
0.029267 / 136.9 0.0036734
                                   13.800
                                                  1-2 0.055367 / -7.9 0.0040121
                                                  2-3 0.051644 / 106.2 0.0037423
                                    13.800
      0.0304 / -103.2 0.0038155
                                                  3-1 0.058287 / -133.9 0.0042237
      0.0014156 /_ -106.9 0.00017767 13.800
                                                  1-2 0.058977 / -8.8 0.0042737
       0.037689 / 18.8 0.0047304
                                      13.800
                                                  2-3 0.055127 / 106.0 0.0039947
       0.030929 / 137.0 0.0038819
                                      13.800
       0.032747 / -103.1 0.0041101
                                      13.800
                                                  3-1 0.061623 / -134.4 0.0044654
```


Resultados para uma harmônica:

```
// Harmonics Mode
Set mode=SnapShot
Solve
Set harmonics=[3]
Set mode=Harmonic
Solve
```

```
Power Conversion Elements

Bus Phase Magnitude, A Angle (Real) +j (Imag)

ELEMENT = "Load.CARGAC"

C 1 3.4796 /_ 9.7 = 3.4297 +j 0.58772

C 4 3.4796 /_ -170.3 = -3.4297 +j -0.58772

ELEMENT = "Load.CARGAD"

D 1 0 /_ 0.0 = 0 +j 0

D 2 0 /_ 0.0 = 0 +j 0

D 3 0 /_ 0.0 = 0 +j 0

D 0 0 0 /_ 0.0 = 0 +j 0

D 0 0 0 /_ 0.0 = 0 +j 0
```


Fonte de harmônica:

```
// Dados dos Espectros Harmonicos das Cargas
New Spectrum.spCargaC NumHarm=3 harmonic=(1 3 5) %mag=(100 5 1) angle=(0 180 90)
New Spectrum.spCargaD NumHarm=2 harmonic=(1 5) %mag=(100 2) angle=(0 30)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 kv=7.9674 kw=500 pf=0.92 model=1 spectrum=spCargaC
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 spectrum=spCargaD
```

Fundamental

Power Conversion Elements Magnitude, A Angle Bus Phase (Real) (Imag) ELEMENT = "Load.CARGAC" 69.593 / -56.8 = 38.149 +j -58.205 69.593 / 123.2 = -38.149 + j58.205 ELEMENT = "Load.CARGAD" 92.682 / -56.7 = 50.831 + j-77.5 91.071 / -175.2 = -90.751 +j -7.6353 91.112 / 64.8 = 38.784 +j 82.445 2.92 / 67.1 = 1.1362 +j 2.6898

■ 3º Harmônica

Bus	Phase	Magnitude, A	Angle	(Real)	+j (Imag)
ELEME	NT = "Lo	ad.CARGAC"			
2	1	3.4796 3.4796	/_ 9.7 =	3.4297 +	j 0.58772
	4	3.4796	/170.3 =	-3.4297 +	j -0.58772
ELEME	NT = "Lo	ad.CARGAD"			
D	1	0 .	0.0 =	0 +	j 0
D	2	0 .	/_ 0.0 =	0 +	j 0
0	3	0 .	/ 0.0 =	0 +	j 0
)	0	0			i 0

Fonte de harmônica:

```
// Dados dos Espectros Harmonicos das Cargas
New Spectrum.spCargaC NumHarm=3 harmonic=(1 3 5) %mag=(100 5 1) angle=(0 180 90)
New Spectrum.spCargaD NumHarm=2 harmonic=(1 5) %mag=(100 2) angle=(0 30)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 kv=7.9674 kw=500 pf=0.92 model=1 spectrum=spCargaC
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 spectrum=spCargaD
```

Fundamental

■ 3º Harmônica

Fonte de harmônica:

```
// Dados dos Espectros Harmonicos das Cargas
New Spectrum.spCargaC NumHarm=3 harmonic=(1 3 5) %mag=(100 5 1) angle=(0 180 90)
New Spectrum.spCargaD NumHarm=2 harmonic=(1 5) %mag=(100 2) angle=(0 30)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 kv=7.9674 kw=500 pf=0.92 model=1 spectrum=spCargaC
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 spectrum=spCargaD
```

Fundamental

Power Conversion Elements Bus Phase Magnitude, A Angle (Real) (Imag) ELEMENT = "Load.CARGAC" 69.593 / 38.149 +i -58.205 69.593 / 123.2 = -38.149 + i58.205 ELEMENT = "Load.CARGAD" 92.682 / -56.7 = 50.831 + j-77.5 91.071 / -175.2 = -90.751 +j -7.6353 91.112 / 64.8 = 38.784 +j 82.445 2.92 / 67.1 = 1.1362 +j

■ 3º Harmônica

$$\alpha_h = h \times \alpha_1 + angle_h$$

Dados e resultados esperados

Comandos para a simulação:

```
// Dados das Curvas de Carga
New LoadShape.industrial npts=24 interval=1
~ mult=(0.1 0.1 0.2 0.3 0.3 0.4 0.6 1.2 1.8 1.8 1.9 1.9 1.4 1.6 1.8 1.7 1.7 1.1 0.8 0.6 0.5 0.4 0.2 0.2)
New LoadShape.residencial npts=24 interval=1
~ mult=(0.6 0.5 0.4 0.4 0.5 0.8 1.0 0.8 0.8 0.9 1.0 1.0 1.1 0.9 0.9 0.9 1.0 1.2 1.5 1.5 1.7 1.5 1.2 0.8)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 conn=wye kv=7.9674 kw=500 pf=0.92 model=1 daily=residencial
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 daily=industrial
```


Comandos para a simulação:

```
// Dados das Curvas de Carga
New LoadShape.industrial npts=24 interval=1
~ mult=(0.1 0.1 0.2 0.3 0.3 0.4 0.6 1.2 1.8 1.8 1.9 1.9 1.4 1.6 1.8 1.7 1.7 1.1 0.8 0.6 0.5 0.4 0.2 0.2)
New LoadShape.residencial npts=24 interval=1
~ mult=(0.6 0.5 0.4 0.4 0.5 0.8 1.0 0.8 0.8 0.9 1.0 1.0 1.1 0.9 0.9 0.9 1.0 1.2 1.5 1.5 1.7 1.5 1.2 0.8)

// Dados das Cargas
// Model=1 -> Potencia Constante
New Load.CargaC phases=1 bus1=C.1.4 conn=wye kv=7.9674 kw=500 pf=0.92 model=1 daily=residencial
New Load.CargaD phases=3 bus1=D conn=wye kv=13.8 kw=2000 pf=0.92 model=1 daily=industrial
```


• Elementos de Suporte de Medição:

```
// Medidor
New EnergyMeter.MedidorSub element=Transformer.Trafo terminal=1
```

```
// Monitores
// Monitores na Sub (deve ser conectado em um elemento e nao em uma barra)
New Monitor. PotenciaSub element=Transformer. Trafo terminal=1 mode=1 ppolar=no
New Monitor. TensaoSub element=Transformer. Trafo terminal=1 mode=0
// Monitores na CargaD
New Monitor. PotenciaCargaD element=Load. CargaD terminal=1 mode=1 ppolar=no
New Monitor. TensaoCargaD element=Load. CargaD terminal=1 mode=0
```


Comandos necessários para obter alguns resultados:

```
Resultados dos Monitores
// Monitor de Potencia da Sub
Export monitors potenciasub
Plot monitor object= potenciasub channels=(1 3 5 )
// Monitor de Tensao da Sub
Export monitors tensaosub
Plot monitor object= tensaosub channels=(1 3 5 ) bases=[79674.3 79674.3 79674.3]
// Monitor de Potencia da CargaD
Export monitors potenciacargad
                                                               Equivalente MONITOR-POTENCIASUB-ch1-ch3-ch5.DSV
Plot monitor object= potenciacargad channels=(1 3 5)
                                                               File Edit View About
// Monitor de Tensao da CargaD
                                                               Q Q Q
                                                                               % 📭 📭 R 🖂 📗 🏥 🖺 🚇 12 ÷
Export monitors tensaocargad
Plot monitor object= tensaocargad channels=(1 3 5 ) base
                                                                                       potenciasub: P1 (kW), P2 (kW), P3 (kW)
                                                                 1500
                                                                  500
```


5.0

Time, H

10.0

15.0

20.0

Comandos necessários para obter alguns resultados:

```
Resultados dos Monitores
// Monitor de Potencia da Sub
Export monitors potenciasub
Plot monitor object= potenciasub channels=(1 3 5)
// Monitor de Tensao da Sub
Export monitors tensaosub
Plot monitor object= tensaosub channels=(1 3 5 ) bases=[79674.3 79674.3 79674.3]
// Monitor de Potencia da CargaD
Export monitors potenciacargad
                                                              Equivalente MONITOR-POTENCIACARGAD-ch1-ch3-ch5.DSV
Plot monitor object= potenciacargad channels=(1 3 5)
                                                              File Edit View About
// Monitor de Tensao da CargaD
                                                              % № № R ~ ### & @
Export monitors tensaocargad
Plot monitor object= tensaocargad channels=(1 3 5 ) base
                                                                                     potenciacargad: P1 (kW), P2 (kW), P3 (kW)
                                                                 1000
                                                                 400
                                                                 200
```


Time, H

15.0

10.0

20.0

Comandos necessários para obter alguns resultados:

```
Resultados dos Monitores
// Monitor de Potencia da Sub
Export monitors potenciasub
Plot monitor object= potenciasub channels=(1 3 5)
// Monitor de Tensao da Sub
Export monitors tensaosub
Plot monitor object= tensaosub channels=(1 3 5 ) bases=[79674.3 79674.3 79674.3]
// Monitor de Potencia da CargaD
Export monitors potenciacargad
                                                           Equivalente MONITOR-TENSAOCARGAD-ch1-ch3-ch5.DSV
Plot monitor object= potenciacargad channels=(1 3 5)
                                                           File Edit View About
// Monitor de Tensao da CargaD
                                                           Export monitors tensaocargad
Plot monitor object= tensaocargad channels=(1 3 5 ) base
```


Comandos necessários para obter alguns resultados:

Comandos necessários para obter a do medidor:

> // Resultados do Medidor Show meters Export meters

```
neveninEguivalente VLN Node.Txt 🗵 📙 TheveninEguivalente
  ENERGY METER VALUES
  Registers:
  Reg 1 = kWh
                                         vés
  Reg 2 = kvarh
  Reg 3 = Max kW
  Reg 4 = Max kVA
  Reg 5 = Zone kWh
  Reg 6 = Zone kvarh
  Reg 7 = Zone Max kW
  Reg 8 = Zone Max kVA
  Reg 9 = Overload kWh Normal
  Reg 10 = Overload kWh Emerg
  Reg 11 = Load EEN
  Reg 12 = Load UE
  Reg 13 = Zone Losses kWh
  Reg 14 = Zone Losses kvarh
  Reg 15 = Zone Max kW Losses
  Reg 16 = Zone Max kvar Losses
  Reg 17 = Load Losses kWh
  Reg 18 = Load Losses kvarh
  Reg 19 = No Load Losses kWh
  Reg 20 = No Load Losses kvarh
  Reg 21 = Max kW Load Losses
  Reg 22 = Max kW No Load Losses
  Reg 23 = Line Losses
  Reg 24 = Transformer Losses
  Reg 25 = Line Mode Line Losses
  Reg 26 = Zero Mode Line Losses
  Reg 27 = 3-phase Line Losses
  Reg 28 = 1- and 2-phase Line Losses
  Reg 29 = Gen kWh
  Reg 30 = Gen kwarh
  Reg 31 = Gen Max kW
  Reg 32 = Gen Max kVA
  Reg 33 = 138 \text{ kV Losses}
  Reg 34 = 13.8 \text{ kV Losses}
  Reg 35 = Aux1
  Reg 36 = Aux6
```


Comandos necessários para obter a do medidor:

> // Resultados do Medidor Show meters Export meters

Reg 32 = Gen Max kVA Reg 33 = 138 kV Losses Reg 34 = 13.8 kV Losses

POLITÉCNICA

Reg 35 = Aux1Reg 36 = Aux6

Referências

Dugan, Roger: Slides de Treinamentos.
 http://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Training/. [Online; acessado emn11/09/2017].

Comentários Adicionais

Esse material foi disponibilizado gratuitamente, porém, ao utilizá-lo, pedimos que as devidas referências sejam feitas.

Se você possui alguma dúvida ou encontrou algum erro nesse material, por favor, entre em contato conosco através do e-mail opendss.brasil@gmail.com.

Obrigado! Dúvidas?

