Stuttgart Fall School in CL Class 2: Rewrite Grammars, CFGs

Dr. Meaghan Fowlie

September 16, 2019

Review: Quiz

Which of these sentences is accepted by the following FSA?

- 1 the horse the knight rode snores
- 2 the dragon that the knight slew snores
- that the dragon rode snores
- the dragon ate
- the horse that the knight that the dragon ate rode snores
- the dragon rode ate slew ate snores

Let N be a set of non-terminal symbols, Σ a set of terminal symbols, and $N \cap \epsilon = \emptyset$. Choose a distinguished set of start symbols $S \subseteq N$. Let $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ and $X \in N$. A rewrite grammar has a set of rules R of the form

$$\alpha X \beta \rightarrow \gamma$$

Example

 $0 \rightarrow \text{the } 1$

 $1 \rightarrow \mathsf{dragon} \ 2$

 $1 \rightarrow \text{knight } 2$

 $1 \rightarrow \text{horse } 2$

 $2 \rightarrow \text{that } 0$

 $2 \rightarrow \epsilon 3$

 $3 \rightarrow \text{rode } 3$

 $3 \rightarrow ate 3$

 $3 \rightarrow \text{slew } 3$

 $3 \rightarrow \text{snores}$

Let N be a set of non-terminal symbols, Σ a set of terminal symbols, and $N \cap \epsilon = \emptyset$. Choose a distinguished set of start symbols $S \subseteq N$. Let $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ and $X \in N$. A rewrite grammar has a set of rules R of the form

Example

 $0 \rightarrow \text{the } 1$

 $\alpha X\beta \rightarrow \gamma$

- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \quad \to \quad \text{horse 2}$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \quad \to \quad \text{slew } 3$
- $3 \rightarrow \mathsf{snores}$

Rewrite Grammars: Example

```
A rewrite grammar is a 4-tuple \langle \Sigma, N, S, R \rangle
(i.e. \(\lambda\) terminals, nonterminals, start symbols, rules \(\rangle\)
Example
G_{knight} = \{\{\text{the, that, dragon, knight, horse, that, rode, ate, slew, snores}\},\
                                         the 1
                          1 \rightarrow dragon 2
                          1 \rightarrow \text{knight } 2
                          1 \rightarrow \text{horse } 2
                         \begin{array}{cccc} 2 & \rightarrow & \text{that 0} \\ 2 & \rightarrow & \epsilon \end{array}
\{0,1,2,3\}, \{0\},
                               \rightarrow rode 3
                               \rightarrow ate 3
                                \rightarrow slew 3
                                         snores
```

The language of the grammar

A rewrite grammar G defines a language $L(G) \subseteq \Sigma^*$ as follows:

- lacksquare Take a start symbol s from S. This is your string w.
- ② if $w \in \Sigma^*$ then $w \in L$.
- If there is a substring x of w which matches the LHS of a rule, replace x with the RHS of the rule. Go back to step 2.

We say G generates L(G) (hence "generative grammar")

- $0 \rightarrow \mathsf{the}\ 1$
- $1 \quad \to \quad \text{dragon 2}$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0 \Rightarrow$ the $1 \Rightarrow$ the knight $2 \Rightarrow$ the knight that $0 \Rightarrow$ the knight that the $1 \Rightarrow$ the knight that the horse $2 \Rightarrow$ the knight that the horse $3 \Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \text{the } 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \quad \to \quad \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \text{the } 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \text{the } 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \mathsf{the}\ 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \text{the } 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \mathsf{the}\ 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \mathsf{the}\ 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

- $0 \rightarrow \mathsf{the}\ 1$
- $1 \rightarrow dragon 2$
- $1 \rightarrow \text{knight } 2$
- $1 \rightarrow \text{horse } 2$
- $2 \rightarrow \text{that } 0$
- $2 \rightarrow \epsilon 3$
- $3 \rightarrow \text{rode } 3$
- $3 \rightarrow ate 3$
- $3 \rightarrow \text{slew } 3$
- $3 \rightarrow \text{snores}$

Example

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores $\in \Sigma^*$

Parse Trees

 $0\Rightarrow$ the $1\Rightarrow$ the knight $2\Rightarrow$ the knight that $0\Rightarrow$ the knight that the $1\Rightarrow$ the knight that the horse $2\Rightarrow$ the knight that the horse $3\Rightarrow$ the knight that the horse snores

 Meaghan Fowlie
 Class 2
 2019-09-16
 7/19

Exercise: parse trees

- Rewrite G_{pirate} as a rewrite grammar
- ② Draw parse trees for a few sentences in $L(G_{pirate})$.

Discussion

What are some conceptual and linguistic shortcomings of G_{pirate} and G_{knight} ?

Recall rewrite grammar rule definition: Let $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ and $X \in N$. A rewrite grammar has a set of rules R of the form $\alpha X \beta \rightarrow \gamma$

But our rules all look like this:

$$\begin{array}{ccc} 1 & \rightarrow & \mathsf{pirate} \ 2 \\ 5 & \rightarrow & \mathsf{telescope} \\ \hline \mathsf{NT}_1 & \rightarrow & \mathsf{t} \ (\mathsf{NT}_2) \end{array}$$

Even though possible rewrite rules include

2 0 a with 3 pirate
$$\rightarrow$$
 5 saw with 1 $3 \rightarrow$ 1 2 \rightarrow pirate

Recall rewrite grammar rule definition: Let $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ and $X \in N$. A rewrite grammar has a set of rules R of the form $\alpha X \beta \rightarrow \gamma$

But our rules all look like this:

$$\begin{array}{ccc} 1 & \rightarrow & \mathsf{pirate} \ 2 \\ 5 & \rightarrow & \mathsf{telescope} \\ \hline \mathsf{NT}_1 & \rightarrow & \mathsf{t} \ (\mathsf{NT}_2) \end{array}$$

Even though possible rewrite rules include

2 0 a with 3 pirate
$$\rightarrow$$
 5 saw with 1 $3 \rightarrow$ 1 2 \rightarrow pirate

Recall rewrite grammar rule definition: Let $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ and $X \in N$. A rewrite grammar has a set of rules R of the form $\alpha X \beta \rightarrow \gamma$

But our rules all look like this:

$$\begin{array}{ccc}
1 & \rightarrow & \text{pirate 2} \\
5 & \rightarrow & \text{telescope} \\
\hline
NT_1 & \rightarrow & t (NT_2)
\end{array}$$

Even though possible rewrite rules include:

Context Free Grammars

Context Free Grammars

Context Free Grammars

Discussion: How is this parse tree different from the one for the same sentence using $G_{pirate-FSA}$?

telescope

Chomksy Hierarchy

Recall rewrite grammar rule definition: Let $\alpha, \beta \in (N \cup \Sigma)^*$. A rewrite grammar has a set of rules R of the form

$$\alpha \rightarrow \beta$$

So far we've seen:

NT	\rightarrow	t (NT)	all rules	NT	\rightarrow	t NT
0	\rightarrow	a 1	OR all rules	NT	\rightarrow	NT t
4	\rightarrow	pirate				

Chomksy Hierarchy

Recall rewrite grammar rule definition: Let $\alpha, \beta \in (N \cup \Sigma)^*$. A rewrite grammar has a set of rules R of the form

$$\alpha \rightarrow \beta$$

So far we've seen:

Regular Grammar

NT	\rightarrow	t (NT)	all rules	NT	\rightarrow	t NT
0	\rightarrow	a 1	OR all rules	NT	\rightarrow	NT t
4	\rightarrow	pirate				

Context Free Grammar

Chomsky Hierarchy

Grammar	Language	Rewrite rules		rules	Automaton
Type 0	Recursively	$\alpha X \beta$	\rightarrow	γ	Turing machine
	Enumerable				
Type 1	Context	$\alpha X \beta$	\rightarrow	$\alpha\gamma\beta$	Linear bounded non-
	Sensitive				deterministic Turing
					machine
Type 2	Context Free	X	\rightarrow	γ	Push-down Automaton
Type 3	Regular	X	\rightarrow	t (X)	Finite State Automaton
		or X	\rightarrow	(<i>X</i>) <i>t</i>	

$$\alpha, \beta, \gamma \in (N \cup \Sigma)^*$$
, $X \in N$, $t \in \Sigma$

Chomsky Hierarchy

Context-free grammars

aaabbb

Example: $a^n b^n$

 \bullet S \rightarrow a S b

 \circ S $\rightarrow \epsilon$

Question: Can you generate $a^n b^n$ with a regular grammar?

Weak Generative Capacity

Definition

The weak generative capacity of a (class of) grammar(s) is the (class of) string language(s) it can generate

Example: The language $a^n b^n$

- $a^nb^n = \{a^nb^n \mid n \in \mathbb{N}\} = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$
- $a^n b^n$ is strictly context-free language (i.e. it's not regular).
- The weak generative capacity of context free grammars, but not of regular grammars, includes $a^n b^n$.

 Meaghan Fowlie
 Class 2
 2019-09-16
 18 / 19

Weak Generative Capacity

Definition

The weak generative capacity of a (class of) grammar(s) is the (class of) string language(s) it can generate

Example: The language $a^n b^n$

- $a^nb^n = \{a^nb^n \mid n \in \mathbb{N}\} = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \dots\}$
- $a^n b^n$ is strictly context-free language (i.e. it's not regular).
- The weak generative capacity of context free grammars, but not of

Meaghan Fowlie Class 2 2019-09-16 18 / 19

Weak Generative Capacity

Definition

The weak generative capacity of a (class of) grammar(s) is the (class of) string language(s) it can generate

Example: The language $a^n b^n$

- $a^nb^n = \{a^nb^n \mid n \in \mathbb{N}\} = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \dots\}$
- $a^n b^n$ is strictly context-free language (i.e. it's not regular).
- The weak generative capacity of context free grammars, but not of regular grammars, includes $a^n b^n$.

 Meaghan Fowlie
 Class 2
 2019-09-16
 18 / 19

Strong Generative Capacity

The *strong generative capacity* of a (class of) grammar(s) is the (class of) derivations/parses/structural descriptions of its language(s).

Exercise: Do G_1 and G_2 have the same weak and/or strong generative capacity?

$$\begin{array}{cccc} G_1 & & & \\ S & \rightarrow & A B \\ A & \rightarrow & a A \\ A & \rightarrow & \epsilon \\ B & \rightarrow & b B \\ B & \rightarrow & \epsilon \end{array}$$

G_2		
S	\rightarrow	a S
S	\rightarrow	bΒ
В	\rightarrow	bΒ
S	\rightarrow	ϵ
В	\rightarrow	ϵ

19 / 19