

Taking The Pulse Of The Great Lakes: Using Gaussian Neural Processes To Identify Optimal Observing Sites

Erin Redding

Mentors: Dani Jones, Russ Miller, Shelby Brunner

UC Berkeley, May 2025

B.A. Data Science

Minor in Conservation & Resource Studies

Research Question

Where should the next generation of temperature

measurement sensors be placed in order to most efficiently
improve our quantitative understanding of Great Lakes

surface temperature variability?

What is a Gaussian Neural Process

Gaussian Processes

$$\mathbf{X} \, \sim \, \mathcal{N}(oldsymbol{\mu}, \, oldsymbol{\Sigma})$$

What is a Gaussian Neural Process

Previous Research

Tom Andersson et al. **Environmental Sensor Placement with Convolutional Gaussian Neural Processes**. Environmental Data Science (2023)

- Fuse data sets
 - ERA5, Elevation, DOY cycle, etc.
- Convolution Gaussian Neural Process(ConvGNP) Model

How do we find optimal sensor sites?

The Alan Turing Institute

Deepsensor

Great Lakes DeepSensor Use Case

GLSEA3 temperature anomaly

Lake Mask

Bathymetry

Train: 2007-2014, Validation 2015-2016, Test: 2017-2021

1.) Using All Points, Many Days

Complete Characterization

 Very few variables in the Great Lakes can be constrained this well

Not Enough Information

 With insufficient data, the model does not converge

3.) Using All Points, One Single Day

Training Across all the Great Lakes Converges

Areas of Uncertainty vs. Deployed Sensors

Training on Lake Superior Alone Converges

Training on Lake Erie Alone Overfits

Conclusions

- Great Lakes application of DeepSensor
- Prediction uncertainty highlights shallower, rapidly-changing areas where measurements are needed
- Explored 3 training regimes
 - 1.) Complete characterisation
 - 2.) More information needed
 - 3.) **Enough** information to constrain the predictions

- Refine training
 - Explore different data densities
- More data
 - Add extra information: atmospheric and water quality, GLOS platforms
- Consider other, less well-sampled variables
- Explore other DeepSensor features

Application

- Inflation Reduction Act
- Bipartisan Infrastructure Law

Questions?

Thank you all for listening