Ch 8.3 — 8.5 강남웅

Gradient Descent

Batch Gradient Descent

Mini-batch Gradient Descent

Stochastic Gradient Descent

Gradient Descent

- Batch Gradient Descent (BGD)
 - 모든 Training Set의 Gradient의 평균으로 update
- Mini-batch Gradient Descent (MSGD)
 - Training Set의 일부를 sampling한 뒤 (=mini-batch) gradient 평균으로 update
- Stochastic Gradient Descent (SGD)
 - Training Set중 하나를 sampling한 뒤 gradient를 구해서 update

• Training set의 일부를 sampling하여 Gradient Descent를 수행하는 알고리즘

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}

end while
```

- Learning Rate ϵ_k (at iteration k)
 - 매 iteration마다 random sample을 하기 때문에 noise가 포함
 - noise가 global minimum에 도달해도 계속 존재 $\rightarrow \epsilon_k$ 를 점진적으로 줄여주는 것이 중요하다
 - Convergence condition
 - $\sum_{k=1}^{\infty} \epsilon_k = \infty$
 - $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$

- Learning Rate ϵ_k
 - Learning curve를 monitor하면서 최적의 learning rate를 구한다
 - linear schedule
 - 시작 후 τ iteration 동안

$$\epsilon_k=(1-\alpha)\epsilon_0+\alpha\epsilon_{ au}$$
 where $\alpha=rac{k}{ au}$ 그 이후로는 ϵ 을 고정해서 사용 (보통 $\epsilon_{ au}=\epsilon_0*0.01$ 로 설정)

- ϵ_0 이 크면 violent oscillation이 발생해 cost function이 급증하는 경우가 발생
- ϵ_0 이 작으면 learning이 매우 느린 속도로 진행

• 주황색 : Test set Acc 파란색 : Validation Acc

• 즉, Learning rate가 낮아지면 train이 거의 일어나지 않는다

• 빨간색 : Test set loss 초록색 : Validation loss

• 즉, Learning rate가 높아지면 loss에 차이가 심해진다

loss-epoch

Gradient Descent Summary

- Batch Gradient Descent
 - 장점
 - 전체 데이터를 사용하기 때문에 optimal 로의 수렴이 안정적으로 진행
 - SGD, MGD보다 update 횟수가 적다
 - 병렬처리에 유리하다
 - 단점
 - 전체 데이터를 사용하기 때문에 느리다
 - error를 누적해야하기 때문에, memory가 많이 필요하다
 - local minimum에서 빠져나오기 힘들다

Gradient Descent Summary

- Stochastic gradient descent (SGD)
 - 장점
 - 하나의 데이터를 사용하기 때문에 매우 빠르게 진행
 - local minimum에 빠질 리스크가 낮다
 - 수렴속도가 상대적으로 빠름
 - 단점
 - global minimum을 찾지 못 할 수도 있다
 - 하나의 데이터만 사용하기 때문에 하드웨어적인 이점을 살릴 수 없다 (GPU)

Gradient Descent Summary

- Minibatch Gradient Descent
 - 장점
 - BGD보다 local minimum에 빠질 위험이 적다
 - SGD보다 효율적이다
 - 단점
 - batch size를 정해줘야 한다 (hyperparameter)

BGD vs SGD trace

Momentum

- 같은 방향으로 움직이려는 경향이 보이면, 더 빠르게 가게 해주 는 알고리즘
 - Hyperparameter v (velocity) 도입

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\theta \leftarrow \theta + v$

end while

Momentum

- Hyperparameter
 - Learning Rate ϵ
 - Contributions of previous gradients α (모멘트 효과에 대한 가중치; 보통 0.5, 0.9, 0.99를 사용)
 - ullet initial velocity v
- Update Rule

•
$$v_t \leftarrow \alpha v_{t-1} - \epsilon g$$

•
$$\theta_t \leftarrow \theta_{t-1} + v_t$$

Nesterov Momentum

- 그 전까지의 속도를 고려한 수정값의 gradient를 계산
 - 조금 더 정확한 방향으로 update

```
Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum
```

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding labels $y^{(i)}$.

Apply interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient (at interim point): $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\theta \leftarrow \theta + v$

end while

Nesterov Momentum

- Update Rule
 - $v \leftarrow \alpha v \epsilon g'$ where g' is expectation of loss function of $f(x^{(i)}; \theta + \alpha v)$
 - $f(x^{(i)}; \theta) \rightarrow f(x^{(i)}; \theta + \alpha v)$
 - => gradient 보정효과를 얻을 수 있다

Figure 1. (Top) Classical Momentum (Bottom) Nesterov Accelerated Gradient

- 정확하게 정착된 이론은 없다.
 - "Parameter need to break symmetry btw units"
 - 서로 다른 두 개의 hidden layer가 같은 input을 받는 경우 반드시 different initial parameter를 갖아야 한다
 - => 계속 동일하게 update가 진행되기 때문
 - 주로 Weight만 random하게 initialize하고, bias를 포함한 다른 parameter들은 heuristically chosen constant를 사용한다

- Weight를 서로 다르게 Initialize하는 방식
 - Explicitly search for set of basis function
 - Computational cost가 너무 크다
 - 대안: Random initialization from high-entropy distribution
 cost가 훨씬 줄어들고, 중복되는 경우가 매우 적다

 - Uniform distribution일 때 entropy가 maximize 된다. (Reference: https://stats.stackexchange.com/questions/66108/why-is-entropy-maximised-when-the-probability-distribution-is-uniform && PROBABILITY DISTRIBUTIONS AND MAXIMUM ENTROPY by. KEITH CONRAD https://kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf)
 - Theorem 3.1. For a probability density function p on a finite set $\{x_1, \ldots, x_n\}$,

$$h(p) \le \log n$$
,

- Initial value of weight
 - Large initial value
 - 장점
 - Symmetry breaking effect가 커진다 => redundant unit의 생성을 피할 수 있다
 - Signal을 propagation을 거치면서 사라질 위험이 없다 (losing signal)
 - 단점
 - 너무 커지면 exploding value가 발생해 input에 너무 sensitive해진다 (Chaos)
 - activation function이 saturate 될 수 있다 => gradient loss
 - Low initial value
 - learning이 매우 느린 속도로 이뤄질 수 있다

- Initial value of weight
 - Normalized Initialization
 - Sampling weight of fully connected layer with m inputs and n outputs
 - $W_{i,j} \sim U(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}})$
 - 유도는 linear network에서 하였지만, nonlinear에서도 잘 작용한다고 알려짐
 - Orthogonal Initialization
 - 주로 RNN을 사용할 때 이용한다
 - Weight를 Orthogonal matrix로 초기화하는 방법

- Initial value of weight
 - Sparse Initialization
 - k개의 non-zero weight를 제외하고 모두 0으로 initialize하는 방법
 - gradient가 매우 느리게 줄어든다

- Treat weight as hyperparameter
 - Computational resource가 충분하다면 고려할 수 있는 방법

- Initial value of other parameters
 - Bias
 - 주로 0으로 initialize하는 경우가 많다
 - 0으로 initialize하기 불편한 경우
 - Output unit에 대한 bias일 경우 (activation function : g 일 때, g(bias) = output)
 - Initialization 단계에서 saturation을 피하고 싶은 경우
 - ReLU와 같은 함수에서 bias를 0으로 두고, weight가 sparse initialization과 같은 0이 다량 포함되어있다면, saturation이 많이 일어나기 때문
 - Mean
 - 주로 0으로 설정한다
 - Variance
 - 주로 1으로 설정한다

AdaGrad

- Concept
 - 각 변수마다 다른 성질 (sparsity, alignment)을 갖고 있기 때문에, update를 따로 시켜주는 방식
 - 전 단계에서 많이 변화하였다면, 다음 단계에서는 적게 변화하는 방식
 - Hyperparameter를 도입하지 않고 자동으로 step size를 적합하게 변화시켜주 려는 방식
- Update Rule
 - Accumulation variable

•
$$r \leftarrow r + g \odot g$$

Update

•
$$\theta \leftarrow \theta - \frac{\epsilon}{\delta + r^{\frac{1}{2}}} \odot g$$

AdaGrad

- 장점
 - works well with sparse gradients
- 문제점
 - Accumulation variable r이 점진적으로 계속 커지게 되면, update가 이뤄지지 않는다

- 활용 예시
 - NLP 분야에서, word2vec이나 GloVe 같이 word representation을 학습시킬 경우 단어의 등장 확률에 따라 variable의 사용 비율이 확연하게 차이나기 때문에 Adagrad와 같은 학습 방식을 이용하면 훨씬 더 좋은 성능을 보여준다

RMSProp

- Concept
 - AdaGrad에서의 문제점이었던 accumulation variable을 수정
 - 해결책
 - Exponential average 사용
 - 현재의 value를 가장 크게 사용, 점진적으로(exponential) 과거의 값들을 사용
 - decay rate ρ 추가

$$r \leftarrow \rho r + (1 - \rho) * g \odot g$$

• Update Rule

•
$$\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) * g \odot g$$

• $\theta \leftarrow \theta - \frac{\epsilon}{2 + r^{\frac{1}{2}}} \odot g$

if
$$\gamma = 0.9$$

 $x_t = 0.9x_{t-1} + 0.1g_t$
 $= 0.081x_{t-2} + 0.09g_{t-1} + 0.1g_t$
 $= 0.0729x_{t-3} + 0.081g_{t-2} + 0.09g_{t-1} + 0.1g_t$

RMSProp

- 장점
 - works well in on-line and non-stationary settings
- 문제점
 - ρ 가 1에 근접한 값일 때 exponential average of gradient의 bias를 수 정해주지 않으면
 - i) 매우 큰 stepsize를 갖게 되거나
 - ii) (초기 iteration에서) 발산하는 문제가 있을 수 있음

- Concept
 - RMSProp의 exponential average of gradient값의 bias term이 update가 되지 않는다면 문제가 생긴다는 점을 보완
 - stochastic optimization, high dimensional의 경우 SGD, momentum method 에서 사용하는1st order method가 higher-order method보다 적합하므로 1st order method만 사용

("higher-order optimization methods are ill-suited" ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION)

- Momentum method와 RMSProp의 장점을 혼합한 모델
 - First moment of gradient -> Momentum의 v (velocity)를 모방
 - Second moment of gradient -> RMSProp의 r (accumulation variable)을 모방

- Update Rule
 - first moment

•
$$s \leftarrow \rho_1 s + (1 - \rho_1) g$$

- second moment
 - $r \leftarrow \rho_2 r + (1 \rho_2) g \odot g$
- bias correction
 - $\hat{S} \leftarrow \frac{S}{1 \rho_1^t}$ $\hat{r} \leftarrow \frac{r}{1 \rho_2^t}$

Update Term

•
$$\Delta\theta = -\epsilon * \frac{\hat{s}}{\hat{r}^{\frac{1}{2}} + \delta}$$

- ŝ : momentum이 적용된 gradient
- \hat{r} : Accumulation variable

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8})

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

 $t \leftarrow t + 1$

Update biased first moment estimate: $s \leftarrow \rho_1 s + (1 - \rho_1) g$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$

Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-a_0^t}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

• 장점

- bounded step size
 - stepsize ϵ 이 α 근처에서 bounded 된다
 - step size가 bounded되어있다면, 예측 가능하기 때문에 하이퍼파라미터 설정 시 미리 적절한 값으로 세팅가능하다
- it does not require a stationary objective
- it works with sparse gradients
- it naturally performs a form of step size annealing.

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

비교

- Adaptive methods vs SGD
 - We observe that the solutions found by adaptive methods generalize worse (often significantly worse) than SGD, even when these solutions have better training performance.
 - (Reference : The Marginal Value of Adaptive Gradient Methods in Machine Learning)
 - Adam have lowest training error/loss, but not val. error/loss.
- Adam vs RMSProp
 - RMSprop towards the end of optimization as gradients become sparser

비교

참고

- AdaBound
 - https://medium.com/syncedreview/iclr-2019-fast-as-adam-good-as-sgd-new-optimizer-has-both-78e37e8f9a34
- The Marginal Value of Adaptive Gradient Methods in Machine Learning
 - https://arxiv.org/pdf/1705.08292.pdf
- Adam
 - https://arxiv.org/pdf/1412.6980.pdf