STATS300A - Lecture 7

Dominik Rothenhaeusler Scribed by Michael Howes

10/11/21

Contents

1	Overview of optimal estimation	
	Equivariance 2.1 MREs vs UMRUES 2.2 Risk unbiasedness	
3	Location-Scale Models	4
	Bayes Estimators 4.1 A binomial example	2

1 Overview of optimal estimation

- We have seen that uniformly best estimators do not exist.
- We can constrain our class of estimators eg unbiased, equivariant.
- We can also collapse the risk via Bayesian estimation or minimax estimation.

Today we will finish up on equivariance and discuss Bayesian estimation.

2 Equivariance

Recall that if δ_0 is any equivariant estimator, and $v^*(y)$ is defined to be the value v that minimises

$$\mathbb{E}_0[\rho(\delta_0(X) - v)|Y = y],$$

where $Y = (X_1 - X_n, ..., X_{n-1} - X_n)$, then $\delta^*(X) = \delta_0(X) - v^*(Y)$ is MRE.

2.1 MREs vs UMRUES

- \bullet MREs depend on the loss function.
- UMRUES do not depend on the loss function provided the loss function is strictly convex. This is because the UMRUE is often the unique unbiased estimator that is a function of a complete sufficient statistic.
- UMRUES do not always exist.

- MREs usually do exist and we can find them via an optimisation procedure.
- UMRUES are often inadmissible.
- Pitman's estimator is admissible under weak regularity conditions (Stein 1959).
- MREs are often biased if something other squared error loss is being used.

2.2 Risk unbiasedness

Definition 1. An estimator δ is risk unbiased for the loss $L(\theta, d)$ if all θ, θ'

$$\mathbb{E}_{\theta}[L(\theta, \delta(X))] < \mathbb{E}_{\theta}[L(\theta', \delta(X))].$$

Intuitively this says the true parameter θ penalises less than the false parameter θ' . If L is squared error loss, then this is the same as regular unbiasedness.

Theorem 1. [TPE 3.127] If δ if MRE for a location invariant decision problem, then δ is risk unbiased. Sketch. Prove the contrapositive. Show that if δ is not risk unbiased, then a shifted version of δ has strictly lower risk.

3 Location-Scale Models

Suppose that $X = (X_1, ..., X_n)$ has the joint density

$$f_{\theta,\tau}(x_1,\ldots,x_n) = \frac{1}{\tau^n} f\left(\frac{x_1-\theta}{\tau},\ldots,\frac{x_n-\theta}{\tau}\right).$$

Our parameters are the location $\theta \in \mathbb{R}$ and scale $\tau > 0$.

Example 1. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \tau^2)$, then

$$f(x_1, \dots, x_n) = \frac{1}{(\sqrt{2\pi}\tau)^n} \exp\left\{-\frac{1}{2\tau^2} \sum_{i=1}^n (x_i - \theta)^2\right\}$$
$$= \frac{1}{\tau^n} \frac{1}{\sqrt{2\pi}^n} \exp\left\{-\frac{1}{2} \sum_{i=1}^n \left(\frac{x_i - \theta}{\tau}\right)^2\right\}$$
$$= \frac{1}{\tau^n} g\left(\frac{x_1 - \theta}{\tau}, \dots, \frac{x_n - \theta}{\tau}\right),$$

where $g \sim \mathcal{N}(0, I_n)$.

Note that if X_i has a location-scale distribution (θ, τ) , then $X_i' = aX_i + b$ has a loc-scale distribution $(a\theta + b, a\tau)$ if a > 0 and $b \in \mathbb{R}$. Our goal is to estimate θ , we are not interested in estimating τ and we call τ a nuissance parameter.

Definition 2. A loss function is *loc-scale invariant* if

$$L((a\theta + b, a\tau), ad + b) = L((\theta, \tau), d),$$

for all a > 0 and $b \in \mathbb{R}$. This is equivalent to requiring that $L((\theta, \tau), d)$ is a function of $\frac{\theta - d}{\tau}$.

Definition 3. A model $\mathcal{P} = \{P_{(\theta,\tau)} : (\theta,\tau) \in \Omega\}$ is loc-scale invariant if

$$f_{(a\theta+b,a\tau)}(ax+b) = f_{(\theta,\tau)}(x),$$

for all a > 0 and $b \in \mathbb{R}$.

10/11/21 STATS310A - Lecture 7

Definition 4. An estimator δ , is loc-scale equivariant if

$$\delta(aX + b) = a\delta(X) + b,$$

for all a > 0 and $b \in \mathbb{R}$.

Theorem 2. Suppose we have a loc-scale invariant loss and model. Let δ_{τ}^* be the MRE in the submodel where τ is fixed.

If δ_{τ}^* does not depend on the scale τ , then $\delta^* = \delta_{\tau}^*$ is the MRE for the full mode. That is for any loc-scale equivariant estimator δ' ,

$$R((\theta, \tau), \delta^*) \le R((\theta, \tau), \delta').$$

This is another example of the technique of restricting attention to a submodel and then concluding something about the full model (recall our semi-parametric example from earlier).

Proof. Assume δ' is strictly better at (θ_0, τ_0) and that δ' is loc-scale equivariant. Then δ' has strictly better risk on the submodel $\{(\theta, \tau) : \tau = \tau_0\}$ and δ' is loc equivariant on the submodel. This is contradiction to δ^* being the MRE on the submodel.

Example 2. In the model $\mathcal{N}(\theta, \tau^2)$, \bar{X} is the MRE under squared error loss for fixed τ . It does not depend on τ and thus \bar{X} is the MRE in the full model.

Example 3. If $f_{\theta,\tau} \sim \frac{1}{\tau} \exp\left\{-\frac{1}{\tau}(x-\theta)\right\} \mathbb{I}(x \geq \theta)$, then the loc MRE under squared error loss if $X_{(1)} - \frac{\tau}{n}$ depends on τ . We will study this example more on the next assignment.

4 Bayes Estimators

As before we have our data $X \in \mathcal{X}$ and model $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$. Let Λ be a measure on Ω . We wish to find an estimator δ that minimizes the average risk

$$r(\Lambda, \delta) = \int_{\Omega} R(\theta, \delta) d\Lambda(\theta).$$

If Λ is a probability distribution, then Λ is called a prior distribution. Is δ_{Λ} minimises $r(\Lambda, \delta)$, then δ_{Λ} is called a *Bayes estimator* and we call $r(\Lambda, \delta_{\Lambda})$ the *Bayes risk*.

Proposition 1. If Λ is a probability distribution, then we have

$$r(\Lambda, \delta) = \mathbb{E}L(\Theta, \delta(X)).$$

where $\Theta \sim \Lambda$ and $X|\Theta = \theta \sim P_{\theta}$.

Note that the above expectation is with respect to both Θ and X. This is different to the regular risk which is only an expectation with respect to X.

Proof. Note that

$$\begin{split} \mathbb{E}(L(\Theta, \delta(X))) &= \mathbb{E}[\mathbb{E}[L(\Theta, \delta(X))|\Theta]] \\ &= \mathbb{E}[R(\Theta, \delta)] \\ &= \int_{\Omega} R(\theta, \delta) d\Lambda(\theta) \\ &= r(\Lambda, \delta). \end{split}$$

10/11/21 STATS310A - Lecture 7

The usual interpretation is that Λ encodes prior beliefs about θ that we have before seeing the data X. Our main result is the following:

Theorem 3. Suppose $X \sim \Lambda$ and $X|\Theta = \theta \sim P_{\theta}$. If there exists an estimator δ_0 with finite risk and if for almost every x, there exists a value $\delta(x)$ that minimises

$$\mathbb{E}[L(\Theta, d)|X = x],$$

over d, then $\delta(X)$ is the Bayes estimator.

Proof. For a.e. x and every estimator δ' we have

$$\mathbb{E}[L(\Theta, \delta'(X))|X = x] \ge \mathbb{E}[L(\Theta, \delta(X))|X = x].$$

Thus,

$$r(\Lambda, \delta') = \mathbb{E} \left[\mathbb{E} \left[L(\theta, \delta'(X)) | X = x \right] \right]$$

$$\geq \mathbb{E} \left[\mathbb{E} \left[L(\theta, \delta(X)) | X = x \right] \right]$$

= $r(\Lambda, \delta)$.

Thus δ is the Bayes estimator.

Note that under squared error loss the minimizer of $\mathbb{E}[(g(\Theta) - \delta(x))^2 | X = x]$ is the conditional expectation $\mathbb{E}[g(\Theta)|X = x]$ which we call the posterior mean.

4.1 A binomial example

Suppose that $X \sim \text{Bin}(n, \theta)$ where $\theta \sim \Lambda = \text{Beta}(a, b)$. That is the prior for θ has density

$$\pi(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

The likelihood of θ is

$$f(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}.$$

Recall Bayes rule

$$\begin{aligned} \text{posterior} &= \frac{\text{joint density}}{\text{marginal of } x} \\ &= \frac{\text{prior} \times \text{likelihood}}{\text{marginal of } x} \\ \therefore p(\theta|x) &= \frac{p(x,\theta)}{p(x)} \\ &= \frac{\pi(\theta)f(x|\theta)}{p(x)} \\ &= \frac{\pi(\theta)f(x|\theta)}{\int \pi(\theta')f(x|\theta')d\theta'} \end{aligned}$$

Thus

$$\pi(\theta|x) \propto \text{likelihood} \times \text{prior}$$

$$\propto \theta^{x+a-1} (1-\theta)^{n-x+b}$$

$$\propto \text{Beta}(x+a, n-x+b).$$

Thus the Bayes estimator under squared error loss is the mean of Beta(x+a,n-x+b) which is $\frac{x+a}{n+a+b}$ (exercise). Note that

$$\frac{x+a}{n+a+b} = \frac{n}{n+a+b}\frac{x}{n} + \frac{a+b}{n+a+b}\frac{a}{a+b} = \lambda_n \cdot \text{UMVUE} + (1-\lambda_n) \cdot \text{prior mean}.$$

Thus the Bayes estimator is a convex combination of the UMVUE and the prior. Also $\lambda_n \to 1$ and $n \to \infty$ and so with enough data we approach the UMVUE. If n is small compared to a+b, then the Bayes estimator is closer to the mean of the Bayes's prior.