Trip.com

Meta Auto-Bidding

IBU BI
Data Mining Team, 2019

Taiwen Yang - TripAdvisor
Sun Xie - GoogleHPA
TianRong Weng - Trivago

tripadvisor

- **♦** Background
- **♦ Data Flow**
- Bidding Structure
- **♦ Bidding Strategy**
- Performance

trivago

- Ranking Logic of Bidding
- Data Flow
- Data Analysis
- Algorithm Strategy
- Performance

- **♦ Spot Timeline**
- ◆ Load Data Warehouse and Back-End Part
- Current Situation
- **◆ Related Market Analysis**
- New Bid Strategy
 Introduction
- Meta Auto-biddingAlgorithm Building

Troadisor

- ➤各OTA提供给TA想售卖的酒店名单。
- ➤ 对售卖酒店名单中匹配上的每一家酒店 进行出价,即每次点击价格(Bid)
- ➤ TA根据每家酒店各OTA的Bid,售价, 价格一致性等决定展示名次。

慕軒飯店 (大安) Madison Taipei Hotel

➢ List Page: 只展示前4名 OTA, 出价最高的OTA高 亮展示。

Booking.com ₹

CN¥458

Expedia 7

CN¥462

TripAdvisor

CN¥458

查看全部 6 種從 CN¥458 起的優惠▼

- ➢ Detail Page: 只展示前6 名OTA,前3名高亮展示
- 售价最便宜酒店:红色字体展示,且售价最便宜酒店一定排在前3。

Bidding Structure

Old Way

New Way

Trip.com

1. 第三方合作方Koddi负责大部分Meta各pos下的具体出价

Koddi Bid:长时间段后,选取批量酒店进行大幅度调价

1、效果不佳,波动性大

2. TA负责Trip.com的Bid(BMP)

BMP: 1、丧失主动权

2、改变投放策略的

J通效率较低

- 2、服务费用成本高
- 3、出价策略粗糙,酒店间出价差异性小
- 4、时效性差
- 5、对Trip数据安全不利

VS

根据酒店最新的各项属性及历史表现,由算法每天实时自动化计算各酒店出价。

Objective:

Final Bid --- Upload

Hotel Pool

酒店属性

Optimization Machine Balance Machine Machine 整定ROI 出价策略

1. ROI(HI、HMT) ---> 0.7

ROI(HN) ---> 1

2. ROI达标后值后,最大化订单量。

Optimization Machine

Ex: AH类-DMeta

Bid Strategy

Balance Machine

Ex: HI-DMeta, ROI(HI) = 1.5 > 1

Performance

Trip.com

- ROI
- 1. Auto-Bid使ROI平均上升约 20%
- 2. Auto-Bid使整体ROI持续上升到1以上,突破历史最大值。

- CR
- 1. Auto-Bid使CR从0.02上升 到0.022。
- 2. Auto-Bid使整体CR持续上升到 2%以上,突破历史最大值。
- Orders
 - 1. Auto-Bid使订单量持续增长。

注:因为节假日及PR事件导致的资源问题,出现图中异常的低谷值。

2. Auto-Bid的订单量超过历史最大值。

og galante de la constante de

Bid Ranking of Logic

具体流程 : Same As TripAdvisor

每天通过SFTP传一份竞价投放的酒店各项表现指标的数据,对数据落库 ,并对数据进行处理,实现自动化流程,为酒店竞价数据分析、设计竞价 策略和策略实现做数据准备。

Features Explanation

HotelImpression	酒店展示给用户总次数
ImprShare	该酒店上获得的展现数/酒店总展现次数
TopPosShare	酒店收到的所有展现次数中排名首位的比例
Beat	跟其他竞争对手比我们的酒店价格是唯一最便宜的数量/酒店总展现次数
Meet	酒店价格是最便宜的,但还有一个或多个竞争对手也有该价格的数量/酒店总展现次数
Lose	跟其他竞争对手比我们的酒店价格更贵或不是最便宜的数量/酒店总展现次数
Unavailability	没有给trivago发送酒店价格或者响应超时(API响应过慢)的数量/酒店总展现次数
MaxPotential	通过增加出价可以获得的酒店或平台上的最大流量
Incremental traffic	出价提高10%可以多获得的流量
Outbid ratio	出价过低,被其他竞争对手超过而不能展现的比例
Opportunity cpc	trivago给出的指导出价(流量增长20%)

Ex. JP POS

- 分析koddi在JP站点的调价策略, 发现酒店的价格优势率(beat)、 排在首位的比例(topposshare)是 策略中最重要的两个数据指标, 每次调价的幅度大概是10%;
- 通过数据指标相关性分析发现, 排名首位的比例(topposshare)指 标主要受酒店优势率(beat)和酒 店出价(bid)两个指标影响;

图:特征指标相关性

Trip.com

策略思路:

- 考虑流量大小作为酒店分类的第一层指标;
- 在大流量的酒店类别中,再通过转化 (cr)指标和酒店价格优势率(beat)作为 酒店好一般差的分层的评价指标,并给 每一层酒店设定一个排名 (topposshare)目标区间,高于这个区间,则下调bid;低于这个区间,则上 调bid;在这个区间内,bid不变;调价幅度为10%;
- 在小流量的酒店类别中,只选取了 过去半年有点击的酒店,把价格优 势率(Beat)作为酒店分层的指标, 同样设置排名(topposshare)目标区间

Performance

Trip.com

Orders:

在调价实验上线后,订单数量实现大幅度提高,达到新高一周750单;之后保持平均每天90单以上的数据;

ROI:

roi指标也持续上升,最高达 到2.09;

CPC:

相比实验之前,试验后cpc 大幅度下降,目前稳定在 0.1欧元;

总体效果

周指标变化情况

在我们所设计的竞价策略在TW站点 上线之后,对调价前后一个月的数 据对比, orders、ROI和clicks等 指标都有了大幅度提升。

	clicks	orders	hotel impression	roi	асрс	used potential	used best rate potential
2018.10.16-2018.11.19	91605	2095	1301W	1.5	1.62	11.41%	44.13%
2018.11.20-2018.12.24	165426	3146	1450W	1.8	0.89	19.60%	75.83%
Change	81%	50%	11%	20%	-45%	72%	72%

28.23%

30.31%

32.51%

17.06%

10.11%

9.08%

6.68%

4.40%

对照

对照

对照 对照

实验

实验

实验

实验

平均点击 成本CPC

20%

总体点 降低45% 击增长

81%

时间段 topposshare outbidratio Htllmpr clicks roi orders beat cpc cr 23/11-29/11 14658 0.24 1.36 352 0.024 23.43% 6.12% 242W 0.26 30/10-05/11 265W 15154 1.39 400 0.264 24.38% 5.04% 06/11-12/11 256W 15972 0.22 1.49 387 0.024 26.00% 6.03% 13/11-19/11 272W 29276 0.15 1.68 556 29.95% 8.88% 0.019 20/11-26/11 284W 27392 0.14 1.77 500 0.018 26.51% 7.55% 27/11-03/12 0.12 1.82 25.83% 8.34% 394W 39532 750 0.019 04/12-10/12 30832 0.1 2.09 649 0.021 24.32% 7.96% 292W 11/12-17/12 237W 32932 0.1 1.87 666 0.02 27.07% 10.35%

GoogleHPA

2017.6 - 2018.5 旧版本

2018.6.1 GoogleHPA 出价改革

GoogleHPA 从单一hotel 出价改革为数机构多层批量调价+每个酒店 不同调价混合

2018.9 后续流程表建立与自动补数机制

- ▶ Partner_google_clickcost_order_timezone建立 (美西-15h)
- ▶ googlehpa_combined_performance_campaign_timezone 建立
- 自动补数据机制建立(每小时自动化补数据hbaseToHive ,log表建立,每天check所有表的数据完全report 发布)

2018.6 - 8 Hbase 集群落表与迁移

- 申请新hbase集群,同步control表的建立,以及开发连接API落原表失败报警与策略
- → 12张原表source Tables

2018.10 选取酒店算法逻辑

- → 2个POS选取作为第一版算法测试 : HK, AU
- → 分析Google方每两周Pushup 的 low competition high potential hotelid名单
- → 初步分析 HK 9月份的所有performance 指标性特征
- → 分析关键变量 (ABV, ad_Position, clicks, orders, commission_rate, CR, beat_meet_ratio) 与ROI 多个变量对一的关系

2018.10-11 出价频率幅度算法逻辑

- → 分析HK 从2018/6/1开始的 base bid percent 的变动频率与幅度
 - HK POS hotel classification
- Important Index: click_3mo, ad_position_pre, ad_position_7, beat_meet_ratio_pre, beat_meet_ratio_7,orders_3mo
- Bid Adjustment separated by device (mobile, Desktop + Tablet): [Rule + Penalized Regression Score Model]

To Be Continued

2018.12 业务原因模型未上线 + 分析现状 (PR 事件)

→ ParticipantRatio异常降低分析

・US & JP Koddi PullBack Bid 调整分析 (2018-12-25)

Background Introduction

数据流程:

后续流程表:

partner_google_clickcost_order_timezone googlehpa_combined_performance_campaign_timezone

原表包括:

- 1. Googlehpa_audience_source Table (2k+ / day)
- 2. Googlehpa_booking_source (1.5k+ / day)
- 3. Googlehpa_bid_sim_cpc_fixed_source (4000w+ / day)
- 4. Googlehpa_bid_sim_cpc_percentage_source (4000w+ / day)
- 5. Googlehpa_cross_device_conversions_source (1k+ / day)
- 6. Googlehpa_fence_rate_source (2000w+ / day)
- 7. Googlehpa_performance_with_click_type_source (600w+ / day)
- 8. Googlehpa_price_competitiveness_source (500w+ / day)
- 9. Googlehpa_top_opportunity_source (20w + / 7days)
- 10. Googlehpa_bids_source (7000w+ / day)
- 11. Googlehpa_campaigns_groups_source (2w+ / day)
- 12. Googlehpa_group_hotels_source (2000w+ / day)

Step 1:

Hbase集群申请, 同步control表建立, 以及开发连接API落 原表失败报警策略 Step 2: Hive 同步 12张原 表

Step 3: 后续流程表(2张)

- (左右两侧图)分站点不分pos(HI,HMT,HN),ROI情况HN最 高(1.16), HMT和HI 其次都为接近0.63. 反观orders的情况, HI 贡献最高订单(14824)占比所有的订单71%,超过50%占主 要,紧接着是HMT 订单量3865 占比19%,最少的是HN 站点 2148, 占比10%
- 上图是13个主攻pos 详细分站点的ROI 和orders情况, US 的 HI, TW的HMT, MY的HI, KR的HI, HK的HI, HMT, HN, FR的 HI, 这些pos的站点下订单较多, 相对的高产也代表了较 低的ROI。
- 并且经过分析,在这13个pos中,IN,FR,CN的CR相对理想 都达到了1.3%以上, JP, GB, AU, KR的CR 相对较低在 0.35%左右。价格优势率方面HK, SG,TW,KR 相对较好

ORDERS FROM SUBPRDTYPE

Trip.com

CPC (Cost Per Clicks)

Can be set on Campaign level

Audience

Analyze conversion rates on Google.com and Google Maps to adjust bids accordingly

User Country

Use demographic data to adjust multipliers according to conversion rates

Can be set on both Campaign & Ad Group level

Device Type

Keep bids competitive for all devices incl. mobile, desktop and tablet

Length of Stay

Can be set on Ad Group level

Increase for profitable stay lengths, decrease on lengths with low conversion rates

Check in Day Of The Week

Apply based on the day of the week on which the end-user wants to check in

Advanced Booking Window

Apply based on the day of the week and take advantage of the most popular check-in day

Date Type

Set a different multiplier for clicks that come through for the default date vs a chosen date.

CPA (Cost Per Acquisition) Safe Backup

batch bidding Strategy

New CPC Bid Percentage Structures

Total CPC bid: base bid + bid multipliers

Base bid \$1.00

-5% for mobile device

+5% for user in GB

+5% for 2-night stay

Bid multipliers

PullBack Analysis (US + JP)

调整酒店概括

JP - 2018-12-19						
Group Level Multiplier	No Changes					
Htl Level Base Bid						
Campaign_id	Campaign	htlNum				
1153103064	JP_desktop+ Tablet	176				
494183674	JP_Mobile	431				
JP - 2018-12-21						
Group Level Multiplier	No Changes					
Htl Level Base Bid						
Campaign_id	Campaign	htlNum				
1153103064	JP_desktop+ Tablet	5232				
110010001						
494183674	JP_Mobile	4629				

US - 2018-12-19							
Group Level Multiplier	No Changes						
Htl Level Base Bid							
Campaign_id	Campaign	htlNum					
1317939877	US_Desktop+ Tablet	112					
1001466250	US_Mobile	10					

Pull Back: 由于存货或者其他意外事件包括PR事件导致的ROI 急速下降,采取紧急应对策略,一般两种方法:

- 1. 选取之前最好一天的出价覆盖当前的出价
- 2. 按照各种逻辑选取表现相对差的酒店大幅度降低出价 (Koddi)

研究目的:

自动调价的算法无法快速有效地立刻大幅度降价,需要人工干预加快 周期。研究koddi的紧急处理操作给我们未来遇到类似情况提供操作方 案,降低出价,减少成本,强制提升ROI达到预期

调整出价幅度依据:

运用multiple linear regression 方法 以 previous bid 为 feature, 出价调整幅度为predicted value,得到 adjusted R-squared 在JP/US POS 上都有0.95以上。出价调整幅度与之前酒店出价(前一天)强相关

选取酒店依据:

- ➤ BeatRatio< 0.7 (比例最大)
- ➤ BeatRatio >= 0.7 but CR 基本上接近0
- ➤ Although BeatRatio >= 0.7 AND CR 也不错 , 但是 ad_position < 3
- > 还有一些就是新酒店或者是根本没有任何信息的酒店

Participation Ratio Analysis

- ➤ Participation Ratio震荡只与内存(最大影响),内部技术(query 类问题等,黑名单,是否开设POS 等外在条件相关,不 与出价,酒店价格和酒店是否优质有关。
- ➤ 取TOP 10 missed_participation_no_availability (From 11/01 Present) hotel_country 选出 5个从12/2-12/20 missed participation 快速增长的 5个htl_country (US, JP, IN, GB, DE)
- ➢ 从 table below可知,导致我们participation ratio低迷的主要原因为 Suspended hotel 和 no_availability

总体思路:

- 运用规则逻辑将酒店分层为好酒店和差酒店
- ✓ **好酒店**: 1. CR高 2.高产 3. ROI 高 4. 价格优势率高。依据以上4点定以好酒 店为已发掘的好酒店,与有潜力的酒店。

具体策略: 对于已发掘好酒店保持与提高订单, 对于潜力酒店提高

排名提高曝光度进一步挖据各项指标稳定度

✓ **差酒店**: 高成本低产量拉低ROI。 一般分为2种,一为热门酒店价格优势率低

click 3mo < 10

ad_position_pre <= 4 \ = -1):

ad position pre is NULL:

ad_position > 4:

导致的CR低;而为价格优势率高却依然CR低导致高成本低订单。

具体策略: 降低出价, 拉底广告排名

注:长尾酒店不一定等于差酒店。

Classification

(beat_meet_ratio_7 >= 0.7 and (CR_3mo < 0.04 OR CR IS NULL)) OR beat_meet_ratio_7 < 0.7 : large bid down beat_meet_ratio_pre >= 0.7 and CR_ ad_position_pre <3: small bid down 3mo >= 0.04: 7) < ad 3<=ad_position_pre<=4: small bid up (beat_meet_ratio_7 >= 0.7 and (CR_3mo < 0.04 OR CR IS NULL)) OR beat_meet_ratio_7 < 0.7 : bid down beat_meet_pre >= 0.7 or beat_meet_7 >= 0.9: other: ad_position_pre < 3: small bid down orders_3mo > 0: 3<=ad position pre <= 4: stay same beat meet ratio 3mo >= 0.7: orders 3mo = 0: large bid down to above reserve price beat_meet_ratio_3mo < 0.7:bid down beat_meet_ratio_3mo >= 0.9 : large bid up beat_meet_ratio_3mo < 0.9: stay same ad_position_7 IS NULL: stay beat meet 3mo >= 0.95:small bid up ad position 7 > 4: beat_meet_3mo is null or beat_meet_3mo < 0.95: stay same beat_meet_3mo >= 0.7 or beat_meet_3mo is null: stay same 25 ad position 7 <= 4 and ad position != -1: beat_meet_3mo < 0.7:small bid down ad_position_pre = -1 OR ad_position_7 = -1: beat_meet_ratio_3mo >= 0.7: large bid up

(beat_meet_ratio_7 >= 0.7 and (CR_3mo < 0.04 OR CR IS NULL)) OR beat_meet_ratio_7 < 0.7 : bid down

beat_meet_ratio_pre >= 0.7 and CR_

(beat_meet_ratio_7 >= 0.7 and (CR_3mo < 0.04 OR CR IS NULL)) OR beat_meet_ratio_7 < 0.7: large bid down

ad position pre <3: bid down

3<=ad_position_pre<=4: small bid down

bid up mall bid down

stay same

_7) >~ ad_position_

beat_meet_ratio_7 >= 0.7 and CR_3mo >= 0.04: bid up

beat_meet_ratio_7 >= 0.7 and CR_3mo >= 0.04: stay

3mo >= 0.04:

出价幅度

・ bidDown/bidUp分为3个批次:

1. small_range |0.8|*

2. normal_range |1.0|*

3. large_range |1.2|*

在3个批次考虑下,单个酒店出价根据自身特征调整

考虑因素: 平均7天酒店房型最低价hotelPrice_7, 平均7天酒店impression Htllmpr_7, 与所有酒店中位数比较。

计算方法:

Range = 1.2/1.0/0.8*Max(0, log(htllmpr_7 / med_htl_lmpr_7) * 系数) + 前一个月出价中位数 - log(htlPrice / med_htlprice_7) * 惩罚系数

FinalBid = Max(previousbid +/- Range,0)

原因:

googlehpa出价为酒店价格的百分比出价,并且考虑酒店的热门程度(google 推荐排名列表),得到不同热门程度和酒 店价格应该有不同的出价百分比

subaccount hotelid

479015757 5318330

Small range biddown (htl classification) htl_price med_htl_pric htl_impr med_htl_imp htl class r_7 113 3

click_3

cr_3mo

0.50

Holiday Inn Express Kuala **Lumpur City Center**

Previous Bid: 0.76

beat_

meet_

0.24

400.77

528

beat_ad_po

7

meet

pre

0.5

Updated Range: $0.8 * {Max[0,log(113/3)*0.1]+0.1-log(400.77/528)*0.02} = 0.208$

Finalbid SHOULD BE Max(0.76 - 0.208.0) = 0.552

orders_3 ad po

mo

1

pre

3.7

Thank You! Question?