



# Toward Mobile 3D Vision

Huanle Zhang\*, Bo Han&, Prasant Mohapatra\*

\*University of California, Davis Davis, California, USA <sup>&</sup>AT&T Labs - Research Bedminster, New Jersey, USA

# Position Paper

Mobile 2D Vision Mobile **3D** Vision

Challenges: (1) computation intensive; (2) memory hungry

Research Agenda: potential research areas for improving the efficiency of executing 3D vision in real-time on mobile device

#### 3D Vision is Essential

3D vs. 2D: **depth** information, crucial for many applications



(b) Autonomous driving



(c) Drone



3

## Key Components for 3D Vision

1. Object Detection

Each 3D object of interest is localized

2. Scene Segmentation

Each input point is classified with a label



**Object Detection** 

**Scene Segmentation** 

Illustration of 3D object detection and scene segmentation

#### 3D Data Representation

3D Mesh

**Not DNN-friendly** 



(a) A 3D mesh of cat1

Point Cloud: an unordered set of points.Each point in (X, Y, Z, P) where P is a property

E.g.,

 $P = \emptyset$  in the ShapeNet dataset<sup>2</sup>

P = I (reflectance value) in the KITTI dataset<sup>3</sup>

P = (R, G, B) in the ScanNet dataset<sup>4</sup>



(b) A (X, Y, Z) point cloud



(c) A (X, Y, Z, I) point cloud



(d) A (X, Y, Z, R, G, B) point cloud

<sup>1.</sup> Image sources: https://www.pinterest.com/pin/325244404324563579/

<sup>2.</sup> ShapeNet dataset: https://www.shapenet.org/

<sup>3.</sup> KITTI dataset: http://www.cvlibs.net/datasets/kitti/

<sup>4.</sup> ScanNet dataset: http://www.scan-net.org/

#### Feature Extraction From Point Cloud

Different methods of feature extraction result in different degrees of data dimensionality, which in turn determines the DNN model complexity

- 1. Converting to 2D Feature Vectors
  - E.g., ComplexYolo [1]
- 2. A Feature Vector for Each Grid Cell
  - E.g., VoxelNet [2]
- 3. A Feature Vector for Each Pillar
  - E.g., PointPillars [3]
- 4. A Feature Vector for Each Point
  - E.g., SparseConvNet [4]

<sup>[1]</sup> Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Gross. Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds. In Proceedings of European Conference on Computer Vision Workshop (ECCV Workshop), 2018.

<sup>[2]</sup> Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

<sup>[3]</sup> Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. PointPillars: Fast Encoders for Object Detection From Point Clouds. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

<sup>[4]</sup> Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018

# Comparison of Selected DNN Models

| Model          | ComplexYolo | VoxelNet     | <b>PointPillars</b> | SparseConvNet |
|----------------|-------------|--------------|---------------------|---------------|
| Application    | Detection   | Detection    | Detection           | Segmentation  |
| <b>Dataset</b> | KITTI       | <b>KITTI</b> | <b>KITTI</b>        | ScanNet       |
| <b>#Points</b> | 17.7K       | 18.4K        | 18.9K               | 158.8K        |
| Accuracy       | 64.9% AP    | 66.8% AP     | 74.1% AP            | 72.5% IoU     |
| #Features      | 1.6M        | 180.2M       | 0.4M                | 1.0M          |

During inference, the models make predictions based on different number of input features

#### Measurement Setup

#### Hardware:

- A Server (Dell PowerEdge T640 with 40 2.2GHz CPU cores)
- Phones (Huawei Mate 20 and Google Pixel 2)

Tensorflow/Tensorflow Lite for ComplexYolo, VoxelNet and PointPillars.

PyTorch for SparseConvNet

#### Running Models on Server

| Model  | ComplexYolo | VoxelNet | <b>PointPillars</b> | SparseConvNet |
|--------|-------------|----------|---------------------|---------------|
| Memory | 0.4GB       | 76.0GB   | 0.6GB               | 1.9GB         |
| Time   | 0.3s        | 27.1s    | 1.3s                | 1.8s          |

Memory usage and execution time of selected DNN models on a commodity server

Performance difference: 90X in speed and 190X in memory

#### In addition:

- (1) ComplexYolo is lightweight
- (2) VoxelNet is extremely slow
- (3) PointPillars dramatically reduces the overheads compared to VoxelNet
- (4) SparseConvNet is efficient

## Phone vs. Server (Tensorflow Lite Compatible)

ComplexYolo, 100 runs

Huawei Mate 20 takes 1.3 seconds per point cloud, 3.9 times slower than the server



## Phone Versus Server (Tensorflow Lite Incompatible)

PointPillars, 100 runs

Variable-length 1D convolutional layer is not supported by Tensorflow Lite

Huawei Mate 20 runs 375.5 times slower than the server



#### Phone GPU versus CPU

Using GPU may be slower than CPU if some model operators are not supported by the GPU<sup>1</sup>.

#### Take ComplexYolo as an example:

| Phone          | CPU only    | CPU + GPU   |
|----------------|-------------|-------------|
| Huawei Mate 20 | 1.3 seconds | 2.3 seconds |
| Google Pixel 2 | 2.6 seconds | 3.4 seconds |

#### **Experiment Summary**

It is challenging to support 3D vision in real time on mobile devices

- Slower than 1 point cloud per second. A continuous vision system requires at least a dozen hertz.
- Larger than 0.4GB memory consumption, which is demanding for smartphones since memory is shared by many applications

## Research Agenda

Possible solutions to accelerate 3D vision on mobile devices

- Down-sampling Input
- Offloading
- Model Selection
- Locality in Continuous Vision
- Hardware Parallelism

## Proposal 1: Down-sampling Input

Down-sample input so that a more lightweight DNN model can be used

For example, AdaScale [1] trains several 2D object detection models for different image resolutions, and designs a neural network to predict the optimal down-sampling factor for each given image

# Proposal 1: Down-sampling Input (Continued)

We found that we can use a single pre-trained model for point clouds of any size

- Accuray remains the same when the input point cloud is sparsified by 40%
- A point cloud of 50% points takes about <sup>2</sup>/<sub>3</sub> FI OPs

Challenge: it is unknown how to predict the optimal down-sampling factor for each point cloud







(b) Computation Overhead

# Proposal 2: Offloading

Offloading computation-intensive tasks to the cloud can alleviate hardware constraints of mobile device

#### Offloading schemes:

- Intermediate Result Offloading, e.g., VisualPrint [1]
- Partial Raw Data Offloading, e.g., [2]

#### Challenges

- 1. Identify Region of Interest (RoI) for point clouds
- 2. Tradeoff between the pre-processing of raw data and end-to-end latency

<sup>[1].</sup> Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Low Bandwidth Offload for Mobile AR. In Proceedings of International Conference on Emerging Networking Experiments and Technologies (CoNEXT), 2016

<sup>[2].</sup> Luyang Liu, Hongyu Li, and Marco Gruteser. Edge Assisted Real-time Object Detection for Mobile Augmented Reality. In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2019.

#### Proposal 3: Model Selection

Select appropriate DNN model according to the run-time resources of mobile devices

Cameras output images of the same resolution, and the models' computation and memory overhead can be determined in advance to facilitate the selection

**Challenge**: A 3D scanner generates point clouds with different number of points, e.g., higher point density for furniture than walls

# Proposal 4: Locality in Continuous Vision

Object detection is only performed for two frames that are dramatically different and caching is used for frames in between.

#### For example

- Tracking image blocks [1]
- Neural network for object tracking [2]
- Point cloud tracking, e.g., FlowNet3D [3]

Challenge: a lightweight tracker for point clouds

<sup>[1].</sup> Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2018

<sup>[2].</sup> Huizi Mao, Taeyoung Kong, and William J. Dally. CaTDet: Cascaded Tracked Detector for Efficient Object Detection from Video. In Proceedings of Conference on Systems and Machine Learning (SysML), 2019.

<sup>[3].</sup> Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas. FlowNet3D: Learning Scene Flow in 3D Point Clouds. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019

## Proposal 5: Hardware Parallelism

It can greatly speed up model execution if all the resources, e.g, CPU, GPU and DSP on smartphones, can be used in parallel.

#### Parallelizing DNN based systems

- Parallelizing DNN Model
- Parallelizing Input Data, e.g., MobiSR [1]

**Challenge**: (1) minimize the extra inter-hardware communication overheads; (2) partitioning a point cloud and decides which patch of a point cloud runs in which hardware

#### Conclusion

Our preliminary measurement study reveals that it is not only computation intensive, but also memory-inefficient for mobile devices to execute existing DNN models for 3D vision directly.

We present a research agenda for accelerating these DNN models and point out several possible solutions to better support continuous 3D vision on mobile devices, by considering the unique characteristics of point clouds.

# Thanks

**Questions and Answers** 

## Method 1: Converting to 2D Feature Vectors

A point cloud is represented by images generated from different viewpoints and viewing angles, and then a 2D DNN model is applied.

A representative DNN model: **ComplexYolo** (ECCV Workshop, 2018)

Convert to a 1024×512 RGB image

A feature vector of 3 for each pixel

Total: **1.6M** features



ComplexYolo structure (image from the original paper)

#### Method 2: A Feature Vector for Each Grid Cell

A point cloud is voxelized/partitioned into grid cells and then a feature vector is generated for each cell

A representative DNN model: **VoxelNet** (CVPR, 2018)

Convert to 10×400×352 grid cells

A feature vector of 128 for each cell

Total: 180.2M features



VoxelNet structure (image from the original paper)

#### Method 3: A Feature Vector for Each Pillar

A point cloud is partitioned into pillars and then generates feature vectors for only non-empty pillars that have points

A representative DNN model: **PointPillars** (CVPR, 2019)

Convert to ~5719 non-empty pillars

A feature vector of 64 for each pillar

Total: ~0.4M features



PointPillars structure (image from the original paper)

#### Method 4: A Feature Vector for Each Point

Directly consume points and thus avoid voxelizing/partitioning

A representative DNN model: **SparseConvNet** (CVPR, 2018)

~158.8K points for the ScanNet point cloud

A feature vector of 6 for each point

Total: ~1.0M features



SparseConvNet structure (image from the original paper)

# Comparison of Different Feature Extraction

| Method                                 | Pros                                                                     | Cons                                                                        |
|----------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Converting to 2D Feature Vectors       | Widely available 2D models; small computation and memory overheads       | Low accuracy; not suitable for 3D semantic segmentation                     |
| A Feature Vector for Each<br>Grid Cell | High flexibility for different accuracy targets                          | Extremely large computation and memory overheads                            |
| A Feature Vector for Each<br>Pillar    | Reduced computation and memory overheads                                 | Worsened data granularity;<br>does not generalize well to<br>object layouts |
| A Feature Vector for Each<br>Point     | Efficient with regards to computation and memory for sparse point clouds | Not suitable for dense point cloud; no processing of the input data         |