

$$(p+q)^2 = p^2 + 2pq + q^2 = 1.0$$
AA Aa aa

Allele and genotype frequencies

Allele & genotype frequencies

- Can we predict genotype frequencies from allele frequencies?
 (If "sometimes", when?)
- Do genotype frequencies intrinsically change over time, or do they remain constant?

 We'll answer these by considering variation at one gene at a time...

"A" gene hypothetical scenario

- Two alleles: "A" and "a"
- Three possible genotypes: "AA" "Aa" "aa"
- Each has a "frequency", totaling 100%
 - e.g., 78% of alleles are "A", so22% of alleles are "a"
 - 25% of individuals "AA", 50% of individuals are "Aa", so
 25% of individuals are "aa"

Calculating genotype frequencies

- Every individual is diploid (2N)
- Can get by counting:
 - Total number: 10
 - Frequency AA = 1 / 10 = 0.1
 - Frequency Aa = 6 / 10 = 0.6
 - Frequency aa = 3/10 = 0.3
 - TOTAL ALWAYS ADDS UP TO 1

Calculating allele frequencies

- Every individual is diploid (2N)
- Can count "A"s and "a"s

Calculating allele frequencies

- Every individual is diploid (2N)
- Can count "A"s and "a"s

$$- freq(A) = 8/20 = 0.4$$

$$-$$
 freq(a) = 12/20 = 0.6

Better way:

```
- freq(A) = freq_AA + \frac{1}{2} freq_Aa = 0.1 + \frac{1}{2} 0.6 = 0.4
```

- freq(a) = freq_aa +
$$\frac{1}{2}$$
 freq_Aa = 0.3 + $\frac{1}{2}$ 0.6 = 0.6

Pool of gametes...

- All individuals of sexual species **start** as 2 gametes
 - Gametes are 1N
 - Many marine invertebrates "spew" gametes that make individuals

Use "joint probability" multiplication to determine genotype frequencies in offspring

- 60% of sperm "A"; 60% of eggs "A"
 40% of sperm "a"; 40% of eggs "a"
- Probability of "AA" individual:
 - "A" sperm fertilizes "A" egg
 - $-0.6 \times 0.6 = 36\%$

Joint probabilities...

$$a & a \rightarrow aa 0.4 \times 0.4 = 0.16$$

Joint probabilities...

Egg		Sperm	Zygote	Probability
A	&	A	\rightarrow AA	$0.6 \times 0.6 = 0.36$
A	&	a	→ Aa	0.6 x 0.4 = 0.24 = 0.48 0.4 x 0.6 = 0.24
a	&	A	$\rightarrow aA$	$0.4 \times 0.6 = 0.24$
a	&	a	→ aa	$0.4 \times 0.4 = 0.16$
				1.00 = 100%

Another way of looking at the same thing...

 Modified Punnett square shows relative amounts of "A" and "a" gametes

Can we calculate the "allele" frequencies?

- **YES**, ALWAYS when you have genotype frequencies.
- AA: 0.36 -> all A
- **Aa**: 0.48 -> half A
- Frequency of A =
 0.36 + ½ (0.48) = 0.6
- Frequency of a = ?

Self-perpetuates!

- Allele "A" frequency was 0.6 in gametes
- Gametes created
 0.36/0.48/0.16 genotype
 frequencies
- These genotypes produce 0.6
 "A" gametes

Image Credits, Unit 10-1

- © Wilhelm Weinberg, fair use clause
- © William Castle, fair use clause
- Hardy-Weinberg equilibrium, © 2009 Johnuniq, modified by J. Johnsen, CC by-SA
 3.0, en.wikipedia.org
- Lightbulb, © 2010 Jacob Hnri 6, CC by-SA 3.0, en.wikipedia.org
- Modified Punnett square, © 2007 Pearson Education Inc., all rights reserved,
 Evolutionary Analysis 4/e by Freeman & Herron, Figure 6-5