CoSIR: Managing an Epidemic via Optimal Adaptive Control of Transmission Rate Policy

Harsh Maheshwari

Nayana Bannur

Shreyas Shetty

Srujana Merugu Paper: https://doi.org/10.1101/2020.11.10.20211995 Webapp: cosir.herokuapp.com

Epidemic Control via Transmission Restrictions

Shaping an epidemic with an adaptive contact restriction policy is a critical challenge for public health officials that requires exploration.

- Scenario-based forecasting methods are not well-suited for control because these only permit limited exploration of scenarios.
- Periodic lockdowns and RL techniques do not sufficiently exploit the mathematical structure of epidemic dynamics.
- Current economic epidemiological control formulations focus on the impact modeling, but are not easily tractable.

Problem Statement: Given total population (N), current susceptible population (S_{curr}) , current infectious population (I_{curr}) , a set of restriction levels $(A = \{a_i\})$ and a time horizon (T), identify a restriction schedule $[a_t]$, $[t]_{curr+T}^{curr+T}$, s.t. infectious levels average I_{ava}^{target} and do not exceed I_{max}^{target} .

Contributions

- Novel mapping between SIR dynamics and Lotka-Volterra (LV) system under a specific transmission rate policy (LVSIR).
- Derivation of optimal control policy for transmission rate (CoSIR) using control-Lyapunov functions (CLF) based on the "Lotka-Volterra energy".
- Practical control algorithm that combines the CoSIR policy with statistical estimation of other model parameters & approximation to discrete levels.
- Evaluation on COVID-19 data to demonstrate efficacy and adaptability.

Optimal Control of SIR via Mapping to LV System

Optimal epidemic control of epidemic, i.e., regulating infection levels in SIR system has a direct analogy with population control in LV systems.

- Infectious population $(I) \leftrightarrow$ Predators (q): Inflow and outflow into infectious compartment are akin to birth and death of predators.
- Susceptible contacts $(\beta S) \leftrightarrow \text{Prey } (p)$: Susceptible contacts act as "nourishment" to infectious population.
- Exact equivalence requires a specific transmission rate β policy (LVSIR).

Control of non-linear dynamical systems often relies on control-Lyapunov functions. CoSIR follows a similar approach using "Lotka-Volterra energy".

Interpretation of CoSIR β -control policy:

- $\beta^2 I/N$: Relaxation due to the decreasing susceptibility
- $(r-eI)\beta$: Stabilization but oscillatory behavior
- $u\beta$: Dissipation of energy and convergence to the equilibrium.

Properties of LVSIR System

- Stable equilibrium at $(J^*, I^*) = (\gamma N, r/e)$.
- Initialization at equilibrium \Rightarrow constant (J, I) and linear S, R.
- Initial state different from equilibrium ⇒ cyclic behaviour.
 - LV system "energy" $w(J, I) = \gamma(x \log(x) 1) + r(y \log(y) 1)$ remains constant where $x = I/I^*$, $y = I/I^*$.
- I and J curves exhibit periodic oscillations resulting in a closed phase plot with extrema $\{(x_{min}, 1), (1, y_{min}), (x_{max}, 1), (1, y_{max})\}$ where (x_{min}, x_{max}) and (y_{min}, y_{max}) satisfy $x - \log(x) = 1 + w_0 \gamma$ and $y - \log(y) = 1 + \frac{w_0}{r}$ respectively.
- In each cyclic period, S reduces by a fixed amount $\Delta S = \gamma I T_{period}$.

S: Susceptible I: Infectious R: Removed N: Population β : Transmission rate γ : Inverse infectious period

η: learning rate w: LV energy L(w): CLF

Practical Control Algorithm

Experimental Results

Setup: COVID-19 data (Apr 1-Dec 29, 2020, India), five control policies and real outcome. Parameters were chosen based on manageable hospital inflow.

Control Policies	Description
No-Restrictions	Constant $\beta = 0.44$
PL-high	60 day lockdown ($\beta = 0.16$) followed by 30 day relaxation ($\beta = 0.44$)
PL-low	60 day lockdown ($\beta = 0.1$) followed by 30 day relaxation ($\beta = 0.44$)
CoSIR	β follows CoSIR control equation
CoSIR-approx	Approximation of CoSIR β with 10 equal levels from 0.1 to 0.55

Hospital Influx

CoSIR variants are closest to the target hospitalization levels. To optimize utilization, we choose β based on available medical capacity and varying susceptibility.

Adaptability

CoSIR variants stabilize infections and adapt to sudden upward (t = 50)or downward perturbations (t =100) and continue pushing towards the equilibrium.

Note: Hospitalization influx in SIR is given by $\gamma I \times hospitalization ratio$, Real hospitalizations are obtained by appropriate scaling of the reported active cases accounting for under reporting

Future Work

- Design of new epidemic control techniques using CLFs
- Extensions to other compartmental models and control variables
- Extensions to other Hamiltonian dynamical systems