Hugo Marquerie 26/03/2025

Teorema de puntos fijos de una transformación de Möbius

Teorema 1 (Puntos fijos de una TM). Sea $T \neq id$ una transformación de Möbius $\implies T$ tiene uno o dos puntos fijos en $\widehat{\mathbb{C}}$.

Demostración: Dividimos en casos como de costumbre:

– Si c=0, entonces T(z)=a/dz+b/d=z y ∞ es un punto fijo trivial en $\widehat{\mathbb{C}}$. Además,

$$T(z) = z \iff \left(\frac{a}{d} - 1\right)z + \frac{b}{d} = 0 \iff \begin{cases} \operatorname{Si} \ a = d, & b = 0 \implies T = \operatorname{id} \longrightarrow \longleftarrow \\ \operatorname{Si} \ a \neq d, & z = \frac{-b}{a - d}. \end{cases}$$

Luego si $c=0,\,T$ tiene dos puntos fijos: ∞ y $\frac{b}{d-a}$.

– Si $c \neq 0$, entonces $T(z) = az + b/cz + d = z \iff cz^2 + (d-a)z - b = 0$ que tiene una o dos soluciones en $\widehat{\mathbb{C}}$. En este caso, por tanto, T tiene uno o dos puntos fijos.

En cualquier caso, T tiene uno o dos puntos fijos.

Referenciado en

• Cor-transformacion-mobius-3-pnt-fijos