I

<u>1- مىرھنة رول</u>

f'(c)=0 قان c فان c فان c قابلة للاشتقاق في c فان وكانت c تذكير: اذاكان لدالة c

 $f\left(a\right)=f\left(b\right)$ بحيث $\left[a;b\right]$ بحيث و قابلة للاشتقاق على $\left[a;b\right]$ بحيث $f\left(a\right)=f\left(b\right)$

الشكل جانبه يؤول هندسيا هذه الشروط:

يظهر من خلال الشكل عن وجود نقطة $\, C \,$ من المنحنى $\, \left(C_f \,
ight)$ أفصولها ينتمي الى $\, \left[a;b \right] \,$ بحيث المماس

f'(c) = 0 بحيث a;b[بحيث c عوازي محور الافاصيل أي يوجد c من

لنبرهن هذا

 $\forall c \in \left]a;b\right[\quad f'\left(c\right)=0$ ثابتة فان f ثابتة خات *-

 $f(x_0) \succ f(a) = f(b)$ أو $f(x_0) \prec f(a) = f(b)$ حيث f(a) = f(b) حيث f(a) = f(b) أو f(a) = f(b) أو f(a) = f(b) الله غير ثابتة ومنه يوجد f(a) = f(a) حيث f(a) = f(a) و قيمة دنيا f(a) = f(a) بما أن f(a) = f(a) و قيمة دنيا f(a) = f(a) و أن f(a) = f(a) بما أن f(a) = f(a) و قيمة دنيا f(a) = f(a) و أن f(a) = f(a) بما أن f(a) = f(a) و أن f(a) = f(a)

لدينا f فان f أو f(a) = f(b) أو $m \neq f(a) = f(b)$ لأن إذا كان غير ذلك فان $M \neq f(a) = f(b)$

c عند عند f أي أن f تقبل قيمة قصوى عند a;b[حيث a;b[حيث f(a)=f(b) أي أن f(a)=f(b) عند f'(c)=0 فان f'(c)=0 فان f'(c)=0

c المن f(c)=m إذا كان f(c)=m فانه يوجد c من a;b من a;b حيث a;b فانه يوجد b فان b;c فان

<u>مىرھنة رول</u>

اذا كانت دالة f معرفة على المجال [a;b] تحقق الشروط التالية:

igl[a;bigr] متصلة على f -1

]a;b[قابلة للاشتقاق على f -2

f(a) = f(b) -3

f'(c) = 0 فانه يوجد عنصر c من a;b حيث

<u>ملاحظات</u>

- f'(k) = 0 حيث a;b[حيث f'(c) = 0 لا يستني وجود نقط أخرى a;b[حيث b
 - ❖ لنطبيق مبرهنة رول الشروط الثلاث ضرورية
 - معطيات مبرهنة رول شروط كافية، لكنها غير لازمة

2- ميرهنة التزايدات المنتهية

 $egin{aligned} [a;b] & ext{Lin} \ & a;b \end{aligned}$ دالة متصلة على a;b[و قابلة للاشتقاق على

لنبرهن هذا

$$g(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$$
 نعتبر

a;b[على g دالة متصلة على a;b[و قابلة للاشتقاق على g

$$g(a) = g(b) = 0$$
 Leينا

g'(c)=0 حسب مبرهنة رول يوجد عنصر من a;b[من مرهنة رول يوجد

$$\forall x \in]a;b[\qquad g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
$$f'(c) = \frac{f(b) - f(a)}{b - a} \qquad \text{otherwise}$$

انت دالة f معرفة على المجال [a;b] تحقق الشرطين التاليين:

[a;b] متصلة على f -1

 $\left]a;b
ight[$ قابلة للاشتقاق على f -2

(b-a)f'(c)=f(b)-f(a) فانه یوجد عنصر a;b[مین a;b[

ملاحظات

k وجود a من a وجود نقط أخرى a b وجود a من a وجود نقط أخرى a وجود a من a

(b-a)f'(k) = f(b)-f(a)حيث

 $\forall (x, y) \in \mathbb{R}^2 \quad |\sin x - \sin y| \le |x - y|$ بين أن -1

 $\forall x \in \mathbb{R} + |\sin x| \le x$ استنتج أن -2

نشاط

I و g دالتين معرفتين على المجال $I=[x_0;+\infty[$ و قابلتين للاشتقاق على g و دالتين معرفتين على المجال $I=[x_0;+\infty[$ لكل $f'(x)\geq g'(x)$ و $f(x_0)=g(x_0)$ لكل $f(x)\geq g(x)$ على $f(x)\geq g(x)$ لكل $f(x)\geq g(x)$ بتطبيق مبرهنة التزايدات المتهية على $f(x)\geq g(x)$ لكل $f(x)\geq g(x)$ حيث $f(x)\geq g(x)$ لكل $f(x)\geq g(x)$ الحواب

I لكن x متصلة على $x_0;x$ و قابلة للاشتقاق على $x_0;x$ لكل x من $x_0;x$ و قابلة للاشتقاق على $x_0;x$ لكن $x_0;x$ ومنه يوجد عنصر $x_0;x$ حيث $x_0;x$ حيث $x_0;x$ حيث $x_0;x$ حيث $x_0;x$ حيث $x_0;x$ حيث $x_0;x$ و بما أن $x_0;x$ و بما أن $x_0;x$ و بما أن $x_0;x$ و بما $x_0;x$ و منه $x_0;x$ و منه $x_0;x$ و قابلة للاشتقاق على $x_0;x$

I لکل $f(x) \ge g(x)$ اذت

I لتكن f و قابلتين للاشتقاق على المجال $I=\left[x_0;+\infty\right[$ لمجال على المجال على g و دالتين معرفتين على المجال $f(x)\geq g(x)$ لكل $f(x)\geq g(x)$ لكل كمن الأمن المجال $f(x)\geq g(x)$ لكل المجال على المجال على المجال ال

ملاحظة: يمكن تعويض المجال I بـ $[-\infty;x_0]$ أو $[x_0;a]$ أو $[x_0;a]$ و الخاصية تبقى صالحة

تمرين

$$\forall x \in \mathbb{R}^+$$
 بین أن $x - \frac{x^3}{3} \le \arctan x$ -1

$$\forall x \in \mathbb{R}$$
 $1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{4}$ بین أن -2

نمرين

$$u_n = 1 + \frac{1}{\frac{3}{2}} + \frac{1}{\frac{3}{2}} + \dots + \frac{1}{\frac{3}{2}}$$
 is in the same $u_n = 1 + \frac{1}{\frac{3}{2}} + \frac{1}{\frac{3}{2}} + \dots + \frac{1}{\frac{3}{2}}$

 $(u_n)_{n\geq 1}^n$ بین أن بن