TD 14 Tri à bulles (Bubble sort)

Algorithmique Semestre 1

1

1.1 Algo niveau 1

```
-- Algo niveau 1
2 se placer sur le premier element a traiter
3 tantque tous les elements n ont pas ete traites faire
4 comparer et traiter deux elements adjacents;
5 passer a l\'elementusuivant;
6 finutantque;
```

Listing 1 – sous-programme ramener Valeur
Max Niveau 1

1.2 Algo niveau 2

```
1 -- Algo niveau 2
2
3 se placer sur le premier element a traiter
4 tantque tous les elements n ont pas ete traites faire
5 --comparer et traiter deux elements adjacents
6 si l\'element_courant_est_superieur_a_l'element suivant alors
7 les permuter;
8 fin si;
9 passer a l\'element_suivant;
10 fin_tantque;
```

Listing 2 – sous-programme ramener Valeur
Max Niveau 2 $\,$

1.3 Trace du sous-programme

[2	-12		7	3	7	5
							_
-12	2	$2 \mid$	7	3	7	5	
							,
-12	2	$2 \mid 7$		3	7	7 5	
							,
-12	2	2	3	7	7	5	
							,
-12		2	3	7	7	5	
							_
-12		$2 \mid$	3	7	5	5	
						,	,
2	-12		7	3	7	5	

2 En-tête de ramenerValeurMax

```
    -- ramene par permutation successives la plus grande valeur d\'un tableau tab de ne elements
    -- en derniere position
    3 procedure ramenerValeurMax(maj tab, entree n);
```

Listing 3 – En-tête de ramener Valeur Max

2.1 Trace

situation	1	2	3	4	5	6	7	 n	i	aux	$i \neq n$	tab[i] > tab[i+1]
0	2	-12	7	3	5	7	?	6	?	?	?	i
1									1			
2											$1 \neq 6$	
3											?	2 > -12
4	-12									2		?
5									2			
2											$2 \neq 6$	
3												$2 \neq 7$
5											$3 \neq 6$	
2												7> 3
3			3	7						7		
4									4			
5											$4 \neq 6$	
2												
3									5			
5											$5 \neq 6$	
2												7>5
3					5	7				7		
4									6			
5											$6 \neq 6$	
2	-12	2	3	7	5	7						

2.2

```
1 -- ramener par permutation succesives la plus grande valeur d'un intervale
iDeb iFin d'un tableau d'entier en derniere position (iFin)
2 procedure ramenerValeurMax (maj tab <TabEntier>, entree iDeb <Entier>,
entree iFin <Entier>);
```

Listing 4 – sous-programme ramenerValeurMax Niveau 1

3

```
ramenerValeurMax(tab, 1, n);
```

Listing 5 – sous-programme ramener Valeur
Max Niveau 1 $\,$

4

4.1 Algo général

```
-- trier un tableau par la methode des bulles
tantque il reste un element du tableau a classer faire
ramener la plus grande valeur a la fin du tableau;
reduire le tableau d'unuelement;
finutantque;
```

Listing 6 – Algorithme général du tri à bulles

4.2 Programme

```
procedure trierParBulles (maj tab<TabEntiers>, entree n <Entier>)
glossaire
nbElements <Entier>;
debut
nbElements <- n;
tantque nbElements > 1 faire
ramenerValeurMax (tab,1,nbElements);
nbElements <- nbElements - 1;
fin tantque;
fin</pre>
```

Listing 7 – Programme trierParBulles

5

Situations	nbElements	1	2	3	4	5	6
1	6	2	-12	7	3	7	5
2	6	-12	2	3	7	7	7
3	5	-12	2	3	7	7	7
2	5	-12	2	3	3	5	7

6

$$\forall i \in [1, n-1], tab[i] < tab[i+1]$$

7 Comparaisons

$$(n-1) + (1-2) + (1-3) + \dots + 1 = \sum_{c=1}^{n-1} (n-1)$$
$$= \sum_{i=n}^{n-1} -\sum_{i=1}^{n-1} i = \frac{(n-1)(n+2)}{2} - (n-1) =$$
$$\frac{n(n-1)}{2} = O(n^2)$$

Donc complexisté en $O(n^2)$

$$(n-1) + (1-2) + (1-3) + \dots + 1 = \sum_{c=1}^{n-1} (n-1)$$

$$= \sum_{i=n}^{n-1} -\sum_{i=1}^{n-1} i$$

$$= \frac{(n-1)(n+2)}{2} - (n-1) = \frac{n(n-1)}{2} = O(n^2)$$