Banco de questões de astronomia

Estas questões foram produzidas/selecionadas cuidadosamente com o objetivo de preparar os estudantes para o processo seletivo de astronomia no Brasil. Algumas questões não são de autoria própria e estão devidamente sinalizadas por () antes do enunciado. O template do banco de questões é o mesmo do Professor Kevin Zhou. Seu trabalho é valioso, e diversas ideias desta lista podem ser encontradas em seus Handouts.

1 Miscelânia

[4] Problema 1. Dudu Leiteiro, estava observando o céu, no interior de sua fazenda no Mato Grosso do Sul e observou o sistema binário formado pelas estremas Iaum e Sezenem. Dudu, oberservou as estrelas e coletou os seguintes dados, com um intervalo de 6 meses entre eles:

Medida	Iaum	Sezenem
Ascenção Reta 1	$4^h 19^m 53, 91^s$	$4^h 19^m 53,078^s$
Ascenção Reta 2	$4^h 19^m 53, 92^s$	$4^h 19^m 53,077^s$
Declinação 1	-13° 33′ 45, 28″	-13° 33′ 47,78″
Declinação 2	-13° 33′ 45, 20″	-13° 33′ 48, 03″

Com esses dados, você e Dudu Leiteiro, juntos vão analizar propriedades desse sistema binário. O primeiro passo importante para isso, é encontrar as coordenadas do centro de massa do sistema, denotadas pelo subscrito CM. Você lembra que em uma das aulas sobre o estudo de binárias, seu professor, LuCav, te ensinsou que:

$$\delta_{CM} = \delta_A + \Delta \delta_A$$

$$\alpha_{CM} = \alpha_A + \Delta \alpha_A$$

Onde δ_A e α_A são as coordenadas de uma das estrelas do binário e Δ representa a diferença de coordenadas entre a estrela e o centro de massa, temos a seguinte relação:

$$\frac{a_A}{a} = \frac{\Delta \delta_A}{\Delta \delta_{CM}} = \frac{\Delta \alpha_A}{\Delta \alpha_{CM}}$$

Onde a_A é a distância da estrela A até o CM, a o semi-eixo maior da órbita e Δx_{CM} a variação das coordenadas do CM.

- a) Sabendo que Iaum possuí 3/2 da massa de Sezenem, calcule $\Delta \delta_{CM}$ e $\Delta \alpha_{CM}$.
- b) Com isso e considerando que as variação angulares são pequenas o suficiente para triângulos esféricos serem planos, encontre a paralaxe do sistema e sua distância até a Terra.
- c) Considerando a massa de Iaum, $M_I = 4,9 M_{\odot}$, e o período do sistema igual a P = 29,01 anos, calcule o maior redshift advindo de Sezenem, sendo que ambas as órbitas são circulares e Sezenem possuí velocidade tangencial de $\mu = 1509''/ano$.
- **3**] **Problema 2.** Marisso estava cansado de não conseguir encontrar com precisão a posição de uma estrela em seu telescópio e decidiu investigar os efeitos que poderiam estar causando esses erro aparente. Após ler alguns artigos, ele descobriu 2 principais efeitos que fazem um objeto aparentar estar em um ângulo $\Delta\theta_i$, desviado da sua posição original, são eles: *Paralaxe* e *Aberração Estelar*. Nessa questão, seu objetivo é ajudar Marrisso, a entender o porque desses efeitos acontecerem.

- a) A paralaxe é o mais básico deles e ocorre por causa da mudança de posição da Terra ao longo do Ano. Considere que uma estrela está localizada de tal modo que a linha Sol-Estrela é perpendicular ao plano da órbota da Terra. Desenhe o esquema da situação e, considerando o raio da órbita da Terra como r e a distância da estrela como d, obtenha uma fórmula para $\Delta\theta_p$ causado pela paralaxa.
- b) Suponha agora, que a linha Sol-Estrela faça um ângulo ϕ qualquer com a órbita da Terra. Como sua resposta muda?

A aberração estar por sua vez advem de efeitos relativísticos a serem explorados a seguir.

- c) Considere um referencial S' se movendo com velocidade $v\hat{\mathbf{x}}$ em relação ao referencial S. Como as coordenadas (x',t') se relacionam com as coordenadas (x,t)? Deixe suas respostas em função de γ .
- d) Supondo que haja um emissor de radiação no referencial S' e que o mesmo emita luz em um ângulo α' em relção ao eixo x. No referencial S o dispositivo aparentará emitir luz em um ângulo α . Prove, utilizando as transformações de Lorentz, que a relação entre α e α' é dada por:

$$\cos \alpha = \frac{\cos \alpha' + v/c}{1 + (\cos \alpha')v/c}$$

- e) Repita o item anterior, mas prove utilizando a adição de velocidade relativística.
- f) Considerancdo que a linha Sol-Estrela é perpendicular ao plano da órbita da Terra, e que a Terra se move com velocidade v, encontre uma expressão para o desvio $\Delta\theta_A$ causado pela aberração estelar.
- g) Qual desses efeitos você acha que é mais significativo, a paralaxe ou a aberação estelar?

Solução

- a)
- **b**)
- c) As transformações de Lorentz (usando c=1) são dadas por

$$x = \gamma(x' + vt'), \quad t = \gamma(t' + vx')$$

d) Note que no referencial S, temos $\cos \alpha = \frac{x}{t}$, No referencial S' temos

$$x' = t' \cos \alpha'$$

Usando as transformações de Lorentz,

$$t = \gamma t' (1 + v \cos \alpha')$$

$$x = \gamma t'(\cos \alpha' + v)$$

Utilizando que $\cos \alpha = x/t$, temos

$$\cos \alpha = \frac{\cos \alpha' + v}{1 + v \cos \alpha'}$$

"Voltando" os c, temos

$$\cos \alpha = \frac{\cos \alpha' + v/c}{1 + (v/c)\cos \alpha'}$$

e) No frame S', teremos que a velocidade em x' é dada por $v'_x = c \cos \alpha'$. No referencial S, temos

$$v_x = v_x' + v = \frac{v_x' + v}{1 + (v_x'v)/c^2}$$

Substituindo v'_x e utilizando que $\cos \alpha = v_x/c$ temos

$$\cos \alpha = \frac{\cos \alpha' + v/c}{1 + (v/c)\cos \alpha'}$$

f) No referencial da Terra, (que está se movendo e portanto corresponde ao referencial S'), temos $\alpha' = \pi/2$. Plugando isso, na resposta obtemos

$$\cos \alpha = v/c \rightarrow \sin \alpha = \sqrt{1 - (v/c)^2} = \frac{1}{\gamma}$$

Util
ziando a aproximação para pequenos ângulos, $\alpha \approx 1/\gamma$

g) Enquando a distância Sol terra, está na ordem de alguns minutos-luz, a menor distância entre a Terra e outra estrela, está na ordem de anos luz, ou seja $\theta \sim 10^{-6}$. Já a velocidade da Terra é a aproximadamente 30 km/s, assim, $v/c \sim 10^{-4}$. Logo os efeitos de aberração são mais evidentes que os de paralaxe.