NEC Electronics Inc.

Description

The µPD4364 is a high-speed, 8192-word by 8-bit static RAM. Its unique circuitry, using CMOS peripheral circuits and N-channel memory cells with polysilicon resistors, makes the µPD4364 a very low-power device that requires no clock or refreshing to operate.

Two chip enable pins are provided for battery backup application, and an output enable pin is provided for easy interface. Data retention is guaranteed at a power supply voltage as low as 2 V (-xxL and -xxLL versions).

The µPD4364 is packaged in standard and slim 28-pin plastic DIP, as well as plastic miniflat packages that are plug-in compatible with 2764-type EPROMs.

Features

- ☐ Single +5-volt power supply
- Fully static operation—no clock or refreshing required
- ☐ TTL-compatible—all inputs and outputs
- ☐ Common I/O using three-state outputs
- One output enable and two chip enable pins for easy application
- ☐ Data retention voltage: 2 V min for -xxL and -x versions
- ☐ Plug-in compatible with 2764-type EPROMs
- ☐ Standard 28-pin plastic DIP
- ☐ 28-pin 300 mil plastic slim DIP
- ☐ 28-pin plastic miniflat package

Pin Identification

Function
Address input
Data input/output
Trip enable input, active low
Chip enable input, active high
Outpot enable input
Write enable input
Ground
+5-volt power supply
No connection

Pin Configuration

28-Pin Plastic DIP or Miniflat

Ordering Information

Part flomber (Notes 1 & 3)		Standby Current (max)	Access Time (max)	Package		
Despite	¥6÷4×	2 mA	(Notes 1,4)	28-pin DIP		
2	∕C-xxL	100 μΑ				
ewline	C-xxLL	50 μA				
~	CX-xx	2 mA	(Notes 1,5)	28-pin slim DIP		
	CX-xxL	100 μΑ				
μPD436	4G-xx	2 mA	(Notes 1,4)	28-pin miniflat		
	G-xxL	100 μΑ				
	G-xxLL	50 μA				

Notes:

(1) The symbol "xx" in the part number denotes access time.

XX	Access Time (max)
10	100 ns
12	120 ns
15	150 ns
20	200 ns

- (2) The symbol C, CX, or G in the part number denotes a 28-pin plastic package.
 - C = 600-mil DIP
 - CX = 300-mil slim DIP
 - G = Miniflat
- (3) Part number example: μPD4364CX-12L denotes a 300-mil DIP package, 120-ns maximum access time, and 100-μA maximum standby current.
- (4) Contact your NEC sales representative for availability of a -10LL version.
- (5) A 200-ns access time is not available in the CX package.

Block Diagram

Absolute Maximum Ratings

Supply voltage, V _{CC} (Note 1)	-0.5 to 7.0 V
Input voltage, V _{IN} (Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage, V _{OUT} (Note 1)	-0.5 V to V _{CC} + 0.5 V
Operating temperature, T _{OPR}	0 to 70°C
Storage temperature, T _{STG}	−55 to 125°C
Power dissipation, P _D	1.0 W

Notes:

(1) -3.0 V min (pulse width of 50 ns max)

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under Recommended DC Operating Conditions.

Capacitance

TA = 25°C; f = 1.0 MHz

			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	CI			(1)	pF	V _I = 0 V
Input/output capacitance	C _{1/0}			8	pF	$V_{I/O} = 0 V$

Notes:

(1) Maximum input capacitance

CX package: 5 pF

C or G package, 100-ns version: 5 pF

C or G package, except 100-ns version: 6 pF

Recommended DC Operating Conditions

 $T_A = 0$ to +70 °C

		Limits					
Parameter	Symbol	Min	Тур	Max	Unit		
Supply voltage	V _{CC}	4.5	5.0	5.5	٧		
Input voltage, low	V _{IL}	-0.3 (Note 1)		0.8	٧		
Input voltage, high	V _{IH}	2.2		V _{CC} + 0.5	٧		

Notes:

(1) -3.0 V min (pulse width 50 ns max)

DC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = 5 \text{ V} \pm 10\%$

			Limi	ts				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions		
Input leakage current	Լլյ			1	μΑ	$V_{IN} = 0 \text{ V to V}_{CC}$		
Output leakage current	I _{LO}		·	1	μΑ	$\begin{array}{l} V_{I/O} = 0 \text{ V to V}_{CC} \\ \overline{CE}_1 = V_{IH} \text{ or} \\ \overline{CE}_2 = V_{IL} \text{ or} \\ \overline{OE} = V_{IH} \text{ or} \\ \overline{WE} = V_{IL} \end{array}$		
Operating supply current	I _{CCA1}		-	(1)	mA	$\overrightarrow{CE}_1 = V_{IL},$ $CE_2 = V_{IH},$ $I_{I/0} = 0,$ Min cycle		
	I _{CCA2}		5	10	mA	CE ₁ = V _{IL} , CE ₂ = V _{IH} , I _{I/O} = 0, DC current		
	I _{CCA3}		3	5	mA	$\begin{array}{l} \overline{CE}_1 \leq 0.2 \; V, \\ CE_2 \geq V_{CC} - 0.2 \; V, \\ V_{ L} \leq 0.2 \; V, \\ V_{ H} \geq V_{CC} - 0.2 \; V, \\ f = 1 \; \text{MHz}, \; I_{ I/0} = 0 \end{array}$		
Standby supply current	I _{SB}			(2)	mA	$\overline{CE}_1 \ge V_{iH}$ or $CE_2 = V_{iL}$		
	I _{SB1}			(3)	mA	$\begin{array}{l} \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ \text{CE}_2 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \end{array}$		
	I _{SB2}			(3)	mΑ	$CE_2 \le 0.2 \text{ V}$		
Output voltage, low	V _{OL}			0.4	٧	I _{OL} = 2.1 mA		
Output voltage, high	V _{OH}	2.4			٧	$I_{OH} = -1.0 \text{ mA}$		
Notes:								

Notes:

- μPD4364-10/10L: 45 mA max μPD4364-12/12L/12LL: 40 mA max μPD4364-15/15L/15LL: 40 mA max μPD4364-20/20L/20LL: 35 mA max
- (2) μPD4364-xx: 5 mA max μPD4364-xxL: 3 mA max μPD4364-xxLL: 3 mA max
- (3) μPD4364-xx: 2 mA max μPD4364-xxL: 100 μA max μPD4364-xxLL: 50 μA max

AC Characteristics

 $T_{\mbox{\scriptsize A}}=0$ to +70 °C; $V_{\mbox{\scriptsize CC}}=5$ V $\pm 10\%$

	Limits									
		μPD4364 -10/10L		μ PD4364 -12/12L/12LL		μ P04364 -15/15L/15LL		μ PD4364 -20/20L/20LL		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Uni
Read Cycle										
Read cycle time	t _{RC}	100		120		150		200		ns
Address access time	t _{AA}		100		120		150		200	ns
CE ₁ access time	t _{CO1}		100		120		150		200	ns
CE ₂ access time	t _{C02}	-	100		120		150		200	ns
Output enable to output valid	t _{OE}		50	-	60		70		100	ns
Output hold from address change	tон	10		10		15		15		ns
Chip enable (CE ₁) to output in low-Z	tLZ1	10		10	•	15		15		ns
Chip enable (CE ₂) to output in low-Z	t _{LZ2}	10		10		15		15		ns
Output enable to output in low-Z	toLZ	5		5		5		5		ns
Chip enable (CE ₁) to output in high-Z	^t HZ1		35		40		50		100	ns
Chip enable (CE ₂) to output in high-Z	t _{HZ2}		35		40		50		100	ПŜ
Output enable to output in high-Z	toHZ		35		40		50		80	ns
Write Cycle										
Write cycle time	twc	100		120		150		200		ns
Chip enable (CE ₁) to end of write	t _{CW1}	80		85		100		180		ns
Chip enable (CE ₂) to end of write	t _{CW2}	80		85		100		180		ns
Address valid to end of write	t _{AW}	80		85		100		180		ns
Address setup time	t _{AS}	0		0		0		0		ns
Nrite pulse width	twp	60		70		90		140		ns
Vrite recovery time	twR	5		5		5		5		ns
ata valid to end of write	t _{DW}	40		50		60		80		ns
Pata hold time	t _{DH}	0		0		0		0		ns
Vrite enable to output in high-Z	twHZ		35		40		50		100	ns
Output active from end of write	tow	5		5		10	 -	10		ns

Notes

(1) Input pulse levels: 0.8 to 2.4 V Input pulse rise and fall times: 5 ns Timing reference levels: 1.5 V Output load: 1 TTL gate and $C_L=100\ pF$

Truth Table

CE ₁	CE ₂	ŌĒ	WE	Mode	1/0	Icc
Н	X	X	Χ	Not selected	High-Z	Standby
X	L	Х	Х	Not selected	High-Z	Standby
L	Н	Н	Н	D _{OUT} disable	High-Z	Active
L	Н	L	Н	Read	D _{OUT}	Active
L	Н	Х	L	Write	D _{IN}	Active

Timing Waveforms

Read Cycle No. 1 (Address Access)

Read Cycle No. 2 (Chip Enable Access)

Write Cycle No. 1 (WE Controlled)

Timing Waveforms (cont)

Write Cycle No. 2 (CE₁ Controlled)

Write Cycle No. 3 (CE₂ Controlled)

- Note: [1] A write occurs during the overlap of a low \overline{CE}_1 and a high CE_2 and a low \overline{WE} .
- [2] CE₁ or WE [or CE₂] must be high [low] during any address transition.

Low V_{CC} Data Retention Characteristics $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}$

		L	imits			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Data retention supply voltage	V _{CCDR1}	2.0		5.5	٧	$\begin{array}{c} \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ \text{CE}_2 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \end{array}$
	V _{CCDR2}	2.0		5.5	٧	CE ₂ ≤ 0.2 V
Data retention supply current	I _{CCDR1}		1	(2)	μΑ	$\frac{V_{CC}}{CE_1} = 3.0 \text{ V}$ $CE_2 \ge V_{CC} - 0.2 \text{ V}$ $CE_2 \ge V_{CC} - 0.2 \text{ V}$
	I _{CCDR2}		1	(2)	μΑ	$V_{CC} = 3.0 \text{ V}$ $CE_2 \leq 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0			ns	
Operation recovery time	t _R	t _{RC} Note 3			ns	

Notes:

- (1) This table is applicable to μ PD4364-xxL and -xxLL only.
- (2) μPD4364-xxL: 50 μA max; 15 μA (0 to 40 °C) μPD4364-xxLL: 20 μA max; 5 μA (0 to 40°C)
- (3) t_{RC} is read cycle time.

Data Retention (CE1 Controlled)

Data Retention (CE₂ Controlled)

