1. Determine the stability of the following closed-loop polynomials by utilizing Routh's stability criterion. If the system is unstable, determine the poles that lie in the right-half's plane.

1)
$$s^3 + 20s^2 + 9s + 100 = 0$$

2)
$$3s^4 + 10s^3 + 5s^2 + s + 2 = 0$$

3)
$$s^4 + 3s^3 + 5s^2 + 3s + 1 = 0$$

4)
$$s^3 + 10s^2 + 16s + 160 = 0$$

2. The following block diagram represents a simplified aircraft control system:

Determine K and K_t , so that $\omega_n=6/\mathrm{s}$ and $\zeta=1$. Based on the evaluated K and K_t , determine the system settling time t_s .

3. System block diagram is shown below

If it is required that ζ =0.6, determine the value of K_t and the corresponding t_p , t_s and M_p .

4. B-5-20, B-5-21, B-5-22, B-5-23