Variáveis aleatórias contínuas

- Conceito
- Função densidade de probabilidade e função de distribuição
- Valor esperado e variância

Distribuições de probabilidade

> Uniforme > χ^2

Exponencial > t

Normal

Variáveis aleatórias contínuas

Definição: São contínuas todas as variáveis cujo espaço amostral S_x é **não enumerável**.

- \Rightarrow Se X é uma variável aleatória contínua, X pode assumir qualquer valor num intervalo [a; b] ou no intervalo (- ∞ ;+ ∞).
- \Rightarrow O espaço S_X será sempre definido como um intervalo do conjunto dos **reais**, sendo, portanto, um conjunto infinito.

Exemplos:

- tempo de reação de uma mistura
- vida útil de um componente eletrônico
- peso de uma pessoa
- produção de leite de uma vaca
- quantidade de chuva que ocorre numa região

1. Função densidade de probabilidade

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. Uma função f associada a variável X é denominada função densidade de probabilidade (fdp) se satisfizer duas condições:

1.
$$f(x) \ge 0, \forall x \in S_X$$

2.
$$\int_{S_x} f(x) dx = 1 = P(X \in S_X)$$

Esta área corresponde à probabilidade de a variável X pertencer ao espaço amostral S_x

É toda a função que não assuma valores negativos, ou cujo gráfico esteja acima do eixo das abscissas, e cuja área compreendida entre a função e o eixo das abscissas seja igual a 1 (um).

Exemplo:

Seja a função f (x) = 2x, no intervalo $S_x = [0,1]$. Verifique se f (x) é uma função densidade de probabilidade.

Primeira condição: $f(x) \ge 0, \forall x \in S_x$

Como a função é linear, são necessários dois pontos para traçar a reta.

Por conveniência esses pontos são os limites do intervalo S_x .

$$f(x) = 2x$$

 $f(x=0) = 2 \times 0 = 0$
 $f(x=1) = 2 \times 1 = 2$

Todos os valores da função f (x) são não negativos no intervalo de 0 a 1.

Segunda condição:
$$\int f(x)dx = 1$$

$$\int_{S_X} f(x) dx = 1$$

Área:
$$\frac{b \times h}{2} = \frac{1 \times 2}{2} = 1$$

A área sob a função f (x) no intervalo S_X , que equivale a $P(X \in S_X)$, é igual a 1.

A função f(x) = 2x, no intervalo $S_x = [0, 1]$ é uma função densidade de probabilidade!!

Seja A=[0, 1/2]. Qual é a probabilidade de ocorrer o evento A?

Probabilidade = área

Área:
$$\frac{b \times h}{2} = \frac{1/2 \times 1}{2} = \frac{1}{4}$$

$$P(0 \le X \le 1/2) = 1/4$$

Importante!!!

No caso de variáveis contínuas, as representações a≤x≤b, a<x≤b e a<x<b são todas equivalentes, pois a probabilidade num ponto, por definição, é nula.

Seja o evento $A=\{x; x=a\}$. Então,

$$P(A) = \int_{A} f(x)dx = \int_{a}^{a} f(x)dx = F(a) - F(a) = 0$$

2. Função de distribuição ou probabilidade acumulada

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. A função de distribuição, denotada por F(x) ou $P(X \le x)$, é a função que associa a cada ponto $x \in S_X$ a probabilidade $P(X \le x)$. Desta forma, tem-se

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
, para $S_X = (-\infty; +\infty)$.

Se
$$S_X = [a, b]$$
, então

$$F(a) = P(X \le a) = 0$$

$$F(b) = P(X \le b) = 1$$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$= \int_{0}^{x} 2t dt$$

$$=2\left[\frac{t^2}{2}\right]_0^3$$

$$F(x) = x^2$$

$$F(x) = x^2$$

$$F(0) = P(X \le 0) = 0^2 = 0$$

$$F(1) = P(X \le 1) = 1^2 = 1$$

$$F(1/2) = P(X \le 1/2) = (1/2)^2 = 1/4$$

$$P(A) = F(1/2) = 1/4$$

$$P(B) = F(1)-F(1/2) = 1-1/4=3/4$$

Medidas descritivas

■ Média ou valor esperado

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. O valor esperado de X, denotado por **E(X)** ou μ , será dado por

$$E(X) = \mu = \int_{S_X} x f(x) dx$$

$$E(X) = \mu = \int_{S_x} x f(x) dx$$

$$= \int_{0}^{1} x 2x dx$$

$$= \int_{0}^{1} 2x^2 dx = 2 \int_{0}^{1} x^2 dx = 2 \left[\frac{x^3}{3} \right]_{0}^{1} = \frac{2}{3}$$

Medidas descritivas

■ Variância

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. A variância de X, denotada por V(X) ou σ^2 , será dada por

$$V(X) = \sigma^2 = E(X - \mu)^2 = \int_{S_x} (x - \mu)^2 f(x) dx \qquad \text{(Fórmula de definição)}$$

$$V(X) = \sigma^2 = E(X^2) - \mu^2 = \left[\int_{S_x} x^2 f(x) dx\right] - \mu^2 \qquad \text{(Fórmula prática)}$$

Exercício:

Determinar a média e a variância da vac cuja fdp é dada por: $u = -3/4 \quad e \quad \sigma^2 = 3/80$

$$f(x) = 3x^2 \quad \text{se} \quad -1 \le x \le 0$$

Solução:

$$\mu = E(X) = \int_{-1}^{0} x f(x) dx = \int_{-1}^{0} x (3x^{2}) dx = \int_{-1}^{0} (3x^{3}) dx$$
$$= 3 \left[\frac{x^{4}}{4} \right]_{1}^{0} = -\frac{3}{4}$$

$$\sigma^{2} = V(X) = \int_{-1}^{0} x^{2} f(x) dx - \mu^{2} = \int_{-1}^{0} x^{2} (3x^{2}) dx - \left(-\frac{3}{4}\right)^{2}$$

$$= \int_{-1}^{0} 3x^{4} dx - \left(\frac{9}{16}\right) = 3\left[\frac{x^{5}}{5}\right]_{-1}^{0} - \left(\frac{9}{16}\right) = \frac{3}{5} - \frac{9}{16} = \frac{3}{80}$$

Distribuições de probabilidade de variáveis contínuas

- - pesquisa bibliográfica
 - observação do campo de variação da variável

Existem vários tipos de distribuições contínuas:

⇒ Distribuição Uniforme
⇒ Distribuição χ²

⇒ Distribuição Exponencial
⇒ Distribuição t

⇒ Distribuição Normal
⇒ Distribuição F

1. Distribuição Uniforme

Definição: Seja X uma variável aleatória contínua que assume valores no intervalo $[\alpha, \beta]$. Se a probabilidade de X assumir valores num subintervalo é a **mesma** que para qualquer outro subintervalo de mesmo comprimento, então, esta variável tem distribuição uniforme.

Função densidade de probabilidade

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \text{para } \alpha \leq x \leq \beta \\ 0, & \text{em caso contrário} \end{cases}$$

Função de probabilidade acumulada

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx = \begin{cases} 0, & \text{se } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha}, & \text{se } \alpha \le x \le \beta \\ 1, & \text{se } x > \beta \end{cases}$$

Parâmetros

A distribuição uniforme tem dois parâmetros:

α: menor valor para o qual a variável X está definida

β: maior valor para o qual a variável X está definida

$$X \sim U(\alpha, \beta)$$

Medidas descritivas

Média ou valor esperado:

$$\mathsf{E}(\mathsf{X}) = \mu = \frac{(\beta + \alpha)}{2}$$

Variância:

$$V(X) = \sigma^2 = \frac{(\beta - \alpha)^2}{12}$$

RESUMO - Distribuição Uniforme

Descrição probabilística de uma variável aleatória contínua que assume valores no intervalo $[\alpha, \beta]$, cuja probabilidade de assumir valores num subintervalo é a mesma que para qualquer outro subintervalo de mesmo comprimento.

Função dens. probabilidade

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \text{para } \alpha \leq x \leq \beta \\ 0, & \text{em caso contrário} \end{cases}$$

Parâmetros

α: menor valor para o qual a variável X está definida

β: maior valor para o qual a variável X está definida

Medidas descritivas

$$E(X) = \mu = \frac{(\beta + \alpha)}{2} \qquad V(X) = \sigma^2 = \frac{(\beta - \alpha)^2}{12}$$

Prof^a Lisiane Selau

Exemplo: Seja X uma variável aleatória contínua com distribuição uniforme no intervalo [5, 10]. Determinar as probabilidades: $f(x) \uparrow x = \alpha$

- a) P(X < 7)
- b) P(X > 8,5)
- c) P(8 < x < 9)

$$P(X < x) = F(x) = \frac{x - \alpha}{\beta - \alpha}$$

Utilizando a função de distribuição acumulada:

a)
$$P(X < 7) = \frac{x - \alpha}{\beta - \alpha} = \frac{7 - 5}{10 - 5} = \frac{2}{5} = 0.4$$

b)
$$P(X > 8,5) = \frac{\beta - x}{\beta - \alpha} = \frac{10 - 8,5}{10 - 5} = \frac{1,5}{5} = 0,3$$

c)
$$P(8 < X < 9) = P(X < 9) - P(X < 8) = \frac{x_2 - \alpha}{\beta - \alpha} - \frac{x_1 - \alpha}{\beta - \alpha} = \frac{9 - 5}{10 - 5} - \frac{8 - 5}{10 - 5} = \frac{1}{5} = 0,2$$

Exercício: Uma variável X é uniformemente distribuída no intervalo [10, 20]. Determine:

a) valor esperado e variância de X

$$E(X) = \mu = \frac{(\beta + \alpha)}{2} = \frac{(20 + 10)}{2} = 15$$

$$\alpha = 10$$
 e $\beta = 20$

$$V(X) = \sigma^2 = \frac{(\beta - \alpha)^2}{12} = \frac{(20 - 10)^2}{12} = 8,33$$

b)
$$P(12,31 < X < 16,50)$$

$$P(X < x) = F(x) = \frac{x - \alpha}{\beta - \alpha}$$

$$P(12,31 < X < 16,50) = F(16,50) - F(12,31)$$

$$= \frac{16,50-10}{10-10} - \frac{12,431-10}{20-10} = \frac{16,50-12,31}{10} = 0,4190$$

2. Distribuição Exponencial

Definição: Seja X uma variável aleatória contínua que só assume valores **não negativos**. Se esta variável é o **tempo** decorrido entre ocorrências sucessivas de um processo de Poisson, então ela tem distribuição exponencial.

Na distribuição de Poisson, a variável aleatória é definida como o número de ocorrências (sucessos) em determinado período de tempo, sendo a média das ocorrências no período definida como λ .

Na distribuição exponencial, a variável aleatória é definida como o tempo entre duas ocorrências, sendo a média de tempo entre ocorrências igual a $1/\lambda$.

Por exemplo, se a média de atendimentos no caixa de uma loja é de $\lambda = 6$ clientes/min, então o tempo médio entre atendimentos é $1/\lambda = 1/6$ de minuto ou 10 segundos.

A distribuição exponencial é muito utilizada no campo da confiabilidade para a modelagem do tempo até a ocorrência de falha em componentes eletrônicos, bem como do tempo de espera em sistemas de filas.

Função densidade de probabilidade

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{para } x > 0 \\ 0, & \text{em caso contrário} \end{cases}$$

Função de probabilidade acumulada

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx = \begin{cases} 0, & \text{se } x < 0 \\ 1 - e^{-\lambda x}, & \text{se } x \ge 0 \end{cases}$$

Parâmetros

A distribuição exponencial tem apenas um parâmetro:

λ: número médio de ocorrências em determinado período de tempo $(\lambda>0)$

$$X \sim Exp(\lambda)$$

Medidas descritivas

Média ou valor esperado:

$$E(X) = \mu = \frac{1}{\lambda}$$

• Variância:
$$V(X) = \sigma^2 = \frac{1}{\lambda^2}$$

RESUMO - Distribuição exponencial

Descrição probabilística de uma variável aleatória contínua que é o tempo decorrido entre ocorrências sucessivas de um processo de Poisson.

Função dens. probabilidade

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{para } x > 0 \\ 0, & \text{em caso contrário} \end{cases}$$

Parâmetros

 λ : número médio de ocorrências em determinado período de tempo (λ >0)

Medidas descritivas

$$E(X) = \mu = \frac{1}{\lambda} \qquad V(X) = \sigma^2 = \frac{1}{\lambda^2}$$

Profa Lisiane Selau

Exemplo: Os tempos até a falha de um dispositivo eletrônico seguem o modelo exponencial, com uma taxa de falha $\lambda = 0.012$ falhas/hora. Indique qual a probabilidade de um dispositivo escolhido ao acaso sobreviver a 50

horas? E a 100 horas?

X: tempo até a falha (horas) X ~ Exp(0,012)

$$P(X > 50) = e^{-0.012 \times 50} = e^{-0.6} = 0.5488$$

$$P(X > 100) = e^{-0.012 \times 100} = e^{-1.2} = 0.3012$$

Prof^a Lisiane Selau

Exercício: Suponha que um componente eletrônico tenha um tempo de vida X (em unidades de 1000 horas) que segue uma distribuição exponencial de parâmetro $\lambda = 1$. Suponha que o custo de fabricação do item seja 2 reais e que o preço de venda seja 5 reais. O fabricante garante devolução total se X < 0.90. Qual o lucro esperado por item?

$$X \sim Exp(1)$$

A probabilidade de um componente durar menos de 900 horas é dada por:

$$P(X < 0.9) = F(0.9) = 1 - e^{-0.9} = 0.5934$$

Assim, o lucro do fabricante será uma variável aleatória discreta Y com a seguinte distribuição:

$$Y = y$$
 -2 3 Σ
 $P(Y = y)$ 0,5934 0,4066 1

Então o lucro esperado será:

$$E(Y) = -2 \times 0.5934 + 3 \times 0.4066 = R\$ 0.03$$

3. Distribuição Normal

É importante tanto no aspecto teórico como nas aplicações. Essa importância se deve a um conjunto de aspectos:

- ⇒ É útil para descrever uma grande quantidade de fenômenos naturais físicos, ambientais, etc.
- Muitas variáveis não normais podem ser aproximadas como normais após transformações simples.
- Propriedades matemáticas.
- Distribuições de um grande número de variáveis aleatórias convergem para a distribuição normal.
- ⇒ Uma grande quantidade de métodos e procedimentos de inferência estatística são derivados tendo-a como pressuposição básica.

O conjunto de métodos desenvolvidos para tratar variáveis que têm distribuição normal forma a chamada Estatística Clássica ou Estatística Paramétrica.

Distribuição normal

Definição: É uma distribuição teórica de frequências, onde a maioria das observações se situa em torno da média (centro) e diminui gradual e simetricamente no sentido dos extremos.

A distribuição normal é representada graficamente pela curva normal (curva de Gauss) que tem a forma de sino e é **simétrica** em relação ao centro, onde se localiza a média μ.

Função densidade de probabilidade

De modo geral, se X é uma variável contínua que tem distribuição normal, sua função densidade de probabilidade será:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ parametros}$$

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ para } S_x = (-\infty, +\infty)$$

Parâmetros

A distribuição normal tem dois parâmetros:

 μ = média (determina o centro da distribuição) σ^2 = variância (determina a dispersão da distribuição)

$$X \sim N (\mu, \sigma^2)$$

X tem distribuição normal com parâmetros μ e σ^2

Populações normais com variâncias diferentes e mesma média

Existe um número infinito de curvas normais

Propriedades da distribuição normal

1. O máximo da função densidade de probabilidade se dá no ponto $\mathbf{x} = \boldsymbol{\mu}$.

2. A distribuição é simétrica em relação ao centro onde coincidem a média, a moda e a mediana.

3. Verifica-se na distribuição normal que:

$$P(\mu - \sigma < X < \mu + \sigma) = 0,6825$$

$$P(\mu-2\sigma < X < \mu+2\sigma) = 0.9544$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = 0.9974$$

Cálculo de áreas

- Para cada valor de μ e de σ, existe uma distribuição normal diferente
- \Rightarrow O cálculo de áreas sob a curva normal, deverá ser feito sempre em função dos valores particulares de μ e σ

- ⇒ Para evitar a trabalhosa tarefa de calcular as áreas foi determinada uma distribuição normal padrão ou reduzida
- ⇒ As áreas sob a distribuição normal padrão foram calculadas e apresentadas numa tabela

Distribuição normal padrão

Definição: é a distribuição normal de uma variável Z que tem média igual a zero (μ =0) e desvio padrão igual a um (σ =1).

A curva normal padrão foi dividida em pequenas tiras, cujas áreas foram calculadas e apresentadas numa tabela.

Na tabela da distribuição normal padrão, podemos encontrar as áreas correspondentes aos intervalos de 0 a z.

Tabela - Área sob a curva normal padrão de 0 a z, $P(0 \le Z \le z)$.

Prof^a Lisiane Selau

⇒ Os valores negativos não são apresentados na tabela porque a curva é simétrica; assim, as áreas correspondentes a esses valores são exatamente iguais às dos seus simétricos positivos, por exemplo P(-1<Z<0)=P(0<Z<1).

⇒ Na tabela da distribuição normal padrão, os valores de Z vão de 0 a 3,99. Este limite é estabelecido com base nas propriedades da distribuição normal.

Prof^a Lisiane Selau

40

P(-1 < Z < 2) = ?

P(Z > 1,5) = ?

Exercício proposto:

Seja Z uma N(0,1). Determinar as seguintes probabilidades:

(a)
$$P(Z < 2,23)$$

(b)
$$P(Z > -1.45)$$

(c)
$$P(-2 < Z \le 2)$$

(d)
$$P(-1 \le Z \le 1)$$

(e)
$$P(0 < Z < 1.73)$$

(f)
$$P(Z > 0.81)$$

(g)
$$P(-1,25 \le Z \le -0.63)$$

Alguns valores importantes

- Através da distribuição normal padrão é possível estudar qualquer variável X que tenha distribuição normal, com quaisquer valores para μ e σ .
- ⇒ Para utilizarmos os valores da tabela, devemos padronizar a variável X, ou seja, transformar X em Z.

$$X \sim N (\mu, \sigma^2)$$

$$\downarrow \text{ transformar } \rightarrow Z = \frac{X - \mu}{\sigma}$$
 $Z \sim N (0, 1)$

Após a transformação, procuramos na tabela a área compreendida entre 0 e z, que corresponderá a área entre μ e x.

A transformação muda as variáveis, mas não altera a área sob a curva.

Prof^a Lisiane Selau

Exemplo:

Sabendo que as notas de 450 alunos estão normalmente distribuídas, com média $\mu = 3,9$ e desvio padrão $\sigma = 0,28$, determine:

- a) a probabilidade de um aluno ter nota maior que 4,27;
- b) o número de alunos que têm nota superior a 4,27.

Para encontrar essa área, vamos utilizar a tabela da distribuição normal padrão. Inicialmente, fazemos a transformação da variável X para a variável Z.

$$P(Z > 1,32)$$

= $P(Z > 0) - P(0 < Z < 1,32)$
= $0.5 - 0.4066 = 0.0934$

b) o número de alunos que têm nota superior a 4,27.

No item (a), vimos que este percentual é de 9,34%. Sendo assim, através de uma regra de três simples, podemos determinar quantos estudantes correspondem a 9,34% de uma população de 450 estudantes.

Esse valor pode ser obtido facilmente multiplicando o tamanho da população pela probabilidade de ocorrer uma nota maior que 4,27.

Assim, temos:

$$450 \times 0,0934 = 42,03$$

Concluímos, então, que, dos 450 estudantes, 42 têm nota superior a 4,27.

Exemplo: Uma fábrica de carros sabe que os motores de sua fábrica tem duração normal com média de 150.000km e desvio padrão de 5.000km. Qual a probabilidade de que um carro escolhido ao acaso, tenha um motor que dure:

- a) entre 140.000 e 160.000km?
- **b)** menos de 170.000km?
- c) Se o fabricante deseja oferecer uma garantia, tal que ele tenha que substituir no máximo 1% dos motores, qual deve ser o valor desta garantia?

Solução:

b)
$$P(X < 170.000) = P(Z < (170.000-150.000)/5.000)$$

= $P(Z < 4) = 1 = 100\%$

c) Seja G o valor de garantia

$$P(X
 $\frac{G-150}{5} = -2.33 \implies Garantia tem que ser de 138.350km.$$$

Exercício: Suponha que a estatura de recém-nascidos do sexo feminino é uma variável com distribuição normal de média $\mu = 48$ cm e $\sigma = 3$ cm. Determine:

- a) a probabilidade de um recém-nascido ter estatura entre 42 e 49 cm;
- b) a probabilidade de um recém-nascido ter estatura superior a 52 cm;
- c) o número que de recém-nascidos que têm estatura inferior à μ+σcm, dentre os 532 que nasceram numa determinada maternidade, no período de um mês.
 - a) 0,6065
- b) 0,0918
- c) 448

Exercício:

O consumo de gasolina por Km rodado para certo tipo de carro tem distribuição normal com média de 100 ml com desvio padrão de 5 ml.

- a) calcular a probabilidade de um carro consumir entre 92 e 106 ml.
- b) sabe-se que 73,24% dos carros consumem menos que certa quantidade de gasolina qual é essa quantidade?
- c) num grupo de 5 carros qual a probabilidade de dois consumirem mais que 107 ml?

- a) 0,8301
- b) 103,1
- c) 0,0507

Exercício: O diâmetro do eixo principal de um disco rígido segue a distribuição Normal com média 25,08 in e desvio padrão 0,05 in.

Se as especificações para esse eixo são $25,00 \pm 0,15$ in, determine o percentual de unidades produzidas em conformidades com as especificações.

$$P{24,85 \le x \le 25,15} = P{x \le 25,15} - P{x \le 24,85}$$

$$= P \left\{ Z \le \frac{25,15-25,08}{0,05} \right\} - P \left\{ Z \le \frac{24,85-25,08}{0,05} \right\}$$

$$= P\{Z \le 1,40\} - P\{Z \le -4,60\} = 0,9192 - 0,0000 = 0,9192$$

ou seja, 91,92% dentro das especificações e 8,08% fora das especificações.

4. **Distribuição** χ² (qui-quadrado)

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\frac{\nu}{2} - 1} e^{\frac{x}{2}} \qquad x \ge 0$$

$$E(X) = v$$

$$V(X) = 2v$$

$$X \sim \chi_v^2$$
 (lê-se: *X* tem distribuição qui-quadrado com *v* graus de liberdade)

com v graus de liberdade)

Propriedades:

a) se
$$Z \sim N(0,1)$$
 então $Z^2 \sim \chi_1^2$

b) se
$$X_i \sim \chi_1^2$$
 então $\sum_{i=1}^n X_i \sim \chi_n^2$

Graus de	Nível de Significância (α)									
Liberdade		E	squerda (d	q')						
(V)	0,005	0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,005
1	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,07	0,11	0 2	0,35	0,58	6,25	7,81	9,35	11 34	12,84
4	0,21	0,30	0 8	0,71	1,06	7,78	9,49	11,14	13 28	14,86
5	0,41	0,55	0.3	1,15	1,61	9,24	11,07	12,83	15 09	16,75
6	0,68	0,87	1.4	1,64	2,20	10,64	12,59	14,45	16 81	18,55
7	0,99	1,24	1.69	2,17	2,83	12,02	14,07	16,01	18 48	20,28
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20 <mark>,</mark> 09	21,95
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19

$$P(\chi_{10}^2 > ?) = 0.025$$

$$P(\chi_{10}^2 > 20,48) = 0,025$$

Graus de		Nível de Significância (α)									
Liberdade		E	squerda (d	q')		Direita (q)					
(v)	0,005	0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,005	
1	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88	
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7_38	9,21	10,60	
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9 5	11,34	12,84	
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11 14	13,28	14,86	
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12 83	15,09	16,75	
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14 45	16,81	18,55	
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16 01	18,48	20,28	
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95	
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59	
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19	

Prof^a Lisiane Selau

5. Distribuição t-student

$$f(x) = \frac{\Gamma\left[\left((v+1)/2\right)\right]}{\Gamma(v/2)\sqrt{\pi v}} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2} - \infty < x < \infty$$

$$E(X) = 0$$

$$V(X) = \frac{v}{v-2}$$

$$X \sim t_v \quad \text{(lê-se: } X \text{ tem distribuição } t\text{-} student \\ \text{com } v \text{ graus de liberdade)}$$

Propriedades:

a) se $Z \sim N(0,1)$ e $Q \sim \chi_{\nu}^2$ então $\frac{Z}{\sqrt{Q}} \sim t_{\nu}$

b) se $v \to \infty$ então $t_v \sim N(0,1)$

 t_{ν}

$$P(T_{10} > 2,764) = ?$$

$$P(T_{10} < -2,764) + P(T_{10} > 2,764) = 0,02$$

$$P(T_{10} > 2,764) = 0,01$$

Tabela II. Limites da distribuição t de Student.

0		Limites bilaterais: P(t > t _{o/2})								
Graus de — Liberdade (v)	Nível de Significância (α)									
	0,50	0,20	0,10	0,05	0,025	0,02	0,01	0,005		
1	1,000	3,078	6,314	12,706	25,542	31,821	63,657	127,320		
2	0,816	1,886	2,920	4,303	6,205	6,965	9,925	14,089		
3	0,715	1,638	2,353	3,183	4,177	4,5 1	5,841	7,453		
4	0,741	1,533	2,132	2,776	3,495	3,7	4,604	5,598		
5	0,727	1,476	2,015	2,571	3,163	3,3 5	4,032	4,773		
6	0,718	1,440	1,943	2,447	2,969	3,1 3	3,707	4,317		
7	0,711	1,415	1,895	2,365	2,841	2,9	3,500	4,029		
8	0,706	1,397	1,860	2,306	2,752	2,896	3,355	3,833		
9	0,703	1,383	1,833	2,262	2,685	2,821	3,250	3,690		
10	0,700	1,372	1,813	2,228	2,634	2,764	3,169	3,581		
	0,25	0,10	0,05	0,025	0,0125	0,01	0,005	0,0025		
Graus de — Liberdade (v) _	·	·	Nív	vel de Sign	ificância (α)	·			
(/ -	Limites unilaterais: P(t > t _α)									

Prof^a Lisiane Selau 59

$$P(T_{10} > ?) = 0.025$$

$$P(T_{10} > 2,228) = 0,025$$

$$P(T_{10} < -2.228) = 0.025$$

$$P(T_{10} < -?) + P(T_{10} > ?) = 0.05$$

$$P(T_{10} < -2,228) + P(T_{10} > 2,228) = 0,05$$

Tabela II. Limites da distribuição t de Student.

$P(T_{10})$	> 2,764	1) = ?

$$P(T_{10} > 2,764) = 0,01$$

0			Limite	es bilatera	is: P(t >	t _{α/2})					
Graus de — Liberdade (v)	Nível de Significância ($lpha$)										
	0,50	0,20	0,10	0,05	0,025	0,02	0,01	0,005			
1	1,000	3,078	6,314	12,706	25,542	31,821	63,657	127,320			
2	0,816	1,886	2,920	4,303	6,205	6,965	9,925	14,089			
3	0,715	1,638	2,353	3,13	4,177	4,541	5,841	7,453			
4	0,741	1,533	2,132	2,7	3,495	3,747	4,604	5,598			
5	0,727	1,476	2,015	2,5	3,163	3,365	4,032	4,773			
6	0,718	1,440	1,943	2,4 7	2,969	3,143	3,707	4,317			
7	0,711	1,415	1,895	2,3 5	2,841	2,998	3,500	4,029			
8	0,706	1,397	1,860	2,306	2,752	2,896	3,355	3,833			
9	0,703	1,383	1,833	2,262	2,685	2,821	3,250	3,690			
10	0,700	1,372	1,813	2,228	2,634	2,764	3,169	3,581			

	0,25	0,10	0,05	0,025	0,0125	0,01	0,005	0,0025
Graus de					'	•		

Liberdade (v)

Nível de Significância (α)

Limites unilaterais: P($|t| > t_{\alpha}$)

6. Distribuição F (de Snedecor)

$$f(x) = \frac{\Gamma[(v_1 + v_2)/2]}{\Gamma(v_1/2)\Gamma(v_2/2)} \left(\frac{v_1}{v_2}\right)^{v_1/2} x^{v_1/2 - 1} \left(1 + \frac{v_1}{v_2}x\right)^{-(v_1 + v_2)/2} x \ge 0$$

$$E(X) = \frac{v_2}{v_2 - 2}$$

$$V(X) = \frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}$$

$$X \sim F_{v_1, v_2} \text{ (lê-se: } X \text{ tem distribuição } F \text{ com } v_1 \text{ e } v_2 \text{ graus de liberdade)}$$

Propriedades:

a) se
$$U \sim \chi_{\nu_1}^2$$
 e $V \sim \chi_{\nu_2}^2$ então $\frac{U/\nu_1}{V/\nu_2} \sim F_{\nu_1,\nu_2}$

b) se
$$F \sim F_{\nu_1,\nu_2}$$
 então $\frac{1}{F} \sim F_{\nu_2,\nu_1} \Rightarrow P(F_{\nu_1,\nu_2} > F) = P(F_{\nu_2,\nu_1} < \frac{1}{F})$

$$P(F_{5,4} > F_b) = 0.025$$

$$P(F_{5,4} < F_a) = 0.025 \implies P(F_{4,5} > \frac{1}{F_a}) = 0.025$$

Ajustamento de distribuições a dados reais

- ➤ A verificação do ajuste de um modelo estatístico a um determinado conjunto de valores de uma variável é uma das mais relevantes atribuições do método estatístico.
- ➤ Verificar o ajustamento significa verificar se o modelo pressuposto de fato pode ser utilizado para representar a distribuição de uma variável num determinado contexto.
- Diversos métodos estão disponíveis para essa verificação e, dentre eles, podemos citar:
 - > métodos visuais, dentre os quais se destacam o histograma, o gráfico de probabilidade e o box-plot;
 - > testes de aderência, dentre os quais podemos citar os testes de Kolmogorov-Smirnov e Shapiro-Wilks.