

External Attack Surface

from mapping to monitoring

\$ whoami

Alessio Petracca

computer engineer working in the information security field focused on application and infrastructure security both offensive and defensive.

Why this talk?

sharing a practical approach to the discovery, the mapping and the monitoring of the external attack surface of a company

What is the external attack surface?

the entire set of services
exposed to the Internet
that can potentially be exploited
by a malicious user

Context

- Security Manager: that must challenge the internal security teams
- Blue Teamer: that should put in place effective monitoring and defense mechanism
- Red Teamer: that is conducting a wide scope assessment
- Bug bounty hunter: that is enjoying a program with a company-wildcard scope

You need to know the company's external facing assets!

Recon

The research and identification of targets

OWASP Amass

"The OWASP Amass Project performs network mapping of attack surfaces and external asset discovery using open source information gathering and active reconnaissance techniques."

- originally written by Jeff Foley (@caffix)
- adopted by OWASP Foundation in March 2018

https://github.com/OWASP/Amass

Root Domains

To help us in discovering as many **root domains** related to the organization as possible, we will leverage on:

ASNs

Reverse Whois

It is usually a good practice the study of mergers and acquisitions of the company.

Root Domains - ASNs enumerations

An autonomous system (AS) is a large network or group of networks with a single routing policy. It has control over a specific set of IP addresses and it is typically operated by a single large organization.

Each AS is assigned a unique ASN by the Internet Assigned Numbers Authority (IANA).

Note: even after this accurate manual analysis, we are missing a significant part of the attack surface due to the presence of assets on third parties and cloud environments

- https://bqp.he.net/
- https://bgpview.io/
- https://hackertarget.com/as-ip-lookup/
- https://github.com/OWASP/Amass
- https://github.com/j3ssie/metabigor
- https://github.com/yassineaboukir/Asnlookup

Root Domains - ASNs enumerations

~ > amass intel -org "tesla"
8911, TESLATEL-AS
50313, TESLATEL-AS
394161, TESLA - Tesla

~ > amass intel -active -cidr 199.66.11.0/24
teslamotors.com
tesla.com
solarcity.com

Root Domains - Reverse Whois lookups

The Reverse Whois is a technique that allows to find root domains registered using the same details of the in scope domain in the Whois records (e.g. organization, email, ...).

Note: if the target domain has "REDACTED FOR PRIVACY" or "hidden" fields this method does not return any result.

- https://viewdns.info/reversewhois/
- https://www.reversewhois.io/
- https://www.whoxy.com/
- https://reversewhois.domaintools.com/
- https://tools.whoisxmlapi.com/reverse-whois-search
- https://github.com/OWASP/Amass
- https://github.com/vysecurity/DomLink

Root Domains - Reverse Whois lookups

```
"WhoisRecord": {
 "domainName": "tesla.com",
 "registrant": {
   "name": "Domain Administrator",
   "organization": "DNStination Inc.",
   "street1": "3450 Sacramento Street, Suite 405",
   "city": "San Francisco"
   "state": "CA",
                             "WhoisRecord": {
   "postalCode": "94118",
   "country": "UNITED STAT
                               "domainName": "twitter.com",
   "countryCode": "US".
   "email": "admin@dnstina
                               "registrant": {
   "telephone": "141553193
                                 "name": "Twitter, Inc.",
   "fax": "14155319336",
                                 "organization": "Twitter, Inc.",
                                 "street1": "1355 Market Street".
                                 "city": "San Francisco",
 "administrativeContact":
                                 "state": "CA".
                                 "postalCode": "94103".
 "technicalContact": { -
                                 "country": "UNITED STATES",
                                 "countryCode": "US",
                                 "email": "domains@twitter.com",
                                 "telephone": "14152229670",
 "nameServers": { =
                                 "fax": "14152220922",
 "registrarName": "MarkMon
                               "administrativeContact": { -
                               "technicalContact": { =
                               "nameServers": { ==
                               "registrarName": "CSC CORPORATE DOMAINS, INC.",
```

```
> amass intel -whois -d tesla.com
cars-tesla.com
hailing-tesla.com
it-tesla.com
sa-tesla.com
show-tesla.com
baterias-tesla.com
hail-tesla.com
ride-hailing-tesla.com
tesla.com
```

```
~ > amass intel -whois -d twitter.com
periscopecast.com
as13414.net
hyperlinks.us
periscoep.com
periscoepe.com
```

amass recursively intel techniques
\$ amass intel -active -asn 394161 -whois -d tesla.com

Root Domains Subdomains Services

- ASNs
- Reverse Whois

Manual approach is suggested to validate all the root domains returned.

Subdomains

In order to find as many **subdomains** as possible, we will leverage on the following techniques:

subdomain scraping

subdomain brute-forcing

Subdomains scraping

Subdomains can be exposed:

- in Certificate Transparency Logs
- Web Archives
- Social media
- Text storage hosting service
- HTTP Headers
- ..

Note: there are many reliable tools that scrape these data sources and aggregate results quite well! Get out the best of the data sources by using their API keys.

- https://github.com/OWASP/Amass
- https://github.com/projectdiscovery/subfinder

Subdomains brute-forcing

Even more subdomains can be discovered by just "guessing" their names:

- based on wordlist
- based on alterations/permutations
- based on patterns (mask attack)

Note: to speed-up the process it is suggested to use multiple DNS resolvers at the same time.

- https://github.com/OWASP/Amass
- https://github.com/projectdiscovery/shuffledns

Subdomains scraping

- \$ amass enum -list
- \$ amass enum -passive -d domain.com
- \$ amass enum -active -d domain.com

o3.ptr1444.tesla.com

o2.ptr556.tesla.com teslatequila.tesla.com auth.tesla.com

yncdiscover.tesla.com

o4.ptr1867.tesla.com

Subdomains brute-forcing

```
$ amass enum -active -brute -src -rf resolv.txt -d tesla.com
# brute-forcing on wordlists + alterations
```

```
$ amass enum -active -brute -src -asn 394161 -d tesla.com
# added ASN context and get better results
```

\$ amass enum -active -brute -src -asn 394161 -rf 20resolvers.txt -max-dns-queries 10000 -d tesla.com # improve speed and reduce risk of being rate limited

```
forums.tesla.com
                 3.tesla.com
                 akamai-apigateway-fta.tesla.com
                 edr.tesla.com
                 teslatequila.tesla.com
                 ownership.tesla.com
                 akamai-apigateway-payment.tesla.com
                 static-assets-pay.tesla.com
                 image.emails.tesla.com
                 auth.tesla.com
                 autobidder.powerhub.energy.tesla.com
                 schedule.tesla.com
ThreatCrowd1
                 shop.tesla.com
                 click.email.tesla.com
                 akamai-apigateway-logisticsratesapi.tesla.com
                 autodiscover.tesla.com
[Brute Forcing]
                 gridlogic.energy.tesla.com
                 mfa.tesla.com
                 static-assets.tesla.com
                monitoring.tesla.com
[Brute Forcing]
                 sso-dev.tesla.com
                 link.tesla.com
[Brute Forcina]
                 sip.tesla.com
                 image.email.tesla.com
[Brute Forcing]
                 bi.tesla.com
                 mta2.email.tesla.com
Brute Forcinal
                 feedback.tesla.com
```


Root Domains Subdomains Services

- ASNs
- Reverse Whois

- scraping
- brute-forcing

Manual approach is suggested to validate all the root domains returned.

This part can be automated.

Services

To identify all the services exposed by the organization we're going to perform:

service discovery service analysis

Service discovery

First thing that comes to our mind is to execute nmap on all domains/subdomains revealed so far. But this may raise two problems:

- nmap is very slow
- some subdomains could be hosted on a third party infrastructure that may be not in the scope

The solution is to use **masscan**, for its speed in finding open ports and to take at our advantage its limitation to scan only ranges of IPs.

masscan -iL ipranges.txt --rate 10000 --top-ports 1000 -oG massoutput.txt (https://github.com/robertdavidgraham/masscan)

Service analysis

After the masscan execution, we have a precise list live IPs and open ports:

```
grep Host: massoutput.txt | cut -d " " -f3 | sort -V | uniq > iplist.txt grep Ports: massoutput.txt | cut -d " " -f5 | cut -d "/" -f1 | sort -n | uniq | paste -sd, > portlist.txt
```

Now, we can leverage the **nmap** accuracy to find information on exposed services running on these ports by grabbing versions and banners:

```
sudo nmap -sS -sV -p $(portlist.txt) -v -open -Pn -n --randomize-hosts -iL iplist.txt -oA nmap_output
```

Note: additional ports are usually detected by nmap (among those included in the portlist.txt)

Web Applications/Services analysis

The web services are fruitful of information that we can extract in order to expand our scope and also validate what we previous detected:

- favicon hashes correlation in combination with shodan.io (https://github.com/devanshbatham/FavFreak)
- tracking codes correlation (Google Analytics, Adobe Analytics, Facebook
 Pixel Tag, AddThis Tag, NewRelic Tag, ...) with https://builtwith.com/
- google dorking using copyright text or privacy text with inurl:company

Root Domains	Subdomains	Services
ASNsReverse Whois	scrapingbrute-forcing	service discoveryservice analysis
Manual approach is suggested to validate all the root domains returned.	This part can be automated.	This part can be automated.

Tracking and Monitoring

The workflow explained above must be completed by an appropriate monitoring in order to promptly react to every changes that will occur.

tracking subdomains

\$ amass track -d tesla.com

monitoring services

Integration with the ELK stack with the watcher feature

Takeaways

- Today we talked about the reconnaissance phase that is very useful from the external perspective but also from the internal perspective of an organization.
- There are many tools that can help in this activity, but our ability is to get the best from each of them find the right trade-off between speed and accuracy and with a minimum effort we'll see great results.
- Don't be afraid to develop your own tools!

Here you can find the main references:

- https://github.com/jhaddix/tbhm
- https://github.com/OWASP/Amass

Thank you

M alessio.petracca@gmail.com

@alessiopetracca