EKT 720 LPM/LOGIT/PROBIT

Modeling binary response variables:

Grouped data:

Linear Probability modeling:

- 1) Calculate $P_i = \frac{n}{N}$ per group/category
- 2) Model $P_i = \beta_0 + \beta_1 X_i + u_i$ by the usual OLS estimate $\hat{P}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- 3) Use the valid \hat{P} values (between 0 and 1) to calculate $w_i = \sqrt{N_i \hat{P}_i (1 \hat{P}_i)}$ Why?
- 4) Transform model as in 1. by dividing by w_i
- 5) New model is

$$P_{i} / w_{i} = \beta_{0} / w_{i} + \beta_{1} X_{i} / w_{i} + u_{i} / w_{i}$$

$$P_{i}^{*} = \beta_{0} Z_{1}^{*} + \beta_{1} Z_{2}^{*} + u_{i}^{*}, \quad where$$

$$P_{i}^{*} = P_{i} / w_{i}$$

$$Z_{1}^{*} = 1 / w_{i}$$

$$Z_{2}^{*} = X_{i} / w_{i}$$

$$u_{i}^{*} = u_{i} / w_{i}$$

- 6) Estimate the relevant parameters and transform back
- 7) Evaluate significance and goodness of fit

In the textbook $w_i = N_i \hat{P}_i (1 - \hat{P}_i)$ and therefore they divide with $\sqrt{w_i}$

Example (LPM grouped) - owning ??

The REG Procedure
Model: MODEL1
Dependent Variable: p1

Number of Observations Read 8
Number of Observations Used 8

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	0.69645	0.69645	137.08	<.0001
Error	6	0.03048	0.00508		
Corrected Total	7	0.72693			
Root MSI	Ē	0.07128	R-Square	0.9581	
Depender Coeff Va		0.41255 17.27774	Adj R-Sq	0.9511	
00011 1	~ .				

	Parameter Estimates									
				Parameter Standard						
Var	iable		DF	Est	ima	te	Err	or t V	alue	Pr > t
Int	ercep	t	1	-0.	360	08	0.070	64 -	5.10	0.0022
Х	·		1	0.	004	29	0.000366	62 1	1.71	<.0001
			0bs	х	n1	n2	р1	pr	ed	
			1	75	2	30	0.0666	7 -0.0	3816	
			2	105	4	45	0.0888	9 0.0	9062	
			3	135	10	60	0.1666	7 0.2	1939	
			4	165	20	70	0.2857	1 0.3	4816	
			5	195	30	75	0.4000	0.4	7693	
			6	225	35	60	0.5833	3 0.6	0570	
			7	255	40	50	0.8000	0.7	3447	
			8	285	50	55	0.9090	9 0.8	6325	
0bs	х	n1	n2	р1		pred	W	pstar	z1star	z2star
1	105	4	45	0.08889	0.	09062	1.92567	0.04616	0.51930	54.526
2	135	10	60	0.16667	0.	21939	3.20553	0.05199	0.31196	42.115
3	165	20	70	0.28571	0.	34816	3.98574	0.07168	0.25089	41.398
4	195	30	75	0.40000	0.	47693	4.32552	0.09247	0.23119	45.081
5	225	35	60	0.58333	0.	60570	3.78545	0.15410	0.26417	59.438
6	255	40	50	0.80000	0.	73447	3.12267	0.25619	0.32024	81.661
7	285	50	55	0.90909	0.	86325	2.54812	0.35677	0.39245	111.847

The REG Procedure
Model: MODEL1
Dependent Variable: pstar

Number of Observations Read 7
Number of Observations Used 7

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance Sum of Mean Source Squares Square F Value Pr > F Model 2 0.23406 0.11703 518.58 <.0001 Error 0.00113 0.00022567 Uncorrected Total 0.23519 Root MSE 0.01502 R-Square 0.9952

 Root MSE
 0.01502
 R-Square
 0.9952

 Dependent Mean
 0.14705
 Adj R-Sq
 0.9933

 Coeff Var
 10.21566

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
z1star	1	-0.42536	0.04578	-9.29	0.0002
z2star	1	0.00464	0.00023319	19.90	<.0001

Final estimated model: P = -0.42536 + 0.00464X

SAS program:

```
options ls=72 nodate pageno=1 ;
data a ;
input
          Х
                n1
                     n2 ;
p1=n1/n2 ;
cards;
    75
         2
               30
           4
               45
   105
   135
              60
         10
               70
   165
         20
   195
              75
         30
   225
         35 60
   255
         40 50
   285 50 55
proc reg data=a ;
model p1 = x ;
output out=b p=pred ;
run ;
proc print data=b;
run ;
data b ;
set b ;
if pred >= 1 then delete ;
if pred <=0 then delete ;</pre>
w = sqrt(n2*pred*(1-pred));
pstar = p1/w;
z1star=1/w ;
z2star=x/w ;
run ;
proc print data=b;
run ;
proc reg data=b ;
model pstar = z1star z2star / noint ;
run ;
```

LOGIT modeling:

General:

- Estimation of the following non linear regression model
- Model not linear in parameters
- Linear transformation leads to a linear model in terms of the ln(odds) and X.

Linear Transformation:

$$\begin{split} P_i &= \frac{1}{1 + e^{-Z_i}}, \quad with \quad Z_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} \\ \frac{1}{P_i} &= 1 + e^{-Z_i} \\ \frac{1}{P_i} - 1 = e^{-Z_i} \\ \frac{1 - P_i}{P_i} &= e^{-Z_i} \\ \ln(\frac{1 - P_i}{P_i}) &= -Z_i \\ -\ln(\frac{1 - P_i}{P_i}) &= Z_i \\ \ln(\frac{P_i}{1 - P_i}) &= Z_i \\ \ln(odds) &= Z_i \\ \ln(odds) &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} \\ l &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} \quad with \quad l = \ln(odds) \end{split}$$

Process:

- 1) Estimate the model in transformed form $l = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki}$
- 2) Calculate *l*
- 3) Estimate P from l

a.
$$odds = e^{t}$$

b. $P = \frac{odds}{1 + odds}$

a.
$$odds = e^{\hat{i}}$$

b. $\hat{P} = \frac{odds}{1 + odds}$
4) Calculate $w_i = \sqrt{\frac{1}{N_i \hat{P}_i (1 - \hat{P}_i)}}$

- 5) Transform model as in 1. by dividing by w_i
- 6) New model is

$$l/w_{i} = \frac{\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki}}{w_{i}}$$

- 7) Estimate the heteroscedasticity transformed model and transform back.
- 8) Transform back into non linear form.
- 9) Evaluate significance and goodness of fit

In the textbook $w_i = N_i \stackrel{\circ}{P}_i (1 - \stackrel{\circ}{P}_i)$ and therefore they divide with $\sqrt{w_i}$

Example 1 (LOGIT grouped) - buying a product

0bs	Х	n	r	p1	1
1	10	50	1	0.02	-3.89182
2	15	50	3	0.06	-2.75154
3	20	50	6	0.12	-1.99243
4	25	50	11	0.22	-1.26567
5	30	50	19	0.38	-0.48955
6	35	50	28	0.56	0.24116
7	40	50	37	0.74	1.04597
8	45	50	43	0.86	1.81529
9	50	50	46	0.92	2.44235
10	55	50	48	0.96	3.17805
11	60	50	49	0.98	3.89182

Plot of p1*x. Legend: A = 1 obs, B = 2 obs, etc.

Plot of 1*x. Legend: A = 1 obs, B = 2 obs, etc.

The REG Procedure Model: MODEL1 Dependent Variable: 1

Number of Observations Read 11 Number of Observations Used 11

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	63.59426	63.59426	3984.94	<.0001
Error	9	0.14363	0.01596		
Corrected Total	10	63.73789			
Root MSE		0.12633	R-Square	0.9977	
Dependent N Coeff Var	iean	0.20215 62.49226	Adj R-Sq	0.9975	

Parameter Estimates

Variabl	e	DF		meter imate		ndard Error	t Va	lue	Pr > t
Interce x	pt	1		12029 15207		09252 00241		.34	<.0001 <.0001
^		'	0.	13201	0.0	00241	00	. 10	1.0001
0bs	x	n	r	p1	1		pred		odds
1	10	50	1	0.02	-3.89	182	-3.599	59	0.0273
2	15	50	3	0.06	-2.75	154	-2.839	24	0.0585
3	20	50	6	0.12	-1.99	243	-2.078	90	0.1251
4	25	50	11	0.22	-1.26	567	-1.318	55	0.2675
5	30	50	19	0.38	-0.48	955	-0.558	20	0.5722
6	35	50	28	0.56	0.24	116	0.202	15	1.2240
7	40	50	37	0.74	1.04	597	0.962	50	2.6182
8	45	50	43	0.86	1.81	529	1.722	85	5.6004
9	50	50	46	0.92	2.44	235	2.483	19	11.9795
10	55	50	48	0.96	3.17	805	3.243	54	25.6243
11	60	50	49	0.98	3.89	182	4.003	89	54.8110
0bs	1	.h	w		lstar	z1	star	z2s	tar
1	0.02	:661	0.8787	76	-4.42878	1.1	3797	11.	380
2	0.05	524	0.6190	05	-4.44475	1.6	1537	24.	231
3	0.11	117	0.4499	90	-4.42856	2.2	2269	44.	454
4	0.21	106	0.3465	57	-3.65199	2.8	8543	72.	136
5	0.36	396	0.2939	93	-1.66552	3.4	0216	102.	065
6	0.55	037	0.2842	29	0.84830	3.5	1755	123.	114
7	0.72	362	0.3162	23	3.30759	3.1	6223	126.	489
8	0.84	850	0.3944	14	4.60224	2.5	3526	114.	087
9	0.92	296	0.5303	34	4.60526	1.8	8559	94.	279
10	0.96	244	0.7438	32	4.27261	1.3	4441	73.	943
11	0.98	208	1.066	11	3.65050	0.9	3799	56.	280

The REG Procedure Model: MODEL1 Dependent Variable: 1star

Number of Observations Read 11 Number of Observations Used 11

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	160.45807	80.22903	2723.56	<.0001
Error	9	0.26512	0.02946		
Uncorrected Total	11	160.72319			
Root MSE Dependent Me Coeff Var	an	0.17163 0.24244 70.79209	R-Square Adj R-Sq	0.9984 0.9980	

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
z1star	1	-5.05654	0.07283	-69.43	<.0001
z2star	1	0.15160	0.00206	73.73	<.0001

Final estimated model: $P = \frac{1}{1 + e^{(-5.05654 + 0.15160X)}}$

The SAS System

 Obs
 x
 n
 r
 p1
 1
 1h
 odds
 ph
 w
 1star

 1
 10
 50
 1
 0.02
 -3.89182
 -3.59959
 0.0273
 0.02661
 0.87876
 -4.42878

 2
 15
 50
 3
 0.06
 -2.75154
 -2.83924
 0.0585
 0.05524
 0.61905
 -4.44475

 3
 20
 50
 6
 0.12
 -1.99243
 -2.07890
 0.1251
 0.11117
 0.44990
 -4.42856

 4
 25
 50
 11
 0.22
 -1.26567
 -1.31855
 0.2675
 0.21106
 0.34657
 -3.65199

 5
 30
 50
 19
 0.38
 -0.48955
 -0.55820
 0.5722
 0.36396
 0.29393
 -1.66552

 6
 35
 50
 28
 0.56
 0.24116
 0.20215
 1.2240
 0.55037
 0.28429
 0.84830

 7
 40
 50
 37
 0.74
 1.04597
 0.96250
 2.6182

=== 550

8

8

```
Obs z1star z2star lstarh lh_het odds_het ph_het buy correct
  1 1.13797 11.380 -4.02899 -3.54050 0.0290 0.02818 0
                                                     49
  2 1.61537 24.231 -4.49474 -2.78248 0.0619 0.05828 0
                                                     47
  3 2.22269 44.454 -4.49975 -2.02446 0.1321 0.11666 0
                                                    44
  4 2.88543 72.136 -3.65420 -1.26643 0.2818 0.21987 0
                                                    39
  31
  6 3.51755 123.114 0.87802 0.24961 1.2835 0.56208 1
                                                    28
  7 3.16223 126.489 3.18636 1.00763 2.7391 0.73256 1
                                                    37
  8 2.53526 114.087 4.47640 1.76565 5.8454 0.85392 1
                                                    43
  9 1.88559 94.279 4.75861 2.52368 12.4744 0.92579 1
                                                    46
 10 1.34441 73.943 4.41196 3.28170 26.6209 0.96380 1
                                                    48
 11 0.93799 56.280 3.78922 4.03972 56.8104 0.98270 1
                                                    49
                                                  ======
                                                    461
```

Goodness of Fit: Count $R^2 = \frac{461}{550} = 0.8382$

SAS program:

```
options ls=72 ps=60 nodate pageno=1 ;
data a;
input x n r ;
p1=r/n;
l = log(p1/(1-p1));
cards;
10 50 1
15 50 3
20 50 6
25
   50 11
30
   50 19
35
   50 28
40
   50 37
45
   50 43
50 50 46
55 50 48
60 50 49
proc print data=a ;
run ;
proc plot data=a ;
plot (p1 1) *x;
run ;
proc reg data=a ;
model l=x ;
output out=b p=lh ;
run ;
data b ;
set b ;
odds = exp(lh);
ph = odds/(1+odds);
```

```
if ph <= 0 then delete ;
if ph >= 1 then delete ;
w = sqrt(1/(n*ph*(1-ph)));
lstar = 1/w ;
z1star = 1/w ;
z2star = x/w;
run ;
proc print data=b ;
run ;
proc reg data=b ;
model lstar = z1star z2star / noint ;
output out=c p=lstarh ;
run ;
data c ;
set c ;
 lh_het = lstarh*w ;
 odds_het = exp(lh_het) ;
 ph_het = odds_het/(1+odds_het) ;
 buy=0;
 if ph_het >= 0.5 then buy = 1;
 correct= 0 ;
 if ph_het < 0.5 then correct = n-r ;</pre>
 if ph_het >= 0.5 then correct = r ;
run ;
proc print data=c;
sum n correct ;
run ;
```

Example 2 (LOGIT grouped) - buying a product

Logit model (2) without adjusting for heteroscedasticity
Two explanatory variables

0bs	x1	x2	r	n	р	1
1	100	20	10	100	0.10	-2.19722
2	120	20	15	100	0.15	-1.73460
3	140	20	45	100	0.45	-0.20067
4	160	20	50	100	0.50	0.00000
5	100	25	15	100	0.15	-1.73460
6	120	25	20	100	0.20	-1.38629
7	140	25	45	100	0.45	-0.20067
8	160	25	55	100	0.55	0.20067
9	100	30	20	100	0.20	-1.38629
10	120	30	25	100	0.25	-1.09861
11	140	30	55	100	0.55	0.20067

12	160	30	60	100	0.60	0.40547
13	100	40	50	100	0.50	0.00000
14	120	40	55	100	0.55	0.20067
15	140	40	75	100	0.75	1.09861
16	160	40	80	100	0.80	1.38629

Logit model (2) without adjusting for heteroscedasticity $\hbox{Two explanatory variables}$

> The REG Procedure Model: MODEL1 Dependent Variable: p

Analysis of Variance

			Sum of	Mean		
Source		DF	Squares	Square	F Value	Pr > F
Model		2	0.66629	0.33314	73.96	<.0001
Error		13	0.05856	0.00450		
Correct	ed Total	15	0.72484			
	Root MSE		0.06712	R-Square	0.9192	
	Dependent	Mean	0.42188	Adj R-Sq	0.9068	
	Coeff Var		15.90881			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.99545	0.11854	-8.40	<.0001
x1	1	0.00694	0.00075037	9.25	<.0001
x2	1	0.01793	0.00227	7.90	<.0001

Logit model (2) without adjusting for heteroscedasticity
Two explanatory variables

The REG Procedure
Model: MODEL2
Dependent Variable: 1

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Correct	ed Total	2 13 15	15.56428 1.22888 16.79315	7.78214 0.09453	82.33	<.0001
	Root MSE Dependent Mea	an	0.30746 -0.40291 -76.30843	R-Square Adj R-Sq	0.9268 0.9156	

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-7.25395	0.54304	-13.36	<.0001

 x1
 1
 0.03356
 0.00344
 9.76
 <.0001</td>

 x2
 1
 0.08655
 0.01039
 8.33
 <.0001</td>

Probit modeling:

Modeling a binary response variables using the CDF of the normal distribution.

Process

- 1. Estimate the initial probabilities / ratios
- 2. Convert / transform to associated standard normal *z-values*.
- 3. Fit a linear model between the *z-values* and the X variables
- 4. Use to model to estimate the *z-value* for applicable X variables
- 5. Use appropriate software to transform the estimated *z-values* to probabilities

Example 1 (LOGIT grouped)

0bs	Χ	T	n
1	6	40	8
2	8	50	12
3	10	60	18
4	13	80	28
5	15	100	45
6	20	70	36
7	25	65	39
8	30	50	33
9	35	40	30
10	40	25	20

Logit model

RESULTS

```
bh1 -1.65867
bh2 0.0791661
si2h 0.0216904
seb1 0.0957771
seb2 0.0041431
t1 -17.31802
t2 19.107789
prt1 1.2591E-7
prt2 5.8296E-8
r2 0.978585
ar2 0.9758783
f 365.1076
prf 5.8296E-8
```

Х		Y	YH	Р	PH
1	6	-1.386294	-1.183674	0.2	0.2343922
1	8	-1.15268	-1.025342	0.24	0.2639882
1	10	-0.847298	-0.86701	0.3	0.2958769
1	13	-0.619039	-0.629511	0.35	0.3476213
1	15	-0.200671	-0.471179	0.45	0.3843372
1	20	0.0571584	-0.075349	0.5142857	0.4811717
1	25	0.4054651	0.3204814	0.6	0.5794416
1	30	0.6632942	0.7163118	0.66	0.6717943
1	35	1.0986123	1.1121422	0.75	0.7525283
1	40	1.3862944	1.5079726	0.8	0.8187605

Probit model

RESULTS

```
bh1 -1.015578
bh2 0.0484664
si2h 0.0079694
seb1 0.0580551
seb2 0.0025113
t1 -17.49335
t2 19.298953
prt1 1.1638E-7
prt2 5.3916E-8
r2 0.9789722
ar2 0.9763438
f 372.44957
prf 5.3916E-8
```

```
YΗ
                                              PH
Χ
         6 -0.841621 -0.72478
                                   0.2 0.2342936
1
        8 -0.706303 -0.627847
                                  0.24 0.2650521
1
        10 -0.524401 -0.530914
                                   0.3 0.2977392
1
        13 -0.38532 -0.385515
                                  0.35 0.349928
1
       15 -0.125661 -0.288582
                                  0.45 0.3864506
1
       20 0.0358166 -0.04625 0.5142857 0.4815555
1
       25 0.2533471 0.1960819
                                   0.6 0.577727
1
       30 0.4124631 0.4384138
                                  0.66 0.6694568
1
      35 0.6744898 0.6807458
                                 0.75 0.7519838
1
        40 0.8416212 0.9230778
                                  0.8 0.8220167
```

SAS program:

```
options ls=72 nodate pageno=1 ;
data a ;
input X T n ;
cards;
 6 40 8
 8 50 12
 10 60 18
 13 80 28
 15 100 45
 20 70 36
 25 65 39
 30 50 33
 35 40 30
40 25 20
 ;
 run;
proc print data = a ;
 run;
proc iml ;
 use a ;
 read all into Xtn ;
```

```
*print xtn ;
 n=nrow(xtn);
 p=xtn[,3] #recip(xtn[,2]);
* model=2;
 do model=1 to 2 ;
  if model=1 then do ;
   y = log(p/(1-p));
  end;
  if model=2 then do ;
   y=probit(p);
 end;
 x = J(n, 1, 1) \mid | xtn[, 1] ;
 k=ncol(x);
 bh = inv(x^*x)^*x^*y ;
  yh = x*bh;
  uh = y - x*bh ;
  si2h = (uh^*uh)/(n-k);
 covb = si2h*inv(x`*x);
 sebv = sqrt(vecdiag(covb));
 t = 1/sebv#bh;
  prt = 2*(1 - probt(abs(t), n-k));
 td = n*(sum(y)/n)**2;
 r2 = (bh^*x^*y-td) / (y^*y - td) ;
 ar2 = 1-(1-r2)*(n-1)/(n-k);
 F = (r2/(k-1))/((1-r2)/(n-k));
 PrF = 1 - probf(f, k-1, n-k);
  *print bh si2h sebv t prt r2 ar2 f prf ;
 nm = { "bh1" "bh2" "si2h" "seb1" "seb2" "t1" "t2" "prt1" "prt2"
"r2" "ar2" "f" "prf"};
 results = (bh` || si2h || sebv` || t` || prt` || r2 || ar2 || f ||
prf)`;
 if model = 1 then do ;
  Print "Logit model" ;
  print results[rowname=nm] ;
  ph = \exp(yh) / (1 + \exp(yh)) ;
  print x y yh p ph ;
  end;
```

Individual data:

Linear Probability modeling:

- 1) Model $Y_i = \beta_0 + \beta_1 X_i + u_i$ by the usual OLS estimate $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ with Y=0 or 1.
- 2) Use the valid \hat{Y} values (between 0 and 1) to calculate $w_i = \sqrt{\hat{Y}_i(1 \hat{Y}_i)}$
- 3) Transform model as in 1. by dividing by w_i
- 4) New model is

$$Y_{i} / w_{i} = \beta_{0} / w_{i} + \beta_{1} X_{i} / w_{i} + u_{i} / w_{i}$$

$$Y_{i}^{*} = \beta_{0} Z_{1}^{*} + \beta_{1} Z_{2}^{*} + u_{i}^{*}, \quad where$$

$$Y_{i}^{*} = Y_{i} / w_{i}$$

$$Z_1^* = 1/w_i$$

$$Z_2^* = X_i / w_i$$

$$u_i^* = u_i / w_i$$

5) Estimate the relevant parameters and transform back

In the textbook $w_i = \hat{Y}_i(1 - \hat{Y}_i)$ and therefore they divide with $\sqrt{w_i}$

Example (LPM individual) - owning a home

The SAS System

37

37

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read

Number of Observations Used

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	1 35	7.41340 1.82985	7.41340 0.05228	141.80	<.0001
Corrected Total	36	9.24324			
Root MSE		0.22865	R-Square	0.8020	
Dependent M Coeff Var	ean	0.51351 44.52680	Adj R-Sq	0.7964	

Parameter Estimates

Parameter Standard

1

Var	riable	DF		Estimate	E	rror t	Value I	Pr > t
Int	tercept	1		-0.97698	0.1	3069	-7.48	<.0001
X	cerocpe	1		0.10327		0867	11.91	<.0001
^		'		0.10327	0.00	3007	11.91	1.0001
				The S	SAS System			2
0bs	Family	у	Χ	yh	W	ystar	z1star	z2star
1	1	0	8	-0.15079				
2	21	1	22	1.29505				
3	2	1	16	0.67540	0.46822	2.13573	2.13573	34.172
4	22	1	16	0.67540	0.46822	2.13573	2.13573	34.172
5	3	1	18	0.88195	0.32267	3.09917	3.09917	55.785
6	23	0	12	0.26231	0.43989	0.00000	2.27330	27.280
7	4	0	11	0.15903	0.36571	0.00000	2.73443	30.079
8	24	0	11	0.15903	0.36571	0.00000	2.73443	30.079
9	5	0	12	0.26231	0.43989	0.00000	2.27330	27.280
10	25	1	16	0.67540	0.46822	2.13573	2.13573	34.172
11	6	1	19	0.98522	0.12065	8.28818	8.28818	157.475
12	26	0	11	0.15903	0.36571	0.00000	2.73443	30.079
13	7	1	20	1.08850				
14	27	1	20	1.08850				
15	8	0	13	0.36558	0.48159	0.00000	2.07644	26.994
16	28	1	18	0.88195	0.32267	3.09917	3.09917	55.785
17	9	0	9	-0.04752				
18	29	0	11	0.15903	0.36571	0.00000	2.73443	30.079
19	10	0	10	0.05576	0.22945	0.00000	4.35815	43.582
20	30	0	10	0.05576	0.22945	0.00000	4.35815	43.582
21	11	1	17	0.77868	0.41514	2.40884	2.40884	40.950
22	31	1	17	0.77868	0.41514	2.40884	2.40884	40.950
23	12	1	18	0.88195	0.32267	3.09917	3.09917	55.785
24	32	0	13	0.36558	0.48159	0.00000	2.07644	26.994
25	13	0	14	0.46885	0.49903	0.00000	2.00389	28.054
26	33	1	21	1.19177				
27	14	1	20	1.08850				
28	34	1	20	1.08850				
29	15	0	6	-0.35734				
30	35	0	11	0.15903	0.36571	0.00000	2.73443	30.079
31	16	1	19	0.98522	0.12065	8.28818	8.28818	157.475
32	36	0	8	-0.15079				
33	17	1	16	0.67540	0.46822	2.13573	2.13573	34.172
34	37	1	17	0.77868	0.41514	2.40884	2.40884	40.950
35	18	0	10	0.05576	0.22945	0.00000	4.35815	43.582
36	38	1	16	0.67540	0.46822	2.13573	2.13573	34.172
37	19	0	8	-0.15079				

The REG Procedure Model: MODEL1 Dependent Variable: ystar

Number	of	Observations	Read			37
Number	of	Observations	Used			26
Number	of	Observations	with	Missing	Values	11

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	200.61403	100.30701	414.87	<.0001
Error	24	5.80265	0.24178		
Uncorrected Total	26	206.41667			
Root MSE Dependent Mea Coeff Var	an	0.49171 1.68381 29.20213	R-Square Adj R-Sq	0.9719 0.9695	

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
z1star	1	-1.28382	0.11696	-10.98	<.0001
z2star	1	0.12286	0.00727	16.89	<.0001

Final estimated model: $\hat{Y} = -1.28382 + 0.12286X$

LOGIT modeling – MLE / not including heteroscedasticity.

Econometrics 720

1. Logistic Regression

The logistic regression model arises from the desire to model posterior probabilities of K classes via a linear functions in x, while at the same time ensuring that they sum to one and remain in the inerval [0,1].

A model that complies to the above is:

$$\begin{array}{lll} \log \frac{Pr(G=1|X=x)}{Pr(G=K|X=x)} & = & \beta_{10} + \beta_1^T x \\ \log(odds_1) & = & \beta_{10} + \beta_1^T x \quad \text{where} \quad odds_1 = \frac{Pr(G=1|X=x)}{Pr(G=K|X=x)} \\ odds_1 & = & e^{\beta_{10} + \beta_1^T x} \\ \log \frac{Pr(G=2|X=x)}{Pr(G=K|X=x)} & = & \beta_{20} + \beta_2^T x \\ \log(odds_2) & = & \beta_{20} + \beta_2^T x \quad \text{where} \quad odds_2 = \frac{Pr(G=1|X=x)}{Pr(G=K|X=x)} \\ odds_2 & = & e^{\beta_{20} + \beta_2^T x} \end{array}$$

. . .

. . .

$$\begin{array}{lll} \log \frac{Pr(G=K-1|X=x)}{Pr(G=K|X=x)} & = & \beta_{(K-1)0} + \beta_{K-1}^T x \\ \log(odds_{K-1}) & = & \beta_{(K-1)0} + \beta_{K-1}^T x & \text{where} & odds_{K-1} = \frac{Pr(G=K-1|X=x)}{Pr(G=K|X=x)} \\ odds_{K-1} & = & e^{\beta_{(K-1)0} + \beta_{K-1}^T x} \end{array}$$

Consider the following:

$$\begin{array}{lll} \Sigma_{l=1}^{K-1}log(odds_{l}) & = & \Sigma_{l=1}^{K-1}\beta_{l0} + \beta_{l}^{T}x \\ & \frac{1}{Pr(G=K|X=x)}\Sigma_{l=1}^{K-1}Pr(G=l|X=x) & = & \Sigma_{l=1}^{K-1}e^{\beta_{l0}+\beta_{l}^{T}x} \\ & \frac{1}{Pr(G=K|X=x)}\left(1-Pr(G=K|X=x)\right) & = & \Sigma_{l=1}^{K-1}e^{\beta_{l0}+\beta_{l}^{T}x} \\ & \frac{1}{Pr(G=K|X=x)} & = & 1+\Sigma_{l=1}^{K-1}e^{\beta_{l0}+\beta_{l}^{T}x} \\ & Pr(G=K|X=x) & = & \frac{1}{1+\Sigma_{l=1}^{K-1}e^{\beta_{l0}+\beta_{l}^{T}x}} \\ & Pr(G=k|X=x) & = & e^{\beta_{k0}+\beta_{k}^{T}x}pr(G=K|X=x) \\ & Pr(G=k|X=x) & = & e^{\beta_{k0}+\beta_{k}^{T}x}\frac{1}{1+\Sigma_{l=1}^{K-1}e^{\beta_{l0}+\beta_{l}^{T}x}} \end{array}$$

Clearly $\Sigma_{l=1}^K Pr(G=l|X=x)$ is equal to 1, and all probabilities depend on the full parameter set $\theta=\{\beta_{10},\beta_{1},\beta_{20},\beta_{2},\dots,\beta_{(K-1)0},\beta_{K-1}\}$. These probabilities are denoted by $Pr(G=k|x=x)=p_k(x;\theta)$

Estimation of Logistic Regression models using Newton-Raphs

The Log-likelihood function

Consider only cases where K = 2. The log-likelihood function for N observations is:

$$l(\theta) = \sum_{i=1}^{N} log p_{g_i}(x_i; \theta)$$

where $p_{g_t}(x_i; \theta)$ is the probability of being in the group g that is associated with the i'th observation.

The log-likelihood function can be simplified by using the following code:

$$y_i = 1$$
 when $g_i = 1$ $y_i = 0$ when $g_i = 2$ $p_1(x;\theta) = p(x;\theta)$

 $p_2(x;\theta) = 1 - p(x;\theta)$ for two groups

The log-likelihood function then is:

$$\begin{split} l(\beta) &=& \Sigma_{i=1}^{N} \left[y_i \log p(x_i,\beta) + (1-y_i) \log (1-p(x_i;\beta) \right] \\ &=& \Sigma_{i=1}^{N} \left[y_i \log p(x_i,\beta) + \log (1-p(x_i;\beta)) - y_i \log (1-p(x_i;\beta) \right] \\ &=& \Sigma_{i=1}^{N} \left[y_i \log \frac{p(x_i,\beta)}{(1-p(x_i;\beta)} + \log (1-p(x_i;\beta) \right] \\ &=& \Sigma_{i=1}^{N} \left[y_i \beta^T x_i + \log (1-\frac{e^{\beta^T x_i}}{1+e^{\beta^T x_i}}) \right] \\ & \quad \text{with} \quad \beta = \left\{ \beta_{10}, \beta_1 \right\} \quad \text{and} \quad x \quad \text{coded to include the intercept} \\ &=& \Sigma_{i=1}^{N} \left[y_i \beta^T x_i + \log (\frac{1}{1+e^{\beta^T x_i}}) \right] \\ &=& \Sigma_{i=1}^{N} \left[y_i \beta^T x_i - \log (1+e^{\beta^T x_i}) \right] \end{split}$$

Maximum Likelihood Estimation

In order to maximise the log-likelihood function we set its derivatives equal to zero.

$$\frac{\partial l(\beta)}{\partial \beta} = \Sigma_{i=1}^N x_i (y_i - p(x_i;\beta)) = 0$$

which are p + 1 score equations non-linear in β .

In order to solve the score equations, we use the Newton-Raphson algorithm, which requires the second derivative or Hessian matrix

$$\frac{\partial^{2}l(\beta)}{\partial\beta\partial\beta^{t}} = -\Sigma_{i=1}^{N}x_{i}x_{i}^{T}p(x_{i};\beta)(1-p(x_{i};\beta))$$

The Newton-Raphson algorithm relates to the following update formula:

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^t}\right)^{-1} \frac{\partial l(\beta)}{\partial \beta}$$

where the derivatives are evaluated at β^{old} .

In matrix notation we get:

$$\begin{array}{lll} \frac{\partial l(\beta)}{\partial \beta} & = & \boldsymbol{X}^T(\boldsymbol{y} - \boldsymbol{p}) \\ \frac{\partial^2 l(\beta)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^2} & = & -\boldsymbol{X}^T \, \boldsymbol{W} \, \boldsymbol{X} \end{array}$$

y the vector of y_i values

X the $N \times (p+1)$ matrix of x_i values

with

p — the vector of fitted probabilities with i'th element $p(x_i; \beta^{old})$

 $W = a \ N \times N$ diagonal matrix of weights with i'th diagonal element $p(x_i; \beta^{old})(1 - p(x_i; \beta^{old}))$

The Newton-Raphson update formula is:

$$\begin{split} \beta^{new} & = & \beta^{old} + (X^T W X)^{-1} X^T (y-p) \\ & = & (X^T W X)^{-1} (X^T W X) \beta^{old} + (X^T W X)^{-1} X^T (y-p) \\ & = & (X^T W X)^{-1} X^T W (X \beta^{old} + W^{-1} (y-p)) \\ & = & (X^T W X)^{-1} X^T W z \end{split}$$

where

$$z = (X\beta^{old} + W^{-1}(y-p))$$

The vector z is sometimes called the adjusted response, and the equations are solved repeatedly.

Example (LOGIT individual)

GR8 Marketing has requested you to support them in developing a propensity to buy model for a new product that they are launching. They have specifically asked you to develop a statistical model that can be used

- > as a scoring model of prospective clients
- > to classify clients as likely buyers or not.

The following information is available for each of 3000 individuals in the sample:

Buy	Age	Gender	Region
Indication			
Yes	a: up to 19	Male	Northern
No	b: 20 to 29	Female	Southern
	c: 30 to 39		Western
	d: 40 +		Eastern

The following results are available:

	Tab	le of buy	by regi	.on			
buy	region						
Frequency	I						
Percent	1						
Row Pct							
				ı Western			
				++			
	•			393			
				13.10			
				-+			
Yes	191	227	726	753	1897		
				25.08			
	++	+		++			
Total				1146			
	10.17	10.67	40.98	38.18	100.00		
S	tatistics	for Table	of buy	by region			
Statistic			DF	Value	Prob		
Chi-Square 3 20.3084 0.0001							
Likelihood Ratio Chi-Square 3 20.4987 0.0001							
Mantel-Haenszel Chi-Square 1 0.0806 0.7765							

Table of buy by age

			, , ,		
buy	age				
Frequency					
Percent					
Row Pct					
Col Pct	a: up to	b: 20 -	c: 30 -	d: 40 +	Total
	19	29	39		
	++	+	+	+	
No	283	263	291	266	1103
	9.43	8.77	9.70	8.87	36.77
	++	+	+	+	-
Yes	453	460	425	559	1897
	15.10	15.33	14.17	18.63	63.23
	++	+	+	+	-
Total	736	723	716	825	3000
	24.53	24.10	23.87	27.50	100.00

Statistics for Tab	le of	buy by age	
Statistic	DF	Value	Prob
Chi-Square	3	12.8354	0.0050
Likelihood Ratio Chi-Square	3	12.9075	0.0048
Mantel-Haenszel Chi-Square	1	3.9103	0.0480

Table of buy by gender

buy	gender
-----	--------

Frequency	1			
Percent				
Row Pct				
Col Pct	Female	Male		Total
	+	+	+	
No	745	358	1	1103
	24.83	11.93		36.77
	+	+	+	
Yes	1257	640		1897
	41.90	21.33		63.23
	+	+	+	
Total	2002	998		3000
	66.73	33.27		100.00

Statistics for Table of buy by gender

Statistic	DF	Value	Prob
Chi-Square	1	0.5152	0.4729
Likelihood Ratio Chi-Square	1	0.5161	0.4725
Continuity Adj. Chi-Square	1	0.4591	0.4980
Mantel-Haenszel Chi-Square	1	0.5150	0.4730

The CATMOD Procedure

Data Summary

Response	buy	Response Levels	2
Weight Variable	None	Populations	30
Data Set	Α	Total Frequency	2999
Frequency Missing	1	Observations	2999

One-Way Frequencies

Variable	Value	Frequency
buy	No Yes	1103 1896
region	Eastern Northern Southern Western	305 320 1229 1145
age	a: up to 19 b: 20 - 29 c: 30 - 39 d: 40 +	736 723 716 824
gender	Female Male	2002 997

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept	1	134.25	<.0001
region	3	14.66	0.0021
age	3	5.15	0.1611
gender	1	2.80	0.0945
age*gender	3	11.34	0.0100
Likelihood Ratio	19	18.37	0.4978

The CATMOD Procedure

Analysis of Maximum Likelihood Estimates

Parameter		Estimate	Standard Error	Chi- Square	Pr > ChiSq
Intercept		-0.6073	0.0524	134.25	<.0001
region	Eastern	0.00367	0.1192	0.00	0.9754
	Northern	-0.1605	0.1168	1.89	0.1693
	Southern	0.2314	0.0702	10.87	0.0010
age	a: up to 19	0.0574	0.0844	0.46	0.4962
	b: 20 - 29	-0.0964	0.0739	1.70	0.1923
	c: 30 - 39	0.1291	0.0731	3.12	0.0775
gender	Female	0.0704	0.0421	2.80	0.0945
age*gender	a: up to 19 Female	0.1621	0.0694	5.45	0.0195
	b: 20 - 29 Female	0.0981	0.0717	1.87	0.1716
	c: 30 - 39 Female	-0.0799	0.0703	1.29	0.2550

The results above can be summarized as follows:

Parameter	Level	Estimate	Index
Intercept		-0.6073	0.54482
region	Eastern	0.00367	1.003677
	Northern	-0.1605	0.851718
	Southern	0.2314	1.260363
	Western	-0.07457	0.928143
age	a: up to 19	0.0574	1.059079
	b: 20 - 29	-0.0964	0.908101
	c: 30 - 39	0.1291	1.137804
	d: 40+	-0.0901	0.91384
gender	Female	0.0704	1.072937
	Male	-0.0704	0.932021
age*gender	a: up to 19 Female	0.1621	1.175978
	b: 20 - 29 Female	0.0981	1.103073
	c: 30 - 39 Female	-0.0799	0.923209
	d: 40+ Female	-0.1803	0.83502
	a: up to 19 Male	-0.1621	0.850356
	b: 20 - 29 Male	-0.0981	0.906558
	c: 30 - 39 Male	0.0799	1.083179
	d: 40+ Male	0.1803	1.197577

A few examples:

Odds(Not BuylMale) = 0.545*0.932 = 0.508

P(Not BuylMale)=0.337

Classification: Buy

2:

Odds(Not Buyl age=22, Female) = 0.545*0.908*1.073*1.103=0.586 P(Not Buyl age=22, Female) = 0.369

Classification: Buy

Measuring goodness of fit:

Example:

EKT 720

The FREQ Procedure

Table of inc_c by lbuy

inc_c lbuy

Frequency Percent Row Pct			
Col Pct	Buy	None	Total
a:	4889	27443	32332
	2.44	13.72	16.17
	15.12	84.88	
	9.88	18.23	
b:	6998	22374	29372
	3.50	11.19	14.69
	23.83	76.17	
	14.14	14.86	
c:	13197	26213	39410
	6.60	13.11	19.71
	33.49	66.51	
	26.67	17.41	
d:	8436	15537	23973
	4.22	7.77	11.99
	35.19	64.81	
	17.05	10.32	
e:	7495	22354	29849
	3.75	11.18	14.92
	25.11	74.89	
	15.15	14.85	
f:	5058	21151	26209
	2.53	10.58	13.10
	19.30	80.70	
	10.22	14.05	
g:	3405	15450	18855
	1.70	7.73	9.43
	18.06	81.94	
	6.88	10.26	
Total	49478	150522	200000
	24.74	75.26	100.00

EKT 720

The FREQ Procedure

Statistics for Table of inc_c by lbuy

Statistic	DF	Value	Prob
Chi-Square	6	5516.0401	<.0001
Likelihood Ratio Chi-Square	6	5540.2908	<.0001
Mantel-Haenszel Chi-Square	1	0.0751	0.7840
Phi Coefficient		0.1661	
Contingency Coefficient		0.1638	
Cramer's V		0.1661	

Sample Size = 200000

EKT 720

The FREQ Procedure

Table of age_c by lbuy

age_c lbuy

Frequency Percent Row Pct Col Pct	Buy	None	Total
a: <= 25	1856	22071	23927
	0.93	11.04	11.96
	7.76	92.24	
	3.75	14.66	
b: 26 - 35	15794	42825	58619
	7.90	21.41	29.31
	26.94	73.06	
	31.92	28.45	
c: 36 - 45	17090	37902	54992
	8.55	18.95	27.50
	31.08	68.92	
	34.54	25.18	
d: 46 - 59	11696	30916	42612
	5.85	15.46	21.31
	27.45	72.55	
	23.64	20.54	
e: 60 +	3042	16808	19850
	1.52	8.40	9.93
	15.32	84.68	
	6.15	11.17	
Total	49478	150522	7 200000
	24.74	75.26	100.00

EKT 720

The FREQ Procedure

Statistics for Table of age_c by lbuy

Statistic	DF	Value	Prob
Chi-Square	4	6158.4205	<.0001
Likelihood Ratio Chi-Square	4	7166.0509	<.0001
Mantel-Haenszel Chi-Square	1	355.0063	<.0001
Phi Coefficient		0.1755	
Contingency Coefficient		0.1728	
Cramer's V		0.1755	

Sample Size = 200000

Table of Gender by lbuy

Gender	lbuy		
Frequency Percent Row Pct Col Pct	Buy	None	Total
	Бау	None	10141
Female	24707	65931	90638
	12.35	32.97	45.32
	27.26	72.74	
	49.94	43.80	
Male	24771	84591	109362
	12.39	42.30	54.68
	22.65	77.35	
	50.06	56.20	
Total	49478	150522	200000
	24.74	75.26	100.00

EKT 720

The FREQ Procedure

Statistics for Table of Gender by lbuy

Statistic	DF	Value	Prob
Chi-Square	1	565.3509	<.0001
Likelihood Ratio Chi-Square	1	563.7879	<.0001
Continuity Adj. Chi-Square	1	565.1034	<.0001
Mantel-Haenszel Chi-Square	1	565.3481	<.0001
Phi Coefficient		0.0532	
Contingency Coefficient		0.0531	
Cramer's V		0.0532	

Fisher's Exact Test

Cell (1,1)	Frequency (F)	24707
Left-sided	Pr <= F	1.0000

Right-sided Pr >= F 7.123E-125

Table Probability (P) 1.995E-125 Two-sided Pr <= P 1.302E-124

Sample Size = 200000

EKT 720

The FREQ Procedure

Table of sgroup by lbuy

sgroup lbuy

Frequency Percent			
Row Pct			
Col Pct	Buy	None	Total
1	4357	33799	38156
	2.18	16.90	19.08
	11.42	88.58	
	8.81	22.45	
2	8583	24287	32870
	4.29	12.14	16.44
	26.11	73.89	
	17.35	16.14	
3	18579	39076	57655
	9.29	19.54	28.83
	32.22	67.78	
	37.55	25.96	
4	15185	42864	58049
	7.59	21.43	29.02
	26.16	73.84	
	30.69	28.48	
5	2774	10496	13270
	1.39	5.25	6.64
	20.90	79.10	
	5.61	6.97	
Total	49478	150522	† 200000
	24.74	75.26	100.00

EKT 720

The FREQ Procedure

Statistics for Table of sgroup by 1buy

Statistic	DF	Value	Prob
Chi-Square	4	5572.0322	<.0001
Likelihood Ratio Chi-Square	4	6117.6639	<.0001
Mantel-Haenszel Chi-Square	1	1657.9477	<.0001
Phi Coefficient		0.1669	
Contingency Coefficient		0.1646	
Cramer's V		0.1669	

Sample Size = 200000

Table of pcheque by lbuy

pcheque	lbuy		
Frequency Percent Row Pct			
Col Pct	Buy	None	Total
0	33705 16.85 23.73 68.12	108302 54.15 76.27 71.95	142007 71.00
1	15773 7.89 27.20 31.88	42220 21.11 72.80 28.05	57993 29.00
Total	49478 24.74	150522 75.26	200000

EKT 720

The FREQ Procedure

Statistics for Table of pcheque by lbuy

Statistic	DF	Value	Prob
Chi-Square	1	265.2770	<.0001
Likelihood Ratio Chi-Square	1	262.0319	<.0001
Continuity Adj. Chi-Square	1	265.0910	<.0001
Mantel-Haenszel Chi-Square	1	265.2757	<.0001
Phi Coefficient		-0.0364	
Contingency Coefficient		0.0364	
Cramer's V		-0.0364	

Fisher's Exact Test

Cell (1,1) Frequency (F) 33705 Left-sided Pr <= F 3.371E-59 Right-sided Pr >= F 1.0000 Table Probability (P) 5.647E-60 Two-sided Pr <= P 6.584E-59

Sample Size = 200000

EKT 720

The FREQ Procedure

Table of SIC_CDE by lbuy

lbuy

SIC_CDE

Total

Frequency Percent Row Pct Col Pct Buy None Total 9110 41896 111371 153267 20.95 55.69 76.63 27.34 72.66 84.68 73.99 9120 2374 11311 13685 1.19 5.66 6.84 17.35 82.65 4.80 7.51 9130 5208 27840 33048 2.60 13.92 16.52 15.76 84.24 10.53 18.50

Statistics for Table of SIC_CDE by lbuy

150522

75.26

200000

100.00

49478

24.74

Statistic	DF	Value	Prob
Chi-Square	2	2387.8447	<.0001
Likelihood Ratio Chi-Square	2	2555.6211	<.0001
Mantel-Haenszel Chi-Square	1	2272.6902	<.0001
Phi Coefficient		0.1093	
Contingency Coefficient		0.1086	
Cramer's V		0.1093	

EKT 720

The FREQ Procedure

Table of MRTL_STAT_CDE by lbuy

MRTL_STAT_CDE lbuy

Frequency Percent Row Pct			
Col Pct	Buy	None	Total
D	1632	5369	7001
	0.82	2.68	3.50
	23.31	76.69	
	3.30	3.57	
M	25534	71489	97023
	12.77	35.74	48.51
	26.32	73.68	
	51.61	47.49	
S	338	927	1265
	0.17	0.46	0.63
	26.72	73.28	
	0.68	0.62	
U	20269	67750	88019
	10.13	33.88	44.01
	23.03	76.97	
	40.97	45.01	
W	1705	4987	6692
	0.85	2.49	3.35
	25.48	74.52	
	3.45	3.31	
Total	49478	150522	† 200000
	24.74	75.26	100.00

EKT 720

The FREQ Procedure

Statistics for Table of ${\tt MRTL_STAT_CDE}$ by <code>lbuy</code>

Statistic	DF	Value	Prob
Chi-Square	4	280.5319	<.0001
Likelihood Ratio Chi-Square	4	281.0198	<.0001
Mantel-Haenszel Chi-Square	1	168.2952	<.0001
Phi Coefficient		0.0375	
Contingency Coefficient		0.0374	
Cramer's V		0.0375	

EKT 720
The FREQ Procedure

Table of avg_hh_sizec by lbuy

avg_hh_sizec lbuy

Frequency Percent Row Pct Col Pct	Buy	None	Total
A: =0 - 3	7915	28668	36583
	3.96	14.33	18.29
	21.64	78.36	
	16.00	19.05	
B: 3 - 3.6	10193	30989	41182
	5.10	15.49	20.59
	24.75	75.25	
	20.60	20.59	
C: 3.6 - 4.3	12512	29894	42406
	6.26	14.95	21.20
	29.51	70.49	
	25.29	19.86	
D: 4.3 -	5540	12967	18507
	2.77	6.48	9.25
	29.93	70.07	
	11.20	8.61	
Z: Not known	13318	48004	61322
	6.66	24.00	30.66
	21.72	78.28	
	26.92	31.89	
Total	49478	150522	† 200000
	24.74	75.26	100.00
	EKT 720		

The FREQ Procedure

Statistics for Table of avg_hh_sizec by lbuy

Statistic	DF	Value	Prob
Chi-Square	4	1275.5060	<.0001
Likelihood Ratio Chi-Square	4	1258.7840	<.0001
Mantel-Haenszel Chi-Square	1	2.7386	0.0980
Phi Coefficient		0.0799	
Contingency Coefficient		0.0796	
Cramer's V		0.0799	

EKT 720

The FREQ Procedure

Table of avg_hh_sizec by lbuy

avg_hh_sizec lbuy

Fred Perd Row Col	Pct	су		Buy	None	Total
A:	=0	_	3	7915	28668	36583
, · · ·	Ū		Ū	3.96	14.33	18.29
				21.64	78.36	10120
				16.00	19.05	
B:	3	-	3.6	10193	30989	41182
				5.10	15.49	20.59
				24.75	75.25	
				20.60	20.59	
C:	3.6	_	4.3	12512	29894	42406
				6.26	14.95	21.20
				29.51	70.49	
				25.29	19.86	
D:	4.3	-		5540	12967	18507
				2.77	6.48	9.25
				29.93	70.07	
				11.20	8.61	
Z: N	Not I	kno	own	13318	48004	61322
				6.66	24.00	30.66
				21.72	78.28	
				26.92	31.89	
Tota	al			49478	150522	200000
				24.74	75.26	100.00

EKT 720 15

The FREQ Procedure

Statistics for Table of avg_hh_sizec by lbuy

Statistic	DF	Value	Prob
Chi-Square	4	1275.5060	<.0001
Likelihood Ratio Chi-Square	4	1258.7840	<.0001
Mantel-Haenszel Chi-Square	1	2.7386	0.0980
Phi Coefficient		0.0799	
Contingency Coefficient		0.0796	
Cramer's V		0.0799	

EKT 720

The CATMOD Procedure

Data Summary

Response	1buy	Response Levels	2
Weight Variable	None	Populations	8526
Data Set	MODEL	Total Frequency	200000
Frequency Missing	0	Observations	200000

Maximum Likelihood Analysis

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept	1	4150.74	<.0001
inc_c	6	1967.79	<.0001
age_c	4	1070.27	<.0001
Gender	1	574.62	<.0001
sgroup	4	889.19	<.0001
pcheque	1	91.54	<.0001
SIC_CDE	2	370.77	<.0001
MRTL_STAT_CDE	4	59.15	<.0001
avg_hh_sizec	4	575.96	<.0001
inc_c*age_c	24	684.84	<.0001
sgroup*pcheque	4	22.05	0.0002
Likelihood Ratio	8E3	12353.22	<.0001

Analysis of Maximum Likelihood Estimates

			Standard	Chi-	
Parameter		Estimate	Error	Square	Pr > ChiSq
Intercept		-1.3597	0.0211	4150.74	<.0001
inc_c	a:	0.0592	0.0263	5.05	0.0246
	b:	0.3815	0.0234	266.27	<.0001
	c:	0.7313	0.0190	1475.04	<.0001
	d:	0.4084	0.0217	353.30	<.0001
	e:	-0.2411	0.0236	104.24	<.0001
	f:	-0.6009	0.0286	441.29	<.0001
age_c	a: <= 25	-0.6516	0.0310	441.18	<.0001
	b: 26 - 35	0.0269	0.0149	3.26	0.0710
	c: 36 - 45	0.3570	0.0136	694.14	<.0001
	d: 46 - 59	0.3446	0.0139	614.13	<.0001
Gender	Female	0.1350	0.00563	574.62	<.0001
sgroup	1	-0.5658	0.0319	314.64	<.0001

EKT 720

The CATMOD Procedure

Analysis of Maximum Likelihood Estimates

			Standard	Chi-	
Parameter		Estimate	Error	Square	Pr > ChiSq
sgroup	2	-0.2799	0.0418	44.88	<.0001
	3	-0.2120	0.0189	125.37	<.0001
	4	0.4001	0.0199	404.91	<.0001
pcheque	0	-0.1152	0.0120	91.54	<.0001
SIC_CDE	9110	0.2017	0.0121	278.67	<.0001
	9120	-0.0773	0.0189	16.81	<.0001
MRTL_STAT_CDE	D	-0.1798	0.0277	41.96	<.0001
	M	0.0144	0.0170	0.72	0.3949
	S	0.0337	0.0538	0.39	0.5301
	U	0.000890	0.0178	0.00	0.9601
avg_hh_sizec	A: =0 - 3	-0.1490	0.0118	158.96	<.0001
	B: 3 - 3.6	-0.0178	0.0108	2.72	0.0990
	C: 3.6 - 4.3	0.1606	0.0103	241.48	<.0001
	D: 4.3 -	0.1419	0.0142	100.20	<.0001
inc_c*age_c	a: a: <= 25	-0.7370	0.0508	210.85	<.0001
	a: b: 26 - 35	0.1130	0.0296	14.60	0.0001
	a: c: 36 - 45	0.2827	0.0291	94.44	<.0001
	a: d: 46 - 59	0.3699	0.0295	157.23	<.0001
	b: a: <= 25	-0.3645	0.0538	45.93	<.0001
	b: b: 26 - 35	0.1051	0.0295	12.73	0.0004
	b: c: 36 - 45	0.2068	0.0273	57.54	<.0001
	b: d: 46 - 59	0.2625	0.0284	85.56	<.0001
	c: a: <= 25	0.1190	0.0447	7.09	0.0077
	c: b: 26 - 35	0.2101	0.0237	78.82	<.0001
	c: c: 36 - 45	0.0594	0.0233	6.51	0.0107
	c: d: 46 - 59	-0.1567	0.0234	44.83	<.0001
	d: a: <= 25	-0.0116	0.0555	0.04	0.8345
	d: b: 26 - 35	0.0501	0.0272	3.39	0.0656
	d: c: 36 - 45	0.1032	0.0267	14.91	0.0001
	d: d: 46 - 59	-0.0607	0.0299	4.10	0.0428
	e: a: <= 25	0.0977	0.0627	2.42	0.1195
	e: b: 26 - 35	-0.0626	0.0277	5.12	0.0237
	e: c: 36 - 45	-0.1873	0.0272	47.31	<.0001
	e: d: 46 - 59	-0.0310	0.0295	1.10	0.2940
	f: a: <= 25	0.3585	0.0829	18.69	<.0001
	f: b: 26 - 35	-0.2674	0.0348	58.91	<.0001
	f: c: 36 - 45	-0.2614	0.0323	65.58	<.0001
	f: d: 46 - 59	-0.1625	0.0341	22.75	<.0001
sgroup*pcheque		-0.0382	0.0221	3.00	0.0831
	2 0	0.0478	0.0385	1.54	0.2142
	3 0	-0.0426	0.0144	8.75	0.0031
	4 0	0.0197	0.0142	1.93	0.1650

EKT 720

The LOGISTIC Procedure

Model Information

Data Set EKT.MODEL
Response Variable lbuy
Number of Response Levels 2

Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 200000 Number of Observations Used 200000

Response Profile

Ordered		Total
Value	lbuy	Frequency
1	Buy	49478
2	None	150522

Probability modeled is lbuy='Buy'.

Class Level Information

Class	Value		De	sign V	ariabl	es	
inc_c	a:	1	0	0	0	0	0
_	b:	0	1	0	0	0	0
	c:	0	0	1	0	0	0
	d:	0	0	0	1	0	0
	e:	0	0	0	0	1	0
	f:	0	0	0	0	0	1
	g:	- 1	-1	- 1	-1	- 1	- 1
age_c	a: <= 25	1	0	0	0		
	b: 26 - 35	0	1	0	0		
	c: 36 - 45	0	0	1	0		
	d: 46 - 59	0	0	0	1		
	e: 60 +	-1	-1	- 1	-1		
Gender	Female	1					
	Male	- 1					
sgroup	1	1	0	0	0		
,	2	0	1	0	0		
	3	0	0	1	0		
	4	0	0	0	1		
	5	- 1	-1	- 1	- 1		

EKT 720

The LOGISTIC Procedure

Class Level Information

Class	Value		Des	sign V	ariables
pcheque	0	1			
	1	- 1			
SIC_CDE	9110	1	0		
	9120	0	1		
	9130	- 1	- 1		
MRTL_STAT_CDE	D	1	0	0	0
	M	0	1	0	0
	S	0	0	1	0
	U	0	0	0	1
	W	- 1	- 1	- 1	-1
avg_hh_sizec	A: =0 - 3	1	0	0	0
	B: 3 - 3.6	0	1	0	0
	C: 3.6 - 4.3	0	0	1	0
	D: 4.3 -	0	0	0	1
	Z: Not known	- 1	- 1	- 1	-1

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates
AIC	223781.82	208083.25
SC	223792.03	208644.58
-2 Log L	223779.82	207973.25

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	15806.5779	54	<.0001
Score	14417.2632	54	<.0001
Wald	12239.1820	54	<.0001

EKT 720 20

The LOGISTIC Procedure

Type 3 Analysis of Effects

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
inc_c	6	1967.7847	<.0001
age_c	4	1070.2675	<.0001
Gender	1	574.6176	<.0001
sgroup	4	889.1894	<.0001
pcheque	1	91.5400	<.0001
SIC_CDE	2	370.7700	<.0001
MRTL_STAT_CDE	4	59.1507	<.0001
avg_hh_sizec	4	575.9614	<.0001
inc_c*age_c	24	684.8263	<.0001
sgroup*pcheque	4	22.0530	0.0002

Analysis of Maximum Likelihood Estimates

				Standard	Wald
Parameter		DF	Estimate	Error	Chi-Square
Intercept		1	-1.3597	0.0211	4150.7387
inc_c	a:	1	0.0592	0.0263	5.0546
inc_c	b:	1	0.3815	0.0234	266.2663
inc_c	c:	1	0.7313	0.0190	1475.0379
inc_c	d:	1	0.4084	0.0217	353.3004
inc_c	e:	1	-0.2411	0.0236	104.2373
inc_c	f:	1	-0.6009	0.0286	441.2950
age_c	a: <= 25	1	-0.6516	0.0310	441.1816
age_c	b: 26 - 35	1	0.0269	0.0149	3.2599
age_c	c: 36 - 45	1	0.3570	0.0136	694.1355

Analysis of Maximum Likelihood Estimates

Parameter		Pr > ChiSq
<pre>Intercept inc_c inc_c inc_c inc_c inc_c inc_c</pre>	a: b: c: d:	<.0001 0.0246 <.0001 <.0001 <.0001
inc_c age_c	f: a: <= 25	<.0001 <.0001
age_c age_c	b: 26 - 35	0.0710
age_c	c: 36 - 45	<.0001

EKT 720
The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

											Standard	Wald
Parameter									DF	Estimate		Chi-Square
												·
age c	d:	46 -	59	9					1	0.3446	0.0139	614.1300
Gender	Fem	ale							1	0.1350	0.00563	574.6176
sgroup	1								1	-0.5658	0.0319	314.6386
sgroup	2								1	-0.2799	0.0418	44.8794
sgroup	3								1	-0.2120	0.0189	125.3668
sgroup	4								1	0.4001	0.0199	404.9060
pcheque	0								1	-0.1152	0.0120	91.5400
SIC_CDE	911	0							1	0.2017	0.0121	278.6742
SIC_CDE	912	0							1	-0.0773	0.0189	16.8075
MRTL_STAT_CDE	D								1	-0.1798	0.0277	41.9603
MRTL_STAT_CDE	M								1	0.0144	0.0170	0.7239
MRTL_STAT_CDE	S								1	0.0337	0.0538	0.3942
MRTL_STAT_CDE	U								1	0.000890	0.0178	0.0025
avg_hh_sizec	A:	=0	-	3					1	-0.1490	0.0118	158.9632
avg_hh_sizec	B:	3	-	3.6					1	-0.0178	0.0108	2.7223
avg_hh_sizec	C:	3.6	-	4.3					1	0.1606	0.0103	241.4793
avg hh sizec	D:	4.3	-						1	0.1419	0.0142	100.1974
inc c*age c	a:				a:	<=	25	,	1	-0.7370	0.0508	210.8399
inc c*age c	a:				b:	26	-	35	1	0.1130	0.0296	14.5985
inc c*age c	a:				c:	36	-	45	1	0.2827	0.0291	94.4417
inc_c*age_c	a:				d:	46	-	59	1	0.3699	0.0295	157.2290
inc_c*age_c	b:				a:	<=	25	;	1	-0.3645	0.0538	45.9252
inc c*age c	b:				b:	26	-	35	1	0.1051	0.0295	12.7327
inc_c*age_c	b:				c:	36	-	45	1	0.2068	0.0273	57.5358
inc_c*age_c	b:				d:	46	-	59	1	0.2625	0.0284	85.5618
inc_c*age_c	c:				a:	<=	25	,	1	0.1190	0.0447	7.0943
inc_c*age_c	c:				b:	26	-	35	1	0.2101	0.0237	78.8166
inc_c*age_c	c:				c:	36	-	45	1	0.0594	0.0233	6.5129
inc_c*age_c	c:				d:	46	-	59	1	-0.1567	0.0234	44.8310
inc_c*age_c	d:				a:	<=	25	,	1	-0.0116	0.0555	0.0436
inc_c*age_c	d:				b:	26	-	35	1	0.0501	0.0272	3.3900
inc_c*age_c	d:				c:	36	-	45	1	0.1032	0.0267	14.9096
inc_c*age_c	d:				d:	46	-	59	1	-0.0607	0.0299	4.1037
inc_c*age_c	e:				a:	<=	25	,	1	0.0977	0.0627	2.4234
inc_c*age_c	e:				b:	26	-	35	1	-0.0626	0.0277	5.1154
inc_c*age_c	e:				c:	36	-	45	1	-0.1873	0.0272	47.3130
inc_c*age_c	e:				d:	46	-	59	1	-0.0310	0.0295	1.1014
inc_c*age_c	f:				a:	<=	25	,	1	0.3585	0.0829	18.6856
inc c*age c	f:				b:	26	-	35	1	-0.2674	0.0348	58.9099
inc_c*age_c	f:				c:	36	-	45	1	-0.2614	0.0323	65.5758
inc_c*age_c	f:				d:	46	-	59	1	-0.1625	0.0341	22.7515
	1				0				1	-0.0382	0.0221	3.0032
sgroup*pcheque	2				0				1	0.0478	0.0385	1.5426
sgroup*pcheque					0				1	-0.0426	0.0144	8.7529
sgroup*pcheque					0				1	0.0197	0.0142	1.9274

EKT 720

The LOGISTIC Procedure

Odds Ratio Estimates

Effect		Point Estimate
Gender	Female vs Male	1.310
SIC_CDE	9110 vs 9130	1.386
SIC_CDE	9120 vs 9130	1.048
MRTL_STAT_CDE	D vs W	0.733
MRTL_STAT_CDE	M vs W	0.890
MRTL_STAT_CDE	S vs W	0.908
MRTL_STAT_CDE	U vs W	0.878
avg_hh_sizec	A: =0 - 3 vs Z: Not known	0.987
avg_hh_sizec	B: 3 - 3.6 vs Z: Not known	1.125
avg_hh_sizec	C: 3.6 - 4.3 vs Z: Not known	1.345
avg_hh_sizec	D: 4.3 - vs Z: Not known	1.320

Odds Ratio Estimates

95% Wald Confidence Limits

1.281	1.339
1.337	1.436
0.987	1.114
0.675	0.796
0.837	0.947
0.786	1.048
0.824	0.936
0.955	1.020
1.091	1.160
1.305	1.385
1.270	1.372

Association of Predicted Probabilities and Observed Responses

Percent Concordant	67.7	Somers' D	0.359
Percent Discordant	31.8	Gamma	0.360
Percent Tied	0.5	Tau-a	0.134
Pairs	7447527516	С	0.679

EKT 720

The LOGISTIC Procedure

Partition for the Hosmer and Lemeshow Test

		lbuy = Buy		lbuy =	= None
Group	Total	Observed	Expected	Observed	Expected
1	19992	1000	971.58	18992	19020.42
2	20022	2605	2602.17	17417	17419.83
3	20001	3305	3319.07	16696	16681.93
4	19998	3829	3880.73	16169	16117.27
5	20043	4403	4475.95	15640	15567.05
6	20023	5051	5139.67	14972	14883.33
7	20020	5923	5862.38	14097	14157.62
8	20051	6777	6641.38	13274	13409.62
9	19996	7638	7497.30	12358	12498.70
10	19854	8947	9087.78	10907	10766.22

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

18.6666 8 0.0167

EKT 720

The FREQ Procedure

pr	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0-10%	20472	10.24	20472	10.24
10-20%	54674	27.34	75146	37.57
20-30%	58898	29.45	134044	67.02
30-40%	44378	22.19	178422	89.21
40-50%	18206	9.10	196628	98.31
50-60%	3140	1.57	199768	99.88
60-70%	232	0.12	200000	100.00

EKT 720 The FREQ Procedure

Table of pr by lbuy

pr	lbuy
Frequency	,

Frequency Percent Row Pct			
Col Pct	Buy	None	Total
0-10%	1052	19420	20472
	0.53	9.71	10.24
	5.14	94.86	
	2.13	12.90	
10-20%	8707	45967	54674
	4.35	22.98	27.34
	15.93	84.07	
	17.60	30.54	
20-30%	14561	44337	58898
	7.28	22.17	29.45
	24.72	75.28	
	29.43	29.46	1
30-40%	15443	28935	44378
	7.72	14.47	22.19
	34.80	65.20	
	31.21	19.22	1
40-50%	8009	10197	18206
	4.00	5.10	9.10
	43.99	56.01	
	16.19	6.77	1
50-60%	1592	1548	3140
	0.80	0.77	1.57
	50.70	49.30	
	3.22	1.03	1
60-70%	114	118	232
	0.06	0.06	0.12
	49.14	50.86	
	0.23	0.08	
Total	49478	150522	200000
	24.74	75.26	100.00

K-S values

K-S value is the maximum difference between the two CDF functions.

Critical values?

Gini Index values

Gini index is the area between the 45 degree line and the Lorenz curve (one definition).

45

Hosmer and Lemshow: Source SAS Help

Sufficient replication within subpopulations is required to make the Pearson and deviance goodness-of-fit tests valid. When there are one or more continuous predictors in the model, the data are often too sparse to use these statistics. Hosmer and Lemeshow (2000) proposed a statistic that they show, through simulation, is distributed as chi-square when there is no replication in any of the subpopulations. This test is only available for binary response models.

$$M = [0.1 \times N + 0.5]$$

where [x] represents the integral value of x. If the single-trial syntax is used, blocks of subjects are formed of observations with identical values of the explanatory variables. Blocks of subjects are not divided when being placed into groups.

Suppose there are n_t subjects in the first block and n_2 subjects in the second block. The first block of subjects is placed in the first group. Subjects in the second block are added to the first group if

$$n_1 < M$$
 and $n_1 + [0.5 \times n_2] \le M$

Otherwise, they are placed in the second group. In general, suppose subjects of the (j-1)th block have been placed in the kth group. Let c be the total number of subjects currently in the kth group. Subjects for the jth block (containing n_i subjects) are also placed in the kth group if

$$c < M$$
 and $c + [0.5 \times n_j] \le M$

Otherwise, the n_j subjects are put into the next group. In addition, if the number of subjects in the last group does not exceed **[0.05 × M]** (half the target group size), the last two groups are collapsed to form only one group.

Note that the number of groups, **g**, may be smaller than 10 if there are fewer than 10 patterns of explanatory variables. There must be at least three groups in order for the Hosmer-Lemeshow statistic to be computed.

The Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating the Pearson chi-square statistic from the $\mathbf{2} \times \mathbf{g}$ table of observed and expected frequencies, where \mathbf{g} is the number of groups. The statistic is written

$$\chi^2_{HL} = \sum_{i=1}^g \frac{(O_i - N_i \bar{\pi}_i)^2}{N_i \bar{\pi}_i (1 - \bar{\pi}_i)}$$

where N_i is the total frequency of subjects in the ith group, O_i is the total frequency of event outcomes in the ith group, and $\overline{\pi}_i$ is the average estimated predicted probability of an event outcome for the ith group. The Hosmer-Lemeshow statistic is then compared to a chi-square distribution with (g-n) degrees of freedom, where the value of n can be specified in the LACKFIT option in the MODEL statement. The default is n=2. Large values of $\chi^2_{n,r}$ (and small p-values) indicate a lack of fit of the model.

SAS program / GOF example

```
options ls=72 nodate pageno=1 ;
libname ekt "c:\departement\ekt720\logitlpm";
title "EKT 720";
proc freq data=ekt.model ;
tables (inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec avg_hh_sizec)*lbuy / chisq;
run;
proc catmod data=ekt.model ;
model lbuy = inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec inc_c*age_c sgroup*pcheque / noprofile;
response out=ekt.resp ;
run ;
quit ;
proc logistic data=ekt.model ;
class inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec ;
model lbuy = inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec inc_c*age_c sgroup*pcheque / lackfit;
run ;
data ekt.resp1(drop=lbuy) ; ;
set ekt.resp ;
 *product=substr(product,1,9);
if lbuy="Buy" ;
      _pred_ <= 0.1 then pr="0-10% ";
 if 0.1 <_pred_ <= 0.2 then pr="10-20% ";
 if 0.2 <_pred_ <= 0.3 then pr="20-30% ";
 if 0.3 <_pred_ <= 0.4 then pr="30-40% ";
if 0.4 <_pred_ <= 0.5 then pr="40-50% ";
if 0.5 <_pred_ <= 0.6 then pr="50-60% ";
if 0.6 <_pred_ <= 0.7 then pr="60-70% ";
if 0.7 <_pred_ <= 0.8 then pr="70-80% ";
if 0.8 <_pred_ <= 0.9 then pr="80-90%";
if _pred_ > 0.9 then pr="90+ % ";
run ;
proc sort data=ekt.model ;
by inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec;
run ;
```

```
proc sort data=ekt.resp1 ;
  by inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec;
run ;

data ekt.saam ;
  merge ekt.model ekt.resp1 ;
  by inc_c age_c gender sgroup pcheque sic_cde mrtl_stat_cde
avg_hh_sizec;
run ;

proc freq data=ekt.saam ;
  tables pr pr*lbuy ;
run ;
```