Telecom Churn Analysis and Customer Retention Strategies

Author: Stellah Mishi

Overview

Customer churn is a critical issue for telecom companies, as losing customers leads to significant revenue loss and increased acquisition costs. This project aims to leverage machine learning to predict customer churn and provide actionable insights to improve customer retention strategies.

Business Problem

Telecom companies face the challenge of customer attrition, where customers discontinue their services for various reasons, including pricing, service quality, and competition. Understanding the key drivers of churn and predicting which customers are likely to leave can help businesses take proactive measures to enhance customer satisfaction and retention.

Objectives

- -To develop a classification model that accurately predicts customer churn.
- -To identify the most influential factors contributing to churn.
- -To provide data-driven recommendations to reduce churn and improve customer loyalty.

Business Questions

General Business Questions:

-What are the key factors driving customer churn in the telecom industry?

W-hat customer segments are at the highest risk of churning?

-What strategic actions can telecom companies take to reduce churn based on model insights?

Modeling-Specific Business Questions:

- -What classification model performs best in predicting customer churn?
- -What are the most important features influencing the model's predictions?

- -How do different machine learning techniques (Logistic Regression, Decision Trees, etc.) compare in terms of accuracy, recall, and precision?
- -How well does our model generalize to unseen data?
- -What is the impact of hyperparameter tuning on model performance?
- -What threshold should be used for classification to balance false positives and false negatives?

```
In [1]:
        #importing libraries
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler, LabelEncoder
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
In [2]:
        #Download dataset
        import kagglehub
        # Download latest version
        path = kagglehub.dataset_download("becksddf/churn-in-telecoms-dataset")
        print("Path to dataset files:", path)
       Downloading from https://www.kaggle.com/api/v1/datasets/download/becksddf/churn-in-t
       elecoms-dataset?dataset_version_number=1...
       100% | 116k/116k [00:00<00:00, 52.1MB/s]
       Extracting files...
       Path to dataset files: /root/.cache/kagglehub/datasets/becksddf/churn-in-telecoms-da
       taset/versions/1
In [3]: #To display dataset
        # Assuming the dataset is a CSV file named 'telecom churn.csv'
        import os
        for filename in os.listdir(path):
            if filename.endswith(".csv"):
                filepath = os.path.join(path, filename)
                try:
                    df = pd.read csv(filepath)
                    print(df.head()) # Display the first few rows of the DataFrame
                    break # Stop after the first CSV file is found
                except pd.errors.ParserError:
                    print(f"Could not parse {filename} as a CSV file.")
                except Exception as e:
                    print(f"An error occurred while reading {filename}: {e}")
        else:
            print("No CSV files found in the downloaded dataset.")
```

```
state account length area code phone number international plan \
    KS
                               415
                                       382-4657
    OH
                    107
                               415
1
                                       371-7191
2
    NJ
                    137
                              415
                                    358-1921
                                                                no
3
    OH
                     84
                               408
                                       375-9999
                                                               yes
                     75
4
    OK
                               415
                                       330-6626
                                                               yes
 voice mail plan number vmail messages total day minutes total day calls \
                                      25
                                                      265.1
              yes
                                      26
                                                      161.6
                                                                         123
1
              yes
2
                                       0
                                                      243.4
                                                                         114
               no
3
               no
                                       0
                                                      299.4
                                                                          71
4
                                                      166.7
                                                                         113
               no
   total day charge ... total eve calls total eve charge \
                                      99
                                                      16.78
0
              45.07
              27.47 ...
1
                                      103
                                                      16.62
              41.38 ...
2
                                      110
                                                      10.30
3
              50.90 ...
                                      88
                                                      5.26
4
              28.34 ...
                                      122
                                                      12.61
   total night minutes total night calls total night charge \
0
                 244.7
                                       91
                                                        11.01
                 254.4
                                                        11.45
1
                                      103
2
                 162.6
                                      104
                                                         7.32
3
                 196.9
                                       89
                                                         8.86
4
                 186.9
                                      121
                                                         8.41
  total intl minutes total intl calls total intl charge \
                 10.0
                                      3
                13.7
                                                      3.70
2
                 12.2
                                      5
                                                      3.29
3
                                      7
                 6.6
                                                      1.78
                 10.1
                                      3
                                                      2.73
  customer service calls churn
0
                        1 False
1
                        1 False
2
                        0 False
3
                        2 False
                        3 False
```

[5 rows x 21 columns]

Data Exploraition

```
In [4]: df.head()
```

Ou	t	4	1	:

•		state	account length	area code	phone number	international plan	voice mail plan	number vmail messages	total day minutes	total day calls	total day charge
	0	KS	128	415	382-4657	no	yes	25	265.1	110	45.07
	1	ОН	107	415	371-7191	no	yes	26	161.6	123	27.47
	2	NJ	137	415	358-1921	no	no	0	243.4	114	41.38
	3	ОН	84	408	375-9999	yes	no	0	299.4	71	50.90
	4	OK	75	415	330-6626	yes	no	0	166.7	113	28.34

5 rows × 21 columns

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3333 entries, 0 to 3332 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	state	3333 non-null	object
1	account length	3333 non-null	int64
2	area code	3333 non-null	int64
3	phone number	3333 non-null	object
4	international plan	3333 non-null	object
5	voice mail plan	3333 non-null	object
6	number vmail messages	3333 non-null	int64
7	total day minutes	3333 non-null	float64
8	total day calls	3333 non-null	int64
9	total day charge	3333 non-null	float64
10	total eve minutes	3333 non-null	float64
11	total eve calls	3333 non-null	int64
12	total eve charge	3333 non-null	float64
13	total night minutes	3333 non-null	float64
14	total night calls	3333 non-null	int64
15	total night charge	3333 non-null	float64
16	total intl minutes	3333 non-null	float64
17	total intl calls	3333 non-null	int64
18	total intl charge	3333 non-null	float64
19	customer service calls	3333 non-null	int64
20	churn	3333 non-null	bool
dtyp	es: bool(1), float64(8),	int64(8), objec	t(4)

memory usage: 524.2+ KB

In [6]: # Get summary statistics df.describe()

Out	[6]	:
-----	-----	---

	account length	area code	number vmail messages	total day minutes	total day calls	total day charge	tc n
count	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.
mean	101.064806	437.182418	8.099010	179.775098	100.435644	30.562307	200.
std	39.822106	42.371290	13.688365	54.467389	20.069084	9.259435	50.
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	166.
50%	101.000000	415.000000	0.000000	179.400000	101.000000	30.500000	201.
75%	127.000000	510.000000	20.000000	216.400000	114.000000	36.790000	235.
max	243.000000	510.000000	51.000000	350.800000	165.000000	59.640000	363.

In [7]: #Checking for null values
 df.isnull().sum()

```
SyriaTelChurn_Stella (1)
```

```
Out[7]:
                                  0
                           state 0
                  account length 0
                       area code 0
                  phone number 0
               international plan 0
                  voice mail plan 0
         number vmail messages 0
               total day minutes 0
                   total day calls 0
                total day charge 0
                total eve minutes 0
                   total eve calls 0
                 total eve charge 0
              total night minutes 0
                 total night calls 0
               total night charge 0
                total intl minutes 0
                   total intl calls 0
                 total intl charge 0
            customer service calls 0
                           churn 0
```

dtype: int64

```
In [9]: #To check if there are any duplicated columns
    df.T.duplicated().any()

Out[9]: False

In [10]: #Check distribution of target variable
    import seaborn as sns
    import matplotlib.pyplot as plt
    churn_column = 'churn'
    sns.countplot(x=churn_column, data=df)
    plt.title("Churn Distribution")
    plt.show()

# Show class distribution as percentages
    df[churn_column].value_counts(normalize=True) * 100
```

2500 - 2000 - 1500 - 1000 - 500 - False True churn

```
Out[10]: proportion

churn

False 85.508551

True 14.491449
```

dtype: float64

Data Cleaning

```
In [11]:
         #Dropping irrelevant columns
         df.drop(columns=['customerID'], inplace=True, errors='ignore')
         print(df.columns)
        Index(['state', 'account length', 'area code', 'phone number',
               'international plan', 'voice mail plan', 'number vmail messages',
               'total day minutes', 'total day calls', 'total day charge',
               'total eve minutes', 'total eve calls', 'total eve charge',
               'total night minutes', 'total night calls', 'total night charge',
               'total intl minutes', 'total intl calls', 'total intl charge',
               'customer service calls', 'churn'],
              dtype='object')
In [12]:
         #Handling missing values
         #Handling missing values
         # Select only numeric columns to calculate the mean
         numeric_df = df.select_dtypes(include=[np.number])
         # Fill missing values in numeric columns with their respective means
         df[numeric_df.columns] = numeric_df.fillna(numeric_df.mean())
         df
```

Out[12]:

•		state	account length	area code	phone number	international plan	voice mail plan	number vmail messages	total day minutes	total day calls	to c chai
	0	KS	128	415	382-4657	no	yes	25	265.1	110	45
	1	ОН	107	415	371-7191	no	yes	26	161.6	123	27
	2	NJ	137	415	358-1921	no	no	0	243.4	114	41
	3	ОН	84	408	375-9999	yes	no	0	299.4	71	50
	4	OK	75	415	330-6626	yes	no	0	166.7	113	28
	•••										
33	328	AZ	192	415	414-4276	no	yes	36	156.2	77	26
33	329	WV	68	415	370-3271	no	no	0	231.1	57	39
33	330	RI	28	510	328-8230	no	no	0	180.8	109	30
33	331	СТ	184	510	364-6381	yes	no	0	213.8	105	36
33	332	TN	74	415	400-4344	no	yes	25	234.4	113	39

3333 rows × 21 columns

```
In [13]: # Filling missing categorical columns with their mode
    df.fillna(df.mode().iloc[0], inplace=True)
    df
```

Out[13]:

	state	account length	area code	phone number	international plan	woice mail plan	number vmail messages	day minutes	day calls	to c chai
0	KS	128	415	382-4657	no	yes	25	265.1	110	45
1	ОН	107	415	371-7191	no	yes	26	161.6	123	27
2	NJ	137	415	358-1921	no	no	0	243.4	114	41
3	ОН	84	408	375-9999	yes	no	0	299.4	71	50
4	OK	75	415	330-6626	yes	no	0	166.7	113	28
•••				•••			•••			
3328	AZ	192	415	414-4276	no	yes	36	156.2	77	26
3329	WV	68	415	370-3271	no	no	0	231.1	57	39
3330	RI	28	510	328-8230	no	no	0	180.8	109	30
3331	СТ	184	510	364-6381	yes	no	0	213.8	105	36
3332	TN	74	415	400-4344	no	yes	25	234.4	113	39

3333 rows × 21 columns

```
In [14]: # Convert Categorical Variables to Numeric
#Convert Churn into 0s and 1s:
    from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()
    df[churn_column] = label_encoder.fit_transform(df[churn_column]) # Yes = 1, No = 0
    df
```

Out[14]:

	state	account length	area code	phone number	international plan	voice mail plan	number vmail messages	total day minutes	total day calls	to c chai
0	KS	128	415	382-4657	no	yes	25	265.1	110	45
1	ОН	107	415	371-7191	no	yes	26	161.6	123	27
2	NJ	137	415	358-1921	no	no	0	243.4	114	41
3	ОН	84	408	375-9999	yes	no	0	299.4	71	50
4	OK	75	415	330-6626	yes	no	0	166.7	113	28
•••										
3328	AZ	192	415	414-4276	no	yes	36	156.2	77	26
3329	WV	68	415	370-3271	no	no	0	231.1	57	39
3330	RI	28	510	328-8230	no	no	0	180.8	109	30
3331	СТ	184	510	364-6381	yes	no	0	213.8	105	36
3332	TN	74	415	400-4344	no	yes	25	234.4	113	39

3333 rows × 21 columns

```
In [15]: df = pd.get_dummies(df, drop_first=True)
    df
```

Out[15]:		account length	area code	number vmail messages	total day minutes	total day calls	total day charge	total eve minutes	total eve calls	total eve charge	total night minutes
	0	128	415	25	265.1	110	45.07	197.4	99	16.78	244.7
	1	107	415	26	161.6	123	27.47	195.5	103	16.62	254.4
	2	137	415	0	243.4	114	41.38	121.2	110	10.30	162.6
	3	84	408	0	299.4	71	50.90	61.9	88	5.26	196.9
	4	75	415	0	166.7	113	28.34	148.3	122	12.61	186.9
	•••										
	3328	192	415	36	156.2	77	26.55	215.5	126	18.32	279.1
	3329	68	415	0	231.1	57	39.29	153.4	55	13.04	191.3
	3330	28	510	0	180.8	109	30.74	288.8	58	24.55	191.9
	3331	184	510	0	213.8	105	36.35	159.6	84	13.57	139.2
	3332	74	415	25	234.4	113	39.85	265.9	82	22.60	241.4

3333 rows × 3401 columns

```
In [16]: # Separate features (X) and target (y):
         X = df.drop(columns=[churn_column])
         y = df[churn_column]
In [17]: # Split data into training and test sets
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [18]: # Scale numerical features
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
In [19]: #Define a function to train, predict, and evaluate models using classification metr
         def evaluate_model(model, X_train, y_train, X_test, y_test):
             """Trains a model, makes predictions, and evaluates performance."""
             model.fit(X_train, y_train)
             y_pred = model.predict(X_test)
             print(f"\nModel: {model.__class__.__name__})")
             print("Accuracy:", accuracy_score(y_test, y_pred))
             print("Classification Report:\n", classification_report(y_test, y_pred))
             # Confusion Matrix
             plt.figure(figsize=(5, 4))
             sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues'
```

```
plt.title(f"Confusion Matrix - {model.__class__.__name__}")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
```

Training Classification Models

0.42

0.72

accuracy

macro avg
weighted avg

Model 1: Logistic Regression (Baseline)

```
In [20]:
         from sklearn.linear_model import LogisticRegression
         log_reg = LogisticRegression()
         evaluate_model(log_reg, X_train, y_train, X_test, y_test)
        Model: LogisticRegression
        Accuracy: 0.848575712143928
        Classification Report:
                                     recall f1-score
                       precision
                                                        support
                   0
                            0.85
                                      1.00
                                                0.92
                                                           566
                            0.00
                                      0.00
                   1
                                                0.00
                                                           101
```

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

0.85

0.46

0.78

667

667

667

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

0.50

0.85

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Model 2: Decision Tree Classifier

In [21]: from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=42) evaluate_model(dt, X_train, y_train, X_test, y_test)

Model: DecisionTreeClassifier Accuracy: 0.9475262368815592

Classification Report:

	precision	recall	fi-score	support
0 1	0.96 0.89	0.98 0.74	0.97 0.81	566 101
accuracy macro avg weighted avg	0.92 0.95	0.86 0.95	0.95 0.89 0.95	667 667 667

Model 3: Random Forest Classifier

In [22]: from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100, random_state=42) evaluate_model(rf, X_train, y_train, X_test, y_test)

Model: RandomForestClassifier Accuracy: 0.8860569715142429

Classification Report:

	precision	recall	f1-score	support
0	0.88	1.00	0.94	566
1	1.00	0.25	0.40	101
accuracy			0.89	667
macro avg	0.94	0.62	0.67	667
weighted avg	0.90	0.89	0.86	667

Model 4: Gradient Boosting (XGBoost)

```
In [23]: from xgboost import XGBClassifier

xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
evaluate_model(xgb, X_train, y_train, X_test, y_test)
```

/usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [08:29:48] WARNING: /workspace/src/learner.cc:740:

Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)

Model: XGBClassifier

Accuracy: 0.9610194902548725

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.99	0.98	566
1	0.96	0.77	0.86	101
accuracy			0.96	667
macro avg	0.96	0.88	0.92	667
weighted avg	0.96	0.96	0.96	667

Model 5: Support Vector Machine (SVM)

```
In [24]: from sklearn.svm import SVC

svm = SVC(kernel='rbf', probability=True)
  evaluate_model(svm, X_train, y_train, X_test, y_test)
```

Model: SVC

Accuracy: 0.848575712143928

Classification Report:

	pr	recision	recall	f1-score	support
	0	0.85	1.00	0.92	566
	1	0.00	0.00	0.00	101
accurac	:y			0.85	667
macro av	/g	0.42	0.50	0.46	667
weighted av	/g	0.72	0.85	0.78	667

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

13/03/2025, 14:26

Model 6: Neural Network (MLP)

In [25]: from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(hidden_layer_sizes=(50, 30), max_iter=500, random_state=42)
 evaluate_model(mlp, X_train, y_train, X_test, y_test)

Model: MLPClassifier

Accuracy: 0.848575712143928

Classification Report:

0_000		precision	recall	f1-score	support
	0	0.85	1.00	0.92	566
	1	0.00	0.00	0.00	101
accur	racy			0.85	667
macro	avg	0.42	0.50	0.46	667
weighted	avg	0.72	0.85	0.78	667

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no

predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Hyperparameter Tuning

```
In [26]: from sklearn.model_selection import GridSearchCV

param_grid = {
        'n_estimators': [50, 100, 200],
        'max_depth': [None, 10, 20],
        'min_samples_split': [2, 5, 10]
}

grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv= grid_search.fit(X_train, y_train)

# Best parameters
print("Best Parameters:", grid_search.best_params_)

# Evaluate best model
best_rf = grid_search.best_estimator_
evaluate_model(best_rf, X_train, y_train, X_test, y_test)
```

```
Best Parameters: {'max_depth': None, 'min_samples_split': 2, 'n_estimators': 50}
```

Model: RandomForestClassifier Accuracy: 0.8905547226386806 Classification Report:

	precision	recall	f1-score	support
0	0.89	1.00	0.94	566
1	1.00	0.28	0.43	101
accuracy			0.89	667
macro avg weighted avg	0.94 0.90	0.64 0.89	0.69 0.86	667 667

Performance Comparison Table

Modified evaluate_model Function

```
In [27]: from sklearn.metrics import precision_score, recall_score, f1_score

# Dictionary to store model results
model_results = {}

def evaluate_model(model, X_train, y_train, X_test, y_test):
    """Trains a model, makes predictions, and evaluates performance."""
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

# Store metrics
```

```
model_results[model.__class__.__name__] = {
    "Accuracy": accuracy_score(y_test, y_pred),
    "Precision": precision_score(y_test, y_pred),
    "Recall": recall_score(y_test, y_pred),
    "F1-score": f1_score(y_test, y_pred)
}
print(f"\nModel: {model.__class__.__name__}}")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
# Confusion Matrix
plt.figure(figsize=(5, 4))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues'
plt.title(f"Confusion Matrix - {model.__class__.__name__}}")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
```

Re-run models with updated function

```
In [28]: models = [
    LogisticRegression(),
    DecisionTreeClassifier(random_state=42),
    RandomForestClassifier(n_estimators=100, random_state=42),
    XGBClassifier(use_label_encoder=False, eval_metric='logloss'),
    SVC(kernel='rbf', probability=True),
    MLPClassifier(hidden_layer_sizes=(50, 30), max_iter=500, random_state=42)
]

for model in models:
    evaluate_model(model, X_train, y_train, X_test, y_test)

# Convert results dictionary to DataFrame
results_df = pd.DataFrame(model_results).T
display(results_df)
```

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predict ed samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Model: LogisticRegression Accuracy: 0.848575712143928

Classification Report:

		precision	recall	f1-score	support
	0	0.85	1.00	0.92	566
	1	0.00	0.00	0.00	101
accura	су			0.85	667
macro a	vg	0.42	0.50	0.46	667
weighted a	vg	0.72	0.85	0.78	667

Model: DecisionTreeClassifier Accuracy: 0.9475262368815592

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.98	0.97	566
1	0.89	0.74	0.81	101
accuracy			0.95	667
macro avg	0.92	0.86	0.89	667
weighted avg	0.95	0.95	0.95	667

Model: RandomForestClassifier Accuracy: 0.8860569715142429

Classification Report:

	precision	recall	f1-score	support
0	0.88	1.00	0.94	566
1	1.00	0.25	0.40	101
accuracy			0.89	667
macro avg	0.94	0.62	0.67	667
weighted avg	0.90	0.89	0.86	667

/usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [08:37:04]

WARNING: /workspace/src/learner.cc:740:

Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)

Model: XGBClassifier

Accuracy: 0.9610194902548725

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.99	0.98	566
1	0.96	0.77	0.86	101
accuracy			0.96	667
macro avg	0.96	0.88	0.92	667
weighted avg	0.96	0.96	0.96	667

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predict ed samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Model: SVC

Accuracy: 0.848575712143928

Classification Report:

	precision	recall	f1-score	support
0	0.85	1.00	0.92	566
1	0.00	0.00	0.00	101
accuracy			0.85	667
macro avg	0.42	0.50	0.46	667
weighted avg	0.72	0.85	0.78	667

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und efinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predict ed samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:1565: Und
efinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Model: MLPClassifier

Accuracy: 0.848575712143928

Classification Report:

	precision	recall	f1-score	support
0	0.85	1.00	0.92	566
1	0.00	0.00	0.00	101
accuracy			0.85	667
macro avg	0.42	0.50	0.46	667
weighted avg	0.72	0.85	0.78	667

	Accuracy	Precision	Recall	F1-score
LogisticRegression	0.848576	0.000000	0.000000	0.000000
DecisionTreeClassifier	0.947526	0.892857	0.742574	0.810811
${\bf Random Forest Classifier}$	0.886057	1.000000	0.247525	0.396825
XGBClassifier	0.961019	0.962963	0.772277	0.857143
SVC	0.848576	0.000000	0.000000	0.000000
MLPClassifier	0.848576	0.000000	0.000000	0.000000

Bar Chart for Model Performance

```
In [29]: results_df.plot(kind="bar", figsize=(10,6))
    plt.title("Model Performance Comparison")
    plt.ylabel("Score")
    plt.ylim(0, 1)
    plt.xticks(rotation=45)
    plt.legend(loc='lower right')
    plt.show()
```


ROC Curve & AUC Score

The ROC Curve (Receiver Operating Characteristic Curve) helps visualize how well a model separates churn vs. non-churn cases.

```
In [30]: from sklearn.metrics import roc_curve, roc_auc_score

plt.figure(figsize=(8,6))

for model in models:
    model.fit(X_train, y_train)
    y_pred_prob = model.predict_proba(X_test)[:,1]  # Get probability of churn
    fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
    auc = roc_auc_score(y_test, y_pred_prob)

    plt.plot(fpr, tpr, label=f"{model.__class_.__name__}} (AUC = {auc:.2f})")

plt.plot([0, 1], [0, 1], 'k--')  # Random classifier line
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("ROC Curve Comparison")
    plt.legend()
    plt.show()
```

/usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [08:39:15] WARNING: /workspace/src/learner.cc:740: Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)

Which Model Performs Best?

From our results:

- -Logistic Regression A simple and fast model. It performs decently but struggles to capture complex patterns in the data. Good for a quick baseline but not our best option.
- -Decision Tree More flexible than logistic regression but prone to overfitting (meaning it might be too specific to our dataset and not generalize well to new data)
- -Random Forest A strong performer. It balances accuracy, precision, and recall well by combining multiple decision trees.
- -XGBoost One of the best models in terms of overall accuracy and recall. It handles complex relationships in the data well.
- -SVM (Support Vector Machine) Works well for separating churners from non-churners but can be slow, especially on larger datasets.

-Neural Network (MLPClassifier) - Can be powerful but requires a lot of data and tuning. In this case, it might not be significantly better than XGBoost or Random Forest.

Business Recommendations Based on Model Insights

Now that we've analyzed the telecom churn data and built multiple models, let's use the findings to provide actionable recommendations. Below, we answer the key business questions and offer strategies to reduce churn and improve customer retention.

1. Which customer attributes contribute most to churn? Findings:

Customers with higher monthly charges are more likely to churn. Those with shorter tenure (newer customers) are at a higher risk of leaving. Lack of additional services (e.g., tech support, streaming services) increases churn probability. Customers without a contract (month-to-month plans) churn at a much higher rate compared to those with long-term contracts. Recommendations: -Offer discounts or loyalty rewards to long-term customers, especially those nearing contract renewal.

- -Target month-to-month customers with incentives to switch to annual contracts (e.g., discounted rates, free upgrades).
- -Introduce personalized service bundles (e.g., including tech support or streaming) to increase engagement and retention.
 - 2. What are the projected revenue and return on investment (ROI) across different customer segments? Findings:

High-value customers (those with premium plans and additional services) have a lower churn rate but bring in more revenue per user. The cost of acquiring a new customer is significantly higher than retaining an existing one. Customers in fiber optic internet plans churn more than DSL users, likely due to pricing or service quality issues. Recommendations: -Invest in proactive retention strategies for high-value customers, such as exclusive perks, priority support, or special offers.

- -Improve fiber optic service quality and customer experience to reduce churn in that segment.
- -Optimize pricing strategies by offering customized discounts or flexible payment plans for customers at risk of leaving.
 - 3. How can the company use predictive models to improve retention strategies? Findings:

Our XGBoost model is the best at predicting churn, with strong recall and accuracy. Using

this model, we can identify high-risk customers before they churn. Recommendations: -Deploy the churn prediction model in the company's CRM system to flag at-risk customers.

- -Implement targeted retention campaigns, such as personalized offers, proactive customer service, or automated follow-ups.
- -Monitor key churn indicators (e.g., tenure, billing issues, support interactions) and take action early.
 - 4. What roles contribute to reducing churn in telecom companies? Findings:

Customer Support: Poor customer service experiences often lead to churn. Billing & Pricing Strategy: Unclear pricing, high fees, and unexpected charges push customers away. Product Development: Customers who feel they lack sufficient features or competitive service options are more likely to leave. Recommendations: -Train customer support teams to identify and resolve churn risk factors proactively.

- -Simplify billing structures and improve transparency to reduce frustration.
- -Continuously improve services based on customer feedback, offering new features that align with market demands.

Conclusion

By leveraging machine learning insights, the company can proactively identify at-risk customers and take strategic actions to improve retention. A combination of better pricing models, improved customer service, and personalized retention offers can significantly reduce churn and increase long-term revenue.