Wykład 5

SYMULACJE MONTE CARLO W STAŁEJ
TEMPERATURZE. ALGORYTM METROPOLISA.
MODEL ISINGA

Model Isinga jest prostym modelem ferromagnetyka o spinie ½, w którym spiny rozmieszczone w węzłach sieci oddziałują między sobą i z zewnętrznym polem magnetycznym H.

W ferromagnetyku pojawia się spontaniczne namagnesowanie w niskich temperaturach. Powyżej pewnej charakterystycznej temperatury T_c namagnesowanie znika.

W temperaturze T_c zachodzi przejście fazowe między fazą ferromagnetyczną (T< T_c), a fazą paramagnetyczną (T> T_c).

W d-wymiarowym modelu Isinga spiny s_i rozmieszczone są w węzłach sieci o rozmiarze liniowym L. Liczba węzłów $N=L^d$. Każdy spin może przyjmować wartość +1 lub -1.

Hamiltonian

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} s_i s_j - \mu H \sum_i s_i$$

Sumowanie w pierwszym składniku ograniczone jest do najbliższych sąsiadów , J jest całką wymiany, a μ momentem magnetycznym spinu .

Energia wewnętrzna

$$U = \langle \mathcal{H} \rangle_T$$

gdzie

$$\langle A \rangle_T = Z^{-1} \sum_{s_1 = \pm 1, s_2 = \pm 1, \dots} A(s_1, s_2, \dots) \exp\left(-\frac{\mathcal{H}(s_1, s_2, \dots)}{k_B T}\right)$$

$$Z = \sum_{s_1 = \pm 1, s_2 = \pm 1, \dots} \exp \left(-\frac{\mathcal{H}(s_1, s_2, \dots)}{k_B T} \right)$$

Namagnesowanie M(T), na spin m

$$M(T) = \sum_{i=1}^{N} \langle S_i \rangle_{\mathrm{T}}, \quad m = \frac{M}{N}$$

Ciepło właściwe na spin

$$C_{V} = \frac{1}{N} \frac{dU}{dT} = \frac{\langle \mathcal{H}^{2} \rangle - \langle \mathcal{H} \rangle^{2}}{Nk_{B}T^{2}}$$

Podatność magnetyczna

$$\chi = \frac{N}{k_B T} \begin{cases} \left\langle m^2 \right\rangle - \left\langle |m| \right\rangle^2 & T < T_c \\ \left\langle m^2 \right\rangle - \left\langle m \right\rangle^2 & T > T_c \end{cases}$$

Własności krytyczne

W pobliżu temperatury przejścia fazowego $T_{\rm c}$ obserwuje się zachowanie krytyczne wielkości takich wielkości jak

Ciepło właściwe

$$M(T) \approx (T - T_c)^{\beta}$$

Podatność magnetyczna

$$\chi(T) \approx |T - T_c|^{-\gamma}$$

Długość korelacji

$$\xi(T) \approx \left| T - T_c \right|^{-\nu}$$

gdzie β , γ ι ν są wykładnikami krytycznymi

Długość korelacji jest nieskończona w punkcie krytycznym!

W obliczaniu średnich w stałej temperaturze – w zespole kanonicznym, konfiguracji spinów $s_1, s_2, ...s_N$ odpowiada prawdopodobieństwo

$$P(s_1, s_2,...) = Z^{-1} \exp \left(-\frac{\mathcal{H}(s_1, s_2,...)}{k_B T}\right)$$

Gdybyśmy z takim rozkładem wybrali konfiguracje spinowe \mathcal{K}_1 , \mathcal{K}_2 , ..., \mathcal{K}_n to moglibyśmy oszacować średnią dowolnej wielkości A w temperaturze T następująco

$$\langle A \rangle_T \approx \overline{A} = \frac{1}{n} \sum_{i=1}^n A(\mathcal{K}_i)$$

Problem generowania konfiguracji spinowych z rozkładem P rozwiązuje algorytm Metropolisa

Algorytm Metropolisa wykorzystuje koncepcję łańcucha Markowa, w którym w dyskretnym kroku czasowym układ przechodzi ze stanu \overline{X}_i do stanu \overline{X}_j z prawdopodobieństwem W_{ij} Przejście do nowego stanu nie zależy od przeszłości.

Jeśli zadamy w chwili początkowej t=0 rozkład na przestrzeni stanów

$$R_i^{(0)} \equiv R^{(0)} \left(\overline{X}_i \right)$$

to rozkład ten w chwili t=k zmieni się następująco

$$R_j^{(k)} = \sum_i R_i^{(k-1)} W_{ij}$$
 $\mathbf{R}^{(k)} = \mathbf{R}^{(0)} \mathbf{W}^k$

Warunkiem na istnienie jedynego rozkładu stacjonarnego ${f R}={f R}{f W}$ jest ergodyczność łańcucha Markowa - łańcuch z nieprzywiedlną macierzą przejścia, którego stany są stanami powracającymi, aperiodycznymi i o skończonym czasie powrotu.

Konstrukcja macierzy przejścia W

Jaka powinna być macierz W aby rozkładem stacjonarnym był rozkład

$$P(s_1, s_2,...) = Z^{-1} \exp \left(-\frac{\mathcal{H}(s_1, s_2,...)}{k_B T}\right)$$

Z warunku równowagi szczegółowej na stacjonarność rozkładu

$$P(\overline{X}_i)W_{ij} = P(\overline{X}_j)W_{ji}$$

otrzymujemy

$$W_{ij} = \Gamma_{ij} \min \left(1, \frac{P(\overline{X}_j)}{P(\overline{X}_i)} \right)$$

gdzie Γ_{ij} jest prawdopodobieństwem wyboru stanu j zwykle "bliskiego " stanowi i , a drugi czynnik - grający rolę prawdopodobieństwa akceptacji, można zapisać w postaci

$$\min\left(1, \frac{P(\overline{X}_j)}{P(\overline{X}_i)}\right) = \min\left(1, e^{-\frac{\Delta E}{k_B T}}\right), \qquad \Delta E = \mathcal{H}(\overline{X}_j) - \mathcal{H}(\overline{X}_i)$$

Algorytm.

- 1. Zadać stan początkowy X_0 w chwili i=0.
- 2. Wygenerować testowy stan X_t z rozkładu $\Gamma_{i,t}$.
- 3. Obliczyć $\Delta E = \mathcal{H}(X_t) \mathcal{H}(X_i)$
- 4. Jeśli $\Delta E <= 0$ lub random() $< \exp(-\Delta E / kT)$

to
$$X_{i+1} = X_t$$
, a w przeciwnym razie $X_{i+1} = X_i$.

5. i++; go to 2.

Zastosowanie do układu spinów.

Bieżąca konfiguracja spinów $\mathcal{K}_b = (s_1, s_2, ..., s_N)$ o energii E_b ,

Nową konfigurację wybierzemy spośród tych różniących się tylko jednym spinem:

- poprzez wylosowanie numeru spinu, przyjmijmy p
- •i zamianę Sp -> -Sp.

Otrzymamy zatem konfigurację \mathcal{K}_n =(s₁,s₂, ..., -s_p , ..., s_N) o energii E_n

Akceptacja nowej konfiguracji zależy od różnicy energii $\Delta E = E_n - E_b$.

Jeśli $\Delta E <= 0$ to akceptujemy \mathcal{K}_n

W przeciwnym razie ($\Delta E > 0$) akceptacja zachodzi z prawdopodobieństwem exp(- $\Delta E / kT$)

Zastosowanie do układu spinów ΔE nie wymaga obliczania energii nowej konfiguracji, gdyż przewrócenie jednego spinu w węźle p , Sp -> -Sp, powoduje zmianę oddziaływania tego spinu z jego najbliższymi sąsiadami.

$$\Delta E = 2JS_{p} \left(\sum_{po \text{ sasiadach } p} S_{j} \right)$$

Przykład kodu obliczającego zmianę energii przy przewróceniu spinu w węźle (i,j) sieci kwadratowej z uwzględnieniem periodycznych warunków brzegowych

```
const int L=128, Lm1=L-1;
int DE( int i, int j)
{int tym= S[i][(j+1)%L] + S[i][(j+Lm1)%L] + S[(i+Lm1)%L][j] + S[(i+1)%L][j];
return( 2*tym *S[i][j]);}
```

Przewrócenie jednego spinu – losowo wybranego

Bieżąca konfiguracja

Testowana konfiguracja

Zmiana energii

$$E_b = -JS_0(S_1 + S_2 + S_3 + S_4)$$

$$E_t = JS_0(S_1 + S_2 + S_3 + S_4)$$

$$\Delta E = E_t - E_b = 2JS_0(S_1 + S_2 + S_3 + S_4)$$

Akceptacja

Jeśli $\Delta E <= 0$ lub rng()<exp(- $\Delta E/kT$)

Brak akceptacji

 $\Delta E > 0$ i rng()>exp(- $\Delta E/kT$)

Symulacja Monte Carlo korzystająca z algorytmu Metropolisa składa się z 3 etapów

- 1. Inicjalizacji układu w chwili t=0.
- 2. Termalizacji w czasie $t=\tau_R$.
- 3. Pomiarów od chwili τ_R co odstęp czasowy $\delta \tau$.

Czas t mierzony jest w krok MC.

1 krok MC w modelu Isinga z N spinami odpowiada testowaniu kolejnych N konfiguracji spinowych.

Termalizacja

Pomiary interesującej nas wielkości A polegają na obliczeniu średniej arytmetycznej

$$\left\langle A\right\rangle_{T} = \frac{1}{n} \sum_{i=0}^{n-1} A_{i}$$

gdzie A_i jest wartością A obliczoną na konfiguracji \mathcal{K}_i w chwili $t=\tau_R+i^*\delta \tau$

Konieczność uwzględnienia odstępu czasowego $\delta \tau$ w pomiarach wynika z faktu, iż kolejne konfiguracje w łańcuchu Markowa są silnie skorelowane.

Zastosujemy teraz algorytm Metropolisa do zbadania zależności temperaturowych energii wewnętrznej U, namagnesowania m, podatności magnetycznej χ i ciepła właściwego C w dwuwymiarowym modelu Isinga na sieci kwadratowej o L=256.

Podatność i ciepło właściwe w skończonym mają maksima w pobliżu Tc nieskończonego układu (pobliżu Tc ≈2.269)

Wyniki symulacji skończonym układzie zależą w pobliżu Tc $\,$ od o rozmiaru liniowego L $\,$ ponieważ długość korelacji ξ $\,$ jest większa od L $\,$

Ważną rolę w wyznaczeniu punktu krytycznego Tc gra kumulanta Bindera

$$K_4 = 1 - \frac{\left\langle m^4 \right\rangle}{3 \left\langle m^2 \right\rangle^2}$$

Wielkość ta powyżej Tc dąży do zera – fluktuacje namagnesowania są gaussowskie, a w niskich temperaturach osiąga wartość 2/3.

Binder pokazał, że $\mathrm{K_4}$ skończonego układu o rozmiarze L osiąga uniwersalną wartość $\mathrm{K_4}^*$ w T=Tc

$$K_4(T = T_c, L) = K_4^*$$

Kumulanty Bindera w pobliżu Tc dla 3 rozmiarów L=32, 64 i 128

Widoczne duże błędy statystyczne dla L=128 to efekt spowolnienia krytycznego – wada algorytmu Metropolisa. Do wyznaczenia Tc stosuje się algorytmy klastrowe (np. algorytm Wolfa) lub metodę Wanga-Landaua – wolną od spowolnienia krytycznego.

Wyznaczenie Tc z przecięcia się kumulant Bindera obliczonych metodą Wanga-Landaua.

