1.10.12 Převod 3-barevnosti na ILP. Je dán prostý neorientovaný graf bez smyček G=(V,E). Zkonstruujeme instanci I úlohy celočíselného lineárního programování takovou, že I má přípustné řešení právě tehdy, když graf G je 3-barevný.

Všechny proměnné budou nabývat hodnot 0 nebo 1 (tj. bude se jednat o tzv. 0-1 celočíselné lineární programování).

Proměnné: Pro každý vrchol $v \in V$ zavedeme tři proměnné:

$$x_v^c, x_v^m, x_v^z.$$

Význam: Fakt, že proměnná x_v^b je rovna 1, $b \in \{c, m, z\}$, znamená, že vrchol v má barvu b.

Podmínky:

• Pro každý vrchol $v \in V$ máme rovnici, která zaručuje, že vrchol v má právě jednu barvu – buď c nebo m nebo z:

$$x_v^c + x_v^m + x_v^z = 1.$$

• Pro každou hranu $e = \{u, v\}$ máme tři nerovnosti (pro každou barvu jednu) zaručující, že oba vrcholy u a v nemohou mít stejnou barvu:

$$x_u^c + x_v^c \le 1$$
, $x_u^m + x_v^m \le 1$, $x_u^z + x_v^z \le 1$.

Platí: Graf G je 3-barevný právě tehdy, když I má přípustné řešení.

Instance I má 3|V| proměnných a |V| + 3|E| podmínek. Jedná se tedy o instanci velikosti $\mathcal{O}(n+m)$, kde n = |V| a m = |E|.

1.10.13 Důsledek. Protože ILP je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

1.10.14 Problém rozkladu. Úloha: Je dána konečná množina X a systém jejích podmnožin S.

Otázka: Je možné z S vybrat prvky tak, že tvoří rozklad množiny X? Jinými slovy, existuje $A \subseteq S$ tak, že A je rozklad množiny X?

1.10.15 Tvrzení. Platí

3-barevnost \lhd_p problém rozkladu.

1.10.16 Převod 3-barevnosti na problém rozkladu. Je dán neorientovaný prostý graf bez smyček G = (V, E). Zkonstruujeme množinu X a systém jejích podmnožin S tak, že graf G je tříbarevný právě tehdy, když ze systému S lze vybrat rozklad množiny X.

Množina X:

 \bullet Pro každý vrchol $v \in V$ dáme do množiny Xprvky

$$v, p_v^c, p_v^m, p_v^z$$
.

• Pro každou hranu $e = \{u, v\}$ dáme do množiny X prvky

$$q_{uv}^c, q_{uv}^m, q_{uv}^z, q_{vu}^c, q_{vu}^m, q_{vu}^z.$$

Množina X má 4|V|+6|E| prvků.

Systém podmnožinS tvoří tyto množiny:

1. Pro každý vrchol $v \in V$:

$$\{v, p_v^c\}, \{v, p_v^m\}, \{v, p_v^z\}.$$

2. Pro každý vrchol $v \in V$ označme N(v) množinu všech sousedů vrcholu v (tj. $N(v) = \{u \mid \{u,v\} \in E\}$). Do $\mathcal S$ dáme množiny:

$$S_v^c = \{p_v^c, q_{vu}^c \mid u \in N(v)\}, S_v^m = \{p_v^m, q_{vu}^m \mid u \in N(v)\}, S_v^z = \{p_v^z, q_{vu}^z \mid u \in N(v)\}.$$

3. Pro každou hranu $e = \{u, v\}$ dáme do S množiny:

$$\{q_{uv}^c, q_{vu}^m\}, \{q_{uv}^c, q_{vu}^z\}, \{q_{uv}^m, q_{vu}^c\}, \{q_{uv}^m, q_{vu}^z\}, \{q_{uv}^z, q_{vu}^c\}, \{q_{uv}^z, q_{vu}^c\}, \{q_{uv}^z, q_{vu}^m\}.$$

Systém S má 3|V| množin z 1), 3|V| množin z 2) a 6|E| množina z 3).

Je-li graf G 3-barevný, je možné jeho vrcholy obarvit barvami $\{c,m,z\}$. Označme b(v) barvu vrcholu $v\in V$. Z systému $\mathcal S$ vybereme $\mathcal A$ takto:

\mathcal{A} se skládá z:

- 1. $\{v, p_v^{b(v)}\}$ pro všechny $v \in V$,
- 2. $S_v^{b_1}$ a $S_v^{b_2}$, kde b_1 a b_2 jsou zbylé dvě barvy, kterými není obarven vrchol v,
- 3. $\{q_{uv}^{b(u)}, q_{vu}^{b(v)}\}$ pro každou hranu $e = \{u, v\},$

Jestliže existuje rozklad $\mathcal{A}\subseteq\mathcal{S}$ množiny X,pak sestrojíme obarvení grafuGtakto:

$$b(v) := b, b \in \{c, m, z\} \quad \text{iff} \quad \{v, p_v^b\} \in \mathcal{A}.$$

Není těžké dokázat, že z volby systému $\mathcal S$ a $\mathcal A$ vyplývá: b je obarvení vrcholů třemi barvami.

1.10.17 Důsledek. Protože problém rozkladu je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

1.10.18 SubsetSum. Úloha: Jsou dána kladná čísla a_1, a_2, \ldots, a_n a číslo K.

Otázka: Lze vybrat podmnožinu čísel a_1, a_2, \ldots, a_n tak, aby jejich součet byl roven číslu K?

Jinými slovy, existuje $J \subseteq \{1, 2, \dots, n\}$ tak, že

$$\sum_{i \in I} a_i = K.$$

1.10.19 Tvrzení. Platí

problém rozkladu \lhd_p SubsetSum.

1.10.20 Převod problému rozkladu na SubsetSum. Je dána konečná množina X a systém jejích podmnožin S. Přejmenujeme prvky X tak, že $X = \{0, 1, \ldots, n-1\}$ a $S = \{S_1, S_2, \ldots, S_r\}$.

Zvolíme přirozené číslo p větší než r (počet prvků S). Každé podmnožině S_i přiřadíme kladné číslo a_i takto: Ke každé množině S_i označíme χ_{S_i} její charakteristíckou funkci; tj. $\chi_{S_i}(j) = 1$ iff $j \in S_i$. Pak

$$S_i \longrightarrow \sum_{j=0}^{n-1} \chi_{S_i}(j) p^j = a_i.$$

Nakonec zvolíme číslo $K = \sum_{i=0}^{n-1} p^i$.

Protože p>r, není těžké ukázat, že

$$\sum_{i \in J} a_i = K \text{ iff } \mathcal{A} = \{S_i \, | \, i \in J\} \text{ je rozklad } X.$$

1.10.21 Důsledek. Protože SubsetSum je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

1.10.22 Poznámka. Nyní není těžké sestrojit polynomiální redukci problému SubsetSum na problém dělení kořisti nebo na problém batohu. Proto jsou i tyto dvě úlohy \mathcal{NP} úplné.

1.10.23 Problém klik. Úloha: Je dán prostý neorientovaný graf G = (V, E) bez smyček a číslo k.

Otázka: Existuje v grafu G klika o alespoň k vrcholech?

1.10.24 Tvrzení. Platí

$$3-CNF\ SAT \vartriangleleft_p$$
 problém klik.

1.10.25 Nástin převodu 3-CNF SAT na problém klik. Je dána formule φ v CNF, s k klasusulemi C_1, C_2, \ldots, C_k , kde každá klausule má 3 literály. Sestrojíme k-partitní neorientovaný graf G=(V,E) takto:

G má pro každou klausuli jednu stranu; strana odpovídající klausuli C se skládá ze 3 vrcholů označených literály klasusule C. Hrany grafu G vedou vždy mezi dvěma stranami a to tak, že spojují dva literály, které nejsou komplementární (tj. jeden není negací druhého).

Platí: Formule φ je splnitelná právě tehdy, když v grafu G existuje klika o k vrcholech. (Poznamenejme, že k je počet klausulí formule φ .)

Jestliže φ je pravdivá v ohodnocení u, vybereme v každé klausuli formule φ jeden literál, který je v daném ohodnocení pravdivý. Pak množina vrcholů odpovídajících těmto literálům tvoří kliku v G o k vrcholech.

Jestliže v grafu G existuje klika A o k vrcholech, pak A má jeden vrchol v každé straně grafu G. Položme jako pravdivé všechny literály, které se nacházejí v A a hodnoty ostatních logických proměnných zadefinujme libovolně. Pak v tomto ohodnocení je formule φ pravdivá.

Zkonstuovaný graf G má tolik vrcholů jako má formule φ literálů, tj. n vrcholů, kde n je délka formule φ . Vzhledem k tomu, že prostý graf s n vrcholy má $\mathcal{O}(n^2)$ hran, jedná se o polynomiální redukci.

1.10.26 Důsledek. Protože problém klik je ve třídě $\mathcal{NP},$ jedná se o \mathcal{NP} úplnou úlohu.