Energy balance in ideal reactors

- Adiabatic flow reactors
- Non-adiabatic PFR
- Reversible reactions in adiabatic reactors
- CSTR with heat effects

Lecture # 26 CHE331A

Multiple steady states in a CSTR

Goutam Deo

2020-2021 1st semester

Design and analysis of the CSTR with heat effects

$$C_{P,0} \left(\frac{UA}{F_{A0}C_{P,0}} \right) T_a + C_{P,0} T_0 - C_{P,0} \left(\frac{UA}{F_{A0}C_{P,0}} + 1 \right) T - X\Delta h_{Rxn}(T) = 0$$

▶ Define two parameters:

$$\kappa = \left(\frac{UA}{F_{A0}C_{P,0}}\right)$$
 and $T_c = \frac{\kappa T_a + T_0}{1 + \kappa}$

- Then, $-X\Delta h_{Rxn}(T) = C_{P,0}(1+\kappa)(T-T_c)$
- ▶ Thus, we can find *X* or *T* from the above

$$X_{EB} = \frac{C_{P,0}(1+\kappa)(T-T_C)}{-\Delta h_{R\chi\eta}(T)}$$
 OR $T = T_C + \frac{-X\Delta h_{R\chi\eta}(T)}{C_{P,0}(1+\kappa)}$

► The mol balance equation is given by: $V = \frac{F_{A0}X}{-r_A(X,T)}$

Designing/Analyzing a CSTR with known X (or V) so that we can determine V and T (or X and T) Case I Case III

X known to determine V and T

► Calculate T from Energy Balance (EB)

$$T = T_C + \frac{-X\Delta h_{Rxn}(T)}{C_{P,0}(1+\kappa)}$$
 OR

$$T = \frac{-F_{A0}X\Delta h_{Rxn}(T) + UAT_a + F_{A0}C_{P.0}T_0}{UA + F_{A0}C_{P.0}}$$

- Calculate k from the value of T determined
- ► Calculate V from the mol balance (MB) equation $V = \frac{F_{A0}X}{-r_A(X,T)}$

V known to determine X and T

- MB and EB equations are to be solved simultaneously $(X_{EB} \ and \ X_{MB} \ vs \ T)$
- ► For example, MB equation

$$X_{MB} = \frac{k\tau}{1+k\tau} = \frac{\tau A exp\left(-\frac{E}{RT}\right)}{1+\tau A exp\left(-\frac{E}{RT}\right)}$$
 (1st order)

And, EB equation

$$X_{EB} = \frac{UA(T-T_a) + F_{A0} \sum \left[\theta_i C_{P,i}(T-T_o)\right]}{F_{A0}(-\Delta h_{Rxn}(T))}$$

Knowing V and calculating X and T

- ▶ Production of Propylene glycol in CSTR, $V = 40.1 ft^3$ and $\dot{v}_0 = 326.3 \frac{ft^3}{h}$
- ► MB equation for CSTR: $X_{MB} = \frac{\tau A exp\left(-\frac{E}{RT}\right)}{1 + \tau A exp\left(-\frac{E}{RT}\right)} = \frac{(2.084*10^{12}) exp(-16306/T)}{1 + (2.084*10^{12}) exp(-16306/T)}$
- ► EB equation: $X_{EB} = \frac{UA(T-T_a)+F_{A0}\sum[\theta_i C_{P,i}(T-T_o)]}{F_{A0}(-\Delta h_{Rxn}(T))} = \frac{92.9(T-545)+403.3(T-535)}{36400+7(T-528)}$
- ► For adiabatic case, U = 0
 - \circ X = 0.85 and T = ~620 \circ R
- ► For non-adiabatic,
 - \circ X = 0.36 and T = ~564 $^{\circ}$ R

Further analysis of the Energy Balance equation for the CSTR with heat effects

- ► Energy balance equation: $-X\Delta h_{Rxn}(T) = C_{P,0}(1+\kappa)(T-T_c)$
- In terms of rate: $-\left(\frac{-r_A V}{F_{A0}}\right) \Delta h_{Rxn}(T) = C_{P,0}(1+\kappa)(T-T_c)$
- ▶ LHS is the heat generated term, G(T):
 - $\circ G(T) = -\left(\frac{-r_A V}{F_{A0}}\right) \Delta h_{Rxn}(T)$ and
- ▶ RHS is the heat removal (by flow and heat exchange) R(T):
- ► G(T) and R(T) can be analyzed for different operating conditions

The heat generated term, G(T), in the CSTR

► The heat generated term, G(T), is

$$G(T) = -X\Delta h_{Rxn}(T) = -\left(\frac{-r_A V}{F_{A0}}\right)\Delta h_{Rxn}(T)$$

$$G(T) = -\left(\frac{\Delta h_{Rxn}(T)\tau Aexp(-\frac{E}{RT})}{1 + \tau Aexp(-\frac{E}{RT})}\right)$$

- At low temps $G(T) = -\Delta h_{Rxn}(T) \tau A exp(-\frac{E}{RT})$
- At high temps $G(T) = -\Delta h_{Rxn}(T)$
- ▶ Depends on k (A or E) and τ

Effect of space time on G(T)

The heat removal term, R(T), in the CSTR with heat

effects

► The heat removal term is given by:

$$R(T) = C_{P,0}(1+\kappa)(T-T_c)$$

- $_{\circ}$ Depends on $\kappa \ (non \ adiabatic \ parameter) \ and \ T_{c}(or \ T_{0})$
- ▶ R(T) increases linearly with $T \rightarrow$ slope of $C_{P,0}(1 + \kappa)$
 - Increasing T₀ (inlet temp) shifts line to the right
 - $_{\circ}$ Increasing κ (decreasing molar flowrate and/or heat-transfer area) increases the slope

$$\kappa = 0$$
, $T_C = T_0$ and $\kappa = \infty$, $T_C = T_a$

The presence of multiple steady states in the non-

isothermal CSTR

- Intersection of the G(T) and R(T) curves is the temperature at which the CSTR will operate under steady state
- The R(T) curve depends on the operating conditions: $R(T) = C_{P,0}(1 + \kappa)(T T_c)$
- The G(T) curve depends on the reaction parameters: $G(T) = -X\Delta h_{Rxn}(T)$
- Multiple steady states are possible under certain conditions
 - $_{\circ}$ R(T₀₁) to R(T₀₅) increasing T₀₁ to T₀₅
 - Steady states change from 1 to 2 to 3 to 2 to 1 → depends on shape of G(T)

Other useful terms associated with multiple steady states:

- 1. ignition-extinction curve
- 2. Stability
- 3. Runaway reactions

Energy Balance for a Batch Reactor

- ▶ Energy balance: $\sum_{inlet} \dot{E} \sum_{outlet} \dot{E} + \dot{Q} \dot{W} = \frac{d(E)_{CV}}{dt}$
- ▶ With no inlet and outlet flow: $\dot{Q} \dot{W} = \frac{d(E)_{CV}}{dt}$ assuming ideal solutions
- $(E)_{cv} = \sum_{i} E_{i} N_{i} = \sum_{i} u_{i} N_{i} = \sum_{i} N_{i} (h_{i} P v_{i}) = \sum_{i} N_{i} h_{i} P \sum_{i} v_{i} = \sum_{i} N_{i} h_{i} P V$
- ▶ Neglecting changes in PV with time, $(E)_{CV} = [\sum_i N_i h_i]_{CV}$

► Thus,
$$\dot{Q} - \dot{W} = \frac{d(E)_{CV}}{dt} = \left[\sum_i N_i \frac{dh_i}{dt} + \sum_i h_i \frac{dN_i}{dt}\right]_{CV}$$

$$\frac{dh_i}{dt} = C_{P,i} \frac{dT}{dt}$$
 and $\frac{dN_i}{dt} = r_i V = \nu_i V (-r_A)$ \rightarrow Further, $\sum_i \nu_i h_i = \Delta h_{rxn}$

$$\dot{Q} - \dot{W} = \left[\sum_{i} N_{i} \frac{dh_{i}}{dt} + \sum_{i} h_{i} \frac{dN_{i}}{dt} \right]_{CV} = \left[\sum_{i} N_{i} C_{P,i} \frac{dT}{dt} + (-r_{A}V) \Delta h_{rxn} \right]_{CV}$$

Energy Balance for a Batch Reactor ... continued

- ► We have $\dot{Q} \dot{W} = \left[\sum_{i} N_{i} C_{P,i} \frac{dT}{dt} + (-r_{A}V) \Delta h_{rxn}\right]_{CV}$
- ► Rearranging: $\frac{dT}{dt} = \frac{\dot{Q} \dot{W} + (-\Delta h_{rxn})(-r_A V)}{\sum_i N_i C_{P,i}}$
- ► This is preferred when number of moles is used instead of conversion
- ▶ In terms of conversion: $N_i = N_{A0}(\theta_i + v_i X)$, Further
- ► And $\sum_{i} N_{i}C_{P,i} = N_{A0} \sum_{i} (\theta_{i}C_{P,i} + v_{i}C_{P,i}X) = N_{A0} [\sum_{i} (\theta_{i}C_{P,i}) + \Delta C_{P}X]$ $\frac{dT}{dt} = \frac{\dot{Q} \dot{W} + (-\Delta h_{rxn})(-r_{A}V)}{N_{A0}[\sum_{i} (\theta_{i}C_{P,i}) + +\Delta C_{P}X]}$
- ▶ For liquid-phase reactions, $\Delta C_{P,i}$ is very small and $\sum_i \theta_i C_{P,i} = C_{P,s}$
 - $\sum_{i} N_{i} C_{P,i} = N_{A0} \sum_{i} \theta_{i} C_{P,i} = N_{A0} C_{P,S}$
 - $_{\circ}$ Where $C_{P,S}$ is the heat capacity of the solution

Energy Balance for a Batch Reactor ... adiabatic ops

- Previously: $\frac{dT}{dt} = \frac{\dot{Q} \dot{W} + (-\Delta h_{rxn})(-r_A V)}{N_{A0}[\sum_i (\theta_i C_{P,i}) + \Delta C_P X]}$
- ▶ For adiabatic operations and neglecting the stirrer work: $\dot{Q} = 0 = \dot{W}$
- ▶ Substituting: $\sum_i \theta_i C_{P,i} = C_{P,S}$ and the mol balance equation: $-r_A V = N_{A0} \frac{dX}{dt}$
- ► We have: $[C_{P,S} + \Delta C_P X] \frac{dT}{dt} = (-\Delta h_{rxn}) \frac{dX}{dt}$ which needs to be integrated
- Resulting equation: $X = \frac{C_{P,S}(T-T_0)}{(-\Delta h_{rxn})}$ OR $T = T_0 + \frac{X(-\Delta h_{rxn})}{C_{P,S}}$
- ► Also a linear relationship between T and X as seen for the flow reactors
 - Similar strategies can be applied

