



The stressor: Hypoxia

### Нурохіа

Low dissolved oxygen (DO)

demand > supply



The stressor: Hypoxia

#### Нурохіа

Periods of low dissolved oxygen (DO)

demand > supply

#### Diel-cycling hypoxia

Varies on a seasonal and <u>daily</u> time scale

#### Common effects of diel-cycling hypoxia

- mass mortality
- growth, calcification
- behavior
- early life stage development
- calcification
- immunoregulatory response

#### Respiration Photosynthesis



#### **LIMITATION!**

Integrate over relatively long time scales

## Physiological "windows" of optimal aerobic performance

### Aerobic performance

- Respiration rate
- Cardiac activity

This window can be **narrowed** by environmental stressors

# Thermal windows for animals (may include time dependent shifts through acclimatization)



## **Respiration rate** of marine invertebrates:

## Responses to oxygen decline and hypoxia



onset of anaerobic metabolism



### Rational

To understand and identify effects of *dynamic environmental stressors*...

Need a dynamic response!!!

#### **Heartbeat rate**







#### **Non-invasive**

Infrared sensors

Important **sub-lethal**physiological implications
for whole animal
metabolism

#### Rational

To understand and identify effects of *dynamic environmental stressors*...

Need a dynamic response!!!

#### **Heartbeat rate**



## Common effects of diel-cycling hypoxia

- mass mortality
- growth, calcification
- behavior
- early life stage development
- calcification
- immunoregulatory response

#### **Non-invasive**

Infrared sensors

Important **sub-lethal**physiological implications
for whole animal
metabolism

### Methods



1. *A. irradians* alters cardiac activity under exposure to *in-situ* diel-cycling dissolved oxygen









- 8 A. irradians per site
- 60 seconds of heartbeat data for each individual,
   cycle repeated every 10 minutes
- DO and temperature recorded every 15 minutes,
   Long Island Water Quality Index program





## *In-situ* Heartbeat Deployments

- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L<sup>-1</sup>)
- Temperature (°C)





## *In-situ* Cardiac Activity: **Normoxic VS. Hypoxic conditions**





## *In-situ* Cardiac Activity: **Normoxic VS. Hypoxic conditions**





## In-situ Cardiac Activity: Diel-cycling hypoxia





## In-situ Cardiac Activity: Diel-cycling hypoxia

Cardiac oscillations are driven by DO decline



- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L<sup>-1</sup>)
- Temperature (°C)





## In-situ Cardiac Activity: Diel-cycling hypoxia

- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L<sup>-1</sup>)
- Temperature (°C)

- Cardiac activity always peaked when DO decline to 5 mg L<sup>-1</sup> during early to late mornings
- Evidence of a potential onset of:
  - decline of aerobic function
  - transition to anaerobic respiration





Seatuck 10 65 30 -8 55 mg L<sup>-1</sup> 28- $\mathsf{bpm}$ °C 45 26 35 8/18 8/19 8/20 8/21 8/22





Cardiac response of diel-cycling dissolved oxygen ( $CRD_{DO}$ ) **Nicoll Bay** Dissolved oxygen (mg L-1) 7.1 5.0 2.6 7.1 10.4  $(\pm 2.3)$  $(\pm 2.2)$  $(\pm 2.3)$  $(\pm 1.2)$  $(\pm 1.1)$ IV Ш 23.80 30.71 41.96 32.97 23.80  $(\pm 1.58)$  $(\pm 2.50)$  $(\pm 3.08)$  $(\pm 2.32)$ (± 1.58)

Heartbeat rate (beats miniute-1)





Cardiac response of diel-cycling dissolved oxygen (CRD<sub>DO</sub>)

Phase 1





#### Oxyregulatory response

 maintain oxygen uptake and aerobic metabolism as DO becomes less available

Heartbeat rate change: +10 bpm

Duration: 8 – 10 hours (longest phase)





Cardiac response of diel-cycling dissolved oxygen (CRD<sub>DO</sub>)

Phase 2



Heartbeat rate



Dissolved oxygen

#### **Transition to oxyconformity**

- Peak heartbeat rate at 5 mg L<sup>-1</sup>
- May indicate an initiation of anaerobic pathways

Remember: Pc, TcII, and ABT

Heartbeat rate change: -10 bpm

Duration: 4 - 4.5 hours (shortest phase)





Cardiac response of diel-cycling dissolved oxygen (CRD<sub>DO</sub>)



"Stress and rest"

- Cardiac activity continues to decline to a minimum rate although DO increases
- Minimum heartbeat rate at 5 7 mg L<sup>-1</sup>

Heartbeat rate change: -10 bpm

Duration: 5 – 6 hours





Cardiac response of diel-cycling dissolved oxygen ( $CRD_{DO}$ )

Phase 4





#### **Cardiac and aerobic recovery**

- Only phase when both heartbeat rate and DO increase
- Suggests an initial effort to restore aerobic function to basal heartbeat rates

Heartbeat rate change: +10 bpm

Duration: 4 – 6 hours





## In a metaphorical sense...



As if these scallops reached the summit of Mt. Everest <a href="every morning">every morning</a>











## **Project Goals**

Coastal water quality determined by...

Oxygen Food supply digital sensors Salinity only tell part of the story Temperature | pН **Nutrient loading Human activity** Trace metals **PCBs** pharmaceuticals

#### **Bio-sensors**

organisms used to detect complex conditions

 Goal: use biosensors as an augmentation of traditional digital sensor data to better understand ecosystem health

How? Cardiac activity and valve gape behavior

- Blue mussel
- Atlantic coast native
- filters water to feed and respire
- semi-sessile (sedentary)



## **Process and Methods**

#### Site collection

- = New York City
- = Stony Brook



- Valve gape
   Hall effect sensor
- Heartbeat rate
   Infrared sensor







- Complex coupled dynamics from digital sensors
- Obvious influence of semidiurnal tides
- Interplay betweenfresh water (Hudson River)

salt water (Atlantic Ocean)

Digital sensors



#### Biosensors



Time



#### What does this mean?



## **In Summary**

 Bio-sensors give a unique view of ecosystem status unachievable by digital sensors alone

