Satellite Orbit Control HW9

Almog Dobrescu

ID 214254252

February 4, 2025

Contents

1	Given
	1.1 Desired
	1.2 Limitations
	Control
	2.1 East-West Control
	2.1.1 Drift Duo to axial asymmetry
	The Results
	3.1 Part A
	3.2 Part B
	3.3 Part C

List of Figures

1 Given

A communication satellite is placed in a geostationary orbit above longitude 30°E.

$$T = 8.6164 \cdot 10^4 \,[\text{sec}] \to a = 4.2164 \cdot 10^4 \,[\text{km}] \qquad \theta = 30^\circ \qquad e = 0 \qquad i = 0$$
 (1)

The longitude tolerance is $\pm 0.05^{\circ}$ ($\Delta L = 36.7952$ [m])

1.1 Desired

1.2 Limitations

The thrust is only at the $\pm y$ direction and:

$$a_{\text{max}} = 1 \cdot 10^{-7} \left[\frac{\text{km}}{\text{sec}^2} \right] \tag{2}$$

2 Control

2.1 East-West Control

2.1.1 Drift Duo to axial asymmetry

The gravity component normal to the radius changes the orbit period so the satellite moves toward the closest equilibrium point.

- 3 The Results
- 3.1 Part A
- 3.2 Part B
- 3.3 Part C