交差点事故における人の判断を考慮した

モデルベース自動運転システムの研究

中沢研究室 6900577 2D1-10 栁澤理紗

No.

6

10

11

12

Speed

40km/h

40km/h

40km/h

40km/h

50km/h

50km/h

50km/h

50km/h

60km/h

60km/h

60km/h

60km/h

Distance

75m

100m

125m

150m

75m

100m

125m

150m

75m

100m

125m

150m

研究背景

[現状]

<u>自動運転システム</u>の開発は盛んである

「問題点〕

- ✔現実空間での学習データの収集コストが大きい
- ✓現実で事故を発生させるのは困難なため、自動運転システムに よる車両の判断が不明である
- ✔日本では法律上,実験走行が難しい

「解決策〕

自動運転シミュレータの導入

日本における事故発生順位

- 1. 追突事故
 - 運転者の不注意や慢心によって事故が発生
 - → 自動運転車による事故防止が求められる
- 2. 出会いがしら衝突事故
 - 運転者が車両を認識できないことによって事故が発生
 - →コネクティッドカーによる事故防止が求められる

3. 右折車と直進車の事故

- 右折する際の距離感は人によって異なる
- 対向車との距離と時速が決まれば衝突しない距離を求め られるが、人によって安全・安心な距離とは限らない
- → 搭乗者が安全・安心と感じられる自動右折システムが必要

目的

搭乗者が安心安全と感じられる

自動運転システムを実現

使用するシミュレータ(CARLA)

- RGB情報や深度、セマンティックセグメンテーションといった センサー情報を提供している[1]
- 自由に使用できるオープンな都市レイアウト,建物,車両, 気象シミュレーションを提供している

自動運転をシミュレーション用に詳細な地図データが必要

提案手法

- 1. CARLAサーバからカメラデータで周辺情報を取得
- 2. 周辺情報を認識システムに入力し、車や障害物などを検出
- 3. CARLAサーバから現在の車両状態を取得し、道路の状態を判 断システムに入力
- 4. 判断システムによって危険か安全かを判断し、車の次の操作 を決定(止まる、右折する)
- 5. アクセル,ブレーキ,ハンドルの制御を行う

認識システム

• YOLO[2]を使用し、CARLAで抽出したCG 画像を転移学習し、

人・車・信号機の認識を行う

判断システム

- 右折時の安全・危険の判断 システムは、人の判断基準を 元に開発する
- 被験者に右折時のシナリオを 見せ、判断データを収集し、 学習させる
- 学習結果をもとに、安全な 右折のタイミングを判断する

評価実験

- 交差点で左折を10 回ランダム に直進車の速度と距離を変えて 試走. 対向車がランダムに出現し 距離や時速をランダムに変える
- 衝突せずに右折した回数を測定する
- 実験走行を被験者に見せ、安全かどうかのアンケートを取る(主 観評価)
- ・物理的に衝突しない距離と時間を安全の指標とし、実験結果と比 較する(客観評価)

客観評価

	No.	Speed [km/h]	Distance [m]	Oncoming Car time[s]	Mycar time[s]	Action
	1	20	125	22.5	4.6	左折
	2	34	150	15.8	4.6	左折
	3	37	100	9.7	4.6	左折
	4	43	89	7.5	4.6	左折
	5	45	82	6.5	4.6	停車
	6	45	85	6.8	4.6	停車
	7	50	100	7.2	4.6	停車
	8	50	117	8.4	4.6	停車
	9	55	150	9.8	4.6	左折
	10	55	200	13	4.6	左折

No.

5

6

8

9

10

感想

No.1

速度がちょうど良くて安心

横揺れが気になる No.2

- 曲がるときに少し減速 したい気持ちがあった No.3
- ちょっと距離感に心配 No.4
- 曲がるときに少しだけ 危険な所があった。

No.5

• 少しブレーキが激しいよう に感じる

No.6

• 止まらなくてもいいと思う。

No.7

止まるのが早いと思った。

No.9

距離が詰まってるのに左折する ・かなりスピードがだしており のは危ないように感じた

No.8

・安全だと思う。

No.10

かなり危険だった。

主観評価

Distance

[m]

125

150

100

89

82

85

100

117

150

200

MOS

4.43

3.43

3.29

3.0

3.43

3.57

3.71

3.86

1.29

2.86

Speed

[km/h]

20

34

37

43

45

45

50

50

55

55

今後の課題

- 歩行者の追加や全く違う事故事例への対応
- ・天候など走行条件の追加