MATH-UA 120 Section 5

Ishan Pranav

September 10, 2023

Goldbach conjecture

Every even integer greater than two is the sum of two primes.

Proposition 1

The sum of two even integers is even.

We show that if x and y are even integers, then x+y is an even integer. Let x and y be even integers. Since x is even, we know $2 \mid x$ by definition. Likewise, since y is even, $2 \mid y$. Since $2 \mid y$, we know that there is an integer a such that x = 2a by definition. Likewise, since $2 \mid y$, there is an integer b such that y = 2b. Observe that x + y = 2 + 2b = 2(a + b). Therefore there is an integer b (namely, a + b) such that x + y = 2b. Therefore $2 \mid (x + y)$. Therefore x + y is even.

Proposition 2

Let a, b, and c be integers. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Suppose a, b, and c are integers with $a \mid b$ and $b \mid c$. Since $a \mid b$, there is an integer x such that b = ax. Likewise there is an integer y such that c = by. Let z = xy. Then az = a(xy) = (ax)y = by = c.

Therefore there is an integer z such that c = az. Therefore $a \mid c$.

Proposition 3

Let x be an integer and suppose x > 1. Note that $x^3 + 1 = (x+1)(x^2 - x + 1)$. Because x is an integer, both x + 1 and $x^2 - x + 1$ are integers. Therefore $(x + 1) \mid (x^3 + 1)$.

Since x > 1, we have x + 1 > 1 + 1 = 2 > 1.

Also, x > 1 implies that $x^2 > x$, and since x > 1, we have $x^2 > 1$. Multiplying both sides by x again yields $x^3 > x$. Adding 1 to both sides gives $x^3 + 1 > x + 1$.

Thus x + 1 is an integer with $1 < x + 1 < x^3 + 1$.

Since x + 1 is a divisor of $x^3 + 1$ and $1 < x + 1 < x^3 + 1$, we have that $x^3 + 1$ is composite.

Proposition 4

Let x be an integer. Then x is even if and only if x + 1 is odd.

Suppose x is even. This means that $2 \mid x$. Hence there is an integer a such that x = 2a. Adding 1 to both sides gives x + 1 = 2a + 1. By the definition of odd, x + 1 is odd. Suppose x + 1 is odd. So there is an integer b such that x + 1 = 2b + 1. Subtracting 1 from both sides gives x = 2b. This shows that $2 \mid x$ and therefore x is even.

Proposition 5

Let a, b, c, and d be integers. If $a \mid b, b \mid c$, and $c \mid d$, then $a \mid d$.

Since $a \mid b$, there is an integer x such that ax = b.

Since $b \mid c$, there is an integer y such that by = c.

Since $c \mid d$, there is an integer z such that cz = d.

Note that a(xyz) = (ax)(yz) = b(yz) = (by)z = cz = d.

Therefore there is an integer w = xyz such that aw = d.

Therefore $a \mid d$.

1 The sum of two odd integers is even

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that x is odd and y is odd. Since x is odd, there exists $a \in \mathbb{Z}$ such that x = 2a + 1. Since y is odd, there exists $b \in \mathbb{Z}$ such that y = 2b + 1. Observe

$$x + y = (2a + 1) + (2b + 1)$$
$$= 2a + 2b + 2$$
$$= 2(a + b + 1).$$

Let $c = a + b + 1 \in \mathbb{Z}$. There exists $c \in \mathbb{Z}$ such that x + y = 2c. Therefore, x + y is even.

2 The sum of an odd integer and an even integer is odd

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that x is even and y is odd. Since x is even, $2 \mid x$. Thus, there exists $a \in \mathbb{Z}$ such that x = 2a. Since y is odd, there exists $b \in \mathbb{Z}$ such that y = 2b + 1. Observe

$$x + y = (2a) + (2b + 1)$$
$$= 2(a + b) + 1.$$

Let $c=a+b\in\mathbb{Z}$. There exists $c\in\mathbb{Z}$ such that x+y=2c+1. Therefore, x+y is odd. \blacksquare

3 If n is an odd integer, then -n is also odd

Let $n \in \mathbb{Z}$ such that n is odd. Since n is odd, there exists $a \in \mathbb{Z}$ such that n = 2a + 1. Observe

$$-n = -(2a + 1)$$

$$= -2a - 1$$

$$= 2(-a) - 1$$

$$= 2(-a - 1) + 1.$$

Let $b = -a - 1 \in \mathbb{Z}$. There exists $b \in \mathbb{Z}$ such that -n = 2b + 1. Therefore, -n is odd.

4 The product of two even integers is even

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that x is even and y is even. Since x is even, $2 \mid x$. Thus, there exists $a \in \mathbb{Z}$ such that x = 2a. Since y is even, $2 \mid y$. Thus, there exists $b \in \mathbb{Z}$ such that y = 2b. Observe

$$xy = (2a)(2b)$$
$$= 2(2ab).$$

Let $c=2ab\in\mathbb{Z}$. There exists $c\in\mathbb{Z}$ such that xy=2c. Thus, $2\mid xy$. Therefore, xy is even. \blacksquare

5 The product of an even integer and an odd integer is even

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that x is even and y is odd. Since x is even, $2 \mid x$. Thus, there exists $a \in \mathbb{Z}$ such that x = 2a. Since y is odd, there exists $b \in \mathbb{Z}$ such that y = 2b + 1. Observe

$$xy = (2a)(2b+1)$$

= $2(2ab+a)$.

Let $c = 2ab + a \in \mathbb{Z}$. There exists $c \in \mathbb{Z}$ such that xy = 2c. Thus, $2 \mid xy$. Therefore, xy is even. \blacksquare

6 The product of two odd integers is odd

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that x is odd and y is odd. Since x is odd, there exists $a \in \mathbb{Z}$ such that x = 2a + 1. Since y is odd, there exists $b \in \mathbb{Z}$ such that y = 2b + 1. Observe

$$xy = (2a + 1)(2b + 1)$$
$$= 2a + 2b + 4ab + 1$$
$$= 2(a + b + 2ab) + 1.$$

Let $c = a + b + 2ab \in \mathbb{Z}$. There exists $c \in \mathbb{Z}$ such that xy = 2c + 1. Therefore, xy is odd. \blacksquare

7 The square of an odd integer is odd

Let $x \in \mathbb{Z}$ such that x is odd. Since x is odd, there exists $a \in \mathbb{Z}$ such that x = 2a + 1. Observe

$$x^{2} = (2a + 1)^{2}$$

$$= (2a + 1)(2a + 1)$$

$$= 4a^{2} + 4a + 1$$

$$= 2(2a^{2} + 2a) + 1.$$

Let $b = 2a^2 + 2a \in \mathbb{Z}$. There exists $b \in \mathbb{Z}$ such that $x^2 = 2b + 1$. Therefore, x^2 is odd.

8 The cube of an odd integer is odd

Let $x \in \mathbb{Z}$ such that x is odd. Since x is odd, there exists $a \in \mathbb{Z}$ such that x = 2a + 1. Observe

$$x^{3} = (2a + 1)^{3}$$

$$= 8a^{3} + 12a^{2} + 6a + 1$$

$$= 2(4a^{3} + 6a^{2} + 3a) + 1.$$

Let $b = 4a^3 + 6a^2 + 3a \in \mathbb{Z}$. There exists $b \in \mathbb{Z}$ such that $x^3 = 2b + 1$. Therefore, x^3 is odd. \blacksquare

9 Given $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, and $c \in \mathbb{Z}$ such that $a \mid b$ and $a \mid c$. Since $a \mid b$, there exists $x \in \mathbb{Z}$ such that b = ax. Since $a \mid c$, there exists $y \in \mathbb{Z}$ such that c = ay. Observe

$$b + c = ax + ay$$
$$= a(x + y).$$

Let $z = x + y \in \mathbb{Z}$. There exists $z \in \mathbb{Z}$ such that b + c = az. Therefore, $a \mid (b + c)$.

10 Given $a, b, c \in \mathbb{Z}$, if $a \mid b$, then $a \mid bc$

Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, and $c \in \mathbb{Z}$ such that $a \mid b$. Since $a \mid b$, there exists $x \in \mathbb{Z}$ such that b = ax. Note bc = acx. Let $y = cx \in \mathbb{Z}$. There exists $y \in \mathbb{Z}$ such that bc = ay. Therefore, $a \mid bc$.

11 Given $a, b, d, x, y \in \mathbb{Z}$, if $d \mid a$ and $d \mid b$, then $d \mid (ax + by)$

Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $d \in \mathbb{Z}$, $x \in \mathbb{Z}$, and $y \in \mathbb{Z}$ such that $d \mid a$ and $d \mid b$. Since $d \mid a$, there exists $c \in \mathbb{Z}$ such that a = cd. Since $d \mid b$, there exists $z \in \mathbb{Z}$ such that b = dz. Observe

$$ax + by = (cd)(x) + (dz)(z)$$
$$= d(cx + yz).$$

Let $r = cx + yz \in \mathbb{Z}$. There exists $r \in \mathbb{Z}$ such that ax + by = dr. Therefore, $d \mid (ax + by)$.

12 Given $a, b, c, d \in \mathbb{Z}$, if $a \mid b$ and $c \mid d$, then $ac \mid bd$

Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $c \in \mathbb{Z}$, and $d \in \mathbb{Z}$ such that $a \mid b$ and $c \mid d$. Since $a \mid b$, there exists $x \in \mathbb{Z}$ such that b = ax. Since $c \mid d$, there exists $y \in \mathbb{Z}$ such that d = cy. Note bd = acxy. Let $z = xy \in \mathbb{Z}$. There exists $z \in \mathbb{Z}$ such that bd = acz. Therefore $ac \mid bd$.

13 Given $x \in \mathbb{Z}$, x is odd $\iff x+1$ is even

Let $x \in \mathbb{Z}$.

First, we will prove that if x+1 is even, then x is odd. Suppose x+1 is even. Since x+1 is even, $2 \mid (x+1)$. Thus, there exists $y \in \mathbb{Z}$ such that x+1=2y. Observe

$$x + 1 = 2y$$

$$x = 2y - 1$$

$$x = 2(y - 1) + 1.$$

Let $z = y - 1 \in \mathbb{Z}$. There exists $z \in \mathbb{Z}$ such that x = 2z + 1. Therefore, x is odd if x + 1 is even.

Next, we will prove that if x is odd, then x+1 is even. Suppose x is odd. Since x is odd, there exists $a \in \mathbb{Z}$ such that x=2a+1. Observe

$$x = 2a + 1$$

 $x + 1 = 2a + 2$
 $x + 1 = 2(a + 1)$.

Let $b = a + 1 \in \mathbb{Z}$. There exists $b \in \mathbb{Z}$ such that x + 1 = 2b. Therefore, x + 1 is even if x is odd.

We conclude that x is odd if and only if x + 1 is even.

14 x is odd $\iff \exists b \in \mathbb{Z} \text{ such that } x = 2b - 1$

Let $x \in \mathbb{Z}$.

First, we will prove that if there exists $b \in \mathbb{Z}$ such that x = 2b - 1, then x is odd. Suppose there exists $b \in \mathbb{Z}$ such that x = 2b - 1. Observe

$$x = 2b - 1 = 2(b - 1) + 1.$$

Let $a = b - 1 \in \mathbb{Z}$. There exists $a \in \mathbb{Z}$ such that x = 2a + 1. Therefore, x is odd.

Next, we will prove that if x is odd, then there exists $b \in \mathbb{Z}$ such that x = 2b - 1. Suppose x is odd. Since x is odd, there exists $c \in \mathbb{Z}$ such that x = 2c + 1. Observe

$$x = 2c + 1 = 2(c+1) - 1.$$

Let $b = c + 1 \in \mathbb{Z}$. Therefore, there exists $b \in \mathbb{Z}$ such that x = 2b - 1.

We conclude that x is odd if and only if there exists $b \in \mathbb{Z}$ such that x = 2b - 1.

15 Given $x \in \mathbb{Z}$, $0 \mid x \iff x = 0$

Let $x \in \mathbb{Z}$.

First, we will prove that if x = 0, then $0 \mid x$. We want to find $n \in \mathbb{Z}$ such that x = 0n. Note x = 0n = 0 for all integers n (including 0). Let n = 0. Therefore $0 \mid x$.

Next, we will prove that if $0 \mid x$, then x = 0. Since $0 \mid x$, there exists $n \in \mathbb{Z}$ such that x = 0n = 0. Therefore x = 0.

We conclude that $0 \mid x$ if and only if x = 0.