

Exploration of Patent Chemistry by Fuzzy MCS-led Fragment Decomposition

Richard Sherhod r.sherhod@vernalis.com

About Vernalis

Expertise

 Fragments and structure-based drug discovery (Protein Science, Structural Biology, Chemistry)

Therapeutic areas

• Oncology, CNS, infectious diseases

Location

• Based in Granta Park, outside Cambridge, UK

_

Contents

- Our aims
 - Our solution
- Patent data-mining
 - SAR table extraction
 - Data curation
- Fuzzy MCS analysis
 - Maximum common substructure mining
 - Fuzzy MCS
 - Recursive MCS mining
 - Scaffold-tree formation
- Fragment decomposition
 - MCS-led decomposition
 - Implementation
- Conclusion

Our Aims

Our Aims

The situation:

- New project with existing target-related patents
- ...or existing project with newly-published target-related patents
- We need to understand the chemical space covered by the patents

Our aims:

- To summarise the coverage of exemplified structures
- To extract and present relevant SAR data

28 September 2017

Our Aims

Our Solution

- KNIME based application for exploring patent chemistry
 - Accessed via the KNIME Web Portal
- KNIME workflows for preparing data and presenting results
 - Patent processing workflows (admin):
 - Structures and data extraction and curation
 - Recursive fuzzy MCS mining
 - Interactive results workflow
 - MCS tree formation for visualisation
 - Fragment decomposition for chosen MCS

- Patent data mined with NextMove Software's LeadMine
 - Processes HTML, XML, raw text etc.
 - Automatic structure extraction
 - Text-to-structure IUPAC, generic names, abbreviations
 - CDX-to-structure Ambiguities, drawing errors e.g. floating alkanes

May, J., Lowe, D. & Sayle, R., 2016. Sketchy Sketches: Hiding Chemistry in Plain Sight. Seventh Joint Sheffield Conference on Chemoinformatics. Available at: http://cisrg.shef.ac.uk/shef2016/talks/poster21.pdf [Accessed September 14, 2017].

- Patents accessed and processed by PatFetch web service
 - Patent archives stored locally

SAR Table Extraction

- Structures extracted from:
 - Names
 - CDX images
 - R-group tables
- Table data activity, properties etc.
 - New feature of LeadMine
- IDs and data associated with structures

3-methyl-N-(4'-((I-methylpiperidin-4-yl)oxy)-

[1,1'-biphenyl]-3-yl)benzamide (6d)

Entry	R	SKBr 3 (IC ₅₀ , µM)	MCF-7 (IC ₅₀ , μΜ)		
6b	H	18.86 ± 0.95	12.02 ± 0.57		
6c	$p\text{-}\mathrm{CH}_3$	5.27 ± 0.29 a	3.92 ± 0.13		
6d	$\mathrm{m\text{-}CH}_3$	11.38 ± 1.37	7.73 ± 1.90		
6e	p-t-butyl	1.51 ± 0.31	3.45 ± 0.02		
6f	p-methoxy	10.1 ± 0.93	5.52 ± 0.01		
6g	m-methoxy	8.36 ± 1.35	4.50 ± 0.46		
6h	p-Cl	3.63 ± 1.03	2.23 ± 0.05		
6i	m-Cl	4.29 ± 0.43	2.11 ± 0.42		
6k	o-Cl	7.87 ± 0.48	5.17 ± 0.49		
6l	p-Br	1.94 ± 0.11	0.88 ± 0.07		
6m	3,4-dichloro	2.24 ± 0.11	2.17 ± 0.37		
6n	2,4-dichloro	5.91 ± 0.15	3.93 ± 0.47		
60	3,5-dichloro	4.23 ± 0.09	3.72 ± 0.15		
6q	-(2-naphthoyl)	2.09 ± 0.34	1.66 ± 0.27		
6p	-(1-naphthoyl)	1.64 ± 0.13	$\textbf{1.10} \pm \textbf{0.17}$		

US-20160272584-A1

Interactive Data Curation

Extracting clean patent data is difficult

- Patent tables can contain errors:
 - Typos
 - OCR errors
 - Missing values
 - Inconsistent labelling schemes
- Structure names and CDX images can disagree

• No two patents are alike

US 8637532 C00342

Lowe, D., Senger, S. & Sayle, Ro., 2017. Automatic extraction of bioactivity data from patents. *253rd ACS National Meeting, San Francisco, CA, USA*. Available at: https://www.slideshare.net/NextMoveSoftware/automatic-extraction-of-bioactivity-data-from-patents-74402139 [Accessed September 14, 2017].

Interactive Data Curation

- Fully automated extraction is unattainable (for now)
 - Structures and data are interactively assessed
 - Data may be exported for manual editing
 - Modified data is semi-automatically validated

11

Maximum Common Substructure Mining

The largest substructure common to a set of structures

- Many implementations and uses in cheminformatics
- Traditionally only exact atom and bond matches allowed

Fuzzy MCS

MCS with variation in atoms and/or bonds

- Algorithm available in RDKit
 - Contributed by Andrew Dalke in 2012
 - RDKit MCS KNIME node

Recursive Fuzzy MCS Mining

- Set of fuzzy MCS generated from patent structures
 - MCS generated for a range of coverage thresholds
 - i.e. MCS that represent 10%, 20%, 30%... 100% of input structures
 - Structures not covered by MCS are used to generate new MCS

15 28 September 2017

MCS Tree Formation

- Resulting collection of MCS arranged into trees
 - Hierarchical relationship between MCS coverage
 - Fuzzy (overlapping) hierarchical clustering

MCS Tree Formation - Visualisation

- Custom code used to generate and visualise tree structure
 - Tree represented as JSON object
- Tree presented as interactive view in KNIME Web Portal
 - Tree visualised in D3.js
 - Crude POC

MCS Tree Formation - Visualisation

- Break structures down into categorised fragments
 - R-groups
 - Chains terminal or linkers
 - Rings fused systems
- R-group decomposition
 - No scaffold

• Suited to FBDD

R-groups

Cl

R-groups

Rhings

20

MCS-Led Decomposition

Fuzzy MCS used to define fragment framework

- Fuzzy MCS decomposed into:
 - R-groups, Rings, Chains
 - Rings with variable features
 - Chains with variable features
- Fuzzy MCS fragments used to decompose structures

Implementation

- In-house algorithm developed with RDKit Java API
- Fragment Decomposition KNIME node released internally
 - Thanks Steve Roughley!

- Fuzzy MCS is fragmented
 - Break all non-aromatic bonds between ring and non-ring atoms
 - SMARTS: [!R0]!@&!:*

- Fuzzy MCS is fragmented
 - Break all non-aromatic bonds between ring and non-ring atoms
 - SMARTS: [!R0]!@&!:*
- Fragments are categorised
 - R-group, Ring, Chain, qRing, qChain
- Fragments given canonical identifiers

Implementation – Algorithm

Fragments are mapped to input structures

Implementation – Algorithm

Fragments are mapped to input structures

Implementation – Algorithm

- Fused aromatic ring systems are expanded
 - Aromatic ring bonds are not broken
- Rings and chains are fragmented further
 - IDs of additional R-groups are canonicalised in a later process

28

Implementation – Algorithm

qRings and qChains are either:

- qRings and qChains are either:
 - Expanded to incorporate additional features

Implementation – Algorithm

- qRings and qChains are either:
 - Expanded to incorporate additional features

31

- qRings and qChains are either:
 - Expanded to incorporate additional features
 - Fragmented further into new R-groups

- qRings and qChains are either:
 - Expanded to incorporate additional features
 - Fragmented further into new R-groups

Implementation – Visualisation

Results Please select results for export to JChem for Excel										
Show 10 v entries										
	ID JŢ	Structure 11	MCS ID J1	MCS IT	qRing1 ↓↑	qRing2 ↓↑	qRing3 ↓↑	Ring1 J↑	qChain1 🏥	
	19a		MCS-3	PLCQ TEAM	R4 R3 qChain 1	qRing 3 Chain ,	R1 — QRing ₂	R2—N—R1	qRing 2	
	19b		MCS-3	PACE TEMP	R4 R3 qChain 1	qRing 3 Chain 1	$R1$ \longrightarrow $qRing_2$	R2—N—R1	qRing 2	
	19c		MCS-3	PACI TEMI	R4 R3 qChain 1	qRing 3 Chain ,	R1—QRing ₂	R2—N—R1	qRing 1 qRing 2	

Demonstration

Demonstration

36

Conclusion

Conclusion

Developed tools/algorithms for:

- Extracting structures and data from the patents
- Summarising exemplified structures as fuzzy MCS
- Showing hierarchical relationship between fuzzy MCS
- Performing fragment decomposition driven by fuzzy MCS
- Presenting results to users

Future work:

- More automation of patent document processing
 - Learn lessons from processing more patents
- Multi-parametric SAR/SPR analysis
 - Process and compare multiple tables, e.g. binding and stability data tables
- Integration with other services/tools

38 September 2017

Thank you!

