Exercise 3

Module 1 - Introduction to Cryptography and Data Security

Knut Lucas Andersen Master Applied Information Security isits AG International School of IT Security

May 16, 2017

Contents

1	Add a) b) c) d)	dition in GF(2 ⁸) $A(x) = x^7 + x^5 + x^3 + x^2 + 1, B(x) = x^4 + x^3 + 1 \dots A(x) = x^5 + x^3 + x^2, B(x) = x^6 + x^4 + x^3 + 1 \dots A(x) = x^6 + x^5 + x^3 + x + 1, B(x) = x^7 + x^6 + x^4 + x^2 + 1$ Which effect has the reduction polynome in general on the result of an addition?	3 3 3 3	
2			3	
	a)b)c)d)	Compute the addition table for this field Compute the multiplication table for this field	4 4 4	
3	Multiplication in $GF(2^8)$			
	a)	Compute $A(x) \times B(x)$ mod $P(x)$ for the following values and give the result in HEX	4	
	b)	With which operation is it possible to realise both these multiplications $B_1(x) = x$, $B_2(x) = x+1$ efficiently	4	
4	Ava	Avalanche effect in AES		
	a)	Calculate the respective Output to the Input W after the first round of AES! use the round-keys $K_0, \ldots, K_1! \ldots \ldots$	4	
	b)	Compute all the output bytes for the case that all the input bytes are zero (solution only in HEX)	4	
	c)	How many outputbytes have changed now? (We consider just one round of AES)	4	
5	Keygeneration in AES			
	a)	Given is a main key K , consisting of zeros. Find the sub-key K_1 after the first round of key-generation	4	
	b)	Given is the main key $K = (0x00000008; 0x00000004; 0x00000002; 0x00000001)$. Find the sub-key K_1 after the first round of key-generation.	4	
6	Solı	ution template for Avalanche effect in AES	4	
	a)	After conversion of the Input in matrix-form	4	
	b)	After conversion of the Input in matrix-form	4	

1 Addition in $GF(2^8)$

- a) $A(x) = x^7 + x^5 + x^3 + x^2 + 1$, $B(x) = x^4 + x^3 + 1$
- b) $A(x) = x^5 + x^3 + x^2$, $B(x) = x^6 + x^4 + x^3 + 1$
- c) $A(x) = x^6 + x^5 + x^3 + x + 1$, $B(x) = x^7 + x^6 + x^4 + x^2 + 1$
- d) Which effect has the reduction polynome in general on the result of an addition?

2 Multiplication in GF(5⁴)

Consider the finite field $F(5^4)$ with the irreducible reduction polynome $P(x) = x^4 + x^2 + 2x + 2$.

- a) Compute the addition table for this field
- b) Compute the multiplication table for this field.
- c) Compute $x^4 \mod P(x)$, $x^5 \mod P(x)$ and $x^6 \mod P(x)$.
- d) Calculate $A(x) \times B(x) \mod P(x)$ for $A(x) = x^4 + x^1 + 2$, $B(x) = 2x^3 + 2x^2 + 1$
- 3 Multiplication in $GF(2^8)$
- a) Compute $A(x) \times B(x) \mod P(x)$ for the following values and give the result in HEX
- b) With which operation is it possible to realise both these multiplications $B_1(x) = x$, $B_2(x) = x+1$ efficiently
- 4 Avalanche effect in AES
- a) Calculate the respective Output to the Input W after the first round of AES! use the round-keys K_0, \ldots, K_1 !
- b) Compute all the output bytes for the case that all the input bytes are zero (solution only in HEX)
- c) How many outputbytes have changed now? (We consider just one round of AES)
- 5 Keygeneration in AES
- a) Given is a main key K, consisting of zeros. Find the sub-key K_1 after the first round of key-generation.
- b) Given is the main key K = (0x00000008; 0x000000004; 0x00000002; 0x00000001). Find the sub-key K_1 after the first round of key-generation.
- 6 Solution template for Avalanche effect in AES
- a) After conversion of the Input in matrix-form
- b) After conversion of the Input in matrix-form