Self-Test 3

1. Suppose you wish to prove $\triangle AFE \cong \triangle BFD$. If you have already proved $\triangle ABE \cong \triangle BAD$, what corresponding parts from this second pair of congruent triangles would you use to prove the first pair of triangles congruent?

2. Given: $\triangle MPQ \cong \triangle PMN$;

 $\overline{MS} \cong \overline{PR}$

Prove: $\triangle MSN \cong \triangle PRO$

3. In $\triangle JKL$ name each of the following.

a. an altitude

b. a median

4. Note that ZL = ZJ. Can you deduce that KZbisects ∠ LKJ?

- 5. \overrightarrow{UV} bisects $\angle WUX$. Write the theorem that justifies the statement that Vis equidistant from \overline{UW} and \overline{UX} .
- **6.** In $\triangle ABC$, AB = 7 and BC = 7. Write the theorem that allows you to conclude that B is on the perpendicular bisector of AC.

Chapter Summary

- 1. Congruent figures have the same size and shape. Two triangles are congruent if their corresponding sides and angles are congruent.
- 2. We have five ways to prove two triangles congruent:

SSS

SAS

ASA

AAS

HL (rt. △)

- 3. A common way to prove that two segments or two angles are congruent is to show that they are corresponding parts of congruent triangles.
- 4. A line and plane are perpendicular if and only if they intersect and the line is perpendicular to all lines in the plane that pass through the point of intersection.
- 5. If two sides of a triangle are congruent, then the angles opposite those sides are congruent. An equilateral triangle is also equiangular, with three 60° angles.