Gruppe: Hamburg, 3.10.2013

Oleksandr Voroshylov (6590822) Christina de Bruyn Kops (6591853) Felix Braun (5881661)

Grundlagen der Sequenzanalyse

Übungen zur Vorlesung am 29.10.2013

Afg. 3.1: aufgabe_1.py

Afg. 3.2:

u = agtgcacaca, v = atcacactta

1. Einheitskosten

		ı										
$E_{\delta}i$, j	0	а	t	С	а	С	а	С	t	t	а
0		0	1	2	3	4	5	6	7	8	9	10
а		1	0	1	2	3	4	5	6	7	8	9
g		2	1	1	2	3	4	5	6	7	8	9
t		3	2	1	2	3	4	5	6	6	7	8
g		4	3	2	2	3	4	5	6	7	7	8
С		5	4	3	2	3	3	4	5	6	7	8
а		6	5	4	3	2	3	3	4	5	6	7
С		7	6	5	4	3	2	3	3	4	5	6
а		8	7	6	5	4	3	2	3	4	5	6
С		9	8	7	6	5	4	3	2	3	4	5
а		10	9	8	7	6	5	4	3	3	4	4
		•										

= minimierter Pfad

$$A = \begin{pmatrix} a & g & t & g & c & a & c & a & c & a & - & - \\ a & - & t & - & c & a & c & a & c & t & t & a \end{pmatrix}$$

Hamburg, 3.10.2013

Gruppe:

Oleksandr Voroshylov (6590822) Christina de Bruyn Kops (6591853) Felix Braun (5881661)

2. Hammingkosten

$E_{\delta}i,j$	0	а	t	С	а	С	а	С	t	t	а
0	0					10					
а	2	0	2	4	6	8	10	12	14	16	18
g	4	2	2	4	6	8	10	12	14	16	18
g t g	6	4	2	4	6	8	10	12	12	14	16
g	8	6	4	4	6	8	10	12	14	14	16
С	10	8	6	4	6	6	8	10	12	14	16
a						6					
c	14	12	10	8	6	4	6	6	8	10	12
а	16	14	12	10	8	6	4	6	8	10	10
						8		4	6	8	10
а	20	18	16	14	12	10	8	6	6	8	8

3.

$E_{\delta}i,j$	0	а	t	С	а	С	а	С	t	t	а
0	0	3	6	9	12	15	18	21	24	27	30
а	3	0	3	6	9	12	15	18	21	24	27
g	6	3	3	6	9	12	15	18	21	24	27
t	9	6	3	6	9	12	15	18	18	21	24
g	6	9	6	6	9	12	15	18	21	21	24
С	15	12	9	6	9	9	12	15	18	21	24
а	18	15	12	9	6	9	9	12	15	18	21
С	21	18	15	12	9	6	9	9	12	15	18
а	24	21	18	15	12	9	6	9	12	15	18
С	27	24	21	18	15	12	9	6	9	12	15
а	30	27	24	21	18	15	12	9	9	12	12

Afg. 3.3:

Gegeben δ Kostenfunktion, so dass für alle Editoperationen $\alpha \to \beta$ die folgenden Eigenschaften gelten:

$$\delta(\alpha \to \beta) = \delta(\beta \to \alpha)$$
$$\delta(\alpha \to \beta) = 0 \Leftrightarrow \alpha = \beta$$

1.

Seien $u, v \in A*$ wobei $\alpha_1\alpha_2...\alpha_h = uund\beta_1\beta_2...\beta_h = v.$

Annahme: $edist_{\delta}(u, v) \neq edist_{\delta}(v, u)$.

Dann von der Definition,

 $\min\{\delta(A*)|A* \text{ Alignment von u und v }\} \neq \min\{\delta(A*')|A*' \text{ Alignment von v und u }\}$ wobei $A* = (\alpha_1 \to \beta_1,...,\alpha_h \to \beta_h) \text{ und } A*' = (\beta_1 \to \alpha_1,...,\beta_h \to \alpha + h).$

Dann
$$\delta(A*) = \sum_{i=1}^{h} \delta(\alpha_i \to \beta_i)$$

und $\delta(A*') = \sum_{i=1}^{h} \delta(\beta_i \to \alpha_i)$
 $= \sum_{i=1}^{h} \delta(\alpha_i \to \beta_i)$ von der Definition der Kostenfunktion
 $= \delta(A*)$

 $\Rightarrow \min\{\delta(A*')\} = \min\{\delta(A*)\}$

 \Rightarrow Widerspruch.

Deshalb $edist_{\delta}(u, v) = edist_{\delta}(v, u)$.

2.

Seien $u, v \in A*$

 \Rightarrow

Sei $edist_{\delta}(u, v) = 0$.

Annahme: $u \neq v$

 $\Rightarrow \delta(u \to v) \neq 0, \delta(v \to u) \neq 0$

$$\begin{split} &\Rightarrow \delta(A*) = \sum_{i=1}^h \delta(\alpha_i \to \beta_i) \\ &\Rightarrow \min\{\delta(A*)|A* \text{ Alignment von } u \text{ und } v\} > 0 \\ &\Rightarrow edist_\delta(u,v) \neq 0 \\ &\Rightarrow \text{Widerspruch.} \end{split}$$

Deshalb u = v.

 \triangleq

Sei u = v.

Dann $\delta(u \to v) = \delta(v \to u) = 0$ von der Definition der Kostenfunktion.

Dann die Definition von $E_\delta \Rightarrow E_\delta(i,j) = 0, \forall i,j$

$$\Rightarrow E(u,v) = 0$$

$$\Rightarrow edist_{\delta}(u, v) = 0.$$