Parochial by Construction:

Dual Constructions for Cosmological Inference and Their Diagnostics

Alastair Hewitt (draft)

September 29, 2025

Abstract

We develop a dual-construction framework for cosmological inference. Temporal Evolution (TE) treats the cosmos as a family of complete models indexed by age; Causal Evolution (CE) treats each observation as defining a causal completion with observer-indexed priors. We formalize CE as a context-penalized Gaussian prior, prove well-posedness, and derive closed-form shifts relative to TE in a rank-1 toy model. We define structural-zero diagnostics, give sensitivity estimates for six predictions accessible to present/future data, and outline simulation and multiple-testing protocols. The framework is falsifiable and useful whether the outcome is a null bound or a small, reproducible coupling.

Contents

1	Conceptual Core	1
2	Formal Framework 2.1 TE posterior	1
3	Toy Model: Rank-1 Context Prior (Explicit)	2
4	Information-Theoretic Derivation of the Penalty	2
5	Context Template Construction	2
6	Diagnostics and Predictions with Sensitivity	3
7	Implications for H_0 Pathways	3
8	Simulation and Multiple-Testing Protocol	3
9	Conclusion	3

1 Conceptual Core

Duality. TE and CE are non-reducible constructions. TE provides a parametrized family $U_{\text{TE}}(\tau)$; CE provides $U_{\text{CE}}(O)$ for observation O on worldline γ , with context encoded by templates and penalties. Local microphysics is shared; global reconstructions may differ.

2 Formal Framework

Let $a \in \mathbb{R}^n$ be primordial mode coefficients, d = Ta + n with transfer T and noise $n \sim \mathcal{N}(0, N)$. A baseline prior is $a \sim \mathcal{N}(0, C_\tau)$.

2.1 TE posterior

$$\Sigma_{\text{TE}} = (T^{\top} N^{-1} T + C_{\tau}^{-1})^{-1}, \qquad \mu_{\text{TE}} = \Sigma_{\text{TE}} T^{\top} N^{-1} d.$$
 (1)

2.2 CE prior and posterior

Let $P_{\text{ctx}} \succeq 0$ be the context projector (from Section 5). Define

$$\Pi_{\gamma}(a) \propto \exp\left[-\frac{1}{2}a^{\top}(C_{\tau}^{-1} + \lambda_{\gamma}P_{\text{ctx}})a\right].$$
(2)

Then

$$\Sigma_{\rm CE} = (T^{\top} N^{-1} T + C_{\tau}^{-1} + \lambda_{\gamma} P_{\rm ctx})^{-1}, \qquad \mu_{\rm CE} = \Sigma_{\rm CE} T^{\top} N^{-1} d.$$
 (3)

2.3 Well-posedness

Theorem 1 (Existence/Uniqueness). If $N \succ 0$, $C_{\tau} \succ 0$, $P_{\text{ctx}} \succeq 0$, and $\lambda_{\gamma} \geq 0$, the CE posterior exists and is unique up to standard gauge (e.g., monopole).

Proof. The posterior precision matrix $T^{\top}N^{-1}T + C_{\tau}^{-1} + \lambda_{\gamma}P_{\text{ctx}}$ is symmetric positive definite. Hence the Gaussian posterior is well-defined and unique.

3 Toy Model: Rank-1 Context Prior (Explicit)

Let $P_{\text{ctx}} = cc^{\top}/\|c\|^2$ with $c \neq 0$. Using Woodbury for a rank-1 update,

$$\Sigma_{\text{CE}} = \Sigma_{\text{TE}} - \frac{\lambda_{\gamma} \, \Sigma_{\text{TE}} c c^{\top} \Sigma_{\text{TE}}}{1 + \lambda_{\gamma} \, c^{\top} \Sigma_{\text{TE}} c},\tag{4}$$

$$\mu_{\text{CE}} - \mu_{\text{TE}} = (\Sigma_{\text{CE}} - \Sigma_{\text{TE}}) T^{\top} N^{-1} d = \lambda_{\gamma} \frac{(\mu_{\text{TE}}^{\top} c)}{1 + \lambda_{\gamma} c^{\top} \Sigma_{\text{TE}} c} \Sigma_{\text{TE}} c.$$
 (5)

Let $u = W\mu$ be an alignment statistic (e.g., low- ℓ projection). Then

$$\Delta u \equiv u_{\rm CE} - u_{\rm TE} = \lambda_{\gamma} \frac{(\mu_{\rm TE}^{\dagger} c)}{1 + \lambda_{\gamma} c^{\top} \Sigma_{\rm TE} c} W \Sigma_{\rm TE} c.$$
 (6)

Thus CE departs from TE only along c, with amplitude $\mathcal{O}(\lambda_{\gamma})$.

4 Information-Theoretic Derivation of the Penalty

Let $p_0(a) = \mathcal{N}(0, C_\tau)$ and T_{ctx} extract context features $z = T_{\text{ctx}}a$. Consider

$$\min_{p} \operatorname{KL}(p \parallel p_0) + \lambda_{\gamma} \mathbb{E}_p \| T_{\text{ctx}} a \|_2^2.$$
 (7)

The solution in the Gaussian family is $p(a) = \mathcal{N}(0, \tilde{C})$ with precision

$$\tilde{C}^{-1} = C_{\tau}^{-1} + \lambda_{\gamma} T_{\text{ctx}}^{\mathsf{T}} T_{\text{ctx}}, \tag{8}$$

i.e., a quadratic penalty in the context subspace. For rank-1 $T_{\rm ctx}$ we recover $P_{\rm ctx}$. A parallel decision-theoretic derivation obtains the same form by minimizing worst-case quadratic loss under context mis-specification.

5 Context Template Construction

Given exposure maps $E(\hat{n})$, scan harmonics, zodiacal templates $Z(\hat{n})$, and masks:

- 1. Build a feature matrix from the first few ecliptic-aligned spherical harmonics of E and Z.
- 2. Orthogonalize against known systematics (beam asymmetries, far sidelobes, Galactic residuals).
- 3. Normalize columns to unit variance; set $T_{\rm ctx}$ as the resulting basis.
- 4. For a minimalist test, take the leading mode c and set $P_{\text{ctx}} = cc^{\top}/\|c\|^2$.

6 Diagnostics and Predictions with Sensitivity

- P1 Polarization phase-locking (low- ℓ). Nonzero correlation between TE/EE phases and C_{γ} after cleaning. Sensitivity: Planck $\sim 10^{-2}$, LiteBIRD $\sim 10^{-3}$.
- **P2 Lensing–ISW commutator.** Order non-commutativity $\Delta_{\text{comm}}^{\phi \times T}$ is zero in ΛCDM , $\mathcal{O}(\lambda_{\gamma})$ in CE. Sensitivity: CMB-S4 $\sim 10^{-3}$ of ISW amplitude.
- **P3** Off-ecliptic sign flip. A tilted scan should flip the sign of S_{γ} after the same orthogonalization. Binary outcome; not cosmic-variance limited.
- **P4 Parameter-path sensitivity.** Context derivatives $G_{\gamma}^{(\tau)} \neq 0$ while $G_{\gamma}^{(\Omega_b h^2)} = 0$. Next-gen polarization can test $\mathcal{O}(10^{-3})$ shifts.
- **P5 Galaxy 2-point anisotropy.** Tiny quadrupolar leakage aligned with C_{γ} in ultra-large scales; DESI+Euclid noise $\sim 2 \times 10^{-3}$.
- **P6 JWST field variance.** Extra 1–2% aligned variance in high-z counts across fields; detectable with $\mathcal{O}(10)$ deep fields.

7 Implications for H_0 Pathways

Context coupling alters TE-anchored inferences via low- ℓ anchoring and θ_* response, nudging CMB-only \widehat{H}_0 by

$$\Delta H_0^{(\text{TE})} \approx \left(\partial H_0 / \partial \theta_*\right) \lambda_\gamma \frac{(\mu_{\text{TE}}^\top c)}{1 + \lambda_\gamma c^\top \Sigma_{\text{TE}} c} \left(L \Sigma_{\text{TE}} c\right), \tag{9}$$

with L the linear response of θ_* to primordial modes. CE-invariant probes (distance ladder, BBN) should remain unchanged to first order.

8 Simulation and Multiple-Testing Protocol

Null. Λ CDM skies + beams + noise + zodiacal + masks; run full pipeline to each statistic.

Injection. Add known λ_{true} along P_{ctx} ; verify recovery curves and false-positive rate.

Multiplicity. Pre-register a single template family; apply FDR if scanning K nearby modes; hold out a validation split.

9 Conclusion

The dual-construction framework yields concrete, low-variance diagnostics for context sensitivity with explicit, pre-registrable predictions. Nulls certify robustness; positives quantify a single coupling λ_{γ} . Either outcome is scientifically useful.