Esercizio 1 [9 pti].

1. Il vettore $\bar{x}=\begin{bmatrix}\bar{x}_1 & \bar{x}_2\end{bmatrix}^\top$ è un equilibrio del sistema se e solo se

$$0 = \alpha \bar{x}_1 - \bar{x}_1^3 - \bar{x}_1 \bar{x}_2 = \bar{x}_1 (\alpha - \bar{x}_1^2 - \bar{x}_2)$$

$$0 = 2\bar{x}_1^2 + \alpha \bar{x}_2$$

$$\alpha \in \mathbb{R}.$$
(1)

Dalla seconda equazione di (1), abbiamo

$$\alpha \bar{x}_2 = -2\bar{x}_1^2. \tag{2}$$

Quest'ultima equazione pone vincoli diversi sulle variabili \bar{x}_1 e \bar{x}_2 a seconda dei casi: $\alpha = 0$, $\alpha \neq 0$. Trattiamo separatamente questi due casi:

- Caso $\alpha = 0$. In questo caso da (2) segue che $\bar{x}_1 = 0$. Sostituendo questa condizione nella prima equazione di (1) si ottiene immediatamente 0 = 0, condizione che è sempre verificata e non pone nessun vincolo sul valore di \bar{x}_2 . Abbiamo quindi infiniti equilibri della forma $\begin{bmatrix} 0 & \beta \end{bmatrix}^{\top}$ con $\beta \in \mathbb{R}$ uno scalare arbitrario.
- Caso $\alpha \neq 0$. In questo caso da (2) segue che $\bar{x}_2 = -(2/\alpha)\bar{x}_1^2$. Sostituendo nella prima equazione di (1) otteniamo la condizione

$$\bar{x}_1 \left(\alpha + \frac{2 - \alpha}{\alpha} \bar{x}_1^2 \right) = 0.$$

Le soluzioni dell'equazioni sopra sono $\bar{x}_1 = 0$ e le soluzioni di $(\alpha - 2)\bar{x}_1^2 = \alpha^2$. Quest'ultima equazione ammette soluzioni reali $(\pm \alpha/\sqrt{\alpha - 2})$ se e solo se $\alpha > 2$. Distinguiamo quindi i due sottocasi:

- Caso $\alpha > 2$. Abbiamo tre equilibri in $\begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$, $\begin{bmatrix} \pm \alpha/\sqrt{\alpha-2} & -2\alpha/(\alpha-2) \end{bmatrix}^{\top}$.
- Caso $\alpha < 2$ ($\alpha \neq 0$). Abbiamo un solo equilibrio in $\begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$.
- 2. La matrice Jacobiana del sistema è

$$J(x) = \begin{bmatrix} \alpha - 3x_1^2 - x_2 & -x_1 \\ 4x_1 & \alpha \end{bmatrix}, \quad \alpha \in \mathbb{R}.$$

Quindi la matrice Jacobiana valutata in $\bar{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$ diventa:

$$J(\bar{x}) = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}, \quad \alpha \in \mathbb{R}.$$

Dalla forma di $J(\bar{x})$ e dal Teorema di Linearizzazione possiamo concludere che \bar{x} è asintoticamente stabile se $\alpha < 0$ e instabile se $\alpha > 0$. Il caso $\alpha = 0$ rappresenta un caso critico per il Teorema di Linearizzazione.

3. Consideriamo l'equilibrio $\bar{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$ a cui corrisponde l'unico caso critico $\alpha = 0$ (trovato al punto 2). La funzione candidata di Lyapunov proposta $V(x_1, x_2) = 2x_1^2 + x_2^2$ è definita positiva in un intorno di \bar{x} . Per capire se è una "buona" funzione di Lyapunov, valutiamo ora la derivata di $V(x_1, x_2)$ (assumendo $\alpha = 0$):

$$\dot{V}(x_1, x_2) = 4x_1 \dot{x}_1 + 2x_2 \dot{x}_2
= 4x_1 (-x_1^3 - x_1 x_2) + 4x_2 x_1^2
= -4x_1^4.$$

Poiché $\dot{V}(x_1, x_2)$ è semidefinita negativa in un intorno di \bar{x} , per il Teorema di Lyapunov, possiamo concludere che \bar{x} è almeno semplicemente stabile. Per capire se \bar{x} è asintoticamente stabile o solo semplicemente stabile, usiamo il Teorema di Krasowskii. L'insieme delle traiettorie che annullano $\dot{V}(x_1, x_2)$ ha la forma:

$$\mathcal{N} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : \dot{V}(x_1, x_2) = 0 \right\} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1 = 0, x_2 = \beta, \beta \in \mathbb{R} \right\}.$$

Notiamo quindi che $x(t) \in \mathcal{N}$ implica $x_1(t) = 0$, che, a sua volta, implica $\dot{x}_1(t) = 0$. Sostituendo queste condizioni nella prima e seconda equazione dinamica del sistema (con $\alpha = 0$), otteniamo, rispettivamente,

$$0 = 0,$$
$$\dot{x}_2(t) = 0.$$

La prima equazione è sempre verificata, mentre la seconda porge il vincolo $x_2(t) = k, k \in \mathbb{R}$, per ogni t. Esistono quindi delle traiettorie (diverse dall'equilibrio \bar{x}) che partendo da una condizione iniziale in \mathcal{N} rimangono indefinitamente in \mathcal{N} . Per il Teorema di Krasowskii possiamo quindi concludere che \bar{x} non è asintoticamente stabile ma è solo semplicemente stabile.

Esercizio 2 [9 pti].

- 1. Dalla struttura di F (o tramite calcolo esplicito delle radici del polinomio caratteristico di F), abbiamo che F ha autovalori in 1, α , 1/2. Distinguiamo quindi tre casi:
 - Caso $\alpha \neq \{1/2, 1\}$. In questo caso F ha tre autovalori distinti $\lambda_1 = 1$, $\lambda_2 = \alpha$, $\lambda_3 = 1/2$ con molteplicità algebriche e geometriche $\nu_1 = \nu_2 = \nu_3 = 1$ e $g_1 = g_2 = g_3 = 1$, rispettivamente. La matrice F è diagonalizzabile e la sua forma di Jordan è (a meno di permutazioni degli elementi sulla diagonale):

$$F_J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1/2 \end{bmatrix}.$$

I modi elementari del sistema sono 1 (limitato), α^t (convergente se $|\alpha| < 1$ e divergente se $|\alpha| > 1$), e $(1/2)^t$ (convergente).

• Caso $\alpha = 1/2$. In questo caso F ha due autovalori distinti $\lambda_1 = 1$, $\lambda_2 = 1/2$ con molteplicità algebriche $\nu_1 = 1$, $\nu_2 = 2$, rispettivamente. La molteplicità geometrica di λ_1 è $g_1 = 1$, mentre quella di λ_2 si può trovare tramite il calcolo di:

$$g_2 = 3 - \text{rank}(\lambda_2 I - F) = 3 - \text{rank} \begin{bmatrix} -1/2 & 0 & -2 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 3 - 2 = 1.$$

Da queste informazioni concludiamo che all'autovalore λ_2 è associato un solo miniblocco di Jordan di dimensione 2. La forma di Jordan di F è quindi (a meno di permutazioni dei blocchi sulla diagonale):

$$F_J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1 \\ 0 & 0 & 1/2 \end{bmatrix}.$$

I modi elementari del sistema sono 1 (limitato), $(1/2)^t$ e $t(1/2)^t$ (entrambi convergenti).

• Caso $\alpha = 1$. In questo caso F ha due autovalori distinti $\lambda_1 = 1$, $\lambda_2 = 1/2$ con molteplicità algebriche $\nu_1 = 2$, $\nu_2 = 1$, rispettivamente. La molteplicità geometrica di λ_2 è $g_2 = 1$, mentre quella di λ_1 si può trovare tramite il calcolo di:

$$g_2 = 3 - \operatorname{rank}(\lambda_1 I - F) = 3 - \operatorname{rank} \begin{bmatrix} 0 & 0 & -2 \\ -1 & 0 & 1 \\ 0 & 0 & 1/2 \end{bmatrix} = 3 - 2 = 1.$$

Da queste informazioni concludiamo che all'autovalore λ_1 è associato un solo miniblocco di Jordan di dimensione 1. La forma di Jordan di F è quindi (a meno di permutazioni dei blocchi sulla diagonale):

$$F_J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}.$$

I modi elementari del sistema sono 1 (limitato), t (divergente) e $(1/2)^t$ (convergente).

2. Per $\alpha = 1$, la matrice di raggiungibilità del sistema è:

$$\mathcal{R} = \begin{bmatrix} G & FG & F^2G \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix},$$

che ha rango 2, per cui il sistema non è raggiungibile. (In alternativa, uno poteva notare che il sistema è in forma di Kalman di raggiungibilità con coppia non raggiungibile $F_{22} = 1/2$, $G_2 = 0$.) Gli spazi raggiungibili $X_R(t)$, $t \ge 1$, sono:

$$X_{R}(1) = \operatorname{Im} \mathcal{R}_{1} = \operatorname{Im} G = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

$$X_{R}(2) = \operatorname{Im} \mathcal{R}_{2} = \operatorname{Im} \begin{bmatrix} G & FG \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\},$$

$$X_{R}(t) = X_{R}(2) = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}, \quad \forall t \geq 3.$$

3. Il sistema è in forma di Kalman di raggiungibilità. Nello specifico, F e G possono essere partizionate come

$$F = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & -1 \\ \hline 0 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ \hline 0 & F_{22} \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ \hline 1 \\ \hline 0 \end{bmatrix} = \begin{bmatrix} G_1 \\ \hline 0 \end{bmatrix},$$

dove la coppia (F_{11}, G_1) rappresenta il sottosistema raggiungibile, mentre (F_{22}, G_2) quello non raggiungibile. Il sottosistema non raggiungibile ha un solo autovalore in 1/2, quindi, sebbene il sistema non sia completamente raggiungibile, è possibile trovare una matrice di retroazione $K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$ che allochi tutti gli autovalori in 1/2. Per calcolarla possiamo usare, ad esempio, il metodo di calcolo diretto, applicato al solo sottosistema raggiungibile:

$$\Delta_{F_{11}+G_1[k_1 \ k_2]}(\lambda) = \det \left(\lambda I - F_{11} - G_1 \begin{bmatrix} k_1 \ k_2 \end{bmatrix} \right) \stackrel{!}{=} (\lambda + 1/2)^2$$

$$\implies \lambda^2 - (2 + k_1 + k_2)\lambda + 1 + k_1 \stackrel{!}{=} \lambda^2 - \lambda + 1/4.$$

L'ultima equazione porge il sistema

$$\begin{cases} 2 + k_1 + k_2 = 1\\ 1 + k_1 = -3/4 \end{cases}$$

che ha soluzione $k_1 = -3/4$ e $k_2 = -1/4$. La matrice di retroazione richiesta quindi è della forma $K = \begin{bmatrix} -3/4 & -1/4 & k_3 \end{bmatrix}$, con $k_3 \in \mathbb{R}$ uno scalare qualsiasi.

Esercizio 3 [9 pti].

1. La matrice di osservabilità del sistema ha la forma

$$\mathcal{O} = \begin{bmatrix} H \\ HF \\ HF^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & \alpha^2 & 0 \\ \alpha^2 & 0 & \alpha^2 (1-\alpha)^2 \end{bmatrix}.$$

Il rango di \mathcal{O} è pieno se e solo se $\alpha \neq 0$. Quindi il sistema è osservabile se e solo se $\alpha \neq 0$. Per $\alpha = 0$ la matrice F diventa:

$$F = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Dalla struttura di F (o calcolando le radici del polinomio caratteristico di F), F ha un unico autovalore in 0 (e quindi anche il sottosistema non osservabile). Quindi il sistema è ricostruibile per ogni $\alpha \in \mathbb{R}$.

(In alternativa, per arrivare alle stesse conclusioni, uno poteva calcolare gli autovalori di F che sono 0 e $\pm \alpha(1-\alpha)$ e poi applicare il test PBH di osservabilità al variare di $\alpha \in \mathbb{R}$.)

2. A partire dai valori ingresso/uscita riportati, possiamo calcolarci i valori dell'evoluzione libera dell'uscita:

$$y_{\ell}(0) = y(0) = 0,$$

 $y_{\ell}(1) = y(1) - y_f(1) = y(1) - HGu(0) = 1 - 1 = 0,$
 $y_{\ell}(2) = y(2) - y_f(2) = y(2) - HGu(1) - HFGu(0) = 4 - 2 - 1 = 1.$

Poichè il sistema è osservabile per $\alpha = 1$, la condizione iniziale si trova calcolando

$$x(0) = \mathcal{O}^{-1} \begin{bmatrix} y_{\ell}(0) \\ y_{\ell}(1) \\ y_{\ell}(2) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

- 3. Come prima cosa, osserviamo che il sistema ammette uno stimatore dead-beat per ogni valore di $\alpha \in \mathbb{R}$ poiché il sistema è ricostruibile per ogni $\alpha \in \mathbb{R}$. Distinguiamo ora i due casi $\alpha \neq 0$ e $\alpha = 0$.
 - $\underline{\alpha \neq 0}$. Il sistema è osservabile da una singola uscita e quindi la matrice F + LH è sempre ciclica per ogni scelta del guadagno L (questo segue dalla dualità e dal fatto che sistemi raggiungibili da un ingresso hanno una matrice di stato che è sempre ciclica, cf. test di raggiungibilità di Jordan). Questo implica che, per ogni guadagno L di uno stimatore dead-beat, F + LH ha un solo miniblocco relativo all'autovalore 0. Quindi, indipendentemente dal valore di $\alpha \neq 0$, l'errore di stima va a zero in esattamente 3 passi.
 - $\underline{\alpha} = \underline{0}$. Ponendo $L = \begin{bmatrix} \ell_1 & \ell_2 & \ell_3 \end{bmatrix}^\top$, abbiamo

$$F + LH = \begin{bmatrix} 0 & 0 & \ell_1 \\ 1 & 0 & 1 + \ell_2 \\ 0 & 0 & \ell_3 \end{bmatrix}. \tag{3}$$

Gli autovalori di F + LH sono $\lambda_1 = 0$, $\lambda_2 = \ell_3$. Per avere un stimatore dead-beat tutti gli autovalori di F + LH devono essere in 0, questo implica $\ell_3 = 0$. In questo caso, la molteplicità geometrica di $\lambda_1 = 0$ è

$$g_1 = 3 - \operatorname{rank}(\lambda_1 I - F - LH) = 3 - \operatorname{rank} \begin{bmatrix} 0 & 0 & -\ell_1 \\ -1 & 0 & -1 - \ell_2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{cases} 1 & \text{se } \ell_1 \neq 0, \\ 2 & \text{se } \ell_1 = 0. \end{cases}$$

Quindi, per $\ell_1 \neq 0$, F + LH ha un unico miniblocco di Jordan relativo a $\lambda_1 = 0$ e l'errore di stima va a zero in 3 passi, mentre per $\ell_1 = 0$, F + LH ha due miniblocchi di Jordan relativi a $\lambda_1 = 0$ e l'errore di stima va a zero in 2 passi. (In alternativa, uno poteva notare che, per $\alpha = 0$, F ha un unico autovalore in $\lambda_1 = 0$ con molteplicità geometrica $g_1 = 2$. Quindi, poiché non è possibile ottenere una matrice F + LH completamente nulla agendo su L, il numero di passi minimo per portare a zero l'errore di stima è 2.)

4

Concludiamo che per $\alpha = 0$ il sistema ammette uno stimatore dead-beat il cui errore di stima va a zero nel minor numero di passi possibile (cioè 2 passi).

Domanda di Teoria [6 pti].

- 1. Si vedano gli appunti delle lezioni (Lezione 13 & 14) e/o il capitolo 4.2 del testo di riferimento del corso.
- 2. Assumendo il sistema raggiungibile in \bar{t} passi, l'insieme di tutti i possibili ingressi che portano il sistema da $x(0) = x_0$ a $x(\bar{t}) = x_f$ è della forma:

$$\mathcal{U}_{\bar{t}} = \{u_{\bar{t}} + \bar{u}, \ \bar{u} \in \ker(\mathcal{R}_{\bar{t}})\},\$$

dove $u_{\bar{t}}$ denota un qualsiasi ingresso calcolabile che porta il sistema da $x(0) = x_0$ a $x(\bar{t}) = x_{\rm f}$ (ad esempio, quello ad energia minima $u_{\bar{t}} = \mathcal{R}_{\bar{t}}^{\top} (\mathcal{R}_{\bar{t}} \mathcal{R}_{\bar{t}}^{\top})^{-1} (x_{\rm f} - F^{\bar{t}} x_0)$). Quindi, nel caso in esame, gli ingressi desiderati hanno la forma

$$u_{2} = \mathcal{R}_{2}^{\top} (\mathcal{R}_{2} \mathcal{R}_{2}^{\top})^{-1} (x_{f} - F^{\bar{t}} x_{0}) + \bar{u}, \quad \bar{u} \in \ker(\mathcal{R}_{2})$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} 2^{-1} (x_{f} - x_{0}) + \bar{u}, \quad \bar{u} \in \ker([1 \ 1])$$

$$= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} (x_{f} - x_{0}) + \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}, \quad \alpha \in \mathbb{R}.$$