

Estrutura de Dados

Professora: Michelle Hanne Soares de Andrade michelle.andrade@newtonpaiva.br

Árvores Binárias de Pesquisa

- As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações básicas (inserção, remoção e busca).
- Árvore binária completamente balanceada:
 - Ocorre quando a árvore está cheia ou quase cheia com o nível n-1 completo

 Uma árvore binária completa leva um tempo na ordem de O(log n) para operações de inserção, remoção e pesquisa. O que é, sem dúvida, muito bom

Árvores Balanceadas

- Árvore binária completamente balanceada:
 - Após uma inserção ou remoção a árvore pode deixar de ser completa. A solução seria aplicar um algoritmo que tornasse a árvore novamente completa, porém o custo para realizar está operação seria de O(n)

Árvores Balanceadas

Percebe-se que todos os nós tiveram sua posição na estrutura alterados.

Na maioria dos casos, utiliza-se árvores quase balanceadas.

Árvores Balanceadas

- Vários são os critérios (métodos) para definir balanceamento. Alguns são:
 - Restrições imposta na diferença das alturas das subárvores de cada nó. Ex. AVL
 - Todos os nós folhas no mesmo nível

- Foram introduzidas por Adel`son-Vel´skii e landis em 1962
 - São baseadas em árvore binárias de pesquisa
 - A medida em que as operações de inserção e remoção são efetuadas a árvore é balanceada

Definição:

– Uma árvore binária T é dita AVL quando, para qualquer nó v de T, a diferença entre a altura das subárvores esquerda h_e(v) e direita h_d(v) é no máximo em módulo igual a 1.

 se uma árvore T é dita AVL, então todas as suas subárvores também são AVL

Balanceamento de um nó

- O fator de balanceamento:
 - É dado pela altura da subárvores da esquerda $h_e(v)$ menos a altura da subárvore da direita $h_d(v)$.

$$FB(v)=h_e(v)-h_d(v)$$

Nós balanceados

- São aqueles onde os valores de FB são -1, 0 ou 1
 - FB(v):
 - +1: subárvore esquerda mais alta que a direita
 - 0: subárvore esquerda igual a direita
 - -1: subárvore direita mais alta do que a esquerda

Nós desregulados ou desbalanceados

- São aqueles onde os valores de FB são diferentes de -1, 0 ou 1
 - FB(v):
 - >1: subárvore esquerda está desbalanceando o nó v
 - <-1: subárvore direita está desbalanceando o nó v

Verificando a ocorrência do desbalanceamento de um nó

-Quando Ocorre?

 Se um nó tem FB(v)=0 e é feita uma inserção no lado direito, o FB=-1, ou seja, subtrai uma unidade (na remoção é invertido)

-Quando Ocorre?

 Se um nó tem FB(v)=0 e é feita uma inserção no lado esquerdo, o FB=1, ou seja, soma uma unidade(na remoção é invertido)

	ArvEsq	ArvDir
Inserção	+1	-1
Remoção	-1	+1

Rebalanceando nós desregulados

- Quando uma inserção ou remoção realizada em um nó altera o balanceamento da árvore, é necessário efetuar uma transformação na árvore, tal que:
 - O percurso em ordem fique inalterado em relação a árvore desbalanceada. Isto é, a árvore continua a ser uma árvore binária de pesquisa
 - A árvore transformada saiu de um estado de desbalanceamento para um estado de balanceamento

- Rotações
 - -Tipos de rotações
 - Esquerda Simples
 - Direita Simples
 - Esquerda Dupla
 - Direita Dupla

Operação que altera o balanceamento de uma árvore T, mantendo a sequência de percurso em-ordem

Percurso em ordem: 6, 8 e 9

Rotação Esquerda Simples (RES)

 Após a rotação a esquerda a árvore ficou balanceada e o percurso em-ordem permanece o mesmo

Percurso em ordem: 6, 8 e 9

Exemplo Rotação Esquerda Simples

Passos para efetuar a RES

-Guarde a subárvore direita

Subárvore a ser guardada

Passos para efetuar a RES

-Troque a subárvore guardada pela subárvore esquerda da árvore guardada

Árvores AVL

Passos para efetuar a RES

- Ponha na subárvore esquerda da subárvore guardada a árvore restante
- verifique o balanceamento

Rotação Simples a Direita(RSD)

- A rotação a direita simples é simétrica a rotação esquerda simples
- Os quatro passos realizados na rotação esquerda simples se aplicam da mesma forma à rotação direita simples

Rotação Dupla a Esquerda(RDE)

-Passos:

- Efetua-se uma rotação simples direita na subárvore direita do nó desbalanceado
- Realiza-se uma rotação simples esquerda no nó desbalanceado

-Exemplo:

Rotação Dupla a Direita(RDD)

- –É simétrica a rotação esquerda dupla
- Efetuar uma rotação simples esquerda na subárvore esquerda do nó desbalanceado
- Realizar uma rotação simples direita no nó desregulado

-Exemplo:

Inserção de elementos

- Procedimentos: percorrer a árvore até o ponto de inserção (usando a operação de busca)
- Inserir o novo elemento
- Balancear a árvore (quando necessário fazer rotações)

Exemplo

 Inserir na árvore AVL abaixo os seguintes elementos: 3,33,11 e 9

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

https://visualgo.net/en/bst

Remoção de Elementos

- Procedimentos
- Percorrer a árvore até o nó a ser removido (usando a operação de busca)
- Retirar o elemento (igual a árvore binária de pesquisa)
- Balancear a árvore (quando necessário fazer rotação)

Exemplo: remover 22,31,12,7 e 20

https://visualgo.net/en/bst

Referências

- https://github.com/isaacmast/AVLTree
- https://github.com/betsybaileyy/AVL_Tree

- NICOLETTI, Maria do Carmo, HRUSCHKA, Estevam R. Jr.. Fundamentos da teoria dos grafos para computação, - 3. ed. - Rio de Janeiro : LTC, 2018.
- ZIVIANI, N. Projeto de Algoritmos com Implementações em Java e C++ .
 Consultoria em Java e C++ de F.C. Botelho, Cengage Learning Brasil, ISBN 9788522108213, 2012.