IoT challenges

State of the art

Aghiles DJOUDI

LIGM/ESIEE Paris & SIC/ECE Paris

July 31, 2019

- 1. Introduction
- First contribution
- 3. Conclusion

Figure 1: IoT platform.

Figure 2: IoT challenges.

1. Introduction | 1. Context

Problematic

Where is the problem?

Figure 3: Key barriers in adopting the Industrial Internet [industrialinternetofthings_executive_].

1. Introduction | 2. Problematic 2 / 25

Problematic

Where is the problem?

- 1. Some network configuration are static and not adptive to the application
 - Decision and optimisation problem..
 - Various network acces
 - Various configuration of each network acces
 - → Lake of selection tools
- 2. Users have to select the network and the application
 - How to select the best network.
 - How to select the network required by the application.

1. Introduction | 2. Problematic 3/25

Problematic

Where is the problem [2] ?

Bandwidth (BW) Spreading Factor (SF) Coding Rate (CR) Transmission Energy (Tx) Receiver Sensitivity (RS) Signal Noise Rate (SNR) Data Rate (DR) ,Air Time (AT)

Setting	Values	Rewards	Cost
BW	7.8 → 500 <i>kHz</i>	DR	RS, Range.
SF	2 ⁶ • 2 ¹²	RS, Range	DR, SNR, longer packets, Tx.
CR	4/5 ➡ 4/8	Resilience	longer packets, Tx, AT.
Tx	-4 ⇒ 20 <i>dBm</i>	SNR	Tx

Table 1: [1]

Motivations

Who & why cares with such problems?

- 1. **→** a
 - Lake of selective tools
 - How to select the best access point

2. QoS Analysis

- → a
- I ake of selective tools
- → How to select the **best** access point

3. Threats

- → a
- Lake of selective tools
- How to select the best access point

Figure 4: Communication diversity.

Goal

What is the goal?

- Allow heterogeneous network to communicate
 - 2. QoS Analysis
 - 3. Threats
- How to select the best access point
 - 1. Allow heterogeneous network to communicate
 - 2. QoS Analysis
 - 3. Threats

Figure 5: wsn-loT.

1. Introduction | 4. Goal 6/25

Goal What is the goal?

- Allow heterogeneous network to communicate
 - 2. QoS Analysis
 - 3. Threats
- How to select the best access point
 - 1. Allow heterogeneous network to communicate
 - 2. QoS Analysis

Figure 5: wsn-loT.

Marputhe network to service requirement?

1. Introduction | 4. Goal 6/25

Challenges Where is the difficulty?

- Reasonable and acceptable delay before the decision appears.
- Cope with the different view points and goals of the operators and the users.
- React to the changing environment conditions.
- Allow any type of inputs and to be applicable to any type of ANs.
- Handle the increasing number of RATs and the large number of criteria.

1. Introduction | 5. Challenges 7/25

Contributions

Contributions

- Use cases (Requirements)
 - Smart building: Videos, Voice, Text.
 - → Smart trafic: Videos, Voice, Text
- Environnements
 - → Rural/Urban
 - Static/Mobile
 - → Tempirature
- Senarios
 - For each application protocol (MQTT, COAP, XMPP)
 - For each network protocol (Start, Mesh)
 - For each MAC protocol (LoraWan, Sigfox, ...)
- Algorithms
 - → Input:
 - * Service QoS metrics requiremnts
 - * MAC configuration (SF, CR, BW, ...)
 - * Network QoS metrics
 - Method:
 - * MADM, Game, Neural
 - Outputs:
 - * Ranked networks

1. Introduction | 5. Challenges

Contributions

Contributions

- Use cases (Requirements)
 - Smart building: Videos, Voice, Text.

- - - Network QoS metrics
 - MADM, Game, Neural
 - Outputs:
 - * Ranked networks

For each application protocol (MQTT, COAP XMP), Real environmental envir

- Introduction
- 2. First contribution
- 3. Conclusion

- Introduction
- 2. First contribution
- 3. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Discussion

- Introduction
- 2. First contribution
- 3. Conclusion

- 1. Related work
- Contagion process
- Experimentation
- Results exploitation
- 5. Discussion

Related work

Comparison

Paper	A1	A2	A3	A4

Table 2: An example table.

Related work

Comparison

Paper	A1	A2	A3	A4

Table 3: An example table.

10 / 25

- Introduction
- 2. First contribution
- Conclusion

- Related work
- 2. Contagion process
- Experimentation
- 4. Results exploitation
 - 5. Discussion

Multi-Armed-Bandit Algorithm Methods

- → Arms: K = 1, ..., K
- Decision: T = 1, ..., T
- Reward: X_t^k with $\mu_t^k = E[X_t^k]$
 - ⇒ Best reward: X_t^* with $\mu_t^* = \max \mu_t^k$, k∈K

Genetic Algorithm

Methods [alkhawlani access 2008a]

- Heterogeneous wireless network: (RAT 1 ,RAT 2 ,...,RAT n)
- → Criteria up to i (c 1 ,c 2 ,...,c i) the operators, the applications, and the network conditions.
- → The different sets of scores (d 1 , d 2 ,...,d i) are sent to the MCDM in the second component.
- GA component assigns a suitable weight (w 1 ,w 2 ,...,w i)

Marcov chain

Methods

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$

$$(1)$$

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}}$$
 (5)

Marcov chain

Methods

$$V(s,\pi) = \mathbb{E}_s^{\pi} \left(\sum_{k=0}^{\inf} \gamma^k \cdot r(s_k, a_k) \right), s \in \mathbb{S}$$
 (1)

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}}$$
 (5)

Marcov chain

Methods

Learning Iterative Steps:

- Choose action $a_k(t) \sim \pi_k(t)$.
- Observe game outcome, e.g.,
 a_{-k}(t)
 u_k(a_k(t), a_{-k}(t)).
- Improve $\pi_k(t+1)$.

 $\begin{array}{c|c} a_k(t) & \\ \hline & a_k(t) \\ \hline & h(t) \\ \hline & (ii) \tilde{u}_k(t) \\ \end{array}$

Thus, we can expect that: $\forall k \in \mathcal{K}$,

$$\pi_k(t) \stackrel{t\to\infty}{\longrightarrow} \pi_k^*$$
 (1)

$$\bar{u}_k(\pi_k(t), \pi_{-k}(t)) \stackrel{t \to \infty}{\longrightarrow} \bar{u}_k(\pi_k^*, \pi_{-k}^*)$$
 (2)

where, $\pi^* = (\pi_1^*, \dots, \pi_K^*)$ is a NE strategy profile.

Genetic Algorithm

Methods

•

- S = SF12, BW125, 4/8, 17 dBm
- Input:
 - → Problem: $f(x) = max(x^2), x \in [0,32]$
 - * $x_1:01101_b$
 - $* x_2:11000_b$
 - * x₃:01000_b
 - $* x_4:10011_b$
- Method: Genetic algorithm
 - Generate a set of random possible solution
 - Test each solution and see how good it is (ranking)
 - 1. Remove some bad solutions
 - 2. Duplicate some good solutions
 - 3. Make small changes to some of them (Crossover, Mutation)
- Output:
 - → x₁: 01101 (169) (14.4)
 - → x₂: 11000 (576) (49.2)
 - → x₃: 01000 (64) (5.5)
 - → x₄: 10011 (361) (30.9)

Game theory

Methods

- → Players: K = {1,..., K}
- ⇒ Strategies: $S = S_1 \times ... \times S_K$
 - \rightarrow S_k is the strategy set of the k^{th} player.
- ightharpoonup Rewards: $u_k: S \longrightarrow R_+$ and is denoted by $r_k(s_k, s_{-k})$
 - ⇒ $s_{-k} = (s_1, ..., s_{k-1}, s_{k+1}, ..., s_K) \in S_1 \times ... \times S_{k-1} \times S_{k+1} \times ... \times S_K$

... (step 2)
Methods

2. First contribution | 2. Contagion process

... (step 3)
Methods

2. First contribution | 2. Contagion process

... (step 4)
Methods

Results

Comparison

Table 4

- Introduction
- 2. First contribution
- Conclusion

- Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- Discussion

Experimentation

Experimentation

- a
- 1111

Figure 7: .

- Introduction
- 2. First contribution
- Conclusion

- Related work
- Contagion process
- Experimentation
- 4. Results exploitation
- 5. Discussion

Results

Comparison

-

Figure 8: .

- Introduction
- 2. First contribution
- 3. Conclusion

- Related work
- Contagion process
- Experimentation
- Results exploitation
- 5. Discussion

Discussion

■ a

•

Figure 9: .

- Introduction
- First contribution
- 3. Conclusion

Conclusion

Our main goal was

Our main contribution was

....

Our main results was

111

3. Conclusion 24 / 25

Future Challenges

Conclusion

Our future goal was

3. Conclusion 25 / 25

Future Challenges

Conclusion

Our future goal was

100

Thank you!

3. Conclusion 25 / 25

References

[1]

- Marco Cattani, Carlo Boano, and Kay Römer. * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *. In: Journal of Sensor and Actuator Networks 6.2 (2017). 00042, p. 7 (p. 6).
- [2] B. Di Martino et al. " Internet of Things Reference Architectures, Security and Interoperability: A Survey ". In: Internet of Things 1-2 (Sept. 2018). 00006, pp. 99–112 (p. 6).