<u>SL</u>

LEVEL-I

9. It is desired to construct a right angled triangle ABC (\angle C = π /2) in xy plane so that it's sides are parallel to coordinates axis and the medians through A and B lie on the lines y = 3x+1 and y = mx +2 respectively. The values of 'm' for which such a triangle is possible is /are,

(A) 12

(B) 3/4

(C) 4/3

(D) 1/12

10. The equation of the line bisecting the obtuse angle between y - x = 2 and $\sqrt{3} y + x = 5$ is

(A)
$$\frac{y-x-2}{\sqrt{2}} = \frac{\sqrt{3}y+x-5}{2}$$

(B)
$$\frac{y+x-2}{\sqrt{2}} = \frac{\sqrt{3}y+x-5}{2}$$

(C) $\frac{-y+x+2}{\sqrt{2}} = \frac{\sqrt{3}y-x-5}{2}$

(D) none of these

11. If the intercept made on the line y = mx by the lines x = 2 and x = 5 is less then 5, then the range of m is

12.	The equations of three sides of a triangle are $x = 5$, $y - 2 = 0$ and $x + y = 9$. The coordinates of the circumcentre of the triangle are				
	(A) (6, 3)	(B) (6, -3)			
	(C) (-6, 3)	(D) none of these.			
13.	The equation of a straight line passing threqual length on the axes is (A) $2x + y + 1 = 0$ (C) $x - y + 5 = 0$	rough the point $(-2, 3)$ and making intercepts of (B) $x - y = 5$ (D) none of these			
14.	range of values of m is	the lines $y = 2$ and $y = 6$ is less than 5 then the			
	(A) $\left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{4}{3}, \infty\right)$	$(B)\left(-\frac{4}{3},\frac{4}{3}\right)$			
	(C) $\left(-\frac{3}{4}, \frac{3}{4}\right)$	(D) none of these			
15.	If a, c, b are in G.P then the line ax + by + c (A) has a fixed direction (B) always passes through a fixed point (C) forms a triangle with axes whose area is (D) none of these				
16.	If a ray travelling along the line $x = 1$ gets rethe line along which the reflected ray travels (A) $y = 0$ (C) $x = 0$	eflected from the line $x + y = 1$, then the equation is is (B) $x - y = 1$ (D) none of these			
17.	The equations of the lines representing t and $2x - 3y = 7$. The line $3x + 2y = 0$ always (A) incentre (C) circumcentre	he sides of a triangle are $3x - 4y = 0$, $x+y = 0$ s passes through the (B) centroid (D) orthocentre			
18.	If the lines $x = a + m$, $y = -2$ and $y = mx$ are (A) 0 (C) $2\sqrt{2}$	concurrent, the least value of $ a $ is (B) $\sqrt{2}$ (D) None of these			
19.	perpendicular to the line $y = 2x + k$ is (A) $x - 2y = 0$	ersection of the lines $2x + y = 3$ and $x + y = 1$ and (B) $x + 2y = 0$			
20.	·	(D) $y + x = 0$ s made by a line on the coordinate axes is 1/5,			
	then the line always passes through (A) (5, -5) (C) (-5, -5)	(B) (-5, 5) (D) (5, 5)			
21.	If $4a^2 + 9b^2 - c^2 + 12ab = 0$, a, b, $c \in R^+$, the concurrent at	nen the family of straight lines $ax + by + c = 0$ is			
	(A) (2, 3) (C) 2, -3)	(B) (-2, -3) (D) (-3, 2)			

(A) (-4/3, 4/3) (B) $(-\infty, -4/3) \cup (4/3, \infty)$ (C) [-4/3, 4/3) (D) none of these.

of straight lines

22.	its ordinate is decreased $y - x - 1 = 0$, its coordinate (A) $(-1, 1)$	and it reaches	at Q. If R is the mirr (B) (0, 0)	gh a distance 3√2 so that or image of Q in the line	
	(C) (6, 6)		(D) none of these		
23.	If the line $y = \sqrt{3} x$ cuts the (O being origin) equals	e curve $x^3 + y^2 + 3$	$3x^2 + 9 = 0 \text{ at the poin}$	ts A, B, C, then OA.OB.OC	
	(A) 36 (C) 108		(B) 72 (D) none of these		
24.	Let O be the origin, and le and x + y < 1, then (A) P lies either inside the (B) P cannot be inside the (C) P lies inside the ΔOAB (D) none of these	Δ OAB or in the th Δ OAB) is a point such that xy > 0	
25.			of sides AB, BC, CA respectively $x - 2 = 0$, thocentre of triangle lies on the line (B) $3x + y = 1$ (D) $x - 2y = 1$		
26.	The foot of the perpendict the x-axis and y-axis at A (A) 1: 3 (C) 1: 9			e origin is C if the line cuts	
27.	straight line $x + 2y = 0$ an	nd intersecting the			
28.	In what ratio does the po (-3, 16)? (A) 1:3 (externally) (B)			ning the points (1, 4) and (D) 3:1 (internally)	
29.	For what value of x will the (A) 1 (B) (e points (x, -1), (2			
30.	The angle between straight (A) 90° (B) 6	of lines $x^2 - y^2 - 2y$	$-1 = 0$ is (C) 75°	(D) 36 ⁰	
31.	The distance between the (A) 7/2 (B) 7		1 and 8x + 6y = 15 is (C) 4	(D) none of these	
32.	Find the length of the perp (A) 2 (B)	endicular from or $-2/\sqrt{10}$	igin to the straight line (C) $2/\sqrt{10}$	3x - y + 2 = 0 (D) none of these	
33.		f the lines given I	by $4x^2 + 2kxy - 7y^2 = 0$	is equal to the product of	
	the slopes then $k = (A) -4$ (B)	4	(C) -2	(D) 2	
34.	Find the value of k, so that	t the equation -2	$x^2 + xy + y^2 - 5x + y +$	k = 0 may represent a pair	

	(A) -2	(B) 2	(C) 0	(D) none of these
35.	The image of the poir (A) (3, 5)	nt (1, 3) in the line x + (B) (5, 3)	y - 6 = 0 is (C) $(1, -3)$	(D) (-1, 3)
36.		e origin to the points	of intersection of 2x	$^{2} + 3xy - 4x + 1 = 0$ and
	3x + y = 1 given by (A) $x^2-y^2-5xy = 0$	(B) $x^2 - y^2 + 5xy = 0$	(C) $x^2 + y^2 - 5xy = 0$	(D) $x^2 + y^2 + 5xy = 0$
37.	The distance between (A) 3 /10 (C) 33 /5	n the lines 3x + 4y =9 a	and 6x + 8y +15 =0 (B) 33 /10 (D) None of these	
38.		e three sides of a to cumcentre of the triano		+1=0 and x +2y =4. The
39.	If the lines y – x =5, 3 (A) 19/5 (C) 5/19	x +4y =1 and y =mx +	3 are concurrent then to (B) 1 (D) None of these	the value of m is
40.	A line passing througe equation (A) x + 2y =0 (C) x =2y	gh the origin and mak	ting an angle $\pi/4$ with (B) $2x = y$ (D) $y - 2x = 0$	the line y - 3x =5 has the
41.	The points (-1, 1) ar (A) $y + x = 0$ (C) $x + y = 1$	d (1, – 1) are symme	trical about the line (B) y =x (D) None of these	
42.		amily of lines (p +q)	x + (2p +q)y = p + 2c	q, where $p \neq 0$, $q \neq 0$, pass
	through the point (A) (3, – 1) (C) (1, 1)		(B) – 3 ,1) (D) None of these	
43.	The equation of straig $\cos^{-1}\left(-\frac{1}{3}\right)$ with the $\sin^{-1}\left(-\frac{1}{3}\right)$	•	through the point (1, 2)	and makes an angle
	(A) $2\sqrt{2} x + y - 2(\sqrt{2})$	(1+1) = 0	(B) $2x + \sqrt{2}y - \sqrt{2}$	= 0
	(C) $x + 2\sqrt{2}y - 2\sqrt{2}$	$\left(\sqrt{2}-1\right)=0$	(D) none of these	
44.	The quation of the lin (A) $x + y - 1 = 0$ (C) $x + y + 2 = 0$	e joining the points (–	1, 3) and (4, – 2) is (B) x + y +1 =0 (D) x + y – 2 =0	
45.	The equation of the li (A) $3x - y - 5 = 0$ (C) $3x + y + 5 = 0$	ne through (3, 4) and p	parallel to the line $y = 3$ (B) $3x + y - 5 = 0$ (D) $3x - y + 5 = 0$	x +5 is
46.	Locus of the point of $x \cos \alpha + y \sin \alpha = a a$ (A) $x^2 + y^2 = a^2$ (C) $x^2 + y^2 + 2x + 2y = a^2$	$\operatorname{nd} x \sin \alpha - y \cos \alpha = \alpha$	a $(\alpha \in R)$ is (B) $x^2 + y^2 = 2a^2$ (D) none of these	

47.	The quadratic equation whose roots are $(1, 1)$ and making a triangle of area A with a $(A) x^2 + Ax + 2A = 0$ $(C) x^2 - Ax + 2A = 0$	the x and y intercepts of the line passing through exes is (B) $x^2 - 2Ax + 2A = 0$ (D) None of these
48.	The area of the quadrilateral formed by y = (A) 1 (C) 3/2	: 1 – x, y = 2 – x and the coordinate axes is (B) 2 (D) None of these
49.	The incentre of the triangle formed by the li (A) $(0, 2 - \sqrt{2})$ (C) $(2 + \sqrt{2}, 0)$	nes y = x and y = 1 is (B) $(2 - \sqrt{2}, 0)$ (D) $(0, 2 + \sqrt{2})$
50.	If one vertex of an equilateral triangle is a length of each side is (A) $\sqrt{\frac{3}{2}}$ (B) $\sqrt{\frac{2}{3}}$	t (1, -2) and the base is $x + y + 2 = 0$, then the (C) $\frac{2}{3}$ (D) $\frac{3}{2}$
51.	Points on the line $x + y = 4$ that lie at a unit (A) (3, 1) and (-7, 11) (B) (-3, 7) and (-7, 11)	distance from the line 4x+ 3y-10=0 are 3, 7) and (2, 2) (D) none of these
52.	The locus of the mid-point of the portion $x \cos \alpha + y \sin \alpha = p$, where p is a constant (A) $x^2 + y^2 = 4p^2$ (C) $x^2 + y^2 = \frac{4}{p^2}$	on intercepted between the axes by the line is $ (B) \ \frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2} $ $ (D) \ \frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2} $
53.	The straight lines of the family x(a+b) + y (a (A) not concurrent (C) Concurrent at (1, 1)	(a-b) = 2a (a and b being parameters) are (B) Concurrent at (1, -1) (D) None of these
54.	If the sum of the distances of a point from its locus is (A) square (C) straight line	two perpendicular lines in a plane is 1, then (B) a circle (D) two intersecting lines
55.	If the line $y = mx$ meets the lines $x + 2y - 1$ m is equal to (A) 1 (C) 2	= 0 and $2x - y + 3 = 0$ at the same point, then (B) -1 (D) -2
56.	The area inclosed by $3 x + 4 y \le 12$ is (A) 6 squar units (C) 24 square units	(B) 12 sq. units (D) 36 square units
57.	If a, b, c are in A.P. then line 2ax + 3by + (A) (2, -2) (C) (3/2, -2)	3c = 0 always passes through fixed point (B) (3/2, 2) (D) none of these

58.	Equation $(3a - 2b)x^2 + (c -2a)y^2 + 2hxy$ perpendicular to each other then $(a - b)$ is $(A) b + c$ $(C) c - b$	= 0 represents pair of straight lines which are s equal to (B) b - c (D) 2c
59.	$ax + by + c = 0$ represents a line parallel to (A) $a = 0$, $b = 0$ (C) $a \neq 0$, $b = 0$	o x-axis if (B) $a = 0$, $b \ne 0$ (D) $c = 0$
60.	If the angle between the two straight lines rethen m equals to (A) 1/5 (C) 7/5	represented by $2x^2 + 5xy + 3y^2 + 7y + 4 = 0$ is $tan^{-1}m$ (B) 1 (D) 7
61.	The diagonals of a parallelogram PQRS 4bx – 2ay =100. Then PQRS must be a (A) rhombus (C) square	are along the straight lines ax + 2by = 50 and (B) rectangle (D) none of these
62.	The area enclosed by $ x + y = 1$ is (A) 1 (C) 3	(B) 2 (D) 4
63.	If the line $6x - y + 2 + k(2x + 3y + 13) = 0$ is (A) $-\frac{1}{3}$ (B) $\frac{1}{3}$	parallel to x-axis, then the value of k is $(C) -3$ $(D) 3$
64.	The straight line passing through the point and $2x + 5y - 9 = 0$ and having infinite slope (A) $x = 2$ (B) $3x + y - 1 = 0$	
65.	given by	and making angle 45° with the line $x + y = 0$ are $-y^2 + x - y = 0$ (D) $xy + x + y + 1 = 0$
66.	area 5 sq. units, then its equation is (A) $x + 5y \pm 5\sqrt{2} = 0$ (B) $x - 6$	= 0 and forms a triangle with coordinate axes of $-5y \pm 5 \sqrt{2} = 0$ $-y \pm 5\sqrt{2} = 0$
67.		ar form the point (2, 4) on the line x + y = 1 are (C) $\left(\frac{4}{3}, \frac{1}{2}\right)$ (D) $\left(\frac{3}{4}, -\frac{1}{2}\right)$
68.	The distance of the line $2x - 3y = 4$ from the	e point (1, 1) in the direction of the line $x + y = 1$ is
69.	If the point (2, a) lies between the lines x	x + y = 1 and $2(x + y) = 5$, then a lies between
70.	If mn = 1, then the lines mx + $y = 1$ and $y - y = 1$	nx = 2 will be

- 71. If the point $(2a-3, a^2-1)$ is on the same side of the line x + y 4 = 0 as that of the origin, then the set of values of a is
- 72. The set of lines ax + by + c = 0 where 3a + 2b + 4c = 0 is concurrent at the point
- 73. If the image of the point (-2, 1) by a line mirror be (2, -1) then the equation of the line mirror is
- 74. If the point (-2, 0), (-1, $1/\sqrt{3}$) and (cos θ , sin θ) are collinear then the cumber of values of $\theta \in [0, 2\pi]$.
 - (A) 0

(B) 1

(C) 2

- (D) infinite
- 75. If 'a' and 'b' are real numbers between 0 and 1 such that the points (a, 1), (1, b) and (0, 0) from an equilateral triangle then the values of 'a' and 'b' respectively
 - (A) $2 \sqrt{3}$, $2 \sqrt{3}$

(B) $-2 + \sqrt{3}$, $-2 + \sqrt{3}$

(C) $2 \pm \sqrt{3}$, $2 \pm \sqrt{3}$

- (D) none of these
- 76. If $f(x) = \begin{cases} \frac{\log(1+ax) \log(1-bx)}{x}, & x \neq 0 \\ -c, & x = 0 \end{cases}$

is continuous at x = 0, then the line ax + by + c = 0 passes through the point

(A) (1, -1)

(B) (-1, 1)

(C) (1, 1)

(D)(0,0)

1.

LEVEL-II

The centroid \equiv (1, 2), circumcentre \equiv (-2, 1) then co- ordinate of orthocentre is. (A) (4, 7) (B) (-4, 7) (C) (7, 4) (D) (5/2, 5/2)

2.	It the co- ordinates of vertices of a triangle are (0, 5), (1, 4) and (2, 5) then the co- ordinate of circumcentre will be.				
	(A) (1, 5) (B) $\left(\frac{3}{2}, \frac{9}{2}\right)$	(C) (1, 4)	(D) none of these		
3.	The equation of the image of (A) $ y = x + 2$ (C) $y = x - 2 $	pair of rays y =	= x by the line x = 1 is (B) y + 2 = x (D) none of these	S	
4.	If the line segment on lx + my the origin, then (A) a, n, I are in G.P	y = n² intercep	(B) I, m, n are in G.P		
5.	(C) I, m, n ² are in G.P If the line $y = \sqrt{3} x$ cuts the cu	ırve x ⁴ + ax ² y +	(D) I, n ² , m are in G.F - bxy + cx + dy + 6 =		
	OA.OB.OC.OD (where O is (A) a - 2b +c			(D) 6	
6.	A ray of light travelling alor refraction it enters the other equation of the line along v (A) $\sqrt{3}$ y - x +1 = 0 (C) $\sqrt{3}$ y + x -1 = 0				
7.	The coordinates of the point lines $ x = y $, is/are	(s) on the lin	ne $x + y = 5$, which	is/are equidistant from the	
	(A) (5, 0) (C) (-5, 0)		(B) (1, 4) (D) (0, -5)		
8.	If the point (a, a) falls betwee $(A) a = 2$ $(C) a < 1$	n the lines x +	y = 2, then (B) a =1 (D) a < 1/2		
9.	A line has intercepts a and coordinate axes are rotated to (A) p = a, q = b (C) p = -b, q = -a				
10.	Two sides of a rhombus OA	BC (lying enti	rely in first quadrant of	or fourth quadrant) of area	
	equal to 2 sq. units, are y =	$= \frac{x}{\sqrt{3}}, y = \sqrt{3}$	3 x . Then possible co	pordinates of B is / are ('O'	
	being the origin) (A) $(1+\sqrt{3}, 1+\sqrt{3})$ (C) $(\sqrt{3}-1, \sqrt{3}-1)$		(B) $\left(-1 - \sqrt{3}, -1 - \sqrt{3}\right)$	/ 3)	
	(C) $(\sqrt{3}-1, \sqrt{3}-1)$		(D) none of these		

13.	equation of the bised equation of side BC i	_	rriangle ABC is y = x.	If A is $(2, 6)$ and B is $(1, 1)$;
	(A) $2x + y - 3 = 0$ (C) $x - 6y + 5 = 0$	3	(B) $x - 5y + 4 = 0$ (D) none of these	
14.		e side $x + y - 2 = 0$ of	the equilateral triangle	e, with centroid at the origin;
	is (A) (-1,1) (C) (-2,-2)		(B) (2, 2) (D) none of these	
15.	$A = \left(\sqrt{1 - t^2} + t, \ 0\right) a$	and B = $\left(\sqrt{1-t^2} - t, \ 2t\right)$	t) are two variable po	oints where t is a parameter,
	the locus of the midd (A) a straight line (C) circle	le point of AB is	(B) a pair of straight (D) none of these	line
16.	The ends of a diago can be	nal of a square are (2	2 ,- 3) and (- 1 ,1). A	nother vertex of the square
	(A) (- 3/2, - 5/2) (C) (1/2, 5/2)		(B) (- 5/2, 3/2) (D) None of these	
17.		e three sides of a tria of the triangle lies on t		3x-2y +6 = 0 and $x + y =1$,
18.	The orthocentre of th $4x + 5y - 3 = 0$ lies a (A) (3/5, 11/5) (B) (5/6, 11/5)	e triangle formed by t t	he lines 2x ² + 3xy - 2 (B) (6/5, 11/5 (D) None of these	
19.	The number of lines to 6, is equal to 6, is	hat can be drawn fron	n the point (2, 3), so the	hat its distance from (-1,
	(A) 1 (C) 0		(B) 2 (D) infinite	
20.			origin and A is a point	on the x-axis), then centroid
	of the triangle will be (A) always rational (C) rational if A is rati (a point P(x, y) is sa		(B) rational if B is rat (D) never rational oth x and y are ration	
21.	Equation of a straigh $3x = 4y + 7$ and $5y =$		the point (4, 5) and	equally inclined to the lines
	(A) $9x - 7y = 1$ (C) $7x - 9y = 73$	127 + 0 13	(B) 9x + 7y = 71 (D) 7x - 9y + 17 = 0	
22.	Two vertices of a tria		2, 3). If the orthocentre	e of the triangle is the origin,
	(A) (-4, 7)	(B) (-4, -7)	(C) (4, -7)	(D) (4, 7)
23.		n are two mutually perp y = a. Then the area o		ng an isosceles triangle with

24.		-1), one moving 2 units along the line x + y = 1= 4. If the particles move towards increasing y
25.	The points (α, β) , (γ, δ) , (α, δ) and (γ, β) when (A) collinear (C) vertices of rhombus	ere α , β , γ , δ are different real numbers, are (B) vertices of square (D) concyclic
26.	A ray travelling along the line $3x - 4y = 5$ a line $5x + 12y = 13$. Then the equation of line (A) $x + 8y = 0$ (C) $32x + 4y = 65$	ofter being reflected from a line I travels along the e I is (B) x = 8y + 3 (D) 32x - 4y + 65 = 0
27.	A light ray emerging from the point source ply-axis and then passes through the point R (A) (0, 3) (C) (0, 5)	aced at P(2, 3) is reflected at a point 'Q' on the (5, 10). Co-ordinates of 'Q' is (B) (0, 2) (D) none of these
28.	Equation $ax^2 + 2hxy + by^2 = 0$ represents a pube obtained by reflecting these lines about to (A) $ax^2 - 2hxy + by^2$ (C) $bx^2 + 2hxy + ay^2$	pair of lines combined equation of lines that can the x-axis is (B) $bx^2 - 2hxy + ay^2 = 0$ (D) none of these
29.	Let A(x ₁ , y ₁), B(x ₂ , y ₂) and C(x ₃ , y ₃) be three different A.P.'s . Then these points (A) form an equilateral triangle (C) are concyclic	points such that abscissae and ordinates form 2 (B) are collinear (D) none of these
30.	family passing through P(α , β); where $\alpha = v$ $\beta = \int_{-1}^{1} (x - [x]) dx$; is (A) $3x + y - 1 = 0$	tents the family of line. Equation of line of this alues of 'x' where $\frac{x^2-1}{x^2+1}$ has the least value and (B) $x + y + 1 = 0$
31.	(C) $3x - 2y - 7 = 0$ The co-ordinates of the vertices of rectangle undergoes following '3' successive tranform a. $(x, y) \rightarrow (y, x)$ c. $(x, y) \rightarrow \left(\frac{x - y}{2}, \frac{x + y}{2}\right)$ Then the final figure formed will be	(D) none of these ABCD; where A(0, 0), B(4, 0), C(4, 2), D(0, 2) nations b. $(x, y) \rightarrow (x + 3y, y)$
	(A). a square (C) a rectangle	(B) a rhombus (D) a parallelogram

(A) 0 (C) 2

(A)(0,2)

(C)(-2, -2)

1.

2.

3.

LEVEL-III

concurrent with the straight line $x \sin \alpha - y \cos \alpha = 0$, then the value of $a^2 + b^2$ is

the line $x = \sqrt{3}y$, then the third vertex can be

y = x and B lies on the y = 2x is (A) $234x^2 + 153y^2 - 378xy - 32 = 0$ (C) $234x^2 + 153y^2 + 378xy + 32 = 0$

If the straight lines ax + by + p = 0 and x $\cos \alpha$ + y $\sin \alpha$ = p are inclined at an angle $\pi/4$ and

If one vertex of an equilateral triangle of side 2 is the origin and another vertex lies on

The locus of a point which divides a line segment AB = 4cm in 1:2, where A lies on the line

(D) none of these.

(B) $234x^2 + 153y^2 - 378xy + 32 = 0$

(D) None of these

(B) $\left(-\sqrt{3}, -1\right)$

(D) $(\sqrt{3}, 1)$

4.	All points lying inside the triangle formed by (A) $3x + 2y \ge 0$ (C) $2x - 3y - 12 \ge 0$	the points (1, 3), (5, 0) and (-1, 2) satisfy (B) $2x + y - 13 \ge 0$ (D) $-2x + y \ge 0$
5.	A family of lines is given by $(1 + 2\lambda)x + (1 + 2\lambda)x $	$(-\lambda)y + \lambda = 0$, λ being the parameter. The line tance from the point (1, 4) is (B) $12x + 33y = 7$ (D) none of these
	If A = (0, 1) and B(2, 0) be two points and 'P' ordinates of the point 'P' such that PA - PE (A) $\left(\frac{3}{20}, -\frac{14}{5}\right)$ (C) $\left(\frac{3}{20}, -\frac{12}{5}\right)$	
7.	Consider the points A (0, 1) and B (2, 0). 'P' be a the point 'P' such that $ PA - PB $ is maximum, is (A) $\left(\frac{-12}{5}, \frac{17}{5}\right)$ (C) $\left(\frac{-24}{5}, \frac{17}{5}\right)$	a point on the line $4 \times + 3 y + 9 = 0$ Co-ordinates of $(B) \left(\frac{24}{5}, \frac{-17}{5}\right)$ $(D) \left(\frac{12}{5}, \frac{-17}{5}\right)$
8.	A straight line passing through P (3, 1) meet the distance of this straight line from the origin 'O' is (A) $\frac{50}{3}$ sq. units (C) $\frac{25}{3}$ sq. units	
9.	Consider the points A (0, 1) and B (2, 0) P be a such that PA+ PB is minimum, is (A) (2/3, 2/3) (C) (1, $\frac{1}{2}$)	point on the line $y = x$. Co-ordinates of the point 'P' (B) $(3/2, 3/2)$ (D) $(-2, 2)$

- 19. If 3 a + 4 b + 2 c = 0, then the point of concurrent of the family of lines a x + b y + c = 0 and (1, 2) are
 - (A) on the same sides of the line 4x y + 1 = 0
 - (B) on the opposite side of the line 4x y + 1 = 0
 - (C) are at equal distances from the origin.
 - (D) None of these

20. If a, b, c are three consecutive integers, then the family of lines a x + b y + c = 0 are concurrent at the

(A) (1, 2) (C) (1, -2)

(B) (-2, 1)

(D) None of these

ANSWERS

1. 5. 9. 13. 17. 21. 23.	D C B C D B B	2. 6. 10. 14. 18. 22. 24.	D B A C B A	3. 7. 11. 15. 19.	A C A C B	8 1 1	3. 2. 6.	D D A A D
25.	C	26.	D					
27. 29.	A A	28. 30.	A A	31.	В	2	32.	С
33.	Ĉ	34.	D	35.	A			A
37.	В	38.	Ā	39.	C			C
41.	В	42.	Α	43.	Α			D
45.	Α	46.	В	47.	В	4		С
49.	Α	50.	В	51.	Α			
52.	В	53.	C	54.	Α			В
56.	С	57.	С	58.	В			В
60.	A	61.	A	62.	В			C
64.	A_	65.	D	66.	Α			В
68.	$\sqrt{2}$	69.	-1, 1/2	70.	1	7	' 1.	$a \in (-4, 2)$
72.	$\left(\frac{3}{2},\frac{1}{2}\right)$	73.	y = 2x	74.	В	7	' 5.	A
76.	С							

1. 5. 9. 15. 19. 23. 25. 29.	C C D C a^2 5 D B	2. 6. 10. 16. 20. 24. 26. 30.	A D A, B A D (2-\sqrt	3. 7. 13. 17. 21. $\sqrt{2}$, $\sqrt{2}-1$) and 27. 31.	C A B B A C C D	$+\frac{4}{\sqrt{5}},-1$	4. 8. 14. 18. 22. $+\frac{2}{\sqrt{5}}$ 28. 32.	A C C A B A D
LEVEL -III 1. 5. 9. 13. 17.	C B A D	2. 6. 10. 14. 18.	A D B C b	3. 7. 11. 15. 19.	A d D a A		4. 8. 12. 16. 20.	C A B A C