In [47]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

import tensorflow as tf
models = tf.keras.models
layers = tf.keras.layers
```

In [48]:

```
traindf = pd.read_csv('Google_Stock_Price_Train.csv')
testdf = pd.read_csv('Google_Stock_Price_Test.csv')
traindf.head()
```

Out[48]:

	Date	Open	High	Low	Close	Volume
0	1/3/2012	325.25	332.83	324.97	663.59	7,380,500
1	1/4/2012	331.27	333.87	329.08	666.45	5,749,400
2	1/5/2012	329.83	330.75	326.89	657.21	6,590,300
3	1/6/2012	328.34	328.77	323.68	648.24	5,405,900
4	1/9/2012	322.04	322.29	309.46	620.76	11,688,800

In [49]:

```
traindf = traindf.loc[:, ['Open']]
traindf.shape
```

Out[49]:

(1258, 1)

In [50]:

```
# Feature scaling

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

traindf = scaler.fit_transform(traindf)
```

```
In [51]:
```

```
# take data of prev 60 days
# xtrain has data with reference to past 60 days
# ytrain has current date data
xtrain = []
ytrain = []
# 1258 is the number of rows
for i in range(60, 1258):
    xtrain.append(traindf[i-60:i, 0])
    ytrain.append(traindf[i,0])
xtrain = np.array(xtrain)
ytrain = np.array(ytrain)
xtrain.shape, ytrain.shape
Out[51]:
((1198, 60), (1198,))
In [52]:
xtrain = xtrain.reshape(1198, 60, 1)
xtrain.shape
Out[52]:
(1198, 60, 1)
```

In [53]:

```
# MODEL

model = tf.keras.Sequential()

model.add(layers.SimpleRNN(units=50, activation='tanh', input_shape=(60,1)))

model.add(layers.Dense(units=1))

model.compile(optimizer='adam', loss='mse')
model.summary()
```

Model: "sequential_2"

In [54]:

In [56]:

```
# preparing test data

testdf = testdf.loc[:, ['Open']]

testdf = scaler.fit_transform(testdf)

xtest = []

for i in range(60, testdf.shape[0]):
    xtest.append(testdf[i-60, i])

xtest = np.array(xtest)

ypred = model.predict(xtest)
ypred = scaler.inverse_transform(ypred)
ypred
```

In []:
In []: