Lineer olmayan Denklemlerin Sayısal Çözümü

İKİYEBÖLME YÖNTEMİ

İkiye Bölme Yöntemi:

$$f(x) = 0 (1)$$

denklemini ele alalım. $x \in [a, b]$, eğer

$$f(a).f(b) < 0 \tag{2}$$

ise $f \in C[a, b]$ olduğundan (1) denkleminin [a, b] aralığında en az bir kökü vardır. (1) denkleminin çözümünün [a, b] aralığında olması için (2) koşulu yeter koşuldur.

 $a_0 = a, b_0 = b$ yazalım. $[a_0, b_0]$ aralığının orta noktası $c_0 = \frac{a_0 + b_0}{2}$ dir. Eğer $f(c_0) = 0$ ise, c_0 noktası (1) denkleminin çözümüdür.

$$x_* = c_0$$

Eğer $f(c_0) \neq 0$ ise, o halde f(x) fonksiyonunun c_0 noktasındaki $f(c_0)$ değerinin işareti $f(a_0)$ ve $f(b_0)$ değerlerinin işaretiyle karşılaştırılır. Eğer $f(a_0)f(c_0) < 0$ ise çözüm $[a_0,c_0]$ aralığında, $f(b_0)f(c_0) < 0$ ise çözüm $[c_0,b_0]$ aralığında oluyor. Denklemin çözümünü içeren yeni aralık $[a_1,b_1]$ olsun.

$$x \in [a_1, b_1]$$

Burada

$$a_1 = \begin{cases} c_0, & f(a_0)f(c_0) > 0\\ a_0, & f(a_0)f(c_0) < 0 \end{cases}$$
(3)

$$b_1 = \begin{cases} c_0, & f(b_0)f(c_0) > 0 \\ b_0, & f(b_0)f(c_0) < 0 \end{cases}$$
(4)

 $c_1 = \frac{a_1 + b_2}{2}$ olmakla $f(c_1)$ değerinin işareti $f(a_1)$ ve $f(b_1)$ değerlerinin işaretiyle karşılaştırılır. (3) ve (4) ifadelerine göre

$$signf(a_1) = signf(a_0)$$

$$signf(b_1) = signf(b_0)$$

ikiye bölme işlemini devam ettirerek k-ıncı yaklaşımda $x_* \in [a_k, b_k]$ elde ederiz.

$$c_k = \frac{a_k + b_k}{2}$$
 olmakla $f(a_k) f(c_k)$, $f(b_k) f(c_k)$ çarpımlarının işaretine göre $x_* \in [a_{k+1}, b_{k+1}]$

aralığını belirleyebiliriz. Buradan,

$$a_{k+1} = \begin{cases} c_k, & f(a_k)f(c_k) > 0 \\ a_k, & f(a_k)f(c_k) < 0 \end{cases}$$
 (3')

$$b_{k+1} = \begin{cases} c_k, & f(b_k)f(c_k) > 0 \\ b_k, & f(b_k)f(c_k) < 0 \end{cases}$$
(4')

 $[a_i, b_i], i = 0,1,2,...$ aralıklarının orta noktası olan c_i 'yi (1) denkleminin *i*-inci yaklaşımının değeri olarak alabiliriz. Eğer $|x^{(n+1)} - x^{(n)}| < \varepsilon$ ise, işlemler durdurulur ve $x_* = x^{(n+1)}$ olarak ele alınır.

İkiye bölme yönteminin hatası $\left|x_* - x^{(n+1)}\right| < \frac{b-a}{2^{n}+1}$ dir. Verilen ε kesinliğiyle çözümün bulunması için gerekli olan yaklaşım sayısını aşağıdaki gibi hesaplayabiliriz.

b-a=1 olsun. O halde ikiye bölme yönteminin hatası $\frac{1}{2^{n+1}}$ olur. Bu durumda $\frac{1}{2^{n+1}} < \varepsilon$ olması koşulunda $2^{n+1} > \frac{1}{2}$ yazabiliriz.

$$\log(2^{n+1}) > \log\left(\frac{1}{\varepsilon}\right)$$

$$(n+1)\log 2 > -\log \varepsilon$$

$$n+1 > -\frac{\log \varepsilon}{\log 2}$$

$$n > -\frac{\log \varepsilon}{\log 2} - 1$$

$$\varepsilon = 10^{-3}$$
 olduğu durumda $n > -\frac{\log 10^{-3}}{\log 2} - 1 = \frac{3}{\log 2} - 1$ elde ederiz.

 $f(x)=x^2-1-\sin x$ Denkleminin [0 , 5.5] aralığında çözümü İkiyebölme yönteminin yardımı ile $_{\cal E}=10^{-4}$ kesinliği ile kaç yaklaşımda bulunabilir?

Genel olarak $\mathbf{x_a}$ ve $\mathbf{x_{\ddot{u}}}$ aralığında fks sürekli ve $f(\mathbf{x_a})$ ile $f(\mathbf{x_{\ddot{u}}})$ 'nün işaretleri ters ise yani $f(\mathbf{x_a})$. $f(\mathbf{x_{\ddot{u}}}) < 0$ ise bu aralıkta bir kök vardır.

İkiye bölme yönteminde kökün bulunduğu aralık adım adım daraltılarak gerçek köke ulaşılmaya çalışılır.

f(x) = 0 'ı sağlayan kökün içinde bulunduğu aralığın alt ve üst değeri biliniyorsa bu iki değerin orta noktası için değeri bulunabilir.

$$x_o = \frac{x_a + x_{ii}}{2}$$

İşlem adımları

- Kökün bulunduğu aralık için x_a ve x_ü değerleri tahmin edilir ve f(xa).f(xü) < 0 şartı aranır.
- 2) Üst ve alt değerlerle orta değer (x_o) hesaplanır.

$$x_o = \frac{x_a + x_{ii}}{2}$$

- 3) f(x₀) değeri hesaplanır
 Eğer f(x₀) =0 ise kök x₀'dır.
 Eğer f(x₀) ≠ 0 ise işleme devam edilir
- 4) f(x_a) hesaplanır

5. a) y

f(x_a).f(x_o) > 0 ise

x_a yerine x_o yazılarak işleme
devam edilir

b)

f(x_a).f(x_o) < 0 ise

x_ū yerine x_o yazılarak işleme
devam edilir.

İşleme son verme

- f(x_o)=0 olunca işleme son verilir Kök x_o'dır.
- 2) $|\epsilon_t| < \epsilon_k$ ise işleme son verilir.

$$\varepsilon_{t} = \frac{\text{son deger - bir önceki deger}}{\text{son deger}} = \frac{x_{0,k+1} - x_{0,k}}{x_{0,k+1}}$$

ÖRNEK x-cosx=0 denkleminin çözümünü İkiye bölme yöntemi yardımı ile $\varepsilon=10^{-2}$ kesinliği ile bulunuz.

$$\mathbf{x} = cosx$$

denkleminin çözümünün yardımı ile belirleyebiliriz.

 $[0,\pi/2]$ aralığında olduğunu grafik

Gerçekten $f(x) = x - \cos x$ fonksiyonu için

$$f(0) = 0 - \cos 0 = -1 < 0$$

$$f(1) = 1 - \cos 1 = 0.4397 > 0$$

f(0)f(1)<0 elde edilir.

Yani denkleminin [0,1] aralığında çözümü vardır.

$$[a_0, b_0] = [0,1]$$
 $\Rightarrow c_0 = \frac{1}{2}(a_0, b_0) \Rightarrow c_0 = \frac{1}{2}(0+1) = 0.5$

$$a_0=0 c_0=0.5 b_0=1$$

$$f(c_0) = 0.5 - \cos 0.5 = -0.3776 < 0$$

$$[a_1, b_1] = [0.5, 1] \qquad \Rightarrow c_1 = \frac{1}{2}(a_1 + b_1) \quad \Rightarrow c_1 = \frac{1}{2}(0.5 + 1) = 0.75$$

$$|c_1 - c_0| = 0.25 > \varepsilon$$

$$f(c_1) = 0.75 - \cos 0.75 = 0.0183 > 0$$

$$c_1 = 0.5$$

$$c_1 = 0.75$$

$$b_1 = 1$$

$$[a_2, b_2] = [0.5, 0.75]$$
 $\Rightarrow c_2 = \frac{1}{2}(a_2 + b_2) \Rightarrow c_2 = \frac{1}{2}(0.5 + 0.75) = 0.625$

$$f(c_2) = 0.625 - \cos 0.625 = -0.1860 < 0$$

$$\left|c_2 - c_1\right| = 0.125 > \varepsilon$$

$$[a_3, b_3] = [0.625, 0.75]$$
 \Rightarrow $c_3 = \frac{1}{2}(a_3 + b_3)$ \Rightarrow $c_3 = \frac{1}{2}(0.625 + 0.75) = 0.6875$

$$f(c_3) = 0.6875 - \cos 0.6875 = -0.0853 < 0$$

$$\left| c_3 - c_2 \right| = 0.0625 > \varepsilon$$

$$\begin{bmatrix} a_4, b_4 \end{bmatrix} = \begin{bmatrix} 0.6875, 0.75 \end{bmatrix} \Rightarrow c_4 = \frac{1}{2}(a_4 + b_4) \Rightarrow c_4 = \frac{1}{2}(0.6875 + 0.75) = 0.71875$$

$$f(c_4) = 0.71875 - \cos 0.71875 = -0.03388 < 0$$

$$|c_4 - c_3| = 0.03125 > \varepsilon$$

$$[a_5, b_5] = [0.71875, 0.75]$$
 $\Rightarrow c_5 = \frac{1}{2}(a_5 + b_5) \Rightarrow c_5 = \frac{1}{2}(0.71875 + 0.75) = 0.734375$

$$f(c_5) = 0.734375 - \cos 0.734375 = -0.00787 < 0$$

$$|c_5 - c_4| = 0.015625 > \varepsilon$$

$$a_5 = 0.71875 \quad c_5 = 0.734375 \qquad b_5 = 0.75$$

$$[a_6, b_6] = [0.734375, 0.75] \implies c_6 = \frac{1}{2}(a_6 + b_6) \implies c_6 = \frac{1}{2}(0.734375 + 0.75) = 0.7421875$$

$$f(c_6) = 0.7422 - \cos 0.7422 = 0.0052 > 0$$

$$\left|c_6 - c_5\right| = 0.00781 < \varepsilon$$

Yani x = 0.7422