P8106_hw4_xh2395 Xin He 4/26/2020

Homework 4 problem 1 Description

This problem involves the Prostate data in the lasso2 package (see L5.Rmd). Use set.seed() for reproducible results.

Problem 1

a) Fit a regression tree

The lowest cross-validation error

```
ctrl = trainControl(method = "cv")
```


tree_fit\$bestTune

cp ## 8 0.003059592

tree_fit\$finalModel\$cptable

```
CP nsplit rel error
                     0 1.0000000
## 1 0.34710828
## 2 0.18464743
                     1 0.6528917
## 3 0.05931585
                     2 0.4682443
## 4 0.03475635
                     3 0.4089284
## 5 0.03460901
                     4 0.3741721
## 6 0.02156368
                     5 0.3395631
## 7 0.02146995
                     6 0.3179994
## 8 0.00000000
                     7 0.2965295
```

rpart.plot(tree_fit\$finalModel)

The tree size corresponds to the lowest cross-validation error is 8.

The 1 SE rule

tree_fit_2\$finalModel\$cptable

```
## CP nsplit rel error
## 1 0.34710828 0 1.0000000
## 2 0.18464743 1 0.6528917
## 3 0.07196474 2 0.4682443
```

rpart.plot(tree_fit_2\$finalModel)

The tree size obtained using the 1 SE rule is 3.

The two tree sizes obtained by different selection functions are different.

b) Choose one decision tree model

I choosed tree size 3 as it has a similar performance with size 8 and it is simpler.

rpart.plot(tree_fit_2\$finalModel)

The first terminal node in the plot: When the lcavol is smaller than -0.48 (firstly smaller than 2.5), the predicted value (or the mean of observations in this terminal node) is 0.6. This terminal node contains 9% training data observations.

c) Bagging

The lcavol is the most important variable in this bagging model.

Importance: lcavol > lweight > svi > pgg45 > lcp > age > lbph > gleason

d) Random Forests


```
#Randomly Selected Predictors 1 - 3 - 5
```


The lcavol is the most important variable in this random forests model.

Importance: lcavol > lweight > svi > lcp > pgg45 > age > lbph > gleason

e) Boosting

summary(gbm_fit\$finalModel, las = 2, cBars = 19, cex.names = 0.6)


```
##
               var
                     rel.inf
            lcavol 52.889150
## lcavol
## lweight lweight 18.401589
## svi
               svi 7.423689
## lcp
               lcp 6.096547
## pgg45
             pgg45
                    6.069915
## age
                    5.043442
               age
## lbph
              lbph
                   2.722959
## gleason gleason 1.352709
```

The lcavol is the most important variable in this boosting model.

 $Importance: \ lcavol > lweight > svi > lcp > pgg45 > age > lbph > gleason$

f) Compare Models

From the boxplots of RMSE in the cross-vaildation, we can see that ensemble methods (bagging, random forerst and boosting) have a better performance in the cross-vaildation than the simple decision tree model. Comparing means of RMSE of different models in the cross-vaildation, we choose the boosting model to predict PSA level as it has the lowest mean.

Homework 4 problem 2 Description

This problem involves the OJ data in the ISLR package. The data contains 1070 purchases where the customers either purchased Citrus Hill or Minute Maid Orange Juice. A number of characteristics of customers and products are recorded. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations. Use set.seed() for reproducible results.

Problem 2

a) Decision Tree

```
set.seed(2020)
train_ind = sample(seq_len(nrow(0J)), size = 800)
```

```
training = OJ[train_ind, ]
test = OJ[-train_ind, ]
```



```
ggplot(tree_fit_c, highlight = T)
```


tree_fit_c\$bestTune

cp ## 5 0.000911882

tree_fit_c\$finalModel\$cptable

```
CP nsplit rel error
##
## 1
     0.48666667
                       0 1.0000000
## 2
     0.035000000
                       1 0.5133333
## 3 0.030000000
                       3 0.4433333
## 4 0.013333333
                       4 0.4133333
     0.010000000
                      6 0.3866667
## 5
## 6 0.006666667
                      7 0.3766667
## 7 0.00444444
                      9 0.3633333
## 8 0.003333333
                     12 0.3500000
## 9 0.001666667
                      13 0.3466667
## 10 0.000911882
                      15 0.3433333
```

The plot of the final tree

```
rpart.plot(tree_fit_c$finalModel)
```


Predict the response on the test data

```
tree.pred = predict(tree_fit_c, newdata = test, type = "raw")
1 - sum(tree.pred == test$Purchase) / length(test$Purchase)
```

[1] 0.222222

Test classification error rate

The tree size is 16. The test classification error rate is 22.22% for this tree model.

b)Random forests

```
data = training,
    method = "ranger",
    tuneGrid = rf.grid2,
    metric = "ROC",
    trControl = ctrl2,
    importance = "impurity")
ggplot(rf_fit_c, highlight = T)
```


${\bf Report\ variable\ importance}$

The loyalCH is the most important variable in this random forest model.

The top 5 most important variables: LoyalCH > StoreID > PriceDiff > WeekofPurchase > SalePriceMM

Predict the response on the test data

```
rf.pred = predict(rf_fit_c, newdata = test, type = "raw")
1 - sum(rf.pred == test$Purchase) / length(test$Purchase)
```

[1] 0.1888889

Test classification error rate

The test classification error rate is 18.89% for this random forest model.

c) Boosting

Report variable importance

```
summary(gbm_fit_c$finalModel, las = 2, cBars = 19, cex.names = 0.6)
```


##		var	rel.inf
##	LoyalCH	LoyalCH	71.6453345
##	PriceDiff	PriceDiff	8.7405234
##	${\tt WeekofPurchase}$	${\tt WeekofPurchase}$	5.1302524
##	${\tt SalePriceMM}$	${\tt SalePriceMM}$	2.9255109
##	ListPriceDiff	${\tt ListPriceDiff}$	2.7745226
##	StoreID	${\tt StoreID}$	1.5965679
##	PriceMM	${\tt PriceMM}$	1.2252798
##	DiscCH	DiscCH	0.9690714
##	STORE	STORE	0.7891423
##	PctDiscMM	${\tt PctDiscMM}$	0.7772935
##	SpecialCH	SpecialCH	0.7691108
##	PriceCH	PriceCH	0.7125856
##	DiscMM	DiscMM	0.6929432
##	SalePriceCH	SalePriceCH	0.6244650
##	SpecialMM	${\tt SpecialMM}$	0.3479619
##	PctDiscCH	PctDiscCH	0.1737719
##	Store7Yes	Store7Yes	0.1056629

The loyalCH is the most important variable in this boosting model.

 $The \ top\ 5\ most\ important\ variables:\ LoyalCH>PriceDiff>WeekofPurchase>SalePriceMM>ListPriceDiff$

Predict the response on the test data

```
gbm.pred = predict(gbm_fit_c, newdata = test, type = "raw")
1 - sum(gbm.pred == test$Purchase) / length(test$Purchase)
```

[1] 0.1851852

Test classification error rate

The test classification error rate is 18.52% for this boosting model.