PAPER	
-------	--

1.

2.

					• • •	·II (C)	J F a	ge:	Lof.
		 		Sul	bjec	t Co	de:	BCS	3402
Roll No:									

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS	

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably

SECTION A

Atte	empt all questions in brief. $2 \times 7 = 14$
a.	Give the mathematical definition of DFA. Differentiate between NFA and DFA.
b.	Construct Deterministic Finite Automata (DFA) to accept string that always ends with 101 over alphabet $\Sigma = \{0,1\}$
c.	Give regular expressions that represent the language (L), which has all binary strings having two consecutive 0s and two consecutive 1s over the alphabet $\Sigma = \{0, 1\}$.
đ.	Compute the Language generated by the given CFG $G = (\{S\}, \{a, b\}, P, S\}$ where P is defined by: $\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \epsilon\}$
e.	Let G be the grammar $S \rightarrow 0B \mid 1A$ $A \rightarrow 0 \mid 0S \mid 1AA$ $B \rightarrow 1 \mid 1S \mid 0BB$ Determine the leftmost derivation for the string 00110101
f.	Explain the concept of two stack PDA. Give an example of a language that is accepted by two stack PDA but not accepted by normal one stack PDA.
g.	Explain Multi Tape Turing Machine.

SECTION B

Attempt any three of the following:

7 x 3 = 21

a Construct a Finite automata (DFA) which accepts all binary numbers whose decimal equivalent is divisible by 4 over Σ = {0, 1}.

b. Compute the regular expression using Arden's Theorem for the following DFA.

- c. Write an equivalent left linear grammar from the given right linear grammar.

 S→0A | 1B |

 A→0C | 1A | 0
 - B→IB|!A|1 C→0|0A
 - Differentiate between DPDA and NPDA. Construct a PDA that accepts language $L = \{a^n b^n \mid n \ge 1\}$.
- Differentiate between <u>Deterministic Turing machine</u> and Non-Deterministic Turing machine. Design a Turing machine for the language L={ww | w ε (a + b)*}.

1 | Paga

Printed Page: 2 of 3 Subject Code: BCS402

Roll No:

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS

M.MARKS: 70

SECTION C

4. Attempt any one part of the following:

 $7 \cdot x \cdot 1 = 7$

- a. State Pumping Lemma for Regular Language. Show that the given language L={a^p | Where p is a prime} is not regular.
- b. Discuss closure properties (i.e. union, concatenation, complement, intersection and difference) of regular language. https://www.aktuonline.com

5. Attempt any one part of the following:

 $7 \times 1 = 7$

a.	Reduce the given grammar $G = (\{S, A, B\}, \{a, b\}, P, S)$ to Chomsky Normal
Į	form. Where P is defined by
	S →bA aB
	$A \rightarrow bAA \mid aS \mid a$
	B →aBB bS b
b.	Design a CFG for the following language:
	(i) $L = \{0^m 1^n m \neq n \& m, n \geq 1\}$
	(ii) L= $\{a^p b^q c^r \mid p+q=r \& p, q>=1\}$

6. Attempt any one part of the following:

 $7 \times 1 = 7$

	a .	Construct PDA equivalent to the following CFG G = ({S, A}, {0,1}, P, S}	Ì
		where P is defined by:	ļ
		S →0S1 A	i
ļ		$A \rightarrow 1A0 \mid S \mid \varepsilon$	

	PAPER	ID-411411	

		Printed Page: 3 of 3		
		Subject	Code: BC	S402
Roll No:				

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS		MLMARKS: 70
b	Find the equivalent CFG of the following PDA	
	$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:	
	$\delta(q0, a, z0) = (q0, az0)$	
	$\delta(q0, a, a) = (q1, aa)$	
	$\delta(q1, a, a) = (q1, \varepsilon)$	
	$\delta(q1, \varepsilon, z0) = (q1, \varepsilon)$	

 $7 \times 1 = 7$ 7. Attempt any one part of the following: Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb.

Explain the any two of the following:

Universal Turing Machine. Post Correspondence Problem. ii.

A STANDARD OF THE STANDARD OF Recursive and recursively Enumerable Languages

https://www.aktuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने प्राने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से