Problem 1

Let $A \subseteq \mathcal{P}(\Omega)$ be a family of subsets satisfying

- (i) if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$;
- (ii) If $\{A_k\}_{k\geq 1}$ is a countable family of pairwise disjoint members of \mathcal{A} , then $\bigsqcup_{k\geq 1}A_k\in\mathcal{A}$.

Prove that A is a σ -algebra on Ω .

Problem 2

Consider the family $\mathcal{E}: \{(-\infty, b) \mid b \in \mathbb{R}\}$. Show that $\sigma(\mathcal{E}) = \mathcal{B}_{\mathbb{R}}$.

Problem 3

Let (Ω, \mathcal{M}) and (Λ, \mathcal{N}) be measurable spaces. We define the product σ -algebra on $\Omega \times \Lambda$ as

$$\mathcal{M} \otimes \mathcal{N} := \sigma \left(\{ E \times F \mid E \in \mathcal{M}, F \in \mathcal{N} \} \right).$$

Prove that $\mathcal{B}_{\mathbb{R}}\otimes\mathcal{B}_{\mathbb{R}}=\mathcal{B}_{\mathbb{R}^2}$.

Problem 4

Let (Ω, \mathcal{M}) and (Λ, \mathcal{N}) be measurable spaces. A map $f : \Omega \to \Lambda$ is \mathcal{M} - \mathcal{N} -measurable if $E \in \mathcal{N} \Rightarrow f^{-1}(E) \in \mathcal{M}$.

Let (Ω, \mathcal{M}) be a measurable space and suppose $E \in \mathcal{M}$. Show that $\mathcal{M}_E = \{M \cap E \mid M \in \mathcal{M}\}$ is a σ -algebra on E and the inclusion map $\iota : E \to \Omega$ is \mathcal{M}_E - \mathcal{M} -measurable.

Problem 5

Let (Ω, \mathcal{M}) and (Λ, \mathcal{N}) be measurable spaces. Suppose \mathcal{N} is generated as a σ -algebra by a family of subsets $\mathcal{E} \subseteq \mathcal{P}(\Lambda)$. Prove that a map $f: \Omega \to \Lambda$ is \mathcal{M} - \mathcal{N} -measurable if and only if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$. Conclude that a continuous function $f: X \to Y$ between metric spaces is \mathcal{B}_X - \mathcal{B}_Y -measurable.

Problem 6

Suppose (Ω, \mathcal{M}) is a measurable space and $f : \Omega \to \Lambda$ is a map. Show that $\mathcal{N} := \{E \subseteq \Lambda \mid f^{-1}(E) \in \mathcal{M}\}$ is a σ -algebra on Λ and f is \mathcal{M} - \mathcal{N} -measurable. \mathcal{N} is called the σ -algebra produced by f.

Problem 7

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space, and suppose $\{E_k\}_{k\geq 1}$ is a decreasing sequence of measurable sets with $\mu(E_1)<\infty$. Show that

$$\mu\left(\bigcap_{k\geq 1} E_k\right) = \lim_{k\to\infty} \mu(E_k)$$
$$= \inf_{k>1} \mu(E_k).$$

Problem 8

Let (Ω, \mathcal{M}) and (Λ, \mathcal{N}) be measurable spaces and suppose $f : \Omega \to \Lambda$ is measurable. If μ is a measure on \mathcal{M} , show that

$$f * \mu : \mathcal{N} \to [0, \infty]; f * \mu(E) := \mu(f^{-1}(E))$$

defines a measure on (Λ, \mathcal{N}) . This is called the push-forward measure.

Problem 9

A group G is paradoxical if there are pairwise disjoint subsets of G; $E_1, \ldots, E_n, F_1, \ldots, F_m$ and group elements $t_1, \ldots, t_n, s_1, \ldots, s_m$ such that

$$G = \bigsqcup_{j=1}^{n} t_{j} E_{j}$$
$$= \bigsqcup_{k=1}^{m} s_{k} F_{k}.$$

A mean on a group G is a finitely additive probability measure $\nu: \mathcal{P}(G) \to [0,1]$ that is translation invariant; that is, $\nu(tE) = \nu(E)$ for all $E \subseteq G$ and $t \in G$. A group is said to be amenable if it admits a mean.

Show that a paradoxical group is nonamenable.

Problem 10

Let Δ be a totally disconnected compact metric space (for example, the cantor set). Suppose $\varphi: C(\Delta) \to \mathbb{R}$ is a state — φ is linear, continuous, positive, and $\varphi(\mathbb{1}_{\Delta}) = 1$.

- (i) Show that $C := \{E \mid E \subseteq \Delta\}$ is an algebra of subsets on Δ .
- (ii) Show that

$$\mu_0: \mathcal{C} \to [0, 1]; \quad \mu_0(E) = \varphi(\mathbb{1}_E)$$

is a well-defined finitely additive measure.

(iii) If $\{E_k\}_{k\geq 1}$ is a countable family of members of C such that $\bigsqcup_{k\geq 1} E_k \in C$, show that

$$\mu_0\left(\bigsqcup_{k\geq 1}E_k\right)=\sum_{k=1}^\infty\mu_0(E_k).$$