MPSI2 Année 2021-2022

28 septembre 2021

Exercice 1. 1. Démontrer que, pour tout entier n, on a

$$\sum_{n=0}^{n} \binom{n}{p} 2^p = 3^n.$$

2. Démontrer que, pour tout entier n, on a

$$\sum_{k=1}^{2n} \binom{2n}{k} (-1)^k 2^{k-1} = 0.$$

Solution de l'exercice 1. 1. Pour tout entier n, on a $\sum_{p=0}^{n} {n \choose p} 2^p = \sum_{p=0}^{n} {n \choose p} 1^{n-p} 2^p = (1+2)^n$.

2. On a

$$\sum_{k=0}^{2n} \binom{2n}{k} (-1)^k 2^{k-1} = \frac{1}{2} \sum_{k=0}^{2n} \binom{2n}{k} (-1)^{2n-k} 2^k$$

car pour tout entier k, k et 2n-k ont même parité, ce qui nous donne

$$\sum_{k=0}^{2n} {2n \choose k} (-1)^k 2^{k-1} = \frac{1}{2} (-1+2)^{2n} = \frac{1}{2}.$$

On en déduit alors que

$$\sum_{k=1}^{2n} {2n \choose k} (-1)^k 2^{k-1} = \sum_{k=0}^{2n} {2n \choose k} (-1)^k 2^{k-1} - \frac{1}{2} = 0.$$

Exercice 2. Démontrer que tout entier $n \ge 2$ est un produit de nombres premiers.

Solution de l'exercice 2. Montrons par récurrence forte que la propriété (P_n) : "n est un produit de nombre premier" est vraie pour tout $n \ge 2$.

- Initialisation. 2 est un produit de nombre premier puisqu'il est lui-même un nombre premier.
- **Hérédité.** Soit $n \ge 0$ un entier fixé. Supposons que la propriété est vraie pour tout $k \le n$, i.e. que tout entier $k \le n$ est un produit de nombre premier. Montrons que la propriété est vraie au rang n + 1. Il y a alors deux possibilités (on procède ici à une disjonction de cas) :

- Si n+1 est un nombre premier alors la produit est satisfaite.
- Si n + 1 n'est pas un nombre premier alors il s'écrit comme un produit de deux nombres différents de 1 et de lui-même p et q. Autrement dit, on a n + 1 = pq avec p ≤ n et q ≤ n.
 Or, d'après l'hypothèse de récurrence forte, on sait que p et q sont des produits de nombres premiers. Puisque, n + 1 = pq, il est alors lui aussi un produit de nombres premiers.

Ceci achève de démontrer que la propriété est vraie au rang n+1.

• Conclusion. On a donc bien démontré que pour tout nombre entier $n \ge 2$ est un produit de nombres premiers.

Exercice 3. Soit $n \in \mathbb{N}$.

- 1. Pour quels entiers $p \in \{0, ..., n-1\}$ a-t-on $\binom{n}{p} < \binom{n}{p+1}$?
- 2. Soit $p \in \{0, ..., n\}$. Pour quelle(s) valeur(s) de $q \in \{0, ..., n\}$ a-t-on $\binom{n}{p} = \binom{n}{q}$?

Solution de l'exercice 3. 1. On fait le quotient des deux nombres :

$$\frac{\binom{n}{p}}{\binom{n}{p+1}} = \frac{n(n-1)...(n-p+1)}{p!} \times \frac{(p+1)!}{n(n-1)...(n-p+1)(n-p)} = \frac{p+1}{n-p}.$$

Ceci est inférieur strict à 1 si et seulement si

$$\frac{p+1}{n-p} < 1 \quad \Leftrightarrow \quad p < \frac{n-1}{2}.$$

2. La question précédente montre que la suite des coefficients binomiaux $\binom{n}{q}$ croît strictement avec q pour q allant de 0 à $\frac{n-1}{2}$ et on montrerait de la même façon qu'elle décroît strictement pour q allant de $\frac{n+1}{2}$ à n. L'égalité $\binom{n}{p} = \binom{n}{q}$ peut donc avoir lieu au plus pour deux valeurs de q, l'une avec q dans $0, \ldots, \frac{n-1}{2}$, l'autre avec q supérieur ou égal à $\frac{n+1}{2}$. Or, on a bien deux solutions, qui sont q = p et q = n - p. Ces solutions sont distinctes sauf si n = 2p. Et dans ce cas, il n'y a qu'une seule solution.

Exercice 4. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous $x, y \in \mathbb{R}$,

$$f(x) \times f(y) - f(x \times y) = x + y.$$

Solution de l'exercice 4. On va raisonner par analyse-synthèse en déterminant des conditions nécessaires sur f pour vérifier cette équation, puis en vérifiant que ces conditions sont suffisantes.

- Analyse. Soit f une fonction vérifiant cette équation. Alors, choisissant x = y = 0, on obtient $f(0)^2 f(0) = 0$, ce qui entraîne f(0) = 0 ou f(0) = 1. Choisissant ensuite x = 1 et y = 0, on a f(1)f(0) f(0) = 1, ce qui interdit f(0) = 0. On a donc f(0) = 1 (et aussi f(1) = 2). Enfin, fixant y = 0, on obtient que pour tout $x \in \mathbb{R}$, on a f(x) = x + 1. On a donc prouvé que si f est solution de l'équation, alors, pour tout $x \in \mathbb{R}$, f(x) = x + 1.
- Synthèse. Réciproquement, considérons la fonction f définie par f(x) = x + 1. Alors, pour tous $x, y \in \mathbb{R}$, on a

$$f(x) \times f(y) = (x+1)(y+1) = xy + x + y + 1$$

et

$$f(xy) = xy + 1$$

ce qui prouve bien que f est solution de l'équation.

En conclusion, l'équation admet une solution unique : la fonction f donnée par f(x) = x + 1.

Exercice 5. Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ en posant, pour $n\in\mathbb{N}$,

$$A_n = \sum_{k=0}^n a_k \quad \text{ et } \quad b_n = B_{n+1} - B_n$$

1. Démontrer que

$$\sum_{k=0}^{n} a_k B_k = A_n B_n - \sum_{k=0}^{n-1} A_k b_k.$$

2. En déduire la valeur de

$$\sum_{k=0}^{n} 2^k k.$$

Solution de l'exercice 5. 1. on pose $A_{-1} = 0$ et on a alors

$$\begin{split} \sum_{k=0}^{n} a_k B_k &= \sum_{k=0}^{n} (A_k - A_{k-1}) B_k \\ &= \sum_{k=0}^{n} A_k B_k - \sum_{k=0}^{n} A_{k-1} B_k \\ &= \sum_{k=0}^{n} A_k B_k - \sum_{k=0}^{n-1} A_k B_{k+1} \\ &= A_n B_n + \sum_{k=0}^{n-1} A_k (B_k - B_{k+1}) \\ &= A_n B_n + \sum_{k=0}^{n-1} A_k b_k \ . \end{split}$$

2. On pose $a_k=2^k$ et $B_k=k$. Alors $A_n=2^{n+1}-1$ et $b_k=1$. On en déduit que

$$\sum_{k=0}^{n} k 2^{k} = (2^{n+1} - 1)n - \sum_{k=0}^{n-1} (Z^{k+1} - 1)$$
$$= (2^{n+1} - 1)n - 2(2^{n} - 1) + n$$
$$= 2^{n+1}(n-1) + 2.$$