

Sistemi elettronici a basso consumo

Relazioni di laboratorio

Laurea Magistrale in Ingegneria Elettronica Orientamento: Sistemi Elettronici

Gruppo n. 9

Autori:

Favero Simone, Micelli Federico, Spanna Francesca

Contents

1	Lab	oratorio 1	2
	1.1	Calcolo di probabilità e attività: porte logiche elementari	2
	1.2	Calcolo di probabilità e attività: half adder e full adder	4
	1.3	MUX: generazione e propagazione di glitch	5

Laboratorio 1

1.1 Calcolo di probabilità e attività: porte logiche elementari

Il primo esercizio consiste nel valutare le probabilità e attività di quattro porte logiche elementari: NOT, AND, OR e XOR.

Mentre la probabilità di uscita del gate è definita dalla funzione logica stessa, la switching activity è valutata allo stesso modo per tutti i casi, mediante la seguente formula:

$$A = 2 \cdot P1 \cdot (1 - P0)$$

Di seguito è riportata l'analisi delle porte logiche richieste, considerando ingressi equiprobabili e scorrelati.

• NOT

$$P(Y = 1) = 1 - P(A = 1) = 0.5$$

 $A(Y) = 0.5$

• AND

$$P(Y = 1) = P(A = 1) \cdot P(B = 1) = 0.25$$

 $A(Y) = 0.375$

• OR

$$P(Y = 1) = 1 - ((1 - P(A = 1)) \cdot (1 - P(B = 1))) = 0.75$$

 $A(Y) = 0.375$

• XOR

$$P(Y = 1) = P(A = 1) \cdot (1 - P(B = 1)) + P(B = 1) \cdot (1 - P(A = 1)) = 0.5$$

 $A(Y) = 0.5$

Simulando il test bench fornito tramite ModelSim è possibile ottenere un file riportante il numero di commutazioni di ogni segnale del circuito durante il tempo di simulazione.

Il testbench fornito sfrutta un generatore di numeri casuali per generare gli ingressi delle porte, rendendo questi ultimi equiprobabili e statisticamente indipendenti.

In particolare, è possibile ricavare la switching activity delle uscite dividendo il numero di commutazioni per il numero di cicli di clock simulati.

Sono riportati i seguenti valori:

Tc(CK)	Tc(INV)	Tc(AND)	Tc(OR)	Tc(XOR)
20	1	0	4	4
200	43	40	42	44
2000	533	418	352	470
20000	4916	3606	3784	4876
200000	49967	37834	37541	49939

E' possibile stimare la switching activty dividendo il numero di commutazioni di un nodo per il numero di colpi di clock della relativa simulazione.

Dal momento che il parametro Tc si riferisce al numero totale di commutazioni, il numero di cicli di clock è ottenuto dividendo per due tale parametro.

I risultati dei calcoli sono riportati nella seguente tabella.

Tc(CK)	Tc(INV)	Tc(AND)	Tc(OR)	Tc(XOR)
20	0.1	0	0.4	0.4
200	0.43	0.40	0.42	0.44
2000	0.533	0.418	0.352	0.470
20000	0.4916	0.3606	0.3784	0.4876
200000	0.4997	0.3738	0.3754	0.4939

Per garantire una migliore visualizzazione dei dati ottenuti al variare del tempo di simulazione, sono stati realizzati i seguenti grafici.

Si osserva che all'aumentare del tempo di simulazione la stima dell'attività risulta a man mano più accurata. In particolare, nel caso analizzato, si osserva che per un numero di cicli di clock superiore a 10000, i dati sono confrontabili con quelli teorici.

1.2 Calcolo di probabilità e attività: half adder e full adder

Dalle tavole di verità di Half Adder e Full Adder si ottengono le seguenti funzioni:

• Half adder

$$S = A XOR B$$

 $Cout = A AND B$

• Full adder

```
S = A XOR B XOR Cin

Cout = A AND B AND Cin
```

Partendo dalle funzioni delle uscite è stato possibile ricavare le probabilità associate alle uscite e le relative attività.

• Half adder

$$\begin{split} P(S=1) &= P(A=1) \cdot ((1-P(B=1)) + P(B=1) \cdot (1-P(A=1)) \\ P(Cout=1) &= P(A=1) \cdot P(B=1) \\ A(S) &= 2 \cdot P(S=1) \cdot (1-P(S=1)) \\ A(Cout) &= 2 \cdot P(Cout=1) \cdot (1-P(Cout=1)) \end{split}$$

• Full adder

```
\begin{array}{l} P(S=1) = P(A=1) \cdot (1 - P(B=1)) \cdot (1 - P(Cin=1)) + \\ P(B=1) \cdot (1 - P(A=1)) \cdot (1 - P(Cin=1)) + \\ P(Cin=1) \cdot (1 - P(A=1)) \cdot (1 - P(B=1)) + \\ P(A=1) \cdot P(B=1) \cdot P(Cin=1) \ P(Cout=1) = A(S) = A(COut) = \\ \end{array}
```

1.3 MUX: generazione e propagazione di glitch

L'obiettivo di questo esercizio è lo studio delle conseguenze introdotte dai ritardi delle porte, in particolare all'interno del multiplexer nella seguente figura.

In questo caso particolare tutte le porte sono esenti da ritardi fatta eccezione per l'inverter, caratterizzato da un ritardo di propagazione di $0.1~\rm ns.$

All'interno del file tb_mux21_glitch.vhd è stato possibile identificare la combinazione dei segnali di ingresso con i quali il multiplexer è stato testato.

```
A <= '1';
B <= '1';
S <= '1', '0' after 1 ns;
```

In particolare è possibile notare dal codice VHDL sopra riportato che inizialmente gli ingressi assumono tutti un valore logico alto. Dopo 1ns il segnale S commuta. L'uscita in un caso ideale non dovrebbe presentare commutazioni.

Si ipotizza che, a causa del ritardo di propagazione introdotto dall' inverter, vi è un intervallo temporale in cui i nodi interni X e Z assumono entrambi un valore logico basso, portando quindi l'uscita a Ω

Attraverso una simulazione ModelSim è stato possibile osservare attraverso le waveforms il comportamento reale dei segnali. Il risultato di tale simulazione è riportato nella seguente immagine.

E' possibile visualizzare direttamente sulla waveform dell'uscita Y il glitch causato dall'inverter. Tale comportamento è in linea con quanto atteso.

Al fine di analizzare altre possibili combinazioni degli ingressi che possano generare un glitch in uscita è stata realizzata una mappa di Karnaugh rappresentante la funzione logica del multiplexer.

MAPPA DI CARNO'

In particolare è possibile notare come, al fine di coprire la mappa con il circuito in figura X, siano stati coperti i due implicanti rappresentati sulla mappa stessa. In particolare il glitch analizzato è dovuto ad una transizione degli ingressi che consegue in un passaggio tra un implicante e l'altro. Tale problema potrebbe essere risolto andando a coprire, in modo ridondante, con un terzo implicante per evitare la transizione precedentemente trattata.

Tale ragionamento porta alla conclusione che l'unica combinazione in grado di causare un glitch in uscita sia quella presa in analisi.

Essendo i glitch associati a commutazioni di nodi, questi portano un contributo aggiuntivo al consumo totale di potenza dinamica. In particolare l'energia sprecata durante queste commutazioni spurie è la somma dei consumi durante le due transizioni del segnale. Ciascuna delle due contribuisce alla potenza secondo la seguente equazione:

$$E=C\cdot V^2$$

Dove C rappresenta la capacità di carico e V la tensione a cui viene caricata tale capacità. Metà di tale contributo di energia è usata per caricare o scaricare la capacità di carico associata all'uscita, mentre la restante parte viene dissipata. Di conseguenza il consumo di energia totale associato ad un glitch è dato da:

$$E = 2 \cdot C \cdot V^2$$