

AO3401

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO3401 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = -30V$

 $I_D = -4.2 A$

 $R_{DS(ON)}$ < 50m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 65m Ω (V_{GS} = -4.5V)

 $R_{DS(ON)}$ < 120m Ω (V_{GS} = -2.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	-30	V	
Gate-Source Voltage		V_{GS}	±12	V	
Continuous Drain	T _A =25°C		-4.2		
Current ^A	T _A =70°C	I_D	-3.5	Α	
Pulsed Drain Current ^B		I _{DM}	-30		
	T _A =25°C	P _D	1.4	W	
Power Dissipation A	T _A =70°C	' D	1	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A	t ≤ 10s	В	65	90	°C/W	
Maximum Junction-to-Ambient ^A	Steady-State	R_{\thetaJA}	85	125	°C/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	43	60	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC F	STATIC PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V	
I _{DSS} Z	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μА	
		T _J =55°C			-5	μΛ	
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-0.7	-1	-1.3	V	
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-25			Α	
		V _{GS} =-10V, I _D =-4.2A		42	50	mΩ	
D C	Static Drain-Source On-Resistance	T _J =125°C			75	11122	
$R_{DS(ON)}$	Static Drain-Source On-Nesistance	V_{GS} =-4.5V, I_D =-4A		53	65	mΩ	
		V_{GS} =-2.5V, I_D =-1A		80	120	mΩ	
9 _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-5A	7	11		S	
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.75	-1	V	
Is	Maximum Body-Diode Continuous Current				-2.2	Α	
DYNAMIC	PARAMETERS		•	•	-		
C _{iss}	Input Capacitance			954		pF	
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		115		pF	
C _{rss}	Reverse Transfer Capacitance			77		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		6		Ω	
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge			9.4		nC	
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-4A		2		nC	
Q_{gd}	Gate Drain Charge			3		nC	
$t_{D(on)}$	Turn-On DelayTime			6.3		ns	
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3.6 Ω ,		3.2		ns	
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =6 Ω		38.2		ns	
t_f	Turn-Off Fall Time			12		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4A, dI/dt=100A/μs		20.2		ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-4A, dI/dt=100A/μs		11.2		nC	

A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

10

Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

SOT-23 Package Data

SYMBOLS	DIMENSIONS IN MILLIMETERS				
	MIN	NOM	MAX		
A	1.00		1.25		
A1	0.00		0.10		
A2	1.00	1.10	1.15		
b	0.35	0.40	0.50		
C	0.10	0.15	0.25		
D	2.80	2.90	3.04		
E	2.60	2.80	2.95		
E1	1.40	1.60	1.80		
e		0.95 BSC			
e1		1.90 BSC			
L	0.40		0.60		
θ1	1°	5°	8°		

- NOTE:

 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN.
 THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD

 2. TOLERANCE ± 0.100 mm (4 mil) UNLESS OTHERWISE
 SPECIFIED

 3. COPLANARITY: 0.1000 mm

 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

RECOMMENDED LAND PATTERN

NOTE:
P N - PART NUMBER CODE.
D - YAER AND WEEK CODE.
L N - ASSEMBLY LOT CODE, FAB AND
ASSEMBLY LOCATION CODE.

SOT-23 PART NO. CODE

