

(19) BUNDESREPUBLIK **DEUTSCHLAND**

(f) Int. Cl.⁷: C 07 D 239/46

C 07 D 239/47 C 07 D 295/16 A 61 K 31/505

DEUTSCHES PATENT- UND MARKENAMT

- ② Aktenzeichen: 198 51 421.2 ② Anmeldetag: 7.11.1998 43 Offenlegungstag:
 - 11. 5.2000

(7) Anmelder:

Boehringer Ingelheim Pharma KG, 55218 Ingelheim, DE

② Erfinder:

Lehmann-Lintz, Thorsten, Dipl.-Chem. Dr., ., ZZ; Nar, Herbert, Dipl.-Chem. Dr., 88441 Mittelbiberach, DE; Wienen, Wolfgang, Dipl.-Biol. Dr., 88400 Biberach, DE; Stassen, Jean Marie, Dipl.-Chem. Dr., 88447 Warthausen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Neue Pyrimidine, deren Herstellung und Verwendung
- Die vorliegende Erfindung betrifft neue Pyrimidine der allgemeinen Formel

$$R_{a} = N N N X - A - R_{c} , (I)$$

in der

Ra bis Rd, A und X wie in Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, welche wertvolle Eigenschaften aufweisen, deren Herstellung, die die pharmakologisch wirksamen Verbindungen enthaltende Arzneimittel und deren Verwendung.

Die Verbindungen der obigen allgemeinen Formel I, in denen R_c eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine antithrombotische Wirkung

Beschreibung

Gegenstand der vorliegenden Erfindung sind neue Pyrimidine der allgemeinen Formel

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen.

Die Verbindungen der obigen allgemeinen Formel I, in denen R eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, und die Verbindungen der obigen allgemeinen Formel I, in denen R_c eine Amino-, 2-Amino-1H-imidazolyl- oder R_l NH-C(=NH)-Gruppe darstellt, sowie deren Tautomere und deren Stereoisomere weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung, welche auf einer Thrombin-hemmenden Wirkung beruht.

Gegenstand der vorliegenden Anmeldung sind somit die neuen Verbindungen der obigen allgemeinen Formel I sowie deren Herstellung, die die pharmakologisch wirksamen Verbindungen enthaltende Arzneimittel und deren Verwendung. In der obigen allgemeinen Formel bedeutet

 R_a ein Wasserstoffatom, eine gegebenenfalls durch eine Carboxy- oder C_{1-3} -Alkoxycarbonylgruppe substituierte C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe,

 R_b eine gegebenenfalls durch eine Phenyl- oder $C_{5.7}$ -Cycloalkylgruppe substituierte $C_{1.3}$ -Alkylgruppe, eine $C_{4.7}$ -Alkylgruppe oder eine $C_{5.7}$ -Cycloalkylgruppe, wobei die vorstehend erwähnten Cycloalkylgruppen durch 1 oder 2 $C_{1.3}$ -Alkylgruppen, durch eine Carboxy-, $C_{1.3}$ -Alkoxycarbonyl-, Carboxy- $C_{2.3}$ -alkylaminocarbonyl- oder $C_{1.3}$ -Alkoxycarbonyl- $C_{1.3}$ -Alkoxycarbonyl- oder Bromatome, durch Trifluormethyl-, $C_{1.3}$ -Alkyl- oder $C_{1.3}$ -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können,

eine durch eine C_{1-6} -Alkyl- oder C_{5-7} -Cycloalkylgruppe substituierte Carbonylgruppe, eine durch 1 oder 2 Phenylgruppen substituierte C_{2-4} -Alkanoylgruppe, eine durch eine Phenyl-, Thienyl-, Oxazol-, Thiazol-, Imidazol-, Pyrimidinyl-, Pyrimidinyl-, Pyrazinyl- oder Pyridazinylgruppe substituierte Carbonylgruppe, wobei die vorstehend erwähnten heteroaromatischen Gruppen jeweils durch C_{1-3} -Alkyl- oder Phenylgruppen und die vorstehend erwähnte Phenylgruppe durch Fluor-, Chlor- oder Bromatome, durch Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können,

eine C_{1-6} -Alkylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl- oder C_{5-7} -Cycloalkylaminocarbonylgruppe, in denen jeweils die Alkyl-, Cycloalkyl- und Cycloalkenylteile durch R_2 substituiert sind und zusätzlich die vorstehend erwähnten Alkyl- und Cycloalkylteile durch 1 oder 2 C_{1-3} -Alkylgruppen substituiert sein können, oder eine Phenylaminocarbonylgruppe, die im Phenylteil durch Fluor-, Chlor- oder Bromatome, durch Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, in denen R_2 ein Wasserstoffatom,

45 eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe, eine C₁₋₃-Alkylaminocarbonyl-, Di- (C₁₋₃-Alkyl)-aminocarbonyl-, N-(Phenyl-C₂₋₃-alkyl)-N-(C₁₋₃-alkyl)-aminocarbonyl-, C₄₋₆-Cycloalkyleniminocarbonyl-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N-(C₁₋₃-Alkyl)-piperazinocarbonylgruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Carboxyoder C₂₋₃-Alkoxycarbonylgruppe substituiert sein kann,

R_c eine Cyano-, Amino-, (2-Amino-1H-imidazol-4-yl)- oder eine RINH-C(=NH)-Gruppe, in der R₁ ein Wasserstoffatom, eine Hydroxygruppe, eine C₁₋₃-Alkylgruppe oder einen in vivo abspaltbaren Rest darstellt, R_d ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

A eine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte Phenylengruppe, eine C₃₋₇-Cycloalkylengruppe oder eine gegebenenfalls im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe substituierte Thienylen-, Oxazolylen-, Thiazolylen-, Imidazolylen-, Pyridinylen-, Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe und

X ein Sauerstoff- oder Schwefelatom, eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Methylen- oder - NH-Gruppe.

Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxmethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C_{1-6} -Alkanol, ein Phenyl- $C_{1.3}$ -alkanol, ein C_{1-9} -Cycloalkanol, wobei ein C_{5-8} -Cycloalkanol zusätzlich durch ein oder zwei C_{1-3} -Alkylgruppen substituiert sein kann, ein C_{5-8} -Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Phenyl- C_{1-3} -alkyl-, Phenyl- C_{1-3} -alkoxycarbonyl- oder C_{2-6} -Alkanoyl-gruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C_{1-3} -Alkylgruppen substituiert sein kann, ein C_{4-7} -Cycloalkenol, ein C_{3-5} -Alkenol, ein Phenyl- C_{3-5} -alkenol, ein C_{3-5} -Alkinol oder Phenyl- C_{3-5} -alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein C_{3-8} -Cycloalkyl- C_{1-3} -alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoffatomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C_{1-3} -Alkylgruppen substituiert sein kann,

ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

R_3 -CO-O-(R_4 C R_5)-OH,

in dem	5
R ₃ eine C ₁₋₆ -Alkyl-, C ₅₋₇ -Cycloalkyl-, Phenyl- oder Phenyl-C ₁₋₃ -alkylgruppe, R ₄ ein Wasserstoffatom, eine C ₁₋₃ -Alkyl-, C ₅₋₇ -Cycloalkyl- oder Phenylgruppe und	
R ₅ ein Wasserstoffatom oder eine C ₁₋₃ -Alkylgruppe darstellen,	
oder unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie die Benzoyl- oder Pyridinoylgruppe oder eine C ₁₋₁₆ -Alkanoylgruppe wie die Formyl-, Acetyl-, Pro-	10
pionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine Allyloxycarbonylgruppe, eine C_{1-16} -Alkoxycarbonylgruppe wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert. Butox-	
ycarbonyl-, Penioxycarbonyl-, Hexoxycarbonyl-, Octyloxycarbonyl-, Nonyloxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl- oder Hexadecyloxycarbonylgruppe, eine Phenyl- $C_{1.6}$ -alkoxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyl- oder Phenylpropoxycarbonylgruppe, eine $C_{1.3}$ -Alkylsulfonyl- $C_{2.4}$ -alk-	
oxycarbonyl-, C ₁₋₃ -Alkoxy-C ₂₋₄ -alkoxy-Ca-alkoxycarbonyl- oder R ₃ CO-O-(R ₄ CR ₅)-O-CO-Gruppe, in der R ₃ bis R ₅ wie vorstehend erwähnt definiert sind,	15
zu verstehen,	
Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr	
als 2 Kohlenstoffatome enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tertButyl-, Isobutylgruppe etc. ein.	20
Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen	
R _a bis R _d , und A wie vorstehend erwähnt definiert sind und	
X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C2-3-Alkylgruppe substituierte -NH-Gruppe	
bedeutet, deren Tautomere, deren Stereoisomere und deren Salze.	25
Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen	
R_a ein Wasserstoffatom, eine gegebenenfalls durch eine Carboxy- oder C_{1-3} -Alkoxycarbonylgruppe substituierte C_{1-3} -	
Alkylgruppe,	
R _b eine C ₁₋₅ -Alkylgruppe, eine durch eine Phenyl- oder Cyclohexylgruppe substituierte C ₁₋₃ -Alkylgruppe, eine Cyclohexylgruppe substituierte C ₁₋₃ -Alkylgruppe substituierte C ₁₋₃ -Alk	30
hexyl-, Methylcyclohexyl- oder Dimethylcyclohexylgruppe, eine durch eine C ₁₋₄ -Alkyl-, Cyclopentyl- oder Cyclohexylgruppe substituierte Carbonylgruppe, eine durch 1 oder 2 Phe-	
nylgruppen substituierte Acetylgruppe, eine durch eine Phenyl- oder Oxazolgruppe substituierte Carbonylgruppe, wobei	
die vorstehend erwähnte heteroaromatische Gruppe durch Methyl- oder Phenylgruppen und die vorstehend erwähnte	
Phenylgruppe durch C ₁₋₃ -Alkyl- oder C ₁₋₃ -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils	35
gleich oder verschieden sein können,	
eine C ₁₋₅ -Alkylaminocarbonyl-, Phenyl-C ₁₋₃ -alkylaminocarbonyl-, Cyclopentylaminocarbonyl-, Cyclohexylaminocarbonyl- oder Methylcyclohexylaminocarbonylgruppe, in denen jeweils die Alkyl- und Cycloalkylteile durch R ₂ substitu-	
iert sind, oder eine Phenylaminocarbonylgruppe, die im Phenylteil durch Fluor-, Chlor- oder Bromatome, durch Methyl-	
oder Methoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, in	40
denen	
R ₂ ein Wasserstoffatorn,	
eine Carboxy- oder C-Alkoxycarbonylgruppe,	
eine $C_{1\cdot3}$ -Alkylaminocarbonyl-, Di- $(C_{1\cdot3}$ -Alkyl)-amino-, N-(Phenyl- $C_{1\cdot3}$ -alkyl)-N-($C_{1\cdot3}$ -alkyl)-aminocarbonyl-, $C_{4\cdot6}$ -Cycloalkyleniminocarbonyl-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N-($C_{1\cdot3}$ -Alkyl)-piperazinocarbonyl-	45
gruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Carboxy- oder	
$C_{1.3}$ -Alkoxycarbonylgruppe substituiert sein kann,	
Re eine Cyano- oder eine R ₁ NH-C(=NH)-Gruppe, in der R ₁ ein Wasserstoffatom, eine Hydroxygruppe, eine C ₁₋₃ -Alkyl-	
gruppe darstellt,	
R_d eine C_{1-3} -Alkylgruppe, A eine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -	50
A time time gegeoenemans durch ein Fluor-, Chior- oder Bromatom, durch eine Trinuormetnyi-, C ₁₋₃ -Aikyi- oder C ₁₋₃ -Alkoxygruppe substituierte Phenylengruppe und	
X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine $C_{1.3}$ -Alkylgruppe substituierte -NH-Gruppe	
bedeuten,	
deren Tautomere, deren Stereoisomere und deren Salze.	55
Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I, sind diejenigen, in denen	
R_a ein Wasserstoffatom, R_b eine $C_{1.5}$ -Alkylaminocarbonyl-, Cyclopentylaminocarbonyl-, Cyclohexylaminocarbonyl- oder Methylcyclohexylaminocarbonyl-	
minocarbonylgruppe, in denen jeweils die Alkyl- und Cycloalkylteile durch R ₂ substituiert sind, in denen	
R ₂ cin Wasserstoffatom,	60
eine Carboxy- oder C ₁₋₃ -Alkoxycarbonylgruppe,	
eine C_{1-3} -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-amino-, N-(Phenyl- C_{1-3} -alkyl)-N- $(C_{1-3}$ -alkyl)-aminocarbonyl-, C_{4-6} -	
Cycloalkyleniminocarbonyll-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N-(C _{1.3} -Alkyl)-piperazinocarbonyl-	
gruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Carboxy- oder $C_{1:3}$ -Alkoxycarbonylgruppe substituiert sein kann,	65
R_c eine Cyano- oder eine R_1 NH-C(=NH)-Gruppe, in der R_1 ein Wasserstoffatom, eine Hydroxygruppe, eine C_{1-3} -Alkyl-	05
gruppe darstellt,	
R _d eine C ₁₋₃ -Alkylgruppe,	

 Λ eine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} - Λ lkyl- oder C_{1-3} - Λ lkoxygruppe substituierte Phenylengruppe und

X ein Sauerstoffatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte -NH-Gruppe bedeuten, deren Tautomere, deren Stereoisomere und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise folgende erwähnt:

- (a) N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid,
- (b) 1-Cyclohexyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harnstoff,
- (c) 1-(1,1-Dimethylpropyl)-3-[4-(4-amidino-phenyl amino)-6-methyl-pyrimidin-2-yl]harnstoff,
- (d) 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff,
- (e) 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff und
- (f) 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff

sowie deren Stereoisomere und deren Salze.

Die neuen Verbindungen lassen sich nach an sich bekannten Verfahren herstellen, beispielsweise nach folgenden Verahren:

a. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_c eine R_1NH -C(=NH)-Gruppe darstellt: Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

in der

5

10

15

20

A, X, Ra, Rb und Rd wie eingangs erwähnt definiert sind und

Z₁ eine gegebenenfalls durch eine Arylgruppe substituierte Alkoxy- oder Alkylthiogruppe wie die Methoxy-, Ethoxy-, n Propoxy-, Isopropoxy-, Benzyloxy-, Methylthio-, Ethylthio-, n-Propylthio- oder Benzylthiogruppe darstellt, mit einem Amin der allgemeinen Formel

 R_1 -NH₂, (III)

0 in de

R₁ wie eingangs erwähnt definiert ist, oder dessen Salzen.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, n-Propanol, Wasser, Methanol/Wasser, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 20 und 120°C, mit Ammoniak oder einem entsprechenden Säureadditionssalz wie beispielsweise Ammoniumcarbonat oder Ammoniumacetat durchgeführt.

Eine Verbindung der allgemeinen Formel II erhält man beispielsweise durch Umsetzung einer Verbindung der allgemeinen Formel I, in der Re eine Cyanogruppe darstellt, mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder Benzylalkohol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethyloxonium-tetrafluorborat in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei 20°C, oder eines entsprechenden Nitrils mit Schwefelwasserstoff zweckmäßigerweise in einem Lösungsmittel wie Pyridin oder Dimethylformamid und in Gegenwart einer Base wie Triethylamin und anschließender Alkylierung des gebildeten Thioamids mit einem entsprechenden Alkyl- oder Aralkylhalogenid.

b. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine der für R_b eingangs erwähnten Acylgruppen darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

in der

60

65

A, X und Ra wie eingangs erwähnt definiert sind und

 R_c ' eine Cyanogruppe oder eine der für R_c eingangs erwähnten Amidinogruppen, die durch einen Schutzrest geschützt sind, bedeutet, mit einer Verbindung der allgemeinen Formel

 $HO-R_b'$, (V)

in der

 R_b ' eine der für R_b eingangs erwähnten Acylgruppen darstellt, oder mit deren reaktionsfähigen Derivaten und erforderlichenfalls anschließende Abspaltung eines verwendeten Schutzrestes.

Als reaktionsfähige Derivate einer Verbindung der allgemeinen Formel V kommen deren Ester, Halogenide oder Imidazolide in Betracht.

Die Umsetzung mit einer entsprechenden reaktionsfähigen Verbindung der allgemeinen Formel V wird vorzugsweise in einem entsprechenden Amin als Lösungsmittel gegebenenfalls in Gegenwart eines weiteren Lösungsmittels wie Methylenchlorid oder Ether und gegebenenfalls in Gegenwart einer tertiären organische Base wie Triethylamin, N-Ethyldiisopropylamin oder N-Methyl-morpholin bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 100°C, durchgeführt.

Die Umsetzung mit einer Säure der allgemeinen Formel V wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan oder in einem entsprechenden Amin der allgemeinen Formel IV gegebenenfalls in Gegenwart eines wasserentziehenden Mittels, z. B. in Gegenwart von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/-N-Hydroxysuccinimid, N,N'-Dicyclohexylcarbodiimid/1-Hydroxybenztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxybenztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Die anschließende Abspaltung eines Schutzrestes erfolgt nach bekannten Methoden wie später beschrieben.

c. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine der für R_b eingangs erwähnten Aminocarbonylgruppen darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

in der

A, X und R_a wie eingangs erwähnt definiert sind und eine Cyanogruppe oder eine der für R_c eingangs erwähnten Amidinogruppen, die durch einen Schutzrest geschützt sind, bedeutet, mit einer Verbindung der allgemeinen Formel

$$Z_2 - R_b$$
", (VI)

in der

R_b" eine der für R_b eingangs erwähnten Aminocarbonylgruppen und

Z₂ eine Austrittsgruppe wie ein Halgenatom, z. B. ein Chlor- oder Bromatom, oder

Z₂ zusammen mit einem Wasserstoffatom der benachbarten -CONH-Gruppe eine weitere Kohlenstoff-Stickstoff-Bindung bedeuten,

und erforderlichenfalls anschließende Abspaltung eines verwendeten Schutzrestes.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylsulformamid oder Toluol gegebenenfalls in Gegenwart einer Base wie Natriumcarbonat, Kaliumcarbonat oder Natriumhydrid oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, erforderlichenfalls in einem Druckgefäß und unter Schutzgas, beispielsweise unter Stickstoff, bei Temperaturen zwischen 20 und 200°C, vorzugsweise bei Temperaturen zwischen 75 und 180°C, durchgeführt.

Die anschließende Abspaltung eines Schutzrestes erfolgt nach bekannten Methoden wie später beschrieben.

d. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C_{1.3}-Alkylgruppe substituierte -NH-Gruppe und R_c eine Cyanogruppe darstellen:

Umsetzung einer Verbindung der allgemeinen Formel

65

5

10

15

20

$$R_{a} = N \qquad N \qquad \qquad (VII)$$

in der

15

30

35

40

45

60

65

Ra, Rb und Rd wie eingangs erwähnt definiert sind und

Z₃ eine Austrittsgruppe wie ein Halgenatom, z. B. ein Chlor- oder Bromatom, oder eine Alkansulfonylgruppe wie die Methansulfonylgruppe bedeutet, mit einer Verbindung der allgemeinen Formel

in der

A wie eingangs erwähnt definiert ist und

X' ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte -NH-Gruppe bedeutet.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylsulformamid oder Toluol gegebenenfalls in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, erforderlichenfalls in einem Druckgefäß und unter Schutzgas, beispielsweise unter Stickstoff, bei Temperaturen zwischen 20 und 200°C, vorzugsweise bei Temperaturen zwischen 75 und 180°C, durchgeführt.

e. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b einen der für R_b eingangs erwähnten gegebenenfalls substituierten Alkyl- und Cycloalkylreste darstellt und R_c eine Cyanogruppe bedeutet:

Umsetzung einer Verbindung der allgemeinen Formel

in de

A, X, Ra und Rd wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$Z_4 - R_b''', (X)$$

in der

 R_b " einen der für R_b eingangs erwähnten gegebenenfalls substituierten Alkyl- und Cycloalkylreste darstellt und Z_4 eine Austrittsgruppe wie ein Halogenatom, z. B. ein Brom- oder Jodatom, bedeutet.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Toluol gegebenenfalls in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, erforderlichenfalls in einem Druckgefäß und unter Schutzgas, beispielsweise unter Stickstoff, bei Temperaturen zwischen 20 und 200°C, vorzugsweise bei Temperaturen zwischen 75 und 180°C, durchgeführt.

f. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R₁ einen der bei der Definition des Restes R₁ eingangs erwähnten Acylreste oder in vivo abspaltbaren Reste darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

in der

A, X, Ra, Rb und Rd wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

 $Z_5 - R_6$, (XII)

in der

 R_6 einer der bei der Definition des Restes R_1 eingangs erwähnten Acylreste oder in vivo abspaltbaren Reste und Z_5 eine nukleofuge Austrittsgruppe wie ein Halogenatom, z. B. ein Chlor-, Brom- oder Jodatom, bedeuten.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

Mit einer Verbindung der allgemeinen Formel XII, in der Z₅ eine nukleofuge Austrittsgruppe darstellt, wird die Umsetzung vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Toluol, Dimethylformamid oder Dimethylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natriumhydrid, Kaliumcarbonat, Kaliumtert.-butylat oder N-Ethyldiisopropylamin bei Temperaturen zwischen 0 und 60°C, durchge führt.

g. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_d in 4-Stellung steht und X eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methylengruppe darstellt:

Umsetzung eines Guanidins der allgemeinen Formel

$$(R_aNR_b) - (HN =) C - NH_2$$
, (XIII)

15

35

45

55

in de

R_a und R_b wie eingangs erwähnt definiert sind, mit einem 1,3-Diketon der allgemeinen Formel

$$R_dCO - CH_2 - CO - X'' - A - R_c$$
, (XIV)

in de

A, R_c und R_d wie eingangs erwähnt definiert sind und X" eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methylengruppe bedeutet.

Die Umsetzung wird vorzugsweise in einem polaren Lösungsmittel wie Dimethylformamid oder Dimethylsulfoxid bei Temperaturen zwischen 20 und 150°C, vorzugsweise zwischen 50 und 120°C, durchgeführt.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Alkoxycarbonylgruppe enthält, so kann diese mittels Hydrolyse in eine entsprechende Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, übergeführt werden oder

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese mittels Versterung oder Amidierung in eine entsprechende Verbindung der allgemeinen Formel I, die eine der eingangs erwähnten Alkoxycarbonyloder Aminocarbonylgruppen enthält, übergeführt werden.

Die nachträgliche Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure, Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan bei Temperaturen zwischen –10 und 120°C, z. B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Die nachträgliche Veresterung wird vorzugsweise mit einem entsprechenden Alkohol, Halogenid oder Diazoverbindung in einem geeigneten Lösungsmittel durchgeführt.

Die nachträgliche Veresterung mit einem entsprechenden Alkohol wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, vorzugsweise jedoch in einem entsprechenden Alkohol gegebenenfalls in Gegenwart einer Säure wie Salzsäure oder in Gegenwart eines wasserentziehenden Mittels, z. B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Carbonyldiimidazol- oder N,N'-Thionyldiimidazol, Triphenylphosphin/Tetrachlorkohlenstoff oder Triphenylphosphin/Azodicarbonsäurediethylester gegebenenfalls in Gegenwart einer Base wie Kaliumcarbonat, N-Ethyl-diisopropylamin oder N,N-Dimethylaminopyridin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Die nachträgliche Veresterung mit einem entsprechenden Halogenid wird zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silberkarbonat oder Silberoxid bei Temperaturen zwischen –30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen –10 und 80°C, durchgeführt.

Die nachträgliche Veresterung mit einer entsprechenden Diazoverbindung wird vorzugsweise in einem geeigneten Lösungsmittel wie Diethylether, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen –10 und 40°C, vorzugsweise jedoch bei Temperaturen zwischen 0 und 250°C, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.-Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Acetyl-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.-Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder mittels Etherspaltung, z. B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z. B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Die Abspaltung einer Methoxybenzylgruppe kann auch in Gegenwart eines Oxidationsmittels wie Cer(IV)ammoniumnitrat in einem Lösungsmittel wie Methylenchlorid, Acetonitril oder Acetonitril/-Wasser bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, erfolgen.

Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan oder Ether.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.

Die Abspaltung eines Allyloxycarbonylrestes erfolgt durch Behandlung mit einer katalytischen Menge Tetrakis-(triphenylphosphin)-palladium(O) vorzugsweise in einem Lösungsmittel wie Tetrahydrofuran und vorzugsweise in Gegenwart eines Überschusses von einer Base wie Morpholin oder 1,3-Dimedon bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Raumtemperatur und unter Inertgas, oder durch Behandlung mit einer katalytischen Menge von Tris-(triphenylphosphin)-rhodium(I) -chlorid in einem Lösungsmittel wie wässrigem Ethanol und gegebenenfalls in Gegenwart einer Base wie 1,4-Diazabicyclo-[2.2.2]octan bei Temperaturen zwischen 20 und 70°C.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln 1I bis XIV, welche teilweise literaturbekannt sind, erhält man nach literaturbekannten Verfahren, des weiteren wird ihre Herstellung in den Beispielen beschrieben.

So erhält man beispielsweise eine Verbindung der allgemeinen Formel II durch Umsetzung eines entsprechenden Nitrils, welches seinerseits zweckmäßigerweise gemäß den in der vorliegenden Erfindung beschriebenen Verfahren erhalten wird, mit einem entsprechenden Thio- oder Alkohol in Gegenwart von Chlor- oder Bromwasserstoff. Die hierzu erforderlichen Pyrimidinderivate erhält man zweckmäßigerweise durch Umsetzung eines entsprechend substituierten Pyrimidins mit einem entsprechenden Nitril. Ein so erhaltenes Nitril kann dann erforderlichenfalls mittels Alkylierung, Acylierung und/oder Carbamoylierung in eine gewünschte Ausgangsverbindung übergeführt werden.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z. B. durch Chromatographie und/- oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z. B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z. B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z. B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Apfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise der (+)- oder (-)-Menthyloxycarbonylrest in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise

Natriumhydroxid, Kaliumhydroxid, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I und deren Salze wertvolle Eigenschaften auf. So stellen die Verbindungen der allgemeinen Formel I, in denen R_c eine Cyanogruppe darstellt, wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, und die Verbindungen der allgemeinen Formel I, in denen R_c eine Amino-, 2-Amino-1H-imidazolyl- oder R₁NH-C(=NH)-Gruppe darstellt, sowie deren Tautomeren, deren Stereoisomeren, deren physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, sowie deren Tautomere und deren Stereoisomere weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung, welche vorzugsweise auf einer Thrombin beeinflussenden Wirkung beruht, beispielsweise auf einer thrombinhemmenden Wirkung, auf einer die Thrombinzeit verlängernden Wirkung und auf einer Hemmwirkung auf verwandte Serinproteasen wie z. B. Trypsin, Urokinase Faktor VIIa, Faktor Xa, Faktor IX, Faktor XI und Faktor XII.

Beispielsweise wurden die Verbindungen

A = N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid,

B = 1-Cyclohexyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat,

 $C = 1-(1,1-\text{Dimethyl propyl})-3-[4-(4-\text{amidino-phenylamino})-6-\text{methyl-pyrimidin-2-yl}] \\ \text{harnstoff-dihydrochlorid-hydrat}, \\ D = 1-[1-(R,S)-\text{Ethoxycarbonyl-2-methyl-propyl-3-[4-(4-\text{amidino-phenoxy})-6-\text{methyl-pyrimidin-2-yl}]} \\ \text{harnstoff-hydrochlorid-hydrat} \\ \text{und}$

15

20

25

35

40

45

E = 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harn-stoffhydrochlorid-hydrat

auf ihre Wirkung auf die Thrombinzeit wie folgt untersucht:

Material:

Plasma, aus humanem Citratblut.

Test-Thrombin (Rind), 30 U/ml, Behring Werke, Marburg

Diethylbarbituratacetat-Puffer, ORWH 60/61, Behring Werke, Marburg

Biomatic B10 Koagulometer, Sarstedt

Durchführung:

Die Bestimmung der Thrombinzeit erfolgte mit einem Biomatic B10-Koagulometer der Firma Sarstedt.

Die Testsubstanz wurde in die vom Hersteller vorgeschriebenen Testgefäßen mit 0,1 ml humanem Citrat-Plasma und 0,1 ml Diethylbarbiturat-Puffer (DBA-Puffer) gegeben. Der Ansatz wurde für eine Minute bei 37°C inkubiert. Durch Zugabe von 0,3 U Test-Thrombin in 0,1 ml DBA-Puffer wurde die Gerinnungsreaktion gestartet. Gerätebedingt erfolgt mit der Eingabe von Thrombin die Messung der Zeit bis zur Gerinnung des Ansatzes. Als Kontrolle dienten Ansätze bei denen 0,1 ml DBA-Puffer zugegeben wurden.

Gemäß der Definition wurde über eine Dosis-Wirkungskurve die effective Substanzkonzentration ermittelt, bei der die Thrombinzeit gegenüber der Kontrolle verdoppelt wurde.

Die nachfolgende Tabelle enthält die gefundenen Werte:

Substanz	Thrombinzeit
	(ED ₂₀₀ in μM)
A	1.10
В	0.24
С	0.15
D	0.13
E	0.05

Beispielsweise konnte an Ratten bei der Applikation der Verbindungen B und E bis zu einer Dosis von 10 mg/kg i.v. keine toxischen Nebenwirkungen beobachtet werden. Diese Verbindungen sind demnach gut verträglich.

Aufgrund ihrer pharmakologischen Eigenschaften eignen sich die neuen Verbindungen und deren physiologisch verträglichen Salze zur Vorbeugung und Behandlung venöser und arterieller thrombotischer Erkrankungen, wie zum Beispiel der Behandlung von tiefen Beinvenen-Thrombosen, der Verhinderung von Reocclusionen nach Bypass-Operationen oder Angioplastie (PT(C)A), sowie der Occlusion bei peripheren arteriellen Erkrankungen wie Lungenembolie, der disseminierten intravaskulären Gerinnung, der Prophylaxe der Koronarthrombose, der Prophylaxe des Schlaganfalls und der Verhinderung der Occlusion von Shunts. Zusätzlich sind die erfindungsgemäßen Verbindungen zur antithrombotischen Unterstützung bei einer thrombolytischen Behandlung, wie zum Beispiel mit rt-PA oder Streptokinase, zur Verhinderung der Langzeitrestenose nach PT(C)A, zur Verhinderung der Metastasierung und des Wachstums von koagulationsabhängigen Tumoren und von fibrinabhängigen, z. B. bei der Behandlung der pulmonaren Fibrosis, geeignet.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 0,1 bis 30 mg/kg, vorzugsweise 0,3 bis 10 mg/kg, und bei oraler Gabe 0,1 bis 50 mg/kg, vorzugsweise 0,3 bis
30 mg/kg, jeweils 1 bis 4 × täglich. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z. B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpytrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragees, Kap-

seln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung nähers erläutern:

Verwendete Abkürzungen:

HOBT: 1-Hydroxy-benzotriazol

TBTU: O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluorborat

Beispiel 1

N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-benzamidhydrochlorid

a. 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin

Eine Lösung von 6,2 g (0,055 Mol) Kalium-tert.butylat, 6,55 g (0,055 Mol) 4-Cyano-phenol und 7,2 g (0,05 Mol) 2-Amino-4-chlor-6-methyl-pyrimidin in 150 ml Dimethylformamid wird im Mikrowellenofen 2,5 Stunden auf 160°C erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch mit Wasser verdünnt und mit Dichlormethan/Methanol extrahiert. Der Extrakt wird eingeengt, der kristalline Rückstand filtriert und mit Methanol und Diethylether gewaschen.

Ausbeute: 9,1 g (80,6% der Theorie),

Schmelzpunkt: 221°C C₁₂H₁₀N₄O (226,23)

10

Berechnet: C 63,71; H 4,46; N 24,76 Gefunden: C 63,83; H 4,59; N 24,77.

b. N-[4-4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yll-benzamid

Zu einer Lösung von 2,3 g (0,01 Mol) 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin in 50 ml Pyridin wird eine Lösung von 1,28 ml (0,011 Mol) Benzoylchlorid in 10 ml Dichlormethan zugetropft. Es wird 12 Stunden bei Raumtemperatur gerührt und das Pyridin anschließend abdestilliert. Der verbleibende Rückstand wird mit Dichlormethan und 1 N Salzsäure extrahiert. Nach Trocknen der organischen Phasen über Natriumsulfat und Abdampfen des Solvens wird durch Säulenchromatographie an Kieselgel (Cyclohexan/Essigsäureethylester = 2:1) gereinigt.

Ausbeute: 2,6 g (78,8% der Theorie),

Schmelzpunkt: 137°C C₁₂H₁₀N₄O (226,23)

Berechnet: C 69,08 H 4,27 N 16,96 Gefunden: C 69,33 H 4,42 N 17,08

c. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-benzamidhydrochlorid

1,65 g (0,005 Mol) N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-benzamid werden bei 0°C in 100 ml einer mit Salzsäure ge sättigten ethanolischen Lösung gelöst und über Nacht gerührt. Anschließend wird die Reaktionsmischung am Rotationsverdampfez eingeengt, mit absolutem Ethanol aufgerührt und das Lösungsmittel wieder abdestilliert. Der Rückstand wird in 100 ml Ethanol gelöst und mit 4,8 g (0,05 Mol) Ammoniumcarbonat bei Raumtemperatur versetzt. Man rührt 20 Stunden, destilliert das Solvens ab und chromatographiert den Rückstand an Kieselgel (Dichlormethan/Methanol = 10:1). Der nach Entfernen des Lösungsmittels verbleibende Rückstand wird mit Essigsäureethylester aufgerührt und abfiltriert.

45 Ausbeute: 0,75 g (39,1% der Theorie),

Schmelzpunkt: Zersetzung ab 278°C

 $C_{19}H_{17}N_5O_2$ (347,37) Massenspektrum: $M^+ = 347$

50

Beispiel 2

 $N-[4-(4-A midino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbons\"{a}ureamid-hydrochloriding and a superiority of the control of the co$

a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid

55

Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Cyclopentancarbonsäurechlorid und Pyridin.

Ausbeute: 2,85 g (88,5% der Theorie),

Schmelzpunkt: 164°C C₁₈H₁₈N₄O₂ (322,36)

Berechnet: C 67,07 H 5,63 N 17,38 Gefunden: C 66,81 H 5,53 N 17,37

b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid-hydrochlorid

65

Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,15 g (61,1% der Theorie),

Schmelzpunkt: 212° C $C_{18}H_{21}N_5O_2$ (339,40) Massenspektrum: $M^+ = 339$

Beispiel 3	
N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-2-methylbenzamid-hydrochlorid-hydrat	
a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl)-2-methylbenzamid	
Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-Methyl-benzoylchlorid und Pyridin. Ausbeute: 2,5 g (72,6% der Theorie), Schmelzpunkt: 152°C	10
C ₂₀ H ₁₆ N ₄ O ₂ (344,37) Berechnet: C 69,76 H 4,68 N 16,27 Gefunden: C 69,90 H 4,72 N 16,20	1:
b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-2-methylbenzamid-hydrochlorid-hydrat	24
Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl)-2-methylbenzamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,7 g (81,8% der Theorie), Schmelzpunkt: 253°C $C_{20}H_{19}N_5O_2$ (361,40) Massenspektrum: (M+H) ⁺ = 362	20
Beispiel 4	
N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-phenylessigsäuereamid-hydronhlorid-hydrat	3 (
a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-phenylessigsäureamid	, ا
Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Phenylessigsäurechlorid und Pyridin. Ausbeute: 0,8 g (23,2% der Theorie), Schmelzpunkt: 140°C	35
C ₂₀ H ₁₆ N ₄ O ₂ (344,37) Berechnet: C 69,76 H 4,68 N 16,27 Gefunden: C 69,90 H 4,72 N 16,11	
b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-phenylessigsäureamid-hydrochlorid-hydrat	4(
Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-phenylessigsäureamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,4 g (53,3% der Theorie), Schmelzpunkt: schäumt ab 141°C $C_{20}H_{19}N_5O_2$ (361,40) Massenspektrum: (M+H) ⁺ = 362	45
Beispiel 5	50
N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclohexancarbonsäureamid-hydrochlorid	
a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclohexancarbonsäureamid	
Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-Cyclohexancarbonsäure-chlorid und Pyridin. Ausbeute: 3 g (89% der Theorie), Schmelzpunkt: 175°C	55
b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclohexancarbonsäureamid-hydrochlorid	60
Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclohexancarbonsäureamid,	
Ausbeute: 0,75 g (32,1% der Theorie), Schmelzpunkt: ab 209°C $C_{19}H_{23}N_5O_2$ (353,42) Massenspektrum: (M+H) ⁺ = 354	65

Beispiel 6

N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-diphenylessigsäureamid-hydrochlorid

a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-diphenylessigsäureamid

Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-Diphenylessigsäurechlorid und Pyridin.

Ausbeute: 2,2 g (52,4% der Theorie),

10 Schmelzpunkt: 198°C

b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-diphenylessigsäureamid-hydrochlorid

Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-diphenylessigsäueamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,4 g (61,8% der Theorie),

Schmelzpunkt: 258°C C₂₆H₂₃N₅O₂ (437,50)

Massenspektrum: $(M+H)^+ = 438$

20

25

5

Beispiel 7

N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-3-phenyl-5-methyl-isoxazol-4-carbonsäureamid-hydrochlorid

a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-3-phenyl-5-methyl-isoxazol-4-carbonsäureamid

Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 3-Phenyl-5-methyl-isoxazol-4-carbonsäurechlorid und Pyridin.

Ausbeute: 1,2 g (29,2% der Theorie),

Schmelzpunkt: 160-162°C

b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-3-phenyl-5-methyl-isoxazol-4-carbonsäureamid

Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclohexylamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,6 g (44,5% der Theorie),

Schmelzpunkt: ab 204°C

C₂₃H₂₀N₆O₃ (428,45)

Massenspektrum: $(M+H)^+ = 429$

40

45

Beispiel 8

N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-2,6-dimethoxybenzamid-hydrochlorid

a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-2,6-dimethoxybenzamid

Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2,6-Dimethyoxybenzoylchlorid und Pyridin.

Ausbeute: 0,7 g (17,9% der Theorie),

50 Schmelzpunkt: ab 194°C

b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-2.6-dimethoxyhenzamid-hydrochlorid

Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-2,6-dimethoxybenzamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,05 g (78,8% der Theorie), Schmelzpunkt: ab 265°C (Zersetzung)

C21H21N5O4 (407,43)

Massenspektrum: $(M+H)^+ = 408$

60

65

Beispiel 9

N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-3-methylbutancarbonsäueamid-hydrochlorid

a. N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-3-methylbutancarbonsäureamid

Hergestellt analog Beispiel 1b aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 3-Methyl-butancarbonsäure-chlorid und Pyridin.

Ausbeute: 1,4 g (45% der Theorie), Schmelzpunkt: 140°C	
b. N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-3-methyl-butancarbonsäureamid	
Hergestellt analog Beispiel 1c aus N-[4-(4-Cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-3-methyl-butancarbonsäureamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,4 g (93,6% der Theorie), Schmelzpunkt: 231°C $C_{17}H_{21}N_5O_2$ (327,38) Massenspektrum: (M+H) ⁺ = 328	10
Beispiel 10	
N-Ethoxycarbonylmethyl-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid-hydrochlo-rid	15
a. N-Ethoxycarbonylmethyl-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid-hydrochlo-rid	
Eine Lösung von 0,45 g (0,004 Mol) Kalium-tertbutylat in 20 ml Dimethylformamid wird unter Stickstoff bei Raum-temperatur mit 1 g (0,00031 Mol) N-[4-(4-Cyano-phenoxy)-6-methylpyrimidin-2-yl]-cyclopentancarbonsäureamid ver-	20
setzt und eine halbe Stunde gerührt. Anschließend werden 0,47 ml (0,004 Mol) Jodessigsäureethylester zugetropft. Nach Rühren über Nacht wird das Reaktionsgemisch mit Dichlormethan und 1 N Salzsäure extrahiert. Die organischen Phasen werden über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Die Reinigung erfolgt säulenchromatographisch an Kieselgel (Cyclohexan/Essigsäureethylester = 2 : 1). Ausbeute: 0,8 g (63,2% der Theorie), Schmelzpunkt: 112°C	25
C ₂₂ H ₂₄ N ₄ O ₄ (408,45) Berechnet: C 64,69 H 5,92 N 13,72 Gefunden: C 64,90 H 5,81 N 13,46	30
b. N-Ethoxycarbonylmethyl-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid-hydro- chlorid	
Hergestellt analog Beispiel 1c aus N-Ethoxycarbonylmethyl-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclo-pentancarbonsäureamid, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,57 g (56% der Theorie), Schmelzpunkt: 148°C	35
$C_{22}H_{27}N_5O_4$ (425,49) Massenspektrum: (M+H) ⁺ = 426	40
Beispiel 11	
1-(2-Chlorphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	45
a. 1-(2-Chlorphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Ein Gemisch von 2,3 g (0,01 Mol) 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 50 ml wasserfreies Dioxan und 2,3 g (0,015 Mol) 2-Chlorphenylisocyanat wird drei Stunden in der Mikrowelle bei 170°C gerührt. Nachdem die Reaktionsmischung abgekühlt ist, werden die ausgefallenen Kristalle abfiltriert und mit Diethylether und Essigsäureethylester gewaschen.	50
Ausbeute: 1,35 g (35,5% der Theorie), Schmelzpunkt: 232°C	
a. 1-(2-Chlorphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	55
Hergestellt analog Beispiel 1c aus 1-(2-Chlorphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,3 g (20,1% der Theorie), Schmelzpunkt: $252-254^{\circ}C$ C ₁₉ H ₁₇ ClN ₆ O ₂ (396,83) Massenspektrum: (M+H) ⁺ = 397/399	60

Beispiel 12

1-Cyclohexyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

a. 1-Cyclohexyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Cyclohexylisocyanat und Dioxan.

Ausbeute: 2,9 g (82,5% der Theorie),

o Schmelzpunkt: 206°C

b. 1-Cyclohexyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-Cyclohexyl-3-[4-(4-cyanophenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,5 g (44,1% der Theorie), Schmelzpunkt: 255°C (Zersetzung) $C_{19}H_{24}N_6O_2$ (668,44) Massenspektrum: (M+H)⁺ = 369

20

25

5

Beispiel 13

1-(2-Methoxyphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

a. 1-(2-Methoxyphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-Methoxyphenylisocyanat und Dioxan.

Ausbeute: 2,3 g (79,7% der Theorie),

O Schmelzpunkt: 215°C

b. 1-(2-Methoxyphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

Hergestellt analog Beispiel 1c aus 1-(2-Methoxyphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1 g (31,6% der Theorie), Schmelzpunkt: ab 243°C (Zersetzung) $C_{20}H_{24}N_6O_3$ (392,42) Massenspektrum: $(M+H)^+ = 393$

40

45

Beispiel 14

1-Isopropyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

 $a.\ 1-Isopropyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl] harnst of full and the sum of the control of$

Zu einer Suspension von 1,8 g (0,008 Mol) 2-Amino-4-(4-cyanophenoxy)-6-methyl-pyrimidin-4-ylamin in 100 ml Toluol werden 0,96 g (0,022 Mol) 55% iges Natriumhydrid gegeben und zwei Stunden zum Rückfluß erhitzt. Anschließend wird 1 ml (0,01 Mol) Isopropylisocyanat in 20 ml Toluol zugetropft. Nach Abklingen der Reaktion wird eine Stunde zum Rückfluß erhitzt. Es wird 10% ige Zitronensäurelösung zugesetzt und der Niederschlag abfiltriert, in Dichlormethan aufgenommen und säulenchromatographisch an Kieselgel (Dichlormethan/Aceton = 10:1) gereinigt. Ausbeute: 1,55 g (62% der Theorie),

Schmelzpunkt: 224°C

b. 1-Isopropyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-Isopropyl-3-[4-(4-cyanophenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,7 g (92,5% der Theorie), Schmelzpunkt: schäumt ab 212°C C₁₆H₂₀N₆O₂ (328,37) Massenspektrum: (M+H)⁺ = 329

65

Beispiel 15

1-Ethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	
a. 1-Ethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	5
Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, Ethylisocyanat und Toluol. Ausbeute: 1,7 g (71,5% der Theorie),	
Schmelzpunkt: 242°C	10
b. 1-Ethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	
Hergestellt analog Beispiel 1c aus 1-Ethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,6 g (68% der Theorie), Schmelzpunkt: ab 220°C $C_{15}H_{18}N_6O_2\ (314,34)$ Massenspektrum: (M+H) ⁺ = 315	1.5
Beispiel 16	20
1-(2,6-Dichlorphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat	
a. 1-(2,6-Dichlorphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	25
Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, 2, 6-Dichlorphenylisocyanat und Toluol. Ausbeute: 0,25 g (23% der Theorie), Schmelzpunkt: 197-200°C	30
b. 1-(2,6-Dichlorphenyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat	
Hergestellt analog Beispiel 1c aus 1-(2,6-Dichlorphenyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,13 g (50% der Theorie), Schmelzpunkt: schäumt ab 108° C $C_{19}H_{16}Cl_2N_6O_2$ (431, 28)	35
Massenspektrum: $(M+H)^+ = 431/433/435$	40
Beispiel 17	
1-[(R)-1-Phenylethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-tetrahydrat	
a. 1-[(R)-1-Phenylethyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	45
Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, (R)-1-Phenylethylisocyanat und Dioxan.	
Ausbeute: 0,6 g (52% der Theorie), Schmelzpunkt: 154–155°C	50
b. 1-[(R)-1-Phenylethyl]-3-[4-(4-amidino-phenoxy)-6-methylpyrimidin-2-yl]harnstoff-dihydrochlorid-tetrahydrat	
Hergestellt analog Beispiel 1c aus 1-[(R)-1-Phenylethly]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,2 g (32% der Theorie), Schmelzpunkt: ab 146°C $C_{21}H_{22}N_6O_2$ (390,44)	55
Massenspektrum: $(M+H)^+ = 391$	60
Beispiel 18	
1-(2-Methylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	
a. 2-Methylpropylisocyanat	65
Fine Lösung von 9 g (0.082 Mol) 2-Methylpropylaminhydrochlorid in 200 ml Dichlormethan und 26.6 ml Pyridin	

Eine Lösung von 9 g (0,082 Mol) 2-Methylpropylaminhydrochlorid in 200 ml Dichlormethan und 26,6 ml Pyridin wird unter Stickstoffatmosphäre bei 0°C mit 58,4 ml (0,11 Mol) einer 20%igen Phosgenlösung in Toluol versetzt. Man

rührt zwei Stunden bei 0°C und extrahiert anschließend mit 0,5 N Salzsäure und Wasser. Die wäßrigen Phasen werden mit Dichlormethan reextrahiert und die vereinigten organischen Phasen eingeengt. Der Rückstand wird mit Diethylether versetzt, filtriert und das Filtrat eingeengt.

Ausbeute: 1,2 g (14,8% der Theorie),

5

b. 1-(2-Methylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, 2-Methylpropylisocyanat und Toluol.

Ausbeute: 0,46 g (14,2% der Theorie),

Schmelzpunkt: 209°C

c. 1-(2-Methylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(2-Methylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,35 g (82,5% der Theorie), Schmelzpunkt: ab 258°C (Zersetzung)

C₁₇H₂₂N₆O₂ (342,40)

Massenspektrum: $(M+H)^+ = 343$

Beispiel 19

1-(1-Methylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

25

a. 1-(1-Methylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

10 g (0,07 Mol) 1-Methylcyclohexancarbonsäure werden mit 50 ml Thionylchlorid versetzt und drei Stunden zum Rückfluß erhitzt. Das überschüssige Thionylchlorid wird abdestilliert, der ölige Rückstand in Toluol aufgenommen und eingeengt. Der Rückstand wird in Dichlormethan gelöst und mit 19,2 g (0,2 Mol) Ammoniumcarbonat versetzt. Anschließend wird zwölf Stunden bei Raumtemperatur gerührt, die anorganischen Salze abfiltriert, mit Dichlormethan gewaschen und das Filtrat eingeengt. Der Rückstand wird aus Petrolether umkristallisiert. Ausbeute: 1,8 g (15,6% der Theorie),

Schmelzpunkt: 67°C

35

b. 1-Methylcyclohexylisocyanat

Ein Gemisch von 4 g (0,031 Mol) 1-Methylcyclohexylamid in 80 ml Dichlormethan und 16,1 g (0,403 Mol) Natriumhydroxid in 25 ml Wasser wird nach Zugabe von 0,53 g (0,0016 Mol) Tetran-butylammoniumhydrogensulfat unter kräftigem Rühren bei 5°C tropfenweise mit 3,2 ml (0,062 Mol) Brom versetzt. Man rührt eine Stunde unter Eiskühlung, trennt die organische Phase ab und extrahiert diese mit Eiswasser. Die organische Phase wird getrocknet und das Solvens entfernt. Ausbeute: 3,6 g (83,5% der Theorie),

c. 1-(1-Methylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

45

50

Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, 1-Methylcyclohexylisocyanat und Toluol.

Ausbeute: 1,2 g (41% der Theorie),

Schmelzpunkt: 222-224°C

d. 1-(1-Methylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1-Methylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,95 g (72,5% der Theorie), Schmelzpunkt: ab 247°C (Zersetzung)

C20H26N6O2 (382,46)

Massenspektrum: $(M+H)^+ = 383$

60

Beispiel 20

1-(1,1-Dimethylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat

a. 1,1-Dimethylpropylisocyanat

65

10,5 g (0,085 Mol) 1,1-Dimethylpropylaminhydrochlorid werden in 200 ml Dichlormethan und 28 ml (0,35 Mol) Pyridin gelöst und unter Stickstoff bei 0°C mit 60 ml (0,113 Mol) einer 20%igen Phosgenlösung in Toluol versetzt. Man rührt zwei Stunden bei 0°C, wäscht die wäßrige Phase mit eiskalter 1 N Salzsäure und reextrahiert die wäßrige Phase mit

Dichlormethan. Die vereinigten organischen Phasen werden mit gesättigter Natriumchloridlösung extrahiert, getrocknet und eingeengt. Der Rückstand wird destilliert. Ausbeute: 33 g einer Lösung von 1,1-Dimethylpropylisocyanat in Toluol. Siedepunkt: 25–28°C bei 15 mbar	
b. 1-(1,1-Dimethylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	5
Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, 1, 1-Dimethylpropylisocyanat und Toluol. Ausbeute: 2,35 g (84% der Theorie), Schmelzpunkt: 203°C $C_{18}H_{21}N_5O_2$ (339,39) Berechnet: C 63,70 H 6,24 N 20,63 Gefunden: C 63,62 H 6,26 N 20,63	10
c. 1-(1,1-Dimethylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat	15
Hergestellt analog Beispiel 1c aus 1-(1,1-Dimethylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,95 g (63,3% der Theorie), Schmelzpunkt: schäumt ab 223°C $C_{18}H_{24}N_6O_2$ (356,43) Massenspektrum: (M+H)+ = 357	20
Beispiel 21	
1-(1-Ethylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid	25
a. 1-Ethylpropylisocyanat	
Hergestellt analog Beispiel 20a aus 1,1-Dimethylpropylaminhydrochlorid, Phosgen und Pyridin. Ausbeute: 93,5 g einer Lösung von 1-Ethylpropylisocyanat in Toluol. Siedepunkt: 28–32°C bei 15 mbar	30
b. 1-(1-Ethylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	25
Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Natriumhydrid, 1-Ethylpropylisocyanat und Toluol. Ausbeute: 2,8 g (71,1% der Theorie), Schmelzpunkt: 168°C C ₁₈ H ₂₁ N ₅ O ₂ (339,39) Berechnet: C 63,70 H 6,24 N 20,63 Gefunden: C 63,69 H 6,31 N 20,22	40
c. 1-(1-Ethylpropyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid Hergestellt analog Beispiel 1c aus 1-(1-Ethylpropyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,35 g (68,7% der Theorie), Schmelzpunkt: schäumt ab 225°C $C_{18}H_{24}N_6O_2$ (356,43) Massenspektrum: $(M+H)^+$ = 357	45
Beispiel 22	50
1-[1-(R,S)-Ethoxycarbonyl-ethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	
a. 1-[1-(R,S)-Ethoxycarbonyl-ethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	55
Eine Lösung von 1,8 g (0,008 Mol) 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin-4-ylamin und 1,4 ml (0,01 Mol) 2-(R, S)-Isocyanato-propionsäureethylester in 50 ml Dimethylformamid wird fünf Stunden bei 120°C gerührt. Anschließend wird das Dimethylformamid abdestilliert und der Rückstand säulenchromatographisch an Kieselgel (Cyclohexan/Essigsäureethylester = 2:1) gereinigt. Ausbeute: 2 g (67,6% der Theorie), Schmelzpunkt: ab 148°C	60
b. 1-[1-(R,S)-Ethoxycarbonyl-ethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	_
Hergestellt analog Beispiel 1c aus 1-[1-(R,S)-Ethoxycarbonylethyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,55 g (65,1% der Theorie),	65

Schmelzpunkt: schäumt ab 215°C

C₁₈H₂₂N₆O₄ (386,41)

Massenspektrum: $(M+H)^+ = 387$

Beispiel 23

1-[1-(R,S)-Carboxy-ethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

a. 1-[1-(R,S)-Carboxy-ethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

Zu einer Lösung von 0,5 g (0,001 Mol) 1-[1-(R,S)-Ethoxycarbonyl-ethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat in 20 ml Dioxan werden 4 ml 1 N Natronlauge zugegeben. Die Lösung wird zwei Stunden bei Raumtemperatur gerührt. Anschließend werden 4 ml 1 N Salzsäure zugetropft und die Lösung eingeengt.

5 Ausbeute: 0,29 g (62,1% der Theorie),

Schmelzpunkt: 200-210°C C₁₆H₁₈N₆O₄ (358,35)

20

45

60

Massenspektrum: $(M+H)^+ = 359$

Beispiel 24

1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]hamstoff-hydrochlorid-hydrat

a. 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-(R,S)-Isocyanato-3-methylbuttersäureethylester und Dimethylformamid.

Ausbeute: 1,4 g (44% der Theorie),

30 Schmelzpunkt: 167°C

- b. 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat
- Hergestellt analog Beispiel 1c aus 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,1 g (71,1% der Theorie), Schmelzpunkt: schäumt ab 205°C

C₂₀H₂₆N₆O₄ (414,46)

40 Massenspektrum: $(M+H)^+ = 415$

Beispiel 25

1-[1-(R,S)-Carboxy-2-methyl-propyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

a. 1-[1-(R,S)-Carboxyl-2-methyl-propyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-dihydrat

Hergestellt analog Beispiel 23a aus 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat, Natronlauge und Dioxan.

Ausbeute: 0,2 g (45% der Theorie),

Schmelzpunkt: ab 170°C C₁₈H₂₂N₆O₄ (386,41)

Massenspektrum: $(M+H)^+ = 387$

Beispiel 26

1-[1-(R,S)-Ethoxycarbonyl-2-phenyl-ethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyridin-2-yl]harnstoff-hydrochlorid-hydrat

a. 1-[1-(R,S)-Ethoxycarbonyl-2-phenyl-ethyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyridin-2-yl]harnstoff Hergestellt analog Beispiel 14a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-(R,S)-Isocyanato-3-phenylpropionsäureethylester, Natriumhydrid und Dimethylformamid.

5 Ausbeute: 0,4 g (30% der Theorie),

Schmelzpunkt: 137-140°C

 $b.\ 1-[1-(R,S)-Ethoxycarbonyl-2-phenyl-ethyl]-3-[4-(4-amidinophenoxy)-6-methyl-pyridin-2-yl] harnstoff-hydrochlorid-pyridin-2-yl] harnstoff-hydrochlorid-pyri$ hydrat Hergestellt analog Beispiel 1c aus 1-[1-(R,S)-Ethoxycarbonyl-2-phenyl-ethyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,22 g (52,4% der Theorie), Schmelzpunkt: ab 125°C C24H26N6O4 (462,51) Massenspektrum: $(M+H)^+ = 463$ 10 Beispiel 27 1-[1-(R,S)-E thoxy carbonyl-3-methyl-butyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harmstoff-hydrochlo-phenoxyl-3-methyl-butyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harmstoff-hydrochlo-phenoxyl-3-methyl-butyl-3-methyrid-hydrat 15 1-[1-(R,S)-Ethoxycarbonyl-3-methyl-butyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat Eine Lösung von 1,13 g (0,005 Mol) 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin-4-yl-amin und 1 g (0,0052 Mol) 2-(R,S)-Isocyanato-4-methyl-pentansäureethylester in 25 ml Dimethylformamid wird in der Stahlbombe drei Stunden auf 180°C erhitzt. Anschließend wird das Lösungsmittel am Rotationsverdampfer entfernt und der Rück-20 stand säulenchromatographisch an Kieselgel (Cyclohexan/Essigsäureethylester = 2: 1) gereinigt. Ausbeute: 0,45 g (21,8% der Theorie), Schmelzpunkt: Harz b. 1-[1-(R,S)-Ethoxycarbonyl-3-methyl-butyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat Hergestellt analog Beispiel 1c aus 1-[1-(R,S)-Ethoxycarbonyl-3-methyl-butyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,3 g (56,5% der Theorie), 30 Schmelzpunkt: sintert ab 130°C C21H28N6O4 (428,49) Massenspektrum: $(M+H)^+ = 429$ Beispiel 28 35 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat a. 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff 40 Hergestellt analog Beispiel 18a aus (R)-Valinmethylester, Phosgenlösung, Pyridin und Toluol. Ausbeute: 8,6 g (91,2% der Theorie), Siedepunkt: 78-85°C bei 15 mbar 45 b. 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-(R)-Isocyanato-3-methylbuttersäuremethylester und Dimethylformamid. Ausbeute: 6,4 g (66,8% der Theorie), 50 Schmelzpunkt: 135°C c. 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-dihydrat 55 Hergestellt analog Beispiel 1c aus 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methylpyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,67 g (74,6% der Theorie),

65

60

Schmelzpunkt: schäumt ab 215°C

Massenspektrum: $(M+H)^+ = 401$

 $C_{19}H_{24}N_6O_4$ (400,44)

Beispiel 29

1-[1-(R)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoffhydrochlorid

5

a. 1-[1-(R)-Carboxy-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Eine Lösung von 10 g (0,026 Mol) 1-[1-(R)-Methyoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff und 100 ml 0,5 N Natronlauge in 100 ml Methanol wird 15 Stunden bei Raumtemperatur gerührt. Nach dem Ansäuern mit Zitronensäure wird mit Dichlormethan extrahiert. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Cyclohexan/Essigsäuerethylester = 1:1). Das erhaltene Rohprodukt wird einer weiteren Chromatographie an Kieselgel (Dichlormethan/Methanol = 20:1) unterzogen.

Ausbeute: 3,6 g (37,5% der Theorie),

Schmelzpunkt: ab 232°C

15

b. 1-[1-(R)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Eine Lösung von 1 g (0,0027 Mol) 1-[1-(R)-Carboxy-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff in 30 ml Dimethylformamid und 30 ml Tetrahydrofuran wird nacheinander mit 1 g (0,003 Mol) TBTU, 0,41 g (0,003 Mol) HOBT, 0,38 g (0,003 Mol) Glycinmethylesterhydrochlorid und 3,1 ml (0,013 Mol) Ethyldiisopropylamin versetzt und 15 Stunden unter Stickstoff bei Raumtemperatur gerührt. Die Lösung wird eingeengt und der Rückstand mit 2 N Natronlauge und Dichlormethan extrahiert. Die organische Phase wird mit 2 N Salzsäure extrahiert. Nach Entfernung des Solvens verbleibt ein Öl.

25 Ausbeute: 0,5 g (40% der Theorie).

c. 1-[1-(R)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoffhydrochlorid

Hergestellt analog Beispiel 1c aus 1-[1-(R)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-cyano-phe-noxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,22 g (55,6% der Theorie),

Schmelzpunkt: schäumt ab 90°C

C₂₁H₂₇N₇O₅ (457,49)

Massenspektrum: $(M+H)^+ = 458$

Beispiel 30

1-[1-(R)-Carboxymethylcarbamoyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

a. 1-[1-(R)-Carboxymethylcarbamoyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 29a aus 1-[1-(R)-Methyoxycarbonylmethycarbamoyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, Natronlauge und Methanol.

45 Ausbeute: 0,09 g (40,6% der Theorie),

Schmelzpunkt: ab 220°C C₂₀H₂₅N₇O₅ (443,46)

Massenspektrum: $(M+H)^+ = 444$

Beispiel 31

50

40

1-[1-(R)-Morpholinocarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid

a. 1-[1-(R)-Carboxy-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

55

Hergestellt analog Beispiel 29b aus TBTU, HOBT, N,N-Diisopropyl-ethylamin, Morpholin, Dimethylformamid und Tetrahydrofuran.

Ausbeute: 0,9 g (40% der Theorie).

b. 1-[1-(R)-Morpholinocarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid

Hergestellt analog Beispiel 1c aus 1-[1-(R)-Morpholinocarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,15 g (20,3% der Theorie),

Schmelzpunkt: sintert ab 60°C

C22H29N7O4 (455,52)

Massenspektrum: $(M+H)^+ = 456$

Beispiel 32

1-[1-(S)-Methoxycarbonyl-2-methyl-propyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlo- rid-hydrat	_
a. 1-[1-(S)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-cyanophenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	5
Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 2-(S)-Isocyanato-3-methyl-buttersäuremethylester und Dimethylformamid. Ausbeute: 2,4 g (62,6% der Theorie), Schmelzpunkt: 135°C	10
b. 1-[1-(S)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	15
Hergestellt analog Beispiel 1c aus 1-[1-(S)-Methoxycarbonylmethylcarbamoyl-2-methyl-propyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1 g (64,6% der Theorie), Schmelzpunkt: sincert ab 110°C $C_{19}H_{24}N_6O_4 \ (400,44)$ Massenspektrum: (M+H)+ = 401	20
Beispiel 33	
1-(Pyrrolidinylcarbamoylmethyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-penta- hydrat	25
a. 1-Ethoxycarbonylmethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Isocyanatoessigsäureethylester und Dioxan. Ausbeute: 2,37 g (75,7% der Theorie), Schmelzpunkt: 165-170°C	30
•	35
b. 1-Carboxymethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Hergestellt analog Beispiel 2% aus 1-Ethoxycarbonylmethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harn-stoff, 1 N Natronlauge und Ethanol. Ausbeute: 2 g (68,9% der Theorie), Schmelzpunkt: Zersetzung ab 220°C	40
c. 1-(Pyrrolidinylcarbamoylmethyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Hergestellt analog Beispiel 29b aus 1-Carboxymethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, Pyrrolidin, TBTU, HOBT, Triethylamin und Dimethylformamid. Ausbeute: 0,2 g (29,4% der Theorie), Schmelzpunkt: Zersetzung ab 224°C	45
d. 1-(Pyrrolidinylcarbamoylmethyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-pentahydrat	50
Hergestellt analog Beispiel 1c aus 1-(Pyrrolidinylcarbamoylme~ thyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,17 g (53,2% der Theorie), Schmelzpunkt: schäumt ab 105°C $C_{19}H_{23}N_7O_3$ (397,44) Massenspektrum: (M+H) ⁺ = 398	55
Beispiel 34	60
1-Dimethylcarbamoylmethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-trihydrat	
a. 1-Dimethylcarbamoylmethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Eine Lösung von 0,8 g (0,0024 Mol) 1-Carboxymethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff in 40 ml Tetrahydrofuran wird bei -20°C mit 0,4 ml (0,0029 Mol) Triethylamin und anschließend mit 0,25 ml (0,0026 Mol) Chlorameisensäureethylester in 6 ml Tetrahydrofuran versetzt. Nach 30 Minuten werden 0,39 g (0,004 Mol) Dimethyla-	65

minhydrochlorid zugegeben und drei Stunden gerührt. Die Reaktionsmischung wird langsam aufgetaut und zwei Tage bei Raumtemperatur gerührt. Das Lösungsmittel wird abdestilliert und der Rückstand in Dichlormethan aufgenommen und mit Wasser und gesättigter Natriumcarbonatlösung extrahiert. Die organischen Phasen werden über Natriumsulfat getrocknet.

5 Ausbeute: 0,25 g (29,4% der Theorie), Schmelzpunkt: Zersetzung ab 180°C

b. 1-Dimethylcarbamoylmethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-trihydrat

Hergestellt analog Beispiel 1c aus 1-Dimethylcarbamoyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,19 g (53,7% der Theorie), Schmelzpunkt: schäumt ab 105°C

 $C_{17}H_{21}N_7O_3$ (371,40)

20

30

15 Massenspektrum: $(M+H)^+ = 372$

Beispiel 35

1-Isopropylmethylcarbamoylmethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-trihydrat

a. 1-Isopropylmethylcarbamoylmethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 34a aus 1-Carboxymethyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff,
Chlorameisensäureethylester, N-Methylisopropylamin und Tetrahydrofuran.

Ausbeute: 0,11 g (15,7% der Theorie),

Schmelzpunkt: 174-179°C

b. 1-Isopropylmethylcarbamoylmethyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochloridtrihydrat

Hergestellt analog Beispiel 1c aus 1-Isopropylmethylcarbamoyl-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,08 g (80,2% der Theorie),

C₁₉H₂₅N₇O₃ (399,45)

Massenspektrum: $(M+H)^+ = 400$

Beispiel 36

 ${\small 40} \qquad 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harnstoff-dihydrochlorid-hydrat and the state of the sta$

a. 1-Isocyanato-cyclohexancarbonsäureethylester

Hergestellt analog Beispiel 18a aus 1-Amino-cyclohexancarbonsäureethylester-hydrochlorid, Phosgen, Pyridin und 5 Dichlormethan.

Ausbeute: 22,5 g (81,5% der Theorie), Siedepunkt: 113-115°C bei 15 mbar

b. 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 1-Isocyanato-cyclohexancar-bonsäureethylester und Dimethylformamid.

Ausbeute: 2,65 g (62,5% der Theorie),

Schmelzpunkt: 188°C

c. 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,7 g (76,3% der Theorie), Schmelzpunkt: schäumt ab 150°C

C22H28N6O4 (440,50)

Massenspektrum: $(M+H)^+ = 441$

65

50

Beispiel 37

1-(1-Carboxycyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrat	
a. 1-(1-Carboxycyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methylpyrimidin-2-yl]harnstoff-hydrat	:
Die Reaktionsmischung aus 0,47 g (0,001 Mol) 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methylpyrimidin-2-yl]harnstoff-hydrochlorid-hydrat und 3 ml (0,003 Mol) Lithiumhydroxid in 10 ml Ethanol wird 15 Stunden bei Raumtemperatur gerührt. Anschließend wird mit 3 N Salzsäure auf pH 6,9 eingestellt, der Niederschlag abfiltriert und mit Isopropanol und Essigsäureethylester gewaschen. Ausbeute: 0,35 g (81% der Theorie), Schmelzpunkt: Zersetzung ab 214°C $C_{20}H_{24}N_6O_4$ (412,45) Massenspektrum: (M+H)+ = 413	10
Beispiel 38	1.5
1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat	
a. 1-Isocyanato-cyclopentencarbonsäureethylester	20
Hergestellt analog Beispiel 18a aus 1-Amino-cyclopentancarbonsäureethylester-hydrochlorid, Phosgen, Pyridin und Dichlormethan. Ausbeute: 28,7 g (82% der Theorie), Siedepunkt: 104–106°C bei 15 mbar	25
b. 1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	
Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, 1-Isocyanato-cyclopentan-carbonsäureethylester und Dimethylformamid. Ausbeute: 11,1 g (90,8% der Theorie), Schmelzpunkt: 153-155°C	30
$c.\ 1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harnstoff-hydrochlorid-hydrat \\$	
Hergestellt analog Beispiel 1c aus 1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,65 g (73,5% der Theorie), Schmelzpunkt: schäumt ab 90°C $C_{21}H_{26}N_6O_4$ (426,47) Massenspektrum: (M+H) ⁺ = 427	35
Beispiel 39	
1-(1-Carboxycyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrat	45
a. 1-(1-Carboxycyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrat	
Hergestellt analog Beispiel 37a aus 1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat, Lithiumhydroxid und Ethanol. Ausbeute: 0,3 g (72% der Theorie), Schmelzpunkt: Zersetzung ab 237°C C ₁₉ H ₂₂ N ₆ O ₄ (398,42)	50
Massenspektrum: $(M+H)^+ = 399$	55
Beispiel 40	
1-(1-Methoxy carbonyl methyl carbamoyl-cyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl] harnstoff-hydrat	
a. 1-(1-Carboxy-cyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff	60
Hergestellt analog Beispiel 29a aus 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, Natronlauge und Ethanol. Man erhält ein Gemisch mit 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(ethoxy)-6-methyl-pyrimidin-2-yl]harnstoff. Ausbeute: 4,76 g (83.5% der Theorie), Schmelzpunkt: Zersetzung ab 184°C	65

b. 1-(1-Methoxycarbonylmethylcarbamoyl)-cyclohexyl]-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 29b aus dem Gemisch von 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff und 1-(1-Ethoxycarbonylcyclohexyl)-3-[(4-ethoxy-6-methyl-pyrimidin-2-yl]harnstoff, Glycinmethylesterhydrochlorid, TBTU, HOBT, N-Diisopropyl-ethylamin und Dimethylformamid. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Dichlormethan/Essigsäuerethylester = 1:2). Ausbeute: 2,2 g (43% der Theorie), Schmelzpunkt: Zersetzung ab 180°C

10 c. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoffhydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,8 g (74,3% der Theorie), Schmelzpunkt: schäumt ab 170°C C₂₃H₂₉N₇O₅ (483,53)

Massenspektrum: $(M+H)^+ = 484$

20

25

40

Beispiel 41

1-(1-Carboxycyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid

a. 1-(1-Carboxymethylcarbamoylcyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 23a aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat, Natronlauge und Dioxan. Das Rohprodukt wird in einer Mischung aus 10 ml (Dichlormethan/Methanol = 4:1) und 0,3 ml 2 N Salzsäure gelöst. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Dichlormethan/Methanol = 4:1).

Ausbeute: 0,09 g (28% der Theorie), Schmelzpunkt: schäumt ab 130°C

 $C_{22}H_{27}N_7O_5$ (469,50)

Massenspektrum: $(M+H)^+ = 470$

35 Beispiel 42

1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid-hydrat

a. 1-(1-Carboxycyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 29a aus 1-(1-Ethoxycarbonylcyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, Natronlauge und Ethanol.

Ausbeute: 2.4 g (63% der Theorie),

Schmelzpunkt: Zersetzung ab 214°C

b. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methylpyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 29b aus 1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2jo yl]harnstoff, Glycinmethylesterhydrochlorid, TBTU, HOBT, N,N-Diisopropyl-ethylamin und Dimethylformamid. Ausbeute: 1,6 g (58,9% der Theorie), Schmelzpunkt: 140°C

c. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoffhydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-cyano-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,2 g (74% der Theorie), Schmelzpunkt: schäumt ab 160°C

C₂₂H₂₇N₇O (469,50)

Massenspektrum: $(M+H)^+ = 470$

65

Beispiel 43

a. 2.-Amino-4-(cyano-phenylamino)-6-methyl-pyrimidin 5 Zu einer Lösung von 13,5 g (0,12 Mol) Kalium-tert.-butylat in 150 ml Dimethylformamid werden nacheinander 13,2 g (0,11 Mol) 4-Aminobenzonitril und 14,8 g (0,1 Mol) 2-Amino-4-chlor-6-methylpyrimidin gegeben. Die Reaktionslösung wird zwei Stunden zum Rückfluß erhitzt und anschließend das Solvens im Vakuum abdestilliert. Der Rückstand wird mit Eiswasser versetzt, mit Zitronensäure angesäuert und der Niederschlag abfiltriert. Der Niederschlag wird mit Wasser, Isopropanol und Essigsäureethylester gewaschen und aus Dioxan/Dimethylformamid umkristallisiert. Ausbeute: 13,3 g (59% der Theorie), Schmelzpunkt: Zersetzung ab 220°C b. 1-Cyclohexyl-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff 15 Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, Cyclohexylisocyanat und Dioxan. Ausbeute: 1,2 g (51,7% der Theorie), Schmelzpunkt: 218°C 20 c. 1-Cyclohexyl-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimi-din-2-yl]harnstoff-dihydrochlorid Hergestellt analog Beispiel 1c aus 1-Cyclohexyl-3-[4-(4-cyanophenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. 25 Ausbeute: 0,38 g (23% der Theorie), C₁₉H₂₅N₇O (667,45) Massenspektrum: $(M+H)^+ = 368$ Beispiel 44 30 1-Benzyl-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid a. 1-Benzyl-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff 35 Hergestellt analog Beispiel 11a aus 2-Amino-4-(4-cyano-phenoxy)-6-methyl-pyrimidin, Benzylisocyanat und Dioxan. Ausbeute: 0,32 g (15% der Theorie), Schmelzpunkt: 207°C 40 b. 1-Benzyl-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid Hergestellt analog Beispiel 1c aus 1-Benzyl-3-[4-(4-cyanophenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0,12 g (44,1% der Theorie), 45 Schmelzpunkt: ab 261°C (Zersetzung) $C_{20}H_{21}N_7O(375,43)$ Massenspektrum: $(M+H)^+ = 376$

Beispiel 45

50

55

1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid

a. 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyanophenylamino)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, 2-(R, S)-Isocyanato-3-methylbuttersäureethylester und Dimethylformamid.

Ausbeute: 0,96 g (39% der Theorie),

Schmelzpunkt: Žersetzung ab 248°C 60

b. 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid

Hergestellt analog Beispiel 1c aus 1-[1-(R, S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,36 g (67% der Theorie), Schmelzpunkt: Zersetzung ab 268°C

 $C_{20}H_{27}N_7O_3$ (413,48) Massenspektrum: $(M+H)^+ = 414$

Beispiel 46

1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenylamino}-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid

a. 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyanophenylamino)-6-methyl-pyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, 2-(R)-Isocyanato-3-methylbuttersäuremethylester und Dimethylformamid.

Ausbeute: 0,4 g (18,6% der Theorie),

Schmelzpunkt: 188°C

b. 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-amidino-phenylamino}-6-methyl-pyrimidin-2-yl]harnstoff-di-hydrochlorid

Hergestellt analog Beispiel 1c aus 1-[1-(R)-Methoxycarbonyl-2-methyl-propyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,11 g (20% der Theorie),

Schmelzpunkt: 148°C C₁₉H₂₅N₇O₃ (399,45)

Massenspektrum: $(M+H)^+ = 400$

25

30

10

15

Beispiel 47

1-(1,1-Dimethylpropyl)-3-[4-(4-amidino-phenylamino)-6-methylpyrimidin-2-yl]harnstoff-dihydrochlorid-hydrat

a. 1-(1,1-Dimethylpropyl)-3-[4-(4-cyano-phenylamino)-6-methylpyrimidin-2-yl]harnstoff

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, 1,1-Dimethylpropyliso-cyanat und Dimethylformamid.

Ausbeute: 0,92 g (34% der Theorie).

b. 1-(1,1-Dimethylpropyl)-3-[4-(4-amidino-phenylamino)-6-methylpyrimidin-2-yl]harnstoff-dihydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1,1-Dimethylpropyl)-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,12 g (13,3% der Theorie),

Schmelzpunkt: Zersetzung ab 248°C

C₁₈H₂₅N₇O (355,44)

Massenspektrum: $(M+H)^+ = 356$

45

Beispiel 48

1-(1-Ethylpropyl)-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid

a. 1-(1-Ethylpropyl)-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff

50

Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, 1-Ethylpropylisocyanat und Dimethylformamid.

Ausbeute: 0,42 g (28,2% der Theorie),

Schmelzpunkt: 203-204°C

55

b. 1-(1-Ethylpropyl)-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff-hydrochlorid

Hergestellt analog Beispiel 1c aus 1-(1-Ethylpropyl)-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,28 g (27,4% der Theorie),

Schmelzpunkt: Zersetzung ab 277°C

 $C_{18}H_{25}N_7O$ (355,44)

Massenspektrum: $(M+H)^+ = 356$

Beispiel 49

1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harn- stoff-hydrochlorid	
a. 1-(1-Etoxycarbonyl-cyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff	5
Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenylamino)-6-methyl-pyrimidin, 1-Isocyanato-cyclohe-xancarbonsäureethylester und Dimethylformamid. Ausbeute: 1,8 g (19,2% der Theorie), Schmelzpunkt: 198°C	10
b. 1-(1-Carboxy-cyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff	
Hergestellt analog Beispiel 37a aus 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]-harnstoff, 1 N Lithiumhydroxidlösung und Methanol. Ausbeute: 1,6 g (74,5% Theorie).	15
c. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harn-stoff	20
Hergestellt analog Beispiel 29b aus 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]-harnstoff, Glycinmethylesterhydrochlorid, TBTU, HOBT, N,N-Diisopropyl-ethylamin und Dimethylformamid.	
Ausbeute: 1,1 g (58,3% der Theorie), Schmelzpunkt: 148°C	25
d. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harn-stoff-hydrochlorid	30
Hergestellt analog Beispiel 1c aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-cyano-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: $0.08 \ g \ (5.2\% \ der \ Theorie)$, $C_{23}H_{30}N_8O_4 \ (482.54)$	30
Massenspektrum: $(M+H)^+ = 483$	35
Beispiel 50	
1-(1-Ethoxycarbonylcyclohexyl)-3-[4-(4-amidino-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-trihydrochlo- rid-dihydrat	40
a. 2-Amino-4-(4-cyano-N-methyl-anilino)-6-methyl-pyrimidin	
Eine Lösung von 1,45 g (0,011 Mol) 4-(N-Methylamino)-benzonitril und 1,45 g (0,01 Mol) 2-Amino-4-chlor-6-methylpyrimidin in 20 ml Wasser, 10 ml Aceton und 0,3 ml konzentrierter Salzsäure gelöst und 5 Stunden zum Rückfluß erhitzt. Das Lösungsmittel wird abdestilliert, der Rückstand in Wasser suspendiert und mit gesättigter Natriumbicarbonatlösung neutralisiert. Der Niederschlag wird abfiltriert und mit Wasser und Diethylether gewaschen. Ausbeute: 2,2 g (92% der Theorie), Schmelzpunkt: 215°C	45
b. 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-N-methyl-anilino)-6-methyl-pyrimidin-2-yl]harnstoff	50
Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-N-methyl-anilino)-6-methyl-pyrimidin, 1-Isocyanato-cyclohexancarbonsäureethylester und Dimethylformamid. Ausbeute: $5,45$ g (83% der Theorie), Schmelzpunkt: 194° C $C_{23}H_{28}N_6O_3$ ($436,52$) Berechnet: C $63,28$ H $6,46$ N $19,25$ Gefunden: C $63,16$ H $6,49$ N $19,29$	55
c. 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-trihy-drochloriddihydrat	60
Hergestellt analog Beispiel 1c aus 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-N-methyl-anilino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,4 g (99% der Theorie), Schmelzpunkt: schäumt ab 223°C C ₂₃ H ₃₁ N ₇ O ₃ (453,54)	65

Massenspektrum: $(M+H)^+ = 454$

Beispiel 51

- 5 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-trihydrochlorid-dihydrat
 - a. 1-(1-Carboxy-cyclohexyl]-3-[4-(4-cyano-phenyl-N-methylamino)-6-methyl-pyrimidin-2-yl]harnstoff
- Hergestellt analog Beispiel 37a aus 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff, 1 N Lithiumhydroxidlösung und Methanol.
 Ausbeute: 2,9 g (71% der Theorie),
 Schmelzpunkt: schäumt ab 237°C
- 15 b. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-cyano-phenyl-N-methylamino)-6-methyl-pyrimidin-2yl]harnstoff

Hergestellt analog Beispiel 29b aus 1-(1-Ethoxycarbonylcyclohexyl]-3-[4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff Glycinmethylesterhydrochlorid, TBTU, HOBT, N,N-Diisopropyl-ethylamin und Dimethylformamid.

Ausbeute: 2,8 g (75% der Theorie),

Schmelzpunkt: ab 130°C

c. 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-trihydrochlorid-dihydrat

Hergestellt analog Beispiel 1c aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1,85 g (64,3% der Theorie),

Schmelzpunkt; schäumt ab 185°C

C₂₄H₃₂N₈O₄ (496,57)

35

40

Massenspektrum: $(M+H)^+ = 497$

Beispiel 52

1-(1-Carboxycyclohexyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff

a. 1-(1-Carboxymethylcarbamoylcyclohexyl]-3-[4-(4-amidinophenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harn-stoff

Hergestellt analog Beispiel 37a aus 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenyl-N-methylamino)-6-methyl-pyrimidin-2-yl]harnstoff-trihydrochloriddihydrat, 1 N Lithiumhydroxidlösung und Dioxan. Ausbeute: 0,22 g (28,5% der Theorie),

Schmelzpunkt: Zersetzung ab 233°C C₂₃H₃₀N₈O₄ (482,54)

Massenspektrum: $(M+H)^+ = 483$

Beispiel 53

- 50 1-(1-Ethoxycarbonylcyclopentyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-dihy-drochlorid-hydrat
 - a. 1-(1-Ethoxycarbonylcyclopentyl]-3-[4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff
- Hergestellt analog Beispiel 22a aus 2-Amino-4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin, 1-Isocyanato-cyclopentancarbonsäureethylester und Dimethylformamid.
 Ausbeute: 13,8 g (81,6% der Theorie),

Schmelzpunkt: 204°C

60 b. 1-(1-Ethoxycarbonylcyclopentyl]-3-[4-(4-amidino-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff-dihydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 1-(1-Ethoxycarbonylcyclopentyl]-3-[4-(4-cyano-phenyl-N-methyl-amino)-6-methyl-pyrimidin-2-yl]harnstoff, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 2 g (94,3% der Theorie),

Schmelzpunkt: schäumt ab 228°C

C₂₂H₂₉N₇O₃ (439,52)

Massenspektrum: $(M+H)^+ = 440$

Beispiel 54

4-[2-(Cyclohexylmethylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid-hydrat

a. 6-Methyl-2-thioxo-2,3-dihydro-1-H-pyrimidin-4-on

Eine Lösung von 23 g (1 Mol) Natrium in einem Liter absolutem Ethanol wird bei Raumtemperatur mit 128 ml (1 Mol) Acetessigester und 76,8 g (1 Mol) Thioharnstoff versetzt. Das Gemisch wird 5 Stunden zum Rückfluß erhitzt und 15 Stunden bei Raumtemperatur gerührt. Anschließend wird das Ethanol abdestilliert, der Rückstand mit 500 ml Eiswasser versetzt und mit 100 ml konzentrierter Salzsäure angesäuert. Der Niederschlag wird abfiltriert, mit Wasser, Isopropanol und Diethylether gewaschen und getrocknet.

Ausbeute: 121 g (85% der Theorie),

Schmelzpunkt: >300°C

b. 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin

Zu einer Lösung von 11,5 g (0,1 Mol) Kalium-tert.-butylat in 100 ml Dimethylformamid werden bei Raumtemperatur 14,2 g (0,1 Mol) 6-Methyl-2-thioxo-2,3-dihydro-1-H-pyrimidin-4-on gegeben. Nach 30 Minuten werden 6,6 ml (0,105 Mol) Methyljodid zugetropft und die Lösung 15 Stunden gerührt. Anschließend wird das Reaktionsgemisch mit Eiswasser verdünnt und mit 10% iger Zitronensäurelösung angesäuert. Der Niederschlag wird abfiltiriert, mit Wasser gewaschen und getrocknet.

Ausbeute: 12,2 g (78,5% der Theorie),

Schmelzpunkt: 227°C C₆H₈N₂ÔS (156,22)

Berechnet: C 46,13 H 5,20 N 17,94 O 10,24 S 20,53 Gefunden: C 46,20 H 5,14 N 17,90 O 10,41 S 20,35

c. 4-Hydroxy-6-methyl-2-cyclohexylmethylamino-pyrimidin

Das Gemisch von 7,8 g (0,05 Mol) 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin und 7,3 ml (0,055 Mol) Cyclohexylmethylamin wird zwei Stunden unter Stickstoff bei 150°C gerührt. Nach Beendigung der Entwicklung von Methylmercaptan wird der klare harzige Rückstand mit Essigsäureethylester verrieben. Die dabei erhaltenen farblosen Kristalle werden abfiltriert und mit Essigsäureethylester und Diethylether gewaschen.

Ausbeute: 8 g (72,4% der Theorie),

Schmelzpunkt: 140°C

d. 2-Cyclohexylmethylamino-4-chlor-6-methyl-pyrimidin

Das Gemisch von 5,5 g (0,025 Mol) 4-Hydroxy-6-methyl-2-cyclohexylmethyl-amino-pyrimidin, 20 ml Phosphoroxychlorid und 3 ml Triethylamin wird drei Stunden bei 80°C gerührt. Die klare Reaktionslösung wird auf Eiswasser gegossen und mit Dichlormethan extahiert. Die organische Phase wird mit Wasser gewaschen und eingeengt. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Cyclohexan/Dichlormethan = 1:3). Das erhaltene Produkt wird aus Petrolether umkristallisiert.

Ausbeute: 4,1 g (68,5% der Theorie),

Schmelzpunkt: 88°C C₁₂H₁₈CiN₃ (239,75)

Berechnet: C 60,12 H 7,57 N 17,53 O Gefunden: C 60,19 H 7,59 N 17,35 O 9,17

e. 4-[2-(Cyclohexylmethyl-amino)-6-methyl-pyrimidin-4-yloxy]-benzonitril

Zu einer Lösung von 3 g (0,0265 Mol) Kalium-tert,-butylat in 40 ml Dimethylformamid werden 3,15 g (0,0265 Mol) 4-Hydroxybenzonitril und 5,5 g (0,024 Mol) 2-Cyclohexylmethylamino-4-chlor-6-methyl-pyrimidin gegeben. Die klare Lösung wird zwei Stunden im Mikrowellenofen auf 160°C erhitzt und nach dem Abkühlen mit Eiswasser verdünnt. Der Niederschlag wird abfiltriert und mit Wasser gewaschen. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Cyclohexan/Essigsäureethylester = 3:1).

Ausbeute: 5,7 g (73,8% der Theorie),

Schmelzpunkt: 146°C

f. 4-[2-(Cyclohexylmethyl-amino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 4-[2-(Cyclohexylmethylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 1,2 g (57,5% der Theorie),

Schmelzpunkt: 217°C C₁₉H₂₅N₅O (339,44)

Massenspektrum: $(M+H)^+ = 340$

29

5

10

15

25

35

45

50

60

Beispiel 55

4-(2-Cyclohexylamino-6-methyl-pyrimidin-4-yloxy)-benzamidinhydrochlorid-hydrat

5

a. 4-Hydroxy-6-methyl-2-cyclohexylamino-pyrimidin

Hergestellt analog Beispiel 54c aus 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin und Cyclohexylamin. Ausbeute: 5,2 g (93,4% der Theorie),

Schmelzpunkt: 102°C

10

b. 2-Cyclohexylamino-4-chor-6-methyl-pyrimidin

Hergestellt analog Beispiel 54d aus 4-Hydroxy-6-methyl-2-cyclohexylamino-pyrimidin, Phosphoroxychlorid und Triethylamin.

5 Ausbeute: 4,7 g (86,3% der Theorie),

Schmelzpunkt: Harz

c. 4-(2-Cyclohexylamino-6-methyl-pyrimidin-4-yloxy)-benzonitril

Hergestellt analog Beispiel 54e aus 2-Cyclohexylamino-4-chlor-6-methyl-pyrimidin, 4-Hydroxybenzonitril, Kaliumtert.-butylat und Dimethylformamid.

Ausbeute: 0,9 g (33% der Theorie).

d. 4-(2-Cyclohexylamino-6-methyl-pyrimidin-4-yloxy)-benzamidin-hydrochlorid-hydrat

25

Hergestellt analog Beispiel 1c aus 4-(2-Cyclohexylamino-6-methyl-pyrimidin-4-yloxy)-benzonitril, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,25 g (26,3% der Theorie),

Schmelzpunkt: 198°C

 $C_{18}H_{23}N_5O$ (325,41)

Massenspektrum: $M^+ = 325$

Beispiel 56

35

4-[2-(2, 3-Dimethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-dihydrochlorid-hydrat

a. 4-Hydroxy-6-methyl-2-(2,3-dimethyl-cyclohexylamino)-pyrimidin

Hergestellt analog Beispiel 54c aus 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin und 2,3-Dimethyl-cyclohexylamin bei 180°C.

Ausbeute: 5,4 g (99% der Theorie).

b. 2.-(2,3-Dimethylcyclohexylamino)-4-chlor-6-methyl-pyrimidin

Hergestellt analog Beispiel 54d aus 4-Hydroxy-6-methyl-2-(2,3-dimethyl-cyclohexylamino)-pyrimidin, Phosphoroxychlorid und Triethylamin.

Ausbeute: 4 g (74% der Theorie),

Schmelzpunkt: Harz

50

c. 4-[2-(2,3-Dimethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxyl-benzonitril

Hergestellt analog Beispiel 54e aus 2-(2,3-Dimethyl-cyclohexylamino)-4-chlor-6-methyl-pyrimidin, 4-Hydroxybenzonitril, Kalium-tert.-butylat und Dimethylformamid.

Ausbeute: 1,7 g (64% der Theorie),

55 Schmelzpunkt: 112-117°C

d. 4-[2-(2,3-Dimethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxyl-benzamidin-dihydrochlorid-hydrat

Hergestellt analog Beispiel 1c aus 4-[2-(2,3-Dimethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril, 60 ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,65 g (50% der Theorie),

Schmelzpunkt: ab 170°C

C₂₀H₂₇N₅O (353,47)

Massenspektrum: $(M+H)^+ = 354$

Beispiel 57

4-[2-(4-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid	
a. 4-Hydroxy-6-methyl-2-(4-methyl-cyclohexylamino)-pyrimidin	5
Hergestellt analog Beispiel 54c aus 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin und 4-Methyl-cyclohexylamin bei 180°C.	
Ausbeute: 3,4 g (68,6% der Theorie), Schmelzpunkt: 95–96°C	10
b. 2-(4-Methyl-cyclohexylamino)-4-chlor-6-methylpyrimidin	
Hergestellt analog Beispiel 54d aus 4-Hydroxy-6-methyl-2-(4-methyl-cyclohexylamino)-pyrimidin, Phosphoroxychlorid und Triethylamin. Ausbeute: 1,9 g (52% der Theorie), Schmelzpunkt: Harz	15
c. 4-[2-(4-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxyl]-benzonitril	
Hergestellt analog Beispiel 54e aus 2-(4-Methyl-cyclohexylamino)-4-chlor-6-methyl-pyrimidin, 4-Hydroxybenzonitril, Kalium-tertbutylat und Dimethylformamid. Ausbeute: 1,7 g (66,1% der Theorie), Schmelzpunkt: 130–136°C	20
d. 4-[2-(4-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid	25
Hergestellt analog Beispiel 1c aus 4-[2-(4-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 0.6 g (47,6% der Theorie), Schmelzpunkt: $225-230^{\circ}\text{C}$ C $_{19}\text{H}_{25}\text{N}_{5}\text{O}$ (339,44) Massenspektrum: $(M+H)^{+}=340$	30
Beispiel 58	35
4-{2-(3-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid-hydrat	
a. 4-Hydroxy-6-methyl-2-(3-methyl-cyclohexylamino)-pyrimidin	
Hergestellt analog Beispiel 54c aus 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin und 3-Methyl-cyclohexylamin bei 180°C. Ausbeute: 5,5 g (97% der Theorie), Schmelzpunkt: ab 60°C	40
b. 2-(3-Methylcyclohexylamino)-4-chlor-6-methyl-pyrimidin	45
Hergestellt analog Beispiel 54d aus 4-Hydroxy-6-methyl-2-(3-methyl-cyclohexylamino)-pyrimidin, Phosphoroxychlorid und Triethylamin. Ausbeute: 4,1 g (70,7% der Theorie), Schmelzpunkt: Harz	50
c. 4-[2-(3-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxyl]-benzonitril	
Hergestellt analog Beispiel 54e aus 2-(3-Methyl-cyclohexylamino)-4-chlor-6-methyl-pyrimidin, 4-Hydroxybenzonitril, Kalium-tertbutylat und Dimethylformamid. Ausbeute: 3 g (62,5% der Theorie), Schmelzpunkt: ab 106°C	55
d. 4-[2-(3-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxyl]-benzamidin-hydrochlorid-hydrat	60
Hergestellt analog Beispiel 1c aus 4-[2-(3-Methyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat. Ausbeute: 1 g (62,5% der Theorie), Schmelzpunkt: $223-225^{\circ}$ C C ₁₉ H ₂₅ N ₃ O (339,44) Massenspektrum: (M+H) ⁺ = 340	65

Beispiel 59

4-[2-(N-Ethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid

5

a. 2-Methylsulfanyl-4-chlor-6-methyl-pyrimidin

Eine Lösung von 3,12 g (0,02 Mol) 4-Hydroxy-6-methyl-2-methylsulfanyl-pyrimidin, 30 ml Phosphoroxychlorid und 3 ml Triethylamin wird 1,5 Stunden bei 100°C gerührt. Anschließend wird das Phosphoroxychlorid abdestilliert und der Rückstand auf Eiswasser gegossen. Die wäßrige Phase wird mit Ammoniak neutralisiert und mit Dichlormethan extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und über Aktivkohle filtriert.

Ausbeute: 3,2 g (91,6% der Theorie),

Schmelzpunkt: ab 60°C C₆H₇ClN₂S (174,68)

Berechnet: C 41,26 H 4,04 N 16,04 S 18,36 Cl 20,30 Gefunden: C 41,23 H 4,04 N 15,81 S 18,21 Cl 20,22

b. 4-(2-Methylsulfanyl-6-methyl-pyrimidin-4-yloxy)-benzonitril

Hergestellt analog Beispiel 54e aus 2-Methylsulfanyl-4-chlor-6-methyl-pyrimidin, 4-Hydroxybenzonitril, Kalium-tert.-butylat und Dimethylformamid.

Ausbeute: 3,65 g (83,5% der Theorie),

Schmelzpunkt: 125°C

c. 4-[2-(N-Ethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril

25

Zu einer Lösung von 0,9 g (0,0035 Mol) 4-(2-Methylsulfanyl-6-methyl-pyrimidin-4-yloxyl-benzonitril in 50 ml Chloroform werden 6,3 ml (0,01 Mol) 12%ige Natriumhypochloritlösung zugetropft und zwei Stunden bei 0°C gerührt. Anschließend werden 3 ml Essigsäure zugetropft und eine Stunde bei 0°C gerührt. Die organische Phase wird abgetrennt und mit Wasser und Natriumbicarbonatlösung gewaschen. Die Lösung wird über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der kristalline Rückstand wird mit 10 ml N-Ethyl-cyclohexylamin eine Stunde zum Rückfluß erhitzt. Das überschüssige N-Ethyl-cyclohexylamin wird abdestilliert und der Rückstand in Dichlormethan gelöst. Die organische Phase wird mit 10%iger Zitronensäurelösung gewaschen. Die Reinigung erfolgt durch Säulenchromatographie an Kieselgel (Cyclohexan/Essigsäuerethylester = 6:1). Das Produkt wird aus Petrolether umkristallisiert. Ausbeute: 0,4 g (34% der Theorie),

5 Schmelzpunkt: 88°C C₂₀H₂₄N₄O (336,4)

Berechnet: C 71,40 H 7,19 N 16,65 O 4,76 Gefunden: C 71,31 H 7,19 N 16,52 O 4,98

d. 4-[2-(N-Ethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzamidin-hydrochlorid

Hergestellt analog Beispiel 1c aus 4-[2-(N-Ethyl-cyclohexylamino)-6-methyl-pyrimidin-4-yloxy]-benzonitril, ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 0,3 g (43,2% der Theorie),

5 Schmelzpunkt: 245°C C₂₀H₂₇N₅O (353,47)

Massenspektrum: $(M+H)^+ = 354$

Beispiel 60

50

40

Trockenampulle mit 75 mg Wirkstoff pro 10 ml

Zusammensetzung

55 Wirkstoff 75,0mg
Mannitol 50,0mg
Wasser für Injektionszwecke ad 10,0ml

60 Herstellung

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 61

Trockenampulle mit 35 mg Wirkstoff pro 2 ml

	Zusammensetzung	5
Wirkstoff Mannitol Wasser für Injektionszwecke ad	35,0 mg 100,0 mg 2,0 ml	
	Herstellung	10
Wirkstoff und Mannitol werden in Wasser ge	elöst. Nach Abfüllung wird gefriergetrocknet.	
Die Auflösung zur gebrauchsfertigen Lösung	g erfolgt mit Wasser für Injektionszwecke.	15
	Beispiel 62	
T	ablette mit 50 mg Wirkstoff	20
	Zusammensetzung	
 Wirkstoff Milchzucker Maisstärke Polyvinylpyrrolidon Magnesiumstearat 	50,0 mg 98,0 mg 50,0 mg 15,0 mg 2.0 mg 215,0 mg	25
	Herstellung	30
(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 9 mm. Beispiel 63		35
Та	blette mit 350 mg Wirkstoff	
	Zusammensetzung	40
(1) Wirkstoff (2) Milchzucker (3) Maisstärke (4) Polyvinylpyrrolidon (5) Magnesiumstearat	350,0 mg 136,0 mg 80,0 mg 30,0 mg 4,0 mg	45
	600,0 mg Herstellung	50
(1), (2) und (3) werden gemischt und mit ein (5) zugemischt. Aus dieser Mischung werden Turchmesser der Tabletten: 12 mm.	er wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird abletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe.	55
	Beispiel 64	
K	apseln mit 50 mg Wirkstoff	60
	Zusammensetzung	
 Wirkstoff Maisstärke getrocknet Milchzucker pulverisiert Magnesiumstearat 	50,0 mg 58,0 mg 50,0 mg 2,0 mg 160,0 mg	65

Herstellung

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben. Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

Beispiel 65

Kapseln mit 350 mg Wirksoff

10	Zusammensetzung

(1) Wirkstoff 350,0 mg	350 mg
(2) Maisstärke getrocknet	46,0 mg
(3) Milchzucker pulverisiert	30,0 mg
(4) Magnesiumstearat	4,0 mg
_	430,0 mg

5

20

25

35

45

50

55

60

65

Herstellung

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben. Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 0 abgefüllt. 1 Zäpfchen enthält:

Beispiel 66

Suppositorium mit 100 mg Wirkstoff

	Wirkstoff	100,0 mg
30	Polyethylenglykol (M. G. 1500)	600,0 mg
	Polyethylenglykol (M. G. 6000)	460,0 mg
	Polyethylensorbitanmonostearat	840,0 mg
		2000,0 mg

Herstellung

Das Polyethylenglykol wird zusammen mit Polyethylensorbitanmonostearat geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

Patentansprüche

1. Pyrimidine der allgemeinen Formel

in der

 R_a ein Wasserstoffatom, eine gegebenenfalls durch eine Carboxy- oder C_{1-3} -Alkoxycarbonylgruppe substituierte C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe,

 R_b eine gegebenenfalls durch eine Phenyl- oder C_{5-7} -Cycloalkylgruppe substituierte C_{1-3} -Alkylgruppe, eine C_{4-7} -Alkylgruppe oder eine C_{5-7} -Cycloalkylgruppe, wobei die vorstehend erwähnten Cycloalkylgruppen durch 1 oder 2 C_{1-3} -Alkylgruppen, durch eine Carboxy-, C_{1-3} -Alkoxycarbonyl-, Carboxy- C_{1-3} -alkylaminocarbonyl- oder C_{1-3} -Alkoxycarbonyl- C_{1-3} -alkylaminocarbonylgruppe und die vorstehend erwähnte Phenylgruppe durch Fluor-, Chloroder Bromatome, durch Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können,

eine durch eine C₁₋₆-Alkyl- oder C₅₋₇-Cycloalkylgruppe substituierte Carbonylgruppe, eine durch 1 oder 2 Phenylgruppen substituierte C₂₋₄-Alkanoylgruppe, eine durch eine Phenyl-, Thienyl-, Oxazol-, Thiazol-, Imidazol-, Pyridinyl-, Pyrimidinyl-, Pyrazinyl- oder Pyridazinylgruppe substituierte Carbonylgruppe, wobei die vorstehend erwähnten heteroaromatischen Gruppen jeweils durch C₁₃-Alkyl- oder Phenylgruppen und die vorstehend erwähnte

Phenylgruppe durch Fluor-, Chlor- oder Bromatome, durch Trifluormethyl-, C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, eine C₁₋₆-Alkylaminocarbonyl-, Phenyl-C₁₋₃-alkylaminocarbonyl- oder C₅₋₇-Cycloalkylaminocarbonylgruppe, in denen jeweils die Alkyl-, Cycloalkyl- und Cycloalkenylteile durch R2 substituiert sind und zusätzlich die vorstehend erwähnten Alkyl- und Cycloalkylteile durch 1 oder 2 C₁₋₃-Alkylgruppen substituiert sein können, oder eine Phenylaminocarbonylgruppe, die im Phenylteil durch Fluor-, Chlor- oder Bromatome, durch Trifluormethyl-, C_{1-3} -Alkyl- oder C1-3-Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, in denen R2 ein Wasserstoffatom. eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe, 10 eine C_{1-3} -Alkylaminocarbonyl-, $Di-(C_{1-3}-Alkyl)$ -aminocarbonyl-, $N-(Phenyl-C_{1-3}-alkyl)$ - $N-(C_{1-3}-alkyl)$ -aminocarbonyl-, $N-(Phenyl-C_{1-3}-alkyl)$ - $N-(C_{1-3}-alkyl)$ -Ncarbonyl-, C4-6-Cycloalkyleniminocarbonyl-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N-(C1-3-Alkyl)-piperazinocarbonylgruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Carboxy- oder C1-3-Alkoxycarbonylgruppe substituiert sein kann, R_c eine Cyano-, Amino-, (2-Amino-1H-imidazol-4-yl)- oder eine R₁NH-C(=NH)-Gruppe, in der 15 R_1 ein Wasserstoffatom, eine Hydroxygruppe, eine C_{1-3} -Alkylgruppe oder einen in vivo abspaltbaren Rest darstellt, R_d ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe, A eine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C1-3-Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylengruppe, eine C_{3-7} -Cycloalkylengruppe oder eine gegebenenfalls im Kohlenstoffgerüst durch eine C₁₋₃-Alkylgruppe substituierte Thienylen-, Oxazolylen-, Thiazolylen-, Imidazolylen-, Pyridinylen-, Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe und X ein Sauerstoff- oder Schwefelatom, eine gegebenenfalls durch eine C1-3-Alkylgruppe substituierte Methylenoder -NH-Gruppe bedeuten, deren Tautomere, deren Stereoisomere und deren Salze. 2. Pyrimidinderivate der allgemeinen Formel gemäß Anspruch 1, in der Ra bis Rd, und A wie im Anspruch 1 erwähnt definiert sind und X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C1-3-Alkylgruppe substituierte -NH-Gruppe bedeutet, deren Tautomere, deren Stereoisomere und deren Salze. 3. Pyrimidinderivate der allgemeinen Formel gemäß Anspruch 1, in der 30 Ra ein Wasserstoffatom, eine gegebenenfalls durch eine Carboxy- oder C1-3-Alkoxycarbonylgruppe substituierte C₁₋₃-Alkylgruppe, R_b eine C₁₋₅-Alkylgruppe, eine durch eine Phenyl- oder Cyclohexylgruppe substituierte C₁₋₃-Alkylgruppe, eine Cyclohexyl-, Methylcyclohexyl- oder Dimethylcyclohexylgruppe, eine durch eine C_{1-4} -Alkyl-, Cyclopentyl- oder Cyclohexylgruppe substituierte Carbonylgruppe, eine durch 1 oder 2 Phenylgruppen substituierte Acetylgruppe, eine durch eine Phenyl- oder Oxazolgruppe substituierte Carbonylgruppe, wobei die vorstehend erwähnte heteroaromatische Gruppe durch Methyl- oder Phenylgruppen und die vorstehend erwähnte Phenylgruppe durch C_{1-3} -alkyl- oder C_{1-3} -Alkoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, eine C_{1-5} -Alkylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl-, Cyclopentylaminocarbonyl-, Cyclopentyl-, Cyclopentyl-, nocarbonyl- oder Methylcyclohexylaminocarbonylgruppe, in denen jeweils die Alkyl- und Cycloalkylteile durch R2 substituiert sind, oder eine Phenylaminocarbonylgruppe, die im Phenylteil durch Fluor-, Chlor- oder Bromatome, durch Methyl- oder Methoxygruppen mono- oder disubstituiert und die Substituenten jeweils gleich oder verschieden sein können, in denen R₂ ein Wasserstoffatom. eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe, eine C_{1-3} -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl) -amino-, N- (Phenyl-C13 -alkyl) -N- (C_{13} -alkyl) -aminocarbonyl-, C4-6-Cycloalkyleniminocarbonyl-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N-(C1-3-Alkyl)-piperazinocarbonylgruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe substituiert sein kann, 50 R_c eine Cyano- oder eine R₁NH-C(=NH)-Gruppe, in der R₁ ein Wasserstoffatom, eine Hydroxygruppe, eine C₁₋₃-Al-kylgruppe darstellt, R_d eine C_{1-3} -Alkylgruppe, A eine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C1-3-Alkyl- oder C₁₋₃-Alkoxygruppe substituierte Phenylengruppe und 55 X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte -NH-Gruppe bedeuten, deren Tautomere, deren Stereoisomere und deren Salze. 4. Pyrimidinderivate der allgemeinen Formel gemäß Anspruch 1, in der Ra cin Wasserstoffatom, R_b eine C₁₋₅-Alkylaminocarbonyl-, Cyclopentylaminocarbonyl-, Cyclohexylaminocarbonyl- oder Methylcyclohexylaminocarbonyl -gruppe, in denen jeweils die Alkyl- und Cycloalkylteile durch R2 substituiert sind, in denen R₂ ein Wasserstoffatom, eine Carboxy- oder C1-3-Alkoxycarbonylgruppe,

boxy- oder C₁₋₃-Alkoxycarbonylgruppe substituiert sein kann,

eine C_{1-3} -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl) -amino-, N-(Phenyl- C_{1-3} -alkyl)-N- $(C_{1-3}$ -alkyl) -aminocarbonyl-, C_{4-6} -Cycloalkyleniminocarbonyl-, Morpholinocarbonyl-, Piperazinocarbonyl- oder N- $(C_{1-3}$ -Alkyl)-piperazinocarbonylgruppe darstellt, wobei zusätzlich in den vorstehend erwähnten Gruppen jeweils der Alkylteil durch eine Car-

 R_e eine Cyano- oder eine R_1 NH-C(=NH)-Gruppe, in der R_1 ein Wasserstoffatom, eine Hydroxygruppe, eine C_{l-3} -Alkylgruppe darstellt,

R_d eine C₁₋₃-Alkylgruppe,

5

10

15

20

25

30

35

40

45

50

55

60

65

A cine eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylengruppe und

X ein Sauerstoffatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte -NH-Gruppe bedeuten, deren Tautomere, deren Stereoisomere und deren Salze.

5. Folgende Pyrimidinderivate der allgemeinen Formel gemäß Anspruch 1:

(a) N-[4-(4-Amidino-phenoxy)-6-methyl-pyrimidin-2-yl]-cyclopentancarbonsäureamid,

(b) 1-Cyclohexyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff,

(c) 1-(1, 1-Dimethylpropyl)-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff,

- d) 1-[1-(R,S)-Ethoxycarbonyl-2-methyl-propyl-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harn-stoff,
- (e) 1-(1-Methoxycarbonylmethylcarbamoyl-cyclopentyl)-3-[4-(4-amidino-phenoxy)-6-methyl-pyrimidin-2-yl]harnstoff und
- (f) 1-(1-Methoxycarbonylmethylcarbamoyl-cyclohexyl]-3-[4-(4-amidino-phenylamino)-6-methyl-pyrimidin-2-yl]harnstoff

sowie deren Stereoisomere und deren Salze.

 Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 5, in denen R_b eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt.

7. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_b eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

8. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_b eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 zur Herstellung eines Arzneimittels mit einer die Thrombinzeit verlängernder Wirkung, einer thrombinhemmender Wirkung und einer Hemmwirkung auf verwandte Serinproteasen.

9. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 7, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen R_b eine der in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen darstellt, oder ein Salz gemäß Anspruch 6 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

10. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß a. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_c eine R₁NH-C(=NH)-Gruppe darstellt, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$R_a = N$$
 R_b
 $X - A - C(N=H) - Z_1$
, (II)

in der

 A, X, R_a, R_b und R_d wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

 Z_1 eine gegebenenfalls durch eine Arylgruppe substituierte Alkoxy- oder Alkylthiogruppe darstellt, mit einem Amin darstellt, mit einem Amin der allgemeinen Formel

 R_1 -NH₂, (Ш)

in der

R₁ wie in den Ansprüchen 1 bis 5 erwähnt definiert ist, oder dessen Salzen umgesetzt wird oder

b. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine der für R_b in den Ansprüchen 1 bis 5 erwähnten Acylgruppen darstellt, eine Verbindung der allgemeinen Formel

$$R_{a} = N$$

$$H$$

$$X - A - R_{c}' , (IV)$$

in der

A, X und Ra wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

R_c' eine Cyanogruppe oder eine der für R_c in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen, die durch einen Schutzrest geschützt sind, bedeutet, mit einer Verbindung der allgemeinen Formel

 $HO-R_b'$, (V)

in der

R_b' eine der für R_b in den Ansprüchen 1 bis 5 erwähnten Acylgruppen darstellt, oder mit deren reaktionsfähigen Derivaten umgesetzt und von einer so erhaltenen Verbindung erforderlichenfalls anschließend ein verwendeter Schutzrest abgespalten wird oder

5

25

30

50

c. zur Herstellung einer Verbindung der allgemeinen Formel I, in der Rb eine der für Rb in den Ansprüchen 1 bis 5 erwähnten Aminocarbonylgruppen darstellt, eine Verbindung der allgemeinen Formel

$$R_{a} \xrightarrow{N} N \qquad X - A - R_{e}' \qquad , (IV)$$

in der

A, X und R_a wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Re' eine Cyanogruppe oder eine der für Re in den Ansprüchen 1 bis 5 erwähnten Amidinogruppen, die durch einen Schutzrest geschützt sind, bedeutet, mit einer Verbindung der allgemeinen Formel

$$Z_2$$
- R_b ", (VI)

R_b" eine der für R_b in den Ansprüchen 1 bis 5 erwähnten Aminocarbonylgruppen und

Z₂ eine Austrittsgruppe oder

Z2 zusammen mit einem Wasserstoffatom der benachbarten -CONH-Gruppe eine weitere Kohlenstoff-Stickstoff-Bindung bedeuten, umgesetzt und und von einer so erhaltenen Verbindung erforderlichenfalls anschließend ein verwendeter Schutzrest abgespalten wird oder

d. zur Herstellung einer Verbindung der allgemeinen Formel I, in der X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte -NH-Gruppe und R_c eine Cyanogruppe darstellen, eine Verbindung der allgemeinen Formel

$$R_a \longrightarrow N N N$$
 R_b
 R_b
 R_b
 R_b
 R_b

Ra, Rb und Rd wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Z₃ eine Austrittsgruppe bedeutet, mit einer Verbindung der allgemeinen Formel

in der

A wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und

X' ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte -NH-Gruppe bedeutet, umgesetzt wird oder

e. zur Herstellung einer Verbindung der allgemeinen Formel I, in der Rb einen der für Rb in den Ansprüchen 1 bis 5 erwähnten gegebenenfalls substituierten Alkyl- und Cycloalkylreste darstellt und Re eine Cyanogruppe bedeutet, eine Verbindung der allgemeinen Formel

$$R_{a} = N \qquad N \qquad X - A - CN \qquad , (IX)$$

in der

A, X, R_a und R_d wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

5 $Z_4-R_b^{""}$, (X)

10

15

20

25

35

45

50

55

60

in der

 R_b " einen der für R_b in den Ansprüchen 1 bis 5 erwähnten gegebenenfalls substituierten Alkyl- und Cycloal-kylreste darstellt und

Z4 eine Austrittsgruppe bedeutet, umgesetzt wird oder

f. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_1 einen der bei der Definition des Restes R_1 in den Ansprüchen 1 bis 5 erwähnten Acylreste oder in vivo abspaltbaren Reste darstellt, eine Verbindung der allgemeinen Formel

 $R_{a} = N$ R_{b} $X - A - C(=NH)NH_{2} , (XI)$

in der

 A, X, R_a, R_b und R_d wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

 Z_5-R_6 , (XII)

30 in de

 R_6 einer der bei der Definition des Restes R_1 in den Ansprüchen 1 bis 5 erwähnten Acylreste oder in vivo abspaltbaren Reste und

Z₅ eine nukleofuge Austrittsgruppe bedeuten, umgesetzt wird oder

g. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_d in 4-Stellung steht und X eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methylengruppe darstellt, ein Guanidin der allgemeinen Formel

 (R_aNR_b) -(HN=)C- NH_2 , (XIII)

40 in de

R_a und R_b wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, mit einem 1,3-Diketon der allgemeinen Formel

R_dCO-CH₂-CO-X"-A-R_C, (XIV)

in d

A, Rc und Rd wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

 X^n eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methylengruppe bedeutet, umgesetzt wird und

gewünschtenfalls anschließend eine so erhaltene Verbindung der der allgemeinen Formel I, die eine Alkoxycarbonylgruppe enthält, mittels Hydrolyse in eine entsprechende Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, übergeführt wird oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels Veresterung oder Amidierung in eine entsprechende Verbindung der allgemeinen Formel I, die eine der in den Ansprüchen 1 bis 5 erwähnten Alkoxycarbonyl- oder Aminocarbonylgruppen enthält, übergeführt wird oder

von einer so erhaltenen Verbindung ein während den vorstehend erwähnten Umsetzungen gegebenenfalls verwendeter Schutzrest abgespalten wird oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird oder

cine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere in ihre physiologisch verträglichen Salze, übergeführt wird.