The Wayback Machine - https://web.archive.org/web/20160722084255/http://wiki.wiremod.com:80/wiki/Gates bitwise

Personal tools

Gates, bitwise

Namespaced Wiki

Jump to: <u>navigation</u>, <u>search</u>

• <u>Page</u>
A bit wise operation operates on one or more bit patterns or binary numerals at the level of their individual bits.

Contents

Views

- * RAND * PriviserAND
- View Pistor 3 Bitwise OR

More ° 3.1 NOT • 4 Bitwise NOT

- Search 4.1 XOR 5 Bitwise XOR

- o 6.1 Bit shift right
- 7 Bit Shift Right

AND

Bitwise AND

Inputs:	N A B		
Outputs:	□ Out		
Description:	Bitwise AND takes two binary representations of equal length and performs the logical AND operation on each pair of correlation.		

OR

Bitwise OR

1 of 4 10/14/2024, 6:50 PM

Inputs:	N A B			
Outputs:	☑ Out			
Description:	Bitwise OR takes two bit patterns of equal length and performs the logical inclusive OR operation on each pair of corresponding bits. OR 0011 (decimal 3) = 0111 (decimal 7)			

NOT

Bitwise NOT

Inputs:	N A			
Outputs:	□ Out			
Description:	Bitwise NOT, or complement, is a unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Digits which were 0 become 1, and vice versa. NOT 0111 (decimal 7) = 1000 (decimal 8)			

XOR

Bitwise XOR

Inputs:	N A B			
Outputs:	№ Out			
Description:	bits. The resul XOR		two bit patterns of equal length and performs the logical XOR operation on each pair of corresponding 1 if the two bits are different, and 0 if they are the same.	

Bit shift left

Bit Shift Left

2 of 4 10/14/2024, 6:50 PM

Inputs:	N A B			
Outputs:	□ Out			
Description:	The bits of input A are shifted left by the amount of places of input B. example: 00010111 LEFT SHIFT BY ONE 00101110			

Bit shift right

Bit Shift Right

Inputs:	N A B				
Outputs:	■ Out				
	The bits of input A are shifted right by the amount of places of input B. example:				
Description:	00010111 RIGHT SHIFT BY TWO				
	= 00000101				

Retrieved from "http://wiki.wiremod.com/w/index.php?title=Gates_bitwise&oldid=193"

Navigation menu

Navigation

- Main page
- Wiremod.com
- Recent changes
- Random page

Quick links

- Tools list
- Gates
- Expression 2
- <u>UWSVN</u>

Tools

- What links here
- Related changes
- Special pages
- Printable version

3 of 4 10/14/2024, 6:50 PM

- Permanent link
- Page information

Google AdSense

DONATE

- This page was last modified on 22 November 2011, at 00:21.
- Content is available under <u>GNU Free Documentation License 1.3 or later</u> unless otherwise noted.
- Privacy policy
- About Wiremod Wiki
- Disclaimers
- GNU FDL FREE DOC LICENSE
- Powered by MediaWiki

4 of 4 10/14/2024, 6:50 PM