Contents

1	Linear Transformations	3
1.1	Linear Transformations	3
1.2	The Algebra of Linear Transformation	5
1.3	Isomorphism	7

Chapter 1

Linear Transformations

1.1 Linear Transformations

Definition 1.1.1 — linear transformation. let V and W be vector spaces over the field \mathbb{F} . A linear transformation from V into W is a function T from V into W such that

$$T(c\alpha + \beta) = cT\alpha + T\beta,$$

for all $\alpha, \beta \in V$ and $c \in \mathbb{F}$.

- Example 1 Let A be a fixed $m \times n$ matrix with entries in the field \mathbb{F} . The function T defined by T(x) = Ax is a linear transformation from $\mathbb{F}^{n\times 1}$ to $\mathbb{F}^{m\times 1}$. The function U defined by $U(\alpha) = \alpha A$ is a linear transformation from $F^{1\times m}$ to $F^{1\times n}$
- Example 2 Let \mathbb{R} be the field of real numbers and let V be the space of all functions from \mathbb{R} to \mathbb{R} which are continuous. Define T by $(Tf)(x) = \int_0^x f(t) dt$. Then T is a linear transformation from V to V.

Remark 1.1.1 It's important to notice that if T is a linear transformation from V into W, then

$$T(0_{\scriptscriptstyle V}) = 0_{\scriptscriptstyle W}.$$

Remark 1.1.2 Linear transformation is actually defined to preserve linear combinations. That is

$$T(c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n) = c_1T(\alpha_1) + c_2T(\alpha_2) + \ldots + c_nT(\alpha_n)$$

Theorem 1.1.1 Let V be a finite dimensional vector space over the field \mathbb{F} , let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be any ordered basis for V, let W be a vector space over the same field \mathbb{F} and let $\beta_1, \beta_2, \ldots, \beta_n$ be any vectors in W. Then there is precisely one linear transformation T from V into W such that $T\alpha_j = \beta_j$, for all $j = 1, \ldots, n$.

Proof. Given $\alpha \in V$, there is a unique n-tuple (x_1, x_2, \ldots, x_n) such that

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \ldots + x_n \alpha_n.$$

We define $T\alpha = x_1\beta_1 + x_2\beta_2 \dots + x_n\beta_n$. Then T is a well-defined rule for associating with each vector $\alpha \in V$ a vector $T\alpha \in W$. It's clear that $T\alpha_j = \beta_j$ for each j and T is a linear transformation. If U is a linear transformation from V into W with $U\alpha_j = \beta_j, j = 1, 2, \dots, n$, then for the vector $\alpha = \sum_{i=1}^n x_i\alpha_i$ we have

$$U\alpha = U\left(\sum_{i=1}^{n} x_i \alpha_i\right) = \sum_{i=1}^{n} x_i (U\alpha_i) = \sum_{i=1}^{n} x_i \beta_i.$$

So U is exactly the same rule T which we defined. This shows that the linear transformation T with $T\alpha_j = \beta_j$ for each j is unique.

Remark 1.1.3 The proof of Theorem 1.1.1 show us the way to actually get the transformation T.

Problem 1.1.1 The vector $\alpha_1 = (1,2)$, $\alpha_2 = (3,4)$ form a basis for \mathbb{R}^2 . $\beta_1 = (3,2,1)$, $\beta_2 = (6,5,4)$ are two vectors in \mathbb{R}^3 . We now want to find a linear transformation T such that $T\alpha_j = \beta_j$. We see that (1,0) = -2(3,2,1) + (6,5,4), thus T(1,0) = -2(3,2,1) + (6,5,4) = (0,1,2). Similarly, we can find T(0,1). Then we know all about this T.

■ Example 3 Let T be a linear transformation from \mathbb{F}^m to \mathbb{F}^n . By Theorem 1.1.1 we know that T is uniquely determined by the sequence of vectors $\beta_1, \beta_2, \ldots, \beta_m \in \mathbb{F}^n$ where

$$\beta_i = T\epsilon_i, \qquad i = 1, 2, \dots, m,$$

Namely, if we have

$$\alpha = (x_1, x_2, \dots, x_m),$$

then

$$T\alpha = x_1\beta_1 + \ldots + x_n\beta_n.$$

If B is the $m \times n$ matrix which has row vectors $\beta_1, \beta_2, \ldots, \beta_m$, this says that

$$T\alpha = \alpha B$$
.

Remark 1.1.4 From Example 3 we show that we can give an explicit and reasonably simple description of all linear transformations from \mathbb{F}^m to \mathbb{F}^n .

Remark 1.1.5 If T is a linear transformatino from V into W, then the range of T is a subspace of W.

Remark 1.1.6 The set N consisting of the vectors $\alpha \in V$ such that $T\alpha = 0$ is a subspace of V.

Definition 1.1.2 — null space, rank, nullity. Let V and W be vector spaces over the field \mathbb{F} and let T be a linear transformation from V to W. The null space of T is the set of all vectors $\alpha \in V$ such that $T\alpha = 0$. If V is finite-dimensional, the rank of T is the dimension of range of T and the nullity of T is the dimension of the null space of T.

Theorem 1.1.2 Let V and W be vector spaces over the field \mathbb{F} and let T be a linear transformation from V into W. Suppose that V is finite-dimensional, then

$$\operatorname{rank} T + \operatorname{nullity} T = \dim V$$

Proof. Let $\{\alpha_1, \ldots, \alpha_k\}$ be a basis for the null space of T. We can find $\alpha_{k+1}, \ldots, \alpha_n \in V$ such that $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a basis for V. We shall show that $\{T\alpha_{k+1}, \ldots, T\alpha_n\}$ is a basis for the range of T. The vector $T\alpha_1, \ldots, T\alpha_n$ certainly span the range of T. Since $T\alpha_1, \ldots, T\alpha_k$ are zero, $\{T\alpha_{k+1}, \ldots, T\alpha_n\}$ spans the range of T. To see they are also independent, suppose we have scalars c_i such that

$$\sum_{i=k+1}^{n} c_i(T\alpha_i) = 0.$$

Then we have $T(\sum_{i=k+1}^n c_i \alpha_i) = 0$ and accordingly $\alpha = \sum_{i=k+1}^n c_i \alpha_i$ is in the null space of T. We then must have $c_i = 0$ for $i = k+1, \ldots, n$. So $\{T\alpha_{k+1}, \ldots, T\alpha_n\}$ is a basis for the range, we are done.

Theorem 1.1.3 If A is an $m \times n$ matrix with entries in the field \mathbb{F} , then

$$row rank(A) = column rank(A).$$

Proof. Let T be the linear transformation from $\mathbb{F}^{n\times 1}$ to $\mathbb{F}^{m\times 1}$ defined by T(x)=Ax. Say S is the solution space of the system Ax=0, then nullity $T=\dim S$. So we have

$$\dim S + \operatorname{rank} T = n.$$

Notice that rank T is actually the dimension of the column space of matrix A. Say the RREF of matrix A is R and the row rank for A and R is r. Let R_1, R_2, \ldots, R_n be the columns of matrix R, then there are r of these columns, say $R_{p_1}, \ldots, \mathbb{R}_{p_r}$, have a single 1 as their only non-zero entry. Therefore, considering the space S, there are n-r free variables, which means dim S=n-r. So we have column rank A=r ow rank A.

1.2 The Algebra of Linear Transformation

Theorem 1.2.1 Let V and W be vector spaces over the field \mathbb{F} . Let T and U be linear transformations from V into W. The function (T+U) defined by

$$(T+U)(\alpha) = T\alpha + U\alpha$$

is a linear transformation from V into W. If c is any element of \mathbb{F} , the function (cT) defined by $(cT)(\alpha) = c(T\alpha)$ is a linear transformation from V into W. The set of all linear transformation from V into W, together with the addition and scalar multiplication defined above, is a vector space over the field \mathbb{F} .

Proof. Omit.

Remark 1.2.1 We denote the space of linear transformations from V into W by L(V, W).

Theorem 1.2.2 Let V be an n dimensional vector space over the field \mathbb{F} , and let W be an m dimensional vector spaces over the field \mathbb{F} . Then the space L(V,W) is finite-dimensional and has dimension mn.

Proof. Let $\mathcal{B} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $\mathcal{B}' = \{\beta_1, \beta_2, \dots, \beta_m\}$ be ordered bases for V and W, respectively. For each pair of integer (p,q) with $1 \leq p \leq m$ and $1 \leq q \leq n$, we define a linear transformation $E^{p,q}$ from V into W by $E^{p,q}(\alpha_i) = \delta_{iq}\beta_p$.

Let T be a linear transformation from V to W. $(A_{1j}, A_{2j}, \ldots, A_{mj})$ is the coordinate vector of $T(\alpha_j)$ in the ordered basis \mathcal{B}' , i.e.,

$$T(\alpha_j) = \sum_{i=1}^m A_{ij}\beta_i$$

Our claim is

$$T = \sum_{n=1}^{m} \sum_{q=1}^{n} A_{pq} E^{p,q}.$$

Actually, Let U be the linear transformation defined by RHS of the equation, then for each j,

$$U(\alpha_j) = \sum_{p=1}^m \sum_{q=1}^n A_{pq} E^{p,q} \alpha_j$$
$$= \sum_{p=1}^m \sum_{q=1}^n A_{pq} \delta_{jq} \beta_p$$
$$= \sum_{p=1}^m A_{pj} \beta_p = T(\alpha_j).$$

So T = U. This means $\{E^{p,q}\}$ spans L(V, W). Furthermore, $\{E^{p,q}\}$ are independent because if $T = \sum_{p} \sum_{q} A_{pq} E^{p,q}$ is the zero transformation, then for each j, $T(\alpha_j) = \sum_{i} A_{ij} \beta_i = 0$. So $A_{ij} = 0$ for every i, j.

Theorem 1.2.3 Let V, W, Z be vector spaces over the field \mathbb{F} . Let U be a linear transformation from V into W, and T be a linear transformation from W to Z, then the funtion (TU) defined by $(TU)(\alpha) = T(U(\alpha))$ is a linear transformation from V to Z.

Proof. Omit.

Definition 1.2.1 — linear operator. Let V be a vector spaces over the field \mathbb{F} . A linear operator on V is a linear transformation from V into V.

Remark 1.2.2 We notice that in Theorem 1.2.3, if V = W = Z, then (TU) is also a linear operator on V, i.e., there is a 'multiplication' operation defined by composition on L(V, V). In addition, (UT) is also defined, but in general (UT) - (TU) is not zero transformation.

Remark 1.2.3 If T is a linear operator on V, then we can define $T^n = TTT \dots T$ without confusion. Proof is omitted. For convenience, we define $T^0 = I(\text{identity transformation})$.

Lemma 1 Let V be a vector space over the field \mathbb{F} , U, T_1, T_2 be linear operators on V, c is any elements in the field \mathbb{F} .

- 1) U = UI = IU
- 2) $U(T_1 + T_2) = UT_1 + UT_2; (T_1 + T_2)U = T_1U + T_2U$
- 3) c(UT) = (cU)T = U(cT)

Remark 1.2.4 Lemma 1 and Theorem 1.2.3 tell us that L(V, V), together with cosposion, is what known as a linear algebra with identity.

Example 4 Let A be an $m \times n$ matrix and T be a linear transformation defined by T(X) = Ax. Let B be an $p \times m$ matrix and U be a linear transformation defined by U(Y) = BY. Then

$$(UT)(X) = U(T(X))$$
$$= U(AX)$$
$$= B(AX) = BAX.$$

Remark 1.2.5 The effect of cosposition of U, T is multiplication of matrices B, A.

Definition 1.2.2 — invertible. A linear transformation T from V into W is invertible if there exist a function U from W into V such that (UT) is the identity transformation on V and (TU) is the identity transformation on W. In this case, U is unique and we denote U by T^{-1} .

Remark 1.2.6 In Definition 1.2.2, T^{-1} exists if and only if

- 1. T is one-one. $(T\alpha = T\beta \implies \alpha = \beta)$
- 2. T is onto. (The range of T is W)

Theorem 1.2.4 let T be a linear transformation from V into W. If T is invertible, then the inverse T^{-1} is a linear transformation from W into V.

Proof. Omit.

Remark 1.2.7 We see that $T^{-1}U^{-1}$ is the left and right inverse of UT, therefore the inverse of (UT) is $T^{-1}U^{-1}$.

Definition 1.2.3 — non-singular. We call a linear transformation T non-singular if $T\gamma = 0 \implies \gamma = 0$, i.e., the null space of T is 0.

Remark 1.2.8 Evidently, T is one-one if and only if T is non-singular.

Remark 1.2.9 Non-singular linear transformations are those which preserve linear independence, as the following theorem claims.

1.3 Isomorphism 7

Theorem 1.2.5 Let T be a linear transformation from V into W. Then T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W

Proof. Suppose that T is non-singular. Let S be a linearly independent subset of V. If $\alpha_1, \ldots, \alpha_k$ are vectors in S, then the vector $T\alpha_1, \ldots, T\alpha_k$ are linearly independent. For if

$$c_1(T\alpha_1) + \ldots + c_k(T\alpha_k) = 0$$

then

$$T(c_1\alpha_1 + \ldots + c_k\alpha_k) = 0$$

therefore

$$c_1\alpha_1 + \ldots + c_k\alpha_k = 0.$$

Since α_i are linearly independent, we have for each j = 1, 2, ..., k, $c_j = 0$.

Suppose that T carries independent subsets onto independent subsets. Then T must be non-singular. For if $T\alpha = 0$, and α is not 0. Then an independent set S consisting of α will have its image a dependent set.

Theorem 1.2.6 Let V and W be finite-dimensional vector spaces over the field \mathbb{F} such that $\dim V = \dim W$. If T is a linear transformation from V into W, the following are equivalent:

- (i) T is invertible.
- (ii) T is non-singular.
- (iii) T is on-to.

Proof. Let $n = \dim V = \dim W$. Since

$$\operatorname{rank} T + \operatorname{nullity} T = n.$$

So if T is non-singular, then nullity T = 0 and rank T = n, i.e., T is on-to. If T is on-to, then rank T = n and therefore nullity T = 0 (T is non-singular).

Therefore T is non-singular if and only if T(V) = W. So, if either condition (ii) or (iii) holds, the other is satisfied as well and T is invertible.

1.3 Isomorphism

Definition 1.3.1 — isomorphism. If V and W are vector spaces over the field \mathbb{F} , any one-one linear transformation T from V onto W is called an isomorphism of V onto W. If there exists an isomorphism of V onto W, we say that V is isomorphic to W.

Remark 1.3.1 If V is isomorphic to W, then W is isomorphic to V.

Theorem 1.3.1 Every n-dimensional vector space over the field \mathbb{F} is isomorphic to the space \mathbb{F}^n .

Proof. Let V be an n-dimensional vector space over the field \mathbb{F} and let $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ be a basis for V. We define a function T from V to \mathbb{F}^n , as follows: If α is in V, let $T\alpha$ be the n-tuple (x_1, \dots, x_n) of coordinates of α relative to the ordered basis β . Also, it's easy to verify T is a linear transformation and T is one-one and on-to.