#### Statistical inference of facial beauty

Miguel Ibáñez Berganza Lipari School, July 15<sup>th</sup>, 2019





[Durer, Four books on human proportion 1534]

with applications in cognitive science, neuroscience and urbanism

with applications in cognitive science, neuroscience and urbanism

Overfitting regularisation in Maximum Entropy inference [A. Gabrielli, T. Gili, F. Santucci]

with applications in cognitive science, neuroscience and urbanism

- Overfitting regularisation in Maximum Entropy inference [A. Gabrielli, T. Gili, F. Santucci]
- ► Statistical inference and the relation among brain function and structure
  [A. Gabrielli, T. Gili, F. Santucci]

[MaxEnt & RBM inference of human brain fMRI time series]

with applications in cognitive science, neuroscience and urbanism

- Overfitting regularisation in Maximum Entropy inference [A. Gabrielli, T. Gili, F. Santucci]
- ► Statistical inference and the relation among brain function and structure [A. Gabrielli, T. Gili, F. Santucci]

  [MaxEnt & RBM inference of human brain fMRI time series]
- ► Forecasting the temporal evolution of cities

  [Monechi+ 2019?]

  [Prediction of the evolution of urban socio-economical indicators from past-year values]

with applications in cognitive science, neuroscience and urbanism

- Overfitting regularisation in Maximum Entropy inference [A. Gabrielli, T. Gili, F. Santucci]
- ► Statistical inference and the relation among brain function and structure
  [A. Gabrielli, T. Gili, F. Santucci]
  [MaxEnt & RBM inference of human brain fMRI time series]
- ▶ Forecasting the temporal evolution of cities
   [Monechi+ 2019?]
   [Prediction of the evolution of urban socio-economical indicators from past-year values]
- ► Statistical inference analysis of the human facial perception process [I-B+ 2019]; [I-B+ 2019?]
  [Assessment of the subjectivity of the facial preference and of the relevant facial features involved in the cognitive process]

#### Unsupervised inference of facial attractiveness

[I.-B., Amico, Loreto, Sci. Rep. **9** 8364, 2019]

[I.-B., Monechi, Lancia, Loreto, preprint 2019]

► Evolutionary biology: validity of the "health certificate hypothesis"

- Evolutionary biology: validity of the "health certificate hypothesis"
  - some extent of observed universality
  - assessment of covariation between attractiveness and facial traits believed to signal health/fertility:
     symmetry, averageness and sexually dimorphic features
  - ► ...whose impact results rather controversial, and limited

- Evolutionary biology: validity of the "health certificate hypothesis"
  - some extent of observed universality
  - assessment of covariation between attractiveness and facial traits believed to signal health/fertility:
     symmetry, averageness and sexually dimorphic features
  - ...whose impact results rather controversial, and limited
  - studies are mainly based on average ratings assigned by volunteers to natural facial images

► Machine Learning: automatic rating of facial images

- ► Machine Learning: automatic rating of facial images
  - ▶ supervised inference of the average rating database: *i*-th facial image  $\rightarrow$   $\mathbf{v}_i$ , ratings:  $r_i^{(s)}$  inference:  $R(\mathbf{v}_i|\boldsymbol{\theta}) \sim \langle r_i^{(s)} \rangle_s$

- ► Machine Learning: automatic rating of facial images
  - ▶ supervised inference of the average rating database: *i*-th facial image  $\rightarrow$   $\mathbf{v}_i$ , ratings:  $r_i^{(s)}$  inference:  $R(\mathbf{v}_i|\theta) \sim \langle r_i^{(s)} \rangle_s$
  - hyerarchical ANN's: the raw image is passed to the algorithm (suffering from the black box problem)

| Technique                         | Database         |        |       |       | Score  | Panel size | Facial features used                                                                                                         | Classification technique / beauty                                                                                                                                            | Validation method                                                   | Accuracy                                                                                                                                                             |
|-----------------------------------|------------------|--------|-------|-------|--------|------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Size             | Gender | Expr. | Color | levels |            |                                                                                                                              | predictor                                                                                                                                                                    |                                                                     |                                                                                                                                                                      |
|                                   |                  |        |       |       |        |            | smoothness, hair color;<br>feature variables were<br>decorrelated with PCA<br>(2) selected eigenfaces                        | with KNN and SVM  (b) Beauty predictor on 7 classes with KNN. Linear Regression                                                                                              |                                                                     | predictor scores 0.65 as<br>correlation                                                                                                                              |
|                                   |                  |        |       |       |        |            |                                                                                                                              | (LR), SVM                                                                                                                                                                    |                                                                     |                                                                                                                                                                      |
| Chen et al. [28]                  | 100              | F      | N     | N     | 10     | 18         | Gabor features,<br>reduced by PCA,<br>+Kagian 2008 features                                                                  | Support Vector Regression and<br>KNN, Linear Regression + Feature<br>selection                                                                                               | Leave-one-out cross<br>validation                                   | 0.93 Pearson correlation (0.8<br>using Gabor features only)                                                                                                          |
| Turkmen et al. [157]              | 160              | F      | N     | N     | 2      | 50         | Eigenfaces (computed<br>with PCA and KPCA)                                                                                   | SVM                                                                                                                                                                          | Training 90, testing 70                                             | 82.5% correct classification w<br>PCA, 88.75% with KPCA                                                                                                              |
| Bronstad et al. [21]              | 74               | F/M    | N     | N     | 7      | 102        | Partial least square,<br>Geometric feature<br>reduced by PCA                                                                 | Perceptron                                                                                                                                                                   | Leave-one-out cross<br>validation                                   | Pearson correlations                                                                                                                                                 |
|                                   |                  |        |       |       |        |            |                                                                                                                              |                                                                                                                                                                              |                                                                     | PLS: 0.7 for female faces, 0.68<br>male faces<br>Geometric features + PCA: 0.7<br>for male faces and 0.61 for<br>female faces                                        |
| Said and Todorov<br>[136]         | 4200 (synthetic) | F/M    | N     | Y     | 9      | 40         | 25 shape and 25<br>reflectivity features,<br>both computed with<br>PCA                                                       | Non-linear regression                                                                                                                                                        | 4000 training, 200<br>testing                                       | R <sup>2</sup> = 0.79 for female faces and<br>R <sup>2</sup> = 0.84 for male faces                                                                                   |
| Internet DB<br>Sutic et al. [150] | Set 1: 136       | F/M    | Y     | Y     | 10     | >50        | Set 1: 25 geometric ratios                                                                                                   | Classification with KNN, Neural<br>Networks, AdaBoost in two                                                                                                                 | Set 1: 70 for training,<br>30 for validation and<br>36 as test set. | (a) 67% correct classification<br>the best case (KNN with                                                                                                            |
|                                   | Set 2: 200       |        |       |       |        |            | Set 2: an unspecified<br>number of eigenfaces                                                                                | experiments: (a) 2 class classification (class<br>separation given by the median<br>of all scores) (b) 4 class classification<br>(boundaries are quartiles of all<br>values) | 36 as test set.<br>Set 2: 100 for training,<br>100 for testing      | eigenfaces) (b) 33% of correct classificati with KNN (the feature set w not specified)                                                                               |
| Gray et al. [62]                  | 2056             | F      | Y     | Y     | N/A    | 30         | Eigenfaces, multiscale<br>single layer local filters,<br>single and two-layer<br>local filters                               | Regression model Note: score levels are continuous, recomputed from pairwise ratings                                                                                         | 1028 for training, 1028<br>for testing                              | Top correlation with<br>recomputed ratings: 0.458 fo<br>multiscale model                                                                                             |
| Dantcheva and<br>Dugelay [33]     | 325              | F      | Y     | Y     | 10     | >50        | Landmark locations,<br>geometric ratios,<br>geometric features,<br>expressions, non-<br>permanent traits image<br>attributes | Multiple regression                                                                                                                                                          | 260 for training, 65 for testing                                    | 0.77 Pearson correlation                                                                                                                                             |
| Whithehill and<br>Movellan [169]  | 2000             | F/M    | Y     | N     | 4      | 8          | Gabor features,<br>eigenfaces, geometric<br>features, Edge<br>Orientation Histograms<br>(EOH)                                | ε-SVM regression                                                                                                                                                             | 5-fold cross validation<br>on the dataset chosen<br>by each rater   | 0.28 correlation with person<br>preferences using Gabor<br>features, 0.26 with PCA, 0.24<br>using EOH, while geometric<br>features scored only a 0.08<br>correlation |
| Altwaijry and<br>Belongie [6]     | 200              | F      | N     | Y     | N/A    | 60         | Geometric features,<br>HOG, GIST, L * a * b<br>color histograms,<br>eigenfaces, SIFT,<br>Dense-SIFT reduced                  | Rank learning based on a<br>modified SVM approach                                                                                                                            | 160 training, 40 testing                                            | 63% accuracy, obtained<br>combining all features excep<br>eigenfaces                                                                                                 |

#### [Laurentini+ 2014]

### Unanswered questions

- Which are the suitable facial variables for an efficient description of the phenomenon? (texture and geometric degrees of freedom are probably coupled)
- ▶ What is the extent/origin of the inter-subject diversity?

### A novel experimental method

- ► Reduction of the face space dimension (only geometric quantities vary)
- ► No rating (the subject explores the face-space instead)



$$\mathcal{S} = \{\mathbf{x}^{(s)}\}_{s=1}^{\mathcal{S}}$$







$$t = (\mu_{is} - \mu_{sc})/(\sigma_{is}^2 + \sigma_{sc}^2)^{1/2}$$

Facial preference I: subjectivity of attractiveness perception



## Facial preference II: inference of the database of sculpted vectors

 $\vec{\Delta} = (\vec{\Delta}_i)_i$  fluctuations of the *i*-th landmark Cartesian coordinates wrt. their averages

The fluctuations are highly correlated



## Facial preference II: inference of the database of sculpted vectors

 $\vec{\Delta} = (\vec{\Delta}_i)_i$  fluctuations of the *i*-th landmark Cartesian coordinates wrt. their averages



Unsupervised inference:  $\mathcal{S} = \{\vec{\Delta}^{(s)}\}_{s=1}^{\mathcal{S}} o P(\vec{\Delta}|\theta)$ 

The most probable  $\mathcal{L}(\vec{\Delta}|\theta)$  compatible with  $\mathcal{C}_{\alpha\beta}$ 

The most probable  $\mathcal{L}(\vec{\Delta}| heta)$  compatible with  $\mathcal{C}_{lphaeta}$ 

$$\mathcal{L}(\vec{\Delta}|\theta) = \frac{1}{7}e^{-H[\vec{\Delta}|\theta]}$$

where H is the effective Hamiltonian:

$$\begin{split} H[\vec{\boldsymbol{\Delta}}|J] &= \frac{1}{2} \sum_{\alpha\beta} \Delta_{\alpha} \Delta_{\beta} J_{\alpha\beta} \\ H[\vec{\boldsymbol{\Delta}}|J^{(x)},J^{(y)},J^{(xy)}] &= \frac{1}{2} \sum_{i,j} \vec{\Delta}_{i} \cdot \begin{pmatrix} J^{(x)}_{ij} & J^{(xy)}_{ij} \\ J^{(xy)}_{ji} & J^{(y)}_{ij} \end{pmatrix} \cdot \vec{\Delta}_{j} \end{split}$$

The most probable  $\mathcal{L}(\vec{\Delta}| heta)$  compatible with  $\mathcal{C}_{lphaeta}$ 

$$\mathcal{L}(\vec{m{\Delta}}|m{ heta}) = rac{1}{Z}e^{-H[\vec{m{\Delta}}|m{ heta}]}$$

where H is the effective Hamiltonian:

$$\begin{split} H[\vec{\boldsymbol{\Delta}}|J] &= \frac{1}{2} \sum_{\alpha\beta} \Delta_{\alpha} \Delta_{\beta} J_{\alpha\beta} \\ H[\vec{\boldsymbol{\Delta}}|J^{(x)},J^{(y)},J^{(xy)}] &= \frac{1}{2} \sum_{i,j} \vec{\Delta}_{i} \cdot \begin{pmatrix} J^{(x)}_{ij} & J^{(xy)}_{ij} \\ J^{(xy)}_{ji} & J^{(y)}_{ij} \end{pmatrix} \cdot \vec{\Delta}_{j} \end{split}$$

the value of  $\theta$  is fixed by Maximum Likelihood  $\sum_s \ln \mathcal{L}(\vec{\Delta}^{(s)}|\theta)$ 

The most probable  $\mathcal{L}(\vec{\Delta}|\theta)$  compatible with  $\mathcal{C}_{\alpha\beta}$ ,  $\mathcal{C}_{\alpha\beta\kappa}$ 

The most probable  $\mathcal{L}(\vec{\Delta}|\theta)$  compatible with  $C_{\alpha\beta}$ ,  $C_{\alpha\beta\kappa}$ 

$$\mathcal{L}(\vec{\Delta}|\theta) = \frac{1}{7}e^{-H_2[\vec{\Delta}|\theta] - H_3[\vec{\Delta}|\theta]}$$

where  $H_2$ ,  $H_3$  are the effective Hamiltonians:

$$\begin{array}{lcl} H_2[\vec{\Delta}|Q] & = & \frac{1}{2} \sum_{\mu\nu} \Delta_{\mu} \Delta_{\nu} J_{\mu\nu} \\ \\ H_3[\vec{\Delta}|Q] & = & \frac{1}{6} \sum_{\mu\nu\kappa} \Delta_{\mu} \Delta_{\nu} \Delta_{\kappa} Q_{\mu\nu\kappa} \end{array}$$

heta are found by means on an efficient software based on perturbation expansions and the Wick's theorem [Monechi, I.-B. 2019?]

### Maxent: Reproduction of nonlinear observables

Consider the observable  $\phi_i^{(s)} = \arctan(\Delta_{i,y}^{(s)}/\Delta_{i,x}^{(s)})$ 

### Maxent: Reproduction of nonlinear observables

Consider the observable  $\phi_i^{(s)} = \arctan(\Delta_{i,y}^{(s)}/\Delta_{i,x}^{(s)})$ The (harmonic) model approximately reproduces the experimental histogram of  $\phi$ 's



Facial preference II: inference of the database of sculpted vectors

 $P(\vec{\Delta}|\theta)$  for classification of the subject's gender the female-score of  $\Delta$ :  $s(\Delta) = \ln P(\vec{\Delta}|\theta_{\mathrm{female}}) - \ln P(\vec{\Delta}|\theta_{\mathrm{male}})$ 



# Facial preference II: inference of the database of sculpted vectors

MaxEnt inferred parameters 
$$m{ heta}$$
 of  $P(m{ec{\Delta}}|m{ heta})$   $m{ heta}=\{J_{ii}^\parallel,J_{ii}^\perp\ \}$ 



Results regarding the inference of the experimental database  $\mathcal{S} = \{\mathbf{x^{(s)}}\}_{s=1}^{\mathcal{S}}$ 

Results regarding the inference of the experimental database  $\mathcal{S} = \{\mathbf{x}^{(s)}\}_{s=1}^{S}$ 

lacktriangle The distribution  $\mathcal{L}(\cdot|m{ heta})$  is a faithful generatve model of the dataset

Results regarding the inference of the experimental database  $\mathcal{S} = \{\mathbf{x}^{(s)}\}_{s=1}^{\mathcal{S}}$ 

- lacktriangle The distribution  $\mathcal{L}(\cdot|m{ heta})$  is a faithful generatve model of the dataset
  - ▶ It reproduces experimental non-linear functions of the data  $\langle \mathcal{O} \rangle_{\mathrm{exp}} \simeq \langle \mathcal{O} \rangle_{\mathcal{L}}$
  - ▶ It performs well in a classification task (of the gender of the subject who sculped a given vector x<sup>(s)</sup>)

Results regarding the inference of the experimental database  $\mathcal{S} = \{\mathbf{x}^{(s)}\}_{s=1}^{\mathcal{S}}$ 

- lacktriangle The distribution  $\mathcal{L}(\cdot| heta)$  is a faithful generatve model of the dataset
  - ▶ It reproduces experimental non-linear functions of the data  $\langle \mathcal{O} \rangle_{\mathrm{exp}} \simeq \langle \mathcal{O} \rangle_{\mathcal{L}}$
  - ▶ It performs well in a classification task (of the gender of the subject who sculped a given vector x<sup>(s)</sup>)
- lacktriangle Non-linear *effective interactions* are needed for a complete description of  ${\mathcal S}$

Results regarding the inference of the experimental database  $\mathcal{S} = \{\mathbf{x}^{(s)}\}_{s=1}^{\mathcal{S}}$ 

- lacktriangle The distribution  $\mathcal{L}(\cdot|m{ heta})$  is a faithful generatve model of the dataset
  - ▶ It reproduces experimental non-linear functions of the data  $\langle \mathcal{O} \rangle_{\mathrm{exp}} \simeq \langle \mathcal{O} \rangle_{\mathcal{L}}$
  - ► It performs well in a classification task (of the gender of the subject who sculped a given vector x<sup>(s)</sup>)
- $lackbox{Non-linear effective interactions}$  are needed for a complete description of  ${\mathcal S}$
- ► The matrix of effective interactions *J* provides relevant information (of cognitive origin) which goes beyond the raw, information present in the experimental correlations, *C*

## Most informative face-space parametrisation [Mariani, I.-B.]

### Construction of a face space

Based on the separation of landmark/texture coordinates (inspired in the recently decorded neural coding for facial identification in the primate brain) [Chang+ 2018]



[Mariani, I.-B. 2019?]

Thank you!

miguel.berganza@roma1.infn.it

http://www.fis.unipr.it/home/miguel.berganza/