SDN Lab1

TA: 陳俊廷

Lab: ED817

Email: andy1995030978@gmail.com

Outline

- Goals
- Objectives
- Lab Content
- Instructions
- Reference

Goals

- Learn how to use Virtual Machine and be familiar with Ubuntu Linux
- Learn basic ideas of Software Defined Network (SDN) and SDN switches
- Learn how to use Mininet to create a simple network topology
- Learn how to construct SDN controller Ryu and use it to control flows on the created topology

Objectives

SDN switch

Flow table in switch

Ingress Port	Ethec Src	Ether Dst	 Action
Port 1	192.168.14.3	*	Output port=2

- If there is no match in flow table, switch will forward packet to controller (packet-in)
- 4. Controller will decide the action and send packet back to switch (packet-out)

Objectives

Mininet

- It creates a realistic virtual network, running real kernel, switch and application code
- It runs a collection of end-hosts, switches, routers, and links on a single Linux kernel
- The created switches are OpenFlow-enabled

Objectives

- SDN controller RYU
 - RYU supports the OpenFlow1.0, 1.2, 1.3 and 1.4
 - RYU can work in conjunction with OpenStack for cloud computing
 - Written in Python

Lab Content

- Step 1: Create a VM which runs Ubuntu
- Step 2: Install Mininet
- Step 3: Install Ryu
- Step 4: Run Mininet and Ryu to emulate a simple
 SDN network system
- Step 5: Study SDN controller's sample code

- Step 1: Create a VM which runs Ubuntu
 - Download 32-bits VMware player 6.0.7 or the latest version of Virtual Box
 - Download the latest version of Ubuntu (32-bits)
 - Install them step-by-step
 - For created VM at ED713

user name: sdn

password: mininet

- Step 2: Install Mininet
 - Install git sudo apt-get install git
 - Download mininet by git git clone git://github.com/mininet/mininet
 - Install mininet (it will take 5~10 minutes)
 cd mininet/util
 ./install.sh -a
 - Test sudo mn --test pingall

Step 2: Install Mininet

```
sdn@ubuntu:~/mininet/util$ sudo mn --test pingall
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Starting controller
*** Starting 1 switches
*** Waiting for switches to connect
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)
*** Stopping 1 controllers
C0
*** Stopping 2 links
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
*** Done
completed in 5.614 seconds
sdn@ubuntu:~/mininet/util$
```

- Step 3: Install Ryu
 - Install the following packages

```
sudo apt-get install python-pip python-dev build-essential sudo pip install --upgrade pip sudo easy_install pip sudo pip install --upgrade six sudo apt-get install python-eventlet python-routes sudo apt-get install python-webob python-paramiko
```

- Download and install Ryu sudo pip install ryu
- Test ryu-manager
- Press "Ctrl+C" to leave ryu-manger

- Step 4: Run Mininet and Ryu to emulate a simple SDN network system
 - Run mininet and create a tree topology with depth=3
 sudo mn --controller remote,ip=127.0.0.1 --topo tree,depth=3

```
sdn@ubuntu:~/mininet/util$ ryu-manager
loading app ryu.controller.ofp handler
instantiating app ryu.controller.ofp_handler of OFPHandler
^Csdn@ubuntu:~/mininet/util$ sudo mn --controller remote.ip=127.0.0.1 --topo tree.depth=3
*** Creating network
*** Adding controller
Unable to contact the remote controller at 127.0.0.1:6653
Unable to contact the remote controller at 127.0.0.1:6633
Setting remote controller to 127.0.0.1:6653
*** Adding hosts:
h1 h2 h3 h4 h5 h6 h7 h8
*** Adding switches:
s1 s2 s3 s4 s5 s6 s7
*** Adding links:
(s1, s2) (s1, s5) (s2, s3) (s2, s4) (s3, h1) (s3, h2) (s4, h3) (s4, h4) (s5, s6) (s5, s7) (s6, h5) (s6, h6) (s7, h7) (s7, h8)
*** Configuring hosts
h1 h2 h3 h4 h5 h6 h7 h8
*** Starting controller
*** Starting 7 switches
s1 s2 s3 s4 s5 s6 s7 ...
*** Starting CLI:
mininet>
```

- Step 4: Run Mininet and Ryu to emulate a simple SDN network system
 - Open a new terminal and go to following folder cd /usr/local/lib/python2.7/dist-packages

```
sdn@ubuntu:~$ cd /usr/local/lib/python2.7/dist-packages
sdn@ubuntu:/usr/local/lib/python2.7/dist-packages$ ls
babel
                               msgpack
                                                                                         Tyu-4.6.egg-info
Babel-2.3.4.dist-info
                                                               pbr-1.10.0.dist-info
                               msgpack_python-0.4.8.dist-info
debtcollector
                               netaddr
                                                                                         setuptools.pth
debtcollector-1.8.0.dist-info netaddr-0.7.18.dist-info
                                                               pip-8.1.2.dist-info
                                                                                         stevedore
easy-install.pth
                                                                                         stevedore-1.17.1.dist-info
                               oslo_config
                                                               pytz
funcsigs
                               oslo.config-3.17.0.dist-info
                                                               pytz-2016.6.1.dist-info
funcsigs-1.0.2.dist-info
                               oslo i18n
                                                               rfc3986
mininet-2.3.0d1-py2.7.egg
                               oslo.i18n-3.9.0.dist-info
                                                               rfc3986-0.4.1.dist-info
sdn@ubuntu:/usr/local/lib/python2.7/dist-packages$
```

- Step 4: Run Mininet and Ryu to emulate a simple SDN network system
 - Run the Ryu topology viewer
 PYTHONPATH=. ryu run --observe-links ryu/app/gui_topology/gui_topology.py
 - Open the web browser

http://127.0.0.1:8080

Ryu Topology Viewer

- Step 4: Run Mininet and Ryu to emulate a simple SDN network system
 - Press "Ctrl+C" to stop the topology viewer
 - Enter following command to make switches supports OF 1.3
 (in this topology we have 7 switches s1~s7)

```
sudo ovs-vsctl set bridge s1 protocols=OpenFlow13 sudo ovs-vsctl set bridge s2 protocols=OpenFlow13 sudo ovs-vsctl set bridge s3 protocols=OpenFlow13 sudo ovs-vsctl set bridge s4 protocols=OpenFlow13 sudo ovs-vsctl set bridge s5 protocols=OpenFlow13 sudo ovs-vsctl set bridge s6 protocols=OpenFlow13 sudo ovs-vsctl set bridge s7 protocols=OpenFlow13
```

- Step 4: Run Mininet and Ryu to emulate a simple SDN network system
 - Run controller sample code: simple_switch_13.py
 ryu-manager ryu/app/simple_switch_13.py
 - Go back to terminal with Mininet pingall

```
mininet> pingall

*** Ping: testing ping reachability
h1 -> h2 h3 h4 h5 h6 h7 h8
h2 -> h1 h3 h4 h5 h6 h7 h8
h3 -> h1 h2 h4 h5 h6 h7 h8
h4 -> h1 h2 h3 h5 h6 h7 h8
h5 -> h1 h2 h3 h4 h6 h7 h8
h6 -> h1 h2 h3 h4 h5 h7 h8
h7 -> h1 h2 h3 h4 h5 h7 h8
h7 -> h1 h2 h3 h4 h5 h7 h8
h8 -> h1 h2 h3 h4 h5 h6 h8
h8 -> h1 h2 h3 h4 h5 h6 h7

*** Results: 0% dropped (56/56 received)
mininet>
```

- Step 5: Study SDN controller's sample code
 - Open simple_switch_13.py
 - Study the sample code with reference, Ryubook.pdf (Chap.1)
 - TA will check Step 1 to Step 4 and ask some simple questions about the sample code

Reference

- VMware player 6.0.7:
 https://my.vmware.com/web/vmware/free#desktop_end_us er_computing/vmware_player/6_0|PLAYER-607
- Ubuntu: https://www.ubuntu-tw.org/modules/tinyd0/
- Mininet: http://mininet.org/
- Ryu: http://osrg.github.io/ryu/
- Ryu book: http://osrg.github.io/ryu-book/en/Ryubook.pdf