Calcolo dose e intervallo di somministrazione delle pastiglie

April 7, 2004

Formula per il calcolo della matrice esponenziale

$$e^{At} = \sum_{i=1}^{n} e^{\lambda_i t} \mathcal{F}(\lambda_i), \quad \mathcal{F}(\lambda_i) = \prod_{j=0, j \neq i}^{n} \frac{A - \lambda_j I}{\lambda_i - \lambda_j}$$

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -0.5 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

$$e^{At} = -2e^{-t} \begin{bmatrix} -0.5 & 0 \\ 1 & 0 \end{bmatrix} + 2e^{-0.5t} \begin{bmatrix} 0 & 0 \\ 1 & 0.5 \end{bmatrix} = \begin{bmatrix} e^{-t} & 0 \\ -2e^{-t} + 2e^{-0.5t} & e^{-0.5t} \end{bmatrix}$$

Calcolo il movimento di x_1

$$x_{1}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} e^{At} \left(\begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} + \begin{bmatrix} 0.5\bar{u} \\ 0 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ -2e^{-t} + 2e^{-0.5t} & e^{-0.5t} \end{bmatrix} \begin{bmatrix} x_{1}(0) + 0.5\bar{u} \\ y_{m} \end{bmatrix} =$$

$$= \begin{bmatrix} e^{-t} & 0 \end{bmatrix} \begin{bmatrix} x_{1}(0) + 0.5\bar{u} \\ y_{m} \end{bmatrix} = e^{-t} (x_{1}(0) + 0.5\bar{u})$$

Definisco

$$\alpha := x_1(0) + 0.5\bar{u}$$

Impongo che $x_1(\Delta t) = x_1(0)$

$$x_{1}(\Delta t) = x_{1}(0) = e^{-\Delta t} (x_{1}(0) + 0.5\bar{u})$$

$$e^{-\Delta t}0.5\bar{u} = (\alpha - 0.5\bar{u}) (1 - e^{-\Delta t})$$

$$\bar{u} (e^{-\Delta t}0.5 + 0.5(1 - e^{-\Delta t})) = \alpha(1 - e^{-\Delta t})$$

$$\bar{u} = 2\alpha(1 - e^{-\Delta t})$$

Calcolo il movimento dell'uscita partendo con $x_2 = y_m$ (valore minimo della

concentrazione 0.45)

$$\begin{array}{lll} y(t) & = & [\ 0 & 1 \] e^{At} \left[\begin{array}{c} \alpha \\ y_m \end{array} \right] = [\ 0 & 1 \] \left[\begin{array}{c} e^{-t} & 0 \\ -2e^{-t} + 2e^{-0.5t} & e^{-0.5t} \end{array} \right] \left[\begin{array}{c} \alpha \\ y_m \end{array} \right] = \\ & = & [\ -2e^{-t} + 2e^{-0.5t} & e^{-0.5t} \] \left[\begin{array}{c} \alpha \\ y_m \end{array} \right] = -2\alpha e^{-t} + 2\alpha e^{-0.5t} + e^{-0.5t} y_m \\ & = & -2\alpha e^{-t} + (2\alpha + y_m)e^{-0.5t} \end{array}$$

Calcolo il valore massimo

$$\dot{y}(t) = 2\alpha e^{-t} - (\alpha + 0.5y_m)e^{-0.5t}$$

Definisco

$$p_M := e^{-0.5t_M}$$

Impongo la derivata a zero

$$\dot{y}(t_M) = 2\alpha p_M^2 - (\alpha + 0.5y_m)p_M = 0$$

Scelgo la radice non nulla

$$p_M = \frac{(\alpha + 0.5y_m)}{2\alpha} = e^{-0.5t_M}$$

Impongo che $y(t_M) = y_M = 0.55$

$$y(t_M) = -2\alpha p_M^2 + (2\alpha + y_m)p_M = y_M$$
$$(\alpha + 0.5y_m)^2 - (2\alpha + y_m)(\alpha + 0.5y_m) + y_M 2\alpha = 0$$
$$\alpha^2 + 0.25y_m^2 + \alpha y_m - 2\alpha^2 - \alpha(y_m + y_m) - 0.5y_m^2 + y_M 2\alpha = 0$$
$$\alpha^2 + \alpha(y_m - 2y_M) + 0.25y_m^2 = 0$$

Scelgo la radice più grande altrimenti poi t_M sarebbe negativo

$$\alpha = 0.5595$$

$$t_M = -2\log(p_M) = 0.7103$$

Impongo che $y(\Delta t) = y_m$

$$y(\Delta t) = -2\alpha e^{-\Delta t} + (2\alpha + y_m)e^{-0.5\Delta t} = y_m$$

Definisco

$$p_{\Delta} = e^{-0.5\Delta t}$$
$$-2\alpha p_{\Delta}^2 + (2\alpha + y_m)p_{\Delta} = y_m$$
$$2\alpha p_{\Delta}^2 - (2\alpha + y_m)p_{\Delta} + y_m = 0$$

Scelgo la radice diversa da zero (altrimenti Δt sarebbe uguale a zero)

$$p_{\Delta} = 2.4868$$

$$\Delta t = -2\log(p_{\Delta}) = 1.8220$$

La dose risulta quindi

$$\bar{u} = 2\alpha(1 - e^{-\Delta t}) = 0.9381$$