# 3.3: Influential Observations and Outliers

Dr. Bean - Stat 5100

# 1 Why Care About Influential Observations/Outliers?

When we specify a model form of

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_{p-1} X_{p-1} + \varepsilon$$

we assume that all observations in the data are generated from the same source (i.e. the theoretical line).

If we have observations that are **not** from the same source as the rest, OLS regression will try to **force** the model to fit the data, perhaps compromising the estimated coefficients and or inference.

Two things to watch for (not mutually exclusive):

- Outliers observations with values of Y that are not well-explained by the model.
- Influential Points observations that unduly influence the estimated coefficients  $b_k$  or predicted values  $\hat{Y}$ .

Is it possible for a model outlier to not be reflected in a boxplot of Y? Explain why or why not.

Yes. A value of why can be exceptionally far away from the line *given its X-values*, while still being in a reasonable range for Y overall.

# 2 Ways to detect outliers or influential points

- (Primary) Scatterplots of  $X_k$  vs Y
- Other Diagnostics for Influential Observations
  - Hat matrix diagonals
  - DFBETAS
  - DFFITS
  - Cooks Distance
- Other Diagnostics for Outliers
  - Residuals
  - Studentized Residuals
  - Studentized Deleted Residuals

### 2.1 Hat Matrix Diagonals

Recall the linear algebra representation of the OLS regression model:

$$Y = X\beta + \varepsilon$$
  $b = (X'X)^{-1}X'Y$ 

$$\hat{Y} = Xb = X(X'X)^{-1}X'Y = HY$$

In other words, the predicted values of Y are simply linear combinations of the actual values of Y where each observation "weight" is determined by the X matrix.

Let  $h_{i,l}$  be the element in row i and column l of H

- sometimes called "leverage" (influence of obs. i on its fitted value)

Since 
$$\hat{Y} = HY$$
, then  $\hat{Y}_i = \sum_{l=1}^n h_{i,l} Y_l$ 

# (Individual) What would a "larger" diagonal element $h_{i,i}$ mean?

It means that the value of  $Y_i$  is more influential in its own prediction  $(\hat{Y}_i)$ . We care about this because if the influence of a particular point is large enough, then the model is likely fitting that particular point at the sacrifice of the rest of the data.

We usually consider a point to be influential if:

- rule of thumb:  $h_{i,i} > \frac{2p}{n}$  or  $h_{i,i} > \frac{3p}{n}$
- can plot  $h_{i,i}$  against observation number, with reference lines at 2p/n (SAS default) and/or 3p/n

Another graphical diagnostic with  $h_{i,i}$ :

- leverage plots/partial regression/added variable plots); for  $X_1$ :
  - 1. Regress  $X_1$  on  $X_2, \ldots, X_{p-1}$  and obtain residuals  $e_{X_1|X_2,\ldots,X_{p-1}}$
  - 2. Regress Y on  $X_2, \ldots, X_{p-1}$  and obtain residuals  $e_{Y|X_2,\ldots,X_{p-1}}$
  - 3. Plot  $e_{Y|X_2,\dots,X_{p-1}}$  vs.  $e_{X_1|X_2,\dots,X_{p-1}}$ , and add regression line
    - slope will be  $b_1$  from multiple regression model
    - Helps to visualize the marginal effect of adding  $X_1$  in the model after already including all other X variables.
    - Influential points fall significantly farther away from the line than other points.
- (possible) modification here: point-size in leverage plot proportional to corresponding  $h_{i,i}$  NOT shown in the SAS output provided in HO 3.3.1.
  - then this is called a proportional leverage plot
  - influential observations will be the points with big "bubbles" that appear to "pull" the regression line in their direction

#### 2.2 DFBETAS

Provide a measure of how **different** ("DF") an estimate of  $\beta_k$  would be if we removed one observation from the data.

 $b_k = \text{estimate of } \beta_k \text{ using full data}$   $b_{k(i)} = \text{estimate of } \beta_k \text{ when observation } i \text{ is ignored}$   $MSE_{(i)} = \text{Mean SS for error when observation } i \text{ is ignored}$   $C_{kk} = k^{th} \text{ diagonal element of } (X'X)^{-1}$   $DFBETAS_{k(i)} = \frac{b_k - b_{k(i)}}{\sqrt{MSE_{(i)}C_{kk}}}$ 

Interpreting DFBETAS:

- DFBETAS<sub>k(i)</sub> positive: obs. i "pulls"  $b_k$  up
- DFBETAS<sub>k(i)</sub> negative: obs. i "pulls"  $b_k$  down

How "large" to declare observation i "influential" on  $b_k$ ?

• Rough rule of thumb:

$$|DFBETAS_{k(i)}| > 1$$
 for  $n \le 30$   
 $|DFBETAS_{k(i)}| > 2/\sqrt{n}$  for  $n > 30$  (SAS)

- Graphical diagnostics probably better for DFBETAS:
  - Histograms or boxplots for each k
  - Proportional leverage plot with "bubble" size prop. to DFBETAS $_{k(i)}$
  - Plot DFBETAS<sub>k(i)</sub> against obs. number for each k (Provided by SAS, unlike the others)

#### 2.3 DFFITS

Similar to DFBETAS: how different would  $\hat{Y}_i$  be if observation i were not used to fit the model

$$DFFITS_i = \frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{MSE_{(i)}h_{i,i}}}$$

How large DFFITS to declare obs. i as influential on  $\hat{Y}_i$ ?

• Rough rule of thumb:

$$|DFFITS_i| > 1$$
 for  $n \le 30$   
 $|DFFITS_i| > 2\sqrt{\frac{p}{n}}$  for  $n > 30$  (SAS)

- Good graphical diagnostics for DFFITS:
  - Plot DFFITS vs. Observation Number

– Plot Residuals vs. Predicted Values, with point sizes proportional to corresponding  $\mathrm{DFFITS}_i$ 

(DFBETAS<sub>ij</sub> vs. DFFITS<sub>i</sub>) vs.  $h_{i,i}$ 

- somewhat related, so "conclusions" will quite often agree
- BUT: if two or more points exert "influence" together then the drop-one diagnostics (DFBE-TAS and DFFITS) may not detect them
  - these are leverage points need to look at  $h_{i,i}$

#### 2.4 Cooks Distance

Kind of an overall measure of effect of obs. i on all of the  $\hat{Y}_l$  values:

$$D_i = \frac{\sum_{j=1}^n \left(\hat{Y}_j - \hat{Y}_{j(i)}\right)^2}{p \cdot \text{MSE}}$$

Diagnostics:

- Numerical:
  - simple: compare  $D_i$  with 4/n (SAS)
  - more useful: compare  $D_i$  with the  $F_{p,n-p}$  distribution (See 3.3.1 pg 8 for example of how to do this "by hand")
    - \* percentile 10-20: little influence
    - \* percentile 50+: major influence
- Graphical: plot  $D_i$  (or percentile from  $F_{p,n-p}$ ) vs. observation number i

#### 2.5 Residuals

$$e_i = Y_i - \hat{Y}_i$$

Sometimes a large  $|e_i|$  indicates an outlier

- not well-explained by fitted model
- but how "large" it needs to be depends on the residuals:
  - Recall  $\varepsilon \sim N(0, \sigma^2)$ , so  $e_i \sim N(0, \sigma^2(1 h_{ii}))$ – because  $\hat{Y} = HY$  results in e = Y - HY = (I - H)Y
  - Could compare  $e_i$  with the normal critical values, but need to estimate variance (including  $\sigma^2$ )  $\Rightarrow$  normal approx. not appropriate; need Student's t

#### 2.6 Studentized Residuals

$$r_i = \frac{e_i}{\sqrt{MSE \cdot (1 - h_{ii})}} \qquad (MSE = \hat{\sigma}^2)$$

If  $\varepsilon_i$  iid  $N(0, \sigma^2)$ , then the  $r_i$  follow the  $t_{n-p}$  distribution; diagnostics:

- Numerical: compare  $|r_i|$  with upper  $\alpha/2$  critical value of  $t_{n-p}$
- Graphical: plot  $\hat{Y}_i$  vs.  $r_i$ , with ref. lines at upper  $\alpha/2$  critical value of  $t_{n-p}$

#### 2.7 Studentized Deleted Residuals

If obs. i really is an outlier, then including it in the data will inflate MSE - So consider dropping it and re-calculating the studentized residual:

$$e_i^* = \frac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}}$$
 (Text uses  $t_i$  instead of  $e_i^*$ )

## 2.8 Other Diagnostics (similar to studentized residuals)

- plot  $\hat{Y}_i$  vs.  $e_i^*$
- compare to  $|e_i^*|$  to some critical value of  $t_{n-p}$  (for each of  $i=1,\ldots,n$ )

BUT:  $\alpha$  = probability of type I error (calling obs. *i* outlier when it's not)

- actually want  $\alpha$  to be probability of at least one type I error in all n tests a family-wise error rate
- many ways to adjust the critical value; here, we'll use Bonferroni correction:

compare  $|e_i^*|$  to upper  $\alpha/(2n)$  critical value of  $t_{n-p}$ 

## 3 Remedial Measures for Influential Observations or Outliers

#### 1. Look for:

- typos in data (more common than would like to think)
- fundamental differences in observations
  - drop obs. if from a different "population"
- very skewed distributions of predictors
  - remember that in general, there is no assumption regarding the distribution of X's
  - sometimes transforming X will reduce influence of obs. with extreme values

#### 2. Look at potential changes to model:

- will a transformation "bring in" the observations?
- should a curvilinear or other predictor be added?
  - look at leverage plot for the possible predictor

- any trend suggests adding it to model
- 3. Could obtain estimates differently (instead of OLS, robust regression more in Module 4):
  - LAD (least absolute deviation) regression
  - IRLS (iteratively reweighted least squares) regression