

M54HCT240/241/244 M74HCT240/241/244

OCTAL BUS BUFFER WITH 3 STATE OUTPUTS HCT240: INVERTED - HCT241/244 NON INVERTED

- HIGH SPEED
 - $t_{PD} = 13 \text{ ns (TYP.)}$ at $V_{CC} = 5V$
- LOW POWER DISSIPATION I_{CC} = 4 μA (MAX.) at T_A = 25 °C
- COMPATIBLE WITH TTL OUTPUTS V_{IH} = 2V (MIN.) V_{IL} = 0.8V (MAX)
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN)
- BALANCED PROPAGATION DELAYS tplh = tphl
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS240/241/244

B1R (Plastic Package) (Ceramic Package) M1R (C1R (Micro Package) (Chip Carrier) ORDER CODES: M54HCTXXXF1R M74HCTXXXM1R M74HCTXXXB1R M74HCTXXXC1R

DESCRIPTION

The M54/74HCT240, HCT241 and HCT244 are high speed CMOS OCTAL BUS BUFFERs fabricated in silicon gate C²MOS technology.

They have the same high speed performance of LSTTL combined with true CMOS low power consumption. The designer has a choise of select combination of inverting and non-inverting outputs, symmetrical \overline{G} (active low output control) input, and complementary G and \overline{G} inputs. Each control input governs four BUS BUFFERs.

This integrated circuit has input and output

characteristics that are fully compatible with 54/74 LSTTL logic families. M54/74HCT devices are designed to directly interface HSC²MOS systems with TTL and NMOS components.

They are also plug in replacements for LSTTL devices giving a reduction of power consumption. These devices are designed to be used with 3 state memory address drivers, etc.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION (top view)

September 1993 1/12

CHIP CARRIER

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (HCT240)

PIN No	SYMBOL	NAME AND FUNCTION			
1	1G	Output Enable Input			
2, 4, 6, 8	1A1 to 1A4	Data Inputs			
9, 7, 5, 3	2Y1 to 2Y4	Data Outputs			
11, 13, 15, 17	2A1 to 2A4	Data Inputs			
18, 16, 14, 12	1Y1 to 1Y4	Data Outputs			
19	2G	Output Enabel Input			
10	GND	Ground (0V)			
20	Vcc	Positive Supply Voltage			

PIN DESCRIPTION (HCT241)

PIN No	SYMBOL	NAME AND FUNCTION
1	1G	Output Enable Input
2, 4, 6, 8	1A1 to 1A4	Data Inputs
9, 7, 5, 3	2Y1 to 2Y4	Data Outputs
11, 13, 15, 17	2A1 to 2A4	Data Inputs
18, 16, 14, 12	1Y1 to 1Y4	Data Outputs
19	2G	Output Enabel Input
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

PIN DESCRIPTION (HCT244)

PIN No	SYMBOL	NAME AND FUNCTION
1	1G	Output Enable Input
2, 4, 6, 8	1A1 to 1A4	Data Inputs
9, 7, 5, 3	2Y1 to 2Y4	Data Outputs
11, 13, 15, 17	2A1 to 2A4	Data Inputs
18, 16, 14, 12	1Y1 to 1Y4	Data Outputs
19	2G	Output Enabel Input
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

	INPUT		OUTPUT				
G	G (HCT241)	An	Yn (HCT240)	Yn (HCT241)	Yn (HCT244)		
L	Н	L	Н	L	L		
L	Н	Н	L	Н	Н		
Н	L	Х	Z	Z	Z		

X: "H" or "L"
Z: High impedance

CIRCUIT SCHEMATIC (1/8 PACKAGE)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series	-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time (V _{CC} = 4.5 to 5.5V)	0 to 500	ns

DC SPECIFICATIONS

		To	est Co	nditions				Value				
Symbol	Parameter	Vcc (V)				_A = 25 ^o C and 7			85 °C HC	1	125 °C HC	Unit
		()			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5			2.0			2.0		2.0		V
V _{IL}	Low Level Input Voltage	4.5 to 5.5					0.8		0.8		0.8	V
V_{OH}	High Level Output Voltage	4.5	V _I = V _{IH}	Ι _Ο =-20 μΑ	4.4	4.5		4.4		4.4		V
		4.5	or V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		V
VoL	Low Level Output Voltage	4.5	V _I = V _{IH}	Ι _Ο = 20 μΑ		0.0	0.1		0.1		0.1	V
		4.5	or V _{IL}	lo= 6.0 mA		0.17	0.26		0.33		0.4	V
lį	Input Leakage Current	5.5	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
I _{CC}	Quiescent Supply Current	5.5	V _I = '	V _{CC} or GND			4		40		80	μΑ
Δl _{CC}	Additional worst case supply current	5.5	V _I = 0	Input pin 0.5V or 2.4V er Inputs at c or GND			2.0		2.9		3.0	mA

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions				Value						
Symbol F	Parameter	Vcc	C _L			T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	4.5	50			7	12		15		18	ns
t _{PLH}	Propagation	4.5	50			15	22		28		33	ns
tphl	Delay Time	4.5	150			21	30		38		45	ns
t _{PLH}	Propagation	4.5	50			15	25		31		38	ns
t _{PHL}	Delay Time	4.5	150			21	33		41		50	ns
t_{PZL}	Output Enable	4.5	50	$R_L = 1K\Omega$		17	30		38		45	ns
tpzH	Time	4.5	150	$R_L = 1K\Omega$		23	38		48		57	ns
t _{PLZ} t _{PHZ}	Output Disable Time	4.5	50	$R_L = 1K\Omega$		16	30		38		45	ns
Cin	Input Capacitance					5	10		10		10	pF
Соит	Output Capacitance					10						pF
C _{PD} (*)	Power Dissipation Capacitance			HCT240 T241/244		33 31						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. Icc(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/8 (per circuit)

TEST CIRCUIT Icc (Opr.)

SWITCHING CHARACTERISTICS TEST WAVEFORM

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Ceramic DIP20 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			25			0.984
В			7.8			0.307
D		3.3			0.130	
E	0.5		1.78	0.020		0.070
e3		22.86			0.900	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Ι	1.27		1.52	0.050		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N1			4° (min.),	15° (max.)		
Р	7.9		8.13	0.311		0.320
Q			5.71			0.225

SO20 MECHANICAL DATA

DIM.		mm		inch				
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1			45°	(typ.)				
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
М			0.75			0.029		
S			8° (r	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm			inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А	9.78		10.03	0.385		0.395			
В	8.89		9.04	0.350		0.356			
D	4.2		4.57	0.165		0.180			
d1		2.54			0.100				
d2		0.56			0.022				
E	7.37		8.38	0.290		0.330			
е		1.27			0.050				
e3		5.08			0.200				
F		0.38			0.015				
G			0.101			0.004			
М		1.27			0.050				
M1		1.14			0.045				

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

