$T_D n^{\rm o} 8$

Classe P, classe NP

Problèmes de partitions

1. On définit les quatre problèmes comme

On définit les quatre problèmes comme
$$\begin{aligned} & \text{SubsetSum} : \begin{cases} \mathbf{Entrée} &: n \in \mathbb{N}, \ (w_1, \dots, w_n) \in \mathbb{N}^n \text{ et } W \in \mathbb{N} \\ & \mathbf{Sortie} &: \text{Existe-t-il une partie } I \in \wp(\llbracket 1, n \rrbracket) \text{ telle que } \sum_{i \in I} w_i = W? \end{aligned} \\ & \mathbf{Partition} : \begin{cases} \mathbf{Entrée} &: n \in \mathbb{N} \text{ et } (w_1, \dots, w_n) \in \mathbb{N}^n \\ & \mathbf{Sortie} &: \text{Existe-t-il } I \in \wp(\llbracket 1, n \rrbracket) \text{ telle que } \sum_{i \in I} w_i = \sum_{i \in \llbracket 1, n \rrbracket \setminus I} w_i? \end{aligned} \\ & \mathbf{K}_{\text{NAPSACK}} : \begin{cases} \mathbf{Entrée} &: n \in \mathbb{N}, \ (x_1, \dots, x_n) \in \mathbb{N}^n, \ (v_1, v_2, \dots, v_n) \in \mathbb{N}^n, \ P \in \mathbb{N} \text{ et } K \in \mathbb{N} \\ & \mathbf{Sortie} &: \text{Existe-t-il } I \in \wp(\llbracket 1, n \rrbracket) \text{ telle que } \sum_{i \in I} x_i \leqslant P \text{ et } \sum_{i \in I} v_i \geqslant K? \end{aligned} \\ & \mathbf{B}_{\text{INPACKING}} : \begin{cases} \mathbf{Entrée} &: n \in \mathbb{N}, \ (t_1, \dots, t_n) \in \mathbb{N}^n, \ C \in \mathbb{N} \text{ et } K \in \mathbb{N} \\ & \mathbf{Sortie} &: \text{Existe-t-il } k \in \mathbb{N} \text{ et } (I_1, \dots, I_k) \in \wp(\llbracket 1, n \rrbracket)^k \ k \text{ parties de } \llbracket 1, n \rrbracket \\ & \text{telles que } \bigcup_{i \in \llbracket 1, k \rrbracket} I_i = \llbracket 1, n \rrbracket, \forall i \neq j, I_i \cap I_j = \varnothing, k \leqslant K \text{ et } \\ & \forall i \in \llbracket 1, k \rrbracket, \sum_{j \in I_i} t_j \leqslant C? \end{cases} \end{aligned}$$

(a) Soit (Ω, W) une entrée de SubsetSum. On fabrique l'entrée (Ω, Ω, W, W) du problème Knapsack. On pose $\Omega = (w_1, \dots, w_n)$ et on a

$$\begin{split} (\varOmega,W) \in \mathbf{SubsetSum}^+ &\iff \exists A \in \wp(\varOmega), \ \sum_{w \in A} w = W \\ &\iff \exists A \in \wp(\varOmega), \sum_{w \in A} w \geqslant W \text{ et } \sum_{w \in A} w \leqslant W \\ &\iff (\varOmega,\varOmega,W,W) \in \mathbf{Knapsack}^+. \end{split}$$

Cette réduction est polynômiale.

(b) Soit Ω une entrée de Partition. On pose $\Omega=(w_1,\dots,w_n)$. Fabriquons l'entrée $(\Omega,S/2)$ du problème SubsetSum, où $S=\sum_{i=1}^n w_i$. On suppose $S\equiv 0$ [2]. On a

$$\begin{split} \varOmega \in \text{Partition} &\iff \exists I \subseteq \llbracket 1, n \rrbracket \,, \, \sum_{i \in I} w_i = \sum_{i \in \llbracket 1, n \rrbracket \backslash I} w_i \\ &\iff \exists I \subseteq \llbracket 1, n \rrbracket \,, \, \sum_{i \in I} w_i = \frac{S}{2} \\ &\iff (\varOmega, S/2) \in \text{SubsetSum}^+ \end{split}$$

Optimisation linéaire en nombres entiers

1. Montrons SysLin $\leq_{\mathbf{p}}$ SysLin
Ineg. Soient n, m, A et b les entrées du problème SysLin. Fabriquons, en temps polynômial, les entrées n', m', A', b' du problème SysLinIneg : on choisit $n'=2n, m'=m, A'=\binom{A}{-A}$ et $b'=\binom{b}{-b}$. Ainsi,

$$(n', m', A', b') \in SysLinIneg^+ \iff \exists X, \ A'X \leqslant b'$$

 $\iff \exists X, \ AX \leqslant b \text{ et } -AX \leqslant -b$
 $\iff \exists X, \ AX = b$
 $\iff (n, m, A, b) \in SysLin^+$

CLIQUE, STABLE et COUV. SOMMETS

1. Soit G = (S, A) un graphe. On pose G' = (S, A') où $A' = \{\{x, y\} \in \mathcal{C}_2(S) | \{x, y\} \notin A\}.$ Prouvons la réduction de Clique à Stable. Soit (G, K) une entrée du problème Clique. Fabriquons l'entrée (G', K) de Stable, comme défini précédemment. Montrons que $(G, K) \in$

^{1.} On note $\mathscr{C}_p(E)$ l'ensemble des parties de E de cardinal p.

$$\begin{aligned} \operatorname{Clique}^+ &\iff (G',K) \in \operatorname{Stable}^+. \text{ On a} \\ (G,K) &\in \operatorname{Clique}^+ &\iff \exists S_1 \subseteq S_2 \text{ avec } |S_1| \geqslant K, \ \forall x \neq y \in S_1, \ \{x,y\} \in A \\ &\iff \exists S_1 \subseteq S_2 \text{ avec } |S_1| \geqslant K, \ \forall x \neq y, \ \{x,y\} \not\in A' \\ &\iff (G',K) \in \operatorname{Stable}^+. \end{aligned}$$

La réduction est calculable en temps polynômiale. On a donc CLIQUE \preccurlyeq_p Stable. La réduction de Stable à CLIQUE est la même. Elle est également en temps polynômiale.

2. Montrons la réduction de CouvSommets à Clique. Soit (G,K) une entrée du problème CouvSommets. Fabriquons (G',n-K) une entrée du problème Stable, où G'=(S,A') comme défini à la question précédente, et n=|S|. On a

$$(G,K) \in \mathsf{CouvSommets}^+$$

$$\iff \exists S_1 \subseteq S \text{ avec } |S_1| \leqslant K, \ \forall \{x,y\} \in A, \ x \in S_1 \text{ ou } x \in S_2$$

$$\iff \exists S_1 \subseteq S \text{ avec } |S_1| \leqslant K, \ \forall x \neq y \in S \setminus S_1, \ \{x,y\} \not \in A$$

$$\iff \exists S_1 \subseteq S \text{ avec } |S \setminus S_1| \leqslant |S| - K, \ \forall x \neq y \in S \setminus S_1, \ \{x,y\} \in A'$$

$$\iff \exists S_2 \subseteq S \text{ avec } |S_2| \geqslant |S| - K, \ \forall x \neq y \in S_2, \ \{x,y\} \in A'$$

$$\iff (G',|S| - K) \in \mathsf{Stable}^+.$$

3. On représente le graphe G pour l'entrée $\{x \lor x \lor y, \neg x \lor \neg y \lor \neg y, x \lor y \lor y\}$.

Figure 1 – Représentation du graphe G pour l'entrée $\{x \lor x \lor y, \neg x \lor \neg y \lor \neg y, x \lor y \lor y\}$

4. Montrons la réduction de 3sat à Clique. Soit $H=\{c_1,\ldots,c_m\}$ une instance de 3sat. Construisons le graphe G comme proposé dans l'énoncé. On construit alors l'entrée de Clique (G,m). Soit $(G,m)\in \text{Clique}^+$. C'est donc qu'il existe une clique de G de taille m; nommons la C. Deux sommets $(i,_)$ et $(j,_)$ ne sont pas reliés dans G si i=j. Ainsi,

$$\forall i \in [1, m], \exists ! j \in [0, 2], (i, j) \in C.$$

Soient p et $\neg p$ deux littéraux. Si $p \in C$, alors $\neg p \not\in C$. Si $\neg p \in C$, alors $p \not\in C$. On construit alors l'environnement propositionnel

$$\rho: \mathbb{Q} \longrightarrow \mathbb{B}$$

$$p \longmapsto \begin{cases} V & \text{si } p \in C \\ F & \text{sinon.} \end{cases}$$

Pour $i\in [\![1,m]\!]$, soit $j\in [\![0,2]\!]$, tel que $(i,j)\in C$, on a donc $[\![\ell_{i,j}]\!]^\rho=V$. On en déduit que $\forall i\in [\![1,m]\!]$, $[\![c_i]\!]^\rho=V$. On en déduit que $[\![H]\!]^\rho=V$, i.e. $H\in 3\text{sat}^+$. Réciproquement, supposons $H\in 3\text{sat}^+$. Alors, soit $\rho\in \mathbb{B}^{\mathbb{Q}}$ tel que $[\![H]\!]^\rho=V$. On a

$$\forall i \in [1, m], \exists j \in [0, 2], [\ell_{i,j}]^{\rho} = V.$$

Notons $\varphi(i)$ un tel j. On fabrique alors l'ensemble de m sommets $C=\{(i,\varphi(i))\mid i\in [\![1,m]\!]\}$. Soient $(i,\varphi(i))$ et $(j,\varphi(j))$ deux éléments de C. Si $i\neq j$, alors $\{(i,\varphi(i)),(j,\varphi(j))\}\in A$, car $[\![\ell_{i,\varphi(i)}]\!]^{\rho}=V$ et $[\![\ell_{j,\varphi(j)}]\!]^{\rho}=V$. On en déduit que C est une clique de taille m. Ainsi, $(G,m)\in \mathrm{CLique}^+$.

5. Comme Clique est \mathbf{NP} -difficile, alors Stable et CouvSommets sont \mathbf{NP} -difficile. Montrons que Clique est un problème \mathbf{NP} . Le programme Clique est vérifiable en temps polynômiale : . . .