STAT 8700 Final Question 2

Brian Detweiler
Thursday, December 15th

2. (a) Consider a random sample y_1, y_2, \ldots, y_n taken from a Normal population with mean $= \mu$ and known variance $= \sigma^2$. Show that the likelihood is equivalent to the likelihood of a single observation of \overline{y} taken from a Normal population with a mean of μ' and $\sigma^{2'}$ where \overline{y} is the mean of the y's. Find the appropriate expressions for μ' and $\sigma^{2'}$.

Given multiple observations of a Normal distribution with mean μ and known variance σ^2 , the likelihood for observations y_1, y_2, \ldots, y_n is given as

$$p(y_1, y_2, \dots, y_i | \sigma^2) = \prod_{i=1}^n p(y_i | \sigma^2)$$

$$= \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}} (y_i - \mu)^2$$

$$= \left[\frac{1}{\sigma \sqrt{2\pi}} \right]^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2}$$

where the data only appear in the exponential, $e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\mu)^2}$. Using a trick from [1],

$$\begin{split} p(y_1,y_2,\dots,y_i|\sigma^2) &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\mu)^2} \\ &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n\left[(y_i-\overline{y})-(\mu-\overline{y})\right]^2} \\ &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\overline{y})^2+\sum_{i=1}^n(\overline{y}-\mu)^2-2\sum_{i=1}^n(y_i-\overline{y})(\mu-\overline{y})} \\ &\sim e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\overline{y})^2+\sum_{i=1}^n(\overline{y}-\mu)^2-(\mu-\overline{y})\left(\left(\sum_{i=1}^ny_i\right)-n\overline{y}\right)} \\ &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\overline{y})^2+\sum_{i=1}^n(\overline{y}-\mu)^2-(\mu-\overline{y})(n\overline{y}-n\overline{y})} \\ &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\overline{y})^2+\sum_{i=1}^n(\overline{y}-\mu)^2-(\mu-\overline{y})(n\overline{y}-n\overline{y})} \\ &\propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\overline{y})^2+\sum_{i=1}^n(\overline{y}-\mu)^2} \\ &\propto e^{-\frac{1}{2\sigma^2}ns^2+n(\overline{y}-\mu)^2} \\ &\propto e^{-\frac{ns^2}{2\sigma^2}}e^{\frac{-n(\overline{y}-\mu)^2}{2\sigma^2}} \end{split}$$

And since σ^2 is constant, we can ignore it,

$$p(y_1, y_2, \dots, y_i | \sigma^2) \propto e^{\frac{-n(\overline{y} - \mu)^2}{2\sigma^2}}$$

Now, we recognize this as a member of the exponential family of distributions, specifically a Gaussian,

$$p(y_1, y_2, \dots, y_i | \sigma^2) \sim Normal\left(\overline{y} | \mu, \frac{\sigma^2}{n}\right)$$

This shows the equivalence to the likelihood for a single observation of \overline{y} , and hence, $\mu' = \mu$ and $\sigma^{2'} = \frac{\sigma^2}{n}$.

(b) Suppose that y_i is Normally distributed with mean $= \mu$ and known variance $= \sigma_i^2$, for i = 1, ..., n. Show that if a uniform prior for μ is used then the posterior distribution of μ is Normal with mean $= \frac{\sum_{i=1}^n y_i/\sigma_i^2}{\sum_{i=1}^n 1/\sigma_i^2}$ and variance $= (\sum_{i=1}^n 1/\sigma_i^2)^{-1}$

Show all working.

Using a uniform prior on μ we have the improper prior,

$$p(\theta) \propto 1$$

Then the conditional distribution given in **3.2** is

$$\mu|\sigma^2, y \sim N(\overline{y}, \sigma^2/n)$$

which can be rewritten as

$$\mu | \sigma^2, y \sim N\left(\frac{1}{n} \sum_{i=1}^n y_i, \frac{1}{n} \sum_{i=1}^n \sigma_i^2\right)$$

Note that

$$\theta | \sigma_i^2, y_i \sim N \left(\frac{\sum_{i=1}^n y_i / \sigma_i^2}{\sum_{i=1}^n 1 / \sigma_i^2}, \left(\sum_{i=1}^n 1 / \sigma_i^2 \right)^{-1} \right)$$

can be written as

$$\theta | \sigma_i^2, y_i \sim N\left(\sum_{i=1}^n y_i, \sum_{i=1}^n \sigma_i^2\right)$$

for n = 1, 2, ..., n.

Thus, the distribution given in **3.2** is a single observation of y of all y_i from i = 1, 2, ..., n.

References

[1] Kevin P. Murphy

Conjugate Bayesian analysis of the Gaussian distribution

University of British Columbia, 2007

https://www.cs.ubc.ca/murphyk/Papers/bayesGauss.pdf