ING1 APP - LSI3

BALASSOUPRAMANIEN MADAVAN
CHEVILY PIERRE
POMMIER MELVYN

PRESENTATION Le problème du voyageur de commerce

OPTIMISATION ET COMPLEXITÉ CHARRAD TASNIM

SOMMAIRE

01. Définition du problème

02. Revue de la littérature

03. Formulation mathématique

04. Résolution du programme

05. Résultats obtenus

DÉFINITION DU PROBLEME

OBJECTIF

Trouver le plus court circuit visitant toutes les villes une seule fois

DONNÉES D'ENTRÉE

- Un ensemble de **villes**
- Une matrice de **distances**

$$D=[d_{ij}]$$

FORME DU RÉSULTAT

Une permutation π des villes **minimisant** la distance totale.

REVUE DE LA LITTERATURE

Principales approches

EXACTES

PLNE, Branch & Bound

Solutions **optimales**, mais **lentes**

HEURISTIQUES

Plus proche voisin, 2-opt

Résultats rapides et corrects

MÉTAHEURISTIQUES

Recuit simulé, génétiques, fourmis

Solutions **efficaces** pour les **grandes instances**

REVUE DE LA LITTERATURE

Lourquoi ce problème?

PRÉSENT DANS LA VIE DE TOUS LES JOURS

Problème récurrent en

- Logistique (livraisons)
- Bio-informatique (ADN)
- Circuits imprimés
- Robotique (trajectoires)

SIMPLE À COMPRENDRE, PAS À RÉSOUDRE

Bien qu'il s'agisse d'un problème que l'on rencontre souvent, **personne** n'a, à ce jour, réussi à le résoudre, malgré de **nombreuses tentatives**.

D'AUTRES CONTRAINTES DANS LA VRAIE VIE

- Limites de **temps**
- Capacité des véhicules (livraison)
- Distance A/R différentes
- Ordre de **priorité**

FORMULATION MATHEMATIQUE

Variables

$$x_{ij} \in \{0,1\}$$

MATRICE

Vaut 1 si on va de **i à j**, O sinon

$$u_i \in \mathbb{R}$$

SOUS-TOURS

Variable pour **éliminer** les **sous- tours**

$$\min \sum_{i=1}^n \sum_{j=1}^n d_{ij} \cdot x_{ij}$$

FONCTION OBJECTIF

On doit **minimiser** d_{ij} la distance entre les villes ${\bf i}$ et ${\bf j}$

FORMULATION MATHEMATIQUE

Contraintes

$$\sum_{j=1}^n x_{ij} = 1$$
 $orall i \in \{1,\ldots,n\}$ **DÉPART**

On quitte chaque ville une seule fois

$$\sum_{i=1}^n x_{ij} = 1 \ orall j \in \{1,\dots,n\}$$

VISITE

On visite chaque ville une seule fois

$$egin{aligned} u_i - u_j + n \cdot x_{ij} &\leq n-1 \ orall i &
eq j, \ i,j \in \{2,\dots,n\} \end{aligned}$$
 $egin{aligned} 1 &\leq u_i \leq n-1 \ orall i &\in \{2,\dots,n\} \end{aligned}$ SOUS-TOURS

On **élimine** les soustours grâce au **MTZ**

RÉSOLUTION DU PROGRAME

Utilisation de **PuLP** avec solveur **CBC**.

Génération **automatique** d'une matrice de distances réalistes

Modélisation via **formulation MTZ** (Miller-Tucker-Zemlin)
pour éviter les **sous-tours**

Résolution rapide : moins de 2 sec pour 30 villes

```
manage_data.graph_plotter:build_graph:28 - Graphe construit avec 8 nœuds et 28 arêtes.
                    SUCCESS
                    INFO
                                solver.tsp_solver:create_model:53 - Modèle TSP construit avec succès.
                    INFO
                                 _main_:main:37 - Modèle construit, résolution en cours...
                                solver.tsp_solver:solve_model:77 - Résolution optimale obtenue.
solver.tsp_solver:extract_solution:98 - Arêtes actives sélectionnées : [('Paris', 'Strasbourg'), ('Lyon', 'Lille
  ('Nantes', 'Paris'), ('Bordeaux', 'Lyon'), ('Strasbourg', 'Bordeaux'), ('Lille', 'Toulouse')]
                                solver.tsp_solver:extract_solution:116 - Étape 0: Paris -> Strasbourg
                                solver.tsp_solver:extract_solution:116 - Étape 1: Strasbourg -> Bordeaux
                    DEBUG
                                solver.tsp_solver:extract_solution:116 - Étape 2: Bordeaux -> Lyon
                                solver.tsp_solver:extract_solution:116 - Étape 3: Lyon -> Lille
                                solver.tsp_solver:extract_solution:116 - Étape 4: Lille -> Toulouse
                    DEBUG
                                solver.tsp_solver:extract_solution:116 - Étape 5: Toulouse -> Marseille
                                solver.tsp_solver:extract_solution:116 - Étape 6: Marseille -> Nantes
                    DEBUG
                                solver.tsp_solver:display_solution:147 -
rdre optimal : Paris -> Strasbourg -> Bordeaux -> Lyon -> Lille -> Toulouse -> Marseille -> Nantes -> Paris
stance totale estimée : 2255.00 km
```

FONCTIONNALITÉS

Génération aléatoire de villes et distances.

Construction du modèle mathématique : variables, contraintes.

Résolution optimale via CBC.

Visualisation interactive:

- Graphe complet affiché.
- Bouton "Afficher / Cacher Chemin optimal" :
 - Arêtes rouges pointillées avec flèches directionnelles.
 - Affichage du chemin optimal et de la distance totale.

RÉSULTATS OBTENUS

REMARQUES ET AMÉLIORATIONS POSSIBLES

CBC efficace jusqu'à ~40 villes.

Pour plus de 40 villes :

- Utiliser des heuristiques (2-opt, insertion, etc.).
- Tester d'autres formulations du TSP (DFJ au lieu de MTZ).
- Améliorer la visualisation pour très gros graphes (ex : clusterisation)

