5.2 Ekstrema funkcji dwóch zmiennych

Definicja 5.2. Funkcja f(P) ma w punkcie P_0 maksimum lokalne, jeżeli istnieje takie sąsiedztwo S punktu P_0 , że dla każdego $P \in S$ spełniona jest nierówność $f(P) < f(P_0)$, oraz minimum lokalne, jeżeli $f(P) > f(P_0)$.

Maksima i minima nazywamy ekstremami.

Warunkiem koniecznym istnienia ekstremum funkcji f(x,y) klasy C^1 w punkcie $P_0(x_0, y_0)$ jest by $f_x(P_0) = 0$, i $f_y(P_0) = 0$.

Punkt w którym są spełnione warunki konieczne nazywamy punktem stacjonarnym funkcji f(x,y). Funkcja klasy C^1 może mieć ekstremum tylko w tych punktach obszaru, które są jej punktami stacjonarnymi.

Warunkiem wystarczającym istnienia ekstremum funkcji f(x,y)klasy C^2 w pewnym otoczeniu punktu $P_0(x_0,y_0)$ jest, gdy

1°
$$f_x(P_0) = 0$$
 i $f_y(P_0) = 0$.

$$2^{\circ} W(P_0) = f_{xx} \cdot f_{yy}(P_0) - [f_{xy}(P_0)]^2 > 0.$$

Ponadto funkcja f(x, y) ma w punkcie P_0 maksimum lokalne, gdy $f_{xx}(P_0) < 0$, oraz minimum lokalne, gdy $f_{xx}(P_0) > 0$.

Jeżeli $W(P_0) < 0$, to funkcja f w punkcie P_0 nie posiada ekstremum, jeżeli $W(P_0) = 0$, to w tym punkcie funkcja może mieć ekstremum lub nie. Wówczas należy skorzystać z innych metod zbadania istnienia ekstremum.

Przykład 5.3. Znaleźć ekstrema funkcji dwóch zmiennych

$$z = f(x,y) = x^3 + 3xy^2 - 6xy.$$

Rozwiązanie. Warunek konieczny:

$$\begin{cases} f_x = 3x^2 + 3y^2 - 6y = 0, \\ f_y = 6xy - 6x = 0. \end{cases}$$

Rozwiązując układ równań otrzymujemy cztery punkty stacjonarne funkcji f(x,y)

$$A(0,0), B(0,2), C(1,1), D(-1,1).$$

Sprawdzamy w tych punktach warunek wystarczający $W(x,y) = f_{xx}f_{yy} - (f_{xy})^2 > 0$, mamy

$$W(x,y) = 36x^2 - 36(y-1)^2,$$

w punktach

A: W(A) = -36 < 0 brak ekstremum,

B: W(B) = -36 < 0 brak ekstremum,

C: W(C) = 36 > 0, $f_{xx}(C) = 6 > 0$ ekstremum – minimum równe f(C) = -2,

D: W(D) = 36 > 0, $f_{xx}(C) = -6 < 0$ ekstremum – maksimum równe f(D) = 2.