Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Simulazione d'esame n. 2

COGNOME: NOME: MATRICOLA:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su entrambi i testi, il formulario e tutti i fogli protocollo
- 2) Bisogna consegnare entrambi i testi del compito anche in caso di ritiro
- 3) Le risposte sbagliate <u>saranno penalizzate</u>
- 4) <u>Saranno considerate solo le risposte riportate nella tabella soprastante, che deve essere compilata usando una penna nera o blu e in STAMPATELLO MAIUSCOLO</u>. Se la lettera non è comprensibile la risposta sarò considerata come non data
- 5) Il tempo a disposizione è di 35 minuti
- 1) Quale dei seguenti drogaggi porta a un semiconduttore con n = 10¹⁵ elettroni?
 - a) 10¹⁵ atomi accettori
 - b) 5·10¹⁵ atomi accettori e 4·10¹⁵ atomi donatori
 - c) 5·10¹⁵ atomi donatori e 4·10¹⁵ atomi accettori
- 2) Quando si realizza una giunzione pn si forma una regione di carica spaziale costituita da:
 - a) drogante ionizzato con carica positiva nel lato p e drogante ionizzato con carica negativa nel lato n
 - b) drogante ionizzato con carica negativa nel lato p e drogante ionizzato con carica positiva nel lato n
 - c) elettroni in eccesso nel lato n e lacune in eccesso nel lato p.
- 3) In un MOSFET la corrente IDS dipende dalla tensione VGS:
 - a) In modo lineare, ma solo se il MOSFET è in saturazione
 - b) In modo lineare, ma solo se il MOSFET è in lineare
 - c) Sempre in modo lineare
- 4) Che differenza c'è tra un NMOSFET a svuotamento e ad arricchimento?
 - a) Un NMOSFET ad arricchimento si accende per $V_{GS} < V_{TN}$ e quello a svuotamento per $V_{GS} > V_{TN}$.
 - b) Un NMOSFET ad arricchimento si accende per V_{GS} > V_{TN} e quello a svuotamento per V_{GS} < V_{TN}.
 - c) Un NMOSFET ad arricchimento ha $V_{TN} > 0$ e quello a svuotamento ha $V_{TN} < 0$.
- 5) Dato il circuito in figura in cui il diodo ha tensione di accensione V_{ON} = 0.7V. La corrente I vale:

b) 0A

c) -7mA

- 6) Dato il circuito in figura in cui il MOSFET ha tensione di soglia 4V. In che regione di funzionamento lavora il MOSFET?
 - a) interdizione
 - b) lineare
 - c) saturazione

- 7) Nel modello ai piccoli segnali di un MOS, il parametro g_m tiene conto:
 - a) Della dipendenza della corrente i_{ds} da v_{gs}
 - b) Della dipendenza della corrente i_{ds} da v_{ds}
 - c) Della dipendenza della corrente v_{ds} da v_{gs}
- 8) Uno stadio elementare a source comune è caratterizzato da:
 - a) Guadagno di corrente circa unitario
 - b) Guadagno di corrente negativo
 - c) Guadagno di corrente positivo
- 9) Il guadagno di un amplificatore lineare:
 - a) Deve essere necessariamente maggiore di 1
 - b) Deve essere necessariamente positivo
 - c) Può avere qualsiasi valore
- 10) Il guadagno di modo differenziale in un amplificatore differenziale è definito come il rapporto tra la tensione di uscita e la differenza degli ingressi, applicando agli ingressi:
 - a) Un segnale di solo modo comune
 - b) Un segnale di solo modo differenziale
 - c) Un segnale di modo differenziale sovrapposto a un segnale di modo comune di valore arbitrario
- 11) Dato il circuito in figura realizzato con un operazionale ideale e due resistenze $R_1=1k\Omega$ e $R_2=10k\Omega$. Il guadagno è:

- a) -10
- b) +10
- c) -0.1
- 12) Dato il circuito in figura realizzato con un operazionale reale con V_{OS} = 0.03V, R_1 = 1k Ω , R_2 = 10k Ω . Se v_I = 0, la tensione di uscita vale:

- b) 0.33V
- c) 0V

 v_0

- 13) Se un amplificatore operazionale reale ha guadagno di modo differenziale 80dB e un CMRR di 60dB, il guadagno di modo comune ha modulo:
 - a) Maggiore di 1
 - b) Uguale a 1
 - c) Minore di 1
- 14) Dato il filtro passa-banda in figura in cui R_1 = 1k Ω , R_2 =10k Ω , C_1 = 10 μ F, C_2 = 1nF. Le pulsazioni corrispondente alle frequenze di taglio inferiore (ω_L) e superiore (ω_H) sono:

- b) $\omega_L = 10 \text{ rad/s e } \omega_H = 10^6 \text{ rad/s}$
- c) Nessuna delle precedenti risposte

- 15) Data la funzione di trasferimento il cui diagramma di bode del modulo è mostrato in figura. Essa ha:
 - a) Uno zero nell'origine e 2 poli reali
 - b) Uno zero nell'origine, e 3 poli reali di cui due identici
 - c) Un polo nell'origine, e 3 poli reali di cui due identici

Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Simulazione d'esame n. 2

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su entrambi i testi, il formulario e tutti i fogli protocollo
- 2) Bisogna consegnare entrambi i testi del compito anche in caso di ritiro
- 3) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 4) Nei conti e nei risultati, i valori numerici **<u>DEVONO</u>** essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 5) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 6) Il tempo a disposizione è di 2 ore

Problema 1

$$\begin{split} \text{DATI: } V_{DD} &= 12 V, \, V_{SS} = -15 V, \, V_B = 3 V, \, R_1 = 8 k \Omega, \, R_2 = 200 k \Omega, \, R_3 = 200 k \Omega, \, R_I = 200 \Omega, \, R_L = 1 k \Omega \\ M_1: \, k_{n1} &= 0.5 \text{mA}/V^2; \qquad V_{TN1} = 2 V; \qquad \lambda_{n1} = 0 V^{-1} \\ M_2: \, k_{n2} &= 1.6 \text{mA}/V^2; \qquad V_{TN2} = 2 V; \qquad \lambda_{n2} = 0 V^{-1} \\ M_3: \, k_{n3} &= 2 \text{mA}/V^2; \qquad V_{TN3} = 2 V; \qquad \lambda_{n3} = 0.01 V^{-1} \\ M_4: \, k_{n4} &= 10 \text{mA}/V^2; \qquad V_{TN4} = 2 V; \qquad \lambda_{n4} = 0.01 V^{-1} \end{split}$$

Dato il circuito in figura, calcolare:

- 1. La polarizzazione di tutti i MOSFET in condizioni DC verificando la regione di funzionamento (trascurare la modulazione della lunghezza di canale nello studio del circuito in DC)
- 2. Disegnare il modello ai piccoli segnali e calcolare le transconduttanze di M_1 e M_2 Dall'analisi ai piccoli segnali, calcolare:
- 3. Le resistenze di ingresso e uscita dell'amplificatore
- 4. Il guadagno di tensione

Problema 2

DATI: $R_1 = 1.1k\Omega$, $R_2 = 1k\Omega$, $R_3 = 10k\Omega$, $R_4 = 100k\Omega$, $C_2 = 10nF$, $C_3 = 100nF$, $C_4 = 100nF$; Dato il circuito in figura, realizzato con amplificatori operazionali ideali:

- 1. Ricavare l'espressione della funzione di trasferimento in funzione di ω
- 2. Tracciare il diagramma di Bode asintotico del modulo e della fase
- 3. Ricavare il segnale di uscita quando all'ingresso è presente il segnale:

$$v_S = V_{S1} \sin(\omega_1 t + 45^\circ) + V_{S2} \sin(\omega_2 t)$$

con $V_{S1} = V_{S2} = 0.5V$, $\omega_1 = 500 \text{rad/s}$ e $\omega_2 = 5 \cdot 10^4 \text{rad/s}$

Problema 3

DATI: $R_1 = 1k\Omega$, $R_2 = 9k\Omega$, $R_S = 100\Omega$, $R_L = 1k\Omega$, $v_S = 5V$ Dato il circuito in figura, calcolare:

- 1. La corrente l₀.
- 2. La tensione vo

