CS3230 : Tutorial - 5

Bakh Khoussainov

The deadline is 1pm, 18-Sept-2012.

- 1. Design an algorithm that given a graph G detects if G has a cycle. Determine the running time of your algorithm.
- 2. Recall that a path in a graph is **simple** if no vertices in it are repeated. Design an algorithm that given a graph G, and two vertices x and y decides if there is a unique simple path from x to y. Determine the running time of your algorithm.
- 3. Suppose that P and Q are some properties of graphs. Assume that there are two polynomial time algorithms such that the following hold. The first algorithm detects if a given graph G has property P, and similarly, the second algorithm detects if G has property Q. Prove that there are polynomial time algorithms that can decide each of the following properties: (a) P or Q, (b) P and Q, and (d) not P.
- 4. A **bipartite graph** is a directed graph G = (V, E) such that there are two sets of vertices V_0 and V_1 for which the following properties are true:
 - (a) $V_0 \cap V_1 = \emptyset$ and $V_0 \cup V_1 = V$.
 - (b) The set E of edges is a subset of $V_0 \times V_1 \cup V_1 \times V_0$.

Do the following:

- (a) Design an algorithm that, given a graph, detects if the graph is bipartite. Your algorithm does not have to be efficient.
- (b) Do you think there is an efficient algorithm that detects if a given graph is bipartite? If so, give an idea of the algorithm and provide a pseudo-code.
- 5. Let (V, E) be a bipartite graph given with V_0 and V_1 (see Problem 4). Let T be a subset of V. Call T the target set. We define **reachability game** Γ as follows. There are two players: Player 0 and Player 1.

A play between these two players is described as follows. The play starts at any vertex v_0 . Say the vertex is in V_0 . In this case, *Player* 0 selects an edge $e = (v_0, v_1)$, and then moves along the edge. Then, *Player* 1 selects an edge $e = (v_1, v_2)$, and moves along the edge. This continues

turn by turn. If v_0 is in V_1 then $Player\ 1$ starts the play. So, a **play** in $G = (V_0 \cup V_1, E)$ is a (finite or infinite) sequence of vertices v_0, v_1, v_2, \ldots , such that $(v_0, v_1), (v_1, v_2), (v_2, v_3), \ldots$ are all edges of G. Note that $Player\ 0$ moves from vertices in V_0 , and $Player\ 1$ moves from vertices in V_1 . We say that Player 0 **wins the play** v_0, v_1, v_2, \ldots if there exists an i such that $v_i \in T$. Otherwise, Player 1 wins the play.

Assume that the game starts from a vertex v. The vertex v is **winning** for Player 0 if, starting from v, the player can reach the set T no matter what moves the opponent makes. Similarly, the vertex v is **winning** for Player 1 if, starting from v, the player can keep the plays out of T forever no matter what moves the opponent makes. Do the following.

(a) Consider the game pictured below. For this game, V_0 is the set of all vertices labeled by letters, and V_1 is the set of all vertices labeled by numbers, and $T = \{a, b\}$. Find all winning vertices for Player 0. Similarly, find all winning vertices for Player 1.

Figure 1: An example of a reachability game

- (b) Design an efficient algorithm that, given a game Γ , computes all the winning vertices for Player 0, and computes all winning vertices for Player 1.
- (c) Prove that your algorithm that solves the game problem is correct.
- (d) Design an algorithm that, given a game Γ and a starting vertex v, builds a winning strategy from the vertex v for the winner.