An introduction to Bayesian statistical inference

S. Robin

JC(2)BIM, June 2018, Fréjus

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Statistical inference: Bayesian point-of-view Statistical inference: frequentist / Bayesian

Evaluating the posterior distribution: Monte-Carlo

Extensions

An example

Example:

- ightharpoonup n patients: $i = 1 \dots n$
- $ightharpoonup Y_i = \text{status } (0 = \text{healthy}, 1 = \text{sick}) \text{ of patient } i$
- $\mathbf{x}_i = (x_{i1}, \dots x_{ip}) = \text{vector of gene expression for patient } i \text{ (gene } j = 1 \dots p)$

Dataset: n = 78, p = 15

	AB033066	NM003056	NM000903	 Status
1	0.178	0.116	0.22	0
2	0.065	-0.073	-0.014	0
3	-0.077	0.03	0.043	0
4	0.176	-0.041	0.362	0
5	-0.089	-0.164	-0.266	0

A statistical model

Logistic regression Logistic regression

- ▶ The patients are independent.
- The probability for patient i to be sick depends on x_i :

$$\Pr\{Y_i = 1\} = \frac{e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta}}}, \qquad \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta} = \sum_{j=1}^{p} x_{ij}\theta_j$$

 $\theta = (\theta_1, \dots \theta_p)$: unknown parameter (regression coefficients, incl. intercept)

Frequentist inference

θ = fixed parameter:

Statistical model:

$$\mathbf{Y} \sim p_{m{ heta}}$$

▶ Inference: get a (point) estimate $\hat{\theta}$ e.g.

$$\widehat{\boldsymbol{ heta}}$$
: $\log p_{\widehat{\boldsymbol{ heta}}}(\mathbf{Y}) = \max_{\boldsymbol{ heta}} \log p_{\boldsymbol{ heta}}(\mathbf{Y})$

lacktriangle The estimate $\widehat{m{ heta}}$ itself is random (depends on the data) ightarrow confidence interval, tests, ...

Frequentist inference

θ = fixed parameter:

► Statistical model:

$$\mathbf{Y} \sim p_{m{ heta}}$$

▶ Inference: get a (point) estimate $\widehat{\theta}$ e.g.

$$\widehat{\boldsymbol{\theta}}$$
: $\log p_{\widehat{\boldsymbol{\theta}}}(\mathbf{Y}) = \max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathbf{Y})$

▶ The estimate $\widehat{\theta}$ itself is random (depends on the data) → confidence interval, tests, ...

Output: GLM = glm(Y \sim X, family=binomial)

	Estimate	Std. Error	z value	$\Pr(> \mathtt{z})$
(Intercept)	-0.7212697	0.6512707	-1.107481	0.2680861
XAB033066	7.23375	2.505118	2.887589	0.003882068
XNM003056	-0.6116423	1.854695	-0.3297806	0.7415658
XNM000903	1.732625	1.199888	1.443988	0.1487423

Bayesian inference

$\theta = \text{random parameter}$:

Statistical model:

$$\ell(\mathbf{Y} \mid \boldsymbol{\theta}) := p(\mathbf{Y} \mid \boldsymbol{\theta}) \qquad (= likelihood)$$

▶ Inference: provide the conditional distribution of θ given the observed data \mathbf{Y} :

$$p(\theta \mid \mathbf{Y})$$
 (= posterior distribution)

- → credibility intervals
- Requires to define a marginal distribution:

$$\pi(\theta) := p(\theta)$$
 (= prior distribution)

Statistical inference: Bayesian point-of-view

Basics of Bayes inference

Evaluating the posterior distribution: Monte-Carlo

Extensions

Why 'Bayes'

Bayes formula:

$$P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B | A)$$

- ightharpoonup P(B) = marginal probability of B
- ightharpoonup P(A, B) = joint probability of A and B
- ▶ $P(A \mid B)$ = conditional probability of A given B [# 57]

Why 'Bayes'

Bayes formula:

$$P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B | A)$$

- ightharpoonup P(B) = marginal probability of B
- ightharpoonup P(A, B) = joint probability of A and B
- ▶ P(A | B) = conditional probability of A given B [# 57]

Be careful. Many methods, e.g.

Bayesian network, Naive Bayes, ...

- use conditional probabilities
- but have nothing to do with Bayesian inference (in the statistical sense)

Posterior distribution.

$$p(\theta \mid \mathbf{Y}) = \frac{p(\mathbf{Y}, \theta)}{p(\mathbf{Y})} = \frac{\overbrace{\pi(\theta)}^{prior} \underbrace{\ell(\mathbf{Y} \mid \theta)}_{p(\mathbf{Y})}}{p(\mathbf{Y})}$$

→ Requires to evaluate the *integrated likelihood* (i.e. marginal)

$$p(\mathbf{Y}) = \int \pi(\boldsymbol{\theta}) \ell(\mathbf{Y} \,|\, \boldsymbol{\theta}) \, \mathrm{d} \boldsymbol{\theta},$$

which act as the normalizing constant of the posterior $p(\theta \mid \mathbf{Y})$.

Some remarks.

Some remarks.

1. $p(\cdot)$ is sometimes denotes $[\cdot]$:

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta) \; \ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})} \qquad \Leftrightarrow \qquad [\theta \mid \mathbf{Y}] = \frac{[\theta] \; [\mathbf{Y} \mid \theta]}{[\mathbf{Y}]}$$

Some remarks.

1. $p(\cdot)$ is sometimes denotes $[\cdot]$:

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta) \; \ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})} \qquad \Leftrightarrow \qquad [\theta \mid \mathbf{Y}] = \frac{[\theta] \; [\mathbf{Y} \mid \theta]}{[\mathbf{Y}]}$$

2. Computing $p(\mathbf{Y})$ is generally (very) difficult: see Section 2

Some remarks.

1. $p(\cdot)$ is sometimes denotes $[\cdot]$:

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta) \; \ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})} \qquad \Leftrightarrow \qquad [\theta \mid \mathbf{Y}] = \frac{[\theta] \; [\mathbf{Y} \mid \theta]}{[\mathbf{Y}]}$$

- 2. Computing $p(\mathbf{Y})$ is generally (very) difficult: see Section 2
- 3. Obviously

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ \ell(\mathbf{Y} \mid \theta),$$

 $\rightarrow p(\theta \mid \mathbf{Y})$ and $p(\theta' \mid \mathbf{Y})$ can be compared, without computing $p(\mathbf{Y})$

Some remarks.

1. $p(\cdot)$ is sometimes denotes $[\cdot]$:

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta) \; \ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})} \qquad \Leftrightarrow \qquad [\theta \mid \mathbf{Y}] = \frac{[\theta] \; [\mathbf{Y} \mid \theta]}{[\mathbf{Y}]}$$

- 2. Computing $p(\mathbf{Y})$ is generally (very) difficult: see Section 2
- 3. Obviously

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ \ell(\mathbf{Y} \mid \theta),$$

- $\rightarrow p(\theta \mid \mathbf{Y})$ and $p(\theta' \mid \mathbf{Y})$ can be compared, without computing $p(\mathbf{Y})$
- 4. Obviously, the posterior $p(\theta \mid \mathbf{Y})$ depends on the prior $\pi(\theta)$: see next slides.

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : : number sicks / n

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : number sicks /n

Param:

- \bullet θ = proba. sick
- -: prior $\pi(\theta)$

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : number sicks /n

Param:

- \bullet θ = proba. sick
- : prior $\pi(\theta)$

Output:

-: posterior $p(\theta \mid \mathbf{Y})$

Dependency vanishes when n increases

Back to logistic regression

Model

▶ Prior: all coefficient θ_i independent:

$$\theta_j \sim \mathcal{N}(0, 100)$$

Likelihood: all patients independent, conditionally on θ :

$$\Pr\{Y_i = 1 \mid \boldsymbol{\theta}\} = e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\theta}} / \left(1 + e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\theta}}\right)$$

Inference:

$$\theta \mid \mathbf{Y} \sim ?$$

(see later, but $p(\boldsymbol{\theta} \mid \mathbf{Y}) \neq \mathcal{N}(\cdot, \cdot)$, for sure.)

Bayesian inference

Output:

Statistical inference: Bayesian point-of-view

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo

Extensions

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean:
$$\widehat{\theta}_j = \mathbb{E}(\theta_j \,|\, \mathbf{Y})$$

posterior mode:
$$\widehat{\theta}_j = \arg\max_{\theta_j} \ p(\theta_j \mid \mathbf{Y})$$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$\mathit{CI}_{1-lpha}(heta_j) = [heta_j^\ell; heta_j^u]: \qquad \Pr\{ heta_j^\ell < heta_j < heta_j^u \,|\, \mathbf{Y}\} = 1-lpha$$

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean:
$$\widehat{ heta}_j = \mathbb{E}(heta_j \,|\, \mathbf{Y})$$

posterior mode:
$$\widehat{\theta}_j = \arg\max_{\theta_j} p(\theta_j | \mathbf{Y})$$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$\mathit{CI}_{1-lpha}(heta_j) = [heta_j^\ell; heta_j^u]: \qquad \Pr\{ heta_j^\ell < heta_j < heta_j^u \,|\, \mathbf{Y}\} = 1-lpha$$

Example. [# 4]

	post.mean	post.mode	lower.CI	upper.CI
Intercept	-0.9816181	-0.8652166	-2.41342	0.3704264
AB033066	8.395169	8.587083	3.271464	13.98373
NM003056	-1.042483	-0.9854149	-5.046639	2.819764
NM000903	1.911312	1.677234	-0.4240319	4.452512

Accounting for uncertainty

Question: What is the probability for patient 0 (with profile x_0) to be sick?

Model answer:

$$\mathsf{Pr}\{Y_0 = 1 \,|\, \boldsymbol{\theta}\} = \mathrm{e}^{\mathbf{x}_0^\mathsf{T} \boldsymbol{\theta}} \, \Big/ \Big(1 + \mathrm{e}^{\mathbf{x}_0^\mathsf{T} \boldsymbol{\theta}} \Big)$$

but θ is unknown (and random).

Bayesian answer: posterior predictive probability

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}) d\boldsymbol{\theta}$$

Model comparison (1/2)

Problem. Which model fits the data better:

 M_0 : none of the genes has an effect, i.e. $\boldsymbol{\theta} = (\theta_0, 0, \dots, 0)$

 M_1 : only the fist gene has an effect, i.e. $\theta = (\theta_0, \theta_1, 0, \dots, 0)$

. . .

 M_p : all genes have an effect, i.e. $\theta = (\theta_0, \theta_1, \dots, \theta_p)$

Bayesian model comparison. For each model $M \in \mathcal{M} = \{M_0, \dots, M_p\}$, evaluate $p(M | \mathbf{Y})$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \ \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \ \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model M:

$$p(\mathbf{Y} \mid M) = \int \ell(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid M) d\boldsymbol{\theta}$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \ \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model M:

$$p(\mathbf{Y} \mid M) = \int \ell(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid M) d\boldsymbol{\theta}$$

 \triangleright Evaluate the $p(M_k | \mathbf{Y})$ using Bayes rule

$$p(M_k \mid \mathbf{Y}) = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{p(\mathbf{Y})} = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{\sum_{k'} p(M_{k'})p(\mathbf{Y} \mid M_{k'})}$$

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M | \mathbf{Y})$
- Compute

$$\mathsf{Pr}\{Y_0=1\,|\,\boldsymbol{Y},\widehat{M}\}=\int\mathsf{Pr}\{Y_0=1\,|\,\boldsymbol{\theta}\}p(\boldsymbol{\theta}\,|\,\boldsymbol{Y},\widehat{M})\;\mathsf{d}\boldsymbol{\theta}$$

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M | \mathbf{Y})$
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}, \widehat{M}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}, \widehat{M}) d\boldsymbol{\theta}$$

Model averaging.

- ► Keep all models
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \sum_{M} \Pr\{Y_0 = 1 \mid \mathbf{Y}, M\} p(M \mid \mathbf{Y})$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

In practice:

- 1. Perform inference using \mathbf{Y}_1 to get $p(\theta \mid \mathbf{Y}_1)$ from prior $\pi(\theta)$
- 2. Then perform inference using \mathbf{Y}_2 to get $p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2)$ using $p(\theta \mid \mathbf{Y}_1)$ as a prior

Combining experiments

Output: $n_1 = n_2 = 39$

Outline

Evaluating the posterior distribution: Monte-Carlo

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_i$
- ▶ Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_i < \theta_i^{u}\}$
- ▶ Posterior variance: $f(\theta) = \theta_i^2$ (+ posterior mean)

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_j$
- ▶ Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_j < \theta_i^{u}\}$
- ▶ Posterior variance: $f(\theta) = \theta_i^2$ (+ posterior mean)

Main problem: evaluate

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta)\ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})}$$

which requires to evaluate

$$p(\mathbf{Y}) = \int \underbrace{\pi(\theta)}_{prior} \underbrace{p(\mathbf{Y}|\theta)}_{likelihood} d\theta$$

Outline

Statistical inference: Bayesian point-of-view

Evaluating the posterior distribution: Monte-Carlo Conjugate priors

Extensions

Nice case: Conjugate priors

Example: Bernoulli¹

Prior: $\theta = \text{probability to be sick.}$

$$\theta \sim \text{Beta}(a, b), \qquad \pi(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

 $^{^{1}}$ #13: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Nice case: Conjugate priors

Example: Bernoulli¹

Prior: θ = probability to be sick.

$$heta \sim \mathsf{Beta}(a,b), \qquad \pi(heta) \propto heta^{a-1} (1- heta)^{b-1}$$

Likelihood: $Y_i = 1$ if sick, 0 otherwise. S = number of sick

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad \ell(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1 - \theta)^{1 - Y_i} = \theta^{S} (1 - \theta)^{n - S}$$

 $^{^{1}}$ #13: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Nice case: Conjugate priors

Example: Bernoulli¹

Prior: θ = probability to be sick.

$$\theta \sim \mathsf{Beta}(a,b), \qquad \pi(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Likelihood: $Y_i = 1$ if sick, 0 otherwise. S = number of sick

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad \ell(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1 - \theta)^{1 - Y_i} = \theta^{S} (1 - \theta)^{n - S}$$

Posterior:

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ell(\mathbf{Y} \mid \theta) = \theta^{a+S-1} (1-\theta)^{b+n-S-1}$$

which means that

$$\theta \mid \mathbf{Y} \sim \text{Beta}(a+S, b+n-S)$$

 $^{^{1}}$ #13: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Conjugate priors: Discrete distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures $^{[note\ 1]}$	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures $^{[note\ 1]}$	$\operatorname{BetaBin}(\tilde{x} \alpha', \beta')$ (beta-binomial)
Negative Binomial with known failure number r	p (probability)	Beta	α , β	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note }1]} \text{ (i.e. } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k + \sum_{i=1}^{n} x_i, \ \frac{\theta}{n\theta + 1}$	k total occurrences in $1/\theta$ intervals	$NB(\tilde{x} k', \frac{\theta'}{1+\theta'})$ (negative binomial)
Poisson	λ (rate)	Gamma	α, β [note 3]	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	α total occurrences in β intervals	$NB(\tilde{x} \alpha', \frac{1}{1+\beta'})$ (negative binomial)
Categorical	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{Inote } 1]}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$\alpha + \sum_{i=1}^{n} \mathbf{x}_i$	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$\operatorname{DirMult}(\tilde{\mathbf{x}} \boldsymbol{\alpha}')$ (Dirichlet- multinomial)
Hypergeometric with known total population size N	M (number of target members)	Beta-binomial ^[4]	$n=N, \alpha, \beta$	$\alpha + \sum_{i=1}^n x_i, \ \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	lpha-1 successes, $eta-1$ failures [note 1]	
Geometric	p_0 (probability)	Beta	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	lpha-1 experiments, $eta-1$ total failures ^[note 1]	

en.wikipedia.org/wiki/Conjugate_prior

Conjugate priors: Continuous distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters	Posterior predictive[note 4]
Normal with known variance σ^2	μ (mean)	Normal	μ_0, σ_0^2	$ \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}\right) \middle/ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), $ $ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} $	mean was estimated from observations with total precision (sum of all individual precisions)1/ σ_0^2 and with sample mean μ_0	$\mathcal{N}(\tilde{x} \mu'_0, \sigma_0^{2'} + \sigma^2)^{[5]}$
Normal with known precision τ	μ (mean)	Normal	μ_0, τ_0	$\left(\tau_{0}\mu_{0}+\tau\sum_{i=1}^{n}x_{i}\right)/\left(\tau_{0}+n\tau\right),\ \tau_{0}+n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(\tilde{x} \mu'_{0}, \frac{1}{\tau'_{0}} + \frac{1}{\tau}\right)^{[5]}$
Normal with known mean µ	σ^2 (variance)	Inverse gamma	α , β [note 5]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(\tilde{x} \mu,\sigma^2=eta'/lpha')^{(5)}$
Normal with known mean µ	σ^2 (variance)	Scaled inverse chi-squared	ν , σ_0^2	$\nu + n$, $\frac{\nu \sigma_0^2 + \sum_{i=1}^{n} (x_i - \mu)^2}{\nu + n}$	variance was estimated from ν observations with sample variance σ_0^2	$t_{\nu'}(\tilde{x} \mu, \sigma_0^{2'})^{[5]}$
Normal with known mean µ	τ (precision)	Gamma	α, β ^[note 3]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x} \mu,\sigma^2=eta'/lpha')^{[5]}$
Normal ^(note 6)	μ and σ^2 Assuming exchangeability	Normal-inverse gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n_n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet \; \bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Normal	μ and τ Assuming exchangeability	Normal-gamma		$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n}, \nu + n, \alpha + \frac{n}{2}, \\ & \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{n\nu}{\nu + n} \frac{(\bar{x} - \mu_0)^2}{2} \end{split}$ $\bullet \ \bar{x} \text{ is the sample mean}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ ISI
Multivariate normal with known covariance matrix Σ	μ (mean vector)	Multivariate normal	μ_0,Σ_0	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \end{split}$ • $\bar{\mathbf{x}}$ is the sample mean	mean was estimated from observations with total precision (sum of all individual precisions) Σ_0^{-1} and with sample mean μ_0	$\mathcal{N}(\tilde{\mathbf{x}} \boldsymbol{\mu}_0', \boldsymbol{\Sigma}_0' + \boldsymbol{\Sigma})^{[5]}$

en.wikipedia.org/wiki/Conjugate_prior

Outline

Statistical inference: Bayesian point-of-view

Evaluating the posterior distribution: Monte-Carlo

Monte Carlo integration

Extensions

Computing integrals

General case: $p(\theta \mid \mathbf{Y})$ has no close form

Goal: compute

$$\mathbb{E}(f(\boldsymbol{\theta}) \,|\, \mathbf{Y}) = \int f(\boldsymbol{\theta}) \rho(\boldsymbol{\theta} \,|\, \mathbf{Y}) \,d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \,\ell(\mathbf{Y} \,|\, \boldsymbol{\theta}) \,d\boldsymbol{\theta} \bigg/ \,\rho(\mathbf{Y})$$

where

$$p(\mathbf{Y}) = \int \pi(oldsymbol{ heta}) \; \ell(\mathbf{Y} \,|\, oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

Computing integrals

General case: $p(\theta \mid \mathbf{Y})$ has no close form

Goal: compute

$$\mathbb{E}(f(\boldsymbol{\theta}) \,|\, \mathbf{Y}) = \int f(\boldsymbol{\theta}) \rho(\boldsymbol{\theta} \,|\, \mathbf{Y}) \; \mathrm{d}\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \; \ell(\mathbf{Y} \,|\, \boldsymbol{\theta}) \; \mathrm{d}\boldsymbol{\theta} \bigg/ \rho(\mathbf{Y})$$

where

$$p(\mathbf{Y}) = \int \pi(oldsymbol{ heta}) \; \ell(\mathbf{Y} \, | \, oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

We need to evaluate integrals of the form

$$\int [\cdots] \pi(\boldsymbol{\theta}) \ell(\mathbf{Y} | \boldsymbol{\theta}) d\boldsymbol{\theta}$$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^M)$$
 iid $\sim q$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) oldsymbol{q}(oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^M)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_m f(\boldsymbol{\theta}^m)$$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) oldsymbol{q}(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(oldsymbol{ heta}^1,\dots,oldsymbol{ heta}^M)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_m f(\boldsymbol{\theta}^m)$$

ightarrow unbiased estimate of $\mathbb{E}_q[f(m{ heta})]$ with variance $\propto 1/M$. [# 59]

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^M)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_m f(\boldsymbol{\theta}^m)$$

ightarrow unbiased estimate of $\mathbb{E}_q[f(m{ heta})]$ with variance $\propto 1/M$. [# 59]

In practice:

lacksquare Works fine to evaluate $\mathbb{E}[f(oldsymbol{ heta})]$, taking $q(oldsymbol{ heta})=\pi(oldsymbol{ heta})$

$$\widehat{\mathbb{E}}_{\mathcal{N}(0,10)}\left[e^{ heta}
ight]= ext{mean(exp(rnorm(M, mean=0, sd=sqrt(10))))}$$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^M)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_m f(\boldsymbol{\theta}^m)$$

ightarrow unbiased estimate of $\mathbb{E}_q[f(m{ heta})]$ with variance $\propto 1/M$. [# 59]

In practice:

lacksquare Works fine to evaluate $\mathbb{E}[f(oldsymbol{ heta})]$, taking $q(oldsymbol{ heta})=\pi(oldsymbol{ heta})$

$$\widehat{\mathbb{E}}_{\mathcal{N}(0,10)}\left[e^{\theta}\right] = \texttt{mean(exp(rnorm(M, mean=0, sd=sqrt(10))))}$$

▶ Useless to evaluate $\mathbb{E}[f(\theta)|\mathbf{Y}]$ as we do not know how to sample from $q(\theta) = p(\theta|\mathbf{Y})$

Main trick = weighting particles.

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(m{ heta})] = \int f(m{ heta}) q(m{ heta}) \; \mathrm{d}m{ heta} = \int f(m{ heta}) rac{q(m{ heta})}{q'(m{ heta})} q'(m{ heta}) \; \mathrm{d}m{ heta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta} = \int f(oldsymbol{ heta}) rac{q(oldsymbol{ heta})}{q'(oldsymbol{ heta})} q'(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{ heta}^1,\dots, \boldsymbol{ heta}^M)$$
 iid $\sim oldsymbol{q}'(oldsymbol{ heta}),$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta} = \int f(oldsymbol{ heta}) rac{q(oldsymbol{ heta})}{q'(oldsymbol{ heta})} q'(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^M)$$
 iid $\sim \mathbf{q}'(\boldsymbol{\theta}),$

2. compute the weights

$$W(\boldsymbol{\theta}^m) = q(\boldsymbol{\theta}^m)/q'(\boldsymbol{\theta}^m),$$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta} = \int f(oldsymbol{ heta}) rac{q(oldsymbol{ heta})}{q'(oldsymbol{ heta})} q'(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^M)$$
 iid $\sim \mathbf{q}'(\boldsymbol{\theta}),$

2. compute the weights

$$W(\theta^m) = q(\theta^m)/q'(\theta^m),$$

3. and compute

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_{m} W(\boldsymbol{\theta}^{m}) f(\boldsymbol{\theta}^{m})$$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(heta)] = \int f(heta) q(heta) \; \mathrm{d} heta = \int f(heta) rac{q(heta)}{q'(heta)} q'(heta) \; \mathrm{d} heta$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^M)$$
 iid $\sim \mathbf{q'}(\boldsymbol{\theta}),$

2. compute the weights

$$W(\theta^m) = q(\theta^m)/q'(\theta^m),$$

3. and compute

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta})] = \frac{1}{M} \sum_{m} W(\boldsymbol{\theta}^{m}) f(\boldsymbol{\theta}^{m})$$

unbiased estimate of $\mathbb{E}[f(\theta)]$ with variance $\propto \sum_m W(\theta^m)^2/M$.

Importance Sampling (a picture)

0.2

0.0

0.4

0.6

0.8

1.0

Importance Sampling (a picture)

Efficiency of sampling:

$$\mathit{ESS} = \overline{\mathit{W}}^{2}/\overline{\mathit{W}^{2}}$$

$$q' = q$$

$$\Rightarrow ESS = 1$$

Importance Sampling: Importance of the proposal

Importance of the proposal: another draw

IS for posterior sampling

To evaluate $\mathbb{E}[f(\boldsymbol{\theta})|\mathbf{Y}]$, write it as

$$\mathbb{E}[f(\theta) | \mathbf{Y}] = \int f(\theta) p(\theta, \mathbf{Y}) d\theta / p(\mathbf{Y}) = \dots$$

$$= \int f(\theta) \frac{\pi(\theta) p(\theta | \mathbf{Y})}{q(\theta)} q(\theta) d\theta / \int \frac{\pi(\theta) p(\theta | \mathbf{Y})}{q(\theta)} q(\theta) d\theta$$

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^M)$$
 iid $\sim q$

2. compute the weights

$$\mathcal{W}(oldsymbol{ heta}^m) = \pi(oldsymbol{ heta}^m) p(oldsymbol{ heta}^m \,|\, \mathbf{Y}) \,/ q(oldsymbol{ heta}^m)$$

3. get

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta}) \,|\, \mathbf{Y}] = \sum_{m} W(\boldsymbol{\theta}^{m}) f(\boldsymbol{\theta}^{m}) \left/ \sum_{m} W(\boldsymbol{\theta}^{m}) \right.$$

→ slightly biased.

Good proposals Choosing *q* is critical

Good proposals

Choosing q is critical

Typical choices

► Prior

$$q(\theta) = \pi(\theta)$$

 \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*

Good proposals

Choosing q is critical

Typical choices

Prior

$$q(\theta) = \pi(\theta)$$

- \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*
- ► MLE:

$$q(oldsymbol{ heta}) = \mathcal{N}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}, \mathbb{V}_{\infty}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}))$$

→ fine, as long as MLE is available

Good proposals

Choosing q is critical

Typical choices

Prior

$$q(\theta) = \pi(\theta)$$

- \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*
- ► MLE:

$$q(oldsymbol{ heta}) = \mathcal{N}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}, \mathbb{V}_{\infty}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}))$$

- \rightarrow fine, as long as MLE is available
- ▶ Variational Bayes, expectation propagation, ...:

$$q(\theta) = \arg\min_{q \in \mathcal{Q}} \mathit{KL}\left[q(\theta) \,||\, p(\theta \,|\, \mathbf{Y})\right]$$

→ fast and reasonably accurate

Variational Bayes & ML as a prior

- : prior, - : VB, - : MLE, - : posterior

Variational Bayes as a prior: joint distribution

- : VB, - : posterior

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Property. If $\{\phi^t\}_{t\geq 0}$ is an ergodic Markov chain (irreducible, aperiodic, ...) with

- initial distribution $\phi^0 \sim \nu$,
- ▶ transition kernel $\phi^t | \phi^{t-1} \sim \kappa(\cdot | \phi^{t-1})$:

$$\rho\left(\left\{\phi^{t}\right\}\right) = \nu(\phi^{0}) \times \kappa(\phi^{1} \mid \phi^{0}) \times \kappa(\phi^{2} \mid \phi^{1}) \times \kappa(\phi^{3} \mid \phi^{2}) \times \dots$$

then

 \blacktriangleright it admits a unique stationary distribution μ :

$$\phi^{t-1} \sim \mu \qquad \Rightarrow \qquad \phi^t \sim \mu$$

 $lackbox{}\phi^t$ converges towards μ in distribution

$$\phi^t \xrightarrow[t \to \infty]{\Delta} \mu$$

for any initial distribution ν

Use for Bayesian inference

Aim. Sample from

$$p(\theta \mid \mathbf{Y})$$

Idea.

lacktriangle Construct an ergodic Markov chain $\{m{ heta}^t\}_{t\geq 0}$ with stationary distribution

$$\mu(\boldsymbol{\theta}) = p(\boldsymbol{\theta} \,|\, \mathbf{Y})$$

- lacktriangle Choose 'any' initial u and simulate $\{m{ heta}^t\}_{t\geq 0}$
- ▶ Until it 'reaches' its stationary distribution

Algorithm. Define a shift kernel $\lambda(\cdot \mid \theta)$

▶ Start with θ^0

- ▶ Start with θ^0
- ► At step *t*,

- ▶ Start with θ^0
- ► At step *t*,
 - 1. sample $\theta' \sim \lambda(\cdot | \theta^{t-1})$;

- ▶ Start with θ^0
- ► At step *t*,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{t-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{t-1}) = \frac{\lambda(\boldsymbol{\theta}^{t-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{t-1})} \frac{p(\boldsymbol{\theta}' | \mathbf{Y})}{p(\boldsymbol{\theta}^{t-1} | \mathbf{Y})}$$

- ▶ Start with θ^0
- At step *t*,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{t-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{t-1}) = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{p(\boldsymbol{\theta}' \mid \mathbf{Y})}{p(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} \mid \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{t-1})\ell(\mathbf{Y} \mid \boldsymbol{\theta}^{t-1})};$$

- ▶ Start with θ^0
- ▶ At step *t*,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{t-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{t-1}) = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{\rho(\boldsymbol{\theta}' \mid \mathbf{Y})}{\rho(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} \mid \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{t-1})\ell(\mathbf{Y} \mid \boldsymbol{\theta}^{t-1})};$$

3. set
$$\theta^t = \begin{cases} \theta' & \text{with probability max}(1, \alpha(\theta', \theta^{t-1})), \\ \theta^{t-1} & \text{otherwise.} \end{cases}$$

Algorithm. Define a shift kernel $\lambda(\cdot \mid \theta)$

- ▶ Start with θ^0
- ▶ At step *t*,
 - 1. sample $\theta' \sim \lambda(\cdot | \theta^{t-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{t-1}) = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{p(\boldsymbol{\theta}' \mid \mathbf{Y})}{p(\boldsymbol{\theta}^{t-1} \mid \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{t-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{t-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} \mid \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{t-1})\ell(\mathbf{Y} \mid \boldsymbol{\theta}^{t-1})};$$

3. set
$$\theta^t = \begin{cases} \theta' & \text{with probability max}(1, \alpha(\theta', \theta^{t-1})), \\ \theta^{t-1} & \text{otherwise.} \end{cases}$$

Properties.

- 1. λ and α defined a Markov chain with stationary distribution $\mu(\theta) = p(\theta \mid \mathbf{Y})$.
- 2. If $\lambda(\cdot | \boldsymbol{\theta})$ is symmetric, α reduce to $\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} | \boldsymbol{\theta}')/[\pi(\boldsymbol{\theta}^{t-1})\ell(\mathbf{Y} | \boldsymbol{\theta}^{t-1})]$

Metropolis-Hastings for logistic regression

Model.

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_{oldsymbol{
ho}}, 100 \, oldsymbol{I}_{oldsymbol{
ho}}) \ oldsymbol{Y} \, | \, oldsymbol{ heta} \sim \ell(oldsymbol{Y} \, | \, oldsymbol{ heta}) = \prod_{i} \left(rac{e^{oldsymbol{x}_{i}^{\mathsf{T}}oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_{i}^{\mathsf{T}}oldsymbol{ heta}}}
ight)^{y_{i}} \left(rac{e^{oldsymbol{x}_{i}^{\mathsf{T}}oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_{i}^{\mathsf{T}}oldsymbol{ heta}}}
ight)^{1 - y_{i}}$$

Metropolis-Hastings for logistic regression

Model.

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_{p}, 100 \, oldsymbol{I}_{p})$$
 $oldsymbol{\mathsf{Y}} \, | \, oldsymbol{ heta} \sim \ell(oldsymbol{\mathsf{Y}} \, | \, oldsymbol{ heta}) = \prod_{i} \left(rac{e^{oldsymbol{\mathsf{x}}_{i}^{\mathsf{T}} oldsymbol{ heta}}}{1 + e^{oldsymbol{\mathsf{x}}_{i}^{\mathsf{T}} oldsymbol{ heta}}}
ight)^{\mathbf{1} - y_{i}} \left(rac{e^{oldsymbol{\mathsf{x}}_{i}^{\mathsf{T}} oldsymbol{ heta}}}{1 + e^{oldsymbol{\mathsf{x}}_{i}^{\mathsf{T}} oldsymbol{ heta}}}
ight)^{\mathbf{1} - y_{i}}$

Algorithm settings.

$$oldsymbol{ heta}^0 = oldsymbol{0}_p \ \lambda(\cdot \, | \, oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_p, .5 \, oldsymbol{I}_p)$$

mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
    logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
```

47 / 54

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
    logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.tmp = plogis(X%*%theta.tmp)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
    logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.tmp = plogis(X%*%theta.tmp)
    loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
    logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.tmp = plogis(X%*%theta.tmp)
    loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
    alpha = exp(logprior.tmp + loglik.tmp - logprior.cur - loglik.cur)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
    theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
    logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.tmp = plogis(X%*%theta.tmp)
    loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
    alpha = exp(logprior.tmp + loglik.tmp - logprior.cur - loglik.cur)
    if(runif(1) < alpha){</pre>
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
   theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
   logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
   prob.tmp = plogis(X%*%theta.tmp)
   loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
   alpha = exp(logprior.tmp + loglik.tmp - logprior.cur - loglik.cur)
   if(runif(1) < alpha){</pre>
       theta.sample[m, ] = theta.tmp;
        logprior.cur = logprior.tmp;
        loglik.cur = loglik.tmp
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
   theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
   logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
   prob.tmp = plogis(X%*%theta.tmp)
   loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
   alpha = exp(logprior.tmp + loglik.tmp - logprior.cur - loglik.cur)
   if(runif(1) < alpha){</pre>
       theta.sample[m, ] = theta.tmp;
        logprior.cur = logprior.tmp;
        loglik.cur = loglik.tmp
        }else{
       theta.sample[m, ] = theta.sample[m-1, ]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, M, p)
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (m in 2:M){
   theta.tmp = rmvnorm(1, mean=theta.sample[m-1, ], sigma=Sigma.shift)[1, ]
   logprior.tmp = dmvnorm(theta.tmp, mean=mu.prior, sigma=Sigma.prior, log=T)
   prob.tmp = plogis(X%*%theta.tmp)
   loglik.tmp = sum(dbinom(Y, 1, prob.tmp, log=T))
   alpha = exp(logprior.tmp + loglik.tmp - logprior.cur - loglik.cur)
   if(runif(1) < alpha){</pre>
       theta.sample[m, ] = theta.tmp;
        logprior.cur = logprior.tmp;
        loglik.cur = loglik.tmp
        }else{
       theta.sample[m, ] = theta.sample[m-1, ]
```

Gibbs

Outline

Statistical inference: Bayesian point-of-view
Statistical inference: frequentist / Bayesiar
Basics of Bayes inference
Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC) Approximate Bayesian computation (ABC)

Outline

Statistical inference: Bayesian point-of-view

Evaluating the posterior distribution: Monte-Carlo

Extensions

Sequential Monte-Carlo (SMC)

Extensions Sequential Monte-Carlo (SMC)

An introduction to Bayesian statistical inference

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

When the likelihood is intractable

References

Outline

Appendix

Joint, Marginal, Conditional (1/2)

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

▶ Joint distribution:

	В	Ь	marginal
A	f_{AB}	f_{Ab}	$p_A = f_{AB} + f_{Ab}$
а	f_{aB}	f_{ab}	$p_{a} = f_{aB} + f_{ab}$
marginal	$q_B = f_{AB} + f_{aB}$	$q_b = f_{Ab} + f_{ab}$	$f_{AB} + f_{Ab} + f_{aB} + f_{ab} = 1$

▶ Marginal distribution: 'integrate out' the allele of the other locus

$$\Pr\{B\} = q_B = f_{AB} + f_{aB}$$

Conditional distribution: fix the allele of the other locus

$$\Pr\{A \,|\, b\} = \frac{\Pr\{A,b\}}{\Pr\{b\}} = \frac{f_{Ab}}{q_b} = \frac{f_{Ab}}{f_{Ab} + f_{ab}}$$

Joint, Marginal, Conditional (2/2)

Continuous case: 2 continuous random variables X and Y

Joint distribution:

	y	marginal	
X	$p_{XY}(x,y)$	$p_X(x) = \int p_{XY}(x, y) \mathrm{d}y$	
marginal	$p_Y(y) = \int p_{XY}(x,y) dx$	$\int p_{XY}(x,y) \mathrm{d}x \mathrm{d}y = 1$	

▶ Marginal distribution: 'integrate out' the other variable

$$p_X(x) = \int p_{XY}(x, y) \, \mathrm{d}y$$

Conditional distribution: fix the value of the other variable

$$p_{Y|X=x}(y) = \frac{p_{XY}(x,y)}{p_X(x)} = \frac{p_{XY}(x,y)}{\int p_{XY}(x,y) \, dy}$$

Posterior distribution and CI

The same holds for combination of parameters, e.g.

$$\delta = \theta_2 - \theta_3$$

	<pre>post.mean</pre>	post.mode	lower.CI	upper.CI
delta	9 389825	8 824822	3 539045	15 84367

```
Example. \pi(\theta) = \mathcal{N}(0, 10), \ g(\theta) = e^{\theta}:
```

- ▶ theta.sample = rnorm(M, mean=0, sd=sqrt(10))
- mean(exp(theta.sample))

Properties.

► Easy to implement

```
mean(exp(rnorm(M, mean=0, sd=sqrt(10))))
```

Properties.

► Easy to implement

lacksquare Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
ight]=\mathbb{E}(g(oldsymbol{ heta}))$

Properties.

► Easy to implement

- lacksquare Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
 ight]=\mathbb{E}(g(oldsymbol{ heta})$
- ▶ Precision proportional to $1/\sqrt{M}$

Properties.

► Easy to implement

- lacksquare Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
 ight]=\mathbb{E}(g(oldsymbol{ heta})$
- ▶ Precision proportional to $1/\sqrt{M}$
- ▶ Still, very variant in practice (see next)

$$heta \sim \mathcal{N}(0, 10), \quad g(heta) = e^{ heta}$$

	mean	sd
1000	194.67	338.96
10000	139.63	47.24
1e+05	155.65	86.93
1e + 06	147.76	15.68
truth	148.41	_

