ECE 382N-Sec (FA25):

L3: Partitioning, Randomization, and Detection

Neil Zhao

neil.zhao@utexas.edu

This Lecture

- Resource Partitioning => Limit the sharing
- Randomization => Obfuscate the resource usage
- Detection => Catch the offender

Let's Start With (Last-Level) Cache Partitioning

Way Partitioning

Let's Start With (Last-Level) Cache Partitioning

Set Partitioning

Page Coloring: Software Implementation of Set Partitioning

Page Coloring: Software Implementation of Set Partitioning

Cache lines from pages with different colors are mapped to different sets

Limitation of Page Coloring

Cannot support huge pages (e.g., 2MB pages)

Hardware-Based Way Partitioning

What about Shared Memory?

S1 is shared between these two parties

Option 1: Duplicate the shared line in across the partitions

- Immune to Flush+Reload, Eivict+Reload, ...
- **I** Waste cache space
- Hard to maintain cache coherence across the partitions (if the line is writable)

Option 2: Single copy, allow cross-partition hits

- **Let** Easy to implement
- Vulnerable to Flush+Reload, Evict+Reload, ...

Intel CAT went with the second option

CATalyst: A <u>Very Clever</u> Use of Intel CAT

CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud Computing

Fangfei Liu¹, Qian Ge^{2,3}, Yuval Yarom^{2,4},
Frank Mckeen⁵, Carlos Rozas⁵, Gernot Heiser^{2,3}, Ruby B. Lee¹

¹ Department of Electrical Engineering, Princeton University, email: {fangfeil,rblee}@princeton.edu

Motivation: Intel CAT supports only 4 partitions, not scalable!

Flush+Reload? No page sharing between VMs

CATalyst: Key Ideas

Always cache sensitive cache lines in the LLC and they cannot be evicted (i.e. pinned)
How? Leverage the Intel CAT isolation!

CATalyst: Key Ideas

Tenant VMs can request pinned cache lines for storing "sensitive" data (page granularity)

What Should be Stored in Secure Pages/Cachelines? Square-and-Multiply Exponentiation (Used in RSA)

Inputs:

- *b*: base
- *m*: modulo
- *e*: exponent (secret!)
- *n*: the bit width of *e*

Output:

 $b^e \mod m$

```
VA
def expMod(b, m, e, n):
                                               Need to use
  r = 1
                                               secure pages?
  for i in n-1...0:
    r = square(r, r)
                                                X
                                       e (secret)
    r = reduce(r, m)
                                        Square
    if get_bit(e, i) == 1:
      r = multiply(r, b)
                                       Multiply
      r = reduce(r, m)
  return r
```

The loop body and other functions that are called from the body should also be stored in secure pages

The Correct Sequence for Pinning Secure Pages

Goal: (1) Secure pages are cached in the secure partition (2) Normal pages are only cached in the non-secure partition

The Correct Sequence for Pinning Secure Pages

Goal: (1) Secure pages are cached in the secure partition (2) Normal pages are only cached in the non-secure partition

Let's Go Dynamic

Static partitioning leads to resource under-utilization

⇒ Dynamically adjust partition size according the demand of applications

A Framework for Thinking About Dynamic Partition

Component 1: Utilization Metric

Reflects a program's resource demand and guides resizing

Example: Dynamic last-level cache (LLC) partitioning

A Framework for Thinking About Dynamic Partition

Component 2: Action Heuristic

Decides what resizing action to perform based on the utilization

A Framework for Thinking About Dynamic Partition

Component 3: Resizing Schedule

Determines when to check the utilization and perform the action

A More Realistic Dynamic Cache Partitioning Algorithm

Action heuristic: Maximize cache hit counts across the system, subject to a total LLC size of 6MB ⇒ Knapsack problem

An Impractical Way of Measuring the Hit Curve

A More Practical Way of Measuring the Hit-Curve

Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches

Moinuddin K. Qureshi Yale N. Patt

Department of Electrical and Computer Engineering

The University of Texas at Austin

{moin, patt}@hps.utexas.edu

MICRO '06 (won test-of-time award at MICRO '24, Austin, TX)

High-Level Idea: The Stack Property of LRU

1 means the most recent 4 means the least recent

An N-way cache using LRU can always cache the top-N most recently accessed lines

 \Rightarrow Access to the *i*-th youngest line will hit in a *W*-way LRU cache, where $W \ge i$

Capture the hit curve using a single extra 4-way tag store

Dynamic Partitioning Leaks Information!

Secret-dependent demand

```
if (secret > 0) {

// traverse a large array
} else if (secret < 0) {

// traverse a small array
} else {

// do nothing
}

⇒ check resizing, expand?

Expand?

Victim
Partition
Size

Shrink?

Time
```

Action Leakage: what resizing action to perform

Dynamic Partitioning Leaks Information!

Secret-dependent timing

```
if (secret > 0) {
    sleep(1);
}

// traverse a large array

\Rightarrow check resizing, expand!

Size

t_1

Expand at t_1?

Expand at t_2?

t_1

Time t_2
```

Scheduling Leakage: *when* resizing action occurs

Restricting the Direction of Information Flow

Information can flow from unprivileged domains (Low) to privileged domains (High)

SecDCP (DAC '16)

Solution: Only consider the resource demand of **Low**. Reserve one way for **High**

SecSMT (USENIX Sec '22)

Solution: No resizing. **High** can steal unused resources of **Low**. The stolen resource is <u>immediately released</u> when Low tries to use it

Resource Partitioning is a General Idea

PortSmash¹ (S&P '19), cross-hyperthread attack

Solution: <u>Temporally</u> partition FUs (e.g., round robin)

The Story of Attacking and Securing Randomized Caches

Borrowing <u>slides from Moin Qureshi's keynote</u> at the <u>MAD workshop '22</u> (co-located with ISCA '22)

My Key Takeaway from the Story

Detecting (Cache) Side-Channel Attacks

The false-negative concern

The False Positive Problem

Assuming the detection method has a 0.1% false positive rate and no false negatives

Detect Ongoing Attacks using Performance Counters

Idea: Collect cache miss count traces using performance counters ⇒ Train an ML model to detect ongoing attacks

Attack Scenario

Benign Scenario

Reduce False Positives with Cyclic Interference¹

Observation: The interference is cyclic in an actual attack

⇒ Use cyclic interference to distinguish true attacks and false positives

¹Harris and Wei, et al. "Cyclone: Detecting Contention-Based Cache Information Leaks Through Cyclic Interference" (MICRO '19)

Reduce False Positives with Cyclic Interference¹

Observation: The interference is cyclic in an actual attack ⇒ Use cyclic interference to distinguish true attacks and false positives

Closing thought: Detection, even with false positives and false negatives, does make the attack harder. If the design complexity, performance overhead, and false positive rate are small/tolerable, we should adopt them even if they don't provide comprehensive guarantees

Next Lecture: Data-Oblivious Computation

We cannot fix the environment, but can we change how we behave