A Bayesian approach to assess the spread of COVID-19 using an extended SEIRD model with implicit quarantine mechanism

Applications in Brazilian locations

Diego T. Volpatto¹, Anna Claudia M. Resende¹, Lucas dos Anjos¹, João Vitor O. Silva¹, Claudia M. Dias², Regina C. Almeida¹, Sandra M. C. Malta¹

¹Laboratório Nacional de Computação Científica (LNCC)

²Universidade Federal Rural do Rio de Janeiro (UFRRJ)

SMB 2020 Annual Meeting

Agenda

- 1 COVID-19 in Brazil
 - What is happening?
 - The numbers (do you mean "human beings"?)
 - What we could do as scientists?
- 2 An extended SEIRD model
 - What we want to understand?
 - SEAIRPD-Q model in a glance
- 3 Sensitivity and Uncertainties
 - How we find the most influential parameters?
 - How uncertainties are taken into account?
- 4 Results
 - Data source and Code
 - Which are the most important factors?
 - Assessing quarantine scenarios
- 5 Concluding Remarks

COVID-19 in Brazil

COVID-19 in Brazil What is happening?

Brazil's non-pharmaceutical interventions (NPIs)

- Moderate social distancing measures
- Weak quarantine policies
- Lack of vaccines/medicines
- Underreporting and undertesting

These numbers are in "human beings" unit!!!

COVID-19 in Brazil What we could do as scientists?

- The question that comes to mind: What we could do as scientists?
- Forecasting is really hard! What if it does not match with reality afterward?
- Understanding is the "key" to open the "door" of actions
- With understanding of a phenomenon, you can advise!
- Our general goal: to advise (not forecast!) based on scientific evidence
- Our specific goal: to advise about NPIs and, more specifically, about quarantine policies

An extended SEIRD model

An extended SEIRD model What we want to understand?

- Models are simplifications/approximations of reality
- "All models are wrong, but some are useful" (attributed to G. Box)
- Modeling goals: understanding some features of reality (not all!)
- This work → To understand the effect of quarantine on COVID-19 spreading in Brazil (country) and Rio de Janeiro state

An extended SEIRD model SEAIRPD-Q model

Sensitivity and Uncertainties

Sensitivity analysis goals

- How changes in model factors affect Qols?
- Assess model factors' importance
- Help to understand how the model response to perturbations

Effective Reproduction number

$$\mathsf{Qol}_1(t) = \mathcal{R}(t)$$

Normalized squared sum

$$Qol2(t) = \sqrt{C(t)^2 + D(t)^2}$$

- Enhanced Elementary Effects method (Campolongo et al., 2007) using SALib
- Factors' distributions: $\theta_i \sim \mathcal{U}(0.5\bar{\theta}_i, 1.5\bar{\theta}_i)$

- Fitting parameters (θ): { $\beta = \mu, d_I, d_P, \omega$ } and { σ_C, σ_D }
- Noise on data: $\mathcal{N}(0, \sigma_C^2)$ e $\mathcal{N}(0, \sigma_D^2)$
- Observed quantities *C* and *D*:

Likelihood function

$$\pi_{\mathsf{like}}(\boldsymbol{y}|\boldsymbol{\theta}) = \prod_{j \in \{C,D\}} \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{1}{2} \sum_{i=1}^n \left(\frac{y^{(j)}(t_i) - y^{(j)}_{\mathsf{model}}(t_i)}{\sigma_j}\right)^2\right)$$

 Bayesian calibration: CATMIP (Cascading Adaptive Transitional Metropolis in Parallel) from PyMC3 4 Results

- Data for model calibration:
 - Brazil (Health Ministry): https://covid.saude.gov.br/
 - RJ state: https://covid19br.wcota.me/
 - Data range: March-May (approximately 2 months)
- Code:
 - Open Source
 - Code and Data available at: https://doi.org/10.5281/zenodo.3865730

 Sensitivity measures here: normalized mean of the absolute overall factor influence on QoI for different times

Quarantine scenarios - what happens if...

- 1 Relaxation of quarantine policy before infection peak:
 - Abrupt release
 - Progressive relaxation
- Relaxation of quarantine policy after infection peak:
 - Abrupt release
 - Progressive relaxation

Removal/quarantine rate

$$\omega_r = \omega e^{-\lambda(t-t_d)}$$

Decay constant: $\lambda = \ln 2/t_{1/2}$; Release day: t_d ;

Relaxation after infection peak (disease spreading under control)

Confirmed cases

Death toll

When disease spreading ends...

Confirmed cases

Death toll

Effective Reproduction number: relaxation implies in a longer time to disease eradication

Results Assessing quarantine scenarios

What if quarantine policy relaxation is applied without disease control evidence?

What if quarantine policy relaxation is applied without disease control evidence?

Higher $\mathcal{R}(t)$ for an even longer period, requiring more time to reach $\mathcal{R}(t) \leq 1$

A terrible scenario is achieved regardless of quarantine policy relaxation strategy

Progressive relaxation

Abrupt relaxation

Concluding Remarks

Concluding Remarks

Main results (and recommendations)

- \blacksquare Sensitivity analysis suggests that NPIs parameters ($\beta+\mu$ and $\omega)$ are the most influential in the disease dynamics
- Results show that the maintenance of quarantine policy can help to control the spreading
- "Decision timing" plays a fundamental role, even when the "almost under control"
- Uncertainties increase in worse scenarios, making the disease control diagnosis more difficult to detect

Thank you and stay safe!

Check out our preprint: "Spreading of COVID-19 in Brazil: Impacts and uncertainties in social distancing strategies"

volpatto@lncc.br