Math Camp

Justin Grimmer

Professor Department of Political Science Stanford University

September 17th, 2018

Questions?

- 1) What is a random variable? Where does the randomness in the random variable come from?
- 2) What is the pmf? How would we derive it?
- 3) What does iid mean?
- 4) Define E[X], var(X)
- 5) What does it mean for a random variable, $Y \sim \text{Poisson}(\lambda)$?

Where We've Been, Where We're Going

Continuous Random Variables:

- Random variables that are not discrete
- Widely used:
 - Approval ratings
 - Vote Share
 - GDP
 - ..
- Many analogues to distributions used Yesterday

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: X(t) = t for all t
- Proportion of vote received: X(v) = v for all v
- Stock price X(p) = p for all p
- Stock price, squared $Y(p) = p^2$ for all p

We'll need calculus to answer questions about probability.

Integration

Suppose we have some function f(x)

What is the area under f(x) between $\frac{1}{2}$ and 1?

Area under curve = $\int_{1/2}^{1} f(x) dx = F(1) - F(1/2)$

Continuous Random Variable

Definition

X is a continuous random variable if there exists a nonnegative function defined for all $x \in \Re$ having the property for any (measurable) set of real numbers B,

$$P(X \in B) = \int_B f(x) dx$$

We'll call $f(\cdot)$ the probability density function for X.

Example: Uniform Random Variable

$$X \sim \mathsf{Uniform}(0,1)$$
 if

$$f(x) = 1 \text{ if } x \in [0,1]$$

 $f(x) = 0 \text{ otherwise}$

To summarize

- P(X = a) = 0
- $P(X \in (-\infty, \infty)) = 1$
- If F is antiderivative of f, then $P(X \in [c, d]) = F(d) F(c)$ (Fundamental theorem of calculus)

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.

Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition

Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function F(x) as,

$$F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx$$

Uniform Random Variable

Suppose $X \sim Uniform(0,1)$, then

$$F(t) = P(X \le t)$$
= 0, if $t < 0$
= 1, if $t > 1$
= t, if $t \in [0, 1]$

Expectation With Continuous Random Variables

Definition

If X is a continuous random variable then,

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Suppose $X \sim Uniform(0,1)$. What is E[X]?

$$E[X] = \int_{-\infty}^{\infty} xf(x)dx$$

$$= \int_{-\infty}^{0} x0dx + \int_{0}^{1} x1dx + \int_{1}^{\infty} x0dx$$

$$= 0 + \frac{x^{2}}{2}|_{0}^{1} + 0$$

$$= 0 + \frac{1}{2} + 0$$

$$= \frac{1}{2}$$

Expectations of Functions

Proposition

Suppose X is a continuous random variable and $g:\Re\to\Re$ (that isn't crazy). Then,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Expectations of Functions

Suppose $g(X) = X^2$ and $X \sim \text{Uniform}(0,1)$. What is E[g(X)]?

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$
$$= \int_{0}^{1} x^{2}dx$$
$$= \frac{x^{3}}{3}|_{0}^{1}$$
$$= \frac{1}{3}$$

Corollary

Suppose X is a continuous random variable. Then,

$$E[aX + b] = aE[X] + b$$

Proof.

$$E[aX + b] = \int_{-\infty}^{\infty} (ax + b)f(x)dx$$
$$= a \int_{-\infty}^{\infty} xf(x)dx + b \int_{-\infty}^{\infty} f(x)dx$$
$$= aE[X] + b \times 1$$

Definition

Variance. If X is a continuous random variable, define its variance, Var(X),

$$Var(X) = E[(X - E[X])^{2}]$$

$$= \int_{-\infty}^{\infty} (x - E[X])^{2} f(x) dx$$

$$= E[X^{2}] - E[X]^{2}$$

Variance: Random Variable

 $X \sim \mathsf{Uniform}(0,1)$. What is Var(X)?

$$E[X^{2}] = \frac{1}{3}$$

$$E[X]^{2} = \left(\frac{1}{2}\right)^{2}$$

$$= \frac{1}{4}$$

$$Var(X) = E[X^{2}] - E[X]^{2}$$
$$= \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Famous Continuous Distributions

- Normal Distribution
- Gamma distribution
- χ^2 Distribution
- t Distribution
- Beta, Dirichlet distributions (not today!)
- F-distribution (not today!)

Definition

Suppose X is a random variable with $X \in \Re$ and density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Then X is a normally distributed random variable with parameters μ and σ^2 .

Equivalently, we'll write

$$X \sim Normal(\mu, \sigma^2)$$

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let *Y* represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses
- Observe many responses $(N \to \infty)$
- Then (by Central Limit Theorm) Y is Normally distributed, or

$$Y \sim \text{Normal}(\mu, \sigma^2)$$

$$f(y) = \frac{\exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$$

Central Limit Theorem

We'll prove it on Thursday.

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

$$Z \sim Normal(0,1)$$

We'll call the cumulative distribution function of Z,

$$F_Z(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-z^2/2) dz$$

Proposition

Scale/Location. If
$$Z \sim N(0,1)$$
, then $X = aZ + b$ is,

$$X \sim Normal(b, a^2)$$

Intuition

Suppose $Z \sim \text{Normal}(0, 1)$.

Y = 2Z + 6

 $Y \sim \text{Normal}(6, 4)$

Proof: $Z \sim N(0,1)$ and Y = aZ + b, then $Y \sim N(b,a^2)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_Y(x)$ is Normal cdf.

Call $F_Z(x)$ cdf for standardized normal.

$$F_{Y}(x) = P(Y \le x)$$

$$= P(aZ + b \le x)$$

$$= P(Z \le \left[\frac{x - b}{a}\right])$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x - b}{a}} \exp(-\frac{z^{2}}{2}) dz$$

$$= F_{Z}(\frac{x - b}{a})$$

Proof: $Z \sim N(0,1)$ and Y = aZ + b, then $Y \sim N(b, a^2)$

So, we can work with $F_Z(\frac{x-b}{a})$.

$$\frac{\partial F_Y(x)}{\partial x} = \frac{\partial F_Z(\frac{x-b}{a})}{\partial x}$$

$$= f_Z(\frac{x-b}{a})\frac{1}{a} \text{ By the chain rule}$$

$$= \frac{1}{\sqrt{2\pi}a} \exp\left[-\frac{\left(\frac{x-b}{a}\right)^2}{2}\right] \text{ By definition of } f_Z(x) \text{ or FTC}$$

$$= \frac{1}{\sqrt{2\pi}a} \exp\left[-\frac{(x-b)^2}{2a^2}\right]$$

$$= \text{Normal}(b, a^2)$$

Expectation and Variance

Assume we know:

$$E[Z] = 0$$
$$Var(Z) = 1$$

This implies that, for $Y \sim \text{Normal}(\mu, \sigma^2)$

$$E[Y] = E[\sigma Z + \mu]$$

$$= \sigma E[Z] + \mu$$

$$= \mu$$

$$Var(Y) = Var(\sigma Z + \mu)$$

$$= \sigma^{2} Var(Z) + Var(\mu)$$

$$= \sigma^{2} + 0$$

$$= \sigma^{2}$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^2=0.0025$ $P(Y\geq 0.45)$ (What is the probability it isn't that bad?) ?

$$P(Y \ge 0.45) = 1 - P(Y \le 0.45)$$

$$= 1 - P(0.05Z + 0.39 \le 0.45)$$

$$= 1 - P(Z \le \frac{0.45 - 0.39}{0.05})$$

$$= 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{6/5} \exp(-z^2/2) dz$$

$$= 1 - F_Z(\frac{6}{5})$$

$$= 0.1150697$$

Back To Obama

The Gamma Function

Definition

Suppose $\alpha > 0$. Then define $\Gamma(\alpha)$ as

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$$

- For $\alpha \in \{1, 2, 3, \ldots\}$ $\Gamma(\alpha) = (\alpha - 1)!$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$\frac{\Gamma(\alpha)}{\Gamma(\alpha)} = \frac{\int_0^\infty y^{\alpha-1} e^{-y} dy}{\Gamma(\alpha)}$$
$$1 = \int_0^\infty \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} dy$$

Set $X = Y/\beta$

$$F(x) = P(X \le x) = P(Y/\beta \le x)$$

$$= P(Y \le x\beta)$$

$$= F_Y(x\beta)$$

$$\frac{\partial F_Y(x\beta)}{\partial x} = f_Y(x\beta)\beta$$

The result is:

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-x\beta}$$

Definition

Suppose X is a continuous random variable, with $X \ge 0$. Then if the pdf of X is

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-x\beta}$$

if $x \ge 0$ and 0 otherwise, we will say X is a Gamma distribution.

$$X \sim Gamma(\alpha, \beta)$$

Gamma Distribution

Suppose $X \sim \mathsf{Gamma}(\alpha, \beta)$

$$E[X] = \frac{\alpha}{\beta}$$
$$var(X) = \frac{\alpha}{\beta^2}$$

Suppose $\alpha = 1$ and $\beta = \lambda$. If

$$X \sim \operatorname{\mathsf{Gamma}}(1,\lambda)$$
 $f(x|1,\lambda) = \lambda e^{-x\lambda}$

We will say

 $X \sim \mathsf{Exponential}(\lambda)$

Properties of Gamma Distributions

Proposition

Suppose we have a sequence of independent random variables, with

$$X_i \sim Gamma(\alpha_i, \beta)$$

Then

$$Y = \sum_{i=1}^{N} X_i$$

$$Y \sim \textit{Gamma}(\sum_{i=1}^{N} \alpha_i, \beta)$$

We can evaluate in R with dgamma and simulate with rgamma $X \sim \text{Gamma}(3,5)$ and we evaluate at 3, dgamma(3, shape= 3, rate = 5) and we can simulate with rgamma(1000, shape = 3, rate = 5)

χ^2 Distribution

Suppose $Z \sim \text{Normal}(0, 1)$. Consider $X = Z^2$

$$F_X(x) = P(X \le x)$$

$$= P(Z^2 \le x)$$

$$= P(-\sqrt{x} \le Z \le x)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-\frac{z^2}{2}} dz$$

$$= F_Z(\sqrt{x}) - F_Z(-\sqrt{x})$$

The pdf then is

$$\frac{\partial F_X(x)}{\partial x} = f_Z(\sqrt{x}) \frac{1}{2\sqrt{x}} + f_Z(-\sqrt{x}) \frac{1}{2\sqrt{x}}$$

χ^2 Distribution

$$\frac{\partial F_X(x)}{\partial x} = f_Z(\sqrt{x}) \frac{1}{2\sqrt{x}} + f_Z(-\sqrt{x}) \frac{1}{2\sqrt{x}}$$

$$= \frac{1}{\sqrt{x}} \frac{1}{2\sqrt{2\pi}} (2e^{-\frac{x}{2}})$$

$$= \frac{1}{\sqrt{x}} \frac{1}{\sqrt{2\pi}} (e^{-\frac{x}{2}})$$

$$= \frac{\left(\frac{1}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} \left(x^{1/2-1}e^{-\frac{x}{2}}\right)$$

 $X \sim \operatorname{Gamma}(1/2, 1/2)$ Then if $X = \sum_{i=1}^{N} Z^2$ $X \sim \operatorname{Gamma}(n/2, 1/2)$

Definition

Suppose X is a continuous random variable with $X \ge 0$, with pdf

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}$$

Then we will say X is a χ^2 distribution with n degrees of freedom. Equivalently,

$$X \sim \chi^2(n)$$

Chi-Squared 91 Degrees of Freedom

χ^2 Properties

Suppose $X \sim \chi^2(n)$

$$E[X] = E\left[\sum_{i=1}^{N} Z_i^2\right]$$

$$= \sum_{i=1}^{N} E[Z_i^2]$$

$$var(Z_i) = E[Z_i^2] - E[Z_i]^2$$

$$1 = E[Z_i^2] - 0$$

$$E[X] = n$$

χ^2 Properties

$$var(X) = \sum_{i=1}^{N} var(Z_i^2)$$

$$= \sum_{i=1}^{N} (E[Z_i^4] - E[Z_i]^2)$$

$$= \sum_{i=1}^{N} (3-1) = 2n$$

We will use the χ^2 across statistics.

Student's t-Distribution

Definition

Suppose $Z \sim \text{Normal}(0,1)$ and $U \sim \chi^2(n)$. Define the random variable Y as,

$$Y = \frac{Z}{\sqrt{\frac{U}{n}}}$$

If Z and U are independent then $Y \sim t(n)$, with pdf

$$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

We will use the t-distribution extensively for test-statistics

Degrees of Freedom 30

Student's t-Distribution, Properties

```
Suppose n=1, Cauchy distribution

If X \sim \text{Cauchy}(1), then:

E[X] = \text{undefined}

\text{var}(X) = \text{undefined}

If X \sim t(2)

E[X] = 0

\text{var}(X) = \text{undefined}
```

Student's t-Distribution, Properties

Suppose n > 2, then $var(X) = \frac{n}{n-2}$ As $n \to \infty$ $var(X) \to 1$.

Tomorrow: Joint Distributions and Multivariate Normal Distribution