Esperimento di Equilibrio di un corpo appeso

Lorenzo Mauro Sabatino

Ottobre 2024

Sommario

Verificare la somma vettoriale: un sistema di tre masse rimane in equilibrio se la somma vettoriale delle forze \vec{F}_1 e \vec{F}_2 esercitate delle masse laterali è equivalente alla forza \vec{P} della massa centrale. Insomma, si ha un modo per misurare il peso di un oggetto.

1 Introduzione

Quando un sistema è in equilibrio la somma delle forze che agiscono sul sistema è pari a zero.

Figura 1: Setup

La massa centrale è appesa tra le due carrucole e chiamiamo θ_1 e θ_2 gli angoli formati rispettivamente tra le congiungenti OC1 e OC2 e la verticale . Sapendo che un corpo appeso ad un angolo ha la tensione distribuita in due direzioni possiamo dire, imponendo l'equilibrio in due dimensioni, che:

$$\begin{cases}
P = F_1 cos\theta_1 + F_2 cos\theta_2 \\
F_1 sen\theta_1 = F_2 sen\theta_2
\end{cases}$$
(1)

Sappiamo inoltre che le due tensioni sono derivanti dalla forza peso delle due masse laterali e che perciò: $P_1=F_1$ e $P_2=F_2$ dalla quale segue che:

$$P = P_1 cos\theta_1 + P_2 cos\theta_2 \tag{2}$$

Nel caso in cui i due pesi siano uguali $(P_1 = P_2 = P')$ si ha $\theta_1 = \theta_2$ per cui:

$$P = (P_1 + P_2)\cos\theta = 2P'\cos\theta \tag{3}$$

2 Procedimento

- Tagliare un cordoncino e con le estremità formare due nodi al fine di sostenere i pesetti.
- Fare passare il filo dentro alle due carrucole stando bene attenti a evitare che il filo fuoriesca dalla guida, in caso, procedere al riallineamento.
- Posizionare i pesetti in modo che il sistema risulti in equilibrio. I due pesi laterali devono essere scelti uguali per facilitare i calcoli: vedi formula (3).
- Partire da una massa incognita da appendere all'apparato (vedi figura 1).
- Misurare con il goniometro l'angolo formato tra i fili e la verticale.
- Procedere aggiungendo altre masse incognite.
- Pesare con una bilancia i pesetti laterali e le masse appese al centro. Si dovrà poi confrontare questo valore "teorico" con quello ottenuto sperimentalmente.
- Inserire tutti i dati in tabella.
- Calcolare la somma delle forze dei pesi laterali e gli errori di tutte le misurazioni esclusa quella sull'angolo (che per questa esperienza consideriamo trascurabile) e inserire in tabella.

3 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

	$M_{cen}[g]$ e_{M_c}	$M_1[g]$ e_{M_1}	$M_2[g]$ e_{M_2}	θ [°]	P $e_{\Delta P}$
Mis. 1	土	±	±		±
Mis. 2	土	土	±		土
Mis. 3	土	土	土		土
	土	土	土		土

- Potete creare le tabelle nella maniera che preferite
- Importante: segnate sempre gli errori (calcolati con le formule viste a lezione). Per quanto riguarda la stima della misura fate di nuovo riferimento alle formule viste (media aritmetica ed errore assoluto)
- Può essere utile disegnare il diagramma delle forze e scrivere le equazioni
- Realizzare un grafico che metta in relazione l'angolo θ e la massa incognita

4 Conclusioni e domande

- Per diversi valori della massa centrale, la legge è verificata?
- I valori di forza peso misurata e ottenuta dall'esperimento sono compatibili?
- Come puoi verificare che l'ipotesi di trascurare l'attrito delle carrucole sia buona?