Effects of Entry Economic Conditions on the Career of Economics Ph.D.

Yeabin Moon

University of Houston

October, 2021

Introduction

There is no unemployment among Ph.D.s in economics

– John Siegfried

- Strong demand for economics PhD over the decade (BLS 2021)
 - growing demand both in academia and in practice
 - \bullet industries appreciate causal inferences more and more (Athey and Luca 2019)
- Pandemic left scars on the current economics profession worldwide (INOMICS) and lowered demand for entry worker (JOE)
 - \bullet 2020's Jobs for economists (JOE) have 14% fewer job postings than 2019
- Bad labor market conditions at the entry have large and persistent negative effects on careers in general (Kahn 2010, Oreopoulos et al. 2012)
- Less work has been done on whether the careers of economists is affected by the business cycles

Features of the Market for Ph.D.s in Economics

- Centralized matching systems and require advanced degrees
- Different workplace environment
 - academics: work under up-or-out policies
 - private sectors: high skilled industries
 - little is known for switching patterns among the occupations
- \bullet More than 40 % graduates are internationals
- Low unemployment, but the placement outcomes varies by economic conditions
- Detailed employment histories and productivity measures are available

Motivation and Research Question

- Workers graduating into a recession would likely match to a lower level starting jobs than their luckier counterparts (Devereux 2002)
 - first job placement is important in explaining the long-term losses (Kwon et al 2010, Oreopoulos et al. 2012)
 - how long the effects remain depends on the availability of switching (Van den Berge 2018, Cockx and Ghirelli 2016)
- Set up the theoretical model to explain what drives the persistent outcomes for economics PhD
- Test the model's prediction using detailed information on career paths and productivity measures available on the web
 - short run: initial placements
 - long run: occupational choices and publications

Mechanism: to motivate the model

- Evaluate job mobility to assess the impact of entry economic conditions
 - recessionary cohorts would take longer periods of time to find a job match
 - spending time in bad matches would lead to wage losses and would result in wrong investment in human capital
 - the disparities in human capital are the important channel through which the effects of graduating in a bad economy will remain
- Not clear what types of human capital economists would develop
- Develop a theoretical model of human capital development to understand the job mobility of economists
 - provides the testable hypothesis on whether the entry condition effects remain in the long-run

Preview: Findings

- the demand for economists is pro-cyclical
 - \bullet the fluctuations are primarily driven by the academic tenure-track positions in the US
- Entry conditions would affect the initial placement outcomes
 - recessionary cohorts are less likely placed in tenure-track academic positions
- Recessionary cohorts are less likely working at the academia in the long-run
 - the cohorts publish fewer journal articles in top 50 journals
- Economists rarely switch the occupation over time even if the entry economic conditions were not favorable
 - economists develop task-specific human capital
 - occupations are quite specialized

Contribution: Persistent effects of Entry condition

- rewriting!
- Analyze the effect of entry conditions onto the labor market outcomes overtime
 - earnings
 - employment
 - health and other outcomes
- Effects vary by education levels, race, institutional settings
- I use detailed almost complete employment histories and timing of entry
- Less freedom of entering the market
- write Oyer's findings, and my findings why different

Contribution: Occupation Choice

- rewriting!
- Job mobility plays a crucial role in recovering from the damages for those who start in a recession (Van den Berge 2018, Cockx and Ghirelli 2016)
- Unlucky college graduates tend to work in less attractive occupations / firms
 - start and stay longer in lower-wage occupations (Altonji et al. 2016) and industries (Oreopoulos et al. 2012)
 - higher-earning majors typically fare substantially better in recessions relative to lower earning majors
- I find
- Human capital formation vs Signaling
 - initial investment in job skills specific to an occupation tends to keep a person on a certain career trajectory
 - adverse signaling from starting in a less prestigious job hinders unlucky graduates to from switching occupation when the labor market recovers

Data

- Collect the following data sets to trace economists' career
 - list of job postings from JOE
 - hiring institution, position, required JEL classifications, job descriptions
 - ProQuest Dissertations & Theses Global
 - collect the doctoral dissertations by institutions, year of publications, economics (related) classification, subject codes
 - about 4,000 graduates from 32 programs in U.S. between 2004–2012
 - Scrape CVs on the web or Linkedin experience profile
 - collect employment history until 2020
 - gender and post secondary education information
 - Publication information from EconLit
- Construct the matching algorithm to compile all data appendix

Cyclical Demand for Economics PhD

- Total postings decreased by 22 percent between 2008–2010
 - \bullet Largest drop occurred for the U.S. academic postings (about 45 %)

Descriptive Statistics

	Overall	rank 1–10	$rank\ 11-\ 23$	${\rm rank}\ 2445$
Main independent variables				
Female	0.2875	0.2512	0.3236	0.3097
US bachelor	0.4259	0.4718	0.3978	0.3765
Main outcome variables				
number of publications by 3 years	0.3191	0.4350	0.2402	0.2044
	(0.7351)	(0.8665)	(0.6215)	(0.5482)
number of publications by 6 years	0.8475	1.1771	0.6221	0.5222
	(1.5029)	(1.7648)	(1.2855)	(1.0385)
number of publications by 9 years	1.3592	1.9008	0.9827	0.8333
	(2.2899)	(2.7014)	(1.9366)	(1.5374)
Initial placements				
Tenure-track in R1 university	0.2325	0.3019	0.1843	0.1649
	(0.4225)	(0.4592)	(0.3879)	(0.3713)
Private Sector	0.2413	0.2267	0.2627	0.2419
	(0.4279)	(0.4188)	(0.4402)	(0.4284)
Number of Schools	32	10	10	12
Number of individuals	3,982	1,795	1,199	988

Theoretical Framework

- Human capital accumulation is largely determined during the first decade of one's career
 - problem would be critical at research universities, in which tenure decisions are determined within 5-7 years
- Job mobility would raise the questions on the transferability of skills one develop
 - more costly for individuals whose skills are not transferable across jobs
- If the cohort effect starts in the beginning, task-specific model would supply why the effects remain in the long run

Task-specific Human capital

- Concept of measuring the transferability of labor market skills
 - appreciated in occupations where similar tasks are performed
 - different from general or occupation specific skills
- Ideal: change in occupation means the skills required for new occupations would be substantially different from those used in the old occupations
- Literature use occupational and industry codes from the census
 - Need to build another index because of the small range of occupations economists would work at
- Define the following ways:
 - R1 university
 - All other universities in US
 - Research organization or governmental agencies in US
 - Foreign institute
 - Private sectors

Definition of Occupations

- Faculties in R1 university spend less time teaching compared to all other universities in U.S. appendix
- Research organization in the U.S. does not require teaching, and the research goal would not be the same as the universities
- Foreign institutes would be different from the U.S. counterparts
 - most international universities have other promotion policies than the U.S. (Smeets et al. 2006)
- Using natural language process on the job descriptions, find a few words in private sectors mostly (appendix)
 - possibly different skills requirement

Model

- Based on the concept of Gibbons and Waldman (2004 and 2006)
- ullet Define occupation o as the collection of firms having the same task
- A firm f assigns the combinations of tasks $\{1,...,J\}$ to a worker.
- \bullet i produces task-task-specific output Y_{ifot}^{j}

$$\log Y_{ifot}^j = \sum_j \beta_o^j a_{iot}^j + \mu_{if} \ \text{ where } \sum_j \beta_o^j = 1 \ \text{ for all } o = 1,...,O$$

- β_q^j is the share of time a worker spends on average in the task j in o
- a_{iot}^j : i's productivity for task j at o and time in labor market t
- μ_{if} denotes the match quality between i and f

Model - continue

Productivity depends on initial endowment and experience

$$a_{iot}^j = \alpha_i^j + \gamma_o H_{it}^j \tag{1}$$

where

- α_i^j : initial endowment for the task j
- γ_o : return to human capital on occupation o
- H_{it}^{j} is the human capital accumulated in task j until time period t

$$H_{it}^j = \lambda_{o'}^j \operatorname{Exp}_{io't} \tag{2}$$

 $\operatorname{Exp}_{io't}$ denotes the previous tenure in occupation o'

• Hence,

$$\log Y_{ifot}^{j} = \gamma_{o} \left[\sum_{j} \beta_{o}^{j} \left(\lambda_{o'}^{j} \operatorname{Exp}_{io't} \right) \right] + \sum_{j} \beta_{o}^{j} \alpha_{i}^{j} + \mu_{if}$$
where $\sum_{i} \beta_{o}^{j} = 1$ for all $o = 1, ..., O$ (3)

Model - continue

$$\log Y_{ifot}^{j} = \gamma_{o} \left[\sum_{j} \beta_{o}^{j} \left(\underbrace{H_{it}^{j}}_{\lambda_{o'}^{j} \operatorname{Exp}_{io't}} \right) \right] + \underbrace{\sum_{j} \beta_{o}^{j} \alpha_{i}^{j}}_{\text{Match quality}} + \mu_{if}$$

$$\text{where } \sum_{j} \beta_{o}^{j} = 1 \text{ for all } o = 1, ..., O$$

$$(4)$$

- ullet Task $_{iot}$ is a measure of task-specific human capital valued by o
- \mathbf{m}_{io} is the match quality between i and occupation o
- assume the match quality with a firm μ_{if} is random and does not develop by time.
- When entering the market, there is no human capital accumulated

Incorporating Entry Condition

• Impose two more assumptions to reflect the effect of economic conditions at entry

Assumption 1. most workers are research-oriented

$$\alpha_i \equiv \left(\alpha_i^1, ..., \alpha_i^J\right) \equiv m(X_i) + e_{it}, \text{ where } \alpha_i^1 \geq \max_{j \neq 1} \alpha_i^j$$

• j=1 indicates economics-research task

Theorem 1. mismatch arises during the bad times at the entry

If
$$u_t < u_t'$$
, then $\mathbb{E}_i \left[m_{io} \mid u_t, \sum_j H_{it}^j = 0 \right] > \mathbb{E}_i \left[m_{io} \mid u_t', \sum_j H_{it}^j = 0 \right]$

• consistent with Bowlus (1995)

Mobility

• If *i* does not switch the occupation, the following corollary is derived:

Corollary 1.

If $u_t < u_t'$ and i did not switch o, then $\mathbb{E}_i \left[Y_{ifot}^1 \mid u_t, X_i \right] > \mathbb{E}_i \left[Y_{ifot}^1 \mid u_t', X_i \right]$ for all t

- The gap is driven by the two channels
 - unfavorable economic conditions result in mismatch
 - unfavorable human capitals are developed according to the tasks
- Consider how the task-specific human capital would be valued if a worker would switch occupations
 - \bullet To make an exposition simpler, examine two-task model $J=\{R,T\}$

Task Tenure with Occupational Choice

 \bullet o' and o indicate the source and target occupations, respectively

Proposition

For
$$\lambda_{o'}^R > 0.5$$
, task-tenure is valued more if moves to $\beta_o^R > \lambda_{o'}^R$
For $\lambda_{o'}^R < 0.5$, task-tenure is valued more if moves to $\beta_o^R < \lambda_{o'}^R$
For $\lambda_{o'}^R = 0.5$, task-tenure does not change regardless of moving

- How the task tenure is valued depends on the degree of specialization in the source occupation
 - one's tenure is valued more if the target occupation more specializes (close to 1) than the source occupation
 - \bullet If the source occupation is very general (close to 0.5), switching does not have any merits
- Now consider the implication for job mobility

Occupational Choice

- Suppose research oriented worker i started working at f' within teaching-heavy o' have an option to switch
 - switching entails the switching cost $x_{o't}$
- *i* faces

$$\max_{o',o} \left[Y_{if'o't}, Y_{ifot} - x_{o't} \right] \tag{5}$$

• Improvement on match-up qualities and returns to task tenure would make a shift more likely, but there is a loss from the task tenure according to the proposition when move

$$(m_{io} - m_{io'}) + (\mu_{if} - \mu_{if'}) + (\gamma_o - \gamma_{o'}) \operatorname{Task}_{io't}$$

$$> \gamma_o \underbrace{\left[(\beta_{o'} - \beta_o) \left(H_{it}^R - H_{it}^T \right) \right]}_{\text{potential loss}} + \underbrace{x_{o't}}_{\text{switching cost}}$$

Empirical prediction

$$(m_{io} - m_{io'}) + (\mu_{if} - \mu_{if'}) + (\gamma_o - \gamma_{o'}) \operatorname{Task}_{io't}$$

$$> \gamma_o \underbrace{\left[(\beta_{o'} - \beta_o) \left(H_{it}^R - H_{it}^T \right) \right]}_{\text{potential loss}} + \underbrace{x_{o't}}_{\text{switching cost}}$$

$$(7)$$

- Potential loss is governed by two factors
 - how similar the tasks between occupation o and o', $|\beta_o \beta_{o'}|$
 - if the source occupation is very general, there would be no loss
 - how much human capital accumulated from the previous occupations

Discussion: Overview of the model's contributions

- If economists' human capital is not task-specific, the markets would be similar to the high skilled industry
 - the workers would solve the mismatch by switching, and hence the effect of entry conditions would be away soon
- If workers' human capital is task specific, there are two more cases
 - the economist's tasks are specialized (distances are significant)
 - they would less likely switch because they might risk losing the human capital
 - the initial effects would remain
 - the economist's tasks are general (distances are small)
 - economists would more easily switch the occupation, and hence the initial placement effects are less likely permanent

Prediction I: Initial Placements

- I first test whether the entry economic conditions predict the initial placement outcomes:
 - for individual i, cohort c, department d, fields of study f

$$y_{icdf} = \beta ec_c + \gamma X_i + \lambda_d + \theta_f + \epsilon_{icdf}$$
 (8)

where ec_c indicates the economic conditions at graduation for c

- approximate ec_c using the unemployment rate as of October at the one year before graduation
- X_i includes an indicator for receiving bachelor degrees in the U.S. and gender
- β would be unbiased as long as the average quality of economists entering the market is not systematically related to ec_c

Effect of entry conditions on the initial placement in R1 universities

	(1)	(2)	(3)	(4)
unemployment (β_u)	-0.0214***	-0.0285**	-0.0177**	-0.0313***
	(0.00468)	(0.0104)	(0.00655)	(0.00582)
female	0.00654	0.00569	0.00624	0.00651
	(0.0155)	(0.0145)	(0.0146)	(0.0156)
usa	0.0594***	0.0661***	0.0594***	0.0593***
	(0.0108)	(0.0114)	(0.0108)	(0.00867)
	(0.0100)	(0.0114)	(0.0100)	(0.00001)
rank 2		-0.113***		
		(0.0143)		
		, ,		
rank 3		-0.127***		
		(0.0191)		
unemployment× rank 2 (β_1)		0.0162		
unemployment \times rank 2 (β_1)		(0.0152)		
		(0.0130)		
unemployment× rank 3 (β_2)		0.00955		
		(0.0179)		
		,		
unemployment× female (β_1)			-0.0129	
			(0.0148)	
unemployment× usa (β_1)				0.0227***
unemployment \times usa (p_1)				
P-val from F-test				(0.00627)
P-val from F-test $\beta_u + \beta_1 = 0$		0.2005	0.0272	0.1520
		0.3005 0.1105	0.0272	0.1538
$\frac{\beta_u + \beta_2 = 0}{N}$	3946	3946	3946	3946
R^2				
R ²	0.061	0.040	0.061	0.062

Standard errors in parentheses and are clustered by cohort level. * p < 0.10, ** p < .05, *** p < .01

Effect of entry conditions on the initial placement in rankings

	(1)	(2)	(3)	(4)
unemployment (β_u)	-3.713	-1.578	-6.915	1.525
	(4.901)	(4.601)	(5.794)	(3.778)
female	1.802	-0.316	3.004	1.963
	(5.686)	(5.753)	(3.988)	(5.792)
usa	13.55**	7.669	13.48**	12.44**
	(4.977)	(7.184)	(5.012)	
	(1.011)	(1.101)	(0.012)	(1.200)
rank 2		114.6***		
		(9.667)		
1.0		146.3***		
rank 3				
		(6.076)		
unemployment× rank 2 (β_1)		-11.35		
(*2)		(9.875)		
		, ,		
unemployment× rank 3 (β_2)		2.744		
		(6.769)		
unemployment \times female (β_1)			10.67**	
unemployment \times lemale (β_1)			(3.746)	
			(3.740)	
unemployment× usa (β_1)				-9.582
* /				(5.835)
P-val from F-test				
$\beta_u + \beta_1 = 0$		0.1146	0.2433	0.2696
$\beta_u + \beta_2 = 0$		0.8830		
N	1304	1304	1304	1304
R^2	0.246	0.170	0.247	0.247

Standard errors in parentheses and are clustered by cohort level.

 $^{^{\}ast}$ p<0.10, ** p<.05, *** p<.01

Effect of entry conditions on the initial placement: multinomial logit

	(1)	(2)
2. all other universities		
unemployment	-0.106**	-0.0838*
	(0.0454)	(0.0499)
3. research org		
unemployment	0.138**	0.134**
	(0.0663)	(0.0630)
4. foreign institute		
unemployment	0.188***	0.188***
	(0.0431)	(0.0447)
5. private sectors		
unemployment	-0.0247	-0.0181
	(0.0403)	(0.0364)
FX		department, fields of study
N	3979	3916
D i- D1iit		

Base is R1 university

Control for gender and US bachelor degrees.

Standard errors in parentheses and are clustered by cohort level.

^{*} p < 0.10, ** p < .05, *** p < .01

Cohort Effects at Entry

reproduce: set the y-axis equal, make them bigger

Prediction 2: Long-run Placements

- I now test whether the entry economic conditions predict the occupational choice in the long run
 - Using the same specification (8), the dependent variable is whether one work at R1 university nine years after graduation
- The model predicts that the effect will remain if economists develop task-specific human capitals
- Also, if one had a higher switching cost, the effects would be stronger

Effect of entry conditions on the placement in R1 universities 9 years after

	(1)	(2)	(3)	(4)	(5)
unemployment (β_u)	-0.00821*	0.00473	-0.00502	-0.00232	-0.00583
	(0.00434)	(0.00536)	(0.00434)	(0.00520)	(0.00773)
female	-0.0182*	-0.0218***	-0.0167*	-0.0182*	-0.0151
	(0.00930)	(0.00521)	(0.00849)	(0.00928)	(0.00846)
usa	0.106***	0.0722***	0.106***	0.109***	0.123***
	(0.0148)	(0.0159)	(0.0147)	(0.0133)	(0.0133)
R1 university		0.583***			
		(0.0126)			
unemployment× R1 (β_1)		-0.00490			
1 0 0 -/		(0.00711)			
unemployment \times female (β_1)			-0.0109		
			(0.00807)		
unemployment× usa (β_1)				-0.0134*	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(0.00605)	
rank 2					-0.118***
					(0.0204)
rank 3					-0.115***
					(0.0180)
unemployment× rank 2 (β_1)					0.00415
					(0.0206)
unemployment× rank 3 (β_2)					-0.0123
					(0.0163)
P-val from F-test					
$\beta_u + \beta_1 = 0$		0.9763	0.0814	0.0186	0.9127
$\beta_u + \beta_1 = 0$					0.1453
N	3916	3916	3916	3916	3916
R^2	0.065	0.349	0.065	0.066	0.045

tandard errors in parentheses and are clustered by cohort level.

Discussion

- Note that the magnitudes of the effects is way smaller than the initial impact
 - some individuals might switch the occupations but not enough to close the initial gaps
- Further test whether one ever switch occupation or firm appendix
 - as the model predicted:
 - less likely switch the occupation
 - if one switched, it would happen within the same occupations at early periods
- Other explanations: entry conditions would serve as a signal of ability
 - its importance as a signal declines over time as more information of true ability is revealed appendix

Prediction 3: Productivity

- Now I test whether the entry economic conditions would affect the economists' productivity
 - main measures of research output for academic economists are their publications
 - for individual i, cohort c, department d, field of study f, year t, labor market experience \exp

$$y_{icdft} = \beta ec_c + \gamma X_i + \xi_d + \theta_f + \mu_{exp} + \epsilon_{icdft}$$

where ec_c indicates the economic conditions at graduation for c

• y_{icdft} is the number of publications in top 50 economics journals

Effect of entry conditions on the Publications in Top 50 journals

	(1)	(2)	(3)	(4)
unemployment	-0.0213***	-0.0233**	-0.0203**	-0.0289***
	(0.00795)	(0.00978)	(0.00931)	(0.0103)
female	-0.288***	-0.287***	-0.262***	-0.258***
	(0.0240)	(0.0240)	(0.0220)	(0.0214)
usa	0.00424	0.00429	-0.0673***	-0.0671***
usu				
	(0.0119)	(0.0119)	(0.0123)	(0.0127)
exp		0.161***		
		(0.00259)		
		(0.00200)		
exp 1				0.348***
				(0.00712)
				(0.00112)
exp 2				0.102***
-				(0.00493)
				(0.00-00)
exp 3				0.133***
-				(0.00255)
				,
$\exp 4$				0.152***
				(0.00330)
exp 5				0.0147***
				(0.00227)
N	50311	50311	50311	50311
R^2	0.169	0.168	0.324	0.316

Standard errors in parentheses and are clustered by cohort level and year \boldsymbol{t}

^{*} p < 0.10, ** p < .05, *** p < .01

Robustness Check

- In the analysis above, assume that the macroeconomic conditions at graduation represent an exogenous labor demand shock
 - the average quality of graduates who enters the market is not systematically associated with the economic conditions
- Note that five years of study is arguably the norm of the economics Ph.D. programs
- Observe the duration of the study for 60 percent of the sample
- Examine the effect of the entry economic conditions on one's decision to delay graduation appendix
 - individuals rank 1 programs would have an option to delay
 - examine the results using individuals from rank2 and rank 3 programs appendix

Robustness Check: Regressions without graduates from rank 1 school

	(1)	(2)	(3)	(4)
	R1 short run	R1 long run	pubs	pubs
unemployment	-0.0173**	-0.00821*	-0.0317***	-0.0414***
	(0.00737)	(0.00434)	(0.00751)	(0.0104)
female	0.0189	-0.0182*	-0.221***	-0.208***
	(0.0105)	(0.00930)	(0.0206)	(0.0209)
usa	0.0642**	0.106***	-0.0903***	-0.138***
-	(0.0259)	(0.0148)	(0.0205)	(0.0219)
exp 1				0.243***
onp 1				(0.00792)
exp 2				0.0834***
onp 2				(0.00419)
exp 3				0.0890***
CAP 0				(0.00428)
own 4				0.112***
exp 4				(0.00520)
-				, ,
exp 5				0.00685***
- 37	21.10	2012	OMERO	(0.00261)
N P2	2148	3916	27552	27552
R^2	0.053	0.065	0.128	0.234

Standard errors in parentheses clustered by cohort and current year \boldsymbol{t}

^{*} p < 0.10, ** p < .05, *** p < .01

Current work

filled

Fuzzy matching

- One challenge of the task is scrape text data from the source document and convert them into suitable format
 - Scraping use various APIs
 - \bullet might involve legal issues \to commercial APIs
- Bigger challenge is that there are same institution but were taken as different forms
 - CV, dissertations, rank data, Journal entry
 - matching economists' names are even more complicated
- Employ learning methods from data science literature
 - data matching or fuzzy matching (probabilistic data matching)

Steps

- N-grams: a set of co-occurring words within a given sentence (Wang et al. 2006)
 - collect the words in the sentence having more meaning
- TF-IDF: count the word occurs in each document
 - evaluate how important a word is and (learning)
 - very important since the names have only a few words
 - long computing time ...
- Cosine similarity: how close the two sentences is
- Matching rates vary
 - JOE in US institutions: 89%
 - All institutions: 70%

Hours per week teaching credit classes

	1-3 hours (%)	4-7 hours (%)	More than 7 hours (%)
Estimates			
Total	22.4	27.8	49.8
Institution: level			
2-year	18.3	23.7	58
4-year non-doctoral granting	18.6	23.5	57.9
4-year doctoral granting	27.4	33.1	39.6

Source: U.S. Department of Education, National Center for Education Statistics, 2004 National Study of Post secondary Faculty

Job description: Natural Language Processing

- Analyze the text in the job descriptions from JOE and CSWEP letters (central bank, consulting firms
- Find the words mostly captured in the text
 - Tenured track positions: research, economics, teaching, curriculum
 - Research org: research, economics, teaching
 - Private: **research**, economics, communication, work, policy, experience, analysis, skills, quantitative,
- Word **research** and **teaching** dominates in Academic positions
- Diverse range of words are captured in private sector positions
 - communication related words are rarely captured in academic positions
- Possibly, different skills are required for the private sectors slide

Effect of entry conditions on the Job mobility

		0 1	1 1 1 1 1			Th	1. 1.1	
	(4)		al switching		(#)		vitching	(0)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
-		years		years		years		years
unemployment	-0.00123	0.0133	-0.00127	0.00931	0.0164**	0.0347***	0.00952	0.0293***
	(0.00670)	(0.0121)	(0.00880)	(0.0116)	(0.00697)	(0.00732)	(0.00814)	(0.00608)
female	0.00112	0.000795	0.00707	0.00695	0.00997	0.00967	-0.00500	-0.00541
iemaie	(0.00733)	(0.00744)	(0.0172)	(0.0182)	(0.0134)	(0.0133)	(0.0134)	(0.0133)
	(0.00733)	(0.00744)	(0.0172)	(0.0162)	(0.0134)	(0.0133)	(0.0134)	(0.0133)
usa	-0.0314**	-0.0326**	-0.0305*	-0.0317*	0.0135	0.0129	-0.00159	-0.00201
	(0.0109)	(0.0107)	(0.0150)	(0.0147)	(0.0165)	(0.0166)	(0.0142)	(0.0142)
	((((((,	,	,
US uni		0.0187		0.00302		0.0439**		-0.0374
		(0.0229)		(0.0324)		(0.0172)		(0.0230)
res org		0.0661**		0.0551**		0.0809***		-0.0311*
		(0.0206)		(0.0182)		(0.0161)		(0.0143)
foreign		-0.00708		-0.0545**		0.0102		-0.0410*
		(0.0229)		(0.0219)		(0.0218)		(0.0204)
private		0.105***		-0.00756		0.225***		0.121***
private		(0.0182)		(0.0185)		(0.0230)		(0.0139)
		(0.0102)		(0.0100)		(0.0230)		(0.0133)
US uni × unemployment		-0.00504		-0.0181		-0.0146		-0.0125
		(0.0174)		(0.0232)		(0.0154)		(0.0147)
		(,		(/		(,		(,
$res org \times unemployment$		-0.0256		-0.00211		-0.0170		-0.0156
		(0.0208)		(0.0273)		(0.0265)		(0.0186)
for eign \times unemployment		-0.0466**		-0.0460**		-0.0472***		-0.0473**
		(0.0171)		(0.0183)		(0.0107)		(0.0159)
private × unemployment		0.00120		0.00796		-0.0179		-0.0270**
private × unemployment		(0.0167)		(0.00796)		(0.0122)		(0.00864)
P-val from F-test		(0.0107)		(0.00910)		(0.0122)		(0.00004)
N		0.5303		0.1655		0.7205		0.3127
N N		0.3762		0.1033		0.7463		0.5450
N N		0.0083		0.2400		0.0794		0.3344
N N		0.2311		0.1882		0.0687		0.7640
N N	3916	3916	3916	3916	3916	3916	3916	3916
R^2	0.032	0.035	0.020	0.021	0.052	0.053	0.031	0.032
41	0.002	0.050	0.020	0.021	0.002	0.000	0.051	0.002

Standard errors in parentheses and are clustered by cohort level.

^{*} p < 0.10, ** p < .05, *** p < .01

Effect of entry conditions on the placement in R1 universities over time

	(1)	(2)	(3)			
unemployment \times exp 0	-0.0141**	-0.0145**	0.00118			
	(0.00610)	(0.00609)	(0.00407)			
unemployment \times exp 2	-0.00951	-0.0121*	0.00359			
	(0.00801)	(0.00565)	(0.00480)			
unemployment \times exp 4	-0.0104	-0.0114*	0.00428			
	(0.00573)	(0.00579)	(0.00532)			
unemployment \times exp 6	-0.00852	-0.00762	0.00803			
	(0.00584)	(0.00511)	(0.00553)			
unemployment \times exp 8	-0.00990	-0.00694	0.00871			
	(0.00860)	(0.00455)	(0.00526)			
female	-0.00685	-0.00685	-0.0116			
	(0.0139)	(0.0139)	(0.00664)			
usa	0.100***	0.100***	0.0549***			
	(0.00899)	(0.00899)	(0.00808)			
R1 university			0.773***			
			(0.00898)			
FX	dep, fields	dep, fields, exp	dep, fields, exp			
N	19590	19590	19590			
R^2	0.062	0.063	0.541			
Standard arrors in parantheese and are electored by cohort level						

Standard errors in parentheses and are clustered by cohort level.

^{*} p < 0.10, ** p < .05, *** p < .01

Effect of of economic conditions on delaying graduation

	(1)	(2)	(3)	(4)
unemployment (β_u)	0.0246	0.0486*	0.0243	0.0209
	(0.0136)	(0.0240)	(0.0167)	(0.0161)
	0.0044	0.0400		0.0044
female	0.0211	0.0103	0.0210	0.0211
	(0.0143)	(0.0149)	(0.0145)	(0.0142)
usa	-0.0224	-0.0259	-0.0224	-0.0226
	(0.0359)	(0.0359)	(0.0359)	(0.0359)
	()	(/	()	()
rank 2		0.0101		
		(0.0283)		
rank 3		-0.0165		
tank 3		(0.0397)		
		(0.0391)		
unemployment× rank 2 (β_1)		-0.0277		
		(0.0166)		
unemployment× rank 3 (β_2)		-0.0602		
		(0.0448)		
unemployment \times female (β_1)			0.000804	
unemployment \times remaic (β_1)			(0.0161)	
			(0.0101)	
unemployment \times usa (β_1)				0.00838
				(0.0297)
P-val from F-test				
$\beta_u + \beta_1 = 0$		0.2436	0.0759	0.2618
$\beta_u + \beta_2 = 0$		0.6920		
N	2372	2372	2372	2372
R^2	0.069	0.027	0.069	0.069

Standard errors in parentheses and are clustered by cohort level.

^{*} p < 0.10, ** p < .05, *** p < .01