Ex. No: 1 Image Processing Techniques from Matrix Representation to Manipulation Date:

Aim:

To perform various image processing techniques from matrix representation to image manipulation.

Software Required:

Anaconda

Task 1: Create a 2D matrix of size (8x8) with values 0's and 1's and display it as an image

Procedure:

- 1. Open PyCharm and create a new Python project.
- 2. Create a new Python file within your project.
- 3. Import necessary libraries: import numpy as np and import matplotlib.pyplot as plt.
- 4. Generate a 2D matrix of size (8x8) with random 0's and 1's using np.random.randint(0, 2, size=(8, 8)).
- 5. Display the matrix as an image using plt.imshow(matrix, cmap='gray').
- 6. Use plt.show() to display the image.

Code:

Task 2: Create a 2D matrix of size (8x8) with values 0 to 255 and display it as an image

Procedure:

- 1. Follow steps 1-3 from Task 1.
- 2. Generate a 2D matrix of size (8x8) with values 0 to 255 using np.random.randint(0, 256, size=(8, 8)).
- 3. Display the matrix as an image using plt.imshow(matrix, cmap='gray', vmin=0, vmax=255).
- 4. Use plt.show() to display the image.

Code:

Task 3: Read a RGB image, separate the channels, and display them separately

Procedure:

- 1. Follow steps 1-3 from Task 1.
- 2. Import OpenCV library: import cv2.
- 3. Read an RGB image using cv2.imread('path_to_your_image.jpg').
- 4. Separate the image into its blue, green, and red channels using b, g, r = cv2.split(image).
- 5. Display each channel separately using plt.imshow(channel, cmap='gray') for each channel (blue, green, red).
- 6. Use plt.show() to display the channels.

Code:

Task 4: Crop, resize, rotate, and flip an image

Procedure:

- 1. Follow steps 1-3 from Task 1.
- 2. Read an image using cv2.imread('path_to_your_image.jpg').
- 3. Perform cropping, resizing, rotation, and flipping using OpenCV functions (cv2.resize, cv2.rotate, cv2.flip).
- 4. Display the original and processed images using cv2.imshow() and cv2.waitKey(0) for each image.
- 5. Use cv2.destroyAllWindows() to close all windows when done.

Code:

Ex. No: 2 Date:	Implementation of advanced Image Manipulation Operations
Aim:	
	mplement advanced image manipulation operations like bitwise operations of two
images, ima	ge interpolation, image blurring, and edge detection.
Software R	equired:
• Ana	conda
Task 1: Per	form Bitwise Operations on images – AND, OR and XOR
Procedure:	
Code:	
kernels: • (Frform image blurring on images with the help of various low pass filter Gaussian Blur Median Blur Average Blur
Procedure:	
Code:	
Task 3: Per zooming)	erform image interpolation and apply it to image resizing (shrinking and
Procedure:	
Code:	
Task 4: Per	form Edge Detection on images using Canny Operator.
Procedure:	
Code:	

Ex. No: 3 Implementation of Image Enhancement techniques like sharpening and thresholding

Aim:

To implement image enhancement techniques such as brightness and contrast adjustment, image sharpening and image thresholding.

Software Required:

• Anaconda

Task 1: To adjust the brightness and contrast of the images to enhance the visual appeal and effectiveness.

Procedure:

Code:

Task 2: To perform image sharpening to enhance the edges and fine details in an image.

Procedure:

Code:

Task 3: To perform image segmentation using simple, adaptive and Otsu thresholding methods.

Procedure:

Code:

Ex. No: 4 Date:	Implementation of Image Enhancement in Spatial Domain using Histogram Processing
Aim:	
To im	plement image enhancement in spatial domain using histogram processing such as
histogram e	qualization and histogram matching.
Software R	equired:
• Ana	conda
Task 1: To	verify the histograms of dark, light, low contrast and high contrast images.
Procedure:	
Code:	
Task 2: To	perform histogram equalization to enhance the contrast of the image.
Procedure:	
Code:	
Task 3: To	perform histogram matching to adjust the histogram of an image to match a
specified ta	rget histogram.
Procedure:	
Code:	
Result:	

Ex. No: 5 Date:	Implementation of Intensity Transformation Operations on Images
Aim:	
To impl	ement Intensity Transformation Operations on Images.
Software Rec	uired:
• Anaco	nda
Task 1: To p	erform commonly used intensity transformations on images:

• Image Negatives (Linear)

- Log Transformations
- Power-Law (Gamma) Transformations

Procedure:

Code:

Task 2: To perform Piecewise-Linear Transformation Functions on images.

- Contrast Stretching
- Intensity level slicing
- Bit-plane slicing

P	ro	ced	ure:
---	----	-----	------

Code:

Ex. No: 6 Implementation of Intensity Transformation Operations on Images
Date:

Aim:

- a) To apply Fourier Transform to an image and determine the magnitude spectrum.
- b) To implement various image restoration techniques such as bandpass, bandreject, and Notch filters, Optimum Notch, Inverse and Wiener filtering.

Software Required:

• Anaconda

Task 1: To apply Fourier Transform to an image and determine the magnitude spectrum.

Procedure:

Code:

Task 2: To implement various image restoration techniques such as:

- Bandpass, bandreject, and Notch filters,
- Optimum Notch, Inverse and Wiener filtering.

Procedure:

Code:

Ex. No: 7 Date:	Implementation of Image Segmentation Techniques
Aim:	
a)	Γο perform basic morphological operations on images.
b) '	Γο implement region-based image segmentation techniques.
c)	Γο implement Watershed Segmentation algorithm.
Software R	equired:
• Ana	conda
Task 1: T	o implement basic Morphological operations on images such as erosion,
dilation, op	ening and closing.
Procedure:	
Code:	
Tools 2. T.	a implement region based image segmentation techniques such as Perion
	o implement region-based image segmentation techniques such as Region nd Region Splitting and Merging.
<u>.</u>	
Procedure:	
Code:	
Task 3: To	perform image segmentation using Watershed Segmentation algorithm.
Procedure:	
Code:	
Result:	

Ex. N Date:	o: 8	Implementation of 3D Vision Techniques
Aim:		
a)	To i	mplement camera calibration with Chessboard and Circular grid.
b)	To d	letect crack in the image using "shape from shading" technique.
c)	Тос	alculate disparity between two images (using stereoBM class)
Softwa	are R	equired:
•	Ana	conda
Task 1	1: To	implement camera calibration with Chessboard and Circular grid.
Proce	dure:	
Code:		
Task 2	2: To	detect crack in the image using "shape from shading" technique.
Procedure:		
Code:		
Task 3	3: To	calculate disparity between two images (using stereoBM class).
Proce	dure:	
Code:		
Result	t:	

Ex. No: 9 Date:	Implementation of 3D Vision – Structure from Motion Techniques
Aim:	
	mplement 3D vision's structure from motion techniques like bundle adjustment ametric motion and spline-based motion.
Software R	equired:
• Ana	conda
Task 1: To	implement 3D vision's structure using bundle adjustment method
Procedure:	
Code:	
Task 2: To	implement 3D vision's structure using parametric motion method
Procedure:	
Code:	
Task 3: To	implement 3D vision's structure using spline-based motion method
Procedure:	
Code:	
Result:	

Ex. No: Implementation of Real Time Applications – Document Image Analysis,
Video Tracking
Date:

Aim:

To implement real time applications like Document Image Analysis to detect and process text and document boundaries, and Video Tracking to follow a specific object in a video feed.

Software Required:

Anaconda

Procedure:

Task 1: To implement real-time Document Image Analysis

Code:

Task 2: To implement real-time video tracking

Procedure:

Code:

Ex. No:	Implementation of Real Time Applications - Object Recognition, Content-
11	Based Image Retrieval
Date:	

Aim:

To implement of Real Time Applications like Object Recognition, Content-Based Image Retrieval.

Software Required:

• Anaconda

Task 1: To implement real-time object recognition using a pre-trained deep learning model.

Procedure:

Code:

Task 2: To implement real-time Content-Based Image Retrieval using feature extraction and similarity measurement.

Procedure:

Code: