ASSIGNMENT 4 SOLUTIONS

Name: Quaigraine Samuel Class: Mathematics 3 Index Number: 3459522

July 21, 2025

Question 1: General Solutions of the Wave Equation

(a) Find the general solution for the wave equation

$$u_{tt} = 64u_{xx}$$

Solution:

The equation is in the standard form for a one-dimensional wave equation, $u_{tt} = c^2 u_{xx}$. By comparison, we see that $c^2 = 64$, which gives a wave speed of c = 8.

The general solution is given by d'Alembert's formula:

$$u(x,t) = f(x+ct) + g(x-ct)$$

where f and g are arbitrary functions. Substituting the value of c, we get:

$$u(x,t) = f(x+8t) + g(x-8t)$$

(b) Find the general solution for the wave equation

$$4u_{tt} - 25u_{xx} = 0$$

Solution:

We first rearrange the equation to the standard form, $u_{tt} = c^2 u_{xx}$:

$$4u_{tt} = 25u_{xx} \implies u_{tt} = \frac{25}{4}u_{xx}$$

By comparison, we see that $c^2 = \frac{25}{4}$, which gives a wave speed of $c = \frac{5}{2}$. The general solution is given by d'Alembert's formula:

$$u(x,t) = f(x+ct) + g(x-ct)$$

where f and g are arbitrary functions. Substituting the value of c, we get:

$$u(x,t) = f\left(x + \frac{5}{2}t\right) + g\left(x - \frac{5}{2}t\right)$$

(c) Find the general solution for the wave equation

$$u_{xx} = 16u_{tt}$$

Solution:

We first rearrange the equation to the standard form, $u_{tt} = c^2 u_{xx}$:

$$16u_{tt} = u_{xx} \implies u_{tt} = \frac{1}{16}u_{xx}$$

By comparison, we see that $c^2 = \frac{1}{16}$, which gives a wave speed of $c = \frac{1}{4}$. The general solution is given by d'Alembert's formula:

$$u(x,t) = f(x+ct) + g(x-ct)$$

where f and g are arbitrary functions. Substituting the value of c, we get:

$$u(x,t) = f\left(x + \frac{1}{4}t\right) + g\left(x - \frac{1}{4}t\right)$$

Question 2: Initial Value Problems

(a) Solve the initial value problem

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u(x,0) = e^{-x^2} \\ u_t(x,0) = \cos^2(x) \end{cases}$$

Note: Corrected typos from the assignment sheet for clarity $(z^2 \to c^2 \text{ and } e^{-2} \to e^{-x^2})$. Solution:

We use d'Alembert's formula for an initial value problem:

$$u(x,t) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) ds$$

Here, the initial position is $\phi(x) = e^{-x^2}$ and the initial velocity is $\psi(x) = \cos^2(x)$. The first part of the solution, from the initial position, is:

$$\frac{1}{2} \left[e^{-(x+ct)^2} + e^{-(x-ct)^2} \right]$$

For the second part, we evaluate the integral of the initial velocity:

$$\begin{split} \int_{x-ct}^{x+ct} \cos^2(s) ds &= \int_{x-ct}^{x+ct} \frac{1}{2} (1 + \cos(2s)) ds \\ &= \frac{1}{2} \left[s + \frac{1}{2} \sin(2s) \right]_{x-ct}^{x+ct} \\ &= \frac{1}{2} \left[(x + ct - (x - ct)) + \frac{1}{2} (\sin(2(x + ct)) - \sin(2(x - ct))) \right] \\ &= \frac{1}{2} \left[2ct + \cos(2x) \sin(2ct) \right] \\ &= ct + \frac{1}{2} \cos(2x) \sin(2ct) \end{split}$$

Combining the parts according to d'Alembert's formula, the final solution is:

$$u(x,t) = \frac{1}{2} \left(e^{-(x+ct)^2} + e^{-(x-ct)^2} \right) + \frac{1}{2c} \left(ct + \frac{1}{2} \cos(2x) \sin(2ct) \right)$$
$$= \left[\frac{1}{2} \left(e^{-(x+ct)^2} + e^{-(x-ct)^2} \right) + \frac{t}{2} + \frac{1}{4c} \cos(2x) \sin(2ct) \right]$$

(b) Solve the initial value problem

$$\begin{cases} u_{tt} = u_{xx} \\ u(x,0) = \sin(5x) \\ u_t(x,0) = \frac{1}{5}\cos(x) \end{cases}$$

Solution:

We use d'Alembert's formula for an initial value problem with wave speed c = 1:

$$u(x,t) = \frac{1}{2} [\phi(x+t) + \phi(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} \psi(s) ds$$

Here, the initial position is $\phi(x) = \sin(5x)$ and the initial velocity is $\psi(x) = \frac{1}{5}\cos(x)$.

The first part of the solution, from the initial position, simplifies using a sum-to-product identity:

$$\frac{1}{2}[\sin(5(x+t)) + \sin(5(x-t))] = \frac{1}{2}[2\sin(5x)\cos(5t)]$$
$$= \sin(5x)\cos(5t)$$

For the second part, we evaluate the integral of the initial velocity:

$$\frac{1}{2} \int_{x-t}^{x+t} \frac{1}{5} \cos(s) ds = \frac{1}{10} [\sin(s)]_{x-t}^{x+t}$$

$$= \frac{1}{10} [\sin(x+t) - \sin(x-t)]$$

$$= \frac{1}{10} [2\cos(x)\sin(t)]$$

$$= \frac{1}{5} \cos(x)\sin(t)$$

Combining the two parts gives the final solution:

$$u(x,t) = \sin(5x)\cos(5t) + \frac{1}{5}\cos(x)\sin(t)$$

Question 3: Boundary Value Problems

(a) Solve the boundary value problem

$$y'' + 4y = 0$$
, $y(0) = -2$, $y(\frac{\pi}{4}) = 10$

Solution:

The characteristic equation for the ordinary differential equation is $r^2 + 4 = 0$, which has complex roots $r = \pm 2i$. The general solution is therefore of the form:

$$y(x) = c_1 \cos(2x) + c_2 \sin(2x)$$

We now apply the two boundary conditions to find the constants c_1 and c_2 . Applying the first condition, y(0) = -2:

$$y(0) = c_1 \cos(0) + c_2 \sin(0) = -2$$
$$c_1(1) + c_2(0) = -2$$
$$c_1 = -2$$

Applying the second condition, $y(\frac{\pi}{4}) = 10$:

$$y\left(\frac{\pi}{4}\right) = c_1 \cos\left(2 \cdot \frac{\pi}{4}\right) + c_2 \sin\left(2 \cdot \frac{\pi}{4}\right) = 10$$
$$c_1 \cos\left(\frac{\pi}{2}\right) + c_2 \sin\left(\frac{\pi}{2}\right) = 10$$
$$c_1(0) + c_2(1) = 10$$
$$c_2 = 10$$

Substituting the determined constants back into the general solution gives the unique solution to the boundary value problem: $y(x) = -2\cos(2x) + 10\sin(2x)$

(b) Solve the boundary value problem

$$y'' + 4y = 0$$
, $y(0) = -2$, $y(2\pi) = -2$

Solution:

The ordinary differential equation is the same as in the previous problem, so the general solution is:

$$y(x) = c_1 \cos(2x) + c_2 \sin(2x)$$

We apply the boundary conditions to find the constants c_1 and c_2 .

Applying the first condition, y(0) = -2:

$$y(0) = c_1 \cos(0) + c_2 \sin(0) = -2$$
$$c_1 = -2$$

Applying the second condition, $y(2\pi) = -2$:

$$y(2\pi) = c_1 \cos(4\pi) + c_2 \sin(4\pi) = -2$$
$$c_1(1) + c_2(0) = -2$$
$$c_1 = -2$$

Both conditions impose the same constraint, $c_1 = -2$, but neither condition places any restriction on the constant c_2 . Therefore, c_2 is an arbitrary constant, and the boundary value problem has infinitely many solutions. The solution is the family of functions:

$$y(x) = -2\cos(2x) + c_2\sin(2x)$$
, for any constant c_2

(c) Solve the boundary value problem

$$y'' + 9y = \cos(x), \quad y'(0) = 5, \quad y\left(\frac{\pi}{2}\right) = -\frac{5}{3}$$

Solution:

This is a non-homogeneous boundary value problem. The general solution is the sum of the complementary solution (y_c) and a particular solution (y_p) .

First, we solve the homogeneous equation y'' + 9y = 0. The characteristic equation $r^2 + 9 = 0$ gives roots $r = \pm 3i$. The complementary solution is:

$$y_c(x) = c_1 \cos(3x) + c_2 \sin(3x)$$

Next, using the method of undetermined coefficients for the particular solution, we guess $y_p(x) = A\cos(x) + B\sin(x)$. Substituting this into the ODE yields A = 1/8 and B = 0. Thus, the particular solution is:

$$y_p(x) = \frac{1}{8}\cos(x)$$

The general solution to the ODE is $y(x) = y_c(x) + y_p(x)$:

$$y(x) = c_1 \cos(3x) + c_2 \sin(3x) + \frac{1}{8} \cos(x)$$

We need its derivative to apply the boundary conditions:

$$y'(x) = -3c_1\sin(3x) + 3c_2\cos(3x) - \frac{1}{8}\sin(x)$$

Now we apply the boundary conditions. From y'(0) = 5:

$$y'(0) = -3c_1(0) + 3c_2(1) - \frac{1}{8}(0) = 5$$

$$3c_2 = 5 \implies c_2 = \frac{5}{3}$$

From $y(\frac{\pi}{2}) = -\frac{5}{3}$:

$$y\left(\frac{\pi}{2}\right) = c_1(0) + c_2(-1) + \frac{1}{8}(0) = -\frac{5}{3}$$
$$-c_2 = -\frac{5}{3} \implies c_2 = \frac{5}{3}$$

Both conditions determine that $c_2 = 5/3$, but they leave c_1 as an arbitrary constant. The BVP has infinitely many solutions:

$$y(x) = c_1 \cos(3x) + \frac{5}{3}\sin(3x) + \frac{1}{8}\cos(x), \text{ for any constant } c_1$$

