ESTADÍSTICA APLICADA II Tarea No. 2

Dr. Víctor M. Guerrero Ago-Dic, 2021

1. Un investigador se interesó en estudiar las siguientes series de datos para una región del Reino Unido:

Año	2005	' 06	'07	'08	' 09	' 10	' 11	'12	' 13	' 14	' 15	' 16
X	60	62	61	55	53	60	63	53	52	48	49	43
Y	23	23	25	25	26	26	29	30	30	32	33	31

Donde

X = Miles de muertes de niños menores de un año y

Y = Barriles de cerveza consumida.

- (a) Calcule el coeficiente de correlación muestral entre X y Y.
- (b) Una tendencia lineal en el tiempo se ajusta a X al calcular la regresión de X sobre t. Por ejemplo, si el origen del tiempo se sitúa a la mitad de 2005 y la unidad de tiempo usada es el año, entonces el año 2012 corresponde a t = 7.

Si, en cambio, el origen se localiza al final del año 2010 (o al inicio de 2011) y la unidad de tiempo empleada es el semestre, entonces 2007 corresponde a t = -7.

Demuestre que cualquier valor *estimado por tendencia* $\hat{X}_t = b_0 + b_1 t$, no se altera por la selección del origen, ni por la unidad de medida del tiempo.

(c) Sean \widetilde{X} y \widetilde{Y} los valores de X y Y que resultan después de eliminar una tendencia lineal; o sea, $\widetilde{X}_t = X_t - \widehat{X}_t$ y $\widetilde{Y}_t = Y_t - \widehat{Y}_t$.

Calcule entonces (i) la correlación entre \tilde{X} y Y, y (ii) la correlación entre \tilde{X} y \tilde{Y} .

Compare estos valores con los de las correlaciones obtenidas en la parte (a) y **comente** acerca de las diferencias que encuentre, en particular **explique** lo que mide cada una de las correlaciones calculadas.

2. Realice la **estimación de una recta** de regresión para cada uno de los siguientes cuatro conjuntos de datos.

Calcule también los coeficientes de correlación respectivos.

Realice las **gráficas** que considere pertinentes.

¿Qué se puede concluir de este ejercicio?

i	X_1	Y_1	X_2	Y_2	X_3	Y_3	X_4	Y_4
1	10	8.04	10	9.14	10	7.46	8	6.58
2	8	6.95	8	8.14	8	6.77	8	5.76
3	13	7.58	13	8.74	13	12.74	8	7.71
4	9	8.81	9	8.77	9	7.11	8	8.84
5	11	8.33	11	9.26	11	7.81	8	8.47
6	14	9.96	14	8.10	14	8.84	8	7.04
7	6	7.24	6	6.13	6	6.08	8	5.25
8	4	4.26	4	3.10	4	5.39	19	12.50
9	12	10.84	12	9.13	12	8.15	8	5.56
10	7	4.82	7	7.26	7	6.42	8	7.91
11	5	5.68	5	4.74	5	5.73	8	6.89

Fuente: Anscombe, F. J. (1973). Graphs in statistical analysis. *The American Statistician* 27, pp. 17 – 21.