RECURRENT CONTROL NEURAL NETWORK FOR THE MOUNTAIN CAR PROBLEM

YIWEI LI RUOXIA QI JINGCHENG WU

INTRODUCTION

Main Idea

- Schäfer et al. (2007)
- Based on RNN structure dynamics simulator
- Extended by a control neural network action selector
- Deal with high dimensional and continuous RL problems
- Applicable to multiple RL environments

INTRODUCTION

Research Questions

- 1. How well is the dynamics of the mountain car problem simulated?
- 2. Is the car able to reach the goal, following the policy learned by the RCNN?
- 3. How well does a successful policy perform?
- 4. Is RCNN a data efficient method?

DATA PREPARATION

Data Sampling

- 200 episodes starting from [-1.2, 0.6] with random selected actions (0, 1, 2)
- Reward = 1 / 0
- Split 7:1:2 into training, validation and test sets

DATA PREPARATION

Data Distribution

- Most episodes have sufficient observations
- Episodes with steps = 200 cover a wide range of initial positions
- Dataset covers sufficient patterns

steps	# episode	initial position
1	4	0.515 - 0.6
2	1	0.53
4	3	0.521 - 0.579
5	1	0.556
11	1	0.558
200	190	-1.192 - 0.5

IMPLEMENTATION

Stage 1 - RNN

- Input: (pos, vel, action) -> (w, 3)
- RNN layer with customized RNN cell
- Dropout layer and Dense layer built upon
- Objective: MSE

$$p_t = As_{t-1} + Bx_t$$

$$s_t = tanh(p_t + Da_t + \theta)$$

$$\hat{x}_{t+1} = Cs_t + \tau,$$

IMPLEMENTATION

Stage 2 - RCNN

- Input: (pos, vel, action) -> (w, 3)
- Copy RNN weights
- Build Dense layer to predict action
- Replace true action, calculate R
- Output next state and action

$$\hat{a}_t = tanh(Ep_t + b)$$
 $R_t = \frac{1}{1 + \exp(-1.5)}$

IMPLEMENTATION

General Setting

- Adam optimizer with $Ir = 10^{-3}$
- Ir reduced automatically
- Early stopping with patience = 20
- Train each model for 10 times

Dynamics Simulation (RNN)

- Test set: episodes with steps > w + 10
- Autoregressively
- MAE as objective measure
- Plotting as intuitive understanding
- Explore window size MAE: similar behavior for w in 5-10

Policy Optimization (RCNN)

- Generate first window starting from [-0.6, -0.4]
- Autoregressively and repeat for 50 episodes
- Metrics:
 - success rate
 - average steps over successful trials
- Explore window size performance with w = 5-10

Policy Optimization (RCNN)

- Plot Trajectory starting from
 - the bottom
 - an arbitrary position

Policy Optimization (RCNN)

- Data amount performance
- Unstable

(c) size-rate (20 episodes)

(b) size-steps (10 episodes)

(d) size-steps (20 episodes)

CONCLUSION

Research Questions

- 1. How well is the dynamics of the mountain car problem simulated? \checkmark
- 2. Is the car able to reach the goal, following the policy learned by the RCNN? \checkmark
- 3. How well does a successful policy perform? -- success rate = 1, average steps = 137
- 4. Is RCNN a data efficient method? --?

FUTURE WORK

- 1. Explore data amount and model performance
- 2. Compare our results to related works
- 3. Replace RNN by LSTM

THANK YOU