

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 13

Manuel A. Sánchez 2024.10.02

Capítulo 2: Metodos para ecuaciones diferenciales parciales elipticas

Clasificación de ecuaciones diferenciales

Introducción a Ecuaciones Diferenciales Parciales EDPs

- Una ecuación que involucra derivadas parciales de una función desconocida de varias variables independientes.
- Las EDPs aparecen en la modelación de muchos fenómenos físicos como la difusión del calor, el flujo de fluidos, y las vibraciones de estructuras.
- Ejemplo simple: la ecuación del calor en una dimensión

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

- \square Una ecuación diferencial parcial (EDP) de orden n involucra derivadas parciales de una función desconocida hasta el orden n.
- Las EDPs de órdenes arbitrarios son clave en modelos avanzados de física. ingeniería, v otras disciplinas.

Definicion EDP

Definición

Una expresión de la forma

$$F(D^k u(x), D^{k-1} u(x), ..., Du(x), u(x), x) = 0, \quad (x \in U)$$

es llamda una ecuación diferencial parcial de order k, donde

$$F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times \cdots \times \mathbb{R}^n \times \mathbb{R} \times U \mapsto \mathbb{R}$$

es dada, y $u: U \mapsto \mathbb{R}$ es la incógnita.

Clasificación-linealidad

Definición

1 La EDP es llamada lineal si tiene la forma

$$\sum_{|\alpha| < k} a_{\alpha}(x) D^{\alpha} u(x) = f(x),$$

para funciones dadas a_{α} , $|\alpha| \leq k$, y f. Además esta se dice homogénea si f(x) = 0.

La EDP se dice semi-lineal si esta tiene la forma

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + a_{0}(D^{k-1}u(x), ..., Du(x), u(x), x) = 0$$

Clasificación-linealidad

Definición

3 La EDP se dice cuasi-lineal si esta tiene la forma

$$\sum_{|\alpha|=k} a_{\alpha}((D^{k-1}u(x),...,Du(x),u(x),x))D^{\alpha}u(x) + a_{0}(D^{k-1}u(x),...,Du(x),u(x),x) = 0$$

4 La EDP es completamente **no-lineal** si esta depende no linealmente de las derivadas de orden mas alto.

Sistemas de EDPs

Definición

Una expresión de la forma

$$F(D^k u(x), D^{k-1} u(x), ..., Du(x), u(x), x) = 0, (x \in U)$$

es llamado un sistema de ecuaciones diferenciales parciales de order k, donde

$$\mathbf{F}: \mathbb{R}^{mn^k} \times \mathbb{R}^{mn^{k-1}} \times \cdots \times \mathbb{R}^{mn} \times \mathbb{R}^m \times U \mapsto \mathbb{R}^m$$

es dada, y $\mathbf{u}: U \mapsto \mathbb{R}^m, \ \mathbf{u} = (u^1, ..., u^m)$ es la incógnita.

Ejemplos: EDP lineal

Ecuación de Laplace

$$\Delta u = 0$$

Ecuación de Helmholtz

$$-\Delta u = \lambda u$$

Ecuación de transporte lineal

$$u_t + \sum_{i=1}^n b_i \partial_i u(x) = 0$$

Ecuación de Liouville

$$u_t - \sum_{i=1}^n \partial_i(b_i u(x)) = 0$$

Ecuación del calor ecuación de difusión

$$u_t - \Delta u = 0$$

Ejemplos: EDP lineal

Ecuación de Schrodinger

$$iu_t + \Delta u = 0$$

Ecuación de Kolmogorov

$$u_t - \sum_{i,j=1}^n a_{ij} \partial_{i,j}^2 u + \sum_{i=1}^n b_i \partial_i u(x) = 0$$

Ecuación de Fokker-Planck

$$u_t - \sum_{i,j=1}^n \partial_{i,j(a_{ij}}^2 u) - \sum_{i=1}^n \partial_i (b_i u(x)) = 0$$

Ecuación de onda

$$u_{tt} - \Delta u = 0$$

Ecuación de Klein Gordon

$$u_{tt} - \Delta u + m^2 u = 0$$

Ejemplos: EDP lineal

Ecuación del telégrafo

$$u_{tt} + 2du_t - u_{xx} = 0$$

Ecuación de onda general

$$u_{tt} - \sum_{i,j=1}^{n} \partial_{i,j}^{2} u + \sum_{i=1}^{n} b_{i} \partial_{i} u = 0$$

Ecuación de Airy

$$u_t + u_{xxx} = 0$$

Ecuación de viga

$$u_{tt} + u_{xxxx} = 0$$

Ejemplos: EDP no lineal

Ecuación Eikonal

$$|Du|=1$$

Ecuación de Poisson no lineal

$$-\Delta u = f(u)$$

Ecuación del p-Laplaciano

$$\operatorname{div}(|Du|^{p-2}Du)=0$$

Ecuación de superficie mínima

$$\operatorname{\mathsf{div}}\left(\frac{Du}{(1+|Du|^2)^{1/2}}\right)=0$$

Ecuación de Monge-Ampere

$$\det(D^2u)=0$$

Ejemplos: EDP no lineal

Ecuación de Hamilton-Jacobi

$$u_t + H(Du, x) = 0$$

☐ Ecuación de ley de conservación escalar

$$u_t + \operatorname{div}(\mathbf{F}(u)) = 0$$

Ecuación de Burgers inviscida

$$u_t + uu_x = 0$$

Ecuación de difusión-reacción escalar

$$u_t - \Delta u = f(u)$$

Ecuación de medio poroso

$$u_t - \Delta(u^{\gamma}) = 0$$

Ejemplos: EDP no lineal

Onda no lineal

$$u_{tt} - \Delta u + f(u) = 0$$

Korteweg-de Vries KdV

$$u_t + uu_x + u_{xxx} = 0$$

Schrodinger no lineal

$$iu_t + \Delta u = f(|u|^2)u$$

Ejemplos: sistemas de EDPs lineales

Elasticidad lineal

$$\mu \Delta \mathbf{u} + (\lambda + \mu) D(\mathsf{divu}) = 0$$

Elastodinámica lineal

$$\mathbf{u}_{tt} - \mu \Delta \mathbf{u} - (\lambda + \mu) D(\mathsf{div}\mathbf{u}) = 0$$

Maxwell - electromagnetismo

$$\mathbf{E}_t = \text{curl}\mathbf{B}$$
 $\mathbf{B}_t = -\text{curl}\mathbf{E}$
 $\text{div}\mathbf{B} = \text{div}\mathbf{E} = 0$

Ejemplos:sistemas de EDPs no lineales

Sistema de leyes de conservación

$$\mathbf{u}_t + \mathsf{div}\mathbf{F}(\mathbf{u}) = \mathbf{0}$$

Sistema de reacción-difusión

$$\mathbf{u}_t - \Delta \mathbf{u} = \mathbf{f}(\mathbf{u})$$

Ecuaciones de Euler para flujo inviscido incompresible

$$\mathbf{u}_t + \mathbf{u} \cdot D\mathbf{u} = -Dp$$
$$\mathsf{div}\mathbf{u} = 0$$

☐ Ecuaciones de Navier-Stokes para flujo viscoso incompresible

$$\mathbf{u}_t + \mathbf{u} \cdot D\mathbf{u} - \Delta \mathbf{u} = -Dp$$
$$\mathsf{div} \mathbf{u} = 0$$

Ecuaciones diferenciales parciales lineales de

segundo orden

EDP de segundo orden lineal

Ecuación diferencial parcial de segundo orden en n variables independientes $x = (x_1, \dots, x_n)$ para una función u = u(x) es

$$F(D^2u(x), Du(x), u(x), x) = 0 \quad x \in U$$

analizamos la ecuación lineal

$$Lu(x) := \sum_{i,i=1}^{n} a_{ij}(x) \partial_{ij}^{2} u + \sum_{i=1}^{n} b_{i}(x) \partial_{i} u(x) + c(x) u(x) = f(x)$$

Además asumimos que $a_{ij} = a_{ji}$ (simetría).

Clasificación EDP

Definición

Dada H ortonormal y los valores propios reales $\mu_1, ..., \mu_n$ de la matriz $A_{ij} = A_{ij}(x) = a_{ij}(x)$, tales que

$$H^TAH = diag(\mu_1, \cdots, \mu_n)$$

Definimos el índice inercial τ al números de los $\mu_i < 0$ y defecto δ al número de los $\mu_i = 0$. Entonces, la EDP de segundo orden lineal se dice

- $lue{}$ Hiperbólica, si $\delta=0$ y au=1 o au=n-1
- lacksquare Parabólica, si $\delta > 0$
- $lue{}$ Elíptica, si $\delta=0$ y au=0 o au=n
- $lue{}$ Ultrahiperbólica, si $\delta = 0$ y $1 < \tau < n-1$

Clasificación EDP

Ejemplo: Para n=2

$$Lu = a\partial_1^2 u + 2b\partial_{1,2}^2 u + c\partial_2^2 u, \quad A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Para $(x, y) \in \mathbb{R}^2$ fijo la EDP es

- \Box hiperbólica si $ac b^2 < 0$
- \square parabólica si $ac b^2 = 0$
- \Box elíptica si $ac b^2 > 0$

Ejemplos

□ Ejemplo elíptico: La ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

electrostática, gravitación, flujo de fluidos.

□ Ejemplo parabólico: La ecuación del calor

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

difusión de calor en sólidos.

□ Ejemplo hiperbólico: La ecuación de ondas

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

vibraciones de cuerdas, ondas sísmicas.

Ecuaciones Diferenciales Parciales Elípticas de

Segundo Orden

EDP elípticas de segundo orden

Dado $\Omega \subset \mathbb{R}^n$, con frontera $\partial \Omega$ Lipschitz contínua, y sea \mathbf{n} el vector normal unitario en $\partial \Omega$ apuntando hacia afuera de Ω , consideramos el operador diferencial de segundo orden L definido por (forma de divergencia):

$$LU = -\sum_{i,j=1}^{n} \partial_i (a_{ij}(x)\partial_j u) + \sum_{i=1}^{n} b_i(x)\partial_i u) + c(x)u$$

donde $a_{ij}(x)$, $b_i(x)$, c(x) son funciones dadas, y a es simétrico.

Definición

El operador diferencial L se dice elíptico en Ω si existe una constante $\theta > 0$ tal que

$$\sum_{i,i=1}^n a_{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2$$

para todo $\xi \in \mathbb{R}^n$ y casi todo $x \in \Omega$. A θ se le conocerá como constante de elipticidad.

EDP elípticas de segundo orden

Observación:

- Si el operador diferencial L es elíptico, luego la matriz $A = (a_{ij})$ será definida positiva para todo x.
- □ Lecturas: Partial Differential Equations, de L. Evans, en particular la seccion 2.2 Laplace's Equation y el Capítulo 6. Second order elliptic equation.

Propiedades básicas de la solución:

Teorema

Principio del máximo débil Asuma que $u \in C^2(\Omega) \cap C(\overline{\Omega})$ y $c \equiv 0$ en Ω . Luego,

- 1 Si $Lu \leq 0$ en Ω , entonces $\max_{x \in \overline{\Omega}} u(x) = \max_{x \in \partial \Omega} u(x)$.
- 2 Si $Lu \ge 0$ en Ω , entonces $\min_{x \in \overline{\Omega}} u(x) = \min_{x \in \partial \Omega} u(x)$.

Observación: Si $a_{ij} \in C^1$, entonces el operador L, que está escrito en forma de divergencia, puede ser reescrito como

$$Lu = -\sum_{i,j=1} a_{ij}(x)\partial_{ij}^2 u + \sum_{i=1}^n \hat{b}_i(x)\partial_i u + c(x)u,$$
$$\hat{b}_i = b_i = \sum_{i=1}^n \partial_i a_{ij}$$

Ejemplo

Dado
$$a_{ij} = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{eoc} \end{cases}$$
, $b_i = c = 0$, el operador queda $L = -\triangle = -\nabla \cdot (\nabla) = -\nabla^2$. Esta forma de reescribir L nos permite interpretar como la suma de términos de segundo y

primer orden, más un término lineal en u.

Asi, los términos de segundo orden ($D^2 = \sum a_{ij} \partial_{ii}^2 u$) podrían representar la difusión de uen Ω , con las los coeficientes a_{ii} describiendo la naturaleza heterogénea y anisotrópica del medio. Por ejemplo, si $F = -A\nabla u$, entonces F es la densidad de flujo difusivo, y la elipticidad implica $F \cdot \nabla u < 0$. lo que nos dice que el fluio va de regiones de mayor a menor concentración.

Para los términos de primer orden ($b \cdot \nabla u = \sum_{i=1}^{n} b_i \partial_i u$), podemos interpretar que representan el transporte en u; mientras que el término cu se interpreta como un incremento o disminución.

BVP elípticos

Así, nos enfocaremos en la clase de *problemas de valores de frontera elípticos* : Encontrar $u:\overline{\Omega}\to\mathbb{R}$ tal que

$$\begin{cases} Lu = f & \text{en } \Omega \\ u = 0 & \text{sobre } \partial \Omega \end{cases}$$

donde $\Omega \subset \mathbb{R}^d$ es abierto y acotado, y $f: \Omega \to \mathbb{R}$ es dada.

A la condición de frontera u = 0 en $\partial u = 0$ se le conoce como condición de Dirichlet.

Soluciones débiles

Asumimos que $a_{ij}, b_i, c \in L^{\infty}(\Omega)$, y $f \in L^2(\Omega)$. Asi, sea $v \in C_c^{\infty}(\Omega)$ (funciones infinitamente diferenciales con soporte compacto en Ω), entonces

$$\int_{\Omega} Luvdx = \int_{f} vdx$$

$$\int_{\Omega} \left(-\sum_{i,j=1}^{d} \partial_{j} (a_{ij}\partial_{i}u)v + \sum_{i=1}^{d} b_{i}\partial_{i}uv + cuv \right) dx = \int_{\Omega} fv dx$$

$$\int_{\Omega} \left(\sum_{i,j=1}^{d} a_{ij}\partial_{i}u\partial_{j}v + \sum_{i=1}^{d} b_{i}\partial_{i}uv + cuv \right) dx = \int_{\Omega} fv dx$$

Soluciones débiles

Además, por propiedades de aproximación (ver 5.2 Evans) lo mismo es válido para el espacio de Sobolev $H_0^1(\Omega)$, definido como

$$\overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{H^1}} = H_0^1(\Omega) := \{ v \in H^1(\Omega) : v|_{\partial\Omega} \equiv 0 \}$$
$$H^1(\Omega) := \{ v \in L^2(\Omega) : (\nabla v)_i \in L^2(\Omega) \}$$

Recordemos la definición de $L^2(\Omega)$:

$$L^2(\Omega) = \left\{ v: \Omega o \mathbb{R}: \int_{\Omega} |v|^2 d\mu < \infty
ight\}$$

Las normas asociadas a estos espacios son las siguientes:

$$\square \|v\|_{L^2} = \left(\int_{\Omega} |v|^2 d\mu\right)^{1/2}.$$

$$||v||_{H^1} = (\int_{\Omega} |v|^2 d\mu + \int_{\Omega} |\nabla v|^2 d\mu)^{1/2}$$

Solución débil

Definición

La forma bilineal $B: H^1_0(\Omega) \times H^1_0(\Omega) \to \mathbb{R}$ asociada al operador L es

$$B(u,v) := \int_{\Omega} \left(\sum_{i,j=1}^{d} a_{ij} \partial_i u \partial_j v + \sum_{i=1}^{d} b_i \partial_i u v + c u \right) dx$$

para toda $u, v \in H_0^1(\Omega)$.

Decimos que $u \in H_0^1(\Omega)$ es una solución débil del BVP si

$$B(u,v) = \langle f, v \rangle_{L^2} \quad \forall v \in H_0^1(\Omega)$$

donde el producto interno en $L^2(\Omega)$ esta dado por la expresión

$$\langle u, v \rangle_{L^2} = \int_{\Omega} uvd\mu$$

Ejemplos condiciones de frontera

Veamos algunos ejemplos de condiciones de frontera típicas:

☐ Tipo Dirichlet no homogéneas:

$$\begin{cases} Lu = f & \text{en } \Omega \\ u = g & \text{sobre } \partial \Omega \end{cases}$$

con g = Tr(w), para $w \in H^1(\Omega)$. Esta se puede reescribir como

$$\begin{cases} L\tilde{u} = \tilde{f} & \text{en } \Omega \\ u = 0 & \text{sobre } \partial \Omega \end{cases}$$

donde
$$\tilde{u} = u - w$$
 y $\tilde{f} = f - Lw \in H^{-1}(\Omega)$.

Ejemplos condiciones de frontera

☐ Tipo Neumann (homogénea)

$$\begin{cases} Lu = f & \text{en } \Omega \\ \frac{\partial u}{\partial n} = 0 & \text{sobre } \partial \Omega \end{cases}$$

☐ Tipo Robin (homogénea)

$$\begin{cases} Lu = f & \text{en } \Omega \\ u + \frac{\partial u}{\partial n} = 0 & \text{sobre } \partial \Omega \end{cases}$$

Ejemplos condiciones de frontera

☐ Tipo mixtas Dirichlet-Neumann (homogénea)

$$\begin{cases} Lu = f & \text{en } \Omega \\ u = 0 & \text{sobre } \Gamma_1 \\ \frac{\partial u}{\partial n} = 0 & \text{sobre } \Gamma_2 \end{cases}$$

en donde
$$\partial\Omega = \Gamma_1 \cup \Gamma_2$$
, y $\Gamma_1 \cap \Gamma_2 = \emptyset$

Existencia y Unicidad de solución

Existencia y unicidad

Teorema (Lax-Milgram)

Suponga que H es un espacio de Hilbert, y que $B:H\times H\to \mathbb{R}$ es una forma bilineal tal que

- 1 $\exists \alpha > 0$: $|B(u, v)| \leq \alpha ||u||_H ||v||_H$, $\forall u, v \in H$.
- $\exists \beta > 0: \quad \beta \|u\|_H^2 \leq B(u, u), \quad \forall u \in H.$

Además, sea $f: H \to R$ un funcional lineal acotado. Entonces, existe un único elemento $u \in H$ tal que

$$B(u, v) = \langle f, v \rangle \quad \forall v \in H$$

Demostración: Revisar Evans, 6.2.

Aplicación T. L-M

Verifiquemos que la forma bilineal *B* asociada a *L* definida al principio de la clase satisface las hipótesis del teorema de Lax Milgram:

1

$$|B(u,v)| \leq \sum_{i,j=1}^{d} ||a_{ij}||_{L^{\infty}} \int_{\Omega} |\nabla u| \cdot |\nabla v| dx + \sum_{i=1}^{d} ||b_{i}||_{L^{\infty}} \int_{\Omega} |\nabla u| \cdot |v| dx + ||c||_{L^{\infty}} \int_{\Omega} uv dx$$

$$\leq \alpha_{1} ||\nabla u||_{L^{2}} ||\nabla v||_{L^{2}} + \alpha_{2} ||\nabla u||_{L^{2}} ||v||_{L^{2}} + \alpha_{3} ||u||_{L^{2}} ||v||_{L^{2}}$$

$$\leq (\alpha_{1} + \alpha_{2} + \alpha_{3}) ||u||_{H^{1}} ||v||_{H^{1}}$$

2 Esta condición la sabemos de la elipticidad (caso $b_i = c = 0$):

$$\theta \int_{\Omega} |\nabla u|^2 dx \leq \int_{\Omega} \sum_{i,i=1}^d a_{ij} \partial_i u \partial_j u dx = B(u,u) - \int_{\Omega} \left(\sum_{i=1}^d b_i \partial_i u u + c u^2 \right) dx$$

Aplicación T. L-M

 $\text{Como ademas } \int_{\Omega} |\nabla u| |u| d\mathsf{x} \leq \varepsilon \|\nabla u\|_{\mathit{L}^{2}}^{2} + \frac{1}{4\varepsilon} \|u\|_{\mathit{L}^{2}}^{2} \text{, para } \varepsilon > \text{0,entonces}$

$$\theta \int_{\Omega} |\nabla u|^{2} dx \leq B(u, u) + \sum_{i=1}^{d} \|b_{i}\|_{L^{\infty}} \int_{\Omega} |\nabla u| |u| dx + \|c\|_{L^{\infty}} \int_{\Omega} |u|^{2} dx$$

$$= \leq B(u, u) + \sum_{i=1}^{d} \|b_{i}\|_{L^{\infty}} \left(\varepsilon \|\nabla u\|_{L^{2}}^{2} + \frac{1}{4\varepsilon} \|u\|_{L^{2}}^{2} \right) + \|c\|_{L^{\infty}} \|u\|_{L^{2}}^{2}$$

por lo que concluimos que $\frac{\theta}{2} \|\nabla u\|_{L^2}^2 \leq B(u,u) + C\|u\|_{L^2}^2$. Finalmante, usando la desigualdad de Poincaré (ver Evans, 5.6), tenemos que

$$\beta \|u\|_{H_0^1}^2 \leq B(u,u) + \gamma \|u\|_{L^2}^2$$

para $\beta > 0$ y $\gamma > 0$. De esta forma, el problema tiene solución única.

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE