1. 빅데이터 개념

"Big data란 대량의 다양한 정보뿐만 아니라 신속한 정보의 수집 및 처리속도를 갖추는 것, 나아가 데이터의 불확실성을 인지하고 분석을 통한 비즈니스 가치를 찾아내는 것이라 할 수 있다."

표 1-4 전통적 데이터와 빅데이터의 특징 비교 [07]

구분	전통적 데이터	빅데이터		
데이터 원천	전통적 정보 서비스	일상화된 정보 서비스		
목적	업무와 효율성	사회적 소통, 자기표현, 사회 기반 서비스		
생성 주체	정부 및 기업 등 조직	개인 및 시스템		
데이터 유형	■ 정형 데이터 ■ 조직 내부 데이터(고객 정보, 거래 정보 등) ■ 주로 비공개 데이터	 비정형 데이터(비디오 스트림, 이미지, 오디오, 소셜 네트워크 등 사용자 데이터, 센서 데이터, 응용 프로그램 데이터 등) 조직 외부 데이터 일부 공개 데이터 		
데이터 특징	■ 데이터 증가량 관리 가능 ■ 신뢰성 높은 핵심 데이터	■ 기히급수로 양적 증가 ■ 쓰레기 ^{Garbage} 데이터 비중 높음 ■ 문맥 정보 등 다양한 데이터		
데이터 보유	정부, 기업 등 대부분 조직	 인터넷 서비스 기업(구글, 아마존 등) 포털(네이버, 다음 등) 이동 통신 회사(SKT, KTF 등) 디바이스 생산 회사(애플, 삼성전자 등) 		
데이터 플랫폼	정형 데이터를 생산·저장·분석·처리할 수 있는 전통적 플랫폼 예 분산 DBMS, 다중처리기, 중앙 집중 처리	비정형 대량 데이터를 생산·저장·분석·처리할 수 있는 새로운 플랫폼 예 대용량 비정형 데이터 분산 병렬 처리		

2. 빅데이터의 구성

그림 1-2 빅데이터의 속성 [02]

① Volume(양): 물리적인 크기와 개념적인 범위까지 대규모인 데이터의 양 ② Velocity(속도): 실시간으로 생산되며 유통 속도 또한 매우 빠른 데이터

- ③ Variety(다양성): 기존의 구조화된 정형 데이터는 물론 사진, 동영상 등의 비정형 데이터 가 포함
- ④ Veracity(정확성): 데이터의 원천 및 형태 다양화에도 불구하고 신뢰성이 보장된 데이터
- ⑤ Value(가치): 새로운 가치를 창출할 수 있는 데이터

3. 빅데이터 기술

1.데이터소스	2.수집	3.저장	4.처리	5.분석	6.표현
-내부데이터 데이터베이스, 파일 관리 시 스템 -외부데이터 인 터 넷 으 로 연결된 파일, 멀티미디어	- 크롤링 검색엔진의 로 봇 사 용 데이터 수집 -ETL 소스 데이터 의 추출·전송 ·변환·적재	-NoSQL데이 터베이스 비정형 데이 터 관리 -스토리지 빅데이터 저 장 -서버 초경량 서버	-맵리듀스 데이터 추출 -프로세싱 다중업무처리	-NLP 자연어처리 -기계학습 머신 러닝으로 데이터 패턴 발견 -직렬화 데이터 간의 순서화	-가시화데이터를 도표나 그래픽적으로 표현-획득데이터의 획득 및 재해석

4. 빅데이터 활용

① 제조업

- 설비보전: 센서 데이터의 가시화를 통하여 공장전체, 라인별 설비의 운전상황, 고장이 많은 설비의 파악, 설비 문제를 조기 발견 가능합니다.
- 제품 트래킹: 바코드 스캐너와 무선장비를 이용하여 원자재 조달에서 생산, 소비 또는 폐기에 이르기까지 추적할 수 있습니다.

② 의료업

- 유행병의 발생을 예측하고 영향을 최소화하기 위한 예방책을 강구
- 수백만 명의 환자로부터 수집된 액셀 데이터를 근거에 따라 진단, 웨어러블 디바이스를 사용하여 빅데이터가 환자의 건강상태를 감시하고 의사에게 보고

코로나 현황 대시보드

③ 금융업

- 클라우드 컴퓨팅으로 리스크를 관리하여 효율 향상
- 고객 데이터 수집, 분석을 통해 서비스 customizing
- Clustering + Association 데이터 분석 기법을 사용하여 지점 장소 선정 등 중요의사결정

④ 소매업

- 판매 데이터를 패턴화해 고객을 분류하고 marketing customizing
- 예측 분석을 통해 공급과 수요 예측의 정확도를 높임
- 히트 상품과 데드 셀러를 분석해서 재고 예측 -> 재고 보유 비용의 영향 최소화

_

5. 빅데이터 해결과제

[기술관점]

- 데이터 스토리지 : 약 2년마다 2배가량 증가하는 데이터 양의 증가를 따라잡을 데이터 스토리지 기술의 개발 필요
- 데이터 큐레이션 : 클라이언트에게 의미있는 데이터로 정제하기 위해 작업 시간의 50~80% 를 사용

[사용자관점]

- 개인 정보 보안 : 보호 조치 없이 정보활용에만 초점이 맞춰져 가명처리된 고객 정보를 정보 주체의 동의 없이 판매, 공유, 결합할 가능성이 증가 (ex. 카카오맵 어플리케이션 신상 정보 노출, 데이터 3법 논란)
- 국내 기업의 낮은 기술 도입률 : 빅데이터라고 부를 만한 데이터가 없음, 중견 중소 기업 일수록 활용률 저조 (↓barplot. 빅데이터 분석 기술을 도입하지 않은 이유)

