Faglig kontakt:

Navn: Esten Ingar Grøtli

Tlf.: 920 99 036

# Eksamen - TTK 4100 Kybernetikk Introduksjon

Hjelpemidler: D - Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Da tidligere vurdering i faget teller 20% av den endelige karakteren, teller denne eksamenen 80%. Oppgavenes vekting er i forhold til endelig karakter.

## **Oppgave 1** (28%)

Gitt differensiallikninga

$$\dot{x} = ax + b\,, (1)$$

hvor a og b er konstanter.

(a) (4%) Vis at den generelle løsninga til differensiallikninga (1) er gitt av

$$x = Ce^{at} - \frac{b}{a}, (2)$$

hvor C er en konstant.

Hint: Du kan finne det nyttig å vite at

$$\int \frac{1}{ax+b} \, \mathrm{d}x = \frac{1}{a} \ln|ax+b|. \tag{3}$$

(b) (4%) Anta at likninga har en initialverdi gitt ved  $x(0) = x_0$ . Vis da at løsninga på differensiallikninga (1) er gitt av

$$x = x_0 e^{at} + \frac{b}{a} (e^{at} - 1). (4)$$

(c) (2%) En forenklet modell for temperaturen til ei kokeplate er gitt av differensiallikninga

$$\dot{T} = -\frac{k}{c}T + \frac{1}{c}(P - kT_{\text{rom}}), \qquad (8)$$

hvor P er effekten vi tilfører plata,  $T_{\rm rom}$  er temperaturen på lufta i rommet, c er varmekapasiteten og k er varmeovergangstallet mellom kokeplata og lufta i rommet. Hvilken balanselov er brukt for å komme fram til denne differensiallikninga?

(d) (8%) Forklar begrepene stasjonærverdi og tidskonstant, og bruk tallverdiene  $P = 500 \,\mathrm{W}, \, k = 2 \,\mathrm{W}\,^{\circ}\mathrm{C}^{-1}, \, T_{\mathrm{rom}} = 20 \,^{\circ}\mathrm{C}$  og  $c = 400 \,\mathrm{J}\,^{\circ}\mathrm{C}^{-1}$  til å finne disse.



Figur 1: Det første leddet av en robotarm.

- (e) (5%) Sett opp løsninga for kokeplatetemperaturen T(t), og bruk initialbetingelsen  $T(0) = T_0 = 20$  °C og tallverdiene for P, k,  $T_{\text{rom}}$  og c fra forrige oppgave til å finne temperaturen for t = 5 s og t = 10 s. Husk at løsninga til denne typen differensiallikninger er gitt av (4).
- (f) (5%) Dersom man ikke kan finne en analytisk løsning til differensiallikninga  $\dot{x} = f(x)$ , kan man beregne løsninga numerisk for eksempel ved hjelp av Eulers metode. Løsninga  $x_{n+1}$  (det vil si løsninga ved tidspunkt  $t_{n+1}$ ) er gitt av

$$x_{n+1} = x_n + hf(x_n), (9)$$

hvor h er skrittlengden. La  $h=5\,\mathrm{s}$ , og bruk Eulers metode til å regne ut løsninga for  $t=5\,\mathrm{s}$  og  $t=10\,\mathrm{s}$ . Sammenlikn med svaret fra forrige oppgave, og forklar eventuelle avvik.

## **Oppgave 2** (22%)

Figur 1 viser det første leddet av en robotarm (robotmanipulator). Ved å sette opp momentbalanse for systemet kommer man fram til følgende modell

$$J\ddot{\theta} = T_m - T_L \,, \tag{11}$$

der J er treghetsmomentet,  $\theta$  er vinkelen,  $T_m$  er momentet fra en motor som driver leddet og  $T_L$  er et lastmoment som skriver seg fra resten av robotarmen, gravitasjonsmoment, og en eventuell last i enden.

- (a) (4%) Tegn et blokkdiagram for modellen.  $T_m$  og  $T_L$  skal være inngangssignaler, og  $\theta$  er utgangen.
- (b) (2%) Momentet fra motoren  $T_m$  betraktes som pådrag. Vinkelen til armen skal styres ved hjelp av en PD-regulator

$$u(t) = T_m(t) = -K_p(\theta + T_d\dot{\theta}), \qquad (12)$$

der  $K_p > 0$  og  $T_d > 0$  er regulatorparametre. Det er antatt her at referansevinkelen er null. Hva må måles for å realisere denne regulatoren?

- (c) (2%) Det er ønskelig at reguleringssystemet skal ha kritisk demping. Hvorfor det?
- (d) (6%) Sett foreløpig  $T_L = 0$ . Gitt at J = 1, finn verdier for regulatorparametrene  $K_p$  og  $T_d$  slik at systemet får kritisk demping og udempet resonansfrekvens  $\omega_0 = 1$ .
- (e) (4%) Anta så at vi har et lastmoment  $T_L$  som virker på armen. Dette kan betraktes som en forstyrrelse som kan måles. Hvordan vil du modifisere regulatoren for å kompensere for denne forstyrrelsen? (Skriv opp uttrykket for regulatoren  $u(t) = \ldots$ ) Hva kalles denne teknikken?



Figur 2: Strekklapp i lastcelle.



Figur 3: Helbro.

(f) (4%) Forklar kort hva vi ønsker å oppnå med proporsjonal-, integral- og derivatleddene i en PID-regulator.

### Oppgave 3 (18%)

Gauge Factor for en strekklapp er definert som

$$G_F = \frac{\Delta R/R}{\Delta l/l} \,. \tag{14}$$

En strekklapp med  $G_F = 2.1$  og nominell motstand  $R = 240\,\Omega$  er montert i en lastcelle som skal måle en kraft F. Lastcellen er utformet som en stolpe med tverrsnittareal  $A = 2 \times 10^{-3} \,\mathrm{m}^2$  som vist i Figur 2. Stolpen er laget av aluminium med elastisitetsmodul  $E = 6.89 \times 10^{10} \,\mathrm{N \, m}^{-2}$ . Sammenhengen mellom stress og strekk er gitt av

$$E = \frac{\text{stress}}{\text{strekk}} = \frac{F/A}{\Delta l/l}.$$
 (15)

(a) (5%) Strekklappen  $R_4$  er plassert i en helbro (Wheatstonebro), se Figur 3. Vis at

$$V_{ab} = \Delta V = \frac{R_3 R_2 - R_1 R_4}{(R_1 + R_3)(R_2 + R_4)} V.$$
 (16)

- (b) (4%) Helbroens driftsspenning er på 12 V. Finn resistanseendringen i strekklappen når målebroens avvik  $\Delta V$  fra likevekt er 12 mV, og de tre andre motstandene i broa har resistans  $R_1=R_2=R_3=240\,\Omega.$
- (c) (3%) Hva er lasten dersom resistanseendringen til strekklappen er  $\Delta R = 5 \,\mathrm{m}\Omega$ ?



Figur 4



Figur 5

- (d) (2%) Anta at den ukjente motstanden er plassert lagt fra resten av målebroen. Hvilke teknikker vil du anbefale for å opprettholde nøyaktighet, med tanke på at du vil redusere feil i målingene på grunn av temperaturendringer og motstand i ledningene.
- (e) (4%) I stedet for å plassere strekklappen i en helbro kunne man brukt en halvbro. Forklar prinsippet bak en halvbro, og forklar hvorfor en helbro oftest er å foretrekke.

### **Oppgave 4** (12%)

- (a) (1%) Forklar kort hva vi mener med *kombinatoriske* og *sekvensielle* funksjoner, og forskjellen mellom disse to begrepene.
- (b) (1%) Skriv alle tallkombinasjonene av logikkfunksjonen c = a + b, hvor a, b, og c er boolske variable.
- (c) (1%) Skriv alle tallkombinasjonene av logikkfunksjonen  $c=a\cdot b$ , hvor  $a,\,b,$  og c er boolske variable.
- (d) (3%) Skriv det logiske uttrykket for x for hver av figurene a), b), c) ... h) i Figur 4.
- (e) (2%) Kan du finne et forenklet uttrykk for funksjonen i h) i Figur 4, og hvilket viktig teorem ligger til grunn for denne forenklingen?
- (f) (2%) Forklar hva som menes med  $h \phi y$  og lav representasjon når to distinkte spenningsnivåer brukes til å representere 0 og 1 i et elektronisk logikksystem.
- (g) (2%) Skriv et uttrykk for logikkfunksjonen x = f(a, b, s) i Figur 5, uttrykt ved inngangsvariablene a, b og s. Hva er virkningen av denne kretsen?