Unit 12

Registers and Counters

Logic Circuits (Spring 2022)

Registers

- Register
 - A group of flip-flops with a common clock input
 - Commonly used to store and shift binary data
- Shift register
 - A bit is shifted out one end, and it may be lost or shifted back in the other end
 - The serial input is loaded into the first or the last flip-flop
- Accumulator
- (Binary) Counter
 - A circuit that cycles through a fixed sequence of states
 - Usually constructed from two or more flip-flops which change states in a prescribed sequence when input pulses are received

12.1 Registers and Register Transfers

4-Bit D Flip-Flop Register

- 4-bit register
 - Each flip-flop stores one bit of information
 - 4-bit register stores 4 bits of information

- Signals and operations
 - When asynchronous clear signal(ClrN) = 0, the Q output will become 0
 - When Load = 1, the Clock Enable(CE) becomes 1 and thus the data applied to D inputs will be loaded in the flip-flops on falling edge
 - When Load = 0, the clock is disabled and the register holds its data

12.1 Registers and Register Transfers

논리회로 12-3

Shift Register

- Shift register
 - A register to store binary data
 - The data stored in a shift register can be shifted to the left or right when a shift signal is applied
 - Bits shifted out one end may be lost or shifted back in the other end

- Signals
 - Shifting occurs on the rising clock edge when Shift = 1
 - No shifting occurs and the data in unchanged when Shift = 0

12.2 Shift Registers 논리회로 12-4

Shift Register

■ Timing diagram

- Serial input(SI) is loaded into the first flip-flop(Q_3)
- The output of the first flip-flop (Q_3) is loaded into the second flip-flop
-

12.2 Shift Registers

논리회로 12-5

(Serial-In, Serial-Out) Shift Register

- 8-bit *serial-in*, *serial-out* shift registers
 - Serial in: data is shifted into the first flip-flop one bit at a time,
 - Serial out: data can only be read out of the last flip-flop and the outputs from the other flip-flops are not connected to terminals
 - Cannot load data in parallel

12.2 Shift Registers

(Serial-In, Serial-Out) Shift Register

Timing diagram

12.2 Shift Registers 논리회로 12-7

Universal Shift Register

• 4-bit parallel-in, parallel-out shift registers

12.2 Shift Registers 논리회로 12-8

Universal Shift Register

■ Timing diagram

12.2 Shift Registers 논리회로 12-9

Parallel Adder with Accumulator

- Accumulator
 - Register in which intermediate arithmetic and logic results are stored
 - Example: a number stored in an accumulator is added to a second number in another register

 \blacksquare *n*-bit accumulator can be combined with *n* full adders

$$- s_i \leftarrow x_i + y_i + c_i$$

12.1 Registers and Register Transfers

Parallel Adder with Accumulator

■ Typical adder cell with multiplexer

- Two operations
 - Accumulator could be loaded with the given number (when Ld = 1)
 - Accumulator could store the sum with the given number (when Ad = 1, and Ld = 0)

12.1 Registers and Register Transfers

논리회로 12-11

Binary Counter

- Synchronous counters
 - The operation of the flip-flops is synchronized by a common clock pulse
 - When several flip-flops must change state, the state changes occur simultaneously.
- Ripple counters
 - The state change of one flip-flop triggers another flip-flop

12.3 Design of Binary Counters

Johnson Counters

- Ring counter
 - A shift register with feedback

- Johnson counter
 - A shift register with inverted feedback
 - Also called as a twisted ring counter

12.2 Shift Registers

논리회로 12-13

Binary (Up) Counter with D Flip-flops

- Transition of 3-bit counter
 - $-000 \to 001 \to 010 \to 011 \to 100 \to 101 \to 110 \to 111 \to 000$
- Transition table (Next state table)

Present State			Next State		
C	В	Α	C ⁺	B^+	A^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

12.3 Design of Binary Counters

Binary (Up) Counter with D Flip-flops

• Karnaugh maps for D_C , D_B , and D_A

■ Flip-flop input equations

$$D_A = A^+ = A'$$

$$D_B = B^+ = BA' + B'A = B \oplus A$$

$$D_C = C^+ = C'BA + CB' + CA' = C'BA + C(BA)' = C \oplus BA$$

12.3 Design of Binary Counters

논리회로 12-15

Binary (Up) Counter with D Flip-flops

■ Logic diagram

12.3 Design of Binary Counters

Binary Up-Down Counter

■ Transition graph and table

	$C^+B^+A^+$		
CBA	U	D	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

■ Flip-flop input equations

$$D_A=A^+=A\ \oplus\ (U+D)$$

$$D_B=B^+=B\ \oplus\ (UA+DA')$$

$$D_C = C^+ = C \, \oplus \, (UBA + DB'A')$$

12.3 Design of Binary Counters

논리회로 12-17

Binary Up-Down Counter

■ Logic diagram

12.3 Design of Binary Counters

Binary Counter for Other Sequences

- An example counter
 - $-000 \rightarrow 100 \rightarrow 111 \rightarrow 010 \rightarrow 011$
- Transition graph and table

C	В	Α	C+	В+	A^+
0	0	0	1	0	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	_	_	_
1	1	0	-	_	_
1	1	1	0	1	0

Incompletely specified transition table

12.4 Counters for Other Sequences

논리회로 12-19

Binary Counter for Other Sequences

• Karnaugh maps for D flip-flop implementation

$$D_C = C^+ = B'$$
 $D_B = B^+ = C + BA'$
 $D_A = A^+ = CA' + BA' = A'(C + B)$

12.4 Counters for Other Sequences

Binary Counter for Other Sequences

• Logic diagram for D flip-flop implementation

12.4 Counters for Other Sequences

논리회로 12-21

Self-Starting Counter

- Problems with incompletely specified transition graph
 - The initial states may be unpredictable when the power is turned on
 - What happens if the state becomes unspecified
 - Example: state 001 (C = 0, B = 0, A = 1)
- *Self-starting counter*
 - Don't care states eventually lead into the main counting sequence
 - Example: state 001 goes to 111

12.4 Counters for Other Sequences