Tutorium 09: Typinferenz

Paul Brinkmeier

16. Dezember 2019

Tutorium Programmierparadigmen am KIT

Heutiges Programm

Programm

- Keine ÜBs :(
- Unifikation in Prolog
- Typinferenz mit Typisierungsbäumen
- Allgemeinster Unifikator

Datentypen in Prolog

Funktoren

```
a(b, c, d).
defg.
bintree(bintree(1, 2), bintree(3, bintree(4, 5))).
list(cons(1, cons(2, cons(3, nil)))).
'Abcd'('X', 'Y', 'Z').
```

- Funktor ≈ Name + Liste von Prolog-Ausdrücken
- Liste leer → "Atom"
- Name wird immer klein geschrieben
 - Großbuchstaben: bspw. 'List'

Variablen

```
?- X = pumpkin.
?- Y = honey_bunny.
?- Z = vincent.
?- [A, B, C] = [1, 2, 3].
?- f(L, rechts) = f(links, R)
```

- Variablen werden immer groß geschrieben
- = ist nicht Zuweisung, sondern Unifikation
- Unifikation \approx (formales) Pattern-Matching

Unikation zweier Prolog-Terme nach Robinson

```
unify(lhs, rhs) =
  if lhs == rhs: return []
  if isVar(lhs) and varName(lhs) not in fv(rhs):
    return [name(lhs) => rhs]
  if isVar(rhs) and varName(rhs) not in fv(lhs):
    return [name(rhs) => lhs]
  if isFunctor(lhs) and isFunctor(rhs)
  and functorName(lhs) == functorName(rhs):
  and functorLen(lhs) == functorLen(rhs):
    // unify functorArgs(lhs) and functorArgs(rhs)
    // concatenate all unifiers
  throw error
```

Unifikation zweier Funktoren nach Robinson

```
unifier = []
for i in 0..functorLen(lhs):
   unifier.addAll(unify(
     unifier.apply(lhs.getArg(i)),
     unifier.apply(rhs.getArg(i))
   ))
return unifier
```

- Argumente des linken und rechten Funktors werden nacheinander unifiziert
- Dabei müssen die vorherigen Substitutionen beachtet werden

Unifikation zweier Funktoren nach Robinson

```
unifier = []
for i in 0..functorLen(lhs):
   unifier.addAll(unify(
     unifier.apply(lhs.getArg(i)),
     unifier.apply(rhs.getArg(i))
   ))
return unifier
```

- Argumente des linken und rechten Funktors werden nacheinander unifiziert
- Dabei müssen die vorherigen Substitutionen beachtet werden
- Umformung des Robinson-Algorithmus der Vorlesung, nur zur Veranschaulichung!

Prolog-Unifikation

Unifiziert:

- \bullet A = x
- \bullet B = f(x)
- \bullet C = g(C)
- f(x, A, z) = f(x, y, B)
- g(x, A, z) = f(x, A, A)
- f(g(z)) = f(D)

Ergebnis: Entweder fail oder ein Unifikator.

Typinferenz

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

Wiederholung

- Bisher: Typisierung *prüfen*
- Gegeben Term t, Typ τ und Kontext Γ , zeige, dass $\Gamma \vdash t : \tau$
 - "t hat Typ τ im Kontext Γ "

$$\frac{\dots}{\mathtt{f}: \mathrm{int} \to \beta \vdash \lambda \mathtt{x.f} \ \mathtt{x}: \mathrm{int} \to \beta} \mathsf{ABS}$$

 \bullet "Zeige, dass $\lambda \mathtt{x.f}\ \mathtt{x}$ den Typ $\mathrm{int} \to \beta$ hat"

Wiederholung

- Bisher: Typisierung *prüfen*
- Gegeben Term t, Typ τ und Kontext Γ , zeige, dass $\Gamma \vdash t : \tau$
 - "t hat Typ τ im Kontext Γ "

$$\frac{\dots}{\mathtt{f}: \mathrm{int} \to \beta \vdash \lambda \mathtt{x.f} \ \mathtt{x}: \mathrm{int} \to \beta} \mathsf{Abs}$$

- ullet "Zeige, dass $\lambda x.f$ x den Typ $\operatorname{int} o eta$ hat"
- Jetzt drehen wir den Spieß um:

$$\frac{\dots}{\mathtt{f}: \mathrm{int} \to \beta \vdash \lambda \mathtt{x.f} \ \mathtt{x}: \alpha_1} \mathsf{ABS}$$

ullet "Finde den allgemeinsten Typen $lpha_1$ von $\lambda x.f$ x"

Var

- "Der Typkontext Γ enthält einen Typ σ für t"
- " σ kann mit τ instanziiert werden"

- dann gilt:
- "Variable t hat im Kontext Γ den Typ au "
- $\sigma \succeq \tau \leadsto$ " σ hat τ s Struktur und ist (mind.) allgemeiner"
 - $\operatorname{int} \to \operatorname{int} \succeq \operatorname{int} \to \operatorname{int}$
 - $\forall \alpha. \alpha \to \alpha \succeq \text{int} \to \text{int}$
 - $\alpha \to \alpha \not\succeq \text{int} \to \text{int}$
 - int \rightarrow int $\not\succeq \forall \alpha.\alpha \rightarrow \alpha$

App

- \Box , f ist im Kontext Γ eine Funktion, die ϕ s auf α s abbildet \Box
- "a ist im Kontext Γ /ein Term des Typs ϕ "

- dann gilt:
- "a eingesetzt in f ergibt einen Term des Typs α "

Abs

- "Damit *b* als Funktion von *p* typisierbar ist…"
- "... müssen wir den Typ von p in den Kontext einfügen"

- dann gilt:
- " $\lambda p.b$ ist eine Funktion, die π s auf ρ s abbildet"

Typinferenz

Vorgehensweise zur Typinferenz:

- Stelle Typherleitungsbaum auf
 - In jedem Schritt werden neue Typvariablen α_i angelegt
 - Statt die Typen direkt im Baum einzutragen, werden Gleichungen in einem Constraint-System eingetragen
- Unifiziere Constraint-System zu einem Unifikator
 - Robinson-Algorithmus, im Grunde wie bei Prolog

Robinson-Algorithmus

```
unify [] = []
unify [lhs = rhs | rest] =
  if lhs == rhs then unify rest
  if (lhs == Var a) and a not in fv(rhs):
    unify (apply [a => rhs] rest) ++ [a => rhs]
  if (rhs == Var a) and a not in fv(lhs):
    unify (apply [a => lhs] rest) ++ [a => lhs]
  if (lhs == a \rightarrow b) and (rhs == c \rightarrow d):
    unify (rest ++ [a = c, b = d])
  otherwise:
    fail
```

Erzeugt Unifikator zu einem Constraint-System.

Typinferenz: Übungsaufgabe

$$\frac{\dots}{\mathtt{f}: \mathrm{int} \to \beta \vdash \lambda \mathtt{x.f} \ \mathtt{x}: \alpha_1} \mathsf{ABS}$$

• "Finde den allgemeinsten Typen α_1 von $\lambda x.f x$ "

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\frac{\Gamma(x) = \sigma \quad \sigma \succeq \tau}{\Gamma \vdash x : \tau} \text{VAR} \qquad \frac{\Gamma \vdash f : \xi \quad \Gamma \vdash x : \phi}{\Gamma \vdash f : x : \alpha} \text{APP} \qquad \frac{\Gamma, p : \pi \vdash b : \beta}{\Gamma \vdash \lambda p.b : \alpha} \text{ABS}$$

 ${\it Constraint:} \ \{ \sigma = \tau \} \qquad \qquad {\it Constraint:} \ \{ \xi = \phi \to \alpha \} \qquad \qquad {\it Constraint:} \ \{ \alpha = \pi \to \beta \}$

Constraint-System auflösen

Typinferenz: Übungsaufgabe

$$\frac{\dots}{\vdash \lambda \mathtt{x}.\lambda \mathtt{f.f} \ \mathtt{x} \ \mathtt{x} : \alpha_1} \mathbf{A} \mathtt{BS}$$

ullet "Finde den allgemeinsten Typen $lpha_1$ von $\lambda x.\lambda f.f.xx$ "

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\frac{\Gamma(x) = \sigma \quad \sigma \succeq \tau}{\Gamma \vdash x : \tau} \text{VAR} \qquad \frac{\Gamma \vdash f : \xi \quad \Gamma \vdash x : \phi}{\Gamma \vdash f : x : \alpha} \text{APP} \qquad \frac{\Gamma, p : \pi \vdash b : \beta}{\Gamma \vdash \lambda p . b : \alpha} \text{ABS}$$

 ${\it Constraint:} \ \{\sigma=\tau\} \qquad \qquad {\it Constraint:} \ \{\xi=\phi\to\alpha\} \qquad \qquad {\it Constraint:} \ \{\alpha=\pi\to\beta\}$

Constraint-System auflösen

Ende

Gute Ferienzeit!