

STD2NB60 **STD2NB60-1**

N-CHANNEL 600V - 3.3 Ω - 2.6A DPAK/IPAK PowerMESH™ MOSFET

Table 1. General Features

Туре	V _{DSS}	R _{DS(on)}	I _D
STD2NB60	600 V	< 3.6 Ω	2.6 A
STD2NB60-1	600 V	< 3.6 Ω	2.6 A

FEATURES SUMMARY

- TYPICAL $R_{DS(on)} = 3.3 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED

DESCRIPTION

Using the latest high voltage MESH OVERLAY™ process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/ dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- SWITCH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING **EQUIPMENT AND UNINTERRUPTIBLE** POWER SUPPLIES AND MOTOR DRIVE

Figure 1. Package

Figure 2. Internal Schematic Diagram

Table 2. Order Codes

Part Number	Part Number Marking		Packaging
STD2NB60T4	D2NB60	DPAK	TAPE & REEL
STD2NB60-1	D2NB60	IPAK	TUBE

April 2004 1/11

STD2NB60/STD2NB60-1

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	600	V
V _{DGR}	Drain- gate Voltage (R _{GS} = 20 kΩ)	600	V
V _{GS}	Gate-source Voltage	± 30	V
I _D	Drain Current (cont.) at T _C = 25 °C	2.6	Α
I _D	Drain Current (cont.) at T _C = 100 °C	1.6	Α
I _{DM} ⁽¹⁾	Drain Current (pulsed)	10.4	Α
P _{tot}	Total Dissipation at T _C = 25 °C	50	W
	Derating Factor	0.4	W°/C
dv/dt (2)	Peak Diode Recovery voltage slope	4.5	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

Table 4. Thermal Data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal Resistance Junction-case Max	2.5	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	100	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	275	°C

Table 5. Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	2.6	A
Eas	Single Pulse Avalanche Energy (starting $T_j = 25$ °C; $I_D = I_{AR}$; $V_{DD} = 50$ V)	80	mJ

Note: 1. Pulse width limited by safe operating area 2. $I_{SD} \le 2.6A$, $di/dt \le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le V(_{BR})_{DSS}$, $T_j \le T_{JMAX}$

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

Table 6. Off

Symbol	Parameter	Test Conditions Min		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μΑ
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating Tc = 125 °C			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 100	nA

Table 7. On ⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}; I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V; I _D = 1.6 A		3.3	3.6	Ω

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Table 8. Dynamic

Symbol	Parameter	Test Conditions Min.		Тур.	Max.	Unit
9fs (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}; I_D = 1.6 A$	1.2	2		S
C _{iss}	Input Capacitance	V _{DS} = 25 V; f = 1 MHz; V _{GS} = 0		400	520	pF
C _{oss}	Output Capacitance			57	77	pF
C _{rss}	Reverse Transfer Capacitance			7	9	pF

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Table 9. Switching On

Symbol	Parameter	Test Conditions Min.		Тур.	Max.	Unit
td(on)	Turn-on Time	$V_{DD} = 300 \text{ V}; I_D = 1.6 \text{ A}; R_G = 4.7 \Omega$		11	17	ns
tr	Rise Time	V _{GS} = 10 V (see test circuit, Figure 16)		7	11	ns
Qg	Total Gate Charge	V _{DD} = 480 V; I _D = 3.3 A; V _{GS} = 10 V		15	22	nC
Q_{gs}	Gate-Source Charge			6.2		nC
Q _{gd}	Gate-Drain Charge			5.6		nC

Table 10. Switching Off

Symbol	Parameter	Test Conditions Min.		Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 480 \text{ V}; I_D = 3.3 \text{ A}; R_G = 4.7 \Omega$		11	16	ns
t _f	Fall Time	V _{GS} = 10 V (see test circuit, Figure 18)		13	18	ns
t _c	Cross-over Time			18	25	ns

Table 11. Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				3.3	Α
I _{SDM} ⁽¹⁾	Source-drain Current (pulsed)				13.2	Α
V _{SD} ⁽²⁾	Forward On Voltage	I _{SD} = 3.3 A; V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 3.3 \text{ A}$; di/dt = 100 A/ μ s		500		ns
Q _{rr}	Reverse RecoveryCharge	$V_{DD} = 100 \text{ V}; T_j = 150 ^{\circ}\text{C}$ (see test circuit, Figure 18)		2.1		μС
I _{RRAM}	Reverse RecoveryCharge			8.5		Α

Note: 1. Pulse width limited by safe operating area

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Figure 3. Safe Operating Area

Figure 5. Output Characteristics

Figure 4. Thermal Impedance

Figure 6. Transfer Characteristics

Figure 7. Transconductance

Figure 9. Static Drain-source On Resistance

Figure 11. Normalized Gate Thresold Voltage vs Temperature

Figure 8. Gate Charge vs Gate-source Voltage

Figure 10. Capacitance Variations

Figure 12. Normalized On Resistance vs Temperature

57

Figure 13. Source-drain Diode Forward Characteristics

Figure 14. Unclamped Inductive Load Test Circuit

Figure 15. Unclamped Inductive Waveforms

Figure 16. Switching Times Test Circuits For Resistive Load

Figure 17. Gate Charge Test Circuit

Figure 18. Test Circuit For Inductive Load Switching And Diode Recovery Times

477

PACKAGE MECHANICAL

Table 12. DPAK Mechanical Data

Cymbol		millimeters		inches			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	2.20		2.40	0.087		0.094	
A1	0.90		1.10	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.90	0.025		0.035	
B2	5.20		5.40	0.204		0.213	
С	0.45		0.60	0.018	0.024		
C2	0.48		0.60	0.019		0.024	
D	6.00		6.20	0.236		0.244	
E	6.40		6.60	0.252		0.260	
G	4.40		4.60	0.173		0.181	
Н	9.35		10.10	0.368		0.398	
L2		0.8			0.031		
L4	0.60		1.00	0.024		0.039	
V2	0°		8°	0°		0°	

Figure 19. DPAK Package Dimensions

Note: Drawing is not to scale.

Table 13. IPAK Mechanical Data

Symbol	millimeters			inches		
	Min	Тур	Max	Min	Тур	Max
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.033
B5		0.63			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

Figure 20. IPAK Package Dimensions

Note: Drawing is not to scale.

STD2NB60/STD2NB60-1

REVISION HISTORY

Table 14. Revision History

Date	Revision	Description of Changes
March-1998	1	First Issue
14-Apr-2004	2	Stylesheet update. No content change.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com