Data Quality Check: Version & Server Updates, Spectrum Check & Period Division

Seung-mok Lee
Sunkee kim's lab, Seoul Nat'l Univ.
COSINE Collaboration

Jul., 21st, 2021

Purpose of Data Quality Check

- We encountered the type 2 (Gaussian) noise at low energy.
- To remove those events, we are going to discard sub-runs having too high event rate at low energy region.

Procedure of Data Quality Check

- First, rate vs time behavior checked to identify any periods of sustained high rate.
- Next, for each sub-run count number of events in $1-6~{\rm keV}$ region after event selection and histogram results.
 - Without noise, the rate distribution should be Poissonian.
 - Fit histogram to the Poissonian and determined number of events in a sub-run that excludes a sub-run at various confidence levels.
 - Until the previous version (V00-04-15), 99.9% C.L. was used to remove sub-runs.
 - William, Feb 3rd, 2020
 - William, July 28th, 2020

Updates on Data Quality Check

- Data quality check is outdated.
 - Last update was July 2020, run 1873, production V00-04-15. Performed at cup cluster.
 - Used old BDT cuts for event selection.
- First, the manual was written.
- Second, scripts were modified for Olaf server and Slurm scheduler.
- Third, the event selection was updated. Tighter BDT and additional ES.
- Fourth, data quality check is now up to date.
 - V00-04-19, run 1939.
- Fifth, period division for crystal 4 and spectrum comparison were performed.
- The preliminary version of COSINE <u>database</u> is prepared.

Manual on Data Quality Check

- The manual deals with from how to set PyRoot environment, how to write and execute Slurm job submission shell scripts, to how to perform data quality check.
 - It also illustrates about Slurm array job and job dependency options.
 - Codes at (Olaf): /mnt/lustre/ibs/seungmok/Share/CosineDQC/
- I hope it helps you to start research with Olaf server.

1. Introduction

A) What is Data Quality Check?

- A new type of noise (called Gaussian noise, or type 2 noise) was found, especially in the low energy region, and it seems to appear more in some specific period.
- There has been some hypothesis about its origin, for example badly grounded calibration bar or LS leak, but nothing is quite sure.
- We have invented the BDTA variable to reject that noise, but still not so reliable.
- Thus, we check the spectral shape and discard sub-runs with exceptionally many scintillations in low energy (1~6 keV).
 - The data quality check would not unveil the modulation as its amplitude would be very small.
 - · Therefore, this job does not affect the unblinding.

B) What can I learn from this document?

- From this work, you can run quite simple and useful pyroot scripts in the Olaf server system.
- · You can set your own pyroot environment through Anaconda.
- You can submit multiple jobs to the jepyc node through the slurm scheduler.
 - You can find sample shell scripts that enable you to submit slurm array jobs and to set job dependency.
 - See sections 4-B-i), 5-B-i), 6-B-i), and 6-B-ii) for slurm array job.
 - See sections 4-B-ii), 5-B-ii), 6-B-iii), and 7) for slurm job dependency.
 - · Also, you can find how to detour slurm errors that often caused when the Olaf server is busy.
 - See section 4-B-ii) about this issue.
- Of course, COSINE members can learn how to perform the data quality check.

Job Flow of Data Quality Check in Olaf

- Using the Slurm scheduler in Olaf server, I could design the work structure so that a single command line execution performs the whole data quality check study.
 - Parallel running of data trimming.
 - Calculate event rate.
 - Draw plots and tag bad sub-runs.
- Only 1~2 days took.

```
--TIME----TIME----TIME----→
(trial )perform end to end.sh
(1) (trial )submit trim singlehit.sh
     at $MAIN/sources/4.TrimmingData/
 (1-a) perform_trim_singlehit_onerun.sh 1544
  (1-b) perform trim singlehit onerun.sh 1545
 <sup>[</sup>(1-z) perform trim singlehit onerun.sh 1935
-(2) submit graph rate vs time.sh
      at $MAIN/sources/5.ExtractRate/
        after (1)
   (2-a) perform_graph_rate_vs_time.sh_2
          after (1-a~z)
   (2-b) perform_graph_rate_vs_time.sh_3
          after (1-a~z)
   L(2-e) perform_graph_rate vs time.sh 7
            after (1-a~z)
  -(3) submit draw.sh
       at $MAIN/sources/6.DrawPlots/
       after (2)
    -(3-a) perform_draw_rate_vs_hist.sh
           after (2-a~e)
    L(3-b) perform draw rate hist.sh
           after (2-a~e)
```

Criteria Update on Data Quality Check

- BDT cut was updated on last October.
 - YJ Ko, Oct 21st, 2020
 - BDT criteria became tighter, and ES (DAMA variable) cut was added.

After BDT cut → (SH+MH)/(PR+CR) — MH/CR — MH/(PR+CR) + SH/CR

Crystal 2 Result

• Long term instability from 20-04-18 (1873.061) to 20-05-18 (1873.410).

Crystal 2 Result

- Long term instability from 20-04-18 (1873.061) to 20-05-18 (1873.410).
- Removing that instability, we get the following well-fitted plot.
- To be sure for noise rejection, 99.9% CL was adopted.

Crystal 3 Result

Distribution looks good. Some sub-runs were tagged.

Crystal 4 Result

 Count is decreasing. Without considering it, most bad sub-runs were tagged at early time.

Crystal 4 Result

- Dividing the period by 6 months, and detecting outliers in each section, the following bad sub-runs are detected.
 - Last section contains the remaining period.

Crystal 6 Result

Distribution looks good. Some sub-runs were tagged.

Crystal 7 Result

• Long term instability from 16-12 (1555.000) to 16-04 (1625.008).

Crystal 7 Result

- Long term instability from 16-12 (1555.000) to 16-03 (1625.008).
- Removing that instability, we get the following well-fitted plot.
- To be sure for noise rejection, 99.9% CL was adopted.

Bad Sub-run Candidates

1919 632

Crys		Crystal 2				Crystal 3				Crystal 4				
Run	Sub-run	s Ru	ın	Sub-runs	Run	Sub-r	runs	Run	Sub-runs	Run	Sub-r	uns	Run	Sub-runs
1544 26	122-123 260-281	17	'18	837	1616	088		1718	060		072		1859	942
			366-370	1010	358	1719	1710	1678	562		1861	619		
	507-515	18	1862	382	1634	006		1719	763		686		1863	224
1546	000-002			453	1652	756		1858	046	1718	424		1873	173
1626	026	18	863	099	1672	802		1859	452		764		1875	339
1671	138	18	73	061-410	1678	230		1868	704	1771	346		1935	684
	293		(lor	ng term)		612		1935	996	1777	229			789
1672	216	18	375	252										

324

Bad Sub-run Candidates

	Crys	tal 6			Crys	tal 7	
Run	Sub-runs	Run	Sub-runs	Run	Sub-runs	Run	Sub-runs
1626	018	1719 030			288	1627	002
1672	436	1865	055	1544	406	1652	002
1718	522			1544	521-522	1672	343
					526	1072	909
				1555	*	1718	548
				1616	*	1862	806
				1617	*	1875	650
				1618	*	1073	699
				1625	*	1919	462

(long term)

1939 : 798

Spectrum Comparison Crystal 2

- Spectrum of bad sub-run candidates in crystal 2 is very noisy.
- Those sub-runs were tagged as bad.

Spectrum Comparison Crystal 3, 4, 6

- For crystal 3, 4 and 6, spectrums of bad sub-run candidates show no significant difference from good sub-runs.
 - These crystals don't have any clear long term instability.
- No bad sub-runs were tagged for those crystals.

Spectrum Comparison Crystal 7

- Spectrum of long term instability in crystal 7 is very noisy.
- Bad sub-run candidates out of the instability showed no significant difference from good sub-runs.

Only the long term instability in crystal 7 was tagged as bad.

Spectrum Comparison Crystal 7 – 1544.52#

- Two sub-runs in 1544 had very high event rate.
- But they also did not show some problematic spectrum.

Conclusion Bad Sub-run List

- The bad sub-runs list for V00-04-19, run ~1939 was determined as right tables.
- Crystal 4 decaying component could be dealt by dividing the period by 6 months.
- Bad/good sub-runs were validated by observing their energy spectrums.
- The preliminary version of database is now prepared.
 - https://cosine.cup.re.kr/app2/offline

Crystal 2								
Run	Sub-runs	Run	Sub-runs					
	122-123	1718	837					
1544	260-281		366-370					
	507-515	1862	382					
1546	000-002		453					
1626	026	1863	099					
1671	138	1873	061-410					
10/1	293	(long term)						
1672	216	1875	252					
1072	324	1919	632					

	Crystal 3, 4, 6									
No bad sub-runs were tagged.										
were tagged.										
		Cr	ystal 7							
	Run		Sub-runs							
	155	5	*							
	161	6	*							
	161	7	*							
	161	8	*							
	162	5	*							
	(long term)									

BACK UP

Codes for Data Quality Check

- You can find my source codes in the directory below.
 - (Olaf): /mnt/lustre/ibs/seungmok/Share/data_quality_2021/
 - Or (GitLab): <u>gitlab.com/cosine100/data_quality_2021/</u>
- Results are in the directory below.
 - (Olaf): /mnt/lustre/ibs/seungmok/Research/2106_DataQualityCheck2/CosineDQC/
 - 'plots' and 'result' folders are containing the plots and bad sub-run list.

New Event Selection Efficiency

YJ Ko, Oct 21st, 2020

Crystal 4 Histograms

Seungmok Lee Data Quality Check 26 2021-07-21

Crystal 4 Histograms

Crystal 4 Histograms

LAST SLIDE

