AAE 564 Fall 2020

Homework One

Friday, September 4

Exercise 1 Consider a system described by a single n^{th} -order linear differential equation of the form

$$q^{(n)} + a_{n-1}q^{(n-1)} + \dots a_1\dot{q} + a_0q = u$$

where $q(t) \in \mathbb{R}$ and $q^{(n)} := \frac{d^n q}{dt^n}$. By appropriate definition of state variables, obtain a first order state space description of this system.

Exercise 2 By appropriate definition of state variables, obtain a first order state space description of the following systems where q_1 and q_2 are real scalars.

(i)

$$2\ddot{q}_1 + \ddot{q}_2 + \sin q_1 = 0$$

$$\ddot{q}_1 + 2\ddot{q}_2 + \sin q_2 = 0$$

(ii)

$$\ddot{q}_1 + \dot{q}_2 + q_1^3 = 0$$
$$\dot{q}_1 + \dot{q}_2 + q_2^3 = 0$$

Exercise 3 Obtain a state-space description of the following system.

$$\ddot{q}_1 + \dot{q}_2 + \sin q_1 = u$$

 $\dot{q}_2 + q_1 + q_2 = 0$

 $y = q_1 + q_2$

Exercise 4 Consider the discrete-time system described by

$$q(k+3) + 7q(k+2) + q(k+1) + 6q(k) + 7u(k) = 0$$

Obtain a state space description of this system.

Exercise 5 Obtain a state space representation of the following system:

$$q(k+n) + a_{n-1}q(k+n-1) + \ldots + a_1q(k+1) + a_0q(k) = 0$$

where $q(k) \in \mathbb{R}$.

Exercise 6 Obtain a state description of the following system:

$$q_1(k+2) + q_2(k+1) + q_1(k) = u(k)$$

$$q_1(k+2) - q_2(k+1) + q_2(k) = 0$$

$$y(k) = q_1(k+1) + q_2(k)$$

Exercise 7 Recall the two pendulum cart example in the notes. Consider the following parameter sets

	m_0	m_1	m_2	l_1	l_2	g
P1	2	1	1	1	1	1
P2	2	1	1	1	0.99	1
Р3	2	1	0.5	1	1	1
P4	2	1	1	1	0.5	1

and initial conditions,

	y	$ heta_1$	θ_2	\dot{y}	$\dot{ heta}_1$	$\dot{ heta}_2$
IC1	0	-10°	10°	0	0	0
IC2	0	10°	10°	0	0	0
IC3	0	-90°	90°	0	0	0
IC4	0	-90.01°	90°	0	0	0
IC5	0	100°	100°	0	0	0
IC6	0	100.01°	100°	0	0	0
IC7	0	179.99°	0°	0	0	0

Simulate the system with u = 0 using the following combinations:

 $P1: \qquad IC1, IC2, IC3, IC7$

P4: IC1, IC2, IC3, IC4