Distributed Information Systems: Spring Semester 2015

Quiz 4: Inverted Files + Unstructured P2P				
Student Name: Student ID:			Date: 16 Apr 2015 Time: 11:15AM to 11:30AM	
Total number of questions: 8 Each question has a single answer!				
1. In the physical represent n is the number of documents n is the number of documents.		ile, the size of the index	file is typically in the order of: (where	
$\Box a) \ O(log(n))$				
$\boxtimes b) \ O(\sqrt{n})$				
$\Box c) O(n)$				
$\Box d) O(n^2)$				
2. Which of the following s	tatements is true ab	out posting files?		
$\Box a$) Merging posting file	es has logarithmic co	mplexity in the size of t	he posting files.	
\Box b) The values stored in	n posting files are the	e weights of a term with	regard to a specific document.	
\Box c) The posting files ar	e always split into ch	unks to speed up the lo	ok up.	
$\boxtimes d$) The space complex that all words are in		s is proportional to the	document collection size (considering	
3. Which of the following s	tatements is true ?			
\Box a) The Map-reduce frathem in a single file	-	problem of space require	ement of posting files by compressing	
,	of index terms (i.e. ter than what is require	, · · · · · · · · · · · · · · · · · · ·	he storage required for the index file	
\square c) Inverted files have l	oeen developed as alt	ernatives for boolean re	trieval and vector space retrieval.	
$\boxtimes d$) Inverted files are no	ot optimized for search	hing dynamically chang	ing text collections.	
query. Suppose that both and L_2 is the same as L_1 ,	th L_1 and L_2 contain the but shifted by $n/2$ (i.e., steps are required by	he same n documents ape., $L_1 = [d_1, d_2, \dots d_n]$ any the pointer p_1 to find	pointers) corresponding to a two-term ppearing in order of their highest score, at $L_2 = [d_{n/2+1}, d_{n/2+2}, \dots d_n, d_1, \dots d_{n/2}]$ the top- k documents in the sequential ers)	
$\Box a) k$	$\boxtimes b)$ $\frac{n+k}{2}$	$\Box c) \frac{n}{2} + k$	$\Box d) n-k$	

5. Which of the following statements about hierarchi	cal overlay networks is true ?			
\square a) The request latency is increased compared to	unstructured overlay networks.			
\Box $b)$ Fault-tolerance is always better compared to	unstructured overlay networks.			
$\boxtimes c$) Message flooding incurs less messages comparation	red to unstructured overlay networks.			
\Box $d)$ The storage cost is equally distributed over a	ll peers in the network.			
6. Which of the following quantities doesn't follow a	a power law distribution?			
$\boxtimes a)$ The number of outgoing links from a node in	an unstructured overlay network.			
\square b) The amount of resources that was contributed	d to the Gnutella network by different users.			
\square c) The number of incoming links to a node in an	n unstructured overlay network.			
\square $d)$ The number of visits to a website.				
issues a query, it forwards the query message to	odes, with each node having out-degree d . When a node all the d nodes it is connected to (as long as the TTL prwards the message to its own d neighbors, and so on. see that have already been visited.			
In such a scenario, the maximum number of query (with a starting TTL of 1 and maximum TTL of 2	messages sent over all with the expanding ring algorithm $TTL)$ is:			
$\Box a) TTL^2 * d$	$\Box c) d*TTL^{1} + (d-1)*TTL^{2} + + TTL^{d}$			
$\boxtimes b) \ TTL * d^1 + (TTL - 1) * d^2 + + d^{TTL}$	$\Box d) (d/N)^{TTL}$			
8. Which of the following is wrong in the context of	unstructured peer-to-peer networks:			
\square a) k-Random walkers can be used instead of flooverall.	ooding in order to reduce the number of messages sent			
\square b) The expanding ring algorithm makes use of power-law distributed.	the fact that the resources and queries are likely to be			
$\boxtimes c$) The expanding ring algorithm achieves a lower	e) The expanding ring algorithm achieves a lower search latency compared to the flooding algorithm.			
\Box d) Replicating a resource across nodes in the ne	etwork will result in a lower number of message required			

to find that specific resource.