Exponentialfunktionen

$$f(x) = a \cdot b^x = a \cdot e^{\ln(b)x}$$

a Startwert

$$b > 1$$
 Wachstumsfaktor $(\ln(b) > 0)$

 $e \approx 2,7183$

$$0 < b < 1$$
 Abnahmefaktor $(\ln(b) < 0)$

Eigenschaften der e-Funktion

Für
$$f(x) = e^{k \cdot x}, k \ge 1$$
 gilt:

•
$$f(0) = 1$$

•
$$f(x) > 0$$
 für alle $x \in \mathbb{R}$

 \cdot f wächst steng monoton

$$f(x) \to \infty \text{ für } x \to \infty$$

$$f(x) \to 0 \text{ für } x \to -\infty$$

Für
$$f(x) = e^{k \cdot x}, k \le -1$$
 gilt:

$$f(0) = 1$$

•
$$f(x) > 0$$
 für alle $x \in \mathbb{R}$

$$\cdot$$
 f fällt steng monoton

$$f(x) \to 0 \text{ für } x \to \infty$$

$$f(x) \to -\infty$$
 für $x \to -\infty$

Kombinationen der e-Funktion

$$f(x) = k \cdot e^x$$

$$f(0) = k$$

$$f(x) = x^k \cdot e^x$$
, k gerade

• Tiefpunkt bei
$$(0 | 0)$$
 für $k = 2$

• Sattelpunkt bei
$$(0 \mid 0)$$
 für $k > 2$

$$f(x) = x^k \cdot e^x$$
, k ungerade

•
$$f(0) = 0$$

$$\cdot \ {\rm Tiefpunkt \ bei} \ x = -k$$

• Sattelpunkt bei
$$(0 \,|\, 0)$$

$$f(x) = k \cdot e^x + k \cdot e^{-x}$$

•
$$f(0) = 2k$$

• Tief-
$$(k > 0)$$
/Hochpunkt $(k < 0)$ bei $(0 | 2k)$

• Achsensymmetrisch
$$f(x) = f(-x)$$

•
$$f(0) = 0$$

• Punktsymmetrisch
$$-f(x) = f(-x)$$

• Streng monoton wachsend
$$(k>0)$$
/fallend $(k<0)$

Produkt aus e-Funktion und Polynomen

$$f(x) = g(x) \cdot e^x$$

 $g_n(x)$ Ganzrationale Funktion (Polynom) vom Grad n.

h(x) e-Funktion $(h(x) = e^{mx+b})$

· Ableitung mit Produktregel

$$f'(x) = g'_n(x) \cdot h(x) + g_i(x) \cdot h'(x)$$

· Nullstellen:

$$f(x) = 0 \Leftrightarrow g_n(x) = 0,$$
 da $h(x) > 0$ für alle x

· Verlauf im Unendlichen:

Die e-Funktion wächst stärker als jede ganzrationale Funktion! Das Verhalten für $x \to \infty$ bzw, $x \to -\infty$ wird also von h(x) bestimmt:

-
$$f(x) \to \infty \Leftrightarrow h(x) \to \infty$$

-
$$f(x) \to -\infty \Leftrightarrow h(x) \to -\infty$$

-
$$f(x) \to 0 \Leftrightarrow h(x) \to 0$$

