Задача A. LCA

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Вам нужно ответить на m запросов вида "найти LCA двух вершин".

LCA вершин u и v в подвешенном дереве — это наиболее удалённая от корня дерева вершина, лежащая на обоих путях от u и v до корня.

Формат входных данных

В первой строке задано целое число n — число вершин в дереве $(1 \le n \le 2 \cdot 10^5)$.

В следующих n-1 строках записано одно целое число x. Число x на строке i означает, что x предок вершины i(x < i).

Затем дано число m.

Далее заданы m $(0 \leqslant m \leqslant 5 \cdot 10^5)$ запросов вида (u,v) — найти LCA двух вершин u и v $(1 \leqslant u,v \leqslant n;\, u \neq v).$

Формат выходных данных

Для каждого запроса выведите LCA двух вершин на отдельной строке.

Примеры

стандартный ввод	стандартный вывод
5	1
1	1
1	
2	
3	
2	
2 3	
4 5	
5	2
1	2
1	1
2	
2	
3	
4 5	
4 2	
3 5	

Задача В. Цветные волшебники

 Имя входного файла:
 magic.in

 Имя выходного файла:
 magic.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Сказочная страна представляет собой множество городов, соединенных дорогами с двухсторонним движением. Причем из любого города страны можно добраться в любой другой город либо непосредственно, либо через другие города. Известно, что в сказочной стране не существует дорог, соединяющих город сам с собой и между любыми двумя разными городами, существует не более одной дороги.

В сказочной стране живут желтый и синий волшебники. Желтый волшебник, пройдя по дороге, перекрашивает ее в желтый цвет, синий — в синий. Как известно, при наложении желтой краски на синюю, либо синей краски на желтую, краски смешиваются и превращаются в краску зеленого цвета, который является самым нелюбимым цветом обоих волшебников.

В этом году в столице страны (городе f) проводится конференция волшебников. Поэтому желтый и синий волшебники хотят узнать, какое минимальное количество дорог им придется перекрасить в зеленый цвет, чтобы добраться в столицу. Изначально все дороги не покрашены.

Начальное положение желтого и синего волшебников заранее не известно. Поэтому необходимо решить данную задачу для k возможных случаев их начальных расположений.

Формат входных данных

Первая строка входного файла содержит целые числа: n ($1 \le n \le 100\,000$) и m ($1 \le m \le 500\,000$) — количество городов и дорог в волшебной стране соответственно.

Третья строка содержит одно целое число f ($1 \le f \le n$) — номер города, являющегося столицей сказочной страны. В следующих m строках, находится описание дорог страны. В этих m строк записано по два целых числа a_i и b_i , означающих, что существует дорога, соединяющая города a_i и b_i .

Следующая строка содержит целое число k ($1 \le k \le 100\,000$) — количество возможных начальных расположений волшебников.

Далее следуют k строк, каждая из которых содержит два целых числа — номера городов, в которых изначально находится желтый и синий волшебники соответственно.

Формат выходных данных

Для каждого из k случаев, ваша программа должна вывести в выходной минимальное количество дорог, которое придется покрасить в зеленый цвет волшебникам для того, чтобы добраться в столицу.

Пример

magic.in	magic.out
6 6	1
1	2
1 2	
2 3	
3 4	
4 2	
4 5	
3 6	
2	
5 6	
6 6	

Задача С. Самое дешевое ребро

Имя входного файла: minonpath.in Имя выходного файла: minonpath.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса (стоимости). Вам нужно ответить на M запросов вида найти у двух вершин минимум среди стоимостей ребер пути между ними.

Формат входных данных

В первой строке файла записано одно число -n. (количество вершин).

В следующих n-1 строках записаны два числа — x и y. Число x на строке i означает, что x — предок вершины $i+1,\,y$ означает стоимость ребра.

 $x \le i, |y| \le 10^6.$

В следующей строке файла записано число m — количество запросов.

Далее m запросов вида (x,y) — найти минимум на пути из x в y $(x \neq y)$.

Ограничения: $2 \le n \le 5 \cdot 10^4$, $0 \le m \le 5 \cdot 10^4$.

Формат выходных данных

m строк — ответы на запросы.

Пример

minonpath.in	minonpath.out
5	2
1 2	2
1 3	
2 5	
3 2	
2	
2 3	
4 5	

Задача D. Прибавление на пути

Имя входного файла: treepathadd.in Имя выходного файла: treepathadd.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задано дерево. В каждой вершине есть значение, изначально все значения равны нулю. Требуется обработать запрос прибавления на пути и запрос значения в вершине.

Формат входных данных

В первой строке задано целое число n — число вершин в дереве $(1 \le n \le 3 \cdot 10^5)$.

В следующих n-1 строках заданы ребра дерева: по два целых числа v и u в строке — номера вершин, соединенных ребром $(1 \le v, u \le n)$.

В следующей строке задано целое число m — число запросов ($1 \le m \le 5 \cdot 10^5$).

Следующие m строк содержат запросы в одном из двух форматов:

- + v u d прибавить число d во все значения в вершинах на пути от v до u ($1 \le v, u \le n;$ $1 \le d \le 10^9$);
- ? v вывести значение в вершине v $(1 \le v \le n)$.

Формат выходных данных

Выведите ответы на все запросы.

Примеры

treepathadd.in	treepathadd.out
5	1
1 2	3
1 3	1
3 4	
3 5	
5	
+ 2 5 1	
? 3	
+ 1 1 2	
? 1	
? 3	