Функциональный анализ

Ф. Л. Бахарев *

6 сентября 2016 г.

Содержание

1 Линейное нормированное пространство

2

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Линейное нормированное пространство

Определение 1.1. Линейное множество L над полем скаляров \mathbb{R} (\mathbb{C}) — множество с операциями сложения и умножения на скаляр, удовлетворяющее свойствам:

1.
$$(x + y) + z = x + (y + z) \forall x, y, z \in L$$

2.
$$x + y = y + x \ \forall x, y, z \in L$$

- 3. Существует элемент 0 такой, что $x + 0 = x \ \forall x \in L$
- 4. Для любого $x \in L$ существует обратный элемент по сложению -x такой, что -x+x=0

5.
$$\lambda(\mu x) = (\lambda \mu) x \ \forall \lambda, \mu$$
 — скаляров, $x \in L$

6.
$$\lambda(x + y) = \lambda x + \lambda y$$

7.
$$(\lambda + \mu)x = \lambda x + \lambda y$$

Определение 1.2. $\phi:L\to\mathbb{R}$ называется нормой, если:

1.
$$\varphi(x+y) \leqslant \varphi(x)\varphi(y)$$

2.
$$\varphi(\lambda x) = |\lambda| \varphi(x)$$

3.
$$\varphi(x) \geqslant 0$$

4.
$$\varphi(x) = 0 \iff x = 0$$

Если выполнены только первых три свойства, то ϕ называется полунормой.

Замечание 1.3. 1.
$$\rho(x,y) = \phi(x-y)$$
 — метрика

2. Если на пространстве задана норма $\|\cdot\|$, то $X = (L, \varphi)$ — нормированное пространство.

Определение 1.4. $x_n \to x$ в X, если $\|x_n - x\| \to 0$ при $n \to \infty$, то есть $\forall \epsilon > 0 \exists N: \forall n > N$ $\|x_n - x\| < \epsilon$

Определение 1.5. $\{x_n\}\subset X$ — фундаментальная последовательность (сходящаяся в себе, последовательность Коши), если $\|x_n-x_m\|\to 0$ при $m,n\to\infty$, то есть $\forall \varepsilon>0 \exists N: \forall m,n>N \ \|x_m-x_m\|<\varepsilon$

Замечание 1.6. $x_n \to x \implies \{x_n\}$ — фундаментальная. Обратное, вообще говоря, неверно.

Определение 1.7. Нормированное пространство X называется полным, если из фундаментальности последовательности следует существование предела.

Определение 1.8. Пусть $x_n \in X$. $\sum\limits_{j=1}^{\infty} x_j$ сходится, если $S_n = \sum\limits_{j=1}^n x_j$ имеет предел $\lim S_n = S$. S называется суммой ряда.

Определение 1.9. Ряд сходится абсолютно, если $\sum\limits_{i=1}^{\infty}\|x\|$ сходится.

Замечание 1.10. Из абсолютной сходимости не следует обычная сходимость.

 S_n сходится $\iff |S_n-S_m| \to 0$. Пусть $C_n = \sum\limits_{j=1}^n \|x\|$. C_n сходится $\iff |C_n-C_m| \to 0$.

Если мы хотим, чтобы сходимость S_n была равносильна $\|S_n - S_m\| \to 0$, то нам нужна полнота пространства.

Определение 1.11. Полное линейное нормированное пространство называется банаховым пространством (в честь польского математика Стефана Банаха).

Примеры 1.12. • Евклидово пространство: \mathbb{R}^n с нормой $\|x\| = |x| = \sqrt[n]{|x_1|^2 + \ldots + |x_n|^2}$ то же, что ℓ_n^2 с нормой $\|\cdot\|_2$

- ullet $\ell_n^1 = (\mathbb{R}^n, \|\cdot\|_1)$, где $\|x\|_1 = |x_1| + \ldots + |x_n|$
- $\ell_n^\infty=(\mathbb{R}^n,\|\cdot\|_\infty)$, где $\|\mathbf{x}\|_\infty=\max_{1\leqslant i\leqslant n}|x_i|$
- $\ell_n^p = (\mathbb{R}(\mathbb{C}), \|\cdot\|_p, \|x\|_p = (\sum_{j=1}^n |x_j|^p)^{\frac{1}{p}}, p \geqslant 1$
- Пусть Ω область в \mathbb{R}^m , т. е. ограниченное открытое множество. $\overline{\Omega}$ замыкание Ω . Ясно, что $\overline{\Omega}$ компакт в \mathbb{R}^m . Рассмотрим пространство $C(\overline{\Omega})$ с нормой $\|x\|=\max_{t\in\overline{\Omega}}|x(t)|$

Упражнение 1.13. Верно ли, что $\|x\|_{\mathfrak{p}} \to \|x\|_{\infty}$ при $\mathfrak{p} \to \infty$?

Теорема 1.14. Пространство $C(\overline{\Omega})$ полно.

Доказательство. Рассмотрим фундаментальную последовательность $x_n \in C(\overline{\Omega}).$

$$\forall \epsilon > 0 \exists N : \forall k, n > N \|x_k - x_n\| = \max_{t \in \overline{\Omega}} |x_n(t) - x_k(t)| < \epsilon$$

Возьмём $t\in\overline{\Omega}$. $\{x_n(t)\}$ — числовая последовательность. Тогда получаем $|x_n(t)-x_k(t)|<\varepsilon$, отсюда $\{x_n(t)\}$ — фундаментальна, значит существует $\lim_{n\to\infty}x_n(t)=x(t)$.

Проверим, что $\max_{t\in\overline{\Omega}}|x_n(t)-x(t)|\to 0$ при $n\to\infty$, т. е. $x_n\rightrightarrows x$ на $\overline{\Omega}$. Заметим, что $\forall k,n>N|x_k(t)-x_n(t)|<\varepsilon\implies |x(t)-x_n(t)|\leqslant \varepsilon$.

Почему же χ непрерывна? Потому что равномерный предел непрерывных функций непрерывен.

Пусть $[a,b] \subset \mathbb{R}$ Рассмотрим пространство дифференцируемых функций $C^1[a,b]$. Какую норму на нём выбрать?

- $\bullet \ \phi_1(x) = \max_{t \in [\mathfrak{a}, \mathfrak{b}]} |x(t)|$
- $\bullet \ \phi_2(x) = \max_{t \in [a,b]} |x'(t)|$
- $\varphi_3(x) = \varphi_1(x) + \varphi_2(x)$
- $\bullet \ \phi_4(x) = |x(a)| + \max_{t \in [a,b]} |x'(t)|$

Заметим, что φ_2 нормой вообще не является, а φ_1 не даёт полноты пространства.

Теорема 1.15. 1. Пространство $(C^1[a, b], \varphi_1)$ не полно;

2. Пространство ($C^{1}[a,b], \varphi_{3}$) полно;

Доказательство. Докажем первое утверждение.

Первый аргумент. x — производная непрерывная на [a,b], негладкая. По теореме Вейерштрасса для любого $\epsilon>0$ существует многочлен P такой, что $\max_{[a,b]}|P-x|<\epsilon$

_

Второй аргумент. Пусть $[a,b]=[-1,1],\ x(t)=|t|\notin C^1[a,b],\ x^{\epsilon}(t)=|t|^{1+\epsilon}\in C^1[a,b].$ $\max|x(t)-x^{\epsilon}(t)|\to 0$ при $\epsilon\to 0.$

Для доказательства второго утверждения возьмём $x_n \in C^1[a,b]$ — последовательность, фундаментальную относительно ϕ_3 .

$$\phi_3(x_n-x_k)\to 0 \text{ при } n,k\to \infty \implies \begin{cases} \phi_1(x_n-x_k)\to 0\\ \phi_2(x_n-x_k)\to 0 \end{cases} \implies \exists x\in C[\mathfrak{a},\mathfrak{b}],y\in C[\mathfrak{a},\mathfrak{b}]$$

$$\begin{cases} \phi_1(x_n-x) \to 0 \iff x_n \rightrightarrows x \text{ на } [\mathfrak{a},\mathfrak{b}] \\ \phi_1(x_n'-y) \to 0 \iff x_n' \rightrightarrows y \text{ на } [\mathfrak{a},\mathfrak{b}] \end{cases} \implies x \in C^1[\mathfrak{a},\mathfrak{b}], x'=y$$

Отсюда
$$\phi_3(x_n-x) o 0$$