Evaluation Framework for Synthetic Human Action Recognition

Submitted By:

Chethan Maram (Se21uari082) Mani Krishna Divi (Se21uari081) Madhusudan Reddy (Se21uari091) Rupen Akula (Se21uari121)

1. Introduction

This project is designed to evaluate the quality of synthetic human action videos using FID-VID and FVD metrics. It leverages a Gradio interface to allow users to:

- Compute FID-VID and FVD values for given video pairs.
- Visualize the metric results through a scatter plot.
- The evaluation framework makes use of the fid-metrics repository for metric computations.

2. System Requirements

Hardware:

- A system with sufficient computational resources (preferably with a GPU for faster computation).
- Installed Python (≥3.8).

The following dependencies are required for the project:

- gradio==3.42.0
- matplotlib == 3.8.0
- Pillow==10.0.0
- PyYAML == 6.0
- subprocess.run

Install the dependencies using:

• pip install -r requirements.txt

3. Installation Process

This project requires the fid-metrics repository for FID and FVD computations.

1. Clone the repository:

git clone https://github.com/npurson/fid-metrics.git

2. Navigate into the fid-metrics directory:

cd fid-metrics

3. Set the environment variable for PYTHONPATH:

export PYTHONPATH=\$(pwd):\$PYTHONPATH

4. Launch the Gradio Interface:

Run the main script: python main.py

This will open the Gradio interface in your browser.

4. How to Use the Framework

- 1) Select a Metric
- 2) Choose one of the following metrics:
 - a) FID-VID
 - b) FVD
- 3) Upload Videos
 - a) Upload two videos (synthetic and real) for evaluation.
- 4) View Outputs
 - a) Metric Results: The interface will display FID-VID and FVD values.
 - b) Visualization: A scatter plot comparing the computed metrics.

5. Outputs

• Metric Results:

FID-VID Score

FVD Score

• Visualization:

A scatter plot comparing the metric values.

6. Results and Observations

6.1 Sample Output Table:

- Measures perceptual similarity between real and synthetic videos. FVD
 (Frechet Video Distance):
- Evaluates temporal coherence in videos

METHOD	FID-VID	FVD
VIDEO1	458.308	29.46
VIDEO2	390.97	24.20
VIDEO3	372.345	28.688
VIDEO4	431.778	25.68
VIDEO5	459.266	19.945

6.2 Graphical Representation:

○ Video-1:

○ Video-2:

○ Video-3:

○ Video-4:

○ Video-5:

7. Demo Video

- A demonstration video has been created to show the workflow and output of the framework.
- YouTube Link (Unlisted):

https://youtu.be/z1J4cyMaayU?si=pidEtYN5ifa1QxN8

8. Repository link:

https://github.com/dmknaidu/NvidiaAssignment