CG1111 Engineering Principles and Practice I Tutorial for Week 5

Node Voltage Analysis, Capacitors and Inductors

1. Consider the circuit given below. Suppose R_5 is the load resistance, derive the Thevenin equivalent circuit as seen by R_5 .

(Assume that $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_4 = 1 \Omega$)

Ans:

 $V_{T} = -3 \text{ V}$

 $R_{T} = 0.4 \Omega$

- 2. For the circuit given below, the switch was closed for a long time before t = 0. At time t = 0, the switch is opened.
 - a. Determine the value of the capacitance C needed, so that the voltage V_{1k} will remain \geq 9 V for 2 sec after the switch is opened.
 - b. Using the value of minimum capacitance C needed from part (a), determine the energy that was stored in the capacitor at time $t = 0^-$ (i.e., when the switch was still closed).
 - c. Sketch and dimension the capacitor's voltage vs. time for $t \ge 0$.

Ans:

- a) $C \ge 19 \text{ mF}$
- b) 0.95 J
- c) Time-constant of 19 sec, and almost completely discharged at about 95 sec.

- 3. For the circuit given below, the switch was closed for a long time before t = 0. At time t = 0, the switch is opened.
 - a. Determine the energy that was stored in the inductor at time $t = 0^{-}$ (i.e., when the switch was still closed).
 - b. Determine the voltage V_{5k} across the 5 k Ω resistor, at time $t = 0^-$ and at time $t = 0^+$ (i.e., right after the switch is opened).
 - c. What is the time constant of the circuit for time $t \ge 0$?

Ans:

- a) 2 mJ
- b) At $t = 0^-$, $V_{5k} = 0$ V At $t = 0^+$, $V_{5k} = -10$ kV
- c) 0.2 µs

- 4. For the circuit shown in the figure below, the switch has been closed for a long time, and the current measured by the ammeter was 1 A before time t = 0. At time t = 0, the switch is opened.
 - a. What is the value of the unknown voltage?
 - b. What would be the current reading on the ammeter at time $t = 0^+$ s?
 - c. What would be the current reading on the ammeter at time t = 12 s?

Ans:

- a) 18 V
- b) 1 A
- c) 0.368 A