# data pre-processing for k-mean clustering

September 23, 2019

## 1 Data pre-processing for k-mean clustering

```
[83]: import pandas as pd
  from datetime import timedelta
  import os
  import seaborn as sns
  import numpy as np
  from matplotlib import pyplot as plt
  print(os.getcwd())
```

/home/hans/python\_codes/DataCamp/data\_pre-processing\_fo\_k-mean\_clustering

#### 1.1 Advantiges of k-mean clustering

- one of the most popular unsupervised learning method
- Simple and fast
- Worsk well (with certain assumptions about the data)

#### 1.2 Key k-mean assumptions

- Symmetric distribution of variables (not skewed)
- Variables with same average values
- Variables with same variance

#### 1.3 Variables on the same scale

- K-means assumes equal mean
- And equal variance
- It's not the case with RFM Data

#### Dataset

```
[84]: datamart_rfm = pd.read_excel('../data/datamart.xlsx')
[85]: datamart_rfm.describe()
```

| [85]: |       | ${\tt CustomerID}$ | Recency     | MonetaryValu | ie Frequency   | R           | \ |
|-------|-------|--------------------|-------------|--------------|----------------|-------------|---|
|       | count | 4372.000000        | 4372.000000 | 4372.00000   | 0 4372.000000  | 4372.000000 |   |
|       | mean  | 15299.677722       | 92.047118   | 1898.45970   | 93.053294      | 2.514181    |   |
|       | std   | 1722.390705        | 100.765435  | 8219.34514   | 232.471608     | 1.124804    |   |
|       | min   | 12346.000000       | 1.000000    | -4287.63000  | 1.00000        | 1.000000    |   |
|       | 25%   | 13812.750000       | 17.000000   | 293.36250    | 17.000000      | 2.000000    |   |
|       | 50%   | 15300.500000       | 50.000000   | 648.07500    | 42.00000       | 3.000000    |   |
|       | 75%   | 16778.250000       | 143.000000  | 1611.72500   | 00 102.000000  | 4.000000    |   |
|       | max   | 18287.000000       | 374.000000  | 279489.02000 | 00 7983.000000 | 4.000000    |   |
|       |       |                    |             |              |                |             |   |
|       |       | F                  | М           | RFM_Segment  | RFM_Score      |             |   |
|       | count | 4372.000000        | 4372.000000 | 4372.000000  | 4372.000000    |             |   |
|       | mean  | 2.487420           | 2.500000    | 278.792315   | 7.501601       |             |   |
|       | std   | 1.119114           | 1.118162    | 118.763354   | 2.828144       |             |   |
|       | min   | 1.000000           | 1.000000    | 111.000000   | 3.000000       |             |   |
|       | 25%   | 1.000000           | 1.750000    | 211.000000   | 5.000000       |             |   |
|       | 50%   | 2.000000           | 2.500000    | 311.000000   | 7.000000       |             |   |
|       | 75%   | 3.000000           | 3.250000    | 411.000000   | 10.000000      |             |   |
|       | max   | 4.000000           | 4.000000    | 444.000000   | 12.000000      |             |   |

### 1.4 Identifying skewness

- Visual analysis of the distribution
- If it has a tail it's skewed

### 1.4.1 Exploring distribution of Rencency

```
[86]: sns.distplot(datamart_rfm['Recency'])
plt.show()
```



## 1.4.2 Exploring distribution of Frequency

```
[87]: sns.distplot(datamart_rfm['Frequency']) plt.show()
```



### 1.5 Data transfomations to manage skewness

• Logarithmic transformations (positive values only)

```
[88]: frequency_log = np.log(datamart_rfm['Frequency'])
sns.distplot(frequency_log)
plt.show()
```



### 1.6 Dealing with negative values

- Adding a constant before log transformation
- Cube root transformation

### 1.7 Centering and scaling variables

### 1.7.1 Identifying an issue

- Analyze key statistics of the dataset
- Compare mean and standard deviation

| [89]: | datamart_rfm.describe().round(1) |
|-------|----------------------------------|
|-------|----------------------------------|

| [89]: |       | ${\tt CustomerID}$ | Recency | ${	t Monetary Value}$ | Frequency | R      | F      | M      | \ |
|-------|-------|--------------------|---------|-----------------------|-----------|--------|--------|--------|---|
|       | count | 4372.0             | 4372.0  | 4372.0                | 4372.0    | 4372.0 | 4372.0 | 4372.0 |   |
|       | mean  | 15299.7            | 92.0    | 1898.5                | 93.1      | 2.5    | 2.5    | 2.5    |   |
|       | std   | 1722.4             | 100.8   | 8219.3                | 232.5     | 1.1    | 1.1    | 1.1    |   |
|       | min   | 12346.0            | 1.0     | -4287.6               | 1.0       | 1.0    | 1.0    | 1.0    |   |
|       | 25%   | 13812.8            | 17.0    | 293.4                 | 17.0      | 2.0    | 1.0    | 1.8    |   |
|       | 50%   | 15300.5            | 50.0    | 648.1                 | 42.0      | 3.0    | 2.0    | 2.5    |   |
|       | 75%   | 16778.2            | 143.0   | 1611.7                | 102.0     | 4.0    | 3.0    | 3.2    |   |
|       | max   | 18287.0            | 374.0   | 279489.0              | 7983.0    | 4.0    | 4.0    | 4.0    |   |

|       | RFM_Segment | RFM_Score |
|-------|-------------|-----------|
| count | 4372.0      | 4372.0    |
| mean  | 278.8       | 7.5       |
| std   | 118.8       | 2.8       |
| min   | 111.0       | 3.0       |
| 25%   | 211.0       | 5.0       |
| 50%   | 311.0       | 7.0       |
| 75%   | 411.0       | 10.0      |
| max   | 444.0       | 12.0      |

#### 1.7.2 Centering variables with different means

- K-means works well on variables with the same mean
- Centering variables is done by subtracting average value from each observation

```
[90]: datamart_centered = datamart_rfm - datamart_rfm.mean()
  datamart_centered.describe().round(2)
```

| [90]: |       | CustomerII | Recency     | MonetaryValue | Frequency | R       | F       | \ |
|-------|-------|------------|-------------|---------------|-----------|---------|---------|---|
|       | count | 4372.00    | 4372.00     | 4372.00       | 4372.00   | 4372.00 | 4372.00 |   |
|       | mean  | 0.00       | -0.00       | -0.00         | 0.00      | -0.00   | 0.00    |   |
|       | std   | 1722.39    | 100.77      | 8219.35       | 232.47    | 1.12    | 1.12    |   |
|       | min   | -2953.68   | -91.05      | -6186.09      | -92.05    | -1.51   | -1.49   |   |
|       | 25%   | -1486.93   | 75.05       | -1605.10      | -76.05    | -0.51   | -1.49   |   |
|       | 50%   | 0.82       | 2 -42.05    | -1250.38      | -51.05    | 0.49    | -0.49   |   |
|       | 75%   | 1478.57    | 7 50.95     | -286.73       | 8.95      | 1.49    | 0.51    |   |
|       | max   | 2987.32    | 281.95      | 277590.56     | 7889.95   | 1.49    | 1.51    |   |
|       |       |            |             |               |           |         |         |   |
|       |       | M F        | RFM_Segment | RFM_Score     |           |         |         |   |
|       | count | 4372.00    | 4372.00     | 4372.00       |           |         |         |   |
|       | mean  | 0.00       | -0.00       | 0.00          |           |         |         |   |
|       | std   | 1.12       | 118.76      | 2.83          |           |         |         |   |
|       | min   | -1.50      | -167.79     | -4.50         |           |         |         |   |
|       | 25%   | -0.75      | -67.79      | -2.50         |           |         |         |   |
|       | 50%   | 0.00       | 32.21       | -0.50         |           |         |         |   |
|       | 75%   | 0.75       | 132.21      | 2.50          |           |         |         |   |
|       | max   | 1.50       | 165.21      | 4.50          |           |         |         |   |

#### 1.7.3 Scaling variables with different variance

- K-means works better on variables with the same variance / standard deviation
- Scaling variables is done by dividing them by standard deviation of each

```
[91]: datamart_scaled = datamart_rfm / datamart_rfm.std()
  datamart_scaled.describe().round(2)
```

| [91]: | ${\tt CustomerID}$ | Recency | ${	t Monetary Value}$ | Frequency | R       | F       | \ |
|-------|--------------------|---------|-----------------------|-----------|---------|---------|---|
| count | 4372.00            | 4372.00 | 4372.00               | 4372.00   | 4372.00 | 4372.00 |   |
| mean  | 8.88               | 0.91    | 0.23                  | 0.40      | 2.24    | 2.22    |   |
| std   | 1.00               | 1.00    | 1.00                  | 1.00      | 1.00    | 1.00    |   |
| min   | 7.17               | 0.01    | -0.52                 | 0.00      | 0.89    | 0.89    |   |
| 25%   | 8.02               | 0.17    | 0.04                  | 0.07      | 1.78    | 0.89    |   |
| 50%   | 8.88               | 0.50    | 0.08                  | 0.18      | 2.67    | 1.79    |   |
| 75%   | 9.74               | 1.42    | 0.20                  | 0.44      | 3.56    | 2.68    |   |
| max   | 10.62              | 3.71    | 34.00                 | 34.34     | 3.56    | 3.57    |   |

|       | M       | RFM_Segment | RFM_Score |
|-------|---------|-------------|-----------|
| count | 4372.00 | 4372.00     | 4372.00   |
| mean  | 2.24    | 2.35        | 2.65      |
| std   | 1.00    | 1.00        | 1.00      |
| min   | 0.89    | 0.93        | 1.06      |
| 25%   | 1.57    | 1.78        | 1.77      |
| 50%   | 2.24    | 2.62        | 2.48      |
| 75%   | 2.91    | 3.46        | 3.54      |
| max   | 3.58    | 3.74        | 4.24      |

### 1.8 Combining centering and scaling

- Subtract mean and divide by standard deviation manually
- Or use a scaler from 'scikit-learn' library (returns numpy.ndarray object)

```
[92]: from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(datamart_rfm)
datamart_normalized = scaler.transform(datamart_rfm)
```

```
[93]: print ('mean: ', datamart_normalized.mean(axis=0).round(2))
print ('std: ', datamart_normalized.std(axis=0).round(2))
```

```
mean: [-0. -0. -0. 0. 0. 0. 0. -0. 0.] std: [1. 1. 1. 1. 1. 1. 1. 1. 1.]
```

#### 1.9 Sequence of structuring pre-processing steps

#### 1.9.1 Why the sequence matters?

- Log transformation only works with positive values
- Normalization forces data to have negative values and log wil not work

#### 1.9.2 Sequence

- 1. Unskew the data log transformation
- 2. Standardize the same average values
- 3. Scale to the same standard diviation
- 4. Store as separate array to be used for clustering

### 1.10 Coding the sequence

• Unskew the data with log transformation

```
[94]: import numpy as np
#datamart_rfm = pd.read_excel('../data/datamart.xlsx')
datamart_log = np.log(datamart_rfm[['Frequency', 'Recency']])
```

• Normalize the variables with **StandardScaler** 

```
[95]: from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(datamart_log)
```

- [95]: StandardScaler(copy=True, with\_mean=True, with\_std=True)
  - Store it seperately for clustering

```
[96]: datamart_normalized = scaler.transform(datamart_log)
```

```
[97]: np.save('../data/datamart_normalized',datamart_normalized)
```