תרגול 2:

<u>חזרה משיעור קודם:</u>

אי שוויון המשולש – יהא V מ"ו מעל שדה $\mathbb R$. אזי לכל $v,u\in V$ מתקיים:

$$||v + u|| \le ||v|| + ||u||$$

. ושוויון מתקיים אם ורק אם u,v תלויים באופן אי שלילי

<u>הוכחה:</u>

אי שויוון
$$\|u+v\|^2 = \|u\|^2 + 2\langle u,v\rangle + \|v\|^2 \le \|u\|^2 + 2\|u\|\|v\| + \|v\| = (\|u\| + \|v\|)^2$$

ולכן מתקיים אי השוויון כנ"ל.

מההוכחה ברור כי השוויון מתקיים אם ורק אם $\|v\|\|u\| = \|v\|\|u\|$. אם u,v אם תלויים ליניארית בצורה אי שלילית, אז הם ת"ל ולכן על פי קושי שוורץ, יתקיים שוויון.

להיפך, נניח כי $\|u\|\|v\|$ להיפך, נניח כי $v=0\cdot u$, אזי אם v=0, אזי נקבל כי $v=0\cdot u$ ולכן $v,u\rangle=\|u\|\|v\|$ תלויים ליניארית. כלומר, קיימים α,β סקלרים ב-שלילית. אחרת, נקבל כי $v\neq 0$ ועל פי אי שוויון קושי שוורץ u,v תלויים ליניארית. כלומר, קיימים $v\neq 0$ סקלרים ב- \mathbb{R} , כך שמתקיים:

$$\alpha v + \beta u = 0$$

ואז ($v \neq 0$) $\alpha v = 0$ כי לא יכולים להיות שניהם אפס. עתה נשים לב כי לא יתכן אף כי $\beta = 0$ שכן נקבל כי α, β ו. כלומר: $\alpha = 0$ בסתירה לתלות הליניארית. לכן נחלק ב- β ונקבל כי $\alpha = 0$ בסתירה לתלות הליניארית.

$$\langle u, v \rangle = \langle -\frac{\alpha}{\beta} v, v \rangle = -\frac{\alpha}{b} \langle v, v \rangle = -\frac{\alpha}{\beta} ||v||^2 = ||u|| ||v||$$

ולכן נוכל לחלק בנורמה שלו ולקבל כי: $v \neq 0$

$$-\frac{\alpha}{\beta}\|v\| = \|u\|$$

כלומר אכן מדובר בתלות ליניארית אי שלילית כנדרש.

נורמות:

. נבדוק, כי $\lVert \cdot \rVert_\infty$ על $\lVert \cdot \rVert_\infty$ היא אכן נורמה על פי הגדרה

$$\forall x \in \mathbb{R}^n \quad ||x||_{\infty} = \max_{1 \le i \le n} \{|x_i|\}$$

- א. אי השליליות של הנורמה הנ"ל ברורה (ערך מקסימלי מבין ערכים מוחלטים אי שליליים).
 - ב. יהא $\lambda \in \mathbb{R}$, אזי מתקיים:

$$\|\lambda x\|_{\infty} = \max_{1 \leq i \leq n} \{|\lambda x_i|\} = \max_{1 \leq i \leq n} \{|\lambda||x_i|\} = |\lambda| \max_{1 \leq i \leq n} \{|x_i|\} = |\lambda| \|x\|_{\infty}$$

: אזי מתקיים, $x,y\in\mathbb{R}^n$ אזי מתקיים.

$$||x + y||_{\infty} = \max_{1 \le i \le n} \{|x_i + y_i|\}$$

אך בנורמת הערך המוחלט הסטנדרטית ב- $\mathbb R$ מתקיים אי שוויון המשולש, ולכן:

$$\max_{1 \le i \le n} \{|x_i + y_i|\} \le \max_{1 \le i \le n} \{|x_i|\} + \max_{1 \le i \le n} \{|y_i|\} = \|x\|_{\infty} + \|y\|_{\infty}$$

נבדוק, את קיומו של השוויון באי שוויון המשולש עבור נורמה זו ב- \mathbb{R}^2 . נבחר $v=\begin{pmatrix}1\\1\end{pmatrix}$ שני וקטורים מ $v=\begin{pmatrix}1\\1\end{pmatrix}$ אזי נשים לב כי:

$$||u||_{\infty} = 2$$
 $||v|| = 1$

:JOI

$$||u + v|| = 3$$

וקיבלנו כי מתקיים השוויון, אך u,v **אינם** תלויים ליניארית בניגוד למקרה של הנורמה שעסקנו בה בתחילת השיעור. המסקנה היא, כמובן, שנורמת האינסוף **אינה** מושרית על ידי אף מכפלה פנימית.

<u>כדורים פתוחים, סגורים, וספירות:</u>

נזכיר כי ב- $(x,y) \in \mathbb{R}^2$ כדור פתוח ברדיוס r זוהי קבוצת נקודות ($\mathbb{R}^2,\|\cdot\|_1$)-ב נזכיר כי

$$|x - x_0| + |y - y_0| < r \rightarrow |y - y_0| < r - |x - x_0|$$

ולכן:

$$-r + |x - x_0| < y - y_0 < r - |x - x_0|$$

 $(x,y)\in \mathbb{R}^2,\|\cdot\|_{\infty}$ וכן נזכיר כי ב- $(\mathbb{R}^2,\|\cdot\|_{\infty})$ כדור פתוח ברדיוס r הוא קבוצת נקודות פתוח מדיים:

$$\max\{|x - x_0|, |y - y_0|\} < r$$

כלומר:

$$|x - x_0| < r \Leftrightarrow |y - y_0| < r$$

והנ"ל שקול לכך ש:

$$-r + x_0 < x < r + x_0$$
 $-r + y_0 < y < r + y_0$

איור 1 – כדור בנורמת 1

איור 2 – כדור בנורמת אינסוף

- $u\in V$ מעל $\mathbb R$, ויהא V יהא מרחב יהא מרחב (תזכורת) גדרה הגדרה ב. $v\in V$ לכל f(v)=v+u אזי פונקציה $f\colon V\mapsto V$ נקראת הזזה ב-
- . מתקבלים זה מזה על ידי הזזה. $(V,\|\cdot\|)$ מתקבלים זה מזה על ידי הזזה. 2.2

<u>הוכחה:</u>

תהא f הזזה בווקטור u כלשהו של v. נראה איך מתארים תמונה של כדור $B(x_0,r)$ על ידי v. נשים לב כי בהנתן $v \in v$ נסיק כי קיים $v \in B(x_0,r)$ כך ש-v = v + u. כלומר $v \in w$ נסיק כי קיים $v \in f(B(x_0,r))$ אם ורק אם:

$$||v - u - x_0|| < r$$

:כעת, יהיו $B_1(x_0,r)$ ו- $B_1(x_0,r)$ שני כדורים פתוחים

$$B_1(x_0,r) = \{v \in V | \|v - x_0\| < r\} \quad B_2(x_1,r) = \{v \in V | \|v - x_1\| < r\}$$

 $v \in fig(B_1(x_0,r)ig)$ שכן x_0-x_1 שכן $B_2(x_1,r)$ על ידי הזזה בווקטור אין שכן $B_1(x_0,r)$ מתקבל על ידי $B_2(x_1,r)$ על ידי הזזה בווקטור $v \in B_1(x_0,r)$ שכן $\|v-(x_0-x_1)-x_1\|=\|v-x_0\|< r$ כלומר אם ורק אם