VV186: HW 2

Due on October 13, 2016 at 8:00am $Professor\ Horst\ Hohberger$

Wang Ren 516370910177

Exercise 2.2

1. Proof 1:
$$m, n \in \mathbb{N}^* \wedge (\frac{m^2}{n^2} < 2) \implies 2n^2 > m^2 \implies m^2 + 4mn + 4n^2 > 2m^2 + 4mn + 2n^2 \implies m^2 + 2 \times m \times 2n + 4n^2 > 2(m^2 + 2mn + n^2) \implies (m + 2n)^2 > 2(m + n)^2 \implies \frac{(m + 2n)^2}{(m + n)^2} > 2$$

$$\text{Proof 2: } \frac{m^2}{n^2} < 2 \implies 2n^2 > m^2 \wedge m, n \in \mathbb{N}^* \implies m^3(m + 2n) < 2mn^2(m + 2n) \implies m^2n^2 + 4mn^3 + 4n^4 < 4m^2n^2 + 8mn^3 + 4n^4 - m^4 - 2m^3n - m^2n^2 \wedge (n \neq 0)$$

$$\implies m^2 + 4mn + 4n^2 < \frac{(m^2 + 2mn + n^2)(4n^2 - m^2)}{n^2} \wedge (m, n \in \mathbb{N}^*) \implies \frac{(m + 2n)^2}{(m + n)^2} < 4 - \frac{m^2}{n^2}$$

$$\implies \frac{(m + 2n)^2}{(m + n)^2} - 2 < 2 - \frac{m^2}{n^2}$$

2. Proof 1:
$$m, n \in \mathbb{N}^* \wedge (\frac{m^2}{n^2} > 2) \implies 2n^2 < m^2 \implies m^2 + 4mn + 4n^2 < 2m^2 + 4mn + 2n^2 \implies m^2 + 2 \times m \times 2n + 4n^2 < 2(m^2 + 2mn + n^2) \implies (m + 2n)^2 < 2(m + n)^2 \implies \frac{(m + 2n)^2}{(m + n)^2} < 2$$

$$\text{Proof 2: } \frac{m^2}{n^2} > 2 \implies 2n^2 < m^2 \wedge m, n \in \mathbb{N}^* \implies m^3(m + 2n) > 2mn^2(m + 2n) \implies m^2n^2 + 4mn^3 + 4n^4 > 4m^2n^2 + 8mn^3 + 4n^4 - m^4 - 2m^3n - m^2n^2 \wedge (n \neq 0)$$

$$\implies m^2 + 4mn + 4n^2 > \frac{(m^2 + 2mn + n^2)(4n^2 - m^2)}{n^2} \wedge (m, n \in \mathbb{N}^*) \implies \frac{(m + 2n)^2}{(m + n)^2} > 4 - \frac{m^2}{n^2}$$

$$\implies \frac{(m + 2n)^2}{(m + n)^2} - 2 > 2 - \frac{m^2}{n^2}$$

3. Proof: Since we only need to prove that $\max U_1, U_1 = \{a \in \mathbb{Q} : a^2 < 2\}$ does not exist in \mathbb{Q} , we can assume that $(m, n \in \mathbb{N}^*) \land (m', n' \in \mathbb{N}^*)$ $m, n \in \mathbb{N}^*$ and $\frac{m}{n}$ is a rational number, then $\frac{4mn}{m^2+2n^2}$ is also a rational number. Define $\frac{m'}{n'} := \frac{4mn}{m^2+2n^2}$ $(4mn)^2 - 2(m^2 + 2n^2)^2 = -(m^2 - 2n^2)^2 < 0 \implies (\frac{4mn}{m^2+2n^2})^2 < 2$ And we also have $\frac{4mn}{m^2+2n^2} > \frac{4mn}{2n^2+2n^2} = \frac{m}{n}$ Thus, $(\frac{m}{n})^2 < (\frac{4mn}{m^2+2n^2})^2 < 2$, so we have found a bigger rational number $\frac{m'}{n'} = \frac{4mn}{m^2+2n^2}$ which satisfies all the requirements. Thus, $\max U_1, U_1 = \{a \in \mathbb{Q} : a^2 < 2\}$ does not exist in \mathbb{Q}

Exercise 2.3

Proof: From the definition of infimum, we can see that $y \le x \land (\forall \varepsilon > 0, (y+\varepsilon)^2 > x)$ And in this proof, we assume that $y^2 < x$ Let $\varepsilon = \frac{x-y^2}{(x+1)y}$ Then $(\frac{x-y^2}{(x+1)y})^2 = y^2 + 2y\frac{x-y^2}{(x+1)y} + (\frac{x-y^2}{(x+1)y})^2 < y^2 + (x+1)y\frac{x-y^2}{(x+1)y} = x$ Thus $(y+\varepsilon)^2 < x$ which leads to a contradiction. Thus, the assumption is wrong and there isn't a y, such that $y^2 < x$ Then the original statement that there is only one element in $\{y: y^2 = x \land y > 0 \land y \in \mathbb{R}\}$ is proved.

Exercise 2.4

- $1. \ \, maximum = 1.5 \\ supremum = 1.5 \\ infimum = 1$
- $2. \ \, maximum = 1.25 \\ supremum = 1.25 \\ infimum = -1$

Exercise 2.5

- 1. a) almost upper bound is $x \in \{x : x > 1\}$ almost lower bound is $x \in \{x : x \le 1\}$
 - b) almost upper bound is $x \in \{x : x > 1\}$ almost lower bound is $x \in \{x : x \le -1\}$
 - c) almost upper bound is $x \in \{x : x > 0\}$ almost lower bound is $x \in \{x : x < 0\}$
 - d) almost upper bound is $x \in \{x : x \ge \sqrt{2}\}$ almost lower bound is $x \in \{x : x \le 0\}$
- 2. Assume $x \in set~X$ Since it's bounded , we can have $\forall x \in X, \exists M>0$ such that |x| < M For it's in real number set , we can have $x_1 = supX$

From the definition of almost upper bound , it's clear that x_1 is an almost upper bound . Thus it's nonempty.

On the other hand, $\forall x \in X, |x| < M \implies -M < x < M$ If the set Y isn't bounded below, then we may have one element that is smaller than -M, then all the infinite elements in X is included. It is against the definition of almost upper bound.

Thus, set Y is bounded below.

- 3. a) 1
 - b) 1
 - c) 0
 - d) $\sqrt{2}$
- 4. Y is the set of all almost lower bounds of X If the supremum $\sup Y$ exists , then it's the $\lim \inf ferior$
 - a) 1
 - b) -1
 - c) 0
 - d) 0
- 5. (a) Proof: Limit inferior of $A \implies$ There is infinite numbers bigger than this figure.

Limit superior of $A \implies$ There is infinite numbers smaller than this figure.

Thus, $\lim A \leq \overline{\lim} A$

(b) Proof:

If x is the suprenum of A, then $\forall a \in A, x \geq a$ but there can be finite number of a such that $a > \overline{\lim} A$. Thus, $\overline{\lim} A \leq \sup A$

If x is the infimum of A, then $\forall a \in A, x \leq a$ but there can be finite number of a such that $a < \overline{\lim} A$. Thus, $\overline{\lim} A \geq \inf A$

Exercise 2.6

- 1. Proof: $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$ $z_1 z_2 = a_1 a_2 - b_1 b_2 + (a_1 b_2 + a_2 b_1) i \implies |z_1 z_2| = \sqrt{(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2} = \sqrt{a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2}$ $|z_1| = \sqrt{a_1^2 + b_1^2}, |z_2| = \sqrt{a_2^2 + b_2^2} \implies |z_1||z_2| = \sqrt{a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2} = |z_1 z_2|$
- 2. Assume z=a+bi Then $|z+2| \le |z-1| \implies |a+2+bi| \le |a-1+bi| \implies (a+2)^2+b^2 \le a^2-2a+1+b^2 \implies 6a \le -3 \implies a \le -\frac{1}{2}$ Thus, all complex number $z \in \{(x,y): x,y \in \mathbb{R} \land x \le -\frac{1}{2}\}$ satisfies the original inequality.

3.
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$
 $|z_1 + z_2|^2 + |z_1 - z_2|^2 = (a_1 + a_2)^2 + (b_1 + b_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2 = 2(a_1^2 + a_2^2 + b_1^2 + b_2^2)$
 $2(|z_1|^2 + |z_2|^2) = 2(a_1^2 + a_2^2 + b_1^2 + b_2^2)$
Thus, $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

Exercise 2.7

1. i) Proof : Let $\varepsilon > 0$ be fixed , there exists a N such that $N = \lfloor \sqrt{\frac{1}{\varepsilon}} \rfloor$

Then
$$\forall n \geq N, \sqrt{\frac{1}{\varepsilon}} < n \implies \frac{1}{n^2} < \varepsilon \implies |\frac{1}{n^2} - 0| < \varepsilon \implies \lim_{n \to \infty} \frac{1}{n^2} = 0$$

ii) Proof : Let $\varepsilon>0$ be fixed , there exists a N such that $N=\lfloor\frac{5}{\varepsilon}\rfloor$

Then
$$\forall n \geq N, \frac{5}{\varepsilon} < n \implies \frac{5}{n} < \varepsilon \implies \left| \frac{2n-5}{n} - 2 \right| < \varepsilon \implies \lim_{n \to \infty} \frac{2n-5}{n} = 2$$