مستوى الدراسي: TCS - TCT عدد الساعات: 15

/ +

المسابع المثلثي البزء 1

الثانوية التأهيلية: وادي الذهب الأستاذ : رشيد بلمو

1. توجيه المستوى:

(C)لتكن (C) دائرة من المستوى (P) مركز ها (C) و لتكن (D) و لتكن

لدينا منحنيين للوصول إلى النقطة M انطلاقا من I . أحدهما موجب و الآخر سالب.

لقد تم اختيار المنحى الموجب هو المنحى المضاد لحركة عقربي الساعة (المنحى + المشار إليه في الشكل) و يسمى المنحى المثلثي.

نوجيه جميع دوائر المستوى (P) توجيها موجبا نقول بأننا وجهنا المستوى (P) توجيها موجبا •أو مباشر ا

2. الدائرة المثلثية:

الدائرة المثلثية هي كل دائرة شعاعها 1 مزودة بأصل و موجهة توجيها موجبا.

<u>3- وحدات قباس الزوايا</u>

لقياس الزوايا هناك ثلاث وحدات هي الدرجة و الغراد و الراديان.

الراديان هو قياس زاوية مركزية، في دائرة شعاعها R ، تحصر قوسا دائرية طولها R . rad نرمز لھا بے rd أو

(يرمز للغراد : gr) $\pi rd = 200gr = 180^{\circ}$

ملاحظة

نتبحة

 $\frac{x}{\pi} = \frac{y}{180} = \frac{z}{200}$ إذا كان x قياس زاوية بالراديان و y قياسها بالدرجة و z

** تمرین تطبیقی : (02 - س)

4. الأفاصيل المنحنية لنقطة من دائرة مثلثيه:

a - الأفصول المنحني الرئيسي لنقطة على الدائرة المثلثية

خاصية و تعريف

I لتكن (C) دائرة مثلثية أصلها

کل نقطة M من [C) تمثل عدد وحید α من [C] و کل (C) من M من $]-\pi;\pi]$ عدد α من $[-\pi;\pi]$

M ليسمى الافصول المنحني الرئيسي لـ lpha

قياس الزاوية الهندسية |lpha| هو |lpha| راديان

** تمرین تطبیقی : (03 - س)

b - الأفاصيل المنحنية لنقطة على الدائرة المثلثية

lpha لتكن M نقطة من دائرة مثلثية (C) أصلها I. و ليكن M لتكن

أفصولها المنحني الرئيسي

 $\mathbb Z$ كل عدد يكتب على الشكل $lpha + 2k\,\pi$ بحيث k عنصر من يسمى أفصولا منحنيا للنقطة M.

- $x-y=2\lambda\pi$ بحیث \mathbb{Z} بحیث x و y أفصولین منحنیین للنقطة M فانه یوجد عنصر x من x بحیث و xx=y و نکتب y بتردید $x\equiv y$ و نقرآ $x\equiv y$
 - إذا كان x أفصول منحني للنقطة M فان جميع الأفاصيل المنحنية للنقطة M تكتب على شـكل $.k \in \mathbb{Z}$ حيث $x + 2k \pi$

** تمرین تطبیقی: (04 - س)

4. الزاوية الموجهة لنصفي مستقيم:

خاصية و تعريف

*كل زوج (OA), (OB) من نصفي مستقيم يحدد الزاوية الموجهة المرموز اليها ب:

أنظر الشكل.
$$\left(\overrightarrow{OA}, \overrightarrow{OB}\right)$$

 $eta-lpha+2k\,\pi$ المحداد الحقيقية eta المحداد الحقيقية eta المحداد الحقيقية eta المحداد الحقيقية $k\in\mathbb{Z}$ حيث $k\in\mathbb{Z}$

$$\left(\overline{\overrightarrow{OA}},\overline{\overrightarrow{OB}}\right) \equiv \beta - \alpha \left[2\pi\right]$$
 و نكتب

 $-\pi$ للزاوية الموجهة $\left(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OB}
ight)$ قياس وحيد في المجال $-\pi$ يسمى القياس الرئيسي للزاوية.

** تمرین تطبیقی:

 $-rac{25\pi}{3}$; $rac{52\pi}{5}$; -36π ; 47π عا هو القياس الرئيسي لزاوية موجهة قياسها أحد القياسات π

. $\frac{-234\pi}{5}$ قياسـها $\widehat{Ox;Oy}$ قياسـها - 2

5. الزاوية الموجهة لمتجهتين:

<u>تعریف</u>

 $(\overrightarrow{u},\overrightarrow{v}) = (\overrightarrow{\overrightarrow{OA}},\overrightarrow{\overrightarrow{OB}})$ و منه $(\overrightarrow{u},\overrightarrow{v}) = (\overrightarrow{OA},\overrightarrow{OB})$ اذن $(\overrightarrow{v},\overrightarrow{OB}) = (\overrightarrow{OA},\overrightarrow{OB})$ و منه $(\overrightarrow{u},\overrightarrow{v}) = (\overrightarrow{OA},\overrightarrow{OB})$ اذن

خاصیات: لتکن \vec{u} و \vec{v} و \vec{v} ثلاث متجهات من المستوی.

علاقة شال.
$$\left(\overrightarrow{u},\overrightarrow{v}\right) + \left(\overrightarrow{v},\overrightarrow{w}\right) \equiv \left(\overrightarrow{u},\overrightarrow{w}\right)$$
 $\left[2\pi\right]$ و $\left(\overrightarrow{u},\overrightarrow{v}\right) \equiv -\left(\overrightarrow{v},\overrightarrow{u}\right)\left[2\pi\right]$ و $\left(\overrightarrow{u},\overrightarrow{u}\right) \equiv 0\left[2\pi\right]$

** تمرین تطبیقی:

لتكن (C) دائرة مثلثية مركزها O و أصلها I. نعتبر على نعتبر على النقط التالية المعرفة بأفاصيلها

$$F\left(\frac{-17\pi}{3}\right)$$
 $E\left(\frac{23\pi}{4}\right)$ $B\left(\frac{3\pi}{2}\right)$ $A\left(\pi\right)$ المنحنية

أعط قياساً لكل من الزاويا التالية ، ثم حدد القياس الرئيسي لكل منهن

$$\left(\widehat{\overrightarrow{OE};\overrightarrow{OF}}\right)$$
 ; $\left(\widehat{\overrightarrow{OA};\overrightarrow{OE}}\right)$; $\left(\widehat{\overrightarrow{OB};\overrightarrow{OA}}\right)$; $\left(\widehat{\overrightarrow{OA};\overrightarrow{OA}}\right)$

6. النسب المثلثية لعدد حقيقي:

a- المعلم المتعامد الممنظم المرتبط بالدائرة المثلثية

. I و أصلها O و أصلها الكن (C

ولتكن J من J بحيث (C) بحيث (C) زاوية قائمة موجبة المعلم المتعامد الممنظم $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ يسمى المعلم المتعامد الممنظم المباشر المرتبط بالدائرة المثلثية (C).

لتكن J' من C بحيث $\widehat{OI;OJ'}$ زاوية قائمة سالبة (C) لمعلم المعامد الممنظم المعلم المرتبط بالدائرة المثلثية (C).

 $A(\alpha)$

b- النسب المثلثية تعاريف

لتكن (C) دائرة مثلثية و $(O;\overrightarrow{OI};\overrightarrow{OJ})$ المعلم المتعامد الممنظم المرتبط بها. لتكن M نقطة من

M و x أفصولا منحنيا لها . نعتبر C المسقط العمودي لـ M على S و OI) و OI

(OJ) علی

 $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ العدد الحقيقي أفصول النقطة M في المعلم العدد الحقيقي المعلم يسمى جيب تمام العدد الحقيقي المعلم X نرمز له بـ X نرمز له بـ X العدد الحقيقي أرتوب النقطة X في المعلم X العدد الحقيقي X نرمز له بـ X يسمى جيب العدد الحقيقي X نرمز له بـ X المماس لـ X عند X و النقطة X المماس لـ X عند X و النقطة X المماس لـ X المماس لـ X العدد ال

لتكن T نقطة تقاطع OM و Δ أي

$$k \in \mathbb{Z} \qquad x \neq \frac{\pi}{2} + k \, \pi$$

العدد الحقيقي أفصول T في المعلم العدد (I;P)يسمى ظل العدد الحقيقي x نرمز له بـ $\tan x$

$-1 \le \sin x \le 1$, $-1 \le \cos x \le 1$	$\mathbb R$ من x
$\cos\left(x+2k\pi\right)=\cos x$	$\mathbb R$ من x
$\sin\left(x+2k\pi\right)=\sin x$	$k\in\mathbb{Z}$ لكل
\mathbb{R} زوجية: $\cos(-x) = \cos x$ من $\cos(-x)$	الدالة o sinus
$\sin(-x) = -\sin x$ دية:	الدالة Sinus فر
:حيث $k \in \mathbb{Z}$ حيث $\mathbb{R} - \left\{ \frac{\pi}{2} + k \right\}$	π اکل x من
ta	$nx = \frac{\sin x}{\cos x}$
. ($\cos x$
$\tan(x+x)$	$(k\pi) = \tan x$

- ** تمرین تطبیقي : (05 س) (4-2)
 - ** تمرین تطبیقی : (10 س) (3)
- c. العلاقة بين النسب المثلثية لعدد:
- *- بتوظيف الدائرة المثلثية نحصل على

	-x	$\pi - x$	$\pi + x$	$\frac{\pi}{2}$ x_{-}	$\frac{\pi}{2}$ x_{+}	
$\cos x$	$\cos x$	$-\cos x$	$-\cos x$	$\sin x$	$-\sin x$	
$\sin x$	$-\sin x$	$\sin x$	$-\sin x$	$\cos x$	$\cos x$	
tan x	$-\tan x$	$-\tan x$	tan x	1	_1_	
				tan x	tanx	

d - نسب مثلثية اعتيادية

x 0	0	π	π	π	π	2π	3π	5π	
	O	6	4	3	2	3	4	6	π
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	غیر معرف	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

** تمرین تطبیقی : (6 - س)

