BASICS OF INFORMATION SYSTEM SECURITY

Introduction to Cryptography Tools

Video Summary

- What is Hashing?
- Message Authentication Code (MAC)
- Hash Functions
- Hash Algorithms
- Applications of Hashing
- Hash Implementation using OpenSSL

- > Hashing is a mechanism that is used for data integrity assurance
- Hashing is based on a <u>one-way mathematical function</u> that is relatively easy to compute but significantly difficult to reverse
- ➤ The result of hashing is having a fixed length hash which is known as the "digest" or "fingerprint".

Message Authentication Code (MAC)

- An authentication technique involves the use of a secret key to generate a small block of data
- > The MAC is appended to the original message
- MAC assumes that user A and B are sharing a common secret key K_{AB}

Message Authentication Code (MAC)

 Append small, fixed-size block of data to message: cryptographic checksum or MAC

$$MAC = F(K, M)$$

M = input message

F = MAC function

K =shared secret key of k bits

MAC = message authentication code (or tag) of n bits

- MAC function also called keyed hash function
- MAC function similar to encryption, but does not need to be reversible
 - Easier to design stronger MAC functions than encryption functions

MAC Algorithms

- Data Authentication Algorithm (DAA): based on DES; considered insecure
- Cipher-Based Message Authentication Code (CMAC): mode of operation used with Triple-DES and AES
- OMAC, PMAC, UMAC, VMAC, ...
- HMAC: MAC function derived from cryptographic hash functions

Figure 2.5 Message Authentication Using a One-Way Hash Function.

Figure 2.5 Message Authentication Using a One-Way Hash Function.

MAC vs. HASH

- The main difference between MAC and Hash is that the MAC is always taking a key as an input to its algorithm which is used to encrypt the data while digesting the message
- > The Hash function is not taking any key during the hashing process

Authentication using Hash Functions

h=H(M)

- ▶ Hash function H: variable-length block of data M input; fixed-size hash value h = H(M) output
- ► Applying H to large set of inputs should produce evenly distributed and random looking outputs
- Cryptographic hash function: computationally infeasible to find:
 - 1. *M* that maps to known *h* (one-way property)
 - 2. M_1 and M_2 that produce same h (collision-free property)
- Append hash value to message; receiver verifies if message changed

fixed size.

Authentication using Hash Functions

Hash Security Requirements and Attacks

Preimage resistant: For any given h, computationally infeasible to find y such that H(y) = h (one-way property)

Second preimage resistant: For any given x, computationally infeasible to find $y \neq x$ with H(y) = H(x) (weak collision resistant)

Collision resistant: Computationally infeasible to find any pair (x, y) such that H(x) = H(y) (strong collision resistant)

Brute Force Attacks

- Depend on hash value length of n bits
- Preimage and second preimage resistant: 2ⁿ
- ▶ Collision resistant: $2^{n/2}$

7 + X H(y) = H(x)

Hashing Algorithms

Message Digest 5 (MD5): MD5 produces a 128-bit hash and is now considered a legacy algorithm that should be avoided

Secure Hash Algorithm 1 (SHA-1): SHA-1 takes a message of up to 2^64 bits in length and produces a <u>160</u>-bit message digest. The algorithm is slightly slower than MD5, but the larger message digest makes it more secure against brute-force collision and inversion attacks.

Secure Hash Algorithm 2 (SHA-2): SHA-2 algorithms are the secure hash algorithms that the U.S. government requires by law for use in certain applications. The SHA-2 family includes 224-bit, 256-bit, 384-bit, and 512-bit functions. When choosing a hashing algorithm, use SHA-256 or higher, as they are currently the most secure

Secure Hash Algorithm 3 (SHA-3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2.

Hashing Algorithms

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2128	< 2128
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

Video Summary

- What is Hashing?
- Message Authentication Code (MAC)
- Hash Functions
- Hash Algorithms
- Applications of Hashing
- Hash Implementation using OpenSSL