Chapter 2

Magnetism and Magnetic Materials

韩伟 量子材料科学中心 2018年10月12日

Review of last class

- Magnetism of Electrons
- > Spin orbit Coupling
- Magnetism

Diamangetism, Paramagnetism, FM, AFM, Ferrimagnet, Half metallic

- Magnetic resonance
- Magnetic domains

提纲

2. How to induce magnetic moment

Mainly two methods

1) Impurity doping

Mn impurity in GaMnAs

Low doping

High doping

MacDonald, et al, Nature Mater. (2005)

Mainly two methods

1) Impurity doping

MacDonald, et al, Nature Mater. (2005)

Mainly two methods

2) Proximity effect

At the atomic level, when two atoms come into proximity, the highest energy, or valence, orbitals of the atoms change substantially and the electrons on the two atoms reorganize.

Induce M in two Quantum Materials

Two Dirac Materials

Graphene

Vacancies Defects→ PM

Nair, et al, Nature Phy. (2012)

Question?

Ferromagnetic??

Paramagnetic ??

Using the spin current approach

Using the spin current approach

Magnetic moment could scatter pure spin current through exchange interaction:

$$\mathcal{H}_{ex} = A_{ex} \overrightarrow{S_e} \overrightarrow{S_M}$$

- Localized measurement
- Direct coupling of spin to magnetic moment

Using the spin current approach

- All measurements done in ultrahigh vacuum (UHV)
- Compare immediately before and after hydrogen doping

McCreary, et al, PRL (2012)

Using the spin current approach

At zero field

Due to exchange coupling, pure spin current is scattered by magnetic moment

Fewer spins at detector

Using the spin current approach

At high field

Question?

Ferromagnetic??

Paramagnetic > 15 K

Paramagnetic at 15 K!

McCreary, et al, PRL (2012)

STM probe of H-graphene

STM probe of H-graphene

STM probe of H-graphene

T = 5 K

STM probe of H-graphene

T = 5 K

STM probe of H-graphene

Graphene on YIG

yttrium iron garnet (YIG):

- high Tc~550K;
- Extremely small intrinsic damping constant (3x10⁻⁵);
- Insulating behavior;
- In-plane magnetic anisotropy.

Y3Fe5O12, YIG: A FM insulator

Graphene on YIG

Wang, et al, PRL (2015)

Graphene on YIG

Induce M in Topological Insulator

Why making TI magnetic

Quantum Anomalous Hall effect

Doping of Magnetic impurity

Doping effect by Cr

Chang, et al, Science (2013)

Doping of Magnetic impurity

Doping effect by V

Chang, et al, Nat. Mater. (2015)

EuS: magnetic insulator

EuS: magnetic insulator

EuS: magnetic insulator

Wei, et al, PRL (2013)

TIG, a magnetic insulator with perpendicular easy axis

TIG, a magnetic insulator with perpendicular easy axis

TIG, a magnetic insulator with perpendicular easy axis

Proximity effect

TIG, a magnetic insulator with perpendicular easy axis

Tang, et al, Science Advances (2017) 37

Summary

How to induce magnetic moment

Doping

Proximity effect

FM
Nonmagnetic Materials

Interface hybridization

休息10分钟

提纲

3. How to control magnetization

How to control the magnetization

Magnetic field

How to control the magnetization

Magnetic field

Control??

Electric field

Spin torque

Ultrafast Laser

Interface Strain

Electrical field effect in magnetic semiconductor

Ohno, et al, Nature (2000)

Magnetic properties of InMnAs (AHE)

Electrical field effect on InMnAs

Ohno, et al, Nature (2000)

Ionic liquid gate control

Large electric field on the surface

Yamada, et al, Science (2011)

Ionic liquid

EMIM TFSI

$$F_3$$
 F_3 F_3

HMIM BF₄

DEME TFSI

Ionic liquid gate control

$$Ti_{0.9}Co_{0.1}O_2$$

 $T_C > 300 \text{ K}$

Yamada, et al, Science (2011)

Ionic liquid gate control electronic properties

Ionic liquid gate control electronic properties

Yamada, et al, Science (2011)

Ionic liquid gate control magnetic properties

Yamada, et al, Science (2011)

Ionic liquid gate control magnetic properties

Electric field control in Metallic FM

Electrical control of the ferromagnetic phase transition in cobalt at room temperature

D. Chiba^{1,2}*, S. Fukami³, K. Shimamura¹, N. Ishiwata³, K. Kobayashi¹ and T. Ono¹

Electric field control in Metallic FM

Chiba, et al, Nat. Mater. (2011)

Electric field control in Metallic FM

Chiba, et al, Nat. Mater. (2011)

Electric field control in Metallic FM

Chiba, et al, Nat. Mater. (2011)

Multiferroics

Bibes, Nat. Mater. (2012)

Multiferroics

Bibes, Nat. Mater. (2012)

T_C by Multiferroics

Molegraaf, et al, Adv. Mater. (2009)

T_C by Multiferroics

Molegraaf, et al, Adv. Mater. (2009)

FM magnetization by Multiferroics

Chu, et al, Nat. Mater. (2008)

FM magnetization by Multiferroics

Chu, et al, Nat. Mater. (2008)

Spin polarization by Multiferroics

Spin polarization by Multiferroics

Garcia, et al, Science (2010)

Spin polarization by Multiferroics

Garcia, et al, Science (2010)

Ionics of Oxygen

Electric field via GdO_x/FM

Blue curve: Negative electrical field

Purple curve: positive electrical field

Bi et al PRL (2014)

Ionics of Oxygen

Bauer, et al Nat. Nano. (2014)

How to control the magnetization

Magnetic field

Control??

Electric field

Spin torque

Ultrafast Laser

Interface Strain

FM by Ultrafast Laser

Ferrimagnet

70

FM by Ultrafast Laser

Radu, et al Nature (2011)

FM by Ultrafast Laser

72

How to control the magnetization

Magnetic field

Control??

Electric field

Spin torque

Ultrafast Laser

Interface Strain

Magnetization by spin current

Spin transfer torque

$$\tau_{ST} = \frac{\hbar}{2} \widehat{m} \times (\widehat{\sigma} \times \widehat{m})$$

Brataas, et al. Nature Mater. (2012)

Magnetization by spin current

Spin transfer torque

Magnetization by spin current

FM by Spin transfer torque

Spin transfer torque

Spin transfer torque

Ralph & Stiles, JMMM (2008)

Pure Spin current torque

Spin Injector Spin Detector

Pure Spin current torque

Yang et al, Nature Physics (2008) 80

Spin Orbit torque

Spin transfer torque

More details at

- 一、自旋电子学简介
- 二、磁性和磁性材料
- 三、磁阻效应
- 四、自旋阀
- 五、自旋转移力矩
- 六、热自旋电子学
- 七、拓扑自旋流
- 八、反铁磁自旋电子学

How to control the magnetization

Magnetic field

Control??

Electric field

Spin torque

Ultrafast Laser

Interface Strain

TIG, a magnetic insulator with perpendicular easy axis

Lee 2010, et al. Nature (2011)

Lee 2010, et al. Nature (2011)

Lee 2010, et al. Nature (2011)

Summary

Magnetic field

Control

Electric field

Interface Strain

Ultrafast Laser

Spin torque

下一节课: Oct. 19th

Chapter 3: Magnetoresistance

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html