MATH 4803 Computational Neuroscience (Fall 2024)

Problem set 1

DUE at 11:59 pm Tuesday, September 10

Submit electronically via Canvas by uploading a file. You are welcome to work together, but should submit your own work. You can utilize needed parts of the code posted on Canvas.

1. Nernst Potentials

The Nernst equation computes the reversal potential E_A for ion A: $E_A = \frac{k_B T}{z_A q_e} ln\left(\frac{[A_{out}]}{[A_{in}]}\right)$. Note that T denotes absolute temperature in Kelvin (K), $k_B = 1.39 \times 10^{-23}$ JK⁻¹ is the Boltzmann constant, $q_e = 1.60 \times 10^{-19}$ C is the fundamental electronic charge, and z_A is the charge of an ion A.

ion	charge	internal concentration	external concentration	Nernst potential (mV)
X	-2	60 mM	100 mM	
Υ	+2	180 mM	35 mM	
Z	-1	175 mM	40 mM	
Chloride	-1	10 mM	120 mM	-66.4 mV

- (a) Calculate the Nernst potentials for the hypothetical ions in the table above. Assume a temperature of 310 Kelvin. Note that the Nernst equation returns a value in units of Volts. Convert your answer to millivolts and round to one decimal place. (Hint: Try calculating the Nernst potential for Chloride to check your answer against the Nernst potential provided.)
- (b) Hypothetical ion Z has the same charge as Chloride, yet a very different Nernst potential that is positive rather than negative. Give a explanation about what is causing them to have such different Nernst potentials.

2. Analytically and numerically solving an ODE

Consider the following ODE:

$$\frac{dy}{dt} + 2ty = t, \quad y(0) = y_0$$

- (a) Find the closed form solution of the ODE by using an integrating factor.
- (b) What happens to y(t) as $t \to \infty$?
- (c) Implement the forward Euler method to numerically approximate the solution. Use the initial time $t_0 = 0$ and the final time $t_n = 3$. Test two different time steps, $\Delta t = 0.3$ and $\Delta t = 0.1$. For each of the two time step, numerically solve the ODE for the initial condition at $y_0 = -1$ and $y_0 = 1$. Plot the Euler approximations on top of the exact solution.
- (d) Comment on the behavior of y(t). What do you observe for the two different initial conditions?
- (e) Comment on the goodness of the numerical approximations with the two different time steps.

3. The F-I Curve of the Leaky Integrate-and-Fire Neuron

The leaky integrate-and-fire neuron is modeled with the following equation:

$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_x$$

$$V(t^+) > V_{th} \to \text{spike at } t^+ \text{ , and } V(t^-) \leftarrow V_{reset}$$

where t^+ and t^- denote right after and right before time t. Assume the leak potential $E_L = -70 \text{(mV)}$, membrane time constant $\tau_m = 10 \text{(ms)}$, spike threshold $V_{th} = -50 \text{ (mV)}$, and the reset potential $V_{reset} = -65 \text{ (mV)}$.

- (a) Finding the threshold input What is the minimum amount of input current needed to make the model eventually spike? We will call this threshold input current I_{th} . You should give an closed-form solution. (Hint: Recall the steady state solution of the leaky integrator model without spiking mechanisms, V_{∞} , can be expressed with the input current I_x . When the steady state solution is below V_{th} , the voltage will reach the steady state solution before it can reach the spiking threshold.)
- (b) Solve LIF model numerically Implement LIF model numerically with the Euler Method by using $\Delta t = 0.1$ (ms) starting from t = 0 to a maximum time of $t_{max} = 2000$ (ms). Set the initial value of the membrane potential to the leak potential E_L . Simulate current injection just below and just above the threshold input current found in the previous part. Show the plots of V vs t for these two input currents. Explain why you get these results.
- (c) **Approximating the** f-I curve Plot the f-I curve by performing the following steps.
 - i. Generate a vector of input currents ranging from just below the threshold input current I_{th} to some input current amount well above I_{th} . You can vary the currents by some set step size ΔI .
 - ii. For each input current value in the vector, numerically simulate the voltage V(t) for sufficiently long, at least for $t_{max} = 1000$ (ms). The initial part of the V(t) may be transients, so use the later parts of the spike train to compute the inter-spike-interval, T_{ISI} . You can compute this by detecting peaks of the spikes.
 - iii. Using the measured T_{ISI} , compute the firing rate r_{ISI} for each input current value in the vector of the range of input currents. Plot the firing rate r_{ISI} against input current amounts I_x .
- (d) The analytical solution for the f-I curve In class, we have derived (or will derive) the analytical expression for the firing rate r_{ISI} for the LIF model. Compute these values for all input currents and plot this analytical solution on top of the numerically obtained f-I curve in part (c).