

AD-A052 429

HARRY DIAMOND LABS ADELPHI MD
THE MADELUNG ENERGY FOR THE STRUCTURE Y/2HFS5. (U)
FEB 78 C A MORRISON

F/G 7/2

UNCLASSIFIED

HDL-TR-1842

NL

| OF |
AD:
A052429

END
DATE
FILED
5 -78
DDC

ADA052429

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 14 HDL-TR-1842	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER 9
4. TITLE (and Subtitle) 6 The Madelung Energy for the Structure Y ₂ HfS ₅ .		5. TYPE OF REPORT & PERIOD COVERED Technical Report
6. AUTHOR(s) 10 Clyde A. Morrison		7. CONTRACT OR GRANT NUMBER(s) 16 DA: 1T161101A91A
8. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 6.11.01.A PRON: -A17R000101A1A9
10. CONTROLLING OFFICE NAME AND ADDRESS US Army Materiel Development and Readiness Command Alexandria, VA 22333		11. REPORT DATE 11 February 1978
11. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		12. NUMBER OF PAGES 15 1212P
13. SECURITY CLASS. (If this report) UNCLASSIFIED		
14a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
17. SUPPLEMENTARY NOTES -HDL Project: A107C2 DRCMS Code: 611101.91A0011		
18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Born-Haber cycle Coulomb energy Madelung energy Ionic solid Binding energy Cohesive energy		
19. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Madelung energy for the compound Y ₂ HfS ₅ is calculated. The results are given as a function of the effective charge, w _E , on the sulfur ion, q _S , as w _E = -56.495 - 59.420 q _S - 34.167 q _S ² with the normal valence of sulfur at q _S = -2. Assuming that the exponent in the Born potential is 10, the binding energy, W, of Y ₂ HfS ₅ is found to be W = -4222.8 - 4441.4 q _S - 2553.8 q _S kcal/mole.		

163 050 JOB

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
2. CRYSTAL STRUCTURE	5
3. COMPUTATION	6
ACKNOWLEDGEMENT	12
LITERATURE CITED	12
DISTRIBUTION	13

TABLES

I Atomic Positions of Constituent Ions in Y ₂ HfS ₅	6
II Atomic Positions of All Ions in Unit Cell of Solid Y ₂ HfS ₅ . . .	7
III Electric Potential at Various Sites in Y ₂ HfS ₅	8

ACCESSION NO.	
RTIS	White Section <input checked="" type="checkbox"/>
BCC	Offi Section <input type="checkbox"/>
UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION _____	
BY _____	
DISTRIBUTION/AVAILABILITY CODES	
DIST.	AVAIL. and/or SPECIAL
A	

1. INTRODUCTION

In the theory of the cohesive energy of ionic or nearly ionic crystals, the electrostatic energy, or Madelung energy, is important. Generally, the electrostatic cohesive force persists, despite the presence of strong repulsive forces of ions of similar charge among the constituent ions. Because of the magnitude of the Madelung energy, it dominates the energy of formation of most ionic solids and therefore is of interest to chemists who are attempting to grow single crystals larger than microscopic powders.

The amount of literature on the various methods of calculating the electrostatic energy of an ionic solid is absolutely overwhelming, but a methodical compilation of the results of these calculations does not seem to exist. Practically every textbook of physical chemistry or solid-state physics lists a number of references to original papers on this subject. Consequently, we list here only references pertinent to the problem at hand: the calculation of the Madelung energy for Y_2HfS_5 . The technique used here is elementary; however, it seems not to be in any of the textbooks.

2. CRYSTAL STRUCTURE

The crystal structure of Y_2HfS_5 is, according to Jeitschko and Donohue,¹ orthorhombic, Pnma, which is space group No. 62 in the International Tables of Crystallography.² As reported by Jeitschko and Donohue, the cell dimensions and the atomic position of each independent constituent ion are given in table I. The symmetry operations necessary to develop the position of the ions in a single cell are taken from the International Tables of Crystallography.² The number of molecular units, Z, in a cell is 4 so that there are 32 independent x, y, and z coordinates necessary to specify the position of all the ions in a single cell. The position of each of the atoms is shown in table II in a coordinate system so that the yttrium ion in position 1 is chosen as the origin and the ions are listed in the sequence chosen by Jeitschko and Donohue.¹ By translation, any lattice point is equivalent to any other point obtained from that point by adding an integer to any or all of its x, y, and z coordinates. Using this rule, one can choose a coordinate system so that $-1/2 \leq x \text{ or } y \text{ or } z \leq 1/2$, and this system has been chosen in table II (p. 7).

¹W. Jeitschko and P. C. Donohue, *Acta Crystallogr.*, B31 (1975), 1890.

²*International Tables of Crystallography*, I, Kynach Press, Birmingham, England (1952), 151.

TABLE I. ATOMIC POSITIONS OF CONSTITUENT IONS IN Y_2HfS_5 ^{*}

Ion	Position	x	y	z
Y	8(d)	0.1778	0.9974	0.0251
Hf	4(m)	0.0060	1/4	0.5742
S ₁	8(d)	0.4081	0.0367	0.1630
S ₂	4(m)	0.1822	1/4	0.3331
S ₃	4(m)	0.5032	1/4	0.5522
S ₄	4(m)	0.2921	1/4	0.8152

*Reported in W. Jeitschko and P. C. Donohue,
Acta Crystallogr., B31 (1975), 1890.

Note: The x, y, and z coordinates are in units of a, b, and c, respectively, with a = 11.4585 Å, b = 7.7215 Å, and c = 7.2207 Å.

The symmetries of the various positions are 8(d), $\pm(x, y, z)$, $\pm(1/2 + x, 1/2 - y, 1/2 - z)$, $\pm(x, 1/2 - y, z)$, $\pm(1/2 + x, y, 1/2 - z)$; 4(m), $\pm(x, 1/4, z)$, $\pm(1/2 - x, 3/4, 1/2 + z)$.

3. COMPUTATION

The electrostatic potential, ϕ , at a site, μ , due to ions of charge, q_v , in the crystal is given by

$$\phi(\mu) = \sum_{l,m,n} \sum_{v=1}^{32} \frac{q_v}{R_{lmn,v\mu}} , \quad (1)$$

where

$$R_{lmn,v\mu}^2 = (x_\mu - x_v + l)^2 a^2 + (y_\mu - y_v + m)^2 b^2 + (z_\mu - z_v + n)^2 c^2 ,$$

with l, m, and n integers ranging from positive to negative values large enough so that the sum converges to a unique limit (~10 for four significant digits). The charge on each ion, z_v , is in units of the electronic value so that $z_v = eq_v$. For the normal valence,

TABLE II. ATOMIC POSITIONS OF ALL IONS IN UNIT CELL OF SOLID Y_2HfS_5

Ion No. v	Ion	Coordinate			Charge q_v
		x_v	y_v	z_v	
1	Y	0.0000	0.0000	0.0000	3
2	Y	0.5000	-0.4948	0.4498	3
3	Y	-0.3556	-0.5000	-0.0502	3
4	Y	0.1444	0.0052	0.5000	3
5	Y	-0.3556	0.0052	-0.0502	3
6	Y	0.1444	-0.5000	0.5000	3
7	Y	0.0000	-0.4948	0.0000	3
8	Y	0.5000	0.0000	0.4498	3
9	Hf	-0.1718	0.2526	-0.4509	4
10	Hf	-0.1838	-0.2474	0.4007	4
11	Hf	0.3162	-0.2474	0.0491	4
12	Hf	0.3282	0.2526	-0.0993	4
13	S ₁	0.2303	0.0393	0.1379	-2
14	S ₁	-0.2697	0.4659	0.3119	-2
15	S ₁	0.4141	-0.4607	-0.1881	-2
16	S ₁	-0.0859	-0.0341	-0.3621	-2
17	S ₁	0.4141	-0.0341	-0.1881	-2
18	S ₁	-0.0859	-0.4607	-0.3621	-2
19	S ₁	0.2303	0.4659	0.1379	-2
20	S ₁	-0.2697	0.0393	0.3119	-2
21	S ₂	0.0044	0.2526	0.3080	-2
22	S ₂	-0.3600	-0.2474	-0.3582	-2
23	S ₂	0.1400	-0.2474	-0.1920	-2
24	S ₂	-0.4956	0.2526	0.1418	-2
25	S ₃	0.3254	0.2526	-0.4729	-2
26	S ₃	0.3190	-0.2474	0.4227	-2
27	S ₃	-0.1810	-0.2474	0.0271	-2
28	S ₃	-0.1746	0.2526	-0.0773	-2
29	S ₄	0.1143	0.2526	-0.2126	-2
30	S ₄	-0.4699	-0.2474	0.1624	-2
31	S ₄	0.0301	-0.2474	0.2874	-2
32	S ₄	-0.3587	0.2526	-0.3376	-2

Note: The x , y , and z coordinates are in units of a , b , and c so that the actual distance from ion 1 to any ion, v , is $(a^2x_v^2 + b^2y_v^2 + c^2z_v^2)^{\frac{1}{2}}$.

$$q_v = 3, \quad 1 \leq v \leq 8 \quad (Y^{3+}),$$

$$q_v = 4, \quad 9 \leq v \leq 12 \quad (Hf^{4+}),$$

$$q_v = -2 \quad 13 \leq v \leq 32 \quad (S^{2-}),$$

32

and $\sum_{v=1}^{32} q_v = 0$ for neutrality of the entire solid. The sum given by equation (1) was calculated for each of the different ions (Y, Hf, S₁, S₂, S₃, and S₄) given in table I. The sum was done so that, for each value of l, m, and n, the sum over all the constituent ions in a cell was done first. The results of this calculation are shown in table III. As a check on the convergence of the sum for a given site, u was computed and compared to a site that is identical, that is, $\phi(l)$

TABLE III. ELECTRIC POTENTIAL AT VARIOUS SITES IN
Y₂HfS₅; UNITS ARE (Å)⁻¹

Ion	Type μ	$\phi(u)$, $q_s = -2$	$\phi(u)$, $q_s = 0$	ϕ_1
Y	1	-2.2256	-1.7304	0.24760
Y	5	-2.2256	-1.7302	0.24770
Hf	9	-2.4535	2.9775	2.71555
S ₁	13	1.4336	-0.72753	-1.08057
S ₁	17	1.4337	-0.72777	-1.08074
S ₂	21	1.4088	0.13992	-0.63444
S ₃	25	1.1192	1.1824	0.03160
S ₄	29	1.6004	0.11696	-0.74172

Note: The charge on yttrium ion q_Y is +3, while the charge on the hafnium ion is q_{Hf} chosen so that q_{Hf} + 5q_S = -6, where q_S is the charge on the sulfur ion. The last column is the constant in the expression $\phi(u) = \phi_0(u) + q_s \phi_1$.

and $\phi(2)$ or $\phi(9)$ and $\phi(10)$, and the sum was extended until the agreement was satisfactory. A limit of ± 10 on the l , m , and n sums gave agreement to four digits. The total electrostatic energy, U_E , for a cell is given by

$$U_E = \frac{e^2}{2} \sum_{i=1}^6 q_i N_i \phi(\mu_i) , \quad (2)$$

where N_i is the number of each type of ion (such as $q_i = 3$, $N_i = 8$ for Y and $q_i = 4$, $N_i = 4$ for Hf) and μ covers the distinct types of ions.

In the discussion of the structure, Jeitschko and Donohue¹ state that the compound Y_2HfS_5 is semi-ionic. That is, the yttrium site is ionic along with the complex $(HfS_5)^{6-}$, but within this latter complex the hafnium and sulfur may be covalent. To account partially for this covalency, one can choose an effective charge on the sulfur ion, q_s , so that

$$q_{Hf} + 5q_s = -6 , \quad (3)$$

which retains the ionic character of the HfS_5 complex. Also, the lattice sum was performed by using $q_s = -0$ ($q_{Hf} = -6$, not realistic), and the results are given in table III. Since the electrostatic potential is linear in the charge, each potential can be written in the form

$$\phi(\mu) = \phi_0(\mu) + q_s \phi_1(\mu) \quad (4)$$

for each distinct site. In the simple compounds where the x-ray data depend on only one parameter such as "a," the cell size in a simple cubic material, the electrostatic potential is generally expressed as

$$\phi = - \frac{eM}{a} , \quad (5)$$

where M is the Madelung constant, which has been tabulated for most of the simpler cubic structures.³ In the more complicated structures, an effective Madelung constant can be defined by

¹W. Jeitschko and P. C. Donohue, *Acta Crystallogr.*, B31 (1975), 1890.

³Mendel Sachs, *Solid State Theory*, McGraw-Hill Book Co., New York (1963), 55.

$$M_\mu = \phi(\mu)v^{1/3}, \quad (6)$$

where $\phi(\mu)$ is given by Jeitschko and Donohue,¹ and v is the volume of the unit cell. We do not use this definition here.

If one chooses a solid of dimension A, B, and C lengths in the x, y, and z dimensions, respectively, then the number of cells in its volume is given by

$$N = \left(\frac{A}{a}\right)\left(\frac{B}{b}\right)\left(\frac{C}{c}\right), \quad (7)$$

and the total energy per unit volume, w_E , is

$$w_E = \frac{U_E}{v}, \quad (8)$$

where we have used equation (2) and $v = abc$.

In many calculations, where the complete binding energy is required, one must assume some form of a repulsive force. Many different types are assumed in the literature with various degrees of sophistication. We assume the simple Born potential, B/r^n , where B is a constant and n is determined from experimental data.⁴ If the material is assumed isotropic, then both the electrostatic energy and the repulsive energy can be written in terms of a single variable such as $v^{1/3}$, where v is the volume of the unit cell. The condition that the energy is a minimum then requires that the derivative of the energy vanish at the equilibrium value of v. If it does, then

$$w = w_E \left(1 - \frac{1}{n}\right), \quad (9)$$

with w_E given by equation (8).

It is customary to express the energy in kilocalories per mole, W_E ; for Y_2HfS_5 , this conversion of the various constants gives

¹W. Jeitschko and P. C. Donohue, *Acta Crystallogr.*, B31 (1975), 1890.

⁴A. J. Dekker, *Solid State Physics*, Prentice-Hall, Inc., Englewood Cliffs, NJ (1965), Ch 5.

$$w_E = 83.05 w_E \quad (10)$$

if w_E is in reciprocal angstroms. Using the results given in table III, one can write electrostatic energy as

$$w_E(q_s) = -56.495 - 59.420q_s - 34.167q_s^2. \quad (11)$$

The result given in equation (11) for several values of q_s is $w_E(-2) = -74.325$, $w_E(-1) = -32.240$, and $w_E = -40.275$, all in reciprocal angstroms. With the result of equation (11) substituted in equations (10) and (9), one finally has for W , the total energy,

$$W = 83.05 \left(1 - \frac{1}{n}\right) \left(-56.495 - 59.420q_s - 34.167q_s^2\right) \text{ kcal/mole.} \quad (12)$$

Generally, the best fit value of n is obtained by matching the theoretical and experimental values, and in simple compounds the resulting value of n varies from 6 to 12. Choosing a value of $n = 10$ in equation (12), one obtains

$$W = -4222.8 - 4441.4q_s - 2553.8q_s^2 \text{ kcal/mole.} \quad (13)$$

This gives the lattice energy frequently used in the Born-Haber cycle calculations.⁵

Occasionally, the lattice energy is calculated by assuming that the solid is formed from preexisting ionic complexes.⁶ A reasonable approach from this assumption is $2Y^{3+} + (HfS_5)^{6-}$, which forms the solid. In this approach, one needs the energy of formation, U , of a single $(HfS_5)^{6-}$. This energy as a function of q_s is

$$U[(HfS_5)^{6-}] = -46.709q_s - 28.332q_s^2 (\text{Å})^{-1}. \quad (14)$$

⁵F. A. Cotton, *Advanced Inorganic Chemistry*, Interscience Publishers, New York (1972), 61.

⁶A. B. Blake and F. A. Cotton, *Inorganic Chemistry*, 2 (1963), 906.

If this result is subtracted from equation (11) and the result is multiplied by $83.05[1 - (1/n)]$, then the energy of formation of the solid Y_2HfS_5 from the constituent ionic complexes 2Y^{3+} and $(\text{HfS}_5)^{6-}$ is

$$U = -4222.8 - 948.74q_s - 436.14q_s^2 \text{ kcal/mole .} \quad (15)$$

ACKNOWLEDGEMENT

I thank Richard P. Leavitt for his help in the conversion of units and Herbert Curchack and Robert Rosen for helpful guidance through the necessary steps in the computer programming.

LITERATURE CITED

- (1) W. Jeitschko and P. C. Donohue, *Acta Crystallogr.*, B31 (1975), 1890.
- (2) International Tables of Crystallography, I, Kynach Press, Birmingham, England (1952), 151.
- (3) Mendel Sachs, *Solid State Theory*, McGraw-Hill Book Co., New York (1963), 55.
- (4) A. J. Dekker, *Solid State Physics*, Prentice-Hall, Inc., Englewood Cliffs, NJ (1965), Ch 5.
- (5) F. A. Cotton, *Advanced Inorganic Chemistry*, Interscience Publishers, New York (1972), 61.
- (6) A. B. Blake and F. A. Cotton, *Inorganic Chemistry*, 2 (1963), 906.

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314
ATTN DDC-TCA (12 COPIES)

COMMANDER
USA RSCH & STD GP (EUR)
BOX 65
FPO NEW YORK 09510
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCDDE, DIR FOR DEV & ENGR
ATTN DRCDMD-ST

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61299
ATTN DRSAR-ASF, FUZE & MUNITIONS
SPT DIV
ATTN DRSAR-LEP-L, TECHNICAL LIBRARY

COMMANDER
USA MISSILE & MUNITIONS CENTER
& SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

DIRECTOR
DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
ARCHITECT BLDG
1400 WILSON BLVD
ARLINGTON, VA 22209

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN APTL, TECH LIBRARY

DIRECTOR OF DEFENSE RES AND
ENGINEERING
WASHINGTON, DC 20301
ATTN TECHNICAL LIBRARY (3C128)

OFFICE, CHIEF OF RESEARCH,
DEVELOPMENT, & ACQUISITION
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
ATTN DAMA-ARZ-A, CHIEF SCIENTIST
DR. M. E. LASER
ATTN DAMA-ARZ-B, DR. I. R. HERSHNER

COMMANDER
US ARMY RESEARCH OFFICE (DURHAM)
PO BOX 12211
RESEARCH TRIANGLE PARK, NC 27709
ATTN DR. ROBERT J. LONTZ
ATTN DR. CHARLES BOGOSIAN

COMMANDER
ARMY MATERIALS & MECHANICS RESEARCH
CENTER
WATERTOWN, MA 02172
ATTN DRXMR-TL, TECH LIBRARY BR

COMMANDER
NATICK LABORATORIES
NATICK, MA 01762
ATTN DRXRES-RTL, TECH LIBRARY

COMMANDER
USA FOREIGN SCIENCE & TECHNOLOGY CENTER
FEDERAL OFFICE BUILDING
220 7TH STREET NE
CHARLOTTESVILLE, VA 22901
ATTN DRXST-BS, BASIC SCIENCE DIV

DIRECTOR
USA BALLISTICS RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR, DIRECTOR, R. EICHELBERGER
ATTN DRXBR-TB, FRANK J. ALLEN
ATTN DRXBR, TECH LIBRARY

COMMANDER
USA ELECTRONICS COMMAND
FORT MONMOUTH, NJ 07703
ATTN DRSEL-GG, TECHNICAL LIBRARY
ATTN DRSEL-CT-L, DR. HIESLMAIR
ATTN DRSEL-CT-L, J. STROZYK
ATTN DRSEL-CT-L, DR. E. J. TEBO
ATTN DRSEL-CT-L, DR. R. G. BUSER
ATTN DRSEL-WL-S, J. CHARLTON

COMMANDER
USA ELECTRONICS COMMAND
FORT BELVOIR, VA 22060
ATTN DRSEL-NV, NIGHT VISION LABORATORY
ATTN DRSEL-NV, LIBRARY

COMMANDER
USA ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DRSEL-BL, LIBRARY

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEER CENTER
1860 WIEHLE AVE
RESTON, VA 22090
ATTN PETER A. VENA

DISTRIBUTION (Cont'd)

COMMANDER US ARMY MISSILE RESEARCH & DEVELOPMENT COMMAND REDSTONE ARSENAL, AL 35809 ATTN DRDMI-TB, REDSTONE SCI INFO CENTER ATTN DRCPM-HEL, DR. W. B. JENNINGS ATTN DR. J. P. HALLOWES ATTN T. HONEYCUTT	DIRECTOR NAVAL RESEARCH LABORATORY WASHINGTON, DC 20390 ATTN CODE 2620, TECH LIBRARY BR ATTN CODE 5554, DR. LEON ESTEROWITZ
COMMANDER EDGEWOOD ARSENAL EDGEWOOD ARSENAL, MD 21010 ATTN SAREA-TS-L, TECH LIBRARY	COMMANDER NAVAL WEAPONS CENTER CHINA LAKE, CA 93555 ATTN CODE 753, LIBRARY DIV
COMMANDER FRANKFORD ARSENAL BRIDGE & TACONY STREETS PHILADELPHIA, PA 19137 ATTN K1000, TECH LIBRARY	COMMANDER AF ELECTRONICS SYSTEMS DIV L. G. HANSCOM AFB, MA 01730 ATTN TECH LIBRARY
COMMANDER US ARMY ARMAMENT RES & DEV COMMAND DOVER, NJ 07801 ATTN DRDAR-TSS, STINFO DIV	DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, DC. 20234 ATTN LIBRARY
COMMANDER USA TEST & EVALUATION COMMAND ABERDEEN PROVING GROUND, MD 21005 ATTN TECH LIBRARY	DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS BOULDER, CO 80302 ATTN LIBRARY
COMMANDER USA ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MD 21005 ATTN STEAP-TL, TECH LIBRARY, BLDG 305	DIRECTOR LAWRENCE RADIATION LABORATORY LIVERMORE, CA 94550 ATTN DR. MARVIN J. WEBER ATTN DR. HELMUT A. KOEHLER
COMMANDER WHITE SANDS MISSILE RANGE, NM 88002 ATTN DRSEL-WL-MS, ROBERT NELSON	NASA GODDARD SPACE FLIGHT CENTER GREENBELT, MD 20771 ATTN CODE 252, DOC SECT, LIBRARY
COMMANDER GENERAL THOMAS J. RODMAN LABORATORY ROCK ISLAND ARSENAL ROCK ISLAND, IL 61201 ATTN SWERR-PL, TECH LIBRARY	NATIONAL OCEANIC & ATMOSPHERIC ADM ENVIRONMENTAL RESEARCH LABORATORIES BOULDER, CO 80302 ATTN LIBRARY, R-51, TECH REPORTS
COMMANDER USA CHEMICAL CENTER & SCHOOL FORT MC CLELLAN, AL 36201	CARNEGIE MELLON UNIVERSITY SCHENLEY PARK PITTSBURGH, PA 15213 ATTN PHYSICS & EE DR. J. O. ARTMAN
COMMANDER NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152 ATTN TECH LIBRARY	UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING NORTH CAMPUS DEPARTMENT OF NUCLEAR ENGINEERING ANN ARBOR, MI 48104 ATTN DR. CHIHIRO KIKUCHI
COMMANDER NAVAL SURFACE WEAPONS CENTER WHITE OAK, MD 20910 ATTN WX-40, TECHNICAL LIBRARY	DIRECTOR ADVISORY GROUP ON ELECTRON DEVICES 201 VARICK STREET NEW YORK, NY 10013 ATTN SECTRY, WORKING GROUP D

DISTRIBUTION (Cont'd)

NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234
ATTN DR. W. BROWER
ATTN H. S. PARKER

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
ATTN DR. V. O. NICOLAI

HARRY DIAMOND LABORATORIES
ATTN RAMSDEN, JOHN J., COL, COMMANDER/
FLYER, I.N./LANDIS, P.E./
SOMMER, H./OSWALD, R.B.
ATTN CARTER, W.W., DR., TECHNICAL
DIRECTOR/MARCUS, S.M.
ATTN WISEMAN, ROBERT S., DR.,
DRDEL-CT
ATTN KIMMEL, S., PAO
ATTN CHIEF, 0021
ATTN CHIEF, 0022
ATTN CHIEF, LAB 100
ATTN CHIEF, LAB 200
ATTN CHIEF, LAB 300
ATTN CHIEF, LAB 400
ATTN CHIEF, LAB 500
ATTN CHIEF, LAB 600
ATTN CHIEF, DIV 700
ATTN CHIEF, DIV 800
ATTN CHIEF, LAB 900
ATTN CHIEF, LAB 1000
ATTN RECORD COPY, BR 041
ATTN HDL LIBRARY (5 COPIES)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN GIDEP OFFICE, 741
ATTN LANHAM, C., 0021
ATTN FARRAR, R., 350
ATTN GLEASON, T., 540
ATTN KARAYIANIS, N., 320
ATTN KULPA, S., 320
ATTN LEAVITT, R., 320
ATTN MORRISON, C., 320 (25 COPIES)
ATTN NEMARICH, J., 130
ATTN SCALES, J., III, 540
ATTN WORTMAN, D., 320
ATTN SATTLER, J., 320
ATTN WEBER, B., 320
ATTN SIMONIS, G., 320