Master Method/Theorem

- Given: a divide and conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

Master Method/Theorem

- Theorem 4.1 (page 94)
 - for T(n) = aT(n/b) + f(n), n/b may be $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$.
 - where a ≥ 1, b>1 are positive integers, f(n) be a non-negative function.
 - 1. If $f(n) = O(n^{\log_b a} \varepsilon)$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
 - 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

L4.2

The Master Theorem

• if T(n) = aT(n/b) + f(n) then

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta(n^{\log_b a} \log n) & f(n) = \Theta(n^{\log_b a}) \\ \Theta(f(n)) & f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{AND} \\ & af(n/b) < cf(n) & \text{for large } n \end{cases}$$

Implications of Master Theorem

- Comparison between f(n) and $n^{\log_b a}$ (<,=,>)
- Must be asymptotically smaller (or larger) by a polynomial, i.e., n^ε for some ε>0.
- In case 3, the "regularity" must be satisfied, i.e., $af(n/b) \le cf(n)$ for some c < 1.
- There are gaps
 - between 1 and 2: f(n) is smaller than $n^{\log_b a}$, but not polynomially smaller.
 - between 2 and 3: f(n) is larger than $n^{\log_b a}$, but not polynomially larger.
 - in case 3, if the "regularity" fails to hold.

L4.4

Application of Master Theorem

- T(n) = 9T(n/3) + n;
 - a=9,b=3, f(n)=n
 - $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$
 - $f(n)=O(n^{\log_3 9}-\varepsilon)$ for $\varepsilon=1$
 - By case 1, $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1
 - a=1,b=3/2, f(n)=1
 - $n^{\log_b a} = n^{\log_{3/2} 1} = \Theta(n^0) = \Theta(1)$
 - By case 2, $T(n) = \Theta(\lg n)$.

Application of Master Theorem

- $T(n) = 3T(n/4) + n \lg n$;
 - $a=3,b=4, f(n) = n \lg n$
 - $n^{\log_b a} = n^{\log_4 3} = \Theta(n^{0.793})$
 - $f(n) = \Omega(n^{\log_4 3 + \varepsilon})$ for $\varepsilon \approx 0.2$
 - Moreover, for large n, the "regularity" holds for c=3/4.
 - o $af(n/b) = 3(n/4)\lg(n/4) \le (3/4)n\lg n = cf(n)$
 - By case 3, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

L4.6

Exception to Master Theorem

- $T(n) = 2T(n/2) + n \lg n$;
 - $a=2,b=2, f(n) = n \lg n$
 - $n^{\log_b a} = n^{\log_2 2} = \Theta(n)$
 - f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because
 - $f(n)/n^{\log_b a} = \lg n$, which is asymptotically less than n^{ε} for any ε >0-
 - Therefore, this is a gap between 2 and 3.

Where Are the Gaps

Note: 1. for case 3, the regularity also must hold.

- 2. if f(n) is lg n smaller, then fall in gap in 1 and 2
- 3. if f(n) is $\log n$ larger, then fall in gap in 3 and 2
- 4. if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. (as exercise)

L4.7 L4.8

Proof of Master Theorem

- The proof for the exact powers, $n=b^k$ for $k \ge 1$.
- Lemma 4.2
 - for $T(n) = \Theta(1)$ if n=1
 - aT(n/b)+f(n) if $n=b^k$ for $k\ge 1$
 - where $a \ge 1$, b > 1, f(n) be a nonnegative function,
 - Then log_bn-1
 - $T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\infty} a^i f(n/b^i)$
- Proof:
 - By iterating the recurrence
 - By recursion tree (See figure 4.7)

Recursion tree for T(n)=aT(n/b)+f(n)

14.10

Proof of Master Theorem (cont.)

- Lemma 4.3:
 - Let a ≥ 1, b>1, f(n) be a nonnegative function defined on exact power of b, then
 - $g(n) = \sum_{j=0}^{\log b^{n-1}} a^j f(n/b^j)$ can be bounded for exact power of b as:
 - 1. If $f(n)=O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon>0$, then $g(n)=O(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \log_a n)$.
 - 3. If $f(n) = \Omega(n^{\log_b a_{+\varepsilon}})$ for some $\varepsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large $n \ge b$, then $g(n) = \Theta(f(n))$.

Proof of Lemma 4.3

• For case 1: $f(n)=O(n^{\log_b a_{-\varepsilon}})$ implies $f(n/b^j)=O((n/b^j)^{\log_b a_{-\varepsilon}})$, so

•
$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b n - 1} a^j (n/b^j)^{\log_b a - \varepsilon}) \log_b n - 1$$

= $O(n^{\log_b a - \varepsilon} \sum_{j=0}^{\infty} a^j (b^{\log_b a - \varepsilon})^j) = O(n^{\log_b a - \varepsilon} \sum_{j=0}^{\infty} a^j (a^j (b^{-\varepsilon})^j))$
= $O(n^{\log_b a - \varepsilon} \sum_{j=0}^{\infty} (b^{\varepsilon})^j) = O(n^{\log_b a - \varepsilon} (((b^{\varepsilon})^{\log_b n} - 1)/(b^{\varepsilon} - 1)))$
= $O(n^{\log_b a - \varepsilon} (((b^{\log_b n})^{\varepsilon} - 1)/(b^{\varepsilon} - 1))) = O(n^{\log_b a} n^{-\varepsilon} (n^{\varepsilon} - 1)/(b^{\varepsilon} - 1))$
= $O(n^{\log_b a})$

L4.11 L4.12

Proof of Lemma 4.3(cont.)

• For case 2: $f(n) = \Theta(n^{\log_b a})$ implies $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$, so

$$\begin{split} g(n) &= \sum_{j=0}^{log_b^{n-1}} a^j f(n/b^j) = \Theta(\sum_{j=0}^{log_b^{n-1}} a^j (n/b^j)^{\log_b a}) \\ &= \Theta(n^{\log_b a} \sum_{j=0}^{log_b^{n-1}} a^j / (b^{\log_b a})^j) = \Theta(n^{\log_b a} \sum_{j=0}^{log_b^{n-1}} 1) \\ &= \Theta(n^{\log_b a} \log_b n) = \Theta(n^{\log_b a} \log n) \end{split}$$

Proof of Lemma 4.3(cont.)

- For case 3:
 - Since g(n) contains f(n), $g(n) = \Omega(f(n))$
 - Since $af(n/b) \le cf(n)$, $a^i f(n/b^i) \le c^i f(n)$, why???

$$g(n) = \sum_{j=0}^{\log_b p-1} a^j f(n/b^j) \le \sum_{j=0}^{\log_b p-1} c^j f(n) \le f(n) \sum_{j=0}^{\infty} c^j$$

- = f(n)(1/(1-c)) = O(f(n))
- Thus, $g(n)=\Theta(f(n))$

L4.13

Proof of Master Theorem (cont.)

- Lemma 4.4:
 - for $T(n) = \Theta(1)$ if n=1
 - aT(n/b)+f(n) if $n=b^k$ for $k\ge 1$
 - where $a \ge 1$, b > 1, f(n) be a nonnegative function,
 - 1. If $f(n)=O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon>0$, then $T(n)=\Theta(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
 - 3. If $f(n) = \Omega(n^{\log_p a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof of Lemma 4.4 (cont.)

- Combine Lemma 4.2 and 4.3,
 - For case 1:
 - o $T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a}).$
 - For case 2:
 - o $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n).$
 - For case 3:
 - o $T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$ because $f(n) = \Omega(n^{\log_b a + \varepsilon})$.

L4.15

4

Floors and Ceilings

- $T(n)=aT(\lfloor n/b \rfloor)+f(n)$ and $T(n)=aT(\lceil n/b \rceil)+f(n)$
- Want to prove both equal to T(n)=aT(n/b)+f(n)
- Two results:
 - Master theorem applied to all integers n.
 - Floors and ceilings do not change the result.
 o (Note: we proved this by domain transformation too).
- Since $\lfloor n/b \rfloor \leq n/b$, and $\lceil n/b \rceil \geq n/b$, upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).

Upper bound of proof for $T(n)=aT(\lceil n/b \rceil)+f(n)$

- consider sequence $n, \lceil n/b \rceil, \lceil \lceil n/b \rceil / b \rceil, \lceil \lceil \lceil n/b \rceil / b \rceil / b \rceil$,
- Let us define n_i as follows:
- $n_j = n$ if j=0
- $= \lceil n_{i-1}/b \rceil$ if j > 0
- The sequence will be $n_0, n_1, ..., n_{\lfloor \log_b n \rfloor}$
- Draw recursion tree:

L4.17

L4.19

L4.18

Recursion tree of $T(n)=aT(\lceil n/b \rceil)+f(n)$

The proof of upper bound for ceiling

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b a \rfloor -1} a^j f(n_j)$$

• Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

L420

The simple format of master theorem

• $T(n)=aT(n/b)+cn^k$, with a, b, c, k are positive constants, and $a\ge 1$ and $b\ge 2$,

L4.21

•
$$T(n) = \begin{cases} O(n^{\log_b a}), & \text{if } a > b^k. \\ O(n^k \log n), & \text{if } a = b^k. \\ O(n^k), & \text{if } a < b^k. \end{cases}$$

Summary

Recurrences and their bounds

- Substitution
- Recursion tree
- Master theorem.
- Proof of subtleties
- Recurrences that Master theorem does not apply to.

Coding for Interview Website: http://codingforinterviews.com/practice

L4.22