General linear model: theory of linear model & basic applications in statistics

Dr C. Pernet

Uni. of Edinburgh

Overview

- Linearity
- Linear models
- Linear algebra
- Regressions as linear models
- 1 way ANOVA

What is linearity?

Linearity

- Means created by lines
- In maths it refers to equations or functions that satisfy 2 properties: additivity (also called superposition) and homogeneity of degree 1 (also called scaling)
- Additivity \rightarrow y = x1 + x2 (output y is the sum of inputs xs)
- Scaling \rightarrow y = β x1 (output y is proportional to input x)

Examples of linearity – non linearity

Matlab exercise 1.

x1 = [-15:14]' + randn(30,1);

try linear/non-linear effects on x1 and compute the correlations

What is a linear model?

What is a linear model?

- An equation or a set of equations that models data and which corresponds geometrically to straight lines, plans, hyperplans and satisfy the properties of additivity and scaling.
- Simple regression: $y = \beta 1x + \beta 2 + \epsilon$
- Multiple regression: $y = \beta 1x1 + \beta 2x2 + \beta 3 + \epsilon$
- One way ANOVA: $y = u + \alpha i + \epsilon$
- Repeated measure ANOVA: y=u+αi+ε

• ...

We have an experimental measure x (e.g. stimulus intensity from 0 to 20)

- We have an experimental measure x (e.g. stimulus intensity from 0 to 20)
- We then do the expe and collect data y (e.g. RTs)

- We have an experimental measure x (e.g. stimulus intensity from 0 to 20)
- We then do the expe and collect data y (e.g. RTs)
- Model: $y = \beta 1x + \beta 2$
- Do some maths / run a software to find $\beta 1$ and $\beta 2$
- $y^{\wedge} = 2.7x + 23.6$

- The error is the distance between the data and the model
- F = (SSeffect / df)(SSerror / df_error)
- •SSeffect =

Sum(Yi^{-} mean(Y^{-}). 2);

•SSerror =

 $Sum(Ei^- mean(E).^2);$

Change from rows to columns

- Linear algebra has to do with solving linear systems, i.e. a set of linear equations
- For instance we have observations (y) for a stimulus characterized by its properties x_1 and x_2 such as $y = x_1 \beta_1 + x_2 \beta_2$

$$2\beta 1 - \beta 2 = 0$$
$$-\beta 1 + 2\beta 2 = 3$$

$$\beta 1 = 1$$
; $\beta 2 = 2$

 With matrices, we change the perspective and try to combine columns instead of rows, i.e. we look for the coefficients with allow the linear combination of vectors

$$2\beta 1 - \beta 2 = 0$$
$$-\beta 1 + 2\beta 2 = 3$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \beta 1 \beta 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$\beta 1 = 1 ; \beta 2 = 2$$

- A simple solution to linear equation / system is to multiple by the inverse of x ($x\beta = y \rightarrow \beta = 1/x*y$)
- e.g. $3\beta 1 = 15 \longrightarrow 1/3*3\beta 1 = 1/3*15 \longrightarrow \beta 1 = 5$
- We multiply each side by 1/3; 1/3 is the inverse of 3 because 1/3 * 3 = 1

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \beta 1 \beta 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$X \quad B = Y$$

- $XB = Y \longrightarrow inv(X)XB = inv(X)Y \longrightarrow B = inv(X)Y$
- Just as 1/3 is the inverse of 3, we can define a matrix A being the inverse of X such as AX=I with I being the identity matrix (=1 on diagonal and zeros everywhere else)

$$inv\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0.66 & 0.33 \\ 0.33 & 0.66 \end{bmatrix} \longrightarrow inv\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} * \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \beta 1 \beta 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \longrightarrow inv\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} * \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Matlab exercise 2. Linear algebra

Regression analyses

Solving using linear algebra

•We have an experimental measure x (e.g. stimulus intensity from 1 to 20)

- •We have an experimental measure x (e.g. stimulus intensity from 1 to 20)
- We then do the expe and collect data y (e.g. RTs)

- •Model: Y = XB
- •X=[[1:20]' ones(20,1)];
- → Note the ones = intercept
- $B=inv(X'X)X'Y \longrightarrow y^{\wedge} = XB^{\wedge}$

We use inv(X'X)X'Y rather than inv(X)Y because we need a square matrix $X = XB \rightarrow X'Y = X'XB \rightarrow inv(X'X)X'Y = inv(X'X)X'XB$ since inv(X)X=I this is the same inv(X'X)X'X = I

$$Y = XB \rightarrow X'Y = X'XB \rightarrow inv(X'X)X'Y = B$$

Matlab exercise 3:

```
x = rand(20,1)*5;

y = 3*x+25+rand(20,1)*4
```

- --> find B using the inv operator
- --> F = (SS effect * df) / (SS error * dfe)
- --> SS effect = sum((Yhat mean(Y)).^2)
- --> find Yhat, SS error (hint: compute error first), df, dfe, F
- --> find p value (see fcdf function)

•Now we have several experimental measures X (e.g. stimulus intensity from 1 to 20 and stimulus duration from 1 to 96) and still one data set Y (e.g. RTs)

•Now we have several experimental measures X (e.g. stimulus intensity from 1 to 20 and stimulus duration from 1 to 96) and still one data set Y (e.g. RTs)

•Model: Y = XB

•X=[[1:20;1:5:96]' ones(20,1)];

 $\bullet B = inv(X'X)X'Y --> yhat = XB^$

- Matlab exercise 4: load hald, Y=hald(:,5); X=hald(:,1:4);
- Conpute B, Yhat, Res, R2, F and p as before

 What is the contribution of each regressor to the model (partial correlation coefficient) and to the data (semi-partial correlation coefficient)

Semi-Partial correlations

Semi-partial coef = R^2 full - R^2 reduced <u>Matlab exercise 5</u>: compute Semi-partial coef for x1 (ie X(:,1))

Partial correlations

Matlab exercise 6: compute partial coef for x1 (ie X(:,1))

- In text books we have y = u + xi + ε, that is to say the data (e.g. RT) = a constant term (grand mean u) + the effect of a treatment (xi) and the error term (ε)
- In a regression xi takes several values like e.g. [1:20]
- In an ANOVA xi is designed to represent groups

Υ	Gp
8	1
9	1
7	1
5	2
7	2
3	2
3	3
4	3
1	3
6	4
4	4
9	4

$$y(1..3)1=1x1+0x2+0x3+0x4+c+e11$$

 $y(1..3)2=0x1+1x2+0x3+0x4+c+e12$
 $y(1..3)3=0x1+0x2+1x3+0x4+c+e13$
 $y(1..3)4=0x1+0x2+0x3+1x4+c+e13$

→ This is like the multiple regression except that we have ones and zeros instead of 'real' values

- Now we have rewritten the ANOVA using matrices such Y = XB
- One last thing: X is rank deficient, that is take any 4 columns and you can make the fife one up → inv(X) or inv(X'X) do not exist → solution use pinv
- B = pinv(X)Y
- All other analyses are the same

- Matlab exercise 7: solve an ANOVA just as for regression
- u1 = rand(10,1) + 11.5; u2 = rand(10,1) + 7.2; u3 = rand(10,1) + 5; Y = [u1; u2; u3];
- x1 =[ones(10,1); zeros(20,1)]; x2 =[zeros(10,1); ones(10,1); zeros(10,1)]; x3 =[zeros(20,1); ones(10,1)]; X =[x1 x2 x3 ones(30,1)];
- B = pinv(X)*Y
- Yhat, Res, F and p values as before

END

Next time, even more general way to solve even more general designs