

PRE-MEDICAL

PHYSICS

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Basic Mathematics used in physics & Vectors

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

TRIGONOMETRY

- **1.** As θ increases from 0° to 90° , the value of $\cos \theta$:
 - (1) Increases
 - (2) Decreases
 - (3) Remains constant
 - (4) First decreases then increases.

BM0001

- **2.** The greatest value of the function $-5 \sin\theta + 12 \cos\theta$ is
 - (1) 12
- (2) 13
- (3) 7
- (4) 17

BM0002

- 3. If $\tan \theta = \frac{1}{\sqrt{5}}$ and θ lies in the first quadrant, the value of $\cos \theta$ is :
 - (1) $\sqrt{\frac{5}{6}}$
- $(2) \sqrt{\frac{5}{6}}$
- (3) $\frac{1}{\sqrt{6}}$
- $(4) \frac{1}{\sqrt{6}}$

BM0003

CALCULUS

- **4.** The coordinates of a particle moving in XY-plane vary with time as $x = 4t^2$; y = 2t. The locus of the particle is a :-
 - (1) Straight line
- (2) Circle
- (3) Parabola
- (4) Ellipse

BM0004

5. The slope of graph as shown in figure at points 1, 2 and 3 is m_1, m_2 and m_3 respectively then

- $(1) m_1 > m_2 > m_3$
- (2) $m_1 < m_2 < m_3$
- (3) $m_1 = m_2 = m_3$
- (4) $m_1 = m_3 > m_2$

BM0005

- **6.** A particle moves along the straight line y = 3x +
 - 5. Which coordinate changes at a faster rate?
 - (1) x-coordinate
 - (2) y-coordinate
 - (3) Both x and y coordinates
 - (4) Data insufficient.

BM0006

Build Up Your Understanding

7. Magnitude of slope of the shown graph.

- (1) First increases then decreases
- (2) First decreases then increases
- (3) Increases
- (4) Decreases

BM0007

GEOMETRY

- **8.** The equation of a curve is given as $y = x^2+2-3x$. The curve intersects the x-axis at
 - (1)(1,0)
- (2)(2,0)
- (3) Both (1) and (2)
- (4) No where

BM0008

9. Two particles A and B are moving in XY-plane. Their positions vary with time t according to relation:

$$x_A(t) = 3t, x_B(t) = 6$$

$$y_A(t) = t$$
, $y_B(t) = 2 + 3t^2$

Distance between two particles at t = 1 is :

- (1)5
- (2) 3
- (3) 4
- $(4)\sqrt{12}$

BM0009

10. A particular straight line passes through origin and a point whose abscissa is double of ordinate of the point. The equation of such straight line is:

(1)
$$y = \frac{x}{2}$$

$$(2) y = 2x$$

$$(3) y = -4x$$

$$(4) y = -\frac{x}{4}$$

BM0010

- **11.** The side of a square is increasing at the rate of 0.2 cm/s. The rate of increase of perimeter w.r.t. time is :
 - (1) 0.2 cm/s
- (2) 0.4 cm/s
- (3) 0.6 cm/s
- (4) 0.8 cm/s

BM0011

12. Frequency f of a simple pendulum depends on its length ℓ and acceleration g due to gravity

according to the following equation $f = \frac{1}{2\pi} \sqrt{\frac{g}{\ell}}$.

Graph between which of the following quantities is a straight line?

- (1) f on the ordinate and ℓ on the abscissa
- (2) f on the ordinate and $\sqrt{\ell}$ on the abscissa
- (3) f^2 on the ordinate and ℓ on the abscissa
- (4) f^2 on the ordinate and $1/\ell$ on the abscissa

BM0012

ALGEBRA

- **13.** The sum of the series $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots \infty$
 - (1) $\frac{8}{7}$ (2) $\frac{6}{5}$ (3) $\frac{5}{4}$ (4) $\frac{4}{3}$

BM0013

In the given figure, each box represents a function machine. A function machine illustrates what it does with the input.

Which of the following statements is correct?

- (1) z = 2x + 3
- (2) z=2(x+3)
- (3) $z = \sqrt{2x+3}$
- (4) $z = \sqrt{2(x+3)}$

BM0014

DEFINITION & TYPES OF VECTOR

- Which of the following statements is false: **15**.
 - (1) Mass, speed and energy are scalars
 - (2) Momentum, force and torque are vectors
 - (3) Distance is a scalar while displacement is a
 - (4) A vector has only magnitude whereas as a scalar has both magnitude and direction

VE0015

- **16.** If \hat{n} is a unit vector in the direction of the vector \vec{A} . then :-
 - (1) $\hat{n} = \frac{A}{|\vec{A}|}$
- (2) $\hat{n} = \vec{A} | \vec{A} |$
- (3) $\hat{\mathbf{n}} = \frac{|\vec{\mathbf{A}}|}{\vec{\mathbf{A}}}$
- (4) None of the above

VE0016

- A physical quantity which has a direction: **17**.
 - (1) must be a vector
 - (2) may be a vector
 - (3) must be a scalar
 - (4) none of the above

VE0017

- **18**. Which of the following physical quantities is an axial vector?
 - (1) displacement
- (2) force
- (3) velocity
- (4) torque

VE0018

- **19**. The forces, which meet at one point but their lines of action do not lie in one plane, are called:
 - (1) non-coplanar and non-concurrent forces
 - (2) coplanar and non-concurrent forces
 - (3) non-coplanar and concurrent forces
 - (4) coplanar and concurrent forces

VE0019

- 20. The direction of the angular velocity vector is along:
 - (1) Along the tangent of circular path
 - (2) Along the direction of radius vector
 - (3) Opposite to the direction of radius vector
 - (4) Along the axis of rotation

VE0020

ADDITION & SUBTRACTION, MULTIPLICATION & DIVISION OF A VECTOR BY A SCALAR

- Two vectors \vec{A} and \vec{B} lie in a plane, another 21. vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A} + \vec{B} + \vec{C}$:
 - (1) can be zero
 - (2) cannot be zero
 - (3) lies in the plane containing $\vec{A} \& \vec{B}$
 - (4) lies in the plane containing $\vec{B} \& \vec{C}$

VE0021

22. In vector diagram shown in figure where (\vec{R}) is the resultant of vectors (\vec{A}) and (\vec{B}) .

If $R = \frac{B}{\sqrt{2}}$, then value of angle θ is :

- $(1) 30^{\circ}$
- $(2)~45^{\circ}$
- $(3) 60^{\circ}$
- $(4) 75^{\circ}$

- The resultant of \vec{A} and \vec{B} makes an angle α **23**. with \vec{A} and β with \vec{B} , then :
 - (1) $\alpha < \beta$
- (2) $\alpha < \beta$ if A < B
- (3) $\alpha < \beta$ if A > B
- (4) $\alpha < \beta$ if A = B

- Two vectors \vec{A} and \vec{B} are such that $\vec{A} + \vec{B} = \vec{C}$ 24. and $A^2 + B^2 = C^2$. Which of the following statements, is correct?
 - (1) \vec{A} is parallel to \vec{B}
 - (2) \vec{A} is anti-parallel to \vec{B}
 - (3) \vec{A} is perpendicular to \vec{B}
 - (4) \vec{A} and \vec{B} are equal in magnitude

VE0024

- The minimum number of vectors of equal **25**. magnitude required to produce a zero resultant is:
 - (1) 2

(2) 3

(3)4

(4) more than 4

VE0025

- 26. How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant?
 - (1) 2
- (2) 3
- (3)4
- (4)5

VE0026

- **27**. How many minimum number of vectors in different planes can be added to give zero resultant?
 - (1) 2
- (2) 3
- (3)4
- (4)5

VE0027

- 28. What is the maximum number of components into which a vector can be split?
 - (1) 2
- (2) 3
- (3) 4
- (4) Infinite

VE0028

- **29**. What is the maximum number of rectangular components into which a vector can be split in its own plane?
 - (1) 2
- (2) 3
- (3) 4
- (4) Infinite

VE0029

- What is the maximum number of rectangular components into which a vector can be split in space?
 - (1) 2
- (2) 3
- (3)4
- (4) Infinite

VE0030

- The vector sum of the forces of 10 newton and 6 31. newton can be:
 - (1) 2N
- (2) 8N
- (3) 18N
- (4) 20N

VE0031

- Vector sum of two forces of 10N and 6N cannot be:
 - (1) 4N
- (2) 8N
- (3) 12N
- (4) 2N

VE0032

- **33**. Which of the following pair of forces will never give a resultant force of 2 N?
 - (1) 2 N and 2 N
- (2) 1 N and 1 N
- (3) 1 N and 3 N
- (4) 1 N and 4 N

VE0033

- If $\vec{A} + \vec{B} = \vec{C}$ and $\vec{A} + \vec{B} = \vec{C}$, then the angle between \vec{A} and \vec{B} is:
 - (1) 0
- (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{2}$
- $(4) \pi$

VE0034

- The resultant of $\vec{A} \& \vec{B}$ is \vec{R}_1 . On reversing the vector \vec{B} , the resultant becomes \vec{R}_2 . What is the value of $R_1^2 + R_2^2$?
 - (1) $A^2 + B^2$
- (2) $A^2 B^2$
- $(3) 2(A^2 + B^2)$
- (4) $2(A^2 B^2)$

VE0035

- Given that $\vec{P} + \vec{Q} = \vec{P} \vec{Q}$. This can be true 36. when:
 - (1) $\vec{P} = \vec{Q}$
 - (2) $\vec{Q} = \vec{0}$
 - (3) Neither \vec{P} nor \vec{Q} is a null vector
 - (4) \vec{P} is perpendicular to \vec{Q}

VE0036

- **37**. Which of the following sets of concurrent forces may be in equilibrium?
 - (1) $F_1 = 3N$, $F_2 = 5N$, $F_3 = 1N$
 - (2) $F_1 = 3N$, $F_2 = 5N$, $F_3 = 9N$
 - (3) $F_1 = 3N$, $F_2 = 5N$, $F_3 = 6N$
 - (4) $F_1 = 3N$, $F_2 = 5N$, $F_3 = 15N$

VE0037

- **38**. If vectors \vec{A} and \vec{B} are such that $|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|$, then $|\vec{A} - \vec{B}|$ may be equated
 - (1) $\frac{\sqrt{3}}{2} |\vec{A}|$ (2) $|\vec{A}|$ (3) $\sqrt{2} |\vec{A}|$ (4) $\sqrt{3} |\vec{A}|$

- **39**. What happens, when we multiply a vector by (-2)?
 - (1) direction reverses and unit changes
 - (2) direction reverses and magnitude is doubled
 - (3) direction remains unchanged and unit changes
 - (4) none of these

- Two vectors of equal magnitude have a resultant **40**. equal to either of them in magnitude. The angle between them is:
 - $(1) 60^{\circ}$
- $(2) 90^{\circ}$
- $(3) 105^{\circ}$
- $(4) 120^{\circ}$

VE0040

- If the sum of two unit vectors is a unit vector, 41. then the magnitude of their difference is :
 - (1) $\sqrt{2}$
- (2) $\sqrt{3}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{5}$

VE0041

RESOLUTION OF VECTOR

- If a unit vector is represented by $0.5\hat{i} 0.8\hat{j} + c\hat{k}$ then the value of 'c' is:
 - $(1)\ 1$
- (2) $\sqrt{0.11}$
- (3) $\sqrt{0.01}$ (4) $\sqrt{0.39}$

VE0042

- Vector \vec{P} makes angles α , β & γ with **43**. the x, y and z axes respectively, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
 - (1) 0
- $(2)\ 1$
- (3) 2
- (4) 3

BM0043

- The direction cosines of a vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \sqrt{2}\,\hat{\mathbf{k}}$ 44. are :-

 - (1) $\frac{1}{2}$, $\frac{1}{2}$, 1 (2) $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$

 - (3) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

- The unit vector along $\hat{i} + \hat{j}$ is:
- (2) $\hat{i} + \hat{j}$ (3) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (4) $\frac{\hat{i} + \hat{j}}{2}$

- The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$ is :

 - (1) $\frac{1}{7} \left[3\hat{i} + 6\hat{j} 2\hat{k} \right]$ (2) $\frac{1}{7} \left[3\hat{i} + 6\hat{j} + 2\hat{k} \right]$

 - (3) $\frac{1}{49} \left[3\hat{i} + 6\hat{j} + 2\hat{k} \right]$ (4) $\frac{1}{49} \left[3\hat{i} + 6\hat{j} 2\hat{k} \right]$

VE0046

- If $\vec{A} + \vec{B}$ is a unit vector along x-axis and $\vec{A} = \hat{i} - \hat{j} + \hat{k}$, then what is \vec{B} ?
 - (1) $\hat{i} + \hat{k}$
- (2) $\hat{i} \hat{k}$
- (3) $\hat{i} + \hat{j} + \hat{k}$
- (4) $\hat{i} + \hat{j} \hat{k}$

VE0047

- 48. Forces 3N, 4N and 12N act at a point in mutually perpendicular directions. The magnitude of the resultant force is:
 - (1) 19 N
- (2) 13 N
- (3) 11 N
- (4) 5 N

VE0048

- The angle that the vector $\vec{A} = 2\hat{i} + 3\hat{j}$ makes with **49**. y-axis is:
 - (1) $tan^{-1}(3/2)$
 - (2) $tan^{-1}(2/3)$
 - (3) $\sin^{-1}(2/3)$
 - $(4) \cos^{-1}(3/2)$

VE0049

DOT PRODUCT

- What is the angle between A and the resultant of $(\vec{A} + \hat{B})$ and $(\vec{A} - \hat{B})$?
 - (1) 0°
 - (2) $\tan^{-1}\left(\frac{A}{R}\right)$
 - (3) $\tan^{-1}\left(\frac{B}{\Delta}\right)$
 - (4) $\tan^{-1}\left(\frac{A-B}{A+B}\right)$

VE0050

- If $\hat{n} = a\hat{i} + b\hat{j}$ is perpendicular to the vector $(\hat{i} + \hat{j})$, then the value of a and b may be :
 - (1) 1, 0
- (2) 2, 0
- (3) 3, 0
- (4) $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$

VE0051

- **52**. Given that A = B. What is the angle between $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$?
 - $(1) 30^{\circ}$
- $(2) 60^{\circ}$
- $(3) 90^{\circ}$
 - $(4)\ 180^{\circ}$

- The vector sum of two forces is perpendicular to **53**. their vector difference. In that case, the force:
 - (1) Are equal to each other.
 - (2) Are equal to each other in magnitude.
 - (3) Are not equal to each other in magnitude.
 - (4) Cannot be predicted.

- The magnitudes of vectors \vec{A} , \vec{B} and \vec{C} are **54**. respectively 12, 5 and 13 units and $\vec{A} + \vec{B} = \vec{C}$, then the angle between \vec{A} and \vec{B} is:
 - (1) 0
- (2) $\pi/3$
- (3) $\pi / 2$
- (4) $\pi / 4$

VE0054

- If vectors $\vec{P}\,,\,\,\vec{Q}\,$ and $\,\vec{R}\,$ have magnitudes 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$, the angle between \vec{Q} and \vec{R} is:
 - (1) $\cos^{-1}\left(\frac{5}{12}\right)$
- (2) $\cos^{-1}\left(\frac{5}{13}\right)$
- (3) $\cos^{-1}\left(\frac{12}{13}\right)$
- (4) $\cos^{-1}\left(\frac{2}{13}\right)$

VE0055

- A vector perpendicular to $(4\hat{i} 3\hat{j})$ may be :
 - (1) $4\hat{i} + 3\vec{j}$
- (2) $7\hat{k}$

- (3) 6î
- (4) $3\hat{i} 4\hat{i}$

VE0056

- **57.** A force $(3\hat{i}+2\hat{j})$ N displaces an object through a distance $(2\hat{i}-3\hat{j})$ m. The work $(W = \vec{F} \cdot \vec{S})$ done is:
 - (1) zero
- (2) 12 J
- (3) 5 J
- (4) 13 J

VE0057

- If $\vec{P}.\vec{Q} = PQ$, then angle between \vec{P} and \vec{Q} is: $(4) 60^{\circ}$
 - $(1) 0^{\circ}$
- $(2) 30^{\circ}$
- $(3) 45^{\circ}$
- **VE0058**
- The resultant of \vec{A} and \vec{B} is perpendicular to \vec{A} . What is the angle between \vec{A} and \vec{B} ?

 - $(1) \cos^{-1}\left(\frac{A}{B}\right) \qquad (2) \cos^{-1}\left(-\frac{A}{B}\right)$
 - (3) $\sin^{-1}\left(\frac{A}{B}\right)$
- (4) $\sin^{-1}\left(-\frac{A}{B}\right)$

VE0059

- What is the component of $(3\hat{i} + 4\hat{j})$ along $(\hat{i} + \hat{j})$?
 - $(1) \ \frac{1}{2} \Big(\hat{j} + \hat{i} \Big)$
- (2) $\frac{3}{2}(\hat{j} + \hat{i})$
- (3) $\frac{5}{2}(\hat{j} + \hat{i})$
- $(4) \ \frac{7}{2} (\hat{j} + \hat{i})$

VE0060

- The vector $\vec{B} = 5\hat{i} + 2\hat{j} S\hat{k}$ is perpendicular to the vector $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ if S =
 - (1) 1

- (2) 4.7
- (3) 6.3
- (4) 8.5

VE0061

- What is the projection of \vec{A} on \vec{B} ? **62**.
 - $(1) \vec{A}.\vec{B}$
- (2) \vec{A} . \hat{B}
- (3) $\vec{B}.\vec{A}$
- (4) Â.B

VE0062

- 63. The angle between vectors $(\hat{i} + \hat{j})$ and $(\hat{j} + \hat{k})$ is:
 - $(1) 90^{\circ}$
- $(2) 180^{\circ}$

- $(3) 0^{\circ}$
- $(4) 60^{\circ}$

VE0063

64. The angle between the two vectors

$$\vec{A}=3\hat{i}+4\hat{j}+5\hat{k} \quad \text{and} \quad \vec{B}=3\hat{i}+4\hat{j}-5\hat{k} \quad \text{will}$$
 be :

- (1) zero
- $(2) 180^{\circ}$
- $(3) 90^{\circ}$
- $(4) 45^{\circ}$

VE0064

- Let $\vec{A} = \hat{i} A \cos \theta + \hat{j} A \sin \theta$, be any vector. Another vector \vec{B} which is normal to \vec{A} is :
 - (1) $\hat{i}B\cos\theta + \hat{j}B\sin\theta$
- (2) $\hat{i}B\sin\theta + \hat{j}B\cos\theta$
- (3) $\hat{i}B\sin\theta \hat{i}B\cos\theta$
- (4) $\hat{i}A\cos\theta \hat{i}A\sin\theta$

VE0065

- The vector $\vec{P} = a\hat{i} + a\hat{j} + 3\hat{k}$ and $\vec{Q} = a\hat{i} 2\hat{j} \hat{k}$ **66**. are perpendicular to each other. The positive value of a is:
 - (1) 3
- (2) 2
- (3) 1
- (4) zero

- **67.** A force $\vec{F} = (3\hat{i} + 4\hat{j})N$ acts on a body and displaces it by $\vec{S} = (3\hat{i} + 4\hat{j})m$. The work done $(W = \vec{F} \cdot \vec{S})$ by the force is :
 - (1) 10J
- (2) 12J
- (3) 19J
- (4) 25J

- **68.** What is the projection of $3\hat{i} + 4\hat{k}$ on the y-axis?
 - (1) 3

(2) 4

(3)5

(4) zero

VE0068

- **69.** If a vector $(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 8\hat{\mathbf{k}})$ is perpendicular to the vector $(4\hat{\mathbf{j}} 4\hat{\mathbf{i}} + \alpha\hat{\mathbf{k}})$, then the value of α is :
 - (1) -1
- (2) 1/2
- (3) -1/2
- (4) 1

VE0069

CROSS PRODUCT

- **70.** If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = 6\hat{i} + 8\hat{j}$ and \vec{A} and \vec{B} are the magnitudes of \vec{A} and \vec{B} , then which of the following is not true?
 - $(1) \vec{A} \times \vec{B} = \vec{0}$
- (2) $\frac{A}{B} = \frac{1}{2}$
- (3) $\vec{A}.\vec{B} = 48$
- (4) A = 5

VE0070

- **71.** A vector \vec{F}_1 is along the positive X-axis. If its vector product with another vector \vec{F}_2 is zero then \vec{F}_2 may be :-
 - $(1) 4\hat{i}$
- $(2) (\hat{\mathbf{i}} + \hat{\mathbf{j}})$
- (3) $(\hat{i} + \hat{k})$
- $(4) -4\hat{i}$

VE0071

- **72.** If \hat{i} , \hat{j} and \hat{k} are unit vectors along X, Y & Z axis respectively, then tick the wrong statement :
 - (1) $\hat{i}.\hat{i} = 1$
- $(2) \hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$
- (3) $\hat{i} \cdot \hat{j} = 0$
- $(4) \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{i}}$

VE0072

- 73. Two vectors \vec{P} and \vec{Q} are inclined to each other at angle θ . Which of the following is the unit vector perpendicular to \vec{P} and \vec{Q} ?
 - $(1)~\frac{\vec{P} \times \vec{Q}}{P.Q}$
- (2) $\frac{\hat{P} \times \hat{Q}}{\sin \theta}$
- (3) $\frac{\hat{P} \times \hat{Q}}{PQ \sin \theta}$
- (4) $\frac{\hat{P} \times \vec{Q}}{PQ \sin \theta}$

VE0073

- **74.** The magnitude of the vector product of two vectors \vec{A} and \vec{B} may not be:
 - (1) Greater than AB
- (2) Less than AB
- (3) Equal to AB
- (4) Equal to zero

VE0074

- **75.** If $\vec{P} \times \vec{Q} = \vec{R}$, then which of the following statements is not true?
 - (1) $\vec{R} \perp \vec{P}$
- (2) R ⊥ Q
- (3) $\vec{R} \perp (\vec{P} + \vec{Q})$
- (4) $\vec{R} \perp (\vec{P} \times \vec{Q})$

VE0075

- **76.** Which of the following vector identities is false?
 - (1) $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$
- $(2) \vec{P} + \vec{Q} = \vec{Q} \times \vec{P}$
- (3) $\vec{P}.\vec{Q} = \vec{Q}.\vec{P}$
- (4) $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$

VE0076

- **77.** What is the value of $(\vec{A} + \vec{B}) \cdot (\vec{A} \times \vec{B})$?
 - (1) 0

- (2) $A^2 B^2$
- (3) $A^2 + B^2 + 2AB$
- (4) none of these

VE0077

- **78.** If $\vec{A} \times \vec{B} = \vec{0}$ and $\vec{B} \times \vec{C} = \vec{0}$, then the angle between \vec{A} and \vec{C} may be:
 - (1) zero
- (2) $\frac{\pi}{4}$
- (3) $\frac{\pi}{2}$

(4) None

VE0078

- **79.** If the vectors $(\hat{i} + \hat{j} + \hat{k})$ and $3\hat{i}$ form two sides of a triangle, then area of the triangle is :
 - (1) $\sqrt{3}$ unit
- (2) $2\sqrt{3}$ unit
- (3) $\frac{3}{\sqrt{2}}$ unit
- (4) $3\sqrt{2}$ unit

Pre-Medica

- **80.** For a body, angular velocity $\vec{\omega}=\hat{i}-2\hat{j}+3\hat{k}$ and radius vector $\vec{r}=\hat{i}+\hat{j}+\hat{k}$, then its velocity $(\vec{v}=\vec{\omega}\times\vec{r})$ is:
 - (1) $-5\hat{i} + 2\hat{j} + 3\hat{k}$
- (2) $-5\hat{i} + 2\hat{j} 3\hat{k}$
- (3) $-5\hat{i} 2\hat{j} + 3\hat{k}$
- (4) $-5\hat{i} 2\hat{j} 3\hat{k}$

VE0080

- **81.** Area of a parallelogram, whose diagonals are $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$ will be :
 - (1) 14 unit
- (2) $5\sqrt{3}$ unit
- (3) $10\sqrt{3}$ unit
- (4) $20\sqrt{3}$ unit

VE0081

- **82.** The angle between vectors $(\vec{A} \times \vec{B})$ and $(\vec{B} \times \vec{A})$ is:
 - (1) π rad
- (2) $\frac{\pi}{2}$ rad
- (3) $\frac{\pi}{4}$ rad
- (4) zero

VE0082

- **83.** A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
 - (1) zero
 - (2) along west
 - (3) along east
 - (4) vertically downward

VE0083

- **84.** If $|\vec{A} \times \vec{B}| = |\vec{A}.\vec{B}|$, then the angle between \vec{A} and \vec{B} will be:
 - $(1) 30^{\circ}$
- $(2) 45^{\circ}$
- $(3) 60^{\circ}$
- (4) 75°

VE0084

- **85.** Two vectors \vec{A} and \vec{B} are such that $\vec{A} + \vec{B} = \vec{A} \vec{B}$. Then select incorrect atternative
 - (1) $\vec{A} \cdot \vec{B} = 0$
- (2) $\vec{A} \times \vec{B} = \vec{0}$
- (3) $\vec{A} = \vec{0}$
- (4) $\vec{B} = \vec{0}$

VE0085

- **86.** If three vectors satisfy the relation $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$, then \vec{A} can be parallel to
 - (1) C
- (2) B
- (3) $\vec{B} \times \vec{C}$
- (4) B.C

EX	ERCI	SE-I	(Cond	ceptu	al Qu	estio	ns)						ANS	NER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	1	3	2	2	2	3	1	1	4	4	4	3	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	3	4	2	2	3	3	1	2	3	4	1	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	4	4	1	3	2	3	4	2	4	2	2	3	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	2	2	2	1	4	3	2	3	3	2	1	1	2	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	2	4	3	3	1	4	4	3	3	4	4	2	1	4
Que.	76	77	78	79	80	81	82	83	84	85	86				
Ans.	2	1	1	3	1	2	1	2	2	3	3				

EXERCISE-II (Previous Year Questions)

AIPMT/NEET

AIPMT 2006

- The vectors \vec{A} and 1. are such that $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between vectors \vec{A} and B is -
 - $(1) 90^{\circ}$
- $(2) 60^{\circ}$
- $(3)75^{\circ}$
- $(4) 45^{\circ}$ **VE0087**

AIPMT 2007

- If $|\vec{A} \times \vec{B}| = \sqrt{3} \ \vec{A} \cdot \vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is:
 - (1) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$ (2) A + B
 - (3) $(A^2 + B^2 + \sqrt{3} AB)^{1/2}$ (4) $(A^2 + B^2 + AB)^{1/2}$

VE0088

AIPMT 2010

3. Six vectors, \vec{a} through f have the magnitudes and directions indicated in the figure. Which of the following statements is true?

- (1) $\vec{b} + \vec{e} = \vec{f}$
- (2) $\vec{b} + \vec{c} = \vec{f}$
- (3) $\vec{d} + \vec{c} = \vec{f}$
- (4) $\vec{d} + \vec{e} = \vec{f}$ **VE0090**

Re-AIPMT 2015

4. If vectors

 $\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$ and $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$

are functions of time, then the value of t at which they are orthogonal to each other is:

$$(1) t = 0$$

(2)
$$t = \frac{\pi}{4\omega}$$

(2)
$$t = \frac{\pi}{4\omega}$$
 (3) $t = \frac{\pi}{2\omega}$ (4) $t = \frac{\pi}{\omega}$

VE0091

NEET-I 2016

- If the magnitude of sum of two vectors is equal to **5**. the magnitude of difference of the two vectors, the angle between these vectors is :-
 - $(1) 0^{\circ}$
- (2) 90°
- $(3) 45^{\circ}$
- $(4) 180^{\circ}$

VE0092

NEET(UG) 2019

A particle moving with velocity V is acted by three forces shown by the vector triangle PQR. The velocity of the particle will:

- (1) increase
- (2) decrease
- (3) remain constant
- (4) change according to the smallest force QR

VE0116

NEET(UG) 2020 (Covid-19)

- 7. The angle of 1' (minute of arc) in radian is nearly equal to
 - (1) 2.91×10^{-4} rad
- (2) 4.85×10^{-4} rad
- (3) 4.80×10^{-6} rad
- (4) 1.75×10^{-2} rad

VE0117

NEET(UG) 2021 (Paper-2)

- 8. Two adjacent side of a parallelogram are represented by the two vectors $3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\hat{i} - \hat{j} - \hat{k}$. The area of parallelogram is
 - (1) $\sqrt{74}$
- (2) $\sqrt{94}$
- (3) $\sqrt{104}$
- (4) $\sqrt{114}$

VE0118

Re-NEET(UG) 2022

- If $\vec{F} = 2\hat{i} + \hat{j} \hat{k}$ and $\vec{r} = 3\hat{i} + 2\hat{j} 2\hat{k}$, then the 9. scalar and vector products of \vec{F} and \vec{r} have the magnitudes respectively as:
- (1) 5, $\sqrt{3}$ (2) 4, $\sqrt{5}$ (3) 10, $\sqrt{2}$ (4) 10, 2

VE0119

EXERCISE-II (Previous Year Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9
Ans.	1	4	4	4	2	3	1	4	3

EXERCISE-III (Analytical Questions)

- 1. The moon's distance from the earth is 360000 km and its diameter subtends an angle of 42' at the eye of the observer. The diameter of the moon is
 - (1) 4400 km
- (2) 1000 km
- (3) 3600 km
- (4) 8800 km

VE0093

- **2.** If velocity of a particle is given by v=(2t+3) m/s, then average velocity in interval $0 \le t \le 1s$ is :
 - (1) $\frac{7}{2}$ m/s
- (2) $\frac{9}{2}$ m/s
- (3) 4 m/s
- (4) 5 m/s

VE0095

- **3.** The sum of magnitudes of two forces acting at a point is 16N. If the resultant force is 8N and its direction is perpendicular to smaller force, then the forces are:
 - (1) 6N & 10N
- (2) 8N & 8N
- (3) 4N & 12N
- (4) 2N & 14N

VE0097

- 4. At what angle must the two forces (x + y) and (x y) act so that the resultant may be $\sqrt{(x^2 + y^2)}$?
 - (1) $\cos^{-1}\left[\frac{-(x^2+y^2)}{2(x^2-y^2)}\right]$
 - (2) $\cos^{-1}\left[\frac{-2(x^2-y^2)}{x^2+y^2}\right]$
 - (3) $\cos^{-1}\left[\frac{-(x^2+y^2)}{x^2-y^2}\right]$
 - (4) $\cos^{-1} \left[\frac{(x^2 y^2)}{x^2 + y^2} \right]$

VE0098

- **5.** A vector of length ℓ is turned through the angle θ about its tail. What is the change in the position vector of its head?
 - (1) $\ell \cos(\theta/2)$
- (2) $2\ell \sin(\theta/2)$
- (3) $2\ell \cos(\theta/2)$
- (4) $\ell \sin(\theta/2)$

VE0099

Master Your Understanding

- **6.** Given that $\vec{A} + \vec{B} + \vec{C} = \vec{0}$. Out of these three vectors two are equal in magnitude and the magnitude of the third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. Then the angles between vectors are :
 - $(1)\ 30^{\circ},\ 60^{\circ},\ 90^{\circ}$
- (2) 45°, 45°, 90°
- (3) 45°, 60°, 90°
- (4) 90°, 135°, 135°

VE0100

- 7. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is doubled then the new resultant vector is perpendicular to ' \vec{P} '. Then R is equal to :
 - $(1) \left(\frac{P^2 Q^2}{2PQ} \right)$
- (2) Q

(3) $\frac{P}{Q}$

 $(4) \frac{P+Q}{P-Q}$

VE0101

- 8. Given that P=Q=R. If $\vec{P}+\vec{Q}=\vec{R}$ then the angle between $\vec{P} \& \vec{R}$ is θ_1 . If $\vec{P}+\vec{Q}+\vec{R}=\vec{0}$ then the angle between $\vec{P} \& \vec{R}$ is θ_2 . What is the relation between θ_1 and θ_2 ?
 - (1) $\theta_1 = \theta_2$
- (2) $\theta_1 = \frac{\theta_2}{2}$
- (3) $\theta_1 = 2\theta_2$
- (4) None of the above

VE0102

- 9. Square of the resultant of two forces of equal magnitude is equal to three times the product of their magnitude. The angle between them is:
 - $(1) 0^{\circ}$

- $(2) 45^{\circ}$
- $(3) 60^{\circ}$

(4) 90°

VE0103

- **10.** A unit radial vector $\hat{\mathbf{r}}$ makes angles of $\alpha=30^\circ$ relative to the x-axis, $\beta=60^\circ$ relative to the y-axis, and $\gamma=90^\circ$ relative to the z-axis. The vector $\hat{\mathbf{r}}$ can be written as :
 - $(1) \ \frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$
- (2) $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$
- (3) $\frac{\sqrt{2}}{3}\hat{i} + \frac{1}{\sqrt{3}}\hat{j}$
- (4) None of these

VE0104

EXERCISE-III (Analytical Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	3	1	1	2	4	2	2	3	2