Tutorial on the R package ReplicationSuccess

Leonhard Held, Charlotte Micheloud, Samuel Pawel Department of Biostatistics, Center for Reproducible Science

Installation

Linux / Windows

- Mac

Replication studies

Direct replication

- Repeating original study using the same methodology
- → Tool to assess credibility of scientific discoveries
- → Regulatory requirement

Replication studies

Direct replication

- Repeating original study using the same methodology
- → Tool to assess credibility of scientific discoveries
- → Regulatory requirement

Replication crisis

- Low replicability of many scientific discoveries
- → Increased interest in meta-science
- → Large-scale replication projects

- 2015: Reproducibility project psychology

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project
- 2018: Social sciences replication project

- 2015: Reproducibility project psychology
- 2016: Experimental economics replication project
- 2018: Experimental philosophy replicability project
- 2018: Social sciences replication project

Social sciences replication project

Social sciences replication project

Morewedge et al. (2010). Science

Original discovery

"Repeatedly imagining eating a food subsequently reduces the actual consumption of that food"

When is a replication successful?

Some proposed criteria for replication success

1. Statistical significance

When is a replication successful?

Some proposed criteria for replication success

- 1. Statistical significance
- 2. Comparison of effect estimates

When is a replication successful?

Some proposed criteria for replication success

- 1. Statistical significance
- 2. Comparison of effect estimates
- 3. Reverse Bayes methods

Drawbacks of approaches

- Signficiance can always be achieved by increasing sample size
- Estimates can be compatible but uninformative

Design of replication studies

 Discuss sample size calculation important and depends on analysis strategy – Discuss what was done in projects – Ad hoc shrinkage

Statistical framework of package

normality assumption – relative quantities – DesignPrior:
Predictive and conditional

Significance

- powerSignficance + arguments sampleSizeSignificance
- + arguments exercises

Comparison of effect size

- predictionInterval - sampleSizePI - sampleSizePIwidth

Reverse Bayes

– pSceptical – powerReplicationSuccess – sampleSizeReplicationSuccess

Outlook

- Interim - Heterogeneity - EB shrinkage

References

- Camerer, C. F., Dreber, A., Forsell, E., Ho, T., Huber, J., Johannesson, M., Kirchler, M., Almenberg, J., Altmejd, A., Chan, T., Heikensten, E., Holzmeister, F., Imai, T., Isaksson, S., Nave, G., Pfeiffer, T., Razen, M., and Wu, H. (2016). Evaluating replicability of laboratory experiments in economics. *Science*, 351:1433 1436.
- Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell, E., Gampa, A., Heikenstein, E., Hummer, L., Imai, T., Isaksson, S., Manfredi, D., Rose, J., Wagenmakers, E., and Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. *Nature Human Behavior*, 2:637 644.
- Cova, F., Strickland, B., Abatista, A., Allard, A., Andow, J., Attie, M., Beebe, J., Berniūnas, R., Boudesseul, J., Colombo, M., Cushman, F., Diaz, R., N'Djaye Nikolai van Dongen, N., Dranseika, V., Earp, B. D., Torres, A. G., Hannikainen, I., Hernández-Conde, J. V., Hu, W., Jaquet, F., Khalifa, K., Kim, H., Kneer, M., Knobe, J., Kurthy, M., Lantian, A., Liao, S.-y., Machery, E., Moerenhout, T., Mott, C., Phelan, M., Phillips, J., Rambharose, N., Reuter, K., Romero, F., Sousa, P., Sprenger, J., Thalabard, E., Tobia, K., Viciana, H., Wilkenfeld, D., and Zhou, X. (2018). Estimating the reproducibility of experimental philosophy. *Review of Philosophy and Psychology*.
- Held, L. (2019). A new standard for the analysis and design of replication studies (with discussion). *Journal of the Royal Statistical Society: Series A (Statistics in Society)*.
- Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349(6251):aac4716.
- Pawel, S. and Held, L. (2019). Probabilistic forecasting of replication studies. Preprint.