| Statistical Estimation | Homework 1               |
|------------------------|--------------------------|
| ASEN 5044 Fall 2018    | Due Date: Sep 6, 2018    |
| Name: Andrew Kramer    | CU identitykey: ankr1041 |

#### Exercise 1

Compute determinants for the following matrices by hand and state whether each one is invertible

## Problem (a)

$$|A| = 1 \begin{vmatrix} 5 & 4 \\ 9 & 7 \end{vmatrix} - 2 \begin{vmatrix} 6 & 4 \\ 8 & 7 \end{vmatrix} + 3 \begin{vmatrix} 6 & 5 \\ 8 & 9 \end{vmatrix}$$
$$= 1(-1) - 2(10) + 3(14)$$
$$= 21$$

Because |A| is nonzero A is invertible.

# Problem (b)

$$|A| = 11 \begin{vmatrix} 57 & 0 & 10 \\ 91 & 1 & 71 \\ 23 & 0 & 71 \end{vmatrix} - 26 \begin{vmatrix} 64 & 0 & 10 \\ 83 & 1 & 71 \\ 54 & 0 & 71 \end{vmatrix}$$
$$= 11(57(71) + 10(-23)) - 26(64(71) + 10(-54))$$
$$= 41978 - 109642$$
$$= -67655$$

Because |A| is nonzero A is invertible.

#### Problem (c)

Because  $A_1 = -2A_3$  (where  $A_i$  refers to the  $i^{\text{th}}$  column of A), the columns of A are not linearly independent. This means A is not invertible and |A| = 0.

#### Problem (d)

Because the determinant of an upper triangular matrix is simply the product of its diagonal elements:

$$|A| = 1 \times 8 \times 55 \times 233 \times 610$$
  
= 62537200

Because |A| is nonzero A is invertible.

#### Exercise 2

Prove each of the following statements:

Homework 1 ASEN 5044

## Problem (a)

If a and b are non-zero  $n \times 1$  vectors, then the matrix  $ab^T$  has rank 1.

Column i of the outer product of a and b is simply the vector a multiplied by the scalar  $b_i$ . This means that every column of  $ab^T$  is a scalar multiple of a, so none of the columns of  $ab^T$  are linearly independent. Thus, the rank of  $ab^T$  is always one if both a and b are nonzero.

### Problem (b)

tr(AB) = tr(BA) if A is an  $m \times n$  matrix and B is  $n \times m$ .

The trace of AB can be expressed as

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$$

Similarly, the trace of BA is

$$\operatorname{tr}(BA) = \sum_{j=1}^{n} (BA)_{jj}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij}$$

Because  $\sum_{i=1}^n \sum_{j=1}^n a_{ij}b_{ji}$  is equal to  $\sum_{j=1}^n \sum_{i=1}^n b_{ji}a_{ij}$  we can conclude that  $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ .

### Problem (c)

If A is invertible then  $|A^{-1}| = \frac{1}{|A|}$ .

If we start with  $|AB| = |BA| = |A| \; |B|$  and replace B with  $A^{-1}$  we find that

$$|A| |A^{-1}| = |AA^{-1}|$$
  
=  $|I|$   
= 1

Because  $|A| |A^{-1}| = 1$  we must conclude that  $|A^{-1}| = \frac{1}{|A|}$ .