

UNIT 11

Latches and Flip-Flops

This chapter includes:

```
11.1 Introduction
```

11.10 Summary

Learning Objectives

- Explain in words the operation of S-R and gated D latches.
- 2. Explain in words the operation of D, D-CE, S-R, J-K, and T flip-flops.
- 3. Make a table and derive the characteristic (nextstate) equation for such latches and flip-flops. State any necessary restrictions on the input signals.
- 4. Draw a timing diagram relating the input and output of such latches and flip-flops.
- 5. Show how latches and flip-flops can be constructed using gates. Analyze the operation of a flip-flop that is constructed of gates and latches.

Introduction

- Sequential switching circuits have the property that the output depends not only on the present input but also on the past sequence of inputs.
- In effect, these circuits must be able to "remember" something about the past history of the inputs in order to produce the present output.
- Latches and flip-flops are commonly used memory devices in sequential circuits.
- Basically, latches and flip-flops are memory devices which can assume one of two stable output states and which have one or more inputs that can cause the output state to change.

Introduction

Flip-Flops and Latches:

- In synchronous digital systems, it is common practice to synchronize the operation of all flipflops by a common clock or pulse generator.
- Each of the flip-flops has a clock input, and the flip-flops are memory devices that can only change output in response to a clock input, not data inputs.
- A memory element that has no clock input is often called a latch, and we will follow this practice.

Introduction

Feedback:

By feedback we mean that the output of one of the gates is connected back into the input of another gate in the circuit so as to form a closed loop.

S-R Latch Explanation:

- We can construct a simple latch by introducing feedback into a NOR-gate circuit, as seen in Figure 11-3(a).
- As indicated, if the inputs are S=R=0, the circuit can assume a stable state with Q=0 and P=1.
- ❖ Now if we change S to 1, P will become 0. This is an unstable condition or state of the circuit because both the inputs and output of the second gate are 0; therefore Q will change to 1, leading to the stable state shown in Figure 11-3(b).

S-R Latch Explanation (continued):

- ❖ If S is changed back to 0, the circuit will not change state because Q=1 feeds back into the first gate, causing P to remain 0, as shown in Figure 11-4(a).
- ❖ Note that the inputs are again S=R=0, but the outputs are different than those with which we started. Thus, the circuit has two different stable states for a given set of inputs.
- ❖ If we now change R to 1, Q will become 0 and P will then change back to 1, as seen in Figure 11-4(b). If we then change R back to 0, the circuit remains in this state and we are back where we started.

FIGURE 11-3

© Cengage Learning 2014

FIGURE 11-4

© Cengage Learning 2014

Cross-Coupled Form of S-R Latch and S-R Latch Timing Diagram:

Present and Next States:

- ❖ The term present state (Q(t)) is used to denote the state of the Q output of the latch or flip-flop at the time any input signal changes.
- The term next state (Q(t+ε)) to denote the state of the Q output after the latch or flip-flop has reacted to the input change and stabilized.

TABLE 11-1
S-R Latch Next
State and Output
© Cengage Learning 2014

Present		Next State Q ⁺			F	resent (Output P	
State	SR	SR	SR	SR	SR	SR	SR	SR
Q	00	01	11	10	00	01	11	10
0	0	0	0	1	1	1	0	0
1	1	0	0	1	0	0	0	0

Switch Debouncing:

A useful application of the S-R Latch involves **switch debouncing**- switch contacts tend to vibrate or bounce open and closed several times before settling down to their final position, producing a noisy transition, and this noise can interfere with the proper operation of a logic circuit.

FIGURE 11-9 Switch Debouncing with an S-R Latch

© Cengage Learning 2014

S-R Latch using NAND Gates:

S	R	Q	Q ⁺
1	1	0	0
1	1	1	1
1	0	0	0
1	0	1	0
0	1	0	1
0	1	1	1
0	0	0	-) Inputs not
0	0	1	_∫ allowed
			(c)

Gated Latches:

- Gated latches have an additional input called the gate or enable input.
- When the gate input is inactive, which may be the high or low value, the state of the latch cannot change.
- When the gate input is active, the latch is controlled by the other inputs and operates as indicated in the preceding section.

Gated S-R Latch:

FIGURE 11-11

NAND-Gate Gated S-R Latch

© Cengage Learning 2014

The next-state equation is

$$Q^+ = SG + Q(R' + G')$$

and the equation for the P output is

$$P = Q' + RG$$

Gated S-R Latch:

TABLE 11-2

Next-State and Output of Gated S-R Latch

© Cengage Learning 2014

		 		_
N	ext	 151	\circ	
1.4	EA	 ιαι	_	$\mathbf{\mathcal{C}}$

Pr	esent		G :	= 0		`	G :	= 1	
	tate	SR	SR	SR	SR	SR	SR	SR	SR
	Q	00	01	11	10	00	01	11	10
	0	0	0	0	0	0	0	1	1
	1	1	1	1	1	1	0	1	1

Present Output P

Present	G = 0					G =	= 1	
State	SR	SR	SR	SR	SR	SR	SR	SR
Q	00	01	11	10	00	01	11	10
0	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	0

Gated D- Latch:

This latch is also referred to as a **transparent latch** since *Q* becomes equal to *D* while *G* is active.

Edge-Triggered and Master-Slave Flip-Flops:

- If the inputs to the flip-flop only need to be stable for a short period of time around the clock edge, then we refer to the flip-flop as edge-triggered.
- The term master-slave flip-flop refers to a particular implementation that uses two gated latches in such a way that the flip-flop outputs only change on a clock edge.

- A D flip-flop (Figure 11-17) has two inputs, *D* (data) and Ck (clock). The small arrowhead on the flip-flop symbol identifies the clock input.
- If the output can change in response to a 0 to 1 transition on the clock input, we say that the flip-flop is triggered on the rising edge (or positive edge) of the clock.
- If the output can change in response to a 1 to 0 transition on the clock input, we say that the flip-flop is triggered on the falling edge (or negative edge) of the clock.

FIGURE 11-17 D Flip-Flops

© Cengage Learning 2014

(a) Rising-edge trigger

(b) Falling-edge trigger

(c) Truth table

FIGURE 11-18

Timing for D Flip-Flop (Falling-Edge Trigger)

Cengage Learning 2014

D Flip-Flop (Rising-Edge Trigger):

FIGURE 11-19

D Flip-Flop (Rising-Edge Trigger)

© Cengage Learning 2014

(a) Construction from two gated D latches

FIGURE 11-21

Determination of Minimum Clock Period

© Cengage Learning 2014

(a) Simple flip-flop circuit

(b) Setup time not satisfied

S-R Flip-Flop

FIGURE 11-22

S-R Flip-Flop

© Cengage Learning 2014

Operation summary:

S = R = 0 No state change

S = 1, R = 0 Set Q to 1 (after active Ck edge)

S = 0, R = 1 Reset Q to 0 (after active Ck edge)

S = R = 1 Not allowed

FIGURE 11-23

S-R Flip-Flop Implementation and Timing

© Cengage Learning 2014

(a) Implementation with two latches

J-K Flip-Flop

FIGURE 11-24

J-K Flip-Flop (Q Changes on the Rising Edge)

© Cengage Learning 2014

$$\underline{Q}^+ = J\underline{Q}' + K'\underline{Q}$$

(b) Truth table and characteristic equation

J-K Flip-Flop

FIGURE 11-25

Master-Slave J-K Flip-Flop (Q Changes on Rising Edge)

© Cengage Learning 2014

J-K Flip-Flop

$$Q^+ = T'Q + TQ' - T \oplus Q$$

T Flip-Flop

(b) Conversion of D to T

(a) Conversion of J-K to T

Characteristic Equation For T Flip-Flop:

$$Q^+ = JQ' + K'Q = TQ' + T'Q$$

Flip-Flops with Additional Inputs

Flip-Flops with Additional Inputs:

Flip-flops often have additional inputs which can be used to set the flip-flops to an initial state independent of the clock.

FIGURE 11-29

D Flip-Flop with Clear and Preset

Cengage Learning 2014

Ck	D	PreN	ClrN	Q ⁺
х	х	0	0	(not allowed)
X	X	0	1	1
X	X	1	0	0
↑	0	1	1	0
↑	1	1	1	1
0,1,↓	X	1	1	Q (no change)
			(b)	

Flip-Flops with Additional Inputs

Asynchronous Clear and Preset:

CIrN and PreN are often referred to as asynchronous clear and preset inputs because their operation does not depend on the clock.

FIGURE 11-30
Timing Diagram
for D Flip-Flop
with Asynchronous
Clear and Preset

© Cengage Learning 2014

Flip-Flops with Additional Inputs

D Flip-Flop with Clock Enable:

FIGURE 11-31

D Flip-Flop with Clock Enable

© Cengage Learning 2014

(c) Implementation

Asynchronous Sequential Circuits

Asynchronous Sequential Circuits:

In asynchronous sequential circuits the state of the circuit can change whenever any input changes.

Cengage Learning 2014

Asynchronous Sequential Circuits

Hazards and Incorrect State Transitions:

- Even if the circuit is free of hazards, delays in the "wrong" places in the circuit can cause incorrect state transitions.
- Essential hazards are properties of the nextstate table; they cannot be eliminated by modifying the circuit's logic.

Asynchronous Sequential Circuits

Multiple Input Change and Multiple-State Variable Change Examples:

FIGURE 11-33

Multiple Input Change Example

⇒ Cengage Learning 2014

		X	W .	
PQ	00	01	11	10
00	0	0	01	00
01	11	00	01)	11
11	11	10	11)	11)
10	00	10)	11	00

FIGURE 11-34

Multiple-State Variable Change Example

⇒ Cengage Learning 2014

PQR	0	1
000	000	011
001	101	001
011	101	(011)
010	000	011
110	000	110
111	101	111
101	101)	110
100	100	110

Summary

Procedure to find Characteristic Equation:

- 1. Make a truth table that gives the next state (Q+) as a function of the present state (Q) and the inputs. Any illegal input combinations should be treated as don't-cares.
- 2. Plot a map for Q+ and read the characteristic equation from the map.

Summary

Characteristic Equations for Various Flip-Flops/Latches:

$$Q^{+} = S + R'Q (SR = 0)$$
 (S-R latch or flip-flop) (11-6)
 $Q^{+} = GD + G'Q$ (gated D latch) (11-7)
 $Q^{+} = D \cdot CE + Q \cdot CE'$ (D-CE flip-flop) (11-9)
 $Q^{+} = JQ' + K'Q$ (J-K flip-flop) (11-10)
 $Q^{+} = T \oplus Q = TQ' + T'Q$ (T flip-flop) (11-11)