ภาคผนวก J

การทดลองที่ 10 การเชื่อมต่อกับขา GPIO

การทดลองนี้คาดว่าผู้อ่านเคยเรียนการเขียนหรือพัฒนาโปรแกรมด้วยภาษา C มาบ้างแล้ว และมีความคุ้นเคย กับ IDE (Integrated Development Environment) จากพัฒนาโปรแกรมและการดีบักโปรแกรมด้วยภาษา C/C++ และแอสเซมบลี ดังนั้น การทดลองมีวัตถุประสงค์เหล่านี้

- เพื่อปฏิบัติการเชื่อมต่อวงจรกับขา GPIO บนบอร์ด Pi3 ตามเนื้อหาในบทที่ 6 หัวข้อที่ 6.11
- เพื่อพัฒนาโปรแกรมภาษา C ควบคุมการทำงานของขา GPIO
- เพื่อพัฒนาโปรแกรมภาษาแอสเซมบลีควบคุมการทำงานของขา GPIO

โปรดสังเกตตัวอักษร w ที่คำว่า wiringPi ต้องเป็นตัวอักษรพิมพ์เล็ก

J.1 ไลบรารี wiringPi

ไลบรารี wiringPi เป็นฟังค์ชันที่พัฒนาด้วยภาษา C สำหรับบอร์ด Pi เป็น OpenSource ภายใต้ GNU LGPLv3 license สามารถเรียกใช้งานผ่าน ภาษา C and C++ รวมถึงแอสเซมบลี

เนื่องจากไลบรารี wiringPiเป็นซอฟท์แวร์แบบ Open Source แจกให้แก่นักพัฒนาทั่วโลกผ่านทาง https://github.com/wiringPi และมีการปรับปรุงแก้ไขตลอดเวลาโดยทีมนักพัฒนา ดังนั้น ผู้อ่านควร ต้องติดตั้งและปรับปรุงระบบปฏิบัติการให้ทันสมัยและติดตั้ง ตามขั้นตอนต่อไปนี้

- 1. ผู้อ่านควรปรับปรุงระบบปฏิบัติการให้เป็นปัจจุบันก่อน โดยพิมพ์คำสั่งนี้บนโปรแกรม Terminal โดยใช้ สิทธิ์ของ SuperUser:
 - \$ sudo apt-get update
 - \$ sudo apt-get upgrade

ขั้นตอนนี้จะใช้เวลานานและความอดทน รวมถึงการเชื่อมต่อกับเครือข่ายอินเทอร์เน็ตที่มีเสถียรภาพ

- 2. ติดตั้ง wiringPi โดยพิมพ์คำสั่งนี้บน Terminal โดยใช้สิทธิ์ของ SuperUser:
 - \$ sudo apt-get install wiringPi

คำสั่งนี้จะติดตั้งไลบรารีลงบนการ์ดหน่วยความจำ SD ในบอร์ด

3. เรียกคำสั่ง gpio -v เพื่อทดสอบการติดตั้งไลบรารี wiringPi และได้ผลลัพธ์ของการเรียกดังนี้

```
$ gpio -v
```

gpio version: 2.50

Copyright (c) 2012-2018 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.

For details type: gpio -warranty

Raspberry Pi Details:

Type: Pi 3, Revision: 02, Memory: 1024MB, Maker: Sony

- * Device tree is enabled.
- *--> Raspberry Pi 3 Model B Rev 1.2
- * This Raspberry Pi supports user-level GPIO access.
- 4. เรียกคำสั่ง gpio readall เพื่อตรวจสอบและบันทึกผลลัพธ์ที่แสดงบนหน้าต่าง Terminal ลงในตาราง หน้าถัดไป
 - \$ gpio readall
- 5. จงเติมหมายเลขในคอลัมน์ wPi (wiringPi) ให้ตรงกับขาเชื่อมต่อ 40 ขาบนบอร์ด Pi ตามที่แสดงบนหน้า จอลงในตารางต่อไปนี้ เพื่อใช้ประกอบการต่อวงจรที่ถูกต้อง

всм	WPi	Name	Mode	۷	Phys	ical	V	Mode	Name	WPi	BCM
		3.3v			1				5v		
	8	SDA.1	IN	1					5v		
	9	SCL.1	IN	1					0v		
	7	GPIO. 7	IN	1				IN	TxD	15	14
		9v				10	1 1	IN	RxD	16	15
17	Θ	GPIO. 0	IN	0	11	12		IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	0	13	14			0v		
22	3	GPIO. 3	IN	0	15	16		IN	GPIO. 4	4	23
		3.3v			17	18		IN	GPIO. 5	5	24
10	12	MOSI	IN	0	19	20			0v		
	13	MISO	IN	0	21	22		IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	1 1	IN	CE0	10	
		Θν			25	26	1 1	IN	CE1	11	
	30	SDA.0	IN	1	27	28	1 1	IN	SCL.0	31	11
	21	GPI0.21	IN	1	29	30			0v		
	22	GPI0.22	IN	1	31	32		IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34			0v		
19	24	GPI0.24	IN	0	35	36		IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38		IN	GPI0.28	28	20
		0v			39	40	0	IN	GPI0.29	29	21
всм	wPi	Name	Mode	V	Phys	ical	I V I	Mode	Name	wPi	BCM

	+		+	- + -		+	P	i 3	B	+		- +		+		+ -	
BCM	wPi	.	Name		V		Phy	sic	cal		V		Name		wPi		BCM
			3.3v				1		2				5v				
2	<u>8</u>	<u> </u>	SDA.1		1		3		4				5v				
3	<u>S</u>	<u>)</u>	SCL.1		1		5		6				0v				
4	7	7	GPIO. 7		1		7		8		0		TxD		<u>15</u>		14
			0v				9		10		1		RxD		<u>16</u>		15
17	<u>C</u>	<u>)</u>	GPIO. 0		0		11		12		0		GPIO. 1		<u>1</u>		18
27	2	2	GPIO. 2		0		13		14				0v				
22	3	<u> </u>	GPIO. 3		0		15		16		0		GPIO. 4		<u>4</u>		23
			3.3v				17		18		0		GPIO. 5		<u>5</u>		24
10	12	-	MOSI		0		19		20				0v				
9	<u>13</u>	<u>B</u>	MISO		0		21		22		0		GPIO. 6		<u>6</u>		25
11	14	-	SCLK		0		23		24		1		CE0		<u>10</u>		8
			0v				25		26		1		CE1		<u>11</u>		7
0	30)	SDA.0		1		27		28		1		SCL.0		<u>31</u>		1
5	2	1	GPIO.21		1		29		30				0v				
6	22	2	GPIO.22		1		31		32		0		GPIO.26		<u>26</u>		12
13	23	3	GPIO.23		0		33		34				0v				
19	24	4	GPIO.24		0		35		36		0		GPI0.27		<u>27</u>		16
26	25	5	GPIO.25		0		37		38		0		GPIO.28		<u>28</u>		20
			0v				39		40		0		GPI0.29		<u>29</u>		21
	+			- + -		+	P	i 3	B	+		-+		+		+ -	
BCM	wPi	-	Name		V		Phy	sic	cal		V		Name		wPi		BCM
	+			- + -		+		++-		+		-+		+		+ -	

J.2 วงจรไฟ LED กระพริบ

- 1. รายการอุปกรณ์ที่ต้องใช้:
 - หลอด LED จำนวน 3 หลอด
 - ตัวต้านทาน (Resistor) ที่เตรียมไว้ให้จำนวน 3 ตัว
 - แผ่นต่อวงจรโปรโตบอร์ด
 - สายต่อวงจร
- 2. ชัทดาวน์และตัดไฟเลี้ยงออกจากบอร์ด Pi3 เพื่อความปลอดภัยในการต่อวงจร
- 3. ศึกษาตารางที่กรอกก่อนหน้านี้ให้เข้าใจ แล้วจึงต่อวงจรตามรูปที่ J.1

รูปที่ J.1: วงจรเชื่อมต่อหลอด LED กับบอร์ด Pi3 ในการทดลองที่ 10 เพื่อทดสอบว่าหลอด LED ทำงาน ที่มา: fritzing.org

- 4. จงวาดวงจรที่ต่อในรูปที่ J.1 ประกอบด้วย ตัวต้านทาน ไฟเลี้ยง 3.3 โวลท์ ขา LED และกราวด์ (0 โวลท์)
- 5. ตรวจสอบความถูกต้อง โดยให้ผู้ควบคุมการทดลองตรวจสอบ
- 6. จ่ายไฟเลี้ยงให้กับบอร์ดแล้วสังเกตการเปลี่ยนแปลงที่หลอด LED หากหลอด LED ไม่สว่าง ขอความช่วย เหลือจากผู้ควบคุมการทดลอง

J.3 โปรแกรมไฟ LED กระพริบภาษา C

- 1. เรียกโปรแกรม Code::Blocks ผ่านทาง Terminal โดยใช้สิทธิ์ของ SuperUser ดังนี้
 - \$ sudo codeblocks
- 2. สร้าง project ใหม่ชื่อ Lab10 จนเสร็จสิ้น
- 3. คลิกเมนู "Setting/Compiler..." เลือก แท็บ "Linker settings" แล้วกดปุ่ม "Add"

- 4. ป้อนประโยค "/usr/lib/libwiringPi.so;" ในหน้าต่าง Add Library แล้วกดปุ่ม "OK" เพื่อปิดหน้าต่าง
- 5. กดปุ่ม "OK" เพื่อยืนยัน
- 6. ป้อนโปรแกรมลงในไฟล์ใหม่ที่สร้างขึ้นโดยให้ชื่อว่า main.c

```
#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
int main ( void ) {
int pin = 7;
 printf("LED blinking by wiringPi\n");
  if (wiringPiSetup() == -1) {
    printf( "Setting up problem ... Abort!" );
     exit (1);
  }
  pinMode(pin, OUTPUT); /* set pin=7 to Output mode */
  int i:
  for ( i=0; i<10; i++ ) {
    digitalWrite(pin, 1);  /* LED On */
    delay(500);
    digitalWrite(pin, 0);  /* LED Off */
   delay(500);
  }
  return 0;
}
```

- 7. ทำการ Build และแก้ไขหากมีข้อผิดพลาดจนสำเร็จ
- 8. ย้ายสายจากขา 1 ของหัวเชื่อมต่อ 40 ขาไปยังขาหมายเลข 7 ซึ่งจะตรงกับ pin = 7 หรือ GPIO 7 ใน ตารางที่กรอกก่อนหน้า
- 9. Run และสังเกตการเปลี่ยนแปลงที่หลอดไฟ LED หากหลอด LED ไม่สว่าง ขอความช่วยเหลือจากผู้ ควบคุมการทดลอง
- 10. จับเวลาช่วงเวลาที่หลอดสว่างและดับตั้งแต่เริ่มรันโปรแกรมจนเสร็จสิ้น เพื่อหาค่าเฉลี่ยของการสว่างดับ 1 รอบ

ลองจับเวลาใช้เวลาประมาณ 11.12 วินาที่ ค่าเฉลี่ยในการสว่างดับ 1 รอบเท่ากับ 1.11 วินาที่

J.4 โปรแกรมไฟ LED กระพริบภาษาแอสเซมบลี

- 1. เปิดไดเรคทอรี /home/pi/asm ในโปรแกรมไฟล์เมเนเจอร์
- 2. สร้างไดเรคทอรีใหม่ชื่อ Lab10
- 3. สร้างไฟล์ใหม่ชื่อ Lab10.s โดยใช้คำสั่ง touch
- 4. กรอกโปรแกรมภาษาแอสเซมบลีเหล่านี้โดยใช้ editor ที่ถนัด

```
#-----
   # data segment
   #-----
        .data
        .balign 4
       .asciz "LED blinking by wiringPi\n"
intro:
errMsg: .asciz "Setting up problem ... Abort!\n"
pin:
       .int
i:
       .int 0
duration:.int 500
OUTPUT = 1
             @constant
   #-----
   # text segment
   #------
       .text
       .global main
       .extern printf
       .extern wiringPiSetup
       .extern delay
       .extern digitalWrite
       .extern pinMode
main:
      PUSH
              {ip, lr} @push link return register on stack segment
              R0, =intro
       LDR
       BL
              printf
              wiringPiSetup
       BL
              R1,#-1
       VOM
              R0, R1
       CMP
              init
       BNE
       LDR
              R0, =errMsg
              printf
       BL
              done
       В
```

```
init:
                 R0, =pin
        LDR
        LDR
                 R0, [R0]
        MOV
                 R1, #OUTPUT
        BL
                 pinMode
                 R4, =i
        LDR
                 R4, [R4]
        LDR
                 R5,#10
        MOV
forLoop:
                 R4, R5
        CMP
        BGT
                 done
                 R0, =pin
        LDR
                 R0, [R0]
        LDR
        MOV
                 R1,#1
                 digitalWrite
        BL
        LDR
                 R0, =duration
                 R0, [R0]
        LDR
                 delay
        BL
                 R0, =pin
        LDR
                 R0, [R0]
        LDR
        MOV
                 R1,#0
        BL
                 digitalWrite
                 R0, =duration
        LDR
                 R0, [R0]
        LDR
                 delay
        BL
        ADD
                 R4,#1
                 forLoop
```

- 5. ทำการแปลและลิงค์ Lab10.s จนกว่าจะสำเร็จ:
 - \$ as -o Lab10.o Lab10.s

POP

- \$ gcc -o Lab10 Lab10.o -lwiringPi
- 6. รันโปรแกรม Lab10 และสังเกตการเปลี่ยนแปลงที่หลอดไฟ LED
 - \$ sudo ./Lab10

done:

7. จับเวลาช่วงเวลาที่หลอดสว่างและดับตั้งแต่เริ่มรันโปรแกรมจนเสร็จสิ้น เพื่อหาค่าเฉลี่ยของการสว่างดับ 1 รอบ

{ip, pc} @pop return address into pc

ลองจับเวลาใช้เวลาประมาณ 11.30 วินาที่ ค่าเฉลียในการสว่างดับ 1 รอบเท่ากับ 1.13 วินาที่

J.5 กิจกรรมท้ายการทดลอง

- 1. ไลบรารี libwiringPi.so ทำหน้าที่อะไร และเกี่ยวข้องกับ #include <wiringPi.h> อย่างไร
- 2. ประโยค \$ gcc -o Lab10 Lab10.o -lwiringPi มีความหมายอย่างไร และเชื่อมโยงกับคำถามข้อที่แล้ว อย่างไร
- 3. ฟังค์ชัน digitalWrite ใช้กับขา GPIO ในโหมดไหน โหมด OUTPUT
- 4. ประโยค PUSH {ip, lr} ทำหน้าที่อะไร เหตุใดจึงต้องเรียกใช้ก่อนประโยคอื่นๆ
- 5. ประโยค POP {ip, pc} ทำหน้าที่อะไร เหตุใดจึงต้องเรียกใช้เป็นประโยคสุดท้าย
- 6. สำรวจไฟล์ชื่อ wiringPi.c ในไดเรคทอรีชื่อ /home/pi/wiringPi/wiringPi/ เพื่อค้นหาตัวแปรชื่อ piGpioBase ว่า
 - ใช้งานในฟังค์ชันชื่ออะไร
 - ได้รับการตั้งค่าที่ฟังค์ชันชื่ออะไร และค่าเท่ากับเท่าไหร่
 - นำตัวแปร piGpioBase นี้ไปใช้ทำอะไรต่อได้อีก จงยกตัวอย่าง
 - หมายเลขแอดเดรส 0x2000_0000 นี้เกี่ยวข้องกับหมายเลข 0x7E00_0000 ในตารางที่ 6.4 และ รูปที่ 6.16 อย่างไร
- 7. จงตอบคำถามจากประโยคต่อไปนี้

- อยู่ในฟังค์ชันชื่ออะไร
- ตัวแปร fd มาจากไหน เกี่ยวข้องกับ ไฟล์ /mem และไฟล์ /dev/gpiomem อย่างไร
- ฟังค์ชัน mmap() มีหน้าที่อะไร รีเทิร์นค่าอะไรกลับมา และเป็นตัวแปรชนิดใด เหตุใดจึงต้องมี ประโยค (uint32 t *) นำหน้า
- นำตัวแปร gpio นี้ไปใช้ทำอะไรต่อได้อีก จงยกตัวอย่าง
- จงอธิบายว่าตัวแปร gpio นี้เกี่ยวข้องกับหลักการ Memory Map IO อย่างไร
- 8. จงตอบคำถามจากประโยคต่อไปนี้

```
GPIO_BASE = piGpioBase + 0x00200000;
```

- อยู่ในฟังค์ชันชื่ออะไร
- ตัวแปร GPIO_BASE มีหน้าที่อะไร
- เมื่อบวกแล้วได้ผลลัพธ์เป็นหมายเลขแอดเดรสอะไร และเกี่ยวข้องกับหมายเลข 0x7E20_0000 ในตารางที่ 6.6 อย่างไร

- นำตัวแปร GPIO_BASE นี้ไปใช้ทำอะไรต่อได้อีก จงยกตัวอย่าง
- จงอธิบายว่าตัวแปร GPIO BASE นี้เกี่ยวข้องกับขา gpio แต่ละขาอย่างไร
- 9. ต่อหลอด LED เพิ่มอีก 2 ดวงรวมเป็น 3 ดวงแล้วพัฒนาโปรแกรมภาษา C เดิมให้นับเลข 0-7 และแสดง ผลทางหลอด LED เป็นเลขฐานสองวนไปเรื่อยๆ
- 10. ใช้วงจรหลอด LED 3 ดวงที่มีอยู่และพัฒนาโปรแกรมภาษาแอสเซมบลีเดิมให้นับเลข 0-7 และแสดงผล ทางหลอด LED เป็นเลขฐานสองวนไปเรื่อยๆ

9. source code อยู่ใน ex9.c video อยู่ใน video_ex9.mp4

```
#include <stdio.h>
        #include <stdlib.h>
        #include <wiringPi.h>
 3
      pint main ( void ) {
         int pin1 = 0; //msh
        int pin2 = 2;
        int pin3 = 3; //lsh
 7
             if (wiringPiSetup() == -1) {
 8
                  printf( "Setting up problem ... Abort!" );
 9
10
11
             pinMode(pin1, OUTPUT); /* set pin=7 to Output mode */
pinMode(pin2, OUTPUT);
pinMode(pin3, OUTPUT);
12
13
14
             int i=0;
15
             while(1){
16
17
                  digitalWrite(pin1, (i&4)>>2);
                  digitalWrite(pin2, (i&2)>>1);
digitalWrite(pin3, i&1);
18
19
                  i++;
if(i==8){
20
21
22
                       i=0;
23
                  delay(1000);
25
26
             return 0;
27
        }
28
```