Métricas Riemannianas

Ángel Peñaflor

1 de junio de 2022

- Métricas Riemannianas I
- Variedades Suaves
- Surves of the state of the s
- Espacio Tangente y Fibrado Tangente
- Campos Vectoriales
- 6 Tensores
- Métricas Riemannianas II

Definición 1 (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

Definición 1 (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

Figura: Yo después de leer la definición de métrica Riemanniana.

Definición 2 (Variedad Topologica)

Sea M un espacio topológico, diremos que M es una **Variedad Topológica n-dimensional** si cumple las siguientes propiedades:

- *M* es un **Espacio de Hausdorff**.
- *M* es **Segundo Numerable**.
- *M* es **Localmente Euclidiano** de dimension *n*.

Definición 2 (Variedad Topologica)

Sea M un espacio topológico, diremos que M es una **Variedad Topológica n-dimensional** si cumple las siguientes propiedades:

- *M* es un **Espacio de Hausdorff**.
- M es Segundo Numerable.
- *M* es **Localmente Euclidiano** de dimension *n*.

Definición 3 (Carta)

Sea M una variedad topológica. Una **Carta** en M es un par ordenado (U, φ) donde U es un subconjunto abierto de M y φ es un homeomorfismo de U a \mathbb{R}^n .

Figura: Los Espacios Euclidianos (\mathbb{R}^n).

Figura: Las gráficas de funciones continuas.

Figura: Las n—esferas \mathbb{S}^n

Figura: Los toros $\mathbb{T}^n = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$

Definición 4

Sea M una variedad topológica y sean (U, φ) , (V, ψ) cartas en M tales que $U \cap V \neq \emptyset$, llamamos al mapa definido como:

$$\psi \circ \varphi^{-1} : \underbrace{\varphi(U \cap V)}_{\subset \mathbb{R}^n} \to \underbrace{\psi(U \cap V)}_{\subset \mathbb{R}^n}$$

el mapa de transición de φ a ψ . Además decimos que las cartas (U,φ) y (V,ψ) son suavemente compatibles si $U\cap V=\varnothing$ o el mapa de transición $\psi\circ\varphi^{-1}$ es un difeomorfismo.

Figura: Mapa de Transición

Definición 5 (Atlas)

Una colección de cartas es un **Atlas** para M si las cartas cubren a M. Decimos que un atlas $\mathcal A$ es **Suave** si cualesquiera dos cartas son suavemente compatibles.

Decimos que un atlas suave A es **Maximal** si el atlas no está propiamente contenido en ningún atlas más grande.

Definición 5 (Atlas)

Una colección de cartas es un **Atlas** para M si las cartas cubren a M. Decimos que un atlas \mathcal{A} es **Suave** si cualesquiera dos cartas son suavemente compatibles.

Decimos que un atlas suave \mathcal{A} es **Maximal** si el atlas no está propiamente contenido en ningún atlas más grande.

Definición 6 (Estructura Suave y Variedad Suave)

Sea M es una variedad topológica, una **Estructura Suave** en M es un atlas maximal. Una **Variedad Suave** es un par (M, A) donde M es una variedad topológica y A es una estructura suave en M.

Nuestro principal interés al definir las variedades suaves es que nos permiten definir mapas suaves entre variedades.

Definición 7 (Función Suave)

Sea M una variedad suave n-dimensional, k un entero positivo y $f: M \to \mathbb{R}^k$. Decimos que la función f es **Suave** si para cada $p \in M$, existe una carta (U, φ) para M cuyo dominio contiene a p y tal que la composición $f \circ \varphi^{-1}$ es suave en el subconjunto abierto $\varphi(U) \subseteq \mathbb{R}^k$.

Figura: Diagrama de una función suave.

De modo similar, podemos definir los mapas suaves explotando el hecho de que sabemos cuando una función que va de \mathbb{R}^m a \mathbb{R}^n es suave.

Definición 8 (Mapa Suave)

Sean M y N variedades suaves, $F: M \to N$ un mapa cualquiera. Decimos que F es un **Mapa Suave** si para cada $p \in M$ existen cartas (U, φ) que contiene a p y (V, ψ) que contiene a F(p) tal que $F(U) \subset V$ y la composición $\psi \circ F \circ \varphi^{-1}$ es suave de $\varphi(U)$ a $\psi(V)$.

Figura: Diagrama de un mapa suave.

Definición 9 (Espacio Tangente Geométrico)

Dado un punto $a \in \mathbb{R}^n$, definimos el **Espacio Tangente Geométrico** a \mathbb{R}^n en a. denotado por \mathbb{R}_{a}^{n} , como el conjunto $\{a\} \times \mathbb{R}^{n} = \{(a, v) : v \in \mathbb{R}^{n}\}$. Un **Vector Tangente Geométrico** en \mathbb{R}^n es un elemento de \mathbb{R}^n para algún $a \in \mathbb{R}^n$, usualmente denotamos a un vector tangente (a, v) como v_a o $v|_a$ para abreviar.

El conjunto \mathbb{R}_n^n es un espacio vectorial real n-dimensional bajo las operaciones:

$$v_a + w_a = (v + w)_a, \quad c(v_a) = (cv)_a.$$

Figura: Espacio Tangente a \mathbb{R}^n en a.

Figura: Espacio Tangente a una esfera en a.

Los vectores tangentes nos permiten tomar derivadas direccionales de funciones. Cualquier vector tangente $v_a \in \mathbb{R}^n$ nos da un mapa $D_{v_a}: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$, que da la derivada direccional en la dirección de v en el punto a.

$$D_{v|a}f = D_v f(a) = \left. \frac{d}{dt} \right|_{t=0} f(a+tv)$$

Está operación es lineal sobre \mathbb{R} y satisface la regla del producto:

$$D_{v|_a}(fg)=f(a)D_{v|_a}g+g(a)D_{v|_a}f.$$

Definición 10 (Derivación)

Si a es un punto de \mathbb{R}^n , un mapa $w: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ es llamado una **Derivación** en a si es lineal sobre \mathbb{R}^n y satisface la regla del producto:

$$w(fg) = f(a)wg + g(a)wf$$

Al conjunto de todas las derivaciones de $C^{\infty}(\mathbb{R}^n)$ en a lo denotamos por $T_a\mathbb{R}^n$, este es un espacio vectorial bajo las operaciones

$$(w_1 + w_2)f = w_1f + w_2f$$
, $(cw)f = c(wf)$

Definición 11 (Espacio Tangente a Una Variedad)

Sea M^n una variedad suave, y sea p un punto de M. Un mapa lineal $v: C^{\infty}(M) \to \mathbb{R}$ es llamado una **Derivación** en p si satisface:

$$v(fg) = f(p)vg + g(p)vg, \quad \forall f, g \in C^{\infty}(M)$$

Al conjunto de todas las derivaciones de $C^{\infty}(M)$ en p se le denota por T_pM , y es un espacio vectorial n-dimensional llamado el **Espacio Tangente** a M en p. Cada elemento de T_pM es llamado un **Vector Tangente** en p.

Definición 12 (Fibrado Tangente)

Dado una variedad suave M, definimos el **Fibrado Tangente** (haz tangente) de M, denota por TM, como la unión disjunta de todos los espacios tangentes en todos los puntos de M:

$$TM = \bigsqcup_{p \in M} T_p M$$

Usualmente denotamos a los elementos de está unión como un par ordenado (p, v), donde $p \in M$ y $v \in T_pM$.

El fibrado tange está equipado de manera natural con un mapeo de proyección $\pi: TM \to M$, que manda a cada vector de T_pM al punto p, esto es: $\pi(v,p) = p$.

Si consideramos el caso en que $M=\mathbb{R}^n$, podemos ver que el fibrado tangen se puede identificar como la unión de espacios tangentes geométricos, de modo que:

$$T\mathbb{R} = \bigsqcup_{a \in \mathbb{R}^n} T_a \mathbb{R}^n \simeq \bigsqcup_{a \in \mathbb{R}^n_a} = \bigsqcup_{a \in \mathbb{R}^n} \{a\} \times \mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n.$$

Figura: Representación del Fibrado Tangente de \mathbb{S}^1

Tensores

Definición 13

Si M es una variedad suave, un Campo Vectorial en M es una sección del mapa $\pi:TM\to M$. Más concretamente, un campo vectorial es un mapa continuo $X: M \to TM$, usualmente escrito $p \mapsto X_p$, con la propiedad de que

$$\pi \circ X = Id_M$$

O de manera equivalente, $X_p \in T_p M$ para cada $p \in M$.

Para nuestra discusión estamos interesados en particular en Campos Vectoriales **Suaves**, estos son campos vectoriales que son suaves de M a TM

Figura: Representación de un campo vectorial en una variedad suave.

Definición 14 (Mapeo Multilineal)

Supongamos que V_1, \ldots, V_k y W son espacios vectoriales. Se dice que un mapa $F: V_1 \times \ldots \times V_k \to W$ es **multilineal** si es lineal para cada cada una de las variables de manera separada cuando todas las demás se mantienen fijas, esto es: Para cada i,

$$F(v_1,\ldots,av_i+a'v_i',\ldots,v_k)=aF(v_1,\ldots,v_i,\ldots,v_k)+a'F(v_1,\ldots,v_i',\ldots,v_k)$$

A las funciones multilineales real-valuadas de una o más variables les llamamos **tensores**.

Escribimos $L(V_1, \ldots, V_k; W)$ para el conjunto de todos los mapas multilineales de $V_1 \times \ldots \times V_k$ a W. Este es un espacio vectorial bajo las operaciones usuales de suma puntual y multiplicación escalar:

$$(F+F')(v_1,\ldots,v_k) = F(v_1,\ldots,v_k) + F'(v_1,\ldots,v_k)$$

 $(aF)(v_1,\ldots,v_k) = a(F(v_1,\ldots,v_k))$

$$\omega \otimes \eta(\mathbf{v}_1, \mathbf{v}_2) = \omega(\mathbf{v}_1)\eta(\mathbf{v}_2)$$

A está función se le llama el producto tensorial de covectores. Dado que ω y η son covectores serán lineales por lo que $\omega \otimes \eta$ será una función bilineal de v_1 y v_2 , por lo que es un elemento de $L(V, V; \mathbb{R})$.

Podemos generalizar aún más la idea anterior. Sean $V_1, \ldots, V_k, W_1, \ldots, W_l$ espacios vectoriales reales, y supongamos que $F \in L(V_1, \ldots, V_k; \mathbb{R})$ y $G \in L(W_1, \ldots, W_l; \mathbb{R})$. Definamos la función:

$$F\otimes G:\prod_{i=1}^kV_i imes\prod_{j=1}^lW_j o\mathbb{R}$$

Por

$$F \otimes G(v_1,\ldots,v_k,w_1,\ldots,w_l) = F(v_1,\ldots,v_k)G(w_1,\ldots,w_l)$$

Se sigue de la multilinealidad de $F \vee G$ que $F \otimes G$ depende linealmente en cada elemento v_i o w_i de manera separada, por lo que $F \otimes G$ es un elemento de $L(V_1,\ldots,V_k,W_1,\ldots,W_l;\mathbb{R})$, y a este elemento lo llamamos el **Producto Tensorial** de F v G

Quisiéramos definir el producto tensorial de espacios vectoriales, para esto es necesario realizar algunas construcciones.

Definición 15 (Combinación Lineal Formal y Espacios Vectoriales Libres)

Sea S un conjunto cualquiera, una **Combinación Lineal Formal** de elementos de S es simplemente una función $f:S\to\mathbb{R}$ tal que f(s)=0 para todos los elementos de S, excepto un número finito de elementos.

O en términos de la preimagen de una función, decimos que $f: S \to \mathbb{R}$ es una combinación lineal formal si tiene la propiedad de que $f^{-1}(\mathbb{R} - \{0\})$ es finito. El conjunto de todas las combinaciones lineal formales de elementos de S es un espacio vectorial al cual llamamos el Espacio Vectorial (real) libre en S, y es denotado por $\mathcal{F}(S)$.

$$(v_1, ..., av_i, ..., v_k) - a(v_1, ..., v_i, ..., v_k)$$

 $(v_1, ..., v_i + v'_i, ..., v_k) - (v_1, ..., v_i, ..., v_k) - (v_1, ..., v'_i, ..., v_k)$

Definición 16 (Producto Tensorial de Espacios)

Definiremos el **Producto Tensorial de Espacios** V_1, \ldots, V_k , denotado por $V_1 \otimes \ldots \otimes V_k$, como el espacio vectorial cociente:

$$V_1 \otimes \ldots \otimes V_k = \mathcal{F}(V_1 \times \ldots \times V_k)/\mathcal{R}$$

Y sea $\Pi: \mathcal{F}(V_1 \times \ldots \times V_k) \to V_1 \otimes \ldots \otimes V_k$ la proyecciones natural. La clase de equivalencias de un elemento (v_1, \ldots, v_k) en $V_1 \otimes \ldots \otimes V_k$ es denotada por

$$v_1 \otimes \ldots \otimes = \Pi(v_1, \ldots, v_k)$$

Y es llamada el **Producto Tensorial (Abstracto)** de v_1, \ldots, v_k

Teorema 17

Si V_1, \ldots, V_k son espacios vectoriales finito dimensionales, entonces hay un isomorfismo canónico

$$V_1^* \otimes \ldots \otimes V_k^* \cong L(V_1, \ldots, V_k; \mathbb{R}),$$

bajo el cual, es producto de tensores abstracto definido anteriormente, corresponde al producto de tensorial de covectores. Y, de modo similar existe un isomorfismo canónico tal que

$$V_1^* \otimes \ldots \otimes V_k^* \cong L(V_1^*, \ldots, V_k^*; \mathbb{R})$$

Por último, necesitamos dar dos definiciones, las cuales ya nos permitirán entender por completo qué es un métrica Riemanniana.

Definición 18 (k-Tensor Covariante)

Sea V un espacio real finito dimensional. Si k es un entero positivo, un **k-Tensor** Covariante en V es un elemento de k-veces el producto tensorial $V^*\otimes\ldots\otimes V^*$, el cuál usualmente pensamos como una función de k elementos de V

$$\alpha: \underbrace{V \times \ldots \times V}_{k-\text{veces}} \to \mathbb{R}$$

El número k es llamado el rango el tensor.

Definición 19

Sea V un espacio vectorial finito dimensional. Un k-tensor α en V se dice que es **Simétrico** si su valor permanece invariante al cambiar cualquier par de argumentos:

$$\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_k)=\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_k)$$

Habiendo visto todo esto, podemos volver a ver la definición de métrica Riemanniana y ser, ahora sí, capaces de entenderla.

Habiendo visto todo esto, podemos volver a ver la definición de métrica Riemanniana y ser, ahora sí, capaces de entenderla.

Definición 20 (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

Habiendo visto todo esto, podemos volver a ver la definición de métrica Riemanniana y ser, ahora sí, capaces de entenderla.

Definición 20 (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

¿Qué quiere decir esto?

Habiendo visto todo esto, podemos volver a ver la definición de métrica Riemanniana y ser, ahora sí, capaces de entenderla.

Definición 20 (Métrica Riemanniana)

Sea M una variedad suave. Una **Métrica Riemanniana** en M es un campo suave 2-tensorial covariante simétrico que es definida positiva en cada punto.

¿Qué quiere decir esto?

• Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.
- Que sea un tensor de rango 2 covariante y simétrico quiere decir que toma dos elementos, depende linealmente de cada uno de ellos y permanece invariante al cambiar su orden.

- Que M sea una variedad suave significa que es un espacio topológico que localmente se ve como \mathbb{R}^n y en el cual podemos darle sentido a las derivadas y definir un espacio tangente.
- Que sea un campo suave nos está diciendo que toma funciones suaves en M y las lleva a funciones suaves también en M, de modo que estás sean derivaciones.
- Que sea un tensor de rango 2 covariante y simétrico quiere decir que toma dos elementos, depende linealmente de cada uno de ellos y permanece invariante al cambiar su orden.
- Por ultimo, que sea positiva definida quiere decir que si la función toma en sus dos argumentos al mismo elemento, entonces el resultado es mayor o igual a cero.

Definición 21 (Variedad Riemanniana)

Una **Variedad Riemanniana** es un par (M, g), donde M es una variedad suave y g es una métrica en M.

Si g es una métrica Riemanniana en M, entonces para cada punto $p \in M$, el 2-tensor g_p es un producto interno en T_pM , por lo que es usual escribir $\langle v,w\rangle_g$ para denotar al número real $g_p(v,w)$

Algo interesante de los tensores simétricos es que, si α y β son tensores simétricos, en general $\alpha \otimes \beta$, no tiene porque ser simétrico. Sin embargo, si $\alpha \otimes \beta$ es simétrico podemos garantizar lo siguiente:

Si α es un k-tensor covariante, β es un l-tensor covariante, S_{k+1} es el grupo de simétrico de k+1 elementos y $\sigma \in S_{k+1}$ es una permutación de este grupo entonces:

$$\alpha\beta = \alpha \otimes \beta$$

donde $\alpha\beta$ está dado como:

$$\alpha\beta(v_1,\ldots,v_{k+l}) = \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)}) \beta(v_{\sigma(k+1)},\ldots,v_{\sigma(k+l)})$$

además.

$$\alpha\beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$$

$$g = g_{ii} dx^i \otimes dx^j$$

dónde g_{ii} es una matriz simétrica definida positiva de funciones suaves. La simetría de g nos permite escribirla en términos de productos simétricos como sigue:

$$g = g_{ij}dx^{i} \otimes dx^{j}$$

$$= \frac{1}{2}(g_{ij}dx^{i} \otimes dx^{j} + g_{ij}dx^{i} \otimes dx^{j})$$

$$= \frac{1}{2}(g_{ij}dx^{i} \otimes dx^{j} + g_{ij}dx^{j} \otimes dx^{i})$$

$$= g_{ij}dx^{i}dx^{j}$$

Ejemplo 22 (Métrica Euclidiana)

El ejemplo más simple de una métrica de Riemann es es la **Métrica Euclidiana** \bar{g} en \mathbb{R}^n , dada en la coordenadas estándar por

$$\bar{g} = \delta_{ii} dx^i dx^j$$

donde δ_{ij} es la delta de Kronecker. Es común abreviar el producto simétrico de un tensor α consigo mismo como α^2 , por lo que la métrica Euclidiana puede ser escrita como:

$$\bar{g} = (dx^1)^2 + \ldots + (dx^n)^2$$

Aplicado a vectores $v, w \in T_p \mathbb{R}^n$, esto nos da:

$$\bar{g}_p(v,w) = \delta_{ij}v^iw^j = \sum_{i=1}^n v^iw^i = v\cdot w$$

Ejemplo 23 (Producto de Métricas)

Si (M,g) y (\tilde{M},\tilde{g}) son Variedades Riemannianas, podemos definir una métrica Riemanniana $\hat{g}=g\oplus \tilde{g}$ en el producto de las variedades $M\times \tilde{M}$, llamada la **métrica producto**, como sigue:

$$\hat{g}((v,\tilde{v}),(w,\tilde{w}))=g(v,w)+\tilde{g}(\tilde{v},\tilde{w})$$

para cualesquiera $(v, \tilde{v}), (w, \tilde{w}) \in T_p M \oplus T_q \tilde{M} \cong T_{(p,q)}(M \times \tilde{M})$. Dadas cualesquiera coordenadas locales (x^1, \ldots, x^n) para M y (y^1, \ldots, y^m) para \tilde{M} , obtenemos las coordenadas locales $(x^1, \ldots, x^n, y_1, \ldots, y_m)$ para $M \times \tilde{M}$ y.

Teorema 24 (Existencia de Métricas Riemannianas)

Cada variedad suave admite una métrica Riemanniana.

Teorema 24 (Existencia de Métricas Riemannianas)

Cada variedad suave admite una métrica Riemanniana.

Es importante notar que hay muchas maneras de construir una métrica g para una variedad dada, y que, si tenemos métricas diferentes en la misma variedad, estás pueden tener propiedades geométricas completamente diferentes.

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

Algunas de las construcciones que podemos definir utilizando en una variedad Riemanniana son las siguientes:

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

• El **Ángulo** entre dos vectores tangentes no nulos $v, w \in T_pM$ está dado como el $\vartheta \in [0, \pi]$ único que satisface:

$$\cos\varphi = \frac{\langle v, w \rangle_{g}}{|v|_{g}|w|_{g}}$$

• La **Longitud** o **Norma** de un vector tangente $v \in T_pM$ se define como:

$$|v|_g = \langle v, v \rangle_g^{\frac{1}{2}} = g_p(v, v)^{\frac{1}{2}}$$

• El **Ángulo** entre dos vectores tangentes no nulos $v, w \in T_pM$ está dado como el $\vartheta \in [0, \pi]$ único que satisface:

$$\cos\varphi = \frac{\langle v, w \rangle_{g}}{|v|_{g}|w|_{g}}$$

• Dados dos vectores tangentes $v, w \in T_pM$, decimos que estos son **Ortogonales** si $\langle v, w \rangle_{\sigma} = 0.$

$$L_{g}(\gamma) = \int_{a}^{b} |\gamma'(t)|_{g} dt$$

Dado que $|\gamma'(t)|_g$ es continua, excepto para un número finito de valores de t y tiene limites bien definidos por la izquierda y derecha en esos puntos, la integral estará bien definida.

Dado que la métrica Riemanniana nos define un producto interior en cada espacio tangente a un punto de una variedad y que cada espacio tangente es un espacio vectorial real finito-dimensional, será isomorfo a \mathbb{R}^n , para algún $n \in \mathbb{N}$, y tendremos el siguiente resultado.

Teorema 25

Sea g una métrica Riemanniana en un subconjunto abierto $U \subseteq \mathbb{R}^n$. Dado un subconiunto compacto $K \subseteq U$, existirán constantes c v C tal que, para toda $x \in K$ v todo $v \in T_{\mathcal{R}}^n$.

$$c|v|_g \leq |v|_g \leq C|v|_g$$

Por razones similares a las dadas para el teorema anterior, no es difícil ver que, además de inducirnos una norma, la cual es equivalente a cualquier otra norma en \mathbb{R}^n , la métrica Riemanniana nos inducirá también una función de distancia (o métrica, en el sentido de Espacios Métricos) en el espacio tangente a cada punto de la variedad.

Teorema 26

Sea (M,g) una variedad Riemanniana conexa. Con la función de distancia Riemanniana, M es un espacio métrico cuya topología métrica es la misma que la misma que la de la variedad topológica original.