CSC 369 Lecture Notes

1 File System Operations

1.1 Directory Entries

- Has user-readable name and i-number
 - Map files to inodes

Example

```
("file-name", i-number)
```

- Linux's ext2 has following attributes in its inode
 - Inode number
 - Directory entry length
 - Name length
 - File type
 - Name

1.2 How do we follow a path?

- Example
 - Read the first block of "/somefile"
 - $\ast\,$ The inode for the root directory "/" is known
 - * Read the inode for "/" to file the data block(s) that hold the directory entires for the root directory
 - * Read the first data block for the directory
 - * Search the entries for "somefile"
 - * The entry for "somefile" identifies the inode
 - * Read the inode for "somefile"
 - * The inode tells us the location of the first data block for the file
 - * Read that block into memory access the data at the beginning of file

1.3 How many disks blocks are accessed?

• Example

CSC 369 Lecture Notes

- There are 8 disk accesses in total
- There are 4 file system objects

1.4 Handling File Operations

- Open file table
 - On open, file name, and it's inode number is stored system-wide into array
 - Index to entry in open-file table is used in subsequent use, so no searching is required
 - This is what fd is for

1.5 Possible Operations

- mkdir("/x")
 - Create a directory
- creat ("/x/y")
 - Create an empty file
- unlink("/x/y")
 - Remove file or directory

CSC 369 Lecture Notes

```
• fd = open("/x/z", O_CREAT | O_WRONLY);
write (fd, buf, BLOCKSIZE);
close(fd);
```

- Open a file for writing, and write one block to it
- If it does not exist, create it

```
fd = open("/x/z", O_CREAT | O_WRONLY);
write(fd, buf, BLOCKSIZE); close(fd);
The number of blocks
(Here, it's 1)
```