Lectures of Swantum

Field Theory

Michael Redbood

CPNSS, LSE

Midaelmas Ferm 2000

Retare I

Relativistic Wood

Equations

References on QFT Teller (1995) Am Interpotante aft grance (1990) Rolativissie AM Gremer & Reinhardt (1996) Fuyang (1995) How is OSFT Possib? Flood Buentization Wontzel (1949) schwerer (1961) Henley > Thurning (1962) Bjorken 3 Drell (1964, 1965) Gas 10 rowicz (1966) 9tzychson à Zuhan (1980) Ryder (1985) Pashbin > 5 chnolder (1995) Weinking (1995, 1996, 2000)

Ationation

Stroaters Wightman (1964) Horusky (1990) Haag (1993)

Redleast (1980): 5+ udes in Hot. Philse: 14, 279 Redhead (1983): PSA 1982, Vol2, 57 Redheed (1988) in Brown & Harré (cels) Philosophical Foundations of BFT French & Rolland (1988) B385 39, 233 Rodhead , Toller (1991) Found. Phys. 21, 43 Rollerd > Teller (1992) BJ85 43, 201. Radhard (1995) Found. Phys 25, 123 Robbood (1995) PSA 1994, Vola, 77.
Robbood 2 La Riviera in Shimmy Fostschift
(1997) vol 2, 207. Redland; Wagner, Found Shist I, II. Rodherd (2000): The Interpolation of Swage Symmetry M.S.

Ph.D. These S

French (1984) Saunders (1988) Deles (2000)

Carticles and Fields Pontide motion from A to B Field Description of Inpenetrability ACUUM

RELATIVISTIC WAVE ERVATIONS E= p2c2+ m2c4 Klein - Gorden E → さかる、アラーにかり Su wo got (== 32 - 12 + 12) 2 = 0 whow u= mch E = (d.b)c + B m So it 34 = - id. D. - 4 + B mit

NR localization Ergenstate of position (non-normalizable et zb point & is (in 3-dimensions) Inner product of $\phi^{\frac{3}{2}}(x) = 5^{3}(x-\frac{3}{2})$ (1)

Inner product of $\phi^{\frac{3}{2}}$ and $\phi^{\frac{3}{2}}$ is $= S(\xi - \xi') \qquad (2)$ so to \$ \dis \dis \dis an orthogod Note 1143 1 = \S(0) is infinite To deal eveth this we introduce where - packet $2+\frac{5}{2}(x) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{5}{2}) \psi^{\frac{5}{2}} (\frac{3}{2}) d^{\frac{3}{5}}$ contrad around $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (R^n \times S_n) = (2\pi)^{-3/2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (R^n \times S_n) e^{-2\pi i S_n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n$ Then ||45(x)||= \ d3/2 | F_5(1/2)|^2 d3/2

Dr.

Note more generally that, is F.T. of W(2)In (4,142) = (d3/ F,(R). E(A) Relativistie Localization mer product (3) is not somainent Soln: 96

2f(x,f) = (21) In $\int \frac{d^3k}{w(k)} e^{i(k\cdot x - w(k)t)}$ 2f(x,f) = (21) In $\int \frac{d^3k}{w(k)} e^{i(k\cdot x - w(k)t)}$ where w(h) = $\sqrt{m^2 + R^2}$ Then note that it 24 is a senten field (K.C. Egg), then pind with in invariant massure on the mass-stell F(h) is an scalar function 6 h, 10. F(A)= F(A) where his the Toost of Bon to

Then moderat inner product (8)- (4) 1 4,142 = Sall F, (R). F. (R) This reflores (3) about. The usual rules for funding amplitudes and probabilities when affly with the row inner product. Let us with at t=0, $\frac{136}{2}$ eth. $\frac{1}{2}$ $\frac{1}{$ Try various choices for FIR): (1) $F(h) = \omega(h) e^{-ih\cdot \frac{\pi}{2}} (20)^{-\frac{\pi}{2}h}$ $\Rightarrow \psi(x,0) \rightarrow (zv^3) \begin{cases} d^3k & \text{ib}(x-5) \\ = 5(x-5) \end{cases}$ This is the same as \$\phi(\frac{1}{2})\) for the

N. R. Cap.

But now $24^{5}/4^{5} > = (0.8)^{-3} (2.34 W/2)e^{2.5-5}$ \$\frac{1}{2} \tag{5}(\frac{5}{2} - \frac{5}{2})\)

\$\frac{1}{2} \tag{5}(\frac{5}{2} - \frac{5}{2})\)

So try again!

(1) $F(h) = Vw(h) e^{-ih-\xi}$. $(21)^{-3h}$ yolds

(20)-3 (d3/ e(1-(x-x))

(6) (\ s(x - \ \)) $20^{3}/4^{3} = (20)^{-3} \int \frac{d^{3}k}{W(k)} \sqrt{W(k)} \cdot \sqrt{W(k)}$ $= S(3^{-5})$ as eve want! But now The state (6) is the famous Nowlear-Worser state In fact of (x) ~ /3/4 (12-21) where Kin is modified Handel function

t/mc x Note: spread of on x-spred

The nothing to do with interactions
or pain production ate

we are just doing 1-particle

RRT N.W. Wave-pachets 45(x) = (F5(3)) 45(x) d35 where $F_5(\xi') = \langle \phi^{\xi'} | 2f^{\xi} \rangle$ and as in N-B analysis we can unite or a not a n $24^{5}(\chi) = (215)^{-3} \left\{ \frac{13k}{\text{fulls}} \right\} \left\{ \frac{1}{5} \left(\frac{k}{k} \right) \right\} \left\{ \frac{1}{5} \left(\frac{1}{5} \right) \right\}$ where $f_{5}(k)$ is f_{-1} of $f_{5}(\frac{5}{5})$

For general state 24 (2)
What is probability amplitude G(2)
For finding partials at 5? Espand 4(2)= [G(3) \$ (2) d35 Then it is easy to show that $C(5) = (25)^{-3/2} \left\{ \frac{d^3k}{\omega(k)} e^{ik\cdot \frac{\pi}{2}} A(k) \cdot (7) \right\}$ (where $2(\pi) = (2\pi)^{-3/2} \left\{ \frac{d^3k}{\omega(k)} e^{ik\cdot \frac{\pi}{2}} A(k) \right\}$ = (2T)-3 Sola (0) 2 \w(1)

= (2T)-3 Sola (0) 2 \ Then Probability January particle at z = |C(z)|. WE Shall offly (7) 2(8) to 3 problems

How to Trust 4 (x)? In this case $A(h) = \hat{f}_o(h) \sqrt{w(h)}$ So troorformed state momentum space is A'(R) = Fo'(R) VW'(R) $G(\xi') = (28)^{-3/2} \left(\frac{32}{w(k)} \right)$ $F_{0}(\xi') = F_{0}(\xi') \left(\frac{12}{w(k)} \right)$ $F_{0}(\xi') = F_{0}(\xi') \left(\frac{12}{w(k)} \right)$ $F_{0}(\xi') = \frac{12}{w(k)} \left(\frac{12}{w(k)} \right)$ B Time - Evolution of 4º/2) At time t 2+ % becomes $(21)^{-3/2} \left\{ \frac{d^3 A}{Vw(A)} \cdot F_o(A) \cdot \frac{dR \cdot A - w(A)t}{Vw(A)} \right\}$ So at tease t G(E) = (21) 3h (d) Folk) ei(h-E-Mk)t) This is essentially the integral considered by He Jorfeld. C(E) Caract Varish even ja large Such at $|h| = \pm i m$.

٠

Hour to Trust 4 (x)? In this case $A(A) = \hat{F}_o(A) \sqrt{w(A)}$ troorformed state A'(R) = Fo'(R) VW'(R) (28)-3/2 (13/2 \w(k)).
Fo(5), 1.

How does time - worlntion relate to non-invariance ajst cone We have 29(x,+)= 2+'(x',0) = 2t'(x'(x,t),o)Hence at time t, $G(\xi) = (21)^{-9/2} \int d^3k \int d^3k' \int d^3k'$ eik! z'(n,f) Fo'(k') Valk)

eik! (3-z)

eik! (3-z) N.R. for t very small the x-integral

Can be expended- ingide the light-end

with a contribution of order t.

for a Nourton-Wigner state

for small t in 2-dimensional specition $G(\xi) \perp S(\xi) + t \cdot e \cdot f(\xi)$

where f(\$) is a complicated function of \$

Second Auantizator and
Quartum Field Theory

De Broglie wones and the Klein-Gordon Equation y « eiwttik.x. where w = VI+R2 phase velocity = $\frac{\omega}{R} = \frac{\sqrt{1+R^2}}{R} > 1$ (remember 1 consepados to to to volación of light ex vacuo) group velocity = dw = R 1 R = momentum = valocity of

tatistical weights for 2- particle System

3)

8 antum Statistical Mockanics

Consider the 4 product wars functions

4a (2), 4a (2) I 4a (2), 4a (2) I 4a (2), 4a (2) II 4a (2), 4a (2) II dimensional voctor space equally 8 panned 14 4a (2), 4a (2)

Anti Symmetric 1/62 (4a (1/2). 42 (1/2) - 4a (1/2). 42 (1/2)/100)/100

(かんたい、かん(か)+ なん(か)かん(か)

42 (21) . 42 (12)

(F

THE INDISTINGUISHABILITY PRINCIPLE (IP)

if <PA|Q|PA>= LA|Q|A> Two particles are indistinguishable

on If can be regarded as a restriction on states -> Plo>= Ilo> on absenvalues => P communes with 4, 10 9 is a symmetric function of Particle Particles IP can be taken as a rustriction. So Bosons and Fermions only VQ,P, p

(ē

I dentity of Indiscernibles (5) YF (F(A) L-> F(Y)) -> x=y. Query? What F'S should be included under the scope of the 2nd order quantifier to force identity? More gonerally, can the particular le reduced to the Universal?

*

6

SECOND QUANTIZATION

But * is what we would got by subjecting Com pare with assembly of harmonic State is specified by giving no The Robinson Com 1- panticles in 1- panticles US e, erafais State |Ui> (with energy Ei) Eq. for an assembly of Bosons. Stant with N-particle Wave Then E= 5 Mi Ei (such as K.G. Eg.) E= \$(n:+1) E; if 0:=E:/k guentisation.

(7)

But 2rd quantization is more general stan the N- particle Schnödinger & lecause of the Constraint

FOCK SPACE

CREATION and AMNIBILATION OFERATORS at |n:>= \(\mu_{i+1} \) a: |ni>= \n: |n:-1> 3 = KO @ K, O .. KNO .. Tyacum +

8

Schematically we factorize

Q = \xi . \gamma

But 13'= 5+ 17 Would chook and 172-1

6

(Î)

FIELD QUANTIZATION

Real Kain- gordon from
(72-1/2-32 *12) 4=0

Emengy spectrum

E = E MR (** WA) + const

Where const = = = E (* WA)

and α_{A} | n_{A} >= $\sqrt{n_{A}}$ | n_{A} -1 > n_{A} | $n_{$ na are integnal eigenvalue & to openata MA = QAT QA and WA = C Vuz+ Bz

S

Basic Rosult of GFT

The of do B-mode is just the excitation number (he) and emergy (thus)
in the Panticle Rememberion prosent with momentum The number of particles (quarter)

THE VACOOM

The non-vanishing energy of the year-point But the energy is not 3000, since the field amplitude and other local quantities exhibit This is the state for which all the MR are zero. emongy of the field. Vacuum fructuations. of the field. 9t is the Cowest emengy state

The Harmonie décillator Quantum Mechanics

V = froguency of oscillatos Howandery Uncertainty Punciple

DPDX ~ h Planess

Constant

FIELD GVANTIZATION Confd (13) I Schnödinger Malter field 4(2)

Datisfies 4 = - #2 7 4 + V 4 Derive from Lagrangian dansity

L= it y* y - t = 74. Ty

anonically commator productions

Perive from Lagrangian dansity

Anonically commator productions Canonically comjugate field is $T(x) = it y^*$ Impose quantization_ $[4(x), T(x')] = cts^3(x-x')$ Expand $Y = \sum_{x} C_{x} U_{x}(x) = \sum_{x} F_{x} + \int_{x} U_{x}(x) = \sum_{x} F_{x} + \int_{x} U_{x}(x) = \sum_{x} F_{x} + \int_{x} F_{x} + \int_{$ Total Handfornian H= SHd3x = Z de de ER

Cigenvalues of NR = drt dr Relations with anticommutation NR = dr dr dr dr = dat ar (1- da dat) = NR - dat da art since NA So eigenvalus na obey MR = MR, ... NR = U M) 19. Nx (n2-1) = 0 Pauli Exclusion Prencipe

The Non-relativistic Schrodinger 4= V= Zere e R.Z Wa = R/2m E WARD OR = E WA. NA where NR = aRt aR. has eigenvalues NR = 0, 123-B = R F NR. Klein- Goldon Equation (complet) 4 = V= Z[are-i Wat che + Bre 2 WR = + VI+Ra where $NR^{\dagger} = Q_{R}^{\dagger}Q_{R}$, $NR^{\dagger} = Q_{R}^{\dagger}Q_{R}$. $Q = e \frac{Z}{R} \left(NR^{\dagger} - NR^{\dagger}\right)$ H = = = Wa (ax det + det de

H = = WR (antar - ZR Bat) $R = \frac{2}{R} \left(q_R^{\dagger} d_R + k_R \lambda_R^{\dagger} \right)$ Uping anticommutation relassions B -> E WR (NR + NR) - E WR. pou redatina H -> = Wa (Na++Na-) B -> Q \(\lambda \lambda \lambda \lambda \lambda \lambda \\ \lambda \ Query? What would commutation related look like for the Dirac field would be bounded [Chr. let] = 1 (weinley)

02 [2x, hA+] =-1 (Evayson

Three Routes to the Quantum Field

In equivalent Representations Consider the case of fermions: The vasis states in terms of occupation pumbers can be represented as a sequence mapping a denumerable set of 1-pontièle states ente occupation numbers on l. We ear think of this sequence as en infinite binary fraction, such as 0.0101101110 foch space is the space spanned by all terminating Emany fractions This is a donumerable set and Lence gives rise to a separable Hillout space. But we can also consider a space spaned by all finary fractions, including nonterminatoring sono. This is a nonseparable space which supports manus volont aproportations of anticommentation Reddend BFT

Leeters III

Topmon Diagram and

Virtual Particles

SCATTERING THEORY

(A)

(2)

9 14(H)> = E (n(H) 192)

(2S)

Then do transition amplitude to given by cn(00). Where 19m> are eigenstates of the and to the OUT otate 1922 but compare Houses Theorem: (NII = <(00-)41 Wet and for long to magnitudent representations ! So along organistor to to to the to to the surface to all to the). But we will in attorned to all to the). But we will

Integral equation for Green's? Schrödinger equation (ct 2-40)4. Solved Try Ko=(it 3-Ho) (So (it 37 -Ho) tro = 1) For inhomogeneous equation (itiz-16) 4= F Soln is 4 = 150 F - but also Johns Romogenesses of Menth inhunors Toursday conditions 4(2)= Ko(2,1)4 with interselect H= Ho+V green's function is to= (ct=++)-1 using $A^{-1} = B^{-1} + B^{-1} (13 - A) A^{-1}$ =1> K= To+ KoVK

Expand of $(2) = \sum_{n} C_n \varphi_n (f_2)$ $= \sum_{i \in n} (f_i - t_i)$

But for tr=t,

 $4(2) \rightarrow 2+(1)=\sum_{n}^{\infty} C_{n} \phi_{n}(x_{i})$

So Cn= \ 24(1) \Pn^*(xi) dx,

Hence. $H(2) = \begin{cases} \begin{cases} \frac{2}{n} \phi_n^*(x_i) \phi_n(x_i) \\ -iE_n(t_2 - t_i) \end{cases}$

4(1)dX,

But [] is not a Green's function since it satisfies homogeneous 5. Eq.

For green's chessen to aft we need a closed 4- dimensional sunface \$ & such as spatial slices at t, and t3, and Time-like boundary at spatial enfinity Ne define K so dat \(\frac{1}{2}, 3 \) = 0 - it cannot propagate backwards in

(2) (1) 一声 (1)

where O(t) = { 1, +>0

(A)

FEYNMAN DIAGRAMS

K= (1- KOV) -1 KO (1 KOV) KIKO 11 を食べいか、下。 KOVKO + KOVKOVKO

(26)

TEYN MAN PROPAGATOR

 $K(2,1) = \sum_{E_n>0, E_n \geq 0} d_n'(1) d_n(2) = \frac{i h^{E_n} l^{E_n}}{h^{E_n} l^{E_n}}$ $K(2,1) = \sum_{E_n>0, E_n \geq 0} d_n'(1) d_n(2) = \frac{i h^{E_n} l^{E_n}}{h^{E_n} l^{E_n}}$

Endo eithenltation

 $= \begin{cases} \frac{5}{5} - \cdots & \text{fortage}, \\ \frac{5}{5} - \cdots & \text{fortage}$

EXA HPZES of FETNMAN DIAGRA Electron - electron Deathering 2nd order 4th order. >---

(10)

Feynman Diagnams

0

AND VIRTUAL PARTICLES CONSERVATION LAWS 4- voetons 中,尽、凡、凡、人 Conservation at each vertex give, R= P,-P,= P2-P2 .. P, + P2 = P, + P2

ownall consorvations $R' = (P_i - P_i') = P_i' + P_i' - 2P_i \cdot P_i'$ $= 2m^2 - 2(E^2 - p^2 \cos \theta)$ $= -2p^2(1-\cos \theta)$ But for a real plater & = 0!

Attraction

7

Repulsion

MATTER AND FORCE

Compare

Electron. regord

So which is the force particle ?

Classical Renormalization

Eg. 6 motion to an election

of rodius Ω_0 is $\Sigma^{(0)} + \Sigma^{(0)} + \Sigma^{(0)} + \cdots$ where $\Sigma^{(0)} = 2/3$ eggs. $\Sigma^{(0)} + \cdots$ $\Sigma^{(1)} = 2/3$ eggs. $\Sigma^{(1)} = 2/3$ eggs. $\Sigma^{(1)} = 2/3$ eggs.

where $m' = m + \beta \cdot \frac{e^{2}}{e^{2}} + O(N_0)$ where $m' = m + \beta \cdot \frac{e^{2}}{N_0 c^{2}} + O(N_0)$ where $m' = m + \beta \cdot \frac{e^{2}}{N_0 c^{2}} + O(N_0)$ mass and then let $N_0 \to 0$.

(Or

(15)

Three Views on Renormalization

- 1. Cutoffs
- 2. Real infinities
- 3. Mash of Ignorance.

Redhead OFT Lecture IV Fluctuations

Vacuum

WHAT IS THE VACUUM? Remove all the particles, electrons, photons de in the Universe, and you would be bett with the 1.) are you left with nothing, ... e-9. no space on time? y waries 2.) Does it make sonse to talk demptging spacetime of gravitation? - cp vaeuwm poles a Einstein field egs. in C.R. 3.) Could the notion of the Nacuum depend on the state of motion of the observer? - of Unruh Effect We shall confine dursolves to special Relativity but already the are many surprises

MORE ADO ABOUT NOTHING Theorem 1. Any Pocal event that Can Rappen in some andutrany state of a field can also kappen in the Vacuum.
(Hellwig & Krows (1970)) Theorem 2 In the Vacuum along me as we ment located at x is maximally connelated with some simultaneous measurement located at y, Kowever for apart x and y may be. Thonem? Every local measurement is infinitely am biguous, i.e. loans in finitely many quotions unansulved

(3) 4 Quantum Field Theory Non relativistic case: Quantizing
the Schrödinger field = quantizéd excitations Particles of the field nu excitation Vacuum Montrielle pontièle momentus

2 Pontièles

2 Pontièles Localized Excitations 1 Particle 2 partidos

50 global Vacuum —D focal Vacuum In relativistic QFT this is not true [Nv, Nv] to to disjoint, v, v. So N=0 = Nv=0. Two reactions to this: (V Virtual Partides: exist for times ~ h/mez 1.0. travel at most a h/me globally vacuum => no real But locally lots of virtual particles
obsertions objections: (a) NV not an observable - violates micro crassility (2) Noods interacting fields

We can try Newton-Wigner 53 number densition, but these do not describe objectively localized particles So the Zetter approach is (2) Nacuum fluctuations: work with change dansities, enougy dansities Ikon [Qv, Qv']=0 So miero counselly sonfisfied Vacuum is state of minimums total everyy. -D focal observables such des
By fluctuate For F.M. field, field strongers fluctuate in Nacuum - emplains: spontaneous emission of radiation carrier effect, Lamb Shift, anomalous manat of dectron of

ALCEBRAIC QUANTUM FIELD THEORY $O \longrightarrow R(0)$ L Tounded of set Von Weumour algehra of in space line Or servation R acts on AilPart space \$ $R(0+a)=U(a)R(0)U^*(a)$ L'reprentation translation 21-For time-like translations U(d) is exponentialed to obtain a Hamiltonian sporator which is non-negative. 9sotony For any two bounded open \overline{SOHS} $\overline{Q_1}, \overline{Q_2}, \quad O_1 \subseteq O_2 \longrightarrow R(O_1) \subseteq R(O_2)$ Locality of D, and On and opposition related, when VA, $ER(O_1)$, VA, $ER(O_2)$, $ER(O_2)$, $ER(O_3)$, $ER(O_4)$, $ER(O_4)$ The Global algebra R is the smallest von W. algebras containing all the Great algebras We are une that IR is verieducible and generated by the translates of Rlo) for any D.

The Vacuum D is the unique state which is instant under all translations.

The Reeh- schlieder Thesem

The is cyclic with respect to to

for any R(0)

This just means {AR: A = R(0)} is

dense in 13.

Collary N is a separating Noeton for R(0) This just means $A \mathcal{R} = 0 \Rightarrow A = 0$. $A \mathcal{R} = 0 \Rightarrow A = 0$. I am now going to prope the R-S theorem and its corallary for a very simple andoque of a field theny in two which spectime collapses to two points and the von N. algabras are just the algebras of operators on a 2-dimensional Hilbert space. This is just the familian 2 spin 1/2 Particle Dystem, and for the analogue of the Vacuum me shall take untially The Reah- Sellisder Theorem Every brounded region of of spacetime is associated with an algebra & local observables R(0). The R-S theorem Days that any state of the field can be generaled by acting on the vacuum state by members of any R(c) set with slinerto N'a cuum produces, we might expect, of Hear could ent generale an artition, such as ?

The Bary ReeR-Schlieder Theorem

Collapse spacetime to two points!

Thon Fringet is eyelic for R, (or Ra) w. n.t. H

Hsingler)= = = (16, z=+1) 0 15, z=-1> - 1 512 = -1) @ 1522 = +1>) Then YOF HOA, JA, ER, S.f. 1\$7 = A, 27 singlet > Proof: By inspection. 8/19/= d | 5/2=+1>00 | 6/2=-1> + B 1612=-1) @ 1622=-1) + 8 / 512=-17 0 / 622=+1) + 5) 512 = +1) 0 | 622 = +1) A,= 2 P,+ BB, P,+ +8P,-+54,5, where it projects the state $|5,z=\pm i\rangle$ and Q, notates spin | the 180°.

Similarly & PEH, OH, JA2 ER2 7.6.

Conallary A, 12 singlet > = 0 Proof:

-DA, = 0 By the baby R-5 theorem Top & H, OHz, we can unite 14>= A2) 2£ singlet>, so $A, |\phi\rangle = A, A_2 | \mathcal{L}_{singlet}\rangle$ $= A_2 A, |\mathcal{L}_{singlet}\rangle$ Since 10) is any Neeton in 10, 8 th, since 10 it follows that A, = 0, 8. F.D

So | 4 singlet > is a cyclic Noeter one a separating vector for R, (and similarly for R2).

We now prove a baby version of Theorem)

We now turn to a valey vorsion of Theorem 2 we want to prove.

VPa, IP, S.t. (P,Pa) et surject

= (1.) utsunglet (10. Prob 45 sunglet (12=1/13=1)=1)

Proof Write Fringer = 45 Write 10>= 52 45>/11/2/45>1) Then by construction $2i_2\rangle_{\phi}=1$ (1) But, by the baby R-S thoram 14)= (,)45> -- (4 Where C, is some spenator on to, (extended To H, 1842)
Substituting (2) in (1) gives 145/9,12/45>=1 -- (3) where Q = C, c, is a positive Hermitian Spenator on 19, so we can expand. 以,= 2, 1,+ 2, 1,' - - - (4) where 2, , 2, are the non-negative real eigenvalues of Q, and J.J. are outrogonal projections in to.

Substituting (4) in (3) yields W, LT, P2)45 + W2 LT, P2)45 Z1,745 Z1,1>45 = / - - (5) where W1 = 2, 41/245 Wn = 2,1 (11) But we know $\langle Q \rangle_{245} = ||C,|245>||$ $= ||10>||^{2} = |$ W, + W2 =) - - - (6)
with W, 7,0, W270; Hence LHS (5) & Max (LTila) 45 (Tila) 45 (Tila) 45 and (5) can aly be sortistical (Tila) 45 (Til for Theorem 2 Q. F.D.

Now Theorems I and 2 and (b) (5) trivially true for Esinglet. Theorem 1 just Days, all spin Components Rome non-vanishing mobalily for results I I on either Particle (indeed for 45 inglet all the probabilitées are aqual to 1/2! while Thosen 2 Days all spin components su on one particle are maximally correlated with spin components on do other particle. (indeed there are just to missonmage correlations of 45mglot!) But the proofs of those well-passion results for 4 singlet only used the R-S thoonen, so they can be lifted stronger back to GFT with the Vacaum replacing 4 simplet!

In the BFT case, Theorem 2 Can be formulated more accumately For any two space-like soparated founded span regions 0, and 02 and YE70, YB2 ER(02) 引いERLOi) s.t. LP,122 > (1-ε) 〈Pin We can also express the maximality of the correlations specified in Pronon of the terms of correlation coefficients on terms of correlation coefficients

In terms of convertion coefficients of the spectrum of converted properties P_1 and P_2 belonging to P_2 and P_3 and P_4 and

So, for fixed <Pi>, LP2) the mosmum value of C(S, S2) is given my $C^{\text{mat}}(P_1,P_2) = \left[\frac{\langle P_1 \rangle \cdot (1-\langle P_1 \rangle)}{\langle P_2 \rangle \cdot (1-\langle P_1 \rangle)}\right]^{1/2}$ This only attains the value 1 when '2P,>= 282> This condition is satisfied for [Honor), but Thoron 2 m no way depends on this condition. We now west to compare (1) with the well-known Fredonkagen bound on conelation coefficients (Freder Ragen 1985). This roads

-me (1-281). (1-282).

((P,82) = e (1-281). (1-282).

where m is mass-gap and the minimum.

Levent 2 distance between D. and O.

(9) Comparing (1) and (2), consistency requires LP172 = = 2ml LP272 (1- LP272) 1.0. the for a fixed value of LGDR, the maximally constated? must kave a probability of decurring that falls off exponentially with the distance between O, and Dr. This result shows how difficult it would be to observe the long-range correlations in the vaeuum. But, of Course, it does not show that they don't

Turning to Thorsem 3, the anisos ambiguity referred to arises in the Ysurest case from the fact dot the local projectors are all two-dimensional (i.e. of the form P, & In te) In QFT do tochnical femulation of Theorem 3 is: YPERLO), Pis infinite - clemensional 1'rod. By Driessler's Thoron (1975) the Von N. algebra associated with an untrunded wedge in spaceties is a type III factor. But every bounded open region is contained in some wedge. so, by isotony, R(0) is always a sub-algebra of a type III factor. But in a type III factor all the projectors are infinite-dimensional.

Hence all the projection in 2 2 2 2 (R/O) are infinite - demonsional

N.B. This result does not demonstrate that every local algebra is type III - dis still romains an open quartion-

As a corallary of Theorem 3 we can state: et is never a local question to ask "Are we in the Vacuum state
or indood in an N- Particle
state (1.0. orthogonal to the Vacuum)?

This raises the fundamental question: What do (Boeal) partide detectors detect? He answer is they cannot strictly speaking be detecting particles. They defect certain types of field excitation, which for all practical purposes may resemble particles. But in reality (if you will exense to phrase!) AFT is not a theory of particles, but a theory of fields and their local excitations, and that is all those is to it. Question:

Are the videuum fluctuations really there, it we don't observe them by some sort

This is a generic question in the philosophy of quantum mochanics, to which we now town

Theorem 4

The Bold maqualty is violated by vacuum fluctuations in spoolihe soporated regions

(1988, 253)

23

Interpretations of BM

Realism or Antirelaism for R possessed Value:

Locality Principles

LOCR: Prohibits shorts -> shorts

transition initiated at space-Glas
perparation

LOCA: Prohibits unskarp -> sharp transition initiated at spaces separation.

EPR(1935) A + LOCA =DR =D 2A :. A =D 2 LOCA

BOR (1964) R + LOCR = Boll magnetity (B.I.)

R=D (2 LOCR) V B.I.

But 2 B.I.

SA : R = D 2 LOCA

The Bell Expariment

5 pace

The Vacuum Version

10.5

So even it to Bell megnality was not violated, the Common cause explanation would involve an infinite regress, on pain of monely accepting the correlations at some earlier time as 2 rule facts. But it we are prepared to do this at an earlier Time, why not at the laton Time?! Le whether the B.I. is violated or not, we cannot got an acceptable local explanation of the Vacuum complations.

The EPR Experiment (Bohm Version)

Spin Source

Spin of two spinning spin Meter 2 in Correlated state

UR.

Instead of asking! Can me predict the measurement outcome on & the left, given a result of on the right? we ask: 95 it de case that if une made a measurement on de lest there is a definite outcome, given that a result OR has actually occurred on the night, 113. The outcome correlated with

RELATIVISTIC EPR 326 (GRinandi » Grassi SHPMP 25 (1994) 397) : Prohibits me as moment out comes being affected by other measurement procedures at space-like separation. Hon G, G 'prove' A + LOCA + LOCM-0=DNA :. A => 2 LOGA V 2 LOGN-0 But proof of * is problematic

Assume Dotemminism

Mr. OR Packward light-come of Mr.

given an outcome Op on the right, then is 9 made of measurement Mr on the left Would OR remain the same? Run to world over again up to the backward light-come of, M2 - then ask, what is the outcome OR? - it may well change on a count of indeterminism, Just as in the Redhead - Hellman critique of the Stapp- Ebenhand know of B.I.

Conclusion: Assuming antivalism of PUSS ESSED Vollies, we are unable in the Vacuum state, to obtain a proof of nonlocality by the EPR-type argument. The conclutions are just about the Vacuum state - We commot use the EPR argument to probe any deeper (pace Spenanti and Snassi!).

Conclusion Contd Potential Vacuum replaced by Vacuum of potentialités Neither Aristotle nor Einstein Would have found this acceptable! Stocker V

gange Thomas

What is a gauge? In everyday parlænce gange rofors to a system of measuring physical quantities, e.g. By Compan a physical magnitude with a standard or "unit". In this way poly real magnifules are associated with mathematical entities such as numbers. More generally we may refer to the mathematical representation of any physical structure as a Jongs for that structure. Ambiguity in representation leads to the notion of goinge tranformation

Relation of Mathematics to Physics

Ambiguity in Mathematical Representation

Et Finite ordinal scales of measurement sud as Moh's scale of Randness

Symmetry

distinct isomorphisms between

P and M

Yox': M+M is a coordinate

transformation, or passive

Symmetry of P

y'ox: P+P is a point transformation,

or active symmetry of P

Surplus Structure

X: P > M is an embedding

of P in the larger structure

M'

Et Embedding of real line in

the complex plane

gauge Theories - Yang-Miels Type

Ex scalar electrodynamies

Classically matter field it is

a complex - valued function or

spacetime

Lagrangian is invariant under global phase transformations 4 -> 4 ecd (1)

H we consider local phase tronsformations

4 -> 4 eid(x)

where d(x) is an arbitrary realValued function on spacetime

Then Lagrangian remains invariant provided we use the 1 connected derivative du-i Au, where the connection field Au transforms as Fun Aut dud(x) Au can be identified, modulo de electronic chargee, with the electromagnetic potential. Physically significant quantities are gauge invariant, e.q. 444 on the electromagnotic field fur = Ar, u - Au, v. Surplus structures, since they are not going.

The U(1) Bundle

5 pace time cross-section of constant phase as specified by the connection field

Hamiltonian Systems

manifold. Unique trajectory
connects initial state po to
final state at lime t, pt.

Constrained Hamiltonian Systems

phase space is a presymplactic manifold. Here is no unique trajectory connecting the initial state po to the final state at time t, but all the final states lie on a gauge arbit [P.] whose points are emmeded by gauge transformations

The Case of General Relativity The frame bundle Choss-section of, barager, frames ? in Taypai frames. space 5 pacetima x Yang-Millo Vension gange group is GL (4, R) acting on the films Constrained Hamiltonian Version gauge groot is effectively a Monifestation of Diff, the growth of (auto) differ morphisms acting on the Affina Zundlos in Estensias of GR

The Aharonov-Bohm photographie plate Screen Solonoid with 2 1 diagram slits Electron parlo are in rogion de zero majnetic induction B, but non-zero voetn potential A

zero magnetic induction B, but
non-zero voetn potential A

The phase shift Letween the electrons
from the 2-shits is proportional to
the gauge invariant Rolomomy
SA. de which Try Stokes Thorum
equals the flux of B inside the solution

Becchi - Rowet - Stora - Tyutin (BRST) Symmetry

se scolon electrodynomics
We extend the 24 field and
An field to include other
purely mathematical fields
(more surplus structure!)

T=

Au

— gauge potential

ghost field

which antighost field

Nakanishi-Louing

field

 η and ω are scalar Grassmann fields

So $\eta^2 = \omega^2 = 0$

 $\bar{\Phi} \rightarrow \bar{\Phi} + \varepsilon s \Phi$ where 5 = (in 4) + gange transfor where the This is d t ransformatio where the Phase fold is a now dynamie dred, the ghost E is an infinitesimal field grassmonn paremeter

Notice 5° \$\vec{q} = 0, go 5 is militarion and behaves like an exterior derivative on the extended space of fills.
This leads to a Reautiful generalized do Rham cohomology theory

Funther generalisations:

(1) 9 hosts of 9 hosts of 9 hosts

antified formalism, uside introduces partners (antifieds) for all she fields

But the antifield of a 9host is not an antighost and the anti (antighost) is not a ghost!