

Segundo Trabalho

Programação Concorrente

Fernando Gorodscy 7152354 Leonardo Rebelo 5897894

Índice

- 1. Instruções (Read-me)
- 2. Algoritmo
- 3. <u>Hardware Utilizado</u>
- 4. Resultado Esperado
- 5. Resultados Observados
- 6. Analise dos Resultados
- 7. Possíveis melhorias
- 8. Conclusão

Instruções (Read-me)

- 1. Compilar os códigos sequencial e paralelo
 - a. Abrir o terminal
 - b. Entrar na pasta do trabalho
 - c. \$ g++ -l/usr/include/opencv -l/usr/include/opencv2 -L/usr/include/opencv/lib/ -g -o t2p trab2.cpp -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_ml -lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib -lopencv_legacy -lopencv_stitching -fopenmp
- 2. Executar o código
 - a. ./t2p <input_file> <output_file>

Algoritmo

Dividimos a imagem em blocos de 4x4. Para cada bloco 4x4 fizemos a média dos valores de cada pixel do bloco dos 3 canais de cores (Vermelho, Verde e Azul). Ou seja, a média dos valores de vermelho dos pixels, do verde e do azul.

Foram feitas 3 implementações do algoritmo para comparação. A primeira sequencial, a segunda paralelizada apenas com OpenMP e a última utilizando OpenMP e OpenMPI.

Utilizamos OpenMP para paralelizar o loop que calcula a média, utilizando todas os cores do nó. Além disso, paralelizamos usando OpenMPI, de forma que cada nó do cluster fique responsável por processar uma parte da imagem. Essa divisão é feita baseando-se na quantidade de nós disponíveis e no tamanho da imagem. Em outras palavras, dividimos a largura e a altura da imagem pelo número de nós - 1 (todos menos o nó mestre).

O nó mestre não participa do processamento da imagem, pois ele fica responsável por gerenciar os nós escravos e reunir os fragmentos de imagem para montar a imagem final.

Outro fato importante de se notar é que cada nó (incluindo o master) faz leitura da imagem. Isso facilita o algorítimo, pois retira a preocupação de envio de parte da imagem do mestre para os escravos, e também retira do mestre a responsabilidade de processar tal divisão. Com isso, diminuímos o processamento do mestre, que geralmente é o gargalo. Porém, adicionamos algum custo de processamento aos nós escravos, que precisam ler a imagem. A pior parte é que pelo fato de a imagem estar localizada no disco rígido do nó mestre, todos os nós precisam que essa imagem seja transferida pela rede do nó mestre para ele. Além de aumentar significativamente o uso da rede, isso aumenta demais o uso do disco rígido do mestre causando uma grande perda de performance.

Hardware Utilizado

Nodes (19 hosts / 72 virtuais) – 18 slaves nodes / 1 master node

Intel® Core™2 Quad Processor Q9400 (6M Cache, 2.66 GHz, 1333 MHz FSB) 8 GB RAM DDR3 Kingston
Motherboard Gigabyte G41-MT-S2P
HD 160GB Seagate Sata II 7200RPM
Fonte ATX 300W Real

Resultado Esperado

Ao pensar em resultado devemos analisar as partes que mudam quando implementamos sequencialmente ou paralelamente. O programa paralelo MPI possui algumas adições, por exemplo, remontar a imagem usando os blocos processados pelos nós escravo, além do overhead causado pela transferência desses dados pela rede, do nó escravo para o mestre.

Sendo assim, o esperado é que ao processar imagens pequenas, o overhead é muito grande, fazendo com que o algoritmo sequencial seja mais eficiente, ou que o paralelo tenha um speedup muito baixo.

Resultados Observados

	Imagem 1	SpeedUp: 2.66	Imagem 2	SpeedUp: 2.37
Tipo de algoritmo:	Sequential	Parallel	Sequential	Parallel
Execução # 1	18.18	6.78	20.63	8.90
Execução # 2	18.20	6.76	20.65	8.95
Execução # 3	18.18	7.09	20.60	7.65
Execução # 4	18.21	6.75	20.57	9.32
Execução # 5	18.11	6.80	20.60	8.98
Execução # 6	18.21	7.10	20.60	9.01
Execução # 7	18.18	6.81	20.57	8.99
Execução # 8	18.17	6.73	20.62	7.65
Execução # 9	18.08	6.79	20.61	8.79
Execução # 10	18.17	6.76	20.64	8.80
Média:	18.17	6.84	20.61	8.70
Desvio Padrão:	0.04	0.14	0.03	0.57
	Imagem 3	SpeedUp: 2.54	Imagem 4	SpeedUp: 1.95
Tipo de algoritmo:	Sequential	Parallel	Sequential	Parallel
Execução # 1	14.84	5.88	9.13	4.62
Execução # 2	14.82	5.86	9.08	4.69
Execução # 3	14.74	5.78	9.13	4.68
Execução # 4	14.85	5.78	9.07	4.85
Execução # 5	14.80	5.76	9.07	4.60
Execução # 6	14.80	5.76	9.09	4.62
Execução # 7	14.83	6.05	9.09	4.60
Execução # 8	14.78	5.78	9.11	4.69
Execução # 9	14.84	5.82	9.12	4.69
Execução # 10	14.82	5.88	9.15	4.62
Média:	14.81	5.83	9.10	4.67
Desvio Padrão:	0.03	0.09	0.03	0.08
	Imagem 5	SpeedUp: 2.02	Imagem 6	SpeedUp: 2.70

Tipo de algoritmo:	Sequential	Parallel	Sequential	Parallel
Execução # 1	14.94	7.46	17.41	6.48
Execução # 2	14.87	7.77	17.50	6.46
Execução # 3	14.92	7.23	17.53	6.48
Execução # 4	14.88	7.33	17.50	6.40
Execução # 5	14.95	7.42	17.46	6.56
Execução # 6	14.98	7.47	17.43	6.53
Execução # 7	14.88	7.42	17.53	6.40
Execução # 8	14.91	7.33	17.46	6.48
Execução # 9	14.91	7.23	17.55	6.47
Execução # 10	14.93	7.35	17.44	6.51
Média:	14.92	7.40	17.48	6.48
Desvio Padrão:	0.03	0.16	0.05	0.05
	Imagem 7	SpeedUp: 2.59	Imagem 8	SpeedUp: 2.74
Tipo de algoritimo:	Sequential	Parallel	Sequential	Parallel
Execução # 1	25.11	9.56	35.97	13.49
Execução # 2	25.03	9.50	36.04	12.90
İ	23.03	3.30	00.01	12.90
Execução # 3	25.14	9.52	35.96	12.90
Execução # 3 Execução # 4				
	25.14	9.52	35.96	12.90
Execução # 4	25.14 24.99	9.52 9.64	35.96 36.09	12.90 13.11
Execução # 4 Execução # 5	25.14 24.99 25.11	9.52 9.64 10.52	35.96 36.09 36.04	12.90 13.11 13.07
Execução # 4 Execução # 5 Execução # 6	25.14 24.99 25.11 25.17	9.52 9.64 10.52 10.48	35.96 36.09 36.04 35.88	12.90 13.11 13.07 12.99
Execução # 4 Execução # 5 Execução # 6 Execução # 7	25.14 24.99 25.11 25.17 25.17	9.52 9.64 10.52 10.48 9.42	35.96 36.09 36.04 35.88 35.95	12.90 13.11 13.07 12.99 13.07
Execução # 4 Execução # 5 Execução # 6 Execução # 7 Execução # 8	25.14 24.99 25.11 25.17 25.17 25.01	9.52 9.64 10.52 10.48 9.42 9.31	35.96 36.09 36.04 35.88 35.95 35.97	12.90 13.11 13.07 12.99 13.07 13.12
Execução # 4 Execução # 5 Execução # 6 Execução # 7 Execução # 8 Execução # 9	25.14 24.99 25.11 25.17 25.17 25.01 25.04	9.52 9.64 10.52 10.48 9.42 9.31 9.51	35.96 36.09 36.04 35.88 35.95 35.97 36.14	12.90 13.11 13.07 12.99 13.07 13.12 13.45

Analise dos Resultados

Pudemos observar que os resultados foram razoavelmente diferente do esperado. A velocidade do algoritmo paralelo foi sempre melhor do que o sequencial, mesmo para imagens menores. Provavelmente porque não escolhemos imagens suficientemente pequenas, ou pelo fato de que a vantagem do processamento paralelo supera muito o overhead causado pela rede.

Possíveis melhorias

Uma melhoria evidente seria evitar que cada nó lesse a imagem do disco. Com isso iriamos diminuir o uso do disco em <num_nodes> vezes. Apesar de aumentar o uso da rede, o uso do disco é muito pior.

Outra melhoria seria não ler (ou transferir) toda a imagem nos nós. Seria muito mais eficiente ler apenas a parte da imagem que o nó processaria. Porém, isso aumentaria consideravelmente o trabalho de desenvolvimento.

Conclusão

O algoritmo paralelo foi claramente mais eficiente que o sequencial, chegando a um ganho de mais de 2.5 vezes o sequencial. Em troca de tal ganho no desempenho, o algoritmo paralelo é mais complexo de ser implementado. Para que haja sucesso na implementação de um algoritmo paralelo, é necessário que se identifique corretamente os pontos paralelizáveis de um algoritmo sequencial e que se calcule corretamente o ganho em relação ao *overhead* causado pelo uso da rede para transferência de dados entre nós e outros mecanismos necessários para a correta implementação paralela.