Tutorial_05.- Arduino_Sensor óptico reflexivo

Contenido

1. Sensor óptico reflexivo (CNY70)	
Contenido teórico	
Proyecto5_01: Lectura de un sensor óptico reflexivo CNY70	
EIEBCICIOS	10

Material necesario

- Placa Arduino
- Cable micro USB
- Placa Protoboard
- Cables Jumper-Wire
- Componentes:
- LEDs
- Resistencias
- Sensor: CNY70

Conceptos teóricos

• Sensores ópticos

Estructuras de programación en Arduino (C/C++)

- Crear funciones en Arduino
- Bucle for

IMPORTANTE:

Comprobaremos que nuestra placa **Arduino** está **desconectada** y sin energía, puesto de no ser así podría dañarse tanto la placa, como el equipo. Una vez hemos realizado esta comprobación, pasaremos a realizar el montaje.

1. Sensor óptico reflexivo (CNY70)

Contenido teórico

En el interior de la cápsula de este sensor existe un diodo LED que emite rayos infrarrojos, invisibles para el ser humano, y un fototransistor. La salida del sensor determina cuánta de la luz emitida por el LED ha sido reflejada al fototransistor.

El diodo consta de dos terminales, el ánodo (A) y el cátodo (K). Sobre la misma superficie está ubicado el fototransistor que tiene la propiedad de conducir una corriente entre el colector (C) y el emisor (E), proporcional a la cantidad de luz que incide sobre su base.

Al estar dispuestos sobre la misma superficie, emisor de rayos y receptor, es necesario que delante de ambos exista una superficie reflectante para que el fototransistor pueda recibir los rayos que genera el emisor.

Aplicaciones:

- 1. Sensor de proximidad: es preciso sólo a distancias muy cortas. El rayo rebota contra el objeto y vuelve al fototransistor.
- 2. Detector de color blanco/negro: El blanco refleja todo el rayo, mientras que el negro lo absorbe. Hay que poner el patrón muy cerca del sensor. Robots rastreadores o sigue-líneas
- 3. Detector de colores: Para esta opción será obligatorio conectar la salida del sensor a una entrada analógica. Diferentes lecturas de tensión, corresponderán a diferentes colores.

En la figura de arriba vemos dos posibles circuitos para utilizar el CNY70.

El circuito (a) entrega a la salida un nivel bajo cuando no refleja el haz infrarrojo y un nivel alto cuando encuentra un material sobre el que refleja el haz. El circuito (b) entrega un nivel alto cuando el haz no refleja y un nivel bajo cuando se detecta un material reflectante.

Acondicionamiento para entrada digital

Si la señal se quiere introducir a una entrada digital de un microcontrolador es conveniente hacer pasar las salidas a través de un circuito *trigger schmitt* que conforme las señales.

Los umbrales de disparo para el <u>74LS14</u> son de 0,9 y 1,7 voltios, esto quiere decir que cuando la señal en la entrada del disparador supere los 1,7 voltios se tomara como un 1 lógico en la entrada. La salida al ser inversa tomara el nivel lógico bajo o 0 voltios. Si el voltaje de entrada baja por debajo de 0,9 voltios se tomara como un 0 lógico en la entrada con lo que la salida tomara un nivel lógico de 1.

Entrada analógica

Otra posibilidad es conectar la salida a una entrada analógica. De este modo, mediante el convertidor A/D se pueden obtener distintos valores de tensión frente a diferentes colores. Esto permite la detección de blanco y negro, pero también, de distintos colores o escalas de grises.

Proyecto5_01: Lectura de un sensor óptico reflexivo CNY70

El proyecto actual consiste en monitorizar el valor leído por la entrada analógica, y la tensión equivalente, que se obtiene del sensor de óptico CNY70 ante distintos colores.

Esquema

Antes que nada debemos observar el sensor y determinar cuáles son los terminales del diodo y cuales los del fototransistor. Mira el sensor desde arriba y coloca hacia la derecha la cara con la serigrafía. En esta posición podrás ver:

- Diodo emisor de luz → a la izquierda (tiene un tono azulado)
- Fototransistor → a la derecha

Calcula RD a la vista de las especificaciones del sensor.

http://www.vishay.com/docs/83751/cny70.pdf

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
COUPLER								
Collector current	V _{CE} = 5 V, I _F = 20 mA, d = 0.3 mm (figure 1)	I _C ⁽²⁾	0.3	1.0		mA		
Cross talk current	V _{CE} = 5 V, I _F = 20 mA, (figure 2)	I _{CX} (3)			600	nA		
Collector emitter saturation voltage	$I_F = 20 \text{ mA}, I_C = 0.1 \text{ mA},$ d = 0.3 mm (figure 1)	V _{CEsat} (2)			0.3	V		
INPUT (EMITTER)								
Forward voltage	I _F = 50 mA	V _F		1.25	1.6	V		
Radiant intensity	$I_F = 50 \text{ mA}, t_p = 20 \text{ ms}$	l _e			7.5	mW/sr		
Peak wavelength	I _F = 100 mA	λ_{P}	940			nm		
Virtual source diameter	Method: 63 % encircled energy	d		1.2		mm		
OUTPUT (DETECTOR)								
Collector emitter voltage	I _C = 1 mA	V_{CEO}	32			V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	5			V		
Collector dark current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}, E = 0 \text{ Ix}$	I _{CEO}			200	nA		

Notes

Para iluminar el LED conectaremos en serie con él una resistencia, RD, que limite la IF a 20mA.

Para calcular RT debemos determinar el valor de la corriente de colector en el transistor en función de la distancia de trabajo. Según la gráfica de la figura 9 de la hoja de características, para una distancia de aproximadamente 2mm, la corriente de colector que se establecerá será de 0,5mA.

 $^{^{(1)}}$ Measured with the "Kodak neutral test card", white side with 90 % diffuse reflectance

⁽²⁾ Measured without reflecting medium

Fig. 9 - Collector Current vs. Distance

En definitiva, nos interesa que, por pequeña que sea la lc que fluya a través del transistor receptor, la V en la salida sea suficientemente diferente de los OV que se presentan cuando no recibe luz.

 $RT = (5V - 0.3V) / 0.5mA = 9.4 Kohms \rightarrow 10 KOhms$

Código

```
const float ResolutionADC=0.00488; //4.88mV
const int CNY_Pin=A0;
int Value_CNY_Pin=0;
float Voltage;

void setup(){
    Serial.begin(9600); //Enable the serial port
}

void loop(){
    // Reads the sensor and return a value between 0-1023
    Value_CNY_Pin=analogRead(CNY_Pin);

// Calculates the equivalent voltage
    Voltage=Value_CNY_Pin*ResolutionADC;

Serial.println (Value_CNY_Pin);
Serial.print (" Voltage: ");
Serial.print (Voltage);
Serial.println (" V");

delay(1000);
}
```

EJERCICIOS

 Con la información obtenida en el Proyecto5_01 construya un código de modo que al detectar color NEGRO sobre el sensor encienda un LED y lo apague al detectar BLANCO. Que imprima en pantalla BLANCO o NEGRO en cada caso asi como el valor que lee.