Classification: Decision Tree & Naïve Bayes

Spring 2018

Review

- Last week:
 - Regression Applications
 - Linear Regression
 - Polynomial Regression
 - Regularization (Ridge Regression and Lasso Regression)
 - Evaluating Regression Models
- Assignments (Canvas)
 - Lab assignment due yesterday
 - New problem set out and due next week
- Questions?

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Today's Focus: Classification

Predict discrete value

Entertainment: Classifying Body Parts in XBox

Information Retrieval: Relevant Document or Not?

About 1,710,000 results (0.49 seconds)

Naive Bayes classifier - Wikipedia

https://en.wikipedia.org/wiki/Naive_Bayes_classifier •

In machine learning, **naive Bayes** classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features. **Naive Bayes** has been studied extensively since the 1950s. It was introduced under a different name into the text retrieval ...

Probabilistic model · Parameter estimation and ... · Discussion · Examples

1.9. Naive Bayes — scikit-learn 0.19.1 documentation

scikit-learn.org/stable/modules/naive_bayes.html •

In spite of their apparently over-simplified assumptions, **naive Bayes** classifiers have worked quite well in many real-world situations, famously document classification and spam filtering. They require a small amount of training data to estimate the necessary parameters. (For theoretical reasons why **naive Bayes** works well, ...

You visited this page on 1/30/18.

Biology: Classify Cell Shapes for Long Term Goal of Biomaterial Creation

Theriault et al; Cell morphology classification and clutter mitigation in phase-contrast microscopy images using machine learning; 2012.

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Basic Ingredient for ML Today: Probability

- Notation: P(A)
- e.g., P(Rain)

Conditional Probability

• P(A = 1 | B = 1): fraction of cases where A is true if B is true

Conditional Probability

Knowledge of additional random variables can improve our prior

belief of another random variable

P(Slept in movie) = ?

• 0.5

P(Slept in movie | Like Movie) = ?

• 1/4

• P(Didn't sleep in movie | Like Movie) = ?

• 3/4

Slept	Liked
1	0
0	1
1	1
1	0
0	0
1	0
0	1
0	1

Joint Distribution

• P(A, B): probability a set of random variables will take a specific value

If we assume independence then

$$P(A,B)=P(A)P(B)$$

However, in many cases such an assumption maybe too strong (more later in the class)

Joint Distribution

- P(class size > 20) = ?0.6
- P(summer) = ?
 - 0.4
- P(class size > 20, summer) = ?
 - 0.1

Evaluation of classes

Size	Time	Eval
30	R	2
70	R	1
12	S	2
8	S	3
56	R	1
24	S	2
10	S	3
23	R	3
9	R	2
45	R	1

Chain Rule

- Joint probability can be represented with conditional probability
- P(A, B) = P(A|B)*P(B)

Today's Topics

- Classification applications
- Discussion: Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Decision Tree: Discriminative Classifier

Learns mapping from input features to class label

Decision Tree

http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Test Example

http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Test Example

Salary: \$62,200

Commute: 45 min

Free Coffee: Yes

http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

Decision Tree: Generic Structure

 Goal: predict class label • Representation: Tree • Internal (non-leaf) nodes = tests an attribute • Branches = attribute value Leaf = classification label

Decision Tree: Generic Structure

 Goal: predict class label • Representation: Tree • Internal (non-leaf) nodes = tests an attribute • Branches = attribute value Leaf = classification label

Decision Tree: Generic Learning Algorithm

 Greedy approach (NP complete problem) Function BuildTree(n,A) // n: samples (rows), A: attributes If empty(A) or all n(L) are the same status = leaf class = most common class in n(L) else status = internal a ← bestAttribute(n,A) Key Decision LeftNode = BuildTree(n(a=1), A \ {a}) RightNode = BuildTree(n(a=0), A \ {a}) end end

Number of classes Encodes in bits
$$Entropy = -\sum_{i=1}^n p_i \log_2 p_i$$

Fraction of examples belonging to class i

In a binary setting,

- Entropy is 0 when fraction of examples belonging to a class is 0 or 1
- Entropy is 1 when fraction of examples belonging to each class is 0.5

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Le C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -\left(\frac{5}{8}\log_2\frac{5}{8} + \right)$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -(\frac{5}{8}\log_2\frac{5}{8} + \frac{3}{8}\log_2\frac{3}{8})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	Type	Length	IMDb Rating	Liked?
m1	Comedy	Short	7.2	Yes
m2	Drama	Medium	9.3	Yes
m3	Comedy	Medium	5.1	No
m4	Drama	Long	6.9	No
m5	Drama	Medium	8.3	Yes
m6	Drama	Short	4.5	No
m7	Comedy	Short	8.0	Yes
m8	Drama	Medium	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Current entropy?

$$Entropy = -(\frac{5}{8}\log_2\frac{5}{8} + \frac{3}{8}\log_2\frac{3}{8})$$

$$Entropy = -(-0.42 - 0.53) = 0.95$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -(-0.53 - 0.39) = 0.92$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = ?

$$Entropy = -(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5})$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = ?

$$Entropy = -(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5})$$

$$Entropy = -(-0.44 - 0.53) = 0.97$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Type	Liked?
m1	Comedy	Yes
m2	Drama	Yes
m3	Comedy	No
m4	Drama	No
m5	Drama	Yes
m6	Drama	No
m7	Comedy	Yes
m8	Drama	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Type"?
 - Left tree: "Comedy" = 0.92
 - Right tree: "Drama" = 0.97
- Information gain by split on "Type"?

$$IG = 0.95 - (\frac{3}{8} * 0.92 + \frac{5}{8} * 0.97)$$

 $IG = 0$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = ?

$$Entropy = -(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3})$$

$$Entropy = -(-0.53 - 0.39) = 0.92$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = ?

$$Entropy = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4})$$

$$Entropy = -(-0.32 - 0.5) = 0.82$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = 0.82
 - Right tree: "Long" = ?

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Movie	Length	Liked?
m1	Short	Yes
m2	Medium	Yes
m3	Medium	No
m4	Long	No
m5	Medium	Yes
m6	Short	No
m7	Short	Yes
m8	Medium	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "Length"?
 - Left tree: "Short" = 0.92
 - Middle tree: "Medium" = 0.82
 - Right tree: "Long" = 0
- Information gain by split on "Length"?

$$IG = 0.95 - (\frac{3}{8} * 0.92 + \frac{4}{8} * 0.82 + \frac{1}{8} * 0)$$

 $IG = 0.19$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
$\overline{\mathrm{m1}}$	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3}

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
$\overline{\mathrm{m1}}$	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

$$\{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3\}$$

$$IG = 0.95 - (\frac{5}{8} * (\frac{5}{5} \log_2 \frac{5}{5}) + \frac{3}{8} * (\frac{3}{3} \log_2 \frac{3}{3}))$$

 $IG = 0.95$

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
m1	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3}

$$Entropy = -\sum_{i=1}^{n} p_i \log_2 p_i$$

e.g., Will you like a movie?

Movie	IMDb Rating	Liked?
$\overline{\mathrm{m1}}$	7.2	Yes
m2	9.3	Yes
m3	5.1	No
m4	6.9	No
m5	8.3	Yes
m6	4.5	No
m7	8.0	Yes
m8	7.5	Yes

- Let C1 = "Yes" and C2 = "No"
- Entropy if we split on "IMDb Rating"?
 - Order attribute values:

{4.5, 5.1, 6.9, 7.2, 7.5, 8.0, 8.3, 9.3}

Decision Tree: What is Our First Split?

 Greedy approach (NP complete problem) Function BuildTree(n,A) // n: samples (rows), A: attributes If empty(A) or all n(L) are the same status = leaf IG = 0.95IG = 0IG = 0.19class = most common class in r/1 \ Type Movie IMDb Rating Liked? Length else Comedy Short 7.2Yes m1status = internal Drama Medium 9.3Yes m2 $a \leftarrow bestAttribute(n,A)$ m3Medium 5.1No Comedy LeftNode = BuildTree(n(a=1), A Drama 6.9No m4Long Medium 8.3 m_5 Drama Yes RightNode = BuildTree(n(a=0), Drama Short 4.5 No m6end Comedy Short 8.0 Yes m7end Medium m8Drama 7.5Yes

Decision Tree: What Tree Results?

Decision Tree: What Tree Results?

Recurse on this tree?

Decision Tree: What Tree Results?

Decision Tree: Generic Learning Algorithm

 Greedy approach (NP complete problem) Function BuildTree(n,A) // n: samples (rows), A: attributes If empty(A) or all n(L) are the same status = leaf class = most common class in n(L) else Entropy (maximize information gain) status = internal Gini Index a ← bestAttribute(n,A) Key Decision – Gain ratio Mean squared error LeftNode = BuildTree(n(a=1), A \ {a}) RightNode = BuildTree(n(a=0), A \ {a})

end

end

Overfitting

• At what tree size, does training error and testing error grow?

Regularization to Avoid Overfitting

- Pruning
 - Pre-pruning: stop tree growth earlier
 - Post-pruning: prune tree afterwards

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Naïve Bayes: Generative Classifier

• Learns a model of the joint probability of the input features and each class, and then picks the most probable class

Naïve Bayes: Derivation of Formula

- Recall Chain Rule:
 - P(A, B) = P(A|B) * P(B)
 - P(A, B) = P(B|A) * P(A)
- Therefore:
 - P(A|B) * P(B) = P(B|A) * P(A)
- Rearranging:
 - P(A|B) = (P(B|A) * P(A))/P(B)
- Rewriting:

Need to solve this...

Want to find class with the largest probability

Constant for all classes... so can ignore this!

Need to solve this...

Naïve Bayes: Assumes Conditionally Independent Features Given Class

• Recall:

$$P(C_i|features) = P(features|C_i) * P(C_i)$$

$$P(features|C_i) = \prod_{j=1}^m P(x_j|C_i)$$

If we assume independence then

$$P(A,B)=P(A)P(B)$$

However, in many cases such an assumption maybe too strong (more later in the class)

$$P(features|C_i) = P(x_1|C_i) * P(x_2|C_i) * ... * P(x_m|C_i)$$

$$P(C_i|features) = P(x_1|C_i) * P(x_2|C_i) * \dots * P(x_m|C_i) * P(C_i)$$

Naïve Bayes: Different Generative Models Can Yield the Observed Features

Naïve Bayes: Different Generative Models Can Yield the Observed Features

- Gaussian Naïve Bayes (typically used for "continuous"-valued features)
 - Assume data drawn from a Gaussian distribution: mean + standard deviation

$$P(C_{i}|features) = P(x_{1}|C_{i}) * P(x_{2}|C_{i}) * \dots * P(x_{m}|C_{i}) * P(C_{i})$$

Naïve Bayes: Different Generative Models Can Yield the Observed Features

- Multinomial Naïve Bayes (typically used for "discrete"-valued features)
 - Assume count data and computes fraction of entries belonging to the category

e.g.,	Movie	Type	Length	Liked?
	m1	Comedy	Short	Yes
	m2	Drama	Medium	Yes
	m3	Comedy	Medium	No
	m4	Drama	Long	No
	m5	Drama	Medium	Yes
	m6	Drama	Short	No
	m7	Comedy	Short	Yes
	m8	Drama	Medium	Yes

$$P(C_{i}|features) = P(x_{1}|C_{i}) * P(x_{2}|C_{i}) * \dots * P(x_{m}|C_{i}) * P(C_{i})$$

	x_1	
e.g.,	IMDb Rating	Liked?
	7.2	Yes
	9.3	Yes
	5.1	No
	6.9	No
	8.3	Yes
	4.5	No
	8.0	Yes
	7.5	Yes

 T_{1}

- P(Liked) = ?
 - 5/8 = 0.625

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

 x_1

7.2 Yes
9.3 Yes
5.1 No
6.9 No
8.3 Yes

4.5

8.0

7.5

- P(Liked) = ?
 - 5/8 = 0.625
- P(Not Liked) = ?
 - 3/8 = 0.375

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

No

Yes

Yes

	x_1	
e.g.,	IMDb Rating	Liked?
	7.2	Yes
	9.3	Yes
	5.1	No
	6.9	No
	8.3	Yes
	4.5	No
	8.0	Yes
	7.5	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(IMDb Rating | Liked): Mean and Standard Deviation?
 - Mean = 8.06
 - Standard Deviation = 0.81

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

 x_1

e.g.,

IMDb Rating	Liked?
7.2	Yes
9.3	Yes
5.1	No
6.9	No
8.3	Yes
4.5	No
8.0	Yes
7.5	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(IMDb Rating | Liked)
 - Mean = 8.06
 - Standard Deviation = 0.81
- P(IMDb Rating | Not Liked): Mean and Standard Deviation?
 - Mean = 5.5
 - Standard Deviation = 1.25

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

 x_1

e.g.,

IMDb Rating	Liked?
7.2	Yes
9.3	Yes
5.1	No
6.9	No
8.3	Yes
4.5	No
8.0	Yes
7.5	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(IMDb Rating | Liked)
 - Mean = 8.06
 - Standard Deviation = 0.81
- P(IMDb Rating | Not Liked)
 - Mean = 5.5
 - Standard Deviation = 1.25

Test Example IMDb Rating: 6.4 P(Liked | Features)

(Can Use: https://planetcalc.com/4986/)

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

 x_1

e.g.,

•	IMDb Rating	Liked?
	7.2	Yes
	9.3	Yes
	5.1	No
	6.9	No
	8.3	Yes
	4.5	No
	8.0	Yes
	7.5	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(IMDb Rating | Liked)
 - Mean = 8.06
 - Standard Deviation = 0.81
- P(IMDb Rating | Not Liked)
 - Mean = 5.5
 - Standard Deviation = 1.25

Test Example

IMDb Rating: 6.4

- P(Liked | Features)
 - = 0.06 * 0.625

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

x_1

e.g.,	IMDb Rating	Liked?
	7.2	Yes
	9.3	Yes
	5.1	No
	6.9	No
	8.3	Yes
	4.5	No
	8.0	Yes
	7.5	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(IMDb Rating | Liked)
 - Mean = 8.06
 - Standard Deviation = 0.81
- P(IMDb Rating | Not Liked)
 - Mean = 5.5
 - Standard Deviation = 1.25

Test Example

IMDb Rating: 6.4

- P(Liked | Features)
 - = 0.06 * 0.625
 - = 0.0375
- P(Not Liked | Features)
 - = 0.25 * 0.375
 - \bullet = 0.09

Which class is the most probable?

$$P(C_i|features) = P(x_1|C_i) * P(C_i)$$

Multinomial Naïve Bayes: Example

	x_1	x_2	
Movie	Type	Length	Liked?
m1	Comedy	Short	Yes
m2	Drama	Medium	Yes
m3	Comedy	Medium	No
m4	Drama	Long	No
m5	Drama	Medium	Yes
m6	Drama	Short	No
m7	Comedy	Short	Yes
m8	Drama	Medium	Yes

- P(Liked) = 5/8 = 0.625
- P(Not Liked) = 3/8 = 0.375
- P(Comedy | Liked) = ?
 - 2/5 = 0.4
- P(Comedy | Not Liked) = ?
 - 1/3 = 0.333
- P(Drama | Liked) = ?
 - 3/5 = 0.6
- P(Drama | Not Liked) =
 - 2/3 = 0.666

$$P(C_i|features) = P(x_1|C_i) * P(x_2|C_i) * P(C_i)$$

Multinomial Naïve Bayes: Example

	x_1	x_2	
Movie	Type	Length	Liked?
m1	Comedy	Short	Yes
m2	Drama	Medium	Yes
m3	Comedy	Medium	No
m4	Drama	Long	No
m5	Drama	Medium	Yes
m6	Drama	Short	No
m7	Comedy	Short	Yes
m8	Drama	Medium	Yes

```
• P(Short | Liked) = ?
```

•
$$2/5 = 0.4$$

•
$$1/3 = 0.333$$

•
$$3/5 = 0.6$$

•
$$1/3 = 0.333$$

•
$$0/5 = 0$$

•
$$1/3 = 0.333$$

$$P(C_i|features) = P(x_1|C_i) * P(x_2|C_i) * P(C_i)$$

Test Example

Type: Comedy Length: Medium

Multinomial Naïve Bayes: Example

x_1	x_2
- I	~ 2

Movie	Type	Length	Liked?
m1	Comedy	Short	Yes
m2	Drama	Medium	Yes
m3	Comedy	Medium	No
m4	Drama	Long	No
m5	Drama	Medium	Yes
m6	Drama	Short	No
m7	Comedy	Short	Yes
m8	Drama	Medium	Yes

- P(Liked) = 0.63
- P(Not Liked) = 0.38
- P(Comedy | Liked) = 0.4
- P(Comedy | Not Liked) = 0.33
- P(Drama | Liked) = 0.6
- P(Drama | Not Liked) = 0.67

Which class is the most probable?

- P(Short | Liked) = 0.4
- P(Short | Not Liked) = 0.33
- P(Medium | Liked) = 0.6
- P(Medium | Not Liked) = 0.33
- P(Long | Liked) = 0
- P(Long | Not Liked) = 0.33

$$P(C_i|features) = P(x_1|C_i) * P(x_2|C_i) * P(C_i)$$

Type: Comedy Length: Long

Multinomial Naïve Bayes: Example

 x_1 x_2

		_	_	
Which	Liked?	Length	Type	Movie
	Yes	Short	Comedy	m1
Liked) = 0.63	Yes	Medium	Drama	m2
Not Liked) = 0.38	No	Medium	Comedy	m3
,	No	Long	Drama	m4
Comedy Liked) = 0.4	Yes	Medium	Drama	m5
Comedy Not Liked) = 0.33	No	Short	Drama	m6
Drama Liked) = 0.6	Yes	Short	Comedy	m7
,	Yes	Medium	Drama	m8
 P(Drama Not Liked) = 0.67 				

Which class is the most probable?

- P(Short | Liked) = 0.4
- P(Short | Not Liked) = 0.33
- P(Medium | Liked) = 0.6
- P(Medium | Not Liked) = 0.33
- P(Long | Liked) = 0
- (ked) = 0.67 P(Long | Not Liked) = 0.33

To avoid zero, assume training data is so large that adding one to each count makes a negligible difference

$$P(C_i|features) = P(x_1|C_i) * P(x_2|C_i) * P(C_i)$$

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

Evaluating classifiers: confusion matrix

Confusion Matrix: e.g.,

TP = true positive

TN = true negative

FP = false positive

FN = false negative

Evaluating classifiers: descriptive statistics

Confusion Matrix: e.g.,

Actual Spam Trusted 50 10 15 100

Commonly-used statistical descriptions:

- How many actual spam results are there? 65
- How many actual trusted results are there? 110
- How many *correctly classified instances*? 150/175 ~ 86%
- How many *incorrectly classified instances*? 25/175 ~ 14%

• What is the *recall*?
$$\frac{TP}{TP + FN}$$

Today's Topics

- Classification applications
- Introduction to Probability
- Decision Tree Model (Discriminative Model)
- Naïve Bayes Model (Generative Model)
- Classification Evaluation Basics
- Lab

References Used for Today's Material

- http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/06_trees.pdf
- http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/tutorial3 CrossVal-DTs.pdf
- http://www.cs.cmu.edu/~epxing/Class/10701/slides/classification15.pdf