STRUCTURE OF THE PROJECT
SIMPLE CNN MODEL
SIMPLE CNN MODEL EVALUATED ON A VIDEO
ALEXNET IMPLEMENTATION
REFERENCES

PROJECT 2 - DIGITAL FORENSICS FACE RECOGNITION PROJECT

Francesco L. De Faveri - ID. 2057069

Università degli Studi di Padova

 17^{th} of June 2022

STRUCTURE OF THE PROJECT

- Section 1, a possible solution for the experience in Lab. 4, implementing a simple model based on *keras.Conv2D* layers. The model has been tested also on partially covered faces, a.e. with glasses or facial mask.
- Section 2, extension of the face detection task through video. The model has been tested also on partially covered face. Also implementation of pretrained filters of OpenCV for detecting a face from a photo or live through the notebook camera.
- **Section 3**, implementation, training and testing of AlexNet architecture on the dataset.

CNN MODEL ARCHITECTURE

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 128, 128, 32)	320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 64, 64, 32)	
conv2d_1 (Conv2D)	(None, 62, 62, 8)	2312
max_pooling2d_1 (MaxPooling 2D)	(None, 31, 31, 8)	
flatten (Flatten)	(None, 7688)	
dropout (Dropout)	(None, 7688)	
dense (Dense)	(None, 13)	99957
Total params: 102,589 Trainable params: 0 Non-trainable params: 0		

CNN MODEL TRAINING

The training has been performed with the following parameters:

$$batch_size = 128$$
, $epochs = 10$, $validation_split = 0.2$

CNN MODEL TESTING

The overall test accuracy is equal to 91%

CNN ON DIFFERENT TEST SET

Faces with glasses: 61%

Faces with sunglasses: 42%

Faces with mask: 36%

Faces with facial mask: 34% 6/12

HAAR-CASCADE FILTERS IN OPENCV

```
const capture = document.createllement('button');
capture.textContent = 'Click here to take the photo';
    video.style.display = 'block';
const stream = mesit revigator.mediaDevices.getUserMedia((video: true));
     google.colab.output.setIframeWeight(document.documentElement.scrollWeight, true);
    cenves.width = video.videoNidth;
     canvas.height = video.videoHeight;
    return cenves.toDetaURL('image/jpeg', quelity);
     ing = cv2.rectangle(ing,(x,y),(x+width,y+height),(255,0,0),2)
cv2.imurite(filename, img)
```


Output of the code

Snippet of the code

VIDEO EXTENSION - CLEAR FACE

Input video

Output video

VIDEO EXTENSION - COVERED FACE

Input video

Output video

ALEXNET TRAINING

The training has been performed with the following parameters:

$$batch_size = 128,\ epochs = 10,\ validation_split = 0.2$$

train validation

ALEXNET TESTING

The overall test_accuracy is equal to 83%

REFERENCES

- 1. Section 1: Lab4 Experience
- 2. **Section 2**: docs.opencv.org & theAlGuysCode/webcam
- 3. Section 3: top-4-pre-trained-models & Paper.pdf