

Mining of Massive Datasets

Steven Lang

July 2016

Motivation

- Growing amounts of data
- Requires specific methods to analyze the data
- Result: Special computing models for clusters
- Concentrate on efficiently parallelizing operations

Hildebrandt, Big Data: Algorithms, methods and techniques for analysing massive datasets

Motivation

- ▶ Massive data has lead to novel approaches of data-mining
- Classic examples:
 - Ranking web pages by importance
 - Querying social-networks

Motivation

Compute Cluster

Distributed File System (DFS)

MapReduce

Spark: Cluster Computing with Working Sets

Conclusion

References

Compute Cluster

	Trad. supercomputer	Cluster computer
scale	up ↑	out ⇔
hardware	special	commodity
costs	intensive	low
failure rate (per node)	low	high
,		
schematic		

Compute Cluster

Figure: Example cluster with three racks and six nodes each

Compute Cluster

To get the most benefit out of these clusters one has to address:

- ► Node failures (availability of data)
 - ► Solution: Distributed file system (DFS)

- Modularity of tasks
 - ► Solution: Programming model called MapReduce

Distributed File System (DFS)

- ► File system for cluster computing
- Used to achieve consistent availability of data in clusters

MapReduce Introduction

What is MapReduce?

- Programming model
- ► Allows scalability across complete compute cluster
- ► Takes care of:

MapReduce Introduction

What is MapReduce?

- Programming model
- Allows scalability across complete compute cluster
- ► Takes care of:
 - ► Parallelism
 - ► Task-coordination
 - Node-failures

${\sf MapReduce}$

Introduction

MR basically consists of two methods:

▶ Map: maps each input element to zero or more intermediate output elements

${\sf MapReduce}$

Introduction

MR basically consists of two methods:

- Map: maps each input element to zero or more intermediate output elements
- System groups intermediate results by key

MapReduce

Introduction

MR basically consists of two methods:

- Map: maps each input element to zero or more intermediate output elements
- System groups intermediate results by key
- Reduce: reduces several map-outputs with the same key to one result output element

Terminology

- ► Mapper: The map-function
- Reducer: The reduce-function
- ► Map-Task: A process takes one or more chunks of input data and executes the mapper
- Reduce-Task: A process takes one or more key-value pairs and executes the reducer

Illustrating MapReduce with a common example: WordCount

► Goal: Count words in a repository of documents

```
map(key, value):
       # Get words from
                                  map:
      document
       words = value.split('')
       # Emit each word
       for w in words:
7
         emit(w, 1)
8
9
     reduce(key, value):
10
       # Sum up & emit
       s = sum(value)
11
12
       emit (key, s)
13
```

```
How are you? Are you ok?

(how,1) (are,1) (you,1) (are,1) (you,1) (ok,1)
```

13

Illustrating MapReduce with a common example: WordCount

► Goal: Count words in a repository of documents

```
are vou? Are vou ok?
                                                    How
     map(key, value):
       # Get words from
                                     map:
      document
        words = value.split('')
                                                (how,1) | (are,1) | (you,1) | (are,1) | (you,1) | (ok,1)
                                     group by
       # Emit each word
        for w in words:
                                     key:
 7
          emit(w, 1)
                                                (how, [1]) (are, [1,1]) (you, [1,1]) (ok, [1])
 8
 9
      reduce(key, value):
10
       # Sum up & emit
        s = sum(value)
11
12
        emit (key, s)
```


Illustrating MapReduce with a common example: WordCount

► Goal: Count words in a repository of documents

```
map(key, value):
       # Get words from
                                   map:
      document
       words = value.split('')
                                   group by
       # Emit each word
       for w in words:
                                   key:
          emit(w, 1)
9
     reduce(key, value):
                                   reduce.
10
       # Sum up & emit
       s = sum(value)
11
12
       emit (key, s)
13
```


Coping with node failures

- ► Worst case: Master-node failure
 - Restart whole MR-Job

Coping with node failures

- Worst case: Master-node failure
 - Restart whole MR-Job

- Less tragic: Map-Node failure
 - Restart all its Map-Tasks
 - Notify Reduce-Tasks of new input-location

Coping with node failures

- ► Worst case: Master-node failure
 - Restart whole MR-Job

- Less tragic: Map-Node failure
 - Restart all its Map-Tasks
 - Notify Reduce-Tasks of new input-location

- ► Most simple: Reduce-Node failure
 - ▶ Reschedule its Reduce-Tasks at another Reduce-Node

Application of MapReduce: Matrix-Vector-Multiplication PageRank

Application of MapReduce: Matrix-Vector-Multiplication PageRank

$$\blacktriangleright w(p_i, p_j) = \frac{1}{outdeg(p_i)}$$

- $ightharpoonup M \in \mathbb{Q}^{n \times n}$ Linkage matrix
- $V_k \in \mathbb{Q}^n$ Importance vector after the k-th step

$$V_0 = (\frac{1}{n}, \dots, \frac{1}{n})^T$$

$$V_k = M \cdot V_{k-1}$$

$$\begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} = V_1$$

Application of MapReduce: Matrix-Vector-Multiplication

- ► PageRank: Large matrix-vector multiplications
- ► Input:
 - ▶ Matrix $M \in \mathbb{Q}^{n \times n}$
 - ▶ Vector $V \in \mathbb{Q}^n$
- ▶ Matrix-vector multiplication $X = M \cdot N$ denoted as:

$$x_i = \sum_{j=0}^n m_{ij} \cdot v_i$$

Application of MapReduce: Matrix-Vector-Multiplication V fits into main memory

- $ightharpoonup m_{ij}$ will be stored as a triple (i, j, m_{ij}) on the DFS
- \triangleright v_j will be stored as a tuple (j, v_j) on the DFS

Application of MapReduce: Matrix-Vector-Multiplication V fits into main memory

- $ightharpoonup m_{ij}$ will be stored as a triple (i, j, m_{ij}) on the DFS
- $ightharpoonup v_j$ will be stored as a tuple (j, v_j) on the DFS
- Map-Task loads V into main memory
- ► Gets a chunk of $M: (i_k, j_k, m_{i_k j_k}), ..., (i_l, j_l, m_{i_l j_l})$
- For each (i, j, m_{ij}) emits the tuple $(i, m_{ij} \cdot v_j)$

Application of MapReduce: Matrix-Vector-Multiplication V fits into main memory

- $ightharpoonup m_{ii}$ will be stored as a triple (i, j, m_{ii}) on the DFS
- $ightharpoonup v_j$ will be stored as a tuple (j, v_j) on the DFS
- Map-Task loads V into main memory
- ► Gets a chunk of M: $(i_k, j_k, m_{i_k j_k}), ..., (i_l, j_l, m_{i_l j_l})$
- ► For each (i, j, m_{ij}) emits the tuple $(i, m_{ij} \cdot v_j)$
- ► Reducer gets input $(i, [m_{i0}v_0, ..., m_{in}v_n,])$ ⇒ Has all terms to compute the *i*-th value x_i of X

Application of MapReduce: Matrix-Vector-Multiplication V does *not* fit into main memory

Figure: Striped matrix-vector-multiplication

Relational Algebra Operations

 Relational algebra operations can easily be implemented with the model of MapReduce

Example: $\sigma_C(R)$.

- ▶ Mapper: $\forall t \in R$, if C(t) = TRUE emit (t, t).
- **Reducer**: Gets (t, [t]) as input, emits (t, [t]).

Related work:

- ► Pig¹
- ▶ Hive²

¹Gates et al., "Building a High-level Dataflow System on Top of Map-Reduce: The Pig Experience"

²Thusoo et al., "Hive - a petabyte scale data warehouse using Hadoop"

Summary

We have seen a few applications of MapReduce:

- ▶ WordCount
- Matrix-Vector-Multiplication
- Relational Algebra

How to optimize MapReduce jobs?

- ▶ Increase performance $\hat{=}$ reducing communication between nodes
- Communication costs for a MapReduce job := size of input
- ► Concatenating MR-Jobs is possible:
 - Output of one MR-Job is input to the next one
 - Com. costs of a MR-Network is the sum of the inputs of each MR-Job

Example: Natural Join

Relations:

$$\begin{array}{c|c}
R \\
\hline
A & B \\
\hline
a_1 & b_1 \\
a_2 & b_2
\end{array}$$

$$\begin{array}{c|c}
S \\
\hline
B & C \\
\hline
b_2 & c_1 \\
b_3 & c_2
\end{array}$$

►
$$|R| = r$$
, $|S| = s$

▶ Map-Tasks get chunks of R and $S \Rightarrow$ input-size: r + s

Example: Cascaded Two-Way Joins

Figure: Schematic of cascaded two-way joins

Example: Cascaded Two-Way Joins

Figure: Schematic of cascaded two-way joins

Example: Cascaded Two-Way Joins

Figure: Schematic of cascaded two-way joins

Example: Cascaded Two-Way Joins

Relations:

R		
Α	В	
a_1	b_1	
a_2	b_2	

S		
В	С	
b_2	<i>c</i> ₁	
b_3	<i>c</i> ₂	

Т		
С	D	
c_1	d_1	
<i>c</i> ₃	d_2	

- R, S and T are of size r, s and t
- ► Cascaded two-way joins: $R \bowtie S \bowtie T$
- $ightharpoonup p_b := \text{prob. that } tuple_R.B = tuple_S.B$
- $ightharpoonup p_c := \text{prob. that } tuple_S.C = tuple_T.C$
- ightharpoonup assume $p_b = p_c =: p$

Example: Cascaded Two-Way Joins

$$(R \bowtie S) \bowtie T$$

- ▶ Input size of $R \bowtie S$: r + s
- ▶ Output size: $|R \bowtie S| \in \mathcal{O}(p \cdot r \cdot s)$
- ▶ Input size of $(R \bowtie S) \bowtie T$: $p \cdot r \cdot s + t$
- ▶ Com. costs $\in \mathcal{O}(r+s+t+p\cdot r\cdot s)$

Communication Costs

Example: Cascaded Two-Way Joins

$$(R \bowtie S) \bowtie T$$

- ▶ Input size of $R \bowtie S$: r + s
- ▶ Output size: $|R \bowtie S| \in \mathcal{O}(p \cdot r \cdot s)$
- ▶ Input size of $(R \bowtie S) \bowtie T$: $p \cdot r \cdot s + t$
- ▶ Com. costs $\in \mathcal{O}(r+s+t+p\cdot r\cdot s)$

$$R\bowtie (S\bowtie T)$$

- ▶ Input size of $S \bowtie T$: s + t
- ▶ Output size of $|S \bowtie T| \in \mathcal{O}(p \cdot s \cdot t)$
- ▶ Input size of $R \bowtie (S \bowtie T)$: $r + p \cdot s \cdot t$
- ▶ Com. costs $\in \mathcal{O}(r+s+t+p\cdot s\cdot t)$

Communication Costs

Example: Cascaded Two-Way Joins

$$(R \bowtie S) \bowtie T$$

- ▶ Input size of $R \bowtie S$: r + s
- ▶ Output size: $|R \bowtie S| \in \mathcal{O}(p \cdot r \cdot s)$
- ▶ Input size of $(R \bowtie S) \bowtie T$: $p \cdot r \cdot s + t$
- ▶ Com. costs $\in \mathcal{O}(r+s+t+p\cdot r\cdot s)$

$R\bowtie (S\bowtie T)$

- ▶ Input size of $S \bowtie T$: s + t
- ▶ Output size of $|S \bowtie T| \in \mathcal{O}(p \cdot s \cdot t)$
- ▶ Input size of $R \bowtie (S \bowtie T)$: $r + p \cdot s \cdot t$
- ▶ Com. costs $\in \mathcal{O}(r+s+t+p\cdot s\cdot t)$

Reducer Size and Replication Rate

Reducer size q

- Upper bound on value list for the reducer
- Low reducer size:
 - High degree of parallelism
 - Execute completely in main memory (avoid thrashing)

Reducer Size and Replication Rate

Reducer size q

- Upper bound on value list for the reducer
- Low reducer size:
 - High degree of parallelism
 - Execute completely in main memory (avoid thrashing)

Replication rate r

- $ightharpoonup r = \frac{\#((k,v)_{out})}{\#((k,v)_{in})}$ of the mapper
- Low replication rate:
 - Reduces communication costs

Complexity Theory for MapReduce Example: Similarity Joins

- ► Input:
 - ▶ 1 Million images
 - ▶ 1 MB each
- ► Goal: find similar pictures
 - $ightharpoonup sim(P_i, P_j) > b$

Example: Similarity Joins

- Input:
 - ▶ 1 Million images
 - ▶ 1 MB each
- Goal: find similar pictures
 - $ightharpoonup sim(P_i, P_j) > b$

Naive approach:

- ▶ **Mapper:** $\forall (i, P_i)$: emit $(\{i, j\}, P_i), \forall j \in \{1, 2, ..., 10^6\} \setminus \{i\}$
- ▶ Reducer: Gets $(\{i,j\}, [P_i, P_i])$, emits $(\{i,j\}, sim(P_i, P_i))$

Example: Similarity Joins

- ▶ Reducer size q = 2MB (good!)
- ▶ Replication rate r = 999.999 (unbearable!)
- ► Amount of data to send along the cluster:

$$1.000.000MB \times 999.999 \times 1.000.000 \approx 10^{18}$$
 Bytes

► Takes approx. 300 years with gigabit-Ethernet

Example: Similarity Joins

► Group pictures into g groups with $10^6/g$ pictures each

Example: Similarity Joins

- ► Group pictures into g groups with $10^6/g$ pictures each
- Mapper:
 - Gets (i, P_i)
 - ► Emits g 1 key-value pairs: $(\{u, v\}, (i, P_i))$

27

Complexity Theory for MapReduce

Example: Similarity Joins

- ► Group pictures into *g* groups with 10⁶/*g* pictures each
- Mapper:
 - Gets (i, P_i)
 - ► Emits g 1 key-value pairs: $(\{u, v\}, (i, P_i))$
- Reducer:
 - Gets key $\{u, v\}$ with list $[(k, P_k)]$ of size $2 \times 10^6/g$
 - ▶ $\forall (i, P_i), (j, P_j)$ with $group(i) \neq group(j)$, emits $(\{i, j\}, sim(P_i, P_j))$

Example: Similarity Joins

- ▶ Reducer size q = 2GB (still good!)
- ▶ Replication rate r = 999 (bearable!)
- Amount of data to send along the cluster:

$$1.000.000MB \times 999 \times 1.000.000 \approx 10^{15} Bytes$$

► Takes approx. 3.6 Months with gigabit-Ethernet

Disadvantages of MapReduce

- Strict workflow
 - ▶ Algorithms needs to be translated into *map* and *reduce*
 - Building more complex workflows needs to be transformed into cascading MR-Jobs
- Iterative tasks generate high I/O overhead

 \Rightarrow Spark³ captures these disadvantages

³Zaharia et al., "Spark: Cluster Computing with Working Sets"

Spark: Cluster Computing with Working Sets

What is Spark?

- ► Compute cluster framework
- Introduces dataset abstractions (RDDs)
- Ensures data integrity by lazy evaluation

Advantages over MapReduce:

- Efficient in iterative tasks
- Dynamic workflow

file:

```
HdfsTextFile path = hdfs://...
```

```
How to create RDDs?
```

From a file

val file = spark.textFile("hdfs://...")


```
file: errs:

HdfsTextFile path = hdfs://...

FilteredDataset func = \_.contains(...)
```

How to create RDDs?

- From a file
- ► From transformations
- val file = spark.textFile("hdfs://...")
 - val errs = file.filter(_.contains("
 ERROR"))

2

3

How to create RDDs?

- From a file
- From transformations
- By persistence changes

- val file = spark.textFile("hdfs://...")
 - val errs = file.filter(.contains(" ERROR"))

 - val cachedErrs = errs.cache()

July 2016 Steven Lang

2

How to create RDDs?

- From a file
- From transformations
- By persistence changes
- ► By parallelizing

- val **file** = spark.textFile("hdfs://...")
 - val errs = file.filter(_.contains("
 ERROR"))
 - val cachedErrs = errs.cache()
 - val ones = cachedErrs. $map(_ \Rightarrow 1)$

2

How to create RDDs?

- From a file
- From transformations
- By persistence changes
- By parallelizing

- val file = spark.textFile("hdfs://...")
 - val errs = file.filter(.contains(" ERROR"))
 - val cachedErrs = errs.cache()
- val ones = cachedErrs.map(\Rightarrow 1)
 - val count = ones.reduce(+)
- 5 6

31 July 2016 Steven Lang

Properties of RDDs:

- Lazyily evaluated
- ▶ Partitions can be recomputed on node failures
- Immutable collection of objects
- Distributed over different nodes

Performance Results

► Spark outperforms Hadoop⁴ (Apache MR Framework) on iterative jobs (Example: Factor x20)

Figure: Logistic regression performance in Hadoop and Spark⁵

⁴Apache Hadoop

⁵Zaharia et al., "Spark: Cluster Computing with Working Sets"

Conclusion

Covered topics:

- ► Compute clusters
- Distributed File System
- MapReduce
- Spark

Outlook:

- ► Massive data stream mining in real time: MOA⁶
- Scavanger⁷

⁶Bifet et al., "MOA: Massive Online Analysis"

⁷Tyukin, Kramer, and Wicker, "Scavenger - A Framework for the Efficient Evaluation of Dynamic and Modular Algorithms"

References

- Apache Hadoop. http://hadoop.apache.org/. Accessed: 2016-07-14.
- Albert Bifet et al. "MOA: Massive Online Analysis". In: vol. 11. JMLR.org, Aug. 2010, pp. 1601–1604. URL: http://dl.acm.org/citation.cfm?id=1756006.1859903.
- Alan F. Gates *et al.* "Building a High-level Dataflow System on Top of Map-Reduce: The Pig Experience". In: vol. 2. 2. VLDB Endowment, Aug. 2009, pp. 1414–1425. DOI: 10.14778/1687553.1687568. URL: http://dx.doi.org/10.14778/1687553.1687568.
- Andreas Hildebrandt. Big Data: Algorithms, methods and techniques for analysing massive datasets. JGU Mainz.
- Ashish Thusoo *et al.* "Hive a petabyte scale data warehouse using Hadoop". In: *ICDE*. Ed. by Feifei Li *et al.* IEEE, 2010, pp. 996–1005. ISBN: 978-1-4244-5444-0. URL: http:

35