TECHNICAL UNIVERSITY OF CLUJ-NAPOCA FACULTY OF AUTOMATION AND COMPUTER SCIENCE

RCS Project

Student name: Dafinoiu Andreea-Raluca

Course: Robotic Control Systems – Professor: Anastasios Natsakis Due date: January 15th, 2024

Robotic Platform Description

The chosen robotic platform for this project is the Universal Robot UR5, a highly flexible robotic arm designed for repetitive tasks. With a carrying capacity of up to 5 kg and a radius of 850 mm, this robot is well-suited for light applications, such as packaging, assembly and testing. The UR5 is easy to program, having a user-friendly programming interface. The ease of programming, combined with its safety features, makes the robot an ideal candidate for replacing humans in hazardous work environment.

Task Description

The task executed on the UR5 robotic arm involves trajectory planning and execution with waypoints. The implemented code defines a sequence of waypoints, guiding the robot through the predefined trajectory.

The initial configuration of the robot is [0.0, 0.0, 0.0, -pi/2, 0.0, 0.0], indicating that it starts from the *home* pose and then aligns itself parallel to the x-axis. The trajectory follows four waypoints that can be seen in the figures below. Then the robot retraces the same waypoints in reverse order, finally returning to the *home* pose, completing a full cycle of the trajectory execution.

Figure 1: First Waypoint

Figure 2: Second Waypoint

Figure 3: Third Waypoint

Figure 4: Fourth Waypoint

Implementation Performance

1. **Task Performance Time:** The trajectory planning and execution with waypoints task was successfully completed with a measured time of approximately 45.7 seconds, acknowledging the possibility of an increase in this value for certain simulations.

2. Limitations:

- (a) The environment is considered to be collision-free.
- (b) Explicit joint checks were not implemented, but the selected joint configurations fulfil the range of motion of the robot.
- (c) The robot has no load capacity.
- (d) The robot may not adapt to changes in the environment.
- (e) The accuracy of the robot's movements may be limited.

3. Specifications

- (a) **Degrees of freedom:** The robot has 6 DOF.
- (b) **Payload Capacity:** The UR5 has a maximum payload capacity of 5kg.
- (c) **Reach:** The robot has a radius of 850mm.
- (d) **Easy to Setup:** The UR5 is quick to setup, in less than half a day.
- (e) **Easy to Program:** The robot offers ease of programming, supporting movements via a touchscreen tablet.
- (f) **Weight and Space Considerations:** The Universal Robots have a light weight and they can be repositioned easily without the need of changes in the production space.
- (g) **Safety:** The safety features are certified by TUV, minimizing the risk of accidents.
- (h) **Reuse of Programs:** The robot can reuse programmed tasks for recurrent applications, contributing to efficiency in repetitive tasks.

Resources

- 1. Universal Robot U5
- 2. Wired Workers Universal Robots UR5
- 3. Universal Robot GitHub Repository
- 4. ROS MoveIt Commander Documentation
- 5. MoveIt Python Interface Tutorial