APIOS-HAWKEYE LAKE
BIOGEOCHEMISTRY STUDY
DATA REPORT
MARCH 1986 TO JUNE 1989

NOVEMBER 1991

APIOS - HAWKEYE LAKE BIOGEOCHEMISTRY STUDY DATA REPORT - MARCH 1986 TO JUNE 1989

Report prepared by:

B.D. LaZerte, J. Findeis and L. Scott Water Resources Branch Ontario Ministry of the Environment

NOVEMBER 1991

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1991
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PREFACE

The Data Report series is intended as a readily available source of basic data collected for lakes and watersheds in Ontario. These data were collected as part of the Acid Precipitation in Ontario Study.

The Acid Precipitation in Ontario Study (1979 - present) was initiated, in part, to investigate the effects of the deposition of strong acids on aquatic and terrestrial ecosystems in Ontario. The primary findings of these studies have been, and will continue to be, published as reviewed papers and technical reports.

ABSTRACT

The Hawkeye Lake part of the APIOS Biogeochemistry study was redesigned in 1986 to be compatible with existing programmes at the Dorset Resarch Centre and to provide a low acidic deposition control site. Sampling was continued until June 1989. During this period, wet deposition of trace metals and acidic substances was substantially less than observed at Dorset. The annual precipitation depth was ony 489 and 713 for 1987 and 1988 respectively, below the regional average of 750. As a result, the water table dropped during the study and we had substantial difficulties in collecting any soil water samples. Sampled soil water was relatively high in pH (5-7), compared to Dorset samples collected at the same horizons. The base cation content of these soils is sufficient to neutralize even the organic acidity of the LFH. The pH of various surface water samples was considerably lower, especially at sites heavily influenced by wetlands. Apparently, the water draining the wetlands has had little contact with mineral soils with a high base cation content. The pH at the weir (HK01) dropped steadily from 1984, perhaps because of the lowering of the water table. Most aluminum at Hawkeye Lake is bound to DOC.

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTION	1
2.0	SITE		2
3.0	METI	HODS	3
	3.1	Chemical Analyses and Quality Assurance	3
	3.2	Precipitation, Meteorology and Ground Frost	5
	3.3	Lysimeters and Tensiometers	6
	3.4	Stream MultiStations	7
	3.5	StandPipes	7
	3.6	Special Studies	7
4.0	RESULTS AND DISCUSSION		
	4.1	Chemical Analyses and Quality Assurance	8
	4.2	Precipitation, Meteorology and Ground Frost	9
	4.3	Lysimeters and Tensiometers	10
	4.4 <u>MultiStations</u>		
	4.5 <u>StandPipes</u>		
	4.6	Special Studies	12
5.0	REFE	RENCES	14
APP	ENDIX	A: <u>Station Identification Numbers</u>	16
APPENDIX B: <u>U</u>		B: <u>U.T.M. Locations</u>	19
APP	ENDIX	C: Field Methods for the Collection and Quality Assurance of	<u>of</u>
		Water Samples	20
APP	ENDIX	D: Ground Frost	30
APP	ENDIX	E: <u>Tensiometers</u>	31

LIST OF TABLES

Table 1:	Mean Differences and Standard Deviations Between Lab and Field pHs at Hawkeye Lake
Table 2:	Summary of Statistics for Four Replicate Sites in the Hawkeye Watershed
Table 3:	Monthly Quality Control Checks 1987 to 1989
Table 4:	Precipitation HKP8 Wet Only Trace Metals
Table 5:	Lysimeters

LIST OF FIGURES

Figure 1: Hawkeye Lake Watershed Study Site

Figure 2: Stage-Discharge Relationship of Weir

Figure 3: Hawkeye Lake Precipitation (Wet-Only)

Figure 4: Hawkeye Lake Precipitation (Bulk)

Figure 5: Daily Precipitation Depth, Temperatures and Relative Humidity

Figure 6: Frost Penetration and Snow Depth

Figure 7: Hawkeye Lake Multistations

Figure 8: Hawkeye Lake Standpipes

Figure 9: Weir Discharge and Groundwater Records

1.0 INTRODUCTION

The Dorset Research Centre of the Ontario Ministry of the Environment began supervision of the APIOS Biogeochemistry Programme in March 1986. At this time, all projects in the Biogeochemistry programme were re-evaluated; some were dropped, others were substantially modified.

The Hawkeye Lake part of the Biogeochemistry Programme was modified to make the programme compatible with the goals and other programmes of the Dorset Research Centre. A contract was given to Senes Consultants Ltd. to prepare a series of reports documenting the older methods and results of the Hawkeye Lake project up to March 1986. These reports are available for perusal at the Dorset Research Centre and at the Thunder Bay Regional Office of the Ontario Ministry of the Environment. They include:

- APIOS: Hawkeye Lake Field procedures manual.
- APIOS: Hawkeye Lake Stream water, ground water, snowpack and lake studies.
- APIOS: Hawkeye Lake Incident precipitation and deposition studies.
- APIOS: Hawkeye Lake Litterfall studies.
- APIOS: Hawkeye Lake Grove throughfall and stemflow studies.
- APIOS: Hawkeye Lake Litter decomposition studies.
- APIOS: Hawkeye Lake Forest inventory and biomass/bioelement studies.
- APIOS: Hawkeye Lake Soil classification and nutrient/element studies.

The litterfall, grove throughfall and stemflow, forest inventory and biomass/bioelement, soil classification and nutrient/element, and lake studies were all discontinued as of March 1986. The remaining on-site litter and twig decomposition bags were collected as per the original schedule; however, the samples were put into storage and not analyzed. The remaining stream, ground water, snowpack, incident precipitation and deposition studies were all modified extensively. In addition, a new soil water study using lysimeters was implemented. The study continued in this fashion up to June 1989 when it was terminated.

The Hawkeye Lake snowpack studies (including chemical analyses) have already been published with other Biogeochemistry snowpack data from the Plastic and Harp Lake sites (Findeis et al., 1989). All other aspects of the post March 1986 Hawkeye Lake study will be documented here. All tables and figures presented in this document are available in LOTUS format files on IBM PC compatible diskettes from Bruce LaZerte, Dorset Research Centre.

2.0 SITE

The Hawkeye Lake study site is located about 60 km north of Thunder Bay, Ontario (Figure 1). A detailed description and map of the Hawkeye Lake site can be found in Section 2.2 of the Field Procedures Manual prepared by Senes. Appendix A lists the new Sample Information System (SIS) Station ID codes and station abbreviations (STN) used

since March 1986 for the Hawkeye Lake study. Appendix B lists the UTM coordinates for the stations.

3.0 METHODS

Appendix C gives detailed field methods for the collection of water samples and their field quality assurance at the Hawkeye Lake study for the period starting March 1986.

3.1 Chemical Analyses and Quality Assurance

When small sample volumes were collected, it was necessary to measure the pH in the Hawkeye Lake laboratory trailer, not at the Thunder Bay laboratory as usual. Frequent quality control analyses, however, kept the two workstations reasonably comparable.

All dissolved inorganic carbon (DIC) analyses had to be discarded because of long delays between collection and analysis at the Rexdale laboratory (see Special Studies section below). It was unfortunate that the DIC analyses could not be performed at Thunder Bay.

When DIC is not available, it is possible to estimate bicarbonate concentrations from alkalinity analyses (ALKTI) in waters with low DOC (dissolved organic carbon). Unfortunately, most Hawkeye samples had significant quantities of weak organic acids

(DOC) which were titrated in the Gran alkalinity titration along with the bicarbonate.

Consequently, it was impossible to estimate bicarbonate accurately.

Seasonal trends in all chemical parameters were examined for each station. Outliers at a station were deleted when all of the below were true:

- i) they were not duplicated at a similar station
- ii) they were not duplicated in the same season of another year
- iii) there was no known geochemical explanation

Unfortunately, a charge balance criterion was not usually helpful because the poor bicarbonate estimates based on alkalinity usually gave poor charge balances (see above). Additional criteria were the comparison of calculated conductivity and alkalinity against with actual analyses.

Once a month, four replicate samples from the stream stations: Weir A2, EF12, J21-22 and Q10 were collected to estimate analytical and sampling precision combined.

Detailed methods for the quality assurance of precipitation bag liners is provided in Appendix C.

Quality assurance for trace metal collection in precipitation was the same as LaZerte et al. (1989).

3.2 Precipitation, Meteorology and Ground Frost

After March 1986, the Hawkeye Lake precipitation site was modified to be identical to those sites maintained at the Dorset Research Centre (de Grosbois et al., 1990). In addition, wet/only collection on an event basis using polyethylene bags in the existing Aerochemetrics collector was inaugurated.

Late in 1988, another wet/only collector was installed for the collection of tracemetal's in precipitation. Its operation and the analysis procedures were identical to those used at the Dorset Research Centre (LaZerte et al. 1989).

From March 1986 to November 1988, a Campbell Scientific model 201 temperature/relative humidity probe, connected to a CR-21 Micrologger was used to determine maximum, minimum and mean daily temperatures and to determine maximum, minimum and average daily relative humidity from hourly readings. After November 1988, a Campbell Scientific model 207-C temperature/relative humidity probe connected to a 21X Micrologger was used.

A Belfort model 5915 Cumulative Rainfall Transmitter connected to the Campbell Scientific Micrologger was used to record precipitation. Daily precipitation values (water equivalence during snowfall events) were calculated from the hourly recordings. In addition, precipitation event volumes were obtained from the bulk and routine wet/only precipitation collectors.

The estimation of depth of ground frost is documented in Appendix D. Snow pack depth was also recorded along with ground frost independently of the main snow pack study (Findeis et al., 1989).

3.3 Lysimeters and Tensiometers

In the summer of 1987, tension and zero-tension lysimeters were placed in the five study groves at Hawkeye Lake. Separate well-drained pits for tension and zero-tension lysimeters were prepared. Soil horizons in each pit were classified by Dianne Corrigan of the OME Air Resources Branch. The tension lysimeters were 15 cm alundum plates from Pacific Lysimeters of Seattle, Washington prepared as described in Neary and Tomassini (1985). The zero tension lysimeters were 45x18 cm plexiglass troughs. Duplicate lysimeters were installed 35-40 cm into the face of each pit immediately under the chosen horizon, avoiding roots and large rocks. An insulated, covered, plywood box was then constructed in the pit to contain the bottles, vacuum apparatus and propane heater. The two lysimeters in each horizon were tied together in the pit box for sample collection. Classifications, depths and station codes for the lysimeters are in Appendix A. Appendix C gives more details as to the field operation of the lysimeters for collecting water samples.

Tensiometers were installed and monitored as outlined in Appendix E.

3.4 Weir and Stream MultiStations

Stream gauging at the HK01 weir and related hydrological procedures were performed as specified in Locke and Scott (1986). See section 2.4 of the field procedures manual prepared by Senes for construction details of the weir. Gauging frequency was weekly during normal flow periods and daily during the spring and fall freshet. The stage-discharge graph (Figure 2) was used to calculate daily discharge from continuous stage records when available (Locke and Scott, 1986). Missing daily discharge was estimated by drawing a straight line between two nearest dates.

3.5 StandPipes

As well as sample collection for chemical analysis, depth to groundwater was manually recorded at each visit to a standpipe. One station (H-7) had an A71 Leopold and Stevens water level recorder in a heated (after Fall 1986) enclosure continuously recording groundwater levels.

3.6 Special Studies

In the spring of 1988, Peter Wilson and the Mobile Laboratory of OME's Laboratory Services Branch analyzed both aluminum species (LaZerte et al. 1988) and DIC at Hawkeye Lake, immediately after the samples were collected, using the same methods as the Dorset and Rexdale laboratories. Simultaneously collected samples were also sent to Rexdale

laboratory (DIC) and Dorset (aluminum speciation). The intent of the study was to examine the effects of an average 2 week transport/storage time to Rexdale/Dorset on DIC analyses and to provide some information about aluminum speciation at Hawkeye Lake as it was not routinely performed.

4.0 RESULTS AND DISCUSSION

4.1 Chemical Analyses and Quality Assurance

With one exception, Hawkeye Lake laboratory pHs agreed well with the Thunder Bay laboratory pHs (Table 1).

The mean and percent coefficient of variation [(standard deviation/ mean)*100] was calculated for each set of four replicate samples collected. Then the grand mean and the mean coefficient of variation for each parameter at each site was calculated and is presented in Table 2. In general, the field precision is acceptable. Large coefficients of variation are usually where the mean field concentration is low (e.g. Mn and Alk).

The field procedures and bags used for both wet-only and bulk precipitation contributed negligible contamination as demonstrated by the monthly field bag checks (Table 3).

4.2 Precipitation, Meteorology and Ground Frost

For Hawkeye wet-only trace metal collections, copper values were not significantly different from the field blanks (Table 4). All other metals were significantly elevated at the p=0.05 level (Kruskal-Wallis), with median (mean) blank subtracted values of 0.67 (0.73), 1.49 (0.99) and 0.03 (0.03) μ g/L for Pb, Zn and Cd respectively. These values are roughly one third those reported for the Muskoka-Haliburton region of Ontario (LaZerte et al. 1989).

Cumulative precipitation depth between collections and precipitation chemistry for the Hawkeye wet-only (HKP1) and bulk collector (HKP2) are presented in Figures 3-4 respectively.

Daily precipitation depth (Belfort gauge), maximum/minimum temperature and minimum relative humidity are presented in Figures 5a-c. The maximum daily relative humidity was commonly an artefact (100%) determined by early morning condensation on the probe and thus, only minimum daily relative humidities are reported.

The cumulative annual precipitation depth as measured by the Belfort gauge was 489mm and 713mm for 1987 and 1988 respectively. These numbers are below the regional average (~750mm) and, coupled with groundwater records (Figure 9), indicate that water storage at the site was becoming significantly depleted during the period of investigation.

Frost penetration and snow depth for four sites (Po, Bw, Fb, Pw) are presented in Figures 6a-d. At all sites, the frost penetrated substantially deeper in 1987-88 than in 1988-89 because of the relatively light snow cover in January and February 1988.

4.3 Lysimeters and Tensiometers

Because of the drought conditions, the tensiometers did not operate properly throughout this period. The fluid within the tensiometer drained out before any stable reading could be obtained.

For the same reason, few lysimeter water samples were collected, mostly zero-tension during and immediately after precipitation events. It is possible that macropore flow provided water to the zero-tension lysimeters, but that the events were not of sufficient duration to significantly affect the water content of the soil matrix. Hence, tension lysimeter collections were rare. Table 5 presents what few zero-tension results are available.

The pHs of these samples are high (5-7) relative to soil water samples collected in the Muskoka-Haliburton area. This is true even in the LFH layer where high organic acid levels and low sulphate levels are common. The base cation content of these soils is apparently sufficient to neutralize the natural organic acidity in the LFH layers.

Although at HKZ01, most DOC is stripped from the soil water by the time it reaches the upper A and B mineral horizons, the high DOC levels in HKZ03 A, B1, B2 and HKZ04

A, B1, B2 horizons suggest that these waters have not had intimate contact with the soil matrix, perhaps because of macropore flow.

4.4 MultiStations

Multistation chemistry is presented in Figures 7a-d. A graph of stream discharge at the weir (A-2) is placed in the first panel of Figure 7a for reference.

The pH in these streams is related to DOC, with the high DOC streams (e.g. HK06, HK08, HK09, HK10) having pHs that occasionally drop below 5. The DOC at these sites is probably derived from the upstream wetlands. Apparently, the water draining these wetlands has had little contact with mineral soils as base cations have not completely replaced the organic acidity (as has happened in the upland soil water solutions). The pH at HK01 dropped steadily from 1984, perhaps because of the lowering of the water table which would cause the oxidation of reduced substances and perhaps release more organic acids.

4.5 StandPipes

Standpipe chemistry and depth to groundwater is presented in Figures 8a-d. The first panel of Figure 8a is the groundwater elevation at well HKW07. The elevation of each standpipe is given in appendix B. Figure 9 provides a comparison of continuous groundwater levels at well HKW07 with discharge at weir HKA2.

With the exception of HKW16, groundwater pH is usually high (6 or greater) as are base cation levels. HKW16 was probably anoxic, as it had extremely high ammonia and low sulfate levels. Oxidation of reduced substances after sampling of this well would cause the low pH.

Some of the groundwater wells had high levels of DOC as well. Much of this DOC is probably derived from the wetlands, although macropore flow from the LFH layer of the soils cannot be excluded.

4.6 Special Studies

Peter Wilson's Mobile Laboratory intercomparison study demonstrated that, on average, 40% of sample DIC was lost during transport and storage from Hawkeye Lake to Rexdale.

Although aluminum levels were high in the LFH soil layer, or in wetland outflows, most of the aluminum was organic at Hawkeye Lake (Al_tot = 3 + 1.25 Al_org [μ g/L], R₂ = 0.97). This has also been found in the Muskoka-Haliburton area of Ontario and elsewhere (LaZerte 1989). In the acidified catchments of Muskoka-Haliburton, there are also large amounts of inorganic aluminum released from the mineral layers of soil. However, because of the relatively high pHs in the mineral layer of the Hawkeye Lake soils, little inorganic monomeric aluminum was found there or elsewhere in the catchment.

More details of the comparison can be found in Wilson (1988).

5.0 REFERENCES

- de Grosbois E., Locke B. A., Scott L. D. 1990. Meteorologic data procedures manual for the Dorset Research Centre. Ontario Ministry of the Environment, Dorset Research Centre.
- Findeis J.G., LaZerte B.D., Scott, L.D. 1989. Biogeochemistry project: Snow cores 1988-1989, Plastic Lake, Harp Lake, Hawkeye Lake. Ontario Ministry of the Environment,

 Dorset Research Centre.
- LaZerte B.D., Chun C., Evans D. 1988. Measurement of aqueous Aluminum species: comparison of dialysis and ion-exchange techniques. Environ. Sci. Technol. 22: 1106-1108.
- LaZerte B.D. 1989. Aluminum speciation and organic carbon in waters of Central Ontario.

 In Environmental Chemistry and Toxicology of Aluminum, T.E. Lewis (ed.), pp. 195-207.
- LaZerte B.D., Evans D., Grauds P. 1989. Deposition and transport of trace metals in an acidified catchment of central Ontario. Sci. Tot. Env. 87/88: 209-221.

- Locke B.A., Scott L.D. 1986. Studies of lakes and watersheds in Muskoka-Haliburton, Ontario: methodology (1976-1985). Ontario Ministry of the Environment, Dorset Research Centre, DR 86/4.
- Neary A.J., Tomassini F. 1985. Preparation of alundum/ceramic plate tension lysimeters for soil water collection. Can. J. Soil. Sci. 65: 169-177.
- Wilson, P. 1988. Hawkeye Lake Perishability Study. Ontario Ministry of the Environment memo to Bruce LaZerte, on file at Dorset Research Centre.

APPENDIX A: Station Identification Numbers

	Map Coord	Stn	SIS Station ID	
Multi Station Strea	ms			
	A/2	HK01	990103 001 02*	
	BC/6	HK02	990103 002 02	
	EF/12	HK03	990103 003 02*	
	E/14	HK04	990103 004 02	
	F/14	HK05	990103 005 02	
	J/21-22	HK06	990103 006 02*	
	T/13	HK07	990103 007 02	*Stream
	P/12	HK08	990103 008 02	replicates
	Q/10	HK09	990103 009 02*	station
	L/6-7	HK10	990103 010 02	
	I/6	HK11	990103 011 02	
	C/2	HK12	990103 012 02	
	U/14	HK13	990103 013 02	
Standpipes:				
		HKW02	990103 002 06	
		HKW03	990103 003 06	
		HKW04	990103 004 06	
		HKW05	990103 005 06	
		HKW06	990103 006 06	
		HKW07	990103 007 06	
		HKW09	990103 009 06	
		HKW10	990103 010 06	
		HKW12	990103 012 06	
		HKW14	990103 014 06	
		HKW15	990103 015 06	
		HKW16	990103 016 06	
		HKW17	990103 017 06	
		HKW18	990103 017 00	
		HKW20	990103 018 00	
		HKW21	990103 020 06	
		HKW23	990103 023 06	
		HKW24	990103 024 06	

Lysimeters:	D 1 m :			Horizon	Depths			
	Poplar Tension:	HKT01L HKT01A HKT01B1 HKT01B2 HKT01BC	990103 111 04 990103 112 04 990103 113 04 990103 114 04 990103 115 04	LFH Ae Bhf Bf Bm	6,7 cm 9,10 cm 30,32 cm 43,43 cm 60,61 cm			
	Poplar Zero Tension:							
		HKZ01L HKZ01A HKZ01B1 HKZ01B2 HKZ01BC	990103 121 04 990103 122 04 990103 123 04 990103 124 04 990103 125 04	LFH Ae Bhf1 Bhf2 Bm	5,5 cm 16,16 cm 35,40 cm 47,50 cm 65,65 cm			
	Balsam Fir Tension:							
		HKT02L HKT02A HKT02B1 HKT02B2 HKT02BC	990103 211 04 990103 212 04 990103 213 04 990103 214 04 990103 215 04	LFH Ae Bhf1 Bhf2	3,4 cm 30,30 cm 51,51 cm			
			990103 213 04	С	65,67 cm			
	Balsam Fir Zero To	ension: HKZ02L HKZ02A HKZ02B1 HKZ02B2 HKZ02BC	990103 221 04 990103 222 04 990103 223 04 990103 224 04 990103 225 04	LFH Ae Bhf1 Bhf2 BC	4,4 cm 25,26 cm 43,45 cm 82,83 cm			
	White Pine Tension:							
		HKT03L HKT03A HKT03B1 HKT03B2 HKT03BC	990103 411 04 990103 412 04 990103 413 04 990103 414 04 990103 415 04	LFH Ae Bf1 Bf2 BC	7,7 cm 12,15 cm 35,42 cm			
	White Pine Zero To	ension:						
		HKZ03L HKZ03A HKZ03B1 HKZ03B2 HKZ03BC	990103 421 04 990103 422 04 990103 423 04 990103 424 04 990103 425 04	LFH Ae Bf1 Bf2 BC	9,10 cm 16,20 cm 21 cm 35,39 cm 58 cm			

				Horizon	Depths
,	White Birch Tensio	HKT04L HKT04A HKT04B1 HKT04B2 HKT04BC HKT04C	990103 611 04 990103 612 04 990103 613 04 990103 614 04 990103 615 04 990103 616 04	LFH Ae Bhf1 Bhf2 BC C	4,5 cm 10,12 cm 23,25 cm 47,49 cm 72,78 cm 105,109 cm
	White Birch Zero	Tension: HKZ04L HKZ04A HKZ04B1 HKZ04B2 HKZ04BC	990103 621 04 990103 622 04 990103 623 04 990103 624 04 990103 625 04	LFH Ae Bhf1 Bhf2 BC	11,12 cm 17,19 cm 19 cm 57,60 cm 60,60 cm
	Black Spruce Zero	Tension: HKZ05L	990103 921 04	OF1	4,5 cm
Precipitation: Aerochemetric		HKP1 HKP2	990103 001 23 990103 002 23	Wet/Only Bulk	
		HKP8	990103 008 23	Wet/Onl	y Metals
Snow:	Balsam Fir White Birch Poplar White Pine Black Spruce	HKSFB HKSBW HKSPO HKSPW HKSSB	990103 003 23 990103 004 23 990103 005 23 990103 006 23 990103 007 23		

APPENDIX B: <u>U.T.M. Locations</u>

		Easting	Northing
Precipitation Sites	•	317480	5393150
Multi Stations:	HK01 HK02 HK03 HK04 HK05 HK06 HK07 HK08 HK09 HK10 HK11 HK12 HK13	317280 317500 317825 317900 317900 318260 317850 317800 317700 317550 317500 317300 317950	5393530 5393410 5393275 5393300 5393250 5392550 5392750 5392700 5392940 5393100 5393400 5392500
Standpipes:	HKW02 HKW03 HKW04 HKW05 HKW06 HKW07 HKW09 HKW10 HKW12 HKW14 HKW15 HKW16 HKW17 HKW18 HKW20 HKW21 HKW21 HKW23 HKW24	317550 317475 317600 317800 317900 318000 318050 318010 318260 317825 317975 318550 317710 317580 317525 317360 317220 317350	5393000 5392975 5392850 5392800 5392785 5392470 5392750 5393275 5393375 5393375 5393150 5393150 5393450 5393450 5393450 5393350
Lysimeter Pits: Poplar Balsam Fir White Pine White Birch Black Spruc	=	317350 317475 317990 317990 318550	5393350 5392900 5393400 5392600 5393200

APPENDIX C: Field Methods for the Collection and Quality Assurance of Water Samples

Water Distillation Quality Control

- . Samples of distillate shall be checked for pH and conductivity on a weekly basis.
- . Recorded values are to be submitted with the monthly summary report.
- . Discrepancies of .2 units of pH, less than or greater than pH 5.5, and conductivity ranges that are ≥1.5, should be reported to the field supervisor immediately.

pH Probe Storage Procedures

- . If the probe is not in use for a period ≥2 days, then it should be stored in pH 4 buffer solution.
- . Before using the probe again wash, thoroughly with D.D.W. and let stand in pH 7 buffer solution for a period of 0.5 hours.
- . Wash the probe once again with D.D.W. and calibrate using prescribed techniques (see manual with meter).
- . If the probes are to be used daily, store in pH 7 buffer solution.

Filtration

Use Polyester PeCap mesh used on all field filtration apparatus:

. Open Streams: 80 μm during normal flow periods

35 μ m during extended periods of low flow

Standpipes: 35 µm

Precipitation: 80 μ m at the throat of bulk collector

. Lysimeters: $80 \mu m$ (zero tension only)

. Snow Course: 80 μm

Field Filtration

- . Filters are to be transported in a clean plastic bag.
- Filters are to be rinsed three (3) times before sampling, once upon completion and then returned to the plastic bag.
- . Replacement mesh shall be transported in a polystyrene container.
- . Contaminated mesh shall be stored in a polystyrene container marked with appropriate mesh size, and returned to the laboratory for cleaning.

Laboratory Filter Wash Procedures

- . Prepare wash baths in containers with tightly sealing lids:
 - Two (2) nalgene containers 10 l filter bodies;
 - Sufficient polystyrene containers 485 ml for appropriate mesh sizes.
- . Individual baths will be prepared using Acationex alkaline metals free detergent and a 5% solution of Baker Instra Analysed Nitric Acid.
- . Pre-rinse filter bodies and mesh and D.D.W. to remove field debris.
- . Soak filter bodies and mesh first in Acationex for 48 hours, rinse three (3) times with D.D.W.
- . Place filter bodies and mesh in acid bath for a period of 48 hours.
- . Filter bodies shall be rinsed inside and out three (3) times with D.D.W. and stored in clean plastic bag.
- . Polyester mesh shall be rinsed three (3) times with D.D.W. and stored in appropriately marked polystyrene bottles.

Bulk Precipitation - Routine

<u>Field</u>

- . Monitor the Belfort gauge for an increase in precipitation deposition of 2.5 mm since the last collection.
- As each collector collects over an area of 2,500 cm², approximately 5 mm deposition is required to obtain 1,150 ml of sample. With two collectors at each site, only 2.5 mm deposition is required to provide a bulked sample of 5 mm.

- . Carry clean new bags to the site in a clean outer bag. Do not expose their inner surfaces to contamination; in order to prevent this, wear plastic gloves at all times.
- . Inspect the funnel for contamination.
- Remove the large Nalgene container and bag from the collector. Secure the collection bag just above the water line with a plastic pull tie, fold over and tie again.
- . Remove the replacement plastic bag from the outer bag and place the sample bag inside the outer bag securing the top with a tie.
- . Place the clean bag inside the Nalgene container and open to shape of the container. For summer operation, replace lid on container, during winter leave top off.
- . Remove the $80\mu m$ polyester mesh in the throat of the funnel and the tygon tubing on the outlet orifice, summer operation only.
- . Clean the bulk collector surface if necessary as specified in the methods manual DR 86/4. Replace the mesh filter and tygon tubing each time the collection vessel is changed.
- . Field observations which might affect quality of sample should be noted in field book.

Laboratory Preparation

- . Set up filtration apparatus on Burett stand using 80 μm mesh.
- . Weigh the bag and obtain the sample volume by subtracting an average bag weight.
- . Pre-rinse all bottles three (3) times with D.D.W.
- . Wash one corner of the bag with D.D.W. and snip it off.
- . Rinse each bottle once with actual sample (50 ml minimum), then fill.
- . Refrigerate all samples until submission at least weekly. Thunder Bay laboratory samples should be submitted as soon as possible after collection.
- . Note: Plastic gloves are to be worn at all times during the above procedures.

Wet Only Precipitation - Routine

Field

- As each collector collects over an area of 638 cm², about 15.7 mm deposition is required to obtain 900 ml of sample.
- . Inspect the collector at least weekly, replacing the bag at each inspection.
- . Carry clean new bags to the site in a clean outer bag. Do not expose the inner surfaces to contamination. In order to prevent this, wear plastic gloves at all times.
- . If there is any sample volume, secure the bag just above the water line with a plastic pull tie, fold over and tie again, then place inside the clean outer bag used to transport the replacement bag.
- . Place the clean bag inside the plastic container and secure around outer edge with a nylon cord.
- . Note: Field observations other than routine condition codes affecting quality of sample should be noted in field book (e.g. collector open during non-event period).

Laboratory Preparation

- . Weigh the sample, if less than 1,000 ml is available including any previous sample, store the bag in a clean protective container in the refrigerator until the next collection.
- . If there is sufficient sample in the bag plus any previous sample, pool all the bags into one and mix thoroughly by shaking.
- . Pre-rinse alkalinity bottles three (3) times with D.D.W.
- . Wash one corner of the bag with D.D.W. and snip it off.
- . Rinse each bottle once with actual sample (50 ml minimum) then fill.
- . Refrigerate all samples until submission at least weekly. Thunder Bay laboratory samples should be submitted as soon as possible.
- . Refrigerate all samples until submission at least weekly. Thunder Bay laboratory samples should be submitted as soon as possible.
- . Note: Do not filter these samples.

Wet Only Precipitation - Metals

- . As each collector collects over an area of 638 cm², about 3.5 mm deposition is required to obtain 200 ml of sample.
- .. Inspect the collector weekly; do not replace the bag until the minimum 3.5 mm of sample is present.
- . Carry clean new bags to the site in a clean outer bag. Do not expose the inner surface to contamination. In order to prevent this, wear plastic gloves at all times.
- If there is enough sample volume, secure the bag just above the water line with a plastic pull tie, fold over and tie again, then place inside the clean outer bag used to transport replacement bag.
- Place the clean bag inside the plastic container and secure around outer edge with a nylon cord.

Laboratory Preparation - Metals Only

- . Weigh the sample, subtracting bag and nylon pull ties. Record all field related data on sample submission sheets.
- . Ship to Dorset via Purolator for analysis.

Precipitation Quality Control

Bulk - Routine

- . Once a month, take two (2) bags transported in clean outer bags to the precipitation site.
- . Remove the old bags as normal in each of the two collectors and install the new clean bags.
- . Immediately replace the just installed bags, tie and return them to the lab inside clean transportation bags.

Laboratory Procedures

- . In the laboratory, add 2,500 ml of best quality D.D.W. to each bag.
- . Tie shut, double bag and allow to stand in a clean area for two days, and submit under normal precipitation parameter codes.

. Simultaneously submit two (2) samples of the same D.D.W. used in the bag wash, under normal precipitation parameter codes.

Wet Only - Routine

- . Once a month take one (1) bag, transported in a clean outer bag to the precipitation site.
- . Replace the old bag as normal and install the new clean bag.
- . Close the top of the wet only collector.
- . Immediately replace the just installed bag, tie and return to the laboratory in the clean transportation bag.

Laboratory Procedures

- . In the laboratory, add 1,250 ml of best quality D.D.W. to the bag.
- . Double bag, tie shut and allow to stand in a clean area for 48 hours.
- . Submit using HPBC sample parameters and HPWT sample parameters.
- . Simultaneously submit two (2) samples of the same D.D.W. used for the bag wash, using normal precipitation sample codes.
- . Note: If bulk precipitation and wet only quality control are done at the same time and put on the same submission, only two (2) D.D.W. blanks need to be submitted.

Wet Only - Metals

- . Twice a month, take one (1) bag, transported in a clean outer bag to the precipitation site.
- . Replace the used bag as normal and install the new clean bag.
- . Close the top of the wet only collector.
- . Immediately replace the just installed bag, tie and return to the laboratory in the clean transportation bag.
- . Submit the bag to Dorset for analysis.

Stream and Standpipe Collections

- . Bottles shall be washed three (3) times (minimum 50 ml) using the field filter. Plastic gloves are to be used at all times while sampling.
- . Acidify the yellow cap (FEUT, MNUT, ALUT) with 0.25 ml or five drops of Aristar Nitric Acid in the fume hood, using standard safety procedures DRC/85. Mark the bottle with HNO₃ after acidifying.
- . Refrigerate all samples until submission. Submit samples at least weekly, with the Thunder Bay sample parameters submitted as soon as possible.
- . Note: A field pH is required whenever there is insufficient volume to rinse and fill the brown alkalinity bottle.

Stream Quality Control

- Once a month, submit four (4) samples from Weir A2, EF12, J21-22 and Q10.
- . Samples are to be taken simultaneously and submitted under normal test groups to Thunder Bay and Central laboratories.
- . Collect four (4) additional pH vials when sampling these sites and process them for field laboratory pH.
- . Standard deviation of these replicates and the annual average standard deviations are to be reported for each parameter analyzed.
- . The vial pH should be compared with Thunder Bay laboratory pH and discrepancies immediately reported.

Lysimeters

Tension Field Procedures

- . Site specific bottles are taken to the field with appropriate bag liners inserted (5 lb plastic food quality bags).
- . Record date, time of arrival, cylinder pressure, manifold pressure and conditions affecting sample integrity.
- . Upon arrival, remove the vessel (trapping the bag to the outside of the throat) and cap with the lid from the replacement vessel.

- . Replace the bottle with one specific to that horizon, ensuring that the plastic bag liner is totally inside the bottle.
- . Vacuum cylinder will be evacuated to a minimum of 24-27 inches of mercury.
- .: Manifold gauge shall be zeroed before attaching vacuum source. This is accomplished by removing a line from the secondary side of the manifold.
- . Then, attach the source of vacuum and apply a pressure of 38 inches of water to the manifold gauge.
- . Close stop cocks to plate.
- . Open valves individually at manifold and apply vacuum to the collection vessel. The following results should occur:
 - Evacuation from the source cylinder should be noted;
 - Manifold gauge should drop rapidly and then return stabilizing at 38 inches of water;
 - If these observations are not noted, then check vacuum system lines for obstructions, or an open stop cock.
- Apply vacuum to individual plates within each horizon by adjusting the three-way stop cock.
- Isolate vacuum source (cylinder) and check for the following:
 - Leaks in the primary system:
 - · vacuum cylinder and connectors;
 - · manifold assembly.
 - Leaks in the secondary system:
 - . lines from manifold;
 - . stop cock;
 - . connectors;
 - . vacuum shields (water trap);
 - . bottle caps (i.e. throat and connectors).
 - A decrease at the vacuum source gauge. (If no drop is apparent then a perfect seal exists between the plate and soil horizon.)
 - If a rate of decrease is greater than 5 inches of mercury in 10 seconds, then isolate this plate.
- . Repeat this procedure at each plate and note the rate of drop in the field book.
- . Upon completion of individual plate testing, a minimum storage vacuum of 20-22 inches of mercury should be available. At this time, activate all positive tested plates. If a drop of 10 units in 10 seconds is noted at all plates, then isolate plates with rate of least decrease.

Laboratory Procedures

- . Weigh the sample subtracting bag/bottle.
- . If sufficient sample (725 ml) is available, do all parameters. With insufficient sample, use priority list.
- . Rinse bottle, insert plastic bag and inflate.
- . Note: Tension leachate samples are not to be filtered.

Zero Tension Field Procedures

- . Site specific bottles are taken to the field with appropriate bag liners inserted (8 lb and 12 lb plastic food quality bags).
- . Record site specific data: time of arrival, date, and conditions affecting sample integrity.
- . Cap the sample with the lid from the replacement vessel.
- . Replace the bottle with one specific to that horizon, ensuring that the plastic bag liner is folded over the outside of the throat.

Laboratory Procedures

- . Weigh the sample subtracting bag/bottle.
- . If sufficient sample is available (725 ml), do all parameters. With insufficient sample, use priority list.
- . Rinse bottle, insert plastic bag and inflate.
- . Note: Zero tension leachate samples are to be filtered with $80\mu m$.

Lysimeter Quality Control Bag Liners

- . Each time a new box of bag liners is opened, five (5) bags should be selected from it at random.
- . Add 725 ml of best quality D.D.W. to each bag.
- . Tie shut and allow to stand in a clean area for 48 hours and submit as normal lysimeter samples.

. Simultaneously submit two samples of the same D.D.W. used in the bag wash, using normal precipitation sample codes. If any contamination is found, contact supervisor immediately.

APPENDIX D: Ground Frost

Five stations at each of four Hawkeye groves (PO,BW,FB,PW) were utilized in monitoring ground frost and snow pack depth. A J99 soil increment core auger or Dutch auger were employed depending upon the thickness and intensity of the frozen soil. When the J99 core auger is used, the extracted core is evaluated and measured for frost penetration. If a Dutch auger is used, the depth of frost penetration is noted on the wall of the hole and then measured.

APPENDIX E: Tensiometers

- . Install the porcelain tip on the tensiometer.
- Fill with ethylene glycol distilled water mixture capable of withstanding temperatures of -19°C.
- . Withdraw air from around the regulator using a hand pump, zero and let stand for 48 hours to check for leaks.
- . Install tensiometers at each grove, even with or slightly below the soil water leachate sites.
- Depth of installation will be in 15 cm increments to 90 cm, using a J99 soil increment auger.
- . Soil from the auger tip is mixed with distilled water to form a paste. This paste is then formed around the porcelain tip, which creates a solid bond between the tensiometer and the soil horizon.
- . Readings will be taken on a weekly basis. Pump the tube full from the reservoir, let equilibrate and read the gauge. This is the soil moisture reading recorded. During periods of high soil moisture, this reading should be done to zero.
- . Ethylene glycol mixtures shall be disposed of at the Thunder Bay regional laboratory following all safe transportation procedures (WHMIS).
- . Removal of tensiometers shall commence when daily temperature remains below -10°C.

MEAN DIFFERENCES AND STANDARD DEVIATIONS BETWEEN LAB AND FIELD PH'S AT HAWKEYE LAKE

DATE	MEAN	STDDEV
871125	-0.004	0.026
871214	-0.000	0.037
880118	-0.112	0.036
880120	-0.058	0.053
880218	-0.058	0.039
880317	0.034	0.021
880502	-0.092	0.027
880602	0.132	0.060
880621	-1.382	0.036
880629	0.012	0.132
880728	-0.006	0.040
880822	0.148	0.041
880824	0.028	0.175
880921	0.320	0.084
881003	0.256	0.041
881130	0.286	0.014
890220	0.040	0.062
890222	0.008	0.053
890322	0.200	0.042

Mean and Standard deviation of five individual samples per date

SUMMARY OF STATISTICS FOR FOUR REPLICATE SITES IN THE HAWKEYE WATERSHED

	<i>S</i> 3	SITE A2		SIL	SITE EF12		SITE	SITE J21-22		S	SITE Q10	
	MEAN	C.V.	z	MEAN	C.V.	z	MEAN	C.V.	z	MEAN	C.V.	z
Alk	11.54	1.25	13	10.48	1.47	12	1.58	2.07	12	2.60	53.77	10
F	274.93	3.66	14	375.21	11.46	13	466.92	80.8	13	371.36	4.27	=
Ca	6.43	1.52	14	5.30	1.06	13	4.81	1.88	13	5.23	1.63	=
CI	0.34	10.86	14	0.32	6.95	13	0.37	10.65	13	0.32	8.52	=
Cond25	53.79	0.84	14	55.08	0.48	13	42.29	96.0	13	42.48	0.55	=
DOC	26.89	3.09	14	10.69	2.18	13	44.19	2.27	13	50.13	2.74	=
Fe	0.50	2.21	14	0.32	10.79	13	1.18	3.63	13	0.98	2.62	=
×	09.0	2.05	14	0.61	0.93	13	0.31	2.86	13	0.33	7.62	Ξ
Mg	2.59	1.10	14	2.16	1.31	13	1,84	1.10	13	2.04	1.87	=
Mn	0.01	3.31	14	0.05	30.75	13	0.03	3.37	13	0.04	2.58	=
Na	1.33	1.89	14	1.43	1.79	13	1.07	2.12	13	1.10	2.75	=
NH4	34.47	1.59	14	13.65	0.67	13	30.19	4.75	13	40.46	10.92	=
NO3	300.49	2.65	14	292.81	10.86	13	154.79	11.97	13	188.36	16.5	=
TKN	815.89	2.28	14	412.88	10.9	13	917.60	7.39	13	1179.89	10.36	Ξ
μd	6.59	0.45	14	6.49	0.35	13	4.87	0.29	13	4.95	0.34	=
Ь	12.93	5.88	38	13.62	18.71	26	25.08	9.79	26	18.71	7.59	22
Si	7.69	1.31	14	8.07	0.32	13	7.36	0.52	13	7.54	09.0	Ξ
S04	7.25	2.35	14	99.6	1.30	13	5.46	2.62	13	4.22	2.96	Ξ

MEAN = Mean of the values for N number of days

C.V. = The mean of the coefficient of variance (%)

 $N\,=\,Number$ of sampling days this parameter sampled (four replicate samples per day)

MONTHLY QUALITY CONTROL CHECKS 1987 TO 1989

	DISTILLED WATER	WATER	DISTILLED Y	DISTILLED WATER IN BULK BAGS	DISTILLED WATE WET ONLY BAGS	DISTILLED WATER IN WET ONLY BAGS	DIFFERENC DISTILLED AND DISTIIN BAGS	DIFFERENCE BETWEEN DISTILLED WATER ONLY AND DISTILLED WATER IN BAGS
	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	BULK	WET
ALK (mg/L)	-0.186	0.275	-0.247	0.215	-0.174	0.182	-0.061	0.012
Ca (mg/L)	0.008	0.025	0.001	0.005	0.012	0.037	-0.006	0.004
CI (mg/L)	0.006	0.016	0.003	0.008	0.010	0.022	-0.003	0.004
Cond (umhos/cm)	1.800	2.078	2.042	1.641	1.743	1.474	0.242	-0.057
Fc (mg/L)	0.000	0.000	0.002	0.003			0.002	
K (mg/L)	0.002	0.008	0.002	900.0	0.011	0.041	0.000	0.009
Mg (mg/L)	0.001	0.005	0.000	0.001	0.002	0.010	-0.001	0.001
Mn (mg/L)	0.000	0.000	0.000	0.001			0.000	
Na (mg/L)	0.002	0.007	0.002	0.003	0.003	0.010	-0.000	0.001
NH4 (ug/L)	8.000	11.662	8.125	14.128	6.429	11.406	0.125	-1.571
NO3 (ug/L)	1.760	3.024	2.073	3.349	2.054	3.429	0.313	0.294
TKN (ug/L)	24.375	52.911	22.000	23.367	36.429	85.991	-2.375	12.054
pH	5.399	0.188	5.433	0.253	5.422	0.152	0.034	0.023
P (ug/L)	0.540	0.877	0.172	0.367	0.525	998.0	-0.368	-0.015
Si (mg/L)	0.001	0.005	0.002	0.008	0.000	0.000	0.001	-0.001
SO4 (mg/L)	0.063	0.154	0.013	0.027	0.048	0.108	-0.050	-0.015

PRECIPITATION HKP8 WET ONLY TRACE METALS

SAMPLING	Cd	Pb	Zn	Cu
	a	ru	211	Cu
DATE	(ug/L)	(ug/L)	(ug/L)	(ug/L)
27-DEC-88	0.114	0.65	2.37	1.4
02-JAN-89	0.010	0.56	1.32	1.0
09-JAN-89	0.065	0.76	1.69	0.6
12-JAN-89	0.036	0.75	2.07	0.9
19-JAN-89	0.009	0.39	2.09	1.7
13-FEB-89	0.022	0.44	1.01	0.7
01-MAR-89	0.092	0.83	3.31	0.7
13-MAR-89	0.000	0.80	1.68	0.9
03-APR-89	0.000	0.31	0.64	1.3
05-APR-89	0.025	0.21	0.00	1.4
10-APR-89	0.074	0.27	1.34	0.5
07-MAY-89		2.79	1.64	1.2
23-MAY-89	0.036	0.75	0.52	0.9
25-MAY-89	0.036	0.68	0.65	2.3

FIELD BAG BLANKS

SAMPLING	Cd	Pb	Zn	Cu
DATE	(ug/L)	(ug/L)	(ug/L)	(ug/L)
28-FEB-89	0.010	0.00	0.00	0.5
13-MAR-89	0.020	0.00	1.76	3.1
30-MAR-89	0.000	0.00	2.90	0.7
07-APR-89	0.000	0.00	0.00	1.9
14-APR-89	0.020	0.00	0.00	0.3
24-APR-89	0.010	0.00	0.00	1.0
01-MAY-89	0.010	0.00	0.00	0.5
08-MAY-89	0.000	0.00	0.00	0.9
19-MAY-89	0.028	0.00	0.00	1.6
23-MAY-89	0.023	0.00	0.00	0.7

LYSIMETER - HKZ01A

Si	(mg/L)						
Zu	(mg/L)	16.0		8.4	5.9	7.1	7.8
Al Mn	(mg/L)	0.017		0.003	0.010	0.004	0.007
7	(mg/L)	098			230	120	230
Fe	(mg/L)	0.35		0.11	0.21	0.12	0.17
ರ	(mg/L)	25 3.00 1.05 0.35 860	1.50		0.97	1.34	1.34 (
NO3 SO4	(mg/L)	3.00	4.70		9.43	10.32	9.43
N03	(ug/L)	25	30	55	255	45	45
NH4	(ng/L)		30	10	10	10	10
¥	(mg/L)	1.84	7.19	0.58	0.62	0.63	0.63
Na Na	(mg/L) (mg/L) (mg/L) (mg/L)	0.82				3.46	3.30
Mg	(mg/L)	1.00	1.58	2.40	4.9 2.24	2.40	5.2 2.24
చ్	(mg/L)	3.9	6.9	5.2	4.9	5.2	5.2
pH Alk DOC Ca Mg	(mg/L)	28.0		3.1	3.3	3.4	3.4
Alk	(mg/L)			15.0	14.5	16.4	15.0
ЬH		5.27	6.48		6.93	6.58	6.58
COND25	(umhos/cm)			99	65	99	99
SAMPLING COND25		24-JUN-87	03-JUL-87	03-MAY-89	05-MAY-89	08-MAY-89	MEDIAN

LYSIMETER - HKZ01B2

					Ī					-				-			
SAMPLING COND25	COND25	Ηd	Alk	pH Alk DOC Ca Mg Na	రి	Mg		¥	K NH4 NO3 SO4 CI Fe AI Mn Zn	NO3	S04	ວ	Fe	7	Mn	Zn	Si
DATE	(umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	$(mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (ug/L) \mid (g/L) \mid (g/L)$	(ng/L)	(mg/L)	(ug/L) (mg/L) (mg/L) (mg/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L)	(mg/L)
25-APR-89	9								20	15							
03-MAY-89	9								20	10							
MEDIAN	9								20	13							

LYSIMETER - HKZ01BC

.ī	(mg/L)									
Zu	(mg/L) (r	15.0	45.0	5.5	2.9	2.2	2.2	1.9	2.8	2.9
Mn	(mg/L)	0.016	0.000	0.001	0.002	0.001	0.001	0.001	0.001	0.001
¥	(mg/L) (mg/L)	514	39	32	130	34	30	53	29	33
Fe	(mg/L)	0.58	0.05	0.03		0.04	0.04	0.03	0.04	0.04
ت ت	(mg/L)	2.00	1.82	1.43	1.32	1.20	1.39	1.04	0.40	1.35
S04	(mg/L)	7.10	5.70	6.82	6.48	6.28	5.73	6.72	6.81	09.9
NO3	(ng/L)	10		0	0	0	0	0	0	0
NH4	(ug/L)	20		10	10	10	0	10	10	10
×	(mg/L)	0.67	0.19	0.19	0.22	0.27	0.27	0.30	0.28	0.27
e Z	(mg/L)	1.42	0.72	0.64	0.70	0.58	99.0	99.0	0.68	0.67
Mg			2.10	1.74	1.70	1.88	2.00	1.84	1.72	1.84
Ca	(mg/L)	4.1	3.7	3.4	3.4	3.6	3.8	3.6	3.4	3.6
Alk DOC	(mg/L) (mg/L) (mg/L)	3.6	3.4	2.3	2.2	2.2	2.6	2.6	2.5	2.6
Alk	(mg/L) (r		8.22	69.9	7.62	7.78	8.72	8.35	8.28	8.22
Hd		6.38	6.59	6.63	6.54	6.58	09.9	6.52	6.47	6.56
COND25	(umhos/cm)		44	39	40	38	41	39	41	40
SAMPLING	DATE	24-JUN-87	25-APR-89	28-APR-89	01-MAY-89	03-MAY-89	05-MAY-89	08-MAY-89	10-MAY-89	MEDIAN

LYSIMETER - HKZ01L

SAMPLING COND25	COND25	hd	Alk	Alk DOC		Ca Mg	S.	×	NH4	NO3	S04	C C	Fe	ΙΨ	Mn	Zn	Si
DATE	DATE (umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	$ \left(mg/L \right) \left(ug/L \right) \left(ug/L \right) \left(mg/L $	(ng/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
24-JUN-87		4.92		23.9	3.0	3.0 0.74	0.76	2.92	40	15	5.30	0.95	0.95 0.23	299	0.028	0.0	
24-JUN-87		4.96		30.0		4.1 0.94	99.0	2.99	40	17	3.80	1.00	0.29	416	0.034	13.0	
09-OCT-87		4.93							260	98							
18-OCT-87		5.02		190.0	25.2	5.36	0.94	5.79	720	58	6.20	7.10					6.60
17-NOV-87		5.26															
23-NOV-87																	
13-APR-88		*							2900	440							
18-APR-88					4												
25-MAY-88		5.37															
21-JUN-88		4.43								250							
12-JUL-88		5.75															
02-AUG-88		5.66	6.07	24.5	3.7	96.0	90.0	4.58	680	155	1.90	0.69	0.69 0.12	130	0.020	32.0	
09-AUG-88		5.86														٠	
16-AUG-88		5.74														*	
23-AUG-88		5.78															
05-APR-89									1400	175							
MEDIAN		5.31	6.07	27.3	3.9	3.9 0.95	0.71	3.78	680	121	121 4.55		0.97 0.23	299	299 0 028 13 0 6 60	130	6 60

LYSIMETER - HKZ02A

SAMPLING COND25	COND25	ЬH	Alk	5 pH Alk DOC Ca Mg	Ca	Mg	R'N	K NH4 NO3 SO4	NH4	NO3	S04	CI	Fe	I	Mn	Zu	Si
DATE	(umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (ug/L) (ug/L) (mg/L)	(ng/L)	(ng/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	(mg/L)
22-MAY-87		5.90															
03-JUL-87		5.62							210	20	4.90	1.10		1			
MEDIAN		5.76							210	20	4.90	1.10					

LYSIMETER - HKZ02B2

SAMPLING COND25	Hd	Alk	DOC	చ	Mg	e Z	×	NH4	NO3	804	C	Fe	I	Mn	Zn	Si
DATE (umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	$ (mg/L) \ $	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	6.35															
	09.9															
	6.16															
	5.24															
	6.12															
	6.36															
	80.9															
12-JUL-88																
25-JUL-88	5.56				*****											
02-AUG-88	6.04															
16-AUG-88	5.79															
25-MAY-89	6.27		3.1	1.6	0.70	0.84	3.1 1.6 0.70 0.84 0.33	0	0	4.70 0.61	0.61					4.28
	6.12		3.1	1.6	0.70	0.84	1.6 0.70 0.84 0.33	0	0	0 4.70 0.61	0.61					4 28

LYSIMETER - HKZ02BC

S.	(mg/L)					
Zn	(mg/L)				51.0	
Mn	(mg/L)		*		310 0.000	0.000
F	(mg/L)				310	310
Fe	(mg/L)				0.05	0.05
C	(mg/L)				1.35	1.35
804	(mg/L)				20 135 4.00 1.35 0.05	20 135 4.00 1.35 0.05 310 0.000
NO3	(ng/L)				135	135
NH4	$ (mg/L) \ (mg$				20	20
×	(mg/L)				0.90	06.0
Na	(mg/L)				14.5 2.7 0.90 0.44	14.5 2.7 0.90 0.44 0.90
Mg	(mg/L)				06.0	0.30
c _a	(mg/L)				2.7	2.7
DOC	(mg/L)				14.5	14.5
AIk	(mg/L)					
Hd		5.93	6.42	6.11	5.99	6.05
COND25	DATE (umhos/cm)					
SAMPLING COND25 PH AIK DOC Ca Mg Na K NH4 NO3 SO4 CI F6 AI Mn Zn Si	DATE	25-JUL-88	02-AUG-88	16-AUG-88	17-NOV-88	MEDIAN

LYSIMETER - HKZ02L

Si	(mg/L)				1.84																1.22					1.06			ь		
-			_		-									_			_			_	<u>-</u>				_						_
Zn	(mg/L)		34.0			20.0								28.0			38.0			71.0		34.0			130.0						
Mn	(mg/L)		0.029			0.054								0.066			0.033			0.044		0.048			0.041						
Z	(mg/L) (mg/L)		225	4		400			1					420			330			230		200			570						
Fe	(mg/L)		0.13			0.18								0.19			0.10			0.13		0.23			0.23						
ರ	(mg/L)		0.70		5.25	1.86							0.25	1.80			2.28	0.05		0.71	1,34	1.24			1.17	0.88			2.26	1.33	1.04
804	(mg/L)		3.80		14.80	6.40							1.70	7.67			5.78	5.91		3.69	3.94	5.01			4.71	5.64			5.39	4.59	3.46
NO3	(ug/L)	30	20		137	20					10	1350		95			096	069		125		45	65	125	110	20	25		585	115	10
NH4	(ng/L)	30	140		280	110			570		09	1200		90	150		2100	680		370	310	480	230	410	130	300	20		90	20	30
×	(mg/L)		5.17		8.29	80.9								11.90			12.90	10.90		7.13	10.60	9.20			6.35	5.35			4.44	6.54	6.29
Na	(mg/L)				0.52	0.40								0.48			0.38	0.44		0.24	98.0	0.36			0.22	0.20			0.22	0.26	0.24
Mg			92.0		1.98	1.20					_			5.3 1.10			1.08	1.22		0.84	1.60	1,48			1.12	1.34			0.70	0.98	06.0
Ca	(mg/L) (mg/L)		4.5		10.0	6.5								5.3			4.1	7.4		3.4	9.1	8.9			7.4	8.5			3.2	4.7	5.3
DOC	(mg/L)		34.0		55.0	46.0								86.0			34.0			28.5	78.0	18.0			48.0	51.5					
Alk	(mg/L)													*****						5.26			_								
Hd		6.38	5.60	5.08	4.94		5.90	5.77	5.57	5.18	5.40	5.23		5.01	2.67	5.52	6.47	5.59	4.96	5.59	5.42	5.27	5.23	5.25			5.32	5.34	5.59	6.22	6.53
COND25	(umhos/cm)																														
SAMPLING COND25	_	30-JUN-87	03-JUL-87	18-OCT-87	07-APR-88	12-APR-88	13-APR-88	03-MAY-88	10-MAY-88	25-MAY-88	31-MAY-88	14-JUN-88	15-JUN-88	21-JUN-88	28-JUN-88	05-JUL-88	12-JUL-88	18-JUL-88	25-JUL-88	02-AUG-88	09-AUG-88	16-AUG-88	17-AUG-88	23-AUG-88	02-SEP-88	20-SEP-88	18-OCT-88	25-OCT-88	17-NOV-88	17-APR-89	21-APR-89

LYSIMETER - HKZ02L (cont'd)

SAMPLING COND25 pH AIK DOC Ca Mg Na K NH4 NO3 SO4 CI Fe AI Mn Zn	COND25	Ηd	Alk	DOC	Ca	Mg	Za	X	NH4	NO3	804	CI	Fe	IA	Mn	_	Si
DATE	(umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ng/L)	(mg/L)						
25-APR-89		6.40		14.4	3.0	0.54	0.12	3.99	20	0	1.00	0.53	0.04	94	600.0	46.0	
28-APR-89		6.58	7.39	10.8	2.3	0.48	0.10	3.33	80	2	1.53	0.44	0.02	74	0.002	4.6	
25-MAY-89		6.23			4.4	0.78	0.22	6.23 4.4 0.78 0.22 4.14 430 5 4.53 0.51	430	2	4.53	0.51					
MEDIAN	31	5.57	6.32	40.0	5.3	1.08	0.25	6.35	150	68	4.65	1.10	0.13	330	0.041	34.0	1 22

LYSIMETER - HKZ02B1

Si	(mg/L)															
_									_					-		-
Zn	(mg/L)															
Mn	(mg/L) (mg/L) (mg/L)															
ΑI	(mg/L)									12						
Fe	(mg/L)													4		
CI	(mg/L)		1,48									0.68				1 08
SO4	(mg/L)		4.80									3.52				4 16
NO3	(ng/L)		130	310				190				2		1		160
NH4	(ng/L)		380	20								30				30
×	(mg/L) (ug/L) (mg/L)											0.87				0.87
Z a	(mg/L) (mg/L) (mg/L) (mg/L)											0.38				0.38
Mg	(mg/L)											2.3 0.82				23 0 82
Ca	(mg/L)											2.3				2.3
DOC	(mg/L)															
pH Alk DOC	(mg/L)															
		4.97			6.81		6.19	5.92	5.89	5.83	5.23	5.40	5.57	60.9	5.94	5.89
COND25	DATE (umhos/cm)									*						
SAMPLING COND25	DATE	07-APR-88	12-APR-88	13-APR-88	13-MAY-88	25-MAY-88	31-MAY-88	14-JUN-88	28-JUN-88	12-JUL-88	25-JUL-88	02-AUG-88	16-AUG-88	17-AUG-88	23-AUG-88	MEDIAN

LYSIMETER - HKZ03A

Si	(mg/L)	. 2	90.0	0.08			2.90									_	_	_											1.60		
Zu	(mg/L) (r	7.0				580.0	-		4.0		87.0	12.0	11.0								35.0			37.0		38.0			·		
Mn	_	0.013				0.113			0.034		0.011	0.012	0.005								0.016			0.130		0.033					
¥	(mg/L)	160				810			250		480	220	270								270			1400		066					
Fe	(mg/L)	0.04				0.48			0.14		0.22	0.32	0.14		•						0.17			0.71		96.0	*				
CI	(mg/L) (mg/L) (mg/L)	1.00	6.15	6.20	4.70	1.40	12.70		1.87	0.70	06.0	69.0	0.26					1.52			1.01			1.38		0.65	0.51		0.54		
SO4	(mg/L)	2.30	16.80	6.50	3.80	5.20	1.20		14.00	7.80	6.00	3.60	1.60					7.10			5.16			5.49		3.07	2.42		2.10		
NO3	(ng/L)	18	1500	110	59	30	39		2600	343	421	15	97	90				,	22					325		55	340	50	06		
NH4	(ng/L)	20	360	30	20	30	20		30	20	30	20	40	10							20			099		06	40	80	130		
×	(mg/L)	3.68	11.70	***	5.03	7.20	0.95		2.34	1.23	1.27	1.24	0.83								3.01			6.05		2.57	1.38		1.26		
Na R	(mg/L)	1.42	18.80	*	15.00	2.50	0.42		0.84	0.48	0.45	0.36	0.22								0.50			0.48		0.22	0.30		0.34		
Mg	(mg/L)	0.38	2.16		0.54	99.0	2.74		2.56	1.68	1.70	1.42	0.82								1.34			1.64		1.04	1.02		1.28		
రొ	(mg/L) (mg/L)	1.3	8.9		2.4	2.1	9.4		8.1	5.6	5.5	4.6	5.6								4.3			4.7		3.1	3.3		4.2		
DOC	(mg/L)	12.9	40.5	47.5		25.5	47.0		15.0	20.0	31.0	32.0	15.6								13.5			26.8		16.8	21.0		15.5		
Alk	(mg/L) (mg/L)											4.82														4.57					
Hd		5.78	6.50	6.30	6.24	5.58	5.43	5.87	5.26	5.68	5.55	5.79	5.87	5.20	3.66	5.89	6.01	6.21	6.12	6.01	5.17	6.05	6.34		5.85	5.65	5.82	5.98	5.74	6.02	5.75
COND25	(umhos/cm)																														
SAMPLING		01-APR-87	27-MAY-87	02-JUN-87	78-NUL-60	03-JUL-87	18-OCT-87	17-NOV-87	29-MAR-88	05-APR-88	07-APR-88	12-APR-88	13-APR-88	15-APR-88	03-MAY-88	10-MAY-88	25-MAY-88	31-MAY-88	08-JUN-88	14-JUN-88	21-JUN-88	28-JUN-88	05-JUL-88	12-JUL-88	18-JUL-88	02-AUG-88	03-AUG-88	09-AUG-88	16-AUG-88	23-AUG-88	18-OCT-88

LYSIMETER - HKZ03A (cont'd)

Zn Si	(ug/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
	g/L) (mg
Al Mn	(T)
	(mg/
Fe	I/gm)
ರ	(mg/L)
SO4	(mg/L)
N03	(ug/L)
NH4	(ng/L)
K NH4 NO3	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
SZ.	(mg/L) (mg/L) (mg/L)
Mg	(mg/L)
Ca	(mg/L)
DOC	(mg/L)
Alk	(mg/L)
μd	
COND25	DATE (umhos/cm)
SAMPLING COND25 pH AIK DOC Ca Mg Na	DATE

LYSIMETER - HKZ03B1

Si	(mg/L)			3.80	3.40									3.60
Zn	$ (mg/L) \ (mg$								3.	120.0				88 6.02 1.24 0.50 540 0.010 120.0 3.60
Mn	(mg/L)									540 0.010 120.0				0.010
I	(mg/L)									540				540
Fe	(mg/L)									0.75 0.50				0.50
C	(mg/L)	6.10	2.64	3.55	1.24	0.41			1.12					1.24
S04	(mg/L)	0.80	328 12.00	63 14.60	17 11.60	4.40			6.02	3.95				6.02
NO3	(ug/L)	68	328		17	87		*		110	30		200	88
NH4	(ug/L)	40	510	20	09	20			20	50	09		230	09
×	(mg/L)			0.38	0.34				1.01	0.62				5.9 2.08 0.59 0.50
R'S	(mg/L)			0.78	09.0				23.6 5.1 1.72 0.58	0.42				0.59
Mg	(mg/L)			31.0 8.3 3.02	6.6 2.44				1.72	3.9 1.24				2.08
c _a	(mg/L)			8.3	9.9				5.1	3.9				5.9
Alk DOC Ca Mg	(mg/L)			31.0	30.5				23.6	17.8				27.1
Alk	(mg/L)													
hd		6.02	6.25	5.87			5.23	6.28	5.29	6,14	6.16	5.73	5.98	00.9
COND25	DATE (umhos/cm)													
SAMPLING COND25 pH	DATE	18-OCT-87	05-APR-88	07-APR-88	12-APR-88	13-APR-88	28-APR-88	31-MAY-88	21-JUN-88	02-AUG-88	03-AUG-88	16-AUG-88	27-APR-89	MEDIAN

LYSIMETER - HKZ03B2

										_	_	_		_	_	
S.	(mg/L)												2.46			2.46
Zu	(mg/L)									36.0	27.0			1		31.5 2.46
Mn	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)										0.003					760 0.004
7	(mg/L)									850	029					260
Fe	(mg/L)									0.79 0.31	0.23					0.27
Ü	(mg/L)			0.74						0.79	0.47		0.52			4.98 0.63 0.27
S04	(mg/L)	78 12.00		9.00						4.89	4.98		3.44			4.98
NO3	(ng/L)	78	27	83						95	15		940	360	6040	89
NH4		360	40	100					160	9	20		20	09	40000 6040	70
¥	(mg/L)	0.48		0.29						0.75	0.38		0.52			0.48
e Z	(mg/L)	0.64		0.54						0.48	0.54		0.52			0.54
Mg	(mg/L)	2.96		5.6 2.28						5.0 1.90	4.7 1.92		6.8 2.54	3		5.6 2.28
Ca	(mg/L)	6.1 2.96									4.7					1
pH AIK DOC Ca Mg	(mg/L)	30.0		27.0						21.5	18.4		21.0			21.5
AIK	(mg/L)									7.32						6.35 7.32
μd		6.15			6.42	6.45	5.36	6.38	6.35	5.98	6.57	5.49	6.19		7.48	6.35
COND25	(umhos/cm)															
SAMPLING COND25	DATE	07-APR-88	12-APR-88	13-APR-88	88-NUL-90	14-JUN-88	21-JUN-88	05-JUL-88	12-JUL-88	02-AUG-88	03-AUG-88	04-AUG-88	16-AUG-88	06-SEP-88	25-APR-89	MEDIAN

LYSIMETER - HKZ03L

Si	(mg/L)															0.02				1.00											
Zn	(mg/L)		24.0					*							23.0			52.0			62.0										
Mn	(mg/L)		0.000												0.042			0.036			0.055										
A	(mg/L)		0.73 1400												380			380			1.10 2300										
Fe	(mg/L) (mg/L)		0.73												0.21			0.30		*	1.10										
ID	(mg/L)							0.83				1.18			1.07	1.06		0.48	0.30	0.64	0.57			0.62	1.41		3	7.80			
804	(mg/L)		1.60					2.80				00.9			4.74	4.25		2.32	1.94	96.0	1.58			2.43	4.38			9.03			
NO3	(ng/L)	57	44	115			140								790	355		240	120	45	95			160		155				260	115
NH4	(ng/L)	30	40	200			1100								630	200		210	06	120	290	110		170		360				09	160
×	(mg/L)		7.84					2.74							4.61	5.60		2.49		2.78	2.01			1.44	1.40						
Na	(mg/L)		0.50					0.36							0.36	0.42		0.14		0.26	0.30			0.22	0.28						
Mg	(mg/L)		3.28	4				1.30							1.26	1.54		0.94		2.04	2.36			2.18	2.86						
S	(mg/L) (mg/L)		12.5					4.3							3.9	4.2		2.8		7.7	9.5	٠		10.1	13.6						
DOC	(mg/L)		92.0					43.0							17.0	25.0		17.5		80.0	17.0			79.0							
Alk	(mg/L)																	2.99													
Hd		5.27	5.41	5.40	6.20	5.75		4	5.75	5.91	5.51	5.49	5.90	5.63	4.72	6.53	5.53	5.59	99.9	5.60	5.32	5.12	5.25			***	5.42		5.21	5.57	5.35
COND25	(umhos/cm)									*																					
SAMPLING COND25	DATE	09-OCT-87	18-OCT-87	17-NOV-87	23-NOV-87	07-APR-88	12-APR-88	13-APR-88	25-APR-88	03-MAY-88	10-MAY-88	31-MAY-88	88-NUL-90	14-JUN-88	21-JUN-88	12-JUL-88	18-JUL-88	02-AUG-88	03-AUG-88	09-AUG-88	16-AUG-88	17-AUG-88	23-AUG-88	02-SEP-88	20-SEP-88	21-SEP-88	18-OCT-88	18-OCT-88	25-OCT-88	25-APR-89	25-APR-89

LYSIMETER - HKZ03L (cont'd)

AMPLING COND25	COND25	ЬH	Alk	pH Alk DOC Ca	ర	Mg	Z a	¥	NH4	NO3	SO4	CI	Fe	ΑI	Mn	Zu	Si
DATE	(umhos/cm)		(mg/L)	(mg/L) (mg/L)	(mg/L)	(mg/L) (mg/L)	(mg/L)	(mg/L)	(ng/L)	(ug/L)	(mg/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L)	(mg/L)	(mg/L)
23-MAY-89		5.68							350								
MEDIAN		5.53 2.99		34.0 7.7	7.7	2.04	0.30	0.30 2.74	185	130	2.61	0.83 0.51	0.51	890 0.049	0.049	38.0	0.51

LYSIMETER - HKZ04A

	(J	œ					_															ω
S.	(mg/L)	0.18																				0.18
Zu	(mg/L)																49.0					49.0
Mn	(mg/L)																0.046					360 0.046
V	(mg/L)																360					
Fe	(mg/L)																0.36					0.36
ご	(mg/L) (mg/L) (mg/L) (mg/L)	33.90	0.85	1.25	1.02												0.93					1.02
S04	(mg/L)	4.10	3.90	4.60	3.00												2.11					3.90
NO3	(ng/L)	27	20	1400	51				10					465	**		145				20	39
NH4	(ng/L)	40	40 20	330	96									230			110			380	100	105
×	(mg/L)	8.35	7.25	2.60	1.00												2.78		_			2.78
Na	-	33.40	0.48	0.54	0.48												1.02					0.54
Mg	(mg/L)	2.14	1.18	1.68	1.14	-	_									*****	99.0					1.18
S C	(mg/L)	9.8	6.2	6.2	4.6												6.1					6.2
DOC	(mg/L) (mg/L) (mg/L) (mg/L)	37.0			32.5												17.2					32.5
Alk	(mg/L)																					
μd		7.00	6.62	5.92		6.67	6.25	6.23	6.47	09.9	5.06		6.51	5.56	5.61	5.92	5.97	5.27	5.40		5.54	5.97
COND25	(umhos/cm)																					
SAMPLING COND25	DATE	21-MAY-87	03-JUL-87	07-APR-88	12-APR-88	10-MAY-88	25-MAY-88	31-MAY-88	08-JUN-88	14-JUN-88	21-JUN-88	28-JUN-88	05-JUL-88	12-JUL-88	18-JUL-88	25-JUL-88	02-AUG-88	09-AUG-88	16-AUG-88	06-SEP-88	25-APR-89	MEDIAN

LYSIMETER - HKZ04B1

SAMPLING COND25 pH AIK DOC Ca Mg Na K	COND25	Hd	Alk	DOC	Ca	Mg	Na R	×	NH4 NO3	NO3	804		Fe	I	Cl Fe Al Mn	Zn	Si
DATE	DATE (umhos/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (ug/L) (ug/L)	(ng/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	(mg/L)
07-APR-88		6.34		36.0	8.9	2.12	0.44	36.0 8.9 2.12 0.44 1.22	100	100 287	6.60	1,33					
12-APR-88									90	240							
18-JUL-88		6.15															
02-AUG-88		00.9		17.0	3.6	1.10	0.12	17.0 3.6 1.10 0.12 5.33 100 10 2.47 0.31 0.11 230 0.010	100	10	2.47	0.31	0.11	230	0.010	95.0	
09-AUG-88		6.35															
17-AUG-88		5.94															
17-NOV-88		6.24		25.0	6.1	1.34	0.40	25.0 6.1 1.34 0.40 1.29	20 165	165	4.37	4.37 0.89 1.00 1200 0.004	1.00	1200	0.004	25.0	
MEDIAN		6.19		25.0	6.1	1.34	0.40	25.0 6.1 1.34 0.40 1.29	95 202	202	4.37	0.89 0.55 715 0.007	0.55	715	0.007	60.0	

LYSIMETER - HKZ04B2

Si	(mg/L)									4.24				2.26	3.25
Zu	(mg/L)														
Mn	(mg/L)														
I	(mg/L)														
Fe	(mg/L)														
C	(mg/L)	1.15							0.51	0.52		0.54		0.16	0.52
SO4	(mg/L)	7.40							2.56	4.59		3.91		1.84	3.91
NO3	(ng/L)	190 166		190						40		105	20	20	73
NH4	(ng/L)	190		650						100		90	20	100	100
×	$(mg/L) \ (mg/L) \ (mg/L)$	3.30								1.77		4.50		1.59	2.53
z Z	(mg/L)	0.34								0.42		0.22		0.28	17.2 5.3 1.22 0.31
Mg	(mg/L)	14.0 3.08								5.8 1.44		4.8 1.00		4.0 0.66	1.22
Ca	(mg/L)	14.0										4.8			5.3
DOC	(mg/L)		**	Ī						18.0				16.3	17.2
Alk	(mg/L)														
Hd		5.63	5.81	6.35	5.96	6.56	5.26	6.08		6.49	6.43	5.85	5.96	6.18	6.02
COND25	DATE (umhos/cm)	**													
SAMPLING COND25 pH Alk DOC Ca Mg	DATE	07-APR-88	12-APR-88	12-APR-88	13-APR-88	88-NUL-90	21-JUN-88	28-JUN-88	12-JUL-88	02-AUG-88	10-NOV-88	17-NOV-88	18-APR-89	25-APR-89	MEDIAN

LYSIMETER - HKZ04BC

Al Mn Zn Si	$(mgL) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (mg/L) \mid (ug/L) \mid (ug/L) \mid (mg/L) \mid (m$				
K NH4 NO3 SO4 CI Fe Al Mn	ng/L) (mg/L) (n				
3 804	/L) (mg/L) (n				
NH4 NC	(ug/L) (ug/				
Na K	(mg/L) (mg/L)				
Mg	(mg/L)				
రి	(mg/L)	*			
DOC	(mg/L)				
Alk	(mg/L)	1			
Ηd		6.75	5.99	6.68	09 9
COND25	DATE (umhos/cm)				
SAMPLING COND25 PH AIK DOC Ca Mg Na	DATE	18-JUL-88	25-JUL-88	09-AUG-88	INVICTIN

LYSIMETER - HKZ04L

Si	(mg/L)	2	4				0.30			4.60												
Zn	(mg/L) (mg/L)	20.0	44.0	44.0	53.0	41.0			25.0												36.0	
Mn	(mg/L)	0.036	0.110	0.025	0.081	0.048			0.014												0.079	
Ψ	(mg/L)	150	133	2	116	86			63												220	
Fe	(mg/L)	0.13	0.18	0.09	0.20	0.17			0.08												0.39	
CI	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	29.20	45.80 0.18	27.80	33.90	29.10	59.50		9.80			3.35	0.81								1.26	
804	(mg/L)	2.90	4.40	2.90	2.70	2.50	2.30		3.50			14.00	4.60								90.9	
N03	(ng/L)	19	40	33	30	59	30		20	45		2000 7200	86				435		355	20	1630	1480
NH4	(ng/L)	30	20	40	20	20	9		40	20		2000	630		320		670		360	20	2000 1630	130
×	(mg/L)	8.06	7.43	3.45		3.44	5.30		4.87			10.60	7.16								9.21	
Na	(mg/L)	18.50	56.70	34.00		44.90	00.69		18.40			09.0	0.36								0.22	
Mg	(mg/L)	2.06	1.42	0.70		0.36	09.0		0.46			5.60	2.80								2.14	
J	(mg/L)	9.5	7.3	3.5		2.3	3.7		5.6			23.1	11.4								6.6	
DOC	(mg/L)	36.5	51.5	36.5	67.0	58.5	90.0		33.0	173.0											64.0	
Alk	(mg/L)																					
Hd		6.16	6.70	6.60	6.90	6.90	7.16	7.52	6.45	5.81	6.14	6.16		6.35	6.12	6.24	5.88	5.96	6.52	6.02	4.77	6.42
COND25	DATE (umhos/cm)																					
SAMPLING COND25	DATE	01-APR-87	21-MAY-87	27-MAY-87	02-JUN-87	78-NUC-60	30-JUN-87	30-JUN-87	03-JUL-87	18-OCT-87	17-NOV-87	07-APR-88	12-APR-88	03-MAY-88	10-MAY-88	25-MAY-88	30-MAY-88	31-MAY-88	88-NUC-80	14-JUN-88	21-JUN-88	28-JUN-88

LYSIMETER - HKZ04L (cont'd)

_	-	_	_	_	_		_			_					_					1
S.	(mg/L)		0.22				1.22	1.24			1.08	1.44								1 00
Zn	(mg/L)					49.0														207
Mn	(mg/L)					0.029														070
ΑI	(mg/L)					190														10.
Fe	(mg/L)					0.23														4 00 0 47
ರ	(mg/L) (mg/L) (mg/L)		0.80	90.0		0.45	0.53	2.42			0.41	0.86						0.45	0.19	4
804	(ug/L) (mg/L)		3.15	4.57		2.53	0.91	1.02			2.28	3.00						2.23	1.06	000
NO3	(ng/L)		390			735		9	125		440		90			25	98	15	30	00
NH4	(ng/L)		400			200	20	180	180		7200		100	260		09	240	280	80	400
×	(mg/L)		7.49	10.60		4.60	5.43	3.44			5.26	3.48							8.80	C 7 7
a Z	(mg/L)		0.32	0.28		0.10	0.20	0.16			0.18	0.22							0.26	000
Mg	(mg/L)		1.16	3.66		0.92	1.54	1.60			1.18	1.08							1.82	1_
Ca	(mg/L)		4.7 1.16	17.9		3.7 0.92	7.3	9.7			6.2	5.0							10.0	7.0 4.40
DOC	(mg/L)		29.0			18.0	49.0	18.5			40.0	30.5								000
Alk	(mg/L) (mg/L) (mg/L) (mg/L)																			
ЬH		6.78	6.48	99.5	4.07	5.83	6.14	5.46	5.43	5.72				5.69		5.50	5.51	6.24	5.56	6 1 4
COND25	(umhos/cm)																			
SAMPLING COND25	DATE (05-JUL-88	12-JUL-88	18-JUL-88	25-JUL-88	02-AUG-88	09-AUG-88	16-AUG-88	17-AUG-88	23-AUG-88	02-SEP-88	20-SEP-88	21-SEP-88	18-OCT-88	25-OCT-88	17-NOV-88	25-APR-89	23-MAY-89	25-MAY-89	MACOUAN

LYSIMETER - HKZ05L

S	(mø/L)	(2.8)																					99.0							99.0
Zn	(T/am) (T/am)	30.0				16.0	5			*				38.0				82.0		110.0										38.0 0.66
Mn	(me/L)	0.099				0.150								0.290				0.110		0.170		•								680 0.150
I	(mg/L)	118				9								730				980		2100										989
F.	(mg/L)	0.10				0.55								0.60				0.72		2.50										0.60
C	(mg/L) (mg/L) (mg/L) (mg/L)					1.62							99.0	2.35		٠		2.10	2.10	2.68		3.37	2.70	25.0			2.94	1.1	0.62	2.10 0.60
804	(ug/L) (mg/L)	9.50				12.80							4.30	19.67				6.32	6.47	5.33		5.60	6.37	27.65			9.53	3.94	3.95	6.37
N03					400		150						20	230		5		110	20	140		140					270	95	09	110
NH4	(ug/L)	1100			770		1000	540					490	1300		100		3700	0009			8600	460	15000			6200	3900	4530	1300
×	(mg/L)	5.48				3.79							3.08	13.30				9.50	9.62	13.63		2.45	13.00	30.00			14.60	13.40	5.49	9.62
Na	(mg/L)	0.48				1.12							0.22	0.92				0.42	0.54	92.0		06.0	0.56	0.94			0.56	0.50	0.38	0.56
Mg	(mg/L) (mg/L)	0.64				0.62							0.30	1.08				09.0	0.70	1.24		96.0	0.72	2.30			0.70	0.40	0.22	0.70
చ్	(mg/L)	2.0				5.6				****			1,2	5.5				2.2	2.4	4.4		4.7	3.4	15.1			3.8	3.1	0.7	3.1
DOC	(mg/L)	34.5				129.0								145.0				130.0		375.0			233.0	1950						145.0
Alk	(mg/L)																													
Hd		3.80	3.35	3.21					4.33	3.82		4.13	4.13	3.18	4.42	5.52	3.39	3.71	3.12	3.36	3.36	3.52		3.63	3.48	3.71	4.31	4.01	3.89	3.71
COND25	(umhos/cm)																													
SAMPLING COND25	$\overline{}$	22-MAY-87	18-OCT-87	23-NOV-87	12-APR-88	12-APR-88	12-APR-88	13-APR-88	03-MAY-88	10-MAY-88	12-MAY-88	14-JUN-88	14-JUN-88	21-JUN-88	05-JUL-88	12-JUL-88	18-JUL-88	02-AUG-88	04-AUG-88	09-AUG-88	16-AUG88	23-AUG-88	02-SEP-88	18-OCT-88	24-OCT-88	17-NOV-88	18-APR-89	25-APR-89	25-MAY-89	MEDIAN

Hawkeye Lake Watershed Study Site.

Figure 2

HKP1 Figure 3a

HAWKEYE LAKE PRECIPITATION 12 0.8 Ca(mg/L) 0.4 0.0 0.15 0.10 \$ 0.05 0.00 0.5 0.4 0.3 02 0.1 0.0 0.4 0.3 K (mg/L) 02 0.1 0.0 1987 1988 1989

Figure 3b

HKP1

HAWKEYE LAKE PRECIPITATION 10.0 804 (mg/L) 7.5 5.0 2.5 0.0 0.5 0.4 3 0.3 0 02 0.1 0.0 600 400 88 200 0 800 600 7 400 4 400 200 0 1987 1988 1989

Figure 3c

HKP1

HAWKEYE LAKE PREC PITATION

Figure -a

HAWKEYE LAKE PRECIPITATION

Figure 4b

HAWKEYE LAKE PRECIPITATION

Figure 4c

HAWKEYE LAKE FROST PENETRATION

Figure 6a

HAWKEYE LAKE FROST PENETRATION

✓ Min frost penetration
 △ Max frost penetration
 ○ Min snow depth
 □ Max snow depth

Figure 6b

HAWKEYE LAKE FROST PENETRATION

Maximum and minimum frost penetration and snow depth from five monitoring locations within the "FB" sampling site

✓ Min frost penetration△ Max frost penetration

O Mln snow depth

□ Max snow depth

HAWKEYE LAKE FROST PENETRATION

monitoring locations within the "PW" sampling site

- △ Max frost penetration
- O Min snow depth
- □ Max snow depth

Figure 6d

Figure 7a

Figure 7a continued

Figure 7b

Figure 7b continued

Figure 7c

Figure 7c continued

Figure 7d

Figure 7d continued

Figure 8a

Figure 8a continued

Figure 8a continued

Figure 8a continued

Figure 8a continued

Figure 8a continued

Figure 8a continued

Figure 8b

Figure 8b continued

Figure 8c

Figure 8c continued

Figure 8d

Figure 8d continued

Figure 9

