Arithmetic Sequence in C++ #include <iostream> #include <vector> #include <unordered_set> #include <algorithm> #include <climits> using namespace std; bool isArithmeticSequence(const vector<int>& arr) { if (arr.size() <= 1) { return true: } $int minVal = INT_MAX;$ int maxVal = INT_MIN; unordered_set<int> elements; for (int val : arr) { minVal = min(val, minVal); maxVal = max(val, maxVal);elements.insert(val); } int d = (maxVal - minVal) / (arr.size() - 1); for $(size_t i = 0; i < arr.size(); ++i)$ { int ai = minVal + i * d;if (elements.find(ai) == elements.end()) { return false; } return true; int main() { vector<int> arr = $\{17, 9, 5, 29, 1, 25, 13, 37, 21, 33<math>\}$; cout << (isArithmeticSequence(arr) ? "true" :</pre> "false") << endl; return 0;

Dry Run

Input:

```
arr = \{17, 9, 5, 29, 1, 25, 13, 37, 21, 33\}
```

Here is a step-by-step dry run of your C++ code, focusing on loop iterations and index-wise updates:

Step-by-Step Execution Table

First Loop (Finding minVal, maxVal, and Filling unordered set)

Index (i)	Current arr[i]	Updated minVal	Updated maxVal	Updated elements
0	17	17	17	{17}
1	9	9	17	{9, 17}
2	5	5	17	{5, 9, 17}
3	29	5	29	{5, 9, 17, 29}
4	1	1	29	{1, 5, 9, 17, 29}
5	25	1	29	{1, 5, 9, 17, 25, 29}
6	13	1	29	{1, 5, 9, 13, 17, 25, 29}
7	37	1	37	{1, 5, 9, 13, 17, 25, 29, 37}
8	21	1	37	{1, 5, 9, 13, 17, 21, 25, 29, 37}
9	33	1	37	{1, 5, 9, 13, 17, 21, 25, 29, 33, 37}

After this loop:

o minVal = 1o maxVal = 37o elements = $\{1, 5, 9, 13,$ 17, 21, 25, 29, 33, 37} o d = (37 - 1) / (10 - 1) = 4

Second Loop (Verifying Arithmetic Sequence)

Index (i)		. :	= :				Check in elements	Result
0	1	+	0	* 4	=	1	<pre> Found in {1, 5, 9, 13, 17, 21, 25, 29, 33, 37} </pre>	Continue
1	1	+	1	* 4	=	5	√ Found	Continue
2	1	+	2	* 4	=	9	√ Found	Continue
3	1 13		3	* 4	=		√ Found	Continue
4	1 17		4	* 4	=		√ Found	Continue
5	1 21		5	* 4	=		√ Found	Continue
6	1	+	6	* 4	=		✓ Found	Continue

Index (i)	Expected Value ai = minVal + i * d	Check in elements	Result
	25		
7	1 + 7*4 = 29	√ Found	Continue
8	1 + 8*4 = 33	√ Found	Continue
9	1 + 9*4 = 37	√ Found	Continue

• Since all expected values exist in elements, the function returns **true**.

Output:

true