Objectives

The model will be focused on the interpretation of how stars follow a pattern based on their physical features. The model will help researchers and scientists accurately classify stars based on these physical features.

Data Description

The dataset is called "The Stars Dataset" and consists of several features of stars. The purpose of this analysis is to prove that the stars follow a certain graph in the celestial space specifically called Hertzsprung-Russell Diagram, which is shown in **Figure 1**.

Figure 1: Hertzsprung-Russell Diagram.

The data has 6 features and 1 target:

- 1. Absolute Temperature (K)
- 2. Relative Luminosity (L/Lo)
- 3. Relative Radius (R/Ro)
- 4. Absolute Magnitude (Mv)
- 5. Star Color (white, Red, Blue, Yellow, yellow-orange, etc.)
- 6. Spectral Class (O, B, A, F, G, K, M)
- 7. StarType(Target) (Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence, SuperGiants, HyperGiants)

Brown Dwarf = 0, Red Dwarf = 1, White Dwarf = 2, Main Sequence = 3, Supergiant = 4, Hypergiant = 5

The Luminosity and radius of each star is calculated w.r.t. that of the values of Sun.

 $Lo = 3.828 \times 10^26 \text{ Watts}$

 $Ro = 6.9551 \times 10^8 \text{ m}$

The model will use the 6 physical features of the stars to accurately predict the Star Type.

Data Exploration

Luckily the data was clean. Each column was viewed using seabron and the dataframe description, info, dtypes and value counts were checked to make sure there are no missing values. **Figure 2** is the pairplot of the data.

Figure 2: Pariplot of the full dataset.

Data columns (total 7 columns):			
#	Column	Non-Null Count	Dtype
0	Temperature (K)	240 non-null	int64
1	Luminosity(L/Lo)	240 non-null	float64
2	Radius(R/Ro)	240 non-null	float64
3	Absolute magnitude(Mv)	240 non-null	float64
4	Star color	240 non-null	object
5	Spectral Class	240 non-null	object
6	Star type	240 non-null	int64

For Feature Engineering, I used a **StandardScaler** to scale the numerical values for the Temperature, Luminosity, Radius and Absolute Magnitude. **OneHotEncoder** was used to encode the categorical values Star color and Specrtal Class.

Summary of Training

Three different classifier models were used for the project: Logistic Regression, K Nearest Neighbors and Random Forest. All three models used the same training and test splits (stratified train-test split with sample size of 0.3). There was no need for cross-validation or hyperparameter tuning, since all the models performed very well (based on several performance metrics) and produced high accuracy results.

Key Findings

key findings related to the main objectives include:

- The Stars follow a pattern based on their physical features.
- The pattern is very similar to Hertzsprung-Russell Diagram.
- Random Forest performed great for such classification problem and didn't take a lot of time for training and prediction.

Model Recommendation

Of the classifier models, I recommend the Random Forest model as a final model. Random Forest produced the best results and best fit my needs in terms of accuracy and explainability.

Suggestions

Suggestions for next steps in analyzing this data:

- Revising and Logistic Regression and the KNN models and try different hyperparameters to see if better results can be achieved.
- Try all three of the models on a different, bigger dataset and see how it performs.
- Use the different hyperparameter tuning techniques to for the models to get better results.