МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

3 дисципліни «Дискретна математика»

Виконала:

Студентка групи КН-115

Рокицька Анастасія

Викладач:

Мельникова Н.І.

Львів – 2019р.

Тема: Моделювання основних логічних операцій.

Мета: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Теоретичні відомості:

Просте висловлювання (атомарна формула, атом) – це розповідне речення, про яке можна сказати, що воно істинне (Т або 1) або хибне (F або 0), але не те й інше водночас.

Складне висловлювання – це висловлювання, побудоване з простих за допомогою логічних операцій (логічних зв'язок).

Найчастіше вживаними операціями є 6: заперечення (читають «не», позначають ¬, -), кон'юнкція (читають «і», позначають \land), диз'юнкція (читають «або», позначають \sim), імплікація (читають «якщо ..., то», позначають \Rightarrow), альтернативне «або» (читають «додавання за модулем 2», позначають \oplus), еквівалентність (читають «тоді і лише тоді», позначають \Leftrightarrow).

Запереченням довільного висловлювання Р називають таке висловлювання ¬Р, істиносне значення якого строго протилежне значенню Р. Кон'юнкцією або логічним множенням двох висловлювань P та Q називають складне висловлювання P Q, яке набуває істинного значення тільки в тому випадку, коли істинні обидві його складові. Диз'юнкцією або логічним додаванням двох висловлювань Р та Q називають складне висловлювання Р Q, яке набуває істинного значення в тому випадку, коли істинною є хоча б одна його складова. Імплікацією двох висловлювань Р та Q називають умовне висловлювання «якщо P, то Q» (P \Rightarrow Q), яке прийнято вважати хибним тільки в тому випадку, коли передумова (антецедент) Р істинна, а висновок (консеквент) Q хибний. У будь-якому іншому випадку його вважають істинним. Альтернативним "або" двох висловлювань Р та Q називають складне висловлювання Р ⊕ Q, яке набуває істинного значення тоді і лише тоді, коли Р та Q мають різні логічні значення, і є хибним в протилежному випадку. Еквіваленцією двох висловлювань P та Q називають складне висловлювання Р ⇔ Q, яке ∧ V набуває істинного значення тоді і лише тоді, коли Р та Q мають однакові логічні значення, і є хибним в протилежному випадку, тобто логічно еквівалентні складні висловлювання – це висловлювання, які набувають однакових значень істинності на будь-якому наборі істиносних значень своїх складових.

Тавтологія – формула, що виконується у всіх інтерпретаціях (тотожно істинна формула).

Протиріччя – формула, що не виконується у жодній інтерпретації (тотожно хибна формула). Формулу називають нейтральною, якщо вона не є ні тавтологією, ні протиріччям (для неї існує принаймні один набір пропозиційних змінних, на якому вона приймає значення T, і принаймні один набір, на якому вона приймає значення F). Виконана формула – це формула, що не є протиріччям (інакше кажучи, вона принаймні на одному наборі пропозиційних змінних набуває значення T).

Варіант 13

Додаток 1:

1. Формалізувати речення. Якщо вчитель та учень присутні на уроці, то вони закріплять матеріал нової теми.

х - вчитель;

у - учень;

Р - присутні на уроці;

Q - закріплять матеріал нової теми.

$$P(x,y) \rightarrow Q(x,y)$$

2. Побудувати таблицю істинності для висловлювань:

$$(X{\leftrightarrow} y){\rightarrow} (((y{\leftrightarrow} z){\rightarrow} (z{\leftrightarrow} x)){\rightarrow} (X{\leftrightarrow} z))$$

Х	У	Z	х↔у	y↔z	Z↔X	X↔Z		$ \begin{array}{c} ((y \leftrightarrow z) \to \\ (z \leftrightarrow x)) \to \\ (x \leftrightarrow z) \end{array} $	$(X \leftrightarrow Y) \rightarrow (((Y \leftrightarrow Z) \rightarrow (Z \leftrightarrow X))$ $\rightarrow (X \leftrightarrow Z))$
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	T	F	F
Т	F	Т	F	F	Т	T	T	T	Т
Т	F	F	F	Т	F	F	F	Т	Т
F	Т	Т	F	Т	F	F	F	T	Т
F	F	Т	T	F	F	F	T	F	F
F	Т	F	F	F	T	T	T	T	Т
F	F	F	Т	Т	Т	Т	T	T	Т

3. Побудовою таблиці істинності вияснити, чи висловлювання є тавтологією або протиріччям:

$$-(-(p \land q) \leftrightarrow (q \lor r)) \land (-p \lor r).$$

р	q	r	_(p∧q	qvr	$-(-(p \land q) \leftrightarrow (qvr))$	—pvr	—(—(p∧q)↔
)				(qvr))∧(—p vr)
Т	Т	T	F	Т	Т	Т	T
T	Т	F	F	Т	Т	F	F
Т	F	T	T	Т	F	Т	F
Т	F	F	T	Т	F	F	Т
F	F	F	Т	F	F	Т	F
F	F	T	Т	F	F	Т	F
F	Т	F	Т	Т	F	Т	F
F	Т	T	Τ	Т	F	T	F

Висловлювання не є протиріччям або тавтологією, воно є нейтральни.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання:

$$((p\rightarrow q) \land (-p\rightarrow q)\rightarrow p.$$

Допустимо, що висловлення є хибним. Тоді:

$$((p\rightarrow q) \land (-p\rightarrow q)\rightarrow p = F;$$

$$((p\rightarrow q) \land (--p\rightarrow q) = T;$$

$$p = F$$
.

Підставимо у вираз замість з F:

$$((\mathsf{F} {\rightarrow} \mathsf{q}) \ \land \ (-\!\!\!\!- \mathsf{F} {\rightarrow} \mathsf{q}) = ((\mathsf{F} {\rightarrow} \mathsf{q}) \ \land \ (\mathsf{T} {\rightarrow} \mathsf{q}) = \mathsf{T} \ \land \ (\mathsf{T} {\rightarrow} \mathsf{q}) = \mathsf{T} {\rightarrow} \mathsf{q}$$

Чи буде цей вираз тавтологією залежить від того якого значення набуде р, тобто вираз є нейтральним.

1. Довести, що формули еквівалентні:

$$(p \rightarrow q) \ \land \ (p \rightarrow r)$$
 та $(r \land q) \ v \ (q \rightarrow r)$

$$(p\rightarrow q) \land (p\rightarrow r)$$

р	q	r	(b→d)	(p→r)	(p→q) ∧ (p→r)
Т	Т	T	T	Т	T
Т	T	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	F	Ţ
F	F	F	Т	Т	Ţ
F	F	Т	Т	Т	T
F	T	F	Ť	T	T
F	T	T	Ť	T	T

$$(r \land q) \lor (q \rightarrow r)$$

r	q	(r∧q)	(q→r)	(r∧q) v (q→r)
Т	Т	T	T	Т
Т	F	F	F	F
F	Т	F	T	Т
F	F	T	T	Т

$$(p\rightarrow q) \ \land \ (p\rightarrow r);$$

$$(-p v q) \land (-p v r);$$

$$(r \land q) \lor (q \rightarrow r);$$

$$(r \land q) \lor (--q \lor r);$$

$$r \wedge (q v - q);$$

$$r \wedge T$$
;

r.

Вирази не є еквівалентними.

Додаток 2:

```
□#include <iostream>
 #include <stdio.h>
  using namespace std;
⊡int main()
      cout << "Enter number p:" << endl;</pre>
      cin >> p;
      cout << "Enter number q:" << endl;</pre>
      cin >> q;
      cout << "Enter number r:" << endl;</pre>
      cin >> r;
      // Data checking
      if ((p != 1 && p != 0) || (q != 1 && q != 0) || (r != 1 && r != 0))
卓
          cout << " Sorry, but numbers can be only 1 or 0" << endl;</pre>
           cout << "You can try again :" << endl;</pre>
           cout << "Enter number p:" << endl;</pre>
           cin >> p;
           cout << "Enter number q:" << endl;</pre>
           cin >> q;
           cout << "Enter number r:" << endl;</pre>
           cout << " Results :" << endl;</pre>
ģ.
           cout << " Results:" << endl;</pre>
      if (p == 1 && q == 1 && r == 1)
           cout << "-(p ^ q) = 0" << endl;
           cout << " q v r = 1" << endl;</pre>
```

```
cout << "-(-(p ^ q) ~ (q v r)) = 1" << endl;
    cout << "-p v r = 1" << endl;
    cout << "-(-(p ^ q) \sim (q \vee r)) ^ (-p \vee r) = 1" << endl;
else if (p == 1 && q == 1 && r == 0) {
   cout << "-(p ^ q) = 0" << endl;
    cout << "q v r = 1" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) = 1" << endl;
   cout << "-p v r = 0" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
else if (p == 1 && q == 0 && r == 1) {
   cout << "-(p ^ q) = 1" << endl;
   cout << "q v r = 1" << endl;
   cout << "-(-(p ^ q) ~ (q v r)) = 0" << endl;
   cout << "-p v r = 1" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
else if (p == 1 && q == 0 && r == 0) {
   cout << "-(p ^ q) = 1" << endl;
    cout << "q v r = 1" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) = 0" << endl;
    cout << "-p v r = 1" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 1" << endl;
else if (p == 0 && q == 0 && r == 0) {
   cout << "-(p ^ q) = 1" << endl;
    cout << "q v r = 0" << endl;
   cout << "-(-(p ^ q) ~ (q v r)) = 0" << endl;
    cout << "-p v r = 1" << endl;
    cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
else if (p == 0 && q == 0 && r == 1) {
    cout << "-(p ^ q) = 1" << endl;
    cout << "q v r = 0" << endl;
    cout << "-(-(p ^ q) \sim (q v r)) = 0" << endl;
```

```
cout << "-p v r = 1" << endl;
         cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
6
     else if (p == 0 && q == 1 && r == 0) {
         cout << "-(p ^ q) = 1" << endl;
         cout << "q v r = 1" << endl;
         cout << "-(-(p ^ q) ~ (q v r)) = 0" << endl;
         cout << "-p v r = 1" << endl;
         cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
ġ.
     else if (p == 0 && q == 1 && r == 1) {
         cout << "-(p ^ q) = 1" << endl;
         cout << "q v r = 1" << endl;
         cout << "-(-(p ^ q) ~ (q v r)) = 0" << endl;
         cout << "-p v r = 1" << endl;
         cout << "-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0" << endl;
     system("pause");
     return 0;
```

Результат:

```
Enter number p:
5
Enter number q:
4
Enter number r:
1
Sorry, but numbers can be only 1 or 0
You can try again :
Enter number p:
1
Enter number q:
0
Enter number r:
1
Results :
-(p ^ q) = 1
q v r = 1
-(-(p ^ q) ~ (q v r)) = 0
-p v r = 1
-(-(p ^ q) ~ (q v r)) ^ (-p v r) = 0
Для продолжения нажмите любую клавишу . . .
```

Висновок:

Ознайомилась на практиці із основними поняттями математичної логіки, навчилась будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїла методи доведень.