Lista de IA – Introdução, Simbólica e Evolucionista

Prof. Felipe Andery Reis

- 1) Defina com suas próprias palavras inteligência artificial.
- 2) Descreva os 4 paradigmas da IA e cite exemplos de cada um deles.
- 3) Em quais tipos de problemas devemos buscar soluções na inteligência artificial?
- 4) O que é uma heurística?
- 5) Compare a Busca Cega com a Busca Heurística, cite exemplos de problemas que podem ser resolvidos por cada uma destas estratégias de busca.
- 6) Como funciona a busca em largura e a busca em profundidade?
- 7) Um determinado problema possui como teste de objetivo que o valor do estado seja igual a **6**. Seu espaço de estados é representado pela árvore abaixo.
 - a. Marque com uma seta o estado que representará a solução caso a estratégia de busca seja em largura.
 - b. Idem a letra **a**, mas caso seja em profundidade.
 - c. Determine o custo de cada uma das soluções.
 - d. Qual das duas soluções é ideal, em termos de custo, para o problema?

8) Assinale [V]erdadeiro ou [F]also para as alternativas abaixo:

[] Um dos métodos de busca cega mais utilizados é o método de busca em largura. Pode-se dizer que neste tipo de busca a solução sempre será encontrada, porém com um custo computacional muito grande.

[] Para a figura abaixo, pode-se afirmar que o método de busca utilizado para localizar o elemento 4 (em destaque) foi a busca em profundidade.

- [] Na busca em profundidade, pode-se dizer que a solução sempre será encontrada, porém a mesma poderá não ser ótima.
- [] As buscas em largura e profundidade não fazem uso de nenhum conhecimento para encontrar sua solução, fazendo uma busca exaustiva dentro do seu espaço.
- [] Na técnica de busca conhecida como PSO, populações de indivíduos são criados e submetidos aos operadores genéticos: seleção, recombinação (crossover) e mutação.
- [] Em termos de desempenho, um algoritmo Genético sempre terá um desempenho melhor que os algoritmos de busca específicos.
- [] Os algoritmos genéticos podem ser considerados técnicas não totalmente aleatórias: possuem componentes aleatórios mas os próximos passos são baseados em informações da população corrente.

- 9) Resolva o quebra-cabeça de 8 peças abaixo utilizando:
 - a) Função heurística h1 = nº de elementos em posições erradas.
 - b) Função heurística h2 = soma das distâncias dn de cada elemento à posição final.

- 10) Considerando a Tabela 10 e a Figura 10 abaixo, faça:
- a) Utilizando a busca A*, mostre qual a rota de menor custo partindo da cidade de Oradea com destino para Bucarest. Mostre todos os passos da estratégia de busca.
- b) Comprove a eficiência da estratégia de busca A* (distância percorrida da cidade de origem até a cidade de destino). Para comprovar a eficiência, compare com a solução que seria encontrada caso a heurística utilizada fosse somente.

Tabela 10 – Distância em linha reta (para a cidade de Bucarest.

		` -	
Arad	366	Mehadia	241
Bucarest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figura 10 – Mapa rodoviário da Romênia.

- 11)O que são algoritmos genéticos e que tipo de problemas eles podem resolver?
- 12) Explique com suas palavras os seguintes componentes dos algoritmos genéticos: seleção, crossover e mutação. Dê o máximo de detalhes.
- 13) Considere um problema de otimização no qual a função a ser otimizada pode ser calculada através da equação Maximizar a função , com e pertencentes ao intervalo . Caso fosse utilizado um algoritmo genético para solucioná-lo, para evitar o valor de (,)=0, a função de avaliação seria adaptada para (,)=1+(,). Cada cromossomo para este problema será representado por 8 bits, sendo os primeiros 4 bits representando o valor de e os últimos 4 bits, o valor de . Com base nestas informações, responda:
- a) Calcule o grau de adaptação de cada um dos indivíduos apresentados na Tabela 13. Lembrando que representa a função de avaliação do problema.
- b) Calcule o grau de aptidão de cada um dos indivíduos apresentados na Tabela 13. O grau de aptidão pode ser calculado pela equação , no qual é o grau de adaptação.
- c) Calcule a média de adaptação da população, através da equação

Cromossomo
00111101
10011001
10010011
10011100
01000111
11100011

Tabela 13 – População de cromossomos