Thesis notes

13th July

The Echo Chamber Problem

Goal: given an interaction graph G, find $U \subseteq V$ maximing

$$\xi(U) = \sum_{C \in \hat{C}} \sum_{T[U] \in S_C(U)} (|T^+[U]| - |T^-[U]|) \tag{1}$$

where $|T^{-}[U]|$ and $|T^{+}[U]|$ denotes the number of negative and positive edges induced in the subgraph, respectively.

The set of users maximing the expression is denoted as \hat{U} and the corresponding score is $\xi(G)$

Purity scores

New score for evaluating our method

$$Purity(U) = \frac{\# \text{ nodes with majority label}}{|U|}$$
 (2)

Evaluation algorithm

Evaluation algorithm for a graph G = (V, E) with \mathcal{I} communities.

Algorithm 1: Clustering process

Scores of @nytimes

Dataset has 80% with one label and the remaining 20% having another label

Possible new paths

- ► Try to reduce noise in the data
 - ▶ Do not consider "neutral" comments
 - Limit comments to certain depth
 - ► More data