

Introdução a Microeletrônica

Relatório Pequenos Sinais

MATHEUS FRANCISCO BATISTA MACHADO

Professor:

TIAGO OLIVEIRA WEBERA

1 Introdução

O trabalho realizado tem como compreender a criação e utilização do modelo de pequenos sinais para análise de circuito do tipo fonte comum, assim foi realizados simulações no ltspice com objetivos de estudar as suas características.

2 Simulação de um transístor do tipo NMOS

Foi utilizado um modelo N1u modelo de canal longo, realizado o circuito da figura um com os valores $Vdd=5V,\,R_D=10k\Omega,\,v_{gs}$ é descrita por uma função seno com offset =0 e frequência de 1kHz.

Figure 1: Circuito

3 Parte 1: Análise de regiões

Iremos realizar uma análise das regiões do transístor utilizando as curvas I_d por V_{GS} para a varredura de V_{GS} simulada, também o gráfico da curva $V_{out}porV_{GS}$ para a varredura de V_{GS} simulada. Para a simulação os parâmetros utilizados foram a fonte v_{gs} tenha amplitude zero, frequência.

- Região de Corte: quando $V_{GS} < V_{th}$, onde VGS é a tensão entre a porta (gate) e a fonte (source). O transistor permanece desligado, e não há condução entre o dreno e a fonte. Enquanto a corrente entre o dreno e fonte deve idealmente ser zero devido à chave estar desligada, há uma fraca corrente invertida.
- Região de Triodo (ou região linear): quando $V_{GS} > V_{th}$ e $V_{DS} < V_{GS}$ V_{th} onde V_{DS} é a tensão entre dreno e fonte. O transístor é ligado, e o canal que é criado

permite o fluxo de corrente entre o dreno e fonte. O MOSFET opera como um resistor, controlado pela tensão na porta. A corrente do dreno para a fonte é: $I_D = u_n C_{ox}(W/L)(V_{in} - V_{th})V_{out} - 1/2(V_{out})^2$

• Região de Saturação: quando $V_{GS} > V_{th}$ e $V_{DS} > V_{GS}$ - V_{th} . O transístor fica ligado, e um canal que é criado permite o fluxo de corrente entre o dreno e a fonte. Como a tensão de dreno é maior do que a tensão na porta, uma parte do canal é desligado. A criação dessa região é chamada de "pinch-off". A corrente de dreno é agora relativamente independente da tensão de dreno (numa primeira aproximação) e é controlada somente pela tensão da porta de tal forma que : $I_D = (1/2)u_n C_{ox}(W/L)(V_{GS} - V_{th})^2$

Figure 2: Regiões de operação do transístor

Podemos confirmar as regiões de operação olhando para a figura 3, percebemos que na região de corte do transístor a corrente é zero e nas demais regiões podemos calcular utilizando as formulas, para as regiões de triodo e saturação citadas nos itens anteriores.

Figure 3: Regiões de operação do transístor Vout e Id

4 Parte 2- Calculando a transcondutância

Na figura 4 esta a curva de transcondutância foi encontrada através da curva de I_d por V_{gs} , com isso sabemos que a transcondutância é igual a $d(I_d)/d(V_{GS}=gm)$ onde $gm=173.499u\Omega^{-1}$ é a transcondutância. Logo percebemos que para uma maior transcondutância temos um $V_{GS}=3V$ Com a analise da formula da transcondutância

Figure 4: Curva de transcondutância gerada

podemos perceber que quando maior a derivada da corrente maior a transcondutância, ou seja quando a diferença for maior entre elas a transcondutância é máxima.

5 Parte 3- Realizar simulação para W = 9.2 um

Nesta etapa iremos realizar o passo 1 e 2 novamente porém mudaremos o valor do W (width) para 9.2um.

Com isso identificamos as regiões de operação do transístor no gráfico, para cada caso: corte, saturação e triodo explicamos na parte 1 do trabalho. Assim também

Figure 5: Região de operação transistor para W = 9.2

podemos analisar o gráfico de vout e id assim realizamos uma análise e comparamos os valores das correntes em uma das região citada.

Figure 6: Gráfico de Vout comparando com Id

Para a outra parte da simulação foi gerada a curva I_d com isso aplicamos a formula da transcondutância e descobrimos que a maior transcondutância tem valor de $gm=414.00199u\Omega^{-1}$, logo para esse gm temos um $V_{GS}=1.9145803V$

Figure 7: Gráfico da transcondutância

6 Parte 4: Calcular resistência incremental entre Dreno e Fonte do transístor

Figure 8: Gráfico da resistência incremental

Table 1: Calcular resistência incremental

V(vout)	Id(M1)	$R ext{ incremental} = Delta V / Delta I$	R incremental media
9,88E-01	2,57E-04		
9,97E-01	2,57E-04	74101,7661900784	77886,2465081916
1,01E+00	2,57E-04	74895,58573854	
1,01E+00	2,58E-04	75836,9098712498	
1,02E+00	2,58E-04	76655,1126516486	
1,03E+00	2,58E-04	77489,0638670177	
1,04E+00	2,58E-04	78339,2226148369	
1,05E+00	2,58E-04	79206,0660124835	
1,06E+00	2,58E-04	79937,0503596921	
1,07E+00	2,58E-04	80817,4386921155	
1,08E+00	2,58E-04	81584,249084253	

Realizamos o calculo da resistência incremental utilizando a diferença entra a corrente de cima com a debaixo tabela 1 e $I_d(M1)$ igualmente para $V_(vout)$ para 10 valores em seguida realizamos a média para ter um resistência incremental .

Figure 9: Gráfico da resistência incremental

Percebemos que ao aumentar a resistência de saída das fontes de corrente conseguimos um ganho maior, além de minimizar o erro de corrente.

7 Parte 5: Pequenos sinais

Figure 10: Circuito de pequenos sinais

Na analise de pequenos sinais iremos analisar a parcela DC e AC do circuito, a consequência é que na saída teremos uma parcela DC e AC. Quando olharmos a saída iremos perceber que a fonte v_{gs} AC ira sofrer influência da fonte DC e será deslocada e passou a ter um nível médio igual ao DC, V_{GS} .

8 Parte 6: Modelo de pequenos sinais analisando linearidade

Figure 11: Modelo utilizado para o circuito

Figure 12: Circuito de pequenos sinais

Ao mudarmos a amplitude da fonte v_{gs} para 500mv podemos perceber a não linearidade da saída v_{out} . Isso acontece devido a v_{gs} trabalhar com pequenos sinais e quando aumentamos o sinal tem-se que a transcondutância diminui, com isso gera um v_{out} totalmente deformado.

Figure 13: Circuito de pequenos sinais

9 Parte 7: Analisando o ganho do circuito

Foi utilizado um igual da Figura 11, com uma fonte v_{gs} com amplitude 50mv, assim calculamos a saída v_{out} Logo pela formula tempos

$$v_D = V_{DD} - R_D I_D$$

na condição de pequenos sinais temos:

$$v_D = V_{DD} - R_D(I_D + id)$$

Logo:

$$v_d = -i_d R_D = -g_m v_{gs} R_D A_v = \frac{v_d}{v_{qs}} = -gm * R_D$$

Devido a isso temos um ganho negativo, e podemos perceber que quando mexemos na resistência equivalente mudamos o ganho do sistema.

Table 2: Calculo do ganho

				O		
W	L	Rd	Ro	Req =	Vout	Ganho
0,0000092	0,0000015	10000	77886,2465081916	8862,1655381462	-6,5521335593	-3,6689541685
0,00001012	0,0000015	10000	77887,2465081916	8862,1784846715	-6,5521431311	-3,6689595284
0,00000828	0,0000015	10000	77888,2465081916	8862,1914309022	-6,5521527028	-3,6689648882
0,0000092	0,00000165	10000	77889,2465081916	8862,2043768383	-6,5521622742	-3,6689702478
0,0000092	0,00000058	11000	77890,2465081916	8862,2173224798	-7,1263071417	-3,9904702884
0,0000092	0,0000015	9000	77891,2465081916	8862,2302678267	-5,964829297	-3,3400853502
0,0000092	0,0000015	10000	77892,2465081916	8862,2432128791	-6,5521909871	-3,668986326
0,0000092	0,0000015	10000	77893,2465081916	8862,2561576369	-7,2074206135	-3,6689916852
0,0000092	0,0000015	10000	77894,2465081916	8862,2691021001	-5,8969891152	-3,6689970442

Figure 14: Grafico de Vin e Vout