به نام خدا

Performance Evaluation of Computer Systems

Dr. Ali Movaghar Fall 2022

Performance Modeling and Design of Computer Systems

9- ERGODICITY THEORY

Ergodicity Theory

- probability of being in state j
 - $-\pi_j = \lim_{n\to\infty} P_{ij}^n$ is an ensemble average.
- Under what conditions does the limiting distribution exist?
- How does the limiting probability of being in state j, π_j , compare with the long-run time-average fraction of time spent in state j, P_j ?
- What can we say about the mean time between visits to state j, and how is this related to π_i ?

Finite-State DTMCs

Existence of the Limiting Distribution

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• This chain is periodic; π_j does not exist, although $\lim_{n \to \infty} P_{jj}^{(2n)}$ does exist.

Finite-State DTMCs

- The period of state j is the greatest common divisor (GCD) of the set of integers n, such that $P_{j,j}^n > 0$. A state is aperiodic if it has period 1. A chain is said to be aperiodic if all of its states are aperiodic.
- State j is **accessible** from state i if $P_{i,j}^n$ for some n > 0. States i and j **communicate** if i is accessible from j and vice versa.

• A Markov chain is *irreducible* if all its states communicate with each other.

Finite-State DTMCs

• **Theorem** Given an aperiodic, irreducible, finite-state DTMC with transition matrix P, as $n \to \infty$, $P_n \to L$ where L is a limiting matrix all of whose rows are the same vector, π . The vector π has all positive components, summing to 1.

 For any aperiodic, irreducible, finite-state Markov chain, the limiting probabilities exist.

Mean Time between Visits to a State

 Consider an *irreducible* finite-state Markov chain with M states and transition matrix P.

• Let m_{ij} denote the expected number of time steps needed to first get to state j, given we are currently at state i. Likewise, let m_{ij} denote the expected number of steps between visits to state j.

Mean Time between Visits to a State

• **Theorem** For an irreducible, aperiodic finite-state Markov chain with transition matrix P

$$m_{jj} = \frac{1}{\pi_j}$$

where m_{ij} is the mean time between visits to state j and $\pi_j = \lim_{n \to \infty} P_{ij}^n$.

• For a finite-state Markov chain, the limiting distribution $\pi=(\pi_0,\pi_1,\dots,\pi_{M-1})$, when it exists, is equal to the unique stationary distribution.

• The fraction of time that the Markov chain spends in state j, P_i is equal to π_i .

- f_j = probability that a chain starting in state j ever returns to state j.
- A state *j* is either recurrent or transient:
 - If $f_i = 1$, then j is a **recurrent** state.
 - If f_i < 1, then j is a **transient** state.
- Every time we visit state j we have probability $1 f_j$ of never visiting it again. Hence the number of visits is distributed Geometrically with mean $1/(1 f_i)$.

• **Theorem** With probability 1, the number of visits to a recurrent state is infinite. With probability 1, the number of visits to a transient state is finite.

Theorem

- $E[\# visits to state i in s steps | start in state i] = \sum_{n=0}^{s} P_{ii}^{n}$
- $E[Total \# visits \ to \ state \ i \mid start \ in \ state \ i] = \sum_{n=0}^{\infty} P_{ii}^n$

Theorem

- If state i is recurrent, then $\sum_{n=0}^{\infty} P_{i,i}^{n} = \infty$
- If state i is transient, then $\sum_{n=0}^{\infty} P_{ii}^n < \infty$

- Theorem If state i is recurrent and i communicates with j, (i ↔j), then j is recurrent.
- Theorem If state i is transient and i communicates with j, (i ↔ j), then j is transient.
- **Theorem** For a transient Markov chain:

$$\lim_{n \to \infty} P_{ij}^n = 0, \quad \forall j.$$

• Theorem If for a Markov chain

Then

$$\sum_{j=0}^{\infty} \pi_j = 0$$

$$\pi_j = \lim_{n \to \infty} P_{ij}^n = 0, \quad \forall j,$$

so the limiting distribution does not exist.

 Theorem For a transient Markov chain the limiting distribution does not exist.

• **Theorem** Given an aperiodic, irreducible chain. Suppose that the limiting probabilities are all zero. That is, $\pi_j = \lim_{n \to \infty} (P_{ij}^n)$, $\forall j$. Then the stationary distribution does not exist.

Infinite Random Walk Example

 All states are transient or all are recurrent. To determine whether the chain is recurrent or transient, it suffices to look at state 0.

$$V = \sum_{n=1}^{\infty} P_{00}^n$$

Infinite Random Walk Example

 If V is finite, then state 0 is transient, Otherwise it is recurrent

 Since one cannot get from 0 to 0 in an odd number of steps, it follows that

$$V = \sum_{n=1}^{\infty} P_{00}^{2n} = \sum_{n=1}^{\infty} {2n \choose n} p^n q^n$$

The equation simplified by using Lavrov's lemma

Infinite Random Walk Example

Lavrov's lemma (due to Misha Lavrov) For n ≥ 1,

$$\frac{4^n}{2n+1} < \binom{2n}{n} < 4^n$$

• **Theorem** The random walk shown in previous slide is recurrent only when p=1/2 and is transient otherwise

Positive Recurrent versus Null Recurrent

Recurrent Markov chains fall into two types: positive recurrent and null recurrent. In a positive-recurrent MC, the mean time between recurrences (returning to same state) is finite. In a null-recurrent MC, the mean time between recurrences is infinite.

Positive Recurrent versus Null Recurrent

• **Theorem** If state i is positive recurrent and $i \leftrightarrow j$, then j is positive recurrent. If state i is null recurrent and $i \leftrightarrow j$, then j is null recurrent.

• Theorem For the symmetric random walk shown in previous slide with p=1/2, the mean number of time steps between visits to state 0 is infinite.

Ergodic Theorem of Markov Chains

 An ergodic DTMC is one that has all three desirable properties: aperiodicity, irreducibility, and positive recurrence.

• Theorem (Ergodic Theorem of Markov Chains) Given a recurrent, aperiodic, irreducible DTMC, $\pi_j = \lim_{n \to \infty} P_{ij}^n$ exists and $\pi_j = \frac{1}{m_{ij}}, \ \forall j.$

For a positive recurrent, aperiodic, irreducible DTMC, $\pi_i > 0$, $\forall \, j > 0$.

Ergodic Theorem of Markov Chains

 Theorem For an aperiodic, null-recurrent Markov chain, the limiting probabilities are all zero and the limiting distribution and stationary distribution do not exist.

Ergodic Theorem of Markov Chains

- **Theorem** (Summary Theorem) An irreducible, aperiodic DTMC belongs to one of the following two classes: Either:
- i. All the states are transient, or all are null recurrent. In this case $\pi_j = \lim_{n \to \infty} P_{ij}^n = 0$, $\forall j$, and there does NOT exist a stationary distribution.
- ii. All states are positive recurrent. Then the limiting distribution $\overrightarrow{\pi} = (\pi_0, \pi_1, ...)$, exists, and there is a positive probability of being in each state. Here $\pi_j = \lim_{n \to \infty} P_{ij}^n > 0$, $\forall j$ is the limiting probability of being in state j. In this case $\overrightarrow{\pi}$ is a stationary distribution, and no other stationary distribution exists. Also, π_j is equal to $\frac{1}{m_{ij}}$, where m_{ij} is the mean number of steps between visits to state j.

 Theorem For a positive recurrent, irreducible Markov chain, with probability 1,

$$p_j = \lim_{t \to \infty} \frac{N_j(t)}{t} = \frac{1}{m_{jj}} > 0,$$

where m_{jj} is the (ensemble) mean number of time steps between visits to state j and $N_{j}(t)$ be the number of times that the Markov chain enters state j by time t (t transitions)

Corollary For an ergodic DTMC, with probability 1,

$$p_j = \pi_j = \frac{1}{m_{jj}}$$

Where $p_j = \lim_{t \to \infty} \frac{N_j(t)}{t}$ and $\pi_j = \lim_{n \to \infty} P_{ij}^n$ and m_{jj} is the (ensemble) mean number of time steps between visits to state j.

• Corollary For an ergodic DTMC, the limiting probabilities sum to 1 (i.e., $\sum_{i=0}^{j=\infty} \pi_i = 1$).

• **Theorem** (SLLN) Let X_1, X_2, \ldots be a sequence of independent, identically distributed random variables each with mean E[X]. Let $S_n = \sum_{i=1}^n X_i$. Then with probability 1,

$$\lim_{n\to\infty}\frac{S_n}{n}=\mathbf{E}\left[X\right].$$

• A *renewal process* is any process for which the times between events are i.i.d. random variables with a distribution *F*.

 Theorem (Renewal Theorem) For a renewal process, if E[X] is the mean time between renewals, we have

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{\mathbf{E}[X]} \text{ with probability } I.$$

Limiting Probabilities Interpreted as Rates

- $\pi_i P_{ij}$ = "rate" of transitions from state i to state j.
- $\sum_{j} \pi_{i} P_{ij}$ is the total rate of transitions out of state i, including possibly returning right back to state i.
- $\sum_{j} \pi_{j} P_{ji}$ This is the total rate of transitions into state i, from any state, including possibly from state i.
- Total rate leaving state i = Total rate entering state i

$$\pi_i = \sum_j \pi_i P_{ij} = \sum_j \pi_j P_{ji}.$$

Limiting Probabilities Interpreted as Rates

balance equations

$$\sum_{j \neq i} \pi_i P_{ij} = \sum_{j \neq i} \pi_j P_{ji}$$

Time-Reversibility Theorem

• **Theorem** (Time-reversible DTMC) Given an aperiodic, irreducible Markov chain, if there exist x_1, x_2, \ldots s.t., $\forall i, j$,

$$\sum_{i} x_i = 1 \quad and \quad x_i P_{ij} = x_j P_{ji},$$

Then

- 1. $\pi_i = x_i$ (the x_i 's are the limiting probabilities).
- 2. We say that the Markov chain is time-reversible.

Time-Reversibility Theorem

This leads to the following simpler algorithm for determining the π_j 's:

- **1.** First try time-reversibility equations (between pairs of states): $x_i P_{ij} = x_j P_{ji}$, $\forall i, j \text{ and } \sum_i x_i = 1$.
- **2.** If you find x_i 's that work, that is great! Then we are done: $\pi_i = x_i$.
- **3.** If not, we need to return to the regular stationary (or balance) equations.

Periodic Chains

Lemma In an irreducible DTMC, all states have the same period.

Theorem In an irreducible, positive-recurrent DTMC with period d $< \infty$, the solution π to the stationary equations

$$\vec{\pi} \cdot \mathbf{P} = \vec{\pi}$$
 and $\sum_{i} \pi_{i} = 1$

exists, is unique, and represents the timeaverage proportion of time spent in each state.

Periodic Chains

• **Theorem** (Summary Theorem for Periodic Chains) Given an irreducible DTMC with period $d < \infty$, if a stationary distribution π exists for the chain, then the chain must be positive recurrent.

Equivalent representations of limiting probabilities

