MA582 Homework 2

Alan Zhou

Due 2025-02-23

1 Main Problem

Consider the Weiner parametric family $\{W(\theta): \theta \text{ real}\}$, where it so happens that $\theta = E[\log X]$, if the random variable X > 0 obeys $X \sim W(\theta)$. Devise a UC estimator of θ .

Solution. Let $Y_i = \log X_i$ for i = 1, 2, 3, ..., where $X_i \sim W(\theta)$ for all i. Then $\theta = E[Y_i]$ for all i and we can consider the estimator

$$\hat{\theta}_n = \frac{Y_1 + \dots + Y_n}{n} = \frac{\log(X_1 \dots X_n)}{n}.$$

To see that $\hat{\theta}_n$ is unbiased, we compute

$$E[\hat{\theta}_n] = \frac{1}{n} \sum_{i=1}^n E[Y_i] = \frac{1}{n} \sum_{i=1}^n \theta = \theta.$$

To see that $\hat{\theta}_n$ is consistent, the weak law of large numbers¹ tells us that since the Y_i 's are i.i.d. with finite expectation θ ,

$$\hat{\theta}_n = \frac{Y_1 + \dots + Y_n}{n} \xrightarrow{p} \theta.$$

 $^{^{1}}$ I assume "This family is meant to be boring" means that the Y_{i} s have finite variances, since our version of the WLLN in class invokes this assumption.

2 Additional Problem

Prove that for any constant $0 < \alpha < 1/2$ there is a constant $C = C(\alpha) > 0$ such that for all t > 0,

$$P(|Z| \ge t) \le C \exp(-\alpha t^2),$$

which implies an extremely rapid decay for the survival function of |Z| as $t \to \infty$.

Solution. Squaring both sides, for t>0 the statement $|Z|\geq t$ is equivalent to $Z^2\geq t^2$. For any $\alpha>0$ satisfying $M_{Z^2}(\alpha)<\infty$, we apply Markov's inequality to the random variable Z^2 with the increasing function $u\mapsto e^{\alpha u}$ to get

$$P(Z^2 \ge t^2) = \frac{E[e^{\alpha Z^2}]}{e^{\alpha t^2}} = M_{Z^2}(\alpha) \exp(-\alpha t^2).$$

In class, we computed that $M_{Z^2}(\alpha) = (1-2\alpha)^{-1/2}$ for $0 < \alpha < 1/2$, so we can take our constant to be $C(\alpha) = (1-2\alpha)^{-1/2}$ for $0 < \alpha < 1/2$.