UBC ISCI 344 Game Theory Evolutionary Game Theory Rik Blok and Christoph Hauert

Outline: · simple population model · evolutionary model

· solve dynamics — equilibria and stability
· evolutionary game theoretic model
· replicator equation

Simple population model:

• population of replicating individuals, A

• one species, asexual, haploid -> clones

• population size can change over time, a(t)

• depends on fitness parameter, fa

exponential growth or decline $f_A t$ $\frac{da}{dt} = f_A a \longrightarrow a(t) = a_0 e^{-t}$

· check solution: da = d (a.efat) = a. faefat = faa V

fa<0

what happens in long run? $f_A > 0$: explosion, $a(t) \rightarrow \infty$ $f_A = 0$: constant, $a(t) = a_0$ $f_A < 0$: extinction, $a(t) \rightarrow 0$

· e cological model, just about population size -> not evolutionary

Evolutionary model: · evolution about changes in trait frequency need second "type" -> single gene, 2 alleles/types: A or B
 track numbers of both types: a(t) and b(t) · selection -> each type has fitness: fa us. fb $\frac{da}{dt} = f_A a$, $\frac{db}{dt} = f_B b$ \rightarrow exponential $l-x = \frac{b}{a+b} = 11$ • quotient rule to find $\frac{dx}{dt}$ $\frac{dx}{dt} = \frac{da_{1}t}{(a+b)} - a(\frac{da_{1}t}{at} + \frac{db}{at}) = \frac{1}{(a+b)^{2}} (\frac{b}{at} \frac{da}{at} - a \frac{db}{at})$ $= \frac{1}{(a+b)^{2}} (bf_{A}a - af_{B}b) = \frac{a}{a+b} \frac{b}{a+b} (f_{A} - f_{B})$ $= \times (1-x) (f_{A} - f_{B})$ Solve dynamics — equilibria: · interested in long-term trends (what eventually happens)
· first look at equilibria - special values where x doesn't change dxdt = 0 -> x=0 or x=1 -> if A's lost (x=0) or B's lost (x=1) then population all one type, no further evolution -> fa=fB also gives dx/H=O (for all x) but unlikely to occur if fa and for are arbitrary constants Solve dynamics — stability: · interested in what happens for all 0≤x≤1

Evolutionary game theoretic model:

where are the games?

-> hidden in fitness of A & B: fa and fa

-> game result if fitness depends on interactions with other A and B types

 \rightarrow f_A = average fitness/payoff of A's in population f_B = 11

- like "expected utility" but utility is fitness

$$f_A = ax + b(1-x)$$

$$f_B = cx + d(1-x)$$

- how does individual (eg. bacterium) choose between A&B?

-> it doesn't. Is genetically determined to be A or B

Selection determines whether its descendents thrive

page 5 why 5	ymmetric game?	
'	ymmetric game? hint: what would an asymmetric game mean biologically?	
Summary	 bailt simple population model added evolution solved dynamics (equilibria and stability) added game theory replicator equation 	
	· added evolution	\
	· Solved ayhamics (equilibria and slabitity)	,
	· replicator equation	