Calcolo delle Variazioni a.a. 2019-2020

Simone Secchi simone.secchi@unimib.it

http://elearning.unimib.it

Prerequisiti e strumenti

- Calcolo differenziale in spazi euclidei di dimensione finita
- Teoria della misura e dell'integrazione secondo Lebesgue
- Principi di Analisi Funzionale Lineare
- \bullet Teoria elementare degli spazi di Sobolev (almeno il caso hilbertiano p=2)

Strumenti: il calcolo differenziale in dimensione infinita

Notazione. Se X è uno spazio di Banach (reale), il suo duale topologico sarà denotato con il simbolo X^* . Se $A \in X^*$, il simbolo A[v] indicherà il valore di A nel punto v; talvolta semplificheremo la notazione e scriveremo Av al posto di A[v].

Definizione. Siano X uno spazio di Banach, e $U \subset X$ un suo aperto. Un funzionale su U è un'applicazione $I: U \to \mathbb{R}$. Si noti che i "nostri" funzionali **non** sono necessariamente **lineari**!

Definizione. Sia $I: U \to \mathbb{R}$ un funzionale. Diremo che I è derivabile secondo Fréchet nel punto $u \in U$ se esiste un elemento $A \in X^*$ tale che

$$\lim_{\|v\| \to 0} \frac{I(u+v) - I(u) - Av}{\|v\|} = 0,\tag{1}$$

o, equivalentemente, se

$$I(u+v) = I(u) + Av + o(||v||) \text{ per } v \to 0.$$

Si osservi che questa è la definizione di funzione differenziabile quando $X = \mathbb{R}^n$.

Lemma. Se I è derivabile nel punto $u \in U$, allora l'elemento A che soddisfa (1) è univocamente determinato.

Dim. Infatti, supponiamo che A e B siano due elementi di X^* che soddisfano (1). Per sottrazione,

$$\lim_{\|v\| \to 0} \frac{(A - B)v}{\|v\|} = 0.$$

Fissiamo $u \in X$ con ||u|| = 1, e scegliamo v = tu, $t \to 0^+$. Allora

$$(A - B)u = \lim_{t \to 0+} \frac{t(A - B)u}{t||u||} = 0.$$

Per l'arbitrarietà di u, concludiamo che A = B.

Definizione. Se I è un funzionale derivabile secondo Fréchet nel punto $u \in U$, la derivata (talvolta: il differenziale) di Fréchet di I in u è l'unico elemento $I'(u) \in X^*$ (talvolta: dI(u)) tale che

$$I(u + v) = I(u) + I'(u)[v] + o(||v||)$$

per $v \to 0$.

Definizione. Se $I: U \to \mathbb{R}$ è derivabile secondo Fréchet in ogni punto $u \in U$, diremo che I è Fréchet-derivabile in U. La derivata di Fréchet di I è allora la mappa $I': U \to X^*$ che ad $u \in U$ associa $I'(u) \in X^*$. Si tratta — in generale — di una mappa $non\ lineare$.

Se I' è una mappa continua da U in X^* , diremo che $I \in C^1(U)$.

Il caso hilbertiano

Se H è uno spazio di Hilbert (reale), è noto che gli elementi del duale H^* sono isometricamente identificati con vettori di H attraverso l'isomorfismo di Riesz. In particolare, un funzionale I definito su $U \subset H$ è derivabile in $u \in U$ se e solo esiste un vettore, detto d'ora in poi gradiente di I in u e denotato $\nabla I(u)$, tale che

$$I(u+v) = I(u) + \langle \nabla I(u) \mid v \rangle + o(\|v\|)$$

per $v \to 0$.

Proposizione. Siano I e J due funzionali derivabili nel punto $u \in X$. Allora valgono le seguenti affermazioni.

- 1. Se a e b sono numeri reali, allora aI + bJ è derivabile in u, e vale (aI + bJ)'(u) = aI'(u) + bJ'(u).
- 2. Il prodotto IJ è derivabile in u, e vale (IJ)'(u) = J(u)I'(u) + I(u)J'(u).
- 3. Se $\gamma: \mathbb{R} \to U$ è una curva derivabile in t_0 e $u = \gamma(t_0)$, allora la composizione $\eta: \mathbb{R} \to \mathbb{R}$ definita da $\eta(t) = I(\gamma(t))$ è derivabile in t_0 , e vale $\eta'(t_0) = I'(u)[\gamma'(t_0)]$.
- 4. Se $A \subset \mathbb{R}$ è un aperto, $f: A \to \mathbb{R}$ è derivabile in $I(u) \in A$, allora la composizione K(u) = f(I(u)) è definita in un intorno V di u, è derivabile in u e vale K'(u) = f'(I(u))I'(u).

Dim. La prima affermazione è banale (esercizio!). Per quanto riguarda la seconda, quando $v \to 0$ in X, abbiamo

$$\begin{split} I(u+v)J(u+v) &= \left(I(u) + I'(u)[v] + o(\|v\|)\right) \left(J(u) + J'(u)[v] + o(\|v\|)\right) \\ &= I(u)J(u) + J(u)I'(u)[v] + I(u)J'(u)[v] + I'(u)[v]J'(u)[v] \\ &+ o(\|v\|) \left(I(u) + I'(u)[v] + J(u) + J'(u)[v] + o(\|v\|)\right). \end{split}$$

Concludiamo osservando che

$$I'(u)[v]J'(u)[v] + o(||v||)(I(u) + I'(u)[v] + J(u) + J'(u)[v] + o(||v||))$$

è $o(\|v\|)$ per $v \to 0$. La terza affermazione è simile, infatti per $h \to 0$ in \mathbb{R}

$$\eta(t_0 + h) = I(\gamma(t_0 + h)) = I(\gamma(t_0) + \gamma'(t_0)h + o(|h|))
= I(u) + I'(u)[\gamma'(t_0)h + o(|h|)] + o(||\gamma'(t_0)h + o(|h|)||)
= \eta(t_0) + I'(u)[\gamma'(t_0)h] + I'(u)[o(|h|)] + o(||\gamma'(t_0)h + o(|h|)||).$$

Poiché gli ultimi due addendi sono o(|h|), otteniamo che

$$\eta(t_0 + h) = \eta(t_0) + I'(u)[\gamma'(t_0)h] + o(|h|).$$

Infine, quando $v \to 0$ in X, si verifica come prima che

$$K(u+v) = f(I(u+v)) = f(I(u) + I'(u)[v] + o(||v||))$$

= $f(I(u)) + f'(I(u))(I'(u)[v] + o(||v||)) + o(I'(u)[v] + o(||v||))$
= $f(I(u)) + f'(I(u))I'(u)[v] + o(||v||).$

Osservazione. È possibile introdurre il concetto di derivata per applicazioni tra due spazi di Banach X e Y. Solo in questo contesto può essere enunciata una formulazione completa della regola di derivazione delle funzioni composte.

Poiché non ne faremo uso in queste lezioni, rimandiamo al testo di Ambrosetti e Prodi per ulteriori approfondimenti. **Definizione.** Sia I un funzionale definito nell'aperto U di X, e sia $u \in U$. Diremo che I è derivabile secondo Gâteaux in u se esiste un elemento $A \in X^*$ tale che

$$\lim_{t \to 0} \frac{I(u+tv) - I(u)}{t} = Av \tag{2}$$

per ogni $v \in X$. In tal caso, l'unico (esercizio!) elemento siffatto prende il nome di derivata secondo Gâteaux di I in u, e si denota con $I'_G(u)$ o con $d_GI(u)$.

Osserviamo che questa nuova derivata riprende la cosiddetta derivata direzionale già nota nell'ambito del calcolo differenziale in dimensione finita.

In particolare, ricordando i "soliti" esempi in \mathbb{R}^2 , deduciamo che esistono funzionali (non lineari) derivabili secondo Gâteaux ma non derivabili secondo Fréchet.

Condizione sufficiente per la derivabilità secondo Fréchet

Proposizione. Supponiamo che $U \subset X$ sia un aperto, che I sia Gâteaux-derivabile in U, e che I'_G sia continua in un punto $u \in U$. Allora I è Fréchet-derivabile in u, e (ovviamente) $I'(u) = I'_G(u)$.

Omettiamo la dimostrazione, che è probabilmente stata proposta nel caso $X = \mathbb{R}^2$ nel corso di Analisi Matematica 2.

Punti critici

Definizione. Siano X uno spazio di Banach, U un aperto di X, e I un funzionale definito su U. Diremo che $u \in U$ è un punto critico di I se I è derivabile in u e

$$I'(u) = 0.$$

Più esplicitamente, questo significa che I'(u)[v] = 0 per ogni $v \in X$.

Se u è un punto critico di I e I(u)=c, diremo che u è un punto critico (di I) al livello c. Se, per qualche $c \in \mathbb{R}$, l'insieme $I^{-1}(\{c\}) \subset X$ contiene almeno un elemento, diremo che c è un valore critico per I.

L'equazione I'(u) = 0 è nota come equazione di Eulero (o di Eulero-Lagrange) associata al funzionale I.

Esempi

Esempio 1. Ogni $A \in X^*$ è derivabile. Infatti, basta scrivere

$$A[u+v] = Au + Av$$

per dedurre che A'(u) = A per qualsiasi $u \in X$.

Esempio 2. Sia X uno spazio di Banach, e sia $a: X \times X \to \mathbb{R}$ una forma bilineare continua. Denotiamo con $J: X \to \mathbb{R}$ il funzionale definito da J(u) = a(u, u) per ogni $u \in X$. Allora J è derivabile in X. Infatti

$$J(u+v) = a(u+v, u+v) = a(u, u) + a(u, v) + a(v, u) + a(v, v)$$

= $J(u) + a(u, u) + a(u, v) + a(v, u) + a(v, v)$.

Poiché $|a(v,v)| \leq M||v||^2$ per l'ipotesi di continuità di a come forma bilineare, deduciamo che a(v,v) = o(||v||) per $v \to 0$, e dunque che

$$J'(u)[v] = a(u, v) + a(v, u).$$

Esempio 3. (esercizio) Sia H uno spazio di Hilbert con norma $\|\cdot\|$. Il funzionale $J(u) = \|u\|$ è derivabile in ogni punto $u \neq 0$, e risulta

$$\nabla J(u) = \frac{u}{\|u\|}.$$

Esempio 4. Sia X uno spazio di Banach, e siano I, J due funzionali derivabili in X. Definiamo

$$Q(u) = \frac{I(u)}{J(u)}$$

sul sottoinsieme (aperto) $\{u \in X \mid J(u) \neq 0\}$. Per la Proposizione sulle regole di calcolo dimostrata sopra, possiamo affermare che Q è derivabile e che

$$Q'(u) = \frac{J(u)I'(u)[v] - I(u)J'(u)[v]}{J(u)^2}$$

per ogni u inX tale che $J(u) \neq 0$.

Esempi in spazi concreti

Esempio 5. Sia $\Omega \subset \mathbb{R}^N$, $N \geq 1$, un insieme aperto e limitato. Definiamo i funzionali

$$I: L^{2}(\Omega) \to \mathbb{R}, \quad I(u) = \int_{\Omega} |u(x)|^{2} dx,$$

$$J: H_{0}^{1}(\Omega) \to \mathbb{R}, \quad J(u) = \int_{\Omega} |\nabla u(x)|^{2} dx,$$

$$K: H^{1}(\Omega) \to \mathbb{R}, \quad K(u) = \int_{\Omega} |\nabla u(x)|^{2} dx,$$

$$L: H^{1}(\Omega) \to \mathbb{R}, \quad L(u) = \int_{\Omega} |\nabla u(x)|^{2} dx + \int_{\Omega} |u(x)|^{2} dx.$$

Trattandosi di forme quadratiche associate a forme bilineari continue, sappiamo già che i quattro funzionali sono derivabili.

Esplicitamente, valgono le relazioni

$$\nabla I(u) = 2u$$
$$\nabla L(u) = 2u$$
$$\nabla J(u) = 2u.$$

Un calcolo diretto mostra che

$$K'(u)[v] = 2 \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx$$

per ogni $u, v \in H^1(\Omega)$, ma non siamo autorizzati ad affermare che $\nabla K(u) = 2u$ (perché?)

Inversione della Convergenza Dominata

Teorema di Lebesgue. Sia Ω un aperto di \mathbb{R}^N , e sia $\{u_k\}_k$ una successione in $L^1(\Omega)$ tale che

- 1. $u_k(x) \to u(x)$ per q.o $x \in \Omega$;
- 2. esiste $v \in L^1(\Omega)$ tale che $|u_k(x)| \leq v(x)$ per q.o. $x \in \Omega$ e ogni k.

Allora $u \in L^1(\Omega)$ e $u_k \to u$ nella norma di $L^1(\Omega)$.

Questo risultato fondamentale di Teoria della Misura può essere *parzialmente* invertito, come mostra il seguente teorema. Per la dimostrazione, rimandiamo al libro di H. Brezis, Analisi funzionale.

Teorema. Sia Ω un aperto di \mathbb{R}^N , e sia $\{u_k\}_k$ una successione di $L^p(\Omega)$, $p \in [1, +\infty]$, tale che $u_k \to u$ in $L^p(\Omega)$. Allora esistono una sottosuccessione $\{u_{k_j}\}_j$ ed una funzione $v \in L^p(\Omega)$ tali che

- 1. $u_{k_j}(x) \to u(x)$ per q.o. $x \in \Omega$;
- 2. per ogni j, $|u_{k_i}(x)| \leq v(x)$ per q.o. $x \in \Omega$.

Questo teorema mostra che la convergenza forte in L^p implica — a meno di sottosuccessioni — l'esistenza di una funzione dominante.

Operatori di Nemitskii

Siano Ω un aperto limitato di \mathbb{R}^N , $N \geq 3$, con frontiera regolare, e sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua. Supponiamo che esistano a > 0 e b > 0 tali che

$$|f(t)| \le a + b|t|^{2^* - 1},$$

dove $2^* = 2N/(N-2)$ è l'esponente critico di Sobolev. Definiamo

$$F(t) = \int_0^t f(x) \, dx$$

e consideriamo il funzionale $J: H^1(\Omega) \to \mathbb{R}$ dato da

$$J(u) = \int_{\Omega} F(u(x)) \ dx.$$

Proposizione. Sotto le ipotesi precedenti, J è un funzionale derivabile in $H^1(\Omega)$, e vale

$$J'(u)[v] = \int_{\Omega} f(u(x))v(x) dx$$

per ogni $u, v \in H^1(\Omega)$.

La dimostrazione non è immediata: mostriamo prima che J è Gâteaux-derivabile, e poi che la derivata di Gâteaux è continua. Come abbiamo visto sopra, ciò implica che J è Fréchet-derivabile.

Derivata di Gâteaux

Per q.o. $x \in \Omega$, risulta

$$\lim_{t \to 0} \frac{F'(u(x) + t(v(x)) - F'(u(x))}{t} = f(u(x))v(x).$$

Per il teorema di Lagrange, esiste un numero reale θ tale che $|\theta| \leq |t|$ e

$$\left| \frac{F(u(x) + t(v(x)) - F(u(x))}{t} \right| = |f(u(x) + \theta v(x))v(x)|$$

$$\leq (a + b|u(x) + \theta v(x)|^{2^* - 1})|v(x)|$$

$$\leq C(|v(x)| + |u(x)|^{2^* - 1}|v(x)| + |v(x)|^{2^*}).$$

Per Convergenza Dominata,

$$\lim_{t \to 0} \int_{\Omega} \frac{F'(u(x) + t(v(x)) - F'(u(x))}{t} dx = \int_{\Omega} f(u(x))v(x) dx.$$

Poiché $v \mapsto \int_{\Omega} f(u(x))v(x) dx$ è un operatore lineare e continuo in $H^1(\Omega)$ (disuguaglianza di Hölder e di Sobolev), abbiamo individuato la derivata secondo Gâteaux di J:

$$J'_G(u)[v] = \int_{\Omega} f(u(x))v(x) dx.$$

Derivata di Fréchet

Mostriamo che $J'_G: H^1(\Omega) \to (H^1(\Omega))^*$ è un'applicazione continua. A tal fine, sia $\{u_k\}_k$ una successione che converge a u in $H^1(\Omega)$. Per il teorema di convergenza dominata inversa, possiamo supporre che — a meno di sottosuccessioni —

- $u_k \to u$ in $L^{2^*}(\Omega)$;
- $u_k(x) \to u(x)$ per q.o. $x \in \Omega$;
- esiste $w \in L^{2^*}(\Omega)$ tale che $|u_k(x)| \leq w(x)$ per q.o. $x \in \Omega$ e ogni k.

Usiamo la disuguaglianza di Hölder:

$$|(J'_{G}(u_{k}) - J'_{G}(u))[v]| \leq \int_{\Omega} |f(u_{k}(x)) - f(u(x))||v(x)| dx$$

$$\leq \left(\int_{\Omega} |f(u_{k}(x)) - f(u(x))|^{\frac{2^{*}}{2^{*}-1}} dx\right)^{\frac{2^{*}-1}{2^{*}}} \times \left(\int_{\Omega} |v(x)|^{2^{*}} dx\right)^{1/2^{*}}.$$

La continuità di f implica $\lim_{k\to+\infty} |f(u_k(x)) - f(u(x))| = 0$ per q.o. $x \in \Omega$, e inoltre

$$|f(u_k(x)) - f(u(x))|^{\frac{2^*}{2^*-1}} \le C \left(1 + |u_k(x)|^{2^*-1} + |u(x)|^{2^*-1}\right)^{\frac{2^*}{2^*-1}}$$

$$\le C \left(1 + |w(x)|^{2^*-1} + |w(x)|^{2^*-1}\right)^{\frac{2^*}{2^*-1}}$$

$$\le C \left(1 + |w(x)|^{2^*} + |w(x)|^{2^*}\right) \in L^1(\Omega).$$

Per Convergenza Dominata,

$$\lim_{k \to +\infty} \int_{\Omega} |f(u_k(x)) - f(u(x))|^{\frac{2^*}{2^*-1}} dx = 0.$$

Perciò

$$||J'_{G}(u_{k}) - J'_{G}(u)|| = \sup\{(J'_{G}(u_{k}) - J'_{G}(u))[v] \mid v \in H^{1}(\Omega), ||v|| = 1\}$$

$$\leq C\left(\int_{\Omega} |f(u_{k}(x)) - f(u(x))|^{\frac{2^{*}}{2^{*}-1}} dx\right)^{\frac{2^{*}-1}{2^{*}}} \to 0.$$

Riassumendo: abbiamo dimostrato che da ogni successione $\{u_k\}_k$ convergente a u è possibile estrarre una sottosuccessione tale che $J'_G(u_k) \to J'_G(u)$ in $(H^1(\Omega))^*$. È ora un esercizio di Topologia Generale dedurre che l'intera successione $\{u_k\}_k$ gode di questa proprietà (perché il limite è indipendente dalla sottosuccessione scelta).

È possibile estendere quanto dimostrato al caso in cui Ω sia un aperto qualunque, anche illimitato. Il prezzo da pagare è un rafforzamento delle ipotesi sulla funzione f

È possibile estendere quanto dimostrato al caso in cui Ω sia un aperto qualunque, anche illimitato. Il prezzo da pagare è un rafforzamento delle ipotesi sulla funzione f

Sia dunque Ω un aperto di \mathbb{R}^N con frontiera regolare, e sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e tale che

$$|f(t)| \le a|t| + b|t|^{2^*-1}$$
.

Dimostriamo che il funzionale $J(u) = \int_{\Omega} F(u(x)) dx$ è derivabile in $H^{1}(\Omega)$.

È possibile estendere quanto dimostrato al caso in cui Ω sia un aperto qualunque, anche illimitato. Il prezzo da pagare è un rafforzamento delle ipotesi sulla funzione f

Sia dunque Ω un aperto di \mathbb{R}^N con frontiera regolare, e sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e tale che

$$|f(t)| \le a|t| + b|t|^{2^*-1}$$
.

Dimostriamo che il funzionale $J(u) = \int_{\Omega} F(u(x)) dx$ è derivabile in $H^1(\Omega)$.

Derivata di Gâteaux

Per q.o. $x \in \Omega$ e per ogni $v \in H^1(\Omega)$,

$$\lim_{t \to 0} \frac{F(u(x) + tv(x)) - F(u(x))}{t} = f(u(x))v(x).$$

Per il teorema di Lagrange, esiste $\theta = \theta(x)$ tale che $|\theta| < |t|$ e

$$\left| \frac{F(u(x) + tv(x)) - F(u(x))}{t} \right| = \left| f(u(x) + \theta v(x))v(x) \right|$$

$$\leq C \left(\left| u(x) + \theta v(x) \right| + \left| u(x) + \theta v(x) \right|^{2^*} \right)$$

 $\in L^1(\Omega).$

Concludiamo ancora per Convergenza Dominata.

 $\leq C \left(|u(x)||v(x)| + |v(x)|^{2^*} + |u(x)|^{2^*-1}|v(x)| + |v(x)|^{2^*} \right)$

$$F(u(x) + tv(x)) - F(u(x))$$

For it teorems di Lagrange, esiste
$$\theta = \theta(x)$$
 tale che $|\theta| \le |t|$

Per il teorema di Lagrange, esiste $\theta = \theta(x)$ tale che $|\theta| \leq |t|$ e

$$\left| \frac{F(u(x) + tv(x)) - F(u(x))}{t} \right| = \left| f(u(x) + \theta v(x))v(x) \right|$$

$$\leq C \left(|u(x) + \theta v(x)| + |u(x) + \theta v(x)|^{2^*} \right)$$

 $\in L^1(\Omega).$

Se poi $\{u_k\}_k$ è una successione che tende a u in $H^1(\Omega)$, a meno di

Concludiamo ancora per Convergenza Dominata.

 $x \in \Omega$.

sottosuccessioni possiamo anche supporre che

•
$$u_k(x) \to u(x)$$
 per q.o. $x \in \Omega$

• $u_k \to u$ in $L^2(\Omega)$ e in $L^{2^*}(\Omega)$

• esistono $w_1 \in L^{2^*}(\Omega)$ e $w_2 \in L^2(\Omega)$ tali che $|u_k(x)| \leq w_i(x)$, i = 1, 2, per q.o.

 $\leq C \left(|u(x)||v(x)| + |v(x)|^{2^*} + |u(x)|^{2^*-1}|v(x)| + |v(x)|^{2^*} \right)$

Sia $\varepsilon > 0$, e scegliamo $R_{\varepsilon} > 0$ tale che

$$||u||_{L^{2}(\Omega_{\varepsilon})} + ||u||_{L^{2^{*}}(\Omega_{\varepsilon})}^{2^{*}-1} + ||w_{1}||_{L^{2^{*}}(\Omega_{\varepsilon})}^{2^{*}-1} + ||w_{2}||_{L^{2}(\Omega_{\varepsilon})} \leq \varepsilon,$$

dove $\Omega_{\varepsilon} = \{x \in \Omega \mid |x| > R_{\varepsilon}\}$. Ora,

$$|(J'_{G}(u_{k}) - J'_{G}(u))[v]| \leq \int_{\Omega} |f(u_{k}) - f(u)||v| dx$$

$$= \int_{\Omega \cap B(0,R)} |f(u_{k}) - f(u)||v| dx + \int_{\Omega} |f(u_{k}) - f(u)||v| dx.$$

Trattiamo separatamente gli ultimi due integrali.

Innanzitutto

 $< C||v||\varepsilon.$

$$\begin{split} & \int_{\Omega_{\varepsilon}} |f(u_{k}) - f(u)||v| \, dx \\ & \leq C \int_{\Omega_{\varepsilon}} \left(|u_{k}| + |u| + |u_{k}|^{2^{*}-1} + |u|^{2^{*}-1} \right) |v| \, dx \\ & \leq C \left(\int_{\Omega_{\varepsilon}} |w_{2}||v| \, dx + \int_{\Omega_{\varepsilon}} |u||v| \, dx + \int_{\Omega_{\varepsilon}} |w_{1}|^{2^{*}-1} |v| \, dx + \int_{\Omega_{\varepsilon}} |u|^{2^{*}-1} |v| \, dx \right) \\ & \leq C \|v\| \left(\|u\|_{L^{2}(\Omega_{\varepsilon})} + \|u\|_{L^{2^{*}}(\Omega_{\varepsilon})}^{2^{*}-1} + \|w_{1}\|_{L^{2^{*}}(\Omega_{\varepsilon})}^{2^{*}-1} + \|w_{2}\|_{L^{2}(\Omega_{\varepsilon})} \right) \end{split}$$

D'altra parte,

$$\int_{\Omega \cap B(0,R_{\varepsilon})} |f(u_k) - f(u)||v| \, dx \le C \left(\int_{\Omega \cap B(0,R_{\varepsilon})} |f(u_k) - f(u)|^{\frac{2^*}{2^*-1}} \, dx \right)^{\frac{2^*-1}{2^*}} ||v||.$$

Sui sottoinsiemi limitati di \mathbb{R} , la funzione f soddisfa una maggiorazione del tipo $|f(t)| \leq C(1+|t|^{2^*-1})$, e come sopra concludiamo che

$$\lim_{k \to +\infty} \int_{\Omega \cap B(0,R)} |f(u_k) - f(u)|^{\frac{2^*}{2^*-1}} dx = 0.$$

Ricapitolando,

$$||(J'_{G}(u_{k}) - J'_{G}(u))|| = \sup \{(J'_{G}(u_{k}) - J'_{G}(u))[v] \mid v \in H^{1}(\Omega), ||v|| = 1\}$$

$$\leq C \left(\int_{\Omega \cap B(0,R_{\varepsilon})} |f(u_{k}) - f(u)|^{\frac{2^{*}}{2^{*}-1}} dx \right)^{\frac{2^{*}-1}{2^{*}}} + C\varepsilon$$

$$= o(1) + C\varepsilon.$$

Per l'arbitrarietà di $\varepsilon > 0$, concludiamo che $J'_G(u_K) \to J'_G(u)$.

Osservazione. La regolarità della frontiera di Ω è stata utilizzata solo implicitamente per garantire la validità di tutte le immersioni di Sobolev. Ne consegue che gli stessi risultati sussistono, senza alcuna ipotesi su $\partial\Omega$, se restringiamo il funzionale J al sottospazio $H_0^1(\Omega)$.

Un problema lineare ellittico

Prenderemo a modello di applicazione un'equazione alle derivate parziali del secondo ordine, avente la forma

$$\begin{cases}
-\Delta u + q(x)u = h(x), & x \in \Omega \\
u(x) = 0, & x \in \partial\Omega
\end{cases}$$
(P)

dove

- Ω è un aperto limitato di \mathbb{R}^N
- $q \in C(\Omega), h \in C(\Omega).$

Un problema lineare ellittico

Prenderemo a modello di applicazione un'equazione alle derivate parziali del secondo ordine, avente la forma

$$\begin{cases} -\Delta u + q(x)u = h(x), & x \in \Omega \\ u(x) = 0, & x \in \partial \Omega \end{cases}$$
 (P)

dove

- Ω è un aperto limitato di \mathbb{R}^N
- $q \in C(\Omega), h \in C(\Omega).$

Il problema (P) prende il nome di problema di Dirichlet omogeneo. L'aggettivo omogeneo si riferisce qui alla condizione al bordo u=0 su $\partial\Omega$. Osserviamo che il problema è lineare.

• Una soluzione classica di (P) è una funzione $u \in C^2(\overline{\Omega})$ tale che (P) sia soddisfatto puntualmente in $\overline{\Omega}$.

• Una soluzione classica di (P) è una funzione $u \in C^2(\overline{\Omega})$ tale che (P) sia soddisfatto puntualmente in $\overline{\Omega}$.

Fissiamo $v \in C_0^1(\Omega)$ e moltiplichiamo l'equazione in (P) per v. Integrando su Ω con l'ausilio del Teorema di Stokes (versione nota anche come formula di Gauss-Green), otteniamo che

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx = \int_{\Omega} h(x)v \, dx.$$

Questa uguaglianza ha senso sotto ipotesi ben più deboli di quelle finora assunte. Ad esempio gli integrali sono finiti quando u, v sono funzioni di $L^2(\Omega)$ tali che $\partial u/\partial x_i$ e $\partial v/\partial x_i$ appartengano ad $L^2(\Omega)$ per ogni indice i. La continuità di q e h è allora eccessiva, e possiamo sostituirla con $q \in L^{\infty}(\Omega)$, $h \in L^2(\Omega)$.

• Siano dunque $q \in L^{\infty}(\Omega)$, $h \in L^{2}(\Omega)$. Una soluzione debole di (P) è una funzione $u \in H_{0}^{1}(\Omega)$ tale che

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} h(x) v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

• Siano dunque $q \in L^{\infty}(\Omega)$, $h \in L^{2}(\Omega)$. Una soluzione debole di (P) è una funzione $u \in H_{0}^{1}(\Omega)$ tale che

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} h(x) v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

Osservazione. Ogni soluzione classica è anche soluzione debole.

Infatti, $u \in C^2(\overline{\Omega})$ implica $u \in H^1(\Omega)$. Per una nota proprietà degli spazi di Sobolev, poiché u è continua in $\overline{\Omega}$ e u = 0 su $\partial\Omega$, abbiamo $u \in H^1_0(\Omega)$.

Sappiamo che, per ogni $v \in C_0^1(\Omega)$,

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} h(x) v \, dx.$$

Poiché $C_0^1(\Omega)$ è un sottospazio denso di $H_0^1(\Omega)$, ad ogni $v \in H_0^1(\Omega)$ facciamo corrispondere una successione $\{v_n\}_n \subset C_0^1(\Omega)$ tale che $v_n \to v$ in $H_0^1(\Omega)$.

Facendo tendere $n \to +\infty$ nella relazione

$$\int_{\Omega} \nabla u \cdot \nabla v_n \, dx + \int_{\Omega} q(x) u v_n \, dx = \int_{\Omega} h(x) v_n \, dx,$$

deduciamo che u è una soluzione debole di (P).

Facendo tendere $n \to +\infty$ nella relazione

$$\int_{\Omega} \nabla u \cdot \nabla v_n \, dx + \int_{\Omega} q(x) u v_n \, dx = \int_{\Omega} h(x) v_n \, dx,$$

deduciamo che u è una soluzione debole di (P).

È ragionevole chiedersi se ogni soluzione debole sia anche una soluzione classica. Vediamo che cosa possiamo dire. Facendo tendere $n \to +\infty$ nella relazione

$$\int_{\Omega} \nabla u \cdot \nabla v_n \ dx + \int_{\Omega} q(x) u v_n \ dx = \int_{\Omega} h(x) v_n \ dx,$$

deduciamo che u è una soluzione debole di (P).

È ragionevole chiedersi se ogni soluzione debole sia anche una soluzione classica. Vediamo che cosa possiamo dire.

Sia $u \in H_0^1(\Omega)$ una soluzione debole di (P). Se è noto, per qualche motivo, che $u \in C^2(\Omega)$, allora possiamo dedurre che u = 0 su $\partial\Omega$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx = \int_{\Omega} h(x)v \, dx.$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx = \int_{\Omega} h(x)v \, dx.$$

Usando nel senso contrario la formula di Stokes, arriviamo alla relazione

$$\int_{\Omega} \left(-\Delta u + q(x)u - h(x) \right) v \, dx = 0$$

per ogni $v \in C_0^1(\Omega)$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx = \int_{\Omega} h(x)v \, dx.$$

Usando nel senso contrario la formula di Stokes, arriviamo alla relazione

$$\int_{\Omega} \left(-\Delta u + q(x)u - h(x) \right) v \, dx = 0$$

per ogni $v \in C_0^1(\Omega)$.

Per densità di $C_0^1(\Omega)$ in $L^2(\Omega)$, concludiamo che $-\Delta u + q(x)u - h(x) = 0$ quasi ovunque, e che u = 0 quasi ovunque in $\partial\Omega$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx = \int_{\Omega} h(x)v \, dx.$$

Usando nel senso contrario la formula di Stokes, arriviamo alla relazione

$$\int_{\Omega} \left(-\Delta u + q(x)u - h(x) \right) v \, dx = 0$$

per ogni $v \in C_0^1(\Omega)$.

Per densità di $C_0^1(\Omega)$ in $L^2(\Omega)$, concludiamo che $-\Delta u + q(x)u - h(x) = 0$ quasi ovunque, e che u = 0 quasi ovunque in $\partial\Omega$.

• Morale della favola: abbiamo bisogno di una teoria della regolarità per le soluzioni deboli di (P).

Definiamo il funzionale $J: H^1_0(\Omega) \to \mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} h(x)u dx.$$

Definiamo il funzionale $J: H_0^1(\Omega) \to \mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} h(x)u dx.$$

Segue dagli esempi sulla derivabilità che J è derivabile secondo Fréchet e che

$$J'(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx - \int_{\Omega} h(x)v \, dx$$

per ogni $u, v \in H_0^1(\Omega)$.

Definiamo il funzionale $J: H_0^1(\Omega) \to \mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} h(x)u dx.$$

Segue dagli esempi sulla derivabilità che J è derivabile secondo Fréchet e che

$$J'(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx - \int_{\Omega} h(x)v \, dx$$

per ogni $u, v \in H_0^1(\Omega)$.

Quindi le soluzioni deboli di (P) sono esattamente i punti critici del funzionale J.

Definiamo il funzionale $J: H_0^1(\Omega) \to \mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} h(x)u dx.$$

Segue dagli esempi sulla derivabilità che J è derivabile secondo Fréchet e che

$$J'(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x)uv \, dx - \int_{\Omega} h(x)v \, dx$$

per ogni $u, v \in H_0^1(\Omega)$.

Quindi le soluzioni deboli di (P) sono esattamente i punti critici del funzionale J.

Il funzionale J è chiamato $funzionale \ dell'energia$ associato a (P), anche se dovremmo chiamarlo più propriamente funzionale di azione o di Eulero-Lagrange.

Un problema non lineare

Molti modelli della Fisica Moderna conducono ad equazioni *non lineari*. Vediamo come la discussione precedente possa essere estesa ad un prototipo di equazione alle derivate parziali *semilineare*.

Un problema non lineare

Molti modelli della Fisica Moderna conducono ad equazioni *non lineari*. Vediamo come la discussione precedente possa essere estesa ad un prototipo di equazione alle derivate parziali *semilineare*.

Sia Ω un aperto limitato di \mathbb{R}^N . Supponiamo che $q \in L^{\infty}(\Omega)$ e che $f: \mathbb{R} \to \mathbb{R}$ sia una funzione continua e tale che

$$|f(t)| \le a + b|t|^{2^*-1}$$
.

Un problema non lineare

Molti modelli della Fisica Moderna conducono ad equazioni *non lineari*. Vediamo come la discussione precedente possa essere estesa ad un prototipo di equazione alle derivate parziali *semilineare*.

Sia Ω un aperto limitato di \mathbb{R}^N . Supponiamo che $q \in L^{\infty}(\Omega)$ e che $f: \mathbb{R} \to \mathbb{R}$ sia una funzione continua e tale che

$$|f(t)| \le a + b|t|^{2^*-1}$$
.

Consideriamo il problema

$$\begin{cases}
-\Delta u + q(x)u = f(u), & x \in \Omega \\
u = 0, & x \in \partial\Omega
\end{cases}$$
(SP)

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} f(u) v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} f(u) v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

Sia $F(t)=\int_0^t f(x)\ dx$, e definiamo un funzionale $J\colon H^1_0(\Omega)\to\mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} F(u) dx.$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} f(u)v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

Sia $F(t) = \int_0^t f(x) dx$, e definiamo un funzionale $J: H_0^1(\Omega) \to \mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2} \int_{\Omega} q(x)|u|^2 dx - \int_{\Omega} F(u) dx.$$

Sappiamo che J è derivabile e che

$$J'(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} q(x)uv \, dx - \int_{\Omega} f(u)v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} q(x) uv \, dx = \int_{\Omega} f(u) v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

Sia $F(t)=\int_0^t f(x)\ dx$, e definiamo un funzionale $J\colon H^1_0(\Omega)\to\mathbb{R}$ mediante la formula

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{2} \int_{\Omega} q(x) |u|^2 \, dx - \int_{\Omega} F(u) \, dx.$$

Sappiamo che J è derivabile e che

$$J'(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} q(x)uv \, dx - \int_{\Omega} f(u)v \, dx$$

per ogni $v \in H_0^1(\Omega)$.

• Ancora una volta, le soluzioni deboli di (SP) corrispondono ai punti critici del funzionale dell'energia J.

Riassunto

- Abbiamo visto che è possibile estendere il calcolo differenziale elementare (cioè quello delle funzioni di più variabili) alle funzioni di *infinite* variabili.
- Con questo linguaggio, abbiamo messo in corrispondenza biunivoca opportune soluzioni di equazioni differenziali con gli zeri della derivata di opportuni funzionali (non lineari).

Prospettive

- Ci prefiggiamo ora di... andare a caccia dei punti critici, al fine di *risolvere* equazioni differenziali.
- Per far ciò, vedremo che occorrono strumenti nuovi, e che la *topologia* dello spazio di riferimento avrà un ruolo fondamentale.

Problemi (in tutti i sensi) di minimizzazione

Uno dei più importanti teoremi dell'Analisi Matematica recita:

Teorema. Ogni funzione reale continua su un insieme compatto di \mathbb{R}^N possiede massimi e minimi assoluti.

Problemi (in tutti i sensi) di minimizzazione

Uno dei più importanti teoremi dell'Analisi Matematica recita:

Teorema. Ogni funzione reale continua su un insieme compatto di \mathbb{R}^N possiede massimi e minimi assoluti.

Questo enunciato continua a sussistere per funzioni continue definite su spazi metrici compatti, con dimostrazione sostanzialmente identica.

Problemi (in tutti i sensi) di minimizzazione

Uno dei più importanti teoremi dell'Analisi Matematica recita:

Teorema. Ogni funzione reale continua su un insieme compatto di \mathbb{R}^N possiede massimi e minimi assoluti.

Questo enunciato continua a sussistere per funzioni continue definite su spazi metrici compatti, con dimostrazione sostanzialmente identica.

Il ruolo della compattezza nel Teorema di Weierstrass è fondamentale, come mostra il seguente controesempio, dovuto anch'esso a Weierstrass.

Esempio. Sia

$$I(u) = \int_{-1}^{1} |xu'(x)|^2 dx$$

definito per ogni funzione $u \in C^1([-1,1])$ a valori reali. Il problema

$$\min_{u \in X} I(u),$$

dove $X = \{u \in C^1([-1, 1]) \mid u(\pm 1) = \pm 1\}$ non ha soluzioni.

Esempio. Sia

$$I(u) = \int_{-1}^{1} |xu'(x)|^2 dx$$

definito per ogni funzione $u \in C^1([-1,1])$ a valori reali. Il problema

$$\min_{u \in X} I(u),$$

dove $X = \{u \in C^1([-1, 1]) \mid u(\pm 1) = \pm 1\}$ non ha soluzioni.

Infatti, la famiglia di funzioni

$$u_{\varepsilon}(x) = \frac{\arctan(x/\varepsilon)}{\arctan(1/\varepsilon)}$$

mostra con un calcolo diretto che $\inf_X I = 0$. È poi evidente che I(u) = 0 implica u' = 0 in [-1, 1], cioè u è costante. Pertanto $u \notin X$.

Weierstrass in astratto

Teorema. Sia M uno spazio topologico di Hausdorff, e supponiamo che $I: M \to \mathbb{R} \cup \{+\infty\}$ soddisfi la seguente condizione:

Per ogni $\alpha \in \mathbb{R}$, l'insieme $K_{\alpha} = \{u \in M \mid I(u) \leq \alpha\}$ è compatto.

Allora I raggiunge il suo estremo inferiore inf $_M I$.

Dim. Possiamo evidentemente supporre che I non sia identicamente uguale a $+\infty$. Poniamo

$$\alpha_0 = \inf_M I \ge -\infty,$$

e consideriamo una successione $\{\alpha_m\}_m$ strettamente decrescente verso α_0 . Poniamo per brevità $K_m = K_{\alpha_m}$.

Weierstrass in astratto

Teorema. Sia M uno spazio topologico di Hausdorff, e supponiamo che $I: M \to \mathbb{R} \cup \{+\infty\}$ soddisfi la seguente condizione:

Per ogni $\alpha \in \mathbb{R}$, l'insieme $K_{\alpha} = \{u \in M \mid I(u) \leq \alpha\}$ è compatto.

Allora I raggiunge il suo estremo inferiore inf_M I.

Dim. Possiamo evidentemente supporre che Inon sia identicamente uguale a $+\infty.$ Poniamo

$$\alpha_0 = \inf_M I \ge -\infty,$$

e consideriamo una successione $\{\alpha_m\}_m$ strettamente decrescente verso α_0 . Poniamo per brevità $K_m = K_{\alpha_m}$. Per ipotesi, ogni K_m è compatto e non-vuoto. Inoltre $K_m \supset K_{m+1}$. Per la proprietà dell'intersezione finita, esiste

$$u \in \bigcap_{m \in \mathbb{N}} K_m,$$

cioè $I(u) \leq \alpha_m$ per ogni m. Facendo tendere $m \to +\infty$, concludiamo che $I(u) \leq \alpha_0$, cioè u è un minimo assoluto di I su M.

• Nell'ipotesi del Teorema precedente, per ogni $\alpha \in \mathbb{R}$ l'insieme

$$\{u \in M \mid I(u) > \alpha\} = M \setminus K_{\alpha}$$

- è aperto in M. Questo significa, per definizione, che I è una funzione $semicontinua\ inferiormente$ su M.
- Nei casi concreti, la struttura di M può essere più ricca di quella di un mero spazio topologico. Di seguito un caso piuttosto frequente nell'Analisi Variazionale.

Teorema. Sia V uno spazio di Banach riflessivo con norma $\|\cdot\|$, e sia $M \subset V$ un sottospazio debolmente chiuso. Supponiamo che $I: M \to \mathbb{R} \cup \{+\infty\}$ sia un funzionale tale che

- $I(u) \to +\infty$ se $||u|| \to +\infty$;
- per ogni $u \in M$ ed ogni successione $\{u_m\}_k$ in M tale che $u_m \rightharpoonup u$, risulta: $I(u) \leq \liminf_{m \to +\infty} I(u_m)$.

Allora I è limitato dal basso, e raggiunge il suo minimo assoluto.

Dim. Sia $\alpha_0 = \inf_M I$ e sia $\{u_m\}_m$ una successione in M tale che $I(u_m) \to \alpha_0$ per $m \to +\infty$. Per la prima ipotesi, $\{u_m\}_m$ è una successione limitata in V (altrimenti...). Il teorema di Eberlein-Smulian garantisce la convergenza debole di tale successione a qualche $u \in V$. Per ipotesi M è debolmente chiuso, sicché $u \in M$. Infine,

$$I(u) \leq \liminf_{m \to +\infty} I(u_m) = \alpha_0.$$