Set Theory and Logic Extra Example sheet on Propositional Logic

Thomas Forster

February 10, 2022

You might need to look up conjunctive and disjunctive normal forms.

(i)

Show how \land , \lor and \neg can each be defined in terms of \rightarrow and \bot . Why can you not define \land in terms of \lor ? Can you define \lor in terms of \rightarrow ? Can you define \land in terms of \rightarrow and \lor ?

(ii)

Explain briefly the relation between truth-tables and Disjunctive Normal Form. Explain briefly why every propositional formula is equivalent both to a formula in CNF and to a formula in DNF.

Establish that the class of all propositional tautologies is the maximal propositional logic in the sense that any superset of it that is a propositional logic (closed under \models and substitution) is trivial (contains all well-formed formulæ).

(iii) 🗫

- (a) Suppose A is a propositional formula and 'p' is a letter appearing in A. Explain how to find formulæ A_1 and A_2 not containing 'p' such that A is logically equivalent to $(A_1 \wedge p) \vee (A_2 \wedge \neg p)$.
- (b) Hence or otherwise establish that, for any two propositional formulæ A and B with $A \models B$, there is a formula C, containing only those propositional letters common to both A and B, such that $A \models C$ and $C \models B$. (Hint: for the base case of the induction on the size of the common vocabulary you will need to think about expressions over the empty vocabulary).

(iv)

Why does T not follow from K and S?

Show that Peirce's Law: $((A \to B) \to A) \to A$ cannot be deduced from K and S.

(v) 🗫

A type in a propositional language \mathcal{L} is a countably infinite set of formulæ.

For T an \mathcal{L} -theory a T-valuation is an \mathcal{L} -valuation that satisfies T. A valuation v realises a type Σ if v satisfies every $\sigma \in \Sigma$. Otherwise v omits Σ . We say a theory T locally omits a type Σ if, whenever ϕ is a formula such that T proves $\phi \to \sigma$ for every $\sigma \in \Sigma$, then $T \vdash \neg \phi$.

(a) Prove the following:

Let T be a propositional theory, and $\Sigma \subseteq \mathcal{L}(T)$ a type. If T locally omits Σ then there is a T-valuation omitting Σ .

(b) Prove the following

Let T be a propositional theory and, for each $i \in \mathbb{N}$, let $\Sigma_i \subseteq \mathcal{L}(T)$ be a type. If T locally omits every Σ_i then there is a T-valuation omitting all of the Σ_i .

(vi)

Prove that, for every formula ϕ in Conjunctive Normal Form, there is a formula ϕ' which

- (i) is satisfiable iff ϕ is;
- (ii) is in CNF where every conjunct contains at most three disjuncts.

(Hint: there is no assumption that $\mathcal{L}(\phi') = \mathcal{L}(\phi)$.)