```
In [273]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import heapq
import io

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from collections import Counter

df = pd.read_csv("Desktop/column_2C.csv")

df.head()
```

#### Out[273]:

|   | PI    | PT    | LLA   | SS    | PR     | GOS   | CLASS |
|---|-------|-------|-------|-------|--------|-------|-------|
| 0 | 63.03 | 22.55 | 39.61 | 40.48 | 98.67  | -0.25 | AB    |
| 1 | 39.06 | 10.06 | 25.02 | 29.00 | 114.41 | 4.56  | AB    |
| 2 | 68.83 | 22.22 | 50.09 | 46.61 | 105.99 | -3.53 | AB    |
| 3 | 69.30 | 24.65 | 44.31 | 44.64 | 101.87 | 11.21 | AB    |
| 4 | 49.71 | 9.65  | 28.32 | 40.06 | 108.17 | 7.92  | AB    |

### In [156]:

```
df['feature']=df['CLASS'].map({'AB':1,'NO':0})
```

### In [284]:

```
#scatterplot and boxplot
sns.pairplot(df,hue = 'CLASS')
plt.show()
```





# In [278]:

```
sns.boxplot(x="CLASS",y="PI",data=df) plt.show()
```



## In [279]:

```
sns.boxplot(x='CLASS',y = 'PT',data = df)
plt.show()
```



### In [280]:

```
sns.boxplot(x='CLASS',y = 'LLA',data = df)
plt.show()
```





# In [281]:

```
sns.boxplot(x='CLASS',y = 'SS',data = df)
plt.show()
```



# In [282]:

```
sns.boxplot(x='CLASS',y = 'PR',data = df)
plt.show()
```



## In [283]:

```
sns.boxplot(x='CLASS',y = 'GOS',data = df)
plt.show()
```



```
AB NO CLASS
```

## In [164]:

```
#split data

trainAB=df[df['CLASS']=='AB'].iloc[:140,:]
trainNO=df[df['CLASS']=='NO'].iloc[:70,:]
train=pd.concat([trainAB,trainNO])
train
```

### Out[164]:

|     | PI    | PT    | LLA   | SS    | PR     | GOS    | CLASS | feature |
|-----|-------|-------|-------|-------|--------|--------|-------|---------|
| 0   | 63.03 | 22.55 | 39.61 | 40.48 | 98.67  | -0.25  | AB    | 1       |
| 1   | 39.06 | 10.06 | 25.02 | 29.00 | 114.41 | 4.56   | AB    | 1       |
| 2   | 68.83 | 22.22 | 50.09 | 46.61 | 105.99 | -3.53  | AB    | 1       |
| 3   | 69.30 | 24.65 | 44.31 | 44.64 | 101.87 | 11.21  | AB    | 1       |
| 4   | 49.71 | 9.65  | 28.32 | 40.06 | 108.17 | 7.92   | AB    | 1       |
| 5   | 40.25 | 13.92 | 25.12 | 26.33 | 130.33 | 2.23   | AB    | 1       |
| 6   | 53.43 | 15.86 | 37.17 | 37.57 | 120.57 | 5.99   | AB    | 1       |
| 7   | 45.37 | 10.76 | 29.04 | 34.61 | 117.27 | -10.68 | AB    | 1       |
| 8   | 43.79 | 13.53 | 42.69 | 30.26 | 125.00 | 13.29  | AB    | 1       |
| 9   | 36.69 | 5.01  | 41.95 | 31.68 | 84.24  | 0.66   | AB    | 1       |
| 10  | 49.71 | 13.04 | 31.33 | 36.67 | 108.65 | -7.83  | AB    | 1       |
| 11  | 31.23 | 17.72 | 15.50 | 13.52 | 120.06 | 0.50   | AB    | 1       |
| 12  | 48.92 | 19.96 | 40.26 | 28.95 | 119.32 | 8.03   | AB    | 1       |
| 13  | 53.57 | 20.46 | 33.10 | 33.11 | 110.97 | 7.04   | AB    | 1       |
| 14  | 57.30 | 24.19 | 47.00 | 33.11 | 116.81 | 5.77   | AB    | 1       |
| 15  | 44.32 | 12.54 | 36.10 | 31.78 | 124.12 | 5.42   | AB    | 1       |
| 16  | 63.83 | 20.36 | 54.55 | 43.47 | 112.31 | -0.62  | AB    | 1       |
| 17  | 31.28 | 3.14  | 32.56 | 28.13 | 129.01 | 3.62   | AB    | 1       |
| 18  | 38.70 | 13.44 | 31.00 | 25.25 | 123.16 | 1.43   | AB    | 1       |
| 19  | 41.73 | 12.25 | 30.12 | 29.48 | 116.59 | -1.24  | AB    | 1       |
| 20  | 43.92 | 14.18 | 37.83 | 29.74 | 134.46 | 6.45   | AB    | 1       |
| 21  | 54.92 | 21.06 | 42.20 | 33.86 | 125.21 | 2.43   | AB    | 1       |
| 22  | 63.07 | 24.41 | 54.00 | 38.66 | 106.42 | 15.78  | AB    | 1       |
| 23  | 45.54 | 13.07 | 30.30 | 32.47 | 117.98 | -4.99  | AB    | 1       |
| 24  | 36.13 | 22.76 | 29.00 | 13.37 | 115.58 | -3.24  | AB    | 1       |
| 25  | 54.12 | 26.65 | 35.33 | 27.47 | 121.45 | 1.57   | AB    | 1       |
| 26  | 26.15 | 10.76 | 14.00 | 15.39 | 125.20 | -10.09 | AB    | 1       |
| 27  | 43.58 | 16.51 | 47.00 | 27.07 | 109.27 | 8.99   | AB    | 1       |
| 28  | 44.55 | 21.93 | 26.79 | 22.62 | 111.07 | 2.65   | AB    | 1       |
| 29  | 66.88 | 24.89 | 49.28 | 41.99 | 113.48 | -2.01  | AB    | 1       |
|     |       |       |       |       |        |        |       |         |
| 250 | 36.16 | -0.81 | 33.63 | 36.97 | 135.94 | -2.09  | NO    | 0       |
| 251 | 40.75 | 1.84  | 50.00 | 38.91 | 139.25 | 0.67   | NO    | 0       |
| 252 | 42.92 | -5.85 | 58.00 | 48.76 | 121.61 | -3.36  | NO    | 0       |
| 253 | 63.79 | 21.35 | 66.00 | 42.45 | 119.55 | 12.38  | NO    | 0       |

|     |       |       |       |       |        |                   |       | _       |
|-----|-------|-------|-------|-------|--------|-------------------|-------|---------|
| 254 | 72.96 | 19.58 | 61.01 | 53.38 | 111.23 | <sub>0.8</sub> ps | RPass | feature |
| 255 | 67.54 | 14.66 | 58.00 | 52.88 | 123.63 | 25.97             | NO    | 0       |
| 256 | 54.75 | 9.75  | 48.00 | 45.00 | 123.04 | 8.24              | NO    | 0       |
| 257 | 50.16 | -2.97 | 42.00 | 53.13 | 131.80 | -8.29             | NO    | 0       |
| 258 | 40.35 | 10.19 | 37.97 | 30.15 | 128.01 | 0.46              | NO    | 0       |
| 259 | 63.62 | 16.93 | 49.35 | 46.68 | 117.09 | -0.36             | NO    | 0       |
| 260 | 54.14 | 11.94 | 43.00 | 42.21 | 122.21 | 0.15              | NO    | 0       |
| 261 | 74.98 | 14.92 | 53.73 | 60.05 | 105.65 | 1.59              | NO    | 0       |
| 262 | 42.52 | 14.38 | 25.32 | 28.14 | 128.91 | 0.76              | NO    | 0       |
| 263 | 33.79 | 3.68  | 25.50 | 30.11 | 128.33 | -1.78             | NO    | 0       |
| 264 | 54.50 | 6.82  | 47.00 | 47.68 | 111.79 | -4.41             | NO    | 0       |
| 265 | 48.17 | 9.59  | 39.71 | 38.58 | 135.62 | 5.36              | NO    | 0       |
| 266 | 46.37 | 10.22 | 42.70 | 36.16 | 121.25 | -0.54             | NO    | 0       |
| 267 | 52.86 | 9.41  | 46.99 | 43.45 | 123.09 | 1.86              | NO    | 0       |
| 268 | 57.15 | 16.49 | 42.84 | 40.66 | 113.81 | 5.02              | NO    | 0       |
| 269 | 37.14 | 16.48 | 24.00 | 20.66 | 125.01 | 7.37              | NO    | 0       |
| 270 | 51.31 | 8.88  | 57.00 | 42.44 | 126.47 | -2.14             | NO    | 0       |
| 271 | 42.52 | 16.54 | 42.00 | 25.97 | 120.63 | 7.88              | NO    | 0       |
| 272 | 39.36 | 7.01  | 37.00 | 32.35 | 117.82 | 1.90              | NO    | 0       |
| 273 | 35.88 | 1.11  | 43.46 | 34.77 | 126.92 | -1.63             | NO    | 0       |
| 274 | 43.19 | 9.98  | 28.94 | 33.22 | 123.47 | 1.74              | NO    | 0       |
| 275 | 67.29 | 16.72 | 51.00 | 50.57 | 137.59 | 4.96              | NO    | 0       |
| 276 | 51.33 | 13.63 | 33.26 | 37.69 | 131.31 | 1.79              | NO    | 0       |
| 277 | 65.76 | 13.21 | 44.00 | 52.55 | 129.39 | -1.98             | NO    | 0       |
| 278 | 40.41 | -1.33 | 30.98 | 41.74 | 119.34 | -6.17             | NO    | 0       |
| 279 | 48.80 | 18.02 | 52.00 | 30.78 | 139.15 | 10.44             | NO    | 0       |

210 rows × 8 columns

```
In [165]:
```

```
testAB=df[df['CLASS']=='AB'].iloc[140:,:]
testNO=df[df['CLASS']=='NO'].iloc[70:,:]
test=pd.concat([testAB,testNO])
test
```

### Out[165]:

|     | PI    | PT    | LLA    | SS    | PR     | GOS    | CLASS | feature |
|-----|-------|-------|--------|-------|--------|--------|-------|---------|
| 140 | 69.56 | 15.40 | 74.44  | 54.16 | 105.07 | 29.70  | AB    | 1       |
| 141 | 89.50 | 48.90 | 72.00  | 40.60 | 134.63 | 118.35 | AB    | 1       |
| 142 | 85.29 | 18.28 | 100.74 | 67.01 | 110.66 | 58.88  | AB    | 1       |
| 143 | 60.63 | 20.60 | 64.54  | 40.03 | 117.23 | 104.86 | AB    | 1       |
| 144 | 60.04 | 14.31 | 58.04  | 45.73 | 105.13 | 30.41  | AB    | 1       |
| 145 | 85.64 | 42.69 | 78.75  | 42.95 | 105.14 | 42.89  | AB    | 1       |
| 146 | 85.58 | 30.46 | 78.23  | 55.12 | 114.87 | 68.38  | AB    | 1       |
| 147 | 55.08 | -3.76 | 56.00  | 58.84 | 109.92 | 31.77  | AB    | 1       |
| 148 | 65.76 | 9.83  | 50.82  | 55.92 | 104.39 | 39.31  | AB    | 1       |
| 149 | 79.25 | 23.94 | 40.80  | 55.30 | 98.62  | 36.71  | AB    | 1       |

|                   | DI             | PT            | 11.4           |                    | PR     | COS                 | C1 ASS   | footuro      |
|-------------------|----------------|---------------|----------------|--------------------|--------|---------------------|----------|--------------|
| 150               | 81.11          | 20.69         | 60.69          | <b>SS</b><br>60.42 | 94.02  | <b>GOS</b><br>40.51 | AB<br>AB | teature<br>1 |
| 151               | 48.03          | 3.97          | 58.34          | 44.06              | 125.35 | 35.00               | AB       | 1            |
| 152               | 63.40          | 14.12         | 48.14          | 49.29              | 111.92 | 31.78               | AB       | 1            |
| 153               | 57.29          | 15.15         | 64.00          | 42.14              | 116.74 | 30.34               | AB       | 1            |
| 154               | 41.19          | 5.79          | 42.87          | 35.39              | 103.35 | 27.66               | AB       | 1            |
| 155               | 66.80          | 14.55         | 72.08          | 52.25              | 82.46  | 41.69               | AB       | 1            |
| 156               | 79.48          | 26.73         | 70.65          | 52.74              | 118.59 | 61.70               | AB       | 1            |
| 157               | 44.22          | 1.51          | 46.11          | 42.71              | 108.63 | 42.81               | AB       | 1            |
| 158               | 57.04          | 0.35          | 49.20          | 56.69              | 103.05 | 52.17               | AB       | 1            |
| 159               | 64.27          | 12.51         | 68.70          | 51.77              | 95.25  | 39.41               | AB       | 1            |
| 160               | 92.03          | 35.39         | 77.42          | 56.63              | 115.72 | 58.06               | AB       | 1            |
| 161               | 67.26          | 7.19          | 51.70          | 60.07              | 97.80  | 42.14               | AB       | 1            |
| 162               | 118.14         | 38.45         | 50.84          | 79.70              | 81.02  | 74.04               | AB       | 1            |
| 163               | 115.92         | 37.52         | 76.80          | 78.41              | 104.70 | 81.20               | AB       | 1            |
| 164               | 53.94          | 9.31          | 43.10          | 44.64              | 124.40 | 25.08               | AB       | 1            |
| 165               | 83.70          | 20.27         | 77.11          | 63.43              | 125.48 | 69.28               | AB       | 1            |
| 166               | 56.99          | 6.87          | 57.01          | 50.12              | 109.98 | 36.81               | AB       | 1            |
| 167               | 72.34          | 16.42         | 59.87          | 55.92              | 70.08  | 12.07               | AB       | 1            |
| 168               | 95.38          | 24.82         | 95.16          | 70.56              | 89.31  | 57.66               | AB       | 1            |
| 169               | 44.25          | 1.10          | 38.00          | 43.15              | 98.27  | 23.91               | AB       | 1            |
|                   |                |               |                | •••                | •••    | •••                 | •••      |              |
| 280               | 50.09          | 13.43         | 34.46          | 36.66              | 119.13 | 3.09                | NO       | 0            |
| 281               | 64.26          | 14.50         | 43.90          | 49.76              | 115.39 | 5.95                | NO       | 0            |
| 282               | 53.68          | 13.45         | 41.58          | 40.24              | 113.91 | 2.74                | NO       | 0            |
| 283               | 49.00          | 13.11         | 51.87          | 35.88              | 126.40 | 0.54                | NO       | 0            |
| 284               | 59.17          | 14.56         | 43.20          | 44.60              | 121.04 | 2.83                | NO       | 0            |
| 285               | 67.80          | 16.55         | 43.26          | 51.25              | 119.69 | 4.87                | NO       | 0            |
| 286               | 61.73          | 17.11         | 46.90          | 44.62              | 120.92 | 3.09                | NO       | 0            |
| 287               | 33.04          | -0.32         | 19.07          | 33.37              | 120.39 | 9.35                | NO       | 0            |
| 288               | 74.57          | 15.72         | 58.62          | 58.84              | 105.42 | 0.60                | NO       | 0            |
| 289               | 44.43          | 14.17         | 32.24          | 30.26              | 131.72 | -3.60               | NO       | 0            |
| 290               | 36.42          | 13.88         | 20.24          | 22.54              | 126.08 | 0.18                | NO       | 0            |
| 291               | 51.08          | 14.21         | 35.95          | 36.87              | 115.80 | 6.91                | NO       | 0            |
| 292               | 34.76          | 2.63          | 29.50          | 32.12              | 127.14 | -0.46               | NO       | 0            |
| 293               | 48.90          | 5.59          | 55.50          | 43.32              | 137.11 | 19.85               | NO       | 0            |
| 294               | 46.24          | 10.06         | 37.00          | 36.17              | 128.06 | -5.10               | NO       | 0            |
| 295               | 46.43          | 6.62          | 48.10          | 39.81              | 130.35 | 2.45                | NO       | 0            |
| 296               | 39.66          | 16.21         | 36.67          | 23.45              | 131.92 | -4.97               | NO       | 0            |
| 297               | 45.58          | 18.76         | 33.77          | 26.82              | 116.80 | 3.13                | NO       | 0            |
| 298               | 66.51          | 20.90         | 31.73          | 45.61              | 128.90 | 1.52                | NO       | 0            |
|                   |                |               |                | 53.01              | 110.71 | 6.08                | NO       | 0            |
| 299               | 82.91          | 29.89         | 58.25          |                    |        |                     |          |              |
|                   | 82.91<br>50.68 | 29.89<br>6.46 | 35.00          | 44.22              | 116.59 | -0.21               | NO       | 0            |
| 299               |                |               |                |                    |        |                     | NO<br>NO | 0            |
| 299<br>300<br>301 | 50.68          | 6.46          | 35.00<br>69.02 | 44.22              | 111.48 | 6.06                |          |              |

| 304 | 45.08 | 12.31 | <b>LLA</b><br>44.58 | 32.77 | 147.89 | -8.94S | RLASS | feature |
|-----|-------|-------|---------------------|-------|--------|--------|-------|---------|
| 305 | 47.90 | 13.62 | 36.00               | 34.29 | 117.45 | -4.25  | NO    | 0       |
| 306 | 53.94 | 20.72 | 29.22               | 33.22 | 114.37 | -0.42  | NO    | 0       |
| 307 | 61.45 | 22.69 | 46.17               | 38.75 | 125.67 | -2.71  | NO    | 0       |
| 308 | 45.25 | 8.69  | 41.58               | 36.56 | 118.55 | 0.21   | NO    | 0       |
| 309 | 33.84 | 5.07  | 36.64               | 28.77 | 123.95 | -0.20  | NO    | 0       |

100 rows × 8 columns

```
In [166]:
```

```
#(c)i
K=[]
Errortest=[]
Errortrain=[]
for k in range(1,len(train),3):
   K.append(k)
   neighbor=KNeighborsClassifier(n neighbors=k)
   neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
    predtesty=neighbor.predict(test.iloc[:,:6])
   predtrainy=neighbor.predict(train.iloc[:,:6])
    cmtest=confusion matrix(test.loc[:,'feature'],predtesty)
    cmtrain=confusion matrix(train.loc[:,'feature'],predtrainy)
    errortest=((cmtest[0,1]+cmtest[1,0])/len(test))
    errortrain=((cmtrain[0,1]+cmtrain[1,0])/len(train))
    Errortest.append(errortest)
    Errortrain.append(errortrain)
```

#### In [173]:

```
#(c)ii
table=pd.DataFrame({'K':K,'test error':Errortest,'train error':Errortrain})
```

#### In [174]:

```
plt.figure
plt.plot(table['K'], table['test error'])
plt.plot(table['K'], table['train error'])
plt.title('train error v.s. test error')
plt.xlabel('K')
```

## Out[174]:

<matplotlib.text.Text at 0x136af1860>

#### In [127]:

```
# From the plot above, we could know that the optimal k is 4

neighbor=KNeighborsClassifier(n_neighbors=4)
    neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
    predtesty=neighbor.predict(test.iloc[:,:6])
    predtrainy=neighbor.predict(train.iloc[:,:6])
    cmtest=confusion_matrix(test.loc[:,'feature'],predtesty)
    cmtrain=confusion_matrix(train.loc[:,'feature'],predtrainy)

TN=cmtest[0,0]/cmtest[0,0]+cmtest[0,1]
TP=cmtest[1,1]/cmtest[1,0]+cmtest[1,1]
precision=cmtest[1,1]/cmtest[0,1]+cmtest[1,1]
F=(1+0.3**2)*(TP+precision)/(0.3**2*pecision+TP)
```

```
File "<ipython-input-127-ab6c0e4abc7e>", line 4
    neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
IndentationError: unexpected indent
In [175]:
\# From the plot above, we could know that the optimal k is 4
neighbor=KNeighborsClassifier(n neighbors=4)
neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
predtesty=neighbor.predict(test.iloc[:,:6])
predtrainy=neighbor.predict(train.iloc[:,:6])
cmtest=confusion_matrix(test.loc[:,'feature'],predtesty)
cmtrain=confusion matrix(train.loc[:,'feature'],predtrainy)
TN=cmtest[0,0]/cmtest[0,0]+cmtest[0,1]
TP=cmtest[1,1]/cmtest[1,0]+cmtest[1,1]
precision=cmtest[1,1]/cmtest[0,1]+cmtest[1,1]
F=(1+0.3**2)*(TP+precision)/(0.3**2*precision+TP)
TN
Out[175]:
6.0
In [176]:
ΤP
Out[176]:
138.0
In [177]:
precision
Out[177]:
82.8
In [178]:
Out[178]:
1.6546489563567364
In [191]:
# (c) iii
K = []
N=[]
Errortest=[]
Errortrain=[]
for n in range(10,211,10):
    trainAB=df[df['CLASS']=='AB'].iloc[:n-round(n/3),:]
    trainNO=df[df['CLASS']=='NO'].iloc[:round(n/3),:]
    train=pd.concat([trainAB,trainNO])
    testAB=df[df['CLASS']=='AB'].iloc[n-round(n/3):,:]
    testNO=df[df['CLASS']=='NO'].iloc[round(n/3):,:]
    test=pd.concat([testAB,testNO])
for k in range (1, n, 5):
    neighbor=KNeighborsClassifier(n neighbors=k)
    neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
```

```
predtesty=neighbor.predict(test.iloc[:,:6])
predtrainy=neighbor.predict(train.iloc[:,:6])
cmtest=confusion_matrix(test.loc[:,'feature'],predtesty)
cmtrain=confusion_matrix(train.loc[:,'feature'],predtrainy)
errortest=((cmtest[0,1]+cmtest[1,0])/len(test))
errortrain=((cmtrain[0,1]+cmtrain[1,0])/len(train))
K.append(k)
N.append(n)
Errortest.append(errortest)
Errortrain.append(errortrain)
```

#### In [195]:

```
tableadjust=pd.DataFrame({'train size':N,'K':K,'test error':Errortest,'train error':Errortrain})
tableadjust[(tableadjust['test error']==min(tableadjust['test error']))]
```

#### Out[195]:

|   | K | test error | train error | train size |
|---|---|------------|-------------|------------|
| 1 | 6 | 0.08       | 0.147619    | 210        |

#### In [212]:

```
# (d)
#i Minkowski Distance
#a.Manhattan Distance
#i
K=[]
Errortest=[]
Errortrain=[]
trainAB=df[df['CLASS']=='AB'].iloc[:140,:]
trainNO=df[df['CLASS']=='NO'].iloc[:70,:]
train=pd.concat([trainAB,trainNO])
testAB=df[df['CLASS']=='AB'].iloc[140:,:]
testNO=df[df['CLASS']=='NO'].iloc[70:,:]
test=pd.concat([testAB, testNO])
for k in range (1,197,5):
   neighbor=KNeighborsClassifier(n neighbors=k,metric='minkowski',p=1)
   neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
   predtesty=neighbor.predict(test.iloc[:,:6])
   predtrainy=neighbor.predict(train.iloc[:,:6])
   cmtest=confusion_matrix(test.loc[:,'feature'],predtesty)
    cmtrain=confusion matrix(train.loc[:,'feature'],predtrainy)
    errortest = ((cmtest[0,1] + cmtest[1,0])/len(test))
    errortrain=((cmtrain[0,1]+cmtrain[1,0])/len(train))
    K.append(k)
    Errortest.append(errortest)
   Errortrain.append(errortrain)
table min=pd.DataFrame({'K':K,'test error':Errortest,'train error':Errortrain})
table min[(table min['test error']==min(table min['test error']))]
#optimal k is 6
```

## Out[212]:

|   | K  | test error | train error |
|---|----|------------|-------------|
| 1 | 6  | 0.11       | 0.138095    |
| 2 | 11 | 0.11       | 0.142857    |
| 5 | 26 | 0.11       | 0.166667    |

#### In [218]:

```
#ii select p
I=[]
Errortest=[]
Errortrain=[]
for i in range (1,11):
    I.append(i/10)
    neighbor=KNeighborsClassifier(n neighbors=k,metric='minkowski',p=10**(i/10))
    neighbor.fit(train.iloc[:,:6],train.loc[:,'feature'])
    predtesty=neighbor.predict(test.iloc[:,:6])
    predtrainy=neighbor.predict(train.iloc[:,:6])
    cmtest=confusion_matrix(test.loc[:,'feature'],predtesty)
    cmtrain=confusion matrix(train.loc[:,'feature'],predtrainy)
    errortest=((cmtest[0,1]+cmtest[1,0])/len(test))
    errortrain=((cmtrain[0,1]+cmtrain[1,0])/len(train))
    K.append(k)
    Errortest.append(errortest)
    Errortrain.append(errortrain)
table_min1=pd.DataFrame({'log10p':I,'test error':Errortest,'train error':Errortrain})
table_min1[(table_min1['test error']==min(table_min1['test error']))]
```

#### Out[218]:

|   | log10p | test error | train error |
|---|--------|------------|-------------|
| 0 | 0.1    | 0.3        | 0.333333    |
| 1 | 0.2    | 0.3        | 0.333333    |
| 2 | 0.3    | 0.3        | 0.333333    |
| 3 | 0.4    | 0.3        | 0.333333    |
| 4 | 0.5    | 0.3        | 0.333333    |
| 5 | 0.6    | 0.3        | 0.333333    |
| 6 | 0.7    | 0.3        | 0.333333    |
| 7 | 0.8    | 0.3        | 0.333333    |
| 8 | 0.9    | 0.3        | 0.333333    |
| 9 | 1.0    | 0.3        | 0.333333    |

#### In [276]:

```
#Mahalanobis Distance
K=[]
Errortest=[]
Errortrain=[]
trainAB=df[df['CLASS']=='AB'].iloc[:140,:]
trainNO=df[df['CLASS']=='NO'].iloc[:70,:]
train=pd.concat([trainAB,trainNO])
testAB=df[df['CLASS']=='AB'].iloc[140:,:]
testNO=df[df['CLASS']=='NO'].iloc[70:,:]
test=pd.concat([testAB,testNO])
x=np.array(train.iloc[:,:6])
y=np.array(test.iloc[:,:6])
test1=np.cov(df.iloc[:,:6].T)
train1=np.cov(train.iloc[:,:6].T)
invtest=np.linalg.inv(test1)
invtrain=np.linalg.inv(train1)
for k in range (1, 197, 5):
    testfeature=[]
    trainfeature=[]
    for j in range(len(test)):
        distances=[]
        for i in range(len(train)):
           distances.append(np.sqrt(np.dot(np.dot(x[i]-y[j],invtest),(x[i]-y[j]).T)))
```

```
for distance in kmin:
            index.append(distances.index(distance))
        knn=train.iloc[index,7]
        testfeature.append(Counter(knn).most common()[0][0])
    for j in range(len(train)):
        distance=[]
        for i in range (len(train)):
            \texttt{distances.append(np.sqrt(np.dot(np.dot(x[i]-y[j],invtrain),(x[i]-y[j]).T))))}
        kmin=heapq.nsmallest(k,distances)
        index=[]
        for distance in kmin:
           index.append(distances, index(distance))
        knn=train.iloc[index,7]
        trainfeature.append(Counter(knn).most common()[0][0])
        cmtest=confusion matrix(test.loc[:,'feature'],testfeature)
        cmtrain=confusion matrix(train.loc[:,'feature'],trainfeature)
        errortest=((cmtest[0,1]+cmtest[1,0])/len(test))
        errortrain=((cmtrain[0,1]+cmtrain[1,0])/len(train))
        K.append(k)
        Errortest.append(errortest)
        Errortrain.append(errortrain)
table_maha=pd.DataFrame(('K':K,'test error':Errortest,'train error':Errortrain))
table_min1[(table_maha['test error']==min(table_maha['test error']))]
IndexError
                                          Traceback (most recent call last)
<ipython-input-276-1335199554f1> in <module>()
    29
               for distance in kmin:
     30
                   index.append(distances.index(distance))
    31
               knn=train.iloc[index,7]
    32
               testfeature.append(Counter(knn).most common()[0][0])
     33
           for j in range(len(train)):
/Users/chengshihan/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py in
__getitem__(self, key)
  1323
                    except (KeyError, IndexError):
  1324
                        pass
-> 1325
                    return self._getitem_tuple(key)
                else:
  1326
  1327
                    key = com._apply_if_callable(key, self.obj)
/Users/chengshihan/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py in getitem tuple(
self, tup)
  1660
            def getitem tuple(self, tup):
  1661
                self._has_valid tuple(tup)
-> 1662
   1663
                try:
  1664
                   return self. getitem lowerdim(tup)
/Users/chengshihan/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py in
has valid tuple(self, key)
   187
                   if i >= self.obj.ndim:
                        raise IndexingError('Too many indexers')
   188
                    if not self. has_valid_type(k, i):
--> 189
   190
                        raise ValueError("Location based indexing can only have [%s] "
   191
                                         "types" % self._valid_types)
/Users/chengshihan/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py in has_valid_type
(self, key, axis)
  1595
                    return True
  1596
               elif is integer(key):
-> 1597
                   return self._is_valid_integer(key, axis)
  1598
                elif is list like indexer(key):
   1599
                    return self._is_valid_list_like(key, axis)
/Users/chengshihan/anaconda/lib/python3.5/site-packages/pandas/core/indexing.py in
```

kmin=heapq.nsmallest(k, distances)

index=[]