Faculté Polytechnique de Mons

Service d'électronique et Microélectronique

1009-02 Electronique Physique

Exercices La Diode – Jonction PN

Prof. C. Valderrama

Exercices d'électronique physique

1009-02 Electronique Physique	1
Exercices d'électronique physique	
La Diode	
Objectifs	
Rappels	3
Déroulement	
Difficultés des étudiants	3
La jonction PN	3
Rappel	3
Exercices	9
Exercice 1	9
Exercice 2	
Exercice 3	17
Exercice 4	21
Exercice 5	25
Exercice 6	29
Exercice 7	33
Exercice 8	36
Exercice 9	40
Exercice 10: examen juin 2003	44
Exercice 11	

La Diode

Objectifs

- § Illustrer les concepts physiques de la jonction PN
- § Illustrer les différents modèles linéarisation autour d'un point de fonctionnement.

Rappels

Introduire la structure physique de la jonction PN, et de ses différents modèles.

Déroulement

- § Rappel réalisé aux tableaux
- § Exercice 6 réalisé par les étudiants : première utilisation des modèles
- § Rappel : Schéma petits signaux
- § Exercice 11 : réalisé par eux mêmes : circuit équivalent au laboratoire

Difficultés des étudiants

Difficultés liées à la théorie des circuits. Le concept de schéma petits signaux est compris en surface

La jonction PN

Rappel

Semi-conducteurs

§ Semi-conducteur intrinsèque

$$pn = n_i^2$$

$$n_{i-5i300K} = 1.45 * 10^{10} cm^{-3}$$

§ Condition de neutralité

$$n + N_a^- = p + N_d^+$$

§ Charge de l'électron

$$q = 1.6x10^{-19} C$$

§ Constante de Boltzmann:

$$k = 1,38x10^{-23} \frac{eV}{K}$$

§ Tension thermique (@300°K)

$$kT/q = 26mV$$

§ Conductivité

$$s\left[\left(\Omega m\right)^{-1}\right] = q\left(n\mathbf{m}_n + p\mathbf{m}_p\right)$$

Jonction PN

§ Potentiel de contact (potentiel interne de jonction PN à l'équilibre)

$$\Phi_0[V] = \frac{kT}{q} ln \left(\frac{N_A N_D}{n_i^2} \right)$$

§ Champ électrique interne :

$$E_{max} = -\frac{q}{\varepsilon_s} N_a l_{po} = -\frac{q}{\varepsilon_s} N_d l_{no}$$

§ Expression de la neutralité électrique du système :

$$N_a l_{po} = N_d l_{no}$$

§ Largeurs des zones de déplétion en fonction du potentiel de contact (potentiel interne de jonction PN à l'équilibre)

$$l_{po} = \sqrt{\frac{2e_s}{q} \frac{\Phi_o N_d}{N_a (N_a + N_d)}}$$

$$l_{no} = \sqrt{\frac{2e_s}{q} \frac{\Phi_o N_a}{N_d (N_a + N_d)}}$$

$$\Phi_o = \Phi_{no} - \Phi_{po} = \frac{qN_a}{2e_s} l_{po}^2 + \frac{qN_d}{2e_s} l_{no}^2$$

§ Zone de transition: largeur total de charge d'espace (potentiel interne de jonction PN à l'équilibre)

$$l_{no} + l_{po} = \sqrt{\frac{2\varepsilon_s}{q}} \Phi_o \left(\frac{1}{N_a} + \frac{1}{N_d}\right)$$

§ Jonction PN polarisée

$$\Phi = \Phi_n - \Phi_p = \Phi_o - V_a$$

§ Largeurs des zones de déplétion en fonction du potentiel de contact

$$l_{p} = \sqrt{\frac{2\varepsilon_{s}}{q} \frac{\left(\Phi_{o} - V_{a}\right)}{\left(N_{a} + N_{d}\right)} \frac{N_{d}}{N_{a}}}$$

$$l_{n} = \sqrt{\frac{2\varepsilon_{s}}{q} \frac{\left(\Phi_{o} - V_{a}\right)}{\left(N_{a} + N_{d}\right)} \frac{N_{a}}{N_{d}}}$$

§ Potentiel dans la jonction PN

§ Largeur de la jonction

$$L[m] = \sqrt{\frac{2e_0 e_r (\Phi_0 - V_D)}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)}$$

§ Permittivité du vide

$$e_0 = 8,854x10^{-14} F/cm$$

§ Courant à travers la diode

$$I_D[A] = I_S \left[exp \left(\frac{qV_D}{nkT} \right) - 1 \right]$$

 I_S = courant de fuite, V_D = tension appliquée

§ Condition de neutralité

$$N_A W_P = N_D W_N$$

• Modèles de la diode

Figure 1 : Modèles de la diode

Exercices

Figure 2 : dépendance des mobilités des électrons et des trous de la concentration des impuretés dans le silicium

Exercice 1

Un morceau de silicium pur a une longueur de 3 mm et une section transversale rectangulaire de 50 μm * 100 μm .

(a) Calculez la résistance R et la tension U entre les extrémités du morceau à T = 300 K si l'on mesure un courant de 1 μA (Si pur @300 K). Concentration intrinsèque $n_i = 1,45 \times 10^{10}$ cm⁻³, mobilité $\mu_n = 1500$ cm²/(V.s) et $\mu_p = 475$ cm²/(V.s)

Solution : $R = 1,309 \text{ G}\Omega$ et U = 1309 V

(b) Idem pour un morceau de silicium de type N, si la concentration des donneurs à 300 K égale $5x10^{14}$ cm⁻³ (cf. Figure 2 : dépendance des mobilités des électrons et des trous de la concentration des impuretés dans le silicium)

Solution : $R = 50 \text{ K}\Omega$ et U = 0.05 V

Solution (1.a)

Un morceau de silicium pur a une longueur de 3 mm et une section transversale rectangulaire de $50 \, \mu m * 100 \, \mu m$.

Calculez la résistance R et la tension U entre les extrémités du morceau à T=300~K si l'on mesure un courant de 1 μA (Si pur @300 K). Concentration intrinsèque $n_i=1,45x10^{10}~cm^{-3}$, mobilité $\mu_n=1500~cm^2/(V.s)$ et $\mu_p=475~cm^2/(V.s)$

Solution: $R = 1.309 \text{ G}\Omega$ et U = 1309 V

• Dimensions du morceau de silicium:

$$L = 0.3 \text{ cm}, W*h = (5*10^{-3}) * (1*10^{-2}) \text{ cm}^2.$$

• Concentration intrinsèque:

$$n_i = 1.45*10^{10} \text{ cm}^{-3}$$

• Mobilité des électrons:

$$\mu_n = 1500 \text{ cm}^2/(\text{V.s})$$

• Mobilité des trous:

$$\mu_p = 475 \text{ cm}^2/(\text{V.s})$$

• Calcul de la conductivité:

$$pn = n_i^2$$

$$q = 1,6x10^{-19} C$$

$$p = n = n_i$$

$$s[(\Omega m)^{-1}] = q(nm_n + pm_p)$$

$$= 1,6x10^{-19} * 1,45x10^{10} * (1500 + 475)$$

$$= 4,582x10^{-6} (\Omega cm)^{-1}$$

• Calcul de la résistivité:

$$R[\Omega] = \left(\frac{1}{s}\right)\left(\frac{L}{Wh}\right) = \frac{1}{4,582x10^{-6}} \frac{0.3}{5x10^{-3} * 1x10^{-2}}$$
$$= 1,309G\Omega$$

• Calcul de la tension entre les extrémités du morceau :

$$U = Ri = 1,309x10^{9} *1x10^{-6}$$
$$= 1309V$$

Solution (1.b)

Un morceau de silicium pur a une longueur de 3 mm et une section transversale rectangulaire de $50 \, \mu m * 100 \, \mu m$.

Calculez la résistance R et la tension U entre les extrémités du morceau à T = 300 K si l'on mesure un courant de 1 μA pour un morceau de silicium de type N, si la concentration des donneurs à 300 K égale 5×10^{14} cm⁻³ (cf. Figure 2). Concentration intrinsèque $n_i = 1,45*10^{10}$ cm⁻³, mobilité $\mu_n = 1500$ cm²/(V.s) et $\mu_p = 475$ cm²/(V.s)

Solution : $R = 50 \text{ K}\Omega$ et U = 0.05 V

• Concentration des donneurs :

$$N_d = 5 \times 10^{14} \text{ cm}^{-3}$$

• Concentration des trous:

$$p = \frac{n_i^2}{n} = \frac{n_i^2}{N_d} = \frac{(1.45 \times 10^{10})^2}{5 \times 10^{14}}$$

$$p = \frac{n_i^2}{n} = \frac{n_i^2}{N_d} = \frac{(1.45 \times 10^{10})^2}{5 \times 10^{14}}$$

$$= 4.2 \times 10^5 \text{ cm}^{-3} << n$$

• Mobilité des électrons :

$$n = N_D = 5x10^{14} \implies m_n = 1500$$

• Mobilité des trous :

$$p = 4.2x10^5 \, \text{cm}^{-3} \Rightarrow \mathbf{m}_p = 475$$

• Calcul de la conductivité :

$$q = 1,6x10^{-19} C$$

$$S[(\Omega m)^{-1}] = q(nm_n + pm_p) = (1,6x10^{-19}) * (5x10^{14} * 1500 + 4,2x10^5 * 475)$$

$$= 0,12(\Omega cm)^{-1}$$

• Calcul de la résistance:

$$R[\Omega] = \left(\frac{1}{s}\right) \left(\frac{L}{Wh}\right) = \left(\frac{1}{0.12}\right) \left(\frac{0.3}{5x10^{-3} * 1x10^{-2}}\right)$$
$$= 50k\Omega$$

• Calcul de la tension:

$$U = Ri = 5x10^4 *1x10^{-6}$$
$$= 50mV$$

Exercice 2

Sur un substrat de silicium de type N ayant une conductivité $\sigma_n = 0.01~(\Omega cm)^{-1}~@300~K$ on veut former des ilots de type P avec une conductivité de $0.5~(\Omega cm)^{-1}$ pour fabriquer des diodes.

(a) Quelle est la concentration d'atomes de bore qu'il faut introduire ? (cf. Figure 2, approximation successive)

Solution: $N_a = 1.1 \times 10^{16} \text{ cm}^{-3}$

(b) Quelle sera la concentration d'électrons libres dans l'ilot?

Solution : $n = 2.1 \times 10^4 \text{cm}^{-3}$

(b) Quelle sera la concentration des trous dans l'ilot?

Solution: $p=N_a = 1,1x10^{16} \text{ cm}^{-3}$

Solution (2.a)

Sur un substrat de silicium de type N ayant une conductivité $\sigma_n = 0.01~(\Omega cm)^{-1}~@300~K$ on veut former des ilots de type P avec une conductivité de $0.5~(\Omega cm)^{-1}$ pour fabriquer des diodes.

Quelle est la concentration d'atomes de bore qu'il faut introduire ? (cf. Figure 2 : dépendance des mobilités des électrons et des trous de la concentration des impuretés dans le silicium, approximation successive)

Solution: $N_a = 1.12 \times 10^{16} \text{ cm}^{-3}$

• Conductivité du semi-conducteur type N :

$$s_{p}[(\Omega m)^{-1}] = 0.01(\Omega m)^{-1}$$

• En supposant une concentration d'impuretés supérieure a ni mais inferieur à $5x10^{14}$ cm³ ont trouve une mobilité des électrons:

$$n_i << N_d < 5x10^{14} cm^{-3} \rightarrow m_n = 1500 \frac{cm^2}{V.s}$$

• Ce qui nous donne une concentration de donneurs:

$$S_{n}[(\Omega m)^{-1}] = 0.01(\Omega m)^{-1}$$

$$m_{n} = 1500 \frac{cm^{2}}{V.s}$$

$$S[(\Omega m)^{-1}] = q(nm_{n} + pm_{p})$$

$$n = N_{d} >> p$$

$$S_{n} = qnm_{n} \Rightarrow N_{d} = \frac{S}{qm_{n}} = \frac{0.01}{1.6x10^{-19} * 1500} \frac{V}{\Omega \frac{C}{s} cm^{3}} = 4.17x10^{13} cm^{-3}$$

- Encore inferieur à 5*10¹⁴cm⁻³, ce qui nous permet de dire que la mobilité des électrons reste valable.
- Pour obtenir un ilot de type P, il faudra introduire des impuretés de type accepteur (atomes de Bore) avec une concentration $N_a >> N_d$
- En supposant une concentration d'impuretés supérieure a N_d mais inferieur à 5x10¹⁴cm⁻³ ont trouve une mobilité pour les trous de:

$$N_a \ll N_a < 5x10^{14} cm^{-3} \rightarrow m_p = 475 \frac{cm^2}{V.s}$$

§ Qui nous donnera une concentration d'impuretés Na :

$$\begin{split} \mathbf{S}_{p} \left[(\Omega m)^{-1} \right] &= 0.5 (\Omega m)^{-1} \\ \mathbf{m}_{n} &= 1500 \frac{cm^{2}}{V.s} \\ \mathbf{m}_{p} &= 475 \frac{cm^{2}}{V.s} \\ \mathbf{S} \left[(\Omega m)^{-1} \right] &= q (n\mathbf{m}_{n} + p\mathbf{m}_{p}) \\ p &\approx N_{a} >> n \end{split}$$

$$\mathbf{S}_{p} = q p \mathbf{m}_{p} \\ \mathbf{S}_{p} &= q p \mathbf{m}_{p} \\ \mathbf{S}_{p} = q p \mathbf{m}_{p} \\ \mathbf{S}_{p} &= q p \mathbf{m}_{p} \\ \mathbf{S}_{p} &= q p \mathbf{m}_{p} \\ \mathbf{S}_{p} &= q p \mathbf{S}_{p} \\ \mathbf{S}_{p} &= q p \mathbf{S}_$$

§ Cependant on constate que nous ne respectons pas l'hypothèse $N_d << 5 \mathrm{x} 10^{14} \mathrm{cm}^{-3}$, donc il va falloir recalculer la mobilité :

$$N_a = 6.6x10^{15} cm^{-3} \rightarrow m_p = 310 \frac{cm^2}{V.s}$$

§ Et on recalcule la concentration :

$$s_p = qN_a m_p \Rightarrow N_a = \frac{s_p}{qm_p} = \frac{0.5}{1.6x10^{-19} * 310} \frac{V}{\Omega \frac{C}{s} cm^3} = 1x10^{16} cm^{-3}$$

§ Pour laquelle on obtient encore la mobilité :

$$\begin{split} N_a &= 1x10^{16}\,cm^{-3} \\ N_d &= 4,17x10^{13}\,cm^{-3} \\ N &= N_a + N_d = 1x10^{16} + 4,17x10^{13} = 1x10^{16}\,cm^{-3} \\ N &= 1x10^{16}\,cm^{-3} \rightarrow \begin{cases} m_p &= 280\frac{cm^2}{V.s} \\ m_n &= 1200\frac{cm^2}{V.s} \end{cases} \end{split}$$

§ Et on vérifie la conductivité :

$$\begin{vmatrix}
N_a = 1x10^{16} cm^{-3} \\
Nd = 4,2x10^{13} cm^{-3} \\
s[(\Omega m)^{-1}] = q(nm_n + pm_p)
\end{vmatrix} s[(\Omega m)^{-1}] = 1,6x10^{-19} * (4,2x10^{13} * 1200 + 1x10^{16} * 280)$$

Solution (2.b)

Quelle sera la concentration d'électrons libres dans les ilots ?

Solution:
$$n = 2.1 \times 10^4 \text{ cm}^{-3}$$

§ Par la condition de neutralité :

$$n + N_a^- = p + N_d^+$$

§ Si on suppose que p>> n (semi-conducteur Type P):

$$p \approx N_a^- - N_d^+ = 1x10^{16} - 4,17x10^{13} \approx 1x10^{16} \text{ cm}^{-3}$$

• Par le produit p.n on obtient la concentration d'électrons libres :

$$p n = n_i^2 \Rightarrow n = \frac{n_i^2}{p} = \frac{(1,45x10^{10})^2}{1x10^{16}} = 21025cm^{-3}$$

Solution (2.c)

Quelle sera la concentration des trous dans l'ilot?

Solution:
$$p=N_a = 1.1 \times 10^{16} \text{ cm}^{-3}$$

§ Par la condition de neutralité :

$$n + N_a^- = p + N_d^+$$

ullet Avec la concentration d'électrons libres n et les concentrations d'impuretés N_a et N_d on recalcule p:

$$n + N_a^- = p + N_d^+$$

$$p = n + N_a^- - N_d^+ = 2x10^4 + 1{,}12x10^{16} - 4{,}2x10^{13} = 1{,}1x10^{16} \text{ cm}^{-3}$$

• Et on obtient p=N_a

Exercice 3

Calculez la largeur L de la jonction PN d'une diode et l'intensité E du champ électrique dans la jonction pour :

a.
$$V_A = 0 V$$

b.
$$V_A = -5 \text{ V}$$

c.
$$V_A = +0.3 \text{ V}$$

Si T = 300 K,
$$N_A$$
 = 6,9x10¹⁷ cm⁻³, N_D = 8,33x10¹³ cm⁻³ et ϵ_r = 12

Solution

- (a) $L = 3,297 \mu m$ et E = 2069 V/cm
- (b) $L = 9,516 \mu m$ et E = 5970 V/cm
- (c) $L = 2,467 \mu m$ et E = 1548 V/cm

Solution (3.a)

Calculez la largeur L de la jonction PN d'une diode et l'intensité E du champ électrique dans la jonction pour $V_A=0$ V. Si T=300 K, $N_A=6.9 \times 10^{17}$ cm⁻³, $N_D=8.33 \times 10^{13}$ cm⁻³ et $\epsilon_r=12$.

 $L = 3,297 \mu m \text{ et } E = 2069 \text{ V/cm}$

• Le potentiel interne (jonction à l'équilibre) :

$$\Phi_0[V] = \frac{kT}{q} ln \left(\frac{N_A N_D}{n_i^2} \right) = \frac{1,38 \times 10^{-23} * 300}{1,6 \times 10^{-19}} ln \left(\frac{6,9 \times 10^{17} * 8,33 \times 10^{13}}{\left(1,45 \times 10^{10}\right)^2} \right)$$
$$= 0.68 V$$

• Avec $V_A = 0V$ la jonction est à l'équilibre. Largeur de la jonction PN à l'équilibre :

$$l_{no} + l_{po} = \sqrt{\frac{2\varepsilon_s}{q}} \Phi_o \left(\frac{1}{N_a} + \frac{1}{N_d}\right) = \sqrt{\frac{2*(8,854x10^{-14}*12)}{1,6x10 - 19}} (0,68) \left(\frac{1}{6,9x10^{17}} + \frac{1}{8,33x10^{13}}\right)$$
$$= 3,29x10^{-4} cm = 3,29x10^{-6} m = 3,29mm$$

• Noter que N_a>>N_d, on peut simplifier:

$$\begin{split} l_p &= \sqrt{\frac{2\varepsilon_s}{q} \frac{\left(\varPhi_o - V_a\right)}{\left(N_a + N_d\right)} \frac{N_d}{N_a}} \rightarrow \sqrt{\frac{2\varepsilon_s}{q} \left(\varPhi_o - V_a\right) \frac{N_d}{\left(N_a\right)^2}} \approx 3,98x10^{-4} \, \text{mm} \\ l_n &= \sqrt{\frac{2\varepsilon_s}{q} \frac{\left(\varPhi_o - V_a\right)}{\left(N_a + N_d\right)} \frac{N_a}{N_d}} \rightarrow \sqrt{\frac{2\varepsilon_s}{q} \left(\varPhi_o - V_a\right) \frac{1}{N_d}} \approx 3,29 \, \text{mm} \\ l &= l_p + l_n \approx l_n \approx 3,29 \, \text{mm} \end{split}$$

La largeur de la jonction l coïncide avec la zone de déplétion N l_n La zone de déplétion N $l_n >> l_p$.

§ Champ électrique interne :

$$\begin{split} E_{max} &= -\frac{q}{\varepsilon_s} N_a l_{po} = -\frac{q}{\varepsilon_s} N_d l_{no} \\ E_{max} &= -\frac{q}{\varepsilon_s} N_d l_{no} \approx -\frac{1,6x10^{-19}}{\left(8,85x10^{-14}*12\right)} 8,3x10^{13}*3,29x10^{-4} \\ &\approx -4,13*10^3 V cm^{-1} \\ E &= \frac{\Phi_0}{l} = \frac{0,68}{3.29x10^{-4}} = 2,1x10^3 V cm^{-1} \end{split}$$

Solution (3.b)

Calculez la largeur L de la jonction PN d'une diode et l'intensité E du champ électrique dans la jonction pour V_A = -5 V. Si T = 300 K, N_A = 6,9*10¹⁷ cm⁻³, N_D = 8,33*10¹³ cm⁻³ et ϵ_r = 12.

 $L = 9,516 \mu m$ et E = 5970 V/cm

• Largeur de la jonction PN avec $V_A = -5 \text{ V}$:

$$\begin{split} l &= l_n + l_p = \sqrt{\frac{2\varepsilon_s}{q} \left(\varPhi_o - V_a \left(\frac{1}{N_a} + \frac{1}{N_d} \right) \right. \\ &= \sqrt{\frac{2* \left(8.854 \times 10^{-14} * 12 \right)}{1.6 \times 10 - 19} \left(0.68 + 5 \right) \left(\frac{1}{6.9 \times 10^{17}} + \frac{1}{8.33 \times 10^{13}} \right) \\ &= 9.52 \times 10^{-4} \, cm = 9.52 \times 10^{-6} \, m = 9.52 \, \text{mm} \end{split}$$

• Noter que N_a>>N_d, on peut simplifier:

$$\begin{split} l_{p} &= \sqrt{\frac{2\varepsilon_{s}}{q} \frac{\left(\varPhi_{o} - V_{a}\right)}{\left(N_{a} + N_{d}\right)} \frac{N_{d}}{N_{a}}} \rightarrow \sqrt{\frac{2\varepsilon_{s}}{q} \left(\varPhi_{o} - V_{a}\right) \frac{N_{d}}{\left(N_{a}\right)^{2}}} \approx 1,15x10^{-2} \, \text{mm} \\ l_{n} &= \sqrt{\frac{2\varepsilon_{s}}{q} \frac{\left(\varPhi_{o} - V_{a}\right)}{\left(N_{a} + N_{d}\right)} \frac{N_{a}}{N_{d}}} \rightarrow \sqrt{\frac{2\varepsilon_{s}}{q} \left(\varPhi_{o} - V_{a}\right) \frac{1}{N_{d}}} \approx 9,52 \, \text{mm} \\ l &= l_{p} + l_{n} \approx l_{n} \approx 9,52 \, \text{mm} \end{split}$$

La largeur de la jonction l coïncide avec la zone de déplétion N l_n . La zone de déplétion N $l_n >> l_p$. Avec une tension externe V_a négative la largeur de la jonction l'augmente $l > l_0$

§ Champ électrique interne :

$$\begin{split} E_{max} &= -\frac{q}{\varepsilon_s} N_a l_p = -\frac{q}{\varepsilon_s} N_d l_n \\ E_{max} &= -\frac{q}{\varepsilon_s} N_d l_n \approx -\frac{1,6x10^{-19}}{\left(8,85x10^{-14}*12\right)} 8,3x10^{13}*9,52x10^{-4} \\ &\approx -1,2x10^4 V cm^{-1} \\ E &= \frac{\Phi_0 - V_a}{l} = \frac{\left(0,68+5\right)}{9,52x10^{-4}} = 5,97x10^3 V cm^{-1} \end{split}$$

Le champ électrique interne maximal E_{max} augmente ainsi que le champ électrique résultant E.

Solution (3.c)

Calculez la largeur L de la jonction PN d'une diode et l'intensité E du champ électrique dans la jonction pour $V_A = +0.3~V$. Si T = 300~K, $N_A = 6.9*10^{17}~cm^{-3}$, $N_D = 8.33*10^{13}~cm^{-3}$ et $\epsilon_r = 12$.

 $L = 2,467 \mu m \text{ et } E = 1548 \text{ V/cm}$

• Largeur de la jonction PN avec $V_A = +0.3 \text{ V}$ (polarisation positive):

$$\begin{split} l &= l_n + l_p = \sqrt{\frac{2\varepsilon_s}{q}} \left(\varPhi_o - V_a \right) \left(\frac{1}{N_a} + \frac{1}{N_d} \right) \\ &= \sqrt{\frac{2* \left(8,854x10^{-14}*12 \right)}{1,6x10 - 19}} \left(0,68 + 0,3 \right) \left(\frac{1}{6,9x10^{17}} + \frac{1}{8,33x10^{13}} \right) \\ &= 2.5x10^{-4} cm = 2.5 \, \text{mm} \end{split}$$

La largeur se réduit avec la tension externe positive V_a .

• Noter que N_a>>N_d, on peut simplifier:

$$\begin{split} l_p &= \sqrt{\frac{2\varepsilon_s}{q} \frac{\left(\varPhi_o - V_a\right)}{\left(N_a + N_d\right)} \frac{N_d}{N_a}} \rightarrow \sqrt{\frac{2\varepsilon_s}{q} \left(\varPhi_o - V_a\right) \frac{N_d}{\left(N_a\right)^2}} \approx 2,97x10^{-4} \, \text{mm} \\ l_n &= \sqrt{\frac{2\varepsilon_s}{q} \frac{\left(\varPhi_o - V_a\right)}{\left(N_a + N_d\right)} \frac{N_a}{N_d}} \rightarrow \sqrt{\frac{2\varepsilon_s}{q} \left(\varPhi_o - V_a\right) \frac{1}{N_d}} \approx 2,5 \, \text{mm} \\ l &= l_p + l_n \approx l_n \approx 2,5 \, \text{mm} \end{split}$$

La largeur de la jonction l coïncide avec la zone de déplétion N l_n . La zone de déplétion N $l_n >> l_p$. Avec une tension externe V_a positive la largeur de la jonction l diminue $l > l_0$

§ Champ électrique interne :

$$\begin{split} E_{max} &= -\frac{q}{\varepsilon_s} N_a l_p = -\frac{q}{\varepsilon_s} N_d l_n \\ E_{max} &= -\frac{q}{\varepsilon_s} N_d l_n \approx -\frac{1,6x10^{-19}}{(8,85x10^{-14}*12)} 8,3x10^{13}*2,5x10^{-4} \\ &\approx -3,1x10^3 V cm^{-1} \\ E &= \frac{\Phi_0 - V_a}{l} = \frac{(0,68-0,3)}{2,5x10^{-4}} = 1,54x10^3 V cm^{-1} \end{split}$$

Le champ électrique interne maximal E_{max} diminue en valeur absolu ainsi que le champ électrique résultant E.

Figure 3 : Caractéristique directe d'une diode au silicium

Exercice 4

Soit la caractéristique de la diode au silicium représentée à la Figure 3 :

- a. Trouvez la résistance statique R_D et dynamique r_d de la diode pour $I_{D1}=3$ mA et $I_{D2}=1$ mA.
- b. Idem mais analytiquement.

Avec T = 300 K, n = 1,97 et
$$I_S = 2,86x10^{-8}$$
 A

Solution:

- a. Pour $I_{D1}=3$ mA, $R_D=196$ Ω et $r_d=50$ Ω . Pour $I_{D2}=1$ mA, $R_D=535$ Ω et $r_d=18,33$ Ω
- b. Pour $I_{D1}=3$ mA, $R_D=194$ Ω et $r_d=17$ Ω . Pour $I_{D2}=1$ mA, $R_D=535$ Ω et $r_d=51$ Ω

Solution (4a)

Soit la caractéristique de la diode au silicium représentée à la Figure 3 :

Trouvez la résistance statique R_D et dynamique r_d de la diode pour $I_{D1} = 3$ mA et $I_{D2} = 1$ mA.

Solution:

Pour
$$I_{D1} = 3$$
 mA, $R_D = 196 \Omega$ et $r_d = 50 \Omega$. Pour $I_{D2} = 1$ mA, $R_D = 535 \Omega$ et $r_d = 18,33 \Omega$

• La résistance statique dépend du point de fonctionnement de la diode :

$$R_D = V_D / I_D$$

Avec un courant de diode $I_D = 3$ mA on obtient une tension $V_D = 590$ mV:

$$R_D = V_D / I_D = 0.59 / 3x10^{-3} = 197\Omega$$

Avec un courant de diode $I_D = 1$ mA on obtient une tension $V_D = 535$ mV:

$$R_D = V_D / I_D = 0.535 / 1x10^{-3} = 535\Omega$$

• La résistance dynamique (résistance pour le modèle « petits signaux ») correspond à la pente de la caractéristique de la diode autour du point de fonctionnement (V_D, I_D) = pente de la tangente au point de fonctionnement :

$$r_D = \Delta V_D / \Delta I_D$$

• Avec un courant de diode $I_D = 3$ mA et la tension $V_D = 590$ mV:

$$r_D = \Delta V_D / \Delta I_D = (650 - 540)/(6 - 0) = 18,3\Omega$$

• Avec un courant de diode $I_D = 1$ mA et la tension $V_D = 535$ mV :

$$r_{\scriptscriptstyle D} = \Delta V_{\scriptscriptstyle D} \, / \, \Delta I_{\scriptscriptstyle D} = (\,650 - 490\,) / (\,3.2 - 0\,) = 50 \Omega$$

Solution (4b)

Avec la caractéristique de la diode au silicium représentée à la Figure 3 :

Trouvez la résistance statique R_D et dynamique r_d de la diode pour $I_{D1}=3$ mA et $I_{D2}=1$ mA. Mais analytiquement. Avec T=300 K, n=1,97 et $I_S=2,86x10^{-8}$ A

Solution:

Pour $I_{D1}=3$ mA, $R_D=194$ Ω et $r_d=17$ Ω . Pour $I_{D2}=1$ mA, $R_D=535$ Ω et $r_d=51$ Ω

• Courant à travers la diode :

$$I_{D}[A] = I_{S}\left[exp\left(\frac{qV_{D}}{nkT}\right) - 1\right] \rightarrow V_{D} = \frac{nkT}{q}ln\left(\frac{I_{D}}{I_{S}} + 1\right)$$

• Courant de fuite $I_S = 2,86*10^{-8} \text{ A}$

$$n = 1,97$$

• Tension de diode avec $I_{D1} = 3 \text{ mA}$:

$$V_D = \frac{nkT}{q} ln \left(\frac{I_D}{I_S} + 1 \right) = \frac{1,97 * 1,38 \times 10^{-23} * 300}{1,6 \times 10^{-19}} ln \left(\frac{3 \times 10^{-3}}{2,86 \times 10 - 8} + 1 \right) = 0,59V$$

• Résistance statique avec un courant de diode $I_D = 3$ mA:

$$R_D = V_D / I_D = 0.59 / 3x10^{-3} = 197\Omega$$

• Tension de diode avec $I_{D2} = 1 \text{ mA}$:

$$V_D = \frac{nkT}{q} ln \left(\frac{I_D}{I_S} + 1 \right) = \frac{1,97 * 1,38 \times 10^{-23} * 300}{1,6 \times 10^{-19}} ln \left(\frac{1 \times 10^{-3}}{2,86 \times 10^{-8}} + 1 \right) = 0,533V$$

• Résistance statique avec un courant de diode $I_D = 1$ mA:

$$R_D = V_D / I_D = 0.533 / 1 \times 10^{-3} = 533 \Omega$$

• La résistance dynamique (résistance pour le modèle « petits signaux ») à partir de l'équation du courant autour du point de fonctionnement (V_D, I_D):

$$r_{D} = dV_{D} / dI_{D} = \frac{d}{dI_{D}} \left[\frac{nkT}{q} ln \left(\frac{I_{D}}{I_{S}} + 1 \right) \right] = \frac{nkT}{q} \frac{1}{\frac{I_{D}}{I_{S}} + 1} \frac{1}{I_{S}} = \frac{nkT}{q} \frac{1}{I_{D} + I_{S}}$$

 La résistance dynamique (résistance pour le modèle « petits signaux ») avec un courant de diode I_D = 3 mA:

$$r_D = \frac{nkT}{q} \frac{1}{I_D + I_S} = \frac{1,97 * 1,38 \times 10^{-23} * 300}{1,6 \times 10^{-19}} \frac{1}{3 \times 10^{-3} + 2,86 \times 10^{-8}} = 17\Omega$$

• La résistance dynamique (résistance pour le modèle « petits signaux ») avec un courant de diode $I_D = 1$ mA:

$$r_D = \frac{nkT}{q} \frac{1}{I_D + I_S} = \frac{1,97 * 1,38 \times 10^{-23} * 300}{1,6 \times 10^{-19}} \frac{1}{1 \times 10^{-3} + 2,86 \times 10^{-8}} = 51\Omega$$

Figure 4 : Caractéristique directe d'une diode au silicium 1N4153 à 25°C

Exercice 5

Une diode au silicium 1N4153 dont la caractéristique à 25°C se trouve à la **Figure 4**. La diode est utilisée dans le schéma de la **Figure 5** avec $V_A = 6V$ et $R = 100 \Omega$

- a. Déterminez le courant de la diode et sa tension,
- b. Si on diminue V_A de 3V, quelle est la nouvelle valeur de R si le courant dans la diode reste à la valeur précédente ?

Solution:

- a. $I_D = 51 \text{ mA}, V_D = 0.9 \text{ V}$
- b. $R = 40 \Omega$

Figure 5 : schéma exercice 5

Solution (5.a)

Une diode au silicium 1N4153 dont la caractéristique à 25°C se trouve à la **Figure 4**. La diode est utilisée dans le schéma de la **Figure 5** avec $V_A = 6V$ et $R = 100 \Omega$

Déterminez le courant de la diode et sa tension

Solution:

$$I_D = 52 \text{ mA}, V_D = 0.9 \text{ V}$$

• L'équation des tensions :

$$V_{A} = R.I_{D} + V_{D} \Rightarrow I_{D} = \frac{V_{A} - V_{D}}{R}$$

• Pour une tension de diode :

$$V_D = 0V \rightarrow I_D = \frac{V_A}{R} = \frac{6}{100} = 0.06A$$

• Pour un courant :

$$I_D = 0A \rightarrow V_D = V_A = 6V$$

• On trace la droite de charge (mais dans les limites du graphique) : pour une tension de diode :

$$V_D = 1V \rightarrow I_D = \frac{V_A}{R} - \frac{V_D}{R} = 0.06 - \frac{1}{100} = 0.05A$$

• Ce qui nous permet de tracer la droite de charge qui passe par $I_D = 50 \text{mA}$ et $V_D = 1 \text{V}$:

• Donnant comment point d'intersection $V_D = 0.9V$ et $I_D = 52mA$

Solution (5.b)

Une diode au silicium 1N4153 dont la caractéristique à 25°C se trouve à la **Figure 4**. La diode est utilisée dans le schéma de la **Figure 5** avec $V_A = 6V$ et $R = 100~\Omega$

Si on diminue V_A de 3V, quelle est la nouvelle valeur de R si le courant dans la diode reste à la valeur précédente ?

Solution:

$$R = 40 \Omega$$

• La pente pour la nouvelle droite, avec $V_A=3V$, mais qui passe par le même point de fonctionnement statique $I_D=52mA$ pour $V_D=0.9V$:

$$\frac{I_{D0} - I_{D(V_D = V_A)}}{V_D - V_{D(I_D = 0A)}} = \frac{0,052 - 0}{0,9 - 3} = -0,02\frac{A}{V}$$

• Et pour la nouvelle résistance :

$$\left. \begin{array}{l} V_D = 0.9V \\ I_D = 52mA \\ I_D = \frac{V_A}{R} - \frac{V_D}{R} \end{array} \right\} \quad R = \frac{V_A - V_D}{I_D} = \frac{3 - 0.9}{0.052} = 40\Omega$$

Figure 6 : schéma exercice 6

Exercice 6

Déterminez la tension de sortie V₀ du schéma

Figure 6 pour les valeurs suivantes de tension :

a.
$$V_1 = V_2 = 5 V$$

b.
$$V_1 = 5 V, V_2 = 0 V$$

c.
$$V_1 = 0 V, V_2 = 0 V$$

La diode au silicium utilisée possède les caractéristiques suivantes :

$$R_f = 30 \Omega$$

$$V_j = 0.6 \text{ V}$$

$$I_s = 0$$

$$R_r \to \infty$$

$$R_1 = 270 \Omega$$

$$R_2 = 4,7 \text{ k}\Omega$$

Solution:

a.
$$Vo = 5 V$$

b.
$$Vo = 0.86 V$$

c.
$$Vo = 0.77 V$$

Solution (6.a)

Déterminez la tension de sortie V₀ du schéma

Figure 6 pour les valeurs de tension suivantes:

$$V_1 = V_2 = 5 V.$$

La diode au silicium utilisée possède les caractéristiques suivantes :

$$R_f = 30 \Omega$$

$$V_i = 0.6 \text{ V}$$

$$I_s = 0$$

$$R_r \to \infty$$

$$R_1 = 270 \Omega$$

$$R_2 = 4.7 \text{ k}\Omega$$

Solution:

$$Vo = 5 V$$

• Avec $V_1 = V_2 = 5V$:

• Pas de circulation de courant par les résistances et diodes bloquées. Donc, $V_O = 5V$

Solution (6.b)

Déterminez la tension de sortie V₀ du schéma

Figure 6 pour les valeurs de tension suivantes:

$$V_1 = 5 V, V_2 = 0 V$$

La diode au silicium utilisée possède les caractéristiques suivantes :

$$R_f = 30~\Omega,~V_j = 0.6~V,~I_s = 0,~R_r \rightarrow \infty,~R_1 = 270~\Omega,~R_2 = 4.7~k\Omega$$

Solution:

Vo = 0.864 V

- Pas de circulation de courant dans la diode D₁ (bloquée) et la résistance R_{1D1}.
- On remplace la diode par son schéma équivalente (par la résistance R_f et la tension de jonction V_i):

• L'expression du courant I_D que circule par la diode D₂:

$$I_{D2} = \frac{5V - V_j}{R_2 + R_f + R_1} = \frac{5V - 0.6}{4.7k + 30 + 270} = 0.88mA$$

• Et pour la tension de sortie V_o:

$$Vo = 5V - I_{D2}R_2 = 5V - 0.88x10^{-3} * 4.7x10^3 = 0.864 V$$

• On constate que avec $V_o = 0.864V$ et $V_{CC} = 5V$, la diode D_1 est effectivement bloquée :

$$V_{D1} = V_o - 5V = 0.864 - 5 = -4.12 V$$

Autrement, un courant inverse I_{D1} devrait circuler par la diode D₁ (mais le courant inverse I_S = 0A):

$$V_{1} - R_{1}I_{D1} - V_{D1} - R_{f}I_{D1} = 5V \rightarrow I_{D1} = \frac{\left(V_{1} - V_{D1} - 5V\right)}{R_{1} + R_{f}} = \frac{\left(5 - 0.6 - 5\right)}{4k7 + 30} = -12.7mA$$

Solution (6.c)

Déterminez la tension de sortie V₀ du schéma

Figure 6 pour les valeurs de tension suivantes:

$$V_1 = 0 V, V_2 = 0 V.$$

La diode au silicium utilisée possède les caractéristiques suivantes :

$$R_f = 30 \Omega$$
, $V_i = 0.6 V$, $I_s = 0$, $R_r \rightarrow \infty$, $R_1 = 270 \Omega$, $R_2 = 4.7 k\Omega$

Solution:

$$Vo = 0.77V$$

• Avec V₁=V₂=0V, le schéma électrique devient :

• On calcule le courant par diode, avec les mêmes composants dans les deux branches :

$$V_{CC} = 2I_DR_2 + V_j + I_DR_f + I_DR_1 \rightarrow I_D = \frac{V_{CC} - V_j}{2R_2 + R_f + R_1} = \frac{5 - 0.6}{2*4k7 + 30 + 270} = 0.45mA$$

• Et pour la tension de sortie V_o:

$$V_{CC} = 2I_D R_2 + V_a \rightarrow V_a = V_{CC} - 2I_D R_2 = 5 - 2*0.45 \times 10^{-3} *4k7 = 0.77V$$

1009-02 Electronique Physique Exercices Solution La diode Jonction PN Prof. Carlos Valderrama

Exercice 7

Les caractéristiques du circuit **Figure 7** sont $R_1 = 1$ k Ω , $R_2 = 2$ k Ω , $R_3 = 400$ Ω , $R_4 = 100$ Ω , E = 10 V. Le modèle de la diode passante est caractérisé par une tension continue 0,6 V et $R_f = 0$ Ω .

- a. Quelle(s) diode(s) condui(sent)t?
- b. Quelle est la valeur du courant qui la (les) traverse?

Solution:

- (a) D_1
- (b) I = 5.4 mA

Figure 7 : schéma exercice 7

Solution (7.a)

Les caractéristiques du circuit **Figure 7** sont $R_1 = 1$ k Ω , $R_2 = 2$ k Ω , $R_3 = 400$ Ω , $R_4 = 100$ Ω , E = 10 V. Le modèle de la diode passante est caractérisé par une tension continue 0,6 V et $R_f = 0$ Ω .

Quelle(s) diode(s) condui(sent)t?

Solution:

D₁ en conduction et D₂ bloquée

$$I_{D1} = 5.35 mA$$

$$V_{D1} = 675 mV$$

$$I_{D2} = 0A$$

$$V_{D2} = -675mV$$

• Analyse sans les diodes :

• Tensions sur A et B sans les diodes:

$$V_A = \frac{E}{R_1 + R_2} R_2 = \frac{10}{1000 + 2000} 2000 = 6,67V$$

$$V_B = \frac{E}{R_{13} + R_4} R_4 = \frac{10}{400 + 100} 100 = 2V$$

$$V_A > V_B$$

• Puisque V_A>V_B, la diode D₁ conduit et la diode D₂ est bloquée.

Solution (7.b)

Les caractéristiques du circuit **Figure 7** sont $R_1 = 1$ k Ω , $R_2 = 2$ k Ω , $R_3 = 400$ Ω , $R_4 = 100$ Ω , E = 10 V. Le modèle de la diode passante est caractérisé par une tension continue 0,6 V et $R_f = 0$ Ω .

Quelle est la valeur du courant qui la (les) traverse ?

Solution:

I = 5.4 mA

• On remplace D₁ par son modèle équivalent en conduction:

• On recalcule les tensions et ensuite le courant sur la diode D₁:

$$E_{A} = E \frac{R_{2}}{R_{1} + R_{2}} = 10 * \frac{2x10^{3}}{1x10^{3} + 2x10^{3}} = 6,67V$$

$$R_{A} = \frac{R_{2}R_{1}}{R_{1} + R_{2}} = \frac{1x10^{3} * 2x10^{3}}{1x10^{3} + 2x10^{3}} = 667\Omega$$

$$E_{B} = E \frac{R_{4}}{R_{3} + R_{4}} = 10 * \frac{100}{400 + 100} = 2V$$

$$R_{B} = \frac{R_{3}R_{4}}{R_{3} + R_{4}} = \frac{400 * 100}{400 + 100} = 80\Omega$$

$$E_{A} - V_{D1} - E_{B} = I_{D1}(R_{A} + R_{B})$$

$$\rightarrow I_{D1} = \frac{E_{A} - V_{D1} - E_{B}}{(R_{A} + R_{B})} = \frac{E_{A} - 0,6 - E_{B}}{(R_{A} + R_{B})} = 5,45mA$$

Exercice 8

Les caractéristiques du circuit **Figure 8** sont $e(t) = \sin \omega t$, $R_1 = R_2 = 100 \ \Omega$. Le modèle de la diode passante est caractérisé par une tension continue $0.6 \ V$ et $R_f = 0 \ \Omega$.

- a. représentez u(t) sans diode D.
- b. Même question pour R_2 remplacé par D (T = 25°C).
- c. Même question pour R₂ et D connectées en parallèle.

Solution:

- (a). $u(t) = 0.5 \sin \omega t$
- (b). pour $e \ge 0.6 \text{ V}$, u(t) = 0.6 V; pour $e \le 0.6 \text{ V}$, u(t) = e
- (c). $u(t) = 0.5 \sin \omega t$

Figure 8 : schéma exercice 8

Solution (8.a)

Les caractéristiques du circuit Figure 8 sont $e(t) = \sin \omega t$, $R_1 = R_2 = 100 \Omega$. Le modèle de la diode passante est caractérisé par une tension continue 0,6 V et $R_f = 0 \Omega$.

Représentez u(t) sans diode D.

Solution:

$$u(t) = 0.5 \sin \omega t$$

Schéma sans la diode D :

• La tension u(t) sera:

$$i(t) = \frac{e(t)}{R_1 + R_2}$$

$$u(t) = i(t)R_2 = \frac{R_2}{R_1 + R_2}e(t) = \frac{100}{100 + 100}\sin wt = 0.5\sin wt$$

Solution (8.b)

Les caractéristiques du circuit **Figure 8** sont $e(t) = \sin \omega t$, $R_1 = R_2 = 100 \Omega$. Le modèle de la diode passante est caractérisé par une tension continue 0.6 V et $R_f = 0 \Omega$.

Même question pour R_2 remplacé par D (T = 25°C).

Solution:

Pour
$$e \ge 0.6 \text{ V}$$
, $u(t) = 0.6 \text{ V}$; pour $e \le 0.6 \text{ V}$, $u(t) = e$

• Même question pour R_2 remplacé par D (T = 25°C):

$$R_1$$
 D $u(t)$

• On remplace la diode par une diode idéal et une source de tension DC V_D =0,6V:

• La tension sur la résistance $R = 100\Omega$, la tension de sortie et le courant sur la diode sont représentées pour une tension $e(t) = \sin \omega t$:

• Pour $e \ge 0.6 \text{ V} \to u(t) = 0.6 \text{ V}$; pour $e \le 0.6 \text{ V} \to u(t) = e$.

Solution (8.c)

Les caractéristiques du circuit **Figure 8** sont $e(t) = \sin \omega t$, $R_1 = R_2 = 100 \Omega$. Le modèle de la diode passante est caractérisé par une tension continue 0,6 V et $R_f = 0 \Omega$.

Même question pour R₂ et D connectées en parallèle.

Solution:

 $u(t) = 0.5 \sin \omega t$

• Avec la diode D et la résistance R2 en parallèle :

• La tension sur la résistance $R_1 = 100\Omega$, la tension de sortie, le courant sur la diode et sur la résistance $R_2 = 100\Omega$ sont représentées pour une tension $e(t) = e.\sin \omega t$:

• Pour $e \ge 0.6 \text{ V} \rightarrow u(t) = 0.6 \text{ V}$; pour $e \le 0.6 \text{ V} \rightarrow u(t) = 0.5e$.

Exercice 9

Les caractéristiques du circuit de la

Figure 9 sont E = 5 V, $R_1 = 1 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, C = 100 pF et la fréquence vaut 1000 Hz. Représentez u(t) superposé à e(t).

Solution:

Conférer Figure 10.

Figure 9 : schéma exercice 9

Figure 10 : solution exercice 9

Solution (9)

Les caractéristiques du circuit de la

Figure 9 sont E=5 V, $R_1=1$ k Ω , $R_2=100$ k Ω , C=100 pF et la fréquence vaut 1000 Hz. Représentez u(t) superposé à e(t).

Solution:

Conférer Figure 10.

• Avec $V_C(0)=0V$, e(0)=10V, E=5V et diodes idéales, seulement la diode D_2 est en conduction et la diode D_1 bloquée :

$$e(0) = V_C(0) + i_{R_1}(0)2R_1 \to u(0) = i_{R_1}(0)R_1 = \frac{e(0) - V_C(0)}{2} = \frac{10 - 0}{2} = 5V$$

$$i_{R_1}(0) = \frac{u(0)}{R_1} = \frac{5}{10^3} = 5mA$$

• La capacité sera chargée après un temps de charge $2R_1C = 0.2\mu s >> 0.5ms=T/2$:

$$\begin{vmatrix}
v_C(t) = Ae^{-\frac{t}{RC}} + B \\
v_C(\infty) = B = 10V \\
v_C(0) = A + B = 0V \\
A = v_C(0) - B = 0 - 10 = -10
\end{vmatrix}
v_C(t) = Ae^{-\frac{t}{RC}} + B = -10e^{-\frac{t}{0.2x10^{-6}}} + 10$$

$$v_C(0,5ms) = -10e^{-\frac{0.5x10^{-3}}{0.2x10^{-6}}} + 10 = 10V$$

• La capacité C sera charge avec une tension $v_C(T/2)=10V$ au moment de l'inversion de tension e(T/2)=-10V. Dés l'inversion de tension (T/2) la diode D_2 est bloquée et D_1 conduit :

1009-02 Electronique Physique Exercices Solution La diode Jonction PN Prof. Carlos Valderrama

mai 08

• Le calcul de la tension u(T/2) par l'application du principe de superposition des tensions :

$$u(T/2) = i_u(T/2)R_1 = \frac{E}{R_2 + R_1 \| R_1} R_1 + \frac{e(T/2) - V_C(T/2)}{R_1 + R_2 \| R_1} R_1$$

$$= \frac{E}{\frac{R_2}{R_1} + \frac{1}{2}} + \frac{e(T/2) - V_C(T/2)}{1 + \frac{1}{\frac{R_1}{R_2} + 1}} = \frac{5}{\frac{10^5}{10^3} + \frac{1}{2}} + \frac{(-10) - 10}{1 + \frac{10^5}{\frac{10^3}{10^5} + 1}}$$

$$= -10V$$

- Ce qui nous montre que la diode D2 est effectivement bloquée.
- La capacité sera déchargée sur une résistance R2||R1+R1 et par la suite chargée à la tension VC(T)=10V. Lorsque la capacité sera chargée, la tension u(T) devient égale à 0V.

Exercice 10: examen juin 2003

En utilisant le modèle réel de la diode, calculez la tension V_1 et le courant à travers les diodes du circuit Figure 11(a) sachant que pour $I_D=1$ mA, $V_D=0.7$ V. Le facteur n (identique pour toutes les diodes) vaut 1,97, la température 40 °C, E et R valent respectivement 6 V et 2 k Ω (2 itérations suffisent).

Solution:

 $V_1 = 2,22 \text{ V}$; $I_D = 1,89 \text{ mA}$.

Figure 11 : schéma exercices 10 et 11

Solution (10)

En utilisant le modèle réel de la diode, calculez la tension V_1 et le courant à travers les diodes du circuit Figure 11(a) sachant que pour $I_D = 1$ mA, $V_D = 0.7$ V. Le facteur n (identique pour toutes les diodes) vaut 1,97, la température 40 °C, E et R valent respectivement 6 V et 2 k Ω (2 itérations suffisent).

Solution:

$$V_1 = 2,22 \text{ V}$$
; $I_D = 1,89 \text{ mA}$

• Charge de l'électron

$$q = 1.6x10^{-19} C$$

• Constante de Boltzmann:

$$k = 1,38x10^{-23} \frac{eV}{K}$$

• Tension thermique $V_T(@40^{\circ}C)$:

$$V_T(300^{\circ}K) = \frac{kT}{q} = \frac{1,38x10^{-23}300}{1,6x10^{-19}} = 26mV$$

$$V_T(40^{\circ}C) = V_T(300^{\circ}K) \frac{40}{25} = 26x10^{-3} * \frac{40}{25} = 34,5mV$$

• Pour I_D = 1 mA @300°K nous avons V_D = 0,7 V avec un facteur n (identique pour toutes les diodes) de1,97. Il nous manque le courant de fuite I_S :

$$\begin{split} I_{D}[A] &= I_{S} \left[exp \left(\frac{qV_{D}}{nkT} \right) - 1 \right] = I_{S} \left[exp \left(\frac{V_{D}}{nV_{T}} \right) - 1 \right] \\ &\to I_{S} = \frac{I_{D}}{exp \left(\frac{V_{D}}{nV_{T}} \right) - 1} = \frac{1x10^{-3}}{exp \left(\frac{0.7}{1.97 * 34.5x10^{-3}} \right) - 1} = 33,7nA \end{split}$$

• Le courant maximal sans les diodes (donc $V_1 = 0V$):

$$E = Ri \rightarrow i = \frac{E}{R} = \frac{6}{2x10^3} = 3mA$$

• Avec cette valeur on fait une première itération et obtient la tension de chaque diode :

$$I_{D} = I_{S} \left[exp \left(\frac{V_{D}}{nV_{T}} \right) - 1 \right] \rightarrow V_{D} = nV_{T} ln \left(\frac{I_{D}}{I_{S}} + 1 \right) = (1.97 * 34.5 \times 10^{-3}) * ln \left(\frac{3x10 - 3}{33.7x10^{-9}} + 1 \right) = 0.78V$$

• Avec une tension de diode $V_D=0.78V$, on recalcule la tension V_1 et le courant I_D :

$$V_1 = 3V_D = 3*0,78 = 2,34V$$

 $E = Ri + V_1 \rightarrow i = \frac{E - V_1}{R} = \frac{6 - 2,34}{2x10^3} = 1,84mA$

• Avec le courant I_D on réalise une deuxième itération pour obtenir $V_D,\,V_1$ et i:

$$I_{D} = I_{S} \left[exp \left(\frac{V_{D}}{nV_{T}} \right) - 1 \right] \rightarrow V_{D} = nV_{T} \ln \left(\frac{I_{D}}{I_{S}} + 1 \right) = \left(1.97 * 34.5 \times 10^{-3} \right) * \ln \left(\frac{1.84 \times 10^{-3}}{33.7 \times 10^{-9}} + 1 \right) = 0.74V$$

$$V_{1} = 3V_{D} = 3 * 0.74 = 2.22V$$

$$E = Ri + V_{1} \rightarrow i = \frac{E - V_{1}}{R} = \frac{6 - 2.22}{2 \times 10^{3}} = 1.89 mA$$

Exercice 11

Le circuit de la Figure 11(b) possède les caractéristiques suivantes : E_{CC} = 20 V, R_1 = 10 k Ω , R_2 = 20 Ω , C = 1 nF. Calculez le gain en tension du circuit.

Solution:

 $A_v = 0,4$

Solution (11)

Le circuit de la Figure 11(**b**) possède les caractéristiques suivantes : E_{CC} = 20 V, R_1 = 10 k Ω , R_2 = 20 Ω , C = 1 nF. Calculez le gain en tension du circuit.

Solution:

$$A_{v} = 0.4$$

• Analyse du point DC : la capacité représentée un circuit ouvert et la diode est remplacée par la tension de diode V_D (pour manque d'information sur la caractéristique de la diode) :

• On obtient le courant sur la diode :

$$E_{CC} = I_D(R_1 + R_2) + V_D \rightarrow I_D = \frac{E_{CC} - V_D}{R_1 + R_2} = \frac{20 - 0.7}{1x10^3 + 20} = 1.93mA$$

• La résistance dynamique de la diode r_D (résistance pour le modèle « petits signaux » en utilisant l'expression analytique autour du point de travail V_D, I_D):

$$\begin{split} I_D &= I_S \Bigg[exp \Bigg(\frac{V_D}{V_T} \Bigg) - 1 \Bigg] \approx I_S \ exp \Bigg(\frac{V_D}{V_T} \Bigg) \rightarrow \frac{dI_D}{dV_D} = I_S \ \frac{1}{V_T} exp \Bigg(\frac{V_D}{V_T} \Bigg) = \frac{I_D}{V_T} \\ r_D &= \frac{dv_D}{di_D} \Bigg|_O \approx \frac{V_T}{I_D} = \frac{26x10^{-3}}{1,93x10^{-3}} = 13,5\Omega \end{split}$$

 Le circuit équivalent « petits signaux » : on considère que à la fréquence de travail la capacité représentée une impédance de valeur négligeable et les sources de tension DC sont remplacées par des court-circuits :

• Le gain de tension $A_v=v_o/v_i$:

$$v_{o} = i_{r_{D}} r_{D}$$

$$v_{i} = i_{r_{D}} (r_{D} + R_{2})$$

$$\frac{v_{o}}{r_{D}} = \frac{v_{i}}{(r_{D} + R_{2})} \rightarrow A_{V} = \frac{v_{o}}{v_{i}} = \frac{r_{D}}{(r_{D} + R_{2})} = \frac{1}{\left(1 + \frac{R_{2}}{r_{D}}\right)} = \frac{1}{\left(1 + \frac{20}{13.5}\right)} = 0.4$$

• Parce que R_2 n'est pas très grande par rapport à r_D on ne peut pas faire la simplification.