CS622A ADVANCED COMPUTER ARCHITECTURE

ASSIGNMENT 2

GROUP 10

Mohit Kumar 20111034

Mallampet Adhilakshmi 20111003

Instructor: Dr. Mainak Chaudhuri October 31, 2020

1 Collection of Traces

Program	Total Machine Accesses
prog1	128990670
prog2	2513363
prog3	9467977
prog4	1064146

2 Access Distance Analysis without Cache Filter

2.1 Cumulative Density Distribution

Fig. 2.1.1:Cumulative Density Function for Prog1

Fig. 2.1.2 :Cumulative Density Function for Prog2

Fig. 2.1.3 :Cumulative Density Function for Prog3

Fig. 2.1.4 :Cumulative Density Function for Prog4

2.2 Analysis

2.2.1 High Amount of Locality in prog2 , prog3 and Prog4

- The access distance of 1(in log-scale corresponds to point 0 on x-axis) have high cumulative probaility,greater than 0.9 in prog2, prog3 and prog4.
- This indicate the high amount of locality of access in these program.

2.2.2 Less Amount of Locality in prog1

- The access distance of 1(in log scale corresponds to point 0 on x-axis) have very less cumulative probaility,less than 0.1 in prog1.
- This indicate the less amount of locality of access in these program.

2.2.3 Ideal size of Cache

- All the program have cumulative probability greater than 0.9 if the access distance(in log) is around 2.
- This corresponds to cache containing 256 blocks approximately.
- Therefore, ideal cache size is 256*64B equals to 16KB.
- By providing the above cache size, the program will enjoy at least 0.9 hit rate.

2.2.4 Rate of change of Cumulative Probability

- In prog1, the rate of change of cumulative probability follows a non-linear tread in range of 0 to 2 (in log) of access distances.
- After, the access distance of 2(in log), the cumulative probability start increasing almost linearly.
- In prog2 ,prog3 and prog4, the rate of change of cumulative probability is almost linear till access distance around 5.5(in log).
- After, the access distance around 5.5, the cumulative probability changes rapidly and saturates to its maximum value 1.

3 Access Distance Analysis with Cache Filter

3.1 Cumulative Density Distribution

Fig. 3.1.1: Cumulative Density Function for Prog1

Fig. 3.1.2 :Cumulative Density Function for Prog2

Fig. 3.1.3 :Cumulative Density Function for Prog3

Fig. 3.1.4 :Cumulative Density Function for Prog4

3.2 Cache Result

Program	LRU				
Single Level Cache	Total Access	Hit	Miss		
prog1	128990671	122291505	6699166		
prog2	2513364	2288112	225252		
prog3	9467978	8821978	646000		
prog4	1064147	937616	126531		

Table 3.2.1: Number of Hit and Miss

3.3 Analysis

3.3.1 Change in CDF before and after the cache filter

- The plot of CDF before and after the cache filter vary significantly.
- The CDF plot for the access distance after the cache filter is approx. 0 till access distance(in log) is around 4.5.
- The CDF plot for the access distance before the cache filter has large amount of access with short access distance.
- The CDF plot vary because the after applying the cache filter ,the shorter access distance enjoys cache hit.

3.3.2 Classification of Misses after applying cache filter

- The CDF plot for the access distance after the cache filter is approx. 0 till access distance(in log) is around 4.5.
- This corresponds to cache containing 32,768 blocks approximately.
- But our cache size is 2MB which can't fit all these blocks .
- Therefore, most of the misses(apart from Cold Misses) classified as Capacity Misses.

4 Sharing Results

Blocks Shared By	Program			
	prog1	prog2	prog3	prog4
Private	403	401	403	8590
2 Threads	63	8255	56	57402
3 Threads	1872	16384	0	6
4 Threads	32455	40957	0	0
5 Threads	143250	4	0	0
6 Threads	244970	0	0	1
7 Threads	173831	0	0	0
8 Threads	124528	10	65546	10
Total	721372	66011	66005	66009

4.1 Analysis

4.1.1 prog1,prog2 and prog3 sharing similarity

- In prog1, prog2 and prog3 have nearly same amount of private cache blocks. These amount is less indicates that there is less amount of computation performed by local variables in these programs.
- In prog1, prog2 and prog3 have high sharing amount of blocks among the threads indicating sharing of computation or variables.

4.1.2 prog4 different trend of sharing

- The amount of private blocks in prog4 is very high as compare to private blocks of rest all 3 programmes.
- This indicate that most of the computation in prog4 is done by local variable and no sharing of these computation.
- Almost all other blocks apart from private blocks are shared by atmost 2 threads.