Задание 1 (1 балл)

Докажите по определению $13n^2 - 16n\sqrt{n}\log^2 n = \Omega(n\log n)$

Задание 2 (2 балла)

Решите рекуррентное соотношение:

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{3}\right) + n$$

Задание 3 (2 балла)

Задан массив из целых чисел длины n. Предложите алгоритм, который находит подотрезок с длиной не меньше a и не больше b, имеющий максимальную сумму чисел в нем. Алгоритм должен работать за линейное время.

Задание 4 (3 балла)

Докажите, что любой алгоритм, который по заданному числу x и отсортированному массиву a находит пару (i,j) такую, что $a[i-1] < x \le a[i]$ и $a[j-1] \le x < a[j]$, делает не менее $2\log_2 n + \mathcal{O}(1)$ сравнений.

Задание 5 (4 балла)

Тонкие кучи. Будем называть дерево «тонким», если оно может быть получено из биномиального удалением у некоторых вершин ребенка максимального ранга. Тонкой кучей называется коллекция тонких деревьев. Ограничений на число деревьев одного ранга нет.

- 1. Разработайте операцию **decrease**Кey для тонкой кучи. Докажите, что амортизированное время выполнения есть $\mathcal{O}(1)$ (используйте потенциал 2M+T, где M число вершин, у которых удалили ребенка, а T число деревьев в корневом списке).
- 2. Докажите, что операция **decreaseKey** в тонкой куче из предыдущего пункта выполняется за истинные $\mathcal{O}(\log n)$.

Задание 6 (3 балла)

В этом задании нужно записывать только ответ, ничего доказывать не нужно. В первых двух пунктах постройте таблицу с ответом, а в последних двух выпишите буквы, соответствующие правильным утверждениям.

1. Вам задана СНМ массивом предков и массивом рангов. Выполните операцию join для элементов 5 и 6, как изменится массив предков и массив рангов?

СНМ без эвристики сжатия путей.

СНМ с ранговой эвристикой.

v	0	1	2	3	4	5	6
p_v	0	3	3	3	4	3	3
r_v	0	0	0	2	0	0	0

v	0	1	2	3	4	5	6
p_v							
r_v							

2. Вам задана двоичная куча. Выполните на ней операцию insert 3. Покажите, как изменится двоичная куча.

v	0	1	2	3	4	5	6	7	8
h_v	0	1	3	4	5	6	7	7	7

v	0	1	2	3	4	5	6	7	8	9
h_v										

- 3. Выберите правильные утверждения:
 - (a) $n\sqrt{n} = o(n^2)$
 - (b) $n^{\frac{1}{n}} = \Omega(1)$
 - (c) $n^{\frac{1}{\log n}} = o(\log^* n)$
 - (d) $\sqrt{n} \log n = O(\sqrt{n \log n})$
 - (e) $n^{\frac{1}{n}} = \Omega(1)$
 - (f) $\log 1 + \log 2 + \ldots + \log n = \Theta(n \log n)$
 - (g) $\log 1 + \log 2 + \ldots + \log n = \Theta(n \log n)$
 - $(h) \sum_{i=1}^{n} i = \Omega(n^2)$
- 4. Выберите правильные утверждения:
 - (a) Сортировка вставками делает $\mathcal{O}(n)$ обменов
 - (b) Сортировка пузырьком делает $\mathcal{O}(n)$ сравнений
 - (c) Сортировка выбором делает $\mathcal{O}(n)$ сравнений
 - (d) Сортировка кучей устойчива
 - (e) Сортировка кучей в худшем случае работает за $\Omega(n^2)$
 - (f) Быстрая сортировка делает $\mathcal{O}(n)$ обменов
 - (g) Существует реализация быстрой сортировки, которая работает детерминированно за $\mathcal{O}(n \log n)$
 - (h) Быстрая сортировка всегда делает обменов столько же, сколько инверсий в массиве