LEARNING A COFFEE MACHINE MODEL WITH L^*

We show how the L^* algorithm learns the following Mealy machine:

 L^* constructs an observation table by performing the steps below. For convenience, we abbreviate the inputs to 5, 10 and b, and the outputs to -, 5, 10 and c.

(1) The set \mathcal{U} of prefixes is initialized to $\{\epsilon\}$ and the set \mathcal{V} of suffixes to $\{5, 10, b\}$. The L^* algorithm then poses 12 output queries to fill the following table:

	5	10	b
ϵ			
5		5	
10	5	10	с
b			

(2) Since the table is not closed, set \mathcal{U} is extended to $\{\epsilon, 5, 10\}$. One letter extensions of the new prefixes are added as rows to the table, and the learner poses 18 output queries to fill the extended table:

	5	10	b
ϵ			
5	\checkmark	5	
10	5	10	c
b		\checkmark	
5 5	5	10	c
5 10	5	10	c
5 <i>b</i>		5	
10 5	5	10	c
10 10	5	10	c
$10 \ b$			

(3) Since the resulting table is closed and consistent, the learner constructs an hypothesis, which is first-time-right:

1