Cathode Ray Tube

Name:		Section: 4BL	Date performed://	_
Lab station:	Partners:			
		Ca	athode Ray Tube #	

Initial setup and focussing the beam

$$V_{\text{battery}} = \underline{\hspace{1cm}}$$
 (range:)

V_C ()	V_B ()	$V_{\rm acc}$ ()	
			\leftarrow electron speed =
			Show speed calculation

Attach V_B vs. V_C graph from Excel.

$$slope = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} (from linest)$$

$$y\text{-intercept} = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} (from linest)$$

The deflector plates

For horizontal and diagonal deflection, complete the circuit diagrams above. In each case, indicate the direction that the spot moves when the deflection voltage is increased.

Vertical deflection factor (VDF)

Fixed values: $V_B = \underline{\hspace{1cm}} V_C = \underline{\hspace{1cm}}$

V_{defl} ()	(range)		Δx ()
		()		
		()		
		()		

V_{defl} ()	(rar	nge)	Δx ()
		()		
		()		
		()		

Attach V_{defl} vs. Δx graph from Excel.

 $VDF = \underline{\qquad} \pm \underline{\qquad}$ (from linest)

Fixed value: $V_{\text{defl}} = \underline{\hspace{1cm}}$ (range:

V_C ()	V_B ()	$V_{\rm acc}$ ()	Δx ()

Deflection [increases / decreases / remains the same] as the acceleration voltage is increased. Explain: