Karenagh - Map Method of A tarenaugh map is a pitorial methode used to minimize boolean expression without using boolean algebra theorem and equation mani Polations. It is also ealled veith diagram. × k-map for two variable ① Example: F(n, y) = xiy +-: F(n,y)=n+y

Karmaugh - map method of

O simplified the expression in sum
of products for the boolean tunction

F(w, n, y, z) = \(\geq (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \)

Using k-map method.

war 100	10	1101118
00 0	0	103/192
01 09	0.5	0 7 6
(1) 1 12	1 13	1 15 14
10 08	09	0000

4-1 GROW

Wn y Z 0010 0010 WNY Z

1100

1101

1110

F= Wry+an

3 Simplified the expression in Som of products for the booleans Jonetion F(NAY, Z) = n'y Z + n'y Z + n'y Z + n'y Z EXX + EXX + EXX + 4 = 1 + 1 + 1 + 1 + 1 X X ns: 2200 01 11 10 Ans: 1=21=1x=20 100116-21 101006 Z 1100 6 5 101010 2-0 +10=00 24 F= Ny+ny'

In simplified the expression in som of Product for the F(N, Y)= NY thy 46 68+16,) + 4B CG+ G,) + 4B C+B Anst F(n, y) = x'y' + xx 113 NBC-FINE 100 BELLINE + PBC+PB 28/A+ 0 0 0 0 100 101 = ABEZABEZABELABE 1090 000 010

中 F(n, y, z)= 5(213, 61天) 田 F(A,B, e,D) = ∑(7,13,14,15) Ans!: 00 01 11 F(AB, eD) = BED+ABD+ABED ABED

D F(A, B, e,D)= ≥ (4,6,7,15) 01 11 10 ABED ABED 0100 D110 A'BD' F = BeD+A'BD'A+08A+098 - (09.8A)=

D F(W, n, y, Z) = ∑ (0, 1, Z, 4,5, 6) € 9,12,13,14) WNY 2 00 01 00 01 10 Wnyz Whyz 0000 0000 0001 0100 0100 0010 0101 0-110 1100 w' 7' 1101 1000 100) F=WZ+Y

Q. Simplify $B \neq f(ABEDE) = \sum (0, z, 4, 6, 9)$ 11, 13, 15, 21, 21, 25, 27, 29, 31) 0esing k-map.

Ans: AB COE	000	001	011	010	,110	1	101	100
00	1				1			1
0/		1	1			1	1	
17		1	1			1	1	
10		1				6	1	

ABEDE
00000
00010
00110
00100
NOF

ABEDE	
81001	
01011	
11001	
11011	
01111	
01101	
(111)	
11101	
BE	

ABEDE
01001
11001
10001
01101
11101
10101
0'E

Given that,

The Boolean twoetion F(w, n, y, z)= $\Sigma(1, 3, 7, 11, 15)$ and the Dontean condition $d(w, n, y, z) = \Sigma(0, z, s)$

wnyz	00	8,1	le Me com	TO AND
9 00	X	1	mo 1 3	7 3
Cor	104	X	1	6
21	12	13	1 15	19
10	8	000	1 "	10

Fig. 1 Combainy 13

wnyz 0001 0011 0011 0101 0101 0111 0111 0111 0111 0111 0111

o, F(w, x, y, z) = w/z + yz = z (w/+y)

11010	Z Z	wel	600	Carinon
·wx	00	01	111	10
00	X	1	1	×z
101	0 4	X	N N	0
11	0 12	0 13	15	0 14
10	0 8	0	1 "	0

Fig: Zoo

1 Comple

boltila

616/34