See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7630159

Catalytic Asymmetric Synthesis of Piperidine Derivatives Through the [4 + 2] Annulation of Imines with Allenes.

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · OCTOBER 2005

Impact Factor: 12.11 · DOI: 10.1021/ja053277d · Source: PubMed

CITATIONS

READS

217

128

2 AUTHORS, INCLUDING:

Ryan P Wurz

Amgen

41 PUBLICATIONS 1,201 CITATIONS

SEE PROFILE

Published on Web 08/16/2005

Catalytic Asymmetric Synthesis of Piperidine Derivatives through the [4 + 2] Annulation of Imines with Allenes

Ryan P. Wurz and Gregory C. Fu*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received May 19, 2005; E-mail: gcf@mit.edu

For several years, we have been pursuing the development of enantioselective nucleophile-catalyzed reactions.¹ Until now, our efforts have focused on the use of chiral derivatives of 4-(dimethylamino)pyridine (DMAP), due to the remarkable versatility of DMAP as a catalyst.² During the past decade, tertiary phosphines have emerged as effective nucleophilic catalysts for an impressive range of transformations;³ unfortunately, there has been only very limited progress in achieving high levels of asymmetric induction with *chiral* phosphines.⁴ Recognizing this, we recently decided to broaden our program in enantioselective nucleophilic catalysis to include studies of chiral tertiary phosphines.

Due to the bioactivity of many piperidine-containing compounds,⁵ the development of efficient methods for the enantioselective synthesis of these six-membered nitrogen heterocycles is an important objective in organic chemistry.⁶ Of course, catalytic asymmetric approaches can be particularly attractive from the standpoint of issues such as economy and efficiency.⁷

In 2003, Kwon described a novel method for the synthesis of functionalized piperidines via the PBu₃-catalyzed [4 + 2] annulation of imines with allenes.^{8,9} As part of her pioneering study, Kwon parenthetically mentioned one example of the use of a chiral phosphine in this process ((S,S)-DIPAMP: 34% ee). To the best of our knowledge, there have been no subsequent reports of asymmetric catalysis of the Kwon annulation. In this communication, we provide a catalytic enantioselective method that furnishes access to a range of useful piperidine derivatives (eq 1).

Our initial efforts to develop an effective chiral catalyst for the Kwon reaction focused on new chiral tertiary phosphines that we had designed; in addition, we examined the utility of several phosphines that had originally been described by others for use as ligands in enantioselective metal-catalyzed processes. The best of the known phosphines were superior to our own. Thus, for the coupling of the illustrated imine and allene, C_2 -symmetric bisphosphines such as Me-BPE (Table 1, entry 1), Et-BPE (entry 2), and TANGPHOS (entry 3) furnish interesting enantioselectivity and excellent yield, but modest diastereoselectivity.

We next turned our attention to binaphthyl-based C_2 -symmetric phosphepines (e.g., 1-6). The first phosphine in this class was reported by Gladiali in 1994,¹⁰ and more recently Beller has described the utility of these monodentate phosphines in asymmetric hydrogenation reactions.¹¹ We have determined that this family of tertiary phosphines serve not only as useful ligands for transition metals but also as effective nucleophilic catalysts (Table 1, entries

Table 1. Survey of Chiral Phosphine Catalysts for the [4 + 2] Annulation of Imines with Allenes^a

	Ph Ts C	O ₂ Et CH ₂ Cl ₂	<u>·</u> → 1	CO ₂ Et
entry	phosphine	ee (%) ^b	cis:trans	isolated yield (%)
1	Me-BPE	-72	72:28	94
2	Et-BPE	-87	66:34	99
3	TANGPHOS	-44	34:66	99
4	2	-21	74:26	80
5	3	-7	75:25	99
6	4	-62	72:28	53
7	5	0	70:30	46
8	6	51	69:31	99
9	1	98	91:9	93
10	BINAPINE	_	_	0

^a All data are the average of two experiments. ^b A negative value for the ee signifies that the illustrated piperidine derivative is the minor, rather than the major, enantiomer. The ee value is for the cis diastereomer.

Table 2. Catalytic Asymmetric Synthesis of Piperidines: Scope with Respect to the Allene^a

entry	R	R ¹	ee (%) ^b	cis:trans	isolated yield (%)
1	CO ₂ Et	CO ₂ Et	98	91:9	93
2	Ph	CO_2Et	87	99:1	78
3	$4-(CF_3)C_6H_4$	CO_2Et	88	99:1	81
4	Н	CO_2Et	68	_	72
5	Н	COPh	76	_	97

^a All data are the average of two experiments. Entry 1: 5% catalyst; entries 2–5: 15% catalyst. ^b The ee value is for the cis diastereomer.

4–9). Although phosphepines **2**–**6** provide only low to modest stereoselectivity in the Kwon reaction (entries 4–8), the bulky *tert*-butyl-substituted phosphine (1) generates the desired heterocycle with excellent enantioselectivity, diastereoselectivity, and yield (entry 9)! Interestingly, a related bisphosphine, BINAPINE, is ineffective (entry 10).

As illustrated in Table 2, this catalytic asymmetric [4 + 2] annulation of imines with allenes proceeds best if the allene bears an R group that can stabilize an anion (e.g., carbonyl or aryl; entries

 $\it Table 3.$ Catalytic Asymmetric Synthesis of Piperidines: Scope with Respect to the $\it Imine^a$

entry	R	ee (%) ^b	cis:trans	isolated yield (%)
1	Ph	98	91:9	93
2	$3-MeC_6H_4$	98	93:7	98
3	$3,4,5-(MeO)_3C_6H_2$	96	96:4	86
4	$4-(MeO)C_6H_4$	98	93:7	42
5	4-ClC ₆ H ₄	96	91:9	99
6	$3-BrC_6H_4$	99	89:11	98
7	$2-(NO_2)C_6H_4$	68	96:4	98
8	2-ClC ₆ H ₄	60	79:21	75
9	2-naphthyl	99	93:7	96
10	2-furyl	97	87:13	98
11	3-pyridyl	97	91:9	76

 a All data are the average of two experiments. b The ee value is for the cis diastereomer.

Scheme 1

1–3). In contrast, for an unsubstituted allene (R = H), moderate enantioselectivity is observed (entries 4–5).¹²

A range of imines can be employed as substrates in this catalytic enantioselective synthesis of piperidine derivatives (Table 3). Thus, the imine can bear an electron-rich (entries 3-4), electron-poor (entries 5-8), or ortho-substituted (entries 7-8) aromatic group, although it is worth noting that the electron-rich 4-anisyl imine is a reluctant coupling partner (entry 4) and that ortho-substituted, electron-poor imines react with lower stereoselectivity (entries 7 and 8). Heteroaryl imines are suitable substrates for this annulation process (entries 10 and 11). $^{13-15}$

The products of these [4 + 2] reactions can be transformed into a variety of useful derivatives. For example, the olefin can be dihydroxylated with excellent diastereoselectivity (eq 2). ¹⁶ Alter-

natively, transannular cyclization affords ready access to a framework common to an array of important natural products (Scheme 1). 17,18

In summary, we have demonstrated that a chiral phosphepine can catalyze the Kwon [4+2] annulation of imines with allenes, providing six-membered nitrogen heterocycles with excellent diastereo- and enantioselectivity. Additional synthetic and mechanistic investigations of asymmetric nucleophile-catalyzed processes are underway.

Acknowledgment. Support has been provided by NSERC of Canada (postdoctoral fellowship to R.P.W.), Merck, and Novartis. We thank Luke Firmansjah and Dr. Peter Mueller for assistance with X-ray crystallography and Degussa for a gift of chiral phosphines for our preliminary studies.

Supporting Information Available: Experimental procedures and compound characterization data (PDF). X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For leading references, see: Fu, G. C. Acc. Chem. Res. 2004, 37, 542-547.
- (2) For leading references, see: (a) Spivey, A. C.; Arseniyadis, S. Angew. Chem., Int. Ed. 2004, 43, 5436-5441. (b) Murugan, R.; Scriven, E. F. V. Aldrichimica Acta 2003, 36, 21-27.
- (3) For a review, see: Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035–1050.
- (4) For some key pioneering examples, see: (a) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430–431; Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813–5814; Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368–13369. (b) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836–3837; Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem. 1998, 63, 5631–5635. (c) Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790–3800.
- (5) For leading references, see: (a) Naturally occurring alkaloids: Michael, J. P. Nat. Prod. Rep. 2004, 21, 625–649; O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435–446; Plunkett, O.; Sainsbury, M. In Rodd's Chemistry of Carbon Compounds; Sainsbury, M., Ed.; Elsevier: Amsterdam; 1998; Vol. 4, pp 365–421. (b) Pipecolic acid derivatives: Maison, W. In Highlights in Bioorganic Chemistry; Schmuck, C., Wennemers, H., Eds.; Wiley-VCH: New York, 2004; pp 18–29.
- (6) For leading references, see: (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701-1729.
 (b) Felpin, F.-X.; Lebreton, J. Curr. Org. Synth. 2004, 1, 83-109.
 (c) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953-2989.
 (d) Laschat, S.; Dickner, T. Synthesis 2000, 181-1813.
 (e) Rubiralta, M.; Giralt, E.; Diez, A. Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and Its Derivatives; Elsevier: New York, 1991.
- (7) For two very recent reports, see: (a) Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 11808—11809. (b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313—1317.
- (8) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716-4717.
 (9) For reviews of the chemistry of allenes, see: Krause, N., Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH: New York, 2004; Vol. 1 and 2.
- (10) Gladiali, S.; Dore, A.; Fabbri, D.; De Lucchi, O.; Manassero, M. *Tetrahedron: Asymmetry* **1994**, *5*, 511–514.
- (11) For leading references to the use of these phosphines as chiral ligands for transition metal-catalyzed processes, see: Junge, K.; Hagemann, B.; Enthaler, S.; Oehme, G.; Michalik, M.; Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller, M. Angew. Chem., Int. Ed. 2004, 43, 5066–5060.
- (12) If R is an electron-rich aromatic group, the annulation proceeds sluggishly (but with high stereoselectivity).
- (13) Notes: (a) Kwon reported that, with PBu₃ as the catalyst, enolizable imines are not suitable substrates for the annulation reaction (ref 8). Under our standard conditions, catalyst 1 is also ineffective for this family of compounds. (b) The phosphine oxide of 1 does not catalyze the Kwon annulation. (c) 1,2-Dichloroethane is also a suitable solvent. Reactions conducted in toluene, acetone, and THF proceed very slowly. (d) If the Ts group is replaced with P(=O)Ph₂ or Ms, the annulation proceeds in lower yield and ee.
- (14) Like many trialkylphosphines, catalyst 1 is susceptible to oxidation. The corresponding air-stable phosphonium salt can be prepared via protonation with HBF₄ (for a discussion of this general strategy, see: Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295–4298), and, in the presence of K₂CO₃, it furnishes stereoselectivity identical to that of 1 for the annulation illustrated in entry 1 of Table 3 (74% yield).
- (15) According to ^{31}P NMR spectroscopy, the resting state of 1 during the reaction is the free catalyst.
- (16) For leading references to hydroxylated piperidines/azasugars, see: (a) Afarinkia, K.; Bahar, A. *Tetrahedron: Asymmetry* 2005, 16, 1239–1287.
 (b) Depezay, J.-C. In *Carbohydrate Mimics*; Chapleur, Y., Ed.; Wiley-VCH: New York, 1998; pp 307–326.
- (17) (a) For the isolation of 6-oxoalstophyllal and 6-oxoalstophylline, see: Kam, T.-S.; Choo, Y.-M. J. Nat. Prod. 2004, 67, 547–552. (b) For leading references, see: Hamaker, L. K.; Cook, J. M. In Alkaloids: Chemical and Biological Perspectives; Elsevier: New York, 1995; Vol. 9, pp 23–84
- (18) For a method for annulating the dihydropyran ring, see: Bi, Y.; Zhang, L.-H.; Hamaker, L. K.; Cook, J. M. J. Am. Chem. Soc. 1994, 116, 9027–9041.

JA053277D